From 3d9e7fab4f05ae568a450e832d874979bface284 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 10 Mar 2022 14:24:20 +0100 Subject: [PATCH 01/42] Arbor cable cell label_dict and decor generation from create_hoc (tested simplecell and l5pc examples) --- bluepyopt/ephys/create_hoc.py | 67 +++++++- bluepyopt/ephys/templates/acc_template.jinja2 | 36 +++++ examples/l5pc/generate_hoc.py | 2 +- examples/simplecell/config/mechanisms.json | 5 + examples/simplecell/config/parameters.json | 33 ++++ examples/simplecell/generate_hoc.py | 32 ++++ examples/simplecell/simplecell_model.py | 149 ++++++++++++++++++ 7 files changed, 321 insertions(+), 3 deletions(-) create mode 100644 bluepyopt/ephys/templates/acc_template.jinja2 create mode 100644 examples/simplecell/config/mechanisms.json create mode 100644 examples/simplecell/config/parameters.json create mode 100755 examples/simplecell/generate_hoc.py create mode 100644 examples/simplecell/simplecell_model.py diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index baf9ceab..882f4be6 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -8,6 +8,7 @@ from collections import defaultdict, namedtuple, OrderedDict from datetime import datetime +import numpy import jinja2 import bluepyopt from . import mechanisms @@ -23,6 +24,7 @@ format_float) Location = namedtuple('Location', 'name, value') +MechLocation = namedtuple('MechLocation', 'name, mech, value') Range = namedtuple('Range', 'location, param_name, value') DEFAULT_LOCATION_ORDER = [ 'all', @@ -32,7 +34,7 @@ 'somatic', 'myelinated'] - +# location -> mechanism_name def _generate_channels_by_location(mechs, location_order): """Create a OrderedDictionary of all channel mechs for hoc template.""" channels = OrderedDict((location, []) for location in location_order) @@ -59,7 +61,7 @@ def _generate_reinitrng(mechs): return reinitrng_content - +# "list" of parameters -> global_params, ordered_section_params, range_params, location_order (loc -> [(param_name_mechanism, value),...]) - needs post-processing def _generate_parameters(parameters): """Create a list of parameters that need to be added to the hoc template""" param_locations = defaultdict(list) @@ -112,6 +114,62 @@ def _generate_parameters(parameters): return global_params, ordered_section_params, range_params, location_order +_nrn2arb = dict( + cm='membrane-capacitance', + ena='ion-reversal-potential-method \"na\"', + ek='ion-reversal-potential-method \"k\"', + v_init='membrane-potential', + celsius='temperature-kelvin' + # TODO: Ra=? +) + + +def _nrn2arb_name(name): + return _nrn2arb.get(name, name) + + +_nrn2arb_convert = dict( + celsius=lambda celsius: celsius + 273.15 +) + + +def _nrn2arb_value(param): + if param.name in _nrn2arb_convert: + return _nrn2arb_convert[param.name](param.value) + else: + return param.value + + +def _find_mech_and_split_param_name(param, mechs): + mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) + for mech in mechs])[0] + if len(mech_suffix_matches) == 0: + return Location(name=_nrn2arb_name(param.name), + value=_nrn2arb_value(param)) # TODO: adapt for Range + elif len(mech_suffix_matches) == 1: + mech = mechs[mech_suffix_matches[0]] + name = param.name.rstrip("_" + mech).replace(mech, '') + return MechLocation(name=_nrn2arb_name(name), + mech=mech, value=_nrn2arb_value(param)) # TODO: adapt for Range + else: + raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % + (param.name, repr(mechs[mech_suffix_matches]))) + + +def _split_mech_from_non_mech_params_global(params, channels): + ret = [ _find_mech_and_split_param_name(Location(name=name, value=value), channels['all']) + for name, value in params.items() ] + return { param.name : param for param in ret } + + +def _split_mech_from_non_mech_params_local(params, channels): + ret = [] + for loc, params in params: + ret.append((loc, [_find_mech_and_split_param_name(param, channels[loc]) + for param in params])) + return ret + + def create_hoc( mechs, parameters, @@ -174,6 +232,11 @@ def create_hoc( if custom_jinja_params is None: custom_jinja_params = {} + if template_filename == 'acc_template.jinja2': + global_params = _split_mech_from_non_mech_params_global(global_params, channels) + section_params = _split_mech_from_non_mech_params_local(section_params, channels) + # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) + return template.render(template_name=template_name, banner=banner, channels=channels, diff --git a/bluepyopt/ephys/templates/acc_template.jinja2 b/bluepyopt/ephys/templates/acc_template.jinja2 new file mode 100644 index 00000000..997e0a42 --- /dev/null +++ b/bluepyopt/ephys/templates/acc_template.jinja2 @@ -0,0 +1,36 @@ +{# This is an s-expr inspired by arborio::parse_expression(expr) in test_s_expr.cpp:1099 #} +(arbor-component + (meta-data (version "0.1-dev")) +{%- if banner %} {# ...probably rejected by arbor #} + (meta-data (produced-by "{{banner}}")) +{%- endif %} +(cable-cell + (label-dict + {%- for loc, parameters in section_params %} {# could also use channels.keys() #} + (region-def "{{ loc }}" (tag {{ loop.index0 }})) + {%- endfor %} + (decor + {%- for param_name, param in global_params.items() %} + {%- if param.mech is defined %} + (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- else %} + (default ({{ param.name }} {{ param.value }})) + {%- endif %} + {%- endfor %} + {%- for loc, parameters in section_params %} + {%- for param in parameters %} + {%- if param.mech is defined %} + (paint (region "{{ loc }}") (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- else %} + (paint (region "{{ loc }}") ({{ param.name }} {{ param.value }})) + {%- endif %} + {%- endfor %} + {%- endfor %} + {# TODO: range params #} + {# morphology - TODO: feed separately as a SWC/ASC file #} + (morphology + {%- if morphology %} + (file "{{morphology}}") + {%- else %} + execerror("Template {{template_name}} requires morphology name to instantiate") + {%- endif %}) \ No newline at end of file diff --git a/examples/l5pc/generate_hoc.py b/examples/l5pc/generate_hoc.py index 5e39aa41..2162b129 100755 --- a/examples/l5pc/generate_hoc.py +++ b/examples/l5pc/generate_hoc.py @@ -39,7 +39,7 @@ def main(): 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333, } cell = l5pc_model.create() - print(cell.create_hoc(param_values)) + print(cell.create_hoc(param_values, template='acc_template.jinja2')) if __name__ == '__main__': diff --git a/examples/simplecell/config/mechanisms.json b/examples/simplecell/config/mechanisms.json new file mode 100644 index 00000000..8f8820af --- /dev/null +++ b/examples/simplecell/config/mechanisms.json @@ -0,0 +1,5 @@ +{ + "somatic": [ + "hh" + ] +} diff --git a/examples/simplecell/config/parameters.json b/examples/simplecell/config/parameters.json new file mode 100644 index 00000000..76a9a30a --- /dev/null +++ b/examples/simplecell/config/parameters.json @@ -0,0 +1,33 @@ +[ + { + "param_name": "cm", + "sectionlist": "somatic", + "type": "section", + "dist_type": "uniform", + "value": 1 + }, + { + "param_name": "gnabar_hh", + "mech": "hh", + "bounds": [ + 0.05, + 0.125 + ], + "dist_type": "uniform", + "mech_param": "gnabar", + "type": "range", + "sectionlist": "somatic" + }, + { + "param_name": "gkbar_hh", + "mech": "hh", + "bounds": [ + 0.01, + 0.075 + ], + "dist_type": "uniform", + "mech_param": "gkbar", + "type": "range", + "sectionlist": "somatic" + } +] \ No newline at end of file diff --git a/examples/simplecell/generate_hoc.py b/examples/simplecell/generate_hoc.py new file mode 100755 index 00000000..9bf2db6b --- /dev/null +++ b/examples/simplecell/generate_hoc.py @@ -0,0 +1,32 @@ +#!/usr/bin/env python + +'''Example for generating a hoc template + + $ python generate_hoc.py > test.hoc + + Will save 'test.hoc' file, which can be loaded in neuron with: + 'load_file("test.hoc")' + Then the hoc template needs to be instantiated with a morphology + CCell("ignored", "path/to/morphology.swc") +''' +import sys + +import simplecell_model + + +def main(): + '''main''' + param_values = { + 'gnabar_hh.somatic': 0.10299326453483033, + 'gkbar_hh.somatic': 0.027124836082684685 + } + + cell = simplecell_model.create() + print(cell.create_hoc(param_values, template='acc_template.jinja2')) + + +if __name__ == '__main__': + if '-h' in sys.argv or '--help' in sys.argv: + print(__doc__) + else: + main() diff --git a/examples/simplecell/simplecell_model.py b/examples/simplecell/simplecell_model.py new file mode 100644 index 00000000..76ed3202 --- /dev/null +++ b/examples/simplecell/simplecell_model.py @@ -0,0 +1,149 @@ +"""Run simple cell optimisation""" + +""" +Copyright (c) 2016-2020, EPFL/Blue Brain Project + + This file is part of BluePyOpt + + This library is free software; you can redistribute it and/or modify it under + the terms of the GNU Lesser General Public License version 3.0 as published + by the Free Software Foundation. + + This library is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more + details. + + You should have received a copy of the GNU Lesser General Public License + along with this library; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. +""" +# pylint: disable=R0914 + +import os +import json + +import bluepyopt.ephys as ephys + +script_dir = os.path.dirname(__file__) +config_dir = os.path.join(script_dir, 'config') + +# TODO store definition dicts in json +# TODO rename 'score' into 'objective' +# TODO add functionality to read settings of every object from config format + + +def define_mechanisms(): + """Define mechanisms""" + + mech_definitions = json.load( + open( + os.path.join( + config_dir, + 'mechanisms.json'))) + + mechanisms = [] + for sectionlist, channels in mech_definitions.items(): + seclist_loc = ephys.locations.NrnSeclistLocation( + sectionlist, + seclist_name=sectionlist) + for channel in channels: + mechanisms.append(ephys.mechanisms.NrnMODMechanism( + name='%s.%s' % (channel, sectionlist), + mod_path=None, + suffix=channel, + locations=[seclist_loc], + preloaded=True)) + + return mechanisms + + +def define_parameters(): + """Define parameters""" + + param_configs = json.load(open(os.path.join(config_dir, 'parameters.json'))) + parameters = [] + + for param_config in param_configs: + if 'value' in param_config: + frozen = True + value = param_config['value'] + bounds = None + elif 'bounds' in param_config: + frozen = False + bounds = param_config['bounds'] + value = None + else: + raise Exception( + 'Parameter config has to have bounds or value: %s' + % param_config) + + if param_config['type'] == 'global': + parameters.append( + ephys.parameters.NrnGlobalParameter( + name=param_config['param_name'], + param_name=param_config['param_name'], + frozen=frozen, + bounds=bounds, + value=value)) + elif param_config['type'] in ['section', 'range']: + if param_config['dist_type'] == 'uniform': + scaler = ephys.parameterscalers.NrnSegmentLinearScaler() + elif param_config['dist_type'] == 'exp': + scaler = ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + distribution=param_config['dist']) + seclist_loc = ephys.locations.NrnSeclistLocation( + param_config['sectionlist'], + seclist_name=param_config['sectionlist']) + + name = '%s.%s' % (param_config['param_name'], + param_config['sectionlist']) + + if param_config['type'] == 'section': + parameters.append( + ephys.parameters.NrnSectionParameter( + name=name, + param_name=param_config['param_name'], + value_scaler=scaler, + value=value, + frozen=frozen, + bounds=bounds, + locations=[seclist_loc])) + elif param_config['type'] == 'range': + parameters.append( + ephys.parameters.NrnRangeParameter( + name=name, + param_name=param_config['param_name'], + value_scaler=scaler, + value=value, + frozen=frozen, + bounds=bounds, + locations=[seclist_loc])) + else: + raise Exception( + 'Param config type has to be global, section or range: %s' % + param_config) + + return parameters + + +def define_morphology(): + """Define morphology""" + + return ephys.morphologies.NrnFileMorphology( + os.path.join( + script_dir, + 'simple.swc'), + do_replace_axon=False) + + +def create(): + """Create cell model""" + + cell = ephys.models.CellModel( + 'simple_cell', + morph=define_morphology(), + mechs=define_mechanisms(), + params=define_parameters()) + + return cell From fc52a061869e7d56d2ee573d51cd165f610ba667 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 10 Mar 2022 20:22:22 +0100 Subject: [PATCH 02/42] Arbor cable cell, label dict and decor generation fixed and done separately --- bluepyopt/ephys/create_hoc.py | 67 ++++++++++++------- .../templates/acc/cell_json_template.jinja2 | 13 ++++ .../templates/acc/decor_acc_template.jinja2 | 21 ++++++ .../acc/label_dict_acc_template.jinja2 | 6 ++ bluepyopt/ephys/templates/acc_template.jinja2 | 36 ---------- examples/l5pc/generate_hoc.py | 13 +++- examples/simplecell/generate_hoc.py | 14 +++- 7 files changed, 109 insertions(+), 61 deletions(-) create mode 100644 bluepyopt/ephys/templates/acc/cell_json_template.jinja2 create mode 100644 bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 create mode 100644 bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 delete mode 100644 bluepyopt/ephys/templates/acc_template.jinja2 diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 882f4be6..e49aaf52 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -7,6 +7,7 @@ from collections import defaultdict, namedtuple, OrderedDict from datetime import datetime +from glob import glob import numpy import jinja2 @@ -116,11 +117,11 @@ def _generate_parameters(parameters): _nrn2arb = dict( cm='membrane-capacitance', - ena='ion-reversal-potential-method \"na\"', - ek='ion-reversal-potential-method \"k\"', + ena='ion-reversal-potential \"na\"', + ek='ion-reversal-potential \"k\"', v_init='membrane-potential', - celsius='temperature-kelvin' - # TODO: Ra=? + celsius='temperature-kelvin', + Ra='axial-resistivity' ) @@ -143,12 +144,12 @@ def _nrn2arb_value(param): def _find_mech_and_split_param_name(param, mechs): mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) for mech in mechs])[0] - if len(mech_suffix_matches) == 0: + if mech_suffix_matches.size == 0: return Location(name=_nrn2arb_name(param.name), value=_nrn2arb_value(param)) # TODO: adapt for Range - elif len(mech_suffix_matches) == 1: + elif mech_suffix_matches.size == 1: mech = mechs[mech_suffix_matches[0]] - name = param.name.rstrip("_" + mech).replace(mech, '') + name = param.name[:-(len(mech)+1)].replace(mech, '') return MechLocation(name=_nrn2arb_name(name), mech=mech, value=_nrn2arb_value(param)) # TODO: adapt for Range else: @@ -206,9 +207,23 @@ def create_hoc( 'templates')) template_path = os.path.join(template_dir, template_filename) - with open(template_path) as template_file: - template = template_file.read() - template = jinja2.Template(template) + if os.path.exists(template_path): + template_paths = template_path + else: + template_paths = glob(template_path) + + templates = dict() + for template_path in template_paths: + with open(template_path) as template_file: + template = template_file.read() + name = os.path.basename(template_path) + if name.endswith('.jinja2'): + name = name[:-7] + if name.endswith('_template'): + name = name[:-9] + if '_' in name: + name = '.'.join(name.rsplit('_', 1)) + templates[name] = jinja2.Template(template) global_params, section_params, range_params, location_order = \ _generate_parameters(parameters) @@ -232,19 +247,25 @@ def create_hoc( if custom_jinja_params is None: custom_jinja_params = {} - if template_filename == 'acc_template.jinja2': + if 'acc/' in template_filename : + custom_jinja_params['arb_cell'] = 'cell.json' + custom_jinja_params['arb_decor'] = 'decor.acc' + custom_jinja_params['arb_label_dict'] = 'label_dict.acc' global_params = _split_mech_from_non_mech_params_global(global_params, channels) section_params = _split_mech_from_non_mech_params_local(section_params, channels) # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) - - return template.render(template_name=template_name, - banner=banner, - channels=channels, - morphology=morphology, - section_params=section_params, - range_params=range_params, - global_params=global_params, - re_init_rng=re_init_rng, - replace_axon=replace_axon, - ignored_global_params=ignored_global_params, - **custom_jinja_params) + + ret = { template_name + "_" + name: + template.render(template_name=template_name, + banner=banner, + channels=channels, + morphology=morphology, + section_params=section_params, + range_params=range_params, + global_params=global_params, + re_init_rng=re_init_rng, + replace_axon=replace_axon, + ignored_global_params=ignored_global_params, + **custom_jinja_params) + for name, template in templates.items()} + return list(ret.values())[0] if len(ret) == 1 else ret diff --git a/bluepyopt/ephys/templates/acc/cell_json_template.jinja2 b/bluepyopt/ephys/templates/acc/cell_json_template.jinja2 new file mode 100644 index 00000000..6415ce99 --- /dev/null +++ b/bluepyopt/ephys/templates/acc/cell_json_template.jinja2 @@ -0,0 +1,13 @@ +{ + "cell_model_name": "{{template_name}}", + {%- if banner %} + "produced_by": "{{banner}}", + {%- endif %} + {%- if morphology %} {# feed morphology separately as a SWC/ASC file #} + "morphology": "{{morphology}}", + {%- else %} + execerror("Template {{template_name}} requires morphology name to instantiate") + {%- endif %} + "label_dict": "{{template_name}}_{{arb_label_dict}}", + "decor": "{{template_name}}_{{arb_decor}}" +} \ No newline at end of file diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 new file mode 100644 index 00000000..20bf0b83 --- /dev/null +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -0,0 +1,21 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (decor + {%- for param_name, param in global_params.items() %} + {%- if param.mech is defined %} + (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- else %} + (default ({{ param.name }} {{ param.value }})) + {%- endif %} + {%- endfor %} + + {%- for loc, parameters in section_params %} + {%- for param in parameters %} + {%- if param.mech is defined %} + (paint (region "{{ loc }}") (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- else %} + (paint (region "{{ loc }}") ({{ param.name }} {{ param.value }})) + {%- endif %} + {%- endfor %} + + {%- endfor %}{# TODO: range params #})) diff --git a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 new file mode 100644 index 00000000..17243b49 --- /dev/null +++ b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 @@ -0,0 +1,6 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (label-dict + {%- for loc, parameters in section_params %} {# could also use channels.keys() #} + (region-def "{{ loc }}" (tag {{ loop.index0 }})) + {%- endfor %})) diff --git a/bluepyopt/ephys/templates/acc_template.jinja2 b/bluepyopt/ephys/templates/acc_template.jinja2 deleted file mode 100644 index 997e0a42..00000000 --- a/bluepyopt/ephys/templates/acc_template.jinja2 +++ /dev/null @@ -1,36 +0,0 @@ -{# This is an s-expr inspired by arborio::parse_expression(expr) in test_s_expr.cpp:1099 #} -(arbor-component - (meta-data (version "0.1-dev")) -{%- if banner %} {# ...probably rejected by arbor #} - (meta-data (produced-by "{{banner}}")) -{%- endif %} -(cable-cell - (label-dict - {%- for loc, parameters in section_params %} {# could also use channels.keys() #} - (region-def "{{ loc }}" (tag {{ loop.index0 }})) - {%- endfor %} - (decor - {%- for param_name, param in global_params.items() %} - {%- if param.mech is defined %} - (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) - {%- else %} - (default ({{ param.name }} {{ param.value }})) - {%- endif %} - {%- endfor %} - {%- for loc, parameters in section_params %} - {%- for param in parameters %} - {%- if param.mech is defined %} - (paint (region "{{ loc }}") (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) - {%- else %} - (paint (region "{{ loc }}") ({{ param.name }} {{ param.value }})) - {%- endif %} - {%- endfor %} - {%- endfor %} - {# TODO: range params #} - {# morphology - TODO: feed separately as a SWC/ASC file #} - (morphology - {%- if morphology %} - (file "{{morphology}}") - {%- else %} - execerror("Template {{template_name}} requires morphology name to instantiate") - {%- endif %}) \ No newline at end of file diff --git a/examples/l5pc/generate_hoc.py b/examples/l5pc/generate_hoc.py index 2162b129..8bc44ba5 100755 --- a/examples/l5pc/generate_hoc.py +++ b/examples/l5pc/generate_hoc.py @@ -10,6 +10,9 @@ CCell("ignored", "path/to/morphology.swc") ''' import sys +import os +import shutil +from pprint import pprint import l5pc_model @@ -39,7 +42,15 @@ def main(): 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333, } cell = l5pc_model.create() - print(cell.create_hoc(param_values, template='acc_template.jinja2')) + output = cell.create_hoc(param_values, template='acc/*_template.jinja2') + pprint(output) + if isinstance(output, dict): + output_dir = os.getcwd() + for comp, comp_rendered in output.items(): + with open(os.path.join(output_dir, comp),'w') as f: + f.write(comp_rendered) + shutil.copy2(cell.morphology.morphology_path, output_dir) + if __name__ == '__main__': diff --git a/examples/simplecell/generate_hoc.py b/examples/simplecell/generate_hoc.py index 9bf2db6b..54e680e6 100755 --- a/examples/simplecell/generate_hoc.py +++ b/examples/simplecell/generate_hoc.py @@ -10,6 +10,9 @@ CCell("ignored", "path/to/morphology.swc") ''' import sys +import os +import shutil +from pprint import pprint import simplecell_model @@ -22,7 +25,16 @@ def main(): } cell = simplecell_model.create() - print(cell.create_hoc(param_values, template='acc_template.jinja2')) + output = cell.create_hoc(param_values, template='acc/*_template.jinja2') + pprint(output) + if isinstance(output, dict): + output_dir = os.getcwd() + for comp, comp_rendered in output.items(): + with open(os.path.join(output_dir, comp),'w') as f: + f.write(comp_rendered) + shutil.copy2(cell.morphology.morphology_path, output_dir) + + if __name__ == '__main__': From 3e20642508200c1a1f76bb608bd8a74ead073cf7 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 14 Mar 2022 11:03:30 +0100 Subject: [PATCH 03/42] Unit tests for create_acc (Arbor cable cell output) --- MANIFEST.in | 3 + bluepyopt/ephys/create_hoc.py | 112 ++++++++++++++++-- bluepyopt/ephys/models.py | 52 +++++--- bluepyopt/tests/test_ephys/test_create_hoc.py | 80 +++++++++++++ .../testdata/acc/cell_json_template.jinja2 | 13 ++ .../testdata/acc/decor_acc_template.jinja2 | 22 ++++ .../acc/label_dict_acc_template.jinja2 | 7 ++ examples/l5pc/generate_hoc.py | 18 ++- examples/simplecell/generate_hoc.py | 18 ++- setup.py | 3 + 10 files changed, 301 insertions(+), 27 deletions(-) create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 diff --git a/MANIFEST.in b/MANIFEST.in index c1711c12..8ac29e6d 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,6 +1,9 @@ include versioneer.py include bluepyopt/_version.py include bluepyopt/ephys/templates/cell_template.jinja2 +include bluepyopt/ephys/templates/acc/cell_json_template.jinja2 +include bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +include bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 include.txt include AUTHORS.txt diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index e49aaf52..f1d6542a 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -171,7 +171,7 @@ def _split_mech_from_non_mech_params_local(params, channels): return ret -def create_hoc( +def _create_sim_desc( mechs, parameters, morphology=None, @@ -181,7 +181,8 @@ def create_hoc( template_filename='cell_template.jinja2', disable_banner=None, template_dir=None, - custom_jinja_params=None,): + custom_jinja_params=None, + sim=None): '''return a string containing the hoc template Args: @@ -194,12 +195,15 @@ def create_hoc( This iterable contains parameter names that aren't checked replace_axon (str): String replacement for the 'replace_axon' command. Must include 'proc replace_axon(){ ... } - template (str): file name of the jinja2 template + template_filename (str): file name of the jinja2 template template_dir (str): dir name of the jinja2 template custom_jinja_params (dict): dict of additional jinja2 params in case of a custom template + sim (str): simulator to create description for (nrn or arb) ''' + assert sim in ['nrn', 'arb'] + if template_dir is None: template_dir = os.path.abspath( os.path.join( @@ -207,8 +211,8 @@ def create_hoc( 'templates')) template_path = os.path.join(template_dir, template_filename) - if os.path.exists(template_path): - template_paths = template_path + if sim == 'nrn': + template_paths = [template_path] else: template_paths = glob(template_path) @@ -247,7 +251,7 @@ def create_hoc( if custom_jinja_params is None: custom_jinja_params = {} - if 'acc/' in template_filename : + if sim == 'arb': custom_jinja_params['arb_cell'] = 'cell.json' custom_jinja_params['arb_decor'] = 'decor.acc' custom_jinja_params['arb_label_dict'] = 'label_dict.acc' @@ -268,4 +272,98 @@ def create_hoc( ignored_global_params=ignored_global_params, **custom_jinja_params) for name, template in templates.items()} - return list(ret.values())[0] if len(ret) == 1 else ret + + if sim == 'nrn': + return list(ret.values())[0] + else: + return ret + + +def create_hoc( + mechs, + parameters, + morphology=None, + ignored_globals=(), + replace_axon=None, + template_name='CCell', + template_filename='cell_template.jinja2', + disable_banner=None, + template_dir=None, + custom_jinja_params=None,): + '''return a string containing the hoc template + + Args: + mechs (): All the mechs for the hoc template + parameters (): All the parameters in the hoc template + morpholgy (str): Name of morphology + ignored_globals (iterable str): HOC coded is added for each + NrnGlobalParameter + that exists, to test that it matches the values set in the parameters. + This iterable contains parameter names that aren't checked + replace_axon (str): String replacement for the 'replace_axon' command. + Must include 'proc replace_axon(){ ... } + template_filename (str): file name of the jinja2 template + template_dir (str): dir name of the jinja2 template + custom_jinja_params (dict): dict of additional jinja2 params in case + of a custom template + ''' + return _create_sim_desc( + mechs, + parameters, + morphology, + ignored_globals, + replace_axon, + template_name, + template_filename, + disable_banner, + template_dir, + custom_jinja_params, + sim="nrn") + + +def create_acc( + mechs, + parameters, + morphology=None, + ignored_globals=(), + replace_axon=None, + template_name='CCell', + template_filename='acc/*_template.jinja2', + disable_banner=None, + template_dir=None, + custom_jinja_params=None,): + '''return a string containing the hoc template + + Args: + mechs (): All the mechs for the hoc template + parameters (): All the parameters in the hoc template + morpholgy (str): Name of morphology + ignored_globals (iterable str): HOC coded is added for each + NrnGlobalParameter + that exists, to test that it matches the values set in the parameters. + This iterable contains parameter names that aren't checked + replace_axon (str): String replacement for the 'replace_axon' command. + Must include 'proc replace_axon(){ ... } + template_filename (str): file path of the cell.json , decor.acc and + label_dict.acc jinja2 templates (with wildcards expanded by glob) + template_dir (str): dir name of the jinja2 template + custom_jinja_params (dict): dict of additional jinja2 params in case + of a custom template + ''' + if morphology[-4:] not in ['.swc', '.asc']: + raise RuntimeError("Morphology file %s not supported in Arbor " + " (only supported types are .swc and .asc)." + % morphology ) + + return _create_sim_desc( + mechs, + parameters, + morphology, + ignored_globals, + replace_axon, + template_name, + template_filename, + disable_banner, + template_dir, + custom_jinja_params, + sim="arb") diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index db405279..0e9849fe 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -280,11 +280,12 @@ def check_nonfrozen_params(self, param_names): # pylint: disable=W0613 'set before simulation' % param_name) - def create_hoc(self, param_values, - ignored_globals=(), template='cell_template.jinja2', - disable_banner=False, - template_dir=None): - """Create hoc code for this model""" + def _create_sim_desc(self, param_values, + ignored_globals=(), template=None, + disable_banner=False, + template_dir=None, + sim=None): + """Create simulator description for this model""" to_unfreeze = [] for param in self.params.values(): @@ -315,20 +316,43 @@ def create_hoc(self, param_values, replace_axon += '\n' replace_axon += morph_modifier_hoc - ret = create_hoc.create_hoc(mechs=self.mechanisms, - parameters=self.params.values(), - morphology=morphology, - ignored_globals=ignored_globals, - replace_axon=replace_axon, - template_name=template_name, - template_filename=template, - template_dir=template_dir, - disable_banner=disable_banner) + ret = create_hoc._create_sim_desc(mechs=self.mechanisms, + parameters=self.params.values(), + morphology=morphology, + ignored_globals=ignored_globals, + replace_axon=replace_axon, + template_name=template_name, + template_filename=template, + template_dir=template_dir, + disable_banner=disable_banner, + sim=sim) self.unfreeze(to_unfreeze) return ret + def create_hoc(self, param_values, + ignored_globals=(), template='cell_template.jinja2', + disable_banner=False, + template_dir=None): + """Create hoc code for this model""" + return self._create_sim_desc(param_values, + ignored_globals, template, + disable_banner, + template_dir, + sim='nrn') + + def create_acc(self, param_values, + ignored_globals=(), template='acc/*_template.jinja2', + disable_banner=False, + template_dir=None): + """Create hoc code for this model""" + return self._create_sim_desc(param_values, + ignored_globals, template, + disable_banner, + template_dir, + sim='arb') + def __str__(self): """Return string representation""" diff --git a/bluepyopt/tests/test_ephys/test_create_hoc.py b/bluepyopt/tests/test_ephys/test_create_hoc.py index c133318d..dac3f421 100644 --- a/bluepyopt/tests/test_ephys/test_create_hoc.py +++ b/bluepyopt/tests/test_ephys/test_create_hoc.py @@ -3,6 +3,8 @@ # pylint: disable=W0212 import os +import re +import json from . import utils from bluepyopt.ephys import create_hoc @@ -85,3 +87,81 @@ def test_create_hoc_filename(): assert 'endtemplate' in hoc assert 'Test template' in hoc assert custom_param_val in hoc + + +@pytest.mark.unit +def test_create_acc(): + """ephys.create_hoc: Test create_hoc""" + mech = utils.make_mech() + parameters = utils.make_parameters() + + acc = create_hoc.create_acc([mech, ], parameters, morphology='CCell.swc', template_name='CCell') + + cell_json = "CCell_cell.json" + decor_acc = "CCell_decor.acc" + label_dict_acc = "CCell_label_dict.acc" + + assert cell_json in acc + cell_json_dict = json.loads(acc[cell_json]) + assert 'cell_model_name' in cell_json_dict + assert 'produced_by' in cell_json_dict + assert 'morphology' in cell_json_dict + assert 'label_dict' in cell_json_dict + assert 'decor' in cell_json_dict + + assert decor_acc in acc + assert acc[decor_acc].startswith('(arbor-component') + assert '(decor' in acc[decor_acc] + + assert label_dict_acc in acc + assert acc[label_dict_acc].startswith('(arbor-component') + assert '(label-dict' in acc[label_dict_acc] + matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', acc[label_dict_acc]) + for tag, loc in enumerate(DEFAULT_LOCATION_ORDER): + assert matches[tag][0] == loc + assert matches[tag][1] == str(tag) + + +@pytest.mark.unit +def test_create_acc_filename(): + """ephys.create_hoc: Test create_acc template_filename""" + mech = utils.make_mech() + parameters = utils.make_parameters() + custom_param_val = str(__file__) + + acc = create_hoc.create_acc([mech, ], + parameters, morphology='CCell.asc', + template_name='CCell', + template_filename='acc/*_template.jinja2', + template_dir=os.path.join( + os.path.dirname(__file__), + 'testdata'), + custom_jinja_params={ + 'custom_param': custom_param_val}) + cell_json = "CCell_cell.json" + decor_acc = "CCell_decor.acc" + label_dict_acc = "CCell_label_dict.acc" + + assert cell_json in acc + cell_json_dict = json.loads(acc[cell_json]) + assert 'cell_model_name' in cell_json_dict + assert 'produced_by' in cell_json_dict + assert 'morphology' in cell_json_dict + assert 'label_dict' in cell_json_dict + assert 'decor' in cell_json_dict + + assert decor_acc in acc + assert acc[decor_acc].startswith('(arbor-component') + assert '(decor' in acc[decor_acc] + + assert label_dict_acc in acc + assert acc[label_dict_acc].startswith('(arbor-component') + assert '(label-dict' in acc[label_dict_acc] + matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', acc[label_dict_acc]) + for tag, loc in enumerate(DEFAULT_LOCATION_ORDER): + assert matches[tag][0] == loc + assert matches[tag][1] == str(tag) + + assert '(meta-data (info "test-decor"))' in acc[decor_acc] + assert '(meta-data (info "test-label-dict"))' in acc[label_dict_acc] + assert custom_param_val in cell_json_dict['produced_by'] diff --git a/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 new file mode 100644 index 00000000..78960b23 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 @@ -0,0 +1,13 @@ +{ + "cell_model_name": "{{template_name}}", + {%- if banner %} + "produced_by": "{{banner}} (from {{ custom_param }})", + {%- endif %} + {%- if morphology %} {# feed morphology separately as a SWC/ASC file #} + "morphology": "{{morphology}}", + {%- else %} + execerror("Template {{template_name}} requires morphology name to instantiate") + {%- endif %} + "label_dict": "{{template_name}}_{{arb_label_dict}}", + "decor": "{{template_name}}_{{arb_decor}}" +} \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 new file mode 100644 index 00000000..281a03d3 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 @@ -0,0 +1,22 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (meta-data (info "test-decor")) + (decor + {%- for param_name, param in global_params.items() %} + {%- if param.mech is defined %} + (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- else %} + (default ({{ param.name }} {{ param.value }})) + {%- endif %} + {%- endfor %} + + {%- for loc, parameters in section_params %} + {%- for param in parameters %} + {%- if param.mech is defined %} + (paint (region "{{ loc }}") (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- else %} + (paint (region "{{ loc }}") ({{ param.name }} {{ param.value }})) + {%- endif %} + {%- endfor %} + + {%- endfor %}{# TODO: range params #})) diff --git a/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 new file mode 100644 index 00000000..070afbba --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 @@ -0,0 +1,7 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (meta-data (info "test-label-dict")) + (label-dict + {%- for loc, parameters in section_params %} {# could also use channels.keys() #} + (region-def "{{ loc }}" (tag {{ loop.index0 }})) + {%- endfor %})) diff --git a/examples/l5pc/generate_hoc.py b/examples/l5pc/generate_hoc.py index 8bc44ba5..0e14789c 100755 --- a/examples/l5pc/generate_hoc.py +++ b/examples/l5pc/generate_hoc.py @@ -42,13 +42,25 @@ def main(): 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333, } cell = l5pc_model.create() - output = cell.create_hoc(param_values, template='acc/*_template.jinja2') - pprint(output) - if isinstance(output, dict): + + if '--acc' not in sys.argv: + output = cell.create_hoc(param_values, template='cell_template.jinja2') + print(output) + else: + output = cell.create_acc(param_values, template='acc/*_template.jinja2') + pprint(output) output_dir = os.getcwd() for comp, comp_rendered in output.items(): + comp_filename = os.path.join(output_dir, comp) + if os.path.exists(comp_filename): + raise RuntimeError("%s already exists!" % comp_filename) with open(os.path.join(output_dir, comp),'w') as f: f.write(comp_rendered) + + morph_filename = os.path.join(output_dir, + os.path.basename(cell.morphology.morphology_path)) + if os.path.exists(morph_filename): + raise RuntimeError("%s already exists!" % comp_filename) shutil.copy2(cell.morphology.morphology_path, output_dir) diff --git a/examples/simplecell/generate_hoc.py b/examples/simplecell/generate_hoc.py index 54e680e6..32e1aebd 100755 --- a/examples/simplecell/generate_hoc.py +++ b/examples/simplecell/generate_hoc.py @@ -25,13 +25,25 @@ def main(): } cell = simplecell_model.create() - output = cell.create_hoc(param_values, template='acc/*_template.jinja2') - pprint(output) - if isinstance(output, dict): + + if '--acc' not in sys.argv: + output = cell.create_hoc(param_values, template='cell_template.jinja2') + print(output) + else: + output = cell.create_acc(param_values, template='acc/*_template.jinja2') + pprint(output) output_dir = os.getcwd() for comp, comp_rendered in output.items(): + comp_filename = os.path.join(output_dir, comp) + if os.path.exists(comp_filename): + raise RuntimeError("%s already exists!" % comp_filename) with open(os.path.join(output_dir, comp),'w') as f: f.write(comp_rendered) + + morph_filename = os.path.join(output_dir, + os.path.basename(cell.morphology.morphology_path)) + if os.path.exists(morph_filename): + raise RuntimeError("%s already exists!" % comp_filename) shutil.copy2(cell.morphology.morphology_path, output_dir) diff --git a/setup.py b/setup.py index 887bd3bf..2a3abad3 100644 --- a/setup.py +++ b/setup.py @@ -83,5 +83,8 @@ package_data={ 'bluepyopt': [ 'ephys/templates/cell_template.jinja2', + 'ephys/templates/acc/cell_json_template.jinja2', + 'ephys/templates/acc/decor_acc_template.jinja2', + 'ephys/templates/acc/label_dict_acc_template.jinja2', 'ephys/examples/simplecell/simple.swc'], }) From dbf766fb03956916160e340d40bd315f22ebdc62 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 31 Mar 2022 19:26:36 +0200 Subject: [PATCH 04/42] Fixed Arbor mechanism output, separated create_hoc from create_acc examples --- bluepyopt/ephys/create_hoc.py | 195 ++++++++++++++++-- ..._template.jinja2 => _json_template.jinja2} | 0 .../templates/acc/decor_acc_template.jinja2 | 12 +- .../acc/label_dict_acc_template.jinja2 | 4 +- examples/l5pc/generate_acc.py | 59 ++++++ examples/l5pc/generate_hoc.py | 72 +++---- examples/simplecell/generate_acc.py | 59 ++++++ examples/simplecell/generate_hoc.py | 34 +-- 8 files changed, 338 insertions(+), 97 deletions(-) mode change 100644 => 100755 bluepyopt/ephys/create_hoc.py rename bluepyopt/ephys/templates/acc/{cell_json_template.jinja2 => _json_template.jinja2} (100%) create mode 100755 examples/l5pc/generate_acc.py create mode 100644 examples/simplecell/generate_acc.py diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py old mode 100644 new mode 100755 index f1d6542a..686d209c --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -25,7 +25,6 @@ format_float) Location = namedtuple('Location', 'name, value') -MechLocation = namedtuple('MechLocation', 'name, mech, value') Range = namedtuple('Range', 'location, param_name, value') DEFAULT_LOCATION_ORDER = [ 'all', @@ -115,7 +114,7 @@ def _generate_parameters(parameters): return global_params, ordered_section_params, range_params, location_order -_nrn2arb = dict( +_nrn2arb = dict( # TODO: add regions cm='membrane-capacitance', ena='ion-reversal-potential \"na\"', ek='ion-reversal-potential \"k\"', @@ -141,33 +140,187 @@ def _nrn2arb_value(param): return param.value +def _make_arb_global_param(loc, param): + return loc == 'all' and param.name in ['membrane-capacitance'] + + +def _arb_defined_region(region, expr): + return ('(region \"%s\")' % region, '(region-def \"%s\" %s)' % (region, expr)) + +def _arb_tagged_region(region, tag): + return _arb_defined_region(region, '(tag %i)' % tag) + + +_nrn2arb_region = { + 'all': _arb_defined_region('all', '(all)'), # could use ('(all)', None) instead, then "all" undefined + 'somatic': _arb_tagged_region('soma', 1), + 'axonal': _arb_tagged_region('axon', 2), + 'basal': _arb_tagged_region('dend', 3), # SWC convetion: dend == basal dendrite, apic == apical dendrite + 'apical': _arb_tagged_region('apic', 4), + 'myelinated': (None, None), # myelinated is unsupported in Arbor +} + +# # Generated with NMODL in arbor/mechanisms +# import os, re, pprint + +# nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' +# suffix_pattern = nmodl_pattern % 'SUFFIX' +# globals_pattern = nmodl_pattern % 'GLOBAL' +# ranges_pattern = nmodl_pattern % 'RANGE' + +# def process_nmodl(fd): +# # print(fd, flush=True) +# nrn = re.search(r'NEURON\s+{([^}]+)}', fd, flags=re.MULTILINE).group(1) +# suffix = re.search(suffix_pattern, nrn, flags=re.MULTILINE) +# suffix = suffix if suffix is None else suffix.group(1) +# globals = re.search(globals_pattern, nrn, flags=re.MULTILINE) +# globals = globals if globals is None else re.findall(r'\w+', globals.group(1)) +# ranges = re.search(ranges_pattern, nrn, flags=re.MULTILINE) +# ranges = ranges if ranges is None else re.findall(r'\w+', ranges.group(1)) +# return dict(globals=globals, ranges=ranges) # suffix skipped + +# mechs = dict() +# for cat in ['allen', 'bbp', 'default']: +# mechs[cat] = dict() +# cat_dir = 'arbor/mechanisms/' + cat +# for f in os.listdir(cat_dir): +# with open(os.path.join(cat_dir,f)) as fd: +# print(f"Processing {f}", flush=True) +# mechs[cat][f[:-4]] = process_nmodl(fd.read()) +# pprint.pprint(mechs) + + +_arb_mechs = dict( + allen={ + 'CaDynamics': {'globals': ['F'], + 'ranges': ['decay', 'gamma', 'minCai', 'depth']}, + 'Ca_HVA': {'globals': None, 'ranges': ['gbar']}, + 'Ca_LVA': {'globals': None, 'ranges': ['gbar']}, + 'Ih': {'globals': None, 'ranges': ['gbar']}, + 'Im': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, + 'Im_v2': {'globals': None, 'ranges': ['gbar', 'ik']}, + 'K_P': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, + 'K_T': {'globals': None, 'ranges': ['gbar']}, + 'Kd': {'globals': None, 'ranges': ['gbar', 'ik']}, + 'Kv2like': {'globals': None, 'ranges': ['gbar']}, + 'Kv3_1': {'globals': None, 'ranges': ['gbar', 'ik']}, + 'NaTa': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, + 'NaTs': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, + 'NaV': {'globals': None, 'ranges': ['gbar']}, + 'Nap': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, + 'SK': {'globals': None, 'ranges': ['gbar', 'ik']}}, + bbp={ + 'CaDynamics_E2': {'globals': None, + 'ranges': ['decay', + 'gamma', + 'minCai', + 'depth', + 'initCai']}, + 'Ca_HVA': {'globals': None, 'ranges': ['gCa_HVAbar']}, + 'Ca_LVAst': {'globals': None, 'ranges': ['gCa_LVAstbar']}, + 'Ih': {'globals': None, 'ranges': ['gIhbar']}, + 'Im': {'globals': None, 'ranges': ['gImbar']}, + 'K_Pst': {'globals': None, 'ranges': ['gK_Pstbar']}, + 'K_Tst': {'globals': None, 'ranges': ['gK_Tstbar']}, + 'NaTa_t': {'globals': None, 'ranges': ['gNaTa_tbar']}, + 'NaTs2_t': {'globals': None, 'ranges': ['gNaTs2_tbar']}, + 'Nap_Et2': {'globals': None, 'ranges': ['gNap_Et2bar']}, + 'SK_E2': {'globals': None, 'ranges': ['gSK_E2bar']}, + 'SKv3_1': {'globals': None, 'ranges': ['gSKv3_1bar']}}, + default={ + 'exp2syn': {'globals': None, 'ranges': ['tau1', 'tau2', 'e']}, + 'expsyn': {'globals': None, 'ranges': ['tau', 'e']}, + 'expsyn_stdp': {'globals': None, + 'ranges': ['tau', + 'taupre', + 'taupost', + 'e', + 'Apost', + 'Apre', + 'max_weight']}, + 'gj': {'globals': None, 'ranges': ['g']}, + 'hh': {'globals': None, + 'ranges': ['gnabar', 'gkbar', 'gl', 'el', 'q10']}, + 'kamt': {'globals': ['minf', 'mtau', 'hinf', 'htau'], + 'ranges': ['gbar', 'q10']}, + 'kdrmt': {'globals': ['minf', 'mtau'], + 'ranges': ['gbar', 'q10', 'vhalfm']}, + 'nax': {'globals': None, 'ranges': ['gbar', 'sh']}, + 'nernst': {'globals': ['R', 'F'], 'ranges': ['coeff']}, + 'pas': {'globals': ['e'], 'ranges': ['g']}} +) + def _find_mech_and_split_param_name(param, mechs): mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) for mech in mechs])[0] if mech_suffix_matches.size == 0: - return Location(name=_nrn2arb_name(param.name), - value=_nrn2arb_value(param)) # TODO: adapt for Range + return None, Location(name=_nrn2arb_name(param.name), + value=_nrn2arb_value(param)) # TODO: adapt for Range elif mech_suffix_matches.size == 1: mech = mechs[mech_suffix_matches[0]] - name = param.name[:-(len(mech)+1)].replace(mech, '') - return MechLocation(name=_nrn2arb_name(name), - mech=mech, value=_nrn2arb_value(param)) # TODO: adapt for Range + name = param.name[:-(len(mech)+1)] + return mech, Location(name=_nrn2arb_name(name), + value=_nrn2arb_value(param)) # TODO: adapt for Range else: raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % (param.name, repr(mechs[mech_suffix_matches]))) def _split_mech_from_non_mech_params_global(params, channels): - ret = [ _find_mech_and_split_param_name(Location(name=name, value=value), channels['all']) - for name, value in params.items() ] - return { param.name : param for param in ret } + mech_params = [_find_mech_and_split_param_name(Location(name=name, value=value), channels['all']) + for name, value in params.items()] + mechs = {mech: [] for mech, _ in mech_params} + for mech, param in mech_params: + mechs[mech].append(param) + if len(mechs) > 0: + assert list(mechs.keys()) == [None] + return {param.name: param for param in mechs[None]} # FIXME: correct? + else: + return {} def _split_mech_from_non_mech_params_local(params, channels): - ret = [] + local_params = [] + global_params = {} for loc, params in params: - ret.append((loc, [_find_mech_and_split_param_name(param, channels[loc]) - for param in params])) + mech_params = [_find_mech_and_split_param_name(param, channels[loc]) for param in params] + mechs = {mech: [] for mech, _ in mech_params} + for mech, param in mech_params: + mechs[mech].append(param) + for i, param in enumerate(mechs.get(None,[])): + if _make_arb_global_param(loc, param): + global_params[param.name] = param + del mechs[None][i] + local_params.append((loc, list(mechs.items()))) + return local_params, global_params + + +def _arb_mech_translate(mech_name, mech_params): + arb_mech = None + for cat in ['bbp', 'default', 'allen']: # in order of precedence + if mech_name in _arb_mechs[cat]: + arb_mech = _arb_mechs[cat][mech_name] + break + if arb_mech is None: # not Arbor built-in + return (mech_name, mech_params) + else: + if arb_mech['globals'] is None: # only Arbor range params + for param in mech_params: + assert param.name in arb_mech['ranges'] + return (mech_name, mech_params) + else: + for param in mech_params: + assert param.name in arb_mech['globals'] or param.name in arb_mech['ranges'] + mech_params_dict = dict(mech_params) + arb_mech_name = mech_name + '/' + ','.join([p + '=' + mech_params_dict[p] for p in arb_mech['globals']]) + arb_mech_params = [mech_param for mech_param in mech_params if mech_param.name not in arb_mech['globals']] + return (arb_mech_name, arb_mech_params) + + +def _nrn_to_arb_mechs_local(params): + ret = [] + for loc, mechs in params: + ret.append((loc, [_arb_mech_translate(*mech) for mech in mechs])) return ret @@ -252,14 +405,20 @@ def _create_sim_desc( custom_jinja_params = {} if sim == 'arb': - custom_jinja_params['arb_cell'] = 'cell.json' custom_jinja_params['arb_decor'] = 'decor.acc' custom_jinja_params['arb_label_dict'] = 'label_dict.acc' global_params = _split_mech_from_non_mech_params_global(global_params, channels) - section_params = _split_mech_from_non_mech_params_local(section_params, channels) + section_params, additional_global_params = _split_mech_from_non_mech_params_local(section_params, channels) + global_params.update(additional_global_params) + # TODO: global translate? + section_params = _nrn_to_arb_mechs_local(section_params) + # relabel locations + custom_jinja_params['region_ref'] = { bpo_loc: arb_ref_def[0] for bpo_loc, arb_ref_def in _nrn2arb_region.items()} + custom_jinja_params['region_def'] = { bpo_loc: arb_ref_def[1] for bpo_loc, arb_ref_def in _nrn2arb_region.items()} + # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) - ret = { template_name + "_" + name: + ret = {template_name + (name if name.startswith('.') else "_" + name): template.render(template_name=template_name, banner=banner, channels=channels, @@ -274,7 +433,7 @@ def _create_sim_desc( for name, template in templates.items()} if sim == 'nrn': - return list(ret.values())[0] + return list(ret.values())[0] else: return ret @@ -321,7 +480,7 @@ def create_hoc( sim="nrn") -def create_acc( +def create_acc( # FIXME: put into its own module (similarly tests) mechs, parameters, morphology=None, diff --git a/bluepyopt/ephys/templates/acc/cell_json_template.jinja2 b/bluepyopt/ephys/templates/acc/_json_template.jinja2 similarity index 100% rename from bluepyopt/ephys/templates/acc/cell_json_template.jinja2 rename to bluepyopt/ephys/templates/acc/_json_template.jinja2 diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index 20bf0b83..5de8123d 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -9,12 +9,14 @@ {%- endif %} {%- endfor %} - {%- for loc, parameters in section_params %} - {%- for param in parameters %} - {%- if param.mech is defined %} - (paint (region "{{ loc }}") (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- for loc, mech_parameters in section_params %} + {%- for mech, params in mech_parameters %} + {%- if mech is not none %} + (paint {{region_ref[loc]}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- else %} - (paint (region "{{ loc }}") ({{ param.name }} {{ param.value }})) + {%- for param in params %} + (paint {{region_ref[loc]}} ({{ param.name }} {{ param.value }})) + {%- endfor %} {%- endif %} {%- endfor %} diff --git a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 index 17243b49..17a85e64 100644 --- a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 @@ -2,5 +2,7 @@ (meta-data (version "0.1-dev")) (label-dict {%- for loc, parameters in section_params %} {# could also use channels.keys() #} - (region-def "{{ loc }}" (tag {{ loop.index0 }})) + {%- if region_def[loc] is not none %} + {{ region_def[loc] }} + {%- endif %} {%- endfor %})) diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py new file mode 100755 index 00000000..32949fc7 --- /dev/null +++ b/examples/l5pc/generate_acc.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python + +'''Example for generating a mixed JSON/ACC Arbor cable cell description + + $ python generate_acc.py --output-dir test_acc/ + + Will save 'l5pc.json', 'l5pc_label_dict.acc' and 'l5pc_decor.acc' + into the folder 'test_acc' that can be loaded in Arbor with: + 'with open("test_acc/l5pc_cell.json") as cell_json_file: + cell_json = json.load(cell_json_file) + morpho = arbor.load_asc("test_acc/" + cell_json["morphology"]) + labels = arbor.load_component("test_acc/" + cell_json["label_dict"]).component + decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' + An Arbor cable cell is then created with + cell = arbor.cable_cell(morpho.morphology, labels, decor) +''' +import os +import argparse +import shutil + +import l5pc_model +from generate_hoc import param_values + + +def main(): + '''main''' + parser = argparse.ArgumentParser( + formatter_class=argparse.RawDescriptionHelpFormatter, + description=__doc__) + parser.add_argument('-o', '--output-dir', dest='output_dir', + help='Output directory for JSON/ACC files') + args = parser.parse_args() + + cell = l5pc_model.create() + + output = cell.create_acc(param_values, template='acc/*_template.jinja2') + + if args.output_dir is not None: + if not os.path.exists(args.output_dir): + os.makedirs(args.output_dir) + for comp, comp_rendered in output.items(): + comp_filename = os.path.join(args.output_dir, comp) + if os.path.exists(comp_filename): + raise RuntimeError("%s already exists!" % comp_filename) + with open(os.path.join(args.output_dir, comp), 'w') as f: + f.write(comp_rendered) + + morph_filename = os.path.join(args.output_dir, + os.path.basename(cell.morphology.morphology_path)) + if os.path.exists(morph_filename): + raise RuntimeError("%s already exists!" % morph_filename) + shutil.copy2(cell.morphology.morphology_path, args.output_dir) + else: + for el, val in output.items(): + print("%s:\n%s\n" % (el, val)) + + +if __name__ == '__main__': + main() diff --git a/examples/l5pc/generate_hoc.py b/examples/l5pc/generate_hoc.py index 0e14789c..e67acb9b 100755 --- a/examples/l5pc/generate_hoc.py +++ b/examples/l5pc/generate_hoc.py @@ -7,62 +7,40 @@ Will save 'test.hoc' file, which can be loaded in neuron with: 'load_file("test.hoc")' Then the hoc template needs to be instantiated with a morphology - CCell("ignored", "path/to/morphology.swc") + CCell("ignored", "path/to/morphology.asc") ''' import sys -import os -import shutil -from pprint import pprint import l5pc_model +param_values = { + 'gNaTs2_tbar_NaTs2_t.apical': 0.026145, + 'gSKv3_1bar_SKv3_1.apical': 0.004226, + 'gImbar_Im.apical': 0.000143, + 'gNaTa_tbar_NaTa_t.axonal': 3.137968, + 'gK_Tstbar_K_Tst.axonal': 0.089259, + 'gamma_CaDynamics_E2.axonal': 0.002910, + 'gNap_Et2bar_Nap_Et2.axonal': 0.006827, + 'gSK_E2bar_SK_E2.axonal': 0.007104, + 'gCa_HVAbar_Ca_HVA.axonal': 0.000990, + 'gK_Pstbar_K_Pst.axonal': 0.973538, + 'gSKv3_1bar_SKv3_1.axonal': 1.021945, + 'decay_CaDynamics_E2.axonal': 287.198731, + 'gCa_LVAstbar_Ca_LVAst.axonal': 0.008752, + 'gamma_CaDynamics_E2.somatic': 0.000609, + 'gSKv3_1bar_SKv3_1.somatic': 0.303472, + 'gSK_E2bar_SK_E2.somatic': 0.008407, + 'gCa_HVAbar_Ca_HVA.somatic': 0.000994, + 'gNaTs2_tbar_NaTs2_t.somatic': 0.983955, + 'decay_CaDynamics_E2.somatic': 210.485284, + 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333, +} + def main(): '''main''' - param_values = { - 'gNaTs2_tbar_NaTs2_t.apical': 0.026145, - 'gSKv3_1bar_SKv3_1.apical': 0.004226, - 'gImbar_Im.apical': 0.000143, - 'gNaTa_tbar_NaTa_t.axonal': 3.137968, - 'gK_Tstbar_K_Tst.axonal': 0.089259, - 'gamma_CaDynamics_E2.axonal': 0.002910, - 'gNap_Et2bar_Nap_Et2.axonal': 0.006827, - 'gSK_E2bar_SK_E2.axonal': 0.007104, - 'gCa_HVAbar_Ca_HVA.axonal': 0.000990, - 'gK_Pstbar_K_Pst.axonal': 0.973538, - 'gSKv3_1bar_SKv3_1.axonal': 1.021945, - 'decay_CaDynamics_E2.axonal': 287.198731, - 'gCa_LVAstbar_Ca_LVAst.axonal': 0.008752, - 'gamma_CaDynamics_E2.somatic': 0.000609, - 'gSKv3_1bar_SKv3_1.somatic': 0.303472, - 'gSK_E2bar_SK_E2.somatic': 0.008407, - 'gCa_HVAbar_Ca_HVA.somatic': 0.000994, - 'gNaTs2_tbar_NaTs2_t.somatic': 0.983955, - 'decay_CaDynamics_E2.somatic': 210.485284, - 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333, - } cell = l5pc_model.create() - - if '--acc' not in sys.argv: - output = cell.create_hoc(param_values, template='cell_template.jinja2') - print(output) - else: - output = cell.create_acc(param_values, template='acc/*_template.jinja2') - pprint(output) - output_dir = os.getcwd() - for comp, comp_rendered in output.items(): - comp_filename = os.path.join(output_dir, comp) - if os.path.exists(comp_filename): - raise RuntimeError("%s already exists!" % comp_filename) - with open(os.path.join(output_dir, comp),'w') as f: - f.write(comp_rendered) - - morph_filename = os.path.join(output_dir, - os.path.basename(cell.morphology.morphology_path)) - if os.path.exists(morph_filename): - raise RuntimeError("%s already exists!" % comp_filename) - shutil.copy2(cell.morphology.morphology_path, output_dir) - + print(cell.create_hoc(param_values)) if __name__ == '__main__': diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py new file mode 100644 index 00000000..1d927ac5 --- /dev/null +++ b/examples/simplecell/generate_acc.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python + +'''Example for generating a mixed JSON/ACC Arbor cable cell description + + $ python generate_acc.py --output-dir test_acc/ + + Will save 'simple_cell.json', 'simple_cell_label_dict.acc' and 'simple_cell_decor.acc' + into the folder 'test_acc' that can be loaded in Arbor with: + 'with open("test_acc/simple_cell_cell.json") as cell_json_file: + cell_json = json.load(cell_json_file) + morpho = arbor.load_swc_arbor("test_acc/" + cell_json["morphology"]) + labels = arbor.load_component("test_acc/" + cell_json["label_dict"]).component + decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' + An Arbor cable cell is then created with + cell = arbor.cable_cell(morpho, labels, decor) +''' +import os +import argparse +import shutil + +import simplecell_model +from generate_hoc import param_values + + +def main(): + '''main''' + parser = argparse.ArgumentParser( + formatter_class=argparse.RawDescriptionHelpFormatter, + description=__doc__) + parser.add_argument('-o', '--output-dir', dest='output_dir', + help='Output directory for JSON/ACC files') + args = parser.parse_args() + + cell = simplecell_model.create() + + output = cell.create_acc(param_values, template='acc/*_template.jinja2') + + if args.output_dir is not None: + if not os.path.exists(args.output_dir): + os.makedirs(args.output_dir) + for comp, comp_rendered in output.items(): + comp_filename = os.path.join(args.output_dir, comp) + if os.path.exists(comp_filename): + raise RuntimeError("%s already exists!" % comp_filename) + with open(os.path.join(args.output_dir, comp), 'w') as f: + f.write(comp_rendered) + + morph_filename = os.path.join(args.output_dir, + os.path.basename(cell.morphology.morphology_path)) + if os.path.exists(morph_filename): + raise RuntimeError("%s already exists!" % morph_filename) + shutil.copy2(cell.morphology.morphology_path, args.output_dir) + else: + for el, val in output.items(): + print("%s:\n%s\n" % (el, val)) + + +if __name__ == '__main__': + main() diff --git a/examples/simplecell/generate_hoc.py b/examples/simplecell/generate_hoc.py index 32e1aebd..52ff6b57 100755 --- a/examples/simplecell/generate_hoc.py +++ b/examples/simplecell/generate_hoc.py @@ -17,36 +17,18 @@ import simplecell_model +param_values = { + 'gnabar_hh.somatic': 0.10299326453483033, + 'gkbar_hh.somatic': 0.027124836082684685 +} + + def main(): '''main''' - param_values = { - 'gnabar_hh.somatic': 0.10299326453483033, - 'gkbar_hh.somatic': 0.027124836082684685 - } - cell = simplecell_model.create() - if '--acc' not in sys.argv: - output = cell.create_hoc(param_values, template='cell_template.jinja2') - print(output) - else: - output = cell.create_acc(param_values, template='acc/*_template.jinja2') - pprint(output) - output_dir = os.getcwd() - for comp, comp_rendered in output.items(): - comp_filename = os.path.join(output_dir, comp) - if os.path.exists(comp_filename): - raise RuntimeError("%s already exists!" % comp_filename) - with open(os.path.join(output_dir, comp),'w') as f: - f.write(comp_rendered) - - morph_filename = os.path.join(output_dir, - os.path.basename(cell.morphology.morphology_path)) - if os.path.exists(morph_filename): - raise RuntimeError("%s already exists!" % comp_filename) - shutil.copy2(cell.morphology.morphology_path, output_dir) - - + output = cell.create_hoc(param_values, template='cell_template.jinja2') + print(output) if __name__ == '__main__': From fba53768205aad41ee7e5fc530468360d494e302 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 7 Apr 2022 09:10:22 +0200 Subject: [PATCH 05/42] Separate module for create_acc --- MANIFEST.in | 2 +- bluepyopt/ephys/create_acc.py | 336 ++++++++++++++ bluepyopt/ephys/create_hoc.py | 417 +++--------------- bluepyopt/ephys/models.py | 27 +- .../ephys/templates/acc/_json_template.jinja2 | 4 +- .../templates/acc/decor_acc_template.jinja2 | 4 +- .../acc/label_dict_acc_template.jinja2 | 4 +- bluepyopt/tests/test_ephys/test_create_acc.py | 101 +++++ bluepyopt/tests/test_ephys/test_create_hoc.py | 80 ---- .../testdata/acc/cell_json_template.jinja2 | 4 +- .../testdata/acc/decor_acc_template.jinja2 | 14 +- .../acc/label_dict_acc_template.jinja2 | 4 +- examples/simplecell/generate_acc.py | 0 setup.py | 2 +- 14 files changed, 523 insertions(+), 476 deletions(-) create mode 100755 bluepyopt/ephys/create_acc.py create mode 100644 bluepyopt/tests/test_ephys/test_create_acc.py mode change 100644 => 100755 examples/simplecell/generate_acc.py diff --git a/MANIFEST.in b/MANIFEST.in index 8ac29e6d..06b76d58 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,7 +1,7 @@ include versioneer.py include bluepyopt/_version.py include bluepyopt/ephys/templates/cell_template.jinja2 -include bluepyopt/ephys/templates/acc/cell_json_template.jinja2 +include bluepyopt/ephys/templates/acc/_json_template.jinja2 include bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 include bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py new file mode 100755 index 00000000..ce990dc9 --- /dev/null +++ b/bluepyopt/ephys/create_acc.py @@ -0,0 +1,336 @@ +'''create a hoc file from a set of BluePyOpt.ephys parameters''' + +# pylint: disable=R0914 + +import os + +from collections import namedtuple +from glob import glob + +import numpy +import jinja2 + +from .create_hoc import Location, Range, _get_template_params + + +# Define Neuron to Arbor variable conversions +ArbVar = namedtuple('ArbVar', 'name, conv', defaults=[None,None]) + +_nrn2arb_var = dict( + cm=ArbVar(name='membrane-capacitance'), + ena=ArbVar(name='ion-reversal-potential \"na\"'), + ek=ArbVar(name='ion-reversal-potential \"k\"'), + v_init=ArbVar(name='membrane-potential'), + celsius=ArbVar(name='temperature-kelvin', + conv=lambda celsius: celsius + 273.15), + Ra=ArbVar(name='axial-resistivity') +) + + +def _nrn2arb_var_name(name): + return _nrn2arb_var[name].name if name in _nrn2arb_var else name + + +def _nrn2arb_var_value(param): + if param.name in _nrn2arb_var and _nrn2arb_var[param.name].conv is not None: + return _nrn2arb_var[param.name].conv(param.value) + else: + return param.value + + +def _make_arb_global_param(loc, param): + return loc == 'all' and param.name in ['membrane-capacitance'] + +# Define region mapping (relabeling locations to SWC convention) +# Remarks: +# - using SWC convetion: dend == basal dendrite, apic == apical dendrite +# - myelinated is unsupported in Arbor +# - could use ('(all)', None) instead, then "all" undefined +ArbRegion = namedtuple('ArbRegion', 'ref, defn') + +def _arb_defined_region(region, expr): + if expr is not None: + return ArbRegion(ref='(region \"%s\")' % region, + defn='(region-def \"%s\" %s)' % (region, expr)) + else: + return ArbRegion(ref=region, defn=expr) + + +def _arb_tagged_region(region, tag): + return _arb_defined_region(region, '(tag %i)' % tag) + + +_loc2arb_region = dict( + all=_arb_defined_region('all', '(all)'), + somatic=_arb_tagged_region('soma', 1), + axonal=_arb_tagged_region('axon', 2), + basal=_arb_tagged_region('dend', 3), + apical=_arb_tagged_region('apic', 4), + myelinated=_arb_defined_region(None, None), +) + +# # Generated with NMODL in arbor/mechanisms +# import os, re, pprint + +# nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' +# suffix_pattern = nmodl_pattern % 'SUFFIX' +# globals_pattern = nmodl_pattern % 'GLOBAL' +# ranges_pattern = nmodl_pattern % 'RANGE' + +# def process_nmodl(nmodl_str): +# # print(nmodl_str, flush=True) +# nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, flags=re.MULTILINE).group(1) +# suffix = re.search(suffix_pattern, nrn, flags=re.MULTILINE) +# suffix = suffix if suffix is None else suffix.group(1) +# globals = re.search(globals_pattern, nrn, flags=re.MULTILINE) +# globals = globals if globals is None else re.findall(r'\w+', globals.group(1)) +# ranges = re.search(ranges_pattern, nrn, flags=re.MULTILINE) +# ranges = ranges if ranges is None else re.findall(r'\w+', ranges.group(1)) +# return dict(globals=globals, ranges=ranges) # suffix skipped + +# mechs = dict() +# for cat in ['allen', 'bbp', 'default']: +# mechs[cat] = dict() +# cat_dir = 'arbor/mechanisms/' + cat +# for f in os.listdir(cat_dir): +# with open(os.path.join(cat_dir,f)) as fd: +# print(f"Processing {f}", flush=True) +# mechs[cat][f[:-4]] = process_nmodl(fd.read()) +# pprint.pprint(mechs) + + +_arb_mechs = dict( + allen={ + 'CaDynamics': {'globals': ['F'], + 'ranges': ['decay', 'gamma', 'minCai', 'depth']}, + 'Ca_HVA': {'globals': None, 'ranges': ['gbar']}, + 'Ca_LVA': {'globals': None, 'ranges': ['gbar']}, + 'Ih': {'globals': None, 'ranges': ['gbar']}, + 'Im': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, + 'Im_v2': {'globals': None, 'ranges': ['gbar', 'ik']}, + 'K_P': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, + 'K_T': {'globals': None, 'ranges': ['gbar']}, + 'Kd': {'globals': None, 'ranges': ['gbar', 'ik']}, + 'Kv2like': {'globals': None, 'ranges': ['gbar']}, + 'Kv3_1': {'globals': None, 'ranges': ['gbar', 'ik']}, + 'NaTa': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, + 'NaTs': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, + 'NaV': {'globals': None, 'ranges': ['gbar']}, + 'Nap': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, + 'SK': {'globals': None, 'ranges': ['gbar', 'ik']}}, + bbp={ + 'CaDynamics_E2': {'globals': None, + 'ranges': ['decay', 'gamma', 'minCai', + 'depth', 'initCai']}, + 'Ca_HVA': {'globals': None, 'ranges': ['gCa_HVAbar']}, + 'Ca_LVAst': {'globals': None, 'ranges': ['gCa_LVAstbar']}, + 'Ih': {'globals': None, 'ranges': ['gIhbar']}, + 'Im': {'globals': None, 'ranges': ['gImbar']}, + 'K_Pst': {'globals': None, 'ranges': ['gK_Pstbar']}, + 'K_Tst': {'globals': None, 'ranges': ['gK_Tstbar']}, + 'NaTa_t': {'globals': None, 'ranges': ['gNaTa_tbar']}, + 'NaTs2_t': {'globals': None, 'ranges': ['gNaTs2_tbar']}, + 'Nap_Et2': {'globals': None, 'ranges': ['gNap_Et2bar']}, + 'SK_E2': {'globals': None, 'ranges': ['gSK_E2bar']}, + 'SKv3_1': {'globals': None, 'ranges': ['gSKv3_1bar']}}, + default={ + 'exp2syn': {'globals': None, 'ranges': ['tau1', 'tau2', 'e']}, + 'expsyn': {'globals': None, 'ranges': ['tau', 'e']}, + 'expsyn_stdp': {'globals': None, + 'ranges': ['tau', 'taupre', 'taupost', 'e', + 'Apost', 'Apre', 'max_weight']}, + 'gj': {'globals': None, 'ranges': ['g']}, + 'hh': {'globals': None, + 'ranges': ['gnabar', 'gkbar', 'gl', 'el', 'q10']}, + 'kamt': {'globals': ['minf', 'mtau', 'hinf', 'htau'], + 'ranges': ['gbar', 'q10']}, + 'kdrmt': {'globals': ['minf', 'mtau'], + 'ranges': ['gbar', 'q10', 'vhalfm']}, + 'nax': {'globals': None, 'ranges': ['gbar', 'sh']}, + 'nernst': {'globals': ['R', 'F'], 'ranges': ['coeff']}, + 'pas': {'globals': ['e'], 'ranges': ['g']}} +) + +def _find_mech_and_split_param_name(param, mechs): + """TODO: doc""" + mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) + for mech in mechs])[0] + if mech_suffix_matches.size == 0: + return None, Location(name=_nrn2arb_var_name(param.name), + value=_nrn2arb_var_value(param)) # TODO: adapt for Range + elif mech_suffix_matches.size == 1: + mech = mechs[mech_suffix_matches[0]] + name = param.name[:-(len(mech)+1)] + return mech, Location(name=_nrn2arb_var_name(name), + value=_nrn2arb_var_value(param)) # TODO: adapt for Range + else: + raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % + (param.name, repr(mechs[mech_suffix_matches]))) + + +def _split_mech_from_non_mech_params_global(params, channels): + """TODO: doc""" + mech_params = [_find_mech_and_split_param_name( + Location(name=name, value=value), channels['all']) + for name, value in params.items()] + mechs = {mech: [] for mech, _ in mech_params} + for mech, param in mech_params: + mechs[mech].append(param) + if len(mechs) > 0: + assert list(mechs.keys()) == [None] + return {param.name: param for param in mechs[None]} # correct? + else: + return {} + + +def _split_mech_from_non_mech_params_local(params, channels): + """TODO: doc""" + local_params = [] + global_params = {} + for loc, params in params: + mech_params = [_find_mech_and_split_param_name( + param, channels[loc]) for param in params] + mechs = {mech: [] for mech, _ in mech_params} + for mech, param in mech_params: + mechs[mech].append(param) + for i, param in enumerate(mechs.get(None,[])): + if _make_arb_global_param(loc, param): + global_params[param.name] = param + del mechs[None][i] + local_params.append((loc, list(mechs.items()))) + return local_params, global_params + + +def _arb_mech_translate(mech_name, mech_params): + """TODO: doc""" + arb_mech = None + for cat in ['bbp', 'default', 'allen']: # in order of precedence + if mech_name in _arb_mechs[cat]: + arb_mech = _arb_mechs[cat][mech_name] + break + if arb_mech is None: # not Arbor built-in mech + return (mech_name, mech_params) + else: + if arb_mech['globals'] is None: # only Arbor range params + for param in mech_params: + assert param.name in arb_mech['ranges'] + return (mech_name, mech_params) + else: + for param in mech_params: + assert param.name in arb_mech['globals'] or \ + param.name in arb_mech['ranges'] + mech_params_dict = dict(mech_params) + arb_mech_name = mech_name + '/' + ','.join( + [p + '=' + mech_params_dict[p] for p in arb_mech['globals']]) + arb_mech_params = [mech_param for mech_param in mech_params + if mech_param.name not in arb_mech['globals']] + return (arb_mech_name, arb_mech_params) + + +def _nrn_to_arb_mechs_local(params): + ret = [] + for loc, mechs in params: + ret.append((loc, [_arb_mech_translate(*mech) for mech in mechs])) + return ret + + +def _read_templates(template_dir, template_filename): + if template_dir is None: + template_dir = os.path.abspath( + os.path.join( + os.path.dirname(__file__), + 'templates')) + + template_paths = glob(os.path.join(template_dir, + template_filename)) + + templates = dict() + for template_path in template_paths: + with open(template_path) as template_file: + template = template_file.read() + name = os.path.basename(template_path) + if name.endswith('.jinja2'): + name = name[:-7] + if name.endswith('_template'): + name = name[:-9] + if '_' in name: + name = '.'.join(name.rsplit('_', 1)) + templates[name] = jinja2.Template(template) + return templates + + +def create_acc(mechs, + parameters, + morphology=None, + ignored_globals=(), + replace_axon=None, + template_name='CCell', + template_filename='acc/*_template.jinja2', + disable_banner=None, + template_dir=None, + custom_jinja_params=None): + '''return a dict with strings containing the rendered JSON/ACC templates + + Args: + mechs (): All the mechs for the hoc template + parameters (): All the parameters in the hoc template + morpholgy (str): Name of morphology + ignored_globals (iterable str): HOC coded is added for each + NrnGlobalParameter + that exists, to test that it matches the values set in the parameters. + This iterable contains parameter names that aren't checked + replace_axon (str): String replacement for the 'replace_axon' command. + Must include 'proc replace_axon(){ ... } + template_filename (str): file path of the cell.json , decor.acc and + label_dict.acc jinja2 templates (with wildcards expanded by glob) + template_dir (str): dir name of the jinja2 templates + custom_jinja_params (dict): dict of additional jinja2 params in case + of a custom template + ''' + + if morphology[-4:] not in ['.swc', '.asc']: + raise RuntimeError("Morphology file %s not supported in Arbor " + " (only supported types are .swc and .asc)." + % morphology) + + templates = _read_templates(template_dir, template_filename) + + template_params = _get_template_params(mechs, + parameters, + ignored_globals, + disable_banner) + + if custom_jinja_params is None: + custom_jinja_params = {} + + filenames = { + name: template_name + (name if name.startswith('.') else "_" + name) + for name in templates.keys()} + + # postprocess template parameters for Arbor + global_params = template_params['global_params'] + section_params = template_params['section_params'] + channels = template_params['channels'] + range_params = template_params['range_params'] + + global_params = \ + _split_mech_from_non_mech_params_global(global_params, channels) + section_params, additional_global_params = \ + _split_mech_from_non_mech_params_local(section_params, channels) + global_params.update(additional_global_params) # TODO: global translate? + section_params = _nrn_to_arb_mechs_local(section_params) + # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) + + template_params['global_params'] = global_params + template_params['section_params'] = section_params + template_params['channels'] = channels + template_params['range_params'] = range_params + + return {filenames[name]: + template.render(template_name=template_name, + morphology=morphology, + filenames=filenames, + regions=_loc2arb_region, + **template_params, + **custom_jinja_params) + for name, template in templates.items()} diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 686d209c..be23a09b 100755 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -7,9 +7,7 @@ from collections import defaultdict, namedtuple, OrderedDict from datetime import datetime -from glob import glob -import numpy import jinja2 import bluepyopt from . import mechanisms @@ -34,7 +32,7 @@ 'somatic', 'myelinated'] -# location -> mechanism_name + def _generate_channels_by_location(mechs, location_order): """Create a OrderedDictionary of all channel mechs for hoc template.""" channels = OrderedDict((location, []) for location in location_order) @@ -61,7 +59,7 @@ def _generate_reinitrng(mechs): return reinitrng_content -# "list" of parameters -> global_params, ordered_section_params, range_params, location_order (loc -> [(param_name_mechanism, value),...]) - needs post-processing + def _generate_parameters(parameters): """Create a list of parameters that need to be added to the hoc template""" param_locations = defaultdict(list) @@ -114,274 +112,36 @@ def _generate_parameters(parameters): return global_params, ordered_section_params, range_params, location_order -_nrn2arb = dict( # TODO: add regions - cm='membrane-capacitance', - ena='ion-reversal-potential \"na\"', - ek='ion-reversal-potential \"k\"', - v_init='membrane-potential', - celsius='temperature-kelvin', - Ra='axial-resistivity' -) - - -def _nrn2arb_name(name): - return _nrn2arb.get(name, name) - - -_nrn2arb_convert = dict( - celsius=lambda celsius: celsius + 273.15 -) - - -def _nrn2arb_value(param): - if param.name in _nrn2arb_convert: - return _nrn2arb_convert[param.name](param.value) - else: - return param.value - - -def _make_arb_global_param(loc, param): - return loc == 'all' and param.name in ['membrane-capacitance'] - - -def _arb_defined_region(region, expr): - return ('(region \"%s\")' % region, '(region-def \"%s\" %s)' % (region, expr)) - -def _arb_tagged_region(region, tag): - return _arb_defined_region(region, '(tag %i)' % tag) - - -_nrn2arb_region = { - 'all': _arb_defined_region('all', '(all)'), # could use ('(all)', None) instead, then "all" undefined - 'somatic': _arb_tagged_region('soma', 1), - 'axonal': _arb_tagged_region('axon', 2), - 'basal': _arb_tagged_region('dend', 3), # SWC convetion: dend == basal dendrite, apic == apical dendrite - 'apical': _arb_tagged_region('apic', 4), - 'myelinated': (None, None), # myelinated is unsupported in Arbor -} - -# # Generated with NMODL in arbor/mechanisms -# import os, re, pprint - -# nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' -# suffix_pattern = nmodl_pattern % 'SUFFIX' -# globals_pattern = nmodl_pattern % 'GLOBAL' -# ranges_pattern = nmodl_pattern % 'RANGE' - -# def process_nmodl(fd): -# # print(fd, flush=True) -# nrn = re.search(r'NEURON\s+{([^}]+)}', fd, flags=re.MULTILINE).group(1) -# suffix = re.search(suffix_pattern, nrn, flags=re.MULTILINE) -# suffix = suffix if suffix is None else suffix.group(1) -# globals = re.search(globals_pattern, nrn, flags=re.MULTILINE) -# globals = globals if globals is None else re.findall(r'\w+', globals.group(1)) -# ranges = re.search(ranges_pattern, nrn, flags=re.MULTILINE) -# ranges = ranges if ranges is None else re.findall(r'\w+', ranges.group(1)) -# return dict(globals=globals, ranges=ranges) # suffix skipped - -# mechs = dict() -# for cat in ['allen', 'bbp', 'default']: -# mechs[cat] = dict() -# cat_dir = 'arbor/mechanisms/' + cat -# for f in os.listdir(cat_dir): -# with open(os.path.join(cat_dir,f)) as fd: -# print(f"Processing {f}", flush=True) -# mechs[cat][f[:-4]] = process_nmodl(fd.read()) -# pprint.pprint(mechs) - - -_arb_mechs = dict( - allen={ - 'CaDynamics': {'globals': ['F'], - 'ranges': ['decay', 'gamma', 'minCai', 'depth']}, - 'Ca_HVA': {'globals': None, 'ranges': ['gbar']}, - 'Ca_LVA': {'globals': None, 'ranges': ['gbar']}, - 'Ih': {'globals': None, 'ranges': ['gbar']}, - 'Im': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, - 'Im_v2': {'globals': None, 'ranges': ['gbar', 'ik']}, - 'K_P': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, - 'K_T': {'globals': None, 'ranges': ['gbar']}, - 'Kd': {'globals': None, 'ranges': ['gbar', 'ik']}, - 'Kv2like': {'globals': None, 'ranges': ['gbar']}, - 'Kv3_1': {'globals': None, 'ranges': ['gbar', 'ik']}, - 'NaTa': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, - 'NaTs': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, - 'NaV': {'globals': None, 'ranges': ['gbar']}, - 'Nap': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, - 'SK': {'globals': None, 'ranges': ['gbar', 'ik']}}, - bbp={ - 'CaDynamics_E2': {'globals': None, - 'ranges': ['decay', - 'gamma', - 'minCai', - 'depth', - 'initCai']}, - 'Ca_HVA': {'globals': None, 'ranges': ['gCa_HVAbar']}, - 'Ca_LVAst': {'globals': None, 'ranges': ['gCa_LVAstbar']}, - 'Ih': {'globals': None, 'ranges': ['gIhbar']}, - 'Im': {'globals': None, 'ranges': ['gImbar']}, - 'K_Pst': {'globals': None, 'ranges': ['gK_Pstbar']}, - 'K_Tst': {'globals': None, 'ranges': ['gK_Tstbar']}, - 'NaTa_t': {'globals': None, 'ranges': ['gNaTa_tbar']}, - 'NaTs2_t': {'globals': None, 'ranges': ['gNaTs2_tbar']}, - 'Nap_Et2': {'globals': None, 'ranges': ['gNap_Et2bar']}, - 'SK_E2': {'globals': None, 'ranges': ['gSK_E2bar']}, - 'SKv3_1': {'globals': None, 'ranges': ['gSKv3_1bar']}}, - default={ - 'exp2syn': {'globals': None, 'ranges': ['tau1', 'tau2', 'e']}, - 'expsyn': {'globals': None, 'ranges': ['tau', 'e']}, - 'expsyn_stdp': {'globals': None, - 'ranges': ['tau', - 'taupre', - 'taupost', - 'e', - 'Apost', - 'Apre', - 'max_weight']}, - 'gj': {'globals': None, 'ranges': ['g']}, - 'hh': {'globals': None, - 'ranges': ['gnabar', 'gkbar', 'gl', 'el', 'q10']}, - 'kamt': {'globals': ['minf', 'mtau', 'hinf', 'htau'], - 'ranges': ['gbar', 'q10']}, - 'kdrmt': {'globals': ['minf', 'mtau'], - 'ranges': ['gbar', 'q10', 'vhalfm']}, - 'nax': {'globals': None, 'ranges': ['gbar', 'sh']}, - 'nernst': {'globals': ['R', 'F'], 'ranges': ['coeff']}, - 'pas': {'globals': ['e'], 'ranges': ['g']}} -) - -def _find_mech_and_split_param_name(param, mechs): - mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) - for mech in mechs])[0] - if mech_suffix_matches.size == 0: - return None, Location(name=_nrn2arb_name(param.name), - value=_nrn2arb_value(param)) # TODO: adapt for Range - elif mech_suffix_matches.size == 1: - mech = mechs[mech_suffix_matches[0]] - name = param.name[:-(len(mech)+1)] - return mech, Location(name=_nrn2arb_name(name), - value=_nrn2arb_value(param)) # TODO: adapt for Range - else: - raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % - (param.name, repr(mechs[mech_suffix_matches]))) - - -def _split_mech_from_non_mech_params_global(params, channels): - mech_params = [_find_mech_and_split_param_name(Location(name=name, value=value), channels['all']) - for name, value in params.items()] - mechs = {mech: [] for mech, _ in mech_params} - for mech, param in mech_params: - mechs[mech].append(param) - if len(mechs) > 0: - assert list(mechs.keys()) == [None] - return {param.name: param for param in mechs[None]} # FIXME: correct? - else: - return {} - - -def _split_mech_from_non_mech_params_local(params, channels): - local_params = [] - global_params = {} - for loc, params in params: - mech_params = [_find_mech_and_split_param_name(param, channels[loc]) for param in params] - mechs = {mech: [] for mech, _ in mech_params} - for mech, param in mech_params: - mechs[mech].append(param) - for i, param in enumerate(mechs.get(None,[])): - if _make_arb_global_param(loc, param): - global_params[param.name] = param - del mechs[None][i] - local_params.append((loc, list(mechs.items()))) - return local_params, global_params - - -def _arb_mech_translate(mech_name, mech_params): - arb_mech = None - for cat in ['bbp', 'default', 'allen']: # in order of precedence - if mech_name in _arb_mechs[cat]: - arb_mech = _arb_mechs[cat][mech_name] - break - if arb_mech is None: # not Arbor built-in - return (mech_name, mech_params) - else: - if arb_mech['globals'] is None: # only Arbor range params - for param in mech_params: - assert param.name in arb_mech['ranges'] - return (mech_name, mech_params) - else: - for param in mech_params: - assert param.name in arb_mech['globals'] or param.name in arb_mech['ranges'] - mech_params_dict = dict(mech_params) - arb_mech_name = mech_name + '/' + ','.join([p + '=' + mech_params_dict[p] for p in arb_mech['globals']]) - arb_mech_params = [mech_param for mech_param in mech_params if mech_param.name not in arb_mech['globals']] - return (arb_mech_name, arb_mech_params) - +def _read_template(template_dir, template_filename): + if template_dir is None: + template_dir = os.path.abspath( + os.path.join( + os.path.dirname(__file__), + 'templates')) -def _nrn_to_arb_mechs_local(params): - ret = [] - for loc, mechs in params: - ret.append((loc, [_arb_mech_translate(*mech) for mech in mechs])) - return ret + template_path = os.path.join(template_dir, template_filename) + with open(template_path) as template_file: + template = template_file.read() + template = jinja2.Template(template) + return template -def _create_sim_desc( +def _get_template_params( mechs, parameters, - morphology=None, ignored_globals=(), - replace_axon=None, - template_name='CCell', - template_filename='cell_template.jinja2', - disable_banner=None, - template_dir=None, - custom_jinja_params=None, - sim=None): - '''return a string containing the hoc template + disable_banner=None): + '''return parameters to render Jinja2 templates with simulator descriptions Args: mechs (): All the mechs for the hoc template parameters (): All the parameters in the hoc template - morpholgy (str): Name of morphology ignored_globals (iterable str): HOC coded is added for each NrnGlobalParameter that exists, to test that it matches the values set in the parameters. This iterable contains parameter names that aren't checked - replace_axon (str): String replacement for the 'replace_axon' command. - Must include 'proc replace_axon(){ ... } - template_filename (str): file name of the jinja2 template - template_dir (str): dir name of the jinja2 template - custom_jinja_params (dict): dict of additional jinja2 params in case - of a custom template - sim (str): simulator to create description for (nrn or arb) ''' - assert sim in ['nrn', 'arb'] - - if template_dir is None: - template_dir = os.path.abspath( - os.path.join( - os.path.dirname(__file__), - 'templates')) - - template_path = os.path.join(template_dir, template_filename) - if sim == 'nrn': - template_paths = [template_path] - else: - template_paths = glob(template_path) - - templates = dict() - for template_path in template_paths: - with open(template_path) as template_file: - template = template_file.read() - name = os.path.basename(template_path) - if name.endswith('.jinja2'): - name = name[:-7] - if name.endswith('_template'): - name = name[:-9] - if '_' in name: - name = '.'.join(name.rsplit('_', 1)) - templates[name] = jinja2.Template(template) - global_params, section_params, range_params, location_order = \ _generate_parameters(parameters) channels = _generate_channels_by_location(mechs, location_order) @@ -399,56 +159,25 @@ def _create_sim_desc( else: banner = None - re_init_rng = _generate_reinitrng(mechs) - - if custom_jinja_params is None: - custom_jinja_params = {} - - if sim == 'arb': - custom_jinja_params['arb_decor'] = 'decor.acc' - custom_jinja_params['arb_label_dict'] = 'label_dict.acc' - global_params = _split_mech_from_non_mech_params_global(global_params, channels) - section_params, additional_global_params = _split_mech_from_non_mech_params_local(section_params, channels) - global_params.update(additional_global_params) - # TODO: global translate? - section_params = _nrn_to_arb_mechs_local(section_params) - # relabel locations - custom_jinja_params['region_ref'] = { bpo_loc: arb_ref_def[0] for bpo_loc, arb_ref_def in _nrn2arb_region.items()} - custom_jinja_params['region_def'] = { bpo_loc: arb_ref_def[1] for bpo_loc, arb_ref_def in _nrn2arb_region.items()} - - # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) - - ret = {template_name + (name if name.startswith('.') else "_" + name): - template.render(template_name=template_name, - banner=banner, - channels=channels, - morphology=morphology, - section_params=section_params, - range_params=range_params, - global_params=global_params, - re_init_rng=re_init_rng, - replace_axon=replace_axon, - ignored_global_params=ignored_global_params, - **custom_jinja_params) - for name, template in templates.items()} - - if sim == 'nrn': - return list(ret.values())[0] - else: - return ret - - -def create_hoc( - mechs, - parameters, - morphology=None, - ignored_globals=(), - replace_axon=None, - template_name='CCell', - template_filename='cell_template.jinja2', - disable_banner=None, - template_dir=None, - custom_jinja_params=None,): + return dict(global_params=global_params, + ignored_global_params=ignored_global_params, + section_params=section_params, + range_params=range_params, + location_order=location_order, + channels=channels, + banner=banner) + + +def create_hoc(mechs, + parameters, + morphology=None, + ignored_globals=(), + replace_axon=None, + template_name='CCell', + template_filename='cell_template.jinja2', + disable_banner=None, + template_dir=None, + custom_jinja_params=None): '''return a string containing the hoc template Args: @@ -466,63 +195,21 @@ def create_hoc( custom_jinja_params (dict): dict of additional jinja2 params in case of a custom template ''' - return _create_sim_desc( - mechs, - parameters, - morphology, - ignored_globals, - replace_axon, - template_name, - template_filename, - disable_banner, - template_dir, - custom_jinja_params, - sim="nrn") - - -def create_acc( # FIXME: put into its own module (similarly tests) - mechs, - parameters, - morphology=None, - ignored_globals=(), - replace_axon=None, - template_name='CCell', - template_filename='acc/*_template.jinja2', - disable_banner=None, - template_dir=None, - custom_jinja_params=None,): - '''return a string containing the hoc template - Args: - mechs (): All the mechs for the hoc template - parameters (): All the parameters in the hoc template - morpholgy (str): Name of morphology - ignored_globals (iterable str): HOC coded is added for each - NrnGlobalParameter - that exists, to test that it matches the values set in the parameters. - This iterable contains parameter names that aren't checked - replace_axon (str): String replacement for the 'replace_axon' command. - Must include 'proc replace_axon(){ ... } - template_filename (str): file path of the cell.json , decor.acc and - label_dict.acc jinja2 templates (with wildcards expanded by glob) - template_dir (str): dir name of the jinja2 template - custom_jinja_params (dict): dict of additional jinja2 params in case - of a custom template - ''' - if morphology[-4:] not in ['.swc', '.asc']: - raise RuntimeError("Morphology file %s not supported in Arbor " - " (only supported types are .swc and .asc)." - % morphology ) - - return _create_sim_desc( - mechs, - parameters, - morphology, - ignored_globals, - replace_axon, - template_name, - template_filename, - disable_banner, - template_dir, - custom_jinja_params, - sim="arb") + template = _read_template(template_dir, template_filename) + + template_params = _get_template_params(mechs, + parameters, + ignored_globals, + disable_banner) + re_init_rng = _generate_reinitrng(mechs) + + if custom_jinja_params is None: + custom_jinja_params = {} + + return template.render(template_name=template_name, + morphology=morphology, + replace_axon=replace_axon, + re_init_rng=re_init_rng, + **template_params, + **custom_jinja_params) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 0e9849fe..d0142228 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -31,7 +31,7 @@ import collections import string -from . import create_hoc +from . import create_hoc, create_acc from . import morphologies import logging @@ -284,7 +284,7 @@ def _create_sim_desc(self, param_values, ignored_globals=(), template=None, disable_banner=False, template_dir=None, - sim=None): + sim_desc_creator=None): """Create simulator description for this model""" to_unfreeze = [] @@ -316,16 +316,15 @@ def _create_sim_desc(self, param_values, replace_axon += '\n' replace_axon += morph_modifier_hoc - ret = create_hoc._create_sim_desc(mechs=self.mechanisms, - parameters=self.params.values(), - morphology=morphology, - ignored_globals=ignored_globals, - replace_axon=replace_axon, - template_name=template_name, - template_filename=template, - template_dir=template_dir, - disable_banner=disable_banner, - sim=sim) + ret = sim_desc_creator(mechs=self.mechanisms, + parameters=self.params.values(), + morphology=morphology, + ignored_globals=ignored_globals, + replace_axon=replace_axon, + template_name=template_name, + template_filename=template, + template_dir=template_dir, + disable_banner=disable_banner) self.unfreeze(to_unfreeze) @@ -340,7 +339,7 @@ def create_hoc(self, param_values, ignored_globals, template, disable_banner, template_dir, - sim='nrn') + sim_desc_creator=create_hoc.create_hoc) def create_acc(self, param_values, ignored_globals=(), template='acc/*_template.jinja2', @@ -351,7 +350,7 @@ def create_acc(self, param_values, ignored_globals, template, disable_banner, template_dir, - sim='arb') + sim_desc_creator=create_acc.create_acc) #FIXME def __str__(self): """Return string representation""" diff --git a/bluepyopt/ephys/templates/acc/_json_template.jinja2 b/bluepyopt/ephys/templates/acc/_json_template.jinja2 index 6415ce99..61886f8a 100644 --- a/bluepyopt/ephys/templates/acc/_json_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/_json_template.jinja2 @@ -8,6 +8,6 @@ {%- else %} execerror("Template {{template_name}} requires morphology name to instantiate") {%- endif %} - "label_dict": "{{template_name}}_{{arb_label_dict}}", - "decor": "{{template_name}}_{{arb_decor}}" + "label_dict": "{{filenames['label_dict.acc']}}", + "decor": "{{filenames['decor.acc']}}" } \ No newline at end of file diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index 5de8123d..c177aed3 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -12,10 +12,10 @@ {%- for loc, mech_parameters in section_params %} {%- for mech, params in mech_parameters %} {%- if mech is not none %} - (paint {{region_ref[loc]}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + (paint {{regions[loc].ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- else %} {%- for param in params %} - (paint {{region_ref[loc]}} ({{ param.name }} {{ param.value }})) + (paint {{regions[loc].ref}} ({{ param.name }} {{ param.value }})) {%- endfor %} {%- endif %} {%- endfor %} diff --git a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 index 17a85e64..d1a7b9f2 100644 --- a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 @@ -2,7 +2,7 @@ (meta-data (version "0.1-dev")) (label-dict {%- for loc, parameters in section_params %} {# could also use channels.keys() #} - {%- if region_def[loc] is not none %} - {{ region_def[loc] }} + {%- if regions[loc].defn is not none %} + {{ regions[loc].defn }} {%- endif %} {%- endfor %})) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py new file mode 100644 index 00000000..becc2632 --- /dev/null +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -0,0 +1,101 @@ +"""Tests for create_acc.py""" + +# pylint: disable=W0212 + +import os +import re +import json + +from . import utils +from bluepyopt.ephys import create_acc + + +import pytest + +DEFAULT_ARBOR_REGION_ORDER = [ + ('apic', 4), + ('axon', 2), + ('dend', 3), + ('soma', 1)] + + +@pytest.mark.unit +def test_create_acc(): + """ephys.create_hoc: Test create_hoc""" + mech = utils.make_mech() + parameters = utils.make_parameters() + + acc = create_acc.create_acc([mech, ], parameters, + morphology='CCell.swc', + template_name='CCell') + + cell_json = "CCell.json" + decor_acc = "CCell_decor.acc" + label_dict_acc = "CCell_label_dict.acc" + + assert cell_json in acc + cell_json_dict = json.loads(acc[cell_json]) + assert 'cell_model_name' in cell_json_dict + assert 'produced_by' in cell_json_dict + assert 'morphology' in cell_json_dict + assert 'label_dict' in cell_json_dict + assert 'decor' in cell_json_dict + + assert decor_acc in acc + assert acc[decor_acc].startswith('(arbor-component') + assert '(decor' in acc[decor_acc] + + assert label_dict_acc in acc + assert acc[label_dict_acc].startswith('(arbor-component') + assert '(label-dict' in acc[label_dict_acc] + matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', + acc[label_dict_acc]) + for pos, loc_tag in enumerate(DEFAULT_ARBOR_REGION_ORDER): + assert matches[pos][0] == loc_tag[0] + assert matches[pos][1] == str(loc_tag[1]) + + +@pytest.mark.unit +def test_create_acc_filename(): + """ephys.create_hoc: Test create_acc template_filename""" + mech = utils.make_mech() + parameters = utils.make_parameters() + custom_param_val = str(__file__) + + acc = create_acc.create_acc([mech, ], + parameters, morphology='CCell.asc', + template_name='CCell', + template_filename='acc/*_template.jinja2', + template_dir=os.path.join( + os.path.dirname(__file__), + 'testdata'), + custom_jinja_params={ + 'custom_param': custom_param_val}) + cell_json = "CCell_cell.json" + decor_acc = "CCell_decor.acc" + label_dict_acc = "CCell_label_dict.acc" + + assert cell_json in acc + cell_json_dict = json.loads(acc[cell_json]) + assert 'cell_model_name' in cell_json_dict + assert 'produced_by' in cell_json_dict + assert 'morphology' in cell_json_dict + assert 'label_dict' in cell_json_dict + assert 'decor' in cell_json_dict + + assert decor_acc in acc + assert acc[decor_acc].startswith('(arbor-component') + assert '(decor' in acc[decor_acc] + + assert label_dict_acc in acc + assert acc[label_dict_acc].startswith('(arbor-component') + assert '(label-dict' in acc[label_dict_acc] + matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', + acc[label_dict_acc]) + for pos, loc_tag in enumerate(DEFAULT_ARBOR_REGION_ORDER): + assert matches[pos][0] == loc_tag[0] + assert matches[pos][1] == str(loc_tag[1]) + + assert '(meta-data (info "test-decor"))' in acc[decor_acc] + assert '(meta-data (info "test-label-dict"))' in acc[label_dict_acc] + assert custom_param_val in cell_json_dict['produced_by'] diff --git a/bluepyopt/tests/test_ephys/test_create_hoc.py b/bluepyopt/tests/test_ephys/test_create_hoc.py index dac3f421..c133318d 100644 --- a/bluepyopt/tests/test_ephys/test_create_hoc.py +++ b/bluepyopt/tests/test_ephys/test_create_hoc.py @@ -3,8 +3,6 @@ # pylint: disable=W0212 import os -import re -import json from . import utils from bluepyopt.ephys import create_hoc @@ -87,81 +85,3 @@ def test_create_hoc_filename(): assert 'endtemplate' in hoc assert 'Test template' in hoc assert custom_param_val in hoc - - -@pytest.mark.unit -def test_create_acc(): - """ephys.create_hoc: Test create_hoc""" - mech = utils.make_mech() - parameters = utils.make_parameters() - - acc = create_hoc.create_acc([mech, ], parameters, morphology='CCell.swc', template_name='CCell') - - cell_json = "CCell_cell.json" - decor_acc = "CCell_decor.acc" - label_dict_acc = "CCell_label_dict.acc" - - assert cell_json in acc - cell_json_dict = json.loads(acc[cell_json]) - assert 'cell_model_name' in cell_json_dict - assert 'produced_by' in cell_json_dict - assert 'morphology' in cell_json_dict - assert 'label_dict' in cell_json_dict - assert 'decor' in cell_json_dict - - assert decor_acc in acc - assert acc[decor_acc].startswith('(arbor-component') - assert '(decor' in acc[decor_acc] - - assert label_dict_acc in acc - assert acc[label_dict_acc].startswith('(arbor-component') - assert '(label-dict' in acc[label_dict_acc] - matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', acc[label_dict_acc]) - for tag, loc in enumerate(DEFAULT_LOCATION_ORDER): - assert matches[tag][0] == loc - assert matches[tag][1] == str(tag) - - -@pytest.mark.unit -def test_create_acc_filename(): - """ephys.create_hoc: Test create_acc template_filename""" - mech = utils.make_mech() - parameters = utils.make_parameters() - custom_param_val = str(__file__) - - acc = create_hoc.create_acc([mech, ], - parameters, morphology='CCell.asc', - template_name='CCell', - template_filename='acc/*_template.jinja2', - template_dir=os.path.join( - os.path.dirname(__file__), - 'testdata'), - custom_jinja_params={ - 'custom_param': custom_param_val}) - cell_json = "CCell_cell.json" - decor_acc = "CCell_decor.acc" - label_dict_acc = "CCell_label_dict.acc" - - assert cell_json in acc - cell_json_dict = json.loads(acc[cell_json]) - assert 'cell_model_name' in cell_json_dict - assert 'produced_by' in cell_json_dict - assert 'morphology' in cell_json_dict - assert 'label_dict' in cell_json_dict - assert 'decor' in cell_json_dict - - assert decor_acc in acc - assert acc[decor_acc].startswith('(arbor-component') - assert '(decor' in acc[decor_acc] - - assert label_dict_acc in acc - assert acc[label_dict_acc].startswith('(arbor-component') - assert '(label-dict' in acc[label_dict_acc] - matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', acc[label_dict_acc]) - for tag, loc in enumerate(DEFAULT_LOCATION_ORDER): - assert matches[tag][0] == loc - assert matches[tag][1] == str(tag) - - assert '(meta-data (info "test-decor"))' in acc[decor_acc] - assert '(meta-data (info "test-label-dict"))' in acc[label_dict_acc] - assert custom_param_val in cell_json_dict['produced_by'] diff --git a/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 index 78960b23..0b712d9d 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 @@ -8,6 +8,6 @@ {%- else %} execerror("Template {{template_name}} requires morphology name to instantiate") {%- endif %} - "label_dict": "{{template_name}}_{{arb_label_dict}}", - "decor": "{{template_name}}_{{arb_decor}}" + "label_dict": "{{filenames['label_dict.acc']}}", + "decor": "{{filenames['decor.acc']}}" } \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 index 281a03d3..6876c97c 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 @@ -10,13 +10,15 @@ {%- endif %} {%- endfor %} - {%- for loc, parameters in section_params %} - {%- for param in parameters %} - {%- if param.mech is defined %} - (paint (region "{{ loc }}") (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- for loc, mech_parameters in section_params %} + {%- for mech, params in mech_parameters %} + {%- if mech is not none %} + (paint {{regions[loc].ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- else %} - (paint (region "{{ loc }}") ({{ param.name }} {{ param.value }})) + {%- for param in params %} + (paint {{regions[loc].ref}} ({{ param.name }} {{ param.value }})) + {%- endfor %} {%- endif %} {%- endfor %} - {%- endfor %}{# TODO: range params #})) + {%- endfor %}{# TODO: range params #})) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 index 070afbba..1502a3cf 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 @@ -3,5 +3,7 @@ (meta-data (info "test-label-dict")) (label-dict {%- for loc, parameters in section_params %} {# could also use channels.keys() #} - (region-def "{{ loc }}" (tag {{ loop.index0 }})) + {%- if regions[loc].defn is not none %} + {{ regions[loc].defn }} + {%- endif %} {%- endfor %})) diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py old mode 100644 new mode 100755 diff --git a/setup.py b/setup.py index 2a3abad3..b471af39 100644 --- a/setup.py +++ b/setup.py @@ -83,7 +83,7 @@ package_data={ 'bluepyopt': [ 'ephys/templates/cell_template.jinja2', - 'ephys/templates/acc/cell_json_template.jinja2', + 'ephys/templates/acc/_json_template.jinja2', 'ephys/templates/acc/decor_acc_template.jinja2', 'ephys/templates/acc/label_dict_acc_template.jinja2', 'ephys/examples/simplecell/simple.swc'], From 8bd65393a8bb3efd319aa2b448c6bb7ad07bc25c Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 7 Apr 2022 13:35:28 +0200 Subject: [PATCH 06/42] Improved documentation for create_acc --- bluepyopt/ephys/create_acc.py | 78 +++++++++++++++++------------ bluepyopt/ephys/create_hoc.py | 1 + examples/l5pc/generate_acc.py | 3 ++ examples/simplecell/generate_acc.py | 3 ++ 4 files changed, 52 insertions(+), 33 deletions(-) mode change 100755 => 100644 bluepyopt/ephys/create_acc.py mode change 100755 => 100644 bluepyopt/ephys/create_hoc.py diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py old mode 100755 new mode 100644 index ce990dc9..286f9e2a --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -14,10 +14,11 @@ # Define Neuron to Arbor variable conversions -ArbVar = namedtuple('ArbVar', 'name, conv', defaults=[None,None]) +ArbVar = namedtuple('ArbVar', 'name, conv', + defaults=[None,None]) _nrn2arb_var = dict( - cm=ArbVar(name='membrane-capacitance'), + cm=ArbVar(name='membrane-capacitance'), # conv=None implies identity ena=ArbVar(name='ion-reversal-potential \"na\"'), ek=ArbVar(name='ion-reversal-potential \"k\"'), v_init=ArbVar(name='membrane-potential'), @@ -28,27 +29,33 @@ def _nrn2arb_var_name(name): + """Neuron to Arbor variable renaming.""" return _nrn2arb_var[name].name if name in _nrn2arb_var else name def _nrn2arb_var_value(param): + """Neuron to Arbor variable value conversion.""" if param.name in _nrn2arb_var and _nrn2arb_var[param.name].conv is not None: return _nrn2arb_var[param.name].conv(param.value) else: return param.value -def _make_arb_global_param(loc, param): +def _arb_is_global_param(loc, param): + """Returns if location-specific variable is a global one in Arbor.""" return loc == 'all' and param.name in ['membrane-capacitance'] -# Define region mapping (relabeling locations to SWC convention) + +# Define BluePyOpt to Arbor region mapping (relabeling locations to SWC convention) # Remarks: -# - using SWC convetion: dend == basal dendrite, apic == apical dendrite +# - using SWC convetion: 'dend' for basal dendrite, 'apic' for apical dendrite # - myelinated is unsupported in Arbor -# - could use ('(all)', None) instead, then "all" undefined ArbRegion = namedtuple('ArbRegion', 'ref, defn') -def _arb_defined_region(region, expr): +def _make_region(region, expr=None): + """Create Arbor region with region name and defining expression + (name for decor, defined in label_dict) or region expression only + (for decor, no defined label in label_dict).""" if expr is not None: return ArbRegion(ref='(region \"%s\")' % region, defn='(region-def \"%s\" %s)' % (region, expr)) @@ -56,17 +63,19 @@ def _arb_defined_region(region, expr): return ArbRegion(ref=region, defn=expr) -def _arb_tagged_region(region, tag): - return _arb_defined_region(region, '(tag %i)' % tag) +def _make_tagged_region(region, tag): + return _make_region(region, '(tag %i)' % tag) _loc2arb_region = dict( - all=_arb_defined_region('all', '(all)'), - somatic=_arb_tagged_region('soma', 1), - axonal=_arb_tagged_region('axon', 2), - basal=_arb_tagged_region('dend', 3), - apical=_arb_tagged_region('apic', 4), - myelinated=_arb_defined_region(None, None), + # defining "all" region for convenience here, else use + # all=_arb_defined_region('(all)') to omit "all" in label_dict + all=_make_region('all', '(all)'), + somatic=_make_tagged_region('soma', 1), + axonal=_make_tagged_region('axon', 2), + basal=_make_tagged_region('dend', 3), + apical=_make_tagged_region('apic', 4), + myelinated=_make_region(None), ) # # Generated with NMODL in arbor/mechanisms @@ -151,8 +160,9 @@ def _arb_tagged_region(region, tag): 'pas': {'globals': ['e'], 'ranges': ['g']}} ) -def _find_mech_and_split_param_name(param, mechs): - """TODO: doc""" + +def _find_mech_and_convert_param_name(param, mechs): + """Find a parameter's mechanism and convert parameter name to Arbor convention""" mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) for mech in mechs])[0] if mech_suffix_matches.size == 0: @@ -168,9 +178,9 @@ def _find_mech_and_split_param_name(param, mechs): (param.name, repr(mechs[mech_suffix_matches]))) -def _split_mech_from_non_mech_params_global(params, channels): - """TODO: doc""" - mech_params = [_find_mech_and_split_param_name( +def _arb_convert_params_and_group_by_mech_global(params, channels): + """Group global parameters by mechanism and rename them to Arbor convention""" + mech_params = [_find_mech_and_convert_param_name( Location(name=name, value=value), channels['all']) for name, value in params.items()] mechs = {mech: [] for mech, _ in mech_params} @@ -178,31 +188,31 @@ def _split_mech_from_non_mech_params_global(params, channels): mechs[mech].append(param) if len(mechs) > 0: assert list(mechs.keys()) == [None] - return {param.name: param for param in mechs[None]} # correct? + return {param.name: param for param in mechs[None]} else: return {} -def _split_mech_from_non_mech_params_local(params, channels): - """TODO: doc""" +def _arb_convert_params_and_group_by_mech_local(params, channels): + """Group section parameters by mechanism and rename them to Arbor convention""" local_params = [] global_params = {} for loc, params in params: - mech_params = [_find_mech_and_split_param_name( + mech_params = [_find_mech_and_convert_param_name( param, channels[loc]) for param in params] mechs = {mech: [] for mech, _ in mech_params} for mech, param in mech_params: mechs[mech].append(param) for i, param in enumerate(mechs.get(None,[])): - if _make_arb_global_param(loc, param): + if _arb_is_global_param(loc, param): global_params[param.name] = param del mechs[None][i] local_params.append((loc, list(mechs.items()))) return local_params, global_params -def _arb_mech_translate(mech_name, mech_params): - """TODO: doc""" +def _arb_nmodl_global_translate(mech_name, mech_params): + """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms into mechanism name""" arb_mech = None for cat in ['bbp', 'default', 'allen']: # in order of precedence if mech_name in _arb_mechs[cat]: @@ -227,14 +237,15 @@ def _arb_mech_translate(mech_name, mech_params): return (arb_mech_name, arb_mech_params) -def _nrn_to_arb_mechs_local(params): +def _arb_nmodl_global_translate_local(params): ret = [] for loc, mechs in params: - ret.append((loc, [_arb_mech_translate(*mech) for mech in mechs])) + ret.append((loc, [_arb_nmodl_global_translate(*mech) for mech in mechs])) return ret def _read_templates(template_dir, template_filename): + """Expand Jinja2 template filepath with glob and return dict of target filename -> parsed template""" if template_dir is None: template_dir = os.path.abspath( os.path.join( @@ -314,11 +325,12 @@ def create_acc(mechs, range_params = template_params['range_params'] global_params = \ - _split_mech_from_non_mech_params_global(global_params, channels) + _arb_convert_params_and_group_by_mech_global(global_params, channels) section_params, additional_global_params = \ - _split_mech_from_non_mech_params_local(section_params, channels) - global_params.update(additional_global_params) # TODO: global translate? - section_params = _nrn_to_arb_mechs_local(section_params) + _arb_convert_params_and_group_by_mech_local(section_params, channels) + global_params.update(additional_global_params) + # no nmodl translate on global_params as no mechs + section_params = _arb_nmodl_global_translate_local(section_params) # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) template_params['global_params'] = global_params diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py old mode 100755 new mode 100644 index be23a09b..7337bbc3 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -113,6 +113,7 @@ def _generate_parameters(parameters): def _read_template(template_dir, template_filename): + """Read Jinja2 hoc template to render""" if template_dir is None: template_dir = os.path.abspath( os.path.join( diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index 32949fc7..2be4a9a8 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -13,6 +13,9 @@ decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' An Arbor cable cell is then created with cell = arbor.cable_cell(morpho.morphology, labels, decor) + The resulting cable cell can be output to ACC for visual inspection + in the Arbor GUI (File > Cable cell > Load) using + arbor.write_component(cell, "l5pc.acc") ''' import os import argparse diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index 1d927ac5..0506d179 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -13,6 +13,9 @@ decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' An Arbor cable cell is then created with cell = arbor.cable_cell(morpho, labels, decor) + The resulting cable cell can be output to ACC for visual inspection + in the Arbor GUI (File > Cable cell > Load) using + arbor.write_component(cell, "simple_cell.acc") ''' import os import argparse From d2f2f42e05e4a74caaaaa19d44453d42c5b0c947 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Fri, 8 Apr 2022 11:42:10 +0200 Subject: [PATCH 07/42] Fixed membrane capacitance conversion to Arbor, formatting --- bluepyopt/ephys/create_acc.py | 5 +++-- bluepyopt/ephys/models.py | 18 +++++++++--------- 2 files changed, 12 insertions(+), 11 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 286f9e2a..46395f21 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -18,8 +18,9 @@ defaults=[None,None]) _nrn2arb_var = dict( - cm=ArbVar(name='membrane-capacitance'), # conv=None implies identity - ena=ArbVar(name='ion-reversal-potential \"na\"'), + cm=ArbVar(name='membrane-capacitance', + conv=lambda cm: cm/100.), # NEURON uses uF/cm^2, Arbor F/m^2 + ena=ArbVar(name='ion-reversal-potential \"na\"'), # conv=None implies identity ek=ArbVar(name='ion-reversal-potential \"k\"'), v_init=ArbVar(name='membrane-potential'), celsius=ArbVar(name='temperature-kelvin', diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index d0142228..3ccc8522 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -317,14 +317,14 @@ def _create_sim_desc(self, param_values, replace_axon += morph_modifier_hoc ret = sim_desc_creator(mechs=self.mechanisms, - parameters=self.params.values(), - morphology=morphology, - ignored_globals=ignored_globals, - replace_axon=replace_axon, - template_name=template_name, - template_filename=template, - template_dir=template_dir, - disable_banner=disable_banner) + parameters=self.params.values(), + morphology=morphology, + ignored_globals=ignored_globals, + replace_axon=replace_axon, + template_name=template_name, + template_filename=template, + template_dir=template_dir, + disable_banner=disable_banner) self.unfreeze(to_unfreeze) @@ -350,7 +350,7 @@ def create_acc(self, param_values, ignored_globals, template, disable_banner, template_dir, - sim_desc_creator=create_acc.create_acc) #FIXME + sim_desc_creator=create_acc.create_acc) def __str__(self): """Return string representation""" From 22ad6dae590f11792a9bbff2741b1f24bf5741a2 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 11 Apr 2022 18:05:52 +0200 Subject: [PATCH 08/42] Fixed pycodestyle errors --- bluepyopt/ephys/create_acc.py | 120 ++++++++++-------- bluepyopt/ephys/create_hoc.py | 6 +- bluepyopt/ephys/models.py | 24 ++-- bluepyopt/tests/test_ephys/test_create_acc.py | 8 +- 4 files changed, 85 insertions(+), 73 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 46395f21..49b659e9 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -14,16 +14,16 @@ # Define Neuron to Arbor variable conversions -ArbVar = namedtuple('ArbVar', 'name, conv', - defaults=[None,None]) +ArbVar = namedtuple('ArbVar', 'name, conv', + defaults=[None, None]) _nrn2arb_var = dict( cm=ArbVar(name='membrane-capacitance', - conv=lambda cm: cm/100.), # NEURON uses uF/cm^2, Arbor F/m^2 - ena=ArbVar(name='ion-reversal-potential \"na\"'), # conv=None implies identity + conv=lambda cm: cm / 100.), # NEURON uses uF/cm^2, Arbor F/m^2 + ena=ArbVar(name='ion-reversal-potential \"na\"'), # conv=None - identity ek=ArbVar(name='ion-reversal-potential \"k\"'), v_init=ArbVar(name='membrane-potential'), - celsius=ArbVar(name='temperature-kelvin', + celsius=ArbVar(name='temperature-kelvin', conv=lambda celsius: celsius + 273.15), Ra=ArbVar(name='axial-resistivity') ) @@ -36,7 +36,8 @@ def _nrn2arb_var_name(name): def _nrn2arb_var_value(param): """Neuron to Arbor variable value conversion.""" - if param.name in _nrn2arb_var and _nrn2arb_var[param.name].conv is not None: + if param.name in _nrn2arb_var and \ + _nrn2arb_var[param.name].conv is not None: return _nrn2arb_var[param.name].conv(param.value) else: return param.value @@ -47,18 +48,20 @@ def _arb_is_global_param(loc, param): return loc == 'all' and param.name in ['membrane-capacitance'] -# Define BluePyOpt to Arbor region mapping (relabeling locations to SWC convention) +# Define BluePyOpt to Arbor region mapping +# (relabeling locations to SWC convention) # Remarks: # - using SWC convetion: 'dend' for basal dendrite, 'apic' for apical dendrite # - myelinated is unsupported in Arbor ArbRegion = namedtuple('ArbRegion', 'ref, defn') + def _make_region(region, expr=None): - """Create Arbor region with region name and defining expression - (name for decor, defined in label_dict) or region expression only + """Create Arbor region with region name and defining expression + (name for decor, defined in label_dict) or region expression only (for decor, no defined label in label_dict).""" if expr is not None: - return ArbRegion(ref='(region \"%s\")' % region, + return ArbRegion(ref='(region \"%s\")' % region, defn='(region-def \"%s\" %s)' % (region, expr)) else: return ArbRegion(ref=region, defn=expr) @@ -71,7 +74,7 @@ def _make_tagged_region(region, tag): _loc2arb_region = dict( # defining "all" region for convenience here, else use # all=_arb_defined_region('(all)') to omit "all" in label_dict - all=_make_region('all', '(all)'), + all=_make_region('all', '(all)'), somatic=_make_tagged_region('soma', 1), axonal=_make_tagged_region('axon', 2), basal=_make_tagged_region('dend', 3), @@ -88,15 +91,20 @@ def _make_tagged_region(region, tag): # ranges_pattern = nmodl_pattern % 'RANGE' # def process_nmodl(nmodl_str): -# # print(nmodl_str, flush=True) -# nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, flags=re.MULTILINE).group(1) -# suffix = re.search(suffix_pattern, nrn, flags=re.MULTILINE) +# nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, +# flags=re.MULTILINE).group(1) +# suffix = re.search(suffix_pattern, nrn, +# flags=re.MULTILINE) # suffix = suffix if suffix is None else suffix.group(1) -# globals = re.search(globals_pattern, nrn, flags=re.MULTILINE) -# globals = globals if globals is None else re.findall(r'\w+', globals.group(1)) -# ranges = re.search(ranges_pattern, nrn, flags=re.MULTILINE) -# ranges = ranges if ranges is None else re.findall(r'\w+', ranges.group(1)) -# return dict(globals=globals, ranges=ranges) # suffix skipped +# globals = re.search(globals_pattern, nrn, +# flags=re.MULTILINE) +# globals = globals if globals is None \ +# else re.findall(r'\w+', globals.group(1)) +# ranges = re.search(ranges_pattern, nrn, +# flags=re.MULTILINE) +# ranges = ranges if ranges is None \ +# else re.findall(r'\w+', ranges.group(1)) +# return dict(globals=globals, ranges=ranges) # suffix skipped # mechs = dict() # for cat in ['allen', 'bbp', 'default']: @@ -130,8 +138,8 @@ def _make_tagged_region(region, tag): 'SK': {'globals': None, 'ranges': ['gbar', 'ik']}}, bbp={ 'CaDynamics_E2': {'globals': None, - 'ranges': ['decay', 'gamma', 'minCai', - 'depth', 'initCai']}, + 'ranges': ['decay', 'gamma', 'minCai', + 'depth', 'initCai']}, 'Ca_HVA': {'globals': None, 'ranges': ['gCa_HVAbar']}, 'Ca_LVAst': {'globals': None, 'ranges': ['gCa_LVAstbar']}, 'Ih': {'globals': None, 'ranges': ['gIhbar']}, @@ -163,27 +171,27 @@ def _make_tagged_region(region, tag): def _find_mech_and_convert_param_name(param, mechs): - """Find a parameter's mechanism and convert parameter name to Arbor convention""" + """Find a parameter's mechanism and convert name to Arbor convention""" mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) for mech in mechs])[0] if mech_suffix_matches.size == 0: return None, Location(name=_nrn2arb_var_name(param.name), - value=_nrn2arb_var_value(param)) # TODO: adapt for Range + value=_nrn2arb_var_value(param)) # TODO: Range elif mech_suffix_matches.size == 1: mech = mechs[mech_suffix_matches[0]] - name = param.name[:-(len(mech)+1)] + name = param.name[:-(len(mech) + 1)] return mech, Location(name=_nrn2arb_var_name(name), - value=_nrn2arb_var_value(param)) # TODO: adapt for Range + value=_nrn2arb_var_value(param)) # TODO: Range else: - raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % - (param.name, repr(mechs[mech_suffix_matches]))) + raise RuntimeError("Parameter name %s matches multiple mechanisms %s " + % (param.name, repr(mechs[mech_suffix_matches]))) def _arb_convert_params_and_group_by_mech_global(params, channels): - """Group global parameters by mechanism and rename them to Arbor convention""" - mech_params = [_find_mech_and_convert_param_name( - Location(name=name, value=value), channels['all']) - for name, value in params.items()] + """Group global params by mechanism, rename them to Arbor convention""" + mech_params = [_find_mech_and_convert_param_name( + Location(name=name, value=value), channels['all']) + for name, value in params.items()] mechs = {mech: [] for mech, _ in mech_params} for mech, param in mech_params: mechs[mech].append(param) @@ -195,16 +203,16 @@ def _arb_convert_params_and_group_by_mech_global(params, channels): def _arb_convert_params_and_group_by_mech_local(params, channels): - """Group section parameters by mechanism and rename them to Arbor convention""" + """Group section params by mechanism, rename them to Arbor convention""" local_params = [] global_params = {} for loc, params in params: mech_params = [_find_mech_and_convert_param_name( - param, channels[loc]) for param in params] + param, channels[loc]) for param in params] mechs = {mech: [] for mech, _ in mech_params} for mech, param in mech_params: mechs[mech].append(param) - for i, param in enumerate(mechs.get(None,[])): + for i, param in enumerate(mechs.get(None, [])): if _arb_is_global_param(loc, param): global_params[param.name] = param del mechs[None][i] @@ -213,13 +221,14 @@ def _arb_convert_params_and_group_by_mech_local(params, channels): def _arb_nmodl_global_translate(mech_name, mech_params): - """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms into mechanism name""" + """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms + into mechanism name""" arb_mech = None - for cat in ['bbp', 'default', 'allen']: # in order of precedence + for cat in ['bbp', 'default', 'allen']: # in order of precedence if mech_name in _arb_mechs[cat]: arb_mech = _arb_mechs[cat][mech_name] break - if arb_mech is None: # not Arbor built-in mech + if arb_mech is None: # not Arbor built-in mech return (mech_name, mech_params) else: if arb_mech['globals'] is None: # only Arbor range params @@ -233,27 +242,29 @@ def _arb_nmodl_global_translate(mech_name, mech_params): mech_params_dict = dict(mech_params) arb_mech_name = mech_name + '/' + ','.join( [p + '=' + mech_params_dict[p] for p in arb_mech['globals']]) - arb_mech_params = [mech_param for mech_param in mech_params - if mech_param.name not in arb_mech['globals']] + arb_mech_params = [mech_param for mech_param in mech_params + if mech_param.name not in arb_mech['globals']] return (arb_mech_name, arb_mech_params) def _arb_nmodl_global_translate_local(params): ret = [] for loc, mechs in params: - ret.append((loc, [_arb_nmodl_global_translate(*mech) for mech in mechs])) + ret.append((loc, [_arb_nmodl_global_translate(*mech) + for mech in mechs])) return ret def _read_templates(template_dir, template_filename): - """Expand Jinja2 template filepath with glob and return dict of target filename -> parsed template""" + """Expand Jinja2 template filepath with glob and + return dict of target filename -> parsed template""" if template_dir is None: template_dir = os.path.abspath( os.path.join( os.path.dirname(__file__), 'templates')) - template_paths = glob(os.path.join(template_dir, + template_paths = glob(os.path.join(template_dir, template_filename)) templates = dict() @@ -293,7 +304,7 @@ def create_acc(mechs, This iterable contains parameter names that aren't checked replace_axon (str): String replacement for the 'replace_axon' command. Must include 'proc replace_axon(){ ... } - template_filename (str): file path of the cell.json , decor.acc and + template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) template_dir (str): dir name of the jinja2 templates custom_jinja_params (dict): dict of additional jinja2 params in case @@ -316,23 +327,24 @@ def create_acc(mechs, custom_jinja_params = {} filenames = { - name: template_name + (name if name.startswith('.') else "_" + name) + name: template_name + (name if name.startswith('.') else "_" + name) for name in templates.keys()} - + # postprocess template parameters for Arbor global_params = template_params['global_params'] section_params = template_params['section_params'] channels = template_params['channels'] range_params = template_params['range_params'] - + global_params = \ _arb_convert_params_and_group_by_mech_global(global_params, channels) section_params, additional_global_params = \ _arb_convert_params_and_group_by_mech_local(section_params, channels) - global_params.update(additional_global_params) + global_params.update(additional_global_params) # no nmodl translate on global_params as no mechs section_params = _arb_nmodl_global_translate_local(section_params) - # TODO: range_params = _split_mech_from_non_mech_params_local(range_params, channels) + # TODO: range_params = _arb_convert_params_and_group_by_mech_local( + # range_params, channels) template_params['global_params'] = global_params template_params['section_params'] = section_params @@ -340,10 +352,10 @@ def create_acc(mechs, template_params['range_params'] = range_params return {filenames[name]: - template.render(template_name=template_name, - morphology=morphology, - filenames=filenames, - regions=_loc2arb_region, - **template_params, - **custom_jinja_params) + template.render(template_name=template_name, + morphology=morphology, + filenames=filenames, + regions=_loc2arb_region, + **template_params, + **custom_jinja_params) for name, template in templates.items()} diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 7337bbc3..f374b2ed 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -160,10 +160,10 @@ def _get_template_params( else: banner = None - return dict(global_params=global_params, + return dict(global_params=global_params, ignored_global_params=ignored_global_params, - section_params=section_params, - range_params=range_params, + section_params=section_params, + range_params=range_params, location_order=location_order, channels=channels, banner=banner) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 3ccc8522..113c4c46 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -281,10 +281,10 @@ def check_nonfrozen_params(self, param_names): # pylint: disable=W0613 param_name) def _create_sim_desc(self, param_values, - ignored_globals=(), template=None, - disable_banner=False, - template_dir=None, - sim_desc_creator=None): + ignored_globals=(), template=None, + disable_banner=False, + template_dir=None, + sim_desc_creator=None): """Create simulator description for this model""" to_unfreeze = [] @@ -336,10 +336,10 @@ def create_hoc(self, param_values, template_dir=None): """Create hoc code for this model""" return self._create_sim_desc(param_values, - ignored_globals, template, - disable_banner, - template_dir, - sim_desc_creator=create_hoc.create_hoc) + ignored_globals, template, + disable_banner, + template_dir, + sim_desc_creator=create_hoc.create_hoc) def create_acc(self, param_values, ignored_globals=(), template='acc/*_template.jinja2', @@ -347,10 +347,10 @@ def create_acc(self, param_values, template_dir=None): """Create hoc code for this model""" return self._create_sim_desc(param_values, - ignored_globals, template, - disable_banner, - template_dir, - sim_desc_creator=create_acc.create_acc) + ignored_globals, template, + disable_banner, + template_dir, + sim_desc_creator=create_acc.create_acc) def __str__(self): """Return string representation""" diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index becc2632..5a0ceff8 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -25,8 +25,8 @@ def test_create_acc(): mech = utils.make_mech() parameters = utils.make_parameters() - acc = create_acc.create_acc([mech, ], parameters, - morphology='CCell.swc', + acc = create_acc.create_acc([mech, ], parameters, + morphology='CCell.swc', template_name='CCell') cell_json = "CCell.json" @@ -48,7 +48,7 @@ def test_create_acc(): assert label_dict_acc in acc assert acc[label_dict_acc].startswith('(arbor-component') assert '(label-dict' in acc[label_dict_acc] - matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', + matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', acc[label_dict_acc]) for pos, loc_tag in enumerate(DEFAULT_ARBOR_REGION_ORDER): assert matches[pos][0] == loc_tag[0] @@ -90,7 +90,7 @@ def test_create_acc_filename(): assert label_dict_acc in acc assert acc[label_dict_acc].startswith('(arbor-component') assert '(label-dict' in acc[label_dict_acc] - matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', + matches = re.findall(r'\(region-def "(?P\w+)" \(tag (?P\d+)\)\)', acc[label_dict_acc]) for pos, loc_tag in enumerate(DEFAULT_ARBOR_REGION_ORDER): assert matches[pos][0] == loc_tag[0] From 222897975e717d7419e19d3886ab489ff33502c2 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 16 May 2022 14:19:38 +0200 Subject: [PATCH 09/42] Fixed tox tests/docs, replace_axon handling fixed (unsupported in Arbor), simplecell_model.py simplified and consistent with notebook --- bluepyopt/ephys/create_acc.py | 45 ++--- bluepyopt/tests/test_ephys/test_create_acc.py | 20 ++- examples/l5pc/generate_acc.py | 2 +- examples/l5pc/l5pc_model.py | 8 +- examples/simplecell/config/mechanisms.json | 5 - examples/simplecell/config/parameters.json | 33 ---- examples/simplecell/generate_acc.py | 3 +- examples/simplecell/generate_hoc.py | 9 +- examples/simplecell/simplecell_model.py | 155 ++++-------------- 9 files changed, 88 insertions(+), 192 deletions(-) delete mode 100644 examples/simplecell/config/mechanisms.json delete mode 100644 examples/simplecell/config/parameters.json diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 49b659e9..88a4a35a 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -1,4 +1,4 @@ -'''create a hoc file from a set of BluePyOpt.ephys parameters''' +'''create JSON/ACC files for Arbor from a set of BluePyOpt.ephys parameters''' # pylint: disable=R0914 @@ -10,22 +10,26 @@ import numpy import jinja2 -from .create_hoc import Location, Range, _get_template_params +from .create_hoc import Location, Range, _get_template_params, format_float # Define Neuron to Arbor variable conversions -ArbVar = namedtuple('ArbVar', 'name, conv', - defaults=[None, None]) +ArbVar = namedtuple('ArbVar', 'name, conv') + + +def _make_var(name, conv=None): # conv defaults to identity + return ArbVar(name=name, conv=conv) + _nrn2arb_var = dict( - cm=ArbVar(name='membrane-capacitance', - conv=lambda cm: cm / 100.), # NEURON uses uF/cm^2, Arbor F/m^2 - ena=ArbVar(name='ion-reversal-potential \"na\"'), # conv=None - identity - ek=ArbVar(name='ion-reversal-potential \"k\"'), - v_init=ArbVar(name='membrane-potential'), - celsius=ArbVar(name='temperature-kelvin', - conv=lambda celsius: celsius + 273.15), - Ra=ArbVar(name='axial-resistivity') + cm=_make_var(name='membrane-capacitance', + conv=lambda cm: cm / 100.), # NEURON: uF/cm^2, Arbor: F/m^2 + ena=_make_var(name='ion-reversal-potential \"na\"'), + ek=_make_var(name='ion-reversal-potential \"k\"'), + v_init=_make_var(name='membrane-potential'), + celsius=_make_var(name='temperature-kelvin', + conv=lambda celsius: celsius + 273.15), + Ra=_make_var(name='axial-resistivity') ) @@ -38,7 +42,7 @@ def _nrn2arb_var_value(param): """Neuron to Arbor variable value conversion.""" if param.name in _nrn2arb_var and \ _nrn2arb_var[param.name].conv is not None: - return _nrn2arb_var[param.name].conv(param.value) + return format_float(_nrn2arb_var[param.name].conv(float(param.value))) else: return param.value @@ -295,15 +299,12 @@ def create_acc(mechs, '''return a dict with strings containing the rendered JSON/ACC templates Args: - mechs (): All the mechs for the hoc template - parameters (): All the parameters in the hoc template + mechs (): All the mechs for the decor template + parameters (): All the parameters in the decor/label-dict template morpholgy (str): Name of morphology - ignored_globals (iterable str): HOC coded is added for each - NrnGlobalParameter - that exists, to test that it matches the values set in the parameters. - This iterable contains parameter names that aren't checked + ignored_globals (iterable str): Skipped NrnGlobalParameter in decor replace_axon (str): String replacement for the 'replace_axon' command. - Must include 'proc replace_axon(){ ... } + Only False is supported at the moment. template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) template_dir (str): dir name of the jinja2 templates @@ -316,6 +317,10 @@ def create_acc(mechs, " (only supported types are .swc and .asc)." % morphology) + if replace_axon is True: + raise RuntimeError("Axon replacement (replace_axon is True) is not " + "supported in Arbor.") + templates = _read_templates(template_dir, template_filename) template_params = _get_template_params(mechs, diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index 5a0ceff8..f2a6b71d 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -21,7 +21,7 @@ @pytest.mark.unit def test_create_acc(): - """ephys.create_hoc: Test create_hoc""" + """ephys.create_acc: Test create_acc""" mech = utils.make_mech() parameters = utils.make_parameters() @@ -57,7 +57,7 @@ def test_create_acc(): @pytest.mark.unit def test_create_acc_filename(): - """ephys.create_hoc: Test create_acc template_filename""" + """ephys.create_acc: Test create_acc template_filename""" mech = utils.make_mech() parameters = utils.make_parameters() custom_param_val = str(__file__) @@ -99,3 +99,19 @@ def test_create_acc_filename(): assert '(meta-data (info "test-decor"))' in acc[decor_acc] assert '(meta-data (info "test-label-dict"))' in acc[label_dict_acc] assert custom_param_val in cell_json_dict['produced_by'] + + +@pytest.mark.unit +def test_create_acc_replace_axon(): + """ephys.create_acc: Test create_acc for exception with axon replacement""" + mech = utils.make_mech() + parameters = utils.make_parameters() + + with pytest.raises(Exception) as exception: + acc = create_acc.create_acc([mech, ], parameters, + morphology='CCell.swc', + template_name='CCell', + replace_axon=True) + assert exception.type == RuntimeError + assert str(exception.value) == \ + "Axon replacement (replace_axon is True) is not supported in Arbor." diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index 2be4a9a8..137c7793 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -34,7 +34,7 @@ def main(): help='Output directory for JSON/ACC files') args = parser.parse_args() - cell = l5pc_model.create() + cell = l5pc_model.create(do_replace_axon=False) output = cell.create_acc(param_values, template='acc/*_template.jinja2') diff --git a/examples/l5pc/l5pc_model.py b/examples/l5pc/l5pc_model.py index 8bb82a07..fa39689d 100644 --- a/examples/l5pc/l5pc_model.py +++ b/examples/l5pc/l5pc_model.py @@ -127,22 +127,22 @@ def define_parameters(): return parameters -def define_morphology(): +def define_morphology(do_replace_axon): """Define morphology""" return ephys.morphologies.NrnFileMorphology( os.path.join( script_dir, 'morphology/C060114A7.asc'), - do_replace_axon=True) + do_replace_axon=do_replace_axon) -def create(): +def create(do_replace_axon=True): """Create cell model""" cell = ephys.models.CellModel( 'l5pc', - morph=define_morphology(), + morph=define_morphology(do_replace_axon), mechs=define_mechanisms(), params=define_parameters()) diff --git a/examples/simplecell/config/mechanisms.json b/examples/simplecell/config/mechanisms.json deleted file mode 100644 index 8f8820af..00000000 --- a/examples/simplecell/config/mechanisms.json +++ /dev/null @@ -1,5 +0,0 @@ -{ - "somatic": [ - "hh" - ] -} diff --git a/examples/simplecell/config/parameters.json b/examples/simplecell/config/parameters.json deleted file mode 100644 index 76a9a30a..00000000 --- a/examples/simplecell/config/parameters.json +++ /dev/null @@ -1,33 +0,0 @@ -[ - { - "param_name": "cm", - "sectionlist": "somatic", - "type": "section", - "dist_type": "uniform", - "value": 1 - }, - { - "param_name": "gnabar_hh", - "mech": "hh", - "bounds": [ - 0.05, - 0.125 - ], - "dist_type": "uniform", - "mech_param": "gnabar", - "type": "range", - "sectionlist": "somatic" - }, - { - "param_name": "gkbar_hh", - "mech": "hh", - "bounds": [ - 0.01, - 0.075 - ], - "dist_type": "uniform", - "mech_param": "gkbar", - "type": "range", - "sectionlist": "somatic" - } -] \ No newline at end of file diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index 0506d179..0f7dad7d 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -34,7 +34,8 @@ def main(): help='Output directory for JSON/ACC files') args = parser.parse_args() - cell = simplecell_model.create() + # Arbor does not support do_replace_axon=True + cell = simplecell_model.create(do_replace_axon=False) output = cell.create_acc(param_values, template='acc/*_template.jinja2') diff --git a/examples/simplecell/generate_hoc.py b/examples/simplecell/generate_hoc.py index 52ff6b57..28278d12 100755 --- a/examples/simplecell/generate_hoc.py +++ b/examples/simplecell/generate_hoc.py @@ -10,22 +10,19 @@ CCell("ignored", "path/to/morphology.swc") ''' import sys -import os -import shutil -from pprint import pprint import simplecell_model param_values = { - 'gnabar_hh.somatic': 0.10299326453483033, - 'gkbar_hh.somatic': 0.027124836082684685 + 'gnabar_hh': 0.10299326453483033, + 'gkbar_hh': 0.027124836082684685 } def main(): '''main''' - cell = simplecell_model.create() + cell = simplecell_model.create(do_replace_axon=True) output = cell.create_hoc(param_values, template='cell_template.jinja2') print(output) diff --git a/examples/simplecell/simplecell_model.py b/examples/simplecell/simplecell_model.py index 76ed3202..4e5a5f04 100644 --- a/examples/simplecell/simplecell_model.py +++ b/examples/simplecell/simplecell_model.py @@ -20,130 +20,45 @@ """ # pylint: disable=R0914 -import os -import json - import bluepyopt.ephys as ephys -script_dir = os.path.dirname(__file__) -config_dir = os.path.join(script_dir, 'config') - -# TODO store definition dicts in json -# TODO rename 'score' into 'objective' -# TODO add functionality to read settings of every object from config format - - -def define_mechanisms(): - """Define mechanisms""" - - mech_definitions = json.load( - open( - os.path.join( - config_dir, - 'mechanisms.json'))) - - mechanisms = [] - for sectionlist, channels in mech_definitions.items(): - seclist_loc = ephys.locations.NrnSeclistLocation( - sectionlist, - seclist_name=sectionlist) - for channel in channels: - mechanisms.append(ephys.mechanisms.NrnMODMechanism( - name='%s.%s' % (channel, sectionlist), - mod_path=None, - suffix=channel, - locations=[seclist_loc], - preloaded=True)) - - return mechanisms - - -def define_parameters(): - """Define parameters""" - - param_configs = json.load(open(os.path.join(config_dir, 'parameters.json'))) - parameters = [] - - for param_config in param_configs: - if 'value' in param_config: - frozen = True - value = param_config['value'] - bounds = None - elif 'bounds' in param_config: - frozen = False - bounds = param_config['bounds'] - value = None - else: - raise Exception( - 'Parameter config has to have bounds or value: %s' - % param_config) - - if param_config['type'] == 'global': - parameters.append( - ephys.parameters.NrnGlobalParameter( - name=param_config['param_name'], - param_name=param_config['param_name'], - frozen=frozen, - bounds=bounds, - value=value)) - elif param_config['type'] in ['section', 'range']: - if param_config['dist_type'] == 'uniform': - scaler = ephys.parameterscalers.NrnSegmentLinearScaler() - elif param_config['dist_type'] == 'exp': - scaler = ephys.parameterscalers.NrnSegmentSomaDistanceScaler( - distribution=param_config['dist']) - seclist_loc = ephys.locations.NrnSeclistLocation( - param_config['sectionlist'], - seclist_name=param_config['sectionlist']) - - name = '%s.%s' % (param_config['param_name'], - param_config['sectionlist']) - - if param_config['type'] == 'section': - parameters.append( - ephys.parameters.NrnSectionParameter( - name=name, - param_name=param_config['param_name'], - value_scaler=scaler, - value=value, - frozen=frozen, - bounds=bounds, - locations=[seclist_loc])) - elif param_config['type'] == 'range': - parameters.append( - ephys.parameters.NrnRangeParameter( - name=name, - param_name=param_config['param_name'], - value_scaler=scaler, - value=value, - frozen=frozen, - bounds=bounds, - locations=[seclist_loc])) - else: - raise Exception( - 'Param config type has to be global, section or range: %s' % - param_config) - - return parameters - - -def define_morphology(): - """Define morphology""" - - return ephys.morphologies.NrnFileMorphology( - os.path.join( - script_dir, - 'simple.swc'), - do_replace_axon=False) - - -def create(): - """Create cell model""" +def create(do_replace_axon): + """Create cell model (identical to simplecell.ipynb)""" + + morph = ephys.morphologies.NrnFileMorphology('simple.swc', + do_replace_axon=do_replace_axon) + somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic') + + hh_mech = ephys.mechanisms.NrnMODMechanism( + name='hh', + suffix='hh', + locations=[somatic_loc]) + + cm_param = ephys.parameters.NrnSectionParameter( + name='cm', + param_name='cm', + value=1.0, + locations=[somatic_loc], + frozen=True) + + gnabar_param = ephys.parameters.NrnSectionParameter( + name='gnabar_hh', + param_name='gnabar_hh', + locations=[somatic_loc], + bounds=[0.05, 0.125], + frozen=False) + gkbar_param = ephys.parameters.NrnSectionParameter( + name='gkbar_hh', + param_name='gkbar_hh', + bounds=[0.01, 0.075], + locations=[somatic_loc], + frozen=False) + cell = ephys.models.CellModel( 'simple_cell', - morph=define_morphology(), - mechs=define_mechanisms(), - params=define_parameters()) + morph=morph, + mechs=[hh_mech], + params=[cm_param, gnabar_param, gkbar_param]) return cell From e88168f3bb068fad8d7e40c49396bd942591bf9a Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 28 Jul 2022 19:38:45 +0200 Subject: [PATCH 10/42] Support for replace_axon in Arbor, cable cell construction from JSON/ACC-export, demo of simulating protocols in Arbor on simple cell example and validation with Neuron --- bluepyopt/ephys/create_acc.py | 107 +- bluepyopt/ephys/models.py | 72 +- bluepyopt/ephys/morphologies.py | 120 + .../ephys/templates/acc/_json_template.jinja2 | 11 +- bluepyopt/tests/test_ephys/test_create_acc.py | 172 +- .../test_ephys/testdata/acc/CCell/CCell.json | 9 + .../testdata/acc/CCell/CCell_decor.acc | 8 + .../testdata/acc/CCell/CCell_label_dict.acc | 9 + .../{ => templates}/cell_json_template.jinja2 | 0 .../{ => templates}/decor_acc_template.jinja2 | 0 .../label_dict_acc_template.jinja2 | 0 examples/l5pc/generate_acc.py | 35 +- examples/simplecell/generate_acc.py | 36 +- examples/simplecell/simplecell_arbor.ipynb | 3319 +++++++++++++++++ setup.py | 1 + 15 files changed, 3804 insertions(+), 95 deletions(-) create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_label_dict.acc rename bluepyopt/tests/test_ephys/testdata/acc/{ => templates}/cell_json_template.jinja2 (100%) rename bluepyopt/tests/test_ephys/testdata/acc/{ => templates}/decor_acc_template.jinja2 (100%) rename bluepyopt/tests/test_ephys/testdata/acc/{ => templates}/label_dict_acc_template.jinja2 (100%) create mode 100644 examples/simplecell/simplecell_arbor.ipynb diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 88a4a35a..f52a3473 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -2,7 +2,9 @@ # pylint: disable=R0914 +from dataclasses import replace import os +import logging from collections import namedtuple from glob import glob @@ -10,8 +12,14 @@ import numpy import jinja2 -from .create_hoc import Location, Range, _get_template_params, format_float +import json +import shutil +import arbor + +logger = logging.getLogger(__name__) +from .create_hoc import Location, Range, _get_template_params, format_float +from .morphologies import _arb_tags, ArbFileMorphology # Define Neuron to Arbor variable conversions ArbVar = namedtuple('ArbVar', 'name, conv') @@ -56,7 +64,6 @@ def _arb_is_global_param(loc, param): # (relabeling locations to SWC convention) # Remarks: # - using SWC convetion: 'dend' for basal dendrite, 'apic' for apical dendrite -# - myelinated is unsupported in Arbor ArbRegion = namedtuple('ArbRegion', 'ref, defn') @@ -79,11 +86,11 @@ def _make_tagged_region(region, tag): # defining "all" region for convenience here, else use # all=_arb_defined_region('(all)') to omit "all" in label_dict all=_make_region('all', '(all)'), - somatic=_make_tagged_region('soma', 1), - axonal=_make_tagged_region('axon', 2), - basal=_make_tagged_region('dend', 3), - apical=_make_tagged_region('apic', 4), - myelinated=_make_region(None), + somatic=_make_tagged_region('soma', _arb_tags['soma']), + axonal=_make_tagged_region('axon', _arb_tags['axon']), + basal=_make_tagged_region('dend', _arb_tags['dend']), + apical=_make_tagged_region('apic', _arb_tags['apic']), + myelinated=_make_tagged_region('myelin', _arb_tags['myelin']), ) # # Generated with NMODL in arbor/mechanisms @@ -301,7 +308,7 @@ def create_acc(mechs, Args: mechs (): All the mechs for the decor template parameters (): All the parameters in the decor/label-dict template - morpholgy (str): Name of morphology + morphology (str): Name of morphology ignored_globals (iterable str): Skipped NrnGlobalParameter in decor replace_axon (str): String replacement for the 'replace_axon' command. Only False is supported at the moment. @@ -317,9 +324,13 @@ def create_acc(mechs, " (only supported types are .swc and .asc)." % morphology) - if replace_axon is True: - raise RuntimeError("Axon replacement (replace_axon is True) is not " - "supported in Arbor.") + if replace_axon is not None: + logger.debug("Obtain axon replacement by applying " + "ArbFileMorphology.replace_axon after loading " + "morphology in Arbor.") + replace_axon_json = json.dumps(replace_axon) + else: + replace_axon_json = None templates = _read_templates(template_dir, template_filename) @@ -359,8 +370,82 @@ def create_acc(mechs, return {filenames[name]: template.render(template_name=template_name, morphology=morphology, + replace_axon=replace_axon_json, filenames=filenames, regions=_loc2arb_region, **template_params, **custom_jinja_params) for name, template in templates.items()} + + +def output_acc(output_dir, cell, parameters, + template_filename='acc/*_template.jinja2'): + '''Output mixed JSON/ACC format for Arbor cable cell to files + + Args: + output_dir (str): Output directory. If not exists, will be created + cell (): Cell model to output + parameters (): Values for mechanism parameters, etc. + template_filename (str): file path of the cell.json , decor.acc and + label_dict.acc jinja2 templates (with wildcards expanded by glob) + ''' + output = cell.create_acc(parameters, template_filename) + + if not os.path.exists(output_dir): + os.makedirs(output_dir) + for comp, comp_rendered in output.items(): + comp_filename = os.path.join(output_dir, comp) + if os.path.exists(comp_filename): + raise RuntimeError("%s already exists!" % comp_filename) + with open(os.path.join(output_dir, comp), 'w') as f: + f.write(comp_rendered) + + morpho_filename = os.path.join( + output_dir, os.path.basename(cell.morphology.morphology_path)) + if os.path.exists(morpho_filename): + raise RuntimeError("%s already exists!" % morpho_filename) + shutil.copy2(cell.morphology.morphology_path, output_dir) + + +# Read the mixed JSON/ACC-output, to be moved to Arbor in future release +def read_acc(cell_json_filename): + '''Return constituents to build an Arbor cable cell from create_acc-export + + Args: + cell_json_filename (str): The path to the JSON file containing + meta-information on morphology, label-dict and decor of exported cell + ''' + with open(cell_json_filename) as cell_json_file: + cell_json = json.load(cell_json_file) + + cell_json_dir = os.path.dirname(cell_json_filename) + + morphology_filename = os.path.join(cell_json_dir, + cell_json['morphology']['path']) + if 'replace_axon' in cell_json['morphology']: + replace_axon = cell_json['morphology']['replace_axon'] + else: + replace_axon = None + + if morphology_filename.endswith('.swc'): + morpho = arbor.load_swc_arbor(morphology_filename) + if replace_axon is not None: + morpho = ArbFileMorphology.replace_axon(morpho, replace_axon) + elif morphology_filename.endswith('.asc'): + morpho = arbor.load_asc(morphology_filename) + if replace_axon is not None: + morpho = \ + ArbFileMorphology.replace_axon(morpho.morphology, replace_axon) + else: + morpho = morpho.morphology + else: + raise RuntimeError( + 'Unsupported morphology {} (only .swc and .asc supported)'.format( + morphology_filename)) + + labels = arbor.load_component( + os.path.join(cell_json_dir, cell_json['label_dict'])).component + decor = arbor.load_component( + os.path.join(cell_json_dir, cell_json['decor'])).component + + return cell_json, morpho, labels, decor diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 113c4c46..214d682d 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -223,7 +223,7 @@ def create_empty_cell( return template_function() - def instantiate(self, sim=None): + def instantiate_morphology(self, sim=None): """Instantiate model in simulator""" # TODO replace this with the real template name @@ -240,6 +240,11 @@ def instantiate(self, sim=None): self.morphology.instantiate(sim=sim, icell=self.icell) + def instantiate(self, sim=None): + """Instantiate model in simulator""" + + self.instantiate_morphology(sim) + if self.mechanisms is not None: for mechanism in self.mechanisms: mechanism.instantiate(sim=sim, icell=self.icell) @@ -295,26 +300,53 @@ def _create_sim_desc(self, param_values, template_name = self.name morphology = os.path.basename(self.morphology.morphology_path) - if self.morphology.do_replace_axon: - replace_axon = self.morphology.replace_axon_hoc + + if sim_desc_creator is create_hoc.create_hoc: + if self.morphology.do_replace_axon: + replace_axon = self.morphology.replace_axon_hoc + else: + replace_axon = None + + if ( + self.morphology.morph_modifiers is not None + and self.morphology.morph_modifiers_hoc is None + ): + logger.warning('You have provided custom morphology' + ' modifiers, but no corresponding hoc files.') + elif ( + self.morphology.morph_modifiers is not None + and self.morphology.morph_modifiers_hoc is not None + ): + if replace_axon is None: + replace_axon = '' + for morph_modifier_hoc in self.morphology.morph_modifiers_hoc: + replace_axon += '\n' + replace_axon += morph_modifier_hoc + elif sim_desc_creator is create_acc.create_acc: + if self.morphology.do_replace_axon: + if self.icell is None: + raise ValueError('Need to instantiate_morphology' + ' on CellModel before creating' + ' JSON/ACC-description with' + ' axon replacement.') + replace_axon = [dict(nseg=section.nseg, + length=section.L, + radius=0.5 * section.diam, + tag=morphologies._arb_tags['axon']) + for section in self.icell.axon] + # TODO: if there is a myelinated section, + # append to replace_axon + # dict(nseg=5, + # length=1000, + # radius=?, + # tag=morphologies._arb_tags['myelin']) + # Where is the myelinated section instantiated, though? + else: + replace_axon = None else: - replace_axon = None - - if ( - self.morphology.morph_modifiers is not None - and self.morphology.morph_modifiers_hoc is None - ): - logger.warning('You have provided custom morphology modifiers, \ - but no corresponding hoc files.') - elif ( - self.morphology.morph_modifiers is not None - and self.morphology.morph_modifiers_hoc is not None - ): - if replace_axon is None: - replace_axon = '' - for morph_modifier_hoc in self.morphology.morph_modifiers_hoc: - replace_axon += '\n' - replace_axon += morph_modifier_hoc + raise ValueError('Unsupported sim_desc_creator %s ' + '(choose either create_hoc.create_hoc or ' + 'create_acc.create_acc)', str(sim_desc_creator)) ret = sim_desc_creator(mechs=self.mechanisms, parameters=self.params.values(), diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index c0b766e4..2755384d 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -24,6 +24,8 @@ import os import platform import logging +import numpy +import arbor from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin @@ -245,3 +247,121 @@ def replace_axon(sim=None, icell=None): axon[0] connect axon[1](0), 1 } ''' + + +# Arbor morphology tags +_arb_tags = dict( + soma=1, + axon=2, + dend=3, + apic=4, + myelin=5 +) + + +def _mpt_to_coord(mpt): + return numpy.array([mpt.x, mpt.y, mpt.z]) + + +class ArbFileMorphology(Morphology, DictMixin): + + @staticmethod + def replace_axon(morphology, replacement=None): + '''return a morphology with the axon replaced by two 30 um segments + + Args: + morphology (arbor.morphology): An Arbor morphology + replacement (): A list of dictionaries containing Arbor segment + parameters including nseg, length, radius and tag of the axon + replacement (derived from Neuron's stylized specification of + geometry, cf. Neuron topology/geometry docs). Each of these is + interpreted so that the axon replacement is formed from a single + branch of stacked cylindrical segments. + ''' + # Check if prune_tag, prune_tag_roots, distal_radii are available + if not hasattr(morphology, "to_segment_tree"): + raise NotImplementedError( + "Need a newer version of Arbor for axon replacement.") + + # Arbor tags + axon_tag = _arb_tags['axon'] + soma_tag = _arb_tags['soma'] + + # Prune morphology to remove axon (myelin not assumed to exist) + st = morphology.to_segment_tree() + pruned_st = arbor.prune_tag(st, axon_tag) + pruned_roots = arbor.prune_tag_roots(st, axon_tag) + assert len(pruned_roots) <= 1 + + if replacement is not None: + ar_radius = [r['radius'] for r in replacement] + else: + ar_radius = None + + # Create axon replacement building on the pruned root + if len(pruned_roots) == 1: + axon_root = pruned_roots[0] + axon_parent = st.parents[axon_root] + ar_prox = st.segments[axon_root].prox + ar_prox_center = _mpt_to_coord(ar_prox) + ar_dist = st.segments[axon_root].dist + ar_dist_center = _mpt_to_coord(ar_dist) + + if ar_radius is None: + median_distal_radii = \ + arbor.median_distal_radii(st, axon_tag, 60) + ar_radius = [ar_prox.radius, + median_distal_radii[0] + if len(median_distal_radii) > 0 + else ar_prox.radius] + + logger.debug('Replacing axon with root %d with AIS' + ' of radii %s.', axon_root, str(ar_radius)) + else: + if ar_radius is None: + ar_radius = [0.5, 0.5] + soma_segs = [i for i, s in enumerate(st.segments) + if s.tag == soma_tag] + soma_terminals = [i for i in soma_segs if st.is_terminal(i)] + if len(soma_terminals) > 0: + axon_parent = soma_terminals[-1] + elif len(soma_segs) > 0: + axon_parent = soma_segs[-1] + else: + raise ValueError('Morphology without soma,' + ' cannot replace axon.') + + ar_prox = st.segments[axon_parent].dist + ar_prox_center = _mpt_to_coord(ar_prox) + ar_dist = st.segments[axon_parent].prox + ar_dist_center = 2 * ar_prox_center - _mpt_to_coord(ar_dist) + + # create new branch for replaced axon not to break + # existing location expressions + axon_parent = arbor.mnpos + logger.debug('Replacing non-existent axon with AIS' + ' of radii %s.', str(ar_radius)) + + if replacement is not None: + ar_seg_scaling = numpy.cumsum([0] + [r['length'] for r in replacement]) + else: + ar_seg_scaling = numpy.cumsum([0, 30, 30]) + ar_seg_scaling /= numpy.linalg.norm(ar_dist_center - ar_prox_center) + + ar_centers = [ar_prox_center + + scale * (ar_dist_center - ar_prox_center) + for scale in ar_seg_scaling] + + ar_tags = [r['tag'] for r in replacement] + + for prox, dist, radius, tag in zip(ar_centers[:-1], + ar_centers[1:], + ar_radius, + ar_tags): + axon_parent = pruned_st.append( + axon_parent, + arbor.mpoint(*prox, radius), + arbor.mpoint(*dist, radius), + tag) + + return arbor.morphology(pruned_st) diff --git a/bluepyopt/ephys/templates/acc/_json_template.jinja2 b/bluepyopt/ephys/templates/acc/_json_template.jinja2 index 61886f8a..600c7193 100644 --- a/bluepyopt/ephys/templates/acc/_json_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/_json_template.jinja2 @@ -4,7 +4,16 @@ "produced_by": "{{banner}}", {%- endif %} {%- if morphology %} {# feed morphology separately as a SWC/ASC file #} - "morphology": "{{morphology}}", + {%- if replace_axon is not none %} + "morphology": { + "path": "{{morphology}}", + "replace_axon": {{replace_axon}} + }, + {%- else %} + "morphology": { + "path": "{{morphology}}" + }, + {%- endif %} {%- else %} execerror("Template {{template_name}} requires morphology name to instantiate") {%- endif %} diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index f2a6b71d..83fc69d8 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -5,9 +5,13 @@ import os import re import json +import tempfile from . import utils + +from bluepyopt import ephys from bluepyopt.ephys import create_acc +import arbor import pytest @@ -16,7 +20,14 @@ ('apic', 4), ('axon', 2), ('dend', 3), - ('soma', 1)] + ('soma', 1), + ('myelin', 5)] + + +testdata_dir = os.path.join( + os.path.dirname( + os.path.abspath(__file__)), + 'testdata') @pytest.mark.unit @@ -29,10 +40,12 @@ def test_create_acc(): morphology='CCell.swc', template_name='CCell') + ref_dir = os.path.join(testdata_dir, 'acc/CCell') cell_json = "CCell.json" decor_acc = "CCell_decor.acc" label_dict_acc = "CCell_label_dict.acc" + # Testing keys assert cell_json in acc cell_json_dict = json.loads(acc[cell_json]) assert 'cell_model_name' in cell_json_dict @@ -40,11 +53,23 @@ def test_create_acc(): assert 'morphology' in cell_json_dict assert 'label_dict' in cell_json_dict assert 'decor' in cell_json_dict - + # Testing values + with open(os.path.join(ref_dir, cell_json)) as f: + ref_cell_json = json.load(f) + for k in ref_cell_json: + if k != 'produced_by': + assert ref_cell_json[k] == cell_json_dict[k] + + # Testing building blocks assert decor_acc in acc assert acc[decor_acc].startswith('(arbor-component') assert '(decor' in acc[decor_acc] + # Testing values + with open(os.path.join(ref_dir, decor_acc)) as f: + ref_decor = f.read() + assert ref_decor == acc[decor_acc] # decor data not exposed in Python + # Testing building blocks assert label_dict_acc in acc assert acc[label_dict_acc].startswith('(arbor-component') assert '(label-dict' in acc[label_dict_acc] @@ -53,6 +78,15 @@ def test_create_acc(): for pos, loc_tag in enumerate(DEFAULT_ARBOR_REGION_ORDER): assert matches[pos][0] == loc_tag[0] assert matches[pos][1] == str(loc_tag[1]) + # Testing values + ref_labels = arbor.load_component( + os.path.join(ref_dir, label_dict_acc)).component + with tempfile.TemporaryDirectory() as test_dir: + test_labels_filename = os.path.join(test_dir, label_dict_acc) + with open(test_labels_filename, 'w') as f: + f.write(acc[label_dict_acc]) + test_labels = arbor.load_component(test_labels_filename).component + assert dict(ref_labels.items()) == dict(test_labels.items()) @pytest.mark.unit @@ -62,15 +96,14 @@ def test_create_acc_filename(): parameters = utils.make_parameters() custom_param_val = str(__file__) - acc = create_acc.create_acc([mech, ], - parameters, morphology='CCell.asc', - template_name='CCell', - template_filename='acc/*_template.jinja2', - template_dir=os.path.join( - os.path.dirname(__file__), - 'testdata'), - custom_jinja_params={ - 'custom_param': custom_param_val}) + acc = create_acc.create_acc( + [mech, ], + parameters, morphology='CCell.asc', + template_name='CCell', + template_filename='acc/templates/*_template.jinja2', + template_dir=testdata_dir, + custom_jinja_params={ + 'custom_param': custom_param_val}) cell_json = "CCell_cell.json" decor_acc = "CCell_decor.acc" label_dict_acc = "CCell_label_dict.acc" @@ -103,15 +136,114 @@ def test_create_acc_filename(): @pytest.mark.unit def test_create_acc_replace_axon(): - """ephys.create_acc: Test create_acc for exception with axon replacement""" + """ephys.create_acc: Test create_acc with axon replacement""" mech = utils.make_mech() parameters = utils.make_parameters() + replace_axon = [dict(nseg=1, L=30., diam=1.0), + dict(nseg=1, L=30., diam=1.0)] + + acc = create_acc.create_acc([mech, ], parameters, + morphology='CCell.swc', + template_name='CCell', + replace_axon=replace_axon) - with pytest.raises(Exception) as exception: - acc = create_acc.create_acc([mech, ], parameters, - morphology='CCell.swc', - template_name='CCell', - replace_axon=True) - assert exception.type == RuntimeError - assert str(exception.value) == \ - "Axon replacement (replace_axon is True) is not supported in Arbor." + cell_json = "CCell.json" + cell_json_dict = json.loads(acc[cell_json]) + assert 'replace_axon' in cell_json_dict['morphology'] + assert 'nseg' in cell_json_dict['morphology']['replace_axon'][0] + assert 'L' in cell_json_dict['morphology']['replace_axon'][0] + assert 'diam' in cell_json_dict['morphology']['replace_axon'][0] + assert cell_json_dict['morphology']['replace_axon'] == replace_axon + + +def make_cell(replace_axon): + morph_filename = os.path.join(testdata_dir, 'simple_ax2.swc') + morph = ephys.morphologies.NrnFileMorphology(morph_filename, + do_replace_axon=replace_axon) + somatic_loc = ephys.locations.NrnSeclistLocation( + 'somatic', seclist_name='somatic') + mechs = [ephys.mechanisms.NrnMODMechanism( + name='hh', suffix='hh', locations=[somatic_loc])] + params = [ + ephys.parameters.NrnSectionParameter( + name='gnabar_hh', + param_name='gnabar_hh', + locations=[somatic_loc]), + ephys.parameters.NrnSectionParameter( + name='gkbar_hh', + param_name='gkbar_hh', + locations=[somatic_loc])] + return ephys.models.CellModel( + 'simple_ax2', + morph=morph, + mechs=mechs, + params=params) + + +@pytest.mark.unit +def test_cell_model_output_and_read_acc(): + """ephys.create_acc: Test output_acc and read_acc w/o axon replacement""" + cell = make_cell(replace_axon=False) + param_values = {'gnabar_hh': 0.1, + 'gkbar_hh': 0.03} + + with tempfile.TemporaryDirectory() as acc_dir: + create_acc.output_acc(acc_dir, cell, param_values) + cell_json, arb_morph, arb_labels, arb_decor = \ + create_acc.read_acc( + os.path.join(acc_dir, cell.name + '.json')) + assert 'replace_axon' not in cell_json['morphology'] + cable_cell = arbor.cable_cell(arb_morph, arb_labels, arb_decor) + assert isinstance(cable_cell, arbor.cable_cell) + assert len(cable_cell.cables('"soma"')) == 1 + assert len(cable_cell.cables('"axon"')) == 1 + assert len(arb_morph.branch_segments( + cable_cell.cables('"soma"')[0].branch)) == 5 + assert len(arb_morph.branch_segments( + cable_cell.cables('"axon"')[0].branch)) == 5 + + +def test_cell_model_output_and_read_acc_replace_axon(): + """ephys.create_acc: Test output_acc and read_acc w/ axon replacement""" + cell = make_cell(replace_axon=True) + param_values = {'gnabar_hh': 0.1, + 'gkbar_hh': 0.03} + + sim = ephys.simulators.NrnSimulator() + cell.instantiate_morphology(sim) + + with tempfile.TemporaryDirectory() as acc_dir: + create_acc.output_acc(acc_dir, cell, param_values) + try: + cell_json, arb_morph, arb_labels, arb_decor = \ + create_acc.read_acc( + os.path.join(acc_dir, cell.name + '.json')) + except Exception as e: # fail with an older Arbor version + assert isinstance(e, NotImplementedError) + assert len(e.args) == 1 and e.args[0] == \ + "Need a newer version of Arbor for axon replacement." + return + + # Axon replacement implemented in installed Arbor version + assert 'replace_axon' in cell_json['morphology'] + cable_cell = arbor.cable_cell(arb_morph, arb_labels, arb_decor) + assert isinstance(cable_cell, arbor.cable_cell) + assert len(cable_cell.cables('"soma"')) == 1 + assert len(cable_cell.cables('"axon"')) == 1 + assert len(arb_morph.branch_segments( + cable_cell.cables('"soma"')[0].branch)) == 4 + assert len(arb_morph.branch_segments( + cable_cell.cables('"axon"')[0].branch)) == 4 + + +def test_cell_model_create_acc_replace_axon_without_instantiate(): + """ephys.create_acc: Test output_acc and read_acc w/ axon replacement""" + cell = make_cell(replace_axon=True) + param_values = {'gnabar_hh': 0.1, + 'gkbar_hh': 0.03} + + with pytest.raises(ValueError, match='Need to instantiate_morphology' + ' on CellModel before creating' + ' JSON/ACC-description with' + ' axon replacement.'): + cell.create_acc(param_values) diff --git a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json new file mode 100644 index 00000000..3318cf41 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json @@ -0,0 +1,9 @@ +{ + "cell_model_name": "CCell", + "produced_by": "Created by BluePyOpt(1.12.62) at 2022-07-28 17:15:28.166082", + "morphology": { + "path": "CCell.swc" + }, + "label_dict": "CCell_label_dict.acc", + "decor": "CCell_decor.acc" +} \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc new file mode 100644 index 00000000..5a9c39ad --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc @@ -0,0 +1,8 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (decor + (default (NrnGlobalParameter 65)) + (paint (region "apic") (gSKv3_1bar_SKv3_1 65)) + (paint (region "apic") (gSKv3_1bar_SKv3_1 65)) + (paint (region "soma") (gSKv3_1bar_SKv3_1 65)) + (paint (region "soma") (gSKv3_1bar_SKv3_1 65)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_label_dict.acc b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_label_dict.acc new file mode 100644 index 00000000..08c4efd5 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_label_dict.acc @@ -0,0 +1,9 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (label-dict + (region-def "all" (all)) + (region-def "apic" (tag 4)) + (region-def "axon" (tag 2)) + (region-def "dend" (tag 3)) + (region-def "soma" (tag 1)) + (region-def "myelin" (tag 5)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 similarity index 100% rename from bluepyopt/tests/test_ephys/testdata/acc/cell_json_template.jinja2 rename to bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 diff --git a/bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 similarity index 100% rename from bluepyopt/tests/test_ephys/testdata/acc/decor_acc_template.jinja2 rename to bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 diff --git a/bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 similarity index 100% rename from bluepyopt/tests/test_ephys/testdata/acc/label_dict_acc_template.jinja2 rename to bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index 137c7793..deb42ecd 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -2,24 +2,25 @@ '''Example for generating a mixed JSON/ACC Arbor cable cell description - $ python generate_acc.py --output-dir test_acc/ + $ python generate_acc.py --output-dir test_acc/ --replace-axon Will save 'l5pc.json', 'l5pc_label_dict.acc' and 'l5pc_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: 'with open("test_acc/l5pc_cell.json") as cell_json_file: cell_json = json.load(cell_json_file) - morpho = arbor.load_asc("test_acc/" + cell_json["morphology"]) + morpho = arbor.load_asc("test_acc/" + cell_json["morphology"]["path"]) labels = arbor.load_component("test_acc/" + cell_json["label_dict"]).component decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' + An implementation with axon-replacement is available in ephys.create_acc.read_acc. An Arbor cable cell is then created with cell = arbor.cable_cell(morpho.morphology, labels, decor) The resulting cable cell can be output to ACC for visual inspection in the Arbor GUI (File > Cable cell > Load) using arbor.write_component(cell, "l5pc.acc") ''' -import os import argparse -import shutil + +from bluepyopt import ephys import l5pc_model from generate_hoc import param_values @@ -32,28 +33,20 @@ def main(): description=__doc__) parser.add_argument('-o', '--output-dir', dest='output_dir', help='Output directory for JSON/ACC files') + parser.add_argument('-ra', '--replace-axon', action='store_true', + help='Replace axon with Neuron-dependent policy') args = parser.parse_args() - cell = l5pc_model.create(do_replace_axon=False) - - output = cell.create_acc(param_values, template='acc/*_template.jinja2') + cell = l5pc_model.create(do_replace_axon=args.replace_axon) + if args.replace_axon: + nrn_sim = ephys.simulators.NrnSimulator() + cell.instantiate_morphology(nrn_sim) if args.output_dir is not None: - if not os.path.exists(args.output_dir): - os.makedirs(args.output_dir) - for comp, comp_rendered in output.items(): - comp_filename = os.path.join(args.output_dir, comp) - if os.path.exists(comp_filename): - raise RuntimeError("%s already exists!" % comp_filename) - with open(os.path.join(args.output_dir, comp), 'w') as f: - f.write(comp_rendered) - - morph_filename = os.path.join(args.output_dir, - os.path.basename(cell.morphology.morphology_path)) - if os.path.exists(morph_filename): - raise RuntimeError("%s already exists!" % morph_filename) - shutil.copy2(cell.morphology.morphology_path, args.output_dir) + ephys.create_acc.output_acc(args.output_dir, cell, param_values) else: + output = cell.create_acc( + param_values, template='acc/*_template.jinja2') for el, val in output.items(): print("%s:\n%s\n" % (el, val)) diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index 0f7dad7d..ea12c803 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -2,24 +2,25 @@ '''Example for generating a mixed JSON/ACC Arbor cable cell description - $ python generate_acc.py --output-dir test_acc/ + $ python generate_acc.py --output-dir test_acc/ --replace-axon Will save 'simple_cell.json', 'simple_cell_label_dict.acc' and 'simple_cell_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: 'with open("test_acc/simple_cell_cell.json") as cell_json_file: cell_json = json.load(cell_json_file) - morpho = arbor.load_swc_arbor("test_acc/" + cell_json["morphology"]) + morpho = arbor.load_swc_arbor("test_acc/" + cell_json["morphology"]["path"]) labels = arbor.load_component("test_acc/" + cell_json["label_dict"]).component decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' + An implementation with axon-replacement is available in ephys.create_acc.read_acc. An Arbor cable cell is then created with cell = arbor.cable_cell(morpho, labels, decor) The resulting cable cell can be output to ACC for visual inspection in the Arbor GUI (File > Cable cell > Load) using arbor.write_component(cell, "simple_cell.acc") ''' -import os import argparse -import shutil + +from bluepyopt import ephys import simplecell_model from generate_hoc import param_values @@ -32,29 +33,20 @@ def main(): description=__doc__) parser.add_argument('-o', '--output-dir', dest='output_dir', help='Output directory for JSON/ACC files') + parser.add_argument('-ra', '--replace-axon', action='store_true', + help='Replace axon with Neuron-dependent policy') args = parser.parse_args() - # Arbor does not support do_replace_axon=True - cell = simplecell_model.create(do_replace_axon=False) - - output = cell.create_acc(param_values, template='acc/*_template.jinja2') + cell = simplecell_model.create(do_replace_axon=args.replace_axon) + if args.replace_axon: + nrn_sim = ephys.simulators.NrnSimulator() + cell.instantiate_morphology(nrn_sim) if args.output_dir is not None: - if not os.path.exists(args.output_dir): - os.makedirs(args.output_dir) - for comp, comp_rendered in output.items(): - comp_filename = os.path.join(args.output_dir, comp) - if os.path.exists(comp_filename): - raise RuntimeError("%s already exists!" % comp_filename) - with open(os.path.join(args.output_dir, comp), 'w') as f: - f.write(comp_rendered) - - morph_filename = os.path.join(args.output_dir, - os.path.basename(cell.morphology.morphology_path)) - if os.path.exists(morph_filename): - raise RuntimeError("%s already exists!" % morph_filename) - shutil.copy2(cell.morphology.morphology_path, args.output_dir) + ephys.create_acc.output_acc(args.output_dir, cell, param_values) else: + output = cell.create_acc( + param_values, template='acc/*_template.jinja2') for el, val in output.items(): print("%s:\n%s\n" % (el, val)) diff --git a/examples/simplecell/simplecell_arbor.ipynb b/examples/simplecell/simplecell_arbor.ipynb new file mode 100644 index 00000000..a39dd17c --- /dev/null +++ b/examples/simplecell/simplecell_arbor.ipynb @@ -0,0 +1,3319 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "# Simulating optimized cells in Arbor and cross-validation with Neuron\n", + "\n", + "This notebook demonstrates how to run a simulation of a simple single compartmental cell with fixed/optimized parameters in Arbor. We follow the standard BluePyOpt flow of setting up an electrophysiological experiment and export the cell model to a mixed JSON/ACC-format. We then cross-validate voltage traces obtained with Arbor with those from a Neuron simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# Install matplotlib if needed\n", + "!pip install matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "%load_ext autoreload\n", + "%autoreload" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "First we need to import the module that contains all the functionality to create electrical cell models" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "pycharm": { + "name": "#%%\n" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import bluepyopt as bpop\n", + "import bluepyopt.ephys as ephys" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import tempfile\n", + "import numpy\n", + "import pandas\n", + "import arbor" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "If you want to see a lot of information about the internals, \n", + "the verbose level can be set to 'debug' by commenting out\n", + "the following lines" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "pycharm": { + "name": "#%%\n" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import logging\n", + "logger = logging.getLogger()\n", + "logger.setLevel(logging.DEBUG)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Setting up the cell model\n", + "\n", + "We use a single-compartimental cell model with the same morphology and mechanisms as in `simplecell.ipynb` that can be instantiated with different options for axon replacement policy and mechanism parameter values." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import simplecell_model # enables simplecell_model.create(do_replace_axon=...)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Creating the protocols\n", + "\n", + "A protocol consists of a set of stimuli, and a set of responses (i.e. recordings). These responses will later be used to compare voltage traces from simulations between Arbor and Neuron for different parameter values and axon replacement configurations.\n", + "\n", + "Let's create two protocols, two square current pulses injected centrally at the soma with different amplitudes and a slightly displaced probe location." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Define locations on branch 0 of the morphology (soma)\n", + "location_defs = dict(stim_site='(location 0 0.5)',\n", + " probe_site='(location 0 0.75)')\n", + "\n", + "# Make location available to Arbor through a callback\n", + "def instantiate_locations(labels):\n", + " labels.append(arbor.label_dict(location_defs))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "soma_loc = ephys.locations.NrnSeclistCompLocation(\n", + " name='soma',\n", + " seclist_name='somatic',\n", + " sec_index=0,\n", + " comp_x=0.5)\n", + "\n", + "probe_loc = ephys.locations.NrnSeclistCompLocation(\n", + " name='probe',\n", + " seclist_name='somatic',\n", + " sec_index=0,\n", + " comp_x=0.75)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "and then the stimuli, recordings and protocols. For each protocol we add a recording and a stimulus in the soma." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Protocol steps configuration\n", + "protocol_steps = []\n", + "for name, amplitude in [('step1', 0.01), ('step2', 0.05)]:\n", + " protocol_steps.append(dict(name=name,\n", + " amplitude=amplitude,\n", + " delay=100,\n", + " duration=50,\n", + " total_duration=200,\n", + " recording_name='%s.soma.v' % name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make current stimuli, voltage and spike recordings available to Arbor through callbacks" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Current stimuli\n", + "def instantiate_stimuli(decor, step):\n", + " decor.place('\"stim_site\"',\n", + " arbor.iclamp(step['delay'], step['duration'], current=step['amplitude']),\n", + " step['name'])\n", + "\n", + "# Spike detection with a voltage threshold of -10 mV\n", + "# (different from spike_time observables in eFEL that measure 'peak_time')\n", + "def instantiate_spike_recordings(decor):\n", + " decor.place('\"probe_site\"', arbor.spike_detector(-10), \"spike_detector\")\n", + "\n", + "# Attach voltage probe sampling at 10 kHz (every 0.1 ms).\n", + "def instantiate_voltage_recordings(cell_model):\n", + " # alternatively arbor.cable_probe_membrane_voltage\n", + " cell_model.probe(\"voltage\", '\"probe_site\"', frequency=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The protocols for Neuron are defined as in `simplecell.ipynb`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "sweep_protocols = []\n", + "for step in protocol_steps:\n", + " stim = ephys.stimuli.NrnSquarePulse(\n", + " step_amplitude=step['amplitude'],\n", + " step_delay=step['delay'],\n", + " step_duration=step['duration'],\n", + " location=soma_loc,\n", + " total_duration=step['total_duration'])\n", + " rec = ephys.recordings.CompRecording(\n", + " name=step['recording_name'],\n", + " location=probe_loc,\n", + " variable='v')\n", + " protocol = ephys.protocols.SweepProtocol(step['name'], [stim], [rec])\n", + " sweep_protocols.append(protocol)\n", + "twostep_protocol = ephys.protocols.SequenceProtocol('twostep', protocols=sweep_protocols)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Running a protocol on an Arbor cable cell\n", + "\n", + "To run a protocol in Arbor, we need to export the cell model to a mixed JSON/ACC-format and assemble an Arbor cable cell that integrates the procotols. We use this cell to build a `single_cell_model` that sets up the constituents of an Arbor simulation and enables running the protocols.\n", + "\n", + "To run the protocols also with Neuron, we follow the same strategy as in `simplecell.ipynb` (creating a simulator object)." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Write cell model to ACC/JSON and run protocol step\n", + "def output_acc_and_run_protocol_step(step, cell, params, dt):\n", + " # Export cell model to mixed JSON/ACC-format\n", + " with tempfile.TemporaryDirectory() as acc_dir:\n", + " ephys.create_acc.output_acc(acc_dir, cell, params)\n", + " cell_json, morph, labels, decor = \\\n", + " ephys.create_acc.read_acc(\n", + " os.path.join(acc_dir, cell.name + '.json'))\n", + " \n", + " # Instantiate protocols on cable cell components\n", + " instantiate_locations(labels)\n", + " instantiate_stimuli(decor, step)\n", + " instantiate_spike_recordings(decor)\n", + " \n", + " # Set initial membrane potential to -65 mV\n", + " decor.set_property(Vm=-65)\n", + " # Create cable cell\n", + " cable_cell = arbor.cable_cell(morph, labels, decor)\n", + " # can output and visualize the cable_cell in arbor_gui using\n", + " # arbor.write_component(cable_cell, '.acc')\n", + "\n", + " # Create single cell model\n", + " arb_cell_model = arbor.single_cell_model(cable_cell)\n", + " \n", + " # Instantiate remaining voltage recording\n", + " instantiate_voltage_recordings(arb_cell_model)\n", + "\n", + " # Run the simulation for the protocol step\n", + " arb_cell_model.run(tfinal=step['total_duration'], dt=dt)\n", + " return arb_cell_model\n", + "\n", + "\n", + "# Run multiple protocol steps and extract voltage traces/detected spikes\n", + "def arb_protocols_run(protocols, cell_model, params, dt=0.025):\n", + " arb_resp = dict()\n", + " for step in protocol_steps:\n", + " arb_cell_model = output_acc_and_run_protocol_step(\n", + " step, cell_model, params, dt)\n", + " arb_resp[step['recording_name']] = \\\n", + " dict(time=arb_cell_model.traces[0].time,\n", + " voltage=arb_cell_model.traces[0].value,\n", + " spikes=arb_cell_model.spikes)\n", + " return arb_resp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cross-validation of Arbor and Neuron voltage traces\n", + "\n", + "To cross-validate Arbor with Neuron simulation output, we run the protocols over a set of parameter values - the first two from `simplecell.ipynb`, the others with random sampling as in\n", + "```python\n", + "{\n", + " 'gnabar_hh': random.uniform(0.05, 0.125),\n", + " 'gkbar_hh': random.uniform(0.01, 0.075)\n", + "}\n", + "```\n", + "as well as both with and without axon replacement. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "replace_axon = [False, True]\n", + "params = [{'gnabar_hh': 0.1, 'gkbar_hh': 0.03},\n", + " {'gnabar_hh': 0.05, 'gkbar_hh': 0.05},\n", + " {'gnabar_hh': 0.120040, 'gkbar_hh': 0.029655},\n", + " {'gnabar_hh': 0.122883, 'gkbar_hh': 0.034736},\n", + " {'gnabar_hh': 0.073270, 'gkbar_hh': 0.048908},\n", + " {'gnabar_hh': 0.098042, 'gkbar_hh': 0.047296},\n", + " {'gnabar_hh': 0.108495, 'gkbar_hh': 0.046297},\n", + " {'gnabar_hh': 0.050006, 'gkbar_hh': 0.058192},\n", + " {'gnabar_hh': 0.084285, 'gkbar_hh': 0.041788},\n", + " {'gnabar_hh': 0.108877, 'gkbar_hh': 0.022503}]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This enables us to run all simulations involving all protocols for each combination of axon replacement and parameter value choice" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def run_all_simulations(replace_axon_policies, param_list, dt=0.025):\n", + " arb_resp = dict()\n", + " nrn_resp = dict()\n", + "\n", + " nrn_sim = ephys.simulators.NrnSimulator(dt=dt)\n", + " for do_replace_axon in replace_axon_policies:\n", + " for param_i in range(len(param_list)):\n", + "\n", + " simple_cell = simplecell_model.create(do_replace_axon=do_replace_axon)\n", + " # calculate morphology with axon-replacement in Neuron\n", + " simple_cell.instantiate_morphology(nrn_sim)\n", + " # alternatively, as a function based on CellModel.instantiate only\n", + " # def instantiate_morphology(cell_model, nrn_sim):\n", + " # if cell_model.morphology.do_replace_axon:\n", + " # # Need to freeze parameters to instantiate morphology through model\n", + " # to_unfreeze = []\n", + " # for param in cell_model.params.values():\n", + " # if not param.frozen:\n", + " # param.freeze(0 if param.bounds is None else param.bounds[0])\n", + " # to_unfreeze.append(param.name)\n", + " # cell_model.instantiate(nrn_sim) # calculate axon-replacement in Neuron\n", + " # cell_model.unfreeze(to_unfreeze)\n", + "\n", + " key = (do_replace_axon, param_i)\n", + " arb_resp[key] = arb_protocols_run(protocol_steps, simple_cell, param_list[param_i], dt=dt)\n", + "\n", + " # need to destroy instantiated cell model first to avoid Hoc serialization error\n", + " simple_cell.destroy(sim=nrn_sim)\n", + " nrn_resp[key] = twostep_protocol.run(simple_cell, param_list[param_i], nrn_sim)\n", + " return arb_resp, nrn_resp\n", + "\n", + "\n", + "arb_responses, nrn_responses = run_all_simulations(replace_axon, params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "and to plot the responses for visual cross-validation." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABlX0lEQVR4nO2deXgURfr4P+/ckwMC4RAIEEBuEg65XEBhRQ5ZRUUFRRFZd3XVXfFa2UO/6K6/VdTVVVnZRRSvRTwB13NFEVERQe5TkHCJHOHKnTnq90f3DJNkJpmQSTJJ6vM880x3VXX121Xd9XZVvV2vKKXQaDQajSbesNS2ABqNRqPRhEMrKI1Go9HEJVpBaTQajSYu0QpKo9FoNHGJVlAajUajiUu0gtJoNBpNXKIVVClEJF1ElIjYaluW+o6ITBWRFTV0LreIvC8ix0Xk9zVxzlLnzxKRkTVwnmUicmOEuHp/b5vXd3Zl42IsQ8S6FpHhIrK/umWINSLyrogcEZFHa/K8WkFpYoKIzBQRj4jkhvxqXBGUw0ggE2irlJoVCDQbk/RakyqOMOtwZiXSXyMie0QkT0QWiUjTctL+W0S2i4hfRKZWUq4GU0ciMr8y5SMid4jITyJySkSeFxFnOWkvEJFtIpIvIp+JSPuQuFkiss/MZ4+I/DH0WKXUxcAI4G4RSan8lZ0Z9U5B1ee3wzrAQqVUUshvVsWH1BhNgSylVG5tC1IVxKDWn1sR6Qn8C7gOaAnkA/8s55D1wC3Ad9UvXfUSL22MiIwGZgAXAO2BjsADEdI2A94G7sN4FlYDC0OSzAO6KaUaAT8DJovI5aF5KKU2mZupMbyMcqn1Gz0WmG9Y94rIBiBPRGwiMlhEvhKREyKyXkSGh6RfJiJ/E5FV5hvD4khvfyJyg4hsFZEcEflBRG4qFT9eRNaZ+ewSkTFmeGMRmSciB0XkgIj8VUSsFVxHJxH5VESyReSoiLwaeFsx446JSD9zv7XZ5R5u7l8iIpvN610mIt1Llc/dIrJBRE6KyEIRcVW+pCuPiMwwyyVHRLaIyGUR0omIPCEih82y3Cgivcw4p4g8JiJ7ReSQiMwREXclRbEB/gpkTRVjKOOUiHxr1tmKkHglIjeLyPdmOc8WETHjItZdCAPMMjguIi8E6kBEmojIf836PG5up4Wcd5mIPCQiX2Iogo4VXGt7EfnSLPOPzcYplMlmWR4VkT9VkFckJgPvKqWWm0r/PuByEUkOl1gpNVsptRQoPMPzARXXUam0Q8XoFQwPCb7IfI6PisijYir7iupPwrQxFYjap7znTUTuMu/1gyJyw5mUBXA9ME8ptVkpdRz4CzA1QtrLgc1KqTeUUoXATKC3iHQDUEptV0rlhaT3A+GGQxXGs1QzKKXq/A/IAtYBbQE30AbIBi7CUMIXmvvNzfTLgANALyAReAt4xYxLx6wEc38c0AkQ4HyMBqKfGTcQOGnmbzHP282MewfjDTMRaAGsAm6q4DrONvNyAs2B5cCTIfG/ArYACcBHwGNmeBcgzzzWDvwe2Ak4QspnFdAa4+1pK3BzBBmGAifK+Q2NcNzMQBmWCr/SPK8FmGjK2cqMmwqsMLdHA2uAFLOsu4ekewJYYsqeDLwL/K0S94cdeDmcfKXSvWb+EoAewL6AfGa8Av5rytgOOAKMibLusoBNGPdoU+BL4K9mXCowwTxvMvAGsCjk2GXAXqAnRuNgL+calgG7zHvCbe4/XOrenmvG9QaKgO4R8iqvvhcD95YKywXOqaCMVwBTq/CsR1NHZwNjzLiBpeI+M8u/HbADuLES9bfOrD93FO1R2OcNGA54gQfN+/IijDalSZh82pl10C7CedYDE0P2m5nXmBom7T+AZ0uFbQImhOzPMOtQAT8AaWHy2QPcCsiZ1mGl6rsmTlLtF2HcENNC9u8FXi6V5iPgenM7+NCa+z2AYsBKKQUV5lyLgNvN7X8BT4RJ09J88N0hYVcDn1Xyui4F1pYKWwJsBDYATjPsPuD1kDQWDAU8PKR8rg2JnwXMiXEdzDTL8ETIr3WYdOuA8eb2VE4rqJ9jNBiDAUtIesFQap1Cws4FdkcpVx/AAxwCzi4nndVM1zUk7K+UbfyGhuy/DsyIpu7MOrg5ZP8iYFc5Mh8P2V8GPBjl9S4D/hyyfwvwobkduLfTQuJXAZPOoL6XUuolJ/SeK+e4M1ZQlaijP2A0pL1KHa8wXyhCymZpJepvWpRyRnzeMBRUASHtC3AYGHwG5bGr1PXYzWtMD5N2HiFtnhn2Zem6MJ+3vhhDhclh8rkM8zk/kzqs7K9eDPGZ7AvZbg9caQ7DnBCRExg9g1YR0u/BqNzSQyGIyFgRWWkOr53AaFgC6dpi3CSlaW/mdzDk/P/C6ElFRERaishrYgwJngJeCSPTXIye39NKqSIzrLV5DQAopfzm9bUJOe6nkO18IKk8Wc6Q15VSKSG/H0VkihhDoIFy6EWYclZKfQo8A8wGDosxqd4I4202AVgTkseHZniFKKXWYfRKvgaml5O0OUbvJPS+2BcmXdhyjLLuSt9zrc1jE0TkX2JMTp/CeHtPkZJDwuFkiURFdR2LeyEXaFQqrBGQcwZ5RUu0dTQd417cFCYuUh1Utv4qorwyzlZKecuJj5bSdRDYDlcHUdWXMliLoUTDzWc9gPEyGtEgJpbUJwUVuiz7PoweVGhjmaiUejgkTduQ7XYYb2ZHQzMUwyLmLeAxoKVSKgV4H+MtI3CeTmFk2YfRg2oWcv5GSqmeFVzD/zOvI0MZk5XXhpwLEUkCnsR4G5opp+fNfsRQioF0Yl7fgQrOVwYRGSYlLfFK/4ZVIq/2GAr1NoxhhxSMYQUJl14p9ZRS6hyMHm0X4B6MOikAeoaUZWOlVNQPtDLG3D8w843EEYyhl7SQsLYR0oaj3LoLk187jHoDuAvoCgwyjz3PDA89PvT+jgc2YwwRAiAiHTGGx3ZU4zmjraMrgUtF5PYwcZHqIJr6i+s6MLcPKaWyK0orIokYbdfmCHnbCN+2dQcWmy/B1U59UlChvAJcLCKjRcQqIi4xvj8IvbGvFZEeIpKAMR78plLKVyofB8ZDdwTwishYYFRI/DzgBjHMNy0i0kZEuimlDgIfA4+LSCMzrpOInF+B3MkYbzonRaQNRgMdyj+A1UqpG4H3gDlm+OvAOFMOO0aDVwR8VVFBlUYp9YUqaYlX+vdFJbJLxHioj4BhcILRgyqDiAwQkUGm/HkYk+l+80GYCzwhIi3MtG3EsGAKHKtKTYSHowijPsNi1v3bGIo/wZw8nhLVVRpUVHcAt4pImvli8SdOW1ElYyjhE2bc/1XivLXFqxjP2DCzsXsQeFspFbYHJSIO01BAALv5TAYMFIaLSIWNfyXq6EcMy7bbReQ3peLuEcMopS1wOyXroKL6izdeAn5ptmMpwJ+B+RHSvgP0EpEJZj3cD2xQSm0z26ebzHIRERmIMc+0NEw+NoxnqUaolwpKKbUPGA/8EaNx3Idxw4Ve78sYlfkT4AJ+FyafHDP8deA4cA3GHFAgfhVwA8Yk/kngc073ZKZgNIhbzGPfpOQQYzgeAPqZeb2H8TAChrUgxsRv4IG7E+gnIpOVUtsx3viexuhxXAxcrJQqruB81YpSagvwOMbw2iEgA2PcOxyNMBTRcYyhl2wg8FHgvRhGHyvN4ZdPMHocmA1NDsa8XHn4qfh+vw1ojHFPvAwsIPqHMWLdhfAfjBeXHzCGhv9qhj+JYbRwFFiJMYRZ65TXY1ZKbQZuxlBUhzEa+FtCjv1ASn5L8zGGEv4Z8G9zO9BTbEv0L1NR1ZFSai+GkpohJT9cXoxhjLMOo57mmeHR1F+NIiLtzDpoFy5eKfUhxvzWZxhGNHsIebkRw6p3spn2CIYhzkMYz9ggYFJIdpdh3JM5GC/4T5u/UHkCQ8410nsC0xKjoSEiyzAsup6rbVk0VUNErsUY/vtDBelGYTx43ZRSx6LM+xHgLKXU9VWXVBMJEXkOeEMp9dEZHKvrqIYwe1ZfAymResqxJi4+ONNozhSl1CtRJl0G/A/YLCKPK6UeK53AHDJyYPTGBgC/BMIuG6SJHeaQdVToOqodRGQRRg/zvppSTqAVVI0jInMwhuNK84pS6uaalqehYA53Tq4gWTLGkFFrjCHJxzGGhOIKEYm0GsbYSs4R1kVqvY7MIbctEaJ7mMOL9Qql1KW1cd4GOcSn0Wg0mvinXhpJaDQajabuE1dDfM2aNVPp6em1LYZGo9FoapA1a9YcVUqV+fg+rhRUeno6q1evrm0xNBqNRlODiMiecOF6iE+j0Wg0cYlWUBpNHUAbM2kaIlpBaTRxzo5DOVx93z9Yt6sya5VqNHWfuJqDCofH42H//v0UFlbJz5mmgeFyuUhLS8Nut9e2KFXm23Xrec32f2z44Bu4bUFti6PR1Bhxr6D2799PcnIy6enpGIt0azTlo5QiOzub/fv306FDh9oWp8qk+o4A0CxvZy1LotHULHE/xFdYWEhqaqpWTpqoERFSU1PrTa/baTHmn2y+/FqWRKOpWeJeQQFaOWkqTX26Z5Tf8ALj9OXVsiQaTc1SJxSURtOQUX7D+arLr3tQmoaFVlBRICLcddddwf3HHnuMmTNn1p5AFbBs2TK++qrSvgpLMGbMGFJSUvjFL34RI6k0Z4ypoJyqxvzEaTRxgVZQUeB0Onn77bc5evRoxYkrgVIKvz/2vr9ioaDuueceXn755RhJpKkKfl9pR88aTcNAK6gosNls/PrXv+aJJ54oE3fkyBEmTJjAgAEDGDBgAF9+aTiMnTlzJo89dtrlUK9evcjKyiIrK4uuXbsyZcoUevXqxb59+7jnnnvo1asXGRkZLFxoeKBetmwZw4cP54orrqBbt25Mnjw57MeaTz31FD169CAzM5NJkyaRlZXFnDlzeOKJJ+jTpw9ffPFFuTJed911nHvuuXTu3Jm5c+cG873gggtITk4ut1zeeOMNevXqRe/evTnvPMM5amFhITfccAMZGRn07duXzz77DID58+dz6aWXcuGFF5Kens4zzzzD3//+d/r27cvgwYM5dszwITh37lwGDBhA7969mTBhAvn5ZYe1Bg8ezObNm4P7w4cPr99LZJk9KI2moRH3ZuahPPDuZrb8eCqmefZo3Yj/u7hnheluvfVWMjMz+f3vf18i/Pbbb+eOO+5g6NCh7N27l9GjR7N169Zy8/r+++958cUXGTx4MG+99Rbr1q1j/fr1HD16lAEDBgQb+7Vr17J582Zat27NkCFD+PLLLxk6dGiJvB5++GF2796N0+nkxIkTpKSkcPPNN5OUlMTdd98NwDXXXBNRxg0bNrBy5Ury8vLo27cv48aNo3Xr1lGV3YMPPshHH31EmzZtOHHiBACzZ89GRNi4cSPbtm1j1KhR7NixA4BNmzaxdu1aCgsLOfvss3nkkUdYu3Ytd9xxBy+99BLTp0/n8ssv51e/+hUAf/7zn5k3bx6//e1vS5x34sSJvP766zzwwAMcPHiQgwcP0r9//6hkrov4fVpBaRomugcVJY0aNWLKlCk89dRTJcI/+eQTbrvtNvr06cMll1zCqVOnyM2N5E/OoH379gwePBiAFStWcPXVV2O1WmnZsiXnn38+3377LQADBw4kLS0Ni8VCnz59yMrKKpNXZmYmkydP5pVXXsFmC/++UZ6M48ePx+1206xZM0aMGMGqVauiLpMhQ4YwdepU5s6di88chlqxYgXXXmv4Y+zWrRvt27cPKqgRI0aQnJxM8+bNady4MRdffDEAGRkZwWvbtGkTw4YNIyMjg1dffbVETynAVVddxZtvvgnA66+/zhVXXBG1zHUSFTLEp5c80jQg6lQPKpqeTnUyffp0+vXrxw033BAM8/v9rFy5EpfLVSKtzWYrMb8U+k1OYmJiVOdzOp3BbavVitdb9k36vffeY/ny5bz77rs89NBDbNy4sUyaSDJCWXPsyphnz5kzh2+++Yb33nuPc845hzVr1pSbPvR6LBZLcN9isQSvberUqSxatIjevXszf/58li1bViafNm3akJqayoYNG1i4cCFz5syJWua6iArtQXkLwe6uPWE0mhpE96AqQdOmTbnqqquYN29eMGzUqFE8/fTTwf1169YBhuuQ7777DoDvvvuO3bt3h81z2LBhLFy4EJ/Px5EjR1i+fDkDBw6MSh6/38++ffsYMWIEjzzyCCdPniQ3N5fk5GRycnIqlBFg8eLFFBYWkp2dzbJlyxgwYEBU5wbYtWsXgwYN4sEHH6R58+bs27ePYcOG8eqrrwKwY8cO9u7dS9euXaPOMycnh1atWuHxeIL5hGPixInMmjWLkydPkpmZGXX+dZLQOahibWquaThoBVVJ7rrrrhLWfE899RSrV68mMzOTHj16BN/mJ0yYwLFjx+jZsyfPPPMMXbp0CZvfZZddRmZmJr179+bnP/85s2bN4qyzzopKFp/Px7XXXhs0SPjd735HSkoKF198Me+8807QSCKSjGAMEY4YMYLBgwdz3333Beefhg0bxpVXXsnSpUtJS0vjo48+AuD+++9nyZIlgGHpl5GRQa9evfjZz35G7969ueWWW/D7/WRkZDBx4kTmz59foudUEX/5y18YNGgQQ4YMoVu3bsHwJUuWcP/99wf3r7jiCl577TWuuuqqqPOuqwQ+1AXwFeWUk1KjqV9IPC3j379/f1XaGmvr1q107969liSq38ycObOEMUV9o77cOx/M/3+MzXoEgLxffkFi23reY9Q0OERkjVKqjKWT7kFpNPFOyBBfUV5srVg1mnimThlJaGJLPK+GoQkhZIivqEAP8WkaDroHpdHEORJiZl6crxWUpuGgFZRGE+eokCE+r+5BaRoQWkFpNPFOqBVfoVZQmoaDVlAaTbxTwsy8/FVKNJr6hFZQUbJo0SJEhG3btkVMk5WVRa9evapVjnXr1vH+++9XKY9p06bRokWLapdVExss6vQQn79IOy3UNBy0goqSBQsWMHToUBYsWBA2PtwyRJXFF4VbhVgoqKlTp/Lhhx9WKQ9NDeL34cVCgXJAsVZQmoaDVlBRkJuby4oVK5g3bx6vvfZaMHzZsmUMGzaMSy65hB49egCGopo8eTLdu3fniiuuCLqLWLp0KX379iUjI4Np06ZRVGQ4n0tPT+fee++lX79+vPHGGyXOW9qdRXFxMffffz8LFy6kT58+LFy4kLy8PKZNm8bAgQPp27cvixcvBgz3FuPHj2f48OF07tyZBx54IJjveeedR9OmTcu95s8//5w+ffrQp08f+vbtS05ODkqpiK5Bzj//fMaPH0/Hjh2ZMWMGr776KgMHDiQjI4Ndu3YB8O677zJo0CD69u3LyJEjOXToUJnzTpo0iffeey+4P3Xq1ODCsA0VUT58WMnDpRWUpkFRt76D+mAG/FR2MdQqcVYGjH243CSLFy9mzJgxdOnShdTUVNasWcM555wDGOvsbdq0iQ4dOpCVlcX27duZN28eQ4YMYdq0afzzn//ktttuY+rUqSxdupQuXbowZcoUnn32WaZPnw5AampqcN2+UEq7s3A4HDz44IOsXr2aZ555BoA//vGP/PznP+f555/nxIkTDBw4kJEjRwKwatUqNm3aREJCAgMGDGDcuHFRu6V47LHHmD17NkOGDCE3NxeXy8Xbb78d0TXI+vXr2bp1K02bNqVjx47ceOONrFq1in/84x88/fTTPPnkkwwdOpSVK1ciIjz33HPMmjWLxx9/vMR5A640xo0bR3FxMUuXLuXZZ5+NSub6ikV58WMhHyfi0QpK03Co9h6UiIwRke0islNEZlT3+aqDBQsWMGnSJMB4ww8d5hs4cCAdOnQI7rdt25YhQ4YAcO2117JixQq2b99Ohw4dguvxXX/99Sxfvjx4zMSJE8OeN5w7i9J8/PHHPPzww/Tp04fhw4dTWFjI3r17AbjwwgtJTU3F7XZz+eWXs2LFiqiveciQIdx555089dRTnDhxApvNVq5rkAEDBtCqVSucTiedOnVi1KhRQElXGvv372f06NFkZGTw6KOPhnWlMXbsWD777DOKior44IMPOO+883C7G/jq3cqPHyuFuLFoBaVpQFRrD0pErMBs4EJgP/CtiCxRSm05owwr6OlUB8eOHePTTz9l48aNiAg+nw8R4dFHHwXKus44E/cVkdxvROPOQinFW2+9VWbF8G+++aZKrjRmzJjBuHHjeP/99xkyZEhwsdhIRONK47e//S133nknl1xyCcuWLQu7koXL5WL48OF89NFHLFy4MPhi0JAR5cMvFgrFjdurVzPXNByquwc1ENiplPpBKVUMvAaMr+ZzxpQ333yT6667jj179pCVlcW+ffvo0KEDX3zxRdj0e/fu5euvvwbgP//5D0OHDqVr165kZWWxc+dOAF5++WXOP//8Cs8dzp1FaVcao0eP5umnnw66g1+7dm0w7n//+x/Hjh2joKCARYsWBXt20bBr1y4yMjK49957GTBgANu2bauSaxCAkydP0qZNGwBefPHFiOkmTpzICy+8wBdffMGYMWOizr++EpiDKhIXNq2gNA2I6lZQbYB9Ifv7zbAgIvJrEVktIquPHDlSzeJUngULFnDZZZeVCJswYUJEa76uXbsye/ZsunfvzvHjx/nNb36Dy+XihRde4MorryQjIwOLxcLNN99c4bnDubMYMWIEW7ZsCRpJ3HfffXg8HjIzM+nZsyf33Xdf8PiBAwcyYcIEMjMzmTBhQnD+6eqrr+bcc89l+/btpKWlBf1bzZkzJ+iK48knn6RXr15kZmZit9sZO3ZslVyDgLH235VXXsk555xDs2bNguGrV6/mxhtvDO6PGjWKzz//nJEjR+JwOKLOv75iUT78WCi2JmD3FdS2OBpNjVGt7jZE5ApgjFLqRnP/OmCQUuq2cOm1u43YMX/+/BLGFA2R+nLvfP7oVfQsWMNmR2+6ezbR4r4dtS2SRhNTasvdxgGgbch+mhmm0WiiRMwelNfmxuEvrG1xNJoao7rNzL8FOotIBwzFNAm4pprPqcH4fmjq1Km1LYYmBhhGElb8tgRcSg/xaRoO1aqglFJeEbkN+AiwAs8rpcraFlecT6Us0DSaePIUXVUsyo8fCz57Ii6KjbX5LNbaFkujqXaq/UNdpdT7wBmvzeNyucjOziY1NVUrKU1UKKXIzs7G5XLVtigxwaJ8KLGi7ObnCMV54GpUu0JpNDVA3K8kkZaWxv79+4lHCz9N/OJyuUhLS6ttMWKC4McnVnBoBaVpWMS9grLb7SVWatBoGhoW5UVhQRxJAHgLc7A1alXLUmk01Y9eLFajiXNE+fGLFYvL6EEV5p+qZYk0mppBKyiNJs6xmFZ8VmcyAMX52quupmGgFZRGE+dY8KPEis1lDPEV5ekelKZhoBWURhPnBJY6srmNHpSnQPegNA0DraA0mjhHzB6Uw1RQ3kLtckPTMNAKSqOJcwLfQTkSTQVVpHtQmoaBVlAaTZxjwYcSC+4E49snVZhbyxJpNDWDVlAaTZxjUX78YsPtTsCrLPiLtILSNAy0gtJo4hyr2YNKcNrIx4Uq1nNQmoaBVlAaTZxjUYaRRKLTRh4uRCsoTQNBKyiNJs4xelBWnDYL+cqJxaMVlKZhoBWURhPnWPCDWBERCsWNxZNf2yJpNDWCVlAaTZwjyo8y/T8VWtxYfboHpWkYaAWl0cQ5VnyIqaCKLW5sXu1VV9Mw0ApKo4ljlFJY8CMWwzOOx+LG7tcKStMw0ApKo4ljfH6FldMu3r02Nw6fVlCahoFWUBpNHFPs82PDj1jNHpQ1AafSCkrTMNAKSqOJYzxehQMPyuoEwG9PxK0KQKlalkyjqX60gtJo4phinx8nHrCdVlBW/OAtqmXJNJrqRysojSaOKfYUYxM/2BwAKHuCGaFNzTX1H62gNJo4xltUaGxYXca/0/CqS7FeMFZT/9EKSqOJY7zFhkGEmEN8FoehoLyF2ieUpv6jFZRGE8d4ikwFZTd6UBZnIgBF+VpBaeo/WkFpNHFMUd5JAKxuw1mh1WX0oLSC0jQEtILSaOIYT/4JAOwJKQDYXIbb92KtoDQNAK2gNJo4xpNv9KCcSY0BsLuNHpRHz0FpGgBaQWk0cYw3/xQAzsQU4z/BGOrzFmgFpan/aAWl0cQx/gJDQbmSUgCwJxhDfL5CbWauqf9USUGJyEwROSAi68zfRSFxfxCRnSKyXURGV11Ujabh4ck/DkBSo6YAuM0elL9IKyhN/ccWgzyeUEo9FhogIj2ASUBPoDXwiYh0UUr5YnA+jabBYM39iSIcON0pACS4HBQoh1ZQmgZBdQ3xjQdeU0oVKaV2AzuBgdV0Lo2m3uIu+JGj1uYgAkCCw0o+TkQvdaRpAMRCQd0mIhtE5HkRaWKGtQH2haTZb4aVQUR+LSKrRWT1kSNHYiCORlN/aFT0EznOlsH9RKeNApwoT34tSqXR1AwVKigR+URENoX5jQeeBToBfYCDwOOVFUAp9W+lVH+lVP/mzZtX9nCNpt6SX1hEum8vBSldg2FOm4V85cTi0T6hNPWfCueglFIjo8lIROYC/zV3DwBtQ6LTzDCNRhMl29Z/TT8pwtm2XzBMRCgWFy6v7kFp6j9VteJrFbJ7GbDJ3F4CTBIRp4h0ADoDq6pyLo2moXFq3WL8SkgffHGJ8CKLC4t2+65pAFTVim+WiPQBFJAF3ASglNosIq8DWwAvcKu24NNooicvL4/uBxexI6Ev3Zq0KhHnsbiwefWHupr6T5UUlFLqunLiHgIeqkr+Gk1D5btX/sQwjpEz/OkycR6LG7tfGxRp6j96JQmNJs746sMFnPvji6xtMpqzB/2iTLzX6sLmL6wFyTSamiUWH+pqNJoY8d3XS+nz9e3sc3Sg+y//FTaNz+bGWVQ9CqqwIJ9dW74jZ98G/HlHsaOwNj6LFh1707pLfyw23WRoag59t2k0ccK2Davo8OH1nLKm0OymJbiSmoRN57cl4FSxU1CHj2WzfenLuHZ+QM/CtfSUorKJVkMOCexO7ENR22G06DOGdl36IJbIgzA+r4eTRw+Sk/0jecd+oujkQYpzj+PxeLDiw4LCb3GCIwFxJGBxJGJ1uLE6XNgDP6cbh8uFBYXyeRHlR/k94PeD3wvKB8oPSgEKFdhWyggH3M3a07R9z5iVl6bm0ApKo4kDDvywldS3r8JnsWGfuoTkZmkR0yqbGyfF4PeBxXrG59y9YwMHP3iczGMfMUwKOCQt2HbWL7B2GErzTn1Jbp6G1wdHD+7h6PffIHu+JO3EatK2fQXbHiGbFI460sh1NAOxoHxe3N4TJHqP09h/ksYqh6aiaHrGEsYGnxI2DXqEXhfdVMuSaCpLvVNQnuIi9u5YR/bOb/Fm78Ga8yPOwiNY/YXY/MVYxY9HnHgtTnxWF36rC789AWVPQOwJWJyJWBwJiDMRn80NYkMwVpqxoFBKAaBUYNt4Uzu9rU7HlQ7Db9g7xgipRFpVTmKpVE5RnAtFUDoVGh4pffidQFlHf2zkwlURtiPKVyK8Yjmius5SEaH5dv1hPnY85ExcQtt23SKdBQC/PcHY8BSAM6nctOHYtmU9R9/7C4Nzl9IaK1tTL6DZ+TeTljmcllL2XmiS2pzOvfoDt6KUYv/ubRxY+yHs+ZqkggO0yNthXIlYybM24pg7nUOupvjdzZGkFtgatcTZ5CySmraiUZPmJLrdKLHiA/zFhXgK8yguyMFTmIe3MBdvcSHe4kI8xUX4PEX4igvxixUlFhArSqwoixUsNpQIYCppiwUQFBLcFiDp60fJ+OZefrApOo66OepyKi4u5sfdWzn50w8UnjyM99RhrIXHwVcEvmLE7wXlxy92/BYbPrHjtzjwW2woix0lVuMFwpQZi/FTYgWxYBEx2hURQ2oxvnMz9sEiZe+kMrUT9p4vGSbh7shynpVyjysVVuRqzrBx11aY15lSrxTUzvVf0vbt8XQSD50AvxKOSWNOWlPxWF14bW48SrD5i0jwnsBRXIhdFeNUhbhUIW6Kw94UGk11U4CDnRe+SEa3cypMK46AgsqvlII6fCKXVf95gAsPvUC6CBvTJtHhkj/Sp2Xbig8OnFuEtI7dSevYHbgj6uMi0ygGeZTPoT7DWPPPSxnw1b18u2877cfdSYuzTl/zyePZHPxhA6f2bcF7eDuuE7toWpBFa/9B0qXk1zF+JRRjw4MNr9hQCDZ82PFiw4udhvU1zTeqO2gFFR1ndejB2rOuwJbWl+adB9KqQ3eaOV00i/L4Yo+P/Pxc8vNOUVyQh3jywO9HAX7MIW2LBN9ywNgWS2DbgsUigCUYLhL4mWEIWGLQY6mMHo2yZ1EVQvpMYLzDnkZCN0/viIRJEhIYmodEyIOIaSoXTgS5IudfwXVgNOYVy2PsuJ3JZLiia6zFkQiAvygPSxT6SSnFh59+Stsv7uEX7GJb0xGkXfMUfZu3i+p8dZ2WqU1w/O5dVs6dyuB9z8Oc5zlMUzzYSSKXxuTR2EzrUVZ+tLbmeEJ7DqVcgK1FV5LO6kBS09Y0btaaxMapuCxWXJFO5veD3wM+cwjW7zPmyfw+lN+D3+fD7/eh/F78fsGvFH5UcNrMF5g+UwqfUhFuxtJhYdKUCQqXpmSYiiJN6bzSrY4w8bGjXimopEZNGPybOWd8vMNuxdG4MSmNG1ecWKOpJSxmD6qwIJeECtL+dCyHFfP/xCUnX6HAmsShC+fQ7dyrq1/IOKNJ40YMvvtt9m5dzYFVb2M5noVdFXPA0Qh/chtcrbqT2r4HrdK7097hpP2ZnshiAYsTbM4yUYHByDOfNWx41CsFpdE0BCxOowdVlJ9TroL6fPmntPj0Tq5gN7tbjaH95GdonNywF2Ru170/7br3r20xNFGiFZRGU8ewmvNOxfnhlzs6fiqXlS/+kZFHXyHX0oifxjxHh0FX1qSIGk1M0ApKo6ljWBMNw21PTtnljlYt/5Amn97DWPaytcVYOl8/myZJqTUtokYTE7SC0mjqGI6mhnGD9/hpn6BZWTvJevP/OC/nPY5amrFn1PN0P3dCbYmo0cQEraA0mjrGWS2ak6tcFGfvZfO6rzm67N8MOv4uafjY1PZqul3zCC0Sqt98W6OpbrSC0mjqGG2aJLDa0pXBe/4De/6DR1nZ0mw0bS+bSWZa14oz0GjqCFpBaTR1DJvVgv2SJ/nqy9kktOrK2SOm0LvpWbUtlkYTc7SC0mjqIOf07Qd959W2GBpNtaL9QWk0Go0mLtEKSqPRaDRxiagoVrWtKUTkCLAnBlk1A47GIJ+aQMtafdQleeuSrFC35K1LskLdkjdWsrZXSpVZ5iSuFFSsEJHVSqk6sZ6JlrX6qEvy1iVZoW7JW5dkhbolb3XLqof4NBqNRhOXaAWl0Wg0mrikviqof9e2AJVAy1p91CV565KsULfkrUuyQt2St1plrZdzUBqNRqOp+9TXHpRGo9Fo6jhaQWk0Go0mLqlXCkpExojIdhHZKSIzalueUESkrYh8JiJbRGSziNxuhs8UkQMiss78XVTbsgYQkSwR2WjKtdoMayoi/xOR783/JnEgZ9eQ8lsnIqdEZHo8la2IPC8ih0VkU0hY2LIUg6fM+3iDiPSLA1kfFZFtpjzviEiKGZ4uIgUhZTynJmUtR96IdS8ifzDLdruIjI4DWReGyJklIuvM8Hgo20jtVs3cu0qpevEDrMAuoCPgANYDPWpbrhD5WgH9zO1kYAfQA5gJ3F3b8kWQOQtoVipsFjDD3J4BPFLbcoa5D34C2sdT2QLnAf2ATRWVJXAR8AEgwGDgmziQdRRgM7cfCZE1PTRdHJVt2Lo3n7n1gBPoYLYZ1tqUtVT848D9cVS2kdqtGrl361MPaiCwUyn1g1KqGHgNGF/LMgVRSh1USn1nbucAW4E2tSvVGTEeeNHcfhG4tPZECcsFwC6lVCxWJIkZSqnlwLFSwZHKcjzwkjJYCaSISKsaEZTwsiqlPlZKec3dlUBaTclTERHKNhLjgdeUUkVKqd3AToy2o0YoT1YREeAqYEFNyVMR5bRbNXLv1icF1QbYF7K/nzhVACKSDvQFvjGDbjO7w8/Hw5BZCAr4WETWiMivzbCWSqmD5vZPQMvaES0ikyj5gMdr2ULksoz3e3kaxltygA4islZEPheRYbUlVBjC1X08l+0w4JBS6vuQsLgp21LtVo3cu/VJQdUJRCQJeAuYrpQ6BTwLdAL6AAcxuvjxwlClVD9gLHCriJwXGqmMPn3cfKcgIg7gEuANMyiey7YE8VaWkRCRPwFe4FUz6CDQTinVF7gT+I+IxIM73zpT9yFcTcmXq7gp2zDtVpDqvHfrk4I6ALQN2U8zw+IGEbFjVPKrSqm3AZRSh5RSPqWUH5hLDQ43VIRS6oD5fxh4B0O2Q4Euu/l/uPYkLMNY4Dul1CGI77I1iVSWcXkvi8hU4BfAZLNRwhwqyza312DM6XSpNSFNyqn7eC1bG3A5sDAQFi9lG67doobu3fqkoL4FOotIB/NNehKwpJZlCmKOL88Dtiql/h4SHjo+exmwqfSxtYGIJIpIcmAbY5J8E0aZXm8mux5YXDsShqXEG2i8lm0IkcpyCTDFtIgaDJwMGU6pFURkDPB74BKlVH5IeHMRsZrbHYHOwA+1I+Vpyqn7JcAkEXGKSAcMeVfVtHxhGAlsU0rtDwTEQ9lGareoqXu3Ni1EYv3DsCDZgfGm8afalqeUbEMxusEbgHXm7yLgZWCjGb4EaFXbsprydsSwdloPbA6UJ5AKLAW+Bz4Bmta2rKZciUA20DgkLG7KFkNxHgQ8GOPyv4xUlhgWULPN+3gj0D8OZN2JMbcQuHfnmGknmPfHOuA74OI4KduIdQ/8ySzb7cDY2pbVDJ8P3FwqbTyUbaR2q0buXb3UkUaj0Wjikvo0xKfRaDSaeoRWUBqNRqOJS7SC0mg0Gk1cohWURqPRaOISraA0Go1GE5doBaXRaDSauEQrKI1Go9HEJVpBaTQajSYu0QpKo9FoNHGJVlAajUajiUu0gtJoNBpNXKIVlEaj0WjiEq2gSiEi6SKiTP8smmpERKaKyIoaOpdbRN4XkeMi8vuaOGep82eJyMgaOM8yEbkxQly9v7fN6zu7snExliFiXYvIcBHZHy4unhGRd0XkiIg8WpPn1QpKExNEZKaIeEQkN+RX44qgHEYCmUBbpdSsQKDZmKTXmlRxhFmHMyuR/hoR2SMieSKySESalpP23yKyXUT8puPDysjVYOpIROZXpnxE5A4R+UlETpmu7Z3lpL1ARLaJSL6IfCYi7UPiZonIPjOfPSLyx9BjlVIXAyOAu0UkpfJXdmbUOwVVn98O6wALlVJJIb9ZFR9SYzQFspRSubUtSFUwHcHV+nMrIj2BfwHXAS2BfOCf5RyyHrgFw69RnSZe2hgRGQ3MAC4A2mP4cHsgQtpmwNvAfRjPwmpCvPdiOCXsppRqBPwMmCwil4fmoZQKOH1MjeFllEut3+ixwHzDuldENgB5ImITkcEi8pWInBCR9SIyPCT9MhH5m4isMt8YFkd6+xORG0Rkq4jkiMgPInJTqfjxIrLOzGeX6XkUEWksIvNE5KCIHBCRvwa8Y5ZzHZ1E5FMRyRaRoyLyauBtxYw7JiL9zP3WZpd7uLl/iYhsNq93mYh0L1U+d4vIBhE5KSILRcRV+ZKuPCIywyyXHBHZIiKXRUgnIvKEiBw2y3KjiPQy45wi8piI7BWRQyIyR0TclRTFBvgrkDVVjKGMUyLyrVlnK0LilYjcLCLfm+U8W0TEjItYdyEMMMvguIi8EKgDEWkiIv816/O4uZ0Wct5lIvKQiHyJoQg6VnCt7UXkS7PMPzYbp1Amm2V5VET+VEFekZgMvKuUWm4q/fuAy8X0wlwapdRspdRSoPAMzwdUXEel0g4Vo1cwPCT4IvM5Pioij4qp7CuqPwnTxlQgap/ynjcRucu81w+KyA1nUhYYnmznKaU2K6WOA38BpkZIezmwWSn1hlKqEJgJ9BaRbgBKqe1KqbyQ9H4g3HCowniWaoaa9tBYTV4fszA8PbYF3EAbDO+qF2Eo4QvN/eZm+mXAAaAXhifWt4BXzLh0zEow98cBnTA8RZ6P0UD0M+MGAifN/C3mebuZce9gvGEmAi0w3ErfVMF1nG3m5QSaA8uBJ0PifwVsARKAj4DHzPAuQJ55rB3DNfdOwBFSPquA1hhvT1sp5b2zlAfNE+X8hkY4bmagDEuFX2me1wJMNOVsZcZNBVaY26OBNUCKWdbdQ9I9geEVtSmQDLwL/K0S94cdw8NqGflKpXvN/CUAPTA8yK4IiVfAf00Z2wFHgDFR1l0WhtvxtuZ1fAn81YxLxfCemmBe3xvAopBjlwF7gZ4YjYO9nGtYhuHNtAvGs7AMeLjUvT3XjOsNFAHdI+RVXn0vBu4tFZYLnFNBGa8AplbhWY+mjs4GxphxA0vFfWaWfzsM79s3VqL+1pn1546iPQr7vAHDAS/woHlfXoTRpjQJk087sw7aRTjPemBiyH4z8xpTw6T9B/BsqbBNwISQ/RlmHSoM1/JpYfLZA9wKhrPb6v5V+wlq5CKMG2JayP69wMul0nwEXG9uBx9ac78HUAxYKaWgwpxrEXC7uf0v4IkwaVqaD747JOxq4LNKXtelwNpSYUs47craaYbdB7weksaCoYCHh5TPtSHxszBddsewDmaaZXgi5Nc6TLp1wHhzeyqnFdTPMRqMwYAlJL1gKLVOIWHnArujlKsPhnvtQ8DZ5aSzmum6hoT9lbKN39CQ/deBGdHUnVkHN4fsXwTsKkfm4yH7y4AHo7zeZcCfQ/ZvAT40twP3dlpI/Cpg0hnU91LKuigP3nPlHHfGCqoSdfQHjIa0V6njFeYLRUjZLK1E/U2LUs6IzxuGgiogpH0BDgODz6A8dpW6Hrt5jelh0s4jpM0zw74sXRfm89YXY6gwOUw+l2E+52dSh5X91YshPpN9IdvtgSvNYZgTInICo2fQKkL6PRiVW3ooBBEZKyIrzeG1ExgNSyBdW4ybpDTtzfwOhpz/Xxg9qYiISEsReU2MIcFTwCthZJqL0fN7WilVZIa1Nq8BAKWU37y+NiHH/RSynQ8klSfLGfK6Uiol5PejiEwRYwg0UA69CFPOSqlPgWeA2cBhMSbVG2G8zSYAa0Ly+NAMrxCl1DqMXsnXwPRykjbH6J2E3hf7wqQLW45R1l3pe661eWyCiPxLjMnpUxhv7ylSckg4nCyRqKiuY3Ev5AKNSoU1AnLOIK9oibaOpmPci5vCxEWqg8rWX0WUV8bZSilvOfHRUroOAtvh6iCq+lIGazGUaLj5rAcwXkYjGsTEkvqkoFTI9j6MHlRoY5molHo4JE3bkO12GG9mR0MzFMMi5i3gMaClUioFeB/jLSNwnk5hZNmH0YNqFnL+RkqpnhVcw/8zryNDGZOV14acCxFJAp7EeBuaKafnzX7EUIqBdGJe34EKzlcGERkmJS3xSv+GVSKv9hgK9TaMYYcUjGEFCZdeKfWUUuocjB5tF+AejDopAHqGlGVjpVTUD7Qyxtw/MPONxBGMoZe0kLC2EdKGo9y6C5NfO4x6A7gL6AoMMo89zwwPPT70/o4HNmMMEQIgIh0xhsd2VOM5o62jK4FLReT2MHGR6iCa+ovrOjC3DymlsitKKyKJGG3X5gh52wjftnUHFpsvwdVOfVJQobwCXCwio0XEKiIuMb4/CL2xrxWRHiKSgDEe/KZSylcqHwfGQ3cE8IrIWGBUSPw84AYxzDctItJGRLoppQ4CHwOPi0gjM66TiJxfgdzJGG86J0WkDUYDHco/gNVKqRuB94A5ZvjrwDhTDjtGg1cEfFVRQZVGKfWFKmmJV/r3RSWyS8R4qI+AYXCC0YMqg4gMEJFBpvx5GJPpfvNBmAs8ISItzLRtxLBgChyrSk2Eh6MIoz7DYtb92xiKP8GcPJ4S1VUaVFR3ALeKSJr5YvEnTltRJWMo4RNm3P9V4ry1xasYz9gws7F7EHhbKRW2ByUiDtNQQAC7+UwGDBSGi0iFjX8l6uhHDMu220XkN6Xi7hHDKKUtcDsl66Ci+os3XgJ+abZjKcCfgfkR0r4D9BKRCWY93A9sUEptM9unm8xyEREZiDHPtDRMPjaMZ6lGqJcKSim1DxgP/BGjcdyHccOFXu/LGJX5E+ACfhcmnxwz/HXgOHANxhxQIH4VcAPGJP5J4HNO92SmYDSIW8xj36TkEGM4HgD6mXm9h/EwAoa1IMbEb+CBuxPoJyKTlVLbMd74nsbocVwMXKyUKq7gfNWKUmoL8DjG8NohIANj3DscjTAU0XGMoZdsIPBR4L0YRh8rzeGXTzB6HJgNTQ7GvFx5+Kn4fr8NaIxxT7wMLCD6hzFi3YXwH4wXlx8whob/aoY/iWG0cBRYiTGEWeuU12NWSm0GbsZQVIcxGvhbQo79QEp+S/MxhhL+GfBvczvQU2xL9C9TUdWRUmovhpKaISU/XF6MYYyzDqOe5pnh0dRfjSIi7cw6aBcuXin1Icb81mcYRjR7CHm5EcOqd7KZ9giGIc5DGM/YIGBSSHaXYdyTORgv+E+bv1B5AkPONdJ7AtMSo6EhIsswLLqeq21ZNFVDRK7FGP77QwXpRmE8eN2UUseizPsR4Cyl1PVVl1QTCRF5DnhDKfXRGRyr66iGMHtWXwMpkXrKsSYuPjjTaM4UpdQrUSZdBvwP2CwijyulHiudwBwycmD0xgYAvwTCLhukiR3mkHVU6DqqHURkEUYP876aUk6gFVSNIyJzMIbjSvOKUurmmpanoWAOd06uIFkyxpBRa4whyccxhoTiChGJtBrG2ErOEdZFar2OzCG3LRGie5jDi/UKpdSltXHeBjnEp9FoNJr4p14aSWg0Go2m7hNXQ3zNmjVT6enptS2GRqPRaGqQNWvWHFVKlfn4Pq4UVHp6OqtXr65tMTQajUZTg4jInnDheohPo9FoNHGJVlAaTRxR6PHx4caDaOMljUYrKI0mrvjv+0sY81Y31n31cW2LotHUOnE1BxUOj8fD/v37KSyskp8zTQPD5XKRlpaG3W6vbVEqhfXAtwAkf/8ODBldQWqNpn4T9wpq//79JCcnk56ejrFIt0ZTPkopsrOz2b9/Px06dKhtcSqFSjA8PEhBVKsxaTT1mrgf4issLCQ1NVUrJ03UiAipqal1stdtdSYAIJ78WpZEo6l94l5BAVo5aSpNXb1n7OYTafFqBaXR1AkFpdE0GPyGo1WbVlAajVZQ0SAi3HXXXcH9xx57jJkzZ9aeQBWwbNkyvvqq0r4Kg6xbt45zzz2Xnj17kpmZycKFCys+SBMb/IbPTK2gNBqtoKLC6XTy9ttvc/To0YoTVwKlFH5/7H1/VVVBJSQk8NJLL7F582Y+/PBDpk+fzokTJ2InoCYyplNnh6+glgXRaGofraCiwGaz8etf/5onnniiTNyRI0eYMGECAwYMYMCAAXz5peEwdubMmTz22GmXQ7169SIrK4usrCy6du3KlClT6NWrF/v27eOee+6hV69eZGRkBHsry5YtY/jw4VxxxRV069aNyZMnh/1486mnnqJHjx5kZmYyadIksrKymDNnDk888QR9+vThiy++KFfG6667jnPPPZfOnTszd+5cALp06ULnzp0BaN26NS1atODIkSNlzv3GG2/Qq1cvevfuzXnnGc5RCwsLueGGG8jIyKBv37589tlnAMyfP59LL72UCy+8kPT0dJ555hn+/ve/07dvXwYPHsyxY4bV2ty5cxkwYAC9e/dmwoQJ5OeX7UkMHjyYzZs3B/eHDx9ef5bI8plDfKrGvGprNHFL3JuZh/LAu5vZ8uOpmObZo3Uj/u/inhWmu/XWW8nMzOT3v/99ifDbb7+dO+64g6FDh7J3715Gjx7N1q1by83r+++/58UXX2Tw4MG89dZbrFu3jvXr13P06FEGDBgQbOzXrl3L5s2bad26NUOGDOHLL79k6NChJfJ6+OGH2b17N06nkxMnTpCSksLNN99MUlISd999NwDXXHNNRBk3bNjAypUrycvLo2/fvowbN47WrVsH81+1ahXFxcV06tSpzHU8+OCDfPTRR7Rp0ybYw5o9ezYiwsaNG9m2bRujRo1ix44dAGzatIm1a9dSWFjI2WefzSOPPMLatWu54447eOmll5g+fTqXX345v/rVrwD485//zLx58/jtb39b4rwTJ07k9ddf54EHHuDgwYMcPHiQ/v37l1vmdQazB2X3awWl0egeVJQ0atSIKVOm8NRTT5UI/+STT7jtttvo06cPl1xyCadOnSI3N5I/OYP27dszePBgAFasWMHVV1+N1WqlZcuWnH/++Xz7rfGx5sCBA0lLS8NisdCnTx+ysrLK5JWZmcnkyZN55ZVXsNnCv2+UJ+P48eNxu900a9aMESNGsGrVquBxBw8e5LrrruOFF17AYil7qwwZMoSpU6cyd+5cfD5f8Hquvdbwx9itWzfat28fVFAjRowgOTmZ5s2b07hxYy6++GIAMjIygte2adMmhg0bRkZGBq+++mqJnlKAq666ijfffBOA119/nSuuuKLc8q5TmHNQDopjmm1ukZedh8u/LzWaeKNO9aCi6elUJ9OnT6dfv37ccMMNwTC/38/KlStxuVwl0tpsthLzS6Hf5CQmJkZ1PqfTGdy2Wq14vd4yad577z2WL1/Ou+++y0MPPcTGjRvLpIkkI5Q1xw7snzp1inHjxvHQQw8FlWlp5syZwzfffMN7773HOeecw5o1a6K+HovFEty3WCzBa5s6dSqLFi2id+/ezJ8/n2XLlpXJp02bNqSmprJhwwYWLlzInDlzyj1vncK04rMS27nJ/zf/Hcbtf4L0P36Izd0oJnmu3Xucpet3cdcvzomZWf/2n3JYuu0Qtww/Oyb5aeo2ugdVCZo2bcpVV13FvHnzgmGjRo3i6aefDu6vW7cOMFyHfPfddwB899137N69O2yew4YNY+HChfh8Po4cOcLy5csZOHBgVPL4/X727dvHiBEjeOSRRzh58iS5ubkkJyeTk5NToYwAixcvprCwkOzsbJYtW8aAAQMoLi7msssuY8qUKeX2Tnbt2sWgQYN48MEHad68Ofv27WPYsGG8+uqrAOzYsYO9e/fStWvXqK4HICcnh1atWuHxeIL5hGPixInMmjWLkydPkpmZGXX+8Y6okJeQGBrQXLB/NkOsm8nZ8knM8nzmrf9x95oLyP36+Zjl+eiS1Vz62YWcWrcoZnnuOJTDwx9s0wvw1kG0gqokd911VwlrvqeeeorVq1eTmZlJjx49gm/zEyZM4NixY/Ts2ZNnnnmGLl26hM3vsssuIzMzk969e/Pzn/+cWbNmcdZZZ0Uli8/n49prrw0aJPzud78jJSWFiy++mHfeeSdoJBFJRjCGCEeMGMHgwYO57777aN26Na+//jrLly9n/vz59OnThz59+gSV2v3338+SJUsAuOeee8jIyKBXr1787Gc/o3fv3txyyy34/X4yMjKYOHEi8+fPL9Fzqoi//OUvDBo0iCFDhtCtW7dg+JIlS7j//vuD+1dccQWvvfYaV111VdR51wnMIT4Af1HshuSKMdYkLCiInfm6M/8gAJYNr8Usz8P7vqe1HCPh43tiluesD7dx4IuXOfr1KzHLU1MzSDy9VfTv31+VtsbaunUr3bt3ryWJ6jczZ84sYUxR36iL986Hc37PmJ/+BUD+bZtIaNY2Jvl+9H+jGC3fkDV0Fukjb4pJnr95ZC7PFtxNfkpXEqavqviAKJjy4Gxe8v8RjysV+4wfYpLnhX//nP+dusTYmXkyJnlqYouIrFFKlbF00j0ojSae8J8e4ivIi11j6rUYvVhPfuysYN028+XWFzuDjhSrYb2oYji86XZYY5aXpmapU0YSmtgSz6thNFQkZIivMC+nnJSVwycOUOAvjN2wYYLFlNUXO5P4RjYPeED8npjl6bJpBVVX0T0ojSaOEHVaQRXHsAcV+EzAXxTDHpTVkFVi2INyW41emcUXu5XonfaQZs4bW/N9TfWiFZRGE0eEKihPQeyUicNiDJmpGPag3FYjz1gqKJepoKyq7CcVZ4oztAdVrL8Fq0toBaXRxBElFFQM54scYvZ2YthAu8w8LTEcjnOKr+JElc3TFvKNllZQdQqtoDSaOEJCjCR8hbGbg7JiKhNvXszyDCgmq4pdDyp0Di52eYYo0Bia7muqH62gomTRokWICNu2bYuYJisri169elWrHOvWreP9998/4+MDH/b26NGDnj178o9//COG0mmqiigfHowhKX8MFZQl4GfKE8MGOqigYqdUSn6oHJt8/d4QBaV7UHUKraCiZMGCBQwdOpQFCxaEjQ+3DFFlCaxnVx5VVVA2m43HH3+cLVu2sHLlSmbPns2WLVvOOD9NbBHlIw/D7buK4du+RcXeEaL4Yje0F8wzpAdJcYx6e36toOoqWkFFQW5uLitWrGDevHm89trpr+aXLVvGsGHDuOSSS+jRowdgKKrJkyfTvXt3rrjiiqC7iKVLl9K3b18yMjKYNm0aRUWGaW56ejr33nsv/fr144033ihx3tLuLIqLi7n//vtZuHAhffr0YeHCheTl5TFt2jQGDhxI3759Wbx4MWC4txg/fjzDhw+nc+fOPPDAAwC0atWKfv36AZCcnEz37t05cOBAmWv+/PPPg6tI9O3bl5ycHJRSEV2DnH/++YwfP56OHTsyY8YMXn31VQYOHEhGRga7du0C4N1332XQoEH07duXkSNHcujQoTLnnTRpEu+9915wf+rUqcGFYRsConz4xE6ecsa0MbUEVkn3xXCIL4ZDe0FCe00xun7l1UN8dZW69R3UBzPgp7KLoVaJszJg7MPlJlm8eDFjxoyhS5cupKamsmbNGs455xzAWGdv06ZNdOjQgaysLLZv3868efMYMmQI06ZN45///Ce33XYbU6dOZenSpXTp0oUpU6bw7LPPMn36dABSU1OD6/aFUtqdhcPh4MEHH2T16tU888wzAPzxj3/k5z//Oc8//zwnTpxg4MCBjBw5EjBcZWzatImEhAQGDBjAuHHjSrilyMrKYu3atQwaNKjMuR977DFmz57NkCFDyM3NxeVy8fbbb0d0DbJ+/Xq2bt1K06ZN6dixIzfeeCOrVq3iH//4B08//TRPPvkkQ4cOZeXKlYgIzz33HLNmzeLxxx8vcd6AK41x48ZRXFzM0qVLefbZZ6OszLqPRflQYiEPd0wNGgJWcQ5/7BwhluhB+bxgrXpzUmKIL0Y9KOXTPai6iu5BRcGCBQuYNGkSYLzhhw7zDRw4kA4dOgT327Zty5AhQwC49tprWbFiBdu3b6dDhw7B9fiuv/56li9fHjxm4sSJYc8bzp1FaT7++GMefvhh+vTpw/DhwyksLGTv3r0AXHjhhaSmpuJ2u7n88stZsWJF8Ljc3FwmTJjAk08+SaNGZVe3HjJkCHfeeSdPPfUUJ06cwGazlesaZMCAAbRq1Qqn00mnTp0YNWoUUNKVxv79+xk9ejQZGRk8+uijYV1pjB07ls8++4yioiI++OADzjvvPNxud9hrr4+I8uHDSoG4sXhi2dsxGn5nDBWURcW+4S85xBcjZaKNJOosdasHVUFPpzo4duwYn376KRs3bkRE8Pl8iAiPPvooUNZ1RiT3FeURyf1GNO4slFK89dZbZVYM/+abbyLK4vF4mDBhApMnT+byyy8Pe+4ZM2Ywbtw43n//fYYMGcJHH31U7jVE40rjt7/9LXfeeSeXXHIJy5YtC7uShcvlYvjw4Xz00UcsXLgw+GLQUBDlwy9WCsWFNZYWd6YVn0vF7gPYEublxXngTqlyntXfg4qd4Ymm+qn2HpSIjBGR7SKyU0RmVPf5Ys2bb77Jddddx549e8jKymLfvn106NCBL774Imz6vXv38vXXXwPwn//8h6FDh9K1a1eysrLYuXMnAC+//DLnn39+hecO586itCuN0aNH8/TTTwddCaxduzYY97///Y9jx45RUFDAokWLGDJkCEopfvnLX9K9e3fuvPPOcs+dkZHBvffey4ABA9i2bVuVXIMAnDx5kjZt2gDw4osvRkw3ceJEXnjhBb744gvGjBkTdf71AYvy4cdKoSUBewwVlM1s+O14Y7aagpRWUDHAEtqDilVvxxeq9GJnJKKpfqpVQYmIFZgNjAV6AFeLSI/qPGesWbBgAZdddlmJsAkTJkS05uvatSuzZ8+me/fuHD9+nN/85je4XC5eeOEFrrzySjIyMrBYLNx8880VnjucO4sRI0awZcuWoJHEfffdh8fjITMzk549e3LfffcFjx84cCATJkwgMzOTCRMm0L9/f7788ktefvllPv3006ARRMAqcM6cOUFXHE8++SS9evUiMzMTu93O2LFjq+QaBIy1/6688krOOeccmjVrFgxfvXo1N954Y3B/1KhRfP7554wcORKHwxF1/vUBi/LhFwseqxu7L3aNaeA7KCBmQ2fWahiOC/1QOXZDfCEKOVaWgZoaoVrdbYjIucBMpdRoc/8PAEqpv4VLr91txI758+eXMKZoiNTFe+eb/zeas9RhfrS3o33RDlrftzUm+W7/vwy6ijE3yfRNkFJ1Nx4L/nItV/veBUBd/y7S4bwq5/n8A1OZpt4x8rz4KeSc66uc502PPMe/Cu4y8ux7HTK+4T4T8UptudtoA+wL2d9vhoUK9msRWS0iq48cOVLN4mg08Y3FnIPyWhNjatBg43Rvp7ggNvMwlpD5Im/M8jw9bOiN1YfKIUORsXQCqal+at2KTyn1b6VUf6VU/+bNm9e2OPWGqVOnNujeU13FgjEH5bMn4laxU1BWfJxUhjFOUYzW+LOGNPxF+bFSUD7yVWx9V5VcPkorqLpEdSuoA0DoWEKaGVYp4snrr6ZuUFfvGeM7KCvKkUQChRADx31+v8KGj1xLEgCFebFp+G3Kiw/DMrQ4RsrE4vdRLA6KlB1vrJRJiJFELFfn0FQ/1a2gvgU6i0gHEXEAk4AllcnA5XKRnZ1dZxscTc2jlCI7OxuXy1XbolQai/LjNxUUEBNDAY/fjw0fBaaCipUysSoPp0gGwFsQm4bfghe/WMnFFbPFcsUcNjyhElHaSKJOUa3fQSmlvCJyG/ARYAWeV0qV/TqzHNLS0ti/fz96fkpTGVwuF2lpabUtRqWx4MMvTsRhDMcVF+TgcJX9kLoy+MweVKE1GXzgidF8kQ0v+ZYkmvhP4S2qep5+v8Kq/PjFRoGykxAjBWXxe0HgpErEpXtQdYpq/1BXKfU+cMarm9rt9hIrNWg09ZnAEJ+4jJ5JYe5JHE3aVHBU+Xh8CjteiuzJUBwbgwalFDblxWN1Ueiz44tBnl6/wiY+lMVGHnbcRTFcLNYKJ0nkrBiuzqGpfmrdSEKj0ZzGiqGgrAEFlV91t+9enx8rfryOxsZ+DOZ2vH5lWAZa7OThisncjtccikSs5BO7xXID1oYnVWJMl4/SVD9aQWk0cYSYc1A2tzGsV5RXdQXl8yvs+FAOQ+nFwtTa4/Mbq1JYHeQrV0zmdjw+U+lZ7eQqN+Kp+ofKSqng6hQnSTLcjej57DqDVlAaTRwR6EEFFFQsDBo8Zm/H6nBToBwx6e14fAq7+BCbg1xcMVl53VB6PpTVTj4uLDFwrhiQE4welOAHb+zWI9RUL1pBaTRxhNWcg3ImGArKG4Pvi7xeL1ZROBxOcnHFZLkfr8+PAy9idZCPKya9Ha85VyZWO3k4scbAuWJw2BBjDgrQyx3VIbSC0mjiCIvZg3IkmObbMbBk83gM55h2hzEcJzGYh/H6DWVisRkKyhqT3o6hTMRipwBXTLz/GsOGp3tQgPYJVYfQCkqjiSMs+FEWG+6kFAD8MVBQXo8xB2Ox2ikUV0wMBQJzUMrqoEjc2GKwsK3Xr3CIkWexNSEmi+V6A3NlQIHVUPq6B1V30ApKo4kjAnNQ7qSAQUPVFZTPY6zmbbHaKbS4YzN0Zg7HYbVTbHFj81Z9WSav2YPCYsNjTcCuiku6yjgDAib2AIU283syraDqDFpBaTRxRGAOKsnlIFe5kFiYb5v+n8QWUCaxGDrz4xDDis9jTcDuj+FwnNWOz5ZgBFZxOC5geAFQaDfM7ImB0tfUDFpBaTRxhBU/WKy47VbyYmQdF+hBidVOsSU2Q2fFIWbmHps7Jiuve/2G4YWy2PHZYmPQYChSY6kjr133oOoaWkFpNHGE1ZyDEhHyccdkvshnDpNZbA681gQcMVAmgaEzsRnKxBGj4bhAD8rviJWCUjjx4rM4wBlY31ArqLqCVlAaTRwRmIMCKBQ3lhi4ffeaVnwWqw1vjHo7gaEzsdrx22NjHWfMQRlm5tgDyqRqw3FBYw6LHXHGbgFeTc2gFZRGE0dYzaV+AIosCTGZL/J7jSEui82Bz56IS1X9Q1WP9/R3UKcVVNWUqddvflRrdYAzhkN8ePBbHcHlo3QPqu6gFZRGEycopbCZQ3wAxVY3Dl/VG1O/aSRhtRm9HSdVH44r9vrMIb7TK6/HQpkELAOtMRqOCwxFKqsTuzMRP6IVVB1CKyiNJk7wmUsSKYsdgGJrIo4YGDT4QnpQOGIzdOb1erGIwmJzxGzozGvOQYnVhiXQ26miFWPA2lBZ7CS6bOTHaCUNTc2gFZRGEyf4fMaSRIEelNeWiCsG5tuBIT6r1Rbs7VR1PT6fxxgmtNicWEwFpapovu31+82ljpzYAnlWUekVm0N8WB0kOGzkKZeeg6pDaAWl0cQJnhBzcMCcL6q6QUNQQdkdQT9TRVV0++4vNhSnOBKCvR1PFb3qGsNxPixWG/aEQJ5VVHo+ZZiuWx0kOqzkKWfMPPVqqh+toDSaOKG4yLC2E6sDAGVPxE0R+H1Vylf5zN6OwxUzP1O+4gIzTzc2t6n0qphncC0+mwO7OzYKqtg05sDqIMFpDPHFwt2IpmbQCkqjiRM8xaaCshkKyu+IjaGAmL0dqyMJq+k+vii3in6mAnk6E7CbrkE8VXQN4vF4sIsPi91JgstJgXLgLahanvnF3uCitokO4+NnraDqDlpBaTRxwmkFZQzxiSM2czvK7O3Y3QnBobPiKvZMlMfIU+zuoGuQquZZXGgoYpsziUSnjTxc+Kro/Te/2IdDPIjdRYLTmINSsXIlr6l2tILSaOKE0x/UGj2owHxRYRW96vrNHpgrIfl0b6eKPRNfkdGDcriTgq5BqrryemBuyO5OJtFhI185q6yc84t9OPFgtTtJdFhNKz7dg6oraAWl0cQJgR6U1W4oqIDxQUEVFZQKGDTYE3Emmo4Qq2p8EFBQzgQSXQ7ylbPKCsof6EG5k0hwmsNxxVWzYiwo9pJMARZXo6AVXyz8YWlqBq2gNJo4wWcOPYnDWMnb5jKG+IqraHGnAt5u7W5cicaK3lXu7ZiKw+JMMBp+XFU2XQ/09MSRSKLDRh7uKq/mnlfsI1kKEFcjEp1W8nHGZH1DTc2gFZRGEycEJu/FafSc7ObcTlEVjQ/EnC/C7iYhIQmfkpgpKGxuEp1WY26nikNnweE8R6KhTJSzyr2d/GIfyZIPzkZBRWr15oNSVcpXUzNoBaXRxAl+swdlMdehs7uN3k5Vh+Ms3nwKcYIISS47ebirPLcTsOLD7g42/JaqriRhDvHhSDJ7UFX3/ltcmI8TD5g9qDzlxqJ84C2qUr6amkErKI0mTvCaFmt2c2jv9HxR1XpQVm8+heIGINFpIzcGy/3Yio4bGwlNSXRaycWNeKo2XxS4fuwJJDgNg4aqev/1F5rzd87GpmWg09jXyx3VCbSC0mjihMBKDO5EY4jPlWT0oKq68oGr+Dh5thQAHDZLTPxMWQuP48EOjiRcNmM4zuqpWg/KUmgqPXcKTpuVAlzYq7hYrjc3O5hngt204oMqr0WoqRm0gtJo4gSvqYgSTMWUkJiMXwmqigoq0XucAkfT4H6RuLFUUZk4A0pPBItFKLQkYK9ibyeh+KixkdgCgGJrAnZf1ZZ6Sszbb2w0ScdmtVBsMXqSugdVN9AKSqOJEwJWfInJRg8q0WknH2eVrOP8fkUj/wk8rtMKqtDixlZFR4gJ3hMU2lOC+0WWBGxVWHldKYW7KJt8a2MwV9LwWhOwKQ+Y7kLOhJQiU0E17QQQM99VmpqhSgpKRGaKyAERWWf+LgqJ+4OI7BSR7SIyuuqiajT1nKIc/Epwmh/TBowPqmLJdiK/mOacwJ/QPBhWbE3EUYXezqlCD2epoxS5WwbDvFY3ziqsvH6ywEMT/zEKXc1O52kzzO05w+s/me/hLO+PFNmSIMFQ0P5Anvpj3TpBLHpQTyil+pi/9wFEpAcwCegJjAH+KWK6CdVoNGGxFx7lhCSDxXhUHDaL8S1QFRrT/fuzSJYCbM06BcM8tgQcVVAmPxzOpb38BKkdQ/JMxOEvOGPz7f3HC+ggB/E0Tg+GVbW3szs7jw7yE4XJ7UEEAOXQXnXrEtU1xDceeE0pVaSU2g3sBAZW07k0mnqBNf8op6wpJcIKxY21CsNxx7I2AZCc1iMY5rMl4vSf+dzOgT3fkyhFJLTqGpJnEhYUnKEl37YD2XSQn3C07BYMCyqoMxzi/OFILmdbDmBJPft0oKNqeWpqllgoqNtEZIOIPC8iTcywNsC+kDT7zbAyiMivRWS1iKw+cuRIDMTRaOomzqJsihypJcIKLQlVmi/y7P4SP0LLroODYX57Eu4q+Jk69f1XADTpfO7pPM3VL8604c/+fiV28dH47JD32Cq6ff/+++20kWwSOp6+9lh5/9XUDBUqKBH5REQ2hfmNB54FOgF9gIPA45UVQCn1b6VUf6VU/+bNm1d8gEZTD/H4/KT6juBNbFkivKgK1nFKKZodWcl+e0esSacVn3Ik4qQYfN5K5+n3K1L3f0KOpRG21pmn87SfecPv9yvcP/wPHxYs6cOC4QHvv2eap/X7DwGwdhoeDA98BK2H+OoGtooSKKVGRpORiMwF/mvuHgDahkSnmWEajSYMPx7Opr1kk53auUS4x+rGeYbWces3rKOvfzObO99aMiLoZyoH3E3KHlgOX2/cxlDfKg6nX0Ky6fkXQDnOXEF9teMAF3qXcaTlEM5KPK1IpQo9qC93HmFM8cecanw2jVqeHt50uBLxI1i0gqoTVNWKr1XI7mXAJnN7CTBJRJwi0gHoDKyqyrk0mvrMYXOuyN2qW4lwb8D4oJIopcj98AGKsNNx1M0l4gKrpFd2jT+fX5H9wd9wiofWY+8qmWdAmVRyiM/r87NryaO0kmM0HXlHiTjrGQ7H+f2KL5fMo5clC/f500vEuZ12CnDqIb46QlXnoGaJyEYR2QCMAO4AUEptBl4HtgAfArcqparmt1qjqcfk/7gNgKbtepYI99oScZ+Bxd2nbz/H0ILP2N5xKu7UdiXiAsqkIKdybjwWvfMavyhYwt70K3Cc1b1EXKC3U9k1/j56ez7X5r3IwVYX4OhyQYk4m2luX1kPuM8s+YJf5czmROPu2PteXSIu0Wn4mdJDfHWDCof4ykMpdV05cQ8BD1Ulf42moaCO7MCvhCZtS/ag/PYkXBSB3xc0P6+Irz97j6Eb/sAPru70nPhgmfhAw1+YF70y+WDZ51yw4S6OOtNIv/rvZeKtIY4QHVHm+dXyjxmxaQb7XV1oN/WlMvF2t+n9N/9UYIGiCnlp2QZGfncbSTYvjskvgLVkE5fgMFZeTy3O16sU1AF0HWk0cYDr1A8ctrZA7O4S4ZWd29m0/lu6Lfs12bbmtL5lCVZnQpk0gYa/MD+6HtSKtRvJ+GwaYrWT8qslQXcgodhClElUcm5aT5elN3LK2oSWNy8+Pd8UgiPBCIt2Nff31mXR6dOb6WrZj+3qV5EW3cukSXLaKMCJT5uZ1wm0gtJo4oDUwj1ku9LLhCtn9N/t7Mn6gSbvXI2yWEmYthhX4xZh0zlNF+3ROELc8H0WqYsmkyq52Ke8haN5x7DpHIkpAHiiUFC79uwl6c2J2MWPc+rbuJq0Cpsu0eUkXzmDaxSWx9ffH4a3b2aIZTO+S57B2vmCsOkSHDbycQZdm2jiG62gNJpaxuPx0Na3n4LGZRt/i9mD8lTgcuPosWwKX5xAU05RdOUCUtp0iZg24MajuIKeye6DR/C+Oomz5QBFE14kIb1/xLQuM09PBb2yA0ePkTf/ClpxlIIJr9Ck1JxbKMZST84KV3PfdvAke169lXGWryk4/34c/a6JmDboXFH3oOoEVZqDqisU5OeRn5+Hp6gQu/ixOxOwuxJwuBKwWrWO1tQuP+3ZRlvxoFr0KBNncZledfNOYS8Ta5BfUMCeZ6+kj383e0bNo2OPIeWez22ull5ez+TwiVz2z72aIWzj6Oh/0iJjTLl5Jpm9nfKUybGcAnbOuYZhagc/XvgsaRnDy80z0WE4GEwqJ88DJwr4Yu7d/IqPyT3nNySNuCtiWjCUXgFOqOJq7tHi8frIOXUC5SvGjsJqFeyuROyuRCTKOcWGTL1SUCePH2Xn10so2r+ehONbSSn6kaa+bBpJPu4Ix+QrJ4XioBgXRRYXxRYnHosbn9WF1+JCiYC5vJhCIcrYFRSgEGX8g0LAXItMhcQTjAdC0lcdc3mxqDElrDkURvmVDq7w8ssmUOVHV3B0lGkrzLcSOauwm2FJ8hsNcGLbjDJxNrdpcZd/irKzNOD1+lgz+waGedawpf9f6DFkQoWiJQT9TIVvpHMKiln/z+u50P8t+8/9C2nnRu6RBK/BZSMXd0RX8nmFHlbMvolLvF+zp/+faT/k6rDpQjEcDLpIijD/diK/mLfn3M9v/a9zouuVpPzibxXn6bByCCcUH64wbbQopdh75AS71y2ncM+3uE/soFn+bpr6j5LKSZpKeANmo+1xUiguPOLEIw68Fides+3xiY3T7UZouwNh2x4UKFUyjSHg6faokm1PuDYjNGS/82zG3PlcpfKsDPVKQR07mMU5q+7Ao6zst7bluLs9hxIGQVILrI4EsDnxKgvKW4R4CsCbb/x7CrB4C7D68rH6CrH6CnEWnyBJFYVU6OlqCVaaBGLFDDP3JfJ+ieOrSmz0XLUhqApljFgS5UVIOdEV5BWLkq8wj4jni3Skiy2OYXTqNahMTMDizpNXduhMKcXnz93DBbkfsKHjr8m8+HcVSQZAoukQMZxJeJHXx+ezb+EXxZ+Q1eu3pI+OLs8kp5Vc5cIRIc93n53BpMLF7O08lfa/uCc6OZ1WsnHTMoyCKvT4eOFfj3F7wVyOtR1J06vmRPXGluC0ka9i4Ere62fVlu859M0btPrxE3r7t9BeDDfyxyWFI+6OHE7ozAFXM/zupmCx41WCTyks3gIsngLw5GH15iPeAqy+Qiy+Imy+QmzefNz+49gwVvpQpdsNCaojIrU9CkFC04iEpC1LuMc0mpTirZq/roqoVwqqbedMdl72Pm279qWDq6z1kkZT13AkGL2dcNZxny54nAt+mseGZheRed2sqPNMcDnCfgvk9ys++NcfuTT3DXalT6LThL9EnWeS084RXDhLKROfX7HwuVlMOfkce1uPpd3VT0Qvp8PGXuXCEibPOc/P5dYTj3G82TmkXv9KGXPySCQ6rOTjxHKGDesPR3JZ/r/FpO+YxxC1Drv4OGxvw/5Wl5HU/QJa9RpOk+QWVG59jrpLt4qTVIl6paBsdgdn9y5//F2jqUs4EoweVOm5nc8XPcfw7X9le1J/et30YqXGe0WEfHGVMF1XSrHkxUe59Mgcvm8+is5Tnq1UnolOK7tVAs1K5fniS89x3cFH2d90IO2mvQiW6Od8Ex3GsKHNk10izzkL3uBXP95PbnInUm98C+yRBvDLkuA0rPisPtM1SJTX+M2uoyz/YAHnH36ZqZbtnLI24cDZN9BqyGRatO1Li8qOt2uiol4pKI2mvhGwjvOGWPF99eFrnLv29+x29aDjbe9gsUf7aexpTkgKriLDxbpSirdens2lWX/jh8YDOfumVyqlSCBUmZwK5vnyqy9yze4/cCyxE2k3vQU2Z+XydFo5pJrgLloLypgBfPa1RUzacSceVypNb3oX3CmVlNNKvnIZA2Ke/NPuNyLwza4jfP3efEYefYV7LFnkuFuSM+T/0ejcaTSqhGLUnBlaQWk0cYw7sRF+JUGz6M/f+TeD1/2BA4500m77L3ZzjqqyZFub06roED6/4r8vzuKyrL9xIKkXHW55C6mkIgGwWIRsazOSC7fh8/lZ8OpzXLXrj5xMaE+LW94HV+XltFkt5NibY/cX4s07znOLP2LyjjsRRxLJv/4vJJ9V6TwTHDaOYX5onHc0ooJatfMn1rw3lwuz/8N0y4+cTGqH5+dPk9xnUtAlvab60QpKo4ljUhIc5OGiOPcYn/779ww/8G92uXrQ9tYluJKbnnG+J2zN6Vu4jqVP3sj4U2+yq9EAOt62KOyKDtGSl9QeV+5HfPzEDVyTs5hDiV0469b3kcRmFR8cAV9yKzgFK579DTfkLiXf1ZKUm99HmrQ/o/wcNgvZAbd1OT9BSD5KKVZs3cf3H83hwuOv8xvLEbIbdaH4wudonHF51EtNaWKHVlAaTRzTJNHBekt7ev/4OgAbmo6ix03zsbnKH5qqiOMtB+PY8wGjTr3JtrYT6Xb905UegiuNr+3PYOu/GZW7iD2tRtN+2gsVDqFVSPuhFG2wMTzvQ35qNpizbngFkqrmN67Q1QK8QM5BAHIKPXy+chWnvn6RsYXvMUxyOZSSQfGYp0jtPrby33NoYoZWUBpNnJNz3v18981TOPpeReaoaTFpMMdOvIVP37PT+ezOdOs7KgZSwuRLL+Z/Sc/Rq1Ui7fvGpmH/zS/OZWnii5zTtIiz+l8ak16Mu3kHvAct/Pj5i6z75DPaHVvBL2QnfoSDZ40gacw9tEw/VyumOEBUxV9N1hj9+/dXq1evrm0xNBpNPeb11fuwL76Jy6xfGkrJ3Rl6Xk7roZORlHYVZ6CJOSKyRilVZi0t3YPSaDQNiqv6t+X7Nv/hx1Pf06rt2bRJaChfLdU9tILSaDQNjs6tUqDVgNoWQ1MBeqVUjUaj0cQlWkFpNBqNJi6JKyMJETkC7IlBVs2AozHIpybQslYfdUneuiQr1C1565KsULfkjZWs7ZVSZb4fiCsFFStEZHU4i5B4RMtafdQleeuSrFC35K1LskLdkre6ZdVDfBqNRqOJS7SC0mg0Gk1cUl8V1L9rW4BKoGWtPuqSvHVJVqhb8tYlWaFuyVutstbLOSiNRqPR1H3qaw9Ko9FoNHUcraA0Go1GE5fUKwUlImNEZLuI7BSRGbUtTygi0lZEPhORLSKyWURuN8NnisgBEVln/i6qbVkDiEiWiGw05VpthjUVkf+JyPfmf60vZCYiXUPKb52InBKR6fFUtiLyvIgcFpFNIWFhy1IMnjLv4w0i0i8OZH1URLaZ8rwjIilmeLqIFISU8ZyalLUceSPWvYj8wSzb7SIyOg5kXRgiZ5aIrDPD46FsI7VbNXPvKqXqxQ+wAruAjoADWA/0qG25QuRrBfQzt5OBHUAPYCZwd23LF0HmLKBZqbBZwAxzewbwSG3LGeY++AloH09lC5wH9AM2VVSWwEXAB4AAg4Fv4kDWUYDN3H4kRNb00HRxVLZh69585tYDTqCD2WZYa1PWUvGPA/fHUdlGardq5N6tTz2ogcBOpdQPSqli4DVgfC3LFEQpdVAp9Z25nQNsBdrUrlRnxHjgRXP7ReDS2hMlLBcAu5RSsViRJGYopZYDx0oFRyrL8cBLymAlkCIirWpEUMLLqpT6WCnlNXdXAmk1JU9FRCjbSIwHXlNKFSmldgM7MdqOGqE8WUVEgKuABTUlT0WU027VyL1bnxRUG2BfyP5+4lQBiEg60Bf4xgy6zewOPx8PQ2YhKOBjEVkjIr82w1oqpQ6a2z8BLWtHtIhMouQDHq9lC5HLMt7v5WkYb8kBOojIWhH5XESG1ZZQYQhX9/FctsOAQ0qp70PC4qZsS7VbNXLv1icFVScQkSTgLWC6UuoU8CzQCegDHMTo4scLQ5VS/YCxwK0icl5opDL69HHznYKIOIBLgDfMoHgu2xLEW1lGQkT+hOEw/VUz6CDQTinVF7gT+I+INKot+UKoM3UfwtWUfLmKm7IN024Fqc57tz4pqANA25D9NDMsbhARO0Ylv6qUehtAKXVIKeVTSvmBudTgcENFKKUOmP+HgXcwZDsU6LKb/4drT8IyjAW+U0odgvguW5NIZRmX97KITAV+AUw2GyXMobJsc3sNxpxOl1oT0qScuo/XsrUBlwMLA2HxUrbh2i1q6N6tTwrqW6CziHQw36QnAUtqWaYg5vjyPGCrUurvIeGh47OXAZtKH1sbiEiiiCQHtjEmyTdhlOn1ZrLrgcW1I2FYSryBxmvZhhCpLJcAU0yLqMHAyZDhlFpBRMYAvwcuUUrlh4Q3FxGrud0R6Az8UDtSnqacul8CTBIRp4h0wJB3VU3LF4aRwDal1P5AQDyUbaR2i5q6d2vTQiTWPwwLkh0Ybxp/qm15Ssk2FKMbvAFYZ/4uAl4GNprhS4BWtS2rKW9HDGun9cDmQHkCqcBS4HvgE6BpbctqypUIZAONQ8LipmwxFOdBwIMxLv/LSGWJYQE127yPNwL940DWnRhzC4F7d46ZdoJ5f6wDvgMujpOyjVj3wJ/Mst0OjK1tWc3w+cDNpdLGQ9lGardq5N7VSx1pNBqNJi6pT0N8Go1Go6lHaAWl0Wg0mrhEKyiNRqPRxCVaQWk0Go0mLtEKSqPRaDRxiVZQGo1Go4lLtILSaDQaTVzy/wEpsbv9smwqVwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def plot_response_comparison(arb_resp, nrn_resp, title):\n", + " num_steps = len(arb_resp)\n", + " for i, step in enumerate(arb_resp):\n", + " plt.subplot(num_steps, 1, i+1)\n", + " plt.plot(nrn_resp[step]['time'], nrn_resp[step]['voltage'], label='Neuron ' + step)\n", + " plt.plot(arb_resp[step]['time'], arb_resp[step]['voltage'], label='Arbor ' + step)\n", + " plt.title(title)\n", + " plt.legend(loc='upper left')\n", + " plt.tight_layout()\n", + "\n", + "\n", + "def plot_response_comparison_for(arb_resp, nrn_resp, *key):\n", + " plot_response_comparison(arb_resp[key], nrn_resp[key],\n", + " 'replace_axon = %s, %s ' % (key[0], str(params[key[1]])))\n", + "\n", + "plot_response_comparison_for(arb_responses, nrn_responses, False, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjhElEQVR4nO2deXxVxfm4n/fu2SAQkF022UnYFwsIWAWUKiIouCHytVYt1q0uv7ZatLV1rYqiWERxoQKuaF3rgogVKcgOgiBhExUICdnvNr8/zrmXm+QmuSE3uTc383w+NzlnZs7Me2bmzHvemTkzopRCo9FoNJp4wxJrATQajUajCYdWUBqNRqOJS7SC0mg0Gk1cohWURqPRaOISraA0Go1GE5doBaXRaDSauEQrqCoQkU4iokTEFmtZNCePiNwgIj+IyMYYpD1HRF6uh3RmisiqKvxXiMjVdS1HrBCRRSLy15r6RVmGKstaRLJF5Ky6liOaiMg0EckTkf+KSNv6Tl8rKE1UEZH5IlJg/twi4gk5fz9GYs0BrldK9QuRc46IzImRPHGF+SKWXcPwn4lIkYh8W1WjKyIXm41bkYisqKFcjaaMRGRMTfJHRPqLyDozX9eJSP8qwjYXkTdFpFBE9orIpSF+Y0Vks4jkishRM1y7gL9SainQwjy9uOZ3VjsSWkFpy6f+UUpdq5RKVUqlAn8DlgbOlVLnBMLVc9k0B7bUY3p1QhzV51eA9UAG8EfgNRFpWUnYHOAx4P76Ea1uiYcyEBEHsBx4GWgGvAAsN93DMQ9wA62Ay4CnRaSP6bcNGK+USgfaAt8BT4derJTyADsxyrteSTgFZZrRd4jIJqBQRGwiMtx8i8sVkY0iMiYk/AoR+buIrBGR4yKyXESaVxL3VSKyXUTyReR7EflNOf9JIrLBjGe3iEww3ZuKyEIROSQiB0XkryJireY+uorIp+ZbzRERWSwi6SF+OSIy0DxvKyKHA/clIueLyFbzfleISK9y+fN7Edlkmu5LRcRV85yuOZWUjRKR00LClOmOEZFfmXmaa5ZhVg3TDOSzv5pwt5vl84OIXB0qlynTPBF51yz7r0Wka8i1j4vIfrPc14nIqHLRu8x8zheRb0Qk1JK706wr+SKyTUQmh/jNFJEvReRRETmKYQlWd78Pi8gxEdkjIueU8+5oxpcvIh+JSIuwkVQdf3dgIPBnpVSxUup1YDMwJVx4pdTHSqllwA81TStM2pWWUblwaWJYeHNFREznFiLyH/PePxeRjiHhKy0/May410TkZRE5DsysRkyHiLxoprNVRAaX8+8fhWdvDGADHlNKlSql5gICnFk+oIikYJTNXUqpAqXUKuBt4AoApdRPSqnQsvEBFfIU4/mpf+WslEqoH5ANbAA6AElAO+AocC6GQj7bPG9phl8BHAT6AinA68DLpl8nQAE283wi0BWjMowGioCBpt9QIM+M32Km29P0exN4xoz/FGAN8Jtq7uM0My4n0BJYiVEhA/6/xnj7SQY+BB423bsDhea1duB2YBfgCMmfNRhvS82B7cC1lcgwEsit4jeymnuYE8jLcGVjuingtJAwi4C/mscDgJ+BYYAVuNKMw1mD+jABKAFSqgnzI9DHzM+XQ+UyZTpqlrENWAwsCbn+coy3SxtwqxmXKyQPPMBUszx+D+wB7Kb/RWZZWIBpZtm1Mf1mAl7gBjPupCruYaaZzq/NvLoOQylISD3fbdaPJPP8/kriegp4qhK/ycD2cm5PAk9UUw5XAytq8VxHUkZ/NcthTaAOhfjlA2dgPE+PA6tqWH4XmGVUVRnMMevauWYZ/B1YXa7+R/rs/Ru4sxK/m4H3w4S/NUzYAUBRObffA++EnJ+K8Tz7zXudGSaee4DPqeI5qotfvSVUbzdkVIJZIed3AC+VC/MhcKV5XOZBBXpjmMNWyimoMGm9BdxoHj8DPBomTCugNLRiA5cAn9Xwvi4A1pdzexvj7XUTZqMN3AUsCwljwVDAY0Ly5/IQ/weB+XVUFnOoqKBmlQtTlYJ6GvhLufA7gNERpr/WjP931YR7Dvh7yPlpVGz8ng3xPxf4tor4jgH9QvIgtJGyAIeAUZVcuwGYZB7PBPZFeK8zgV0h58nmPbQOqed/CvG/HvjgJMr0itD7Md3uAxZVc11tFVQkZfQcRlfubeWuXUTZF4pUDEuhQ4Tlt7IG9f3jkPPeQHG5+l/rZw/jGV9Szm0xMCdM2FHAj+Xcfh2uLDCU5h3A8DB+zTC6+XzAhSdbjjX9JVwXn8n+kOOOwEVmF1GuiORiWAZtKgm/F+NNt0L3h4icIyKrze61XIyGKhCuA8Ybank6mvEdCkn/GQxLqlJEpJWILDG7BI9jvDGWl2kBhuX3hFKq1HRra94DAEopv3l/7UKu+zHkuAjjga0v9lcfJEhH4NZyZdcB4x4jYQgwHZgjIvYqwrUtJ1c4GSvNM7PLdLvZbZMLNKVsWQXjM8vjQOAeRGRGSBdmLkZ5hr02AoIyKqWKzMPUcP7l76EGFABNyrk1wbBQ6pJIymgihnU4P4xfaBkUYIyNBcog4vKLgPJ57JKy41b1XQYRh1VK5XBiPKt8d95VwHGguVLqjZOQ+aRIVAUVukT7fgwLKj3kl6KUCh207RByfCqGmXskNEIRcWJ0/z0MtFLGoOJ7GN19gXS6UpH9GBZUi5D0myil+oQJG8rfzPvIVEo1weiGCKSFiKRiDD4vxGiAA+NmP2A07IFwYt7fwWrSq4CIjJITM/DC/cqPtURC+eXzizDe9gO0DjneD9xXruySlVKvRJSQ8er3FsbbX5sqgh4C2oecd6gsYHnMPLgdY4ZTM7Ne5BFSVqHxiYjFTOsHcxxkATAbyDCv3VLu2vL5FWu2Al1EJC3ErZ/pXpdEUkYLgA+A98yxF8KFN5+d5hhlEEn5xWMZZIWMrwFkEb4MdgI2EekW4lZVedkwXp7LK7VeGL0+eScn8smRqAoqlJeB80RkvIhYRcQlxpTO0Mp+uYj0FpFk4F7gNaWUr1w8Doz+68OA1xyAHhfivxC4SkR+KSIWEWknIj2VUoeAj4BHRKSJ6ddVREZXI3caxttPnhjTPm8r5/84sFYpdTXwLifeGpcBE0057Bh96qXAf6vLqPIopb5QJ2bghft9UdM4w7ABuNQsmwkYY3sBFgDXisgwMUgRkYmBxlGMyQuLqrmHgGVZ2QwnMPLsKhHpZdaBu2ogfxrGONFhjIbgbio+3INE5ELzrfQmjPJYjTEmqcxrEZGrMCyouEUptROjzP5sPkuTMRrH18OFDzxzGA2fxbzGHuKfLSIzI0g60jKajdEN/I6IJIW4nysiI8WY6fYXjG7K/URWfvHGCoyutt+JiFNEZpvun5YPqJQqBN4A7jWfnxHAJOAlALNe9jDbpZbAPzCGEnLKRWXHqLf1SsIrKLMSTgL+gFEJ92M09qH3/hJGP/WPgAv4XZh48k33ZRh91JdijAEF/NdgmMGPYryBfc4JS2YGRgO5zbz2Nap+owdjUHKgGde7GJUMMGYLYgwaX2c63QIMFJHLlFI7MKytJzCswPOA85RS7mrSixU3YsiYizEF9q2Ah1JqLUZ/+ZMY+baLsrOoOgBfRpCGooq6rpR6H5gLfGamsdr0iuSB/BDjrX0nRtdqCRW7hJZjTIA4hjGGc6FSyqOU2gY8AnwF/ARkRng/dYoY37KF6yYLMB0YjHE/9wNTlVIBJXuZiIS+nV8BFGOMJ44yjxeYYR0YkxNWUw2RlpFpNV+D0Y26XE7MkvsX8GeMrr1BGM8IRFZ+9Y6IvC8ifwjnZz7LF2C0K7nALOCCwDMuIn+Qst8cXo/R9fkzxicC1ymlAmXUDuP+8zHGs/0YE2HKY6WambB1QWCGT6NFjI/jXlZKPRtrWTSRYzZuG4EsZXynUVXYH4DblVIRreggxrT8LRgTT7y1FlYTFhEZCfxWKXXJSVyry6ieMC3RVcBCpdRT9Zl2wltQmsREKeVWSvWqTjmZ3InRJbWusgAiMtnsLmkGPIAxDVc3fHWIUmpVTZSTLqP6R0QuxrAsf8LoPapXtIKKIVJ2WaDQX1XdK5oaopR6USnVTSk1qIpgv8HoAtmN0b9/XRVhY4KuL7EvI7PrLVwZhO2Oa+gopZYppU5RSp2rlDpS/RXRpdF38Wk0Go0mPtEWlEaj0WjikpgvfBhKixYtVKdOnWIthkaj0WjqkXXr1h1RSlVYcDiuFFSnTp1Yu3ZtrMXQaDQaTT0iInvDuesuPo1Go9HEJVpBaTQNGD3JSZPIaAWl0TRQ3li3n/MfeBO3t94/8Ndo6oW4GoMKh8fj4cCBA5SUlMRaFE0DwuVy0b59e+z2qhYxb9is/XAx77j/zo9b02jd7+xYi6PRRJ24V1AHDhwgLS2NTp06UXbxXo0mPEopjh49yoEDB+jcuXOsxakzTlN7AJDvV4BWUJoEJO67+EpKSsjIyNDKSRMxIkJGRkbCW91Wi7Gbvdunu/g0iUncKyhAKydNjWkMdcZu6Cc9BqVJWBqEgtJoNBWxm0+v310cW0E0mjpCK6gIEBFuvfXW4PnDDz/MnDlzYidQNaxYsYL//rfG+xOWYcKECaSnp/OrX/0qSlJpoo3TYlpOpXW927pGExu0gooAp9PJG2+8wZEj0V3MVymF3x/97ploKKjbbruNl156KUoSaeoCuxjfQIlbKyhNYqIVVATYbDauueYaHn300Qp+hw8fZsqUKQwZMoQhQ4bw5ZfGhqhz5szh4YcfDobr27cv2dnZZGdn06NHD2bMmEHfvn3Zv38/t912G3379iUzM5OlS5cChpIZM2YMU6dOpWfPnlx22WVhP8qcO3cuvXv3Jisri+nTp5Odnc38+fN59NFH6d+/P1988UWVMl5xxRWcfvrpdOvWjQULFgTj/eUvf0laWlqV+fLqq6/St29f+vXrxxlnnAEYk1quuuoqMjMzGTBgAJ999hkAixYt4oILLuDss8+mU6dOPPnkk/zjH/9gwIABDB8+nJwcY4fpBQsWMGTIEPr168eUKVMoKiqqkO7w4cPZuvXEpq1jxoxplEtk2cUHgNVTEGNJNJq6Ie6nmYdyzztb2fbD8ajG2bttE/58Xp9qw/32t78lKyuL22+/vYz7jTfeyM0338zIkSPZt28f48ePZ/v27VXG9d133/HCCy8wfPhwXn/9dTZs2MDGjRs5cuQIQ4YMCTb269evZ+vWrbRt25YRI0bw5ZdfMnLkyDJx3X///ezZswen00lubi7p6elce+21pKam8vvf/x6ASy+9tFIZN23axOrVqyksLGTAgAFMnDiRtm3bRpR39957Lx9++CHt2rUjNzcXgHnz5iEibN68mW+//ZZx48axc+dOALZs2cL69espKSnhtNNO44EHHmD9+vXcfPPNvPjii9x0001ceOGF/PrXvwbgT3/6EwsXLuSGG24ok+60adNYtmwZ99xzD4cOHeLQoUMMHjw4IpkTCr+hoCxePQalSUy0BRUhTZo0YcaMGcydO7eM+8cff8zs2bPp378/559/PsePH6egoOo32o4dOzJ8+HAAVq1axSWXXILVaqVVq1aMHj2a//3vfwAMHTqU9u3bY7FY6N+/P9nZ2RXiysrK4rLLLuPll1/GZgv/vlGVjJMmTSIpKYkWLVowduxY1qxZE3GejBgxgpkzZ7JgwQJ8Pl/wfi6//HIAevbsSceOHYMKauzYsaSlpdGyZUuaNm3KeeedB0BmZmbw3rZs2cKoUaPIzMxk8eLFZSylABdffDGvvfYaAMuWLWPq1KkRy5xIiDLy3OaraGVqNIlAg7KgIrF06pKbbrqJgQMHctVVVwXd/H4/q1evxuVylQlrs9nKjC+FfpOTkpISUXpOpzN4bLVa8Xor7m797rvvsnLlSt555x3uu+8+Nm/eXCFMZTJCxenYNZmePX/+fL7++mveffddBg0axLp1le6oDpS9H4vFEjy3WCzBe5s5cyZvvfUW/fr1Y9GiRaxYsaJCPO3atSMjI4NNmzaxdOlS5s9vLBvKlsNv5JnNpy0oTWKiLaga0Lx5cy6++GIWLlwYdBs3bhxPPPFE8HzDhg2AsXXIN998A8A333zDnj17wsY5atQoli5dis/n4/Dhw6xcuZKhQ4dGJI/f72f//v2MHTuWBx54gLy8PAoKCkhLSyM//8TAeWUyAixfvpySkhKOHj3KihUrGDJkSERpA+zevZthw4Zx77330rJlS/bv38+oUaNYvHgxADt37mTfvn306NEj4jjz8/Np06YNHo8nGE84pk2bxoMPPkheXh5ZWVkRx59IWEwLyq4VlCZB0Qqqhtx6661lZvPNnTuXtWvXkpWVRe/evYNv81OmTCEnJ4c+ffrw5JNP0r1797DxTZ48maysLPr168eZZ57Jgw8+SOvWrSOSxefzcfnllwcnJPzud78jPT2d8847jzfffDM4SaIyGcHoIhw7dizDhw/nrrvuCo4/jRo1iosuuohPPvmE9u3b8+GHHwJw99138/bbbwPGTL/MzEz69u3LL37xC/r168f111+P3+8nMzOTadOmsWjRojKWU3X85S9/YdiwYYwYMYKePXsG3d9++23uvvvu4PnUqVNZsmQJF198ccRxJxpiWlBOf2KvmKFpvEg8Ldc/ePBgVX421vbt2+nVq1eMJEps5syZU2YyRaKR6HXn879fwOjSz/Bgwz7naKzF0WhOGhFZp5SqMNNJW1AaTQMlMEnCjhd8nhhLo9FEnwY1SUITXeJ5NQxN9VhUyKQZdyEkpcdMFo2mLtAWlEbTQAlMkgAMBaXRJBhaQWk0DRQJVVAe/S2UJvHQCkqjaaCEWlDKrZc70iQeWkFpNA2UUAXlLtJdfJrEo84VlIhMEJEdIrJLRO6s6/TqirfeegsR4dtvv600THZ2Nn379q1TOTZs2MB7771XqzhmzZrFKaecUueyauoWCz5KlTHPqbRYr2iuSTzqVEGJiBWYB5wD9AYuEZHedZlmXfHKK68wcuRIXnnllbD+4ZYhqimB9eyqIhoKaubMmXzwwQe1ikMTeyzKRwHJALiLtILSJB51bUENBXYppb5XSrmBJcCkOk4z6hQUFLBq1SoWLlzIkiVLgu4rVqxg1KhRnH/++fTubehdr9fLZZddRq9evZg6dWpwu4hPPvmEAQMGkJmZyaxZsygtLQWMJZHuuOMOBg4cyKuvvlom3fLbWbjdbu6++26WLl1K//79Wbp0KYWFhcyaNYuhQ4cyYMAAli9fDhjbW0yaNIkxY8bQrVs37rnnnmC8Z5xxBs2bN6/ynj///HP69+9P//79GTBgAPn5+SilKt0aZPTo0UyaNIkuXbpw5513snjxYoYOHUpmZia7d+8G4J133mHYsGEMGDCAs846i59++qlCutOnT+fdd98Nns+cOTO4MKymLFZ8FIqhoDwlegxKk3jU9XdQ7YD9IecHgGGhAUTkGuAagFNPPbXq2N6/E36suBhqrWidCefcX2WQ5cuXM2HCBLp3705GRgbr1q1j0KBBgLHO3pYtW+jcuTPZ2dns2LGDhQsXMmLECGbNmsVTTz3F7NmzmTlzJp988gndu3dnxowZPP3009x0000AZGRkBNftC6X8dhYOh4N7772XtWvX8uSTTwLwhz/8gTPPPJPnnnuO3Nxchg4dyllnnQXAmjVr2LJlC8nJyQwZMoSJEydGvC3Fww8/zLx58xgxYgQFBQW4XC7eeOONSrcG2bhxI9u3b6d58+Z06dKFq6++mjVr1vD444/zxBNP8NhjjzFy5EhWr16NiPDss8/y4IMP8sgjj5RJN7CVxsSJE3G73XzyySc8/fTTEcnc2LAoH8XWFPCDVysoTQIS80kSSql/KqUGK6UGt2zZMtbihOWVV15h+vTpgPGGH9rNN3ToUDp37hw879ChAyNGjADg8ssvZ9WqVezYsYPOnTsH1+O78sorWblyZfCaadOmhU033HYW5fnoo4+4//776d+/P2PGjKGkpIR9+/YBcPbZZ5ORkUFSUhIXXnghq1ativieR4wYwS233MLcuXPJzc3FZrNVuTXIkCFDaNOmDU6nk65duzJu3Dig7FYaBw4cYPz48WRmZvLQQw+F3UrjnHPO4bPPPqO0tJT333+fM844g6SkpIjlbkxY8VFqTQXApxWUJgGpawvqINAh5Ly96XZyVGPp1AU5OTl8+umnbN68GRHB5/MhIjz00ENAxa0zTmb7isq234hkOwulFK+//nqFFcO//vrrWm2lceeddzJx4kTee+89RowYEVwstjIi2Urjhhtu4JZbbuH8889nxYoVYVeycLlcjBkzhg8//JClS5cGXww0FbEoHx5bKnjAX6pn8WkSj7q2oP4HdBORziLiAKYDb9dxmlHltdde44orrmDv3r1kZ2ezf/9+OnfuzBdffBE2/L59+/jqq68A+Ne//sXIkSPp0aMH2dnZ7Nq1C4CXXnqJ0aNHV5t2uO0sym+lMX78eJ544ongdvDr168P+v3nP/8hJyeH4uJi3nrrraBlFwm7d+8mMzOTO+64gyFDhvDtt9/WamsQgLy8PNq1awfACy+8UGm4adOm8fzzz/PFF18wYcKEiONvTPj9Chs+sDkoVg58eiUJTQJSpwpKKeUFZgMfAtuBZUqpiv06ccwrr7zC5MmTy7hNmTKl0tl8PXr0YN68efTq1Ytjx45x3XXX4XK5eP7557nooovIzMzEYrFw7bXXVpt2uO0sxo4dy7Zt24KTJO666y48Hg9ZWVn06dOHu+66K3j90KFDmTJlCllZWUyZMiU4/nTJJZdw+umns2PHDtq3bx/c32r+/PnBrTgee+wx+vbtS1ZWFna7nXPOOadWW4OAsfbfRRddxKBBg2jRokXQfe3atVx99dXB83HjxvH5559z1lln4XA4Io6/MeH1K6z4sVjtFOHUSx1pEhK93UaCsmjRojKTKRojiVx3itxecu7rwbGWQ2l2eA0lbYZz2rWVb/Co0cQzersNjSaBCFhQNpudIuVEvHotPk3iobfbSFBmzpzJzJkzYy2Gpo7w+owxKIvVRhEumurFYjUJSIOwoOKpG1LTMEj0OuP1+bHiA6uNUnFh8RbHWiSNJurEvYJyuVwcPXo04RscTfRQSnH06FFcLlesRakzvH6FDT9YbLgtLmw+bUFpEo+47+Jr3749Bw4c4PDhw7EWRdOAcLlctG/fPtZi1Blen8KCH7HY8FiTsPsqLhul0TR04l5B2e32Mis1aDQa8Pr92PAhVhseSxJ2n+7i0yQecd/Fp9FoKhKYxYfFhteajMNfEmuRNJqooxWURtMA8Xr92MWHWGz4bEk4VQnocVpNgqEVlEbTAPH6PACIxYbfnmwse+Rzx1gqjSa6aAWl0TRAvB5DGYndCXZjTyi93JEm0dAKSqNpgPg8xoaXYnWgAgpKf6yrSTDifhafRqOpSFBB2R3gsBuObq2gNImFVlAaTQPEZ3bxWax2xFRQ/tJC3SWiSSh0fdZoGiA+r2FBWWwOrE5jw8vS4uOxFEmjiTpaQWk0DRC/aUFZ7U5sLmPbd3eR3vZdk1hoBaXRNED8XrOLz+bAGlBQxVpBaRILraA0mgZIYJKExebEnpQGgLckP5YiaTRRR0+S0GgaIMp7oovPbjcsKE+J/g5Kk1hoBaXRNECUL6CgHLhshgXlK9FdfJrEQisojaYBEjpJwpVkzOLzl2oFpUks9BiURtMA8ZsWlM3uJMlpp0g5UXqpI02CoRWURtMQ8Z7o4kt2WCnCidIrSWgSDK2gNJoGSGAWn83uJNluo0g5Eb0WnybB0ApKo2mA+DzGBoVic5LksFKESysoTcKhFZRG0wARtzkhwpmGw2ahBCcWrx6D0iQWWkFpNA0Qi8dURg7jG6hSiwurtziGEmk00UcrKI2mAWL1FODFCjYnAKWShM2nu/g0iYVWUBpNA8TmLaREkkAEgFJrMg6toDQJhlZQGk0DxOYtotSSFDz3WJNx+HQXnyax0ApKo2mA2L2FuK3JwXOPLQWXX1tQmsRCKyiNpgHi8h3HY28SPPfZknHgBp83hlJpNNFFKyiNpoHh9vpp7j+G29Uy6Oazp5ieessNTeKgFZRG08A4VuTmFMnFl9oq6OY3t9xALxirSSBqpaBEZI6IHBSRDebv3BC//yciu0Rkh4iMr72oGo0G4Mejx2giRVjSWp9wNL+HQi8Yq0kgorHdxqNKqYdDHUSkNzAd6AO0BT4Wke5KKV8U0tNoGjWH92wBoEm7HkE3cRp7QuHWFpQmcairLr5JwBKlVKlSag+wCxhaR2lpNI2K4oOGgsrolBV0E6cxBuXT275rEohoKKjZIrJJRJ4TkWamWztgf0iYA6ZbBUTkGhFZKyJrDx8+HAVxNJrExvHDWopIwnbKCQvK4jIsKHdRXqzE0miiTrUKSkQ+FpEtYX6TgKeBrkB/4BDwSE0FUEr9Uyk1WCk1uGXLltVfoNE0YvIKSsgq+i8H0weD9UQPvdVlTDn3FB2PlWgaTdSpdgxKKXVWJBGJyALg3+bpQaBDiHd7002j0dSCrz5YzATJYf+g6WXc7UmGBaUVlCaRqO0svjYhp5OBLebx28B0EXGKSGegG7CmNmlpNI2dH376md6bH+CQrR0dfjGtjJ892bCgvCV6koQmcajtLL4HRaQ/oIBs4DcASqmtIrIM2AZ4gd/qGXwazcmTcyyHI/+cTG8Oc3TS62C1l/F3JqXiU4K/RFtQmsShVgpKKXVFFX73AffVJn6NRgOb1q4i5d3r6O0/wO6Rj9Aj88wKYZKdNgpx4dcf6moSiGh8B6XRaOoAt9vDf1/6M7/YN598SxP2TniBHqefHzZsssNKIUmoUj3NXJM4aAWl0cQh2d9tpXDp1YzxbmNz+mi6zFxA12atKg2f7LBRqFwk1fGHun6fn73793Js/1a8+Uex4CO1WWvadO5J01adg/tTaTTRQCsojSaOUEqxcvmzDFp/FxkibB76AJnn/Kbahj/ZYeUQLpLrYKmjY3n5bPpsGZbd/+G0/DV05iidw4Q7LBkcajYEZ49f0mnYr3Cmt42aDEoplDIGuy0CohVho0ArKI0mTsg7XsA3z17P2OPL2eXsRfqVL5HZrltE1yY5rBSqJCye6CgopRTr16/l+OdP0i/3Y0ZLAfmksKfJYH7qcDop7XriTG+DHwu5Px8k/+B27Ae/ptvR/5Lx1Qfw1W3sd3ThWOtR2DoOoUmbbiQ1a4PT5aLE46e0IJfigmMUHT9KSd5hvAVH8RcegaIcbCXHcLhzSfbmkuI/Tro6TpoUo5SgEDwICgtuseHBjkfseMSBV+x4xYHPYvz85q8ktT29L/kbqU0zopI3mvqj8SgopSh1l1BUVILyuVE+D1hsYLVjc7iw2x3YrFbsVtFvZ5p6Z/eOTXiWXMlY9T2bT72cPlf8A4vdGfH1yXYrhbiwems3i08pxVdffoZa+Qinl36JR2x813w0ecOvpNPgc8myhmkyeoPxlQkUlbpZ882X5G76gBY/raLv3pdx7HuhTPDUKtIvxMVxaUKRrSklrnSOOjrzs6s5HlsKCFhQKOXH7/OCz4N4SxCfG4uvFIvfjcXvweovxer1YFcF2PweeuV/Rc5jn5J34QLaZY6pVf5o6peEUlB5x46w66t3KP35O+y52SQV/0CS5xhN/Hk0Vcdxio+qHnm3slKEDTd2PNjwYsMj9hP/xYYPO16LHUEQMbsbUFjMhyeAKAUoxHQL+EhIGKXKnleOIqJg1cVRY5/oouorocrSj2pk0b2Zjr59+MXC92ctIHPkxTW+3ma1UCxJ2L2HTlqGzdu3cWT5Hxlb8ikFJLOt6yxOO+82+jZrU/3FJslOB0NPHwunjwXgaE4OB3ZvpuTnXajCY/g8pTisYHE1wZLUFFdac1LSTyEtozVNm51CisNFyknfQXi++e9/aPXRdbR6bTJfrZ5B78l30LRF9d2Pbo+Pw4d/JOfHvRQc3ktpzkFU3g/YCg+R6j5MU+8RnP5ibMqNQ3lw4MaGHx8WFIIPC34s+BH8YsGHFT/mf/NcYcEnhrtfrPixBv8HunVFoPwrc8V2o+y5hNTP6toYQZUJUT58mfNyUe11dGX87YurjL82JJSCyv0xm0FrbgLgCOkctbWi0NWGHGdfPK7mWJypWO0OlMWBslixKB/i96J8bsT84XMjfo9x7vdg8Xuw+Iw3M5vy4PS7sfrdKBR+JSf+q1B1ZPxXCJiVFU4MIwTOK9Q6E5GQMCdcqzyN0OskqDy2qKZTD/dTXTyVG851b1Hvtv+CNlP+TpdTe1QfuBJKLUnYfTXf9v3Y8UL++9LdnPnzi3QXxfau/0e3C++ib0qz6i+uhozmzcloPhoYXeu4TpaBvzibH0/7kg0vX8/pBxfhfuIltrn6UJDeE29yK6w2G353Cdbio1iKj+AqOUxTz2FaqqO0E0+ZRUT9CLnSlFxrC/IcrfHaUsDmApsTn9muiFJY8CHKD8oPyof4zf+Bn9+HEPjvx6K8iPJjUT5syosoY2fkgJ5RSlVsE8pV2GA7Y/45ET6Migq5NtBWSbnzygj1U7akSsNFg4RSUG279mXXlA9o17k3LVKb0iLWAmk09YjbmoKjhgrqq69W0fSj3zFR7WZHizPpcPEj9GrVpY4kjB2tT2lF61teZ/e2b/h55bO0PLya3j++TaqUBMPkqyTyLOkU2JtzpEkffk5rjbVJO5wZ7UlreSrN2nQipXk7mtscNI/hvcQTmXUcf0IpKLvDxWmZp8daDI0mJvjtKdhL3ODzlllINhx5hSV88cLdnP3TQootKew/6xl6jJxe5TWJQNfeA+na+ykAlN9PSXEBpR4fSS4naa5k0mIsn6YsCaWgNJpGjSMVSgB3PiRV3j339f9Wk/zeDfxK7WRnxpl0uvIZ0pueUn9yxgliseBKaYIr1oJoKkUrKI0mQbC40uA4UFoQVkHlF5Ww8qV7+eUP/8RtcbF37BN0P+MK/XGtJm7RCkqjSRBs5pYbhFnu6KuvvyL1gxuZqHaws9koTp3xDB2bh91DVKOJG7SC0mgSBGvzTrAXin/6jqRWvQE49PNhNi35M2OOLsNtcZI9+jG6j5mprSZNg0ArKI0mQWjZtR/+b4SjO7/Cm96f796fR/8fljBe8vj2lAl0uewxOqVH/k2TRhNrtILSaBKEgae1ZxX9OWPL0/g3z6eTKL5LHYz/V/fSs9eIWIun0dQYraA0mgShictO6sXzWfHZ46Q1aUqnkdPo1mVArMXSaE4araA0mgRiYJ+e0OfpWIuh0UQFS6wF0Gg0Go0mHFpBaTQajSYuERXrJaZDEJHDwN4oRNUCOBKFeOoDLWvd0ZDkbUiyQsOStyHJCg1L3mjJ2lEp1bK8Y1wpqGghImuVUoNjLUckaFnrjoYkb0OSFRqWvA1JVmhY8ta1rLqLT6PRaDRxiVZQGo1Go4lLElVB/TPWAtQALWvd0ZDkbUiyQsOStyHJCg1L3jqVNSHHoDQajUbT8ElUC0qj0Wg0DRytoDQajUYTlySUghKRCSKyQ0R2icidsZYnFBHpICKficg2EdkqIjea7nNE5KCIbDB/58Za1gAiki0im0251ppuzUXkPyLynfm/8q1b60/OHiH5t0FEjovITfGUtyLynIj8LCJbQtzC5qUYzDXr8SYRGRgHsj4kIt+a8rwpIummeycRKQ7J4/n1KWsV8lZa9iLy/8y83SEi4+NA1qUhcmaLyAbTPR7ytrJ2q37qrlIqIX6AFdgNdAEcwEagd6zlCpGvDTDQPE4DdgK9gTnA72MtXyUyZwMtyrk9CNxpHt8JPBBrOcPUgx+BjvGUt8AZwEBgS3V5CZwLvA8IMBz4Og5kHQfYzOMHQmTtFBoujvI2bNmbz9xGwAl0NtsMayxlLef/CHB3HOVtZe1WvdTdRLKghgK7lFLfK6XcwBJgUoxlCqKUOqSU+sY8zge2Aw1xS9NJwAvm8QvABbETJSy/BHYrpaKxIknUUEqtBHLKOVeWl5OAF5XBaiBdROptI6dwsiqlPlJKec3T1UD7+pKnOirJ28qYBCxRSpUqpfYAuzDajnqhKllFRICLgVfqS57qqKLdqpe6m0gKqh2wP+T8AHGqAESkEzAA+Np0mm2aw8/FQ5dZCAr4SETWicg1plsrpdQh8/hHoFVsRKuU6ZR9wOM1b6HyvIz3ujwL4y05QGcRWS8in4vIqFgJFYZwZR/PeTsK+Ekp9V2IW9zkbbl2q17qbiIpqAaBiKQCrwM3KaWOA08DXYH+wCEMEz9eGKmUGgicA/xWRM4I9VSGTR833ymIiAM4H3jVdIrnvC1DvOVlZYjIHwEvsNh0OgScqpQaANwC/EtEmsRKvhAaTNmHcAllX67iJm/DtFtB6rLuJpKCOgh0CDlvb7rFDSJixyjkxUqpNwCUUj8ppXxKKT+wgHrsbqgOpdRB8//PwJsYsv0UMNnN/z/HTsIKnAN8o5T6CeI7b00qy8u4rMsiMhP4FXCZ2ShhdpUdNY/XYYzpdI+ZkCZVlH285q0NuBBYGnCLl7wN125RT3U3kRTU/4BuItLZfJOeDrwdY5mCmP3LC4HtSql/hLiH9s9OBraUvzYWiEiKiKQFjjEGybdg5OmVZrArgeWxkTAsZd5A4zVvQ6gsL98GZpgzooYDeSHdKTFBRCYAtwPnK6WKQtxbiojVPO4CdAO+j42UJ6ii7N8GpouIU0Q6Y8i7pr7lC8NZwLdKqQMBh3jI28raLeqr7sZyhki0fxgzSHZivGn8MdbylJNtJIYZvAnYYP7OBV4CNpvubwNtYi2rKW8XjNlOG4GtgfwEMoBPgO+Aj4HmsZbVlCsFOAo0DXGLm7zFUJyHAA9Gv/z/VZaXGDOg5pn1eDMwOA5k3YUxthCou/PNsFPM+rEB+AY4L07yttKyB/5o5u0O4JxYy2q6LwKuLRc2HvK2snarXuquXupIo9FoNHFJInXxaTQajSaB0ApKo9FoNHGJVlAajUajiUu0gtJoNBpNXKIVlEaj0WjiEq2gNBqNRhOXaAWl0Wg0mrhEKyiNRqPRxCVaQWk0Go0mLtEKSqPRaDRxiVZQGo1Go4lLtILSaDQaTVyiFVQViEgnEVHmXi2aBoqI3CAiP4jIxhikPUdEXq6HdGaKyKoq/FeIyNV1LUesEJFFIvLXmvpFWYYqy1pEskXkrLqWI5qIyDQRyROR/4pI2/pOXysoTVQRkfkiUmD+3CLiCTl/v/oY6oQ5wPVKqX4hcs4RkTkxkieuMF/EsmsY/jMRKRKRb6tqdEXkYrNxKxKRFTWUq9GUkYiMqUn+iEh/EVln5us6EelfRdjmIvKmiBSKyF4RuTTEb6yIbBaRXBE5aoYLbtGulFoKtDBPL675ndWOhFZQ2vKpf5RS1yqlUpVSqcDfgKWBc6XUOYFw9Vw2zYm/zQprTBzV51eA9Rh7Av0ReE1EWlYSNgd4DLi/fkSrW+KhDMwNWZcDLwPNgBeA5aZ7OOYBbqAVcBnwtIj0Mf22AeOVUulAW4z9nZ4OvVgp5cHYZy8jundSPQmnoEwz+g4R2QQUiohNRIabb3G5IrJRRMaEhF8hIn8XkTUiclxElotI80rivkpEtotIvoh8LyK/Kec/SUQ2mPHsNnchRUSaishCETkkIgdF5K+BnTKruI+uIvKp+VZzREQWi0h6iF+OiAw0z9uKyOHAfYnI+SKy1bzfFSLSq1z+/F5ENpmm+1IRcdU8p2tOJWWjROS0kDBlumNE5FdmnuaaZZhVwzQD+eyvJtztZvn8ICJXh8plyjRPRN41y/5rEekacu3jIrLfLPd1IjKqXPQuM5/zReQbEQm15O4060q+iGwTkckhfjNF5EsReVREjmJYgtXd78MickxE9ojIOeW8O5rx5YvIRyLSImwkVcffHRgI/FkpVayUeh1jY7op4cIrpT5WSi0DfqhpWmHSrrSMyoVLE8PCmysiYjq3EJH/mPf+uYh0DAlfafmJYcW9JiIvi8hxYGY1YjpE5EUzna0iMricf/8oPHtjABvwmDK2hZ+LsVHgmeUDirEb9hTgLqVUgVJqFcYGjlcAKKV+UkqFlo0PqJCnGM9P/Svn+t6hsR52gMzG2PWxA5AEtMPYafVcDIV8tnne0gy/AjgI9MXYlfV14GXTrxPGbpI283wi0BWjMowGioCBpt9QIM+M32Km29P0exN4xoz/FIwtpn9TzX2cZsblBFoCKzEqZMD/1xhvP8nAh8DDpnt3oNC81o6xTfcuwBGSP2sw3paaA9spt5Nnud00c6v4jazmHuYE8jJc2ZhuCjgtJMwi4K/m8QDgZ2AYYMXYWjobcNagPkwASoCUasL8CPQx8/PlULlMmY6aZWwDFgNLQq6/HOPt0gbcasblCskDDzDVLI/fA3sAu+l/kVkWFmCaWXZtTL+ZgBe4wYw7qYp7mGmm82szr67DUAqBTUlXYOxy2h3juVgB3F9JXE8BT1XiNxlj++9QtyeBJ6oph6uBFbV4riMpo7+a5bAmUIdC/PKBMzCep8eBVTUsvwvMMqqqDOaYde1cswz+DqwuV/8jffb+DdxZid/NwPthwt8aJuwAoKic2++Bd0LOT8V4nv3mvc4ME889wOdU8RzVxa/eEqq3GzIqwayQ8zuAl8qF+RC40jwu86ACvTHMYSvlFFSYtN4CbjSPnwEeDROmFVAaWrGBS4DPanhfFwDry7m9zYltrZ2m213AspAwFgwFPCYkfy4P8X8Qc/vuOiiLOVRUULPKhalKQT0N/KVc+B3A6AjTX2vG/7tqwj0H/D3k/DQqNn7PhvifC3xbRXzHgH4heRDaSFkwtvweVcm1G4BJ5vFMYF+E9zoT2BVynmzeQ+uQev6nEP/rgQ9OokyvCL0f0+0+YFE119VWQUVSRs9hdOXeVu7aRZR9oUjFsBQ6RFh+K2tQ3z8OOe8NFJer/7V+9jCe8SXl3BYDc8KEHQX8WM7t1+HKAkNp3gEMD+PXDKObzwdceLLlWNNfwnXxmewPOe4IXGR2EeWKSC6GZdCmkvB7Md50K3R/iMg5IrLa7F7LxWioAuE6YLyhlqejGd+hkPSfwbCkKkVEWonIErNL8DjGG2N5mRZgWH5PKKVKTbe25j0AoJTym/fXLuS6H0OOizAe2Ppif/VBgnQEbi1Xdh0w7jEShgDTgTkiYq8iXNtycoWTsdI8M7tMt5vdNrlAU8qWVTA+szwOBO5BRGaEdGHmYpRn2GsjICijUqrIPEwN51/+HmpAAdCknFsTDAulLomkjCZiWIfzw/iFlkEBxthYoAwiLr8IKJ/HLik7blXfZRBxWKVUDifGs8p3510FHAeaK6XeOAmZT4pEVVAq5Hg/hgWVHvJLUUqFDtp2CDk+FcPMPRIaoYg4Mbr/HgZaKWNQ8T2M7r5AOl2pyH4MC6pFSPpNlFJ9woQN5W/mfWQqpZpgdEME0kJEUjEGnxdiNMCBcbMfMBr2QDgx7+9gNelVQERGyYkZeOF+5cdaIkGVOy/CeNsP0DrkeD9wX7myS1ZKvRJRQsar31sYb39tqgh6CGgfct6hsoDlMfPgdowZTs3MepFHSFmFxiciFjOtH8xxkAXAbCDDvHZLuWvL51es2Qp0EZG0ELd+pntdEkkZLQA+AN4zx14IF958dppjlEEk5RePZZAVMr4GkEX4MtgJ2ESkW4hbVeVlw3h5Lq/UemH0+uSdnMgnR6IqqFBeBs4TkfEiYhURlxhTOkMr++Ui0ltEkoF7gdeUUr5y8Tgw+q8PA15zAHpciP9C4CoR+aWIWESknYj0VEodAj4CHhGRJqZfVxEZXY3caRhvP3liTPu8rZz/48BapdTVwLuceGtcBkw05bBj9KmXAv+tLqPKo5T6Qp2YgRfu90VN4wzDBuBSs2wmYIztBVgAXCsiw8QgRUQmBhpHMSYvLKrmHgKWZWUznMDIs6tEpJdZB+6qgfxpGONEhzEagrup+HAPEpELzbfSmzDKYzXGmKQyr0VErsKwoOIWpdROjDL7s/ksTcZoHF8PFz7wzGE0fBbzGnuIf7aIzIwg6UjLaDZGN/A7IpIU4n6uiIwUY6bbXzC6KfcTWfnFGyswutp+JyJOEZltun9aPqBSqhB4A7jXfH5GAJOAlwDMetnDbJdaAv/AGErIKReVHaPe1isJr6DMSjgJ+ANGJdyP0diH3vtLGP3UPwIu4Hdh4sk33Zdh9FFfijEGFPBfg2EGP4rxBvY5JyyZGRgN5Dbz2teo+o0ejEHJgWZc72JUMsCYLYgxaHyd6XQLMFBELlNK7cCwtp7AsALPA85TSrmrSS9W3IghYy7GFNi3Ah5KqbUY/eVPYuTbLsrOouoAfBlBGooq6rpS6n1gLvCZmcZq0yuSB/JDjLf2nRhdqyVU7BJajjEB4hjGGM6FSimPUmob8AjwFfATkBnh/dQpYnzLFq6bLMB0YDDG/dwPTFVKBZTsZSIS+nZ+BVCMMZ44yjxeYIZ1YExOWE01RFpGptV8DUY36nI5MUvuX8CfMbr2BmE8IxBZ+dU7IvK+iPwhnJ/5LF+A0a7kArOACwLPuIj8Qcp+c3g9RtfnzxifCFynlAqUUTuM+8/HGM/2Y0yEKY+VambC1gWBGT6NFjE+jntZKfVsrGXRRI7ZuG0EspTxnUZVYX8AbldKRbSigxjT8rdgTDzx1lpYTVhEZCTwW6XUJSdxrS6jesK0RFcBC5VST9Vn2glvQWkSE6WUWynVqzrlZHInRpfUusoCiMhks7ukGfAAxjRc3fDVIUqpVTVRTrqM6h8RuRjDsvwJo/eoXtEKKoZI2WWBQn9Vda9oaohS6kWlVDel1KAqgv0GowtkN0b//nVVhI0Jur7EvozMrrdwZRC2O66ho5RappQ6RSl1rlLqSPVXRJdG38Wn0Wg0mvhEW1AajUajiUtivvBhKC1atFCdOnWKtRgajUajqUfWrVt3RClVYcHhuFJQnTp1Yu3atbEWQ6PRaDT1iIjsDeeuu/g0Go1GE5doBaXRxBl+v+L9zYfw+fUEJk3jRisojSbO+M/X3zD8tcH8+6MPYy2KRhNT4moMKhwej4cDBw5QUlISa1E0DQiXy0X79u2x26taxDw+se1ZQTMp4LTvnoMJE2ItjkYTM+JeQR04cIC0tDQ6depE2cV7NZrwKKU4evQoBw4coHPnzrEWp8ZY7ObycX69SIKmcRP3XXwlJSVkZGRo5aSJGBEhIyOjwVrdDn8xAF5f+QX1NZrGRdwrKEArJ02NadB1xrScbL6GqWA1mmjRIBSURtOYUH7DcrL5imMsiUYTW7SCigAR4dZbbw2eP/zww8yZMyd2AlXDihUr+O9/a7w/YZANGzZw+umn06dPH7Kysli6dGkUpdNUi2lBOfxF1QTUaBIbraAiwOl08sYbb3DkSHQX81VK4fdHfw+w2iqo5ORkXnzxRbZu3coHH3zATTfdRG5ubvQE1FRJwIJyaAtK08jRCioCbDYb11xzDY8++mgFv8OHDzNlyhSGDBnCkCFD+PJLY0PUOXPm8PDDDwfD9e3bl+zsbLKzs+nRowczZsygb9++7N+/n9tuu42+ffuSmZkZtFZWrFjBmDFjmDp1Kj179uSyyy4j3Mrzc+fOpXfv3mRlZTF9+nSys7OZP38+jz76KP379+eLL76oUsYrrriC008/nW7durFgwQIAunfvTrdu3QBo27Ytp5xyCocPH66Q9quvvkrfvn3p168fZ5xxBmBMarnqqqvIzMxkwIABfPbZZwAsWrSICy64gLPPPptOnTrx5JNP8o9//IMBAwYwfPhwcnKMHaYXLFjAkCFD6NevH1OmTKGoqKIVMXz4cLZuPbFp65gxYxJriaxAF1/cboKs0dQPcT/NPJR73tnKth+ORzXO3m2b8Ofz+lQb7re//S1ZWVncfvvtZdxvvPFGbr75ZkaOHMm+ffsYP34827dvrzKu7777jhdeeIHhw4fz+uuvs2HDBjZu3MiRI0cYMmRIsLFfv349W7dupW3btowYMYIvv/ySkSNHlonr/vvvZ8+ePTidTnJzc0lPT+faa68lNTWV3//+9wBceumllcq4adMmVq9eTWFhIQMGDGDixIm0bds2GP+aNWtwu9107dq1wn3ce++9fPjhh7Rr1y5oYc2bNw8RYfPmzXz77beMGzeOnTt3ArBlyxbWr19PSUkJp512Gg888ADr16/n5ptv5sUXX+Smm27iwgsv5Ne//jUAf/rTn1i4cCE33HBDmXSnTZvGsmXLuOeeezh06BCHDh1i8ODBVeZ5gyLQxaci2XFeo0lctAUVIU2aNGHGjBnMnTu3jPvHH3/M7Nmz6d+/P+effz7Hjx+noKCgyrg6duzI8OHDAVi1ahWXXHIJVquVVq1aMXr0aP73v/8BMHToUNq3b4/FYqF///5kZ2dXiCsrK4vLLruMl19+GZst/PtGVTJOmjSJpKQkWrRowdixY1mzZk3wukOHDnHFFVfw/PPPY7FUrCojRoxg5syZLFiwAJ85JXrVqlVcfvnlAPTs2ZOOHTsGFdTYsWNJS0ujZcuWNG3alPPOOw+AzMzM4L1t2bKFUaNGkZmZyeLFi8tYSgEuvvhiXnvtNQCWLVvG1KlTq8zvBodpQdkj2ixYo0lcGpQFFYmlU5fcdNNNDBw4kKuuuiro5vf7Wb16NS6Xq0xYm81WZnwp9JuclJSUiNJzOp3BY6vVitdb8cPNd999l5UrV/LOO+9w3333sXnz5gphKpMRKk7HDpwfP36ciRMnct999wWVaXnmz5/P119/zbvvvsugQYNYt67SHdUr3I/FYgmeWyyW4L3NnDmTt956i379+rFo0SJWrFhRIZ527dqRkZHBpk2bWLp0KfPnJ9iGsuYu5i5KQCmI8pT5PUcKaZHqIM3V8FbZ0DQutAVVA5o3b87FF1/MwoULg27jxo3jiSeeCJ5v2LABMLYO+eabbwD45ptv2LNnT9g4R40axdKlS/H5fBw+fJiVK1cydOjQiOTx+/3s37+fsWPH8sADD5CXl0dBQQFpaWnk5+dXKyPA8uXLKSkp4ejRo6xYsYIhQ4bgdruZPHkyM2bMqNI62b17N8OGDePee++lZcuW7N+/n1GjRrF48WIAdu7cyb59++jRo0dE9wOQn59PmzZt8Hg8wXjCMW3aNB588EHy8vLIysqKOP4GQWAMCj94o9vN5/Mr/vGPv/Hyc3OrD1xD8oo9LFj5fZ0scrtubw6bD+RFPV5NfKMVVA259dZby8zmmzt3LmvXriUrK4vevXsH3+anTJlCTk4Offr04cknn6R79+5h45s8eTJZWVn069ePM888kwcffJDWrVtHJIvP5+Pyyy8PTkj43e9+R3p6Oueddx5vvvlmcJJEZTKC0UU4duxYhg8fzl133UXbtm1ZtmwZK1euZNGiRfTv35/+/fsHldrdd9/N22+/DcBtt91GZmYmffv25Re/+AX9+vXj+uuvx+/3k5mZybRp01i0aFEZy6k6/vKXvzBs2DBGjBhBz549g+5vv/02d999d/B86tSpLFmyhIsvvjjiuBsM/hMrSHhK8qsIWHNyCt084XiS636+N6rxAjz23no6/2cW61d/GvW4H39mPh0W9IISraQaExJuZlisGDx4sCo/G2v79u306tUrRhIlNnPmzCkzmSLRaKh154t5v2HU4SUAHL/2G5q0rjhB5WTZn1NEh7ltjJM50W3s73l2GX8+8GsKUzuS8vtNUY17+92Z9LLsg1kfwqnhu5w1DRcRWaeUqjDTSVtQGk2cISEWVElBdJWIxxf97+4CpNqMl12LpzDqcbsDw+VFOVGPWxO/NKhJEproEs+rYTRqQhSUuyi6n1V4QxWU3w9hZmeeLMlWY3KHxRv9NQS9WAHwl+brt+pGhC5rjSbeUKEKKrpjUG5PyNT1KFs6DsxFbv3RXwEjoKBKC3OjHrcmftEKSqOJM0TV3SQJn/fE6hSqNLpx4zOUn1VFd5sQpRReFVBQ0bUoNfGNVlAaTZwRqqB8xVFWUO4T09ZLC6Mbt/LWzdJModPWfcVaQTUmtILSaOINv5cSZXxE6y2pelWSmuIN+a6quDC6EzCUr26WZvL4FDYxlLavRCuoxoRWUBHy1ltvISJ8++23lYbJzs6mb9++dSrHhg0beO+99076+sCHvb1796ZPnz48/vjjUZROEw1E+ckXY7WRaHfD+TwnrJzSKE/ACHTxRRu3z4/dHN9SWkE1KrSCipBXXnmFkSNH8sorr4T1D7cMUU3xRbDFd20VlM1m45FHHmHbtm2sXr2aefPmsW3btpOOTxN9RPkokWT8SlCl0Z3I4PecsHLcUR7PKdPFF8VtZDw+PzaMZyPa+aGJb7SCioCCggJWrVrFwoULWbJkSdB9xYoVjBo1ivPPP5/evXsDhqK67LLL6NWrF1OnTg1uF/HJJ58wYMAAMjMzmTVrFqWlRkPRqVMn7rjjDgYOHMirr75aJt3y21m43W7uvvtuli5dSv/+/Vm6dCmFhYXMmjWLoUOHMmDAAJYvXw4Y21tMmjSJMWPG0K1bN+655x4A2rRpw8CBAwFIS0ujV69eHDx4sMI9f/7558FVJAYMGEB+fj5KqUq3Bhk9ejSTJk2iS5cu3HnnnSxevJihQ4eSmZnJ7t27AXjnnXcYNmwYAwYM4KyzzuKnn36qkO706dN59913g+czZ84MLgzbWLAoH8pipRAXuKPbIIdOkvBEeXxLfCEKKoozBD0+P3ZTQYk7ul2emvimYX0H9f6d8GPFxVBrRetMOOf+KoMsX76cCRMm0L17dzIyMli3bh2DBg0CjHX2tmzZQufOncnOzmbHjh0sXLiQESNGMGvWLJ566ilmz57NzJkz+eSTT+jevTszZszg6aef5qabbgIgIyMjuG5fKOW3s3A4HNx7772sXbuWJ598EoA//OEPnHnmmTz33HPk5uYydOhQzjrrLMDYKmPLli0kJyczZMgQJk6cWGZbiuzsbNavX8+wYcMqpP3www8zb948RowYQUFBAS6XizfeeKPSrUE2btzI9u3bad68OV26dOHqq69mzZo1PP744zzxxBM89thjjBw5ktWrVyMiPPvsszz44IM88sgjZdINbKUxceJE3G43n3zyCU8//XSEhZkYiPKhxEoRTsQT3QbZX0ZBRdeCEn+IgnIXgjMtKvF6vCrYxScevctwY0JbUBHwyiuvMH36dMB4ww/t5hs6dCidO3cOnnfo0IERI0YAcPnll7Nq1Sp27NhB586dg+vxXXnllaxcuTJ4zbRp08KmG247i/J89NFH3H///fTv358xY8ZQUlLCvn37ADj77LPJyMggKSmJCy+8kFWrVgWvKygoYMqUKTz22GM0adIkbNq33HILc+fOJTc3F5vNVuXWIEOGDKFNmzY4nU66du3KuHHjgLJbaRw4cIDx48eTmZnJQw89FHYrjXPOOYfPPvuM0tJS3n//fc444wySkpLC3nuiIsqHHyvFkoQlyg1yqILyR3kKe5kxqChafh7/iS4+i1crqMZEnVtQIjIBeBywAs8qpao2V6qiGkunLsjJyeHTTz9l8+bNiAg+nw8R4aGHHgIqbp1R2fYVVVHZ9huRbGehlOL111+vsGL4119/XaksHo+HKVOmcNlll3HhhReGTfvOO+9k4sSJvPfee4wYMYIPP/ywynuIZCuNG264gVtuuYXzzz+fFStWhF3JwuVyMWbMGD788EOWLl0afDFoTIjy4xcrXnFh9UZ7DCpEQUV5PMcSakFFcXKHx+fHac7is2oF1aioUwtKRKzAPOAcoDdwiYj0rss0o81rr73GFVdcwd69e8nOzmb//v107tyZL774Imz4ffv28dVXXwHwr3/9i5EjR9KjRw+ys7PZtWsXAC+99BKjR4+uNu1w21mU30pj/PjxPPHEE8Ht4NevXx/0+89//kNOTg7FxcW89dZbjBgxAqUU//d//0evXr245ZZbqkw7MzOTO+64gyFDhvDtt9/WamsQgLy8PNq1awfACy+8UGm4adOm8fzzz/PFF18wYcKEiONPFCz4UGKh1JKELcoNst8XqqCi231o8deRBRXSxWfzaQXVmKjrLr6hwC6l1PdKKTewBJhUx2lGlVdeeYXJkyeXcZsyZUqls/l69OjBvHnz6NWrF8eOHeO6667D5XLx/PPPc9FFF5GZmYnFYuHaa6+tNu1w21mMHTuWbdu2BSdJ3HXXXXg8HrKysujTpw933XVX8PqhQ4cyZcoUsrKymDJlCoMHD+bLL7/kpZde4tNPPw1OggjMCpw/f35wK47HHnuMvn37kpWVhd1u55xzzqnV1iBgrP130UUXMWjQIFq0aBF0X7t2LVdffXXwfNy4cXz++eecddZZOByOiONPFCzKh1+suC3J2KPcICtPuXGiKGIN2QE4msrPHTKLz6EVVKOiTrfbEJGpwASl1NXm+RXAMKXU7JAw1wDXAJx66qmD9u7dWyaOhrplQqxZtGhRmckUjZGGWnc2/3UEDquFo5JOR88e2t21JWpxf/Dmi0zYeIORTouJZM7+V9Ti/tdfZnCpz5hFWnrBQpz9K9/ssias/v4ovV/oSxMpwo9guTsnqovcamJP3G63oZT6p1JqsFJqcMuWLWMtjkYTcwRzDMqajENFd+HV0C6+aG+LYQmxoKK5CrvXp05MkkCBN/qL0Wrik7pWUAeBDiHn7U03TR0zc+bMRm09NWQsyhiD8tmTSYr2yuBeQ4kU4Yr6hAOb8uI2F3WN5jdWxoe6XvKVOZszyl2TmvilrhXU/4BuItJZRBzAdODtmkYST7v+ahoGDbnOWJQfJTb89hRcFEM078W0oAokNeoTDqzKTb4Y3z55o6ig3F4fDvGRL6mmg/5Yt7FQpwpKKeUFZgMfAtuBZUqpih+/VIHL5eLo0aMNusHR1C9KKY4ePYrL5Yq1KCeFBR9+saDsKdjwgzd6i7Aq81ulQmta1Cdg2JSXUksSpcqGL4rfWHkDVp/F/PBXW1CNhjr/Dkop9R5w0ovHtW/fngMHDnD48OEoSqVJdFwuF+3bt4+1GCeFRflBLChHwGIoBHuUlK2poIqtTWjm/Tk6cZpYlRe/2CnEFdVZfF7z4+ISWxq40QqqERH3Sx3Z7fYyKzVoNImOFR9+sWFxGh9wu4vzcaRkRCdyX6Cxb4LTvbeawDXDpjz4rQ6KvK6odsP5zF2A3fYmpoLSXXyNhZjP4tNoNGWx4EeJBTEtqJJo7tvkP9HYu1RJ1KL1+RUOvCiLnUIV3UVuAwvc+hzGklwqyh8Ya+IXraA0mjjDWCzWhtVlKKiobnNuNvZeRxOSKYnathgec88msTkowoUlilZOYHkmnysdMCxKTeNAKyiNJs6w4geLBZvLmBTgjuKq46KMJYO8jnTDIUqL0Xr9Crt4EauDAuWK6qrjPnOSBK7mALiLtIJqLGgFpdHEGcZafDZsSYYFFdUG2efGj4DL6C6LljXi8xldfJgWVDQXufWZsxgtKc0A8EZ7FXZN3KIVlEYTZ1jNMSh7clMgug2y+Dx4sWIx92oqLoiOdebx+40xKKsDtyUJWzRXezC7JR3JTfEpwVusx6AaC1pBaTRxhkX5URYbruTAR6/Ra5Atfg9e7MHxreIojW95fcaK48pix21NwuGLngUV2MPK6UqiEBc+PUmi0RD308w1msaGDR+IFWdKYNZaFC0ovxef2E6Mb0Wp+zAwSQKrHY/VgSOKFpQyu/jsThdFUf7GShPfaAtKo4kzbHjxW+wkJafiVxLVBlmUG5/YsJvjW6VRmoARmCShrE68tmQcqhT84XeBrikBC8rldFGoXHqaeSNCKyiNJs4IdJWlOB0U4YzqN0VWvwefWHGY3YfRWtTV6/PjwANWOz5bsuEYJbkDCsrhdFKME9ErSTQatILSaOII5fdjx4ey2ElyWCkkuh+9Wv0evOLEmWx0H0ZrUVdPYBaf1YGyGytgRGvFBxW0oIwxKInyNiGa+EUrKI0mjvD7fVhEoSx2HDYLRVFukG3KjdfiICnFmCHoK4mOEvGaihWrE3/oGoJRQJnLMyUlJVOknFiivE2IJn7RCkqjiSN8HmNCgLIa85dKJQmrJ3pjLla/G684cKUaXXzRGt/y+o1ZfNjsiCO6FlRgmrnd4aRYXNii+BGwJr7RCkqjiSM8bnPHW6sDgFJLUlQ3FrQrNz6Lg9SUNPxKUFFSIm6PF7v4sFidiLNuLCisDtyW5KjvY6WJX7SC0mjiCK/HWMDVYiootzUJWx0oKKc9uuNb7hJjWrnF7gh+YxW16fHmFiHGFPbkqO9jpYlftILSaOIIj9vcnNBmKCivNRm7L3rfFNmVB5/FiYhQLC7EHZ3G3lNqxGN1JmNxRXeGICEWlNeWhNMf5V2GNXGLVlAaTRzhMVfuDlhQXluK0SBHCTtu/IHuQ3FhidIEDG+pEY/VkYI92grKH7CgHPisKVjxnVBamoRGKyiNJo7wmhaUxWYHwG9PwaWi2cXnwW91AlAsydiitKirr+SEBWVPju4qFVafuW+VzYHfHt1vrDTxjVZQGk0cEZjFJzZDiShHMkmURKVLy+9X5se0Rtyl1uSorZnnMxWG3ZVCsrlEkydKq1QEuzjtKVH/xkoT32gFpdHEEd5AF59pQWFPxYYfzPXoakOJ14cTN9gDCioFpy86Db3fHMuyu1JJSUqiRNmj9hGww19MqbjAYgFnQEFpC6oxoBWURhNHeE0Lymo3xoksruitmVfk9uHEg9hcALhtabj80ek+9JUaVo7dlUyqy0ZhFBd1tfmK8VgNmQlMYY/iArqa+EUrKI0mjgh08VnNLj6r2SBHY9+m4lIvLtyIPclIy5ZCUpQUlDI/nrU5U0hz2ShSLvyl0bFyHL4iPFZj7EmcRvehVlCNA62gNJo4IrC9udVudPFZzRlxxfl5tY67uPA4VlGIy1zmyJFGCkXRGd8yp5ljTyLNaaMAV1TGiTw+P05Vis9qKFVLQPbi2ueHJv7RCkqjiSO85tp4drNrLzAjrrio9g2yu/AYAJJkNPLKkWbsPeUtqXXcwU0E7cmkuezGGoJRGCcqLPWSTAl+c3KE1VzktrRQK6jGgFZQGk0c4SsxuvKc5mKujqRAg1z7Lr6SfENB2cyt5DG3ffdGQflZSoy4SWqGy24schuNb6wKSr0kSyl+m2FB2U3ZvdqCahRoBaXRxBE+c3t3V6qpoKK4b1Nxfg4AyU0yABBTQRUXHKt13I7SY3iwgyMFEcFtSYrKN1bHi700Ix9/UnMjHVNxe7UF1SjQCkqjiSNUqWEpJZsKyhX8pqj24zkBCyqlidHYB7r6Sgtyax2305NHkTUNRABwW6OzqOuRglIy5DjW1JYApDgdFCiXHoNqJGgFpdHEEVJagF8JSaZiCiiqQNdfbfAVHgEgtVkrAGxRHM9xefMotjUNnnutyTiisIbgkbx80qUQR1ND5hSnjQKS8OtZfI0CraA0mnjCXWBMMLBYAUhJMxp9fxQ2FrTm/2D8b9oWODGe466lgirx+Ej35eBxtQi6+eypUfnGqvDYTwAkp5sKymGjQCVBFBS2Jv7RCkqjiSOkNJ8iSQ6eJyWnGvs2ReGbIkvBIfKkCdiNj16jNeHgUF4J7eUw3qanBt189lTseGq9Aobn6F4AnBkdAUh2WsknGXFrC6oxUCsFJSJzROSgiGwwf+eG+P0/EdklIjtEZHztRdVoEh9n6RHybc2C52KxUixOiMKuuqlFB8lztAqeu1LSAfDWcpWKQ4dzaCl5WJt3Crqp4IoPtZPbe3iXcdC8CwCpThv5KgmLVlCNAlsU4nhUKfVwqIOI9AamA32AtsDHItJdKeWLQnoaTcKS4j5CoatlGbdikqCW+za5vX5O9e0lJ2N40M2Vlg6AqmV32dHd6wBocmrfoJtyGDMEKT0OKRknHXdy3nd4xY4t3bDOkh1WCkjC6j588gJrGgx11cU3CViilCpVSu0BdgFD6ygtjSZhSPfnUOo6pYxbqcWFtZZTtnfu+o42koO0zgy6pSQlU6pstVZQ3n1rAEjv9ougW2DFh9osSXQ4v5Senm0cSesV3MAx2WEjX0VvmxBNfBMNBTVbRDaJyHMiEuibaAfsDwlzwHSrgIhcIyJrRWTt4cP6rUjTeCkqzCdD5eFPa1vGvdRS+wb5xw0fANCq37igW4rTRj7JtVIiPr+i+c9fc9TWCtJaB92tSYYFVVqLj4BXb99DpnyPtePpJ+K1CCWWZBxevd1GY6BaBSUiH4vIljC/ScDTQFegP3AIeKSmAiil/qmUGqyUGtyyZcvqL9BoEpQfdm/GIgpH615l3D3WZOy1/KYodfe/ybE0I6PLwKBbkt3oLqvNeM7a7bsZrjaQ23FCGffABIySWnxj9dPXy3CKl4zBU8q4l1pTcPqLwK9HDBKdaseglFJnRRKRiCwA/m2eHgQ6hHi3N900Gk0l5O7bAkCzjn3KuHutydg9R0863o0b/scQ9//Y1uUqmltOvJNaLEIRSdhqMQHj0EePMky8tD/z12XcAwrqZD8C3nkolzMOL+FoamcyTi07OuCxp4IbYzFaV9PwEWgSgtrO4msTcjoZ2GIevw1MFxGniHQGugFrapOWRpPouH/YgkdZadOlrILy2ZNx+k/uo1efz0/pe3+kRJycdt7tFfyLLSnYTrK77Iuvv2Zc7qvsbvFLnO0yy/gFliTynEQXn1KKr5Y+QHfLQRxn/iG4OkUAj03vCdVYqO0svgdFpD+ggGzgNwBKqa0isgzYBniB3+oZfBpN1TQ9/A177F3p7kop4+63JeNSJ7fi+NoX72SY+2s29b6NrOZtKviXWpKxe2u+Ft/m7B9Je++3+C022l/6eAX/pFRjONpzEt9YvfreB0w7toADp5xB+0EXVfD3200FVXIctAGV0NRKQSmlrqjC7z7gvtrEr9E0FkpLS+ji3sHm1hdU8FOOVFIoxudXWC1S8eJKWP/2Uwzb+wyrm4xn2NQ/hE/XmoLTd6BGsu47nM/hF65gjOwi/1fPktq8Q4UwKSmpeJUFXw2/sfrv+o2MWnM9JbamtLvinxWsJzD2sTKE1xZUoqNXktBo4oDvN39FkrhxdD69gp84U0mmhMJST8Txbf1iOX3X/YlNjgH0v/4FxBL+UXfbUnH5Ip8heKyglA3P/B9nqjUcHXkvTQdNDRsuLclOAUmoksiVyPrv9tL8rctpKsU4r3wdaVLR4gOC24RoBZX4aAWl0cQBx7avBKBjvzMr+FmcqdjET0FhZIpk9+av6fjxb9hvbU/H617H5UqqNKzXnkqSimxX3RKPjw+fvoXzvR9yKPM6Wp71u0rDppqLuka6Zt6ug4fxLp7OaXIQ95RFJJ3av9KwJ7Z91yuaJzpaQWk0cUDSoa84IG1o1qZTBT+rubtucUH1DfKhfbtIfX06RZJE8lVv0rRZ1as4+Oxp2PFWu2aez6947Zl7mV74Mgc6TqbNhX+vMnyqy1iSKJI18w7m5HNw4aUMYRt54+eSnjmhyvCWpMg/An7hvc/509/+SmGpt9qwmvhDKyiNJsb4vV66Fm3ih/SBYf2tZoNcVI2Cyj12lKJFU0ihmKKpS2jdoWu1aStH9TPilFK8+vLTXHL4cfZnjKT9jAVhx4ZCcdqsFEky1mqmsOcUlLLx6ZmM9q/hx1/cQ8bpl1crc+Aj4OpWwFi+8n/88utZ/NX9EOtWf1ZtvJr4Ixpr8cUdBfl5HDnwHcd/zKYo9ydUUQ5SnAPuQpTPg0X5sCgvSiz4xYZXHGC1o6x2lNUJFgditYHNgVgdiNWOmMcWuwOL1YHVasFmESyiQBkPsaAwTwB1wk0pwnWgBF1DPI2elrKhVcVgZWKpMlzQrWK48LFUTLe6NFTFCwhzaSV5EE4mVcGtXI5UKmt19xZO1nBO4UosvKxVpVvxBsrIYp7Yi35kPIWojiMrRgLYktMBcBfkhPUHKCkpIfvpKfTx7WfX2c/Rq++wSsOWkdEZsmZeavgP5f/9zutM3n03h1J70+E3y8BqjyjuEktyld9YFZZ6+WTebC7yfMzBrNm0G3dTRPHakprgV4K/+HilDdin63fS8+OryLAWUaRc8PUzMPrsiOKvirzcHI5kb6Hwh28pPXYIb8Fh7KU5WL3F4PMgfi8W8eOzOPBZnPgsTvxWJ9icKJsLzJ/YXVjsSYjdicWejM3pwmIu5xSkQqUy2pSgn1KA3zxUCGadUyr4v2xYs0aax5VR4dWjipcRryuDoWPOqybXTp6EUlB7tn5Nk1cvIoM8Usv5+ZRQjAuvWPFhxYsVARx4sOHFgQcHuhtAExs8ykrHweG7tpxp5pTtSj569fn8rHvySka417Nx0H30G3lBxOkGxnP8JcfDdqd89sUKzlh3A8ccrWl73dvgSAkTKjyllhTs3iNh/dxeP289/QcuK17GgS7TaT/5rxHHm+pyUIALR3Fe2AZs7a5DpL41gy6WQ/imL2PX50sYdvANtu38jt7du0Uuv8fLt5vXkrvtE9IOraZD4RZaklNmZrtbWcmVphRLEn6x4hcbfgSb8mBXbhzKjQM3TuXGicd4oU0gvla9QCuoyGh2yqnsbDaKXekdsWV0JqVlR5q2bEtKs1NIbZJBqtVadQRKgc+D8rnxuN14PSV4PR487hK8Hjd+jxuvpxSfpxSf34/Hr8yXFDFeO0TMYwEsKASxmP7IiTeTkDcSqehkhpQwrzLhwpVzk7Lxhp5IRaeyR2GvjUTW8C9Z4eKRik5h3cJFJNXIGpSlEiEkTEaEl6GiEBJOhnCiRpr/5fLDlpRO6/SK07UBnKnGFu3eoorfKyml+Pyft3BmwQes7/IbBpw/O2wclWEJrJlXmEf5qRTfbNpEr4+vwmdNIv03/8aS2qJiBFXgtqXgDLOGoN+vWPLsQ8zIfYb9rc+mw+VPVdtlGEpgAkZaUR6ucn47fsgl9+UZnCXbKfjVP0nt8Us6p7bBvuBVDrz+/+jy+6W47OHbAb/Pz+4dG/lx43+w7/+SroXr6SdGt+qP0pI9aYPY1aIHztY9SWnbgxZtOtG8eQtOqWSGZAWUwud1U1pSiLu4mNLSIjwlRXhKi/GWFuP1lpapX8ahhJ5AsE0BEQuB9kaC55x41iyBdscMIyfCBtuq8iKGkbkSHwBa2CqfgBMNEkpBpbdsw9AbF598BCJGt57NgcMJjuqv0GjqnKQmxkQHf3FuBb+VL9/HmT89z8aWv2LAFQ/UOG6rK7Ak0bEyCmrH93tJf2M6qVKK/8r3cLXoVOO4vbZUXO6yCkopxSsvP8Olh+7nQLMhdLh6MViqeXEsR8s0JwUqCVe5VSoO5BSy+dlrmMoacs+4l/TB0wBIbdebPT2vYdy3z/DBozM45Vd/pudpXXCXlvLjnq3kfLsS6/6v6JT/Dd3IoRtwRJpzsPkwfup6BqcOnEDrNqfRugZKNCwiWO1Oku1OktNqF1VjIaEUlEaTiCSbCkqKy1pQn746jzN3P8Tm1JFk/mZRjayQAIEliULXzPt+/0H8L15AO34mb+pSTunY/6TkLnU2w1VYakzAMMe6Xn19CVN3/4mfU3vQ7to3wOascbynNHGSTzLNQlap+CmvmFVPX890/4cc7X89GWfeWOaazhf/nd0vFzHu+5exLPs3BcpFE0pJN7vcjtGE7LRBHOw0ig4Dx9OyUx9a1FYhaWqNVlAaTZxjTWpCnkrBVXhiveUvXn+KM7b8iZ3J/eh1w6tYbJFNXChPRuv2ABQe3gfA3oM/UPzcJLqzjyMTn6NN31+etNwFSeYOO8f2olr14bXXXuHcLTeT62pL6+v+jbianFS8p6S5WKPS6VpwCICf84r5z5OzudzzFj/3nMEpk/5W8SKLla4znqTowLVkf/U6nrwfjSn2LbrQotdI2nTuQzOtkOIOraA0mgbAIUsrUosP4Pf5+fSlv3Lmnn+wMymLLrPfweZMPul427dqxQHVAvXzNjZt3kTK65fQnR/5cfx8OgyZVCuZrRld4SAU/bCN5e99zIV7/8oxVztOuf79Go9nhdIs2c4ey6mMK1rHzr372fHijVzu+4Sfu0/nlIsfr9KSTG7fl94X9a3UXxNfaAWl0TQAjiR3ZXDB52x4eCJnFf+XbU1G0O23r2J3RT6rLhwtUh18bOvN2T99QOFrn+EXG4cn/YsOA8bXWuaOfYZydGMaSW/P5hJKOZiWSZtrl2NJPfkt4MGYYFLQaiiWn1+n43MD6C4efh54I6ecd89JdXNq4hf9oa5G0wBQA6/Eonz0Lvof606bTa+b36m1cgKjsXee9Uc2WnqzO30EXLuStlFQTgAjurXm3VPvYJ+tMzv73ES7mz+rtXIKMHHSJbzluoC9qVnkXriEU86/VyunBERUuC8MY8TgwYPV2rVrYy2GRhOX7M3+nvS0FJpmtIq1KBpNVBGRdUqpweXddRefRtNA6NipS6xF0GjqFd3Fp9FoNJq4RCsojUaj0cQlcTUGJSKHgb1RiKoFEH4RsPhDy1p3NCR5G5Ks0LDkbUiyQsOSN1qydlRKVVitOK4UVLQQkbXhBtziES1r3dGQ5G1IskLDkrchyQoNS966llV38Wk0Go0mLtEKSqPRaDRxSaIqqH/GWoAaoGWtOxqSvA1JVmhY8jYkWaFhyVunsibkGJRGo9FoGj6JakFpNBqNpoGjFZRGo9Fo4pKEUlAiMkFEdojILhG5M9byhCIiHUTkMxHZJiJbReRG032OiBwUkQ3m79xYyxpARLJFZLMp11rTrbmI/EdEvjP/N4sDOXuE5N8GETkuIjfFU96KyHMi8rOIbAlxC5uXYjDXrMebRGRgHMj6kIh8a8rzpoikm+6dRKQ4JI/n16esVchbadmLyP8z83aHiERnZdzaybo0RM5sEdlgusdD3lbWbtVP3VVKJcQPsAK7gS4Yu7VvBHrHWq4Q+doAA83jNGAn0BuYA/w+1vJVInM20KKc24PAnebxncADsZYzTD34EegYT3kLnAEMBLZUl5fAucD7gADDga/jQNZxgM08fiBE1k6h4eIob8OWvfnMbQScQGezzbDGUtZy/o8Ad8dR3lbWbtVL3U0kC2oosEsp9b1Syg0sAWq341oUUUodUkp9Yx7nA9uBdrGV6qSYBLxgHr8AXBA7UcLyS2C3UioaK5JEDaXUSiCnnHNleTkJeFEZrAbSRaRNvQhKeFmVUh8ppbzm6WqgfX3JUx2V5G1lTAKWKKVKlVJ7gF0YbUe9UJWsIiLAxcAr9SVPdVTRbtVL3U0kBdUO2B9yfoA4VQAi0gkYAHxtOs02zeHn4qHLLAQFfCQi60TkGtOtlVLqkHn8IxBvez9Mp+wDHq95C5XnZbzX5VkYb8kBOovIehH5XERGxUqoMIQr+3jO21HAT0qp70Lc4iZvy7Vb9VJ3E0lBNQhEJBV4HbhJKXUceBroCvQHDmGY+PHCSKXUQOAc4LcickaopzJs+rj5TkFEHMD5wKumUzznbRniLS8rQ0T+CHiBxabTIeBUpdQA4BbgXyLSJFbyhdBgyj6ESyj7chU3eRum3QpSl3U3kRTUQaBDyHl70y1uEBE7RiEvVkq9AaCU+kkp5VNK+YEF1GN3Q3UopQ6a/38G3sSQ7aeAyW7+/zl2ElbgHOAbpdRPEN95a1JZXsZlXRaRmcCvgMvMRgmzq+yoebwOY0yne8yENKmi7OM1b23AhcDSgFu85G24dot6qruJpKD+B3QTkc7mm/R04O0YyxTE7F9eCGxXSv0jxD20f3YysKX8tbFARFJEJC1wjDFIvgUjT680g10JLI+NhGEp8wYar3kbQmV5+TYww5wRNRzIC+lOiQkiMgG4HThfKVUU4t5SRKzmcRegG/B9bKQ8QRVl/zYwXUScItIZQ9419S1fGM4CvlVKHQg4xEPeVtZuUV91N5YzRKL9w5hBshPjTeOPsZannGwjMczgTcAG83cu8BKw2XR/G2gTa1lNebtgzHbaCGwN5CeQAXwCfAd8DDSPtaymXCnAUaBpiFvc5C2G4jwEeDD65f+vsrzEmAE1z6zHm4HBcSDrLoyxhUDdnW+GnWLWjw3AN8B5cZK3lZY98Eczb3cA58RaVtN9EXBtubDxkLeVtVv1Unf1UkcajUajiUsSqYtPo9FoNAmEVlAajUajiUu0gtJoNBpNXKIVlEaj0WjiEq2gNBqNRhOXaAWl0Wg0mrhEKyiNRqPRxCX/H+B76w370lNxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABbeklEQVR4nO2deXzUxf3/n+/dTbJJCFe4CXLJTUI4AlhAwSqIVFFRwaKI1Fq12nrU49tWi7b91bMqaqWlKJ4IKoJ4oaIR0SJyyY2KRA6RIxBIyL07vz8+n4TNZjcHOXY3eT8fLPl8ZuYz8/rMzOfznpnPfD4jxhgURVEUJdxwhFqAoiiKogRCDZSiKIoSlqiBUhRFUcISNVCKoihKWKIGSlEURQlL1EApiqIoYYkaKEBEuoiIERFXqLU0dERkuoisrKe0YkXkXRE5KiJ31keafulniMg59ZBOuohcG8SvUddtEZknIn+rrl8ta5gpIi9V4F8v9aQ2EZE77etqmYjE1VU6aqCUU8a+8IpEJMfnV++GoALOAVKATsaYh0oc7RtCl5CpCiPsMpxZjfC/FJEfROSEiCwWkZYVhE0VkbUikmv/TfVL17/udKsLzZGMiIwWkfRqhA+a5wHCthSRN+2y/EFEfumXrtevfK4u8bevpySgNzD2lE6uCjQIA9VYW4dhwgJjTBOf30OVH1JvtAQyjDE5oRZSE8Qi5NeqiPQD/g1cBbQFcoF/BQkbDSwBXgJaAM8DS2z3Evzrzvd1egJ1SDjcg6qY5748DRRileVU4Bm7jEv40a98nvc92BhzAtgFJNbyqZQS8kp/qtit4LtEZCNwQkRcIjJcRL4QkSwR+VpERvuETxeRf4jIahE5LiJLgrX+ROQaEdkmItki8r2I/MbPf6KIbLDj2Ski59nuzURkrojsF5F9IvI3EXFWch7dReRjEckUkcMi8rKINPfxOyIig+z9DiJyqOS8RORCEdlin2+6iPTxy58/iMhGETkmIgtExF39nK4+InK3nS/ZIrJVRC4OEk5E5DEROWjn5SYR6W/7xYjIIyKyW0QOiMhsEYmtphQX4K1Ea6KILLXT/8ous5U+/kZErheRb+18flpExPYLWnY+pNl5cFREnispAxFpISJv2+V51N5O8kk3XUT+LiKfYxmCynoXnUXkczvPPxCRVn7+U+28PCwif6okrmBMBZYaY1bYRv8e4BIRSQgQdjRW/j9ujCkwxswCBDj7FNMOiljDTftF5EcRudYus9MDhEsQkU9EZFZJGQKtRORDO98+FZHOPuGfEJE9dt1YKyKjfPxmisjrIvKSiBwHplciM1pEXrDT2SIiQ/z8U2vhWh1NFfNcROKBScA9xpgcY8xK4C2sxkd18Npp1g3GmIj8ARnABqATEAt0BDKB87EM77n2fms7fDqwD+gPxANvAC/Zfl0AA7js/QlAd6zCPQvrBjHI9hsKHLPjd9jp9rb93sRqYcYDbYDVwG8qOY/T7bhigNbACqwKVuL/a2ArEAcsAx6x3XsCJ+xjo4A7ge+AaJ/8WQ10wOpJbAOuD6JhJJBVwW9kkONmluShn/tldroOYLKts73tNx1YaW+PA9YCze287uMT7jGsC6YlkAAsBf5RjfoRBbwYSJ9fuFftXxzQF9hTos/2N8DbtsbTgEPAeVUsuwxgM1YdbQl8DvzN9kvEukHE2ef3GrDY59h0YDfQD+sGEFXBOaQDO+06EWvvP+BXt+fYfgOAAqBPkLgqKu8lwF1+bjnA4ABhbwXe83N7G7jdp+4cA44AW4AbTvE+cB7wk51PcVi9BwOcbvvPA/5m5/fqkvz38csGzrTL8Am/sr/SPs4F3G6n4/bRXwRchFXPYyvQOBPIx7o3OYF/AKv86klVr9W3gbuD+FWY537uA4FcP7c/YDVAwDJ2hcABrF7SY0B8gHieB+Zj33dq+1frEdbXzy7UGT77dwEv+oVZBlxtb5detPZ+X7sAnPgZqABpLQZ+b2//G3gsQJi2WBd+rI/bFcAn1Tyvi4D1fm5vAZuAjUCM7XYPsNAnjAPLAI/2yZ8rffwfAmbXchnMtPMwy+fXIUC4DcBEe3s6Jw3U2cA3wHDA4RNesIxadx+3M4BdVdSVinXzOIB9owoSzmmH6+Xj9jfKG6iRPvsLCX6DKFN2dhlc77N/PrCzAs1HffbTgfureL7pwJ999m8E3re3S+p2ko//amDKKZT3cvxunL51zs/9HuBVP7eXgZn2dl+sG7IT+BmwH7jiFDQ9i0/DBavR4G+gnsVqKNzhd+w8X41AE8CD9cwyUFpHgQE+dX9FNa6Tj3z2+wJ5fvWkxtdqZXnu5z4K+MnP7ddAur3dztbpALpiNb7+HSCe7liGuwgYUl3Nlf0idojPZo/PdmfgMnsYJktEsrB6Bu2DhP8Bq5XtPxSCiIwXkVX28FoW1o2lJFwnrNaqP53t+Pb7pP9vrJ5UUESkrYi8KtaQ4HGsFqC/pjlYPb8njTEFtlsH+xwAMMZ47fPr6HPcTz7buVgXYG2z0BjT3Of3o4hME2sItCQf+hMgn40xHwNPYY2FHxSR/4hIU6zeSByw1ieO9233SjHGbMDqlfwPuKWCoK2xWse+9WJPgHAB87GKZedf5zrYx8aJyL/Fejh9HOsG0FzKDgkH0hKMysq6NupCDtDUz60pVi+kWmGNMVuNMT8aYzzGmC+wei+XnoKmDlRefhOweo+zA/iVhjfWsOURTpbRH8Qa6j9m18FmlC3fmpSPW8o+twq38vnJLiOvMWYX1gjNpADx/B74CmhqjFlzCporJNINlO+n2Pdg9aB8b5bxxpgHfMJ08tk+DcvqH/aNUERisIb/HgHaGmOaA+9itepL0ukeQMserB5UK5/0mxpj+gUI68v/s88j2RjTFGtYoSQtRKQJ8DgwF5gpJ5+b/YhlFEvCiX1++ypJrxwiMkrKztbx/42qPJbSuDpjGdSbgEQ7/zb7npMvxphZxpjBWK21nsAdWGWSB/TzyctmxpgqX7TGmHzgPTveYBwCirFmI5XQKUjYQFRYdgHiOw2r3MAaMuoFDLOPPdN29z3et36HA1uwhggBEGvWXQxWLzhQ2BSfZz1gzajcEiRuQ5A6Ugn7qbz85mA1cN61n70QKLx9rbUEfrTr/J3A5UALux4fI/zLp6p5/g3gEpEePm4DgoQF61wD2Ys+WL31vFPQWymRbqB8eQm4QETGiYhTRNxiTZX0rbxXikhfsebt3w+8bozx+MUTjXXRHQKKRWQ8ZadRzgWuEZGfi4hDRDqKSG9jzH7gA+BREWlq+3UXkbMq0Z2A1Zo5JiIdsW7QvjwBrDHGXAu8w8lW4EJggq0jCuuGVwB8UVlG+WOM+cyUna3j//usGtHFY1XmQ2BNOMHqQZVDRNJEZJit/wTWOL3X7g3OAR4TkTZ22I4iMs7nWCM+k2CCUIBVngGxy34RluGPE5HewLQqnaVFZWUH8FsRSbIbFn8CFvgcmwdk2X5/qUa6oeJlrGtslH2jvx9YZIwJ1EJPxxou+51YE15ust0/htKJRi3EYijwO6xnXNj+GSIyvQqaFmJdj33s6/qeIOFuAnYAS6XsZJvzRWSkWDPd/or1bGgPVvkUY9Vjl4jcS/keR7iRTgV57ouxZuAtAu4XkXgRGQFMxHpui4iMEZHOdvl0Ah7Ap3x8iMK6zuqEBmOg7Eo1EfgjVqXag3XD8D3HF7HGnX8C3FgXhX882bb7Qqwx519iPQMq8V8NXIP10PAY8CknezLTsG6IW+1jX6fsEGMg7gMG2XG9g1VpAOsixnoIfIPtdBswSESmGmN2YLXYn8TqcVwAXGCMKawkvTrFGLMVeBRreO0AkIw1OSAQTbEM0VGs4a9M4GHb7y6sSR+r7CGwj7B6HNgXTDbWc7mK8FJ5Hb8Ja+jmJ6z6MZ+qX3BBy86HV7AaLt9jDQ2XvBj6ONaw02FgFVYLP+RU1GM2xmwBrscyVAexbuI3+hz7noj80Q5biPVMbhrWs8kZwEU+9XMKVvlmAy8ADxp7GrNtLBKx8qVCjDHvAbOAT+z4So4p8AtngOuAvVhTr0tmyb2C1Tg4AgzGuqbAen79PlZP4wesxlN1hvTqBN889qeyPBeRP4rIez6H3IhVBw9i1fsb7DIGaxLFF1gNxy+wrrVy90usZ4gVzpStCWI/6GrwiPWy20vGmP+GWotSM0TkSqzhv/+rJNxYrJ51b2PMkSrG/SDQzhhzdc2VKqeCiIwEfmuMueIUju2DNaQcY4wprnVxSilivVKxFbjWGPNuXaTRYHpQSuPBGPNSZcbJJh34ENgiIn8IFEBEeotIis9Q06+wXhdQQoQxZmV1jJOIXGwPabUAHsSaKq3GqQ6xr6ftWCNIy+sqHTVQ9YBYL5kGmnwQaFaRUksYYwqNMVONMe2NMY8ECZaANTR3Auv50KMEHmsPKUHqT7UmsDRgfoM1TLUT6xnMDRUHr33sobdA5RNwOC7SMcY8YoxpZ4y5wmdmca3TaIb4FEVRlMhCe1CKoihKWBLyDxz60qpVK9OlS5dQy1AURVHqkbVr1x42xpR7ET+sDFSXLl1Ys6bWX0ZWFEVRwhgR+SGQuw7xKYqiKGGJGihFCVN0ApPS2FEDpShhyI70V/jhvr58tfjpUEtRlJARVs+gAlFUVMTevXvJz88PtRQlgnC73SQlJREVFRVqKdXG4/HQNP0e2nOYxA1/5cQ5VxHfJNw/A6cotU/YG6i9e/eSkJBAly5dEDmVjx0rjQ1jDJmZmezdu5euXbuGWk61+WH7WrpxmLUtzmPw0ff56pNXSbvgulDLUpR6J+yH+PLz80lMTFTjpFQZESExMTFie91Htlgfn279i7+QRRPY+UmIFSlKaAh7AwWocVKqTSTXGc+PGzlCUzp168P3cakkHdNXL5TGSUQYKEVpTDTJ/p6DMZ0REQqTfkZ7c5ADu78NtSxFqXfUQFUBEeH2228v3X/kkUeYOXNm6ARVQnp6Ol98Ue11C8tw3nnn0bx5c37xi1/UkiqlqnTw7CWnSTcAmvc8A4D9O74MpSRFCQlqoKpATEwMixYt4vDhw5UHrgbGGLze2l/rqzYM1B133MGLL75YS4qUqpKddZgWZFPU3JrccVqfIXiMULB7fYiVKUr9owaqCrhcLq677joee+yxcn6HDh1i0qRJpKWlkZaWxuefW4vHzpw5k0ceObnCQ//+/cnIyCAjI4NevXoxbdo0+vfvz549e7jjjjvo378/ycnJLFhgrQienp7O6NGjufTSS+nduzdTp04N+OLmrFmz6Nu3LykpKUyZMoWMjAxmz57NY489RmpqKp999lmFGq+66irOOOMMevTowZw5c0rj/fnPf05CQkKF+fLaa6/Rv39/BgwYwJlnnglYk1quueYakpOTGThwIJ98Yj3gnzdvHhdddBHnnnsuXbp04amnnuKf//wnAwcOZPjw4Rw5Yq0nOGfOHNLS0hgwYACTJk0iNze3XLrDhw9ny5YtpfujR49uMJ/IytyfAUBUyyQA4uKbstvZidjMyhYPVpSGR9hPM/flvqVb2Prj8VqNs2+Hpvzlgn6Vhvvtb39LSkoKd955Zxn33//+99x6662MHDmS3bt3M27cOLZt21ZhXN9++y3PP/88w4cP54033mDDhg18/fXXHD58mLS0tNKb/fr169myZQsdOnRgxIgRfP7554wcObJMXA888AC7du0iJiaGrKwsmjdvzvXXX0+TJk34wx+sNfp++ctfBtW4ceNGVq1axYkTJxg4cCATJkygQ4cOVcq7+++/n2XLltGxY0eysrIAePrppxERNm3axPbt2xk7dizffPMNAJs3b2b9+vXk5+dz+umn8+CDD7J+/XpuvfVWXnjhBW655RYuueQSfv3rXwPw5z//mblz53LzzTeXSXfy5MksXLiQ++67j/3797N//36GDBlSJc3hzrED1ifJElp1KnU7GN+L7jkNwwArSnXQHlQVadq0KdOmTWPWrFll3D/66CNuuukmUlNTufDCCzl+/Dg5OTkVxtW5c2eGDx8OwMqVK7niiitwOp20bduWs846i6+++gqAoUOHkpSUhMPhIDU1lYyMjHJxpaSkMHXqVF566SVcrsDtjYo0Tpw4kdjYWFq1asWYMWNYvXp1lfNkxIgRTJ8+nTlz5uDxeErP58orrwSgd+/edO7cudRAjRkzhoSEBFq3bk2zZs244IILAEhOTi49t82bNzNq1CiSk5N5+eWXy/SUSrj88st5/fXXAVi4cCGXXnpplTWHO3mZewFo3q5LqVtRmxRamaMcP7Q3RKoUJTREVA+qKj2duuSWW25h0KBBXHPNNaVuXq+XVatW4Xa7y4R1uVxlni/5vpMTHx9fpfRiYmJKt51OJ8XF5Vexfuedd1ixYgVLly7l73//O5s2lR8KCqYRyk/Hrs707NmzZ/Pll1/yzjvvMHjwYNauXVtheN/zcTgcpfsOh6P03KZPn87ixYsZMGAA8+bNIz09vVw8HTt2JDExkY0bN7JgwQJmz244CxMXZ+0DILHdaaVu8V0Gwk7Yt301TVsnhUqaotQ72oOqBi1btuTyyy9n7ty5pW5jx47lySefLN3fsGEDYC0dsm7dOgDWrVvHrl27AsY5atQoFixYgMfj4dChQ6xYsYKhQ4dWSY/X62XPnj2MGTOGBx98kGPHjpGTk0NCQgLZ2dmVagRYsmQJ+fn5ZGZmkp6eTlpaWpXSBti5cyfDhg3j/vvvp3Xr1uzZs4dRo0bx8ssvA/DNN9+we/duevXqVeU4s7Ozad++PUVFRaXxBGLy5Mk89NBDHDt2jJSUlCrHH+5Izn6ySMAVE1fqltRnGAAnftCJEkrjQg1UNbn99tvLzOabNWsWa9asISUlhb59+5a25idNmsSRI0fo168fTz31FD179gwY38UXX0xKSgoDBgzg7LPP5qGHHqJdu3ZV0uLxeLjyyitLJyT87ne/o3nz5lxwwQW8+eabpZMkgmkEa4hwzJgxDB8+nHvuuaf0+dOoUaO47LLLWL58OUlJSSxbtgyAe++9l7feeguwZvolJyfTv39/fvaznzFgwABuvPFGvF4vycnJTJ48mXnz5pXpOVXGX//6V4YNG8aIESPo3bt3qftbb73FvffeW7p/6aWX8uqrr3L55ZdXOe5IIDbvIEedrcq4tW7Vhr20wXVQJ0oojQsJp0/6DxkyxPjPxtq2bRt9+vQJkaKGzcyZM8tMpmhoRGLd2f63oXhc8fS7u+znjdY8eD7tCjJIundriJQpSt0hImuNMeVmOmkPSlHCiHjPcQqjW5Rzz2vZlw6eHynMrd1ZrIoSzkTUJAmldgnnr2E0RowxJHiPc8Bd3kBFd0rFsc+wb8daug4cEwJ1ilL/aA9KUcKEvIJCmpILceUNVNse1uSVo99XPFNSURoSaqAUJUzIOnIQhxgccYnl/Dp16UGWicfs3xgCZYoSGmpsoETkZhHZLiJbROQhP7/TRCRHRBrmU3hFqUVOZB0CwNmkvIFyOh3sjj6dZscq/kqJojQkavQMSkTGABOBAcaYAhFp4xfkn8B7NUlDURoLBcet1xeimrQK6H+seW96HlqE8RQhzshbyl5RqktNe1A3AA8YYwoAjDEHSzxE5CJgF1D+WzURyOLFixERtm/fHjRMRkYG/fv3r1MdGzZs4N13361RHDNmzKBNmzZ1rlWpHkU5mQBEJwQ2UM72Kbgp4sCuzfUpS1FCRk0NVE9glIh8KSKfikgagIg0Ae4C7qssAhG5TkTWiMiaQ4cO1VBO3TF//nxGjhzJ/PnzA/oH+gxRdSn5nl1F1IaBmj59Ou+//36N4lBqH0+21YNyN2sd0L9Ft8EAHPzmq3rTpCihpFIDJSIficjmAL+JWEOELYHhwB3AQrE+5jYTeMwYU/FXUwFjzH+MMUOMMUNatw58YYaanJwcVq5cydy5c3n11VdL3dPT0xk1ahQXXnghffv2BSxDNXXqVPr06cOll15aulzE8uXLGThwIMnJycyYMYOCggLA+iTSXXfdxaBBg3jttdfKpOu/nEVhYSH33nsvCxYsIDU1lQULFnDixAlmzJjB0KFDGThwIEuWLAGs5S0mTpzI6NGj6dGjB/fdd7KtcOaZZ9KyZcsKz/nTTz8lNTWV1NRUBg4cSHZ2NsaYoEuDnHXWWUycOJFu3bpx99138/LLLzN06FCSk5PZuXMnAEuXLmXYsGEMHDiQc845hwMHDpRLd8qUKbzzzjul+9OnTy/9MGxDx5uXBUB8s/LPoAC69B5EjnFT9IMuXqg0Dip9BmWMOSeYn4jcACwy1ucoVouIF2gFDAMutSdNNAe8IpJvjHmqRmrfuxt+quXPvbRLhvEPVBhkyZIlnHfeefTs2ZPExETWrl3L4MFWa3bdunVs3ryZrl27kpGRwY4dO5g7dy4jRoxgxowZ/Otf/+Kmm25i+vTpLF++nJ49ezJt2jSeeeYZbrnlFgASExNLv9vni/9yFtHR0dx///2sWbOGp56ysvKPf/wjZ599Ns8++yxZWVkMHTqUc86ximz16tVs3ryZuLg40tLSmDBhQpWXpXjkkUd4+umnGTFiBDk5ObjdbhYtWhR0aZCvv/6abdu20bJlS7p168a1117L6tWreeKJJ3jyySd5/PHHGTlyJKtWrUJE+O9//8tDDz3Eo48+WibdkqU0JkyYQGFhIcuXL+eZZ56pkuZIx1NgteeaJDQL6B/rjmF9TF9aZerSG0rjoKZDfIuBMQAi0hOIBg4bY0YZY7oYY7oAjwP/r8bGKYTMnz+fKVOmAFYL33eYb+jQoXTt2rV0v1OnTowYMQKAK6+8kpUrV7Jjxw66du1a+j2+q6++mhUrVpQeM3ny5IDpBlrOwp8PPviABx54gNTUVEaPHk1+fj67d+8G4NxzzyUxMZHY2FguueQSVq5cWeVzHjFiBLfddhuzZs0iKysLl8tV4dIgaWlptG/fnpiYGLp3787YsWOBsktp7N27l3HjxpGcnMzDDz8ccCmN8ePH88knn1BQUMB7773HmWeeSWxsbJV1RzKm8ASFxkVUdPBvFx5vk0bn4gzyj9fu6s6KEo7U9EsSzwLPishmoBC42tTlx/0q6enUBUeOHOHjjz9m06ZNiAgejwcR4eGHHwbKL51xKstXBFt+oyrLWRhjeOONN8p9MfzLL7+s0VIad999NxMmTODdd99lxIgRpR+LDUZVltK4+eabue2227jwwgtJT08P+CULt9vN6NGjWbZsGQsWLChtGDQKCk+QJ26iKwgS3+NM2Ptvfli/nF5nBW7YKEpDoUY9KGNMoTHmSmNMf2PMIGPMxwHCzDTGPBLo+Ejg9ddf56qrruKHH34gIyODPXv20LVrVz777LOA4Xfv3s3//vc/AF555RVGjhxJr169yMjI4LvvvgPgxRdf5Kyzzqo07UDLWfgvpTFu3DiefPLJ0uXg168/uSTDhx9+yJEjR8jLy2Px4sWlPbuqsHPnTpKTk7nrrrtIS0tj+/btNVoaBODYsWN07NgRgOeffz5ouMmTJ/Pcc8/x2Wefcd5551U5/khHCnPJl/Jrdvly+sAzyTPR5G//sJ5UKUro0C9JVML8+fO5+OKLy7hNmjQp6Gy+Xr168fTTT9OnTx+OHj3KDTfcgNvt5rnnnuOyyy4jOTkZh8PB9ddfX2nagZazGDNmDFu3bi2dJHHPPfdQVFRESkoK/fr145577ik9fujQoUyaNImUlBQmTZpU+vzpiiuu4IwzzmDHjh0kJSWVrm81e/bs0qU4Hn/8cfr3709KSgpRUVGMHz++RkuDgPXtv8suu4zBgwfTqtXJqdRr1qzh2muvLd0fO3Ysn376Keeccw7R0RX1JxoWjuJcCh0VD2c2b9qUr2MG0/HAJxBGKxEoSl2gy200UObNm1dmMkVjJNLqztr/93Oak033P66uMNxH8x/nnB1/4fAV79Oq1xn1pE5R6g5dbkNRwpwoTy4eZ+UTQrqNuJQ8E83B9H/XgypFCR263EYDZfr06UyfPj3UMpRqEOXJx+NqXmm4bqclsTzubEbsf4fi7EO4Eip/f9AYw7GsTHIP76Pg+AHy83IpLi7GiRcREHHgdDpxOh24nE6cDgeIA0QwCAYHRsRyQ0AEEQdGHKX+IDhdDmJcTmKirFuLx2vweg1F9l+PMXi8Bo/Xi8dYo5TGGAyBRyydDiHKKRhjKPZy8livQURwOnx+Ak6HA6dDAIPHC16vIb5lW9p1OK06RaGECRFhoIwx1ZqBpijhNHRdVdwmj7youKqFPfNmXO9/wPcL7qbntXMDhtm5axd7vlhAkz2fkJT/Le3IpHkt6o0Uck0Mx+/YSdMmCaGWolSTsDdQbrebzMxMEhMT1UgpVcIYQ2ZmJm53xTPiwonCYi9uCsiNDvzKgT8/Gz6Cdz+/iAl7X+eHt3vT+fzbweHg4N7v+fazhSTsfJt+RZvpLob9jnb81HwQu1v1xSR0wNGkNe7YeFyuKLziwGsMxmvweD0UF3so9ngp9hQjgNV/8lp/jRcBMF4wXgwGhynxBzFePF4vhcXFFHm8ADjsXs7Jv1YvxyGWnwgIgv3P/s/GgNcYij0GBFwOweEQnGLFZ7B6SF5j/azeFXiNF0RwILBzOYMzl7LvaKYaqAgk7A1UUlISe/fuJZy/06eEH263m6SkpFDLqDInCoqJJ58jVTRQIkLatbP47Mm9jFrzN7LWPkkhUbQxh2kD7HZ2YmP3X9NpxBW07zaQ9o20cbd+aR5kLqUo73iopSinQNgbqKioqDJfalCUhsiJgiLakY9U0UABtGmegPsPb/Pu4v8Sv3cFUeLhm9Z96HzGJE7rmYo+dQFHTBMAivJOhFiJciqEvYFSlMZAXn4eLvEi9g21qjSNjeH8K34L/LZuhEU4Trc1rFeUn11JSCUc0WnmihIG5J+wbqDOmKr3oJTKcdn56clTAxWJNCgDZbxejmUeIDfnWKilKEq1KDxhPSNxVrMHpVSMK9bqQZV8KV6JLBqUgco+foRmT/Zk45InQi1FUapFQZ51A42K1ZlmtUmJgfIW6DOoSKRBGai4+KbWhraWlAijKN/qQbnc2oOqTaJtA2XUQEUkDcpAuaKiyTPRUKQGSoksivOtG2hMvPagapPoONvg6z0hImlQBgogV2JxFGplVCILT75VZ6PjmoZYScMiNs42+IXag4pEGpyBypNYnEVaGZXIwmtPg3bHaQ+qNnFHR3HCxCCFuaGWopwCDc5A5TvicBWrgVIiC699A41yq4GqTZwOIRc3Dr0nRCQNzkAVOGKJ8mhrSYkspGRYOrpqH4tVqk6+uHEU6z0hEmlwBqrIGU+0R1tLSmQhRXnWRpS+qFvb5OHGpQYqIml4BsoVh9ubF2oZilItnMUnKMQFrsazxH19UeCIxVWs94RIpMEZKI8rHrdXW0tKZOEszqVAImd5kEhCh/0jl4ZnoKKaEIu2lpTIwuXJI18qX+5dqT6FjliidFQlImlwBspENyGefPB6Qy1FUapMlCeXQu1B1QkeVyzR2oOKSBqcgSpZrqBAFyhTIgiXJ48Cp/ag6gKPK55okx9qGcop0OAMlMN+j+REtn7RXIkcYrx5FDl0inld4HXFEasGKiJpcAYqKtb6VMyJ40dDrERRqk6MN49ipw7x1QUmOp4YCsFTHGopSjWpsYESkZtFZLuIbBGRh3zcU0Tkf7b7JpH6GWAvMVB5OTrEp0QOMSafYpf2oOqEkpef9RNoEUeNlnwXkTHARGCAMaZARNrY7i7gJeAqY8zXIpIIFNVYbRWIiW8GQP6JrPpITlFqhVjyOaIGqk6QaOu5dFFeNlHuZiFWo1SHmvagbgAeMMYUABhjDtruY4GNxpivbfdMY4ynhmlViZiElgAU5egQnxI5xJp8vGqg6gSHPXEq74Qu+x5p1NRA9QRGiciXIvKpiKT5uBsRWSYi60TkzmARiMh1IrJGRNYcOnSohnIgtlkrADy5R2ocl6LUBx6Pl1gK8OpnjuoElz1xKj9Xh/0jjUqH+ETkI6BdAK8/2ce3BIYDacBCEelmu4+03XKB5SKy1hiz3D8SY8x/gP8ADBkyxJzieZQSbxsoowZKiRDy8/OIFw9EaQ+qLnDFWoa/4IQaqEijUgNljDknmJ+I3AAsMsYYYLWIeIFWwF5ghTHmsB3uXWAQUM5A1Tbx8U0pMC4kT4f4lMigIDebeKzZZkrtE2Uv+16Qq0N8kUZNh/gWA2MARKQnEA0cBpYBySISZ0+YOAvYWsO0qoTD6eCYJOAoyKqP5BSlxhTmWTdOUQNVJ8TYqxQX5amBijRqNIsPeBZ4VkQ2A4XA1XZv6qiI/BP4CjDAu8aYd2qYVpXJkQRcBfqirhIZlLTsS76CotQuJQaqOF8NVKRRIwNljCkErgzi9xLWVPN6J8+VQHSRGiglMijOtxYrdLjVQNUF7nhriM+Tr+9BRRoN7ksSAAWuZsQWq4FSIoOSlr0zRof46oLYeKsH5S3ICbESpbrUdIgvLCmOaU583vZTj8AYdm76nANfLSH28CaaF+4n2ptHNMUUSxSFEkOhI5ZChxuP043X6cbjcuN1xeJ1xuJxxmAcUYiI/XMgIuCzj/im55d8BboqlX4Kx/gjwRWUDSeVhykbb/UpUWKMKd3xV2fKbZTslj0g2HG+WeSwiglB7L9WOK/X4DEGjxe8xovHa8XuEMHpEBxi/ZyCXdYn4wx23iXurqydAETZ06GV2qVJfBM8RvAWnHoPyni9bPziPQq+XkSzrM20LvqRWJOPEw/54iZf3BSImwJHHIXOOIqccXhc8Xii4vFGN0FcsTicDow4MQhGHBgcIIIJUkNKrkP/+m2g3HVdtq5Xfv0GSjHgdS8gFUR3IrYtP5/8+0rTO1UapIHyulvQ1GRjvF7EUb1O4s4NKyh85y76FG2lqxH2OJM44k6i2NWEQqJwegpwevOJ8uQR7ckntiibaFNAtMkn2hTipoBYCnFUVKqK4keOiaVlx26hltEgiYlykoMbc4o9qB2bVlO85PcMKN5Kronh++hefNtyNMWuJuBwIsV5OIpycRWfwOXJJbo4lyZFPxFj8og1ecSZPGKlsJbPKjz4ytsbUANVLUx8G9xSRPbxoyQ0T6zaMV4vq16eSdp3T3JEmvO/nnfRb+wMOrdqR+dqCzBgvBjjxePx4jFevB5jt7y9eL1eK4xPF0T82zT+u1LWw78FJGXi8vNzVN53Kd/Rso4JZmZNoJ6ZBO97Be3IBXE3GCtPpKRXY+VQyWmW5Jd/Ly6Yv5T6i9/+yfAGg9eA1xi8xmDsbYBopwOnQ8qXk5/mYq/B4w18Ur55YPxO3O2KoklUVNC4lVNHRMiTWExB9SdJrHr3eVK+vIN8iWFd8j30G38d/e1JF9WhsNhLUbEHwQvG91fZB3ZK6mv5+l5yXQeu61LmnuBLoNp50u3kMWWuWSm5H5Q9OtmcyrhI1WmQBkqatgfg+KE9VTJQxhi+nHsrZ+ybx7qEs+g+Yy5ntGxdAwEC4kRw4nI20ExugAjgtH+nenyU/VPCixOOBKIKs6p1zJcfLmTQl7eyO/p0Wv/6dQa1Oe2U0492OYh2NchH/nVKg8yx6BYdAMjN3Ful8F8sfJTh++axuuUFpN76Js1qYpwURQk7cl3NcRdlVTn8zm8203fl79gb1Zmk371PsxoYJ+XUaZAGqkmrTgDkHq7cQH379f9I2/r/2Bw7hCE3PofDeartZ0VRwpWC6ObEe6o2s7ewsIj8BdciIjS/ZiFu+wPUSv3TIA1Uq/ZWa6cw68cKwxUWFMCSG8mWBJJ+9TIOlw7OKEpDpCimBQneqn2L74tFT9LPs42MoX+hZccedaxMqYgGaaBaNG9BtonFHN9fYbiNix6gh/d79o38O81bBfoerqIoDQFvbCuamRy8xRWvqpt5JJO+22bxXXQf+o//TT2pU4LRIA2UiHDEkUhU7k9Bw+RmH+H0Hf9hfcwQkn8+tR7VKYpS78Ql4hBDdlbFS/psfPNR2shR3BP+Uf0X/ZRap0EaKICj0e1olr8vqP/m1/9Bc3Jwj7036HRMRVEaBs4m1mze45nBG61Hs3PpvftVdsQNImnAmPqSplRAgzVQ2U260r54L3i95fyOHd5Pvx9eYE3cmfQZfFYI1CmKUp9EN7Vm5uZmHQwa5stlr9BeMokfdX19yVIqocEaKJPYg1gKOH5wdzm/7a/fj9sU0PKCmfUvTFGUeie2ufWMOT8r8HNpr9fQauvzHHa0JmnopPqUplRAgzVQTTr2AeCnXRvLuB/ct4sB+19jbfNxdOszOBTSFEWpZ0o+I1WYWb7BCrB27SqGeDdyqPdUcOqr9eFCgzVQbboNACBnd1kDtWvRTBx46TjxvlDIUhQlBCS2bEOOccOxPQH9sz+bTSEuuo27oZ6VKRXRYA1Uh46nsY/WuPatLnXb++3XDD78FutbT6Rjt94hVKcoSn3icDo45GxDdE75iVM/HTzI0GPv802rc4hppq+bhBMN1kA5HMKeJgPodHw9xlMEwKE3/48Coul22f0hVqcoSn2TFd2OhILyz6C2vv8fmkg+rcbcHAJVSkU0WAMFUNjjfFpwnO+/XMqGD19hYO7nbOk2g9ZtO4VamqIo9UxeXAcSi8vO4isu9tD1+/l8H92Tdn1HhEiZEowGbaAG/nwyP5pWNP/wNnp+fgvfObuROvneUMtSFCUEmOZdaEYOxzNP9qLWrXiLruwld8AMfTE3DGnQBiqhSRP2nP0kR00TtkYlEzt9EdHu2FDLUhQlBDTpMgiAPVtPPpeW1f8hiwR6/3xaqGQpFdDg51MOO+t8OOv8UMtQFCXEnNZ3GHwM2RlrYdREdmzZwOC8/7GhywwGueNDLU8JQIPuQSmKopTQolU7MqQjTX78HICDyx6hWJz0vOC2ECtTgqEGSlGURsP+NmfRM3c9az98lZ8de5vNbSfSpFVSqGUpQVADpShKo6HDuTcBwuDPf0OmtKTHlH+EWpJSAWqgFEVpNHQ+vR87z53L6raX4716KQkt2oZaklIBDX6ShKIoii99Rl4EIy8KtQylCmgPSlEURQlL1EApiqIoYYkYY0KtoRQROQT8UAtRtQIO10I89UEkaYXI0qta645I0htJWiGy9NaW1s7GmNb+jmFloGoLEVljjBkSah1VIZK0QmTpVa11RyTpjSStEFl661qrDvEpiqIoYYkaKEVRFCUsaagG6j+hFlANIkkrRJZe1Vp3RJLeSNIKkaW3TrU2yGdQiqIoSuTTUHtQiqIoSoSjBkpRFEUJSxqUgRKR80Rkh4h8JyJ3h1qPPyLSSUQ+EZGtIrJFRH5vu88UkX0issH+hcUCViKSISKbbE1rbLeWIvKhiHxr/20RBjp7+eTdBhE5LiK3hFO+isizInJQRDb7uAXMS7GYZdfjjSIyKAy0Piwi2209b4pIc9u9i4jk+eTx7PrUWoHeoGUvIv9n5+0OERkXBloX+OjMEJENtns45G2we1b91F1jTIP4AU5gJ9ANiAa+BvqGWpefxvbAIHs7AfgG6AvMBP4Qan0B9GYArfzcHgLutrfvBh4Mtc4A9eAnoHM45StwJjAI2FxZXgLnA+8BAgwHvgwDrWMBl739oI/WLr7hwihvA5a9fb19DcQAXe17hjOUWv38HwXuDaO8DXbPqpe625B6UEOB74wx3xtjCoFXgYkh1lQGY8x+Y8w6ezsb2AZ0DK2qajMReN7efh64KHRSAvJzYKcxpja+SFJrGGNWAEf8nIPl5UTgBWOxCmguIu3rRSiBtRpjPjDGFNu7q4CwWUQpSN4GYyLwqjGmwBizC/gO695RL1SkVUQEuByYX196KqOCe1a91N2GZKA6Ant89vcSxjd/EekCDAS+tJ1usrvEz4bDsJmNAT4QkbUicp3t1tYYs9/e/gkIt/UKplD2Ag/HfC0hWF6Ge12egdVKLqGriKwXkU9FZFSoRAUgUNmHc96OAg4YY771cQubvPW7Z9VL3W1IBipiEJEmwBvALcaY48AzQHcgFdiP1c0PB0YaYwYB44HfisiZvp7G6tOHzXsKIhINXAi8ZjuFa76WI9zyMhgi8iegGHjZdtoPnGaMGQjcBrwiIk1Dpc+HiCl7H66gbOMqbPI2wD2rlLqsuw3JQO0DOvnsJ9luYYWIRGEV9MvGmEUAxpgDxhiPMcYLzKEehxwqwhizz/57EHgTS9eBki67/fdg6BSWYzywzhhzAMI3X30IlpdhWZdFZDrwC2CqfVPCHirLtLfXYj3T6RkykTYVlH245q0LuARYUOIWLnkb6J5FPdXdhmSgvgJ6iEhXuyU9BXgrxJrKYI8xzwW2GWP+6ePuO0Z7MbDZ/9j6RkTiRSShZBvrIflmrDy92g52NbAkNAoDUqYFGo756kewvHwLmGbPiBoOHPMZTgkJInIecCdwoTEm18e9tYg47e1uQA/g+9CoPEkFZf8WMEVEYkSkK5be1fWtLwDnANuNMXtLHMIhb4Pds6ivuhvKGSK1/cOaQfINVkvjT6HWE0DfSKyu8EZgg/07H3gR2GS7vwW0DwOt3bBmO30NbCnJTyARWA58C3wEtAy1VltXPJAJNPNxC5t8xTKc+4EirHH5XwXLS6wZUE/b9XgTMCQMtH6H9WyhpN7OtsNOsuvHBmAdcEGY5G3Qsgf+ZOftDmB8qLXa7vOA6/3ChkPeBrtn1Uvd1U8dKYqiKGFJQxriUxRFURoQaqAURVGUsEQNlKIoihKWqIFSFEVRwhI1UIqiKEpYogZKURRFCUvUQCmKoihhiRooRVEUJSxRA6UoiqKEJWqgFEVRlLBEDZSiKIoSlqiBUhRFUcISNVBYK0WKiLHXZFHqEBGZLiIr6ymtWBF5V0SOisid9ZGmX/oZInJOPaSTLiLXBvFr1HVbROaJyN+q61fLGmaKyEsV+NdLPalNRORO+7paJiJxdZWOGijllLEvvCIRyfH51bshqIBzgBSgkzHmoRJH+4bQJWSqwgi7DGdWI/wvReQHETkhIotFpGUFYVNFZK2I5Np/U/3S9a873epCcyQjIqNFJL0a4YPmeYCwLUXkTbssfxCRX/ql6/Urn5L1n7CvpySgN9ZacXVCgzBQjbV1GCYsMMY08fk9VPkh9UZLIMMYkxNqITXBXvwt5NeqiPQD/g1cBbQFcoF/BQkbjbWI3UtAC+B5YIntXoJ/3Qn5QoenSjjcg6qY5748DRRileVU4Bm7jEv40a98nvc92BhzAtiFtTZUnRDySn+q2K3gu0RkI3BCRFwiMlxEvhCRLBH5WkRG+4RPF5F/iMhqETkuIkuCtf5E5BoR2SYi2SLyvYj8xs9/oohssOPZKdZqo4hIMxGZKyL7RWSfiPxN7BUxKziP7iLysYhkishhEXlZRJr7+B0RkUH2fgcROVRyXiJyoYhssc83XUT6+OXPH0Rko4gcE5EFIuKufk5XHxG5286XbBHZKiIXBwknIvKYiBy083KTiPS3/WJE5BER2S0iB0RktojEVlOKC/BWojVRRJba6X9ll9lKH38jIteLyLd2Pj8tImL7BS07H9LsPDgqIs+VlIGItBCRt+3yPGpvJ/mkmy4ifxeRz7EMQWW9i84i8rmd5x+ISCs//6l2Xh4WkT9VElcwpgJLjTErbKN/D3CJ2Csv+zEaK/8fN9bS5bOwFrM7+xTTDopYw037ReRHEbnWLrPTA4RLEJFPRGRWSRkCrUTkQzvfPhWRzj7hnxCRPXbdWCsio3z8ZorI6yLykogcB6ZXIjNaRF6w09kiIkP8/FNr4VodTRXzXKxVsicB9xhjcowxK7EWdryqmml67TTrhvpeobEWV3rMwFrdsRMQC3TEWlH1fCzDe66939oOnw7sA/pjrb76BvCS7dcFa9VIl70/AeiOVbhnYd0gBtl+Q4FjdvwOO93ett+bWC3MeKAN1lLSv6nkPE6344oBWgMrsCpYif+vga1AHLAMeMR27wmcsI+NwlqO+zsg2id/VgMdsHoS2/BbsdNv1cysCn4jgxw3syQP/dwvs9N1AJNtne1tv+nASnt7HLAWaG7ndR+fcI9hXTAtgQRgKfCPatSPKKxVVcvp8wv3qv2LA/pirRq70sffAG/bGk8DDgHnVbHsMrCWGu9kn8fnwN9sv0SsG0ScfX6vAYt9jk0HdgP9sG4AURWcQzrWCqY9sa6FdOABv7o9x/YbABQAfYLEVVF5LwHu8nPLAQYHCHsr8J6f29vA7T515xhwBGvV2BtO8T5wHvCTnU9xWL0HA5xu+88D/mbn9+qS/PfxywbOtMvwCb+yv9I+zgXcbqfj9tFfBFyEVc9jK9A4E8jHujc5gX8Aq/zqSVWv1beBu4P4VZjnfu4DgVw/tz9gNUDAMnaFwAGsXtJjQHyAeJ7HWiU4+lTKr9LyrYtI6+NnF+oMn/27gBf9wiwDrra3Sy9ae7+vXQBO/AxUgLQWA7+3t/8NPBYgTFusCz/Wx+0K4JNqntdFwHo/t7c4uXx1jO12D7DQJ4wDywCP9smfK338H8JeprsWy2CmnYdZPr8OAcJtACba29M5aaDOBr4BhgMOn/CCZdS6+7idAeyqoq5UrJvHAewbVZBwTjtcLx+3v1HeQI302V9I8BtEmbKzy+B6n/3zgZ0VaD7qs58O3F/F800H/uyzfyPwvr1dUreTfPxXA1NOobyXU35Z8tI65+d+D/Cqn9vLwEx7uy/WDdkJ/AxrGfQrTkHTs/g0XLAaDf4G6lmshsIdfsfO89UINAE8WM8sA6V1FBjgU/dXVOM6+chnvy+Q51dPanytVpbnfu6jgJ/83H4NpNvb7WydDqArVuPr3wHi6Y5luIuo4fLugX4RO8Rns8dnuzNwmT0MkyUiWVg9g/ZBwv+A1cr2HwpBRMaLyCp7eC0L68ZSEq4TVmvVn852fPt90v83Vk8qKCLSVkReFWtI8DhWC9Bf0xysnt+TxpgC262DfQ4AGGO89vl19DnuJ5/tXKwLsLZZaIxp7vP7UUSmiTUEWpIP/QmQz8aYj4GnsMbCD4rIf0SkKVZvJA5Y6xPH+7Z7pRhjNmD1Sv4H3FJB0NZYrWPferEnQLiA+VjFsvOvcx3sY+NE5N9iPZw+jnUDaC5lh4QDaQlGZWVdG3UhB2jq59YUqxdSrbDGmK3GmB+NMR5jzBdYvZdLT0FTByovvwlYvcfZAfxKwxtr2PIIJ8voD2IN9R+z62AzypZvTcrHLWWfW4Vb+fxkl5HXGLMLa4RmUoB4fg98BTQ1xqw5Bc0VEukGyvhs78HqQfneLOONMQ/4hOnks30altU/7BuhiMRgDf89ArQ1xjQH3sVq1Zek0z2Alj1YPahWPuk3Ncb0CxDWl/9nn0eyMaYp1rBCSVqISBPgcWAuMFNOPjf7EcsoloQT+/z2VZJeOURklJSdreP/G1V5LKVxdcYyqDcBiXb+bfY9J1+MMbOMMYOxWms9gTuwyiQP6OeTl82MMVW+aI0x+cB7drzBOAQUY81GKqFTkLCBqLDsAsR3Gla5gTVk1AsYZh97pu3ue7xv/Q4HtmANEQIg1qy7GKxecKCwKT7PesCaUbklSNyGIHWkEvZTefnNwWrgvGs/eyFQePtaawn8aNf5O4HLgRZ2PT5G+JdPVfP8G8AlIj183AYECQvWuQayF32weut5p6C3UiLdQPnyEnCBiIwTEaeIuMWaKulbea8Ukb5izdu/H3jdGOPxiyca66I7BBSLyHjKTqOcC1wjIj8XEYeIdBSR3saY/cAHwKMi0tT26y4iZ1WiOwGrNXNMRDpi3aB9eQJYY4y5FniHk63AhcAEW0cU1g2vAPiisozyxxjzmSk7W8f/91k1oovHqsyHwJpwgtWDKoeIpInIMFv/Caxxeq/dG5wDPCYibeywHUVknM+xRnwmwQShAKs8A2KX/SIswx8nIr2BaVU6S4vKyg7gtyKSZDcs/gQs8Dk2D8iy/f5SjXRDxctY19go+0Z/P7DIGBOohZ6ONVz2O7EmvNxku38MpRONWojFUOB3WM+4sP0zRGR6FTQtxLoe+9jX9T1Bwt0E7ACWStnJNueLyEixZrr9FevZ0B6s8inGqscuEbmX8j2OcCOdCvLcF2PNwFsE3C8i8SIyApiI9dwWERkjIp3t8ukEPIBP+fgQhXWd1QkNxkDZlWoi8EesSrUH64bhe44vYo07/wS4sS4K/3iybfeFWGPOv8R6BlTivxq4Buuh4THgU072ZKZh3RC32se+TtkhxkDcBwyy43oHq9IA1kWM9RD4BtvpNmCQiEw1xuzAarE/idXjuAC4wBhTWEl6dYoxZivwKNbw2gEgGWtyQCCaYhmio1jDX5nAw7bfXViTPlbZQ2AfYfU4sC+YbKznchXhpfI6fhPW0M1PWPVjPlW/4IKWnQ+vYDVcvscaGi55MfRxrGGnw8AqrBZ+yKmox2yM2QJcj2WoDmLdxG/0OfY9EfmjHbYQ65ncNKxnkzOAi3zq5xSs8s0GXgAeNPY0ZttYJGLlS4UYY94DZgGf2PGVHFPgF84A1wF7saZel8ySewWrcXAEGIx1TYH1/Pp9rJ7GD1iNp+oM6dUJvnnsT2V5LiJ/FJH3fA65EasOHsSq9zfYZQzWJIovsBqOX2Bda+Xul1jPECucKVsTxH7Q1eAR62W3l4wx/w21FqVmiMiVWMN//1dJuLFYPevexpgjVYz7QaCdMebqmitVTgURGQn81hhzxSkc2wdrSDnGGFNc6+KUUsR6pWIrcK0x5t26SKPB9KCUxoMx5qXKjJNNOvAhsEVE/hAogIj0FpEUn6GmX2G9LqCECGPMyuoYJxG52B7SagE8iDVVWo1THWJfT9uxRpCW11U6aqDqAbFeMg00+SDQrCKlljDGFBpjphpj2htjHgkSLAFraO4E1vOhRwk81h5SgtSfak1gacD8BmuYaifWM5gbKg5e+9hDb4HKJ+BwXKRjjHnEGNPOGHOFz8ziWqfRDPEpiqIokYX2oBRFUZSwJOQfOPSlVatWpkuXLqGWoSiKotQja9euPWyMKfciflgZqC5durBmTa2/jKwoiqKEMSLyQyB3HeJTFEVRwhI1UIoShny09QCZOXU2OUpRIgI1UIoSZhzPL2LzK3fzwhuLQy1FUUJKWD2DCkRRURF79+4lPz8/1FKUCMLtdpOUlERUVFSopVSbgoJCbnEtgl2LsJbTUpTGSdgbqL1795KQkECXLl0QOZWPHSuNDWMMmZmZ7N27l65du4ZaTrXx5gf69qqiND7CfogvPz+fxMRENU5KlREREhMTI7bX7ck/HmoJihIWhL2BAtQ4KdUmkuuMKcgNtQRFCQsiwkApSmPCU6yz9xQF1EBVCRHh9ttvL91/5JFHmDlzZugEVUJ6ejpffFHtdQtL2bBhA2eccQb9+vUjJSWFBQsWVH6QUmt4PPohbkUBNVBVIiYmhkWLFnH48OHKA1cDYwxeb+2v9VVTAxUXF8cLL7zAli1beP/997nlllvIysqqPYFKhXiL1UApCqiBqhIul4vrrruOxx57rJzfoUOHmDRpEmlpaaSlpfH559bisTNnzuSRR06u8NC/f38yMjLIyMigV69eTJs2jf79+7Nnzx7uuOMO+vfvT3JycmlvJT09ndGjR3PppZfSu3dvpk6dSqAvz8+aNYu+ffuSkpLClClTyMjIYPbs2Tz22GOkpqby2WefVajxqquu4owzzqBHjx7MmTMHgJ49e9KjRw8AOnToQJs2bTh06FC5tF977TX69+/PgAEDOPPMMwFrUss111xDcnIyAwcO5JNPPgFg3rx5XHTRRZx77rl06dKFp556in/+858MHDiQ4cOHc+SItZ7gnDlzSEtLY8CAAUyaNInc3PLPY4YPH86WLVtK90ePHt2gPpGlPShFsQj7aea+3Ld0C1t/rN0ZTn07NOUvF/SrNNxvf/tbUlJSuPPOO8u4//73v+fWW29l5MiR7N69m3HjxrFt27YK4/r22295/vnnGT58OG+88QYbNmzg66+/5vDhw6SlpZXe7NevX8+WLVvo0KEDI0aM4PPPP2fkyJFl4nrggQfYtWsXMTExZGVl0bx5c66//nqaNGnCH/5grdH3y1/+MqjGjRs3smrVKk6cOMHAgQOZMGECHTp0KI1/9erVFBYW0r1793Lncf/997Ns2TI6duxY2sN6+umnERE2bdrE9u3bGTt2LN988w0AmzdvZv369eTn53P66afz4IMPsn79em699VZeeOEFbrnlFi655BJ+/etfA/DnP/+ZuXPncvPNN5dJd/LkySxcuJD77ruP/fv3s3//foYMGVJhnkcSXk9RqCUoSligPagq0rRpU6ZNm8asWbPKuH/00UfcdNNNpKamcuGFF3L8+HFycnIqjKtz584MHz4cgJUrV3LFFVfgdDpp27YtZ511Fl999RUAQ4cOJSkpCYfDQWpqKhkZGeXiSklJYerUqbz00ku4XIHbGxVpnDhxIrGxsbRq1YoxY8awevXq0uP279/PVVddxXPPPYfDUb6qjBgxgunTpzNnzhw8Hk/p+Vx55ZUA9O7dm86dO5caqDFjxpCQkEDr1q1p1qwZF1xwAQDJycml57Z582ZGjRpFcnIyL7/8cpmeUgmXX345r7/+OgALFy7k0ksvrTC/Iw2v9qAUBYiwHlRVejp1yS233MKgQYO45pprSt28Xi+rVq3C7XaXCetyuco8X/J9Jyc+Pr5K6cXExJRuO51OigM8m3jnnXdYsWIFS5cu5e9//zubNm0qFyaYRig/Hbtk//jx40yYMIG///3vpcbUn9mzZ/Pll1/yzjvvMHjwYNauXVvl83E4HKX7Doej9NymT5/O4sWLGTBgAPPmzSM9Pb1cPB07diQxMZGNGzeyYMECZs9uWAsT6zMoRbHQHlQ1aNmyJZdffjlz584tdRs7dixPPvlk6f6GDRsAa+mQdevWAbBu3Tp27doVMM5Ro0axYMECPB4Phw4dYsWKFQwdOrRKerxeL3v27GHMmDE8+OCDHDt2jJycHBISEsjOPvk1gmAaAZYsWUJ+fj6ZmZmkp6eTlpZGYWEhF198MdOmTauwd7Jz506GDRvG/fffT+vWrdmzZw+jRo3i5ZdfBuCbb75h9+7d9OrVq0rnA5CdnU379u0pKioqjScQkydP5qGHHuLYsWOkpKRUOf5IoMwQn9cTOiGKEmLUQFWT22+/vcxsvlmzZrFmzRpSUlLo27dvaWt+0qRJHDlyhH79+vHUU0/Rs2fPgPFdfPHFpKSkMGDAAM4++2weeugh2rVrVyUtHo+HK6+8snRCwu9+9zuaN2/OBRdcwJtvvlk6SSKYRrCGCMeMGcPw4cO555576NChAwsXLmTFihXMmzeP1NRUUlNTS43avffey1tvvQXAHXfcQXJyMv379+dnP/sZAwYM4MYbb8Tr9ZKcnMzkyZOZN29emZ5TZfz1r39l2LBhjBgxgt69e5e6v/XWW9x7772l+5deeimvvvoql19+eZXjjhR8h/iKCvNCqERRQosEmhkWKoYMGWL8Z2Nt27aNPn36hEhRw2bmzJllJlM0NCK17qxb9iKD/ncTADm//5YmLdqEWJGi1C0istYYU26mk/agFCXMMD5DfIX5+tkjpfFS55MkROQ84AnACfzXGPNAXaepVI1w/hpGY8Z4Tw7xFaiBUhoxddqDEhEn8DQwHugLXCEifesyTUWJdIzPLL5i/XCs0oip6yG+ocB3xpjvjTGFwKvAxDpOU1EiGuPVIT5Fgbo3UB2BPT77e223UkTkOhFZIyJrAn1OR1EaG16v7yy+yFzTSlFqg5BPkjDG/McYM8QYM6R169ahlqMoocdz8t0njw7xKY2YujZQ+4BOPvtJtlvEsXjxYkSE7du3Bw2TkZFB//7961THhg0bePfdd0/5+JIXe/v27Uu/fv144oknalGdUhsYn/egPPoelNKIqWsD9RXQQ0S6ikg0MAV4q47TrBPmz5/PyJEjmT9/fkD/QJ8hqi4eT+VfDaipgXK5XDz66KNs3bqVVatW8fTTT7N169ZTjk+pfXxn8XnVQCmNmDo1UMaYYuAmYBmwDVhojCn/9c8wJycnh5UrVzJ37lxeffXVUvf09HRGjRrFhRdeSN++1uTE4uJipk6dSp8+fbj00ktLl4tYvnw5AwcOJDk5mRkzZlBQYK2a2qVLF+666y4GDRrEa6+9ViZd/+UsCgsLuffee1mwYAGpqaksWLCAEydOMGPGDIYOHcrAgQNZsmQJYC1vMXHiREaPHk2PHj247777AGjfvj2DBg0CICEhgT59+rBvX/lO7aefflr6FYmBAweSnZ2NMSbo0iBnnXUWEydOpFu3btx99928/PLLDB06lOTkZHbu3AnA0qVLGTZsGAMHDuScc87hwIED5dKdMmUK77zzTun+9OnTSz8M21jwNVAefQalNGLq/D0oY8y7wKk3+X157274qfzHUGtEu2QYX/GrWUuWLOG8886jZ8+eJCYmsnbtWgYPHgxY39nbvHkzXbt2JSMjgx07djB37lxGjBjBjBkz+Ne//sVNN93E9OnTWb58OT179mTatGk888wz3HLLLQAkJiaWfrfPF//lLKKjo7n//vtZs2YNTz31FAB//OMfOfvss3n22WfJyspi6NChnHPOOYC1VMbmzZuJi4sjLS2NCRMmlFmWIiMjg/Xr1zNs2LByaT/yyCM8/fTTjBgxgpycHNxuN4sWLQq6NMjXX3/Ntm3baNmyJd26dePaa69l9erVPPHEEzz55JM8/vjjjBw5klWrViEi/Pe//+Whhx7i0UcfLZNuyVIaEyZMoLCwkOXLl/PMM89UsTAbCD49aW+RPoNSGi8hnyQRCcyfP58pU6YAVgvfd5hv6NChdO3atXS/U6dOjBgxAoArr7ySlStXsmPHDrp27Vr6Pb6rr76aFStWlB4zefLkgOkGWs7Cnw8++IAHHniA1NRURo8eTX5+Prt37wbg3HPPJTExkdjYWC655BJWrlxZelxOTg6TJk3i8ccfp2nTpgHTvu2225g1axZZWVm4XK4KlwZJS0ujffv2xMTE0L17d8aOHQuUXUpj7969jBs3juTkZB5++OGAS2mMHz+eTz75hIKCAt577z3OPPNMYmNjA557g8VnmrkpKgihEEUJLRG13EZlPZ264MiRI3z88cds2rQJEcHj8SAiPPzww0D5pTOCLV9REcGW36jKchbGGN54441yXwz/8ssvg2opKipi0qRJTJ06lUsuuSRg2nfffTcTJkzg3XffZcSIESxbtqzCc6jKUho333wzt912GxdeeCHp6ekBv2ThdrsZPXo0y5YtY8GCBaUNg8aE8fr2oHSIT2m8aA+qEl5//XWuuuoqfvjhBzIyMtizZw9du3bls88+Cxh+9+7d/O9//wPglVdeYeTIkfTq1YuMjAy+++47AF588UXOOuusStMOtJyF/1Ia48aN48knnyxdDn79+vWlfh9++CFHjhwhLy+PxYsXM2LECIwx/OpXv6JPnz7cdtttFaadnJzMXXfdRVpaGtu3b6/R0iAAx44do2NH6zW4559/Pmi4yZMn89xzz/HZZ59x3nnnVTn+hoJ4i/Aau3FRpJMklMaLGqhKmD9/PhdffHEZt0mTJgWdzderVy+efvpp+vTpw9GjR7nhhhtwu90899xzXHbZZSQnJ+NwOLj++usrTTvQchZjxoxh69atpZMk7rnnHoqKikhJSaFfv37cc889pccPHTqUSZMmkZKSwqRJkxgyZAiff/45L774Ih9//HHpJIiSWYGzZ88uXYrj8ccfp3///qSkpBAVFcX48eNrtDQIWN/+u+yyyxg8eDCtWrUqdV+zZg3XXntt6f7YsWP59NNPOeecc4iOjq5y/A0GbzFFuCg0LvDoEJ/SeNHlNhoo8+bNKzOZojESqXXni6evY8ChJXiMg21tf8GwG+eEWpKi1CnBltuIrGdQitIY8HooxkWRuJBifQalNF7UQDVQpk+fzvTp00MtQzkFxBThwUGhROPQIT6lERMRz6DCaRhSiQwiuc6ItxgPLookGodHe1BK4yXsDZTb7SYzMzOibzhK/WKMITMzE7fbHWopp4R4i/GIkyKJweEtDLUcRQkZYT/El5SUxN69e9GlOJTq4Ha7SUpKCrWMU0KMBw9OiiUal/aglEZM2BuoqKioMl9qUJSGjniL8YoLjyMap/aglEZM2A/xKUpjQ7xFeMRJsTMGl9FJEkrjRQ2UooQZDuPBK068jhiitAelNGLUQClKmCHGHuJzxhClPSilEaMGSlHCDKsH5cI4Y4gyRZUfoCgNFDVQihJmOLzF1hCf0000OsSnNF7UQClKmGH1oKIwLjcxRg2U0nhRA6UoYYbDFGMcTnDFEEMRxusNtSRFCQlqoBQlzHDiwYgLXLE4xFBQoC/rKo0TNVCKEmaU9KAkyvpUU0GBLlqoNE7UQClKmOE0HoxElRqoorwTIVakKKFBDZSihBlOSnpQsQAUag9KaaSogVKUMCOGQjxON85oqwdVmJ8bYkWKEhrUQClKmBFjCvE6Y3BEWz2oIjVQSiNFDZSihBkxFOJ1unHZPajiQh3iUxonaqAUJYwoLvYQK4XgisUVE2e5FWgPSmmcqIFSlDAit2TGXnQszmg1UErjRg2UooQRBbmWgXJExxLljgfAq0N8SiNFDZSihBH5eTkAOKJiiS41UNqDUhonaqAUJYwosGfsOWPiiXJbQ3ymSHtQSuNEDZSihBGF9jMoZ8zJHpTRHpTSSFEDpShhRFFeNgCumCbExNoGqlg/Fqs0TtRAKUoYUZyTCUBUk0RiYtx4jYAO8SmNFDVQihJGFJ44CkCTFq0Rh4N8ohHtQSmNFDVQihJGeE5YPaimLdoAkC/ROIq1B6U0TtRAKUoYYXKz8BohNqEFAIXEIB7tQSmNkxoZKBGZKSL7RGSD/Tvfx+//ROQ7EdkhIuNqLlVRGj7OvEyOSxNwOAEolGgcnoIQq1KU0OCqhTgeM8Y84usgIn2BKUA/oAPwkYj0NMZ4aiE9RWmwxOT+xFFna5rb+4USg8ujQ3xK46SuhvgmAq8aYwqMMbuA74ChdZSWojQY4gsPkBfbtnS/yBGDU3tQSiOlNgzUTSKyUUSeFZEWtltHYI9PmL22m6IoQcjOK6St9xDeph1K3YodMbi8aqCUxkmlBkpEPhKRzQF+E4FngO5AKrAfeLS6AkTkOhFZIyJrDh06VN3DFaXBsHvvblpIDs7WvUrdihxuorw6SUJpnFT6DMoYc05VIhKROcDb9u4+oJOPd5LtFij+/wD/ARgyZIipSlqK0hDJzNgMQLNOfUvdPM4Yogq1B6U0Tmo6i6+9z+7FwGZ7+y1giojEiEhXoAewuiZpKUpDJ3//NgBadU0pdfM43ESZwlBJUpSQUtNZfA+JSCpggAzgNwDGmC0ishDYChQDv9UZfIpSMa4j35CHm9iWp5W6eVxuoo32oJTGSY0MlDHmqgr8/g78vSbxK0pjomnOLg5En0YXkVI344wlBjVQSuNEvyShKGGAx2voULSb7IRuZdyNK4YYdIhPaZyogVKUMODHA4fpIJmYVj3LuBtXLC684CkKkTJFCR1qoBQlDDiwayMAcR36lHE3UbEAeApO1LsmRQk1tfGpI0VRakjO3i1A2Rl8AGIbqML8XGLjmlc5PmMM321bx4H/LSDh0FoSC/YRa/JwUozBgQcnHnHixYlHXHjFidfvb0kYg1SeYCAN1QwvQbatHSmnQsoFLNmV0h0B8uI6MOD653A4ndVUpIQaNVCKEgZI5rcU4aRZh7JDfI4oN2AtBR9bxbh2bPma40vvIi3/f/QAdjm7cqBJb4pcTcHpxBhjDRl6PYi3CDH2X68HMcU4jAen8eAyxbhqOEGjqqYtsDEzmAAe5ZzMSTfjFy7Bm03vE1/x/beb6dZ7QBXVKOGCGihFCQPij+/kJ2d7Ormiy3pExwFQWIUhPq/XkP7Kw5zx7cN4xMW6rr+h63k30bXtaXStC9ERwLcbVsLiCRzLWAdqoCIONVCKEga0zv+BzPiuZT6/AuCMtvpNRXm5FR5fVFzMZ/+6gbOPLGRbfBpJ1zzLoNanVXhMY6Dd6QMoNg48P24KtRTlFGhQkySM18OqZ+/kp93fhlqKolSZosICOnj3k9+sezk/R1ScHSZ4D6qgqJgVs37F2UcWsrHDZHrf/j4JapwASGiSwG7pQOyRbaGWopwCDaoHtf+Hb+n7w4scf+4t9l31Jh279an8ID88xcXk552gID+PosJ8MMVl/AONidcmUu3n0RUf4KvXBPEIdk7+zgZTml6weI1vvEF0+PoETdvP3VB5vMHTCxa+ch2W36mfU3CtJ3fyD+7kZ+JBfD4SW4LTbRmo4vzAa0J5vYZl/76bC48vZmuXaaRcPetUKlGD5kBcD7qd2Fx5wMowhvz8PE7kHMdbmEtxYR5er6HYG6TylJaDzwQP201EOHnt+pSX+AYrCevbj5DKi9d/4ojfAeUmm5RJvnp1xziiaNs+qVrHVIcGZaA6dO3N9l+8SId3puF6/iy+ajMBV/czcTdri9dAYU4mxdmHKc4+iJw4jCvvMDGFR4gvPkpz71ESzAmixEM8EB/qk1EaHS06p5Rzi7KfQQWbZv7OCw9z4eE5fNN2PH2nPaHGKQCeNv1om/EJxw/vp2mr9pWGz887wc51n3Ds+7XEZG4h7sQemhUdppU5gluKcdeD5kjhK29v2t7/ZZ3F36AMFEDvtHP4qe2nZLz+RwYdfIvoQ4sChssmlmPSnBOuFhyPO43MmFSKYlqAKwaHK8aaPRUVAxLOWRRs7lMFU3YJ7BGsjVUmHjEB3cuEr8L9sWyc1YvnVNIN5lWm5RhER1DXIHkX9HwqERcV34IeA35WztsZY/egCsv3oJa9OY/xu/7Bd82G0uPXz4OjQY3Y1xqtUsZBxlN8u/I1Bl/0u4BhDmYe5ev0N4j77m0G5K6in1j5fZCWHIxO4sdmqWTEtkFim+GKice4YjGuGBziwOEo2/MwPtMKpdy8QqsnXepuTvalS9xMSSDfvz7H+1LdER3jF0dNR4QK3K1qFkElhPPd95Rpd1oP2t32Gnm5J/j2m/XkZ2cigLtpK+Kbt6ZF6w4kxDUhIdRCFaUSotxWX95bWHaSxGcfv8OZG+5gn/t0ut3wBuKKCYW8iKBX6kh2L21Pi83P4f3FjThc1m3vePYxNqW/gWxdQkruKs6VfI5JAt+0PhdHnwl0SzmTNq070CbE+hszDdJAlRAbF0+P1JGhlqEop0ypgSo62YPasOZzkj/9NVmuVrS9YSmO2KahkhcRiMPBj6m3Mnz9nWx6dDwn2gzCfehrepxYxwgpIIumfN9uPIlDL6dj6rkMckaFWrJi06ANlKJEOtG2gTIFVg9q06b1dFz6S4odMcRf+zbu5u1CKS9iGHbhdXyW9SMp38+h2Q+r+VHasrXN+bQYcindh4wjRY1SWKIGSlHCmIQmTTlu4nBl7+Xrrz6lw9vTiBYPhVctoWn78tPSlcCICKOuvg+v517yiwrp4I6lQ6hFKZWiBkpRwphm8dFskg4k71tIzt63yHU0oWjaUlp3LT/jT6kch9OJ21nVj0YpoUan/ShKmLO31SgAfoztQeyNn5T7oKyiNFS0B6UoYc7YG/7JD99Np0ePZMShX+RWGg9qoBQlzHE6HXTulRpqGYpS7+gQn6IoihKWqIFSFEVRwhIxdf3102ogIoeAH2ohqlbA4VqIpz6IJK0QWXpVa90RSXojSStElt7a0trZGNPa3zGsDFRtISJrjDFDQq2jKkSSVogsvaq17ogkvZGkFSJLb11r1SE+RVEUJSxRA6UoiqKEJQ3VQP0n1AKqQSRphcjSq1rrjkjSG0laIbL01qnWBvkMSlEURYl8GmoPSlEURYlw1EApiqIoYUmDMlAicp6I7BCR70Tk7lDr8UdEOonIJyKyVUS2iMjvbfeZIrJPRDbYv/NDrRVARDJEZJOtaY3t1lJEPhSRb+2/LcJAZy+fvNsgIsdF5JZwylcReVZEDorIZh+3gHkpFrPserxRRAaFgdaHRWS7redNEWluu3cRkTyfPJ5dn1or0Bu07EXk/+y83SEi48JA6wIfnRkissF2D4e8DXbPqp+6a4xpED/ACewEugHRwNdA31Dr8tPYHhhkbycA3wB9gZnAH0KtL4DeDKCVn9tDwN329t3Ag6HWGaAe/AR0Dqd8Bc4EBgGbK8tL4HzgPUCA4cCXYaB1LOCytx/00drFN1wY5W3Asrevt6+BGKCrfc9whlKrn/+jwL1hlLfB7ln1UncbUg9qKPCdMeZ7Y0wh8CowMcSaymCM2W+MWWdvZwPbgI6hVVVtJgLP29vPAxeFTkpAfg7sNMbUxhdJag1jzArgiJ9zsLycCLxgLFYBzUWkfb0IJbBWY8wHxphie3cVkFRfeiojSN4GYyLwqjGmwBizC/gO695RL1SkVUQEuByYX196KqOCe1a91N2GZKA6Ant89vcSxjd/EekCDAS+tJ1usrvEz4bDsJmNAT4QkbUicp3t1tYYs9/e/gloGxppQZlC2Qs8HPO1hGB5Ge51eQZWK7mEriKyXkQ+FZFRoRIVgEBlH855Owo4YIz51sctbPLW755VL3W3IRmoiEFEmgBvALcYY44DzwDdgVRgP1Y3PxwYaYwZBIwHfisiZ/p6GqtPHzbvKYhINHAh8JrtFK75Wo5wy8tgiMifgGLgZdtpP3CaMWYgcBvwiog0DZU+HyKm7H24grKNq7DJ2wD3rFLqsu42JAO1D+jks59ku4UVIhKFVdAvG2MWARhjDhhjPMYYLzCHehxyqAhjzD7770HgTSxdB0q67Pbfg6FTWI7xwDpjzAEI33z1IVhehmVdFpHpwC+AqfZNCXuoLNPeXov1TKdnyETaVFD24Zq3LuASYEGJW7jkbaB7FvVUdxuSgfoK6CEiXe2W9BTgrRBrKoM9xjwX2GaM+aePu+8Y7cXAZv9j6xsRiReRhJJtrIfkm7Hy9Go72NXAktAoDEiZFmg45qsfwfLyLWCaPSNqOHDMZzglJIjIecCdwIXGmFwf99Yi4rS3uwE9gO9Do/IkFZT9W8AUEYkRka5YelfXt74AnANsN8bsLXEIh7wNds+ivupuKGeI1PYPawbJN1gtjT+FWk8AfSOxusIbgQ3273zgRWCT7f4W0D4MtHbDmu30NbClJD+BRGA58C3wEdAy1FptXfFAJtDMxy1s8hXLcO4HirDG5X8VLC+xZkA9bdfjTcCQMND6HdazhZJ6O9sOO8muHxuAdcAFYZK3Qcse+JOdtzuA8aHWarvPA673CxsOeRvsnlUvdVc/daQoiqKEJQ1piE9RFEVpQKiBUhRFUcISNVCKoihKWKIGSlEURQlL1EApiqIoYYkaKEVRFCUsUQOlKIqihCX/H5CgDbN6quJHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABeZ0lEQVR4nO2deXxVxfm4n/dm3yAQ9kU22UlYA1hAwAVBqqigUEFFtNa22lKtS2tV1Pqra1XUyreK4kIRt6LWfUNFRWTfQZAIQUAIJCSErPf9/XHOvdzc3JvckOUumefzuck5M++Zec/MnHnPLGdGVBWDwWAwGEINR7AVMBgMBoPBF8ZAGQwGgyEkMQbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgPBCRziKiIhIdbF0MJ4+IXC8iP4nIuiDEPUdEXmqAeGaKyLIq/JeKyNX1rUcoIiJjRCS7pn51rEOVdUlDlZO6RETaiUi+iGwTkTMaIk5joAy1QkTmiUiB/SsRkVKP8/eCpNYc4Heq2t9DzzkiMidI+oQUduWZVUP5z0SkUES2ishZVcjGicizInJURPaLyA1e4ahH+SgQkdvrQ+dwR0SyRKRzgLJ+09yP/J9suaP2dXFe8R73yJ8PXX6q+pOqpgBvA384yVurERFloEzLp+FR1WtVNVlVk4H/Byx2navqBJdcA+dNc2BjA8ZXL4RQeV4ErAHSgNuA10SkpR/ZOUB3oBMwFrhZRMZ7yaR6lJF76knneieE8mcO1ac5ACJyDnArcKYt3xW4y0vsPI/8GecjmI1YZaHeCXsDZVv8W0RkPXBMRKJFZLiIfC0iuSKyTkTGeMgvFZF/iMgK+w3iTRFp7ifsK0Vki92s/UFEfuPlP0lE1trh7HQVChFpKiLzRWSfiOwVkb+LSFQ199FNRD4VkRwROSQiC0Uk1cPvsIgMss/bichB132JyPkissm+36Ui0tsrff4sIutFJE9EFotIfM1Tuub4yRsVkVM9ZBaIyN89zn9pp2munYcZNYzTlc7OauRutvPnJxG52lMvW6cnReQdO++/FZFuHtc+JiJ77HxfJSKjvIKPt9M5X0RWi4hnS+5Wu6zki8hmEbnQw2+miHwlIo+ISA5WxVPd/T4kIkdEZJeITPDy7mSHly8iH4pIi+rC8xF+D2AQcKeqHlfV14ENwGQ/l1wB3KOqR1R1C/A0MLOm8Qag1yARWWPf26t2ev/dj+wf7LTu4OH2V/s5yxKR6R7uE+1wj9p5PMfDz9UCvEpEdgOfBqDqdBHZbcd1m5dfrIi8YN/DJhEZUrNUcFOTNL8CmK+qm1T1CHBPFbL+cAINY5xVNax/QBawFugIJADtgRzgXCwDfLZ93tKWXwrsBfoBScDrwEu2X2dAgWj7fCLQDRBgNFAIDLL9hgJ5dvgOO95ett9/gf+zw28FrAB+U819nGqHFQe0BL4AHvXw/zWwGUgEPgAest17AMfsa2OAm4EdQKxH+qwA2mG1LLYA1/rRYSSQW8VvZDX3MMeVlr7yxnZT4FQPmQXA3+3jgcDPwDAgCuthygLialAexgNFQFI1MvuBvnZ6vuSpl61Tjp3H0cBC4GWP62dgvUFGAzfaYcV7pEEpMMXOjz8Du4AY2/9iOy8cwFQ779rafjOBMuB6O+yEKu5hph3Pr+20+i3wEyAe5XynXT4S7PP7/IT1L+BffvwuBLZ4uT0BPO5Dtpmdjq093KYAG7yer71ANvAc0OIknvlY4Efgj3YaXwSUeJSjMUC2fXwHsJoTz/8YO43/ifWsjbbzoKeHf7qdPxnAAeACL/1fwHq2q8ofl+zTdvr3B4qB3h7lpAirnooC/gEs9xPWpcB6P35VprkP+XXAVI/zFvb1aR7P7AHgIPAh0N9HGGOBI8ApNc27Gud1fUdQ7zdgJegsj/NbgBe9ZD4ArrCPKzyoQB+7cEfhZaB8xLUE+KN9/H/AIz5kWtsFMcHD7VfAZzW8rwuANV5ub2G9va7HrrSB24FXPGQcWBXAGI/0meHh/wAwr57yYg6VDdQsL5mqDNRTWG+CnvLbgNEBxr/SDv8P1cg9C/zD4/xUKhuoZzz8zwW2VhHeEdeDbKfBcg8/B7APGOXn2rXAJPt4JrA7wHudCezwOE+076GNRzn/m4f/74D3TyJPL8Or4gTuBRb4kO1o6xDv4XY2kGUfJwNDsIxva+A14IOT0Ol0u4yLh9syKhqovVhGaBnQ1ENuDJaBSvJwewW43U9cj2I/55yoH7oGoKNLtoOH2wpgmkc5+djDrw9w/CTSoso09yG/ExjvcR5jX9/ZPh+BZVATgb9gvXyl+gjnVfu6R2uqc01+Yd/FZ7PH47gTcLHdRZQrIrlYLYO2fuR/xMqkSt0fIjJBRJbb3Wu5WBWVS64jVmZ708kOb59H/P+H1ZLyi4i0FpGX7S7Bo1hv9d46PY3V8ntcVYttt3b2PQCgqk77/tp7XLff47gQq6JoKPZUL+KmE3CjV951xLrHQMgEpgFzRCSmCrl2Xnr50tFvmtldplvsLtNcoCkV88odnp0f2a57EJHLPbowc7Hy0+e1AeDWUVUL7cNkX/7e91ADCoAmXm5NgHw/si7/SrKqWqCqK1W1TFUPANcB40QkpYY6tQP2ql1T2ninWypwDdaLSJ6X3xFVPeZx/iMn8meYWBNCDopIHnAtlZ/Dk8ojKueBt1+81Hxcq8o09yPvLQsn8ugrtbpyC1X1H1g9JxW6sMUaajgXq8dodg31rRGRYqC8C+qLqprq8UtS1fs8ZDp6HJ+C1VVyyDNAsWa2vA48hNV8TgXexeruc8XTjcrswWpBtfCIv4mq9q3mHv6ffR/pqtoEqxvJFRcikoz1NjcfqwJ2jZv9hFWxu+TEvr+91cRXCREZJRVnWHn/vMdaAkG9zgux3s5ctPE43gPc65V3iaq6KKCIrAprCVa3R9sqRPcBHTzOO/oT9MZOg5uBS4BmdrnIwyOvPMMTEYcd108i0gnrJeM6rC6VVKwBZ89rvdMr2GwCunoZkf62ewXUGtPYZ/tXKeu6xP5f03poH9DeLusuvPPwCPBL4DkRGeHl10xEkjzOT8F6jgD+g9VT0VFVmwLzqJg/nnoHnZNI800+ZA+oao6/KKh8/72Bzaq6reYa14xIMVCevAScJyLniEiUiMSL9e2DZ4U0Q0T6iEgicDfwmqqWe4UTi9VHfRAoswegPWe0zAeuFJEzRcQhIu1FpJeq7sPqu31YRJrYft1EZHQ1eqdgvd3kiUh74CYv/8eAlap6NfAO1oMDVvfERFuPGKwxkWLg6+oSyhtV/VJPzN7x9fuypmH6YC1wqZ0347HGAFw8DVxrv8WKiCTZg9Yp4J68sKCae3C1LGOrEHsFK+9622UgoKnONilYXUQHgWgRuYPKLYzBInKR/TY8Gys/lmONW6h9LSJyJVYLKmRR1e1YeXan/SxdiDU287qfS14A/iYizUSkF9YY2QJwt0562s9EGjAXWOpq4Yj1KcDSANT6BigHrhNr4s0krPFCb92XAtOBN0TE2/8uEYm1Xzh+idVlBVb+HlbVIvuaSwPQJ9j4TXM/slfZ9V8q8DdO5M8pIjLCTpd4EbkJq/X4lVcYMVhlut6JOAOlqnuAScBfsSqCPViVvee9voiVKfuBeHzM6VfVfNv9Fay3sUux3qxc/iuAK4FHsN6gP+dES+ZyrApys33ta1T9Rg/WVM9BdljvAG+4POwHcDzWQDjADcAgEZluv8XMAB7HagWehzVNtKSa+ILFH7F0zMWqPJa4PFR1JdbD9QRWuu2g4gyjjlR+WHyhVFG2VfU9rMrxMzuO5bZXIA/dB8D7wHasrqEiKnf5vIk1AeII1hjORapaqqqbgYexKtgDWIPxgdxPvSLWt2zzqhCZhjV2dAS4D5iiqi4jO11EPN/W78Tq+v4R65l4UFXft/26YqVdPlbLsRhrfNZFQPlrl+2LgKuwytEM4H/4yD9V/QiYBbxtd02B9dwfwWo1LcSaNLTV9vsdcLeI5GNNsHilOn3qGx9p7I3fNLeNToGInAJguz+AVfZ329fcaYeTgjUOfASrB2Y8MMFH6yqKambJ1hWuGT+NBvsN7SVVfSbYuhgCR0RisWYgZahqaTWyPwE3q2pAX+qLNS1/I9bEk7JaK2s4KURkLXBmFd1NVV37Ldbkn+fqXDGDG7vLei7QSlUvqe/4Iq4FZYhMVLVEVXtXZ5xsbsXqklrlT0BELhTrC/xmwP3A28Y4BRdVHRCocRKR0SLSxu7iuwKr2/H96q4znDwi0g6rV2o4Vk9AvWMMVAMiFZcF8vxV1b1iqCGq+oKqdlfVwVWI/Qbrm6udWOMZv61CNiiY8lIlPbFa1LlY465T7PHfBsPuevOVP1V1x4Utai11lKaqQ1T124aIs9F18RkMBoMhPDAtKIPBYDCEJKGy2CEALVq00M6dOwdbDYPBYDA0IKtWrTqkqpUWIA4pA9W5c2dWrlwZbDUMBoPB0ICIyI++3E0Xn8FgMBhCEmOgDIYQxmNxToOh0WEMlMEQoqiznKWPXM72ewazeeVnwVbHYGhwQmoMyhelpaVkZ2dTVFQUbFUMYUR8fDwdOnQgJqaqRc1Dm6/f/Ddjj76FE+HA/66muN964uKTqr/QYIgQQt5AZWdnk5KSQufOnam4eLHB4BtVJScnh+zsbLp06RJsdU6aJpteYk9UB3JPv5v0z2bx3btPk3nR7GCrZTA0GCHfxVdUVERaWpoxToaAERHS0tLCutV99NB++pZuYm+78fQbdSE/OjqSsPnV6i80GCKIkDdQgDFOhhoT7mVmx9qlOERp0ucsxOFg/ykT6VO6iYN7fwi2agZDgxEWBspgaGzk7/yWchW69f8FAC2HTsEhyq5vlgRXMYOhATEGKgBEhBtvvNF9/tBDDzFnzpzgKVQNS5cu5euva7xfYQXGjx9Pamoqv/zlL+tIK0NNaHJ4PdkxnYhLbApAl16D+Zk0HD98GmTNDIaGwxioAIiLi+ONN97g0KFD1QvXAFXF6az7fb/qwkDddNNNvPjii3WkkaGmtC3eRU5yT/e5OBz82Gw4PY6toqw0VPeiNBjqFmOgAiA6OpprrrmGRx55pJLfwYMHmTx5MpmZmWRmZvLVV9aGoHPmzOGhhx5yy/Xr14+srCyysrLo2bMnl19+Of369WPPnj3cdNNN9OvXj/T0dBYvXgxYRmbMmDFMmTKFXr16MX36dJ8fbM6dO5c+ffqQkZHBtGnTyMrKYt68eTzyyCMMGDCAL7/8skodL7vsMk477TS6d+/O008/7Q73zDPPJCUlpcp0efXVV+nXrx/9+/fn9NNPB6xJLVdeeSXp6ekMHDiQzz6zvt9ZsGABF1xwAWeffTadO3fmiSee4J///CcDBw5k+PDhHD58GICnn36azMxM+vfvz+TJkyksLKwU7/Dhw9m06cSOBmPGjImoJbJyDh+mDTk4m59awV1OPZMmUsiudV8GSTODoWEJ+Wnmntz19iY2/3S0TsPs064Jd57Xt1q53//+92RkZHDzzTdXcP/jH//In/70J0aOHMnu3bs555xz2LJlS5Vhff/99zz//PMMHz6c119/nbVr17Ju3ToOHTpEZmamu7Jfs2YNmzZtol27dowYMYKvvvqKkSNHVgjrvvvuY9euXcTFxZGbm0tqairXXnstycnJ/PnPfwbg0ksv9avj+vXrWb58OceOHWPgwIFMnDiRdu3aBZR2d999Nx988AHt27cnNzcXgCeffBIRYcOGDWzdupVx48axfft2ADZu3MiaNWsoKiri1FNP5f7772fNmjX86U9/4oUXXmD27NlcdNFF/PrXvwbgb3/7G/Pnz+f666+vEO/UqVN55ZVXuOuuu9i3bx/79u1jyJAhAekcDvz0w2bSgIS2PSu4dxoyHr67gSObPoYhZwZHOYOhATEtqABp0qQJl19+OXPnzq3g/vHHH3PdddcxYMAAzj//fI4ePUpBQUGVYXXq1Inhw4cDsGzZMn71q18RFRVF69atGT16NN999x0AQ4cOpUOHDjgcDgYMGEBWVlalsDIyMpg+fTovvfQS0dG+3zeq0nHSpEkkJCTQokULxo4dy4oVKwJOkxEjRjBz5kyefvppysvL3fczY8YMAHr16kWnTp3cBmrs2LGkpKTQsmVLmjZtynnnnQdAenq6+942btzIqFGjSE9PZ+HChRVaSi4uueQSXnvtNQBeeeUVpkyZErDO4UDBvm0ApHbsXcG9Zev27HB0IeWnr4KhlsHQ4IRVCyqQlk59Mnv2bAYNGsSVV17pdnM6nSxfvpz4+PgKstHR0RXGlzy/yUlKCmw1gLi4OPdxVFQUZWWVdyR/5513+OKLL3j77be599572bBhQyUZfzpC5enYNZmePW/ePL799lveeecdBg8ezKpVfndYByrej8PhcJ87HA73vc2cOZMlS5bQv39/FixYwNKlSyuF0759e9LS0li/fj2LFy9m3rzI2mDWeeh7AFqc0quS3/604Qz9+VVKiwqIiU9uaNUMhgbFtKBqQPPmzbnkkkuYP3++223cuHE8/vjj7vO1a9cC1tYhq1evBmD16tXs2rXLZ5ijRo1i8eLFlJeXc/DgQb744guGDh0akD5Op5M9e/YwduxY7r//fvLy8igoKCAlJYX8/PxqdQR48803KSoqIicnh6VLl5KZmRlQ3AA7d+5k2LBh3H333bRs2ZI9e/YwatQoFi5cCMD27dvZvXs3PXv2rCakE+Tn59O2bVtKS0vd4fhi6tSpPPDAA+Tl5ZGRkRFw+OGAIy+bwzQhLrFJJb+4HmOJlTJ2rTaz+QyRjzFQNeTGG2+sMJtv7ty5rFy5koyMDPr06eN+m588eTKHDx+mb9++PPHEE/To0cNneBdeeCEZGRn079+fM844gwceeIA2bdoEpEt5eTkzZsxwT0j4wx/+QGpqKueddx7//e9/3ZMk/OkIVhfh2LFjGT58OLfffrt7/GnUqFFcfPHFfPLJJ3To0IEPPvgAgDvuuIO33noLsGb6paen069fP37xi1/Qv39/fve73+F0OklPT2fq1KksWLCgQsupOu655x6GDRvGiBEj6NXrRAvirbfe4o477nCfT5kyhZdffplLLrkk4LDDhbjj+8mNrrR3GwDdhpxNqUaRv+XjBtbKYGh4JJSW8h8yZIh6z8basmULvXv39nOFoTbMmTOnwmSKSCNcy873d/WnKLEd6Te959N/4z2nkegoo+tt3zWwZgZD/SAiq1S10kynWregROR6EdkqIptE5AEvv1NEpEBEIrMGNBjqgRbOHIoTW/v1P9RyOJ1Lvqc4P6cBtTIYGp5aTZIQkbHAJKC/qhaLSCsvkX8Cvl8DDUEnlFfDaKwcK8inmeTjTG7rVyah15k49j/Lj6s/osfoaQ2oncHQsNS2BfVb4D5VLQZQ1Z9dHiJyAbALqDxP2GAw+OTI/h8BkKbt/cr0GjyWQo2jcOsnDaWWwRAUamugegCjRORbEflcRDIBRCQZuAW4q7oAROQaEVkpIisPHjxYS3UMhvCm4OBuAGKbd/Ar0zQlic2x/WhxcHlDqWUwBIVqDZSIfCwiG338JmF1ETYHhgM3Aa+I9SHNHOARVa36i1VAVf+tqkNUdUjLlr5nLhkMjYXiw9kAJKV1rFIut/VwOpTtpsiWNxgikWrHoFT1LH9+IvJb4A21pgKuEBEn0AIYBkyxJ02kAk4RKVLVJ+pGbYMhMik5uh+A1Fb+W1AATXqfBdlPsnvl+/QYd3VDqGYwNDi17eJbAowFEJEeQCxwSFVHqWpnVe0MPAr8v3A3TkuWLEFE2Lp1q1+ZrKws+vXrV696rF27lnfffbdWYcyaNYtWrVrVu66GmuMsOESpRtGsedW9Cb0GjeCIJlP8vflg1xC51NZAPQt0FZGNwMvAFRpKH1bVIYsWLWLkyJEsWrTIp7+vZYhqims9u6qoCwM1c+ZM3n///VqFYagfHIWHyJMUoqKqfjSbJMSxPWEgbQ4th3rYssVgCAVqZaBUtURVZ6hqP1UdpKqVXudUdY6qPuTr+nChoKCAZcuWMX/+fF5++WW3+9KlSxk1ahTnn38+ffr0ASxDNX36dHr37s2UKVPc20V88sknDBw4kPT0dGbNmkVxcTFgLYl0yy23MGjQIF599dUK8XpvZ1FSUsIdd9zB4sWLGTBgAIsXL+bYsWPMmjWLoUOHMnDgQN58803A2t5i0qRJjBkzhu7du3PXXSfmq5x++uk0b968ynv+/PPPGTBgAAMGDGDgwIHk5+ejqn63Bhk9ejSTJk2ia9eu3HrrrSxcuJChQ4eSnp7Ozp07AXj77bcZNmwYAwcO5KyzzuLAgQOV4p02bRrvvPOO+3zmzJnuhWEbA9HFh8mPSg1ItujUCbTUHPZu+Kx+lTIYgkRYLRbLe7fC/sqLodaKNukw4b4qRd58803Gjx9Pjx49SEtLY9WqVQwePBiw1tnbuHEjXbp0ISsri23btjF//nxGjBjBrFmz+Ne//sV1113HzJkz+eSTT+jRoweXX345Tz31FLNnzwYgLS3NvW6fJ97bWcTGxnL33XezcuVKnnjC6jH961//yhlnnMGzzz5Lbm4uQ4cO5ayzrGHDFStWsHHjRhITE8nMzGTixIkBb0vx0EMP8eSTTzJixAgKCgqIj4/njTfe8Ls1yLp169iyZQvNmzena9euXH311axYsYLHHnuMxx9/nEcffZSRI0eyfPlyRIRnnnmGBx54gIcffrhCvK6tNCZOnEhJSQmffPIJTz31VEA6RwIJJUcojE4NSLbH6VMp3HAXOd8spH1/s/2GIfIwa/EFwKJFi5g2zfogctq0aRW6+YYOHUqXLl3c5x07dmTEiBEAzJgxg2XLlrFt2za6dOniXo/viiuu4IsvvnBfM3XqVJ/x+trOwpsPP/yQ++67jwEDBjBmzBiKiorYvduaqnz22WeTlpZGQkICF110EcuWLQv4nkeMGMENN9zA3Llzyc3NJTo6usqtQTIzM2nbti1xcXF069aNcePGARW30sjOzuacc84hPT2dBx980OdWGhMmTOCzzz6juLiY9957j9NPP52EhISA9Q53ksrzKI6runXrom2rFqxJPI1O+z/AWVpcz5oZDA1PeLWgqmnp1AeHDx/m008/ZcOGDYgI5eXliAgPPvggUHnrjJPZvsLf9huBbGehqrz++uuVVgz/9ttva7WVxq233srEiRN59913GTFihHuxWH8EspXG9ddfzw033MD555/P0qVLfa5kER8fz5gxY/jggw9YvHix+8WgMaCqNHXmcSAhLeBrZMClNP1mKds/fZ4e51xTj9oZDA2PaUFVw2uvvcZll13Gjz/+SFZWFnv27KFLly58+aXvbbd3797NN998A8B//vMfRo4cSc+ePcnKymLHjh0AvPjii4wePbrauH1tZ+G9lcY555zD448/7t4Ofs2aNW6/jz76iMOHD3P8+HGWLFnibtkFws6dO0lPT+eWW24hMzOTrVu31mprEIC8vDzat7dWSHj++ef9yk2dOpXnnnuOL7/8kvHjxwccfrhTePw4TaQQTWwR8DWDxk5mB6eQ8N2TEJnzkwyNmPBqQQWBRYsWccstt1Rwmzx5MosWLfLZNdezZ0+efPJJZs2aRZ8+ffjtb39LfHw8zz33HBdffDFlZWVkZmZy7bXXVhv3TTfdxPfff4+qcuaZZ9K/f39OOeUUd5feX/7yF26//XZmz55NRkYGTqeTLl268L///Q+wuh8nT55MdnY2M2bMcI8//epXv2Lp0qUcOnSIDh06cNddd3HVVVe5t+G49tprefTRR/nss89wOBz07duXCRMmEBsbyzfffEP//v0REffWIFVNvfdkzpw5XHzxxTRr1owzzjjDvUfWypUrmTdvHs888wxg7V912WWXMWnSJGJjYwMKOxI4evgASYAkBW6g4mOj2d37as7Ycgfff/Is3c+6KuBrjxeXsfuHzRzJWk/ZkT04jv0MZUXEaAlRlFMuMTgdMWhUHBIVg0TF4IiOxREVbf2iY8ERjVOiUUcUKlGV4lDU86Siiw97quryUI9zv+JVIkBstIOUVp3oNmRcDa82hAJmu40IZcGCBRUmUzRGwq3s7NjwDae+Pp41wx9j4PiZAV9XWFRM1v2/oA0HSbjuKxKqWIXip58PseXzV0ne+T9OPb6ONDnRGneqUEQsJcRQjoNoyomhzPpJ9Z9AhCrlKuT/6QdSUwMb2zM0PP622zAtKIMhRCjKs9aijE2p2ZJfifFxFJ07l7j/XcjP8ybR4pr/ktSyk9u/sCCXDZ+9BpuXkFH4LWdKCTnSnL2tRrOvwxCadBlE83ZdSWrWlsSoaBK9wldVisvKKCkupqSkhNJS+1dSAlqOOEvBWY44y6CacU4BW8aSc4l7XmW5ide5Sy7wcVSnKnu/fplhu/5F/pFDxkCFIcZARSgzZ85k5syZwVbDUANKCnIBSGhS84p0UOYIPvv5MTJXzMbxZCbrmo6kNLYpCflZdDu+gWFSSg6pbG83iTanXUrrfmNIcwQ2BC0ixMXEEBcTU2O9gs3BnathFxQfyw22KoaTICwMlKrWaAaawRBKXdeBUlKYC0BSk2Yndf3Yib9i4yk9yfvwfrrkriSBYg5GtWJNy0k0HTSZXkPHkRYdFo98nRGd2BSA0sK8IGtiOBlCvrTGx8eTk5NDWlqaMVKGgFBVcnJyiI+PD7YqNaLs+FEAUpqefFdUv/RBkL7YfX5ypi5ycBmoMmOgwpKQN1AdOnQgOzsbs1eUoSbEx8fToUPVK4KHGs7jViWakJwaXEUiiNjEVADK7dapIbwIeQMVExNTYaUGgyFiKTpKEbHERzeeqfX1TVxSKgBOu3VqCC8i6kPd0pJitqz4iP17dgRbFYOhxjhK8jkmvlcVMZwccSlWJ6cWmy6+cCSiDFTR8WP0fncKuz5/KdiqGAw1Jqo0nyKHMVB1SUpyE8rUAUWmBRWORJSBSkpOpVwFKcoNtioGQ42JKT1GSZQxUHVJXEwU+SRCcX71woaQI6IMlCPKQb4k4Sg2b0uG8COuvICSmORgqxFRiAiFkkBUiTFQ4UhEGSiAY5JEVIkxUIbwI1GPURaTEmw1Io5CSSK61BiocCTyDJQjhRhjoAxhhqqSqIU4TQuqzjnuSCKmrCDYahhOgogzUEVRycSWmbclQ3hRVOokmeM445oEW5WIoyQ6mThjoMKSiDNQpTEpJJQbA2UIL/KPF5Eix8EYqDqnJDqZOOexYKthOAkizkCVxzYl0WnelgzhxbF86zsdR7wxUHVNeUwKicZAhSURZ6Cc8U1J1mNhuVioofFSVHAEgKiEpkHWJPIoj00hiUKz43AYEnEGSuKbkiAlFB0/HmxVDIaAKc7PBU4sbmqoOzQ2hWjKodTUCeFGxBmoqERraZO8I4eCrInBEDjF9mKmsfbacYY6xO42LTF7QoUdEWegopPTACg4sj/ImhgMgVN2zBqDijMrmdc5rnG94/lHgqyJoaZEnIGKbdIKOLF9tsEQDpSbrTbqDYc9rldk71hsCB8izkAlploGqvjoz0HWxGAIHKe9mGnCSe6ma/BPjN1t6pqIYggfIs5AJTVrA0B5vmlBGcIHtQ1UXJIxUHWNK02LjxkDFW5EnIFqktYaAC3MCbImBkPgSMlRynBATGKwVYk4Eu1WqZkkEX5EnIGKi4vnqCYixkAZwghHcT6FJIJIsFWJOJKbWgaq1BiosKPWBkpErheRrSKySUQe8HDPEJFvbPcNIhJf27gCJc/RlJiiww0VncFQa6LL8ik0mxXWC6lNmwNQbrZ9Dzuia3OxiIwFJgH9VbVYRFrZ7tHAS8BlqrpORNKA0lprGyAFUU2JKTH9zYbwIab0GEUO071XHyTGx1KgCe5xPkP4UNsW1G+B+1S1GEBVXVPnxgHrVXWd7Z6jquW1jCtgimOakVhqDJQhfIgrL6Akymy1UR+ICAWSiJiNTMOO2hqoHsAoEflWRD4XkUwPdxWRD0RktYjc7C8AEblGRFaKyMqDB+tm5l1pfHOSy/PqJCyDoSGIdx6jNNp08dUXxx1JZlfdMKTaLj4R+Rho48PrNvv65sBwIBN4RUS62u4jbbdC4BMRWaWqn3gHoqr/Bv4NMGTIkDpZzVET00g9nEd5uZOoqIibB2KIQBKchRSa3XTrjZIos6tuOFKtgVLVs/z5ichvgTfUWjp8hYg4gRZANvCFqh6y5d4FBgGVDFR9oMltiJVycnL2kdaqfUNEaTDUiiQ9xs+xxkDVFyXRKcSVmIlT4UZtmxdLgLEAItIDiAUOAR8A6SKSaE+YGA1srmVcARPTzDJKeQd2N1SUBsNJU1ZWTjKFqDFQ9UZRXHNSynODrYahhtTWQD0LdBWRjcDLwBVqcQT4J/AdsBZYrarv1DKugIlv3hGAwkN7GipKg+GkKSwqJFbKcRoDVW+UxqXRTPPMnlBhRq2mmatqCTDDj99LWFPNG5yUlpaBKjmSHYzoDYYaUexaZdvspltvaFIL4qWUomN5xJsFecOGiJxB0Lx1R5wqOPN+CrYqBkO1HLdX2TbbvdcjSS0BKMjZF2RFDDUhIg1UUmICOTTFUWD2hDKEPq414hxmu/d6I7aJtUbn0Rzz0hpO1KqLL5Q5Et2CmMK6M1BHjhxm6zf/w5m9mui8H4kvz8fhLMXpiKY0OoXymGSccU3Q+FRIaIYjsRlRSc2JTW5GfEoLEpqmkdykOSkJscSYqe+NBlVFFcpVKXcqTtd/p+WmquQdsdaNjDIGqt5Iam59KXOsDjcy/WnrCrK/WkzywVU0Kd5PEz2KEwdlEk2BoykFMc0pimtBWUILSGyBI6U1cU1bk9CsDckt2tEsNY2ExCSIivEZvtrjZdKI12eMWAN1LLYlqSW1b87v2LaBff/7fww9+hGnSSnlKvzsaEVBVBPKJQZHWSHNi38iUQtJ0QJipazK8MrUQTFRlEkU5URRRhROBFcRFBRQUBD3OYBWkHG5i+1HBdn6Qfye+MCHKpEwPC3uPxUOcOWZfVQlDvvnevj64QSB+GSz1UZ9kdqiHQDFuQdqHdZP277j6H9vpFfROlqpgx+iurI/qRd74poBirO0mPiSIySVHaZ90R6a5eYSL/5XeitTB0XEUkIMzgpPNHiWMVfZq1hX+DqvWAK93U+EWMN6w4fYOunJL+Z8Edj1J0HEGqjjSe3pfnytNWvnJN5AiktLWf7iXQz7cR4dBDa2mkjzzKl07D+WtnEJvi9SpbT4GAW5ORw/eoiiozkUF+RQVnAYLTyCs+gopaWllJWV4CwrI4oyHFqOAycus+NGThQ7xDZgYpksAPU8xvPYj2peevpKE3+ppPY1WuHc+u8dlGfd7RneCXf/eVHf74m1eRFV9/1qxWPsFwkRxL5nh/vY/m/nn+vY4Slv6yTxqfTqN7SWd2jwR/NWloEqO1oLA6XKqtfuJ2PjA8STyJddZ9N9/G/o0bpd1Zc5nRQU5JF36CcKDu/j+JH9lOXtp7gwn7LiQqKdxcRoCTFacqIWELEMh4ITu8yp0xpbV8Wpdpn0rCc8/7vLuqPCubuO8XOdz3evCqcnwhcgP75+vzONWAOlzbqQfOg4R3N+okmLmiXi8WMFrHviUkYf/5wNTUbRcfqTDG7TqfoLRYiJT6ZZm2SaBSJvMBgahPiERI6SBIWHTjqM7577M5m7n2F1wnA6XLmAUa3bBnSdOBwkN2lGcpNm0LXvScffGInYwZD41t0B+DmrZt8H5x8rZPPcCxla+AXret1A+g1vk2qMjcEQ9uQ5UokpPLn1Ple/fA+Zu5/h66YTSf/zO7QK0DgZakfEGqhmHXsDkP/TtoCvcZY72fivyxhcvIKNA++k/7Q7zQZyBkOEkBfTkpTimk+S+P7bd+m/5WFWJIxi2PUvEBMdsR1PIUfEGqi2nXpSqlGUH9wR8DUfvfwYpx37mLXdfkvGBX+qR+0MBkNDUxDfjuZlP1cv6MGxIz/T7L3fsdfRlh7XvECUMU4NSsQaqIT4OPY5WhGd+0NA8svXrOO07fezMzGD/pf+vZ61MxgMDU1JcntacAQtLQr4mu0LbyBV88j/5dOkNmtej9oZfBGxBgogJ74zzY/trFYu/3gxjreuI0aUDjOfQ6LMW5LBEGlIqrUE2pH9uwKS/2Hlhww89DZft5pG38Ej61M1gx8i2kAVpvWjQ/leiuylZPzx6Uv3MVTXc/AXfyOu1akNo5zBYGhQklp2BuBQdvUvreosR96/lX20oP+Mf9SzZgZ/RLSBiu04CIcoe7eu8CuzZs0qzs5+kp1NhnHK2dc1oHYGg6Ehad6+GwAFB6rv9t/86UK6lO1kZ7/ZNG2aWs+aGfwR0Qaqfd/TADi87Ruf/seLSoh++3eUSzTtrphvZuwZDBFMm47dcKpQkpNVpZyzrIyUbx5gl3Rg6PnXNoxyBp9EtIFq16ELP0p7ErKX+fT/6sU7SXduZf+Ie0hI69jA2hkMhoYkPj6Bn6Q18blVd/Gtf/8ZTinfw4FBNxAb63udPEPDENEGCmBPs+F0O76WouPHKrivW7mMUdn/ZlPTMXQ/a1aQtDMYDA3J/vguNC/0b6DKSoppteoRvnd0JfPcmQ2nmMEnEW+gmg6YRAIlbPxkodstPz+PJu9cS4EjhS4z/8907RkMjYTi5r1oW/YTxUWFPv3XvvUE7XQ/R39xC1FRUQ2sncGbiDdQfUf8kmxpQ5O1z+AsL6esrIwt866gkzObnHGPk9isTbBVNBgMDURyh77ESDm7tq6t5FdUWMApG59ga3RvBp1xScMrZ6hExBsoR1QUu/v+nh5l21j52DQ2PDiBocc+Y3X3P9DjtPOCrZ7BYGhA2va1vmfK3VZ5XHrdf/9JKw5TNuY2xBHxVWNY0Ci+SD3toutYfmgLmfsWUSRxrOpzK0MuvjXYahkMhgamZceeHKA5sXsrzuwtOHqYHt//mw1xg0gfaV5cQ4VGYaDE4WD4tU9Rcuw+YqJiGRzvZz8ng8EQ0YjDQVbyQHoc/Y7yslKioq1ZehsX38Vw8vn5nLuCrKHBk0bVjo1NakqsMU4GQ6PG0e8CmnGU9UtfB2DzuuUMzn6R75qOo+eg04OsncGTRmWgDAaDYcAZU8khlcRvH2Vv1naSllxFgSTR64rHg62awQtjoAwGQ6MiJjaOLRk307N0C+0XZNLaeYD94/9NSnMzozfUaBRjUAaDweDJyIt+z+YWbTiy/Wu6jL6M3t0HBFslgw+MgTIYDI2SPqdPhtMnB1sNQxWYLj6DwWAwhCTGQBkMBoMhJBFVDbYObkTkIPBjHQTVAjhUB+E0BOGkK4SXvkbX+iOc9A0nXSG89K0rXTupaktvx5AyUHWFiKxU1SHB1iMQwklXCC99ja71RzjpG066QnjpW9+6mi4+g8FgMIQkxkAZDAaDISSJVAP172ArUAPCSVcIL32NrvVHOOkbTrpCeOlbr7pG5BiUwWAwGMKfSG1BGQwGgyHMMQbKYDAYDCFJRBkoERkvIttEZIeIhNyOhCLSUUQ+E5HNIrJJRP5ou88Rkb0istb+nRtsXQFEJEtENtg6rbTdmovIRyLyvf2/WQjo2dMj7daKyFERmR1K6Soiz4rIzyKy0cPNZ1qKxVy7HK8XkUEhoOuDIrLV1ue/IpJqu3cWkeMeaTyvIXWtQl+/eS8if7HTdpuInBMCui720DNLRNba7qGQtv7qrIYpu6oaET8gCtgJdAVigXVAn2Dr5aVjW2CQfZwCbAf6AHOAPwdbPx/6ZgEtvNweAG61j28F7g+2nj7KwX6gUyilK3A6MAjYWF1aAucC7wECDAe+DQFdxwHR9vH9Hrp29pQLobT1mff287YOiAO62HVGVDB19fJ/GLgjhNLWX53VIGU3klpQQ4EdqvqDqpYALwOTgqxTBVR1n6quto/zgS1A++BqVWMmAc/bx88DFwRPFZ+cCexU1bpYkaTOUNUvgMNezv7SchLwglosB1JFpG2DKIpvXVX1Q1Uts0+XAx0aSp/q8JO2/pgEvKyqxaq6C9iBVXc0CFXpKiICXAIsaih9qqOKOqtBym4kGaj2wB6P82xCuPIXkc7AQOBb2+k6u0n8bCh0m9ko8KGIrBKRa2y31qq6zz7eD7QOjmp+mUbFBzwU09WFv7QM9bI8C+st2UUXEVkjIp+LyKhgKeUDX3kfymk7Cjigqt97uIVM2nrVWQ1SdiPJQIUNIpIMvA7MVtWjwFNAN2AAsA+rmR8KjFTVQcAE4PciUmE/bLXa9CHznYKIxALnA6/aTqGarpUItbT0h4jcBpQBC22nfcApqjoQuAH4j4g0CZZ+HoRN3nvwKyq+XIVM2vqos9zUZ9mNJAO1F+jocd7BdgspRCQGK6MXquobAKp6QFXLVdUJPE0DdjlUharutf//DPwXS68Dria7/f/n4GlYiQnAalU9AKGbrh74S8uQLMsiMhP4JTDdrpSwu8py7ONVWGM6PYKmpE0VeR+qaRsNXAQsdrmFStr6qrNooLIbSQbqO6C7iHSx36SnAW8FWacK2H3M84EtqvpPD3fPPtoLgY3e1zY0IpIkIimuY6xB8o1YaXqFLXYF8GZwNPRJhTfQUExXL/yl5VvA5faMqOFAnkd3SlAQkfHAzcD5qlro4d5SRKLs465Ad+CH4Gh5giry/i1gmojEiUgXLH1XNLR+PjgL2Kqq2S6HUEhbf3UWDVV2gzlDpK5/WDNItmO9adwWbH186DcSqym8Hlhr/84FXgQ22O5vAW1DQNeuWLOd1gGbXOkJpAGfAN8DHwPNg62rrVcSkAM09XALmXTFMpz7gFKsfvmr/KUl1gyoJ+1yvAEYEgK67sAaW3CV23m27GS7fKwFVgPnhUja+s174DY7bbcBE4Ktq+2+ALjWSzYU0tZfndUgZdcsdWQwGAyGkCSSuvgMBoPBEEEYA2UwGAyGkMQYKIPBYDCEJMZAGQwGgyEkMQbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgDAaDwRCSGANlMBgMhpDEGCiDwWAwhCTGQBkMBoMhJDEGygMR6Swiau/NYghTROR6EflJRNYFIe45IvJSA8QzU0SWVeG/VESurm89QhERGSMi2TX1q2MdqqxLGqqc1CUi0k5E8kVkm4ic0RBxGgNlqBUiMk9ECuxfiYiUepy/V30I9cIc4Heq2t9DzzkiMidI+oQUduWZVUP5z0SkUES2ishZVcjG2VusHxWR/SJyg1c46lE+CkTk9vrQOdwRkSx7i/VAZP2muR/5P9lyR+3r4rziPe6RPx+6/FT1J1VNAd4G/nCSt1YjIspAmZZPw6Oq16pqsqomA/8PWOw6V9UJLrkGzpvmhN7mhDUmhMrzImAN1h5AtwGviUhLP7JzsDbW6wSMBW62Nzv0JNWjjNxTTzrXOyGUP3OoPs0BEJFzgFuBM235rsBdXmLneeTPOB/BbMQqC/VO2Bso2+LfIiLrgWMiEi0iw0XkaxHJFZF1IjLGQ36piPxDRFbYbxBvikhzP2FfKSJb7GbtDyLyGy//SSKy1g5np6tQiEhTEZkvIvtEZK+I/N21M2YV99FNRD4VkRwROSQiC0Uk1cPvsIgMss/bichB132JyPkissm+36Ui0tsrff4sIutFJE9EFotIfM1Tuub4yRsVkVM9ZBaIyN89zn9pp2munYcZNYzTlc7OauRutvPnJxG52lMvW6cnReQdO++/FZFuHtc+JiJ77HxfJSKjvIKPt9M5X0RWi4hnS+5Wu6zki8hmEbnQw2+miHwlIo+ISA5WxVPd/T4kIkdEZJeITPDy7mSHly8iH4pIi+rC8xF+D2AQcKeqHlfV17E2opvs55IrgHtU9YiqbsHabn1mTeMNQK9BIrLGvrdX7fT+ux/ZP9hp3cHD7a/2c5YlItM93Cfa4R6183iOh5+rBXiViOwGPg1A1ekistuO6zYvv1gRecG+h00iMqRmqeCmJml+BTBfVTep6hHgnipk/eEEGsY4N/QOjfWw42MW1i6PHYEEoD3WzqrnYhngs+3zlrb8UmAv0A9rF9bXgZdsv85Yu0dG2+cTgW5Yu0SOBgqBQbbfUCDPDt9hx9vL9vsv8H92+K2wtpT+TTX3caodVhzQEvgCeNTD/9fAZiAR+AB4yHbvARyzr43B2pZ7BxDrkT4rgHZYLYsteO3c6bV7Zm4Vv5HV3MMcV1r6yhvbTYFTPWQWAH+3jwcCPwPDgCishykLiKtBeRgPFAFJ1cjsB/ra6fmSp162Tjl2HkcDC4GXPa6fgfUGGQ3caIcV75EGpcAUOz/+DOwCYmz/i+28cABT7bxra/vNBMqA6+2wE6q4h5l2PL+20+q3wE/g3oR0Kdaupj2wnoulwH1+wvoX8C8/fhdibfft6fYE8LgP2WZ2Orb2cJsCbPB6vvZi7Sb7HNDiJJ75WOBH4I92Gl8ElHiUozFAtn18B9ZutC09/MqAf2I9a6PtPOjp4Z9u508GcAC4wEv/F7Ce7aryxyX7tJ3+/YFioLdHOSnCqqeigH8Ay/2EdSmw3o9flWnuQ34dMNXjvIV9fZrHM3sAOAh8CPT3EcZY4AhwSk3zrsZ5Xd8R1PsNWAk6y+P8FuBFL5kPgCvs4woPKtDHLtxReBkoH3EtAf5oH/8f8IgPmdZ2QUzwcPsV8FkN7+sCYI2X21uc2MY6zna7HXjFQ8aBVQGM8UifGR7+D2Bv110PeTGHygZqlpdMVQbqKaw3QU/5bcDoAONfaYf/h2rkngX+4XF+KpUN1DMe/ucCW6sI74jrQbbTYLmHnwNri+9Rfq5dC0yyj2cCuwO815nADo/zRPse2niU8795+P8OeP8k8vQyvCpO4F5ggQ/ZjrYO8R5uZwNZ9nEyMATL+LYGXgM+OAmdTrfLuHi4LaOigdqLZYSWAU095MZgGagkD7dXgNv9xPUo9nPOifqhawA6umQ7eLitAKZ5lJOPPfz6AMdPIi2qTHMf8juB8R7nMfb1ne3zEVgGNRH4C9bLV6qPcF61r3u0pjrX5Bf2XXw2ezyOOwEX211EuSKSi9UyaOtH/kesTKrU/SEiE0Rkud29lotVUbnkOmJltjed7PD2ecT/f1gtKb+ISGsRednuEjyK9VbvrdPTWC2/x1W12HZrZ98DAKrqtO+vvcd1+z2OC7EqioZiT/UibjoBN3rlXUesewyETGAaMEdEYqqQa+elly8d/aaZ3WW6xe4yzQWaUjGv3OHZ+ZHtugcRudyjCzMXKz99XhsAbh1VtdA+TPbl730PNaAAaOLl1gTI9yPr8q8kq6oFqrpSVctU9QBwHTBORFJqqFM7YK/aNaWNd7qlAtdgvYjkefkdUdVjHuc/ciJ/hok1IeSgiOQB11L5OTypPKJyHnj7xUvNx7WqTHM/8t6ycCKPvlKrK7dQVf+B1XNSoQtbrKGGc7F6jGbXUN8aESkGyrugvqiqqR6/JFW9z0Omo8fxKVhdJYc8AxRrZsvrwENYzedU4F2s7j5XPN2ozB6sFlQLj/ibqGrfau7h/9n3ka6qTbC6kVxxISLJWG9z87EqYNe42U9YFbtLTuz721tNfJUQkVFScYaV9897rCUQ1Ou8EOvtzEUbj+M9wL1eeZeoqosCisiqsJZgdXu0rUJ0H9DB47yjP0Fv7DS4GbgEaGaXizw88sozPBFx2HH9JCKdsF4yrsPqUknFGnD2vNY7vYLNJqCrlxHpb7tXQK0xjX22f5Wyrkvs/zWth/YB7e2y7sI7D48AvwSeE5ERXn7NRCTJ4/wUrOcI4D9YPRUdVbUpMI+K+eOpd9A5iTTf5EP2gKrm+IuCyvffG9isqttqrnHNiBQD5clLwHkico6IRIlIvFjfPnhWSDNEpI+IJAJ3A6+parlXOLFYfdQHgTJ7ANpzRst84EoROVNEHCLSXkR6qeo+rL7bh0Wkie3XTURGV6N3CtbbTZ6ItAdu8vJ/DFipqlcD72A9OGB1T0y09YjBGhMpBr6uLqG8UdUv9cTsHV+/L2sapg/WApfaeTMeawzAxdPAtfZbrIhIkj1onQLuyQsLqrkHV8sytgqxV7DyrrddBgKa6myTgtVFdBCIFpE7qNzCGCwiF9lvw7Ox8mM51riF2tciIlditaBCFlXdjpVnd9rP0oVYYzOv+7nkBeBvItJMRHphjZEtAHfrpKf9TKQBc4GlrhaOWJ8CLA1ArW+AcuA6sSbeTMIaL/TWfSkwHXhDRLz97xKRWPuF45dYXVZg5e9hVS2yr7k0AH2Cjd809yN7lV3/pQJ/40T+nCIiI+x0iReRm7Baj195hRGDVabrnYgzUKq6B5gE/BWrItiDVdl73uuLWJmyH4jHx5x+Vc233V/Behu7FOvNyuW/ArgSeATrDfpzTrRkLseqIDfb175G1W/0YE31HGSH9Q7whsvDfgDHYw2EA9wADBKR6fZbzAzgcaxW4HlY00RLqokvWPwRS8dcrMpjictDVVdiPVxPYKXbDirOMOpI5YfFF0oVZVtV38OqHD+z41huewXy0H0AvA9sx+oaKqJyl8+bWBMgjmCN4VykqqWquhl4GKuCPYA1GB/I/dQrYn3LNq8KkWlYY0dHgPuAKarqMrLTRcTzbf1OrK7vH7GeiQdV9X3brytW2uVjtRyLscZnXQSUv3bZvgi4CqsczQD+h4/8U9WPgFnA23bXFFjP/RGsVtNCrElDW22/3wF3i0g+1gSLV6rTp77xkcbe+E1z2+gUiMgpALb7A1hlf7d9zZ12OClY48BHsHpgxgMTfLSuoqhmlmxd4Zrx02iw39BeUtVngq2LIXBEJBZrBlKGqpZWI/sTcLOqBvSlvljT8jdiTTwpq7WyhpNCRNYCZ1bR3VTVtd9iTf55rs4VM7ixu6znAq1U9ZL6ji/iWlCGyERVS1S1d3XGyeZWrC6pVf4ERORCsb7AbwbcD7xtjFNwUdUBgRonERktIm3sLr4rsLod36/uOsPJIyLtsHqlhmP1BNQ7xkA1IFJxWSDPX1XdK4YaoqovqGp3VR1chdhvsL652ok1nvHbKmSDgikvVdITq0WdizXuOsUe/20w7K43X/lTVXdc2KLWUkdpqjpEVb9tiDgbXRefwWAwGMID04IyGAwGQ0gSKosdAtCiRQvt3LlzsNUwGAwGQwOyatWqQ6paaQHikDJQnTt3ZuXKlcFWw2AwGAwNiIj86MvddPEZDAaDISQxBspgCFFUlQ837aeo1HuRE4OhcWAMlMEQonyz4yAb/3MbL733RbBVMRiCQkiNQfmitLSU7OxsioqKgq2KIYyIj4+nQ4cOxMRUtah5aOM4tJUbYl5j66ZtcP6yYKtjMDQ4IW+gsrOzSUlJoXPnzlRcvNhg8I2qkpOTQ3Z2Nl26dAm2OidNbEkuAHHO48FVxGAIEiHfxVdUVERaWpoxToaAERHS0tLCvtXtLLPWPo0J2XV/DYb6JeQNFGCMk6HGREKZ0TLLMEmlnWAMhsZBWBgog6Ex4jJQDmOgDI0UY6ACQES48cYb3ecPPfQQc+bMCZ5C1bB06VK+/rrG+xW6Wbt2Laeddhp9+/YlIyODxYsX16F2hkApdxmohtl6x2AIOYyBCoC4uDjeeOMNDh06VL1wDVBVnM66r3xqa6ASExN54YUX2LRpE++//z6zZ88mNze37hQ0BEa5tbOIQ42BMjRO6t1Aich4EdkmIjtE5Nb6jq8+iI6O5pprruGRRx6p5Hfw4EEmT55MZmYmmZmZfPWVtSHonDlzeOihh9xy/fr1Iysri6ysLHr27Mnll19Ov3792LNnDzfddBP9+vUjPT3d3VpZunQpY8aMYcqUKfTq1Yvp06fja+X5uXPn0qdPHzIyMpg2bRpZWVnMmzePRx55hAEDBvDll19WqeNll13GaaedRvfu3Xn66acB6NGjB927dwegXbt2tGrVioMHD1aK+9VXX6Vfv37079+f008/HbAmtVx55ZWkp6czcOBAPvvsMwAWLFjABRdcwNlnn03nzp154okn+Oc//8nAgQMZPnw4hw8fBuDpp58mMzOT/v37M3nyZAoLCyvFO3z4cDZtOrGjwZgxYyJyiSx3Fx+mi8/QOKnXaeYiEgU8CZwNZAPfichb9tbXNeautzex+aejdakifdo14c7z+lYr9/vf/56MjAxuvvnmCu5//OMf+dOf/sTIkSPZvXs355xzDlu2bKkyrO+//57nn3+e4cOH8/rrr7N27VrWrVvHoUOHyMzMdFf2a9asYdOmTbRr144RI0bw1VdfMXLkyAph3XfffezatYu4uDhyc3NJTU3l2muvJTk5mT//+c8AXHrppX51XL9+PcuXL+fYsWMMHDiQiRMn0q5dO3f4K1asoKSkhG7dulW6j7vvvpsPPviA9u3bu1tYTz75JCLChg0b2Lp1K+PGjWP79u0AbNy4kTVr1lBUVMSpp57K/fffz5o1a/jTn/7ECy+8wOzZs7nooov49a9/DcDf/vY35s+fz/XXX18h3qlTp/LKK69w1113sW/fPvbt28eQIUOqTPNwRMtNF5+hcVPfLaihwA5V/UFVS4CXgUn1HGe90KRJEy6//HLmzp1bwf3jjz/muuuuY8CAAZx//vkcPXqUgoKCKsPq1KkTw4cPB2DZsmX86le/IioqitatWzN69Gi+++47AIYOHUqHDh1wOBwMGDCArKysSmFlZGQwffp0XnrpJaKjfb9vVKXjpEmTSEhIoEWLFowdO5YVK1a4r9u3bx+XXXYZzz33HA5H5aIyYsQIZs6cydNPP015ebn7fmbMmAFAr1696NSpk9tAjR07lpSUFFq2bEnTpk0577zzAEhPT3ff28aNGxk1ahTp6eksXLiwQkvJxSWXXMJrr70GwCuvvMKUKVOqTO9wRU0Xn6GRU98f6rYH9nicZwPDPAVE5BrgGoBTTjmlysACaenUJ7Nnz2bQoEFceeWVbjen08ny5cuJj4+vIBsdHV1hfMnzm5ykpKSA4ouLi3MfR0VFUVZWeUfyd955hy+++IK3336be++9lw0bNlSS8acjVJ6O7To/evQoEydO5N5773UbU2/mzZvHt99+yzvvvMPgwYNZtcrvDuuV7sfhcLjPHQ6H+95mzpzJkiVL6N+/PwsWLGDp0qWVwmnfvj1paWmsX7+exYsXM29ehG4wa7egokwXn6GREvRJEqr6b3sL4SEtW1baDiSkaN68OZdccgnz5893u40bN47HH3/cfb527VrA2jpk9erVAKxevZpdu3b5DHPUqFEsXryY8vJyDh48yBdffMHQoUMD0sfpdLJnzx7Gjh3L/fffT15eHgUFBaSkpJCfn1+tjgBvvvkmRUVF5OTksHTpUjIzMykpKeHCCy/k8ssvr7J1snPnToYNG8bdd99Ny5Yt2bNnD6NGjWLhwoUAbN++nd27d9OzZ8+A7gcgPz+ftm3bUlpa6g7HF1OnTuWBBx4gLy+PjIyMgMMPK4yBMjRy6ttA7QU6epx3sN3ClhtvvLHCbL65c+eycuVKMjIy6NOnj/ttfvLkyRw+fJi+ffvyxBNP0KNHD5/hXXjhhWRkZNC/f3/OOOMMHnjgAdq0aROQLuXl5cyYMcM9IeEPf/gDqampnHfeefz3v/91T5LwpyNYXYRjx45l+PDh3H777bRr145XXnmFL774ggULFjBgwAAGDBjgNmp33HEHb731FgA33XQT6enp9OvXj1/84hf079+f3/3udzidTtLT05k6dSoLFiyo0HKqjnvuuYdhw4YxYsQIevXq5XZ/6623uOOOO9znU6ZM4eWXX+aSSy4JOOywo9xqVZoxKENjRXzNDKuzwEWige3AmViG6TvgUlWtPLAADBkyRL1nY23ZsoXevXvXm46NmTlz5lSYTBFphHvZWTbvekbuf8E6uTMXImB1DIPBFyKySlUrzXSq1zEoVS0TkeuAD4Ao4Fl/xslgMFREnKXuYy0rRmIqjyEaDJFMva9mrqrvAu/WdzyGmhPKq2EYcH+oC1BafJxYY6AMjYygT5IwGAy+8WxBlRRX/mDZYIh0jIEyGEIUh4eBKi4ye0IZGh/GQBkMIYqngSo1LShDI8QYKIMhVPHs4jMtKEMjxBioAFmyZAkiwtatW/3KZGVl0a9fv3rVY+3atbz77snPOXF92NunTx/69u3LY489VofaGeoSzxZUWYkxUIbGhzFQAbJo0SJGjhzJokWLfPr7WoaoprjWs6uK2hqo6OhoHn74YTZv3szy5ct58skn2bz5pNbuNdQzUXqiTJUWmS4+Q+PDGKgAKCgoYNmyZcyfP5+XX37Z7b506VJGjRrF+eefT58+fQDLUE2fPp3evXszZcoU93YRn3zyCQMHDiQ9PZ1Zs2ZRXFwMWEsi3XLLLQwaNIhXX321Qrze21mUlJRwxx13sHjxYgYMGMDixYs5duwYs2bNYujQoQwcOJA333wTsLa3mDRpEmPGjKF79+7cddddALRt25ZBgwYBkJKSQu/evdm7t/LiHp9//rl7FYmBAweSn5+PqvrdGmT06NFMmjSJrl27cuutt7Jw4UKGDh1Keno6O3fuBODtt99m2LBhDBw4kLPOOosDBw5UinfatGm888477vOZM2e6F4ZtbHjO4is3LShDI6Tev4OqU967FfZXXgy1VrRJhwn3VSny5ptvMn78eHr06EFaWhqrVq1i8ODBgLXO3saNG+nSpQtZWVls27aN+fPnM2LECGbNmsW//vUvrrvuOmbOnMknn3xCjx49uPzyy3nqqaeYPXs2AGlpae51+zzx3s4iNjaWu+++m5UrV/LEE08A8Ne//pUzzjiDZ599ltzcXIYOHcpZZ50FWFtlbNy4kcTERDIzM5k4cWKFbSmysrJYs2YNw4YNqxT3Qw89xJNPPsmIESMoKCggPj6eN954w+/WIOvWrWPLli00b96crl27cvXVV7NixQoee+wxHn/8cR599FFGjhzJ8uXLERGeeeYZHnjgAR5++OEK8bq20pg4cSIlJSV88sknPPXUUwFmZmQRpWUUaALJcpzykqLqLzAYIgzTggqARYsWMW3aNMB6w/fs5hs6dChdunRxn3fs2JERI0YAMGPGDJYtW8a2bdvo0qWLez2+K664gi+++MJ9zdSpU33G62s7C28+/PBD7rvvPgYMGMCYMWMoKipi9+7dAJx99tmkpaWRkJDARRddxLJly9zXFRQUMHnyZB599FGaNGniM+4bbriBuXPnkpubS3R0dJVbg2RmZtK2bVvi4uLo1q0b48aNAypupZGdnc0555xDeno6Dz74oM+tNCZMmMBnn31GcXEx7733HqeffjoJCQk+7z3SidJSjot17+WlpgVlaHyEVwuqmpZOfXD48GE+/fRTNmzYgIhQXl6OiPDggw8ClbfO8Ld9RVX4234jkO0sVJXXX3+90orh3377rV9dSktLmTx5MtOnT+eiiy7yGfett97KxIkTeffddxkxYgQffPBBlfcQyFYa119/PTfccAPnn38+S5cu9bmSRXx8PGPGjOGDDz5g8eLF7heDxki0lnLckQjOwzhNC8rQCDEtqGp47bXXuOyyy/jxxx/Jyspiz549dOnShS+//NKn/O7du/nmm28A+M9//sPIkSPp2bMnWVlZ7NixA4AXX3yR0aNHVxu3r+0svLfSOOecc3j88cfd28GvWbPG7ffRRx9x+PBhjh8/zpIlSxgxYgSqylVXXUXv3r254YYbqow7PT2dW265hczMTLZu3VqrrUEA8vLyaN++PQDPP/+8X7mpU6fy3HPP8eWXXzJ+/PiAw480HFpOkSMRAGepMVCGxocxUNWwaNEiLrzwwgpukydP9jubr2fPnjz55JP07t2bI0eO8Nvf/pb4+Hiee+45Lr74YtLT03E4HFx77bXVxu1rO4uxY8eyefNm9ySJ22+/ndLSUjIyMujbty+33367+/qhQ4cyefJkMjIymDx5MkOGDOGrr77ixRdf5NNPP3VPgnDNCpw3b557K45HH32Ufv36kZGRQUxMDBMmTKjV1iBgrf138cUXM3jwYFq0aOF2X7lyJVdffbX7fNy4cXz++eecddZZxMbGBhx+pBGtpZREJwPGQBkaJ/W63UZNMdtt1B0LFiyoMJmiMRLuZSd7Tk8OJnVn4LEv+bbr9Qy7/O/BVslgqBf8bbdhWlAGQ4gSRRnlMfb4ZJlpQRkaH+E1ScIQMDNnzmTmzJnBVsNQC6Ipg+g4ijUGyoqDrY7B0OCERQsqlLohDeFBJJSZGC0DRwzFxJgWlKFREvIGKj4+npycnIiocAwNg6qSk5NDfHx4b/AXTRlExVAisUi5aUEZGh+16uITkQeB84ASYCdwparmikhnYAuwzRZdrqrVT1vzQYcOHcjOzubgwYO1UdXQyIiPj6dDhw7BVuOkKXcqMZRDVCylxOAwLShDI6S2Y1AfAX9R1TIRuR/4C3CL7bdTVQfUMnxiYmIqrNRgMDQGSsvKiaUMoqIplVgczpJgq2QwNDi16uJT1Q9V3UsuLwfC95XVYAghiktLcYhaLSiJxWG6+AyNkLocg5oFvOdx3kVE1ojI5yIyyt9FInKNiKwUkZWmG89gsCgtsQySRMVS5oglymkMlKHxUW0Xn4h8DPhaLuA2VX3TlrkNKAMW2n77gFNUNUdEBgNLRKSvqh71DkRV/w38G6wPdU/uNgyGyMJtoKJdBsp08RkaH9UaKFU9qyp/EZkJ/BI4U+2pdqpaDBTbx6tEZCfQA1jpLxyDwXCCslLLQDmiYyh3xBFfVundzmCIeGrVxSci44GbgfNVtdDDvaWIRNnHXYHuwA+1ictgaEyUFluz9iQqjnJHHNGmBWVohNR2Ft8TQBzwkb2Vg2s6+enA3SJSCjiBa1X1cC3jMhgaDa4uPkdMLGVRcUSrMVCGxketDJSqnurH/XXg9dqEbTA0ZpwlVoeExCTijIoj1hgoQyMk5FeSMBgaI+XFxwBwxFoGKobSIGtkMDQ8xkAZDCGIs8Ta4l1iE8G0oAyNFGOgDIYQpLzY6uKLiUtAo+OINS0oQyPEGCiDIQQps7v4YhOSkeh44qSMslJjpAyNC2OgDIYQxNNAEWOtyl5UfDyYKhkMDY4xUAZDCFJuj0HFJyQhtoEqOV5Y1SUGQ8RhDJTBEIKoPc08PjEZR3QcAMWmBWVoZBgDZTCEIC4DFZeQhMQkAFBaZFpQhsaFMVAGQwgSVXyUIo1BYhKIirW7+EwLytDIMAbKYAhBokpyKZBkwPpYF6DMGChDI8MYKIMhBIkqyafQYRkoVwuq1BgoQyPDGCiDIQSJLT1KUXQKANGx1hiUa2afwdBYMAbKYAhBEsrzKYlpAlirSQCUlxYFUyWDocExBspgCEGaOQ9TFNcC8GhBFZtZfIbGhTFQBkOIUVxcRJrmUpbUFoDYeMtAOUtNF5+hcWEMlMEQYhzatxuHKNHN2gMQE29NllAzBmVoZNR2y/c5IrJXRNbav3M9/P4iIjtEZJuInFN7VQ2GxsHhfbsASGxxCgCxCdY0c8qMgTI0Lmq75TvAI6r6kKeDiPQBpgF9gXbAxyLSQ1XL6yA+gyGiOfZzFgBNWncGIC4+CTAtKEPjo766+CYBL6tqsaruAnYAQ+spLoMhoijZt5kyddC6c2/gxCw+KTOz+AyNi7owUNeJyHoReVZEmtlu7YE9HjLZtlslROQaEVkpIisPHjxYB+oYDOFNzOHtHIhuR0yc1bUnjiiKNMZ08RkaHdUaKBH5WEQ2+vhNAp4CugEDgH3AwzVVQFX/rapDVHVIy5Yta3q5wRBRFJWW07b4B/KbnFrBvVhiTQvK0OiodgxKVc8KJCAReRr4n326F+jo4d3BdjMYDFWwbecP9Jf9bOt4WQX3YuJwmBaUoZFR21l8bT1OLwQ22sdvAdNEJE5EugDdgRW1ictgaAz8vPkLAFr2GV3BvUTiiHIWB0MlgyFo1HYW3wMiMgBQIAv4DYCqbhKRV4DNQBnwezODz2CoHtm9nGJiaH5qxTlFJRKHo9x08RkaF7UyUKp6WRV+9wL31iZ8g6Gx0SZvDdkJvehm76LrotQRR7QxUIZGhllJwmAIEfbnHKGn8wcKWmdW8it1xBFtuvgMjQxjoAyGECFr/VfESDkpp/6ikl+ZI94YKEOjwxgogyFEOPbDcgA69BtVya/MEUesMVCGRkZdLHVkMBjqgMSf13Agqg2tU9tU8nNGxROjtTNQJaVl7PthI/kHs3E4i4lObEpccnNS01qT0qwVjuiYWoVvMNQ1xkAZDCFAabmTzkWbOZQ2mNY+/Muj4onVkpMKe8uaZRz57An65X1OJ/G/p1QeyeQ7mnIsqgllEo0gIIICqGIfIeqscAyWn+WmiGrlwEUQH3GKj5PKcva1UknUOwqf1x1LaMupv3+N6JhYH1cZQhljoAyGEGDnzu/pJYfJaT/Ep78zOp54ataCOnLkMBuf+wMj8v5HkcSypflY6DSSuJadcUbFUV54lLJjRygtOIQWHEKOHya6+DCJZbmIloM6UVUcWCYIBBXBKdHuY9d/dY0WiLhlPTlhsxT16e7hq65jj/+Kh/uJizyv10oHkOLMpV/x53y/6Vu6D6jcdWoIbYyBMhhCgJ+3fEUvoEWvkT79NTqeuBp08W3fvA7HqzP4hXMP6zr8ih6X/J3BTdPqSNvwIfvH7+G5IRzdvgyMgQo7jIEyGEIAzf6OEqJp3cN3C0qjE4iRcigvg6iqH9u1a1bQfsnFxEoZu899kYHDzqsPlcOCdh1PZS8tidn7bbBVMZwEETeLb//u71FffeAGQwjT/Mh6dseeisTE+xaItrbcKC/xP4YEsH3zWtovuZhoh1Jy+bt0acTGCcDhEPYkZdDu6NrK/YmGkCeiDNRPWdtImj+K7+bO4HjB0WCrYzAERElJCd1Kvye3eX+/Mi7DVVx0zK/Mvv37iH9lGtHixHn527Ts6j+8xkR5x+G00CPs/3FrsFUx1JCI6uJr06EbyztM4xd7n+Pnh75mQ49ZdD3jClq0OaXK60pKy8nNz+PY0SMU5B3meH4uxQW5lBbmEVWST1RZPtElBUh5MU6nE6eqPQRsz2SiijezSlOLvAaP7XOXq3rIi5eMy00rT1eqFIfPOVPVXeaLAF46NRChuomq7sKpg8gCuu8ARBzFeYyQYujgu3sPgBirBVV6vBCaVfbOP1bI/mem0k9/Zt8Fr3JKF2OcXHQYNB623svur16hTec7TyoMdTrJObCHQ9k7OHpgF3r0J7QoHy3OJ6q0AHGW457J4dlSEwe4ZkPaxyoORMTtZ7nbsm53j2M/E09Cgfz4tpw946Z6Cz+iDJQjOppf/PpRNi2fQNTHdzJ0+0Ow/SEOkEZuTEuKo5JwqJNoZxHR5UUkOAtJ1EKSKaSVVL+WbalGuU0SuCbX4j72xttwVTZV3rVX5dqsumuqi8MQHuRJMh0GjvPr74i1Ni8sKSqo5FdWVs53T/2aM8rWsf20++kx8Mx60zMc6dQjg63RPWm981XU+TfEEVXtNcXFRWxd8SGFWz4mKWcjHYq304J8WnjJFWocxyWBUo+qVO2ZjaInpt97/xw4Aaz/av23TJD13zp3yVr/o0Rxamg94SvpBRgDVSP6Dj8HHTaOH7Z8x/5V7xJ7cCOxxTnEl+VTThRlUfGUxDQlLyYFjU2B+KY44lOITkwlJrEpccnNSEhOJSEllejEpm73GPMho6GeaGr//CGxdguqqPIY1Ecv3MuEgv+xueuV9Bl/bf0oGObk9buSXmtvZfXbTzFo0nU+ZQ7u382ur98kaueH9Cj4jv5ynFKNYnd0J35ofjrbW/YjsVVXUtt1o0nLU0hu2ozEmFgSG/A+Qm1MZmj1IrUiIg0UgIjQtc9Quvap7yQ0GOofSWgOQNmxQxXcl77/Kmf/+AjbUkfSZ0aNN7RuNAw57xo2b3yB3qvvYrUIvcZMo7S0lL3b13B000c03/8lPcq20xI4SHO2pZ1FXJ9z6X7aRLolVfXqYKhPItZAGQyRRFQTa32J0twDbreN61cx4Js/si+mI91+8x8IoOuqsRIVFUXaVa/y4zMXMmj1X2H1XwGr1VquwvcxvVje6VpaDZlEl77DaekItbZK48QYKIMhDGjeqj0ARXn7Afgx6wdS3piOiIOms14jOtG85VdH67YdaH7r16z76m0Kdq8lyhFFQruedB5wBr2atwq2egYfGANlMIQBLdJaUKhxOHOz2bt3D6XPX0B7DpNz0WI6tOsRbPXChpiYGPqPuQi4KNiqGAKgVgZKRBYDPe3TVCBXVQeISGdgC7DN9luuqmb01mA4SZokxLDGcSpds9+h4OlP6chh9p/7PJ0yxgZbNYOh3qjtlu9TXcci8jCQ5+G9U1UH1CZ8g8FgISLs6zqZQTvvplRi+PnC1+mUMTrYahkM9UqddPGJiACXAGfURXgGg6Ey5864gZ07JtKx4ym0jG/Iyc0GQ3Coq6kqo4ADqvq9h1sXEVkjIp+LiN9lhEXkGhFZKSIrDx48WEfqGAyRh4jQrXsvYo1xMjQSqm1BicjHQOUtPuE2VX3TPv4VsMjDbx9wiqrmiMhgYImI9FXVSgvkqeq/gX8DDBkyxKzmaDAYDAYgAAOlqmdV5S8i0VhTYgZ7XFMM1u5qqrpKRHYCPYCVtdLWYDAYDI2GuhiDOgvYqqrZLgcRaQkcVtVyEekKdAd+qC6gVatWHRKRH+tApxbAoWqlQoNw0hXCS1+ja/0RTvqGk64QXvrWla6dfDnWhYGaRsXuPYDTgbtFpBRwAteq6uHqAlLVlnWgDyKyUlWrWBo6dAgnXSG89DW61h/hpG846QrhpW9961prA6WqM324vQ68XtuwDQaDwdB4MQtOGQwGgyEkiVQD9e9gK1ADwklXCC99ja71RzjpG066QnjpW6+6iqqZ2W0wGAyG0CNSW1AGg8FgCHOMgTIYDAZDSBJRBkpExovINhHZISK3Blsfb0Sko4h8JiKbRWSTiPzRdp8jIntFZK39OzfYugKISJaIbLB1Wmm7NReRj0Tke/t/sxDQs6dH2q0VkaMiMjuU0lVEnhWRn0Vko4ebz7QUi7l2OV4vIoNCQNcHRWSrrc9/RSTVdu8sIsc90nheQ+pahb5+815E/mKn7TYROScEdF3soWeWiKy13UMhbf3VWQ1TdlU1In5AFLAT6ArEAuuAPsHWy0vHtsAg+zgF2A70AeYAfw62fj70zQJaeLk9ANxqH98K3B9sPX2Ug/1YH/6FTLpifRs4CNhYXVoC5wLvAQIMB74NAV3HAdH28f0eunb2lAuhtPWZ9/bztg6IA7rYdUZUMHX18n8YuCOE0tZfndUgZTeSWlBDgR2q+oOqlgAvA5OCrFMFVHWfqq62j/Ox9sxqH1ytaswk4Hn7+HngguCp4pMzsbZ6qYsVSeoMVf0C8P5Y3V9aTgJeUIvlQKqItG0QRfGtq6p+qKpl9ulyoEND6VMdftLWH5OAl1W1WFV3ATuw6o4GoSpdRdy7QngvfBA0qqizGqTsRpKBag/s8TjPJoQrf7E2dRwIfGs7XWc3iZ8NhW4zGwU+FJFVInKN7dZaVffZx/uB1sFRzS/eK5uEYrq68JeWoV6WZ2G9JbvoIgHsXBAEfOV9KKftSe8K0RB41VkNUnYjyUCFDSKSjLXSxmy1Vnh/CugGDMBaCf7h4GlXgZGqOgiYAPxeRE739FSrTR8y3ymISCxwPvCq7RSq6VqJUEtLf4jIbUAZsNB2cu1cMBC4AfiPiDQJln4ehE3ee+BvV4igp62POstNfZbdSDJQe4GOHucdbLeQQkRisDJ6oaq+AaCqB1S1XFWdwNM0YJdDVajqXvv/z8B/sfQ64Gqy2/9/Dp6GlZgArFbVAxC66eqBv7QMybIsIjOBXwLT7UoJu6ssxz5ehTWm0yNoStpUkfehmrauXSEWu9xCJW191Vk0UNmNJAP1HdBdRLrYb9LTgLeCrFMF7D7m+cAWVf2nh7tnH+2FwEbvaxsaEUkSkRTXMdYg+UasNL3CFrsCeNN3CEGhwhtoKKarF/7S8i3gcntG1HAgz6M7JSiIyHjgZuB8VS30cG8pIlH2ccA7F9Q3VeT9W8A0EYkTkS5Y+q5oaP184HNXiGCnrb86i4Yqu8GcIVLXP6wZJNux3jRuC7Y+PvQbidUUXg+stX/nAi8CG2z3t4C2IaBrV6zZTuuATa70BNKAT4DvgY+B5sHW1dYrCcgBmnq4hUy6YhnOfUApVr/8Vf7SEmsG1JN2Od4ADAkBXXdgjS24yu08W3ayXT7WAquB80Ikbf3mPXCbnbbbgAnB1tV2X4C164OnbCikrb86q0HKrlnqyGAwGAwhSSR18RkMBoMhgjAGymAwGAwhiTFQBoPBYAhJjIEyGAwGQ0hiDJTBYDAYQhJjoAwGg8EQkhgDZTAYDIaQ5P8DnocWYu1V22cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEYCAYAAADBFIhjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB0HklEQVR4nO2deZhUxfWw39O311nYBmSXTXaGTUAMoGgUJERQUUFxQWMSk5jEJUazaNAkXxQ17j9JDHEliLsY9w0RDSIIyiKg6MgiItvA7NNLfX/U7aZnpmemZ7pnunuo93n6mb5Vdeuernunzj2nTlWJUgqDwWAwGFoijlQLYDAYDAZDU2GUnMFgMBhaLEbJGQwGg6HFYpScwWAwGFosRskZDAaDocVilJzBYDAYWixpq+REpKeIKBFxplqWlo6IzBGR5c10LZ+IvCwiB0Tkt81xzWrXLxCRU5rhOktF5LJa8syz3UTUdX/Nvc88RGSmiBwUkQ9EpEtj6khbJWdoHCIyV0T8IlIc9Wl2ZVIHpwBDge5KqXnhRLsD6pkyqdII+x7ObUD580XkaxEpEZHnRaRdHWX/KSKbRSQkInOq5V0sIqtF5JCI7BCRedGdsYi0E5Hn7Ot8LSLnN1QOEekrIuUi8ngDft9SEZkYb/lMponv/XD7/pbaf4dH5V0rIutFpEhEvhKRa6ud+z0RWWnnfyoi46vldxCR/9gK6YCILIzKe1hEKqv1SZadF1b60Xk3hM9VSi0G2tuH58bbLtE0mZIzbyopZbFSKifqM6/+U5qNdkCBUqo41YIkgmhS/pIoIoOBfwAXAh2BUuD/6jjlE+DnwMcx8rKAK9GdynHA94HfROXfD1Ta15kNPGBfvyFy3A98FNePS1My8d6LiBt4AXgcaAs8ArxgpwMIcJGddxpwhYjMss9tB7wI3Aa0AeYBL4pI26hLPAt8CxwNHAXcXk2EedX6pGC1/DZReX+OzlBK+YEtQF79rVKTpN4o+238OhH5FCgREaeIjLVNzUIR+ST6jcx+Q/ub/YZwSEReqO1NREQuEZHP7DeJL0Xkp9Xyp4vIWruerSJymp3eWkQWiMguEdkpIn8Jv0XU8Tv6iMjbIrJPRPaKyEIRaROVt19ERtrHXURkT/h3icg0Edlg/96lIjKwWvv8xn4TOigii0XE2/CWbjgicr3dLkUislFEzqylnIjInSLynd2W60RkiJ3nEZHbRWSbiOwWkfki4mugKE4gVI+seSLyon39j+x7tjwqX4nI5SLyud3O94uI2Hm13rsoRtttcEBEHgrfAxFpKyL/te/nAft7t6jrLhWRv4rI++gOpXc9v7WHiLxvt/nrItK+Wv5suy33isgf6qmrNmYDLyqlltkvDjcAZ4lIbqzCSqn7lVJvAeUx8h5QSr2nlKpUSu0EFgLjAEQkG5gB3KCUKlZKLQeWoDvYuOSwO81C4K1G/tawu/sR+/58JiK/FZEdtZQdKNoqOS8q+Ui99xPR/3t3KaUqlFL3oBXbyQBKqXlKqY+VUgGl1Ga0Qhxnn/s94Ful1FNKqaBS6nFgD3AWgIhMAroD1yqlDiql/EqpNY38TbURsuVvOEqppH2AAmAt+gf7gK7APuAHaIV6qn3cwS6/FNgJDAGygWeAx+28noACnPbxVKAP+saciH7QRtp5Y4CDdv0O+7oD7Lzn0G872eg3jJXAT+v5HcfYdXmADsAy9MMRzv8xsBH95vsacLud3g8osc91Ab8FvgDcUe2zEuiCtmg+Ay6vRYbx6A6hts/4Ws6bG27Daunn2Nd1ADNtOTvbeXOA5fb3ycBq9BubAAOjyt2J7tjaAbnot7u/NeD5cAGPxZKvWrkn7E8WMAjYHpbPzlfAf20Zj0b/w50W570rANajn9F2wPvAX+y8PHRHnmX/vqeA56POXQpsAwaj/+FcdfyGpcBW+5nw2ce3VHu2H7TzhgEVwMBa6qrrfr8AXFctrRg4tp42Xg7MqafM81EyjwBKq+X/Bt3J1isH0Ar9Nt6ttmc0zmfoFuBdtMXRDfgU2FHt/p4CjLTv1Q/NvVcAVwGvVEv7L3BNjLICrMHum4AfAhurlfkcuNP+fiO6H3wc3b9/BJwYVfZhYL/9WQ3MiMoLt8dOYAfwENA+hkw32fc9u8HPTGMetDpubgFwadTxdcBj1cq8Blwc9TDcEpU3CO0Osaim5Gr5B/y1/f0f4QavVqaj/QD5otLOA95p4O86A1hTLW0JsA79T+ax024Anowq47Bv3sSo9rkgKn8eMD/J92Cu3YaFUZ8uMcqtBabb3+dwWMmdjO6MxgKOag9+CdAnKu144Ks45RoO+IHdwDF1lLPscv2j0v5CTSU3Pur4SeD6eO6dfQ8ujzr+AbC1DpkPRB0vBW6O8/cuBf4Ydfxz4FX7e/jZ7haVvxKY1Yj7/RbVXpSin7k6zqtTyQGXojud9vbxBPTbfHSZHwNL45EDuBu7QyYxJfclMDnq+DJqKrmbbNknVjv3iL336L7piWppC4G5McrehHZrh/u1PHQ/ch76RfVitGX1Dzv/n/Zv+pGdH7bYw8/OSLsOp93mRcA4Oy8HGGXndQSeBl6LIVNbdL8UBM5qSDs1hV95e9T3HsA5tkupUEQK0RZK51rKf41upOqmPSIyRURW2K7CQnRjhct1R785VaeHXd+uqOv/A23R1YqIdBSRJ0S7Nw+h31Cqy/Qg2gK9VylVYad1sX8DAEqpkP37ukad923U91L0TU42Tyql2kR9vhGRi0S7c8PtMIQY7ayUehu4Dz128p3oQIVWaKsoC1gdVcerdnq9KKXWot+Q/4ce96mNDugHPvq52B6jXMx2jPPeVX/mutjnZonIP0QP5B9CW4FtpKp7O5YstVHfvU7Gs1CMtpKiaYXuSBqFiJwB/A2YopTaG+d1as0XHeBwCtoTkChdqP/ZuBz4QCm1NEbekXrv4yorIlegx+amhvs1pdQ+YDpwNfol9TTgTfSLBEAZepx9gdKuyifQbTXOPv9jpdQ+pV2hL6OV61l2XrFSapWdtxu4ApgUw+V6CXAIaKeUera+hommKZScivq+HW3JRXe42UqpW6LKdI/6fjT6LX5vVBoi4kG7Mm8HOiql2gAvo62L8HX6xJBlO9qSax91/VZKqcH1/Ib/Z/+OfKVUK+CCqGshIjnAXcACYK4cHkf8Bq1Yw+XE/n0767leDURkglSNOKr+mdCAunqglfIVQJ7dfuujf1M0Sql7lFLHoi3rfsC16HtSBgyOasvWSqm4/zmVUuXAK3a9tbEHCKBdUWG611I2FnXeuxj1HY2+bwDXAP2B4+xzT7DTo8+Pfr7TgQ1olxcAItIb7ard0pjKRI9lPwicrpRaF5W1BXCKSN+otGH29euTYyLagtkmIt+i3ZwzRCRW8Et97KL+Z+Ny4GgRiaVUj9R7vwEYavdJYYZy+P4hIpcC1wPfV0pVGedUSr2rlBqtlGqHHocdgLZAQXuzqrdNXW2lqKXviTqvum4aiPbAHayj3pg0dYTQ48DpIjJZRCwR8YrIxOgBXeACERkkIlnAzcDTqmbkjRt98/YAARGZAkyKyl8AXCIi3xcRh4h0FZEBSqldwOvAHSLSys7rIyIn1iN3LvrN56CIdEV38tHcDaxSSl0GvATMt9OfBKbacrjQ/zgVwAf1NVR1lA4AyKnj814DqstGPzx7QAfxoC25GojIaBE5zpa/BB2gELKt0geBO0XkKLtsVxGZHHWukvpDvSvQ9zMm9r1/Fv3ykCUiA9BvlvFS370D+IWIdLNfTv4ALI46twwotPP+1IDrpoqF6P+xCaKDQ24GnlVKxbTkRMRtB1sI4LL/Jx123sl2fTOUUiujz1NKlaDvy80iki0i49Bv94/FIcc/0S+hw+3PfPT/zWT7uuEw8p5x/N4ngd+JDhTpin5xq04R2to4QURuqZZ3pN77pWhX369EB5CF2+1tABGZjX5BPFUp9WX1k0VkhIi4bK/O7cB2pdRrdvZzQFvRU1AsETkb/SLyvn3u2SKSY/e/k9AvnkvsvONEpL+dlwfcg3aBV1dmLnTf0WCaVMkppbaj/xF+j+5gt6M7nejrPoYemPwW8AK/ilFPkZ3+JHAAOB+7kez8lWhz9k50AMq7HLaoLkJ3qhvtc5+mqrs0Fjeh/cgH0f+MEfNYRKaj/4F+ZiddDYwUkdlKRyVdANyLtnxOR78RV9ZzvSZFKbURuAPtKtwN5GM/gDFohVZmB9DunH3o0GHQY6xfACtsl86b6LdfRKQ7unNZV73CaoSo/7m7AmiNfiYeAxYR/wNe672L4j/ol58v0W7uv9jpd6GDAfYCK9Du2JRTl+WulNqAtlwWAt+hO+ufR537ioj8PuqU19Gd+ffQyqeMw1bLDeh2fznKY/BK1Lk/R7fPd+h78jP7+nXKoZQqVUp9G/6gX0LKlVJ77Hq7o5+1eDweN6PdZF+hn7+nifFsKKUK0QFIU0QkOiT9iLz3dh90Bro/LESPuZ4R1Tf9BT1u9lHUvQ+/vIMOotuL7sM7A5HobKXUfmAa2kI/iLYGp0e5un+NvreF6L7kx1Gu5N7oti5Ce5cq0GN/1bGoJyq7NsQe1EsJIrIUPQD9r5QJYUgKInIB2pX5u3rKTUJb+APsf4546r4V6KSUujhxSQ3phoj8EdijlPpHI879GTpooz7vjCFDET1NaTmwQClV1xzQmKR8QqOhZaCUerw+BWezFHgD2CAiv4lVQEQGiMhQ0YxBR209lzxpDemEUuov8So4EeksIuNs91Z/9JCAeTZaKCJyLtrK34325DWYI3ZVEtsUvyBG1uNKqcubW54jBds9MrueYrlod1gX9MN9B3pOUFohIrWt2jKlgWOmhvhxoyOke6HdX09Q9wovTYK5982DUupJGqncwqTUXWkwGAwGQ1Ni3JUGg8FgaLGklbuyffv2qmfPnqkWw2AwGAzNyOrVq/cqpeJaWKKhpJWS69mzJ6tWrUq1GAaDwWBoRkTk6/pLNQ7jrjQYDAZDi8UoOYMhzTHBYQZD4zFKzmBIY+b/933+9KeY0wkNBkMcpNWYXCz8fj87duygvLzGHo8GQ614vV66deuGy+VKtSgJMX7lzxniKMB/8De4Wte3Gp3BYKhO2iu5HTt2kJubS8+ePam6gLbBEBulFPv27WPHjh306tUr1eIkRE/RO7Ls37OLjilScnuKKij3B+neLisl1wc4UFKJ2+kg25P2XZYhzUh7d2V5eTl5eXlGwRniRkTIy8trEdb/IbIBKDvwbT0lm46LHniLx++4GvxlKZNh7J9f4q7774ZQ9Q1KDIa6SXslBxgFZ2gwLeWZOWTvHek/tKeekk3HGYce53euRagtr9VfuIm4xHqVPxy6GTb9N2UyGDKTjFByBsORSqlD70kbKNmXMhmy7J1sylNoTbYXe3uxA002ncrQQjFKLg5EhGuuuSZyfPvttzN37tzUCVQPS5cu5YMPGrxPaxVOO+002rRpww9/+MMkSWVoDH6HF4Bg2aGUyVCMD4DK0sKUyVBiy0BlbesiGwyxMUouDjweD88++yx79+6tv3ADUEoRCjVqH8A6SYaSu/baa3nsscfqL2hoUpSlN1EPlaeucy9WWsEEUqhoS5QHAFUec8Nzg6FWjJKLA6fTyU9+8hPuvPPOGnl79uxhxowZjB49mtGjR/P++3rD7blz53L77bdHyg0ZMoSCggIKCgro378/F110EUOGDGH79u1ce+21DBkyhPz8fBYvXgxoRTVx4kTOPvtsBgwYwOzZs2NOCr7nnnsYNGgQQ4cOZdasWRQUFDB//nzuvPNOhg8fznvvvVenjBdeeCHHH388ffv25cEHH4zU+/3vf5/c3Nw62+Wpp55iyJAhDBs2jBNO0JtLl5eXc8kll5Cfn8+IESN45513AHj44Yc544wzOPXUU+nZsyf33Xcff//73xkxYgRjx45l/369f+qDDz7I6NGjGTZsGDNmzKC0tLTGdceOHcuGDRsixxMnTmyxy8G5RN9zVZH6zj1YdjBl1w6PsPrLU6doDZlJRsXj3vTiBjZ+k9yHfFCXVvzp9MH1lvvFL37B0KFD+e1vf1sl/de//jVXXXUV48ePZ9u2bUyePJnPPvuszro+//xzHnnkEcaOHcszzzzD2rVr+eSTT9i7dy+jR4+OKIw1a9awYcMGunTpwrhx43j//fcZP358lbpuueUWvvrqKzweD4WFhbRp04bLL7+cnJwcfvMbPYn4/PPPr1XGTz/9lBUrVlBSUsKIESOYOnUqXbp0iavtbr75Zl577TW6du1KYWEhAPfffz8iwrp169i0aROTJk1iy5YtAKxfv541a9ZQXl7OMcccw6233sqaNWu46qqrePTRR7nyyis566yz+PGPfwzAH//4RxYsWMAvf/nLKtedOXMmTz75JDfddBO7du1i165djBo1Ki6ZMw0HtqWfQjedEx3RmEpr0rJlCJalXtkbMgtjycVJq1atuOiii7jnnnuqpL/55ptcccUVDB8+nGnTpnHo0CGKi+vuDHr06MHYsWMBWL58Oeeddx6WZdGxY0dOPPFEPvroIwDGjBlDt27dcDgcDB8+nIKCghp1DR06lNmzZ/P444/jdMZ+Z6lLxunTp+Pz+Wjfvj0nnXQSK1eujLtNxo0bx5w5c3jwwQcJBoOR33PBBXov2gEDBtCjR4+IkjvppJPIzc2lQ4cOtG7dmtNPPx2A/Pz8yG9bv349EyZMID8/n4ULF1ax2MKce+65PP300wA8+eSTnH322XHLnGk4lG5Xhz+FCkZsJVdZ06puLlxhJVeZumkMhswkoyy5eCyupuTKK69k5MiRXHLJJZG0UCjEihUr8Hq9Vco6nc4q423Rc7ays7Pjup7H44l8tyyLQCBQo8xLL73EsmXLePHFF/nrX//KunXrapSpTUaoGWrfkND7+fPn8+GHH/LSSy9x7LHHsnr16jrLR/8eh8MROXY4HJHfNmfOHJ5//nmGDRvGww8/zNKlS2vU07VrV/Ly8vj0009ZvHgx8+fPj1vmjEPpZ8gZKEmZCC7bmpTK1MiglEoLRWvITIwl1wDatWvHueeey4IFCyJpkyZN4t57740cr127FtDbBn388ccAfPzxx3z11Vcx65wwYQKLFy8mGAyyZ88eli1bxpgxY+KSJxQKsX37dk466SRuvfVWDh48SHFxMbm5uRQVHXbr1CYjwAsvvEB5eTn79u1j6dKljB49Oq5rA2zdupXjjjuOm2++mQ4dOrB9+3YmTJjAwoULAdiyZQvbtm2jf//+cddZVFRE586d8fv9kXpiMXPmTObNm8fBgwcZOnRo3PVnGg7bgnEGUmfBeCw9Lij+1Ci5kAJn2G2bBmOThszCKLkGcs0111SJsrznnntYtWoVQ4cOZdCgQRGrYsaMGezfv5/Bgwdz33330a9fv5j1nXnmmQwdOpRhw4Zx8sknM2/ePDp16hSXLMFgkAsuuCAS5PGrX/2KNm3acPrpp/Pcc89FAk9qkxG0u/Okk05i7Nix3HDDDZHxuAkTJnDOOefw1ltv0a1bN157TU8EvvHGG1myZAmgIzDz8/MZMmQI3/ve9xg2bBg///nPCYVC5OfnM3PmTB5++OEqFlx9/PnPf+a4445j3LhxDBgwIJK+ZMkSbrzxxsjx2WefzRNPPMG5554bd92ZiNiWnDuYOkvOLVoGR4qUXDCkImNy4jeWnKFhSDpt4zFq1ChVPUrus88+Y+DAgSmSqGUzd+7cKgEqLY2W8Oxs+Mv3GBzYwLeOjnS6cUtKZFg0dybn8Sr7PV1p97uNzX79ssogi24+n0udr1Li60z2dZuaXQZD0yIiq5VSTRI9Ziw5gyGNCbsrvSp17spw8IsrmBorKqgOW3JWwFhyhoaRUYEnhuSSzqu2GDRhd6UvhUpOVBAE3MHUyBAMqsiYnCuFATiGzMRYcgZDGhOeJ+fBD0F/amSwLTmPKk/JLgBVLDkVgEBls8tgyFyMkjMY0hhRh5WKqmj+uXJKqYjLFIAUBH4EQiFcEiWDWb/S0ACMkjMY0hiHOjzXsqK0+Ze00uH70Qqm+d2FodDhFU8AM43A0CCMkjMY0pjIsl5AeXFhs18/OnwfSImSC4RCh+fJpUgGQ+ZilFycPP/884gImzbVHr5cUFDAkCFDmlSOtWvX8vLLLydUx6WXXspRRx3V5LIaEsdBiEP2LgDlJc1vwYSUiiypBaTEVVhT0Rp3pSF+jJKLk0WLFjF+/HgWLVoUMz/WklsNJbz+Y10kQ8nNmTOHV199NaE6DM2DQwUpkSwAKkqafxcArWBSa0UFQ6qay9QoOUP8GCUXB8XFxSxfvpwFCxbwxBNPRNKXLl3KhAkTmDZtGoMGDQK0sps9ezYDBw7k7LPPjmwV89ZbbzFixAjy8/O59NJLqajQuy337NmT6667jpEjR/LUU09VuW71rWwqKyu58cYbWbx4McOHD2fx4sWUlJRw6aWXMmbMGEaMGMELL7wA6K1tpk+fzsSJE+nbty833XRTpN4TTjiBdu3a1fmb3333XYYPH87w4cMZMWIERUVFKKVq3RboxBNPZPr06fTu3Zvrr7+ehQsXMmbMGPLz89m6dSsAL774IscddxwjRozglFNOYffu3TWuO2vWLF566aXI8Zw5cyKLMR+JCCFKRe8O7k/Bfm4hVVXBpGLLn7CSq1D2jKcUBOAYMpfMmif3yvXwbc0FiBOiUz5MuaXOIi+88AKnnXYa/fr1Iy8vj9WrV3PssccCel3K9evX06tXLwoKCti8eTMLFixg3LhxXHrppfzf//0fV1xxBXPmzOGtt96iX79+XHTRRTzwwANceeWVAOTl5UXWuYym+lY2brebm2++mVWrVnHfffcB8Pvf/56TTz6Zf//73xQWFjJmzBhOOeUUAFauXMn69evJyspi9OjRTJ06Ne4taW6//Xbuv/9+xo0bR3FxMV6vl2effbbWbYE++eQTPvvsM9q1a0fv3r257LLLWLlyJXfffTf33nsvd911F+PHj2fFihWICP/617+YN28ed9xxR5XrhrfRmTp1KpWVlbz11ls88MADccncErEIUWblQAD8KdhmJhz0cYhsWlFCZWkR8S/Slhz0FIIQRWTj4aAZkzM0CGPJxcGiRYuYNWsWoC2NaJflmDFj6NWrV+S4e/fujBs3DoALLriA5cuXs3nzZnr16hVZv/Liiy9m2bJlkXNmzpwZ87qxtrKpzuuvv84tt9zC8OHDmThxIuXl5Wzbtg2AU089lby8PHw+H2eddRbLly+P+zePGzeOq6++mnvuuYfCwkKcTmed2wKNHj2azp074/F46NOnD5MmTQKqbqOzY8cOJk+eTH5+PrfddlvMbXSmTJnCO++8Q0VFBa+88gonnHACPp8vbrlbGg5CVFjakgumYFfsoFI4JUSJ6J0zKkubX4ZAUFtyYRmMu9LQEDLLkqvH4moK9u/fz9tvv826desQEYLBICLCbbfdBtTcNqcxW9fUtvVOPFvZKKV45plnaqz0/+GHHya0jc7111/P1KlTefnllxk3blxkgebaiGcbnV/+8pdcffXVTJs2jaVLl8ZcccXr9TJx4kRee+01Fi9eHHm5OFJxqBB+Vy5UQCgVSs4O+ii3ciDwHZUpcplaEqLUyoEgRskZGkSTW3IicpqIbBaRL0Tk+qa+XrJ5+umnufDCC/n6668pKChg+/bt9OrVi/feey9m+W3btvG///0PgP/85z+MHz+e/v37U1BQwBdffAHAY489xoknnljvtWNtZVN9G53Jkydz7733El5oe82aNZG8N954g/3791NWVsbzzz8fsTDjYevWreTn53PdddcxevRoNm3alNC2QAAHDx6ka9euADzyyCO1lps5cyYPPfQQ7733Hqeddlrc9bdEHIRQrmxCSgilaDK4RUgrOSCQgt3BA3bwi9/KIqjE7A5uaBBNquRExALuB6YAg4DzRGRQU14z2SxatIgzzzyzStqMGTNqjbLs378/999/PwMHDuTAgQP87Gc/w+v18tBDD3HOOeeQn5+Pw+Hg8ssvr/fasbayOemkk9i4cWMk8OSGG27A7/czdOhQBg8ezA033BA5f8yYMcyYMYOhQ4cyY8aMyHjceeedx/HHH8/mzZvp1q1bZH+8+fPnR7bhueuuuxgyZAhDhw7F5XIxZcqUhLYFAr1W5jnnnMOxxx5L+/btI+mrVq3isssuixxPmjSJd999l1NOOQW32x13/S0RByEsl4sSvEgqwvdtJReyfPiVRTAFSi5kKzlxOCnBSyAFFq0hc2nSrXZE5HhgrlJqsn38OwCl1N9ilTdb7SSPhx9+uEqAypFIS3h2iv7UiS2dp9N112t8d9R4hv7i8Wa9/o4DpRTeeTxW6y50PvQJxf3Potv5zftMrfhyH1kPfx8rtyPtirfQavBkss9twbvBH4Fk8lY7XYHtUcc77LQIIvITEVklIqv27NnTxOIYDJmDXjcyhHI4KBNfSjYtDUdXOpzamgxVpEIGbclZlkWJ8qbEbWvIXFIeXamU+qdSapRSalSHDh1SLU6LYc6cOUe0FdcSCClsN51FhfiwUrDNTEgdVjClyoukZFkvrewty2krWuOuNMRPUyu5nUD3qONudlqDSKfdyw2ZQUt4ZgKhkF67UizKHVk4U7BhaHhMznK6KMGTsnFBZ1gG5YUUWJOGzKWpldxHQF8R6SUibmAWsKQhFXi9Xvbt29ciOi1D86CUYt++fXi93lSLkhDaVRgCh0WllZWSnbkPuwqdlCpvSlymwaC25JxObcmJ37grDfHTpPPklFIBEbkCeA2wgH8rpWrOAK6Dbt26sWPHDsx4naEheL1eunXrlmoxEiIQDOITBWIRsLLwVKbGkvMSQiwnZeLFCqQuwjOs5ByVpi8wxE+TTwZXSr0MNHpFYZfLVWVFEYPhSCEUtBdGdlgEnFl4y8uaX4YQOCSEclhUOnw4g981uwzhRaKdLhelyouVAretIXNJeeCJwWCITTCkV4oRh0XQlYNXpUDJhRdoltS5TIMhhSVBnE4XxfhwpiAAx5C5GCVnMKQpgYBff3FYKFc2PiogVP92TMkkaEc24tAuU3ew+RVtxJJzOinDgytU3uztYMhcjJIzGNIUZbsrxWGhPKlZnDg8HobDqV2mqkz7MJtTBlvRisNJpRVuB2PNGeLDKDmDIU0JBLUlJ2Ih7lyg+bfbUXb4vohF0GUrGH/zuiz1fnJ6vmDQqTeQNUrOEC9GyRkMaYoKb6/ksBCvXiC5vLh5dwEIhoi4K5UrNVZUILJ2ZZSiNTsRGOLEKDmDIU0J2uNO4rBwerUlV1ZS2Mwy2IEnDgvcKXKZ2pPixbLAKDlDA8ms/eQMhiOIUNhd6bBw+loBUFHavJZcSIXHwyxwa2uyuRVMIKxoLRehsAxm/UpDnBhLzmBIU0KBw5acy6ctucpmVnLhyEYcThyesJJrXnfl4cATC0mRDIbMxSg5gyFNCc+Tw2HhztKWXKC0eQNPQqEQlihwWFi2y7S593MLj8k5qihaY8kZ4sO4Kw2GNCUY1ErOspw4wkqumRWMipqQ7nDZ1mTJoWbtOAKBoFa0lhOHrWiNkjPEi7HkDIY0JRjlrvTltAYg1MxKLhiZq+fEnaUVTEVZc7tMbUVrWbjssUkzJmeIF6PkDIY0JWSveOJwusgKK7lm3ktNBQ+vuhIeF/Q3s8s0PJXC4bBw+bS7MmiUnCFOjJIzGNKUsJITy0m210WJ8jS7BRMIHHaZerO1FRVsdmsyPF/QSZbXQ5lyE2hma9KQuRglZzCkKcFgJQAOy4XPZVGCr9k3LY3I4HTh82VRqSyC5c0rg4oKwMn26O12As288oshczFKzmBIU8KuQofTjYhQiq/ZNy0N+m1XoWWR43FSipdQM1uTwfBC1WIrOeVtdmvSkLkYJWcwpCnBiLvSBUC5w4fVzLti+yMRni6y3BbF+FDNrORU6PDyZjkei1K8zS6DIXMxSs5gSFPCY3KW01Zy0vz7uUVksJzaklOeZg/fDwUPuyuz3E6K8aLMFAJDnBglZzCkKdHuSkBvWtrMG4aG/BVaBpeHLNtd2dwuUwnocUEsj61ovYix5AxxYpScwZCmqGqWnN+ZhSfUvJacCuhNUi2PjyyXRbHy4mjmrXYIakWL00O2R1ty0syK1pC5GCVnMKQp4ajCiJKzsvGEmndnbvGXaxncWTgcQoXDh7O5rcmAreQsN9kei1LlxWpmGQyZi1FyBkOaogJawTjcPgCCrmx8qpmtqLAlZ8tQ4cjC2dzjgv4oS87tpBgfzkAzt4MhYzFKzmBIV+yV9p0evYeacufgpRLCgRjNga1ocWol57eycAWb15pUUZZclltHV7oCpaBUs8phyEyMkjMY0pRQpVYm3iy9lJVypWAFfr+t0FxefWilYFzQH1a0HkQEv5WFgyCElZ/BUAdGyRkMaUo4uMJjr9eIvc1Mcy7SHFa0YUsu5MrCoyogPHetGYiMAdobpvqtLH1sphEY4sAoOYMhTVG2ghGX7tTD28yUlRxsNhlC1Sy5oEu7Tptz09KIkvPkVpPBKDlD/RglZzCkKRIooxw3OPS/aVjJlTejklP+qpacSoGScwVsZeaxF4h22jKYuXKGODBKzmBIUxyBUsrxRI6dXt3JVzSjkpNqlhzu5reiHOGlzGxLLpQCRWvIXIySMxjSFEegjArxRo5d9u7gzbmfm9t/kADOyHiYeJo3+CUYUrgDJQTFCU6t8FVE0ZpFmg31k5CSE5G5IrJTRNbanx9E5f1ORL4Qkc0iMjlxUQ2GIwtnoIRKx2ElF96Zu7K0+fZS81bup8TZBkQAcNjWVHMtkFxU7ieHMiqduREZUuEyNWQuziTUcadS6vboBBEZBMwCBgNdgDdFpJ9SqvlCsgyGDMdXeYASV7vIsSdb7w4ebKYNQ0MhRXagkPKcdrS20yxvWNEWRTlSm44DpX7ay0H8nrb4wom2ojVjcoZ4aCp35XTgCaVUhVLqK+ALYEwTXctgaJG0Cu6nwtM+cuzNbgNAqKJ53HSFZX7yOEjAe1jRuuzpDBXNpGh3Hiiji+wllNs1kmZ5TXSlIX6SoeSuEJFPReTfItLWTusKbI8qs8NOMxgMcRAMKdqpQgJZHSJpWdnZBJSj2TYt/aawjKNlN8HWR0fSXL7wuGDzKLkdB0rpKvtwtut+ODFsyRklZ4iDepWciLwpIutjfKYDDwB9gOHALuCOhgogIj8RkVUismrPnj0NPd1gaJF8u2snuVKGo3W3SFq210UpnmZz0xVs+5p2Uoyvy6BIWnhcsLmCX77dtYMOchBfp/6RNI/HR0A5zMaphriod0xOKXVKPBWJyIPAf+3DnUDUqxfd7LRY9f8T+CfAqFGjzGJ0BgOwe+taugLZ3QZH0rLdTvbigWba6qZwy/sAtO0zKpLmtiM8A83kMi396kMArG4jI2lZHhcleMkpL8JqFikMmUyi0ZWdow7PBNbb35cAs0TEIyK9gL7AykSuZTAcSRRtXQFA5wGjI2mWQyijefZzC4YUeV+/Srn4cB59eDg92+elXLkIlTe9FfXtwXL67XubSkcWdDssg9elF2kOVpjoSkP9JBpdOU9EhgMKKAB+CqCU2iAiTwIbgQDwCxNZaTDET9tv3qXA6knP9t2rpJeLF2mGbWZee+8Dvh98n297n00P5+E4ymyPRQleVDMouadeX8pPHe9TPugC3K7DUymy3BalykMbo+QMcZCQklNKXVhH3l+BvyZSv8FwJPL5pnUMqVzH2l6X0bNaXoV48QWadqubdVu20vednxJ0uOg2/Y9V8rLdTkqVF9XEQR9Lln/MpHXXEHBl02rS9VXyfC6LMjyEzDw5QxwkY56cwWBIIgde/CN+nBwz5Vc18vwOH62aaNPSsooAb764kNHr5tJWijh05n/IatOtSplsj5PdeMnyN42COVRcxPL/3MKEnQ/jswI4Zi2GVl2qlPG5LcpwoyrMxqmG+jFKzmBIIz585m6OK1nKql4/ZVTHo2vk+y0vrtCBpF4zGFK88+bLtP3fXzldbWCXuzslM5+kwzGja5TN9ujxsOwkK7nSikr+99wDDNx0Dz9gL1vbjKXbzDtwdxlSo6zPZVGmPNBEitbQsjBKzmBIEzZ88DIjP72Jdb6RDD//zzHLBCwf7srkuCuVUny48gMCb9zMKYEVFEobCsbMpeekX4DTHfMct+WgDC9WkhRMhT/Auy8vpseaeXyfAr5y9+XLU+6lz5gf1HpOlttiL17E33wLVRsylyNCySmlKDx4kJL9uygvr8DlFLy+LLxtOtEqJwex18QzGFLFN1s30PX1H/ON1Zmjf/oUTnfsRbMCzizc5eUJX2/jxnV89+JcJpS+Rbl42TLo1/Sdfi1twhOta0FEKHdk4QwkNqc1GFK8/fZrtP3gL0wKreNbqzNbx91Dn4kXRrYWqg2f26IUT7ME4Bgynxap5HZt38r2j14muHM1bQ9upIt/O22llLYxyhYpH/sd7TjobE+ppwOVWZ0gtxNW66742nWmdU42DqcLHC4kFCQUKEcFKgj59V/lr0AF/ahgJSrgRwX9EKzUf0N+VDBIEAchBUGEkBKCSkAEJQ4QByCRxWcRIVrlCrpjEdThhJZGHLMjVYwyKo4Ta5wnUvOsWJXHdf36iVkmRmKvrY+iEByzn6R12/Y1C9iEnFl4VeMtuW93f8OWRb9n7IEl9BEHm3pdSL8ZN9Ivt0P9J9tUOnw4ExgXXLF2HUUv3cip/rc5KK3YOupGep92BeKMbzXMbLeTMuXB4W+6AJy9+/bxxSfvU7F9Nd59n+Er+4a8wHfkqiLcyo+LABW4KRMf5Q4f5c5WVDpb4fe0IeRtg/ja4shqhyO7HUFPG3DnYjnAIaBCQZQKoUIhVCgIIb/eaT0UQAUDqFAQCQUgFESpQOR7+KNQKKWf/xCCCnG4/6D643W4XzmcX72HqXZeVB9UpazUPK/MexQTp1/SmCZuNlqUkvtq40eopy+jd6iAzkAxPra7j2HTUVOQVp2RnE64PB4CIQhUlOAo3YsUf4ez9DuyKr7jqJJPySt+B9d3ZraDoXkpVR62Tn6U/D6D6ywXcmbhpRJCoXotnmjK/UHeevZBxmz8f3yPIjZ0nMYx59zM4A49Giyr38rC0wglt233flb950+cVrgYS0Js7f9jep95A629res/OYpsj5NSPFhJDMDxB4Ks/WgZB9b+l057PmBQcBNjJQTAXtqyz92F3blD2OFpC04vAXHiCFZARTEOfzEu/yF85YW0Kd1GK1VMK0pxSMtf2+JDNRCMkms+8rr0YpurDR92u5KOx07l6P7HMtBq4JoIoRDlh76jcPc2Du37hqLScgj4IRTQVpfTA04P4vLgcHoRy43D5UacbiynC4fTg+Vy47CPLcvC5RAsUThFYYnCIYBSKBXSb2cqpN/sEFCHLRT9tqbdrYrDb1UKhbQwk676r4n162K5lWucF+PE6PfS2k6MfV58MsR1XrXU6tW4vDnk++p2FeqCWfqvvxTCe7vVw7pNmznw9JVMDXzANu8xBM96mmH9G79eeqUzB6+/RD+gcbRHKKR45bX/0n/F9ZwlO/iy46l0PWcefTr0btT1czxOynDjDJbHLUMsAsEQa9atZ9//HqXf7pcZbS/KVODux7ruc2jVbwJdBx1P+7adqd22jl3vgZJyDhbupaJoP1J+ACqKCYYghCAOQcSBOCzEsrSXyOFELKdOczhxWPax5dTHDidiuRCHA4dDcIjgEIWI4EDFfi5t90MV30UVl0SsdIUKf6+3LPS1XA1omdTQopRcqzbtGfK7dxOrxOHA26YTndp0olNyxDIYkoc7fiVXXhngjSfuZsLWO+gnlXw57Df0nnY9JNgxBVw5OMuC4C87LE8tbNu9nzWP/pYfFj9NobM9+07/D72HT03o+l6Xg3K8uvMOlIPLV/9JNv5giDVbtrHjg8V037GE0Uov0rTVN5SNgy6nzwnn0rN1pxrzExuC03KQ1yqLvFZHAzUjZA3NS4tScgZDS0fsHbory4px5xxVa7n1G9dT+swvOT34MQXZ+Thn/5PeXQfVWr4hBN3h/dyKalVyoZDilVdfZMCH1zFdvuHLo2fQ6/y/I742CV9fRAg6bcVWWVqrkiv3B3n45WUEN76Iu0Nf3OXf0XnvB5ygVjNG/Hzn6srnfX/J0RMvoc9RfRKWy5CeGCVnMGQQ4tF7qVWUHMIdI1akvNLPuwtvYVzBfTgEPj/2RvpOvapB43f1oSJK7hDkdqyRv233XtY++lumFj+rrbfpT9B76JSkXR+g0sqBIFBeCNl5NfJXf7Wbjxf9hYsqFpMlFXqzL6DIasvuXjM56vgLOKr3WI4ykdUtHqPkDIYMwvLam5aWHqT6CN76NR/Ai1cxObSJz3NH0+mCf9C3U/ItFBWeZlBedU85fzDES/99jqEf/5Fp8g1be5xD7/PvQBoYWBIPJe48KAOKd0Pe4d94sNTPM88+wbgtt/Bjxw72dj+VrB/+SbtWs/LIbdebXKPYjiiMkjMYMgixl7iq2L8tkrZj+9d8/uxNjN//PMWSzZbj59Fv0k8aHZBRHyGfbTmVfAfowKgPVn9M5Wt/4gz/e+x1dWT/tCfpM3Ryk1wfwO876rCSAyoDIV5d/j+c7/6NS9V7HPB2omza47QfcnqTyWDIDIySMxgyiHbd+gFQ8s3nrPtoKYXvP8SoAy/TGT8bOk6jz3m3069t7WN1ySDQ9hgACgvW8HFBOdaqBYyrfJ+AOPli0C84Zvrv4478bCxZed1gPxTt2srSLxbj/GQhPwi+R0gs9oz4FR2m/K7eoBjDkYGoOCbCNhejRo1Sq1atSrUYBkPaUlwRYPf/y6ePfANAhXLxWftT6Xr6DXTomZzAkvpYVbCftv/+Hn0cuwAoIYvtvc6hz7RrcbXtXs/ZyWHBe18y7o1pDHBsB6BMfOzpdx7dp14bsXYNmYOIrFZKjaq/ZCPqNkrOYMgs3l/+DtbaR/F2H0HfE88nu01DZnEljlKKF996h45fPk+HfqPpdfwZSD3LgSWbikCQp15+g4F7XqHbwDF0HHWmsdwyGKPkDAaDwdBiaUoll7y4YoPBYDAY0gyj5AwGg8HQYkkrd6WI7AG+TkJV7YG9SainOTCyNh2ZJG8myQqZJW8myQqZJW+yZO2hlIp/K4wGkFZKLlmIyKqm8u8mGyNr05FJ8maSrJBZ8maSrJBZ8maCrMZdaTAYDIYWi1FyBoPBYGixtFQl989UC9AAjKxNRybJm0myQmbJm0myQmbJm/aytsgxOYPBYDAYoOVacgaDwWAwGCVnMBgMhpZLi1JyInKaiGwWkS9E5PpUyxONiHQXkXdEZKOIbBCRX9vpc0Vkp4istT8/SLWsYUSkQETW2XKtstPaicgbIvK5/bdtGsjZP6r91orIIRG5Mp3aVkT+LSLficj6qLSYbSmae+zn+FMRGZkGst4mIptseZ4TkTZ2ek8RKYtq4/nNKWsd8tZ670Xkd3bbbhaRptsPKH5ZF0fJWSAia+30dGjb2vqttHx2Y6KUahEfwAK2Ar0BN/AJMCjVckXJ1xkYaX/PBbYAg4C5wG9SLV8tMhcA7aulzQOut79fD9yaajljPAffAj3SqW2BE4CRwPr62hL4AfAKIMBY4MM0kHUS4LS/3xola8/ocmnUtjHvvf0/9wngAXrZfYaVSlmr5d8B3JhGbVtbv5WWz26sT0uy5MYAXyilvlRKVQJPANNTLFMEpdQupdTH9vci4DOga2qlahTTgUfs748AZ6ROlJh8H9iqlErGyjlJQym1DNhfLbm2tpwOPKo0K4A2ItK5WQQltqxKqdeVUgH7cAXQrbnkqY9a2rY2pgNPKKUqlFJfAV+g+45moS5ZRUSAc4FFzSVPfdTRb6XlsxuLlqTkugLbo453kKZKRER6AiOAD+2kK2zT/t/p4P6LQgGvi8hqEfmJndZRKbXL/v4t0DE1otXKLKp2EunatlB7W6b7s3wp+m09TC8RWSMi74rIhFQJFYNY9z6d23YCsFsp9XlUWtq0bbV+K2Oe3Zak5DICEckBngGuVEodAh4A+gDDgV1od0W6MF4pNRKYAvxCRE6IzlTaP5E2c1BExA1MA56yk9K5bauQbm1ZGyLyByAALLSTdgFHK6VGAFcD/xGRVqmSL4qMufdRnEfVF7S0adsY/VaEdH92W5KS2wlEb0vczU5LG0TEhX5QFiqlngVQSu1WSgWVUiHgQZrRdVIfSqmd9t/vgOfQsu0Oux/sv9+lTsIaTAE+VkrthvRuW5va2jItn2URmQP8EJhtd2zYbr999vfV6DGufikT0qaOe5+ubesEzgIWh9PSpW1j9Vtk0LPbkpTcR0BfEellv9HPApakWKYItr99AfCZUurvUenR/uozgfXVz00FIpItIrnh7+jAg/XoNr3YLnYx8EJqJIxJlTfhdG3bKGpryyXARXak2ljgYJRrKCWIyGnAb4FpSqnSqPQOImLZ33sDfYEvUyPlYeq490uAWSLiEZFeaHlXNrd8MTgF2KSU2hFOSIe2ra3fIoOe3ZRGvST7g47s2YJ+4/lDquWpJtt4tEn/KbDW/vwAeAxYZ6cvATqnWlZb3t7oKLRPgA3h9gTygLeAz4E3gXapltWWKxvYB7SOSkubtkUr312AHz1O8aPa2hIdmXa//RyvA0algaxfoMdaws/ufLvsDPv5WAt8DJyeJm1b670H/mC37WZgSqpltdMfBi6vVjYd2ra2fistn91YH7Osl8FgMBhaLC3JXWkwGAwGQxWMkjMYDAZDi8UoOYPBYDC0WIySMxgMBkOLxSg5g8FgMLRYjJIzGAwGQ4vFKDmDwWAwtFiMkjMYDAZDi8UoOYPBYDC0WIySMxgMBkOLxSg5g8FgMLRYjJIzGAwGQ4slbZWciPQUEWXvs2RoQkRkjogsb6Zr+UTkZRE5ICK/bY5rVrt+gYic0gzXWSoil9WSZ57tJqKu+2vufeYhIjNF5KCIfCAiXRpTR9oqOUPjEJG5IuIXkeKoT7Mrkzo4BRgKdFdKzQsn2h1Qz5RJlUbY93BuA8qfLyJfi0iJiDwvIu3qKPtPEdksIiF7E9TovItFZLWIHBKRHSIyL7ozFpF2IvKcfZ2vReT8hsohIn1FpFxEHm/A71sqIhPjLZ/JNPG9H27f31L77/CovGtFZL2IFInIVyJybbVzvyciK+38T0VkfLX8DiLyH1shHRCRhVF5D4tIZbU+KbxPXljpR+fdED5XKbUYaG8fnhtvu0TTZErOvKmklMVKqZyoz7z6T2k22gEFSqniVAuSCPamkCl/SRSRwcA/gAuBjkAp8H91nPIJ8HP0/mTVyQKuRHcqxwHfB34TlX8/UGlfZzbwgH39hshxP3qD44wlE++96I2kXwAeB9oCjwAv2Omg94G7yM47DbhCRGbZ57YDXgRuA9oA84AXRaRt1CWeBb4FjgaOAm6vJsK8an1SsFp+m6i8P0dnKKX86H1C8+pvlZok9UbZb+PXicinQImIOEVkrG1qForIJ9FvZPYb2t/sN4RDIvJCbW8iInKJiHxmv0l8KSI/rZY/XUTW2vVsFb2TMSLSWkQWiMguEdkpIn8Jv0XU8Tv6iMjbIrJPRPaKyEIRaROVt19ERtrHXURkT/h3icg0Edlg/96lIjKwWvv8xn4TOigii0XE2/CWbjgicr3dLkUislFEzqylnIjInSLynd2W60RkiJ3nEZHbRWSbiOwWkfki4mugKE4gVI+seSLyon39j+x7tjwqX4nI5SLyud3O94uI2Hm13rsoRtttcEBEHgrfAxFpKyL/te/nAft7t6jrLhWRv4rI++gOpXc9v7WHiLxvt/nrItK+Wv5suy33isgf6qmrNmYDLyqlltkvDjcAZ4m9q3t1lFL3K6XeAspj5D2glHpPKVWplNoJLATGQWR3+BnADUqpYqXUcvRmpBfGK4fdaRaiN9tsFKLd3Y/Y9+czEfmtiOyopexA0VbJeVHJR+q9n4j+37tLKVWhlLoHrdhOBlBKzVNKfayUCiilNqMV4jj73O8B3yqlnlJKBZVSjwN7gLMARGQS0B24Vil1UCnlV0qtaeRvqo2QLX/DSfIusgXonWO7Az6gK3q35h+gFeqp9nEHu/xSYCcwBL2z8zPA43ZeT/SOtE77eCrQB31jTkQ/aCPtvDHAQbt+h33dAXbec+i3nWz0G8ZK4Kf1/I5j7Lo8QAdgGfrhCOf/GNiIfvN9DbjdTu8HlNjnuoDfondUdke1z0qgC9qi+YxquwFX25G3sI7P+FrOmxtuw2rp59jXdQAzbTk723lzgOX298nAavQbmwADo8rdie7Y2gG56Le7vzXg+XChd2yuIV+1ck/YnyxgEHpH6uVR+Qr4ry3j0eh/uNPivHcFwHr0M9oOeB/4i52Xh+7Is+zf9xTwfNS5S4FtwGD0P5yrjt+wFL07cj/0/8JS4JZqz/aDdt4woAIYWEtddd3vF4DrqqUVA8fW08bLgTn1lHk+SuYRQGm1/N+gO9l65QBaod/Gu9X2jMb5DN0CvIu2OLqhd6zeUe3+ngKMtO/VD829VwBXAa9US/svcE2MsgKswe6bgB8CG6uV+Ry40/5+I7offBzdv38EnBhV9mFgv/1ZDcyIygu3x070TukPAe1jyHSTfd+zG/zMNOZBq+PmFgCXRh1fBzxWrcxrwMVRD8MtUXmD0O4Qi2pKrpZ/wF/b3/8RbvBqZTraD5AvKu084J0G/q4zgDXV0pagt3f/FPDYaTcAT0aVcdg3b2JU+1wQlT8PmJ/kezDXbsPCqE+XGOXWAtPt73M4rORORndGYwFHtQe/BOgTlXY88FWccg0H/MBu4Jg6yll2uf5RaX+hppIbH3X8JHB9PPfOvgeXRx3/ANhah8wHoo6XAjfH+XuXAn+MOv458Kr9Pfxsd4vKXwnMasT9fotqL0rRz1wd59Wp5IBL0Z1Oe/t4AvptPrrMj4Gl8cgB3I3dIZOYkvsSmBx1fBk1ldxNtuwTq517xN57dN/0RLW0hcDcGGVvQru1w/1aHrofOQ/9onox2rL6h53/T/s3/cjOD1vs4WdnpF2H027zImCcnZcDjLLzOgJPA6/FkKktul8KAmc1pJ2awq+8Pep7D+Ac26VUKCKFaAulcy3lv0Y3UnXTHhGZIiIrbFdhIbqxwuW6o9+cqtPDrm9X1PX/gbboakVEOorIE6Ldm4fQbyjVZXoQbYHeq5SqsNO62L8BAKVUyP59XaPO+zbqeyn6JiebJ5VSbaI+34jIRaLdueF2GEKMdlZKvQ3chx47+U50oEIrtFWUBayOquNVO71elFJr0W/I/0OP+9RGB/QDH/1cbI9RLmY7xnnvqj9zXexzs0TkH6IH8g+hrcA2UtW9HUuW2qjvXifjWShGW0nRtEJ3JI1CRM4A/gZMUUrtjfM6teaLDnA4Be0JSJQu1P9sXA58oJRaGiPvSL33cZUVkSvQY3NTw/2aUmofMB24Gv2SehrwJvpFAqAMPc6+QGlX5RPothpnn/+xUmqf0q7Ql9HK9Sw7r1gptcrO2w1cAUyK4XK9BDgEtFNKPVtfw0TTFEpORX3fjrbkojvcbKXULVFlukd9Pxr9Fr83Kg0R8aBdmbcDHZVSbYCX0dZF+Dp9YsiyHW3JtY+6fiul1OB6fsP/s39HvlKqFXBB1LUQkRzgLmABMFcOjyN+g1as4XJi/76d9VyvBiIyQapGHFX/TGhAXT3QSvkKIM9uv/XRvykapdQ9Sqlj0ZZ1P+Ba9D0pAwZHtWVrpVTc/5xKqXLgFbve2tgDBNCuqDDdaykbizrvXYz6jkbfN4BrgP7Acfa5J9jp0edHP9/pwAa0ywsAEemNdtVuaUxloseyHwROV0qti8raAjhFpG9U2jD7+vXJMRFtwWwTkW/Rbs4ZIhIr+KU+dlH/s3E5cLSIxFKqR+q93wAMtfukMEM5fP8QkUuB64HvK6WqjHMqpd5VSo1WSrVDj8MOQFugoL1Z1dumrrZS1NL3RJ1XXTcNRHvgDtZRb0yaOkLoceB0EZksIpaIeEVkYvSALnCBiAwSkSzgZuBpVTPyxo2+eXuAgIhMASZF5S8ALhGR74uIQ0S6isgApdQu4HXgDhFpZef1EZET65E7F/3mc1BEuqI7+WjuBlYppS4DXgLm2+lPAlNtOVzof5wK4IP6Gqo6SgcA5NTxea8B1WWjH549oIN40JZcDURktIgcZ8tfgg5QCNlW6YPAnSJylF22q4hMjjpXSf2h3hXo+xkT+94/i355yBKRAeg3y3ip794B/EJEutkvJ38AFkedWwYU2nl/asB1U8VC9P/YBNHBITcDzyqlYlpyIuK2gy0EcNn/kw4772S7vhlKqZXR5ymlStD35WYRyRaRcei3+8fikOOf6JfQ4fZnPvr/ZrJ93XAYec84fu+TwO9EB4p0Rb+4VacIbW2cICK3VMs7Uu/9UrSr71eiA8jC7fY2gIjMRr8gnqqU+rL6ySIyQkRctlfndmC7Uuo1O/s5oK3oKSiWiJyNfhF53z73bBHJsfvfSegXzyV23nEi0t/OywPuQbvAqyszF7rvaDBNquSUUtvR/wi/R3ew29GdTvR1H0MPTH4LeIFfxainyE5/EjgAnI/dSHb+SrQ5eyc6AOVdDltUF6E71Y32uU9T1V0ai5vQfuSD6H/GiHksItPR/0A/s5OuBkaKyGylo5IuAO5FWz6no9+IK+u5XpOilNoI3IF2Fe4G8rEfwBi0QiuzA2h3zj506DDoMdYvgBW2S+dN9NsvItId3bmsq15hNULU/9xdAbRGPxOPAYuI/wGv9d5F8R/0y8+XaDf3X+z0u9DBAHuBFWh3bMqpy3JXSm1AWy4Lge/QnfXPo859RUR+H3XK6+jO/Hto5VPGYavlBnS7vxzlMXgl6tyfo9vnO/Q9+Zl9/TrlUEqVKqW+DX/QLyHlSqk9dr3d0c9aPB6Pm9Fusq/Qz9/TxHg2lFKF6ACkKSISHZJ+RN57uw86A90fFqLHXM+I6pv+gh43+yjq3odf3kEH0e1F9+GdgUh0tlJqPzANbaEfRFuD06Nc3b9G39tCdF/y4yhXcm90WxehvUsV6LG/6ljUE5VdG2IP6qUEEVmKHoD+V8qEMCQFEbkA7cr8XT3lJqEt/AH2P0c8dd8KdFJKXZy4pIZ0Q0T+COxRSv2jEef+DB20UZ93xpChiJ6mtBxYoJSqaw5oTFI+odHQMlBKPV6fgrNZCrwBbBCR38QqICIDRGSoaMago7aeS560hnRCKfWXeBWciHQWkXG2e6s/ekjAPBstFBE5F23l70Z78hrMEbsqiW2KXxAj63Gl1OXNLc+Rgu0emV1PsVy0O6wL+uG+Az0nKK0QkdpWbZnSwDFTQ/y40RHSvdDuryeoe4WXJsHc++ZBKfUkjVRuYVLqrjQYDAaDoSkx7kqDwWAwtFjSyl3Zvn171bNnz1SLYTAYDIZmZPXq1XuVUnEtLNFQ0krJ9ezZk1WrVqVaDIPBYDA0IyLydf2lGodxVxoMBoOhxWKUnMGQRuw+WMbyTQ1eBc5gMNSCUXIGQxrx9kM3Mv6JQZQd3JdqUQyGFkFajcnFwu/3s2PHDsrLa+zxaDDUitfrpVu3brhcrlSL0iAGHlgKAvu+WkO34aekWhyDIeNJeyW3Y8cOcnNz6dmzJ1UX0DYYYqOUYt++fezYsYNevXqlWpwGUeRsA0EoK9xTb1mDwVA/ae+uLC8vJy8vzyg4Q9yICHl5eRlp/Vda2QBUlBSmVhCDoYWQ9koOMArO0GAy9ZkJOPX2fP7SwtQKYjC0EDJCyRkMRwoBl1ZyQaPkDIakYJRcHIgI11xzTeT49ttvZ+7cuakTqB6WLl3KBx80eJ/WCGvXruX4449n8ODBDB06lMWLF9d/kiEpuCz9Lyllce1CZDAY6sEouTjweDw8++yz7N27t/7CDUApRSjUqH0A6yRRJZeVlcWjjz7Khg0bePXVV7nyyispLCxMnoCGWhEVBMBRWdsi940jGDILsRuOTIySiwOn08lPfvIT7rzzzhp5e/bsYcaMGYwePZrRo0fz/vt6w+25c+dy++23R8oNGTKEgoICCgoK6N+/PxdddBFDhgxh+/btXHvttQwZMoT8/PyI1bR06VImTpzI2WefzYABA5g9ezaxdoy45557GDRoEEOHDmXWrFkUFBQwf/587rzzToYPH857771Xp4wXXnghxx9/PH379uXBBx8EoF+/fvTt2xeALl26cNRRR7FnT81ov6eeeoohQ4YwbNgwTjhBby5dXl7OJZdcQn5+PiNGjOCdd94B4OGHH+aMM87g1FNPpWfPntx33338/e9/Z8SIEYwdO5b9+7Xl8uCDDzJ69GiGDRvGjBkzKC0trXHdsWPHsmHDhsjxxIkTW8xycGElZwVKklbnXS9+yP/76x+TVt/Gbw4x779rYz6PjWFvcQXzXvmMikAwKfUVlfv5+5IPObjfRKgaMmAKQTQ3vbiBjd8cSmqdg7q04k+nD6633C9+8QuGDh3Kb3/72yrpv/71r7nqqqsYP34827ZtY/LkyXz22Wd11vX555/zyCOPMHbsWJ555hnWrl3LJ598wt69exk9enREYaxZs4YNGzbQpUsXxo0bx/vvv8/48eOr1HXLLbfw1Vdf4fF4KCwspE2bNlx++eXk5OTwm9/oPUnPP//8WmX89NNPWbFiBSUlJYwYMYKpU6fSpUuXSP0rV66ksrKSPn361PgdN998M6+99hpdu3aNWHr3338/IsK6devYtGkTkyZNYsuWLQCsX7+eNWvWUF5ezjHHHMOtt97KmjVruOqqq3j00Ue58sorOeuss/jxj38MwB//+EcWLFjAL3/5yyrXnTlzJk8++SQ33XQTu3btYteuXYwaNarONs8URAUAsPw1lXtjOW7llRxvbSS4/ydY7XokXN+/nnqBvx+4gn1dHiVv5PSE67vz9c389dMJbN83m+4XJL413Iuf7OKK1VNwfxyEuQcTrs+Q2RhLLk5atWrFRRddxD333FMl/c033+SKK65g+PDhTJs2jUOHDlFcXLerqUePHowdOxaA5cuXc95552FZFh07duTEE0/ko48+AmDMmDF069YNh8PB8OHDKSgoqFHX0KFDmT17No8//jhOZ+x3lrpknD59Oj6fj/bt23PSSSexcuXKyHm7du3iwgsv5KGHHsLhqPmojBs3jjlz5vDggw8SDAYjv+eCC/RetAMGDKBHjx4RJXfSSSeRm5tLhw4daN26NaeffjoA+fn5kd+2fv16JkyYQH5+PgsXLqxisYU599xzefrppwF48sknOfvss+ts70xCbPe1K5g8S+4Yxw4ASgqT427PLdoKgPXpoqTUV1ms5er+xcKk1AfgluRYhYbMJ6MsuXgsrqbkyiuvZOTIkVxyySWRtFAoxIoVK/B6vVXKOp3OKuNt0XO2srOz47qex+OJfLcsi0AgUKPMSy+9xLJly3jxxRf561//yrp162qUqU1GqBlqHz4+dOgQU6dO5a9//WtEIVdn/vz5fPjhh7z00ksce+yxrF69Ou7f43A4IscOhyPy2+bMmcPzzz/PsGHDePjhh1m6dGmNerp27UpeXh6ffvopixcvZv78+XVeN5MIuyvdweRZckUqiw5yiPKivbRKQn2W0wkBCAb8SagNWruSOy6d5baSWp8hszGWXANo164d5557LgsWLIikTZo0iXvvvTdyvHbtWkBvG/Txxx8D8PHHH/PVV1/FrHPChAksXryYYDDInj17WLZsGWPGjIlLnlAoxPbt2znppJO49dZbOXjwIMXFxeTm5lJUVFSvjAAvvPAC5eXl7Nu3j6VLlzJ69GgqKys588wzueiii+q0krZu3cpxxx3HzTffTIcOHdi+fTsTJkxg4UL9Rr5lyxa2bdtG//794/o9AEVFRXTu3Bm/3x+pJxYzZ85k3rx5HDx4kKFDh8Zdf7oTVnLeUBKVHFkAVBxKzhhVrqWVW7KUXLaV3KCYKu9tgYqk1m3IPIySayDXXHNNlSjLe+65h1WrVjF06FAGDRoUsSpmzJjB/v37GTx4MPfddx/9+vWLWd+ZZ57J0KFDGTZsGCeffDLz5s2jU6dOcckSDAa54IILIkEev/rVr2jTpg2nn346zz33XCTwpDYZQbs7TzrpJMaOHcsNN9xAly5dePLJJ1m2bBkPP/www4cPZ/jw4RHFeOONN7JkyRIArr32WvLz8xkyZAjf+973GDZsGD//+c8JhULk5+czc+ZMHn744SoWXH38+c9/5rjjjmPcuHEMGDAgkr5kyRJuvPHGyPHZZ5/NE088wbnnnht33ZmAI6zkVFnS6ixWPgACxclZ9DnXUQlAKEkKxOdMrpLzB6Pqq0hulKoh85BkRUglg1GjRqnqUXKfffYZAwcOTJFELZu5c+dWCVBpaWTis/PerWcxoewtKnHinpscpfTGDSdzqrWaL4ZewzFn3Vj/CfXw2F3Xc2HhA+xuPYyOVy1LuL5/PPMyP113nj5IQqDI4o+2MfOlfH3wq7XQLrPWLz0SEZHVSqkmiR4zlpzBkEZExuQIoJJkKfnRY1TBsqJ6SsaHx6HH0Bz+5ATHqOix5iS8dAei5wQmeb6hIfPIqMATQ3JJ51VbjlQcHI4KrCgtwtsqfldvbbhEd/oqSa67sEvVCibJpRqqPPzdXwburISqqzLxvSI5it2QuRhLzmBII8KWHEBpUWFS6vQ47Dork9Phq1BYySXH0lTBKEsuCZaXP3pSuVFyRzxGyRkMaYRDRU07KUnORGan2O7FyiTNvQtppeQMJSlyMRSl5JKglFQwKurTKLkjHqPkDIY0wqEOd/jJUnJh96LDn6TxKXv+pzuUnP36qiilJFhyIaPkDFEYJWcwpBESZclVliRnCTvLVnLOJK2HGV56zIUfApX1lI6DJFtyoSh3pTJK7ojHKLk4ef755xERNm3aVGuZgoIChgwZ0qRyrF27lpdffrnR54cnjw8aNIjBgwdz9913J1E6Q6JYBClBr0zjT1I0ZDiYxZWsVVRCyR1Do4rllXh9wSj5guXJXevWkHkYJRcnixYtYvz48SxaFHu9vlhLbjWU8PqPdZGoknM6ndxxxx1s3LiRFStWcP/997Nx48ZG12dILqJClIjeODWQLCWX7KXCooJjkqHkJMlKM9r96S8zUwiOdIySi4Pi4mKWL1/OggULeOKJJyLpS5cuZcKECUybNo1BgwYBWtnNnj2bgQMHcvbZZ0e2innrrbcYMWIE+fn5XHrppVRU6EH7nj17ct111zFy5EieeuqpKtetvpVNZWUlN954I4sXL2b48OEsXryYkpISLr30UsaMGcOIESN44YUXAL21zfTp05k4cSJ9+/blpptuAqBz586MHDkSgNzcXAYOHMjOnTtr/OZ33303strJiBEjKCoqQilV67ZAJ554ItOnT6d3795cf/31LFy4kDFjxpCfn8/WrXpB3xdffJHjjjuOESNGcMopp7B79+4a1501axYvvfRS5HjOnDmRxZiPBBwEKbPs3cGTYIUopbBI7lJh0RGgSVlRJErJBZLwm0NR0ZrBMmPJHelk1jy5V66Hb2suQJwQnfJhyi11FnnhhRc47bTT6NevH3l5eaxevZpjjz0W0OtSrl+/nl69elFQUMDmzZtZsGAB48aN49JLL+X//u//uOKKK5gzZw5vvfUW/fr146KLLuKBBx7gyiuvBCAvLy+yzmU01beycbvd3HzzzaxatYr77rsPgN///vecfPLJ/Pvf/6awsJAxY8ZwyimnAHqbnPXr15OVlcXo0aOZOnVqlS1pCgoKWLNmDccdd1yNa99+++3cf//9jBs3juLiYrxeL88++2yt2wJ98sknfPbZZ7Rr147evXtz2WWXsXLlSu6++27uvfde7rrrLsaPH8+KFSsQEf71r38xb9487rjjjirXDW+jM3XqVCorK3nrrbd44IEH4ryZmY+lgpQ5cyGQnPGkYEjhRI/zJWupMEcTWnL+kkOJd0rRSq7cjMkd6RhLLg4WLVrErFmzAG1pRLssx4wZQ69eh5cN6t69O+PGjQPgggsuYPny5WzevJlevXpF1q+8+OKLWbbs8HJIM2fOjHndWFvZVOf111/nlltuYfjw4UycOJHy8nK2bdsGwKmnnkpeXh4+n4+zzjqL5cuXR84rLi5mxowZ3HXXXbRqVXNt+nHjxnH11Vdzzz33UFhYiNPprHNboNGjR9O5c2c8Hg99+vRh0qRJQNVtdHbs2MHkyZPJz8/ntttui7mNzpQpU3jnnXeoqKjglVde4YQTTsDn88X87S0RIUjQmUWlspIShBGMsuRcBJKyYHG0JZcUJaKi3YvJteSUWfHkiCezLLl6LK6mYP/+/bz99tusW7cOESEYDCIi3HbbbUDNbXNq27qmLmrbeieerWyUUjzzzDM1Vvr/8MMPa5XF7/czY8YMZs+ezVlnnRXz2tdffz1Tp07l5ZdfZty4cbz22mt1/oZ4ttH55S9/ydVXX820adNYunRpzBVXvF4vEydO5LXXXmPx4sWRl4sjBUuFCIhFKb4kBWEonFRzLzoTW0XFEYpalaXkIImtT1LVkgskQWmqUHIDWQyZjbHk6uHpp5/mwgsv5Ouvv6agoIDt27fTq1cv3nvvvZjlt23bxv/+9z8A/vOf/zB+/Hj69+9PQUEBX3zxBQCPPfYYJ554Yr3XjrWVTfVtdCZPnsy9995LeKHtNWvWRPLeeOMN9u/fT1lZGc8//zzjxo1DKcWPfvQjBg4cyNVXX13ntfPz87nuuusYPXo0mzZtSmhbIICDBw/StWtXAB555JFay82cOZOHHnqI9957j9NOOy3u+lsCDoIosSiRLKwkzGsLhhQWUfu1JWHVk+ilxypLE5/LF63kQkkItlFRXg9J1gR4Q8bS5EpORE4Tkc0i8oWIXN/U10s2ixYt4swzz6ySNmPGjFqjLPv378/999/PwIEDOXDgAD/72c/wer089NBDnHPOOeTn5+NwOLj88svrvXasrWxOOukkNm7cGAk8ueGGG/D7/QwdOpTBgwdzww03RM4fM2YMM2bMYOjQocyYMYNRo0bx/vvv89hjj/H2229HAkvC0Zrz58+PbMNz1113MWTIEIYOHYrL5WLKlCkJbQsEeq3Mc845h2OPPZb27dtH0letWsVll10WOZ40aRLvvvsup5xyCm63O+76WwKWCqIcFuXiw0rCvLZQCJwSpDQyLSFxd6CoEMVoF7K/NPH6HLaSO6iyCCVjnpztrgwoB5KkRaQNmUuTbrUjIhawBTgV2AF8BJynlIoZs2622kkeDz/8cJUAlSORTHx2CuYO5FCbgVjFu8DpYfD1SxOqb19xBZW3DcByCEepfRSd/19y+01IqM5X5v6AEWyhE3v45thr6XL6HxOq71+3XctlJf9kW6gD3i6DOOryJQnVd9sjT3HtV5exT+Xi9XrJ/t0XCdVnaHoyeaudMcAXSqkvlVKVwBPA9Ca+psGQsYTdlZVWFp5g4lZIUOkxuVJHLpCcpcKEEJUOD5XKIpSEMbRwIMtBspPiXlS2ZXhIZeEKJG+HdUNm0tRKriuwPep4h50WQUR+IiKrRGTVnj17mlicI4c5c+Yc0VZcpmIRQomF38pOyuTtUEivolLu1EqusjRxpWSpIDiclOBLrpJT2clZX9N2Vx4iR6/ykkYbQxuan5QHniil/qmUGqWUGtWhQ4fayjSzVIZMJ1OfGYcKoRwWQVc2PpW4kguEQjgJUeHU00SSMoZGEHFYevmxJASyhANPDpKdlHHI8OTyEkcOggK/seaOZJpaye0Eukcdd7PT4sbr9bJv376M7bQMzY9Sin379uH1elMtSoOxCII4Cbpy8SVh8nbYkvO7tZILJCHwxKFC4HBSrHyQBPdi2JIrIicpi0iH96crc+iVY8w0giObpp4n9xHQV0R6oZXbLOD8hlTQrVs3duzYgXFlGhqC1+ulW7duqRajwTjtMTnlyiGHMq2lHI1/F9VjciFC7tYASXEvOgjisLQll5OMFU9UgBAOKqys5KyvaSvNcmcOVGKvytIx8XoNGUmTKjmlVEBErgBeAyzg30qpmstc1IHL5aqyoojB0JJxoN2Vyq3H0ALlRTizWje6vmAohEUQhyebCuVMOERfKRU1JmfhSEKIviMUJCQWfkc27mA5hILgsBovo+2urHDmRik5w5FKk694opR6GWj8svkGwxGERQjEgcOrXW2lRQdplYiSCyqcEsLlcukxtASVnJ5crkCclIsLZ+C7hOoD7a4MYRFwZkMQrZS8jf/N4cATv8ters64K49oUh54YjAYNCF7dRLlcOLw6Q66tPhAQnUG7Q7f7XZTonwJh+gHlcKSIMrhoNLKwpWEaQ4OpS25gCtJY2j2smMBl60ozaonRzRGyRkMaUIgpBdTFoeF06vdlRXFic1rCwX0Oo5Op7bkEg3RD4XC44ZOey5f4mNoDhUgJBbKba/hmqh70d65POixLbkkRIAaMhej5AyGNCFkT9xGnJFxuIoEQ/5D4XUhLSdljiysBMfQAqEQLgIoh5OAMxtPKPF5aIK25HAnx5ILT0lQXmPJGYySMxjShkAwhCUKHBYeW8klugBy2JITh5MKR1bCIfoRS87hJOjM0WOIgfKE6nQoHVEqHm29Jmx52e5K8bXRx2ZM7ojGKDmDIU0Ij5/hcOLJ1q62RHe2Di9WLA4nlQ6fXgEkAbQlF0Q5XITC7sUElYgek3PiCCu5hMfk9G922EouGdv3GDIXo+QMhjQhGAgrOQtfThudliQlh+XEH3YvJkB4LUzlcB12LyZoeYUtOYcvbMklx13p9vgoVy4CSdi+x5C5GCVnMKQJwaC92afDIiu3DUDi89qClbrK6DG0BAhv3aMcTvAkPoam7J3LQ2LhspVcotsBqZDeP8/r9VCCNymrvBgyF6PkDIY0IRQ47FrMzsqmUlmQoKstFKjQX5xugs5svKo8oUCRcOAJDtdh92ICllfQjihVDieurOSsryl2dGWWx0OJ8hI0Y3JHNEbJGQxpQjB0WMm5XRYl+JBEV+UPaEsOy03IbQeKJLBgcXTgicOb+LhhIKSXHVNi4fXlEFRCIMFgm7C70mdbcslYysyQuRglZzCkCSH/4TE5gFLx4UhwfErZSs7h9KCSEKIfDjzBcmHZq7JUlDReyYVsd6USixyvixJ8CQeKOJR2+/o8bkpIziLShszFKDmDIU0Iz2kTS6+2Vy5ZWAlacio8zud0IfYYmkpAcYaiAk/c4WkOybDkHE6yPU6Kk2B5OUP6N2dlZVGqPIhZu/KIxig5gyFNCM9pC1ty5Y4snAnubB0ek7OcHhze8MapjVdKlQGFkwBiJWcMLRg8bMlluy1KlA+VYLCNhW7HbF8WxfiMkjvCMUrOYEgTwtGV4tCWXKWVjTuY4DJcflvJuTxYdqBIRUnjx7z8gSBuCeKw3PiyE9+jLmzJYVtyehHpxH6zM+QnIC6yvS5KlDc5G7EaMhaj5AyGNCEycdt2V1Y6s/EmGvJvj8k5XR4se9HnRMbQKsMrqDhdZPm8lCk3wQTci8FQeMFnJzkeJ8XKm1CwTSikcBEg6HCT7bEoxpewNWzIbIySMxjShFBUJCRAIJlKzu3BbbsXE1kqLFBpB7JYLluJeBOay+cPhuz1Oh22JedLaH1NfyiEGz8hhwu35aBcvHqnhATX1zRkLkbJGQxpQjgSUpxayYVcOfhU8iw5l+1eTGSytT/s/nS6yfE4KVG+hNyLFYEQXvwopzeiNBNRcoGgwm1bciJCpZWtN3kNzxc0HHEYJWcwpAlhJYdDKznlziGbcj05LcE6XW4PvqzwGFoCllfYknO5ImNoiQR2VASCeKgEpw+P06IMX0J71AWCCrf4CdltGHQmafseQ8ZilJzBkCaEIpacCwBlB4ok4g4ML+vldHnw5mgll0iIfsCW0XK6yXY7KcaX0B51lYEQXqkEl1cfW1kJLSJdEQza7kpbybmy7AwzIfxIxSg5gyFNCERci7qDFk94d/DGj6GpqDG5bK8OFEkkRD/gP6zkvC4HpSox96J2V1YiLh8Afmc2ThVotHuxwh/CTQBlhZVceBFpY8kdqRglZzCkCUF/2LWorRrLntdWVlSYQKWHg1ly7MnWCS2oXKEVmuXJRkQotxKby1cRCOGjEmyLK+JebKSMZf4gHvyR4B2StB2QIXMxSs5gSBMCdlCHy7bkwlvPlJccaHSdh8f5nGR59GTrRMbQlK0swgq40pGV0BhaRWUAL5U43NqSC7rCY2iNszbL/UHcEgCnByCyyotZ2uvIxSg5gyFNCFbqHbZdHm3VhEP+K0oa716UsCvRnY3HaVEqXhwJuBeVrSyc4W1xnNl4EhhD81dW4BCFZSu5kCuxjVPLKvWYnESUXJJ2GzdkLEbJGQzpgm1huXza+nBntQHAn8C8NkdlMWV4wNLBLGWSldAKIOGJ397waifObLyqrNERoKWl9m/2agtOeRIbQyvzB8miAmVbhOGdEoy78sjFKDmDIV2wx7vc9sok7uzE14Z0+osoc2QfvoQjC2cSlJzYOxpEohcbaR2W20rO48uuUm8illxrKUF8bYDDFqcJPDlyMUrOYEgTwq5Fd7bumCO7g5c3Xsm5AiWUO7Iix5VWFu4E3IuhisPuT0jcvRheLNptK6OI5dVI92JhmZ9WlODMblOl3kTmBhoyG6PkDIY0QfylBJQDtz0+5ctpA4BKQMl5gsWUWzmR40orK6ExtMh8M1vJHd6jrpFKpGQPAJLdHgCHLzFL7mBxCdlSgSc3DwCfz0eFcia0iLQhszFKzmBIE1RlMaV4cVj63zInO5sK5UxoMrg7UEwgbG2hQ/Q9CSwV5q7YTwAn2HP4SDCwQ0r36S+2knPZllxjN06tKNqv68lqq6t161VZjJI7cklIyYnIXBHZKSJr7c8PovJ+JyJfiMhmEZmcuKgGQwunsoQK8UYOPU4HJTR+d/BAMERbdYCgN+9wmjMbn2r8UmHeij0ccuaBQ3cd4T3qGmvJhUr26i9ZWsk5I3vUNS7Yxl9k1+ezlZy9vmYiOyUYMhtnEuq4Uyl1e3SCiAwCZgGDgS7AmyLSTykVTML1DIYWieUvpsLhixyLCKXiw9FIK2l/URkd2c/B3K6RtIh7sbIYwuNfcaKUIqdyL6W5HWgXltkbXvS5CFcjZLRKv9NfbEsu2+elQrkaPYYWOrBNf2nTXddnL/qcY6Irj1iayl05HXhCKVWhlPoK+AIY00TXMhhaBD7/AYqcbauklUkWzkauDbn72+24JYjVtnskrYqSayAHSv10YQ/+7E6RNKcdCVpZUtjg+pRS5JXv4KC7U2TydpZbr8rSWMvLOrRdf2nTA4Acj5NSvCa68ggmGUruChH5VET+LSLh/9CuwPaoMjvstBqIyE9EZJWIrNqzZ08SxDEYMpNc/37K3HlV0iocPqxgWaPq2//lJwC07T7gcKKn8YEdX+zcQw/ZDR0GRtLcWa2Bw1GSDWHb/lJ6sJOy3B6RNL19j7dRi0iX+4N0KP+KSocPcjoCWmmWKC9iVjw5YqlXyYnImyKyPsZnOvAA0AcYDuwC7mioAEqpfyqlRimlRnXo0KGhpxsMLQJ/MESb0AGU3TmHSWRV/ortHwPQoe9hJ4rDDhQJNCJi89tNK7BE0bbPyEiaO1sruUAjlNzGr79hkHyNo9uxkbQst0UJvkYtIr1u50GGylZK2g2OjBnmhLcDSmCVF0NmU++YnFLqlHgqEpEHgf/ahzuB7lHZ3ew0g8EQg52799BTSnC16VIlPWD5cFc2zsPRcfd7bHf1pnvOYeswHChSXnyQnNpOrIXg528QxEGbgSdH0nw+H35lNUpp7lz7Ni4J0m7w9yNp2fYi0kc1wr24asMWfipfUtH3mqj6LErxYvkT23zWkLkkGl3ZOerwTGC9/X0JMEtEPCLSC+gLrEzkWgZDS2ZPwToAsjoPqJIesLJwhxrurtywcT1DghspPLrqO6orSyu5igZaXjv3FzHm0BvsaDUS7NVEALK9LorxEWpgiH5xRYCu256nxGqFs9f4w/XZ0ZANDbYJhhSBtYtxiMI37Ixq9XkTWuXFkNkkOiY3T0TWicinwEnAVQBKqQ3Ak8BG4FXgFyay0mConZKdmwBo33NIlfSgKxuvKm9wfd+9Oo8QDnpN/kWVdFc4UKSBIfornn+ArrKXnBN/WSU9PA+toe7FF994i0nqf5QMnBnZMBUOR0M2dBHpJR99ztmVz7Ov/WjolB9J9zgdlIoPZyIT4A0ZTUJTCJRSF9aR91fgr4nUbzAcMezdQgAHrbv2q5Iccmbho2GW3Or3X+eEg0v4rMtZDDmqZ5W88BhaQ9bD/HTz50z8+h62Zw+i+4hpVfJyPE6KlI9WDVByX313kP4f/ZEKK4ujpvyuSl62W1tyzgYouT1FFVS89ic6y37UDx+vkici+C0fTuWHQCU43XHXa2gZmBVPDIY0IOvQl+x2dIpsERNGubNxE4CgP656du7YxlFv/JJ9jjz6za4ZB+axoyGDcc5D27VvP/LE+eRIBe1mzY8EdITJ9uhAEUec0xyKyv18tOBqRsoW/KfdDtlVo0l14Ik3bssrGFL856F7mBV6mQND5iA9x9UsYyW2iLQhszFKzmBIA9qVb+OAr0fNjPBCyHGE/JeUFFP40Ll0YB/+sxbgzmlbo4wvO5eQkrjmoRWVVfD5/AsYHPqcPafeS/bRw2qUyfY4KVa+uNyL/mCIp/7xZ86teJpvjjmP1mPOr1FGRA4vIq1UnfUppfj34qf46b5b2dt2OG2n3xqzXCiyEatRckciRskZDCmmoqKco0M7KGvTt0aew1Zy5SV1uxeDwSAb/282g4Of8eX4v9M1f2LMcjleV1xjaP5giKUP/IoT/O9TMPI6uo2bFbOcx+mgFG+9E9aVUjz26D+5eP89fNNhAl3Ou6/2a1vZCKpepbTotfc4Y9M1lHmPov1lz1QZ24smstu4WfXkiCQZy3qlLYcOFbLts48o3bmRisJdOMv2ogJ+HA4Qpxe/Nw/J6YCrdRd8eV3J7dCddh06ket1IyKpFt9whPDtVxvoIUGk46AaeQ578nZZySGyaplGqpRi+fxfcmLJUlb1vYpRp1xU67Wy7Xljda0AopRiyb//xoxDT/BF93M4Ztr1tZYVEcqtbFzBuhXS4heWMKvgRvbkDKDLZU+AVXvXE3RlQwVaRk/siQ4vr9zA6A8uJ8up8P3o+ciyYDFxN70lV14ZYOfObezf9hnB/QUEyg7i9BdjOQScHhwuH85WHXG37oivbWdy8rrSqlUb3C6ryWQyaFqUkisvLWbzilco/ew1Ou37kB7B7QyRwy6PInwEcKEAj6ogWypq1FGpLL6hLQcc7ShxtcNyunE4XQTFiaggVqjS/vixVCWOUABL+bFUAIcK4FQBLAJYKoCTIA5ChBBCCNh/QzhQ9ndlf8Jp0cRSs0J1F46qlh/rnCSRVnq/fmFUrQe1J9btIKv7Yo0910clCOR0H1ojz7K3nqkoqd3yemfhPE7es5CPjzqLUef/qc5r5Xic7FRepA4l9+Jzi5i24w6+anMcx8x5AOp54fNb2bjrUHKvLvsf319zBWXutnS8/PlaFVeYiJKrKIbcmvn/27SDjv+dQ0/Hd6jZz+I4ql/NQlFIAkuZ1caB4nLWrXyb0s3v0Hbfx/Tzb6KPFNOnAXVUKCffkUuRI5dSqxUhy4tY4V7DASqk+5aQH6fyR/oZp7KPCYJSUb2LqvKpir6Hh/sY+zjq1qoaZcLPdG3p8JnVn5P/+FIDfnXz06KU3I7PP2HYsssoVy4+9w3lo6Mmk9VjJHm9hnNUlx7kerOrlA9WlHBwz04O7dlJ6f4d+Au/QR3ahVW8G0/Zblr5v4NyP6ICOAkQxCIgLvy4CIiLgMNNUHyErFxC4iLkcKEcTvvjAocTHJZ+AFWUSrO/o0KHVZ39sNbsKMMP2GGqK8ManXkdnVJdwxwquqY6y6Wa+CWQqLaSGl9iqEqpmS4xFGptTVw9XWJcrPqpAuzKas+Q/ONq1GfZK5RU1DIPbdnLizjh81v4LOc4Rvz0n/UqpPDOBjm1jKEtW/YmJ31yNXs8R9Pjp0+CVf+yy5VWNt7KMr2zQbXAlA83fE6/ty7B61B4LluC5HaqpZbDhFxhpVRTsW/csZ/SRRdznONzyqYvILvPCfXWF7aGE7Xk9haV8dHSF3FseJYRZf/jBCkEYKfzaHZ2PIkdHYeQ1bk/OZ36kNOmA5Y3l4ogBCrLKSspouzAbsoLv8F/6FtU0W4o3Yej7ADOykI8lYVI8BD4g1gSxCJEECdBCX9cVFpZhMRJyGH3NWL3LyKICEoEpaL+RiQPv4Hp/3BR9n96VGdwuLSyn1lVJb2m0tRpFd4Y48hpRotScn3yx7Lu4KP0HfV98rPqX8/B8mTTrls/2nWr+03QYEgV4cnb/hjRkKuXv8aoD3/NTndPjvnFU0gcCklEKHf4aBNDya1es5qBb11KhZVDu58uwZHVJi4ZA65sqKTGzgabt+/G/eRsusle/LOfx92xf1z14Y69vuaO/SVs+vdPOEtWcXDiX2g9YkZc1UW2A2qEJaeU4qMNm9n+1oOM2v8iU2Q3pfjY0X4cZUN+SPfR0+iakxd7YV5AjxLmQF57OLpXg69vSJwWpeTEYZF/wvRUi2EwJA23PXk7UFa1g9706Ur6vHEphVY72l/+X1z21IB4qHBk4Qzsr5L26eYtdHj+PDyOEFzyPN68o+Ou77DldVjJffntPvb9+1zGyhYKp/6TdseMr6OGqoinplLaU1TB2/Ov4qLQG+wf8QvaTfxlLWfXJOzybYiSCwRDvPG/VVQuu5vJFa8xRvx83WoEu0b/ns7Hz6Sfy1d/JYa0oEUpOYOhpeHJ1h1+dMj/5vWraPvsuQTFhfuS58nOq82OiE2FlYU7uONwfV98QdaiM+kghZTNepZ23YfUcXZNItv32BGb2/ccZPs/Z3GiWsvuk+6g4+hzG1Sfw1vVkvuuqJyX77uKOZWL2XPMOXSY1rA1JlzecBsWU1+YRyAY4s3lH6Deu4NT/O8iAtuOnkbXH/yWHp1rBgYZ0h+j5AyGNMbT6igApPhbANZ8uJSjX75Qzyeb/Rydug+o6/SYVDpz8ZUfAqVYs+5T2jw7k44coOis/3BU//gtrjAqbHlVFLP562/Y//B5nKjWsut7c+l84mUNrs+T0waAYFkh3x4oYdkDv2RO5TN812cGR53/j3rHHWvUZ7t8K8uKqM3+qgyEePO993Euv41TA8vwi5tv+p5P96m/pXfb+K1aQ/phlJzBkMZ0bNeGXaodcuArlj11D6PX/5lDjtZw0Qt06jW4UXWW5fYmu+y/vP/03QxafzsuCVFyzmKOGjyxUfX52nSC7bBx2TM4N7/IaNnBtyfeRueTftKo+jp06kaJ8rBn7VsUvLqY89RH7O53Hh1n3Q+OhofcZ3s9lCpPzAnw5f4gr76zFM+Ku5kc1Mpt+4Af0eP06+iRc1Sj5DekF0bJGQxpjNvpYJezKyP3vAx7XmaTdyjdfvwfctp3r//kWrC6j4DvYNyGP7HT3YOcixfTodvA+k+shQ59R3HoUx+DttzPQUdrDk5fSKfhP2h0fQO7tOOTUB++t+sVumGxZ/xNdPz+rxtswYXJ8lgcIIfcQ7siaV9/u4+P336KLp8/zhlqHeV42DnwR3T/4XX0NMqtRSGqnqVzmpNRo0apVatWpVoMgyGtWPb2S7T5360E+05h+IzfxBVFWRfF5X6WPXE73XIU+dOvQhIMogiGFP99YRFHl25kyA+vwNW6/mkC9bHk7Xfpuu1FBp86B2/Xho0RVmfFl/soeuhsvuf5ig+6/xj3zv9xbMVH5Eg5+60OFA+9mO6n/Aypa0K5oUkRkdVKqVFNUrdRcgaDoSVTEQjyt1v/zFz/nQAUOtqyq+NEOo49l3ZDJtW5+oqheWhKJWfursFgaNF4nBZXX/MHNn15FkfnZdPmqN60Mcv2HTEYJWcwGFo8rbwuWg2quWyaoeVjdiEwGAwGQ4vFKDmDwWAwtFjSKvBERPYAXyehqvbA3iTU0xwYWZuOTJI3k2SFzJI3k2SFzJI3WbL2UErVsplUYqSVkksWIrKqqSJ1ko2RtenIJHkzSVbILHkzSVbILHkzQVbjrjQYDAZDi8UoOYPBYDC0WFqqkvtnqgVoAEbWpiOT5M0kWSGz5M0kWSGz5E17WVvkmJzBYDAYDNByLTmDwWAwGIySMxgMBkPLpUUpORE5TUQ2i8gXInJ9quWJRkS6i8g7IrJRRDaIyK/t9LkislNE1tqfxu9RkmREpEBE1tlyrbLT2onIGyLyuf23bRrI2T+q/daKyCERuTKd2lZE/i0i34nI+qi0mG0pmnvs5/hTERmZBrLeJiKbbHmeE5E2dnpPESmLauP5zSlrHfLWeu9F5Hd2224WkclpIOviKDkLRGStnZ4ObVtbv5WWz25MlFIt4gNYwFagN+AGPgEGpVquKPk6AyPt77nAFmAQMBf4Tarlq0XmAqB9tbR5wPX29+uBW1MtZ4zn4FugRzq1LXACMBJYX19bAj8AXgEEGAt8mAayTgKc9vdbo2TtGV0ujdo25r23/+c+ATxAL7vPsFIpa7X8O4Ab06hta+u30vLZjfVpSZbcGOALpdSXSqlK4AlgeopliqCU2qWU+tj+XgR8BnRNrVSNYjrwiP39EeCM1IkSk+8DW5VSyVg5J2kopZYB+6sl19aW04FHlWYF0EZEOjeLoMSWVSn1ulIqYB+uALo1lzz1UUvb1sZ04AmlVIVS6ivgC3Tf0SzUJauICHAusKi55KmPOvqttHx2Y9GSlFxXYHvU8Q7SVImISE9gBPChnXSFbdr/Ox3cf1Eo4HURWS0iP7HTOiqlwlssfwt0TI1otTKLqp1EurYt1N6W6f4sX4p+Ww/TS0TWiMi7IjIhVULFINa9T+e2nQDsVkp9HpWWNm1brd/KmGe3JSm5jEBEcoBngCuVUoeAB4A+wHBgF9pdkS6MV0qNBKYAvxCRE6IzlfZPpM0cFBFxA9OAp+ykdG7bKqRbW9aGiPwBCAAL7aRdwNFKqRHA1cB/RKRVquSLImPufRTnUfUFLW3aNka/FSHdn92WpOR2At2jjrvZaWmDiLjQD8pCpdSzAEqp3UqpoFIqBDxIM7pO6kMptdP++x3wHFq23WH3g/33u9RJWIMpwMdKqd2Q3m1rU1tbpuWzLCJzgB8Cs+2ODdvtt8/+vho9xtUvZULa1HHv07VtncBZwOJwWrq0bax+iwx6dluSkvsI6Csivew3+lnAkhTLFMH2ty8APlNK/T0qPdpffSawvvq5qUBEskUkN/wdHXiwHt2mF9vFLgZeSI2EManyJpyubRtFbW25BLjIjlQbCxyMcg2lBBE5DfgtME0pVRqV3kFELPt7b6Av8GVqpDxMHfd+CTBLRDwi0gst78rmli8GpwCblFI7wgnp0La19Vtk0LOb0qiXZH/QkT1b0G88f0i1PNVkG4826T8F1tqfHwCPAevs9CVA51TLasvbGx2F9gmwIdyeQB7wFvA58CbQLtWy2nJlA/uA1lFpadO2aOW7C/Cjxyl+VFtboiPT7ref43XAqDSQ9Qv0WEv42Z1vl51hPx9rgY+B09OkbWu998Af7LbdDExJtax2+sPA5dXKpkPb1tZvpeWzG+tjlvUyGAwGQ4ulJbkrDQaDwWCoglFyBoPBYGixGCVnMBgMhhaLUXIGg8FgaLEYJWcwGAyGFotRcgaDwWBosRglZzAYDIYWy/8HqRKH2puQCoYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABxjElEQVR4nO2dd7hUxdnAf+/Zehsd6dIEpFyaNKUIxoZEUVHBYEFjjEk0tkRJUVHjF2s0Voyi2ILYohgLRiNiCSJIbwpypXcu3L5tvj/m7HJub3vZvffO73n22T0zc+a8Z+bsvOedeWdGlFIYDAaDwdCQsBItgMFgMBgM8cYoN4PBYDA0OIxyMxgMBkODwyg3g8FgMDQ4jHIzGAwGQ4PDKDeDwWAwNDiSXrmJSBcRUSLiTrQshpojIteJyA4RWZGAa88QkZePwnWmicgXFcQvEJGr6lqOxkZF9Wvqvn4iIgdF5EcRmVLTPJJeuRmqj4jMFJFc+xMQkaDj+IMEiTUD+LVSaoBDzhkiMiNB8iQV9ktcVjXTfyoi+SKyXkROrSDtRSLylZ12QYm4niLyjojsFZEDIjJfRHqVSHOjiOwSkcMi8pyI+Korh4h8Up2XVFtZzK5K2vpOHde9z66zw3Yd3uSIGyEi/7Hrfa+IvC4i7RzxzUTkBRHZY39mlJH/9SKyWUTyRGSdiPS0w8eKSMTR7uSKyOWO8xaISKEjboMzX6VUc+ABYHpVy6Ukda7cjMV19FFKXaOUSldKpQP/B8yNHiulxkfTHeW6aQGsPorXqxOS6HmeAywDWgJ/At4QkdblpD0APALcW0ZcM2Ae0AtoAywG3olGisgZ6AbmJ0BnoBtwZ3XkEJGpgKc6N5eM1NO6nwH0QNfdOOAWETnTjmsO/APoYsfnAM87zn0YSLXjhwGXisgV0UjbEv05MAFIB34K7HOcv8PR7qQrpV4oIdu1jrhelGa1fY81ok6Um4hkicitIrISyBMRt/2W8JWIZIvIChEZ60i/QET+KiKL7TeMd0SkRTl5X2G/IeSIyA8i8ssS8RNFZLmdz6ZoRYpIUxGZJSI7RWS7iPxFRFyV3Ed3EfmviOwXkX0i8oqINHPEHRCRwfZxe/vtZ6x9fI6IrLHvd4GI9C5RPr8TkZUickhE5oqIv/olXX3KqRslIsc50swWkb84jn9ql2m2XYf9q3nNaDlHKkl3i10/O0TkKqdctkxPiMh7dt1/LSLdHef+XUS22vW+VERGl8jeb5dzjoh8KyJOC3K6/azkiMhaETnPETdNRL4UkYdFZD+6sajsfh8U3a2yWUTGl4jubOeXIyIfiUiryvIrI/+ewGDgDqVUgVLqTWAVMKms9Eqpj5VSrwE7yohbrJSapZQ6oJQKohu0XiISbVQuB2YppdYopQ4CdwPTqiqHiDQF7gBuqe59lrjny0R3U+0Xkdvs57iUxSIiHhGZIyJviojXDm60dY+uv7uVUgeVUuuAZ7DrTyn1gVLqdaXUYaVUPvA4MNJx7tnA/UqpfKVUFjALuNKWw0LX641KqbVKs0kpdaC691QBEaDmLxRKqbh/gCxgOdAJSAE6APuBs9AK9TT7uLWdfgGwHegHpAFvAi/bcV0ABbjt4wlAd0CAk4F8YLAdNww4ZOdv2dc93o77F/C0nf8x6DfUX1ZyH8fZefmA1sBC4BFH/C+Atei3m/nAg3Z4TyDPPteD/mNvBLyO8lkMtEdbNOuAa8qRYRSQXcFnVCX3MCNalmXVjR2mgOMcaWYDf7F/DwL2AMMBF/rPkgX4qvE8nAkUAmmVpNkF9LXL82WnXLZM++06dgOvAK86zr8E/ZbnBm628/I7yiAIXGDXx++AzYDHjr/QrgsLmGzXXTs7bhoQAq6z806p4B6m2df5hV1Wv0IrFHE855vs5yPFPr63nLyeBJ4sJ+48YF2JsMeBxyqph6uABZWkORfY6TheAUx2HLey66VlVeQAngBupMT/uJrtSR8gF/1f8AIP2uV8qvMZt8v0PftZcTX2ukdbZgpo4wi7AFhVTt43AIscx/uAYY7jPwEH7d/H2nlfD2y1y/ROwLLjxwIBYLcd9zCO/799/3vta3wJjC1Dnm52+Q+s7jOjlKpT5Xal4/hW4KUSaeYDlztu9F5HXB+7YFxU8qcA3gaut38/DTxcRpo2QJHz4QQuBj6t5n2dCywrETYP/ea0ErvBB24DXnOksdDKe6yjfC5xxN8PzKyjuphBaeV2ZYk0FSm3p9Bvfs70G4CTq3j9JXb+v60k3XPAXx3Hx1FauT3riD8LWF9BfgeBAY4ycP5pLWAnMLqcc5cDE+3f04AtVbzXacBGx3GqfQ9tHc/5nx3xvwY+rEGdXuq8HzvsHmB2JedVqNyAjvZzerEjbBNwpuPYY99Tl8rkAIbYZemmdsrtdmBOiXINUFy5zQM+Ax7FViiNve7RL7AK+yXPDjsNyCojbX909/VoR9jLwFtABvr/uAkosuNOsvN+D9213QX4DviFHd8W3Y5bQFe0YfC0I+/hdr4+9AtzDtC9DLketK/zdnXLqi7H3LY6fncGLrS7tbJFJBv9FtaunPQ/ov9Epcx2ERkvIovsLsFsdCMXTdcJXQEl6Wznt9Nx/afRFly5iEgbEXlVdDfmYXRll5TpGbTF+ZhSqsgOa2/fAwBKqYh9fx0c5+1y/M5H91kfLbZWniRGZ+DmEnXXCX2PVWEoMAWYISIVjbu0LyFXWTKWW2Z2N+86u5s3G2hK8bqK5WfXx7boPdhdXssd99evvHOrQExGpbt6oHjdxqPec4EmJcKaoBuIGiF6zOYjtMUwp4JrRX/nVCSH3W31JPrFM1RTuWyKPRt2ue4vkWYEuoG+V9mtooPGWve5jvhy09pd/x+g6+pzR9RvgQLge/Q47Bx02WGHg+62zFa62/JpdHuMUmqX0t2VEaXUZnTvVazrVCn1tVIqRylVpPRY3JfRcx1yHWPLMEYpdW4Z91chdancnA/YVrTl1szxSVNKOQe4Ozl+H4s28Z2Dk4j20noTrc3bKKWaAe+juyij1+lOabaiLbdWjus3UUr1reQe/s++j0ylVBN011f0WohIOnqgfha68Y6OE+5AK4VoOrHvb3sl1yuFiIyW4h5HJT8lx5aqQsk/fz76TTNKW8fvrcA9JeoutUQDWP6FdEPzNrqLpF0FSXeiLYconcpLWBK7DG4BLgKa28/FIRx15czPbng7AjtEpDP6BeVaoKV97uoS55Ysr0SzBugmIhmOsAF2eLURkeZoxTZPKXVPGdcaUOI6u5VS+yuRownacpsrIruAb+z4bTV4Zos9GyKSQmlHg4+AvwKfiEibEnGNsu6VHiPdSen6i6W1y+BjdO/MSyXOP6CUmqqUamu3lRZ6OAV0702A4uVTUVkpKtY3iuLlDtoR5lAJhVtljtZUgJeBs0XkDBFxiYhftKuoszG7RET6iEgqcBfwhlIqXCIfL9qM3QuE7AHb0x3xs4ArROQnImKJSAcROV4ptRP98D8kIk3suO4icnIlcmeg334OiUgH4Pcl4v8OLFFKXYU2z2fa4a8BE2w5POgxoCLgq8oKqiRKqc9VcY+jkp8aVXwJlgM/s+vmTPRYZpRngGtEZLho0kRkQvTPJdrRY3Yl9xC1aL0VJHsNXXe97WfgtmrIn4Hum98LuEXkdkq/3Z4gIueL9ni7AV0fi9BjsMo+F9HeYP2qce2jjlLqO3Sd3WH/l85DWy1vlpU++p9Ddw9a9jkeO64JeojgS6VUWW7XLwI/t/+bzYA/o7uIK5PjENo6Gmh/om/lJwBf29deIFWbCvIGuv04SbSTyAxKN4Qope4H/olWcE7rq9HWPbr+/iwizUXkePSY4GwAu037L/C4UmpmyRPtNrKl/fyMB64G/mLLkQ/MRXtfZtht+dXAv+1zx4lIZ7vN6IT21H3Hjmtm6wK/aIe2qcAY4MMSInjQdVUjjopyU0ptBSYCf0Q/SFvRisJ5/ZfQhb4L8KPN0ZL55Njhr6HHVH6G7muPxi8GrkAPXh5C98FHLajL0I3rWvvcN6jYkgA9QDrYzus9dP8zoL0y0U4Qv7KDbgIGi8hUpdQGtJX3GNr6PBs4WykVqOR6ieJ6tIzZwFS0pQWAUmoJ+g/xOLrcNmJ7W9l0QncpVEaFb25KqQ/Q4yWf2tdYZEdV5eGej/5jfIfuDi6kdHfSO2iHgYPocYvzlVJBpdRa4CHgf+jB78wq3k+dInquYqkGx8EUtGV0EN1wXKCUijbSU0XE+SZ/Kbob6SlgtP37GTvuPHTX8RUlegSOBVBKfYgeE/4U2IIu3zsqk0NpdkU/2AoEbfVF/wdVenaUUmvQTh2voi2RXLSTU6lnQyl1N/r5/djRk9KY6/4O9FDNj+j28AG7TkGPwXZD9zrF6t5x7glof4IctFU81a6LKNei62IHugz/iR47B+2I9hXaQecrO59om+5BK8moQ8l1wLm24nbiohIP64qIevIkFNETS19WSj2baFkMVcd+i14B9FfajbyitDuAW5RSVVotQvTUidVoJ53ajtkYkgz7Tf81pdRJNTg3Hf0i1sMezzE0QETkFrTiHlaT880KJYYao5QKKKV6V6bYbKaju1KWlpdARM4TvaJCc+A+4F2j2BomSqlt1VFsInK2iKSKSBp6zH0V2vPX0AARkb1oL8o7K0tbHo1euUnxpaqcn4q6BQzVRCn1olKqh1LqhAqS/RLd3bQJCHOkyzdpMM9LwpiI7v7agXY0mFKGV2SdYur+6KGUaq2U6quUeq+meSRFt6TBYDAYDPGk0VtuBoPBYGh4JMtCoAC0atVKdenSJdFiGAwGg+EosnTp0n1KqfIWf64RSaXcunTpwpIlSxIthsFgMBiOIiLyY+WpqofpljQYDAZDg8MoN4OhHmEcwAyGqmGUm8FQT8jam8vvb/sjizdUZy1fg6FxklRjbmURDAbZtm0bhYWFiRbFUI/w+/107NgRj6febwAdY+Wyr3jQ/SSr3l8Hvd5OtDgGQ1KT9Mpt27ZtZGRk0KVLF0RKrZVqMJRCKcX+/fvZtm0bXbt2TbQ4ccMX0Uspti34PsGSGAzJT9J3SxYWFtKyZUuj2AxVRkRo2bJlg7P2U8J6TdtkGnb7eO1uJv/hQfYcPJxoUWI89sn33PaP1yFclVXhDA2VpFdugFFshmrTEJ8ZCev9Ia1I8jTa8xZ+zVzf3ai3k2eltFf/8yV377gKPp6RaFEMCaReKDeDwQAqrNeQ9kYKKkl59EiL6E2dm+2q9laFdUZH0Xscq80LEyyJIZEY5VYFRISbb745dvzggw8yY8aMxAlUCQsWLOCrr2rX2Jx55pk0a9aMn/70p3GSylBblN3N5lfJo9xauvU4YDJNUfCL3i4uHEzW7RMNRwOj3KqAz+fjrbfeYt++fXHNVylFJFLjvfjKJR7K7fe//z0vvfRS5QkNRw+lnxUvydMt2dSy9wuNhBMriAMXWhYVTJ6XAMPRxyi3KuB2u7n66qt5+OGHS8Xt3buXSZMmMXToUIYOHcqXX+qNfGfMmMGDDz4YS9evXz+ysrLIysqiV69eXHbZZfTr14+tW7fy+9//nn79+pGZmcncuXMBraDGjh3LBRdcwPHHH8/UqVPLfDt+9NFH6dOnD/3792fKlClkZWUxc+ZMHn74YQYOHMjnn39eoYyXXnopJ554Ij169OCZZ56J5fuTn/yEjIyMCsvl9ddfp1+/fgwYMIAxY8YA2gHoiiuuIDMzk0GDBvHpp58CMHv2bM4991xOO+00unTpwuOPP87f/vY3Bg0axIgRIzhw4AAAzzzzDEOHDmXAgAFMmjSJ/Pz8UtcdMWIEa9Yc2RB47NixjWLZNpWEDhI+l1a47nDyOO94bOVGyCi3xkzSTwVwcue7a1i7I75eWX3aN+GOs/tWmu43v/kN/fv355ZbbikWfv3113PjjTcyatQotmzZwhlnnMG6desqzOv777/nhRdeYMSIEbz55pssX76cFStWsG/fPoYOHRpTFMuWLWPNmjW0b9+ekSNH8uWXXzJq1Khied17771s3rwZn89HdnY2zZo145prriE9PZ3f/e53APzsZz8rV8aVK1eyaNEi8vLyGDRoEBMmTKB9+/ZVKru77rqL+fPn06FDB7KzswF44oknEBFWrVrF+vXrOf300/nuO717/OrVq1m2bBmFhYUcd9xx3HfffSxbtowbb7yRF198kRtuuIHzzz+fX/ziFwD8+c9/ZtasWVx33XXFrjt58mRee+017rzzTnbu3MnOnTsZMmRIlWSu1zitfKUgCZxmxLbY3Cp5ugCjlpuEkkfhGo4+xnKrIk2aNOGyyy7j0UcfLRb+8ccfc+211zJw4EDOOeccDh8+TG5uboV5de7cmREjRgDwxRdfcPHFF+NyuWjTpg0nn3wy33zzDQDDhg2jY8eOWJbFwIEDycrKKpVX//79mTp1Ki+//DJud9nvKhXJOHHiRFJSUmjVqhXjxo1j8eLFVS6TkSNHMm3aNJ555hnC4XDsfi655BIAjj/+eDp37hxTbuPGjSMjI4PWrVvTtGlTzj77bAAyMzNj97Z69WpGjx5NZmYmr7zySjELLcpFF13EG2+8AcBrr73GBRdcUGWZ6zPK6SUZThJlEkm+jdLd6JcAo9waN/XKcquKhVWX3HDDDQwePJgrrrgiFhaJRFi0aBF+v79YWrfbXWw8zTnnKi0trUrX8/l8sd8ul4tQqHRD8t5777Fw4ULeffdd7rnnHlatWlUqTXkyQmmX+eq40M+cOZOvv/6a9957jxNOOIGlS5dWmN55P5ZlxY4ty4rd27Rp03j77bcZMGAAs2fPZsGCBaXy6dChAy1btmTlypXMnTuXmTMbyUbIznGtolxw+8pPe5RQSajcopabK5IkLwCGhGAst2rQokULLrroImbNmhULO/3003nsscdix8uXLwf09j3ffvstAN9++y2bN28uM8/Ro0czd+5cwuEwe/fuZeHChQwbNqxK8kQiEbZu3cq4ceO47777OHToELm5uWRkZJCTk1OpjADvvPMOhYWF7N+/nwULFjB06NAqXRtg06ZNDB8+nLvuuovWrVuzdetWRo8ezSuvvALAd999x5YtW+jVq1eV88zJyaFdu3YEg8FYPmUxefJk7r//fg4dOkT//v2rnH+9xqHcIkU5FSQ8ijiVWx04R9WEFFdyyGFILEa5VZObb765mNfko48+ypIlS+jfvz99+vSJWRGTJk3iwIED9O3bl8cff5yePXuWmd95551H//79GTBgAKeccgr3338/bdu2rZIs4XCYSy65JOa88dvf/pZmzZpx9tln869//SvmUFKejKC7NceNG8eIESO47bbbYuNto0eP5sILL+STTz6hY8eOzJ8/H4Dbb7+defPmAdqjMjMzk379+nHSSScxYMAAfv3rXxOJRMjMzGTy5MnMnj27mMVWGXfffTfDhw9n5MiRHH/88bHwefPmcfvtt8eOL7jgAl599VUuuuiiKudd73EoksK8JFkRxKncgqWdfxKBz5U80xIMiUOSaX7KkCFDVEmvt3Xr1tG7d+8ESdSwmTFjRjHHk4ZGQ3t2Pp31B8ZtfRKAAxf/mxa9RidYInjxsTu4bP8j+uDm7yCjTULlAbj3rt8xPWJ7/v55L7i9iRXIUCkislQpFVevMGO5GQz1BUe3ZDA/OSw3UQ7LLVCxI9XRwo1jbDJJZDIcfeqVQ4khviTzKiuGMnAot0Bekoy5hZNPkVhOhVuUA6ktEieMIWEYy81gqC+oI4okVJgkyq2YIkkO5VbMmkyScUDD0ccoN4OhvuBw3ggVJEm3pNOhJJCXOEEciHPKRJLIZDj6GOVmMNQTpNhUgOSwkpxdpcliTUrJbklDo8QoN4OhvqDC5CsfYSWowuRQbuLoKg0kgZOLUgpLGcvNYJRblXn77bcREdavX19umqysLPr161encixfvpz333+/VnlceeWVHHPMMXUuqyG+SCRMGIs8UlBJ4rzhtJKCBYm3kiKqpLekUW6NFaPcqsicOXMYNWoUc+bMKTO+rKWxqks4XPm2IfFQbtOmTePDDz+sVR6Go4+oEBFxkYsfSRblVmwcMPHKLRiO4MKxQkmSlJPh6GOUWxXIzc3liy++YNasWbz66qux8AULFjB69GjOOecc+vTpA2glN3XqVHr37s0FF1wQ27Llk08+YdCgQWRmZnLllVdSVKT3werSpQu33norgwcP5vXXXy923ZJbygQCAW6//Xbmzp3LwIEDmTt3Lnl5eVx55ZUMGzaMQYMG8c477wB6i5mJEycyduxYevTowZ133hnLd8yYMbRoUbF79GeffcbAgQMZOHAggwYNIicnB6VUudvznHzyyUycOJFu3boxffp0XnnlFYYNG0ZmZiabNm0C4N1332X48OEMGjSIU089ld27d5e67pQpU3jvvfdix9OmTYstktzYERUhLC7ylR8rmByNtmV3lRYpN+EkGHMLRRRuwoSU3bQZy63RUr/muX0wHXaVXhi4VrTNhPH3VpjknXfe4cwzz6Rnz560bNmSpUuXcsIJJwB63cjVq1fTtWtXsrKy2LBhA7NmzWLkyJFceeWVPPnkk1x77bVMmzaNTz75hJ49e3LZZZfx1FNPccMNNwDQsmXL2DqUTkpuKeP1ernrrrtYsmQJjz/+OAB//OMfOeWUU3juuefIzs5m2LBhnHrqqQAsXryY1atXk5qaytChQ5kwYUKVt4Z58MEHeeKJJxg5ciS5ubn4/X7eeuutcrfnWbFiBevWraNFixZ069aNq666isWLF/P3v/+dxx57jEceeYRRo0axaNEiRIRnn32W+++/n4ceeqjYdaPb2UyYMIFAIMAnn3zCU089VSWZGzoSCaFwUSAppCSJi7uoMBFxUaQ8hJPAySUc1soth1Sak2uUWyOmzi03ETlTRDaIyEYRmV7X16sL5syZw5QpUwBtWTi7JocNG0bXrl1jx506dWLkyJEAXHLJJXzxxRds2LCBrl27xtaXvPzyy1m4cGHsnMmTJ5d53bK2lCnJRx99xL333svAgQMZO3YshYWFbNmyBYDTTjuNli1bkpKSwvnnn88XX3xR5XseOXIkN910E48++ijZ2dm43e4Kt+cZOnQo7dq1w+fz0b17d04//XSg+HY227Zt44wzziAzM5MHHnigzO1sxo8fz6effkpRUREffPABY8aMISUlpcpyN2hUhDAuiqwU3KHkaLQtW7nl4UclgeUWjES05SZu8pQPlQQK15AY6tRyExEX8ARwGrAN+EZE5iml1tYow0osrLrgwIED/Pe//2XVqlWICOFwGBHhgQceAEpvX1OTLWTK2wKnKlvKKKV48803S628//XXX9dqO5vp06czYcIE3n//fUaOHBlbOLk8qrKdzXXXXcdNN93EOeecw4IFC8pcIcXv9zN27Fjmz5/P3LlzYy8VhuiYm0WRpOIO70+0OIBDuSk/GUlgJYXCChcRlN196y3MwZNooQwJoa4tt2HARqXUD0qpAPAqMLGOrxlX3njjDS699FJ+/PFHsrKy2Lp1K127duXzzz8vM/2WLVv43//+B8A///lPRo0aRa9evcjKymLjxo0AvPTSS5x88smVXrusLWVKbmdzxhln8NhjjxFdAHvZsmWxuP/85z8cOHCAgoIC3n777ZhFWRU2bdpEZmYmt956K0OHDmX9+vW12p4H4NChQ3To0AGAF154odx0kydP5vnnn+fzzz/nzDPPrHL+DZ2oIgm6UvGGk6dbUomLfPxIMPHKLRiO4JYwStzkKX9SjAMaEkNdK7cOwFbH8TY7LIaIXC0iS0Rkyd69e+tYnOozZ84czjvvvGJhkyZNKtdrslevXjzxxBP07t2bgwcP8qtf/Qq/38/zzz/PhRdeSGZmJpZlcc0111R67bK2lBk3bhxr166NOZTcdtttBINB+vfvT9++fbntttti5w8bNoxJkybRv39/Jk2aFBtvu/jiiznxxBPZsGEDHTt2jO1PN3PmzNh2OI888gj9+vWjf//+eDwexo8fX6vteUCvZXnhhRdywgkn0KpVq1j4kiVLuOqqq2LHp59+Op999hmnnnoqXq9Z0T2KqDAKi6A7FV8kOZSbC61IcpPEySVsO5QoSyvcpJnsbjjq1OmWNyJyAXCmUuoq+/hSYLhS6tqy0pstb+LH7NmzizmeNEYa2rPz9b1n0S60nbWpQxl7eB7+GXsSLRLvzvgpI72b+KagPSdkZNPqlop3Y69rNu7JYf1jkzghZRfbCn307tiK9Ks/SKhMhsqpj1vebAc6OY472mEGg6GaRLslI540/BRBuPZzK2uLS2nLrVD8uJKgqzQYVriJIJabPJVivCUbMXWt3L4BeohIVxHxAlOAeXV8TQN6flhjttoaIqLCRLBQXtsBKQnGuCzCRCwXRa40vKHEK7dwROEirJUbPsQot0ZLnSo3pVQIuBaYD6wDXlNKlfb/rjyfeItmaOA0xGfGZVtueNN1QBKMJ7lsh5KgKwVvEowDBsMRPIQRl1tPdk8ChWtIDHU+iVsp9T5Q4/Wi/H4/+/fvp2XLltVyZTc0XpRS7N+/H7/fn2hR4ooo7SiBLwPQOwMkeomhaLdk2J2KJxTQXaWuxK0NEYpabm4PefixksC6NSSGpF+hpGPHjmzbto1k9KQ0JC9+v5+OHTsmWoy4osfc3Lj82nIrzDtEagLlidiKJGK5CYndVRrIhZRmCZMpGI7gJoLlcpOPP2kmuxuOPkmv3DweT7EVQAyGxopFGCVeXH5tuSVauYWVik0FUO6ocstLqHILRxR+CeFyechTflwqBKEAuM2UksZGons1DAZDFYl6S7pTmgAQyE/sBOVwROGWCErcRDwOyy2BhGxvScutPTiTQSZDYjDKzWCoJ1iEUZYbb4q23IIJ3hzUOWFaok4uCVYkesubMFgegm7brjUek40So9wMhnpC1DPRm2pbbgnePy2sbOUmbsTn6JZMpEwRe56by03EZZRbY8YoN4OhnmARBnHhT9PKLZLgdRPDYWVbSW4sv5Yp0dMTghGFmxBiuQl7k0PhGhKDUW4GQz0hOs8tJb0pQMIXBQ7ZVpKyXDEPzoTLZO/ELS43ypMcXaWGxGCUm8FQT7BsRZLm9yTFXmURdcRyc9vjgIGCxI4DhuzNSnF5wGu6JRszRrkZDPUEyx7fSvPpOVySaM/EmEOJG4/twRksSLxMLokglgexJ7sby61xYpSbwVBPcKkIWC5SPS5ylT/ha0tGbOWG5cGbqrsAQwl2cglFIngIYbncWL7kmJ5gSAxGuRkM9QSXbSW5XRYFkoIrCSw3l2iFm+bzka98CR9zC4SOjLm5Ypab6ZZsjBjlZjDUE1yEQfSiQoWSgivBiwKHI5FYt2Sqz0UePiJFibbctDXpcntxpxhvycaMUW4GQz1AqWgXoAuAgJWCO5zoOWXgtreXSfPqVfgjRYmVKWhbbpbLTarPR4HyJtzxxpAYjHIzGOoBep+ySEy5FbnS8IQLEipTyLbcsLSTSx4pkGDLTW95E0JcUWvST9got0aJUW4GQz0g5plod0uG3Kn4Erzz9ZHxLQ9pdrekFUy8TF5CiNtvW5M+QgkeBzQkBqPcDIZ6QEQpLCKIbbmF3Kn4VWIVSVFIW26Wy7bcVAqSaA/OUABLFLh9MWsykmAPTkNiMMrNYKgHBEN6NRBcHgAinnT8qhASuON4wKHcUj3acnMlenPQUKH+dvtJt7slzZhb48QoN4OhHlAU0BaJZe9yrTypWChIYDdgMBDALRHE48ftsiiSFNwJ7iqNhIr0D7ePVK+bPOVHBYzl1hgxys1gqAcEirTziLj1HmUqtsVM4iylUEArMpc3RYviSsWbYA9OgkcstzSfm9wkWMnFkBiMcjMY6gGBQruBttdLjC4tpRLonRgp0srNsmUKulLxhgsS2lUqYWe3pB4HtMw8t0aJUW4GQz0gWBhVJNpys3zacitK4G7cEdtyiy5zFXan6Ynm4UACZYoqNx+pXj3m5goZ5dYYMcrNYKgHBAt1A215tJXkslfhL8w9lDCZwkHdVRrtlgzbsiVyT7dwsLjllksK7lB+Qq1JQ2Iwys1gqAeEA8W7AN1+rdyK8hOn3KKrkbhty015Er9QccRWuLGpAMqPRSShjjeGxGCUm8FQDwjb41suv1Zu0S1mAvmJ2z8tWKgViT+6hqM38QsVRxyWm9dtUWiZPd0aK0a5GQz1gLDtLem2uwC9qVqRBBM4QTlkW26u6NYy3sRbbke8JX360B3tKjXTARobRrkZDPWAkD2O5fVrRxJfelOAhG4xE1VueGwnF390ekLilJsnaFuyfl0+EXcSKFxDQjDKzWCoBwRsb8m0NK1AUtJ0t2QilZtErSF7WkJUuSVyekJK2FZuKc21LNH5gGaVkkaHUW4GQz0gnJ8NQGoT3WinpqRQpNwJXVrKU3RA/0htBYA7JdpVmhiZguEI/tBhFAI+rfwjydBVakgIRrkZDPUAq0ArEm+TYwD0BGX8CbVI3IUHCeGOWW7eBDu5HMwL0JQ8Ap4mYOmmLTrZ3Yy5NT6McjMY6gGuwv3kkhJzlEjzuclP8NJS3sAB8tzNQAQ44sEZLEiMctufF6C55BLyNouFWVHlZiy3RketlJuIzBCR7SKy3P6c5Yj7g4hsFJENInJG7UU1GBovroID5FhNY8cel0UeKUiC5m8ppcgIHqDA2yIWlpKaRlgJoQR1S+7JKaKD7COU0SEWJn4z5tZYccchj4eVUg86A0SkDzAF6Au0Bz4WkZ5KqXAcrmcwNDpSi/aS72lRLKxQUkgLJqbR3nGokGPZSVGTzFhYmt+T0J2vs/blMV724m01NBbmTTGWW2OlrrolJwKvKqWKlFKbgY3AsDq6lsHQoFFK0Ta0nZy0zsXCi6zEbTGzccd+jpU9uFsdFwtL9equ0kiCPDh37NzJMZKNv02PWFiK30+B8poxt0ZIPJTbtSKyUkSeE5HmdlgHYKsjzTY7rBQicrWILBGRJXv37o2DOAZDw2L77r20lQNIy+7FwgOuVDyhxCi33RsW45YITbsfeWdNt5e7StRqIIU/LgZAOgyOhaV5XeTiT+iUCUNiqFS5icjHIrK6jM9E4CmgOzAQ2Ak8VF0BlFL/UEoNUUoNad26dXVPNxgaPDvWfAFAerehxcKDrlS8kYJEiATfzyeMRXqP0bGgNHvn60RYSXtzijju4OcELR90GOKQSW97Eyo03ZKNjUrH3JRSp1YlIxF5Bvi3fbgd6OSI7miHGQyGalK49gOCuOiUeXKx8JA7DV/R0bfc1m7Zzei8j9jeYhjHph95IU3zutmGPyFOLm9+tZYp1lcUdj0dj70dENjKLYFdpYbEUVtvyXaOw/OA1fbvecAUEfGJSFegB7C4NtcyGBojh3Nz6L3/I9anj8Cb3rxYXMSdSoo6upZbIBRh06u30k4O0OLM6cXi0nxuctXR3z9t4+7DtP3ydppIPhk/+V1xmbxauSVy1RRDYqitt+T9IjIQUEAW8EsApdQaEXkNWAuEgN8YT0mDofp8++o9jCWbnNG/KRUX9qTjIQShALi9dS7L4fxCvnj6es7O/xdZ3X5Gl17jisV73RaF4scd2lfnskRZ8X0W2+Zcz7nWQnKG30xG+4HF4tN8LvKUH2V2BWh01Eq5KaUurSDuHuCe2uRvMDRmvl3wNidt/Qcrm55M/2FnlYoXn2OhYneLUvHxIhgK8c37z9N22d85S23lu46T6HnJ42WmDVipenPQOmbXnj2sfetehuycwwDJZ9+Qm2h15m2l0qX73OzCjwSOnsI1JAfxmOdmMBjizLcfz6XX59exw92RblfOiq0CUozoJqFFOUhq/JVbMBRi8Qcv0u7bhzlJbeFH17H8cPJMeo65uNxzAnXs5LJr7z5WvfUAQ3a8zCmSy5qmozl20l9o1XlgmenTfG7ylR8JGsutsWGUm8GQRETCEb548Q5GZT3GD+5utP7l26Q3K9uL2PIdWcvR17zMJDUiFArz9Ycv0ebbhxkZyWKr1ZFVw/9Gv9MuR1wVNxlhdyreogJQqmyFXEN27t3P8n/9jWHbX+Q0Ocz6JidSNOEO+h5/YoXnRdfgdBnl1ugwys1gSBIOHTzAd89cxpj8z1nRdBy9rnkJv70paVm47aWl8nMP4YvD9cPhCIvm/5PWSx5iZOQHtlvtWT38QfqefgWdKlFqsTw86VhFCoL5RzYvrQU79x/k27ceYei22YyXbL7PGEr4rNs5vs+YKp0f9ZZ0h/PjrnANyU2jUG6F+bns2/4D2Qf2EMjZT7jgEOFQEMty4XZbuDx+xN8Ey98EX3ozUjNakJrRjPT0DDxuV6LFNzQCflj9NZ43pzEosoulx9/E4Mm3IVbFzszRLWaK8mq3UHEkolj837dp8tX/MTLyHTusdqwZdh99zvg5HVyeauWlYlvM5NVKue0/nMeXbz3BkM0zmSD7+SF9IIy/nR79flKtfLRDSQqWCkOoKLaxal1xKD/A1qzvyP5xNeH9m5C8fbgKD8S6ai0RxJeGSmmBldoCb5NjSG3RliYt29O0VXvcGa3BMm1OPGhQyi1QVMjmNYs5uOkbrF0rSM/5gZaB7bThAB3Rk+2qQ0hZHCKFfEmh0Eql0Eol5EoFy00EQYkFCEoEEFARQIECIQJKISg7nNhxNA5AouegkGh6FCiFFQ0v9tF5V/f9s7bvq6pWJ1f97Fpdp7Z5x/HipbOqOPNOahe5ksams+ZwwvAzq3QNb2rtt5hZtvhz5KM/MSK0gj3SitUn3E3f8dfQvobelxLbHDQH0o+p9vn5RUH+89Zz9Fv/d86R7WxJPZ49ZzxJtwFn1Mjq8rldFFm2Qgvkxl257c7OZdWijyna9DmtDyzl+NB6+knxMcdDpJMvKfpAKfyqkKbkYUnpZyKCcFiakONqRq67BQXuJuDyErHcRHARFheWimCpEFYkiNjfrkgIS4UQFXZ8h3ERwor91t8WYbuZ0uUZESv2O9rCHGmJLJQQC8MOjx7/4OnBaX94Pa5lGi8alHL7cd1Ses07G4DDKo3t3s5sbz6MrCadsZp3IbX5MfgzWuBNa47H6yUcDhMMRQgFCrQ1V3CYYP4hwgWHiBQc1nNjAjlYgVxcwVzcoTx84TxUKIKgsIjEFJKgYkouqpYQ/fuIAtQPCyI6TgTs41g4ovUkFhEprtKUnY/zuErNaLwabSnzZ7khVY+tLO/qUer8CgKqfa1KTqhOfs6063wn0On8u+nV9tgqnx9TbgXVn8O178ABVr48nTH7XydX0lnRbzr9zrmBY7wp1c7LSTEPzmryv6VLsN67mYmR5ezydmLnKc9w7IgLa92VGHKn6v9AIBfSWtUqL4CN2/ey5vN/kb75QwYXfs2pou91u6crW9qfhatdf5p07kfLY/vgb3IMTV1umjrOV0qRW1DE4YN7yd6/i7wDuyjI3kXo8G7I3YurYB/+wAEyQtm0DGzCFQnhIoSLCG5CRLAI4iYsbsK4CYn+HREXYXETxE1EvCiXi4i4UOImIm6UpX8jFiJS7EVaiKB17ZGwI3HRl/QjL9vRF9awL3lXlWpQyq1LnxNYuvNR2vceTttje9K7km4dg6E+40/XTWa4GvunKaX4/P05dP/mdk5hLyvbnkvPqQ8xoEntG30ASbGb8cJDVT5nT3YOX718F2fsnY0SFz8Ou4POZ/wWqjjOVxlhTzoEqNWalzmFQT7/ciHhJS8wKv8TJkouuZLO9jZjyB84kfYDTqNDWsuyF9AtgYiQkeonI7UTHTp0qvwEQ41oUMrN4/VzwvjLEy2GwXBUSEnTiqSq6yZmZf3AjldvYEzhZ2xzHcu2s9+k/8Aqra5XZSS1pZYpd1+ljUskovjoPx/Q5X/TOZcf2dTyZDpe8jidW1Tdeq0KypOmlVsNVinZsi+Phe+/wvGbZnGWrCeIm61tTkFGXUmzvqfSq5pjkoajR4NSbgZDYyI9LZ2wElRRxZZbUTDI53MfYuj3j9JOAqzs8Rv6XXg7ljf+zhWudK3cig5XrNw2bt3Jhjm3cmbePA65WrDrjGfpPvzCuMsDEPS1gDwgr+oTuVdt2c/S959lxI6XuMTaygFvG7YP/BPtx15Jtzh0bRrqHqPcDIZ6Sprfw36a4sovv9FeufRL5P3fcWp4LRtSB9FqyhP079y3zmRyp+uGP5hT9vZVhYEQ89+cxdD19zFeDvBDl8l0n3IfktKszmQKp7aGA0Du7krTfvP9Dta+/ySn7H+VadZe9qZ1JXvM47QYNgWMlVavMMrNYKinpHpdbKIVabmlN9zYvXcfa//5B0YfeINcSWPd8PvofeYv63yeV9vmTTisUik4uJNmjnClFJ9/sxTX/OlMDH/DDn9XDp//Asf1Gl1eVnEjtUVbvaNkXtkKVynFV2t+4McPH+W0nLcYKofZ1SyT/NP+Ruu+PwUzdl8vMcrNYKiniAiHvG04piArFnYgO5uVb/+NfptnczKHWdX2XHpcfD+9m1XfLb8mdG6ZyibVnvZ71wNacSxf9x273/s/xuX+m4i4+GHQdLr99HdHzRJq1zyDvaoJzQ9kFWvwCoNhPv3yf+QvmsXpBR8wUgrY1mokRWdOp+1xo82E73qOUW4GQz3mYLN+tN37Javee5JDP3xL330fMlZyWJc6mNBP72ZA31FHVZ72zVL4UrrR5+BCvnr9YcIbP2VY4ZdkSoTNHc+ly6Q76RZnh5HK6NYqjVWRbpyU9T9CgRDL16xh5+K36bjzQ8azljAW29qdhu+nf6Bjx0FHVTZD3WGUm8FQj+kw+lKy33yZzG/+QFC5WNt0NLnjrqP3oPh6QVYVlyXkDbiC0IrPOGnNDHJI44fOF9HlrBvp0bZnQmQa2aMVD8hwTjn8NHn3tGeEFAGw19OBH/vezLGnXEXnJu0TIpuh7hBVjdUj6pohQ4aoJUuWJFoMg6Fe8cOPP5K/Yx3H9RuOPyOOKyjXEKUU6zdtpkloP+2PG4Achb3mKuObzfvY/p/H6RzeQnr74zl22Nn42h5vuh6TBBFZqpQaEtc8jXIzGAwGQyKpC+Vm3IAMBoPB0OAwys1gMBgMDY6k6pYUkb3Aj3HIqhVQX/aVN7LWHfVJ3vokK9QveeuTrFC/5I2XrJ2VUnFdhTmplFu8EJEl8e6/rSuMrHVHfZK3PskK9Uve+iQr1C95k1lW0y1pMBgMhgaHUW4Gg8FgaHA0VOX2j0QLUA2MrHVHfZK3PskK9Uve+iQr1C95k1bWBjnmZjAYDIbGTUO13AwGg8HQiDHKzWAwGAwNjgal3ETkTBHZICIbRWR6ouVxIiKdRORTEVkrImtE5Ho7fIaIbBeR5fbnrETLGkVEskRklS3XEjushYj8R0S+t78TvpihiPRylN9yETksIjckU9mKyHMiskdEVjvCyixL0TxqP8crRWRwEsj6gIist+X5l4g0s8O7iEiBo4xnHk1ZK5C33LoXkT/YZbtBRM5IAlnnOuTMEpHldngylG157VZSPrvFUEo1iA/gAjYB3QAvsALok2i5HPK1AwbbvzOA74A+wAzgd4mWrxyZs4BWJcLuB6bbv6cD9yVazjKeg11A52QqW2AMMBhYXVlZAmcBHwACjAC+TgJZTwfc9u/7HLJ2caZLorIts+7t/9wKwAd0tdsMVyJlLRH/EHB7EpVtee1WUj67zk9DstyGARuVUj8opQLAq8DEBMsUQym1Uyn1rf07B1gHdEisVDViIvCC/fsF4NzEiVImPwE2KaXisdJN3FBKLQQOlAgurywnAi8qzSKgmYi0OyqCUrasSqmPlFIh+3AR0PFoyVMZ5ZRteUwEXlVKFSmlNgMb0W3HUaEiWUVEgIuAOUdLnsqooN1KymfXSUNSbh2ArY7jbSSp8hCRLsAg4Gs76FrbhH8uGbr5HCjgIxFZKiJX22FtlFI77d+7gDaJEa1cplC8cUjWsoXyyzLZn+Ur0W/nUbqKyDIR+UxERidKqDIoq+6TuWxHA7uVUt87wpKmbEu0W0n/7DYk5VYvEJF04E3gBqXUYeApoDswENiJ7pZIFkYppQYD44HfiMgYZ6TS/RBJM5dERLzAOcDrdlAyl20xkq0sy0NE/gSEgFfsoJ3AsUqpQcBNwD9FpEmi5HNQb+rewcUUfzFLmrIto92KkazPbkNSbtuBTo7jjnZY0iAiHvQD8opS6i0ApdRupVRYKRUBnuEodpFUhlJqu/29B/gXWrbd0W4G+3tP4iQsxXjgW6XUbkjusrUpryyT8lkWkWnAT4GpdoOG3b233/69FD2GlZgttx1UUPfJWrZu4HxgbjQsWcq2rHaLevDsNiTl9g3QQ0S62m/wU4B5CZYpht2fPgtYp5T6myPc2R99HrC65LmJQETSRCQj+hvtULAaXaaX28kuB95JjIRlUuzNN1nL1kF5ZTkPuMz2PBsBHHJ0ASUEETkTuAU4RymV7whvLSIu+3c3oAfwQ2KkPEIFdT8PmCIiPhHpipZ38dGWrwxOBdYrpbZFA5KhbMtrt6gPz26iPFnq4oP21PkO/Ybzp0TLU0K2UWjTfSWw3P6cBbwErLLD5wHtEi2rLW83tFfZCmBNtDyBlsAnwPfAx0CLRMtqy5UG7AeaOsKSpmzRSncnEESPQ/y8vLJEe5o9YT/Hq4AhSSDrRvRYSvTZnWmnnWQ/H8uBb4Gzk6Rsy6174E922W4AxidaVjt8NnBNibTJULbltVtJ+ew6P2b5LYPBYDA0OBpSt6TBYDAYDIBRbgaDwWBogBjlZjAYDIYGh1FuBoPBYGhwGOVmMBgMhgaHUW4Gg8FgaHAY5WYwGAyGBodRbgaDwWBocBjlZjAYDIYGh1FuBoPBYGhwGOVmMBgMhgaHUW4Gg8FgaHAkvXITkS4iouz9jgz1FBG5TkR2iMiKBFx7hoi8fBSuM01EvqggfoGIXFXXcjQ2KqpfU/f1ExE5KCI/isiUmuaR9MrNUH1EZKaI5NqfgIgEHccfJEisGcCvlVIDHHLOEJEZCZInqbBf4rKqmf5TEckXkfUicmoFaS8Ska/stAtKxPUUkXdEZK+IHBCR+SLSq0SaG0Vkl4gcFpHnRMRXXTlE5JPqvKTaymJ2VdLWd+q47n12nR226/AmR9wIEfmPXe97ReR15z54ItJMRF4QkT32Z0YZ+V8vIptFJE9E1olITzt8rIhEHO1Orohc7jhvgYgUOuI2OPNVSjUHHgCmV7VcSlLnys1YXEcfpdQ1Sql0pVQ68H/A3OixUmp8NN1RrpsWJN9modUmiZ7nOcAy9L5afwLeEJHW5aQ9ADwC3FtGXDP0fme9gDbojTtjG9CKyBnoBuYnQGf0Pn93VkcOEZkKeKpzc8lIPa37GehNTjsD44BbRG88C9Ac+AfQxY7PAZ53nPswkGrHDwMuFZEropG2JfpzYAKQjt6lfZ/j/B2OdiddKfVCCdmudcT1ojSr7XusEXWi3EQkS0RuFZGVQJ6IuO23hK9EJFtEVojIWEf6BSLyVxFZbL9hvCMiLcrJ+wr7DSFHRH4QkV+WiJ8oIsvtfDZFK1JEmorILBHZKSLbReQvYu9yW8F9dBeR/4rIfhHZJyKviEgzR9wBERlsH7e3337G2sfniMga+34XiEjvEuXzOxFZKSKHRGSuiPirX9LVp5y6USJynCPNbBH5i+P4p3aZZtt12L+a14yWc6SSdLfY9bNDRK5yymXL9ISIvGfX/dci0t1x7t9FZKtd70tFZHSJ7P12OeeIyLci4rQgp9vPSo6IrBWR8xxx00TkSxF5WET2oxuLyu73QdHdKptFZHyJ6M52fjki8pGItKosvzLy7wkMBu5QShUopd5Ebww5qaz0SqmPlVKvATvKiFuslJqllDqglAqiG7ReIhJtVC4HZiml1iilDgJ3A9OqKoeINAXuQO/iXWNE5DLR3VT7ReQ2+zkuZbGIiEdE5ojImyLitYMbbd2j6+9updRBpdQ64Bns+lNKfaCUel0pdVjp3dUfB0Y6zj0buF8pla+UykLvyH2lLYeFrtcblVJrlWaTUupAde+pAiJAzV8o6mj31iz0jq2dgBSgA3qX5LPQCvU0+7i1nX4BsB3oh95R+U3gZTuuC3onWLd9PAHojt7x9WQgHxhsxw0DDtn5W/Z1j7fj/gU8bed/DPoN9ZeV3Mdxdl4+oDWwEHjEEf8LYC367WY+8KAd3hPIs8/1oP/YGwGvo3wWA+3RFs06SuzCW2In3OwKPqMquYcZ0bIsq27sMAUc50gzG/iL/XsQsAcYDrjQf5YswFeN5+FMoBBIqyTNLqCvXZ4vO+WyZdpv17EbeAV41XH+Jei3PDdws52X31EGQeACuz5+B2wGPHb8hXZdWMBku+7a2XHTgBBwnZ13SgX3MM2+zi/ssvoVWqFENwVegN6huCf6f7EAuLecvJ4Eniwn7jxgXYmwx4HHKqmHq4AFlaQ5F9jpOF4BTHYct7LrpWVV5EDvynwjJf7H1WxP+gC56P+CF3jQLudTnc+4Xabv2c+Kq7HXPdoyU0AbR9gFwKpy8r4BWOQ43gcMcxz/CTho/z7Wzvt69A7tm9EWvWXHjwUCwG477mEc/3/7/vfa1/gSGFuGPN3s8h9Y3WdGKVWnyu1Kx/GtwEsl0swHLnfc6L2OuD52wbio5E8BvA1cb/9+Gni4jDRtgCLnwwlcDHxazfs6F1hWImweR7az99lhtwGvOdJYaOU91lE+lzji7wdm1lFdzKC0cruyRJqKlNtT6Dc/Z/oNwMlVvP4SO//fVpLuOeCvjuPjKK3cnnXEnwWsryC/g8AARxk4/7QWsBMYXc65y4GJ9u9pwJYq3us0YKPjONW+h7aO5/zPjvhfAx/WoE4vdd6PHXYPMLuS8ypUbkBH+zm92BG2CTjTceyx76lLZXIAQ+yydFM75XY7MKdEuQYortzmAZ8Bj2IrlMZe9+gXWIX9kmeHnQZklZG2P7r7erQj7GXgLSAD/X/cBBTZcSfZeb+H7truAnwH/MKOb4tuxy2gK9oweNqR93A7Xx/6hTkH6F6GXA/a13m7umVVl2NuWx2/OwMX2t1a2SKSjX4La1dO+h/Rf6JSZruIjBeRRXaXYDa6kYum64SugJJ0tvPb6bj+02gLrlxEpI2IvCq6G/MwurJLyvQM2uJ8TClVZIe1t+8BAKVUxL6/Do7zdjl+56P7rI8WWytPEqMzcHOJuuuEvseqMBSYAswQkYrGXdqXkKssGcstM7ubd53dzZsNNKV4XcXys+tjW/Qe7C6v5Y7761feuVUgJqPSXT1QvG7jUe+5QJMSYU3QDUSNED1m8xHaYphTwbWiv3MqksPutnoS/eIZqqlcNsWeDbtc95dIMwLdQN+r7FbRQWOt+1xHfLlp7a7/D9B19bkj6rdAAfA9ehx2DrrssMNBd1tmK91t+TS6PUYptUvp7sqIUmozuvcq1nWqlPpaKZWjlCpSeizuy+i5DrmOsWUYo5Q6t4z7q5C6VG7OB2wr2nJr5vikKaWcA9ydHL+PRZv4zsFJRHtpvYnW5m2UUs2A99FdlNHrdKc0W9GWWyvH9ZsopfpWcg//Z99HplKqCbrrK3otRCQdPVA/C914R8cJd6CVQjSd2Pe3vZLrlUJERktxj6OSn5JjS1Wh5J8/H/2mGaWt4/dW4J4SdZdaogEs/0K6oXkb3UXSroKkO9GWQ5RO5SUsiV0GtwAXAc3t5+IQjrpy5mc3vB2BHSLSGf2Cci3Q0j53dYlzS5ZXolkDdBORDEfYADu82ohIc7Rim6eUuqeMaw0ocZ3dSqn9lcjRBG25zRWRXcA3dvy2GjyzxZ4NEUmhtKPBR8BfgU9EpE2JuEZZ90qPke6kdP3F0tpl8DG6d+alEucfUEpNVUq1tdtKCz2cArr3JkDx8qmorBQV6xtF8XIH7QhzqITCrTJHayrAy8DZInKGiLhExC/aVdTZmF0iIn1EJBW4C3hDKRUukY8XbcbuBUL2gO3pjvhZwBUi8hMRsUSkg4gcr5TaiX74HxKRJnZcdxE5uRK5M9BvP4dEpAPw+xLxfweWKKWuQpvnM+3w14AJthwe9BhQEfBVZQVVEqXU56q4x1HJT40qvgTLgZ/ZdXMmeiwzyjPANSIyXDRpIjIh+ucS7egxu5J7iFq03gqSvYauu972M3BbNeTPQPfN7wXcInI7pd9uTxCR80V7vN2Aro9F6DFYZZ+LaG+wftW49lFHKfUdus7usP9L56GtljfLSh/9z6G7By37HI8d1wQ9RPClUqost+sXgZ/b/81mwJ/RXcSVyXEIbR0NtD/Rt/ITgK/tay+Qqk0FeQPdfpwk2klkBqUbQpRS9wP/RCs4p/XVaOseXX9/FpHmInI8ekxwNoDdpv0XeFwpNbPkiXYb2dJ+fsYDVwN/seXIB+aivS8z7Lb8auDf9rnjRKSz3WZ0QnvqvmPHNbN1gV+0Q9tUYAzwYQkRPOi6qhFHRbkppbYCE4E/oh+krWhF4bz+S+hC3wX40eZoyXxy7PDX0GMqP0P3tUfjFwNXoAcvD6H74KMW1GXoxnWtfe4bVGxJgB4gHWzn9R66/xnQXploJ4hf2UE3AYNFZKpSagPaynsMbX2eDZytlApUcr1EcT1axmxgKtrSAkAptQT9h3gcXW4bsb2tbDqhuxQqo8I3N6XUB+jxkk/tayyyo6rycM9H/zG+Q3cHF1K6O+kdtMPAQfS4xflKqaBSai3wEPA/9OB3ZhXvp04RPVexVIPjYAraMjqIbjguUEpFG+mpIuJ8k78U3Y30FDDa/v2MHXceuuv4ihI9AscCKKU+RI8JfwpsQZfvHZXJoTS7oh9sBYK2+qL/gyo9O0qpNWinjlfRlkgu2smp1LOhlLob/fx+7OhJacx1fwd6qOZHdHv4gF2noMdgu6F7nWJ17zj3BLQ/QQ7aKp5q10WUa9F1sQNdhv9Ej52DdkT7Cu2g85WdT7RN96CVZNSh5DrgXFtxO3FRiYd1RUQ9eRKK6ImlLyulnk20LIaqY79FrwD6K+1GXlHaHcAtSqkqrRYheurEarSTTm3HbAxJhv2m/5pS6qQanJuOfhHrYY/nGBogInILWnEPq8n5ZoUSQ41RSgWUUr0rU2w209FdKUvLSyAi54leUaE5cB/wrlFsDROl1LbqKDYROVtEUkUkDT3mvgrt+WtogIjIXrQX5Z2VpS2PRq/cpPhSVc5PRd0ChmqilHpRKdVDKXVCBcl+ie5u2gSEOdLlmzSY5yVhTER3f+1AOxpMKcMrsk4xdX/0UEq1Vkr1VUq9V9M8kqJb0mAwGAyGeNLoLTeDwWAwNDySZSFQAFq1aqW6dOmSaDEMBoPBcBRZunTpPqVUeYs/14ikUm5dunRhyZIliRbDYDAYDEcREfmx8lTVw3RLGgwGg6HBYZSbwZBk7D5cyMLv9lae0GAwlItRbgZDkvH0q29x8KXLKCwsTLQoBkO9JanG3MoiGAyybds280c3VAu/30/Hjh3xeOrfBtC/3P4H2riy2bp1A516DKj8BIPBUIqkV27btm0jIyODLl26IFJqrVSDoRRKKfbv38+2bdvo2rVrosWpNkG0Qs4/ZLomDYaakvTdkoWFhbRs2dIoNkOVERFatmxZb639PEkDIHDYKDeDoaYkvXIDjGIzVJv6/MzkWXqrrlDOvkpSGgyG8qgXys1gaEwUuLTlpvJLbjZtMBiqilFuVUBEuPnmm2PHDz74IDNmzEicQJWwYMECvvqq2vuixli+fDknnngiffv2pX///sydOzeO0hkqQ1l6T9dwYW4lKQ0GQ3kY5VYFfD4fb731Fvv2xbebSClFJFLjvfjKpbbKLTU1lRdffJE1a9bw4YcfcsMNN5CdnR0/AQ0V4hK9mLkqykuwJAZD/cUotyrgdru5+uqrefjhh0vF7d27l0mTJjF06FCGDh3Kl1/qjXxnzJjBgw8+GEvXr18/srKyyMrKolevXlx22WX069ePrVu38vvf/55+/fqRmZkZs5IWLFjA2LFjueCCCzj++OOZOnUqZe3g8Oijj9KnTx/69+/PlClTyMrKYubMmTz88MMMHDiQzz//vEIZL730Uk488UR69OjBM8/ozZl79uxJjx49AGjfvj3HHHMMe/eWdm54/fXX6devHwMGDGDMmDGAdgC64ooryMzMZNCgQXz66acAzJ49m3PPPZfTTjuNLl268Pjjj/O3v/2NQYMGMWLECA4cOADAM888w9ChQxkwYACTJk0iPz+/1HVHjBjBmjVHNgQeO3Zsg1q2TZR+4bGC8bXcQuEIcxZvIRCK7wuVUopgOP4vaZGI2bHEUHOSfiqAkzvfXcPaHYfjmmef9k244+y+lab7zW9+Q//+/bnllluKhV9//fXceOONjBo1ii1btnDGGWewbt26CvP6/vvveeGFFxgxYgRvvvkmy5cvZ8WKFezbt4+hQ4fGFMWyZctYs2YN7du3Z+TIkXz55ZeMGjWqWF733nsvmzdvxufzkZ2dTbNmzbjmmmtIT0/nd7/7HQA/+9nPypVx5cqVLFq0iLy8PAYNGsSECRNo3759LP/FixcTCATo3r17qfu46667mD9/Ph06dIhZdk888QQiwqpVq1i/fj2nn346332nd49fvXo1y5Yto7CwkOOOO4777ruPZcuWceONN/Liiy9yww03cP755/OLX/wCgD//+c/MmjWL6667rth1J0+ezGuvvcadd97Jzp072blzJ0OGDKmwzOsTosIAWMHSir02fLhsI93+fSnzdk7ngonnxS3fB9/6AvXdfG6ZfjfEyZEnPxDi0hmP8asTj+HUs6fGJU9D48JYblWkSZMmXHbZZTz66KPFwj/++GOuvfZaBg4cyDnnnMPhw4fJza34jbtz586MGDECgC+++IKLL74Yl8tFmzZtOPnkk/nmm28AGDZsGB07dsSyLAYOHEhWVlapvPr378/UqVN5+eWXcbvLflepSMaJEyeSkpJCq1atGDduHIsXL46dt3PnTi699FKef/55LKv0ozJy5EimTZvGM888Qzgcjt3PJZdcAsDxxx9P586dY8pt3LhxZGRk0Lp1a5o2bcrZZ58NQGZmZuzeVq9ezejRo8nMzOSVV14pZqFFueiii3jjjTcAeO2117jgggsqLO/6hmVvPu4OxddyC+zawHBrPePW/jmu+XZbfi+3FD1G8MfFlSeuIvtzA7zpncGpS38dtzwNjYt6ZblVxcKqS2644QYGDx7MFVdcEQuLRCIsWrQIv99fLK3b7S42nuacc5WWllal6/l8vthvl8tFKBQqlea9995j4cKFvPvuu9xzzz2sWrWqVJryZITSLvPR48OHDzNhwgTuueeemCIuycyZM/n666957733OOGEE1i6dGmV78eyrNixZVmxe5s2bRpvv/02AwYMYPbs2SxYsKBUPh06dKBly5asXLmSuXPnMnNmw9oIOdot6Q4XxDXfVIrs/MNxzbcVujel4NBu4rUeTMjZJalU3CxCQ+PBWG7VoEWLFlx00UXMmjUrFnb66afz2GOPxY6XL18O6O17vv32WwC+/fZbNm/eXGaeo0ePZu7cuYTDYfbu3cvChQsZNmxYleSJRCJs3bqVcePGcd9993Ho0CFyc3PJyMggJyenUhkB3nnnHQoLC9m/fz8LFixg6NChBAIBzjvvPC677LIKraJNmzYxfPhw7rrrLlq3bs3WrVsZPXo0r7zyCgDfffcdW7ZsoVevXlW6H4CcnBzatWtHMBiM5VMWkydP5v777+fQoUP079+/yvnXByxb+XjD8e2WdNljeGWN3dYGQedXmHsobnmGnGN4wfgqeUPjwCi3anLzzTcX85p89NFHWbJkCf3796dPnz4xK2LSpEkcOHCAvn378vjjj9OzZ88y8zvvvPPo378/AwYM4JRTTuH++++nbdu2VZIlHA5zySWXxJw3fvvb39KsWTPOPvts/vWvf8UcSsqTEXS35rhx4xgxYgS33XYb7du357XXXmPhwoXMnj2bgQMHMnDgwJhCvP3225k3bx4Av//978nMzKRfv36cdNJJDBgwgF//+tdEIhEyMzOZPHkys2fPLmaxVcbdd9/N8OHDGTlyJMcff3wsfN68edx+++2x4wsuuIBXX32Viy66qMp51xeiys0XiW+jLiGdnysSjGu+Rba9Fsg9ELc8g2GHAi6K7zi7oXEg8X6Lqw1DhgxRJb3e1q1bR+/evRMkUcNmxowZxRxPGhr19dlZcdcIBkTWsUdacswdP8Qt349efYzT1/+ZAkkl5Y6dccv33dvO4GzXIjYPuImu590RlzxXbsum/7Od9cG1S6BVj7jka0hORGSpUiquXmHGcjMYkgyXbbmlqjh3x0X0uKYvzvmG7WYkUhC/bkljuRlqS71yKDHEl2ReZaUxY6GVW4oqiK8zRTho5x/f3ho39vhYYfyUULExt6Kc8hMaDOVgLDeDIcmwbG9JlyjCgfhZWSpS2ts2Hvgs2/syED8l5PSWVIXxswgNjQej3AyGJCNquQEU5sWxYQ87HEki8ZsO4BV7RZVA/JYLC4aOyBcsMGtsGqqPUW4GQ5LhcsxDK4ijez1Oyy0QP4XhJrqiSvyUW9gxpzOQbyw3Q/Uxys1gSDIsIgTt4fCi/PiNYxXrliyKn3KLWpquUPzm5YXDgdhvY7kZaoJRblXk7bffRkRYv359uWmysrLo169fncqxfPly3n///RqfH5303adPH/r27cvf//73OEpniAcuwuTYu3EX5cVPuYljflskjsotaml64jjpPBw8Imu4wHhLGqqPUW5VZM6cOYwaNYo5c+aUGV/W0ljVJbo+Y0XUVrm53W4eeugh1q5dy6JFi3jiiSdYu3ZtjfMzxB8XEfKtdACCBXH0FHQ8X0VxHMtzEf8VVSIOy83sa2eoCUa5VYHc3Fy++OILZs2axauvvhoLX7BgAaNHj+acc86hT58+gFZyU6dOpXfv3lxwwQWxLVs++eQTBg0aRGZmJldeeSVFRXqdvy5dunDrrbcyePBgXn/99WLXLbmlTCAQ4Pbbb2fu3LkMHDiQuXPnkpeXx5VXXsmwYcMYNGgQ77zzDqC3mJk4cSJjx46lR48e3HnnnQC0a9eOwYMHA5CRkUHv3r3Zvn17qXv+7LPPYquTDBo0iJycHJRS5W7Pc/LJJzNx4kS6devG9OnTeeWVVxg2bBiZmZls2rQJgHfffZfhw4czaNAgTj31VHbv3l3qulOmTOG9996LHU+bNi22SHJjwSJCYUy5xdFqcVhu8XRUcdkLPfsi8VNuoZDDyozj+KCh8VC/5rl9MB12lV4YuFa0zYTx91aY5J133uHMM8+kZ8+etGzZkqVLl3LCCScAet3I1atX07VrV7KystiwYQOzZs1i5MiRXHnllTz55JNce+21TJs2jU8++YSePXty2WWX8dRTT3HDDTcA0LJly9g6lE5Kbinj9Xq56667WLJkCY8//jgAf/zjHznllFN47rnnyM7OZtiwYZx66qmA3q5m9erVpKamMnToUCZMmFBsa5isrCyWLVvG8OHDS137wQcf5IknnmDkyJHk5ubi9/t56623yt2eZ8WKFaxbt44WLVrQrVs3rrrqKhYvXszf//53HnvsMR555BFGjRrFokWLEBGeffZZ7r//fh566KFi141uZzNhwgQCgQCffPIJTz31VBUrs2HgJkyROwOCEI6j5SYOD8lAnPKNRFTMcvOpwrjNy4s4uiXjOT5oaDwYy60KzJkzhylTpgDasnB2TQ4bNoyuXbvGjjt16sTIkSMBuOSSS/jiiy/YsGEDXbt2ja0vefnll7Nw4cLYOZMnTy7zumVtKVOSjz76iHvvvZeBAwcyduxYCgsL2bJlCwCnnXYaLVu2JCUlhfPPP58vvvgidl5ubi6TJk3ikUceoUmTJmVe+6abbuLRRx8lOzsbt9td4fY8Q4cOpV27dvh8Prp3787pp58OFN/OZtu2bZxxxhlkZmbywAMPlLmdzfjx4/n0008pKirigw8+YMyYMaSkpJR57w0RpbSyCHp0nUTiOIHZOeYWiJOjSiiiYpO4XUTitsixcnRLxtOz09B4qF+WWyUWVl1w4MAB/vvf/7Jq1SpEhHA4jIjwwAMPAKW3rylvC5mKKG8LnKpsKaOU4s033yy18v7XX39drizBYJBJkyYxdepUzj///DKvPX36dCZMmMD777/PyJEjmT9/foX3UJXtbK677jpuuukmzjnnHBYsWFDmCil+v5+xY8cyf/585s6dG3upaCyEIwoXEUJeW7kVxnHMzTHFIBQnyy0UicSmAgAQyANvaq3zdU4FiOf8OUPjoc4tNxE5U0Q2iMhGEZle19eLN2+88QaXXnopP/74I1lZWWzdupWuXbvy+eefl5l+y5Yt/O9//wPgn//8J6NGjaJXr15kZWWxceNGAF566SVOPvnkSq9d1pYyJbezOeOMM3jsscdi25gsW7YsFvef//yHAwcOUFBQwNtvv83IkSNRSvHzn/+c3r17c9NNN1V47czMTG699VaGDh3K+vXra7U9D8ChQ4fo0KEDAC+88EK56SZPnszzzz/P559/zplnnlnl/BsCYaWVm3hTCSiXVhZxQiJBipR+nw3HSWkGw0e6JYG4rVLidCixQka5GapPnSo3EXEBTwDjgT7AxSLSpy6vGW/mzJnDeeedVyxs0qRJ5XpN9urViyeeeILevXtz8OBBfvWrX+H3+3n++ee58MILyczMxLIsrrnmmkqvXdaWMuPGjWPt2rUxh5LbbruNYDBI//796du3L7fddlvs/GHDhjFp0iT69+/PpEmTGDJkCF9++SUvvfQS//3vf2MOI1Hvy5kzZ8a2w3nkkUfo168f/fv3x+PxMH78+FptzwN6LcsLL7yQE044gVatWsXClyxZwlVXXRU7Pv300/nss8849dRT8Xq9Vc6/IRCJ6DE3y+Umj5S4dsmJCpNrTzGIl0UYjig8hMlDb4Sr4jQ+FrEdSoqUB7dRboYaUKdb3ojIicAMpdQZ9vEfAJRSfy0rvdnyJn7Mnj27mONJY6Q+Pjt5RSE8/3cMa7pcRpsf32VPiyEM/O3cuOT96X0X0qdwKemRXLZ1m0yvyx+r/KRK2HO4kNBDvXFZFm3UPgovfQ9/91G1zvefb73Nz1Zezh7VnBSPRcaf47f1jyH5qI9b3nQAtjqOt9lhMUTkahFZIiJL9u7dW8fiGAzJTVhpBw0lbgolJa5LWlkqjBI3+fjjZhGGbMstOi8vXlMMlO38kmul44njFAND4yHh3pJKqX8opYYopYa0bt060eI0GKZNm9aorbb6SiQcxhIFlotCKzWuXXKiQihxk6v8SLyUmz3mVujSDjBF+fHp7lR2t2S+lY4/UqD7aw2GalDXym070Mlx3NEOqxbJtFu4oX5QX5+ZmJeg5SZgpeIJx2/LG0uFUJaLfEnBCsbHGgra3pJF9tSFYJymGETCuhzyrQz7QsZ6M1SPulZu3wA9RKSriHiBKcC86mTg9/vZv39/vW2sDEcfpRT79+/H7/cnWpRqE23UsdwE3WlxXdLKioQIi5siScEVJ4swbM9zi05diNcUg+hqKoVuW7mZuW6GalKn89yUUiERuRaYD7iA55RSpWfuVkDHjh3Ztm0bZjzOUB38fj8dO3ZMtBjVJrZyv1iE3Gn4C+On3FyEiYjb7u6M11SACG5CKF9TIH5TDJS991zA0wQKiOuUCEPjoM4ncSul3gdqvNKvx+MptgKIwdCQcXZLRjyppKj4dktGxE3AlYonXHpdz5oQCmvLzeVPI6BccVNu0Y1Voyu1GMvNUF0S7lBiMBiOEInulm25Ud50rdzi1CVvqRBKXARdKfji1N0ZCoWwROH1+sjHH7d5blELNmxbhGZ9SUN1McrNYEgilL2GqFgulDcdj4RRoaK45O1SYSKWW3d3xskiDIf0SiJer5dcUuLXfWgr+bCvmT423ZKGamKUm8GQRESiY26WC/FpZ4qCOM0di465hd1pegX/OLjXh20HGJ/XR57yYwXjZGHZ+Sp/MyC+C0gbGgdGuRkMSYTTW9KylVt+TnZc8napEMpyo7xpWKi4uNeHg9pys9xuCsUftykGorTlZqU0B+K3RY+h8WCUm8GQRKjYmJsLd4pWboW58bPclOixPCAuThphe7K15fLEd9K5reQlTSu3eM2fMzQejHIzGJKISCQ65uaOKbeivPg07NExN2LKrfaKKGKPuVkuDwErBXcoTpZbROfrTm0BxHlHckOjwCg3gyGJUA5vSU+KvaRVnBp2F6Fi3Z2hOOR7xHJzE3Slxm3SeXRjVV9qBkXKTbjQeEsaqodRbgZDEqFCtuXmcuNP127wwTit1+i2uyUtv7bcivJr390ZDmpPTsvjJ+ROwxeJjxem2I41KX4/efjju2mroVFglJvBkEREvSXFcuFP08otHhaWUnqBY2V54trdGV3g2PJ4CbvT8Kv4WG6WbbmlpKSQj5+ImedmqCZGuRkMSURs+S3LjT9dd0vGw2qJbiqqLBduu7szEAeLMBLWlpvL4yPiTcNLMDZHrTZYkSBhXKT73eQpv5nnZqg2RrkZDEmECh+x3NIztKegisMcr1BE6W5Jy4M3NbrIcRwst2i3pNsXVy9MKxIkJB5SvW7yiN8WPYbGg1FuBkMSEZ0Ubbk9+P1+ipQ7LktahSO6W1Jcbry25RaMw9yxmLekx49403RgHKwsS+kdDNJ82nKTOG7aamgcGOVmMCQRUe9Dt8uDiJAvKXGxWkKxbkk3KbajSlycNMK2y77HG1tRJR4WoRUJEhYPqV4X+fhxGeVmqCZGuRkMSUR04WSXW2/YkU9qXBr2sN0tieUhNcVHofLEx0kjNubmx2V7YRbm1V5pulSQiOXG47IokBTccdzXztA4MMrNYEgiwsEj3ocAhVYKrlDtlVAgGMYjYcRyk+HT41jxGMuLRC1Nr/fIiipxWAvTUkEi4gHQW/SE4rf1j6FxYJSbwZBEqGg3n9sHQJErDU8clrQqDOh8XW4PGX6P9kCMg+Um9o4F4vbjiU4xiMNSWS4VImxp6zXoSsUbMZaboXoY5WYwJBFHHDS0ctOrftReuQXsHb3Fk4LfY5FHSnycNOz5aLg8eFOjk85rr9zcKoSyLbeQKxWPCsRlioGh8WCUm8GQRKhQ1EHD7pJzp+OPg9USLNSKTLypiAhFVgpWHJRbJLrXnMuHLzU+XphKKVwqRMTSZaA8US9MMx3AUHWMcjMYkohot6TLttzC7jRS4qHcinQeljcVgKI4reAfneeGyxubdB6upRdmIBzBQwhlK7eI7YVJoVk82VB1jHIzGJKImOXm9QMQ8aSTQu2dKUL2wsMun1ZuAVcqnjh4IEa7UXF5SE1rQkRJracYFATC+CSIsscdiSo3s2GpoRoY5WYwJBOOeWMAyptOGoUoeyucmhKyuyVdtuUWdsdnBX8V7ZZ0+0j3e8il9o4q+YEw6RQQ8dgrnvj1WB5FxnIzVB2j3AyGZMJWFh7bclO++HgghgNakbn9evwq7EnHr2pvEbpDeYSxwO0nzecmlxQkUDtZ8wNhUilE2SueWPaKKqZb0lAdjHIzGJIICWol5LXd6i2//s7Pya5VvmF7zM3jUG4pqgCUqlW+nlAeBZIKIvjcFrkqFStQ+27JNCmKbarqSW0GQDA/u1b5GhoXRrkZDEmEBHLJVz4slwsAl19bLQW5tZsYHQlqK81jj7kpXwYuIrX2QPSG8yh0aYUpIuRbqbiDtVNu+YEQaRQgPlu5pTUDoCgvu1b5GhoXRrkZDEmEhPIpEH/s2BXdjbuWDXuwQCuxtHTbOcNWmqqwdkrTF84jYKXGjgusNNy1nGKQHwiSJkVYPq00o/vaBYxyM1QDo9wMhiTCFcyn0KHcohOjA7XcWFTlHwTAl9ESAMt20ijMza5Vvt5wHqGo4wd6RRVfuJYOJbna8ovuO5eamkFQuQjFYedwQ+PBKDeDIYlwhfIJSErs2JuqLa1gLRt2q+AAEQT8zfRxiv4uOHygxnlGIoqUSB5hh3ILuNLx1XJFlfzD+wFISdcyZqR4yCGFcIFRboaqY5SbwZBEuMP5FLmOKDef3cCHarnqh7voILmSDi69XmN0HKswt+bKLacwRAtyCPubx8JCnnRSIrVTboHsXQCktOgAQIbfQ45KRRlvSUM1MMrNYEgiPOFCQtaRbsno3mvhWo6NeQMHybWaxI59tnIL1KJbcl9uIcfIQSLpbWNhIXcGforA3nS1JkRytHJzNWkDQIZfTzEwUwEM1aFWyk1EZojIdhFZbn/OcsT9QUQ2isgGETmj9qIaDA2ftPAhAt5mseNo11xtd+NOLdpLga9V7Nifoa2t2nR37t69E5+E8DXvGAuL2O77tZlwHTmslRvpWrk18XvIofZTDAyNC3cc8nhYKfWgM0BE+gBTgL5Ae+BjEemplKrdMgsGQwOneeQgO1Jax47TUlMpUu5aKYtAKEK7yE72po+OhaXYjiW1cdI4tPMHADKOOTYWppxLZaW2qFG+3pwthHHhspVbut9NjkrFFTSWm6Hq1FW35ETgVaVUkVJqM7ARGFZH1zIYGgQFebmkSwEq7Yhyc7vs7WlqMR9tx559tJFsVPMusbC09HSCyoUqyK5xvkU71wLQ9Nh+sTCp5RSDcETRqnALB/ydwKUXTnZZ0flzZlcAQ9WJh3K7VkRWishzIhIdWe4AbHWk2WaHlUJErhaRJSKyZO/evXEQx2Con+zftQUAV5O2xcLzJQVXoOZOGltXfw5A065DY2FRD8TaWISuPasI4MHV6rhYmGUrt0ANlwv7btdh+somilocXyy8yJVe6ykGhsZFpcpNRD4WkdVlfCYCTwHdgYHATuCh6gqglPqHUmqIUmpI69atKz/BYGig7N+6DoCMdj2KhRdaqbhCNW/YC3/4CoAOmWNiYeleNzmkIjVUboXBMMflLmVbRv+YhQXgSo3OnztYo3zXrVtJezlASs+Ti4UH3fYUg1ouF2ZoPFQ65qaUOrUqGYnIM8C/7cPtQCdHdEc7zGAwlEPhTq3cWnfNLB5upeKp4d5rkYii0+7/stnbk65pR1z2LUvII63GS2Ut/nYpY+RHNne/sFi4O6V2q4nkr3gbgBb9Ti8WHvKk4wpEIJgP9oLKBkNF1NZbsp3j8Dxgtf17HjBFRHwi0hXoASyuzbUMhgbPvu85TBotWrcvFhxwpeGt4cToJf/7hOPVD+T1Oq9UXL6VhqcGyk0pRfZnMwlh0fHkK4rFRefP1cQL87udBzkp+9/szMhEHF2dABGv2RnAUD1qO+Z2v4isEpGVwDjgRgCl1BrgNWAt8CHwG+MpaTBUTNPstezwdUWs4n/LoCsNXw32XguHI1gL/o/DpNPrzF+Vii9ypeOtQXfnkuUrOT1vHlvanoHHMQ0AwG8rt3A1lZtSisVvPkI3axcZP/ld6Xifrdyq2Y26L7eI91ftrNY5hoZBrZSbUupSpVSmUqq/UuocpdROR9w9SqnuSqleSqkPai+qwdBwyck5TPfQJnJaDS4VF/Kkk6Kqr9wWvPEYQ4JL2ZJ5LR5Hl2SUgLv6ThqH8wtR714HIrS/4L5S8SmpaQSVq9pLZX2yaAkT9z7N9qYnkD5gYqn46NY/1bHcwhHFX//2IMHXrmT11n3VksdQ/zErlBgMScCmFV/ikTCp3U8sFRfxppNaTeW24puFjFh7D9/7+9H33N+XmSboyajWUlmRiGLhs7cwLLKC3SfNwN+qc6k0ejfulGotlbVm8w7affgLXBa0uew5ECmVxkqp/m7cL7z2Og9F7mei6yuWzX+5yucZGgZGuRkMSUDO9wsB6DzolFJxyteEFIogHKxSXlmbNtD2vcvIszJoc8UcxFW231jIk6E3LI1EqpTvu688yk8PvMB3bX9K59N+XWaaNJ+bHJWiJ3FXgW37D3PgxUs4Xn4kMPFZ3C27lJnOZSu3UBUtwjf+8znnrLuZg952FFpp9N7yT3YdKqzSuYaGgVFuBkMS0HTX12RZnUlv3rZ0pK/qe7rt3beH8MsXkEYRkYtfo0mbY8tNq3xNsFBVsoY++vdcxm+8k81pg+jx82fLtK5AK7dcUrECled5KD/AtzN/yWi1lH1j7qHZwJ+Wmza2YWkVphh8uvw7Bn5+NSkuRZOr5lEw8haGWBv4cP67lZ5raDg0SuUWDofJLywkGAyiImEzd8aQUEKBQo4rXM2uFkPKjI+u+pFfyfY0+QUFbHv6Io6NbGfP+Gdo2/OEii/sr5qTxv++/JQTv7mePd5jOfY3/0I8KeWmTfO6yCEFVyUrqgRCEd6d+UfOCb7P9j6/oM0pZVuCUXz2mGFRJQs9r/pxN6n/upzO1h5cP/snrmN60nzUVeRZTei0ZiaH8qtm/daGSDhCUSBAJGLalUQSj7Ulk47sfbvZsWExOdvWEtr3Ayl5W2lStIvU8GEyVC4ZUkCqI31QuciVVPJJId9Ko9BKJ+hOJeROI+RJR3nSwZeO+NJx+TNwuz36zVVcIIISCxBQEZRS9kcrzehxLC4SscP1dywcVfxYKSSaBoVgfyuFiP6uEKnwsNqUulolly8dXTykMvErbRZUhYdxvV7l7z6qgqPSASXjvYX7GSNFuLqNoSzc0b3Xcg9S2i1EEw5HWPrENEYHl7Fm2F/pO7x8KyhKdMPSQF423mZlW3grV62k+0fTKHKl0fKX83CllieBLavLIl9ScYfK75ZUSvHacw9xyeFn2NbudDpecH+lsqakNyGipMJuyc17DrP7+cs4VdZy6KwnaXqcXZ6+dPIH/pyffPswc/77Xy7+ac3XcVfhEHu3rGXvxmUUbl+Fyt6Kv2A3TYN7SIvk4FNF+AngE0VYCQV4COAhIF4KxU+RlULQ8hN0pRB2pRJ2p6I8KShPKnjTEW8qLl86eNMIiwdU2H4BD+vuYxWGSFi3E9HvaDsRTRdrXyL2Ofan2JMnKBG7XbBbh5g1fuRYodMoO1of69YIEfJS2nHalOtrXJ51SYNSbj+s/prUN6bSlr00s8MK8LLbaku2rx2HfD3Y7mtK2JuB5fagIhHCkQiEinAHc/GEcnAHc/GGckkL7cUf2II/kk8KBaQQSOStGRo42TSh+7DxZca507QSKsrJLjNeKcWCZ3/PT3I/ZEW3qxkwoWIrKErUSaMg5yDeMuK/z9pCxpuTSZEg4cvmkdKq/C5OJwVWOp7QrnLj33jtBS7a/le2NTuBjle+BFblHUgZKT5y8Ze70POeQwV8+4+rmcQi9o28nVbDphaLb33qbylY9jTHLbmL7HFjaZbmq9K9RPKz2bpyAQfXf0bqzsUcW7SBYwhyDBBWwj5pwUF3a/akdCfsb47ypKLcKYjLA5EgEipCwgEkVIgVysMVKsAdLsAfysEb2ItXFeJXhaSoQlKkbtqYsBIiugMa0KrLVk+Ob40l1bM2v1a9AaPc6pyWHbrxfUYmPx7Tj5RjB9OuxyBatT2WLlX481SGCgfJzzlEXu4higIhwPHmZL8dWZZlf7RFZ1kWlghiWYhEf7v0t0uwLBcigiUWYuljSywsC8S2CkFsK9Eq+3dN70eVtmxKZie1yN9QPZoh5Tby3tRmQPljbgteuY+f7HyWlS3HM+DSyq2gKLENS3MO0rRE3PY9+yh44QJ6sZfsSa/RpsuAKucbcKWWO8Xgnffe5ay1t7AvpSsdrnkLPP4y05Ukw6+XCytrKsDhwiAfPPV7Lg99wJ7MqznmtJtLZ5DaggMjb2PoF3/gvaev4yfXPonfW7r5ixQcYvvKTzi05r9k7FpEx8BGOqNor1x85+rO4pbn4WqXSZPOA+jUcyBtmjalTZXuoHKKgkHycnMoyMshWJCDW4V022G5EZdLtx2W/ta/LVwuN1guXK4jbY9lue04F2JZuABXTQSKthGOniUdpGLtxwlJPKTToJRb0+atGXLzv+okb3F5SGvWirRmrSpPXA8oqbaMGkteonuvhfKzS8V99vYznPz9vazJOJF+17xYrRceb2zD0uJOGgcO57Ll6ckMV9+x4/Sn6ZhZ2oOzIgLudPyF+aXemOYv/JJRi39FvqcFbX71b8Tubq0KGfa2NxkllFthMMycp+7ml4UvsbvLubQ5r/TcuygdfvIrvv/xWyZsncua+1aQd9zZpDZtTaQgG9m7nrQDazg28D2diHCM8rDG1YvvWl+O/7jRHDd4LH1b1+1/3+fx4GveAprXbKuguCNHuidLdFjWCxqUcjMYGiJHlFvxLrmv5s/lxGW3stHfl57XvoHlKatzsXx86boRDTqUZnZOHusfv5CTwkvIGvEXupw0udryhjzpuAtDECoE2/nki8Xf0P+TS3C7LFKunoerabtKcilOht/DXlJo4tiwtCgU5uWn7+MX2Y+yu80o2lz6bMVdnCL0uPIZ1v67P82/fYK+Gx6IRR1Sqfzo7spnrS/FfdwYug8ex+DWLat344akwig3gyHJadaiDUXKgxzeEQv74t8vMPSbm9ju6cKx176Lx59e7XxTm9hK03bS2J99mDVPXMyY4Fd8N+hP9DzzupoJnNoKcoDc3dC8C598+T/6fPQz0qwQ7mnv4j2mZ7WzzPC7OaxSObYoG9AW24tP/ZWr9j/I7pZDaXfV68V2JygXEfqc/VvUhGvZtXMbh7L3401ryjFtO9HfX4XzDfUGo9wMhiSnaZqPTXIM7kM/EAlHWDjnXkZ+/yA/+nrQ/jfv4c+oWTdW04x0DqtUJHsrP/yYRc4LP2NMZA2bBv2BnhNvqbG8ckxv2A2BHWv46PPFnLT0RtwuF65p75J67MAa5elxWWy1OjAq/2P2HDzMp89O5+q8V9jdajjtfvk2eFMrzaOYjJZF2w7H0rZD1ZxkDPUPo9wMhnrAHl8XMg8t4dsHf8rYgi9Zkz6C4379amz+V03o0CyFz63eDN32LvnPfURHyWfTmEfpfsrltZK1zXGDKFzpIe/13zBeZbPH24nUn7+Fv22Pyk+ugNzWg/Due4/I3wcymf1s63wuHS/9B7ir5vloaFw0ykncBkN9o2jgFaSoAvrmf8O3PX5Ln5vfr5ViA+0NW3DizexTTdmb0o1Dl/6n1ooNYHS/rrzR4hcU4WFD54tpe/MXtVZsAIPPuITPZCghdxq7xv2NjtNmG8VmKBcp6RKeSIYMGaKWLFmSaDEMhqRk8+ZNtGjWjKbNjaODoWEhIkuVUmUv0VNDTLekwVBP6Nq1e6JFMBjqDaZb0mAwGAwNDqPcDAaDwdDgSKoxNxHZC/wYh6xaAfVl610ja91Rn+StT7JC/ZK3PskK9UveeMnaWSnVOg75xEgq5RYvRGRJvAcn6woja91Rn+StT7JC/ZK3PskK9UveZJbVdEsaDAaDocFhlJvBYDAYGhwNVbn9I9ECVAMja91Rn+StT7JC/ZK3PskK9UvepJW1QY65GQwGg6Fx01AtN4PBYDA0YoxyMxgMBkODo0EpNxE5U0Q2iMhGEZmeaHmciEgnEflURNaKyBoRud4OnyEi20Vkuf05K9GyRhGRLBFZZcu1xA5rISL/EZHv7e/ard4bHzl7OcpvuYgcFpEbkqlsReQ5EdkjIqsdYWWWpWgetZ/jlSIyOAlkfUBE1tvy/EtEmtnhXUSkwFHGM4+mrBXIW27di8gf7LLdICJnJIGscx1yZonIcjs8Gcq2vHYrKZ/dYiilGsQHcAGbgG6AF1gB9Em0XA752gGD7d8ZwHdAH2AG8LtEy1eOzFlAqxJh9wPT7d/TgfsSLWcZz8EuoHMylS0wBhgMrK6sLIGzgA8AAUYAXyeBrKcDbvv3fQ5ZuzjTJVHZlln39n9uBeADutpthiuRspaIfwi4PYnKtrx2KymfXeenIVluw4CNSqkflFIB4FVgYoJliqGU2qmU+tb+nQOsAzokVqoaMRF4wf79AnBu4kQpk58Am5RS8VjpJm4opRYCB0oEl1eWE4EXlWYR0ExE2h0VQSlbVqXUR0qpkH24COh4tOSpjHLKtjwmAq8qpYqUUpuBjei246hQkawiIsBFwJyjJU9lVNBuJeWz66QhKbcOwFbH8TaSVHmISBdgEPC1HXStbcI/lwzdfA4U8JGILBWRq+2wNkqpnfbvXUCbxIhWLlMo3jgka9lC+WWZ7M/ylei38yhdRWSZiHwmIqMTJVQZlFX3yVy2o4HdSqnvHWFJU7Yl2q2kf3YbknKrF4hIOvAmcINS6jDwFNAdGAjsRHdLJAujlFKDgfHAb0RkjDNS6X6IpJlLIiJe4BzgdTsomcu2GMlWluUhIn8CQsArdtBO4Fil1CDgJuCfItIkUfI5qDd17+Biir+YJU3ZltFuxUjWZ7chKbftQCfHcUc7LGkQEQ/6AXlFKfUWgFJqt1IqrJSKAM9wFLtIKkMptd3+3gP8Cy3b7mg3g/29J3ESlmI88K1Sajckd9nalFeWSfksi8g04KfAVLtBw+7e22//Xooew+qZMCFtKqj7ZC1bN3A+MDcalixlW1a7RT14dhuScvsG6CEiXe03+CnAvATLFMPuT58FrFNK/c0R7uyPPg9YXfLcRCAiaSKSEf2NdihYjS7Ty+1klwPvJEbCMin25pusZeugvLKcB1xme56NAA45uoASgoicCdwCnKOUyneEtxYRl/27G9AD+CExUh6hgrqfB0wREZ+IdEXLu/hoy1cGpwLrlVLbogHJULbltVvUh2c3UZ4sdfFBe+p8h37D+VOi5Skh2yi06b4SWG5/zgJeAlbZ4fOAdomW1Za3G9qrbAWwJlqeQEvgE+B74GOgRaJlteVKA/YDTR1hSVO2aKW7EwiixyF+Xl5Zoj3NnrCf41XAkCSQdSN6LCX67M60006yn4/lwLfA2UlStuXWPfAnu2w3AOMTLasdPhu4pkTaZCjb8tqtpHx2nR+z/JbBYDAYGhwNqVvSYDAYDAbAKDeDwWAwNECMcjMYDAZDg8MoN4PBYDA0OIxyMxgMBkODwyg3g8FgMDQ4jHIzGAwGQ4Pj/wEvLICGW5CptQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABvrklEQVR4nO2dd5xVxfm4n/f23WUBaUqTJp2lSBEFFBIVlSgqKiiKaIzRxBhrYop+0cRfFDUa1EhiUIwVe2+xrIoJIghKUVR0pUjHhe23ze+PmXs5e/duvRf27u48n8/dPWdmzpz3zJkz77xTRSmFxWKxWCwtBVdjC2CxWCwWy4HEKj6LxWKxtCis4rNYLBZLi8IqPovFYrG0KKzis1gsFkuLwio+i8VisbQoMkbxiUhPEVEi4mlsWZo7IjJbRBYfoHtlicirIvKDiPzmQNwz4f4FInLsAbhPvohcVI2fzduNhIgsFJE/19cvzTLMEZFHavA/IHm0uWDKku9EZEZD48gYxWdpGOajColIseN3wBVMDRwLDAW6K6XmxhzNx96z0aTKIMw7nFOP8OeYD79ERJ4XkXY1hP2niKwTkaiIzE7wO19ElovIXhHZJCJzY8pZRPwissDcp0hEVorIiQnXnyUinxv/tSJyqsNPROTPIrJZRPaYisFgh/9cEdlo7v2diPy+Hs9fr/RqyojIRBHJr0f44eadlpr/w2sI205EnjP56DsROcfhN0lEVolIoYjsMuG6VhPHDmdFWkRmJpRHpabiN9L4Xyki35h3/72I3JlYKRSRX4vIt0a2z0WkX8xPKXUQcBtwXV3TJZG0KT5bm21UFimlWjl+c2u/5IDRDihQShU3tiCpYAryRq8oGuXxD+A84GCgFPh7DZd8CvwC+CSJXzZwBdABOAL4MXCN8fMAG4FjgDbAH4EnY5UVUwg+AlwFtAauBR4TkU7m+jOBC4EJ6DzwP+Bhx70XAAOUUq2Bo4CZInJ6HZIgI8mE8k9EfMAL6PdyEPAQ8IJxT8a9QBCdj2YC9zkqJ2uByUqptkAX4CvgviRx3Ap87nRQSj3qLI/Q+e8b9uXBF4HDzbsfAgwDLnc8x0XAT4EpQCvgJ8DOhPuuBtpXmxi1kNKHbGrtvxWRz4ASEfGIyFgR+a+pKXwqIhMd4fNF5C8istRo+xeqq62KyAWO2uQ3IvLzBP+ppha6V0TWi8gJxr2NqaluMbXNP4uIu5bn6CMi75iazU4ReVRE2jr8dovI4ea8i6nhTDTnp4jIGvO8+SIyMCF9rhGRz0ytd5GIBOqf0vVHRK4z6RKrjZ9WTTgxNa7tJi1XicgQ4+cXkdtFZIOIbBOR+SKSVU9RPEC0Flnbi8hL5v4fm3fmrEEqEblERL4y6XyviIjxq/bdORht0uAHEXkw9g5E5CARedm8zx/McTfHffNF5GYR+RCtYHrX8qw9RORDk+ZvikiHBP+ZJi13isgfaomrOmYCLyml3jeVieuB00UkN1lgpdS9Sqm3gfIkfvcppT5QSgWVUpuBR4Fxxq9EKTVHKVWglIoqpV4GvgVGmsu7AYVKqdeU5hWgBOhj/HsBi5VS3yilIujCeJDj3uuUUiUOcaLAYQ1JEBH5jfnevxeRi0x+qRKXiOSKyLsiMi+Wf4AOIvIf887eE5EejvB/k31W6XIRmeDwmyMiT4vIIyKyF5hdi5g+Efm3uc8aERmV4D88DeXERPT3dpdSqkIpNQ8Q4EeJAUUkB5gGXK+UKlZKLUYrpPMAlFLblFLfOy6JkPB+ROQotOJ6sBa5zgf+rcwyYUqp9Uqpwlg0ON696Mrl/wFXKqXWmry1Xim1OyHOqHnWhqGUavAPKABWAt2BLKArsAs4Ca1UjzPnHU34fGAzOrFygGeAR4xfT0ABHnM+Bf0RCbrWWYquJQCMAfaY+F3mvgOM33PoGnEO0AlYCvy8luc4zMTlBzoC76MzT8z/Z+gaUDbwBnC7ce+H/tiPA7zAb4CvAZ8jfZaia0zt0DWjS6qRYTxQWMNvfDXXzYmlYYL7mea+LmC6kbOz8ZuNLpQAJgPLgbYmrQc6wt2J/hjaAbnAS8Bf6pE/vOhafhX5EsI9YX7Z6MJxY0y+2LcCvGxkPBTYAZxQx3dXgK4ddjfP8SHwZ+PXHv3xZ5vnewp43nFtPrABGIz+yLw1PEM+sN7kiSxzfktC3r7f+A0DKoCB1cRV0/t+AfhtglsxMLKWNF4MzK4lzPMxmZP4HYxWnrHvzA28B5xijk8FNgE5xr+HyVf9TD6Y60xbE+Y6I7tCWwTdGlAGnQBsNe8oG61gFXCY8V8I/Nm866Wxd+/wKwKONvnnbwn57lxznQe42twn4PjuQua5XUBWDTLOMWl3kkmrvwBLEvJoXcuJl4HrqvG7EngtSfirk4QdAZQmuF2DrlTFzg81eTFqnnW2w8+NtuBG4ihPktynB1pp9kpwPwfYa97VDmCY454K+DW6HPgWuBFwJVzfGwgDw+ubZ5RSaVF8FzrOfws8nBDmDeB8c5yP48NCF3JBk4g9cSi+aj7KX5vjfwB3VvNxVjgzIXA28G49n+tUYEWC24vAKuAzwG/crgeedIRxoRX7REf6nOvwnwvMTyXNk8g6x6RhoePXJUm4lcBUcxzPqOja4JfAWGfmQivBEqCPw+1I4Ns6yjXcfCzbMIVQNeHcJlx/h9ufqar4xjvOn6T6j7/SuzPv4BLH+UnA+hpk/sFxng/cVMfnzQf+6Dj/BfC6OY7l7W4O/6XAjAa877dJKBSdea6G62pUfOhmyU1AhyR+XuAt4B8J7j9FK64wumI6xeHnQysSZfy/JaHwc+SzEejCLbcB6fEAjsoYuiKUqPgeQFd+rk24diHwhOO8FbqQ7l7NvX5gXwE9B3i/jjLOAd5ynA8CyhLyaMrlBLo8eiLB7VFgTpKwE4CtCW4/A/KThG2HLtvHOtyuBO4zx7OpXvFdnyxOh39f4E/AIeb8KPP+XkFXdHuiy6efJbn2dhP2+fqmVTr6LDY6jnsAZ5rmqEIRKURbMp2rCf8d+qNKbBJCRE4UkSWmmbEQXWDFwnVH164T6WHi2+K4/z/Qll+1iMjBIvKE6KbRvehaY6JM96Mt1buVUhXGrYt5BgCUUlHzfM5O4K2O41L0x5VunlRKtXX8vheRWaKbgmPpMIQk6ayUege4B93ev130YIjWaOspG1juiON1414rSqmVaCvqf+h+pOroyL7+pBgbk4RLmo51fHeJea6LuTZbRP4humN/L9pabCuVm8aTyVIdtb3rdOSFYnSfmpPWaMulQYgelPIX4ESl1M4EPxfaag8Clzncj0UX0BPRSu4Y4F+ybzDFDcBo9LcaQCu2d0Qk2xm/0qwAykyY+tKF2vPOFLSlPT+JXzy80k3Hu9mXP64R3d2yx+T/NlTOW6nkjYBU7hc80HmjzmGVbmaM9Rd6RKQLuk+uLs31s8y1SVFKfQWsYV8/dZn5P1cpVaiUKkCX4Sc5rxPdl3w5cLRS6tQ6yFGJdCg+5TjeiLb4nIVwjlLqFkeY7o7jQ9G1/cSPzY9uBr0dOFjpDtZX0bXD2H36UJWNaIuvg+P+rZVSg5OEdfL/zHPkKd3heq7jXohIK+AudIf8HNnXL/k9WtnGwol5vs213K8KIjJBKo+ESvxNqD2WeFw90Ir6MqC9Sb/VzmdyopSap5Qaia6J9kMPVNiJzoSDHWnZRunO6jqhlCoHXsPRt5OEHWiLoJvDrXs1YZNR47tLEt+h6PcGuvmqP3CEufZo4+683pm/M4E16KZSAESkN7qZ7suGRCa6b/x+4GSl1KoEP0Hn+YOBaUqpkMN7ONriWaZ0H+DHwEfoUbwx/0VKqU1KqbBSaiF6wEV1ecFD8m+6NrZQe965H11pe9X0bZEsvPnO2wHfm+/tN8BZwEHmG9pD5ueNoY7+S9AjqtckCfsl4BGRvg63YdWEBf1+OqGV4xi0MbNWRLaiLfsxIrLVWWkUkXHoSsTTtcjtfPfr0JUsZ9omS+e+wB6l1Ae1xJ2UdI9SewQ4WUQmi4hbRAKih+M6M+a5IjLI1PxuAp5WuvPbiQ/9Me8AwqKHUR/v8F8AXCAiPxYRl4h0FZEBSqktwJvAHSLS2vj1EZFjapE7F10D2iN6tNq1Cf5/A5YppS5Cm+CxmuOTwBQjhxddkFYA/60toRJRepBBqxp+9XnBOexrO0dELkBbfFUQkdEicoSRvwTdFxE11uv9wJ2mdoVJ58mOa5U4Bi9VQwX6fSbFvPtn0RWKbBEZgK4l1pXa3h3AL0Wkm6mw/AFY5Li2DCg0fv9Xj/s2Fo+iv7EJphC/CXhWKZXU4hMRnxkoIYDXfJMu4/cjE980pdTSJJffh+7zPVkpVZbg9zEwIWbhicgIdPPZZw7/M41F7hKR89CtMV+b85+LHlwkIjIG+CW6GTcmd4EkTL+ohifRZcFAU6ZcX024y9CF6ktSeYDWSSIyXvTIxz+h+942ovNGGP0NeUTkBqpaSJlGPrqp9nLRA9NiFvo7iQGVHlj0LHCTiOQYJTUVM/JWRE4Xkf7mXXUE/oruQtiNrsz2RFduhqOt+xXo/jZnWX4+8Exi3hQ9AClWpgwCfod590qpUvT3+RvRg5G6ARej+yqdeNFlS4NIq+IzGWYq8Ht0htmILoic93kY3ba+Fd0EcjkJmIS6HJ2pf0B3hL7o8F8KXIAefLEH3ckes7xmoQvatebap6nc1JqMG4HDTVyvoDMEoEePojvQLzVOVwGHi8hMpdQ6tIVxN9pCOhldSARrud9+RSm1FrgD3cy4DchDD+pIRmu0gvsB3Qy4Cz1HBnS7/tfAEtMU+BbaQkJEuqObRVYlRphAlNrz2WXoZqSt6PzxOHXP1NW+OwePoStE36CbyGOTlu9CN4HtBJagrYJGpyYLXym1BrgErbC2owvoXziufU0qz4l7E63cjwL+aY5jlu316HR/1dGy8JqJpwfwc3TBttXhP9PI8R667+ppESlCt9D8P6XUmybuW9FTKVai+52vRCvYQuN/GvpdFKErzHebX2xYfnv0O6kRpdRrwDzgXUxeNV4VCeEUugDdhG6yi42afAxd4dmNHqhxrnF/A50fvkR/F+XUr2lzv5Dk/cYx5c6p6DKwEN1ve2qsPBKR38fer+EX6Py/Hf3NXWryF+jumtfZ941H0e8MpUeMbo390N9eyBzH5AygreVkzZzjgFUiUoJuyXsVrTNiXIauzH6PLsMeQ/fTOnFTy2jxmhDTSXhAED0R8xGl1L8O2E0t+wURORfdDPq7WsIdjy7YBqiqQ5Kru+ZWdGf3+alLamlqiMh44JdKqbMbcO1AdLO+XykVTrtwloxA9CIdZyilxjTk+kafdGlpmiilql2CKYF84D/AGhG5Qyl1e2IA07zpQ9csR6NHCyZd/svS/FF6Tlmdl9QTPUf1VfRgrFvRQ/Kt0mumiMgOtJXa4BWqGn0ligOF6MnXyQaNJBvpZUkTSk+OnqmU6pxM6Rly0U2UJej2/TvQ89UyimryT70GHln2Cz9HF4Tr0X1cl9YcPP2YJshkeaPOS7FZ6oZSqqNSarDSiyY0iAPa1GmxWCwWS2PTYiw+i8VisVggw/r4OnTooHr27NnYYlgsFovlALJ8+fKdSqk6LY6RDjJK8fXs2ZNly5Y1thgWi8ViOYCIyHe1h0oftqnTYrFYLC0Kq/gslgzHDkCzWNKLVXwWS4bzp9tv4/lHa9pr1mKx1IeM6uNLRigUYtOmTZSXV9lH02KplkAgQLdu3fB6vY0tSsrcUHKz3v9638pkFoslBTJe8W3atInc3Fx69uyJVFp03GJJjlKKXbt2sWnTJnr16tXY4lgslgwj45s6y8vLad++vVV6ljojIrRv3775tRJEEzcxsVgsDSHjFR9glZ6l3jTLPFOxt7ElsFiaBU1C8VksFigv+qGxRbBYmgVW8dUBEeHqq6+On99+++3MmTOn8QSqhfz8fP7733rvhVuJE044gbZt2/KTn/wkTVJZUqVsb512dbJYLLVgFV8d8Pv9PPvss+zcuTOt8SqliEYbvJditaRD8V177bU8/PDDaZLIkg4qSqzis1jSgVV8dcDj8XDxxRdz5513VvHbsWMH06ZNY/To0YwePZoPP9Qbnc+ZM4fbb9+3C8+QIUMoKCigoKCA/v37M2vWLIYMGcLGjRu59tprGTJkCHl5eSxatAjQymvixImcccYZDBgwgJkzZyadyDxv3jwGDRrE0KFDmTFjBgUFBcyfP58777yT4cOH88EHH9Qo43nnnceRRx5J3759uf/+++Px/vjHPyY3N7fGdHnqqacYMmQIw4YN4+ij9abe5eXlXHDBBeTl5TFixAjeffddABYuXMipp57KcccdR8+ePbnnnnv461//yogRIxg7diy7d+tC/f7772f06NEMGzaMadOmUVpaWuW+Y8eOZc2aNfHziRMnNtul7qLRfe88WGL7+CyWdJDx0xmc3PjSGtZ+n96Pf1CX1vzfyYNrDffLX/6SoUOH8pvfVN778Ne//jVXXnkl48ePZ8OGDUyePJnPP/+8xri++uorHnroIcaOHcszzzzDypUr+fTTT9m5cyejR4+OK5EVK1awZs0aunTpwrhx4/jwww8ZP358pbhuueUWvv32W/x+P4WFhbRt25ZLLrmEVq1acc011wBwzjnnVCvjZ599xpIlSygpKWHEiBFMmTKFLl261CntbrrpJt544w26du1KYWEhAPfeey8iwqpVq/jiiy84/vjj+fLLLwFYvXo1K1asoLy8nMMOO4xbb72VFStWcOWVV/Lvf/+bK664gtNPP52f/exnAPzxj39kwYIF/OpXv6p03+nTp/Pkk09y4403smXLFrZs2cKoUaPqJHNTI6JUvHYaKi9qVFksluaCtfjqSOvWrZk1axbz5s2r5P7WW29x2WWXMXz4cE455RT27t1LcXFxjXH16NGDsWPHArB48WLOPvts3G43Bx98MMcccwwff/wxAGPGjKFbt264XC6GDx9OQUFBlbiGDh3KzJkzeeSRR/B4ktdjapJx6tSpZGVl0aFDByZNmsTSpUvrnCbjxo1j9uzZ3H///UQikfjznHvuuQAMGDCAHj16xBXfpEmTyM3NpWPHjrRp04aTTz4ZgLy8vPizrV69mgkTJpCXl8ejjz5aybKLcdZZZ/H0008D8OSTT3LGGWfUWeamRiSqCCv9mYbLrOKzWNJBk7L46mKZ7U+uuOIKDj/8cC644IK4WzQaZcmSJQQCgUphPR5Ppf4755yynJycOt3P7/fHj91uN+FwuEqYV155hffff5+XXnqJm2++mVWrVlUJU52MUHXYf32mAcyfP5+PPvqIV155hZEjR7J8+fIawzufx+Vyxc9dLlf82WbPns3zzz/PsGHDWLhwIfn5+VXi6dq1K+3bt+ezzz5j0aJFzJ8/v84yNzWiSlGOj1aUEy2vuUJlsVjqhrX46kG7du0466yzWLBgQdzt+OOP5+67746fr1y5EtBbLH3yyScAfPLJJ3z77bdJ45wwYQKLFi0iEomwY8cO3n//fcaMGVMneaLRKBs3bmTSpEnceuut7Nmzh+LiYnJzcykq2mcdVCcjwAsvvEB5eTm7du0iPz+f0aNH1+neAOvXr+eII47gpptuomPHjmzcuJEJEybw6KOPAvDll1+yYcMG+vfvX+c4i4qK6Ny5M6FQKB5PMqZPn87cuXPZs2cPQ4cOrXP8TY1IVBE09dNIhVV8Fks6sIqvnlx99dWVRnfOmzePZcuWMXToUAYNGhS3PqZNm8bu3bsZPHgw99xzD/369Usa32mnncbQoUMZNmwYP/rRj5g7dy6HHHJInWSJRCKce+658YEkl19+OW3btuXkk0/mueeeiw9uqU5G0E2lkyZNYuzYsVx//fXx/r0JEyZw5pln8vbbb9OtWzfeeOMNAG644QZefPFFQI/8zMvLY8iQIRx11FEMGzaMX/ziF0SjUfLy8pg+fToLFy6sZOnVxp/+9CeOOOIIxo0bx4ABA+LuL774IjfccEP8/IwzzuCJJ57grLPOqnPcTZFKg36DJY0mh8XSnJBM2vJk1KhRKnF03ueff87AgQMbSaLmzZw5cyoNgmluNIe8s6u4Au9tPWktpazuMo0hFz/Q2CJZLGlHRJYrpQ7YCDVr8VksGUxEKdzogUMSrDq1w2Kx1J8mNbjFkl4yefUZiyYaBTe6vdMVtk2dFks6sBafxZLBaItPKz5PyFp8Fks6sIrPYslgolGH4otYxWexpAOr+CyWDCYSieASPQDNaxWfxZIWrOKzWDKYcDgUP/ZFreKzWNKBVXx15Pnnn0dE+OKLL6oNU1BQwJAhQ/arHCtXruTVV19NKY4LL7yQTp067XdZLamjovtW6wlEm9mO8hZLI2EVXx15/PHHGT9+PI8//nhS/2TLidWX2HqXNZEOxTd79mxef/31lOKwHBiiJl+FlYuAKmtkaSyW5oFVfHWguLiYxYsXs2DBAp544om4e35+PhMmTOCUU05h0KBBgFaAM2fOZODAgZxxxhnxbXXefvttRowYQV5eHhdeeCEVFRWAXtrst7/9LYcffjhPPfVUpfsmbvsTDAa54YYbWLRoEcOHD2fRokWUlJRw4YUXMmbMGEaMGMELL7wA6G2Apk6dysSJE+nbty833nhjPN6jjz6adu3a1fjM7733HsOHD2f48OGMGDGCoqIilFLVbqF0zDHHMHXqVHr37s11113Ho48+ypgxY8jLy2P9+vUAvPTSSxxxxBGMGDGCY489lm3btlW574wZM3jllVfi57Nnz44vSN0SiUR0U2eR5OAjBJFQLVdYLJbaaFrz+F67DrZWXYQ5JQ7JgxNvqTHICy+8wAknnEC/fv1o3749y5cvZ+TIkYBeh3P16tX06tWLgoIC1q1bx4IFCxg3bhwXXnghf//737nsssuYPXs2b7/9Nv369WPWrFncd999XHHFFQC0b98+vq6nk8Rtf3w+HzfddBPLli3jnnvuAeD3v/89P/rRj3jggQcoLCxkzJgxHHvssQAsXbqU1atXk52dzejRo5kyZUqdt++5/fbbuffeexk3bhzFxcUEAgGeffbZardQ+vTTT/n8889p164dvXv35qKLLmLp0qX87W9/4+677+auu+5i/PjxLFmyBBHhX//6F3PnzuWOO+6odN/YlkNTpkwhGAzy9ttvc99999VJ5uaIiupWgBLJ4SBVpJcty2rbuEJZLE0ca/HVgccff5wZM2YA2iJxNneOGTOGXr16xc+7d+/OuHHjADj33HNZvHgx69ato1evXvH1Os8//3zef//9+DXTp09Pet9k2/4k8uabb3LLLbcwfPhwJk6cSHl5ORs2bADguOOOo3379mRlZXH66aezePHiOj/zuHHjuOqqq5g3bx6FhYV4PJ4at1AaPXo0nTt3xu/306dPH44//nig8pZDmzZtYvLkyeTl5XHbbbcl3XLoxBNP5N1336WiooLXXnuNo48+mqysrDrL3dyImsEt5S69o4cK2oWqLZZUaVoWXy2W2f5g9+7dvPPOO6xatQoRIRKJICLcdtttQNUthhqyzU912xTVZdsfpRTPPPNMlR0QPvroo5S2HLruuuuYMmUKr776KuPGjYsvUl0dddly6Fe/+hVXXXUVp5xyCvn5+UlXjgkEAkycOJE33niDRYsWxSscLZWoqfCUe3IhAhUlewm0aWShLJYmzn63+ETkBBFZJyJfi8h1+/t+6ebpp5/mvPPO47vvvqOgoICNGzfSq1cvPvjgg6ThN2zYwP/+9z8AHnvsMcaPH0///v0pKCjg66+/BuDhhx/mmGOOqfXeybb9SdxyaPLkydx9993EFhtfsWJF3O8///kPu3fvpqysjOeffz5uidaF9evXk5eXx29/+1tGjx7NF198kdIWSgB79uyha9euADz00EPVhps+fToPPvggH3zwASeccEKd42+ORCO60hD05AJQVrK3McWxWJoF+1XxiYgbuBc4ERgEnC0ig/bnPdPN448/zmmnnVbJbdq0adWO7uzfvz/33nsvAwcO5IcffuDSSy8lEAjw4IMPcuaZZ5KXl4fL5eKSSy6p9d7Jtv2ZNGkSa9eujQ9uuf766wmFQgwdOpTBgwdz/fXXx68fM2YM06ZNY+jQoUybNi3ev3f22Wdz5JFHsm7dOrp16xbfX3D+/PnxLYvuuusuhgwZwtChQ/F6vZx44okpbaEEem3QM888k5EjR9KhQ4e4+7Jly7jooovi58cffzzvvfcexx57LD6fr87xN0eiUd3UGfZqxVdRahWfxZIq+3VbIhE5EpijlJpszn8HoJT6S7Lwdlui9LFw4cJKg2BaIs0h7yxb/jGjXjqW/x18Nkdue5zvJi+gx5FnNLZYFktaaW7bEnUFNjrONxm3OCJysYgsE5FlO3bs2M/iWCxNC2UsPvytAQiX2cEtFkuqNPqoTqXUP5VSo5RSozp27NjY4jQbZs+e3aKtveaCMoNbJEuPaAmV2aZOiyVV9rfi2wx0d5x3M271IpN2ibc0DZpLnokNbnEbxRcttxafxZIq+1vxfQz0FZFeIuIDZgAv1ieCQCDArl27mk1BZtn/KKXYtWsXgUCgsUVJmahZqcWT3VafV1jFZ7Gkyn6dx6eUCovIZcAbgBt4QClVddZyDXTr1o1NmzZh+/8s9SEQCNCtW7fGFiN1zMotgaxsypQPZRWfxZIy+30Cu1LqVaDBqyp7vd5KK6NYLC0JZZo6s/xeSghAqKSRJbJYmj6NPrjFYrFUj1La4vN6fZQRQIJW8VksqWIVn8WSwcS2JXK5PJRJALe1+CyWlLGKz2LJYGIb0bo8HiokC3fY7sJusaSKVXwWSyZjFJ/b4yHoysJjFZ/FkjJW8VksGUzc4nN5CLqz8Uat4rNYUsUqPoslg4ltROtyewh5svFFyhpZIoul6WMVn8WSwcSmM7g8XiKebPzKKj6LJVWs4rNYMpnYkmVuD1FvDllW8VksKWMVn8WSwcTm8bndXpQ3Bz8hMMuYWSyWhmEVn8WSyZjBLeJ2gy9Hu9lJ7BZLSljFZ7FkMLHBLR6PF/G1AiBcXtSYIlksTR6r+CyWDMY5qlP8WvGVl1rFZ7GkglV8FksGI7GmTpcHTyAXgPLiPY0pksXS5LGKz2LJYGIWHy437iyt+CpK7S7sFksqWMVnsWQwMYsPlxtvlm7qDNqmToslJazis1gyGImaqQtuH96s1gCEyqzis1hSwSo+iyWDiVt8bh+BHN3UGbGjOi2WlLCKz2LJYCQaJIILXG782W0AiFQUN7JUFkvTxio+iyWDkUiIEB4Aslppiy9abhWfxZIKVvFZLJlMJEgENwDZgQDlygvW4rNYUsIqPoslg5FoiLBoiy/H56aEAITskmUWSypYxWexZDKRIGG8AHjcLsoIIFbxWSwpYRWfxZLBuKMVhF2++HmZZOG2is9iSQmr+CyWDMYXKaNcsuLn5a4s3OHSRpTIYmn6WMVnsWQw/kgpFe7s+HnQlYXXKj6LJSWs4rNYMhi/KiPk2qf4Qu5svFGr+CyWVLCKz2LJYPzRUsKeyorPFylrRIkslqaPVXwWSwYTiJahzAa0ABFPNn5lFZ/FkgopKT4RmSMim0Vkpfmd5PD7nYh8LSLrRGRy6qJaLC2LUCRKFuWILyfuFvVkk6XKG1Eqi6Xp40lDHHcqpW53OojIIGAGMBjoArwlIv2UUpE03M9iaRHsLSmjLaWQ1SbuFvXm4CcIkTC40/H5Wiwtj/3V1DkVeEIpVaGU+hb4Ghizn+5lsTRL9u7cjFsU5HaOuym/afYM2mXLLJaGkg7Fd5mIfCYiD4jIQcatK7DREWaTcauCiFwsIstEZNmOHTvSII7F0jzYvfU7ALI7HBp3izV72h0aLJaGU6viE5G3RGR1kt9U4D6gDzAc2ALcUV8BlFL/VEqNUkqN6tixY30vt1iaLSXbvgXgoEN6xd1cZqBLecneRpHJYmkO1NpJoJQ6ti4Ricj9wMvmdDPQ3eHdzbhZLJY6EtnyGSHlpl2PwXE3CWjFV1Gyl5zqLrRYLDWS6qjOzo7T04DV5vhFYIaI+EWkF9AXWJrKvSyWlkb7XZ/wva8nLt++Jcvcfq3ugqV2F3aLpaGkOixsrogMBxRQAPwcQCm1RkSeBNYCYeCXdkSnxVJ3Nm3awODwWlb0vJAeDnePsfiC5XahaouloaSk+JRS59XgdzNwcyrxWywtlW9evp0uwKFHz6rk7g1oiy9kB7dYLA3GrtxisWQY3yz/D2O3PMrqtpPo1Gd4JT+fsfgi5Xa9ToulodgZsBZLBrH1m1W0f2k238vBdDv3vir+/myt+ML70eILhSNs+GYdxTs2QCRIq3aHcGjfIXj92bVfbLE0Aazis1gyhD07vyfy8BlEEKJnL6Jdx0OqhPEZxRetSK/Ft2XzBr58fxGtCv5D3/JV9JHK8Zfh48vsEUT6T6HfxLMJtOlU73sUFe5i19YNhEJBXCqEy+VC/K3JatWWnNYHkZ2Vjcsl6Xoki6VarOKzWDKA8tJitv7jdHpEd/H1SY8zpH9e0nCBLKP4gqkrvlA4zPJ3nkM+eZCRZf+js0TZ6jqYrzoeh7vrcAIdeyNuH0W7N1P+zRJ67FpM9xU3EP5kDutajSDU7xTa9h1LTvsuRIHiPYWU7NpMyc6NhHZvwLV3E1ml39O6Yhvto9tpTSm5NchToTwUk02p5FDqyqbc3YqIO4BbQFQUVBRUBFc0jEuFcaswbsK4VcQcR/AQxkMED3osXQQ3O72dOej8R+jYrW/KaWZpHjQ7xaeiUcpKiyjZ+wOle3ZRWrIHFQkTjUQgGkZFIyhARBCXC5e4EHHpmqa4jJsgLjcigsvl0jVTcTnO3SASvwYEZf4jseNq5FP1c69b2KoXJ4su0U0luek+F3GEq8P9ktyw6v2SCFVX2VVimNpkSG45JJez9udJnp61v7S6PnPo9RsYHvyCT464i1FHHFdtfNkBPxXKg0pB8QVDYZa8/ABdPrubsWoDhbRmVfeZHDJhNp37jeQQSZZ2PyMSibJy+WJ2ffwkfXa8Rf8V/wcr9oVon3DFHnLY6e5EYaAL27NHEm3TDV/bLnj82URwQTQKwWIi5XuhfA9UFCMVe/GEivCGismKFOMJ7ySs9HemvysXUbcHJdmEXB6CLi9R8aBcsZ8+D+MiGgVUmMG73yb4wIkUXfgyud0G1Du9KsqK2Pb9ZsoKtxIq3kVFRTmRUBC3CuNyuVBuH7h9iDeA2+vXP48Xt8eHxxv7efGY87hVq5Qjf5jcZBz0t2mOHX/Z52yuibkr457kGkBFFUkiqJQ/ayofqi233H66du+Z3DODaVaK75vVH9H9qRPJlgi2N8LS1Phvn19z1EmzawyT5XNTjg9pwC7s0ahi8dvP0+2/N3C02sAmd3fWjprLgB+fzwhfoNbr3W4Xw8ccDWOOpiIU5vPPP6Fwwxoo3o6I4MtqhadtF9p26k6Hrr1pk3sQbWqNdf/z0X/fpe8b5xFccAIFpz1Mz6ETqoRR0Qi7N3/Fjm8+o+z7z5FdX5Jd9C2dKjbSlr0cmiReC3ykBtL1xiWNLUa9aVaKr22n7izrei4E2uDKaoMnuy2e7NZ43F5wuRCXB3G7EXQNKKoUSkVQUYVSUVQ0ilLK/DfHTvfEYxVFMM0wKPMfhCjVWRw1Ud0VSSvgdbg2+XVSe5gk1TupgxDJgtQlFRoqe7ILBarIXyfZ6yxD7Rcmv0xqDONpcwhHjp1a6+18bhe7CUCofnvyfVWwge+euJpjy99ki+tg1oy9k0HHzqJbA3d48Hs9DBw6BoZm/trzRxw1ieW+p+n+8gx6PvsTvnypP4U5fVBuH57yXbQp/56u4Y20l2Dcat2h2rDF043VrY9Gte1B1kGH4GvdCU+rDvizAni9fm1pRqOoSAXRUAXRULn+Hw4SCQeJhoNEI2Gi4RDRSFC3PIVDCdJJwqHE3URAxY4BJc6A5iQxk8bjAEHi1+ug+lhVvmtCFNV/Y8lycDjQgaZIs1J87Tp14ciL5zW2GBbLfkNEqMCP1FHxlQfDvPXkvYz96nZ6STHr+lxI37P+TGd/y1rwbOSosRT2WsriF++k3eZ8ehR+hJcQRa427PF1YkW7UaiOA8juNoROvfPo3OkQOtqBNs2WZqX4LJaWQFD8uMO1K74Vn64g/OIV/CSyku+yBuKd/nf69zr8AEiYmbRt34nxF/ylklu7RpLF0rhYxWexNDEqXAF8ker7+PaWlPLhIzcx8fsFKHGxftQN9DnpCnC5D5yQFksGYxWfxdLEKHHl0ib8QxV3pRRL81+iw/u/50S1kXUHHc2h595Lnw52aIbF4sQqPouliVHo7cigii8rua1Z+RF7Xv8zR5W/z1bpxDfH3k//8Wc1koQWS2ZjFZ/F0sSoyDqE1mV72LtrO6s/fAn/6icYGVxKKQFW9fk5A8+8Ib6Lg8ViqYpVfBZLE8PdZRjshtZ39+UoYKccxIpeF9PvlGvJO6j+S4lZLC0Nq/gslibG0VPO4T+FX9FG7aXD0Mn0GnUCHRo4H89iaYnYr8ViaWK0zvJx3EV2q0uLpaHY/fgsFovF0qKwis9isVgsLQpJtkJ/YyEiO4Dv0hBVB2BnGuI5EFhZ9x9NSd6mJCs0LXmbkqzQtORNl6w9lFId0xBPncgoxZcuRGSZUmpUY8tRF6ys+4+mJG9TkhWalrxNSVZoWvI2JVmd2KZOi8VisbQorOKzWCwWS4uiuSq+fza2APXAyrr/aEryNiVZoWnJ25RkhaYlb1OSNU6z7OOzWCwWi6U6mqvFZ7FYLBZLUqzis1gsFkuLolkpPhE5QUTWicjXInJdY8vjRES6i8i7IrJWRNaIyK+N+xwR2SwiK83vpMaWNYaIFIjIKiPXMuPWTkT+IyJfmf8HZYCc/R3pt1JE9orIFZmUtiLygIhsF5HVDrekaSmaeSYffyYiB3Tb9GpkvU1EvjDyPCcibY17TxEpc6Tx/AMpaw3yVvvuReR3Jm3XicjkDJB1kUPOAhFZadwzIW2rK7cyMu/WGaVUs/gBbmA90BvwAZ8CgxpbLod8nYHDzXEu8CUwCJgDXNPY8lUjcwHQIcFtLnCdOb4OuLWx5UySD7YCPTIpbYGjgcOB1bWlJXAS8BogwFjgowyQ9XjAY45vdcja0xkug9I26bs339yngB/oZcoMd2PKmuB/B3BDBqVtdeVWRubduv6ak8U3BvhaKfWNUioIPAFMbWSZ4iiltiilPjHHRcDnQNfGlapBTAUeMscPAac2nihJ+TGwXimVjhWA0oZS6n1gd4JzdWk5Ffi30iwB2opI5wMiKMllVUq9qZQKm9MlQLcDJU9tVJO21TEVeEIpVaGU+hb4Gl12HBBqklVEBDgLePxAyVMbNZRbGZl360pzUnxdgY2O801kqGIRkZ7ACOAj43SZaRZ4IBOaDh0o4E0RWS4iFxu3g5VSW8zxVuDgxhGtWmZQueDI1LSF6tMy0/PyhehafYxeIrJCRN4TkQmNJVQSkr37TE7bCcA2pdRXDreMSduEcqup5l2geSm+JoGItAKeAa5QSu0F7gP6AMOBLeimjkxhvFLqcOBE4JcicrTTU+m2jYyZDyMiPuAU4CnjlMlpW4lMS8vqEJE/AGHgUeO0BThUKTUCuAp4TERaN5Z8DprMu3dwNpUrbRmTtknKrThNJe86aU6KbzPQ3XHezbhlDCLiRWeeR5VSzwIopbYppSJKqShwPwew2aU2lFKbzf/twHNo2bbFmi7M/+2NJ2EVTgQ+UUptg8xOW0N1aZmReVlEZgM/AWaawg7TZLjLHC9H95n1azQhDTW8+0xNWw9wOrAo5pYpaZus3KKJ5d1EmpPi+xjoKyK9TM1/BvBiI8sUx7TfLwA+V0r91eHubP8+DVideG1jICI5IpIbO0YPbliNTtPzTbDzgRcaR8KkVKoxZ2raOqguLV8EZpkRcmOBPY5mpUZBRE4AfgOcopQqdbh3FBG3Oe4N9AW+aRwp91HDu38RmCEifhHphZZ36YGWLwnHAl8opTbFHDIhbasrt2hCeTcpjT26Jp0/9IiiL9E1oz80tjwJso1HNwd8Bqw0v5OAh4FVxv1FoHNjy2rk7Y0e/fYpsCaWnkB74G3gK+AtoF1jy2rkygF2AW0cbhmTtmiFvAUIofs9flpdWqJHxN1r8vEqYFQGyPo1uu8mlnfnm7DTTP5YCXwCnJwhaVvtuwf+YNJ2HXBiY8tq3BcClySEzYS0ra7cysi8W9efXbLMYrFYLC2K5tTUabFYLBZLrVjFZ7FYLJYWhVV8FovFYmlRWMVnsVgslhaFVXwWi8ViaVFYxWexWCyWFoVVfBaLxWJpUVjFZ7FYLJYWhVV8FovFYmlRWMVnsVgslhaFVXwWi8ViaVFYxWexWCyWFkXGKD4R6SkiyuxLZdmPiMhsEVl8gO6VJSKvisgPIvKbA3HPhPsXiMixB+A++SJyUTV+Nm83EiKyUET+XF+/NMswR0QeqcH/gOTR5oIpS74TkRkNjSNjFJ+lYZiPKiQixY7fAVcwNXAsMBTorpSaG3M0H3vPRpMqgzDvcE49wp9jPvwSEXleRNrVEPafIrJORKJmI1mn3/kislxE9orIJhGZG1POZr+6BeY+RSKyUkROTLj+LBH53PivFZFTHX4iIn8Wkc0issdUDAY7/OeKyEZz7+9E5Pf1eP56pVdTRkQmikh+PcIPN++01PwfXkPYdiLynMlH34nIOQ6/SSKySkQKRWSXCde1mjh2OCvSIjIzoTwqNRW/kcb/ShH5xrz770XkzsRKoYj8WkS+NbJ9LiLxDXiVUgcBtwHX1TVdEkmb4rO12UZlkVKqleM3t/ZLDhjtgAKlVHFjC5IKpiBv9IqiUR7/AM4DDgZKgb/XcMmnwC/Q+7klkg1cAXQAjgB+DFxj/Dzo/feOAdoAfwSejFVWTCH4CHAV0Bq4FnhMRDqZ688ELgQmoPPA/9B75MVYAAxQSrUGjgJmisjpdUiCjCQTyj/RG3C/gH4vBwEPAS8Y92TcCwTR+WgmcJ+jcrIWmKyUagt0Qe+7d1+SOG4FPnc6KKUedZZH6Pz3Dfvy4IvA4ebdDwGGAZc7nuMi9J6KU4BWwE+AnQn3XY3eE7BBpPQhm1r7b0XkM6BERDwiMlZE/mtqCp+KyERH+HwR+YuILDXa/oXqaqsicoGjNvmNiPw8wX+qqYXuFZH1oneIRkTamJrqFlPb/LOYXYxreI4+IvKOqdnsFJFHRaStw2+3iBxuzruYGs5Ec36KiKwxz5svIgMT0ucaEfnM1HoXiUig/ildf0TkOpMusdr4adWEE1Pj2m7ScpWIDDF+fhG5XUQ2iMg2EZkvIln1FMUDRGuRtb2IvGTu/7F5Z84apBKRS0TkK5PO94qIGL9q352D0SYNfhCRB2PvQEQOEpGXzfv8wRx3c9w3X0RuFpEP0Qqmdy3P2kNEPjRp/qaIdEjwn2nScqeI/KGWuKpjJvCSUup9U5m4HjhdRHKTBVZK3auUehsoT+J3n1LqA6VUUCm1GXgUGGf8SpRSc5RSBUqpqFLqZeBbYKS5vBtQqJR6TWleAUqAPsa/F7BYKfWNUiqCLowHOe69TilV4hAnChzWkAQRkd+Y7/17EbnI5JcqcYlIroi8KyLzYvkH6CAi/zHv7D0R6eEI/zfZZ5UuF5EJDr85IvK0iDwiInuB2bWI6RORf5v7rBGRUQn+w9NQTkxEf293KaUqlFLz0BvD/igxoIjkoDe6vV4pVayUWoxWSOcBKKW2KaW+d1wSIeH9iMhRaMX1YC1ynQ/8W5nNX5VS65VShbFocLx70ZXL/wOuVEqtNXlrvVJqd0KcUfOsDSPF3XkL0DvydgeygK7oXbBPQivV48x5RxM+H9iMTqwc4BngEePXE73Tr8ecT0F/RIKudZaiawkAY4A9Jn6Xue8A4/ccukacA3QClgI/r+U5DjNx+YGOwPvozBPz/xm6BpQNvAHcbtz7oT/24wAv8Bv0TtU+R/osRdeY2qFrRpdUI8N4oLCG3/hqrpsTS8ME9zPNfV3AdCNnZ+M3G10oAUwGlgNtTVoPdIS7E/0xtANygZeAv9Qjf3jRtfwq8iWEe8L8stGF48aYfLFvBXjZyHgosAM4oY7vrgBdO+xunuND4M/Grz364882z/cU8Lzj2nxgAzAY/ZF5a3iGfPSu0/3Q30I+cEtC3r7f+A0DKoCB1cRV0/t+AfhtglsxMLKWNF4MzK4lzPMxmZP4HYxWnrHvzA28B5xijk9F7yieY/x7mHzVz+SDuc60NWGuM7IrtEXQrQFl0AnAVvOOstEKVgGHGf+FwJ/Nu14ae/cOvyLgaJN//paQ784113mAq819Ao7vLmSe2wVk1SDjHJN2J5m0+guwJCGP1rWceBm4rhq/K4HXkoS/OknYEUBpgts16EpV7PxQkxej5llnO/zcaAtuJI7yJMl9eqCVZq8E93OAveZd7QCGOe6pgF+jy4FvgRsBV8L1vYEwMLy+eUYplRbFd6Hj/LfAwwlh3gDON8f5OD4sdCEXNInYE4fiq+aj/LU5/gdwZzUfZ4UzEwJnA+/W87lOBVYkuL0IrAI+A/zG7XrgSUcYF1qxT3Skz7kO/7nA/FTSPImsc0waFjp+XZKEWwlMNcfxjIquDX4JjHVmLrQSLAH6ONyOBL6to1zDzceyDVMIVRPObcL1d7j9maqKb7zj/Emq//grvTvzDi5xnJ8ErK9B5h8c5/nATXV83nzgj47zXwCvm+NY3u7m8F8KzGjA+36bhELRmedquK5GxYdultwEdEji5wXeAv6R4P5TtOIKoyumUxx+PrQiUcb/WxIKP0c+G4Eu3HIbkB4P4KiMoStCiYrvAXTl59qEaxcCTzjOW6EL6e7V3OsH9hXQc4D36yjjHOAtx/kgoCwhj6ZcTqDLoycS3B4F5iQJOwHYmuD2MyA/Sdh26LJ9rMPtSuA+czyb6hXf9cnidPj3Bf4EHGLOjzLv7xV0Rbcnunz6WZJrbzdhn69vWqWjz2Kj47gHcKZpjioUkUK0JdO5mvDfoT+qxCYhROREEVlimhkL0QVWLFx3dO06kR4mvi2O+/8DbflVi4gcLCJPiG4a3YuuNSbKdD/aUr1bKVVh3LqYZwBAKRU1z+fsBN7qOC5Ff1zp5kmlVFvH73sRmSW6KTiWDkNIks5KqXeAe9Dt/dtFD4ZojbaesoHljjheN+61opRaibai/ofuR6qOjuzrT4qxMUm4pOlYx3eXmOe6mGuzReQfojv296KtxbZSuWk8mSzVUdu7TkdeKEb3qTlpjbZcGoToQSl/AU5USu1M8HOhrfYgcJnD/Vh0AT0RreSOAf4l+wZT3ACMRn+rAbRie0dEsp3xK80KoMyEqS9dqD3vTEFb2vOT+MXDK910vJt9+eMa0d0te0z+b0PlvJVK3ghI5X7BA5036hxW6WbGWH+hR0S6oPvk6tJcP8tcmxSl1FfAGvb1U5eZ/3OVUoVKqQJ0GX6S8zrRfcmXA0crpU6tgxyVSIfiU47jjWiLz1kI5yilbnGE6e44PhRd20/82PzoZtDbgYOV7mB9FV07jN2nD1XZiLb4Ojju31opNThJWCf/zzxHntIdruc67oWItALuQnfIz5F9/ZLfo5VtLJyY59tcy/2qICITpPJIqMTfhNpjicfVA62oLwPam/Rb7XwmJ0qpeUqpkeiaaD/0QIWd6Ew42JGWbZTurK4TSqly4DUcfTtJ2IG2CLo53LpXEzYZNb67JPEdin5voJuv+gNHmGuPNu7O6535OxNYg24qBUBEeqOb6b5sSGSi+8bvB05WSq1K8BN0nj8YmKaUCjm8h6MtnmVK9wF+DHyEHsUb81+klNqklAorpRaiB1xUlxc8JP+ma2MLteed+9GVtldN3xbJwpvvvB3wvfnefgOcBRxkvqE9ZH7eGOrovwQ9onpNkrBfAh4R6etwG1ZNWNDvpxNaOY5BGzNrRWQr2rIfIyJbnZVGERmHrkQ8XYvczne/Dl3JcqZtsnTuC+xRSn1QS9xJSfcotUeAk0Vksoi4RSQgejiuM2OeKyKDTM3vJuBppTu/nfjQH/MOICx6GPXxDv8FwAUi8mMRcYlIVxEZoJTaArwJ3CEirY1fHxE5pha5c9E1oD2iR6tdm+D/N2CZUuoitAkeqzk+CUwxcnjRBWkF8N/aEioRpQcZtKrhV58XnMO+tnNE5AK0xVcFERktIkcY+UvQfRFRY73eD9xpaleYdJ7suFaJY/BSNVSg32dSzLt/Fl2hyBaRAehaYl2p7d0B/FJEupkKyx+ARY5ry4BC4/d/9bhvY/Eo+hubYArxm4BnlVJJLT4R8ZmBEgJ4zTfpMn4/MvFNU0otTXL5feg+35OVUmUJfh8DE2IWnoiMQDeffebwP9NY5C4ROQ/dGvO1Of+56MFFIiJjgF+im3FjchdIwvSLangSXRYMNGXK9dWEuwxdqL4klQdonSQi40WPfPwTuu9tIzpvhNHfkEdEbqCqhZRp5KObai8XPTAtZqG/kxhQ6YFFzwI3iUiOUVJTMSNvReR0Eelv3lVH4K/oLoTd6MpsT3TlZjjaul+B7m9zluXnA88k5k3RA5BiZcog4HeYd6+UKkV/n78RPRipG3Axuq/SiRddtjSItCo+k2GmAr9HZ5iN6ILIeZ+H0W3rW9FNIJeTgEmoy9GZ+gd0R+iLDv+lwAXowRd70J3sMctrFrqgXWuufZrKTa3JuBE43MT1CjpDAHr0KLoD/VLjdBVwuIjMVEqtQ1sYd6MtpJPRhUSwlvvtV5RSa4E70M2M24A89KCOZLRGK7gf0M2Au9BzZEC3638NLDFNgW+hLSREpDu6WWRVYoQJRKk9n12Gbkbais4fj1P3TF3tu3PwGLpC9A26iTw2afkudBPYTmAJ2ipodGqy8JVSa4BL0AprO7qA/oXj2tek8py4N9HK/Sjgn+Y4Ztlej073Vx0tC6+ZeHoAP0cXbFsd/jONHO+h+66eFpEidAvN/1NKvWnivhU9lWIlut/5SrSCLTT+p6HfRRG6wny3+cWG5bdHv5MaUUq9BswD3sXkVeNVkRBOoQvQTegmu9ioycfQFZ7d6IEa5xr3N9D54Uv0d1FO/Zo29wtJ3m8cU+6cii4DC9H9tqfGyiMR+X3s/Rp+gc7/29Hf3KUmf4Hurnmdfd94FP3OUHrE6NbYD/3thcxxTM4A2lpO1sw5DlglIiXolrxX0TojxmXoyuz36DLsMXQ/rRM3tYwWrwkxnYQHBNETMR9RSv3rgN3Usl8QkXPRzaC/qyXc8eiCbYCqOiS5umtuRXd2n5+6pJamhoiMB36plDq7AdcORDfr+5VS4bQLZ8kIRC/ScYZSakxDrm/0SZeWpolSqtolmBLIB/4DrBGRO5RStycGMM2bPnTNcjR6tGDS5b8szR+l55TVeUk90XNUX0UPxroVPSTfKr1miojsQFupDV6hqtFXojhQiJ58nWzQSLKRXpY0ofTk6JlKqc7JlJ4hF91EWYJu378DPV8to6gm/9Rr4JFlv/BzdEG4Ht3HdWnNwdOPaYJMljfqvBSbpW4opToqpQYrvWhCgzigTZ0Wi8VisTQ2Lcbis1gsFosFMqyPr0OHDqpnz56NLYbFYrFYDiDLly/fqZSq0+IY6SCjFF/Pnj1ZtmxZY4thsVgslgOIiHxXe6j0YZs6LRaLxdKisIrPYskgdhRV8Pbn2xpbDIulWWMVn8WSQbz62Dx+vKgfu3dsrT2wxWJpEBnVx5eMUCjEpk2bKC+vso+mxVItgUCAbt264fV6G1uUejFsh16Zr/DrJbTreGrjCmOxNFMyXvFt2rSJ3NxcevbsiVRadNxiSY5Sil27drFp0yZ69erV2OLUi5AnB8JQVrK3sUWxWJotGd/UWV5eTvv27a3Ss9QZEaF9+/ZNspUg6tYbB4SK67SsqcViaQAZr/gAq/Qs9aap5hnl1YovUrKrkSWxWJovTULxWSwtBa9bK2xV+kMjS2KxNF+s4qsDIsLVV18dP7/99tuZM2dO4wlUC/n5+fz3v/XeCzfOypUrOfLIIxk8eDBDhw5l0aJFtV9kSQtupbcYc1XYPj6LZX9hFV8d8Pv9PPvss+zcuTOt8SqliEYbvJditaSq+LKzs/n3v//NmjVreP3117niiisoLCxMn4CW6okpvnBJIwtisTRfrOKrAx6Ph4svvpg777yzit+OHTuYNm0ao0ePZvTo0Xz4od7ofM6cOdx++75deIYMGUJBQQEFBQX079+fWbNmMWTIEDZu3Mi1117LkCFDyMvLi1tX+fn5TJw4kTPOOIMBAwYwc+ZMku2kMW/ePAYNGsTQoUOZMWMGBQUFzJ8/nzvvvJPhw4fzwQcf1Cjjeeedx5FHHknfvn25//77AejXrx99+/YFoEuXLnTq1IkdO3ZUufdTTz3FkCFDGDZsGEcfrTf1Li8v54ILLiAvL48RI0bw7rvvArBw4UJOPfVUjjvuOHr27Mk999zDX//6V0aMGMHYsWPZvVsP5rj//vsZPXo0w4YNY9q0aZSWlla579ixY1mzZk38fOLEic1nqTsVAcATSq/i+3ZHMYsWr6k9YD3Ztjf9A4iKykNJ87rFki4yfjqDkxtfWsPa79PbBDSoS2v+7+TBtYb75S9/ydChQ/nNbyrvffjrX/+aK6+8kvHjx7NhwwYmT57M559/XmNcX331FQ899BBjx47lmWeeYeXKlXz66afs3LmT0aNHx5XIihUrWLNmDV26dGHcuHF8+OGHjB8/vlJct9xyC99++y1+v5/CwkLatm3LJZdcQqtWrbjmmmsAOOecc6qV8bPPPmPJkiWUlJQwYsQIpkyZQpcuXeLxL126lGAwSJ8+fao8x0033cQbb7xB165d4xbhvffei4iwatUqvvjiC44//ni+/PJLAFavXs2KFSsoLy/nsMMO49Zbb2XFihVceeWV/Pvf/+aKK67g9NNP52c/+xkAf/zjH1mwYAG/+tWvKt13+vTpPPnkk9x4441s2bKFLVu2MGrUqBrTvMlgLD5PpKrCT4WnFtzCb8rvprj3Elp1GZiWON9dt52vHr6CcVNmMfjIE9ISZ2FpkBNueoJfjOvMrJOPS0ucFksi1uKrI61bt2bWrFnMmzevkvtbb73FZZddxvDhwznllFPYu3cvxcXFNcbVo0cPxo4dC8DixYs5++yzcbvdHHzwwRxzzDF8/PHHAIwZM4Zu3brhcrkYPnw4BQUFVeIaOnQoM2fO5JFHHsHjSV6PqUnGqVOnkpWVRYcOHZg0aRJLly6NX7dlyxbOO+88HnzwQVyuqlll3LhxzJ49m/vvv59IJBJ/nnPPPReAAQMG0KNHj7jimzRpErm5uXTs2JE2bdpw8sknA5CXlxd/ttWrVzNhwgTy8vJ49NFHK1l2Mc466yyefvppAJ588knOOOOMGtO7SWEUnzfNiq9/yXIASr9ueBN4Ih9/uZmLPa8w+I3paYuzuCLMu/6rOWd5+uIE+Md767niiRVpjdPSdGlSFl9dLLP9yRVXXMHhhx/OBRdcEHeLRqMsWbKEQCBQKazH46nUf+ecU5aTk1On+/n9/vix2+0mHA5XCfPKK6/w/vvv89JLL3HzzTezatWqKmGqkxGqDvuPne/du5cpU6Zw8803x5V0IvPnz+ejjz7ilVdeYeTIkSxfvrzOz+NyueLnLpcr/myzZ8/m+eefZ9iwYSxcuJD8/Pwq8XTt2pX27dvz2WefsWjRIubPn1/jfZsSYhSfL1KW1niVywdAeTCYtjg7SPoH4ESiiixJn4wx/vLaFwDcOX14k53qYkkf1uKrB+3ateOss85iwYIFcbfjjz+eu+++O36+cuVKQG+x9MknnwDwySef8O233yaNc8KECSxatIhIJMKOHTt4//33GTNmTJ3kiUajbNy4kUmTJnHrrbeyZ88eiouLyc3NpaioqFYZAV544QXKy8vZtWsX+fn5jB49mmAwyGmnncasWbNqtKbWr1/PEUccwU033UTHjh3ZuHEjEyZM4NFHHwXgyy+/ZMOGDfTv379OzwNQVFRE586dCYVC8XiSMX36dObOncuePXsYOnRonePPeIziy1LptfhiFnsojZP6W7kq0hZXjHDU0bcXSn//YUU4/YPJLE0Pq/jqydVXX11pdOe8efNYtmwZQ4cOZdCgQXHrY9q0aezevZvBgwdzzz330K9fv6TxnXbaaQwdOpRhw4bxox/9iLlz53LIIYfUSZZIJMK5554bH0hy+eWX07ZtW04++WSee+65+OCW6mQE3VQ6adIkxo4dy/XXX0+XLl148sknef/991m4cCHDhw9n+PDhcWV5ww038OKLej3Ja6+9lry8PIYMGcJRRx3FsGHD+MUvfkE0GiUvL4/p06ezcOHCSpZebfzpT3/iiCOOYNy4cQwYMCDu/uKLL3LDDTfEz8844wyeeOIJzjrrrDrH3RQQdMEcUOkt9MNubfFFygrTFqfbDMRJJ+GIQ/GV70l7/EXlVVtNLC0PyaTRU6NGjVKJo/M+//xzBg5MT2e8pTJz5sypNAimudEU886q204gr+R/RJTgnvMDpKlZ7rn/N5PTgi+zrs+F9D+v6ujkhvDUSy9x5nLdn8uc9CipNd/vYfA/D9Unv/wYOiavMNaXnte9AsA7Vx9D746t0hKnJX2IyHKl1AEboWYtPoslgxBjRblFEQ2mr7nT59IVXFVRVEvIuhNN0uecKpUtvsK0x19cEYblC+HvR0E4/X2JlqZBkxrcYkkvmbz6TIvF0QJTVrKHHH/dBkLVhk/SvyJMNBJKW1wxws4FHdKopGMUlYfhpV/rk9Kd0LpLzRdYmiXW4rNYMojYqE6AsuL0KSk32pJ0pXFifDTisPjStAJRJYsvmD5ZXabFuKjcoazT2N9paVpYxWexZBDCvgEj5cWF6Yt3PyyFVsniS5NCrTSqM42Kz+9xA1BSEQGMFtwPTamWpoFVfBZLJuFo6qwoTV9TX6zv0BtOX7+hclp8FTUv2lBXnIovmsamTr9XF3UlwTB4zChja/G1WKzis1gyCJeKUKb01INgGhWfK6b40rgiTKWmzmCaFF8kSkRpiyxUlkbF59FFXXFFGDxmIYf9MF3C0jSwiq+OPP/884gIX3zxRbVhCgoKGDJkyH6VY+XKlbz66qsNvj424X3QoEEMHjyYv/3tb2mUzpI6UYrIBiBUlr4+vpjF50vnUmjOps40WWfhqCKMbpZMp+LzmAn8pRUR8Or0xW791GKxiq+OPP7444wfP57HH388qX+y5cTqS2y9y5pIVfF5PB7uuOMO1q5dy5IlS7j33ntZu3Ztg+OzpBeXilImumCOlKe/qdOv0rgUWnRfnldps/gUHtPPGUmj4o+YJlRt8ZmmzjTJbGl6WMVXB4qLi1m8eDELFizgiSeeiLvn5+czYcIETjnlFAYNGgRoBThz5kwGDhzIGWecEd9W5+2332bEiBHk5eVx4YUXUlGhl3vq2bMnv/3tbzn88MN56qmnKt03cdufYDDIDTfcwKJFixg+fDiLFi2ipKSECy+8kDFjxjBixAheeOEFQG8DNHXqVCZOnEjfvn258cYbAejcuTOHH344ALm5uQwcOJDNmzdXeeb33nsvvmrLiBEjKCoqQilV7RZKxxxzDFOnTqV3795cd911PProo4wZM4a8vDzWr18PwEsvvcQRRxzBiBEjOPbYY9m2bVuV+86YMYNXXnklfj579uz4gtQtAhWlzKWnMETK01cwx1ZZCajySv2IKeFQfMHSdCm+MG7R8kXK0ze4JTZNojQYBjHFXpr6JS1Nj6Y1j++162Br1UWYU+KQPDjxlhqDvPDCC5xwwgn069eP9u3bs3z5ckaOHAnodThXr15Nr169KCgoYN26dSxYsIBx48Zx4YUX8ve//53LLruM2bNn8/bbb9OvXz9mzZrFfffdxxVXXAFA+/bt4+t6Oknc9sfn83HTTTexbNky7rnnHgB+//vf86Mf/YgHHniAwsJCxowZw7HHHgvoLYVWr15NdnY2o0ePZsqUKZW27ykoKGDFihUcccQRVe59++23c++99zJu3DiKi4sJBAI8++yz1W6h9Omnn/L555/Trl07evfuzUUXXcTSpUv529/+xt13381dd93F+PHjWbJkCSLCv/71L+bOncsdd9xR6b6xLYemTJlCMBjk7bff5r777qvjy2z6CIoKdw5E0zvZPD4xniiEysCXnXqk0X0tFBUle6j7wnTVE3G0nETTaJHFBs2UVET2KWxr8bVYrMVXBx5//HFmzJgBaIvE2dw5ZswYevXqFT/v3r0748aNA+Dcc89l8eLFrFu3jl69esXX6zz//PN5//3349dMn558C5Zk2/4k8uabb3LLLbcwfPhwJk6cSHl5ORs2bADguOOOo3379mRlZXH66aezePHi+HXFxcVMmzaNu+66i9atWye991VXXcW8efMoLCzE4/HUuIXS6NGj6dy5M36/nz59+nD88ccDlbcc2rRpE5MnTyYvL4/bbrst6ZZDJ554Iu+++y4VFRW89tprHH300WRlZSV99uaIS0WJugNUKE9aJ3C7nOtqpqnAF4fFl67+uGjEsZpKOhWfmR9YEgzvU9hpnC5haVo0LYuvFstsf7B7927eeecdVq1ahYgQiUQQEW677Tag6hZD1W3zUxPVbVNUl21/lFI888wzVXZA+Oijj6qVJRQKMW3aNGbOnMnpp5+e9N7XXXcdU6ZM4dVXX2XcuHG88cYbNT5DXbYc+tWvfsVVV13FKaecQn5+ftKVYwKBABMnTuSNN95g0aJF8QpHyyEKLhelZCFpLPhdJCq+TqlHqtKv+JwWXzqbIkMR3dRZUhGGqBmUsx9WhrE0Dfa7xSciJ4jIOhH5WkSu29/3SzdPP/005513Ht999x0FBQVs3LiRXr168cEHHyQNv2HDBv73v/8B8NhjjzF+/Hj69+9PQUEBX3/9NQAPP/wwxxxzTK33TrbtT+KWQ5MnT+buu+8mttj4ihX7Ntv8z3/+w+7duykrK+P5559n3LhxKKX46U9/ysCBA7nqqqtqvHdeXh6//e1vGT16NF988UVKWygB7Nmzh65duwLw0EMPVRtu+vTpPPjgg3zwwQeccEJ6dvZuKrhUFIWLUslK6yorTosvlKZpEuJo6gynaSCOCu8bKZrO5983uMXZ1GktvpbKflV8IuIG7gVOBAYBZ4vIoP15z3Tz+OOPc9ppp1VymzZtWrWjO/v378+9997LwIED+eGHH7j00ksJBAI8+OCDnHnmmeTl5eFyubjkkktqvXeybX8mTZrE2rVr44Nbrr/+ekKhEEOHDmXw4MFcf/318evHjBnDtGnTGDp0KNOmTWPUqFF8+OGHPPzww7zzzjvxwSuxUaLz58+Pb1l01113MWTIEIYOHYrX6+XEE09MaQsl0GuDnnnmmYwcOZIOHTrE3ZctW8ZFF10UPz/++ON57733OPbYY/H5fHWOvzkgRFHiolyycKdxlZXYdkcA5aXpmb8mDosvmibFF3EqvjRNtldKxfv4SoNhiNg+vpbOft2WSESOBOYopSab898BKKX+kiy83ZYofSxcuLDSIJiWSFPMOxtuGsSO7L5klW8DT4BB1+WnJd7P/m8kPdlCaylh59RH6DDi5JTjfPjO33LenvmElJvNvc+k5/n/SD3ON//Hef/VVn6xryOtfv91ynGGI1EO+8NrAHRo5WOZnK+XWDt4CFz6YcrxW1KnuW1L1BXY6DjfZNwsFksSRCkQF0FXVlpXWXETodhMk0jXijAxi28POWmznpSZFL9HZeNNk8XrXAat0qhO28fXYmn0UZ0icrGILBORZTt27GhscZoNs2fPbtHWXlNFN3W6CXly8EfTp/hcRClz6Q1Y0zUQJTZFYq/KRtLUXxbb469IWuGNlqVlzmFM8eX43JSFIqjY4Bbbx9di2d+KbzPQ3XHezbjFUUr9Uyk1Sik1qmPHjkkjyaRd4i1Ng6aaZ1xEQVxEPDkE0qn4VIQydy6QvhVRYoNb9pKdtoEoykxnKJVWuFB6zmGKhM2IzjZZXoTovq2fbB9fi2V/K76Pgb4i0ktEfMAM4MX6RBAIBNi1a1eTLcgsBx6lFLt27SIQCDS2KPVGlB7cEvHmkJWm5cWiUb0MWMijLb5ImqYJuExTZzE5aVN8UdMMWeLWsqZDOYXMHL7WWV48sUE+bj+Ey/cNdLG0KPbrPD6lVFhELgPeANzAA0qpqrOWa6Bbt25s2rQJ2wxqqQ+BQIBu3bo1thj1JmbxKW8rspVp6qvDXNCaiCiFiyjKk0WF8qRtBKZLhYngosKVjSeyPS1xxqYzlLtbQZi0zDmMTWVom+2Nb8hLVlso3qbjz2qbUvyWpsd+n8CulHoVaPCqyl6vt9LKKBZLc8aFHtyi/K1wiyIaLMPlT215sUhU4SGKy+OllAAqTX1bEo0QFTdBSd9AnNgefxWe1lBBWvrhQo6mztgC2ATaGsVXYhVfC6TRB7dYLJZ9xCw+8eumvrKS1OfcRaIKt0TweDyUEEjbijAuIkTwEPLkpG27I2WaOoMes4xeGhRfzOKrpPhiys7287VIrOKzWDIIiSs+PRClrDh1xRc2Fp/b46NEBXClyeJzqTBRcRP2ZOOPlqclTszglrDPKL409EfGdmZo4+zjC7TV/63ia5FYxWexZBAupVAuN56ALvjLiwtTjlMPbgmDy01ZGpdCc0UjRMRD1JONlxCEg7VfVAvKLMYe8bfRDmlQTOFKFp8ZzBKz+OzWRC0Sq/gslgzCRRQRF55sbfFVlKY+9SBsRnXi8lLhysKTpmZJN9rii3rTNwIz1tQZjSu+1JV0bGeGNllePJJo8dm5fC0Rq/gslgxCD25x483SFl8wDYovqhReIii3l6ArfSuiiNIWn/KZ3UXSoUTM5HLJ0oovHYtfxwe3ZPv2WXyB9FmUlqaHVXwWSwbhIoq4XPhztOILp8nicxMBl4eQO0uviJIG3CqMwo34Y4ovDUrEjOqUrIMACKdhlZnY4JbWAc++wS3Z7fR/q/haJFbxWSwZQjSq4qM6/Tnps3iikSg+MYrPk4M/TU2dLqWnM2AG4qTD4os1dXqzWhFS7rQsrxabwO7zuMj1mIUwjGK1fXwtE6v4LJYMIaIUbqIol4cso/jSMdk8HLOi3F4inhyyVJr6+FSYqMuDx5++NUDFNHX6/QFK8adF8ccsPq/bRWuf7eOzWMVnsWQMkUgUr7HMsnO14lNp2EEgGq7Qcbm8RH05eAmnZQSmC23xuQPa4gumY58/s/5nwOejhEBaFH/ITGdwu4Rcr7H4PH7wpm9XCUvTwio+iyVDiJih/IibnECAcuVNS1NcJBwx0XpQ3vT1x7lVhKh48Wbr/sh0jEAV09SZFfBTqgKoijSs3BLWis/ndtEq1tTp9oG/lVV8LRSr+CyWDCHWJInbg8sllJCFhFIvmKMx687lBV9s6kHqCsVNBCVuvFmxps40TGcw+/EF/H6KCaDSuEi11+0i1xtbpNoHvhzbx9dCsYrPYskQomaBZnG5ASiTLNxpmGweW/hZ3J74UmjpaEJ1qwjK5YkPxAmlYbujfRZfgFIVQNLw/LGVW7xuIccdU3ymEmD7+FokVvFZLBlCxGzCikuvHV/uyk6L4ouYZcBwe3EF0jcxPjaBPSvH7POXjhGoRvFlZ/kpIT3LqwXDMcWX0NTps02dLRWr+CyWDCFqmvlweQGocGXhjaRe8Md2NRe3F3cgPYtfR+NzA71k+72UKD/R8tRljVl82X4/pQRwp2GyvXM6Q7bH9KN6/LqPLw2Wr6XpYRWfxZIhRIzic5mmzgp3Tlq2+wmbUZ0utze+IkyoNLUCPxiJmmXQ3LTyeyghKz1KxExnyA5oi88dTv35Yyu3eN0usis1debYps4WilV8FkuGEA1pa0eZps6wOzstk81DId3U6fb68GbFph6k1tSpFV9UT73weShR/vSMFI0tWeYJEHRlp2W7o32KT+KKT8UG+timzhaJVXwWS4YQMc18LrdRfN4cAmmYbB4OaWXi8Xj3rQiT4gjMYDiqmzrd3rjFl459/rzRCsLiBZeLkDsLX7QMzOCUBsvqsPgCLt3UWR716BVnrMXXIrGKz2LJEPb18emmzqg3hyyV+rqaccXn8+E3c+4i5alZfKF4U6eHgNdlmiVTVyKeaAVhl1/L6DFzDkOpKf9QeN90hiy3VnylUZdp6iwGpVKK39L0sIrPYskQYvPtxK0HtyhvK3IoT9niiZh4vR4fWTm5RJUQSXH+WjAcxS8hlNuPiFAu2XjSMALVqxyKz5ueXR/C0Shul+B2CQHRiq84LLqpU0UhlJ5Fuy1NB6v4LJYMIVyhC2CXNwCA8un+uGiKSioS0ruju31+cgJeSgikPHE7GI6STTnKmw1AhTs9I1B9KhhXfLG4U+2HC0aieN0CQJYEiSqhJGQsvjTEb2l6WMVnsWQI4aBRUF5d8LvM1IPSFHdhjy375c3KJcfnphR/yiuiVISjZFMBPq2cgu6clAeihCNR/ASJuLXiJ00b3FaEovjcuqgLqDJKCFASijp2lbCKr6VhFZ/FkiFEQnragduXBYDLFMxlxan1x8VWP/EEWpkRmAEkmJqSCoZCBCSkF3oGwu4c/Cnu8xeKKAIEibp82sGfnuXVSirC5Pj1gKFApJRisiiuCO+z+OyyZS0Oq/gslgwhHNSKw+PTFo/bTD0oT3GyOQ6Lz+dxUSYBXCn2x5WbeYCegFF8nmz8qjy+u0JDKAmGteLz6OePWbypKr7SYCSu+HyREopVFqUVkbSuW2ppWljFZ7FkCJGgtvg8Pt3U6TGTzStSVHz7LD5jQUpWyiMwy0piik8rj6gv9WbJkoowAQmCR1u8sVVmUp0YX1wRJsenR8p6w8W6qbMi7FB81uJraVjFZ7FkCFEzutDt1/1mse1+QilONo/355mmvaArG0+KK6JUGIvPZ3ZmiHpTt56KK8IECCFmcI/bn57BPaXBfU2d3nAJRSqLkmDY0ZRqFV9Lwyo+iyVDEGPZxCw9f7bZ9SDFxZ9VRQlh3HphZiDoykp5KbTYFkQ+0xwbt55SUFLF5WFaSwkE9HP7jOIPprize3FFhGyfVnyu4F5KyDIWn+3ja6lYxWexZAixSeXZuQcBEGgVm2yeWsEvoRLKJQCih/SHPNl6RZQUiJQWAuBv1RZzoP8HGy5rcUWYdhRBTgdgn+JL1eLdsqeMTq3NSNnirezgIEqCto+vJWMVn8WSISij+HJy2wKQbZYXi6ao+LKCuylyt42fR9zZKY/AjBRtA8DXpjNAfLujVJR04Z49ZEsFvtyOAGRlBQgqN+HyhltkP5QEKSwN0btDju4rLN/DTnenhD4+u0NDSyMlxScic0Rks4isNL+THH6/E5GvRWSdiExOXVSLpZlTUUSp8uPx6ibJ7Fyt+FLdNLZVaCcl3g7x84g3h4AqS22pruLtJvKDgX0jUIMpDMQp2q2Vac5BnXTUZg3QVJTpNzu10uzdMQcKNwJQ6O2kpzN4fLr511p8LQ5PGuK4Uyl1u9NBRAYBM4DBQBfgLRHpp5Rq+Fhni6WZ4woWUypZmPVK4vvcpdIHFYkq2kZ2U5adF3eLerNxE4VwOXizGhSvp3Q7EVy4s3SzbGy7o2BpEQ2LEYKFm3VcxorM9nkoIYAvhedfv0Mrtd4dWsGmtwHY7O+Np8IURb4c28fXAtlfTZ1TgSeUUhVKqW+Br4Ex++leFkuzwB3cS5krJ34uIpSShSvU8IJ5+55iOrML1bpL3E2loW+rVekGdvs6g0sXIfsGojTc4lM71+uD9ofpe/g9lCo/KgXF9O3OErxuodtBWfDVfyCrHbsCPfWoTgCf3aGhJZIOxXeZiHwmIg+IyEHGrSuw0RFmk3GrgohcLCLLRGTZjh070iCOxdI0CZRvp8TbvpJbmWThTmGy+ffr1+KXEJ5DBsfdJMU1KncVV9AjsoHS1ofF3bxmBGo4hQ1us/d8RQQ3tO0BQI7fTSmBlBTTl1uL6Nk+B8/G/8La52HY2eQEfLqPD8wODbaPr6VRq+ITkbdEZHWS31TgPqAPMBzYAtxRXwGUUv9USo1SSo3q2LFjfS+3WJoF0aiiTXgXoZxDKrmXpzjn7od1iwHoPGBs3E2MxRdt4KCRz7/+hsPke+h6eNwtK7uV3vWhgXFu3F3K4NAqdrYZrPve0BZfsQrEJ+DXF6UUHb97iedKZsFDp8BBveCY35Dtc1MSa+r0t7IWXwuk1j4+pdSxdYlIRO4HXjanm4HuDu9uxs1isSRh295SOvEDe9t0qeQedAVSUnxZ373NLld72h86NO7mNiMwy0v3xvsT68PWT17GJYpDDp8Sd8vx610fog0ciPO/Ves4Xb5h72GXxd2y/R5KCeAONWw6w7LvfuC0yBu0UoUw6qcw6Q+Q1VYPmgk6LD7bx9fiSHVUZ2fH6WnAanP8IjBDRPwi0gvoCyxN5V4WS3Pm++++xi8hfB37VHIPubLwRssbFOdX33zNqIqP+L7zsfE5fABus9pKQ5ZCKyoLcth3T7LD2wV/95Fx9xy/h1L8RCvqbz1Fo4qi//4Lj0Q5aMzZcfcsr9tscNswxZ//3rsc4fqC4MTr4Sd/hRzdjJztdzuaOq3F1xJJdVTnXBEZDiigAPg5gFJqjYg8CawFwsAv7YhOi6V6ijatAaBN98GV3EPuLLzB7fWOTynFlmf+QE8UPU68spJfbM3OYFn9LZ3/PDWf0+VLNo+5OT6wBXR/XIkK4GpAv+ErHy7jzPJn2HrI0Rxy8KC4u9slVEgW3gYovlUbf+DI9XdQ7m1FYMyFlfxy/J59TZ2+VraPrwWSkuJTSp1Xg9/NwM2pxG+xtBTC274AoH3PoZXcI+4sfA2w+Ba/cD9Hl7zOpz1nM6zbwEp+XmPxheq5FNji/DeYvP7PbMoeQLcfX1rJL8fvYRcBcuvZH7d+w0YGvHUBXhd0OuOvVfyD7my89Zxsv7csyLqHLuMM1xrKfnQbZLer5N/K5yEYiRIMR/HZPr4WiV25xWLJAHw/fM0eycWdW3mAV9STpbf7qQcr332GI1Zcxxf+IeSd85cq/v7YUmD1UHzLli1h0LsXUuQ5iPY/ew5c7kr+2aZZ0hWqu3W2adtOih88gx6yhaJTH8LVsW+VMGFPtlb8ddzuqCwY4ZV7r+GM8MtsHXgBWUf9rEqYbLNgdWkwbPv4WihW8VksGUC70m/Z5utRxT3qzSJA3RXfmqVv0zf/UjZ5DqXrpS/i8lcdvhLIia0BWrcCf/Xna+n60jng8pDz05fIatelShiP20W51L0/bnthERv+OZ08tY4dx91Np2HJF3cKu438dbDKguEoT9x3I2cXP8Sm7idzyJl/rdS3GaOVXyttvV5nLkQqIBKqk9yW5oFVfBZLIxONROkW/o7i3D5VPb05ZBGEaLTWeL5avYyur8xij+sg2l78Irlt2ycNl5VtpjPUwdL5+rsNZC06g1wpg5lPk9ulX7Vhg66sOo1A3VMSZOXfz+eoyDI2HXkTXcedU23YqDc257BmxReORFn4r7s4f/c8vu84gW6zH6zUB+kktlNDpR0a7NZELQqr+CyWRmb7lgLaSgnhjoOqenq1xRMJ1qxQvvtmHblPn0VEPLjPf552Bx9abdjsgM+siFKzMtm0bSdlC6fRje2Unv4w7Q4bXWP4oCsbb6TmOEuDYd6591KOD77NhrzLOXTy5TWGr4vii0YVC/79IOdvuZkdbYfS5WdPgttbbfhWfofi86e+nZKl6ZGOtTozhj27trHu/SeJlu1Ble9BKvYiwWIkGkZQEI0gxGrOYppBBMSlj53niKkxStxPcIQzYVTsGgQlLhSgaqhP1HdZ4CrhVS3+SeNowEXO4HUIXzVIZZeGrIdc2yW1PVf901rqEEcSl1puVJsc2WVbOQQIdM2r4ic+rfjKS4vIie1InsCWLZvg4dPIoYy9M16ga8+BScPFyPG5KcGPqkGZ7CgsZvM/z2SU+ootk/9Bt6G1T+cNe7LxhaofiBIMR3nu779jZunTbOh9NoeeflOtce6zyJL3Ryql+Neipzm34HcU5fTg4EteAF/NsxOzzW7sJRXp35po0w+lrN68l292FFG06XN8O1fToexbOoc30U4V0o49ZKlyXKJwoYiKhwpXFhXuHELuHMKeHCKeLJQ3G7xZKG8OEXcWYfHEn1cpUERB6XNUFHNiMmPUHEdjiQREEaVLJ4mFRZdclUhoGlZIjWGKsrpy/LnXpiXtDiTNSvEVbt/EmE//GD8vUQFKJYsIbpS4iCJE0Zle4irKZAalM0Siu8tkkpif/oHLKFAxYZz+rnoXuc2Uqt0rGXyLxn1nO6UdPQYfWcU91kdXVrqXnHadq/jv3L2LPfefSk+1na0nP07PAbUviZvt87ClhhVR9paWs+bv5zAx8gkF426h55HT6/QMEXc2/gqz60NCARqORHnsH7cwu/CfbOx8PIeee2/S/rcq+GtWTAtfeJMzvriCoL8d7S95GbIOShrOSWw39uJKWxM1zOIrD0XIX7ed/HU7+Ozr7xi4ZzET3Ss50/U5HUXPk4zg4gdfZ/Z6OrDH05ftrmwiSghFQSJBvJFSfJFS/KEisqNb8akKAlSQRQVZBHFJevJmVAlRRylX9eupfJ9kb0cSwixjIGAVX6PSufdgvj//I3JaH6R/Xh85tV9msTQ6Hapxd/ljk82rFvx7iorY+PfTyYus59tj/0HfkcfV6V4+j4tSCSRdA7S0IsTHd5/Pj4Pv8c2wa+h93KVJYkhOxJuDhwhEguDxx92jUcUjD/yN87bPZXP7I+j+00eqjAqtDpff7PCeRPE99sYHTF5xCV6vl1YXv4y0rjroJhmtnKM6c+uv+JRS/G/9Lp5dsZk3V3/PqNAyzvO9y5/4DK8vRCi7E/Q8FvocA11H4u7Qlw4ef7XvuLp7VISjFFaEIVyGOxpGXIJLBLdLTMOTPne53IgI4nIhsdaqWCuWo8XKRfr7tsbWHiQjaVaKz+cP0KXXgMYWw2JJGx6/rrpVJEw9KC4pYf3dpzI89CnrjryVgRPOqle8FZJFbsJAlLKKMO/Nu4gTy17nq/4/p+9p19crTuVzjMA0ik8pxSMP/5OZm/7EtjbD6HrJc5WUYm24AqbqmrAU2nP5HzH+wwto4wkRuPAVpMNhSa5OTnZsVKdzcEsd+vjCkSivrNrCffnr+Wbrbs7yL+E/gVc5WL5D5XZGBl8MQ07H23Vk3azZGhARAl43Aa8bqHt6WepGs1J8Fktzw5Wtm+4iJbvibnuLi/hi3jTGBJfx2cg/MfSEn9c73gpXFu3C+6yosooQ7979c04qeZ71vc+j74xb6x2n8jqsp+x2RKOKxx+Zz/Rvrmdnq750+cWL+xRNHXFl7Xv+mI34zDtLGJF/Ph3cJXhnv4y7y7B6xRkf3BKsWx9fWTDCU8s38s/3v2HPD7v4VZsPOK/Na2RVbIe2Q+CofyJDTq9xQI0ls7CKz2LJYNxm0ero3q0AbN32PTvvn8aY8FrWjLiBoafUPCqyOgrd7ekX/BSAHYVFfHbfbE6qeIuvep5D3/PubpjF4tfzAyn7gfKcrjyz4Famb7mN7a0G0PkXL0OgTf3jzOlISLmJFH6PRBWPvPAKx638FW3cFXhmPYP30JG1x5FAlteNSMzia6sdkwye2VMa4t//K+DB/xbgLdnKde3e5eRWr+OpKIFeR8O4+6DPj1O27iwHHqv4LJYMplV7PaAlvGcLnyx+nU5vXU5ftZs14//G4ONmNzjeokAX2hS9w8oVS/G9eCk/Vl/z9eBf0feMPzW4IC/L1VMotn+1jGUP/j9mBl9n00Fj6HbpsxDrq6snHVtnsY2D8G8r4OX7bubM7XcT9ubivfANvF2qjoKtCyJCjs+s15lk8MzmwjIeXPwtjy/dQI/Qeua1e5ejVD5SFkEGnQrjLocuIxp0b0tmYBWfxZLBdOvUjp2qNYO/mEfk87vZ7urIttOeZvCwialF3L4PriLF8BeOo4gcCn48n8MmnF37dTXQtvsgQp+66fTOVZwEfDfw5/Q44+aUmgD7dsrlm2hnjv72eS4Avm83is6z/420SbqvdZ3Re/KFzTxJIVy2l7fXbOXZTzbxv7Xfcpz7E55v/V/6lq6EYDaMugDG/gLa9UrpvpbMwCo+iyWD8XvcvHvIDMZtfZgvu0xl8MxbCLSqfch+bYw4YRb5D33IQa2y6Df9z/TsUHW5tPpy7NAePPnxrxlRvpRDTriGHoMmpRznwM65/GPw1bTbcB8dR06ly6RL6jwitCZaBTys3bKXBz4s4CfezhR+8CQrw5uY5f2CewNr8agg+A6FcX+Cw8+r0zQJS9NBVENmFu8nRo0apZYtW9bYYlgslmbOn15ey4LF3wLwu1av8PPwowCoDgOQPpNgyOnQbbTtvztAiMhypdSoA3Y/q/gsFktLIxpVrN2yl/atfHRuHYAfCvTgm4QtjCwHhgOt+GxTp8ViaXG4XMKQro5RprbvrkVhF6m2WCwWS4vCKj6LxWKxtCgyqo9PRHYA36Uhqg7AzjTEcyCwsu4/mpK8TUlWaFryNiVZoWnJmy5ZeyilOqYhnjqRUYovXYjIsgPZUZoKVtb9R1OStynJCk1L3qYkKzQteZuSrE5sU6fFYrFYWhRW8VksFoulRdFcFd8/G1uAemBl3X80JXmbkqzQtORtSrJC05K3Kckap1n28VksFovFUh3N1eKzWCwWiyUpVvFZLBaLpUXRrBSfiJwgIutE5GsRua6x5XEiIt1F5F0RWSsia0Tk18Z9johsFpGV5ndSY8saQ0QKRGSVkWuZcWsnIv8Rka/M/0Zftl5E+jvSb6WI7BWRKzIpbUXkARHZLiKrHW5J01I080w+/kxEDs8AWW8TkS+MPM+JSFvj3lNEyhxpPP9AylqDvNW+exH5nUnbdSIyOQNkXeSQs0BEVhr3TEjb6sqtjMy7dUYp1Sx+gBtYD/QGfMCnwKDGlsshX2fgcHOcC3wJDALmANc0tnzVyFwAdEhwmwtcZ46vA25tbDmT5IOtQI9MSlvgaOBwYHVtaQmcBLwGCDAW+CgDZD0e8JjjWx2y9nSGy6C0TfruzTf3KeAHepkyw92Ysib43wHckEFpW125lZF5t66/5mTxjQG+Vkp9o5QKAk8AUxtZpjhKqS1KqU/McRHwOZDabpqNw1TgIXP8EHBq44mSlB8D65VS6VgBKG0opd4Hdic4V5eWU4F/K80SoK2IdD4ggpJcVqXUm0qpsDldAnQ7UPLURjVpWx1TgSeUUhVKqW+Br9FlxwGhJllFRICzgMcPlDy1UUO5lZF5t640J8XXFdjoON9EhioWEekJjAA+Mk6XmWaBBzKh6dCBAt4UkeUicrFxO1gptcUcbwUObhzRqmUGlQuOTE1bqD4tMz0vX4iu1cfoJSIrROQ9EZnQWEIlIdm7z+S0nQBsU0p95XDLmLRNKLeaat4FmpfiaxKISCvgGeAKpdRe4D6gDzAc2IJu6sgUxiulDgdOBH4pIkc7PZVu28iY+TAi4gNOAZ4yTpmctpXItLSsDhH5AxAGHjVOW4BDlVIjgKuAx0SkdWPJ56DJvHsHZ1O50pYxaZuk3IrTVPKuk+ak+DYD3R3n3YxbxiAiXnTmeVQp9SyAUmqbUiqilIoC93MAm11qQym12fzfDjyHlm1brOnC/N/eeBJW4UTgE6XUNsjstDVUl5YZmZdFZDbwE2CmKewwTYa7zPFydJ9Zv0YT0lDDu8/UtPUApwOLYm6ZkrbJyi2aWN5NpDkpvo+BviLSy9T8ZwAvNrJMcUz7/QLgc6XUXx3uzvbv04DVidc2BiKSIyK5sWP04IbV6DQ93wQ7H3ihcSRMSqUac6amrYPq0vJFYJYZITcW2ONoVmoUROQE4DfAKUqpUod7RxFxm+PeQF/gm8aRch81vPsXgRki4heRXmh5lx5o+ZJwLPCFUmpTzCET0ra6cosmlHeT0tija9L5Q48o+hJdM/pDY8uTINt4dHPAZ8BK8zsJeBhYZdxfBDo3tqxG3t7o0W+fAmti6Qm0B94GvgLeAto1tqxGrhxgF9DG4ZYxaYtWyFuAELrf46fVpSV6RNy9Jh+vAkZlgKxfo/tuYnl3vgk7zeSPlcAnwMkZkrbVvnvgDyZt1wEnNrasxn0hcElC2ExI2+rKrYzMu3X92SXLLBaLxdKiaE5NnRaLxWKx1IpVfBaLxWJpUVjFZ7FYLJYWhVV8FovFYmlRWMVnsVgslhaFVXwWi8ViaVFYxWexWCyWFsX/B+yoBAPpdvMlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABsbklEQVR4nO2dd5hURfaw39NhuifBECUKiGSGJMkFFAyIoqKCgmJA13XNurq6btBFd/3WuCrqym9ZFNMqmHXNCRVdRBBEsrqOBBFJA0zuUN8fVd3c6eme6Rkapmeo93n66Xur6tY9t27dOnUqilIKi8VisVgaM676FsBisVgslv2NVXYWi8ViafRYZWexWCyWRo9VdhaLxWJp9FhlZ7FYLJZGj1V2FovFYmn0pJ2yE5HOIqJExFPfsljqjohcJSI/ishX9XDv6SLy1AG4zzQRWVCN/3wRuXh/y2GpjIiMFpGNtfVLsQzVlmMHKo82FkTkIRHZISJPi0id9FbaKTtL7RGRmSJSZH4VIhJwnL9ZT2JNBy5XSvV3yDldRKbXkzxphSkMC2oZ/kMRKRGRNSJyXDVhzxKRz0zY+TF+3UXkFRHZagqPt0Wkh8P/AhFZIiK7RWSjiNzlLLCNHG+IyE4R+ckUQk7/Y0TkS3P9/0TkEoffGBH5WkQKRWS7iLwkIu1r8fwFyaVWw0dECkSkc5JhfSLyqEnzn0TkuhrC/8aE222u8zn8PjR5Y7eIfCUiExLE8ahR5oc73IpifiERedD49RaRxSbf7BSR90Skd0ycg0TkY3PtFhG5JuKnlLoS6AGcDvRLJl1iSbmysxbZgUcpdalSKkcplQP8P2Bu5FwpdWIk3AF+N82BFQfwfvuFNMrPzwBLgRbAH4HnRaRVgrA7gPuBO+L45QGvoguOQ4BFwCsO/yzgWqAlMAw4Fvitw/8fwM9AW2AAcDRwOYCIeIGXgP8DmgKTgb+LSKTCswo4QSmVB7QDvgEeqenB05U0yhvTgW5AJ2AMcKOIjIsXUEROAG5Cv9dOwGHArY4g1wBtlVJNgEuAp0SkbUwcI4GusXE7ypwcoA1QCjxnvH8EJqHLhZboPPisI86WwFvovNMCOBx4Jyb+rei816La1EhASpSdqYX8TkSWA8Ui4hGR4aZ2WWhqCKMd4eeLyN9EZJGpQbwiIs0TxH2hiKwWkT2mpvjrGP8JIrLMxPNd5CWLSFMRmS0im0Vkk4j8VUTcNTxHVxH5wNQ6t4k2mfMcfjtEZJA5b2dqQKPN+akistI873wR6RWTPr8VkeUisktE5oqIv/YpXXsSvJvYGtkcEfmr4/xkk6aF5h3WqiblSOdwDeFuNO/nRxG52CmXkelhEXndvPvPRaSr49oHRGSDee9LRGRUTPR+k857RFsaTgvzJpNX9ojIKhE53eE3TUQ+FZH7RGQ7uiCp6XnvMbXV70XkxBjvTia+PSLyjvmoa4WIdAcGAX9WSpUqpV4AvgYmxguvlHpPKTUPXcDE+i1SSs1WSu1QSgWA+4AeItLC+D+ilPpEKVWhlNoEPA2McETRBZinlCpTSv2ELqD6GL/mQBPgSaX5AlgN9DZxb1FKOWUKoQu1WiPaClhq0vU5867/miDs1eY9d3C4/cF84wUiMtXhPt7Eu9vkr+kOv0jT5C9FZD3wQRKiThWR9eZef4zxyxCRJ8wzrBSRwbVLhSgXAH9RSu1USq0GZgHTqgk7Wym1Uim1E/iLM6xSarlSKhg5BbxAx4i/aAX/IHBVDTJNRCumT0y8hUqpAqWX7BKqvvvrgLeVUk8rpcqVUnvMs8QSBupWyVBK7fMPKACWoRMlE2gPbAdOQivU4815KxN+PrAJ6AtkAy8ATxm/zuhE9pjz8ehahKBrkSXAIOM3FNhl4neZ+/Y0fpEaZjbQGl2D/XUNz3G4icsHtAI+Bu53+P8KXTvNAt4G7jHu3YFic60XuBH4FshwpM8idG22OboAuDSBDCOBwmp+I2t4humRtIz3boybAg53hJkD/NUcD0Rn0mGAG/1xFAC+WuSHcUAZkF1DmJ/QBWUW8JRTLiPTdvOOPehC91nH9eeia3ge4HoTl9+RBgF0TdKLtky+B7zG/0zzLlxo66MYXZsF/eEH0R+zJ5JmCZ5hmrnPr0xaXYZWMOLI59+Z/JFpzu9IENc/gH8k8DsdWB3j9hDwYA3v4WJgfg1hTgM2V+P/slNm4NfAE+adtUdb76c7/P8NXGHS40iTlzo6/A9F5+OwSbtpdShvMoAf0FaIFzgDqHDk4dHARnN8C/Ale8ue0eb9/h39nR9t3n8Ph3++yRv9gC3AaTFl0xPocqW6vBEJO8u8+/5AOdDLkUfL0GWkG/gbsDBBXOcAyxP4NTP3OcThNgn4OkH4r4DJjvOW5voWDrf/GNkUujLjcvjdADwQrxyJuc8HwPQ47oUm/cPAn2LCPwB8ZvLMa8Chca7/CLgLcNc639T2ggQPVgBc5Dj/Hbp25wzzNnCBOZ5P5Q+ot8msbmKUXYKP7xpz/H/AfXHCHGIyVqbD7Wzgw1o+12nA0hi3V9G16uUYBQDcjK7tRsK40Mp8tCN9znX43wXMTEXax5F5OlWV3UUxYapTdo+ga4nO8GuBo5O8/2IT/9U1hHsU+Jvj/HCqKrt/OfxPAtZUE99OoL8jDRY6/FzAZmBUgmuXARPM8TRgfZLPOg341nGeZZ6hjSOfOz/oy4G36vBOzyOmIARuB+bUcF21yg7oYPLp2Qn8LwI2Ai0dbr2AJegCS5n3JA7/U9AKImh+v0oQd3N0OTG8DulxlJHbed8FVFZ2m9AKbQHQ1BFutJEr2+E2D7g5wb3ux5Qx7C2bDktCxkjYDg63RcAURx59z+HXGyitQ1p0NPfxO9yOBwoShP8OGOc495rrO8eE8wInAtfF3OvbSHqSQNmhm0dDQJcEMmSbb2G8w20dWhEOAfzADODTONceCexBl++ta5NWqeyz2+A47gScaZrBCkWkEG2xtE0Q/gd04lZp4hGRE0VkoWlCLEQXepFwHdEvL5ZOJr7Njvv/H9rCS4iIHCIiz5pmz91oayNWplloi/RBpVS5cWtnngEApVTYPJ+z8/0nx3EJkFOdLClmQ81BonQCro95dx3Rz5gMQ4ApwHTRfTiJaBcjVzwZE6aZaRZebZqFC9F9RM53FY3PvI+NkWcQkfMdzbSF6PcZ99okiMqolCoxhznx/GOfoRYUoZsHnTRBf/R1QnR/3ztoa/KZOP6noa2NE5VS24ybC13TfxFdYLVEWxZ3Gv+e6H6Y89HWVx90/9H42PiVUjuAx4FXpPZ9X+2ATcqUfobYd5aH7nP6m1JqV4zfTqVUseP8B/bmjWGyd5DGLuBSqpYBdcofVH3/sX7+OqRFkfl35o/q8kZsXoocVwqvlAoopd4ExorIqcb5fuC2OOkZy3nAAqXU9/E8TdrPBJ4QkUiZXAq8pJT6QilVhu5H/IWINI25/PfoVp5spdTPNchRiVQqu9iM96RSKs/xy1ZKOTvMOzqOD0U3aWxzRih6lNALwD1oMz0PeAPdpBm5T5WOUuNejq6RRu7fRCnVJ05YJ//PPEe+0h205zruhYjkoF/4bHRhHuln/BGtJCLhxDzfphruVwURGSVVRzU5f7F9U8mgYs5L0FZIhDaO4w3A7THvLitegRj3RroAehldCLatJuhmtGURoWOigLGYNLgROAtoZvLFLhzvisr9DC5zrx9FpBO6wnIluukmD90U57w2Nr3qm5XAYSKS63Drb9xrjYg0Qyu6V5VSt8fxH4dOo1OUUl87vJqjv9WHlO5X2Q48hq6Agq40rFNKva2UCiul1gKvoy2EeHjQFdBYRV4Tm4H25juLEJt/dgInA4+JyIgYv2Yiku04P5S9/Zv/RrfedFRKNUUXyhJzfdrkD6X73Taj80OE6vLGyjhht5h3GQ8Pe8vYY4G7RY/kjCjq/4rIOTHXnI+uyFSHi71N4aBbypzpmiiNewGvqb39ikmzv6YePAWcIiIniIhbRPyi57c4C7dzRQ9HzQJuA55XSoVi4slAt6tvBYKm83+sw382cKGIHCsiLhFpLyI9lVKb0R/zvSLSxPh1FZGja5A7F13z2SV6SPQNMf4PAIuVUhejP+KZxn0eMN7I4UX3IZWj259rhdKDA3Kq+X1S2zjjsAw4x7ybceh+iwizgEtNDVdEJNt02udCdODInBqeIWLxZlQTbB763fUyeeDmWsifi26K2gp4ROQWqhaYR4jIGaamfC36fSxEWyTKXIuIXIgupNMWpdQ69Dv7s/mWIsOvX4gXPvLNoQsql7nGa/yaoLsUPlVK3RTn2mPQNeeJSqlFMXJsQ/d9XiZ6oFMeuk93uQmyFOgmevqBiB5QdHLE37yPHuZ7bIVuZlxqrLzI1JT5SSTJf9HNZFcaOSag+3Zj020+MBV4UURi/W8VkQxTcTqZvaMGc4EdSqkyc01sQZ6OPAH8SUSaGev6V+jm5URhf2nK3jzgT5GwItJTdEtapoh4ReRcdJPxR+ba7mjlOMD8QDdbvxSJXER+gVZgkfSMuB8vIgNN3myCfvc70eMXQFeaTheRASav3oy2DmOtSC/6W641+0XZKaU2ABOAP6ALlQ1oxeG835PoRP4J3UZ7dZx49hj3eeiEOQdd64r4LwIuRI8o24V+KRELK9KUsspc+zzVWxqgTedBJq7X0c01gB71iR5UcZlxug4YJCJTTQ32XPQopW3oDHCKUqqihvvVF9egZSxEFwYvRzyUUovRH8tD6HT7lsojuzoCnyZxD0U1+cs0kcwAPjT3WGi8ksnIb6Ob09ahm6DKqNq09Ap68MlOdLPKGaZpZhVwL7rA3IIejJDM8+xXRM+VnFlNkCnAYPTz3AFMUnooNiIyVUScNfnz0M1CjwCjzPEs43c6uqn5wpgWg0ON/83oJuE3JP5czTPQ38FW9HsLAL8BUEp9h+7nmwHsRn+PLwD/Mte2R7+3Peh+77CRJ0JSect8V2cAv0Tn4XPRgyqq5B2l1LtGptfEjKRGlzk70dbc0+jBYmuM3+XAbSKyBz24ZV5N8uxv4rzfWP6M7s75AZ3mdyul3jLXHup8v8b9LvR3t95c8+fIrdB9iT+j3+816MEsX5prf1ZK/RT5mWu2KaVKHbJcALxoym4neejpM7uMrF3RfYdlJu4P0PridXP/w4lf0XBTwyjvRERGjR1QTO3tKaXUv2oKa0kfRCQDPZqrn9LD1qsL+yNwo1IqqVUiRE/VWIEe9FPrJgpLw0dElgHHVtOkVt21n6MHfT2WcsEsaYGIRAbIDDSV1lphV1CxJI3Sc6961aToDDehm92WJAogIqeLXv0hMsihTm3xlsaBUmpAsopORI4WkTamGfMCdLPuW/tXQkt9ISIz0K0//6yLooODUNlJ5aW1nL/qmpAstUQp9YRSqptS6ohqgv0a3WTxHboP5rJqwtYLNr+kLT3QrQyF6D7ySaav/oBhmhfj5Y06DRyyJEYpdbVSqr1SqqbJ7Ampl2ZMi8VisVgOJAedZWexWCyWg490WcgUgJYtW6rOnTvXtxgWi8ViOYAsWbJkm1Iq0cLmKSGtlF3nzp1ZvHhxfYthsVgslgOIiPxQc6h9wzZjWiwWi6XRY5WdxdIAsQPLLJbaYZWdxdLA+GjtFq665Va2FBbXHNhisQBp1mcXj0AgwMaNGykrK6tvUSwNCL/fT4cOHfB6q9t4oWGy8oNneMh9H/97H5g4vb7FsVgaBGmv7DZu3Ehubi6dO3dGJHbxcYulKkoptm/fzsaNG+nSpUt9i5NyPGG95GrWjjotJGGxHJSkfTNmWVkZLVq0sIrOkjQiQosWLRpta0CmW/fXBeq0HK7FcnCS9soOsIrOUmsac57JcevF/YNBu4yoxZIsDULZWSyWvfhcZiRmoKT6gBaLJYpVdkkgIlx//fXR83vuuYfp06fXn0A1MH/+fD77rNb7xlZi3Lhx5OXlcfLJJ6dIKkuqcJk9jl3B0hpCWiyWCFbZJYHP5+PFF19k27ZtKY1XKUU4nPqOl1QouxtuuIEnn3wyRRJZUkpYKztPyFp2FkuyWGWXBB6Ph0suuYT77ruvit/WrVuZOHEiQ4YMYciQIXz6qd5oefr06dxzzz3RcH379qWgoICCggJ69OjB+eefT9++fdmwYQM33HADffv2JT8/n7lz5wJaYY0ePZpJkybRs2dPpk6dGnci8YwZM+jduzf9+vVjypQpFBQUMHPmTO677z4GDBjAJ598Uq2M5513HkceeSTdunVj1qxZ0XiPPfZYcnNzq02X5557jr59+9K/f3+OOuooQA8ouvDCC8nPz2fgwIF8+OGHAMyZM4fTTjuN448/ns6dO/PQQw/x97//nYEDBzJ8+HB27NgBwKxZsxgyZAj9+/dn4sSJlJRULdCHDx/OypV7d1EZPXr0QbXMnFIRZWctO4slWdJ+6oGTW19byaofd6c0zt7tmvDnU/rUGO6KK66gX79+3HjjjZXcr7nmGn7zm98wcuRI1q9fzwknnMDq1aurjeubb77h8ccfZ/jw4bzwwgssW7aMr776im3btjFkyJCo4li6dCkrV66kXbt2jBgxgk8//ZSRI0dWiuuOO+7g+++/x+fzUVhYSF5eHpdeeik5OTn89re/BeCcc85JKOPy5ctZuHAhxcXFDBw4kPHjx9OuXbuk0u62227j7bffpn379hQWFgLw8MMPIyJ8/fXXrFmzhrFjx7Ju3ToAVqxYwdKlSykrK+Pwww/nzjvvZOnSpfzmN7/hiSee4Nprr+WMM87gV7/6FQB/+tOfmD17NlddVXkLq8mTJzNv3jxuvfVWNm/ezObNmxk8eHBSMjcGJKwHprjNFASLxVIz1rJLkiZNmnD++eczY8aMSu7vvfceV155JQMGDODUU09l9+7dFBUVVRtXp06dGD58OAALFizg7LPPxu12c8ghh3D00UfzxRdfADB06FA6dOiAy+ViwIABFBQUVImrX79+TJ06laeeegqPJ37dpToZJ0yYQGZmJi1btmTMmDEsWrQo6TQZMWIE06ZNY9asWYRCoejznHvuuQD07NmTTp06RZXdmDFjyM3NpVWrVjRt2pRTTjkFgPz8/OizrVixglGjRpGfn8/TTz9dyYKLcNZZZ/H8888DMG/ePCZNmpS0zI0BiTRjWmVnsSRNg7LskrHA9ifXXnstgwYN4sILL4y6hcNhFi5ciN/vrxTW4/FU6o9zzvnKzs5O6n4+ny967Ha74w41f/311/n444957bXXuP322/n666+rhEkkI1Qdol+bIfszZ87k888/5/XXX+eII45gyZIl1YZ3Po/L5Yqeu1yu6LNNmzaNl19+mf79+zNnzhzmz59fJZ727dvTokULli9fzty5c5k58yDbNNw0Y3pVeT0LYrE0HKxlVwuaN2/OWWedxezZs6NuY8eO5cEHH4yeL1u2DNDbFX355ZcAfPnll3z//fdx4xw1ahRz584lFAqxdetWPv74Y4YOHZqUPOFwmA0bNjBmzBjuvPNOdu3aRVFREbm5uezZs6dGGQFeeeUVysrK2L59O/Pnz2fIkCFJ3Rvgu+++Y9iwYdx22220atWKDRs2MGrUKJ5++mkA1q1bx/r16+nRo0fSce7Zs4e2bdsSCASi8cRj8uTJ3HXXXezatYt+/folHX+jwFh2flUGdkFoiyUprLKrJddff32lUZkzZsxg8eLF9OvXj969e0etjIkTJ7Jjxw769OnDQw89RPfu3ePGd/rpp9OvXz/69+/PMcccw1133UWbNm2SkiUUCnHuuedGB4NcffXV5OXlccopp/DSSy9FB6gkkhF0M+iYMWMYPnw4N998c7S/btSoUZx55pm8//77dOjQgbfffhuAW265hVdffRXQIzbz8/Pp27cvv/jFL+jfvz+XX3454XCY/Px8Jk+ezJw5cypZdDXxl7/8hWHDhjFixAh69uwZdX/11Ve55ZZboueTJk3i2Wef5ayzzko67saCGMvOTRiC1rqzWJJB0mmrkMGDB6vYUXWrV6+mV69e9SRR42b69OmVBrI0Nhpr3nnnvosZu+s5fXLD/yC7Rf0KZLHsIyKyRCm1X0eZWcvOYmlgRCw7ACqqHwxlsVg0DWqAiiW1pPMqMJbEOJWdqiim8a4CarGkDmvZWSwNjMjUA4CK0j3VhLRYLBGssrNYGhhOy66ixCo7iyUZrLKzWBoYlZSdtewslqSwys5iaWC4HMouYC07iyUprLJLkpdffhkRYc2aNQnDFBQU0Ldv3/0qx7Jly3jjjTf2KY6LLrqI1q1b73dZLfsJFaJE6bmLgTI7GtNiSQar7JLkmWeeYeTIkTzzzDNx/VOxa3RkfcnqSIWymzZtGm+99dY+xWGpP1wqRBFZAITKrGVnsSSDVXZJUFRUxIIFC5g9ezbPPvts1H3+/PmMGjWKU089ld69ewNa6U2dOpVevXoxadKk6BY177//PgMHDiQ/P5+LLrqI8nK98kXnzp353e9+x6BBg3juuecq3Td2C52KigpuueUW5s6dy4ABA5g7dy7FxcVcdNFFDB06lIEDB/LKK68AekudCRMmMHr0aLp168att94ajfeoo46iefPm1T7zRx99xIABAxgwYAADBw5kz549KKUSbkd09NFHM2HCBA477DBuuukmnn76aYYOHUp+fj7fffcdAK+99hrDhg1j4MCBHHfccWzZsqXKfadMmcLrr78ePZ82bVp00WeLRlSIYtHKLlxuLTuLJRn2+zw7ERkHPAC4gX8ppe6oc2Rv3gQ/VV3oeJ9okw8nVi/SK6+8wrhx4+jevTstWrRgyZIlHHHEEYBe93LFihV06dKFgoIC1q5dy+zZsxkxYgQXXXQR//jHP7jyyiuZNm0a77//Pt27d+f888/nkUce4dprrwWgRYsW0XU0ncRuoZORkcFtt93G4sWLeeihhwD4wx/+wDHHHMOjjz5KYWEhQ4cO5bjjjgNg0aJFrFixgqysLIYMGcL48eOT3grnnnvu4eGHH2bEiBEUFRXh9/t58cUXE25H9NVXX7F69WqaN2/OYYcdxsUXX8yiRYt44IEHePDBB7n//vsZOXIkCxcuRET417/+xV133cW9995b6b6R7XvGjx9PRUUF77//Po888khSMh8suFSIkCuDspAXZZWdxZIU+9WyExE38DBwItAbOFtEeu/Pe+4PnnnmGaZMmQJoy8PZlDl06FC6dOkSPe/YsSMjRowA4Nxzz2XBggWsXbuWLl26RNfHvOCCC/j444+j10yePDnufeNtoRPLO++8wx133MGAAQMYPXo0ZWVlrF+/HoDjjz+eFi1akJmZyRlnnMGCBQuSfuYRI0Zw3XXXMWPGDAoLC/F4PNVuRzRkyBDatm2Lz+eja9eujB07Fqi8fc/GjRs54YQTyM/P5+677467fc+JJ57Ihx9+SHl5OW+++SZHHXUUmZmZSct9MOBSIXC5KcaPqrC7lVssybC/LbuhwLdKqf8BiMizwARgVZ1iq8EC2x/s2LGDDz74gK+//hoRIRQKISLcfffdQNXteuqyZU6iLX+S2UJHKcULL7xQZWeBzz//fJ+277npppsYP348b7zxBiNGjIguBJ2IZLbvueqqq7juuus49dRTmT9/ftwVXPx+P6NHj+btt99m7ty50UqGZS9CGHG5KVF+u1yYxZIk+7vPrj2wwXG+0bhFEZFLRGSxiCzeunXrfhan9jz//POcd955/PDDDxQUFLBhwwa6dOnCJ598Ejf8+vXr+e9//wvAv//9b0aOHEmPHj0oKCjg22+/BeDJJ5/k6KOPrvHe8bbQid2+54QTTuDBBx8ksqD30qVLo37vvvsuO3bsoLS0lJdffjlqcSbDd999R35+Pr/73e8YMmQIa9as2aftiAB27dpF+/b69T/++OMJw02ePJnHHnuMTz75hHHjxiUd/8GCS4W0ssOHBKxlZ7EkQ70PUFFK/VMpNVgpNbhVq1b1LU4VnnnmGU4//fRKbhMnTkw4KrNHjx48/PDD9OrVi507d3LZZZfh9/t57LHHOPPMM8nPz8flcnHppZfWeO94W+iMGTOGVatWRQeo3HzzzQQCAfr160efPn24+eabo9cPHTqUiRMn0q9fPyZOnBjtrzv77LM58sgjWbt2LR06dIjuzzdz5szo9j/3338/ffv2pV+/fni9Xk488cR92o4I9FqcZ555JkcccQQtW7aMui9evJiLL744ej527Fg++ugjjjvuODIyMpKO/2BBN2N6KMGPK1Bc3+JYLA2C/brFj4gcCUxXSp1gzn8PoJT6W7zwdouf1DFnzpxKA1kORhpr3ll663CaZGWytThAu2zh0BvitzJYLA2FxrDFzxdANxHpIiIZwBTg1f18T4ulUeNSIcLipkL8eEK2GdNiSYb9OkBFKRUUkSuBt9FTDx5VSlUdgmdJOdOmTWPatGn1LYZlP+AmhHK5qXBn4A1tqm9xLJYGwX6fZ6eUegPYpyU/lFK1GklosezP5vn6xqXCKPEQ9GSRUVFa3+JYLA2Ceh+gUhN+v5/t27c36sLLklqUUmzfvh2/31/fouwX3IRQ4iboziJDldW3OBZLgyDtdyrv0KEDGzduJB2nJVjSF7/fT4cOHepbjP2CmxABl4ewJwufKoNwGFxpX2+1WOqVtFd2Xq+30golFsvBjpsQAXET9mbjQkGwFDLiL0xgsVg0tjposTQglFK4VQjl8iARBVdh59pZLDVhlZ3F0oAIhRVuCYPLvdeas8rOYqkRq+wslgZEMKzwmAEqLp9WdnabH4ulZqyys1gaEGGlcBMGlwfx5QBQUWo3cLVYasIqO4ulAREMR5SdG09mLgBlxbvrWSqLJf2xys5iaUCEQgo3eiFor99YdiW2GdNiqQmr7CyWBoTus9PNmF5j2VWUWsvOYqkJq+wslgaE7rPTll1GllZ2wTJr2VksNWGVncXSgIiMxhSXB19WE+1WZgeoWCw1YZWdxdKACAVDuEWBy0NWtrbswmV2np3FUhNW2VksDYhgMKAPXG6yfF5KlA9VYZsxLZaasMrOYmlAhENG2bk9ZPs8FOODcmvZWSw1YZWdxdKACIeCAIjLQ1aGmxLlh4BVdhZLTVhlZ7E0IKLNmG4PPo+LUnxIoKR+hbJYGgBW2VksDYhQQCs7t9uLiFDmysQdtMrOYqkJq+wslgZERaACALdbb0VZLlbZWSzJYJWdxdKACJVrxebyZQJQ4c7EG7LKzmKpCavsLJYGRETZuc1edkF3Jt5waX2KZLE0CKyys1gaEKEKo+x8WQAE3Vn4rLKzWGrEKjuLpQERjlF2IU8WvnBZfYpksTQIrLKzWBoQ4QptxXkju5R7s/FTDuFQfYplsaQ9VtlZLA0IZSw7j18rO+XVFh52rp3FUi1W2VksDYhIn50/Uys7zEAVKuwqKhZLdVhlZ7E0IIJmNGaGUXbi07uVq3K7GLTFUh1W2VksDYjI1APx6nl2Yiy7ilK7p53FUh1W2VksDQh3eSEhXOBrqs/92rIrK95dn2JZLGmPVXYWSwMio3wHeyQXXPrTjSi7ihJr2Vks1WGVncXSgPAHdlLkzoueZ2Tq3cptM6bFUj37pOxEZLqIbBKRZeZ3ksPv9yLyrYisFZET9l1Ui8Xir9hJeUaz6Lk3U1t2gTKr7CyW6vCkII77lFL3OB1EpDcwBegDtAPeE5HuSik789ViqSMVwTCtwz9TlH1E1M2X1QSAUKmdemCxVMf+asacADyrlCpXSn0PfAsM3U/3slgOCn7avoN2bCfY7PComy/bKLtya9lZLNWRCmV3pYgsF5FHRSTSvtIe2OAIs9G4VUFELhGRxSKyeOvWrSkQx2JpnPywZikuUTTp0DvqlpWZQ1gJYTvPzmKplhqVnYi8JyIr4vwmAI8AXYEBwGbg3toKoJT6p1JqsFJqcKtWrWp7ucVy0FDyzccAtO17VNQty++hBB+q3DZjWizVUWOfnVLquGQiEpFZwH/M6Sago8O7g3GzWCx1IBRWtN/0Jhu8XejY/NCoe3aGh2L8drkwi6UG9nU0ZlvH6enACnP8KjBFRHwi0gXoBizal3tZLAczn33wKn3VN+zpNbmSe6bXTbHyIXYhaIulWvZ1NOZdIjIAUEAB8GsApdRKEZkHrAKCwBV2JKbFUjc2//QjXRbcwFZXK3qOv7qSn8sllEkm7qC17CyW6tgnZaeUOq8av9uB2/clfovlYKdg+QIyXrqIQ9Q2Nk94EZfZx85JufjJDVrLzmKpDruCisWShqhwmC/m3Um7FybgUiG+Gf8ch/YfHTdsuTsTT7D0wAposTQwUjGp3GKxpJBdhTv47l/TGFL0EUszh9Hxosfp3bptwvAVrky8oR37TZ5QKMzqFUvYsfJ9Mn5cTG7pRvJC20GEIk9zipp0xd/jOLoeOQF/bvP9JofFsi9YZWexpBFrl31K1iu/pF94C//tejXDpk7H5XZXe03QnUVGILWWnVKK1Su+ZPMnT9Lt5zfpy08AbJNmbPMdypac/oTCiszyrXTdNp+87f8h8On1rM4djKvPaXQdNRlPTouk7xcKhdmxbQs7t2xgz7YNVOz8kXBFMQRKUcFy3ITB40M8PsTjx+3LxO3LwuPPxePPxuvPxpeZiz9b/zIzc/D4skAkpeliabhYZWexpAEqHObTefcyZPWd7JZcvjvpWY4cltySsiFPJr7y1Ci7sooAX7w7j5xlsxgYWEpPJXyTNYDlPS6l4xHjaNmhJy1jFEhZeQVLvviAPcte5vBt79Hh898T/PxPrMocQGnLftDiMDKymhLETbh8D2VFu1C7fiSj+Eeyyn4iL/AzrdQOWkmAVM60DSmhmEx2uppTeNR0+o85M4WxWxoajUrZlZUUsenbrygr3kOgrIhweTGqogQVKCUcChIOhwiFwghhXCgEhQAioiuA4kIQRAREENA1Q+1pDl3R2qIYd0T2HmsfEEFFJYucR+5INM4IypyrvRdVQ/WBkomiLrdxyqZiPCN+KsYh3n1UzEHV88TXxsYbm16qalDHuUoYNvaaOskUe23MfeK/W+3YYtOHjCx+n5VZg+l40ZP0aNUuXuC4hDzZ+FRZ0uHjUREI8dlrj3Lo8vsZxUa2SXOWdruK7if8mh4tO1Z7rd+XwREjx8HIcZRVBPns8/mULH2Bw3YuoNv6J/BuqDoQO6hcbHO1pNDbip+b9OXHnLZIblu8zdqR06IjTVq3x5+dhy8zkwxfNmFcVJSXEigrpaK8hLLSYspLiwiUFlFRWkSgrJhQuf7mwxUlqIoSXIFi3IFiWm9bSP+PLmbhqrfoPeVvNGnRutbpo8Jhdm77ie2bCyjetoFASSHBkt2Ey3bjDhSDCoEKo1QYUUrnF3Hp8sLlBnHhEhfK5UbEhbi0u4gbcbkQcYPLhcvlQlxuEDcuE8blcqFwocSNEkHJXks/fn6v9KHGDSeoSt9wcuVOVYL+5gw/9vS6XXyAaVTKbvP3K+n64kk1B7RY0oyQEj7vchlDz79dF3a1IOzNIoMAhALg9tbu2rBiwTvP0/rzvzFafcdGz6GsG/Z3uo05l5YeX63iAvBnePjFqONglF6LYndxMVu2rKd4zy7cBPFm5tIsrwW5LdrQxu2hTZLxuoFMTy6Z2bm1lqmspIjPH7uGIT+/QMmM11nUciy+HsfTvEs/mjY7hBAQKCtm946fKdr6AxU7NhAu3Ii7aDNZpT/RNPAzLcPbaC4B4vVIhpUQxAUIYUeFVlC4TMXahcIlddQoacznqhdYZXfgadWxO18e+RAZmTlkZObg8efg8Wfj8WXj9Xrxejy4PW5c4iYcyZhKEVagVJhwOIxSilA4rOs85lwpXQdSYYVS4eg5KkxYKQgrwkoZg0+ZapLO2BI91u7aXlQxVSllwhmS6GaoKUhyXRU1B4rEIzHn8a6WyEce41HpmohVHBNJ7LXxJEscf0ycleKpHGGV+OM8z97/mp+HBHLHylQ53ao+ndvfhGG5yRb9lVFeMx2hohgy85K+bvXatWx/8TqOKl/AFldr1g67i+7H/xJxp65YaJKdTZPDeqUsvrrgz8ph2BWz+XbFJex69276bnuLrO2vwGeVwzntvaBysVWaU+htzZacnmzMbos0bU9Gs45kt+xAVtMWZOU2I7tJHr7MJmTU8MGFw4pAOEwoFNK/cJBQMEQoHEKFQgRDIdP6pMOEQ0HCKkwoGEKFQ6Z8COMyFqQuU6rmT2d+U1Xy5t6A2i0mJ9ahe/MQT1btL6onGpWyy2nSjEEnJJz6Z7E0Tnx6TzvKdyel7HaXlPLJ03dw1Mb/4zAJsqrn1fSa+EcO8fr3r5z1zOF9h0Hf5ykrKWLlis8p2byWYPEOXCIobxa+nDyyWnYir20XWrTuQFuvl8RjYGuHyyW4XG68ntpZ7ZbU0aiUncVyMBL261GPwaJtePIOrTbsZ5+8S7P3b2Q8/+PbpsM45OyH6N22+4EQM23wZ+XQZ+ixwLH1LYrlAGKVncXSwFFZWtmV79qKp0P8MFu2bmf5UzdwTOGLFLqa8cOYhzl81FQ7NN9y0GCVncXSwPHn6d6mop0/EbuYWCAY4uPXHqfXsts5Xraxsv0kuk+9hxbZzapGZLE0Yqyys1gaOM1a6X2RS7ZtjLqFw4rPP3mL7I9u49jwKjZ6O/HThH/RJ39MfYlpsdQrVtlZLA2cdm3asFG1hB+/ZPuO7az8cB7NVj3BkaFV7JSmrDniVnqceDniyahvUS2WesMqO4ulgdO2qZ//ZAzmlJ/fIvBAN46SED+5DuHrvjfR66TLaZbVtL5FtFjqHavsLJYGjojQ+7y/8+F/WpGd4eGQQSfRacCxtKnl5HSLpTFjlZ3F0gjoemh7ul7+UH2LYbGkLXY/O4vFYrE0eqyys1gsFkujR2JXgq9PRGQr8EMKomoJbEtBPAcCK+v+oyHJ25BkhYYlb0OSFRqWvKmStZNSKpU7PFUhrZRdqhCRxUqpwfUtRzJYWfcfDUnehiQrNCx5G5Ks0LDkbUiy2mZMi8VisTR6rLKzWCwWS6OnsSq7f9a3ALXAyrr/aEjyNiRZoWHJ25BkhYYlb4ORtVH22VksFovF4qSxWnYWi8VisUSxys5isVgsjZ5GpexEZJyIrBWRb0XkpvqWx4mIdBSRD0VklYisFJFrjPt0EdkkIsvM76T6ljWCiBSIyNdGrsXGrbmIvCsi35j/et8YTUR6ONJvmYjsFpFr0yltReRREflZRFY43OKmpWhmmHy8XEQGpYGsd4vIGiPPSyKSZ9w7i0ipI41nHkhZq5E34bsXkd+btF0rIiekgaxzHXIWiMgy454OaZuo3ErLvFstSqlG8QPcwHfAYUAG8BXQu77lcsjXFhhkjnOBdUBvYDrw2/qWL4HMBUDLGLe7gJvM8U3AnfUtZ5x88BPQKZ3SFjgKGASsqCktgZOANwEBhgOfp4GsYwGPOb7TIWtnZ7g0Stu47958c18BPqCLKTPc9SlrjP+9wC1plLaJyq20zLvV/RqTZTcU+FYp9T+lVAXwLDChnmWKopTarJT60hzvAVYD7etXqjoxAXjcHD8OnFZ/osTlWOA7pVQqVuJJGUqpj4EdMc6J0nIC8ITSLATyRKTtARGU+LIqpd5RSgXN6UKgw4GSpyYSpG0iJgDPKqXKlVLfA9+iy44DQnWyiogAZwHPHCh5aqKacist8251NCZl1x7Y4DjfSJoqExHpDAwEPjdOVxqT/9F0aBZ0oIB3RGSJiFxi3A5RSm02xz8Bh9SPaAmZQuXCIl3TFhKnZbrn5YvQtfcIXURkqYh8JCKj6kuoOMR79+mctqOALUqpbxxuaZO2MeVWg8u7jUnZNQhEJAd4AbhWKbUbeAToCgwANqObMdKFkUqpQcCJwBUicpTTU+l2i7SZuyIiGcCpwHPGKZ3TthLplpaJEJE/AkHgaeO0GThUKTUQuA74t4g0qS/5HDSYd+/gbCpX1NImbeOUW1EaSt5tTMpuE9DRcd7BuKUNIuJFZ5inlVIvAiiltiilQkqpMDCLA9ikUhNKqU3m/2fgJbRsWyLNEub/5/qTsAonAl8qpbZAeqetIVFapmVeFpFpwMnAVFPAYZoDt5vjJeg+sO71JqShmnefrmnrAc4A5kbc0iVt45VbNLC8C41L2X0BdBORLqaGPwV4tZ5limLa42cDq5VSf3e4O9uzTwdWxF5bH4hItojkRo7RAxRWoNP0AhPsAuCV+pEwLpVqxumatg4SpeWrwPlmZNtwYJejyaheEJFxwI3AqUqpEod7KxFxm+PDgG7A/+pHyr1U8+5fBaaIiE9EuqDlXXSg5YvDccAapdTGiEM6pG2icosGlHej1PcImVT+0COB1qFrQH+sb3liZBuJNvWXA8vM7yTgSeBr4/4q0La+ZTXyHoYetfYVsDKSnkAL4H3gG+A9oHl9y2rkyga2A00dbmmTtmglvBkIoPsxfpkoLdEj2R42+fhrYHAayPotui8mkndnmrATTf5YBnwJnJImaZvw3QN/NGm7FjixvmU17nOAS2PCpkPaJiq30jLvVvezy4VZLBaLpdHTmJoxLRaLxWKJi1V2FovFYmn0WGVnsVgslkaPVXYWi8ViafRYZWexWCyWRo9VdhaLxWJp9FhlZ7FYLJZGj1V2FovFYmn0WGVnsVgslkaPVXYWi8ViafRYZWexWCyWRo9VdhaLxWJp9KSdshORziKizP5OlgaKiFwlIj+KyFf1cO/pIvLUAbjPNBFZUI3/fBG5eH/LYamMiIwWkY219UuxDNWWYwcqjzYWROQhEdkhIk+LSJ30VtopO0vtEZGZIlJkfhUiEnCcv1lPYk0HLldK9XfIOV1EpteTPGmFKQwLahn+QxEpEZE1InJcNWHPEpHPTNj5MX7dReQVEdlqCo+3RaSHw/8CEVkiIrtFZKOI3OUssI0cb4jIThH5yRRCTv9jRORLc/3/ROQSh98YEflaRApFZLuIvCQi7Wvx/AXJpVbDR0QKRKRzkmF9IvKoSfOfROS6GsL/xoTbba7zOfw+NHljt4h8JSITEsTxqFHmhzvcimJ+IRF50Pj1FpHFJt/sFJH3RKR3TJyDRORjc+0WEbkm4qeUuhLogd6bsF8y6RJLypWdtcgOPEqpS5VSOUqpHOD/AXMj50qpEyPhDvC7aU76bZZaa9IoPz8DLEXvI/ZH4HkRaZUg7A7gfuCOOH556P3degCHoDcudW7AmwVcC7QEhgHHAr91+P8DvSt1W2AAcDRwOUR3tH4J+D+gKTAZ+LuIRCo8q4ATlFJ5QDv0XmiP1PTg6Uoa5Y3p6I1dOwFjgBtFb7ZbBRE5AbgJ/V47ofetvNUR5Br03n9NgEuAp6TyRriIyEiga2zcjjInB2gDlALPGe8fgUnocqElOg8+64izJfAWOu+0AA4H3omJfys677WoNjUSkBJlZ2ohvxOR5UCxiHhEZLipXRaaGsJoR/j5IvI3EVlkahCviEjzBHFfKCKrRWSPqSn+OsZ/gogsM/F8F3nJItJURGaLyGYR2SQifxWz6281z9FVRD4wtc5tok3mPIffDhEZZM7bmRrQaHN+qoisNM87X0R6xaTPb0VkuYjsEpG5IuKvfUrXngTvJrZGNkdE/uo4P9mkaaF5h7WqSTnSOVxDuBvN+/lRRC52ymVkelhEXjfv/nMR6eq49gER2WDe+xIRGRUTvd+k8x7RlobTwrzJ5JU9IrJKRE53+E0TkU9F5D4R2Y4uSGp63ntMbfV7ETkxxruTiW+PiLxjPupaISLdgUHAn5VSpUqpF9AbY06MF14p9Z5Sah66gIn1W6SUmq2U2qGUCgD3AT1EpIXxf0Qp9YlSqkIptQl4GhjhiKILME8pVaaU+gldQPUxfs2BJsCTSvMFsBrobeLeopRyyhRCF2q1RrQVsNSk63PmXf81QdirzXvu4HD7g/nGC0RkqsN9vIl3t8lf0x1+kabJX4rIeuCDJESdKiLrzb3+GOOXISJPmGdYKSKDa5cKUS4A/qKU2qmUWg3MAqZVE3a2UmqlUmon8BdnWKXUcqVUMHIKeIGOEX/RCv5B4KoaZJqIVkyfmHgLlVIFSm+gKlR999cBbyulnlZKlSul9phniSUM1K2SkaLdbAvQO9h2BDKB9uhdo09CK9TjzXkrE34+sAnoi95h+gXgKePXGZ3IHnM+Hl2LEHQtsgQYZPyGArtM/C5z357GL1LDzAZao2uwv67hOQ43cfmAVsDHwP0O/1+ha6dZwNvAPca9O1BsrvUCN6J3ds5wpM8idG22OboAuDSBDCOBwmp+I2t4humRtIz3boybAg53hJkD/NUcD0Rn0mGAG/1xFAC+WuSHcUAZkF1DmJ/QBWUW8JRTLiPTdvOOPehC91nH9eeia3ge4HoTl9+RBgF0TdKLtky+B7zG/0zzLlxo66MYs5M1+sMPoj9mTyTNEjzDNHOfX5m0ugytYCKbIs9H79jcHf1dzAfuSBDXP4B/JPA7HVgd4/YQ8GAN7+FiYH4NYU4DNlfj/7JTZuDXwBPmnbVHW++nO/z/DVxh0uNIk5c6OvwPRefjsEm7aXUobzKAH9BWiBc4A6hw5OHRwEZzfAt6l+9WDr8g8Hf0d360ef89HP75Jm/0A7YAp8WUTU+gy5Xq8kYk7Czz7vsD5UAvRx4tQ5eRbuBvwMIEcZ0DLE/g18zc5xCH2yTg6wThvwImO85bmutbONz+Y2RT6MqMy+F3A/BAvHIk5j4fANPjuBea9A8Df4oJ/wDwmckzrwGHxrn+I+AuwF3rfFPbCxI8WAFwkeP8d+janTPM28AF5ng+lT+g3iazuolRdgk+vmvM8f8B98UJc4jJWJkOt7OBD2v5XKcBS2PcXkXXqpdjFABwM7q2GwnjQivz0Y70OdfhfxcwMxVpH0fm6VRVdhfFhKlO2T2CriU6w68Fjk7y/otN/FfXEO5R4G+O88Opquz+5fA/CVhTTXw7gf6ONFjo8HMBm4FRCa5dBkwwx9OA9Uk+6zTgW8d5lnmGNo587vygLwfeqsM7PY+YghC4HZhTw3XVKjugg8mnZyfwvwjYCLR0uPUClqALLGXekzj8T0EriKD5/SpB3M3R5cTwOqTHUUZu530XUFnZbUIrtAVAU0e40UaubIfbPODmBPe6H1PGsLdsOiwJGSNhOzjcFgFTHHn0PYdfb6C0DmnR0dzH73A7HihIEP47YJzj3Guu7xwTzgucCFwXc69vI+lJAmWHbh4NAV0SyJBtvoXxDrd1aEU4BPADM4BP41x7JLAHXb63rk1apbLPboPjuBNwpmkGKxSRQrTF0jZB+B/QiVuliUdEThSRhaYJsRBd6EXCdUS/vFg6mfg2O+7/f2gLLyEicoiIPGuaPXejrY1YmWahLdIHlVLlxq2deQYAlFJh83zOzvefHMclQE51sqSYDTUHidIJuD7m3XVEP2MyDAGmANNF9+Ekol2MXPFkTJhmpll4tWkWLkT3ETnfVTQ+8z42Rp5BRM53NNMWot9n3GuTICqjUqrEHObE8499hlpQhG4edNIE/dHXCdH9fe+grcln4vifhrY2TlRKbTNuLnRN/0V0gdUSbVncafx7ovthzkdbX33Q/UfjY+NXSu0AHgdekdr3fbUDNilT+hli31keus/pb0qpXTF+O5VSxY7zH9ibN4bJ3kEau4BLqVoG1Cl/UPX9x/r565AWRebfmT+qyxuxeSlyXCm8UiqglHoTGCsipxrn+4Hb4qRnLOcBC5RS38fzNGk/E3hCRCJlcinwklLqC6VUGbof8Rci0jTm8t+jW3mylVI/1yBHJVKp7GIz3pNKqTzHL1sp5eww7+g4PhTdpLHNGaHoUUIvAPegzfQ84A10k2bkPlU6So17ObpGGrl/E6VUnzhhnfw/8xz5SnfQnuu4FyKSg37hs9GFeaSf8Ue0koiEE/N8m2q4XxVEZJRUHdXk/MX2TSWDijkvQVshEdo4jjcAt8e8u6x4BWLcG+kC6GV0Idi2mqCb0ZZFhI6JAsZi0uBG4CygmckXu3C8Kyr3M7jMvX4UkU7oCsuV6KabPHRTnPPa2PSqb1YCh4lIrsOtv3GvNSLSDK3oXlVK3R7Hfxw6jU5RSn3t8GqO/lYfUrpfZTvwGLoCCrrSsE4p9bZSKqyUWgu8jrYQ4uFBV0BjFXlNbAbam+8sQmz+2QmcDDwmIiNi/JqJSLbj/FD29m/+G91601Ep1RRdKEvM9WmTP5Tud9uMzg8RqssbK+OE3WLeZTw87C1jjwXuFj2SM6Ko/ysi58Rccz66IlMdLvY2hYNuKXOma6I07gW8pvb2KybN/pp68BRwioicICJuEfGLnt/iLNzOFT0cNQu4DXheKRWKiScD3a6+FQiazv+xDv/ZwIUicqyIuESkvYj0VEptRn/M94pIE+PXVUSOrkHuXHTNZ5foIdE3xPg/ACxWSl2M/ohnGvd5wHgjhxfdh1SObn+uFUoPDsip5vdJbeOMwzLgHPNuxqH7LSLMAi41NVwRkWzTaZ8L0YEjc2p4hojFm1FNsHnod9fL5IGbayF/LropaivgEZFbqFpgHiEiZ5ia8rXo97EQbZEocy0iciG6kE5blFLr0O/sz+Zbigy/fiFe+Mg3hy6oXOYar/Frgu5S+FQpdVOca49B15wnKqUWxcixDd33eZnogU556D7d5SbIUqCb6OkHInpA0ckRf/M+epjvsRW6mXGpsfIiU1PmJ5Ek/0U3k11p5JiA7tuNTbf5wFTgRRGJ9b9VRDJMxelk9o4azAV2KKXKzDWxBXk68gTwJxFpZqzrX6GblxOF/aUpe/OAP0XCikhP0S1pmSLiFZFz0U3GH5lru6OV4wDzA91s/VIkchH5BVqBRdIz4n68iAw0ebMJ+t3vRI9fAF1pOl1EBpi8ejPaOoy1Ir3ob7nW7Bdlp5TaAEwA/oAuVDagFYfzfk+iE/kndBvt1XHi2WPc56ET5hx0rSvivwi4ED2ibBf6pUQsrEhTyipz7fNUb2mANp0HmbheRzfXAHrUJ3pQxWXG6TpgkIhMNTXYc9GjlLahM8ApSqmKGu5XX1yDlrEQXRi8HPFQSi1GfywPodPtWyqP7OoIfJrEPRTV5C/TRDID+NDcY6HxSiYjv41uTluHboIqo2rT0ivowSc70c0qZ5immVXAvegCcwt6MEIyz7NfET1XcmY1QaYAg9HPcwcwSemh2IjIVBFx1uTPQzcLPQKMMsezjN/p6KbmC2NaDA41/jejm4TfkPhzNc9Afwdb0e8tAPwGQCn1HbqfbwawG/09vgD8y1zbHv3e9qD7vcNGnghJ5S3zXZ0B/BKdh89FD6qokneUUu8amV4TM5IaXebsRFtzT6MHi60xfpcDt4nIHvTglnk1ybO/ifN+Y/kzujvnB3Sa362Uestce6jz/Rr3u9Df3XpzzZ8jt0L3Jf6Mfr/XoAezfGmu/Vkp9VPkZ67ZppQqdchyAfCiKbud5KGnz+wysnZF9x2Wmbg/QOuL1839Dyd+RcNNDaO8ExEZNXZAMbW3p5RS/6oprCV9EJEM9GiufkoPW68u7I/AjUqppFaJED1VYwV60E+tmygsDR8RWQYcW02TWnXXfo4e9PVYygWzpAUiEhkgM9BUWmuFXUHFkjRKz73qVZOiM9yEbnZbkiiAiJwuevWHyCCHOrXFWxoHSqkBySo6ETlaRNqYZswL0M26b+1fCS31hYjMQLf+/LMuig4OQmUnlZfWcv6qa0Ky1BKl1BNKqW5KqSOqCfZrdJPFd+g+mMuqCVsv2PyStvRAtzIUovvIJ5m++gOGaV6MlzfqNHDIkhil1NVKqfZKqZomsyekXpoxLRaLxWI5kBx0lp3FYrFYDj7SZSFTAFq2bKk6d+5c32JYLBaL5QCyZMmSbUqpRAubp4S0UnadO3dm8eLF9S2GxWKxWA4gIvJDzaH2DduMabFYLJZGj1V2FkuaUVhSwfurt9S3GBZLo8IqO4slzXjluUc5dm53Nm+u9dKqFoslAWnVZxePQCDAxo0bKSsrq29RLA0Iv99Phw4d8Hqr23ghPem7/mkAir5bCG3j7s9qsVhqSdoru40bN5Kbm0vnzp0RiV183GKpilKK7du3s3HjRrp06VLf4tSasMsHISgrLao5sMViSYq0b8YsKyujRYsWVtFZkkZEaNGiRYNtDRC3G4BgcU3bhlkslmRJe2UHWEVnqTUNOc8E3XqrtVDpznqWxGJpPDQIZWexHEyEPX4AVKm17CyWVGGVXRKICNdff330/J577mH69On1J1ANzJ8/n88+q/W+sVGWLVvGkUceSZ8+fejXrx9z585NoXSWmnCbTZqlzCo7iyVVWGWXBD6fjxdffJFt27alNF6lFOFwnfYhrJZ9VXZZWVk88cQTrFy5krfeeotrr72WwsLC1AloqR4VAsBdEbv/pcViqStW2SWBx+Phkksu4b777qvit3XrViZOnMiQIUMYMmQIn36qN1qePn0699xzTzRc3759KSgooKCggB49enD++efTt29fNmzYwA033EDfvn3Jz8+PWlHz589n9OjRTJo0iZ49ezJ16lTi7VAxY8YMevfuTb9+/ZgyZQoFBQXMnDmT++67jwEDBvDJJ59UK+N5553HkUceSbdu3Zg1S29m3b17d7p16wZAu3btaN26NVu3bq1y7+eee46+ffvSv39/jjrqKEAPKLrwwgvJz89n4MCBfPjhhwDMmTOH0047jeOPP57OnTvz0EMP8fe//52BAwcyfPhwduzYAcCsWbMYMmQI/fv3Z+LEiZSUlFS57/Dhw1m5cu8uKqNHj25Uy8yJUXaeoB2NabGkirSfeuDk1tdWsurH3SmNs3e7Jvz5lD41hrviiivo168fN954YyX3a665ht/85jeMHDmS9evXc8IJJ7B69epq4/rmm294/PHHGT58OC+88ALLli3jq6++Ytu2bQwZMiSqOJYuXcrKlStp164dI0aM4NNPP2XkyJGV4rrjjjv4/vvv8fl8FBYWkpeXx6WXXkpOTg6//e1vATjnnHMSyrh8+XIWLlxIcXExAwcOZPz48bRr1y4a/6JFi6ioqKBr165VnuO2227j7bffpn379lHL7+GHH0ZE+Prrr1mzZg1jx45l3bp1AKxYsYKlS5dSVlbG4Ycfzp133snSpUv5zW9+wxNPPMG1117LGWecwa9+9SsA/vSnPzF79myuuqryFlaTJ09m3rx53HrrrWzevJnNmzczePDgatO8IbFX2VVV9PtKeTDEnx95ioljhjOkb4+Uxr27LMBn327nhD6HpHyA0Lc/78HtctGlZXZK47UcPFjLLkmaNGnC+eefz4wZMyq5v/fee1x55ZUMGDCAU089ld27d1NUVH2NvFOnTgwfPhyABQsWcPbZZ+N2uznkkEM4+uij+eKLLwAYOnQoHTp0wOVyMWDAAAoKCqrE1a9fP6ZOncpTTz2FxxO/7lKdjBMmTCAzM5OWLVsyZswYFi1aFL1u8+bNnHfeeTz22GO4XFWzyogRI5g2bRqzZs0iFApFn+fcc88FoGfPnnTq1Cmq7MaMGUNubi6tWrWiadOmnHLKKQDk5+dHn23FihWMGjWK/Px8nn766UoWXISzzjqL559/HoB58+YxadKkatO7oSFKN217Q6lXdj/vLueO7VfT84VjUh737He+pPe8kRR89XHK477hvtmUzjgSyq21a6kbDcqyS8YC259ce+21DBo0iAsvvDDqFg6HWbhwIX6/v1JYj8dTqT/OOecrOzu52qnP54seu91ugsFglTCvv/46H3/8Ma+99hq33347X3/9dZUwiWSEqkP0I+e7d+9m/Pjx3H777VHFHMvMmTP5/PPPef311zniiCNYsmRJ0s/jcrmi5y6XK/ps06ZN4+WXX6Z///7MmTOH+fPnV4mnffv2tGjRguXLlzN37lxmzmxcm4ZHLDtfOPXKLhjWTeG5KvVKY9d3izjUtZVdn/0VBhyd0rh/7/03vV0/wMYvoOuYlMZtOTiwll0taN68OWeddRazZ8+Ouo0dO5YHH3wwer5s2TJAb1f05ZdfAvDll1/y/fffx41z1KhRzJ07l1AoxNatW/n4448ZOnRoUvKEw2E2bNjAmDFjuPPOO9m1axdFRUXk5uayZ8/ewQ2JZAR45ZVXKCsrY/v27cyfP58hQ4ZQUVHB6aefzvnnn1+t1fTdd98xbNgwbrvtNlq1asWGDRsYNWoUTz+tl7tat24d69evp0eP5JvL9uzZQ9u2bQkEAtF44jF58mTuuusudu3aRb9+/ZKOvyEQUXb+cGnK4w6EUj8gKoLfpeUO7YdBVwFl6uUVxSmP23JwYJVdLbn++usrjcqcMWMGixcvpl+/fvTu3TtqZUycOJEdO3bQp08fHnroIbp37x43vtNPP51+/frRv39/jjnmGO666y7atGmTlCyhUIhzzz03Ohjk6quvJi8vj1NOOYWXXnopOkAlkYygm0HHjBnD8OHDufnmm2nXrh3z5s3j448/Zs6cOQwYMIABAwZEFeQtt9zCq6++CsANN9xAfn4+ffv25Re/+AX9+/fn8ssvJxwOk5+fz+TJk5kzZ04li64m/vKXvzBs2DBGjBhBz549o+6vvvoqt9xyS/R80qRJPPvss5x11llJx91QiDRj+lXqLbtAMJTyOCM0dZcDEA6l/h5BzKoyZants7ccPEi8EX71xeDBg1XsqLrVq1fTq1evepKocTN9+vRKA1kaGw017yz727EMKF9MEBeeP++AFA72WF7wM/3m6JG2TE/tPL7H/vE3Lvz5Drbl9qLl9QtTGvdbNx/HOPcXlBx3B1kjL0tp3Jb6R0SWKKX26ygza9lZLGmGKzIakzAEU7u+ZyhYntL4nPhcuuLsCqa++bUMvXtFoMRadpa60aAGqFhSSzqvAnMwE2nGBAiV7cHtzUxZ3MFAYO9JKAju1BUBLvQgI3co9Qtwh029PGSXULPUEWvZWSxphrC3z6ssxTsfhAMVe0/KU2wlhbSy8+wHZecxaRIqtZadpW5YZWexpBkuh2VXXpRaZedsxlQVKZ5+ENZWo1ultqlUKRVVdsoOULHUEavsLJY0w6VChJQelFKW4j6qkMOyqyhJ7dqbEjaWXbiihpC1IxRWeCPKzk49sNQRq+wsljRDCLEbvfBARYqVXTi4VxGVpVjZEVF2hCCFo7yDYYU70rRrlZ2ljlhllyQvv/wyIsKaNWsShikoKKBv3777VY5ly5bxxhtv1Pn6yCT03r1706dPHx544IEUSmdJBS4Vpki0sgumuI8q7GjGLC9ObdwRyw6AUOqsu0AoHG3GdAXscmGWumGVXZI888wzjBw5kmeeeSauf7ylvGpLKInJuPuq7DweD/feey+rVq1i4cKFPPzww6xatarO8VlSj4swJVFll1rrKxzcOxqzIsWKtJKyS6EFFgztbcZ074fFsS0HB1bZJUFRURELFixg9uzZPPvss1H3+fPnM2rUKE499VR69+4NaKU3depUevXqxaRJk6Jb1Lz//vsMHDiQ/Px8LrroIsrLdQ27c+fO/O53v2PQoEE899xzle4bu4VORUUFt9xyC3PnzmXAgAHMnTuX4uJiLrroIoYOHcrAgQN55ZVXAL2lzoQJExg9ejTdunXj1ltvBaBt27YMGjQIgNzcXHr16sWmTZuqPPNHH30UXT1l4MCB7NmzB6VUwu2Ijj76aCZMmMBhhx3GTTfdxNNPP83QoUPJz8/nu+++A+C1115j2LBhDBw4kOOOO44tW7ZUue+UKVN4/fXXo+fTpk2LLvp8sOBSIUrdOQCEy1JryajQXssu1XPWKiu71MkdCIdxi1V2ln2jYc2ze/Mm+KnqQsf7RJt8OPGOaoO88sorjBs3ju7du9OiRQuWLFnCEUccAeh1L1esWEGXLl0oKChg7dq1zJ49mxEjRnDRRRfxj3/8gyuvvJJp06bx/vvv0717d84//3weeeQRrr32WgBatGgRXUfTSewWOhkZGdx2220sXryYhx56CIA//OEPHHPMMTz66KMUFhYydOhQjjvuOEBvz7NixQqysrIYMmQI48ePr7QVTkFBAUuXLmXYsGFV7n3PPffw8MMPM2LECIqKivD7/bz44osJtyP66quvWL16Nc2bN+ewww7j4osvZtGiRTzwwAM8+OCD3H///YwcOZKFCxciIvzrX//irrvu4t57761038j2PePHj6eiooL333+fRx55JMmX2ThwEabcnQNBCJfvP8suWJpaRSpq/1t2+2MnCMvBgbXskuCZZ55hypQpgLY8nE2ZQ4cOpUuXLtHzjh07MmLECADOPfdcFixYwNq1a+nSpUt0fcwLLriAjz/euw3K5MmT49433hY6sbzzzjvccccdDBgwgNGjR1NWVsb69esBOP7442nRogWZmZmcccYZLFiwIHpdUVEREydO5P7776dJkyZx733dddcxY8YMCgsL8Xg81W5HNGTIENq2bYvP56Nr166MHTsWqLx9z8aNGznhhBPIz8/n7rvvjrt9z4knnsiHH35IeXk5b775JkcddRSZmambVN0QcKkweHyUKy+kWNkpxwCVYFmKR2M6lJ1K4VY8wZDCYyase0OpX53FcnDQsCy7Giyw/cGOHTv44IMP+PrrrxERQqEQIsLdd98NVN2uJ9GWOdWRaMufZLbQUUrxwgsvVNlZ4PPPP08oSyAQYOLEiUydOpUzzjgj7r1vuukmxo8fzxtvvMGIESN4++23q32GZLbvueqqq7juuus49dRTmT9/ftwVXPx+P6NHj+btt99m7ty50UrGwYSLEC6PlyL8KR996FR24fLUxu1yNGMGSneTkaJ4A+GwXjoN8KoKCAXA7U1R7JaDhf1u2YnIOBFZKyLfishN+/t+qeb555/nvPPO44cffqCgoIANGzbQpUsXPvnkk7jh169fz3//+18A/v3vfzNy5Eh69OhBQUEB3377LQBPPvkkRx9d835f8bbQid2+54QTTuDBBx8ksqD30qVLo37vvvsuO3bsoLS0lJdffpkRI0aglOKXv/wlvXr14rrrrqv23vn5+fzud79jyJAhrFmzZp+2IwLYtWsX7du3B+Dxxx9PGG7y5Mk89thjfPLJJ4wbNy7p+BsLLsK4XB6K8ad89GE4vLcZM5XWF+zdmgigPIXTGrRl52jZsNMPLHVgvyo7EXEDDwMnAr2Bs0Wk9/68Z6p55plnOP300yu5TZw4MeGozB49evDwww/Tq1cvdu7cyWWXXYbf7+exxx7jzDPPJD8/H5fLxaWXXlrjveNtoTNmzBhWrVoVHaBy8803EwgE6NevH3369OHmm2+OXj906FAmTpxIv379mDhxIoMHD+bTTz/lySef5IMPPogOQImM7pw5c2Z0+5/777+fvn370q9fP7xeLyeeeOI+bUcEei3OM888kyOOOIKWLVtG3RcvXszFF18cPR87diwfffQRxx13HBkZqbIPGg5uQuByUUYmEkhxwe7osyPFitTlaMZM5fxAPfVg/wx+sRw87NctfkTkSGC6UuoEc/57AKXU3+KFt1v8pI45c+ZUGshyMNJQ8862Px/KD61G492+hsysHLrd8EHK4n7j6Qc46Ru9L+CqluPofeXclMX9+m0TODb8KX4C/DTq/9Hm2CtSEu+yDYW0mDWY1rITnwThikXQKvkNgS3pT2PY4qc9sMFxvtG4RRGRS0RksYgs3rp1634Wx2JJf1yEUeKmzJWFN5jiPruQtux2k4UrxVajWwUpRk+ZSOX8wFA4jEdC7DGryljLzlIX6n00plLqn0qpwUqpwa1atapvcRoN06ZNO6ituoaMmzC43ATcWSkfai9mZZMiclI+Z01UiBK3VkihFM4PDJjRmEUurUhtn52lLuxvZbcJ6Og472DcakU67aZuaRg05DzjJowSDwFPNr5waofaKzNissiViyfFitSjgoRdXoqVj1DKpx6EKbXKzrIP7G9l9wXQTUS6iEgGMAV4tTYR+P1+tm/f3qALL8uBRSnF9u3b8fv99S1KnXATQrnchDzZ+FSKJ1Eby67EnZPyOWsuFURcHkrwp3R3Aj31IESZx8wHtcrOUgf26zw7pVRQRK4E3gbcwKNKqaoziauhQ4cObNy4EdufZ6kNfr+fDh061LcYtUYpZZSdh5A3m0xVqncQSGK+ZjKI6bMrczcho2JzSuKM4CYEbi/Fyo+k2LLzEqTC2wTKdX9gw5ogbEkH9nueUUq9AdR55WKv11tphRKLpTETVugJ1OJGeX36OFgG3hStImPm2ZV5m+IrT92O4kop3CqEmPmBWSkc/BIMhXETJpihLbtA6W6r7Cy1pt4HqFgslr2EQiFcosDlBl+udkyhleQyyi7ozSUzhU2kobDCIyHE7aUEf0pHegZCYbwSQvma6vMU7wRhOTiwys5iSSNCka2iXB7EZ4bxp3ANSwlXUIGHkDeHDIIQTM2+c8GwXuVEuTyUuzJTOtIzZGT0ZPgpVRmEUrymp+XgwCo7iyWNCJk+NcSNy68tu9KiXSmLX8JBgniRDDNnLUUWWMih7CpcmSkd6Rk2FYCMjAyK8ad0WoPl4MEqO4sljQiF9lp2Hr+27MqKU6fsXOEAIXGDsRpTpTgi61cq8VDhziIjhSM9g8ayy8jwUaJ8hO2kcksdsMrOYkkjVLQZ040nSw/IKE+hspNwkKB4cfsiijQ1a1gGzfQAXB6C7kwywqmz7JRZz9Pn81GMH1K8W4Pl4MAqO4sljYg2Y7o8ZGRqZZfKRZVd4QAh3LiM1ViaImUXbcZ0e/X8wBROhg8ZZef3+SjZD9seWQ4OrLKzWNIIFdpr2fmytbJL5QAVlwoQEi/eTN0fWFGSGqsxYJQd4ibkzcabwsEvkQEq/sxMilXqtz2yHBxYZWexpBEhs5yXuDz4svRQ+1AKh9q7w0FC4sETtRpTE3copMiQIMrtA29qF2yObDib5c80e/yleFUZy0GBVXYWSxoRDu5txszKyQNI6VB7lwoQFg8ZWdqyS9WctWA4rK05txcVGemZouZGFdST3/1+PyX4U76AteXgwC5EYLGkESpkduR2ucnO8lOuvKjyFFp2KkjI7cVnLLtUbcUTDCsyCKLcGbjcqV2wObItkdvro0wyU74ThOXgwFp2FksaEZl6IG432T4PxfhSOiDDFQ4Qdnnx52hll6rdCYIhRQYBcGdEJ8OnKm4VKNcHbh8Bt1V2lrphlZ3FkkaEHfPsfB4XxWQiKZxX5lZBwuIhK1s3Y4ZTNM8uFNaLNYs7Izo/MGVTJswSZ7i9eo8/VQGRdLJYksQqO4sljVCmYBeXBxGhVDJxp3CdSbcKolxesjN9lKqMlFmNwWAAtyiUJwO3WfmlIkVNpOHIqE53BiFPlj62E8sttcQqO4sljYhMKheX7k4vkyzcwRQqO7Syy/K6KcKfMqURDuqmRnFn4DWDX8pTNIcvsgcf7gxC3tQOfrEcPFhlZ7GkESEzQMXl1squwp2JN4XKLkNVEHZn4HG7KMWPpMhqrCjXys7t9UUnw6dq8ItElZ0XZZWdpY5YZWexpBGRdSDdHi8AFa6slO4o7qOCsMsHQFkKm0gDFXp6gNvrI8P0BwZS1B+oHJadSvEcPsvBg1V2FksaEQyYYfYebdkFPdn4UrTOZCistLLz+AFSuhVPoHyvssvKigx+SbFl5/FFR3pay85SW6yys1jSiMjUA4+x7ILebPwpUnaBUBgfAcJurexSuRVPMKCVncfrI8uvdydI1dQDCe0djRlZ09MqO0ttscrOYkkjQlHLTiu7kDebTEpBqX2OuyIUxk8Fylh2AXcWGalSdhW6z86T4ScnMj8wVfPsHM2Y7qiys82YltphlZ3FkkaogO6fc2dkagdvNh7CYEY77gsVgRCZslfZVXhSZzVWsux8bopUJlKRmmZMFXl2lxeP30yGL0vdThCWgwOr7CyWNCIcUXY+PZ9MZej+r1RYMqWlWrGJUaRBbw5Z4dQ0B4YrtNxefybZGR72kIU7RcrOHTQDdDKy8JrFsStSNa3BctBglZ3Fkk6YFf09Pj3q0GUGZKRiT7vSUq0w3RlakQa9TXQTaTi8z3FHNlT1ZDbF7RKKJQtPIDXKzhMsJoQbPH4yMnMIKyFYmroNbS0HB1bZWSxpRKQZ0+PXCknMaiRlxYX7HHdZiVFIPm3ZqYxcXChIgQUmFVoZu80cuzJXdsrmB2aESih3Z4EI2f4MivATLLWWnaV2WGVnsaQRyjQH+sxAjMg6k2VF+27JRJRdRqSJ1KcVqUpB/1d0mkGGkdeVTUYwNYNIfOFiAm5t6eb4PBSRSdgqO0stscrOYkkjVIVuxszO1krDnZm6dSYDxjp0Z+VpBzPYoyIFVmN0GyKjQMs9OfjD+67slFL4w6UEPFrZZWXowS+p3PbIcnBglZ3FkkaoQAnlyovHq6ceZEQGZKSgzy5UvA0AX25LAFxG2ZUXFe5z3BKj7AKeHD3Scx/7A4vKg2RTStAou2xj2WGVnaWWWGVnsaQRKlBKuWREzzOyIutM7ruyCxZtByAzrxUA7kytSMtTYNm5AkVUkAHuyPzASH/gvll324sqyJWSqBLN9nlSOq3BcvBglZ3FkkZIoIRy8UXP/dlmXlkKmjEjyi63WWsAPKY5s6KkcJ/jzqrYzh5Ps+h5yPTd7asFtr24nNZSCLltAMj2udlDJu6AnVRuqR1W2VksaYQvsIsiyY2eZ+Zo6yuUgkWVVfF2wgiS2RyAjOw8AIL7uMmqUoomFVsp8bWOuoUztJKmfN8s0m17ymhNIe4mWtnl+DwUq0w8VtlZask+KTsRmS4im0Rkmfmd5PD7vYh8KyJrReSEfRfVYmn8ZAZ2UuLJi55nZWZRrjwpmR6QWbKJHa7mYLYP8hllF9rHOWs7SwK0YgeB7DZ7HU1/IPs40rNw62Y8EsbfvD0AmV43RWTiTdFIT8vBgycFcdynlLrH6SAivYEpQB+gHfCeiHRXSoVScD+LpdGSEyxka06Pvec+D8X4U7LOZJOyTRT62tPSnGdm5xJULsL7qJA2bd9Dd9nKprxDo25ilJ0q24XsQ9xFP64BIOeQrjpeEcrd2XpNz3AYXLZxypIc+yunTACeVUqVK6W+B74Fhu6ne1ksjQKlFE3Cuwj5m0fd/F4XxWQi+zjQo7gswKGh9ZQ36RJ1y/Z59cjGfVR2G7/9Gp8EyTm0X9TN5dfNr/u60olsXa3/D+kddatwZyMoSNFefJaDg1QouytFZLmIPCoikR7q9sAGR5iNxq0KInKJiCwWkcVbt25NgTgWS8OkaNcOmkoxody9n4qIUIYf1z6uRrJu7QqaSxGuDkdE3bJ9bvaoLGQf+9VK//dfAFoevrc+u3cNy7oru2AoTKudyyjy5EGTDnvdvakZ/GI5uKhR2YnIeyKyIs5vAvAI0BUYAGwG7q2tAEqpfyqlBiulBrdq1aq2l1ssjYYtBSsByDikWyX3UlcW7sC+7U6wfel/ADh00PFRt8icNdc+9AcqpWj648fsdLfAdUivqHtk4npgH6Y1LPthO8P4msI2Iyo1V4assrPUgRr77JRSxyUTkYjMAv5jTjcBHR3eHYybxWJJQOFG3T/VomOvSu7lrkxyQ3W37MKhMG3Wv8omT0fat9/bHOjzuNhDFtn7sGDzl6vWMTK0iA1dJtFM9vbOZWblElJCsLSwznGv/Oh5BkshpUMmVXLfq+zsIBVL8uzraMy2jtPTgRXm+FVgioj4RKQL0A1YtC/3slgaOxWbVxFSQpsulZVdRWRARh1Z8P5L9A2vY2efaZXcRYQSVxbeOg7jV0rx41v34pMgHcZeU8kvy+/dpzUsN2wvot/3s9nlbUVm31Mqe5oJ5vs6rcFycLGvozHvEpEBgAIKgF8DKKVWisg8YBUQBK6wIzEtlurJ2bqMAs9hdM3MqeQedGfiK6+bsivcvZtDP/sTP7ta0fuky6r4l7lyyAj+VKe4P/jgbcbtfp5v2p9Kt3a9K/nl+NzsIQtvHQa/hMOK+U/8lfNc31B4zIPRVVkiiC8yh882Y1qSZ5+UnVLqvGr8bgdu35f4LZaDhYqKAF3LV7Oy9Xi6xvgFvdn4ykprHWcoGOCbR6YwhB/5fuxTtDZ75Dkpd2fjC9Xeslu38ksGfPwrCt0tOOyc+6r4Z2V42KOyaF4H6+v1Z//B1MKZbDpkNO2HVy1iJDNi2VllZ0keO0nFYkkDvlv5OdlSRkbn4VX8wt4cMlUpKJV0fCocZuk/pjGk9FO+7PU7ugw/JW646ILNtYh7U8E3NHnuTFwC7gtewZ3TskqYHJ+H3dR+pOebLz/NCWtv5ofsfNpd/G+QqrP0PH5r2Vlqj1V2FksasH3VRwB07D+mil/Ym4OHEATLk4pLKcXCWVczeMd/+LTdhQya/IeEYQOeXDwEIViWVNw//bSRwOMTyKaYXZPm0bxT77jhIlvxuGsx0vOdt1/l6KW/YYuvMx2veBXJqGqJwt4NYvd1Mrzl4MIqO4slDcja9BmbpTUtOnSr6ukzfXhJTiz/9IlbOHLzkyxqcRq/uPjv1YaNLtichOLYtm0bhf+cQJvwz2w5+Qk69z0yYdhsn4c9ZOJJcqTnhx/PZ+hnl7Lb24JDLn8DT3azhGGzMv2UKW9SE9aVUuwuCyQlg6VxY5WdxVLPhEMhupYsZUPTwXH9xSikZLb5+XjefYz8fgZLm4xh8GWzkRqW0wpnJNf/Vbh7Nxtnnk7X0PesP24mhw8eW214n8dFEVl4k5gM/+miL+jz/gWE3X6a/foNMvLaVBs+1+9lD5kEatjjLxxW3DnrCR7966XsLErOKrY0XlKxNmbaUFZSxIZ1SykvKSJQWkS4ohgCpaiKEsLhIOFQmFA4BErhQuEijIiACAJ7j8UV7SsQMYVFNFwkjOM8Ek4EFVkJ0Fyvz8WcCwpQ5jgRteg+qRZFaiKqKo+q1r+6u9YYtqZ71Sru6m9WU+qohCfaYqhrXLHXuoq3Mppiwp1Hxb3W5dfKrrR4N7lVu8eiLHjtMUasvJWVWYPJv/JZXJ6aP28V7f9KbCXtKSllzUNnMjy4nLUj/k6PUZMSho0gIpS5c/TgF6Xi9r0BLFq+io6vn4PfFcJ90ev4WnWJG85J00wvRSqTjGosO6UUs5+dy1WbbiDbU87784/j2JPPrjHu6giUl7Lhm6/Y9eM3BLb+D9m1AcoKyQjswRcuRoXDKHTZEBY3Fa5Mgp4sgu4sQt4sQp4cVEY2eLNweX24vH48Xh9urx+vz4fHq/cxVOEwSimUCuu0UyHCYQUqrPO0UqiwAnOsc5fS+Urpf4mcEzbe8XOoCHvLLGJKpXjvLMYt4G/BkcdN3IdUPXA0KmW3+ftVdHv55PoWw2KpNRXKTachJ8X1c0d2FC/eRW7cELDwnXkMWfxbvvf14PCrXsST4U/qvtFh/AmaMUvKK1j84HmMqVjImoE303PsL5OKF6DCnYM7ZPoDvZlV/JetKyDvhbNoJbsJTH2F7A59k4q3iZnDl5fA0lVKMefF15i89jeU+1tRUVFE7tJ/Ej5pCi5X8stS/7zpBwq++A9q/UJa7FrJocECDpO9M6iKVCa7XU0odWVT5soC8SCiCIcVEq6gSXAX/rJS/KqMTMrIIrl+0YbE56oXWGV34GndsRtLR84kw59FRmYuXn82rowsPP5svF4vGR4PHrcbcbkI4yIMqDCETe0oHA4TVmHC4b21KoVegQL0R6Rrb9pfoWthKEVYRe02Ry1K17CitS/jLkmYbgkqwrUmmXiSuZXUEFGst8TEWt3lNV27r/eShCe1k1P7x4SP9a/Gr8q9HeeerDzaNmsX954eM9S+PME6k4s/+g/9P72Czd5DaX/FG/jMupTJ4DKKNFS2C3eMX1lFkI8fvIRxpe+ypteV9Jzw26TjBbOGZQitSGOU3eqCTfDvM+ksmyme+G+aHV51FGoitGWXlbDp9YnX3uWU5VcQzsih2aVvsPadfzF09QzeePs/nHRi/FGpAEVFe1i36B3K1rxLm22fcVj4B1oDu8hmva87S1qfg6f9API69KBFh+40a9GanNp8qOEQqqKYQFkxZWWlBMpLKS8vo6K8jEB5GYGKckQEcQmIK9pa5BIX4nKbBqK9LU8iguAynVG6lUlcgsJlwpkWKGdrlANdDO0ti1RVz8quqmpbURtP1UpMutKolF12k2YMPG7fmioslnQjI0sru4o4u5V/tfADen5wMds8rWl52etkNm1Rq7jdmXk67uJdOIutikCI+Q9fxriil1jX5Tx6nvXXWssd9DjWsMw9JOq+dsNmSudMpB/fUjj+n7TMr912l00zvfxEJhJnpOdTb37I2CW/JsPrIeeSN5Fmnehx6nVsW/csAxdezevAMceeRGaGm8KiEtavWcKuFe/Q5MdP6FG+gkESoEJ5+Mafz+cdTqNl/xPp0mco+e7YqkAdcLkRfxMy/E3I2PfYLLWkUSk7i6UxkmEstWDMgIwvP3uHrm9PY4+rCbm/eoOcFvEtw+rwmp3Qy4sKo8qurCLI+w9fwfhd81jTcTI9z3+wTk0NYV8TKKJSf+DqH36i6LGJDGIt2094mNZDzqx1vE0y9UhPV6Dyyi/PvfU+xy38JTmeEJkXv4Wr1eEASGYzMs+fi/vxiYz//Fw2LWxBEA9t2E4/CQKw3n0oK9qeQVavsRw2eCx9spvUWi5LemOVncWS5jTN08Pwy4oKo26fv/cCfT+5jF3u5mT+8jXy2nSqU9ytmmtLsHj3DvLQg1E+f/hixhf/h3Udz6TnRf9X5zb1rCbNYDvR/sBlq9fhmnsOg/iOHWMfpPWR59Qp3ly/l2IyyajQ8eo+ulc5efmVZHjc+C9+E3ebPpWuye40iKwblvL9+7Mo+2EJKhRkdXZbMjr0o/2AsRx6SCcOjXczS6PBKjuLJc1pe0hb9qhM1I7vCYXCLHjqL/zifw/wo7cjeZe8RtPWdS+m27doQpHyU7prKwU/FPDzExdyXOhL1h7+S3qcc88+dR43bdYSvoeKPVv56L236PHJVbSWQrafNIvWQ2se0ZkIt0vYndUJf/m77Nm2gRee/zdTNt9DeUYe2Rf/B88hPeJeJ5l5dDn5hjrf19KwscrOYklzMn1elrsOpc3m91lxxxiODizj69yRdPv1U/hzE0++ToaOzTP5isPo+/0LlP7vNdpKKd8N+ys9Trxqn+Vue1g+e5ZkUvHKjYwO72a3uxmBc16l9eGJJ6MnS1nr/rABih4azTS2sTlvAG0unoc4+gYtFid2UrnF0gDY2OVMWqttHBZYx7L8P9L3utf2WdEB+Dxufup/JbtVFluzu1N0/rt0TYGiAxjZsz0v5F1ISAnfdjidvOu/IDcFig7g2ONP4Q3X0Yjbw8Yhf6Dt1e9ZRWepFomd4FqfDB48WC1evLi+xbBY0g6lFN9/s4q27Q8lMzvRbDuLpWEiIkuUUvGXEEoRthnTYmkAiAiHde9Tc0CLxRIX24xpsVgslkaPVXYWi8ViafSkVZ+diGwFfkhBVC2BbSmI50BgZd1/NCR5G5Ks0LDkbUiyQsOSN1WydlJKtUpBPAlJK2WXKkRk8f7u7EwVVtb9R0OStyHJCg1L3oYkKzQseRuSrLYZ02KxWCyNHqvsLBaLxdLoaazK7p/1LUAtsLLuPxqSvA1JVmhY8jYkWaFhydtgZG2UfXYWi8VisThprJadxWKxWCxRrLKzWCwWS6OnUSk7ERknImtF5FsRuam+5XEiIh1F5EMRWSUiK0XkGuM+XUQ2icgy8zupvmWNICIFIvK1kWuxcWsuIu+KyDfmf99XI953OXs40m+ZiOwWkWvTKW1F5FER+VlEVjjc4qalaGaYfLxcRAalgax3i8gaI89LIpJn3DuLSKkjjWceSFmrkTfhuxeR35u0XSsitdsmff/IOtchZ4GILDPu6ZC2icqttMy71aKUahQ/wA18BxwGZABfAb3rWy6HfG2BQeY4F1gH9AamA7+tb/kSyFwAtIxxuwu4yRzfBNxZ33LGyQc/AZ3SKW2Bo4BBwIqa0hI4CXgTEGA48HkayDoW8JjjOx2ydnaGS6O0jfvuzTf3FeADupgyw12fssb43wvckkZpm6jcSsu8W92vMVl2Q4FvlVL/U0pVAM8CE+pZpihKqc1KqS/N8R5gNdC+fqWqExOAx83x48Bp9SdKXI4FvlNKpWIlnpShlPoY2BHjnCgtJwBPKM1CIE9E2h4QQYkvq1LqHaVU0JwuBDocKHlqIkHaJmIC8KxSqlwp9T3wLbrsOCBUJ6uICHAW8MyBkqcmqim30jLvVkdjUnbtgQ2O842kqTIRkc7AQOBz43SlMfkfTYdmQQcKeEdElojIJcbtEKXUZnP8E5Bum4hNoXJhka5pC4nTMt3z8kXo2nuELiKyVEQ+EpFR9SVUHOK9+3RO21HAFqXUNw63tEnbmHKrweXdxqTsGgQikgO8AFyrlNoNPAJ0BQYAm9HNGOnCSKXUIOBE4AoROcrpqXS7RdrMXRGRDOBU4DnjlM5pW4l0S8tEiMgfgSDwtHHaDByqlBoIXAf8W0Sa1Jd8DhrMu3dwNpUrammTtnHKrSgNJe82JmW3CejoOO9g3NIGEfGiM8zTSqkXAZRSW5RSIaVUGJjFAWxSqQml1Cbz/zPwElq2LZFmCfP/c/1JWIUTgS+VUlsgvdPWkCgt0zIvi8g04GRgqingMM2B283xEnQfWPd6E9JQzbtP17T1AGcAcyNu6ZK28cotGljehcal7L4AuolIF1PDnwK8Ws8yRTHt8bOB1Uqpvzvcne3ZpwMrYq+tD0QkW0RyI8foAQor0Gl6gQl2AfBK/UgYl0o143RNWweJ0vJV4Hwzsm04sMvRZFQviMg44EbgVKVUicO9lYi4zfFhQDfgf/Uj5V6qefevAlNExCciXdDyLjrQ8sXhOGCNUmpjxCEd0jZRuUUDyrtR6nuETCp/6JFA69A1oD/Wtzwxso1Em/rLgWXmdxLwJPC1cX8VaFvfshp5D0OPWvsKWBlJT6AF8D7wDfAe0Ly+ZTVyZQPbgaYOt7RJW7QS3gwE0P0Yv0yUluiRbA+bfPw1MDgNZP0W3RcTybszTdiJJn8sA74ETkmTtE347oE/mrRdC5xY37Ia9znApTFh0yFtE5VbaZl3q/vZ5cIsFovF0uhpTM2YFovFYrHExSo7i8VisTR6rLKzWCwWS6PHKjuLxWKxNHqssrNYLBZLo8cqO4vFYrE0eqyys1gsFkuj5/8Dc8IialLhHyIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEYCAYAAAAqIzNgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiVklEQVR4nO2dd5xU1fm4n3d2tsLC0kSaNOnssiAgBlAwCiJRVFRQLGiMUaOxl18SDZrytUZFiUSCYkWsoLFFUQSMiPQqCLoCSlnKwha2zZzfH+fOMjs7s4UtU3ifz2d27z31veece97T7jlijEFRFEVRYhVXuAVQFEVRlPpEFZ2iKIoS06iiUxRFUWIaVXSKoihKTKOKTlEURYlpVNEpiqIoMU3EKjoR6SQiRkTc4ZYl1hGRySKyuIHiShaRD0TkgIjc1RBxBsSfJSJnNEA8C0TkmhB2WrbrCRGZJSJ/raldHcswRURersS+QcpgrCAiq0Vkp4jcerRhRKyiU44O5yUrEZE8v1+DK5RKOAPIADoYYx72GTovf6ewSRVBOHk4pQbuLxWRH0UkX0TmikjzStxmishyESlw/mf62X0YUG6KRWStn/3nIpItIoecymecn91YEVksIjkisktE/i0iqX726wPCLhWR9+ojPaIZERkhIgtq4D5kfgZx21xE3nHKyY8icmkId885DbET/cw6+TVQd4nI0/4NNRE5R0TWOXn7PxHpHRDmrY6/Q074iQHPsEhEDorIDhG519+vMaYf8Bvgz9VNl0DqTdFpazWszDHGNPb7PVy1lwajOZBljMkLtyC1QSxhbyiKSB/gX8DlQGugAPhnCLcJwDzgZaAZ8AIwzzHHGDPGv9wA/wPe8AviZqCNMaYJcC3wsoi0ceyaAn8F2gK9gHbAIz6Pxpg+fuGmAtsDwo4qIqF+qyo/gzANKMaWk0nAM0758Q9zGNA1iN9/AnuANkAmcBpwg+OnG/AKcB2QBrwHvOtLIxEZDdwD/BLoCHQB7vcL+1VgIbZuOA24QUTODYh/HdBUROJCpUdl1OmL6rTK7xaRNUC+iLhFZIij4XOcVuAIP/cLROT/RGSpo+nnhWqNishVIrJRRHJF5HsR+W2A/TgRWeWEs1VEznLMm4rITLFd359E5K9VJZaIdBWRz0Rkn4jsFZFXRCTNz26/iAxw7ts6rdwRzv25Tus1x3m+XgHpc4eIrHFaL3NEJKnmKV1zROQeJ11yRWSDiJwfwp2IyOMissdJy7Ui0texSxSRR0Vkm4jsFpHpIpJcQ1HcgLcKWVuIyHtO/N84ebbYz96IyHUi8p2TztNERBy7kHnnxyAnDQ6IyPO+PBCRZiLyHyc/DzjX7f3iXSAifxORL7EKpUsVz9pRRL500vy/ItIywH6Sk5Z7ReSPVYQViknAe8aYhU7j4V7gAvHrTfkxApv+TxhjiowxUwEBTg90KLZ3PRx40WdmjFljjCn13QLxQAfH7lVjzEfGmAJjzAFgBjA0hMynAi2Bt2r6sI5sdznv888ico0E9D783KWK7YVO9ZUPoKWIfOLkyRci0tHP/ZMist0pd8tFZLif3RQReVNEXhaRQ8DkKsRMEJEXnXjWi8jAAPvMOqgHRlD9/GwEjAfuNcbkGWMWA+9iG0g+N27gKeCmIHF1Bl43xhQaY3YBHwE+JTkaWGSMWeyUj4ewDZ3THPsrgZnGmPVO2fgL5dOvE/CKMcZjjNkKLPYL24evzji6BoYxps5+QBawClv4k52H3QecjVWqZzr3rRz3C4CfgL5AI2zBf9mx64R9mdzO/VhsS0OcBCwABjh2g4GDTvguJ96ejt072BZvI+A4YCnw2yqe40QnrESgFba18YSf/W+ADUAK8DHwqGPeHch3/MYDdwFbgAS/9FmKbfU2BzYC14WQYRiQU8lvWAh/U3xpGGB+kROvC5jgyNnGsZsMLHauRwPLsS0zwbbOfe4ex74czbGt8veA/6tB+YgHXgomX4C715xfCtAb2/pf7GdvgP84Mp4AZANnVTPvsrCtww7Oc3wJ/NWxa4GtDFKc53sDmOvndwGwDfsSuoH4Sp5hAbDVKRPJzv2DAWV7hmPXDygCeoUIq7L8ngfcHWCWB5wUxO2twIcBZv8Bbg/i9j5gQRDz/wCFjvwfAa4Qcj0BvBbC7jlg1lHWMWcBu5w8SMH2ZgxwomM/C9uzbIF91/7q53cWkItVtInAkwHl6jLHnxu43Yknye+9KgHOw75DyZXIOMVJo7OBOOD/gCUBZbC69cB/gHtC2NUkP/sDBQFmd2AbSb77O4En/d6xE/3sfott9KRg69d1wPmO3Y3AB35u45znv9m5Xw1M8LNv6YTfwrn/O/Agtn7oAewABgXImgwcBn51VOXmaDxVksFZwNV+93cDLwW4+Ri40rlegPPyO/e9sV3rOAIUXZC45vol5L+Ax4O4aY2tQJL9zC4BPq/hc50HrAwwexdYC6wBEh2ze7GtHp8bF1aRj/BLn8v87B8GptdxHkxx0jDH79c2iLtVwDjnejJHFN3pwGZgCH6VGFbp5QNd/cxOAX6oplyZ2Ipit/8LFMRdnOOuh5/ZX6mo6Ib53b9O6MqgXN45eXCd3/3ZwNZKZD7gd78AeKCaz7sA+JPf/Q3AR861r2y397NfCkw8ivyeT0Al6V/mAszvJUD5YIecpgRxuwWYHCLOeGAMcFsI+zOBA0D3IHYpwKFg8lXzeZ/Dr3GFbdgEKrrnsBXxnQF+Z/k/P9AY8GDni4PFdQDoZ468VwurKeMU4FO/+97A4YAyWOt6oIb5ORzYFWD2G5zGDLbhtwVo6twHKrpe2AZwqWM3CxDHrie2bhgBJDhyeYH/59hvxWmI+pUfA3Ry7n/hxO0L+/4Qz3uTE+6qmqZVfcwxbPe77ghc5Awv5YhIDran0iaE+x+dRAgc4kFExojIEmfYMAdbQfncdcAmZiAdnfB2+sX/L2zPLiQi0lpEXhM71HkI22oMlGkGtif6lDGmyDFr6zwDAMYYr/N87fz87fK7LsC+bHXN68aYNL/fzyJyhdihXV869CVIOhtjPgOexo7n7xGRZ0WkCbZ3lAIs9wvjI8e8Sowxq7C9pK+AWypx2grbovYvF9uDuAuajtXMu8Ay19bxmyIi/xI7UX8I2xtMk/JD3cFkCUVVeV0XZSEPaBJg1gTbczkqt2LnaY4H3gwWoTGmxBjzITBKAuZSRGQIds7lQmPM5iDeLwD2A18EfZqqaUvVZWMstgcwPYhdmXtjh3r3cyT/7xA7PXLQKd9NKV92apP3SVJ+Xi/S8v4JbCPuYKBHsXPRHwFvY0fGWmLnBB8CMMZ8ix2efBrY6dhvwPbMgsXtu84VO1X1EfAAkISty0eLyA0BMrix83qXY3unNaI+FJ3xu96O7dH5V7qNjDEP+rnp4Hd9ArY1v9c/QLErdN4CHgVaG2PSgA+wvQxfPMEmULdje3Qt/eJvYowJHP8N5O/Oc6QbO/F+mV9ciEhjbMGYCUyRI/OKP2OVq8+dOM/3UxXxVUBEhkv5VWqBv+FVh1IWVkesYr4RO1yQhm3xSjD3xpipxpiTsC3R7tghjb3YoYM+fmnZ1NjFBdXCGFMIfOiEG4psbMuuvZ9ZhxBug1Fp3gUJ7wRsvoEdruoBnOz4PdUx9/fvX74jgfXYoU8ARKQLdlgumJJZD2T4zVeBXQG7PsDdlcDbpuoFQ2783jsR6Y8d6bjaGDM/hJ8rgReN00Q/CnZSddmYga08P3Dmpgjm3nmPmwM/O+/TXcDFQDPnHTlI5Od9dfITbHlwi1044qOfn9tfAo+IXRnpU8JfiV2Z2Rz7njxt7FzgPuB5bGcDAGPMm8aYvsaYFtjVkZ2Ab/zkLCujzvVuJ5wugMcY86IxptQYswM7bXE25WmNVa5zj6bs1PeqsZeBc0RktIjEiUiS2OWz/gX1MhHpLSIpWK3+pjHGExBOAvblzQZKRWQMMMrPfiZwlYj8UkRcItJORHoaY3YC/wUeE5Emjl1XETmtCrlTsa2QgyLSDlvR+/MksMwYcw3wPkdajq8DYx054rEVZxF29VqNMMYsMuVXTgb+FtUguEbYlzQb7MIebI+uAiIySEROduTPx461e53e6QzgcRE5znHbTuyKKp9fI36LjUJQhM3PoDh5/za2AZEiIj2BK6r1lJaq8g7gdyLS3mmg/BGY4+f3MJDj2P25BvGGi1ew79hwp1J/AKukgrXqF2CH6n4vdmHRjY75Zz4HYhcXXYwdmsLPvKczqpIsIvEichm2IfCFY98Xq1xuMsYE/WzAee9HYlcHBtplicjkajzv69h3vZdTZ9wbwt2NwCbgPSm/YOpsERkmdmXiX7BzZ9uxeV+KfUfcInIfFXtAkcYCqshPH8aYfOx79YCINBKRocA47Jw52AZtP+xwfaZjdg7wjjFmL/ADcL3YBYZp2AbLGl/4InKSU8e3Ap4F3nV6emDn9n7t1PNpwJ84Ur42W+9yqVM/H49dQ1AWtkO887+Io6BeFZ1TgMYBf8AWoO3Yisc/3pewD70L23X9fZBwch3z17Hj5pdiW44++6XAVdjFEgexL5+vZ3UFtmLd4Ph9k/JDp8G4HxjghPU+toAAdnUndkL8esfoNmCAiEwyxmzC9iCewvaAzgHOMcYUVxFfvWKM2QA8hh023A2kYxdhBKMJVqEdwA7r7ePIMvG7sWPpS5yhvU+xPSBEpAN2GGRtYIABeKm63N2IHTbahS0fs6l+AQ+Zd368im0AfY8d8vZ9RPwEdshrL7AEW3GHncp68MaY9dhl3a9gl3+n4iz7dvx+KCJ/cNwWY+csr8DO3V4NnBdQPs9z7D4PFAM797QH+y7fjF1gsMKxvx077DzTb9QhsGdxOfCVsSvr/J8vAbsIZEklyeB73g+BqY58W/z8FAW4M9hPIHZgl9z7VjW+im3A7AdOwr6vYNcOfISteH/ENvBqMlRZL/jnXyBV5aeI/EFEPvTzcgO2fO/BvlPXO+UHY8weY8wu389xv9cYc9i5vgBb72Vj070EuxjGx5OODJuwdcdv/OT8CDsP+Tl2MdePOI1IY8whJ+xbHX+rsKNNgR/2+6YPKl2xHQrfZGJYEPth5MvGmH+HTQilTnBa+H2MMf+vCnejsD39nsaY/dUM+yHgeGPMlbWXVIk0xM4J/s4Yc8lR+O2FrRgTzZFPH5QYQ0Quxg6dVrq+IhRh/+hRiQ2MMSG3PApgAfAJsF5EHjPGPBrowBmuTMD2DgcBvwaCbqelRD/GftNV7S3oxH4D+gF2cdRD2CXyquRiFBFZjh3huftowzhmFZ2ITOfIsIU/LxtjrmtoeY4VnGGVSVU4S8UOrbTFDrU+hv1eLKIQkVCLNcbUcA5VqRm/xU53eLDTFDdU6roecIYEgw0n/90Y8/eGlieWcRbG1YqwDl0qiqIoSn1T68UoInKTiHwrdpubhx2zM8VuobPW+V9hSxpFURRFaQhqNXQpIiOxqyr7GWOKfMvOcVYcOh8q98WuaGoXKhwfLVu2NJ06daqNSIqiKEqUsXz58r3GmGptPnE01HaO7nrsFl5FYJeoOv9X+rlZDySLSKLfDiJB6dSpE8uWLaulSIqiKEo0ISI/Vu3q6Knt0GV3YLiIfC12J/BBQdyMB1ZUpeQURVEUpT6oskcnIp9i970L5I+O/+bYDYAHAa+LSBffFi1izzp6iPK7mASGfy32w05OOOGEmsqvKDGLMQYpt7uToihHQ5WKzhgT8sh3Ebkeu92QAZaKiBe7oWe2s93PO8AVgTshBIT/LHbLGAYOHKhLQBUFyN6bTda0C2jeqjVdfzsb4uKr9qQoSlBqO0c3F7t33eci0h37ke9eZz+z97FHp4TaaqpalJSUsGPHDgoLC2spqnIskZSURPv27YmPj04FseHdxznNrIE9sO7j5+h79m+r9qQoSlBqq+ieA54TkXXYM9CuNMYYZ3PRE4H7nM1RAUb5FqvUhB07dpCamkqnTp10GEepFsYY9u3bx44dO+jcuXO4xTkqWu74lK3x3UkpPUDJ2rdBFZ2iHDW1UnTOLhcVdhcxxvyViptyHhWFhYWq5JQaISK0aNGC7OzscItyVBzKPUhPz2ZWtLuKPYcP0T97HqXFRbgTEsMtmqJEJfV9TE+doEpOqSnRXGZ+2LCCODGkdBxAYpdfkCQlbF2/NNxiKUrUEhWKTlGOJXJ+XA1Aux4n0bbPUGv23VfhFElRohpVdNVARLj99tvL7h999FGmTJkSPoGqYMGCBfzvfzU+67UcZ511FmlpafzqV7+qI6mU6hKX/S1FxJPWtjutO3RnP01w71xZtUdFUYKiiq4aJCYm8vbbb7N37946DdcYg9d7VOcIVkpdKLo777yTl156qWqHSp3TOPd7fo5rB3FuxOXip4QupOZuCbdYihK1qKKrBm63m2uvvZbHH3+8gl12djbjx49n0KBBDBo0iC+/tF9TTJkyhUcfPXLUWt++fcnKyiIrK4sePXpwxRVX0LdvX7Zv386dd95J3759SU9PZ86cOYBVViNGjODCCy+kZ8+eTJo0iWAnTUydOpXevXuTkZHBxIkTycrKYvr06Tz++ONkZmayaNGiSmW8/PLLOeWUU+jWrRszZswoC/eXv/wlqamplabLG2+8Qd++fenXrx+nnnoqYBcPXXXVVaSnp9O/f38+/9weVD1r1izOO+88zjzzTDp16sTTTz/NP/7xD/r378+QIUPYv9+ewTpjxgwGDRpEv379GD9+PAUFBRXiHTJkCOvXHzm8esSIETG1dVxq8S5yk9qU3Rc06Uq7km2YemgUKcqxQFSdR3f/e+vZ8POhOg2zd9sm/PmcPlW6+93vfkdGRgZ33XVXOfObb76ZW2+9lWHDhrFt2zZGjx7Nxo0bKw3ru+++44UXXmDIkCG89dZbrFq1itWrV7N3714GDRpUpjRWrlzJ+vXradu2LUOHDuXLL79k2LBh5cJ68MEH+eGHH0hMTCQnJ4e0tDSuu+46GjduzB133AHApZdeGlLGNWvWsGTJEvLz8+nfvz9jx46lbdu21Uq7Bx54gI8//ph27dqRk5MDwLRp0xAR1q5dy7fffsuoUaPYvHkzAOvWrWPlypUUFhZy4okn8tBDD7Fy5UpuvfVWXnzxRW655RYuuOACfvOb3wDwpz/9iZkzZ3LTTTeVi3fChAm8/vrr3H///ezcuZOdO3cycODAaskc6Xi9hpaeveQ08nue43rSaO9b7P75e1q3PzF8wilKlKI9umrSpEkTrrjiCqZOnVrO/NNPP+XGG28kMzOTc889l0OHDpGXF+o8TkvHjh0ZMmQIAIsXL+aSSy4hLi6O1q1bc9ppp/HNN98AMHjwYNq3b4/L5SIzM5OsrKwKYWVkZDBp0iRefvll3O7g7ZbKZBw3bhzJycm0bNmSkSNHsnRp9Vf3DR06lMmTJzNjxgw8Hk/Z81x2mf3ipGfPnnTs2LFM0Y0cOZLU1FRatWpF06ZNOeeccwBIT08ve7Z169YxfPhw0tPTeeWVV8r13HxcfPHFvPnmmwC8/vrrXHjhhdWWOdLJ3rePppKPpHUoM2vUrre127omXGIpSlQTVT266vS86pNbbrmFAQMGcNVVV5WZeb1elixZQlJSUjm3bre73Pyb/84ujRo1qlZ8iYlHvpuKi4ujtLS0gpv333+fhQsX8t577/G3v/2NtWvXVnATSkaouAy/Jsvyp0+fztdff83777/PSSedxPLlyyt17/88Lper7N7lcpU92+TJk5k7dy79+vVj1qxZLFiwoEI47dq1o0WLFqxZs4Y5c+Ywffr0assc6eTs+p7WgLtZ+zKz1l37wSdQ8PMG4IKwyaYo0Yr26GpA8+bNufjii5k5c2aZ2ahRo3jqqafK7letWgXYI4dWrFgBwIoVK/jhhx+Chjl8+HDmzJmDx+MhOzubhQsXMnjw4GrJ4/V62b59OyNHjuShhx7i4MGD5OXlkZqaSm5ubpUyAsybN4/CwkL27dvHggULGDQo2AEUwdm6dSsnn3wyDzzwAK1atWL79u0MHz6cV155BYDNmzezbds2evToUe0wc3NzadOmDSUlJWXhBGPChAk8/PDDHDx4kIyMjGqHH+kUZG8DILllpzKzlse144BJJW7vt2GSSlGiG1V0NeT2228vt/py6tSpLFu2jIyMDHr37l3Wuxg/fjz79++nT58+PP3003Tv3j1oeOeffz4ZGRn069eP008/nYcffpjjjw92WERFPB4Pl112WdnCj9///vekpaVxzjnn8M4775QtRgklI9ihz5EjRzJkyBDuvffesvm54cOHc9FFFzF//nzat2/Pxx9/DMB9993Hu+++C9iVmenp6fTt25df/OIX9OvXjxtuuAGv10t6ejoTJkxg1qxZ5XpyVfGXv/yFk08+maFDh9KzZ88y83fffZf77ruv7P7CCy/ktdde4+KLL6522NFA8YEdAKQed+QkD3G5+Dn+BBrnBm8sKYpSORJsJV+4GDhwoAlcPbdx40Z69eoVJolimylTppRbtBJrRGPZ+d+sP/CLrGkU3b2DxOQjq16XPHEp3XMW0XzK9jBKpyj1g4gsN8bU24oy7dEpSgRh8vdymMRySg6gtHk3mnOI/AM13hddUY55omoxilK3RPLuLscqcYf3cVCakhxgnnR8D/gedv2wlq7NfhkW2RQlWtEenaJEEInFB8h3p1Uwb9GpLwCHtlf83EJRlMpRRacoEUSj0hwKE5pVMG/bqQdFxk3pnu/CIJWiRDeq6BQlgkj15lCSWFHRJSYk8pOrLYk5uuelotQUVXSKEiGUlnpoZg7hSW4R1H5/ckeaH/6xgaVSlOhHFV01mTt3LiLCt9+G/mg3KyuLvn371qscq1at4oMPPqhVGFdffTXHHXdcvcuq1IycQzkkSQmktAxqX9ikC8d7duItKWpgyRQlulFFV01mz57NsGHDmD17dlD7YNtz1RTffpGVUReKbvLkyXz00Ue1CkOpe/L27wbA1Ti4ootr3QO3eNn9o+6Qoig1QRVdNcjLy2Px4sXMnDmT1157rcx8wYIFDB8+nHPPPZfeve3Gu6WlpUyaNIlevXpx4YUXlh0zM3/+fPr37096ejpXX301RUW2Vd6pUyfuvvtuBgwYwBtvvFEu3sBjcIqLi7nvvvuYM2cOmZmZzJkzh/z8fK6++moGDx5M//79mTdvHmCPxRk3bhwjRoygW7du3H///WXhnnrqqTRv3rzSZ/7iiy/IzMwkMzOT/v37k5ubizEm5JFCp512GuPGjaNLly7cc889vPLKKwwePJj09HS2bt0KwHvvvcfJJ59M//79OeOMM9i9e3eFeCdOnMj7779fdj958uSyDZxjncM5Nj3cqa2C2jdpb8vYvh915aWi1ITo+o7uw3tgV8VNi2vF8ekw5sFKncybN4+zzjqL7t2706JFC5YvX85JJ50E2H0s161bR+fOncnKymLTpk3MnDmToUOHcvXVV/PPf/6TG2+8kcmTJzN//ny6d+/OFVdcwTPPPMMtt9wCQIsWLcr2xfQn8BichIQEHnjgAZYtW8bTTz8NwB/+8AdOP/10nnvuOXJychg8eDBnnHEGAEuXLmXdunWkpKQwaNAgxo4dW+3jbB599FGmTZvG0KFDycvLIykpibfffjvkkUKrV69m48aNNG/enC5dunDNNdewdOlSnnzySZ566imeeOIJhg0bxpIlSxAR/v3vf/Pwww/z2GOPlYvXdwTP2LFjKS4uZv78+TzzzDPVkjnaKc6zZ/IlNA4+R9emSzoAhTsrPwZKUZTyaI+uGsyePZuJEycCtsfhP3w5ePBgOnfuXHbfoUMHhg4dCsBll13G4sWL2bRpE507dy7b7/LKK69k4cKFZX4mTJgQNN5gx+AE8t///pcHH3yQzMxMRowYQWFhIdu22Y2BzzzzTFq0aEFycjIXXHABixcvrvYzDx06lNtuu42pU6eSk5OD2+2u9EihQYMG0aZNGxITE+natSujRo0Cyh/Bs2PHDkaPHk16ejqPPPJI0CN4xowZw+eff05RUREffvghp556KsnJgZ9PxyZF+fasxZTUpkHtmzVvwR6aIft05aWi1IRa9+hE5Cbgd4AHeN8Yc5ef3QnABmCKMebREEFUnyp6XvXB/v37+eyzz1i7di0igsfjQUR45JFHgIpH7hzNsTehju2pzjE4xhjeeuutCicEfP3117U6gueee+5h7NixfPDBBwwdOrRsU+dQVOcInptuuonbbruNc889lwULFgTdmSUpKYkRI0bw8ccfM2fOnLIGxrFAyWFH0TVOC2ovIuyO70Bqnm7urCg1oVY9OhEZCYwD+hlj+gCByuwfwIe1iSPcvPnmm1x++eX8+OOPZGVlsX37djp37syiRYuCut+2bRtfffUVAK+++irDhg2jR48eZGVlsWWLbYm/9NJLnHbaaVXGHewYnMAjeEaPHs1TTz2Fb3PulStXltl98skn7N+/n8OHDzN37tyynmZ12Lp1K+np6dx9990MGjSIb7/9tlZHCgEcPHiQdu3aAfDCCy+EdDdhwgSef/55Fi1axFlnnVXt8KMdj6PoGjdJC+kmt3EX2pT8CBG0GbuiRDq1Hbq8HnjQGFMEYIwp23FWRM4DfgCieuZ89uzZnH/++eXMxo8fH3L1ZY8ePZg2bRq9evXiwIEDXH/99SQlJfH8889z0UUXkZ6ejsvl4rrrrqsy7mDH4IwcOZINGzaULUa59957KSkpISMjgz59+nDvvfeW+R88eDDjx48nIyOD8ePHl83PXXLJJZxyyils2rSJ9u3bl52vN3369LIjfJ544gn69u1LRkYG8fHxjBkzplZHCoHdW/Oiiy7ipJNOomXLIysLly1bxjXXXFN2P2rUKL744gvOOOMMEhISqh1+tOMtsqe+J6YEH7oEKG7Vl1QKyN21uaHEUpSop1bH9IjIKmAecBZQCNxhjPlGRBoDnwBnAncAedUZutRjeuqOWbNmlVu0ciwSbWXn82k3MDz7Ndx/3gchhpm/WbKAQR+NY/OwJ+l+xuSGFVBR6omwH9MjIp+KyLogv3HYOb7mwBDgTuB1sRNBU4DHjTF51Qj/WhFZJiLLsrOza/c0ihLNFOdTQHJIJQfQrc8gCk08BVlLG1AwRYluqlyMYow5I5SdiFwPvG1st3CpiHiBlsDJwIUi8jCQBnhFpNAYU6F7YYx5FngWbI/uqJ5CqcDkyZOZPHlyuMVQakBcST5FrspXmKalNmJ9XBeSs+v4MxtFiWFqu+pyLjAS+FxEugMJwF5jzHCfAxGZgh26POoxNGNMjVYMKkpthuTDRVxpPsVxKVW6O5DWhwH7P8CUFiPuY2cOU1GOltouRnkO6CIi64DXgCtNHdcwSUlJ7Nu3LyorLiU8GGPYt28fSUlJ4RalRiSU5lNSDUVnOg4jhUJ2bqj+d5GKcixTqx6dMaYYuKwKN1NqE0f79u3ZsWMHOn+n1ISkpCTat28fbjFqRKL3MCXuJlW6a9N/NKUrXOxf/QFtM06v0n1JqYdVy7/i4PpPSDrwLUlF+0k0hzHixuNOxuNuhDc+BRPfCJPQGElohCSl4kpKBZevihBEwFBxZMUYypmagCv/RqoQrMFq6vVrieQWHUg/ZXT9RaBEPBG/BVh8fHy5nUcUJVZJMgV449tU6a5rh3ascXUnbfvnlborLC5hwbzn6Lx+GoOwx/sckKbkuFtR7EoGbyEJRQdIPHyYRFNIijlMshTXybNEEqXGxf6e39O8WcVz/pRjg4hXdIpyLFDq8ZJCIYfiG1fpVkTY1W4U/XZM5WDWapp26lfBzer16yl+6zrO8q5hl7s9mzLuo9Owi2nWvAOVVfclJSUU5B+iMP8ghXmHEFMKxvj1ygwGEEO5bpxYwQgwKfvvb2WQiv1CkXqZh9/1v9kMzPoXBYf2qaI7hlFFpygRQH6xh0YUcig++HZwgXT95TUUz5rGjo8fp+lvZ5WZe72GT9+Yxskb/k68ePj+5L/QZfTvON4VV61w4+PjaZrWgqZpwTeWjjaytyyDrCP7iCrHJrqps6JEAPlFpTTiMCRW3aMDOLFzR75oci49f57L7nULANj183aWPjKOURv/yL7kjnh+u5AuY34P1VRysUhcUipwZB9R5dhEe3SKEgEUFOSTIB7EqZirQ48Jf2P7v5fQ+o2LWD2vFycWf8sASlnd/SYyJv4ZiYuvR4mjg7gku7inVBXdMY326BQlAijIOwgc6YFUhxPat8Nc8R6bW42mkcnnu+POYt/ln9Fv0l9VyTkkpNj09BzOrcKlEstoj05RIoCifFsR10TRAXTu0g1ufLk+RIoJ4pNtj85bqD26Yxnt0SlKBFBUYHt0vopZqRviG6UBR06GUI5NVNEpSgRQUmB7HAmVHNGj1JykRk7DoUiHLo9lYkrRFeQdZMmzN7FhyUfhFkVRaoTHGVpLbFSzoUulcpJTGuMxAsXaozuWiSlF53LFMeTnFzm4Kfjp34oSqZQ6iyWSG6eFV5AYIyneTT7JuFTRHdPElKJLTEqh2LiRwoPhFkVRaoRxhtYSU7RHV5e4XEI+ScSVqKI7lokpRScuF4ekMa6inHCLoig1whTlAyCJuhilrimQFOJK8sMthhJGYkrRAeRLY9zFupRYiS7EN7RWzZ1RlOpTKCm4S1XRHcvEnKI7HJdKYokqOiW6iCvNpwQ3uBPDLUrMUehKJt5TEG4xlDASc4qu0J1KokeXEivRhbskn0KJroNio4WiuBQSPNqjO5aJOUVXHN+EFI9OPCvRRbwnn0JJDrcYMUmJqxGJXu3RHcvEnKIrTWhKI6OKToku4j2HKXSlhFuMmKQkvhFJquiOaWJO0ZnEJqSafPB6wy2KolSbBE8BxXGq6OoDb3xjks1hKDs8VjnWiDlFR3IaLjEczssJtySKUm0SvQUUx1Xv0FWlZpiExrjxQGlRuEVRwkTMKbr4Rs0AyNm/J8ySKEr1STIFlLq1R1cfiO+TDd0d5Zgl5hRdQmoLAPJyssMsiaJUn2RzmFK39ujqhUTnlPEC3THpWCXmFF1yE6vo8g/uC7MkilJ9kk0h3nhVdPWB75TxQp3OOGaptaITkZtE5FsRWS8iD/uZZ4jIV475WpGG+UiocbPjASg6qEOXSnTg8RoacRhvvO6KUh/EJdsene8Ud+XYo1YnjIvISGAc0M8YUyQixznmbuBl4HJjzGoRaQGU1FraatCkVVsAPLmq6JTooPBwAY3Eg0nQHl19kJBie3RFBbpj0rFKbXt01wMPGmOKAIwxPu0yClhjjFntmO8zxnhqGVe1aNy0JaXGBfmq6JTooDDf6WkkaI+uPkh0Dl8tUUV3zFJbRdcdGC4iX4vIFyIyyM/ciMjHIrJCRO4KFYCIXCsiy0RkWXZ27ReQiCuOA9IUd4EuRlGig6J8pwJO1CN66oNE59R2VXTHLlUOXYrIp8DxQaz+6PhvDgwBBgGvi0gXx3yYY1YAzBeR5caY+YGBGGOeBZ4FGDhwYJ180XkorhmJRboYRYkOig/bHl1ckiq6+iC5sVV0pYdV0R2rVKnojDFnhLITkeuBt40xBlgqIl6gJbADWGiM2eu4+wAYAFRQdPVBvrs5KSX7GyIqRak1JQV2E/K4JB26rA9SUtMA8BbqZu/HKrVajALMBUYCn4tIdyAB2At8DNwlIilAMXAa8Hgt46o2hxNb0Do3q1ZhfLdxNT+v+ADJ3kRi4R7wenCJUOJOoTi+KSYpDZLTcCc3IbFRUxIbNcWd3ARJSsXtTsTtjsMdF4fb7cbtdiPiApFyuxAZjtwYPwsTYCbGhNy9qLw///B84ZT3e+TalLMTAUFwiSACLrHmLudaRMoJZ/CW+TUBYZuj3Gqp5t5qHk9N4ziaJ6np8x/6aROgPbr6onFyIgUmsewU96Nl66qFHFj6GqnZK0kt3UeiKaKQRIpcyRx2p1Ic35TShKZ4k5pBSnPiUpoTn9qCpNQWJDdtSXKT5rhc8fZ9ctlZI4/X4PFCqfHi9Ro8Xi9e45QhY/C9dvadFDCmYvnyuxenxJb5c+x993WNiUukfceu9RN4HVJbRfcc8JyIrMMqtCud3t0BEfkH8A22rvjAGPN+LeOqNp6UVjQ7mIPxehBXXI38rv7qE5j/AP1K19ANyCWFHHdLvBKP8XpJLimgUX4ejdFjP5S64QTnf1LTVmGVI1ZpnOhmL0lHreh2bdvMvtnX0+fwMopMPFvju7GjcTrEJxPnKSKuJI+EklzSDm+jcX4uTU0uCVJax08RmXzj7Un7B74OtxhVUitFZ4wpBi4LYfcy9hODBsfVtD0Ju0rZu+cnWh5/QtUegJLSUpb8+zaG7nyRfa5mLO9+C12GT6RZ+56kBmsOeUrxHD5I7sH95B46QH5uDp7CXExRHt7SYrweDx6PB6/Xg8fjRfwWnfoHVy5kPwspb4ORALd+dxKiuebrpZmAOH1+JSBO4/QcDdhWJUd6J16/RuQRL1LuuuKj1LwZeTQNz/pqrZaLo4aS1VSmuEbNyeiZWTNPSrUQEQ5L8lFtAbZ15Re0nHcpnUwpi7rcQvq5N9O7WfNK/Rivl9z8XHL3Z5OXk03Bob0U5+7DU3AAjLesV2aAOKenFucCwYXLBYiUlbey0RIEg3HM/btrZU95JP5Av04FYEzdvysliS3qNsB6orY9uogksVVn2AQHftpaLUVXXFLKiicvZnjefJa3/BW9J0/jJGdcPyRxbuIatyCtcQvS2tWN3Iqi1A9FrhRcNVR0OzYtp/W8CRyUJhRf+hbDu6dXy5+4XKSmNiU1tSl0PPFoxFXqmJjbAgygyfGdAcjd80OVbo3Xy9fP/JYhefNZceKNnHTjyyRXpeQURYkqiuMa4S6t/nRD/sH9yJxJHCYRmfwBnaup5JTIJCYVXcv23QAo2ZtVpdtF82YwfP+brGgzkQGX/a1hxsEURWlQSuJTSSqt/ucFG1+8mdae3fx85nTaaq8s6olJRdc0rTkHTSPk4PZK3X2//Sd6rfobPyR0o/810xpIOkVRGpqipJY09eZUy+33Kz9j4L53WXrcxfQbOqZ+BVMahJhUdADZ7tYk54dWdMYYts6+k+ZyiKYXT0PiYnK6UlEUoDS5JWnmEMZT+WpI4/VS/MEf2U1z+kx6sIGkU+qbmFV0+5I7c1xh6Dm6xZ9/wJkF77O54ySan3hyA0qmKEpDYxq1Ik4MeTm7K3W3dtFcepZs4Mc+N9A0rVkDSafUNzGr6Epa9qa12Utezt4KdnkFh2mz6B6yXS3pPvH/wiCdoigNiatxawBy9/4c2pExJC5+mF20JPOcGxtIMqUhiFlF17hjPwC2f/tNBbuls//CiWYbh0b+nbjkJg0tmqIoDUySc05l3r6dId2sXzqfHiUbyep5DQlJyQ0lmtIAxKyia9djMAC535dXdNu2buCUbTNYmzqcrsMnhEM0RVEamCYt2wNw+EBoRXdo0XTySCbzV9c3lFhKAxGziq5lmxP4gXak/rToiKEx5Lzxe7y4aDPxyfAJpyhKg9L8OLurQ3FOcEW3e+d2BuR+zqbWY0lqnNaAkikNQcwqOhHhx2ZD6Jy/Ck+h3RFh/QfTySj8htXdb6Jlu8jfiFRRlLohLa05uSY55CdHmz98hkQppe0ZOjcXi8SsogNI6ncBSRSz+cN/kr11JR2/eYA1cX0YePE94RZNUZQGxBXnYldcG5LztlWwKykpoeu219mY1I823fqHQTqlvolpRTdw2BhWxGXQbfX/kfrSKApMIqmXzCQhXr+ZU5RjjZykdqQV7qhgvuqzN2hLNqUn/ToMUikNQUwrOrc7jtTLXuTTpNF8mXgqBya+R+cTe4VbLEVRwkBRakeO8+yu8NF4/IqZZNOc3iMuCZNkSn0T812bbp070+2e18IthqIoYUaadyZ+t4d9O7+nRfvuAPy4eTWZRctY2um3tIpPCLOESn0R0z06RVEUH6kdMwDY+e3SMrOdnzxNsYmj6xhdhBLLqKJTFOWYoEv6Lyg2cRzOsidiH8zZT58977GmyQhatK7eAc1KdKKKTlGUY4LGjRqz1X0izXcvAWDD2w+SKodp9stbwiuYUu+oolMU5ZhhT4fRdC3ZzLr5r5L+44usSBlG18xTwy2WUs+oolMU5Zih+6hrOWBS6bvoerzios3Fj4VbJKUBUEWnKMoxQ5u2HfjpnNksbH05ey7+D2069Qy3SEoDEPOfFyiKovjTd+BwGDg83GIoDYj26BRFUZSYRhWdoiiKEtOIMSbcMpQhItnAj3UQVEug4tHikUk0yQrRJa/KWn9Ek7zRJCtEl7x1JWtHY0yrOggnKBGl6OoKEVlmjBkYbjmqQzTJCtElr8paf0STvNEkK0SXvNEiqw5dKoqiKDGNKjpFURQlpolVRfdsuAWoAdEkK0SXvCpr/RFN8kaTrBBd8kaFrDE5R6coiqIoPmK1R6coiqIogCo6RVEUJcaJKUUnImeJyCYR2SIi94RbnkBEpIOIfC4iG0RkvYjc7JhPEZGfRGSV8zs73LICiEiWiKx1ZFrmmDUXkU9E5Dvnf7MIkLOHX9qtEpFDInJLJKWriDwnIntEZJ2fWdC0FMtUpxyvEZEBESDrIyLyrSPPOyKS5ph3EpHDfmk8vSFlrUTekHkvIv/PSdtNIjI6AmSd4ydnloiscswjIW1D1VkRWXZDYoyJiR8QB2wFugAJwGqgd7jlCpCxDTDAuU4FNgO9gSnAHeGWL4i8WUDLALOHgXuc63uAh8ItZ5BysAvoGEnpCpwKDADWVZWWwNnAh4AAQ4CvI0DWUYDbuX7IT9ZO/u4iKG2D5r3zvq0GEoHOTp0RF05ZA+wfA+6LoLQNVWdFZNkN9YulHt1gYIsx5ntjTDHwGjAuzDKVwxiz0xizwrnOBTYC7cIrVY0ZB7zgXL8AnBc+UYLyS2CrMaYudtipM4wxC4H9Acah0nIc8KKxLAHSRKRNgwhKcFmNMf81xpQ6t0uA9g0lT1WESNtQjANeM8YUGWN+ALZg644GoTJZRUSAi4HZDSVPVVRSZ0Vk2Q1FLCm6dsB2v/sdRLASEZFOQH/ga8foRqer/1wkDAc6GOC/IrJcRK51zFobY3Y617uA1uERLSQTKV9RRGK6+giVlpFelq/Gttp9dBaRlSLyhYhE0rEAwfI+ktN2OLDbGPOdn1nEpG1AnRVVZTeWFF3UICKNgbeAW4wxh4BngK5AJrATO3wRCQwzxgwAxgC/E5FyRzEbO1YRMd+niEgCcC7whmMUqelagUhLy1CIyB+BUuAVx2gncIIxpj9wG/CqiDQJl3x+RE3e+3EJ5RtpEZO2QeqsMqKh7MaSovsJ6OB3394xiyhEJB5bYF4xxrwNYIzZbYzxGGO8wAwacCilMowxPzn/9wDvYOXa7RuKcP7vCZ+EFRgDrDDG7IbITVc/QqVlRJZlEZkM/AqY5FRuOEOA+5zr5dg5r+5hE9KhkryP1LR1AxcAc3xmkZK2weosoqzsxpKi+wboJiKdnZb9RODdMMtUDmcMfiaw0RjzDz9z/zHs84F1gX4bGhFpJCKpvmvsYoR12DS90nF2JTAvPBIGpVyLOBLTNYBQafkucIWzgm0IcNBvmCgsiMhZwF3AucaYAj/zViIS51x3AboB34dHyiNUkvfvAhNFJFFEOmPlXdrQ8gXhDOBbY8wOn0EkpG2oOosoKrtA7Ky6NEdW/GzGtnz+GG55gsg3DNvFXwOscn5nAy8Bax3zd4E2ESBrF+zqtNXAel96Ai2A+cB3wKdA83DL6sjVCNgHNPUzi5h0xSrgnUAJdt7i16HSErtibZpTjtcCAyNA1i3YuRdfuZ3uuB3vlI9VwArgnAhJ25B5D/zRSdtNwJhwy+qYzwKuC3AbCWkbqs6KyLIb6qdbgCmKoigxTSwNXSqKoihKBVTRKYqiKDGNKjpFURQlplFFpyiKosQ0qugURVGUmEYVnaIoihLTqKJTFEVRYhpVdIqiKEpMo4pOURRFiWlU0SmKoigxjSo6RVEUJaZRRacoiqLENBGr6ESkk4gY55wmpR4RkckisriB4koWkQ9E5ICI3NUQcQbEnyUiZzRAPAtE5JoQdlq26wkRmSUif62pXR3LMEVEXq7EvkHKYKwgIqtFZKeI3Hq0YUSsolOODuclKxGRPL9fgyuUSjgDyAA6GGMe9hk6L3+nsEkVQTh5OKUG7i8VkR9FJF9E5opI80rcZorIchEpcP5n+tl9GFBuikVkrZ/95yKSLSKHnMpnnJ/dWBFZLCI5IrJLRP7tO8/QsV8fEHapiLxXH+kRzYjICBFZUAP3IfMziNvmIvKOU05+FJFLQ7h7zmmInehn1smvgbpLRJ72b6iJyDkiss7J2/+JSO+AMG91/B1ywk8MeIZFInJQRHaIyL3+fo0x/YDfAH+ubroEUm+KTlurYWWOMaax3+/hqr00GM2BLGNMXrgFqQ3OwZJhbyiKSB/gX8DlQGugAPhnCLcJ2AMyXwaaAS8A8xxzjDFj/MsN8D/gDb8gbsae69YEuBZ4WY4ccNoU+CvQFugFtAMe8Xk0xvTxCzcVe7adf9hRRSTUb1XlZxCmAcXYcjIJeMYpP/5hDgO6BvH7T+wp4m2ATOA04AbHTzfgFeA6IA14D3jXl0YiMhq4B/gl0BF71uX9fmG/CizE1g2nATeIyLkB8a8DmopzEG1NqdMX1WmV3y0ia4B8EXGLyBBHw+c4rcARfu4XiMj/ichSR9PPC9UaFZGrRGSjiOSKyPci8tsA+3EissoJZ6vYE5ERkaYiMlNs1/cnEflrVYklIl1F5DMR2Scie0XkFRFJ87PbLyIDnPu2Tit3hHN/rtN6zXGer1dA+twhImuc1sscEUmqeUrXHBG5x0mXXBHZICLnh3AnIvK4iOxx0nKtiPR17BJF5FER2SYiu0Vkuogk11AUN+CtQtYWIvKeE/83Tp4t9rM3InKdiHznpPM0ERHHLmTe+THISYMDIvK8Lw9EpJmI/MfJzwPOdXu/eBeIyN9E5EusQulSxbN2FJEvnTT/r4i0DLCf5KTlXhH5YxVhhWIS8J4xZqHTeLgXuED8elN+jMCm/xPGmCJjzFTsQZmnBzoU27seDrzoMzPGrDHGlPpugXigg2P3qjHmI2NMgTHmADADGBpC5lOBlsBbNX1YR7a7nPf5ZxG5RgJ6H37uUsX2Qqf6ygfQUkQ+cfLkCxHp6Of+SRHZ7pS75SIy3M9uioi8KSIvi8ghYHIVYiaIyItOPOtFZGCAfWYd1AMjqH5+NsIe5HqvMSbPGLMYeyDt5X5u3MBTwE1B4uoMvG6MKTTG7AI+AnxKcjSwyBiz2CkfD2EbOqc59lcCM40x652y8RfKp18n4BVjjMcYsxVY7Be2D1+dcXQNjDo+jTYLewJtByDZedh92BNpXcCZzn0rx/0C4CegL/aE6LeAlx27TtiXye3cj8W2NMRJwAJggGM3GDjohO9y4u3p2L2DbfE2Ao4DlgK/reI5TnTCSgRaYVsbT/jZ/wbYAKQAHwOPOubdgXzHbzxwF/Zk5gS/9FmKbfU2BzYScKpwwMm+OZX8hoXwN8WXhgHmFznxuoAJjpxtHLvJwGLnejSwHNsyE2zr3OfucezL0RzbKn8P+L8alI947MnPFeQLcPea80sBemNb/4v97A3wH0fGE4Bs4Kxq5l0WtnXYwXmOL4G/OnYtsJVBivN8bwBz/fwuALZhX0I3EF/JMyzAnrLcHfsuLAAeDCjbMxy7fkAR0CtEWJXl9zzg7gCzPOCkIG5vBT4MMPsPcHsQt/cBC4KY/wcodOT/CHCFkOsJ4LUQds8Bs46yjjkL2OXkQQq2N2OAEx37WdieZQvsu/ZXP7+zgFysok0EngwoV5c5/tzA7U48SX7vVQlwHvYdSq5ExilOGp0NxAH/BywJKIPVrQf+A9wTwq4m+dkfKAgwuwPbSPLd3wk86feOnehn91tsoycFW7+uA8537G4EPvBzG+c8/83O/Wpggp99Syf8Fs7934EHsfVDD+zJ64MCZE0GDgO/OqpyczSeKsngLOBqv/u7gZcC3HwMXOlcL8B5+Z373tiudRwBii5IXHP9EvJfwONB3LTGViDJfmaXAJ/X8LnOA1YGmL2LPSp+DZDomN2LbfX43LiwinyEX/pc5mf/MDC9jvNgipOGOX6/tkHcrQLGOdeTOaLoTgc2A0Pwq8SwSi8f6OpndgrwQzXlysRWFLv9X6Ag7uIcdz38zP5KRUU3zO/+dUJXBuXyzsmD6/zuzwa2ViLzAb/7BcAD1XzeBcCf/O5vAD5yrn1lu72f/VJg4lHk93wCKkn/Mhdgfi8Bygc75DQliNstwOQQccYDY4DbQtifCRwAugexSwEOBZOvms/7HH6NK2zDJlDRPYetiO8M8DvL//mBxoAHO18cLK4DQD9z5L1aWE0ZpwCf+t33Bg4HlMFa1wM1zM/hwK4As9/gNGawDb8tQFPnPlDR9cI2gEsdu1mAOHY9sXXDCCDBkcsL/D/HfitOQ9Sv/Bigk3P/CyduX9j3h3jem5xwV9U0repjjmG733VH4CJneClHRHKwPZU2Idz/6CRC4BAPIjJGRJY4w4Y52ArK564DNjED6eiEt9Mv/n9he3YhEZHWIvKa2KHOQ9hWY6BMM7A90aeMMUWOWVvnGQAwxnid52vn52+X33UB9mWra143xqT5/X4WkSvEDu360qEvQdLZGPMZ8DR2PH+PiDwrIk2wvaMUYLlfGB855lVijFmF7SV9BdxSidNW2Ba1f7nYHsRd0HSsZt4Flrm2jt8UEfmX2In6Q9jeYJqUH+oOJksoqsrruigLeUCTALMm2J7LUbkVO09zPPBmsAiNMSXGmA+BURIwlyIiQ7BzLhcaYzYH8X4BsB/4IujTVE1bqi4bY7E9gOlB7MrcGzvUu58j+X+H2OmRg075bkr5slObvE+S8vN6kZb3T2AbcQcDPYqdi/4IeBs7MtYSOyf4EIAx5lvs8OTTwE7HfgO2ZxYsbt91rtipqo+AB4AkbF0+WkRuCJDBjZ3XuxzbO60R9aHojN/1dmyPzr/SbWSMedDPTQe/6xOwrfm9/gGKXaHzFvAo0NoYkwZ8gO1l+OIJNoG6Hduja+kXfxNjTOD4byB/d54j3diJ98v84kJEGmMLxkxgihyZV/wZq1x97sR5vp+qiK8CIjJcyq9SC/wNrzqUsrA6YhXzjdjhgjRsi1eCuTfGTDXGnIRtiXbHDmnsxQ4d9PFLy6bGLi6oFsaYQuBDJ9xQZGNbdu39zDqEcBuMSvMuSHgnYPMN7HBVD+Bkx++pjrm/f//yHQmsxw59AiAiXbDDcsGUzHogw2++CuwK2PUB7q4E3jZVLxhy4/feiUh/7EjH1caY+SH8XAm8aJwm+lGwk6rLxgxs5fmBMzdFMPfOe9wc+Nl5n+4CLgaaOe/IQSI/76uTn2DLg1vswhEf/fzc/hJ4ROzKSJ8S/krsyszm2PfkaWPnAvcBz2M7GwAYY940xvQ1xrTAro7sBHzjJ2dZGXWudzvhdAE8xpgXjTGlxpgd2GmLsylPa6xynXs0Zae+V429DJwjIqNFJE5EksQun/UvqJeJSG8RScFq9TeNMZ6AcBKwL282UCoiY4BRfvYzgatE5Jci4hKRdiLS0xizE/gv8JiINHHsuorIaVXInYpthRwUkXbYit6fJ4FlxphrgPc50nJ8HRjryBGPrTiLsKvXaoQxZpEpv3Iy8LeoBsE1wr6k2WAX9mB7dBUQkUEicrIjfz52rN3r9E5nAI+LyHGO23ZiV1T5/BrxW2wUgiJsfgbFyfu3sQ2IFBHpCVxRrae0VJV3AL8TkfZOA+WPwBw/v4eBHMfuzzWIN1y8gn3HhjuV+gNYJRWsVb8AO1T3e7ELi250zD/zORC7uOhi7NAUfuY9nVGVZBGJF5HLsA2BLxz7vljlcpMxJuhnA857PxK7OjDQLktEJlfjeV/Hvuu9nDrj3hDubgQ2Ae9J+QVTZ4vIMLErE/+CnTvbjs37Uuw74haR+6jYA4o0FlBFfvowxuRj36sHRKSRiAwFxmHnzME2aPthh+szHbNzgHeMMXuBH4DrxS4wTMM2WNb4wheRk5w6vhXwLPCu09MDO7f3a6eeTwP+xJHytdl6l0ud+vl47BqCsrAd4p3/RRwF9aronAI0DvgDtgBtx1Y8/vG+hH3oXdiu6++DhJPrmL+OHTe/FNty9NkvBa7CLpY4iH35fD2rK7AV6wbH75uUHzoNxv3AACes97EFBLCrO7ET4tc7RrcBA0RkkjFmE7YH8RS2B3QOcI4xpriK+OoVY8wG4DHssOFuIB27CCMYTbAK7QB2WG8fR5aJ340dS1/iDO19iu0BISIdsMMgawMDDMBL1eXuRuyw0S5s+ZhN9Qt4yLzz41VsA+h77JC37yPiJ7BDXnuBJdiKO+xU1oM3xqzHLut+Bbv8OxVn2bfj90MR+YPjthg7Z3kFdu72auC8gPJ5nmP3eaAY2LmnPdh3+WbsAoMVjv3t2GHnmX6jDoE9i8uBr4xdWef/fAnYRSBLKkkG3/N+CEx15Nvi56cowJ3BfgKxA7vk3req8VVsA2Y/cBL2fQW7duAjbMX7I7aBV5OhynrBP/8CqSo/ReQPIvKhn5cbsOV7D/adut4pPxhj9hhjdvl+jvu9xpjDzvUF2HovG5vuJdjFMD6edGTYhK07fuMn50fYecjPsYu5fsRpRBpjDjlh3+r4W4UdbQr8sN83fVDpiu1Q+CYTw4LYDyNfNsb8O2xCKHWC08LvY4z5f1W4G4Xt6fc0xuyvZtgPAccbY66svaRKpCF2TvB3xphLjsJvL2zFmGiOfPqgxBgicjF26LTS9RWhCPtHj0psYIwJueVRAAuAT4D1IvKYMebRQAfOcGUCtnc4CPg1EHQ7LSX6MfabrmpvQSf2G9APsIujHsIukVclF6OIyHLsCM/dRxvGMavoRGQ6R4Yt/HnZGHNdQ8tzrOAMq0yqwlkqdmilLXao9THs92IRhYiEWqwxpoZzqErN+C12usODnaa4oVLX9YAzJBhsOPnvxpi/N7Q8sYyzMK5WhHXoUlEURVHqm7Dv1acoiqIo9UlEDV22bNnSdOrUKdxiKIqiKA3I8uXL9xpjqrX5xNEQUYquU6dOLFu2LNxiKIqiKA2IiPxYtaujR4cuFUVRlJhGFZ2iRBg/7M3nq637wi2GosQMqugUJcJ4/PnZrHj+lnCLoSgxQ0TN0QWjpKSEHTt2UFhYGG5RlCgiKSmJ9u3bEx8fX7XjCGNq/u3gBm9JMa74kNuCKopSTSJe0e3YsYPU1FQ6depE+U26FSU4xhj27dvHjh076Ny5c7jFOWoO5x+kUVq9LURTlGOGiB+6LCwspEWLFqrklGojIrRo0SLqRwEK8yscDaYoylEQ8YoOUCWn1JhYKDPF+YfCLYKixARRoegU5VikqEB7dIpSF6iiqwYiwu233152/+ijjzJlypTwCVQFCxYs4H//q/FZr2WsWrWKU045hT59+pCRkcGcOXOq9qTUGUXGTp0XFwQ7O1VRlJqiiq4aJCYm8vbbb7N37946DdcYg9d7VOcIVkptFV1KSgovvvgi69ev56OPPuKWW24hJyen7gRUKqXIOYDdc1gVnaLUBaroqoHb7ebaa6/l8ccfr2CXnZ3N+PHjGTRoEIMGDeLLL+3B3VOmTOHRR48ctda3b1+ysrLIysqiR48eXHHFFfTt25ft27dz55130rdvX9LT08t6TwsWLGDEiBFceOGF9OzZk0mTJhHspImpU6fSu3dvMjIymDhxIllZWUyfPp3HH3+czMxMFi1aVKmMl19+OaeccgrdunVjxowZAHTv3p1u3boB0LZtW4477jiys7MrxP3GG2/Qt29f+vXrx6mnngrYxUNXXXUV6enp9O/fn88/twdVz5o1i/POO48zzzyTTp068fTTT/OPf/yD/v37M2TIEPbvt2ewzpgxg0GDBtGvXz/Gjx9PQUFBhXiHDBnC+vVHDq8eMWJETG0dV4T9JKK0SBWdotQFEf95gT/3v7eeDT/X7QR977ZN+PM5fap097vf/Y6MjAzuuuuucuY333wzt956K8OGDWPbtm2MHj2ajRs3VhrWd999xwsvvMCQIUN46623WLVqFatXr2bv3r0MGjSoTGmsXLmS9evX07ZtW4YOHcqXX37JsGHDyoX14IMP8sMPP5CYmEhOTg5paWlcd911NG7cmDvuuAOASy+9NKSMa9asYcmSJeTn59O/f3/Gjh1L27Zty8JfunQpxcXFdO3atcJzPPDAA3z88ce0a9eurMc3bdo0RIS1a9fy7bffMmrUKDZv3gzAunXrWLlyJYWFhZx44ok89NBDrFy5kltvvZUXX3yRW265hQsuuIDf/OY3APzpT39i5syZ3HTTTeXinTBhAq+//jr3338/O3fuZOfOnQwcOLDSNI8mSpzX0lt8OMySKEpsoD26atKkSROuuOIKpk6dWs78008/5cYbbyQzM5Nzzz2XQ4cOkZcX6jxOS8eOHRkyZAgAixcv5pJLLiEuLo7WrVtz2mmn8c033wAwePBg2rdvj8vlIjMzk6ysrAphZWRkMGnSJF5++WXc7uDtlspkHDduHMnJybRs2ZKRI0eydOnSMn87d+7k8ssv5/nnn8flqlhUhg4dyuTJk5kxYwYej6fseS67zJ5n27NnTzp27Fim6EaOHElqaiqtWrWiadOmnHPOOQCkp6eXPdu6desYPnw46enpvPLKK+V6bj4uvvhi3nzzTQBef/11LrzwwkrTO9oodnp0qugUpW6Iqh5ddXpe9cktt9zCgAEDuOqqq8rMvF4vS5YsISkpqZxbt9tdbv7N/5uuRo0aVSu+xMTEsuu4uDhKS0sruHn//fdZuHAh7733Hn/7299Yu3ZtBTehZISKy/B994cOHWLs2LH87W9/K1PKgUyfPp2vv/6a999/n5NOOonly5dX+3lcLlfZvcvlKnu2yZMnM3fuXPr168esWbNYsGBBhXDatWtHixYtWLNmDXPmzGH69OmVxhttlDqvpSmpOGyrKErN0R5dDWjevDkXX3wxM2fOLDMbNWoUTz31VNn9qlWrAHvk0IoVKwBYsWIFP/zwQ9Awhw8fzpw5c/B4PGRnZ7Nw4UIGDx5cLXm8Xi/bt29n5MiRPPTQQxw8eJC8vDxSU1PJzT0yvxNKRoB58+ZRWFjIvn37WLBgAYMGDaK4uJjzzz+fK664otLe0tatWzn55JN54IEHaNWqFdu3b2f48OG88sorAGzevJlt27bRo0ePaj0PQG5uLm3atKGkpKQsnGBMmDCBhx9+mIMHD5KRkVHt8KMBI85rWayKTlHqAlV0NeT2228vt/py6tSpLFu2jIyMDHr37l3Wuxg/fjz79++nT58+PP3003Tv3j1oeOeffz4ZGRn069eP008/nYcffpjjjz++WrJ4PB4uu+yysoUfv//970lLS+Occ87hnXfeKVuMEkpGsEOfI0eOZMiQIdx77720bduW119/nYULFzJr1iwyMzPJzMwsU4733Xcf7777LgB33nkn6enp9O3bl1/84hf069ePG264Aa/XS3p6OhMmTGDWrFnlenJV8Ze//IWTTz6ZoUOH0rNnzzLzd999l/vuu6/s/sILL+S1117j4osvrnbY0UKcOCMBJdG9s4uiRAoSbCVfuBg4cKAJXD23ceNGevXqFSaJYpspU6aUW7QSa0Rr2cma0otO/MyK4y5gwA3Ph1scRal3RGS5MabeVpRpj05RIow4bI/OVaqLURSlLoiqxShK3RLJu7scy7iwK1hdHh26VJS6QHt0ihJhuIzt0cVpj05R6gRVdIoSYfiGLuO0R6codYIqOkWJMFyOonN7i8IsiaLEBqroFCXC8M3Rub3ao1OUukAVXTWZO3cuIsK3334b0k1WVhZ9+/atVzlWrVrFBx98cNT+fR+Y9+7dmz59+vDkk0/WoXRKbfF6DW6nR5egPTpFqRNU0VWT2bNnM2zYMGbPnh3UPtj2XDXFt19kZdRW0bndbh577DE2bNjAkiVLmDZtGhs2bDjq8JS6xWNM2dBlvFFFpyh1Qb0rOhE5S0Q2icgWEbmnvuOrD/Ly8li8eDEzZ87ktddeKzNfsGABw4cP59xzz6V3796AVXiTJk2iV69eXHjhhWXHzMyfP5/+/fuTnp7O1VdfTVGRrcQ6derE3XffzYABA3jjjTfKxRt4DE5xcTH33Xcfc+bMITMzkzlz5pCfn8/VV1/N4MGD6d+/P/PmzQPssTjjxo1jxIgRdOvWjfvvvx+ANm3aMGDAAABSU1Pp1asXP/30U4Vn/uKLL8p2Renfvz+5ubkYY0IeKXTaaacxbtw4unTpwj333MMrr7zC4MGDSU9PZ+vWrQC89957nHzyyfTv358zzjiD3bt3V4h34sSJvP/++2X3kydPLtvA+VjA4zVli1ESVdEpSp1Qr9/RiUgcMA04E9gBfCMi7xpjjq4L8eE9sKvipsW14vh0GPNgpU7mzZvHWWedRffu3WnRogXLly/npJNOAuw+luvWraNz585kZWWxadMmZs6cydChQ7n66qv55z//yY033sjkyZOZP38+3bt354orruCZZ57hlltuAaBFixZl+2L6E3gMTkJCAg888ADLli3j6aefBuAPf/gDp59+Os899xw5OTkMHjyYM844A7BH7Kxbt46UlBQGDRrE2LFjyx1nk5WVxcqVKzn55JMrxP3oo48ybdo0hg4dSl5eHklJSbz99tshjxRavXo1GzdupHnz5nTp0oVrrrmGpUuX8uSTT/LUU0/xxBNPMGzYMJYsWYKI8O9//5uHH36Yxx57rFy8viN4xo4dS3FxMfPnz+eZZ56pZmZGP15jcDtzdAkUh1kaRYkN6rtHNxjYYoz53hhTDLwGjKvnOOuc2bNnM3HiRMD2OPyHLwcPHkznzp3L7jt06MDQoUMBuOyyy1i8eDGbNm2ic+fOZftdXnnllSxcuLDMz4QJE4LGG+wYnED++9//8uCDD5KZmcmIESMoLCxk27ZtAJx55pm0aNGC5ORkLrjgAhYvXlzmLy8vj/Hjx/PEE0/QpEmToHHfdtttTJ06lZycHNxud6VHCg0aNIg2bdqQmJhI165dGTVqFFD+CJ4dO3YwevRo0tPTeeSRR4IewTNmzBg+//xzioqK+PDDDzn11FNJTk4O+uyxiH+PLoliqIcT6BXlWKO+d0ZpB2z3u98BlOs+iMi1wLUAJ5xwQuWhVdHzqg/279/PZ599xtq1axERPB4PIsIjjzwCVDxyJ9SxN5UR6tie6hyDY4zhrbfeqnBCwNdffx1SlpKSEsaPH8+kSZO44IILgsZ9zz33MHbsWD744AOGDh3Kxx9/XOkzVOcInptuuonbbruNc889lwULFgTdmSUpKYkRI0bw8ccfM2fOnLIGxrGC12OIE8Nhk0CyFEPpYUio3rFOiqIEJ+yLUYwxzxpjBhpjBrZq1Src4lTgzTff5PLLL+fHH38kKyuL7du307lzZxYtWhTU/bZt2/jqq68AePXVVxk2bBg9evQgKyuLLVu2APDSSy9x2mmnVRl3sGNwAo/gGT16NE899RS+zblXrlxZZvfJJ5+wf/9+Dh8+zNy5cxk6dCjGGH7961/Tq1cvbrvttkrjTk9P5+6772bQoEF8++23tTpSCODgwYO0a9cOgBdeeCGkuwkTJvD888+zaNEizjrrrGqHHwuUekoAKBDbiy0p0qN6FKW21Lei+wno4Hff3jGLGmbPns35559fzmz8+PEhV1/26NGDadOm0atXLw4cOMD1119PUlISzz//PBdddBHp6em4XC6uu+66KuMOdgzOyJEj2bBhQ9lilHvvvZeSkhIyMjLo06cP9957b5n/wYMHM378eDIyMhg/fjwDBw7kyy+/5KWXXuKzzz4rW2ziW8U5ffr0siN8nnjiCfr27UtGRgbx8fGMGTOmVkcKgd1b86KLLuKkk06iZcuWZebLli3jmmuuKbsfNWoUX3zxBWeccQYJCQnVDj8W8Hhs77fQUXSFBZWfVq8oStXU6zE9IuIGNgO/xCq4b4BLjTEVJ2fQY3rqklmzZpVbtHIsEo1lZ9fe/Rz/dGe2xnWhq+d79k1eTItO6eEWS1Hqlfo+pqde5+iMMaUiciPwMRAHPBdKySmKAl6nR1cUlwIeKC7UoUtFqS31fkyPMeYD4Oi/cFaOismTJzN58uRwi6HUEJ+iK4lLsf8P54dTHEWJCcK+GKU6RNIp6Ep0EK1lxqfoSt12pWVJkSo6RaktEa/okpKS2LdvX9RWXErDY4xh3759JCUlhVuUGuNTdB5H0ZXqqktFqTURf8J4+/bt2bFjB9nZ2eEWRYkikpKSaN++fbjFqDE+ReeN9yk67dEpSm2JeEUXHx9fbucRRYllvF6r6Exiqr3XHp2i1JqIH7pUlGMJj7OLjCQ2tvfFqugUpbaoolOUCMJ47Z6mLkfRmeLD4RRHUWICVXSKEkH45uhcztClKdEenaLUFlV0ihJBGGeOLj4xiSLjxpRoj05RaosqOkWJILzOcUwJ7ngKSUBU0SlKrVFFpygRhHGGLomLo5BEXKWq6BSltqiiU5QIwjd06XLFUSyJiKcwzBIpSvSjik5RIghTas+jw51IkSTiKlVFpyi1RRWdokQQxlMMgLgTKJZE4jw6dKkotUUVnaJEEo6ic7kTKHUl4vYUhVkgRYl+VNEpSgTh69ERl0CJKwm3V4cuFaW2qKJTlEii1Cq6uPhEPHFJxKuiU5Rao4pOUSIIr6Po3O54SuOSiDfFYZZIUaIfVXSKEkGUKbqEJLxxSSQY7dEpSm1RRacoEYRP0cXHJ+J1J5NodDGKotQWVXSKEkn4FF1iIsadRCLFYEyYhVKU6EYVnaJEEF5n1aU7Pgnik3HjBU9JmKVSlOhGFZ2iRBKOootPSMS4UwAwJfnhlEhRoh5VdIoSQfi2AItPSETikwEoOqxn0ilKbVBFpyiRhKcYjxEkzo0rwVF0BXlhFkpRohtVdIoSSXhKKMENcETRFerQpaLUBlV0ihJJlBZSIvEAxCU2AqBEFZ2i1ApVdIoSQcSV5FEgdhFKXKL9X1yoc3SKUhtU0SlKBOEuzeOwq7yiKy3SHp2i1AZVdIoSQcSXFlDkskOW8c7QZWmRnkmnKLVBFZ2iRBCJnnxK4mxPLiHJKjqP9ugUpVaoolOUCCLJm09JfGMA4pOswvMU6RydotSGWik6EZkiIj+JyCrnd7af3f8TkS0isklERtdeVEWJfVJMAR5H0SUm2x6dt1gVnaLUBncdhPG4MeZRfwMR6Q1MBPoAbYFPRaS7McZTB/EpSkxSUlpKM3OQrJRWACSmWIVnSnSOTlFqQ30NXY4DXjPGFBljfgC2AIPrKS5FiQn2Z/9MvHhwpR4PQFJSCl4jqugUpZbUhaK7UUTWiMhzItLMMWsHbPdzs8MxUxQlBDm7dwCQkNYWgKT4OApJQFTRKUqtqFLRicinIrIuyG8c8AzQFcgEdgKP1VQAEblWRJaJyLLs7OyaeleUmCFv11YAGh3XCQB3nItCEqBUFZ2i1IYq5+iMMWdUJyARmQH8x7n9CejgZ93eMQsW/rPAswADBw7UEyaVY5ainRsAaHtivyNmkoCoolOUWlHbVZdt/G7PB9Y51+8CE0UkUUQ6A92ApbWJS1Finfj9m9glrUhOTSszKyIRV2lh+IRSlBigtqsuHxaRTMAAWcBvAYwx60XkdWADUAr8TldcKkrlNM//nj1JnTnez6xYkojzqKJTlNpQK0VnjLm8Eru/AX+rTfiKcqxQWlJCe88OVjU9pZx5iSuROE9RmKRSlNhAd0ZRlAjg56yNJEoJrta9y5mXuBJxe3SOTlFqQ118MK4oSi3Z+8MaTgDSTuhbzrzUlUicJ/eowzVeL99vWMbeLd/gPbSLOJfgSmpKXFo7Ulp2IK11B5o3b0V8YnKARwPG4PV68Hg9eDz25/V6rF0QRCSYof13xKCidRB/gqvMWAQEQQRcIvi8BI0vGK54iNOq7lhGc19RIoDin+2KyzbdMsuZe+KSSSit+dDlgQP7WTP3cbr/OJuuZNO1qvhNHMXE48ZDHF7ixU6pu5xffI0liBz2kUbiHWtp3LhJuEVRwoQqOkWJAOL3b2YXLTm+SbNy5p64ROK9NVN0/3v/JTp/82dOYx8bkzLZ0e1G2mSMpHmbjpSUGvIP7iN/73YK9m2nOOdnivIO4i7NI85bjEfceMUNrjgQF0gcIi5wuZz/cQhgAntTIXp5jmVoNyH8GefvEesj18bfmzEYKpobxy4h90eGHnyfb9cvoefJoyqRUYllVNEpSgSQVvA9exI7lVtxCeB1J5NoqqfoioqL+PrZmzl172y2uTvx49gZ9Or/ywrumqY1g44n1oHUkc9P27Ng5vsUZC0FVXTHLDGn6Pbu2k7L4ztU7VBRIgTj9dC2ZDsrmw2sYOeNSyaRqhVdzsGDbJk2nlOLv2F56wvJvOafxMUn1oe4UUWbdh352bQkYdeKcIuihJGYUnS7tm8haeZpLD1uDP2unkqic56XcuxgggyFBRoFugj0U9E+0L+p1L7q+MsbHNixhXZSDK16VPQbn0SiKbaBhFh8sT8nh6ynz2NAySrWDZjCSeNurVygYwiXS8hK6kmXg+vDLYoSRmJK0bVs3YFvjhvLKXvmsOvBz8nqcB6Nup5CcrPjcQGHD+dTfCgbT+4evHnZuAr2IkUHiSvOJb4kl0RPPskmnzjjIQ7nZzy48OKqUP0FIGCoehVY9fY4k2q4DRJXFRV6cHmqI3NdPVfd+YslUvGAQOP2fSpaupNxiYHSIohPqmC9b/9+tv9zHJkla9l8ykP0Peu3DSBxdFHUOpPjty2m4MAuUpoFDg4HJ3v3dnas/ZLCXd8St38LSQU7SS49SCPPIZJNAW5TShxe3JTixlvOb4WGkt/7U/7aIpW5k8rDI0h41Y03eBg1C2+ddGf4nz+rEGKkEVOKzp2QyCk3PMuahWNxL36UQdtmErf93yHd55pkcqUxha5GFLpTyU9qTU5cI7yueDsZ73KDy42ROIwEqLqgNyEm1h1jqdCWr4gEuJCgSuaIm4qNfCkXaWUrsAPjCggh5H0Fg4AuS1WrvoMtJq+J/+oQMl1CylDT8KrhpwoD/1tvYhq9B51eMYx4u+y/pCif+ABFdyDnINv+OY6MkrVsGfYYPc/8dc2FPAZo0XM4bHuajV++x0m/+k1QN4WHC1j/5Xt4NrxHmwPL6WB+ppVjd4Am7HW3psCdRk5yRzyJTRBXPF6XG+Ny20U79gMITIDSA//XwxukigiyUKdsQY2pWGf4uQv1/gJIuXeyoh8TcF/Bf4VWc/B485OiY5oophSdj4xTx8Gp48jZu5sdW1ZTmrsHj1dITE4hqelxpKS1pknLNjROSSG1LmpVRakv4u3we1FBHvGNW5QZH8zN5ftp59G/ZC3fDX2MHqrkQtL35DP5+ZPWpK56Fs9ZVxHnttVeYUEeGxfPxbPuHXoc/JKT5DB5JPNdciY/tb2ItO5DaXNiJs1atKZZFXEokU1MKjofaS1bk9ZSV1op0YtJTgOgOHcvHNcRgNy8PDY9NZ7BJSvYePLf6TVKlVxluOLi2NbvVoasuof1j55JXqtMEvZvpnveMvpLITk0ZlPzkSRlnE+PX5xD/8CP55WoJ6YVnaJEOybFDqCVHNoFwO49e9j17AUMLl3LxgFT6HX278IoXfQwZNx1fJmXTc8t/6bF9hXskONZ3+JMkjPH03PI2QxM0BWqsYwqOkWJYBo1tydh5e3byb7VX5M499f09v7Mt794jF6jrwmzdFGECEMvuw+v916KPR7ax7tpH26ZlAZDFZ2iRDDNW9vqOO3Lv9LIm0eBpPDTr16i56CxYZYsOnG5hASXVnvHGnp6gaJEMCe0PZ6lrn60MAfY0mQI7hu/opMqOUWpEdq0UZQIJj7ORY/fv8vPB3bRt3PPcIujKFGJKjpFiXCapqXRNC0t3GIoStSiQ5eKoihKTKOKTlEURYlpJNgmuOFCRLKBH+sgqJbA3joIpyGIJlkhuuRVWeuPaJI3mmSF6JK3rmTtaIxpVbWzoyOiFF1dISLLjDEVzzyJQKJJVogueVXW+iOa5I0mWSG65I0WWXXoUlEURYlpVNEpiqIoMU2sKrpnwy1ADYgmWSG65FVZ649okjeaZIXokjcqZI3JOTpFURRF8RGrPTpFURRFAVTRKYqiKDFOTCk6ETlLRDaJyBYRuSfc8gQiIh1E5HMR2SAi60XkZsd8ioj8JCKrnN/Z4ZYVQESyRGStI9Myx6y5iHwiIt85/8N++LKI9PBLu1UickhEbomkdBWR50Rkj4is8zMLmpZimeqU4zUiMiACZH1ERL515HlHRNIc804ictgvjac3pKyVyBsy70Xk/zlpu0lERkeArHP85MwSkVWOeSSkbag6KyLLbkiMMTHxA+KArUAXIAFYDfQOt1wBMrYBBjjXqcBmoDcwBbgj3PIFkTcLaBlg9jBwj3N9D/BQuOUMUg52AR0jKV2BU4EBwLqq0hI4G/gQEGAI8HUEyDoKcDvXD/nJ2snfXQSlbdC8d9631UAi0NmpM+LCKWuA/WPAfRGUtqHqrIgsu6F+sdSjGwxsMcZ8b4wpBl4DxoVZpnIYY3YaY1Y417nARqBdeKWqMeOAF5zrF4DzwidKUH4JbDXG1MUOO3WGMWYhsD/AOFRajgNeNJYlQJqItGkQQQkuqzHmv8aYUud2CUTOuaUh0jYU44DXjDFFxpgfgC3YuqNBqExWERHgYmB2Q8lTFZXUWRFZdkMRS4quHbDd734HEaxERKQT0B/42jG60enqPxcJw4EOBviviCwXkWsds9bGmJ3O9S6gdXhEC8lEylcUkZiuPkKlZaSX5auxrXYfnUVkpYh8ISLDwyVUEILlfSSn7XBgtzHmOz+ziEnbgDorqspuLCm6qEFEGgNvAbcYYw4BzwBdgUxgJ3b4IhIYZowZAIwBficip/pbGjtWETHfp4hIAnAu8IZjFKnpWoFIS8tQiMgfgVLgFcdoJ3CCMaY/cBvwqog0CZd8fkRN3vtxCeUbaRGTtkHqrDKioezGkqL7Cejgd9/eMYsoRCQeW2BeMca8DWCM2W2M8RhjvMAMGnAopTKMMT85//cA72Dl2u0binD+7wmfhBUYA6wwxuyGyE1XP0KlZUSWZRGZDPwKmORUbjhDgPuc6+XYOa/uYRPSoZK8j9S0dQMXAHN8ZpGStsHqLKKs7MaSovsG6CYinZ2W/UTg3TDLVA5nDH4msNEY8w8/c/8x7POBdYF+GxoRaSQiqb5r7GKEddg0vdJxdiUwLzwSBqVcizgS0zWAUGn5LnCFs4JtCHDQb5goLIjIWcBdwLnGmAI/81YiEudcdwG6Ad+HR8ojVJL37wITRSRRRDpj5V3a0PIF4QzgW2PMDp9BJKRtqDqLKCq7QOysujRHVvxsxrZ8/hhueYLINwzbxV8DrHJ+ZwMvAWsd83eBNhEgaxfs6rTVwHpfegItgPnAd8CnQPNwy+rI1QjYBzT1M4uYdMUq4J1ACXbe4teh0hK7Ym2aU47XAgMjQNYt2LkXX7md7rgd75SPVcAK4JwISduQeQ/80UnbTcCYcMvqmM8CrgtwGwlpG6rOisiyG+qnW4ApiqIoMU0sDV0qiqIoSgVU0SmKoigxjSo6RVEUJaZRRacoiqLENKroFEVRlJhGFZ2iKIoS06iiUxRFUWKa/w/ORoXQVDLWYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjaklEQVR4nO2dd3xUVfq4n3cmZZIQEgi9SJNOQkCaAgoWLKyigoKCiK6767oWLKtuwUV33VXsoivfZVEsrGJbwJ8F14KKCkjvIGikIxACSUidOb8/zp1wM5lJZiDJFM7zyXxy76nvPefc8552zxGlFAaDwWAwxBKOcAtgMBgMBkNtY5SbwWAwGGIOo9wMBoPBEHMY5WYwGAyGmMMoN4PBYDDEHEa5GQwGgyHmiHjlJiLtRUSJSFy4ZTGcOCJym4jsEZE1YYh7qoi8Vg/xTBKRxdXYLxKRm+pajlMNERkmIrtCtatlGaqtp+qrDMYKInKviBwWkYUiknwiYUS8cjOEjojMEJEC61cqImW2+w/DJNZU4BalVG+bnFNFZGqY5IkorMoxJ0T3n4vIMRHZLCLnV+M2UUReFJGjIrJPRO6y2Y23lY0CKzwlImdY9neKyA+W3z0i8pS3AheRZiLyumV+RES+FpGBtrD/6BN2kYh4RKRJbadHtCMiOSLSPki3AfMzgPs7LXdHLX+JftycY+X732xmIiJ/E5HdVv4uEpGeNvvWIjJfRHJFZJeI3OwTZraIrLDK1AoRyfZ5hhkist/y/56ItPbaK6WmAW2AbsCIYNLFlzpXbqbHVf8opW5WSjVQSjUA/g7M9d4rpS72uqvnvGkMrK/H+OqECCrPrwOrgAzgT8DbItI0gNupQGegHTAcuFdELgJQSs2xlY0GwC3AD8BKy+8CoK9SqiHQC+gN3G7ZNQC+A85A5+/LwPsi0sAK++8+YT8KLFJKHaytRKhPIijvpxIgP30RkQuB+4HzLPcdgQd93MQDzwBLfbxfBdwIDEXn77fAqzb714AfgebASODvIjLcCjMBmG+5aYQuG/Mtc4A7gDOBLKAVcBiYbo9cKVVohZ9RfXL4p06Um9UKuU9E1gKFIhInIoNE5BsRyRORNSIyzOZ+kYj8Q0SWWa2L+SLSOEDYN4jIJhHJt1qUv/GxHyUiq61wtnszXUTSRGSWiOy1WiJ/ExFnDc/RSUQ+E5FDInJQROaISLrNLldE+lr3rUTkgPe5ROQyEdlgPe8iEenukz73iMhaq0U0V0Rcoad06ATIGyUip9vczPZpwf3CStM8Kw+zQozTm86eGtzda+XPHhG5yS6XJdPzIvK+lfdLRaSTze8zIrLTyvcVIjLUJ3iXlc75IrJSROw9yPutspIvIhtF5Aqb3STRPZKnROQQumKp6XkfFz2k8qOIXOxj3c4KL19EPpYgejF+wu8C9AX+opQqUkq9A6wDRgfwcj3wV6XUYaXUJmAmMKkat68oa+sipdR2pVSeN2p0Hp5u2f2glHpSKbVXKeVWSv0LSAC6+pFZgInoSi5kRKSviKyy0u0tKy//FsDt7VY+trGZ/dF6h3NEZLzNfKQV7lGr/Ey12XmHGn8pIjuAz4IQdbyI7LDi+pOPXYKIvGI9wwYR6RdaKlQQan7OUkptUEodBv7qx+3dwMfAZh/zDsBiK5/daEXVA0B0A2YY8LBSqkwptQZ4G60MsezigKeVUiVKqWfR5edcW9gLlVL7lVLFwFygoldow2OFEzpKqVr/ATnAaqAtkAS0Bg4Bl6AV6gXWfVPL/SJgN7plmAK8A7xm2bUHFBBn3Y8EOlkJdQ5wDN2yBBgAHLHCd1jxdrPs/gv8nxV+M2AZ8JsanuN0K6xEoCnwJTqzvPa/AjYCycBC4HHLvAtQaPmNB+4FtgEJtvRZhm6xNAY2ATcHkGEIkFfNb0gNzzDVm5b+8sZbhwGn29zMBv5mXfcBfgYGAk70y5IDJIZQHi4CioGUGtzsQxfwZPSLVCGXJdMhK4/jgDnAGzb/E9AtvDj0y7oPcNnSoAwYY+XHPegWYbxlf5WVFw5grJV3LS27SUA5cJsVdlI1zzDJiudXVlr9FtgDiK2cb7fKR5J1/0iAsP4J/DOA3RXAJh+z54Dpftw2stKxuc1sDLDOj9t2gBvo4GN+LXDUCucA0DuAXNlWPqf5sTsbKAAanEB9kgD8hG7txwNXAqW2MjoM2GVdP4DudTa12ZUDT6Lf43Os/O1qs8+08j4L2A9c7lP3vIKuN6rLe6/bmVbe9gZKgO62MliMrgOdwD+AJQHCuhZYG8Au6Py07NYAY233TSz/GbY834ruhc/2pqnNboVVXuOBacA8yy7VCqeZzf1MYJV1fSfwoY8s/w+427ruB3yNfu+Sgf9gq1ttfl5Gj1IkhFxuQvUQZGHMAW603d8HvOrjZiFwvXW9CNtLjm4dlFqFwFto4gLENQ+4w7r+P+ApP26aWwUtyWZ2DfB5iM91uTfzbGYL0K3mtVgVPjAFeNPmxoFW3sNs6TPBZj8NmFFHeTGVqsrtRh831Sm3F9CtRLv7LcA5Qca/3Ar/9hrcvQj8w3Z/OlWV279t9pcAm6sJ7zBWJWylwRKbnQPYCwwN4Hc1MMq6ngTsCPJZJwHbbPfJ1jO0sJXzP9vsbwE+OoE8vQ6fihF4GJjtx21bSwaXzewCIMeP2ynoYcNA8XZGt/xb+LFraL0Hfwjgd5Y/+YJ83rOt90dsZouprNx2oxXYYmzKlePKLcVm9iYwJUBcT2PVIRyvezoGIaPXbRub2TJgnK0MfmKz6wEUnUBaBJ2flt124CLbfbzlv711Px9L+VFVuSWghyuVlYY/Ymv4WGk9HXChRxJygS22svSGjyxzgKnWdRrwhi3sVUBjP/J3QjdUy4B+oaRVXc657bRdtwOusoa18kQkD90jaRnA/U/oTKgyZCMiF4vIEmtIMA9dyXndtUVnpi/trPD22uL/P3QPLiAi0lxE3rCGMY+iexO+Ms1E9zinK6VKLLNW1jMAoJTyWM/X2uZvn+36GLrlVF/srNlJBe2Au33yri36GYOhPzAOmCp6bD8QrXzk8idjwDSzhnk3WcO8eeiXx55XFeFZ+bHL+wwiMtE27JqHzk+/foOgQkal1DHrsoE/e99nCIECtDKx0xDID+DWa1+T22qHDZVS3wMb0L3KCkQkCXgPrXD/4etP9Gq3q6oLuwZaAbuVVdtZ+OZJOvBrdAPpiI/dYaXnb7z8xPG8Hyh6Yc4BETkC3EzVd/yE8p+q+etr55LQ5/FCyU+ve1+3APkicimQqpSaG8DvA+j3ty1agT0IfCbHVy+ORw8v7kQ3gl9Dv1f+4vWV83l0TzoD3St+F/C32O0O9LxuQ6XU8gBy+qUulZtvQXxVKZVu+6UopR6xuWlruz4NrakrTTyLXuXzDvA4ulueDnyAHqL0xtOJquxE99ya2OJvqJTyN8Zr5+/Wc2QqPaE+wRaXd9z5aXSrdKocnyfcg1YKXndiPd/uGuKrgogMlcorznx/vnNLwaB87o+hexleWtiud6LH1e15l6yUej2oiHSFNA89nNKyGqd70aujvLQN5NAXKw3uBa4GGlnl4gi2vLKHJyIOK649ItIO3UC5FT1Uk45e+GL365te4WYD0FFEUm1mvS3zSig9z7LXsg/oVkQGoyv8t2uIOw7bO2a9k/PQldpvAvi5At2qX1RD2IHYC7S23iMvvuXjMPAL4CXrWew0EpEU2/1p6HcU9HDYAqCtUioNmEHlvIcIyv9g89PGBj9u9yulDqEXmfQTvZJyH3pIfrKIzLfcZqMXo+1SSpUrpWaj3+Meliw/KaV+oZRqqpQaiG4ULLPFm+WTZ1k2ObPRPflcq1MwHRjgZw66O3p0o6jahPFDfX0K8BpwqYhcKCJOEXGJ/v7EXplNEJEeVqvgIeBtpScx7SSgtf0BoNyarLcvE50F3CAi54mIQ/RS1W5Kqb3oCdMnRKShZddJRM6pQe5UdAvkiOhlqr/3sX8GWK6Uugl4H/1igB72GGnJEY+eAyoBvqkpoXxRSn2lbCvO/Py+CjVMP6wGrrXy5iL0vISXmcDNVgtXRCTFmoRPhYqFHrNreAZvjzahGmdvovOuu1UGpoQgfyp6aOMAECciD1C11XiGiFxptZQno/NjCbrVqCy/iMgN6J5bxKKU2orOs79Y79IV6IrjnQBeXgH+LCKNRKQbek5wto+b64F3lFKVegCiF/Y0s657AH8APrXu49HKsAg9xRBowdD12Bap2MKeKiKLan5ivkXPBd4qegHUKPTcayWUUovQvYl3RcTX/kERSbAaQr8A3rLMU4FcpVSx5efaIOQJN8Hkp93tL626NR34s83tFPR8Wrb1W4B+32+w7L9Dj7g1t+rM69AjYNsArHc11UrXCei6+EnL7yJ0nt0uetn/rZb5Z7awJ4pe6BePHqLfo6qupI1Hv6shUy/KTSm1ExgF/BFdiexEKwp7/K+iE30fugt8Oz5YL97t6IrwMLogLrDZL0NnzFPolvsXHO9BTURXrhstv29TfU8CdDe8rxXW++iuM6BXZaIXQfzWMroL6Csi45VSW9C9vOno3uelwKVKqdIa4gsXd6BlzENXDvO8FtZQwK/QCxYOowv2JJvftuiJ4ZpQVFPelFIfAs8Cn1txLLGsginYC4GP0BPjP6En7n2HkuajW6aH0XNWVyq9ymsj8AS6At2PXlwQzPPUKaK/AZpRjZNx6En5w8AjwBillFdBjxcRe0v+L+jh+p/Q78RjSqmPbHG50L1ef8OGg4F1IlKIHiX5AP0eA5yFVhQjgDx/owlWo/BcdCXrS1Blx3pvrgR+iS6jE9CLE6qUDaXU/9Ar9t4TayUzuk45jO6tzUEv3vKuDLwFeEhE8tHDcG/WJE9d4yf/fAmYnyJympUHpwFY5tPQ79UOy89fLLt8pdQ+7w/dSClUSuVa8TyKXpCyGp3udwKj1fHVsxeiPxs5jB7OvchbBq08uxxd7+ah8+RyWx14D/o9/R6tEy5B9/B9cVLDKutAiE9jKixYrbfXlFL/DrcshuAR/c3KGiBLKVVWg9s9wL1KqaB2aRD96cR69CKd8pMW1hBxiMhq4DxriCxUv0vRi7BeqnXBDBGB1dPcCNyklPogVP9mhxLDCaOUKlVKda9JsVncjx5GWxHIgYhcYQ1hNEK3Gt8zii12UUplB6vYRO+g0cIalrwePQz7UU3+DNGJiNyD/u7uC6xh8FA55ZWbVN6qyv6rbkjIECJKqVeUUp2VUmdU4+w36G/qtqPH639bjduwYMpL2OiKHiXIQ89hj7Hm0usNqbpVmfdX3RCi4QRQSj2ulGqhlLrGNmcfEhExLGkwGAwGQ21yyvfcDAaDwRB7RMpGoAA0adJEtW/fPtxiGAwGg6EeWbFixUGlVKCNv0+IiFJu7du3Z/nykD5CNxgMBkOUIyI/1ewqNMywpMFgMBhiDqPcDIYIx+0xi74MhlAxys1giGD+32tPs/fB0/l/z96OWdlsMARPRM25+aOsrIxdu3ZRXFwcblEMUYTL5aJNmzbEx1d3EEFks3/vLoZ9/w9cUsovcl9m2efnMuDcy8MtlsEQFUS8ctu1axepqam0b98eEd/Nug2GqiilOHToELt27aJDhw7hFueE2fC/2Zwrxey56kNcb1+DLHkOjHIzGIIi4ocli4uLycjIMIrNEDQiQkZGRtT39pvu+h87nKfRqudZ/NhmFH1KVrB//76aPRoMhshXboBRbIaQifYyU1JaQseSTezLGAhA0/6jiRMP338d6FQbg8FgJyqUm8FwqrFt/XekSAmuDlq5te01hEOSTtz2T8IsmcEQHRjlFgQiwt13311x//jjjzN16tTwCVQDixYt4ptvQj4XtRIXXXQR6enp/OIXv6glqQyhkLv1WwDaZp4NgDic7ErtQ4fC1SjPCR1vZTCcUhjlFgSJiYm8++67HDzoe0jsyaGUwlMHFVVtKLff//73vPrqq7UkkSFU5OdNFOKiUesuFWZlbc+iObns+GFjGCUzGKIDo9yCIC4ujl//+tc89dRTVewOHDjA6NGj6d+/P/379+frr/XBwlOnTuXxxx+vcNerVy9ycnLIycmha9euTJw4kV69erFz505+//vf06tXLzIzM5k7dy6gFdSwYcMYM2YM3bp1Y/z48X6/c3r22Wfp0aMHWVlZjBs3jpycHGbMmMFTTz1FdnY2X331VbUyXnfddZx55pl07tyZmTNnVoR73nnnkZqaWm26vPXWW/Tq1YvevXtz9tm6h1FcXMwNN9xAZmYmffr04fPPPwdg9uzZXH755VxwwQW0b9+e5557jieffJI+ffowaNAgcnP14b8zZ86kf//+9O7dm9GjR3Ps2LEq8Q4aNIgNG46fMjJs2LCY27YtJf9H9se3BdvcYdNe5wLw89oTOt7KYDiliPhPAew8+N4GNu45Wqth9mjVkL9c2rNGd7/73e/Iysri3nvvrWR+xx13cOeddzJkyBB27NjBhRdeyKZNm6oN6/vvv+fll19m0KBBvPPOO6xevZo1a9Zw8OBB+vfvX6EoVq1axYYNG2jVqhWDBw/m66+/ZsiQIZXCeuSRR/jxxx9JTEwkLy+P9PR0br75Zho0aMA999wDwLXXXhtQxrVr17JkyRIKCwvp06cPI0eOpFWrVkGl3UMPPcTChQtp3bo1eXl5ADz//POICOvWrWPz5s2MGDGCrVu3ArB+/XpWrVpFcXExp59+Oo8++iirVq3izjvv5JVXXmHy5MlceeWV/OpXvwLgz3/+M7NmzeK2226rFO/YsWN58803efDBB9m7dy979+6lX79+QckcLTQr28nB9N6VzNp26UsuqTh2fgPcER7BDIYowfTcgqRhw4ZMnDiRZ599tpL5J598wq233kp2djaXXXYZR48epaCgoNqw2rVrx6BBgwBYvHgx11xzDU6nk+bNm3POOefw3XffATBgwADatGmDw+EgOzubnJycKmFlZWUxfvx4XnvtNeLi/LdVqpNx1KhRJCUl0aRJE4YPH86yZcuCTpPBgwczadIkZs6cidvtrnieCRMmANCtWzfatWtXodyGDx9OamoqTZs2JS0tjUsvvRSAzMzMimdbv349Q4cOJTMzkzlz5lTqoXm5+uqrefvttwF48803GTNmTNAyRwNHjh6lpTpIWXqnSuYOp4OcpF40P7I2TJIZDNFDVPXcgulh1SWTJ0+mb9++3HDDDRVmHo+HJUuW4HK5KrmNi4urNJ9m/+YqJSUlqPgSExMrrp1OJ+Xl5VXcvP/++3z55Ze89957PPzww6xbt66Km0AyQtUl86EsoZ8xYwZLly7l/fff54wzzmDFihXVurc/j8PhqLh3OBwVzzZp0iTmzZtH7969mT17NosWLaoSTuvWrcnIyGDt2rXMnTuXGTNi6xDsAzs2kSYKZ7POVeyONe9Hm5xvyc/dS2rjlmGQzmCIDkzPLQQaN27M1VdfzaxZsyrMRowYwfTp0yvuV69eDejje1auXAnAypUr+fHHH/2GOXToUObOnYvb7ebAgQN8+eWXDBgwICh5PB4PO3fuZPjw4Tz66KMcOXKEgoICUlNTyc/Pr1FGgPnz51NcXMyhQ4dYtGgR/fv3DypugO3btzNw4EAeeughmjZtys6dOxk6dChz5swBYOvWrezYsYOuXbsGHWZ+fj4tW7akrKysIhx/jB07lmnTpnHkyBGysrKCDj8ayN+9BYAGrbpVsWvYWQ9L71j9eb3KZDBEG0a5hcjdd99dadXks88+y/Lly8nKyqJHjx4VvYjRo0eTm5tLz549ee655+jSpYvf8K644gqysrLo3bs35557LtOmTaNFixZByeJ2u5kwYULF4o3bb7+d9PR0Lr30Uv773/9WLCgJJCPoYc3hw4czaNAgpkyZUjHfNnToUK666io+/fRT2rRpw8KFCwF44IEHWLBgAaBXVGZmZtKrVy/OOussevfuzS233ILH4yEzM5OxY8cye/bsSj22mvjrX//KwIEDGTx4MN26Ha/cFyxYwAMPPFBxP2bMGN544w2uvvrqoMOOFooP6qOtmrap2nPr0HswpcrJse3f1rdYBkNUIZG003i/fv2U76q3TZs20b179zBJFNtMnTq10sKTWCNay843//wNffa/i+sv+xFH1fbnxr8OIC4uji5/OLnPPQyGSEFEViilanVVmOm5GQwRRnzhXg45m/hVbAAH0/vQrmQrqiy69840GOqSqFpQYqhdInmXlVOZlOL95Cc0D2jvaDeQxENvsHvzElpnDqs/wQyGKML03AyGCKOx+yBFSYGVW/Ne+jvIQ5sW15dIBkPUYZSbwRBBlJWV0UTlUpYS+EP6ju07sUM1J2730nqUzGCILoxyMxgiiMM/7yJOPEhaYOXmdAg5yb1oeXQtRNCCMIMhkjDKzWCIII7szwEgLr1Nte6ONe9HI5VHyYHt9SCVwRB9GOUWJPPmzUNE2Lx5c0A3OTk59OrVq07lWL16NR988MFJhXHjjTfSrFmzOpfVEDrHcvVJ2ykZ1e/vmdr5LAD2rFtUxxIZDNHJSSs3EblNRDaLyAYRmeZjd5qIFIhI1H9I9frrrzNkyBBef/11v/b+tsYKFe/+jNVRG8pt0qRJfPTRRycVhqFuKD7yMwBpTarfWqtzr/4cVUkUbTffuhkM/jgp5SYiw4FRQG+lVE/gcR8nTwIfnkwckUBBQQGLFy9m1qxZvPHGGxXmixYtYujQoVx22WX06NED0Epu/PjxdO/enTFjxlQc2fLpp5/Sp08fMjMzufHGGykpKQH0Nl333Xcfffv25a233qoUr++RMqWlpTzwwAPMnTuX7Oxs5s6dS2FhITfeeCMDBgygT58+zJ8/H9BHzIwaNYphw4bRuXNnHnzwwYpwzz77bBo3blztM3/xxRdkZ2eTnZ1Nnz59yM/PRykV8Hiec845h1GjRtGxY0fuv/9+5syZw4ABA8jMzGT7dj109t577zFw4ED69OnD+eefz/79+6vEO27cON5///2K+0mTJlVsknwqUH5UK7dGTatXbs3SUtgS15XUAyvrQyyDIeo42e/cfgs8opQqAVBK/ey1EJHLgR+BwpOM4zgf3g/7qm4MfFK0yISLH6nWyfz587nooovo0qULGRkZrFixgjPOOAPQ+0auX7+eDh06kJOTw5YtW5g1axaDBw/mxhtv5J///Ce33norkyZN4tNPP6VLly5MnDiRF154gcmTJwOQkZFRsQ+lHd8jZRISEnjooYdYvnw5zz33HAB//OMfOffcc3nxxRfJy8tjwIABnH/++QAsW7aM9evXk5ycTP/+/Rk5cmTQR8M8/vjjPP/88wwePJiCggJcLhfvvvtuwON51qxZw6ZNm2jcuDEdO3bkpptuYtmyZTzzzDNMnz6dp59+miFDhrBkyRJEhH//+99MmzaNJ554olK83uNsRo4cSWlpKZ9++ikvvPBCUDLHBMcOUIiLlKTqz9IDyGvSlzP2vYT72GGcyY3qQTiDIXo42WHJLsBQEVkqIl+ISH8AEWkA3Ac8WK1v7fbXIrJcRJYfOHDgJMWpG15//XXGjRsH6J6FfWhywIABdOjQoeK+bdu2DB48GIAJEyawePFitmzZQocOHSr2l7z++uv58ssvK/yMHTvWb7z+jpTx5eOPP+aRRx4hOzubYcOGUVxczI4dOwC44IILyMjIICkpiSuvvJLFi4P/Lmrw4MHcddddPPvss+Tl5REXF1ft8Tz9+/enZcuWJCYm0qlTJ0aMGAFUPs5m165dXHjhhWRmZvLYY4/5Pc7m4osv5vPPP6ekpIQPP/yQs88+m6SkpKDljnacRQc54kgPym1Kp7NwiGLH2q/qViiDIQqpsecmIp8A/nby/ZPlvzEwCOgPvCkiHYGpwFNKqYKajlBRSv0L+BfovSWrdVxDD6suyM3N5bPPPmPdunWICG63GxHhscceA6oeX3MiR8gEOgInmCNllFK88847VXbeX7p06UkdZ3P//fczcuRIPvjgAwYPHlyxcXIggjnO5rbbbuOuu+7isssuY9GiRX53SHG5XAwbNoyFCxcyd+7cikbFqYKrNJdCZ3pQbjufMRz318LBjYvoMOiyuhXMYIgyauy5KaXOV0r18vObD+wC3lWaZYAHaAIMBKaJSA4wGfijiNxad49Rd7z99ttcd911/PTTT+Tk5LBz5046dOjAV1/5by3v2LGDb7/VO7b/5z//YciQIXTt2pWcnBy2bdsGwKuvvso555xTY9z+jpTxPc7mwgsvZPr06Xg3wF61alWF3f/+9z9yc3MpKipi3rx5FT3KYNi+fTuZmZncd9999O/fn82bN5/U8TwAR44coXXr1gC8/PLLAd2NHTuWl156ia+++oqLLroo6PBjgQbleRQlVD8f6qVpRhO2xnel8Z4v6lgqgyH6ONlhyXnAcAAR6QIkAAeVUkOVUu2VUu2Bp4G/K6WeO8m4wsLrr7/OFVdcUcls9OjRAVdNdu3aleeff57u3btz+PBhfvvb3+JyuXjppZe46qqryMzMxOFwcPPNN9cYt78jZYYPH87GjRsrFpRMmTKFsrIysrKy6NmzJ1OmTKnwP2DAAEaPHk1WVhajR4+umG+75pprOPPMM9myZQtt2rSpOJ9uxowZFcfhPP300/Tq1YusrCzi4+O5+OKLT+p4HtB7WV511VWcccYZNGnSpMJ8+fLl3HTTTRX3I0aM4IsvvuD8888nISEh6PBjgTRPHqWJwSk3gJ9bj6BT+TaO7NlWh1IZDNHHSR15IyIJwItANlAK3KOU+szHzVSgQCnlu5KyCubIm9pj9uzZlRaenIpEW9nxuD24H2rCijbXMehXzwTlZ/PGNXR782xWdruHvuOm1OzBYIhA6uLIm5NaLamUKgUm1OBm6snEYTCcKuQfOUSauFHJTWp2bNG1exZbHZ1ovO0dUH+GEOZVAXbs2sWOtV9RtmcNjsL9JJYeARQOhxNPXDLlCal4EtPwuNKRpDQkqRHxiSkkJiWTmJRCYlIKLlcKyYlOEuMcKKXwKEApFAqlQAF4PHgUKJRlB26PR7v3KDzWf4VCgIQ4BwlOB05B26EDUkrfKx0koOedPd7/SuHxgNujcFv3KWlNade6+k8rDLGHOfImRpk0aRKTJk0KtxiGEMg/tIc0wNmgadB+RITdncYx/PuH2bV2EW16D6/RT2FxGUs+fIX0Da/Su2wNp4nWEvmkUOBIRSGIcpOoSkhVBcRLzZsLRDL5Kokjd28jrWGDcItiqEeiQrkppUJa6WcwRNIJ88Fy7LDeeis+rVlI/rIu/iVHtj7N0f89AtUot3K3h88+nkeLpf/gPLay39GcDR0m0TjrIlp1H0RqUhpVvq5TClV2jJL8XIrycynNz6WkqIDS4kJKi4soLymkvLSY0nIPZW5PxXuq/0tFR9J7b/2BCA4RxPrpaxDRvb8yD5S5PShl+bX8OSqFDw7LXN8eD8ch4HAI7h++ovfB99mZu98ot1OMiFduLpeLQ4cOkZGRYRScISiUUhw6dAiXyxVuUUKiOD8XgKSGGSH5y2icwSdtJ3H+ruf54et36Dh4dBU3q1cupeiDKYwoX0quI4OcMx+h/bm/ormzhipABElIwZWRgiujbUhyRQKrP0yEg+9TUpgLdAq3OIZ6JOKVW5s2bdi1axeR+oG3ITJxuVy0aVP9zvqRRknBYQBSQlRuAP3H/oHtT75Hk//dwc9NT6NZl/4A7P9pMz+8+yAD8j6kSJLY2nMynUfdS+ME/99WxhrO5DQAygrzwiuIod6JeOUWHx9faQcQgyFWKTt2BICG6cF/CuAlLTWVnVe+QvHbV9L4Pxey0ZVJXPkxTi/7nnTiWNNqLD3G/ZUuIQ55RjtxKXpbsrLCw2GWxFDfRLxyMxhOFTzHdAWcmhZ6zw2gV2Yffkz9lPXzHqZN/hrcTheL2/yS0y+6hb5tT80hucQGuqHgPpYXXkEM9Y5RbgZDpFB8hCISSYpPrNltADq070iHybMq7qPnK7+6wdVA99zcRUfCLImhvjGHlRoMEYKU5FMoyeEWI6ZISdM9N1WUF15BDPWOUW4GQ4QQV3aUIodZrl6bNEhpQImKh+Kj4RbFUM8Y5WYwRAjxZQWUxhnlVps4HUI+yThKzLDkqYZRbgZDhOBy51MaV/MhpYbQKHQ0wFlqem6nGjGl3AqO5rJq2iWs/Pi1cItiMIRMsiqkPKFhuMWIOY45UogvKwi3GIZ6JqaUW0JiCn2OfU3p7nXhFsVgCAmPR9FAFeJJMD232qbE2YBEd37NDg0xRYwpt0SOqmTk2KFwi2IwhERhaTmpHEMlpoVblJijJC4Vl9v03E41Ykq5ARxxpBFfYpSbIbrILyggUcoRl1FutU1ZfEOSPUa5nWrEnHIrdKaRWGK22jFEF8eO6k2THclGudU27oRUUlRhuMUw1DMxp9yK4huRVG6UmyG6KLaUmzO5UZgliT1UYhqJlEFZcbhFMdQjMafcyhIbkeo237QYoosSa2PfhJT08AoSi1hDvSVm8+RTiphTbp7kJqSpo3jcnnCLYjAEjfe4G+9eiIbaw5GklZt36NdwahBzys2R0oQEcXM0zywqMUQP5dZxN65Uo9xqG2dyOgBFRrmdUsSccnM21OdV5R3YHWZJDIbg8Vgb+3o3+jXUHvHWmW7FBUa5nUrEnHJLbNQagMJDu8IsicEQAsVWz62BUW61jStVp2lJvplzO5WIOeWW0uQ0AEoOm56bIXqQkqOU40ASUsItSszRwOoNl5oFJacUMafc0ppr5ebOM8rNED04S49SQAqIhFuUmCM1vQkA5eY07lOKmFNu6WmNKFAuKNgXblEMhqCJK82nyGF6bXVBesOGlCknnmPmE6FTiZhTbg6HcMiRQVzh/nCLYjAETXx5vjmotI6Ij3OSL8lQnBduUQz1SMwpN4D8+CYkFf8cbjEMhqBxlRdQYs5yqzOOSQMc5ky3U4qTVm4icpuIbBaRDSIyzWaeJSLfWubrRMR1snEFS5GrGWnlB+srOoPhpHF5CiiLNz23uqLI2YA4o9xOKeJOxrOIDAdGAb2VUiUi0swyjwNeA65TSq0RkQyg7KSlDZLylOZkHMlFeTyIIyY7p4YYI0UVciTeHFRaV5TEpZJYbs50O5U42Zr/t8AjSqkSAKWUdyxwBLBWKbXGMj+klHKfZFxB42jYigQp5/BBs6jEEPkopUhRx3CbU7jrjNL4dBq488IthqEeOVnl1gUYKiJLReQLEelvM1cislBEVorIvYECEJFfi8hyEVl+4MCBkxRHk9C4LQC5e3+olfAMhrqkpLSUVClCJRrlVleUJjUh3WNWS55K1DgsKSKfAC38WP3J8t8YGAT0B94UkY6W+RDL7BjwqYisUEp96huIUupfwL8A+vXrp07wOSqR3LwTAIX7tkHvIbURpMFQZxw7ehgXoFxGudUVnuSmNJAiyooLiXeZTy5OBWpUbkqp8wPZichvgXeVUgpYJiIeoAmwC/hSKXXQcvcB0BeootzqgqandQOg5IDpuRkin+KCPABzCnddktIUgCMHd9OkTZcwC2OoD052WHIeMBxARLoACcBBYCGQKSLJ1uKSc4CNJxlX0DRq1JhcUiH3x/qK0mA4YUoKrYNKk9LDK0gME5+mB5/yD+6t9bCLikvYsnkDm9YsZfO67/h5zw48ZaW1Ho8hNE5qtSTwIvCiiKwHSoHrrV7cYRF5EvgOUMAHSqn3TzKuoBERDsS1IqlwZ62Ep5Ri6+b17F2+gPgDG2hQtBuXKkKUhxKHC7czmfKEhrhdjSApHUdyYxIaNCYxNYPktCakpDelYeNmxCc3AufJJrkh1ii1em5Oc1BpndEgoyUABYf21Ep4xwrzWfPeCzTYNp/OZVvoKlUXgx8mjSNxGRxzNcOd0hxp2IrExm1IbdqWtGan4WrcGkluAmZFd51wUjWtUqoUmBDA7jX05wBhoTC5Dc2Prj+pMDwexVcL3yT9u6fp7dlIVyCPhhyIb0VxXAMQB/GeYpLLDpJUkkODI/k0lGPVhplPMoXSADcOEEEhgPe/qvgPgNL/BdtUZCUzr7kCBeK9tvnx7lSoY7BPaSrsuxhKlYtKlzaT6qdFq7P1DU/ZLpSvfbVyVBvaCXEivkPdBVJRkX2VaEEZiDmFuy5Ja9IKgJK8k19BvfSjObRbMoUzOcQO52msb3UViS27I0kNUW43RUcPUnr0AJK/j8Si/aQW7qdp/iYy9h3FIZULQJlyckgaUSYJuMWBwolbnHhw4EDZ3gvrfVbH33n7+yzel6iSuf0dVxVuqviz1RWCb/0ileoOXzcbHF0554GPTy5B64iY7UaUp7Wn+ZHPOVZURHJSUsj+d+/dzQ8v38I5xYv42dGUNd3upN2QcaS37kp6NZvblpSWcOTwQfJzD1CYd4Di/IOU5h+ivPAwHMtFSo6Q5M5HlNuq6RSo44XYgdJKT8QqSGKVbgf6UsCyQwTxymIzO/46HFeYiuN+QSr25/UglnJRFRWvUt6KWB1/TZRlL/jIZUXv/a+FqLg//hqpKhW7iJbDYV0r6+WreN0CyOGV0TfyysrajyH+jY5np1R140eHKp/nqaKvAmhKp0NwOvQzV1bsCndiOr17DfTv0XDSNG6mj8Iqzz/xbflKy9x8M+suhu2bTU5cB7ac/xxdB17MaUFsdl3m9rA7N58D+3ZwZP8OyvJ2E1e4j4Sin3EVH0DcpYhyWz8PDuWu1Dz11gfexvDxcumwru3lXSr5szdxjxd2Oe5WKr853ntla3Qfb4BXVp/HXG2DS7wwELPKLb55V+J2evhp+3o69epfswcb69atJvWdaxik9rOh2630GDOFZvHBbbCSmJBIs+atada89YmIbTAY6gBXUgpHSYaCE9uWTynF4hm3cO6hN1jd5Bf0/NVM4hOTg/Yf73TQtmkabZtmQmbmCclgCI2YHexNbZ8NwNGfVoXkb92a72j59mU0Ip+fr3ybntc8jASp2AwGQ+SS52hEQtGJfUv7+ZzHOPfQG6xpeRXZv3stJMVmCA8x23Nr1SmLUuXEvTf4ebedOdvI+O84nA4ov/5DWrc3LSyDIVbIi29Oaknoc27Lvv6UId8/wuYG/cm6aYY5cy9KiNmeW3JSEjucp5F4KLgvEI4cOUrJK2NIo4Diq+eSYRSbwRBTFLhakVEe2pxbwbFjZHwymaOONDrc/AZiVjtHDTGr3AByG3SmVdH3/peo2fB4FCv/9RtO9/zIrnOfo2X3M+tJQoPBUF+UN2xDY45QXlwYtJ/lr/6JTmoHeec9RmJqkzqUzlDbxLRyK2vVjwzy+HnHpmrdLXprOsMLP2B9x1/S9eyr6kk6g8FQnyQ0Pg2AA7u2BeV+89YtDNrzKmvTz+f0IWPqUjRDHRDTyq1Zr/MA2L3qk4BuNq37jkEb/8ZWVxY9xz9aX6IZDIZ6JrVFRwAO7g5Oue1e8BBO8dBhnKkXopGYVm4du/flEGmoHz73a3/kSB6J795IiSTS4oY5iDO+niU0GAz1RdO2ek/Jwv01b8u3dt1qzs7/kC2tryS1xel1LZqhDohp5eZ0Otje+Gy6HfmawoLKBxV63B42zPwl7T07OTDiORo2Py1MUhoMhvqgact2egV1bk6NbvM+eAi3OOk4emqdy2WoG2JauQGk9RtLspSw4ZNXK5l/+cY0zir4hDWdfkOXs0aFSTqDwVBfiDOOPc7WpBytflhy1YpvGHLsM7a2u4bkxm3qSTpDbRPzyq3LoEv4wdGOlmufo6iwAIDvPpjN0K2PsDFlANnjHw6zhAaDob44kNyJZkWBhyWVUpR8/DeKxEWXK6fUo2SG2ibmlZs4nBSc/QBtPbvZ/sxIlj59LWcsncz2hK60u/kt892KwXAKUZTemVZqH2VF+X7tVy35jEElX7Pt9Em40prWs3SG2iTmlRtA1rAxfNNjCu1Kt9Ln8EKWN72C0+78hJTU9HCLZjAY6hFXq14A7Nq8ooqdUgo++xt5pNL9ivvrWzRDLXPKdFvOuvoePOWTKXW7GZCYGG5xDAZDGGjZcygsg7wtX0GfYZXsvvviPQaUrWRN97vpbY4finpOGeUG4IiLwxV3Sj2ywWCw0ea0DvxES5w7v6lk7na7SfvqIQ5IBj1H3R0m6Qy1ySkxLGkwGAygzw3c37gfHQpWUVx0fBuulR++RFf39+zqczdxrpQwSmioLYxyMxgMpxSu3qNJlSK2fPkWAEdyf+a05Q/zg7MDvS/5TZilM9QWRrkZDIZTiu5n/YK9NCHlu+nkH83jh5kTyVB5qMum4zDTFjGDUW4Gg+GUIj4+nj0D/szp5dtwPdGRPkXfsrLn/XTqPTTcohlqEdNMMRgMpxxnXHIDS3Hg/OEz4nqMZMC5V4dbJEMtY5SbwWA4JRl4yfXA9eEWw1BHmGFJg8FgMMQcRrkZDAaDIeYQpVS4ZahARA4AP9VCUE2Ag7UQTn0QTbJCdMlrZK07okneaJIVokve2pK1nVKqVjfzjCjlVluIyHKlVL9wyxEM0SQrRJe8Rta6I5rkjSZZIbrkjWRZzbCkwWAwGGIOo9wMBoPBEHPEqnL7V7gFCIFokhWiS14ja90RTfJGk6wQXfJGrKwxOedmMBgMhlObWO25GQwGg+EUxig3g8FgMMQcMaXcROQiEdkiIttEJOLOiReRtiLyuYhsFJENInKHZT5VRHaLyGrrd0m4ZQUQkRwRWWfJtNwyaywi/xOR763/jSJAzq62tFstIkdFZHIkpauIvCgiP4vIepuZ37QUzbNWOV4rIn0jQNbHRGSzJc9/RSTdMm8vIkW2NJ5Rn7JWI2/AvBeRP1hpu0VELowAWefa5MwRkdWWeSSkbaA6KyLLbiWUUjHxA5zAdqAjkACsAXqEWy4fGVsCfa3rVGAr0AOYCtwTbvn8yJsDNPExmwbcb13fDzwabjn9lIN9QLtISlfgbKAvsL6mtAQuAT4EBBgELI0AWUcAcdb1ozZZ29vdRVDa+s17631bAyQCHaw6wxlOWX3snwAeiKC0DVRnRWTZtf9iqec2ANimlPpBKVUKvAGMCrNMlVBK7VVKrbSu84FNQOvwShUyo4CXreuXgcvDJ4pfzgO2K6VqY6ebWkMp9SWQ62McKC1HAa8ozRIgXURa1oug+JdVKfWxUqrcul0CtKkveWoiQNoGYhTwhlKqRCn1I7ANXXfUC9XJKiICXA28Xl/y1EQ1dVZEll07saTcWgM7bfe7iGDFISLtgT7AUsvoVqsb/2IkDPVZKOBjEVkhIr+2zJorpfZa1/uA5uERLSDjqFw5RGK6egmUlpFelm9Et869dBCRVSLyhYhE0qFo/vI+ktN2KLBfKfW9zSxi0tanzor4shtLyi1qEJEGwDvAZKXUUeAFoBOQDexFD01EAkOUUn2Bi4HficjZdkulxyEi5lsSEUkALgPesowiNV2rEGlpGQgR+RNQDsyxjPYCpyml+gB3Af8RkYbhks9G1OS9jWuo3DCLmLT1U2dVEKllN5aU226gre2+jWUWUYhIPLqQzFFKvQuglNqvlHIrpTzATOpxmKQ6lFK7rf8/A/9Fy7XfO8xg/f85fBJW4WJgpVJqP0RuutoIlJYRWZZFZBLwC2C8VaFhDe8dsq5XoOewuoRNSItq8j5S0zYOuBKY6zWLlLT1V2cRBWU3lpTbd0BnEelgteDHAQvCLFMlrDH1WcAmpdSTNnP7mPQVwHpfv/WNiKSISKr3Gr2gYD06Tb0nPF4PzA+PhH6p1PKNxHT1IVBaLgAmWivPBgFHbENAYUFELgLuBS5TSh2zmTcVEad13RHoDPwQHimPU03eLwDGiUiiiHRAy7usvuXzw/nAZqXULq9BJKRtoDqLaCi74VrJUhc/9EqdregWzp/CLY8f+Yagu+9rgdXW7xLgVWCdZb4AaBkBsnZErypbA2zwpieQAXwKfA98AjQOt6yWXCnAISDNZhYx6YpWunuBMvQ8xC8DpSV6pdnzVjleB/SLAFm3oedSvOV2huV2tFU+VgMrgUsjJG0D5j3wJytttwAXh1tWy3w2cLOP20hI20B1VkSWXfvPbL9lMBgMhpgjloYlDQaDwWAAjHIzGAwGQwxilJvBYDAYYg6j3AwGg8EQcxjlZjAYDIaYwyg3g8FgMMQcRrkZDAaDIeYwys1gMBgMMYdRbgaDwWCIOYxyMxgMBkPMYZSbwWAwGGIOo9wMBoPBEHNEvHITkfYioqzzjgxRiojcJiJ7RGRNGOKeKiKv1UM8k0RkcTX2i0TkprqW41RDRIaJyK5Q7WpZhmrrqfoqg7GCiNwrIodFZKGIJJ9IGBGv3AyhIyIzRKTA+pWKSJnt/sMwiTUVuEUp1dsm51QRmRomeSIKq3LMCdH95yJyTEQ2i8j51bhNFJEXReSoiOwTkbtsduNtZaPACk+JyBmW/Z0i8oPld4+IPOWtwEWkmYi8bpkfEZGvRWSgLew/+oRdJCIeEWlS2+kR7YhIjoi0D9JtwPwM4P5Oy91Ry1+iHzfnWPn+N5uZiMjfRGS3lb+LRKSnzb61iMwXkVwR2SUiN/uEmS0iK6wytUJEsn2eYYaI7Lf8vycirb32Sqlp6INOu6HPkgyZOldupsdV/yilblZKNVBKNQD+Dsz13iulLva6q+e8aUzkHRYaMhFUnl8HVqHP1foT8LaINA3gdir6oMt2wHDgXtGHj6KUmmMrGw2AW9AHYq60/C4A+iqlGgK9gN7A7ZZdA/QhwWeg8/dl4H0RaWCF/XefsB8FFimlDtZWItQnEZT3UwmQn76IyIXA/cB5lvuOwIM+buKBZ4ClPt6vAm4EhqLz91v0OXleXgN+BJoDI4G/i8hwK8wE9AGmrwGN0GVjvmUOcAdwJpAFtAIOA9PtkSulCq3wM6pPDv/UiXKzWiH3ichaoFBE4kRkkIh8IyJ5IrJGRIbZ3C8SkX+IyDKrdTFfRBoHCPsGEdkkIvlWi/I3PvajRGS1Fc52b6aLSJqIzBKRvVZL5G9inXJbzXN0EpHPROSQiBwUkTkikm6zyxWRvtZ9KxE54H0uEblMRDZYz7tIRLr7pM89IrLWahHNFRFX6CkdOgHyRonI6TY3s31acL+w0jTPysOsEOP0prOnBnf3WvmzR0RusstlyfS8iLxv5f1SEelk8/uMiOy08n2FiAz1Cd5lpXO+iKwUEXsP8n6rrOSLyEYRucJmN0l0j+QpETmErlhqet7HRQ+p/CgiF/tYt7PCyxeRjyWIXoyf8LsAfYG/KKWKlFLvoA+GHB3Ay/XAX5VSh5VSm4CZwKRq3L6irIMelVLblVJ53qjReXi6ZfeDUupJpdRepZRbKfUvIAHo6kdmASaiK7mQEZG+IrLKSre3rLz8WwC3t1v52MZm9kfrHc4RkfE285FWuEet8jPVZucdavyliOwAPgtC1PEissOK608+dgki8or1DBtEpF9oqVBBqPk5Sym1QSl1GPirH7d3Ax8Dm33MOwCLrXx2oxVVDwDRDZhhwMNKqTKl1BrgbbQyxLKLA55WSpUopZ5Fl59zbWEvVErtV0oVA3OBil6hDY8VTujU0emtOegTW9sCSUBr9CnJl6AV6gXWfVPL/SJgN7plmAK8A7xm2bVHnwQbZ92PBDpZCXUOcAzdsgQYAByxwndY8Xaz7P4L/J8VfjP00fK/qeE5TrfCSgSaAl+iM8tr/ytgI5AMLAQet8y7AIWW33jgXvRJxgm29FmGbrE0Bjbhcwqvz0m4edX8htTwDFO9aekvb7x1GHC6zc1s4G/WdR/gZ2Ag4ES/LDlAYgjl4SKgGEipwc0+dAFPRr9IFXJZMh2y8jgOmAO8YfM/Ad3Ci0O/rPsAly0NyoAxVn7cg24Rxlv2V1l54QDGWnnX0rKbBJQDt1lhJ1XzDJOseH5lpdVvgT1QcSjwIvQJxV3Q78Ui4JEAYf0T+GcAuyuATT5mzwHT/bhtZKVjc5vZGGCdH7ftADfQwcf8WuCoFc4BoHcAubKtfE7zY3c2UAA0OIH6JAH4Cd3ajweuBEptZXQYsMu6fgDd62xqsysHnkS/x+dY+dvVZp9p5X0WsB+43KfueQVdb1SX9163M6287Q2UAN1tZbAYXQc6gX8ASwKEdS2wNoBd0Plp2a0Bxtrum1j+M2x5vhXdC5/tTVOb3QqrvMYD04B5ll2qFU4zm/uZwCrr+k7gQx9Z/h9wt3XdD/ga/d4lA//BVrfa/LyMHqVICLnchOohyMKYA9xou78PeNXHzULgeut6EbaXHN06KLUKgbfQxAWIax5wh3X9f8BTftw0twpaks3sGuDzEJ/rcm/m2cwWcPw4+0TLbArwps2NA628h9nSZ4LNfhowo47yYipVlduNPm6qU24voFuJdvdbgHOCjH+5Ff7tNbh7EfiH7f50qiq3f9vsLwE2VxPeYaxK2EqDJTY7B7AXGBrA72pglHU9CdgR5LNOArbZ7pOtZ2hhK+d/ttnfAnx0Anl6HT4VI/AwMNuP27aWDC6b2QVAjh+3U9DDhoHi7Yxu+bfwY9fQeg/+EMDvLH/yBfm8Z1vvj9jMFlNZue1GK7DF2JQrx5Vbis3sTWBKgLiexqpDOF73dAxCRq/bNjazZcA4Wxn8xGbXAyg6gbQIOj8tu+3ARbb7eMt/e+t+Ppbyo6pyS0APVyorDX/E1vCx0no64EKPJOQCW2xl6Q0fWeYAU63rNOANW9irgMZ+5O+EbqiWAf1CSau6nHPbabtuB1xlDWvliUgeukfSMoD7n9CZUGXIRkQuFpEl1pBgHrqS87pri85MX9pZ4e21xf9/6B5cQESkuYi8YQ1jHkX3JnxlmonucU5XSpVYZq2sZwBAKeWxnq+1zd8+2/UxdMupvthZs5MK2gF3++RdW/QzBkN/YBwwVfTYfiBa+cjlT8aAaWYN826yhnnz0C+PPa8qwrPyY5f3GURkom3YNQ+dn379BkGFjEqpY9ZlA3/2vs8QAgVoZWKnIZAfwK3Xvia31Q4bKqW+Bzage5UViEgS8B5a4f7D15/o1W5XVRd2DbQCdiurtrPwzZN04NfoBtIRH7vDSs/fePmJ43k/UPTCnAMicgS4marv+AnlP1Xz19fOJaHP44WSn173vm4B8kXkUiBVKTU3gN8H0O9vW7QCexD4TI6vXhyPHl7ciW4Ev4Z+r/zF6yvn8+iedAa6V/wu4G+x2x3oed2GSqnlAeT0S10qN9+C+KpSKt32S1FKPWJz09Z2fRpaU1eaeBa9yucd4HF0tzwd+AA9ROmNpxNV2YnuuTWxxd9QKeVvjNfO363nyFR6Qn2CLS7vuPPT6FbpVDk+T7gHrRS87sR6vt01xFcFERkqlVec+f5855aCQfncH0P3Mry0sF3vRI+r2/MuWSn1elAR6QppHno4pWU1TveiV0d5aRvIoS9WGtwLXA00ssrFEWx5ZQ9PRBxWXHtEpB26gXIreqgmHb3wxe7XN73CzQago4ik2sx6W+aVUHqeZa9lH9CtiAxGV/hv1xB3HLZ3zHon56Ertd8E8HMFulW/qIawA7EXaG29R158y8dh4BfAS9az2GkkIim2+9PQ7yjo4bAFQFulVBowg8p5DxGU/8Hmp40NftzuV0odQi8y6Sd6JeU+9JD8ZBGZb7nNRi9G26WUKldKzUa/xz0sWX5SSv1CKdVUKTUQ3ShYZos3yyfPsmxyZqN78rlWp2A6MMDPHHR39OhGUbUJ44f6+hTgNeBSEblQRJwi4hL9/Ym9MpsgIj2sVsFDwNtKT2LaSUBr+wNAuTVZb18mOgu4QUTOExGH6KWq3ZRSe9ETpk+ISEPLrpOInFOD3KnoFsgR0ctUf+9j/wywXCl1E/A++sUAPewx0pIjHj0HVAJ8U1NC+aKU+krZVpz5+X0Vaph+WA1ca+XNReh5CS8zgZutFq6ISIo1CZ8KFQs9ZtfwDN4ebUI1zt5E5113qwxMCUH+VPTQxgEgTkQeoGqr8QwRudJqKU9G58cSdKtRWX4RkRvQPbeIRSm1FZ1nf7HepSvQFcc7Aby8AvxZRBqJSDf0nOBsHzfXA+8opSr1AEQv7GlmXfcA/gB8at3Ho5VhEXqKIdCCoeuxLVKxhT1VRBbV/MR8i54LvFX0AqhR6LnXSiilFqF7E++KiK/9gyKSYDWEfgG8ZZmnArlKqWLLz7VByBNugslPu9tfWnVrOvBnm9sp6Pm0bOu3AP2+32DZf4cecWtu1ZnXoUfAtgFY72qqla4T0HXxk5bfReg8u130sv9bLfPPbGFPFL3QLx49RL9HVV1JG49+V0OmXpSbUmonMAr4I7oS2YlWFPb4X0Un+j50F/h2fLBevNvRFeFhdEFcYLNfhs6Yp9At9y843oOaiK5cN1p+36b6ngTobnhfK6z30V1nQK/KRC+C+K1ldBfQV0TGK6W2oHt509G9z0uBS5VSpTXEFy7uQMuYh64c5nktrKGAX6EXLBxGF+xJNr9t0RPDNaGoprwppT4EngU+t+JYYlkFU7AXAh+hJ8Z/Qk/c+w4lzUe3TA+j56yuVHqV10bgCXQFuh+9uCCY56lTRH8DNKMaJ+PQk/KHgUeAMUopr4IeLyL2lvxf0MP1P6HficeUUh/Z4nKhe73+hg0HA+tEpBA9SvIB+j0GOAutKEYAef5GE6xG4bnoStaXoMqO9d5cCfwSXUYnoBcnVCkbSqn/oVfsvSfWSmZ0nXIY3Vubg1685V0ZeAvwkIjko4fh3qxJnrrGT/75EjA/ReQ0Kw9OA7DMp6Hfqx2Wn79YdvlKqX3eH7qRUqiUyrXieRS9IGU1Ot3vBEar46tnL0R/NnIYPZx7kbcMWnl2ObrezUPnyeW2OvAe9Hv6PVonXILu4fvipIZV1oEQn8ZUWLBab68ppf4dblkMwSP6m5U1QJZSqqwGt3uAe5VSQe3SIPrTifXoRTrlJy2sIeIQkdXAedYQWah+l6IXYb1U64IZIgKrp7kRuEkp9UGo/s0OJYYTRilVqpTqXpNis7gfPYy2IpADEbnCGsJohG41vmcUW+yilMoOVrGJ3kGjhTUseT16GPajmvwZohMRuQf93d0XWMPgoXLKKzepvFWV/VfdkJAhRJRSryilOiulzqjG2W/Q39RtR4/X/7Yat2HBlJew0RU9SpCHnsMeY82l1xtSdasy76+6IUTDCaCUelwp1UIpdY1tzj4kImJY0mAwGAyG2uSU77kZDAaDIfaIlI1AAWjSpIlq3759uMUwGAwGQz2yYsWKg0qpQBt/nxARpdzat2/P8uUhfYRuMBgMhihHRH6q2VVomGFJg8FgMMQcRrkZDBGIUooP1u2lpNx3kx6DwRAMRrkZDBHId9v2Im9ex6vzF4ZbFIMhKomoOTd/lJWVsWvXLoqLi8MtiiGKcLlctGnThvj46g4iiFw8u1dxsfM7ftwyFb0zkcFgCIWIV267du0iNTWV9u3bI+K7WbfBUBWlFIcOHWLXrl106NAh3OKcEPEO/f2pM6jNXwwGgy8RPyxZXFxMRkaGUWyGoBERMjIyorq3LyV6c363MuXeYDgRIl65AUaxGUIm2suMcustNaXKqU8GgyEYokK5GQynGh6PVm5xZt9og+GEMMotCESEu+++u+L+8ccfZ+rUqeETqAYWLVrEN9+EfC5qBatXr+bMM8+kZ8+eZGVlMXduoFPoDXWFcuu5tjgi9QhAgyGyMcotCBITE3n33Xc5eND3kNiTQymFx3NC5/BVy8kqt+TkZF555RU2bNjARx99xOTJk8nLy6s9AQ014nGbnpvBcDIY5RYEcXFx/PrXv+app56qYnfgwAFGjx5N//796d+/P19/rQ8Wnjp1Ko8//niFu169epGTk0NOTg5du3Zl4sSJ9OrVi507d/L73/+eXr16kZmZWdFLWrRoEcOGDWPMmDF069aN8ePH4+8Eh2effZYePXqQlZXFuHHjyMnJYcaMGTz11FNkZ2fz1VdfVSvjddddx5lnnknnzp2ZOXMmAF26dKFz584AtGrVimbNmnHgwIEqcb/11lv06tWL3r17c/bZZwN6AdANN9xAZmYmffr04fPPPwdg9uzZXH755VxwwQW0b9+e5557jieffJI+ffowaNAgcnP14b8zZ86kf//+9O7dm9GjR3Ps2LEq8Q4aNIgNG46fMjJs2LDY27bNGpZ0GuVmMJwQEf8pgJ0H39vAxj1HazXMHq0a8pdLe9bo7ne/+x1ZWVnce++9lczvuOMO7rzzToYMGcKOHTu48MIL2bRpU7Vhff/997z88ssMGjSId955h9WrV7NmzRoOHjxI//79KxTFqlWr2LBhA61atWLw4MF8/fXXDBkypFJYjzzyCD/++COJiYnk5eWRnp7OzTffTIMGDbjnnnsAuPbaawPKuHbtWpYsWUJhYSF9+vRh5MiRtGrVqiL8ZcuWUVpaSqdOnao8x0MPPcTChQtp3bp1Rc/u+eefR0RYt24dmzdvZsSIEWzduhWA9evXs2rVKoqLizn99NN59NFHWbVqFXfeeSevvPIKkydP5sorr+RXv/oVAH/+85+ZNWsWt912W6V4x44dy5tvvsmDDz7I3r172bt3L/369as2zaMN74KSeIxyMxhOBNNzC5KGDRsyceJEnn322Urmn3zyCbfeeivZ2dlcdtllHD16lIKCgmrDateuHYMGDQJg8eLFXHPNNTidTpo3b84555zDd999B8CAAQNo06YNDoeD7OxscnJyqoSVlZXF+PHjee2114iL899WqU7GUaNGkZSURJMmTRg+fDjLli2r8Ld3716uu+46XnrpJRyOqkVl8ODBTJo0iZkzZ+J2uyueZ8KECQB069aNdu3aVSi34cOHk5qaStOmTUlLS+PSSy8FIDMzs+LZ1q9fz9ChQ8nMzGTOnDmVemherr76at5++20A3nzzTcaMGVNtekcl3mFJo9wMhhMiqnpuwfSw6pLJkyfTt29fbrjhhgozj8fDkiVLcLlcldzGxcVVmk+zf3OVkpISVHyJiYkV106nk/LyqhXd+++/z5dffsl7773Hww8/zLp166q4CSQjVF0y770/evQoI0eO5OGHH65QxL7MmDGDpUuX8v7773PGGWewYsWKoJ/H4XBU3DscjopnmzRpEvPmzaN3797Mnj2bRYsWVQmndevWZGRksHbtWubOncuMGbF3CLayhiUTMB9xGwwngum5hUDjxo25+uqrmTVrVoXZiBEjmD59esX96tWrAX18z8qVKwFYuXIlP/74o98whw4dyty5c3G73Rw4cIAvv/ySAQMGBCWPx+Nh586dDB8+nEcffZQjR45QUFBAamoq+fn5NcoIMH/+fIqLizl06BCLFi2if//+lJaWcsUVVzBx4sRqe0Xbt29n4MCBPPTQQzRt2pSdO3cydOhQ5syZA8DWrVvZsWMHXbt2Dep5APLz82nZsiVlZWUV4fhj7NixTJs2jSNHjpCVlRV0+NGCV7k5qDrPajAYasYotxC5++67K62afPbZZ1m+fDlZWVn06NGjohcxevRocnNz6dmzJ8899xxdunTxG94VV1xBVlYWvXv35txzz2XatGm0aNEiKFncbjcTJkyoWLxx++23k56ezqWXXsp///vfigUlgWQEPaw5fPhwBg0axJQpU2jVqhVvvvkmX375JbNnzyY7O5vs7OwKhfjAAw+wYMECAH7/+9+TmZlJr169OOuss+jduze33HILHo+HzMxMxo4dy+zZsyv12Grir3/9KwMHDmTw4MF069atwnzBggU88MADFfdjxozhjTfe4Oqrrw467KjCY4YjDYaTQfytwAsX/fr1U76r3jZt2kT37t3DJFFsM3Xq1EoLT2KNaC47X7/0Jwb/9Jy+mXIQnNG5AbTBEAwiskIpVaurwkzPzWCIRDzH59rKSgrDKIjBEJ1E1YISQ+0SybusnPJ4ju8pWVJUSHxyevhkMRiiENNzMxgiEdvH2yVFVT9kNxgM1WOUm8EQibiP99xKi82wpMEQKnWu3ETkIhHZIiLbROT+uo7PYIgJbD23smLTczMYQqVOlZuIOIHngYuBHsA1ItKjLuM0GGICj1FuBsPJUNc9twHANqXUD0qpUuANYFQdx1knzJs3DxFh8+bNAd3k5OTQq1evOpVj9erVfPDBByfs3/vRd48ePejZsyfPPPNMLUpnqC3EtqCkvNQoN4MhVOpaubUGdtrud1lmUcfrr7/OkCFDeP311/3a+9saK1Tc7ppPXT5Z5RYXF8cTTzzBxo0bWbJkCc8//zwbN2484fAMdYRtWLK8xCg3gyFUwr6gRER+LSLLRWS5v2NVIoGCggIWL17MrFmzeOONNyrMFy1axNChQ7nsssvo0UOPtpaXlzN+/Hi6d+/OmDFjKo5s+fTTT+nTpw+ZmZnceOONlJSUAHqbrvvuu4++ffvy1ltvVYrX90iZ0tJSHnjgAebOnUt2djZz586lsLCQG2+8kQEDBtCnTx/mz58P6CNmRo0axbBhw+jcuTMPPvggAC1btqRv374ApKam0r17d3bv3l3lmb/44ouK3Un69OlDfn4+SqmAx/Occ845jBo1io4dO3L//fczZ84cBgwYQGZmJtu3bwfgvffeY+DAgfTp04fzzz+f/fv3V4l33LhxvP/++xX3kyZNqtgk+VRCPEa5GQwnQ11/57YbaGu7b2OZVaCU+hfwL9A7lFQb2of3w76qGwOfFC0y4eJHqnUyf/58LrroIrp06UJGRgYrVqzgjDPOAPS+kevXr6dDhw7k5OSwZcsWZs2axeDBg7nxxhv55z//ya233sqkSZP49NNP6dKlCxMnTuSFF15g8uTJAGRkZFTsQ2nH90iZhIQEHnroIZYvX85zz+ndK/74xz9y7rnn8uKLL5KXl8eAAQM4//zzAX1czfr160lOTqZ///6MHDmy0tEwOTk5rFq1ioEDB1aJ+/HHH+f5559n8ODBFBQU4HK5ePfddwMez7NmzRo2bdpE48aN6dixIzfddBPLli3jmWeeYfr06Tz99NMMGTKEJUuWICL8+9//Ztq0aTzxxBOV4vUeZzNy5EhKS0v59NNPeeGFF4LMzNhB1PFevKe0uBqXBoPBH3Xdc/sO6CwiHUQkARgHLKjjOGud119/nXHjxgG6Z2EfmhwwYAAdOnSouG/bti2DBw8GYMKECSxevJgtW7bQoUOHiv0lr7/+er788ssKP2PHjvUbr78jZXz5+OOPeeSRR8jOzmbYsGEUFxezY8cOAC644AIyMjJISkriyiuvZPHixRX+CgoKGD16NE8//TQNGzb0G/ddd93Fs88+S15eHnFxcdUez9O/f39atmxJYmIinTp1YsSIEUDl42x27drFhRdeSGZmJo899pjf42wuvvhiPv/8c0pKSvjwww85++yzSUpK8vvssYx43BxTek9OT5npuRkMoVKnPTelVLmI3AosBJzAi0qpqjVasNTQw6oLcnNz+eyzz1i3bh0igtvtRkR47LHHgKrH1wQ6QqY6Ah2BE8yRMkop3nnnnSo77y9dujSgLGVlZYwePZrx48dz5ZVX+o37/vvvZ+TIkXzwwQcMHjyYhQsXVvsMwRxnc9ttt3HXXXdx2WWXsWjRIr87pLhcLoYNG8bChQuZO3duRaPiVENUOUWSRDIleEqLwi2OwRB11Pmcm1LqA6VUF6VUJ6XUw3UdX23z9ttvc9111/HTTz+Rk5PDzp076dChA1999ZVf9zt27ODbb78F4D//+Q9Dhgyha9eu5OTksG3bNgBeffVVzjnnnBrj9nekjO9xNhdeeCHTp0/HuwH2qlWrKuz+97//kZubS1FREfPmzWPw4MEopfjlL39J9+7dueuuu6qNOzMzk/vuu4/+/fuzefPmkzqeB+DIkSO0bq3XE7388ssB3Y0dO5aXXnqJr776iosuuijo8GMJUW6KRPdYVZlRbgZDqIR9QUmk8/rrr3PFFVdUMhs9enTAVZNdu3bl+eefp3v37hw+fJjf/va3uFwuXnrpJa666ioyMzNxOBzcfPPNNcbt70iZ4cOHs3HjxooFJVOmTKGsrIysrCx69uzJlClTKvwPGDCA0aNHk5WVxejRo+nXrx9ff/01r776Kp999lnFghHv6ssZM2ZUHIfz9NNP06tXL7KysoiPj+fiiy8+qeN5QO9ledVVV3HGGWfQpEmTCvPly5dz0003VdyPGDGCL774gvPPP5+EhISgw48lHKqcMocLjxIoM3NuBkOomCNvYpTZs2dXWnhyKhLNZWflPy4gzX2YFmU72NBqNAN+c+otqjGcOpgjbwyGUwQHbjzipIQEpNz03AyGUDFH3sQokyZNYtKkSeEWw3CCiEcrt1JJNMrNYDgBoqLnFklDp4boINrLjEO5UeKkVBJwuo1yMxhCJeKVm8vl4tChQ1FfWRnqD6UUhw4dwuVyhVuUE8ahjvfcHEa5GQwhE/HDkm3atGHXrl1E6tZchsjE5XLRpk2bcItxwug5tzjKHabnZjCcCBGv3OLj4yvtAGIwnAo4VDnlDifK4SLOUxJucQyGqCPihyUNhlMRB24QJ+WORKPcDIYTIOJ7bgbDqUiccuOReModDuKNcjMYQsYoN4MhAolTZXgc8XgknnhVGm5xDIaowyg3gyECiaMc5YjDQxwJyvTcDIZQMcrNYIhAnLhRjniUJJKI6bkZDKFilJvBEIHEq3I8jniU00WiGZY0GELGrJY0GCKQeMpRjniId5Eg5Sh3ebhFMhiiCqPcDIYIJJ5ylDMe4pMBKCk2p3EbDKFglJvBEGEopawFJfEQrw8sLSkqDLNUBkN0YZSbwRBhlJeX4xQFjngcRrkZDCeEUW4GQ4ThLtNL/5UzHkeCVm5lxQXhFMlgiDqMcjMYIoyyMr06UpwJOBIbAFBabHpuBkMoGOVmMEQY5aXWR9vOBJyJekFJWZHpuRkMoWCUm8EQYZSU6CNunPHxOF0pALhNz81gCAmj3AyGCKOsVA9LOuMSiXfpYcnyUqPcDIZQMMrNYIgwSkq9PbdE4izl5jE9N4MhJIxyMxgijDLrg21nfCKJSZZyMz03gyEkjHIzGCIMd4lWZA5XAxKTUgHwlJodSgyGUDDKzWCIMNxFRwFwuFJxpeiemzI9N4MhJIxyMxgiDO8QZJyrAcmuREpUHJiem8EQEka5GQwRRnlRPgCu5IbEOx0UkYiUGeVmMISCUW4GQ4ThVW7JqQ0BKBYXUlYUTpEMhqjDKDeDIcJwl+jdSBqkpgNQIi6k3PTcDIZQMMrNYIgwVInuuSVY37iVSiJxbtNzMxhCwSg3gyHCiCs+TB6p4NCvZ6kjCadRbgZDSBjlZjBEGIkluRxxpFfclzldxLuLwyeQwRCFnJRyE5GpIrJbRFZbv0tsdn8QkW0iskVELjx5UQ2GU4PE0kMUxjWquC93uIj3mJ6bwRAKcbUQxlNKqcftBiLSAxgH9ARaAZ+ISBellLsW4jMYYprU8lxyU7tW3HvikkkoLgmjRAZD9FFXw5KjgDeUUiVKqR+BbcCAOorLYIgZPOXltPAcoDilbYWZOy6JRGWGJQ2GUKgN5XariKwVkRdFxDuW0hrYaXOzyzIzGAzVsHfHNhKkHGeTThVmKi4JF0a5GQyhUKNyE5FPRGS9n98o4AWgE5AN7AWeCFUAEfm1iCwXkeUHDhwI1bvBEFPsz9kAQMM23SrMVHwySaoElAqXWAZD1FHjnJtS6vxgAhKRmcD/s253A21t1m0sM3/h/wv4F0C/fv3M22s4pSnevQ6Alp2yjhsmpOAQRXlpEXGJyWGSzGCILk52tWRL2+0VwHrregEwTkQSRaQD0BlYdjJxGQynAin7lrFTWtKwyfFRfEdCEgBFx/LDJZbBEHWc7GrJaSKSDSggB/gNgFJqg4i8CWwEyoHfmZWSBkP1KI+bdoVr2Zw2pNKwhySkAFBcmE9qo+bhEc5giDJOSrkppa6rxu5h4OGTCd9gOJXYvW0tbchHnXZmJXNnot6Gq6SoIBxiGQxRidmhxGCIEPat/RSAVlnnVjJ3uo733AwGQ3DUxkfcBoOhFpCdSzhIOqd16lnJPN5SbmXFJ99zO/TzHg7v/QF3aTEN0pqQ0bojrpSGJx2uwRBpGOVmMEQIrY+u5qeU3jRxVB5QibdOBygvLjyhcPfu2cHWD6bTfs8HtPPsIsNm51HCbkcz9ie251iDdjjT25DQqBWOeBfijAd3GVJeBOXFSHkxUlaEuEtQHg/K48ajFEoplPLgUeDxKJSILQbvswhYxgpBvP/F57/XLeANRrD9rzA7HkeFO1u0YjNwprclc+TNJ5R2hujFKDeDIQLYt+N7WqgD5LQZVMUuIcmr3ELruRWXlPDtnIfo/9O/OUeK2ZiYzZLWV5LYoiuOeBclRw/iPvQDrsNbyTj2A90PribpYGjbfHmU4EFQFWpJVfz36hqHhP8Ln5+6DKZd58xwi2GoR4xyMxgigF2rP6UF0LTnsCp2iclaublLgu+5/fTj9xx9bSLD3RvZkHomGVc8Qo9O2dV7Uoojufs5/PNuystK8JSX4YiLR+KTcMQnIQlJOBNScCS4iHM6cTodxDkEp0OIczhwOgSHQ3BIRXAAeABli0MpBShtphRKgcJT6Rt1baYqzBToHqLNHlURiuUeK2zvNez/cSO95p3PwTUfGeV2imGUm8EQAbhzviGfJNr3qLoFa2JyqnYTpHJbt3opLeddRVNK2HTmE/S88KbghBAhLaMFaRktgpa7huD8mdZK2MGSkXkGu+c1IyFnEfD7eo3bEF5ibrXkxm8/pKzU7KBuiC6a563kx6RMnHFV25suS7l5So/VGM5X3yym5X+vQsRB3rUf0j1YxRajOJwOctIH0qFgBZ6y0nCLY6hHYqrntidnC50/Gs/e/7Vgf+Zv6X7+RBqkpp14gErhLivhWHEx5eVuUG487nKUxw3WZLovvu3SKu1UoaJJKz62/lu6Xjsft1XsA/oMHGjgyEL3U0081W6JWMtxBRNPaDNAdZ9+x47k0t6zk29bXObXPslSbpRW33Nbsuwbui28FqfTgWPS+2Sc1rNa96cK8Z3Po8F377F+6Uf0GuI/jUOltLSUY0cOcqwwn+LiIigrQjxl+vR0cYI4QByIOBCHA3E4cTiciDhwOB04xDJzanuHOHE6nODUfpDQ+x3eYd4TQZ3ovqXiIC298Yn5rWNiSrm1PK0zq4c8R6Nv/0H/NX+mZPWDbErsxtEGHXA3aIkzIYly5UA8pTjLCnGU5uMsK8BZVkB8eSFx7iISPcdweY6RpIpIVkXEiYfUcD+YIabxHqWR0vlsv/bOuDhKVDyUBe65rVixjI7vX0OcQ4i/8X0atDGKzUvW8DEc/e5PlC6dBaEoN6Uo2reFn9Z/S95Pa0nI3UpayR7S3Lk0UkdIF0V6nUkdHXzn6Ub/h5aGWwy/xJRyE4eDPhdcizpvHFu+W8ihlfPJOLSSLrmLaJR7tJLbcuWgkCQKJZliRzIljiSOOZI5mtgUd1wy7vgUVHwDVEID4uPjEYcTHLpFphzOitaZvY3u2/ZRvibVNY58Wk7K51ps9jUFU9FxOKHW2Im14OQE/J2InxMUr4rHoDpXJ9iaPaG+aFIaZwwcEdC+SBKhzP9p3GtXL6ftgqtJcChkklFsvriSU1nZ4goG7p3D9lVf0KnPOQHdHtn3A7tWLMTzwxe0PLyMJp5DdAPcStjjbMWhxDbkJvVke0pzVHIGzsQUnIlJEOfCI3H6PVUewIMoD0q5weMB5UEpj/6EQnn0QpqKazfK47FWxbhBKRzK7fNJRSicoL8TiK/I1ezE4qoHYkq5eRGHg64DL4aBF1eYlZUWU1RcTLwo4uLjccYnk+Z0cBKDlgZDvVFCIo7yqj23jetW0vy/Y4h3ePBMfI/G7cyKQH/0HPdXDj79AQ3nT2JLyfN0GXAhSsGeHd/z8/pFeHIW0+rwclp59pIG5KpUNif1YWWrM2ncdQhde/ahbYPUSnt+GiKbmFRu/ohPcBGf4Aq3GAbDCVHqcOEsr9xzW7/mO5q+exWJ4qZ8wgKadOgdJukin7T0xhwYM5fUt8fR9aNrKP0wDlC0ETdtgKMqmW1JWWxrdS3pPc+jS+YAzkqID7fYhpPglFFuBkM0c9SRToOyQxX3a1d8TasF1+AQKJ0wn2ad+oRRuujg9F4DKGi3iiWfvIZn/0ZEBGdGe9I7n0mHHgPoG2+UWSxhlJvBEAUcTGhFr+KVAHz1/16hz3f3UuxIwj1xAc06mKHIYGmQmsagK34XbjEM9YBRbgZDFFCW1oGMY/9jxeOXMbTgC35I6EyTX75Nwxbtwy2awRCRxNxH3AZDLNJo4LUUKBfZ+V+ystW1nHb3F0axGQzVYHpuBkMUcEZ2H3Y3XU5JnNC3eZtwi2MwRDxGuRkMUULr1mYhusEQLGZY0mAwGAwxh1FuBoPBYIg55IQ3zKwDROQA8FMtBNUEOFgL4dQH0SQrRJe8Rta6I5rkjSZZIbrkrS1Z2ymlmtZCOBVElHKrLURkuVKqX7jlCIZokhWiS14ja90RTfJGk6wQXfJGsqxmWNJgMBgMMYdRbgaDwWCIOWJVuf0r3AKEQDTJCtElr5G17ogmeaNJVogueSNW1picczMYDAbDqU2s9twMBoPBcApjlJvBYDAYYo6YUm4icpGIbBGRbSJyf7jl8UVE2orI5yKyUUQ2iMgdlvlUEdktIqut3yXhlhVARHJEZJ0l03LLrLGI/E9Evrf+N4oAObva0m61iBwVkcmRlK4i8qKI/Cwi621mftNSNM9a5XitiPSNAFkfE5HNljz/FZF0y7y9iBTZ0nhGfcpajbwB815E/mCl7RYRuTACZJ1rkzNHRFZb5pGQtoHqrIgsu5VQSsXED3AC24GOQAKwBugRbrl8ZGwJ9LWuU4GtQA9gKnBPuOXzI28O0MTHbBpwv3V9P/BouOX0Uw72Ae0iKV2Bs4G+wPqa0hK4BPgQEGAQsDQCZB0BxFnXj9pkbW93F0Fp6zfvrfdtDZAIdLDqDGc4ZfWxfwJ4IILSNlCdFZFl1/6LpZ7bAGCbUuoHpVQp8AYwKswyVUIptVcptdK6zgc2Aa3DK1XIjAJetq5fBi4Pnyh+OQ/YrpSqjZ1uag2l1JdAro9xoLQcBbyiNEuAdBFpWS+C4l9WpdTHSqly63YJEDFHEwRI20CMAt5QSpUopX4EtqHrjnqhOllFRICrgdfrS56aqKbOisiyayeWlFtrYKftfhcRrDhEpD3QB1hqGd1qdeNfjIShPgsFfCwiK0Tk15ZZc6XUXut6H9A8PKIFZByVK4dITFcvgdIy0svyjejWuZcOIrJKRL4QkaHhEsoP/vI+ktN2KLBfKfW9zSxi0tanzor4shtLyi1qEJEGwDvAZKXUUeAFoBOQDexFD01EAkOUUn2Bi4HficjZdkulxyEi5lsSEUkALgPesowiNV2rEGlpGQgR+RNQDsyxjPYCpyml+gB3Af8RkYbhks9G1OS9jWuo3DCLmLT1U2dVEKllN5aU227AfuBVG8ssohCReHQhmaOUehdAKbVfKeVWSnmAmdTjMEl1KKV2W/9/Bv6Llmu/d5jB+v9z+CSswsXASqXUfojcdLURKC0jsiyLyCTgF8B4q0LDGt47ZF2vQM9hdQmbkBbV5H2kpm0ccCUw12sWKWnrr84iCspuLCm374DOItLBasGPAxaEWaZKWGPqs4BNSqknbeb2MekrgPW+fusbEUkRkVTvNXpBwXp0ml5vObsemB8eCf1SqeUbienqQ6C0XABMtFaeDQKO2IaAwoKIXATcC1ymlDpmM28qIk7ruiPQGfghPFIep5q8XwCME5FEEemAlndZfcvnh/OBzUqpXV6DSEjbQHUW0VB2w7WSpS5+6JU6W9EtnD+FWx4/8g1Bd9/XAqut3yXAq8A6y3wB0DICZO2IXlW2BtjgTU8gA/gU+B74BGgcblktuVKAQ0CazSxi0hWtdPcCZeh5iF8GSkv0SrPnrXK8DugXAbJuQ8+leMvtDMvtaKt8rAZWApdGSNoGzHvgT1babgEuDreslvls4GYft5GQtoHqrIgsu/af2X7LYDAYDDFHLA1LGgwGg8EAGOVmMBgMhhjEKDeDwWAwxBxGuRkMBoMh5jDKzWAwGAwxh1FuBoPBYIg5jHIzGAwGQ8zx/wFZWvlT5GkcWQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjrUlEQVR4nO2deXxVxdmAn/dmDyQsAdmCLMpOwr5YQMEPQUoRFRcsimit1VZb12oXLfrVfopYVyqtRXGhiitiXesSASsiCLKjIpFFZAmELGS/8/0xk3Bzc28WEnJvkvf5/W5yzsycmffMvGfe2c4ZMcagKIqiKE0BT6gFUBRFUZT6Qo2eoiiK0mRQo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJkCBujJyJdRcSISGSoZWnsiMgsEVlRT2nFichbInJYRH5bH2n6pZ8uIuPrIZ00EbkqiJ/qdgioLN/rs0xcOqcG8au3Z7ExICK/dXXJuyISfzxxhI3RU44PEZktIkUikuPzq3fjUgnjgVSgszFmTqmjM0ZdQyZVGOHKcHYNwv9URL4TkVwRWSIirSsJO1BE1ojIUfd/oI9fSxF5WkT2u9/sANcuF5EjIrJbRO7w8/8fEdnq4v5IRLoESL+1iBzwrdhFZKSI/EdEDjm/l0SkQw3uv8m8XOwaU2OrGVZE5D4RyXC/+0REKglfpR6JSA8RyReR53zcfu9X3+SJiFdE2jj/uSLytYhkO/2Y6RfnFBHZ6K79r4j09fPvLiL/dtcfFJGyesPVIclAb2BCdfLFnzozetqKDSmLjTHNfX5zqr6k3mgNpBtjckItSG1wFUrIG4ki0g/4O3AZ0A44CvwtSNho4HXgOaAV8DTwunMHeBCIB7oCw4HLROQKnyj+BSzDluEZwC9F5BwXdxvgVeAO578aWBxAjPuALX5urYB/uHS7ANnAU9W4/bAkjOq+q4FzgQHYhuYU4BeBAtZAj+YBn/s6GGP+4lvfYMs4zRhz0AXJdWm3AC4HHhaRH7l0ewCLgGuAlsAbwNLSPHS6+R/gQ6A91sCVGVyXfi6wA0iqRp5UoFYPsWut3yYi64FcEYl0rbj/ikimiHzp20pxrZb/E5FVIpIlIq8Ha6WKyBUissVZ+29F5Bd+/lNFZJ2LZ7uInO3cW4jIAhHZKyJ7ROTPIhJRxX2cIiIfutbRQRFZJCItffwOichgd97RtU7HuvNzRGSTu980Eenjlz+3iMh6sa3lxSISW/OcrjkicrvLl2wR2Swi5wUJJyLyoNiWfpaIbBCR/s4vxrXadorIPhGZLyJxNRQlEvBWIWuSiLzh0v/clZlvz8CIyDWu9ZgpIvNEbAu2srLzYZjLg8Mi8lRpGYhIK9eiPOD8/i0iyT7pponIPSLyCbZS6F7FvXYRkU9cnr/nDIMvM1xeHhSRP1QRVzBmAG8YY5a5hsQdwPkikhAg7Fhs/j9kjCkwxjwCCHCm858CzDHGHDXGpAMLgCt9ru8KLDLGlBhjtgMrgH7O73xgkzHmJWNMPjAbGCAivUsvdhVdf/wMmjHmbXddljHmKPAYMOp4MkNEuonIMpfn7zvdeC5I2Gnumezv43yliHzv6otbfMIOF5FPnb7tFZHH5FhjoVQnfyUiXwNfV0PU8YH01ye+uU4Hd4jIpBpmQymXAw8YY3YbY/YADwCzgoStUo9EZDqQCXwQLEF3HzOxDSoAjDF/MsZsNcZ4jTGfAcuB05z3RGC5MWaFMaYYazA7YRtVOHm/N8b81RiTa4zJN8asD5C0F6vbNccYc9w/IB1YB3QG4pzwGcCPsQb1LHfe1oVPA/ZgH4RmwCvAc86vK2CASHc+GTgF+5Cega10Bju/4cARF7/Hpdvb+b2GbcE0A04CVgG/qOI+TnVxxQBtsa3bh3z8fw5sxraK3wXmOvee2FbNWUAU8FvgGyDaJ39WAR2xreEtwDVBZBiNVbBgv9FBrptdmod+7he6dD3AxU7ODs5vFrDCHU8E1mBbXQL08Qn3ILDUyZ6AbZX9Xw30Iwp4NpB8fuFecL94oC+wq1Q+52+AfzsZTwYOAGdXs+zSgY1YHW0NfAL82fklAdNcugnAS8ASn2vTgJ3Yij4SiKrkHtKA7U4n4tz5vX66/YTzGwAUAH2CxFVZeb8O3ObnlgMMCRD2RuBtP7d/Aze744PAcB+/PwCHfc7/AtzryrEXsBsY5vweBh73i3sjMM0dRwBfAEN89S3IPd0ArDzOOuhTYC4QjX2GsghQpwBXYJ/NU/38nsfWFSlOr8Y7/yHASHdtV+yze4OfTv7H6VRcFTJWpr+zgCJsHRMBXAt8D0iwOqKSdI4AI3zOhwLZx6NHQCLwFbanNZsgzzBwuruueRD/OGCvz/1eB7zl4x8B5AO/cedPYuuMt51+pgEpAeJ92pVddI115ngUzSfhdOBKn/PbgGf9wrwLXO6O03AVgTvvCxS6Gy9T0CBpLfHJmL8DDwYI0w5bmcT5uF0CfFTD+zoXWOvnthTYAKwHYpzbHcCLPmE8WKM+1id/LvXxnwPMr02eB5B1tsvDTJ9fxwDh1gFT3fEsjhm9M51yjwQ8PuEFayhP8XE7DdhRTbkGYh/mfbiKJki4CBeul4/bn6lo9Eb7nL8I3F6dsnNlcI3P+Y+B7ZXIfNjnPA24u5r3mwb80ef8l8A77rhUt5N9/FcB04+jvD/Ar+Hkq3N+7ncAL/i5LQJmu+PnsEOUCdjGw3agwCfsj7CGotjJf5eP3wJ8nmXn9gkwyx3fiDOKVGL0sMNwh4Axx5EXJzvZ4n3cnqOi0bsF22j1zf9Sv94+bnOABUHSugF4zU8nz6ymnEH11+XNNz5+8S58++PIjxK/++nh4gpkQCvVI2yj5jZ3PJvgRm8BsLASmZ4G3imVATsXl4sdhYh2OuoFfuf838PWB5Oc/63At/gZN2yH6AcXdmhN8qku5ih2+Rx3AS50XfhMEcnEtk46BAn/HbYV6T8MhIhMEpGVbmgxE1tZlYbrjH1A/eni4tvrk/7fsT2+oIhIOxF5QexwaBb2wfGX6QlsD/VRY0yBc+vo7gEAY4zX3V8nn+t+8Dk+CjSvTJbj5EVjTEuf3/ciMlPs8G9pPvQnQD4bYz7EDi/NA/aLyD9EJBHba4oH1vjE8Y5zrxJjzDpsZfoptsIIRltsa9pXL3YFCBcwH6tZdv4619FdGy8ifxc7mZ+F7SW2lPLD4YFkCUZVZV0XupCDbYX7koidF6tp2F8DedjhudexLefdYBegYMv7biAW+8xNFJFfVhW3iHR0cVc6hCt2RePb2Mbs8srCBqEjcMjYIdJSApXXrcA8Y8zuAH7BdKOnG+7+wenGX6hcr6qisrIv8/O5l7rQjUQgxzgrUUXY0vDZYhc7jceO9ARF7OrJC/EZ2vTzvx9b71xUKoMxZit2GPYxbA+wDbZBUlo2edgG0tvGmEJsLz4JOwLly2+wc42JxpjVlcnpT10YPd8M3YXt6flWwM2MMff6hOnsc3wy1lIf9HFDRGKwQ59zgXbGmJbAW9jeR2k6pwSQZRe2p9fGJ/1EY0y/AGF9+Yu7jxRjTCJwqU9aiEhz4CFsq2a2HJuH/B5raEvDibu/PVWkVwERGSPlV0T5/8bUIK4uWCN9HZDk8m+j7z35Yox5xBgzBNvz7omtJA5iFbCfT162MHbiuloYO9fztos3GAewrfVkH7fOQcIGotKyCxDfydhyA7gZO2w3wl17unP3vT5QhRFKNmGHRwG70g07tPtVkLCpfvNHqc4dY8whY8wMY0x794x4sD1QsPOXJcaYZ4wxxc5gvIBtfAaSoxn2mdyEnX7oAGwWkR+wvYbhzoBEuPBdgPeB/zXGPHucebEXaC3ll64H0p0JwB9FZFoAv2C68TiwFejhdOP3VNSrsNYNd7ypOmH99Ggstie805XfLcA0EfnCL47zsL30NP/IReQubG9tgjEmy9fPGPOyMaa/MSYJ+JNLq3SxzHqql699sCMpedUIW466Xo32HDBFRCaKSISIxIrIWN/FAcClItLXKerdwMvGmBK/eKKxBXAAKHYTu77LUxcAV4hdMu0RkU4i0tsYsxfbPX5ARBKd3ykickYVcidgWz5HRKQTttL35WFgtTHmKuBNYL5zfxGY7OSIwlaiBcB/q8oof4wxy035FZj+v5q0hJthFecA2EVB2BZXBURkmIiMcPLnYsfXva7X+gTwoIic5MJ2EpGJPtcaqXo5dQG2PAPiyv5VbGMiXuxCiJnBwgegqrID+JWIJLvGyh84tsowAWvYM53fn2qQbqhYhH3GxjhDczfwqjEmUE8vDTvk9Wuxi5Kuc+4fQtkioCT3rE7Crv77swvzlQ0iP3XPUXvs3HDpooLXgP5iF4fEAncC611L/m1sRTbQ/e4E1gIDjTElrpw+BB4zxpQ+S2WIfXctvaqMMMZ8h101OltEokXkNOziHH82AWcD88StPvXhDqd3/bDzfr66kQXkOJ28tip5woBngJvcc9oRWx8tDBK2Mj36B7YBM9D95mPrvYl+cVwOPOPfkxSR3wE/xc6PZvgnLCJDnM61dWktdXoD1oaMFJHxroF0A7YB7r8COApbt9SYOjV6xphdwFRsq+gAtud1q186z2IL4gfssMmvA8ST7dxfBA5jM3Cpj/8qrII+iJ28/ZhjPa6Z2Ep2s7v2ZcoPrwbiLmCwi+tNbCUM2FWi2AemVOlvAgaLyAxjzDZsz+JRbMFMAaa4bnnIMMZsxq7c+hQ7p5aCnW8JRCLWuB3GDu9kAPc7v9uwczor3RDP+9ieESLSGTtMtqEKcbxUrWfXYZc3/4DVj+epvkIHLTsf/oVtDH2LHRYvrdgfwk60HwRWYofzQk5lPXtjzCbscu9FwH5s5fxLn2vfFpHfu7CF2DnOmdi53iuBc330cwi2/LKB/wNmuPhxrfPzsXNzh7FzwhtxeWeMOYBdBHSP8x8BTHd+BcaYH0p/2LIpcscAV2F7krN9RzN8brMzwfXVnxnYueYMJ9tiAuiOMeZL4CfAE1J+deTHWB3/ALtA7T3nfgu23snGPh+BXseoV0pHgyoJ8nfsYrMN2LJ607mVXl+mV5XpkbGreX3LLwfId2VeGlcn7HqAZwLI8Rdsr/kbn/L9vY//w1h93IbVnZ+XevjUqfOd31TgnAB1agRVrAoPhpiAw70nBhFJw06I/rPeElVOCCJyKXbo83dVhJuAbb31NsYcqmbc92En8i+vvaRKQ0NE3sPO8/m37qtz7WJgqzGmIfTaleNA7CtJm4GrjDFv1fT6kL9sqzRMjDHPVWXwHGnYpd2bxOc9KF9EpLeIpIplOPAz7PCZ0gQxxkyorsFzw/OnuCHYs7E9gyUnVEAlZLg6ZCu2hx70/cHKCJcvCZxwRGQ+ttvsz3PGmGvqW56mghuWmFFFsATskGZH7HDsA9jVhGFFJUNLk45z9aFSe9pjh7STsCsArzXGrK1PAdyQ4duB/Gqy8EupGmPMXOwCx+OmXoc3FUVRFCWU6PCmoiiK0mQIq+HNNm3amK5du4ZaDEVRFKUeWbNmzUFjTLU+fFFbwsrode3aldWra/RyvaIoitLAEZHvqg5VN+jwpqIoitJkUKOnKGGM16sLzRSlLlGjpyhhyhfbv2fu3b/hny+/EWpRFKXREFZzeoEoKipi9+7d5Ofnh1oUpQERGxtLcnIyUVFRoRbluNn12mx+y2IObniNXaePovNJAfdbVhSlBoS90du9ezcJCQl07dqV8h+LV5TAGGPIyMhg9+7ddOvWLdTiHBdZR/MZkf0ehZ4Y2pBF2n9fo/O5Pwu1WIrS4An74c38/HySkpLU4CnVRkRISkpq0KMD3276nPZymG+H/Yl8ojHpK0ItkqI0CsLe6AFq8JQa09B15vA3dlu79qlnsiOuP8lZ60IrkKI0EhqE0VOUpkbE3rVkE0/Ljr3IadmbziW7KCwsCrVYitLgUaNXDUSEm2++uex87ty5zJ49O3QCVUFaWhr//W+N97Etx9lnn03Lli35yU9+UkdSKTWhbc5Wvo/rBR4PEe36ECtFfJ9e4512FEXxQ41eNYiJieHVV1/l4MGDdRqvMQav97j2QayUujB6t956K88++2wdSaTUhKLiEjqV7CGvxSkAJJ6cAkDGjqr261UUpSrU6FWDyMhIrr76ah588MEKfgcOHGDatGkMGzaMYcOG8ckndsPn2bNnM3fusR0w+vfvT3p6Ounp6fTq1YuZM2fSv39/du3axa233kr//v1JSUlh8WK7QXNaWhpjx47lggsuoHfv3syYMYNAO2I88sgj9O3bl9TUVKZPn056ejrz58/nwQcfZODAgSxfvrxSGS+77DJOO+00evTowRNPPFEW7//8z/+QkJBQab689NJL9O/fnwEDBnD66acDduHRFVdcQUpKCoMGDeKjjz4CYOHChZx77rmcddZZdO3alccee4y//vWvDBo0iJEjR3LokN1f9oknnmDYsGEMGDCAadOmcfTo0Qrpjhw5kk2bNpWdjx07tlF9vm7fvh9IlKPQyq487XjqAAAK9m6q7DJFUapB2L+y4Mtdb2xi8/dZdRpn346J/GlKvyrD/epXvyI1NZXf/va35dx/85vfcOONNzJ69Gh27tzJxIkT2bKl8mGor7/+mqeffpqRI0fyyiuvsG7dOr788ksOHjzIsGHDygzI2rVr2bRpEx07dmTUqFF88sknjB49ulxc9957Lzt27CAmJobMzExatmzJNddcQ/PmzbnlFrtn609/+tOgMq5fv56VK1eSm5vLoEGDmDx5Mh07dqxW3t199928++67dOrUiczMTADmzZuHiLBhwwa2bt3KhAkT+OqrrwDYuHEja9euJT8/n1NPPZX77ruPtWvXcuONN/LMM89www03cP755/Pzn/8cgD/+8Y8sWLCA66+/vly6F198MS+++CJ33XUXe/fuZe/evQwdOrRaMjcEDu7aRjIQ2+5UAOITW3OIRCSz3j5PqCiNllr39ETkehHZKiKbRGSOcztLRNaIyAb3/8zaixpaEhMTmTlzJo888kg59/fff5/rrruOgQMHcs4555CVlUVOTrC9Ri1dunRh5MiRAKxYsYJLLrmEiIgI2rVrxxlnnMHnn38OwPDhw0lOTsbj8TBw4EDS09MrxJWamsqMGTN47rnniIwM3IapTMapU6cSFxdHmzZtGDduHKtWrap2nowaNYpZs2bxxBNPUFJSUnY/l15q9+rt3bs3Xbp0KTN648aNIyEhgbZt29KiRQumTJkCQEpKStm9bdy4kTFjxpCSksKiRYvK9ehKueiii3j55ZcBePHFF7nggguqLXNDIHfv1wC0Su5Z5pYR2Z5med+HSiRFaTTUqqcnIuOAqcAAY0yBiJzkvA4CU4wx34tIf+BdoFPtRKVaPbITyQ033MDgwYO54ooryty8Xi8rV64kNja2XNjIyMhy83W+74w1a9asWunFxMSUHUdERFBcXFwhzJtvvsmyZct44403uOeee9iwoeK8TzAZoeLS/pos9Z8/fz6fffYZb775JkOGDGHNmjWVhve9H4/HU3bu8XjK7m3WrFksWbKEAQMGsHDhQtLS0irE06lTJ5KSkli/fj2LFy9m/vz51Za5IVBy6FsA2nTuVeaWE9eRNjnbQiWSojQaatvTuxa41xhTAGCM2e/+rzXGlDZLNwFxIhITJI4GQ+vWrbnoootYsGBBmduECRN49NFHy87XrVsH2G2SvvjiCwC++OILduzYETDOMWPGsHjxYkpKSjhw4ADLli1j+PDh1ZLH6/Wya9cuxo0bx3333ceRI0fIyckhISGB7OzsKmUEeP3118nPzycjI4O0tDSGDRtWrbQBtm/fzogRI7j77rtp27Ytu3btYsyYMSxatAiAr776ip07d9KrV68qYjpGdnY2HTp0oKioqCyeQFx88cXMmTOHI0eOkJqaWu34GwKRR74jQ1oREXOscVTYvBMneQ+W9agVRTk+amv0egJjROQzEflYRALVmNOAL0oNoz8icrWIrBaR1QcOHKilOCeem2++udwqzkceeYTVq1eTmppK3759y3od06ZN49ChQ/Tr14/HHnuMnj17BozvvPPOIzU1lQEDBnDmmWcyZ84c2rdvXy1ZSkpKuPTSS8sWjfz617+mZcuWTJkyhddee61sIUswGcEOj44bN46RI0dyxx13lM3njRkzhgsvvJAPPviA5ORk3n33XQDuvPNOli5dCtgVnikpKfTv358f/ehHDBgwgF/+8pd4vV5SUlK4+OKLWbhwYbkeXlX87//+LyNGjGDUqFH07t27zH3p0qXceeedZecXXHABL7zwAhdddFG1424oxOft5XBUu/KOLbsQI0Uc2rc7NEIpSiNBAq0ILBdA5H0gUC38B+Ae4CPg18AwYDHQ3bhIRaQfsBSYYIzZXpUwQ4cONf6r8LZs2UKfPn2qvhOlxsyePbvcgpfGRkPVnR139Se7eTdSbz62u8KXH77AgGW/YNtPXqHX0PEhlE5R6h4RWWOMqZfVaFXO6Rljgj5hInIt8KozcqtExAu0AQ6ISDLwGjCzOgZPURT77mZr7yEOxY8s557QvjsAufsCD5MrilI9avvKwhJgHPCRiPQEooGDItISeBO43RjzSS3TUE4Q4fxVmaZK5pEsWkkupnn5wZU2nezrC4UZO0MhlqI0Gmo7p/ck0F1ENgIvAJe7Xt91wKnAnSKyzv1OqiwiRVHg8P5dAES27FDOPbFFa46YZniy94RCLEVpNNSqp2eMKQQuDeD+Z+DPtYlbUZoi2Qes0YttVfENn4yINsTk6rt6ilIb9DNkihJG5B2yPbmEtp0r+B2Jbk9Cwb76FklRGhVq9BQljCg+YntyrdqfXMEvL74DSSX761skRWlUqNGrJkuWLEFE2Lp1a9Aw6enp9O/f/4TKsW7dOt56661axXHllVdy0kknnXBZleMg+wcKTSTxiW0qeHkTOtKCHAqPZge4UFGU6qBGr5o8//zzjB49mueffz6gf6BPhNWU6nxtoy6M3qxZs3jnnXdqFYdyYojIO0SmpwUE+BxcREs75Hlo77f1LZaiNBrU6FWDnJwcVqxYwYIFC3jhhRfK3NPS0hgzZgznnHMOffv2BazxmzFjBn369OGCCy4o2xrngw8+YNCgQaSkpHDllVdSUGA/UNO1a1duu+02Bg8ezEsvvVQuXf+tewoLC7nzzjtZvHgxAwcOZPHixeTm5nLllVcyfPhwBg0axOuvvw7YrXymTp3K2LFj6dGjB3fddVdZvKeffjqtW7eu9J4//vhjBg4cyMCBAxk0aBDZ2dkYY4Jug3TGGWcwdepUunfvzu23386iRYsYPnw4KSkpbN9uX9N84403GDFiBIMGDWL8+PHs21dxfmr69Om8+eabZeezZs0q+7h0UyC6MJOciBYB/eLadgEg6wd9V09RjpcGtbUQb98OP9TxRprtU2DSvZUGef311zn77LPp2bMnSUlJrFmzhiFDhgD2u5obN26kW7dupKens23bNhYsWMCoUaO48sor+dvf/sZ1113HrFmz+OCDD+jZsyczZ87k8ccf54YbbgAgKSmp7Dudvvhv3RMdHc3dd9/N6tWreeyxxwD4/e9/z5lnnsmTTz5JZmYmw4cPZ/x4+z2BVatWsXHjRuLj4xk2bBiTJ0+u9hY8c+fOZd68eYwaNYqcnBxiY2N59dVXg26D9OWXX7JlyxZat25N9+7dueqqq1i1ahUPP/wwjz76KA899BCjR49m5cqViAj//Oc/mTNnDg888EC5dEu3DZo8eTKFhYV88MEHPP7449WSuTEQV5xJfmRgo5fYzu6vd/SgvqunKMeL9vSqwfPPP8/06dMB2xPxHeIcPnw43bp1Kzvv3Lkzo0aNAuDSSy9lxYoVbNu2jW7dupV9f/Pyyy9n2bJlZddcfPHFAdMNtHWPP++99x733nsvAwcOZOzYseTn57Nzp60UzzrrLJKSkoiLi+P8889nxYoV1b7nUaNGcdNNN/HII4+QmZlJZGRkpdsgDRs2jA4dOhATE8Mpp5zChAkTgPLbBu3evZuJEyeSkpLC/fffH3DboEmTJvHRRx9RUFDA22+/zemnn05cXFy15W7oNCs5QkF0q4B+bTt2xWuEksNq9BTleGlYPb0qemQngkOHDvHhhx+yYcMGRISSkhJEhPvvvx+ouE3Q8WzVE2yroeps3WOM4ZVXXqmwk8Fnn31Wq22Dbr/9diZPnsxbb73FqFGjyj44HYzqbBt0/fXXc9NNN3HOOeeQlpYW8IswsbGxjB07lnfffZfFixeXNTaaCi28WRyIDTz0nNAsnn20xJOlL6gryvGiPb0qePnll7nsssv47rvvSE9PZ9euXXTr1o3ly5cHDL9z504+/fRTAP71r38xevRoevXqRXp6Ot988w0Azz77LGeccUaVaQfausd/26CJEyfy6KOPUvrh8LVr15b5/ec//+HQoUPk5eWxZMmSsh5oddi+fTspKSncdtttDBs2jK1bt9ZqGySAI0eO0KmTfen66aefDhru4osv5qmnnmL58uWcffbZ1Y6/oZOXX0giuRAXuKcHkBF5ErF5P9SjVIrSuFCjVwXPP/885513Xjm3adOmBV3F2atXL+bNm0efPn04fPgw1157LbGxsTz11FNceOGFpKSk4PF4uOaaa6pMO9DWPePGjWPz5s1lC1nuuOMOioqKSE1NpV+/ftxxxx1l1w8fPpxp06aRmprKtGnTyubzLrnkEk477TS2bdtGcnJy2f6A8+fPL9t26KGHHqJ///6kpqYSFRXFpEmTarUNEthvfV544YUMGTKENm2OLclfvXo1V111Vdn5hAkT+Pjjjxk/fjzR0dHVjr+hk3l4Px4xeJolBQ2TFd2exEI1eopyvFS5tVB9olsL1R0LFy4st+ClKdLQdOerTWvo+dKZfDniAQZMuipgmI8fvZoRGa8R+6f9AV9rUJSGSH1uLaQ9PUUJE/Iy7ddWYlu0DRrGm5hMLIUUZYf/hsuKEo6o0WukzJo1q0n38hoi+Ues0YtvEXxDkshW7gX173WLSkU5HhqE0QunIVilYdAQdaY4JwOAhNbtgoaJP6krANn7vqsPkRSl0RH2Ri82NpaMjIwGWYkpocEYQ0ZGBrGxsaEWpUZ4c6s2ei3b23dC8zPU6CnK8RD27+klJyeze/duDhzQOQyl+sTGxpKcnBxqMWpERP4h8kw0cTGB39sEOKldR/JNFCWZu+pRMkVpPIS90YuKiir3xRNFaaxEFGSSLQlU9v2ZhLho0mlDRLZuJqsox0OthzdF5HoR2Soim0Rkjp/fySKSIyK31DYdRWnsRBZlk+eJrzLcociTiDuqRk9Rjoda9fREZBwwFRhgjCkQEf9lZ38F3q5NGorSVIguyiY/onmV4fLiO9A55/N6kEhRGh+1Hd68FrjXGFMAYIwp29ZZRM4FdgC5tUxDUZoEMSW5FES3rDKcN7EzSVnvUlJwlIiYqnuGpexI386Bz1/DHNhGvKcIT0I7ok7qSVy34bQ9uQ+x0WE/26Eotaa2Wt4TGCMi9wD5wC3GmM9FpDlwG3AWUOnQpohcDVwNcPLJJ9dSHEVpuMR5c8iJ6lxluIh2vfHsMezdsYEOvUdUGf5wVg5fPnsbp+1fTDcpIsfEkUc0rfdmEfG1gU8g0zRja9Qp5LTsTXTH/kS3SiYysR0RsQlERHiIiIgk0gPGW0xJcQklxUUUlxTjLbHHJSXFeEusn5hiMF487r+YqjdHtlT8wkz5j85U8QWaIF+oadamM70GVv+7s0rjpkqjJyLvA4E+sPgHd31rYCQwDHhRRLoDs4EHjTE5VX3Z3xjzD+AfYD9DVhPhFaUxEW+OUhKVUGW4hM794QvITF9fpdHbfzCD7/82hbHeTaxvM4m2E2+j/akDiPIa9hzO5fB3GyjetZrIvV+QkLmFXgeXEHfwxbq6pbCgyERwuMt2WrUK/iFvpelQpdEzxowP5ici1wKvGvsS3SoR8QJtgBHABW5hS0vAKyL5xhj9RIiiBMAYQ3NzFBOTWGXYDt37UWQiKPxhc6XhDmcf5fvHp9K/ZAs7zniI1DOvKPOL8cDJbRM5ue0oGHqsF+QtLmb3d9s4mrGH4ux9mMKjeL1evCUleI3BeCLweCLxRETiiYggIqL0ONIdRyCeSIwnAiQCIxHg8eC7Zi5gy9bvPVxTIVTFq3wvCda0PvTFEobtXEBO5gE1egpQ++HNJcA44CMR6QlEAweNMWNKA4jIbCBHDZ6iBCf3aC7NpQhiqzZ6SYnN+VY6EJWxLWiYEq/hP0/czkUlG/h61Bx6+Bi8yvBERpJ8Sj84pV+1ZQ9nsn/YDjuhIDcz1KIoYUJtX1l4EuguIhuBF4DLjX46RVFqTO6RQwB4YltUGVZE2B/XnaTcr4OGef3ttzjvyHN813ESPSb8os7kbGhExtveXVHu4RBLooQLterpGWMKgUurCDO7NmkoSlMgN8tWypHxLasVPqfNQNrtWkZ+xi5ik8ovftm1L4PUVbeSHdmKky/9W12L2qCIbNYSgCLt6SmOsP/2pqI0BfJzbE8vqlnVPT2AxF5nALBz3Ufl3I0xbHz2Zk6VPTD1b0h867oVtIER3cz29Lx5R0IsiRIuqNFTlDCgIMf29KKbV89I9Rk8ihwTS/5XH5RzT3vnJSblvMbWk39K69SJdS5nQyOmuRo9pTxq9BQlDCgdfotr3rJa4RPj41gTO4Iu+z+EkiIA9u7dQ5+Vt7MnMpmeM+aeIEkbFnEJbsVmvho9xaJGT1HCgJKjmQDEJVZ/OLK47zRamCzSP36WvLx89i2cSWuO4Jn2TzyV7NTQlIiPjyffRCEFavQUixo9RQkDvPlZADSrgdEbMfESNtONNsv+wO65oxhYsJqNA/5Ahz6nnSgxGxwxkR6yicdTkB1qUZQwQY2eooQB4irlmPiq39MrpXlsNEfPXchm042I4qOsG3Ivg8+/6USJ2CAREXJoRmRRVqhFUcKERvWFWW9JCQf2phMb15wWScF3n1aUcMNTkEUOcTSPqNkjOXTgQIpSVmAMREdqGzYQuZ5mRBVpT0+xNKqnJPvIIdr9czBb3vl7qEVRlBoRUZRNLtXfMcGXqAiPGrxKyPM0I7pYjZ5iaVRPSmLLJApMFOT8EGpRFKVGRBbnVGsDWaXmFEQkEFOcE2oxlDChURk98XjI8LQiKnd/1YEVJYyIKj5KgRq9E0JhVHPivGr0FEujMnoAWRFJxBYcCLUYilIjokqOUuiJC7UYjZKS6ETivLqXtWJpdEYvN7oNzYsyQi2GotSIGO9RiiL13boTgTc6kVgKobgg1KIoYUCjM3qFcW1p5T0UajEUpUbEePMoVqN3YijduSJfX1tQGqHR8zZrRyK5FOXrcIbScIgzeZSo0TshiDN6he6rN0rTptEZvYjEDgAc2rcrxJIoSvWJM/l4o9TonQgi4q3RO3pEpz2URmj0mrXpBMChH3aGWBJFqR6muJAYKYJoNXongii3p15ejm4kqzRCo9eyfVcAsvenh1QORaku+blurikmIbSCNFJK99QryNa5fqURGr22nXsCUHJwR4glUZTqkZdrdwDQnRFODKU7VxTq7ukKdWD0ROR6EdkqIptEZI6Pe6qIfOrcN4hIbG3Tqg6xzRLJoAURWd/VR3KKUmsKcmxPT2Kr/7FppfrEJ1ijV6wLWRRq+cFpERkHTAUGGGMKROQk5x4JPAdcZoz5UkSSgKJaS1tNDkR2IP7onvpKTlFqRf5R29OLjNXhzRNB88QWlBjBm5dZd5F6S+x/T0TdxanUC7XdZeFa4F5jTAGAMab0+18TgPXGmC+de70um8qO60Ryzobjvt54vXyzeQ0ZW5YRcXgHFOYgGIhuholrhcS3ITqxDbEtTqJ5q3YktmlPs8Q2SA2/kK8oAIVHbU8vMk6N3okgMS6GbOJr9Z5efn4eX7z9FAlfvUrnvK20xH7AOotmZEe0IifmJIqadUBadCKmdWcST+pCqw7diGqVDHGtQKSubkepJbWtpXsCY0TkHiAfuMUY87lzNyLyLtAWeMEYMydQBCJyNXA1wMknn1xLcSyFCSdzUtaHlBQVEhEVXe3rioqL+ez1+XTaOJ8eZhc9gAITSa7EYfAQb/KIk8KA13qNkC3xFBFFsURSTCTFEgWINZgYxP0wpszNU+pncOdeACp7RIzPkSnvAFJ6rdj/UuYcJI6qHJVKCZC/5cqkgkfFbG5nCkEgugZ76SnVJz46gt3EI/nHt3v6pjXLif/3tfzI7GK3tGdLi9Mpad4BMJijh4jKO0DzvP0k5X7KSfsPEyHlSzifaA56kiiSGFcDeDBia4PSuqBcHeEU6JgbCF7E2Hilgp9/3YLzP/FsiejJ6Xe8Wy9p1RVVGj0ReR9oH8DrD+761sBIYBjwooh0d+6jndtR4AMRWWOM+cA/EmPMP4B/AAwdOrROSioyqRsR3xv27PyKTqf0r9Y16d9u48i/rmJ08Xq+i+zKmt5/pOPQn9AuuQetI202eb2GIzlZ5BzaT07mfo5m7qPgyAGKcw7C0QwiCzKhpBDxFiHeYiK8hRhjsJZIMOKmUEUAj/0vUuZvp1gFI06djX8FaRAE8ViTJs7AecQeG2PNoNcLXsB4jT034C17YOSYCA4pdx6uLdLwtMgGl+8GjDGIKwuPHPMvLUePa4WUlpttoAgeAW9sKwb0Hx6am2jkiAi50gxPYc23F1r1/iv0W34tuZ7mbD59Pn3GXkRykCHN4hIvezNz2LdnJ5n70inI2EVkzvfE5u0jvmA/Hm8RYrzgDJjgdXWCM1NlrVRnEKXU3d/NNo/dzdnjUvfS+qQ0fA2oNHQQz9yYzjVKIxyo0ugZY8YH8xORa4FXja3ZV4mIF2gD7AaWGWMOunBvAYOBCkbvRNCyaypsgP3b11bL6G1a9yltl1xCW/LYMOTP9J/8S7oEUGyPR2iR2IIWiS2AHidAckVRTgQFEc2Jr+Hu6evXrKD/8ms5ENWBVr/4N33bVl7BR0Z4SE5KJDmpP1C9xrZS/9R29eYSYByAiPQEooGDwLtAiojEu0UtZwCba5lWtUnuORivEQp2r68y7I6v1tNpyQWICFkz3iFlyvWITk4rSqOiMDKBqKLqby905PAhkt64glxPc1r94t8kVmHwlIZDbY3ek0B3EdkIvABcbiyHgb8CnwPrgC+MMW/WMq1q0yyhBbs9HYjJ2FJpuH0ZGZQ8fykCFM/8Nx16DKofARVFqVdKohOILam+0dv07E10MAfImvJPNXiNjFotZDHGFAKXBvF7DvvaQkjYH9+Djke3BvUvLi7hm3/MYqR3J7smP0vXbv3qUTpFUeoTE9OCZtnVM3obPvuQHx16jVUdpjN88JknWDKlvml0X2QpJa/9UDqafWTuDfxlluXPzmZUwTK29buBrsOn1LN0iqLUJ95mbUjgKEUFRysPaAy8/ycOk0jKjPvqRzilXmm0Rq91P9tC2/nFOxX81i9byunpj7Ih8Qz6Xvin+hZNUZT6JqEjAEf2Vf4h+q8+XUpK0Xq+7n0tcQkt60Ewpb5ptEavR8pIMkjEbCtv9Pbt/JrOH/6KXRHJnPrzZ/SlUUVpAkS3sruvZO2v3OjJsjl8Txv6n/Ob+hBLCQGN1uhFR0WysfVE+h5ZTs7hHwAoyM3k6NMXEmmK8FyySFtyitJEaH6S/fBF7sHg+2x+v+m/9MjfyNaulxEfrx//bqw0WqMHcNK4X+DBy45/3UTewe/47pHJdC7+jq1jHuPkHgNCLZ6iKPVEm47dACg8FNzoHXj/r+SYOFJ+8qv6EksJAY3a6PVJGcZHbS8l5cCbxD2WSpf8rawcdB/Dxl8QatEURalHklolkWPi8GZ9H9D/8A/p9D30IWvbTKFtm7b1LJ1SnzT6LySfcc3DvP/6ALwHv6b9adMZnTo41CIpilLPeDzCfk8bYnJ2B/Tf/u+/MggvyWffWM+SKfVNozd6UZERjJ/281CLoShKiMmI7UKHvPQK7vm5WfTY/QpfNBvDsB59618wpV5p1MObiqIopRxNPIX2xd9jigvKuW94az4tyCF2zHUhkkypT9ToKYrSJJCTehMpXjJ2Hvs8obekhA6bn2JbZE/6jzgrhNIp9YUaPUVRmgStuqQA8MPXa8rcNnz0Isnme7IHXo14tDpsCmgpK4rSJDil31ByTCxF334KgPF6ifzsMfaRxIAJM0MsnVJfqNFTFKVJEB8Xx7bofpx04BMwhg0fv0q/oo181/sqoqJjQi2eUk+o0VMUpcmQdcpkOnm/Z/tHz5C07PfskXYMPO+mUIul1CNq9BRFaTIMOPtn7KIdpyz7NW29B8meNI/omNhQi6XUI43+PT1FUZRSWrdsyb6LX+HjFc/QbsgUeg8+PdQiKfWMGj1FUZoUffqk0KfP/aEWQwkROrypKIqiNBnU6CmKoihNBjHGhFqGMkTkAPBdHUTVBjhYB/HUBw1JVmhY8qqsJ46GJG9DkhUalrx1JWsXY0y9bG8RVkavrhCR1caYoaGWozo0JFmhYcmrsp44GpK8DUlWaFjyNiRZS9HhTUVRFKXJoEZPURRFaTI0VqP3j1ALUAMakqzQsORVWU8cDUnehiQrNCx5G5KsQCOd01MURVGUQDTWnp6iKIqiVECNnqIoitJkaFRGT0TOFpFtIvKNiNweann8EZHOIvKRiGwWkU0i8hvnPltE9ojIOvf7cahlBRCRdBHZ4GRa7dxai8h/RORr979VGMjZyyfv1olIlojcEE75KiJPish+Edno4xYwL8XyiNPj9SIyOAxkvV9Etjp5XhORls69q4jk+eTx/PqUtRJ5g5a9iPzO5e02EZkYBrIu9pEzXUTWOfdwyNtgdVZY6m61MMY0ih8QAWwHugPRwJdA31DL5SdjB2CwO04AvgL6ArOBW0ItXwB504E2fm5zgNvd8e3AfaGWM4Ae/AB0Cad8BU4HBgMbq8pL4MfA24AAI4HPwkDWCUCkO77PR9auvuHCKG8Dlr173r4EYoBurs6ICKWsfv4PAHeGUd4Gq7PCUner82tMPb3hwDfGmG+NMYXAC8DUEMtUDmPMXmPMF+44G9gCdAqtVDVmKvC0O34aODd0ogTkf4Dtxpi6+LJPnWGMWQYc8nMOlpdTgWeMZSXQUkQ61IugBJbVGPOeMabYna4EkutLnqoIkrfBmAq8YIwpMMbsAL7B1h31QmWyiogAFwHP15c8VVFJnRWWulsdGpPR6wTs8jnfTRgbFBHpCgwCPnNO17nhgCfDYcjQYYD3RGSNiFzt3NoZY/a64x+AdqERLSjTKV9phGO+lhIsL8Ndl6/EtuZL6SYia0XkYxEZEyqhAhCo7MM5b8cA+4wxX/u4hU3e+tVZDVV3G5XRazCISHPgFeAGY0wW8DhwCjAQ2Isd4ggHRhtjBgOTgF+JSLnNx4wdzwibd15EJBo4B3jJOYVrvlYg3PIyGCLyB6AYWOSc9gInG2MGATcB/xKRxFDJ50ODKXsfLqF8gy1s8jZAnVVGQ9HdUhqT0dsDdPY5T3ZuYYWIRGGVZ5Ex5lUAY8w+Y0yJMcYLPEE9DrdUhjFmj/u/H3gNK9e+0uEK939/6CSswCTgC2PMPgjffPUhWF6GpS6LyCzgJ8AMV9Hhhgkz3PEa7BxZz5AJ6aik7MM1byOB84HFpW7hkreB6iwamO760piM3udADxHp5lr804GlIZapHG7MfgGwxRjzVx933zHv84CN/tfWNyLSTEQSSo+xCxk2YvP0chfscuD10EgYkHIt5XDMVz+C5eVSYKZbCTcSOOIzlBQSRORs4LfAOcaYoz7ubUUkwh13B3oA34ZGymNUUvZLgekiEiMi3bDyrqpv+QIwHthqjNld6hAOeRuszqIB6W4FQr2Spi5/2JVDX2FbRH8ItTwB5BuNHQZYD6xzvx8DzwIbnPtSoEMYyNodu8rtS2BTaX4CScAHwNfA+0DrUMvq5GoGZAAtfNzCJl+xxngvUISd5/hZsLzErnyb5/R4AzA0DGT9BjtXU6q3813YaU4/1gFfAFPCJG+Dlj3wB5e324BJoZbVuS8ErvELGw55G6zOCkvdrc5PP0OmKIqiNBka0/CmoiiKolSKGj1FURSlyaBGT1EURWkyqNFTFEVRmgxq9BRFUZQmgxo9RVEUpcmgRk9RFEVpMqjRUxRFUZoMavQURVGUJoMaPUVRFKXJoEZPURRFaTKo0VMURVGaDGFj9ESkq4gYt6+UcgIRkVkisqKe0ooTkbdE5LCI/LY+0vRLP11ExtdDOmkiclUQP9XtEFBZvtdnmbh0Tg3iV2/PYmNARH7r6pJ3RST+eOIIG6OnHB8iMltEikQkx+dX78alEsYDqUBnY8ycUkdnjLqGTKowwpXh7BqE/6mIfCciuSKyRERaVxJ2oIisEZGj7v9AH7+WIvK0iOx3v9kBrl0uIkdEZLeI3OHn/z8istXF/ZGIdAmQfmsROeBbsYvISBH5j4gccn4v+e1/V9X9N5mtYVxjamw1w4qI3CciGe53n9sPL1j4KvVIRHqISL6IPOfj9nu/+iZPRLwi0sb5zxWRr0Uk2+nHTL84p4jIRnftf0Wkr59/dxH5t7v+oIiU1RuuDkkGemP3+KwxdWb0tBUbUhYbY5r7/OZUfUm90RpIN8bkhFqQ2uAqlJA3EkWkH/B34DKgHXAU+FuQsNHYzT2fA1oBTwOvO3eAB4F4oCt2Z/HLROQKnyj+BSzDluEZwC9F5BwXdxvgVeAO578an12/fbgP2OLn1gr4h0u3C5ANPFWN2w9Lwqjuuxo4FxiAbWhOAX4RKGAN9GgedoPuMowxf/Gtb7BlnGaMOeiC5Lq0W2A3mH1YRH7k0u0BLAKuAVoCbwBLS/PQ6eZ/gA+B9lgDV2ZwXfq5wA7snn41plYPsWut3yYi64FcEYl0rbj/ikimiHzp20pxrZb/E5FVIpIlIq8Ha6WKyBUissVZ+29F5Bd+/lNFZJ2LZ7vYnZ0RkRYiskBE9orIHhH5s7jdhyu5j1NE5EPXOjooIotEpKWP3yERGezOO7rW6Vh3fo6IbHL3myYiffzy5xYRWS+2tbxYRGJrntM1R0Rud/mSLSKbReS8IOFERB4U29LPEpENItLf+cW4VttOEdknIvNFJK6GokQC3ipkTRKRN1z6n7sy8+0ZGBG5xrUeM0VknohtwVZWdj4Mc3lwWESeKi0DEWnlWpQHnN+/RSTZJ900EblHRD7BVgrdq7jXLiLyicvz95xh8GWGy8uDIvKHKuIKxgzgDWPMMteQuAM4X9wu936Mxeb/Q8aYAmPMI9hNPs90/lOAOcaYo8aYdOwO2Vf6XN8VWGSMKTHGbAdWAP2c3/nAJmPMS8aYfGA2MEBEepde7Cq6/vgZNGPM2+66LGN3YX8MGHU8mSEi3URkmcvz951uPBck7DT3TPb3cb5SRL539cUtPmGHi8inTt/2ishjcqyxUKqTvxKRr7EbqVbF+ED66xPfXKeDO0RkUg2zoZTLgQeMMbuNMXuAB4BZQcJWqUciMh3IxG4WGxB3HzOxDSoAjDF/MsZsNcZ4jTGfAcuB05z3RGC5MWaFMaYYazA7YRtVOHm/N8b81RiTa4zJN8asD5C0F6vbNaeWu+qmY3fS7QzEOeEzsDvreoCz3HlbFz4N2IN9EJoBrwDPOb+u2B16I935ZOAU7EN6BrbSGez8hgNHXPwel25v5/catgXTDDgJWAX8oor7ONXFFQO0xbZuH/Lx/zmwGdsqfheY69x7Yls1ZwFRwG+xO0xH++TPKqAjtjW8Bb/dkf12KM6s5Dc6yHWzS/PQz/1Cl64HuNjJ2cH5zQJWuOOJwBpsq0uAPj7hHsTuOt0aSMC2yv6vBvoRhd3BuoJ8fuFecL94oC92h+4VPv4G+LeT8WTgAHB2NcsuHdiI1dHWwCfAn51fEnZ36nh3fy8BS3yuTQN2Yiv6SCCqkntIw+4W3RP7LKQB9/rp9hPObwBQAPQJEldl5f06cJufWw4wJEDYG4G3/dz+Ddzsjg8Cw338/gAc9jn/C3CvK8de2J2+hzm/h4HH/eLeCExzxxHY3b6H+OpbkHu6AVh5nHXQp8BcIBr7DGURoE4BrsA+m6f6+T2PrStSnF6Nd/5DgJHu2q7YZ/cGP538j9OpuCpkrEx/Z2F3Uf+5y7Nrge/BbvAdqI6oJJ0jwAif86FA9vHoEZAIfIXtac0myDMMnO6uax7EPw67U3zp/V4HvOXjHwHkA79x509i64y3nX6mASkB4n3alV10jXXmeBTNJ+F04Eqf89uAZ/3CvAtc7o7TcBWBO+8LFLobL1PQIGkt8cmYvwMPBgjTDluZxPm4XQJ8VMP7OhdY6+e2FNgArAdinNsdwIs+YTxYoz7WJ38u9fGfA8yvTZ4HkHW2y8NMn1/HAOHWAVPd8SyOGb0znXKPBDw+4QVrKE/xcTsN2FFNuQZiH+Z9uIomSLgIF66Xj9ufqWj0RvucvwjcXp2yc2Vwjc/5j4Htlch82Oc8Dbi7mvebBvzR5/yXwDvuuFS3k338VwHTj6O8P8Cv4eSrc37udwAv+LktAma74+ewQ5QJ2MbDdqDAJ+yPsIai2Ml/l4/fAnyeZef2CTDLHd+IM4pUYvSww3CHgDHHkRcnO9nifdyeo6LRuwXbaPXN/1K/3j5uc4AFQdK6AXjNTyfPrKacQfXX5c03Pn7xLnz748iPEr/76eHiCmRAK9UjbKPmNnc8m+BGbwGwsBKZngbeKZUBOxeXix2FiHY66gV+5/zfw9YHk5z/rcC3+Bk3bIfoBxd2aE3yqS7mKHb5HHcBLnRd+EwRycS2TjoECf8dthXpPwyEiEwSkZVuaDETW1mVhuuMfUD96eLi2+uT/t+xPb6giEg7EXlB7HBoFvbB8ZfpCWwP9VFjTIFz6+juAQBjjNfdXyef637wOT4KNK9MluPkRWNMS5/f9yIyU+zwb2k+9CdAPhtjPsQOL80D9ovIP0QkEdtrigfW+MTxjnOvEmPMOmxl+im2wghGW2xr2lcvdgUIFzAfq1l2/jrX0V0bLyJ/FzuZn4XtJbaU8sPhgWQJRlVlXRe6kINthfuSiJ0Xq2nYXwN52OG517Et591gF6Bgy/tuIBb7zE0UkV9WFbeIdHRxVzqEK3ZF49vYxuzyysIGoSNwyNgh0lICldetwDxjzO4AfsF0o6cb7v7B6cZfqFyvqqKysi/z87mXutCNRCDHOCtRRdjS8NliFzuNx470BEXs6skL8Rna9PO/H1vvXFQqgzFmK3YY9jFsD7ANtkFSWjZ52AbS28aYQmwvPgk7AuXLb7BzjYnGmNWVyelPXRg93wzdhe3p+VbAzYwx9/qE6exzfDLWUh/0cUNEYrBDn3OBdsaYlsBb2N5HaTqnBJBlF7an18Yn/URjTL8AYX35i7uPFGNMInCpT1qISHPgIWyrZrYcm4f8HmtoS8OJu789VaRXAREZI+VXRPn/xtQgri5YI30dkOTyb6PvPflijHnEGDME2/Puia0kDmIVsJ9PXrYwduK6Whg71/O2izcYB7Ct9WQft85Bwgai0rILEN/J2HIDuBk7bDfCXXu6c/e9PlCFEUo2YYdHAbvSDTu0+1WQsKl+80epzh1jzCFjzAxjTHv3jHiwPVCw85clxphnjDHFzmC8gG18BpKjGfaZ3ISdfugAbBaRH7C9huHOgES48F2A94H/NcY8e5x5sRdoLeWXrgfSnQnAH0VkWgC/YLrxOLAV6OF04/dU1Kuw1g13vKk6Yf30aCy2J7zTld8twDQR+cIvjvOwvfQ0/8hF5C5sb22CMSbL188Y87Ixpr8xJgn4k0urdLHMeqqXr32wIyl51QhbjrpejfYcMEVEJopIhIjEishY38UBwKUi0tcp6t3Ay8aYEr94orEFcAAodhO7vstTFwBXiF0y7RGRTiLS2xizF9s9fkBEEp3fKSJyRhVyJ2BbPkdEpBO20vflYWC1MeYq4E1gvnN/EZjs5IjCVqIFwH+ryih/jDHLTfkVmP6/mrSEm2EV5wDYRUHYFlcFRGSYiIxw8udix9e9rtf6BPCgiJzkwnYSkYk+1xqpejl1AbY8A+LK/lVsYyJe7EKImcHCB6CqsgP4lYgku8bKHzi2yjABa9gznd+fapBuqFiEfcbGOENzN/CqMSZQTy8NO+T1a7GLkq5z7h9C2SKgJPesTsKu/vuzC/OVDSI/dc9Re+zccOmigteA/mIXh8QCdwLrXUv+bWxFNtD97gTWAgONMSWunD4EHjPGlD5LZYh9dy29qowwxnyHXTU6W0SiReQ07OIcfzYBZwPzxK0+9eEOp3f9sPN+vrqRBeQ4nby2KnnCgGeAm9xz2hFbHy0MErYyPfoHtgEz0P3mY+u9iX5xXA4849+TFJHfAT/Fzo9m+CcsIkOczrV1aS11egPWhowUkfGugXQDtgHuvwI4Clu31Jg6NXrGmF3AVGyr6AC253WrXzrPYgviB+ywya8DxJPt3F8EDmMzcKmP/yqsgj6Inbz9mGM9rpnYSnazu/Zlyg+vBuIuYLCL601sJQzYVaLYB6ZU6W8CBovIDGPMNmzP4lFswUwBprhuecgwxmzGrtz6FDunloKdbwlEIta4HcYO72QA9zu/27BzOivdEM/72J4RItIZO0y2oQpxvFStZ9dhlzf/gNWP56m+QgctOx/+hW0MfYsdFi+t2B/CTrQfBFZih/NCTmU9e2PMJuxy70XAfmzl/Eufa98Wkd+7sIXYOc6Z2LneK4FzffRzCLb8soH/A2a4+HGt8/Oxc3OHsXPCG3F5Z4w5gF0EdI/zHwFMd34FxpgfSn/YsilyxwBXYXuSs31HM3xuszPB9dWfGdi55gwn22IC6I4x5kvgJ8ATUn515MdYHf8Au0DtPed+C7beycY+H4Fex6hXSkeDKgnyd+xisw3YsnrTuZVeX6ZXlemRsat5fcsvB8h3ZV4aVyfseoBnAsjxF2yv+Ruf8v29j//DWH3chtWdn5d6+NSp853fVOCcAHVqBFWsCg+GmIDDvScGEUnDToj+s94SVU4IInIpdujzd1WEm4BtvfU2xhyqZtz3YSfyL6+9pEpDQ0Tew87z+bfuq3PtYmCrMaYh9NqV40DsK0mbgauMMW/V9PqQv2yrNEyMMc9VZfAcadil3ZvE5z0oX0Skt4ikimU48DPs8JnSBDHGTKiuwXPD86e4IdizsT2DJSdUQCVkuDpkK7aHHvT9wcoIly8JnHBEZD622+zPc8aYa+pbnqaCG5aYUUWwBOyQZkfscOwD2NWEYUUlQ0uTjnP1oVJ72mOHtJOwKwCvNcasrU8B3JDh24H8arLwS6kaY8xc7ALH46ZehzcVRVEUJZTo8KaiKIrSZAir4c02bdqYrl27hloMRVEUpR5Zs2bNQWNMtT58UVvCyuh17dqV1atr9HK9oiiK0sARke+qDlU36PCmoiiK0mRQo6coYcYn3xwkI+e4PjahKEoVqNFTlDAir7CEpU/dy4NPLAi1KIrSKAmrOb1AFBUVsXv3bvLz80MtitKAiI2NJTk5maioqFCLUiPyCgq4L+oJ++GuY18XUxSljgh7o7d7924SEhLo2rUr5T8WryiBMcaQkZHB7t276datW6jFqRElhTX+aLyiKDUg7Ic38/PzSUpKUoOnVBsRISkpqUGODnhL/DccURSlLgl7oweowVNqTEPVmRJvcahFUJRGTYMweorSVDDFavQU5USiRq8aiAg333xz2fncuXOZPXt26ASqgrS0NP773xrvY1vGunXrOO200+jXrx+pqaksXhzyrcSaDDq8qSgnFjV61SAmJoZXX32VgwcP1mm8xhi83uPaB7FSamv04uPjeeaZZ9i0aRPvvPMON9xwA5mZmXUnoBKUcsObJdrrU5S6Ro1eNYiMjOTqq6/mwQcfrOB34MABpk2bxrBhwxg2bBiffGI3fJ49ezZz5x7bAaN///6kp6eTnp5Or169mDlzJv3792fXrl3ceuut9O/fn5SUlLJeVVpaGmPHjuWCCy6gd+/ezJgxg0A7YjzyyCP07duX1NRUpk+fTnp6OvPnz+fBBx9k4MCBLF++vFIZL7vsMk477TR69OjBE088AUDPnj3p0aMHAB07duSkk07iwIEDFdJ+6aWX6N+/PwMGDOD0008H7MKjK664gpSUFAYNGsRHH30EwMKFCzn33HM566yz6Nq1K4899hh//etfGTRoECNHjuTQIbu/7BNPPMGwYcMYMGAA06ZN4+jRoxXSHTlyJJs2bSo7Hzt2bKP5fJ3x6emZotwQSqIojZOwf2XBl7ve2MTm77PqNM6+HRP505R+VYb71a9+RWpqKr/97W/Luf/mN7/hxhtvZPTo0ezcuZOJEyeyZUvl+19+/fXXPP3004wcOZJXXnmFdevW8eWXX3Lw4EGGDRtWZkDWrl3Lpk2b6NixI6NGjeKTTz5h9OjR5eK699572bFjBzExMWRmZtKyZUuuueYamjdvzi232D1bf/rTnwaVcf369axcuZLc3FwGDRrE5MmT6dixY1n8q1atorCwkFNOOaXCfdx99928++67dOrUqawnOG/ePESEDRs2sHXrViZMmMBXX30FwMaNG1m7di35+fmceuqp3Hfffaxdu5Ybb7yRZ555hhtuuIHzzz+fn//85wD88Y9/ZMGCBVx//fXl0r344ot58cUXueuuu9i7dy979+5l6NChleZ5Q8Hr09MrzMshJrZFCKVRlMaH9vSqSWJiIjNnzuSRRx4p5/7+++9z3XXXMXDgQM455xyysrLIyQm216ilS5cujBw5EoAVK1ZwySWXEBERQbt27TjjjDP4/PPPARg+fDjJycl4PB4GDhxIenp6hbhSU1OZMWMGzz33HJGRgdswlck4depU4uLiaNOmDePGjWPVqlVl1+3du5fLLruMp556Co+noqqMGjWKWbNm8cQTT1DieigrVqzg0kvtXr29e/emS5cuZUZv3LhxJCQk0LZtW1q0aMGUKVMASElJKbu3jRs3MmbMGFJSUli0aFG5Hl0pF110ES+//DIAL774IhdccEGl+d2Q8J3Ty8/NDqEkitI4aVA9ver0yE4kN9xwA4MHD+aKK64oc/N6vaxcuZLY2NhyYSMjI8vN1/m+M9asWbNqpRcTE1N2HBERQXGAlX1vvvkmy5Yt44033uCee+5hw4YNFcIEkxEqLu0vPc/KymLy5Mncc889ZQban/nz5/PZZ5/x5ptvMmTIENasWVPt+/F4PGXnHo+n7N5mzZrFkiVLGDBgAAsXLiQtLa1CPJ06dSIpKYn169ezePFi5s+fX2m6DYlyRi8vF+3nKUrdoj29GtC6dWsuuugiFiw49l3ECRMm8Oijj5adr1u3DrDbJH3xxRcAfPHFF+zYsSNgnGPGjGHx4sWUlJRw4MABli1bxvDhw6slj9frZdeuXYwbN4777ruPI0eOkJOTQ0JCAtnZx3oJwWQEeP3118nPzycjI4O0tDSGDRtGYWEh5513HjNnzqy0F7V9+3ZGjBjB3XffTdu2bdm1axdjxoxh0aJFAHz11Vfs3LmTXr16Vet+ALKzs+nQoQNFRUVl8QTi4osvZs6cORw5coTU1NRqxx/u+A5vFuVpT09R6ho1ejXk5ptvLreK85FHHmH16tWkpqbSt2/fsl7HtGnTOHToEP369eOxxx6jZ8+eAeM777zzSE1NZcCAAZx55pnMmTOH9u3bV0uWkpISLr300rJFI7/+9a9p2bIlU6ZM4bXXXitbyBJMRrDDo+PGjWPkyJHccccddOzYkRdffJFly5axcOFCBg4cyMCBA8sM5Z133snSpUsBuPXWW0lJSaF///786Ec/YsCAAfzyl7/E6/WSkpLCxRdfzMKFC8v18Krif//3fxkxYgSjRo2id+/eZe5Lly7lzjvvLDu/4IILeOGFF7jooouqHXdDwLenV3C08mFyRVFqjgRaERgqhg4davxX4W3ZsoU+ffqESKLGzezZs8steGlsNETd2bhmBf3fmAzAtrF/p9fY6SGWSFFOPCKyxhhTL6vRtKenKGGE8RneLM7Xnp6i1DUNaiGLUreE81dlmiq+7+mVFOh7eopS12hPT1HCCN+FLN5CNXqKUteo0VOUMMJ4fb7IUljxazSKotQONXqKEkaUN3ra01OUukaNnqKEEb6vLEiR9vQUpa5Ro1dNlixZgoiwdevWoGHS09Pp37//CZVj3bp1vPXWW8d9fenL7H379qVfv348/PDDdSidUlt8e3pq9BSl7lGjV02ef/55Ro8ezfPPPx/QP9AnwmpKSTX2Uqut0YuMjOSBBx5g8+bNrFy5knnz5rF58+bjjk+pW3yNnqcoL4SSKErjRI1eNcjJyWHFihUsWLCAF154ocw9LS2NMWPGcM4559C3b1/AGr8ZM2bQp08fLrjggrKtcT744AMGDRpESkoKV155JQUFBYD9XNltt93G4MGDeemll8ql6791T2FhIXfeeSeLFy9m4MCBLF68mNzcXK688kqGDx/OoEGDeP311wG7lc/UqVMZO3YsPXr04K677gKgQ4cODB48GICEhAT69OnDnj17Ktzzxx9/XPY1lkGDBpGdnY0xJug2SGeccQZTp06le/fu3H777SxatIjhw4eTkpLC9u3bAXjjjTcYMWIEgwYNYvz48ezbt69CutOnT+fNN98sO581a1bZx6WbAqakqOzYU6w9PUWpaxrWe3pv3w4/VPygcq1onwKT7q00yOuvv87ZZ59Nz549SUpKYs2aNQwZMgSw39XcuHEj3bp1Iz09nW3btrFgwQJGjRrFlVdeyd/+9jeuu+46Zs2axQcffEDPnj2ZOXMmjz/+ODfccAMASUlJZd/p9MV/657o6GjuvvtuVq9ezWOPPQbA73//e84880yefPJJMjMzGT58OOPHjwfstkAbN24kPj6eYcOGMXny5HJb8KSnp7N27VpGjBhRIe25c+cyb948Ro0aRU5ODrGxsbz66qtBt0H68ssv2bJlC61bt6Z79+5cddVVrFq1iocffphHH32Uhx56iNGjR7Ny5UpEhH/+85/MmTOHBx54oFy6pdsGTZ48mcLCQj744AMef/zxahZmI8DYnl6+iSKyRHt6ilLXaE+vGjz//PNMn24/BzV9+vRyQ5zDhw+nW7duZeedO3dm1KhRAFx66aWsWLGCbdu20a1bt7Lvb15++eUsW7as7JqLL744YLqBtu7x57333uPee+9l4MCBjB07lvz8fHbu3AnAWWedRVJSEnFxcZx//vmsWLGi7LqcnBymTZvGQw89RGJiYsC0b7rpJh555BEyMzOJjIysdBukYcOG0aFDB2JiYjjllFOYMGECUH7boN27dzNx4kRSUlK4//77A24bNGnSJD766CMKCgp4++23Of3004mLiwt4742R0pfTcyWeSG9+FaEVRakpJ7ynJyJnAw8DEcA/jTGVd6sqo4oe2Yng0KFDfPjhh2zYsAERoaSkBBHh/vvvBypuExRsq57KCLbVUHW27jHG8Morr1TYyeCzzz4LKktRURHTpk1jxowZnH/++QHTvv3225k8eTJvvfUWo0aN4t133630HqqzbdD111/PTTfdxDnnnENaWlrAL8LExsYyduxY3n33XRYvXlzW2GgqlM7pHZV4orSnpyh1zgnt6YlIBDAPmAT0BS4Rkb4nMs265uWXX+ayyy7ju+++Iz09nV27dtGtWzeWL18eMPzOnTv59NNPAfjXv/7F6NGj6dWrF+np6XzzzTcAPPvss5xxxhlVph1o6x7/bYMmTpzIo48+SumHw9euXVvm95///IdDhw6Rl5fHkiVLGDVqFMYYfvazn9GnTx9uuummStNOSUnhtttuY9iwYWzdurVW2yABHDlyhE6dOgHw9NNPBw138cUX89RTT7F8+XLOPvvsasffGDClw5sSR7T29BSlzjnRw5vDgW+MMd8aYwqBF4CpJzjNOuX555/nvPPOK+c2bdq0oKs4e/Xqxbx58+jTpw+HDx/m2muvJTY2lqeeeooLL7yQlJQUPB4P11xzTZVpB9q6Z9y4cWzevLlsIcsdd9xBUVERqamp9OvXjzvuuKPs+uHDhzNt2jRSU1OZNm0aQ4cO5ZNPPuHZZ5/lww8/LFuoUroadP78+WXbDj300EP079+f1NRUoqKimDRpUq22QQL7rc8LL7yQIUOG0KZNmzL31atXc9VVV5WdT5gwgY8//pjx48cTHR1d7fgbBW54syCiGdFGjZ6i1DUndGshEbkAONsYc5U7vwwYYYy5zifM1cDVACeffPKQ7777rlwcDXF7mHBg4cKF5Ra8NEUaou588sqjjNrwR76IG0mvvC9pNvuHUIukKCecJrW1kDHmH8aYocaYoW3btg21OIoSWtycXnFkc2IpgDDa71JRGgMneiHLHqCzz3myc1NOMLNmzWLWrFmhFkOpIaULWYqjmhOBF4oLICo2xFIpSuPhRPf0Pgd6iEg3EYkGpgNLaxpJOO3urjQMGqzOOKNnohLsqe6ppyh1ygk1esaYYuA64F1gC/CiMabiy1mVEBsbS0ZGRsOtxJR6xxhDRkYGsbENr4dUunrTxDQHoEB3T1eUOuWEv6dnjHkLOO6PRSYnJ7N7924OHDhQh1IpjZ3Y2FiSk5NDLUbNcT09ibUfDMjPzSauTWUXKIpSE8L+M2RRUVHlvniiKI2Z0jm9iFg7vFmQl11ZcEVRakjIV28qiuJDqdGLsz29ojwd3lSUukSNnqKEE25OL9IZvUI1eopSp6jRU5RwwpT29FoAUKwLWRSlTlGjpyjhhNcLQFS8NXolBWr0FKUuUaOnKOGEm9OLblZq9HQjWUWpS9ToKUo44YY3Y+LtnJ6+nK4odYsaPUUJJ7wlFOMhLt6+nG4KtaenKHWJGj1FCSeMFy8e4mKjyTdRUKg9PUWpS9ToKUoYIaYYLx5iIyPIIwaKtKenKHWJGj1FCSe8JZQQgccj5BGDp1iNnqLUJWr0FCWMEFNCMREAFEgsHu3pKUqdokZPUcIIj7eYEl+jV5IfYokUpXGhRk9RwgiPKaZY7HfgCz2xRBbnhVgiRWlcqNFTlDBCzLGeXqEnjkivGj1FqUvU6ClKGOHxFlPienrFEbFEe3V4U1HqEjV6ihJGiCkp6+mVRMQRrT09RalT1OgpShgh3mK8rqdXEhlHjNGenqLUJWr0FCWMEG9RmdHzRsYTawpCLJGiNC7U6ClKGCGmBK/Y4U0TFU8MhWU7LyiKUnvU6ClKGBFhCinxRAPW6AFQpPN6ilJXqNFTlDAiyltIsScGAIluBkCJbi+kKHWGGj1FCSOifHp6Em17enlHs0IpkqI0KtToKUoYEWUK8UZYo+eJsT29gtzsUIqkKI0KNXqKEkZEmUK8bngzwhm9wrycUIqkKI0KNXqKEkbEUICJjAUgMlaNnqLUNWr0FCVMMMbQ3BzFG50AQGSs/V+Ur8ObilJXqNFTlDAhLy+XGCmGmEQAouOaA1Ccr3vqKUpdoUZPUcKE3COHAJC4FoCP0SvQ4U1FqStqZfREZLaI7BGRde73Yx+/34nINyKyTUQm1l5URWnc5OUcBsDjjF5MvDV63nx9T09R6orIOojjQWPMXF8HEekLTAf6AR2B90WkpzFGv6ekKEE4mmWNXlR8SwBi4+0wp7dQhzcVpa44UcObU4EXjDEFxpgdwDfA8BOUlqI0CnIO7wegWau2AMTFxeM1ginUnp6i1BV1YfSuE5H1IvKkiLRybp2AXT5hdju3CojI1SKyWkRWHzhwoA7EUZSGSdHh3QC0OOlkAOJjIjlKDKjRU5Q6o0qjJyLvi8jGAL+pwOPAKcBAYC/wQE0FMMb8wxgz1BgztG3btjW9XFEaDSbre7xGaNXOGr2oCA95xCDFOrypKHVFlXN6xpjx1YlIRJ4A/u1O9wCdfbyTnZuiKEHwZO3hkLSgTVRMmVu+xOLRXRYUpc6o7erNDj6n5wEb3fFSYLqIxIhIN6AHsKo2aSlKY6dl7nb2x3Qp55ZPDBElavQUpa6o7erNOSIyEDBAOvALAGPMJhF5EdgMFAO/0pWbihIcb4mXTkU72dLqx+XcCz1xRBSr0VOUuqJWRs8Yc1klfvcA99QmfkVpKuzbs50Okgdte5dzL/TEkqA9PUWpM+riPT1FUWrJ/m/X0wFonty/nHuhJ44o7/7jjjc/P4+17z5L9NYlnJy3meYmlyOeFvyQ0A9v73PoNfp8miW2Cnq9MYbso0cpysmguLgYb4mXqOhoomNiiY6OJSYmFomIApHjllFR6hM1eooSBuTtsdPh7U8dWM69JCKW6ML8GsdnvF5W/vufdPliDqdxgH3Shp0tR1AU04qI3H10y1pDm1VpFHx2G1/GDyK/TSomrhXFhXlE5uwlNncPiQV7aVVyiFZS+QevvUYokkiKiKII+98AgsGDFw9ee2zcf0x5Wf1lx9eASrl/xt+9YsgKZESeRIdb/ktsbFyl96E0DdToKUoYEHFwGxm0IOmkjuXciyPiiPbWzOjt2b2TA8/9jNPyV5Ee2Y3Np/8ffUafTztPxLF4i4rYvPp9stYtodP+j+m483MixJqUbOLYH9GerNhOHGo2GJq3oyQ2CU9EBCIeikuKMUUFmJJCTHEBlBRCcQGmpAgpKSDSWwQCIh6MeKDCTzhmxY6ZsVJDeez4GMYYBIPxucT4/DHGHppjF2CA+LwfGJr/X7ZsXEmfoeNqlI9K40SNnqKEAS1yvmFvdFeS/NxLIuOINdU3eutXfkD7d35GX5PN531+y5ALbsMTWfExj4yKou9pk+C0SQAUFuSTnX2EZs3iSYhLIKE2NxNGfL9zOzw5mKPfrgQ1egqN0OgZrxfx6OYRSsPBeEvoVPQdX7b5SQW/koh4YiioVjwfvvMawz+9hmxPCw5d8jbDelX/y3/RMbFEx8RWO3xDoX1yd/aaJKL3rgm1KEqY0KiMXn7eUXY9MIbD3c9l4LRbG+VD3Fgxxm+ex2+ip8K8j3/4Cv7+11cef0V5anZ9ZfJVJVvW3u10Jr/Cyk0AExVHJCVQXAiR0UHlXfrKM5y1/mYORbUj8RdvkdD25KBhmxIej5Ae24duR9bXWZzG68Xr9VJSUoy3pJiSkmIwBvEIgsf+F0HEg0cE8XgQxLl7cGO/uvgnRDQqo5eTeYD8iESGfzWXzP/7O+tajsG0609UYluMJxpTmIu34Cje/CwoOIIUZBNRmEVkUQ7RxTnEluQQ582lGUeJMCUIpmzivfTYn4ou4ucvPsf+1wYPWzGd6oetL6qwG4rDv6T8z5PwgkDzzikVrjVR8fagKDeo0XvzxSeYuOl2DsZ24aRfvU1UYrvaC92IKOwwhPbpK8g6uIfENgE/AVyBzIP72Lk+jZxd64k4vIOE3J00Kz5Mc5NNoskhSkqIqDqaauE14uYjpey59q1xArmHC+ulFz+a/XGoxagRjcrotenQhaTbPmD9iqUUrlpIj8zltMp8K2DYYuMhR+I5Ks3I8zQjP6I5WbEdORSVQEl0AsYTZQOKByNiJ+Dxa51V6C4YP0tgghwHuNZUEtYH8fOvSv0r+FfhUGV8NXzeKiZXeQS1Tb9GdyOVnlYVvMbXV7jc52ZMbAv6Df+fioGim1n/wlwkruKrBe88/ygTt97JnrjeJF//FhHNgr9+0FRJ6nMGpD/MN/99ncHn/DJgGG9xMV+veZ/MNa/S7uB/6erdRUvnl0FLDkR1JKPZKeyLaYk3pgUmMg48HpAIxBPhDJFxz7H7737G393nvzFB/NwCHV+zhzm20CdcyI7tWHWgMKNRGT0A8XhIPf1cOP1cjNfLwQPfk334oF1VFtOMqLjmNE9sRXyzBFp6PGWKrShhievpFeblENPimLMxhvcXzWXC1/ewo1kqXa//NxFxiSESMrzpO3Qcu97pSIv1/8T745/jibQN2uLCArZ99hZH171G94yP6UUmBSaKr+IG8FmHKST0GE2XfqeR1KJ1hQVGSsOl0Rk9X8TjoU27ZNq0Sw61KIpyXHiindE7mk3pZ6i9XsP7C/7IhD2Psa35ME799etExDQLnZBhjifCw+5BN3LaF7eyae4Esk8aRuShr+mR8xn9yCXXxLCl+Wl822cKvcacT0qL1qEWWTmBNGqjpygNnVJjVpCXQwKQX1DIf/9+PRMOvcCmVmfS59rn8UTrgq2qGDnl56zI2k/fr+fTb+cX7COJr1uMRvqeQ5/RUxnarLG8pKFUhRo9RQljYprZIcvc7ExydnxN5qIrObN4Pes7XEjKVfORCH2Eq4OIMPrSP1JS8nsKigtpFxOLLvdpmugToyhhTItk+xpD7Hu/pVlJFu3Ey5bh95L642tDLFnDJCLCQ0SE9oybMvoWt6KEMd1P7sI66U07736+SxhM7pXL6aMGT1GOG+3pKUoYExcdQefr3+aH3EP063xqqMVRlAaPGj1FCXOSWreG1rqiUFHqAh3eVBRFUZoMavQURVGUJoP4f7g3lIjIAeC7OoiqDXCwDuKpDxqSrNCw5FVZTxwNSd6GJCs0LHnrStYuxpi2dRBPlYSV0asrRGS1MWZoqOWoDg1JVmhY8qqsJ46GJG9DkhUalrwNSdZSdHhTURRFaTKo0VMURVGaDI3V6P0j1ALUgIYkKzQseVXWE0dDkrchyQoNS96GJCvQSOf0FEVRFCUQjbWnpyiKoigVUKOnKIqiNBkaldETkbNFZJuIfCMit4daHn9EpLOIfCQim0Vkk4j8xrnPFpE9IrLO/X4calkBRCRdRDY4mVY7t9Yi8h8R+dr9bxUGcvbyybt1IpIlIjeEU76KyJMisl9ENvq4BcxLsTzi9Hi9iAwOA1nvF5GtTp7XRKSlc+8qInk+eTy/PmWtRN6gZS8iv3N5u01EJoaBrIt95EwXkXXOPRzyNlidFZa6Wy2MMY3iB0QA24HuQDTwJdA31HL5ydgBGOyOE4CvgL7AbOCWUMsXQN50oI2f2xzgdnd8O3BfqOUMoAc/AF3CKV+B04HBwMaq8hL4MfA2IMBI4LMwkHUCEOmO7/ORtatvuDDK24Bl7563L4EYoJurMyJCKauf/wPAnWGUt8HqrLDU3er8GlNPbzjwjTHmW2NMIfACMDXEMpXDGLPXGPOFO84GtgCdQitVjZkKPO2OnwbODZ0oAfkfYLsxpi6+7FNnGGOWAYf8nIPl5VTgGWNZCbQUkQ71IiiBZTXGvGeMKXanK4Hk+pKnKoLkbTCmAi8YYwqMMTuAb7B1R71QmawiIsBFwPP1JU9VVFJnhaXuVofGZPQ6Abt8zncTxgZFRLoCg4DPnNN1bjjgyXAYMnQY4D0RWSMiVzu3dsaYve74Bwi7DainU77SCMd8LSVYXoa7Ll+Jbc2X0k1E1orIxyIyJlRCBSBQ2Ydz3o4B9hljvvZxC5u89auzGqruNiqj12AQkebAK8ANxpgs4HHgFGAgsBc7xBEOjDbGDAYmAb8SkdN9PY0dzwibd15EJBo4B3jJOYVrvlYg3PIyGCLyB6AYWOSc9gInG2MGATcB/xKRxFDJ50ODKXsfLqF8gy1s8jZAnVVGQ9HdUhqT0dsDdPY5T3ZuYYWIRGGVZ5Ex5lUAY8w+Y0yJMcYLPEE9DrdUhjFmj/u/H3gNK9e+0uEK939/6CSswCTgC2PMPgjffPUhWF6GpS6LyCzgJ8AMV9Hhhgkz3PEa7BxZz5AJ6aik7MM1byOB84HFpW7hkreB6iwamO760piM3udADxHp5lr804GlIZapHG7MfgGwxRjzVx933zHv84CN/tfWNyLSTEQSSo+xCxk2YvP0chfscuD10EgYkHIt5XDMVz+C5eVSYKZbCTcSOOIzlBQSRORs4LfAOcaYoz7ubUUkwh13B3oA34ZGymNUUvZLgekiEiMi3bDyrqpv+QIwHthqjNld6hAOeRuszqIB6W4FQr2Spi5/2JVDX2FbRH8ItTwB5BuNHQZYD6xzvx8DzwIbnPtSoEMYyNodu8rtS2BTaX4CScAHwNfA+0DrUMvq5GoGZAAtfNzCJl+xxngvUISd5/hZsLzErnyb5/R4AzA0DGT9BjtXU6q3813YaU4/1gFfAFPCJG+Dlj3wB5e324BJoZbVuS8ErvELGw55G6zOCkvdrc5PP0OmKIqiNBka0/CmoiiKolSKGj1FURSlyaBGT1EURWkyqNFTFEVRmgxq9BRFUZQmgxo9RVEUpcmgRk9RFEVpMvw/0X5/EX+CLQgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABlQElEQVR4nO2deXxVxfm4n/fe7CFhCYjsm+wk7IsCAtYNqVJFRUURrVptte7Lt60Wbe3PfUdpKYq74K51oRVFxBaRfV8lsm+BhASy3vv+/piTcHNzb3JDEu7NZZ7P5ybnzMyZec+cOfPOOzNnRlQVi8VisViiGVe4BbBYLBaLpa6xys5isVgsUY9VdhaLxWKJeqyys1gsFkvUY5WdxWKxWKIeq+wsFovFEvVEnLITkfYioiISE25ZLMeOiNwiIjtFZHkY0p4sIm8ch3Qmicj8Svznish1dS2HpTyV5fvxeiYiMkNE/lqJv4rIKXUtRzQgIi1FJFdE1ovIGccaT8QpO0v1EZGpIpLn/IpEpNjn/IswiTUZ+K2q9vaRc7KITA6TPBGF06jLrGb4b0TkiIisE5EzKwkbLyIvi8ghEdktInf4+V8nIpuc8vGliLT0u3aqiOwRkQMi8qmItPLxbyIiH4rIYRH5WUSuCCLDy74VuhPvdOeaXBFZJiKjq3H/M0RkUqjh6zNOI2pGNcL/wikTR5wy0q6SsCGVIxGZ42t0iEhbnzql9KcicqfjP0ZE5otItlPm/ikiKT7xtRKRj50ytV1EbvRLzy0if3UayLkislREGgGo6k5VTQE+BX4far74U+vKzlpkxx9VvVFVG6hqA+BvwMzSc1Utq1CO87NpAqw6junVCRFUnt8GlgJpwB+B90SkWZCwk4HOQDtgFHCPiJwLICIjMWVkLOYZbXHiLuVW4FQgA2gJHASe9/GfAhQBzYEJwEsi0tM3cREZBnTykykG2AaMABoCfwJmiUj7qm89MhERdwTI0BT4ALgf8zwXATMruaTKciQiE4BYXzdV3epTpzQA0gEv8L4TpCHwV0yZ6Q60Ah73ieINTFlrDowB/iYio3z8HwROw5S9VOAqoMBP9lWO3MdErSg7EckUkXtFZAVwWERiRGSIiPzX0fTLnZesNPxcEfl/IrLQaX1+LCJNgsR9jYisdbT9TyLyGz//sU4r8ZCIbPZ5qRs6LcldIrLDaTVUWjhFpJOIfC0iWSKyX0TeLG1dOH4HRKSfc95SRPaV3peIXCAiq537nSsi3f3y5y4RWSEiOSIyU0QSqp/T1SfIsynXhSJ+XS4i8ksnT7OdZ5hRzTRL89lbRbh7nOezU4y14WsJzBCRKSLymfPsfxCRTj7XPisi25znvlhEhvtFn+Dkc66ILBERXwvzPqes5IrIGhG50Mdvkoh8LyJPi0gWRnFUdb9PiMhBEdkiFa2Vdk58uSLyb6dyqhYi0gXoB/xZVfNV9X1gJTAuyCVXA39R1YOquhaYBkxy/H4JvKuqq1W1CPgLcLpP3nYAZqvqHlUtwFScPR05kp0071fVPFWdD3yCqZhKZY3BKMdbfAVS1cOqOllVM1XVq6r/wlR+/Y8hP9wi8qTzjm4RkZslyNCHiLRw3ru7fZw7Bat7RORdMZZJjojMEx9F7pTJl0TkcxE5jGlIVEbjYOXX4UwR2ei8Z1NERKqbF8BFwGpVfdd5XpOB3iLSzT9gKOVIRBoCfwbuqSLdicA8Vc0EUNW3VPVLVT2iqgcxZW6oE2cDYCTwsKoWq+py4D3gWse/MXAbcL2q/qyGVc79+OLFNJqODVWt8Q/IBJYBbYBEjFbPAs7DKNSznPNmTvi5wA6gF5CMaR284fi1BxSIcc7HYFqJgmkVHgH6OX6DgBwnfpeTbjfH70Pg7078JwELgd9UcR+nOHHFA82AecAzPv7XA2uAJGA28ITj3gU47Fwbiykom4A4n/xZiGn1NAHWAjcGkWEYkF3Jb1gV9zC5NC8DPRvHTYFTfMLMAP7qHPcF9gKDATem4swE4qtRHs7FtMqSqwizG1ORJmFafmVyOTJlOc84BngTeMfn+isxrbwY4E4nrgSfPCgGLnaex12YijXW8b/EeRYuYLzz7Fo4fpOAEkxlHVOaZ0HuYZKTzvVOXt0E7ATEp5xvdspHonP+SJC4XgReDOJ3IbDWz+0F4PkAYRs7+djcx+1iYKVz/IRvOph3RoGxzvkA4Hsnf5KAt3DeAadsHPFL7y7gU5/zu4FnA5Uzv+uaO2Wk2zHUNzdi3sPWzv1+Rfk6Yy5wHUZxbwBu8Ll2LkHqHsf/WiAFUwc8Ayzze09yMJW4q7S8BZFxBpWXXwX+BTQC2gL7gHODxLUCuCKI37PAS35uq4Bxx1KOMJb77fjVw37XCKZcT6rk/p8pvV8nPxU4ycd/GrDUOT4dU7fdi3mPNwC/CxDnKExPQ9vqlhlVrVVld63P+b3A635hZgNX+xS4R3z8emC6RtyVZbIT9iPgVuf478DTQV6kQnwqKuBy4Jtq3tevSh+Ij9snmNbQChwFgOlCmOUTxoV5oUb65M+VPv6PAVNrI+8DyDyZisruWr8wlSm7lzBWgW/49cCIENNf5MT/+yrCvQz8P5/zU6io7P7p438esK6S+A4CvX3yYIHf89gFDA9y7TKOVvaTgK0h3uskYJPPeZJzDyf7lPM/+fj/FvjyGJ7pVb7347g9DMwIELaNI0OCj9tZQKZzfCawH9NNmei8Q17gcse/IfCOE0cJpsurieM3HNjtl971wFyftDcBDQOVM59rYjEK6u/HWMa/xqfh6tyTv7J7yin7l/tdO5cgdU+AdBo58ZbezwzgtRBlrLT8OvEO8zmfBdx3DHkxHb8GFKaxMqm65QjT0FmGUc7tCa7shgN5QIMgMp2FeR+7+LjNx1j8CRjr8gCw3vG7wklrulMmMzDK/6wAcb/rhH2munlVm2N223yO2wGXOOZ5tohkYyyWFkHC/4x5ASp08YjIaBFZ4HQhZmMKTWm4NpgWhj/tnPh2+aT/d4yFFxQRaS4i74jp9jyEsTb8ZZqGaRU+r6qFjltL5x4AUFWvc3+tfK7b7XN8BGhQmSy1zLaqg5TRDrjT79m1wdxjKAwELgMmi0hsJeFa+skVSMageeZ0C691upuyMZW077Mqi895HttL70FEJvp002ZjnmfAa0OgTEZVPeIcNgjk738P1SAPM47hSyqQGyRsqX+FsKr6Faab6n2MMsh0/LY7YadgrJo0jOXzAVA6yakqOZ4BHlLVnGA3IiIu4HWMgrk5WLgqCKXsTMA0ON8L4Bew7nG6Rx9xurgPYfIGaqFsEPjZh6NsBAzrPJcXMYZESRVpXg28r6p5/h4iMgTTG3Cxqm7w8ZqAsbS3YRrUb3C0zOU7/x9S0726AtPgOs8v7n6OWzdVva0KGStQm8pOfY63YSy7Rj6/ZFV9xCdMG5/jtpjuoP2+EYpIPOalfALTLdMI+BxjRpem498PXupeCDT1ST9VVXsGCOvL35z7SFfVVExXWVk/utP3/AymBTLZp69/J0ZJlIYT5/52VJFeBURkuFSc9eT78x+bCgX1Oz+CsUJKOdnneBumb9332SWp6tuEgJrm10eY7qUWlQTdhemGKqVNsID+OHlwD3Ap0NgpFzn4PCvf+JwXuTWwU8xMtWmYijbNuXaV37X++RVuVgMdxWd2G9DbcS+HmvGSXY5/wLCqOkVVO6tqc8z7FcPRyUR9MC39A05j7nlgkDPWuAGIEZHOQeL+BfC4M+ZVWpH/T5wZm857MR3T8zJOVYurmQ+lhFJ2JmPqk7ek4lh9sLrnCszEnTMxjaf2TphILxtlz9oZV+1EgLJB5eUoFWPZzXSe3Y+O/3bfOkdEEjHDAK/6Ry4ifTE9X9eq6hxfPzVjcb9U1WaqOhjTgFjoeK8oDeZ7SQD5uwNrVHV9AL8qqatPD94AzheRc5zWUoKIjBQR3wJ6pYj0EJEk4CHgPVX1+MUTh2ll7gNKnMH/s338pwPXiJl66xIzvbWbqu4C/g08KSKpjl8nERlRhdwpmNZPjpjp1nf7+T8LLFLV64DPgKmO+yxgjCNHLGYMqRD4b1UZ5Y+qfqc+s54C/L6rbpwBWAZc4TybczFjoaVMA24UkcFiSBYzrTgFygbpZ1RxD6UWb1wlwWZhnl13pwzcXw35UzBdbPswle8DVGyx9heRi8RMWrgN8zwWYKwVda5FRK7BWHYRi9NCXgb82XmXLsR09bwf5JLXgD+JSGNnosL1mG41nOt7Oc+2LfAPzBjbQefaH4GJYiZ4xWK6Xneq6n5VPYyx9B5yysVQjHJ43bm2C6by7OP8AM7HjJ+DadF3B85X1dLWfBliJpmMDCFLZgG3Ou97I8ywiT/FmEo5GXjNafCUEqzuScGUkyxMY/BvIcgSbj4EeonIODGT3h4AVqjqOv+AVZSjHIzF3Mf5lVpV/YEffKK5ENNF+Y1v3CLSC/gSuEVVP/VP23nPU0QkTkSuxNTjTzlybQa+A/4o5hOV7pjeoX/5RROLeT7HRJ0oO1XdhnkJ/oCpVLZhFIdveq9jXsDdmH7cCt9PqGqu4z4Lk8FXYFoOpf4LgWuApzEP61uOWlgTMZXtGufa96jc0gAz/bWfE9dnmBcbMLM+MZMqbnKc7gD6icgEp6VxJaYVvB/zgp+vZrZbJHIrRsZsTPfCR6UeqroIUzm+gMm3TRydyQemVfx9CGkolZQvVf0CeA7z0mzCKCIIrTDPxrxYGzDdUAVU7F76GDP55CBmrOIiNTPB1gBPAv8D9mCmUIdyP3WKmG/bplYS5DJMy/sg8Aimm6hUYU8QEd+W/J8x3fs/Y96Jx1X1S8cvAdPNlIdpWf+P8g2NuzD5uRHz7p6HqeBK+S1mXGUvZhr7Taq6GkBV96rq7tKfE36/quY7FvVvMBXpbp+eignOPbTBdL2trDq3mIZpzK7AjCl+jmn8lGssO+/fRRhL8mUfhRes7nnNybMdmHpjARGAmFneEwL5OWVgHGbs7SBmYtllPtf6l6uA5UgNvs9unxN+j189djWm187f8roTM6lvus+z9S2T5wA/OeneiJmMs8/H/3JM3Z2FqXvv97cOMXM6Kp3hXRlSUea6R0TmYiZR/PO4J245ZkQkDlgOZFTVBSUiO4F7VDWklUyc1twqzKSfqsYMLFGG09rvqar/dwzXjsZM+GpXZWBLvcRpqDyHmdF56bHEYVdQsYSMqhapavcQx1ruw3SXLA4WQEQudLotGgOPYqawW0V3AqKqb4Sq6EQkUUTOE/PNaCuMJfthVddZ6idiVvjZBwzB9MocEyecspPyS2v5/irrQrJUE1V9zZkEUdlHw7/BdIdtxnRB3VRJ2LBgy0tEIpghh4OYbsy1mLGq4yuE6V4MVDYCdjlajg01y4WlqeoAVf2h6isCE5ZuTIvFYrFYjicnnGVnsVgslhOPSFnkFoCmTZtq+/btwy2GxWKxWI4jixcv3q+qwRY2rxUiStm1b9+eRYsWhVsMi8VisRxHROTnqkPVjBp3Y4rZpHOdM1j7mON2lpiV6Fc6/495wz2LxWKxWGpKjSw7MfsRjcUswFsoIqVrT+7HfFS90/myfjbl14m0WCzVQFWRY9oBxmKxQM0tu5swK24XgllBwfm/VFV3OmFWA4li1rm0WCzVQL0efnj5Lj5/8HyWrT2mJQEtFgs1H7PrAgwXkYcxSwzdpao/+oUZByzxWS+xWhQXF7N9+3YKCvz38bNYgpOQkEDr1q2Jja1s44XI58t3XmD01mkAfPfeLXj/OBuXy1p4Fkt1qVLZichXlF8Vv5Q/Otc3wXzZPhCYJSIdS9dNE7PL76OUX7zZP/4bgBsA2rZtW8F/+/btpKSk0L59e9uNYwkJVSUrK4vt27fToUOHcItzzKgq7Te+xvbY9uR1HM3w9S+xfOUSeveu9ubeFssJT5XdmKp6pqr2CvD7GLMf0QfOIqILMYt0NgUQs8PBh8BEZ1XrYPH/w/kyfkCzZhVnnhYUFJCWlmYVnSVkRIS0tLR63xuwccMauusmsjpdRNszzeIyu38ItD2bxWKpipqO2X2E2SodEemC2WVgv7PtxmeYnXdrvKK8VXSW6hINZWbH0n8D0Gbwr0hq1o6f4zrTcvc3VVxlsVgCUVNl9zJmM8BVmJ1lr3a6MG8GTgEeELMj9DKfmZoWiyUEYncuIpdkmrRLB+BAi2F082xg74EDYZbMYql/1EjZOavgX+l0a/ZT1a8d97+q2Zm8j89vb+2IfPwREe68886y8yeeeILJkyeHT6AqmDt3Lv/9b7X3jS3HueeeS6NGjfjlL39ZS1JZqkuL3JVsTeoJLvOapnYZTqx42Lxsfpgls1jqH3ZtzBCIj4/ngw8+YP/+/bUar6ri9R7zXoRBqQ1ld/fdd/P6669XHdBSJ+QcyqW9dyv5zTLK3NpmmA3l8zfX7NlaLCciVtmFQExMDDfccANPP/10Bb99+/Yxbtw4Bg4cyMCBA/n+ezNEOXnyZJ544omycL169SIzM5PMzEy6du3KxIkT6dWrF9u2bePuu++mV69epKenM3PmTMAorJEjR3LxxRfTrVs3JkyYQKAdKp577jl69OhBRkYGl112GZmZmUydOpWnn36aPn368N1331Uq41VXXcWpp55K586dmTZtWlm8v/jFL0hJSak0X95991169epF7969Of300wEzoeiaa64hPT2dvn378s03ZoxpxowZ/OpXv+Kss86iffv2vPDCCzz11FP07duXIUOGcMDpmps2bRoDBw6kd+/ejBs3jiNHjlRId8iQIaxefXQT5JEjR0bdMnOZG1fgFiWpVa8yt9iUpmx3taZh1tIwSmax1E8iam3Mqnjw09Ws2XmoVuPs0TKVP5/fs8pwv/vd78jIyOCee+4p537rrbdy++23M2zYMLZu3co555zD2rVrK41r48aNvPrqqwwZMoT333+fZcuWsXz5cvbv38/AgQPLFMfSpUtZvXo1LVu2ZOjQoXz//fcMGzasXFyPPPIIW7ZsIT4+nuzsbBo1asSNN95IgwYNuOuuuwC44oorgsq4YsUKFixYwOHDh+nbty9jxoyhZcuWIeXdQw89xOzZs2nVqhXZ2dkATJkyBRFh5cqVrFu3jrPPPpsNGzYAsGrVKpYuXUpBQQGnnHIKjz76KEuXLuX222/ntdde47bbbuOiiy7i+uuvB+BPf/oT06dP55ZbbimX7vjx45k1axYPPvggu3btYteuXQwYMCAkmesLeduMMm/Srlc5970p3WmVs8SuqGKxVBNr2YVIamoqEydO5Lnnnivn/tVXX3HzzTfTp08fLrjgAg4dOkReXl6lcbVr144hQ4YAMH/+fC6//HLcbjfNmzdnxIgR/Pij+S5/0KBBtG7dGpfLRZ8+fcjMzKwQV0ZGBhMmTOCNN94gJiZw26UyGceOHUtiYiJNmzZl1KhRLFy4MOQ8GTp0KJMmTWLatGl4PJ6y+7nyyisB6NatG+3atStTdqNGjSIlJYVmzZrRsGFDzj//fADS09PL7m3VqlUMHz6c9PR03nzzzXIWXCmXXnop771npuDPmjWLiy++OGSZ6wvevevwqNCsffmGmOeknpxMFvv27g6TZBZL/aReWXahWGB1yW233Ua/fv245ppryty8Xi8LFiwgISGhXNiYmJhy43G+33wlJyeHlF58/NEV1txuNyUlJRXCfPbZZ8ybN49PP/2Uhx9+mJUrV1YIE0xGqDhFvzrWwtSpU/nhhx/47LPP6N+/P4sXL640vO/9uFyusnOXy1V2b5MmTeKjjz6id+/ezJgxg7lz51aIp1WrVqSlpbFixQpmzpzJ1KnRt2l4Ys4mdrua0yo+qZx7Sru+sBF2rP+Rk5pfECbpLJb6h7XsqkGTJk249NJLmT59epnb2WefzfPPP192vmzZMsBsV7RkyRIAlixZwpYtWwLGOXz4cGbOnInH42Hfvn3MmzePQYMGhSSP1+tl27ZtjBo1ikcffZScnBzy8vJISUkhNze3ShkBPv74YwoKCsjKymLu3LkMHDgwpLQBNm/ezODBg3nooYdo1qwZ27ZtY/jw4bz55psAbNiwga1bt9K1a9eQ48zNzaVFixYUFxeXxROI8ePH89hjj5GTk0NGRkbQcPWVxvk/k5XYroJ7y27m+eT9vOw4S2Sx1G+ssqsmd955Z7lZmc899xyLFi0iIyODHj16lFkZ48aN48CBA/Ts2ZMXXniBLl26BIzvwgsvJCMjg969e3PGGWfw2GOPcfLJgVZnq4jH4+HKK68smwzy+9//nkaNGnH++efz4Ycflk1QCSYjmG7QUaNGMWTIEO6///6y8brhw4dzySWXMGfOHFq3bs3s2bMBeOCBB/jkk08AM2MzPT2dXr16cdppp9G7d29++9vf4vV6SU9PZ/z48cyYMaOcRVcVf/nLXxg8eDBDhw6lW7duZe6ffPIJDzzwQNn5xRdfzDvvvMOll14actz1Ba9XOcmzh8KUisvnpTZtxQEaEruvYveuxWIJjgSa4RcuBgwYoP6z6tauXUv37t3DJFF0M3ny5HITWaKN+lp2duzeRaup3VjS7S76XXZ/Bf/Vj55BbGE2XR5YEgbpLJbaR0QWq2qdzjKzlp3FEmEc3GGWkk1oWrEbEyC/cXfaebaSX3BMG4lYLCck9WqCiqV2ieRVYE5kDu/9CYCU5oF3bIhpmU78zjfYsHEFXdJDH2O1WE5krGVnsUQYxVlbAWjS6pSA/mmd+gKQtcV+XG6xhIpVdhZLhOHK2UY+cSQ3DjxRqWWn3hSrG8/OVcdZMoul/mKVncUSYcQf2cF+VzMI8s2jOy6BHTGtSc5ed5wls1jqL1bZWSwRRkrBbrLjKv/8JCu5MycXBN0T2WKx+GGVXYh89NFHiAjr1gVvTWdmZtKrV6+g/rXBsmXL+Pzzz2sUx7XXXstJJ51U57Jajo0mnn0UJFau7EqadqcF+8nO2necpLJY6jdW2YXI22+/zbBhw3j77bcD+gdayqu6lK4vWRm1oewmTZrEl19+WaM4LHVDYVERjTUHbVC5sktq0xuA7RsqX6LNYrEYrLILgby8PObPn8/06dN55513ytznzp3L8OHDueCCC+jRowdglN6ECRPo3r07F198cdkWNXPmzKFv376kp6dz7bXXUlhovpFq37499957L/369ePdd98tl67/FjpFRUU88MADzJw5kz59+jBz5kwOHz7Mtddey6BBg+jbty8ff/wxYLbUGTt2LCNHjqRz5848+OCDZfGefvrpNGnSpNJ7/vbbb+nTpw99+vShb9++5ObmoqpBtyMaMWIEY8eOpWPHjtx33328+eabDBo0iPT0dDZvNt1tn376KYMHD6Zv376ceeaZ7Nmzp0K6l112GZ999lnZ+aRJk8oWfT4R2L9nJ25RYlIrV3Ynd+kPQN7Py4+HWBZLvad+fWf3xX2wu+JCxzXi5HQY/UilQT7++GPOPfdcunTpQlpaGosXL6Z/f1PZLFmyhFWrVtGhQwcyMzNZv34906dPZ+jQoVx77bW8+OKL3HzzzUyaNIk5c+bQpUsXJk6cyEsvvcRtt90GQFpaWtk6mr74b6ETFxfHQw89xKJFi3jhhRcA+MMf/sAZZ5zByy+/THZ2NoMGDeLMM88EYOHChaxatYqkpCQGDhzImDFjQt4K54knnmDKlCkMHTqUvLw8EhIS+OCDD4JuR7R8+XLWrl1LkyZN6NixI9dddx0LFy7k2Wef5fnnn+eZZ55h2LBhLFiwABHhn//8J4899hhPPvlkuXRLt+8ZM2YMRUVFzJkzh5deeikkmaOBQ/u30wqIbdSi0nBNW7Qnh2Rkr102zGIJBWvZhcDbb7/NZZddBhjLw7crc9CgQXTocPTj3zZt2jB06FAArrzySubPn8/69evp0KFD2fqYV199NfPmzSu7Zvz48QHTDbSFjj///ve/eeSRR+jTpw8jR46koKCArVvNd1pnnXUWaWlpJCYmctFFFzF//vyQ73no0KHccccdPPfcc2RnZxMTE1PpdkQDBw6kRYsWxMfH06lTJ84++2yg/PY927dv55xzziE9PZ3HH3884PY9o0eP5ptvvqGwsJAvvviC008/ncTExJDlru8cydoBQFJa5XsKisvF9riONDy04XiIZbHUe+qXZVeFBVYXHDhwgK+//pqVK1ciIng8HkSExx9/HKi4Xc+xbJkTbMufULbQUVXef//9CjsL/PDDDzXavue+++5jzJgxfP755wwdOrRsIehghLJ9zy233MIdd9zBBRdcwNy5cwOu4JKQkMDIkSOZPXs2M2fOLGtknCgU5Zh96lKbtq4ybG7DrqTv/Rfq9SAud12LZrHUa6xlVwXvvfceV111FT///DOZmZls27aNDh068N133wUMv3XrVv73v/8B8NZbbzFs2DC6du1KZmYmmzZtAuD1119nxIgRVaYdaAsd/+17zjnnHJ5//nlKF/ReuvToqhr/+c9/OHDgAPn5+Xz00UdlFmcobN68mfT0dO69914GDhzIunXrarQdEUBOTg6tWrUC4NVXXw0abvz48bzyyit89913nHvuuSHHHw14Dxll1+ikqpUdzXuSLAXs3rqxjqWyWOo/VtlVwdtvv82FF15Yzm3cuHFBZ2V27dqVKVOm0L17dw4ePMhNN91EQkICr7zyCpdccgnp6em4XC5uvPHGKtMOtIXOqFGjWLNmTdkElfvvv5/i4mIyMjLo2bMn999/dJX8QYMGMW7cODIyMhg3blzZeN3ll1/Oqaeeyvr162ndunXZ/nxTp04t2/7nmWeeoVevXmRkZBAbG8vo0aNrtB0RmLU4L7nkEvr370/Tpk3L3BctWsR1111Xdn722Wfz7bffcuaZZxIXFxdy/NGA6/BeckkiNqHqDX4btjczMvdstDMyLZaqsFv8RCkzZswoN5HlRKQ+lp3Fj19As/xNtH1gTZVhj+TlEPd4exa1mcSQ654+DtJZLHWD3eLHYjnBSCzaT25MWkhhkxo0JDOmPSn77ILQFktV1FjZicgtIrJORFaLyGN+fm1FJE9EonN30Ahm0qRJJ7RVV19JLTlAQXzTqgM67GvYm/aFa1FPzRc1sFiimRopOxEZBYwFeqtqT+AJvyBPAV/UJA2ASOpqtdQP6muZSfXmUJIQmmUHQJuBJFPAjo3WurNYKqOmnx7cBDyiqoUAqrq31ENEfgVsAQ7XJIGEhASysrJIS0ur1tR5y4mLqpKVlUVCQkK4RakWRwoKSZUjSHLlq9v40qLX6bAcdq38ltbdqr+R6669+1n7n5dJ2TaXlgUbSVUz0zfPlcKBmOYcTO6IN60ziS170LRdT1q1O4W42Pr1xZLFAjVXdl2A4SLyMFAA3KWqP4pIA+Be4Cyg0i5MEbkBuAGgbdu2Ffxbt27N9u3b2bfPLnhrCZ2EhARatw5h+n4EkX1gH0lATFLjkK9p16knu2lK3M9zqeJVK8fh/ELmvfUIp239O2fIYXa5mrOnYTo7E5riVcWVf4DUgp1kZH9FavbHsBn4DvI1js3uluTFNaMwthFFcY1wxcYjLhdeFbwIeD2gzs9rfuLjJl4vqAcXXlx4EfU6xx5czrHgDSD10cauUr7h638O5rtSl0Bhg9b0/c10XG47ReFEpkplJyJfAYHml//Rub4JMAQYCMwSkY7AZOBpVc2ryhpT1X8A/wAzG9PfPzY2ttwKJRZLtJJ7cD8AsQ1Ct+zE5WJTwyH0zZmDlhQiMfFVXrN9Xxbb/z6e0SU/sjFlAIWjH6BFj9NpEehdVeXIgR3s3ryKnB1r8ezdQPyhn0gqzKJZ4VZSNZcYLcaFIiguvHjFhVFl7lIVZo7FqDR1/nvFjbdM5bnK/Et/lFNgR6sGoXw14X9+VHQlxZNNyyML2bXnIVq0bBNKllqilCqVnaqeGcxPRG4CPlAzQLJQRLxAU2AwcLEzYaUR4BWRAlW1MyYsliAcyTG9FwmpoU9QAeCUs0le/C+2LP2aDgNHVxp0+eZtFL8+nkGsYeOAP9N5zO1BN4kFQISktNZ0TGsNhPaBvxuIDV36OmXZZ/+g5Y93k38oC6yyO6GpqV3/ETAKQES6AHHAflUdrqrtVbU98AzwN6voLJbKKcjNAqqv7HoMO59CjeHg4g8qDbd2cyau18bSh7XsO+t5Ov/yjsoVXRTgdsY/i5y8tZy41HTM7mXgZRFZBRQBV2t9nQZnsYSZ0go5pfFJ1bquSeMm/DdpGL12f463KB9XXMWFszdt3kjc67+io+wh54IZNO83tlZkjnRiU8zM1sI8q+xOdGpk2alqkapeqaq9VLWfqn4dIMxkVfX/JMFisfjhOXwAgJRG1ezGBOg3kVTyWPvvlyt4bdu8hsTXz+Nk9nPwwrdJO0EUHUCCo+w8eQfCLIkl3NjpSRZLhKD5BwFwV2M2ZimDRv2KNXIKJy1+iqK8g2Xum5Z9R+Lro0nmCFnj3uPk3mfVmrz1gYSGpuHgPXKwipCWaMcqO4slQpCCHPJIAnf1RxdiYtwcGvVXGnkPsu3Fsexc+iULX/0/Wn14EcXEkjP+E9qmD68DqSObBqlpeFUg31p2JzpW2VksEUJMYTZHXA2O+fohp4/mP10n0/LwWlp+PJ5BW15kdWI/Yn7zNe26969FSesPyQlx5JIEBdnhFsUSZuxSCBZLhBBfkkN+TGqN4jjvit+zeuMYdq/9H6d07cWArn1qR7h6ioiQKw1wW2V3wmOVncUSISSWHKIoqWGN4+nZuRM9O3eqBYmigzxXCnFFOeEWwxJmbDemxRIhJHtzKY6rubKzlCffnUp8iVV2JzpW2VksEUCxx0sqh/HGW2VX2xTGppJQkhtuMSxhxio7iyUCyDlSREPy0MTqf3ZgqZziuEY08Fpld6ITlcpOvYFWTLdYIpfcQznEiQexyq7W8cQ3JIVcsPXCCU1UKbucrN1kT27FD7MeqzqwxRJBHHYWgY5JrsbGrZbQSGyMG8VbcCjckljCSFQpu5RGzUjUQsjZFm5RLJZqUZBrPnqObWAtu9pGnBVp8rL3h1kSSziJKmXncrvZ62pKfN6OcItisVSLwrIdD6xlV9u4k8zOB6XWs+XEJKqUHcDB2OYkF+wKtxgWS7UoyTu27X0sVRPvLAadn2MtuxOZqFN2+UktaVy8J9xiWCzVwnvEdGMmN2oWZkmij3inAVFo97Q7oYk6ZedJaU0zDlJYcCTcolgsIaP52cDRLWkstUeys2VSyWGr7E5kok7Zxaa1A2Dv9p/CLInFEjqugmyKiIHYpHCLEnU0aFiq7Ow2PycyUafsGjTvCMCBnZvCLInFEjoxhdnkSgqIhFuUqKNhSgMOazzkW2V3IhN1yq5Jm64AFOzeGGZJLJbQiSvO4YgrJdxiRCUJsW4O0QCxyu6EJuqUXbMW7Tmi8UiWtews9Yf44lzyY6yyqyvyXCm4C7PDLYYljESdsnO53ex0tyTxkB2zs9QfEj2HKIq1i0DXFfkxqcQW250PTmSiTtkBHExqR5OCreEWw2IJmQZqt/epS4piG5JQbJcLO5GJSmVX3LAjJ3v3UFyYH25RLJYqUVVSNQ+P3d6nzvDGNyTZ7nxwQhOVyi62eVfcouzcsjbcolgsVZJfUEADKcCbYNfFrCu8iU1oqIfweuzOBycqNVZ2InKLiKwTkdUi8piPe4aI/M9xXykiCTVNK1QatekBQNbPq49XkhbLMXO4dBkrq+zqjgbNiRMPudl7wy2JJUzE1ORiERkFjAV6q2qhiJzkuMcAbwBXqepyEUkDimssbYi0OKU3XhWKd644XklaLMdM/iGzsocr2Sq7usLdsAUAOXu30TDt5NqLWJX929eTt3MjJQW5eCWGBmmtaNK6Mwmpzex3kxFEjZQdcBPwiKoWAqhqabPpbGCFqi533I/rOj0NUhqS6WpJ4v5VtRbnzt27+HnpNxTvXIEc3ku85zAqLjzuBCShIZLSgthGLUlq2pKGzdrSpHlrEhISay19S/RSeMhYdu4kq+zqirhGrQA4vH87MLDG8e3ft4fN/3qSNls/oqXuIdDy3bkksTeuLYdTOkDTLjRo1Z2TOqbT4OQuEBNXYxks1aOmyq4LMFxEHgYKgLtU9UfHXUVkNtAMeEdVA+6oKiI3ADcAtG3btobiHGVvcjfaHV5eozi8XmXB1x8Rv3AKGYVLaCkeAA6RzBFJwqVe4imkgR7GLVrh+jxNJEdSyXOnUhDTkGJ3Il53HOqKxeuKA1csLgFBEbyg5r+giCqoFxel8SqgCOqE80mv7FyR0rAVxQlKxaBandNqoUFPqghbw/Srl27VKWiAIIHS0CAJ+l6fXFK6l51dF7OuSDmpDQD5B2q+/df3n79B1x/+wGDJYXl8fzI7/Bp3857EJDdEPEXkH9iBN+snOLCFlLyfOHn/D5yc9QWsB76GElzscTVnX2wrSuJS0bgUSuJSUFcsImJ+uPACeL0oXlAveD3mv3oR9aCqiHOOepxjLfMvrU9c6j1ar1RZtoNYoo6FqgpeNW+IqrIrrh1jb3+xxnl6PKhS2YnIV0Agu/+PzvVNgCGY5tIsEenouA9z3I4Ac0RksarO8Y9EVf8B/ANgwIABNalHy1HcrBfN8+ZwaP9uUptWv9ti08a1HJr1W04rXkKWNGZV2wk06nM+bboPIjWpEak+YT0lJWTt30nO3m0c3r+NwoM78OTuRfIP4C44SFzhQZJLcogt3kuMFhFDCbFajBsPCk4xdOFFwCmWR4991Z1xO6r2jhZMLVeUy/sFpZIgddn5Uq24/bqBqn5Z60CGECKSKmIN6OPjuCG+F2269KktqSx+NGthGtLF2TuPOQ5V5ZtXH+KMzKfIjO1I/oXv0LvnaVVe5/EqP+/ey+6fVnJo+xpcWZtoeCSTRoU7ScjbQZIepoEeIQbTmHb5NJy9erQ+UFx4cKEiPnWGq9yxytG6xCsuFJfTlHb8y5XE8u9S8NKrFcIYhQwFxFd5/5FClcpOVc8M5iciNwEfqKoCC0XECzQFtgPzVHW/E+5zoB9QQdnVFQ07DYQtkLlyHhmjLq3WtfM/fYU+i/6PFqKs6HUvPS+4nbS44F2S7pgY0k5uS9rJtWeZWiyW2iOlQQo5JEPuse91OffNRzgj8ylWpo6gx80zcVdSJ/jidgntWjanXcvmQNDqtAyv11hOLhSXyxXRU+brU41X03z8CBgFICJdgDhgPzAbSBeRJGeyyghgTQ3TqhYd+oygSN0UbpoX8jWqytev/JnTFt3Onvi2FF33HRkX/yHkQm2xWCKXg640Yo8c22zMhV+9x/CNj7EmeQg9f/9+ndYJLpfgdgniimQ1V/+o6Zjdy8DLIrIKKAKudqy8gyLyFPAjxgb+XFU/q2Fa1SK5QSqrYrvSeO8PIYVXVb7+5x/4xY4XWdloJN1veouYhOQ6ltJisRwv8uKaklxYfWW3c+c2On53Bzti2tDptzNxxcTWgXSWuqZGyk5Vi4Arg/i9gfn8IGzkNB9C9+2vkJu9j5QqdoD+9o2/8YsdL7Ki8dmk3/w24q5pO8BisUQSBUktaH7g+2pdo14v21//DX04TPGlHxCf3KhuhLPUOVFtJzfM+CVuUTLnz6o03H/ff46Rmx9jZcowev32TavoLJYopDi1Hc3IpuBw6Gtkrvz2fQblf8+Kzr+jRdcBdSidpa6JamXXtf9ItnMSrjUfBg2z+ItXGLziAVYl9Kfbze/hirXfv1gs0YgrzWzsvG/b+pDCez0ekuc/zA5pTsYlf6hL0SzHgahWdrExbra0OI9uhxeRtbXiOpmr575H+oI72RDXg043f0RsvJ2IYrFEK4nNTwEgb1doGzsv/XwanTxb2NX/LuLij9tqh5Y6IqqVHUDbc26lhBh2ffjHcu6rv36LTt/cyM/u9rT87ackNkgNEoPFYokG0tp0BeDI7qo3di4qLKDFkqfY5O5Ev9G/rmvRLMeBqFd27dp35LuTJ9Lr4BzWvX0fhTtWsnT6LXT/9rdkxnSgyY3/omFju3KFxRLttDy5BTmajCer6o2dl334FC11D4eH/xGX230cpLPUNSfETIzTrvkb857exOnrX4L1L9EX+L7hefT89Us0atgo3OJZLJbjgIiwJ7YVSYe2VBru8KGDnLLuJVbF9Sbj9AuPk3SWuuaEUHZJCQmceveHzPn6M4r2/UTz7kM5re8AxK5IbrGcUGSndqHLgbmo1xv0o+1V7z3MYA6x95wH7YfdUcQJoezATFb5xdkXhFsMi8USRjwnpdPowL/Yv2sLTVt1quB/cO8Oev38OosbDKd//1FhkNBSV9hmi8ViOWFo0K4vAHs3/BjQf+N7fyaeItLO/+vxFMtyHLDKzmKxnDC06j6YQo2hcPP8Cn67f15Hnz0fsKjJGNp363P8hbPUKVbZWSyWE4YmjRqxNqY7jff8t4Lf3vfvoYQY2o/7Sxgks9Q1VtlZLJYTiqzmp9G+eDOH9/1c5rZh4WwyDn3Lj62v5uTWHcIonaWusMrOYrGcUDQdcgVeFX7+z1QAio7kkvzlbeyiKf0vvz/M0lnqCqvsLBbLCUV6r94sjO1Pmw2vkr/5eza+eAktPLvYdvqTNLArKUUtVtlZLJYTCpdLkHMfoUSFxNfPo1vuAr7tfC+DzvhVuEWz1CEnzHd2FovFUsrgAQP5r+tzdi76F026nMqoEfabumjHKjuLxXJCclq/3tCvd7jFsBwnbDemxWKxWKIeq+wsFovFEvWIqoZbhjJEZB/wc5UBq6YpsL8W4jke1CdZoX7Ja2WtO+qTvPVJVqhf8taWrO1UtVktxBOUiFJ2tYWILFLVAeGWIxTqk6xQv+S1stYd9Une+iQr1C9565OsthvTYrFYLFGPVXYWi8ViiXqiVdn9I9wCVIP6JCvUL3mtrHVHfZK3PskK9UveeiNrVI7ZWSwWi8XiS7RadhaLxWKxlGGVncVisViinqhSdiJyroisF5FNInJfuOXxR0TaiMg3IrJGRFaLyK2O+2QR2SEiy5zfeeGWFUBEMkVkpSPTIsetiYj8R0Q2Ov8bR4CcXX3ybpmIHBKR2yIpX0XkZRHZKyKrfNwC5qUYnnPK8QoR6RcBsj4uIusceT4UkUaOe3sRyffJ46nHU9ZK5A367EXk/5y8XS8i50SArDN95MwUkWWOeyTkbbA6KyLLbqWoalT8ADewGegIxAHLgR7hlstPxhZAP+c4BdgA9AAmA3eFW74A8mYCTf3cHgPuc47vAx4Nt5wBysFuoF0k5StwOtAPWFVVXgLnAV8AAgwBfogAWc8GYpzjR31kbe8bLoLyNuCzd9635UA80MGpM9zhlNXP/0nggQjK22B1VkSW3cp+0WTZDQI2qepPqloEvAOMDbNM5VDVXaq6xDnOBdYCrcIrVbUZC7zqHL8K/Cp8ogTkF8BmVa2NlXhqDVWdBxzwcw6Wl2OB19SwAGgkIi2Oi6AEllVV/62qJc7pAqD18ZKnKoLkbTDGAu+oaqGqbgE2YeqO40JlsoqIAJcCbx8veaqikjorIstuZUSTsmsFbPM5304EKxIRaQ/0BX5wnG52zP6XI6Fr0EGBf4vIYhG5wXFrrqq7nOPdQPPwiBaUyyhfWURivpYSLC8jvSxfi2m9l9JBRJaKyLciMjxcQgUg0LOP5LwdDuxR1Y0+bhGTt351Vr0ru9Gk7OoNItIAeB+4TVUPAS8BnYA+wC5MV0YkMExV+wGjgd+JyOm+nmr6LSLm2xURiQMuAN51nCI1XysQaXkZDBH5I1ACvOk47QLaqmpf4A7gLRGJhO2+682z9+FyyjfUIiZvA9RZZdSXshtNym4H0MbnvLXjFlGISCym0Lypqh8AqOoeVfWoqheYxnHsVqkMVd3h/N8LfIiRa09pt4Tzf2/4JKzAaGCJqu6ByM1XH4LlZUSWZRGZBPwSmOBUcDjdgVnO8WLMGFiXsAnpUMmzj9S8jQEuAmaWukVK3gaqs6hnZReiS9n9CHQWkQ5OC/8y4JMwy1QOp09+OrBWVZ/ycfft074QWOV/7fFGRJJFJKX0GDNBYRUmT692gl0NfBweCQNSrmUcifnqR7C8/ASY6MxsGwLk+HQZhQURORe4B7hAVY/4uDcTEbdz3BHoDPwUHimPUsmz/wS4TETiRaQDRt6Fx1u+AJwJrFPV7aUOkZC3weos6lHZLSPcM2Rq84eZCbQB0wL6Y7jlCSDfMIy5vwJY5vzOA14HVjrunwAtIkDWjphZa8uB1aX5CaQBc4CNwFdAk3DL6siVDGQBDX3cIiZfMUp4F1CMGcf4dbC8xMxkm+KU45XAgAiQdRNmLKa03E51wo5zyscyYAlwfoTkbdBnD/zRydv1wOhwy+q4zwBu9AsbCXkbrM6KyLJb2c8uF2axWCyWqCeaujEtFovFYgmIVXYWi8ViiXqssrNYLBZL1GOVncVisViiHqvsLBaLxRL1WGVnsVgslqjHKjuLxWKxRD1W2VksFosl6rHKzmKxWCxRj1V2FovFYol6rLKzWCwWS9RjlZ3FYrFYop6IU3Yi0l5E1NnfyVJPEZFbRGSniCwPQ9qTReSN45DOJBGZX4n/XBG5rq7lsJSnsnw/Xs9ERGaIyF8r8VcROaWu5YgGRKSliOSKyHoROeNY44k4ZWepPiIyVUTynF+RiBT7nH8RJrEmA79V1d4+ck4WkclhkieicBp1mdUM/42IHBGRdSJyZiVh40XkZRE5JCK7ReQOP//rRGSTUz6+FJGWftdOFZE9InJARD4VkVY+/k1E5EMROSwiP4vIFUFkeNm3Qnfine5ckysiy0RkdDXuf4azeWzU4zSiZlQj/C+cMnHEKSPtKgkbUjkSkTm+RoeItPWpU0p/KiJ3Ov5jRGS+iGQ7Ze6fpfthOv6tRORjp0xtF5Eb/dJzi8hfnQZyrogsFZFGAKq6U1VTgE+B34eaL/7UurKzFtnxR1VvVNUGqtoA+Bsws/RcVcsqlOP8bJoQeZulVpsIKs9vA0sx+4j9EXhPRJoFCTsZs9FnO2AUcI+YzVcRkZGYMjIW84y24LPhLXArcCqQAbQEDgLP+/hPAYqA5sAE4CUR6embuIgMAzr5yRSD2Q9vBNAQ+BMwS0TaV33rkYk4G6uGWYamwAfA/ZjnuQif3c4DUGU5EpEJQKyvm6pu9alTGgDpgBezgzmYZ/pXTJnpDrQCHveJ4g1MWWsOjAH+JiKjfPwfBE7DlL1U4CqgwE/2VY7cx0StKDsRyRSRe0VkBXBYRGJEZIiI/NfR9Mudl6w0/FwR+X8istBpfX4sIk2CxH2NiKx1tP1PIvIbP/+xTivxkIhs9nmpGzotyV0issNpNVRaOEWkk4h8LSJZIrJfRN4sbV04fgdEpJ9z3lJE9pXel4hcICKrnfudKyLd/fLnLhFZISI5IjJTRBKqn9PVJ8izKdeFIn5dLiLySydPs51nmFHNNEvz2VtFuHuc57NTjLXhawnMEJEpIvKZ8+x/EJFOPtc+KyLbnOe+WESG+0Wf4ORzrogsERFfC/M+p6zkisgaEbnQx2+SiHwvIk+LSBZGcVR1v0+IyEER2SIVrZV2Tny5IvJvp3KqFiLSBegH/FlV81X1fczGmOOCXHI18BdVPaiqa4FpwCTH75fAu6q6WlWLgL8Ap/vkbQdgtqruUdUCTMXZ05Ej2UnzflXNU9X5mI1Rr/KRNQajHG/xFUhVD6vqZFXNVFWvqv4LU/n1P4b8cIvIk847ukVEbpYgQx8i0sJ57+72ce4UrO4RkXfFWCY5IjJPfBS5UyZfEpHPReQwpiFRGY2DlV+HM0Vko/OeTRERqW5eABcBq1X1Xed5TQZ6i0g3/4ChlCMRaQj8GbMrfWVMBOapaiaAqr6lql+q6hFVPYgpc0OdOBsAI4GHVbVYVZcD7wHXOv6NgduA61X1ZzWscu7HFy+m0XRs1NJutpmYHWzbAIkYrZ6F2dHWBZzlnDdzws8FdgC9MDtMvw+84fi1x+yMG+Ocj8G0EgXTKjwC9HP8BgE5TvwuJ91ujt+HwN+d+E8CFgK/qeI+TnHiigeaAfOAZ3z8rwfWAEnAbOAJx70LcNi5NhZTUDYBcT75sxDT6mkCrMVvV2K/nYGzK/kNq+IeJpfmZaBn47gpcIpPmBnAX53jvsBeYDDgxlScmUB8NcrDuZhWWXIVYXZjKtIkTMuvTC5HpiznGccAbwLv+Fx/JaaVFwPc6cSV4JMHxcDFzvO4C1Oxxjr+lzjPwgWMd55dC8dvElCCqaxjSvMsyD1MctK53smrm4CdULYp8lzMjs1dMO/FXOCRIHG9CLwYxO9CYK2f2wvA8wHCNnbysbmP28XASuf4Cd90MO+MAmOd8wHA907+JAFv4bwDTtk44pfeXcCnPud3A88GKmd+1zV3yki3Y6hvbsS8h62d+/2K8nXGXOA6jOLeANzgc+1cgtQ9jv+1QAqmDngGWOb3nuRgKnFXaXkLIuMMKi+/CvwLaAS0BfYB5waJawVwRRC/Z4GX/NxWAeOOpRxhLPfb8auH/a4RTLmeVMn9P1N6v05+KnCSj/80YKlzfDqmbrsX8x5vAH4XIM5RmJ6GttUtM6paq8ruWp/ze4HX/cLMBq72KXCP+Pj1wHSNuCvLZCfsR8CtzvHfgaeDvEiF+FRUwOXAN9W8r1+VPhAft08wraEVOAoA04UwyyeMC/NCjfTJnyt9/B8DptZG3geQeTIVld21fmEqU3YvYawC3/DrgREhpr/Iif/3VYR7Gfh/PuenUFHZ/dPH/zxgXSXxHQR6++TBAr/nsQsYHuTaZRyt7CcBW0O810nAJp/zJOceTvYp53/y8f8t8OUxPNOrfO/HcXsYmBEgbBtHhgQft7OATOf4TGA/ppsy0XmHvMDljn9D4B0njhJMl1cTx284sNsvveuBuT5pbwIaBipnPtfEYhTU34+xjH+NT8PVuSd/ZfeUU/Yv97t2LkHqngDpNHLiLb2fGcBrIcpYafl14h3mcz4LuO8Y8mI6fg0oTGNlUnXLEaahswyjnNsTXNkNB/KABkFkOgvzPnbxcZuPsfgTMNblAWC943eFk9Z0p0xmYJT/WQHiftcJ+0x186o2x+y2+Ry3Ay5xzPNsEcnGWCwtgoT/GfMCVOjiEZHRIrLA6ULMxhSa0nBtMC0Mf9o58e3ySf/vGAsvKCLSXETeEdPteQhjbfjLNA3TKnxeVQsdt5bOPQCgql7n/lr5XLfb5/gI0KAyWWqZbVUHKaMdcKffs2uDucdQGAhcBkwWkdhKwrX0kyuQjEHzzOkWXut0N2VjKmnfZ1UWn/M8tpfeg4hM9OmmzcY8z4DXhkCZjKp6xDlsEMjf/x6qQR5mHMOXVCA3SNhS/wphVfUrTDfV+xhlkOn4bXfCTsFYNWkYy+cDoHSSU1VyPAM8pKo5wW5ERFzA6xgFc3OwcFUQStmZgGlwvhfAL2Dd43SPPuJ0cR/C5A3UQtkg8LMPR9kIGNZ5Li9iDImSKtK8GnhfVfP8PURkCKY34GJV3eDjNQFjaW/DNKjf4GiZy3f+P6Sme3UFpsF1nl/c/Ry3bqp6WxUyVqA2lZ36HG/DWHaNfH7JqvqIT5g2PsdtMd1B+30jFJF4zEv5BKZbphHwOcaMLk3Hvx+81L0QaOqTfqqq9gwQ1pe/OfeRrqqpmK6ysn50p+/5GUwLZLJPX/9OjJIoDSfO/e2oIr0KiMhwqTjryffnPzYVCup3fgRjhZRyss/xNkzfuu+zS1LVtwkBNc2vjzDdSy0qCboL0w1VSptgAf1x8uAe4FKgsVMucvB5Vr7xOS9ya2CnmJlq0zAVbZpz7Sq/a/3zK9ysBjqKz+w2oLfjXg414yW7HP+AYVV1iqp2VtXmmPcrhqOTifpgWvoHnMbc88AgZ6xxAxAjIp2DxP0L4HFnzKu0Iv+fODM2nfdiOqbnZZyqFlczH0oJpexMxtQnb0nFsfpgdc8VmIk7Z2IaT+2dMJFeNsqetTOu2okAZYPKy1EqxrKb6Ty7Hx3/7b51jogkYoYBXvWPXET6Ynq+rlXVOb5+asbifqmqzVR1MKYBsdDxXlEazPeSAPJ3B9ao6voAflVSV58evAGcLyLnOK2lBBEZKSK+BfRKEekhIknAQ8B7qurxiycO08rcB5Q4g/9n+/hPB64RM/XWJWZ6azdV3QX8G3hSRFIdv04iMqIKuVMwrZ8cMdOt7/bzfxZYpKrXAZ8BUx33WcAYR45YzBhSIfDfqjLKH1X9Tn1mPQX4fVfdOAOwDLjCeTbnYsZCS5kG3Cgig8WQLGZacQqUDdLPqOIeSi3euEqCzcI8u+5OGbi/GvKnYLrY9mEq3weo2GLtLyIXiZm0cBvmeSzAWCvqXIuIXIOx7CIWp4W8DPiz8y5diOnqeT/IJa8BfxKRxs5Ehesx3Wo41/dynm1b4B+YMbaDzrU/AhPFTPCKxXS97lTV/ap6GGPpPeSUi6EY5fC6c20XTOXZx/kBnI8ZPwfTou8OnK+qpa35MsRMMhkZQpbMAm513vdGmGETf4oxlXIy8JrT4CklWN2TgiknWZjG4N9CkCXcfAj0EpFxYia9PQCsUNV1/gGrKEc5GIu5j/Mrtar6Az/4RHMhpovyG9+4RaQX8CVwi6p+6p+2856niEiciFyJqcefcuTaDHwH/FHMJyrdMb1D//KLJhbzfI6JOlF2qroN8xL8AVOpbMMoDt/0Xse8gLsx/bgVvp9Q1VzHfRYmg6/AtBxK/RcC1wBPYx7Wtxy1sCZiKts1zrXvUbmlAWb6az8nrs8wLzZgZn1iJlXc5DjdAfQTkQlOS+NKTCt4P+YFP1/NbLdI5FaMjNmY7oWPSj1UdRGmcnwBk2+bODqTD0yr+PsQ0lAqKV+q+gXwHOal2YRRRBBaYZ6NebE2YLqhCqjYvfQxZvLJQcxYxUVqZoKtAZ4E/gfswUyhDuV+6hQx37ZNrSTIZZiW90HgEUw3UanCniAivi35P2O693/GvBOPq+qXjl8CppspD9Oy/h/lGxp3YfJzI+bdPQ9TwZXyW8y4yl7MNPabVHU1gKruVdXdpT8n/H5VzXcs6t9gKtLdPj0VE5x7aIPpeltZdW4xDdOYXYEZU/wc0/gp11h23r+LMJbkyz4KL1jd85qTZzsw9cYCIgAxs7wnBPJzysA4zNjbQczEsst8rvUvVwHLkRp8n90+J/wev3rsakyvnb/ldSdmUt90n2frWybPAX5y0r0RMxlnn4//5Zi6OwtT997vbx1i5nRUOsO7MqSizHWPiMzFTKL453FP3HLMiEgcsBzIqKoLSkR2AveoakgrmTituVWYST9VjRlYogyntd9TVf/vGK4djZnw1a7KwJZ6idNQeQ4zo/PSY4nDrqBiCRlVLVLV7iGOtdyH6S5ZHCyAiFzodFs0Bh7FTGG3iu4ERFXfCFXRiUiiiJwn5pvRVhhL9sOqrrPUT8Ss8LMPGILplTkmTjhlJ+WX1vL9VdaFZKkmqvqaMwmiso+Gf4PpDtuM6YK6qZKwYcGWl4hEMEMOBzHdmGsxY1XHVwjTvRiobATscrQcG2qWC0tT1QGq+kPVVwQmLN2YFovFYrEcT044y85isVgsJx6RssgtAE2bNtX27duHWwyLxWKxHEcWL168X1WDLWxeK0SUsmvfvj2LFi0KtxgWi8ViOY6IyM9Vh6oZthvTYrFYLFGPVXYWSwSybvchNuwJtLyhxWI5Fqyys1gikL8+9yIvPzc53GJYLFFDRI3ZBaK4uJjt27dTUOC/j5/FEpyEhARat25NbGxlGy9ELm/E/T/n6Ji/obVYLD5EvLLbvn07KSkptG/fHjmmjXwtJxqqSlZWFtu3b6dDhw7hFsdisUQAEd+NWVBQQFpamlV0lpAREdLS0qKiN0A9dvU0i6U2iHhlB1hFZ6k20VJmCo8cCrcIFktUUC+UncVyolKQlx1uESyWqMAquxAQEe68886y8yeeeILJkyeHT6AqmDt3Lv/9b7X3jS1j2bJlnHrqqfTs2ZOMjAxmzpxZi9JZqkNB7sGqA1ksliqxyi4E4uPj+eCDD9i/f3+txquqeL3HvBdhUGqq7JKSknjttddYvXo1X375JbfddhvZ2dm1J6AlZIrybTemxVIbWGUXAjExMdxwww08/fTTFfz27dvHuHHjGDhwIAMHDuT7782m15MnT+aJJ54oC9erVy8yMzPJzMyka9euTJw4kV69erFt2zbuvvtuevXqRXp6epkVNXfuXEaOHMnFF19Mt27dmDBhAoF2qHjuuefo0aMHGRkZXHbZZWRmZjJ16lSefvpp+vTpw3fffVepjFdddRWnnnoqnTt3Ztq0aQB06dKFzp07A9CyZUtOOukk9u3bVyHtd999l169etG7d29OP/10wEwouuaaa0hPT6dv37588803AMyYMYNf/epXnHXWWbRv354XXniBp556ir59+zJkyBAOHDgAwLRp0xg4cCC9e/dm3LhxHDlypEK6Q4YMYfXqo5sgjxw5MmqXmSvKPxxuESyWqCDiPz3w5cFPV7NmZ+22dHu0TOXP5/esMtzvfvc7MjIyuOeee8q533rrrdx+++0MGzaMrVu3cs4557B27dpK49q4cSOvvvoqQ4YM4f3332fZsmUsX76c/fv3M3DgwDLFsXTpUlavXk3Lli0ZOnQo33//PcOGDSsX1yOPPMKWLVuIj48nOzubRo0aceONN9KgQQPuuusuAK644oqgMq5YsYIFCxZw+PBh+vbty5gxY2jZsmVZ/AsXLqSoqIhOnTpVuI+HHnqI2bNn06pVqzLLb8qUKYgIK1euZN26dZx99tls2LABgFWrVrF06VIKCgo45ZRTePTRR1m6dCm33347r732GrfddhsXXXQR119/PQB/+tOfmD59Orfccku5dMePH8+sWbN48MEH2bVrF7t27WLAgAGV5nl9pTjfrqJisdQG1rILkdTUVCZOnMhzzz1Xzv2rr77i5ptvpk+fPlxwwQUcOnSIvLy8SuNq164dQ4YMAWD+/PlcfvnluN1umjdvzogRI/jxxx8BGDRoEK1bt8blctGnTx8yMzMrxJWRkcGECRN44403iIkJ3HapTMaxY8eSmJhI06ZNGTVqFAsXLiy7bteuXVx11VW88soruFwVi8rQoUOZNGkS06ZNw+PxlN3PlVdeCUC3bt1o165dmbIbNWoUKSkpNGvWjIYNG3L++ecDkJ6eXnZvq1atYvjw4aSnp/Pmm2+Ws+BKufTSS3nvvfcAmDVrFhdffHGl+V2fKSmwlp3FUhvUK8suFAusLrntttvo168f11xzTZmb1+tlwYIFJCQklAsbExNTbjzO95uv5OTkkNKLj48vO3a73ZSUVPzm6rPPPmPevHl8+umnPPzww6xcubJCmGAyQsUp+qXnhw4dYsyYMTz88MNlitmfqVOn8sMPP/DZZ5/Rv39/Fi9eHPL9uFyusnOXy1V2b5MmTeKjjz6id+/ezJgxg7lz51aIp1WrVqSlpbFixQpmzpzJ1KnRu2m4t8gqO4ulNrCWXTVo0qQJl156KdOnTy9zO/vss3n++efLzpctWwaY7YqWLFkCwJIlS9iyZUvAOIcPH87MmTPxeDzs27ePefPmMWjQoJDk8Xq9bNu2jVGjRvHoo4+Sk5NDXl4eKSkp5OYe7f4KJiPAxx9/TEFBAVlZWcydO5eBAwdSVFTEhRdeyMSJEyu1mjZv3szgwYN56KGHaNasGdu2bWP48OG8+eabAGzYsIGtW7fStWvXkO4HIDc3lxYtWlBcXFwWTyDGjx/PY489Rk5ODhkZGSHHX9/wFlplZ7HUBlbZVZM777yz3KzM5557jkWLFpGRkUGPHj3KrIxx48Zx4MABevbsyQsvvECXLl0CxnfhhReSkZFB7969OeOMM3jsscc4+eSTQ5LF4/Fw5ZVXlk0G+f3vf0+jRo04//zz+fDDD8smqASTEUw36KhRoxgyZAj3338/LVu2ZNasWcybN48ZM2bQp08f+vTpU6YgH3jgAT755BMA7r77btLT0+nVqxennXYavXv35re//S1er5f09HTGjx/PjBkzyll0VfGXv/yFwYMHM3ToULp161bm/sknn/DAAw+UnV988cW88847XHrppSHHXR/xFuWHWwSLJSqQQDP8wsWAAQPUf1bd2rVr6d69e5gkim4mT55cbiJLtFFvy44qPNgIgMVtf03/a58KrzwWSx0jIotVtU5nmVnLzmKJMNTrMzZbXPHTC4vFUn3q1QQVS+0SyavAnMh4SkrKXkwpscrOYqkNrGVnsUQYJSXFZceuEjtmZ7HUBlbZWSwRhsfnExOr7CyW2sEqO4slwvB4jlp2MR6r7CyW2sAqO4slwvC17GI89X8DWoslErDKLkQ++ugjRIR169YFDZOZmUmvXr3qVI5ly5bx+eefH/P1pR+h9+jRg549e/Lss8/WonSW2sDXsou1lp3FUitYZRcib7/9NsOGDePtt98O6B9oKa/qUrq+ZGXUVNnFxMTw5JNPsmbNGhYsWMCUKVNYs2bNMcdnqX08PhNU4tRadhZLbWCVXQjk5eUxf/58pk+fzjvvvFPmPnfuXIYPH84FF1xAjx49AKP0JkyYQPfu3bn44ovLtqiZM2cOffv2JT09nWuvvZbCwkLALCt277330q9fP959991y6fpvoVNUVMQDDzzAzJkz6dOnDzNnzuTw4cNce+21DBo0iL59+/Lxxx8DZkudsWPHMnLkSDp37syDDz4IQIsWLejXrx8AKSkpdO/enR07dlS452+//bZs9ZS+ffuSm5uLqgbdjmjEiBGMHTuWjh07ct999/Hmm28yaNAg0tPT2bx5MwCffvopgwcPpm/fvpx55pns2bOnQrqXXXYZn332Wdn5pEmTyhZ9PlEo7cYsURex3sIwS2OxRAd1/p2diJwLPAu4gX+q6iPHHNkX98Huigsd14iT02F05SJ9/PHHnHvuuXTp0oW0tDQWL15M//79AbPu5apVq+jQoQOZmZmsX7+e6dOnM3ToUK699lpefPFFbr75ZiZNmsScOXPo0qULEydO5KWXXuK2224DIC0trWwdTV/8t9CJi4vjoYceYtGiRbzwwgsA/OEPf+CMM87g5ZdfJjs7m0GDBnHmmWcCZnueVatWkZSUxMCBAxkzZky5rXAyMzNZunQpgwcPrpD2E088wZQpUxg6dCh5eXkkJCTwwQcfBN2OaPny5axdu5YmTZrQsWNHrrvuOhYuXMizzz7L888/zzPPPMOwYcNYsGABIsI///lPHnvsMZ588sly6ZZu3zNmzBiKioqYM2cOL730UogPMzrweoyyyyORBGvZWSy1Qp1adiLiBqYAo4EewOUi0qMu06wL3n77bS677DLAWB6+XZmDBg2iQ4cOZedt2rRh6NChAFx55ZXMnz+f9evX06FDh7L1Ma+++mrmzZtXds348eMDphtoCx1//v3vf/PII4/Qp08fRo4cSUFBAVu3bgXgrLPOIi0tjcTERC666CLmz59fdl1eXh7jxo3jmWeeITU1NWDad9xxB8899xzZ2dnExMRUuh3RwIEDadGiBfHx8XTq1Imzzz4bKL99z/bt2znnnHNIT0/n8ccfD7h9z+jRo/nmm28oLCzkiy++4PTTTycxMTHgvUcrpZbdYUkiHmvZWSy1QV1bdoOATar6E4CIvAOMBY5tkKgKC6wuOHDgAF9//TUrV65ERPB4PIgIjz/+OFBxu55gW+ZURrAtf0LZQkdVef/99yvsLPDDDz8ElaW4uJhx48YxYcIELrroooBp33fffYwZM4bPP/+coUOHMnv27ErvIZTte2655RbuuOMOLrjgAubOnRtwBZeEhARGjhzJ7NmzmTlzZlkj40TC60xQOSLJxOs+8HrA5Q6zVBZL/aaux+xaAdt8zrc7bmWIyA0iskhEFu3bt6+Oxak+7733HldddRU///wzmZmZbNu2jQ4dOvDdd98FDL9161b+97//AfDWW28xbNgwunbtSmZmJps2bQLg9ddfZ8SIEVWmHWgLHf/te8455xyef/55Shf0Xrp0aZnff/7zHw4cOEB+fj4fffQRQ4cORVX59a9/Tffu3bnjjjsqTTs9PZ17772XgQMHsm7duhptRwSQk5NDq1bm8b/66qtBw40fP55XXnmF7777jnPPPTfk+KOF0m7MQlcSAFpU+WbAFoulasI+QUVV/6GqA1R1QLNmzcItTgXefvttLrzwwnJu48aNCzors2vXrkyZMoXu3btz8OBBbrrpJhISEnjllVe45JJLSE9Px+VyceONN1aZdqAtdEaNGsWaNWvKJqjcf//9FBcXk5GRQc+ePbn//vvLrh80aBDjxo0jIyODcePGMWDAAL7//ntef/11vv7667IJKKWzO6dOnVq2/c8zzzxDr169yMjIIDY2ltGjR9doOyIwa3Fecskl9O/fn6ZNm5a5L1q0iOuuu67s/Oyzz+bbb7/lzDPPJC4uLuT4o4UyZRfTwPzPt3vaWSw1pU63+BGRU4HJqnqOc/5/AKr6/wKFt1v81B4zZswoN5HlRKS+lp11i+bQ7V8XsSBpFEOOfEPOdQtp2Dr0DXAtlvpGNGzx8yPQWUQ6iEgccBnwSR2nabHUa9Sx7EpijWVXUGAtO4ulptTpBBVVLRGRm4HZmE8PXlbVilPwLLXOpEmTmDRpUrjFsBwDHkfZeeNSACg6kltZcIvFEgJ1/p2dqn4OHPuSHyaOkGY1Wiyl1GX3fF1TatlpvFF2xdays1hqTNgnqFRFQkICWVlZ9bryshxfVJWsrCwSEhLCLcoxUTpBRRxlV1JgZ2NaLDUl4ncqb926Ndu3bycSP0uwRC4JCQm0bt063GIcE15nbUxXQkMASqxlZ7HUmIhXdrGxseVWKLFYoh2v16yW404yys5TaJWdxVJTIr4b02I54XC6MWOTzDJu3iKr7CyWmmKVncUSYXi9phszLrmROS88EkZpLJbowCo7iyXScCy7hORGeFVQa9lZLDXGKjuLJcJQZyHopMQE8omDYrtbucVSU6yys1giDUfZxcXFk088Umy7MS2WmmKVncUSYagzZueKiaVA4nGVWGVnsdQUq+wslkjDsexiYuIolARcJbYb02KpKVbZWSyRRukKKjGxFEkCbo9VdhZLTbHKzmKJMNRnzK7IlYDbUxBmiSyW+o9VdhZLpOEou9jYOIpdCcRay85iqTFW2VkskYa3GK8K7pgYPO5E4rzWsrNYaopVdhZLhKGeEkpwIyKUuBOJU6vsLJaaYpWdxRJpeIspwW0OYxKJt5adxVJjrLKzWCIM8RZTImZDEk9MIvEUhlkii6X+Y5WdxRJpON2YAMQkkkAReL3hlcliqedYZWexRBjiLcbjbDWpcUnG0X5YbrHUCKvsLJYIQ7wllIix7CQ2GYCSgrxwimSx1HussrNYIgxfy04cyy7/SG44RbJY6j1W2VksEYZoCR5ngoor3lh2hUesZWex1ASr7CyWCMPlLS5Tdu54Y9kV5VtlZ7HUBKvsLJYII9aTT6HLKLkYx7Iryre7lVssNcEqO4slwojzHqHY7Si7xBQAigvsmJ3FUhOssrNYIox4bz4lMUbZxSaUzsa0lp3FUhOssrNYIox4bz4eR9nFJTYAwFNolZ3FUhOssrNYIoxECvA639fFO8rOa5WdxVIjrLKzWCIIVSVJC9BYY9klJDuWXdGRcIplsdR7rLKzWCKI/IJ84qQEiTdKLtGZoKLWsrNYaoRVdhZLBJG9bxcA7uSmACTEx5CvcVBs18a0WGpCjZSdiEwWkR0issz5nefj938isklE1ovIOTUX1WKJfvKydgIQ2/BkAOLcLo4QjxRby85iqQkxtRDH06r6hK+DiPQALgN6Ai2Br0Ski6p6aiE9iyVqyT9oLLv4xkbZiQiFxCN21wOLpUbUVTfmWOAdVS1U1S3AJmBQHaVlsUQNR7K2A5DWvE2ZW4Ek4LLKzmKpEbWh7G4WkRUi8rKINHbcWgHbfMJsd9wqICI3iMgiEVm0b9++WhDHYqm/eLN+okjdNG3ZocytyBWP2yo7i6VGVKnsROQrEVkV4DcWeAnoBPQBdgFPVlcAVf2Hqg5Q1QHNmjWr7uUWS1SRkJvJHvfJiDu2zK1IEnB7rLKzWGpClWN2qnpmKBGJyDTgX87pDqCNj3drx81isQRBVWl2eCMHGnQu9/KUuBNI9thdDyyWmlDT2ZgtfE4vBFY5x58Al4lIvIh0ADoDC2uSlsUS7WzbtYu27Mbbom859xJ3IrHegjBJZbFEBzWdjfmYiPQBFMgEfgOgqqtFZBawBigBfmdnYloslZO5Yj5tgaZdhpRzL3EnEqe2G9NiqQk1UnaqelUlfg8DD9ckfovlRKJk8zyKcdMq/fRy7l53IvHewhrH7/V4WLfkW7JX/Qd33g6ISSCuRS86nXYhqSe1qToCi6UeUxvf2VksllqgedZCfo7vyikJKeXcvbFJxHPsyq6oqJgfP32JVqum0kPN0PlBUojTIpL3zMS79AHWJfeF9EvoPOIK3EmNAsbj9XjZu3sre7f/REHWVjQ/m5LiImLFiys+GVdCKu6khsQlpRCflEJCYirJKam4YhPwerx4SorwekooKSnG6ynB4ynB6ynB6/Hg8ZSgHg+oB5cLXCK4xIWI4HaBS1zG3eXCJWLcRZxz/P4LLpcgCIhAYhNoYCe/nehYZWexRAD7srLo4tnEyjZXV/SMTSRBC0HVVN7VYN3S79FPb2WodyOZMR1Ykv4wXU6/lMaNT8Lj8bJ25QL2LHiXjrs/o+0P/0fBD39mTcPTONK4Gx5i0PxsYnO30bhgK608OzlZCjm5lu75eFFAHIW3rKJhWvNwi2IJI1bZWSwRQOaSOQwUDw26jqrgJ7FJuETxFuXjik8KKT6vx8s3bz7K8M2Pc1iSWTPkCbqf/Wvau47OSXO7XXTvcxrd+5xGYfHj/O+/X3Fk0Vtk5HxLs5y5ABSpm/3uk8hKaMuqlMFIWkeSm7WnQbO2xDdqRkJcPEUKRYcPU3Qkm6LDByk6kkdxQR4l+bl4Cg/j8hSiLjfiikHcMSBuxB2LuFyIOwaXyw0uNy6XGxU3HgVU8To/VcXrBVUvXi39r6hXfc59/nsVxVwnuTsZs2sK6xZ8TJ8xN9TGo7LUU6yys1gigMJN31Kkbtr3PaOiZ7zZ264gP5ekEJRdfn4BS1+cyC9yZ7O2wSBa//p1ejSp3B6Lj43h1BHnwohzUVUKiwpwq5fYuERauly0PKa7Cj/FJSXs/8sbyMbZgFV2JzJRt+uBx2MnfVrqH82yFrI5rlvZzuS+uOOMgss/XPW3dvuzD7Hi6Qs4LXc2SzrcQLc7vySlCkXnj4gQH59ITEIy4qrfVURsTAzrUk6lQ/b/8BYXhVscSxiJKsuuIP8IBx7rw/YmQ2gw8Aq69BtFTFx8rcTt8XjwekoAM3RiMN0lgRAEMOMrZcMsIhw9PFqJiM84jDmUo24hjtGoqt+5z3FVYSv4+/oFj7eiDH7nVVyr5fxCl8nfs67SqfBsKz+tVr75nhYdzqZT8SZ+bH0NgXAnGAVYcPhQQP9S9h44wNYpFzHYs5S1fR+g39g7Kw1/ohDTfTSpP37JhiVf0WXweVVfECIF+Yc5kneI4vw8ivLzKPaUILhwud24XS7cbhculxtXTAxup7vW5TbH7pgY3G43bncsLncMuNwgrmqPyVpCJ6qU3ZHcg2xP7Uv6/i9I/PJjDn+RwKa4juQmtcWb2ASJS8bjisHtKcZbUoAWF0JJPq6SfNyefNyeAmI9BcRpIfFq/idoIQkUkihFuMN9g354NbQXwz+UfZ0iC5coCCR1GxnQ353YCIDCwweDxrF3/352vDSWfiWr2XzaI3Q/56Y6kLR+0mP4WA4vvIfc/74C1VR2OQez2L72B/K2Loe9a0jO20pqyT7SPFkkSwEJtSyrRwUPLoK/pZW0Niu5yvgFv7Zyv+AsohuDHlxQqUyRQlQpuyYntWLQ7TM5fOgAi77/FO9P35KcvZ72OQtpkJ1HohztxijQWIollkLiKXIlUCTxlLgTKI5NpNDdkCPuBLwxiXjciWhsIupOxOs+ml0+NloQadT5a/6LBrEBA5ks6nfuG7bU4AtkYon/afBiWsGnwrWVcLzS8b+0klZvVfFU1mCuKGPlsVVaoVQhiAQ7S2xI+qmBK+KY5EYAlARRdrv37mH/1PNJ92xky4hn6HTGpMqFOMFITW3M9yddyOC9s/h59Q+06zk4aNhDB/by0+J/U7BxHk2zFtGx5Cd6innXckhmT2xr9id1YmfiUEhuhishGYlNgrhk3DExoIp6vXjVg9fjBfXi9XrAU4J6PajXfF6hXg/i9aDqAW8JeD2IehG8uKpaf6OKQqaVvJHq4+MfjQa4SgIc+ZKb0CKgeyQSVcqulOTUJgwYfTVwdBq3qlJSUmIKlyuWhBg3CUBK0FgslsggtoHZTKQ4gLLbvn0bedPH0tWbyc9nvEinEZcfb/HqBV0v/jMHX/qS2PeuItPzT9pnmA/3Dx3cy5aV/+Xw2jk02/c/OhVvoo8oBRrL5vgeLGx1PUkdBnNyl/40a9GOhvV8DPNEJiqVXSBEhJjYWCC2yrAWSyQR3yANAD2SU859y08b4bVf0Z49bD9nGp1OGxcO8eoFTZu3ZO0vX6H5v66m5Qfnk/2BaeY2IpfeQLG62RjXnQVtr6dhjzPo1GcEPRND+8zDUj84YZSdxVJfSUwxlp0n/6hlt3LJf2nyydU0JJc9F7xJh37nhEu8ekP3AWdwsONSvv9yGu59a0FAG7WnQbs+dOp/Bj0aNAq3iJY6xCo7iyXCOalxKvs1FdfBTLweL999+CIDVz7EEVcS2Re/T7ueQ8MtYr2hcZOmDL3i/8IthiUMWGVnsUQ4sW4Xme72nLJ/HsseO5sRhT+yMaEnza+bSdNmdgFniyUU7GirxVIP2NvhVzTSHDoXrmZpj3s55Z5vSbWKzmIJGWvZWSz1gHMn3MHmTefQsmVb+jZIDbc4Fku9wyo7i6Ue4HIJnbr0CrcYFku9xXZjWiwWiyXqscrOYrFYLFGP+C+MG05EZB/wcy1E1RTYXwvxHA/qk6xQv+S1stYd9Une+iQr1C95a0vWdqpap9vJR5Syqy1EZJGqDgi3HKFQn2SF+iWvlbXuqE/y1idZoX7JW59ktd2YFovFYol6rLKzWCwWS9QTrcruH+EWoBrUJ1mhfslrZa076pO89UlWqF/y1htZo3LMzmKxWCwWX6LVsrNYLBaLpQyr7CwWi8US9USVshORc0VkvYhsEpH7wi2PPyLSRkS+EZE1IrJaRG513CeLyA4RWeb8zgu3rAAikikiKx2ZFjluTUTkPyKy0fnfOALk7OqTd8tE5JCI3BZJ+SoiL4vIXhFZ5eMWMC/F8JxTjleISL8IkPVxEVnnyPOhiDRy3NuLSL5PHk89nrJWIm/QZy8i/+fk7XoROa4bAQaRdaaPnJkissxxj4S8DVZnRWTZrRRVjYof4AY2Ax2BOGA50CPccvnJ2ALo5xynABuAHsBk4K5wyxdA3kygqZ/bY8B9zvF9wKPhljNAOdgNtIukfAVOB/oBq6rKS+A84AtAgCHADxEg69lAjHP8qI+s7X3DRVDeBnz2zvu2HIgHOjh1hjucsvr5Pwk8EEF5G6zOisiyW9kvmiy7QcAmVf1JVYuAd4CxYZapHKq6S1WXOMe5wFqgVXilqjZjgVed41eBX4VPlID8AtisqrWxEk+toarzgAN+zsHycizwmhoWAI1EpMVxEZTAsqrqv1W1xDldALQ+XvJURZC8DcZY4B1VLVTVLcAmTN1xXKhMVhER4FLg7eMlT1VUUmdFZNmtjGhSdq2AbT7n24lgRSIi7YG+wA+O082O2f9yJHQNOijwbxFZLCI3OG7NVXWXc7wbaB4e0YJyGeUri0jM11KC5WWkl+VrMa33UjqIyFIR+VZEhodLqAAEevaRnLfDgT2qutHHLWLy1q/OqndlN5qUXb1BRBoA7wO3qeoh4CWgE9AH2IXpyogEhqlqP2A08DsROd3XU02/RcR8uyIiccAFwLuOU6TmawUiLS+DISJ/BEqANx2nXUBbVe0L3AG8JSKRsOFevXn2PlxO+YZaxORtgDqrjPpSdqNJ2e0AfLdubu24RRQiEospNG+q6gcAqrpHVT2q6gWmcRy7VSpDVXc4//cCH2Lk2lPaLeH83xs+CSswGliiqnsgcvPVh2B5GZFlWUQmAb8EJjgVHE53YJZzvBgzBtYlbEI6VPLsIzVvY4CLgJmlbpGSt4HqLOpZ2YXoUnY/Ap1FpIPTwr8M+CTMMpXD6ZOfDqxV1ad83H37tC8EVvlfe7wRkWQRSSk9xkxQWIXJ06udYFcDH4dHwoCUaxlHYr76ESwvPwEmOjPbhgA5Pl1GYUFEzgXuAS5Q1SM+7s1ExO0cdwQ6Az+FR8qjVPLsPwEuE5F4EemAkXfh8ZYvAGcC61R1e6lDJORtsDqLelR2ywj3DJna/GFmAm3AtID+GG55Asg3DGPurwCWOb/zgNeBlY77J0CLCJC1I2bW2nJgdWl+AmnAHGAj8BXQJNyyOnIlA1lAQx+3iMlXjBLeBRRjxjF+HSwvMTPZpjjleCUwIAJk3YQZiyktt1OdsOOc8rEMWAKcHyF5G/TZA3908nY9MDrcsjruM4Ab/cJGQt4Gq7MisuxW9rPLhVksFosl6ommbkyLxWKxWAJilZ3FYrFYoh6r7CwWi8US9VhlZ7FYLJaoxyo7i8VisUQ9VtlZLBaLJeqxys5isVgsUc//B33vckSUQkaqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEYCAYAAADPvfYMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABm50lEQVR4nO2deXxVxfm4n/fe7JAQCIvsm+wk7IsCCoqgpUIVFSyKSK3Vqq1aty5a9Fv7c60rldaiuCCLu9a1oiigiCD7KkhYlDWQkIWs9/39MefGm5t7bxISuDfJPJ/PTc6ZmTPznjlz5p3tzCuqisVisVgs9RVXuAWwWCwWiyWcWEVosVgslnqNVYQWi8ViqddYRWixWCyWeo1VhBaLxWKp11hFaLFYLJZ6TUQrQhHpICIqIlHhlqWuIyLTRGTpKUorXkTeF5GjInLHqUjTL/10ERl9CtJZLCLXBPGzZTsMhMr3U/lMnHROD+J3yt7FuoCI3OHUJR+JSMKJxBHRitByYojIDBEpEpEcn98pVzghGA2kAW1V9SGvo6OgOoRNqgjCeYYzqhD+lyKyS0RyReQtEWkSIuy/RWSriHhEZFoA/1tEZL+IHBOR50Qk1sevr4gsEZEsEdkrIncHSeMep7If7ePWWkTeFpEjzrXX+V2jjvzeMvufKtx/vfkg2mlgjaxkWBGRB0Ukw/k9KCISInyF5UhEuohIvoi87OfeTEReccrGURGZ6+P3iIh8JyLZIrJFRKb6XXuhiGxwnvuXItLTx2+WX11WICLZXn+nDmkDdAfGVCZf/DmpitC2dsPKAlVt6PN7qOJLThlNgHRVzQm3INXBqWTC3pgUkV7Av4ArgRZAHvDPEJesBX4LfBsgrrHAXcC5QHugE3CvT5BXgC8wz/Bs4LciMt4vjs7ApcA+v+hfBnY6Mo4D/i4io/zC9PEpswF707WBCKr7rgV+AfTBND4vBH4TKGAVytFM4JsA7m8A+4F2QHPgER+/XCftRsBVwBMicqaTbhdgLnAdkAy8C7zjzUNVvc63LgPmAa/6JqyquZiylRI0J0JQ4y+x06q/U0TWAbkiEiUiQx0tnykia31bM07r5v+JyAqnBfp2sNasiFwtIpudVsX3IvIbP/8JIrLGiWeHiJzvuDcSkdkisk9EfhCRv4mIu4L76CwinzqtqMMiMldEkn38johIf+e8lYgc8t6XiIwXkY3O/S4WkR5++XObiKxzWk4LRCSu6jlddUTkLidfskVkk4hcFCSciMhjInLQycv1ItLb8Yt1Wne7ReSA01qLr6IoUYCnAllTRORdJ/1vnGe21MdfReQ6p5WZKSIzRUxLN9Sz82GQkwdHReR57zMQkcYi8l/neR51jtv4pLtYRO4XkWWYiqJTBffaXkSWOXn+sYg09fOf4uTlYRH5cwVxBWMK8K6qfuE0Lu4GLhaRxECBVXWmqi4C8gN4XwXMVtWNqnoU+D9gmo9/B2Cuqpao6g5gKdDLL46ZwJ1AoddBRBoCI4H7VbVIVdcCrwHTq3qzFSEiHUXkCyfPP3HKxstBwk503snePs7TReRHp764zSfsYBH5yilv+0TkaRGJ8fFXEblBRL4DvquEqKMDlV+f+B5xyuBOEbmgitng5SrgUVXdq6o/AI9S9nn6UmE5EpHJQCawyE/WMUBb4HZVzXKe8Wqvv6r+VVW3qKpHVb8GlgBnON5jgSWqulRVi4EHgdaYhlYZRKQBMBF4IYD8HkzdUnVUtUZ/QDqwxsmUeOeGMoCfYRTvec55Myf8YuAHoDfQAHgdeNnx6wAoEOWcjwM6A+JkUh7Q3/EbDGQ58bucdLs7fm9iWjoNMC2VFcBvKriP0524YoFmmFbw4z7+vwY2AQnAR8AjjntXTOvnPCAauAPYDsT45M8KoBWmVb0ZuC6IDMMxhS7Yb3iQ62Z489DP/VInXRcwyZGzpeM3DVjqHI8FVmFaZwL08An3GPCOI3sipvX2/6pQPqKBlwLJ5xduvvNLAHoCe7zyOf4K/NeRsR1wCDi/ks8uHdiAKaNNgGXA3xy/FMyLluDc36vAWz7XLgZ2Yyr/KCA6xD0sBnY4ZSLeOX/Ar2w/6/j1AQqAHkHiCvW83wbu9HPLAQZUkMdLgWl+bmuBST7nTR05U5zzvwMPOM+xG7AXGORXxt72yefRznGiE09zn7DPAqv9numPmF7FG0CHE6yDvsL0RmIw79AxAtQpwNWYd/N0P795mLoi1SlX3nsYAAx1ru2AeXdv9pP/f06Ziq9AxlDldxpQhKlj3MD1Tr5IsDoiRDpZwBCf84FA9omUIyAJ2IYZhpyBzzsM3IOpB1/G1O/fAGcHSSceM1rgvd8bgfd9/N2YRtrvA1w7Ffg+SF684Dy7mCqXmRMpaBU84HRgus/5ncBLfmE+Aq5yjhfjVA7OeU9MS9KNnyIMkNZb3szCKLrHAoRpgalg4n3cLgc+q+J9/QKfl9ZxewdYD6wDYh23u4GFPmFcGEU/0id/rvDxfwiYVcPPYIaTh5k+v1YBwq0BJjjH0/hJEZ7jFPihgMsnvGCUZ2cftzOAnZWUqy/mBT+AU/kECed2wnXzcfsb5RXhcJ/zhcBdlXl2zjO4zuf8Z8COEDIf9TlfDNxXyftdDPzF5/y3wIfOsbdst/HxXwFMPoHnvQi/xpRvmQtxXSBFuAOngnLOox05OzjnZ2KUR7Hjfq9P2ERMT8gbNh1Hifik9xQQB/QHjgBbffzPwiivZOBpTGMl4Lsf4p7aObIl+Li9THlFeBumIeub/16/7j5uD2F6yIHSuhl4069MnlNJOYOWX8y7uN3HL8EJf9oJlI0Sv/vp4sQVSJGELEfAEziKkvKK8N9OvL9yyoy359g0QDovAB96ZcDM7eViRgxiMHWoB/hjEBlnBLnXzphGVBEwsCr5dLLmN/b4HLcHLnW6/5kikolpxbQMEn4XJiP9h5AQkQtEZLkzLJmJqcC84dpiXmJ/2jvx7fNJ/1+YnmFQRKSFiMwXM5R6DPMy+cv0LKYn+5SqFjhurZx7AEBVPc79tfa5br/PcR7QMJQsJ8hCVU32+f0oIlPFDB1786E3AfJZVT/FVEQzgYNiFlckYXpXCcAqnzg+dNwrRFXXYCrLrzCVSDCaYVrdvuViT4BwAfOxks/Ov8y1cq5NEJF/iVkwcAzTm0yWskPpgWQJRkXPuibKQg6mte5LEpAdIGxV4/IeZ4uZsvgQuA+jzNoCY0Xkt06YGZhGb3qQuKcAHTH59wzmuez1eqoZkitU1Uzg907YHgHiCUUr4Iiq5vm4BXpetwMzVXVvAL9gZaOrM1S+3ykbfyd0uaqIUM++1M/nXmqibCQBOepojgrCesNni0hfzCK3x4Kkcxwz7z9bzbDofExeDPMNJCIPY+qdy7wyqOoWzBDu05ieYlNMI2Wv37XtMMryxSAy/B7TE01S1ZVBwgTkZClC30zeg3k5fCvlBqr6gE+Ytj7H7TAa/bBvhGJWrr2OGfJooarJwPuYXoo3nc4BZNmD6RE29Uk/SVX95zX8+btzH6mqmgRc4ZOWd87jcWA2MEN+mtf8EaN8veHEub8fKkivHCIyQsqulvL/jahCXO0xivtGzDBXMqbFHXAFmao+qaoDMD30rpiK4zCmwPfyyctGaiawK4Wq5gMfOPEG4xCmVd/Gx61tkLCBCPnsAsTXDvPcAP6AGfIb4lx7luPue32gSiScbMQMrQIgIp0ww8LbqhuXc3xAVTMw86ElqvqiqhY7SmQ+pkEKZoHN7xxFsR+TxwtF5E4AVd2lqj9X1WaqOgRT4a0IIYsSpHyGYB/QRMouow9UdsYAfxGRiQH8gpWNZ4AtQBenbPwpgHwRXTac442VCetXjkZiesy7nWd7GzBRRLwLrtZR/t7LnIvIvcAFwBhVPVYmoOprqtpbVVOAvzpp+S/IuRJYpqrfB5G/B2bE5XgQ/6CcihVvLwMXishYEXGLSJyIjPRdgABcISI9ncJ7H/Caqpb4xRODeSiHgGJn8th3qexs4GoROVdEXGKWandX1X3Ax8CjIpLk+HUWkbMrkDsR00LKEpHWGEXgyxPASjUr294DZjnuC4FxjhzRmIq1APiyoozyR1WXaNmVn/6/JVWIrgGmYB4Cs/AI0zIrh4gMEpEhjvy5mPF6j9O7fRZ4TESaO2Fbi1lp6L1WpeKl3QWY5xkQ59m/gWlgJIhId8zcQGWp6NkB3CAibZwGzJ+BBT7XHgcyHb+/ViHdcDEX846NcBYT3Ae8oaoBe4QiEiNmcZAA0c476a0LXgR+5byPycBfgDmO3zZzufzSeY9Ow8w1r3P8z8WUqb7O70fMCsWZTro9RCTRSf8KzPv7D8evl5hPM9xOI/NRTONxs+M/TUTSK8oIVd0FrMSUnRgROQOzWtGfjcD5wEzxW/UK3O2Uu16YeUTfsnEMyHHK5PUVyRMBvAjc6rynrTD10ZwgYUOVo39jOhp9nd8sTL3nffffBBqLyFXOM7wE05BdBiAifwR+iRkqz/BPWEQGONc1c9J6x+kp+jI1hOxgRv4KQvgH5aQrQlXdA0zAtJ4OYXpot/ul/RLmBvdjhlx+FyCebMd9IXAUk6nv+PivwBTaxzATxJ/zU89sKqbi3eRc+xplh2YDcS9mHiML88Df8HqIyATMS+R9EW4F+ovIFFXdiumBPIXpQV0IXKiqhYQRVd2EqVy+wszRpeIU0gAkYRTeUczQUAbwsON3J2aOaLkzPPQJpgeFiLTFDMetr0AcDxWXvRsxS633Y8rHPCpfyIM+Ox9ewTSQvscMqf/NcX8cM5l/GFiOGQoMO6FGAFR1I2bp+VzgIKbC/q3PtR+IyJ98LvkYo+zPxFQ6x3F6vqr6IWZe7DPMoqBdOI0BpxV/MXALpmyswYwq/M3xz1DV/d4fZn7qqP70mcxYTH4fdeQ9X1UPOX4tMArnmBOmA/BzVS1y/NsSvLz6MwUzd53hyLaAAGVHzcrVnwPPStlVmZ9jyvgizCK4jx332zD1Tjbm/VhAmPGOGoUI8i/Mgrb1mGf1nuPmvb60XIUqR6qa5/dsc4B87/NT1SPAeEweZWE+wZmgqt6Rvb9jetfbfUa0fMvkE5g5xa2Y8vFrv/s8A6NYy3w24YebClajB8M7WRk2RGQxZtK10h/PWiITp5XfS1X/WEG4MZiRgu7OC1SZuB/ELBa4qvqSWmobIvIxZmHc5hO4dgGwRVVrQ+/ecgI4oxebgGtU9f2qXh/2j4EtdQdVfbkiJeiwGLPMfKP4fKfli4h0F5E0MQzGrEZ7s+aktdQmVHVMZZWgM7Tf2Rm+PR8zIvXWSRXQEjacOmQLpie/qILgAYmU3Q/CgojMwgxj+vOyql4XwN1SAzjDxFMqCJaIGQ5thRnKfRTznVNEEWJY6oIqzuFaao7TMMPhKZiVh9erz8fdpwJnuPGDQH5VWVxmqRhVfYSyu9hUmbAPjVosFovFEk5qZGhURG4Ss5HqRhHx3UT5jyKyXcwGv2ODXNtRRL52wi0Qny2LLBaLxWI52VS7Ryhm09w/A+NUtUBEmqvqQTG7h8/DbH3WCrO6sKv/ZxEishCzRHe+M1S5VlWfCZVm06ZNtUOHDtWS22KxWCyRwapVqw6raqU25jgZ1MQc4fWYLdIKAFT1oOM+AZjvuO8Uke0YpfiV90IREcx2Xr90nF7A7E4RUhF26NCBlSurtHGAxWKxWCIUEdlVcaiTR00MjXYFRjjDm5+LyCDHvTVltxvaS9ltxsBMZmeq2XE8WBgARORaEVkpIisPHToUKIjFYrFYLFWmUj1CEfkEsxLLnz87cTTBbNA8CLOlUkWmaaqMqv4b8/EvAwcOtCt8LPUW73SGBLevarFYqkClFKGqjg7mJyLXY+b4FFghIh7MHoI/UHbPvjaU328zA7OhcZTTKwwUxmKxOGTnF/GHx+eQ6C7m7ht+RXKCXVtmsVSXmpgjfAsYBXwmIl0xW5kdxmx/9oqI/AOzWKYLfhvsqqqKyGfAJZjNe6/iBL8VKyoqYu/eveTnB7I1arEEJi4ujjZt2hAdHR1uUSrFJ8uWM+v47bhEeWdZF8afF7SNarFYKklNKMLngOdEZAPGBt5VTu9wo7MidBPGksAN3hWjIvI+ZiucHzF7V84Xkb8BqzGbZ1eZvXv3kpiYSIcOHeyQkaVSqCoZGRns3buXjh07hlucStFg3Yu4xBkaXbcQrCK0WKpNtRWhs0tIoN1ZUNX7gfsDuP/M5/h7zGrSapGfn2+VoKVKiAgpKSnUlsVXqkqHrK/ZljCAGApok70WVbVl3mKpJnVqr1FbIViqSm0qM3t//JGu7CKv9RnkNU2ju37PoWO54RbLYqn11ClFaLHUZdI3mW9nm5w+mOg2/YmXQnZt2xBmqSyW2o9VhDWIiPCHP/yh9PyRRx5hxowZ4ROoAhYvXsyXX1bZXnAZzj//fJKTk/n5z39eQ1JZglH4o1F6p3XpT3Kb7gDk7t8eTpEsljqBVYQ1SGxsLG+88QaHDx+uOHAVUFU8nhOyNxmSmlCEt99+Oy+99FINSWQJRfTRbeSQQEzjNjRu0w0AzbCK0GKpLlYR1iBRUVFce+21PPbYY+X8Dh06xMSJExk0aBCDBg1i2TJjbHvGjBk88shPFkR69+5Neno66enpdOvWjalTp9K7d2/27NnD7bffTu/evUlNTWXBAmMce/HixYwcOZJLLrmE7t27M2XKFALtH/vkk0/Ss2dP0tLSmDx5Munp6cyaNYvHHnuMvn37smTJkpAyXnnllZxxxhl06dKFZ599tjTec889l8TExJD58uqrr9K7d2/69OnDWWedBZjFTVdffTWpqan069ePzz77DIA5c+bwi1/8gvPOO48OHTrw9NNP849//IN+/foxdOhQjhwxdnyfffZZBg0aRJ8+fZg4cSJ5eXnl0h06dCgbN24sPR85cmSt3pqvSc52fozpACJEJTYzSvFYerjFslhqPXXSHuG9725k04/HajTOnq2S+OuFvSoMd8MNN5CWlsYdd9xRxv33v/89t9xyC8OHD2f37t2MHTuWzZtD2xn97rvveOGFFxg6dCivv/46a9asYe3atRw+fJhBgwaVKpXVq1ezceNGWrVqxbBhw1i2bBnDhw8vE9cDDzzAzp07iY2NJTMzk+TkZK677joaNmzIbbcZ27i//OUvg8q4bt06li9fTm5uLv369WPcuHG0atWqUnl333338dFHH9G6dWsyMzMBmDlzJiLC+vXr2bJlC2PGjGHbtm0AbNiwgdWrV5Ofn8/pp5/Ogw8+yOrVq7nlllt48cUXufnmm7n44ov59a9/DcBf/vIXZs+ezU033VQm3UmTJrFw4ULuvfde9u3bx759+xg4cGClZI40VJVWxbvYkTLKOIhw2N2cuLx94RXMYqkD2B5hDZOUlMTUqVN58skny7h/8skn3HjjjfTt25fx48dz7NgxcnKC2XQ1tG/fnqFDhwKwdOlSLr/8ctxuNy1atODss8/mm2++AWDw4MG0adMGl8tF3759SU9PLxdXWloaU6ZM4eWXXyYqKnD7J5SMEyZMID4+nqZNmzJq1ChWrFgRMI5ADBs2jGnTpvHss89SUlJSej9XXGG+uunevTvt27cvVYSjRo0iMTGRZs2a0ahRIy688EIAUlNTS+9tw4YNjBgxgtTUVObOnVum5+flsssu47XXXgNg4cKFXHLJJZWWOdLIPHqEJmSjjX/63jE3tjmJhbXj0w+LJZKpkz3CyvTcTiY333wz/fv35+qrry5183g8LF++nLi4uDJho6Kiysz/+e6M06BBg0qlFxsbW3rsdrspLi4uF+a9997jiy++4N133+X+++9n/fr15cIEkxHKf2ZQlc8OZs2axddff817773HgAEDWLVqVcjwvvfjcrlKz10uV+m9TZs2jbfeeos+ffowZ84cFi9eXC6e1q1bk5KSwrp161iwYAGzZs2qtMyRxv7d22gMxDX7aRvfwoQWNM/dar8ltFiqie0RngSaNGnCZZddxuzZP22SM2bMGJ566qnS8zVr1gDGpNS3334LwLfffsvOnTsDxjlixAgWLFhASUkJhw4d4osvvmDw4MrtQ+DxeNizZw+jRo3iwQcfJCsri5ycHBITE8nOzq5QRoC3336b/Px8MjIyWLx4MYMGDaKy7NixgyFDhnDffffRrFkz9uzZw4gRI5g7dy4A27ZtY/fu3XTr1q3ScWZnZ9OyZUuKiopK4wnEpEmTeOihh8jKyiItLa3S8UcaWft2ANC41emlbprYkhSOkZVTfn7UYrFUHqsITxJ/+MMfyqweffLJJ1m5ciVpaWn07NmztHcyceJEjhw5Qq9evXj66afp2rVrwPguuugi0tLS6NOnD+eccw4PPfQQp50WyCBIeUpKSrjiiitKF6b87ne/Izk5mQsvvJA333yzdLFMMBnBDK2OGjWKoUOHcvfdd5fOD44YMYJLL72URYsW0aZNGz766CMA7rnnHt555x3ArCxNTU2ld+/enHnmmfTp04ff/va3eDweUlNTmTRpEnPmzCnTE6yI//u//2PIkCEMGzaM7t27l7q/88473HPPPaXnl1xyCfPnz+eyyy6rdNyRyPFDpoHUvF2XUrfo5Na4RDm4b3e4xLJY6gTVtlAfDgYOHKj+q/82b95Mjx49wiRR3WbGjBllFtXUNWpD2fn8qV8zOONt4v96AJxh0O+WvEaXRb9i9XkL6TdsbJgltFhOHBFZpaphW8lme4QWSy0gIe9HDrlblCpBgPiUNgAUZv4YLrEsljpBnVwsY6lZInl3nPpCo8L9ZMWUHQpPamqGp4uOHQyHSBZLncH2CC2WWkBySQaFCc3LuCU2aQGA5tpPKCyW6mAVocUS4eTlF5CimXgalO0RSlQsx2iAKy8jTJJZLHUDqwgtlgjn0P69uEWJatSynN8xVzIxBVYRWizVwSpCiyXCyTxoPo+Ia1J+S7vcqMbEFR491SJZLHUKqwhrmLfeegsRYcuWLUHDpKen07t375Mqx5o1a3j//ferFcf06dNp3rz5SZfVEpq8jB8AaNi0TTm//JgmNCy2itBiqQ5WEdYw8+bNY/jw4cybNy+gf6Dtz6qKd7/OUNSEIpw2bRoffvhhteKwVJ+izP0ANGrerrxfXAqNPJmnWCKLpW5hFWENkpOTw9KlS5k9ezbz588vdV+8eDEjRoxg/Pjx9OzZEzAKccqUKfTo0YNLLrmk1IzQokWL6NevH6mpqUyfPp2CggLAbMV255130r9/f1599dUy6fqbOSosLOSee+5hwYIF9O3blwULFpCbm8v06dMZPHgw/fr14+233waM2aMJEyYwcuRIunTpwr333lsa71lnnUWTJk1C3vPnn39O37596du3L/369SM7OxtVDWoy6uyzz2bChAl06tSJu+66i7lz5zJ48GBSU1PZscNsI/buu+8yZMgQ+vXrx+jRozlw4EC5dCdPnsx7771Xej5t2rTSDbbrGpJjLEwkppSfI/QkNCWZHPKdcmKxWKpOtb8jFJGbgBuAEuA9Vb1DRM4DHgBigELgdlX9NMC1M4BfA971339S1ep1YwA+uAv2l99UulqclgoXPBAyyNtvv835559P165dSUlJYdWqVQwYMAAw+4hu2LCBjh07kp6eztatW5k9ezbDhg1j+vTp/POf/+TGG29k2rRpLFq0iK5duzJ16lSeeeYZbr75ZgBSUlJK9yX1xd/MUUxMDPfddx8rV67k6aefBuBPf/oT55xzDs899xyZmZkMHjyY0aNHA7BixQo2bNhAQkICgwYNYty4cZU2V/TII48wc+ZMhg0bRk5ODnFxcbzxxhtBTUatXbuWzZs306RJEzp16sQ111zDihUreOKJJ3jqqad4/PHHGT58OMuXL0dE+M9//sNDDz3Eo48+WiZdr4mlcePGUVhYyKJFi3jmmWcqJXNtIyrvIEdJonFU+S3oXA2b4RIl8/ABTmtdvsdosVgqplo9QhEZBUwA+qhqL8BrYfYwcKGqpgJXAaFMmD+mqn2dX/WVYBiZN28ekydPBkyPxXd4dPDgwXTs+JMJnbZt2zJs2DAArrjiCpYuXcrWrVvp2LFj6X6jV111FV988UXpNZMmTQqYbiAzR/58/PHHPPDAA/Tt25eRI0eSn5/P7t1mEcZ5551HSkoK8fHxXHzxxSxdurTS9zxs2DBuvfVWnnzySTIzM4mKigppMmrQoEG0bNmS2NhYOnfuzJgxY4CyJpb27t3L2LFjSU1N5eGHHw5oYumCCy7gs88+o6CggA8++ICzzjqL+Pj4Sstdm4jLP8RRd+CeeVSS+bYw+4i1S2ixnCjV7RFeDzygqgUAqnrQ+b/aJ8xGIF5EYr3hTjoV9NxOBkeOHOHTTz9l/fr1iAglJSWICA8//DBQ3qTSiZg1CmaWqTJmjlSV119/vZyFh6+//rpaJpbuuusuxo0bx/vvv8+wYcNKN90ORmVMLN10003ceuutjB8/nsWLFwfc2SYuLo6RI0fy0UcfsWDBgtIGSF2kQVEGOdFNA/rFNzYf1edaRWixnDDVnSPsCowQka9F5HMRCWSbZyLwbQgleKOIrBOR50SkcbCERORaEVkpIisPHYq8nTRee+01rrzySnbt2kV6ejp79uyhY8eOLFmyJGD43bt389VXXwHwyiuvMHz4cLp160Z6ejrbt28H4KWXXuLss8+uMO1AZo78TSyNHTuWp556Cu8m66tX/9RW+d///seRI0c4fvw4b731VmlPtTLs2LGD1NRU7rzzTgYNGsSWLVuqZTIKICsri9atWwPwwgsvBA03adIknn/+eZYsWcL5559f6fhrG4klRymIDdwjbNDYfFJRmFV+HtVisVSOChWhiHwiIhsC/CZgepRNgKHA7cBC8elOiEgv4EHgN0GifwboDPQF9gGPBgmHqv5bVQeq6sBmzZpV8vZOHfPmzeOiiy4q4zZx4sSgq0e7devGzJkz6dGjB0ePHuX6668nLi6O559/nksvvZTU1FRcLhfXXXddhWkHMnM0atQoNm3aVLpY5u6776aoqIi0tDR69erF3XffXXr94MGDmThxImlpaUycOLF0fvDyyy/njDPOYOvWrbRp06bUvuKsWbNKTTQ9/vjj9O7dm7S0NKKjo7nggguqZTIKzN6ml156KQMGDKBp0596QitXruSaa64pPR8zZgyff/45o0ePJiYmptLx1zaSPMcoiQusCJOamgU0xdmR1zi0WGoL1TLDJCIfAg+q6mfO+Q5gqKoeEpE2wKfA1aq6rBJxdQD+q6oVfrRmzTDVHHPmzCmzqKY+EsllJy83m4SH27C84w0Mverv5fzVU0LJvU1Z0XoqZ177RBgktFiqT203w/QWMApARLpiVokeFpFk4D3grlBKUER814NfBGyopjwWS50i87D5hjCqYeBREHG5yZQk3HmHA/pbLJaKqa4ifA7oJCIbgPnAVWq6mDcCpwP3iMga59ccQET+IyJezf+QiKwXkXUYhXpLNeWxVJFp06bV695gpJNzxMz9RScGXiwDcMxt9xu1WKpDtVaNqmohcEUA978BfwtyzTU+x1dWJ/0AcVdpxaPFUp2pgVNBbpaxNRif3Dx4mOgUGhRZRWixnCh1ZmeZuLg4MjIyIr5is0QOqkpGRgZxcXHhFiUoBVlmEUzDxsEXG+XHNiXJ7jdqsZwwdcZCfZs2bdi7dy+R+GmFJXKJi4ujTZvym1lHCsU5pjw3ahpcERYnNKNJ5lHU40FcdaZta7GcMuqMIoyOji6zc4vFUhfQ3MN4VEhISgkeqEFzYqSYnGNHaJgcfC7RYrEExjYfLZYIxn38KFmSiLiDt1ndiWZ3maxDe0+VWBZLncIqQoslgokpPEK2Kyl0mGTzFVJOxo+nQiSLpc5hFaHFEsHEFWWS624UMkyDFLPNWv5Ru9+oxXIiWEVosUQwDYqzyI9ODhkmqZlZ7FOUZRWhxXIiWEVosUQwCZ4cimJC9wgbN2lOoboh5+ApkspiqVvUmVWjFktdpKHm4omtYI4w2s1+ScaVV7VPhzwe5fP/vYmuf50G+fspjkkmutMwepx9CYnNrJFfS/3BKkKLJUIpKiyggeSjcckVhs1yNybmeOUVYXZuLquensqo45+QSzyHY1rT8PgOUjZ8gmf9fXyXkIqn50V0OuuXRDeqvOUQi6U2YhWhxRKhHMvMIAVwxYceGgXIi25Ko8LK2SQsLCpmw5OXMLLgSzaefh09L/sr7WMSUI+HLRtW8uOX82m//yO6rLqXklX3sSWuD5kdLqBxh1Rat+1Iw/g4ikuUrMwMMo8cJCfzMHnHjnA89xhakIO7OI+o4jzUUwKAAiLOLIwIiKAI4DJbIoqguBw/EFwgLuc6wbtpYvDdE313kwq9xWLygIvpNXBkpfLJUn+witBiiVBysowidCckVxg2P6EFnY5UznjLkjl3c27Bl2xMvZNeE/9U6i4uF93TBtM9bTCFxR6WrVjG8dWv0vXw/+i+5f/Blp/iiAJSnJ8/hUSRTxzF4kYAUUVQFHBhjnFUoeBx/mvAn2rl9g6uzMaKMVLCqk+2gVWEFj+sIrRYIpTj2UcAiG7QuMKwxYntaHQkh6K8TKJDKM7N61cxYu+/2NB4FL0v/mPQcDFRLoadOQLOHIF6POzbvY196VvI2L+bo7kFJMa6iU9sTMNGTWnUuBmNU5rSuEkK7tiGxLijiUQzyZv+31nEFR8LtxiWCMQqQoslQik4ZixKxDWsWBFKk3awC478sIMWXQYEDKOq5L57F4USQ8ep/ww11lg2bpeLlh2607JD98oLH4EURiXRqGhXuMWwRCD28wmLJUIpzDUWJeKTmlQYNq5ZJwCy928PGmbNkv8ysHAF27tfT4MmrWpGyFpEUXQiDTw54RbDEoFYRWixRCjFuZkAJDSqeCPtJq1OB+D4wZ1Bw7iWPcYRGtHrF7fViHy1jeKYJBpqbrjFsEQgVhFaLBGK53gmAInJISxPOLRs2YY8jaU4Iz2g//frltGnYBXfdbqS6LgGNShl7aEkthEJUoAWF4RbFEuEYRWhxRKp5GdRrC5i40N/UA8QHxvFj64WxBxLD+h/7JOHydZ4ul94aw0LWYtwvsfMO3YkvHJYIg6rCC2WCEUKssiRBpVe1HIoriNN874v556xewtpWYtZ02IijRpX3Luss8QnA5DvLEKyWLxYRWixRCjRhcfIlcoPY+Y17kELzwE8eZll3He/9wjFuOgw7g81LGHtwvs9Zn62VYSWslhFaLFEKDHF2eS5EysdPqpVKgCHtn9b6nY88xDdD7zNN4nn0bZ9pxqXsTYRlWBW3xbm2KFRS1mqrQhF5CYR2SIiG0XkIcetg4gcF5E1zm9WkGubiMj/ROQ753/FH0xZLPWE2OIc8t0NKx2+edchAGRsXVLqtuW/jxFPIUnn3FLj8tU2ohoaRVjkfJZisXipliIUkVHABKCPqvYCHvHx3qGqfZ3fdUGiuAtYpKpdgEXOucViAeI9ORRGVV4RduncmS3anrj0TwEoyM6g0/YXWBU7mN79hpwsMWsN3o0JSvyGji2W6vYIrwceUNUCAFWtqkG0CcALzvELwC+qKU+lWPXIBL56/s5TkZTFcsLEe/Iojq7C0KjbxY7kM2mXu56SrB/5/tU/k6i5yLl3m82t6zmxzsYEmmd7hJayVFcRdgVGiMjXIvK5iAzy8esoIqsd9xFBrm+hql6z2vuBFsESEpFrRWSliKw8dKhqdtf8ST6+m4SD31Yc0GIJIwnkURJd+R4hQMLQ6ahC5j/H0GP3PD5uOJ5+g4K9fvWLhg0acFxj0PyscItiiTAqVIQi8omIbAjwm4DZq7QJMBS4HVgopum5D2inqv2AW4FXRCTkx1CqarakD+7/b1UdqKoDmzVrVvk7DMCx2JY0KthXcUCLJUyop4SGHEdjKt8jBBgxeCD/SryRkvxs3nONotdVT9jeoEOj+GiyaAD5meEWxRJhVLjptqqODuYnItcDbzhKbIWIeICmqnoI8A6XrhKRHZje40q/KA6ISEtV3SciLYGqDq2eEPkN29A8dyXq8SAuu3DWEnkU5B0jDiC2aoowyu1i+u/u4Zv0mzijdSOaNIhEOxDhITbKTQ4NcBfYHqGlLNXVAm8BowBEpCsQAxwWkWYi4nbcOwFdgPJf+sI7wFXO8VXA29WUp3I0akeCFHDsSOUMmVosp5q8bFNZS1zFu8r4kxATxdldm1klGIBcV0OiCq0itJSluorwOaCTiGwA5gNXOb3Ds4B1IrIGeA24TlWPAIjIf0RkoHP9A8B5IvIdMNo5P+nENO0AwKG9352K5CyWKnM8JxMAV1zVeoSW0Bx3JxJTlB1uMSwRRrXsEapqIXBFAPfXgdeDXHONz3EGcG51ZDgRkk7rDED2/h0YnW2xRBYFjuWJqPhG4RWkjlEYnURc4e5wi2GJMOrlBFnLDt0AOH5gR5glsVgCU5hrhu9iEqwirEmKopNIKLE2CS1lqZeKsGGjJhyiMVFH7NCoJTIpyjsGQHSDqs8RWoLjiW1EAnng8YRbFEsEUS8VIcCB2A4k5wZav2OxhJ/i40YRxjVIDq8gdQyNa4QLBbty1OJDteYIazM5SZ1JPfjfan1CUVRwnB93bODY4b0UFRYQGxNLTFJT4pKa0ahpCxIbNrKfZ1hOCE++owgTk8MrSB3DlWC2WSvIPkJs/Iltbbx1w7ccWPI8jY+sIbkkAw9CXlQTjjdsg6dxJxJa9aBFx940adsdiY6rSfEtJ4l6qwhp1o0Gh17j0L6dNGvdudKXeUpKWP2/V4ha+yI98r6lvRQHDXtcY8iUJHLcyRyPbkxBbBPzXZgrGnVF4XH+A6gCKKpmVwFVjzlWUP99BoJsOyCOR/nwQfcpCIoE39sgaHwhr6lyOsHjkgrup9z34yHCVzX9mr1HgsrWOGsTAA2sIqxR3I4izM06TGzzyr/3AJnHjrF29k0Mz3ybzgg7Y7pyIP50BCW+4DBtMr6i+ZH3YQewBEoQDrpO41BcewrjW6BxSZREJyLRcbgEPAoedd55TzHq8aDqAU+J8+J7QEvMf48H8CBagqgieHDhQQD/4u5f/r1FzNQr6vw3f8wuJlJ6jfgei4nbd0MGVS2V2+Mxx/GjbmVw3z5VystIo94qwoZtUmET7N/2baUV4faNKyl54zoGlHzHfpqxqsVEotsOIKFZB2Ji4igoOE5xTgZFORmU5ByG3EO4j2cQU3CE+OKjNM9PJ07ziKKEaEqIohi3VL1iDYWn3GvxE2VTkiDuvuFD7UgS2C/U3QSLL1Q6oVRYZKZf9biCXbM+OpVe8fFB47NUnRhn4+28Y0doUoXrfty/jyP/nsDZnq2saXUZnS+ZQZeU1mXCqCqHjxzhhx3ryNy9ieKDW2mYvZOm+btpnbeZhppHrBRVSd4SFTziKlV7yk/H5jxAM8vfwUfJ+VNRw079T6RsyReBbzOvrNS9RDL1VhF2SD2Dko+EvO+Xw6hLKwy/4r//oc83d5En8azq93f6jruW06Kiqy2Hp6QEEQm8DdYJbI1lB2LrDsnhFqAOkpDUFDA9wsqSlZ3LgWcvpbdnOztGzqTvyHJfjAGm59Q0JYWmKaNg8Khy/qpKfv5xCvLzKVYlyiW4XUKUC9zuKNzuKFwuN4gLXG4QwQ24T+hOTx3l77T2UW8VYcPEZLZHdaThwVUVht301qMMXnMfW2J70fxXCxnQok2NyeFyR3oxt1jqDslNjCI8fqxyVupVlZX/uYlzS9azffg/OD2IEqwMIkJcfAJx8QknHIfl5FCvOxCHkvvSoWAznuLgwxXbPv4PPdfcx4qYobS7+WOa1KAStFgsp5YmKc0BKMipnCmmLz99m3OzXmdD60s5ffSvTqZoljBSrxWhtD+DBuSzc/2ygP47lr1Bx2V3sMadRtcbXyMhoWomcSwWS2SRlNSIQnVTknukwrDH8wtoufQv7HOdRo8rHz/5wlnCRr1WhF3OnECRujm6svxucLvXfU6r/13HTld7Wl/3BslJds9Hi6W2Iy4XR12Nic6reMP9r157jE66h2Nn/RV3nG0E12XqtSJMadqCDXH9aPfje3iKCkrd921fS9IbUzhMYxKmv0V17R9aLJbI4WhUMxLy94cMk5mVRdp3/+S7uFS6nX35KZLMEi7qtSIEKBhwLc01g/Vv/wOAvZtX4H75IkpwUXj5q7Rp2z7MEloslpokO/Y0kotCmz799p1/0lSyiDnv7hNavW2pXdR7RTj43Ev5NmYAvdY/xMZHzqfp/J+hKEcmvkrnbmnhFs9isdQwhQmnkeI5HHQzg7z8Ak7f8Tzfx3Snff8xp1g6Szio94rQ5XbR9tr5LG94Lg1z0vm20Wj0mk/pkjok3KJZLJaTgCexFXEUkZsZuFf41Xsv0o4D6LDf2d5gPaHefkfoS7OmzWl2+2sA2IFQi6Vu06BZO9gB+3Z/x+mNW5TxKyou4bQN/2K/uyWdR0wOk4SWU0297xFaLJb6ReO2PQHI3LOpnN/Xi/9LL/2OzL6/Mbu7WOoFVhFaLJZ6RctOvSlWFyX7N5dxV1Wiv36Ko9KIrmN+EybpLOHAKkKLxVKviItP4AdXS+IyyxrmXrvqS4YUfcPe06fgirXboNUnrCK0WCz1jkPxHUnJ21HGLfezf5BHHF1+fmuYpLKEi2orQhG5SUS2iMhGEXnIcZsiImt8fh4R6Rvg2hki8oNPuJ9VVx6LxWKpiOPN+tLG8yM5GT8AsP27TQzJ+ZRtrS8mrpHdQKO+US1FKCKjgAlAH1XtBTwCoKpzVbWvqvYFrgR2quqaINE85g2rqu9XRx6LxWKpDI16nAvA91//F4CDb91NCW46XnhHOMWyhInqfj5xPfCAqhYAqGqgD3MuB+ZXMx2LxWKpMXoMGMG+D5sSveYlvnQnc2buJ3zb/mr6n9Yx3KJZwkB1h0a7AiNE5GsR+VxEBgUIMwmYFyKOG0VknYg8JyKNqymPxWKxVEh0dDQ/9vw1PQrXc+ZX15Ie1ZFek+8Nt1iWMFFhj1BEPgFOC+D1Z+f6JsBQYBCwUEQ6qZq9i0RkCJCnqhuCRP8M8H+AOv8fBaYHkeNa4FqAdu3aVSS2xWKxhKT/JXfw5bxCEo4foNOEPxOb0CjcIlnChGiQ/fYqdbHIh8CDqvqZc74DGKqqh5zzx4BDqvr3SsTVAfivqvauKOzAgQN15cqVJyy3xWKxWCIHEVmlqgPDlX51h0bfAkYBiEhXIAY47Jy7gMsIMT8oIi19Ti8CgvUcLRaLxWI5KVR3scxzwHMisgEoBK7Sn7qYZwF7VPV73wtE5D/ALFVdCTzkfFahQDpgt3OwWCwWyymlWkOj4UJEDgG7qhlNU5zea4RTW+SE2iOrlbPmqS2yWjlrnpqQtb2qhu0DzlqpCGsCEVkZzjHpylJb5ITaI6uVs+apLbJaOWue2iRrMOwWaxaLxWKp11hFaLFYLJZ6TX1WhP8OtwCVpLbICbVHVitnzVNbZLVy1jy1SdaA1Ns5QovFYrFYoH73CC0Wi8VisYrQYrFYLPWbeqcIReR8EdkqIttF5K5wy+OLiLQVkc9EZJNj3/H3jnvE2W0UkXQRWe/Is9JxayIi/xOR75z/Yd1EXUS6+dnFPCYiN0dKfjobzR90NqTwugXMQzE86ZTbdSLSP8xyPuzYIV0nIm+KSLLj3kFEjvvk7axTJWcIWYM+bxH5o5OnW0VkbJjlXOAjY7qIrHHcw5anIeqkiCun1UJV680PcAM7gE6Y7eDWAj3DLZePfC2B/s5xIrAN6AnMAG4Lt3x+sqYDTf3cHgLuco7vwuxDG3ZZfZ79fqB9pOQnZvel/sCGivIQ+BnwASCYTe6/DrOcY4Ao5/hBHzk7+IaLkDwN+Lydd2stEAt0dOoGd7jk9PN/FLgn3Hkaok6KuHJanV996xEOBrar6veqWojZB3VCmGUqRVX3qeq3znE2sBloHV6pqsQE4AXn+AXgF+ETpRznAjtUtbo7EtUYqvoFcMTPOVgeTgBeVMNyINlvr95TKqeqfqyqxc7pcqDNqZClIoLkaTAmAPNVtUBVdwLbMXXESSeUnCIimH2aQ5mvOyWEqJMirpxWh/qmCFsDe3zO9xKhisaxxtEP+NpxijS7jQp8LCKrxJjIAmihqvuc4/1Ai/CIFpDJlK1YIi0/vQTLw0guu9MxvQAvHUVktRgbpSPCJZQfgZ53pObpCOCAqn7n4xb2PPWrk2pjOQ1KfVOEtQIRaQi8Dtysqscwdhs7A32BfZhhk3AzXFX7AxcAN4jIWb6easZJIuLbHBGJAcYDrzpOkZif5YikPAyGiPwZKAbmOk77gHaq2g+4FXhFRJLCJZ9DrXjePlxO2UZb2PM0QJ1USm0opxVR3xThD0Bbn/M2jlvEICLRmAI3V1XfAFDVA6paoqoe4FlO0fBNKFT1B+f/QeBNjEwHvMMgzv+D4ZOwDBcA36rqAYjM/PQhWB5GXNkVkWnAz4EpTmWIM8yY4Ryvwsy7dQ2bkIR83pGYp1HAxcACr1u48zRQnUQtKqeVob4pwm+ALiLS0eklTAbeCbNMpThzA7OBzar6Dx/3iLLbKCINRCTRe4xZOLEBk5dXOcGuAt4Oj4TlKNPCjrT89CNYHr4DTHVW5Q0FsnyGpk45InI+cAcwXlXzfNybiYjbOe4EdAG+DxzLqSHE834HmCwisSLSESPrilMtnx+jgS2qutfrEM48DVYnUUvKaaUJ92qdU/3DrGrahmlV/Tnc8vjJNhwzxLAOWOP8fga8BKx33N8BWoZZzk6Y1XZrgY3efARSgEXAd8AnQJMIyNMGQAbQyMctIvITo5z3AUWYuZRfBctDzCq8mU65XQ8MDLOc2zFzQd5yOssJO9EpE2uAb4ELIyBPgz5v4M9Onm4FLginnI77HOA6v7Bhy9MQdVLEldPq/OwWaxaLxWKp19S3oVGLxWKxWMpgFaHFYrFY6jVWEVosFoulXmMVocVisVjqNVYRWiwWi6VeYxWhxWKxWOo1VhFaLBaLpV5jFaHFYrFY6jVWEVosFoulXmMVocVisVjqNVYRWiwWi6VeYxWhxWKxWOo1Ea0IRaSDiKhjo8tyEhGRaSKy9BSlFS8i74vIURG541Sk6Zd+uoiMPgXpLBaRa4L42bIdBkLl+6l8Jk46pwfxO2XvYl1ARO5w6pKPRCThROKIaEVoOTFEZIaIFIlIjs/vlCucEIwG0oC2qvqQ19FRUB3CJlUE4TzDGVUI/0sR2SUiuSLylog0CRH23yKyVUQ8jnFdf/9bRGS/iBwTkedEJNbHr6+ILBGRLBHZKyJ3B0njHqeyH+3j1lpE3haRI8611/ldo4783jL7nyrcf70xo+M0sEZWMqyIyIMikuH8HnRsDAYLX2E5EpEuIpIvIi/7uTcTkVecsnFUROb6+D0iIt+JSLaIbBGRqX7XXigiG5zn/qWI9PTxm+VXlxWISLbX36lD2gDdMbZRq8xJVYS2tRtWFqhqQ5/fQxVfcspoAqSrak64BakOTiUT9sakiPQC/gVcCbQA8oB/hrhkLfBbjG07/7jGAncB5wLtMbYn7/UJ8grwBeYZng38VkTG+8XRGbgUY2/Pl5eBnY6M44C/i8govzB9fMpswN50bSCC6r5rgV8AfTCNzwuB3wQKWIVyNBNj5NyfN4D9QDugOfCIj1+uk3YjjCHfJ0TkTCfdLsBc4DogGXgXeMebh6p6nW9dhrHl+KpvwqqaiylbKUFzIgQ1/hI7rfo7RWQdkCsiUSIy1NHymSKy1rc147Ru/p+IrHBaoG8Ha82KyNUistlpVXwvIr/x858gImuceHaIsaKNiDQSkdkisk9EfhCRv4lj8TnEfXQWkU+dVtRhEZkrIsk+fkdEpL9z3kpEDnnvS0TGi8hG534Xi0gPv/y5TUTWOS2nBSISV/WcrjoicpeTL9kisklELgoSTkTkMRE56OTlehHp7fjFOq273SJywGmtxVdRlCjAU4GsKSLyrpP+N84zW+rjryJyndPKzBSRmSKmpRvq2fkwyMmDoyLyvPcZiEhjEfmv8zyPOsdtfNJdLCL3i8gyTEXRqYJ7bS8iy5w8/1hEmvr5T3Hy8rCI/LmCuIIxBXhXVb9wGhd3AxeLSGKgwKo6U1UXAfkBvK8CZqvqRlU9CvwfMM3HvwMwV1VLVHUHsBTo5RfHTOBOoNDrICINgZHA/apapKprgdeA6VW92YoQkY4i8oWT5584ZePlIGEnOu9kbx/n6SLyo1Nf3OYTdrCIfOWUt30i8rSIxPj4q4jcICLfYQzWVsToQOXXJ75HnDK4U0QuqGI2eLkKeFRV96rqD8CjlH2evlRYjkRkMpCJMcrrK+sYoC1wu6pmOc94tddfVf+qqltU1aOqXwNLgDMc77HAElVdqqrFwINAa0xDqwwi0gBjqPiFAPJ7MHVL1TkJFo3TMVaM2wLxzg1lYKwau4DznPNmTvjFwA9Ab4w18deBlx2/DhjryFHO+TigM8YK8tmYiqi/4zcYyHLidznpdnf83sS0dBpgWiorgN9UcB+nO3HFAs0wreDHffx/DWwCEoCPgEcc966Y1s95QDRwB8aad4xP/qwAWmFa1Zvxs0jtZx06M8RveJDrZnjz0M/9UiddFzDJkbOl4zcNWOocjwVWYVpnAvTwCfcYxsp3EyAR03r7f1UoH9EYi+Hl5PMLN9/5JQA9MdbQl/r4K/BfR8Z2wCHg/Eo+u3RgA6aMNgGWAX9z/FIwL1qCc3+vAm/5XLsY2I2p/KOA6BD3sBhjqbsr5l1YDDzgV7afdfz6AAVAjyBxhXrebwN3+rnlAAMqyOOlwDQ/t7XAJJ/zpo6cKc7534EHnOfYDWNdfZBfGXvbJ59HO8eJTjzNfcI+C6z2e6Y/YnoVbwAdTrAO+grTG4nBvEPHCFCnAFdj3s3T/fzmYeqKVKdcee9hADDUubYD5t292U/+/zllKr4CGUOV32kYy/W/BtzA9U6+SLA6IkQ6WcAQn/OBQPaJlCMgCdiGGYacgc87DNyDqQdfxtTv3wBnB0knHjNa4L3fG4H3ffzdmEba7wNcOxX4PkhevOA8u5gql5kTKWgVPOB0YLrP+Z3AS35hPgKuco4X41QOznlPTEvSjZ8iDJDWW97Mwii6xwKEaYGpYOJ93C4HPqviff0Cn5fWcXsHWA+sA2Idt7uBhT5hXBhFP9Inf67w8X8ImFXDz2CGk4eZPr9WAcKtASY4x9P4SRGe4xT4oYDLJ7xglGdnH7czgJ2VlKsv5gU/gFP5BAnndsJ183H7G+UV4XCf84XAXZV5ds4zuM7n/GfAjhAyH/U5XwzcV8n7XQz8xef8t8CHzrG3bLfx8V8BTD6B570Iv8aUb5kLcV0gRbgDp4JyzqMdOTs452dilEex436vT9hETE/IGzYdR4n4pPcUEAf0B44AW338z8Ior2TgaUxjJeC7H+Ke2jmyJfi4vUx5RXgbpiHrm/9ev+4+bg9hesiB0roZeNOvTJ5TSTmDll/Mu7jdxy/BCX/aCZSNEr/76eLEFUiRhCxHwBM4ipLyivDfTry/csqMt+fYNEA6LwAfemXAzO3lYkYMYjB1qAf4YxAZZwS5186YRlQRMLAq+XSy5jf2+By3By51uv+ZIpKJacW0DBJ+FyYj/YeQEJELRGS5MyyZianAvOHaYl5if9o78e3zSf9fmJ5hUESkhYjMFzOUegzzMvnL9CymJ/uUqhY4bq2cewBAVT3O/bX2uW6/z3Ee0DCULCfIQlVN9vn9KCJTxQwde/OhNwHyWVU/xVREM4GDYhZXJGF6VwnAKp84PnTcK0RV12Aqy68wlUgwmmFa3b7lYk+AcAHzsZLPzr/MtXKuTRCRf4lZMHAM05tMlrJD6YFkCUZFz7omykIOprXuSxKQHSBsVePyHmeLmbL4ELgPo8zaAmNF5LdOmBmYRm96kLinAB0x+fcM5rns9XqqGZIrVNVM4PdO2B4B4glFK+CIqub5uAV6XrcDM1V1bwC/YGWjqzNUvt8pG38ndLmqiFDPvtTP515qomwkATnqaI4KwnrDZ4tIX8wit8eCpHMcM+8/W82w6HxMXgzzDSQiD2Pqncu8MqjqFswQ7tOYnmJTTCNlr9+17TDK8sUgMvwe0xNNUtWVQcIE5GQpQt9M3oN5OXwr5Qaq+oBPmLY+x+0wGv2wb4RiVq69jhnyaKGqycD7mF6KN53OAWTZg+kRNvVJP0lV/ec1/Pm7cx+pqpoEXOGTlnfO43FgNjBDfprX/BGjfL3hxLm/HypIrxwiMkLKrpby/42oQlztMYr7RswwVzKmxR1wBZmqPqmqAzA99K6YiuMwpsD38snLRmomsCuFquYDHzjxBuMQplXfxsetbZCwgQj57ALE1w7z3AD+gBnyG+Jce5bj7nt9oEoknGzEDK0CICKdMMPC26obl3N8QFUzMPOhJar6oqoWO0pkPqZBCmaBze8cRbEfk8cLReROAFXdpao/V9VmqjoEU+GtCCGLEqR8hmAf0ETKLqMPVHbGAH8RkYkB/IKVjWeALUAXp2z8KYB8EV02nOONlQnrV45GYnrMu51nexswUUS8C67WUf7ey5yLyL3ABcAYVT1WJqDqa6raW1VTgL86afkvyLkSWKaq3weRvwdmxOV4EP+gnIoVby8DF4rIWBFxi0iciIz0XYAAXCEiPZ3Cex/wmqqW+MUTg3koh4BiZ/LYd6nsbOBqETlXRFxilmp3V9V9wMfAoyKS5Ph1FpGzK5A7EdNCyhKR1hhF4MsTwEo1K9veA2Y57guBcY4c0ZiKtQD4sqKM8kdVl2jZlZ/+vyVViK4BpmAeArPwCNMyK4eIDBKRIY78uZjxeo/Tu30WeExEmjthW4tZaei9VqXipd0FmOcZEOfZv4FpYCSISHfM3EBlqejZAdwgIm2cBsyfgQU+1x4HMh2/v1Yh3XAxF/OOjXAWE9wHvKGqAXuEIhIjZnGQANHOO+mtC14EfuW8j8nAX4A5jt82c7n80nmPTsPMNa9z/M/FlKm+zu9HzArFmU66PUQk0Un/Csz7+w/Hr5eYTzPcTiPzUUzjcbPjP01E0ivKCFXdBazElJ0YETkDs1rRn43A+cBM8Vv1CtztlLtemHlE37JxDMhxyuT1FckTAbwI3Oq8p60w9dGcIGFDlaN/YzoafZ3fLEy953333wQai8hVzjO8BNOQXQYgIn8EfokZKs/wT1hEBjjXNXPSesfpKfoyNYTsYEb+CkL4B+WkK0JV3QNMwLSeDmF6aLf7pf0S5gb3Y4ZcfhcgnmzHfSFwFJOp7/j4r8AU2scwE8Sf81PPbCqm4t3kXPsaZYdmA3EvZh4jC/PA3/B6iMgEzEvkfRFuBfqLyBRV3YrpgTyF6UFdCFyoqoWEEVXdhKlcvsLM0aXiFNIAJGEU3lHM0FAG8LDjdydmjmi5Mzz0CaYHhYi0xQzHra9AHA8Vl70bMUut92PKxzwqX8iDPjsfXsE0kL7HDKn/zXF/HDOZfxhYjhkKDDuhRgBUdSNm6flc4CCmwv6tz7UfiMiffC75GKPsz8RUOsdxer6q+iFmXuwzzKKgXTiNAacVfzFwC6ZsrMGMKvzN8c9Q1f3eH2Z+6qj+9JnMWEx+H3XkPV9VDzl+LTAK55gTpgPwc1UtcvzbEry8+jMFM3ed4ci2gABlR83K1Z8Dz0rZVZmfY8r4IswiuI8d99sw9U425v1YQJjxjhqFCPIvzIK29Zhn9Z7j5r2+tFyFKkeqmuf3bHOAfO/zU9UjwHhMHmVhPsGZoKrekb2/Y3rX231GtHzL5BOYOcWtmPLxa7/7PAOjWMt8NuGHmwpWowfDO1kZNkRkMWbStdIfz1oiE6eV30tV/1hBuDGYkYLuzgtUmbgfxCwWuKr6klpqGyLyMWZh3OYTuHYBsEVVa0Pv3nICOKMXm4BrVPX9ql4f9o+BLXUHVX25IiXosBizzHyj+Hyn5YuIdBeRNDEMxqxGe7PmpLXUJlR1TGWVoDO039kZvj0fMyL11kkV0BI2nDpkC6Ynv6iC4AGJlN0PwoKIzMIMY/rzsqpeF8DdUgM4w8RTKgiWiBkObYUZyn0U851TRBFiWOqCKs7hWmqO0zDD4SmYlYfXq8/H3acCZ7jxg0B+VVlcZqkYVX2EsrvYVJmwD41aLBaLxRJO7NCoxWKxWOo1tXJotGnTptqhQ4dwi2GxWCyWGmDVqlWHVbVSG3OcDGqlIuzQoQMrV1Zp4wCLxWKxRCgisqviUCcPOzRqsVgslnqNVYQWS4STV1jMhxv2Yxe2WSwnB6sILZYI55XXXuP817qxc+uacItisdRJauUcYSCKiorYu3cv+fmBbI1aLIGJi4ujTZs2REdHh1uUoLTa9wkAns3/he79wiyNxVL3qDOKcO/evSQmJtKhQwdEqrphvaU+oqpkZGSwd+9eOnbsGG5xglIY2xiyQXPL7VVssVhqgDozNJqfn09KSopVgpZKIyKkpKRE/CiCRsWbg6LIltNiqa3UGUUIWCVoqTK1ocxoVKw5KK6ymTWLxVIJ6pQitFjqIq4oY7pRbY/QYjkpWEVYg4gIf/jDH0rPH3nkEWbMmBE+gSpg8eLFfPllle0Fl7JmzRrOOOMMevXqRVpaGgsWhN08W53E7TWxVmwVocVyMrCKsAaJjY3ljTfe4PDhwxUHrgKqisdzQvYmQ1JdRZiQkMCLL77Ixo0b+fDDD7n55pvJzMysOQEtAKinBAApPiHj2xaLpQKsIqxBoqKiuPbaa3nsscfK+R06dIiJEycyaNAgBg0axLJlxtj2jBkzeOSRnyyI9O7dm/T0dNLT0+nWrRtTp06ld+/e7Nmzh9tvv53evXuTmppa2vtavHgxI0eO5JJLLqF79+5MmTIl4IfXTz75JD179iQtLY3JkyeTnp7OrFmzeOyxx+jbty9LliwJKeOVV17JGWecQZcuXXj22WcB6Nq1K126dAGgVatWNG/enEOHDpVL+9VXX6V379706dOHs846CzCLm66++mpSU1Pp168fn332GQBz5szhF7/4Beeddx4dOnTg6aef5h//+Af9+vVj6NChHDli7Pg+++yzDBo0iD59+jBx4kTy8vLKpTt06FA2btxYej5y5MjauTWfpxgAsT1Ci+WkUGc+n/Dl3nc3sunHYzUaZ89WSfz1wl4VhrvhhhtIS0vjjjvuKOP++9//nltuuYXhw4eze/duxo4dy+bNoe2Mfvfdd7zwwgsMHTqU119/nTVr1rB27VoOHz7MoEGDSpXK6tWr2bhxI61atWLYsGEsW7aM4cOHl4nrgQceYOfOncTGxpKZmUlycjLXXXcdDRs25LbbjG3cX/7yl0FlXLduHcuXLyc3N5d+/foxbtw4WrVqVRr/ihUrKCwspHPnzuXu47777uOjjz6idevWpT3GmTNnIiKsX7+eLVu2MGbMGLZt2wbAhg0bWL16Nfn5+Zx++uk8+OCDrF69mltuuYUXX3yRm2++mYsvvphf//rXAPzlL39h9uzZ3HTTTWXSnTRpEgsXLuTee+9l37597Nu3j4EDB4bM80hES0yP0OWxPUKL5WRge4Q1TFJSElOnTuXJJ58s4/7JJ59w44030rdvX8aPH8+xY8fIyQlm09XQvn17hg4dCsDSpUu5/PLLcbvdtGjRgrPPPptvvvkGgMGDB9OmTRtcLhd9+/YlPT29XFxpaWlMmTKFl19+maiowO2fUDJOmDCB+Ph4mjZtyqhRo1ixYkXpdfv27ePKK6/k+eefx+UqX6SGDRvGtGnTePbZZylxKvWlS5dyxRXGJnL37t1p3759qSIcNWoUiYmJNGvWjEaNGnHhhRcCkJqaWnpvGzZsYMSIEaSmpjJ37twyPT8vl112Ga+99hoACxcu5JJLLgmZ35GKOj1Cd4ntEVosJ4M62SOsTM/tZHLzzTfTv39/rr766lI3j8fD8uXLiYuLKxM2KiqqzPyf7zdtDRo0qFR6sbGxpcdut5vi4uJyYd577z2++OIL3n33Xe6//37Wr19fLkwwGaH8Zwbe82PHjjFu3Djuv//+UqXtz6xZs/j666957733GDBgAKtWrar0/bhcrtJzl8tVem/Tpk3jrbfeok+fPsyZM4fFixeXi6d169akpKSwbt06FixYwKxZs0KmG7E4c4TRtkdosZwUbI/wJNCkSRMuu+wyZs+eXeo2ZswYnnrqqdLzNWvWAMak1LfffgvAt99+y86dOwPGOWLECBYsWEBJSQmHDh3iiy++YPDgwZWSx+PxsGfPHkaNGsWDDz5IVlYWOTk5JCYmkp2dXaGMAG+//Tb5+flkZGSwePFiBg0aRGFhIRdddBFTp04N2dvasWMHQ4YM4b777qNZs2bs2bOHESNGMHfuXAC2bdvG7t276datW6XuByA7O5uWLVtSVFRUGk8gJk2axEMPPURWVhZpaWmVjj+SEDWKMEoLwyyJxVI3sYrwJPGHP/yhzOrRJ598kpUrV5KWlkbPnj1LeycTJ07kyJEj9OrVi6effpquXbsGjO+iiy4iLS2NPn36cM455/DQQw9x2mmnVUqWkpISrrjiitKFKb/73e9ITk7mwgsv5M033yxdLBNMRjBDq6NGjWLo0KHcfffdtGrVioULF/LFF18wZ84c+vbtS9++fUuV5z333MM777wDwO23305qaiq9e/fmzDPPpE+fPvz2t7/F4/GQmprKpEmTmDNnTpmeYEX83//9H0OGDGHYsGF079691P2dd97hnnvuKT2/5JJLmD9/Ppdddlml4440vIow2ipCi+WkILXRtMvAgQPVf/Xf5s2b6dGjR5gkqtvMmDGjzKKaukakl513n/w9Fx6ZQw4JNJyxL9ziWCw1joisUtWwrWSzPUKLJcIRNfOisdg5QovlZFAnF8tYapZI3h2nPiBqFlNFUwIlReCOXJNRFkttxPYILZYIx+XMEQIU5Yf+5MZisVQdqwgtlgjH2yMEOJ6bHSKkxWI5EawitFgiHO8cIUBBnu0RWiw1jVWEFkuE49sjLMir2a0DLRaLVYQ1zltvvYWIsGXLlqBh0tPT6d2790mVY82aNbz//vsnfL33A/yePXvSq1cvnnjiiRqUzlIVfOcIC4/bHqHFUtNYRVjDzJs3j+HDhzNv3ryA/oG2P6sq3v06Q1FdRRgVFcWjjz7Kpk2bWL58OTNnzmTTpk0nHJ/lxLGLZSyWk4tVhDVITk4OS5cuZfbs2cyfP7/UffHixYwYMYLx48fTs2dPwCjEKVOm0KNHDy655JJSM0KLFi2iX79+pKamMn36dAoKzLdjHTp04M4776R///68+uqrZdL1N3NUWFjIPffcw4IFC+jbty8LFiwgNzeX6dOnM3jwYPr168fbb78NGLNHEyZMYOTIkXTp0oV7770XgJYtW9K/f38AEhMT6dGjBz/88EO5e/78889Ld5Xp168f2dnZqGpQk1Fnn302EyZMoFOnTtx1113MnTuXwYMHk5qayo4dOwB49913GTJkCP369WP06NEcOHCgXLqTJ0/mvffeKz2fNm1a6QbbdQ0powhzwyiJxVI3qZvfEX5wF+wvv6l0tTgtFS54IGSQt99+m/PPP5+uXbuSkpLCqlWrGDBgAGD2Ed2wYQMdO3YkPT2drVu3Mnv2bIYNG8b06dP55z//yY033si0adNYtGgRXbt2ZerUqTzzzDPcfPPNAKSkpJTuS+qLv5mjmJgY7rvvPlauXMnTTz8NwJ/+9CfOOeccnnvuOTIzMxk8eDCjR48GjAmlDRs2kJCQwKBBgxg3blwZc0Xp6emsXr2aIUOGlEv7kUceYebMmQwbNoycnBzi4uJ44403gpqMWrt2LZs3b6ZJkyZ06tSJa665hhUrVvDEE0/w1FNP8fjjjzN8+HCWL1+OiPCf//yHhx56iEcffbRMul4TS+PGjaOwsJBFixbxzDPPVPJh1i5cPnOEJbZHaLHUOLZHWIPMmzePyZMnA6bH4js8OnjwYDp27Fh63rZtW4YNGwbAFVdcwdKlS9m6dSsdO3Ys3W/0qquu4osvvii9ZtKkSQHTDWTmyJ+PP/6YBx54gL59+zJy5Ejy8/PZvXs3AOeddx4pKSnEx8dz8cUXs3Tp0tLrcnJymDhxIo8//jhJSUkB07711lt58sknyczMJCoqKqTJqEGDBtGyZUtiY2Pp3LkzY8aMAcqaWNq7dy9jx44lNTWVhx9+OKCJpQsuuIDPPvuMgoICPvjgA8466yzi4+MD3nttx0UxBcQAUFJge4QWS00TET1CETkfeAJwA/9R1dBdr4qooOd2Mjhy5Aiffvop69evR0QoKSlBRHj44YeB8iaVgpk1CkUws0yVMXOkqrz++uvlLDx8/fXXQWUpKipi4sSJTJkyhYsvvjhg2nfddRfjxo3j/fffZ9iwYXz00Uch76EyJpZuuukmbr31VsaPH8/ixYsD7mwTFxfHyJEj+eijj1iwYEFpA6QuIuohVxKI1UI8hXnhFsdiqXOEvUcoIm5gJnAB0BO4XER6hleqqvPaa69x5ZVXsmvXLtLT09mzZw8dO3ZkyZIlAcPv3r2br776CoBXXnmF4cOH061bN9LT09m+fTsAL730EmeffXaFaQcyc+RvYmns2LE89dRTeDdZX716danf//73P44cOcLx48d56623GDZsGKrKr371K3r06MGtt94aMu3U1FTuvPNOBg0axJYtW6plMgogKyuL1q1bA/DCCy8EDTdp0iSef/55lixZwvnnn1/p+GsbLi0h35VgTmyP0GKpccKuCIHBwHZV/V5VC4H5wIQwy1Rl5s2bx0UXXVTGbeLEiUFXj3br1o2ZM2fSo0cPjh49yvXXX09cXBzPP/88l156KampqbhcLq677roK0w5k5mjUqFFs2rSpdLHM3XffTVFREWlpafTq1Yu777679PrBgwczceJE0tLSmDhxIgMHDmTZsmW89NJLfPrpp6WLYbyrUGfNmlVqounxxx+nd+/epKWlER0dzQUXXFAtk1Fg9ja99NJLGTBgAE2bNi11X7lyJddcc03p+ZgxY/j8888ZPXo0MTExlY6/tiF4KHbFUqRutMj2CC2WmibsZphE5BLgfFW9xjm/EhiiqjcGu8aaYao55syZU2ZRTX0k0svOivtH00KO0rjgR7adNo6B1/8n3CJZLDWKNcNUSUTkWhFZKSIrDx06FG5xLJZThqgHD27yJRYpOh5ucSyWOkckKMIfgLY+520ctzKo6r9VdaCqDmzWrNkpE66uM23atHrdG6wNuCjBIy7yJQ5XsR0atVhqmkhQhN8AXUSko4jEAJOBd04konAP81pqH7WhzLjUg0eiKJA43CX54RbHYqlzhF0RqmoxcCPwEbAZWKiq5T8cq4C4uDgyMjJqRcVmiQxUlYyMDOLi4sItSkhclKDiotAVT1SJ7RFaLDVNRHxHqKrvAye+MSbQpk0b9u7di50/tFSFuLg42rRpE24xQuLCg0fcFLncNLCK0GKpcSJCEdYE0dHRZXZusVjqCm4tQXFT7I4hujAj3OJYLHWOsA+NWiyW0Hh7hJ6oeGI9do7QYqlprCK0WCIcl5o5whJ3PLFqFaHFUtNYRWixRDguPKi48UQnEIdVhBZLTWMVocUS4bgpQcUN0QnEaSHYldEWS41iFaHFEuGY7wjdaHQCLlFKCu3uMhZLTWIVocUS4Xh7hBJjzHAdz8uu4AqLxVIVrCK0WCIc7xyhxBpFmJ93LMwSWSx1C6sILZYIx9sjdDs9wsK8nDBLZLHULawitFgiHBce1OUmKtYY5y2wQ6MWS41iFaHFEuG4ne8I3XENASg8bnuEFktNYhWhxRLhuPCAK4roeKMIi/NzwyyRxVK3sIrQYolwovAg4iYmPhGA4nw7NGqx1CRWEVosEYyqlvYIYxJMj7CkwFqgsFhqEqsILZYIptijuClBXG7iHEXoKbBzhBZLTWIVocUSwRSXKFGUgCuKuPgkALTQ9ggtlprEKkKLJYIpKi7CLQruaOIbmB6hFtrFMhZLTWIVocUSwRQXFZoDdzQx0VHkaixSZHuEFktNYhWhxRLBlDiKUN0xAORLnFWEFksNYxWhxRLBFBcVACDuaADyicVVZIdGLZaaxCpCiyWC8Q6NitMjLHDF4y6xZpgslprEKkKLJYIpKVWEpkdYIHFEFVtFaLHUJFYRWiwRTElx2aHRInc8UR6rCC2WmsQqQoslgvEU5puD6DgAilzxxNihUYulRrGK0GKJYIqPm31F3XHOPqNRCcRqfjhFsljqHFYRWiwRTFG+2U4tOs4Y5fVExRPrsYrQYqlJrCK0WCIYr6WJmASzvVpJVAKxWEVosdQkVhFaLBFMsdMjjHFsERKdQILmg2oYpbJY6hZWEVosEYynwHw8H9fAzBFqdANcongK7YIZi6WmOCWKUERmiMgPIrLG+f3Mx++PIrJdRLaKyNhTIY/FUltQx+RSfINGAEismSvMP26N81osNUXUKUzrMVV9xNdBRHoCk4FeQCvgExHpqqolp1AuiyVi0QKj8OITTI/QFZMAQH7uMRKSW4RNLoulLhHuodEJwHxVLVDVncB2YHCYZbJYIgbJO0wWDXFFmy3WvD3CgjxrnNdiqSlOpSK8UUTWichzItLYcWsN7PEJs9dxs1gsQEz+YbJcyaXnUbGmZ1iYZ4dGLZaaosYUoYh8IiIbAvwmAM8AnYG+wD7g0ROI/1oRWSkiKw8dOlRTYlssEU184RFyolNKz6PizOrRwnyrCC2WmqLG5ghVdXRlwonIs8B/ndMfgLY+3m0ct0Dx/xv4N8DAgQPt2nFLvaBx0UH2JfUpPY+OM3OERfnWJqHFUlOcqlWjLX1OLwI2OMfvAJNFJFZEOgJdgBWnQiaLJdLJzTlGSw5R1OT0UreYeDNHWGwVocVSY5yqVaMPiUhfQIF04DcAqrpRRBYCm4Bi4Aa7YtRiMezbsZ7TgegW3UvdYuNNj7C40CpCi6WmOCWKUFWvDOF3P3D/qZDDYqlNZO3ZBEBy+16lbt4dZrwf2p8oGRmH2fK/54nZu4zY4hwKm3Slw/m/o2m77hVfbLHUMU7ld4QWi6UKFB/YSokKrTr+pAjjHUVYcoI7y+TlZrNm/n303v0ywySPg5JCliuZbj8swPXcfDb2uYtev7gdRAJen19YzKY1y8nf+RWa9QMuSnDFJRF3Wjead+5Li/Y9cEVFB02/oKiYo0cOU5J7FBFBoqKJjo4mJi6BuLgGRMfEIq5wf9VlqW9YRWixRCgxmd+xz9WCNs68IEBcgmOFoqjqinDl4ndpsfh2zmQfaxLPovHYO2jfezjNRdi963v2z/0Ng9fez6Ydn9H6in/S6LSOqCp7d+9k18oPkO8/o0vON/SXTABKVCjBTYwUw/fAl1CoUeyLak1W7GmUuGKhpIj44iwSirNoqMdI0lxOE09IOfM1mkKJoZBoFEHQ0h8oLvUegwsPRmUrLp9wXjfvsaAgsKrVFQy59qkq552lbmMVocUSoSTnpXM4th1tfNxiY+PxqEAVeoQlJSUsnv1HRv7wbw64T2Pr6Jfoe+b4MmHate9Eyzs+5NOX/8aZO58i6pn+7Ha3IsaTT1sO0xbIJJE9TYaQ0XU0zVNH06RlR9zuKLKyMvlx+1qydq2leP8W4rO206jgEFGeQjyuaPLcjTjc4HQOxDWB+Ma4GjSBuGRKFMRTjKe4EE9RAVqcD0XHobgASgpwl+TjQlFxISLmP2J6q+Iq/S8YP7wqTzD/S88FVWix/zNa7vuk2s/FUvewitBiiUA8xUW0Lt7LvqbDyriLy8VxYqC4coqwqDCfDU9dxrnZn7Ohybl0ueY5WjVIDhg2OsrNOdP+yvZtl7Dvs2dpkPUdGh3P3tPSOC1tNK17DCHZ5S53XaNGyTQacDYMOLvK93kqWfr8Hxm+65/kH8sgLiml4gss9QarCC2WCOTArs20lGJcLXqU8yuUGKQSirAgP48tT15Mv7yv+LLTzZx55Yygc3++nN61F6d3ffwEpI5sotsNhl3/ZN+mL+k49MJwi2OJIOqlIvzm8cspTmpDzwm30SilGhsXq+LxeCgqLsJT4gENMPfhV/GIf0VUrmKqvL9IJa4HRCpefFCJ+jFAzMHiqjhk5eOqmfSqgjq2/lTN9z6qipb6gaJlzAH6uqlPHIqP2cAKwpSm4Pjv2fotLYHEdqnl5CuQWKQ4tHHe47k5fPfUL+iT/w3Le/yZMyfdUdVsqHO07HkGni+ErO1fQTUVoapyPC+b4uN5FJUUUlJcQklxoVkAhCAuM5wrLheCC1zgcoZxXS4zrCsuQcSNiBg/lynLIi5c3mudYWHxDgV7h4ZLh4hrtuzXV+qdIiwqLCCqKItBu9+n6MnZbIzrTXaj7tCwBUTFIiVFaMExKMjBVZhNVFE20cU5xJbkEO/JJUHzaKh5RFOMSxQXEBvum6omHo3cl6kyWwidzG2GnCrnlNNCFI8KrTr3KedXVIEizMk5xvdPjqd3wRq+SZvB0Im3nExRaw1tT2vBTmlN1L5Vlb4mNyebHWu+ID/9a/TwNhrlpNO4+CBJmk2CFJ5EaStPuN/fD86cx7ixF4RVhupS7xRhdEws/W5/n+83fM2BZS/R7OCXdDzwFgkHC0rDeFTIkXjySOC4qwEF7gYUxDQhJ7odnpgkiqIaoO4YRNzgcpvl3uL+qaVWil8V7WdVXMpV4aHDVxxfICpI06e3E5JKapuaVEqVkuxkaUHx/pOfTqWMl2mU+/bQS938ohIpex0/NeTFz8E3TFTzrvRo3Bh/ilyxRJUEVoRZmUfZPXM8vQvXs2bA/Qwaf0PAcPUREeFAcj9SMz+h4Hg2sfGJAcPtTd9G+pJ5NNn9MacXbiFNigE4TDIHY9uxq8EgPAkpEN8EjUrA5Y5C3FGIM39qevqKqscZUijxDi2gGDdVD4Ka0QcnnPHT0p/y0zF4EOd9966eFZ/Vs+GkfftO4Rah2tQ7ReilU+8hdOo9BABPSQl5+bkU5+dDdAwNGySR5HaRFGYZLZZAFLnicAdQhBlHMtj3z5/Ts2gzG4Y+TP8Lfh0G6SKb+AGTabjoXVb99xkGXPrTcPG+3d+x84tXaJz+Pj2Kt9AG2OnuyLetJtOwywhapZ5N02YtaRo+0S0nkXqrCH1xud0kNEiCBlb1WSKfIncCcYVZZdwO7P+Ro/8eT/eSHWwd/jhp500Lj3ARTtqZP2PDF2n03PAwK47uRhEaHfyG7sWbaQl87+7Eyk430HbEL+nYsTcdwy2w5ZRgFaHFUsvIjW5Cu/xdpec7tm2AeZPp6NnP9nP+Rc+zLwujdJGNy+2i2fS5bJkzncE/vkShukmP6sTyDr+l3fBf0un0VGr/QJ+lqlhFaLHUMo7HptD4WCbq8bDkvZdIW/lHXAI/XvgS3QfW7kULp4IWLdvR4o+fcPz4cdwuF11ja/tyN0t1sYrQYqllFMQ2I5YiNj1wFmcVrmdXTEcaXDmfjnbD7CoRHx8fbhEsEYLd3dZiqWU06jGKQnXToXAbq07/HW3v+NpajbBYqoHtEVostYwhw85hV+sVNG3ShAFJTcItjsVS67GK0GKphbTvcHrFgSwWS6WwQ6MWi8ViqddYRWixWCyWeo1ouW28Ih8ROQTsqjBgaJoCh2tAnJNNbZETao+sVs6ap7bIauWseWpC1vaq2qwmhDkRaqUirAlEZKWqDgy3HBVRW+SE2iOrlbPmqS2yWjlrntokazDs0KjFYrFY6jVWEVosFoulXlOfFeG/wy1AJaktckLtkdXKWfPUFlmtnDVPbZI1IPV2jtBisVgsFqjfPUKLxWKxWKwitFgsFkv9pt4pQhE5X0S2ish2Ebkr3PL4IiJtReQzEdkkIhtF5PeO+wwR+UFE1ji/n0WArOkist6RZ6Xj1kRE/ici3zn/G4dZxm4+ebZGRI6JyM2Rkp8i8pyIHBSRDT5uAfNQDE865XadiPQPs5wPi8gWR5Y3RSTZce8gIsd98nbWqZIzhKxBn7eI/NHJ060iMjbMci7wkTFdRNY47mHL0xB1UsSV02qhqvXmB7iBHUAnIAZYC/QMt1w+8rUE+jvHicA2oCcwA7gt3PL5yZoONPVzewi4yzm+C3gw3HL6Pfv9QPtIyU/gLKA/sKGiPAR+BnwACDAU+DrMco4BopzjB33k7OAbLkLyNODzdt6ttUAs0NGpG9zhktPP/1HgnnDnaYg6KeLKaXV+9a1HOBjYrqrfq2ohMB+YEGaZSlHVfar6rXOcDWwGWodXqioxAXjBOX4B+EX4RCnHucAOVa3ujkQ1hqp+ARzxcw6WhxOAF9WwHEgWkZbhklNVP1bVYud0OdDmVMhSEUHyNBgTgPmqWqCqO4HtmDripBNKThER4DJg3qmQJRQh6qSIK6fVob4pwtbAHp/zvUSoohGRDkA/4GvH6UZnqOG5cA85OijwsYisEpFrHbcWqrrPOd4PtAiPaAGZTNmKJdLy00uwPIzksjsd0wvw0lFEVovI5yIyIlxC+RHoeUdqno4ADqjqdz5uYc9TvzqpNpbToNQ3RVgrEJGGwOvAzap6DHgG6Az0BfZhhk3CzXBV7Q9cANwgImf5eqoZJ4mIb3NEJAYYD7zqOEVifpYjkvIwGCLyZ6AYmOs47QPaqWo/4FbgFRFJCpd8DrXieftwOWUbbWHP0wB1Uim1oZxWRH1ThD8AbX3O2zhuEYOIRGMK3FxVfQNAVQ+oaomqeoBnOUXDN6FQ1R+c/weBNzEyHfAOgzj/D4ZPwjJcAHyrqgcgMvPTh2B5GHFlV0SmAT8HpjiVIc4wY4ZzvAoz79Y1bEIS8nlHYp5GARcDC7xu4c7TQHUStaicVob6pgi/AbqISEenlzAZeCfMMpXizA3MBjar6j983H3H2C8CNvhfeyoRkQYikug9xiyc2IDJy6ucYFcBb4dHwnKUaWFHWn76ESwP3wGmOqvyhgJZPkNTpxwROR+4Axivqnk+7s1ExO0cdwK6AN+HR8pSmYI973eAySISKyIdMbKuONXy+TEa2KKqe70O4czTYHUStaScVppwr9Y51T/MqqZtmFbVn8Mtj59swzFDDOuANc7vZ8BLwHrH/R2gZZjl7IRZbbcW2OjNRyAFWAR8B3wCNImAPG0AZACNfNwiIj8xynkfUISZS/lVsDzErMKb6ZTb9cDAMMu5HTMX5C2ns5ywE50ysQb4FrgwAvI06PMG/uzk6VbggnDK6bjPAa7zCxu2PA1RJ0VcOa3Oz26xZrFYLJZ6TX0bGrVYLBaLpQxWEVosFoulXmMVocVisVjqNVYRWiwWi6VeYxWhxWKxWOo1VhFaLBaLpV5jFaHFYrFY6jX/H50h+wPW/2SFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 6)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmPklEQVR4nO2deZhUxdW439PdszNsw74vsjPDIpsBFAwqShQVVBIQkU+NJhr35ZdEgybmU+MWlEgkKO6Cu35qSERRUQHZdxBkZEdgmGEGZu/z+6PujD093bPPdE9Pvc/TT99bVbfq3Lp161SdqlslqorFYrFYLJGMK9QCWCwWi8VS21hlZ7FYLJaIxyo7i8VisUQ8VtlZLBaLJeKxys5isVgsEY9VdhaLxWKJeMJO2YlIFxFREfGEWhZL1RGRm0TkgIisD0Has0Tk5TpIZ4aILCvDf6mIXFPbclhKUla+19UzEZEFIvKXMvxVRE6rbTkiARFpJyKZIrJdRM6uajxhp+wslUdE5opIlvPLE5F8n/OPQyTWLOA3qjrAR85ZIjIrRPKEFU6jLrWS4T8TkVMisk1ExpUR9nIR+doJuzSA/0ARWe34rxaRgT5+MU55OiwiaSLygYi0DxBHDxHJ8W1UiOEPIrJHRE6IyOsi0tjHf4FTPrN8fu4K3v8CEZlRkbD1HacRtaAS4X/ulIlTThnpXEbYCpUjEVkSqNMhIjeLyG4ROSkiW0Wkp+M+QUSWiUi6iBwSkX+JSKLPde1F5D2nTO0Tket9/Eb7lYksJ+1JAKp6QFUTgQ+A31U0X/ypcWVne2R1j6per6qNVLUR8FdgYdG5qp5fFK6On01zYFMdplcrhFF5fg1YCyQBfwDeFJGWQcKmAU8CD/l7iEg08B7wMtAMeAF4z3EHuBk4A0gB2gHHgacCpDEH+NbPbTpwJTDSuTYuwLWP+JTNRqpaGOyGw52KKupalqEF8DZwL+adWwUsLOOScsuRiEwFogKkdQ3wP8AEoBHwC+Co490E+AvmufcB2gN/87n8ZWA30Nq5/q8iMhZAVb/0LRNOvFnAv/1E2OTIXSVqRNmJSKqI3C0iG4CTIuIRkRFO6zJdRNaLyBif8EtF5H9FZKXTAnxPRJoHiftqpwWRKSLfi8iv/fwnisg6J55dIjLecW8iIvNF5KCI7BeRv5RXOEWku4h8KiLHROSoiLwiIk19/NJEZLBz3k5EjhTdl4hcJCKbnftdKiJ9/PLnDhHZICIZIrJQRGIrn9OVJ8izKWFCET+Ti4j8wsnTdOcZplQyzaJ89pYT7i7n+RwQkWt85XJkmiMiHzrPfoWIdPe59u8istd57qtFZLRf9LFOPmeKyBoR8e1h3uOUlUwR2SIil/j4zRCRr0TkCRE5humhlne/j4rIcTEt3vP9vDs78WWKyH+cyqlSiGk9Dwb+pKrZqvoWsBGYFCi8qn6iqouAAwG8xwAe4ElVzVXV2YAAReahrsBiVT2sqjmYirOfnzxTgHRgiV/cFwLzVXWvqmYBDwNXiEh8Ze+5LETELSKPOe/obhG5UYIMfYhIW+e9u9PHuXuwukdE3hDTM8kQkS9EpJ+P3wIReUZEPhKRk8DYckRtFqz8OowTke+c92yOiEgVsuNSYLOqvuE8r1nAABHp7R+wIuVIRJoAfwLu8rvW5bjfqqpb1LBLVdMAVPVVVf23qp5S1ePAPEyjBxFphCl3D6pqvqquB94EZga5p6uAN1X1pJ+7F1N2q4aqVvsHpALrgI6Y1lx74BhwAUahnuOct3TCLwX2A/2BBOAt4GXHrwuggMc5nwB0x7yQZwGngMGO3zAgw4nf5aTb2/F7B/inE38rYCXw63Lu4zQnrhigJfAFplIo8r8W2ALEA4uBRx33nsBJ59ooTEHZCUT75M9KTKunObAVuD6IDKMwFUmw36hy7mFWUV4GejaOmwKn+YRZAPzFOR4E/AgMB9yYgpcKxFSiPIwHcoCEcsIcwlSk8ZiWX7FcjkzHnGfsAV4BXve5fhqmlecBbnfiivXJg3xgsvM87sC0KqMc/8ucZ+ECrnCeXVvHbwZQANzkxB1Xxj3McNK51smrGzAKRnzK+S6nfMQ55w8FiesfwD+C+F0CbPVzexp4qpzncA2w1M/tVuBjP7f/A253jocAXzn5Ew+8Ssl3oDGwA+gQoKy9Cdzlcz7SeaYDfJ5pmvNbDUyqYn1zPeY97IDpnX5CyTpjqXPvXR1Zr/O5dilB6h7HfyaQiKkDngTW+b0nGc59uYrKWxAZF1B2+VUn35sCnYAjwPggcW0AfhXE7+/AM35umwLlbUXKEabHfiul6+FOzvnNwF7M+3Q/4Aoi15NF9+vkpwKtfPznAWsDXJcAZAJjAviNxVgaOlWp3FTlogBCpAIzfc7vBl7yC7MYuMqnwD3k49cXyMNUGCUyOUBa7wI3O8f/BJ4IEKY1kItPRQX8Eviskvd1sf8DAd7HtIY24CgAjAlhkU8YF+aFGuOTP9N8/B8B5tZE3geQeRalld1MvzBlKbtngD/7hd8OnFXB9Fc58f+unHDPAf/rc34apZXdv3z8LwC2lRHfcX6qVGcBy/2ex0FgdJBr1wETneMZwJ4K3usMYKfPebxzD218yvkfffx/A/y7Cs/0St/7cdweBBaUc10gZXcvPpWu4/YKMMs5bgK87txHAcbk1dwn7N+Bu4OUtWswyqWLE8/7TjxnOP6D+amBcgGmUhtZhfz4FJ+GKzCO0srucafs/9Lv2qUEqXsCpNPUibeJT5l8sYIylll+nXhH+ZwvAu6pQl7Mx68BhWmszKhsOcI0dNY5z6eLX57+zDn/0MmXLs6zvjZAOudg3seePm7LMCbtWKccpAHbg8i4G6fBGMD/DUeOJyubVzU5ZrfX57gzcJnTPU8XkXRMj6VtkPA/YFrgpUw8InK+iCx3TIjpmEJTFK4jpuXsT2cnvoM+6f8T08MLioi0FjOovl9ETmB6G/4yzcO0Cp9S1VzHrZ1zDwCoqte5P9+B/UM+x6cwNu+6Ym/5QYrpDNzu9+w6Yu6xIgwFpgCzRKSU3d+Hdn5yBZIxaJ45ZuGtjrkpHVO5+j6r4vic57Gv6B5EZLqPmTYd8zwDXlsBimVU1VPOYaNA/v73UAmyMD0qXxpjlEVNxzUH06tJwrSy3wY+BjOxBaNYnggS93OYMaGlwGbgM8d9H4CqrlHVY6paoKofYZTspVW4h4qUnamYBuebAfwC1j2OefQhx8R9AqMsoQbKBoGffV2XjaBhHTPlPzAdiYIA12Y7/4+oarqqpmLq1At8A4nICIw1YLKq7vDxmorpae/FNKhfxikXflyFaVCov4eYIaQLMNa7WwJcWyY1qex8hduL6dk19fklqKrvgHlHn+NOGHPQUR83RCQGY2Z4FGitqk2BjzAmzaJ0/O3gRe65QAuf9Burar8AYX35q3MfyaraGGMqK7ajO7bnJzGtqVk+tv4DGCVRFE6c+9tfTnqlkMAzk3x//mNTFcG/4JzC9EKKaONzvBdjW/d9dvGq+lqFEjKF9F2MealtGUEPYsxQRXQMFtAfJw/uAi4HmjnlIgOfZ+Ubn/MidwAOiJmpNg+4EUhyrt3kd22pFy3EbAa6ic/sNmCA416VuFL8xodSfOIaiGnppzmNuaeAYc5Y4xhMi36PiBzCmIcnicgaMI0KVf2TqnZR1Q5OnPsJ/h4oJfO9olSk7MzC1CevSumx+mB1z6+AiRiF3gRzrxD+ZWNA0YmIJGDqxEBlo6xy1BjTs1voPNuiyUf7nPdtO6YH7Hv/JfJCRAZhevMzVbXEeK6q/qCqv1DVlqo6HNOAWOl3fUdMGXsxyL32Abao6vYg/mVSW58evAxcKCLnOa2lWBEZIyK+BXSaiPR1Bq8fwAxI+s/Misa0Mo8ABc7g/7k+/vOBq8VMvXWJmd7aW1UPAv8BHhORxo5fdxE5qxy5EzGtnwwx063v9PP/O7BKVa/BdOfnOu6LgAmOHFGYMaRc4OvyMsof9ZuZFOD3ZWXjDMA64FfOsxmPGQstYh5wvYgMF0OCmGnFiVA8SL+gnHso6vFGlxFsEebZ9XHKwL2VkD8RY2I7AnhE5D5Kt1hPF5FLxUxauAXzPJZjeivqXIuIXI3p2YUtTgt5HfAn5126BKOg3goUvuidw5ijXM41Rb3spUAh8Dsxnxnc6Lh/6vx/C0wXM8ErCmN6PaCqR4FnMRXpQOc3F/MenOek29x5z0RE+mJMiQ84PWtEZLKINHLex3Mxjcn3feRW8ZnIVgaLgJud970pZtjEn3zM2GwC8KLT4CkiWN2TiCknxzCNwb9WQJZQ8w7QX0QmOc/8PmCDqm7zD1hOOcrA9JgHOr+iHtvpwArHarEQuEtEEp26/DrMuCMi0h8ze/ImVf3AP23nPU8UkWgRmYapxx/3C3Yl8LWqBrLWgemB5wbxK5daUXaquhfTQvo9plLZi1Ecvum9hLFrH8LYcUt9P6GqmY77IowN+Ff4vByquhK4GmNWyQA+56ce1nRMZbvFufZNyu5pgBlwHezE9SHGhAOYWZ+YSRU3OE63AYNFZKrT0piGaQUfxcxKu1BV88pJL1TcjJExHWNeeLfIQ1VXYSZcPI3Jt52YsakiOmLGBMpDKaN8qerHwGyMqWsnRhFBxQrzYsyLtQNjhsqhtHnpPczkk+OYl+hSNTPBtgCPAd8Ah4HkCt5PrSLm27a5ZQSZgml5H8d8UjBZVYsU9lQR8W3JX4kxOz0DjHaO5wE4ZfJizPuRjpmQcbFPWb0Dk5/fYd7dCzATG1Az0+5Q0Q/TMMwpkgPTWv8IM+HnY+A5VX3WR66bMb28dMy09GtVdalzDx0xpreN5ecW8zCN2Q2YMcWPMI2fEo1l554uxYzhP+ej8ILVPS9iytN+TL2xnDBAzCzvqYH8nLyfhBl7O46ZWDbF51r/chWwHKnB99kWPdPDPmXjRswzP4B5f17FmK7BNPBbAvN9rFC+ZfI84Hsn3esxk3GOUJLpmE9hguGmnBneZVE0a6xOEfOh68uq+q86T9xSZcR8i7UeSFHV/HLCHsDMzKvQSiZiPtXYhJn0E2jMwBLBOK39fqr6/6pw7fmYCV+dyw1sqZc4DZXZmBmdl1clDruCiqXCqGqeqvYpT9E53IMxl6wOFkBELnFMac0w32R9YBVdw0RVX66oohOROBG5QMw3o+0x33+9U7sSWkKFiLTD9DRHYKwyVaLBKTspubSW768sE5Klkqjqi6raQ1VPLyPYrzHf9O3CmKBuKCNsSLDlJSwRzJDDcYwZcytmrKpuhTDmxUBlI6DJ0VI11CwXlqSqQ1R1RVXjCYkZ02KxWCyWuqTB9ewsFovF0vAIl0VuAWjRooV26dIl1GJYLBaLpQ5ZvXr1UVUNtrB5jRBWyq5Lly6sWrUq1GJYLBaLpQ4RkR/KD1U9rBnTYrFYLBGPVXYWSz2g0Fu8EK7FYqkCYWXGtFgspXn148/I+Po5snpczJ3TA25hZ7FYyiHslV1+fj779u0jJycn1KJY6hGxsbF06NCBqKiyNl4If/YeyWDk8l/T2X2YI7uWsnzrEEb0sQuFWCyVJeyV3b59+0hMTKRLly5IlTbytTQ0VJVjx46xb98+unbtGmpxqsWmT17ifDlMxpDf0XLVbL78fD70eSDUYlks9Y6wH7PLyckhKSnJKjpLhRERkpKSIsIakJj6b9JczWhywf3sj+lO50P/oaCwymvhWiwNlrBXdoBVdJZKEwllJj3zJCk5qzjQ8kxwuTjZ5RwG6ja2p1Zm/1CLxQI1oOxE5CYR2easE/eI43aOiKwWkY3O/9nVF9ViaVj8sHUljSUb92nm9WnWfxxuUQ5sXhZiySyW+ke1lJ2IjMXsWzfA2QX8UcfrKGY/t2TMNusvVUvKECMi3H777cXnjz76KLNmzQqdQOWwdOlSvv660vvGlmD8+PE0bdqUX/ziFzUklaWynPzebOTcqs9IAFr0HEEhLrw/hMU2axZLvaK6PbsbgIeKdqZW1R+d/7WqesAJsxmIE5GYaqYVMmJiYnj77bc5evRojcarqni9NT/+UhPK7s477+Sll+p1G6XeE3VoHcdpTFL70wCQmET2R3cjKX19iCWzWOof1VV2PYHRIrJCRD4XkaEBwkwC1hQpRH9E5DoRWSUiq44c8d+4NjzweDxcd911PPHEE6X8jhw5wqRJkxg6dChDhw7lq6/MptezZs3i0UcfLQ7Xv39/UlNTSU1NpVevXkyfPp3+/fuzd+9e7rzzTvr3709ycjILFy4EjMIaM2YMkydPpnfv3kydOjXgR8WzZ8+mb9++pKSkMGXKFFJTU5k7dy5PPPEEAwcO5MsvvyxTxiuvvJIzzjiDHj16MG/evOJ4f/7zn5OYmFhmvrzxxhv079+fAQMGcOaZZwJmQtHVV19NcnIygwYN4rPPPgNgwYIFXHzxxZxzzjl06dKFp59+mscff5xBgwYxYsQI0tLSAJg3bx5Dhw5lwIABTJo0iVOnTpVKd8SIEWze/NMmyGPGjInIZeaSMreyN6Yn+Iw/nmjahy4Fu8nJLyzjSovF4k+5nx6IyCdAmwBef3Cub47ZVG8osEhEuqlTK4tIP8ymnOcGi19VnwWeBRgyZEiZS0Tc/8Fmthw4UZ7IlaJvu8b86cJ+5Yb77W9/S0pKCnfddVcJ95tvvplbb72VUaNGsWfPHs477zy2bt1aZlzfffcdL7zwAiNGjOCtt95i3bp1rF+/nqNHjzJ06NBixbF27Vo2b95Mu3btGDlyJF999RWjRo0qEddDDz3E7t27iYmJIT09naZNm3L99dfTqFEj7rjjDgB+9atfBZVxw4YNLF++nJMnTzJo0CAmTJhAu3btKpR3DzzwAIsXL6Z9+/akp6cDMGfOHESEjRs3sm3bNs4991x27NgBwKZNm1i7di05OTmcdtppPPzww6xdu5Zbb72VF198kVtuuYVLL72Ua6+9FoA//vGPzJ8/n5tuuqlEuldccQWLFi3i/vvv5+DBgxw8eJAhQ4ZUSOb6QmFBAe0K9rGuxYiSHq370eLHD9ixJ5We3buHRjiLpR5Sbs9OVcepav8Av/eAfcDbalgJeIEWACLSAbN78HRV3VWbN1EXNG7cmOnTpzN79uwS7p988gk33ngjAwcO5KKLLuLEiRNkZWWVGVfnzp0ZMcJUYsuWLeOXv/wlbreb1q1bc9ZZZ/Htt98CMGzYMDp06IDL5WLgwIGkpqaWiislJYWpU6fy8ssv4/EEbruUJePEiROJi4ujRYsWjB07lpUrV1Y4T0aOHMmMGTOYN28ehYWFxfczbdo0AHr37k3nzp2Lld3YsWNJTEykZcuWNGnShAsvvBCA5OTk4nvbtGkTo0ePJjk5mVdeeaVED66Iyy+/nDfffBOARYsWMXny5ArLXF/Yu3s7sZJPVOveJdwTOw0A4Oj3a0MhlsVSb6nuR+XvAmOBz0SkJxANHBWRpsCHwD2q+lU10yimIj2w2uSWW25h8ODBXH311cVuXq+X5cuXExsbWyKsx+MpMR7n+81XQkJChdKLiflpmNPtdlNQUFAqzIcffsgXX3zBBx98wIMPPsjGjRtLhQkmI5Seol+ZKftz585lxYoVfPjhh5x++umsXr26zPC+9+NyuYrPXS5X8b3NmDGDd999lwEDBrBgwQKWLl1aKp727duTlJTEhg0bWLhwIXPnRt6m4T/u3kAXoFmX/iXcW/cYDEDe/o1A5Cl5i6W2qO6Y3XNANxHZBLwOXOWYMG8ETgPuE5F1zq9VNdMKOc2bN+fyyy9n/vz5xW7nnnsuTz31VPH5unXrALNd0Zo1awBYs2YNu3fvDhjn6NGjWbhwIYWFhRw5coQvvviCYcOGVUger9fL3r17GTt2LA8//DAZGRlkZWWRmJhIZmZmuTICvPfee+Tk5HDs2DGWLl3K0KGBhl0Ds2vXLoYPH84DDzxAy5Yt2bt3L6NHj+aVV14BYMeOHezZs4devXpVOM7MzEzatm1Lfn5+cTyBuOKKK3jkkUfIyMggJSWlwvHXF7IPGDNz+x4DS7jHNm1DmjQh+ti2EEhlsdRfqqXsVDVPVac5Zs3Bqvqp4/4XVU1Q1YE+vx9rRuTQcvvtt5eYlTl79mxWrVpFSkoKffv2Le5lTJo0ibS0NPr168fTTz9Nz549A8Z3ySWXkJKSwoABAzj77LN55JFHaNMm0BBpaQoLC5k2bVrxZJDf/e53NG3alAsvvJB33nmneIJKMBnBmEHHjh3LiBEjuPfee4vH60aPHs1ll13GkiVL6NChA4sXLwbgvvvu4/333wfMjM3k5GT69+/Pz372MwYMGMBvfvMbvF4vycnJXHHFFSxYsKBEj648/vznPzN8+HBGjhxJ794/mfDef/997rvvvuLzyZMn8/rrr3P55ZdXOO76REz6To7TmJjEFqX8DsV2J+nkzhBIZbHUXySctg0ZMmSI+s+q27p1K3369AmRRJHNrFmzSkxkiTTqc9nZ+NeziNZcev2h9Dd1q+ZeS5+D7xF970GiPO4QSGex1CwislpVa3WWWb1YLsxiaWg0yzvIybjAs2LdrXqTILns/+G7OpbKYqm/hP2uB5baI5xXgWnI5OXl00qPcqBxx4D+jTsmwwY48v0GunTvHTCMxWIpie3ZWSxhxuEDqURLIe5mnQL6tz7NTMjJPVT295wWi+UnrLKzWMKM4/vNZ6nxrboF9G/UrA3HaYz7mDVjWiwVxSo7iyXMOPmjUXbN2gdfIeVQdCeanqz3azVYLHWGVXYWS5hRkLYHgBbtgiu7E4ndaZf/A4TRbGqLJZyxyq6CvPvuu4gI27YF/5g3NTWV/v37B/WvCdatW8dHH31UrThmzpxJq1atal1WS9XwZO7lGE3xxAZfacfbvCdNOMnxI/vrUDKLpf5ilV0Fee211xg1ahSvvfZaQP9AS3lVlqL1JcuiJpTdjBkz+Pe//12tOCy1R3z2IdI8ZS84FNu+LwA/fr+hLkSyWOo9VtlVgKysLJYtW8b8+fN5/fXXi92XLl3K6NGjueiii+jb11Q+BQUFTJ06lT59+jB58uTiLWqWLFnCoEGDSE5OZubMmeTmmh2PunTpwt13383gwYN54403SqTrv4VOXl4e9913HwsXLmTgwIEsXLiQkydPMnPmTIYNG8agQYN47733ALOlzsSJExkzZgw9evTg/vvvL473zDPPpHnz5mXe8+eff87AgQMZOHAggwYNIjMzE1UNuh3RWWedxcSJE+nWrRv33HMPr7zyCsOGDSM5OZldu8zY0gcffMDw4cMZNGgQ48aN4/Dhw6XSnTJlCh9++GHx+YwZM4oXfW4oNMo/yqmYlmWGSeqSDEDWvtILZVssltLUr+/sPr4HDpVe6LhatEmG8x8qM8h7773H+PHj6dmzJ0lJSaxevZrTTz8dMOtebtq0ia5du5Kamsr27duZP38+I0eOZObMmfzjH//gxhtvZMaMGSxZsoSePXsyffp0nnnmGW655RYAkpKSitfR9MV/C53o6GgeeOABVq1axdNPPw3A73//e84++2yee+450tPTGTZsGOPGjQNg5cqVbNq0ifj4eIYOHcqECRMqvBXOo48+ypw5cxg5ciRZWVnExsby9ttvB92OaP369WzdupXmzZvTrVs3rrnmGlauXMnf//53nnrqKZ588klGjRrF8uXLERH+9a9/8cgjj/DYY4+VSLdo+54JEyaQl5fHkiVLeOaZZyokc6TQrDCN43GDywzTrkM3sjQOjmyvI6kslvqN7dlVgNdee40pU6YApufha8ocNmwYXbt2LT7v2LEjI0eOBGDatGksW7aM7du307Vr1+L1Ma+66iq++OKL4muuuOKKgOkG2kLHn//85z889NBDDBw4kDFjxpCTk8OePWaCwznnnENSUhJxcXFceumlLFu2rML3PHLkSG677TZmz55Neno6Ho+nzO2Ihg4dStu2bYmJiaF79+6ce67ZwtB3+559+/Zx3nnnkZyczN/+9reA2/ecf/75fPbZZ+Tm5vLxxx9z5plnEhcXV2G56ztZp07RXDLxJpa9PqrH42avuwMJJ+wamRZLRahfPbtyemC1QVpaGp9++ikbN25ERCgsLERE+Nvf/gaU3q6nKlvmBNvypyJb6Kgqb731VqmdBVasWFGt7XvuueceJkyYwEcffcTIkSOLF4IORkW277npppu47bbbuOiii1i6dGnAFVxiY2MZM2YMixcvZuHChcWNjIbCsUN7aQRENWlbbti0+G70Plnx/QctloaM7dmVw5tvvsmVV17JDz/8QGpqKnv37qVr1658+eWXAcPv2bOHb775BoBXX32VUaNG0atXL1JTU9m507TCX3rpJc4666xy0w60hY7/9j3nnXceTz31FEULeq9d+9Omnv/9739JS0sjOzubd999t7jHWRF27dpFcnIyd999N0OHDmXbtm3V2o4IICMjg/bt2wPwwgsvBA13xRVX8Pzzz/Pll18yfvz4CscfCWT8uBeA2Gbl7xaf2+w0kvQ4hSeP17ZYFku9xyq7cnjttde45JJLSrhNmjQp6KzMXr16MWfOHPr06cPx48e54YYbiI2N5fnnn+eyyy4jOTkZl8vF9ddfX27agbbQGTt2LFu2bCmeoHLvvfeSn59PSkoK/fr149577y2+ftiwYUyaNImUlBQmTZpUPF73y1/+kjPOOIPt27fToUOH4v355s6dW7z9z5NPPkn//v1JSUkhKiqK888/v1rbEYFZi/Oyyy7j9NNPp0WLn7auWbVqFddcc03x+bnnnsvnn3/OuHHjiI6OrnD8kcCpY/sASGwZeF1MXzytzI4OR3bbGZkWS3nYLX4ilAULFpSYyNIQqY9l58tX/5fROx7i5E1bSEhqX2bY9evXMuCdMWwb9ld6X/DbOpLQYql57BY/FksDQzIPUahCQrPye8ztu/YiR6PItwtCWyzlUr8mqFgqzIwZM5gxY0aoxbBUkqhTP5ImzWjpKn9T1qTEOHZIezxpO+pAMoulflMvenbhZGq11A/qa5mJzT1ChqfsD/6LEBGOxXel+andtSyVxVL/CXtlFxsby7Fjx+pt5WWpe1SVY8eOERsbG2pRKk2j/GNkRZW9eoovBc170Nr7I3mnMssPbLE0YMLejNmhQwf27dvHkSNHQi2KpR4RGxtLhw4dQi1GpWlSmMbR2H4VDh/Xrh/sg33frafbgFFVTjczK5M1Xy8h68gPeHER16wdLXucTs/OHYmLLt+karGEO9VWdiJyE/BboBD4UFXv8vHrBGwBZqnqo1WJPyoqqsQKJRZLpKJeL000E29cxcyYAK26DYCVcDR1Y5WU3d7UXRz44M+kHP2QsySvpOdKSNU2pMYn4+0wnLYpY+nZdzBud9gbhCyWUlRL2YnIWGAiMEBVc0XEf6n2x4GPq5OGxdJQOHEinSZSiCu+4squQ/d+5GgU3v1ryw/sx9cfvkjflfcwiBzWNjuPpCGT6NKjP25Rju7/nvRdq/DuX82g9BU0+e6/8N1fOP5WInvi+3Oy9enEtu5BfLN2uOObEhMTTUyUh/zcHHJPnSA/O5P87EwKc7IozD2JNy+bwrwcND8bzc/G5c1FVFERwPxUBHWOKXbnp2ORkscUebtABEFMEOeSohhczTsxaOLvKp0/lsiiuj27G4CHVDUXQFV/LPIQkYuB3cDJaqZhsTQIMo4dogkQ1Sipwte4o6LZFt2LFscrp+w+e/URztr+V3ZH9yB/6gKGdylpOm3Zqg8tB00wJ6qk7d3KD2uXkL/7a9pkrGPA7m/M210FcjSKPIlCEUedKT+pOefYGaP3dccvjPEHlwQez/eqGL8f4MgZl9OyVcUXQLBEHtVVdj2B0SLyIJAD3KGq34pII+Bu4BzgjrIiEJHrgOsAOnXqVE1xLJb6S+ZxMy4d3bhFOSFLcqT5IEYdeoWC7Ew8cYnlhl/69rOM3fEgmxsNp+dNbxMV26jsC0Ro3qkvzTv1BW4C4OTxHzm4dxfZaQfw5mSQX1BIQUE+rqhY3LGN8MQ2Jjo+kej4RGLjE4mNSyAuPp7YmHhi3S5qY+qQer14EbyqeFVRhY0fPcvQtfeQdfywVXYNnHKVnYh8AgQqJX9wrm8OjACGAotEpBswC3hCVbPKW3xYVZ8FngWzgkplhLdYIolT6cYwEt+04rMxAWK7jcJz+CV2bfyC7sMmlBn225VfMXT9H9kZ24/eN7+PO7pqaiehWStOa1b2BrN1jbhcuAE3P9U5sU1MXuaesBPcGjrlKjtVHRfMT0RuAN5W813AShHxAi2A4cBkEXkEaAp4RSRHVRvu2lUWSznknjgKQOPmrSt1XfdBY/F+LWRs+QzKUHaHDx+izUczyXXF0/66hVVWdPWJqETTS85z8tbScKmuGfNdYCzwmYj0BKKBo6o6uiiAiMwCsqyis1jKJj/rGACNm1VO2bVs1ZqNnj602L8kaJiCggL2PzeNZD3C4UveonlS+QtNRwKxjkm44OSxEEtiCTXVnUP8HNBNRDYBrwNXqf3622KpEnoqDYDoRhWfjVnE4fbj6JT/PScOfBfQf+XzdzI491u2DPg9HQaMrZac9Yn4psbU6rXKrsFTLWWnqnmqOk1V+6vqYFX9NECYKn9jZ7E0JFzZaWSRAO7KG1zaDr8MgD2fzS/lt2nJK/xs/3N82/QCBlxye7XlrE80btKcfHUjTkPC0nCxX4daLGGCOy+dLHf5sykD0bdvMis8Q2i/8zU096elww5s+YbuX97KVncv+l/3rxLfpzUEYqM9pNMIV45Vdg0dq+wsljAhNj+DbE+TKl0rIpwcfitNvBl8/9LvwOvl6JbPSVh0GekkkjB9IXHxCTUscf0g09UYT47dzb2hY5WdxRImJBSeIDeqaZWvH/PzCbyfeBnd971NxoPdaLHoIk5oHMcmvUGnzg13yb0sV2Oi8zNCLYYlxIT9QtAWS0OhkTeTE9Hdqny9yyX8/LdzePWl7rQ4tIzMZj0YOOku+ndoW4NS1j9yoprQtGB/qMWwhBir7CyWMCAnv5CmZJIe16xa8STGRfOr6+6pIakig9zoZiTk2t3cGzrWjGmxhAEnTmbTWE6hldjxwFIxCmOa0kRPgP0qqkFjlZ3FEgZkppsVPtwJFV8E2lIxNK45HgrR3BOhFsUSQqyys1jCgJPpZu1GTyV2PLBUkHiTp9kZdsmwhkxEKbucU1ms+r9nSd26KtSiWCyVIifDLAIdk1i5HQ8s5eNpZPI0M+1wiCWxhJKIUnaFhQUMWXUnh1a8HWpRLJZKkZdplrOKa2KVXU0TnVjUs7M7HzRkIkrZJSQ25Uea40nfFWpRLJZKUeis3ZgQZtvmRAJxTUye2m1+GjYRpewADkd1pPHJ1FCLYbFUiqJFoBtVci87S/nEOw2Igiw7ZteQiThld7JRF1rl7wu1GBZLpZDs4+TjRmIah1qUiKNx0yS8KhSetOtjNmQiTtnR4jSaksXxIwdDLYnFUmHcucfJlMQGt1BzXdA0IY50EuCU3eanIRNxyi6+bS8ADn6/McSSWCwVJzovnZOuqu14YCmbaI+LDEnElW0Xg27IRJyya9l9IACZezaEVhCLpRJUZ8cDS/mcdDXGk2eVXUMm4pRd6w49OKHxuA5vCrUoFkuFqe6OB5ayyYlqSmxeeqjFsISQiFN2LreLPdHdaZJhF3611B8a6QnyY5qGWoyIJS+6KQmFdrmwhkzEKTuArKa96ZC3m8KCglCLYrGUi9erNNEsCq2yqzUKY5uRqFbZNWQiUtm526UQL7ns+35zqEWxWMol6+QJYiUfja3e9j6WMohPIpY8CnKyQi2JJUREpLJr0WMIAD9uXxliSSyW8jnlLAJNvN3ep7aIchbYTjtyqFbiP3kqm7Sjh8k5lVkr8VuqT7U3bxWRm4DfAoXAh6p6l+OeAvwTaAx4gaGqmlPd9CpCx56nc0pj0L3LgWtrNO70Eyc4eXQ/eXk5FOTnE5vYjEZNkmjcuClud0S2HSy1TNGajXZ7n9ojtll7ANJ/3EOrjqdVOz5VZdU3S8hZ/jydTqyiM4dIcPxOEssBT0eOJfSgoGUfEjoNom2vobRu1Rqx31GGjGopOxEZC0wEBqhqroi0ctw9wMvAlaq6XkSSgPxqS1tBPNExbInpQ8u0NdWOKzs7h/Wfvo5u+4hOmWtpq0doKqU3gcxVD0elMVnuZmRHNyU/tgUa3wJJaIGrUUs8iS3xJLbCFZOAy+3B7fbg8kSZY5dRkqqKKnhV8TobTapzXOSu6kUV5+dFAW/RsYJ6FS8mPOo1fijqNXKKgAAuAcR07cVxd2FOfMMU/WtRPEW3rmrOMWmClrgHRSmZTT4nJTbR1FL+EtDfD58wQunwggS/thZRdfJEjSxFx86pc64/3bUqOXvW0BW7vU9tktCyMwCnju6pdlwHDuzj+xd/y6icpWQTw67EYXybNBGNTqQwPwfviUM0ztpFz4xlNM/4CHYCn8J+WrI/pgenmvUmtvVpJLboQHSz9sQ2TqJRo0QS4hPAHY1XvRQW5OMtLKCwsICCfOe/IJ/C4l8e3oICCgrzobAA0ULEWwBF//6UUrJSwksJ7l/WtRqdSO8Bw6uSjXVOdXt2NwAPqWougKr+6LifC2xQ1fWOe50vXXCi1VD67/0Xp04cI75x5SuRnNxclr/5OH2/+ycjOE46ifyQeDqHWvSGJh2QqDjcbheF2RkUnjoOJ9Pg1DGico8Rm3ecZtl7aZaWQbzk1sLdWSKRJq07hVqEiKVpW6Ps8tOqt5Tg5vUrafLOVIaRxobuv6bPpN/TP75p0PAnjuzl4PZVnPxhDe4fN9MuawftDn6D61Bk7Jr+rbc3DFgRajEqRHWVXU9gtIg8COQAd6jqt467ishioCXwuqo+EigCEbkOuA6gU6eae9kb9TwT17557Fr9KcljL6vUtds2rMTz7rWM8aayIyaZtJ89Qq9RlzLAXbnsyi0o5HB6Ollph8nJOExB5mEoyEML89HCAtRbgBbkF/fiREDE5fSsTLdKEMddnAaWmGMfd3OtFIcRp3vmciIVofhaLe5dOP8+xwBeNT0iVVAB9RobtG86RRS7AYjL+QfB5fz74XNtyZaklPInkD9GpoBhyou7DlCf1H56FkXnFOcPiNNrlmK/mMQkuvRMqTNZGxrNk9qQrdHIif1VjmPHtvW0fPtyPC7lx0vfJiX5rHKvadyyI41bdoRRlxS7eXNPsn/f96Qf3kthxn4KT2WQn3uKwrxTeLz5qMsN4gbn3+V2gzsKcXlwuT2IcyyOZQhXFOpyo+JGXR4QV4l3QPwtHCWMLIq/BUSCWmEoFdYdXX8WQii39haRT4A2Abz+4FzfHBgBDAUWiUg3x32U43YKWCIiq1V1iX8kqvos8CzAkCFDaqy502PwWLKXRJO99d9QCWW34p2nGbBuFtkSx7bRT9P77GlVXq8wxuOmdYskWrdIAvpWKQ6LxVJ93G4XR1xJeE5Wbc3cH388TPzrlxEtBeRN+4AO3QdVWRZXTALtuyfTvntyleOwVJ5ylZ2qjgvmJyI3AG+raR6sFBEv0ALYB3yhqkedcB8Bg4FSyq62SGiUyOr4oXQ58hnq9SKusiePeAu9fD7vDsYems/m2IG0n/kyvVt3rCNpLRZLbZPuaUVcduV3Ky8s9JL63NUM0qMcuOQtOldD0VlCR3WnD74LjAUQkZ5ANHAUWAwki0i8M1nlLGBLNdOqNLk9zqeVHuP7dZ+XGS4/P48Vs6cy9tB81iddQO87/ktTq+gslogiJ64NTfIrv4Hrl4ueYFjOV2zqeyudB46tBcksdUF1ld1zQDcR2QS8DlylhuPA48C3wDpgjap+WM20Kk2/sVPJ0lhOfDk3aJic7JNsfOISzsj4iG87X8OAG1/FHRVdh1JaLJa6wNu4PS30GHl5eRW+Zv++Hxi07TG2xw5g4GV/qEXpLLVNtSaoqGoeMC2I38uYzw9CRpNmzVnW/HyGpX3A0QPf06JdtxL+x4+nsfeZSxict45ve9/F0Cm2MFsskYqnRTc8+7zs+WE7nXpUbLxs72u3Mphcml4+p9yhEEt4E/FPr8uFd+NFOPDa71Cvt9j9wK7NpD01lr65G1g35GGr6CyWCCehXW8A0vdWbERl/YpPGXFyCRu6zKB1NzuZpL5T7RVUwp0O3frwRdcbODN1NuuemkLU4F+R9d0y+v/wEvHiYdc5zzHQZ1qwxWKJTFp07gdA7uEd5YZVVfjkfo7TmP6X/bG2RbPUARGv7ABGXnk/S+dlMfrg87iXLAZgdcIo2l7+OL269AqxdBaLpS5o0aot6doISdtVbtjVn73NkPx1rOl7N4Mb2QW6I4EGoezcbhdjrn+CIwdvZd9362jXrR+nd+gearEsFksdIiIc8LQnIXN3meEKCwtpvOxBDkorUibeWkfSWWqbBqHsimjZthMt29olmSyWhkpmo670yPjGrAwSZLGIVR89x3DvLtYOeYi2MXF1LKGltoj4CSoWi8VSRH7rATQng/RDgXt3ebm5tFvzGLvdXRgwvmZ3TLGEFqvsLBZLg6FxN7NC/4EtXwX0X/vuk3TUg2SO/D0uT4MyfEU8VtlZLJYGQ+d+w8lVD9nff1PK71TmcU7bOofNUckkj6nc4vGW8McqO4vF0mBoktiIbdH9aHG4dM9u05v/SxIZyLn32w/IIxD7RC0WS4Mird0YOhekcuLAzmK3A99vITn1eVYnnEnfoT8PoXSW2sIqO4vF0qBod8blFKqQuvhpALQwn4xF11OIm/ZTngytcJZawyo7i8XSoOjVuz/LY0fS/YfXyPxuGVv+eTV9ctazpt89tOlov7+NVKyys1gsDY6mEx8mR6NJfGUC/X78gP+0mM7oy24OtViWWsTOrbVYLA2Ofn37s37Kf/nqqzdo1CmFceMuQoJ8ZG6JDKyys1gsDZIBfXozoM+9oRbDUkdYM6bFYrFYIh6r7CwWi8US8YiqhlqGYkTkCPBDDUTVAjhaA/HUBfVJVqhf8lpZa4/6JG99khXql7w1JWtnVW1ZA/EEJayUXU0hIqtUdUio5agI9UlWqF/yWllrj/okb32SFeqXvPVJVmvGtFgsFkvEY5WdxWKxWCKeSFV2z4ZagEpQn2SF+iWvlbX2qE/y1idZoX7JW29kjcgxO4vFYrFYfInUnp3FYrFYLMVYZWexWCyWiCeilJ2IjBeR7SKyU0TuCbU8/ohIRxH5TES2iMhmEbnZcZ8lIvtFZJ3zuyDUsgKISKqIbHRkWuW4NReR/4rId85/szCQs5dP3q0TkRMicks45auIPCciP4rIJh+3gHkphtlOOd4gIoPDQNa/icg2R553RKSp495FRLJ98nhuXcpahrxBn72I/D8nb7eLyHlhIOtCHzlTRWSd4x4OeRuszgrLslsmqhoRP8AN7AK6AdHAeqBvqOXyk7EtMNg5TgR2AH2BWcAdoZYvgLypQAs/t0eAe5zje4CHQy1ngHJwCOgcTvkKnAkMBjaVl5fABcDHgAAjgBVhIOu5gMc5fthH1i6+4cIobwM+e+d9Ww/EAF2dOsMdSln9/B8D7gujvA1WZ4Vl2S3rF0k9u2HATlX9XlXzgNeBiSGWqQSqelBV1zjHmcBWoH1opao0E4EXnOMXgItDJ0pAfg7sUtWaWImnxlDVL4A0P+dgeTkReFENy4GmItK2TgQlsKyq+h9VLXBOlwMd6kqe8giSt8GYCLyuqrmquhvYiak76oSyZBWz7cLlwGt1JU95lFFnhWXZLYtIUnbtgb0+5/sIY0UiIl2AQcAKx+lGp9v/XDiYBh0U+I+IrBaR6xy31qp60Dk+BLQOjWhBmULJyiIc87WIYHkZ7mV5Jqb1XkRXEVkrIp+LyOhQCRWAQM8+nPN2NHBYVb/zcQubvPWrs+pd2Y0kZVdvEJFGwFvALap6AngG6A4MBA5iTBnhwChVHQycD/xWRM709VRjtwibb1dEJBq4CHjDcQrXfC1FuOVlMETkD0AB8IrjdBDopKqDgNuAV0Wkcajk86HePHsffknJhlrY5G2AOquY+lJ2I0nZ7Qc6+px3cNzCChGJwhSaV1T1bQBVPayqharqBeZRh2aVslDV/c7/j8A7GLkOF5klnP8fQydhKc4H1qjqYQjffPUhWF6GZVkWkRnAL4CpTgWHYw485hyvxoyB9QyZkA5lPPtwzVsPcCmwsMgtXPI2UJ1FPSu7EFnK7lugh4h0dVr4U4D3QyxTCRyb/Hxgq6o+7uPua9O+BNjkf21dIyIJIpJYdIyZoLAJk6dXOcGuAt4LjYQBKdEyDsd89SNYXr4PTHdmto0AMnxMRiFBRMYDdwEXqeopH/eWIuJ2jrsBPYDvQyPlT5Tx7N8HpohIjIh0xci7sq7lC8A4YJuq7ityCIe8DVZnUY/KbjGhniFTkz/MTKAdmBbQH0ItTwD5RmG6+xuAdc7vAuAlYKPj/j7QNgxk7YaZtbYe2FyUn0ASsAT4DvgEaB5qWR25EoBjQBMft7DJV4wSPgjkY8Yx/idYXmJmss1xyvFGYEgYyLoTMxZTVG7nOmEnOeVjHbAGuDBM8jboswf+4OTtduD8UMvquC8ArvcLGw55G6zOCsuyW9bPLhdmsVgslognksyYFovFYrEExCo7i8VisUQ8VtlZLBaLJeKxys5isVgsEY9VdhaLxWKJeKyys1gsFkvEY5WdxWKxWCIeq+wsFovFEvFYZWexWCyWiMcqO4vFYrFEPFbZWSwWiyXiscrOYrFYLBFP2Ck7EekiIurs72Spp4jITSJyQETWhyDtWSLych2kM0NElpXhv1RErqltOSwlKSvf6+qZiMgCEflLGf4qIqfVthyRgIi0E5FMEdkuImdXNZ6wU3aWyiMic0Uky/nliUi+z/nHIRJrFvAbVR3gI+csEZkVInnCCqdRl1rJ8J+JyCkR2SYi48oIe7mIfO2EXRrAf6CIrHb8V4vIQB+/GKc8HRaRNBH5QETaB4ijh4jk+DYqnD3M/iAie0TkhIi87ruztqMA8nzKZlbRfm0VuP8FzuaxEY/TiFpQifA/d8rEKaeMdC4jbIXKkYgsCdTpEJGbRWS3iJwUka0i0tNxnyAiy0QkXUQOici/ivbDdPzbi8h7TpnaJyLX+/iN9isTWU7akwBU9YCqJgIfAL+raL74U+PKzvbI6h5VvV5VG6lqI+CvwMKic1U9vyhcHT+b5oTfZqmVJozK82vAWsw+Yn8A3hSRlkHCpgFPAg/5e4jZ2Pg94GWgGfAC8J7jDnAzcAaQArQDjgNPBUhjDmbDZF+mA1cCI51r4wJc+4hP2WykqoXBbjjcqaiirmUZWgBvA/di3rlV+Ox2HoByy5GITAWiAqR1DWavwAlAI8yu9Ucd7ybAXzDPvQ/QHvibz+UvA7uB1s71fxWRsQCq+qVvmXDizQL+7SfCJkfuKlEjyk5EUkXkbhHZAJwUEY+IjHBal+kisl5ExviEXyoi/ysiK50W4Hsi0jxI3Fc7LYhMEfleRH7t5z9RRNY58ewSs6MyItJEROaLyEER2S8ifymvcIpIdxH5VESOichREXlFRJr6+KWJyGDnvJ2IHCm6LxG5SEQ2O/e7VET6+OXPHSKyQUQyRGShiMRWPqcrT5BnU8KEIn4mFxH5hZOn6c4zTKlkmkX57C0n3F3O8zkgItf4yuXINEdEPnSe/QoR6e5z7d9FZK/z3FeLyGi/6GOdfM4UkTUi4tvDvMcpK5kiskVELvHxmyEiX4nIEyJyDNNDLe9+HxWR42JavOf7eXd24ssUkf84lVOlENN6Hgz8SVWzVfUtzMaYkwKFV9VPVHURcCCA9xjAAzypqrmqOhuz4WaReagrsFhVD6tqDqbi7OcnzxQgHbN5py8XAvNVda+qZgEPA1eISHxl77ksRMQtIo857+huEblRggx9iEhb572708e5e7C6R0TeENMzyRCRL0Skn4/fAhF5RkQ+EpGTwNhyRG0WrPw6jBOR75z3bI6ISBWy41Jgs6q+4TyvWcAAEentH7Ai5UhEmgB/wuxK73uty3G/VVW3qGGXqqYBqOqrqvpvVT2lqseBeZhGDyLSCFPuHlTVfFVdD7wJzAxyT1cBb6rqST93L6bsVo0a2s02FbODbUdMa649ZtfoCzAK9RznvKUTfimwH+iP2WH6LeBlx68LZmdcj3M+AeiOeSHPAk4Bgx2/YUCGE7/LSbe34/cO8E8n/lbASuDX5dzHaU5cMUBL4AtMpVDkfy2wBYgHFgOPOu49gZPOtVGYgrITiPbJn5WYVk9zYCt+uxL77QycXsZvVDn3MKsoLwM9G8dNgdN8wiwA/uIcDwJ+BIYDbkzBSwViKlEexgM5QEI5YQ5hKtJ4TMuvWC5HpmPOM/YArwCv+1w/DdPK8wC3O3HF+uRBPjDZeR53YFqVUY7/Zc6zcAFXOM+ureM3AygAbnLijivjHmY46Vzr5NUNGAVTtCnyUsyOzT0x78VS4KEgcf0D+EcQv0uArX5uTwNPlfMcrgGW+rndCnzs5/Z/wO3O8RDgKyd/4oFXKfkONAZ2AB0ClLU3gbt8zkc6z3SAzzNNc36rgUlVrG+ux7yHHTC9008oWWcsde69qyPrdT7XLiVI3eP4zwQSMXXAk8A6v/ckw7kvV1F5CyLjAsouv+rke1OgE3AEGB8krg3Ar4L4/R14xs9tU6C8rUg5wvTYb6V0PdzJOb8Zs2P9buB+wBVErieL7tfJTwVa+fjPA9YGuC4ByATGBPAbi7E0dKpSuanKRQGESAVm+pzfDbzkF2YxcJVPgXvIx68vkIepMEpkcoC03gVudo7/CTwRIExrIBefigr4JfBZJe/rYv8HAryPaQ1twFEAGBPCIp8wLswLNcYnf6b5+D8CzK2JvA8g8yxKK7uZfmHKUnbPAH/2C78dOKuC6a9y4v9dOeGeA/7X5/w0Siu7f/n4XwBsKyO+4/xUqc4Clvs9j4PA6CDXrgMmOsczgD0VvNcZwE6f83jnHtr4lPM/+vj/Bvh3FZ7plb7347g9CCwo57pAyu5efCpdx+0VYJZz3AR43bmPAozJq7lP2L8Ddwcpa9dglEsXJ573nXjOcPwH81MD5QJMpTayCvnxKT4NV2AcpZXd407Z/6XftUsJUvcESKepE28TnzL5YgVlLLP8OvGO8jlfBNxThbyYj18DCtNYmVHZcoRp6Kxznk8Xvzz9mXP+oZMvXZxnfW2AdM7BvI89fdyWYUzasU45SAO2B5FxN06DMYD/G44cT1Y2r2pyzG6vz3Fn4DKne54uIumYHkvbIOF/wLTAS5l4ROR8EVnumBDTMYWmKFxHTMvZn85OfAd90v8npocXFBFpLWZQfb+InMD0NvxlmodpFT6lqrmOWzvnHgBQVa9zf74D+4d8jk9hbN51xd7ygxTTGbjd79l1xNxjRRgKTAFmiUgpu78P7fzkCiRj0DxzzMJbHXNTOqZy9X1WxfE5z2Nf0T2IyHQfM2065nkGvLYCFMuoqqecw0aB/P3voRJkYXpUvjTGKIuajmsOpleThGllvw18DGZiC0axPBEk7ucwY0JLgc3AZ477PgBVXaOqx1S1QFU/wijZS6twDxUpO1MxDc43A/gFrHsc8+hDjon7BEZZQg2UDQI/+7ouG0HDOmbKf2A6EgUBrs12/h9R1XRVTcXUqRf4BhKRERhrwGRV3eHjNRXT096LaVC/jFMu/LgK06BQfw8xQ0gXYKx3twS4tkxqUtn5CrcX07Nr6vNLUFXfAfOOPsedMOagoz5uiEgMxszwKNBaVZsCH2FMmkXp+NvBi9xzgRY+6TdW1X4BwvryV+c+klW1McZUVmxHd2zPT2JaU7N8bP0HMEqiKJw497e/nPRKIYFnJvn+/MemKoJ/wTmF6YUU0cbneC/Gtu777OJV9bUKJWQK6bsY81LbMoIexJihiugYLKA/Th7cBVwONHPKRQY+z8o3PudF7gAcEDNTbR5wI5DkXLvJ79pSL1qI2Qx0E5/ZbcAAx70qcaX4jQ+l+MQ1ENPST3Mac08Bw5yxxjGYFv0eETmEMQ9PEpE1YBoVqvonVe2iqh2cOPcT/D1QSuZ7RalI2ZmFqU9eldJj9cHqnl8BEzEKvQnmXiH8y8aAohMRScDUiYHKRlnlqDGmZ7fQebZFk4/2Oe/bdkwP2Pf+S+SFiAzC9OZnqmqJ8VxV/UFVf6GqLVV1OKYBsdLv+o6YMvZikHvtA2xR1e1B/Muktj49eBm4UETOc1pLsSIyRkR8C+g0EenrDF4/gBmQ9J+ZFY1pZR4BCpzB/3N9/OcDV4uZeusSM721t6oeBP4DPCYijR2/7iJyVjlyJ2JaPxliplvf6ef/d2CVql6D6c7PddwXARMcOaIwY0i5wNflZZQ/6jczKcDvy8rGGYB1wK+cZzMeMxZaxDzgehEZLoYEMdOKE6F4kH5BOfdQ1OONLiPYIsyz6+OUgXsrIX8ixsR2BPCIyH2UbrGeLiKXipm0cAvmeSzH9FbUuRYRuRrTswtbnBbyOuBPzrt0CUZBvRUofNE7hzFHuZxrinrZS4FC4HdiPjO40XH/1Pn/FpguZoJXFMb0ekBVjwLPYirSgc5vLuY9OM9Jt7nznomI9MWYEh9wetaIyGQRaeS8j+diGpPv+8it4jORrQwWATc773tTzLCJP/mYsdkE4EWnwVNEsLonEVNOjmEag3+tgCyh5h2gv4hMcp75fcAGVd3mH7CccpSB6TEPdH5FPbbTgRWO1WIhcJeIJDp1+XWYcUdEpD9m9uRNqvqBf9rOe54oItEiMg1Tjz/uF+xK4GtVDWStA9MDzw3iVy61ouxUdS+mhfR7TKWyF6M4fNN7CWPXPoSx45b6fkJVMx33RRgb8K/weTlUdSVwNcaskgF8zk89rOmYynaLc+2blN3TADPgOtiJ60OMCQcwsz4xkypucJxuAwaLyFSnpTEN0wo+ipmVdqGq5pWTXqi4GSNjOsa88G6Rh6quwky4eBqTbzsxY1NFdMSMCZSHUkb5UtWPgdkYU9dOjCKCihXmxZgXawfGDJVDafPSe5jJJ8cxL9GlamaCbQEeA74BDgPJFbyfWkXMt21zywgyBdPyPo75pGCyqhYp7Kki4tuSvxJjdnoGGO0czwNwyuTFmPcjHTMh42KfsnoHJj+/w7y7F2AmNqBmpt2hoh+mYZhTJAemtf4RZsLPx8Bzqvqsj1w3Y3p56Zhp6deq6lLnHjpiTG8by88t5mEasxswY4ofYRo/JRrLzj1dihnDf85H4QWre17ElKf9mHpjOWGAmFneUwP5OXk/CTP2dhwzsWyKz7X+5SpgOVKD77MteqaHfcrGjZhnfgDz/ryKMV2DaeC3BOb7WKF8y+R5wPdOutdjJuMcoSTTMZ/CBMNNOTO8y6Jo1lidIuZD15dV9V91nrilyoj5Fms9kKKq+eWEPYCZmVehlUzEfKqxCTPpJ9CYgSWCcVr7/VT1/1Xh2vMxE746lxvYUi9xGiqzMTM6L69KHHYFFUuFUdU8Ve1TnqJzuAdjLlkdLICIXOKY0pphvsn6wCq6homqvlxRRScicSJygZhvRttjvv96p3YltIQKEWmH6WmOwFhlqkSDU3ZScmkt319ZJiRLJVHVF1W1h6qeXkawX2O+6duFMUHdUEbYkGDLS1gimCGH4xgz5lbMWFXdCmHMi4HKRkCTo6VqqFkuLElVh6jqiqrGExIzpsVisVgsdUmD69lZLBaLpeERLovcAtCiRQvt0qVLqMWwWCwWSx2yevXqo6oabGHzGiGslF2XLl1YtWpVqMWwWCwWSx0iIj+UH6p6WDOmxWKxWCIeq+wsljDk611HOZSRE2oxLJaIwSo7iyXMUFVen/8Ef37Kft1gsdQUYTVmF4j8/Hz27dtHTo5t5VoqTmxsLB06dCAqqqyNF8KTzJx8Zkc/bRbA4pYQS2OxRAZhr+z27dtHYmIiXbp0Qaq0ka+loaGqHDt2jH379tG1a9dQi1NpCvIrskCNxWKpDGFvxszJySEpKckqOkuFERGSkpLqrTWgML9+ym2xhDNhr+wAq+gslaY+lxlvfpV3MbFYLEGoF8rOYmlI2J6dxVLzWGVXAUSE22+/vfj80UcfZdasWaETqByWLl3K119Xet/YYtatW8cZZ5xBv379SElJYeHChTUonaU8NN9nG8RCuwmExVITWGVXAWJiYnj77bc5evRojcarqni9Vd6LMCjVVXbx8fG8+OKLbN68mX//+9/ccsstpKen15yAljLxFvzUsyvMzQyhJBZL5GCVXQXweDxcd911PPHEE6X8jhw5wqRJkxg6dChDhw7lq6/MptezZs3i0UcfLQ7Xv39/UlNTSU1NpVevXkyfPp3+/fuzd+9e7rzzTvr3709ycnJxL2rp0qWMGTOGyZMn07t3b6ZOnUqgHSpmz55N3759SUlJYcqUKaSmpjJ37lyeeOIJBg4cyJdfflmmjFdeeSVnnHEGPXr0YN68eQD07NmTHj16ANCuXTtatWrFkSP+mwrDG2+8Qf/+/RkwYABnnnkmYCYUXX311SQnJzNo0CA+++wzABYsWMDFF1/MOeecQ5cuXXj66ad5/PHHGTRoECNGjCAtLQ2AefPmMXToUAYMGMCkSZM4depUqXRHjBjB5s0/bYI8ZsyYiFpmTgt/mo2Ze8oqO4ulJgj7Tw98uf+DzWw5cKJG4+zbrjF/urBfueF++9vfkpKSwl133VXC/eabb+bWW29l1KhR7Nmzh/POO4+tW7eWGdd3333HCy+8wIgRI3jrrbdYt24d69ev5+jRowwdOrRYcaxdu5bNmzfTrl07Ro4cyVdffcWoUaNKxPXQQw+xe/duYmJiSE9Pp2nTplx//fU0atSIO+64A4Bf/epXQWXcsGEDy5cv5+TJkwwaNIgJEybQrl274vhXrlxJXl4e3bt3L3UfDzzwAIsXL6Z9+/bFPb85c+YgImzcuJFt27Zx7rnnsmPHDgA2bdrE2rVrycnJ4bTTTuPhhx9m7dq13Hrrrbz44ovccsstXHrppVx77bUA/PGPf2T+/PncdNNNJdK94oorWLRoEffffz8HDx7k4MGDDBkypMw8r08UFhYWH+ecyiI+hLJYLJGC7dlVkMaNGzN9+nRmz55dwv2TTz7hxhtvZODAgVx00UWcOHGCrKysMuPq3LkzI0aMAGDZsmX88pe/xO1207p1a8466yy+/fZbAIYNG0aHDh1wuVwMHDiQ1NTUUnGlpKQwdepUXn75ZTyewG2XsmScOHEicXFxtGjRgrFjx7Jy5cri6w4ePMiVV17J888/j8tVuqiMHDmSGTNmMG/evOIKetmyZUybNg2A3r1707lz52JlN3bsWBITE2nZsiVNmjThwgsvBCA5Obn43jZt2sTo0aNJTk7mlVdeKdGDK+Lyyy/nzTffBGDRokVMnjy5zPyub3i9P43T5dmencVSI9Srnl1FemC1yS233MLgwYO5+uqri928Xi/Lly8nNja2RFiPx1NiPM73m6+EhIQKpRcTE1N87Ha7KSgoPVnhww8/5IsvvuCDDz7gwQcfZOPGjaXCBJMRSk/RLzo/ceIEEyZM4MEHHyxWzP7MnTuXFStW8OGHH3L66aezevXqCt+Py+UqPne5XMX3NmPGDN59910GDBjAggULWLp0aal42rdvT1JSEhs2bGDhwoXMnRtZy2p5fXp2eTllN5wsFkvFsD27StC8eXMuv/xy5s+fX+x27rnn8tRTTxWfr1u3DjDbFa1ZswaANWvWsHv37oBxjh49moULF1JYWMiRI0f44osvGDZsWIXk8Xq97N27l7Fjx/Lwww+TkZFBVlYWiYmJZGb+1CMIJiPAe++9R05ODseOHWPp0qUMHTqUvLw8LrnkEqZPn15mr2nXrl0MHz6cBx54gJYtW7J3715Gjx7NK6+8AsCOHTvYs2cPvXr1qtD9AGRmZtK2bVvy8/OL4wnEFVdcwSOPPEJGRgYpKSkVjr8+UOgzA7Mg2/bsLJaawCq7SnL77beXmJU5e/ZsVq1aRUpKCn379i3uZUyaNIm0tDT69evH008/Tc+ePQPGd8kll5CSksKAAQM4++yzeeSRR2jTpk2FZCksLGTatGnFk0F+97vf0bRpUy688ELeeeed4gkqwWQEYwYdO3YsI0aM4N5776Vdu3YsWrSIL774ggULFjBw4EAGDhxYrCDvu+8+3n//fQDuvPNOkpOT6d+/Pz/72c8YMGAAv/nNb/B6vSQnJ3PFFVewYMGCEj268vjzn//M8OHDGTlyJL179y52f//997nvvvuKzydPnszrr7/O5ZdfXuG46w0+PbsC27OzWGoECTTDL1QMGTJE/WfVbd26lT59+oRIoshm1qxZJSayRBr1texs/uZj+i2eAsCW4Y/Q9/xfh1gii6V2EZHVqlqrs8xsz85iCTPUp2fnzT0ZQkkslsihXk1QsdQs4bwKTEPG6/VRdnlW2VksNYHt2VksYYbvpwdqlZ3FUiNYZWexhBm+ZkzySq8gY7FYKo9VdhZLmKE+ZkzJtz07i6UmsMrOYgkzvCWUne3ZWSw1gVV2FeTdd99FRNi2bVvQMKmpqfTv379W5Vi3bh0fffRRla8v+gi9b9++9OvXj7///e81KJ2lJlCfj8rdBVbZWSw1gVV2FeS1115j1KhRvPbaawH9Ay3lVVl8FwAORnWVncfj4bHHHmPLli0sX76cOXPmsGXLlirHZ6l5isyY2RqNuyA7xNJYLJGBVXYVICsri2XLljF//nxef/31YvelS5cyevRoLrroIvr27QsYpTd16lT69OnD5MmTi7eoWbJkCYMGDSI5OZmZM2eSm5sLmGXF7r77bgYPHswbb7xRIl3/LXTy8vK47777WLhwIQMHDmThwoWcPHmSmTNnMmzYMAYNGsR7770HmC11Jk6cyJgxY+jRowf3338/AG3btmXw4MEAJCYm0qdPH/bv31/qnj///PPi1VMGDRpEZmYmqhp0O6KzzjqLiRMn0q1bN+655x5eeeUVhg0bRnJyMrt27QLggw8+YPjw4QwaNIhx48Zx+PDhUulOmTKFDz/8sPh8xowZxYs+NxSKzJhZxOEutMrOYqkJ6td3dh/fA4dKL3RcLdokw/kPlRnkvffeY/z48fTs2ZOkpCRWr17N6aefDph1Lzdt2kTXrl1JTU1l+/btzJ8/n5EjRzJz5kz+8Y9/cOONNzJjxgyWLFlCz549mT59Os888wy33HILAElJScXraPriv4VOdHQ0DzzwAKtWreLpp58G4Pe//z1nn302zz33HOnp6QwbNoxx48YBZnueTZs2ER8fz9ChQ5kwYUKJrXBSU1NZu3Ytw4cPL5X2o48+ypw5cxg5ciRZWVnExsby9ttvB92OaP369WzdupXmzZvTrVs3rrnmGlauXMnf//53nnrqKZ588klGjRrF8uXLERH+9a9/8cgjj/DYY4+VSLdo+54JEyaQl5fHkiVLeOaZZyr4MCMER9mdlHiirLKzWGqEWu/Zich4EdkuIjtF5J7aTq82eO2115gyxSzfNGXKlBKmzGHDhtG1a9fi844dOzJy5EgApk2bxrJly9i+fTtdu3YtXh/zqquu4osvvii+5oorrgiYbqAtdPz5z3/+w0MPPcTAgQMZM2YMOTk57NmzB4BzzjmHpKQk4uLiuPTSS1m2bFnxdVlZWUyaNIknn3ySxo0bB0z7tttuY/bs2aSnp+PxeMrcjmjo0KG0bduWmJgYunfvzrnnnguU3L5n3759nHfeeSQnJ/O3v/0t4PY9559/Pp999hm5ubl8/PHHnHnmmcTFxQW890il2IwpCUR7rbKzWGqCWu3ZiYgbmAOcA+wDvhWR91W1aoNE5fTAaoO0tDQ+/fRTNm7ciIhQWFiIiPC3v/0NKL1dT7Atc8oi2JY/FdlCR1V56623Su0ssGLFiqCy5OfnM2nSJKZOncqll14aMO177rmHCRMm8NFHHzFy5EgWL15c5j1UZPuem266idtuu42LLrqIpUuXBlzBJTY2ljFjxrB48WIWLlxY3MhoSBQpuxx3PNHe4yGWxmKJDGq7ZzcM2Kmq36tqHvA6MLGW06xR3nzzTa688kp++OEHUlNT2bt3L127duXLL78MGH7Pnj188803ALz66quMGjWKXr16kZqays6dOwF46aWXOOuss8pNO9AWOv7b95x33nk89dRTFC3ovXbt2mK///73v6SlpZGdnc27777LyJEjUVX+53/+hz59+nDbbbeVmXZycjJ33303Q4cOZdu2bdXajgggIyOD9u3bA/DCCy8EDXfFFVfw/PPP8+WXXzJ+/PgKxx8pFM3GzHcnEK055YS2WCwVobaVXXtgr8/5PsetGBG5TkRWiciqI0eO1LI4lee1117jkksuKeE2adKkoLMye/XqxZw5c+jTpw/Hjx/nhhtuIDY2lueff57LLruM5ORkXC4X119/fblpB9pCZ+zYsWzZsqV4gsq9995Lfn4+KSkp9OvXj3vvvbf4+mHDhjFp0iRSUlKYNGkSQ4YM4auvvuKll17i008/LZ6AUjS7c+7cucXb/zz55JP079+flJQUoqKiOP/886u1HRGYtTgvu+wyTj/9dFq0aFHsvmrVKq655pri83PPPZfPP/+ccePGER0dXeH4IwVVs+lvgSeBWM0NsTQWS2RQq1v8iMhkYLyqXuOcXwkMV9UbA4W3W/zUHAsWLCgxkaUhUl/LzrJXH2LUjv/li6YXc2b6u3DvUXBHhVosi6XWiIQtfvYDHX3OOzhuFoslCKpmzK4wOtE42MWgLZZqU9vK7lugh4h0FZFoYArwfi2nacF8n9aQe3X1mqLlwmKMsrM7H1gs1adWlZ2qFgA3AouBrcAiVS0937z8eGpaNEuEU6/LjKPsJNZ8EpJ7KrOs0BaLpQLU+kflqvoRUOX1rWJjYzl27BhJSUkVmsZvsagqx44dIzY2NtSiVAn1mgkqLqdnl3Mqk/p5JxZL+BD2K6h06NCBffv2EY4zNS3hS2xsLB06dAi1GFVCnDE7V1wTwPbsLJaaIOyVXVRUVIkVSiyWSKdogorbMWPmZWeFUhyLJSKwC0FbLOGGM2bniTc9u/wcq+wslupilZ3FEm44yi4q3vTsCqyys1iqjVV2Fku4oYUUqhATZyaoFFplZ7FUG6vsLJYww+UtoEA8RMcbZefNtcrOYqkuVtlZLGGGaAEFuIlPaASAN/dUiCWyWOo/VtlZLGGGeAsowEN8TAzZGo3m2xVULJbqYpWdxRJmuLz5FOImLtrNKWKQPNuzs1iqi1V2FkuYYcyYHqI9LrKJgXyr7CyW6mKVncUSZri0gAJxA5AjsbgLrLKzWKqLVXYWS5jh8hZQ6CxulGuVncVSI1hlZ7GEGS4toNDp2eW5YnEXZodYIoul/mOVncUSZoi3kEKMsst3xRFllZ3FUm2ssrNYwgzTszNmzHx3vFV2FksNYJWdxRJmuDQfr6PsCtxxRGtOiCWyWOo/VtlZLGGGeAuKlZ3XE0eM1yo7i6W6WGVnsYQZLi3A6ypSdvHEYZWdxVJdrLKzWMIMt/7UsyM6Hg+FUJAXWqEslnqOVXYWS5jh0kLU6dlpVIJxtOtjWizVwio7iyXMcGkBKlHmJNooO7uBq8VSPayys1jCDLcWFPfs3DFG2eWcygylSBZLvccqO4slzPBoAV6X6dm5HGWXe8r27CyW6mCVncUSZsSRTYEnHgBPsbI7EUqRLJZ6j1V2FkuYEac5xRNT3HFmt/K8bNuzs1iqg1V2FksYkZ+fT5zkFU9MiYo1ys5OULFYqodVdhZLGHEqy5grJcYouej4xgDk256dxVItrLKzWMKI7JMZALgcZRfjmDG9ufY7O4ulOlhlZ7GEETlOz84dmwhAnNOzs8rOYqkeVtlZLGFEzinTs/PEGWUXm+D07PKssrNYqkO1lJ2IzBKR/SKyzvld4OP3/0Rkp4hsF5Hzqi+qxRL5ZB8/BEBc09YAxMdEka3RYJWdxVItPDUQxxOq+qivg4j0BaYA/YB2wCci0lNVC2sgPYslYslLN8ousUV7AOKi3BwnBvJPhVIsi6XeU1tmzInA66qaq6q7gZ3AsFpKy2KJGLwnjLJr2tIoO5dLyCYWsQtBWyzVoiaU3Y0iskFEnhORZo5be2CvT5h9jlspROQ6EVklIquOHDlSA+JYLPWYzAOcIIHY+EbFTrkSi6sgO4RCWSz1n3KVnYh8IiKbAvwmAs8A3YGBwEHgscoKoKrPquoQVR3SsmXLyl5usUQUCVk/cNjToYRbrisWt1V2Fku1KHfMTlXHVSQiEZkH/J9zuh/o6OPdwXGzWCxl0DpvD/ubDC7hlidxJBTaMTuLpTpUdzZmW5/TS4BNzvH7wBQRiRGRrkAPYGV10rJYIp3DB/bQmmPkt0ou4Z7vjiWq0PbsLJbqUN3ZmI+IyEBAgVTg1wCqullEFgFbgALgt3YmpsVSNqnrP6c10LL3z0q4F7jjiM7LqbF0MtLT+e7bf1NwbDfuRi3pNfIiGjdrVWPxWyzhSLWUnapeWYbfg8CD1YnfYmlIZKeuoEBddO7vp+w88UTnVL9nl7r7O/a99wCDji9miOQWu5/69ves63sTAy77A+Ky60xYIpOa+M7OYrHUAElHV7MnpgfdnD3sivB64onVqvfsMrOyWP/qvQzZ/xLt8bKpxXjiT59Cy+4D+XHvTrI+eZghWx9l/RPf0uvXLxDbqFnwyFQ59v0aDq79Nzn7NhKXtYcobw4ugcyolngbtyeqVQ+aduxL6679iGnRFVzuUtHk557ixLHDZKUfJevEcbIzjyMFp0Dc4HLj9kThiY7FEx2HJzqW6Ng4oqLjiIqNIzo6DnV7EG8haCGoF7xe57jQcfeC4x/VKInYpI4BbsbSkLDKzmIJA44fP06vgu1sbDetlJ/XE0csuQGuKp8ta74k5oPfMEr3sLbpODpf9r8M6tCz2L956054B43hy5fv54zvZ3Po8ZFw8T/okDKmOExG2hFSV36A7lhMx+MrSNLjJAFHaMqxmA7kxrRCvYU0zjtMy8MbaPzjW8Wj93l4OOxqQ74rGvV6idVsmmoGCeSQBCRV6a4qR45GkfbbDTRv1a4OUrOEK1bZWSxhwPdrlnC6FJLYe2xpz6gEPBRCQR54oisUn6ry6cLZjNr6ZzJdjfhu3HMMGjUpYFiX28Xoq+5n9edD6fjpjbR6eyJ73uvEiagWJOYdoUPhPgaIclwT2ZYwhJxOZ9Fm0AX07NGTli4pEVd+QSG79u7h4PebOHlwO57ju2iSvReXFuByuUj3xLMnpjkal4QkJBHVqDmxjZoR16gp7tgE1OtFC/MpyM+jIC+XgvwcCvOyKcjPxZuXjTc/Fy3IxaUFKG5UXHjF/Ku4it2Kft4Thxn3w+NsXfkezX9xQ6WfiyVysMrOYgkDcr5bSr666Tzo56U9o+MB0LyTSAWUnbeggJXP3sDPf1zE9vhBtLv2dXo0b1Pudaef9QuOJp/B0g+eovGBr4gvyCQttiMHk8bTuP94Tht0FmdER5UZR5THTfeuXenetStwYblp1jYFBQUc+fNzuL9bDFhl15Cxys5iCQNaHF3Bruhe9Ha29CmBo+xys08QG1/GeBpQkJfLxqenMOLEpyxvdQXDrpuDy1O2giohR/Mkxlw1qzKihzUej4cdTUYyIONTCvNzcUfFhFokS4iIKGVXkJ/HrodHkd5yKI0HXkT3AaOJjo2vfsTeQgryc8nNLwQUVEv8i5S+RHw+YZQSph4J6B4svPiEL0pI/eLREsf60/FPhyXwdS8rvO+p+niWdA98QbB4/UWqSLxK4AiCylHB9EukXcm8qnC8QWX86aTg1Al65H/Hyg4zA8rgjjHb/eSczCK2jEGu3Owstj81iUGnlvNll5sYddWfkUCFs4Hh6XsBjZZ/yPZvF9PrZxfVSJzq9XIi/SinsjLIy84iPzuLgvxcRFy43B5cbhculwe324XLHY3b48Hl9uD2ROFye/C4o3BFReHxGDePJwpxeUBcBKxQfNMOUm7LereCFvBSV1UyLOCJqphpPdRElLI7fuwQuZ5EBh94jaiDL5P3kZvv3R3JimlNdkwLxBODVzx4VfF4c/AU5uAqzMVdmE2UNwePN5co5xetucSQS6zmEiWFeIiwzLKEFwIJvccE9HI5szNzTp0IevmprHRSn7qI/jkbWNbnj4yecmdtSFkv6TfqIjK/uYOsb56DSiq7zBPH2bdlORmp6+HwFhpnfU+Tgh9p4U2jieTTpBbkLdTSyi6Y+nNJMMVUN3zr7c3QB1aEVIaKElH1d8s2nWh5zxIyjh9h54p/k79nJbHHvyMh70faZn+HR/PxSAEAucSQQwx5rljyJZp8Vyw5rsYURMXidcdS6Db/GhUHnlhcnmjcLpdP70pABFUp0bPC8f3pMFjXp/Luvv23ohMpCh+kNShBzspqPAbuh5aKzMc5SNplpRE0rvIDldXurVC8JXrLFYs7WD5UJX8DXSFxTUkeOSFgGHesUXb52VkB/TPS0zg4ZwI987axYvDDjJr464ol3kBo1KgxX7edxPCDr5C66Ru69D8jaNicU1nsWP0pmVuX0OzHFfTI30EfMethnCCBA1GdOdioP3sT2kBiG9xxjXFFJ+CKicftiUHxooVevN4CM9nGW2iOCwvBm48WFqDeAigsQL2FJY5FC3CpF6GQwCUxcMHztQqV+XIE8SxdfxG0APur1pOxbQOGC0ciStkV0aRZS04ffyUQ9Jt3EutOHIulWkTHmh0Q8k5llvI7euRHjs79Bd0LdrLhjCc4Y/yMOpauftBr0r2kzfmQmLems5sX6eoovOyTWexa/yVZ2z4j8dA3nJa7lRTJp0BdfB/dk7UdrySm289o23MoLdt1obf96L7eEpHKzmKJJDxxpmlWkF3SjLl/3w9kPXcJ3QpT2X7W0ww++1ehEK9ekNSyDVt+8Txt/m86bd8cz9E3m+FFaKHH6S+KV4XvPd1Y22Yy8b3GctrQc+iZ2DzUYltqEKvsLJYwJ7GlWf0jP/2njUM2rVtBs3en0Yl0fhj3LP1HTw6VePWGvkPGcrTTt3z9n2dxH9mCC2Vn44406jyIzoPP4bTmrTgt1EJaag2r7CyWMKdN6zZkaSyFx/fgLfSy7K2nGbz5r+S6Ykmb9A49+o8KtYj1hhat2tBi2n2hFsMSAqyys1jCnPiYKLZLG1of/Iz1D4/jzLzVbI9Nps3VL9K+TbdQi2ex1AvsaKvFUg/Y2XESbbyH6Za3nXV976bnXUtpYhWdxVJhbM/OYqkHjJ/xR77bMZGOnbszML5RqMWxWOodVtlZLPUAt9tFjz4DQi2GxVJvsWZMi8VisUQ8VtlZLBaLJeIRDbroZ90jIkeAH2ogqhbA0RqIpy6oT7JC/ZLXylp71Cd565OsUL/krSlZO6tqyxqIJyhhpexqChFZpapDQi1HRahPskL9ktfKWnvUJ3nrk6xQv+StT7JaM6bFYrFYIh6r7CwWi8US8USqsns21AJUgvokK9Qvea2stUd9krc+yQr1S956I2tEjtlZLBaLxeJLpPbsLBaLxWIpxio7i8VisUQ8EaXsRGS8iGwXkZ0ick+o5fFHRDqKyGciskVENovIzY77LBHZLyLrnN8FoZYVQERSRWSjI9Mqx625iPxXRL5z/puFgZy9fPJunYicEJFbwilfReQ5EflRRDb5uAXMSzHMdsrxBhEZHAay/k1EtjnyvCMiTR33LiKS7ZPHc+tS1jLkDfrsReT/OXm7XUTOCwNZF/rImSoi6xz3cMjbYHVWWJbdMlHViPgBbmAX0A2IBtYDfUMtl5+MbYHBznEisAPoC8wC7gi1fAHkTQVa+Lk9AtzjHN8DPBxqOQOUg0NA53DKV+BMYDCwqby8BC4APgYEGAGsCANZzwU8zvHDPrJ28Q0XRnkb8Nk779t6IAbo6tQZ7lDK6uf/GHBfGOVtsDorLMtuWb9I6tkNA3aq6veqmge8DkwMsUwlUNWDqrrGOc4EtgLtQytVpZkIvOAcvwBcHDpRAvJzYJeq1sRKPDWGqn4BpPk5B8vLicCLalgONBWRtnUiKIFlVdX/qGqBc7oc6FBX8pRHkLwNxkTgdVXNVdXdwE5M3VEnlCWriAhwOfBaXclTHmXUWWFZdssikpRde2Cvz/k+wliRiEgXYBCwwnG60en2PxcOpkEHBf4jIqtF5DrHrbWqHnSODwGtQyNaUKZQsrIIx3wtIlhehntZnolpvRfRVUTWisjnIjI6VEIFINCzD+e8HQ0cVtXvfNzCJm/96qx6V3YjSdnVG0SkEfAWcIuqngCeAboDA4GDGFNGODBKVQcD5wO/FZEzfT3V2C3C5tsVEYkGLgLecJzCNV9LEW55GQwR+QNQALziOB0EOqnqIOA24FURaRwq+XyoN8/eh19SsqEWNnkboM4qpr6U3UhSdvuBjj7nHRy3sEJEojCF5hVVfRtAVQ+raqGqeoF51KFZpSxUdb/z/yPwDkauw0VmCef/x9BJWIrzgTWqehjCN199CJaXYVmWRWQG8AtgqlPB4ZgDjznHqzFjYD1DJqRDGc8+XPPWA1wKLCxyC5e8DVRnUc/KLkSWsvsW6CEiXZ0W/hTg/RDLVALHJj8f2Kqqj/u4+9q0LwE2+V9b14hIgogkFh1jJihswuTpVU6wq4D3QiNhQEq0jMMxX/0IlpfvA9OdmW0jgAwfk1FIEJHxwF3ARap6yse9pYi4neNuQA/g+9BI+RNlPPv3gSkiEiMiXTHyrqxr+QIwDtimqvuKHMIhb4PVWdSjsltMqGfI1OQPMxNoB6YF9IdQyxNAvlGY7v4GYJ3zuwB4CdjouL8PtA0DWbthZq2tBzYX5SeQBCwBvgM+AZqHWlZHrgTgGNDExy1s8hWjhA8C+ZhxjP8JlpeYmWxznHK8ERgSBrLuxIzFFJXbuU7YSU75WAesAS4Mk7wN+uyBPzh5ux04P9SyOu4LgOv9woZD3gars8Ky7Jb1s8uFWSwWiyXiiSQzpsVisVgsAbHKzmKxWCwRj1V2FovFYol4rLKzWCwWS8RjlZ3FYrFYIh6r7CwWi8US8VhlZ7FYLJaI5/8DLBUUEzBdW1QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 6)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABhEklEQVR4nO2deXxVxdn4v8/NDgSQgMgmm+wkLLIpoGARtVZRUcGiiNb6aqutta36tmrR1vfnWlcqrUWxLghuiHWtCypWRBBkR0Eii8geIEC2e5/fH3MSbpJ7kxuy3Jub5/vJ/eScObM8Z2bOeWaemTMjqophGIZhNAR80RbAMAzDMOoKU3qGYRhGg8GUnmEYhtFgMKVnGIZhNBhM6RmGYRgNBlN6hmEYRoMhZpSeiHQSERWRxGjLEu+IyBQRWVBHaaWJyJsisldEbqqLNMukny0iY+ognfkiclWYa1a3o4CITBWRZ6t6rYZlqPBZq6jeGOURkddFZKeI3He0ccSM0jOODu/hLRSR3KBfnSuXChgDZAEdVPXeYkdPGXWKmlQxhFeGU6vg/6ci8p2IHBSRuSLSogK//UVkiYgc8v73L5Nu2brTJcKwIiL3iMhu73ePiEgkYb3rA0XkYy/N7SLy6wjvfYqIzIzEb33HayxlV9H/h16er62osSciKSLypIjsF5EfROTGMvFomXpxW9D1FiIy2yv3XSLynIg0Dbr+ZxFZISJFZeu1V2/+KCKbvLRfKBP2fhH5RkQOePcwOTi8qp4DjAZ+JyLNI82bYGpM6VkrNqrMVtUmQb97Kw9SZ7QAslU1N9qCVAfvYY16I1FE+gB/By4DWgOHgL+F8ZsMvAY8CxwDPA285rkXU7bufBth2KuB84B+uEbNOcD/RBJWRFoCb3v3kQGcALxbrYyJIjH07psFLMXl6R+Bl0SkVRi/U4FuQEecErlJRM4s46d5UL34c5D7X3Dl2hnoiquHU4OurwduAt4Ike5kXN0dDrQF0oBHg64fxNWlZsDlwMMicnJwBKq60jvMCHNvFVKth9hrrd8sIsuBgyKSKCLDROS/IpIjIl+JyKgg//NF5P+JyCJPy78WrpUqIleIyBpP438rIv9T5vo4EVnmxbOhuMBEpJmIzBCRbSKyVUT+IiIJldxHVxH5oEzLpXnQtT0iMtA7byuuez3KOz9XRFZ59ztfRHqVyZ/fichyEdnntY5Sq57TVUdEbvHy5YCIrBaR88P4ExF5UER2eHm5QkT6etdSvJbXJnGt8ekiklZFURKBQCWyZogzW+wXkS+8MlsQdF1F5BqvBZgjItNEXK+iorILYrCXB3tF5KniMhCRY0Tk31557vWO2welO19E7hKRT3HKpQsV01FEPvXy/F3v5R7MJC8vd4nIHyuJKxyTgNdV9WOvIXEbcIGIpIfwOwqX/w+par6qPgIIcFoE6VQW9nLgAVXdoqpbgQeAKRGGvRF4R1Wf864fUNU1kWfBEURksrhe724RuU3CmLNFJElEZonIy3JEcad6z+QBEflSRPoF+Q/7/IjrbX7qPTe7Kf3CDyfn/V4d2ygiZ5W5XFm9iSQfugMDgT+p6mFVfRlYAYwPE+Ry4M+qutfL+yc4Un6V0RmYq6r7VXUf8CrQp/iiqj6tqm8BB0KEPQeYoaqbvfp7DzBBRBp5Yf+kqmtVNaCqnwOfACeFiEdxdazK1ETL9RLgbKA5TuO/gWsJtAB+B7wspVsbk4ErgTZAEfBImHh3AD8BmgJXAA8GKZ4hwL+A33vpngJke+FmevGeAAwAxgKV2cwF+H+4lkcvoANeRVbVDcDNwLNewTwFPK2q872KNgu4AWgFvAm8LqVb0hcDZ+IqShZhKpaIjPBe6OF+Iyq5h7JsAEbiWkx3ePK3CeFvLC7/unt+LwZ2e9fu9tz74/KzHXB7pAKISBLuBbip7DVV7aSq2d7pNFwL7zjcw3h5iOh+AgzG5eHFwBnFyRCm7IKY5Pnv6t3PrZ67D1eeHYHjgcPAY2XCXobr1aQD31V0v8BPcXX1WCAZV/+DGQH0AH4E3F7cQFLVqapaInMl5d0H+Kr4xKufBd59hfK7XEuvNbicoBcUcI64Rt0qEbm2CmFLyeEd94kw7DBgj7jG8Q6vwXN8mPstharOVNUpACLSG9fLnYR7nzTD1dFSeA21uUA+cLGqFniXxgEv4t5VzwNzvToLlT8/Q4Fvce+8uyoReyiwDmgJ3AvMKG60eYSsN6qaraqdgu7jbyISslePy9tvVTVY0QSXSQkicgwuv8KVXzHficgWr6EYrIinAT/xGo3H4BTrW2HkCoWUOU7B9TrLypmGe+ZXhYhjMzCmTD5Ghqoe9Q+naK4MOr8ZeKaMn3eAy73j+cDdQdd64x7YBKATnvYOk9Zc4Nfe8d+BB0P4aY2r2GlBbpcAH1bxvs4DlpZxm4drOS0HUjy324A5QX58wFZgVFD+XBp0/V5genXyPISsU708zAn6tQ3hbxkwzjueAizwjk8Dvsa9iHxB/gWniLoGuZ0EbIxQrv5AIbAdOKECfwmevx5Bbn8pls87V2BE0Pkc4JZIys4rg2uCzn8MbKhA5r1B5/OBOyO83/nArUHnvwDe9o6L63b7oOuLgIlHUd7vB9+P51ZS58q43wa8UMbtOWCqd9wb11hIAE4GtgGXRBjWD/QMutbNu0eJIOzXXj0dDKTiGr6fHkVe3A7MCjpvhHsWxgQ9G/OAj7w0pMxzszDo3Ofd/8gwaS2j9POzKUIZpwDry8iowHGV1Zsq5sVlwffjud0FzAzht4MnQ2qQ2+m4YQiAJsAgXE+qNfASrmde7Lct8B7OghMA/gMkh0jn2eIyD3K7yiv/TrgGxTxPlpNChH8aZwaXENfO98o6p6p5VRM9vc1Bxx2Bi4J7KLjWbZsw/r8DknAtoFKIyFkistBrhebgXlbF/jrgWmJl6ejFty0o/b/jWlBhEZHW4gZUt4rIflxhlZXpCaAv8Kiq5ntubQlq/atqwLu/4NbmD0HHh3AVqqaZo6rNg37fe2afZUH50JcQ+ayqH+B6N9OAHSLyD3EDy61wD+iSoDje9twrRVWX4XpHn+F6wuFohXu4guvF5hD+QuZjhGVXts619cI2EpG/e+ax/cDHQHMpbQ4PJUs4KivrmqgLuTjrRzBNCW1KqtCvqq5W1e9V1a+q/wUeBi6MMJ2y15sCuereSJWFPQy8qqpfqGoerid1sog0C3EPFdGWoPJR1UMcsVIUMwxnHbjbky2Y4LABYAtH6kZlz89R1QtPRihd9tGoF8XXy/lV1VxVXayqRaq6HbgOGBtkQp+DU1zpXrgNuOcuEp7EWcfm43pwH3ruW4I9iZud2RfXMw+1K8IduIZL2Elc4agJpRcs0GZcTy/4BdxYVe8O8tMh6Ph4XCt/V3CEIpICvAzcD7RW1eY402FxV3YzzlRVls24nl7LoPSbqmq5Ln4Z/s+7j0xVbQpcGpQWItIEeAiYAUyVI+OQ3+MUbbE/8e5vayXplUNERkrp2VJlfyOrEFdHnJK+Dsjw8m8lpc0KJajqI6p6Iq7l3x1nNt6Fezn1CcrLZqoa8QPpvdDe8uINx06cObp9kFuHMH5DUWHZhYjveFy5AfwWZ24c6oU9xXMPDh9r25Cswk0eAUDcbMsU3EsolN+sMiagLEKbi+BITy2SsKXk8I5XRRh2OaXz9WjzeBtB9cYzh5Wd3PAuzvz9voi0LnOtpF6Im6TUHvg+wucnFutFFyk9thtcJiWo6l5c3oUrv3JBvP/F+qI/8HdVPahuXG46rlNSKerG6v6kbnijvZfmVoLemSJyB3AWMFZV94eJqhfwmtdYqRI1PRvtWdwYwRkikiAiqSIySoImBwCXikhvb3zsTuAlVfWXiScZ9yDvBIq8gd+xQddnAFeIyI9ExCci7USkp6puw1XyB0SkqXetq4icWonc6bjWzz4RaYd76QfzMLBYVa/CjVlO99znAGd7ciThXqL5wH8ry6iyqOonWnoWXdnfJ1WIrjGuou4ENykI12oqh4gMFpGhnvwHgTwg4FWmJ3Bjqcd6ftuJyBlBYVWCJiqFIR9XniHxyv4VXGOikYj0xI37RkplZQfwSxFp7zVW/gjMDgp7GMjxrv2pCulGi+dwz9hIEWmMe4Ze0dJjOcXMx5khfyVuUtJ1nvsHUDIZ7BhxDAF+hZt1WWlY3Jj6jV6daIur+zMjDPsUcL64zxqScObQBeomRRRPIJoaQV685OXFyeLG0acSomGnbjbz8zjFF9xbO1FELhA3+/IGXF1dSBWen1hBVb/GmWD/5L13z8c1NF4OE+RfwK1e+fcEfo5Xft77oIf3/szAmYbnF5cP8AVwlbhvcNNwY97LiyMWN2koFadfEj15ErxrLbx3sogbk/0rbggh4F3/X9wY5xhVLdtrDyYRV15VpkaVnqpuxg0O/wFXYTbjXkLB6TyDy9wfcPb8X4WI54DnPgfYi8uEeUHXF+FNbgH24Wz2xT2uybiX7Gov7EuUNq+G4g7czKd9OKX2SvEFERmHm4hSPMh/IzBQRCap6jpcz+JRXM/oHOAcPTJQHhVUdTVuNt1nuDG1TODTMN6b4pTbXpzpbzdQ/OHnzbjpxws98997uJ4RItIBZw5ZUYk4ASqvZ9fh7Ps/4OrHLCKv0GHLLojncY2hb3GmmL947g/hpkzvwr3s3o4wzVqlop69qq4CrsEpvx04xf2LoLBvicgfPL8FuDHOybgxtCuB84Lq50Rc+R7AvQTvUdWnIwz7d+B1XPmvxOX93yMJ65nU/+CF2YGbJPXToNvsQPj6WjYvrgdewPVccr34ytUddVPu5wLvBVlqXgMm4Or+ZcAFqlpYxeenzhA3e3p6BV4m4sbi9uImoV2oqsWKe5KIBPfk/oR7Fr7DvT/vU9Xi+t8F9ywcwJVtPm5uRDFX4sbktuB6aF0oPfnsCVxj8hJcI/MwLn/BmYjfxDWw3wKeVNV/BIX9P5w1Zn2QlesPZfKhePihyr088AYI6woRmQ88q6r/rLNEjVpBRC7FmT7/txJ/Y3EWgJ6quifCuO/BDfSHmsVpxDGeVWiOqp5cqefyYZvglGw3Vd1Y07IZsYFnlfgM9x1hKAtHhUT9Y1ujfqKqz1am8Dzm42Z3rRKRslP4ARCRniKSFWRm+xnu2x+jgaHuu7+IFZ6InOOZxRvj5gCs4MjnS0acISJzcda7245G4cFRftxXH/HMApeGuPSsql5T1/I0FDyT1qRKvKXjTJptceakBzgythQziEi4VWXOquKYq1FzjMOZxAVYjPsMpE4nmdi7pe5Q1fOqG0edmjcNwzAMI5qYedMwDMNoMMSUebNly5baqVOnaIthGIZh1CFLlizZpaoRLXxRXWJK6XXq1InFixdHWwzDMAyjDhGRyta1rTHMvGkYhmE0GEzpGYZhGA0GU3qGEYOsm/lLcqa2Z+WCf0dbFMOIK2JqTC8UhYWFbNmyhby8vGiLYtQjUlNTad++PUlJSZV7jjE2rF9Hj2y3aP3ej++AET+JskSGET/EvNLbsmUL6enpdOrUCTmK/QKNhoeqsnv3brZs2ULnzp2jLU6V2fvlXAA+aXYuI/fNY3v2Glp36hVdoQwjToh582ZeXh4ZGRmm8IyIEREyMjLqrXUgYdsSdugxdB7n1tnd+N9wC+UbhlFVYl7pAabwjCpTn+tMswPf8H1qF9p36cX3HEvy94uiLZJhxA31QukZRkOhqLCA9oWbONy8BwBb0vtxfO5ysOUCDaNGMKUXASLCb3/725Lz+++/n6lTp0ZPoEqYP38+//1vlfexLcWZZ55J8+bN+clPbBJFXbLpu29JliJSj+sGQEHbwbRkL7u2hNoY3TCMqmJKLwJSUlJ45ZVX2LVrV43Gq6oEAke1D2KF1ITS+/3vf88zzzxTQxIZkZLzg9sGrsmxnQBo2WMYAJtXfRYtkQwjrjClFwGJiYlcffXVPPjgg+Wu7dy5k/HjxzN48GAGDx7Mp5+6DZanTp3K/fffX+Kvb9++ZGdnk52dTY8ePZg8eTJ9+/Zl8+bN/P73v6dv375kZmYye/ZswCmuUaNGceGFF9KzZ08mTZpEqB0xHnnkEXr37k1WVhYTJ04kOzub6dOn8+CDD9K/f38++eSTCmW87LLLOOmkk+jWrRtPPPFESbw/+tGPSE9PrzBfXnzxRfr27Uu/fv045ZRTADfx6IorriAzM5MBAwbw4YcfAjBz5kzOO+88Tj/9dDp16sRjjz3GX//6VwYMGMCwYcPYs8ftL/vEE08wePBg+vXrx/jx4zl06FC5dIcNG8aqVUc2gR41alTcLF+Xt2sTAOme0uvcexBF6iNv09IoSmUY8UO1P1kQkeuBXwJ+4A1VvSno2vHAamCqqt4fJoqIueP1Vaz+fn91oylF77ZN+dM5fSr198tf/pKsrCxuuummUu6//vWv+c1vfsOIESPYtGkTZ5xxBmvWrKkwrm+++Yann36aYcOG8fLLL7Ns2TK++uordu3axeDBg0sUyNKlS1m1ahVt27Zl+PDhfPrpp4wYMaJUXHfffTcbN24kJSWFnJwcmjdvzjXXXEOTJk343e/cnq0//elPw8q4fPlyFi5cyMGDBxkwYABnn302bdu2jSjv7rzzTt555x3atWtHTk4OANOmTUNEWLFiBWvXrmXs2LF8/bUzza1cuZKlS5eSl5fHCSecwD333MPSpUv5zW9+w7/+9S9uuOEGLrjgAn7+858DcOuttzJjxgyuv/76UulOmDCBOXPmcMcdd7Bt2za2bdvGoEGDIpI51vHnbAGgRRv3qUVKamO+TTieRntWVRTMMIwIqZbSE5HRuE0c+6lqvogcW8bLX4G3qpNGrNC0aVMmT57MI488QlpaWon7e++9x+rVq0vO9+/fT25uuL1GHR07dmTYMGe2WrBgAZdccgkJCQm0bt2aU089lS+++IKmTZsyZMgQ2rdvD0D//v3Jzs4up/SysrKYNGkS5513Huedd17I9CqScdy4caSlpZGWlsbo0aNZtGhR2HjKMnz4cKZMmcLFF1/MBRdcUHI/xUqqZ8+edOzYsUTpjR49mvT0dNLT02nWrBnnnHMOAJmZmSxfvhxwivHWW28lJyeH3NxczjjjjHLpXnzxxYwdO5Y77riDOXPmcOGFF0Ykb30g4cBWDpJK48bNS9x2p/ek876F0RPKMOKI6vb0rgXuVtV8AFXdUXxBRM4DNgIHq5lGCZH0yGqTG264gYEDB3LFFVeUuAUCARYuXEhqamopv4mJiaXG64K/GWvcuHFE6aWkpJQcJyQkUFRUVM7PG2+8wccff8zrr7/OXXfdxYoVK8r5CScjlJ/aX5Wp/tOnT+fzzz/njTfe4MQTT2TJkiUV+g++H5/PV3Lu8/lK7m3KlCnMnTuXfv36MXPmTObPn18unnbt2pGRkcHy5cuZPXs206dPj1jmWCfl0A/s9rWicVA5+I/LouW+t9n1/Xe0bNsxitIZRv2numN63YGRIvK5iHwkIoMBRKQJcDNwR2URiMjVIrJYRBbv3LmzmuLULi1atODiiy9mxowZJW5jx47l0UcfLTlftmwZ4LZJ+vLLLwH48ssv2bhxY8g4R44cyezZs/H7/ezcuZOPP/6YIUOGRCRPIBBg8+bNjB49mnvuuYd9+/aRm5tLeno6Bw4cqFRGgNdee428vDx2797N/PnzGTx4cERpA2zYsIGhQ4dy55130qpVKzZv3szIkSN57rnnAPj666/ZtGkTPXr0iDjOAwcO0KZNGwoLC0viCcWECRO499572bdvH1lZWRHHH+ukFewhN7llKbemnU8EYOtam8xiGNWlUqUnIu+JyMoQv3G4nmILYBjwe2COuK7CVOBBVa3Yzgeo6j9UdZCqDmrVqk72EKwWv/3tb0vN4nzkkUdYvHgxWVlZ9O7du6TXMX78ePbs2UOfPn147LHH6N69e8j4zj//fLKysujXrx+nnXYa9957L8cdd1xEsvj9fi699NKSSSO/+tWvaN68Oeeccw6vvvpqyUSWcDKCM4+OHj2aYcOGcdttt5WM540cOZKLLrqI999/n/bt2/POO+8AcPvttzNv3jzAzfDMzMykb9++nHzyyfTr149f/OIXBAIBMjMzmTBhAjNnzizVw6uMP//5zwwdOpThw4fTs2fPEvd58+Zx++23l5xfeOGFvPDCC1x88cURx10faBzYR0Fy81JuHXq5RtDh72wyi2FUFwk1IzDiwCJvA/eo6ofe+QacAnwF6OB5aw4EgNtV9bGK4hs0aJCWnYW3Zs0aevWydQdrg6lTp5aa8BJv1Me6k/OndqxvPZZBv3iqlPumO3qxJ60z/W96M0qSGUbtISJLVLVOZqNVd0xvLjAa+FBEugPJwC5VHVnsQUSmArmVKTzDaOjk5RfQlINoaoty17Y36cXxucvqXijDiDOqq/SeBJ4UkZVAAXC5VqfraNQpsbyqTEMkZ+8OjhNFGrcsd63g2CxaH3if/Tu30rRVuyhIZxjxQbWUnqoWAJdW4mdqddIwjIZC7h43kSuxSUa5a407D4YNsGXNf+nd6qK6Fs0w4gZbkcUwYoTDOdsBSG5afkJXh97DCKhweGN8rDxjGNHClJ5hxAh5+3cDkNa8vNLLaJHBJmlL8s7y32EahhE5pvQMI0YoynXmzSbHtA55fVvjnrQ5WPESd4ZhVIwpvQiZO3cuIsLatWvD+snOzqZv3761KseyZct4883qTVu/8sorOfbYY2tdVqNq+A/vAyC9WfkxPYC8Y7NoqXs4uPO7uhTLMOIKU3oRMmvWLEaMGMGsWbNCXg+1RFhV8fv9lfqpCaU3ZcoU3n777WrFYdQ8mu/WckhpFHp3i+Y9RwHw3Zfv1pVIhhF3mNKLgNzcXBYsWMCMGTN44YUXStznz5/PyJEjOffcc+nduzfglN+kSZPo1asXF154YcnWOO+//z4DBgwgMzOTK6+8kvz8fMAtV3bzzTczcOBAXnzxxVLplt26p6CggNtvv53Zs2fTv39/Zs+ezcGDB7nyyisZMmQIAwYM4LXXXgPcVj7jxo1j1KhRdOvWjTvuOLIi3CmnnEKLFuW/BQvmo48+on///vTv358BAwZw4MABVDXsNkinnnoq48aNo0uXLtxyyy0899xzDBkyhMzMTDZs2ADA66+/ztChQxkwYABjxoxh+/bt5dKdOHEib7zxRsn5lClTeOmllyIrqHqOFhwinyQkISnk9Z79TmafNqZw/cd1LJlhxA/V3lqoTnnrFvihhgfyj8uEs+6u0Mtrr73GmWeeSffu3cnIyGDJkiWceKJbD/HLL79k5cqVdO7cmezsbNatW8eMGTMYPnw4V155JX/729+47rrrmDJlCu+//z7du3dn8uTJPP7449xwww0AZGRklKzTGUzZrXuSk5O58847Wbx4MY895r71/8Mf/sBpp53Gk08+SU5ODkOGDGHMmDEALFq0iJUrV9KoUSMGDx7M2WefHfEWPPfffz/Tpk1j+PDh5ObmkpqayiuvvBJ2G6SvvvqKNWvW0KJFC7p06cJVV13FokWLePjhh3n00Ud56KGHGDFiBAsXLkRE+Oc//8m9997LAw88UCrd4m2Dzj77bAoKCnj//fd5/PHHI5K5viOFB8kjhXCLtqWlJrMiNYsOu7+oU7kMI56wnl4EzJo1i4kTJwKuJxJs4hwyZAidO3cuOe/QoQPDhw8H4NJLL2XBggWsW7eOzp07l6y/efnll/Pxx0da6xMmTAiZbvHWPU888URY0+e7777L3XffTf/+/Rk1ahR5eXls2uQ2Ij399NPJyMggLS2NCy64gAULFkR8z8OHD+fGG2/kkUceIScnh8TExLDbIAEMHjyYNm3akJKSQteuXRk7dizgtg3Kzs4GYMuWLZxxxhlkZmZy3333ldoItpizzjqLDz/8kPz8fN566y1OOeWUUls5xTO+wkPkS8X3mtvmJNoEtpH7w/o6ksow4ov61dOrpEdWG+zZs4cPPviAFStWICL4/X5EhPvuuw8ov03Q0WzVE26roUi27lFVXn755XI7GXz++efV2jbolltu4eyzz+bNN99k+PDhJQtOhyOSbYOuv/56brzxRs4991zmz58fckWY1NRURo0axTvvvMPs2bNLGhsNAV/RIQoSKlZ6LU8cB9l/JfuTF+h70a11JJlhxA/W06uEl156icsuu4zvvvuO7OxsNm/eTOfOnfnkk09C+t+0aROffea2gHn++ecZMWIEPXr0IDs7m/XrXev8mWee4dRTT6007VBb95TdNuiMM87g0UcfpXj1t6VLj6zE/5///Ic9e/Zw+PBh5s6dW9IDjYQNGzaQmZnJzTffzODBg1m7dm21tkEC2LdvH+3auSW0nn766bD+JkyYwFNPPcUnn3zCmWeeGXH89Z1E/yEKfeX3PAymb59+rJPOpK3/dx1JZRjxRVwqvZpc/nPWrFmcf/75pdzGjx8fdhZnjx49mDZtGr169WLv3r1ce+21pKam8tRTT3HRRReRmZmJz+fjmmuuqTTtUFv3jB49mtWrV5dMZLntttsoLCwkKyuLPn36cNttt5WEHzJkCOPHjycrK4vx48eXjOddcsklnHTSSaxbt4727duX7A84ffr0km2HHnroIfr27UtWVhZJSUmcddZZ1doGCdxanxdddBEnnngiLVseWV9y8eLFXHXVVSXnY8eO5aOPPmLMmDEkJydHHH99J8mfR1ElPT2fT9ja7iy65q9h/yb7UN0wqkq1thaqaaq7tZC/qAjf9hUcTG1Nk4y2tSFivWHmzJmlJrw0ROrb1kKrpw7A1/Q4et74VoX+1qz/ls7PDGFD23Po8z9PVejXMOoD9WlroZhCfIIIoIFoi2IYVSZV88hPbFSpv14ndOGD9DMYue01DmxaTvrxle8c7/cH2L97G7k5O8k/uB8KchECKIIigKAi+MQHIvhEQARVKFIlEBD8CgEFBBJ8Pnw+n/ff+Q8o+AOKXxW/XwmgJIiP5AQhMdFHUoI7Bij0K4WBAIVFAYoCSpHfSeErfoYBn4APwf2VH4+OdIg6vWUbWrfrEplnI+6JL6UnPlSBGOq9RospU6YwZcqUaIthREheoZ9U8shPrlzpAbQ5/y8c+Nd8Dj4zmZTr3yO56RFzsQYC/JC9mu+Xf4hu+owWOSs5zv8Dx0g+x9TWDcQwhzWZ/b/bQNP0ptEWxYgB6oXSU9WIZh6KCAHEenpGjY7r1gUH84toRD45SaFn8palV9fO/GfQ/Zy6+JfkPjiITW3PoigxDd+ebzn+wFLakEMbIEeb8F2j3uxtfhKFTTuS0KQViWnpaGIa+BIARRQggKiiBNAAKIqq4hNIELz/3nOoSiCgBNTv/S/2KySI4POBz+st+gNKUSBAod/7X6QgkOgTEhN8JPmExASvZ4lrryrqepS4cgxVlKFKN1SZF339HoN3vcqenD2m9AygHii91NRUdu/eTUZGRkSKLyCChHwkjIaCqrJ7925SUyueCRlLHCrw05o8JMKeHsDp51zCf5tlkPzR/5G5ZQ6J+NkhLdmYfiLfdDiJVn1G07nnAPolJNSi5LHNl/n7YderFOYdqNyz0SCIeaXXvn17tmzZws6dOyPy78/ZSZFvPym7D9eyZEYsk5qaSvv27aMtRsQczssjWfxISmQ9vWJOPmUsnDKW3LxCijRAm7QU2tSSjPURX7LLz6LDuVGWxIgVYl7pJSUllVrxpDK23HEe29P70uvGl2tRKsOoWfIO7gfAl9LkqMI3SQ29XmdDJ8HLz8I8U3qGI+6+0yuUFHz+vGiLYRhVouCQM78lHqXSM0KTkOry029Kz/CIQ6WXTEKgINpiGEaVKPDMb4mpVTNvGhVjSs8oS9wpvSJfCokB6+kZ9YtCby+9xDSbYViTJHlKL1BgSs9wxJ3S8/uSSQzkR1sMw6gSRYedeTM5zcybNUmytyGv5h+KsiRGrBB3Ss/19My8adQv/HkHAUhpZEqvJklO85Se9fQMj7hTev6EVJLUlJ5RvwgUOKWX2sjMmzVJiqf0KLCenuGIO6UXSEgxpWfUOwLeRIskM2/WKCkpSeRpEr7Cg9EWxYgR4lLpJauN6Rn1Cy30eiIRLkNmREZKoo+DpCKF1tMzHNVWeiJyvYisFZFVInJvkHuWiHzmua8QkTpZE0oTU0nBenpG/aKkJ5JsSq8mERHySMFXZD09w1GtFVlEZDQwDuinqvkicqznngg8C1ymql+JSAZQWG1pI0ATUknWOknKMGoMX9EhAgi+pIo3kTWqzmFJI6HIliU0HNXt6V0L3K3q7ImqusNzHwssV9WvPPfdquqvZloRoUmpJImfQJEpPqP+kFB0mDxSI98kzoiYfEklscjMm4ajukqvOzBSRD4XkY9EZHCQu4rIOyLypYjcVM10Iqa4pZxnC8wa9YiEokPkS0q0xYhL8iSVxID19AxHpeZNEXkPOC7EpT964VsAw4DBwBwR6eK5j/DcDgHve9vBvx8i/quBqwGOP/74o7yNI/iS3NDh4cOHaJTeELfMNOojSf7D5PvMtFkbFCakkeTfHW0xjBihUqWnqmPCXRORa4FX1O3euEhEAkBLYAvwsaru8vy9CQwEyik9Vf0H8A+AQYMGVXsjPJ+3NUveQevpGfWHRP9hCkzp1QpFCY1IKtwSbTGMGKG65s25wGgAEekOJAO7gHeATBFp5E1qORVYXc20IsKX4j5GzT+8vy6SM4waITmQR4Gv/mx6W58oSkgjxcybhkd199N7EnhSRFYCBcDlXq9vr4j8FfgCUOBNVX2jmmlFRKL3cW/xVi2GUR9ICRyiKNk+TK8NAklppKgtQm84qqX0VLUAuDTMtWdxny3UKcWrqhcv4GsY9YFkzSMv4dhoixGXBBIbk0o+qNrsWCP+VmRJ8rZmKbL9s4x6RKrm4U+0Mb1aIakRCQSgyHp7RhwqveKtRPx51tMz6g9pmkcgwZRebaDFu9HbotMGcaj0Uhq7nl7AenpGPUFVSSWfgK27WSv4khsBUGBDHgZxqPTSvK1ZbKdko75QWBSgEfkEkhpFW5S4xOf19PIO2YxuIx6VXmNn3pR8U3pG/SAvLxefKJjSqxUSipXeQevpGXGo9JKTkzikKWD7Zxn1hHzv8xq1TxZqBfuMyQgm7pQewGFJxWf7Zxn1hMJDziohydbTqw2S02zBCuMI8an0SLWdko16Q6E3waJ4CT2jZknylF6RLUJvEKdKL8/XiATbSsSoJxTmuQZa8YQLo2ZJ9T5jsm93DYhTpVeYkFbzSk/V/QyjhinyvilNsJ5erZDa2BasMI5Q3bU3Y5KihEYkF1XPfr/z22Vsnj+TZjsW0Tz/e47RHHw4pVdIAgUkUUAyhZJEoSSX/IokmSJfMn5fCv7i/wnJ4EvEF7QEktOfLj4t7VjazUNK/gsiCgpKGf9V0MllV2OK1uJMkYisYW/OSR3JylJHc391tWJV2qFtACSmWk+vNkhv2gwAfzWUnhbmseHTF8n96t+02L+GZv7dpOtBAgh+SaCIxCPvA1+Kexf4UvD7UijypRBISMGfkOLeDyQA7ln2/pCSynaknrtn3V1X3HMQUAWUQJgHp7IqW1GdlnIHR05CBRNgb1oHxlz1f5WkGlvEpdIrTEqnaf62owq7c9smts2+gayc92muCaxNOIGtTU6iKK0lPl8iPlHUX4TPn48vkI/PX0BCIJ+EQAEJgQISAwUkBfJJK9pPkhaQpIUkUUCCFqFhqmSwazg/ZQld56v2lq4v/daq6p76cl/BbPQdT+uOvaItRlzStHEjCjQBf/7RjfNv+Oh5msy/nRN0J7u1KRtTe7G1+YkUJTVFUDRQhPoL8RXlIf589z7w55MYyCexqIDEwF5StIAkLSCVAhLxl6ujwecSfF7mwhHVKJRXk7VP2bT2S7c6TL1miEulV5TSjPQDVZ+e/M2KRTR7eQI9dT/vt76CnufeSGb76m9saxiV0SraAsQxiQk+9pGKVvHbXQ34WfLP6xn0/XN8LZ35esidnHjaeAal2g73xdTHJdLjUukFUprTVHMJ+AP4EiIbtvxu/UpavXw+RSSx5aI3+FHfYbUspWEYdcVhSUMKq6b0lsz4FYO+f44Fx5xP/58/TvdGtjZqPBCXE1lIO4ZECXAwNyci77kH9uF/7hIEKJz8Bl1M4RlGXJGb0JSUgr0R+//s5UcYtPVZPm1xPidf9yRNTOHFDXGp9BIaHQNAbs7OiPwve+Zmuugmto2ZRpsufWpTNMMwosDBhOakFe6LyO8Pm74mc/n/sSYli6HXPhGxtcioH8RlaSY0bgHAoX27KvW7dumnDNs+myUtx9FzxHm1LJlhGNEgL6k5jf05lfpTVba98CsEpdnEJ0hMSqp94Yw6JS6VXnK6U3p5+ytWeqrKobenclAa0fPSB+pCNMMwokBh6jE0DVT+GdMXH7/BgEOfsarrVbTt3LMOJDPqmrhUeqlNWwJQkFuxDX/Z5x8wMH8R60+YQuPmNn/OMOIVTcugCYfQovywfgL+AI0//gu7pAUDL/7fOpTOqEviUuk18pSe/+CeCv0F5t/LPprQ9/zf1YVYhmFECV8T16jdv3t7WD+LP32XPv41bMn8hS0UEMfEpdJrcoyr4IEKlN4336xlwOHP+abjBFIaH1NXohmGEQWS0l1DeN/uH8L6KVj4Dw6SRt+z/qeuxDKiQHwqvcbp5GkSHN4d1k/2f/4OQPczf1FXYhmGESXSmrcGIHdvaKW3ITubwQc/YkO7c0lMa1qXohl1TFwqPZ9P2CkZJB7aEfJ67uF8+myfx/omJ9K0zQl1LJ1hGHVN44x2AOTv3Rry+jfvPE6KFHH82OvrUiwjCsSl0gPISWxFo7zQ9vslH75KW9lFwuApdSuUYRhRoUWbzgD492wqd23/oTz6fv8yGxoPoHnHzLoWzahj4lbpHUw5lmaFoXt6yV89Q440pcvwi+pYKsMwokGzpk3Zqc3x7Suv9Ba/N4f2spPEoT+PgmRGXRO3Si+/0XFkBHZDIFDKPfu7bE7M+4zsduciSalRks4wjLpERNiV2Jq0g6XNm6pKk+VPs0eOoePwi6MknVGXxK3Sk2btSKaIgzmlTZwb359Bsvjp8KOroySZYRjRYH9qW5oVlN5ybNWq5QwqXMLWrhMgwVZfaQhUW+mJyPUislZEVonIvZ5bkog8LSIrRGSNiNT5l56NMtoDsGPrhhK3oiI/nTe9xDcpfcjo3K+uRTIMI4oUprenlX8n/sKCEredHz5OAKHLGTaLu6FQLaUnIqOBcUA/Ve0D3O9dughIUdVM4ETgf0SkU3XSqirp7dwSQge2rClxW/rp23Tie/KyLq1LUQzDiAES22SSJH62fvMlAPv272PArtdZ22wkjVt1jLJ0Rl1R3Z7etcDdqpoPoKrFM0cUaCwiiUAaUABUvvBdDdKhWyaFmsDhLStL3IoWzSCXRvQ87bK6FMUwjBigZbehAOz+ehEAq976B80ll0anXBdNsYw6prpKrzswUkQ+F5GPRGSw5/4ScBDYBmwC7lfVkMujiMjVIrJYRBbv3BnZVkCR0CitEVsT25O8ezUA27dtZmDuR6w77ickpaXXWDqGYdQPOnbvy17SYeNH5Ofn0X7tDDYknkCXE0+PtmhGHVKp0hOR90RkZYjfONzO6y2AYcDvgTkiIsAQwA+0BToDvxWRLqHiV9V/qOogVR3UqlXNLvq8q3k/Tji8gqKCfNb9+2FSpIg2P/pljaZhGEb9ICkxkTXNTqX7vgUs/ecvOV63kT/8JhCJtmhGHVKp0lPVMaraN8TvNWAL8Io6FgEBoCXwU+BtVS30TJ6fAoNq80ZCEThhDOlymCXz/saALc/yVZORtO3Wv67FMAwjRmh12vUkayHDdr7El+mj6XWqfavb0KiueXMuMBpARLoDycAunEnzNM+9Ma4nuLaaaVWZrFEX8T3HMnTlVBIlwLHn/19di2AYRgzRrd8w1o+by+KB95B5/QuIL26/2jLCkFjN8E8CT4rIStxklctVVUVkGvCUiKwCBHhKVZdXM60qk5rWiLwLn2Xxx9NpMXQSXbpm1bUIhmHEGL0GngIDT4m2GEaUEFWNtgwlDBo0SBcvXhxtMQzDMIw6RESWqGqdDIFZ394wDMNoMJjSMwzDMBoMMWXeFJGdwHc1EFVL3ISa+kB9khXql7wma+1Rn+StT7JC/ZK3pmTtqKo1+81aGGJK6dUUIrK4ruzD1aU+yQr1S16TtfaoT/LWJ1mhfslbn2QtxsybhmEYRoPBlJ5hGIbRYIhXpfePaAtQBeqTrFC/5DVZa4/6JG99khXql7z1SVYgTsf0DMMwDCMU8drTMwzDMIxymNIzDMMwGgxxpfRE5EwRWSci60XklmjLUxYR6SAiH4rIahFZJSK/9tynishWEVnm/X4cbVkBRCRbRFZ4Mi323FqIyH9E5Bvv/zExIGePoLxbJiL7ReSGWMpXEXlSRHZ469QWu4XMS3E84tXj5SIyMAZkvU9E1nryvCoizT33TiJyOCiPp9elrBXIG7bsReR/vbxdJyJnxICss4PkzBaRZZ57LORtuHdWTNbdiFDVuPgBCcAGoAtut4evgN7RlquMjG2Agd5xOvA10BuYCvwu2vKFkDcbaFnG7V7gFu/4FuCeaMsZoh78AHSMpXwFTgEGAisry0vgx8BbuMXahwGfx4CsY4FE7/ieIFk7BfuLobwNWfbe8/YVkILb63MDkBBNWctcfwC4PYbyNtw7KybrbiS/eOrpDQHWq+q3qloAvACMi7JMpVDVbar6pXd8AFgDtIuuVFVmHPC0d/w0cF70RAnJj4ANqloTK/vUGKr6MbCnjHO4vBwH/EsdC4HmItKmTgQltKyq+q6qFnmnC4H2dSVPZYTJ23CMA15Q1XxV3Qisx7076oSKZPU24L4YmFVX8lRGBe+smKy7kRBPSq8dsDnofAsxrFBEpBMwAPjcc7rOMwc8GQsmQw8F3hWRJSJytefWWlW3ecc/AK2jI1pYJlL6pRGL+VpMuLyM9bp8Ja41X0xnEVkqIh+JyMhoCRWCUGUfy3k7Etiuqt8EucVM3pZ5Z9XXuhtXSq/eICJNgJeBG1R1P/A40BXoD2zDmThigRGqOhA4C/iliJTahEydPSNmvnkRkWTgXOBFzylW87UcsZaX4RCRPwJFwHOe0zbgeFUdANwIPC8iTaMlXxD1puyDuITSDbaYydsQ76wS6kvdLSaelN5WoEPQeXvPLaYQkSRc5XlOVV8BUNXtqupX1QDwBHVobqkIVd3q/d8BvIqTa3uxucL7vyN6EpbjLOBLVd0OsZuvQYTLy5isyyIyBfgJMMl70eGZCXd7x0twY2TdoyakRwVlH6t5mwhcAMwudouVvA31zqKe1d1g4knpfQF0E5HOXot/IjAvyjKVwrPZzwDWqOpfg9yDbd7nAyvLhq1rRKSxiKQXH+MmMqzE5enlnrfLgdeiI2FISrWUYzFfyxAuL+cBk72ZcMOAfUGmpKggImcCNwHnquqhIPdWIpLgHXcBugHfRkfKI1RQ9vOAiSKSIiKdcfIuqmv5QjAGWKuqW4odYiFvw72zqEd1txzRnklTkz/czKGvcS2iP0ZbnhDyjcCZAZYDy7zfj4FngBWe+zygTQzI2gU3y+0rYFVxfgIZwPvAN8B7QItoy+rJ1RjYDTQLcouZfMUp421AIW6c42fh8hI3822aV49XAINiQNb1uLGa4no73fM73qsfy4AvgXNiJG/Dlj3wRy9v1wFnRVtWz30mcE0Zv7GQt+HeWTFZdyP52TJkhmEYRoMhnsybhmEYhlEhpvQMwzCMBoMpPcMwDKPBYErPMAzDaDCY0jMMwzAaDKb0DMMwjAaDKT3DMAyjwWBKzzAMw2gwmNIzDMMwGgym9AzDMIwGgyk9wzAMo8FgSs8wDMNoMMSM0hORTiKi3r5SRi0iIlNEZEEdpZUmIm+KyF4Ruaku0iyTfraIjKmDdOaLyFVhrlndjgIiMlVEnq3qtRqWocJnraJ6Y5RHRF4XkZ0ict/RxhEzSs84OryHt1BEcoN+da5cKmAMkAV0UNV7ix09ZdQpalLFEF4ZTq2C/5+KyHciclBE5opIiwr89heRJSJyyPvfv0y6ZetOlwjDiojcIyK7vd893t5rlYb1rg8UkY+9NLeLyK8jvPcpIjIzEr/1Ha+xlF1F/x96eb62osaet5/gkyKyX0R+EJEby8SjZerFbUHXW4jIbK/cd4nIcxK0o7uI/FlEVohIUdl67dWbP4rIJi/tF8qEvV9EvhGRA949TA4Or6rnAKOB34lI80jzJpgaU3rWio0qs1W1SdDv3sqD1BktgGxVzY22INXBe1ij3kgUkT7A34HLgNbAIeBvYfwm4zb3fBY4BngaeM1zL6Zs3fk2wrBXA+cB/XCNmnOA/4kkrIi0BN727iMDOAF4t1oZE0Vi6N03C1iKy9M/Ai+JSKswfqfiNqXtiFMiN4nbKDiY5kH14s9B7n/BlWtnoCuuHk4Nur4et+HwGyHSnYyru8OBtkAa8GjQ9YO4utQMtzntwyJycnAEqlq8IXBGmHurkGo9xF5r/WYRWQ4cFJFEERkmIv8VkRwR+UpERgX5ny8i/09EFnla/rVwrVQRuUJE1nga/1sR+Z8y18eJyDIvng3FBSYizURkhohsE5GtIvIX8XYfruA+uorIB2VaLs2Dru0RkYHeeVtx3etR3vm5IrLKu9/5ItKrTP78TkSWi8g+r3WUWvWcrjoicouXLwdEZLWInB/Gn4jIgyKyw8vLFSLS17uW4rW8NolrjU8XkbQqipIIBCqRNUOc2WK/iHzhldmCoOsqItd4LcAcEZkm4noVFZVdEIO9PNgrIk8Vl4GIHCMi//bKc6933D4o3fkicpeIfIpTLl2omI4i8qmX5+96L/dgJnl5uUtE/lhJXOGYBLyuqh97DYnbgAvE2+W+DKNw+f+Qquar6iO4TT5PiyCdysJeDjygqltUdSvwADAlwrA3Au+o6nPe9QOquibyLDiCiEwW1+vdLSK3SRhztogkicgsEXlZjijuVO+ZPCAiX4pIvyD/YZ8fcb3NT73nZjelX/jh5Lzfq2MbReSsMpcrqzeR5EN3YCDwJ1U9rKov4zZxHR8myOXAn1V1r5f3T3Ck/CqjMzBXVfer6j7gVaBP8UVVfVpV3wIOhAh7DjBDVTd79fceYIKINPLC/klV16pqQFU/Bz4BTgoRj+LqWJWpiZbrJcDZQHOcxn8D1xJoAfwOeFlKtzYmA1cCbYAi4JEw8e4AfgI0Ba4AHgxSPEOAfwG/99I9Bcj2ws304j0BGACMBSqzmQvw/3Atj15AB7yKrKobgJuBZ72CeQp4WlXnexVtFnAD0Ap4E3hdSrekLwbOxFWULMJULBEZ4b3Qw/1GVHIPZdkAjMS1mO7w5G8Twt9YXP519/xejNuBHOBuz70/Lj/bAbdHKoCIJOFegJvKXlPVTqqa7Z1Ow7XwjsM9jJeHiO4nwGBcHl4MnFGcDGHKLohJnv+u3v3c6rn7cOXZETgeOAw8VibsZbheTTrwXUX3C/wUV1ePBZJx9T+YEUAP4EfA7cUNJFWdqqolMldS3n1wu9njhd0AFHj3Fcrvci29U/Rygl5QwDniGnWrROTaKoQtJYd33CfCsMOAPeIaxzu8Bs/xYe63FKo6U1WnAIhIb1wvdxLufdIMV0dL4TXU5gL5wMWqWuBdGge8iHtXPQ/M9eosVP78DAW+xb3z7qpE7KG4XdpbAvcCM4obbR4h642qZqtqp6D7+JuIhOzV4/L2W1UNVjTBZVKCiByDy69w5VfMdyKyxWsoBiviacBPvEbjMTjF+lYYuUIhZY5TcL3OsnKm4Z75VSHi2AyMKZOPkVHNreSzgSuDzm8Gninj5x3gcu94PnB30LXeuAc2AeiEp73DpDUX+LV3/HfgwRB+WuMqdlqQ2yXAh1W8r/OApWXc5uFaTsuBFM/tNmBOkB8fsBUYFZQ/lwZdvxeYXp08DyHrVC8Pc4J+bUP4WwaM846nAAu849OAr3EvIl+Qf8Epoq5BbicBGyOUqz9QCGwHTqjAX4Lnr0eQ21+K5fPOFRgRdD4HuCWSsvPK4Jqg8x8DGyqQeW/Q+Xzgzgjvdz5wa9D5L4C3vePiut0+6PoiYOJRlPf7wffjuZXUuTLutwEvlHF7DpjqHffGNRYSgJOBbcAlEYb1Az2DrnXz7lEiCPu1V08HA6m4hu+nR5EXtwOzgs4b4Z6FMUHPxjzgIy8NKfPcLAw693n3PzJMWsso/fxsilDGKcD6MjIqcFxl9aaKeXFZ8P14bncBM0P47eDJkBrkdjpuGAKgCTAI15NqDbyE65kX+20LvIez4ASA/wDJIdJ5trjMg9yu8sq/E65BMc+T5aQQ4Z/GmcElxLXzvbLOqWpe1URPb3PQcUfgouAeCq512yaM/++AJFwLqBQicpaILPRaoTm4l1Wxvw64llhZOnrxbQtK/++4FlRYRKS1uAHVrSKyH1dYZWV6AugLPKqq+Z5bW4Ja/6oa8O4vuLX5Q9DxIVyFqmnmqGrzoN/3ntlnWVA+9CVEPqvqB7jezTRgh4j8Q9zAcivcA7okKI63PfdKUdVluN7RZ7iecDha4R6u4HqxOYS/kPkYYdmVrXNtvbCNROTvnnlsP/Ax0FxKm8NDyRKOysq6JupCLs76EUxTQpuSKvSrqqtV9XtV9avqf4GHgQsjTKfs9aZArro3UmVhDwOvquoXqpqH60mdLCLNQtxDRbQlqHxU9RBHrBTFDMNZB+72ZAsmOGwA2MKRulHZ83NU9cKTEUqXfTTqRfH1cn5VNVdVF6tqkapuB64DxgaZ0OfgFFe6F24D7rmLhCdx1rH5uB7ch577lmBP4mZn9sX1zMuWG7g6MxXXS68SNaH0ggXajOvpBb+AG6vq3UF+OgQdH49r5e8KjlBEUoCXgfuB1qraHGc6LO7KbsaZqsqyGdfTaxmUflNVLdfFL8P/efeRqapNgUuD0kJEmgAPATOAqXJkHPJ7nKIt9ife/W2tJL1yiMhIKT1bquxvZBXi6ohT0tcBGV7+raS0WaEEVX1EVU/Etfy748zGu3Avpz5BedlMVSN+IL0X2ltevOHYiTNHtw9y6xDGbygqLLsQ8R2PKzeA3+LMjUO9sKd47sHhQz1w0WQVbvIIAOJmW6bgXkKh/GaVMQFlEdpcBEd6apGELSWHd7wqwrDLKZ2vR5vH2wiqN545rOzkhndx5u/3RaR1mWsl9ULcJKX2wPcRPj+xWC+6SOmx3eAyKUFV9+LyLlz5lQvi/S/WF/2Bv6vqQXXjctNxnZJKUTdW9yd1wxvtvTS3EvTOFJE7gLOAsaq6P0xUvYDXvMZKlajp2WjP4sYIzhCRBBFJFZFREjQ5ALhURHp742N3Ai+pqr9MPMm4B3knUOQN/I4Nuj4DuEJEfiQiPhFpJyI9VXUbrpI/ICJNvWtdReTUSuROx7V+9olIO9xLP5iHgcWqehVuzHK65z4HONuTIwn3Es0H/ltZRpVFVT/R0rPoyv4+qUJ0jXEVdSe4SUG4VlM5RGSwiAz15D8I5AEBrzI9gRtLPdbz205EzggKqxI0USkM+bjyDIlX9q/gGhONRKQnbtw3UiorO4Bfikh7r7HyR2B2UNjDQI537U9VSDdaPId7xkaKSGPcM/SKlh7LKWY+zgz5K3GTkq7z3D+Akslgx4hjCPAr3KzLSsPixtRv9OpEW1zdnxlh2KeA88V91pCEM4cuUDcpongC0dQI8uIlLy9OFjeOPpUQDTt1s5mfxym+4N7aiSJygbjZlzfg6upCqvD8xAqq+jXOBPsn7717Pq6h8XKYIP8CbvXKvyfwc7zy894HPbz3ZwbONDy/uHyAL4CrxH2Dm4Yb815eHLG4SUOpOP2S6MmT4F1r4b2TRdyY7F9xQwgB7/r/4sY4x6hq2V57MIm48qoyNar0VHUzbnD4D7gKsxn3EgpO5xlc5v6As+f/KkQ8Bzz3OcBeXCbMC7q+CG9yC7APZ7Mv7nFNxr1kV3thX6K0eTUUd+BmPu3DKbVXii+IyDjcRJTiQf4bgYEiMklV1+F6Fo/iekbnAOfokYHyqKCqq3Gz6T7DjallAp+G8d4Up9z24kx/u4HiDz9vxk0/XuiZ/97D9YwQkQ44c8iKSsQJUHk9uw5n3/8BVz9mEXmFDlt2QTyPawx9izPF/MVzfwg3ZXoX7mX3doRp1ioV9exVdRVwDU757cAp7l8EhX1LRP7g+S3AjXFOxo2hXQmcF1Q/J+LK9wDuJXiPqj4dYdi/A6/jyn8lLu//HklYz6T+By/MDtwkqZ8G3WYHwtfXsnlxPfACrueS68VXru6om3I/F3gvyFLzGjABV/cvAy5Q1cIqPj91hrjZ09Mr8DIRNxa3FzcJ7UJVLVbck0QkuCf3J9yz8B3u/XmfqhbX/y64Z+EArmzzcXMjirkSNya3BddD60LpyWdP4BqTl+AamYdx+QvORPwmroH9FvCkqv4jKOz/4awx64OsXH8okw/Fww9V7uWBN0BYV4jIfOBZVf1nnSVq1AoicinO9Pm/lfgbi7MA9FTVPRHGfQ9uoD/ULE4jjvGsQnNU9eRKPZcP2wSnZLup6saals2IDTyrxGe47whDWTgqJOof2xr1E1V9tjKF5zEfN7trlYiUncIPgIj0FJGsIDPbz3Df/hgNDHXf/UWs8ETkHM8s3hg3B2AFRz5fMuIMEZmLs97ddjQKD47y4776iGcWuDTEpWdV9Zq6lqeh4Jm0JlXiLR1n0myLMyc9wJGxpZhBRMKtKnNWFcdcjZpjHM4kLsBi3GcgdTrJxN4tdYeqnlfdOOrUvGkYhmEY0cTMm4ZhGEaDIabMmy1bttROnTpFWwzDMAyjDlmyZMkuVY1o4YvqElNKr1OnTixevDjaYhiGYRh1iIhUtq5tjWHmTcMwDKPBYErPMGKQ5Vty+G73wWiLYRhxhyk9w4hBfjttNpPunxNtMQwj7oipMb1QFBYWsmXLFvLy8qItilGPSE1NpX379iQlJVXuOQb5T8pN3tEVUZXDMOKNmFd6W7ZsIT09nU6dOiFHsV+g0fBQVXbv3s2WLVvo3LlztMUxDCOGiHnzZl5eHhkZGabwjIgRETIyMsw6YBhGOWJe6QGm8IwqY3XGMIxQ1AulZxiGYRg1gSm9CBARfvvb35ac33///UydOjV6AlXC/Pnz+e9/q7yPbQnLli3jpJNOok+fPmRlZTF79uzKAxk1R/B6uP6i6MlhGHGIKb0ISElJ4ZVXXmHXrl01Gq+qEggc1T6IFVJdpdeoUSP+9a9/sWrVKt5++21uuOEGcnJyak5Ao2L0SJ3QwkNRFMQw4g9TehGQmJjI1VdfzYMPPlju2s6dOxk/fjyDBw9m8ODBfPqp22B56tSp3H///SX++vbtS3Z2NtnZ2fTo0YPJkyfTt29fNm/ezO9//3v69u1LZmZmSa9q/vz5jBo1igsvvJCePXsyadIkQu2I8cgjj9C7d2+ysrKYOHEi2dnZTJ8+nQcffJD+/fvzySefVCjjZZddxkknnUS3bt144oknAOjevTvdunUDoG3bthx77LHs3LmzXNovvvgiffv2pV+/fpxyyimAm3h0xRVXkJmZyYABA/jwww8BmDlzJueddx6nn346nTp14rHHHuOvf/0rAwYMYNiwYezZ4/aXfeKJJxg8eDD9+vVj/PjxHDpU/qU/bNgwVq06sgn0qFGj4mr5OvUXlhwX5JvSM4yaJOY/WQjmjtdXsfr7/TUaZ++2TfnTOX0q9ffLX/6SrKwsbrrpplLuv/71r/nNb37DiBEj2LRpE2eccQZr1qypMK5vvvmGp59+mmHDhvHyyy+zbNkyvvrqK3bt2sXgwYNLFMjSpUtZtWoVbdu2Zfjw4Xz66aeMGDGiVFx33303GzduJCUlhZycHJo3b84111xDkyZN+N3v3J6tP/3pT8PKuHz5chYuXMjBgwcZMGAAZ599Nm3bti2Jf9GiRRQUFNC1a9dy93HnnXfyzjvv0K5du5Ke4LRp0xARVqxYwdq1axk7dixff/01ACtXrmTp0qXk5eVxwgkncM8997B06VJ+85vf8K9//YsbbriBCy64gJ///OcA3HrrrcyYMYPrr7++VLoTJkxgzpw53HHHHWzbto1t27YxaNCgCvO8PhEI+EnwjgsOHySlWVTFMYy4wnp6EdK0aVMmT57MI488Usr9vffe47rrrqN///6ce+657N+/n9zccHuNOjp27MiwYcMAWLBgAZdccgkJCQm0bt2aU089lS+++AKAIUOG0L59e3w+H/379yc7O7tcXFlZWUyaNIlnn32WxMTQbZiKZBw3bhxpaWm0bNmS0aNHs2jRopJw27Zt47LLLuOpp57C5ytfVYYPH86UKVN44okn8Pv9Jfdz6aVuP82ePXvSsWPHEqU3evRo0tPTadWqFc2aNeOcc84BIDMzs+TeVq5cyciRI8nMzOS5554r1aMr5uKLL+all14CYM6cOVx44YUV5nd9o7CwoOS4yHp6hlGj1KueXiQ9strkhhtuYODAgVxxxZFVMgKBAAsXLiQ1NbWU38TExFLjdcHfjDVu3Dii9FJSUkqOExISKCoqP6nhjTfe4OOPP+b111/nrrvuYsWKFeX8hJMRyk/tLz7fv38/Z599NnfddVeJgi7L9OnT+fzzz3njjTc48cQTWbJkScT34/P5Ss59Pl/JvU2ZMoW5c+fSr18/Zs6cyfz588vF065dOzIyMli+fDmzZ89m+vTpFaZb3wgu50JTeoZRo1hPrwq0aNGCiy++mBkzZpS4jR07lkcffbTkfNmyZYDbJunLL78E4Msvv2Tjxo0h4xw5ciSzZ8/G7/ezc+dOPv74Y4YMGRKRPIFAgM2bNzN69Gjuuece9u3bR25uLunp6Rw4cKBSGQFee+018vLy2L17N/Pnz2fw4MEUFBRw/vnnM3ny5Ap7URs2bGDo0KHceeedtGrVis2bNzNy5Eiee+45AL7++ms2bdpEjx49IrofgAMHDtCmTRsKCwtL4gnFhAkTuPfee9m3bx9ZWVkRx18fCBQeGdMryj8cRUkMI/4wpVdFfvvb35aaxfnII4+wePFisrKy6N27d0mvY/z48ezZs4c+ffrw2GOP0b1795DxnX/++WRlZdGvXz9OO+007r33Xo477riIZPH7/Vx66aUlk0Z+9atf0bx5c8455xxeffXVkoks4WQEZx4dPXo0w4YN47bbbqNt27bMmTOHjz/+mJkzZ9K/f3/69+9foihvv/125s2bB8Dvf/97MjMz6du3LyeffDL9+vXjF7/4BYFAgMzMTCZMmMDMmTNL9fAq489//jNDhw5l+PDh9OzZs8R93rx53H777SXnF154IS+88AIXX3xxxHHXF4qCJrIUFZjSM4yaRELNCKzRBETOBB4GEoB/qurd4fwOGjRIy87CW7NmDb169apVGRsqU6dOLTXhJd6or3Vn55b1tPrniQBsPOMpOp90QZQlMozaRUSWqGqdzEar1Z6eiCQA04CzgN7AJSLSuzbTNIz6TlHRkZ6ev8DWDzWMmqS2J7IMAdar6rcAIvICMA5YXcvpGhEQy6vKNGT8QRNZ/Pmm9AyjJqntMb12wOag8y2eWwkicrWILBaRxaE+gDaMhkaw0gsU2ZieYdQkUZ/Ioqr/UNVBqjqoVatW0RbHMKJOwH/kO72AmTcNo0apbaW3FegQdN7eczMMIwzBPT0tMqVnGDVJbSu9L4BuItJZRJKBicC8Wk7TMOo1/qCdFbTQlJ5h1CS1qvRUtQi4DngHWAPMUdXy60rVA+bOnYuIsHbt2rB+srOz6du3b63KsWzZMt58882jDl/8MXvv3r3p06cPDz/8cA1KZ9QEgaDZmwFTeoZRo9T6mJ6qvqmq3VW1q6reVdvp1RazZs1ixIgRzJo1K+T1UEuEVZXi9SsrorpKLzExkQceeIDVq1ezcOFCpk2bxurVNpk2lggEfZxO0PieYRjVJ+oTWeoDubm5LFiwgBkzZvDCCy+UuM+fP5+RI0dy7rnn0ru3+/ywqKiISZMm0atXLy688MKSrXHef/99BgwYQGZmJldeeSX5+fmAW67s5ptvZuDAgbz44oul0i27dU9BQQG33347s2fPpn///syePZuDBw9y5ZVXMmTIEAYMGMBrr70GuK18xo0bx6hRo+jWrRt33HEHAG3atGHgwIEApKen06tXL7ZuLT/M+tFHH5WsxjJgwAAOHDiAqobdBunUU09l3LhxdOnShVtuuYXnnnuOIUOGkJmZyYYNGwB4/fXXGTp0KAMGDGDMmDFs3769XLoTJ07kjTfeKDmfMmVKyeLSDYVAcOPHxvQMo0apVwtO89Yt8EP5BZWrxXGZcFbYRWIAtz7lmWeeSffu3cnIyGDJkiWceKJbMePLL79k5cqVdO7cmezsbNatW8eMGTMYPnw4V155JX/729+47rrrmDJlCu+//z7du3dn8uTJPP7449xwww0AZGRklKzTGUzZrXuSk5O58847Wbx4MY899hgAf/jDHzjttNN48sknycnJYciQIYwZMwZw2wKtXLmSRo0aMXjwYM4+++xSW/BkZ2ezdOlShg4dWi7t+++/n2nTpjF8+HByc3NJTU3llVdeCbsN0ldffcWaNWto0aIFXbp04aqrrmLRokU8/PDDPProozz00EOMGDGChQsXIiL885//5N577+WBBx4olW7xtkFnn302BQUFvP/++zz++OMRFmZ84A/q6UlRfhQlMYz4w3p6ETBr1iwmTpwIuJ5IsIlzyJAhdO7cueS8Q4cODB8+HIBLL72UBQsWsG7dOjp37lyy/ubll1/Oxx9/XBJmwoQJIdMNtXVPWd59913uvvtu+vfvz6hRo8jLy2PTpk0AnH766WRkZJCWlsYFF1zAggULSsLl5uYyfvx4HnroIZo2bRoy7RtvvJFHHnmEnJwcEhMTK9wGafDgwbRp04aUlBS6du3K2LFjgdLbBm3ZsoUzzjiDzMxM7rvvvpDbBp111ll8+OGH5Ofn89Zbb3HKKaeQlpYW8t7jFQ0ylZvSM4yapX719CrpkdUGe/bs4YMPPmDFihWICH6/HxHhvvvuA8pvExRuq56KCLfVUCRb96gqL7/8crmdDD7//POwshQWFjJ+/HgmTZrEBReEXtfxlltu4eyzz+bNN99k+PDhvPPOOxXeQyTbBl1//fXceOONnHvuucyfPz/kijCpqamMGjWKd955h9mzZ5c0NhoSwWN64jfzpmHUJNbTq4SXXnqJyy67jO+++47s7Gw2b95M586d+eSTT0L637RpE5999hkAzz//PCNGjKBHjx5kZ2ezfv16AJ555hlOPfXUStMOtXVP2W2DzjjjDB599FGKFw5funRpybX//Oc/7Nmzh8OHDzN37lyGDx+OqvKzn/2MXr16ceONN1aYdmZmJjfffDODBw9m7dq11doGCWDfvn20a+cW5Hn66afD+pswYQJPPfUUn3zyCWeeeWbE8ccLgcCRnp7PJrIYRo1iSq8SZs2axfnnn1/Kbfz48WFncfbo0YNp06bRq1cv9u7dy7XXXktqaipPPfUUF110EZmZmfh8Pq655ppK0w61dc/o0aNZvXp1yUSW2267jcLCQrKysujTpw+33XZbSfghQ4Ywfvx4srKyGD9+PIMGDeLTTz/lmWee4YMPPiiZqFI8G3T69Okl2w499NBD9O3bl6ysLJKSkjjrrLOqtQ0SuLU+L7roIk488URatmxZ4r548WKuuuqqkvOxY8fy0UcfMWbMGJKTkyOOP15Q7zu9g5qCL2DmTcOoSWp9a6GqYFsL1RwzZ84sNeGlIVJf687C1/7OsKU3sVObkdOoI91uDm1VMIx4IW62FjIM4yjwzJuHJY0EM28aRo1SvyayGBEzZcoUpkyZEm0xjKOgeCJLnq8RKWrmTcOoSepFTy+WTLBG/aBe1xlP6eX7GpEYsJ6eYdQkMa/0UlNT2b17d/1+iRl1iqqye/duUlNToy3K0eEpvYKERiSpKT3DqEli3rzZvn17tmzZgm0wa1SF1NRU2rdvH20xjgr1lF5hQiOSCkzpGUZNEvNKLykpqdSKJ4YR9wSc0itKakzSocJKPBuGURVi3rxpGA0O7zu9QGITkrGenmHUJKb0DCPW8Hp6/qTGJFMEgUCUBTKM+MGUnmHEGoFCitSHJnoTcfz22YJh1BSm9AwjxhB/EUUkgKf01HZPN4waw5SeYcQYGiikSBKRRLdTRVHB4ShLZBjxgyk9w4gxxF+EnwQkyfX08vMORVkiw4gfTOkZRqwRKKSIRBKSXE+vMN96eoZRU5jSM4wYQwKF+CUBSXI7xpvSM4yaw5SeYcQa/iL8kkhCsjNvFuabedMwagpTeoYRY4gWEZBEErwxvaJ8m71pGDWFKT3DiDGceTORhGRn3iyynp5h1Bim9AwjxkgIFOKXpCNKz77TM4waw5SeYcQYSYE8CnxpJKY4pecvMKVnGDWFKT3DiDGSNZ8iXypJntIL2MfphlFjmNIzjBgjWfMoSkglOdVTeoWm9AyjpjClZxgxRormU5SQSlJKIwACNqZnGDWGKT3DiDFSNJ9AYirJaY0BUOvpGUaNYUrPMGKMVM2DpEakpqTiVwHr6RlGjWFKzzBiiPwiP6kUIEmNSE1KJI9ksJ6eYdQYpvQMI4Y4eCiPJPHjS25EUoKQRzJSZD09w6gpTOkZRgxxeP9ud5DaDBGhgGSkyHp6hlFTmNIzjBji8P5dACQ0bgFAnqTg81tPzzBqClN6hhFD5O3fCUBik5YAFJrSM4waxZSeYcQQB3Oc0ktvcSwAhZJMgj8/miIZRlxhSs8wYoj8fdsBaJ5xHACFvhQSrKdnGDVGtZSeiEwVka0issz7/Tjo2v+KyHoRWSciZ1RfVMOIf5JyvqVAE0k/tiMARb4UEgPW0zOMmiKxBuJ4UFXvD3YQkd7ARKAP0BZ4T0S6q6q/BtIzjLilyYGNbPG1oUuCezSLfKkkFZrSM4yaorbMm+OAF1Q1X1U3AuuBIbWUlmHEDS0Of8eO5I4l5/6EVJLUlJ5h1BQ1ofSuE5HlIvKkiBzjubUDNgf52eK5lUNErhaRxSKyeOfOnTUgjmHUT7SogGP92zjcrHOJWyAhlWRTeoZRY1Sq9ETkPRFZGeI3Dngc6Ar0B7YBD1RVAFX9h6oOUtVBrVq1qmpww4gb9mz9miT8JLTqUeIWSEwlWQuiKJVhxBeVjump6phIIhKRJ4B/e6dbgQ5Bl9t7boZhhGHHtyvIAJp16F3iFkhIJQVTeoZRU1R39maboNPzgZXe8TxgooikiEhnoBuwqDppGUa8c/D7NQC07Zp5xDEplUT84C+MklSGEV9Ud/bmvSLSH1AgG/gfAFVdJSJzgNVAEfBLm7lpGBUju75hB8fQquURM78mut3TKTwMCUlRksww4odqKT1VvayCa3cBd1UnfsNoSDTJ3ciO5A4cK1LiJklO6fkLDpOQ2jRaohlG3GArshhGDKCBAMcVbuJgepdS7pKUCkD+4YPREMsw4g5TeoYRA+zYvpVmHMTXslsp9+KeXkGeKT3DqAlM6RlGDPD9+uUApLfvXcrdl+yUXv7h3DqXyTDikZpYhswwjGqyf6ubudmma1Yp94SUxgAU5ld9I9m8/HzWfPYmh75ZQNq+b0gq2EeK5lFEAn5JxC9J+CURxAfiQ/EdORYfUnkS1URrPYVEnxBo1oEBU/6K+KyNb5jSM4yYQHZ+Qx7JNDuu9JheQorr6RVWwbx5+NBBPn/xPvpsfIoB5BBQ4XvfceQmHkOerxE+AiRpIamBPBK0EFEQ/IgqQgCfBhACaJ2ovdpNI1UP0Wrfe2Rv+DmduvWp1bSM+oEpPcOIARrnbuSHxHZ0KtMbSfR6ev6CQxHFs+yLT2j65rWM0s2sSRvIjkE/o+uwc2jfuFmNy1wfWLv4A1r9+3xyspeCKT2DOFR6Bw/k0KhxUzNlGPWKYws2satJDzqVcU/yxvT8EZg3P5z3NMOW/I5DvsasPW0GvU65sOYFrWccd8IAAir4v18RbVGMGCGuNMO279Zx4IET+eK1adEWxTAipiDvMG0DP5DfrGu5a0mpjQD3nV5FfPbqNE5Z8mu2pXQm5br/0tMUHgDNmx/DZjmOlN1roi2KESPEVU+vdfsTWJvUhl5f3cXWrNG069q3ynEUFRZw+PBBAkVFBIryCRQVEvAX4A8ogYDnSSoYhyh3rXbHLCoSpWrx1P74jRGavZvX0UsUadW93LWk1CYABPLDmzcXvfMcg5fdyrq0fpzwq3+T3Ci91mStj2xL7crxud/USFwF+XnkHdxP3qEDFBUVgSqgiAYIPzHnyLNVbgwzxPuilFOFz6V4XiQCv7WDJCbTus3xdZ5udYgrpedLSKDpxH9Q9MxYkp/5CcuG3k73Uy6iUeN0NBBg187t7Ph+I/u2b+Lw7s0E9m8j8eAPNMrbzjH+3WQEdpMh+7FXhlGXHOf9T+9QvpGWnOZ6eoHC0D29pQveIuu/vyY7qSudf/maKbwQFLTszXGbP+XQgT00Sm9Rqf9d27ewddUCDmV/SfKedTTJ+4EWRTtopvtIFj/JgK2N4/gi0JPWd34ebTGqRFwpPYD2XXvz7UWvIC//jP6f/4bAwhs5QCpp5NNKApTdvGifNGVfUisOprbmu9Qsvkk7FpIbQUIS6kuChGTwJeLzCYIgUqY1F3Qq5Vp6QeeqJS0x1dqfql0lakCcGLujekdCo2MY2P/kcu4pqW4ii4ZQequXfkrX/1zJzoTWHHvt66SlN69tMeslx/Q+Dd+Wf/D1J6/Q/8dXlbuuqnyz/hu+W/A8bba8Q1//alpCyazXnOTj2NhkGIFGLdHkxkhyEyS5Mb6EBNdzE/F6cMW/UrGHOQ7xvtDSPip6n0jZd0iE75Safk7zUzNqOMbaJ+6UHkCXPkMo6LaEZZ++Rt63n+PL30dRUmOSmmSQltGB5q070KptZ1KOaUezxBQa5rw2oz6QmpJKkfrKKb1v1q6k1Ws/Jd+XRqOfzaNpRpswMRi9hpzOD+9m0GjpP9Ezr0B8CQBs3byRDR89zzEb36BP0Wq6i7IpsTNfdL6Wxj1GcXzvobRvegztoyy/UbPEpdIDSE5Opv/oi2D0RdEWxTCOmpQkH3kkQ2FeidvG7I2kvDCeFIo4NGkurdqVnwBjHCExMZFv+1zPyaumsvK+M8htegLNdy+le+E62omyKaEjy7tdS6dTJnH88X2pXyNURlWJW6VnGPFASqKPXJKRIjeR5btN31E48zyOYy+7L5hD+xMGRFnC+sFJ43/NJwf30Cv7aZocWsampM4s7nw1HU6+hOO7DzBF14AwpWcYMYyIkE8KvqLDrF69gsZzLuZ4drHrJzNpnzUq2uLVG8TnY+SUPwN/RlXpbrOVGyym9Awjxtma0JYhu98mZ/YnJIiy47wXOL7/j6ItVr3FPs9p2MTVx+mGEY9sazMGgL3JbSj62Qem8AyjGlhPzzBinJ9ceSubsi+kU6fuSII9soZRHewJMowYJyHBx/Fde1fu0TCMSjHzpmEYhtFgMKVnGIZhNBgklpbEEpGdwHc1EFVLYFcNxFMX1CdZoX7Ja7LWHvVJ3vokK9QveWtK1o6qWnaVyFohppReTSEii1V1ULTliIT6JCvUL3lN1tqjPslbn2SF+iVvfZK1GDNvGoZhGA0GU3qGYRhGgyFeld4/oi1AFahPskL9ktdkrT3qk7z1SVaoX/LWJ1mBOB3TMwzDMIxQxGtPzzAMwzDKYUrPMAzDaDDEldITkTNFZJ2IrBeRW6ItT1lEpIOIfCgiq0VklYj82nOfKiJbRWSZ9/txtGUFEJFsEVnhybTYc2shIv8RkW+8/8fEgJw9gvJumYjsF5EbYilfReRJEdkhIiuD3ELmpTge8erxchEZGAOy3iciaz15XhWR5p57JxE5HJTH0+tS1grkDVv2IvK/Xt6uE5EzYkDW2UFyZovIMs89FvI23DsrJutuRKhqXPyABGAD0AVIBr4CekdbrjIytgEGesfpwNdAb2Aq8LtoyxdC3mygZRm3e4FbvONbgHuiLWeIevAD0DGW8hU4BRgIrKwsL4EfA28BAgwDPo8BWccCid7xPUGydgr2F0N5G7LsveftKyAF6Oy9MxKiKWuZ6w8At8dQ3oZ7Z8Vk3Y3kF089vSHAelX9VlULgBeAcVGWqRSquk1Vv/SODwBrgHbRlarKjAOe9o6fBs6Lnigh+RGwQVVrYmWfGkNVPwb2lHEOl5fjgH+pYyHQXETa1ImghJZVVd9V1SLvdCHQvq7kqYwweRuOccALqpqvqhuB9bh3R51QkaziNvq7GJhVV/JURgXvrJisu5EQT0qvHbA56HwLMaxQRKQTMAD43HO6zjMHPBkLJkMPBd4VkSUicrXn1lpVt3nHPwCtoyNaWCZS+qURi/laTLi8jPW6fCWuNV9MZxFZKiIficjIaAkVglBlH8t5OxLYrqrfBLnFTN6WeWfV17obV0qv3iAiTYCXgRtUdT/wONAV6A9sw5k4YoERqjoQOAv4pYicEnxRnT0jZr55EZFk4FzgRc8pVvO1HLGWl+EQkT8CRcBzntM24HhVHQDcCDwvIk2jJV8Q9absg7iE0g22mMnbEO+sEupL3S0mnpTeVqBD0Hl7zy2mEJEkXOV5TlVfAVDV7arqV9UA8AR1aG6pCFXd6v3fAbyKk2t7sbnC+78jehKW4yzgS1XdDrGbr0GEy8uYrMsiMgX4CTDJe9HhmQl3e8dLcGNk3aMmpEcFZR+reZsIXADMLnaLlbwN9c6intXdYOJJ6X0BdBORzl6LfyIwL8oylcKz2c8A1qjqX4Pcg23e5wMry4ata0SksYikFx/jJjKsxOXp5Z63y4HXoiNhSEq1lGMxX8sQLi/nAZO9mXDDgH1BpqSoICJnAjcB56rqoSD3ViKS4B13AboB30ZHyiNUUPbzgIkikiIinXHyLqpr+UIwBlirqluKHWIhb8O9s6hHdbcc0Z5JU5M/3Myhr3Etoj9GW54Q8o3AmQGWA8u834+BZ4AVnvs8oE0MyNoFN8vtK2BVcX4CGcD7wDfAe0CLaMvqydUY2A00C3KLmXzFKeNtQCFunONn4fISN/NtmlePVwCDYkDW9bixmuJ6O93zO96rH8uAL4FzYiRvw5Y98Ecvb9cBZ0VbVs99JnBNGb+xkLfh3lkxWXcj+dkyZIZhGEaDIZ7Mm4ZhGIZRIab0DMMwjAaDKT3DMAyjwWBKzzAMw2gwmNIzDMMwGgym9AzDMIwGgyk9wzAMo8Hw/wFYY2enwC2GKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABl4ElEQVR4nO2dd5xVxfm4n/dub7QFkSZF6Sx9AQUUjCJKlCgq2JEYo4kmaGwpGjTx97XGHlFEsQWxogZbNCBiRATpTURXQAFpu+yybLv3/f0xZ9ezd+/dvVtvYZ7P5+6eM/U9M3PmnXZmRFWxWCwWiyWW8YRbAIvFYrFYGhur7CwWi8US81hlZ7FYLJaYxyo7i8ViscQ8VtlZLBaLJeaxys5isVgsMU9EKjsR6SIiKiLx4ZbFUndE5FoR+UFEVoch7hki8kITxDNVRJZUY79IRK5obDksP1Fd/dGUdYsTz3FB7KotN5bKiMhkEckTkf+JSPu6hBGRys5Se0RkpogUOL8SESl13b8bJrFmAL9R1QEuOWeIyIwwyRNROBVvTi3dLxSRQhHZJCKnVOM2SUSeFpGDIrJLRK73C0dd5aNARG4Nxa9j/zMn/kJHns618JsqIv8Ukb1O5bW4Fs9/xHwU7DSSxoToVkTkbhHZ5/zuFhGpxv2FIvKdiBwSkfki0sov3iJXudjs5/daEfnWyd/lIjLKZTfWKQ95gcq1iJwgIstEJF9E1vj5nSAiS0Qk1yk3T4lIRrm9qs4DWju354eSLv40irKzPbKmR1WvUtV0VU0H/h8wr/xeVU8vd9fEedMKWNeE8TUKEVSe5wIrgUzgz8CrItImiNsZQHegMzAWuElExvu5aeEqI38Lxa+ItAZeB27F5O9yYF4t4n3S8dfb+X9diM8ecURQubgS+AUwAOgPnAn8OpBDEekLPAFcArQFCoF/+jm7xlUuerr8DgfuAs4FmgOzgTdEJM5xcgh4GrgxQLytgLeBe4EWwD3A2yLS0nHSHPg70B5TNjo4bitQ1VLgK0z5rzUNpuxEJEdEbhaRNcAhEYkXkRFOtzNXRFa7WypOC+L/HE1/UETedLcw/MK+XEQ2Oi2Cb0Tk1372E0VklRPOVteL2VxEZovIThH5XkT+7sqYYM9xrIj812kh7RWRF0Wkhctuv4gMdu7bi8ie8ucSkbNEZL3zvItEpLdf+tzgtGjyRGSeiCTXPqVrT5C8qTTEIiJzROTvrvufO2ma6+Rh/1rGWZ7Ovhrc3eTkzw8icoVbLkemx0RkgZP3n4vIsS6/D4nIdiffV4jIaL/gk510zheRL0XE3cO8xSkr+SKyQUTOdtlNFZFPReQBEdmHqcBret77ROSAmFbv6X7WnZ3w8kXkA0dh1AoR6QEMBv6qqodV9TVgLTApiJfLgL+p6gFV3QjMAqaGGF11fs8B1qvqK6pahEmbASLSqya/jpuzgCtVdY+qelV1RYgyVUJEuorIYidNP3TKScBhaxGZ5LwD/VzG05wyt1NEbnC5HSYinznlfqeIPCoiiS57FZHfisgWYEsIop4iIluc8B4TqdzjqqHchMplwP2qukNVvwfuJ3heXwS8raqLVbUA02g5R1y9qGrogsn7FWq23noO09s6CkBVl6nq88A3AfyeAOxyyo1XVV8A9mDKE6r6L1V9T1ULVfUAptyMDBCOD6hbI0NVG+QH5ACrgE5ACkYz7wPOwCjVU537No77RcD3QD8gDXgNeMGx6wIoEO/cTwCOBQQ4CdMaGezYDQPynPA9Try9HLs3MK2YNEyGLAN+XcNzHOeElQS0ARYDD7rsfwVsAFKB94H7HPMemJbNqUACcBPwNZDoSp9lmJZLK2AjcFUQGUYBudX8RtXwDDPK0zJQ3jhmChzncjMH+LtzPQj4ERgOxGFephwgqRblYTxQBKTV4GYX0NdJzxfccjky7XPyOB54EXjJ5f9iTCsvHviDE1ayKw1KMa3QBOAG4FsgwbE/z8kLDzDZybt2jt1UoAy41gk7pZpnmOrE8ysnra4GfgDEVc63OuUjxbm/K0hY/wT+GcTubGCjn9mjwCMB3LZ00rGty+xcYK3f+/U9sAN4Bmgdot+HgMf94luHUbo1+b0Uo6AfAPY615PqWN98BtwHJGLel4MEqD+AyzHv4XF+dnMx9UIWptI9xbEfAoxw/HbBvKfTXfEq8B/MOxy0XLjc/hvTkznGiWd8KOUmUH1QTTx5wHDX/VAgP4jbN4Gb/cwKgCGu8rrHyZ9PgTEud82AFfxUL1yLGWkQv/BOAXL8zH4ObPAz2wI8EETOB3G96y7z24GPqaZeCZpOdSloQYTLAaa57m8Gnvdz8z5wmStR73LZ9QFKnESsKKxB4poP/N65fiJQgmG66MXuAglcACys5XP9AljpZ/YW5kVdg6MAMC2kl11uPJjKZIwrfS522d8DzGyo9PeTbwZVld00PzfVKbvHMa1zt/vNwEkhxr/cCf93Nbh7Gvg/1/1xVFV2T7nszwA2VRPeAWCAKw2W+uXHTmB0EL+rgInO9VRgW4jPOhX42nWf6jzD0a5y/heX/W+A9+qQp5e4n8cxuxOYE8BtJ0eGZJfZqTgVEJCOqRDjnffkVeD9EP3Oxk9ZYyrFqSH4/ZNjPwOjpE7CVLS9a5kWx2AaI6kusxeoquxuwDRMO7rcldv1cpndA8wOEtd04A2/9+bkEOVUXA1T4GXgllDKTS3Tw+v3PN2dsAIpzo/wa2RTuZ4aDmRgGvuXAfnAsY6dOHlY6qT/XiA7QByBlF0mpqF+AabxeRmml/ZEAP+nYt7lHgHsWmKGMr3AObVJp4aes9vuuu4MnOd033NFJBfTQmkXxP13TiJUGeIRkdNFZKkzhJiLqfTK3XXCtJz96eyEt9MV/xM4Xe5giEhbEXnJGfY8iHmJ/GWahemRPqKqxY5Ze+cZAFBVn/N8HVz+drmuCzGVTlOxvWYnFXQG/uCXd50wzxgK2cAUYIaIJFTjrr2fXIFkDJpmzrDwRmdYOBcz7u/Oq4rwnPzYUf4MInKpa5g2F5OfAf2GQIWMqlroXKYHsvd/hlpQgGlZu2mGqYwCuS23r+JWVQtUdbmqlqnqbuAaYJwzlFWt3xrkqMnvYUxF+XdVLVHVj4GFwLgAz1Ad7YH9rrSGwPl1I/CYqu4IYOdf95SXix4i8m8xiyQOYua//d//OpUNquZ9TeUmVPzzpBlQoI52qMFtufvysvG5quararGqPotpyJzhuPslpqfcF9NYuRj4t4SwOlJV9wETgeuB3ZhRnQ8x72QFIjIC+Bdwrqp+FSCoyzG9+Faq+npN8bppaGXnTtztmJ5dC9cvTVXvcrnp5Lo+BvMi7HUHKCJJmCHO+zDDIy2AdzCtjPJ4jqUq2zE9u9au+Jupat8anuH/Oc+RparNMBlaMc4uIumYLvZsTGVePs/4A0ZJlLsT5/m+ryG+KojIaKm8Us7/5z83FQr+Bb8Q05os52jX9XbgTr+8S1XVuSFFZF6y+ZhWWLtqnO4EOrruOwVz6I+TBjdhVma1dMpFHq68cocnIh4nrh/ErB6chankMx2/6/z8Bqoowsl6oJvf3MoAx7wSauY8djr21bot9+L894Tgd73bTkTSMO/f+hD8rqkm7tqwE2glIu7yG6jsjAP+IiKB5jX9654fnOvHgU1Ad+f9/xOVy0VdZW5MKuUJ1ee1f/51w/TiAikWcHqIzvVA4N+q+pWq+lT1PUxenBCKkKr6sapmq2orzEhFL8zUTrksgzCjZtNU9aMgwfTGjM7lhRKnm8b89OAF4EwROU1E4kQkWUTGiIi7crtYRPo4hfYO4FVV9fqFk4jJjD1AmTOJ624JzgYuF7Mc2iMiHUSkl6ruBD4A7heRZo7dsSJyUg1yl7du80SkA1VXFj0ELFfVK4AFwEzH/GVggiNHAmYOqRj4X00J5Y+qfqI/rYYK9PuktmEGYBVwoZM34zFDSuXMAq4SkeFiSBOzNDgDKhaOzKnhGcp7vInVOHsZk3e9nTJwazVu/cnADKXsAeJF5DaqtliHiMg5YlbNTcfkx1LMXI06fhGRyzE9u4jFaeWuAv7qvEtnY1bevRbEy3OYir6lmIUhv8IMC+Pka0/nncgEHgYWuSqQoH4x8+D9xCz6SAZuA9ao6qYQ/C4GtgF/FLNIaiRmxeb7jlxTJYRPMVT1O8xQ+QwRSRSR4zErEP1Zj+lBPCYiZ/nZ3SrmM4i+mN5C+YrSDEzPocCR/+qa5IkAngOud+q+9pi6Z04Qty9i6uXRTkPlDuB1Vc0XkRZOfZ3s5M9FwInAe47fLzB1XDenXjgVMxe9DkyD0ikTCeZWkqXy4p5BIpIgIs0wnZftqlqe9/2ceK5V1beredYEzHtcaxpN2anqdky39U+YSmU7RnG443wekym7gGTgdwHCyXfMX8aM416I0f7l9sswhfUBTMv+Y37qYV2KqWw3OH5fpfqeBpgJ0MFOWAswy6wBs+oT8/KUvwDXA4NF5CJV3YzpBT6C6Z2eCZypqiU1xBcufo+RMRezQmt+uYWqLsdUUo9i0u1rKq/u6oQZ3qgJpZoypqrvYirahU4cSx2rUArz+5iX4yvMMFQRVYeX3sQsPjmAaUmeo6qlqroBs2LtM8yQSlaIz9OoiPlWcmY1TqZg5toO4CwBV9VyhX2RiLhb83/FDO9/h3kn7nVa4gDdMGmXj6moijFzKTX6deKbhJkvPICZ45kSot9STJ1wBub9mgVc6lKUoZYrMGX2eMwCpr9jlFWVcqOqqzGLI2ZJ5dWOH2PK3EeYRWYfOOY3YOqYfEc+92cVYaF8pKcaJ09glvWvxeTnAses3H/FaJCqrgeuwii9HzHK/TeO0wRMWpYvULkW+IVrOPE54CXMPPRBzLv7a1f+nYgZqn4H01s+jOlwlHOTE+52TD18tsvuD5gFgbNdI1iBeqdx1LDCOxjlK8aaHBFZhJlQfiosAljqhNNSWw30dyqv6tz+ANykZplxKGH3xrysSapaVm9hLVGFiHyAWXi2sQ5+52EWL/214SWzRAIikgIswSwm8v82sEbsDiqWWuEsLOhdk6JzuAUz7Bb0WyoROVvMrhstgbsx3wBZRXcEoqrjQlV0IpLtTEt4nGH4ibhGJyyxhYicjxkt2I0Z5as1R6Syk8pba7l/1Q0hWWqJqj6nqt1VdUg1zn6NGU7ZillOHHFzJLa8RCRHY4bTCjDDaVer6sqmFECqWUjWlHIcCajqy6p6lKqeoap7a/ZRlbANY1osFovF0lQckT07i8VisRxZRMpGpgC0bt1au3TpEm4xLBaLxdKErFixYq+qBtvUvEGIKGXXpUsXli9fHm4xLBaLxdKEiMh3NbuqH3YY02KxWCwxj1V2Fksko4r66vQNrcVicRFRw5gWi+UnNm9cQ/N551CmQsmFr9OtZ1a4RbJYopaIV3alpaXs2LGDoqKicItiiSKSk5Pp2LEjCQnVHboQ2RQu+DNdOYBXPHz9xu/gloXhFsliiVoiXtnt2LGDjIwMunTpglQ+5NdiCYiqsm/fPnbs2EHXrl3DLU6dOLDvR/rmf8ryo88nPr0Nw7Y+zPpVS+k7cES4RbNYopJ6z9mJyLUisklE1ovIPX52xzg7CtwQzH9NFBUVkZmZaRWdJWREhMzMzKgeDVi/ZD6J4qXdiMn0/vk1lGg8+Z89E26xLJaopV49OxEZi9mTboCqFouI/8Go/wDerU8cTjz1DcJyhBHtZca3bTnFJNAl6wQkPonVqUPo9ONC1OdDPHZdmcVSW+r71lwN3FV+dpmq/lhuISK/AL4l+CGCFoslCK3y1rItsTsSnwRAaffT6aC72bL28zBLZrFEJ/VVdj2A0SLyuYh8LCLZUHGa982Ys+GqRUSuFJHlIrJ8z5499RSncRAR/vCHP1Tc33fffcyYMSN8AtXAokWL+N//an1mbCXGjx9PixYt+PnPf95AUllCpbi0lG6lWznY6qfzZLuONIdt71v173CJZbFENTUqOxH5UETWBfhNxAyDtgJGYA5mfVnM+NEM4AFVrXH3b1V9UlWHqurQNm0adbeYOpOUlMTrr7/O3r112mw7KKqKrxG+oWoIZXfjjTfy/PPPN5BEltqwc9vXpEoxnra9K8wy2x7Dt3FdSP8+7GfMWixRSY3KTlVPUdV+AX5vAjswR7qrc2K4D2iNOb34HhHJAaYDfxKRaxrvMRqX+Ph4rrzySh544IEqdnv27GHSpElkZ2eTnZ3Np5+aymjGjBncd999Fe769etHTk4OOTk59OzZk0svvZR+/fqxfft2brzxRvr160dWVhbz5pmDkRctWsSYMWM499xz6dWrFxdddBGBTqh4+OGH6dOnD/3792fKlCnk5OQwc+ZMHnjgAQYOHMgnn3xSrYyXXHIJxx9/PN27d2fWrFkV4f7sZz8jIyOj2nR55ZVX6NevHwMGDODEE08EzIKiyy+/nKysLAYNGsTChWa5/Jw5c/jFL37BqaeeSpcuXXj00Uf5xz/+waBBgxgxYgT79+8HYNasWWRnZzNgwAAmTZpEYWFhlXhHjBjB+vU/jY6PGTMmpraZ2/udOdIto32vSuZ7Wo+ge/E6DhceCodYFktUU99PD+YDY4GFItIDSAT2qurocgciMgMoUNVH6xkXt7+9ng0/HKxvMJXo074Zfz2zb43ufvvb39K/f39uuummSua///3vue666xg1ahTbtm3jtNNOY+PG6s+f3LJlC88++ywjRozgtddeY9WqVaxevZq9e/eSnZ1doThWrlzJ+vXrad++PSNHjuTTTz9l1KhRlcK66667+Pbbb0lKSiI3N5cWLVpw1VVXkZ6ezg03mEWwF154YVAZ16xZw9KlSzl06BCDBg1iwoQJtG/fPqS0u+OOO3j//ffp0KEDubm5ADz22GOICGvXrmXTpk2MGzeOr776CoB169axcuVKioqKOO6447j77rtZuXIl1113Hc899xzTp0/nnHPO4Ve/+hUAf/nLX5g9ezbXXnttpXgnT57Myy+/zO23387OnTvZuXMnQ4cODUnmaODwLpNeR3WpXC5Tep1M8u6XWL3iIwaMPiscolksUUt95+yeBrqJyDrgJeAyjdED8po1a8all17Kww8/XMn8ww8/5JprrmHgwIGcddZZHDx4kIKC6kdvO3fuzIgR5nupJUuWcMEFFxAXF0fbtm056aST+OKLLwAYNmwYHTt2xOPxMHDgQHJycqqE1b9/fy666CJeeOEF4uMDt12qk3HixImkpKTQunVrxo4dy7Jly0JOk5EjRzJ16lRmzZqF1+uteJ6LL74YgF69etG5c+cKZTd27FgyMjJo06YNzZs358wzzwQgKyur4tnWrVvH6NGjycrK4sUXX6zUgyvn/PPP59VXXwXg5Zdf5txzzw1Z5mhA9n/DYZJo1qZTJfPjho6jTD0UbPwoTJJZLNFLvXp2qloCXFyDmxn1icNNKD2wxmT69OkMHjyYyy+/vMLM5/OxdOlSkpOTK7mNj4+vNB/n/uYrLS0tpPiSkpIqruPi4igrK6viZsGCBSxevJi3336bO++8k7Vr11ZxE0xGqLpEvzZL9mfOnMnnn3/OggULGDJkCCtWrKjWvft5PB5Pxb3H46l4tqlTpzJ//nwGDBjAnDlzWLRoUZVwOnToQGZmJmvWrGHevHnMnBlbB4anHtrG7rij6eL3iUFKRku+SuxJq92fhUkyiyV6sR/s1IJWrVpx/vnnM3v27AqzcePG8cgjj1Tcr1q1CjDHFX355ZcAfPnll3z77bcBwxw9ejTz5s3D6/WyZ88eFi9ezLBhw0KSx+fzsX37dsaOHcvdd99NXl4eBQUFZGRkkJ+fX6OMAG+++SZFRUXs27ePRYsWkZ2dHVLcAFu3bmX48OHccccdtGnThu3btzN69GhefPFFAL766iu2bdtGz549Qw4zPz+fdu3aUVpaWhFOICZPnsw999xDXl4e/fv3Dzn8aCCj+EfyE9sGtMtrdwI9yr5i377IXLlssUQqVtnVkj/84Q+VVmU+/PDDLF++nP79+9OnT5+KXsakSZPYv38/ffv25dFHH6VHjx4Bwzv77LPp378/AwYM4OSTT+aee+7h6KOPDkkWr9fLxRdfXLEY5He/+x0tWrTgzDPP5I033qhYoBJMRjDDoGPHjmXEiBHceuutFfN1o0eP5rzzzuOjjz6iY8eOvP/++wDcdtttvPXWW4BZsZmVlUW/fv044YQTGDBgAL/5zW/w+XxkZWUxefJk5syZU6lHVxN/+9vfGD58OCNHjqRXr58WaLz11lvcdtttFffnnnsuL730Eueff37IYUcLLb17KUkNrOxa9BtHnChbl73XxFJZLNGNRNIU29ChQ9V/Vd3GjRvp3bt3EB+W+jBjxoxKC1lijWgsO/mHCkm7pz1fdv0VQ6feW8XeW1JEyf87hi9bTWDk7+z2YZbYQERWqGqjrjKzPTuLJYLYu2s7HlHiW3QIaB+XmMzW1AF0OPB5wE9RLBZLYCL+1ANL4xHJu8AcqeT9+B0AKZmdgrop6nQi/Tbfx7bvvuaYLt2bSjSLJaqxPTuLJYIo2f89AGmtOwZ1027QeAC2L6/3HusWyxGDVXYWSwThzTPKrlmbY4K6ad9jMPtpTlzOx00llsUS9VhlZ7FEEFKwmxKNJ6NV4NWYAOKJ47vmw+hesAxvgG8vLRZLVayys1giiLjCvRyQ5jWeWeftcTqZHOSbFf9pIskslujGKrsQmT9/PiLCpk2bgrrJycmhX79+Qe0bglWrVvHOO+/UK4xp06Zx1FFHNbqsltqTUHKAgrjmNbrrdsLZFGsCB1e+0QRSWSzRj1V2ITJ37lxGjRrF3LlzA9oH2sqrtpTvL1kdDaHspk6dynvv2Y+SI5HkklwOx9es7Fq1bMW6lKF02v0h6qu53FgsRzpW2YVAQUEBS5YsYfbs2bz00ksV5osWLWL06NGcddZZ9OnTBzBK76KLLqJ3796ce+65FUfUfPTRRwwaNIisrCymTZtGcXExYLYVu/nmmxk8eDCvvPJKpXj9j9ApKSnhtttuY968eQwcOJB58+Zx6NAhpk2bxrBhwxg0aBBvvvkmYI7UmThxImPGjKF79+7cfvtP5+ieeOKJtGrVqtpn/vjjjxk4cCADBw5k0KBB5Ofno6pBjyM66aSTmDhxIt26deOWW27hxRdfZNiwYWRlZbF161YA3n77bYYPH86gQYM45ZRT2L17d5V4p0yZwoIFCyrup06dWrHp85FAmjeP4sSWIbkt7TWRo3QfW7+wDReLpSai6zu7d2+BXVU3Oq4XR2fB6XdV6+TNN99k/Pjx9OjRg8zMTFasWMGQIUMAs+/lunXr6Nq1Kzk5OWzevJnZs2czcuRIpk2bxj//+U+uueYapk6dykcffUSPHj249NJLefzxx5k+fToAmZmZFftouvE/QicxMZE77riD5cuX8+ij5sSkP/3pT5x88sk8/fTT5ObmMmzYME455RQAli1bxrp160hNTSU7O5sJEyaEfBTOfffdx2OPPcbIkSMpKCggOTmZ119/PehxRKtXr2bjxo20atWKbt26ccUVV7Bs2TIeeughHnnkER588EFGjRrF0qVLERGeeuop7rnnHu6///5K8ZYf3zNhwgRKSkr46KOPePzxx0OSORZo5stjZ3L1DZFy+vzsInJX/o1D/3sKhk9oZMkslugmpnp2iuL1leHThj39e+7cuUyZMgUwPQ/3UOawYcPo2rVrxX2nTp0YOXIkABdffDFLlixh8+bNdO3atWJ/zMsuu4zFixdX+Jk8eXLAeAMdoePPBx98wF133cXAgQMZM2YMRUVFbNu2DYBTTz2VzMxMUlJSOOecc1iyZEnIzzxy5Eiuv/56Hn74YXJzc4mPj6/2OKLs7GzatWtHUlISxx57LOPGjQMqH9+zY8cOTjvtNLKysrj33nsDHt9z+umns3DhQoqLi3n33Xc58cQTSUlJCVnuaKaouJjmcghSM0Ny3yyjGevaTKB37scc2PVdI0tnsUQ30dWzq6EH5vOWEbd7LQVJbUnPDO0A0prYv38///3vf1m7di0igtfrRUS4916zb6H/cT11OTIn2JE/oRyho6q89tprVU4W+Pzzz+t1fM8tt9zChAkTeOeddxg5cmTFRtDBCOX4nmuvvZbrr7+es846i0WLFgXcwSU5OZkxY8bw/vvvM2/evIpGxpHAgb27aQd40luH7Kfj+Onw/GtsffU2hl7zbKPJZrFEO9Gl7GrAI05HVRtuwv7VV1/lkksu4YknnqgwO+mkk/jkk08Cut+2bRufffYZxx9/PP/6178YNWoUPXv2JCcnh6+//prjjjuO559/npNOOqnGuMuP0Bk+fDjvvvsu27dvr3J8z2mnncYjjzzCI488goiwcuVKBg0aBMB//vMf9u/fT0pKCvPnz+fpp58O+bm3bt1KVlYWWVlZfPHFF2zatInRo0fzxBNPcNlll7F//34WL17MvffeW+0KVTd5eXl06GD2fHz22eAV8+TJk3nqqadYvnw5c+bMCVnmaCd//y7aAQkZoSu7Lsf1ZWmbiQzZ8yZfLvuUwcNGhuxXVTl4qJCDu3Mo3LudQ/l5+EoPE+8rAfGgnjjwJIAnDk/5Ly4eT1wcnrg4xBOPeOJQiUM8HlTiQOIA8G9Xld+XG4ufebnJT+60krsqstfCPL3l0bRu1zl4QliOCGJK2YnHg08FGnAYc+7cudx8882VzCZNmsTcuXMDDj/27NmTxx57jGnTptGnTx+uvvpqkpOTeeaZZzjvvPMoKysjOzubq666qsa4b7zxRrZs2YKq8rOf/YwBAwZwzDHHVAxb/vGPf+TWW29l+vTp9O/fH5/PR9euXfn3v/8NmCHWSZMmsWPHDi6++OKK+boLLriARYsWsXfvXjp27Mjtt9/OL3/5y4qjf6666ioefPBBFi5ciMfjoW/fvpx++ukkJiby2WefMWDAAESk4jiiUJXdjBkzOO+882jZsiUnn3xyxRl/y5cvZ+bMmTz11FOAOX/vkksuYeLEiSQmJoYUdixQlGfOqEtsdlSt/A246C7yH/4vzd/9NbnHLqRFZpuA7nw+ZVPONnK+eI+EbYs57tCXdNadNJfY3lD6sCZy8MZvaJaeEW5RLGEk5o74KfthNcXxzUg7qmvNjmOYOXPmVFrIciQSbUf8rHh3DkM+/z3fnvcBXfsOr5Xfb5ctoMOCS9ge14lDpz1A3+yxxHmEvXv3snXlQg5t/i9H7/ucXr5v8IhymGRyMgZRmJkFLY4hvkUH0pq1JD45FZ8nCdSLer3gK0O9Zfh8XnzeMufnrbhHvaA+RL3g8yKqqNM9869bfrpV19+q9lrFfWACjcqLX1/Qt/W/ZO+dz45pq+h4zJFdJ0QyTXHET0z17AB8eBq0Z2exNBXeQ+ZQ4NQWgXtm1dF12ATWFs6iw6LpHPvu2ex/J4My4skkl+GilBLHdyl92dTpN7QbPJ6W3Y+nd1xCQz9CxLHynRLYO5+Swtxwi2IJMzGn7BRBrLJj6tSpTJ06NdxiWGqBrzAPgPTmoc/ZuckaM4mCQWNYvfA5ynasRNTH9mYdyDjueLoNPpnjUpo1oLTRQVyyeeaSQ7nhFcQSdqJC2alqyCsJ1fbsLFQdQosGfMX5lKmH1NT0OoeR3jyTAb+4rgGlim7iHAVfVngwzJJYwk3Ef2eXnJzMvn37Qq68VDwVK7ksRyaqyr59+0hOTg63KLWjOJ9DklrjJtCW0ElIbQGA93BeeAWxhJ2I79l17NiRHTt2sGfPnpDcl+TtRvCRkGsV3pFMcnIyHTsGPwA1EokryeewpFLzzpiWUElMM6npPWx7dkc6Ea/sEhISKu1QUhPL772Ftoe30Om2DY0olcXS8MSVFlDkSQ23GDFFSobZZ9RXlF+DS0usE3PjJb6EVBJ9ReEWw2KpNYllBRTHBd5Nx1I3UtNNz06LbM/uSCcmlV0KVtlZoo9E7yHK4uu+OMVSlbSUFA5rIpTYnt2RTswpOxJSSdaiqFyNZzmySfEVUpZglV1D4vEIh0jBU2x7dkc6safsEtNIFG/FeXEWSzSgqqRoIZpolV1DUyipxJUWhFsMS5iJOWXnSTKVRWGBbclZooeiUh/pHIYku39jQ3PYk0q8VXZHPDGo7MwE/+FDVtlZooe8Q4dJlWIk+cjb5aSxKYpLJ8F7KNxiWMJMzCm7uBSz+upwQW54BbFYasGh/AMAeKyya3BK4tJIssruiCfmlF18it0LzxJ9lDfO4lOtsmtoSuPTSLbK7oin3spORK4VkU0isl5E7nGZ9xeRzxzztSLSJHs3JaS1AKC00G4PZIkeSpw55vgjcLPmxsabkE6KFoZbDEuYqdcOKiIyFpgIDFDVYhE5yjGPB14ALlHV1SKSCZTWW9oQSHKUXZk90sMSRZQfQVO+l6Ol4fAlZpBGoTkgL8QN5S2xR317dlcDd6lqMYCq/uiYjwPWqOpqx3yfqnrrGVdIJKe3AMBnN361RBHlu/InpdmdMRsaTcwgHh9aant3RzL1VXY9gNEi8rmIfCwi2S5zFZH3ReRLEbkpWAAicqWILBeR5aFu9lwd5Xvhqd0LzxJF+IpM46y8sWZpQJLN5xzFh2wD+EimxmFMEfkQODqA1Z8d/62AEUA28LKIdHPMRzlmhcBHzrHrH/kHoqpPAk8CDB06tN7bnqSmN8enAnYvPEsU4XXKa0pGi/AKEoPEJZvecmF+Lskt24dZGku4qFHZqeopwexE5GrgdTV7cy0TER/QGtgBLFbVvY67d4DBQBVl19AkJsSTTzJSant2lijCGYmww5gNj8dZ9FOUnxteQSxhpb7DmPOBsQAi0gNIBPYC7wNZIpLqLFY5CWiyM3cKJA1PsVV2luhBnI2KJdHuoNLQJKSaBkSx/RzpiKa+59k9DTwtIuuAEuAyp5d3QET+AXwBKPCOqi6oZ1whU2T3wrNEGVJSwCFSSLOnlDc45fOgxQUHwiuIJazUS9mpaglwcRC7FzCfHzQ5RXFpJNhhTEsUEV9aQKGkYk+za3jSmrUAoNh+e3tEE5PNyJL4NLsXniWqSCizp5Q3FunNWgFQYldjHtHEpLIrTcggxWuHMS3RQ0LZIXtKeSPRvIVRdt7DdoX2kUxMKjtfQobdHsgSVST5DlFilV2jkJycQpEmoPYA1yOamFR2mpRBuh6yp5VbooZkXyGl8fbg1saiUFIR++3tEU1MKjtSWpIspRQeskOZluggVQvxJlhl11gc8qQTX2Ln7I5kYlTZmTH6gtwfa3BosUQGaVqIL9Equ8aiIK4FyaX204MjmZhUdvHpmQAU5tZ/r02LpbEpKS0jjSJ89oPyRqMosQVpZbZndyQTk8ouMaM1AEV5VtlZIp/DBQfxiKJJVtk1FiWJrWjms8ruSCYmlV1Ss6MAKMm3ys4S+Rx2trESq+wajbLkVjTXg6ivSU4as0QgMansUlu0AaCsYF+YJbFYaqa4wPQ4PMn2lPLGQlMziRcfRfl23u5IJSaVXcvWbQHwHtofZkkslpopLbTKrrGJSzdTG/kHdoVZEku4qO9G0BFJakoKhzQZLWyYnp36fOSs+5R9S18ife8qWpd+T7qazxqKSaLIk0JRXAZF8c0pS2qOJrfEk9qShLRWxKW1wpPWkoT0VsSntyYpvRXJGa2IS0hCRMwPgfJrcbc/FFXFp6Dqw6fg8/kA8KniU2Ovqgg4YSkiYEI13xl6TPDGDThhlvs3YfpUUUB94ANq+kJR6mFfrd8aApZq7KvzqoCquVBcP+dbTJ/qT3YKijr/cdKYCneVzMvDreT+Jz/l4RAoXEze5m3P4TggPsUe79NYJGSY0Z6Cfbs4qku/eofnLSnim09fIW/9h7TM20CG9wApvkJKJYFSSeSQpxkFCa0oSmxFaXIm3tQ2xKW1Ij6tJUnp5n9CagsSk5NJSkwiKSmZpORkPHEJIB7nXS0vsKYAiZhrVf2pMAPqUxSfY2fkK39/y8uouaaSZaB3XPwuyt+3cnNTx7jsPHGkpkVHIy0mlZ2IcNCTgaeo/kMW2zYs5dD8G+hdspb2Gs+3CcexpdnxeJOaA4KUHYaSQySUHCS5OI/Uw3topgU0p4AkKav/swBx9Q7FEg2kNc8MtwgxS1pLc/70oQO76xVOaWkpn79yP32+eozuHOSgppKT2J2dKZ3xJaTj0TI8ZYdJKcsjvWQ/bYu20io3lwSJzbnCL3y9yL7j83CLERIxqewADsU1J7G4fsOYn798H4PW/x8FkspnPW6k57gr6dX6qBr9FZV62VtQzL7cPIoP7qXs0H4zpHr4AHo4l7jiXMRbWt4uc3U5fmp6KU4Lyun5iem6YYyEiltXT/CnHoM4vRQTjtvOCQCPOywTkat3SM3dpLpb191fHXfEUdwtVlfL1Pnjfn4qesUVzl1uK5u7k0gq0hM/v1LhvyIswRWDuY9La0W3PkPq9HyWmmnR2ii7ory6K7s9u3bww+wLGVW6mo1J/dky9Fr6jZpI/5Sk6j2qUlqYS/6BHzmUt5/DB/fiLczDdzgXb2kx3rISvGUl+EpLEF8ZFT22irEZqXiPQdBKBdfdBXN+/r0xtywiVc38xXXJ7W+ufo4Kk2uuDyOF2FV2CZmkl9R9NebS529jxNaHWJOSTYdfPs/xbdqF7Dc5IY4OLVPp0DIVCN2fxWJpHFod1R6AsoN122hix/ZtlD59Bj19u1g95G/0//k1SKhnD4qQkNaSVmktadWxTtFbGoCYVXZFyUfR8fDmOvld8vo/GbX1IZZnnMyA380jISGxgaWzWCxNSVJKOnmkIYdqv0DlwIEDFD9zJu11Nz9MeIEBw8Y3goSWxiYmV2MCeNOOoqXm4SsrrZW/b9Z9zpDVf2VjUn8GWUVnscQM+zxtSC6s3TCmz+tj46zL6er9jm2nPEk3q+iilphVdpreDo8oB/f+ELKfwsOH4fVfUSBpHDXtX8RZRWexxAz5iW3IKKndMOanrz/CCYULWdPjt/QcdXYjSWZpCmJW2cW3MHNleXu2h+xn+dw76Ob7jr0n/R+ZbTs1lmgWiyUMFCa3pWVZ6PP4O3Zso9+6e9iS1JcBF9zRiJJZmoKYVXbNWncAIO/H0JTdru+/Y9h3s1iVfiK9x17QmKJZLJYwUJbenlbk4SspCsn9jpeuJ43DtJj8OOKxHwBFOzGr7Fq16wxA0b7QlN2m1/5GPF7aTrqrMcWyWCxhIq6FWQq5b2dOjW5XLV/CiIL/sPaYS2jTbUAjS2ZpCmJW2bU+ujMlGo8e+K5Gtxu3fM3wfW+ysc142nXt2wTSWSyWpia1bTcA9n//VbXuVJXD7/+NfFLpe95tTSGapQmIWWUXFxfHTk9bkgq21ej2u7fvIlFK6XqOLdgWS6zSolNvAAp3Vv9J0tIlH3J86VK29fwlyc3srjaxQswqO4B9ie1pdvj7at1s3voNJ+a9xZY240lv37uJJLNYLE1N+w5dOaRJePcE79mpKgkf/x95ZNBz4o1NKJ2lsYlpZXc4rRNHle2sdpupbQvuIZkSOpxle3UWSyyTmBDHD3EdSMr7NqibZYsXMLRsBdt6X0l8qt2YO5aIaWXnyexGOoXk7t0Z0P677ds4Yd/rbGx9Khmd+jSxdBaLpak5mNaF1odzAtqpKsmf3MV+aUHvidc3rWCWRiemlV1KB7PYZNeWFQHtv3nrLlIo4egzb21KsSwWS5gobpNFO/ZQsL9qA/iLhfMZULaWbX2uJj45PQzSWRqTmFZ2bbpnA1D43coqdj/8sIPsH19jfcuTyezSv6lFs1gsYSCp8zAAfli/pJK51+sj49P/x4+SSb+zfhcO0SyNTEwru3btOrKLTGT3mip2m+ffRboU2V6dxXIE0a3/SMrUw4HNn1Yy/+K95+jt/Yqdg6YTn5QaJuksjUlMKzuPR/ghtRdt89ZUWqSy84dtDNv9MmtbnEybYweFUUKLxdKUtGzZkq8Se9N258IKs+LiItotv5dtno5knXF1GKWzNCYxrewA8juMpr3uZv936yvMvnnj7yRTwlFn3R5GySwWSzjY02k8Xbw57Nq6CoDl/5pBZ91B3qi/4IlPCK9wlkYj5pVdh2ETAfhmyTwAtq77guwfX2Vlq9Np283O1VksRxo9fjaVw5rIntdvYcVbjzM85wlWZIwl62S7J24sU29lJyLXisgmEVkvIvc4Zgki8qyIrBWRjSLyx/qLWjeO696HNfFZdN76Inu3b0LeuIJCSeW4C+8Pl0gWiyWMtOtwDJ93/S1Zhz5jyJe38E3CcfT61TPhFsvSyNTrpHIRGQtMBAaoarGIHOVYnQckqWqWiKQCG0Rkrqrm1E/cuuH72W20eG8KCbOH01zjWD92FgPbtA+HKBaLJQI46bK/smrJEEoP7ibr5AtJTrGLUmKdeik74GrgLlUtBlDV8pMRFUgTkXggBSgBDtYzrjoz8PhxLPf+i0Pr3qN19iQGDhkdLlEsFksEICIMHH1muMWwNCGi1WylVaNnkVXAm8B4oAi4QVW/EJEE4HngZ0AqcJ2qPhkkjCuBKwGOOeaYId99V/MpBRaLxWKJHURkhaoObcw4auzZiciHwNEBrP7s+G8FjACygZdFpBswDPAC7YGWwCci8qGqfuMfiKMEnwQYOnRo3TWvxWKxWCxBqFHZqeopwexE5GrgdTXdw2Ui4gNaAxcC76lqKfCjiHwKDAWqKDuLxWKxWBqb+s7ZzQfGAgtFpAeQCOwFtgEnA8+LSBqm5/dgTYGtWLFir4g0xDhma0eOaCCaZIXoktfK2nhEk7zRJCtEl7wNJWvnBgijWuo7Z5cIPA0MxCxCuUFV/ysi6cAzQB9AgGdU9d76ixuyXMsbe/y3oYgmWSG65LWyNh7RJG80yQrRJW80yVqvnp2qlgAXBzAvwHx+YLFYLBZL2In5HVQsFovFYolVZRfwM4cIJZpkheiS18raeESTvNEkK0SXvFEja73m7CwWi8ViiQZitWdnsVgsFksFVtlZLBaLJeaJKWUnIuNFZLOIfC0it4RbHn9EpJOILBSRDc4pEb93zGeIyPcissr5nRFuWQFEJMc5uWKViCx3zFqJyH9EZIvzv2UEyNnTlXarROSgiEyPpHQVkadF5EcRWecyC5iWYnjYKcdrRGRwBMh6r3O6yRoReUNEWjjmXUTksCuNZzalrNXIGzTvReSPTtpuFpHTIkDWeS45c5xtGCMlbYPVWRFZdqtFVWPiB8QBW4FumI/bVwN9wi2Xn4ztgMHOdQbwFeZbxBmYbxTDLqOfvDlAaz+ze4BbnOtbgLvDLWeAcrAL85FqxKQrcCIwGFhXU1oCZwDvYr5RHQF8HgGyjgPineu7XbJ2cbuLoLQNmPfO+7YaSAK6OnVGXDhl9bO/H7gtgtI2WJ0VkWW3ul8s9eyGAV+r6jdqvv97CXP8UMSgqjtV9UvnOh/YCHQIr1S1ZiLwrHP9LPCL8IkSkJ8BW1U1onYUV9XFwH4/42BpORF4Tg1LgRYi0q5JBCWwrKr6gaqWObdLgY5NJU9NBEnbYEwEXlLVYlX9FvgaU3c0CdXJKiICnA/MbSp5aqKaOisiy251xJKy6wBsd93vIIIViYh0AQYBnztG1zjd/qcjYWjQQYEPRGSFmNMpANqq6k7nehfQNjyiBWUKlSuLSEzXcoKlZaSX5WmY1ns5XUVkpYh8LCKRdH5WoLyP5LQdDexW1S0us4hJW786K+rKbiwpu6hBzHZqrwHTVfUg8DhwLGbbtZ2YoYxIYJSqDgZOB34rIie6LdWMW0TMtytitq87C3jFMYrUdK1CpKVlMETkz0AZ8KJjtBM4RlUHAdcD/xKRZuGSz0XU5L2LC6jcUIuYtA1QZ1UQLWU3lpTd90An131HxyyiEHPW32vAi6r6OoCq7lZVr6r6gFk04bBKdajq987/H4E3MHLtLh+WcP7/GDyEJud04EtV3Q2Rm64ugqVlRJZlEZkK/By4yKngcIYD9znXKzBzYD3CJqRDNXkfqWkbD5wDzCs3i5S0DVRnEWVlF2JL2X0BdBeRrk4LfwrwVphlqoQzJj8b2Kiq/3CZu8e0zwbW+fttakQkTUQyyq8xCxTWYdL0MsfZZZjDeyOFSi3jSExXP4Kl5VvApc7KthFAnmvIKCyIyHjgJuAsVS10mbcRkTjnuhvQnQg4yquavH8LmCIiSSLSFSPvsqaWLwCnAJtUdUe5QSSkbbA6iygquxWEe4VMQ/4wK4G+wrSA/hxueQLINwrT3V8DrHJ+Z2BOdV/rmL8FtIsAWbthVq2tBtaXpyeQCXwEbAE+BFqFW1ZHrjRgH9DcZRYx6YpRwjuBUsw8xi+DpSVmJdtjTjleCwyNAFm/xszFlJfbmY7bSU75WAV8CZwZIWkbNO8xB09vBTYDp4dbVsd8DnCVn9tISNtgdVZElt3qfna7MIvFYrHEPLE0jGmxWCwWS0CssrNYLBZLzGOVncVisVhiHqvsLBaLxRLzWGVnsVgslpjHKjuLxWKxxDxW2VksFosl5rHKzmKxWCwxj1V2FovFYol5rLKzWCwWS8xjlZ3FYrFYYh6r7CwWi8US80SkshORLiKizhlPlihFRK4VkR9EZHUY4p4hIi80QTxTRWRJNfaLROSKxpbD8hPV1R9NWbc48RwXxK7acmOpjIhMFpE8EfmfiLSvSxgRqewstUdEZopIgfMrEZFS1/27YRJrBvAbVR3gknOGiMwIkzwRhVPx5tTS/UIRKRSRTSJySjVuk0TkaRE5KCK7ROR6v3DUVT4KROTWUPw69j9z4i905OlcC7+pIvJPEdnrVF6La/H8R8wRLU4jaUyIbkVE7haRfc7vbuccumDuLxSR70TkkIjMF5FWfvEWucrFZj+/14rIt07+LheRUS67sU55yAtUrkXkBBFZJiL5IrLGz+8EEVkiIrlOuXlKnPM0AVR1HtDauT0/lHTxp1GUne2RNT2qepWqpqtqOvD/gHnl96p6erm7Js6bVkTegam1JoLK81xgJeYssT8Dr4pImyBuZ2AO++wMjAVuEnMAq5sWrjLyt1D8ikhr4HXgVkz+Lsd1unYI8T7p+Ovt/L8uxGePOCKoXFwJ/AIYAPQHzgR+HcihiPQFngAuAdoChcA//Zxd4yoXPV1+hwN3AecCzTGHur4hzgGzwCHgaeDGAPG2At4G7gVaAPcAb4tIS8dJc+DvQHtM2ejguK1AVUsx55VmVpcYwWgwZSciOSJys4isAQ6JSLyIjHC6nbkistrdUnFaEP/naPqDIvKmu4XhF/blIrLRaRF8IyK/9rOfKCKrnHC2ul7M5iIyW0R2isj3IvJ3V8YEe45jReS/Tgtpr4i8KCItXHb7RWSwc99eRPaUP5eInCUi653nXSQivf3S5wanRZMnIvNEJLn2KV17guRNpSEWEZkjIn933f/cSdNcJw/71zLO8nT21eDuJid/fhCRK9xyOTI9JiILnLz/XESOdfl9SES2O/m+QkRG+wWf7KRzvoh8KSLuHuYtTlnJF5ENInK2y26qiHwqIg+IyD5MBV7T894nIgfEtHpP97Pu7ISXLyIfOAqjVohID2Aw8FdVPayqr2EOx5wUxMtlwN9U9YCqbgRmAVNDjK46v+cA61X1FVUtwqTNABHpVZNfx81ZwJWqukdVvaq6IkSZKiEiXUVksZOmHzrlJOCwtYhMct6Bfi7jaU6Z2ykiN7jcDhORz5xyv1NEHhWRRJe9ishvRWQL5uDSmjhFRLY44T0mUrnHVUO5CZXLgPtVdYeqfg/cT/C8vgh4W1UXq2oBptFyjrh6UdXQBZP3K9QchPocprd1FICqLlPV5wl8mvoJwC6n3HhV9QVgD6Y8oar/UtX3VLVQVQ9gys3IAOH4gLo1MhrwRNsczCm2nYAUjGbehznV1gOc6ty3cdwvAr4H+mFOmX4NeMGx64I5HTfeuZ8AHIs5BfckTGtksGM3DMhzwvc48fZy7N7AtGLSMBmyDPh1Dc9xnBNWEtAGWAw86LL/FbABSAXeB+5zzHtgWjanAgnATZjTnRNd6bMM03JpBWzE72Riv9OBc6v5jarhGWaUp2WgvHHMFDjO5WYO8HfnehDwIzAciMO8TDlAUi3Kw3igCEirwc0uoK+Tni+45XJk2ufkcTzwIvCSy//FmFZePPAHJ6xkVxqUYlqhCcANwLdAgmN/npMXHmCyk3ftHLupQBlwrRN2SjXPMNWJ51dOWl0N/AAVByMvwpza3APzXiwC7goS1j+BfwaxOxvY6Gf2KPBIALctnXRs6zI7F1jr9359jzkt+xmgdYh+HwIe94tvHUbp1uT3UoyCfgDY61xPqmN98xlwH5CIeV8OEqD+AC7HvIfH+dnNxdQLWZhK9xTHfggwwvHbBfOeTnfFq8B/MO9w0HLhcvtvTE/mGCee8aGUm0D1QTXx5AHDXfdDgfwgbt8EbvYzKwCGuMrrHid/PgXGuNw1A1bwU71wLWakQfzCOwXI8TP7ObDBz2wL8EAQOR/E9a67zG8HPqaaeiVoOtWloAURLgeY5rq/GXjez837wGWuRL3LZdcHKHESsaKwBolrPvB75/qJQAmG6aIXuwskcAGwsJbP9QtgpZ/ZW5gXdQ2OAsC0kF52ufFgKpMxrvS52GV/DzCzodLfT74ZVFV20/zcVKfsHse0zt3uNwMnhRj/cif839Xg7mng/1z3x1FV2T3lsj8D2FRNeAeAAa40WOqXHzuB0UH8rgImOtdTgW0hPutU4GvXfarzDEe7yvlfXPa/Ad6rQ55e4n4ex+xOYE4At50cGZJdZqfiVEBAOqZCjHfek1eB90P0Oxs/ZY2pFKeG4PdPjv0MjJI6CVPR9q5lWhyDaYykusxeoKqyuwHTMO3ocldu18tldg8wO0hc04E3/N6bk0OUU3E1TIGXgVtCKTe1TA+v3/N0d8IKpDg/wq+RTeV6ajiQgWnsXwbkA8c6duLkYamT/nuB7ABxBFJ2mZiG+gWYxudlmF7aEwH8n4p5l3sEsGuJGcr0AufUJp0aes5uu+u6M3Ce033PFZFcTAulXRD33zmJUGWIR0ROF5GlzhBiLqbSK3fXCdNy9qezE95OV/xP4HS5gyEibUXkJWfY8yDmJfKXaRamR/qIqhY7Zu2dZwBAVX3O83Vw+dvlui7EVDpNxfaanVTQGfiDX951wjxjKGQDU4AZIpJQjbv2fnIFkjFomjnDwhudYeFczLi/O68qwnPyY0f5M4jIpa5h2lxMfgb0GwIVMqpqoXOZHsje/xlqQQGmZe2mGaYyCuS23L6KW1UtUNXlqlqmqruBa4BxzlBWtX5rkKMmv4cxFeXfVbVEVT8GFgLjAjxDdbQH9rvSGgLn143AY6q6I4Cdf91TXi56iMi/xSySOIiZ//Z//+tUNqia9zWVm1Dxz5NmQIE62qEGt+Xuy8vG56qar6rFqvospiFzhuPul5iecl9MY+Vi4N8SwupIVd0HTASuB3ZjRnU+xLyTFYjICOBfwLmq+lWAoC7H9OJbqerrNcXrpqGVnTtxt2N6di1cvzRVvcvlppPr+hjMi7DXHaCIJGGGOO/DDI+0AN7BtDLK4zmWqmzH9Oxau+Jvpqp9a3iG/+c8R5aqNsNkaMU4u4ikY7rYszGVefk84w8YJVHuTpzn+76G+KogIqOl8ko5/5//3FQo+Bf8QkxrspyjXdfbgTv98i5VVeeGFJF5yeZjWmHtqnG6E+jouu8UzKE/ThrchFmZ1dIpF3m48sodnoh4nLh+ELN6cBamks90/K7z8xuooggn64FufnMrAxzzSqiZ89jp2FfrttyL898Tgt/1bjsRScO8f+tD8Lummrhrw06glYi4y2+gsjMO+IuIBJrX9K97fnCuHwc2Ad2d9/9PVC4XdZW5MamUJ1Sf1/751w3TiwukWMDpITrXA4F/q+pXqupT1fcweXFCKEKq6seqmq2qrTAjFb0wUzvlsgzCjJpNU9WPggTTGzM6lxdKnG4a89ODF4AzReQ0EYkTkWQRGSMi7srtYhHp4xTaO4BXVdXrF04iJjP2AGXOJK67JTgbuFzMcmiPiHQQkV6quhP4ALhfRJo5dseKyEk1yF3eus0TkQ5UXVn0ELBcVa8AFgAzHfOXgQmOHAmYOaRi4H81JZQ/qvqJ/rQaKtDvk9qGGYBVwIVO3ozHDCmVMwu4SkSGiyFNzNLgDKhYODKnhmco7/EmVuPsZUze9XbKwK3VuPUnAzOUsgeIF5HbqNpiHSIi54hZNTcdkx9LMXM16vhFRC7H9OwiFqeVuwr4q/MunY1ZefdaEC/PYSr6lmIWhvwKMyyMk689nXciE3gYWOSqQIL6xcyD9xOz6CMZuA1Yo6qbQvC7GNgG/FHMIqmRmBWb7ztyTZUQPsVQ1e8wQ+UzRCRRRI7HrED0Zz2mB/GYiJzlZ3ermM8g+mJ6C+UrSjMwPYcCR/6ra5InAngOuN6p+9pj6p45Qdy+iKmXRzsNlTuA11U1X0RaOPV1spM/FwEnAu85fr/A1HHdnHrhVMxc9DowDUqnTCSYW0mWyot7BolIgog0w3Retqtqed73c+K5VlXfruZZEzDvca1pNGWnqtsx3dY/YSqV7RjF4Y7zeUym7AKSgd8FCCffMX8ZM457IUb7l9svwxTWBzAt+4/5qYd1Kaay3eD4fZXqexpgJkAHO2EtwCyzBsyqT8zLU/4CXA8MFpGLVHUzphf4CKZ3eiZwpqqW1BBfuPg9RsZczAqt+eUWqrocU0k9ikm3r6m8uqsTZnijJpRqypiqvoupaBc6cSx1rEIpzO9jXo6vMMNQRVQdXnoTs/jkAKYleY6qlqrqBsyKtc8wQypZIT5PoyLmW8mZ1TiZgplrO4CzBFxVyxX2RSLibs3/FTO8/x3mnbjXaYkDdMOkXT6moirGzKXU6NeJbxJmvvAAZo5nSoh+SzF1whmY92sWcKlLUYZarsCU2eMxC5j+jlFWVcqNqq7GLI6YJZVXO36MKXMfYRaZfeCY34CpY/Id+dyfVYSF8pGeapw8gVnWvxaTnwscs3L/FaNBqroeuAqj9H7EKPffOE4TMGlZvkDlWuAXruHE54CXMPPQBzHv7q9d+XciZqj6HUxv+TCmw1HOTU642zH18Nkuuz9gFgTOdo1gBeqdxlHDCu9glK8Ya3JEZBFmQvmpsAhgqRNOS2010N+pvKpz+wNwk5plxqGE3Rvzsiapalm9hbVEFSLyAWbh2cY6+J2HWbz014aXzBIJiEgKsASzmMj/28AasTuoWGqFs7Cgd02KzuEWzLBb0G+pRORsMbtutATuxnwDZBXdEYiqjgtV0YlItjMt4XGG4SfiGp2wxBYicj5mtGA3ZpSv1hyRyk4qb63l/lU3hGSpJar6nKp2V9Uh1Tj7NWY4ZStmOXHEzZHY8hKRHI0ZTivADKddraorm1IAqWYhWVPKcSSgqi+r6lGqeoaq7q3ZR1XCNoxpsVgsFktTcUT27CwWi8VyZBEpG5kC0Lp1a+3SpUu4xbBYLBZLE7JixYq9qhpsU/MGIaKUXZcuXVi+fHm4xbBYLBZLEyIi39Xsqn7YYUyLxWKxxDxW2VksEczXP+az4YeD4RbDYol6rLKzWCKYC5/8jLMfDrZNoMViCZWImrMLRGlpKTt27KCoqCjcoliiiOTkZDp27EhCQnWHLkQ+fy2+lxFJG6m8s5LFYqktEa/sduzYQUZGBl26dEEqH/JrsQREVdm3bx87duyga9eu4RanXkyIczaFVwVb/i2WOhPxw5hFRUVkZmZaRWcJGREhMzMzpkYDfKV12ujdYrE4NLqyE5HxIrJZRL4WkVvqGEZDi2WJcWKtzBQV2kUqFkt9aFRlJyJxwGPA6UAf4AIR6dOYcVossUhxYaADyS0WS6g0ds9uGPC1qn7jnOv2EmZ38qhCRPjDH/5QcX/fffcxY8aM8AlUA4sWLeJ//6v1mbEVrFq1iuOPP56+ffvSv39/5s0L+5FeRzxFVtlZLPWisZVdByofqLnDMatARK4UkeUisnzPnj2NLE7dSEpK4vXXX2fv3jptth0UVcXnq9M5hNVSX2WXmprKc889x/r163nvvfeYPn06ubm5DSegpdaUHLbKzmKpD2FfoKKqT6rqUFUd2qZNo26NVmfi4+O58soreeCBB6rY7dmzh0mTJpGdnU12djaffmoOWp4xYwb33Xdfhbt+/fqRk5NDTk4OPXv25NJLL6Vfv35s376dG2+8kX79+pGVlVXRi1q0aBFjxozh3HPPpVevXlx00UUEOqHi4Ycfpk+fPvTv358pU6aQk5PDzJkzeeCBBxg4cCCffPJJtTJecsklHH/88XTv3p1Zs2YB0KNHD7p37w5A+/btOeqoowjUEHnllVfo168fAwYM4MQTTwTMgqLLL7+crKwsBg0axMKFCwGYM2cOv/jFLzj11FPp0qULjz76KP/4xz8YNGgQI0aMYP/+/QDMmjWL7OxsBgwYwKRJkygsLKwS74gRI1i//qdDjMeMGROT28y589t7+FAYJbFYop/G/vTge6CT676jY1Ynbn97fYPvJtGnfTP+embfGt399re/pX///tx0002VzH//+99z3XXXMWrUKLZt28Zpp53Gxo3Vnz+5ZcsWnn32WUaMGMFrr73GqlWrWL16NXv37iU7O7tCcaxcuZL169fTvn17Ro4cyaeffsqoUaMqhXXXXXfx7bffkpSURG5uLi1atOCqq64iPT2dG264AYALL7wwqIxr1qxh6dKlHDp0iEGDBjFhwgTat29fEf6yZcsoKSnh2GOPrfIcd9xxB++//z4dOnSo6Pk99thjiAhr165l06ZNjBs3jq+++gqAdevWsXLlSoqKijjuuOO4++67WblyJddddx3PPfcc06dP55xzzuFXv/oVAH/5y1+YPXs21157baV4J0+ezMsvv8ztt9/Ozp072blzJ0OHDq02zaMRr08rXlBvse3ZWSz1obF7dl8A3UWkq4gkAlOAtxo5zkahWbNmXHrppTz88MOVzD/88EOuueYaBg4cyFlnncXBgwcpKKj+7MbOnTszYsQIAJYsWcIFF1xAXFwcbdu25aSTTuKLL74AYNiwYXTs2BGPx8PAgQPJycmpElb//v256KKLeOGFF4iPD9x2qU7GiRMnkpKSQuvWrRk7dizLli2r8Ldz504uueQSnnnmGTyeqkVl5MiRTJ06lVmzZuH1eiue5+KLLwagV69edO7cuULZjR07loyMDNq0aUPz5s0588wzAcjKyqp4tnXr1jF69GiysrJ48cUXK/Xgyjn//PN59dVXAXj55Zc599xzq03vaKXU6+rZ2U8PLJZ60ag9O1UtE5FrgPeBOOBpVa1ae4VIKD2wxmT69OkMHjyYyy+/vMLM5/OxdOlSkpOTK7mNj4+vNB/n/uYrLS0tpPiSkpIqruPi4igrK6viZsGCBSxevJi3336bO++8k7Vr11ZxE0xGqLpEv/z+4MGDTJgwgTvvvLNCMfszc+ZMPv/8cxYsWMCQIUNYsWJFyM/j8Xgq7j0eT8WzTZ06lfnz5zNgwADmzJnDokWLqoTToUMHMjMzWbNmDfPmzWPmzNg8MLzE6yPFufaWHA6rLBZLtNPoc3aq+o6q9lDVY1X1zsaOrzFp1aoV559/PrNnz64wGzduHI888kjF/apVqwBzXNGXX34JwJdffsm3334bMMzRo0czb948vF4ve/bsYfHixQwbNiwkeXw+H9u3b2fs2LHcfffd5OXlUVBQQEZGBvn5Pw17BZMR4M0336SoqIh9+/axaNEisrOzKSkp4eyzz+bSSy+ttte0detWhg8fzh133EGbNm3Yvn07o0eP5sUXXwTgq6++Ytu2bfTs2TOk5wHIz8+nXbt2lJaWVoQTiMmTJ3PPPfeQl5dH//79Qw4/migt81Zc+0pi5wN5iyUchH2BSrTxhz/8odKqzIcffpjly5fTv39/+vTpU9HLmDRpEvv376dv3748+uij9OjRI2B4Z599Nv3792fAgAGcfPLJ3HPPPRx99NEhyeL1ern44osrFoP87ne/o0WLFpx55pm88cYbFQtUgskIZhh07NixjBgxgltvvZX27dvz8ssvs3jxYubMmcPAgQMZOHBghYK87bbbeOstMxJ94403kpWVRb9+/TjhhBMYMGAAv/nNb/D5fGRlZTF58mTmzJlTqUdXE3/7298YPnw4I0eOpFevXhXmb731FrfddlvF/bnnnstLL73E+eefH3LY0Uapa+jSW2p7dhZLfZBAK/zCxdChQ9V/Vd3GjRvp3bt3mCSKbWbMmFFpIUusEe1lZ/vOPXR64jgAVva6gUFTbg2zRBZL4yAiK1S1UVeZ2Z6dxRKhlLp7c2W2Z2ex1IeIP/XA0nhE8i4wFvCW/DSMqaV2zs5iqQ+2Z2exRChl7s8NyuynBxZLfbDKzmKJULzu3lyZ7dlZLPXBKjuLJUIpKympuBav7dlZLPXBKjuLJULxuYYuPVbZWSz1wiq7EJk/fz4iwqZNm4K6ycnJoV+/fo0qx6pVq3jnnXfq7L/8I/Q+ffrQt29fHnrooQaUztKQuLcIsz07i6V+WGUXInPnzmXUqFHMnTs3oH2grbxqS/n+ktVRX2UXHx/P/fffz4YNG1i6dCmPPfYYGzZsqHN4lsbD3bOLs8rOYqkXVtmFQEFBAUuWLGH27Nm89NJLFeaLFi1i9OjRnHXWWfTpYw5gLysr46KLLqJ3796ce+65FUfUfPTRRwwaNIisrCymTZtGcbGpvLp06cLNN9/M4MGDeeWVVyrF63+ETklJCbfddhvz5s1j4MCBzJs3j0OHDjFt2jSGDRvGoEGDePPNNwFzpM7EiRMZM2YM3bt35/bbbwegXbt2DB48GICMjAx69+7N999XPYji448/rtg9ZdCgQeTn56OqQY8jOumkk5g4cSLdunXjlltu4cUXX2TYsGFkZWWxdetWAN5++22GDx/OoEGDOOWUU9i9e3eVeKdMmcKCBQsq7qdOnVqx6fORhq/spzk7j6+kGpcWi6Umous7u3dvgV1VNzquF0dnwel3VevkzTffZPz48fTo0YPMzExWrFjBkCFDALPv5bp16+jatSs5OTls3ryZ2bNnM3LkSKZNm8Y///lPrrnmGqZOncpHH31Ejx49uPTSS3n88ceZPn06AJmZmRX7aLrxP0InMTGRO+64g+XLl/Poo48C8Kc//YmTTz6Zp59+mtzcXIYNG8Ypp5wCmON51q1bR2pqKtnZ2UyYMKHSUTg5OTmsXLmS4cOHV4n7vvvu47HHHmPkyJEUFBSQnJzM66+/HvQ4otWrV7Nx40ZatWpFt27duOKKK1i2bBkPPfQQjzzyCA8++CCjRo1i6dKliAhPPfUU99xzD/fff3+leMuP75kwYQIlJSV89NFHPP744yFmZmzhc4Yx80klzmd7dhZLfbA9uxCYO3cuU6ZMAUzPwz2UOWzYMLp27Vpx36lTJ0aOHAnAxRdfzJIlS9i8eTNdu3at2B/zsssuY/HixRV+Jk+eHDDeQEfo+PPBBx9w1113MXDgQMaMGUNRURHbtm0D4NRTTyUzM5OUlBTOOecclixZUuGvoKCASZMm8eCDD9KsWbOAcV9//fU8/PDD5ObmEh8fX+1xRNnZ2bRr146kpCSOPfZYxo0bB1Q+vmfHjh2cdtppZGVlce+99wY8vuf0009n4cKFFBcX8+6773LiiSeSkpJSxd2RgDo9u8OSQrzt2Vks9SK6enY19MAag/379/Pf//6XtWvXIiJ4vV5EhHvvvReoelxPsCNzqiPYkT+hHKGjqrz22mtVThb4/PPPg8pSWlrKpEmTuOiiizjnnHMCxn3LLbcwYcIE3nnnHUaOHMn7779f7TOEcnzPtddey/XXX89ZZ53FokWLAu7gkpyczJgxY3j//feZN29eRSPjSESdObtCSbPKzmKpJ7ZnVwOvvvoql1xyCd999x05OTls376drl278sknnwR0v23bNj777DMA/vWvfzFq1Ch69uxJTk4OX3/9NQDPP/88J510Uo1xBzpCx//4ntNOO41HHnmE8g29V65cWWH3n//8h/3793P48GHmz5/PyJEjUVV++ctf0rt3b66//vpq487KyuLmm28mOzubTZs21es4IoC8vDw6dOgAwLPPPhvU3eTJk3nmmWf45JNPGD9+fMjhxxrlC1SK49KIV6vsLJb6YJVdDcydO5ezzz67ktmkSZOCrsrs2bMnjz32GL179+bAgQNcffXVJCcn88wzz3DeeeeRlZWFx+PhqquuqjHuQEfojB07lg0bNlQsULn11lspLS2lf//+9O3bl1tv/Wln/GHDhjFp0iT69+/PpEmTGDp0KJ9++inPP/88//3vfysWoJSv7pw5c2bF8T8PPvgg/fr1o3///iQkJHD66afX6zgiMHtxnnfeeQwZMoTWrVtXmC9fvpwrrrii4n7cuHF8/PHHnHLKKSQmJoYcfqyhZaUAlMSlkWCVncVSL+wRPzHKnDlzKi1kORKJ9rKz8Lk7GfvNPazMGEvX/OW0mLEj3CJZLI2CPeLHYjmScb6tK01IJ5HSMAtjsUQ39VJ2InKviGwSkTUi8oaItHDMu4jIYRFZ5fxm1hCUpYGZOnXqEd2riwm8RsGVxaeRRDFE0CiMxRJt1Ldn9x+gn6r2B74C/uiy26qqA51fzRNU1RBJQ62W6CAmyozXzNN5E9KJQ8FX/116LJYjlXopO1X9QFXL38ClQMf6i1SZ5ORk9u3bFxuVl6VJUFX27dtHcnJyuEWpH95iyvDgS0gFQEvtaeUWS11pyO/spgHzXPddRWQlcBD4i6oGXKsvIlcCVwIcc8wxVew7duzIjh072LNnTwOKaol1kpOT6dixwdteTYp4SykjHok3Sruk+DBJyVU3ALBYLDVTo7ITkQ+BQOvL/6yqbzpu/gyUAS86djuBY1R1n4gMAeaLSF9VPegfiKo+CTwJZjWmv31CQkKlHUosliMF8ZVSSgIkGGVXXHSYpOZhFspiiVJqVHaqekp19iIyFfg58DN1xhpVtRgodq5XiMhWoAewPFg4FoulMuItwSvxeBLMdmmlxYVhlshiiV7quxpzPHATcJaqFrrM24hInHPdDegOfFOfuCyWI404XzElkojH6dmVFtk5O4ulrtR3zu5RIAn4j7Pv4lJn5eWJwB0iUgr4gKtUdX8947JYjijivMWUSBKeREfZFVtlZ7HUlXopO1U9Loj5a8Br9QnbYjnSifcVUSpJxDnDmGUldhjTYqkrdgcViyVCSfAVU+ZJIs7p2ZWVFIVZIoslerHKzmKJUOK1hDJPEvGJTs/ODmNaLHXGKjuLJUJJdHp2CUlG2XlLbc/OYqkrVtlZLBFKvBbji0sm3lF2vhLbs7NY6opVdhZLhJKoJWh8ckXPzmd7dhZLnbHKzmKJUBK1GI1PItEqO4ul3lhlZ7FEIGVeH0mUIAkpJCTbjaAtlvpilZ3FEoEUlpSSThGamE5SsunZYXt2FkudscrOYolADucfxCMKyc1JTkyiVOOgrDjcYlksUYtVdhZLBHK4wOyuJ8nNSIgTikiEMtuzs1jqilV2FksEUlKQB4AnpTkiQgkJiNf27CyWumKVncUSgRTmm55dUnoLAErEKjuLpT5YZWexRCCHDxpll9YsE4BSEhE7Z2ex1Bmr7CyWCKTs4C4AMlp3AKBUEvH4rLKzWOqKVXYWSwQiBTsByMh0KTs7jGmx1Bmr7CyWCCTu0I/kklFxcGuZJ5E4X0mYpbJYoher7CyWCCTp8I8ciMusuLfKzmKpH1bZWSwRSGrxjxxOal1x7/UkEW/n7CyWOlMvZSciM0TkexFZ5fzOcNn9UUS+FpHNInJa/UW1WI4MfF4f7b0/UJR+TIWZ15NIvNqencVSV+IbIIwHVPU+t4GI9AGmAH2B9sCHItJDVb0NEJ/FEtPs3rWNdlKIN7NHhZnPk0SCHca0WOpMYw1jTgReUtViVf0W+BoY1khxWSwxxbZNKwFoeUy/CjNfXBIJWGVnsdSVhlB214jIGhF5WkRaOmYdgO0uNzscsyqIyJUislxElu/Zs6cBxLFYopv8b74A4Jg+P7UPNS6JBC0Nl0gWS9RTo7ITkQ9FZF2A30TgceBYYCCwE7i/tgKo6pOqOlRVh7Zp06a23i2WmKP5j8v4Pq4jic3bVpj54pNJwi5QsVjqSo1zdqp6SigBicgs4N/O7fdAJ5d1R8fMYrFUQ2FRMT1L1vNt21MrD4XEJ5FMKaiCSLjEs1iilvquxmznuj0bWOdcvwVMEZEkEekKdAeW1Scui+VI4Ku1y2gmhSR0G13JXOPNx+Vq98e0WOpEfVdj3iMiAwEFcoBfA6jqehF5GdgAlAG/tSsxLZaaydv0MQAdB/yskrnEJwFQVnKYhITkJpfLYol26qXsVPWSauzuBO6sT/gWy5FGys7P2S1taNuuW2ULp2dXUnyYhLSWAXxaLJbqsDuoWCwRgtfro+uhNfzQYnAVu/I9MksOFza1WBZLTGCVncUSIXy7ZS1tJBftNKKKncfVs7NYLLXHKjuLJULYtf4TANr1G1PFzpOQAkBpse3ZWSx1wSo7iyVC8O1YQSHJHH1s/yp25cOYpcVFTS2WxRITNMTemBaLpQFonbeOHck96BFX9bWMKz/XrqTuw5iHDxeRs/4z8nduIa4oF6/EEZeQQnxKOgkpzUhKa05yWnOS05uTltGCpLRmgKCqoIri/Pd5ATXmKOrTijgUc61aOe7y+2D2YD4fFMT8d18DIuL8N9e1Ij4Z4hJq58cSc1hlZ7FEAHn5hzjW+y0bWk8OaB+faIYxvXWYs/tq/Zf8+P59DMr7iN5S+55htH/Cvp/mJN6wjvT0ZuEWxRJGrLKzWCKAbzZ8wSApJaVL4P3S45McZVcaurI7XFTM/56+idG7n6eTxLEx81Tie55Giy5ZJKZnIngpLjxEcWE+RYfyKC08SFnRQbyH8/EW5eMpPYSgqOlTOd0qj3PPT2YV//2Q8n8SyLiyFlXzsa6WX+D8Kzd3btTPPS4/Fff6k7ukg98xOu8tNqz7H31GjA857Syxh1V2FksEkPf15wC07zMyoH2C07MrKwmtZ/bjj7vY8eRkfla2irWtx9P5ggcY3Lp9wwgbRezeuQOeeIvCrUvBKrsjmphTdj6vF09cXLjFsFhqRfyuVeSSQYt2xwa2T0oFwBeCstuxZz/7Z/6CLO9XbBpxF1mnX92gskYTRx3dgR20JWHXl+EWxRJmYmo15p7d2/nq/0ayZuEr4RbFYqkVRxes5/vU3kE3eU4oV3al1Su7PQeL2DDzMvr7NrJ97EP0OoIVHZjFLD+k96NdwbqaHVtimphSdulpzYjXYo5ddA2blr0fbnEslpAoyM+jq28bh1pX/eSgnMRkM4yppcG/sysu87LwiesY513MziE30m1M0N38jijKOmRzlO7jh63rwy2KJYzE1DBmSnpzmk17nX1PnUG3BReydP0V9DvnJtKbZwb1U1rmZf/+/eTt2UHB/h8oOrALb/4uPIf2kFi8H4+3GPGWIL4SPL4S4nw/HaCpP83Ag3vS3mXvbqhrgHVtVVdgB3LjbyZVbgOs5K6eajxUF1agJeOBfNcvjCDyBPAXOKjKptXFF9CqWvfBLUMNy98oxVfIEFESOg0JGna5siPIqQeqyuvP3M8Fh/7F9mPOptPP/xw0rCONziPOgc13sePTubQ/9u+19l9WVsb332wgb/s6Cn/MwZe7ncSifcSVFhBfdogk32HEWV4DVCpwKqY/oQiKBxVQPJS/wz4x1+WLgFQ8Tijl12bxj/ov84mQJbK7Ertw+vSZ4RYjJGJK2QEc1aEredcsYt3TVzDiu5mU/OMpNiX2oCC1E764RDzeEhJKDpBUkkeG9wCZeoC2Ukpbv3C8KuRJOsUkUSaJlEkCZZKAVxJMQatUY1UUzypm5Uig74qqVHuBVF/NmiEUN6ES8B2q5YtV1XloAQRcpVen+Kp3GNi9BLysMc4GknVrwmB6DAu+gCI52QxjapBhzAVvv8qkHXexrfkQjrn0SXvmnYsOXXuyKb4X7XJex1c2A0989dVeWZmX9Ss/o2DNW7Tc/RnHFG+hs/y0CrZYE9gvLSjypFESl0JxXBo+cdYJiLvRa75LFEfVVb72IYAHRdRb2Y3jzqhF81/UF7CxHG72+jLCLULIxJyyA2ie2ZbBN77N5pWfcGDpi2TsX0OHvC9JoJQyEiiIa0ZxQgt+zOjCrrTWSHpb4pu3JblFOzIyO9CsTXvSWrSllccudLFEBonxcRRrApRVVXbLln/ByBXT2ZfYgY6/fg3iE8MgYWRzcNBV9PpiOivefJghk66vYl9YWMCGTxdQvGEB3Q4sYQD7ANgSdxzr25xOXIdBpHXK4qhO3WnVpj3tPDE1A1RnAi+nikxiUtmV03PQaBg0umaHFkuE4/EIh0gmrrSgkvm327fR9t8XIx4PzX/5Bh57/E9Ahoy/lLWr55C15k6+KMrnqEHjKSzI5+A3X5D03SJ6FK5kqBRzmCS+Ts9mb8/xdDvhHLpndqg5cEtUENPKzmKJJfbRgpSSfT/d5+aR/8z59GQfeee+RoujjwujdJFNXFwc7X81jw2zLiB7yz9gyz8q7L6XtqxvcwZpWT+n+4gzyHJWvlpiC6vsLJYo4YCnJW2K9wJwuKiEr/45heN9G/nmpEfo1vekMEsX+WS2OZpWt3zElvXLydu+jvikVNoeO5D2nXvSwc5xxjxW2VksUUJxcibpxes4XFTMFw9fzIkl/2PjgD/Re+yl4RYtahCPh+5ZwyAr8LZsltilXspOROYBPZ3bFkCuqg4UkS7ARmCzY7dUVa+qT1wWy5FOfovetNm5kC33nsCJ3q9Z3+O39D375nCLZbFEBfVSdqpasUW7iNwP5Lmst6rqwPqEb7FYfqLtiMkcfP0ZOpZtY/3gGfSdeF24RbJYooYGGcYUc8DU+cDJDRGexWKpypABA9neZiXNkzz0zfT/MtRisVRHQ30sMhrYrapbXGZdRWSliHwsIkHX/4vIlSKyXESW79mzp4HEsVhik07t29HMKjqLpdbU2LMTkQ+BowNY/VlV33SuLwDmuux2Aseo6j4RGQLMF5G+qnrQPxBVfRJ4EmDo0KENtxWIxWKxWCwONSo7VT2lOnsRiQfOASo29lPVYqDYuV4hIluBHsDyeklrsVgsFksdaIg5u1OATaq6o9xARNoA+1XVKyLdgO7ANzUFtGLFir0i8l0DyNQa2NsA4TQF0SQrRJe8VtbGI5rkjSZZIbrkbShZOzdAGNXSEMpuCpWHMAFOBO4QkVLAB1ylqvtrCkhV2zSAPIjIclUd2hBhNTbRJCtEl7xW1sYjmuSNJlkhuuSNJlnrrexUdWoAs9eA1+obtsVisVgsDYHduttisVgsMU+sKrsnwy1ALYgmWSG65LWyNh7RJG80yQrRJW/UyCpa22OjLRaLxWKJMmK1Z2exWCwWSwVW2VksFosl5okpZSci40Vks4h8LSK3hFsef0Skk4gsFJENIrJeRH7vmM8Qke9FZJXzOyPcsgKISI6IrHVkWu6YtRKR/4jIFud/2I/GFpGerrRbJSIHRWR6JKWriDwtIj+KyDqXWcC0FMPDTjleIyKDI0DWe0VkkyPPGyLSwjHvIiKHXWk8syllrUbeoHkvIn900naziJwWAbLOc8mZIyKrHPNISNtgdVZElt1qUdWY+AFxwFagG5AIrAb6hFsuPxnbAYOd6wzgK6APMAO4IdzyBZA3B2jtZ3YPcItzfQtwd7jlDFAOdmE+Uo2YdMV8ezoYWFdTWgJnAO8CAowAPo8AWccB8c713S5Zu7jdRVDaBsx7531bDSQBXZ06Iy6csvrZ3w/cFkFpG6zOisiyW90vlnp2w4CvVfUbVS0BXgImhlmmSqjqTlX90rnOx5z51yG8UtWaicCzzvWzwC/CJ0pAfoY5XqohduJpMFR1MeC/sUKwtJwIPKeGpUALEWnXJIISWFZV/UBVy5zbpUDHppKnJoKkbTAmAi+parGqfgt8jak7moTqZBWpOD3Gf5OOsFFNnRWRZbc6YknZdQC2u+53EMGKRMwBt4OAzx2ja5xu/9ORMDTooMAHIrJCRK50zNqq6k7nehcQaVvw++/oE4npWk6wtIz0sjwN03ovp6uEcMJJGAiU95GctnU+PaYp8Kuzoq7sxpKyixpEJB2zw8x0NSdBPA4cCwzEnBhxf/ikq8QoVR0MnA78VkROdFuqGbeImG9XRCQROAt4xTGK1HStQqSlZTBE5M9AGfCiY1R+wskg4HrgXyLSLFzyuYiavHcR7PSYsKdtgDqrgmgpu7Gk7L4HOrnuOzpmEYWIJGAKzYuq+jqAqu5WVa+q+oBZNOGwSnWo6vfO/x+BNzBy7S4flnD+/xg+CatwOvClqu6GyE1XF8HSMiLLsohMBX4OXORUcDjDgfuc6xWYObAeYRPSoZq8j9S0LT89Zl65WaSkbaA6iygruxBbyu4LoLuIdHVa+FOAt8IsUyWcMfnZwEZV/YfL3D2mfTawzt9vUyMiaSKSUX6NWaCwDpOmlznOLgPeDBxCWKjUMo7EdPUjWFq+BVzqrGwbAeS5hozCgoiMB24CzlLVQpd5GxGJc65DPuGksakm798CpohIkoh0xci7rKnlC0DA02PCnbbB6iyiqOxWEO4VMg35w6wE+grTAvpzuOUJIN8oTHd/DbDK+Z0BPA+sdczfAtpFgKzdMKvWVgPry9MTyAQ+ArYAHwKtwi2rI1casA9o7jKLmHTFKOGdQClmHuOXwdISs5LtMaccrwWGRoCsX2PmYsrL7UzH7SSnfKwCvgTOjJC0DZr3wJ+dtN0MnB5uWR3zOZjTYdxuIyFtg9VZEVl2q/vZ7cIsFovFEvPE0jCmxWKxWCwBscrOYrFYLDGPVXYWi8ViiXmssrNYLBZLzGOVncVisVhiHqvsLBaLxRLzWGVnsVgslpjn/wMCdrqv0LOsUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiUElEQVR4nO2deXhVxfn4P+/NHggEwr4GlJ2EgARRQMGiiFRQUaFFEan1a6vWrVa76A+ttq4VUSstorig4r7UBeuCilURZF8FjRBkhwRC9tz5/TEn4eTm3uSGLPcmeT/Pc5977sycmffMmTvvzDvvOSPGGBRFURSlqeAJtQCKoiiKUp+o4lMURVGaFKr4FEVRlCaFKj5FURSlSaGKT1EURWlSqOJTFEVRmhRho/hEJFlEjIhEhlqWxo6IzBCRpfVUVpyIvCsih0TkD/VRpk/5GSIyth7KWSIiVwSI07YdIpx6P7G6cbUsQ8A2KCKjRSSzrmVoLIhIJxE5IiKbReSM480nbBSfcnyIyCwRKRKRHNen3hVMJYwFUoGuxpj7SgOdziA5ZFKFEc49nFWN9L8UkR9F5KiIvCEirStJmyYiK0Qk1/lOc8XFiMhcEdkjIgdF5G0R6ewnj14iki8iz7nCJojIUhHJEpHdIvKEiCS44luLyCIROSAi+0VkoYi0cMVniEieq81+UI3rbzJtR0QWiMiMaqS/wbkfh0XkSRGJqSTtz0Rkk9M2PhGR7n7StBaRfe6BsohEi8grzn0wIjLa55z3fPqjQhFZ64pPE5HPRSRbRDJF5Daf8y8WkY2OgtsgIueVxhljfjLGJABvA78Ltl58qTXFp6PZkLLIGNPc9bmv6lPqjdZAhjEmJ9SC1ASxhHygKCIDgH8BlwLtgVzgnwHSRgNvAs8BrYCngTedcIDrgFOwA5NOwCHgET9ZPQZ84xPWErjLOa8f0Bm43xV/l1NmD+AER9ZZPnmc62qzZ1V23eFMuPR9IjIOuBX4GdAd6AncESBtG+A14Dbsf3Q5sMhP0nuBjX7ClwKXALt9I4wx4939EfA/4GVXkueBz5xyTwd+KyITHbk6Y9vrjUAL4GbgeRFp51PMOiDJ37UFQ43+yI7Gv0VE1gBHRSRSRIaLyP+ckeBq92hArDno7yKyzBmRvBlotCoil7u0/vci8n8+8ZNEZJWTzzYROdsJbyki80Vkl4jsFJG7RCSiius4QUQ+9hmdJrriDorIEOd3J2cENNr5PVFE1jvXu0RE+vnUz+9FZI0zulkkIrHVr+nqIyK3OvVSOmo6P0A6EZGHRGSvU5drRWSgExcjIg+IyHaxs4K5IhJXTVEiAW8VsiaJnW0cFpFvnHvmHmEaEblKRL5z6vkxEREnLuC9c5Hu1MEhEXmq9B6ISCsR+Y9zPw85x11c5S4RkbtF5AusgulZxbV2F5EvnDr/wOlc3Exz6nK/iPy5irwCMQ142xjzmTOYuA24QFyzLRejsfU/2xhTYIyZAwhQaiLqASw2xuwxxuRjO74B7gxEZCqQBXzkDjfGPG+Med8Yk2uMOQTMA0a4kvQA3jDGHDbGZAOv++ZdG1TVdnzSjhSRHVJ+hnKO07/sF5H7xRncVNWuxE/fV4WoaZX1AyJyk/Mf3CUilx9PXQCXAfONMeude/JXYEaAtBcA640xLzv3fhYwSET6umQ6FRgIPOU+0RhTaIyZbYxZCpRUJpDYmfko4BlXcDKw0BhTYozZhlWipW2jC5BljHnPWN4BjmIHT2682LZ9fBhjjvsDZACrgK5AHHbUdwA4B6tUz3R+t3XSLwF2YiuzGfAq8JwTlwwYINL5PcG5WMGOCnKBIU7cMCDbyd/jlNvXiXsdOyJuBrQDlgH/V8V1nOjkFQO0xY5GZrvifw1sAOKBxcADTnhv7E05E4gC/gBsBaJd9bMMOypujR05XRVAhpHYDibQZ2SA82aV1qFP+EVOuR5giiNnRyduBrDUOR4HrAASnbru50r3EPCWI3upeeHv1WgfUcCz/uTzSfei84kH+gM7SuVz4g3wH0fGbsA+4Owg710GdnTY1bmOL4C7nLgkYLJTbgJ2VPqG69wlwHbsnzISiKrkGpYA25w2Eef8vsenbc9z4gYBBUC/AHlVdr/fBG7xCcsBTvKT9gbgPZ+w/wA3OcdDnfro5NTB8z511wLYgu2M/LYzV9rZwIuu3z8H3sXO+loBHwPX+9yXPc69/AAYdJx9UDBt50TgbCdumE/cJ0676OZc6xXVaFernHYVF0Q/6bcfwA5OioE7sf+Xc7B9XSs/+XRz2ka3AOWsBqa4frdxrjHJT9qHgcd9wtYBk53jCOBb4CRc/YWffDKB0ZVc++3AEp+wvwH3ONfbx8kj3VXup8BE5/g8J76ZTx5jsBYKv3VRZbs5npN8buhM1+9bgGd90iwGLnOOl+B0Bs7v/kChc4HJuBSfn7LeAK5zjv8FPOQnTXtshxLnCvsF8Ek1r+s8YKVP2FvAWmANEOOE3Qa85ErjwSr20a76ucQVfx8wtyZ17kfWWU4dZrk+nfykWwVMco7LGjJ29L8FGA54XOkFZ6TlCjsF+CFIudKAImzndmIl6SKcdH1cYXdRsfMa6fr9EnBrMPfOuQdXuX6fA2yrROZDrt9LgDuDvN4lwF9cv38LvO8cl7btLq74ZcDU47jfH+EzeHK3OZ/w23ApIydsITDLOW6JVRoG2/muBFq70j6Mo2SpRPFhFcQhoLcrrBPwIXZk7gX+izMgdOJHYAcB8cAfsSazxGrWRbBt54/Aj8BAn/MNzgDKdc8+qka7mhmknBkE6Aewii8PV78H7AWGH0fb2OZzPVHONSb7STsfV1/shH0BzHCOb8BRjNRM8W0tzdMVdqoTXuzId4dP/K+wg7li7CBgQoC8X3bOn13duqqNNYsdruPuwEWOOSpLRLKwM5mOAdL/iL05viYhRGS8iHzlmBmzsB1Wabqu2JvsS3cnv12u8v+FnfkFRETai8iLYk2jh7E2Zl+Z5mFnqo8YYwqcsE7ONQBgjPE61+d2EHDbwHOB5pXJcpy8ZIxJdH1+EpHpYk3BpfUwED/1bIz5GHgUu46zV0T+LdYJoS22U1rhyuN9J7xKjDGrsLOoL4HrK0naFjubcreLHX7S+a3HIO+db5vr5JwbLyL/Eusochg7qk+U8qZxf7IEoqp7XRttIQc7E3PTAjhyHGkfw85okrAWkteA98A6IGAdkx6qTBgRGY6dKV5ojNniinoJO6BKcMrchr03ABhjvjDG5BlrKv07dsA2qrKy/BBs27ke+x9Z5ycuUNuobruqisru/QFjTHEl8cHie79Lj6vVNkSkE9Zx5HjN8YA1LQMdgFdcYa2x/cidQCy2Lx8nIr914sdiBwajgWiste8JcTllOemGYHVCX2PM9dWVrTYUn3Ed78DO+NydcDNjzD2uNF1dx92wI7b97gzFeiK9CjwAtDfGJGLNJuIqx9fmWxpeALRxld/CGFPV2sLfnOtIMca0wC7alpaFiDTHmnLmA7Pk2LrkT1hlW5pOnOvbWUV5FRCRUVLeE8r3E3SnINY7ax5wDdbMkYg1Y4i/9MaYOcaYk7Az8N7YBeX92JHoAFddtjR2sToojF07eM/JNxD7sCO7Lq6wrgHS+qPSe+cnv27Y+wZwE9bUcrJz7mlOuPt8d/sOB9ZjTaUAiEhPrPLaEiBtaul6qEOqEw52hrvAGHPQGcw9Agxz1iZHY2eq20VkN/B7YLKIfOsqezDWEjLTGFNuDdDJ+1/GmKPGrkXOxXZUgTAEaJ+VEGzbuQg4T0Su8xMXqG0E067Cum04x3uMMQeqSisizbB96nrsUlJHYINz7x/GtovdUoW/hA+XAa+Z8o5tPYESY8wzxphiY0wm1upQ2jbSgM+MMcuNMV5jzDfA19hBmJt+wAZjzOZqyFNGbXupPQecKyLjRCRCRGLFPqfibpiXiEh/EYnHav1XjDG+C6TR2D/zPqBYRMYDbq+v+cDlYt1xPSLSWUT6GmN2YdcLHhSRFk7cCSJyehVyJ2BHQNlivYpu9ol/GFhujLkCeAf7JwY7qp3gyBGF7UgLsF5M1cIY87kp75np+/m8Gtk1w/4p94F1FMLO+CogIukicrIj/1EgH/A6s9d5wEPieFQ59TzOdW4FV2Y/FGDvp1+ce/8adkAR7yyuTw/qKi1V3TuAq0WkizNg+TPHvNcSsMo9y4n7f9UoN1QsxP7HRjmd1Z3YzsXfqH4J1vngd2Idla5xwj92vr8Bpot1CIvCmvp+MsbsB/6N7QjTnM9cbNsfByDWAep94FpjzNt+yv4GuELsc5xxwJXYZQJEpJuIjBDrFh8rIjdjZ1NfOPGjRaRKpVKNtvMT1tPxOhH5jU/czWKdnLpivVzdbaOqdhVuPAP8yulfE4G/AAsCpH0dGCgik8U62twOrDHGbMIOVpM5du9vx5rB00r7aqc9lTrolN5H92QhDrjYT/lbbLT80umfO2B9ENY48d8Ao0pneM7gapQrvpQobN9yXNSq4jPG7AAmAX/Cdro7sA3GXc6z2MrYjZ3qVngWw/kT/w6rWA4Bv8SOLEvjlwGXY80w2djF0NKZ13RsR7vBOfcVypta/XEHMMTJ6x3snwmw3qPYhfHSP8yNwBARmeaMNi7BjpT3A+diXbQLqyivTjHGbAAexJoZ9wApOJ2KH1pgFdwhrKnnAMfc0m/B2uK/csw9H2JnSDgdxRHsumdleKm6nV2DXW/ajW0fLxB8ow5471w8jx0QfY81ud3lhM/GrjPtB77CduQhp7IZvjFmPXAVVgHuxXbQv3Wd+56I/MlJW4hdm5qONSXOBM5ztc/fYwc632H/r+cA5zvn5hpjdpd+sEog3xizzzn3Jqypcb7LKlE6k8QpKxm7BrQTO9K/zIlLAB7Htrmd2P/XeNfMpCvBDx6DajvGmO1Y5XerlH/RwJtY565V2PYz3wkPpl3VK86AIUdEuvmLN8a8jzUTfoJ1yvoR12BOrPf5NCftPqxj193Y+3AyMNWJK/C599lAkXNcymbsoLEz1o8jD5f1C9vushxZ3DIexnqU3uCUuwprjbrLif8Uu578iogcwVr+/maM8X3OM4IqvMUrQ5xFwnpBRJZgF8ifqLdClTpBRC7BmkH/WEW6s7CWgL7GmINB5n0v0MEYc1mViZVGh4g8AbxsjFl8HOdq22nkiH3kZA7Qzhhz8fHkERYPXioND2PMc1WnAqy57b/AehF50BjzgG8Cx0QVjZ09pmO9uvy+/ktp/DhLCkGhbadpIdbxZi3wA3D18ebTZBSfiMzFmiV9ec4Yc1V9y9NUcMxq06pIloA1UXXCmmYfxJqgwgoRCfT2mfHVXINVao+Qtx3H9LghQHR/x8yq1ALGmJ+owRtbSqlXU6eiKIqihJqQv3tQURRFUeqTsDJ1tmnTxiQnJ4daDEVRFKUeWbFixX5jTFAvx6gNwkrxJScns3z58lCLoSiKotQjIvJj1alqDzV1KoqiKE0KVXyKEsao85mi1D6q+BQlTNmTdZS7/3Y781/190YwRVGOl7Ba4/NHUVERmZmZ5Ofnh1oUpQERGxtLly5diIqKCrUox83/Ft7FX4r+yZE1caxK+Yq03smhFklRGgVhr/gyMzNJSEggOTmZ8i+ZVxT/GGM4cOAAmZmZ9OjRI9TiHBfFJV4G7n2bYokkQfLY8/XL0LshvCdZUcKfsDd15ufnk5SUpEpPCRoRISkpqUFbCbZsXkcv2cGmlJs55GlFs8xPQy2SojQawl7xAar0lGrT0NvMT+vtZhqdB53BrlbpnJC/noJi3927FEU5HhqE4lOUpoZn92oKiaRV8iC8HVLpKAfJzMwMtViK0ihQxRcEIsJNN91U9vuBBx5g1qxZoROoCpYsWcL//lftvXDLcfbZZ5OYmMjPf/7zWpJKqQ5JhzeQGdUDImOI7zYYgIPb9OUOilIbqOILgpiYGF577TX2799fq/kaY/B6j3svxYDUhuK7+eabefbZZ2tJIqU6GGPoULid7IReALQ/MQ2AvF2bQiiVojQeVPEFQWRkJFdeeSUPPfRQhbh9+/YxefJk0tPTSU9P54sv7NrMrFmzeOCBY1vPDRw4kIyMDDIyMujTpw/Tp09n4MCB7Nixg5tvvpmBAweSkpLCokWLAKu8Ro8ezYUXXkjfvn2ZNm2a34eZ58yZQ//+/UlNTWXq1KlkZGQwd+5cHnroIdLS0vj8888rlfHSSy/llFNOoVevXsybN68s35/97GckJCRUWi8vv/wyAwcOZNCgQZx22mmAdUa6/PLLSUlJYfDgwXzyid2AecGCBZx33nmceeaZJCcn8+ijj/KPf/yDwYMHM3z4cA4etHvUzps3j/T0dAYNGsTkyZPJzc2tUO7w4cNZv/7YZt+jR49uVK+623XgEO3lENLaeqQ2a92ZXGLh4PchlkxRGgdh/ziDmzveXs+Gnw7Xap79O7Xg/507oMp0V199NampqfzhD38oF37ddddxww03MHLkSLZv3864cePYuHFjpXl99913PP300wwfPpxXX32VVatWsXr1avbv3096enqZElm5ciXr16+nU6dOjBgxgi+++IKRI0eWy+uee+7hhx9+ICYmhqysLBITE7nqqqto3rw5v//97wH45S9/GVDGNWvW8NVXX3H06FEGDx7MhAkT6NSpU1B1d+edd7J48WI6d+5MVlYWAI899hgiwtq1a9m0aRNnnXUWW7ZsAWDdunWsXLmS/Px8TjzxRO69915WrlzJDTfcwDPPPMP111/PBRdcwK9//WsA/vKXvzB//nyuvfbacuVOmTKFl156iTvuuINdu3axa9cuhg4dGpTMDYE9P26mExDX7kQbIMLeyE7E59Tr6wwVpdGiM74gadGiBdOnT2fOnDnlwj/88EOuueYa0tLSmDhxIocPHyYnJ9B+pZbu3bszfPhwAJYuXcovfvELIiIiaN++PaeffjrffPMNAMOGDaNLly54PB7S0tLIyMiokFdqairTpk3jueeeIzLS/zimMhknTZpEXFwcbdq0YcyYMSxbtizoOhkxYgQzZsxg3rx5lJSUlF3PJZfY/X779u1L9+7dyxTfmDFjSEhIoG3btrRs2ZJzzz0XgJSUlLJrW7duHaNGjSIlJYWFCxeWm9mVcvHFF/PKK68A8NJLL3HhhRcGLXND4OjurQAkdOpVFnakWTfaFKpzi6LUBg1qxhfMzKwuuf766xkyZAiXX355WZjX6+Wrr74iNja2XNrIyMhy63fuZ8qaNWsWVHkxMTFlxxERERQXF1dI88477/DZZ5/x9ttvc/fdd7N27doKaQLJCBXd/qvzGMDcuXP5+uuveeeddzjppJNYsWJFpend1+PxeMp+ezyesmubMWMGb7zxBoMGDWLBggUsWbKkQj6dO3cmKSmJNWvWsGjRIubOnRu0zA2Bkv3WpNm6a5+ysOKWPeic9TlHcvNIiI8LlWiK0ijQGV81aN26NRdffDHz588vCzvrrLN45JFHyn6vWrUKsFssffvttwB8++23/PDDD37zHDVqFIsWLaKkpIR9+/bx2WefMWzYsKDk8Xq97NixgzFjxnDvvfeSnZ1NTk4OCQkJHDlypEoZAd58803y8/M5cOAAS5YsIT09PaiyAbZt28bJJ5/MnXfeSdu2bdmxYwejRo1i4cKFAGzZsoXt27fTp0+fKnI6xpEjR+jYsSNFRUVl+fhjypQp3HfffWRnZ5Oamhp0/g2ByOwfySGO2BbHtifztE4mSkrYt2t7CCVTlMaBKr5qctNNN5Xz7pwzZw7Lly8nNTWV/v37l80+Jk+ezMGDBxkwYACPPvoovXv39pvf+eefT2pqKoMGDeKMM87gvvvuo0OHDkHJUlJSwiWXXFLmSPK73/2OxMREzj33XF5//fUy55ZAMoI1lY4ZM4bhw4dz2223la3vjRo1iosuuoiPPvqILl26sHjxYgBuv/123nrrLcB6fqakpDBw4EBOPfVUBg0axG9/+1u8Xi8pKSlMmTKFBQsWlJvpVcVf//pXTj75ZEaMGEHfvn3Lwt966y1uv/32st8XXnghL774IhdffHHQeTcU4nIz2RfRAVyz7/i23QHI2qUOLopSUySctj0ZOnSo8fXO27hxI/369QuRRI2bWbNmlXOCaWw01Laz5c4hFMa2YeAfPigL2/f9Kto+czpLB93DyPN/E0LpFKX2EZEVxph681Cr8YxPRK4VkU0isl5E7nPCzhSRFSKy1vk+o+aiKkrjxxhDYskBiuLblwtv3bEnACWHdoRCLEVpVNTIuUVExgCTgEHGmAIRaedE7QfONcb8JCIDgcVA55qJqtQ24fz2mabKkbx8kshmR/Pyii8irgWHaY7nyE8hkkxRGg819er8DXCPMaYAwBiz1/le6UqzHogTkZjSdIqi+Ofg3p20EENEi44V4yLbEZerik9RakpNTZ29gVEi8rWIfCoi/lwCJwPfBlJ6InKliCwXkeX79u2roTiK0rA5vNeaMmNaVTSQ5MR2oGXhnvoWSVEaHVXO+ETkQ8Cfm+GfnfNbA8OBdOAlEelpHI8ZERkA3AucFSh/Y8y/gX+DdW6p7gUoSmMi74B9SL1Zmy4V4gqadaLLkdWUeA0Rnoa97ZKihJIqFZ8xZmygOBH5DfCao+iWiYgXaAPsE5EuwOvAdGPMttoSWFEaM0VZuwBo2a5bxciWXUjcc5Q9Bw7Qvm2bepZMURoPNTV1vgGMARCR3kA0sF9EEoF3gFuNMV/UsIyw4I033kBE2LQp8BvyMzIyGDhwYJ3KsWrVKt59990a5TFz5kzatWtX57Iqx8GR3ZQYoUWbimt8MUlWGR74SZ/lU5SaUFPF9yTQU0TWAS8Clzmzv2uAE4HbRWSV82lXWUbhzgsvvMDIkSN54YUX/Mb7e51YdSl932Vl1IbimzFjBu+//36N8lDqBk/ePrIlAYmIqhCX0N7u1nBkjyo+RakJNVJ8xphCY8wlxpiBxpghxpiPnfC7jDHNjDFprs/e2hG5/snJyWHp0qXMnz+fF198sSx8yZIljBo1iokTJ9K/f3/AKsBp06bRr18/LrzwwrJtdT766CMGDx5MSkoKM2fOpKDA+vokJydzyy23MGTIEF5++eVy5fpu+1NYWMjtt9/OokWLSEtLY9GiRRw9epSZM2cybNgwBg8ezJtvvgnYbYAmTZrE6NGj6dWrF3fccUdZvqeddhqtW7eu9Jo//fRT0tLSSEtLY/DgwRw5cgRjTMAtlE4//XQmTZpEz549ufXWW1m4cCHDhg0jJSWFbduspfvtt9/m5JNPZvDgwYwdO5Y9eyo6akydOpV33nmn7PeMGTPKXkjdFIgqyOJIRKLfuNadTgCg8IDu0qAoNaFBvaSa926F3RVfwlwjOqTA+HsqTfLmm29y9tln07t3b5KSklixYgUnnXQSYN/DuW7dOnr06EFGRgabN29m/vz5jBgxgpkzZ/LPf/6Ta665hhkzZvDRRx/Ru3dvpk+fzuOPP871118PQFJSUtl7Pd34bvsTHR3NnXfeyfLly3n00UcB+NOf/sQZZ5zBk08+SVZWFsOGDWPsWLssu2zZMtatW0d8fDzp6elMmDAh6O17HnjgAR577DFGjBhBTk4OsbGxvPbaawG3UFq9ejUbN26kdevW9OzZkyuuuIJly5bx8MMP88gjjzB79mxGjhzJV199hYjwxBNPcN999/Hggw+WK7d0y6EJEyZQWFjIRx99xOOPPx6UzI2B2KIs8iJb+I1LaNOFIhMBWbpLg6LUBH1XZxC88MILTJ06FbAzEre5c9iwYfTo0aPsd9euXRkxYgQAl1xyCUuXLmXz5s306NGj7H2dl112GZ999lnZOVOmTPFbrr9tf3z54IMPuOeee0hLS2P06NHk5+ezfbt9kfGZZ55JUlIScXFxXHDBBSxdujToax4xYgQ33ngjc+bMISsri8jIyEq3UEpPT6djx47ExMRwwgkncNZZ1pHXveVQZmYm48aNIyUlhfvvv9/vlkPjx4/nk08+oaCggPfee4/TTjuNuLimsxtBs+IsCqJa+Y/0RHDAk0TU0Z31K5SiNDIa1oyviplZXXDw4EE+/vhj1q5di4hQUlKCiHD//fcDFbcYOp5tfgJtUxTMtj/GGF599dUKOyB8/fXXNdpy6NZbb2XChAm8++67jBgxouwl1YEIZsuha6+9lhtvvJGJEyeyZMkSv2+OiY2NZfTo0SxevJhFixaVDTiaCgnmMAdjAig+ICu6A83zd9WjRIrS+NAZXxW88sorXHrppfz4449kZGSwY8cOevToweeff+43/fbt2/nyyy8BeP755xk5ciR9+vQhIyODrVvtBqPPPvssp59+epVl+9v2x3fLoXHjxvHII49Q+rLxlSuPvTTnv//9LwcPHiQvL4833nijbCYaDNu2bSMlJYVbbrmF9PR0Nm3aVKMtlACys7Pp3Nk+mP30008HTDdlyhSeeuopPv/8c84+++yg82/oFBWXkGiO4I0LvP6aF9+RpGJ9iF1RaoIqvip44YUXOP/888uFTZ48OaB3Z58+fXjsscfo168fhw4d4je/+Q2xsbE89dRTXHTRRaSkpODxeLjqqquqLNvftj9jxoxhw4YNZc4tt912G0VFRaSmpjJgwABuu+22svOHDRvG5MmTSU1NZfLkyWXre7/4xS845ZRT2Lx5M126dCnbX3Du3LllWxbNnj2bgQMHkpqaSlRUFOPHj6/RFkpg3w160UUXcdJJJ9GmzbHn0JYvX84VV1xR9vuss87i008/ZezYsURHRwedf0MnO+sgUVKCNEsKmKY4oQvtzEFy8/LqUTJFaVzotkSNlAULFpRzgmmKNLS288N36+ixcAQrh/ydwRN/6zfNyjceZvCq28m49GuST+jrN42iNDQa3LZEiqLUDkcP2Sd+Ylw7r/sS18ZuSJu9S1+GpCjHS8NyblGCZsaMGcyYMSPUYijVID/bKr7YxMCKL7GT3Zcvb19GfYikKI2SBjHjCydzrNIwaIhtpujIfgCat2ofME2So/iKD22vF5kUpTES9oovNjaWAwcONMiOTAkNxhgOHDhAbGxsqEWpFiU5VvG1aB3YYSgqtjkHaUHEYX2WT1GOl7A3dXbp0oXMzEx0rz6lOsTGxtKlS8WtfcIZyTtAkYkgtnlipekORrYnPk83pFWU4yXsFV9UVFS5N6MoSmMlMj+LI9Kc1lW8aOBIbCfaHN1ST1IpSuMj7E2ditJUiCg6zFFP8yrTFbY6gY7ePeTn67N8inI8qOJTlDAhuiiHfI//19e5iWrXh0jxkrltw3GVU1hUzMED+8jTh+CVJkrYmzoVpakQXZJDQWTVM75W3QfACji0fR0MOCmovE1JMWvemUvM2oX0KPyO1lIEwG7asDc2maOt+hLdeRCteg6hfY+BNItrWI5BilIdVPEpSpgQW5LDodjAjzKU0rFnCgAFuzcFle/BXRkcemoKgwo38b10Y1XHi/C06EBJ/lEis76n9dGt9P3pBaJ3PQfLId9E8Z10JC8qkcKoRCQyBhHwGoPxesEUg7cEjzn2iaD8t4cSIkwJ4OuNXXH90pSuaZrSr9I0peeWP8dU+F0R41onzY7uxKAbXycqUrs7xaItQVHChGbmKPujE6pMF9s8kX3SmqhDW6tMuz9zM8w/mw7eXD5P/TunnncVPSMqrnAUFuSzdcsqjmSsRPasIzr7B2IKsmiV/z1iijEGRAARvETilYiyTwnHjgsk2h47YQahnK+OMVZRGcr0mZRTXVLu97FTK6o38Qnz5xLUsmA3Q3M/46c9P9Gpc7eqqktpItRY8YnItcDVQAnwjjHmD664bsAGYJYx5oGalqUojZlmJhdvtP9NaH3ZHXsC7XIq9+zMPrCbvCfPJ8FbwLZzX2XU0JEB00bHxHJiynBIGV4tmcOdlf+ZC8tvIf/IIUAVn2KpkXOLiIwBJgGDjDEDAF/l9g/gvZqUoShNgfz8fOKlABMbnOLLbpVCt5IfKcg97DfeeL38+MR02pXsZefZT5JaidJrzETEtwSgMDcrtIIoYUVNvTp/A9xjjCkAMMbsLY0QkfOAH4CK22wrilKOI4cPAuCJbRlU+rjuQ4kQw/b1X/uN/3LRfaTmfc23fW5kwClNZ09DXyLj7aa+RTmHQiyJEk7UVPH1BkaJyNci8qmIpAOISHPgFuCOqjIQkStFZLmILNe3syhNlVxH8ZXOUKqiS8ooALI3fVoh7seNKxiy6QHWxqUzfOqttSdkAyS6uVV8xbnZIZZECSeqXOMTkQ8Bfy8P/LNzfmtgOJAOvCQiPYFZwEPGmByp4i0Uxph/A/8Gux9fdYRXlMZC3mE7I4mKTwwqfftO3dji6UlC5pJy4UWF+RS/+mvyJJZOM55EPE37Ud2YZokAePOyQiqHEl5UqfiMMWMDxYnIb4DXjH2D9DIR8QJtgJOBC0XkPiAR8IpIvjGm6e6KqiiVUHDUKr5op6MOht3tRnHqrmc5evAnmrXuBMC3T9/CycXbWD78UYa2V2eOuAS7m73JzwqtIEpYUdPh4BvAGAAR6Q1EA/uNMaOMMcnGmGRgNvA3VXqKEpjCo1kAxCa0DvqcpBGXESletr0zG4Atn73E0MynWZZ4DkPPvrQOpGx4xCe0oMQI5B8JtShKGFHTxxmeBJ4UkXVAIXCZ0f2DFKXalDheh3EJrYI+p//AIXz5n1MZsu1J1s87yIk732BrRE/6/2puHUnZ8IiLjuIwcXgKdI1POUaNFJ8xphC4pIo0s2pShqI0BUoc54tmLYKf8YkI7X/5OFufvogBO1/m68ihdPvV0zRPCM5BpikgIhyhGRGFOuNTjqFvblGUcKDAPo8Xn5BYrdN6dk+m4I9f8uOBbIa1b01VzmRNkVxPMyKLVPEpx2jaLl+KEiZ4Co6Qa2KQyOhqnxsTFUn3Dkmq9AKQ62lOdLH/B/2VpokqPkUJAyKLDpMjVW9JpFSffE9zYopzQi2GEkao4lOUMCCyKIc8iQ+1GI2SgsjmxHpV8SnHUMWnKGFAZEkuBZ64UIvRKCmKTCDeezTUYihhhCo+RQkDooqPUhihM766oCi6BfEmF7zeUIuihAmNSvFlH9jD+r+NYsW7T4RaFEWpFjHePIpU8dUJ3pgEPBjQRxoUh0al+Jq3TKJXwQaKdqwKtSiKUi1ivLkURapzS10gMfa5RpOvD7Erlkal+CIiI/kpoiMxh78PtSiKUi1iTR4lUar46oII58XfBTlZIZVDCR8aleIDOBTbjVZ520MthqJUi3jy8EY1D7UYjZJIR/EdzT4QWkGUsKHRKb78lj3oVLILb3FxqEVRlKAwJUXEUoSJVsVXF5TuyZd3RDejVSyNTvF52vQiWorZk7k11KIoSlAUHHXeKhKtps66INZ5DVxBzsHQCqKEDY1O8SV07gfA3u/XhFgSRQmOvBzrdOGJSQixJI2T+BZ2T74iZ+snRWl0iq9rv3QAcrd/G2JJFCU48o86ii9WFV9d0NzZ8aLY2fpJURqd4kto2Zod0omYfetCLYqiBEVBrjV1RqriqxNaNo8n18Rg8vRxBsXSKLcl2tOsD52Orq9RHnl5+WRuXUPO/kzyjhxAEDwREURGxxEb35y4Zs2Jj29Os+YJNGuWgCc6DqLiISIa9C35SjUodPbii4xvEWJJGicJsVHsIx5quBntym+WkvPlk3TIWkmSdx+xFJIr8Rz2JHIwpgsFLZKJansCiR170r5rL1q0747oum1Y0igVX2HbFDrlfEL2gd20TOoQ9Hm5R4+w8r2naPnda5yYv45eUlTtskvwUEg0BRJDgcRQKNEUSgwQWBmWblkvpUdV7mFf9Sb34pMm0BnBl1m1DJWpe3dqX9kCUeEaApwWTH7BDkWCla02STR5AETF6YyvLojwCEeJx1NwfFsTHTiwj/VPXs1pRxeTTxTfx6WwtdkgSjzRUHCE+ML9tM//nvZH/0f07hJYe+zcbNOMoxJHvsSRL7GUSDQeAY/TIA1OmzOm7BsMghcxlB2DQQx4sK9dE4x9G00I2qub7yJOZOxf3gqpDMdDjRWfiFwLXA2UAO8YY/7ghKcC/wJaAF4g3RiTX9PygiGx96nwwxy+X/Ehg8+qdIN4ALwlXr5+85/0XPMgIzjITunAqvYXEJc8lPi2yTRPbItgKCkppiA/j9yjR8jPPUpB/lGK8nIoys+lpDAXb2EuESX5RHrziSwpINKbT5Q3nyhvgZ9SA3TFQfXQQXbjQc88g5Wl8vwE+zcNrpjjlC3Az0rLDbLMmnQhNe1+vo9uyaD+Q2uYixKIXE9zoo9jM9od23+g6KmJjPDuYHXyDPpMvo3+Ldr4TVtSXMzOHdvYs+M7snf/QGTOT8Tm7yWy+CgRxblEleQSXVJIiRFKjFV5IrbtGPEAAgIGj7O3orjCxbZx59u2d+c4hBamkuhuISu7JtRI8YnIGGASMMgYUyAi7ZzwSOA54FJjzGoRSQKqP306Tk4cMobc92Mo3PIRVKH49mYdZt28Kznj6Ht8F9WHrDFz6HPKz+ms5kpFaTQURCYQX03Fl33oIEVPTaSj2cP3Zz/LoFPOrTR9RGQknXv0oXOPPjURVakHajrj+w1wjzGmAMAYs9cJPwtYY4xZ7YTX6ysTomNi2Rg/iM4HvrSmgwBKbNuP28la8AvOMOtYd8IVDJh2H+KJqE9RFUWpB0qiE4jN+yno9N4SL1vmTWeIdwdbxz1DnyqUntKwqKlXZ29glIh8LSKfiki6K9yIyGIR+VZE/hAoAxG5UkSWi8jyffv21VCcY+T2OJsuZhdbV3/uN37tqm+IemosA81mdoyezcBLH1SlpyiNFBPTgthq7Mn3v7efID33c1b1/h19Tp1Yh5IpoaBKxSciH4rIOj+fSdgZY2tgOHAz8JJY43QkMBKY5nyfLyI/85e/Mebfxpihxpihbdu2ra3rov/YyygwURz6fF6FuG8+fJnur0+kueSTddFrdB19ea2VqyhKGBLXihYmh5KSkiqTHty/h76r7mJbVC+GTL29HoRT6psqFZ8xZqwxZqCfz5tAJvCasSzDOrG0ccI/M8bsN8bkAu8CQ+ryQnxp2boNK1pPIG3/O2zfbB9mN14vXz77/xj8+ZUcjGqP59ef0H7AafUplqIooSChI1FSQtb+qs2dqxfdSWtzmKhJjyARjdLxvclTU1PnG8AYABHpDUQD+4HFQIqIxDuOLqcDG2pYVrXpfdGdHJFmxLx4Ecuf/TOb7xnJKdtmszZhJB1u+JTETifUt0iKooSAyMTOABze+2Ol6TJ37+Wkva+xsdUYug08pT5EU0JATRXfk0BPEVkHvAhc5sz+DgH/AL4BVgHfGmPeqWFZ1aZNp+7s+vmz5BHD0G2Pkli4hy/7386gG94ktlnL+hZHUZQQEZfUBYDc/TsqTbf6jdm0kFw6nBPQLUFpBNRoHm+MKQT8Pi9gjHkO+0hDSBkwdDTFaWvZd+gAbVol0SFSHVgUpanRvK193qzw4M6AaTL3Z3HSrhf4IWEIPXrrbK8x0+je1emPyMgI2rZtR6QqPUVpkrTt0IVi46EkO/Aa38p3nqCDHKTF2JvrUTIlFDQJxacoStMmPjaG/dIKOex/xnc0v5B+PzxFZnRPkgaNr2fplPpGFZ+iKE2C/VGdaJ7rf43v68UvcCKZFA3/nb5kvgmgik9RlCZBVnwy7Qu3Vwj3eg1t1sxlj6cdyadNC4FkSn2jik9RlCZBUasTSeQIBYf3lgtf+eUHpJZsYE//XyGR0SGSTqlPVPEpitIkiO/UD4CdW1aVCzdLHyab5vQ95+oQSKWEAlV8iqI0CTr2ti+Pyv5+RVlYxsYVDMn9H5u7TiU6XvdDbCqo4lMUpUnQpduJ7DRtidz5VVnYvnf/Rj7R9JqkjzA0JVTxKYrSJPB4hB8TBtM9ezmmKJ+MDV8z5PBHrOk8hVZtOoRaPKUeUcWnKEqTobj/ZFqQw9Z3HqLktavJlub0ueDPoRZLqWdU8SmK0mQY9rMLWOPpS69V99CjaCtbhv1NZ3tNEN1zQ1GUJkNsTDSJM19l8eJ5tOw9guGjzgq1SEoIUMWnKEqToluXLnT71R2hFkMJIWrqVBRFUZoUqvgURVGUJoUYY0ItQxkisg+ofIvk4GiD3Qm+IdCQZIWGJa/KWnc0JHkbkqzQsOStLVm7G2Pa1kI+QRFWiq+2EJHlxpihoZYjGBqSrNCw5FVZ646GJG9DkhUalrwNSVY3aupUFEVRmhSq+BRFUZQmRWNVfP8OtQDVoCHJCg1LXpW17mhI8jYkWaFhyduQZC2jUa7xKYqiKEogGuuMT1EURVH8oopPURRFaVI0KsUnImeLyGYR2Soit4ZaHl9EpKuIfCIiG0RkvYhc54TPEpGdIrLK+ZwTalkBRCRDRNY6Mi13wlqLyH9F5Dvnu1UYyNnHVXerROSwiFwfTvUqIk+KyF4RWecK81uXYpnjtOM1IjIkDGS9X0Q2OfK8LiKJTniyiOS56nhufcpaibwB772I/NGp280iMi4MZF3kkjNDRFY54eFQt4H6rLBsu0FjjGkUHyAC2Ab0BKKB1UD/UMvlI2NHYIhznABsAfoDs4Dfh1o+P/JmAG18wu4DbnWObwXuDbWcftrBbqB7ONUrcBowBFhXVV0C5wDvAQIMB74OA1nPAiKd43tdsia704VR3fq9987/bTUQA/Rw+oyIUMrqE/8gcHsY1W2gPiss226wn8Y04xsGbDXGfG+MKQReBCaFWKZyGGN2GWO+dY6PABuBzqGVqtpMAp52jp8GzgudKH75GbDNGFMbbwCqNYwxnwEHfYID1eUk4Blj+QpIFJGO9SIo/mU1xnxgjCl2fn4FdKkveaoiQN0GYhLwojGmwBjzA7AV23fUC5XJKiICXAy8UF/yVEUlfVZYtt1gaUyKrzOww/U7kzBWKiKSDAwGvnaCrnFMA0+Gg/nQwQAfiMgKEbnSCWtvjNnlHO8G2odGtIBMpXzHEY71Wkqgugz3tjwTO6ovpYeIrBSRT0VkVKiE8oO/ex/OdTsK2GOM+c4VFjZ169NnNdS2CzQuxddgEJHmwKvA9caYw8DjwAlAGrALa+4IB0YaY4YA44GrReQ0d6Sxto2weR5GRKKBicDLTlC41msFwq0uAyEifwaKgYVO0C6gmzFmMHAj8LyItAiVfC4azL138QvKD9rCpm799FllNJS266YxKb6dQFfX7y5OWFghIlHYBrTQGPMagDFmjzGmxBjjBeZRj6aXyjDG7HS+9wKvY+XaU2q6cL73hk7CCowHvjXG7IHwrVcXgeoyLNuyiMwAfg5Mczo7HJPhAed4BXbNrHfIhHSo5N6Ha91GAhcAi0rDwqVu/fVZNLC260tjUnzfAL1EpIcz8p8KvBVimcrh2PDnAxuNMf9whbtt4OcD63zPrW9EpJmIJJQeY50b1mHr9DIn2WXAm6GR0C/lRszhWK8+BKrLt4DpjofccCDbZVYKCSJyNvAHYKIxJtcV3lZEIpzjnkAv4PvQSHmMSu79W8BUEYkRkR5YeZfVt3x+GAtsMsZklgaEQ90G6rNoQG3XL6H2rqnND9ajaAt2ZPTnUMvjR76RWJPAGmCV8zkHeBZY64S/BXQMA1l7Yr3fVgPrS+sTSAI+Ar4DPgRah1pWR65mwAGgpSssbOoVq5B3AUXYdY9fBapLrEfcY047XgsMDQNZt2LXbkrb7Vwn7WSnfawCvgXODZO6DXjvgT87dbsZGB9qWZ3wBcBVPmnDoW4D9Vlh2XaD/egryxRFUZQmRWMydSqKoihKlajiUxRFUZoUqvgURVGUJoUqPkVRFKVJoYpPURRFaVKo4lMURVGaFKr4FEVRlCaFKj5FURSlSaGKT1EURWlSqOJTFEVRmhSq+BRFUZQmhSo+RVEUpUkRNopPRJJFxDj7Uil1iIjMEJGl9VRWnIi8KyKHROQP9VGmT/kZIjK2HspZIiJXBIjTth0inHo/sbpxtSxDwDYoIqNFJNNfnFIREekkIkdEZLOInHG8+YSN4lOODxGZJSJFIpLj+tS7gqmEsUAq0NUYc19poNMZJIdMqjDCuYezqpH+lyLyo4gcFZE3RKR1JWnTRGSFiOQ632muuBgRmSsie0TkoIi8LSKd/eTRS0TyReQ5V9gEEVkqIlkisltEnijdv9GJby0ii0TkgIjsF5GF7t3Dnfuf52qzH1Tj+ptM2xGRBc4GwMGmv8G5H4dF5EkRiakk7c9EZJPTNj4Rke5+0rQWkX3ugbKIRIvIK859MCIy2uec93z6o0IRWeuKTxORz0UkW0QyReQ2n/MvFpGNjoLbICLnlcYZY34yxiQAbwO/C7ZefKk1xaej2ZCyyBjT3PW5r+pT6o3WQIYxJifUgtQEZ2PNkA8URWQA8C/gUqA9kAv8M0DaaOwGoc8BrYCngTedcIDrgFOwA5NOwCHgET9ZPYbd6NlNS+Au57x+QGfgflf8XU6ZPYATHFln+eRxrqvNnlXZdYcz4dL3icg44FbgZ0B37J6adwRI2wZ4DbgN+x9djmv3dxf3Ahv9hC8FLgF2+0YYY8a7+yPgf8DLriTPA5855Z4O/FZEJjpydca21xuBFsDNwPMi0s6nmHXYPQGPixr9kR2Nf4uIrAGOikikiAwXkf85I8HV7tGAWHPQ30VkmTMieTPQaFVELndp/e9F5P984ieJyConn21id4hGRFqKyHwR2SUiO0XkLnF2Ma7kOk4QkY99RqeJrriDIjLE+d3JGQGNdn5PFJH1zvUuEZF+PvXzexFZ44xuFolIbPVruvqIyK1OvZSOms4PkE5E5CER2evU5VoRGejExYjIAyKyXeysYK6IxFVTlEjAW4WsSWJnG4dF5BvnnrlHmEZErhKR75x6fkxExIkLeO9cpDt1cEhEniq9ByLSSkT+49zPQ85xF1e5S0TkbhH5AqtgelZxrd1F5Aunzj9wOhc305y63C8if64ir0BMA942xnzmDCZuAy4Q12zLxWhs/c82xhQYY+ZgNwotNRH1ABYbY/YYY/KxHd8AdwYiMhXIwm46WoYx5nljzPvGmFxjzCFgHjDClaQH8IYx5rAxJht43Tfv2qCqtuOTdqSI7JDyM5RznP5lv4jcL87gpqp2JX76vipETausHxCRm5z/4C4Rufx46gK7E/p8Y8x65578FZgRIO0FwHpjzMvOvZ8FDBKRvi6ZTgUGAk+5TzTGFBpjZhtjlgIllQkkdmY+CnjGFZwMLDTGlBhjtmGVaGnb6AJkGWPeM5Z3gKPYwZMbL7ZtHx813J03A7sjb1cgDjvqO4DdodcDnOn8buukXwLsxFZmM+BV4DknLhm702+k83uCc7GCHRXkAkOcuGFAtpO/xym3rxP3OnZE3AxoBywD/q+K6zjRySsGaIsdjcx2xf8a2ADEA4uBB5zw3tibciYQBfwBu1N1tKt+lmFHxa2xI6erAsgwEtvBBPqMDHDerNI69Am/yCnXA0xx5OzoxM0AljrH44AVQKJT1/1c6R7C7l7dGig1L/y9Gu0jCrsTdgX5fNK96Hzigf7Ynb6XuuIN8B9Hxm7APuDsIO9dBnZ02NW5ji+Au5y4JOwu1/HO9b2M7axLz10CbMf+KSOBqEquYQl21+ne2P/CEuAen7Y9z4kbBBQA/QLkVdn9fhO4xScsBzjJT9obgPd8wv4D3OQcD3Xqo5NTB8/71F0LYAu2M/LbzlxpZwMvun7/HHgXO+trBXwMXO9zX/Y49/IDYNBx9kHBtJ0TgbOduGE+cZ847aKbc61XVKNdrXLaVVwQ/aTffgA7OCkG7sT+X87B9nWt/OTTzWkb3QKUsxqY4vrdxrnGJD9pHwYe9wlbB0x2jiOwu76fhKu/8JNPJjC6kmu/HVjiE/Y34B7nevs4eaS7yv0UmOgcn+fEN/PJYwzWQuG3LqpsN8dzks8Nnen6fQvwrE+axcBlzvESnM7A+d0fKHQuMBmX4vNT1hvAdc7xv4CH/KRpj+1Q4lxhvwA+qeZ1nQes9Al7C1gLrAFinLDbgJdcaTxYxT7aVT+XuOLvA+bWpM79yDrLqcMs16eTn3SrgEnOcVlDxo7+twDDAY8rveCMtFxhpwA/BClXGlCE7dxOrCRdhJOujyvsLip2XiNdv18Cbg3m3jn34CrX73OAbZXIfMj1ewlwZ5DXuwT4i+v3b4H3nePStt3FFb8MmHoc9/sjfAZP7jbnE34bLmXkhC0EZjnHLbFKw2A735VAa1fah3GULJUoPqyCOAT0doV1Aj7Ejsy9wH9xBoRO/AjsICAe+CPWZJZYzboItu38EfgRGOhzvsEZQLnu2UfVaFczg5QzgwD9AFbx5eHq94C9wPDjaBvbfK4nyrnGZD9p5+Pqi52wL4AZzvENOIqRmim+raV5usJOdcKLHfnu8In/FXYwV4wdBEwIkPfLzvmzq1tXtbFmscN13B24yDFHZYlIFnYm0zFA+h+xN8fXJISIjBeRrxwzYxa2wypN1xV7k33p7uS3y1X+v7Azv4CISHsReVGsafQw1sbsK9M87Ez1EWNMgRPWybkGAIwxXuf63A4Cbht4LtC8MlmOk5eMMYmuz08iMl2sKbi0Hgbip56NMR8Dj2LXcfaKyL/FOiG0xXZKK1x5vO+EV4kxZhV2FvUlcH0lSdtiZ1PudrHDTzq/9RjkvfNtc52cc+NF5F9iHUUOY0f1iVLeNO5PlkBUda9roy3kYGdibloAR44j7WPYGU0S1kLyGvAeWAcErGPSQ5UJIyLDsTPFC40xW1xRL2EHVAlOmduw9wYAY8wXxpg8Y02lf8cO2EZVVpYfgm0712P/I+v8xAVqG9VtV1VR2b0/YIwpriQ+WHzvd+lxtdqGiHTCOo4crzkesKZloAPwiiusNbYfuROIxfbl40Tkt078WOzAYDQQjbX2PSEupywn3RCsTuhrjLm+urLVhuIzruMd2BmfuxNuZoy5x5Wmq+u4G3bEtt+doVhPpFeBB4D2xphErNlEXOX42nxLwwuANq7yWxhjqlpb+JtzHSnGmBbYRdvSshCR5lhTznxglhxbl/wJq2xL04lzfTurKK8CIjJKyntC+X6C7hTEemfNA67BmjkSsWYM8ZfeGDPHGHMSdgbeG7ugvB87Eh3gqsuWxi5WB4WxawfvOfkGYh92ZNfFFdY1QFp/VHrv/OTXDXvfAG7CmlpOds49zQl3n+9u3+HAeqypFAAR6YlVXlsCpE0tXQ91SHXCwc5wFxhjDjqDuUeAYc7a5GjsTHW7iOwGfg9MFpFvXWUPxlpCZhpjyq0BOnn/yxhz1Ni1yLnYjioQhgDtsxKCbTsXAeeJyHV+4gK1jWDaVVi3Ded4jzHmQFVpRaQZtk9dj11K6ghscO79w9h2sVuq8Jfw4TLgNVPesa0nUGKMecYYU2yMycRaHUrbRhrwmTFmuTHGa4z5BvgaOwhz0w/YYIzZXA15yqhtL7XngHNFZJyIRIhIrNjnVNwN8xIR6S8i8Vit/4oxxneBNBr7Z94HFIvIeMDt9TUfuFysO65HRDqLSF9jzC7sesGDItLCiTtBRE6vQu4E7AgoW6xX0c0+8Q8Dy40xVwDvYP/EYEe1Exw5orAdaQHWi6laGGM+N+U9M30/n1cju2bYP+U+sI5C2BlfBUQkXUROduQ/CuQDXmf2Og94SByPKqeex7nOreDK7IcC7P30i3PvX8MOKOKdxfXpQV2lpap7B3C1iHRxBix/5pj3WgJWuWc5cf+vGuWGioXY/9gop7O6E9u5+BvVL8E6H/xOrKPSNU74x873N8B0sQ5hUVhT30/GmP3Av7EdYZrzmYtt++MAxDpAvQ9ca4x520/Z3wBXiH2OMw64ErtMgIh0E5ERYt3iY0XkZuxs6gsnfrSIVKlUqtF2fsJ6Ol4nIr/xibtZrJNTV6yXq7ttVNWuwo1ngF85/Wsi8BdgQYC0rwMDRWSyWEeb24E1xphN2MFqMsfu/e1YM3haaV/ttKdSB53S++ieLMQBF/spf4uNll86/XMHrA/CGif+G2BU6QzPGVyNcsWXEoXtW46LWlV8xpgdwCTgT9hOdwe2wbjLeRZbGbuxU90Kz2I4f+LfYRXLIeCX2JFlafwy4HKsGSYbuxhaOvOaju1oNzjnvkJ5U6s/7gCGOHm9g/0zAdZ7FLswXvqHuREYIiLTnNHGJdiR8n7gXKyLdmEV5dUpxpgNwINYM+MeIAWnU/FDC6yCO4Q19RzgmFv6LVhb/FeOuedD7AwJp6M4gl33rAwvVbeza7DrTbux7eMFgm/UAe+di+exA6LvsSa3u5zw2dh1pv3AV9iOPORUNsM3xqwHrsIqwL3YDvq3rnPfE5E/OWkLsWtT07GmxJnAea72+XvsQOc77P/1HOB859xcY8zu0g9WCeQbY/Y5596ENTXOd1klSmeSOGUlY9eAdmJH+pc5cQnA49g2txP7/xrvmpl0JfjBY1BtxxizHav8bpXyLxp4E+vctQrbfuY74cG0q3rFGTDkiEg3f/HGmPexZsJPsE5ZP+IazIn1Pp/mpN2Hdey6G3sfTgamOnEFPvc+GyhyjkvZjB00dsb6ceThsn5h212WI4tbxsNYj9IbnHJXYa1Rdznxn2LXk18RkSNYy9/fjDG+z3lGUIW3eGWIs0hYL4jIEuwC+RP1VqhSJ4jIJVgz6B+rSHcW1hLQ1xhzMMi87wU6GGMuqzKx0ugQkSeAl40xi4/jXG07jRyxj5zMAdoZYy4+njzC4sFLpeFhjHmu6lSANbf9F1gvIg8aYx7wTeCYqKKxs8d0rFeX39d/KY0fZ0khKLTtNC3EOt6sBX4Arj7efJqM4hORuVizpC/PGWOuqm95mgqOWW1aFckSsCaqTljT7INYE1RYISKB3j4zvpprsErtEfK245geNwSI7u+YWZVawBjzEzV4Y0sp9WrqVBRFUZRQE/J3DyqKoihKfRJWps42bdqY5OTkUIuhKIqi1CMrVqzYb4wJ6uUYtUFYKb7k5GSWL18eajEURVGUekREfqw6Ve2hpk5FURSlSaGKT1HCjG8yDrIzKy/UYihKo0UVn6KEGQXzf84ns2eGWgxFabSE1RqfP4qKisjMzCQ/Pz/UoigNiNjYWLp06UJUVFSoRakWxhhGRqxnJOurTqwoynER9oovMzOThIQEkpOTKf+SeUXxjzGGAwcOkJmZSY8ePUItTrUo8Zrw/1MqSgMn7E2d+fn5JCUlqdJTgkZESEpKapBWgmKvvlBCUeqasFd8gCo9pdo01Dbj1TcpKUqd0yAUn6I0FXTGpyh1jyq+IBARbrrpprLfDzzwALNmzQqdQFWwZMkS/ve/au+FW8aqVas45ZRTGDBgAKmpqSxatKjqk5RaoaTEpfi8vvszK4pSG6jiC4KYmBhee+019u/fX6v5GmPweo97L8WA1FTxxcfH88wzz7B+/Xref/99rr/+erKysmpPQCUg7hlfcb6/TdUVRakpqviCIDIykiuvvJKHHnqoQty+ffuYPHky6enppKen88UXdqPzWbNm8cADx7aeGzhwIBkZGWRkZNCnTx+mT5/OwIED2bFjBzfffDMDBw4kJSWlbHa1ZMkSRo8ezYUXXkjfvn2ZNm0a/nbSmDNnDv379yc1NZWpU6eSkZHB3Llzeeihh0hLS+Pzzz+vVMZLL72UU045hV69ejFv3jwAevfuTa9evQDo1KkT7dq1Y9++fRXKfvnllxk4cCCDBg3itNNOA6wz0uWXX05KSgqDBw/mk0/sBswLFizgvPPO48wzzyQ5OZlHH32Uf/zjHwwePJjhw4dz8KDdo3bevHmkp6czaNAgJk+eTG5uboVyhw8fzvr1x9z9R48e3WhedVfiUnx5uar4FKUuaFCe03e8vZ4NPx2u1Tz7d2rB/zt3QJXprr76alJTU/nDH/5QLvy6667jhhtuYOTIkWzfvp1x48axcePGSvP67rvvePrppxk+fDivvvoqq1atYvXq1ezfv5/09PQyJbJy5UrWr19Pp06dGDFiBF988QUjR44sl9c999zDDz/8QExMDFlZWSQmJnLVVVfRvHlzfv/73wPwy1/+MqCMa9as4auvvuLo0aMMHjyYCRMm0KlTp7L8ly1bRmFhISeccEKF67jzzjtZvHgxnTt3LpsRPvbYY4gIa9euZdOmTZx11lls2bIFgHXr1rFy5Ury8/M58cQTuffee1m5ciU33HADzzzzDNdffz0XXHABv/71rwH4y1/+wvz587n22mvLlTtlyhReeukl7rjjDnbt2sWuXbsYOnRopXXeUChxDW4KjuaQ0CaEwihKI0VnfEHSokULpk+fzpw5c8qFf/jhh1xzzTWkpaUxceJEDh8+TE5OoP1KLd27d2f48OEALF26lF/84hdERETQvn17Tj/9dL755hsAhg0bRpcuXfB4PKSlpZGRkVEhr9TUVKZNm8Zzzz1HZKT/cUxlMk6aNIm4uDjatGnDmDFjWLZsWdl5u3bt4tJLL+Wpp57C46nYVEaMGMGMGTOYN28eJSUlZddzySV2v9++ffvSvXv3MsU3ZswYEhISaNu2LS1btuTcc88FICUlpeza1q1bx6hRo0hJSWHhwoXlZnalXHzxxbzyyisAvPTSS1x44YWV1ndDoqT4mOm7ILd2B3mKolga1IwvmJlZXXL99dczZMgQLr/88rIwr9fLV199RWxsbLm0kZGR5dbv3M+UNWvWLKjyYmJiyo4jIiIoLi6ukOadd97hs88+4+233+buu+9m7dq1FdIEkhEquv2X/j58+DATJkzg7rvvLlPSvsydO5evv/6ad955h5NOOokVK1YEfT0ej6fst8fjKbu2GTNm8MYbbzBo0CAWLFjAkiVLKuTTuXNnkpKSWLNmDYsWLWLu3LmVltuQKC4pKjsuyFNTp6LUBTrjqwatW7fm4osvZv78+WVhZ511Fo888kjZ71WrVgF2i6Vvv/0WgG+//ZYffvjBb56jRo1i0aJFlJSUsG/fPj777DOGDRsWlDxer5cdO3YwZswY7r33XrKzs8nJySEhIYEjR451moFkBHjzzTfJz8/nwIEDLFmyhPT0dAoLCzn//POZPn16pbOpbdu2cfLJJ3PnnXfStm1bduzYwahRo1i4cCEAW7ZsYfv27fTp0yeo6wE4cuQIHTt2pKioqCwff0yZMoX77ruP7OxsUlNTg84/3PGWHBvcFOVVbjlQFOX4UMVXTW666aZy3p1z5sxh+fLlpKam0r9//7LZx+TJkzl48CADBgzg0UcfpXfv3n7zO//880lNTWXQoEGcccYZ3HfffXTo0CEoWUpKSrjkkkvKHEl+97vfkZiYyLnnnsvrr79e5twSSEawptIxY8YwfPhwbrvtNjp16sRLL73EZ599xoIFC0hLSyMtLa1MWd5+++289dZbANx8882kpKQwcOBATj31VAYNGsRvf/tbvF4vKSkpTJkyhQULFpSb6VXFX//6V04++WRGjBhB3759y8Lfeustbr/99rLfF154IS+++CIXX3xx0Hk3BNyz+pJ8VXyKUheIP0/BUDF06FDj6523ceNG+vXrFyKJGjezZs0q5wTT2GiIbWfDDzvo//RAANYMu4/Uc/4vxBIpSt0jIiuMMfXmoaYzPkUJI7yuGZ+34GgIJVGUxkuDcm5RapdwfvtMU6XEtcbnLaz4DKOiKDVHZ3yKEka4nVuMKj5FqRNU8SlKGFHiepzBFOWFUBJFabyo4lOUMMK41vhEZ3yKUieo4lOUMMK4d2Qo1hmfotQFqviC5I033kBE2LRpU8A0GRkZDBw4sE7lWLVqFe++++5xn1/6wHv//v0ZMGAADz/8cC1Kp9QU4zJ1elTxKUqdoIovSF544QVGjhzJCy+84Dfe3+vEqkvp+y4ro6aKLzIykgcffJANGzbw1Vdf8dhjj7Fhw4bjzk+pXYz3WDuKKFHFpyh1gSq+IMjJyWHp0qXMnz+fF198sSx8yZIljBo1iokTJ9K/f3/AKsBp06bRr18/LrzwwrJtdT766CMGDx5MSkoKM2fOpKCgALCvNrvlllsYMmQIL7/8crlyfbf9KSws5Pbbb2fRokWkpaWxaNEijh49ysyZMxk2bBiDBw/mzTffBOw2QJMmTWL06NH06tWLO+64A4COHTsyZMgQABISEujXrx87d+6scM2ffvpp2VtbBg8ezJEjRzDGBNxC6fTTT2fSpEn07NmTW2+9lYULFzJs2DBSUlLYtm0bAG+//TYnn3wygwcPZuzYsezZs6dCuVOnTuWdd94p+z1jxoyyF1I3BYzLqzNCZ3yKUic0rOf43rsVdld8CXON6JAC4++pNMmbb77J2WefTe/evUlKSmLFihWcdNJJgH0P57p16+jRowcZGRls3ryZ+fPnM2LECGbOnMk///lPrrnmGmbMmMFHH31E7969mT59Oo8//jjXX389AElJSWXv9XTju+1PdHQ0d955J8uXL+fRRx8F4E9/+hNnnHEGTz75JFlZWQwbNoyxY8cCdkuhdevWER8fT3p6OhMmTCi3fU9GRgYrV67k5JNPrlD2Aw88wGOPPcaIESPIyckhNjaW1157LeAWSqtXr2bjxo20bt2anj17csUVV7Bs2TIefvhhHnnkEWbPns3IkSP56quvEBGeeOIJ7rvvPh588MFy5ZZuOTRhwgQKCwv56KOPePzxx4O8mQ0f94wv0ptfSUpFUY6XOp/xicjZIrJZRLaKyK11XV5d8MILLzB16lTAzkjc5s5hw4bRo0ePst9du3ZlxIgRAFxyySUsXbqUzZs306NHj7L3dV522WV89tlnZedMmTLFb7n+tv3x5YMPPuCee+4hLS2N0aNHk5+fz/bt2wE488wzSUpKIi4ujgsuuIClS5eWnZeTk8PkyZOZPXs2LVq08Fv2jTfeyJw5c8jKyiIyMrLSLZTS09Pp2LEjMTExnHDCCZx11llA+S2HMjMzGTduHCkpKdx///1+txwaP348n3zyCQUFBbz33nucdtppxMXF+b32Ronj3FKMh6gSVXyKUhfU6YxPRCKAx4AzgUzgGxF5yxhzfItKVczM6oKDBw/y8ccfs3btWkSEkpISRIT7778fqLjFUKBtfioj0DZFwWz7Y4zh1VdfrbADwtdffx1QlqKiIiZPnsy0adO44IIL/JZ96623MmHCBN59911GjBjB4sWLK72GYLYcuvbaa7nxxhuZOHEiS5Ys8fvmmNjYWEaPHs3ixYtZtGhR2YCjqVBq6swlniid8SlKnVDXM75hwFZjzPfGmELgRWBSHZdZq7zyyitceuml/Pjjj2RkZLBjxw569OjB559/7jf99u3b+fLLLwF4/vnnGTlyJH369CEjI4OtW7cC8Oyzz3L66adXWba/bX98txwaN24cjzzyCKUvG1+5cmVZ3H//+18OHjxIXl4eb7zxBiNGjMAYw69+9Sv69evHjTfeWGnZKSkp3HLLLaSnp7Np06YabaEEkJ2dTefOnQF4+umnA6abMmUKTz31FJ9//jlnn3120Pk3BkpNnXmeeKKNKj5FqQvqWvF1Bna4fmc6YWWIyJUislxElu/bt6+Oxak+L7zwAueff365sMmTJwf07uzTpw+PPfYY/fr149ChQ/zmN78hNjaWp556iosuuoiUlBQ8Hg9XXXVVlWX72/ZnzJgxbNiwocy55bbbbqOoqIjU1FQGDBjAbbfdVnb+sGHDmDx5MqmpqUyePJmhQ4fyxRdf8Oyzz/Lxxx+XOa+UeonOnTu3bMui2bNnM3DgQFJTU4mKimL8+PE12kIJ7LtBL7roIk466STatGlTFr58+XKuuOKKst9nnXUWn376KWPHjiU6Ojro/BsDpc/x5XviiTEFIZZGURondbotkYhcCJxtjLnC+X0pcLIx5hp/6XVbotpjwYIF5ZxgmiINse18/t6LjPr6/9gSM4CuBd8RNyv8BoOKUts0tm2JdgJdXb+7OGGKovjDWeMrimhOHIXg9YZYIEVpfNS14vsG6CUiPUQkGpgKvFXHZSrY59+a8myvoWKM49UZZR2edGsiRal96lTxGWOKgWuAxcBG4CVjTEUf9qrzqW3RlEZOg20zjnNLSVQCAHl5OaGURlEaJXX+ALsx5l3guN+xFRsby4EDB0hKSgrq0QBFMcZw4MABYmNjQy1K9XEUnzfaKr6C3ByatQqlQIrS+Aj7N7d06dKFzMxMwtHjUwlfYmNj6dKlS6jFqDZlryyLaQ5AQe6RSlIrinI8hL3ii4qKKvdmFEVp1BjrzCIx9m06hflHQymNojRK9CXVihJOOKZOT5w1dRblqeJTlNpGFZ+ihBOO4ouISwSgKF+dWxSltlHFpyjhhKP4ouKtqbOkQGd8ilLbqOJTlDBCnDW+6PiWABQX6HN8ilLbqOJTlHDCmfHFNE8EoEQVn6LUOqr4FCWccBRfbHM74zOFusanKLWNKj5FCSPE2Z0hzpnxmcK8EEqjKI0TVXyKEk447+qMjWtOkYmAIlV8ilLbqOJTlHDCmfFFRESSRwwUqVenotQ2qvgUJYzwmGK8RsDjIV9i8BSrc4ui1Daq+BQlnPAWU+L8LQskFo+aOhWl1lHFpyjhhNdLsUQAVvFFlKjiU5TaRhWfooQRxltECVbxFXpiiVLFpyi1jio+RQkjPN5CiogCoMgTS6QqPkWpdVTxKUoY4SkppEgcxRcRT5RXFZ+i1Daq+BQljPB4Cyl2ZnwlEXHEePNDLJGiND5U8SlKGBHhPTbj80bGEWNU8SlKbaOKT1HCiAhvIcWO4iuJjCeWghBLpCiND1V8ihJGWMUXDYCJiiPWFIAxIZZKURoXqvgUJYyIMEUUe+yMj6hmeMRg9CF2RalVVPEpShgR6S2kxJnxEd0MgII83ZpIUWoTVXyKEkZEmCJKnBmfJyYegPyjR0IpkqI0OlTxKUoYEWkKMRExAHhi7IwvP/dwKEVSlEaHKj5FCSMivUUQYU2dHsfUWaimTkWpVVTxKUoYEUkhRNoZX1Rsc0AVn6LUNqr4FCVMMMbQzOThjbIKLzLOfhfnq+JTlNpEFZ+ihAmFRYU0l3xKYloCEB2XAEBxvu7Crii1iSo+RQkT8rIPAmBiE4Fjps4SnfEpSq1SI8UnIrNEZKeIrHI+57ji/igiW0Vks4iMq7moitK4yc7aD0Bks0QAYuMdxVegMz5FqU0iayGPh4wxD7gDRKQ/MBUYAHQCPhSR3saYklooT1EaJUcO7QMgLiEJgJhm1tRJoSo+RalN6srUOQl40RhTYIz5AdgKDKujshSlUZB3aA8A8a3a2+/45niNYApzQymWojQ6akPxXSMia0TkSRFp5YR1Bna40mQ6YRUQkStFZLmILN+3b18tiKMoDZPirEwAWrZPBiA2KpI8oqFIZ3yKUptUqfhE5EMRWefnMwl4HDgBSAN2AQ9WVwBjzL+NMUONMUPbtm1b3dMVpdHgzd5JsfHQsm0XADweIY9YRF9SrSi1SpVrfMaYscFkJCLzgP84P3cCXV3RXZwwRVECEHl4O/s8begYeexvmS8xeIrV1KkotUlNvTo7un6eD6xzjt8CpopIjIj0AHoBy2pSlqI0dpJyv2d/XI9yYQUSq4pPUWqZmnp13iciaYABMoD/AzDGrBeRl4ANQDFwtXp0KkpgCguL6FqSyZqWI8qHe2KJKMkPkVSK0jipkeIzxlxaSdzdwN01yV9Rmgq7MjbQXYqIaN+3XHihJ464kprN+IzXy9ZNK8nKWIvHFNG2W1+69DsFT2RtPM2kKA0PbfmKEgYcyFhLd6BFt9Ry4UWeWFqU7D+uPHOOHuXb1x+ix7bn6GV2HYv4Bg7Sgu+TRtP8pIvpPexsPJFR5c4tPJrFgZ9+4MjeH8k7sIPcI1mI8RLhAU9kNBGR0URGxxAZHUN0dAyR0XF4PVEUSyQlRFJEBN6SEvB6EbxgvIix39ZA5EZch1L+2yfeHVoBESI8gkdARIhwvpsldabdCWnBV5zS6FHFpyhhQOFPGwDoeGJ5xVccEU/0cXh1rlzyOkmf/pHTzC6+i+7H8t5X0K7vqRQRwb5tq4j47l36719Msw/e4vAHzdgd1YUioon25tK2ZA+J5NAR6FhlSeFPoYlg/9XradOuMVyNUhuo4lOUMCDq4BZ204YOLVqVCy+OjCPGBL/GV1BYyNJ5N/Gzfc+w09OR785cQK9Tzy+X5oSBJwP/R07OYZZ9+iol331E89wdROAlPzqJTXEDKWrRjYjErsS16UqLdt1ISmpHRGQkhSWGwsICCvLzKSjIJz8/n4KCPIoKCoikmChTRCTFRFKCeDxIRCTgwYiAeDASQfl527HZnzjHxrhmhOWOvQGv2wBeY5N7jcHrNRgMuZlrGbXlHnZt+II27S4Muh6Vxo0qPkUJA1od3cae2GQ6+ISXRDYjNkjFdzArm4x/TuZnhd+wpu1E+sx8nBhnayN/NG/egmETLgcuP37Bw5yDB0/Bu/leCn/8BlDFp1h0dwZFCTGmpJhOxTs42uLEinFR8cSRX37m44fdBw6x7ZGJpBUsZ3XaLFKvfrZSpddUaN06iR+kM/H7VoVaFCWMaFQzPm9JCStnX4i3x2h6j5lGy1ZtapSfMYaCwkIK8nPBWztPY9g1+0qX6IPLp3yGx59PudNrmFfgjKuXT4VTjy8v8XfeccgV+JSa30eAgzu/o5MUQbt+FeJMVDMi8EJxPkTF+T1/76EsdvzzPE4qXs2Po+5n0Nhf14pcjYWfmg8g5eiXdvBQw/+L8XopyDtCXk42efkFGK8XwVinH0AiBI9E4PF48HgiEI9theKJcMoWxOOx32LjQUDEdeypsZwV5K583FQDhNi4+LrKvM5oVIpv/+7ttMvZRNc1H+Nd/f/IiOhKdmwnCqJagceDGAOmmIiSAjwlBUR4C4j0FhLhLSTKFBJpCok2BURTRLQpJIYiYsVLbKgvTGnUdHK+E7qmVogz0c0A8BYcxeNH8e3Pyibj0fMZWryajJH30VOVXgWk80kkbl7MvswttO3aJ6hzfsrMYNe6zync/g3R2T/QMn8nSSV7STBHy/qEVlXm0vj5xtuX9Du/DrUY1aZRKb52nXtgblvPphUfk7X2A2L3raZ5/h465H6HYPDiwSseiiSGIomm2BNNsSeGwshmHPXE4I2wHxMRg4mMxUTGIpExEBmL8UTUWL7SUZdUcOeuUa61eOrx51XRQf348vI3Mj2evAKdIdUc+tbenao8J4ltSfrQ0yuEe6LtaLog9zBxzctbMA5mH+H7Ry9gWMm3bD31Hk4888pak7Yx0SH1DNj8N7Z/+Rptu/7Rb5qSEi/rViwhe/kr9Nj3CV3NT3TCeoTuiejAoZjOHIhPwRvbCm9MCyS2BVGRUYh4KH1Aw+stdczxYrxejDEY4wVjbBt2jm1q64kjpY93lKWxcYKX2rIo1CW5sb6r0g2DRqX4AMTjoW/6WEgP6hWjihLWSIxdp8vPPYJ7vpd1+AhbHz2fYcXL+e7ku+k17jehEbABcEL/oWzxnEi7jc9QkH8dMbF2MOEtKWHzt0s4+M0rJO/9kEHspchEsDl+CLu6/oJWvUfQdcBwusY1K/fiYaXh0+gUn6I0JjyOqbMw90hZ2OEjh9n6yPkMK1rO5vQ76TP+mlCJ1yAQEfJG/ZHen/6KjQ+N40iX0cjBbSQf+h/9OEShiWBzs6Hs73sdvU+fysCWNfMNUMIfVXyKEsZExtld2AvzcgDYd2A/mXMnM6RwNRvT/0q/Cb8LpXgNhkFjLmTp3gz6b3yYftvmcNg0Y2vCULb3Hk+f0y8mpWVSqEVU6hFVfIoSxkS3sHtU5h/cyeb1q4h+5RJSvDvZNPwe+o+/KsTSNSxGTvk9xcXXk51zmISERIZE6NNcTRVVfIoSxrRP7k+hiaDNF7OIMQUUSjTbJyyk/7BzQi1agyQyMpKWia1DLYYSYnTIoyhhTKfWLVgZmUYrDvN9wknIVZ/TU5WeotQInfEpShjj8Qipv3+Xn/ZmMrB7xTe7KIpSfVTxKUqYExcXS5wqPUWpNdTUqSiKojQpVPEpiqIoTQoxdff20mojIvuAH2shqzbA8W1bXf80JFmhYcmrstYdDUnehiQrNCx5a0vW7saYtrWQT1CEleKrLURkuTFmaKjlCIaGJCs0LHlV1rqjIcnbkGSFhiVvQ5LVjZo6FUVRlCaFKj5FURSlSdFYFd+/Qy1ANWhIskLDkldlrTsakrwNSVZoWPI2JFnLaJRrfIqiKIoSiMY641MURVEUv6jiUxRFUZoUjUrxicjZIrJZRLaKyK2hlscXEekqIp+IyAYRWS8i1znhs0Rkp4iscj5h8RZiEckQkbWOTMudsNYi8l8R+c75bhUGcvZx1d0qETksIteHU72KyJMisldE1rnC/NalWOY47XiNiAwJA1nvF5FNjjyvi0iiE54sInmuOp5bn7JWIm/Aey8if3TqdrOIjAsDWRe55MwQkVVOeDjUbaA+KyzbbtAYYxrFB4gAtgE9gWhgNdA/1HL5yNgRGOIcJwBbgP7ALOD3oZbPj7wZQBufsPuAW53jW4F7Qy2nn3awG+geTvUKnAYMAdZVVZfAOcB7gADDga/DQNazgEjn+F6XrMnudGFUt37vvfN/Ww3EAD2cPiMilLL6xD8I3B5GdRuozwrLthvspzHN+IYBW40x3xtjCoEXgUkhlqkcxphdxphvneMjwEagc2ilqjaTgKed46eB80Inil9+BmwzxtTGG4BqDWPMZ8BBn+BAdTkJeMZYvgISRaRjvQiKf1mNMR8YY4qdn18BXepLnqoIULeBmAS8aIwpMMb8AGzF9h31QmWyiogAFwMv1Jc8VVFJnxWWbTdYGpPi6wzscP3OJIyViogkA4OBr52gaxzTwJPhYD50MMAHIrJCRK50wtobY3Y5x7uB9qERLSBTKd9xhGO9lhKoLsO9Lc/EjupL6SEiK0XkUxEZFSqh/ODv3odz3Y4C9hhjvnOFhU3d+vRZDbXtAo1L8TUYRKQ58CpwvTHmMPA4cAKQBuzCmjvCgZHGmCHAeOBqETnNHWmsbSNsnocRkWhgIvCyExSu9VqBcKvLQIjIn4FiYKETtAvoZowZDNwIPC8iLUIln4sGc+9d/ILyg7awqVs/fVYZDaXtumlMim8n0NX1u4sTFlaISBS2AS00xrwGYIzZY4wpMcZ4gXnUo+mlMowxO53vvcDrWLn2lJounO+9oZOwAuOBb40xeyB869VFoLoMy7YsIjOAnwPTnM4Ox2R4wDlegV0z6x0yIR0quffhWreRwAXAotKwcKlbf30WDazt+tKYFN83QC8R6eGM/KcCb4VYpnI4Nvz5wEZjzD9c4W4b+PnAOt9z6xsRaSYiCaXHWOeGddg6vcxJdhnwZmgk9Eu5EXM41qsPgeryLWC64yE3HMh2mZVCgoicDfwBmGiMyXWFtxWRCOe4J9AL+D40Uh6jknv/FjBVRGJEpAdW3mX1LZ8fxgKbjDGZpQHhULeB+iwaUNv1S6i9a2rzg/Uo2oIdGf051PL4kW8k1iSwBljlfM4BngXWOuFvAR3DQNaeWO+31cD60voEkoCPgO+AD4HWoZbVkasZcABo6QoLm3rFKuRdQBF23eNXgeoS6xH3mNOO1wJDw0DWrdi1m9J2O9dJO9lpH6uAb4Fzw6RuA9574M9O3W4GxodaVid8AXCVT9pwqNtAfVZYtt1gP/rKMkVRFKVJ0ZhMnYqiKIpSJar4FEVRlCaFKj5FURSlSaGKT1EURWlSqOJTFEVRmhSq+BRFUZQmhSo+RVEUpUnx/wGo2xUYicTgkgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 8)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABkvElEQVR4nO2deXyUxf3435/dzUnCFZBbDrkhIdwooGAVD6qoqNiqiFatVq1XPX5ttWjbbz2rolZbquKJWA/UImJFUVEBueQGQcIlNwQSyLn7+f0xz4bNZjfZkITdLPN+seR5ZuaZ+TzzzDOf+czMMyOqisVisVgs8Ywr2gJYLBaLxVLXWGVnsVgslrjHKjuLxWKxxD1W2VksFosl7rHKzmKxWCxxj1V2FovFYol7Yk7ZiUgHEVER8URbFsvRIyK3iMhPIvJ9FNKeKCKvHYN0JojI3Er854jItXUth6U8IjJFRP5SXb9alqHSMigiOSJyRl3LES+IyIcisltEHj3aOGJO2Vmqj4g8LyL5zq9YREoCzmdGSayJwG9UtU+AnBNFZGKU5IkpnEZdTjXDfy4ih0VkTWUVpYgkiciLInJQRHaIyB1B/peKyGoRyRORVSJyQZh4Zgc2PEXkBBGZ6jRiDojI1yIyOOiaW0Rko5P2QhEZFuA3Mahs5otIpwjv/7gpOyIyQkTmVCN8togscsrGIhHJriRsUxF5T0QOicgmEfllmHAvOs++c4Dbzc4zLRKRKUHhLw96roed6/s7/klOPbVTRPY5yqtNwPUdROQjEdnvlNlnAg0eVT0PGAn8TkQaR5o3gdS6srMW2bFHVW9Q1TRVTQP+D5jmP1fVc/zhjvGzaQqsOIbp1QkxVJ6nAkuADOAPwNsi0jxM2IlAF6A9poK4W0TOBnAqmNeAO4CGwF3AGyJyQmAEInI5kBAUbxrwHdAf83xfBmaISJpzzWDgIeBioBHwAvCeiLgD4ggsm2mq+mN1MyJWiIWyISKJwPuYZ9oE80zed9xD8SxQDLQALgeeE5FeQXEOA04Kce1PwF+AF4M9VPX1wOcK/Ab4EVjsBLkVOBnIAloD+4GnA6L4B7ALaAVkA6c5cQSm4a9PMsLcW6XUirJzTPJ7RGQZcEhEPCIyRES+EZFcEfleREYEhJ8jIn8TkQVOC/B9EWkaJu6rA1qhP4rIr4P8x4jIUieeDQEvdSMReUFEtovINhH5S9BLFyqtk0TkMxHZKyJ7ROR1fyvC8dsnIv2c89ZizOoRzvn5IrLSud85ItIjKH9+JyLLnBbxNBFJrn5OV58wzya4xVaua0dEfu7kaa7zDLOqmaY/n31VhLvbeT4/ici1gXI5Mj0rIjOcZz9fRE4KuPYpEdniPPdFIjI8KPpkJ5/zRGSxiARamPc6ZcVv2VwY4DdBjMXyhIjsxSiOqu73MadFulFEzgnybu/Elycin4hIs6riCxF/V6Af8CdVLVDVd4DlwNgwl1wF/FlV96vqamAyMMHxawvkqupMNcwADhFQuYlII+BPwN2Bkarqj6r6d1XdrqpeVf0XkAh0c4J0AFaq6iI1SzO9AjQDyinS2qCyshMULl2MRTxJRMRxbiYi/3OeyRci0j4gfNhyJca6fFtEXhORgxzJ03AkisgrTjorRWRAkH92LdQJIwAP8KSqFqnqJECA04MDikgDTJm5T1XzVXUu8AFwZUAYD0YJ3RJ8vaq+q6rTgb0RyHUV8IoeWaKrIzBLVXeqaiEwDQhUsh2Bt1S1UFV3AB8H+ZeJ4dxv9VHVGv+AHGAp0A5IAdpgMuRcjEI90zlv7oSfA2wDegMNgHeA1xy/Dv4bcs5HY15EwWj7w0A/x28QcMCJ3+Wk293xew/4pxP/CcAC4NdV3EdnJ64koDnwJaYQ+f2vA1YBqcAs4DHHvSumwjgT0xq+G1gPJAbkzwJMi6YpsBq4IYwMw4DcSn7DqriHif68DPVsHDcFOgeEmQL8xTnui2lhDQbcmEKbAyRVozycDRQCDaoIswNToFMxLdMyuRyZ9jrP2AO8DrwZcP0VmBaeB7jTiSs5IA9KMBZGAvA7YCOQ4Phf4jwLFzDOeXatHL8JQCnmZff48yzMPUxw0rnOyasbMa1fCSjnG5zykeKcPxQmrn8A/wjjdyGwOsjtGeDpEGGbOPnYIsDtYmC5c+wGvgDOd44vALYGPitM6/92gt7FEGllO8+5kXPeEFgUUHZuwVij/vyYiHlf9wErgRuPsr6JpOz8xSkfC3DKdoBfHnAq5j1/CphbzXJ1gVN2KisbE528OdfJi78B84Ley0jrhP8C94bxux2YGSL8nSHC9gUOB7n9Dvgw4Pwu4KlQ9URAmL8AUyq59/aAF+gY4DYA+Nq531TgDcrXrb/GNI5SMfX4CuDCEHFvAm7yl6lqlZujKWwhBMgBrgk4vwd4NSjMLOAq53gOAS890BNjWrup+gWbDtzqHP8TeCJEmBZAUWBhBH4BfF7N+7oAWBLk9gGmVb0MRwEA92FaJf4wLowyHxGQP1cE+D8CPF8beR9C5olUVHbXBIWpTNk9h7EKAsOvBU6LMP2FTvy/rSLci8DfAs47U7HC+neA/7nAmkri2w/0CciDwIrFBWwHhoe5dikwxjmeAGyO8F4nAOsDzlOde2gZUM7/GOD/G+Djo3imVwbej+P2V0JUOJhGjeJU0I7bmUBOwPmvgHyMUj8MjA7wG+Dkh4dK3kWMYlsO/L8ANwF+j1EIpcAeYGCAf09MZecGTnGeyS+OIj8iKTsvYirMu4KunUL5RlMapmJuF2G5+jJCGScCnwbde0HAeQ61UCdg6p43g9xeByaGCDsc2BHkdh0wJ6DsrOdI4+Vold19/jgD3BoBbzpxlmIaQU0D/HtgGkqlTpgphFBomIZfMaZ3olp5VZtjdlsCjtsDlzjdYLkikouxWFqFCb8J0wKv0MUjIueIyDynCzEXU+n5w7XDtJyDae/Etz0g/X9SRXeKiLQQkTfFdHsexLQYg2WajLFIn1bVIsettXMPAKiqz7m/NgHX7Qg4Pox5yY4VW6oOUkZ74M6gZ9cOc4+RMBC4DJgoIsFjPoG0DpIrlIxh88zpFl7tdAHlYl6mwGdVFp/zPLb670FExgd00+ZinmfIayOgTEZVPewcpoXyD76HapCPUS6BNMRYKKHC+v0rhBUzseURTPdXIqa35N9iJjm4MBbmrapaGk4YEUkBPsQo4L8FeP0KuBpjcSVirKT/ikhrAFVdpao/qekC/QZjVV1cxb2HIpKyMxpjTT8fwi+wbORjLE1/2Yi4XEVA8LNPlvLjfNEoG5WFfRJ4UFUPHIUcgYzHjB0G8izGks7A9La9C8wEcMrdx45bA0x+NwEeDhH3A5iGRMhhr8qoTWWnAcdbMJZd44BfA1V9KCBMu4DjEzGtwT2BEYpIEqaL8zFMt0xj4CNMC9KfTqiB1C0Yy65ZQPoNVTVUH3Ag/+fcR6aqNsS8rP60EDMQ/yRm4H2iHBln/AmjJPzhxLm/bVWkVwERGS7lZzUF/4LHpiJBg84PY6wQPy0DjrcAfw16dqmqOjWihEzzazqmsLaqJOh2zPiRn3bhAgbj5MHdwKVAE6dcHCDgWQXG57xMbYGfnPGZycDNQIZz7Yqga4PzK9qsBDqJSHqAWx/HvRyquh+Tt33ChM3GWCcLVdWnqt8B84EzMBXfAGCaiOzATEYB2Oovd847OR3TeCg3fu7E/V9VXefE/bEjyylh7kspn++REknZmYypQD9yxqoIFd55p5tiykYk5SoWy0ZWwHgkmEkgFcoGsA7wiEiXALfAsvEz4FExsyH9ivhbCTNjMxQiMhTTcHg7yCsbYw3uc4yEp4FBzhh2U4wOeEbNuONe4CWMYRNMD+B9pwFbLerq04PXgPNE5CwRcYtIspjptIEF9AoR6SkiqcCDwNuq6g2KJxHTGtgNlDqD/6MC/F8ArhaRn4mIS0TaiEh3Vd0OfAI8LiINHb+TROS0KuROx7R+DoiZtXZXkP9TwEJVvRaYwZFW41vAaEeOBExffxHwTVUZFYyqfqXlZ6sF/76qbpwhWAr80nk2Z2Na934mAzeIyGAxNBCR0f6KVszEkSlV3IPf4g03IwxMnl0tIj2cMnBfNeRPx3R37Ma8vPdTscXaX0QuclrSt2GexzxMy1GdaxGRqzGWXcyiquswz+xPzrt0IaZCeyfMJa8AfxSRJiLSHdNVNcXx+w4YLs70dBHpi+neWoap2FtjKqZsjlQ2/YH5Ttl+GyjADEkEVzjfYd6DTk7ZORMzXrnCSWuMI5OIyCDgt5iZhDj+OSIyIYIsibTs3Izpgv/QsUb9nCsiw8TMWPwzxkLdQmTlKtaYg+mG/a2Y6f03O+6fBQdU1UMY6+lB570eCowBXnWCdMUov2znB3AeZv4DYia3JWO6of31evBkkauAd1Q12LL8DhgvZuJgAqZL/ydV3aOqezBj6jc6aTR24lkW4n49mHe52tSJsnMKzhhM//1ujLVwV1B6r2JewB1AMqbgB8eT57i/hek7/yVmzMzvvwDTbfIE5kX9giMW1nhMZbvKufZtKrc0wJjI/Zy4ZmAKBmBeVMzA+I2O0x1APxG5XFXXYqzApzHW6XnAeapaXEV60eJWjIy5mOnH0/0eqroQUzk+g8m39ZSfddYOM9BcFUol5UtVZwKTgM+dNOY5XpEU5FmYVvs6TPdxIRW7l97HTD7ZjxnzukhVS1R1FfA48C2wE8iM8H7qFDHfIIXqcvNzGcbq2o8zvV9V/Qr7chEJbMn/CdO9vwnzTjzqWFmo6heYbqC3RSQPozD/T1U/UcMO/w+nQQDsdMryKcDPMQ3O3BC9Da9gxmXmAAcxz/fXqrom4B7WY7rNXgEeVtWXnXtIxHRx+ctBWCItO04vw/UYK/R9OTLb8Q0nj/ZhFPkVjnsk5eqYIyIzReT3ofyc53IBpr7LBa4BLvDXPSLyeyn/re1vMN27uzCfs9yoqiuduHYFPX+APapa4Bz/EdPQuReTZwWOm1/OZIxVHNyFCWYiTCHwA6ZcnYsZf/NzEaZ+3Y15piWYyTeB+RDRLO9w+GdJHVPEfDD5mqr++5gnbjlqnArpeyBLVUuqCPsTcLeqRrSSiZhPNVZgJv2EHS+yxCdivu26SVV/cRTX2rJzHOD0BnwLNA5hOVaJXUHFEjGqWqyqPapSdA73YrrdFoULICIXOl0v/sHoD21ldXyiqnOro+hs2Tm+EJHpmN65+45G0cFxqOyk/NJagb/KupAs1URVX1HVLqrav5Jgv8Z0p2zAjDvcWEnYqGDLS8wS9bLjdC+GKhshuxwtR4+qXqCqJ6rq/x1tHFHpxrRYLBaL5Vhy3Fl2FovFYjn+iPpCpoE0a9ZMO3ToEG0xLBaLxXIMWbRo0R5VDbewea0QU8quQ4cOLFy4MNpiWCwWi+UYIiKbqg5VM2w3psVisVjiHqvsLJYYx04is1hqjlV2Fksso8qsZ25hxV9OZseab6MtjcVSb4mpMbtQlJSUsHXrVgoLC6MtiqUekZycTNu2bUlIqGzjhdhn3dy3OXuvWbpwy5sTOHj3UhqmplRxlcViCSbmld3WrVtJT0+nQ4cOiBzNAumW4w1VZe/evWzdupWOHTtGW5wakT/3n2ynGfuH3kfPr2/l69lTGXreNdEWy2Kpd8R8N2ZhYSEZGRlW0VkiRkTIyMio970B23fupHfhYna2O4cep19BLg1h1QdVX2ixWCpQY2UnIreIyBoRWSkijzhuZ4rIIhFZ7vw9vYZp1FRMy3FGPJSZzYs+JlG8NOxzPuL2kJMxnMzD8+u9ErdYokGNlJ2IjMRs5dPH2Rj1McdrD2aLm0zMvkSvhonCYrGEoXDjfErUTfsss4OOu9soGsph1n0f9R2JLJZ6R00tuxuBh/ybdarqLufvElX9yQmzEkgRs8NxvUREuPPOO8vOH3vsMSZOnBg9gapgzpw5fPNNtfeNLcfZZ59N48aN+fnPf15LUlmqS5N937M5qQvuRDMhpUNf00GSu6Y29u+1WI4vaqrsumJ2PZ4vIl+IyMAQYcYCiwN2r653JCUl8e6777Jnz55ajVdV8fmOah/CSqkNZXfXXXfx6qvWII8WJaWlnFT6A/ubHNlEPb35iWyXE2iwy64yZLFUlyqVnYh8KiIrQvzGYGZzNgWGYHYif0sCBktEpBdmr6lfVxL/9SKyUEQW7t69O1ywqOLxeLj++ut54oknKvjt3r2bsWPHMnDgQAYOHMjXX5supokTJ/LYY4+Vhevduzc5OTnk5OTQrVs3xo8fT+/evdmyZQt33XUXvXv3JjMzk2nTpgFGYY0YMYKLL76Y7t27c/nll4f8uHjSpEn07NmTrKwsLrvsMnJycnj++ed54oknyM7O5quvvqpUxiuvvJKTTz6ZLl26MHny5LJ4f/azn5Genl5pvvznP/+hd+/e9OnTh1NPPRUwE4quvvpqMjMz6du3L59//jkAU6ZM4YILLuDMM8+kQ4cOPPPMM/z973+nb9++DBkyhH379gEwefJkBg4cSJ8+fRg7diyHDx+ukO6QIUNYufLIxtwjRoyIu2Xmtm36gQZShLtFr/Lu6Vm0P7Q8SlJZLPWXKj89UNUzwvmJyI3Au2pq4QUi4gOaAbtFpC3wHjBeVTdUEv+/gH8BDBgwoNKlIh74cCWrfjpYlcjVomfrhvzpvF5VhrvpppvIysri7rvvLud+6623cvvttzNs2DA2b97MWWedxerVqyuN64cffuDll19myJAhvPPOOyxdupTvv/+ePXv2MHDgwDLFsWTJElauXEnr1q0ZOnQoX3/9NcOGDSsX10MPPcTGjRtJSkoiNzeXxo0bc8MNN5CWlsbvfvc7AH75y1+GlXHZsmXMmzePQ4cO0bdvX0aPHk3r1q0jyrsHH3yQWbNm0aZNG3JzcwF49tlnERGWL1/OmjVrGDVqFOvWrQNgxYoVLFmyhMLCQjp37szDDz/MkiVLuP3223nllVe47bbbuOiii7juuusA+OMf/8gLL7zALbfcUi7dcePG8dZbb/HAAw+wfft2tm/fzoABAyKSub6wa8NyOgCNTuxdzr24RV+aHfyUfTs307TFiVGRzWKpj9S0G3M6MBJARLoCicAeEWkMzADuVdW4GE1v2LAh48ePZ9KkSeXcP/30U26++Ways7M5//zzOXjwIPn5+ZXG1b59e4YMGQLA3Llz+cUvfoHb7aZFixacdtppfPfddwAMGjSItm3b4nK5yM7OJicnp0JcWVlZXH755bz22mt4PKHbLpXJOGbMGFJSUmjWrBkjR45kwYIFEefJ0KFDmTBhApMnT8br9ZbdzxVXXAFA9+7dad++fZmyGzlyJOnp6TRv3pxGjRpx3nnnAZCZmVl2bytWrGD48OFkZmby+uuvl7Pg/Fx66aW8/fbbALz11ltcfPHFEctcXzj80yoAWnfuU869Ycd+AGxbHflzslgsNf+o/EXgRRFZARQDV6mqisjNQGfgfhG53wk7yj+B5WiJxAKrS2677Tb69evH1VdfXebm8/mYN28eycnJ5cJ6PJ5y43GB08UbNGgQUXpJSUfm9LjdbkpLSyuEmTFjBl9++SUffvghf/3rX1m+vGIXVzgZoeIU/epM2X/++eeZP38+M2bMoH///ixatKjS8IH343K5ys5dLlfZvU2YMIHp06fTp08fpkyZwpw5cyrE06ZNGzIyMli2bBnTpk3j+efjb9PwhP0/kEs6jRu3KOferudg+AQObVoMxJ+St1jqihpZdqparKpXqGpvVe2nqp857n9R1Qaqmh3wq5GiiwWaNm3KpZdeygsvvFDmNmrUKJ5++umy86VLlwJmu6LFixcDsHjxYjZu3BgyzuHDhzNt2jS8Xi+7d+/myy+/ZNCgQRHJ4/P52LJlCyNHjuThhx/mwIED5Ofnk56eTl5eXpUyArz//vsUFhayd+9e5syZw8CBoeYYhWbDhg0MHjyYBx98kObNm7NlyxaGDx/O66+/DsC6devYvHkz3bp1izjOvLw8WrVqRUlJSVk8oRg3bhyPPPIIBw4cICsrK+L46wuND29kR2LFbspGjTPYJi1I3L0iClJZLPWXmF9BJda48847y83KnDRpEgsXLiQrK4uePXuWWRljx45l37599OrVi2eeeYauXbuGjO/CCy8kKyuLPn36cPrpp/PII4/QsmXLiGTxer1cccUVZZNBfvvb39K4cWPOO+883nvvvbIJKuFkBNMNOnLkSIYMGcJ9991XNl43fPhwLrnkEmbPnk3btm2ZNWsWAPfffz8ffGBW8bjrrrvIzMykd+/enHLKKfTp04ff/OY3+Hw+MjMzGTduHFOmTCln0VXFn//8ZwYPHszQoUPp3r17mfsHH3zA/fffX3Z+8cUX8+abb3LppZdGHHd9onnJdvIbhB6T25XaleaHfjjGElks9RuJpe1DBgwYoMGz6lavXk2PHj2iJFF8M3HixHITWeKN+lp28g8fJvXh1izqcB0Dr360gv+3L93DyZueJ/+OHNIaNomChBZL7SIii1S1TmeZWcvOYokxdmxej0uUhIz2If1T2vUFYOua746lWBZLvSbmdz2w1B2xvArM8cz+7eZLnfSWoXdsaNFtIMyFAzlLYNCoYymaxVJvsZadxRJjFO7OAaBJ65NC+rds05H9pOPaYT8ut1gixSo7iyXWyN2CT4UmYSw7cbnYmngSjQ+uPcaCWSz1F6vsLJYYIyF/G3tdTRBP+FmseY27065kI77SkmMomcVSf7HKzmKJMdIKt7PP06LSMK5WWSRLCds3VlxhxmKxVMQquwiZPn06IsKaNWvChsnJyaF3795h/WuDpUuX8tFHH9UojmuuuYYTTjihzmW1HB2NS3ZyKLnyby2bdDLLhu35wc7ItFgiwSq7CJk6dSrDhg1j6tSpIf1DLeVVXfzrS1ZGbSi7CRMm8PHHH9coDkvd4PP6aOrbT2mDyi279t2yKVIPxduWHSPJLJb6jVV2EZCfn8/cuXN54YUXePPNN8vc58yZw/Dhwzn//PPp2bMnYJTe5ZdfTo8ePbj44ovLtqiZPXs2ffv2JTMzk2uuuYaiIrO9X4cOHbjnnnvo168f//nPf8qlG7yFTnFxMffffz/Tpk0jOzubadOmcejQIa655hoGDRpE3759ef/99wGzpc6YMWMYMWIEXbp04YEHHiiL99RTT6Vp06aV3vMXX3xBdnY22dnZ9O3bl7y8PFQ17HZEp512GmPGjKFTp07ce++9vP766wwaNIjMzEw2bDBT6T/88EMGDx5M3759OeOMM9i5c2eFdC+77DJmzJhRdj5hwoSyRZ+PB/Yf2E+qFCHplVt2yckpbHafSOq+VcdIMoulflO/vrObeS/U9nTrlplwzkOVBnn//fc5++yz6dq1KxkZGSxatIj+/fsDZt3LFStW0LFjR3Jycli7di0vvPACQ4cO5ZprruEf//gHN998MxMmTGD27Nl07dqV8ePH89xzz3HbbbcBkJGRUbaOZiDBW+gkJiby4IMPsnDhQp555hkAfv/733P66afz4osvkpuby6BBgzjjDLMr04IFC1ixYgWpqakMHDiQ0aNHR7wVzmOPPcazzz7L0KFDyc/PJzk5mXfffTfsdkTff/89q1evpmnTpnTq1Ilrr72WBQsW8NRTT/H000/z5JNPMmzYMObNm4eI8O9//5tHHnmExx9/vFy6/u17Ro8eTXFxMbNnz+a5556LSOZ4YN+OzWQAiY2r3mZpT1pXuh6cV/dCWSxxgLXsImDq1KlcdtllgLE8ArsyBw0aRMeOR6aIt2vXjqFDhwJwxRVXMHfuXNauXUvHjh3L1se86qqr+PLLL8uuGTduXMh0Q22hE8wnn3zCQw89RHZ2NiNGjKCwsJDNmzcDcOaZZ5KRkUFKSgoXXXQRc+fOjfiehw4dyh133MGkSZPIzc3F4/FUuh3RwIEDadWqFUlJSZx00kmMGmU+dg7cvmfr1q2cddZZZGZm8uijj4bcvuecc87h888/p6ioiJkzZ3LqqaeSkpISsdz1nUP7fgIguUmrKsOWNu9FBrnk79la12JZLPWe+mXZVWGB1QX79u3js88+Y/ny5YgIXq8XEeHRR82ahcHb9RzNljnhtvyJZAsdVeWdd96psLPA/Pnza7R9z7333svo0aP56KOPGDp0aNlC0OGIZPueW265hTvuuIPzzz+fOXPmhFzBJTk5mREjRjBr1iymTZtW1sg4XihylF1aRtsqwzZo3xc2wLY139FtWNXhLZbjGWvZVcHbb7/NlVdeyaZNm8jJyWHLli107NiRr776KmT4zZs38+233wLwxhtvMGzYMLp160ZOTg7r168H4NVXX+W0006rMu1QW+gEb99z1lln8fTTT+Nf0HvJkiVlfv/73//Yt28fBQUFTJ8+vczijIQNGzaQmZnJPffcw8CBA1mzZk2NtiMCOHDgAG3atAHg5ZdfDhtu3LhxvPTSS3z11VecffbZEccfD5Qe3AFAoxOqVl6tuprtmMzedhaLpTKssquCqVOncuGFF5ZzGzt2bNhZmd26dePZZ5+lR48e7N+/nxtvvJHk5GReeuklLrnkEjIzM3G5XNxwww1Vph1qC52RI0eyatWqsgkq9913HyUlJWRlZdGrVy/uu+++susHDRrE2LFjycrKYuzYsWXjdb/4xS84+eSTWbt2LW3bti3bn+/5558v2/7nySefpHfv3mRlZZGQkMA555xTo+2IwKzFeckll9C/f3+aNWtW5r5w4UKuvfbasvNRo0bxxRdfcMYZZ5CYmBhx/PGA5O+kWN00aNSsyrAtW7RgG81x77Lf2lksVWG3+IlTpkyZUm4iy/FIfSw7C54YR/uDC2nxpw0Rhf/u4dG0LfyBVn9aV8eSWSx1h93ix2I5zkgu2s0Bd+WfhQRS2GogrXQnB3ZurkOpLJb6j1V2ccqECROOa6uuvpJWvJdDiVV3Yfpp0t18+rFp6ey6EsliiQvqxWxMVa3WTEKLJZa656tDQ18uu5OzIg7fOesUDs9IovjHr4GrjypNVWV1zlZ2rPqa0r054CshLSWZpCZtSTuhPS3bd6dRk8itTYslFol5ZZecnMzevXvJyMiwCs8SEarK3r17SU5OjrYo1cLr9dFQ8yAlcsWSnJzMsqQeNN+zoNrplXh9fP7xOzRc9A/6e7+np4Rfrm4fjdib1Iai9Pa4m51EWquuNGjVmZSGzUlMScOdmIq63BQWlVBQWEhBUTFFxUUUFRdTXFxCSUkxxSUleEuKcakXl5biUi+iXlx4EQQBRJxPZARAEBFcZcdGFhGXc+z4A6UKXp+PEq9S4lVcLiE9JYFGyQk0adGOlJZdq50/lvgi5pVd27Zt2bp1K7t37462KJZ6RHJyMm3b1q9vz/bl7qe5eHE3qJ4VtaflqWRtnsShnT/SoEWniK7ZvGUzOa/8hlElX7Hf1YT1nSeQkXUWzU7sgSSkkJuXz74dm8jflUPBzg3ovg2k5m+m+e4FtN4zE0Kshy5AivOLJYo0gfy7fiQtrWG0RbFEkZhXdgkJCeVWKLFY4pUD+3bRHEhIq56ya9pvDGyeRM43b9PrwrurDP/j6kWkTruEk8llXa9b6TLmXpokppYL0yStOU1aVXzvSrw+1m3fy45NaynZswEKD0BJAZQcJgEvbk8inoQEPAkJJHgScHsS8CQk4vEYN48nAXUl4BMXKh584kbFhaqgKM4/fOozByiqiqqx2P2d0+rzOd6KD8UtQoJb8LgEj9uFz+fjYGEpeSs+ZtiuN9i1e7tVdsc5NVZ2InILcBPgBWao6t0BficCq4CJqvpYTdOyWOKZQ7l7AEiqprLrndmPH6e3IeGHmUDlym7tojmc8OEV+HCz45L/0rXXKdVKK8Htomvb5nRt2xwYVq1ro8GSwjzY9QaFB/dGWxRLlKnRbEwRGQmMAfqoai8gWKH9HZhZkzQsluOFwoNG2SU3jHw2JoDH7SKnxZl0PrSEvB3rw4ZbMfcD2n4wjkJJoXj8R7SrpqKrjySkZQBQlLcnypJYok1NPz24EXhIVYsAVHWX30NELgA2AnZ5B4slAorzjPXRoEnzal/bYuQN+BByZk4K6b/0k1fp+r+r2e0+gYTr/kerTr1qJGt9ISndKDvvoX1RlsQSbWqq7LoCw0Vkvoh8ISIDAUQkDbgHeKDSq03Y60VkoYgstJNQLMczpU6FnN64+squZ7fuzEs5lS6bpnJo18ZyfovfeZzMr2/hx4TONLnpU5q17lAb4tYLkq2yszhUqexE5FMRWRHiNwYz5tcUGALcBbwl5vuAicATqppfVfyq+i9VHaCqA5o3r/5LbrHEC3rYVMjV7cYEM12/0Xl/xqvC7hfGUbh3C3t2bGbBU7+k3/IH+T55IG1v/YRGGZXvgB5vpDYyyk4P74+yJJZoU+UEFVU9I5yfiNwIvKvmC94FIuIDmgGDgYtF5BGgMeATkUJVtUt6WCzhKMyliESSEo5u8n5mryw+6fMwp35/F8lP9yYZaKLC/DZX0f/qx/AkHF+LagM0bNiQAk1EC6yyO96p6WzM6cBI4HMR6QokAntUdbg/gIhMBPKtorNYKsdTlEuepJFUddCwjLroahZ16M2e+dNo3CCZjIGXMLhHn1qTsb6R4HaxlzRchbnRFsUSZWqq7F4EXhSRFUAxcJXW13WaLJYok1BygAJ3zb8F699vIPQbWAsSxQf5rnQ8xbnRFsMSZWqk7FS1GLiiijATa5KGxXK8kFx6kKJE++FzbXPYnU5SyYFoi2GJMnbXA4slRkj15lGc0CjaYsQdhZ5GJJcejLYYlihjlZ3FEgN4fUq65uFLbhxtUeKO4oRGpHrzoi2GJcpYZWexxAAHC0pozCE0uUm0RYk7vEmNSFer7I53rLKzWGKA3IMHSZUiXKlW2dU2vuQmJFOMFh+OtiiWKGKVncUSAxxyFip2V3MRaEvViNOAKMyzq6gcz1hlZ7HEAAUHzELFCdXcy85SNX5r+VCuXY7weMYqO4slBih2rI6ko1gqzFI5iWkmTw8dsMrueMYqO4slBig5ZLoxUxpmRFmS+MO/80GR3dPuuMYqO4slBvCvyt+gkV0MvbZJbWwsu+J8q+yOZ+JK2R3M3cO3z9/Iym8+irYoFkv1KMgFICndjtnVNv4GhN3m5/gmrpRdUnIqA7ZPI2/lrGiLYrFUC1fhfkpxIcl2BZXapmGjRhSr227zc5wTd8pui7stqftXR1sUi6VauItyyScNRKItStyRnpzAAdKg0Cq745m4UnYAexp0ocXh9dEWw2KpFonFBzjkTo+2GHGJiJAn6Xabn+OcuFN2vhN60YK97N+zM9qiWCwRk1R6sFa297GEpsCdjqfI7nxwPBN3yi69fV8ANq+aH2VJLJbISfUepCjBKru6oiihEUmlVtkdz8SdsmvXeygABT/Oi7IkFkvkNPDlUWK396kzShMbkeq12/wcz8SdsmvY9ARypC2puxZGWxSLJSJUlXQ9RGlS42iLErf4UprQ0Gd3PjieiTtlB7CjUR9OPLwS9XmjLYrFUiVFxSU0kkN2L7s6RBucQAMp5FBebrRFsUSJuFR27hMH05h8ctYui7YoFkuV+Hc8IKVxVOWIZ1wNWwJwYNfWKEtiiRZxqeza9hkJwI5ln0ZZEoulavw7HkiKXT2lrkhq3AaAvD1b6iT+vfv2kbNhLT+uW8FPO7ZTWlpaJ+lYjh5PtAWoC1p1ymQ7zUnd/BlwV63Fq6rsPpDPwT3bKCo4hPhKEZeLpNRGJDVoRGpaIxokJ5Loics2hKWOKHQsO4/dy67OSMkwyq5o30+1FueKZd+xZ85kOu77kvZsJ3AJ70JNYJO7LftSO1DapDMprbrTrENvWp2UiTupQa3JYImcuFR2iLCxyVD67p9JSdFhEpJSjzqqLZs2svGrN0jc+g3tC1bTgn2cIBo2fL4ms49UDkkqh6UBha5UijxpFLvTKPGkIQlJeDwePG4Pbo8Hj8eD4kL9K2cERK2hHUKdVBKuvJOgaAX/8g6V+x85FtVQSVUarwS4VXo7wWlWmlA10vEHiCCeqq5RjqQTNsqqYybl0FY6A54GdseDuqJh83YAlByoubLLPZDL0pduZ/j+9/DhYl36IBadcBGuhi0Qtwff4VxK928l+eAGWh9aTcu8Obi3KCww12+X5uxKaEtRUga+1GZoagZeTwNwJYA7ATxJuATc+PCID5f6UF8p6ivF5/WCz4tPfajXi6oP9flQnzkW9SH4QNU5VkK9paa8SsjXTiU4HCYWPRJe1dQjuUmtuOi6P9Y4T48F8ansgKRe55Iydzor539Mr1Mvqvb1y7+bQ9Hsh+hbMI92oux0ncDOJv3Y2bQTrkZtcCenoS4P4ivFW5iHrzAPLTqIFOXjKj6IuySfpJJ80krzSfLuIbnkEKm+Q3goxYUPVxVqwlJzfBp+6a1yuR/4clPZNZEs5XV0y33tk8a07NjjqK61VE2zZs0p0ET04PYaxZOz8QdKXr2EU705LGs1lm7j/kqvJi0rvaaw4BAbfljJnpzllO5aQ+rBH2lUsJVm+StofDCXBlJYI5mC8ao4NYw4v4qEK6XlQkuwe8Wrlrt6AMeJshORW4CbAC8wQ1XvdtyzgH8CDQEfMFBVa/epVkLPk0eT91UKBYvehGoou9zd21n/8o0MyP+cA6Sx5MQJtB95NS069aFFbQro8+H1llJUUoz4fGXOIZdGDHAs7y8IYfxEKhRNKQsgAf8HXBuYTvDVYddsrKRyr81rjmLNyPrUmWw7MOuWBI+bHdIU96GjX1lp25Yc5OXzacV+Npz5AtnDxkZ0XXJKA7pmDaJr1qAKfqpKYcEhvEWH8XmL8BUX4y0pwqtQiuBVF15cuN0JeDxu3G4Pbk8Cbo8bj9uNx+M2vUQuN7jcIIIbcB/1XVaPfscondqgRspOREYCY4A+qlokIic47h7gNeBKVf1eRDKAkhpLWw1SGqQxP+NMsvZ+zMED+2jYqOrqZPmct2k1506yNI8F7a8j69I/MCCtSd0I6HLhdiWSmpBYN/FbLJZyHEzIIKnw6HYrP3Awj/yXLqIde9lzwVS6ZP+sVmQSEZJT0yA1rVbis4Snpo3fG4GHVLUIQFV3Oe6jgGWq+r3jvldVj/lHb02HX0eKFPPDjKcqDVeQf4Dvnh5P5pxfkedqxOaxMxh0zWMk15Wis1gsx5zDSSfQqLj6lp2qsnzy9XTzbWDb6U9zYi0pOsuxpabKriswXETmi8gXIjIwwF1FZJaILBaRu8NFICLXi8hCEVm4e/fRtbrC0Tl7OIsT+9N53b85nLsrZJgNiz9j7+OD6b/nA75p8Uta3fUtnbNOrlU5LBZL9ClMa8cJvt2ot3qdTF9++DLD8j5iSfur6XLquDqSzlLXVKnsRORTEVkR4jcG0w3aFBiCmeP/lpiBIQ8wDLjc+XuhiIRsDqnqv1R1gKoOaN68eW3dl192ks5+kBQtIOffV6GlxWV+RYcPsHjyb+j4/kW4tZQVZ77OKTc+R3KKnRZsscQj2qQDCeLl4I6ciK/ZvWcX3RdPZLOnI32ueLjuhLPUOVWO2anqGeH8RORG4F1VVWCBiPiAZsBW4EtV3eOE+wgzljm7VqSuBr36DWP28jv42cZH2fDoqRzqch6+3G102PoB/cjjq8bnkznhSbKa2GnfFks8k3LCSbAa9mxdS6M2XSK6Zs1rd3GK5rL9gtdwJSTVsYSWuqSm3ZjTgZEAItIVSAT2ALOATBFJdSarnAasqmFaR83p4//A7B5/IbVwF1krHqHHlmmsS+rF4lH/Yfjtr9LYKjqLJe5p2rY7APnbI9vcee2KhZy8/wOWtRxL297D6lI0yzGgpp8evAi8KCIrgGLgKsfK2y8ifwe+w3zS9JGqzqhhWkeNiPCzcbdQWHwjP27fRuPGTRnUyO4KbbEcT7Rq15FidVO6Z0NE4Q/N+COFkkSXcX+pY8ksx4IaKTtVLQauCOP3Gubzg5ghOdFDp/btoy2GxWKJAqnJSWySFngObKoy7MpvZ9Kv4Fu+63QzA5u2OgbSWeqa+vTdrcVisdSI3SkdaHqocstOfT4SZ/+JnWSQefG9x0gyS11jlZ3FYjluKGjSgzbebZQUhN/IdcXs1+lSupYNvW8lOdUOd8QLVtlZLJbjhqS2fXCJsm3d4pD+vtJSGn37MJukLQPOv/EYS2epS6yys1gsxw3NugwAIHfDgpD+y2b+ixN9W9gx4E4SE+1SfvGEVXYWi+W44cSO3dmuTfFs/raCX3FhAS0XP8E6d2cGnD3h2AtnqVOssrNYLMcNHo+bDWn9aXNgIQTsNgKw9J2Haam7ODzs97jdtmqMN+wTtVgsxxUlHUbQRA+wa+XnZW4Hd26m1w/PsTh5MH1GVH//S0vsY5WdxWI5ruh62mXkazK7vvi3cfD5+OnVa/Gol/QLHg/Y99EST8TtTuUWi8USijYnNOPTRucwcs909i16h11LZtI9fz6fnnQ3Z3TPjLZ4ljrCWnYWi+W4o+PFf2aTtqbph9fQfet/+LjRpZz2S/sBeTxjLTuLxXLccdKJ7Vh51f94+8v/0KBlZ84481wS7KSUuMYqO4vFclzSq1MbenW6LdpiWI4RtiljsVgslrjHKjuLxWKxxD1itp+LDURkN1D1/htV0wyziWx9oD7JCvVLXitr3VGf5K1PskL9kre2ZG2vqs1rIZ6wxJSyqy1EZKGqDoi2HJFQn2SF+iWvlbXuqE/y1idZoX7JW59ktd2YFovFYol7rLKzWCwWS9wTr8ruX9EWoBrUJ1mhfslrZa076pO89UlWqF/y1htZ43LMzmKxWCyWQOLVsrNYLBaLpQyr7CwWi8US98SVshORs0VkrYisF5GYW9VVRNqJyOciskpEVorIrY77RBHZJiJLnd+50ZYVQERyRGS5I9NCx62piPxPRH5w/jaJATm7BeTdUhE5KCK3xVK+isiLIrJLRFYEuIXMSzFMcsrxMhHpFwOyPioiaxx53hORxo57BxEpCMjj54+lrJXIG/bZi8j/c/J2rYicFQOyTguQM0dEljrusZC34eqsmCy7laKqcfED3MAGoBOQCHwP9Iy2XEEytgL6OcfpwDqgJzAR+F205Qshbw7QLMjtEeBe5/he4OFoyxmiHOwA2sdSvgKnAv2AFVXlJXAuMBMQYAgwPwZkHQV4nOOHA2TtEBguhvI25LN33rfvgSSgo1NnuKMpa5D/48D9MZS34eqsmCy7lf3iybIbBKxX1R9VtRh4ExgTZZnKoarbVXWxc5wHrAbaRFeqajMGeNk5fhm4IHqihORnwAZVrY2VeGoNVf0S2BfkHC4vxwCvqGEe0FhEWh0TQQktq6p+oqqlzuk8oO2xkqcqwuRtOMYAb6pqkapuBNZj6o5jQmWyitk19lJg6rGSpyoqqbNisuxWRjwpuzbAloDzrcSwIhGRDkBfYL7jdLNj9r8YC12DDgp8IiKLROR6x62Fqm53jncALaIjWlguo3xlEYv56idcXsZ6Wb4G03r301FElojIFyIyPFpChSDUs4/lvB0O7FTVHwLcYiZvg+qseld240nZ1RtEJA14B7hNVQ8CzwEnAdnAdkxXRiwwTFX7AecAN4nIqYGeavotYubbFRFJBM4H/uM4xWq+ViDW8jIcIvIHoBR43XHaDpyoqn2BO4A3RKRhtOQLoN48+wB+QfmGWszkbYg6q4z6UnbjSdltA9oFnLd13GIKEUnAFJrXVfVdAFXdqapeVfUBkzmG3SqVoarbnL+7gPcwcu30d0s4f3dFT8IKnAMsVtWdELv5GkC4vIzJsiwiE4CfA5c7FRxOd+Be53gRZgysa9SEdKjk2cdq3nqAi4BpfrdYydtQdRb1rOxCfCm774AuItLRaeFfBnwQZZnK4fTJvwCsVtW/B7gH9mlfCKwIvvZYIyINRCTdf4yZoLACk6dXOcGuAt6PjoQhKdcyjsV8DSJcXn4AjHdmtg0BDgR0GUUFETkbuBs4X1UPB7g3FxG3c9wJ6AL8GB0pj1DJs/8AuExEkkSkI0beBcdavhCcAaxR1a1+h1jI23B1FvWo7JYR7RkytfnDzARah2kB/SHa8oSQbxjG3F8GLHV+5wKvAssd9w+AVjEgayfMrLXvgZX+/AQygNnAD8CnQNNoy+rI1QDYCzQKcIuZfMUo4e1ACWYc41fh8hIzk+1ZpxwvBwbEgKzrMWMx/nL7vBN2rFM+lgKLgfNiJG/DPnvgD07ergXOibasjvsU4IagsLGQt+HqrJgsu5X97HJhFovFYol74qkb02KxWCyWkFhlZ7FYLJa4xyo7i8ViscQ9VtlZLBaLJe6xys5isVgscY9VdhaLxWKJe6yys1gsFkvcY5WdxWKxWOIeq+wsFovFEvdYZWexWCyWuMcqO4vFYrHEPVbZWSwWiyXuiTllJyIdRESd/Z0s9RQRuUVEfhKR76OQ9kQRee0YpDNBROZW4j9HRK6tazks5RGRKSLyl+r61bIMlZZBEckRkTPqWo54QUQ+FJHdIvLo0cYRc8rOUn1E5HkRyXd+xSJSEnA+M0piTQR+o6p9AuScKCIToyRPTOE06nKqGf5zETksImsqqyidvdpeFJGDIrJDRO4I8r9URFaLSJ6IrBKRC8LEMzuw4SkiJ4jIVKcRc0BEvhaRwUHX3CIiG520F4rIsAC/iUFlM9/Zpy2S+z9uyo6IjBCROdUIny0ii5yysUhEsisJ21RE3hORQyKySUR+GSbci86z7xzgdrPzTItEZEpQ+MuDnuth5/r+jn+SU0/tFJF9jvJqE3B9BxH5SET2O2X2mUCDR1XPA0YCvxORxpHmTSC1ruysRXbsUdUbVDVNVdOA/wOm+c9V9Rx/uGP8bJoSe5ulVpsYKs9TgSWYfcT+ALwtIs3DhJ2I2eizPaaCuFvM5qs4FcxrwB1AQ+Au4A0ROSEwAhG5HEgIijcNs0lyf8zzfRmYISJpzjWDgYeAi4FGmE0/3xNnA1KHwLKZpqpR3+j1aImFsiFmo+r3Mc+0CeaZvO+4h+JZoBhoAVwOPCcivYLiHAacFOLan4C/AC8Ge6jq64HPFfgNZqPZxU6QW4GTgSygNbAfeDogin9gdjtvBWQDpzlxBKbhr08ywtxbpdSKsnNM8ntEZBlwSEQ8IjJERL4RkVwR+V5ERgSEnyMifxORBU4L8H0RaRom7qsDWqE/isivg/zHiMhSJ54NAS91IxF5QUS2i8g2EflL0EsXKq2TROQzEdkrIntE5HV/K8Lx2yci/Zzz1mLM6hHO+fkistK53zki0iMof34nIsucFvE0EUmufk5XnzDPJrjFVq5rR0R+7uRprvMMs6qZpj+ffVWEu9t5Pj+JyLWBcjkyPSsiM5xnP19ETgq49ikR2eI890UiMjwo+mQnn/NEZLGIBFqY9zplxW/ZXBjgN0GMxfKEiOzFKI6q7vcxp0W6UUTOCfJu78SXJyKfiEizquILEX9XoB/wJ1UtUNV3MBtjjg1zyVXAn1V1v6quBiYDExy/tkCuqs5UwwzgEAGVm4g0Av6E2Zm8DFX9UVX/rqrbVdWrqv8CEoFuTpAOwEpVXaRmo8xXgGZAOUVaG1RWdoLCpYuxiCeJiDjOzUTkf84z+UJE2geED1uuxFiXb4vIayJykCN5Go5EEXnFSWeliAwI8s+uhTphBOABnlTVIlWdhNlA9fTggCLSAFNm7lPVfFWdi9nY9sqAMB6MErol+HpVfVdVp2M2Sa6Kq4BX9MiGqR2BWaq6U1ULgWlAoJLtCLylqoWqugP4OMi/TAznfqtPLe1mm4PZwbYdkAK0wWTIuRiFeqZz3twJPwfYBvTG7DD9DvCa49fBf0PO+WjMiygYbX8Y6Of4DQIOOPG7nHS7O37vAf904j8BWAD8uor76OzElQQ0B77EFCK//3XAKiAVmAU85rh3xVQYZ2Jaw3djdnZODMifBZgWTVNgNUG7EgftDJxbyW9YFfcw0Z+XoZ6N46ZA54AwU4C/OMd9MS2swYAbU2hzgKRqlIezgUKgQRVhdmAKdCqmZVomlyPTXucZe4DXgTcDrr8C08LzAHc6cSUH5EEJxsJIAH4HbAQSHP9LnGfhAsY5z66V4zcBKMW87B5/noW5hwlOOtc5eXUjpvXr3xR5DmbH5q6Y92IO8FCYuP4B/COM34XA6iC3Z4CnQ4Rt4uRjiwC3i4HlzrEb+AI43zm+ALNjdoOA8M8CtxP0LoZIK9t5zo2c84bAooCycwvGGvXnx0TM+7oPswP3jUdZ30RSdv7ilI8FOGU7wC8POBXznj8FzK1mubrAKTuVlY2JTt6c6+TF34B5Qe9lpHXCf4F7w/jdDswMEf7OEGH7AoeD3H4HfBhwfhfwVKh6IiDMX4Apldx7e8ALdAxwGwB87dxvKvAG5evWX2MaR6mYenwFcGGIuDcBN/nLVLXKzdEUthAC5ADXBJzfA7waFGYWcJVzPIeAlx7oiTGt3VT9gk0HbnWO/wk8ESJMC6AosDACvwA+r+Z9XQAsCXL7ANOqXoajAID7MK0SfxgXRpmPCMifKwL8HwGer428DyHzRCoqu2uCwlSm7J7DWAWB4dcCp0WY/kIn/t9WEe5F4G8B552pWGH9O8D/XGBNJfHtB/oE5EFgxeICtgPDw1y7FBjjHE8ANkd4rxOA9QHnqc49tAwo538M8P8N8PFRPNMrA+/HcfsrISocTKNGcSpox+1MICfg/FdAPkapHwZGB/gNcPLDQyXvIkaxLQf+X4CbAL/HKIRSYA8wMMC/J6aycwOnOM/kF0eRH5GUnRcxFeZdQddOoXyjKQ1TMbeLsFx9GaGME4FPg+69IOA8h1qoEzB1z5tBbq8DE0OEHQ7sCHK7DpgTUHbWc6TxcrTK7j5/nAFujYA3nThLMY2gpgH+PTANpVInzBRCKDRMw68Y0ztRrbyqzTG7LQHH7YFLnG6wXBHJxVgsrcKE34RpgVfo4hGRc0RkntOFmIup9Pzh2mFazsG0d+LbHpD+P6miO0VEWojIm2K6PQ9iWozBMk3GWKRPq2qR49bauQcAVNXn3F+bgOt2BBwfxrxkx4otVQcpoz1wZ9Cza4e5x0gYCFwGTBSR4DGfQFoHyRVKxrB55nQLr3a6gHIxL1PgsyqLz3keW/33ICLjA7ppczHPM+S1EVAmo6oedg7TQvkH30M1yMcol0AaYiyUUGH9/hXCipnY8gim+ysR01vybzGTHFwYC/NWVS0NJ4yIpAAfYhTw3wK8fgVcjbG4EjFW0n9FpDWAqq5S1Z/UdIF+g7GqLq7i3kMRSdkZjbGmnw/hF1g28jGWpr9sRFyuIiD42SdL+XG+aJSNysI+CTyoqgeOQo5AxmPGDgN5FmNJZ2B6294FZgI45e5jx60BJr+bAA+HiPsBTEMi5LBXZdSmstOA4y0Yy65xwK+Bqj4UEKZdwPGJmNbgnsAIRSQJ08X5GKZbpjHwEaYF6U8n1EDqFoxl1ywg/YaqGqoPOJD/c+4jU1UbYl5Wf1qIGYh/EjPwPlGOjDP+hFES/nDi3N+2KtKrgIgMl/KzmoJ/wWNTkaBB54cxVoiflgHHW4C/Bj27VFWdGlFCpvk1HVNYW1USdDtm/MhPu3ABg3Hy4G7gUqCJUy4OEPCsAuNzXqa2wE/O+Mxk4GYgw7l2RdC1wfkVbVYCnUQkPcCtj+NeDlXdj8nbPmHCZmOsk4Wq6lPV74D5wBmYim8AME1EdmAmowBs9Zc7552cjmk8lBs/d+L+r6quc+L+2JHllDD3pZTP90iJpOxMxlSgHzljVYQK77zTTTFlI5JyFYtlIytgPBLMJJAKZQNYB3hEpEuAW2DZ+BnwqJjZkH5F/K2EmbEZChEZimk4vB3klY2xBvc5RsLTwCBnDLspRgc8o2bccS/wEsawCaYH8L7TgK0WdfXpwWvAeSJyloi4RSRZzHTawAJ6hYj0FJFU4EHgbVX1BsWTiGkN7AZKncH/UQH+LwBXi8jPRMQlIm1EpLuqbgc+AR4XkYaO30kicloVcqdjWj8HxMxauyvI/ylgoapeC8zgSKvxLWC0I0cCpq+/CPimqowKRlW/0vKz1YJ/X1U3zhAsBX7pPJuzMa17P5OBG0RksBgaiMhof0UrZuLIlCruwW/xhpsRBibPrhaRHk4ZuK8a8qdjujt2Y17e+6nYYu0vIhc5LenbMM9jHqblqM61iMjVGMsuZlHVdZhn9ifnXboQU6G9E+aSV4A/ikgTEemO6aqa4vh9BwwXZ3q6iPTFdG8tw1TsrTEVUzZHKpv+wHynbL8NFGCGJIIrnO8w70Enp+yciRmvXOGkNcaRSURkEPBbzExCHP8cEZkQQZZEWnZuxnTBf+hYo37OFZFhYmYs/hljoW4hsnIVa8zBdMP+Vsz0/psd98+CA6rqIYz19KDzXg8FxgCvOkG6YpRftvMDOA8z/wExk9uSMd3Q/no9eLLIVcA7qhpsWX4HjBczcTAB06X/k6ruUdU9mDH1G500GjvxLAtxvx7Mu1xt6kTZOQVnDKb/fjfGWrgrKL1XMS/gDiAZU/CD48lz3N/C9J3/EjNm5vdfgOk2eQLzon7BEQtrPKayXeVc+zaVWxpgTOR+TlwzMAUDMC8qZmD8RsfpDqCfiFyuqmsxVuDTGOv0POA8VS2uIr1ocStGxlzM9OPpfg9VXYipHJ/B5Nt6ys86a4cZaK4KpZLypaozgUnA504a8xyvSAryLEyrfR2m+7iQit1L72Mmn+zHjHldpKolqroKeBz4FtgJZEZ4P3WKmG+QQnW5+bkMY3Xtx5ner6p+hX25iAS25P+E6d7fhHknHnWsLFT1C0w30NsikodRmP+nqp+oYYf/h9MgAHY6ZfkU4OeYBmduiN6GVzDjMnOAg5jn+2tVXRNwD+sx3WavAA+r6svOPSRiurj85SAskZYdp5fheowV+r4cme34hpNH+zCK/ArHPZJydcwRkZki8vtQfs5zuQBT3+UC1wAX+OseEfm9lP/W9jeY7t1dmM9ZblTVlU5cu4KeP8AeVS1wjv+Iaejci8mzAsfNL2cyxioO7sIEMxGmEPgBU67OxYy/+bkIU7/uxjzTEszkm8B8iGiWdzj8s6SOKWI+mHxNVf99zBO3HDVOhfQ9kKWqJVWE/Qm4W1UjWslEzKcaKzCTfsKOF1niEzHfdt2kqr84imtt2TkOcHoDvgUah7Acq8SuoGKJGFUtVtUeVSk6h3sx3W6LwgUQkQudrhf/YPSHtrI6PlHVudVRdLbsHF+IyHRM79x9R6Po4DhUdlJ+aa3AX2VdSJZqoqqvqGoXVe1fSbBfY7pTNmDGHW6sJGxUsOUlZol62XG6F0OVjZBdjpajR1UvUNUTVfX/jjaOqHRjWiwWi8VyLDnuLDuLxWKxHH9EfSHTQJo1a6YdOnSIthgWi8ViOYYsWrRoj6qGW9i8VogpZdehQwcWLlwYbTEsFovFcgwRkU1Vh6oZthvTYrFYLHGPVXYWSwyyZd9hFm3aF20xLJa4wSo7iyUGuffpKbz0z79HWwyLJW6IqTG7UJSUlLB161YKCwujLYqlHpGcnEzbtm1JSKhs44XY5Snf32iWeJCSot+TkJRa9QUWi6VSYl7Zbd26lfT0dDp06IDI0SyQbjneUFX27t3L1q1b6dixY7TFOSqayUEACg7uJ6G5VXYWS02J+W7MwsJCMjIyrKKzRIyIkJGRERe9AQWHarq1mMVigXqg7ACr6CzVJl7KTJFVdhZLrVAvlJ3FcrxSfPio1ry1WCxBWGUXASLCnXfeWXb+2GOPMXHixOgJVAVz5szhm2+qvW9sGUuXLuXkk0+mV69eZGVlMW3atFqUzlIdigusZWex1AZW2UVAUlIS7777Lnv27KnVeFUVn++o9iGslJoqu9TUVF555RVWrlzJxx9/zG233UZubm7tCWiJGK+17CyWWsEquwjweDxcf/31PPHEExX8du/ezdixYxk4cCADBw7k66/NptcTJ07kscceKwvXu3dvcnJyyMnJoVu3bowfP57evXuzZcsW7rrrLnr37k1mZmaZFTVnzhxGjBjBxRdfTPfu3bn88ssJtUPFpEmT6NmzJ1lZWVx22WXk5OTw/PPP88QTT5Cdnc1XX31VqYxXXnklJ598Ml26dGHy5MkAdO3alS5dugDQunVrTjjhBHbv3l0h7f/85z/07t2bPn36cOqppwJmQtHVV19NZmYmffv25fPPPwdgypQpXHDBBZx55pl06NCBZ555hr///e/07duXIUOGsG+f+YB68uTJDBw4kD59+jB27FgOHz5cId0hQ4awcuWRjblHjBgRd8vMFan5ZKK00Co7i6U2iPlPDwJ54MOVrPrpYK3G2bN1Q/50Xq8qw910001kZWVx9913l3O/9dZbuf322xk2bBibN2/mrLPOYvXq1ZXG9cMPP/Dyyy8zZMgQ3nnnHZYuXcr333/Pnj17GDhwYJniWLJkCStXrqR169YMHTqUr7/+mmHDhpWL66GHHmLjxo0kJSWRm5tL48aNueGGG0hLS+N3v/sdAL/85S/Dyrhs2TLmzZvHoUOH6Nu3L6NHj6Z169Zl8S9YsIDi4mJOOumkCvfx4IMPMmvWLNq0aVNm+T377LOICMuXL2fNmjWMGjWKdevWAbBixQqWLFlCYWEhnTt35uGHH2bJkiXcfvvtvPLKK9x2221cdNFFXHfddQD88Y9/5IUXXuCWW24pl+64ceN46623eOCBB9i+fTvbt29nwIABleZ5faMYD0mUoMUVlb3FYqk+1rKLkIYNGzJ+/HgmTZpUzv3TTz/l5ptvJjs7m/PPP5+DBw+Sn59faVzt27dnyJAhAMydO5df/OIXuN1uWrRowWmnncZ3330HwKBBg2jbti0ul4vs7GxycnIqxJWVlcXll1/Oa6+9hscTuu1SmYxjxowhJSWFZs2aMXLkSBYsWFB23fbt27nyyit56aWXcLkqFpWhQ4cyYcIEJk+ejNfrLbufK664AoDu3bvTvn37MmU3cuRI0tPTad68OY0aNeK8884DIDMzs+zeVqxYwfDhw8nMzOT1118vZ8H5ufTSS3n77bcBeOutt7j44osrze/6SImYZ2mVncVSO9Qryy4SC6wuue222+jXrx9XX311mZvP52PevHkkJyeXC+vxeMqNxwV+89WgQYOI0ktKSio7drvdlJaWVggzY8YMvvzySz788EP++te/snz58gphwskIFafo+88PHjzI6NGj+etf/1qmmIN5/vnnmT9/PjNmzKB///4sWrQo4vtxuVxl5y6Xq+zeJkyYwPTp0+nTpw9Tpkxhzpw5FeJp06YNGRkZLFu2jGnTpvH88/G3abjXeTW1pCDKklgs8YG17KpB06ZNufTSS3nhhRfK3EaNGsXTTz9ddr506VLAbFe0ePFiABYvXszGjRtDxjl8+HCmTZuG1+tl9+7dfPnllwwaNCgieXw+H1u2bGHkyJE8/PDDHDhwgPz8fNLT08nLOzLWE05GgPfff5/CwkL27t3LnDlzGDhwIMXFxVx44YWMHz++Uqtpw4YNDB48mAcffJDmzZuzZcsWhg8fzuuvvw7AunXr2Lx5M926dYvofgDy8vJo1aoVJSUlZfGEYty4cTzyyCMcOHCArKysiOOvL7hxGkol1rKzWGoDq+yqyZ133lluVuakSZNYuHAhWVlZ9OzZs8zKGDt2LPv27aNXr14888wzdO3aNWR8F154IVlZWfTp04fTTz+dRx55hJYtW0Yki9fr5YorriibDPLb3/6Wxo0bc9555/Hee++VTVAJJyOYbtCRI0cyZMgQ7rvvPlq3bs1bb73Fl19+yZQpU8jOziY7O7tMQd5///188MEHANx1111kZmbSu3dvTjnlFPr06cNvfvMbfD4fmZmZjBs3jilTppSz6Kriz3/+M4MHD2bo0KF07969zP2DDz7g/vvvLzu/+OKLefPNN7n00ksjjrs+4XKUnVjLzmKpFSTUDL9oMWDAAA2eVbd69Wp69OgRJYnim4kTJ5abyBJv1OeykzexFekcZkmTs+l7q/3O0RLfiMgiVa3TWWbWsrNYYpAyy67UWnYWS21QryaoWGqXWF4F5njHrV4Q8Hjr/2LWFkssYC07iyUG8Vt2bqvsLJZawSo7iyUG8TjKLsFnlZ3FUhtYZWexxBo+Hy4xE8essrNYager7CyWGMPnPbJ4QKJVdhZLrWCVXYRMnz4dEWHNmjVhw+Tk5NC7d+86lWPp0qV89NFHR329/yP0nj170qtXL5566qlalM5SG3h9AcpOi6IoicUSP1hlFyFTp05l2LBhTJ06NaR/qKW8qot/fcnKqKmy83g8PP7446xatYp58+bx7LPPsmrVqqOOz1L7eEtLyo6TsMrOYqkN6lzZicjZIrJWRNaLyL11nV5dkJ+fz9y5c3nhhRd48803y9znzJnD8OHDOf/88+nZsydglN7ll19Ojx49uPjii8u2qJk9ezZ9+/YlMzOTa665hqIiU4l16NCBe+65h379+vGf//ynXLrBW+gUFxdz//33M23aNLKzs5k2bRqHDh3immuuYdCgQfTt25f3338fMFvqjBkzhhEjRtClSxceeOABAFq1akW/fv0ASE9Pp0ePHmzbtq3CPX/xxRdlq6f07duXvLw8VDXsdkSnnXYaY8aMoVOnTtx77728/vrrDBo0iMzMTDZs2ADAhx9+yODBg+nbty9nnHEGO3furJDuZZddxowZM8rOJ0yYULbo8/FCaalp9BRoIslaBDG08IPFUl+p0+/sRMQNPAucCWwFvhORD1T16EyJmffCjooLHdeIlplwzkOVBnn//fc5++yz6dq1KxkZGSxatIj+/fsDZt3LFStW0LFjR3Jycli7di0vvPACQ4cO5ZprruEf//gHN998MxMmTGD27Nl07dqV8ePH89xzz3HbbbcBkJGRUbaOZiDBW+gkJiby4IMPsnDhQp555hkAfv/733P66afz4osvkpuby6BBgzjjjDMAsz3PihUrSE1NZeDAgYwePbrcVjg5OTksWbKEwYMHV0j7scce49lnn2Xo0KHk5+eTnJzMu+++G3Y7ou+//57Vq1fTtGlTOnXqxLXXXsuCBQt46qmnePrpp3nyyScZNmwY8+bNQ0T497//zSOPPMLjjz9eLl3/9j2jR4+muLiY2bNn89xzz0X4MOMDn9NLcIgUmskBtLQISai4iLfFYomcurbsBgHrVfVHVS0G3gTG1HGatc7UqVO57LLLAGN5BHZlDho0iI4dO5adt2vXjqFDhwJwxRVXMHfuXNauXUvHjh3L1se86qqr+PLLL8uuGTduXMh0Q22hE8wnn3zCQw89RHZ2NiNGjKCwsJDNmzcDcOaZZ5KRkUFKSgoXXXQRc+fOLbsuPz+fsWPH8uSTT9KwYcOQad9xxx1MmjSJ3NxcPB5PpdsRDRw4kFatWpGUlMRJJ53EqFGjgPLb92zdupWzzjqLzMxMHn300ZDb95xzzjl8/vnnFBUVMXPmTE499VRSUlJC3nu8UlpaDECBpAJQVHAomuJYLHFBXa+g0gbYEnC+FShnRojI9cD1ACeeeGLlsVVhgdUF+/bt47PPPmP58uWICF6vFxHh0UcfBSpu1xNuy5zKCLflTyRb6Kgq77zzToWdBebPnx9WlpKSEsaOHcvll1/ORRddFDLte++9l9GjR/PRRx8xdOhQZs2aVek9RLJ9zy233MIdd9zB+eefz5w5c0Ku4JKcnMyIESOYNWsW06ZNK2tkHE/4nIZNgSsVfFBUkE9yw4woS2Wx1G+iPkFFVf+lqgNUdUDz5s2jLU4F3n77ba688ko2bdpETk4OW7ZsoWPHjnz11Vchw2/evJlvv/0WgDfeeINhw4bRrVs3cnJyWL9+PQCvvvoqp512WpVph9pCJ3j7nrPOOounn34a/4LeS5YsKfP73//+x759+ygoKGD69OkMHToUVeVXv/oVPXr04I477qg07czMTO655x4GDhzImjVrarQdEcCBAwdo06YNAC+//HLYcOPGjeOll17iq6++4uyzz444/nih1GsmqBS5TSOoqKDyzYAtFkvV1LWy2wa0Czhv67jVG6ZOncqFF15Yzm3s2LFhZ2V269aNZ599lh49erB//35uvPFGkpOTeemll7jkkkvIzMzE5XJxww03VJl2qC10Ro4cyapVq8omqNx3332UlJSQlZVFr169uO+++8quHzRoEGPHjiUrK4uxY8cyYMAAvv76a1599VU+++yzsgko/tmdzz//fNn2P08++SS9e/cmKyuLhIQEzjnnnBptRwRmLc5LLrmE/v3706xZszL3hQsXcu2115adjxo1ii+++IIzzjiDxMTEiOOPF/yWXbGj7IqtsrNYakydbvEjIh5gHfAzjJL7DvilqlYcrMFu8VObTJkypdxEluOR+lp2tqxfQbvXhrIg/QwG5X3KhvPf46R+p0dbLIulzjgWW/zU6ZidqpaKyM3ALMANvBhO0VksFoN/BZXShDTzt9BadhZLTanzLX5U9SPg6L+CthwVEyZMYMKECdEWw3IUeJ0xO01IB6C0yM7GtFhqStQnqERCLO2mbqkf1Ocy43NWUNFkR9kVHo6mOBZLXBDzyi45OZm9e/fW68rLcmxRVfbu3Utycv38ENv/Ubkkme8ffcXWsrNYakrM71Tetm1btm7dyu7du6MtiqUekZycTNu2baMtxlHhc7oxXSmOsiuylp3FUlNiXtklJCSUW6HEYol3/MrOk9oYAC22ys5iqSkx341psRxv+JVdQqqx7LTEKjuLpaZYZWexxBjqfHqQlJjEYU2CkoIoS2Sx1H+ssrNYYgz/bEyX20MhiYi17CyWGmOVncUSY/i7Md0JiRRJElJaGGWJLJb6j1V2FkuMoX5l50mgSJJwl1rLzmKpKVbZWSwxhtf5zs7lTqRYUnB7rWVnsdQUq+wslhjDP0HFk+ChxJVklZ3FUgtYZWexxBjqNTuVuz0JlLiT8fissrNYaopVdhZLjFFm2XkSKXUlk2iVncVSY6yys1hijMAJKl53CglW2VksNcYqO4slxlCff8wuAZ8nhSQtirJEFkv9xyo7iyXGONKNmYTPk0IyVtlZLDXFKjuLJdbwLwSd4EGtZWex1ApW2VksMYb6vAB4EhIhMYUE8aKlxVGWymKp31hlZ7HEGj5j2YkrARJSASgqsBu4Wiw1wSo7iyXGEF8JXhVwuZBEo+wKD+dFWSqLpX5jlZ3FEmO4SgspJAkAd1IDwCo7i6WmWGVnscQYUlpIoRhlJ0lpABRbZWex1Air7CyWGMPtLaDIUXbu5HQASg4fjKZIFku9xyo7iyXGcJUWUOwou4SUhgCUFFhlZ7HUBKvsLJYYw+0tpNRllF1iirHsSgvzoymSxVLvscrOYokxPL5CSlzJACQ1MJadt9BadhZLTbDKzmKJMRJ8hZQGKTuftewslhphlZ3FEmMk+ooodRtl1yDNUXZFVtlZLDXBKjuLJcZI8h1GPeZj8tSUVIrUA8VW2VksNcEqO4slhlBVGmoepSlNAUj0uDhEMhTb5cIslppglZ3FEkMUFhSQJoWoo+wACiQFV4lVdhZLTbDKzmKJIQ7s2wmANMgocyuSZNxW2VksNaJGyk5EJorINhFZ6vzODfD7fyKyXkTWishZNRfVYol/8hxll5DWrMyt0JWKx3s4WiJZLHGBpxbieEJVHwt0EJGewGVAL6A18KmIdFVVby2kZ7HELQd2bgKg4QknlrkVu1JILbXKzmKpCXXVjTkGeFNVi1R1I7AeGFRHaVkscUPR7h8ByGjTucytxJ1Kks8qO4ulJtSGsrtZRJaJyIsi0sRxawNsCQiz1XGrgIhcLyILRWTh7t27a0Eci6X+Irk5FGkCjZofeV1K3akk+gqiKJXFUv+pUtmJyKcisiLEbwzwHHASkA1sBx6vrgCq+i9VHaCqA5o3b17dyy2WuCItdw1bEtojLneZmzehAcm+wihKZbHUf6ocs1PVMyKJSEQmA/91TrcB7QK82zpuFoslDEUlpZxY9AMbm/+snLs3oQEpWMvOYqkJNZ2N2Srg9EJghXP8AXCZiCSJSEegC7CgJmlZLPHOunWraSyHSGzXt7xHQirJFIO3NDqCWSxxQE1nYz4iItmAAjnArwFUdaWIvAWsAkqBm+xMTIulcnaumksm0LrHyeXcNdFs8+MryseV2rjG6ZSUFFOQl0taemNcCYk1js9iqQ/USNmp6pWV+P0V+GtN4rdYjic8W77hMMk0OWlAOXdXUgMACg4doMFRKrtD+Xks+fA5mmyYTueSdTSUEorVw8akrhzufjE9z7qGpAZNqo7IYqmn1MZ3dhaLpYaoKu0OLmZzgyy6uxPK+bmS0gAoPHSQBtWcw+Xz+vjm3WfosvIJhrGPTe72fN/6ErxpbdC87bTY9RV9lz3I4WWP8H2Lczlh5I206jYQRMriyD2Yx7ZNP7B/2w8U7N4I+zeRVvATTUp24tZiwIW63Hjdyfjcyfg8yeBJRRNSkIRkvO4Uil1JlEgSqgrqBZ8X9fkCjr2gPkR9CF5EFUHLxFCcgzK5JOAuy/v5g3hEcLtdeJq0JevCu8rdk+X4wyo7iyUG2Lx1CyexlaVtxlbwczu7lRceyqtWnD9t28z2V65lWNF81id25+DP/kGXQWfTPqDS93l9LJn/GYe++RcDdnxI8pvvcoA09rmboao08uXSRA/SWLTsmlLc7HE1Z29CS4rcjRCfF/WV4i4twlOcR4qviEQtJIliUigmhSLcAdeHwqeCV1woghcXPlxlCk7Qcn8JiKqCXxAufCRu8bKx+8/o2LN/tfLPEl9YZWexxADbln5Ke6Bpr9Mr+LmTjbIrPnwg4vhWLP6ajA/G01sPsLT3PfQZe0+5zxn8uNwu+p5yBpxyBtt+2kbO3Gm4ti8hsWgfblF2J/XB07AVySd0pFHrLjRv14WkJm1p6XLTsgoZSrw+Dhd5yVfFRQlubxFut+B2uXG7PYjLA+IClxuXSK2vcKGqbPpxLR1eHcze72dYZXecY5WdxRIL5HxFAUm07XlKBa+kVKPsSgois+y+mTWNrG9+S4Erld2Xfkh2z5Orvgho07oNbS69I3KZqyDB7aJRql+FJQINai3uSBAR2nfqxgY5kQabPgPuP6bpW2ILu+uBxRIDtNy/iA3JvULOjkxIiVzZfTvrTfp/8xt2J7Qh8YY5tI1Q0cUrIsK2ZsPoXLCMwvz90RbHEkXiyrLzeb2sfOQMDjfLIqnzqbTrPoCmLdohrlrQ6arg84KvBF9JESWlxXhLiykt8eL1+Sj1KRpi2CB4TLzCEHlQAKkYImwcGuGAe7BcilaUpEKYSuJw0tWgUBXTiUSWqjlyTeh0I4k3pCxVxHEkhIQNE/aSck6V51Px4Vx6+zbxbYtzCUVyg0YAeAsrV3bzP32Hft/czE8J7Wl5y/9IaZRRafjjhfSsc0mY/Qarv/mQrFHjayXOkpJi9u/6iYL8XIoL8igqOIR4iwCXqW/E/MTlQsq6bd24PR7cbjfi8uB2JyBu4+dy/rrdHtTtdO+Gw1fZW6NBfwO9KiuHoePUENeVw+WhSUb9WPkqrpTd3t3bSPAV0H/rK3i2TYEvIE9TyHU1ocCdTpErBZEjVaZLvbi1xPlbikdLcKsXD/6/pXgoJYFSPOrF5Qyyu4Ck6N2mJU5J7z4ypHtSg4YA+Arzw1773ZwPyPrqBnYktOGEm2ZaRRdAr0Gj2DW7Ka7FL0E1ld3+/fvYtvxL8jYvxbV7NU0O/UiT0t001VxOqGLSzfHAd77uDHxwfrTFiIi4UnbNW55I8z/MI//gfrYs/4r9m1eSsH89roK9JBQfNIvpqtMwEsErbkpcafjEg9eVgIoHnysBn8v8pexvAupKQN0JiCsBnzsBcRt3cblxu1y4XKbLpBwhLapAh6CWVqibCvs+adn/oey7Si1I1ZDXBDtWjAOqer9DGZsBdlHlF5eLJ9ji1aDzUBcFn/rnrR+5tkpjONhfKzpFYlBHYnMHxuNKaUKvwWeGDJfqV3ZFoZXd4q9m0vPza9njaUHGjTNp0KRFBKkfPyQmJbGuwy8ZlvMMq77+kJ5Dzwsb9mB+Hmu/m83htZ/TfPc8upauo7f4ANhDY3YkdWRjWmc2pLXE1bAVrtTGJCQ1wJPcAHUnYSoYH+ADVdRbik+94PXic2at+rxe8JWiXvPJharz6YXPhHGpF1Ff5W9LpYVQwgYJfvOlEr/ySYX2K0iuH1YdxJmy85PWsAk9hp4PQ8+PtigWS41JTUmiQBOR4orKbum3n9D106vZ725GoxtmkpbROgoSxj79L7mXzY+9S8v/3cTahES6DRwFIhQcPsymFXPZt/JzGmz/lm5FKxgoJXhV2JjUjaVtJpDc5TTadB9Ms+ataFZ1UpYYJS6VncUSTyR53OwlGYoPlXNf9M2ndJ01noPuxqT/eiYNm7cLE4MlpUE6peOmUvTmWLp9dCn7PmpICQk00310d7orctwdWNF6LGndf0bH/mfSOc2uKBNPWGVnsdQDCiQZV8kRZbdwzod0/fx68t2NSL1uJo1atI+idPWDTt2zyb9zEd9+NBnZvhQ3XjamtSbxxH507HcGHZq1pEO0hbTUGVbZWSz1gDxJJ7l4L6rK59OeYtjqB9npaUWj6/5Lw5Ydoy1evSEtvTEnj7sr2mJYooBVdhZLPWBHg+4My5/FokdGc3rB16xN7cuJN7xjZ11aLBFiPyq3WOoBknUpoj56Hf6OxSfdRNff2e/oLJbqYC07i6UeMGLUBeR07U2TRo3p18TOCbRYqotVdhZLPaFDh87RFsFiqbfYbkyLxWKxxD1W2VksFosl7hGtbJHPY4yI7AY21UJUzYA9tRDPsaA+yQr1S14ra91Rn+StT7JC/ZK3tmRtr6p1uvZYTCm72kJEFqrqgGjLEQn1SVaoX/JaWeuO+iRvfZIV6pe89UlW241psVgslrjHKjuLxWKxxD3xquz+FW0BqkF9khXql7xW1rqjPslbn2SF+iVvvZE1LsfsLBaLxWIJJF4tO4vFYrFYyrDKzmKxWCxxT1wpOxE5W0TWish6Ebk32vIEIyLtRORzEVklIitF5FbHfaKIbBORpc7v3GjLCiAiOSKy3JFpoePWVET+JyI/OH+jvsOliHQLyLulInJQRG6LpXwVkRdFZJeIrAhwC5mXYpjklONlItIvBmR9VETWOPK8JyKNHfcOIlIQkMfPH0tZK5E37LMXkf/n5O1aETkrBmSdFiBnjogsddxjIW/D1VkxWXYrRVXj4ge4gQ1AJyAR+B7oGW25gmRsBfRzjtOBdUBPYCLwu2jLF0LeHKBZkNsjwL3O8b3Aw9GWM0Q52AG0j6V8BU4F+gErqspL4FxgJiDAEGB+DMg6CvA4xw8HyNohMFwM5W3IZ++8b98DSUBHp85wR1PWIP/HgftjKG/D1VkxWXYr+8WTZTcIWK+qP6pqMfAmMCbKMpVDVber6mLnOA9YDbSJrlTVZgzwsnP8MnBB9EQJyc+ADapaGyvx1Bqq+iWwL8g5XF6OAV5RwzygsYi0OiaCElpWVf1EVUud03lA22MlT1WEydtwjAHeVNUiVd0IrMfUHceEymQVEQEuBaYeK3mqopI6KybLbmXEk7JrA2wJON9KDCsSEekA9AXmO043O2b/i7HQNeigwCciskhErnfcWqjqdud4B9AiOqKF5TLKVxaxmK9+wuVlrJflazCtdz8dRWSJiHwhIsOjJVQIQj37WM7b4cBOVf0hwC1m8jaozqp3ZTeelF29QUTSgHeA21T1IPAccBKQDWzHdGXEAsNUtR9wDnCTiJwa6Kmm3yJmvl0RkUTgfOA/jlOs5msFYi0vwyEifwBKgdcdp+3AiaraF7gDeENEGkZLvgDqzbMP4BeUb6jFTN6GqLPKqC9lN56U3TagXcB5W8ctphCRBEyheV1V3wVQ1Z2q6lVVHzCZY9itUhmqus35uwt4DyPXTn+3hPN3V/QkrMA5wGJV3Qmxm68BhMvLmCzLIjIB+DlwuVPB4XQH7nWOF2HGwLpGTUiHSp59rOatB7gImOZ3i5W8DVVnUc/KLsSXsvsO6CIiHZ0W/mXAB1GWqRxOn/wLwGpV/XuAe2Cf9oXAiuBrjzUi0kBE0v3HmAkKKzB5epUT7Crg/ehIGJJyLeNYzNcgwuXlB8B4Z2bbEOBAQJdRVBCRs4G7gfNV9XCAe3MRcTvHnYAuwI/RkfIIlTz7D4DLRCRJRDpi5F1wrOULwRnAGlXd6neIhbwNV2dRj8puGdGeIVObP8xMoHWYFtAfoi1PCPmGYcz9ZcBS53cu8Cqw3HH/AGgVA7J2wsxa+x5Y6c9PIAOYDfwAfAo0jbasjlwNgL1AowC3mMlXjBLeDpRgxjF+FS4vMTPZnnXK8XJgQAzIuh4zFuMvt887Ycc65WMpsBg4L0byNuyzB/7g5O1a4Jxoy+q4TwFuCAobC3kbrs6KybJb2c8uF2axWCyWuCeeujEtFovFYgmJVXYWi8ViiXussrNYLBZL3GOVncVisVjiHqvsLBaLxRL3WGVnsVgslrjHKjuLxWKxxD3/H1lwDiVnJhN3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 8)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACFtElEQVR4nO2dd5xVxfXAv+f1t293KUuRJkXpLEUBUUBRsUdRUcGOxhiTmF/UxGiKBk1MrNFYoomi2MVeYm+oqIgoSBUUXSlSF3bZ/sqd3x9z3+Pu7tv69m1h5/v5LLw3M3fmvHvn3jNz5tw5opTCYDAYDIb2gqulBTAYDAaDoTkxis9gMBgM7Qqj+AwGg8HQrjCKz2AwGAztCqP4DAaDwdCuMIrPYDAYDO2KVqP4RKSfiCgR8bS0LHs7IjJLRBY0U1tBEXlNRHaJyO+bo80q7eeJyNRmaGe+iFxUQ57p2y1EHdelxrwmlmGuiPytlnwlIvunW469ARE5WER2i8hSEcltbD2tRvEZGoeIzBaRiIgUO/6aXcHUwlRgJNBHKXVzPNFWSP1aTKpWhH0NZzeg/Fki8oOIlIjIiyLSuZay/xWRNSJiicisJPmXi8gW+2HyoIj4HXmjReQjESkUkY0ick2VY88QkdUiUiQiq0TkZEfefVX6ZIWIFDnyi6v8xUTkrnr+/rnJfsveiD1InduA8keKyNciUioi74tI31rK9rPLlNrHTHXknS8iX9j9YqOI3BwfuImIX0Tm2H2wyFZCx1WpV1W5vtc48v12X9tt970rHHnDRGSxPVDeJSLviMiweL5S6lOgI7AW+Gl9z0tVmkzxmdFsizJPKZXp+Lu57kOajc5AnlKquKUFSQXRtPhAUUSGA/8BzgW6A6XAv2s55Cvgl8CXSeo6BrgaOBLoCwwArnMUeQL4EH0NDwN+KSIn2cf2Ah4DrgCygSuBJ0SkG4BS6hJnnwSeBJ6JV1wlbx+gzJnf1hARdyuQoQvwPHAN+potBubVcsiTwBIgB/gT8KyIdLXzMoDLgC7AQeg+8js7zwNsQPeJDsCfgaeTDGQ7Oq7zXx3ps4GB6D53OPB7ETnWzvsROM2WvwvwMvCUs1KllAWssuVuFCndyPao/SoRWQaUiIhHRCaIyCciUiAiX4nIFEf5+SLyDxFZZGv7l2oarYrIBY7R5Hci8vMq+dPskcZuEVkXP3Ei0sEejWwWkU0i8re6OqWI7Cci74lIvojsEJHHRaSjI2+niBxgf+8pItvjv0tEThKRlfbvnS8iQ6ucn9+JyDLRo+Z5IhJo+JluOCJytX1e4qPxU2ooJyJyu4hss8/lchEZYef5ReRWEVkvIltFj+KDDRTFA1h1yJojIq/Y7X9uX7MFjnwlIpeIyDf2eb5HRMTOq/HaORhnn4NdIvJQ/BqISCcR+Z99PXfZn3s72p0vIjeIyMdoBTOgjt/aV0Q+ts/5W/aDyMnZ9rncISJ/qqOumjgbeEUp9aE9mLgGOFVEspIVVkrdo5R6FyhPkn0+MEcptVIptQv4KzDLkd8PeFwpFVNKrQMWAMPtvN5AgVLqdaV5FSgB9qvaiIiEgOnAwzX8punANuCjWn53UkTELSK32ef0exG5VGowK4tID/tevNKRvF9NzyMReUb0jKRQRD4UPeiI580VkXtFm/FL0A/w2ugkIq/afeMzEal6nqYm698N5FRgpVLqGaVUOVrBjBKRIVULisgg4ADgL0qpMqXUc8By9LVAKXWvUuojpVRYKbUJeByYaOeVKKVmK6XylFKWUup/wPfAgfWU83zgr0qpXUqp1cD92P1OKVVg16sAAWJAMjOwhX62NA6lVKP/gDxgKdAHCAK9gHzgeLRSPcr+3tUuPx/YBIwAQsBzwGN2Xj9AAR77+wnom0jQI4tS4AA7bzxQaNfvstsdYue9gB4Rh4BuwCLg53X8jv3tuvxAV/Qo9w5H/s/QI4wM4E3gVjt9EPpmPwrwAr8HvgV8jvOzCOiJHsGsBi6pQYZJQEEtf5NqOG52/BxWST/dbtcFzLDl7GHnzQIW2J+PAb5Amw8EGOoodzt6xNUZyAJeAf7RgP7hBR5NJl+Vck/ZfxnAMPRocoEjXwH/s2XcF9gOHFvPa5cHrED30c7Ax8Df7Lwc9I2eYf++Z4AXHcfOB9ajH/YewFvLb5gPrLP7RND+fmOVvn2/nTcKqACG1lBXbdf7JeCqKmnFwIF1nOMFwKwqaV8BMxzfu9hy5tjf/w7caF/HwcBGYJyd5wY+AE6yP59s54eStH0e8B0gNcj2HjC7kc+gS9D3Zm+gE/AOlZ8j84GLgP5o89jFVa5Z0ueRnX+h3S/8wB3AUkfeXPQzaCL6HgvUIuNc9HNwvN2PHgeeqk//TlLXMuCsGvL+BdxbJW0FMD1J2VOA1VXS7gbuqqHuF+P9OUled/TAKv4Mjvf3TXafeAjoYud1svO6O44/DVie5B6IohXcn5O0eYF9PXMa1W8ac5Cj8TzgQsf3q4BHq5R5Ezjf0dFudOQNA8LoGyd+sjy1nPjf2J//A9xewwWoAIKOtDOB9xv4u04GllRJexk9IloG+O20a4CnHWVc9sWe4jg/5zjybwbuS+WcJ5F1tn0OCxx/PZOUWwpMsz/PYo/iO8LuQBMAl6O8YI/gHWkHA9/XU67RQATYCuxfSzm3XW6wI+1vVFd8kxzfnwaurs+1s6/BJY7vxwPrapF5l+P7fOD6ev7e+ThuULR58Q37c7xv93bkLwJmNuJ6v0uVwZOzz9VyXDLFtw7HAxat4BTQz/5+CHogF7XTr6ty/E/RSjeKHpieUIvMs2vI64se1fdvZP9/D8fAFr2mXFXx/dPuB2cmuWZJn0dJ2ulo19vB/j4XeKSeMs4FHqjSB79uTP+uo505VFFO6IHerCRlzwUWVkm7AZibpOyFaAXWJUmeFz3Y+I8jLRMYi1by3YFngTftvD727w04yh+FXg6pWnfIvo+q9Su73U/sui5r6LlqijWLDY7PfYHT7el6gYgUoGcyPWoo/4P9A6qahBCR40RkoW1mLEB3lni5Puibtip97fo2O9r/D3rmVyMi0l1EnhJtGt2NXruoKtP96JHhXUqpCjutp/0bgITteQN6Bhpni+NzKbpTNDVPK6U6Ov5+FJHzRJuC4+dhBEnOs1LqPfRI7x5gm2hniGz07CkD+MJRxxt2ep0opZaiR8ufotcKaqIre9YM4mxIUi7peazntava53rax2aIyH9EL9LvRs8WO0pl03gyWWqirmvdFH2hGL2m5iQbKEpStqF1xT8X2Sa/N4DrgQD6njtGRH4JINoR4mZgCuBDW2UeEJHRzgZEZF+7zCM1yHAuepDzfSPkB30t6+o7Z6MHB88myUv6PLJNqDeKXi7YjVacULlvteW+Ua+yoh2W/gEcp5TaUSXPhbbohIFL4+lKqWKl1GKlVFQptdXOO9o2x8fX+qv2u2oyKqVKgPuAR8ReO3ZwIrpP9lRK3ZHk99VKUyg+5fi8AT3jcz6EQ0qpGx1l+jg+74se7Vc9oX602eFW9JS4I/AaehYSb6faWoKdXoEemcTbz1ZKDU9S1snf7d+Rq5TKBs5xtIWIZKJNHXOA2Y51gB/RyjZeTuzft6mO9qohIpOluqeb829yA+rqi1bUl6JNAR3RJo+k6wZKqTuVUgeiR7yD0I4KO9AOB8Md57KD0s4I9ULpdYbX7XprYjt6xtDbkdanhrLJqPXaJalvX/R1A/gt2oR3kH3soXa683hn/24NrESbSgEQkQFoU9zaVOuyP29VSuWj1zNjSqlH7AfYRrQ5+ni77GjgQ/sBZymlPgc+Q8+4nJwLfKyU+q4GGc6j5rW/+rCZuvvObHR/fkKqr/fX9Dw6C5iG/j0d0LN2aFt9I4R+Tq6soeyAKmvDo5xlRftN3A+cqJRa7jzYftbNQc/opiulIrXIFT9PLqXXkjdTvd8lkxG0jsqg8mQC9JLMQqXU5lrarZGm9lJ7DDhRRI6xR0wBEZnidBgAzhHtspqBHk0+q5SKVanHh76ZtwNR0a6yRzvy5wAXiHbddYlILxEZYp+Et4DbRCTbzttPRA6rQ+74SKRQtLfalVXy/wUsVkpdBLyKHoWANkmcYMvhRT9IK9BT8Aah9EJyZi1/DVn4D6E723bQjkLoGV81RGSciBxky1+CttVb9uz1fuD2+GjLPs/HOI5V4nBeqoEK9PVMin3tn0cPKDLshfjz6vUrNXVdO4BfiUhve8DyJ/Z4umWhlXuBnfeXBrTbUjyOvscm2w+264HnlVJJZ3wi4hPtzCOA174n4/f9I8BP7fuxI9o7b66dt1YfLmfZ99E+6LXiZXb+58Dk+AxPRMYAkx35cc5z1FlVtkPQD7Rq3pz17Fug78Hf2H2zI3q5pSoR9Jp3CD17cD73anoeZaH7bj76wfv3esjS0rwAjBCR6fY1vxZYppT6umpBpdRa9PLHX+w+cQr6taPnAETkCHRfm66UWpSkrXvRyudEpVSZM8N+ngy2+00OcCcwXylVaBd5BPizaOeyIWgfirn2sUeJyBhbf2SjzdS70P4RTrzo69MomlTxKaU2oEdJf0Q/dDegH0TOdh5F/8gtaBPK/yWpp8hOfxr9o89Cr7HF8xehFzdvRy8wf8Cemdd56AftKvvYZ6lsak3GdWgPp0K0Yns+niEi04BjgV/YSVcAB4jI2UqpNegZxl3oUeKJ6I4QrqO9tKKUWgXchjYzbgVy0bb+ZGSjFdwutKknH7jFzrsKvcaz0Db3vIOeISEifdDmieVVK6yCRd397FL0qHoLun88Sf07dY3XzsET6AHRd2gTefxl4jvQziY7gIVo016LU9sMXym1Eu3Q8TjaEzILvQ4SP/Z1Efmj45C30Mr9EOC/9udD7breQJsr30c78fyArfyVUrvRXoKXo/vGUrTV4G92/gfomdSzot/Pew74u1LqLYcsB6NnYzW9pnA+SZR2A/oW6L77FlrhLkFbhqLodcME9j15KnqG8qBD+dX0PHrEPh+b0M+ShfWQJe2I9iA/O1meUmo72lnrBvQ1OwiY6Tj2PhG5z3HITPRa3C60E9Npdh2g/Rc6AK85rE6v2/X0BX6OnvVvceTH5RqAvpeK0H2mAu1rEecv6PvwB/Sz+xa7L4JeS30SfT+vQ89Yj7WtR07c1OEtXhtiLxQ2CyIyH+019UCzNWpICyJyDtoM+oc6yh2NtgQMUUrtrGfdNwH7KKXOT11SQ1ujvn2rhmOPQzuQ9a2zsKFNIvpVlefRDkKN2qyjxV/INbRNlFKP1fPBNB94G1gpIr9LVkBEhojISNGMR3sLvtB00hraEg3oW4jeEu940e8Q90LPJkzf2UsRkQno2XlHtAWjUbSb3VbsKf45SbIeU0pd0tzytBdsE1NS04yDLLR5oyfaNHsb+n21VoWI1LT7zHENXIM1NB2CNnfPQ5txX0WvbTWvECIrcTi6Ofi5Uurx5pZnb0UptZAk3ukNpVlNnQaDwWAwtDTG1GkwGAyGdkWrMnV26dJF9evXr6XFMBgMBkMz8sUXX+xQStVrc4ymoFUpvn79+rF48eKWFsNgMBgMzYiI/FB3qabDmDoNBoPB0K4wis9gaMUY5zODoelp94pvzZYi/vqP2Wz8fk1Li2IwVOKH7YXMueZMlq5c1dKiGAx7Fa1qjS8ZkUiEjRs3Ul6eLI5m6hSVRzhtysEUbt1AUXmjd8AxtDICgQC9e/fG6/W2tCiNZtmiD7jI8zrfvb4Vhr/fLG1u3FXKJ99s54zxzbfxyWff5dM55GNg96SxdA2GJqfVK76NGzeSlZVFv379kEYFJa6dnbtL6Fxsb+vXc2jthQ1tAqUU+fn5bNy4kf79+7e0OI0my6vNnBnh/GZr8+X/vcQv111Cftb/yBla74AgKXHnA/dzsftVBs5+D9xtd6BiaDu0elNneXk5OTk5aVF6AG6qBoYwtHVEhJycnLRZCZoLX3Q3AMpqRkvEj0sAkK+ab7ORh703cZh7GRQ1KsKMwdBgWr3iA9Km9DTGeWBvJL19ppmI6RBnXqusjoJNR8TfUTddWlh7wSZCKUUxQf2ltPlmtob2TZtQfGnF6D1DK0VZUQCCVmmztenz+QGwKhoT0L3hWAqKVIb+YhSfoZkwis+p+WpwHRcRfvvb3ya+33rrrcyePTvNcjWe+fPn88knDY6FW4ljjz2Wjh078pOf/KSJpDI0FGVpM3yI5lN8IXvVX5pJ8UUti91oxRct3tEsbRoMRvHVQ/H5/X6ef/55duxo2htTKYWVhvWbplB8V155JY8++mgTSWRoFFbzrz8HbMXnjjTTjM8iYeos321mfIbmod0rvkq6TiV/0Hg8Hi6++GJuv/32annbt29n+vTpjBs3jnHjxvHxxzrQ+ezZs7n11lsT5UaMGEFeXh55eXkMHjyY8847jxEjRrBhwwauvPJKRowYQW5uLvPmzQO08poyZQqnnXYaQ4YM4eyzz076MvOdd97JsGHDGDlyJDNnziQvL4/77ruP22+/ndGjR/PRRx/VKuO5557LwQcfzMCBA7n//vsT9R555JFkZdXuXv7MM88wYsQIRo0axaGHHgpoZ6QLLriA3NxcxowZw/vvazf8uXPncvLJJ3PUUUfRr18/7r77bv75z38yZswYJkyYwM6dOkbt/fffz7hx4xg1ahTTp0+ntLT6bGfChAmsXLky8X3KlCl75VZ3qgUUn8d29vJEmmeWGbUsypUPgHBJ86wrGgyt/nUGJ9e9spJVP+5u0jr3y/Hx90Ns/a9qnn396le/YuTIkfz+95UD/v7mN7/h8ssvZ9KkSaxfv55jjjmG1atX19rmN998w8MPP8yECRN47rnnWLp0KV999RU7duxg3LhxCSWyZMkSVq5cSc+ePZk4cSIff/wxkyZNqlTXjTfeyPfff4/f76egoICOHTtyySWXkJmZye9+p+O+nnXWWTXKuGzZMhYuXEhJSQljxozhhBNOoGfPnvU6d9dffz1vvvkmvXr1oqCgAIB77rkHEWH58uV8/fXXHH300axduxaAFStWsGTJEsrLy9l///256aabWLJkCZdffjmPPPIIl112Gaeeeio/+9nPAPjzn//MnDlz+PWvf12p3RkzZvD0009z3XXXsXnzZjZv3szYsWPrJXNbopI3pxUDlzv9jdrK1mVVpL8t9IwvZo+/Y+XNM8s0GNr9jI96zPgAsrOzOe+887jzzjsrpb/zzjtceumljB49mpNOOondu3dTXFxTvFJN3759mTBhAgALFizgzDPPxO120717dw477DA+//xzAMaPH0/v3r1xuVyMHj2avLy8anWNHDmSs88+m8ceewyPJ/k4pjYZp02bRjAYpEuXLhx++OEsWrSoVtmdTJw4kVmzZnH//fcTi8USv+ecc3S83yFDhtC3b9+E4jv88MPJysqia9eudOjQgRNPPBGA3NzcxG9bsWIFkydPJjc3l8cff7zSzC7OGWecwbPPPgvA008/zWmnnVZvmdsUzhlfuPY+1XRtaocaTzMpvqhlJWaZRvEZmos2NeP7y4nDm7zOgl35ULYe0CPs2pzgL7vsMg444AAuuOCCRJplWSxcuJBAIFCprMfjqbR+53ynLBQK1Us2v9+f+Ox2u4lGo9XKvPrqq3z44Ye88sor3HDDDSxfvrxamZpkhOpu/w15DeC+++7js88+49VXX+XAAw/kiy++qLW88/e4XK7Ed5fLlfhts2bN4sUXX2TUqFHMnTuX+fPnV6unV69e5OTksGzZMubNm8d9991Xb5nbFI6BWEXpbvyBDulvM6H4wulvC4hZCjf6PlHN5FBjMJgZn2PdrK41lc6dO3PGGWcwZ86cRNrRRx/NXXfdlfi+dOlSQIdY+vLLLwH48ssv+f7775PWOXnyZObNm0csFmP79u18+OGHjB8/vl6iW5bFhg0bOPzww7npppsoLCykuLiYrKwsior2PERqkhHgpZdeory8nPz8fObPn8+4cePq1TbAunXrOOigg7j++uvp2rUrGzZsYPLkyTz+uH75ee3ataxfv57BgwfXu86ioiJ69OhBJBJJ1JOMGTNmcPPNN1NYWMjIkSPrXX9bwtkfy4qb1sRfE2IrWy+RZmkvphQe0W2qimaa1RraPUbxUX/FB/Db3/62knfnnXfeyeLFixk5ciTDhg1LzD6mT5/Ozp07GT58OHfffTeDBg1KWt8pp5zCyJEjGTVqFEcccQQ333wz++yzT70kj8VinHPOOQlHkv/7v/+jY8eOnHjiibzwwgsJ55aaZARtKj388MOZMGEC11xzTWJ9b/LkyZx++um8++679O7dmzfffBOAa6+9lpdffhnQnp+5ubmMGDGCQw45hFGjRvHLX/4Sy7LIzc1lxowZzJ07t9JMry7++te/ctBBBzFx4kSGDBmSSH/55Ze59tprE99PO+00nnrqKc4444x6193mcPTHiuZy/LAcVoVmiAwRjamEqVMiJWlvz2AAkNYU9mTs2LGqqnfe6tWrGTo0fXto7tq5nU7lGwGIZvXGk9VsQYBbnNmzZ1dygtnbSHffSTfz585mSp72JM474Sn6jTsu7W2+eNeVnJz/X/3lj5vBl5HW9n7IL2HXvyYx2vUdW7Nz6X7FgrS2Z2idiMgXSqlm81AzM74GmDoNhuZEHGt8kbJmmvEpx4yvGRxqopbCY6/xuaNmxmdoHtqUc0u6adbNgFsBrXn3GUPlgViktHkcP6SaJ2m3tLannVvsdcVo8+1QY2jfmBmfc8ZXy+sMBkOz4+iP0eZy9XfM+JrDyzJmKbxxxRczMz5D82AUn/NFvnY24zO0bpymTquZFJ9zxhcuaR7FF5/x+WOlzeJQYzAYxefEzPgMrQnHQKzZFJ/jHigvTf8rFDHnGh8xiDXP+4OG9o1RfPYIM6ZctW5ZZjA0OyqGpYQiFUSaaecWcZg6m+MViqilcItjwGne5TM0A0bx2cRwVRrtVuXFF19ERPj6669rLJOXl8eIESPSIV6CpUuX8tprr6VUx4UXXki3bt3SLqshRawoMXFRSgCJNI9CcFVyqGmeGZ+XGGFl70MaNru3GNKPUXz2Gl+M2md8Tz75JJMmTeLJJ59Mmp9sO7GGEt/vsjaaQvHNmjWLN954I6U6DM2AsrBwUSZBXM0ULUFUjKjSj4VIM5hX42t8u8WOBGJmfIZmwCg+29RpiQupQfEVFxezYMEC5syZw1NPPZVInz9/PpMnT+akk05i2LBhgFaAZ599NkOHDuW0005LhNV59913GTNmDLm5uVx44YVUVOhNgPv168dVV13FAQccwDPPPFOp3aphf8LhMNdeey3z5s1j9OjRzJs3j5KSEi688ELGjx/PmDFjeOmllwAdBmjatGlMmTKFgQMHct111yXqPfTQQ+ncuXOtp+WDDz5g9OjRjB49mjFjxlBUVIRSqsYQSocddhjTpk1jwIABXH311Tz++OOMHz+e3Nxc1q1bB8Arr7zCQQcdxJgxY5g6dSpbt26t1u7MmTN59dVXE99nzZqV2JC6vSFWjBhuKlxB3M20q4moKEWSCTTPumJ8ja/EbrPZNuM2tGva1nt8r18NW6pvwpwKwQ79YcJPsXBXWt9w8tJLL3HssccyaNAgcnJy+OKLLzjwwAMBvQ/nihUr6N+/P3l5eaxZs4Y5c+YwceJELrzwQv79739z6aWXMmvWLN59910GDRrEeeedx7333stll10GQE5OTmJfTydVw/74fD6uv/56Fi9ezN133w3AH//4R4444ggefPBBCgoKGD9+PFOnTgVg0aJFrFixgoyMDMaNG8cJJ5xQ7/A9t956K/fccw8TJ06kuLiYQCDA888/X2MIpa+++orVq1fTuXNnBgwYwEUXXcSiRYv417/+xV133cUdd9zBpEmTWLhwISLCAw88wM0338xtt91Wqd14yKETTjiBcDjMu+++y7333lsvmfc6VAwLFxWuDALN9HK3S8WIiJcKy0usPP1KKKb0jK/MnQlRzIzP0CyYGZ9t6lTiQkg+43vyySeZOXMmoGckTnPn+PHj6d+/f+J7nz59mDhxIgDnnHMOCxYsYM2aNfTv3z+xX+f555/Phx9+mDhmxowZSdtNFvanKm+99RY33ngjo0ePZsqUKZSXl7N+vY42cdRRR5GTk0MwGOTUU09lwYL6bwc1ceJErrjiCu68804KCgrweDy1hlAaN24cPXr0wO/3s99++3H00UcDlUMObdy4kWOOOYbc3FxuueWWpCGHjjvuON5//30qKip4/fXXOfTQQwkGg/WWe29CbMUXdmfgjTWPqdOlYijxUIK/md7js/BgUeHRpk4TocHQHLStGd9xNzZ5lWXbNhKIbkeJG5eytOnTEZpn586dvPfeeyxfvhwRIRaLISLccsstQPUQQ40J81NTmKL6hP1RSvHcc89Vi4Dw2WefpRRy6Oqrr+aEE07gtddeY+LEiYlNqmuiPiGHfv3rX3PFFVdw0kknMX/+/KQ7xwQCAaZMmcKbb77JvHnzEgOO9ojYa3xRTwh/ZH3zNKpiKJebkmjzeJLGLHBhEfZmQzmES3dT/y3NDYbGkfYZn4gcKyJrRORbEbk63e01GBWf8bl1LL4q63zPPvss5557Lj/88AN5eXls2LCB/v3789FHHyWtbv369Xz66acAPPHEE0yaNInBgweTl5fHt99+C8Cjjz7KYYcdVqdoycL+VA05dMwxx3DXXXcR32x8yZIliby3336bnTt3UlZWxosvvpiYidaHdevWkZuby1VXXcW4ceP4+uuvUwqhBFBYWEivXr0AePjhh2ssN2PGDB566CE++ugjjj322HrXv9ehYliiFV/Aar4ZHy4PxQQgnH7zqqV0PL6oLxuAcGlB2ts0GNKq+ETEDdwDHAcMA84UkWHpbLOxKLFPRRXF9+STT3LKKadUSps+fXqN3p2DBw/mnnvuYejQoezatYtf/OIXBAIBHnroIU4//XRyc3NxuVxccskldcqULOzP4YcfzqpVqxLOLddccw2RSISRI0cyfPhwrrnmmsTx48ePZ/r06YwcOZLp06cn1vfOPPNMDj74YNasWUPv3r0T8QXvu+++RMiiO+64gxEjRjBy5Ei8Xi/HHXdcSiGUQO8Nevrpp3PggQfSpUuXRPrixYu56KKLEt+PPvpoPvjgA6ZOnYrP56t3/Xsb8Rmf5cskg7JmaVObOt2US/M41FixGC5RWP6OQPO8QmEwpDUskYgcDMxWSh1jf/8DgFLqH8nKt0hYoq3r6RTLZ6d3HzpHtkC3oeCpHqm8rTF37txKTjDtkbYeluiT285g/+IvWN3zVA7b9F+4Jh/c6V2d+Oj6qQzwFbC+IoNewSj7/v6TtLb36tIfOOHFkXzW7xeM+v4Bdo+8kG7Tb05rm4bWx94WlqgXsMHxfaOdlkBELhaRxSKyePv27WkWJwlxve+yX6A1+3UaWgsqhiVu8GnHj2hZ+mdDYs/4Iq4MPM3gSWrZTlt+n5digljlZsZnSD8t7tWplPqvUmqsUmps164tEQRWoQBtld17YvLNmjWrXc/29gbE0qZOCWrFV1pUkPY23bayDXsy8DWDJ6myI777vF6KVdB4dRqahXQrvk1AH8f33nZag0hvlHi7brdWfNZeovjaO+ntM82DYKHEhTugHT/KSgrS3qYLPeOLukP4rfSvK1oxbWHx+3yUEACj+AzNQLoV3+fAQBHpLyI+YCbwckMqCAQC5Ofnp+1BJoBCEFd8xpf61mOGlkUpRX5+PoFA216rjb/H5wlqxVdRXJD2Nt32e3wxb4igaoYwQTF9v/l9PooJIs3gSWowpHWlXCkVFZFLgTcBN/CgUqr6W8u10Lt3bzZu3Ei61v9KC3cQVGWUB4Vg2TZigQjuQAusNRqalEAgQO/evVtajJQQZaHEjTfDVnzNEC3BRQzl0p6kHmIQrQBv+gYQlj3QDPi1qdMdMTM+Q/pJ+wvsSqnXgEbvquz1eivtjNLUvHzT+RxV/hafn7aQA148lI0H/p7eJ/4pbe0ZDPUlPuPzhToCEClNv+KLz/gsX3zT6KI0Kz7bucXrpZQAnqgZdBrST4s7t7Q0Yr8kHAplElUurGbwnDMY6oOe8bkIZHYEINYMfdOFnmXijyu+9LaZWFpweyh3h/BGm+dFfUP7xig++yXhUCDuTm1MLYbWgdgelgF7xhdLs6u/sndRUS4P4tfm1XS/QqHsNT6Xy03EHcIXM2t8hvRjFJ+KocRFpt9DMUHjVWZoNbiwULgIZXUAQKVZ8cVj4yFu3LZDTXnRrrS2GX9vVlweIp4QPlWRcHgxGNKFUXzKwsJNpt9DkQqaCNCGVkN8UBYK+ChWASTNg7KopfAQQ7k8exxq0ryuGDd1istFzGtv1m7uQUOaMYov/nDxeyghiNsEwjS0Ely2V6fP46KEYNqDtOoZnwUuN56MjgCE0/zuYFzxudxeLK8djNbE5DOkGaP44i7jbhelBHFHzU1naB3EX2AHKJUM3JE0Kz6l8Iie8flC2rya7k2j4zslidvpUGNmfIb0YhSf7TIO2F5lZnHd0DqIR0oAKHNl4Em34ovZMz7xODxJ0/wKhb1Xp8vlAZ894zNWF0OaMYqPWGJUHXaH8BnFZ2gluBwzvgpXRtoHZfE1PtweMoIhKpQn7Q41lrIVn9uDy3aoMTM+Q7oxis82dQKEPSH8llF8htaBS8WwRO8xEW4GV/89Xp0usgKeZnm9R+KvM7g9uAPa1Gk2qjakG6P41J5RdcwTIqDKwWxUbWgFCBbYfTPiCeFPcxT2SMzCg4W4PIT8HopVEEmzh6WyZ3yIG09QryuGm2GHGkP7xig+xzqK5TWL64bWg8thjYh6Mwk2g+JzYSFuDyG/m2KCuNK83pYIA+ZyJV6hCDfDnqSG9k27V3xuHIrPbxbXDa0H5xqf5c0ig/RGS3Cu8fk9bkoI4kr3ptEJxechkKkVX8RsG2hIM0bxKe2+DRh3akOrwkMU5fICoHyZeLAgkr4YedrUGUPsNstcITyR9K4rJvbqFDcZgQwqlJdoml+hMBiM4iOacCBw+Y1XmaH14GaPc0t8UJbO/Tqj0RgesRC3VnwV7hC+NL/XasW3J3O5yQx4KCaAZe4/Q5pp14rPSmzRpG90l+1VFk33u0sGQz3wqGjCGhF39S9LYzDaWLTCbtgHaE/SdHs5W7E9zi2ZtkON2SjekG7ateKLWgofUSxb8bkztFdZc0S6NhjqIr5vJoArkH7FF42EdVv2jC/qCRGIpdehxjnji28bmO49SQ2Gdq74rEoPF28wvjGvWWMwtDxOa4Qn4fFYkLb2LFvxiT3ji/ky8RGGaDhtbUosPssM6I3iCSLGucyQZtq54rO92OyHS3x/wqhxpza0MDFL4SUKbq2EfMG4NSJ9fTMWraL44q/3pFERSbRcf/D4E6bOdO9JajC0a8UXi+mHS3zG548rvjRv02Qw1EU4auEhmnA08YXirv7pMwPGZ3wuj18nNEMUdpdjxhfw6igUHrNtoCHNtGvFF7EsW/Hph0tmMECZ8hEzi+uGFqYiEsUnsYTiC8QHZWl8x82ynVtcHt1mQvGlcSDosmzF5w0iIlS4078nqcHQrhVfRcTCLxHwBAD0Nk0E0r4xr8FQF+GKPSZAgIx4tIQ0Dsr2KD7dptgONVYa7wd3wpNUt9kce5IaDO1a8ZVFYgSpAF8GAJl+DyUqiDKBMA0tTKTc7oNe3TdDmVnElKDSqPii5dqD0xvQkdDje2eWp9GhJjHjswefEU8In6qAuLenwZAG2rXiKw9HyaAC8ekbXc/4jFeZoeVJKL543wx4KCEAadw0OlqhZ1o+v1a2nmD69850xyqI4gGX3jYw5olvG2iWGwzpo30rvvIyvVOFPeML+d2UEDBeZYYWJ1qulVC8b/o9bkrTPCiLhvWMz5ehlW3cyzmcxtd7XLFyIi5/4nssHozWvMtnSCPtWvFFKvSN7vbrGz3+cHGneX9Cg6Eu4jM+V3zjdKBU0hstwarQ+4DGZ3yBkHZuiZSl8XWGWAVRl29Pgs/sl2tIP+1a8YVL4w+XUCKtvBkiXRsMdREu1Q9+X3CP4it3BXFH07iTiv3aQtypJWi/NB8rT5/ic8fKiTlmfHteoTBWF0P6aNeKL35DewJ7Hi4VxqvM0AoI27Os+KwLoCLNgzJ3hb2WF+wEQCjoo1T507YxtlIKv1VG1J2RSJOAmfEZ0k+7VnylJfqGDjoeLlFPRtojXRsMdRE3LwYy9vTNiDuEL417Z7oqCrAQ8Ou1vSy/lxL8qIr0KNuySIxOUkSFv/MeGezZpjKKz5BGUlJ8IjJbRDaJyFL773hH3h9E5FsRWSMix6QuatMTLt4JQChrz40X9WQad2pDixMrKwAgo1LfTO+gzFVeSKmEwKUfCyG/m1IVQKVpXTG/OExnirCCe35jPAq7iZBiSCeeJqjjdqXUrc4EERkGzASGAz2Bd0RkkFIq1gTtNR3FWwFwd+iRSIp5He7UtsnHYGh27L4Z6rynb0Y9IQJpVHzecCGlnmzihv/MgIdtBPCnSfFtK6qgn+ymPJSzRwZb8VWUFOJNS6sGQ/pMndOAp5RSFUqp74FvgfFpaqvRuEu26Q+Z3RNpKuFObRbXDS2Hq3grhWTi9gUSaZY3kyDpi8DeIbqNUl+XxHe/x00JQVyR9CjbHYVFdKQYb3a3RJrPDg0WMRFSDGmkKRTfpSKyTEQeFJH4FKkXsMFRZqOd1qpwFW+hQvx7PMlwKD7zEruhBfGVb2e3u4rFwZeJj2hawgQVlkXoqbZSnrlvpfQKVwB3mhxqdm/+Drcogt32S6SFAn7tUJPGPUkNhjoVn4i8IyIrkvxNA+4F9gNGA5uB2xoqgIhcLCKLRWTx9u3bG3p4o1FKkVP+PTsD+4JIIj3xakPYOLgYWo6c8vUUBPpUTrTf6UtHhPLvNm1jH3bh7TKgUnrYlYEnlp5ZZvGmVQBk9RqaSMv06x1qYsa5xZBG6lzjU0pNrU9FInI/8D/76ybAedf2ttOS1f9f4L8AY8eOVfVpqynYuLOUwSqPwo6HVkp327M/FS5Ckh1oMKSZwuISels/siLnyErpYiu+spJCQpk5yQ5tNNvWfIJLFNn7VV6RiHgy0vZ6T2DbUixcuLrtUXwhv5sSFSCQJk9SgwFS9+rs4fh6CrDC/vwyMFNE/CLSHxgILEqlraZmxZJP6CqFZA6qovjsF4bjL7cbDM1N3pL38UkMX9+DKqXHXywvLy5o8jbVmjeJ4KHL0EmV0qPuDHxW08/4tu0uZ0TpZ2zLGlZpqSHT76GUAISN4jOkj1TX+G4WkeUisgw4HLgcQCm1EngaWAW8AfyqNXl0KqWwFs8ljIfu406ulOe1X2avSGPAT4OhNnYvf42ocrHf+OMqpXvsl7vLm9jxY8PWfA4ofJsfOk5AqngyxzwZBNKg+N565w1yXXm4R51RKT3D76EEv1ljN6SVlF5nUEqdW0veDcANqdSfLt5751WOLnudvD7TGJjZrVKeN2jvT1hqFJ+h+dldtJthW19hVeYERmZVVkKehDWi6fqmUoqVT/6RY6UA91G/rZZveUN44w41Hl+SGhrOxh0FjPjqBord2XSdeH6lvJBPvzuYLk9SgwHa2c4tSik+fPVJxi64mHxPNwbMvLVaGZ+t+KImCruhBfjyievIkd1kHn55tTyfHSYo0kTWCKUUrz16K8cWPMWqHqeQM/yIamUsb9zZq2lmYNsKilh93/mMlrWUH3UTBDtWys/waeeWdHmSGgzQNC+wtwnyvl3Flhf+zKEl77Le24+cn72AO4mDgD8UV3zG1GJoXj57/xUm/vgQyztPJXfs0dXyfaH4riapK76CwkK+nPs7Ttj1NN9kjmfIrH8nL+h37J2Z0Tl5mXry+bJVqBcu4Sj1FRtG/5Y+B59VrYzP46JcAniaYDNuy1I89+FiCr56jT4HT+foscNxuYzLmqEdKL4f16/juxf/xvj8l+iOmyV9L2Dk2X/H7c9IWj4jEKBCeYg1wwvs5eEo332zgvy1n2FtW4OnZDPB8E4EsNw+Ytm9cXcfxr5jptJ13yGVXrsw7F1s+mEd+33wK7Z59mHQTx9IWia+b2eqg7LFn7xL57f+jyPYyLIep5F74T2IN5C8cBO811oWjvHyk/dy1Hf/ICRhNky6kT5Tf1Fj+bAriDfFPUnX7yjmzUduZEbhHLKllOJX/80T751K359cyaTh/RFzL7Vr9lrFt2XDOvJe/BsH7HiZriiWdf0JA6Zfz5ge/Wo9LsOnvcpUGhRfzFKs+XoFW778H6ENHzCkfBnDRJt0LCXscnVkt7sTFoI3XE634k8JbI7A0j+zQzqzudN4vIMOp9+44wjk9K1Xm2XhGDsKdlO4cxslBVsoLdhBpGg7lO7EV7ELX6QAV6wCC0FcHlxuN+L2gieAy+PH7Qvg9vrx+IJ4/QG8/iAubwDl9qHcfvvPh3L5UCgsyyIWi9n/W1hWjJgVw7I/W5bS360YoiwEBUohKPt75bQ4Cqn8sHJ8jqcrBEGSFdmTVsN5qlR1DemV63HIpkCh/7ToSn9P/K/LWfYHyy6D47h9lv6LTpQTmfkS/szkW+UF7MCwViP7ZnFpKZ/N/QOHbX2EXa5O5B37GCMPOrHWY1y2Q020bHejHhZLv/2BrU/9hhnR99kUGkLGOXPp03NorcdEUvAktSzFy++8R5+P/8DPZA1bu4wndOzVFL53H+dsfoL8Z17hiXfOYtLMq+i7TwNeCVGKaPEOtuStYueG1VRsXYcq2Y67fBe+cAHuWDn2xSfm8lLhziTizSbqy0L5OyIZnfCEOuPLzCHYoQuhDl3I7JiD1+0Bl+ASQcSFZUWJRqPEolGi0QixWJRoJIIVixGNRbHstFg0ihWLYsX0dysWIxbT5bCiuJSFS5S+N8QF4kLEhbhciAiK+Gc3CIjLre9BAVEKlAVKoezfBBZYSvdb9P9KKWL+joybUnsfao3sdYqvsCCflU/+ibFbniEHxdIuJ9B32p84cN8h9To+HoVdNdEL7EopVq1azo8LHqff5tcYxnqGAdtcXfm+21Q8fQ6ky6AJdN9vFDneAM5bMRKN8e2apfz41Tv4NixgUP7HdF74Biy8iq3SjZ2B3pT4u4E3SAwP7lgZrnAR7nARgWghmbHddKCIPlJOnxrkKyFAOX7cWLiwcCkLL1H8EmmS32+oH5YSlk26m9EDx9RYJmSb4Ruj+JZ9+SmBV37Jkeo7lnc9jkGz/k3XzLpNl25b8VUUFzboYRGOWjz3wjwOXfFnRshONoz8NX2m/QXcde/AGfNk4KmINNih5odtBSx65I9MK3qKsDuDXUfeQfdDZoEIvQYeSeSHz6l46U+cvfM/bLn3Geb3PJk+B51C38GjtcesFYOynZTu3MSOvJWU/Pg17PiGYNH35FRsJIsSeqNfSraUUCiZFLmyKXV3wPJm6FGSCD4rQmZ0B8HI94SKiwmpMlzSbK8oNyufqaFgFF/L8u1XC+j0wllMULv5otPx9D7lL4zrO7hBdWT4PBQoP74U3yPaUVjM4tfm0uObxxllrWI4sC4wnOX7X0XvcSfRbd/hdKvD3OL1uNl/+IHsP/xA4CrKKiJ8vuRTdq96l9COpWRXbKZ32WK8KoyXGGXip0wyCHsyCQe7sMM/kO3BHNyhznizuuDP7kqoYzcyO3cn2KELkpFDyOMnVKVdpRSRmEVZRTllpWWUlpVSXlZKeXkpFWVlWJFyXFYYVyyMy6pIfFYiuF1uxOXC7XLZ/7sRlxu324XL/u5yu3C53HokiqAco1KF2Gkuna4F2jOdAj0adchqf9pTViQxy3LkJLKroudlUmN+1XQVr9FuR4/W7SR0cANBpwl6Rpr4X3R5+/BEuq9Dd0bvU3nXlKpkBLyUKD/SgL4ZjkT58LG/MTnvbkolg28Pv4/cw86s9/Ge+KbRpYXV+klNfLt5B0vm/p4Z5c+z09+Tipmv02fAhHq3GfWEoAKIlNRL8SmleOmd+ey/4ApOl+/4ofcJ7Hvmv5DMrpXKefuOo+f/vcWuFe+w+7UbOPTHh3C9+GAi30JwocgA4hu3/ahy+NHTm++zjsTqNIDAPgPJ6TOE3gOG0ikUol7b2Fsxyot3sXvXNop27aC0cDsVRTuJlOwCK1ZpFoW4cbnciNu2vri8iNuNy+2x/9y43F5cbjdujxeXy4Pb48Ft53s8XsTlRolb206UQikLpSywLCzLQindprJ0Wjw/bp1QuBJKHLGtKC637tOuuOVFwOUix1vfXtG62KsUX6/9R7E6czS7pl7JuNGTG1VHyO9mE378kcYpvm/Xb2Dd/25n9NbnOVZ2scXdg+WD/4/+h5/Pfvvs36g64wT9XsZNOBQmHJo0Pzul2vcgIng9bryeENmhttmx90a8bhcFBLRCqAd5ed+y6/GLmBpZwtfZB9PnggfZv3PPBrXpiXuS1uPdQaUUr737HgM+upzT5Qc27jeD3jP+mdhqrb5YvhCUoF9iryNCSn5ROW889Fem5/+HiDvIruPn0HfsabUe02nEVDqNmEr+5vWs+/Jdin9cQyxciqUgFsjBld2NrJ6D6dZvOH26d6Gn190g+avhchPI7kIguwvd6rdCYUgze5XiC4ayOOB3L6dUR8DjppQAXRroVbZx8xZWPHcjh2yfx/5Sytrs8cQm/4qeY09iH1e7emvEkEbKJICrDsWnlGLBKw+R+8U1dJcwK8fMZvhJlzXKOcqXUb9XKHYVl/P2Q7OZtuMByt0hCk58hN5jpjW4PQASr1DU/jsXLluF9cIvOVstYWOXifQ6fw6S3aPWY5zk9NiXnBMuaJyMhjbNXqX4mgKXSwhLAHekfusoO3btYukzNzJ206McKyWs7XwonDibQQMOTLOkhvZIhQRx16L4CgoLWDbnVxy6+3+s8w2iw9kPMbzfiEa3l3CoqSUw7BfLVmC98AvOUMv4oeuh9Dl/Dq6sbjWWrwupw5M0HLV4/um5HLnmL2RLOZsn/pXeU39tvJ4N9cYoviSUu0L4optrLVNUWs4nz9/NqG/uYars5OvsQ4ieOJtBgw6q9TiDIRWKXR3oEClImrd08QI6/O/nHMpGlu57PiPPvQWX159SexnBIBXKmzRaQkUkyhtP3c2Ub2/CJxabJt9I3yMuSVkBqfi7g6W7quWt27KTr+ZewczyF9gSHIA691F69Gq8Yje0T4ziS0KBJ4fs6MKEo4ST0ooIH7z6OAOX3coxbCAvMIRNx9/PkFH1CmJhMKREgbcLfSLLK6UVl5ay6LFrmbhpLsWuTL4/7nFGj/9Jk7SX6fewg2xcdkT4OKvXfsuuZ37FtMhC1oeG0+XcufTqMahJ2oxl6XVIq3BTYmupaMzi1Tf+x+BFf+JUWc/6/c5i35n/BG+wSdo0tC+M4ktCeaA73qIIlO1K7FZRXB7m01cfoefyezmOb9ni6ckPh/2bfpPOMiYWQ7MRDnanY/l8sCxiCha99STdF/2DI9QGlnc6gv3Ov5ecTvs0WXs9Owb5QnVn393rAdi2q4Avn7mJgzfNZYBEWDvySgad/AdwpegA4iC7275YSijZnkemUixesYqt//sbJ5a/ToEnh10/eYR9G7t+aDBgFF9SXB17QRFEt3/Dip3C9k+fZPDWVzlKtrLV3YO88TfQb+rP6/VOksHQpOTsj2dXjC8f+BWhLZ9xsLWOza59+ObIB8mdNL3Jm/N5XGz39eaAovl8cM8vGLrtNY6VAtZ2OJieZ9zGoN7Dm7zNft06sl51I7D0BRZ9tYKJZe8zRizW7382fU//OxLo0ORtGtoXRvElIXPw4VSs9+B/6GhGo19WXZc5hu/H/Yn+k88Gtzlthpah/+TT2f7NvzjgxydY7+7LV2OuJ/f4X9DD2zSRE5JROvxsWPoek7c9yZrsCVhHXsGg0dX3Em0qxvXrzP2BE/hVxYNks5n1fU6i77Q/069r7e85Ggz1RVRNb+y2AGPHjlWLFy9uaTGIxixee/5h9tn6IaF9R9Lv4FMJdTUv4BhaB1u2bcMqyadnv+bZv1UpxYaNG+iSnUFGhy5pbw/0VnvbNn7Lvr17Iz7zLunejoh8oZQa22ztGcVnMBgMhpakuRWfebPaYDAYDO0Ko/gMBoPB0K5oVaZOEdkO/NAEVXUBdjRBPc2BkTV9tCV525Ks0LbkbUuyQtuSt6lk7auU6lp3saahVSm+pkJEFjenvTgVjKzpoy3J25ZkhbYlb1uSFdqWvG1JVifG1GkwGAyGdoVRfAaDwWBoV+ytiu+/LS1AAzCypo+2JG9bkhXalrxtSVZoW/K2JVkT7JVrfAaDwWAw1MTeOuMzGAwGgyEpRvEZDAaDoV2xVyk+ETlWRNaIyLcicnVLy+NERPqIyPsiskpEVorIb+z02SKySUSW2n/Ht7SscUQkT0SW23ItttM6i8jbIvKN/X+nViDnYMf5Wyoiu0XkstZ0bkXkQRHZJiIrHGlJz6Vo7rT78TIROaAVyHqLiHxty/OCiHS00/uJSJnjHN/XnLLWIm+N115E/mCf2zUickwrkHWeQ848EVlqp7eGc1vTc6tV9t16o5TaK/4AN7AOGAD4gK+AYS0tl0O+HsAB9ucsYC0wDJgN/K6l5atB5jygS5W0m4Gr7c9XAze1tJxJ+sEWoG9rOrfAocABwIq6ziVwPPA6IMAE4LNWIOvRgMf+fJND1n7Ocq3o3Ca99vY99xXgB/rbzwx3S8paJf824NpWdG5rem61yr5b37+9acY3HvhWKfWdUioMPAW0mmiVSqnNSqkv7c9FwGqgV8tK1SimAQ/bnx8GTm45UZJyJLBOKdUUOwA1GUqpD4GdVZJrOpfTgEeUZiHQUUR6NIugJJdVKfWWUipqf10I9G4ueeqihnNbE9OAp5RSFUqp74Fv0c+OZqE2WUVEgDOAJ5tLnrqo5bnVKvtufdmbFF8vYIPj+0ZaqWIRkX7AGOAzO+lS2yzwYGswHTpQwFsi8oWIXGyndVdKbbY/bwG6t4xoNTKTyg+O1npuoeZz2dr78oXoUX2c/iKyREQ+EJHJLSVUEpJd+9Z8bicDW5VS3zjSWs25rfLcaqt9F9i7FF+bQEQygeeAy5RSu4F7gf2A0cBmtKmjtTBJKXUAcBzwKxE51JmptG2j1bwPIyI+4CTgGTupNZ/bSrS2c1kTIvInIAo8bidtBvZVSo0BrgCeEJHslpLPQZu59g7OpPKgrdWc2yTPrQRtpe862ZsU3yagj+N7bzut1SAiXnTneVwp9TyAUmqrUiqmlLKA+2lGs0tdKKU22f9vA15Ay7Y1brqw/9/WchJW4zjgS6XUVmjd59ampnPZKvuyiMwCfgKcbT/ssE2G+fbnL9BrZoNaTEibWq59az23HuBUYF48rbWc22TPLdpY363K3qT4PgcGikh/e+Q/E3i5hWVKYNvv5wCrlVL/dKQ77d+nACuqHtsSiEhIRLLin9HODSvQ5/R8u9j5wEstI2FSKo2YW+u5dVDTuXwZOM/2kJsAFDrMSi2CiBwL/B44SSlV6kjvKiJu+/MAYCDwXctIuYdarv3LwEwR8YtIf7S8i5pbviRMBb5WSm2MJ7SGc1vTc4s21HeT0tLeNU35h/YoWoseGf2ppeWpItsktDlgGbDU/jseeBRYbqe/DPRoaVlteQegvd++AlbGzyeQA7wLfAO8A3RuaVltuUJAPtDBkdZqzi1aIW8GIuh1j5/WdC7RHnH32P14OTC2Fcj6LXrtJt5377PLTrf7x1LgS+DEVnJua7z2wJ/sc7sGOK6lZbXT5wKXVCnbGs5tTc+tVtl36/tntiwzGAwGQ7tibzJ1GgwGg8FQJ0bxGQwGg6FdYRSfwWAwGNoVRvEZDAaDoV1hFJ/BYDAY2hVG8RkMBoOhXWEUn8FgMBjaFUbxGQwGg6FdYRSfwWAwGNoVRvEZDAaDoV1hFJ/BYDAY2hVG8RkMBoOhXdFqFJ+I9BMRZcelMqQREZklIguaqa2giLwmIrtE5PfN0WaV9vNEZGoztDNfRC6qIc/07RaijutSY14TyzBXRP5WS74Skf3TLcfegIgcLCK7RWSpiOQ2tp5Wo/gMjUNEZotIRESKHX/NrmBqYSowEuijlLo5nmgrpH4tJlUrwr6GsxtQ/iwR+UFESkTkRRHpXEvZ/4rIGhGx7ECyVfMvF5Et9sPkQRHxO/JGi8hHIlIoIhtF5Joqx54hIqtFpEhEVonIyY68+6r0yQoRKXLkF1f5i4nIXfX8/XOT/Za9EXuQOrcB5Y8Uka9FpFRE3heRvrWU7WeXKbWPmerIO19EvrD7xUYRuTk+cLNjGc6x+2CRrYSOq1KvqnJ9r3Hk++2+ttvue1c48oaJyGJ7oLxLRN4RkWHxfKXUp0BHdPi5n9b3vFSlyRSfGc22KPOUUpmOv5vrPqTZ6AzkKaWKW1qQVLADa7b4QFFEhgP/Ac4FugOlwL9rOeQr4JfoeG5V6zoGuBo4EuiLjsF4naPIE8CH6Gt4GPBLETnJPrYX8BhwBZANXAk8ISLdAJRSlzj7JDoO3TPxiqvk7QOUOfPbGmIHjG1hGboAzwPXoK/ZYhwR3ZPwJLAEHVvvT8CzItLVzssALgO6AAeh+8jv7DwPOjbjYUAH4M/A00kGsh0d1/mvjvTZ6KC6fYHDgd+LDnQM8CNwmi1/F3QsxaeclSqlLGCVLXejSOlGtkftV4nIMqBERDwiMkFEPhGRAhH5SkSmOMrPF5F/iMgiW9u/VNNoVUQucIwmvxORn1fJn2aPNHaLyLr4iRORDvZoZLOIbBKRv9XVKUVkPxF5T0TyRWSHiDwuIh0deTtF5AD7e08R2R7/XSJykoistH/vfBEZWuX8/E5ElokeNc8TkUDDz3TDEZGr7fMSH42fUkM5EZHbRWSbfS6Xi8gIO88vIreKyHoR2Sp6FB9soCgewKpD1hwRecVu/3P7mi1w5CsRuUREvrHP8z0iInZejdfOwTj7HOwSkYfi10BEOonI/+zrucv+3NvR7nwRuUFEPkYrmAF1/Na+IvKxfc7fsh9ETs62z+UOEflTHXXVxNnAK0qpD+3BxDXAqSKSlaywUuoepdS7QHmS7POBOUqplUqpXcBfgVmO/H7A40qpmFJqHbAAGG7n9QYKlFKvK82rQAmwX9VGRCSEDqr6cA2/aTqwDfiolt+dFBFxi8ht9jn9XkQulRrMyiLSw74Xr3Qk71fT80hEnhE9IykUkQ9FDzrieXNF5F7RZvwS9AO8NjqJyKt23/hMRKqep6nJ+ncDORVYqZR6RilVjlYwo0RkSNWCIjIIOAD4i1KqTCn1HDpw7HQApdS9SqmPlFJhpdQm4HFgop1XopSarZTKU0pZSqn/Ad8DB9ZTzvOBvyqldimlVgP3Y/c7pVSBXa9CB7WNAcnMwBb62dI4UozOm4eOyNsHCAK90FGwj0cr1aPs713t8vOBTcAIdMTs54DH7Lx+6Ei/Hvv7CeibSNAji1LgADtvPFBo1++y2x1i572AHhGHgG7AIuDndfyO/e26/EBX9Cj3Dkf+z9AjjAzgTeBWO30Q+mY/CvACv0dHqvY5zs8ioCd6BLOaKlGWq0Q6Lqjlb1INx82On8Mq6afb7bqAGbacPey8WcAC+/MxwBdo84EAQx3lbkePuDoDWcArwD8a0D+86EjY1eSrUu4p+y8DGIYeTS5w5Cvgf7aM+wLbgWPree3ygBXoPtoZ+Bj4m52Xg77RM+zf9wzwouPY+cB69MPeA3hr+Q3z0VGnB6HvhfnAjVX69v123iigAhhaQ121Xe+XgKuqpBUDB9ZxjhcAs6qkfQXMcHzvYsuZY3//O3CjfR0HoyOGj7Pz3MAHwEn255Pt/FCSts8DvgMd+DpJ/nvA7EY+gy5B35u9gU7oaODO58h84CKgP9o8dnGVa5b0eWTnX2j3Cz9wB7DUkTcX/QyaiL7HArXIOBf9HBxv96PHgafq07+T1LUMOKuGvH8B91ZJWwFMT1L2FGB1lbS7gbtqqPvFeH9OktcdPbCKP4Pj/X2T3SceArrYeZ3svO6O408Dlie5B6JoBffnJG1eYF/PnEb1m8Yc5Gg8D7jQ8f0q4NEqZd4Eznd0tBsdecOAMPrGiZ8sTy0n/jf25/8At9dwASqAoCPtTOD9Bv6uk4ElVdJeRo+IlgF+O+0a4GlHGZd9sac4zs85jvybgftSOedJZJ1tn8MCx1/PJOWWAtPsz7PYo/iOsDvQBMDlKC/YI3hH2sHA9/WUazQQAbYC+9dSzm2XG+xI+xvVFd8kx/engavrc+3sa3CJ4/vxwLpaZN7l+D4fuL6ev3c+jhsUbV58w/4c79u9HfmLgJmNuN7vUmXw5OxztRyXTPGtw/GARSs4BfSzvx+CHshF7fTrqhz/U7TSjaIHpifUIvPsGvL6okf1/RvZ/9/DMbBFrylXVXz/tPvBmUmuWdLnUZJ2Otr1drC/zwUeqaeMc4EHqvTBrxvTv+toZw5VlBN6oDcrSdlzgYVV0m4A5iYpeyFagXVJkudFDzb+40jLBMailXx34FngTTuvj/17A47yR6GXQ6rWHbLvo2r9ym73E7uuyxp6rppizWKD43Nf4HR7ul4gIgXomUyPGsr/YP+AqiYhROQ4EVlomxkL0J0lXq4P+qatSl+7vs2O9v+DnvnViIh0F5GnRJtGd6PXLqrKdD96ZHiXUqrCTutp/wYgYXvegJ6Bxtni+FyK7hRNzdNKqY6Ovx9F5DzRpuD4eRhBkvOslHoPPdK7B9gm2hkiGz17ygC+cNTxhp1eJ0qppejR8qfotYKa6MqeNYM4G5KUS3oe63ntqva5nvaxGSLyH9GL9LvRs8WOUtk0nkyWmqjrWjdFXyhGr6k5yQaKkpRtaF3xz0W2ye8N4HoggL7njhGRXwKIdoS4GZgC+NBWmQdEZLSzARHZ1y7zSA0ynIse5HzfCPlBX8u6+s7Z6MHBs0nykj6PbBPqjaKXC3ajFSdU7lttuW/Uq6xoh6V/AMcppXZUyXOhLTph4NJ4ulKqWCm1WCkVVUpttfOOts3x8bX+qv2umoxKqRLgPuARsdeOHZyI7pM9lVJ3JPl9tdIUik85Pm9Az/icD+GQUupGR5k+js/7okf7VU+oH212uBU9Je4IvIaehcTbqbaWYKdXoEcm8fazlVLDk5R18nf7d+QqpbKBcxxtISKZaFPHHGC2Yx3gR7SyjZcT+/dtqqO9aojIZKnu6eb8m9yAuvqiFfWlaFNAR7TJI+m6gVLqTqXUgegR7yC0o8IOtMPBcMe57KC0M0K9UHqd4XW73prYjp4x9Hak9amhbDJqvXZJ6tsXfd0Afos24R1kH3uone483tm/WwMr0aZSAERkANoUtzbVuuzPW5VS+ej1zJhS6hH7AbYRbY4+3i47GvjQfsBZSqnPgc/QMy4n5wIfK6W+q0GG86h57a8+bKbuvjMb3Z+fkOrr/TU9j84CpqF/Twf0rB3aVt8IoZ+TK2soO6DK2vAoZ1nRfhP3AycqpZY7D7afdXPQM7rpSqlILXLFz5NL6bXkzVTvd8lkBK2jMqg8mQC9JLNQKbW5lnZrpKm91B4DThSRY+wRU0BEpjgdBoBzRLusZqBHk88qpWJV6vGhb+btQFS0q+zRjvw5wAWiXXddItJLRIbYJ+Et4DYRybbz9hORw+qQOz4SKRTtrXZllfx/AYuVUhcBr6JHIaBNEifYcnjRD9IK9BS8QSi9kJxZy19DFv5D6M62HbSjEHrGVw0RGSciB9nyl6Bt9ZY9e70fuD0+2rLP8zGOY5U4nJdqoAJ9PZNiX/vn0QOKDHsh/rx6/UpNXdcO4Fci0tsesPyJPZ5uWWjlXmDn/aUB7bYUj6Pvscn2g+164HmlVNIZn4j4RDvzCOC178n4ff8I8FP7fuyI9s6ba+et1YfLWfZ9tA96rXiZnf85MDk+wxORMcBkR36c8xx1VpXtEPQDrZo3Zz37Fuh78Dd23+yIXm6pSgS95h1Czx6cz72ankdZ6L6bj37w/r0esrQ0LwAjRGS6fc2vBZYppb6uWlAptRa9/PEXu0+cgn7t6DkAETkC3demK6UWJWnrXrTyOVEpVebMsJ8ng+1+kwPcCcxXShXaRR4B/izauWwI2odirn3sUSIyxtYf2Wgz9S60f4QTL/r6NIomVXxKqQ3oUdIf0Q/dDegHkbOdR9E/cgvahPJ/SeopstOfRv/os9BrbPH8RejFzdvRC8wfsGfmdR76QbvKPvZZKptak3Ed2sOpEK3Yno9niMg04FjgF3bSFcABInK2UmoNeoZxF3qUeCK6I4TraC+tKKVWAbehzYxbgVy0rT8Z2WgFtwtt6skHbrHzrkKv8Sy0zT3voGdIiEgftHliedUKq2BRdz+7FD2q3oLuH09S/05d47Vz8AR6QPQd2kQef5n4DrSzyQ5gIdq01+LUNsNXSq1EO3Q8jvaEzEKvg8SPfV1E/ug45C20cj8E+K/9+VC7rjfQ5sr30U48P2Arf6XUbrSX4OXovrEUbTX4m53/AXom9azo9/OeA/6ulHrLIcvB6NlYTa8pnE8Spd2AvgW6776FVrhL0JahKHrdMIF9T56KnqE86FB+NT2PHrHPxyb0s2RhPWRJO6I9yM9OlqeU2o521roBfc0OAmY6jr1PRO5zHDITvRa3C+3EdJpdB2j/hQ7Aaw6r0+t2PX2Bn6Nn/Vsc+XG5BqDvpSJ0n6lA+1rE+Qv6PvwB/ey+xe6LoNdSn0Tfz+vQM9ZjbeuREzd1eIvXhtgLhc2CiMxHe0090GyNGtKCiJyDNoP+oY5yR6MtAUOUUjvrWfdNwD5KqfNTl9TQ1qhv36rh2OPQDmR96yxsaJOIflXlebSDUKM262jxF3INbROl1GP1fDDNB94GVorI75IVEJEhIjJSNOPR3oIvNJ20hrZEA/oWorfEO170O8S90LMJ03f2UkRkAnp23hFtwWgU7Wa3FXuKf06SrMeUUpc0tzztBdvElNQ04yALbd7oiTbN3oZ+X61VISI17T5zXAPXYA1Nh6DN3fPQZtxX0WtbzSuEyEocjm4Ofq6Uery55dlbUUotJIl3ekNpVlOnwWAwGAwtjTF1GgwGg6Fd0apMnV26dFH9+vVraTEMBoPB0Ix88cUXO5RS9docoyloVYqvX79+LF68uKXFMBgMBkMzIiI/1F2q6TCmToPBYDC0K4ziMxhaET8WlPHpuvyWFsNg2Ksxis9gaEW89/gtHPzoACrK2nTcXoOhVdOq1viSEYlE2LhxI+XlyeJopk40ZlFcUkxWRgZuT6s/HYZ6EggE6N27N16vt6VFaRDTtv0bBHZu/oEeA+raW91gMDSGVv+k37hxI1lZWfTr1w9pVFDi2tm+u4yuxV8TFReeHkPrPsDQ6lFKkZ+fz8aNG+nfv39Li9MgyiVAFmUU7/wRjOIzGNJCqzd1lpeXk5OTkxalB+C29zn1tOy+0oYmRETIyclJm5Ugnex2dQCgfNePdZQ0GAyNpdUrPiBtSg/ATdWISIa9gXT2mXRS6tbxOSO7t7WwJAbD3kubUHzpxWzZZmg9RNwZAFhlu1tYEoNh78UovnroPRHht7/9beL7rbfeyuzZs9MnU4rMnz+fTz5pcCzcBEuXLuXggw9m+PDhjBw5knnz5tV9kKFJUC7bGafcKD6DIV0YxefUfDVs2O33+3n++efZsWNH07asFJbV6FiKNZKq4svIyOCRRx5h5cqVvPHGG1x22WUUFBQ0nYCGGomb3iWcNKC6wWBoAoziq4fi83g8XHzxxdx+++3V8rZv38706dMZN24c48aN4+OPdaDz2bNnc+uttybKjRgxgry8PPLy8hg8eDDnnXceI0aMYMOGDVx55ZWMGDGC3NzcxOxq/vz5TJkyhdNOO40hQ4Zw9tlnkyySxp133smwYcMYOXIkM2fOJC8vj/vuu4/bb7+d0aNH89FHH9Uq47nnnsvBBx/MwIEDuf/++wEYNGgQAwcOBKBnz55069aN7du3V2v7mWeeYcSIEYwaNYpDDz0U0M5IF1xwAbm5uYwZM4b3338fgLlz53LyySdz1FFH0a9fP+6++27++c9/MmbMGCZMmMDOnTpG7f3338+4ceMYNWoU06dPp7S0tFq7EyZMYOXKlYnvU6ZM2Wu2uhOlB0KuJlJ8f/nPEzz/1nsp16OU4pnFG9hUUNYkdT3/5UYqoqmvr5eGozz7xcak94bBUBOt/nUGJ9e9spJVPzatCWi/HD9/P8R2hFAxahoL/OpXv2LkyJH8/veVA/7+5je/4fLLL2fSpEmsX7+eY445htWrV9fa5jfffMPDDz/MhAkTeO6551i6dClfffUVO3bsYNy4cQklsmTJElauXEnPnj2ZOHEiH3/8MZMmTapU14033sj333+P3++noKCAjh07cskll5CZmcnvfqfjvp511lk1yrhs2TIWLlxISUkJY8aM4YQTTqBnz56J+hctWkQ4HGa//far9juuv/563nzzTXr16pWYEd5zzz2ICMuXL+frr7/m6KOPZu3atQCsWLGCJUuWUF5ezv77789NN93EkiVLuPzyy3nkkUe47LLLOPXUU/nZz34GwJ///GfmzJnDr3/960rtzpgxg6effprrrruOzZs3s3nzZsaOHVvrOW8riNLKwB1J/QV2y1Jct/kXsBk4ujClunaWhNn04rUs6JTFjN/emVJdC7/byYbnr+HNLwdw0kXXpFTXLW+uYehnf2BN/kkMOfqilOoytB/MjK/SjK9ms2N2djbnnXced95Z+aZ/5513uPTSSxk9ejQnnXQSu3fvpri49odW3759mTBhAgALFizgzDPPxO120717dw477DA+//xzAMaPH0/v3r1xuVyMHj2avLy8anWNHDmSs88+m8ceewxPDS/g1ybjtGnTCAaDdOnShcMPP5xFixYljtu8eTPnnnsuDz30EC5X9a4yceJEZs2axf33308sFkv8nnPO0fF+hwwZQt++fROK7/DDDycrK4uuXbvSoUMHTjzxRAByc3MTv23FihVMnjyZ3NxcHn/88UozuzhnnHEGzz77LABPP/00p512Wq3nuy0h9us1vmjqii8cazozeiSmuMzzPDOKHk65Lo9b+I3neU7aeGvdhetgw84yzvB8wJBPflt3YYPBpk3N+P5yYtO/0FuwKx/K1usvVu2ml8suu4wDDjiACy64IJFmWRYLFy4kEAhUKuvxeCqt3znfKQuFQvWSze/3Jz673W6i0Wi1Mq+++ioffvghr7zyCjfccAPLly+vVqYmGaG623/8++7duznhhBO44YYbEkq6Kvfddx+fffYZr776KgceeCBffPFFvX+Py+VKfHe5XInfNmvWLF588UVGjRrF3LlzmT9/frV6evXqRU5ODsuWLWPevHncd999tbbbloibOn2xkpTrCscsEldcKUjhFY9IEypRVxO+ahL0uZusLkP7wcz4HChVu+Lr3LkzZ5xxBnPmzEmkHX300dx1112J70uXLgV0iKUvv/wSgC+//JLvv/8+aZ2TJ09m3rx5xGIxtm/fzocffsj48ePrJa9lWWzYsIHDDz+cm266icLCQoqLi8nKyqKoaM8aUU0yArz00kuUl5eTn5/P/PnzGTduHOFwmFNOOYXzzjuv1tnUunXrOOigg7j++uvp2rUrGzZsYPLkyTz++OMArF27lvXr1zN48OB6/R6AoqIievToQSQSSdSTjBkzZnDzzTdTWFjIyJEj611/aydu6gxY1dc2G0ok6lBW4dQUacxyWEbqGCDWRbQJlWiWzzzCDA3H9BrHoriqh4flb3/720renXfeeSeLFy9m5MiRDBs2LDH7mD59Ojt37mT48OHcfffdDBo0KGl9p5xyCiNHjmTUqFEcccQR3Hzzzeyzzz71Ej0Wi3HOOeckHEn+7//+j44dO3LiiSfywgsvJJxbapIRtKn08MMPZ8KECVxzzTX07NmTp59+mg8//JC5c+cyevRoRo8enVCW1157LS+//DIAV155Jbm5uYwYMYJDDjmEUaNG8ctf/hLLssjNzWXGjBnMnTu30kyvLv76179y0EEHMXHiRIYMGZJIf/nll7n22msT30877TSeeuopzjjjjHrX3RaIz/iCVtPM+BKUp7bGF7Wasi6HEo1Vt2I0hJDHOLUYGo60Jm+osWPHqqreeatXr2bo0PTtoVmwczsdyzcCEOvQF3eoc9raam3Mnj27khPM3ka6+046+PqGgxkSWUVYefBdl1p4ovU7Stj3bu2oVPGzBfh75Ta6rtWbdzP0P330l19/CTnVnZ3qy/w125jypPYa5srvIJTT6Lr+/sLn/PGrqfrLNTvA3bY2JTdoROQLpVSzeaiZGZ/TgpOiCcdgSJW4qdMnUVQktb1Gw9E9+8+WFe1Mqa5Kps6K1DyroxHHLK+8IKW6YrGIo67UZqKG9kObcm5JBwqnqbN9Kb7WvPtMe8Xl8CwuLdpFqHOPRtcVCe9RChXFqSkFp3OLVV6U0og5FnUoq4rU3ldUVesKdUmpPkP7wMz4aLpFe4MhVeKvMwCUp6isog6lEC5NrS7njK8ixbqiMUcklHBqr20o5xphinUZ2g9G8VV6ja/ptw8zGBqCy+FZXFpckFJdkcgexRcpTc08GXGYJ1OdPVoRh+JLdcZnNV1dhvaDUXyVNJ+Z8RlaFsGiUOn3PFNVMFGHgomWpaisYk03e7QcM1Erxc24lfPd1goz4zPUD6P4bJTCKD5Di+NWMYpFK75UFUzUYQa0ylObDcWiTiWaYl1NqESV5VzjMxEtDPXDKD77dY4YLqjF1Pniiy8iInz99dc1lsnLy2PEiBFNLqKTpUuX8tprrzX6+PgL78OGDWP48OH861//akLpDKniwqLElQWkPksj5pxZpar49tQVbcIZX7ik6X6jWeMz1Bej+Nij+KSWvTqffPJJJk2axJNPPpk0P9l2Yg0lvt9lbaSq+DweD7fddhurVq1i4cKF3HPPPaxatarR9RmaFsGi3GMrvtLUlJXlmPFJikrBaeq0UlxLs5pw9ojlNHWaNT5D/TCKz8bCXaOps7i4mAULFjBnzhyeeuqpRPr8+fOZPHkyJ510EsOGDQO0Ajz77LMZOnQop512WiKszrvvvsuYMWPIzc3lwgsvpKKiAtBbm1111VUccMABPPPMM5XarRr2JxwOc+211zJv3jxGjx7NvHnzKCkp4cILL2T8+PGMGTOGl156CdBhgKZNm8aUKVMYOHAg1113HQA9evTggAMOACArK4uhQ4eyadOmar/5gw8+SOzaMmbMGIqKilBK1RhC6bDDDmPatGkMGDCAq6++mscff5zx48eTm5vLunXrAHjllVc46KCDGDNmDFOnTmXr1q3V2p05cyavvvpq4vusWbMSG1K3B1wqRtiTDaS+/lVZ8aU443M4yqgU19KccqU6q3WaOpUJ3muoJ23rPb7Xr4Yt1TdhToVgh/4w4adY4sJD8lnbSy+9xLHHHsugQYPIycnhiy++4MADDwT0PpwrVqygf//+5OXlsWbNGubMmcPEiRO58MIL+fe//82ll17KrFmzePfddxk0aBDnnXce9957L5dddhkAOTk5iX09nVQN++Pz+bj++utZvHgxd999NwB//OMfOeKII3jwwQcpKChg/PjxTJ2qd7JYtGgRK1asICMjg3HjxnHCCSdUCt+Tl5fHkiVLOOigg6q1feutt3LPPfcwceJEiouLCQQCPP/88zWGUPrqq69YvXo1nTt3ZsCAAVx00UUsWrSIf/3rX9x1113ccccdTJo0iYULFyIiPPDAA9x8883cdtttldqNhxw64YQTCIfDvPvuu9x7770NvKptFxcWMW+ImBJUimtWTld/dyS1LdCU4xUESdUTswlNsM4tzyJlRfhSq83QTjAzPhsLV6WXh508+eSTzJw5E9AzEqe5c/z48fTv3z/xvU+fPkycOBGAc845hwULFrBmzRr69++f2K/z/PPP58MPP0wcM2PGjKTtJgv7U5W33nqLG2+8kdGjRzNlyhTKy8tZv15HmzjqqKPIyckhGAxy6qmnsmDBgsRxxcXFTJ8+nTvuuIPs7OykbV9xxRXceeedFBQU4PF4ag2hNG7cOHr06IHf72e//fbj6KOPBiqHHNq4cSPHHHMMubm53HLLLUlDDh133HG8//77VFRU8Prrr3PooYcSDAaT/va9ETcWLreHEoKpmycdsyFPimGOnGt8rhRjBVpN+AK7OEydsVTXRA3thrY14zvuxiavsmzbRgLR7VjiTrrGt3PnTt577z2WL1+OiBCLxRARbrnlFqB6iKGawvzURk1hiuoT9kcpxXPPPVctAsJnn31WoyyRSITp06dz9tlnc+qppyZt++qrr+aEE07gtddeY+LEibz55pu1/ob6hBz69a9/zRVXXMFJJ53E/Pnzk+4cEwgEmDJlCm+++Sbz5s1LDDjaCy4slMtNiaSu+JyzIW80tRmfc40v1SC5zrpSXpdz1BVLdfZoaDeYGZ/t1anEjQtVKVoDwLPPPsu5557LDz/8QF5eHhs2bKB///589NFHSatbv349n376KQBPPPEEkyZNYvDgweTl5fHtt98C8Oijj3LYYYfVKVqysD9VQw4dc8wx3HXXXcQ3G1+yZEki7+2332bnzp2UlZXx4osvMnHiRJRS/PSnP2Xo0KFcccUVtbadm5vLVVddxbhx4/j6669TCqEEUFhYSK9evQB4+OGaA5rOmDGDhx56iI8++ohjjz223vXvDbiwQNyUSwaelBWMVnyFZKYc389pnvSkqESddblSNME6nVuUUXyGepJ2xScix4rIGhH5VkSuTnd7jUWJHdCyioPLk08+ySmnnFIpbfr06TV6dw4ePJh77rmHoUOHsmvXLn7xi18QCAR46KGHOP3008nNzcXlcnHJJZfUKVOysD+HH344q1atSji3XHPNNUQiEUaOHMnw4cO55pprEsePHz+e6dOnM3LkSKZPn87YsWP5+OOPefTRR3nvvfcSzitxL9H77rsvEbLojjvuYMSIEYwcORKv18txxx2XUggl0HuDnn766Rx44IF06bJnT8XFixdz0UUXJb4fffTRfPDBB0ydOhWfr32t2riUhRI35a6MJlAwWikUSyYBqyyluix71l6oQviaSK5dKjPl2aNL6bp2qwyU8eo01JO0hiUSETewFjgK2Ah8DpyplErqP98SYYl2bV1Pp1g+Oz3d6BzdBt2Gg6ftP2znzp1byQmmPdIWwxKV/KU7K/c5Gf+utQRVGYP+tLDRdb39+osc9dn5fOsZSN/o93j/sqPRUdhf+t/LTFt8LhtlHzpJMaFrq3sC15eHH32Q89ddTp7ah85+i+w/ftPouq676R/8pexGfrC60blTJ7IuX9Tougwtx94Wlmg88K1S6julVBh4CpiW5jYbh8te7jS7txhakPgaX9gTIpBiMFplmwHLPdl4iUK0otF1xdflStzZBK3SaksCDatrz0zUG00t0nzcuaWATNwpvrJhaD+kW/H1AjY4vm+00xKIyMUislhEFm/fvj3N4iQhfgO7tKlzbwlNNGvWrHY922urxNf4op5M/FZqSiG+lhb2ddAJKTjLxOsq92RrGSMpmE7tuord2fo3pqBERe0xwbpTNMEa2g8t7tyilPqvUmqsUmps165dayqTXhkA2csUX3sn3X0mHSilcGOBy43lDZGhUlR8dl+O2YrPKmv8e4EJJeq1lWgq62n2LK3MHVeijf+dLruuXWTpNdE2eN0NzU+6Fd8moI/je287rd4EAgHy8/PT+CBTgCC2c4uJwt72UUqRn59PIBBoaVEaRMxSeETP+JQvkwxVltqD3H6Pzwp0BKA8hT0244ov0hSzR2vP7BFISYm6lK6rkBBulZo519B+SPd7fJ8DA0WkP1rhzQTOakgFvXv3ZuPGjaTLDFpamE9QlVIehGDZNmKBCO5AVlraMjQfgUCA3r17t7QYDSJmxfCgrQ/Kn4FbFNHyYjzBxvVHZW96IMFOAJQVFZDRSNni64VRX0edkMquMvYaX9jXEUrRii+r/t7BTsReky91O5Sot20NeAzNT1oVn1IqKiKXAm8CbuBBpVT17Tpqwev1VtoZpal56aZZHFP+Op9OW8ABb57BjwddS8/jfpu29gyGmrCi+iGuxI3LHnyVFheQ3UjFF5/xuTK04qtIJRKCrazis8dYeRHuRlYlVnz2qOtKbcZnO/C4syGGVsiZyZdMDIY4ad+5RSn1GtD4cAJpxqVixHDjD+kRY8qhYAyGRhK1oxaIy4U7oPtjWVEB2V371HZYzdhme29mZyDF2Hfxl86DcSWayuzRXnu0lWhTKL4Kb0et+ExoIkM9aHHnlpZGVAwlLrKCAUqUP+Ud8Q2GxmLF92N1eXAHbcWXShR22zzpsxVfpDQF5xa7LsnQdVWUNL6u+IyPgFaiqSgrty1XxN8ETjeGdkO7V3woCws3mQEPxQRNFGdDi5FwrHK58WZoxZdKoNa4svJl5QApbuJsz/jcttk0korZNKFEdV2pBLZ12Wt8MX9HnZBiyCRD+6DdKz6XPePL9HsoVkEzYjS0GDF7WzBxufGF9AwmnIqyshVMMEsrGCsVpWDX5cnSW81FUng1whVfewzZJtgUlKgLe120CcymhvZDu1d8goUlLrICHoqaIBSMwdBYYrE9ii+Y2RGAaArmyfiuJsFAkCIVTC1Qq11XINSRmBJiKSi+hBIN6ZlouJF1KaVwqygx8eCy10Qxu7cY6oFRfCqGwo3f46KEDNxG8RlaCKfiC2TqGV8q5sm4E0lGwEcJgZTW0uLrchnBACUEUwogm1DImR2IKHejTZ2WAg8xLPHseeXDzPgM9aDdKz4sCyUuRIRyVwbeFAN2GgyNxXIovowmME+Krfj8Ph8lBHGlMqiLK75AgCKCqBRmVvHdVjICfkoINDqOXsxStuJz4wtmYSlJbVZraDe0e8UnWImQRBWuEN4U45YZDI0lFn/h3OUhMyNEWLkhhZlV3LkFl4cyyUgpBFBciYaCAUpUAEllvVBFieEmM+ClOIXZY0LxubxkBvWsNmpi8hnqgVF8tnMLQMQTwm8Un6GFSJg63W7cbhelBJFwCmt8as/rESnH97O9OkPBAMUEcaWgRF2WXpfLCngoSsGhLGpZeIiixEPIr72yU/EQNbQf2r3iczkVnzcz5ZArBkNjiQd7ddkbppdIRmoRyh0zvrA7A18KZvz4upzP56OUYEqzR5ftkJLp91JCEGmk2TRmKbz2Gl+W7ZXdWLOpoX3R7hWfqD2mzpg3M+Xd4g2GxmJF9axK3F4Ayl2pmSfja2mIm0iqYY5UlChuEKHcFUpp9ihKK6uQ302xavzaY8xSuEXHLwz5PZQQQBnFZ6gH7V7xudgz47N8xjPM0HLEYvaWZR6t+CpSdLZyWRWE8YDLRdQTIpCC4hMrimUPECOeDHwpKD6XFUWJm5DPQzGBRsfR0zO+KMrlIdOvzaapON0Y2g/tXvG5VQxLfPqL3yg+Q8uhEmt8tuJzh/DFUohVFwsTQdcV82YSTCHMkcuKELW39g27Q/hSUKIuFSHm8uFyiXYoa6Ryj1gKPxFiLj+Zfo/2XDU7txjqQbtXfB57xAggccVnXKINLcAeU6fujxFPiEAKzlZihYmKVnzKl4mHGETLG1WXR4WJuvwARL2hRq+FK6XwqjAxlx5shlNQ7uGohY8oyu1PbDnoiphBq6Fu2rXisyyFmxiWrfjiuz/EjOIztACW7TnpcmulEPNmpmSedMX2KL491ozGzYg8VpiobRmxEmvhZQ2uJxafpbm1Eo14MvRvtKwG1xWOWviJoDx+e8vBAO5UnIEM7YZ2rfiiltIjRpd+OLiDereMipKCFpTK0F6JK764qdPyZRGi8YrPbYWJ2MpK/JkARBq5E4ye8em6lLfxSwKRmFZ8VmL2aNfVCAeXimgMv4TB7SfLnvF5oyXGK9tQJ+1a8ekXYKNYomd83lB8R/yCFpTK0F5R8QgIDsUXpAJlx+lrKG4rTMye8cWtGeXFBY2qy2tV7FF8thJtjLIKx+xZmnvP7LGxdVXYpk48/sSWg42diRraF+1a8ekXYGNgP2i8GR0BiBjFZ2gBVHyNz/bqFDsKe0UjN6p2O2Zpnox4fL+CRtXltR1SgER0+MaE8ApHLXwSwbIVHz5b8TVi9hg3deIJICJEPaFG12VoX7RrxRerYuoM2DO+SJm5cQzNT9yr0+Wxna0C2vReuntno+rzWBFitqnTGzfjN1KJegkTs82TLr+9Ft6I+ySSmPEFAFAprD1WRGP4CSNeXVfUays+s9G8oQ7ateKLxPRef3GvzlBGiArlTWnneYOhsVi2x6Xbox/knmBqszS3ihCzB3U+e8bX2ACyHiuCsh1S3HZd5Y2wjCQUn8euK9j42WNFxMIvEcSuSyVmj8Y5zVA77VrxlUdi+CUC9o0T8rspJoBlvDoNLYAV1orPGwgC4LFN7xWNVHweFcayzZOBLF1XYwLIRmIWPsIJxeezFXJjZo8VUQu/oy63vfaoGmM2jek1Ppc941NmAwpDPWnXiq8iGiODCrBNJPEo7Mq8BGtoAWIRrfj8gQwAvBmpeRl7VTjhRBIIxeP7NVzBlEViibU0IBEdvjGzx5KKKD6J4vbGlbsdab4xSjSiZ49xxRf3XG3sKxuG9kO7VnxlYYsgFYjPofgIImbEaGgBLFvx+WzFF8jUMfkaG4XdoxzWjMwOjY5XVx62FZ9X1+W3g+Q2ZvZYatflsuuKm2DDjVCi8TU+l08r0UQUdnP/GuqgXSu+8vIyvBJD/FrxxUObpLIxsMHQWFSkAoCAbeoMZnYEIFZW0OC6wlGLTEqJ2e/JZQa9ehPnRsyGSsMxglIBHi1XRkYmMSWNmj0Wl0fIoAK3Xyt3fwozvtLSYtyi8AX1TM9tm2Ax+3Ua6qBdK75IuX4IuOwZn9+jY6C5TRR2Q0sQ1e+feXxaKQSz7SjsjZpZRcmmFMv2DNUbQgcb5fFYUhGhAyWoQEcAMgM6ontjnMAqyorxSwR3qDMAGRkZVChPo5RopFh7u3oy9HnyBs2Mz1A/2rXiC5fph4A7oBWfiFDuysBrtj0ytADuSBFlygf2Xp2ZoUwiyt0ox4/ikhKCEga/Vnxul1BKoFEhgIp2F+CVGO5QDqCdwIpoXADZSImtrGwzbnyPzcY4lMVKdgEgwY4A+INZRJXLeGUb6qRdK76orfg8gcxEWoU7hDeFHfENhsbiiRRTIhmJ736vVjCNWXMuLswHwBXqlEhrbHy/Ersuf5aepWX5vZSoQON2W7HfSQxmdwH2OJQ1RlmpuAk4qH9jyFaikdKCBtdlaF+0a8VXWqJHmcFQViJNxy0zMz5D8+MJ76ZUQonvIkKpZOBqxJrV7gKtrIK2sgKt+BoTQLZs9w5dl62s9Gs/jQsgW27X5bVNnfFwQo2ZPaoy+8V+e8YX368z1sj9SA3th5QUn4jMFpFNIrLU/jvekfcHEflWRNaIyDGpi9r0hO01gozsnERa1BPCpyrA3kXDYGguPJFiyt2ZldJKJdSoWVpp/o8AZHTaJ5HW2BBAkcJtdl3dtJxuF2USxNMIuazi7fpDhr7nMgMeigg2SrlTvM2uKz579FKkMhq1XmhoX3iaoI7blVK3OhNEZBgwExgO9ATeEZFBSqlYE7TXdBRvBcCT3SORFEvsFl+UMKEYDM2BL1ZM2FNZ8VW4Q/ga4WwV2/UDAFn7DEikRd0Z+CsaPuOzduVp+XL6JdLKXSE8sa0NrstfvEF/6LgvQCJyuruBcfSUUoTKfiQmbtxZ+v7NDHjYTQaUmxmfoXbSZeqcBjyllKpQSn0PfAuMT1NbjcZdvEV/yOqeSFM+s9GtoWUIxXYT8WZXStNR2Buu+KL5WvGFuvTdk+bNJKAaHrnAvXs9ETyQtWeAGHZn6BBADUAphb94I6XuLLC9Tf0eFyWSgaeBDmWFZRG6W9soCeyzxxnIVqLm3jXURVMovktFZJmIPCgi8SlSL2CDo8xGO61V4S7ZTJkE9wTpBDC7PxhaAGVZ5Fg7qQh2q5Qe8WQ2Kgp7duHXbHX3AHtXE9AhgIKqrEHx6pRSdCn+hnx/H3C5HXKF8DcwSG5+SZi+1nqKMvsn0kSEClfDZ7VfbylisGwg0mn/RFp8ja9RZlNDu6JOxSci74jIiiR/04B7gf2A0cBm4LaGCiAiF4vIYhFZvH379oYe3miUUnQt+56dwX6V5Ykrvojx7DQ0H9t3bCdDKvB0rDw+jHozCVgNm6WFoxb9KtawLXtEpXTLl4mXKEQr6l3Xxp2ljFBrKeo6prJcnhBBq7RBSnT5+u2MkO+x9hlVKb3Ck4k/VtygulbnbWKgbCTY98BEmp7xZeAxis9QB3UqPqXUVKXUiCR/LymltiqlYkopC7ifPebMTUAfRzW97bRk9f9XKTVWKTW2a9euqf6eevPd9iKGkEdZ56GV0t224rPKzYzP0Hxs3rAOgFCXPpXSLW+IjAZGYV+5Ygk9JB9P34MqZ9iWDdUAU+CyLz6io5SQNXBiFbkyGxz0df2X7xKSCnJyK/u6RTyZeIiCHZ2iPhSueBO3KDKGTE2kaUeZDDzRhilRQ/sjVa/OHo6vpwAr7M8vAzNFxC8i/YGBwKJU2mpqVi16j05STIehR1RK99hhUiImQoOhGdm9aQ0AnfoMqZSufJl6n0w7Ont92P7JYwD0OeT0Sulxa0ZDtgezls4jgofuY0+pnN7ASAjhqEXHdS9QIQF8gyrfc7EG1rW5sIyhO96k1NMB+uxR7iGfnvG5VcOUqKH9keoa380islxElgGHA5cDKKVWAk8Dq4A3gF+1Jo/OmKUILX2AUoJ0OeDESnnxl9krSo25xNB8RLevBaBrv+GV0sVWCtF6uujn7yrggK3PsTZzHJnd+lXKi+9lWVq8q151LVnzHYeXvMb6bkcgoZzKmfElgXq+y/fGp19wrPUR2/efDr5QpTwr7kldz8HmC29/wFGymMiYWQnHFtC704TdGQ2qy9A+SUnxKaXOVUrlKqVGKqVOUkptduTdoJTaTyk1WCn1euqiNh2vPXUPR0Q/YvPgcxPbHcVJ7BZvFJ+hGfEXrGOHdMJtR0pPENBKobSooF71fPXktXSRQjKm/qFaXjywbXlx3UohGrPY+uKfCEqYniddWy1fAvUPIFtUHsH/3l8QEXodd2W1fOWP77FZ92sI324tYsSyvxN2B+lw2KXV8sNeE5PPUDftaueW8oowb93/R45dcy3fZYxkwPTrqpWJb3QbNfv9GZqRjqV57PDvWy3dbSuYsnqE7fly0YdM3voYy3KOpffoI6vlJwLI1qOu/730FMeWvcb3+51LsHdudblsZRUtq/0+UUrx7CN3cYz6mPzRv0Q6969WRuq5uXQkZvH2YzdzqOsroof+ATK7VSuzxwRr3uUz1Ey7UHxWzOKz1x9h840HcvSme1jb6VD6/vp/iC+jWtlAhjbhxMrNtmWG5sGKWfSObqAka0C1PG9G/ZTV9u3byHntYopcWQw89+6kZRIBZEtrr2vl6lVM/uoqtvj2Zf8Z/0haxpMRnz0W1FrX6x98wmmbbmZzVi49TrwmaZlEHL06zJNznn2ZC3ffy7Zuh5B56K+SlklEYTemTkMtNMXOLa0WK2ax5N2nCH12OwfF1rLB1YvVk+5i+BHngkjSYzICfsqUj1iaZ3zl4QhrVy5h93efIZu/Irj7OzpEttPBKkQEInjZ5e1OaYf9Yd+D6XvgVLr0GphWmQwtw7Yfv2cfKSXWdWi1vESE8lqisEejUdbPOZeRahtbpj1N547JvaP9dny/aC2Kb9uuAuTpcwhIBO+586qtxyXkcsweM5OWgNXrt9Lv/V8iLjfdLngc3N6k5dz2ckOsrBB30hLw6udfc9TKqwn7O9DtvEcqvVPoRALZUEjaTZ3l4SjffbOS/G8WEd26msyi7/BV7CLDKgKEqCeDsmAPXN2G0GH/CfQZeRieQPJzaWh+9krFZ8VifPX2o2R9/i8OjH3HZunG0jHXM/KEX+LyJL/54uhNcwOoRmztVBtKKb774QfWf/Yy3h/mM6RkMSNFP4DK8LPZ04eS0L4U+DtjiRsipWSUbmLg9rfJ3vESfAmbpTs/dh6HZ7/D6Df6SDrs0x9c1SftyrLYXVjArvytFO3cQmnhdioKt+n4ZaU7kLJd+COFZMYKCVlFiIphIYgIiAtLPMRcPpTLi3L7UG4f4vaBx4fL40O5/VjixXLF/3zEXF5i4kUphVIxlBVDWdae/1UMLAtlWaBioCxExRAULmUhWLiUpX+A6H8UIPb/iKAQBFBIpYHLnu+y57tNDeMbakiuXq6mChIS2jIo9DcFyk5X9udEniMt/hkgWLaFfYBg75HV2vAn1pxrnsEsePBqppQvZMmIPzBmzNQaywXtUEA1beIcjsRY/p+fcaRax/qjH2DfPsNqrMsfnz3WUFd+UTkb517IkfIDu09+FHfnvknLQWXlHkyS//WPu8j83yX0dW2DM1+CzJpfe3LF1+wbEcqpNpRSrF6Xx5bPX8C3/iP2K13KMNF7/VpK2OrqRpE3hzJfF0DhjpbQs2Ax+xS8CWv/ReRVN2v8Q9jdfTzZ/Q+g6/7j6NRzAOLxV27HsigpLmT3zm2UFmyjbPd2wrvziRXvQJXmI2W78FTswhcuQGIViIrhxsJNDAsXEfERdfmJufzE3H4sdwDl8YPbDx4/eAKIV/8p8STuTaUssCxQFlgxlIohlr5PUTGwYojzvrXzCgK9OeZnf2vSc90c7HWKb/Vnb+F+64+MiX3DBunJl2NuYNTxF9PD66vX8Rk+N6XKj2rEzvPJ2Lh5C2vmP0H2upcZE/mK/cRil3RgQ85BbB0whW5DD6ZLv1wG1DAajkYirF31OdtWvEdw4yfsv+N9OuT/DxZBBDf5kkNYfMTEg98qJ6hKyFSldJAYHZLUZyEUSybFrmxK3B0o8XVBuby4sLCU0h3ciuKyIrijxXisCG4VwaMieIjiI4qXKD4i+n9puLNuDMHCja3uHP+7bGW3R6kk+18qqbbK3+P5qqpqS9NrXdXa0UI0mG2uruw77KBq6XEFE6thLe2jVx/n0E0P8FXOMYw57apa2whlZhNVLlQNe1m+9vDfObn8LdYOvoRBVV6FqEmuaBKFHI5avPnfqzjLWsDmsb+nx6gTq5VxEghp5R4pLaym+ApLI3z50OWcJUvYfeTNZA+YXGtdcSXaVKbOb7//gbwPHqHz+jcYFVvJMFHslI5s7nwgO/tNJGfwRLoPyKWHL0SPKscqpdjw449sWv4Bke8+omv+YsasfxjPhofgQ12mmAzKCCBYiLLIooRMidU4iy5UIYpcWZS4sol5AiBewriJ4UKw8FphMmLFeKL5eFUYr6rAqyL4VAQf4cbdr0qI2fenhYuYxD+7WeYaUncFrZC9SvF9vehthr5+OtvpzOLRNzDmJ5fQx9Ownxjye9hGgGAKwWijMYuFH79H+NP/cEjp+/SWCFvd+7B6wAXsM+EMug4cT6ckM7VkeLxeBo06hEGjDgEgHI6wavmnbP/6Uyj4gWD5NlxWGJeKEnUHUb5MlD8byeiMNzOHQIduhDp2JTtnH7I7d8ed0Ylsl5vsOtpNRsxSlIajRGOKMBAGipWCWBisCBKtwO124XZ7cLtdeNwe3G434vKAuPSfy4UbajRptVequ2loMjLjiq/6g3zFsi8ZuehK1vsGMOziB2ue3tpkBr0UkYEkmQ299cZLHL/hdtZ1PJhBM/5ep7wZoSwqlAertPqrEfMe+w9n736Yjb2Pp/cJf6yzrlAwSInyVzPBRmIWjz1wC7+KvMC2wefQbfLP66zLm5G6V+fusjAfv/08weWPcXD4U/aXKBu9/Viz38X0OOgMOu93IJ3rONegrQV9evWiT6+zgLMAKNxdxDcrP6di41fECn7EU7ETd7QMXG5cbg+WLwsr0AlPqDPuzBwC2V3J6NiVUMduZHfuSgefP+mAtr5Eo1HKy8uoKC9FYmFcdrsutxu3y2X/H0/T961bpMb79bAUZGlJ9irFN3jskXz2wzXkHvczxmY2rnuE/G5K8ZPRCMVXHo7ywauP03PZPUxSayjDz7qeJ9Jl8k/pPnQi3etxs9SFz+dl2IGHwoGHplxXQ3G7hKxAspmpP0maoSkI2utyVpUH+ZYtm8h+/kyUuOk0ax7eQE1zBEddXjc7kgS2/WLJF4z99Ffs9Han38VP1rh+5iQz4GUXWVCaXyn95Xfe4+Tvr2Nr5mB6nz+nTmWs67J3XIkHlkXPlu5/6lkuyv8n23LG0u2MO+qsByDLVqKB8prXC2siv6icd19+lGFr/81x8h27JYt1fWewz5Sf0XvAmLorqAcdsrMYe/ARwBF1lk0HHo+HzMwsMjOz6i68F7NXKT5xuTjo9N+lVIfP7aKUAO4G7NUZjsRY8PoT7LPkdo5R69jm7s6a3D+y/9EXMzzDhDYyNJ5QRoBy5a00g9ldXMyOB05noMpn6ylPs289nZ5EtJnbGy5IpK1bv4HOL52DxwW+C1/AHapff830e9ilssgq35lIW/DlVxz40c+w3AG6/ew5SOI1nbwuN0Uqgw6O3/js2x9x+trfUhboQrefzqvRMaYqWXElWlJQb8W3q7iCd195jEFf38MZso4dvh5snHALvQ89j2GOTb4New97leJrCvRu8UE80Z11lo1Zik/efo6cz/7BEda3bHN357uDbmTAkRfRrZ43qsFQG36Pm61k4rEVTHl5OavunsGE6EpWTbydYaMbNnPId+WwX4WOo7dh8zZKHprOULZRMP0Zuvas/3pNh6CX71UWHe0o6EvWfE+3l86mk5SgznsFd8fe9a4r0++lmCAd7XW5Vz5ZyvgFPyXogYyfvgShLvWuKyvgpVgFySrbjR+499WFrFz2Obf89pcEfZVVYWFpmHdeeYL9V93NafIN+d7ubJ10K90nz6q3ojW0TYziS0KpK5tA9Lsa85VSfLLgffzzr2dybAnbXF1ZM/4GBh19Md089XOiMRjqy1Z3d4IlGykpLWX5XTOZUL6A5SOuIvfoCxtcV6GvB50qVrHhxy3k338KI9Q3bJ56D31GNEyBhvwedrlzCJWu5IuVXxN8eib9ZDNlpz9Fh37jGlRXpwwv61UH+pds5vUFixj21nl0dxci572Cq9vgBtXVs2OQfLLpWrCRB158m18sPQ2AxasmM3b0aEArvPdee5r+K/7FdNaS7+3GlkNuZJ9Dfwrm/m0XGMWXhEJPF7LCO/XGwI6Rn2UpPl74CbH3b2RK5EMKyWJ17u8ZfOIVdPMlc8Q2GFJnd7API0re4et/HsGE6Gq+GvpbRp1Wt9NIMsId9yO45RU6/PcA9qGcH4+4k30nndWourZlDSW76EMGPz0Fj8QomvYwOcOPanA9XbP8rPPsz1El85j49jQ8buDsZ/H3q+7lWhcDu2fygjWAg3a8xhnbz0t42G788FG8nXrz7YLn2H/t/Zwi37DT3ZXNB/+dHlMu0q7+hnaDUXxJiGT2wLVTQfFW6NCbkvIwi+a/QmDxf5gc/YxyfKze/2cMPOVPDK3nmojB0FhK+h2Na+XbDIyuZcWEfzLq2J82uq5+h53Dj089isflomTaw+w7uuGKKk6vQ2ay/vXn8foChGbcT87AgxtVj4jgGzODzV+8DcFOdDl3Lt5e1d9prA9dMv1s7ncy+RsWEM3uQ9b5D7Ph0Uv4Sf6DlD74BKOklB3effjxoBvoefjPjMJrp4hqRXGrxo4dqxYvXtzSYvDwE49x/tpfsbrfeWzZXcHg/HfpKTvYLVlsGnQuA0+4HE92TQ7oBkPTErMUX376Nv0HDKJLj34p11dWHibg8yD1fKWmNioiUfwed728N+uiPBwl4Et9LK6UIhaz8Hj0mp4q2srm124kXF5Cp9xj6TDqRLOG18oQkS+UUmObrT2j+Krz1Q/5BB48jMGygTAevss8EN8BZ9J/4ul7IrQbDAaDoUlobsVnTJ1JGNU3hx9//SF5W75h34G5DPHXzy3bYDAYDK0fo/hqoGeXztCl4YvrBoPBYGjdtIuwRAaDwWAwxDGKz2AwGAztilbl3CIi24EfmqCqLsCOJqinOTCypo+2JG9bkhXalrxtSVZoW/I2lax9lVI1x5tqYlqV4msqRGRxc3oIpYKRNX20JXnbkqzQtuRtS7JC25K3LcnqxJg6DQaDwdCuMIrPYDAYDO2KvVXx/belBWgARtb00ZbkbUuyQtuSty3JCm1L3rYka4K9co3PYDAYDIaa2FtnfAaDwWAwJMUoPoPBYDC0K/YqxScix4rIGhH5VkSubml5nIhIHxF5X0RWichKEfmNnT5bRDaJyFL77/iWljWOiOSJyHJbrsV2WmcReVtEvrH/b/G4TCIy2HH+lorIbhG5rDWdWxF5UES2icgKR1rScymaO+1+vExEDmgFst4iIl/b8rwgIh3t9H4iUuY4x/c1p6y1yFvjtReRP9jndo2IHNMKZJ3nkDNPRJba6a3h3Nb03GqVfbfeKKX2ij/ADawDBgA+4CtgWEvL5ZCvB3CA/TkLWAsMA2YDv2tp+WqQOQ/oUiXtZuBq+/PVwE0tLWeSfrAF6Nuazi1wKHAAsKKucwkcD7yODqM6AfisFch6NOCxP9/kkLWfs1wrOrdJr719z30F+IH+9jPD3ZKyVsm/Dbi2FZ3bmp5brbLv1vdvb5rxjQe+VUp9p5QKA08B01pYpgRKqc1KqS/tz0XAaqBXy0rVKKYBD9ufHwZObjlRknIksE4p1RQ7ADUZSqkPgZ1Vkms6l9OAR5RmIdBRRHo0i6Akl1Up9ZZSKmp/XQj0bi556qKGc1sT04CnlFIVSqnvgW/Rz45moTZZRUSAM4Anm0ueuqjludUq+2592ZsUXy9gg+P7RlqpYhGRfsAY4DM76VLbLPBgazAdOlDAWyLyhYhcbKd1V0pttj9vAbq3jGg1MpPKD47Wem6h5nPZ2vvyhehRfZz+IrJERD4QkcktJVQSkl371nxuJwNblVLfONJazbmt8txqq30X2LsUX5tARDKB54DLlFK7gXuB/YDRwGa0qaO1MEkpdQBwHPArETnUmam0baPVvA8jIj7gJOAZO6k1n9tKtLZzWRMi8icgCjxuJ20G9lVKjQGuAJ4QkeyWks9Bm7n2Ds6k8qCt1ZzbJM+tBG2l7zrZmxTfJqCP43tvO63VICJedOd5XCn1PIBSaqtSKqaUsoD7aUazS10opTbZ/28DXkDLtjVuurD/39ZyElbjOOBLpdRWaN3n1qamc9kq+7KIzAJ+ApxtP+ywTYb59ucv0Gtmg1pMSJtarn1rPbce4FRgXjyttZzbZM8t2ljfrcrepPg+BwaKSH975D8TeLmFZUpg2+/nAKuVUv90pDvt36cAK6oe2xKISEhEsuKf0c4NK9Dn9Hy72PnASy0jYVIqjZhb67l1UNO5fBk4z/aQmwAUOsxKLYKIHAv8HjhJKVXqSO8qIm778wBgIPBdy0i5h1qu/cvATBHxi0h/tLyLmlu+JEwFvlZKbYwntIZzW9NzizbUd5PS0t41TfmH9ihaix4Z/aml5aki2yS0OWAZsNT+Ox54FFhup78M9GhpWW15B6C9374CVsbPJ5ADvAt8A7wDdG5pWW25QkA+0MGR1mrOLVohbwYi6HWPn9Z0LtEecffY/Xg5MLYVyPoteu0m3nfvs8tOt/vHUuBL4MRWcm5rvPbAn+xzuwY4rqVltdPnApdUKdsazm1Nz61W2Xfr+2e2LDMYDAZDu2JvMnUaDAaDwVAnRvEZDAaDoV1hFJ/BYDAY2hVG8RkMBoOhXWEUn8FgMBjaFUbxGQwGg6FdYRSfwWAwGNoV/w9YZ8wFH30o2wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, False, 9)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB9q0lEQVR4nO2dd5hU1dnAf++dupWFpUgHlc4uRZoBFKwoUVRUrIjGJMZo7NEUDZr4xRqNlcSo2IIYC2LUaCyoaBBBkA6CLHXpLFunn++Pe2eYnZ3ts7Ozy/k9zzwz95xzz3nvuWfOe95TRSmFRqPRaDStGaO5BdBoNBqNpqnRyk6j0Wg0rR6t7DQajUbT6tHKTqPRaDStHq3sNBqNRtPq0cpOo9FoNK2elFN2ItJLRJSI2JtbFk3DEZHrRWSniHzXDGnPFJGXk5DODBFZWIP/AhG5uqnl0FSmpvdS2ztLoAwTRGR7Df6zReRPTS1Ha0FEvhORQhG5qaFxpJyy09QfEZklIqXWxyci/qjr95tJrJnAtUqpIVFyzhSRmc0kT0phNeoK6hn+UxEpF5F1InJKDWEvFJGvrLAL4vgPFZGllv9SERka5eeyytNuETkgIu+ISNcYOd4TkYMisktEngg3TEVkfFS5C3+UiEy1/GfF+HlFpKSOzz8h3rO0VkSkzgugRaSdiLwlImUiskVELqkhrIjI/SKy3/rcLyJi+fUVkbdFZK/17j8QkX5R915hlZdiEdkuIg9EGyVW484T9X7Xx6R9iSVfmYjME5F2UX4vW8qsWEQ2xDYSrXrkp8Af6povsSRc2WmLLPkopa5RSmUqpTKB/wPmhq+VUmeEwyX53bQDViUxvSYhhcrzHGAZkAv8DnhdRDpUE/YA8ChwX6yHiDiBt4GXgbbAC8DbljvADcDxQD7QBTgIPB4VxVPAHqAzMBQ4EbgWQCn1RVS5ywR+DJQC/7H8r4nxnwP8q945kSKkUNl4EvABnYBLgadFZFA1YX8GnAMMwXzHZwE/t/xygPlAPyuuxZhlJUw6cCPQHhgNnAzcGhP/dVHvOFpRDgL+BlxuxV2OWZbC/BnopZTKBs4G/iQix8XEvQpoIyK2ap6tRhKi7ESkQERuF5EVQJmI2EVkjNW6LLJM0AlR4ReIyJ9FZLGlyd+O1vIxcV8pImtFpEREfhCRn8f4TxGR5VY8m0RkkuXeRkSetVoLO0TkT7VlkogcIyKfWC2efSLyiojkRPkdEJHh1nUXqwU0wbo+W0RWW8+7QEQGxOTPrSKyQkQOichcEXHXP6frTzXvRonIsVFhKnWpiMiPrTwtst5hfj3TDOdzqJZwv7bez04RuTpaLkumJ0XkXevdfy0ix0Td+1cR2Wa996UiMj4mereVzyUi8q2IRFuYd1hlpURE1ojIuVF+M0TkSxF5RET2Y1qotT3vQ2JaOptF5IwY755WfCUi8qGItK8tvjjx9wWGA39QSlUopd4AVgJT44VXSn2klHoN2BnHewJgBx5VSnmVUo8BApxk+fcGPlBK7VZKeYC5QHTF2Rt4TSnlUUrtwlRk1VWsVwCvK6XK4jxThiX/CzU8erWIyGkist76Pz0lIp9JNV3GIvKgiCwUkTaHneQJ6951InJyVNhq6xuxuiat/9Mu4Pk6yHmLiOyxyvmVMd5tqyvf9ciHcD7eqZQqVUotxFRYl1dzyxXAw0qp7UqpHcDDwAwApdRipdSzSqkDSik/8AjQT0RyLf+nrQaNz7r3FWBsHUW9FHhHKfW5UqoUuBM4T0SyrLhXK6W8VlhlfWLzI1yfNKyRoZRq9AcoAJYD3YE0oCuwHzgTU6Geal13sMIvAHYAg4EM4A3gZcuvl/Wgdut6svXQgtmKLAeGW36jgENW/IaVbn/L7y3MlkQG0BGzlfLzWp7jWCsuF9AB+ByzUgj7/xRYg9nC+QB4yHLvC5RZ9zqAXwMbAWdU/izGbCm3A9YC11QjwzigqIbPuFqeYWY4L+O9G8tNAcdGhZkN/Mn6PQyz5T4asGH+OQoAVz3KwyTAA2TUEmYXZkWZjmlpROSyZNpvvWM75h/r1aj7L8O0cuzALVZc7qg88APnW+/jVmAz4LD8L7DehQFMs95dZ8tvBhAArrfiTqvhGWZY6fzUyqtfYCoYiSrnm6zykWZd31dNXE8BT1Xjdy6wNsbtCeDxWt7D1cCCGLebgPdj3P4N3GL9HgF8aeVPOvBPKv8Hfg68aPl1xWxtnxsn7QygBJhQjWzTgR/CeVXP+qY9UAycZ72jG6z3cHXUe1lovd9nMP+r6THv9yarbEzDrEPa1aG+mWDdez9mHVFT2QiHvcdK50wrrrZ1Kd8xcd0B/Lsav2FAeYzbrZiKJV74Q8DoqOsRQEk1Yc8BCmt4xnnR5dkq33uBfVYZmhDl9zZwe8z9pcBxMf+Bcsx64FsgMyZ8GlAB/Li+ZUYplVBld1XU9e3ASzFhPgCuiMqU6EwaiGmG24hRdtVk8A3W778Bj8QJ0wnwRhdG4GLg03o+1znAshi3+Zit6hVYCgCzlfJaVBgDU5lPiMqfy6L8HwBmJSLv48g8k6rK7qqYMDUpu6eBP8aEXw+cWMf0l1jx/6qWcM8Bf466Ppaqyu4fUf5nAutqiO8gMCQqDxbFvI9CYHw19y4Hpli/ZwBb6/isM4CNUdfp1jMcFVXOfx/lfy3wnwa808ujn8dyuxeYXct98ZTdncRUqpgV7UzrdxvgVes5Aphdp+2iwg4Allp+ynpPVRSWJfPmeH6W/8fhNBuQH9OB/0VdC7CNysrua0yr9A2sRmeU385ouTAbopdXk9Y8Dtc3EzDrKXcdZJyAWTHbo9z2AGMaUr5rSGc8sCvG7aex7z3KL4hlEFjXfaz3KDHhumHWYRdXE89VwHagfZTbaCALsyFwBWZj55io931NTByROjLKzYbZ4P89VuM0xv96TAtveX3zKpFjdtuifvcELrC6wYpEpMh6gM7VhN+C2fqp0sUjImeIyCKrC7EIs1CEw3XHbDnH0tOKrzAq/b9hWnjVIiKdRORVMbs9izGtjViZnsG0SB9Xh83uLtYzAKCUClnP1zXqvl1Rv8uBzJpkSTDbag8SoSdwS8y76475jHVhJHARMFNEHDWE6xIjVzwZq80zq1t4rdUVVYRZSUe/q0h81vvYHn4GEZke1U1bhPk+495bByIyKqXKrZ+Z8fxjn6EelALZMW7ZmJVJouN6ErOyysW0zt4E3gcQEQOz2/JNy6895rjf/XHSuQJ4UVk1VDQi0gNTGbzYAPkhpuxYacTOfDwWmALcrZTyxfjtiJFrC4fLRk31DcBeZXbv1oX9SqlA1HXs+2+OshEbPhsojc4PMceCP8TsaZgTG4GInIM5xnaGUmpf2F0p9bVSqkSZ3eMvYFp3Z9ZHTqVUUJldsd0we0qi07UDd2M2pIZV83zVkkhlF114tmFadjlRnwylVPSAefeo3z0wuyH2RbkhIi7MltlDQCelVA7wHmZLLpxOvH7ubZiWXfuo9LOVUtWNLYT5P+s58pQ5UHpZVFqISCbmwP+zmJV5eJxxJ6aSCIcT6/l21JJeFST+jLboT+zYVF2IrXDKMa2QMEdF/d4G3Bvz7tLjFfq4CZl/mnmYlWDnGoIWYhboMN2rCxiLlQe/Bi7E7BbKweyekahg3aPCG1ZaO0WkJ2aD5Tog17p3Vcy9VSroZmY1cHR4fMNiiOXekLjyrTIaJj8qrqGYFuMBqzH3ODDKGmtsh/lffcKq0PZjjludGRUXItKdmpXZ5cCXSqkfGiA/xJQd61m6xYRZC1wJvC9RMwotusY8fw/MslFbfQOpVzY2AHYR6RPlVlPZWG35xw0rIm0xFd18pdS9sTeLOSfiGeAspdTKWmRTHM67SumKyNGYjaoN1dxrp2rd3gmzXpkXrxFVG0219OBl4CwROV1EbCLitgZ3owvkZSIyUETSMfu1X1dKBWPicWJmyF4gYA3+nxbl/yxwpYicLCKGiHQVkf5KqULMF/awiGRbfseIyIm1yJ2F2QI5JOZ069ti/P8KLFFKXQ28C8yy3F8DJltyODDHkLzAV7VlVCwqZkZbnM8X9Y0zDsuBS6x3MwlzbCLMM8A1IjJaTDJEZHK4ohVz4sjsWp4hbPE6awj2Gua7G2CVgTvrIX8WZjfaXsw/+l1UbTUeJyLnWa3BGzHfxyJMi0RZ92JNGhhcj7STjlJqA+Y7+4P1XzoXU0G9ES98+D+HWWEY1j1hK3sBZlfWr8RcZnCd5f6J9f0NMF3MCV4OzK7XnUqpfVYrfjPwCzEnOuVgWnArYkS4HPhKKRWv1wXMbsjZceSutWxZvAvkicg51vv9JZUbbABYDbTfAh/FTP7oiPn8DhG5ALNr9j1qr29SDmVO/nkTuMf6r47FtGhfquaWF4GbrbqyC2ZdNRtARLIxh5u+VErdEXujiJyE2eU9VSm1OMYvx6rv3VbZuBQ4AWsmrnXfWVZjPgOzzn9TKVUiIh1F5CIRybTK7umYw04fx4gQLsNeGkCTKDul1DbMDP8tZsHZhqk4otN7CTOTdwFu4Fdx4imx3F/DHJO5BHPMLOy/GLP19ghmy/4zDltY0zEL7xrr3tep2dIA00QebsX1LmYhAsxZn5iTKsKm9c3AcBG5VCm1HtMKfBzTOj0Ls+UT232SKtyAKWMR5iypeWEPpdQSzD7/JzDzbSPWbC2L7pjdE7WhqKF8KaXeBx4DPrXSWGR51aUgf4D5J9qA2QXloWrX49uYkw8OYla+5yml/EqpNZgz0P4H7Aby6vg8TYqYa9Bm1RDkIszJBAcxlxScr5QKK+xLRSS6JX855njR05hjOhWYjRisMnkO5v+jCHPs5ZyosnorZn5+j/nfPRNzgkyY8zD/B3sx35sfc7JHNNOpZpaliByPaYXFW3JQp7JlKd0LMMe+92OO+S8hTtmxutPuAT4RkV6W89eYY1X7MMc+z1dK7a+tvmkuROS3UvN62WsxJ2/swVzO8Qul1Grr3vEiUhoV9m/AO5jzDlZh1nN/s/zOxRyGuDKmN6mH5X8n5nDBe1J1Ha8D+BOHJ6hcj1muNoA52xK4BlPp7cFssF5r3asw69XtmPn+EHCjUio27+s0y7s6wrPGkoqYi0NfVkr9I+mJaxqMmGuxvgPylTk1uaawO4FfK6XqtJOJmEs1VmFO+gnUFl7TuqhP2Ypzr4FZUV6qlPq0KeTTND8iciFmF3qNcy+qQ++goqkzylxfM6COldEdmN1uS6sLICLnWl1p4UkO72hFd2RSz7KF1WWWY42z/RZzbGhRLbdpWihWPfJ/mDP9G8QRp+yk6pZF4U9NXUiaeqKUelEp1UcpFbsLQjQ/x+zS2IQ5jvSLGsI2C7q8pCzHY5ab8LDBOUqpimQKYHUvxisbzbVFX6tFKXWcUupYpdTzDY2jWboxNRqNRqNJJkecZafRaDSaI49U2cgUgPbt26tevXo1txgajUajSSJLly7dp5SqbmPzhJBSyq5Xr14sWbKkucXQaDQaTRIRkS21h2ocuhtTo9FoNK0erew0Go1G0+rRyk6jaQG8uXgjv/nj3fj8sTvqaTSaupBSY3bx8Pv9bN++HY+nrhuNazTgdrvp1q0bDkdNBy+0HBz/uY0/hz5h5/en0WXg8UlP/6/vf0dh4Xbuu2py0tNWSnH18//j3AFZ/Pj4vKSnr2kdpLyy2759O1lZWfTq1QuptFG5RhMfpRT79+9n+/bt9O7du7nFSQhdQoUAVBwsbJb023z5J26wfwgVBZDWNqlpF3sC/LLgevpv2QbH70lq2prWQ8p3Y3o8HnJzc7Wi09QZESE3N7dV9QZ4jAwAvCX7myX9c20LAfAfrM9Rf4nBHwwx3NhIunghqHeT0zSMlFd2gFZ0mnrT2spMwJYGgK+sqFnS91mdQKVFe5OediAYtctTxcGkp69pHbQIZafRHOkEbS4AQp7iZkk/YCk7b3HyLctAKOpEl4oDSU9f0zrQyq4OiAi33HJL5Pqhhx5i5syZzSdQLSxYsICvvqr3ubGVmDRpEjk5Ofz4xz9OkFSaRmFYw+vekmZJvlyZyjZQmnxlEwxFWXblWtlpGoZWdnXA5XLx5ptvsm/fvoTGq5QiFGrQOYQ1kghld9ttt/HSS9UddqxJNnYxK3xpJmVXgtmNGihvDsvusLJTuhtT00C0sqsDdrudn/3sZzzyyCNV/Pbu3cvUqVMZOXIkI0eO5MsvzYOWZ86cyUMPPRQJN3jwYAoKCigoKKBfv35Mnz6dwYMHs23bNm677TYGDx5MXl4ec+fOBUyFNWHCBM4//3z69+/PpZdeSrwTKh577DEGDhxIfn4+F110EQUFBcyaNYtHHnmEoUOH8sUXX9Qo4+WXX87xxx9Pnz59eOaZZyLxnnzyyWRlZdWYL//6178YPHgwQ4YM4YQTTgDMCUVXXnkleXl5DBs2jE8/Nc/SnD17Nueccw6nnnoqvXr14oknnuAvf/kLw4YNY8yYMRw4YLbYn3nmGUaOHMmQIUOYOnUq5eXlVdIdM2YMq1cfPph7woQJrX6bOVHm+jrD3zzKzm91Y4Yqkp9+tGXnryitIaRGUz0pv/QgmrvfWc2anYkdsxjYJZs/nDWo1nC//OUvyc/P59e//nUl9xtuuIGbbrqJcePGsXXrVk4//XTWrl1bY1zff/89L7zwAmPGjOGNN95g+fLlfPfdd+zbt4+RI0dGFMeyZctYvXo1Xbp0YezYsXz55ZeMGzeuUlz33XcfmzdvxuVyUVRURE5ODtdccw2ZmZnceuutAFxyySXVyrhixQoWLVpEWVkZw4YNY/LkyXTp0qVOeXfPPffwwQcf0LVrV4qKigB48sknERFWrlzJunXrOO2009iwYQMAq1atYtmyZXg8Ho499ljuv/9+li1bxk033cSLL77IjTfeyHnnncdPf/pTAH7/+9/z7LPPcv3111dKd9q0abz22mvcfffdFBYWUlhYyIgRI+okc0vFsM60tTeTsrNh9kCoZhgzjJ6g4q0oxpl0CTStAW3Z1ZHs7GymT5/OY489Vsn9o48+4rrrrmPo0KGcffbZFBcXU1pac+uzZ8+ejBkzBoCFCxdy8cUXY7PZ6NSpEyeeeCLffPMNAKNGjaJbt24YhsHQoUMpKCioEld+fj6XXnopL7/8MnZ7/LZLTTJOmTKFtLQ02rdvz8SJE1m8eHGd82Ts2LHMmDGDZ555hmAwGHmeyy67DID+/fvTs2fPiLKbOHEiWVlZdOjQgTZt2nDWWWcBkJeXF3m2VatWMX78ePLy8njllVcqWXBhLrzwQl5//XUAXnvtNc4///w6y9xSCVt2jkBZs6RvWMoOX/Itq2jLLlDePMpe0/JpUZZdXSywpuTGG29k+PDhXHnllRG3UCjEokWLcLvdlcLa7fZK43HRa74yMjLqlJ7L5Yr8ttlsBAJV1xi9++67fP7557zzzjvce++9rFy5skqY6mSEqlP06zNlf9asWXz99de8++67HHfccSxdurTG8NHPYxhG5NowjMizzZgxg3nz5jFkyBBmz57NggULqsTTtWtXcnNzWbFiBXPnzmXWrNZ/aLhhKTtnMyk7ezMqO38oREgJhigCHq3sNA1DW3b1oF27dlx44YU8++yzEbfTTjuNxx9/PHK9fPlywDyu6NtvvwXg22+/ZfPmzXHjHD9+PHPnziUYDLJ3714+//xzRo0aVSd5QqEQ27ZtY+LEidx///0cOnSI0tJSsrKyKCk5XClUJyPA22+/jcfjYf/+/SxYsICRI0fWKW2ATZs2MXr0aO655x46dOjAtm3bGD9+PK+88goAGzZsYOvWrfTr16/OcZaUlNC5c2f8fn8knnhMmzaNBx54gEOHDpGfn1/n+Fsq4W5MVyj5yk4phQ1T2dqa2bILevSYnaZhaGVXT2655ZZKszIfe+wxlixZQn5+PgMHDoxYGVOnTuXAgQMMGjSIJ554gr59+8aN79xzzyU/P58hQ4Zw0kkn8cADD3DUUUfVSZZgMMhll10WmQzyq1/9ipycHM466yzeeuutyASV6mQEsxt04sSJjBkzhjvvvDMyXjd+/HguuOACPv74Y7p168YHH3wAwF133cX8+fMBc8ZmXl4egwcP5kc/+hFDhgzh2muvJRQKkZeXx7Rp05g9e3Yli642/vjHPzJ69GjGjh1L//79I+7z58/nrrvuilyff/75vPrqq1x44YV1jrslE+7GdIcqkp52SB0es7MFkq9sAoEghjUbNejVyk7TMCTeDL/mYsSIESp2Vt3atWsZMGBAM0nUupk5c2aliSytjdZUdpb+6USOCyzHgxP3zOTuYuINBNl+zyCOMQrZ5erNUb9ZntT0v1xfyNg5ZsNne48pdLvqxaSmr2l6RGSpUqpJZ5lpy06jaQGEx+zc+CCU3GN+QiGwW92YzmDVpSBNTTDgj/wWX/OMWWpaPi1qgoomsaTyLjCaythUlILzlYK7TdLSDoRC2MTsxmyOMcNQMErZ+XU3pqZhaMtOo2kBGBxWdv6K5K51C4ZUZMzOHSqHJA99hJe1ABj+5FuWmtaBVnYaTQvAiLLsPKXJVXaBkIp0Y9oIQSC5RycFo5bc2AJa2WkahlZ2Gk0LwEaQoDLXQFaUHUpq2qZlF9WNmuT9OUNBX+S3XSs7TQPRyk6jaQHYVJBiyQTAW9Ycll2IImVthpB0ZWcqWr+y4WiGCTKa1oFWdnVk3rx5iAjr1q2rNkxBQQGDBw9uUjmWL1/Oe++916g4rrrqKjp27NjksmoSh0GQMjGVjb88yZZdUGEQotRStsneRSVknU5eSjrOZlhnqGkdaGVXR+bMmcO4ceOYM2dOXP94W3nVl+iB+OpIhLKbMWMG//nPfxoVhya52AhSbpinUCR75/9AKISdIGWGqeyCSd6yS4WVnWTgVN6kL73QtA60sqsDpaWlLFy4kGeffZZXX3014r5gwQLGjx/P2WefzcCBAwFT6V166aUMGDCA888/P3JEzccff8ywYcPIy8vjqquuwuv1Aua2YrfffjvDhw/nX//6V6V0Y4/Q8fl83HXXXcydO5ehQ4cyd+5cysrKuOqqqxg1ahTDhg3j7bffBswjdaZMmcKECRPo06cPd999dyTeE044gXbt2tX4zJ999hlDhw5l6NChDBs2jJKSEpRS1R5HdOKJJzJlyhSOPvpo7rjjDl555RVGjRpFXl4emzZtAuCdd95h9OjRDBs2jFNOOYXdu3dXSfeiiy7i3XffjVzPmDEjsunzkYxNBfHYTWUXSPJszJAyZ2NW2Mz0vWVFSU0/GDKVXblhdaM2w5ZlmpZPy1pn9/4dsKvqRseN4qg8OOO+GoO8/fbbTJo0ib59+5Kbm8vSpUs57rjjAHPfy1WrVtG7d28KCgpYv349zz77LGPHjuWqq67iqaee4rrrrmPGjBl8/PHH9O3bl+nTp/P0009z4403ApCbmxvZRzOa2CN0nE4n99xzD0uWLOGJJ54A4Le//S0nnXQSzz33HEVFRYwaNYpTTjkFgMWLF7Nq1SrS09MZOXIkkydPrvNROA899BBPPvkkY8eOpbS0FLfbzZtvvlntcUTfffcda9eupV27dhx99NFcffXVLF68mL/+9a88/vjjPProo4wbN45FixYhIvzjH//ggQce4OGHH66Ubvj4nsmTJ+Pz+fj44495+umn6yRza8ZGEJ8jG7wQSvKYWSCkcEgQrz0b/OAvT66yVdaico8tC0KAryyp6ww1rYMmt+xEZJKIrBeRjSJyR1On1xTMmTOHiy66CDAtj+iuzFGjRtG7d+/Idffu3Rk7diwAl112GQsXLmT9+vX07t07sj/mFVdcweeffx65Z9q0aXHTjXeETiwffvgh9913H0OHDmXChAl4PB62bt0KwKmnnkpubi5paWmcd955LFy4sM7PPHbsWG6++WYee+wxioqKsNvtNR5HNHLkSDp37ozL5eKYY47htNNOAyof37N9+3ZOP/108vLyePDBB+Me33PGGWfw6aef4vV6ef/99znhhBNIS0urs9ytFRshQg6zG1EluRsxELAmiDizAfAmW9lZ3Zg+y7JF76KiaQBNatmJiA14EjgV2A58IyLzlVJrGhRhLRZYU3DgwAE++eQTVq5ciYgQDAYRER588EGg6nE9DTkyp7ojf+pyhI5SijfeeKPKyQJff/11o47vueOOO5g8eTLvvfceY8eOjWwEXR11Ob7n+uuv5+abb+bss89mwYIFcXdwcbvdTJgwgQ8++IC5c+dGGhlHMuFTBwyHk1LlRiW5sg9ZllXAlQNAMMnKLhgKK9ssqEB3Y2oaRFNbdqOAjUqpH5RSPuBVYEoTp5lQXn/9dS6//HK2bNlCQUEB27Zto3fv3nzxxRdxw2/dupX//e9/APzzn/9k3Lhx9OvXj4KCAjZu3AjASy+9xIknnlhr2vGO0Ik9vuf000/n8ccfJ7yh97JlyyJ+//3vfzlw4AAVFRXMmzcvYnHWhU2bNpGXl8ftt9/OyJEjWbduXaOOIwI4dOgQXbt2BeCFF16oNty0adN4/vnn+eKLL5g0aVKd42+thJS5N6XN5qQMN5Lkyj5gWVa4TMsukOzTyq30Q05t2WkaTlMru67Atqjr7ZZbi2HOnDmce+65ldymTp1a7azMfv368eSTTzJgwAAOHjzIL37xC9xuN88//zwXXHABeXl5GIbBNddcU2va8Y7QmThxImvWrIlMULnzzjvx+/3k5+czaNAg7rzzzsj9o0aNYurUqeTn5zN16tTIeN3FF1/M8ccfz/r16+nWrVvkfL5Zs2ZFjv959NFHGTx4MPn5+TgcDs4444xGHUcE5l6cF1xwAccddxzt27ePuC9ZsoSrr746cn3aaafx2Wefccopp+B0Ouscf2slEAphI4TYbJSThpHk/SHDU/+dThelyk0oyd2o4XV2ymWO0yl9zI+mATTpET8icj4wSSl1tXV9OTBaKXVdVJifAT8D6NGjx3FbtmypFEdrOqYlmcyePbvSRJYjkdZSdsp9AYx7j2Jtz0tI2/YFKqMjA26tuVs5kXy9ZhOjXxvOkgG/pvuav+PpdTI9r3wuaem/+vpcLlr1Mz4/9jZO2PggvnOewTn0yDjH8EihNRzxswPoHnXdzXKLoJT6u1JqhFJqRIcOHZpYHI2m5RHeiFkMOx4jHXuSdxFR1qkDLqeTUpUGSbaswhNUcOcA4Evydmma1kFTK7tvgD4i0ltEnMBFwPwmTlODuT7tSLbqWhPBYAiHBFGGDZ+RnvQts8LdmG6nk9Jm6EbFWmdnpLcFwF+e3G5UTeugSZWdUioAXAd8AKwFXlNKVZ1vXns8iRZN08ppTWUmYI1ZiWHHb0/HlXRlZ6bvcjopU24Mf5Jng1rK1p6eA4C/Qlt2mvrT5IvKlVLvAQ3e38rtdrN//35yc3PrNXVec+SilGL//v243e7mFiUhRE7qNuwE7Om4PMndHzJodWPa7A7KjXTs/qKkph+27NzutGaZIKNpHaT8DirdunVj+/bt7N27t7lF0bQg3G433bp1a24xEkLkpG7DTsieiVslV9mFx8wMW7gbdUctdyQ4/bCyc5lLL0LJXvqgaRWkvLJzOByVdijRaI40Dlt2DkLODNLxQCgERnK2tg2nLzYHPls6ziR3o4ql7NJcLkpVGu4kb5emaR3ojaA1mhQn4A8rGzvKmfxjdsJjdobNjs+WmfQxw7Bll5bmppS0pC+q17QOtLLTaFKccDem2OyIpewCSRy3CoXM9A2bnaAjHQd+CPhquStxRCw7t2nZGVrZaRqAVnYaTYoTDITHzOwYbnPLLE8S15qFx+xsNjtBR/Ity/A6v3SXizLc2JI8G1TTOtDKTqNJcaLH7AyXpexKk6/sDJsDFVZ2yRw3szaCttmd5qL6gLbsNPUn5SeoaDRHOuGp/4bNjs3aDNlbnjxlFwoetiyVqzmU3eHZqF5bRtInyGhaB9qy02hSnFBUN6YzPazsktmNaKVvtyOu8MkDyUs/PGaHYSNgS8cZ0spOU3+0stNoUpzDU//tONPNnf8DyTxTLrKo3BkZM1TN0I2JYSfgyMSh/BDwJi99TatAKzuNJsWJHjNzpVtnylUkT9mFJ4gYDidGmpm+P4ndqOEdVLA5CNrD3ah63E5TP7Sy02hSnGDU0gN3pmnZBZNY2UvIXGZgs7twWsrOl0TL0oh0Y9oJOTPM3169i4qmfugJKhpNihOKmvqfkWkqG5XEdXYRy87uxJ7mAMCfzG5UdVjZhU9LT+aYoaZ1oJWdRpPiKGt8yrA7SXc7KVMuVDIniARNy07sLtwZ5snxyexGlVCQIAY2EcTdDLNBNa0C3Y2p0aQ4YWUnDhfpDhtlyd4yK7wRtc1BepqbCuVMrrJTAUJiA8BwW5adHrPT1BOt7DSaVMdSdja7C8MQyklDfMnbRSQ8ZofNSabLTinJPWbHCAUIYSo7uzUbVJ9pp6kvWtlpNClOpBvTkQaA10juAaoSseycZLkdlKk0QknsRhQVJCjmiIvDmo3qK9MTVDT1Qys7jSbVscbMDKcLAK+Rjj2QxP0hg2HLzkG2226ePJBUZXe4G9NhrTP0JXPpg6ZVoJWdRpPqWMrG5rCUnS0TVzL3h4y17HAntRvVFqXs0jKbYZ2fplWglZ1Gk+r4rTE7h9u8dGTiCjWDZWc4cDsMykjDlkRla1d+gmIuechwuyhTrqSOGWpaB1rZaTQpTsgas3O5zTG7gCOLtCQqOxX0EcAGhoGI4DPScSRxzNAR8hCwmc+e6bJTQjohPUFFU0+0stNoUpxYZRdyZpFBOSiVlPQl6CcQtSTXZ8/AEUyOslNK4VRegjbTqs102SlR6XoHFU290cpOo0l1ApW7MZUrCwdB8FckJ/2gj4DVjQgQsGfgCiUnbX9Q4VY+gmHLzm2nmHQMr7bsNPVDKzuNJsVRAS8BZYBhTtIQtzkj0VN6MCnpGyEfITls2QUdGbiU5/BpBE2IJxDELT5CdlPZZViWnc2nx+w09UMrO40m1Qn48EdZVjZrF5Hy4uQoO2ewAo+RFrkOOawz7ZKw/MDjC+LGi7LWGGY47ZSQht2vd1DR1A+t7DSaFEeCHvxEKTtrrVlFkiw7V6gMry0jysHanzIJW5Z5/CHS8KEsy85mCOVGJs6Atuw09UMrO40mxXEEyiiX9MPX6TkAeEqLkpK+O1SO33Y4fSN8WnkS9qf0BIKkiRcchy1Ljy0TV1Bbdpr6oZWdRpPiOPzFVNgyI9euzBwAfGVFSUnfHSon6Dicvi0tfFp508+ILPH4ScOHzXXYsvTbM7ErP/g9TZ6+pvWglZ1Gk+K4AqV4o5SdO6sdAIEkKDtfIES6KifkzIq42awDXD1lTT8jsqjUQyYV2K00AfyRMUO9/EBTd7Sy02hSHHewFJ/jsLJJz8oBIJiEhdUlHj+Z4jk8Tgc408OzQZs+/fJD+zBE4czuEHELOizF59HLDzR1Rys7jSbFSVelBByHLZusrLYAhDxNb9kcKvfShlIkrW3EzZVhyuJNgmXnK94DgLtNp4hbKDxmmITn17QeGqXsRGSmiOwQkeXW58wov9+IyEYRWS8ipzdeVI3myMMfCJKjSlDunIhbZrqLEpWWlMp+/56dOCWIPadrxM2VYcqSjJMHfCV7AXC36XjY0VpniF5YrqkH9tqD1MojSqmHoh1EZCBwETAI6AJ8JCJ9lVJNvwpVo2lF7N1TSBfxIjndI242QyglHfE1vbIr3r0VgIz2PSJuaZmmsglUNP30f+/BHQAYWYctO3HrbkxN/WmqbswpwKtKKa9SajOwERjVRGlpNK2Wg4WbAXC171nJvcJIx56EXUQ8+woAyDmqV8QtKyMDn7IRTMLJA65DZvq0PZy+LS3HEk53Y2rqTiKU3XUiskJEnhORcMd+V2BbVJjtlptGo6kHRdvXAtC267GV3CuMDOxJOGYntMdM33VU/4ibeaZdGqqJlY1SiqyyAoocHcF5eJ1feFF9oKKoSdPXtC5qVXYi8pGIrIrzmQI8DRwDDAUKgYfrK4CI/ExElojIkr1799b3do2mVRPY8R1+bHQ+Zmgld68tA2cSlF3bolXscXStNBszy22nVKWhmnhR+eZ9ZQwIbaS03aBK7q70bEJK8CdpnaGmdVDrmJ1S6pS6RCQizwD/ti53AN2jvLtZbvHi/zvwd4ARI0Yk58wSjaaF0HH/N2xxHMux1okHYXz2LFzeXU2a9ra9RQwNrGBb18lETQ8h3WljG25sTbxd2IpV33GOUcjeo39SyT3D7aSUNCQJs0E1rYfGzsbsHHV5LrDK+j0fuEhEXCLSG+gDLG5MWhrNkcb2LRvpF9hAUbeTqvgFHJmkN/EBris+eZVM8ZA7/OxK7iJChZGOrYk3Y/YsmQNA+5HnV3LPso75ScY6Q03robGzMR8QkaGAAgqAnwMopVaLyGvAGiAA/FLPxNRo6kfBe3+hM9D9xCuq+IUcWaSr8iZLu6ikjD5rn2Kv/Sg6Dj+rir/XSMcWaDpl+79V3zOp9E22tR9H93a9K/mFj/nJ8BQ1Wfqa1kejlJ1S6vIa/O4F7m1M/BrNkcr3a5czYtdrrMw5iaG9BlTxV64s3Pgg4AO7M6FpB4Ihvv7HjZzOFrZO+FvkHL1ofLYMnMH9CU03zJ6iUoJv/JwM8ZJ+3p+r+Ge6TMvuKD0bU1MP9A4qGk2KsWd3IY7XLsUrLnpe8mjcMOG1Zt7yooSmXerxseCJazj90Gus7XYhPcZOixsuYE/HGUy8ZbmlcC/rHp/KOLWUfWNn4uyaXyVMpstOsUrH0Ae4aupBIhaVt3g8vgDlHg8BJeSku3E6qrZkNZpk8MMP3xN86Xx6hnbxw6SX6N+pR9xwYq01Kys+gCu7Y9ww9eXrb5ch/76BU0LfsbrrBQy6ahaIxA0bdGSSVpG4bkylFF9+NI8eX97OCexm26i76H7q9XHDZrrtlJCOzbc7YelrWj9HlLJTSrH9hzXsWPEZ/u3LaFu8jnb+QnLVQdpJAIBilcYPRmd2ZQ7CfuyJ9P/R2bTv0KmWmDWaxrPy20W0n38J2ZSx84zn6D/mzGrD2tOsA1wTcFr5oTIPC176E6cU/h0RYcvx9zLotF9Wq+gAQs5M3HhAqRrD1YXthbvY8MrNnFT6LoW2zhSe9Trdh55abfgst4NilY7d3/yWnddbgbe0CH95MUFspKW5ychuj+F0136zJqm0emVXUVbC+i/nUbH2Q7of/Jru7KY74MHBNsfR7MoZxq6szuDMxEYIyvfjOvQDo0r+S/qydwh8+2tWOwdR3usUeo+dSvuegxv95w7j8Xgo2r8Hb+kB/J4yfF4Pfm8FoYAXAwU2B2I4wG7HZneaH6cLh9ON3eHG5nTjcLpxuNw4HS4cdgObIUiC5KsWpcxPLLHpNrUcjURFPUP046h4/pXuC7vFvz9+nKradADWfjqHAf+7Fa+RRsm0+fTqP7pG2R0Z4ZMHGqfsFv3vCzI/vIkp6ns2tT2erpf9jZ4xu7XExZlpllFfWaU1ePUhGFJ8/PaL5C+fyYkcZFWvKxhwyZ8rnV0XjwynjVLScQbKEqJsa0MpxY7CQnatWYh3yxLsBzeSU7GVzsGdZFOGK849B8mmyNGRsrQuBNr0xNH+GNp07UuHHv1x5fYEW2KqXqUU3kCICm8An68C8VcgAQ8S9Jr+hg3E+tgMbIYdm82O2GzYbOZvw+bAZrNhJKPuaEZapbLzeytY9dkbBFa8zsCSrxgqXspw80PGcAp7XkXHwSfRve8w+tgd1cahAj62rPyC3Uvfof3OTxn0/SPw/SPssnVmZ8cTMXqMJrvzseQe1Q2XOwO7w4nPW463vJSy0mLKDhTiObgLX/EuKNmDUbEPp2c/bn8R6cFDZIVKyJZyjkrQM4eU4MdOOXb8OMyP2FEYGKKwEUIwvw0VQghhEMJAWb8VoKzr6A9I5N7ELoMMqcp/rNjYzdRruq45PFWum454KdUn9ZHiZ6OjD+2vfp3cqK25qsMZ3oy5gQurDxaXsejF33Hy3hcpNzLYOuGvHHPiFXVWHOI6fICrNEDZbfhhM4Vzb+A072dsc/Zm/9RXGNz/R3VLWwS/IxNDBRulbGti695iNi35ANv6d+lR9DW92Ek3zDK72+jAflc31rQ9DZV5FMrVBuXMwKYUAV8Fqnw/Rkkh7opC2hVvosuhr3BtC8AyM+4ANvbZOnLA2YWStK4oZyYhw0nIcCCAEfKhAl5UwIsEvBjBCoygF0fQgz3kwRny4FReXMqLEx9peGmDD0Ma9/8MKiFo1QpBbJHfITEIYpiyESJSTyjFd9KfE2Z+0sjcTg6tStnt27WV79++n/6F8xlGMUVksbb9JNxDp9Jv9CTynPHaYPERu5Oew06m57CTASjYtI4fvnqLzK0fk7/zDdyFr1a5xw6kA21j3H3KxgHJodjWlnJ7Gw6l9WB7WltIa4eRkYukt8XuysDudON0ujAcLoIIBP2oYAAV8KOCfoIBLyG/j1DACwGv9e1DBc1vCXohaH5L0IcR8qNCQYLKIKBAiQ3EUnES/pjjkwoDxAARlJgqDiTiFv6tEPNaJFKZiwiCAiRSV0oVU6fytcRRVTW+j2rii9TNSiFR6kVq+eNLlR9Uuj+Od63aS+JcVac7Yp1VWjsGTLkFd3rdKm63daZdQ3YRWfjlAtr/90bOYDPrOpzO0dOfJCfqvLi6YFiHqVaUHiI9u0ud7/MHQ3z4+t85fs2f6C0VrBtwHf2m3oXY6/7fBMwjj3yYm0EnQNmFQoqVW3az8X9vk/HDfxjtX8xEKcWDk40Zw1nWZSpZxx5Pt0E/onNmWzrXHmWE4govP2zZxP5t66nYvRF1sICMsq209+6kT8X3uJQXF37sEgLAr2z4xWq0igOfuPEZbgKGm6DTRcDWBp/NTbE9DWVPA0ca4khDOdII2tII2NyEDKf5n1AhhCCigqhQCEIBCAVBhVChIKgghIJIKIhS5jfK/IR/i3Vt1hGmygvXCZ607jU+eyrRqpSdt7yE43bOYXXm8WwZPp1B489hRD0UXE30OqY/vY75DfAbykpL2PDDaop3fk/Fob3gr0AFfIjTjTgzsLszSGvTiczcLrTp0JW27TpwlM1ImBWn0WSETyuvqPv0+0OlFXzxwp2ctuc5yo1Mtp3yd/pXM9uyNuxu07IrLzlEei1hw/ywdStbX7meyd4FbHX3xXbxP+jfa0iD0g85LWXnLaah2+4GgiGWrC9g+9dvkbv1Q0aHljFEvJRJJoVdTqQifwqdh09mcCOVaXaai+z+A6H/wJoDBgMgBg7DoPo+J01DaVXKruvRgyi6fi3D2jfthJKMzCz65o+B/DFNmo5GUx0Z2Wb/gaqjsvvmm/+R/t71/Fh9z/ftT6bXFbPIacQsTkfktPKiWsOGQooP336RYcv/wFgpZsPA6+k79Q9ga3iVrtxZUEq9Tz6o8AVZsmo1e76ZR5fC/zJCrWaMBCmy5bKr5zl0GnUBGf0mcGwjZGswCRrH08Sn1eVuThMrOo0mFchMT8ejHKhaDjAt93j5/MW7mbjj73gNN1smPkGfE6vdC6LOODNzAPCWHqgx3PbC3ax/8VdMqvgPO5y9KJ32L/oeO7LR6RuRY35qfv5NW7ay7L+vEPJVkFa8mWPLlzPeMM/o2+PsxvbeV9J5zAXk9BxFjqGXHbdmWp2y02iOBOw2gyLSMbzVT79fuWIpzLuWSaF1rG97Aj2v+Bs929Z9fK0mHG27ARA6FHd/d5RSfPr+6/T7+jdMYB/r+vyEftP+D3EkZkq+LXJaeXzLzuML8Om/nmDMhgc5X8w9PL3iYlfOIH44+iK6jz6HjkcNTPkZw5rEoZWdRtNCKZFM7L6iKu4er5cvX76HsVv/hl+cfD/2L/Q75aqEVuxp2R3xKgdSsrOK3/Zde1nz0k2cVvYOhY6uHDhvPv0HnpCwtAGy2uYC5gSd2A7HJavW4Zn3K84IfM3m9EEY5z1Mm6N648roSE9tvR2xaGWn0bRQdtm70aOiIHKtlGLpVx+R+fEdnBzayJo24+k5/Wn6tE/8jLl2mS62q/bYiw6n7/UH+Pzt5xmw8n5OYR9re19Gv4sfwKhl3VxDOKpjZwLKoGTPZtpZbnuKSvlszoOcsusfpIuXTcPu4Jizfh13b0/NkYdWdhpNC6U4pz+d9n1DoHg3a9eupmLBXxhV8QUHpA1rxj3GwJOnN1k3XYcsF0vsfRl3YCkVZSUs/vRt2nz7JKeG1rDd2YsDU/7OgMFVjyZKFH265rJG9aTLD1+w+0ARS957jn7fP8sFsp1tbY4j7aInOKZLLbMfNUcUWtlpNC2UjOOmIf95EfVwf/IkRBlulva+hrzzf8tAa4eVpmR/7ylkbfoMHuzGicA+yeX7kffQZ9Ivm3xmYf+jsng6bSLXFj1H6K+9mCyKQldP9pzyLN1HTtVjcZoqiIq3z1EzMWLECLVkyZLmFkOjaREopVjw7qs4N39EWrc8Bp56Be7M2C0Nmo4KX5BP3phF7qHVtOv3I/qMvxBJ8HFDNVGwp5jV/36MTqG9dD1uEp2HTtJKroUiIkuVUiOaNA2t7DQajUbTnCRD2empSRqNRqNp9Whlp9FoNJpWT0p1Y4rIXmBLAqJqD+xLQDzJQMvadLQkeVuSrNCy5G1JskLLkjdRsvZUStVvN/J6klLKLlGIyJKm7v9NFFrWpqMlyduSZIWWJW9LkhValrwtSVbdjanRaDSaVo9WdhqNRqNp9bRWZff35hagHmhZm46WJG9LkhValrwtSVZoWfK2GFlb5ZidRqPRaDTRtFbLTqPRaDSaCFrZaTQajabV06qUnYhMEpH1IrJRRO5obnmiEZHuIvKpiKwRkdUicoPlPlNEdojIcutzZnPLGkZECkRkpSXXEsutnYj8V0S+t76Ttxlj9XL2i8q/5SJSLCI3plLeishzIrJHRFZFucXNSzF5zCrHK0RkeArI+qCIrLPkeUtEciz3XiJSEZXHs5Ipaw3yVvvuReQ3Vt6uF5HTU0DWuVFyFojIcss9FfK2unorJctujSilWsUHsAGbgKMBJ/AdMLC55YqSrzMw3PqdBWwABgIzgVubW75qZC4A2se4PQDcYf2+A7i/ueWMUw52AT1TKW+BE4DhwKra8hI4E3gfEGAM8HUKyHoaYLd+3x8la6/ocCmUt3HfvfWf+w5wAb2tOsPWnLLG+D8M3JVCeVtdvZWSZbemT2uy7EYBG5VSPyilfMCrwJRmlimCUqpQKfWt9bsEWAt0bV6pGsQU4AXr9wvAOc0nSlxOBjYppRKxE0/CUEp9DhyIca4uL6cALyqTRUCOiHROiqDEl1Up9aFSKmBdLgK6JUue2qgmb6tjCvCqUsqrlNoMbMSsO5JCTbKKiAAXAnOSJU9t1FBvpWTZrYnWpOy6AtuirreTospERHoBw4CvLafrLJP/uVToFoxCAR+KyFIR+Znl1kkpVWj93gV0ah7RquUiKlcWqZq3UH1epnpZvgqz9R6mt4gsE5HPRGR8cwkVh3jvPpXzdjywWyn1fZRbyuRtTL3V4spua1J2LQIRyQTeAG5UShUDTwPHAEOBQsxujFRhnFJqOHAG8EsROSHaU5n9FimzdkVEnMDZwL8sp1TO20qkWl5Wh4j8DggAr1hOhUAPpdQw4GbgnyKS3VzyRdFi3n0UF1O5oZYyeRun3orQUspua1J2O4DuUdfdLLeUQUQcmAXmFaXUmwBKqd1KqaBSKgQ8QxK7VGpDKbXD+t4DvIUp2+5wt4T1vaf5JKzCGcC3SqndkNp5a1FdXqZkWRaRGcCPgUutCg6rO3C/9Xsp5hhY32YT0qKGd5+qeWsHzgPmht1SJW/j1Vu0sLILrUvZfQP0EZHeVgv/ImB+M8sUweqPfxZYq5T6S5R7dH/2ucCq2HubAxHJEJGs8G/MCQqrMPP0CivYFcDbzSNhXCq1jFM1b6OoLi/nA9OtmW1jgENRXUbNgohMAn4NnK2UKo9y7yAiNuv30UAf4IfmkfIwNbz7+cBFIuISkd6Y8i5OtnxxOAVYp5TaHnZIhbytrt6iBZXdCM09QyaRH8yZQBswW0C/a255YmQbh2nqrwCWW58zgZeAlZb7fKBzc8tqyXs05qy174DV4fwEcoGPge+Bj4B2zS2rJVcGsB9oE+WWMnmLqYQLAT/mOMZPqstLzJlsT1rleCUwIgVk3Yg5FhMuu7OssFOt8rEc+BY4K0Xyttp3D/zOytv1wBnNLavlPhu4JiZsKuRtdfVWSpbdmj56uzCNRqPRtHpaUzemRqPRaDRx0cpOo9FoNK0erew0Go1G0+rRyk6j0Wg0rR6t7DQajUbT6tHKTqPRaDStHq3sNBqNRtPq0cpOo9FoNK0erew0Go1G0+rRyk6j0Wg0rR6t7DQajUbT6tHKTqPRaDStnpRTdiLSS0SUdb6TpoUiIteLyE4R+a4Z0p4pIi8nIZ0ZIrKwBv8FInJ1U8uhqUxN76W2d5ZAGSaIyPYa/GeLyJ+aWo7Wgoh8JyKFInJTQ+NIOWWnqT8iMktESq2PT0T8UdfvN5NYM4FrlVJDouScKSIzm0melMJq1BXUM/ynIlIuIutE5JQawl4oIl9ZYRfE8R8qIkst/6UiMjTKz2WVp90ickBE3hGRrjFyvCciB0Vkl4g8EW6Yisj4qHIX/igRmWr5z4rx84pISR2ff0K8Z2mtiEidj6MRkXYi8paIlInIFhG5pIawIiL3i8h+63O/dWYdItJXRN4Wkb3Wu/9ARPpF3XuFVV6KRWS7iDwQbZRYjTtP1PtdH5P2JZZ8ZSIyT0TaRfm9bCmzYhHZENtItOqRnwJ/qGu+xJJwZactsuSjlLpGKZWplMoE/g+YG75WSp0RDpfkd9OO1Dsstd6kUHmeAyzDPEfsd8DrItKhmrAHgEeB+2I9xDzY+G3gZaAt8ALwtuUOcANwPJAPdAEOAo9HRfEU5qnUnYGhwInAtQBKqS+iyl0m5qnmpcB/LP9rYvznAP+qd06kCClUNp4EfEAn4FLgaREZVE3YnwHnAEMw3/FZwM8tvxzMs//6WXEtpvLhzOnAjUB7YDRwMnBrTPzXRb3jaEU5CPgbcLkVdzlmWQrzZ6CXUiobOBv4k4gcFxP3KqCNWAfa1peEKDsRKRCR20VkBVAmInYRGWO1LossE3RCVPgFIvJnEVlsafK3o7V8TNxXishaESkRkR9E5Ocx/lNEZLkVzyYxT1RGRNqIyLNWa2GHiPyptkwSkWNE5BOrxbNPRF4RkZwovwMiMty67mK1gCZY12eLyGrreReIyICY/LlVRFaIyCERmSsi7vrndP2p5t0oETk2KkylLhUR+bGVp0XWO8yvZ5rhfA7VEu7X1vvZKSJXR8tlyfSkiLxrvfuvReSYqHv/KiLbrPe+VETGx0TvtvK5RES+FZFoC/MOq6yUiMgaETk3ym+GiHwpIo+IyH5MC7W2531ITEtns4icEePd04qvREQ+FJH2tcUXJ/6+wHDgD0qpCqXUG5gHY06NF14p9ZFS6jVgZxzvCYAdeFQp5VVKPYZ54OZJln9v4AOl1G6llAeYC0RXnL2B15RSHqXULkxFVl3FegXwulKqLM4zZVjyv1DDo1eLiJwmIuut/9NTIvKZVNNlLCIPishCEWlz2EmesO5dJyInR4Wttr4Rq2vS+j/tAp6vg5y3iMgeq5xfGePdtrryXY98COfjnUqpUqXUQkyFdXk1t1wBPKyU2q6U2gE8DMwAUEotVko9q5Q6oJTyA48A/UQk1/J/2mrQ+Kx7XwHG1lHUS4F3lFKfK6VKgTuB80Qky4p7tVLKa4VV1ic2P8L1ScMaGQk6zbYA8wTb7kAa0BXz1OgzMRXqqdZ1Byv8AmAHMBjzhOk3gJctv17Wg9qt68nWQwtmK7IcGG75jQIOWfEbVrr9Lb+3MFsSGUBHzFbKz2t5jmOtuFxAB+BzzEoh7P9TYA1mC+cD4CHLvS9QZt3rAH6NebKzMyp/FmO2lNsBa4k5lTjmZOCiGj7janmGmeG8jPduLDcFHBsVZjbwJ+v3MMyW+2jAhvnnKABc9SgPkwAPkFFLmF2YFWU6pqURkcuSab/1ju2Yf6xXo+6/DNPKsQO3WHG5o/LAD5xvvY9bgc2Aw/K/wHoXBjDNenedLb8ZQAC43oo7rYZnmGGl81Mrr36BqWDChyIvwDyxuS/m/2IBcF81cT0FPFWN37nA2hi3J4DHa3kPVwMLYtxuAt6Pcfs3cIv1ewTwpZU/6cA/qfwf+DnwouXXFbO1fW6ctDOAEmBCNbJNB34I51U965v2QDFwnvWObrDew9VR72Wh9X6fwfyvpse835ussjENsw4Jn7RdU30zwbr3fsw6oqayEQ57j5XOmVZcbetSvmPiugP4dzV+w4DyGLdbMRVLvPCHgNFR1yOAkmrCngMU1vCM86LLs1W+9wL7rDI0IcrvbeD2mPtLgeNi/gPlmPXAt0BmTPg0oAL4cX3LjFIqocruqqjr24GXYsJ8AFwRlSnRmTQQ0wy3EaPsqsngG6zffwMeiROmE+CNLozAxcCn9Xyuc4BlMW7zMVvVK7AUAGYr5bWoMAamMp8QlT+XRfk/AMxKRN7HkXkmVZXdVTFhalJ2TwN/jAm/HjixjukvseL/VS3hngP+HHV9LFWV3T+i/M8E1tUQ30FgSFQeLIp5H4XA+GruXQ5MsX7PALbW8VlnABujrtOtZzgqqpz/Psr/WuA/DXinl0c/j+V2LzC7lvviKbs7ialUMSvamdbvNsCr1nMEMLtO20WFHQAstfyU9Z6qKCxL5s3x/Cz/j8NpNiA/pgP/i7oWYBuVld3XmFbpG1iNzii/ndFyYTZEL68mrXkcrm8mYNZT7jrIOAGzYrZHue0BxjSkfNeQznhgV4zbT2Pfe5RfEMsgsK77WO9RYsJ1w6zDLq4mnquA7UD7KLfRQBZmQ+AKzMbOMVHv+5qYOCJ1ZJSbDbPB/3usxmmM//WYFt7y+uZVIsfstkX97glcYHWDFYlIkfUAnasJvwWz9VOli0dEzhCRRVYXYhFmoQiH647Zco6lpxVfYVT6f8O08KpFRDqJyKtidnsWY1obsTI9g2mRPq4Om91drGcAQCkVsp6va9R9u6J+lwOZNcmSYLbVHiRCT+CWmHfXHfMZ68JI4CJgpog4agjXJUaueDJWm2dWt/BaqyuqCLOSjn5Xkfis97E9/AwiMj2qm7YI833GvbcORGRUSpVbPzPj+cc+Qz0oBbJj3LIxK5NEx/UkZmWVi2mdvQm8DyAiBma35ZuWX3vMcb/746RzBfCismqoaESkB6YyeLEB8kNM2bHSiJ35eCwwBbhbKeWL8dsRI9cWDpeNmuobgL3K7N6tC/uVUoGo69j33xxlIzZ8NlAanR9ijgV/iNnTMCc2AhE5B3OM7Qyl1L6wu1Lqa6VUiTK7x1/AtO7OrI+cSqmgMrtiu2H2lESnawfuxmxIDavm+aolkcouuvBsw7TscqI+GUqp6AHz7lG/e2B2Q+yLckNEXJgts4eATkqpHOA9zJZcOJ14/dzbMC279lHpZyulqhtbCPN/1nPkKXOg9LKotBCRTMyB/2cxK/PwOONOTCURDifW8+2oJb0qSPwZbdGf2LGpuhBb4ZRjWiFhjor6vQ24N+bdpccr9HETMv808zArwc41BC3ELNBhulcXMBYrD34NXIjZLZSD2T0jUcG6R4U3rLR2ikhPzAbLdUCude+qmHurVNDNzGrg6PD4hsUQy70hceVbZTRMflRcQzEtxgNWY+5xYJQ11tgO87/6hFWh7ccctzozKi5EpDs1K7PLgS+VUj80QH6IKTvWs3SLCbMWuBJ4X6JmFFp0jXn+Hphlo7b6BlKvbGwA7CLSJ8qtprKx2vKPG1ZE2mIquvlKqXtjbxZzTsQzwFlKqZW1yKY4nHeV0hWRozEbVRuquddO1bq9E2a9Mi9eI6o2mmrpwcvAWSJyuojYRMRtDe5GF8jLRGSgiKRj9mu/rpQKxsTjxMyQvUDAGvw/Lcr/WeBKETlZRAwR6Soi/ZVShZgv7GERybb8jhGRE2uROwuzBXJIzOnWt8X4/xVYopS6GngXmGW5vwZMtuRwYI4heYGvasuoWFTMjLY4ny/qG2cclgOXWO9mEubYRJhngGtEZLSYZIjI5HBFK+bEkdm1PEPY4nXWEOw1zHc3wCoDd9ZD/izMbrS9mH/0u6jaajxORM6zWoM3Yr6PRZgWibLuxZo0MLgeaScdpdQGzHf2B+u/dC6mgnojXvjwfw6zwjCse8JW9gLMrqxfibnM4DrL/RPr+xtgupgTvByYXa87lVL7rFb8ZuAXYk50ysG04FbEiHA58JVSKl6vC5jdkLPjyF1r2bJ4F8gTkXOs9/tLKjfYALAaaL8FPoqZ/NER8/kdInIBZtfse9Re36Qcypz88yZwj/VfHYtp0b5UzS0vAjdbdWUXzLpqNoCIZGMON32plLoj9kYROQmzy3uqUmpxjF+OVd+7rbJxKXAC1kxc676zrMZ8Bmad/6ZSqkREOorIRSKSaZXd0zGHnT6OESFchr00gCZRdkqpbZgZ/lvMgrMNU3FEp/cSZibvAtzAr+LEU2K5v4Y5JnMJ5phZ2H8xZuvtEcyW/WcctrCmYxbeNda9r1OzpQGmiTzciutdzEIEmLM+MSdVhE3rm4HhInKpUmo9phX4OKZ1ehZmyye2+yRVuAFTxiLMWVLzwh5KqSWYff5PYObbRqzZWhbdMbsnakNRQ/lSSr0PPAZ8aqWxyPKqS0H+APNPtAGzC8pD1a7HtzEnHxzErHzPU0r5lVJrMGeg/Q/YDeTV8XmaFDHXoM2qIchFmJMJDmIuKThfKRVW2JeKSHRL/nLM8aKnMcd0KjAbMVhl8hzM/0cR5tjLOVFl9VbM/Pwe8797JuYEmTDnYf4P9mK+Nz/mZI9oplPNLEsROR7TCou35KBOZctSuhdgjn3vxxzzX0KcsmN1p90DfCIivSznrzHHqvZhjn2er5TaX1t901yIyG+l5vWy12JO3tiDuZzjF0qp1da940WkNCrs34B3MOcdrMKs5/5m+Z2LOQxxZUxvUg/L/07M4YL3pOo6XgfwJw5PULkes1xtAHO2JXANptLbg9lgvda6V2HWq9sx8/0h4EalVGze12mWd3WEZ40lFTEXh76slPpH0hPXNBgx12J9B+Qrc2pyTWF3Ar9WStVpJxMxl2qswpz0E6gtvKZ1UZ+yFedeA7OivFQp9WlTyKdpfkTkQswu9BrnXlSH3kFFU2eUub5mQB0rozswu92WVhdARM61utLCkxze0YruyKSeZQuryyzHGmf7LebY0KJabtO0UKx65P8wZ/o3iCNO2UnVLYvCn5q6kDT1RCn1olKqj1IqdheEaH6O2aWxCXMc6Rc1hG0WdHlJWY7HLDfhYYNzlFIVyRTA6l6MVzaaa4u+VotS6jil1LFKqecbGkezdGNqNBqNRpNMjjjLTqPRaDRHHqmykSkA7du3V7169WpuMTQajUaTRJYuXbpPKVXdxuYJIaWUXa9evViyZElzi6HRaDSaJCIiW2oP1Th0N6ZGo9FoWj1a2Wk0KcbOogoWbz7Q3GJoNK0Krew0mhTjlVn/h+v5kwkFG7RRhEajiUNKjdnFw+/3s337djyeum40rtGA2+2mW7duOBw1HbyQmtzmeQwM2LdrM+271vs8T41GE4eUV3bbt28nKyuLXr16IZU2Ktdo4qOUYv/+/Wzfvp3evXs3tzgN5tD+XVrZaTQJIuW7MT0eD7m5uVrRaeqMiJCbm9tiewP8ytzv1lu8r5aQGo2mrqS8sgO0otPUm5ZcZkpJAyBQur+ZJdFoWg8tQtlpNEcSZWKeqxss08pOo0kUWtnVARHhlltuiVw/9NBDzJw5s/kEqoUFCxbw1Vf1Pjc2wvLlyzn++OMZNGgQ+fn5zJ07N4HSaWqjQkzLLlRR1LyCaDStCK3s6oDL5eLNN99k377EjqEopQiFEj+9vLHKLj09nRdffJHVq1fzn//8hxtvvJGioqLECaipGTHH7EKe0loCajSauqKVXR2w2+387Gc/45FHHqnit3fvXqZOncrIkSMZOXIkX35pHrQ8c+ZMHnrooUi4wYMHU1BQQEFBAf369WP69OkMHjyYbdu2cdtttzF48GDy8vIiVtSCBQuYMGEC559/Pv379+fSSy8l3gkVjz32GAMHDiQ/P5+LLrqIgoICZs2axSOPPMLQoUP54osvapTx8ssv5/jjj6dPnz4888wzAPTt25c+ffoA0KVLFzp27MjevXurpP2vf/2LwYMHM2TIEE444QTAnFB05ZVXkpeXx7Bhw/j0U/MszdmzZ3POOedw6qmn0qtXL5544gn+8pe/MGzYMMaMGcOBA+Yi6meeeYaRI0cyZMgQpk6dSnl5eZV0x4wZw+rVhw/mnjBhQqvaZs4IH8TsLUlYnKu2F/HMf5clLD6AXYc8cctkQ6nwBanwBRMWn1KKonJf7QE1RwQpv/QgmrvfWc2ancUJjXNgl2z+cNagWsP98pe/JD8/n1//+teV3G+44QZuuukmxo0bx9atWzn99NNZu3ZtjXF9//33vPDCC4wZM4Y33niD5cuX891337Fv3z5GjhwZURzLli1j9erVdOnShbFjx/Lll18ybty4SnHdd999bN68GZfLRVFRETk5OVxzzTVkZmZy6623AnDJJZdUK+OKFStYtGgRZWVlDBs2jMmTJ9OlS5dI/IsXL8bn83HMMVWnwN9zzz188MEHdO3aNWL5Pfnkk4gIK1euZN26dZx22mls2LABgFWrVrFs2TI8Hg/HHnss999/P8uWLeOmm27ixRdf5MYbb+S8887jpz/9KQC///3vefbZZ7n++usrpTtt2jRee+017r77bgoLCyksLGTEiBE15nlLwlBmhW/4yxIW52evPsgvS5+gaMBicrr1a3R8hYcqePKB3zBi2HDOOX96AiSEaQ/MZWBwHff94Z6ExDdrwSYCH/+Ry2ZcR9tjRyYkTk3LRVt2dSQ7O5vp06fz2GOPVXL/6KOPuO666xg6dChnn302xcXFlJbW3P3Us2dPxowZA8DChQu5+OKLsdlsdOrUiRNPPJFvvvkGgFGjRtGtWzcMw2Do0KEUFBRUiSs/P59LL72Ul19+Gbs9ftulJhmnTJlCWloa7du3Z+LEiSxevDhyX2FhIZdffjnPP/88hlG1qIwdO5YZM2bwzDPPEAwGI89z2WWXAdC/f3969uwZUXYTJ04kKyuLDh060KZNG8466ywA8vLyIs+2atUqxo8fT15eHq+88kolCy7MhRdeyOuvvw7Aa6+9xvnnn19jfrc0wpadEUicshtSvACAsu2rEhLf9gNl/MnxPOesur72wHVkuncO96m/wv5NCYnv/aXruN4+jzZzJickPk3LpkVZdnWxwJqSG2+8keHDh3PllVdG3EKhEIsWLcLtdlcKa7fbK43HRa/5ysjIqFN6Lpcr8ttmsxEIBKqEeffdd/n888955513uPfee1m5cmWVMNXJCFWn6Ievi4uLmTx5Mvfee29EMccya9Ysvv76a959912OO+44li5dWufnMQwjcm0YRuTZZsyYwbx58xgyZAizZ89mwYIFVeLp2rUrubm5rFixgrlz5zJrVus6NDxs2TkSqOyChhMAT9mhhMRXXJzYHhaAQVJg/ijdA7mNX0zf3VYEgBH0NjouTctHW3b1oF27dlx44YU8++yzEbfTTjuNxx9/PHK9fPlywDyu6NtvvwXg22+/ZfPmzXHjHD9+PHPnziUYDLJ3714+//xzRo0aVSd5QqEQ27ZtY+LEidx///0cOnSI0tJSsrKyKCk5PN5TnYwAb7/9Nh6Ph/3797NgwQJGjhyJz+fj3HPPZfr06TVaTZs2bWL06NHcc889dOjQgW3btjF+/HheeeUVADZs2MDWrVvp16/u3WYlJSV07twZv98fiSce06ZN44EHHuDQoUPk5+fXOf6WgA1L2QWrjlc2FL9hNnT8pQcTEl/An/ixsDIsGRO05KKNI3Hjf5qWj1Z29eSWW26pNCvzscceY8mSJeTn5zNw4MCIlTF16lQOHDjAoEGDeOKJJ+jbt2/c+M4991zy8/MZMmQIJ510Eg888ABHHXVUnWQJBoNcdtllkckgv/rVr8jJyeGss87irbfeikxQqU5GMLtBJ06cyJgxY7jzzjvp0qULr732Gp9//jmzZ89m6NChDB06NKIg77rrLubPnw/AbbfdRl5eHoMHD+ZHP/oRQ4YM4dprryUUCpGXl8e0adOYPXt2JYuuNv74xz8yevRoxo4dS//+/SPu8+fP56677opcn3/++bz66qtceOGFdY67pRDuxnQlUNkFLGUXKC9KSHyhYGKVXTCkKFOmjN7ixCg7ty1xk2c0LR9J5GyqxjJixAgVO6tu7dq1DBgwoJkkat3MnDmz0kSW1kZLLTt7Z/akA0XsogNHzdyYkDj/++epnOr9iJU9ryDvysdqv6EW/r1wKT/+6CTz4g9F0Mgdazz+IB/fM4nJtsUcHPcH2p5yc6NlvH/Ws9y+y4pnZmK6bzVNg4gsVUo16SwzbdlpNCmGzRqzSyNxlp1TrEkv3sSMtalA1DiYv6LR8QVCCh/mCRXBssSc5Schf0Li0bQOWtQEFU1iSeVdYI5kwt2Y6cqDCoWQODNh64tdmROADF9ilF0wENWN6S0BZ3rj4gsqHNZYZdCToPWFwShlFwyATVd3RzLastNoUgybpewcEqTCkxjrTixlZ/MnZleWUCBKkSRg8bs/FMKBKWPIkyDrM1rZJXDNoqZlopWdRpNCKKWwEcJrdemVFRclJF7DUnb2BC1nUFETVFQCukYDQYXdsuwStXNMKFrZ+bSyO9LRyk6jSSGCIYWNIKWSCUB5aWImVtgsZecIJMZSjLbsfAlYu+cPHrbsxJcY61MFtLLTHEYrO40mhQiETAun3DCVnSdByi5s2blCian0o62migSs3QuEFE6xxhUT1NUqKrFdrZqWjVZ2dWTevHmICOvWras2TEFBAYMHD25SOZYvX857773X4PvDi9AHDhzIoEGD+Otf/5pA6TSNJRgMYROF154FgLc8MeNXtoiya/zMSQCiJqj4EyBjIMqysyVofM0IRe04pC27Ix6t7OrInDlzGDduHHPmzInrH28rr/oS3l+yJhqr7Ox2Ow8//DBr1qxh0aJFPPnkk6xZs6bB8WkSS9CqoH32bPM7Qdt7RZYzqMR0Y0ZP/kiEsvNHjdk5Agmy7LSy00ShlV0dKC0tZeHChTz77LO8+uqrEfcFCxYwfvx4zj77bAYOHAiYSu/SSy9lwIABnH/++ZEjaj7++GOGDRtGXl4eV111FV6vuU6pV69e3H777QwfPpx//etfldKNPULH5/Nx1113MXfuXIYOHcrcuXMpKyvjqquuYtSoUQwbNoy3334bMI/UmTJlChMmTKBPnz7cfffdAHTu3Jnhw4cDkJWVxYABA9ixY0eVZ/7ss88iu6cMGzaMkpISlFLVHkd04oknMmXKFI4++mjuuOMOXnnlFUaNGkVeXh6bNpkb+77zzjuMHj2aYcOGccopp7B79+4q6V500UW8++67kesZM2ZENn0+Egj6TSUScJnKLpCgafhhy85JoJJV1lCilV2gIgGWXShkygY4EzSJxojuxkzQOKCm5dKyFp68fwfsqrrRcaM4Kg/OuK/GIG+//TaTJk2ib9++5ObmsnTpUo477jjA3Pdy1apV9O7dm4KCAtavX8+zzz7L2LFjueqqq3jqqae47rrrmDFjBh9//DF9+/Zl+vTpPP3009x4440A5ObmRvbRjCb2CB2n08k999zDkiVLeOKJJwD47W9/y0knncRzzz1HUVERo0aN4pRTTgHM43lWrVpFeno6I0eOZPLkyZWOwikoKGDZsmWMHj26StoPPfQQTz75JGPHjqW0tBS3282bb75Z7XFE3333HWvXrqVdu3YcffTRXH311SxevJi//vWvPP744zz66KOMGzeORYsWISL84x//4IEHHuDhhx+ulG74+J7Jkyfj8/n4+OOPefrpp+v4Mls+waA1/d6VY14nQJEA2Ii2ckrB3q5xEUbNxgwlYulBUJEeVnahclCq0buyhBU8oJWdRlt2dWHOnDlcdNFFgGl5RHdljho1it69e0euu3fvztixYwG47LLLWLhwIevXr6d3796R/TGvuOIKPv/888g906ZNi5tuvCN0Yvnwww+57777GDp0KBMmTMDj8bB161YATj31VHJzc0lLS+O8885j4cKFkftKS0uZOnUqjz76KNnZ2XHTvvnmm3nssccoKirCbrfXeBzRyJEj6dy5My6Xi2OOOYbTTjsNqHx8z/bt2zn99NPJy8vjwQcfjHt8zxlnnMGnn36K1+vl/fff54QTTiAtLS3us7dGlKXscOcAiVtzZo+q+BPRNRpt2SXiRPXoMTsDlZBuR4l65oA+9f2Ip8ktOxGZBPwVsAH/UErVbEbVRC0WWFNw4MABPvnkE1auXImIEAwGEREefPBBoOpxPdUdmVMT1R35U5cjdJRSvPHGG1VOFvj666+rlcXv9zN16lQuvfRSzjvvvLhp33HHHUyePJn33nuPsWPH8sEHH9T4DHU5vuf666/n5ptv5uyzz2bBggVxd3Bxu91MmDCBDz74gLlz50YaGUcKQUuJhKxuTLyJqaRtBPEpO04J4CktwtmhkREGEzvTMRBS2CWqQecrBVdmo+I0QgGw/gL+8pIW1o2lSTRNatmJiA14EjgDGAhcLCIDmzLNRPP6669z+eWXs2XLFgoKCti2bRu9e/fmiy++iBt+69at/O9//wPgn//8J+PGjaNfv34UFBSwcaO5qe9LL73EiSeeWGva8Y7QiT2+5/TTT+fxxx8nvKH3smXLIn7//e9/OXDgABUVFcybN4+xY8eilOInP/kJAwYM4Oabq99sd9OmTeTl5XH77bczcuRI1q1b16jjiAAOHTpE165dAXjhhReqDTdt2jSef/55vvjiCyZNmlTn+FsDobAFb3PhwYn4EjNmZyfAITFneFYkwLIL7ztZrlwJWRfnD5pjdqXKsuIToEDD3Zhe5cCfoO5gTculqbsxRwEblVI/KKV8wKvAlCZOM6HMmTOHc889t5Lb1KlTq52V2a9fP5588kkGDBjAwYMH+cUvfoHb7eb555/nggsuIC8vD8MwuOaaa2pNO94ROhMnTmTNmjWRCSp33nknfr+f/Px8Bg0axJ133hm5f9SoUUydOpX8/HymTp3KiBEj+PLLL3nppZf45JNPIhNQwrM7Z82aFTn+59FHH2Xw4MHk5+fjcDg444wzGnUcEZh7cV5wwQUcd9xxtG/fPuK+ZMkSrr766sj1aaedxmeffcYpp5yC0+msc/ytARWe1WuzUybpGAmYhh+y1u6VGaayS8QBruFuzINkJkTGQFDhIMAhI2zRNl45GSpAABuluBO336amxdKkR/yIyPnAJKXU1db15cBopdR18cLrI34Sx+zZsytNZDkSaYllZ+vm9fR4YRTLhv6RjiueYntaf0bfNq9RcXoDQUr+2Iu9rh4M8K1i44mPc+zE6Y2Kc84Tv+fifY+zTvUgI6sN3W9dWPtNNfCfVYWM/9cQdth70Df4PUyfD0fX3vtRHUopnrnzUq6wf8SeUDbpfcaRe/nsRsmoaTqOiCN+RORnIrJERJbs3bu3ucXRaJqVUHiCimHHa2QkZC/LsNXkc7Qxr8sbb+WIZdmVGlnYE7AFmd+S0WM3ZWxsN2ZIgYMAAbFThhuVoLFPTculqZXdDqB71HU3yy2CUurvSqkRSqkRHTo0dtRcE2bGjBlHtFXXUgkFDis7vz0dVzAxys5OEL/TUnaJmOFpjYeVGtk4EyJjEKcE8ThzzOgbqewCoRB2goQMU9npReWaplZ23wB9RKS3iDiBi4D59Y0klU5T17QMWmqZCVt2YrPht2fiCiXAarKOz1GR5QyNt+wMa4JKhS0bZ7DxMgYC4cX0OUDjd2UJK3gldsqUG9HK7oinSZWdUioAXAd8AKwFXlNKVV1cVQNut5v9+/e32MpLk3yUUuzfvx+3293cotQbZW1xJYaNoCODtAQou0AghFOC2FwZeJSj0VYTHN6Ky+fIxp2A/TZDfnOResjd1oy3vHGTaAIhhUOCYDgox42RoF1ZNC2XJl96opR6D2jwZo7dunVj+/bt6PE8TX1wu91069atucWoN9FjdkFHFmmq8YrEb1lNTqeLUtISsnbPCPkJYCPgyMCB39yCzN6ImbPWjiw2dxZ+ZWv0FmTBkMJOAGVzUIYrYZtLa1ouKb/O0uFwVNqhRKNpzYQtO8NmJ+jMJIMKvIEgLrutwXEG/OY+rGKzU0FaQo7QERUgKHZCDmvhdyO3IAuGFbIrnVLSCDVS2QWC5pgdhvnM9gR0tWpaNs0+G1Oj0RwmvM5ODDu4snCLn7JyT6PiDCsSsTspN9KxJUDZ2UJ+gmIHp6XsGtk1qgKmQna53ZSqtEaPKwZCCicBQoYDvy0dRzBBRxtpWixa2Wk0KUT4UFSx2THc5iLw8pKiRsUZsMbDxHDgNdISslTAUAGCmAoZaPRGyyHrJIY0t4tS3I1eVB60FtIrw0HAno5D+SpvcaY54tDKTqNJIZR17pzY7NjSzN1Eyht5EngwrOzsDny2jIScF2eEAgTFgWHtX9nYSS/Ksj7T09LMccVGKk9/VDdm0G7tPatPPjii0cpOo0khVGTpgR2Hpew8pY2bmRi0rCaxOQjY0hOynMGmAoQMO4YlY2NPVFfWBBW3202ZSsNopGIKhhQOgijDTsiRbjrq5QdHNFrZaTQpRGSdndhxpJuLwBt7JE94zM6wOQg4MnAlYKmAoQIExYY9zezG9DZSxpCl7FwuN6WkNXpc0TxFIQCGA+UMW3Za2R3JpPxsTI3miMJarG3Y7bgsq6mxO/aHIt2YLoKOzIQsZzBUgJA4cKabMvoauwVZ4LCyK1Fpjd4mzdwiLYiyOcBujSvqLcOOaLRlp9GkECoYAsylB2kZOUDjdxMJd2PaHA6UI5N0PBCKfxhwXbErPyGx47Qsu8bKGJ48YrM78RrpOBqr7KxdYzAch2eM6jG7Ixqt7DSaFOLwDioO0rNygMZv7xWejWmzOyOzJxs7ocRm7TvpzkjQfpshnxWxE58twxxXDIUaHF14NiY2Bza37sbUaGWn0aQUhxeV23BnmopENVKRRCw7uwPDbVo5jT3Tzq78hAwH6ekZ+JSt8fttWuOK2JwEIhNKGm6J+a29MTHs2N2JUfCalo1WdhpNCqGsk8oNmx1xJnYNm93hjFq71zhl51B+goaLDJeNMtIaf4ROeA2czUHA3viF6uZszIBp2Vljn4EKreyOZLSy02hSidDhpQfY7FTgwvA1coKKtTuJzZmGPc20Fisaadk58KMMJxku6widxiq7SDemg1AClLw/FDI3grY5cYZntZYXNU5GTYtGKzuNJoUIr7Oz2RwAlEkGtkZadsp/WNmF1+55G7F2LxhSOPETtLnIdNkpVY1fBC7Bw92YidiCzBcI4cKHONJwpWcRVEKgkScpaFo2WtlpNClEeLswh8NUdhVGBo5AI3cn8Zt7a9od7shSAX8jKn5/MIQLPyHDSYbTtOwauwg8vOQCI2oLskZsGeYNmDIaDjeZbjulpBFs5BIOTctGr7PTaFKIkNWNaXeYf02PLQtXY5Vd0LTs7C437kwBwN+I8StfMIRTAgTsTgxDKDcysfsbJ6NhyYjdjS2t8evivL4AbnwEnG4yXHZKSMft0ZbdkYy27DSaFCJknXrgdJhnw/nsmbiDjZwyH7bsXGmRGZ6NOS/O4wviwgd283BcTwKsTyNgLXR3pOFIzwFANcKy8/l92ERhc1jKTqU3elarpmWjlZ1Gk0KEtwuz281uTL8ji/RQI8fDrAkqdmca6Zk5ZjqNGA/z+EO4CCB2FwA+exbuRm4uLUHrGCNHGo6Mxs+eDPrM+GzONDJddopJx2jkSQqalo1WdhpNChFWTA5XGgBBZxbpqpEbN1tdhGJ3k5mZSUAZ0Ih1cZ5AEBd+xGEpO0cWaaEyUKrBcdqCXoIYYHNEdo7xlhU1OL5oZWdado3fXFrTstHKTqNJIcQ6ZNTmNJVdyJlNFmUEQw1XJBKwrCa7G5fDThlp4GuEsvMFcIkfw+rGDDqzceCHQMMPmbUFK/AZZnyZGel4laNRW5AF/WYDwe5MI9NptzaX1uvsjmS0stNoUggj4KFCOUHMiSS4s3FJgLLyhlslKuAjhIC1nKFUMrA1Rtl5TIVsOEzlpFzZlkfDJ4DYg14CYlqKWW47JaQ1alxRWZad4XCT4bJRotJxaGV3RKOVnUaTQhhBD15xRq7FnQNA+aEDDY5TBTz4cUQUaJlk4vA3YvJHpIvQVE64zUkvjVJ2IS8Bm6k8s90OypSbUCOUXcgfHgN0Y7cZeGwZOIOljepq1bRstLLTaFIII+jBy2FlZ1i7f1SUNOK08oAHnzgil+W2zEZZOX6POTvUZp0TZ6TlAKAaqeyChqk826SZ3Y6N2YIs4LNmd1pdrX57FjYVBH/jjzfStEy0stNoUggj4MVndecB2K1p+J7Shlt29kAZPnFHrr22TNKCDVd2IWvbLcPaesxmLVT3NFAhK6VwKi9By7LLcjsobeS4YiA8AcfaVDroCK/d012ZRypa2Wk0KYQRrMAf1Y3pDJ9p14iZia5AKeW2rMi1OXuy4VZTsMK04OzW8T7OjHYAVJQ0TCF7/CHS8RK0m5Nyst0OSlVao8YVJWxlWlZnKLIFmV5+cKSilZ1Gk0IYQS8B47Bl58o0FUmgEcouLViCN0rZ+R1tyAg1fKG6z5IlI8uUzZnRtpJ7fSmq8JEjpYSs8Um3w6Bc0rA14gDXyJq68HhiZFxRK7sjFa3sNJoUwhb0ELClRa7dWaYiCVYUNTjOtFApPvthZRd0ZpOG5/CxOvUkbGW6rQXqadltLfeGdWMeLPOTI6XgNuMREXy2jEadVm73WZadpUDFbc0Y9eotw45UtLLTaFIIR8gTGbsCSM82radQRcMqaaUU6aFSQmHLhuilAg2zcoLWJtJidRFmZGThUzaC5Q1TdkUVPtpSgljdoQA+ewauYMO7Wp3+EkIYkRMUwuOLeszuyEUrO40mhcgIleB1ZEeuMzPbmDueNHCsqdgToA2lSJSyC3fpBcoaNsZmq9hn/kjPBSA7zUExGQ1eKlBcXIxb/Dgy20fcAo5snMoH1o4y9SEYUrj8RXjsWWCYVZwjI3zqu7bsjlS0stNoUog2qhi/MydybbMZlJKOrYHdbwcO7CdbKlDZXSJuYYvM08AJJWme3ZQY2eAwu1uz3A6KVfrhSSH1pGTvDjPetkdF3ALOhi9U31/qpRP78aQdjs+ZbnW16jPtjlgapexEZKaI7BCR5dbnzCi/34jIRhFZLyKnN15UjaZ14/VWkEkFYllMYcokvcEzEw8WbgbA0bZ7xM1mVfwNnT2Z7tlNsbNj5Nrc8SS9wSeql+/9AYDMTkdH3JSr4QvVCw956CIHCGYeVvDh0x58pUUNklHT8kmEZfeIUmqo9XkPQEQGAhcBg4BJwFMiYktAWhpNq+XAvj0A2DMrK7vGnBdXtPN7AHK7HRtxs1vLGXwNmFDi8Qc5KliINz1KkThslJKBrYHKTh3cAoC07XnY0d1wy277gXK6yR6Mtj0iblnpLkqVW1t2RzBN1Y05BXhVKeVVSm0GNgKjmigtjaZVULxnKwDOnM6V3D22DJwNPEJHFa4EILf3kIibM9Pq0mvAQvVNhfvpLbsIdhhQyb2iEbuyZB7aYC6kz+4WcZM0U0Y8RfWOb+e2jWRLBdk98iNuWW4HJaRH1ghqjjwSoeyuE5EVIvKciFgllK7Atqgw2y23KojIz0RkiYgs2bt3bwLE0WhaJhW7NgCQ1qlPJXePLQt3A3c8yTiwmp22LpUmqLit9XFBayeU+rB19SIcEqTdMcdVcvfaMnA1QCHvK/XS07ueA1l9wWaPuNuttXuBBsjoLVgMgKPrYQWf7TaP+WnorFZNy6dWZSciH4nIqjifKcDTwDHAUKAQeLi+Aiil/q6UGqGUGtGhQ4f63q7RtBo8uzcBcFSv/pXc/Y6GnVZe7vHS17OCAzn5ldwzMrIJKKNBFb9/46cAtBt4UiX3hu7KsmzDFobJRuh1QiV3R/hMu3qOK/oCITru/QqPkQFdhkbcs9NMy07voHLkYq8tgFLqlLpEJCLPAP+2LncA3aO8u1luGo2mGqRoM/vIoX12TiX3gCObDFV/ZfftwvcZJyXsGzi5knuG28EhMuo9Hlbs8XPMvk/YkdGfrpmVG6ZBRzauCmuhus1RTQxVKVz8FnYJkTvsx5XcwzvH+EoPkFEPGT9fu4OJfENxl7G4o+TIctvZrtIwGrEFmaZl09jZmNGDC+cCq6zf84GLRMQlIr2BPsDixqSl0bR22peso9DVu4p7yJlFOhUQCtUrPtuSf1BCBseOPbeSe6bbbi4VqOdyhq8++TeDpIBg/iVV/IINWKheWFTOkMK57HX1wNFzTGUZMzLxKnu99wRd/+krdJBicsdfXck92xqza8x+m5qWTWPH7B4QkZUisgKYCNwEoJRaDbwGrAH+A/xSKRVsZFoaTaulrOQQvQKbKe0wvIpfyNUGA4Wqh3Ja9s0XjKpYyA89L8BwZ1Xyy3DaKSajXmv3yr1+On7zAAeNtnSf+JOqASLKrqjOcX701nMMkU3YfvTLyOLvMFlpDopJJ1SPbdIWbSjkzH3PcTC9N7Y+p1bycztslEk6jgZO9NG0fGrtxqwJpdTlNfjdC9zbmPg1miOFH1YsJE8UGUePruIX3tfRW3oId3iWYg1UeLw43r+VYsmi39Q7q/jbDKFMMsitx+zJj155iLPVGgpG/5G2rsyqMqbVb13c8g0FnFTwCHvSetNx3NVV/LPdDopVBul1HFf0+IOse/1uxhi78Z01t4ryBPNoo4bOatW0fPQOKhpNCnDo+68A6DXkxCp+4R1Pyov31ymuxbNvZ3BoHXt/9Afc2e3jhim3ZeIM1E3Zfb30G07e8gg/ZB1Hr9OuixvGllb3HUoOlfvYP/eXdJIDZFzwdKVZmGGy00zrU+poKb782lwu977Knl7n4BwwKW6YgCMLp/I2eANsTcumUZZdS6bC42PnD6s4uH0DZQcLEV8JAezY0tqQflQfuvcfwVHt29UekUaTADJ3LWab0ZXuuUdV8Tt8gGvti8C/+vBfjC+czbL2ZzLstKoWUxiPLQtXHZTdlp27yH3nSkKGg85XPB/XYjJlNC07T8l+apqeEgop3nlmJpcFF7J9+G10O+b4uOGy3A42qXS61mGh+vyF3zJ5w+8odneh40WPVxsu6MgEH+Zm0On6v32kccQou4MH9rFh8X8IbVpAuwPL6RHYwjHiix94FXj/a2eFvT9FXcfT6bgp9M0bjVTzR9doGkMw4OfYipWsbn96pSnMYRyWsvPVouw2rP2OAV/eyA5Hdwb95O81hvXZs0jz1NylV1rhZedzlzOSHRw451U6tu9ZbdjwQnVv6UGyqg0Fb73+IhcfeIptnSbS/ce/rTZclstOMenYfTtrlPHbTYX0+vBq2trKsU+fd3jnlTiEXFlQhtnVmgRlV+ENsPH71ez9fglqzzoyijfi9u4jO1hEmioniI2Q4aDEkYs/syvSoT9ZvUfQbeDxOLO0Mk40rVrZFWxcw86vXqXdtg/p41vHaFFUKCeb3f1Z03EqRud8srv1p8NR3UnLaouhgpQc2M2+LWso2/Ql2Tu/JH/r07D1aXa91Z5tHU4gO38yvUecgTOtHhOigwHKi/dyaN8uSg/uwXNoN77ivQRL90H5AfPPF/RgC/mxh7zYQn4UipD1Z8CwoQw7SuwomxNlc6BsLsTmBJsLsTvA7sKwuzDsTrC7UIaTkM1BSOyICoEKISoISlnfQVAhCIVQKoSEAiilQCkUClQI8zJ8bflFwtQ0M1BiLqWqWxwXJVLVDTFvj3WrISYV/VsRF1XNVd3CV+Ouqv6sLr7owLaK/YyXCqT3+LghnVnh8+KKqouMA/v34njtEgyBjCtew5lek8qBkCsbZ4UP/B5wuKv6hxRf/O0GzggsZtPImRwzpObtbV1Z5hZnNR3g+umXCzl19R3sTjuabj95qVorEcAwhIpaulp3FVWw5+WrmWRsouycF3BHLSKPL2T4mJ+mWWvnC4RYvXIZe797H/fOr+nnXUGeFEX8d0sHip0dKXX34IA9E0Gh/B4yvHvovO9/dNr/HqwD3odC4yj2Z/VHdcojq/dx5HQfSJtOPRBHWrXpA/gDAUpLiikvKaKi9BCe8mJ8ZYfwVZQQqCgm5Ckh5C1FeUsRXymOYDmuUIUpCwZKDPNoJDEQw0AZDpTNCTYnGA6wOxGbw6x77C78mV0Ye+ZlTZKfiabVKbsDe3ay4b//oP0P8zg2uIlewEbbMXzT/Spy80+j95ATGeiqvsDkZHcip1c+nHgRAIf2bOX7L9/C+P4DBu55l4yP38T3kY1tts4ccHcn5M4hYM9ADAMj6CcU8GD3lZDmP0hG8BBZwSKyVBnpokiPk16pclMqmQQMJwFx4BcnQXGACIbyYgQCGCqIoQLYVQC78mMngMP6dhLAIXqia0unlDR6jzwjrp87s+bdRDxeL1v+No3BoUK2Tf4nR3cfEDdcNGIdaornUFxl9/6cx5hcNIe1Xc9nwJk31hpfRmY2ISXV7sry3feb6f3hT1A2B7lXv4m4albGAF5bNu5gqdliiGnxePxB/vv327hcLWTv6DvoMOScWuOLHOCawNPKiyt8LPnyIypWzqdf0RcMk+0A7Dfas6fDKA70+BEd+42mXc/BdHJn06maeIIhxZYd2ylctwjPlqWk7VtF56K19Di0ADYcDneITCokjYA4CGLDUEGcyosTHy7lI128tAVqn8YEFbiowE2FuFEYCCFMVacQpTAIYiOIQwVwEMAlVcc6vw4NBK3sks+GbxfQ6+3zGCNBNtj68PWxN3H0CRdzbI9+HFv77XFp07EHI869AbiB0rIyvvnfe/g2fobr0A+09ezAXb6RTFWOoPDhICh2yo0MSm05HHIdjc/VDpXWDtLbY89qjzO7I+k5HcludxRt2nciIz2DzFjTpR6EQooKfwCvtwKf14vPW4Hf50GCPiTkR0J+EBtKbIghKLFZrTYbhmFDrI9hGGAYGGIgIhiGgYiBISAIYhMMMTAM8xsRJI7cKtaUiWvaqKrOYQuyTuEqhwknEy1OtGSV3aWKG7WERamIe+V4JSpsNXHU8d1m2t1k2l1x/dIjp5VXnfyhlGLRrF8wwbeUFcPvIX9U/MkZsRhW1yieQ5BVuQr++L/vcsqGP7IpYyj9r3y6+syKIivNRQlpcZXdtr2H8PzzcgbIPjzT5uFq36tOMvocWdg9fvBXgPNwUzEUUsx+9nGuKX+JnT3OosukO+oUny09MQe4hkKKr1esZNfnLzBk/7ucJIUEMNiaNZR1x1xOtzHnkntUX3Lr8b+2GULP7t3p2b07cEEknc07C9m9YQm+fT+gindiL9uNPViBEfJhhAJgcxC0uVF28yPODMSVhc2diT0tC0daG5zpWbgy2pCWmU1GVhvcGW0QZyZpho2a7cTKqFAIfyCAz1tBwOfF7/PQQzW87ko2rUrZ9R58PEu+uZTO46fTd+DIhMefmZHByFMugFMuSHjcDcUwhDSXgzRX3Xet0LQs2rfJpFy5CMTpIvzk5fs5+eAbLO96CUOn3FDnOJ3WqeCe0v24ozZDWbpsKUMWXsMhey49fvE6YnfWKb7sNDvFKqPKOrviCh8rnvkpk9VKdp/0CJ36xe+qjUfQmQ0eTIUcpexeeP1Nphf+H3vaDKbL5f+okzIGcFrKLlBe1KCK72CZj88+eZf2y5/iR4FvMERRkDWUgiE30XPsBRyd4HFAwxB6d+tC725nJzTehiKGgdPpxOmsW5lINVqVsnM4XRz/8+pnY2k0LZEMl53dpKMqKk9Q+erfzzNh432szRrDkKseq1ecbstaLDm4D7e1acumzZtp//YlOA2FcdVbOLLqvldt+0wXK2hH15LDE0o8/iD/feompvo+YNugX9D9hKvqJWPQ3RaKgbK9kG1u1jTvo884e/UNeF3t6PDTN+J2wVZHZL/N0vopu+0Hyvjvu3Pp//0/OMdYTYlk8X2/n9HrlJ/Rq2ND+4w0yaZVKTuNprWy39aB9PLD28su+vgtjvvmNn5w9eeYa19H6rEfJYC7gzmzsmz3JjoABdt34H1xKl05wKHz36BT14H1i89hY6+tM30q1gDgD4Z4c9YfuKTkZTZ3P4/e5/+5XvEB2NsfA3sgtH8TRud8/v3FYoZ/8ROcNoO0q+cjWVWXadQoY1YOYJ7jV5fpZVv2lfDZ/BcYWvAsVxo/cMjZnt0j76TThGvoF2dhvSa10cpOo2kB7Hf3YIBnGQCLP5zLkC+vY4+jM12vnV/rzMt4HNO7D4dUOt7tK9iwaRPq5an0UdvYe8Y/6DLohNojiENxRk/alH6G59Be3nvhPi458A+2dpxI7xnP1LmrMZrsrv1hDZRsWcEXe3IZ9tmVtDXKsV0xH3vHvvWOLys9g70qG6NoW43hNu06yNfz/8bIHS8yXXaw392VovEPkXP8dNpUM66qSX20stNoWgCBjvm0L/iIJY9dyrD977PN0YuOv/g36TkdGxRfpzZuPrcNZvSOdyh98SMypYLCM5+nx6iGjw+poydirHiB4kdHc57azw9HncHRP30p7g4pdeG4Pt1Y8kFf+n8ziwnqKUI2F8aMd3H1qLp/aF3IcjvYpjrS+9CWuP4rN+9kzXtPMXbPHC6RfexOP4aiibPIPe6CBj+DJnXQq6Q1mhZAzxOns19lM+LAv1nd5kS63PAxmbldGhyfiBA68Q4K6cA+d0/Kpn/YKEUHcNqpZzDffRYeSWPj8N9z9M/+Wa/jfmI5tmMmKwfewh5pR2HuGNKvW4i7gYoOoFduOj+oLrj3r42cIBEMKb5atoJ5D19D99kjmLb3cSSrM4fOfZlOv15KzqiLtaJrJUiVqeLNyIgRI9SSJUuaWwyNJiXZsauQQOkBeh47qLlFabHc++eZ/M77CBsG3UjBoRBtdyzguNBKENjSfgIdJ91GxrFjm1vMIw4RWaqUGtGUaegmi0bTQuh6VGegc63hNNUz9PQZLJn3LiNWP0pfYJe9K9/3u5ZeJ11Fbz2zslWjlZ1GozlimDy8Fzt6fcqGHWvo3qULR+V2o35zOjUtFa3sNBrNEUXXdpnQblRzi6FJMnqCikaj0WhaPVrZaTQajabVk1KzMUVkLxB/EUz9aA/sS0A8yUDL2nS0JHlbkqzQsuRtSbJCy5I3UbL2VErVfX+6BpBSyi5RiMiSpp7Gmii0rE1HS5K3JckKLUveliQrtCx5W5KsuhtTo9FoNK0erew0Go1G0+pprcru780tQD3QsjYdLUneliQrtCx5W5Ks0LLkbTGytsoxO41Go9Foommtlp1Go9FoNBG0stNoNBpNq6dVKTsRmSQi60Vko4jc0dzyRCMi3UXkUxFZIyKrReQGy32miOwQkeXW58zmljWMiBSIyEpLriWWWzsR+a+IfG99t00BOftF5d9yESkWkRtTKW9F5DkR2SMiq6Lc4ualmDxmleMVItLwc20SJ+uDIrLOkuctEcmx3HuJSEVUHs9Kpqw1yFvtuxeR31h5u15ETk8BWedGyVkgIsst91TI2+rqrZQsuzWilGoVH8AGbAKOBpzAd8DA5pYrSr7OwHDrdxawARgIzARubW75qpG5AGgf4/YAcIf1+w7g/uaWM0452AX0TKW8BU4AhgOrastL4EzgfUCAMcDXKSDraYDd+n1/lKy9osOlUN7GfffWf+47wAX0tuoMW3PKGuP/MHBXCuVtdfVWSpbdmj6tybIbBWxUSv2glPIBrwJTmlmmCEqpQqXUt9bvEmAt0LV5pWoQU4AXrN8vAOc0nyhxORnYpJRKxE48CUMp9TlwIMa5urycAryoTBYBOSKStLN94smqlPpQKRWwLhcB3ZIlT21Uk7fVMQV4VSnlVUptBjZi1h1JoSZZRUSAC4E5yZKnNmqot1Ky7NZEa1J2XYFtUdfbSVFlIiK9gGHA15bTdZbJ/1wqdAtGoYAPRWSpiPzMcuuklCq0fu8COjWPaNVyEZUri1TNW6g+L1O9LF+F2XoP01tElonIZyIyvrmEikO8d5/KeTse2K2U+j7KLWXyNqbeanFltzUpuxaBiGQCbwA3KqWKgaeBY4ChQCFmN0aqME4pNRw4A/iliJwQ7anMfouUWbsiIk7gbOBfllMq520lUi0vq0NEfgcEgFcsp0Kgh1JqGHAz8E8RyW4u+aJoMe8+ioup3FBLmbyNU29FaClltzUpux1A96jrbpZbyiAiDswC84pS6k0ApdRupVRQKRUCniGJXSq1oZTaYX3vAd7ClG13uFvC+t7TfBJW4QzgW6XUbkjtvLWoLi9TsiyLyAzgx8ClVgWH1R243/q9FHMMrG+zCWlRw7tP1by1A+cBc8NuqZK38eotWljZhdal7L4B+ohIb6uFfxEwv5llimD1xz8LrFVK/SXKPbo/+1xgVey9zYGIZIhIVvg35gSFVZh5eoUV7Arg7eaRMC6VWsapmrdRVJeX84Hp1sy2McChqC6jZkFEJgG/Bs5WSpVHuXcQEZv1+2igD/BD80h5mBre/XzgIhFxiUhvTHkXJ1u+OJwCrFNKbQ87pELeVldv0YLKboTmniGTyA/mTKANmC2g3zW3PDGyjcM09VcAy63PmcBLwErLfT7QubllteQ9GnPW2nfA6nB+ArnAx8D3wEdAu+aW1ZIrA9gPtIlyS5m8xVTChYAfcxzjJ9XlJeZMtietcrwSGJECsm7EHIsJl91ZVtipVvlYDnwLnJUieVvtuwd+Z+XteuCM5pbVcp8NXBMTNhXytrp6KyXLbk0fvV2YRqPRaFo9rakbU6PRaDSauGhlp9FoNJpWj1Z2Go1Go2n1aGWn0Wg0mlaPVnYajUajafVoZafRaDSaVo9WdhqNRqNp9fw/MOr48PYyY68AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses, nrn_responses, True, 9)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The voltage traces look mostly very similar between Arbor and Neuron with the exception of the last spike in `step2` with the configuration axon replacement `False` and parameter index `3`. We can perform spike time analysis to understand this quantitatively. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Spike time cross-validation\n", + "\n", + "To compare Arbor and Neuron voltage traces further, we analyze the spike counts and times with the eFEL library and Arbor's built-in spike detector. Note that while eFEL measures the `peak_time`, Arbor's spike detector as configured above will measure the time when the voltage passes a threshold of -10 mV." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Falsestep10.1000.030Spikecount1.0001.0001.0000.0000.0000.0000.000
time_to_first_spike4.7004.8004.4170.1002.1280.3838.670
time_to_last_spike4.7004.8004.4170.1002.1280.3838.670
step20.1000.030Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike1.7001.8001.4560.1005.8820.34423.596
....................................
Truestep10.1090.023time_to_last_spike41.60041.80041.4370.2000.4810.3630.876
step20.1090.023Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike2.2002.2001.8130.0000.0000.38721.330
time_to_second_spike14.30014.40013.9670.1000.6990.4333.100
time_to_last_spike49.40049.70049.2740.3000.6070.4260.865
\n", + "

120 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Neuron Arbor \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 1.000 1.000 \n", + " time_to_first_spike 4.700 4.800 \n", + " time_to_last_spike 4.700 4.800 \n", + " step2 0.100 0.030 Spikecount 5.000 5.000 \n", + " time_to_first_spike 1.700 1.800 \n", + "... ... ... \n", + "True step1 0.109 0.023 time_to_last_spike 41.600 41.800 \n", + " step2 0.109 0.023 Spikecount 5.000 5.000 \n", + " time_to_first_spike 2.200 2.200 \n", + " time_to_second_spike 14.300 14.400 \n", + " time_to_last_spike 49.400 49.700 \n", + "\n", + " Arbor_int \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 1.000 \n", + " time_to_first_spike 4.417 \n", + " time_to_last_spike 4.417 \n", + " step2 0.100 0.030 Spikecount 5.000 \n", + " time_to_first_spike 1.456 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 41.437 \n", + " step2 0.109 0.023 Spikecount 5.000 \n", + " time_to_first_spike 1.813 \n", + " time_to_second_spike 13.967 \n", + " time_to_last_spike 49.274 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.100 \n", + " time_to_last_spike 0.100 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.100 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.200 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + " time_to_second_spike 0.100 \n", + " time_to_last_spike 0.300 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 2.128 \n", + " time_to_last_spike 2.128 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 5.882 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.481 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + " time_to_second_spike 0.699 \n", + " time_to_last_spike 0.607 \n", + "\n", + " abs_diff eFEL to Arbor-internal \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.383 \n", + " time_to_last_spike 0.383 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.344 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.363 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 0.387 \n", + " time_to_second_spike 0.433 \n", + " time_to_last_spike 0.426 \n", + "\n", + " rel_abs_diff eFEL to Arbor-internal [%] \n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 8.670 \n", + " time_to_last_spike 8.670 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 23.596 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.876 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 21.330 \n", + " time_to_second_spike 3.100 \n", + " time_to_last_spike 0.865 \n", + "\n", + "[120 rows x 7 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "efel_features = ['Spikecount',\n", + " 'time_to_first_spike',\n", + " 'time_to_second_spike',\n", + " 'time_to_last_spike']\n", + "\n", + "\n", + "# Extract spike observables from protocol simulation responses\n", + "def get_spike_data(protocols, do_replace_axon, param_values,\n", + " arb_resp, nrn_resp):\n", + " spike_res = []\n", + "\n", + " for step in protocols:\n", + " recording_name = step['recording_name']\n", + " stim_start = step['delay']\n", + " stim_end = stim_start + step['duration']\n", + " \n", + " for efel_feature_name in efel_features:\n", + " # Calculate spike observables with eFEL\n", + " feature_name = '%s.%s' % (step['name'], efel_feature_name)\n", + " feature = ephys.efeatures.eFELFeature(\n", + " feature_name,\n", + " efel_feature_name=efel_feature_name,\n", + " recording_names={'': recording_name},\n", + " stim_start=stim_start,\n", + " stim_end=stim_end)\n", + "\n", + " # Calculate spike observables with Arbor\n", + " try:\n", + " if efel_feature_name == 'Spikecount':\n", + " arbor_int = len(arb_resp[recording_name]['spikes'])\n", + " elif efel_feature_name == 'time_to_first_spike':\n", + " arbor_int = arb_resp[recording_name]['spikes'][0]-stim_start\n", + " elif efel_feature_name == 'time_to_second_spike':\n", + " arbor_int = arb_resp[recording_name]['spikes'][1]-stim_start\n", + " elif efel_feature_name == 'time_to_last_spike':\n", + " arbor_int = arb_resp[recording_name]['spikes'][-1]-stim_start\n", + " except Exception:\n", + " arbor_int = numpy.nan\n", + "\n", + " spike_res.append(dict(\n", + " replace_axon=do_replace_axon,\n", + " protocol=step['name'],\n", + " **param_values,\n", + " efel=efel_feature_name,\n", + " Neuron=feature.calculate_feature(nrn_resp),\n", + " Arbor=feature.calculate_feature(arb_resp),\n", + " Arbor_int=arbor_int))\n", + " return spike_res\n", + "\n", + "\n", + "# Compare spike observables between Arbor and Neuron\n", + "def analyze_spikes(spike_res):\n", + " spike_res_df = pandas.DataFrame(spike_res)\n", + " spike_res_df.set_index(\n", + " ['replace_axon', 'protocol',\n", + " 'gnabar_hh', 'gkbar_hh', 'efel'], inplace=True)\n", + " spike_res_df.dropna(how='all', inplace=True) # drop all-NaN rows\n", + "\n", + " # Arbor to Neuron cross-validation with eFEL\n", + " spike_res_df['abs_diff Arbor to Neuron'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: abs(r['Arbor']-r['Neuron']), axis=1)\n", + " spike_res_df['rel_abs_diff Arbor to Neuron [%]'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: 100.*abs(r['Arbor']-r['Neuron'])/r['Neuron']\n", + " if r['Neuron'] != 0 else numpy.nan, axis=1)\n", + "\n", + " # Cross-validation of eFEL's spike detection with Arbor's\n", + " spike_res_df['abs_diff eFEL to Arbor-internal'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: abs(r['Arbor']-r['Arbor_int']), axis=1)\n", + " spike_res_df['rel_abs_diff eFEL to Arbor-internal [%]'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: 100.*abs(r['Arbor']-r['Arbor_int'])/r['Arbor_int']\n", + " if r['Arbor_int'] != 0 else numpy.nan, axis=1)\n", + " return spike_res_df\n", + "\n", + "\n", + "# Aggregate all simulations into a single data frame \n", + "def joint_spike_analysis(arb_resp, nrn_resp, replace_axon_policies, param_list):\n", + " return pandas.concat(\n", + " [analyze_spikes(get_spike_data(protocol_steps,\n", + " replace_axon_policies[key[0]],\n", + " param_list[key[1]],\n", + " arb_resp[key],\n", + " nrn_resp[key]))\n", + " for key in arb_responses], axis=0)\n", + "\n", + "\n", + "pandas.options.display.float_format = '{:,.3f}'.format\n", + "# pandas.options.display.max_rows = None # uncomment for full view\n", + "spike_results = joint_spike_analysis(arb_responses, nrn_responses, replace_axon, params)\n", + "spike_results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To understand the deviations over the entire parameter set and different axon replacement policies, we explore the per eFEL-observable statistics. `Spikecount`s are fully consistent between Arbor and Neuron, whereas `time_to_last_spike` shows a max 1.8 ms." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.0680.0610.0000.0000.1000.1000.20028.0001.8272.160-0.2160.0001.3503.0056.250
time_to_last_spike40.0000.1470.2950.0000.0000.1000.2001.80028.0001.5601.7330.0000.4800.7192.4585.556
time_to_second_spike12.0000.1170.0390.1000.1000.1000.1000.20012.0001.3261.6750.4270.6590.6990.7756.250
\n", + "
" + ], + "text/plain": [ + " abs_diff Arbor to Neuron \\\n", + " count mean std min 25% 50% \n", + "efel \n", + "Spikecount 40.000 0.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike 28.000 0.068 0.061 0.000 0.000 0.100 \n", + "time_to_last_spike 40.000 0.147 0.295 0.000 0.000 0.100 \n", + "time_to_second_spike 12.000 0.117 0.039 0.100 0.100 0.100 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + " 75% max count mean std \n", + "efel \n", + "Spikecount 0.000 0.000 28.000 0.000 0.000 \n", + "time_to_first_spike 0.100 0.200 28.000 1.827 2.160 \n", + "time_to_last_spike 0.200 1.800 28.000 1.560 1.733 \n", + "time_to_second_spike 0.100 0.200 12.000 1.326 1.675 \n", + "\n", + " \n", + " min 25% 50% 75% max \n", + "efel \n", + "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike -0.216 0.000 1.350 3.005 6.250 \n", + "time_to_last_spike 0.000 0.480 0.719 2.458 5.556 \n", + "time_to_second_spike 0.427 0.659 0.699 0.775 6.250 " + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results[['abs_diff Arbor to Neuron',\n", + " 'rel_abs_diff Arbor to Neuron [%]']].groupby('efel').describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we inspect the traces with highest difference in `time_to_last_spike`, we find that there is a single outlier, consistent with the plot above (axon replacement `False`, parameter index `3`)." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Falsestep20.1230.035time_to_last_spike51.00052.80052.5001.8003.5290.3000.572
Truestep10.1200.030time_to_last_spike48.10048.50048.0860.4000.8320.4140.861
Falsestep20.1000.030time_to_last_spike50.60051.00050.6220.4000.7910.3780.747
Truestep20.1090.023time_to_last_spike49.40049.70049.2740.3000.6070.4260.865
Falsestep10.1200.030time_to_last_spike41.70042.00041.7020.3000.7190.2980.716
\n", + "
" + ], + "text/plain": [ + " Neuron Arbor \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step2 0.123 0.035 time_to_last_spike 51.000 52.800 \n", + "True step1 0.120 0.030 time_to_last_spike 48.100 48.500 \n", + "False step2 0.100 0.030 time_to_last_spike 50.600 51.000 \n", + "True step2 0.109 0.023 time_to_last_spike 49.400 49.700 \n", + "False step1 0.120 0.030 time_to_last_spike 41.700 42.000 \n", + "\n", + " Arbor_int \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step2 0.123 0.035 time_to_last_spike 52.500 \n", + "True step1 0.120 0.030 time_to_last_spike 48.086 \n", + "False step2 0.100 0.030 time_to_last_spike 50.622 \n", + "True step2 0.109 0.023 time_to_last_spike 49.274 \n", + "False step1 0.120 0.030 time_to_last_spike 41.702 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step2 0.123 0.035 time_to_last_spike 1.800 \n", + "True step1 0.120 0.030 time_to_last_spike 0.400 \n", + "False step2 0.100 0.030 time_to_last_spike 0.400 \n", + "True step2 0.109 0.023 time_to_last_spike 0.300 \n", + "False step1 0.120 0.030 time_to_last_spike 0.300 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step2 0.123 0.035 time_to_last_spike 3.529 \n", + "True step1 0.120 0.030 time_to_last_spike 0.832 \n", + "False step2 0.100 0.030 time_to_last_spike 0.791 \n", + "True step2 0.109 0.023 time_to_last_spike 0.607 \n", + "False step1 0.120 0.030 time_to_last_spike 0.719 \n", + "\n", + " abs_diff eFEL to Arbor-internal \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step2 0.123 0.035 time_to_last_spike 0.300 \n", + "True step1 0.120 0.030 time_to_last_spike 0.414 \n", + "False step2 0.100 0.030 time_to_last_spike 0.378 \n", + "True step2 0.109 0.023 time_to_last_spike 0.426 \n", + "False step1 0.120 0.030 time_to_last_spike 0.298 \n", + "\n", + " rel_abs_diff eFEL to Arbor-internal [%] \n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step2 0.123 0.035 time_to_last_spike 0.572 \n", + "True step1 0.120 0.030 time_to_last_spike 0.861 \n", + "False step2 0.100 0.030 time_to_last_spike 0.747 \n", + "True step2 0.109 0.023 time_to_last_spike 0.865 \n", + "False step1 0.120 0.030 time_to_last_spike 0.716 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results[ [el[spike_results.index.names.index('efel')] == 'time_to_last_spike'\n", + " for el in spike_results.index] ].sort_values(\n", + " by='abs_diff Arbor to Neuron', ascending=False).head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the spike times, we find the anticipated bias between eFEL and Arbor's internal spike detector." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.3470.0380.2650.3270.3500.3740.44328.00013.6026.836-0.3818.55114.25519.16224.861
time_to_last_spike28.0000.3490.0440.2650.3080.3500.3790.42628.0007.8147.1850.5720.8646.78314.18121.150
time_to_second_spike12.0000.3730.0390.2920.3580.3740.3870.43412.0005.1967.7451.2862.1932.5542.92828.464
\n", + "
" + ], + "text/plain": [ + " abs_diff eFEL to Arbor-internal \\\n", + " count mean std min 25% \n", + "efel \n", + "Spikecount 40.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike 28.000 0.347 0.038 0.265 0.327 \n", + "time_to_last_spike 28.000 0.349 0.044 0.265 0.308 \n", + "time_to_second_spike 12.000 0.373 0.039 0.292 0.358 \n", + "\n", + " \\\n", + " 50% 75% max \n", + "efel \n", + "Spikecount 0.000 0.000 0.000 \n", + "time_to_first_spike 0.350 0.374 0.443 \n", + "time_to_last_spike 0.350 0.379 0.426 \n", + "time_to_second_spike 0.374 0.387 0.434 \n", + "\n", + " rel_abs_diff eFEL to Arbor-internal [%] \\\n", + " count mean std \n", + "efel \n", + "Spikecount 28.000 0.000 0.000 \n", + "time_to_first_spike 28.000 13.602 6.836 \n", + "time_to_last_spike 28.000 7.814 7.185 \n", + "time_to_second_spike 12.000 5.196 7.745 \n", + "\n", + " \n", + " min 25% 50% 75% max \n", + "efel \n", + "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike -0.381 8.551 14.255 19.162 24.861 \n", + "time_to_last_spike 0.572 0.864 6.783 14.181 21.150 \n", + "time_to_second_spike 1.286 2.193 2.554 2.928 28.464 " + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results[['abs_diff eFEL to Arbor-internal',\n", + " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running protocols with a finer time step\n", + "\n", + "To rule out the discretization as a possible source of the above error in `time_to_last_spike`, we can re-run the simulations at a smaller `dt` of 0.001 ms (default is 0.025 ms)." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "arb_responses_fine_dt, nrn_responses_fine_dt = run_all_simulations(replace_axon, params, dt=0.001)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABkBklEQVR4nO2deXwURdr4v8/cSQggAZRLLrlJSJAEFFBwFQ9WEVHBRVl03V131fVe2UNfdPX3eq6uyoq6KK66CJ7o67miEVERQe5T0HCJyBUg51z1+6N7hkkyk0ySTmaS1PfzmaS7qvrpp6u66+k6uh5RSqHRaDQaTbJhS7QCGo1Go9FEQxsojUaj0SQl2kBpNBqNJinRBkqj0Wg0SYk2UBqNRqNJSrSB0mg0Gk1Sog1UJUSkh4goEXEkWpfmjohMF5EljXSuFBF5V0QOicgfG+Oclc5fICJnNsJ58kXk6hhxzf7eNq/vpNrGWaxDzLIWkTEisquhdbAaEXlbRPaJyIONeV5toDSWICIzRcQnIkURv0Y3BNVwJpAFdFNKPRAKNCuTHgnTKokwy3BmLdL/QkS2i0ixiLwpIu2qSfu0iGwWkaCITK+lXi2mjERkbm3yR0RuEpEfReSIiDwrIu5q0v5MRDaJSImIfCIi3SPiHhCRnaac7SLy58hjlVLnA2OBW0Wkbe2vrG40OwPVnN8OmwDzlVKtIn4P1HxIo9EOKFBKFSVakfogBgl/bkVkEPAUcAVwPFAC/LOaQ1YDvwe+aXjtGpZkqWNE5GxgBvAzoDvQC7grRtr2wOvAHRjPwnJgfkSSOUB/pVRr4FRgqohcFClDKbXO3Myw8DKqJeE3uhWYb1i3i8gaoFhEHCIyQkS+EJFCEVktImMi0ueLyP+KyDLzjWFhrLc/EblSRDaKyFER+U5EflspfoKIrDLlbBORc8zwNiIyR0T2iMhuEblHROw1XEdvEflYRA6IyH4ReSn0tmLGHRSRoeZ+Z7PJPcbcv0BE1pvXmy8iAyrlz60iskZEDovIfBHx1D6na4+IzDDz5aiIbBCRiTHSiYg8IiI/mXm5VkQGm3FuEXlIRHaIyF4RmS0iKbVUxQEEa9A1Q4yujCMi8rVZZksi4pWIXCMi35r5PEtExIyLWXYR5Jp5cEhEnguVgYgcJyL/Z5bnIXO7a8R580XkXhH5HMMQ9KrhWruLyOdmnn9oVk6RTDXzcr+I/KUGWbGYCrytlFpsGv07gItEJD1aYqXULKXUIqCsjucDai6jSmlHidEqGBMRfJ75HO8XkQfFNPY1lZ9EqWNqUDW7uudNRG4x7/U9InJlXfIC+CUwRym1Xil1CPgbMD1G2ouA9UqpV5RSZcBMYIiI9AdQSm1WShVHpA8C0bpDFcaz1DgopZr8DygAVgHdgBSgC3AAOA/DCJ9l7ncw0+cDu4HBQBrwGvCiGdcDsxDM/fFAb0CA0zEqiKFmXB5w2JRvM8/b34x7A+MNMw3oCCwDflvDdZxkynIDHYDFwKMR8b8GNgCpwAfAQ2Z4X6DYPNYJ/BHYCrgi8mcZ0Bnj7WkjcE0MHUYBhdX8RsU4bmYoDyuFX2Ke1wZMNvXsZMZNB5aY22cDK4C2Zl4PiEj3CPCWqXs68Dbwv7W4P5zAC9H0q5TuZfOXCgwEdob0M+MV8H+mjicC+4Bz4iy7AmAdxj3aDvgcuMeMywAmmedNB14B3ow4Nh/YAQzCqByc1VxDPrDNvCdSzP37Kt3bz5hxQ4ByYEAMWdWV90Lg9kphRcDJNeTxEmB6PZ71eMroJOAcMy6vUtwnZv6fCGwBrq5F+a0yyy8ljvoo6vMGjAH8wN3mfXkeRp1yXBQ5J5plcGKM86wGJkfstzevMSNK2n8AT1YKWwdMitifYZahAr4DukaRsx24FpC6lmGtyrsxTtLgF2HcEFdF7N8OvFApzQfAL83t8ENr7g8EvICdSgYqyrneBG4wt58CHomS5njzwU+JCLsM+KSW13UhsLJS2FvAWmAN4DbD7gAWRKSxYRjgMRH5c3lE/APAbIvLYKaZh4URv85R0q0CJpjb0zlmoM7AqDBGALaI9IJh1HpHhJ0CfB+nXtmAD9gLnFRNOruZrl9E2D1UrfxGRewvAGbEU3ZmGVwTsX8esK0anQ9F7OcDd8d5vfnAXyP2fw+8b26H7u2uEfHLgCl1KO9FVHrJibznqjmuzgaqFmX0J4yKdHCl4xXmC0VE3iyqRfldFaeeMZ83DANVSkT9AvwEjKhDfmyrdD1O8xp7REk7h4g6zwz7vHJZmM9bDkZXYXoUORMxn/O6lGFtf82ii89kZ8R2d+ASsxumUEQKMVoGnWKk345RuJW7QhCRc0Vkqdm9VohRsYTSdcO4SSrT3ZS3J+L8T2G0pGIiIseLyMtidAkeAV6MotMzGC2/x5VS5WZYZ/MaAFBKBc3r6xJx3I8R2yVAq+p0qSMLlFJtI34/iMg0MbpAQ/kwmCj5rJT6GHgCmAX8JMagemuMt9lUYEWEjPfN8BpRSq3CaJV8CdxYTdIOGK2TyPtiZ5R0UfMxzrKrfM91No9NFZGnxBicPoLx9t5WKnYJR9MlFjWVtRX3QhHQulJYa+BoHWTFS7xldCPGvbguSlysMqht+dVEdXl8QCnlryY+XiqXQWg7WhnEVV7KYCWGEY02nnUXxstozAkxVtKcDFTksuw7MVpQkZVlmlLqvog03SK2T8R4M9sfKVCMGTGvAQ8Bxyul2gLvYrxlhM7TO4ouOzFaUO0jzt9aKTWohmv4f+Z1ZCpjsPLyiHMhIq2ARzHehmbKsXGzHzCMYiidmNe3u4bzVUFERkvFmXiVf6NrIas7hkG9DqPboS1Gt4JES6+UekwpdTJGi7YvcBtGmZQCgyLyso1SKu4HWhl97u+ZcmOxD6PrpWtEWLcYaaNRbdlFkXciRrkB3AL0A4abx55mhkceH3l/JwPrMboIARCRXhjdY1sa8JzxltElwIUickOUuFhlEE/5JXUZmNt7lVIHakorImkYddf6GLIdRK/bBgALzZfgBqc5GahIXgTOF5GzRcQuIh4xvj+IvLEvF5GBIpKK0R/8qlIqUEmOC+Oh2wf4ReRcYFxE/BzgSjGmb9pEpIuI9FdK7QE+BB4WkdZmXG8ROb0GvdMx3nQOi0gXjAo6kn8Ay5VSVwPvALPN8AXAeFMPJ0aFVw58UVNGVUYp9ZmqOBOv8u+zWohLw3io94Ex4QSjBVUFEckVkeGm/sUYg+lB80F4BnhERDqaabuIMYMpdKyqNBAejXKM8oyKWfavYxj+VHPweFpcV2lQU9kBXCsiXc0Xi79wbBZVOoYRLjTj/qcW500UL2E8Y6PNyu5u4HWlVNQWlIi4zIkCAjjNZzI0QWGMiNRY+deijH7AmNl2g4j8rlLcbWJMSukG3EDFMqip/JKNfwO/MuuxtsBfgbkx0r4BDBaRSWY53AmsUUptMuun35r5IiKShzHOtCiKHAfGs9QoNEsDpZTaCUwA/oxROe7EuOEir/cFjML8EfAAf4gi56gZvgA4BPwCYwwoFL8MuBJjEP8w8CnHWjLTMCrEDeaxr1KxizEadwFDTVnvYDyMgDFbEGPgN/TA3QwMFZGpSqnNGG98j2O0OM4HzldKeWs4X4OilNoAPIzRvbYXyMTo945GawxDdAij6+UAEPoo8HaMSR9Lze6XjzBaHJgVzVGMcbnqCFLz/X4d0AbjnngBmEf8D2PMsovgPxgvLt9hdA3fY4Y/ijFpYT+wFKMLM+FU12JWSq0HrsEwVD9hVPC/jzj2Pan4Lc2HGEb4VOBpczvUUuxG/C9TcZWRUmoHhpGaIRU/XF6IMRlnFUY5zTHD4ym/RkVETjTL4MRo8Uqp9zHGtz7BmESznYiXGzFm9U410+7DmIhzL8YzNhyYEiFuIsY9eRTjBf9x8xepT6jLuVFaT2DOxGhpiEg+xoyufyVaF039EJHLMbr//lRDunEYD15/pdTBOGXfD5yglPpl/TXVxEJE/gW8opT6oA7H6jJqJMyW1ZdA21gtZatJig/ONJq6opR6Mc6k+cB/gfUi8rBS6qHKCcwuIxdGaywX+BUQddkgjXWYXdZxocsoMYjImxgtzDsayziBNlCNjojMxuiOq8yLSqlrGlufloLZ3Tm1hmTpGF1GnTG6JB/G6BJKKkQk1moY59ZyjLApkvAyMrvcNsSIHmh2LzYrlFIXJuK8LbKLT6PRaDTJT7OcJKHRaDSapk9SdfG1b99e9ejRI9FqaDQajaYRWbFixX6lVJWP75PKQPXo0YPly5cnWg2NRqPRNCIisj1auO7i02g0Gk1Sog2URtME0JOZNC0RbaA0miRn2/ffs31mfzas/irRqmg0jUpSjUFFw+fzsWvXLsrK6uXnTNPC8Hg8dO3aFafTmWhV6s3uLxdwmvzIqiWPw5DhiVZHo2k0kt5A7dq1i/T0dHr06IGxSLdGUz1KKQ4cOMCuXbvo2bNnotWpNx6bsYZxebBah8waTbMj6bv4ysrKyMjI0MZJEzciQkZGRrNpdYsrDQC7v7iGlBpN8yLpDRSgjZOm1jSneyY0QcLli7XCkUbTPGkSBkqjackEg0YXnyugDZSmZaENVByICLfcckt4/6GHHmLmzJmJU6gG8vPz+eKLWvsqrMA555xD27Zt+fnPf26RVpo6YxooR7B5dFlqNPGiDVQcuN1uXn/9dfbv319z4lqglCIYtN73lxUG6rbbbuOFF16wSCNNfVBhA5VQ/5MaTaOjDVQcOBwOfvOb3/DII49Uidu3bx+TJk0iNzeX3NxcPv/ccBg7c+ZMHnromMuhwYMHU1BQQEFBAf369WPatGkMHjyYnTt3cttttzF48GAyMzOZP9/wQJ2fn8+YMWO4+OKL6d+/P1OnTo36seZjjz3GwIEDycrKYsqUKRQUFDB79mweeeQRsrOz+eyzz6rV8YorruCUU06hT58+PPPMM2G5P/vZz0hPT682X1555RUGDx7MkCFDOO00wzlqWVkZV155JZmZmeTk5PDJJ58AMHfuXC688ELOOussevTowRNPPMHf//53cnJyGDFiBAcPGj4En3nmGXJzcxkyZAiTJk2ipKSkynlHjBjB+vXrw/tjxoxp1ktkhQ1UYh0kazSNTtJPM4/krrfXs+GHI5bKHNi5Nf9z/qAa01177bVkZWXxxz/+sUL4DTfcwE033cSoUaPYsWMHZ599Nhs3bqxW1rfffsvzzz/PiBEjeO2111i1ahWrV69m//795Obmhiv7lStXsn79ejp37szIkSP5/PPPGTVqVAVZ9913H99//z1ut5vCwkLatm3LNddcQ6tWrbj11lsB+MUvfhFTxzVr1rB06VKKi4vJyclh/PjxdO7cOa68u/vuu/nggw/o0qULhYWFAMyaNQsRYe3atWzatIlx48axZcsWANatW8fKlSspKyvjpJNO4v7772flypXcdNNN/Pvf/+bGG2/koosu4te//jUAf/3rX5kzZw7XX399hfNOnjyZBQsWcNddd7Fnzx727NnDsGHD4tK5KRIyUC5toDQtDN2CipPWrVszbdo0HnvssQrhH330Eddddx3Z2dlccMEFHDlyhKKi6gezu3fvzogRIwBYsmQJl112GXa7neOPP57TTz+dr7/+GoC8vDy6du2KzWYjOzubgoKCKrKysrKYOnUqL774Ig5H9PeN6nScMGECKSkptG/fnrFjx7Js2bK482TkyJFMnz6dZ555hkAgEL6eyy83/DH279+f7t27hw3U2LFjSU9Pp0OHDrRp04bzzz8fgMzMzPC1rVu3jtGjR5OZmclLL71UoaUU4tJLL+XVV18FYMGCBVx88cVx69wUEaUNlKZl0qRaUPG0dBqSG2+8kaFDh3LllVeGw4LBIEuXLsXj8VRI63A4KowvRX6Tk5aWFtf53G53eNtut+P3+6ukeeedd1i8eDFvv/029957L2vXrq2SJpaOUHU6dm2mZ8+ePZuvvvqKd955h5NPPpkVK1ZUmz7yemw2W3jfZrOFr2369Om8+eabDBkyhLlz55Kfn19FTpcuXcjIyGDNmjXMnz+f2bNnx61zU0SZxt+FNlCaloVuQdWCdu3acemllzJnzpxw2Lhx43j88cfD+6tWrQIM1yHffPMNAN988w3ff/99VJmjR49m/vz5BAIB9u3bx+LFi8nLy4tLn2AwyM6dOxk7diz3338/hw8fpqioiPT0dI4ePVqjjgALFy6krKyMAwcOkJ+fT25ublznBti2bRvDhw/n7rvvpkOHDuzcuZPRo0fz0ksvAbBlyxZ27NhBv3794pZ59OhROnXqhM/nC8uJxuTJk3nggQc4fPgwWVlZcctviihlGG+3bkFpWhjaQNWSW265pcJsvscee4zly5eTlZXFwIEDw2/zkyZN4uDBgwwaNIgnnniCvn37RpU3ceJEsrKyGDJkCGeccQYPPPAAJ5xwQly6BAIBLr/88vCEhD/84Q+0bduW888/nzfeeCM8SSKWjmB0EY4dO5YRI0Zwxx13hMefRo8ezSWXXMKiRYvo2rUrH3zwAQB33nknb731FmDM9MvMzGTw4MGceuqpDBkyhN///vcEg0EyMzOZPHkyc+fOrdByqom//e1vDB8+nJEjR9K/f/9w+FtvvcWdd94Z3r/44ot5+eWXufTSS+OW3WQxx6DsoghEaUVrNM0VSaZl/IcNG6Yqz8bauHEjAwYMSJBGzZuZM2dWmEzR3Ggu986SZ25m1G6j1X70pu9Jb9MuwRppNNYiIiuUUlVmOukWlEaT7JgtKICyYmtnsWo0yUyTmiShsZZkXg1DcwwVaaBKjlaTUqNpXugWlEaT5ISmmQOUawOlaUFoA6XRJDkqwkB5tYHStCC0gdJokhyJ6OLzlekVzTUtB22gNJpkJ8JA+bWB0rQgtIGKkzfffBMRYdOmTTHTFBQUMHjw4AbVY9WqVbz77rv1knHVVVfRsWPHBtdVYw2RY1CBMt3Fp2k5aAMVJ/PmzWPUqFHMmzcvany0ZYhqS2g9u+qwwkBNnz6d999/v14yNI2IChLEWIIqWF51dXeNprmiDVQcFBUVsWTJEubMmcPLL78cDs/Pz2f06NFccMEFDBw4EDAM1dSpUxkwYAAXX3xx2F3EokWLyMnJITMzk6uuuory8nLAWBLp9ttvZ+jQobzyyisVzlvZnYXX6+XOO+9k/vz5ZGdnM3/+fIqLi7nqqqvIy8sjJyeHhQsXAoZ7iwkTJjBmzBj69OnDXXfdFZZ72mmn0a5d9R97fvrpp2RnZ5OdnU1OTg5Hjx5FKRXTNcjpp5/OhAkT6NWrFzNmzOCll14iLy+PzMxMtm3bBsDbb7/N8OHDycnJ4cwzz2Tv3r1VzjtlyhTeeeed8P706dPDC8O2VEQFKCIVgGB5cYK10Wgaj6b1HdR7M+DHqouh1osTMuHc+6pNsnDhQs455xz69u1LRkYGK1as4OSTTwaMdfbWrVtHz549KSgoYPPmzcyZM4eRI0dy1VVX8c9//pPrrruO6dOns2jRIvr27cu0adN48sknufHGGwHIyMgIr9sXSWV3Fi6Xi7vvvpvly5fzxBNPAPDnP/+ZM844g2effZbCwkLy8vI488wzAVi2bBnr1q0jNTWV3Nxcxo8fH7dbioceeohZs2YxcuRIioqK8Hg8vP766zFdg6xevZqNGzfSrl07evXqxdVXX82yZcv4xz/+weOPP86jjz7KqFGjWLp0KSLCv/71Lx544AEefvjhCucNudIYP348Xq+XRYsW8eSTT8alc3NFVJAy8dBaFYNXj0FpWg4N3oISkXNEZLOIbBWRGQ19voZg3rx5TJkyBTDe8CO7+fLy8ujZs2d4v1u3bowcORKAyy+/nCVLlrB582Z69uwZXo/vl7/8JYsXLw4fM3ny5KjnjebOojIffvgh9913H9nZ2YwZM4aysjJ27NgBwFlnnUVGRgYpKSlcdNFFLFmyJO5rHjlyJDfffDOPPfYYhYWFOByOal2D5Obm0qlTJ9xuN71792bcuHFARVcau3bt4uyzzyYzM5MHH3wwqiuNc889l08++YTy8nLee+89TjvtNFJSUuLWuzkiKkAAByXKDT7dxadpOTRoC0pE7MAs4CxgF/C1iLyllNpQJ4E1tHQagoMHD/Lxxx+zdu1aRIRAIICI8OCDDwJVXWfUxX1FLPcb8bizUErx2muvVVkx/KuvvqqXK40ZM2Ywfvx43n33XUaOHBleLDYW8bjSuP7667n55pu54IILyM/Pj7qShcfjYcyYMXzwwQfMnz8//GLQkhEVJCg2ysSNza8NlKbl0NAtqDxgq1LqO6WUF3gZmNDA57SUV199lSuuuILt27dTUFDAzp076dmzJ5999lnU9Dt27ODLL78E4D//+Q+jRo2iX79+FBQUsHXrVgBeeOEFTj/99BrPHc2dRWVXGmeffTaPP/542B38ypUrw3H//e9/OXjwIKWlpbz55pvhll08bNu2jczMTG6//XZyc3PZtGlTvVyDABw+fJguXboA8Pzzz8dMN3nyZJ577jk+++wzzjnnnLjlN1dEBQhip1w82HQLStOCaGgD1QXYGbG/ywwLIyK/EZHlIrJ83759DaxO7Zk3bx4TJ06sEDZp0qSYs/n69evHrFmzGDBgAIcOHeJ3v/sdHo+H5557jksuuYTMzExsNhvXXHNNjeeO5s5i7NixbNiwITxJ4o477sDn85GVlcWgQYO44447wsfn5eUxadIksrKymDRpUnj86bLLLuOUU05h8+bNdO3aNezfavbs2WFXHI8++iiDBw8mKysLp9PJueeeWy/XIGCs/XfJJZdw8skn0759+3D48uXLufrqq8P748aN49NPP+XMM8/E5XLFLb+5IgRRYqNcUrD7SxOtjkbTaDSouw0RuRg4Ryl1tbl/BTBcKXVdtPTa3YZ1zJ07t8JkipZIc7l3lt9/Lu29P1Bu81BuSyPrTx8nWiWNxlIS5W5jN9AtYr+rGabRaOIkNAbls6fiCOgWlKbl0NAG6mugj4j0FBEXMAV4q4HPqcH4fqglt56aE6ICKOz47Sm4g9pAaVoODTqLTynlF5HrgA8AO/CsUqrq3OKa5dRqBppGk0yeouuLTRljUAFHKm6lDZSm5dDgH+oqpd4F6rw2j8fj4cCBA2RkZGgjpYkLpRQHDhzA4/EkWhVLEIwuvoAjFY82UJoWRNKvJNG1a1d27dpFMs7w0yQvHo+Hrl27JloNS7CpAErsKGcaKaos0epoNI1G0hsop9NZYaUGjaalISpI0GZDOdNIk3L8fj8OR9I/uhpNvdGLxWo0SY7xHZQdcbcCoER71dW0ELSB0miSHJsKoLCFDVR5sTZQmpaBNlAaTZJjJ4ASGza3sWZjadHhBGuk0TQO2kBpNEmO8aGuHbsnHQBvqW5BaVoG2kBpNEmOzRyDcoQMlB6D0rQQtIHSaJIc40NdO85UYwzKp1tQmhaCNlAaTZIjBEBsuFNbAxAo0wZK0zLQBkqjSXJCXXwhA+Uv027fNS0DbaA0miQntBafJ9UYg1Ll2kBpWgbaQGk0SU6oBZWa3gYAVV6cYI00msZBGyiNJskJfQfldqfgVzbw6RaUpmWgDZRGk+Q4CBC0ORGbjRI84NUtKE3LQBsojSbJcSg/2JwAlIkHu08bKE3LQBsojSbJsRMAu7F6eZl4sPlLEqyRRtM4aAOl0SQxSimcBBCzBVVuS8GhDZSmhaANlEaTxASCCgd+sBsGymdLwRHQXnU1LQNtoDSaJMbr92MXFTZQXnsqrqA2UJqWgTZQGk0S4yv3AiCmgfI7UnFrA6VpIWgDpdEkMV5fOQDiMAxUQBsoTQtCGyiNJonxl5sTIhweAIKONFIoS6BGGk3joQ2URpPE+MtMA+VMBSDoSiVFlYFSCdRKo2kctIHSaJKYYGhhWNNAiasVTgng9+pWlKb5ow2URpPE+M2FYcWVZgSY/0tLjiRKJY2m0dAGSqNJYspN9+5Oj+FN1+Y2/pcWaQOlaf5oA6XRJDE+0zmhK8VoOYUMVHmxNlCa5o82UBpNEuMtM7r4UtIMZ4UOsyXlLdVu3zXNH22gNJokJmC2oDymgXKabt+9egxK0wLQBkqjSWKCpYYhSkk/DgBHitGC8pdpp4Wa5k+9DJSIzBSR3SKyyvydFxH3JxHZKiKbReTs+quq0bRAin/Cq+y0atMeAHeK0YLyl2oDpWn+OCyQ8YhS6qHIABEZCEwBBgGdgY9EpK9SKmDB+TSaFoO9+CcO2dpyvM0OgDvV6OoLlOsxKE3zp6G6+CYALyulypVS3wNbgbwGOpdG02xxl+3jqL1deD8lzWhBqXLdgtI0f6wwUNeJyBoReVZEjjPDugA7I9LsMsOqICK/EZHlIrJ83759Fqij0TQf2nt3c9TTKbyf2so0UF7t9l3T/KnRQInIRyKyLspvAvAk0BvIBvYAD9dWAaXU00qpYUqpYR06dKjt4RpNs6Wk+Cidgj/ibdcvHOZ2OSlVLqRcGyhN86fGMSil1JnxCBKRZ4D/M3d3A90ioruaYRqNJk6+XbmYIaJIPXFoOExEKMGD+LSB0jR/6juLr1PE7kRgnbn9FjBFRNwi0hPoAyyrz7k0mpZG8dq38Sk7vfMqToItEw82vzZQmuZPfWfxPSAi2YACCoDfAiil1ovIAmAD4Aeu1TP4NJr4KT5yiP57/4/1rU4lu3VGhbgyWwp2f0mCNNNoGo96GSil1BXVxN0L3Fsf+RpNS2XtS39iBEfZf8bNVeLKJQWnNlCaFoBeSUKjSTJWvfF3Ruydx1cZF9L35DOqxPvsKTi023dNC8CKD3U1Go1FrPv4ZTJX3c1KTy5Dfv1U1DReeyptvIca5PxlpcV8v/YLjvywhWDRfmx2B/Y2nTn+pBy69M7CZtfvtJrGQxsojSZJ+HbFJ/T+9Hq2OXrT+9pX8Hg8UdMF7Km4LWxB7fvpB779+AVaf/cOfco3MEB8VRMtg72047vWefh7jKHr0LPp0b0nIhJTbsDv4/CBHzlyYA/FB3+k/PBefEd+IuArN44TQcSGOFzYHW7sTjd2pwu7043D6cbpcuNwuXG5PWB3oWwulM0OSqGCQSAIKgjBIKgAqCBKBUEpCAYQAqAUKRkn0q77IMvyS9N4aAOl0SQBu7/bSPu3p3HQdhzHXf0GrVsfFzNtwJGKR9XfQG1fv5QDHz7I4MJPOFUCbLd1Y3XnS3D2HMnxvbJIb98Jv8/PgR+2cfDbZbi25zPoyGe0XvM+rJnBbjpyyN0Fr7M1QXFiDxTj8R8lxX+YNsHDtFFHaSeKdjWr0qAElbBq9Gyyz5ySYE00taXZGSifz8uOzSs5sPVrAgcKsB39AXfZPhzBchzBcuwofDY3Ppsbv91D0JGCcqSgnKmIMw1xp2Fzp2JzpRFwpIDYEUAEbCiUUgAoFdpW5ptbaFsdi6scRtCY72gRsd9dq6KqSSy1khTHuWLsxLr0mOmVip4m5rGxM1fF2I6pX4XwmvWI6zorRUTKPem7F2lFgOAvXqFDpxNjnQWAgDONFMqqTVMdW1Z/Sel7dzCk7GvaKw8rOl5El7FX033AcLpHaREd16ETDBkF3IwK+Plh0zJ+WvMBgR/WkF66i3TfPhzKT5kthVJ7aw6m9ORHTztUSnukVUccrTviaduRVu06kd7uBNLS0lBBRUApAoEAPm853vIyvN4yvOXl+Lxl+Lzl+MP/y7EpHxL0YQ/6UWIzHkixhX8q8j8CNjtKbNiCPk5Yeg99PruBjWltGHDKuXHnk9fnZ/f2bzmyayPlhT/iKzqArawQu7+YYDBgtOJUEJsACErs5s8GNnuEbuZ2OMxutATFhtjMfbGDzW60KEWMy6N2z7jUWLlYWPmYeN3HMern0y2XG6JZGaitqz+n6+sT6C0+emO8OR2Qthy2t8NnT8HvSMWrBEewnFR/IS5vGU5VjkeV4VHlpEp5oi9B00Ipx8m3P5vD4D5DakyrnKl48EIwYFR6cbJvzw62zZ9B7qF3KZI0vuhxLQPPv4lTMuJfwUXsDjoPOpXOg06N+5hEs29QLvv/NZ5e71/B0k2/otd5f6Dj8cdWXjt86AA/fL+eIzs34PtpC+7CbRxXup0ugd30FG8VecXKTQDDECnTLNgIYiOIXQXNbYWNIA4JNuKVNj5rVS/QBio+Tug5kJWdLsHZJZsOffLo1HMgHdxu4n38vD4/JSVFlBQdwVtajM1fjAoa77lBjO5ubIKIYBPj/UZEEFto24bNJoAtHG68DcmxNyME85WrftTmZSjOlkV9UITe9gyJFa5QIjeP7YhESRIRGClDYsggZprahRNDr9jya7gOqDA+U9O1uN2tGOxpE/3ElXEZPqGC5UXYUmo+RgWDLF34FANW38NQVcqKTlMYMPluTj2uY3zna+J06NyDwt99xLq5v2HE9tkE//kUe6UdPhy0opi2FBHKxYASfrQdz8GU7qxvMwJ7x36kdu5Hq/Yn0qZdR9JatyPNXstq02xpqaCfYDBAMBD6HyQY9KMCfoLBICoUh6CUIhjjuVXVtauqGRM0E9RO9xroaHNaKq8yzcpAtWp9HKdc82Sdj3c5HbjatKVtm7bWKaXRWIy40wAoKz5Cag0G6qcfdrDjhd9ySukXbHH2J+WSp8jrm90IWiYXbTt04uTb3mbHhq/4Ydkb2Au/x6aC7HGmEWhzIinHn0S7EwfRqedAurhToq9sXVdsNsCG2B3YgfjbvJpmZaA0mpaAmC2osuKjpLaPnW7Fu3PovexOMlU5K/rfRM4lf8XmaNmP/IkDh3PiwOGJVkMTJy37btVomiA2j2GgyksOR40vPPATW5//HcOOfMQWR19SLnmak/vlNKaKGo0laAOl0TQxnGEDVdWr7spF8+n82QyyVSFfdv8tuVfcg8PpamwVNRpL0AZKo2lieEyvuqVHj7Wgtn+7loOv30ZO6ZfssHVj+4TnOWXIaYlSUaOxBG2gNJomRrtOPQAo3buFTV9/RNHif5Jz5GM64GJp7z8wdPJfjNUXNJomjjZQGk0T44SuvfiBDgzd+ABshGLlYVmny+h74Z8YcUL1H/lqNE0JbaA0miaGw27jwLgn2LliHvZuufQbcxmntM2o+UCNpomhDZRG0wTJPPUcOPWcRKuh0TQoeu18jUaj0SQl2kBpNBqNJikRVc06bY2NiOwDtlsgqj2w3wI5jYHWteFoSvo2JV2haenblHSFpqWvVbp2V0pVWTY1qQyUVYjIcqXUsETrEQ9a14ajKenblHSFpqVvU9IVmpa+Da2r7uLTaDQaTVKiDZRGo9FokpLmaqCeTrQCtUDr2nA0JX2bkq7QtPRtSrpC09K3QXVtlmNQGo1Go2n6NNcWlEaj0WiaONpAaTQajSYpaVYGSkTOEZHNIrJVRGYkWp9IRKSbiHwiIhtEZL2I3GCGzxSR3SKyyvydl2hdQ4hIgYisNfVaboa1E5H/isi35v/jkkDPfhH5t0pEjojIjcmUtyLyrIj8JCLrIsKi5qUYPGbex2tEZGgS6PqgiGwy9XlDRNqa4T1EpDQij2c3pq7V6Buz7EXkT2bebhaRs5NA1/kRehaIyCozPBnyNla91Tj3rlKqWfwAO7AN6AW4gNXAwETrFaFfJ2CouZ0ObAEGAjOBWxOtXwydC4D2lcIeAGaY2zOA+xOtZ5T74EegezLlLXAaMBRYV1NeAucB7wECjAC+SgJdxwEOc/v+CF17RKZLoryNWvbmM7cacAM9zTrDnkhdK8U/DNyZRHkbq95qlHu3ObWg8oCtSqnvlFJe4GVgQoJ1CqOU2qOU+sbcPgpsBLokVqs6MQF43tx+HrgwcapE5WfANqWUFSuSWIZSajFwsFJwrLycAPxbGSwF2opIp0ZRlOi6KqU+VEr5zd2lQNfG0qcmYuRtLCYALyulypVS3wNbMeqORqE6XUVEgEuBeY2lT01UU281yr3bnAxUF2BnxP4uktQAiEgPIAf4ygy6zmwOP5sMXWYRKOBDEVkhIr8xw45XSu0xt38Ejk+MajGZQsUHPFnzFmLnZbLfy1dhvCWH6CkiK0XkUxEZnSilohCt7JM5b0cDe5VS30aEJU3eVqq3GuXebU4GqkkgIq2A14AblVJHgCeB3kA2sAejiZ8sjFJKDQXOBa4VkQo+xJXRpk+a7xRExAVcALxiBiVz3lYg2fIyFiLyF8APvGQG7QFOVErlADcD/xGR1onSL4ImU/YRXEbFl6ukydso9VaYhrx3m5OB2g10i9jvaoYlDSLixCjkl5RSrwMopfYqpQJKqSDwDI3Y3VATSqnd5v+fgDcwdNsbarKb/39KnIZVOBf4Rim1F5I7b01i5WVS3ssiMh34OTDVrJQwu8oOmNsrMMZ0+iZMSZNqyj5Z89YBXATMD4UlS95Gq7dopHu3ORmor4E+ItLTfJOeAryVYJ3CmP3Lc4CNSqm/R4RH9s9OBNZVPjYRiEiaiKSHtjEGyddh5OkvzWS/BBYmRsOoVHgDTda8jSBWXr4FTDNnRI0ADkd0pyQEETkH+CNwgVKqJCK8g4jYze1eQB/gu8RoeYxqyv4tYIqIuEWkJ4a+yxpbvyicCWxSSu0KBSRD3saqt2isezeRM0Ss/mHMINmC8abxl0TrU0m3URjN4DXAKvN3HvACsNYMfwvolGhdTX17Ycx2Wg2sD+UnkAEsAr4FPgLaJVpXU6804ADQJiIsafIWw3DuAXwY/fK/ipWXGDOgZpn38VpgWBLouhVjbCF07842004y749VwDfA+UmStzHLHviLmbebgXMTrasZPhe4plLaZMjbWPVWo9y7eqkjjUaj0SQlzamLT6PRaDTNCG2gNBqNRpOUaAOl0Wg0mqREGyiNRqPRJCXaQGk0Go0mKdEGSqPRaDRJiTZQGo1Go0lKtIHSaDQaTVKiDZRGo9FokhJtoDQajUaTlGgDpdFoNJqkRBsojUaj0SQl2kBVQkR6iIgy/bNoGhARmS4iSxrpXCki8q6IHBKRPzbGOSudv0BEzmyE8+SLyNUx4pr9vW1e30m1jbNYh5hlLSJjRGRXtLhkRkTeFpF9IvJgY55XGyiNJYjITBHxiUhRxK/RDUE1nAlkAd2UUg+EAs3KpEfCtEoizDKcWYv0vxCR7SJSLCJviki7atI+LSKbRSRoOj6sjV4tpoxEZG5t8kdEbhKRH0XkiOna3l1N2p+JyCYRKRGRT0Ske0TcAyKy05SzXUT+HHmsUup8YCxwq4i0rf2V1Y1mZ6Ca89thE2C+UqpVxO+Bmg9pNNoBBUqpokQrUh9MR3AJf25FZBDwFHAFcDxQAvyzmkNWA7/H8GvUpEmWOkZEzgZmAD8DumP4cLsrRtr2wOvAHRjPwnIivPdiOCXsr5RqDZwKTBWRiyJlKKVCTh8zLLyMakn4jW4F5hvW7SKyBigWEYeIjBCRL0SkUERWi8iYiPT5IvK/IrLMfGNYGOvtT0SuFJGNInJURL4Tkd9Wip8gIqtMOdtMz6OISBsRmSMie0Rkt4jcE/KOWc119BaRj0XkgIjsF5GXQm8rZtxBERlq7nc2m9xjzP0LRGS9eb35IjKgUv7cKiJrROSwiMwXEU/tc7r2iMgMM1+OisgGEZkYI52IyCMi8pOZl2tFZLAZ5xaRh0Rkh4jsFZHZIpJSS1UcQLAGXTPE6Mo4IiJfm2W2JCJeicg1IvKtmc+zRETMuJhlF0GumQeHROS5UBmIyHEi8n9meR4yt7tGnDdfRO4Vkc8xDEGvGq61u4h8bub5h2blFMlUMy/3i8hfapAVi6nA20qpxabRvwO4SEwvzJVRSs1SSi0Cyup4PqDmMqqUdpQYrYIxEcHnmc/xfhF5UExjX1P5SZQ6pgZVs6t73kTkFvNe3yMiV9YlLzA82c5RSq1XSh0C/gZMj5H2ImC9UuoVpVQZMBMYIiL9AZRSm5VSxRHpg0C07lCF8Sw1Do3tobGBvD4WYHh67AakAF0wvKueh2GEzzL3O5jp84HdwGAMT6yvAS+acT0wC8HcHw/0xvAUeTpGBTHUjMsDDpvybeZ5+5txb2C8YaYBHTHcSv+2hus4yZTlBjoAi4FHI+J/DWwAUoEPgIfM8L5AsXmsE8M191bAFZE/y4DOGG9PG6nkvbOSB83Can6jYhw3M5SHlcIvMc9rAyabenYy46YDS8zts4EVQFszrwdEpHsEwytqOyAdeBv431rcH04MD6tV9KuU7mXzlwoMxPAguyQiXgH/Z+p4IrAPOCfOsivAcDvezbyOz4F7zLgMDO+pqeb1vQK8GXFsPrADGIRROTiruYZ8DG+mfTGehXzgvkr39jNm3BCgHBgQQ1Z15b0QuL1SWBFwcg15vASYXo9nPZ4yOgk4x4zLqxT3iZn/J2J43766FuW3yiy/lDjqo6jPGzAG8AN3m/fleRh1ynFR5JxolsGJMc6zGpgcsd/evMaMKGn/ATxZKWwdMClif4ZZhgrDtXzXKHK2A9eC4ey2oX8NfoJGuQjjhrgqYv924IVKaT4Afmluhx9ac38g4AXsVDJQUc71JnCDuf0U8EiUNMebD35KRNhlwCe1vK4LgZWVwt7imCtrtxl2B7AgIo0NwwCPicifyyPiH8B02W1hGcw087Aw4tc5SrpVwARzezrHDNQZGBXGCMAWkV4wjFrviLBTgO/j1Csbw732XuCkatLZzXT9IsLuoWrlNypifwEwI56yM8vgmoj984Bt1eh8KGI/H7g7zuvNB/4asf974H1zO3Rvd42IXwZMqUN5L6Kqi/LwPVfNcXU2ULUooz9hVKSDKx2vMF8oIvJmUS3K76o49Yz5vGEYqFIi6hfgJ2BEHfJjW6XrcZrX2CNK2jlE1Hlm2OeVy8J83nIwugrTo8iZiPmc16UMa/trFl18JjsjtrsDl5jdMIUiUojRMugUI/12jMKt3BWCiJwrIkvN7rVCjIollK4bxk1Sme6mvD0R538KoyUVExE5XkReFqNL8AjwYhSdnsFo+T2ulCo3wzqb1wCAUipoXl+XiON+jNguAVpVp0sdWaCUahvx+0FEponRBRrKh8FEyWel1MfAE8As4CcxBtVbY7zNpgIrImS8b4bXiFJqFUar5EvgxmqSdsBonUTeFzujpIuaj3GWXeV7rrN5bKqIPCXG4PQRjLf3tlKxSziaLrGoqaytuBeKgNaVwloDR+sgK17iLaMbMe7FdVHiYpVBbcuvJqrL4wNKKX818fFSuQxC29HKIK7yUgYrMYxotPGsuzBeRmNOiLGS5mSgVMT2TowWVGRlmaaUui8iTbeI7RMx3sz2RwoUY0bMa8BDwPFKqbbAuxhvGaHz9I6iy06MFlT7iPO3VkoNquEa/p95HZnKGKy8POJciEgr4FGMt6GZcmzc7AcMoxhKJ+b17a7hfFUQkdFScSZe5d/oWsjqjmFQr8PodmiL0a0g0dIrpR5TSp2M0aLtC9yGUSalwKCIvGyjlIr7gVZGn/t7ptxY7MPoeukaEdYtRtpoVFt2UeSdiFFuALcA/YDh5rGnmeGRx0fe38nAeowuQgBEpBdG99iWBjxnvGV0CXChiNwQJS5WGcRTfkldBub2XqXUgZrSikgaRt21PoZsB9HrtgHAQvMluMFpTgYqkheB80XkbBGxi4hHjO8PIm/sy0VkoIikYvQHv6qUClSS48J46PYBfhE5FxgXET8HuFKM6Zs2EekiIv2VUnuAD4GHRaS1GddbRE6vQe90jDedwyLSBaOCjuQfwHKl1NXAO8BsM3wBMN7Uw4lR4ZUDX9SUUZVRSn2mKs7Eq/z7rBbi0jAe6n1gTDjBaEFVQURyRWS4qX8xxmB60HwQngEeEZGOZtouYsxgCh2rKg2ER6McozyjYpb96xiGP9UcPJ4W11Ua1FR2ANeKSFfzxeIvHJtFlY5hhAvNuP+pxXkTxUsYz9hos7K7G3hdKRW1BSUiLnOigABO85kMTVAYIyI1Vv61KKMfMGa23SAiv6sUd5sYk1K6ATdQsQxqKr9k49/Ar8x6rC3wV2BujLRvAINFZJJZDncCa5RSm8z66bdmvoiI5GGMMy2KIseB8Sw1Cs3SQCmldgITgD9jVI47MW64yOt9AaMwfwQ8wB+iyDlqhi8ADgG/wBgDCsUvA67EGMQ/DHzKsZbMNIwKcYN57KtU7GKMxl3AUFPWOxgPI2DMFsQY+A09cDcDQ0VkqlJqM8Yb3+MYLY7zgfOVUt4aztegKKU2AA9jdK/tBTIx+r2j0RrDEB3C6Ho5AIQ+CrwdY9LHUrP75SOMFgdmRXMUY1yuOoLUfL9fB7TBuCdeAOYR/8MYs+wi+A/Gi8t3GF3D95jhj2JMWtgPLMXowkw41bWYlVLrgWswDNVPGBX87yOOfU8qfkvzIYYRPhV42twOtRS7Ef/LVFxlpJTagWGkZkjFD5cXYkzGWYVRTnPM8HjKr1ERkRPNMjgxWrxS6n2M8a1PMCbRbCfi5UaMWb1TzbT7MCbi3IvxjA0HpkSIm4hxTx7FeMF/3PxF6hPqcm6U1hOYMzFaGiKSjzGj61+J1kVTP0Tkcozuvz/VkG4cxoPXXyl1ME7Z9wMnKKV+WX9NNbEQkX8BryilPqjDsbqMGgmzZfUl0DZWS9lqkuKDM42mriilXowzaT7wX2C9iDyslHqocgKzy8iF0RrLBX4FRF02SGMdZpd1XOgySgwi8iZGC/OOxjJOoA1UoyMiszG64yrzolLqmsbWp6VgdndOrSFZOkaXUWeMLsmHMbqEkgoRibUaxrm1HCNsiiS8jMwutw0xogea3YvNCqXUhYk4b4vs4tNoNBpN8tMsJ0loNBqNpumTVF187du3Vz169Ei0GhqNRqNpRFasWLFfKVXl4/ukMlA9evRg+fLliVZDo9FoNI2IiGyPFq67+DQajUaTlGgDpdEkEWW+AP9d9R168pJGow2URpNUfPLGvzjrzRxWfB1rwQ2NpuWQVGNQ0fD5fOzatYuysnr5OdO0MDweD127dsXpdCZalVpx3O58AGw7v4K8UYlVRqNJMElvoHbt2kV6ejo9evTAWKRbo6kepRQHDhxg165d9OzZM9Hq1Iqgpy0cBn/p4USrotEknKTv4isrKyMjI0MbJ03ciAgZGRlNstWtXKbH9LIjiVVEo0kCkt5AAdo4aWpNU71nlCMFALuv0ZY702iSliZhoDSalkLIJZndqw2URqMNVByICLfcckt4/6GHHmLmzJmJU6gG8vPz+eKLWvsqDLNq1SpOOeUUBg0aRFZWFvPnz6/5II01BA0DZfOXJFgRjSbxaAMVB263m9dff539+/fXnLgWKKUIBq33/VVfA5Wamsq///1v1q9fz/vvv8+NN95IYWGhdQpqYqNCBqrpjZ9pNFajDVQcOBwOfvOb3/DII49Uidu3bx+TJk0iNzeX3NxcPv/c+H5l5syZPPTQMZdDgwcPpqCggIKCAvr168e0adMYPHgwO3fu5LbbbmPw4MFkZmaGWyv5+fmMGTOGiy++mP79+zN16tSoH28+9thjDBw4kKysLKZMmUJBQQGzZ8/mkUceITs7m88++6xaHa+44gpOOeUU+vTpwzPPPANA37596dOnDwCdO3emY8eO7Nu3r8q5X3nlFQYPHsyQIUM47TTDOWpZWRlXXnklmZmZ5OTk8MknnwAwd+5cLrzwQs466yx69OjBE088wd///ndycnIYMWIEBw8aPgSfeeYZcnNzGTJkCJMmTaKkpGpLYsSIEaxfvz68P2bMmOazRJb5wmILNJpXbY0maUn6aeaR3PX2ejb8YO3spoGdW/M/5w+qMd21115LVlYWf/zjHyuE33DDDdx0002MGjWKHTt2cPbZZ7Nx48ZqZX377bc8//zzjBgxgtdee41Vq1axevVq9u/fT25ubriyX7lyJevXr6dz586MHDmSzz//nFGjKn4bc9999/H999/jdrspLCykbdu2XHPNNbRq1Ypbb70VgF/84hcxdVyzZg1Lly6luLiYnJwcxo8fT+fOncPyly1bhtfrpXfv3lWu4+677+aDDz6gS5cu4RbWrFmzEBHWrl3Lpk2bGDduHFu2bAFg3bp1rFy5krKyMk466STuv/9+Vq5cyU033cS///1vbrzxRi666CJ+/etfA/DXv/6VOXPmcP3111c47+TJk1mwYAF33XUXe/bsYc+ePQwbNqzaPG8qiNmCcgR1C0qj0S2oOGndujXTpk3jscceqxD+0Ucfcd1115Gdnc0FF1zAkSNHKCqK5U/OoHv37owYMQKAJUuWcNlll2G32zn++OM5/fTT+frrrwHIy8uja9eu2Gw2srOzKSgoqCIrKyuLqVOn8uKLL+JwRH/fqE7HCRMmkJKSQvv27Rk7dizLli0LH7dnzx6uuOIKnnvuOWy2qrfKyJEjmT59Os888wyBQCB8PZdfbvhj7N+/P927dw8bqLFjx5Kenk6HDh1o06YN559/PgCZmZnha1u3bh2jR48mMzOTl156qUJLKcSll17Kq6++CsCCBQu4+OKLq83vJoU5BuUKWDsGVVRcRMG2TZbK1GgamibVgoqnpdOQ3HjjjQwdOpQrr7wyHBYMBlm6dCkej6dCWofDUWF8KfKbnLS0tLjO53a7w9t2ux2/318lzTvvvMPixYt5++23uffee1m7dm2VNLF0hKrTsUP7R44cYfz48dx7771hY1qZ2bNn89VXX/HOO+9w8skns2LFirivx2azhfdtNlv42qZPn86bb77JkCFDmDt3Lvn5+VXkdOnShYyMDNasWcP8+fOZPXt2tedtUpgtKI+ytgW1YdZl5JUsxv/nn3C43DUfEI/MtSvY+9WrjLnqXiTKC0xd2LZ1Cz8snc/oqX+FJvqpgMY6dAuqFrRr145LL72UOXPmhMPGjRvH448/Ht5ftWoVYLgO+eabbwD45ptv+P7776PKHD16NPPnzycQCLBv3z4WL15MXl5eXPoEg0F27tzJ2LFjuf/++zl8+DBFRUWkp6dz9OixacqxdARYuHAhZWVlHDhwgPz8fHJzc/F6vUycOJFp06ZV2zrZtm0bw4cP5+6776ZDhw7s3LmT0aNH89JLLwGwZcsWduzYQb9+/eK6HoCjR4/SqVMnfD5fWE40Jk+ezAMPPMDhw4fJysqKW37SYxqoFFVqqdi8ksUAHNy70zKZ7jevZuyuf3LoxwLLZJa9cjWjtz7EoZ3Vd5PXhq07drHwhX+gGmBCkqZh0Qaqltxyyy0VZvM99thjLF++nKysLAYOHBh+m580aRIHDx5k0KBBPPHEE/Tt2zeqvIkTJ5KVlcWQIUM444wzeOCBBzjhhBPi0iUQCHD55ZeHJyT84Q9/oG3btpx//vm88cYb4UkSsXQEo4tw7NixjBgxgjvuuIPOnTuzYMECFi9ezNy5c8nOziY7Ozts1O68807eeustAG677TYyMzMZPHgwp556KkOGDOH3v/89wWCQzMxMJk+ezNy5cyu0nGrib3/7G8OHD2fkyJH0798/HP7WW29x5513hvcvvvhiXn75ZS699NK4ZTcFxOziS6GMYNC6Fc19yg5ASeFey2Tag8ZEjsMWGigpM5Z4Orx/t2Uyd71yOxO23cne9Z9aJlPTOEgyLes/bNgwVXk21saNGxkwYECCNGrezJw5s8JkiuZGU7x3vnj8Kk498BoAxX/cQ1pqqiVyi//neNKkjM3nzqPf8PMskbnzrgF0Uz+w+cy59Bs10RKZm2YOoT8FbPnZHPqOtmZs8bN7zmG0/0u+G/M4vcZMs0SmxlpEZIVSqspMJ92C0miSCbOLD6CkyLoFY73iMv4XWzcLNijGELav1LpVLwJirD7vK7FOz9AEn/ImuDZjS6dJTZLQWEsyr4bRYlHHxklKi48AnSwR68Ws+Eurn2FaG3w2FwStNVA+mxsC4Cu1zkCJzeje9FsoU9M46BaURpNESEQLqtzC1o7PbEEFLFwl3Sduy2X6bYbMYJmFrTKbce1BbaCaHNpAaTRJhETMNPOWWNgyCRso62T67YYxUeXWtcqCIWNioZ7YjI4iVa4NVFNDGyiNJqk41oLyWth15jcrflVebJlMEaPrTFloTGxiTtryWqen02bIFG2gmhzaQGk0SURkC8pvoYESzEraa11rx6b81ss0p9mLz0qZ1uupaRy0gYqTN998ExFh06bYy8UUFBQwePDgBtVj1apVvPvuu3U+PvRh78CBAxk0aBD/+Mc/LNROU18ix6D8VrZMTGNis7DiD+lq91vX2gnpafdZ2NIL66ldmDQ1tIGKk3nz5jFq1CjmzZsXNT7aMkS1JbSeXXXU10A5HA4efvhhNmzYwNKlS5k1axYbNmyoszyNtQgBijC+fQqWWWdM7CE3Hj7rKulQy8RKY2IzuzitNVCmntpANTm0gYqDoqIilixZwpw5c3j55ZfD4fn5+YwePZoLLriAgQMHAoahmjp1KgMGDODiiy8Ou4tYtGgROTk5ZGZmctVVV1FebnyF36NHD26//XaGDh3KK6+8UuG8ld1ZeL1e7rzzTubPn092djbz58+nuLiYq666iry8PHJycli4cCFguLeYMGECY8aMoU+fPtx1110AdOrUiaFDhwKQnp7OgAED2L276lf7n376aXgViZycHI4ePYpSKqZrkNNPP50JEybQq1cvZsyYwUsvvUReXh6ZmZls27YNgLfffpvhw4eTk5PDmWeeyd69VVc1mDJlCu+88054f/r06eGFYVsCooKUiGmgLJx8YAutkm5la8c0Js4GaEE5AxbKDIZkagPV1Gha30G9NwN+rLoYar04IRPOva/aJAsXLuScc86hb9++ZGRksGLFCk4++WTAWGdv3bp19OzZk4KCAjZv3sycOXMYOXIkV111Ff/85z+57rrrmD59OosWLaJv375MmzaNJ598khtvvBGAjIyM8Lp9kVR2Z+Fyubj77rtZvnw5TzzxBAB//vOfOeOMM3j22WcpLCwkLy+PM888EzBcZaxbt47U1FRyc3MZP358BbcUBQUFrFy5kuHDh1c590MPPcSsWbMYOXIkRUVFeDweXn/99ZiuQVavXs3GjRtp164dvXr14uqrr2bZsmX84x//4PHHH+fRRx9l1KhRLF26FBHhX//6Fw888AAPP/xwhfOGXGmMHz8er9fLokWLePLJJ+MszKaPqCAltjQI7Ld0ooDdNCYOCyvpsNELWLduYEimlcZEwjKtXd9Q0/DoFlQczJs3jylTpgDGG35kN19eXh49e/YM73fr1o2RI0cCcPnll7NkyRI2b95Mz549w+vx/fKXv2Tx4sXhYyZPnhz1vNHcWVTmww8/5L777iM7O5sxY8ZQVlbGjh07ADjrrLPIyMggJSWFiy66iCVLloSPKyoqYtKkSTz66KO0bt066rlvvvlmHnvsMQoLC3E4HNW6BsnNzaVTp0643W569+7NuHHjgIquNHbt2sXZZ59NZmYmDz74YFRXGueeey6ffPIJ5eXlvPfee5x22mmkpKREvfbmiKgAQXFQisviCQ3Wu/EItXZcQetk2sMyrTMmoS4+t4UyNY1D02pB1dDSaQgOHjzIxx9/zNq1axERAoEAIsKDDz4IVHWdEct9RXXEcr8RjzsLpRSvvfZalRXDv/rqq5i6+Hw+Jk2axNSpU7nooouinnvGjBmMHz+ed999l5EjR/LBBx9Uew3xuNK4/vrrufnmm7ngggvIz8+PupKFx+NhzJgxfPDBB8yfPz/8YtBSEBUkiI1SUrBZ2HXmwPqKP2T0rKz4G0JmyOi5LV4hXtPwNHgLSkTOEZHNIrJVRGY09Pms5tVXX+WKK65g+/btFBQUsHPnTnr27Mlnn30WNf2OHTv48ssvAfjPf/7DqFGj6NevHwUFBWzduhWAF154gdNPP73Gc0dzZ1HZlcbZZ5/N448/HnYHv3LlynDcf//7Xw4ePEhpaSlvvvkmI0eORCnFr371KwYMGMDNN99c7bkzMzO5/fbbyc3NZdOmTfVyDQJw+PBhunTpAsDzzz8fM93kyZN57rnn+OyzzzjnnHPilt8csKkAQbFTZku1dKKAHWP6usdCT722BvBdFeqKtFKmhF2Y6LX4mhoNaqDE+JJvFnAuMBC4TEQGNuQ5rWbevHlMnFhxpeZJkybFnM3Xr18/Zs2axYABAzh06BC/+93v8Hg8PPfcc1xyySVkZmZis9m45pprajx3NHcWY8eOZcOGDeFJEnfccQc+n4+srCwGDRrEHXfcET4+Ly+PSZMmkZWVxaRJkxg2bBiff/45L7zwAh9//HF4EkRoVuDs2bPDrjgeffRRBg8eTFZWFk6nk3PPPbderkHAWPvvkksu4eSTT6Z9+/bh8OXLl3P11VeH98eNG8enn37KmWeeicvlilt+c8BGACV2ym0pOCycdWY3W1AeLGyZEHINYmVr55i7ESzytBBuleGFQP1n22oajwZ1tyEipwAzlVJnm/t/AlBK/W+09NrdhnXMnTu3wmSKlkhTvHfW3TsKhw1EKbzKRuZforfUa0vJ/3QkVcrxKgeuuw5YIvPHmb05AcM3mrpjP2J31lvmzpl96YYxu1P9ZS/irOoFurZsuvtk+geN3gt1+3YkpW29ZWqsJVHuNroAkS48d5lhkYr9RkSWi8jyffv2NbA6Gk1yY4xB2fE5Ui2dfOAwWzsu8eMtt6arKzSuBeC1aJV0e8RST+UWrUUYGoMCa5eP0jQ8CZ/Fp5R6Wik1TCk1rEOHDolWp9kwffr0Ft16aqoYXXw2fI40aycKEKBYGa2RUov8TNkJHPPUW2TNOncOFcCvjGrJKj1tEUavrFgbqKZEQxuo3UC3iP2uZlitSCavv5qmQVO9Z0QFUWIn6EgjxaJZZ8FAALsojkorwDpHiHYV5IgYM1DLiq0zekWmzHKLnBbaVYBSZYxlllnoCFHT8DS0gfoa6CMiPUXEBUwB3qqNAI/Hw4EDB5pshaNpfJRSHDhwAI+n/uMXjY2NIEpsBF1ppFpkoHx+LwCldsNAWdZ1RoCSsDGxTmaRzdDTKmMSafSsdGGiaXga9DsopZRfRK4DPgDswLNKqapfZ1ZD165d2bVrF3p8SlMbPB4PXbt2TbQatcamjC4+XK1IpQyvL4DLaa+XzIAvZKDSIWBdy8RBgBJbKwiA1wKZwaDCQYAyWysIWiMTjBZUsS2NDuqQNlBNjAb/UFcp9S5Q59VNnU5nhZUaNJrmjBBEYQdXK6NbruQorjZt6yXTZ34o7XWkg9eaVoRSCjsByh2G0bNi8oE/qHASoMzRGvzgK7Fu4kWZPd2QaaUjRE2Dk/BJEhqN5hg2FUTZbNjcRjdXqQWTDwJeY2Fin6uN8d+CStofCOKQID6nsUyWFb6r/MEgDvx4QzItMiaGITXy00ofW5qGRxsojSaJsJktKFtKOgBlxYX1lhn0+4z/bsNAWVFJ+3yG0fObRs8KF+0+vzGZI6RnwAJ3I0oZ3YYhQ2qFTE3joQ2URpNE2AiibHYcHsNAlVswO84fMAwUHtOYWOD23ec1xrWsNCY+s6UXkmmFuxFfQOHEj99CmZrGQxsojSaJMJblseFMMd74vRaMw4QmSYRWULDCEWJIJqZMZYFrkIDPMKQhPZUFxsToNgwgrlbGN1va7XuTQhsojSaJCLWgnKmGgfKV1n8Mym8aE3vqcUaA14LxInPqut2dRrlyWFLxh7oNnU43xcptibsRnz+IW/w4XG5KcINXOy1sSmgDpdEkEXaMD3U9qaHJBxYYKHMMyuZ0Gx+sWtDaCRk9m91JKR7EihaUuZCrOByUigexYDX38LU7XJSQgs2nW1BNCW2gNJokwkYAxI67lWGgrJh8EJokYbM7KZEUbBZU/OHuOIeTUvFYJNNoQYndZfjD8tW/tRMa18LmpEw8lsjUNB7aQGk0SYQxzdxOaqu2gEXjMKHWjsNJmaRgs8CNR8BnLDhrszspt1kl0zR6pky7BQ4bQ9cuDhdlthTsFrow0TQ82kBpNEmEjSCInZQ0owVlhYEKBkLdXE7KbR5L/EyFxqDE4aZMUi2RGQjJtDvx2lJwWOCe3m+2ymwO62RqGg9toDSaJMJBAGWzIw4X5cppyUSBUBef3eHCa7PGmPh9IZkOvPYUnBa4Bgn4jxlSrz0FZ6D+axGGWlDYXfhs1sjUNB7aQGk0SYSDAEoMx38lkmLJRIFQy8TmcOK3p+CywI3HMZku/PZU3BZU/AF/qLVjyLREz1ALyu603MeWpuHRBkqjSSJCLSiAUrFmHCZozo6zhytpKyp+c5q5w4XfkWqJ76pQS0/sTgIWyQzpaXO6CDhS8QStcdaoaRy0gdJokgQVNNa3w2as4VxuS8FhQQsqGPpmyek0K2nrWlB2p4ugIxWPBa5BghEtvYDTGn9YYQPlcBFwpOFW2kA1JbSB0miShNB3QMo0UF5bKk4LBvWDEd8CBZ2tLKn4I8e1gi5rjEmkTOW0xh9WuCvS7kI5U0mhFLRvuSaDNlAaTZIQqkxDLSivPRV3wLouPofDaVT8lNXbAWggwpjgTCNFvCjzPHXX89j3WsqVhlMCKHNcqq74Q+NaThfK1Qo7Cvy6FdVU0AZKo0kSfObMOOzGJAm/I82ScRjlPzZehLsVbvFRVla/ij+y21CZrkHK67lKergF5XQhrpC7kfotlhvZKhOX9qrb1NAGSqNJEkIrhNvsRgsq4EzDoyzo4jNbJnaXCzGNSUlRYf1kmgbK4XBhCxmTo/U1JsfGi8Rczb20uH5LPQXNWXx2x7FrL6unTE3joQ2URpMk+HzHxksAAs5WlozDhFZ5cLjSsLlDFX/9jEmoVeZwe7CFjEk9WzvKV2rKTMFuyiyrp0xvudGd5/Z4sIcMlEWu5DUNjzZQGk2SEFo3TswuPuUyx4uCwfoJNlfwdqW2wuExu+Pq6alXzDXt7K60sO+q+lb8QXPBWU9K+jE9S+pnoAKm7ytXajr2FEOmVxuoJoM2UBpNkuA3DYk4PUaAKx27KEpL67mahFnxp6SmYw/5marnKunKXOHCndYaR6phoOrrGkSZxsSdlo4zxXRPX89xLWUutpuS1hZn2OjpMaimgjZQGk2S4C83x0ucbgDErFCLjxbWS67ylVKmnIjNjst0JV/fVkTIQaEnNT3sXNFXz4o/5LLDndIKZ6pFrZ2QIY3U0wIXJprGQRsojSZJ8IdWCHcZLajQeFG9u+P8JZSJIdOVFvIzVb9WmXiL8Sk7Nqcbl+m7KlBWXz2NMShxpuJONV3J11PPkCEVdyvcZkuvvteuaTy0gdJokoSA1zRQzhQAHOYbf1k9JzTYfccMVKjir68jRPGVUCKGnh7T6NXXmOArphQ32GxhmcHyerbKfMX4sYHDgzukpwUrxGsaB22gNJokIeA1WhChLj6H2R3nq2c3ly1QRrlpoFJbhVo79av4bb4SysXQ05PWFoBgPV3Ji6+EUgw9U1oZhjRYVj9jYvcVGzJFwi5MgtpANRm0gdJokoRQqyZkmEJdZ/UdM3EESvHZDGOSmt4WqL+fKZu/hHKzBZXaytCXesoUbwlem2lI01oRUBIeQ6ordl8RZZX0tMLHlqZx0AZKo0kSQgYqpdVxALjTrOmOS/EVUupoC4DLk2ZJxe/yHabMYVT4HpeLEuUOzxasK25fIaUOwyi7nQ5K8NRbT4/3IMXmtae6nBRboKem8dAGSqNJEoKlxlhTauuKBqq+3XHpgUN4PRnGjgilkhKePFBnmf6DlLoMmTabUIKn3s4VWwcOUuzMCO+XSAq2eq7m3sp/iBJnOwAcdpuhpwUrxGsaB22gNJokIWjOgkszDZQV4zDBQJDj1GECKe3DYaXiwe6rnzE5LngIX0qHCJn1812llKJNoBCv55ieZZKCvZ7GpHWwqsz6Gj1N41EvAyUiM0Vkt4isMn/nRcT9SUS2ishmETm7/qpqNM2c8iOUKyduTyoAqWYLinrMZCs8fIgU8ULaMWNSJqnYfHVf4+9IcTHt5CgqUqYtBXs9ZB4uLqUdh7G16hihZ/2M3uGiMjJUYaVr92Dza7fvTQWHBTIeUUo9FBkgIgOBKcAgoDPwkYj0VUoFLDifRtMssXmPUiSpuM19l8tpju3UvbWzt2A97QB3x97hMK89BWc93Hjs/m4DrQF3x5PCYeW2+sn8ace3tJUg9g7HZHrtqbjq4Q9r944tDBQ/zo59Kujp8Gu3702FhurimwC8rJQqV0p9D2wF8hroXBpNs8BTsodCe0aFsBKp35jJkR3rADiu++BwmK+eFf+h7YbMtt0zw2FeW1q9nCv+9N1qQ+aJg47JtEjP1l0HVpBphRNITeNghYG6TkTWiMizInKcGdYF2BmRZpcZVgUR+Y2ILBeR5fv27bNAHY2madKubBeHU7pVCCsXT3g18rqgdn5FMR669DpmoPyONFyBundz+bd/Rbly0umk7AiZKfXyXRXY8RU+ZadLv9xjMu2p9ZLp/24JPmWnU//hETJT6nXtmsalRgMlIh+JyLoovwnAk0BvIBvYAzxcWwWUUk8rpYYppYZ16NCh5gM0mmaIz+flhOBevG16VAgvlxTsdTRQKhiky8Gv2JqShd3pCocHHKl19jMVDAQ5cf9ivksZhMOdGg73O9LwBOsus+u+T/neMwCbO+2Yns403HV0NxIMKjrt/4ICT//wd2VQf6OnaVxqHINSSp0ZjyAReQb4P3N3NxD5KtjVDNNoNFHYu+NbukoAe/uTKoT7bB4cdRzU3/D1IgapPezr85sK4UFXKzyqbm7PV335AUPVblb1rygz4Eirs8w1yz4iW+1kVb8rK8p0ptXZH9bqZfnkqO9Z2/dPVWTW1ehpGp/6zuLrFLE7EVhnbr8FTBERt4j0BPoAy+pzLo2mOXNgx0YAWnXuVyHca0/BWYc3fhUMEvj4/3GENPqfVbHiF1caaZRS7q/dnKWA348r/x4O0poB4yrKNHxXlYJStZLp9/mwL7qbQ7RmwNm/qijTmUYK5RCsnZ7BQBAW3cUR0ugzrpJxdqSSQt0Mqabxqe8Y1AMislZE1gBjgZsAlFLrgQXABuB94Fo9g0+jiU3pj1sA6NB9YIXwQB3HTL56+V6yyr9hc7/fk5p+XMVIVyvSpJyiUm/8ApVi3ZzfMdi/ju05t4UXnQ0RdLbChkLVZqq5Umx47loy/WvZkXMrbnNNv0g9ofaLu34x5xZyfCspyLoRT3q7SjLTcOODgK9WMjWJoV7TzJVSV1QTdy9wb33kazQthoPfUaw8ZHSsOJco4EjFVcuus2/en0ve5odZ0Wo0Qy/9U5X4kIv2kqIiMtJT4pK5esHfGLJnAZ+0m8yYC66vEi/uY84APa60KvHR2PT6/yPrh/ksOu5SzrjgDzFllhYdplVKmyrx0Vjy8oOM+uFZVrT7OUMvvLVqAlO3QHkR9tTjqsZrkgq9koRGkwSkHC1gj6MLYqv4SAadabhrYaA2LfsvA7+8lS3O/gy69mXsdnuVNPaQgSo+FJfMdR8+y5CND7M05XRG/u6fiEiVNKHJDaVFhXHJ/D7/3/Rf+wBL3KNjyzQdNpYVx7cW4bIPXuKUjfeyLjWP7N89VyUvDT1DRk87LWwKaAOl0SQBGeVVp5gDKGcKKXEaqB3fruH4d69kv609x//2DTymV9rKOM1ZbfFU0luWvU/fz29jnWMQg6/7Dy5n9E6XkCv5sqKaV73YufK/dMm/idW2gfT/3Ut4XM6o6RymIY3HH9barz5m8Bc3UeA8iZOufbXCrMVIQgaqrL6eejWNgjZQGk2C8XnLzSnmPatGOtNIpRxfDRMaDvy0G9t/LgEEufxVjuvQKWbakIEqr8FF+87N33DCu1exx3YCJ/zmdVqlRTd4AE7TmJSWVG9M9n63mjYLf8kPdCTjV6/Svm3srruQ0fMWV6/nts2r6fLeNAptx9HhtwvxpFUjs5atMk1isWKpo6SntLiIktJifOVlOCWI052K05OGy5OK3a5ttCax/LjjW7pJEHv73lXixJ2GTRRHi4tp06Z11ONLio+w/+mJdA8eYMcFC+jbe3DUdCFCrs+91bQi9v+wHefLl+LFif2K12jf8YRqZbpSQ84VYxuTQ3t3oF64GC8O/Je9Qo8uUb/dPybTNHreatyN7PlhB655l2ID7NNeo3WH6mUecwJZvxXi48Xn81J0+BDBgA+nw4nd4cTpcuF0pyC2qt2vmoo0KwN1+NB+tn65kPJda0g7tIG25XtoF9hPupQSbSg4qIQSXJSJi3I8eG3Gz2fzELB78Ns8KBFQYP4BZWwJClCIUmacQsCcZqsi4jkWH56CW7upuLGI0m1fLaaGjYfCyL/KwTVeftUEqvroGo6OM22NcmshWUXdjEpa0Jilll5pijkcG9spKT4c1UD5fT42zbqMbN8W1ox8nOyTz6hRtZAbD19p9Er66OGDFM6ZSOfgEXZd+Bp9e/WPW2YsY1J85BAHnr6QzsHDfP/zBQzqV70RBXClVe/9t7DwIEf+NZETOcjeia/Qo2ccMuMwerVFBYP8ULCJ3WsXE9y1nJSjBRxXvov2wYOkSjmxpmJ4lYNyceHFhVdc+G0ufOImYHMTsLvxiREeEEeFOkjCdVGU+iSyrgrVQ5XCDBlUkRX5qIbCQ3XWsSgFciz8J1c3fnbLv+PKp7rQrAzUwT0FnLzsZnzKzi57Nw6k9ODH1OGoVsdjd6UiDjd+JSh/OeIrBX8J4itBfKWIvxR7oBS7vxRnsAy3t5D0Cn3/RhFVqORFIm4ZIVysUt2+hUbCGjvXYBx7OKpLU4cIqSa6BllW5H6NMmKeL9aRbja5TqVX1ilVYuyhMZMo3VwqGGTF7KsZXrKErwf8kdxxMSfVViClGrfv5eWlFPzzIgb4v2fDmKfIyhkdl0xPWuyWSXl5Kd/Pmkh///esPW02Oblj4pLpNmX6oxjSsrJSCv55MYMD37F17FP0HxKfTGdYZv3cjXi9XjZ++Q7Fa96i54HFdGE/XYAS5eZHRxcOtOrLntROKHcb8LQGm5Ng0A9BPwS84C9H+crAX4bNX4YEyrEFyrAHyrEHy3F4y3BzlNaqHDsBotY/RL4AVo0Pb0uMY6uYqVC6ivHH5GC+oB8Lb+iV4ZuVgerWJ4utE9+hW78cenrSiNKjr9E0KRyhMZMoFf9Xz/+JEQfe5MtOV3DKlL/ELTPFbJlU9jMVDARY88Tl5JavZHn2PQwbe2ktZJq+qyp9sxQIBFj7xC8YVr6SZdn3kPezyXHL9JjfRQUrGdJAIMCqJy5nhHcFa06+h6wx8evpSTWu3V9HJ5A7tm1g+39n0+/HtxjCIUqViy2tctnZ/bd0HHg6J/YfSi9H9EkfzZGa29b1o1kZKIfTxUlDRiVaDY3GMkIGylupFfHlK3/nlO2z+brN2Qy/+rFayRS30YoIRviZUsEgS5+6llOPfsTSntcxYmLVb52qIzU95Fyxoswvnvwdo49+zNJe19depmlIVYS7EaUUn8++jtOKPmJF72s5Oco3WdXhDnUbltduhfg1K5ZQ+tH95JZ8RhdgQ6sR7BkylX6jLmRIanqNx2vqRrMyUBpNc8MVntBwrOJf8daT5K27m7WpuWRf+wK22k70MVdosJUb4zAqGGTJMzcx+qd5fN3xYoZf8bda65mWkka5cmArKwzL/OypGzht/3y+OeFSRtRJppti5UbKDodlfvr0zYzZ9x++OX4SJ19e+3UAUs0uPhXn6hRrv/6UskX3kVv2BUWksuLE6fQ89w9kdu5V63Nrao82UBpNEuNqczwAUvQjYLSchq+7mw3uIfS57nWcLnd1h0fH7mS/tKNV2R4CgQBLn76e0XtfYkXG+Qy75umoH7jWhM1u40fpgLt4N4FAgC+fupbTfprHivYTGPqb2bWf0QM47DZ2SAecRbvx+/18/vQNjPnpRVa1P5+c3z5TJ5mpKamUKwd4q29BrVv2Md6P72No2VccIY1vel3DwAv/SG7rjGqP01iLNlAaTRKT1tF8U9//LV/989ec8tMC1qUO46TrF8b8EDce9jlOoEvxBlY/fD4jSz7n6w4XMex3/6rX1OdDzhPofGQNqx76OaNKv2B5x4s5+Zqn6yXzoKsTPY+uZeXDEzi9dAnfdJxIzjVz6izT5bBxkBRs5VW/11JKserz97F99iBDyldQSCuW976OwRNvZWgrvSxSItAGSqNJYo5r05o9tGfYjjkAfNlxMrm/fgJHjJUS4uVA20xG7ZtPt+KdfNX/jwyf8uc6tUgiOdx+KNl7VpJR8iVfD5xB7qUz6i8zI4eMPV9zXMnnfDPwNoZe+pd6y/zBdgJpxcf8qR49eoT1H71A+roXyAls5CCt+eqkGxky8WaGVfPRr6bhEVXL5fEbkmHDhqnly5cnWg2NJqlY8d5zuFb9m+Dw3zLkjCmWyDxceJBN//cYxw8dT4+BuTUfEAfFRUdY/+6TdBpyFt36DbVEZlFxEeveeZKuQ35GV4tkfnb/RWSXfsn6QbfiLPiUvkXLSJdSdtk6s7//FQw8/w+4UureOtXUHhFZoZQaViVcGyiNRtOS+OydFxm57DpsothPWwrajaZ13mX0yTu3TuNvmvoTy0DpLj6NRtOiGD3+cgpOysRpFzr3GkR7veRQ0qINlEajaXH06Dck0Spo4kC3ZzUajUaTlGgDpdFoNJqkJKkmSYjIPmC7BaLaA/stkNMYaF0bjqakb1PSFZqWvk1JV2ha+lqla3elVIfKgUlloKxCRJZHmxGSjGhdG46mpG9T0hWalr5NSVdoWvo2tK66i0+j0Wg0SYk2UBqNRqNJSpqrgXo60QrUAq1rw9GU9G1KukLT0rcp6QpNS98G1bVZjkFpNBqNpunTXFtQGo1Go2niaAOl0Wg0mqSkWRkoETlHRDaLyFYRmZFofSIRkW4i8omIbBCR9SJygxk+U0R2i8gq83deonUNISIFIrLW1Gu5GdZORP4rIt+a/xPuKEdE+kXk3yoROSIiNyZT3orIsyLyk4isiwiLmpdi8Jh5H68REWuW8a6frg+KyCZTnzdEpK0Z3kNESiPyeHZj6lqNvjHLXkT+ZObtZhE5Owl0nR+hZ4GIrDLDkyFvY9VbjXPvKqWaxQ+wA9uAXoALWA0MTLReEfp1Aoaa2+nAFmAgMBO4NdH6xdC5AGhfKewBYIa5PQO4P9F6RrkPfgS6J1PeAqcBQ4F1NeUlcB7wHiDACOCrJNB1HOAwt++P0LVHZLokytuoZW8+c6sBN9DTrDPsidS1UvzDwJ1JlLex6q1GuXebUwsqD9iqlPpOKeUFXgYmJFinMEqpPUqpb8zto8BGoEtitaoTE4Dnze3ngQsTp0pUfgZsU0pZsSKJZSilFgMHKwXHyssJwL+VwVKgrYh0ahRFia6rUupDpZTf3F0KdG0sfWoiRt7GYgLwslKqXCn1PbAVo+5oFKrTVUQEuBSY11j61EQ19Vaj3LvNyUB1AXZG7O8iSQ2AiPQAcoCvzKDrzObws8nQZRaBAj4UkRUi8hsz7Hil1B5z+0fg+MSoFpMpVHzAkzVvIXZeJvu9fBXGW3KIniKyUkQ+FZHRiVIqCtHKPpnzdjSwVyn1bURY0uRtpXqrUe7d5mSgmgQi0gp4DbhRKXUEeBLoDWQDezCa+MnCKKXUUOBc4FoROS0yUhlt+qT5TkFEXMAFwCtmUDLnbQWSLS9jISJ/AfzAS2bQHuBEpVQOcDPwHxFpnSj9ImgyZR/BZVR8uUqavI1Sb4VpyHu3ORmo3UC3iP2uZljSICJOjEJ+SSn1OoBSaq9SKqCUCgLP0IjdDTWhlNpt/v8JeANDt72hJrv5/6fEaViFc4FvlFJ7Ibnz1iRWXiblvSwi04GfA1PNSgmzq+yAub0CY0ynb8KUNKmm7JM1bx3ARcD8UFiy5G20eotGunebk4H6GugjIj3NN+kpwFsJ1imM2b88B9iolPp7RHhk/+xEYF3lYxOBiKSJSHpoG2OQfB1Gnv7STPZLYGFiNIxKhTfQZM3bCGLl5VvANHNG1AjgcER3SkIQkXOAPwIXKKVKIsI7iIjd3O4F9AG+S4yWx6im7N8CpoiIW0R6Yui7rLH1i8KZwCal1K5QQDLkbax6i8a6dxM5Q8TqH8YMki0Ybxp/SbQ+lXQbhdEMXgOsMn/nAS8Aa83wt4BOidbV1LcXxmyn1cD6UH4CGcAi4FvgI6BdonU19UoDDgBtIsKSJm8xDOcewIfRL/+rWHmJMQNqlnkfrwWGJYGuWzHGFkL37mwz7STz/lgFfAOcnyR5G7Psgb+YebsZODfRuprhc4FrKqVNhryNVW81yr2rlzrSaDQaTVLSnLr4NBqNRtOM0AZKo9FoNEmJNlAajUajSUq0gdJoNBpNUqINlEaj0WiSEm2gNBqNRpOUaAOl0Wg0mqTk/wP26FHTsQ1iwgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiv0lEQVR4nO2deXwURdr4v8/cubgCIpeAyE1COBJwAQXXGxURFLwQ/anrueut7+7qoru+67kq6soui+KBCJ7o67keiKiIIPcpSLhE5Arknqt+f3TPMEkmyYR0MpOhvp/PfKa7qrr66arqfrqqnq5HlFJoNBqNRpNo2OItgEaj0Wg00dAKSqPRaDQJiVZQGo1Go0lItILSaDQaTUKiFZRGo9FoEhKtoDQajUaTkGgFVQMi0kVElIg44i2L5sgRkZtF5GcRWRGHc08RkVca4TyTRWRhDfHzReTqhpYjXojITBH5W13jLJahxroWkXwRObWh5bASEZkgIgdF5BsRad/Y59cKSmMpIjJNRIrMn1dEfBH7H8ZJrCnADUqp/hFyThGRKXGSJ6EwX8Ty65j+CxEpEZH1NT10ReQi8+FWIiLz6yjXUVNHIjKyLuUjIjkistQs16UiklND2lYi8raIFIvIVhG5JCJulIisEpECEdlnpusQildKzQFam7sX1f3K6kdSKyjd82l8lFLXKaXSlVLpwP8Cc0L7SqmzQukauW5aAasb8XwNQgK159nAMiAT+BPwhoi0qSbtfuBJ4KHGEa1hSYQ6EBEXMA94BWgJvAjMM8Oj8SzgBdoClwLPiUhfM24tcIZSqgXQHvgReC7yYKWUD9iIUd+NStIpKLMbfbeIrASKRcQhIkPNt7gCEVkhIiMj0s8Xkb+LyGIROSQi80SkVTV5Xyki60SkUER+EpHfVYofIyLLzXw2i8iZZnhzEZkhIrtEZKeI/E1E7LVcRzcR+dx8q9krIrNEpEVE3H4RGWjutxeRPaHrEpHzRGSNeb3zRaR3pfK5Q0RWml33OSLiqXtJ151q6kaJyAkRaSoMx4jIOWaZFph1mF3Hc4bKOVhLurvM+vlZRK6OlMuU6VkRed+s++9EpFvEsU+JyHaz3peKyIhK2XvMci4UkR9EJLInd4/ZVgpFZK2IjI2ImywiX4vIEyKyD6MnWNv1PiYiB0Rki4icVSm6s5lfoYh8IiKto2ZSc/49gIHAX5RSpUqpN4FVwLho6ZVSnyql5gI/1/VcUc5dbR1VSpchRg9vqoiIGdxaRP5rXvuXItI5In219SdGL+4NEXlFRA4Bk2sR0yUiL5nnWSMigyvF51hw740EHMCTSqlypdRUQIBTKicUkTSMurlXKVWklFoIvAtcDqCU2q2UiqybAFClTDHun8ZXzkqppPoB+cByoBOQAnQA9gFnYyjk08z9Nmb6+cBOoB+QBrwJvGLGdQEU4DD3RwPdMBrDyUAJMNCMywMOmvnbzPP2MuPeBv5l5n8MsBj4XS3XcYKZlxtoAyzAaJCh+Gsw3n5SgY+Bx8zwHkCxeawTuAvYBLgiymcxxttSK2AdcF01MgwHCmr4Da/lGqaEyjJa3ZhhCjghIs1M4G/m9gDgV2AIYAeuMPNw16E9nAmUAWm1pPkF6GuW5yuRcpky7TPr2AHMAl6LOP4yjLdLB3C7mZcnogx8wHizPu4AtgBOM/5Csy5swASz7tqZcZMBP3CzmXdKDdcw2TzPNWZZXY+hFCSinW8220eKuf9QNXn9E/hnNXFjgXWVwp4Bnq6lHq4G5tfjvo6ljv5m1sPiUBuKiCsETsK4n54CFtax/s4366imOphitrWzzTr4O7CoUvuP9d77P+CeauJuBT6Mkv72KGkHACWVwu4A3ovYPw7jfg6a1zo5Sj73A19Sw33UEL9GO1GjXZDRCK6K2L8beLlSmo+BK8ztCjcq0AejO2ynkoKKcq53gD+Y2/8CnoiSpi1QHtmwgYuBL+p4XecDyyqFvYvx9roS86EN3AvMjUhjw1DAIyPK57KI+EeAaQ1UF1OoqqCuqpSmJgX1HPDXSuk3ACfHeP4lZv6/ryXd88DfI/ZPoOrD7z8R8WcD62vI7wDQP6IMIh9SNmAXMKKaY5cDY8ztycC2GK91MrApYj/VvIZjI9r5nyPibwA+OoI6vTzyesywB4GZtRxXXwUVSx09jzGUe2elY2dS8YUiHaOn0CnG+ltQh/b+acR+H6C0Uvuv972HcY+/VilsFjAlStoRwC+Vwq6JVhcYSvNuYGiUuJYYw3wB4IIjrce6/pJuiM9ke8R2Z+BCc4ioQEQKMHoG7apJvxXjTbfK8IeInCUii8zhtQKMB1UoXSeMN9TKdDbz2xVx/n9h9KSqRUTaishr5pDgIYw3xsoyTcfo+T2tlCo3w9qb1wCAUipoXl+HiON+idguwbhhG4vttScJ0xm4vVLddcK4xljIBSYCU0TEWUO69pXkiiZjtWVmDpmuM4dtCoDmVKyrcH5mfewIXYOITIoYwizAqM+ox8ZAWEalVIm5mR4tvvI11IEioFmlsGYYPZSGJJY6Go3RO5wWJS6yDoow5sZCdRBz/cVA5TL2SMV5q8aug5jTKqX2c3g+q/Jw3pXAIaCVUuqtI5D5iEhWBRW5RPt2jB5Ui4hfmlIqctK2U8T2cRjd3L2RGYqIG2P47zGgrTImFT/AGO4LnacbVdmO0YNqHXH+ZkqpvlHSRvK/5nVkKaWaYQxDhM6FiKRjTD7PwHgAh+bNfsZ4sIfSiXl9O2s5XxVEZIQctsCL9qs81xILlZfPL8F42w9xbMT2duDBSnWXqpSaHdOJjFe/dzDe/trVkHQX0DFiv1N1CStjlsFdGBZOLc12cZCIuorMT0Rs5rl+NudBpgM3AZnmsasrHVu5vOLNGuB4EcmICOtvhjcksdTRdOAj4ANz7oVo6c17pxVGHcRSf4lYB9kR82sA2USvg42AQ0S6R4TVVF8OjJfnykqtN8aoz8EjE/nISFYFFckrwLkicoaI2EXEI4ZJZ2Rjv0xE+ohIKvAA8IZSKlApHxfG+PUewG9OQJ8eET8DuFJEfisiNhHpICK9lFK7gE+Ax0WkmRnXTUROrkXuDIy3n4NimH3eWSn+KWCJUupq4H0OvzXOBUabcjgxxtTLgW9qK6jKKKW+Uoct8KL9vqprnlFYDlxi1s2ZGHN7IaYD14nIEDFIE5HRoYejGMYLM2u5hlDPsjoLJzDK7EoR6W22gXvrIH8GxjzRHowHwX1UvbkHicgF5lvpLRj1sQhjTlKZxyIiV2L0oBIWpdRGjDr7i3kvjcV4OL4ZLX3onsN48NnMY5wR8fkiMjmGU8daRzdhDAO/JyIpEeFni8hwMSzd/ooxTLmd2Oov0ZiPMdT2exFxi8hNZvjnlRMqpYqBt4AHzPtnGDAGeBnAbJc9zedSG+AfGFMJ+ytl5cRot41K0isosxGOAf6I0Qi3YzzsI6/9ZYxx6l8AD/D7KPkUmuFzMcaoL8GYAwrFL8boBj+B8Qb2JYd7MpMwHpBrzWPfoOY3ejAmJQeaeb2P0cgAw1oQY9L4ejPoNmCgiFyqlNqA0dt6GqMXeC5wrlLKW8v54sUfMGQswDCBfScUoZRagjFe/gxGuW2iohVVJ+DrGM6hqKGtK6U+BKYCX5jnWGRGxXJDfozx1r4RY2i1jKpDQvMwDCAOYMzhXKCU8iml1gKPA98Cu4GsGK+nQRHjW7Zow2QhJgKDMa7nIWC8UiqkZC8Vkci388uBUoz5xBHm9nQzrQvDOGERtRBrHZm95msxhlHnyWEruVeBv2AM7Q3CuEcgtvprdETkQxH5Y7Q4814+H+O5UgBcBZwfusdF5I9S8ZvDGzCGPn/F+ETgeqVUqI46YFx/IcZ8dhDDEKYydmqxhG0IQhY+Ry1ifBz3ilLqP/GWRRM75sNtBZCtjO80akr7M3CXUiqmFR3EMMtfjWF44q+3sJqoiMhw4Eal1MVHcKyuo0bC7IkuBGYopf7ZmOdO+h6UJjlRSnmVUr1rU04m92AMSS2tLoGIjDWHS1oCD2OY4eoHXwOilFpYF+Wk66jxEZGLMHqWuzFGjxoVraDiiFRcFijyV9PwiqaOKKVeUkp1V0oNqiHZ7zCGQDZjjO9fX0PauKDbS/zryBx6i1YHUYfjmjpKqblKqWOUUmcrpfbWfoS1HPVDfBqNRqNJTHQPSqPRaDQJSdwXPoykdevWqkuXLvEWQ6PRaDSNyNKlS/cqpaosOJxQCqpLly4sWbIk3mJoNBqNphERka3RwvUQn0aj0WgSEq2gNJomjDZy0iQzWkFpNE2Ubz54he0P9MFbXhZvUTSaBiGh5qCi4fP52LFjB2Vl+ibUxI7H46Fjx444nTUtYt606fb9X2ir9rJz+0Y6nFAnP44aTZMg4RXUjh07yMjIoEuXLlRcvFejiY5Sin379rFjxw66du0ab3EajACGs+DSA79grNeq0SQXCT/EV1ZWRmZmplZOmpgRETIzM5O+163EuH29JYfiLIlG0zAkvIICtHLS1Jmjoc34xPAg4i1taF+BGk18aBIKSqPRVCVgMxRUoKwozpJoNA2DVlAxICLcfvvt4f3HHnuMKVOmxE+gWpg/fz7ffFNn/4QVOPPMM2nRogXnnHOORVJprEYrKE2yoxVUDLjdbt566y327rV2MV+lFMGg9T7ArFBQd955Jy+//LJFEmkagoA5xBco1wpKk5xoBRUDDoeDa6+9lieeeKJK3J49exg3bhy5ubnk5uby9deGQ9QpU6bw2GOPhdP169eP/Px88vPz6dmzJ5MmTaJfv35s376dO++8k379+pGVlcWcOXMAQ8mMHDmS8ePH06tXLy699NKoH2VOnTqVPn36kJ2dzcSJE8nPz2fatGk88cQT5OTk8NVXX9Uo4+WXX86JJ55I9+7dmT59ejjf3/72t2RkZNRYLq+//jr9+vWjf//+nHTSSYBh1HLllVeSlZXFgAED+OKLLwCYOXMm559/PqeddhpdunThmWee4R//+AcDBgxg6NCh7N9veJiePn06ubm59O/fn3HjxlFSUlLlvEOHDmXNmsNOW0eOHHlULpGlbIYVH97i+Aqi0TQQCW9mHsn9761h7c/WWiz1ad+Mv5zbt9Z0N954I9nZ2dx1110Vwv/whz9w6623Mnz4cLZt28YZZ5zBunXraszrxx9/5MUXX2To0KG8+eabLF++nBUrVrB3715yc3PDD/tly5axZs0a2rdvz7Bhw/j6668ZPnx4hbweeughtmzZgtvtpqCggBYtWnDdddeRnp7OHXfcAcAll1xSrYwrV65k0aJFFBcXM2DAAEaPHk379u1jKrsHHniAjz/+mA4dOlBQUADAs88+i4iwatUq1q9fz+mnn87GjRsBWL16NcuWLaOsrIwTTjiBhx9+mGXLlnHrrbfy0ksvccstt3DBBRdwzTXXAPDnP/+ZGTNmcPPNN1c474QJE5g7dy73338/u3btYteuXQwePDgmmZMJCQaMf59WUJrkRPegYqRZs2ZMmjSJqVOnVgj/9NNPuemmm8jJyeG8887j0KFDFBXVPOTSuXNnhg4dCsDChQu5+OKLsdvttG3blpNPPpnvv/8egLy8PDp27IjNZiMnJ4f8/PwqeWVnZ3PppZfyyiuv4HBEf9+oScYxY8aQkpJC69atGTVqFIsXL465TIYNG8bkyZOZPn06gUAgfD2XXXYZAL169aJz585hBTVq1CgyMjJo06YNzZs359xzzwUgKysrfG2rV69mxIgRZGVlMWvWrAo9pRAXXXQRb7zxBgBz585l/PjxMcucTNiUUeZ2raA0SUqT6kHF0tNpSG655RYGDhzIlVdeGQ4LBoMsWrQIj8dTIa3D4agwvxT5TU5aWlpM53O73eFtu92O31/Vu/X777/PggULeO+993jwwQdZtWpVlTTVyQhVzbHrYp49bdo0vvvuO95//30GDRrE0qXVelQHKl6PzWYL79tstvC1TZ48mXfeeYf+/fszc+ZM5s+fXyWfDh06kJmZycqVK5kzZw7Tph0tDmUrYjO9ndv9VYdBNZpkQPeg6kCrVq246KKLmDFjRjjs9NNP5+mnnw7vL1++HDBch/zwww8A/PDDD2zZsiVqniNGjGDOnDkEAgH27NnDggULyMvLi0meYDDI9u3bGTVqFA8//DAHDx6kqKiIjIwMCgsPfxtTnYwA8+bNo6ysjH379jF//nxyc3NjOjfA5s2bGTJkCA888ABt2rRh+/btjBgxglmzZgGwceNGtm3bRs+ePWPOs7CwkHbt2uHz+cL5RGPChAk88sgjHDx4kOzso3MVhcMKqjTOkmg0DYNWUHXk9ttvr2DNN3XqVJYsWUJ2djZ9+vQJv82PGzeO/fv307dvX5555hl69OgRNb+xY8eSnZ1N//79OeWUU3jkkUc49thjY5IlEAhw2WWXhQ0Sfv/739OiRQvOPfdc3n777bCRRHUygjFEOGrUKIYOHcq9994bnn8aMWIEF154IZ999hkdO3bk448/BuC+++7j3XffBQxLv6ysLPr168dvfvMb+vfvzw033EAwGCQrK4sJEyYwc+bMCj2n2vjrX//KkCFDGDZsGL169QqHv/vuu9x3333h/fHjx/Paa69x0UUXxZx3siHmEJ8zoHtQmuREEmm5/sGDB6vK1ljr1q2jd+/ecZIouZkyZUoFY4pkI9nbTv5f+9MlkM+Pju50//PRZ8WoSR5EZKlSqoqlk+5BaTRNFDvGEJ8rmNxrDmqOXpqUkYTGWhJ5NQxN7YSs+FxKKyhNcqJ7UBpNE8VuKiiPKo+zJBpNw6AVlEbTRLETUlC6B6VJTrSC0miaKKEhvhTxosxVJTSaZEIrKI2miRLqQQGUlegFYzXJR4MrKBE5U0Q2iMgmEbmnoc/XULzzzjuICOvXr682TX5+Pv369WtQOZYvX84HH3xQrzyuuuoqjjnmmAaXVdOwOAjgVabb92LtVVeTfDSoghIRO/AscBbQB7hYRPo05DkbitmzZzN8+HBmz54dNT7aMkR1JbSeXU1YoaAmT57MRx99VK88NPHHToAiUgHdg9IkJw3dg8oDNimlflJKeYHXgDENfE7LKSoqYuHChcyYMYPXXnstHD5//nxGjBjBeeedR58+ht71+/1ceuml9O7dm/Hjx4fdRXz22WcMGDCArKwsrrrqKsrLDcurLl26cPfddzNw4EBef/31Cuet7M7C6/Vy3333MWfOHHJycpgzZw7FxcVcddVV5OXlMWDAAObNmwcY7i3GjBnDyJEj6d69O/fff38435NOOolWrVrVeM1ffvklOTk55OTkMGDAAAoLC1FKVesa5OSTT2bMmDEcf/zx3HPPPcyaNYu8vDyysrLYvHkzAO+99x5DhgxhwIABnHrqqezevbvKeSdOnMj7778f3p88eXJ4YVhNRewEKBZjXcfyEu32XZN8NPR3UB2A7RH7O4AhkQlE5FrgWoDjjjuu5tw+vAd+qboYar04NgvOeqjGJPPmzePMM8+kR48eZGZmsnTpUgYNGgQY6+ytXr2arl27kp+fz4YNG5gxYwbDhg3jqquu4p///Cc33XQTkydP5rPPPqNHjx5MmjSJ5557jltuuQWAzMzM8Lp9kVR2Z+FyuXjggQdYsmQJzzzzDAB//OMfOeWUU3j++ecpKCggLy+PU089FYDFixezevVqUlNTyc3NZfTo0TG7pXjsscd49tlnGTZsGEVFRXg8Ht56661qXYOsWLGCdevW0apVK44//niuvvpqFi9ezFNPPcXTTz/Nk08+yfDhw1m0aBEiwn/+8x8eeeQRHn/88QrnDbnSGD16NF6vl88++4znnnsuJpmPNuwqQKk9DYLgLdUKSpN8xN1IQin1b6XUYKXU4DZt2sRbnKjMnj2biRMnAsYbfuQwX15eHl27dg3vd+rUiWHDhgFw2WWXsXDhQjZs2EDXrl3D6/FdccUVLFiwIHzMhAkTop43mjuLynzyySc89NBD5OTkMHLkSMrKyti2bRsAp512GpmZmaSkpHDBBRewcOHCmK952LBh3HbbbUydOpWCggIcDkeNrkFyc3Np164dbrebbt26cfrppwMVXWns2LGDM844g6ysLB599NGorjTOOussvvjiC8rLy/nwww856aSTSElJiVnuo4ZgELsoyu1GD8pXpl1uaJKPhu5B7QQ6Rex3NMOOjFp6Og3B/v37+fzzz1m1ahUiQiAQQER49NFHgaquM47EfUV17jdicWehlOLNN9+ssmL4d999Vy9XGvfccw+jR4/mgw8+YNiwYeHFYqsjFlcaN998M7fddhvnnXce8+fPj7qShcfjYeTIkXz88cfMmTMn/GKgqYRpYu51ZIAP/FpBaZKQhu5BfQ90F5GuIuICJgLvNvA5LeWNN97g8ssvZ+vWreTn57N9+3a6du3KV199FTX9tm3b+PbbbwF49dVXGT58OD179iQ/P59NmzYB8PLLL3PyySfXeu5o7iwqu9I444wzePrpp8Pu4JctWxaO++9//8v+/fspLS3lnXfeCffsYmHz5s1kZWVx9913k5uby/r16+vlGgTg4MGDdOjQAYAXX3yx2nQTJkzghRde4KuvvuLMM8+MOf+jiaDfB4DfmW78l2kjCU3y0aAKSinlB24CPgbWAXOVUlXHdRKY2bNnM3bs2Aph48aNq9aar2fPnjz77LP07t2bAwcOcP311+PxeHjhhRe48MILycrKwmazcd1119V67mjuLEaNGsXatWvDRhL33nsvPp+P7Oxs+vbty7333hs+Pi8vj3HjxpGdnc24cePC808XX3wxJ554Ihs2bKBjx45h/1bTpk0Lu+J48skn6devH9nZ2TidTs4666x6uQYBY+2/Cy+8kEGDBtG6detw+JIlS7j66qvD+6effjpffvklp556Ki6XK+b8jyb8poIKuDIACJbrHpQm+dDuNpKUmTNnVjCmOBpJ5rZTcnAvqU904+v2VzLs5xdY1OMuhl7yp3iLpdEcEdrdhkaTRAQCxryeeJoBoHy6B6VJPrS7jSRl8uTJTJ48Od5iaBoIv88Y4hNXGkEl4NVedTXJR5PoQSXSMKSmaZDsbSZgzkGJ3UkpbvBpBaVJPhJeQXk8Hvbt25f0DxyNdSil2LdvHx6PJ96iNBiHFZSDMvFg0wpKk4Qk/BBfx44d2bFjB3v27Im3KJomhMfjoWPHjvEWo8EImN+Wid1pKCh/aZwl0misJ+EVlNPprLBSg0ajgUDA6EHZ7A68Ng/2gFZQmuQj4Yf4NBpNVcJDfDY7XpsHh1ZQmiREKyiNpgkSOcTns6Xg1ApKk4RoBaXRNEGCEUN8AbsHV7AszhJpNNajFZRG0wTxmx/q2h1OAo4UXEorKE3yoRWURtMECc1B2ewOgo5UPFpBaZIQraA0miZIaDVzu8OpFZQmadEKSqNpggRNIwmb3YFypZJCOcFAMM5SaTTWohWURtME8QcO96DEmYpDgpSWaUs+TXKhFZRG0wRRZg/K4XQiLsMjc2lxYU2HaDRNDq2gNJomSGglCbvdgc1tKKjyUu1VV5NcaAWl0TRBQkYSDocLe0hBlRyKp0gajeVoBaXRNEX8htWe3Z2KzWO4fdc9KE2yoRWURtMUCZQD4HB5cKWkA+Ar0QpKk1xoBaXRNEV8hsWe3ZWCM8XoQfnLtJGEJrnQCkqjaYKI3+hBOd0p4R5UoFwrKE1yoRWURtMEkdAQnzsFd6rRgwqUFcdTJI3GcrSC0miaIMpXhk/ZcTiceFKbGWHlWkFpkgutoDSapoi/FK84ERE8aaaC8moFpUkutILSaJoi/nK8uABweVIJKgGfVlCa5EIrKI2mKeIvxydOY1uEEvEgvpL4yqTRWIxWUBpNE0QCZfjEHd4vxYNN96A0SYZWUBpNE8TpL8Fr84T3y8WD3a97UJrkQisojaYJkho4RIm9WXi/3JaC3a/dbWiSC62gNJomSEqgkHJn8/C+z+bBGdA9KE1yoRWURtMESVeFBN0twvteeyquoO5BaZILraA0miaG1xcgQxVDSotwWMCeohWUJunQCkqjaWIUHNiDW/xIeptwmN+RijtYFkepNBrrqZeCEpEpIrJTRJabv7Mj4v5HRDaJyAYROaP+omo0GoADOzcB4GjVORwWdKTiQSsoTXLhsCCPJ5RSj0UGiEgfYCLQF2gPfCoiPZRSAQvOp9Ec1ezb+SMAmR27h8OUM5UUpRWUJrloqCG+McBrSqlypdQWYBOQ10Dn0miOKoK7VhNUwrFd+4bDlCsNj/gI+P1xlEyjsRYrFNRNIrJSRJ4XkZZmWAdge0SaHWZYFUTkWhFZIiJL9uzZY4E4Gk1yk75nGTscnXCkHP4OClcaAKUlh+IklUZjPbUqKBH5VERWR/mNAZ4DugE5wC7g8boKoJT6t1JqsFJqcJs2bWo/QKM5ijl4YD99ylfwS5vhFcLFZTgtLCvWCkqTPNQ6B6WUOjWWjERkOvB/5u5OoFNEdEczTKPR1INVHzzHcPHTeshFFcLtbqMHVVakFZQmeaivFV+7iN2xwGpz+11gooi4RaQr0B1YXJ9zaTRHO7t25tN343Osd2dx/IBRFeLsHqMH5S0tiodoGk2DUF8rvkdEJAdQQD7wOwCl1BoRmQusBfzAjdqCT6M5cg7s2UXR8xfQgnKaX/hMlXiHqaB8pboHpUke6qWglFKX1xD3IPBgffLXaDSwbuE7tPn0FjqrQn485V/0PSGnShpHSgYAvjLdg9IkD1Z8B6XRaBoAb1kpy1+8jbxdr5IvHdl3/iz65gyLmtaVYvSg/FpBaZIIraA0mgRk2/qlBF6/irxAPt9mXkD2lU+Rlt6s2vTuNGNl80BpYYPKFQwE2Jb/IwU71uMtLkBESGvdkQ7H96N5ZtsGPbfm6EMrKI0mgVDBIItff5T+ax+lRFL4Ydg0Tjzt4lqPc6cZykuVW6+gCvbtYf3nL+PM/4ITipfSheiee3+ydWZP6yGk9TmD7kPOwG0OO1qBCgZRCpQINgERsSxvTeKiFZRGkyAc3L+XzTMmM6T4K1ak5NJ+8vMMPPa4mI71mD0oyq0Z4lNKsfrbjyn/ZhpZhQsZKj52SyYbW5yM7bhc0tv3JKVZa1QwyMHd+ZTuXE3az9/Qf/fbeH6dS/kXTtamZFHUcQSpHfvRvH0PUjNa4k5Jo6yslPLig5QWFVB6cC9lh/biL9pLoHg/lB7AUXYAl68Aj+8gacFCmqlCmlOMTRR+ZcOLHT82fOKkDA9l4qFcPJTbPPhsKXjtKfhtKfjtKfgdqUh6a4aOv430Zi1rv3BNQnH0KCilKPeWU1JSgvJ7UUEf2Jxgd+JweXA6XTjsdpx20W9nmkZny5rvcL1xOVnBvXzX/VZyL74Pmz32r0BSU1IpV07w1q8HpYJBfvh8LimLniLLv5YC0llxzBgyh19Bt+wRtI12b/Q7MbxZUlzI8sWfULz2Y9rv/YY+m54yFjqLIL2G8xfjoVCaUWJvRrmnOQddndjvbkm5sxmIDZsKgAqgAn4kUI7NX4LDX4IjUIo7UEZG8AAu7y5cqgxPsBQP5Tj3+9n65NscuHgWnbr3r1f5aBqXpFJQBw/sZdO371H+6484C/JJKf2ZFN8BmgcLaKEO4ZYg7hqO9yo7JTjw4sSHAz8OfOLEjwO/GNsBnARsDhQ2bIIx3IAytlHhvEQpQCFmWChGItIoVTUsOopak9RK9RnUO+tYJWisE1V3fkszs/ZiugS2UiypbDnvDYYMOqXOxzvsNg6Sgs175D2odT8sIPjh/zDIt5pd0obv+/wPWefcSF5q7EN1qWkZ5IwaB6PGAbD/153s3Lya8j0/4S8rIugrxe50Y3NnYPc0I6VZJmktjyGj5TE0b3UMaU43aUd8BdFZsWAex31+Iymv/JZvOk2i7/l30Lx1+1qP83q97N2VT8Ev+ZTs2YrvwHbk0E5cxbtx+Q/hDhSTEiwmRZXgUl4EEIIIYCNo3v1CEBtBERQ2cz9iW2wEzW2FDSWV/hGU2CK2zfzM/SPh8LMo1pTRQ0TBLmcnRt39+hHJEQtJpaAKfsln0OJbANhLC/Y52lKU0p597iz87pbY3GnYnW6UzYWy2bGpABLwoYI+JOBFAl4IeJHQftCHLejDFvBiC/pwKB/uoLENiqASVOhfRaojwo2TiIYUevkMN6xqWogIURqf1LgbY9QRUH1ulp6nEa6ntnyq7zg3fI96k/M3HHvho/ToeMIR51EiKdh9dVdQBft+ZcNLv2fIwQ/ZTzOW9ruX/ufdTDtXTa9zsdHqmA60OibqMpyNRv+TxrC7WxZbXrud3+yYgffpmazx9KOoRW+Cqa2xOZwobylSVoCzeBdpZbtp6f+VTHWA9qKIVGWFpLDP1poSe3NKXJkcdHQm4EwHhxvEBqZiQTDeK1UQwj8VsW38JLRNaFtVCBcOH2OoqaCh4pSxHSvVte3alFxtLT/oSIlZhiMhqRRU+2792DTuIzp07UPr9Oa0jrdAGk0jUiqpOPx1U1DLPptLh6/uZpAq4PsOl9Fnwl8Z1LxVA0kYP9p2OJ62t7/N5jXfs+er52m153uyf3mLFPGG05QoN3ttmRxyHcO29Dy2ZLTH3qITnszjaHZsF1q1P56MZq2wzvSj6dOvgfNPKgXldHk4IevE2hNqNElImS0Vty+6hV1lDhbsY/3MmxlS8D5bbcexbcxL5PYf0cASxp9ufXPp1jcXMAxBykqLKC/3kZKWTqrLRWwmKZrGIqkUlEZzNON3pJHu31druhVfvk3bL+5gsNrH4o6TyLn8YVye1EaQMLEQETypGRyFl95k0ApKo0kSAs503N5t1cYXHtzPmhdvYej+eWyzdWDLOW+RN7DuBhkaTWOhFZRGkySUp7Qhs2ifMdFeaVZ82RdvceyXd5Kn9rG43USyJz2OJ7Umg2+NJv5oBaXRJAmB5l3w7PFRtG8H6a0Nd2y7t/3I1tfvIa/wU7bbOrDprDfIy43JxZtGE3e0gtJokoRmHXvBJti+9jvS2hWw4+OnGLjnHfoDiztdSc6lD+JKsforI42m4dAKSqNJEroNPo2CL9Lp/tk1OCRIO2VnZcvTaD/2r+R17hFv8TSaOqMVlEaTJDRLz2D12S9R9N2LSGY3uo26gkHtu8RbLI3miNEKSqNJIvoN+S0M+W28xdBoLCH21Sg1Go1Go2lEtILSaDQaTUIiKt5LTEcgInuArRZk1RrYa0E+jYGWteFoSvI2JVmhacnblGSFpiWvVbJ2Vkq1qRyYUArKKkRkiVJqcLzliAUta8PRlORtSrJC05K3KckKTUvehpZVD/FpNBqNJiHRCkqj0Wg0CUmyKqh/x1uAOqBlbTiakrxNSVZoWvI2JVmhacnboLIm5RyURqPRaJo+ydqD0mg0Gk0TRysojUaj0SQkSaWgRORMEdkgIptE5J54yxOJiHQSkS9EZK2IrBGRP5jhU0Rkp4gsN39nx1vWECKSLyKrTLmWmGGtROS/IvKj+d8yAeTsGVF+y0XkkIjckkhlKyLPi8ivIrI6IixqWYrBVLMdrxSRgQkg66Mist6U520RaWGGdxGR0ogyntaYstYgb7V1LyL/Y5btBhE5IwFknRMhZ76ILDfDE6Fsq3tuNU7bVUolxQ+wA5uB4wEXsALoE2+5IuRrBww0tzOAjUAfYApwR7zlq0bmfKB1pbBHgHvM7XuAh+MtZ5R28AvQOZHKFjgJGAisrq0sgbOBDwEBhgLfJYCspwMOc/vhCFm7RKZLoLKNWvfmPbcCcANdzWeGPZ6yVop/HLgvgcq2uudWo7TdZOpB5QGblFI/KaW8wGvAmDjLFEYptUsp9YO5XQisAzrEV6ojYgzworn9InB+/ESJym+BzUopK1YksQyl1AJgf6Xg6spyDPCSMlgEtBCRdo0iKNFlVUp9opTym7uLgI6NJU9tVFO21TEGeE0pVa6U2gJswnh2NAo1ySoiAlwEzG4seWqjhudWo7TdZFJQHYDtEfs7SFAFICJdgAHAd2bQTWZ3+PlEGDKLQAGfiMhSEbnWDGurlNplbv8CtI2PaNUykYo3eKKWLVRflonelq/CeEsO0VVElonIlyIyIl5CRSFa3Sdy2Y4AdiulfowIS5iyrfTcapS2m0wKqkkgIunAm8AtSqlDwHNANyAH2IXRxU8UhiulBgJnATeKyEmRkcro0yfMdwoi4gLOA143gxK5bCuQaGVZHSLyJ8APzDKDdgHHKaUGALcBr4pIs3jJF0GTqfsILqbiy1XClG2U51aYhmy7yaSgdgKdIvY7mmEJg4g4MSp5llLqLQCl1G6lVEApFQSm04jDDbWhlNpp/v8KvI0h2+5Ql938/zV+ElbhLOAHpdRuSOyyNamuLBOyLYvIZOAc4FLzoYQ5VLbP3F6KMacTd/e9NdR9opatA7gAmBMKS5SyjfbcopHabjIpqO+B7iLS1XyTngi8G2eZwpjjyzOAdUqpf0SER47PjgVWVz42HohImohkhLYxJslXY5TpFWayK4B58ZEwKhXeQBO1bCOorizfBSaZFlFDgYMRwylxQUTOBO4CzlNKlUSEtxERu7l9PNAd+Ck+Uh6mhrp/F5goIm4R6Yoh7+LGli8KpwLrlVI7QgGJULbVPbdorLYbTwsRq38YFiQbMd40/hRveSrJNhyjG7wSWG7+zgZeBlaZ4e8C7eItqynv8RjWTiuANaHyBDKBz4AfgU+BVvGW1ZQrDdgHNI8IS5iyxVCcuwAfxrj8/6uuLDEsoJ412/EqYHACyLoJY24h1HanmWnHme1jOfADcG6ClG21dQ/8ySzbDcBZ8ZbVDJ8JXFcpbSKUbXXPrUZpu3qpI41Go9EkJMk0xKfRaDSaJEIrKI1Go9EkJFpBaTQajSYh0QpKo9FoNAmJVlAajUajSUi0gtJoNBpNQqIVlEaj0WgSEq2gNBqNRpOQaAWl0Wg0moREKyiNRqPRJCRaQWk0Go0mIdEKSqPRaDQJiVZQNSAiXUREmb5aNE0UEblZRH4WkRVxOPcUEXmlEc4zWUQW1hA/X0Submg54oWIzBSRv9U1zmIZaqxrEckXkVMbWg4rEZEJInJQRL4RkfaNfX6toDSWIiLTRKTI/HlFxBex/2HtOTQIU4AblFL9I+ScIiJT4iRPQmG+iOXXMf0XIlIiIutreuiKyEXmw61ERObXUa6jpo5EZGRdykdEckRkqVmuS0Ukp4a0rUTkbREpFpGtInJJRNwoEVklIgUiss9MF3bRrpSaA7Q2dy+q+5XVj6RWULrn0/gopa5TSqUrpdKB/wXmhPaVUmeF0jVy3bQi8ZwV1pkEas+zgWUYPoH+BLwhIm2qSbsfeBJ4qHFEa1gSoQ5Mh6zzgFeAlsCLwDwzPBrPAl6gLXAp8JyI9DXj1gJnKKVaAO0x/Ds9F3mwUsqH4Wcv09orqZ2kU1BmN/puEVkJFIuIQ0SGmm9xBSKyQkRGRqSfLyJ/F5HFInJIROaJSKtq8r5SRNaJSKGI/CQiv6sUP0ZElpv5bDa9kCIizUVkhojsEpGdIvK3kKfMGq6jm4h8br7V7BWRWSLSIiJuv4gMNPfbi8ie0HWJyHkissa83vki0rtS+dwhIivNrvscEfHUvaTrTjV1o0TkhIg0FYZjROQcs0wLzDrMruM5Q+UcrCXdXWb9/CwiV0fKZcr0rIi8b9b9dyLSLeLYp0Rku1nvS0VkRKXsPWY5F4rIDyIS2ZO7x2wrhSKyVkTGRsRNFpGvReQJEdmH0ROs7XofE5EDIrJFRM6qFN3ZzK9QRD4RkdZRM6k5/x7AQOAvSqlSpdSbGI7pxkVLr5T6VCk1F/i5rueKcu5q66hSugwxenhTRUTM4NYi8l/z2r8Ukc4R6autPzF6cW+IyCsicgiYXIuYLhF5yTzPGhEZXCk+x4J7byTgAJ5Uhlv4qRiOAk+pnFAMb9jjgHuVUkVKqYUYDhwvB1BK7VZKRdZNAKhSphj3T+Mr58b20NgIHiDzMbw+dgJSgA4YnlbPxlDIp5n7bcz084GdQD8Mr6xvAq+YcV0wvEk6zP3RQDeMxnAyUAIMNOPygINm/jbzvL3MuLeBf5n5H4PhYvp3tVzHCWZebqANsACjQYbir8F4+0kFPgYeM8N7AMXmsU4MN92bAFdE+SzGeFtqBayjkifPSt40C2r4Da/lGqaEyjJa3ZhhCjghIs1M4G/m9gDgV2AIYMdwLZ0PuOvQHs4EyoC0WtL8AvQ1y/OVSLlMmfaZdewAZgGvRRx/GcbbpQO43czLE1EGPmC8WR93AFsApxl/oVkXNmCCWXftzLjJgB+42cw7pYZrmGye5xqzrK7HUAohp6TzMbyc9sC4L+YDD1WT1z+Bf1YTNxbD/Xdk2DPA07XUw9XA/Hrc17HU0d/MelgcakMRcYXASRj301PAwjrW3/lmHdVUB1PMtna2WQd/BxZVav+x3nv/B9xTTdytwIdR0t8eJe0AoKRS2B3AexH7x2Hcz0HzWidHyed+4EtquI8a4tdoJ2q0CzIawVUR+3cDL1dK8zFwhbld4UYF+mB0h+1UUlBRzvUO8Adz+1/AE1HStAXKIxs2cDHwRR2v63xgWaWwdzns1tptht0LzI1IY8NQwCMjyueyiPhHMN13N0BdTKGqgrqqUpqaFNRzwF8rpd8AnBzj+ZeY+f++lnTPA3+P2D+Bqg+//0TEnw2sryG/A0D/iDKIfEjZMFx+j6jm2OXAGHN7MrAtxmudDGyK2E81r+HYiHb+54j4G4CPjqBOL4+8HjPsQWBmLcfVV0HFUkfPYwzl3lnp2JlUfKFIx+gpdIqx/hbUob1/GrHfByit1P7rfe9h3OOvVQqbBUyJknYE8EulsGui1QWG0rwbGBolriXGMF8AuOBI67Guv6Qb4jPZHrHdGbjQHCIqEJECjJ5Bu2rSb8V4060y/CEiZ4nIInN4rQDjQRVK1wnjDbUync38dkWc/18YPalqEZG2IvKaOSR4COONsbJM0zF6fk8rpcrNsPbmNQCglAqa19ch4rhfIrZLMG7YxmJ77UnCdAZur1R3nTCuMRZygYnAFBFx1pCufSW5oslYbZmZQ6brzGGbAqA5FesqnJ9ZHztC1yAikyKGMAsw6jPqsTEQllEpVWJupkeLr3wNdaAIaFYprBlGD6UhiaWORmP0DqdFiYusgyKMubFQHcRcfzFQuYw9UnHeqrHrIOa0Sqn9HJ7PqjycdyVwCGillHrrCGQ+IpJVQamI7e0YPagWEb80pVTkpG2niO3jMLq5eyMzFBE3xvDfY0BbZUwqfoAx3Bc6Tzeqsh2jB9U64vzNlFJ9o6SN5H/N68hSSjXDGIYInQsRSceYfJ6B8QAOzZv9jPFgD6UT8/p21nK+KojICDlsgRftV3muJRZUpf0SjLf9EMdGbG8HHqxUd6lKqdkxnch49XsH4+2vXQ1JdwEdI/Y7VZewMmYZ3IVh4dTSbBcHiairyPxExGae62dzHmQ6cBOQaR67utKxlcsr3qwBjheRjIiw/mZ4QxJLHU0HPgI+MOdeiJbevHdaYdRBLPWXiHWQHTG/BpBN9DrYCDhEpHtEWE315cB4ea6s1HpjjPocPDKRj4xkVVCRvAKcKyJniIhdRDximHRGNvbLRKSPiKQCDwBvKKUClfJxYYxf7wH85gT06RHxM4ArReS3ImITkQ4i0ksptQv4BHhcRJqZcd1E5ORa5M7AePs5KIbZ552V4p8Cliilrgbe5/Bb41xgtCmHE2NMvRz4praCqoxS6it12AIv2u+ruuYZheXAJWbdnIkxtxdiOnCdiAwRgzQRGR16OIphvDCzlmsI9Syrs3ACo8yuFJHeZhu4tw7yZ2DME+3BeBDcR9Wbe5CIXGC+ld6CUR+LMOYklXksInIlRg8qYVFKbcSos7+Y99JYjIfjm9HSh+45jAefzTzGGRGfLyKTYzh1rHV0E8Yw8HsikhIRfraIDBfD0u2vGMOU24mt/hKN+RhDbb8XEbeI3GSGf145oVKqGHgLeMC8f4YBY4CXAcx22dN8LrUB/oExlbC/UlZOjHbbqCS9gjIb4RjgjxiNcDvGwz7y2l/GGKf+BfAAv4+ST6EZPhdjjPoSjDmgUPxijG7wExhvYF9yuCczCeMBudY89g1qfqMHY1JyoJnX+xiNDDCsBTEmja83g24DBorIpUqpDRi9racxeoHnAucqpby1nC9e/AFDxgIME9h3QhFKqSUY4+XPYJTbJipaUXUCvo7hHIoa2rpS6kNgKvCFeY5FZlQsN+THGG/tGzGGVsuoOiQ0D8MA4gDGHM4FSimfUmot8DjwLbAbyIrxehoUMb5lizZMFmIiMBjjeh4CxiulQkr2UhGJfDu/HCjFmE8cYW5PN9O6MIwTFlELsdaR2Wu+FmMYdZ4ctpJ7FfgLxtDeIIx7BGKrv0ZHRD4UkT9GizPv5fMxnisFwFXA+aF7XET+KBW/ObwBY+jzV4xPBK5XSoXqqAPG9RdizGcHMQxhKmOnFkvYhiBk4XPUIsbHca8opf4Tb1k0sWM+3FYA2cr4TqOmtD8DdymlYlrRQQyz/NUYhif+eguriYqIDAduVEpdfATH6jpqJMye6EJghlLqn4157qTvQWmSE6WUVynVuzblZHIPxpDU0uoSiMhYc7ikJfAwhhmufvA1IEqphXVRTrqOGh8RuQijZ7kbY/SoUdEKKo5IxWWBIn81Da9o6ohS6iWlVHel1KAakv0OYwhkM8b4/vU1pI0Lur3Ev47MobdodRB1OK6po5Saq5Q6Ril1tlJqb+1HWMtRP8Sn0Wg0msRE96A0Go1Gk5DEfeHDSFq3bq26dOkSbzE0Go1G04gsXbp0r1KqyoLDCaWgunTpwpIlS+Ithkaj0WgaERHZGi1cD/FpNBqNJiHRCkqjSTCCQcWHK3cQCGoDJs3RjVZQGk2CsXD+h5z1Vl8++vDd2hNrNElMQs1BRcPn87Fjxw7KysriLYqmCeHxeOjYsSNOZ02LmCcmnnxjSbWWOz/HWKVLozk6SXgFtWPHDjIyMujSpQsVF+/VaKKjlGLfvn3s2LGDrl27xlucuuM01zgNJOryiRpN45DwQ3xlZWVkZmZq5aSJGREhMzOz6fa67cbC68pbUktCjSa5SXgFBWjlpKkzTbrNBI3lBe2BJqpgNRqLaBIKSqM5mhBzaE8rKM3RjlZQMSAi3H777eH9xx57jClTpsRPoFqYP38+33xTZ/+EYZYvX86JJ55I3759yc7OZs6cORZKp6kNCRgujpyB0jhLotHEF62gYsDtdvPWW2+xd6+1i/kqpQgGrfcBVl8FlZqayksvvcSaNWv46KOPuOWWWygoKLBOQE2NiDnE5wrqOSjN0Y1WUDHgcDi49tpreeKJJ6rE7dmzh3HjxpGbm0tubi5ff204RJ0yZQqPPfZYOF2/fv3Iz88nPz+fnj17MmnSJPr168f27du588476devH1lZWeHeyvz58xk5ciTjx4+nV69eXHrppURbeX7q1Kn06dOH7OxsJk6cSH5+PtOmTeOJJ54gJyeHr776qkYZL7/8ck488US6d+/O9OnTAejRowfdu3cHoH379hxzzDHs2bOnyrlff/11+vXrR//+/TnppJMAw6jlyiuvJCsriwEDBvDFF18AMHPmTM4//3xOO+00unTpwjPPPMM//vEPBgwYwNChQ9m/3/AwPX36dHJzc+nfvz/jxo2jpKTqQ3ro0KGsWXPYaevIkSOTaoksFQwA4ArqHpTm6Cbhzcwjuf+9Naz9+ZClefZp34y/nNu31nQ33ngj2dnZ3HXXXRXC//CHP3DrrbcyfPhwtm3bxhlnnMG6detqzOvHH3/kxRdfZOjQobz55pssX76cFStWsHfvXnJzc8MP+2XLlrFmzRrat2/PsGHD+Prrrxk+fHiFvB566CG2bNmC2+2moKCAFi1acN1115Gens4dd9wBwCWXXFKtjCtXrmTRokUUFxczYMAARo8eTfv27cP5L168GK/XS7du3apcxwMPPMDHH39Mhw4dwj2sZ599FhFh1apVrF+/ntNPP52NGzcCsHr1apYtW0ZZWRknnHACDz/8MMuWLePWW2/lpZde4pZbbuGCCy7gmmuuAeDPf/4zM2bM4Oabb65w3gkTJjB37lzuv/9+du3axa5duxg8eHCNZd6kMBWUR/egNEc5ugcVI82aNWPSpElMnTq1Qvinn37KTTfdRE5ODueddx6HDh2iqKioxrw6d+7M0KFDAVi4cCEXX3wxdrudtm3bcvLJJ/P9998DkJeXR8eOHbHZbOTk5JCfn18lr+zsbC699FJeeeUVHI7o7xs1yThmzBhSUlJo3bo1o0aNYvHixeHjdu3axeWXX84LL7yAzVa1qQwbNozJkyczffp0AoFA+Houu+wyAHr16kXnzp3DCmrUqFFkZGTQpk0bmjdvzrnnngtAVlZW+NpWr17NiBEjyMrKYtasWRV6SiEuuugi3njjDQDmzp3L+PHjayzvpoYoY9jXo3tQmqOcJtWDiqWn05DccsstDBw4kCuvvDIcFgwGWbRoER6Pp0Jah8NRYX4p8puctLS0mM7ndrvD23a7Hb+/qnfr999/nwULFvDee+/x4IMPsmrVqippqpMRqppjh/YPHTrE6NGjefDBB8PKtDLTpk3ju+++4/3332fQoEEsXVqtR/Uq12Oz2cL7NpstfG2TJ0/mnXfeoX///sycOZP58+dXyadDhw5kZmaycuVK5syZw7RpSeZQ1uxBpdAwCmrLniJaZ7jJ8DS9VTY0Rxe6B1UHWrVqxUUXXcSMGTPCYaeffjpPP/10eH/58uWA4Trkhx9+AOCHH35gy5YtUfMcMWIEc+bMIRAIsGfPHhYsWEBeXl5M8gSDQbZv386oUaN4+OGHOXjwIEVFRWRkZFBYWFirjADz5s2jrKyMffv2MX/+fHJzc/F6vYwdO5ZJkybV2DvZvHkzQ4YM4YEHHqBNmzZs376dESNGMGvWLAA2btzItm3b6NmzZ0zXA1BYWEi7du3w+XzhfKIxYcIEHnnkEQ4ePEh2dnbM+TcFlNmDSlHlYLERTSAQpM0z3fj6uRsszRfgYHEp/31jOoGA9YY/Kzb8yLoNGyzPV5PYaAVVR26//fYK1nxTp05lyZIlZGdn06dPn/Db/Lhx49i/fz99+/blmWeeoUePHlHzGzt2LNnZ2fTv359TTjmFRx55hGOPPTYmWQKBAJdddlnYIOH3v/89LVq04Nxzz+Xtt98OG0lUJyMYQ4SjRo1i6NCh3HvvvbRv3565c+eyYMECZs6cSU5ODjk5OWGldt999/Huu8YipnfeeSdZWVn069eP3/zmN/Tv358bbriBYDBIVlYWEyZMYObMmRV6TrXx17/+lSFDhjBs2DB69eoVDn/33Xe57777wvvjx4/ntdde46KLLoo57yaDMnpQNlH4ymseLq4rB/btJl3KOPPgXEvzBfj+5T9z2uo7WDPf+rz7zx5M79mxvbhpkgeJZhkWLwYPHqwqW2OtW7eO3r17x0mi5GbKlCkVjCmSjabadpY8dTGDD3wAwKEb19CsTUfL8v5560bav5Br7Ew5aFm+AIseu4ChRZ+xctD/kn3ujZbmzZTm5r+1MmsSAxFZqpSqYumke1AaTYIRMpIAKC2y9oEcKG84y8CAw5hb9ZYVN9g5SKAXak3D06SMJDTWksirYRzVmEN8AN4Saz+rCDbkArQOYyjXX2btsGQkAW8JdndsRkaapo/uQWk0CYYEG05BBcobrncTFPN919tw5ygu1EN8RxNaQWk0CcfhIT5fqcU9KL8vvG31/LMEjU8FxGttDypSzmKLhzw1iY1WUBpNgiHBAEFlfI/mLyusJXXdCPgPO0G03F+WuYagzWdtDyrSbL3c4h6lJrHRCkqjSTBEBThEKgCBUmsVVGQPqqTY4od9yI+V31oF5Yv4QN1rtcyahEYrqBh55513EBHWr19fbZr8/Hz69evXoHIsX76cDz744IiPD33Y26dPH/r27ctTTz1loXQaS1BBisUwBAha/B1UIEJBWW0haAsYeTv81hpieL2He3reEmsVtiax0QoqRmbPns3w4cOZPXt21PhoyxDVldB6djVRXwXlcDh4/PHHWbt2LYsWLeLZZ59l7dq1R5yfxnpEBSixGT0oZbGCUoHDCqqs2NqHfchNiDNgrYLy+w4PS1o95KlJbLSCioGioiIWLlzIjBkzeO2118Lh8+fPZ8SIEZx33nn06dMHMBTVpZdeSu/evRk/fnzYXcRnn33GgAEDyMrK4qqrrqK83HBK16VLF+6++24GDhzI66+/XuG8ld1ZeL1e7rvvPubMmUNOTg5z5syhuLiYq666iry8PAYMGMC8efMAw73FmDFjGDlyJN27d+f+++8HoF27dgwcOBCAjIwMevfuzc6dO6tc85dffhleRWLAgAEUFhailKrWNcjJJ5/MmDFjOP7447nnnnuYNWsWeXl5ZGVlsXnzZgDee+89hgwZwoABAzj11FPZvXt3lfNOnDiR999/P7w/efLk8MKwRwtCkIDNTblyWm4RF4yYg/JabIARMpKw2tGiP6IH5bd4yFOT2DSt76A+vAd+qboYar04NgvOeqjGJPPmzePMM8+kR48eZGZmsnTpUgYNGgQY6+ytXr2arl27kp+fz4YNG5gxYwbDhg3jqquu4p///Cc33XQTkydP5rPPPqNHjx5MmjSJ5557jltuuQWAzMzM8Lp9kVR2Z+FyuXjggQdYsmQJzzzzDAB//OMfOeWUU3j++ecpKCggLy+PU089FTBcZaxevZrU1FRyc3MZPXp0BbcU+fn5LFu2jCFDhlQ592OPPcazzz7LsGHDKCoqwuPx8NZbb1XrGmTFihWsW7eOVq1acfzxx3P11VezePFinnrqKZ5++mmefPJJhg8fzqJFixAR/vOf//DII4/w+OOPVzhvyJXG6NGj8Xq9fPbZZzz33HMxVmZyIMEAiJ1i3JZbxAUjelDlFg+X2ZSRt9tiNyF+72GlavWQpyax0T2oGJg9ezYTJ04EjDf8yGG+vLw8unbtGt7v1KkTw4YNA+Cyyy5j4cKFbNiwga5du4bX47viiitYsGBB+JgJEyZEPW80dxaV+eSTT3jooYfIyclh5MiRlJWVsW3bNgBOO+00MjMzSUlJ4YILLmDhwoXh44qKihg3bhxPPvkkzZo1i3ru2267jalTp1JQUIDD4ajRNUhubi7t2rXD7XbTrVs3Tj/9dKCiK40dO3ZwxhlnkJWVxaOPPhrVlcZZZ53FF198QXl5OR9++CEnnXQSKSkpUa89WRGCKLFRKinYfFYP8R0eivZbraDMHpRHWdyD8msFdbTS4D0oETkTeAqwA/9RStXcXamJWno6DcH+/fv5/PPPWbVqFSJCIBBARHj00UeBqq4zqnNfURPVud+IxZ2FUoo333yzyorh3333XbWy+Hw+xo0bx6WXXsoFF1wQ9dz33HMPo0eP5oMPPmDYsGF8/PHHNV5DLK40br75Zm677TbOO+885s+fH3UlC4/Hw8iRI/n444+ZM2dO+MXgaMKmggTFRqmkYvdZ2xuJtOKzesUHu9mDSlHWmq/7feXhbSnXQ3xHEw3agxIRO/AscBbQB7hYRPo05Dmt5o033uDyyy9n69at5Ofns337drp27cpXX30VNf22bdv49ttvAXj11VcZPnw4PXv2JD8/n02bNgHw8ssvc/LJJ9d67mjuLCq70jjjjDN4+umnwx8zLlu2LBz33//+l/3791NaWso777zDsGHDUErx//7f/6N3797cdtttNZ47KyuLu+++m9zcXNavX18v1yAABw8epEOHDgC8+OKL1aabMGECL7zwAl999RVnnnlmzPknC0IAJXbKxYMjYO0clAoeVlABix/2NhXqQZVZumZeIGKID4sVtiaxaeghvjxgk1LqJ6WUF3gNGNPA57SU2bNnM3bs2Aph48aNq9aar2fPnjz77LP07t2bAwcOcP311+PxeHjhhRe48MILycrKwmazcd1119V67mjuLEaNGsXatWvDRhL33nsvPp+P7Oxs+vbty7333hs+Pi8vj3HjxpGdnc24ceMYPHgwX3/9NS+//DKff/552AgiZBU4bdq0sCuOJ598kn79+pGdnY3T6eSss86ql2sQMNb+u/DCCxk0aBCtW7cOhy9ZsoSrr746vH/66afz5Zdfcuqpp+JyuWLOP1mwKWOIr9yehtNik20VMVxmtYWgw1RQDgkS9FnXi/L7D/egrP4IWJPYNKi7DREZD5yplLra3L8cGKKUuikizbXAtQDHHXfcoK1bt1bIo6m6TIg3M2fOrGBMcTTSVNvOxr8OptzVghLlor1/O53+bJ1h0Hev/IUhm54EYEHHaznp6kcty3v9/QPopX4CoOSWjaS2aGtJvqu/+4x+HxpD0UszRjHo9ncsyVeTOCSsuw2l1L+VUoOVUoPbtGkTb3E0mrgjBAliw2dPxR201uAg9B1UUAlisQm7XR02wCgtss6EPdI03uqPgDWJTUMbSewEOkXsdzTDNA3M5MmTmTx5crzF0BwBNhUEsRNwpOGxWEFhKqhCSUMsHi5z4ieoBJsoS9fMi1w/0GHxR8CaxKahe1DfA91FpKuIuICJwLt1zSSRvP5qmgZNuc0YZuZ2As40UrB+QdeAEtNC0OIeFAEOSToA5RauUhE056AOko4zYHF5aBKaBlVQSik/cBPwMbAOmKuUqvrxSw14PB727dvXpB84msZFKcW+ffvweDzxFuWIsKkASmwoZxpO/BBhJFBfVCCAHwdeWwp2i1d8cCg/xTZDQVm5SkXQXOqo2JZh+ZCnJrFp8O+glFIfAEe8eFzHjh3ZsWMHe/bssVAqTbLj8Xjo2LFjvMU4Imzmh7rKZTzs8RaHvdXWFwn6CGDDa0/BYbWCwk+BvTUEd+Ertc5CMBgwFFSJPYMM3z7L8tUkPgm/1JHT6aywUoNGk+zYzCE+8WQAhlddV2orazIP+vCLA589FZfF7t+d+ClzNAMfBCz8CDj0cXG5oxltvHoK+2gi7lZ8Go2mIiEjCXEZK4yUFRdYlrcE/QSw43dYayEYCCqc+PE5mwPWrlKhzCFOv6sZqZShgsFajtAkC1pBaTQJhp0AymbDbvagrDQ4IODDh4OgIxW3hWvm+QJBHATwuw0FpbzWyazMHlTA3QKnBCgt0/NQRwtaQWk0CYadAEocOMJDfNY5FrQpY4gv6EyzdM08fyCIW/zgMRVUuXUWgqFvt5SnBQAlFn5jpUlstILSaBIMOwGCNieOFENB+Sz0gWQM8TnAmUoqZXj91gyXBcwFgW1OD6XKZakfK2UaSdjMebgy7fb9qEErKI0mwXDgR4kDZ6rhBsVnocm2LeDDL05wp5Em5RSXeWs/KAZ85tp7YndSgsfaVSrMHpQ9rSUAZcXWuqrXJC5aQWk0CYZdBVE2O+40Q0EFLDTZtikfAXFgM03Yi4us6Z0FfOYq6XYXZeLB5rdSQRlK1JFm9KC82qvuUYNWUBpNguHAj7I58ZgKykonfbagn6A4sJnzW2UWLUkUcssudidlthTsfusMGcTsQTnMHlR5iXZaeLSgFZRGk0gohUsCKJuDlJR0AkpQFvptsikfAZsTh8foQVk1nxMwLe3E4cRrS7F0UVcV8OHDjjvNNGG3sEepSWy0gtJoEgllGC0om4M0t5NiUsBr3QPZrnwE5LABhteiHlTA9HordhdeWypOKxd1DXrx4cSdasgcKNNDfEcLWkFpNAlEyGJN2RykuOwU40EsVFA25UfZHLhCCsqi3kjAXC9PHC789hRcVq6ZF/Dhx47H7EFZ7QlYk7hoBaXRJBChZX0QJy6HzbCIs9DNuV35CYgTd9hC0CIjCf/hHpTfkWqpgrIFyvGJi9R0Q2Yrv7HSJDZaQWk0CUToeyJlN5bJLJMU7D7relAO5SNoc+JOM+agrFozT/nNj36dboLOVDwWrlJhD5Tjwxnu9SkLe5SaxEYrKI0mgfCZczk2m6Ggym2p2C00OLArw0Iw1eLhskC5oZDszlSCDmv9WNmD5fhsLrDZKcVluSdgTeKiFZRGk0D4w3M5TgB89hScFiooR2gOyjQ4UBaZsPvLDRnt7hRwpZGCFxXw13JUbNiCPnziAqDM4iFPTWKjFZRGk0D4IqzhAHz2NFxBCxWU+Y2VmB/qWjWfE/oOyun2gLkKe7lFBhj2YDn+kIKSFOxWfgSsSWi0gtJoEgifuSKD3ZyD8jvTLHWL4cCPsrvAmUIQscxCMOgzZHS60xC3ofxKLfrGyqG8+G2Gw0avzWPpR8CaxEYrKI0mgQgtGWRzGD0Gqw0OXMprKCgRSrCuNxL0hhRUyuFVKoqsWTPPEfQSsBnlUW5PxRXQPaijBa2gNJoEwm+aa9vMOSjlSieFcggG6p13MBAkBS9Bp+kI0ZaKwyILwaC5WKzbk4ozxTAHLy08YEneTuUlEOpB2dNxWfkRsCah0QpKo0kg/KEelDnEF5orsmI1ibKyImyiEGeqsW9LxWlVD8pUUC5PKs7UFgCUW+QJ2Km8BM05Ob8jjZSg7kEdLWgFpdEkECErPrvTeCCL2/Sqa8GSRKWmoz9xmz0oe7p1w2XmHJQnJRVXegsjyCJHi07lBYcHAL8znVSle1BHC1pBaTQJRGhNO7vDGNKym4u6llrgRTa0CriYVnY+Rxoei3ojyhyadLhSSMloAYDfIj9WLuUFszwCrgzStII6atAKSqNJIELfJYmpmBwWGhyUm8sahZSe35FOikUm7DZvEaUYH9Ommj0oKxSUzx8gnRKUy1zmyJVBmpSFh0I1yY1WUBpNAuE3V+p2morJaX5QW2rBcJm3xMjbYZqBB1zWDZfZyg9RhJFvejPDb5Mqq7+CKi4uwi1+lMdY+QJzyLNYu30/KtAKSqNJIAJlxpBbyFmhy1zU1Vtc/yWJyk0F5Uo1FEnQmUEapfgDwXrn7fAdpMRu5OvxeChTTrDALUZJ4X5jw1RQ4jHKoywUrklqtILSaBKIgDnE50kzegruVOPB7LNguKyscB8A6c0zjQB3BulSRnGZt955u/2FlNoNmUWEYknF5q2/zCUHDUVkNy0DbaYJe7lF31hpEhutoDSaBCI0B5VmupbwmP9+C3ojgcI9AKS3amcEmMNlpcX1f9h7/IV4HRnh/RJJxWbBN1aFBXsBSG1mKFVHiqGwrTJh1yQ2WkFpNAmE8hYTUEJKimFpl2YaHAQs8Nukio2HfbNWbYHDvZGywoJ6550ePITP1Ty8b9VHwKUFuwHIaNkGAGeoR2mRCbsmsdEKSqNJJLzFlOJBbMatmZYRctJXfwVlK91LAenhb6wcIQVVzx5UWbmXNmo/wfT24bBye5ol31gFDu4EoMWxXQBwmQrKKhN2TWKjFZRGk0A4yw5wyHZ4qCzF7aJEuS1ZddxVvIsCe2Z4324Ol3nrOVz2665tOCSIvWXHcJjXno7bAgUlh3biU3ZSWxrDkq50Q+Zgqe5BHQ3US0GJyBQR2Skiy83f2RFx/yMim0Rkg4icUX9RNZrkx12+l0J7y/C+iFAqHsSC4bJWZds56OkU3nelWTNcVrBzEwApbbqEw/zOdDwWfGPlPLSNffbWYLMDkJrRCoCgBXNymsTHYUEeTyilHosMEJE+wESgL9Ae+FREeiil6r/ipUaTxKT6DnDI075CWKmkYKunF1lveTntgr+wp9nIcJg7rQUAgXoOl5VsXQpAmxMGh8OCznRSLPjG6pjSzexJO4Fjzf2UtAyCSiz5xkqT+DTUEN8Y4DWlVLlSaguwCchroHNpNElDi+B+fJ7MCmFlklpvtxhb1i7GLX7snQaGwzwht+/1fNjbflnBPlrQul3ncFjQnUG6KgGljjjfvXt+5bjgTspb9w2HpbpdFOFBvLoHdTRghYK6SURWisjzIhIam+gAbI9Is8MMq4KIXCsiS0RkyZ49eywQR6NpmpQU7qcVh/A161wh3GtPwVFPFxP7Vv0XgE79R4bDUjLqv+JDIBCg86Hv2ZGeBSLhcHFn4JQAZaVHrlg3L34fuyha9js9HGa3CcWkYtMK6qigVgUlIp+KyOoovzHAc0A3IAfYBTxeVwGUUv9WSg1WSg1u06ZNXQ/XaJKGnzevAcBzbM8K4T57ar19IGVu/YBNjhNo06FbOCzF7EFRfuTzW2u++y9t2U+g5+gK4TZzxYfieviEsq95gwIy6Nr/5ArhJZJimR8rTWJT6xyUUurUWDISkenA/5m7O4FOEdEdzTCNRlMNBdvXAtCqc58K4QFHKi7vriPOd82iT+gb+JHvet3NCRHhNoeDEuWu13CZ/6snKSCdPqdcUiE8pKBKCgvIbNsp2qE1smXjKgYUf80PnS4n1zSLD1FqS9MK6iihvlZ87SJ2xwKrze13gYki4haRrkB3YHF9zqXRJDv+n1fiVQ7ada2koOphERfw+3F8+mf204zsc26qEl8sqdiPUEEt/WwuA0u/ZUOXSeH5rBAOcw3BsqKCOuergkEK3rqNMnHT7Zw7qsSX2dJwarfvRwX1nYN6RERWichKYBRwK4BSag0wF1gLfATcqC34NJqaabH3B35ydsftSa0QrpxppKiyI8pz8ay/0NO/gU0D/0SKuWxSJKWSiuMIDDDWrVvFcQvuZLutIzkT/1wl3pVmzG8dyZJES1+6iwFli1nX62ZaHdu5SrzXkWbJN1aaxKdeZuZKqctriHsQeLA++Ws0RwvlZSV09f7ID+0urBKn3OmkUUogEMRuj/2d8ruPXmHIT8+yNGMkuedcGzWN4fa9bsNlO3bsIGXORXjEh+3yWbg9aVXSuNNCHwHX7Rur9e9PZXD+dL5tdiZDL/pj1DQ+exop9TS71zQN9EoSGk0CsGXVN7jFh+f431SJE1cadlEUl8Q+FLfiu/lkfXsbP7m60/eGV8JLJ1Wm3J6Gqw49qAMFBRx8/gLasYeDY18hs2tO1HQhr7qBOnwEvOmruXRffB/fOweRfd3MamX2OTMsc7SoSWy0gtJoEoAD678CoHMlizUAu+m8sKQwtof9j+tX0uGDSRTamnHMNW/jSc2oNq3XkY47RrfvZeXlbP7nhfQKbGTbqKfp2P+UatOmhBe5jc2EffuK+XT47EY22k+gy/VvkJaaUm3aoDOdVEohqGcNkh2toDSaBMC963t2SDtatT2uSpzdtIgrjcEH0s87tpLy2nicEkAuf4tmx3SsMb3fkRaTAUYgEGTJM1cw2LuY9QPuo/vJF9eYPi3kVbe8dgW1+6dVZLx9GXtoRbOr3qJNq1Y1pg+6TIXrrX1ocv4r/8vq+3MpjlG5axILraA0mjgTDATpUrKSXc1zosaH3b7X4ua84MA+ip8/n1YUUDD2VY45PrvWcwectbt9V0rx1fTbGV74Icu7XkPf82+rNV+3JxWvckAtq7Af2L2N4MsXEEDwTnydDh2rKuiqmRvlUdsHxt++/U9GbnqYfmoj6756q/Z8NQmHFWvxJRxFhQfZu+NHDv2yhZKCX1El+5HS/eAtRgV82JQfm2lUGLA5CYgLZXeh7E6U3Q02FziciN2J2F3Gz2Fs25wubHYXdrsdhw1sokAZN7GgMHcAdThMKaIt+BIOjYg0VoapmFpVTVYhlxrThcOqpoueS9Xz1nYOVfUAohxaTRlEk0lVCatUItXKWtu1RZM1WlC0Gosua03nrXoBFWQxd2ylezmbQjYfN7RqJoAz5EW2BgVVVlrCtufG0juwlU2n/ofeUYYKoxFwZZAWWpIoYiWISL5+7RFG/vI8y1ufQ86kR2PKFwwT9pq+sSo+tJ8D08fQNniQ/HPm0rdX7QoVAHPI01tcgLtF9G+sln72BoOX/5m1nv4cU74V+8pX4ewrY5a9Og4ePMCeLasp2bWR0oJd+At/xVW2H7u/xHi2BP3YJEjA5iZgcxG0uQja3eBwoxwesLsRpwecHmzOFGxODzanB7vLg83hPlwHKkqrDT1HlIqID6KUqnifq2BEOvN485lkPJci8oxClVZQTbsACLibkztqbO0Fd4QklYL6ae1ims29kNYUkF4pzq9slOImIA4C2PFjQwAXPhz4ceHDhT8eYms0BJRw3KAzo8Z50gwF5avGSCLg97PmmQkM8q5gee4j5Iy4IObzKlcz7KIIlhdj81S+a2Dxhy9x4vq/syp9KNnXzazxYVWZEknBXs0wnLe8jC3PXkBP31ZWnfQvBuaOjDlfuyfkVfcg7ijxa5d8Qa8FN7Dd0ZkuN77D6rceIi//X2xc8Q09+lc1QqmO8tIiNi3/ioMbF5K6exntSjfQVu0l8osvn7JTIM0oEw8BcRAUB0EEh/LhVF5cyocT49+D13ihTSJWqeNBK6jYaNWmExtbDmdzi87YW3clrU0XWrRuT1qrY0jPaEWG3V5zBkpBwIfyl+Hz+fD7yvF7vfh85QR85QTMsICvnEAwiC8QRCGAGK8dEtoWwIZCEBuYkYffTCLXLKsaZKaUKK8y0dJVCpOK+UbuSNWgiltRj41F1ujPrWj5SNWgqGHRMpJaZA3LUo0QEqUgostQVQiJJkM0UWMt/0rlYUtpTtsW0Ye3wgqqrOo8igoG+X7aNQwtXsDiHreTd87vouZRHWIqpbLiAlIrKag1335E9qLb+MnVg+43vI7N4axT3qW2dBxRTNiDgQArnrmU3PJlfJfzIEN+W9W0viYcptPC0sICKn/Z9dP6FRz7f5dzyNacltfOI7VZK3qNuYOCp14l+N4tlPWYjycltWqmQNDvZ8vqb9i/8iPSd35Ft7I19BVjpGW7tGdreg5bWvfEfWxPUtv1onW7zrTKbEMbWy3PlRBKEfD7KC8rxltWSnl5Cb6yUnzlJfjKSwn4yiq0r4o3gzkbE3q8IIjYwulEJKJ9ixlmHoDNDAodHBlXScQoMlcTA0Cq3RPbtR8hSaWgWrRpR94fZh15BiLgcCEOFy4PuGo/QqNpcFLSQ15kqz7sv3vxfxi69y0WtbuUoZfcV+e8xW0aYBQeIDXzsEHF5tWL6fjxVeyxH8Mxv5sXVpJ1wWtPw11JQalgkG//dSPDCj/lu643MmRs1dUtaiOjuWGAUXhoP20jwn/evhn3a+MRBLn8LVqaBifNWh7DihMfpP+3v2fNP06H0x6ga99cfOWl7M5fy/6Ni3Dt+JpuRT/QjSK6AT/aurK47QRSu4/ghAGj6NS6HXVfsKkSItidLlKdLlIzWtaeXpNcCkqjSUZSTZPtym7fv331b5y4dRrfNz+DvKufPqK8Q72RksIDhJx8bN24guZvXIgXF45Jb9G8dbvqM6gBryON9PLdFWV+4W6G/Tqb748ZT97lfzuifFu0NCQtObQ/HPbrL9vxPX8erTnE3gveoPPxWRWO6X/GFSwtL6HnD/eT/sFY+MAIDw3X7SaT9c1HQLdRdM09m+7tOtH9iKTTWIlWUBpNgmMPDb1FWK1999rfOXHjoyxPG86AG1/GVtvwdTW0aGV4EDiwZxedgO2bVpPy6vnYCFJ88bt06tLriOX2OpvTvGQDYPScFr74J0Zs/zeLW5zN4N/9u9oPcWujVaYhs7dwHwB7ftlO4b/PoX3wV7ad/Qo9s0dEPW7QeddTfNKF/LDwLbz78lGOFFJad+aYXifS/rgTaFuH+TVN46AVlEaT6Djc/Eor0ou3EQwE+fb5Oxi2cwY/pA6j3+/fxOGKZioQG6279gegfOcq1i3O5NgPrgQUB8a/yfE9B9RL7LIW3Wlz8CMO7d3J6tfuY8TeN/ih+akMvunIFSpAyxYt2aUyce5dy0/rl+GeM4H2wQNsO+M/9BxyRo3HprVozcBqln3SJB5aQWk0TYBdnm4cf/BbVj96OsPKvmdJy7Ppf/0LOF31m6TObN2GrdKRvpv/jWvTs/xiOwZ1yVyO796/3jI37zEMtj6N45kB/IZyFre7hMFXP1Mv5QTGZP+2tCyGFHxK2ewvKZUUfh4zl54DR9VbZk1ioT/U1WiaAOXZl9GKQ5xQupJFPe9m0M2z6q2cwHjY7xn2F3ZLW5a2Ppdmf1hIJwuUE0DW0DNYmDmerY7jWTZ0Knm/e67eyilE5jn3s9bRh9UtRhK4ZgHdtHJKSkRF+8IwTgwePFgtWbIk3mJoNAnJtk2rad7qGJq3Oibeomg0liIiS5VSgyuH6yE+jaaJcNwJ/eItgkbTqOghPo1Go9EkJFpBaTQajSYhSag5KBHZA2y1IKvWwF4L8mkMtKwNR1OStynJCk1L3qYkKzQtea2StbNSqk3lwIRSUFYhIkuiTbglIlrWhqMpyduUZIWmJW9TkhWalrwNLase4tNoNBpNQqIVlEaj0WgSkmRVUP+OtwB1QMvacDQleZuSrNC05G1KskLTkrdBZU3KOSiNRqPRNH2StQel0Wg0miaOVlAajUajSUiSSkGJyJkiskFENonIPfGWJxIR6SQiX4jIWhFZIyJ/MMOniMhOEVlu/s6Ot6whRCRfRFaZci0xw1qJyH9F5EfzP+6uQUWkZ0T5LReRQyJySyKVrYg8LyK/isjqiLCoZSkGU812vFJEBiaArI+KyHpTnrdFpIUZ3kVESiPKeFpjylqDvNXWvYj8j1m2G0SkZv8cjSPrnAg580VkuRmeCGVb3XOrcdquUiopfoAd2Awcj+GtfQXQJ95yRcjXDhhobmcAG4E+wBTgjnjLV43M+UDrSmGPAPeY2/cAD8dbzijt4BegcyKVLXASMBBYXVtZAmcDHwICDAW+SwBZTwcc5vbDEbJ2iUyXQGUbte7Ne24F4Aa6ms8MezxlrRT/OHBfApVtdc+tRmm7ydSDygM2KaV+Ukp5gdeAMXGWKYxSapdS6gdzuxBYB3SIr1RHxBjgRXP7ReD8+IkSld8Cm5VSVqxIYhlKqQXA/krB1ZXlGOAlZbAIaCEiR+Z3/QiIJqtS6hOllN/cXQR0bCx5aqOasq2OMcBrSqlypdQWYBPGs6NRqElWERHgImB2Y8lTGzU8txql7SaTguoAbI/Y30GCKgAR6QIMAL4zg24yu8PPJ8KQWQQK+ERElopIyA1pW6XULnP7F6BtfESrlolUvMETtWyh+rJM9LZ8FcZbcoiuIrJMRL4Ukej+1uNDtLpP5LIdAexWSv0YEZYwZVvpudUobTeZFFSTQETSgTeBW5RSh4DngG5ADrALo4ufKAxXSg0EzgJuFJGTIiOV0adPmO8URMQFnAe8bgYlctlWINHKsjpE5E+AH5hlBu0CjlNKDQBuA14VkWbxki+CJlP3EVxMxZerhCnbKM+tMA3ZdpNJQe0EOkXsdzTDEgYRcWJU8iyl1FsASqndSqmAUioITKcRhxtqQym10/z/FXgbQ7bdoS67+f9r/CSswlnAD0qp3ZDYZWtSXVkmZFsWkcnAOcCl5kMJc6hsn7m9FGNOp0fchDSpoe4TtWwdwAXAnFBYopRttOcWjdR2k0lBfQ90F5Gu5pv0RODdOMsUxhxfngGsU0r9IyI8cnx2LLC68rHxQETSRCQjtI0xSb4ao0yvMJNdAcyLj4RRqfAGmqhlG0F1ZfkuMMm0iBoKHIwYTokLInImcBdwnlKqJCK8jYjYze3jge7AT/GR8jA11P27wEQRcYtIVwx5Fze2fFE4FVivlNoRCkiEsq3uuUVjtd14WohY/cOwINmI8abxp3jLU0m24Rjd4JXAcvN3NvAysMoMfxdoF29ZTXmPx7B2WgGsCZUnkAl8BvwIfAq0iresplxpwD6geURYwpQthuLcBfgwxuX/X3VliWEB9azZjlcBgxNA1k0YcwuhtjvNTDvObB/LgR+AcxOkbKute+BPZtluAM6Kt6xm+EzgukppE6Fsq3tuNUrb1UsdaTQajSYhSaYhPo1Go9EkEVpBaTQajSYh0QpKo9FoNAmJVlAajUajSUi0gtJoNBpNQqIVlEaj0WgSEq2gNBqNRpOQ/H8ponYMtTDCsQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABcQElEQVR4nO2deZwUxfn/38/M7M0ux3IfcsnNLguyiAEUjOJBFBUVFA80xmjUxCMe3yQYNPEXRY2KEkkMilcQvFDjQRRdERURBOVGkZVDRK4FFvacqd8f1bvOzs7swR5z7PN+udJdVV316arqfvqprukSYwyKoiiKEmm4wi1AURRFUYKhBkpRFEWJSNRAKYqiKBGJGihFURQlIlEDpSiKokQkaqAURVGUiEQNFCAi3UTEiIgn3FpiHRGZIiJLGqmsJBF5S0T2i8htjVFmQPm5InJKI5STIyJXhYhr0n1bROaIyF9rG1fPGqaJyHNVxDdKP6lPROQ257paKCLJDVWOGijlqHEuvBIRyff7a3RDUAWnAJlAF2PM9LJA54bQLWyqIginDafVIv3FIvKdiBwWkQUi0qqKtFkiskJEjjj/ZgWUG9h3ejSE5mhGREaLSE4t0oes8yBpW4nIq05bficiFweU6wton8vL4p3rqTPQFxh7VCdXA2LCQDXVp8MIYZ4xppnf3/TqD2k0WgG5xpj8cAupC2IJ+7UqIgOAfwKXAu2AI8A/QqSNB14DngNaAk8DrznhZQT2nW8b9AQakEi4B9Wwzv2ZCRRj23Iy8LjTxmV8H9A+T/sfbIw5DGwB0uv5VMoJe6c/Wpyn4NtF5CvgsIh4RGS4iHwiInki8qWIjPZLnyMifxORZSJyUEReC/X0JyJXiMh6ETkkIt+KyK8D4seLyConn80icroT3lxEZovIThHZISJ/FRF3NefRU0TeF5G9IrJHRJ4XkRZ+cftEZIiz31FEdpedl4icLSJrnfPNEZF+AfXzexH5SkQOiMg8EUmsfU3XHhG5w6mXQyKyTkTODZFOROQhEfnRqcvVIjLQiUsQkQdEZKuI7BKRWSKSVEspHsBXjdZ0EXnDKf9zp82W+MUbEblGRL526nmmiIgTF7Lt/Mh26mC/iDxV1gYi0lJE/uu0535nu7NfuTkico+IfIw1BNV5F11F5GOnzv8nIq0D4ic7dblHRP5YTV6hmAy8YYxZ7Bj9qcB5IpIaJO1obP0/bIwpMsbMAAQ4+SjLDonY4aadIvK9iFzltNmxQdKlisgHIjKjrA2B1iLyrlNvH4pIV7/0j4jINqdvrBCRUX5x00TkJRF5TkQOAlOqkRkvIs845awVkaEB8Vn1cK2OpoZ1LiIpwARgqjEm3xizBHgd+/BRG3xOmQ2DMSYq/4BcYBXQBUgCOgF7gTOxhvdUZ7+Nkz4H2AEMBFKAl4HnnLhugAE8zv44oCe2cU/C3iCGOHHDgANO/i6n3L5O3KvYJ8wUoC2wDPh1NedxrJNXAtAGWIztYGXxvwLWAcnAQuABJ7w3cNg5Ng64DfgGiPern2VAR6wnsR64JoSGkUBeFX8jQxw3rawOA8IvcMp1ARMdnR2cuCnAEmf7NGAF0MKp635+6R7CXjCtgFTgDeBvtegfccCzwfQFpHvB+UsG+gPbyvQ58Qb4r6PxGGA3cHoN2y4XWIPto62Aj4G/OnHp2BtEsnN+LwIL/I7NAbYCA7A3gLgqziEH2Oz0iSRn/96Avv2EEzcIKAL6hcirqvZ+Dbg9ICwfOC5I2puAtwPC/gvc4td3DgD7gLXAtUd5Hzgd+MGpp2Ss92CAY534OcBfnfpeVlb/fnGHgBOdNnwkoO0vcY7zALc45ST66S8BzsH286QqNE4DCrH3JjfwN2BpQD+p6bX6X+COEHFV1nlA+GDgSEDY77EPIGCNXTGwC+slPQSkBMnnaWAuzn2nvv/qPcPG+nMa9Uq//duBZwPSLAQud7bLL1pnv7/TAG4CDFSQshYAv3O2/wk8FCRNO+yFn+QXdhHwQS3P6xxgZUDY68Bq4CsgwQmbCsz3S+PCGuDRfvVziV/8dGBWPbfBNKcO8/z+OgZJtwoY72xP4ScDdTKwCRgOuPzSC9ao9fQLOwHYUkNdWdibxy6cG1WIdG4nXR+/sL9S2UCN9NufT+gbRIW2c9rgGr/9M4HNVWje77efA9xdw/PNAf7kt/8b4B1nu6xvd/aLXwZMOor2XkTAjdO/zwWETwVeCAh7HpjmbPfH3pDdwM+AncBFR6HpSfweXLAPDYEG6knsg8KtAcfO8dcINAO82HeWwcraDwzy6/uLa3GdvOe33x8oCOgndb5Wq6vzgPBRwA8BYb8Ccpzt9o5OF9Ad+/D1zyD59MQa7hJgaG01V/cXtUN8Dtv8trsCFzjDMHkikof1DDqESP8d9ik7cCgEETlDRJY6w2t52BtLWbou2KfVQLo6+e30K/+fWE8qJCLSTkReEDskeBD7BBio6Qms5/eoMabICevonAMAxhifc36d/I77wW/7CPYCrG/mG2Na+P19LyKXiR0CLauHgQSpZ2PM+8Bj2LHwH0XkXyKShvVGkoEVfnm844RXizFmFdYr+RS4sYqkbbBPx/79YluQdEHrsYZtF9jnOjrHJovIP8W+nD6IvQG0kIpDwsG0hKK6tq6PvpAPpAWEpWG9kFqlNcasM8Z8b4zxGmM+wXov5x+Fpo5U337jsN7jrCBx5emNHbbcx09t9HuxQ/0HnD7YnIrtW5f2SZSK760irX1+cNrIZ4zZgh2hmRAkn98BnwNpxpjlR6G5SqLdQPl/in0b1oPyv1mmGGPu9UvTxW/7GKzV3+OfoYgkYIf/HgDaGWNaAG9hn+rLyukZRMs2rAfV2q/8NGPMgCBp/fl/znlkGGPSsMMKZWUhIs2Ah4HZwDT56b3Z91ijWJZOnPPbUU15lRCRUVJxtk7g36jqcynPqyvWoF4PpDv1t8b/nPwxxswwxhyHfVrrDdyKbZMCYIBfXTY3xtT4ojXGFAJvO/mGYjdQip2NVEaXEGmDUWXbBcnvGGy7gR0y6gMc7xx7ohPuf7x//44E1mKHCAEQO+suAesFB0ub6feuB+yMyrUh8jaE6CPVsJPq2+8J7APOW867F4Kld661VsD3Tp+/DbgQaOn04wNEfvvUtM43AR4R6eUXNihEWrDnGsxe9MN66wVHobdaot1A+fMccJaInCYibhFJFDtV0r/zXiIi/cXO278beMkY4w3IJx570e0GSkXkDCpOo5wNXCEiPxcRl4h0EpG+xpidwP+AB0UkzYnrKSInVaM7Ffs0c0BEOmFv0P48Aiw3xlwFvMlPT4HzgXGOjjjsDa8I+KS6igrEGPORqThbJ/Dvo1pkl4LtzLvBTjjBelCVEJFsETne0X8YO07vc7zBJ4CHRKStk7aTiJzmd6wRv0kwISjCtmdQnLZ/BWv4k0WkL3BZjc7SUl3bAVwnIp2dB4s/AvP8ji0A8py4P9ei3HDxPPYaG+Xc6O8GXjHGBHtCz8EOl/1W7ISX653w96F8olFLsQwDfot9x4UTnysiU2qgaT72euznXNdTQ6S7HtgIvCEVJ9ucKSIjxc50+wv23dA2bPuUYvuxR0TupLLHEWnkUEWd+2PsDLxXgLtFJEVERgDjse9tEZExItLVaZ8uwL34tY8fcdjrrEGIGQPldKrxwB+wnWob9obhf47PYsedfwASsRdFYD6HnPD52DHni7HvgMrilwFXYF8aHgA+5CdP5jLsDXGdc+xLVBxiDMZdwBAnrzexnQawFzH2JfC1TtDNwBARmWyM2Yh9Yn8U63GcBZxljCmuprwGxRizDngQO7y2C8jATg4IRhrWEO3HDn/tBe534m7HTvpY6gyBvYf1OHAumEPY93JV4aP6Pn49dujmB2z/mEvNL7iQbefHf7APLt9ih4bLfhj6MHbYaQ+wFPuEH3aq8piNMWuBa7CG6kfsTfw3fse+LSJ/cNIWY9/JXYZ9N3klcI5f/5yEbd9DwDPAfcaZxuwYi3RsvVSJMeZtYAbwgZNf2TFFAekMcDWwHTv1umyW3H+wDwf7gOOw1xTY99fvYD2N77APT7UZ0msQ/Os4kOrqXET+ICJv+x3yG2wf/BHb76912hjsJIpPsA+On2CvtUr3S+w7xCpnytYFcV50xTxif+z2nDHm3+HWotQNEbkEO/z3f9WkG4v1rPsaY/bVMO/7gPbGmMvrrlQ5GkRkJHCdMeaiozi2H3ZIOcEYU1rv4pRyxP6kYh1wlTHmrYYoI2Y8KKXpYIx5rjrj5JADvAusFZHfB0sgIn1FJNNvqOmX2J8LKGHCGLOkNsZJRM51hrRaAvdhp0qrcWpAnOtpA3YEaVFDlaMGqhEQ+yPTYJMPgs0qUuoJY0yxMWayMaaDMeaBEMlSsUNzh7Hvhx4k+Fh7WAnRf2o1gSWG+TV2mGoz9h3MtVUnr3+cobdg7RN0OC7aMcY8YIxpb4y5yG9mcb3TZIb4FEVRlOhCPShFURQlIgn7Bw79ad26tenWrVu4ZSiKoiiNyIoVK/YYYyr9ED+iDFS3bt1Yvrzef4ysKIqiRDAi8l2wcB3iUxRFUSISNVCKoihKRKIGSlEikO/e/Qf50zrw1YK/h1uKooSNiHoHFYySkhK2b99OYWFhuKUoUURiYiKdO3cmLi4u3FJqja+kiLSP/0YzjtBj1XQKfn4lSaktwi1LURqdiDdQ27dvJzU1lW7duiFyNB87Vpoaxhj27t3L9u3b6d69e7jl1Jrt6z7hGA6yuOX5nLj/JT7/6FWyz7wi3LIUpdGJ+CG+wsJC0tPT1TgpNUZESE9Pj1qve+96u+J8l7NuZz+puL5eGGZFihIeIt5AAWqclFoTzX1Gdq5kJ63p1r0XW5IzaZe3KtySFCUsRIWBUpSmREp+LrsT7ZB2ScdsOpud/Lgz7Cs9KEqjowaqBogIt9xyS/n+Aw88wLRp08InqBpycnL45JNar1tYgdNPP50WLVrwi1/8op5UKTXCGNp7v+dIM7vEWPPeIwDYuWZxOFUpSlhQA1UDEhISeOWVV9izZ0/1iWuBMQafr/7X+qoPA3Xrrbfy7LPP1pMipaYc3v8DqRRQ2rIHAJ37HY/PCAXbVoVXmKKEATVQNcDj8XD11Vfz0EMPVYrbvXs3EyZMIDs7m+zsbD7+2C4eO23aNB544KcVHgYOHEhubi65ubn06dOHyy67jIEDB7Jt2zZuvfVWBg4cSEZGBvPm2RXBc3JyGD16NOeffz59+/Zl8uTJBPvy/IwZM+jfvz+ZmZlMmjSJ3NxcZs2axUMPPURWVhYfffRRlRovvfRSTjjhBHr16sUTTzxRnu/Pf/5zUlNTq6yXF198kYEDBzJo0CBOPPFEwE5queKKK8jIyGDw4MF88MEHAMyZM4dzzjmHU089lW7duvHYY4/x97//ncGDBzN8+HD27bPrCT7xxBNkZ2czaNAgJkyYwJEjRyqVO3z4cNauXVu+P3r06Jj5RNbeHd8AENfKelDNUpuz3dWBhL3rwilLUcJCxE8z9+euN9ay7vuD9Zpn/45p/PmsAdWmu+6668jMzOS2226rEP673/2Om266iZEjR7J161ZOO+001q9fX2VeX3/9NU8//TTDhw/n5ZdfZtWqVXz55Zfs2bOH7Ozs8pv9ypUrWbt2LR07dmTEiBF8/PHHjBw5skJe9957L1u2bCEhIYG8vDxatGjBNddcQ7Nmzfj97+0afRdffHFIjV999RVLly7l8OHDDB48mHHjxtGxY8ca1d3dd9/NwoUL6dSpE3l5eQDMnDkTEWH16tVs2LCBsWPHsmnTJgDWrFnDypUrKSws5Nhjj+W+++5j5cqV3HTTTTzzzDPceOONnHfeefzqV78C4E9/+hOzZ8/mhhtuqFDuxIkTmT9/PnfddRc7d+5k586dDB06tEaaI52Du7cDkNqmS3nYnpRetDu8IVySFCVsqAdVQ9LS0rjsssuYMWNGhfD33nuP66+/nqysLM4++2wOHjxIfn5+lXl17dqV4cOHA7BkyRIuuugi3G437dq146STTuLzzz8HYNiwYXTu3BmXy0VWVha5ubmV8srMzGTy5Mk899xzeDzBnzeq0jh+/HiSkpJo3bo1Y8aMYdmyZTWukxEjRjBlyhSeeOIJvF5v+flccsklAPTt25euXbuWG6gxY8aQmppKmzZtaN68OWeddRYAGRkZ5ee2Zs0aRo0aRUZGBs8//3wFT6mMCy+8kJdeegmA+fPnc/7559dYc6RTsHcHAC3bH1MeVtx6AJ3MLg4eqNGq9YoSM0SVB1UTT6chufHGGxkyZAhXXPHTjyZ9Ph9Lly4lMTGxQlqPx1Ph/ZL/b3JSUlJqVF5CQkL5ttvtprS08irWb775JosXL+aNN97gnnvuYfXq1ZXShNIIladj12Z69qxZs/jss8948803Oe6441ixYkWV6f3Px+Vyle+7XK7yc5syZQoLFixg0KBBzJkzh5ycnEr5dOrUifT0dL766ivmzZvHrFmxszBx6YGd+IzQpl3n8rDkYwZBLmzfsJz+x48NnzhFaWTUg6oFrVq14sILL2T27NnlYWPHjuXRRx8t31+1ahVglw754osvAPjiiy/YsmVL0DxHjRrFvHnz8Hq97N69m8WLFzNs2LAa6fH5fGzbto0xY8Zw3333ceDAAfLz80lNTeXQoUPVagR47bXXKCwsZO/eveTk5JCdnV2jsgE2b97M8ccfz913302bNm3Ytm0bo0aN4vnnnwdg06ZNbN26lT59+tQ4z0OHDtGhQwdKSkrK8wnGxIkTmT59OgcOHCAzM7PG+Uc8+bvYL83xxMWXB3XsY/vDwS1VPwAoSqyhBqqW3HLLLRVm882YMYPly5eTmZlJ//79y5/mJ0yYwL59+xgwYACPPfYYvXv3DprfueeeS2ZmJoMGDeLkk09m+vTptG/fvkZavF4vl1xySfmEhN/+9re0aNGCs846i1dffbV8kkQojWCHCMeMGcPw4cOZOnVq+funUaNGccEFF7Bo0SI6d+7MwoX2awZ33nknr7/+OmBn+mVkZDBw4EB+9rOfMWjQIH7zm9/g8/nIyMhg4sSJzJkzp4LnVB1/+ctfOP744xkxYgR9+/YtD3/99de58847y/fPP/98XnjhBS688MIa5x0NJBX+yAF3qwph6R26kUczZFfl4U5FiWUk2MywcDF06FATOBtr/fr19OvXL0yKYptp06ZVmEwRa0Rj3/nmL0M4EteKzDveqxC+7m8n4ik9Qu+psTFbUVH8EZEVxphKM53Ug1KUCCLVm0dhQutK4Yda9ueY0lxKSorDoEpRwkNUTZJQ6pdI/hpGUyXV5ONLbFEp3NNxEIk/zOXbr7+iR//YmFKvKNWhHpSiRAhHjuSTLEVIcqtKcW16HQfAnq91iE9pOqiBUpQIIW/fbgDcKZUNVKdjsygycZR+/2Vjy1KUsFFnAyUiN4jIBhFZKyLTA+KOEZF8EYnNt/CKUo8cybMGyhPEQLnj4tkW15XU/VV/pURRYok6vYMSkTHAeGCQMaZIRNoGJPk78HZdylCUpkLRob0AxDVLDxq/P60vx+77EOPzIS4d/FBin7r28muBe40xRQDGmB/LIkTkHGALEBM/3liwYAEiwoYNob+Jlpuby8CBAxtUx6pVq3jrrbfqlMeVV15J27ZtG1yrUjtK8u2njOJTgxso0y6Tlhzihx3Bf/StKLFGXQ1Ub2CUiHwmIh+KSDaAiDQDbgfuqqvASGHu3LmMHDmSuXPnBo0P9hmi2lL2PbuqqA8DNWXKFN5555065aHUP97D1kAlpVWeZg7QvIedKPHD+k8bTZOihJNqDZSIvCcia4L8jccOEbYChgO3AvPFfsxtGvCQMabqr6ba/K8WkeUisnz37t11O5sGIj8/nyVLljB79mxeeOGF8vCcnBxGjRrF2WefTf/+/QFrqCZPnky/fv04//zzy5eLWLRoEYMHDyYjI4Mrr7ySoqIiwH4S6fbbb2fIkCG8+OKLFcoNXM6iuLiYO++8k3nz5pGVlcW8efM4fPgwV155JcOGDWPw4MG89tprgF3eYvz48YwePZpevXpx110/PSuceOKJtGpV+T2HPx9++CFZWVlkZWUxePBgDh06hDEm5NIgJ510EuPHj6dHjx7ccccdPP/88wwbNoyMjAw2b94MwBtvvMHxxx/P4MGDOeWUU9i1a1elcidNmsSbb75Zvj9lypTyD8PGOj7HQCU3D26gjhlwAsXGQ/EWNVBK06Dad1DGmFNCxYnItcArxn6OYpmI+IDWwPHA+c6kiRaAT0QKjTGPBcn/X8C/wH5Jokoxb98BP1T+GGqdaJ8BZ9xbZZLXXnuN008/nd69e5Oens6KFSs47jj7NPvFF1+wZs0aunfvTm5uLhs3bmT27NmMGDGCK6+8kn/84x9cf/31TJkyhUWLFtG7d28uu+wyHn/8cW688UYA0tPTy7/b50/gchbx8fHcfffdLF++nMces1X5hz/8gZNPPpknn3ySvLw8hg0bximn2CZbtmwZa9asITk5mezsbMaNG1fjZSkeeOABZs6cyYgRI8jPzycxMZFXXnkl5NIgX375JevXr6dVq1b06NGDq666imXLlvHII4/w6KOP8vDDDzNy5EiWLl2KiPDvf/+b6dOn8+CDD1Yot2wpjXHjxlFcXMyiRYt4/PHHa6Q56incT6lx0SytZdDopOQU1sX1puUenWquNA3qOsS3ABgDICK9gXhgjzFmlDGmmzGmG/Aw8P+CGadoYe7cuUyaNAmwT/j+w3zDhg2je/fu5ftdunRhxAi7TPcll1zCkiVL2LhxI927dy//Ht/ll1/O4sU/LeE9ceLEoOUGW84ikP/973/ce++9ZGVlMXr0aAoLC9m6dSsAp556Kunp6SQlJXHeeeexZMmSGp/ziBEjuPnmm5kxYwZ5eXl4PJ4qlwbJzs6mQ4cOJCQk0LNnT8aOtV/d9l9KY/v27Zx22mlkZGRw//33B11K44wzzuCDDz6gqKiIt99+mxNPPJGkpKQa645mXEUHOUQK8XHukGny2hxHt+KvKTxyKGQaRYkV6voliSeBJ0VkDVAMXG4a8uN+1Xg6DcG+fft4//33Wb16NSKC1+tFRLj//vuByktnHM3yFaGW36jJchbGGF5++eVKXwz/7LPP6rSUxh133MG4ceN46623GDFiRPnHYkNRk6U0brjhBm6++WbOPvtscnJygn7JIjExkdGjR7Nw4ULmzZtX/mDQFJDifI5IEsH9J0tSz5HE73yWdasW0/9n4xpNm6KEgzp5UMaYYmPMJcaYgcaYIcaY94OkmWaMeSDY8dHASy+9xKWXXsp3331Hbm4u27Zto3v37nz00UdB02/dupVPP7XvCP7zn/8wcuRI+vTpQ25uLt98Y5fzfvbZZznppJOqLTvYchaBS2mcdtppPProo+XLwa9cubI87t1332Xfvn0UFBSwYMGCcs+uJmzevJmMjAxuv/12srOz2bBhQ52WBgE4cOAAnTp1AuDpp58OmW7ixIk89dRTfPTRR5x++uk1zj/acZUcpshVtbfYbcgplBg3BeuqfmBQlFhAf0xRDXPnzuXcc8+tEDZhwoSQs/n69OnDzJkz6devH/v37+faa68lMTGRp556igsuuICMjAxcLhfXXHNNtWUHW85izJgxrFu3rnySxNSpUykpKSEzM5MBAwYwderU8uOHDRvGhAkTyMzMZMKECeXvny666CJOOOEENm7cSOfOncvXt5o1a1b5UhwPP/wwAwcOJDMzk7i4OM4444w6LQ0C9tt/F1xwAccddxytW/80EWD58uVcddVV5ftjx47lww8/5JRTTiE+Pj5YVjGJp/QwRa7kKtO0bNWatfEZtN1Z6VlQUWIOXW4jRpkzZ06FyRRNkWjrO5v+mk2hJ43MOxZVmW7xs3/hxM0PsGfKElp3y2gkdYrScOhyG4oS4cT7jlDqCf4+0p8uoyZTYtzsWBQ7S90rSjB0uY0YZcqUKUyZMiXcMpRakOQrwBdXvYHq3q0HnySNYOC2BZQe+X94kptXe4wxhoP793Bk3w6KDuymoOAIpT4vbgwCiLhwud143G48HjdutwvEhcEFCEbEbouAuPz+bLjNBTxuFwkeId7tRgS8PoPXGEq9PnwGSn0Gn8+U/+tzRnBM+f/K/wHA7YI4twufAa/Ph9dn8/D6fLhEcLsEt/OvyyV4nH+NsefsNYZmLdrSruMxtWoLJTKICgNljKnVDDRFiaSh65qSZArwxafWKK2MuIG0RRewdv6dDJjySNA0327exI5P55O6LYeORd/Qlv1Ub8pijyITx8GbN5HWvOofpyuRR8QbqMTERPbu3Ut6eroaKaVGGGPYu3cviYmJ4ZZSY4pLvKRQAPHNapR++MhTef/T0zk5dw65C3vRbex1IMLu3HV8u2Q+ablv0690Az2Ara7ObGt5PFvS+2FSO+Bulk5CUjPiPG58RvAZMMaH1+ejtLQUr9fr/O7OIMZnPSx8zrbPujjGB8aHYBDjpezS9PoMxaU+Srw+AFyOh+MS69m4XeAWFy6xcdZ7KzsrwXHEEGwxZd6Wqywvv/wM1gPzGpvO53hrZV6ZSwTvtx8xbM+r7N2/Ww1UFBLxBqpz585s376dSP0MkhKZJCYm0rlz53DLqDGH8w/SUgySWDMDJSIMvGoWyx8bz9BP/0je0un4ENqYPNoAm909WNHzOo4ZeRHHdM+gqQ5wrXjTB3tepbjwcLilKEdBxBuouLi4Cl9qUJRYpODwAVoCroSaDfEBtG3VksTfL+SdBf8iaccnuAS8bQfS/Wfn0fPYAQ0nNopwx9t3eiVqoKKSiDdQitIUKDp8AABXYs0NFEBachKnX/w74HcNoCr6cSeUGagjYVaiHA06zVxRIoDiIwcB8CSmhVlJbBGXYL/M4S1SDyoaiSkDZXxe8vb8wOFDeeGWoii1osQxUO6k2nlQStV4Eq0HVVqkHlQ0ElMG6tDB/bR4rA+rXw8+7VZRIpWSAvt9xfga/KZJqTlxjoHyFquBikZiykAlpzjDI+rOK1GGt9B6UHHJOsRXn8Qn2m8bGvWgopKYMlCeuHgKTRyUVLuQr6JEFL5C60ElNlMDVZ/EJ9lp+76SgjArUY6GmDJQAEckCSlWD0qJLnyO15+YokN89UlikvPpqBL1oKKRmDNQhZKEp0QNlBJdGOcdSXJyzX6oq9SMRKc+TUlhmJUoR0NMGih3qRooJbrwlRRSalzExSdUn1ipMW632xn21yG+aCTmDFSRO5k4r7rzSnQhJUcoFDVODUGRxCOlaqCikZgzUCXuZOLVQClRhngLKabprB7cmBSSgEsNVFQSmwbKp51RiS5cpYUUqQfVIBRLAi6vvoOKRmLOQHk9ySQa9aCU6MLjLaBYDVSDUCwJuNVARSWxZ6DimpFs1INSogu3t4gSlxqohqDElagGKkqJOQPli08hyRRCFK6oqjRdPL5CStSDahC87gTc3qJwy1COgpgzUK6EZnjER5Gu/6JEER5fEaXu6FkBOJoodScRp++lo5IYNFD2a9D5hw6EWYmi1Jw4XyFelxqohsDrSSHRp++lo5GYM1BxznIFhw/mhVeIotSCeFOE16MGqiHwxjUjSSdORSV1NlAicoOIbBCRtSIy3S88U0Q+dcJXi0ijXH3u5BYAFBza1xjFKUq9EG+K8OkQX4Pgi0sh2egkiWikTku+i8gYYDwwyBhTJCJtnXAP8BxwqTHmSxFJB0rqrLYGJKS2AqA4Xw2UEj0kUoTPkxRuGbFJfDOSpYiSkhLi4uLCrUapBXX1oK4F7jXGFAEYY350wscCXxljvnTC9xpjvHUsq0YkpKYDaqCU6CLBFGPUQDUMznvpw/n6XjraqKuB6g2MEpHPRORDEcn2CzcislBEvhCR20JlICJXi8hyEVm+e/fuOsqBpLTWAHgP769zXorSGHi9XhKlBPQdVIPgTrQGquBQXniFKLWm2iE+EXkPaB8k6o/O8a2A4UA2MF9EejjhI52wI8AiEVlhjFkUmIkx5l/AvwCGDh1a5x8vpTS3HpQpUAOlRAeFBYdJAYhTD6ohcCXZRSALDx8MsxKltlRroIwxp4SKE5FrgVeMMQZYJiI+oDWwHVhsjNnjpHsLGAJUMlD1TUpKGsXGDQXqzivRQdGRfFIAiVcD1RC4nZm9RYfzwitEqTV1HeJbAIwBEJHeQDywB1gIZIhIsjNh4iRgXR3LqhEut4tD0gxXUV5jFKcodabsR+WuuOQwK4lN4pOtB1VyRD2oaKNOs/iAJ4EnRWQNUAxc7nhT+0Xk78DngAHeMsa8Wceyaky+NMNTrB6UEh0UF1gDpR5UwxCf1ByAkgI1UNFGnQyUMaYYuCRE3HPYqeaNToE7VQ2UEjWUOB6UOyElzEpik6Rm1kCVFhwKsxKltsTclyQAiuPSSCjVzqhEByVF9isHHvWgGoTEFDvE5yus53uCz6cfpW5g6jrEF5GUxLekdcGWoz7e+LxsXL6IvC8WkLx/Pa2KfyDBFODBS7HEUyLxlEgCJa4ESl2JeN3OnycJnzuRUnciPvEgLheCIC4BBBEXIoKIgEjFMiuJqFZlpYujrpeKVJ+kQkk1T191ARIiwmBw/qtwqqbsTEOcsAnYMFRdT/77LkdPWfOICAaDz2fwGfCasm2DMeByCS4Blwgul+D2O9bvBKs8V/fBbfbfRPWgGoLktJYAmKKjH+Lzer18lfMS3rWvkX5gLeneH2nmLOtTRBzFEk+hJFHoSqLYlUSJO4lSdzJeTzLeuBRMXArGnQAiGOz9AOSnvlceHgybyhh7lPELK09hAtJXczMQCZagYvlSVmAVqY4ktOHkS/+v6sLqQGwaqOTWtMrLw/h8iKt2TuI3n76B+72p9PVuodh4+C6uG7tSelMa14xSXLi8xbi8xbh9RXh8hcR5C0kozSfeV0i8KSKBIpJMER5Ky7tgWddzBe0U0YnP1No8xQZV30OOmoOSQnrnXnXLRAlKYlIKhSYOCvKO6vj1yxcR99YtDPZt4aBJYXPSAH5sNZTS+DTbHUqLoKQAV+kRPKVH8HiPEFdaQFLxThJ9hSRSQJIpJJHiqLsXVHedr6U7oAaqVpiUdiRKCYcO7ie1RXrNjvF5Wf7kTWRvf5rttOfTjL+Qeeql9HKevuqsyRi8Brw+g8/nw97Rqm78wCfxSk/fUvlpPViOUumRPri+oOEh04cID3FEbUdCjLHnL453ItjzKDsTfw+noTCOlwTWUzraPH7a9gsPSJfmEtKOqgSlJhySVNyFtf9t5NJXHmXIl39mn7Ri5dDpZIy9nMHxtf9BtTHWAy/rRb6KkZSPiIToz+X9ncqjL1UeUEeqe7zPqJdSQhOTBkpS2wFwcM/2Ghko4/Ox4vFfkr37VT5t8QsG/vJxOqfW7+1CRHALuF1CZL76a6IeURVIkAeAo8njp+06ClKOmnx3GnHFebU6Ztl//82wL6eyLmkwXa+Zz+AWbY66/LLrP0TsUecb60TinbLOJLToAED+3u9rlP6z5/7M0N2vsqTdJQz/7bOk1rNxUhQlvBxxp5FQUvN3UF+v/oxBn9/BpoT+9PrdG6TWwTgpR09MGqjU1h0BOFIDA7Xps7fJ3vwoy5uNYcSvH631OytFUSKf4vgWJHtr9tOTwoIjuF69msOSTPurXiQhqVkDq1NCEZN349btjgGgcP/OKtMVHskn6Z2b2OlqR69fPaXGSVFilNKEFjTz1cyDWvHiffT05fL9idNp0bZTAytTqiIm78jNW7Wh2Hgwh6o2UBvm/5kuZif7T55O8+b1MxlCUZTIw5fYkuYmH6/XV2W63bt2kLH5X6xOHsbAkyc1kjolFDFpoMTlYperLYn5W0OmObxnG31zn+Hj5JPJGDW+EdUpitLYSHIr4sTLwYN5VabbsGA6zSig1fj7GkeYUiUxaaAA9iZ0onnhjpDx37w8Dbfx0mrcXY2oSlGUcOBOsbN5D+3bFTLNnryD9Pv+VdalnkCnPkMaS5pSBTFroA6nHEO70u+D/gBn/46v6f/9q3za/Ez6DcgMgzpFURqTuLS2ABzeH3ri1Bdvz6G1HKDl6OsaS5ZSDTFroKRVD5pRQN7uyh0y95U/48NFl3PuDIMyRVEam8T0LgAU7d0eNN7rM3TY9Bw7PZ3oNOTMxpSmVEHMGqhmHexnY3ZuWVMh/IdvV5O55y2WtT6X7j16h0OaoiiNTKsO3QEo2rctaPyKTz8gw2xkf//LQWfzRgwx2xKte2UDcDh3eYXwHxbcSSHx9JowNRyyFEUJA+mt21Fo4jB5wT2ook//SQEJ9Drt6kZWplRFzBqoDp278yOtkB0ry8O2rvmUrIPvs7LjRbTveEwY1SmK0piIy8VuVxs8h3+oFLdjx3ayDy1iU7sziUvRn5tEEjFroESEbc0y6Xrwc4zPi/H52P/fqRwwKQw4/0/hlqcoSiNzKL4NKYWVDdTXCx8nUUpof+pvw6BKqYqYNVAAJceeQWvy2LT0LVa+/W8GFX7Oxj7X0DJdv6ulKE2NgqQOpJdWnGZeXFzCsVvnszExk3bH6tTySCOmDVTmqRfzIy1J/9/19Fv2R9Z7+jLkgoZbu0RRlMiluFVv2rKPA/t2l4et+mA+nfmRkuN+GUZlSihi2kAlp6Tx/SkzyZcU1idmkX7VS3ji4sItS1GUMJB2jP3NY+76FeVh8Stms4eW9Bt9cbhkKVUQk+tB+ZM1chyMHEe3cAtRFCWsdO47FHLg4JbPYcTprF31KVnFK1jR4zpax8WHW54ShJj2oBRFUcpo3r47O6QdKTs+BuDAew9SQAL9zr4xvMKUkKiBUhSlybCr7Uj6HVnBR/99luGH3mNtxwkkt2gbbllKCNRAKYrSZGh/ym+Jp4RRy69ntyud/pPuCbckpQrUQCmK0mTo2CuLbWOf4MsOF+K58i2S01qFW5JSBXWeJCEiNwDXAV7gTWPMbSISB/wbGOKU8Ywx5m91LUtRFKWudBtxAYy4INwylBpQJwMlImOA8cAgY0yRiJQN5l4AJBhjMkQkGVgnInONMbl1k6soiqI0Feo6xHctcK8xpgjAGPOjE26AFBHxAElAMXCwjmUpiqIoTYi6DvH1BkaJyD1AIfB7Y8znwEtYz2onkAzcZIzZFywDEbkaKPuEcL6IbKyjJoDWwJ56yKcxiCatEF16VWvDEU16o0krRJfe+tLaNVhgtQZKRN4D2geJ+qNzfCtgOJANzBeRHsAw7DupjkBL4CMRec8Y821gJsaYfwH/quFJ1AgRWW6MGVqfeTYU0aQVokuvam04oklvNGmF6NLb0FqrNVDGmFNCxYnItcArxhgDLBMRH9aiXgy8Y4wpAX4UkY+BoUAlA6UoiqIowajrO6gFwBgAEekNxGPdva3AyU54CtbD2lDHshRFUZQmRF0N1JNADxFZA7wAXO54UzOBZiKyFvgceMoY81Udy6oN9Tpk2MBEk1aILr2qteGIJr3RpBWiS2+DahVrTxRFURQlstAvSSiKoigRiRooRVEUJSKJKQMlIqeLyEYR+UZE7gi3nkBEpIuIfCAi60RkrYj8zgmfJiI7RGSV83dmuLUCiEiuiKx2NC13wlqJyLsi8rXzb8sI0NnHr+5WichBEbkxkupVRJ4UkR+d97VlYUHrUiwznH78lYg06lrkIbTeLyIbHD2vikgLJ7ybiBT41fGsxtRahd6QbS8i/+fU7UYROS0CtM7z05krIquc8Eio21D3rMbpu8aYmPgD3MBmoAd2NuGXQP9w6wrQ2AEY4mynApuA/sA07I+cw64xQG8u0DogbDpwh7N9B3BfuHUG6Qc/YH/4FzH1CpyI/TblmurqEjgTeBsQ7AzYzyJA61jA42zf56e1m3+6CKrboG3vXG9fAglAd+ee4Q6n1oD4B4E7I6huQ92zGqXvxpIHNQz4xhjzrTGmGDurcHyYNVXAGLPTGPOFs30IWA90Cq+qWjMeeNrZfho4J3xSgvJzYLMx5rtwC/HHGLMYCPyaSqi6HI/9wLIxxiwFWohIh0YRSnCtxpj/GWNKnd2lQOfG0lMdIeo2FOOBF4wxRcaYLcA32HtHo1CVVhER4EJgbmPpqY4q7lmN0ndjyUB1Arb57W8ngm/+ItINGAx85gRd77jET0bCsJmDAf4nIivEfpIKoJ0xZqez/QPQLjzSQjKJihd4JNZrGaHqMtL78pXYp+QyuovIShH5UERGhUtUEIK1fSTX7ShglzHma7+wiKnbgHtWo/TdWDJQUYOINANeBm40xhwEHgd6AlnY7xc+GD51FRhpjBkCnAFcJyIn+kca69NHzO8URCQeOBt40QmK1HqtRKTVZShE5I9AKfC8E7QTOMYYMxi4GfiPiKSFS58fUdP2flxExYeriKnbIPeschqy78aSgdoBdPHb7+yERRRi18p6GXjeGPMKgDFmlzHGa4zxAU/QiEMOVWGM2eH8+yPwKlbXrjKX3fn3x9A5NDpnAF8YY3ZB5NarH6HqMiL7sohMAX4BTHZuSjhDZXud7RXYdzq9wybSoYq2j9S69QDnAfPKwiKlboPds2ikvhtLBupzoJeIdHeepCcBr4dZUwWcMebZwHpjzN/9wv3HaM8F1gQe29iISIqIpJZtY1+Sr8HW6eVOssuB18KjMCgVnkAjsV4DCFWXrwOXOTOihgMH/IZTwoKInA7cBpxtjDniF95GRNzOdg+gFxHwzc0q2v51YJKIJIhId6zeZY2tLwinABuMMdvLAiKhbkPds2isvhvOGSL1/YedQbIJ+6Txx3DrCaJvJNYV/gpY5fydCTwLrHbCXwc6RIDWHtjZTl8Ca8vqE0gHFgFfA+8BrcKt1dGVAuwFmvuFRUy9Yg3nTqAEOy7/y1B1iZ0BNdPpx6uBoRGg9Rvsu4WyfjvLSTvB6R+rgC+AsyKkbkO2PXYlhs3ARuCMcGt1wucA1wSkjYS6DXXPapS+q586UhRFUSKSWBriUxRFUWIINVCKoihKRKIGSlEURYlI1EApiqIoEYkaKEVRFCUiUQOlKIqiRCRqoBRFUZSIRA2UoiiKEpGogVIURVEiEjVQiqIoSkSiBkpRFEWJSNRAKYqiKBGJGijsSpEiYpw1WZQGRESmiMiSRiorSUTeEpH9InJbY5QZUH6uiJzSCOXkiMhVIeKadN8WkTki8tfaxtWzhmki8lwV8Y3ST+oTEbnNua4WikhyQ5WjBko5apwLr0RE8v3+Gt0QVMEpQCbQxRgzvSzQuSF0C5uqCMJpw2m1SH+xiHwnIodFZIGItKoibZaIrBCRI86/WQHlBvadHg2hOZoRkdEiklOL9CHrPEjaViLyqtOW34nIxQHl+gLap2z9J5zrqTPQF7tWXIMQEwaqqT4dRgjzjDHN/P6mV39Io9EKyDXG5IdbSF1wFn8L+7UqIgOAfwKXAu2AI8A/QqSNxy5i9xzQEngaeM0JLyOw74R9ocOjJRLuQTWsc39mAsXYtpwMPO60cRnfB7TP0/4HG2MOA1uwa0M1CGHv9EeL8xR8u4h8BRwWEY+IDBeRT0QkT0S+FJHRfulzRORvIrJMRA6KyGuhnv5E5AoRWS8ih0TkWxH5dUD8eBFZ5eSzWexqo4hIcxGZLSI7RWSHiPxVnBUxqziPniLyvojsFZE9IvK8iLTwi9snIkOc/Y4isrvsvETkbBFZ65xvjoj0C6if34vIVyJyQETmiUhi7Wu69ojIHU69HBKRdSJyboh0IiIPiciPTl2uFpGBTlyCiDwgIltFZJeIzBKRpFpK8QC+arSmi8gbTvmfO222xC/eiMg1IvK1U88zRUScuJBt50e2Uwf7ReSpsjYQkZYi8l+nPfc72539ys0RkXtE5GOsIajOu+gqIh87df4/EWkdED/Zqcs9IvLHavIKxWTgDWPMYsfoTwXOE2fl5QBGY+v/YWOXLp+BXczu5KMsOyRih5t2isj3InKV02bHBkmXKiIfiMiMsjYEWovIu069fSgiXf3SPyIi25y+sUJERvnFTRORl0TkORE5CEypRma8iDzjlLNWRIYGxGfVw7U6mhrWudhVsicAU40x+caYJdiFHS+tZZk+p8yGobFXaKzHlR5zsas7dgGSgE7YFVXPxBreU539Nk76HGAHMBC7+urLwHNOXDfsqpEeZ38c0BPbuCdhbxBDnLhhwAEnf5dTbl8n7lXsE2YK0Ba7lPSvqzmPY528EoA2wGJsByuL/xWwDkgGFgIPOOG9gcPOsXHY5bi/AeL96mcZ0BHrSawnYMXOgFUz86r4GxniuGlldRgQfoFTrguY6Ojs4MRNAZY426cBK4AWTl3380v3EPaCaQWkAm8Af6tF/4jDrqpaSV9Auhecv2SgP3bV2CV+8Qb4r6PxGGA3cHoN2y4Xu9R4F+c8Pgb+6sSlY28Qyc75vQgs8Ds2B9gKDMDeAOKqOIcc7AqmvbHXQg5wb0DffsKJGwQUAf1C5FVVe78G3B4Qlg8cFyTtTcDbAWH/BW7x6zsHgH3YVWOvPcr7wOnAD049JWO9BwMc68TPAf7q1Peysvr3izsEnOi04SMBbX+Jc5wHuMUpJ9FPfwlwDrafJ1WhcRpQiL03uYG/AUsD+klNr9X/AneEiKuyzgPCBwNHAsJ+j30AAWvsioFdWC/pISAlSD5PY1cJjj+a9qu2fRsi08b4cxr1Sr/924FnA9IsBC53tssvWme/v9MAbgIMVJCyFgC/c7b/CTwUJE077IWf5Bd2EfBBLc/rHGBlQNjr/LR8dYITNhWY75fGhTXAo/3q5xK/+Ok4y3TXYxtMc+owz++vY5B0q4DxzvYUfjJQJwObgOGAyy+9YI1aT7+wE4AtNdSVhb157MK5UYVI53bS9fEL+yuVDdRIv/35hL5BVGg7pw2u8ds/E9hcheb9fvs5wN01PN8c4E9++78B3nG2y/p2Z7/4ZcCko2jvRVRelry8zwWETwVeCAh7HpjmbPfH3pDdwM+wy6BfdBSansTvwQX70BBooJ7EPijcGnDsHH+NQDPAi31nGays/cAgv76/uBbXyXt++/2BgoB+Uudrtbo6DwgfBfwQEPYrIMfZbu/odAHdsQ9f/wyST0+s4S6hjsu7B/uL2iE+h21+212BC5xhmDwRycN6Bh1CpP8O+5QdOBSCiJwhIkud4bU87I2lLF0X7NNqIF2d/Hb6lf9PrCcVEhFpJyIviB0SPIh9AgzU9ATW83vUGFPkhHV0zgEAY4zPOb9Ofsf94Ld9BHsB1jfzjTEt/P6+F5HLxA6BltXDQILUszHmfeAx7Fj4jyLyLxFJw3ojycAKvzzeccKrxRizCuuVfArcWEXSNtinY/9+sS1IuqD1WMO2C+xzHZ1jk0Xkn2JfTh/E3gBaSMUh4WBaQlFdW9dHX8gH0gLC0rBeSK3SGmPWGWO+N8Z4jTGfYL2X849CU0eqb79xWO9xVpC48vTGDlvu46c2+r3Yof4DTh9sTsX2rUv7JErF91aR1j4/OG3kM8ZswY7QTAiSz++Az4E0Y8zyo9BcJdFuoIzf9jasB+V/s0wxxtzrl6aL3/YxWKu/xz9DEUnADv89ALQzxrQA3sI+1ZeV0zOIlm1YD6q1X/lpxpgBQdL68/+c88gwxqRhhxXKykJEmgEPA7OBafLTe7PvsUaxLJ0457ejmvIqISKjpOJsncC/UdXnUp5XV6xBvR5Id+pvjf85+WOMmWGMOQ77tNYbuBXbJgXAAL+6bG6MqfFFa4wpBN528g3FbqAUOxupjC4h0gajyrYLkt8x2HYDO2TUBzjeOfZEJ9z/eP/+HQmsxQ4RAiB21l0C1gsOljbT710P2BmVa0PkbQjRR6phJ9W33xPYB5y3nHcvBEvvXGutgO+dPn8bcCHQ0unHB4j89qlpnW8CPCLSyy9sUIi0YM81mL3oh/XWC45Cb7VEu4Hy5zngLBE5TUTcIpIodqqkf+e9RET6i523fzfwkjHGG5BPPPai2w2UisgZVJxGORu4QkR+LiIuEekkIn2NMTuB/wEPikiaE9dTRE6qRncq9mnmgIh0wt6g/XkEWG6MuQp4k5+eAucD4xwdcdgbXhHwSXUVFYgx5iNTcbZO4N9HtcguBduZd4OdcIL1oCohItkicryj/zB2nN7neINPAA+JSFsnbScROc3vWCN+k2BCUIRtz6A4bf8K1vAni0hf4LIanaWlurYDuE5EOjsPFn8E5vkdWwDkOXF/rkW54eJ57DU2yrnR3w28YowJ9oSegx0u+63YCS/XO+HvQ/lEo5ZiGQb8FvuOCyc+V0Sm1EDTfOz12M+5rqeGSHc9sBF4QypOtjlTREaKnen2F+y7oW3Y9inF9mOPiNxJZY8j0sihijr3x9gZeK8Ad4tIioiMAMZj39siImNEpKvTPl2Ae/FrHz/isNdZgxAzBsrpVOOBP2A71TbsDcP/HJ/Fjjv/ACRiL4rAfA454fOxY84XY98BlcUvA67AvjQ8AHzIT57MZdgb4jrn2JeoOMQYjLuAIU5eb2I7DWAvYuxL4GudoJuBISIy2RizEfvE/ijW4zgLOMsYU1xNeQ2KMWYd8CB2eG0XkIGdHBCMNKwh2o8d/toL3O/E3Y6d9LHUGQJ7D+tx4Fwwh7Dv5arCR/V9/Hrs0M0P2P4xl5pfcCHbzo//YB9cvsUODZf9MPRh7LDTHmAp9gk/7FTlMRtj1gLXYA3Vj9ib+G/8jn1bRP7gpC3GvpO7DPtu8krgHL/+OQnbvoeAZ4D7jDON2TEW6dh6qRJjzNvADOADJ7+yY4oC0hngamA7dup12Sy5/2AfDvYBx2GvKbDvr9/BehrfYR+eajOk1yD413Eg1dW5iPxBRN72O+Q32D74I7bfX+u0MdhJFJ9gHxw/wV5rle6X2HeIVc6UrQvivOiKecT+2O05Y8y/w61FqRsicgl2+O//qkk3FutZ9zXG7Kth3vcB7Y0xl9ddqXI0iMhI4DpjzEVHcWw/7JBygjGmtN7FKeWI/UnFOuAqY8xbDVFGzHhQStPBGPNcdcbJIQd4F1grIr8PlkBE+opIpt9Q0y+xPxdQwoQxZkltjJOInOsMabUE7sNOlVbj1IA419MG7AjSooYqRw1UIyD2R6bBJh8Em1Wk1BPGmGJjzGRjTAdjzAMhkqVih+YOY98PPUjwsfawEqL/1GoCSwzza+ww1WbsO5hrq05e/zhDb8HaJ+hwXLRjjHnAGNPeGHOR38zieqfJDPEpiqIo0YV6UIqiKEpEEvYPHPrTunVr061bt3DLUBRFURqRFStW7DHGVPohfkQZqG7durF8eb3/GFlRFEWJYETku2DhOsSnKIqiRCRqoBQlAnlv3S725jfY5ChFiQrUQClKhHHw8BEOzb2Cl+Y/G24pihJWIuodVDBKSkrYvn07hYWF4ZaiRBGJiYl07tyZuLi4cEupNSX7t3Ou+2M25eYCV4VbjqKEjYg3UNu3byc1NZVu3bohcjQfO1aaGsYY9u7dy/bt2+nevXu45dQaX6n9CEJX2RVmJYoSXiJ+iK+wsJD09HQ1TkqNERHS09Oj1usuLbXfU40j8EP7itK0iHgDBahxUmpNNPeZMg/KJfqVF6VpExUGSlGaEl5vSbglKEpEoAaqBogIt9xyS/n+Aw88wLRp08InqBpycnL45JNar1tYzqpVqzjhhBMYMGAAmZmZzJs3r/qDlHrDpwZKUQA1UDUiISGBV155hT179lSfuBYYY/D56n+tr7oaqOTkZJ555hnWrl3LO++8w4033kheXl79CVSqxFuqK0UoCqiBqhEej4err76ahx56qFLc7t27mTBhAtnZ2WRnZ/Pxx3bx2GnTpvHAAz+t8DBw4EByc3PJzc2lT58+XHbZZQwcOJBt27Zx6623MnDgQDIyMsq9lZycHEaPHs35559P3759mTx5MsG+PD9jxgz69+9PZmYmkyZNIjc3l1mzZvHQQw+RlZXFRx99VKXGSy+9lBNOOIFevXrxxBNPANC7d2969eoFQMeOHWnbti27d++uVPaLL77IwIEDGTRoECeeeCJgJ7VcccUVZGRkMHjwYD744AMA5syZwznnnMOpp55Kt27deOyxx/j73//O4MGDGT58OPv22fUEn3jiCbKzsxk0aBATJkzgyJEjlcodPnw4a9euLd8fPXp0TH0iy+dVA6UoEAXTzP256421rPv+YL3m2b9jGn8+a0C16a677joyMzO57bbbKoT/7ne/46abbmLkyJFs3bqV0047jfXr11eZ19dff83TTz/N8OHDefnll1m1ahVffvkle/bsITs7u/xmv3LlStauXUvHjh0ZMWIEH3/8MSNHjqyQ17333suWLVtISEggLy+PFi1acM0119CsWTN+/3u7Rt/FF18cUuNXX33F0qVLOXz4MIMHD2bcuHF07NixPP9ly5ZRXFxMz549K53H3XffzcKFC+nUqVO5hzVz5kxEhNWrV7NhwwbGjh3Lpk2bAFizZg0rV66ksLCQY489lvvuu4+VK1dy00038cwzz3DjjTdy3nnn8atf/QqAP/3pT8yePZsbbrihQrkTJ05k/vz53HXXXezcuZOdO3cydOjQKus8mvCVFlefSFGaAOpB1ZC0tDQuu+wyZsyYUSH8vffe4/rrrycrK4uzzz6bgwcPkp+fX2VeXbt2Zfjw4QAsWbKEiy66CLfbTbt27TjppJP4/PPPARg2bBidO3fG5XKRlZVFbm5upbwyMzOZPHkyzz33HB5P8OeNqjSOHz+epKQkWrduzZgxY1i2bFn5cTt37uTSSy/lqaeewuWq3FVGjBjBlClTeOKJJ/B6veXnc8kllwDQt29funbtWm6gxowZQ2pqKm3atKF58+acddZZAGRkZJSf25o1axg1ahQZGRk8//zzFTylMi688EJeeuklAObPn8/5559fZX1HG+pBKYolqjyomng6DcmNN97IkCFDuOKKK8rDfD4fS5cuJTExsUJaj8dT4f2S/29yUlJSalReQkJC+bbb7aY0yLuJN998k8WLF/PGG29wzz33sHr16kppQmmEytOxy/YPHjzIuHHjuOeee8qNaSCzZs3is88+48033+S4445jxYoVNT4fl8tVvu9yucrPbcqUKSxYsIBBgwYxZ84ccnJyKuXTqVMn0tPT+eqrr5g3bx6zZsXWwsS+Up0koSigHlStaNWqFRdeeCGzZ88uDxs7diyPPvpo+f6qVasAu3TIF198AcAXX3zBli1bguY5atQo5s2bh9frZffu3SxevJhhw4bVSI/P52Pbtm2MGTOG++67jwMHDpCfn09qaiqHDh2qViPAa6+9RmFhIXv37iUnJ4fs7GyKi4s599xzueyyy6r0TjZv3szxxx/P3XffTZs2bdi2bRujRo3i+eefB2DTpk1s3bqVPn361Oh8AA4dOkSHDh0oKSkpzycYEydOZPr06Rw4cIDMzMwa5x8NqAelKBY1ULXklltuqTCbb8aMGSxfvpzMzEz69+9f/jQ/YcIE9u3bx4ABA3jsscfo3bt30PzOPfdcMjMzGTRoECeffDLTp0+nffv2NdLi9Xq55JJLyick/Pa3v6VFixacddZZvPrqq+WTJEJpBDtEOGbMGIYPH87UqVPp2LEj8+fPZ/HixcyZM4esrCyysrLKjdqdd97J66+/DsCtt95KRkYGAwcO5Gc/+xmDBg3iN7/5DT6fj4yMDCZOnMicOXMqeE7V8Ze//IXjjz+eESNG0Ldv3/Lw119/nTvvvLN8//zzz+eFF17gwgsvrHHe0YL/NPOSEvWmlKaLBJsZFi6GDh1qAmdjrV+/nn79+oVJUWwzbdq0CpMpYo1o7Tur3n6SrM9uAiD/lq00S20eZkWK0rCIyApjTKWZTupBKUqE4fP9NMRXVFh5mr2iNBUafJKEiJwOPAK4gX8bY+5t6DKVmhHJX8No0njVQCkKNLAHJSJuYCZwBtAfuEhE+jdkmYoS7Rj/d1BFBWFUoijhpaGH+IYB3xhjvjXGFAMvAOMbuExFiWoqGCj1oJQmTEMbqE7ANr/97U5YOSJytYgsF5HlwT6noyhNDeP7aR0o9aCUpkzYJ0kYY/5ljBlqjBnapk2bcMtRlLBj/N5BlRargVKaLg1toHYAXfz2OzthUceCBQsQETZs2BAyTW5uLgMHDmxQHatWreKtt9466uPLftjbv39/BgwYwCOPPFKP6pT6wPjN4vOqB6U0YRraQH0O9BKR7iISD0wCXm/gMhuEuXPnMnLkSObOnRs0PthniGpL2ffsqqKuBsrj8fDggw+ybt06li5dysyZM1m3bt1R56fUP/4elFc9KKUJ06AGyhhTClwPLATWA/ONMZW//hnh5Ofns2TJEmbPns0LL7xQHp6Tk8OoUaM4++yz6d/fTk4sLS1l8uTJ9OvXj/PPP798uYhFixYxePBgMjIyuPLKKykqKgLsJ5Fuv/12hgwZwosvvlih3MDlLIqLi7nzzjuZN28eWVlZzJs3j8OHD3PllVcybNgwBg8ezGuvvQbY5S3Gjx/P6NGj6dWrF3fddRcAHTp0YMiQIQCkpqbSr18/duyo7NR++OGH5V+RGDx4MIcOHcIYE3JpkJNOOonx48fTo0cP7rjjDp5//nmGDRtGRkYGmzdvBuCNN97g+OOPZ/DgwZxyyins2rWrUrmTJk3izTffLN+fMmVK+Ydhmwz+HlRJYRUJFSW2afDfQRlj3gKO/pHfn7fvgB8qfwy1TrTPgDOq/mnWa6+9xumnn07v3r1JT09nxYoVHHfccYD9zt6aNWvo3r07ubm5bNy4kdmzZzNixAiuvPJK/vGPf3D99dczZcoUFi1aRO/evbnssst4/PHHufHGGwFIT08v/26fP4HLWcTHx3P33XezfPlyHnvsMQD+8Ic/cPLJJ/Pkk0+Sl5fHsGHDOOWUUwC7VMaaNWtITk4mOzubcePGVViWIjc3l5UrV3L88cdXKvuBBx5g5syZjBgxgvz8fBITE3nllVdCLg3y5Zdfsn79elq1akWPHj246qqrWLZsGY888giPPvooDz/8MCNHjmTp0qWICP/+97+ZPn06Dz74YIVyy5bSGDduHMXFxSxatIjHH3+8ho0ZI/jUg1IUiIBJEtHA3LlzmTRpEmCf8P2H+YYNG0b37t3L97t06cKIESMAuOSSS1iyZAkbN26ke/fu5d/ju/zyy1m8eHH5MRMnTgxabrDlLAL53//+x7333ktWVhajR4+msLCQrVu3AnDqqaeSnp5OUlIS5513HkuWLCk/Lj8/nwkTJvDwww+TlpYWtOybb76ZGTNmkJeXh8fjqXJpkOzsbDp06EBCQgI9e/Zk7NixQMWlNLZv385pp51GRkYG999/f9ClNM444ww++OADioqKePvttznxxBNJSkoKeu4xi++naeZGPSilCRNVy21U5+k0BPv27eP9999n9erViAherxcR4f777wcqL50RavmKqgi1/EZNlrMwxvDyyy9X+mL4Z599FlJLSUkJEyZMYPLkyZx33nlBy77jjjsYN24cb731FiNGjGDhwoVVnkNNltK44YYbuPnmmzn77LPJyckJ+iWLxMRERo8ezcKFC5k3b175g0GTwm+auU8NlNKEUQ+qGl566SUuvfRSvvvuO3Jzc9m2bRvdu3fno48+Cpp+69atfPrppwD85z//YeTIkfTp04fc3Fy++eYbAJ599llOOumkassOtpxF4FIap512Go8++mj5cvArV64sj3v33XfZt28fBQUFLFiwgBEjRmCM4Ze//CX9+vXj5ptvrrLsjIwMbr/9drKzs9mwYUOdlgYBOHDgAJ062Z/BPf300yHTTZw4kaeeeoqPPvqI008/vcb5xwx+Q3zqQSlNGTVQ1TB37lzOPffcCmETJkwIOZuvT58+zJw5k379+rF//36uvfZaEhMTeeqpp7jgggvIyMjA5XJxzTXXVFt2sOUsxowZw7p168onSUydOpWSkhIyMzMZMGAAU6dOLT9+2LBhTJgwgczMTCZMmMDQoUP5+OOPefbZZ3n//ffLJ0GUzQqcNWtW+VIcDz/8MAMHDiQzM5O4uDjOOOOMOi0NAvbbfxdccAHHHXccrVu3Lg9fvnw5V111Vfn+2LFj+fDDDznllFOIj4+vcf4xg6+UI8bxSEvVQClNF11uI0aZM2dOhckUTZFo7TufPXYFvfe8SzNzhKUdLmHUNTPCLUlRGhRdbkNRogWfFy9uiiUO8aoHpTRdomuShFJjpkyZwpQpU8ItQzkKxJTiw0Ux8UhpUbjlKErYiAoDZYyp0Ww4RSkjkoaua43Pi1fcgOBSD0ppwkT8EF9iYiJ79+6N7huO0qgYY9i7dy+JiYnhlnJUuHyl+HBTIvG4vMXhlqMoYSPiPajOnTuzfft2dCkOpTYkJibSuXPncMs4KsSUUCoeEDcunw7xKU2XiDdQcXFxFb7UoCixjstXilc8+FzxuL1qoJSmS8QP8SlKU8NlSvCKB68rAY/RIT6l6aIGSlEiDPsOyoPXFY/bpwZKabqogVKUCMNlSvC64vC5E4g3OsSnNF3UQClKhOE2XnziwedOwKMelNKEUQOlKBGGy5RaA+VKIB41UErTJeJn8SlKU8PtDPHhSSTOlFR/gKLEKOpBKUqE4TalGPFgPAkkUKw/UleaLGqgFCXCcBsvxuUBTyIJlFBU6gu3JEUJC2qgFCXC8FCCzxUHngQSpYSiEm/1BylKDKIGSlEijDIPyhVnvyVYVHgkzIoUJTyogVKUCMNDKcYVh3isgSouKgizIkUJD2qgFCXCKDdQ8UkAFKsHpTRR1EApSoThMV5weXDFOQaq4HCYFSlKeFADpSgRhodScMfhTrAGqrRIPSilaaIGSlEiiNKSEuLFi3gScCck2zA1UEoTRQ2UokQQR44cshvxzfDEq4FSmjZqoBQlgig+kg+AxCfjSWwGgLdYDZTSNFEDpSgRRKHjQbkSUohzhvh86kEpTRQ1UIoSQRQXWA/KlZBCXFIKAEY9KKWJogZKUSKIYseDciemEp9gDZSvRH+oqzRN1EApSgRRWmg9KE9CCvFlHlSJelBK00QNlKJEEMUF1oNKSE4lwTFQoh6U0kRRA6UoEUTx4f0ApLZIR5wvSVBaGEZFihI+1EApSgThy98DQFqr9iBCAfHqQSlNFjVQihJByJE9FJk4kpo1B6CIBFxe9aCUpkmdDJSITBORHSKyyvk70y/u/0TkGxHZKCKn1V2qosQ+nsJ9HJBUEAGgSOJxlaoHpTRNPPWQx0PGmAf8A0SkPzAJGAB0BN4Tkd7GGF0aVFGqIL7gRw55WtHW2S+WRNzqQSlNlIYa4hsPvGCMKTLGbAG+AYY1UFmKEjO0KdrGgeRu5fslEq8GSmmy1IeBul5EvhKRJ0WkpRPWCdjml2a7E6YoSggOHTpAe7Ob0lY9y8NKXIl4fGqglKZJtQZKRN4TkTVB/sYDjwM9gSxgJ/BgbQWIyNUislxElu/evbu2hytKzLDz2zW4xBDXvl95mDVQRWFUpSjho9p3UMaYU2qSkYg8AfzX2d0BdPGL7uyEBcv/X8C/AIYOHWpqUpaixCJ5W9cCkN51QHmY15VAYunBcElSlLBS11l8Hfx2zwXWONuvA5NEJEFEugO9gGV1KUtRYp3SXRvxGaF994E/hbkTiTc6xKc0Teo6i2+6iGQBBsgFfg1gjFkrIvOBdUApcJ3O4FOUqonP28xOVzs6JSaXh3ndicSb4jCqUpTwUScDZYy5tIq4e4B76pK/ojQlWh3Zwt7EYyrMJvJ5Ekkw+g5KaZrolyQUJQLwlpbS0buDI82PrRDu8ySRgBoopWmiBkpRIoAftn5DopTgbtO7YoQnkURTDEbnDylNDzVQihIB7MldDUBq5/4Vwo0nCZcYvCU6UUJpetTHp44URakjBTvXA9CuR0bFiDg7YaK44AhJ8Uk1zs8Yw+Y1n7F76TxS96wkrXgXzUw+PlwUE0epxFEi8ZRKHKXOvz5XHCJS9hlA/8wq5V8pSXl4ME+vZt6fhNi2O1KpTAkiRPyPFrtVnNSWgdc8jcsTVyMdSuSgBkpRIgDZv4WDJNMivX3F8LhEAIoK8klqnl6jvL5e9THFb/0fA4q/pJtxkevpzp5mffjek4bbZXD7ihFvEW5fMS5vMW5TQpKvGJfvsLVFhko3flPJPIQmeNqqjw9uwkzQkc1KQeanMBOQrpnvEH0Pf86WTV/Svf/QKjUokYcaKEWJAJLyt7LL3ZE0V8VRd4l3PChnKfiq8Hm9fPrsnzl+y0wOSTM+O/Ymep/2a45t06HaY2OVb1YuhtfOYv+29WqgohA1UIoSAbQq2s6uZv0qhbscA1VSeKTK40tKS1k542JGHFzIyrTR9PzlbI5v0bpBtEYT7brbr3IU7toUZiXK0RBTkySMz8vSJ2/jh61fh1uKotSYkuIi2vt+pDitW6W4cgNVdDjk8UUlpeTM+BXDDi7k866/IuumV0lT4wRAaot09tICz169J0QjMeVB7fzua/p/9ywHn3qdHZcuoFOPvrXOw1taQmHBYYoKCygpLgDjqxDf0LN9K72grhhb6/z89ZoQEZXOyRERGG4IfkyFcX//fEPoIEQ+IeRVLjtEutDlhUpfvQ4bd/TnFFrrTztHducyUny4W/ckEHeCNVDewuAGyuczvDvrVn5x8BXWd51M9pT7q+tETY5tiX1od2hN9QlrQGFhAYcPHcBXfJjSkmJ8Ph+lPhO6A4n/tA0pD5PyNgr8126K+B8lFdpUqmvfwIkjAekrTTapUHQt+47LQ9sOXapPd5TElIHq2L0vG37xLB3fvBT30yfxWdtfEH/siSQ0b4cxhuJDeyk9tJvSQz8ih3fjKdhDYvE+mpXuo7kvj1RzGI/4SAFSwn0ySpOjZZfKQ3wex4MqLQo+xLdwzl/5xd4n2dhuHP0uf0yNUxCOtB1M1tbPOLBvN81btak2feHhA2xe9REHvl1Owp61JB/ZQYuSH0k3+0mUUhIbQXO0sNrXg7Z3r2yw/GPKQAH0zT6FH9p9yLYX72Dwj68Sv/uloOkOkswBaUG+pyX7k7vzY2I6pfHNwZOIxCXgiktEPAkg7kY+g1DU3HULnIQV8pYlQTZN6HucBEsfsFeT+2MFbZXnE1eZz9GUGyqqwvmE0BEyNERdhDyfasTFJTXn2CFjKkW7ne/ylRZXNlDvvziT0757kI0tRtL7V3PAFVMj9vVGeuapsHUWmz56kezxvwmaZveevazOmU+zb94gs2AZA6QEgB9ozZ74juxoPpgtSW1xJabhTmyGLy4Z3HG4RRBxVfB4yr1jv0tW/OYZljlbZWH+HrqUHV3B3Q6cmxgiqgaYOh4fSHFCy+oT1YGYM1AA7Y/pTftbXqHgcD7fbPqCgvz9CIbEtDaktGxLyzYdSUtKIS3cQhWlGjwJ1pf3FRVUCF+6cC6j1kxlc3IGvX7zIuKJD4e8qKD3kJP5/s22pK2eg+8X1+ByW0N+8GAea3Jewr1+AZlHPuNkKWaftOSrducQ1/c0emaOpH3rDrSvJn+l4YhJA1VGUkozjh18YrhlKMpRE5/oGKiSnzyo1Z++w6BPfsu2uG50+c3ruBKSQx2uAOJysT3ztwz78k988eBZFLXJIGn3KvocXsHPpJi90oKNHcbTevgkOmeOYZgrUkZNlJg2UIoS7cQ5Bso4Q3wbPn+PHu9czh53G1r/+r8kpjbsEEuskD3+Oj7N286g3KdIPrKE76Uta9r+gpbZF9LzuFNJd+utMBLRVlGUCCa1mR2ILik8wtolr3HMu79mv6sl8b98k7Q2HcOsLnoQl4sTrrgPX+k9FBYX0DE5Fa29yEcNlKJEMM1Tk9lPKtnfzqRk8yx2uDuS8svXaNOpe7ilRSUuj4dET2q4ZSg1RKf9KEqEs6n5SADWpBxPq99+SJtOlX8vpSixiHpQihLhDL3+ab7bspGsYwciOpVcaUKogVKUCMcdl0DX3pnhlqEojY4+jimKoigRiRooRVEUJSIR09BfP60FIrIb+K4esmoN7KmHfBqDaNIK0aVXtTYc0aQ3mrRCdOmtL61djTGVPpQYUQaqvhCR5caYqFidLJq0QnTpVa0NRzTpjSatEF16G1qrDvEpiqIoEYkaKEVRFCUiiVUD9a9wC6gF0aQVokuvam04oklvNGmF6NLboFpj8h2UoiiKEv3EqgelKIqiRDlqoBRFUZSIJKYMlIicLiIbReQbEbkj3HoCEZEuIvKBiKwTkbUi8jsnfJqI7BCRVc7fmeHWCiAiuSKy2tG03AlrJSLvisjXzr9hX5BIRPr41d0qETkoIjdGUr2KyJMi8qOIrPELC1qXYpnh9OOvRGRIBGi9X0Q2OHpeFZEWTng3ESnwq+NZjam1Cr0h215E/s+p240icloEaJ3npzNXRFY54ZFQt6HuWY3Td40xMfEHuIHNQA8gHvgS6B9uXQEaOwBDnO1UYBPQH5gG/D7c+oLozQVaB4RNB+5wtu8A7gu3ziD94AegayTVK3AiMARYU11dAmcCbwMCDAc+iwCtYwGPs32fn9Zu/ukiqG6Dtr1zvX0JJADdnXuGO5xaA+IfBO6MoLoNdc9qlL4bSx7UMOAbY8y3xphi4AVgfJg1VcAYs9MY84WzfQhYD3QKr6paMx542tl+GjgnfFKC8nNgszGmPr5IUm8YYxYD+wKCQ9XleOAZY1kKtBCRDo0ilOBajTH/M8aUOrtLgc6Npac6QtRtKMYDLxhjiowxW4BvsPeORqEqrSIiwIXA3MbSUx1V3LMape/GkoHqBGzz299OBN/8RaQbMBj4zAm63nGJn4yEYTMHA/xPRFaIyNVOWDtjzE5n+wegXXikhWQSFS/wSKzXMkLVZaT35SuxT8lldBeRlSLyoYiMCpeoIARr+0iu21HALmPM135hEVO3AfesRum7sWSgogYRaQa8DNxojDkIPA70BLKAnVg3PxIYaYwZApwBXCciJ/pHGuvTR8zvFEQkHjgbeNEJitR6rUSk1WUoROSPQCnwvBO0EzjGGDMYuBn4j4ikhUufH1HT9n5cRMWHq4ip2yD3rHIasu/GkoHaAXTx2+/shEUUIhKHbejnjTGvABhjdhljvMYYH/AEjTjkUBXGmB3Ovz8Cr2J17Spz2Z1/fwyfwkqcAXxhjNkFkVuvfoSqy4jsyyIyBfgFMNm5KeEMle11tldg3+n0DptIhyraPlLr1gOcB8wrC4uUug12z6KR+m4sGajPgV4i0t15kp4EvB5mTRVwxphnA+uNMX/3C/cfoz0XWBN4bGMjIikiklq2jX1JvgZbp5c7yS4HXguPwqBUeAKNxHoNIFRdvg5c5syIGg4c8BtOCQsicjpwG3C2MeaIX3gbEXE72z2AXsC34VH5E1W0/evAJBFJEJHuWL3LGltfEE4BNhhjtpcFRELdhrpn0Vh9N5wzROr7DzuDZBP2SeOP4dYTRN9IrCv8FbDK+TsTeBZY7YS/DnSIAK09sLOdvgTWltUnkA4sAr4G3gNahVuroysF2As09wuLmHrFGs6dQAl2XP6XoeoSOwNqptOPVwNDI0DrN9h3C2X9dpaTdoLTP1YBXwBnRUjdhmx74I9O3W4Ezgi3Vid8DnBNQNpIqNtQ96xG6bv6qSNFURQlIomlIT5FURQlhlADpSiKokQkaqAURVGUiEQNlKIoihKRqIFSFEVRIhI1UIqiKEpEogZKURRFiUj+PxXcMAYBwNbgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABep0lEQVR4nO2deXxVxdnHv8+9WW4SEgJhkU0IyE7CIgEsIOAGFBUVFCqIiK3VVluqVemiRdu+da2KWnmrKG5FcNfXfUPFCsi+gyARgoBsCVnIep/3j3Nyubm5NwtZ7pL5fj43OWdmzszvzMw5z5k5c2ZEVTEYDAaDIdRwBFuAwWAwGAz+MAbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgDAaDwRCSGAPlhYh0EREVkahgazGcOiJyk4j8ICLrg5D2XBF5oRHSmSkiy6rwXyoiP29oHaGIiIwWkaza+tWzhirvJY1VT+oTEWkvIrkisl1EzmmMNI2BMtQJEZkvInn2r1hESrz23wuSrLnAr1S1v5fOuSIyN0h6Qgr75plZy/CfiUiBiGwTkfOqCBsrIk+LyHEROSAiN/vEo171I09E7mgIzeGOiGSKSJcahg2Y5wHC/84Od9w+LtYn3RNe5fNhuZ+q/qCqicDbwG9O8dRqRUQZKNPyaXxU9XpVbaaqzYD/ARaX76vq+PJwjVw2LYFNjZhegxBC9XkRsBZIAf4EvCIirQOEnQt0BzoDY4DbRGScT5hkrzry1wbS3OCEUPnMpfo8B0BExgJzgHPt8F2Bu3yCXeRVPhf4iWYTVl1ocMLeQNkW/3YR2QDki0iUiAwTkf+KSLaIrBeR0V7hl4rIP0Rkpf0E8aaItAwQ9zUistVu1n4nIr/08Z8oIuvseHaVVwoRaS4iC0Rkv4jsE5G/iYizmvPoJiKfisgRETksIi+KSLKX31ERGWTvtxeRQ+XnJSIXi8hm+3yXikhvn/z5vYhsEJEcEVksIq7a53TtCVA2KiJneIVZKCJ/89q/0M7TbLsM02uZZnk+u6sJd5tdPj+IyM+9ddmaHheRd+yyXyEi3byOfURE9trlvlpERvpE77LzOVdE1oiId0tujl1XckVki4hc6uU3U0S+EpGHROQI1o2nuvN9QESOichuERnv493Zji9XRD4UkVbVxecn/h7AIOAvqnpCVV8FNgKTAhxyNfBXVT2mqluBJ4GZtU23BroGicha+9xetvP7bwHC/sbO645ebn+0r7NMEZnm5T7Bjve4XcZzvfzKW4DXisge4NMaSJ0mInvstP7k4xcjIs/Z57BZRAbXLhc81CbPrwYWqOpmVT0G/LWKsIFwA41jnFU1rH9AJrAO6ATEAR2AI8BPsQzw+fZ+azv8UmAf0A9IAF4FXrD9ugAKRNn7E4BugACjgAJgkO03BMix43fY6fay/V4H/teOvw2wEvhlNedxhh1XLNAa+AJ42Mv/F8AWIB74AHjAdu8B5NvHRgO3ATuBGK/8WQm0x2pZbAWuD6BhBJBdxW9ENecwtzwv/ZWN7abAGV5hFgJ/s7cHAj8CQwEn1sWUCcTWoj6MAwqBhGrCHAD62vn5grcuW9MRu4yjgBeBl7yOn471BBkF3GLH5fLKgxJgsl0evwd2A9G2/+V2WTiAKXbZtbP9ZgKlwE123HFVnMNMO51f2Hl1A/ADIF71fJddP+Ls/XsCxPUv4F8B/C4Ftvq4PQY86idsCzsf23q5TQY2+lxf+4As4Bmg1Slc8zHA98Bv7Ty+DCj2qkejgSx7+05gDSev/9F2Hv8T61obZZdBTy//NLt80oGDwCU++p/DurarKp/ysE/a+d8fKAJ6e9WTQqz7lBP4B7A8QFxXAhsC+FWZ537CrwemeO23so9P8bpmDwKHgA+B/n7iGAMcA06vbdnVuqwbOoEGPwErQ2d57d8OPO8T5gPganu7woUK9LErtxMfA+UnrTeA39rb/ws85CdMW7sixnm5/Qz4rJbndQmw1sftLayn1w3YN23gDmCJVxgH1g1gtFf+TPfyvw+Y30BlMZfKBmqWT5iqDNQTWE+C3uG3A6NqmP4qO/7fVBPuaeAfXvtnUNlAPeXl/1NgWxXxHSu/kO08WO7l5wD2AyMDHLsOmGhvzwT21PBcZwI7vfbj7XM4zaue/9nL/1fA+6dQplfhc+ME/g4s9BO2k63B5eV2PpBpbzcDBmMZ37bAK8AHp6DpbLuOi5fbMioaqH1YRmgZ0Nwr3GgsA5Xg5bYEuCNAWg9jX+ecvD90rYHG8rAdvdxWAlO96snHXn59gBOnkBdV5rmf8LuAcV770fbxXez94VgGNR74A9bDV7KfeF62j3u4tppr8wv7Lj6bvV7bnYHL7S6ibBHJxmoZtAsQ/nusQqrU/SEi40Vkud29lo11oyoP1wmrsH3pbMe33yv9/8VqSQVERNqKyEt2l+BxrKd6X01PYrX8HlXVItutvX0OAKiq2z6/Dl7HHfDaLsC6UTQWe6sP4qEzcItP2XXCOseakAFMBeaKSHQV4dr76PKnMWCe2V2mW+0u02ygORXLyhOfXR5Z5ecgIjO8ujCzscrT77E1wKNRVQvszWb+/H3PoRbkAUk+bklAboCw5f6VwqpqnqquUtVSVT0I3AhcICKJtdTUHtin9p3SxjffkoHrsB5Ecnz8jqlqvtf+95wsn6FiDQg5JCI5wPVUvg5PqYyoXAa+fi6p/XutKvM8QHjfsHCyjL5Sqyu3QFX/gdVzUqELW6xXDT/F6jGaXUu9tSJSDJRvRX1eVZO9fgmqeo9XmE5e26djdZUc9o5QrJEtrwIPYDWfk4F3sbr7ytPpRmX2YrWgWnmln6Sqfas5h/+xzyNNVZOwupHK00JEmmE9zS3AugGXvzf7AevGXh5O7PPbV016lRCRkVJxhJXvz/ddS01Qn/0CrKezck7z2t4L/N2n7OJVdVGNErJuWG9gdXu0qyLofqCj136nQAF9sfPgNuAKoIVdL3LwKivv+ETEYaf1g4h0xnrIuBGrSyUZ64Wz97G++RVsNgNdfYxIf9u9Amq909hv+1cZtvwQ+39t70P7gQ52XS/HtwyPARcCz4jIcB+/FiKS4LV/OtZ1BPAfrJ6KTqraHJhPxfLx1h10TiHPN/sJe1BVjwRKgsrn3xvYoqrba6+4dkSKgfLmBeAiERkrIk4RcYn17YP3DWm6iPQRkXjgbuAVVS3ziScGq4/6EFBqv4D2HtGyALhGRM4VEYeIdBCRXqq6H6vv9kERSbL9uonIqGp0J2I93eSISAfgVh//R4BVqvpz4B2sCwes7okJto5orHciRcB/q8soX1T1Sz05esff78vaxumHdcCVdtmMw3oHUM6TwPX2U6yISIL90joRPIMXFlZzDuUty5gqgi3BKrvedh2o0VBnm0SsLqJDQJSI3EnlFsaZInKZ/TQ8G6s8lmO9t1D7WETkGqwWVMiiqjuwyuwv9rV0Kda7mVcDHPIc8GcRaSEivbDekS0ET+ukp31NpADzgKXlLRyxPgVYWgNZXwNlwI1iDbyZiPW+0Ff7UmAa8JqI+PrfJSIx9gPHhVhdVmCV71FVLbSPubIGeoJNwDwPEPZa+/6XDPyZk+VzuogMt/PFJSK3YrUev/KJIxqrTjc4EWegVHUvMBH4I9aNYC/Wzd77XJ/HKpQDgAs/Y/pVNdd2X4L1NHYl1pNVuf9K4BrgIawn6M852ZKZgXWD3GIf+wpVP9GDNdRzkB3XO8Br5R72BTgO60U4wM3AIBGZZj/FTAcexWoFXoQ1TLS4mvSCxW+xNGZj3TzeKPdQ1VVYF9djWPm2k4ojjDpR+WLxh1JF3VbV97Bujp/ZaSy3vWpy0X0AvA/swOoaKqRyl8+bWAMgjmG9w7lMVUtUdQvwINYN9iDWy/ianE+DIta3bPOrCDIV693RMeAeYLKqlhvZaSLi/bT+F6yu7++xron7VfV9268rVt7lYrUci7Dez5ZTo/K16/ZlwLVY9Wg68H/4KT9V/QiYBbxtd02Bdd0fw2o1vYg1aGib7fcr4G4RycUaYLGkOj0NjZ889iVgnttGJ09ETgew3e/Dqvt77GP+YseTiPUe+BhWD8w4YLyf1pWTakbJ1hflI36aDPYT2guq+lSwtRhqjojEYI1ASlfVkmrC/gDcpqo1+lJfrGH5m7AGnpTWWazhlBCRdcC5VXQ3VXXsCqzBP8/UuzCDB7vLeh7QRlWvaOj0Iq4FZYhMVLVYVXtXZ5xs5mB1Sa0OFEBELhXrC/wWwL3A28Y4BRdVHVBT4yQio0TkNLuL72qsbsf3qzvOcOqISHusXqlhWD0BDY4xUI2IVJwWyPtXVfeKoZao6nOq2l1Vz6wi2C+xvrnahfU+44YqwgYFU1+qpCdWizob673rZPv9b6Nhd735K5+quuPCFrWmOkpR1cGquqIx0mxyXXwGg8FgCA9MC8pgMBgMIUmoTHYIQKtWrbRLly7BlmEwGAyGRmT16tWHVbXSBMQhZaC6dOnCqlWrgi3DYDAYDI2IiHzvz9108RkMBoMhJDEGymAIYbwm5zQYmhzGQBkMIYqWFrHu/gkcvLsH275+N9hyDIZGJ6TeQfmjpKSErKwsCgsLgy3FEEa4XC46duxIdHRVk5qHNt+8No8hBV+RRxzywY0UDVhPbFxtJ/42GMKXkDdQWVlZJCYm0qVLFypOXmww+EdVOXLkCFlZWaSmpgZbzimTsv0/fBvVnROj7iT9k6tY+f4zDLm00rSRBkPEEvJdfIWFhaSkpBjjZKgxIkJKSkpYt7qPH9xDt7LvONhxLGnDL2SvowMJm18KtiyDoVEJeQMFGONkqDXhXmd2r/0YgOZ9z0ccDn44/SL6lm7m0P49QVZmMDQeYWGgDIamRt7uVRRrFD3ShwLQZvAlAOz67+tBVGUwNC7GQNUAEeGWW27x7D/wwAPMnTs3eIKqYenSpfz3v7Ver7AC48aNIzk5mQsvvLCeVBlqQ+KxLeyJTiU2Ng6ALn2G8iMpRO/6KMjKDIbGwxioGhAbG8trr73G4cOHqw9cC1QVt7v+1/2qDwN166238vzzz9eTIkNt6VS8k6NJPT374nDwfYthnJG/htJSsyqIoWlgDFQNiIqK4rrrruOhhx6q5Hfo0CEmTZpERkYGGRkZfPWVtSDo3LlzeeCBBzzh+vXrR2ZmJpmZmfTs2ZMZM2bQr18/9u7dy6233kq/fv1IS0tj8eLFgGVkRo8ezeTJk+nVqxfTpk3z+8HmvHnz6NOnD+np6UydOpXMzEzmz5/PQw89xIABA/jyyy+r1HjVVVdx1lln0b17d5588klPvOeeey6JiVUPaX755Zfp168f/fv35+yzzwasQS3XXHMNaWlpDBw4kM8++wyAhQsXcskll3D++efTpUsXHnvsMf75z38ycOBAhg0bxtGjRwF48sknycjIoH///kyaNImCgoJK6Q4bNozNm0+uaDB69OiImiLr6OGDtCAXbdm9gruz60iaSz67Nq0MkjKDoXEJ+WHm3tz19ma2/HC8XuPs0z6Jv1zUt9pwv/71r0lPT+e2226r4P7b3/6W3/3ud4wYMYI9e/YwduxYtm7dWmVc3377Lc8++yzDhg3j1VdfZd26daxfv57Dhw+TkZHhudmvXbuWzZs30759e4YPH85XX33FiBEjKsR1zz33sHv3bmJjY8nOziY5OZnrr7+eZs2a8fvf/x6AK6+8MqDGDRs2sHz5cvLz8xk4cCATJkygffv2Ncq7u+++mw8++IAOHTqQnZ0NwOOPP46IsHHjRrZt28YFF1zAjh07ANi0aRNr166lsLCQM844g3vvvZe1a9fyu9/9jueee47Zs2dz2WWX8Ytf/AKAP//5zyxYsICbbrqpQrpTpkxhyZIl3HXXXezfv5/9+/czePDgGmkOB/bt3kpLIOG0Myq4nz7ofFg9h8ObPqHngJ8ER5zB0IiYFlQNSUpKYsaMGcybN6+C+8cff8yNN97IgAEDuPjiizl+/Dh5eXlVxtW5c2eGDRsGwLJly/jZz36G0+mkbdu2jBo1im+++QaAIUOG0LFjRxwOBwMGDCAzM7NSXOnp6UybNo0XXniBqCj/zxtVaZw4cSJxcXG0atWKMWPGsHJlzZ/Ohw8fzsyZM3nyyScpKyvznM/06dMB6NWrF507d/YYqDFjxpCYmEjr1q1p3rw5F110EQBpaWmec9u0aRMjR44kLS2NF198sUJLqZwrrriCV155BYAlS5YwefLkGmsOB/IP7AQguWPPCu6tOpzBD3Iarn1fB0OWwdDohFULqiYtnYZk9uzZDBo0iGuuucbj5na7Wb58OS6Xq0LYqKioCu+XvL/JSUhIqFF6sbGxnm2n0+n33cM777zDF198wdtvv83f//53Nm7cWClMII1QeTh2bYZnz58/nxUrVvDOO+9w5plnsnp1wBXWgYrn43A4PPsOh8NzbjNnzuSNN96gf//+LFy4kKVLl1aKp0OHDqSkpLBhwwYWL17M/PmRtcBs6eHvAGjdqXslv/0tBnPGkc8oKS0lOsADicEQKZgWVC1o2bIlV1xxBQsWLPC4XXDBBTz66KOe/XXr1gHW0iFr1qwBYM2aNezevdtvnCNHjmTx4sWUlZVx6NAhvvjiC4YMGVIjPW63m7179zJmzBjuvfdecnJyyMvLIzExkdzc3Go1Arz55psUFhZy5MgRli5dSkZGRo3SBti1axdDhw7l7rvvpnXr1uzdu5eRI0fy4osvArBjxw727NlDz549q4npJLm5ubRr146SkhJPPP6YMmUK9913Hzk5OaSnp9c4/nAgKud7jtKc2ITkSn7l76G+3dgoK24bDEHFGKhacsstt1QYzTdv3jxWrVpFeno6ffr08TzNT5o0iaNHj9K3b18ee+wxevTo4Te+Sy+9lPT0dPr3788555zDfffdx2mnnVYjLWVlZUyfPt0zIOE3v/kNycnJXHTRRbz++uueQRKBNILVRThmzBiGDRvGHXfc4Xn/NHLkSC6//HI++eQTOnbsyAcffADAnXfeyVtvvQVYI/3S0tLo168fP/nJT+jfvz+/+tWvcLvdpKWlMWXKFBYuXFih5VQdf/3rXxk6dCjDhw+nV69eHve33nqLO++807M/efJkXnrpJa644ooaxx0uJBRkcSja/3vALmdeAMCRTZ80piSDIShIKE3lP3jwYPUdjbV161Z69+4dJEWRzdy5cysMpog0wrXuZN3Vi4PNenPmLf4/yv3h7l7sj+nCmXPeb2RlBkPDICKrVbXSSKc6t6BE5CYR2SYim0XkPh+/00UkT0Qi8w5oMNQ3qrR0H6Ukvk3AID+0HEKPE+soKi5qRGEGQ+NTp7esIjIGmAj0V9UiEfG9qv4JvFeXNAwNRyjPhtFUyc89RoIUoc3aBgwTfcZoEg+/yeZ1X9F3yDmNqM5gaFzq2oK6AbhHVYsAVPXHcg8RuQTYDVQeJ2wwGPxy7OBeAJxJ7QKGST1zLADZm817KENkU1cD1QMYKSIrRORzEckAEJFmwO3AXdVFICLXicgqEVl16NChOsoxGMKbvMP7AIhtEfhj6aTWHch0diZx/1eNJctgCArVdvGJyMeAv2Flf7KPbwkMAzKAJSLSFZgLPKSqedV9V6Oq/wb+DdYgidqINxgijcJjloFKSOlQZbiDKUPpf/B1Ck8U4IqLbwxpBkOjU62BUtXzAvmJyA3Aa2oNBVwpIm6gFTAUmGwPmkgG3CJSqKqP1Y9sgyEyKcnZD0Bym05VhnP1GIPrxyVsXvURfUdObAxpBkOjU9cuvjeAMQAi0gOIAQ6r6khV7aKqXYCHgf8Jd+P0xhtvICJs27YtYJjMzEz69evXoDrWrVvHu+++W6c4Zs2aRZs2bRpcq+EUyD1IoUbTomXrKoOlDvkphRrNic3/10jCDIbGp64G6mmgq4hsAl4CrtZQ+rCqHlm0aBEjRoxg0aJFfv3rYwmE8vnsqqI+DNTMmTN5/33zDU0oElVwkMPSAqez6kszKSmZzXFn0ungZxCZl5zBUDcDparFqjpdVfup6iBV/dRPmLmq+oC/48OFvLw8li1bxoIFC3jppZc87kuXLmXkyJFcfPHF9OnTB7AM1bRp0+jduzeTJ0/2LBfxySefMHDgQNLS0pg1axZFRdY3LF26dOH2229n0KBBvPzyyxXS9V3Oori4mDvvvJPFixczYMAAFi9eTH5+PrNmzWLIkCEMHDiQN998E7CWt5g4cSKjR4+me/fu3HXXyfEqZ599Ni1btqzynD///HMGDBjAgAEDGDhwILm5uahqwKVBRo0axcSJE+natStz5szhxRdfZMiQIaSlpbFr1y4A3n77bYYOHcrAgQM577zzOHjwYKV0p06dyjvvvOPZnzlzpmdi2KZAdNFR8pwtahT2RNdxtNVD7N1qpj0yRCbhNdvke3PgQOXJUOvEaWkw/p4qg7z55puMGzeOHj16kJKSwurVqznzzDMBa569TZs2kZqaSmZmJtu3b2fBggUMHz6cWbNm8a9//Ysbb7yRmTNn8sknn9CjRw9mzJjBE088wezZswFISUnxzNvnje9yFjExMdx9992sWrWKxx6zekz/+Mc/cs455/D000+TnZ3NkCFDOO8867XhypUr2bRpE/Hx8WRkZDBhwoQaL0vxwAMP8PjjjzN8+HDy8vJwuVy89tprAZcGWb9+PVu3bqVly5Z07dqVn//856xcuZJHHnmERx99lIcffpgRI0awfPlyRISnnnqK++67jwcffLBCuuVLaUyYMIHi4mI++eQTnnjiiRppjgRcxdnkRbeqUdgzRkymbPNdHPzvf+jUZ1gDKzMYGh8zF18NWLRoEVOnTgWsJ3zvbr4hQ4aQmprq2e/UqRPDhw8HYPr06Sxbtozt27eTmprqmY/v6quv5osvvvAcM2XKFL/p+lvOwpcPP/yQe+65hwEDBjB69GgKCwvZs2cPAOeffz4pKSnExcVx2WWXsWzZshqf8/Dhw7n55puZN28e2dnZREVFVbk0SEZGBu3atSM2NpZu3bpxwQXWnHHeS2lkZWUxduxY0tLSuP/++/0upTF+/Hg+++wzioqKeO+99zj77LOJi4urse5wJ6HsOCWxyTUKe1r7TqyLG0pq1lu4S4obVpjBEATCqwVVTUunITh69CiffvopGzduREQoKytDRLj//vuByktnnMryFYGW36jJchaqyquvvlppxvAVK1bUaSmNOXPmMGHCBN59912GDx/umSw2EDVZSuOmm27i5ptv5uKLL2bp0qV+Z7JwuVyMHj2aDz74gMWLF3seDJoCqkqi5qKumnXxAZSkTydl5Y1s/fJlep8zrQHVGQyNj2lBVcMrr7zCVVddxffff09mZiZ79+4lNTWVL7/80m/4PXv28PXX1oJy//nPfxgxYgQ9e/YkMzOTnTutheief/55Ro0aVW3a/paz8F1KY+zYsTz66KOe5eDXrl3r8fvoo484evQoJ06c4I033vC07GrCrl27SEtL4/bbbycjI4Nt27bVaWkQgJycHDp0sL7vefbZZwOGmzJlCs888wxffvkl48aNq3H84U5BQQHNpBDiU2p8zIBzr+AHWhP99SNmsIQh4givFlQQWLRoEbfffnsFt0mTJrFo0SK/XXM9e/bk8ccfZ9asWfTp04cbbrgBl8vFM888w+WXX05paSkZGRlcf/311aZ966238u2336KqnHvuufTv35/TTz/d06X3hz/8gTvuuIPZs2eTnp6O2+0mNTWV//s/a+jxkCFDmDRpEllZWUyfPt3z/ulnP/sZS5cu5fDhw3Ts2JG77rqLa6+91rMMx/XXX8/DDz/MZ599hsPhoG/fvowfP56YmBi+/vpr+vfvj4h4lgapaui9N3PnzuXyyy+nRYsWnHPOOZ41slatWsX8+fN56qmnAGv9qquuuoqJEycSExNTo7gjgePHfiQBcCRUPYDFG1dsLDt63sDo7Xez/fPF9Bxd8xbniaIS9u7awrHMdZRmZ0HBUaKKj+NAERQEECc4nDic0YgjCofTiTijcDijcTijwOFEJQoV58mf7eYWJ+rdaNcK/yrZU0E9bkplY1sxfPXGWICYKAdJrTrRdUjTedCJJMxyGxHKwoULKwymaIqEW93ZuXE5Z7w6lrXDHmbguGuqP8Cm4MQJDt43mGacIGH2CuKbB/6G6odDR9j8xevE7fw/+hcsJ1FOVPDP1TjcODy3fweKkzKcuHHiJlqq/xQiFMm5cRvNWwWe39AQXAItt2FaUAZDiFB43JqLMiax6o90fYmPiyN77GN0eG8Sex6/kHbXv05Cy5Nz+RXkHmPj0lfRLW+QXrCS86WIHElkd5vzkNOH0bxLf1q270ZCcmsSndGV4ldVisvcFJa6OV5SRnFpKcUlJZQUl4CWgpYh7jJwlyJaBu4yREsRd+VvA8Vnq/y1qHjtVHCrdHy5Z/XvU92q7P36Vc767hFysw8bAxWGGAMVocycOZOZM2cGW4ahFpQct1ZqjquiBRSIgcPG8MWhfzJ01S2UzDuTdck/oSy6GfG5uznjxCaGShlHSGZnuwtpO2wKbdPOJd1Zs8tfRIiNchIb5QRXZQMWyvz43Ub4DooKjgdbiuEUCAsDpaq1GoFmMIRS13VNKc07AkB8cuDFCqvi7Itmsun0vuR9dA+nH1tHHEX86GzD8rZTSBl4Mb0yziclKiwu+XojOq4ZACXGQIUlIV9bXS4XR44cISUlxRgpQ41QVY4cOYLL5Qq2lFqhBZaBSmp5agYKoF//DOj/qme/BdAzcPCIJyo+EYCSE3lBVmI4FULeQHXs2JGsrCzMWlGG2uByuejYsWOwZdSOE9nkayzxZvmMeiMmLgmA0sLcakIaQpGQN1DR0dEVZmowGCIVKcohTxJIMD0F9UZsgmWg3MZAhSUR9aFuSXERW1d+xIG9O4MtxWCoNVHFxznh8D+riOHUcMU3B6CsyHTxhSMRZaAKT+TT+93J7P78hWBLMRhqTXRpLkXOZsGWEVE0S7IMlBoDFZZElIFKaJZMmQpSmB1sKQZDrYkpzac4yhio+iQ21kWxRhkDFaZElIFyOB3kSgKOIjOk1BB+uNx5lEYnBltGRCEi5EscUmwMVDgSUQYKIF8ScBYbA2UIPxK0wBioBqBQXDhK8oMtw3AKRJ6BciQSbQyUIcxQVZppAe7YpGBLiTiKJA5HSUGwZRhOgYgzUIXOZsSUmiGlhvCi8EQBsVICxkDVO8XOeKLKjIEKRyLOQJVEJxJXZgyUIbzIO27NIoGreXCFRCAlznhiykwXXzgScQaqLKY58W7zQtQQXhTmHgPAGWdaUPVNSVQz4tzGQIUjEWeg3K7mNNP8sJws1NB0KczLBiAqPjmoOiKRkpgk4o2BCksizkCJqzlxUkzhiRPVBzYYQoRi20BFJyQHVUck4o5JopkaAxWORJyBcsYlA5CTfTi4QgyGWlBSkA1ArDFQ9Y47Nol4KaK4qCjYUgy1JOIMVHSzFgDkZpvZzw3hQ2lBDgCuxBZBVhJ5iCsZgILjR4MrxFBrIs5AxSRZa+kUZv8YZCUGQ83RE9kAxCe2DK6QCETirJGRJ3KNgQo3Is5AxSW3BaA4xxgoQxhhT8+VkJQcXB0RSPnAE2Ogwo+IM1AJLSwDVZpnuvgMYUTRcfI0jtiYmGAriThi7G7/QmOgwo6IM1BJKacBoPlHgqzEYKg5juI88iUu2DIiEpfdbVqcfyzISgy1JeIMVKwrnjyNQwrMKD5D+OAoyadQzFLvDUGz5paBKskzBircqLOBEpGbRGSbiGwWkfu83NNF5GvbfaOIuOqaVk3JkSSiC01z3hA+RJUWUOQwLaiGICm5FQCl9lB+Q/gQVZeDRWQMMBHor6pFItLGdo8CXgCuUtX1IpIClNRZbQ3Ji0omptgYKEP4EFVWQLHTGKiGIL5Zc8pU0MKcYEsx1JK6tqBuAO5R1SIAVS0fOncBsEFV19vuR1S1rI5p1ZjC6GTiSrIbKzmDoc5El52g1Gm6+BoCcTjIkwQoNMvwhBt1NVA9gJEiskJEPheRDC93FZEPRGSNiNwWKAIRuU5EVonIqkOH6mfkXYmrJc3KsuslLoOhMYh1n6AsyhiohqJAEnAWmRZUuFFtF5+IfAyc5sfrT/bxLYFhQAawRES62u4jbLcC4BMRWa2qn/hGoqr/Bv4NMHjw4HqZ4VXjUkg+epyyMjdOZ8SNAzFEIC49gTs6IdgyIpZ8ZxKuEjNIItyo1kCp6nmB/ETkBuA1taYOXykibqAVkAV8oaqH7XDvAoOASgaqQWjWhlgp5cixQ6S0atsoSRoMdSFOC1FjoBqME9EtiC82n56EG3VtXrwBjAEQkR5ADHAY+ABIE5F4e8DEKGBLHdOqMVHJHQHIOfh9YyVpMJwypaVlxFOIxhgD1VAUxbQgscx08YUbdTVQTwNdRWQT8BJwtVocA/4JfAOsA9ao6jt1TKvGuFIsA5V/aG9jJWkwnDIFJ/JwiEJMs2BLiVhKXC1J1hww68SFFXUaZq6qxcD0AH4vYA01b3QSW58OQNGxfcFI3mCoFUV51pO9xJoWVEOh8a1xSQmFBcdxJTQPthxDDYnIEQQt2loGyp3zQ5CVGAzVcyLfGv7siDUtqAYjwfpYN/fogSALMdSGiDRQCQkJHNVEHHnGQBlCn+KCXACcrsQgK4lcYpJaA5B7xBiocKJOXXyhzFFna2IK6q8yZh85xLYV7+Leuwrn8SxcZcfB7QaHg5KoJEpiknDHNsftSkbiWuCIb0FUs5bENGuJK7EV8c1TaNYskcS4GKLN0Pcmg6qiCmWqlLkVd/l/t+WmqhzLtoY/R8WZFlRDkdDSGs2bV18tKFX2b/2aff9dTNzhDbQsysKlhThwc0LiOeFMoNCZRFFsS8pcLdH4FBzNWhOT1AZX8zY0a3kazVPaEde8NTj934bVfl8mIvWjOQyJWAOVF9uaxKK6f/i7c9t6Dv/f3QzKXcowKaVYnRx2tCbPmQTigFI3LYt+oFleHomaR5S4q4yvVB0U4qRUoighijIcCCCUv7xVa1/Vy83yF9sPqn/R2+BVuroEGvlddGMkJ5U2AouoSo8ATvsHkEYZCLjizbuRhqJ5SnugfhYy3b95Gcff+gM9izbQSp1850xlb7N03DHNcOPAUZxHVEkucaU5tMjdQVJODi0kL2B8RRpNKQ5KiaIUB2U4KfPq3Cq/7sXaqXC/8K6K5W5ajT+eUFS4n1Ss1lrpGPE6vNx9m6Ry5tzlAc+trkSsgSqKb0fqiU2nfnxJCd889yeG7FlAO4lifZuJpAydyunpZ9M+JsC8t6qUnMghP/sIBccPUXT8KMV5RyjNP4a74CilRScoLSmmtKQILSvBqaU4tQzkpOkB20SJ/bOro7VZXjU91dW/jGpu16p2VLWgfPCT9d9OQSveiMXzp/yfeC4oT5gGtJxSndWswruqI0+eq+JW+8lWwW3ngwAOu4xETv532BGf9LP98f5vl3Bcc3r2H1mb0zXUgpat2wFQklsHA6XK+sVz6bt1HlEksbTb7+k19uf0bNuumsOUvMIijh0+QO7RAxQcPUDx8R8pzT2EFBwhSotwqhsHpTjVbZmn8vuCfY2V1zu3gpuT2xZe9wM/F5tWuDJOhit31/L7S+UIrOPF//Eg5MW2qUHGnToRa6Dcyak0P5LP8aM/ktSydpl4Ij+XrY9OZkThctY0P4+u0x4mo22n6g8UITo+meT4ZJLbdztF5QaDob5xJTTnBDGQd4oGSpW1C25kYNYLLI8fRddZTzG6dc3uKyJCszgXzTp1gU5dTi39JkrEGqjY07rDLjiYublWBio39zi7H72I/kXrWdPvjwyafFvDPvYbDIaGR4QjjlbEnuJ76fWL7mBg1gt8kXwpZ924gOgoZ/UHGepMxL6tb9GxNwC5+7bX+Bh3mZvtT1xJv6L1bBj8Pwy6/HZjnAyGCCE7ug3Nig7W+rhdX71K2vbH+Cr+HIbf9LQxTo1IxBqo0zr3okyF0kM7a3zM18/9mcEFX7Km5+8YeNGvGlCdwWBobApcp9GytHZdfPnHDtDyo9nsdKTS95cLzeTTjUzE5nZcfDwHpTXO7O9qFH7tV+9zVua/WJN0LmdOvaOB1RkMhsamJKEdKXoULav52qnfPX8TCZpP8cVPkNzcjLJsbCLWQAEcietMi7xd1YbLzT1Oy49/x4+O1vT55TOII6KzxWBomjTviFOUYwf31Cj47hVvk3b0Q744bSb9Bg5rYHEGf0T0nTivZV86le2l8ER+leHWPnc7nfUH8i74p5mny2CIUOJbdwbgx6zqe1XU7cb98V3sow0Z0+9uaGmGAES0gYrpOIhoKSNr66qAYTau+JThPy5iTauJnHHWRY2ozmAwNCYp7VMByD1YvYHa8tl/6FbyLZn9bqR5opnhI1hEtIFq38dqlh/e8V+//icKCmj2/m844mhJ7xmPNKY0g8HQyLQ5vSdAtQOn3KWlNPvvvXwvHci4+IbGkGYIQEQbqHan92C/tMa190u//que+wOpupcjY+4jLqlFI6szGAyNiSs+kR9oQ2x21QZqw/tP0blsD/sH3UJMTEwjqTP4I6INFCJ8nzyMM/LXUFhYWMFrw4pPOWv/c6xpMZ7eZ08OkkCDwdCY/BjbmeT83QH9S4uLaLP6IXY6Usn46czGE2bwS2QbKCAp/SKacYL1ny3xuOXm5pD4/m845mhBr2seD6I6g8HQmBS36E770iyKiov9+q976zHa6wFyfjIHp9N8kBtsIt5A9Rp5GT9KCglrnsRd5qa0tJSt82fQ2Z3FsfMfIj4pJdgSDQZDIxHXsS8uKeG77esr+RUW5NF502NsjerNoHOuCII6gy8Rb6AcUdF83+sX9CvZwLJHZ7H+gQkMyV/Kmh6/ocdPJgZbnsFgaETa9j0bgKPbllXyW//6g7TmKKWj/2y+hQwRInayWG8GT76VdU9s5uzDr1NALGt6/Z7BU/4cbFkGg6GRad25Hzk0w5m1soJ7Xs4Ren37bzbEnkn6iAuDpM7gS5MwUOKMYsCNL1CcvZ+omAQGxScFW5LBYAgC4nDwXXw6qTkrKCsr87xn2rx4LhmaT+z4vwZZocGbJtWOjUluR4wxTgZDk0b7XkpbjrD2y3cB2LJ+OQP3vcjq5PPpOWB4kNUZvGlSBspgMBjSzplKHvFE/fchsrL24HrjF+RLAr2unhdsaQYfjIEyGAxNiui4JLb0/g0DilfT8ak0Orp/4ODY+SS2rHrpdkPj0yTeQRkMBoM3Q66Yw46P23D8u5V0GHUtvXoNCbYkgx+MgTIYDE0PEXqcfy1wbbCVGKrAdPEZDAaDISQxBspgMBgMIYmoarA1eBCRQ8D39RBVK+BwPcTTGISTVggvvUZrwxFOesNJK4SX3vrS2llVW/s6hpSBqi9EZJWqDg62jpoQTlohvPQarQ1HOOkNJ60QXnobWqvp4jMYDAZDSGIMlMFgMBhCkkg1UP8OtoBaEE5aIbz0Gq0NRzjpDSetEF56G1RrRL6DMhgMBkP4E6ktKIPBYDCEOcZAGQwGgyEkiSgDJSLjRGS7iOwUkTnB1uOLiHQSkc9EZIuIbBaR39ruc0Vkn4iss38/DbZWABHJFJGNtqZVtltLEflIRL61/7cIAZ09vfJunYgcF5HZoZSvIvK0iPwoIpu83PzmpVjMs+vxBhEZFAJa7xeRbbae10Uk2XbvIiInvPJ4fmNqrUJvwLIXkT/YebtdRMaGgNbFXjozRWSd7R4KeRvontU4dVdVI+IHOIFdQFcgBlgP9Am2Lh+N7YBB9nYisAPoA8wFfh9sfX70ZgKtfNzuA+bY23OAe4Ot0089OAB0DqV8Bc4GBgGbqstL4KfAe4AAw4AVIaD1AiDK3r7XS2sX73AhlLd+y96+3tYDsUCqfc9wBlOrj/+DwJ0hlLeB7lmNUncjqQU1BNipqt+pajHwEjAxyJoqoKr7VXWNvZ0LbAU6BFdVrZkIPGtvPwtcEjwpfjkX2KWq9TEjSb2hql8AR32cA+XlROA5tVgOJItIo60F4U+rqn6oqqX27nKgY2PpqY4AeRuIicBLqlqkqruBnVj3jkahKq0iIsAVwKLG0lMdVdyzGqXuRpKB6gDs9drPIoRv/iLSBRgIrLCdbrSbxE+HQreZjQIfishqEbnOdmurqvvt7QNA2+BIC8hUKl7goZiv5QTKy1Cvy7OwnpLLSRWRtSLyuYiMDJYoP/gr+1DO25HAQVX91sstZPLW557VKHU3kgxU2CAizYBXgdmqehx4AugGDAD2YzXzQ4ERqjoIGA/8WkTO9vZUq00fMt8piEgMcDHwsu0UqvlaiVDLy0CIyJ+AUuBF22k/cLqqDgRuBv4jIknB0udF2JS9Fz+j4sNVyOStn3uWh4asu5FkoPYBnbz2O9puIYWIRGMV9Iuq+hqAqh5U1TJVdQNP0ohdDlWhqvvs/z8Cr2PpOljeZLf//xg8hZUYD6xR1YMQuvnqRaC8DMm6LCIzgQuBafZNCbur7Ii9vRrrnU6PoIm0qaLsQzVvo4DLgMXlbqGSt/7uWTRS3Y0kA/UN0F1EUu0n6anAW0HWVAG7j3kBsFVV/+nl7t1HeymwyffYxkZEEkQksXwb6yX5Jqw8vdoOdjXwZnAU+qXCE2go5qsPgfLyLWCGPSJqGJDj1Z0SFERkHHAbcLGqFni5txYRp73dFegOfBcclSepouzfAqaKSKyIpGLpXdnY+vxwHrBNVbPKHUIhbwPds2isuhvMESL1/cMaQbID60njT8HW40ffCKym8AZgnf37KfA8sNF2fwtoFwJau2KNdloPbC7PTyAF+AT4FvgYaBlsrbauBOAI0NzLLWTyFctw7gdKsPrlrw2Ul1gjoB636/FGYHAIaN2J9W6hvN7Ot8NOsuvHOmANcFGI5G3Asgf+ZOftdmB8sLXa7guB633ChkLeBrpnNUrdNVMdGQwGgyEkiaQuPoPBYDBEEMZAGQwGgyEkMQbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgDAaDwRCSGANlMBgMhpDEGCiDwWAwhCTGQBkMBoMhJDEGymAwGAwhiTFQBoPBYAhJjIHyQkS6iIjaa7MYwhQRuUlEfhCR9UFIe66IvNAI6cwUkWVV+C8VkZ83tI5QRERGi0hWbf3qWUOV95LGqif1iYi0F5FcEdkuIuc0RprGQBnqhIjMF5E8+1csIiVe++9VH0ODMBf4lar299I5V0TmBklPSGHfPDNrGf4zESkQkW0icl4VYWPtJdaPi8gBEbnZJx71qh95InJHQ2gOd0Qk015ivSZhA+Z5gPC/s8Mdt4+L9Un3hFf5fFjup6o/qGoi8Dbwm1M8tVoRUQbKtHwaH1W9XlWbqWoz4H+AxeX7qjq+PFwjl01LQm9xwloTQvV5EbAWaw2gPwGviEjrAGHnYi2s1xkYA9xmL3boTbJXHflrA2lucEKofOZSfZ4DICJjgTnAuXb4rsBdPsEu8iqfC/xEswmrLjQ4YW+gbIt/u4hsAPJFJEpEhonIf0UkW0TWi8hor/BLReQfIrLSfoJ4U0RaBoj7GhHZajdrvxORX/r4TxSRdXY8u8orhYg0F5EFIrJfRPaJyN/KV8as4jy6icinInJERA6LyIsikuzld1REBtn77UXkUPl5icjFIrLZPt+lItLbJ39+LyIbRCRHRBaLiKv2OV17ApSNisgZXmEWisjfvPYvtPM02y7D9FqmWZ7P7mrC3WaXzw8i8nNvXbamx0XkHbvsV4hIN69jHxGRvXa5rxaRkT7Ru+x8zhWRNSLi3ZKbY9eVXBHZIiKXevnNFJGvROQhETmCdeOp7nwfEJFjIrJbRMb7eHe248sVkQ9FpFV18fmJvwcwCPiLqp5Q1VexFqKbFOCQq4G/quoxVd2Ktdz6zNqmWwNdg0RkrX1uL9v5/bcAYX9j53VHL7c/2tdZpohM83KfYMd73C7juV5+5S3Aa0VkD/BpDaROE5E9dlp/8vGLEZHn7HPYLCKDa5cLHmqT51cDC1R1s6oeA/5aRdhAuIHGMc6NvUJjA6z4mIm1ymMnIA7ogLWy6k+xDPD59n5rO/xSYB/QD2sV1leBF2y/LlirR0bZ+xOAblirRI4CCoBBtt8QIMeO32Gn28v2ex34Xzv+NlhLSv+ymvM4w44rFmgNfAE87OX/C2ALEA98ADxgu/cA8u1jo7GW5d4JxHjlz0qgPVbLYis+K3f6rJ6ZXcVvRDXnMLc8L/2Vje2mwBleYRYCf7O3BwI/AkMBJ9bFlAnE1qI+jAMKgYRqwhwA+tr5+YK3LlvTEbuMo4AXgZe8jp+O9QQZBdxix+XyyoMSYLJdHr8HdgPRtv/ldlk4gCl22bWz/WYCpcBNdtxxVZzDTDudX9h5dQPwA3gWIV2KtappD6zrYilwT4C4/gX8K4DfpVjLfXu7PQY86idsCzsf23q5TQY2+lxf+7BWk30GaHUK13wM8D3wWzuPLwOKverRaCDL3r4TazXa1l5+pcA/sa61UXYZ9PTyT7PLJx04CFzio/85rGu7qvIpD/uknf/9gSKgt1c9KcS6TzmBfwDLA8R1JbAhgF+Vee4n/Hpgitd+K/v4FK9r9iBwCPgQ6O8njjHAMeD02pZdrcu6oRNo8BOwMnSW1/7twPM+YT4Arra3K1yoQB+7cjvxMVB+0noD+K29/b/AQ37CtLUrYpyX28+Az2p5XpcAa33c3uLkMtaxttsdwBKvMA6sG8Bor/yZ7uV/H/Zy3Q1QFnOpbKBm+YSpykA9gfUk6B1+OzCqhumvsuP/TTXhngb+4bV/BpUN1FNe/j8FtlUR37HyC9nOg+Vefg6sJb5HBjh2HTDR3p4J7Knhuc4Ednrtx9vncJpXPf+zl/+vgPdPoUyvwufGCfwdWOgnbCdbg8vL7Xwg095uBgzGMr5tgVeAD05B09l2HRcvt2VUNFD7sIzQMqC5V7jRWAYqwcttCXBHgLQexr7OOXl/6FoDjeVhO3q5rQSmetWTj738+gAnTiEvqsxzP+F3AeO89qPt47vY+8OxDGo88Aesh69kP/G8bB/3cG011+YX9l18Nnu9tjsDl9tdRNkiko3VMmgXIPz3WIVUqftDRMaLyHK7ey0b60ZVHq4TVmH70tmOb79X+v+L1ZIKiIi0FZGX7C7B41hP9b6ansRq+T2qqkW2W3v7HABQVbd9fh28jjvgtV2AdaNoLPZWH8RDZ+AWn7LrhHWONSEDmArMFZHoKsK199HlT2PAPLO7TLfaXabZQHMqlpUnPrs8ssrPQURmeHVhZmOVp99ja4BHo6oW2JvN/Pn7nkMtyAOSfNySgNwAYcv9K4VV1TxVXaWqpap6ELgRuEBEEmupqT2wT+07pY1vviUD12E9iOT4+B1T1Xyv/e85WT5DxRoQckhEcoDrqXwdnlIZUbkMfP1cUvv3WlXmeYDwvmHhZBl9pVZXboGq/gOr56RCF7ZYrxp+itVjNLuWemtFpBgo34r6vKome/0SVPUerzCdvLZPx+oqOewdoVgjW14FHsBqPicD72J195Wn043K7MVqQbXySj9JVftWcw7/Y59HmqomYXUjlaeFiDTDeppbgHUDLn9v9gPWjb08nNjnt6+a9CohIiOl4ggr35/vu5aaoD77BVhPZ+Wc5rW9F/i7T9nFq+qiGiVk3bDewOr2aFdF0P1AR6/9ToEC+mLnwW3AFUALu17k4FVW3vGJiMNO6wcR6Yz1kHEjVpdKMtYLZ+9jffMr2GwGuvoYkf62ewXUeqex3/avMmz5Ifb/2t6H9gMd7Lpejm8ZHgMuBJ4RkeE+fi1EJMFr/3Ss6wjgP1g9FZ1UtTkwn4rl46076JxCnm/2E/agqh4JlASVz783sEVVt9dece2IFAPlzQvARSIyVkScIuIS69sH7xvSdBHpIyLxwN3AK6pa5hNPDFYf9SGg1H4B7T2iZQFwjYicKyIOEekgIr1UdT9W3+2DIpJk+3UTkVHV6E7EerrJEZEOwK0+/o8Aq1T158A7WBcOWN0TE2wd0VjvRIqA/1aXUb6o6pd6cvSOv9+XtY3TD+uAK+2yGYf1DqCcJ4Hr7adYEZEE+6V1IngGLyys5hzKW5YxVQRbglV2ve06UKOhzjaJWF1Eh4AoEbmTyi2MM0XkMvtpeDZWeSzHem+h9rGIyDVYLaiQRVV3YJXZX+xr6VKsdzOvBjjkOeDPItJCRHphvSNbCJ7WSU/7mkgB5gFLy1s4Yn0KsLQGsr4GyoAbxRp4MxHrfaGv9qXANOA1EfH1v0tEYuwHjguxuqzAKt+jqlpoH3NlDfQEm4B5HiDstfb9Lxn4MyfL53QRGW7ni0tEbsVqPX7lE0c0Vp1ucCLOQKnqXmAi8EesG8FerJu997k+j1UoBwAXfsb0q2qu7b4E62nsSqwnq3L/lcA1wENYT9Cfc7IlMwPrBrnFPvYVqn6iB2uo5yA7rneA18o97AtwHNaLcICbgUEiMs1+ipkOPIrVCrwIa5hocTXpBYvfYmnMxrp5vFHuoaqrsC6ux7DybScVRxh1ovLF4g+lirqtqu9h3Rw/s9NYbnvV5KL7AHgf2IHVNVRI5S6fN7EGQBzDeodzmaqWqOoW4EGsG+xBrJfxNTmfBkWsb9nmVxFkKta7o2PAPcBkVS03stNExPtp/S9YXd/fY10T96vq+7ZfV6y8y8VqORZhvZ8tp0bla9fty4BrserRdOD/8FN+qvoRMAt42+6aAuu6P4bVanoRa9DQNtvvV8DdIpKLNcBiSXV6Gho/eexLwDy3jU6eiJwOYLvfh1X399jH/MWOJxHrPfAxrB6YccB4P60rJ9WMkq0vykf8NBnsJ7QXVPWpYGsx1BwRicEagZSuqiXVhP0BuE1Va/SlvljD8jdhDTwprbNYwykhIuuAc6vobqrq2BVYg3+eqXdhBg92l/U8oI2qXtHQ6UVcC8oQmahqsar2rs442czB6pJaHSiAiFwq1hf4LYB7gbeNcQouqjqgpsZJREaJyGl2F9/VWN2O71d3nOHUEZH2WL1Sw7B6AhocY6AaEak4LZD3r6ruFUMtUdXnVLW7qp5ZRbBfYn1ztQvrfcYNVYQNCqa+VElPrBZ1NtZ718n2+99Gw+5681c+VXXHhS1qTXWUoqqDVXVFY6TZ5Lr4DAaDwRAemBaUwWAwGEKSUJnsEIBWrVpply5dgi3DYDAYDI3I6tWrD6tqpQmIQ8pAdenShVWrVgVbhsFgMBgaERH53p+76eIzGAwGQ0hiDJTBEKKoKl9/9RmFxWb0u6FpYgyUwRCibPr6fc766BL+u+h/gi3FYAgKIfUOyh8lJSVkZWVRWFgYbCmGMMLlctGxY0eio6ua1Dy00fxDALQ4EPTZkAyGoBDyBiorK4vExES6dOlCxcmLDQb/qCpHjhwhKyuL1NTUYMs5ZUSt6c7K1HR0GJomIV/zCwsLSUlJMcbJUGNEhJSUlLBvdUuxtdRPaehfpgZDgxAWNd8YJ0NtiYQ6o6X2tIPaKBNHGwwhR1gYKIOhKaJl1oopDrcZxWdomhgDVQNEhFtuucWz/8ADDzB37tzgCaqGpUuX8t//1nq9Qg/r1q3jrLPOom/fvqSnp7N48eJ6VGeoKe4yqwXlMJOsG5ooxkDVgNjYWF577TUOHz5cfeBaoKq43fXffVNXAxUfH89zzz3H5s2bef/995k9ezbZ2dn1J9BQI8q7+JzGQBmaKA1uoERknIhsF5GdIjKnodNrCKKiorjuuut46KGHKvkdOnSISZMmkZGRQUZGBl99ZQ0Jnjt3Lg888IAnXL9+/cjMzCQzM5OePXsyY8YM+vXrx969e7n11lvp168faWlpntbK0qVLGT16NJMnT6ZXr15MmzYNfzPPz5s3jz59+pCens7UqVPJzMxk/vz5PPTQQwwYMIAvv/yySo1XXXUVZ511Ft27d+fJJ58EoEePHnTv3h2A9u3b06ZNGw4dOlQp7Zdffpl+/frRv39/zj77bMAa1HLNNdeQlpbGwIED+eyzzwBYuHAhl1xyCeeffz5dunThscce45///CcDBw5k2LBhHD16FIAnn3ySjIwM+vfvz6RJkygoKKiU7rBhw9i8+eSKBqNHj47MKbLctoHCGChD06RBh5mLiBN4HDgfyAK+EZG37KWva81db29myw/H61Mifdon8ZeL+lYb7te//jXp6encdtttFdx/+9vf8rvf/Y4RI0awZ88exo4dy9atW6uM69tvv+XZZ59l2LBhvPrqq6xbt47169dz+PBhMjIyPDf7tWvXsnnzZtq3b8/w4cP56quvGDFiRIW47rnnHnbv3k1sbCzZ2dkkJydz/fXX06xZM37/+98DcOWVVwbUuGHDBpYvX05+fj4DBw5kwoQJtG/f3hP/ypUrKS4uplu3bpXO4+677+aDDz6gQ4cOnhbW448/joiwceNGtm3bxgUXXMCOHTsA2LRpE2vXrqWwsJAzzjiDe++9l7Vr1/K73/2O5557jtmzZ3PZZZfxi1/8AoA///nPLFiwgJtuuqlCulOmTGHJkiXcdddd7N+/n/379zN48OAq8zwcUbuLL8q0oAxNlIZuQQ0Bdqrqd6paDLwETGzgNBuEpKQkZsyYwbx58yq4f/zxx9x4440MGDCAiy++mOPHj5OXl1dlXJ07d2bYsGEALFu2jJ/97Gc4nU7atm3LqFGj+OabbwAYMmQIHTt2xOFwMGDAADIzMyvFlZ6ezrRp03jhhReIivL/vFGVxokTJxIXF0erVq0YM2YMK1eu9By3f/9+rrrqKp555hkcjspVZfjw4cycOZMnn3ySsrIyz/lMnz4dgF69etG5c2ePgRozZgyJiYm0bt2a5s2bc9FFFwGQlpbmObdNmzYxcuRI0tLSePHFFyu0lMq54ooreOWVVwBYsmQJkydPrjK/wxbbQMVocZCFGAzBoaE/1O0A7PXazwKGegcQkeuA6wBOP/30KiOrSUunIZk9ezaDBg3immuu8bi53W6WL1+Oy+WqEDYqKqrC+yXvb3ISEhJqlF5sbKxn2+l0Ulpa+Un6nXfe4YsvvuDtt9/m73//Oxs3bqwUJpBGqDwcu3z/+PHjTJgwgb///e8eY+rL/PnzWbFiBe+88w5nnnkmq1cHXGG90vk4HA7PvsPh8JzbzJkzeeONN+jfvz8LFy5k6dKlleLp0KEDKSkpbNiwgcWLFzN/fmQuMKtlVp7EYAyUoWkS9EESqvpvewnhwa1bV1oOJKRo2bIlV1xxBQsWLPC4XXDBBTz66KOe/XXr1gHW0iFr1qwBYM2aNezevdtvnCNHjmTx4sWUlZVx6NAhvvjiC4YMGVIjPW63m7179zJmzBjuvfdecnJyyMvLIzExkdzc3Go1Arz55psUFhZy5MgRli5dSkZGBsXFxVx66aXMmDGjytbJrl27GDp0KHfffTetW7dm7969jBw5khdffBGAHTt2sGfPHnr27Fmj8wHIzc2lXbt2lJSUeOLxx5QpU7jvvvvIyckhPT29xvGHFfY7qGjTgjI0URraQO0DOnntd7TdwpZbbrmlwmi+efPmsWrVKtLT0+nTp4/naX7SpEkcPXqUvn378thjj9GjRw+/8V166aWkp6fTv39/zjnnHO677z5OO+20GmkpKytj+vTpngEJv/nNb0hOTuaiiy7i9ddf9wySCKQRrC7CMWPGMGzYMO644w7at2/PkiVL+OKLL1i4cCEDBgxgwIABHqN255138tZbbwFw6623kpaWRr9+/fjJT35C//79+dWvfoXb7SYtLY0pU6awcOHCCi2n6vjrX//K0KFDGT58OL169fK4v/XWW9x5552e/cmTJ/PSSy9xxRVX1DjusKO8i4+SIAsxGIKD+BsZVm+Ri0QBO4BzsQzTN8CVqlr5xQIwePBg9R2NtXXrVnr37t1gGpsyc+fOrTCYItII97qz5rEZDDr8JrkaR+JdB4Itx2BoMERktapWGunUoO+gVLVURG4EPgCcwNOBjJPBYPDBfbIFpaoRMX2TwVAbGnw2c1V9F3i3odMx1J5Qng3DAGJPcRQrpRSXlhETHfKLDxgM9UrQB0kYDAb/iPvku6eiwsofLBsMkY4xUAZDiCJek8QWFZ4IohKDITgYA2UwhCjek8QWF5kWlKHpYQyUwRCieLegik0LytAEMQaqhrzxxhuICNu2bQsYJjMzk379+jWojnXr1vHuu6c+5qT8w94+ffrQt29fHnnkkXpUZ6hPHHryHVSJaUEZmiDGQNWQRYsWMWLECBYtWuTX3980RLWlfD67qqirgYqKiuLBBx9ky5YtLF++nMcff5wtW05p7l5DA+O9UGFJkWlBGZoexkDVgLy8PJYtW8aCBQt46aWXPO5Lly5l5MiRXHzxxfTp0wewDNW0adPo3bs3kydP9iwX8cknnzBw4EDS0tKYNWsWRUVFgDUl0u23386gQYN4+eWXK6Tru5xFcXExd955J4sXL2bAgAEsXryY/Px8Zs2axZAhQxg4cCBvvvkmYC1vMXHiREaPHk337t256667AGjXrh2DBg0CIDExkd69e7NvX+XJPT7//HPPLBIDBw4kNzcXVQ24NMioUaOYOHEiXbt2Zc6cObz44osMGTKEtLQ0du3aBcDbb7/N0KFDGThwIOeddx4HDx6slO7UqVN55513PPszZ870TAzb1PB+B1VabAyUoekRXh9WvDcHDlSeDLVOnJYG4++pMsibb77JuHHj6NGjBykpKaxevZozzzwTsObZ27RpE6mpqWRmZrJ9+3YWLFjA8OHDmTVrFv/617+48cYbmTlzJp988gk9evRgxowZPPHEE8yePRuAlJQUz7x93vguZxETE8Pdd9/NqlWreOyxxwD44x//yDnnnMPTTz9NdnY2Q4YM4bzzzgOspTI2bdpEfHw8GRkZTJgwocKyFJmZmaxdu5ahQ4dWSvuBBx7g8ccfZ/jw4eTl5eFyuXjttdcCLg2yfv16tm7dSsuWLenatSs///nPWblyJY888giPPvooDz/8MCNGjGD58uWICE899RT33XcfDz74YIV0y5fSmDBhAsXFxXzyySc88cQTNSzMyMKhpRRoLPFSRFlRYfUHGAwRhmlB1YBFixYxdepUwHrC9+7mGzJkCKmpqZ79Tp06MXz4cACmT5/OsmXL2L59O6mpqZ75+K6++mq++OILzzFTpkzxm66/5Sx8+fDDD7nnnnsYMGAAo0ePprCwkD179gBw/vnnk5KSQlxcHJdddhnLli3zHJeXl8ekSZN4+OGHSUpK8pv2zTffzLx588jOziYqKqrKpUEyMjJo164dsbGxdOvWjQsuuACouJRGVlYWY8eOJS0tjfvvv9/vUhrjx4/ns88+o6ioiPfee4+zzz6buLg4v+ce6Ti1jAKxzr3MtKAMTZDwakFV09JpCI4ePcqnn37Kxo0bERHKysoQEe6//36g8tIZgZavqIpAy2/UZDkLVeXVV1+tNGP4ihUrAmopKSlh0qRJTJs2jcsuu8xv2nPmzGHChAm8++67DB8+nA8++KDKc6jJUho33XQTN998MxdffDFLly71O5OFy+Vi9OjRfPDBByxevNjzYNAUcWgphY54cGdTVmxaUIamh2lBVcMrr7zCVVddxffff09mZiZ79+4lNTWVL7/80m/4PXv28PXXXwPwn//8hxEjRtCzZ08yMzPZuXMnAM8//zyjRo2qNm1/y1n4LqUxduxYHn30Uc9y8GvXrvX4ffTRRxw9epQTJ07wxhtvMHz4cFSVa6+9lt69e3PzzTdXmXZaWhq33347GRkZbNu2rU5LgwDk5OTQoUMHAJ599tmA4aZMmcIzzzzDl19+ybhx42ocf6Th1FKKHPEAuEtMC8rQ9DAGqhoWLVrEpZdeWsFt0qRJAUfz9ezZk8cff5zevXtz7NgxbrjhBlwuF8888wyXX345aWlpOBwOrr/++mrT9recxZgxY9iyZYtnkMQdd9xBSUkJ6enp9O3blzvuuMNz/JAhQ5g0aRLp6elMmjSJwYMH89VXX/H888/z6aefegZBlI8KnD9/vmcpjocffph+/fqRnp5OdHQ048ePr9PSIGDN/Xf55Zdz5pln0qpVK4/7qlWr+PnPf+7Zv+CCC/j8888577zziImJqXH8kYaTUoqd5QbKtKAMTY8GXW6jtpjlNuqPhQsXVhhM0RQJ97pzaG4qBxJ6kpb/NV/2+AMjr5wTbEkGQ4MQaLkN04IyGEIUJ6WURlnvJ7XUtKAMTY/wGiRhqDEzZ85k5syZwZZhqAPRlFAanWjtGANlaIKERQsqlLohDeFBJNSZaC2lLMp6B0VJUXDFGAxBIOQNlMvl4siRIxFxwzE0DqrKkSNHcLlcwZZSJ6Ipxe2MoZAYKDMtKEPTo05dfCJyP3ARUAzsAq5R1WwR6QJsBbbbQZeravXD1vzQsWNHsrKyOHToUF2kGpoYLpeLjh07BlvGKVNWWoJTFHHGUkw0UmpaUIamR13fQX0E/EFVS0XkXuAPwO223y5VHVDH+ImOjq4wU4PB0BQoKS7ECRAVTYnEIGXFwZZkMDQ6deriU9UPVT0zWi4HwveR1WAIIconE8YZS4lE4zBdfIYmSH2+g5oFvOe1nyoia0XkcxEZGeggEblORFaJyCrTjWcwWJTaUxs5omIokVicbtOCMjQ9qu3iE5GPAX/TBfxJVd+0w/wJKAVetP32A6er6hERORN4Q0T6qupx30hU9d/Av8H6UPfUTsNgiCxKbAMlUTGUSgyOMvMOytD0qNZAqep5VfmLyEzgQuBctYfaqWoRUGRvrxaRXUAPYFWgeAwGw0nK7GHljqgYyhwxRJkWlKEJUqcuPhEZB9wGXKyqBV7urUXEaW93BboD39UlLYOhKVFSbBkoiYqlzBGD021aUIamR11H8T0GxAIf2Us5lA8nPxu4W0RKADdwvaoerWNaBkOTwfMOKjqWMmcs0cUF1RxhMEQedTJQqnpGAPdXgVfrErfB0JQp7+JzRsXgdsTiUtPFZ2h6hPxMEgZDU6TU7uJzRLtwO2OINgbK0AQxBspgCEHc5YMkomNRp4sYY6AMTRBjoAyGEMRdlAdAtCsBjYolhpIgKzIYGh9joAyGEKTUNlAxcYmo0zJQpWXuIKsyGBoXY6AMhhDEXWgbqPhEiHYRSzGFpcZAGZoWxkAZDCGIuygfgLj4RCTKRYyUUVRk3kMZmhbGQBkMIYiWWN89uRISkehYAIqKTgRTksHQ6BgDZTCEIsX5FKuT2FgXEhVnORWaj3UNTQtjoAyGEERKCijEhYjgjLFaUMWFpgVlaFoYA2UwhCBSnEeBWC0nR7T1v8R08RmaGMZAGQwhSExxNvnOJAAcMS7AGChD08MYKIMhBHGV5HAiqjkATrsFVVpsDJShaWEMlMEQgsSXHaco2jJQUbGWgSozBsrQxDAGymAIQRL1OKWxyQBExZgWlKFpYgyUwRBiFBWdoAW5uBPaABDjKm9BFQZTlsHQ6BgDZTCEGIf3fQ9AVHJH639sPADuEtOCMjQt6rrk+1wR2Sci6+zfT738/iAiO0Vku4iMrbtUg6FpcPTAbgDiW3cGTragtMQs+25oWtR1yXeAh1T1AW8HEekDTAX6Au2Bj0Wkh6qW1UN6BkNEU3jwWwCS2nUDIMa0oAxNlIbq4psIvKSqRaq6G9gJDGmgtAyGiKL4wDaKNYrTOvcEIDrWtKAMTZP6MFA3isgGEXlaRFrYbh2AvV5hsmy3SojIdSKySkRWHTp0qB7kGAzhTfSxbzkQ3ZHo6BgAJMr6UFdLzSAJQ9OiWgMlIh+LyCY/v4nAE0A3YACwH3iwtgJU9d+qOlhVB7du3bq2hxsMEUVhSRmdinaS17z7SUfbQIkxUIYmRrXvoFT1vJpEJCJPAv9n7+4DOnl5d7TdDAZDFezYsZV0OUp2p6EnHZ3RuBEoNV18hqZFXUfxtfPavRTYZG+/BUwVkVgRSQW6AyvrkpbB0BQ4vOVzANr2G33SUYRiopEy04IyNC3qOorvPhEZACiQCfwSQFU3i8gSYAtQCvzajOAzGKrHmbWCAly0TB1Ywb1EYnCYFpShiVEnA6WqV1Xh93fg73WJ32BoarQ7vp7v4/vR21nx0iySWJymBWVoYpiZJAyGEOHgjz/Szf09J04bXMmvRGJxuo2BMjQtjIEyGEKEPeuX4hQlqefISn4lDhdRpgVlaGIYA2UwhAiFu5dTpsLp/fwZqFii3OYdlKFpUR9THRkMhnog6fAavo9OpWtC80p+ZY5Yous4SKK4uIT9320k98h+xF1MdHwysc1akNzqNBKTW+NwOusUv8FQ3xgDZTCEACUlJXQr2sa2NuPp6se/1Okixp17SnFv/+Yjjn/xL/oe/4rO4t/IuVXIlmbkOpLIdzanVKIQQERAFUEB9WyX74va7oADN6j6FyGC+HP2s1M5nH2sVArqm4Tf4064WtP1168RFePyr80QshgDZTCEAJlbV9NdTuDoPMyvv9vpIlZr14LKPrSfXc9ez5l5SzlOAhtTxuLofBZxKR1RZwxlBTmU5h+jJO8Imn8YOXGMqKJjxJVm49AyUPXYG0VQcdhWwDJRSMX/5dv+zMdJu6WoX3cvX0+aXv9P2sEKMXgfr5U2oJk7h7Sir/h28wq6DxxVo3wzhA7GQBkMIcCx7csAaNvnbL/+ZU4XMVpc4/h2rl9GwutX009zWNH5OvpdcQdDmyXVi9ZwYt93W+G5YWTvWgXGQIUdxkAZDCGA44dVHCWJ9l16+vXXKBcuataC2rT8Q7q8N4M8SWDvpa8xdIB/o9cUaNe5J8dJwP3DumBLMZwCETeK78Ceb9FA/eAGQ4iSfHwHWa7uiMP/JalRccRSTJm76rq9a+1Surw3g2xnCxy/+JgzmrBxAnA4HeyOS6P9sVXBlmI4BSLKQP2QuZ2EBSNZNW8aJ/KOB1uOwVAjiouKOL30e0606B04UJSLOIopKg08Y9jBPTto8eYMciQJ17Xv0qZDagOoDT9OdBpBJ/2BA3t2BFuKoZZEVBffaR27sbzjVH6y7xkOPjCADT2vpduYGbQ6rVOVxxWXlJGdm01+zlHyc45yIvcYRXnHKC3IwVmci7MkF2dJPrhLcbvdXi00r9FNeMYaeVAqvi7WSsOMJMB2uZNvfOI3vgpuntjEs1VVEtVSg8ao1iRQ/SRVf/HUQ2I1Ou8aBHEUHWe4lBLVvl/gaKLjiJYy8oqKiY+pfNnm5hylYOHlpGgJxVPfpIMxTh7aDboQdjxA5rIlnHbln08pDnW7OXJwL4ezviX3wHe4cw+ihceh6DiOknzE7QbclI9sVPvqFxGUk4NLEHtQiTisa9Tb3zMIxWEFtd3VDu8ZnHJKF3LDkB/bmnOv+kODxR9RBsoRFcVPfvEwW74eS9Qnf2Ho9vtg+33spxXHo1tT5EzAoWVEuQuJKiskzl1AgubTjALaiLvKuN0qlOHwmCK1K4k92NazX4743Jkq71Olv++drfrw1adhCF1yJZ6O/c8N6C/R1rLvRSfyIDG+gl9pSQk7n/gZaWV72HbuM/TrPdBfFE2Wzr0GssPZnbY7X0bdfwzYjepNUWE+O5a/T96Oz2l2ZAOdi3bQinxa+YQr0FgKJI4ynJ77gNqjGgXFodZ9xYH1/+R4R0WsRVQQr6H7DvuO4qgQ7qSfoDhFcWtoXN2bSQWMgaoVfc4ajw4bx+4tKzmw+h1iDm8muvAIcaXHKcVJqdNFUXQyOdGJuGMSEVcSEtecqPhkouOTcTVLJi6xBXGJLYiKTyYqvjnRcUlEOyOqR9QQQiTav4DENgOgpCAHaFPBa+WC2fykcDmr+v6RwWdf0kAKw5ucfjPIWH8Hq955ksEX/dJvmMP7v2f3f18n6rsP6Zm3ijQpokSdfB/VhW0tz8Hdui/xbbuS3P4Mklp1pFnzFsRHxxDvN7aGJVTuRGkNHH9EGiiwPjBM7TuU1L5Dqw9sMIQ4GpcCQGneYazl1SxWvPEYPznwAt+0upSMK24PkrrQZ9BFv2LH5ufps+oOvhEnfUdPpqS4mH3bV3N884ekHPiC7qU7aQUcoBUbW43H1XcCPYeN54z4Kh8dDA1IxBoogyGScCZanUuF2Qc9btu++ZiBa//CZld/Bl73v8GSFhY4o6JIvuYV9j99CRmrboFVtwDQHChTYUdMb77ucgNtB19Kap8MTqtBN6Ch4TEGymAIA5qnnAZAQfYhAPbuWEfrd2ZxyJFCx+uWEBUTG0x5YUGbDp1pMWcFG758nfy9GxBnNHHte9FlwDn0btmm+ggMjY4xUAZDGNCirTUStfTYHn7YvY2Y/1yGoJT9bInHeBmqJzo6hvRzpgBTgi3FUAPqZKBEZDFQ/ul7MpCtqgNEpAuwFdhu+y1X1evrkpbB0JRJSm5FFm05/btFxOx6lihKOTzpNbr1GBBsaQZDg1HXJd89jyEi8iCQ4+W9S1UH1CV+g8FgISJ83+FChu9bwF5pj3vqIrr1HBBsWQZDg1IvXXwiIsAVwDn1EZ/BYKjMT659gN3bp9Ohax9iYs3SEYbIp76GqowEDqrqt15uqSKyVkQ+F5HKS4TaiMh1IrJKRFYdOnSonuQYDJGHOByk9h5kjJOhyVBtC0pEPgb8vYX9k6q+aW//DFjk5bcfOF1Vj4jImcAbItJXVStNkKeq/wb+DTB48GAzy6vBYDAYgBoYKFU9ryp/EYkCLgPO9DqmCKy1AVR1tYjsAnoAZkphg8FgMNSI+ngHdR6wTVWzyh1EpDVwVFXLRKQr1qfv31UX0erVqw+LyPf1oKkVcLge4mkMwkkrhJdeo7XhCCe94aQVwktvfWnt7M+xPgzUVCp27wGcDdwtIiVYU/xer6pHq4tIVVvXgx5EZJWqDq6PuBqacNIK4aXXaG04wklvOGmF8NLb0FrrbKBUdaYft1eBV+sat8FgMBiaLmbCKYPBYDCEJJFqoP4dbAG1IJy0QnjpNVobjnDSG05aIbz0NqhWObk6rMFgMBgMoUOktqAMBoPBEOYYA2UwGAyGkCSiDJSIjBOR7SKyU0TmBFuPLyLSSUQ+E5EtIrJZRH5ru88VkX0iss7+/TTYWgFEJFNENtqaVtluLUXkIxH51v7fIgR09vTKu3UiclxEZodSvorI0yLyo4hs8nLzm5diMc+uxxtEZFAIaL1fRLbZel4XkWTbvYuInPDK4/mNqbUKvQHLXkT+YOftdhEZGwJaF3vpzBSRdbZ7KORtoHtW49RdVY2IH+AEdgFdgRhgPdAn2Lp8NLYDBtnbicAOoA8wF/h9sPX50ZsJtPJxuw+YY2/PAe4Ntk4/9eAA1od/IZOvWN8GDgI2VZeXwE+B9wABhgErQkDrBUCUvX2vl9Yu3uFCKG/9lr19va0HYoFU+57hDKZWH/8HgTtDKG8D3bMape5GUgtqCLBTVb9T1WLgJWBikDVVQFX3q+oaezsXa82sDsFVVWsmAs/a288ClwRPil/OxVrqpT5mJKk3VPULwPdj9UB5ORF4Ti2WA8ki0q5RhOJfq6p+qKql9u5yoGNj6amOAHkbiInAS6papKq7gZ1Y945GoSqtIp5VIXwnPggaVdyzGqXuRpKB6gDs9drPIoRv/mIt6jgQWGE73Wg3iZ8OhW4zGwU+FJHVInKd7dZWVffb2weAtsGRFhDfmU1CMV/LCZSXoV6XZ2E9JZeTKjVYuSAI+Cv7UM7bU14VojHwuWc1St2NJAMVNohIM6yZNmarNcP7E0A3YADWTPAPBk9dBUao6iBgPPBrETnb21OtNn3IfKcgIjHAxcDLtlOo5mslQi0vAyEifwJKgRdtp/KVCwYCNwP/EZGkYOnzImzK3otAq0IEPW/93LM8NGTdjSQDtQ/o5LXf0XYLKUQkGqugX1TV1wBU9aCqlqmqG3iSRuxyqApV3Wf//xF4HUvXwfImu/3/x+AprMR4YI2qHoTQzVcvAuVlSNZlEZkJXAhMs29K2F1lR+zt1VjvdHoETaRNFWUfqnlbvirE4nK3UMlbf/csGqnuRpKB+gboLiKp9pP0VOCtIGuqgN3HvADYqqr/9HL37qO9FNjke2xjIyIJIpJYvo31knwTVp5ebQe7GnjTfwxBocITaCjmqw+B8vItYIY9ImoYkOPVnRIURGQccBtwsaoWeLm3FhGnvV3jlQsamirK/i1gqojEikgqlt6Vja3PD35XhQh23ga6Z9FYdTeYI0Tq+4c1gmQH1pPGn4Ktx4++EVhN4Q3AOvv3U+B5YKPt/hbQLgS0dsUa7bQe2Fyen0AK8AnwLfAx0DLYWm1dCcARoLmXW8jkK5bh3A+UYPXLXxsoL7FGQD1u1+ONwOAQ0LoT691Ceb2db4edZNePdcAa4KIQyduAZQ/8yc7b7cD4YGu13RdirfrgHTYU8jbQPatR6q6Z6shgMBgMIUkkdfEZDAaDIYIwBspgMBgMIYkxUAaDwWAISYyBMhgMBkNIYgyUwWAwGEISY6AMBoPBEJIYA2UwGAyGkOT/Aac4Ii+5NFCQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEYCAYAAADBFIhjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABzCklEQVR4nO2dd5xU1fm4n3f6zu7SFqQrRfouvSmgaBQ1RFFRwY5GE1sSozGaokGT/KKoXyuRxBAxioq9xBoLKioiTToKulIEpC1sm512fn+cO7Ozu7ONmd2ZWc7z+QzMPefcc9859+557/ue8opSCoPBYDAYWiK2VAtgMBgMBkNTYZScwWAwGFosRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLGmr5ESkh4goEXGkWpaWjojMEJFFzXStLBF5Q0T2i8hvm+Oa1a5fKCInNcN1ForIFbXkmWe7iajr/pp7n3mIyDQROSAin4pIl0OpI22VnOHQEJGZIhIQkZKYT7Mrkzo4CRgMdFdKzYokWh1Qj5RJlUZY93BmI8pfICLfiUipiLwsIu3qKPtPEdkoImERmVEt71IRWSYiB0Vkm4jMiu2MRaSdiLxkXec7EbmgsXKISB8R8YnIk434fQtFZGJDy2cyTXzvh1r3t8z6f2hM3k0iskZEikXkWxG5qdq5x4rIEit/lYiMr5bfQUSeshTSfhGZH5M3T0T81foku5UXUfqxebdGzlVKLQDaW4fnNbRdYmkyJWfeVFLKAqVUTsxnVv2nNBvtgEKlVEmqBUkE0aT8JVFEBgH/AC4GOgJlwN/rOOVL4BpgeZw8L3A9ulMZA/wI+E1M/mzAb13nQuAR6/qNkWM28EWDflyakon3XkRcwCvAk0Bb4HHgFSsdQIBLrLxTgetEZLp1bjvgNeBuoA0wC3hNRNrGXOJFYCdwJHAEcE81EWZV65NC1fLbxOT9OTZDKRUAvgLy6m+VmiT1Rllv4zeLyCqgVEQcIjLWMjWLROTL2Dcy6w3tb9YbwkEReaW2NxERuUxE1ltvEt+IyM+r5U8RkZVWPZtF5FQrvbWIzBWRHSKyXUT+EnmLqON39BaR90Vkr4jsEZH5ItImJm+fiAy3jruIyO7I7xKRM0RkrfV7F4rIgGrt8xvrTeiAiCwQEU/jW7rxiMgtVrsUi8g6ETmrlnIiIveJyA9WW64WkXwrzy0i94jIFhHZJSJzRCSrkaI4gHA9suaJyGvW9b+w7tmimHwlIleJyNdWO88WEbHyar13MYyy2mC/iDwWuQci0lZE/mvdz/3W924x110oIn8VkU/QHUqven7rUSLyidXm74hI+2r5F1ptuUdE/lBPXbVxIfCaUuoj68XhVuBsEcmNV1gpNVsp9R7gi5P3iFLqY6WUXym1HZgPjAMQkWxgKnCrUqpEKbUIeBXdwTZIDqvTLALeO8TfGnF3P27dn/Ui8lsR2VZL2QGirZLzY5IP13s/Ef23d79SqkIp9SBasZ0IoJSapZRarpQKKqU2ohXiOOvcY4GdSqnnlFIhpdSTwG7gbAARmQR0B25SSh1QSgWUUisO8TfVRtiSv/EopZL2AQqBlegfnAV0BfYCP0Yr1JOt4w5W+YXAdiAfyAZeAJ608noACnBYx5OB3ugbczz6QRtu5Y0GDlj126zr9rfyXkK/7WSj3zCWAD+v53ccbdXlBjoAH6Efjkj+lcA69Jvv28A9VnpfoNQ61wn8FtgEuGLaZwnQBW3RrAeuqkWG8egOobbP+FrOmxlpw2rp51rXtQHTLDk7W3kzgEXW91OAZeg3NgEGxJS7D92xtQNy0W93f2vE8+EEnognX7Vyz1gfLzAQ2BqRz8pXwH8tGY9E/8Gd2sB7VwisQT+j7YBPgL9YeXnojtxr/b7ngJdjzl0IbAEGof/gnHX8hoXAZuuZyLKO76z2bD9q5Q0BKoABtdRV1/1+Bbi5WloJMKKeNl4EzKinzMsxMg8Dyqrl/wbdydYrB9AK/TberbZntIHP0J3Ah2iLoxuwCthW7f6eBAy37tVPzL1XAL8G3qyW9l/gxjhlBViB1TcBPwHWVSvzNXCf9f02dD/4JLp//wI4PqbsPGCf9VkGTI3Ji7THdmAb8BjQPo5Mt1v3PbvRz8yhPGh13NxC4PKY45uBJ6qVeRu4NOZhuDMmbyDaHWKnmpKr5Q/wV9b3f0QavFqZjtYDlBWTdj7wQSN/15nAimpprwKr0X9kbivtVuDZmDI26+ZNjGmfi2LyZwFzknwPZlptWBTz6RKn3EpgivV9BpVK7kR0ZzQWsFV78EuB3jFpxwDfNlCuoUAA2AUcXUc5u1WuX0zaX6ip5MbHHD8L3NKQe2fdg6tijn8MbK5D5v0xxwuBOxr4excCf4w5vgZ4y/oeeba7xeQvAaYfwv1+j2ovSrHPXB3n1ankgMvRnU5763gC+m0+tsyVwMKGyAE8gNUhk5iS+wY4Jeb4Cmoqudst2SdWO/ewvffovumZamnzgZlxyt6OdmtH+rU8dD9yPvpF9VK0ZfUPK/+f1m/6qZUfsdgjz85wqw6H1ebFwDgrLwcYaeV1BJ4H3o4jU1t0vxQCzm5MOzWFX3lrzPejgHMtl1KRiBShLZTOtZT/Dt1I1U17ROQ0EVlsuQqL0I0VKdcd/eZUnaOs+nbEXP8faIuuVkSko4g8I9q9eRD9hlJdpkfRFuhDSqkKK62L9RsAUEqFrd/XNea8nTHfy9A3Odk8q5RqE/P5XkQuEe3OjbRDPnHaWSn1PvAweuzkB9ETFVqhrSIvsCymjres9HpRSq1EvyF/hh73qY0O6Ac+9rnYGqdc3HZs4L2r/sx1sc71isg/RA/kH0RbgW2kqns7niy1Ud+9TsazUIK2kmJphe5IDgkRORP4G3CaUmpPA69Ta77oCQ4noT0BidKF+p+Nq4BPlVIL4+Qdrve+QWVF5Dr02NzkSL+mlNoLTAFuQL+kngq8i36RAChHj7PPVdpV+Qy6rcZZ5y9XSu1V2hX6Blq5nm3llSilllp5u4DrgElxXK6XAQeBdkqpF+trmFiaQsmpmO9b0ZZcbIebrZS6M6ZM95jvR6Lf4vfEpCEibrQr8x6go1KqDfAG2rqIXKd3HFm2oi259jHXb6WUGlTPb/h/1u8oUEq1Ai6KuRYikgPcD8wFZkrlOOL3aMUaKSfW79tez/VqICITpOqMo+qfCY2o6yi0Ur4OyLPab03sb4pFKfWgUmoE2rLuC9yEviflwKCYtmytlGrwH6dSyge8adVbG7uBINoVFaF7LWXjUee9i1Pfkej7BnAj0A8YY517nJUee37s850OrEW7vAAQkV5oV+1Xh1KZ6LHsR4HTlVKrY7K+Ahwi0icmbYh1/frkmIi2YLaIyE60m3OqiMSb/FIfO6j/2bgKOFJE4inVw/XerwUGW31ShMFU3j9E5HLgFuBHSqkq45xKqQ+VUqOUUu3Q47D90RYoaG9W9bapq60UtfQ9MedV100D0B64A3XUG5emniH0JHC6iJwiInYR8YjIxNgBXeAiERkoIl7gDuB5VXPmjQt983YDQRE5DZgUkz8XuExEfiQiNhHpKiL9lVI7gHeAe0WklZXXW0SOr0fuXPSbzwER6Yru5GN5AFiqlLoCeB2YY6U/C0y25HCi/3AqgE/ra6jqKD0BIKeOz8eNqC4b/fDsBj2JB23J1UBERonIGEv+UvQEhbBllT4K3CciR1hlu4rIKTHnKql/qncF+n7Gxbr3L6JfHrwi0h/9ZtlQ6rt3ANeKSDfr5eQPwIKYc8uBIivvT424bqqYj/4bmyB6csgdwItKqbiWnIi4rMkWAjitv0mblXeiVd9UpdSS2POUUqXo+3KHiGSLyDj02/0TDZDjn+iX0KHWZw767+YU67qRaeQ9GvB7nwV+J3qiSFf0i1t1itHWxnEicme1vMP13i9Eu/p+KXoCWaTd3gcQkQvRL4gnK6W+qX6yiAwTEafl1bkH2KqUetvKfgloK3oJil1EzkG/iHxinXuOiORY/e8k9Ivnq1beGBHpZ+XlAQ+iXeDVlZkT3Xc0miZVckqpreg/hN+jO9it6E4n9rpPoAcmdwIe4Jdx6im20p8F9gMXYDWSlb8Ebc7eh56A8iGVFtUl6E51nXXu81R1l8bjdrQf+QD6jzFqHovIFPQf0NVW0g3AcBG5UOlZSRcBD6Etn9PRb8T+eq7XpCil1gH3ol2Fu4ACrAcwDq3Qymw/2p2zFz11GPQY6yZgseXSeRf99ouIdEd3LqurV1iNMPU/d9cBrdHPxBPA0zT8Aa/13sXwFPrl5xu0m/svVvr96MkAe4DFaHdsyqnLcldKrUVbLvOBH9Cd9TUx574pIr+POeUddGd+LFr5lFNptdyKbvc3YjwGb8acew26fX5A35OrrevXKYdSqkwptTPyQb+E+JRSu616u6OftYZ4PO5Au8m+RT9/zxPn2VBKFaEnIJ0mIrFT0g/Le2/1QWei+8Mi9JjrmTF901/Q42ZfxNz7yMs76El0e9B9eGcgOjtbKbUPOANtoR9AW4NTYlzdv0Lf2yJ0X3JljCu5F7qti9HepQr02F917NQzK7s2xBrUSwkishA9AP2vlAlhSAoichHalfm7espNQlv4/a0/jobUfRfQSSl1aeKSGtINEfkjsFsp9Y9DOPdq9KSN+rwzhgxF9DKlRcBcpVRda0DjkvIFjYaWgVLqyfoUnMVC4H/AWhH5TbwCItJfRAaLZjR61tZLyZPWkE4opf7SUAUnIp1FZJzl3uqHHhIwz0YLRUTOQ1v5u9CevEZz2O5KYpniF8XJelIpdVVzy3O4YLlHLqynWC7aHdYF/XDfi14TlFaISG27tpzWyDFTQ8NxoWdI90S7v56h7h1emgRz75sHpdSzHKJyi5BSd6XBYDAYDE2JcVcaDAaDocWSVu7K9u3bqx49eqRaDIPBYDA0I8uWLdujlGrQxhKNJa2UXI8ePVi6dGmqxTAYDAZDMyIi39Vf6tAw7kqDwWAwtFiMkjMY0hwzOcxgOHSMkjMY0pjP/nUjpTPr26DHYDDURlqNycUjEAiwbds2fL4aMR4NhlrxeDx069YNp9OZalES4pht/wKBgK8Upyc71eIYDBlH2iu5bdu2kZubS48ePai6gbbBEB+lFHv37mXbtm307Nkz1eIkhF/ZcUmIvbu20umo/imRYfe+/QSK99DlqD71F24i9pf6cdmFbE9mv7QYmp+0d1f6fD7y8vKMgjM0GBEhLy+vRVj/ZXgAKD3QoG0+m4TNs8+my2MjIYVjg5/c+RPKZ6VGyRsym7RXcoBRcIZG01KeGZ9k6f9LilImw4jglwCo4h0pk+En9s9pH96TUkVryEwyQskZDIcrPtGWXKC0KGUyFKHHAkv276mnZDPgr23LSIMhPkbJNQAR4cYbb4we33PPPcycOTN1AtXDwoUL+fTTRsdprcKpp55KmzZt+MlPfpIkqQyHgt+mlVywbH/KZPApNwDlJalzmUbxNTowtOEwxyi5BuB2u3nxxRfZsye5b7JKKcLhQ4oDWCfJUHI33XQTTzzxRP0FDU1Khc0LQKg8dZ17GVrJVZSmXsGEU6jsDZmJUXINwOFw8LOf/Yz77ruvRt7u3buZOnUqo0aNYtSoUXzyiQ64PXPmTO65555oufz8fAoLCyksLKRfv35ccskl5Ofns3XrVm666Sby8/MpKChgwYIFgFZUEydO5JxzzqF///5ceOGFcRcFP/jggwwcOJDBgwczffp0CgsLmTNnDvfddx9Dhw7l448/rlPGiy++mGOOOYY+ffrw6KOPRuv90Y9+RG5ubp3t8txzz5Gfn8+QIUM47jgdXNrn83HZZZdRUFDAsGHD+OCDDwCYN28eZ555JieffDI9evTg4Ycf5v/+7/8YNmwYY8eOZd8+bSU8+uijjBo1iiFDhjB16lTKyspqXHfs2LGsXbs2ejxx4sQWux1c0K7H5FQKlVw5LgD8KRwXjOArTgNr0pBRpP0Sglhuf20t674/mNQ6B3ZpxZ9OH1RvuWuvvZbBgwfz29/+tkr6r371K379618zfvx4tmzZwimnnML69evrrOvrr7/m8ccfZ+zYsbzwwgusXLmSL7/8kj179jBq1KiowlixYgVr166lS5cujBs3jk8++YTx48dXqevOO+/k22+/xe12U1RURJs2bbjqqqvIycnhN7/RMUkvuOCCWmVctWoVixcvprS0lGHDhjF58mS6dOnSoLa74447ePvtt+natStFRUUAzJ49GxFh9erVbNiwgUmTJvHVV18BsGbNGlasWIHP5+Poo4/mrrvuYsWKFfz617/mP//5D9dffz1nn302V155JQB//OMfmTt3Lr/4xS+qXHfatGk8++yz3H777ezYsYMdO3YwcuTIBsmcsVQk97lvDOXKGhdMoaKNUFGyD2+qhTBkFMaSayCtWrXikksu4cEHH6yS/u6773LdddcxdOhQzjjjDA4ePEhJSd2D40cddRRjx44FYNGiRZx//vnY7XY6duzI8ccfzxdffAHA6NGj6datGzabjaFDh1JYWFijrsGDB3PhhRfy5JNP4nDEf2epS8YpU6aQlZVF+/btOeGEE1iyZEmD22TcuHHMmDGDRx99lFAoFP09F12kY9H279+fo446KqrkTjjhBHJzc+nQoQOtW7fm9NNPB6CgoCD629asWcOECRMoKChg/vz5VSy2COeddx7PP/88AM8++yznnHNOg2XONATtznb4U6fkIu7KUHnqZIiQDi5TQ2aRUZZcQyyupuT6669n+PDhXHbZZdG0cDjM4sWL8Xg8Vco6HI4q422xa7aysxu2c4Xb7Y5+t9vtBIPBGmVef/11PvroI1577TX++te/snr16hplapMRak61b8zU+zlz5vD555/z+uuvM2LECJYtW1Zn+djfY7PZosc2my3622bMmMHLL7/MkCFDmDdvHgsXLqxRT9euXcnLy2PVqlUsWLCAOXPmNFjmTEPC+uXBHihNmQwBq5tQKZr0oZQi8lT6y4tTIoMhczGWXCNo164d5513HnPnzo2mTZo0iYceeih6vHLlSkCHDVq+fDkAy5cv59tvv41b54QJE1iwYAGhUIjdu3fz0UcfMXr06AbJEw6H2bp1KyeccAJ33XUXBw4coKSkhNzcXIqLKzuD2mQEeOWVV/D5fOzdu5eFCxcyatSoBl0bYPPmzYwZM4Y77riDDh06sHXrViZMmMD8+fMB+Oqrr9iyZQv9+vVrcJ3FxcV07tyZQCAQrSce06ZNY9asWRw4cIDBgwc3uP5Mw4al5II1xyabC0ekl/ClRsGEFZQrPS4YNErO0EiMkmskN954Y5VZlg8++CBLly5l8ODBDBw4MGpVTJ06lX379jFo0CAefvhh+vbtG7e+s846i8GDBzNkyBBOPPFEZs2aRadOnRokSygU4qKLLopO8vjlL39JmzZtOP3003nppZeiE09qkxG0u/OEE05g7Nix3HrrrdHxuAkTJnDuuefy3nvv0a1bN95++20AbrvtNl599VVAz8AsKCggPz+fY489liFDhnDNNdcQDocpKChg2rRpzJs3r4oFVx9//vOfGTNmDOPGjaN//8odLl599VVuu+226PE555zDM888w3nnndfgujMRm9JKzhlKnSXnFO2RkBSNC4bCCr9lTYZSpGgNmYukUxiPkSNHquqz5NavX8+AAQNSJFHLZubMmVUmqLQ0WsKzs+4vxzAwuI7N9t70vnV5SmT4eOZEJrCC9W0mMuD6V5r9+uX+EIG/dqOVlPFVz0voe+lD9Z9kyChEZJlSqklmjxlLzmBIYyLuSrdKnbvSriIu09RYkyGlsFkTcJTZ8cTQSDJq4okhuaTzri0GTcRd6QmXp04GS9E6UjQuGAopXJaSE3/q3LaGzMRYcgZDGhNRcl5SqOQsGVwpGheMteRsKZxlashMjJIzGNKYSOfupQJlLSdoTlSMgnGFU2PJBcNh7JYMqXKZGjIXo+QMhjQmYkUBVJQ1/8zCsAJHZFwwnJr4fOEw2NAT5FLlMjVkLkbJGQxpTMSKAigraf4p/KGwwm4puawUTX4JhkLYRCs5Z8goOUPjMEqugbz88suICBs2bKi1TGFhIfn5+U0qx8qVK3njjTcSquPyyy/niCOOaHJZDYljVyHCSu/34Stp/h1HwkrhiLgrCULQ3+wyhEKVO/2kymVqyFyMkmsgTz/9NOPHj+fpp5+Omx9vy63GEtn/sS6SoeRmzJjBW2+9lVAdhuZBCFMsektiX1lqLLlYazIVQUtjlZw7hbNMDZmJUXINoKSkhEWLFjF37lyeeeaZaPrChQuZMGECZ5xxBgMHDgS0srvwwgsZMGAA55xzTjRUzHvvvcewYcMoKCjg8ssvp6KiAtDbf918880MHz6c5557rsp1q4ey8fv93HbbbSxYsIChQ4eyYMECSktLufzyyxk9ejTDhg3jlVf0Yt158+YxZcoUJk6cSJ8+fbj99tuj9R533HG0a9euzt/84YcfMnToUIYOHcqwYcMoLi5GKVVrWKDjjz+eKVOm0KtXL2655Rbmz5/P6NGjKSgoYPPmzQC89tprjBkzhmHDhnHSSSexa9euGtedPn06r7/+evR4xowZ0c2YD0fshCiVHAD8Zamy5CpfvlKxTi0c1NevUA48ygdptIGFIf3JrHVyb94CO2tuQJwQnQrgtDvrLPLKK69w6qmn0rdvX/Ly8li2bBkjRowA9L6Ua9asoWfPnhQWFrJx40bmzp3LuHHjuPzyy/n73//Oddddx4wZM3jvvffo27cvl1xyCY888gjXX389AHl5edF9LmOpHsrG5XJxxx13sHTpUh5++GEAfv/733PiiSfy73//m6KiIkaPHs1JJ50EwJIlS1izZg1er5dRo0YxefLkBoekueeee5g9ezbjxo2jpKQEj8fDiy++WGtYoC+//JL169fTrl07evXqxRVXXMGSJUt44IEHeOihh7j//vsZP348ixcvRkT417/+xaxZs7j33nurXDcSRmfy5Mn4/X7ee+89HnnkkQbJ3BKxEabYlgOhXfhTMfEkDHbCBHDgJIiv9CBZbZpbBm3JleAlj4MQKAeXCbhjaBjGkmsATz/9NNOnTwe0pRHrshw9ejQ9e/aMHnfv3p1x48YBcNFFF7Fo0SI2btxIz549o/tXXnrppXz00UfRc6ZNmxb3uvFC2VTnnXfe4c4772To0KFMnDgRn8/Hli1bADj55JPJy8sjKyuLs88+m0WLFjX4N48bN44bbriBBx98kKKiIhwOR51hgUaNGkXnzp1xu9307t2bSZMmAVXD6Gzbto1TTjmFgoIC7r777rhhdE477TQ++OADKioqePPNNznuuOPIyspqsNwtDTshKuzakkvFvo0hpXBIiBLRkTNSMS4YGQoos9y2qXCZGjKXzLLk6rG4moJ9+/bx/vvvs3r1akSEUCiEiHD33XcDNcPmHEromtpC7zQklI1SihdeeKHGTv+ff/55QmF0brnlFiZPnswbb7zBuHHjohs010ZDwuj84he/4IYbbuCMM85g4cKFcXdc8Xg8TJw4kbfffpsFCxZEXy4OV+wqjN+ZC34IpkLJhRV2wpTbsmkbOkBFCsYFI+sDy2w5EMZSckc0uxyGzKTJLTkROVVENorIJhG5pamvl2yef/55Lr74Yr777jsKCwvZunUrPXv25OOPP45bfsuWLXz22WcAPPXUU4wfP55+/fpRWFjIpk2bAHjiiSc4/vjj6712vFA21cPonHLKKTz00ENENtpesWJFNO9///sf+/bto7y8nJdffjlqYTaEzZs3U1BQwM0338yoUaPYsGFDQmGBAA4cOEDXrl0BePzxx2stN23aNB577DE+/vhjTj311AbX3xKxEybgbAVAOAVKTilLydlzAfCnYvKLNfGkwqEt2kAK3LaGzKVJlZyI2IHZwGnAQOB8ERnYlNdMNk8//TRnnXVWlbSpU6fWOsuyX79+zJ49mwEDBrB//36uvvpqPB4Pjz32GOeeey4FBQXYbDauuuqqeq8dL5TNCSecwLp166ITT2699VYCgQCDBw9m0KBB3HrrrdHzR48ezdSpUxk8eDBTp06Njsedf/75HHPMMWzcuJFu3bpF4+PNmTMnGobn/vvvJz8/n8GDB+N0OjnttNMSCgsEeq/Mc889lxEjRtC+ffto+tKlS7niiiuix5MmTeLDDz/kpJNOwuVyNbj+loiNMGGXVjCkYN/GkNLr5CocWoZACuK5KctVH5HBl4IJOIbMpUlD7YjIMcBMpdQp1vHvAJRSf4tX3oTaSR7z5s2rMkHlcKQlPDsVf8pjZdcLGLL9ab7sMo0xP5/drNfftr+M3Pt7U9hmLEMOvM/GkTPp95NfN6sMy1evYfgL4/is9Y855sAb7J4ynw7DftKsMhialkwOtdMV2BpzvM1KiyIiPxORpSKydPfu3U0sjsGQOURchcrmoEyysAVSMH3fml0ZcrXWx6lwmVruyrBby5AKa9KQuaR8dqVS6p9KqZFKqZEdOnRItTgthhkzZhzWVlxLIBxWOCSM2OyUSxYSaP7dPsKWosWdQ1gJype6xeDKrccmUzEuaMhcmlrJbQe6xxx3s9IaRTpFLzdkBi3hmQlGdvqw2fFJFo4UhJmJjMk5nC5K8RCuSIU1qcfkxKOVXMhYcoZG0NRK7gugj4j0FBEXMB14tTEVeDwe9u7d2yI6LUPzoJRi7969eDyeVIuSEOHIVnFix2/LwpGCzYnDYb13pdPppBQPkgqXqaXsHd42QGrWCxoylyZdJ6eUCorIdcDbgB34t1Kq5grgOujWrRvbtm3DjNcZGoPH46Fbt26pFiMhgqGA/mJzELBn4wmlYu9KHQHAbndQSha2FMzwjKyTc3my8St7SqxJQ+bS5IvBlVJvAIe8o7DT6ayyo4jBcLgQ2bMRm52AI4vWgZp7fTa9DBGXqQOfeHCmIGhp2FpC4HG7KMNjdjwxNIqUTzwxGAzxiezZKDYHIUc2HtX8O/BHo5Hb7FTYvCmJzB2ZXZnldlFCFioF1qQhczFKzmBIU4KR2G02O2FnapRcOKhdpmJz4Ldl4UxBZO6Isne7nJQpN3aj5AyNwCg5gyFNUSEdx01sDsKuHLwpCDMTUTDYHfjt3pQELY3seGK3OygXL7YUWJOGzMUoOYMhTQlZlpzY7IgzG6eECPh9zStE2LLkxE7AkZ2SoKURl6nYrFmmKVhKYchcjJIzGNKUyIQLZXOAW+/bWF7cvPs2hi1rEpuTkMOLJwVKLrKEwGZ34LenZimFIXMxSs5gSFMirkKbzY7do8MxlZU2s5KzxuSw2wk7c8jCp/f6akaU1Q72iMvUKDlDIzBKzmBIUyoVjAN7lt7tw9fMSk7FzPBUkWjczewujOx4YnfYCdq9KXGZGjIXo+QMhjQl4q602ew4PNpd2dxBS8PWgnSx2yES8qeZF2OrqLvSSShFs0wNmYtRcgZDmhKK2fHE6dWWXLMHDA1XLgYXa1ww0MzbakUtObsD5czGjR8i+3oaDPVglJzBkKZEJ1w4HLiyUhO0NDqz0e7E5tbjgr6SZnaZhirH5MIuLUNzu0wNmYtRcgZDmhIKVk488WTrWGqh8uZ2V0ZkcOCwxgWb3WUateTsiCtHJ5r9Kw0NxCg5gyFNiXTuNocTT44VZiZF42HY7Tgsa9Jf2swbRUfawe5A3FrJBU0kAkMDMUrOYEhTIrMrbTY73hxtyalmVnIhSwaH3YHLaym5ZrYmY/fPtFkTcJp7lqkhczFKzmBIU0LRMTknWVnZhJQ0+w78kbV6docTp1cr2mCKxgWxOaKzTH3NbU0aMhaj5AyGNEVZsyvtNgdis1FKFtLMmxOHApWTPrKyLZdpM7sKI2v1EFt0XLDZXaaGjMUoOYMhTYlacnY7AD7xYGtuS87aP9Ph8uCxljE0d9DSWHel26vH5PxmTM7QQIySMxjSFBUZk3N6ACiXFMRzC+oNoe1ONzlZbsqVC9Xslpyl5MQeXS8YbOYZnobMxSg5gyFNUSFtRdkcLgAqbF4czRzPLeoydbrwuh2U4Gn2NWo2qx1wuMmyllIEfWYJgaFhOFItgMFgiI+yXIV2p1ZyfnsWzmbenDjWXel02tmrPEgzu0wlbCk5u4usbN0WzT3L1JC5GEvOYEhXLAvG7tLuyoDdi7u5g5ZaMjicHmw2oVyysAWaVwYJVugvDjfZWS7KlJtwhRmTMzQMo+QMhjQl4q60W+7KUCqClloKJmJN6nHBZraiQpWWXLbLQSluaOZZpobMxSg5gyFNibgrHU43QGp24I9xFYJ2mTqCzSuDhPwEcIAIXpedUrKafZapIXMxSs5gSFNCAW1FZXm0uzLs9JKlfM0qgwSs6zmzAPDbvLhCzWtFSaiCgGglKyL48DS7y9SQuRglZzCkKSqgLSZ3lrXzvisXr1QQDjZjmJmIMnFoJRd0eHE38+QXe7iCgLijxz5bVvMvpTBkLEbJGQxpivjLCCob4rA6eCvUTWlz7vYRKMePA+x6InbA4cXdzC5TV6iMCntW9DgVSykMmYtRcgZDuhIsxyduEAHAZgUtbc54brZgGRXiiR6HndlkqXJQqtlkcIbKCdgqlZzfloWruWeZGjIWo+QMhjTFFiyngkoFY/foLa3Km3EHflewBJ/NGz0OO7OxE47OumwWGcJlhB2VSi4lSykMGYtRcgZDmuIKFFMWo2DsKdicOCtYRKm9TYxQVtDSZprdGAorWoWL8bvaRtOCDi/ucPNOwDFkLgkpORGZKSLbRWSl9flxTN7vRGSTiGwUkVMSF9VgOLzwBIsosbeOHjuztIKpKGu+hdBZwYNUuCpliETmVs20GLvYFyBPDhDMyoumBR3ZZKmyZnWZGjKXZFhy9ymlhlqfNwBEZCAwHRgEnAr8XUTsSbiWwXDY4A0UUeFsEz12ZWllE2imoKXhsKJV+AAhd7toWiRoaXMp2v2lftpSjPJWKrlQClymhsylqdyVU4BnlFIVSqlvgU3A6Ca6lsHQIskJHyTgrnTTua14bsFmigJQVOanHQdR3lglpy255orMvXPXLlwSwtO6YzRNOS0XrlkQbmgAyVBy14nIKhH5t4hE/iK7Altjymyz0gwGQwMIBYO0UQeqWDCeHCtoaTNF5t61Yys54kPa9YymOaKWXPNYkwe//wqAnE69omlhZ/OOCxoym3qVnIi8KyJr4nymAI8AvYGhwA7g3sYKICI/E5GlIrJ09+7djT3dYGiR7Nq2GZeEoG2lgomEmVHN1Lnv/nY1AG26D4imuayF6f6y5pGhYud6S4ZB0TSx1gs217igIbOpN9SOUuqkhlQkIo8C/7UOtwPdY7K7WWnx6v8n8E+AkSNHmpFkgwH44ds1dAFade0fTcvOsZRcM4WZ8X37GQAd+o6JpjktSy7QTPHcXDuWUi4esjr0iaaJtV4wUF6Mq1mkMGQyic6u7BxzeBawxvr+KjBdRNwi0hPoAyxJ5FoGw+FE+eZPCSmhy4BKBWN3OChXLqQZduAPhRXddr7HFldvnK0qx8M82c2n5HbuL2FI2Wd832YU2J3RdHFrd2WgGWeZGjKXRMfkZonIahFZBZwA/BpAKbUWeBZYB7wFXKuUCiV4LYPhsKHtzk/Y7OxDqzZ5VdLLJAtboOkVzMfvvMhAtYni/tOqpHu8WsGEfE2/GPvzl2fTWfaRc+zlVdId1uSXChMd3NAAEooMrpS6uI68vwJ/TaR+g+FwZNPaZfQPrueL3tfVyPOJB3ugaS25dWtWMGjxDey0d6L/5KoyZHm1JRdqYmvy/bdf5qTCeynMGUyPEWdWyXNYY3KBcqPkDPWTkJIzGAzJp+T1P1Cm3PQ79doaeT7x4miiKADlFUEWvfR3xq7/f4TEQej8Z7BbCiVCtjcLv7KjKppGyR0sPsDn8+9g4o7H2OPsRKefPgO2qg6nyKL4oLHkDA3AKDmDIY34/IUHGFP2GZ8dfT3HdOhSI7/CloUzyTvwh8KKD//3Ckcs/gsnq6/Z7BlA64v+Q6fufWuUzXbbKccNSbYmy8rLWPriAwz4eg4nU8S6difS6/K5eHLb1SjrtNyVoSZStIaWhVFyBkOasPaztxi26nbWZA1n1PQ/xC3jt3vJCSdnjZpSiqWfvQfv/5UTg8vZY8vjm2PvofePLgdb/A2KXHYb+/GAPzmKtsLv5/NX/kGvtQ9yHD+w0V3AwZP/xcCRJ9d6TmRcMFxhNmk21M9hoeSUUhQVFVG673t8FRU4bQpPTms8rTvSKicHsUKZGAypYvs3G+j89pXssnWk+8+fxeGMPzk+aPfiDuxM+HobvvyM4jduZ1TFZxwglw35v6HfGTfQ3pVd53kigk/cSCCxmHKhUJhP35xPl2WzOE5t4VtHbzZOnEW/cWdGQwvVhsfjwa/shJtpKYUhs2mRSm7H1s1s/eJ1wtuW0e7AWjoHt9FWymkbp2yJ8rDP1paDjvaUuTvgz+oIuR2xt+6Cp10Xclu1xW63I2JDiY1wKEQ4FCQUCkS/q1CQUChYeRwORv9XoRDhcAhCQcLhIIRDqHAImwohhBH037TC+sMWm/4W/TsXBAERBFBJVshCGixNVHUe1n5atQ16G3xezYoacK0G1NOQa9WS2H3zfHIIwQULaN22Q631JRq0dOeu7yl86kbGHniDYrysOPpa8s/+Lf29bRpch1882BJwma745G0c79/OhNBattu7sP6YB+h/4sVILdZjdbJdDspxE06SNRmPPT/spHDl+/i3fYmj6Btal31HbqgIryrFq3wEsRPAgV/cFNtbU+poi8/VjoAnD7LaYve2xuFti8PbGpxZ2Gx2bDYbNpuNsEL3DWEF4SBKhSAcRqkQKhRCqTCEQ6BCqHAYVCjab2DlKaW/K1X5bFZ5rKr0E5XfFXHSE+hT/O62HHfmlYd8fnPQopTct+u+gOd/Ss/wd3QGDuJlq7sP69pNRlp1xpbbEafLQ0AJ4fKDSPleKN2No/QHvBW76Vq2jrySj/HsDqT6pxgOM8qVi80nzyW/z+A6y4UcVtDSRuLzB3n/xUcZtf5vjKSYz7tezKDzZjKsTftG1+W3eXCEGi/D1u938M1T13N8yVvspQ1rhs1k0ORr6epo3JLubLdWciqJSi4QDLHq8/coW/4c3fd/Ro/wViIts0vy2OPqzvfeIwm7WxF2ZmvFEwog/lJcFfvwBvbTrmQ7bYuL8HL4bBy9WvUCo+Saj7wuvdjibMvn3c6i44jJHNlvBIPsjQx+oBS+kv3s3/kdxXu2UlJSjAqF9RsUYWw2O2JzYLPbsdkdMR99bLc7Y77rdIfTpf+3O7BZ+Uqsj76o/jesQIEiHD1WgFJh638VlTGRt6+apN5dW/3nxJMonlu5ekq8ZpF4tVW/Xv1FapWhQedVS61ejcOTTb4VL64uws5ssvA16hlYs34dB1/4FT8OLuE7T19CZ7/AmH6jGnRuPAK2LDyNmOEZDis+eO0/5C//E+M4wMqjZjBg+p/J99b/e+OR43awQ7khkJiSCwZDrF72CUVLn6Hv7ncYwW78ysFX3mEs6XwGbftNoHv+sXTMbk3H+qurrNfv42DRXooP7KWiuAiCZYTDYUIhpa00FGJzIJZ1R6RPsUk0XWw2q5+xIVLZ52Cza6vQbscmNsRmwybVn7kYm66KCyJeek23QnUPSV10taW/Ckl/CRtBqzZ55P/uw8QqEcGT247Oue3o3GdYcgQzGJKEcmXjIAxBHziz6izr8wdY+NRdjPv2YZwSYtPQWzj69JvAntiffdCehTO4r0Flt23bxrdPXsePfB+wxdWT/ec8zdB+xyR0fY/TRjlu3Ieg5ALBEGtXLWXf58/Qa9dbDON7gsrG1zkjKRp4I0cfP438nJozOhuDw+Wh3RFdaXeE2ZM+HWhRSs5gaPFYQUv9ZcW4Wteu5Nat+oLQK7/k1NA6vs4dSaeL5nB0pz61lm8MIYcHp7/uyNzhsOKjl/9F/pd/ZiwlrOl7DYOmzUQc7oSvLyJU2Dxk1TMu6Kvws3j+7bTe/iF72gzBEThIz4NfMJQdhJXwtXcoa/r/jKMnXsiA1kckLJchPTFKzmDIICL7NvpKD+CK0zH7fOV8/uSfGLt1LhXiYcPYu+h/ys+T6t4OO7y4w7Urua1bC9k+/1om+hbxrbsP6ryXyD96RNKuDxAQD/Zg7TKsWb0c9fI1TAytpxwPrr1r8eFhW/Yg1va9kp7jp9Evr1tSZTKkJ0bJGQwZhM3agd9XepDqI1rrP38L99u/5fjwd6xqcyI9L3mY/nnJd5mFnNlkU1ZjXDAQDPLpc//H0A33cwR+Vg34NQXn/gGJ2Vw5WZTZc8kKflsj/UBxKUueup0J3/+bgDjZcMw99J90BShFtgj9zHKhww6j5AyGDMJp7R1ZXlIUTdv+zQa2v3wrow++w07pwPrj/8HgE6Y3mQy+rE548EPZPsjOQynF8o/+i+ejv3B8aAMbs4bQbtrfGdwzv8lkOOjqSJuyJVFF6w+EWPzWE3Rddjcns421bSfS46KH6N/+SH2CUW6HLUbJGQwZRLv2nQDYt6OQ0vI3KFn8GMMPvEsHbCzuNoOC6XfQKbd1k8oQaKVDRf7wzUo2f7OJ7NX/YURwDXukLatH/Y2CH1/d5EollNsFV5mf3Vs2sO6z1+m4cT7HqW/YYe/CdyfNZdAx5zTp9Q2Zg1FyBkMG0bnfKIpVFsOW3ABAqfKwtOO59JryO8Z27VnP2cmhW79RhFYLR7xwNkcAO+UIlg+4iYIpv6a9p+4dU5KFs/sI2AUdHhvL8cBWx5GsH/E3+k+6sknco4bMxSg5gyGDyPFmsXT8AwQ3voWzx7H0P/48xjax5VadgvzBfLT5bjw/rKJtwSn0GXManRq4W0mymHTqGbxX9Ada+XfRZdQZdM8/zrgkDXGRxiz8a2pGjhypli5dmmoxDAaDwdCMiMgypdTIpqg70cjgBoPBYDCkLUbJGQwGg6HFklbuShHZDXyXhKraA3uSUE9zYGRtOjJJ3kySFTJL3kySFTJL3mTJepRSqvbwGwmQVkouWYjI0qby7yYbI2vTkUnyZpKskFnyZpKskFnyZoKsxl1pMBgMhhaLUXIGg8FgaLG0VCX3z1QL0AiMrE1HJsmbSbJCZsmbSbJCZsmb9rK2yDE5g8FgMBig5VpyBoPBYDAYJWcwGAyGlkuLUnIicqqIbBSRTSJyS6rliUVEuovIByKyTkTWisivrPSZIrJdRFZanx+nWtYIIlIoIqstuZZaae1E5H8i8rX1f9s0kLNfTPutFJGDInJ9OrWtiPxbRH4QkTUxaXHbUjQPWs/xKhEZngay3i0iGyx5XhKRNlZ6DxEpj2njOc0pax3y1nrvReR3VttuFJFT0kDWBTFyForISis9Hdq2tn4rLZ/duCilWsQHsAObgV6AC/gSGJhquWLk6wwMt77nAl8BA4GZwG9SLV8tMhcC7aulzQJusb7fAtyVajnjPAc7gaPSqW2B44DhwJr62hL4MfAmIMBY4PM0kHUS4LC+3xUja4/YcmnUtnHvvfU39yXgBnpafYY9lbJWy78XuC2N2ra2fistn914n5ZkyY0GNimlvlFK+YFngCkplimKUmqHUmq59b0YWA8kP2xz0zMFeNz6/jhwZupEicuPgM1KqWTsnJM0lFIfAfuqJdfWllOA/yjNYqCNiHRuFkGJL6tS6h2lVNA6XAx0ay556qOWtq2NKcAzSqkKpdS3wCZ039Es1CWriAhwHvB0c8lTH3X0W2n57MajJSm5rsDWmONtpKkSEZEewDDgcyvpOsu0/3c6uP9iUMA7IrJMRH5mpXVUSu2wvu8EOqZGtFqZTtVOIl3bFmpvy3R/li9Hv61H6CkiK0TkQxGZkCqh4hDv3qdz204Adimlvo5JS5u2rdZvZcyz25KUXEYgIjnAC8D1SqmDwCNAb2AosAPtrkgXxiulhgOnAdeKyHGxmUr7J9JmDYqIuIAzgOespHRu2yqkW1vWhoj8AQgC862kHcCRSqlhwA3AUyLSKlXyxZAx9z6G86n6gpY2bRun34qS7s9uS1Jy24HuMcfdrLS0QUSc6AdlvlLqRQCl1C6lVEgpFQYepRldJ/WhlNpu/f8D8BJatl0R94P1/w+pk7AGpwHLlVK7IL3b1qK2tkzLZ1lEZgA/AS60OjYst99e6/sy9BhX35QJaVHHvU/XtnUAZwMLImnp0rbx+i0y6NltSUruC6CPiPS03uinA6+mWKYolr99LrBeKfV/Memx/uqzgDXVz00FIpItIrmR7+iJB2vQbXqpVexS4JXUSBiXKm/C6dq2MdTWlq8Cl1gz1cYCB2JcQylBRE4FfgucoZQqi0nvICJ263svoA/wTWqkrKSOe/8qMF1E3CLSEy3vkuaWLw4nARuUUtsiCenQtrX1W2TQs5vSWS/J/qBn9nyFfuP5Q6rlqSbbeLRJvwpYaX1+DDwBrLbSXwU6p1pWS95e6FloXwJrI+0J5AHvAV8D7wLtUi2rJVc2sBdoHZOWNm2LVr47gAB6nOKntbUlembabOs5Xg2MTANZN6HHWiLP7hyr7FTr+VgJLAdOT5O2rfXeA3+w2nYjcFqqZbXS5wFXVSubDm1bW7+Vls9uvI/Z1stgMBgMLZaW5K40GAwGg6EKRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLEbJGQwGg6HFYpScwWAwGFosRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLEbJGQwGg6HFkrZKTkR6iIiy4iwZmhARmSEii5rpWlki8oaI7BeR3zbHNatdv1BETmqG6ywUkStqyTPPdhNR1/019z7zEJFpInJARD4VkS6HUkfaKjnDoSEiM0UkICIlMZ9mVyZ1cBIwGOiulJoVSbQ6oB4pkyqNsO7hzEaUv0BEvhORUhF5WUTa1VH2nyKyUUTCVhDU2LxLRWSZiBwUkW0iMiu2MxaRdiLyknWd70TkgsbKISJ9RMQnIk824vctFJGJDS2fyTTxvR9q3d8y6/+hMXk3icgaESkWkW9F5KZq5x4rIkus/FUiMr5afgcRecpSSPtFZH5M3jwR8VfrkyJx8iJKPzbv1si5SqkFQHvr8LyGtkssTabkzJtKSlmglMqJ+cyq/5Rmox1QqJQqSbUgiWAFhUz5S6KIDAL+AVwMdATKgL/XccqXwDXo+GTV8QLXozuVMcCPgN/E5M8G/NZ1LgQesa7fGDlmowMcZyyZeO9FB5J+BXgSaAs8DrxipYOOA3eJlXcqcJ2ITLfObQe8BtwNtAFmAa+JSNuYS7wI7ASOBI4A7qkmwqxqfVKoWn6bmLw/x2YopQLoOKF59bdKTZJ6o6y38ZtFZBVQKiIOERlrmZpFIvJl7BuZ9Yb2N+sN4aCIvFLbm4iIXCYi6603iW9E5OfV8qeIyEqrns2iIxkjIq1FZK6I7BCR7SLyl8hbRB2/o7eIvC8ie0Vkj4jMF5E2MXn7RGS4ddxFRHZHfpeInCEia63fu1BEBlRrn99Yb0IHRGSBiHga39KNR0RusdqlWETWichZtZQTEblPRH6w2nK1iORbeW4RuUdEtojILhGZIyJZjRTFAYTrkTVPRF6zrv+Fdc8WxeQrEblKRL622nm2iIiVV+u9i2GU1Qb7ReSxyD0QkbYi8l/rfu63vneLue5CEfmriHyC7lB61fNbjxKRT6w2f0dE2lfLv9Bqyz0i8od66qqNC4HXlFIfWS8OtwJnixXVvTpKqdlKqfcAX5y8R5RSHyul/Eqp7cB8YBxEo8NPBW5VSpUopRahg5Fe3FA5rE6zCB1s85AQ7e5+3Lo/60XktyKyrZayA0RbJefHJB+u934i+m/vfqVUhVLqQbRiOxFAKTVLKbVcKRVUSm1EK8Rx1rnHAjuVUs8ppUJKqSeB3cDZACIyCegO3KSUOqCUCiilVhzib6qNsCV/40lyFNlCdOTY7kAW0BUdrfnHaIV6snXcwSq/ENgO5KMjO78APGnl9UBHpHVYx5OB3ugbczz6QRtu5Y0GDlj126zr9rfyXkK/7WSj3zCWAD+v53ccbdXlBjoAH6Efjkj+lcA69Jvv28A9VnpfoNQ61wn8Fh1R2RXTPkuALmiLZj3VogFXi8hbVMdnfC3nzYy0YbX0c63r2oBplpydrbwZwCLr+ynAMvQbmwADYsrdh+7Y2gG56Le7vzXi+XCiIzbXkK9auWesjxcYiI5IvSgmXwH/tWQ8Ev0Hd2oD710hsAb9jLYDPgH+YuXloTtyr/X7ngNejjl3IbAFGIT+g3PW8RsWoqMj90X/LSwE7qz2bD9q5Q0BKoABtdRV1/1+Bbi5WloJMKKeNl4EzKinzMsxMg8Dyqrl/wbdydYrB9AK/TberbZntIHP0J3Ah2iLoxs6YvW2avf3JGC4da9+Yu69Avg18Ga1tP8CN8YpK8AKrL4J+AmwrlqZr4H7rO+3ofvBJ9H9+xfA8TFl5wH7rM8yYGpMXqQ9tqMjpT8GtI8j0+3Wfc9u9DNzKA9aHTe3ELg85vhm4IlqZd4GLo15GO6MyRuIdofYqabkavkD/JX1/R+RBq9WpqP1AGXFpJ0PfNDI33UmsKJa2qvo8O6rALeVdivwbEwZm3XzJsa0z0Ux+bOAOUm+BzOtNiyK+XSJU24lMMX6PoNKJXciujMaC9iqPfilQO+YtGOAbxso11AgAOwCjq6jnN0q1y8m7S/UVHLjY46fBW5pyL2z7sFVMcc/BjbXIfP+mOOFwB0N/L0LgT/GHF8DvGV9jzzb3WLylwDTD+F+v0e1F6XYZ66O8+pUcsDl6E6nvXU8Af02H1vmSmBhQ+QAHsDqkElMyX0DnBJzfAU1ldztluwTq5172N57dN/0TLW0+cDMOGVvR7u1I/1aHrofOR/9onop2rL6h5X/T+s3/dTKj1jskWdnuFWHw2rzYmCclZcDjLTyOgLPA2/Hkaktul8KAWc3pp2awq+8Neb7UcC5lkupSESK0BZK51rKf4dupOqmPSJymogstlyFRejGipTrjn5zqs5RVn07Yq7/D7RFVysi0lFEnhHt3jyIfkOpLtOjaAv0IaVUhZXWxfoNACilwtbv6xpz3s6Y72Xom5xsnlVKtYn5fC8il4h250baIZ847ayUeh94GD128oPoiQqt0FaRF1gWU8dbVnq9KKVWot+QP0OP+9RGB/QDH/tcbI1TLm47NvDeVX/muljnekXkH6IH8g+ircA2UtW9HU+W2qjvXifjWShBW0mxtEJ3JIeEiJwJ/A04TSm1p4HXqTVf9ASHk9CegETpQv3PxlXAp0qphXHyDtd736CyInIdemxucqRfU0rtBaYAN6BfUk8F3kW/SACUo8fZ5yrtqnwG3VbjrPOXK6X2Ku0KfQOtXM+28kqUUkutvF3AdcCkOC7Xy4CDQDul1Iv1NUwsTaHkVMz3rWhLLrbDzVZK3RlTpnvM9yPRb/F7YtIQETfalXkP0FEp1QZ4A21dRK7TO44sW9GWXPuY67dSSg2q5zf8P+t3FCilWgEXxVwLEckB7gfmAjOlchzxe7RijZQT6/dtr+d6NRCRCVJ1xlH1z4RG1HUUWilfB+RZ7bcm9jfFopR6UCk1Am1Z9wVuQt+TcmBQTFu2Vko1+I9TKeUD3rTqrY3dQBDtiorQvZay8ajz3sWp70j0fQO4EegHjLHOPc5Kjz0/9vlOB9aiXV4AiEgvtKv2q0OpTPRY9qPA6Uqp1TFZXwEOEekTkzbEun59ckxEWzBbRGQn2s05VUTiTX6pjx3U/2xcBRwpIvGU6uF679cCg60+KcJgKu8fInI5cAvwI6VUlXFOpdSHSqlRSql26HHY/mgLFLQ3q3rb1NVWilr6npjzquumAWgP3IE66o1LU88QehI4XUROERG7iHhEZGLsgC5wkYgMFBEvcAfwvKo588aFvnm7gaCInAZMismfC1wmIj8SEZuIdBWR/kqpHcA7wL0i0srK6y0ix9cjdy76zeeAiHRFd/KxPAAsVUpdAbwOzLHSnwUmW3I40X84FcCn9TVUdZSeAJBTx+fjRlSXjX54doOexIO25GogIqNEZIwlfyl6gkLYskofBe4TkSOssl1F5JSYc5XUP9W7An0/42Ld+xfRLw9eEemPfrNsKPXdO4BrRaSb9XLyB2BBzLnlQJGV96dGXDdVzEf/jU0QPTnkDuBFpVRcS05EXNZkCwGc1t+kzco70apvqlJqSex5SqlS9H25Q0SyRWQc+u3+iQbI8U/0S+hQ6zMH/XdzinXdyDTyHg34vc8CvxM9UaQr+sWtOsVoa+M4EbmzWt7heu8Xol19vxQ9gSzSbu8DiMiF6BfEk5VS31Q/WUSGiYjT8urcA2xVSr1tZb8EtBW9BMUuIuegX0Q+sc49R0RyrP53EvrF81Urb4yI9LPy8oAH0S7w6srMie47Gk2TKjml1Fb0H8Lv0R3sVnSnE3vdJ9ADkzsBD/DLOPUUW+nPAvuBC7AaycpfgjZn70NPQPmQSovqEnSnus4693mqukvjcTvaj3wA/ccYNY9FZAr6D+hqK+kGYLiIXKj0rKSLgIfQls/p6Ddifz3Xa1KUUuuAe9Guwl1AAdYDGIdWaGW2H+3O2YueOgx6jHUTsNhy6byLfvtFRLqjO5fV1SusRpj6n7vrgNboZ+IJ4Gka/oDXeu9ieAr98vMN2s39Fyv9fvRkgD3AYrQ7NuXUZbkrpdaiLZf5wA/ozvqamHPfFJHfx5zyDrozPxatfMqptFpuRbf7GzEegzdjzr0G3T4/oO/J1db165RDKVWmlNoZ+aBfQnxKqd1Wvd3Rz1pDPB53oN1k36Kfv+eJ82wopYrQE5BOE5HYKemH5b23+qAz0f1hEXrM9cyYvukv6HGzL2LufeTlHfQkuj3oPrwzEJ2drZTaB5yBttAPoK3BKTGu7l+h720Rui+5MsaV3Avd1sVo71IFeuyvOnbqmZVdG2IN6qUEEVmIHoD+V8qEMCQFEbkI7cr8XT3lJqEt/P7WH0dD6r4L6KSUujRxSQ3phoj8EditlPrHIZx7NXrSRn3eGUOGInqZ0iJgrlKqrjWgcUn5gkZDy0Ap9WR9Cs5iIfA/YK2I/CZeARHpLyKDRTMaPWvrpeRJa0gnlFJ/aaiCE5HOIjLOcm/1Qw8JmGejhSIi56Gt/F1oT16jOWx3JbFM8YviZD2plLqqueU5XLDcIxfWUywX7Q7rgn6470WvCUorRKS2XVtOa+SYqaHhuNAzpHui3V/PUPcOL02CuffNg1LqWQ5RuUVIqbvSYDAYDIamxLgrDQaDwdBiSSt3Zfv27VWPHj1SLYbBYDAYmpFly5btUUo1aGOJxpJWSq5Hjx4sXbo01WIYDAaDoRkRke/qL3VoGHelwWAwGFosRskZDGnErr37WLxqbf0FDQZDgzBKzmBIIzbNvYKxLx5LeWlGx5Q1GNKGtBqTi0cgEGDbtm34fDViPBoMteLxeOjWrRtOpzPVojSKIaWfgsAP2zdzVN8h9Z9gMBjqJO2V3LZt28jNzaVHjx5U3UDbYIiPUoq9e/eybds2evbsmWpxGkWxLYccVU7p/l2pFsVgaBGkvbvS5/ORl5dnFJyhwYgIeXl5GWn9l9p0yK+KAz+kWBKDoWWQ9koOMArO0Ggy9Znx2XWsyGDJnnpKGgyGhpARSs5gOFyocGglFy5tUIAGg8FQD0bJNQAR4cYbb4we33PPPcycOTN1AtXDwoUL+fTTRsdpjbJy5UqOOeYYBg0axODBg1mwYEH9JxmSgrLreLIh38EUS2IwtAyMkmsAbrebF198kT17kutCUkoRDh9SHMA6SVTJeb1e/vOf/7B27Vreeustrr/+eoqKipInoKFWxIoLafMndwlBKGw2Yjccnhgl1wAcDgc/+9nPuO+++2rk7d69m6lTpzJq1ChGjRrFJ5/ogNszZ87knnvuiZbLz8+nsLCQwsJC+vXrxyWXXEJ+fj5bt27lpptuIj8/n4KCgqjVtHDhQiZOnMg555xD//79ufDCC4kXMeLBBx9k4MCBDB48mOnTp1NYWMicOXO47777GDp0KB9//HGdMl588cUcc8wx9OnTh0cffRSAvn370qdPHwC6dOnCEUccwe7du2tc+7nnniM/P58hQ4Zw3HE6uLTP5+Oyyy6joKCAYcOG8cEHHwAwb948zjzzTE4++WR69OjBww8/zP/93/8xbNgwxo4dy7592j336KOPMmrUKIYMGcLUqVMpKyurcd2xY8eydm3lgumJEye2mO3gRIUAsAVKk1bn08/8h6f+MiNp9a3fsovn5v8j7vN4KOwpLucfL79HRTCUlPqKy8p5+7E7OHCwOCn1GTKbtF9CEMvtr61l3ffJdeMM7NKKP50+qN5y1157LYMHD+a3v/1tlfRf/epX/PrXv2b8+PFs2bKFU045hfXr19dZ19dff83jjz/O2LFjeeGFF1i5ciVffvkle/bsYdSoUVGFsWLFCtauXUuXLl0YN24cn3zyCePHj69S15133sm3336L2+2mqKiINm3acNVVV5GTk8NvfqNjkl5wwQW1yrhq1SoWL15MaWkpw4YNY/LkyXTp0iVa/5IlS/D7/fTu3bvG77jjjjt4++236dq1a9TSmz17NiLC6tWr2bBhA5MmTeKrr74CYM2aNaxYsQKfz8fRRx/NXXfdxYoVK/j1r3/Nf/7zH66//nrOPvtsrrzySgD++Mc/MnfuXH7xi19Uue60adN49tlnuf3229mxYwc7duxg5MiRdbZ5piBKW3L2QPIsufM36PYLhULY7faE69s//3LOrVjEru+Oo2OPAQnX9/5zf+fnW+5gWZsnGDHxjITrW/G/Zzjlu3tZ+exOhl7R7KHmDGmGseQaSKtWrbjkkkt48MEHq6S/++67XHfddQwdOpQzzjiDgwcPUlJSdwd11FFHMXbsWAAWLVrE+eefj91up2PHjhx//PF88cUXAIwePZpu3bphs9kYOnQohYWFNeoaPHgwF154IU8++SQOR/x3lrpknDJlCllZWbRv354TTjiBJUuWRM/bsWMHF198MY899hg2W81HZdy4ccyYMYNHH32UUCgU/T0XXaRj0fbv35+jjjoqquROOOEEcnNz6dChA61bt+b0008HoKCgIPrb1qxZw4QJEygoKGD+/PlVLLYI5513Hs8//zwAzz77LOecc06d7Z1RWErOGUqeJRehuGhvUuo5quJrAA7sS84yhw4HVgPg3puc7cyU6GfVfeCbpNRnyGwyypJriMXVlFx//fUMHz6cyy67LJoWDodZvHgxHo+nSlmHw1FlvC12zVZ2dnaDrud2u6Pf7XY7wWCwRpnXX3+djz76iNdee42//vWvrF69ukaZ2mSEmlPtI8cHDx5k8uTJ/PWvf40q5OrMmTOHzz//nNdff50RI0awbNmyBv8em80WPbbZbNHfNmPGDF5++WWGDBnCvHnzWLhwYY16unbtSl5eHqtWrWLBggXMmTOnzutmEhFLzhWs6aZNlLKDe2mTd0Ti9di8EAZ/SXJmgCqn/nsIVyTHes2y6xcuFar592I4/DCWXCNo164d5513HnPnzo2mTZo0iYceeih6vHLlSkCHDVq+fDkAy5cv59tvv41b54QJE1iwYAGhUIjdu3fz0UcfMXr06AbJEw6H2bp1KyeccAJ33XUXBw4coKSkhNzcXIqLK8cjapMR4JVXXsHn87F3714WLlzIqFGj8Pv9nHXWWVxyySV1WkmbN29mzJgx3HHHHXTo0IGtW7cyYcIE5s+fD8BXX33Fli1b6NevX4N+D0BxcTGdO3cmEAhE64nHtGnTmDVrFgcOHGDw4MENrj/diYzJecLJt+TKD9YcVz0UKmxeAIIlybEMw05dn6pIzm92hMqtio2SMxgl12huvPHGKrMsH3zwQZYuXcrgwYMZOHBg1KqYOnUq+/btY9CgQTz88MP07ds3bn1nnXUWgwcPZsiQIZx44onMmjWLTp06NUiWUCjERRddFJ3k8ctf/pI2bdpw+umn89JLL0UnntQmI2h35wknnMDYsWO59dZb6dKlC88++ywfffQR8+bNY+jQoQwdOjSqGG+77TZeffVVAG666SYKCgrIz8/n2GOPZciQIVxzzTWEw2EKCgqYNm0a8+bNq2LB1cef//xnxowZw7hx4+jfv380/dVXX+W2226LHp9zzjk888wznHfeeQ2uOxOIzK70hMuTXre/ODmWV4VdW16h0v1Jqc9u1w4l5U+SYg9or4kt7E9OfYaMRpI1QyoZjBw5UlWfJbd+/XoGDEh8cNtQk5kzZ1aZoNLSyMRnZ83fjie/YiUHyabVzO+TUqfvT+3xSIDVxz5AwaQZCde3+K4zGFv+IUt7XcvIS/5fwvV9+OhNHL/9n3yZN5khv3gq4fqWPXcXI9b+PzY7etP7j8sTrs/Q9IjIMqVUk8weM5acwZBGRMbkvKoclaQ1lD70AvNAWZJmJtssy6siSVP0I27FYHKsV2XV5wknf1zTkHlk1MQTQ3JJ511bDlciSs4hYXy+Ujze3ITrrMAFlBLyJUcp2VVAf0mSe1HCuj57MDn1qbAe13Qq4640GEvOYEgrbFQuiC4tLkpKnX7RllyyZi8mfcF6RCklaUZpZFalW1UkpT5DZmOUnMGQRkQsOQBfSVFS6gxH/syTrOSSZXnZLEvOlay1gZbSdGEsOYNRcgZDWmGLVXKlB5JSp92yDiVJ+2FK1PJKllLSlpcrSTNKI+7KLPyQRhPrDKnBKDmDIY0QwpQqveTCX5qciSL2iOWVJPeizRqTc4aS4160qchEkSQtm4hZH6eCxmV5uGOUXAN5+eWXERE2bNhQa5nCwkLy8/ObVI6VK1fyxhtvHPL5kcXjAwcOZNCgQTzwwANJlM6QKDYVokT0OrRkzYa0W2vv7MHkWHI2S2m6kzV70VJKXpJryQH4y03IosMdo+QayNNPP8348eN5+umn4+bH23KrsUT2f6yLRJWcw+Hg3nvvZd26dSxevJjZs2ezbt26Q67PkFyEMGW2HAAC5UmaDUlyJ3bYoruyJNeSy6IiOp6WEDGWXHmJUXKHO0bJNYCSkhIWLVrE3LlzeeaZZ6LpCxcuZMKECZxxxhkMHDgQ0MruwgsvZMCAAZxzzjnRUDHvvfcew4YNo6CggMsvv5yKCu1G6dGjBzfffDPDhw/nueeeq3Ld6qFs/H4/t912GwsWLGDo0KEsWLCA0tJSLr/8ckaPHs2wYcN45ZVXAB3aZsqUKUycOJE+ffpw++23A9C5c2eGDx8OQG5uLgMGDGD79u01fvOHH34Y3e1k2LBhFBcXo5SqNSzQ8ccfz5QpU+jVqxe33HIL8+fPZ/To0RQUFLB582YAXnvtNcaMGcOwYcM46aST2LVrV43rTp8+nddffz16PGPGjOhmzIcDNsKU2/WygZAv8TE5pRQ2Ips+J0kpWUozSyXH8rLFKKVAMpY5qEpF6UuSy9eQuWTWOrk3b4GdNTcgTohOBXDanXUWeeWVVzj11FPp27cveXl5LFu2jBEjRgB6X8o1a9bQs2dPCgsL2bhxI3PnzmXcuHFcfvnl/P3vf+e6665jxowZvPfee/Tt25dLLrmERx55hOuvvx6AvLy86D6XsVQPZeNyubjjjjtYunQpDz/8MAC///3vOfHEE/n3v/9NUVERo0eP5qSTTgJ0mJw1a9bg9XoZNWoUkydPrhKSprCwkBUrVjBmzJga177nnnuYPXs248aNo6SkBI/Hw4svvlhrWKAvv/yS9evX065dO3r16sUVV1zBkiVLeOCBB3jooYe4//77GT9+PIsXL0ZE+Ne//sWsWbO49957q1w3EkZn8uTJ+P1+3nvvPR555JEG3szMx6bC+B25EADlS9y9GAqrqCWXLPei3bK8vKpcT+yotsl3Y4lYcgBlxQdo7W2TUH3EboxekpzJO4bMxVhyDeDpp59m+vTpgLY0Yl2Wo0ePpmfPntHj7t27M27cOAAuuugiFi1axMaNG+nZs2d0/8pLL72Ujz76KHrOtGnT4l43Xiib6rzzzjvceeedDB06lIkTJ+Lz+diyZQsAJ598Mnl5eWRlZXH22WezaNGi6HklJSVMnTqV+++/n1atWsW99g033MCDDz5IUVERDoejzrBAo0aNonPnzrjdbnr37s2kSZOAqmF0tm3bximnnEJBQQF333133DA6p512Gh988AEVFRW8+eabHHfccWRlZcX97S0RGyGCDu2uTMaOIiGlcET2w1TJdVc6JEzIn7g1F6vkypMxozTGMjRjcobMsuTqsbiagn379vH++++zevVqRIRQKISIcPfddwM1w+bUFrqmLmoLvdOQUDZKKV544YUaO/1//vnntcoSCASYOnUqF154IWeffXbca99yyy1MnjyZN954g3HjxvH222/X+RsaEkbnF7/4BTfccANnnHEGCxcujLvjisfjYeLEibz99tssWLAg+nJxuGBTYZTNTqnyQBKm/Mdact4kuRftMQvWy0qKyHV7E6pPYtyLFclwL8bUl6xxTUPmYiy5enj++ee5+OKL+e677ygsLGTr1q307NmTjz/+OG75LVu28NlnnwHw1FNPMX78ePr160dhYSGbNm0C4IknnuD444+v99rxQtlUD6Nzyimn8NBDDxHZaHvFihXRvP/973/s27eP8vJyXn75ZcaNG4dSip/+9KcMGDCAG264oc5rFxQUcPPNNzNq1Cg2bNiQUFgggAMHDtC1a1cAHn/88VrLTZs2jccee4yPP/6YU089tcH1twRshEHslIoXuz8JllxY4YhVcklYN2aLUSLlSXAHxo7JVZQlw5KrlC9olNxhT5MrORE5VUQ2isgmEbmlqa+XbJ5++mnOOuusKmlTp06tdZZlv379mD17NgMGDGD//v1cffXVeDweHnvsMc4991wKCgqw2WxcddVV9V47XiibE044gXXr1kUnntx6660EAgEGDx7MoEGDuPXWW6Pnjx49mqlTpzJ48GCmTp3KyJEj+eSTT3jiiSd4//33oxNLIrM158yZEw3Dc//995Ofn8/gwYNxOp2cdtppCYUFAr1X5rnnnsuIESNo3759NH3p0qVcccUV0eNJkybx4YcfctJJJ+FyuRpcf0vARhhls+GTLOxJmA0ZDoWxi8KHC7soAhWJ1+kgRBnaUk/GgnWbClFmrQ1MxrIJCYcIKt21BZMwrmnIbJo01I6I2IGvgJOBbcAXwPlKqbhz1k2oneQxb968KhNUDkcy8dnZO/NINudNpE3ROnzONgy+5d3E6jtQQt59XdkrbclT+zlw7Tpad+iaUJ07ZvbGhqIje/l68nP0GTUpofrW/vVY2gd20JF9fDn6bob8+GcJ1ff5fdPpW7SItlLM0qN/xciL7kioPkPTk8mhdkYDm5RS3yil/MAzwJQmvqbBkLHYCKPEjt/uTcqU/1BI704SWXtXlgz3IqHKtXxJcC/aVGV9wfLELS9RIXziIawElaStzAyZS1Mrua7A1pjjbVZaFBH5mYgsFZGlu3fvbmJxDh9mzJhxWFtxmYqdMIiNgN2LO5z4NlzKmpXrs9beJWNih12F8Tl0fcmY2GFToejawKTEqFMhwmKnDE/S9us0ZC4pn3iilPqnUmqkUmpkhw4daivTzFIZMp1MfWZsSltyQWdOUvZyDFqWXIUjouQSt7wchKhw6GUnIV/iStOmwgQceoZxMsIBSdhScuJBkhUOyJCxNLWS2w50jznuZqU1GI/Hw969ezO20zI0P0op9u7di8fjSbUojUYIIzYbIWd2UnYUUdbyjYBLKyV/EiZ22AlF6wsnYWKHjRDK5qJUuZNieYllyfkkC1vARAc/3GnqdXJfAH1EpCdauU0HLmhMBd26dWPbtm0YV6ahMXg8Hrp165ZqMRqN3RqTU66cpKxrC1sBREOu1gAEk7A42k44Wp9KwjZcNhUCm50yyUqOe1GFCWMnYHPhSFY4IEPG0qRKTikVFJHrgLcBO/BvpVTNbS7qwOl0VtlRxGBoydisMTnl8OKWAEG/D4fr0C3SUEgHDlWeNvo4QfeiUnpxuc3pwaecSVmwbieEEjvlSbK8bCqIEht+yUrafp2GzKXJdzxRSr0BHPq2+QbDYYSdMNjs2Dx6DK2s+ACt8g5dyYWDVsBUb1t9nKDlFV1cbnNQShbiT9xSsimt5CokC0cSwgGJCqOsyTtZwT0J12fIbFI+8cRgMGgiC7eRSiVXWlKUYJ164oktqw0AKsGJHaFwSMtoc1iWVzLG5MIom4OKJC2b0GNyDoIOL+5kBWI1ZCxGyRkMaULQmu4vNjv2LD2xI9Fd9JU1JudwZ+FTzoTHvCKWITY7Pps3KWNedvSYXCCJSk6JjZDDm7xo44aMxSg5gyFNCEf2cLTZcVhKLtEp/5GJJ2J36IkdCU6pDwb9lowOKmxeHEnYekyPyTkI2LOTYnnZVAiFnbAzh6wkRRs3ZC5GyRkMaUI0urzYcXkjU/4TVXLaXSlR92JiSi4ckdHmwG/34golwZJTYbDZCDu9ZCUh5p1dBQnZHChXNlmqokp8OcPhh1FyBkOaEIpYXTY7bkvJJbqLfsRdabM58EkWjgSVXGSbMGwOgo4kWV6EQRyEkmR52VWQsDgQVw42UVQkI9q4IWMxSs5gSBPCocrxLk9OGwBCCa5ri9Zpj+yHmRwlp2x6YkcyArHaCaFsDpQrJymWl50gyuYEt94Ps7zYBE49nDFKzmBIE0LBSkvOaym5cIJ7OaqwNbvS5sBvS3xih4osSbBbY14JLlhXqnJJgriyk2J52a3ZlXaPpeSSEYjVkLEYJWcwpAmx7kpvbhsg8R1FlLUYXBwuAo5sPAmOeUUWl4s4rF1ZfAkFYtWRy/XaQHFXrg1MBLsKomwOHB5rhmoyArEaMhaj5AyGNCEcrlxC4HK7qVBOSDQ6eNAaQ3O4CDmzE55SH11CYHeAW495BRNQxMGwwimhKmsDfQlaXg6ChG1OHF5dn99Ycoc1RskZDGlCOFg5qQPQu+gnuKNIxJKzOdyEndkJT+wIhyoAPVtTXDpyQCKWV0SxY3PgyIoouQQtOYJgc+KylKY/CTHqDJmLUXIGQ5oQXdMWVXJe7AnOhlTBSndlxL2oEpjYEZERuyNqeZUnoJSCEcVud+DMSs6yCYfSE1lc2ZEZqsaSO5wxSs5gSBPCltWF3QmAT7wJ7+UYseTsDje4cvXEjgSWJQQD1pIEuwO7J/EF66FAZB2fHWfEvViW2G92WLM1s7KTswzDkNkYJWcwpAkhy6oRu7bkKuzZOBPcNisc0O5Fp8uNRKbUJ7BVWCgYUZpOnN4kKLmYxeWVawMTH5PD5iQrSTNUDZmNUXIGQ5pQuQWXtuQCDi/uBNe1RS05lzspEzsi7kW7wxndlSVQduhKJBTjos3K1jHqQglYXuGwwkkQZXfizdXyqQoTU+5wxig5gyFNiI6fWWNyAUdOwjuKqIgl53RH98NMZNPniJJz2J3RMa9AApZXMGD9ZruDLGvZRCgByysQCuGSkJ544vLgV/akxLwzZC5GyRkMaULsZsoAIUcO3gR3FFHWDiVOlyc6e7EigYkdQWsMze50JsXyClRoJS4OD94crTRJIBxQdP9PuxMRSV60cUPGYpScwZAmVHdXhlxJUHKWdehyuXFZEzsCZYdueYUsy9DhcidlzCtguRJtrizcLhflypWQ5RX0V5u8Q3KijRsyF6PkDIY0IVxt4gmuHLLEX7l+7lCwxuScLjduy/JKZLah8muFYXfn4M3R9SUSiDUUo+QAy/I69DE0v6WEI23os2UlJeadIXMxSs5gSBMisysdDm2FiDVFP5Ho4CrkJ6hsOJxOPF7LvZjADiXKsooc7mw8Lgelyp2Y5WW5K+2WkiuXrITWBvorfLo+pweAClsW9iQEYjVkLkbJGQxpQiigO2in2wuAuLWSKy8uOuQ6JeQngLZqIhM7wokoOb9WSg5PdnTMy5aAkgtZ9dndeveUCsnCnoDl5YsoOetFIWD34jJK7rDGKDmDIU2IdPgOt7ZCbJFtrhKw5AgFCIhWcpUTOxJYN2ZZck6PVkqJBmINVUQsQ63YKxIMxBqwXLF2a01gwOHFFTLRwQ9njJIzGNKEkN+y5Fy6w4+sQ0toL8egjyDaqnG7XJQpNySyVVhAKwyXpeT0riyHXl/YGuNzurW7Use8O3SlFJlUE1kTGHJ48SQYDsiQ2RglZzCkCWHLXeny6A7faY2hBRKY8u8IlFAm2dHjMvEk5F6MTDzxei33YoKBWAM+XV+WNfMzaPfiTiAcUGQ5Q2TLsZAjh6wkBHY1ZC5GyRkMaYKKKDl3xJKzlFwClpwzWEy5vVLJlSe46XPYX0YZbsSmu45Ex7wClrsyO1vLGHIkFg4oEkk9sg+mcmWTpXyHXJ8h8zFKzmBIFyKuwCyt5KI7gCQwUcQdKqUiRsn5EpzYQaAMP67KQ3t2QpZX2Fp+kGWNF4YSDAdUYbkrs1u1AUBc2XgkgD+yfs5w2GGUnMGQJtj8BwkpwWVtvxVdbO079MXbWaFiKhy50WPtXjx0peT0H6DEVllfooFYHeV7CWCPziTV4YDKDznauN+y5Fq1aqsTkrAptSGzMUrOYEgTbBUHKcGLza7/LLMtS04lYMl5wqWEXa2ix8EE3YvewD5K7G2ix2GnF28ClpezYh9FtAYRneDKxi4Kv+/QrE1VVgSAJ7cdAHa3VshlRskdtiSk5ERkpohsF5GV1ufHMXm/E5FNIrJRRE5JXFSDoWVj8x+g1FbpWnS7nNZi60NTcsFgiNaqGLLaRtMCCU7syA7sx+fOix4rVw5ZVEAkwncjcVbso8TRJnosllI6VMvLWbaLYrxgRS1PRuQFQ2aTDEvuPqXUUOvzBoCIDASmA4OAU4G/i4g9CdcyGFosjkAJ5bac6HGii633796ORwKo1t2jaYm4F5VStA7vJ5xVqeTEFQl0emhKxOvfh8/VLnpcGW380Opzl+1kv7199NiZpdvTKLnDl6ZyV04BnlFKVSilvgU2AaOb6FoGQ4vAFSiuMkkE9ESRQ91geN/3m3W97Y6MpoWcOYfsXizav5d2Ukyo9VHRtGgg1kOYAarCYTqHvqc0u1I+u0fXd6iBWHP8uyh1d4weR8Y3EwkHZMhskqHkrhORVSLybxGJ+EW6Altjymyz0mogIj8TkaUisnT37t1JEMdgyExaB3dT7sqrkpbIbMiiLesA6HDUgGiacuXgxQfhcKPr2/71lwC4O1fWZ7PWo5Ufwq4s27ZvpbWUYmt/dDTNmRWJNt54peSr8NMjtIWy1r0r64sEdk1gU2pDZlOvkhORd0VkTZzPFOARoDcwFNgB3NtYAZRS/1RKjVRKjezQoUNjTzcYWgQBv49O4R/wt+5ZJd1vzzrk2ZDh7SsoU2469SqoTHRZ210dwozNg5sWA9Cl38hoWjRGXUnj69u59kMAWveudPJEArseSjigTeuWkSV+3N2GRNM8VmDXRCIvGDIbR30FlFInNaQiEXkU+K91uB3oHpPdzUozGAxx2PXdRrqJwh5j1YCeKJIdPATXnVJ02/sJ32Tlk++I+TOPTOwoPojT26ZRVXq2LGSHHEHnbn2iaQ5vJBBr45WS/6v3KcfNkYMnVIoXiXl3CEp438rXAeg2/LRKma1wQKEEwgEZMptEZ1d2jjk8C1hjfX8VmC4ibhHpCfQBliRyLYOhJbN3y3oAcrv2q5IetHtxHcJEkY0rF9FdfU9Zr6oTmyNjXuWlRY2qb8f27yjwLWNLp0lV0qO7sjRSyZWUljJg37t8lTsGp8sTTXfnHFq08VAoTLctr/Ct82jadK60hiObUieyDMOQ2dRrydXDLBEZCiigEPg5gFJqrYg8C6wDgsC1SqlDm2NsMBwGlO/8CoCOPQZWSQ85vIe092LJu7MoVlkMmHRFlXR71qFt+vzty3+hA4oek66uku72RgKxNk7JrXjxXiZQzL7xV1VJz7KUXLiRltfit55knNrCl0PurCqf5U4lgUCshswmISWnlLq4jry/An9NpH6D4XBB9n3DQby0bd+5SnrImY2nkXsvfvnB84wo/YglPX7G6DZVJ7JEJ3Y0wvLasPR9Rv/wPCvzJjOyZ36VPE924wOxbv1mA0M2PcJa7wgGjf5xlTxvduOjje/Zs4deX9zOVnt3Bp96eZU8sTsox40ksCm1IbMxO54YDGlAdkkhOx3dohsfR1BOa4PhBm5z9f13X9Htwxv4ztadoeffUSM/OtuwgUpu567vyf7v1eyWPPpd8kCN/Miek6qBMeqKS4opmX8JIoojLnikcqcTC2+WhwrlRBpYXygYYPuj59Fe7Sd0+kOIw12jTDkeJJHwQoaMxig5gyENyPNv42DWkTXSlSsbp4QIByrqraO0+ADlj5+HCz+2aU9EQ/bE4vY2fLZhcUkxe/45lY5qDxVT/kluNasQIDunFSElDXIvBoJB1s8+nwGhjWwdfzcduverUUZEKMXToJh3KhxmxZwrGFKxjJWDb6PH0BPilitPYK2hIfMxSs5gSDEVvlI6hvcQaNOzRp64IhNF6ra8QsEgGx+5gB6hQgonPkz3fsPilsuyptTXN7EjopDyQ+vYNP5eegw7MW45t9NOGZ563YFKKT575GpGl3/MygE3MfCkWkc6GhxtfPH8Oxi552U+6XQxo6ZeX2s5vy2xmHeGzCbRiSdpzcGD+9my7gvKtq/DX/Q9jvI9qFAAERvidBPwtEdyjsDZugtZeV3JPaI77dp3ItfjRKq5UQyGpmJn4QaOEoWjw9E18ip3FCkiu+0Rcc9X4TBfPHIlY8sWsaT/bxk98ZxarxUJ31OXe1EpxedzrmZ8+ces6P8bhp08o9aylVuP1a1EPn7iDo7b+yzLO09n+Hl/qLOsz5aFox4lt+SNxxmz6X6W5x7PMVfWdKPG4rdn4UhgU+qG4POVs6NwI0XbNhA4uItQWRG2kA+xO8HhBndrHK074WrdCW+7zuS260zrbA8uh7EzmpoWpeR8ZSVsXPwG5evfodPexRwZ2ka+VI5lFOMlgBMFeFQF2VJzQL9COdlGW/bZ2lHubIPd6cJmdxESBzYVxB72W58AduXHFg5iVwHsKlj5IYjD+t+GIowQRlDYUEAYGyqaJtZ3nRdLdTWrj2uOzdSnjpOmrjNZ79czpFX/iFf8Eqru7AbVlEUABFp1rem+q9zmqnal9Ol/bmXc3hf5vNMFjDm/bgWSbY2hhetQcp8+eQfj9zzL0k7TGDntj3XWB5blVceuLItfm8v4zfexqtVxDLtido1xuOpU2Lx1KqUvF79Lwee/YbOrH4OufQqbve5tcQN2L25/UZ1lGkvR3h/4+rNXCXz7CUcUraRHsJCe0rhdZA4oLzvJpdjWigpHDja7E7HZCWMjjMT0LQEc1v92FbS+B3EQRJSi8olSCCAxT5jE5KjYFImUrvyfmLJVz6lZJsK3th6Mu/V/jfrdzU2LUnLbvl7JkI+uxKecfJ01hCVH/JjsHsPI6zmMI7ocSa4VcTlCqKKUA7u3c3D3Nsr3biVQ9D3q4A7spTvJLt9F28AuKA9gU0EchAhiJyhOAjgJipOgzUVIsgjbcwmLk7DNibI5UDH/i82mHzwVjqozUdbjoyrVn35Yw1TXJPEeruqdZJWHtx7qmr+gYmuus1yqaPyVJaZdpMaXOK0mNdMlTtvW1k9XT5c4F4v38rLL04aBg8fVqM9uWXK1zYb8/OXZjCt8mOWtTmT0zx6OL1QMbqeDElW7e3HZG//mmE33sTL3OIZf8fd6FRKAT7y1Wl6rPn2LYUtv5mv3APpf8wxir7/L8du9eGtxL25at4Ij35zBfnseHX/+Eu6snLjlYgk6vGT7dtRbrj727t7JV+/Nw7v5TQb6VzNKQpTh5lv3AJZ1ugRnx37kdOlHqyO6k9M6D4criwp/BUG/j4ri/ZTv34GvaAehgztRJbuhbB82336c/iJaB4pRwWIIh7CL7h+C4iSEg5A48ds8hCSXkM1F2OYgLE6wOUBsiE2inielBCWCUkLkLzqiCBVQ+Y+K+V75TMZTa7Fp1Z/eMleXhNu1qWlRSq53wTGsPvAf+ow6iYKs7HrL293ZtOvWl3bd+jaDdAZD46lr78WVC19k+IpbWecZQsG1TyG2+gN91OVeXP3pm+R//lu+cg2g/zVPY3M0rHvw27Nwx1FK36xfzpFv/5Qf7EfQ5eqXcTXgbxL0Anh3sOY+tt9v/Qbvs+eixIbj0pdo1b5hHWzImdPoZRgRVDjMms/epPTTuQwr+YhjJMAWWzdWdLuINsOmcPTQ4xjkcNZ6vseK8k6HzsDAWssZmo4WpeTEZqfguCmpFsNgSBpOazFzoLyq5fXVsg/o88HVbHN058hrXsbprjmTsjb0xI6q9W1Y/iE93r6MH+xH0Pmql/B467eQIgTs2eQGd1ZJ27JpLdkLphISB65LXyS3bcdazq5J0JGNu7zqLi97dv+A77Ez6Ugxe855iaNiNp2uD+X06mjjjSAYDPLF2/Npu/xhCkJfcZBsVneaQvsJP6NH/hhqzoM1pCstSskZDC0Nd7ZWcqGYHUW+XvEhnV87n/22NuRe8Qo5rdvVdnpcKsSLI2YMbfOaz+n06gWU2HLJ+ulrtM7r1Kj6gg4vnorKMbTvv/sax5Nn4sbPwWmvcORR/RtVX8iZQ7aqlG/3DzvYN+cn9Axt45tJ8+iff2yj6sOKvBAIhnA66rZ2gwE/y974N0esfJhj1Fa+t3ViacFt5J/2c0Y2QvEb0gej5AyGNMYT2TbL2lFk9cevctS7P6fY1gr7Zf+lfeceja6zwu7FaSm5tZ+9Rbe3L6cCN+qSV2nftXc9Z9ck6MzGY1lKm9d+QfZz08mmlB/Oeo7eA0bWc3ZN/NmdyN1bRrCsiN379lH677PpGdrKNz/6B/3HndHo+nDl4JQQRWWltGnVKv41/X6Wv/4vuqx6iDHqewptR7Fq9D3knzyDLnW4Iw3pj1FyBkMa06HDEYSU4N+/ncVP/z9GbLiH7fauZM14kY5H9qm/gjj4sjrR5eASFj9zF8PW380u+xG4Ln2RLo20uCKonM603lfMshfvp8+Xd+EXF3vPeZne+WMPqT5X+56wBVa+9gg91s+hMz6+Oelf9J9w1iHVZ4sswyg5UEPJ+XzlfPHff3Hk2r8zVn3PN/aerBzzMENOuqBBY5yG9McoOYMhjXF5vGyy9+CY7Y8B8KV3DL1+/nTc3UcaSkWn4eQdfIe8Df+PNVkj6H7lU412UVaRseex2Lb+gxGr/sTXzr60uvhJehxVczlEQ2nfazgsh5Hr72S7dKJs2gv07994izBCOFf/Nv/e76CLjgC27ZsNfPfeo/Tb/jwTKOJbRy9Wj51N/onnG+XWwjBKzmBIc/aN+BVrVz5K2YBpjDzzFzX2t2wsQ8+4lkVP7cbTsTcjTr8q4U59xPFnsOj7G3E53Qw763qcrpr7RzaGfvnDWbzhT0j5fgafdVN0f8xDxdFJz2rc/9Ectn/+Ih12fEif0Ca6AV9mjWbPsVfRb9yZRrm1UEQ1cOPX5mDkyJFq6dKlqRbDYDC0ICr8frb+bSRHq+8IKWGzqx97jzyFo4+7gA6H6KI1JBcRWaaUOnRzvQ6MJWcwGFo0bpeLI274mE2bvqRz7wL6tmqbapEMzYhRcgaDocXTKrc1rYYdl2oxDCnA7A5qMBgMhhaLUXIGg8FgaLGk1cQTEdkNfJeEqtoDe5JQT3NgZG06MkneTJIVMkveTJIVMkveZMl6lFKqQxLqqUFaKblkISJLm2qmTrIxsjYdmSRvJskKmSVvJskKmSVvJshq3JUGg8FgaLEYJWcwGAyGFktLVXL/TLUAjcDI2nRkkryZJCtklryZJCtklrxpL2uLHJMzGAwGgwFariVnMBgMBoNRcgaDwWBoubQoJScip4rIRhHZJCK3pFqeWESku4h8ICLrRGStiPzKSp8pIttFZKX1+XGqZY0gIoUistqSa6mV1k5E/iciX1v/p3wjQBHpF9N+K0XkoIhcn05tKyL/FpEfRGRNTFrcthTNg9ZzvEpEhqeBrHeLyAZLnpdEpI2V3kNEymPaeE5zylqHvLXeexH5ndW2G0XklDSQdUGMnIUistJKT4e2ra3fSstnNy5KqRbxAezAZqAX4AK+BAamWq4Y+ToDw63vucBXwEBgJvCbVMtXi8yFQPtqabOAW6zvtwB3pVrOOM/BTuCodGpb4DhgOLCmvrYEfgy8CQgwFvg8DWSdBDis73fFyNojtlwatW3ce2/9zX0JuIGeVp9hT6Ws1fLvBW5Lo7atrd9Ky2c33qclWXKjgU1KqW+UUn7gGWBKimWKopTaoZRabn0vBtYDXVMr1SExBXjc+v44cGbqRInLj4DNSqlk7JyTNJRSHwH7qiXX1pZTgP8ozWKgjYh0bhZBiS+rUuodpVTQOlwMdGsueeqjlratjSnAM0qpCqXUt8AmdN/RLNQlq4gIcB7wdHPJUx919Ftp+ezGoyUpua7A1pjjbaSpEhGRHsAw4HMr6TrLtP93Orj/YlDAOyKyTER+ZqV1VErtsL7vBDqmRrRamU7VTiJd2xZqb8t0f5YvR7+tR+gpIitE5EMRmZAqoeIQ796nc9tOAHYppb6OSUubtq3Wb2XMs9uSlFxGICI5wAvA9Uqpg8AjQG9gKLAD7a5IF8YrpYYDpwHXikiVWCVK+yfSZg2KiLiAM4DnrKR0btsqpFtb1oaI/AEIAvOtpB3AkUqpYcANwFMiklgo7+SQMfc+hvOp+oKWNm0bp9+Kku7PbktSctuB7jHH3ay0tEFEnOgHZb5S6kUApdQupVRIKRUGHqUZXSf1oZTabv3/A/ASWrZdEfeD9f8PqZOwBqcBy5VSuyC929aitrZMy2dZRGYAPwEutDo2LLffXuv7MvQYV9+UCWlRx71P17Z1AGcDCyJp6dK28fotMujZbUlK7gugj4j0tN7opwOvplimKJa/fS6wXin1fzHpsf7qs4A11c9NBSKSLSK5ke/oiQdr0G16qVXsUuCV1EgYlypvwunatjHU1pavApdYM9XGAgdiXEMpQUROBX4LnKGUKotJ7yAidut7L6AP8E1qpKykjnv/KjBdRNwi0hMt75Lmli8OJwEblFLbIgnp0La19Vtk0LOb0lkvyf6gZ/Z8hX7j+UOq5akm23i0Sb8KWGl9fgw8Aay20l8FOqdaVkveXuhZaF8CayPtCeQB7wFfA+8C7VItqyVXNrAXaB2TljZti1a+O4AAepzip7W1JXpm2mzrOV4NjEwDWTehx1oiz+4cq+xU6/lYCSwHTk+Ttq313gN/sNp2I3BaqmW10ucBV1Urmw5tW1u/lZbPbryP2dbLYDAYDC2WluSuNBgMBoOhCkbJGQwGg6HFYpScwWAwGFosRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLP8fiBexU+FQxkcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABxX0lEQVR4nO2dd5hVxfn4P++5dRsd6dKks/SmgEJiDUGCqGBQg8YkJlGDGksSNWjiN9ZoLJHEoBgLYi8/NRiN2AFBQDqCrID0srB9b5nfHzP3crfvsnf33t2dz/Pc594zM2fOe2bOnffMO+/MiFIKi8VisVgaE06iBbBYLBaLJd5Y5WaxWCyWRodVbhaLxWJpdFjlZrFYLJZGh1VuFovFYml0WOVmsVgslkZH0is3EekmIkpE3ImWxXL8iMjVIrJLRFYn4NpzROSZerjOLBH5pJL4xSJyRV3L0dSorH5t3TdMROSwiHwrIjOON4+kV26WmiMic0Uk13yKRSQQc/xOgsSaA/xKKTU4Rs45IjInQfIkFeYlLquG6T8QkXwR2Sgip1eS9kIR+cykXVwqrreIvC4i+0XkkIgsEpE+pdJcKyJ7ROSoiDwhIr6ayiEi79fkJdUoi/nVSdvQqeO695k6O2rq8LqYuDEi8l9T7/tF5EUR6RAT30JEnhKRfeYzp5z8fyMi20QkT0Q2iEhvEz5BRMIx7U6uiPwk5rzFIlIYE7cpNl+lVEvgXuDm6pZLaepcudkeV/2jlLpSKZWulEoH/g9YGDlWSp0TSVfPddMKWFuP16sTkuh5XgCsBFoDfwBeEpG2FaQ9BDwI3FVOXAvgDaAP0A5YBrweiRSRs9ANzPeBrkAP4PaayCEiMwFPTW4uGWmgdT8H6IWuu4nAjSJytolrCfwT6Gbic4AnY859AEg18aOAS0Tkskik6Yn+FJgEpAM/BA7EnL8rpt1JV0o9VUq2q2Li+lCWteYej4s6UW4ikiUiN4nIV0CeiLjNW8JnIpItIqtFZEJM+sUi8hcRWWbeMF4XkVYV5H2ZeUPIEZFvROQXpeKniMgqk8/WSEWKSHMRmSciu0XkOxH5s4i4qriPniLyPxE5KCIHRORZEWkRE3dIRIaZ447m7WeCOT5XRNaZ+10sIv1Klc9vReQrETkiIgtFxF/zkq45FdSNEpGTYtLMF5E/xxz/0JRptqnDQTW8ZqScw1Wku9HUzy4RuSJWLiPToyLylqn7pSLSM+bcv4nIDlPvK0RkfKns/aacc0TkSxGJ7UHebJ6VHBFZLyJTY+JmicinIvKAiBxENxZV3e99os0q20TknFLRXU1+OSLyroi0qSq/cvLvDQwD/qiUKlBKvQysAaaVl14p9Z5S6gVgVzlxy5RS85RSh5RSAXSD1kdEIo3KT4B5Sql1SqnDwJ+AWdWVQ0SaA38EbqzpfZa650tFm6kOisit5jku02MREY+ILBCRl0XEa4KbbN2j6+9PSqnDSqkNwOOY+lNKvaOUelEpdVQplQ88AoyNOXcycI9SKl8plQXMAy43cjjoer1WKbVeabYqpQ7V9J4qIQwc/wuFUiruHyALWAV0AVKATsBB4AdohXqGOW5r0i8GvgMGAmnAy8AzJq4boAC3OZ4E9AQEOA3IB4aZuFHAEZO/Y67b18S9CvzD5H8C+g31F1Xcx0kmLx/QFvgIeDAm/mfAevTbzSLgPhPeG8gz53rQf+wtgDemfJYBHdE9mg3AlRXIMA7IruQzrop7mBMpy/LqxoQp4KSYNPOBP5vfQ4F9wGjAhf6zZAG+GjwPZwOFQFoVafYAA0x5PhMrl5HpoKljN/As8HzM+Rej3/LcwPUmL39MGQSA8019/BbYBnhM/AWmLhxguqm7DiZuFhAErjZ5p1RyD7PMdX5myuqXaIUiMc/5VvN8pJjjuyrI6+/A3yuImwpsKBX2CPBwFfVwBbC4ijQ/AnbHHK8GpscctzH10ro6cgCPAtdS6n9cw/akP5CL/i94gftMOZ8e+4ybMn3LPCuupl736J6ZAtrFhJ0PrKkg79nAkpjjA8ComOM/AIfN7xNN3r8BdpgyvR1wTPwEoBjYa+IeIOb/b+5/v7nGp8CEcuTpYcp/SE2fGaVUnSq3y2OObwKeLpVmEfCTmBu9KyauvykYF1X8KYDXgN+Y3/8AHignTTugKPbhBC4CPqjhff0IWFkq7A30m9NXmAYfuBV4ISaNg1beE2LK5+KY+HuAuXVUF3Moq9wuL5WmMuX2GPrNLzb9JuC0al5/ucn/mirSPQH8Jeb4JMoqt3/FxP8A2FhJfoeBwTFlEPundYDdwPgKzl0FTDG/ZwHbq3mvs4AtMcep5h7axzznt8TE/wr4z3HU6SWx92PC7gTmV3FepcoN6Gye04tiwrYCZ8cce8w9datKDmCEKUs3tVNutwELSpVrMSWV2xvAh8BDGIXS1Ose/QKrMC95JuwMIKuctIPQ5uvxMWHPAK8AGej/41agyMSdYvJ+C23a7gZsBn5m4tuj23EH6I7uGPwjJu/RJl8f+oU5B+hZjlz3meu8VtOyqssxtx0xv7sCFxizVraIZKPfwjpUkP5b9J+oTLddRM4RkSXGJJiNbuQi6bqgK6A0XU1+u2Ou/w90D65CRKSdiDwv2ox5FF3ZpWV6HN3jfFgpVWTCOpp7AEApFTb31ynmvD0xv/PRNuv6YkfVSaJ0Ba4vVXdd0PdYHUYCM4A5IlLZuEvHUnKVJ2OFZWbMvBuMmTcbaE7JuormZ+pjZ+QejMlrVcz9Dazo3GoQlVFpUw+UrNt41Hsu0KxUWDN0A3FciB6zeRfdY1hQybUiv3Mqk8OYrf6OfvEMHq9chhLPhinXg6XSjEE30Hcp0yrG0FTrPjcmvsK0xvT/DrquPo6JugYoAL5Gj8MuQJcdJhy02TJbabPlP9DtMUqpPUqbK8NKqW1o61XUdKqUWqqUylFKFSk9Fvdp5NwYuU4wMpyqlPpROfdXKXWp3GIfsB3onluLmE+aUip2gLtLzO8T0V382MFJRHtpvYzW5u2UUi2At9Emysh1elKWHeieW5uY6zdTSg2o4h7+z9xHplKqGdr0FbkWIpKOHqifh268I+OEu9BKIZJOzP19V8X1yiAi46Wkx1HpT+mxpepQ+s+fj37TjNA+5vcO4M5SdZdaqgGs+EK6oXkNbSLpUEnS3eieQ4QuFSUsjSmDG4ELgZbmuThCTF3F5mca3s7ALhHpin5BuQpobc5dW+rc0uWVaNYBPUQkIyZssAmvMSLSEq3Y3lBK3VnOtQaXus5epdTBKuRohu65LRSRPcAXJn7ncTyzJZ4NEUmhrKPBu8BfgPdFpF2puCZZ90qPke6mbP1F05oyeA9tnXm61PmHlFIzlVLtTVvpoIdTQFtviilZPpWVlaJyfaMoWe6gHWGOlFK41aa+pgI8A0wWkbNExCUiftGuorGN2cUi0l9EUoE7gJeUUqFS+XjR3dj9QNAM2J4ZEz8PuExEvi8ijoh0EpG+Sqnd6If/fhFpZuJ6ishpVcidgX77OSIinYAbSsX/DViulLoC3T2fa8JfACYZOTzoMaAi4LOqCqo0SqmPVUmPo9Kf46r4UqwCfmzq5mz0WGaEx4ErRWS0aNJEZFLkzyXa0WN+FfcQ6dF6K0n2Arru+pln4NYayJ+Bts3vB9wichtl326Hi8h5oj3eZqPrYwl6DFaZcxHtDTawBteud5RSm9F19kfzX5qK7rW8XF76yH8ObR50zDkeE9cMPUTwqVKqPLfrfwM/Nf/NFsAtaBNxVXIcQfeOhphP5K18OLDUXHuxVG8qyEvo9uMU0U4icyjbEKKUugd4Dq3gYntfTbbu0fV3i4i0FJG+6DHB+QCmTfsf8IhSam7pE00b2do8P+cAPwf+bOTIBxaivS8zTFv+c+D/mXMnikhX02Z0QXvqvm7iWhhd4Bft0DYTOBX4TykRPOi6Oi7qRbkppXYAU4Dfox+kHWhFEXv9p9GFvgfwo7ujpfPJMeEvoMdUfoy2tUfilwGXoQcvj6Bt8JEe1KXoxnW9OfclKu9JgB4gHWbyegttfwa0VybaCeKXJug6YJiIzFRKbUL38h5G9z4nA5OVUsVVXC9R/AYtYzYwE93TAkAptRz9h3gEXW5bMN5Whi5ok0JVVPrmppR6Bz1e8oG5xhITVZ2HexH6j7EZbQ4upKw56XW0w8Bh9LjFeUqpgFJqPXA/8Dl68DuzmvdTp4ieq1imwYlhBrpndBjdcJyvlIo00jNFJPZN/hK0GekxYLz5/biJm4o2HV9WyiJwIoBS6j/oMeEPgO3o8v1jVXIozZ7IB6NA0L2+yP+gWs+OUmod2qnjeXRPJBft5FTm2VBK/Qn9/L4XY0lpynX/R/RQzbfo9vBeU6egx2B7oK1O0bqPOXc42p8gB90rnmnqIsJV6LrYhS7D59Bj56Ad0T5DO+h8ZvKJtOketJKMOJRcDfzIKO5YXFThYV0ZEU+ehCJ6YukzSql/JVoWS/Uxb9GrgUFKu5FXlnYXcKNSqlqrRYieOrEW7aRT2zEbS5Jh3vRfUEqdchznpqNfxHqZ8RxLI0REbkQr7lHHc75docRy3CilipVS/apSbIab0aaUFRUlEJGpoldUaAncDbxpFVvjRCm1syaKTUQmi0iqiKShx9zXoD1/LY0QEdmP9qK8vaq0FdHklZuUXKoq9lOZWcBSQ5RS/1ZK9VJKDa8k2S/Q5qatQIhjJt+kwT4vCWMK2vy1C+1oMKMcr8g6xdZ9/aGUaquUGqCUeut480gKs6TFYrFYLPGkyffcLBaLxdL4SJaFQAFo06aN6tatW6LFsFgsFks9smLFigNKqYoWfz4ukkq5devWjeXLlydaDIvFYrHUIyLybdWpaoY1S1osFoul0WGVm8XSgLAOYBZL9bDKzWJpIGzfsZ3X/jiZ5es2VZ3YYmniJNWYW3kEAgF27txJYWFhokWxNCD8fj+dO3fG42nwG0BH2b70NaY6H/PF+3+CAdVa6MViabIkvXLbuXMnGRkZdOvWDZEya6VaLGVQSnHw4EF27txJ9+7dEy1O3HAcvaG5O2Rf9CyWqkh6s2RhYSGtW7e2is1SbUSE1q1bN7revhu9SYYKJc/62x+u3MDrt57D/r27Ey1KlH+9s5QH/v5oosWwJJikV26AVWyWGtMYnxknaPaHTCLlVvzenUxxfcbhLxYmWpQo/T+bzbX7fg9Hk0fhWuqfBqHcLBYLiDFHupLILOmY3mQwVHrrxcQx0MkCIJC7v/KElkaNVW7VQES4/vrro8f33Xcfc+bMSZxAVbB48WI++6zG+6KW4Oyzz6ZFixb88Ic/jJNUltqijALxhvITLMkxwm69gXtxQW4VKeuPIrQTUd6RgwmWxJJIrHKrBj6fj1deeYUDBw7ENV+lFOHwce/FVyHxUG433HADTz/9dNUJLfWH2Zjeq457c+L4404BIFyYk2BBjhFRbsU5Vrk1ZaxyqwZut5uf//znPPDAA2Xi9u/fz7Rp0xg5ciQjR47k00/1Rr5z5szhvvvui6YbOHAgWVlZZGVl0adPHy699FIGDhzIjh07uOGGGxg4cCCZmZksXKjHLhYvXsyECRM4//zz6du3LzNnzix3Au9DDz1E//79GTRoEDNmzCArK4u5c+fywAMPMGTIED7++ONKZbzkkks4+eST6dWrF48//ng03+9///tkZGRUWi4vvvgiAwcOZPDgwZx66qmAdgC67LLLyMzMZOjQoXzwwQcAzJ8/nx/96EecccYZdOvWjUceeYS//vWvDB06lDFjxnDo0CEAHn/8cUaOHMngwYOZNm0a+flleyljxoxh3bpjGwJPmDChSSzbpsLJp9w8omVyirITK0gMxUo7gQfyDidYEksiSfqpALHc/uY61u86Gtc8+3dsxh8nD6gy3a9//WsGDRrEjTfeWCL8N7/5Dddeey3jxo1j+/btnHXWWWzYsKHSvL7++mueeuopxowZw8svv8yqVatYvXo1Bw4cYOTIkVFFsXLlStatW0fHjh0ZO3Ysn376KePGjSuR11133cW2bdvw+XxkZ2fTokULrrzyStLT0/ntb38LwI9//OMKZfzqq69YsmQJeXl5DB06lEmTJtGxY8dqld0dd9zBokWL6NSpE9nZ2QA8+uijiAhr1qxh48aNnHnmmWzerHePX7t2LStXrqSwsJCTTjqJu+++m5UrV3Lttdfy73//m9mzZ3Peeefxs5/9DIBbbrmFefPmcfXVV5e47vTp03nhhRe4/fbb2b17N7t372bEiBHVkrlBY5SbL4mUm9vsU+sqTh6zZCE+AEL5Vrk1ZWzPrZo0a9aMSy+9lIceeqhE+HvvvcdVV13FkCFDOPfcczl69Ci5uZX/0bt27cqYMWMA+OSTT7joootwuVy0a9eO0047jS+++AKAUaNG0blzZxzHYciQIWRlZZXJa9CgQcycOZNnnnkGt7v8d5XKZJwyZQopKSm0adOGiRMnsmzZsmqXydixY5k1axaPP/44ITMe9Mknn3DxxRcD0LdvX7p27RpVbhMnTiQjI4O2bdvSvHlzJk+eDEBmZmb03tauXcv48ePJzMzk2WefLdFDi3DhhRfy0ksvAfDCCy9w/vnnV1vmBk1Yb0qeQkGCBTmGE9aK1gnmJViSYxQas2QoiUyllvqnQfXcqtPDqktmz57NsGHDuOyyy6Jh4XCYJUuW4Pf7S6R1u90lxtNi51ylpaVV63o+ny/62+VyEQwGy6R56623+Oijj3jzzTe58847WbNmTZk0FckIZV3ma+JCP3fuXJYuXcpbb73F8OHDWbFiRaXpY+/HcZzoseM40XubNWsWr732GoMHD2b+/PksXry4TD6dOnWidevWfPXVVyxcuJC5c5vIRshmzC1VFYJSkATTHcQoXHcSKbdIqYQLk0cmS/1je241oFWrVlx44YXMmzcvGnbmmWfy8MMPR49XrVoF6O17vvzySwC+/PJLtm3bVm6e48ePZ+HChYRCIfbv389HH33EqFGjqiVPOBxmx44dTJw4kbvvvpsjR46Qm5tLRkYGOTnH3lorkhHg9ddfp7CwkIMHD7J48WJGjhxZrWsDbN26ldGjR3PHHXfQtm1bduzYwfjx43n22WcB2Lx5M9u3b6dPnz7VzjMnJ4cOHToQCASi+ZTH9OnTueeeezhy5AiDBg2qdv4NGmOWdIkiXJwkHpNKv8C5g0kiD+AWLZMqsj23poxVbjXk+uuvL+E1+dBDD7F8+XIGDRpE//79o72IadOmcejQIQYMGMAjjzxC7969y81v6tSpDBo0iMGDB/O9732Pe+65h/bt21dLllAoxMUXXxx13rjmmmto0aIFkydP5tVXX406lFQkI2iz5sSJExkzZgy33nprdLxt/PjxXHDBBbz//vt07tyZRYsWAXDbbbfxxhtvANqjMjMzk4EDB3LKKacwePBgfvWrXxEOh8nMzGT69OnMnz+/RI+tKv70pz8xevRoxo4dS9++faPhb7zxBrfddlv0+Pzzz+f555/nwgsvrHbeDR51zBJQkHckgYLEEE6+6QkR5UbA9tyaMpJMW2iMGDFClfZ627BhA/369UuQRI2bOXPmlHA8aWw0tmfni7k/Z+Qe7U178KdLad2lbxVn1D1L7/0Ro/M+YJ/TlhNu25JocQD4ek4mvdjON61Po8fVbyRaHEs1EJEVSqm4eoXZnpvF0lAIH1sFpChZem6mN+lXybNqigstkxNInt6kpf5pUA4llviSzKusWMohRrkV58V3SszxIsbJJUUlkQenWRLMlUROLpb6x/bcLJaGQsyYW6AguZSbhyAEk2NB50jPzZNE44CW+scqN4ulgSDq2FSQQEFyeAJGlBsASTKR21FWuVmscrNYGgwSDhFWehZXskxQliTsTUbMkr5w8phKLfWPVW4WS0NBhTmKXoU/WRYqdmJ6boW5iVduSqmoWdIqt6aNVW7V5LXXXkNE2LhxY4VpsrKyGDhwYJ3KsWrVKt5+++1a5XH55Zdzwgkn1LmsljijQuQa5aaKksMEGGuWLEwCD86wAicy5pZE44CW+scqt2qyYMECxo0bx4IFC8qNL29prJoSqsaGj/FQbrNmzeI///lPrfKw1D+iwgTFS5HyoJJkfEtUmIByAVCcBGbJQCiMm+QbB7TUP1a5VYPc3Fw++eQT5s2bx/PPPx8NX7x4MePHj+fcc8+lf//+gFZyM2fOpF+/fpx//vnRLVvef/99hg4dSmZmJpdffjlFRXrB2W7dunHTTTcxbNgwXnzxxRLXLb2lTHFxMbfddhsLFy5kyJAhLFy4kLy8PC6//HJGjRrF0KFDef311wG9xcyUKVOYMGECvXr14vbbb4/me+qpp9KqVatK7/nDDz9kyJAhDBkyhKFDh5KTk4NSqsLteU477TSmTJlCjx49uPnmm3n22WcZNWoUmZmZbN26FYA333yT0aNHM3ToUE4//XT27t1b5rozZszgrbfeih7PmjUrukhyU0dUCByHXPxIkvTcHBUix/QmA/mJV27BsMIhzFGl95mzyq3p0rDmub1zM+wpuzBwrWifCefcVWmS119/nbPPPpvevXvTunVrVqxYwfDhwwG9buTatWvp3r07WVlZbNq0iXnz5jF27Fguv/xy/v73v3PVVVcxa9Ys3n//fXr37s2ll17KY489xuzZswFo3bp1dB3KWEpvKeP1ernjjjtYvnw5jzzyCAC///3v+d73vscTTzxBdnY2o0aN4vTTTwdg2bJlrF27ltTUVEaOHMmkSZOqvTXMfffdx6OPPsrYsWPJzc3F7/fzyiuvVLg9z+rVq9mwYQOtWrWiR48eXHHFFSxbtoy//e1vPPzwwzz44IOMGzeOJUuWICL861//4p577uH+++8vcd3IdjaTJk2iuLiY999/n8cee6xaMjd2RIUI4yKfFJwkWVpKCJMvabQiJykcSkIhhYcwh8mgGQVQnBzlZKl/6rznJiJni8gmEdkiIjfX9fXqggULFjBjxgxA9yxiTZOjRo2ie/fu0eMuXbowduxYAC6++GI++eQTNm3aRPfu3aPrS/7kJz/ho48+ip4zffr0cq9b3pYypXn33Xe56667GDJkCBMmTKCwsJDt27cDcMYZZ9C6dWtSUlI477zz+OSTT6p9z2PHjuW6667joYceIjs7G7fbXen2PCNHjqRDhw74fD569uzJmWeeCZTczmbnzp2cddZZZGZmcu+995a7nc0555zDBx98QFFREe+88w6nnnoqKSkp1Za7UaPCKHEoFH/STFB2VIh8VzoAoYLE95IC4TAuwuSJ3nkjXJh4mSyJoU57biLiAh4FzgB2Al+IyBtKqfXHlWEVPay64NChQ/zvf/9jzZo1iAihUAgR4d577wXKbl9zPFvIVLQFTnW2lFFK8fLLL5dZeX/p0qW12s7m5ptvZtKkSbz99tuMHTs2unByRVRnO5urr76a6667jnPPPZfFixeXu0KK3+9nwoQJLFq0iIULF0ZfKizHem5FjjdptphxEaLQ1RxCEE6CVfiDIYWLEAVOOoShKP8I9tWoaVLXPbdRwBal1DdKqWLgeWBKHV8zrrz00ktccsklfPvtt2RlZbFjxw66d+/Oxx9/XG767du38/nnnwPw3HPPMW7cOPr06UNWVhZbtuiFZZ9++mlOO+20Kq9d3pYypbezOeuss3j44YeJLIC9cuXKaNx///tfDh06REFBAa+99lq0R1kdtm7dSmZmJjfddBMjR45k48aNtdqeB+DIkSN06tQJgKeeeqrCdNOnT+fJJ5/k448/5uyzz652/o0dR4UIi0ORKxVvkmwxIypM0JVKSElSeHAGgiHcEqbIrXuTRUkwDmhJDHWt3DoBO2KOd5qwKCLycxFZLiLL9+/fX8fi1JwFCxYwderUEmHTpk2r0GuyT58+PProo/Tr14/Dhw/zy1/+Er/fz5NPPskFF1xAZmYmjuNw5ZVXVnnt8raUmThxIuvXr486lNx6660EAgEGDRrEgAEDuPXWW6Pnjxo1imnTpjFo0CCmTZsWHW+76KKLOPnkk9m0aROdO3eO7k83d+7c6HY4Dz74IAMHDmTQoEF4PB7OOeecWm3PA3otywsuuIDhw4fTpk2baPjy5cu54oorosdnnnkmH374Iaeffjper7fa+Td2RIVQ4iLgSsUTTg7l5hDGcbvJIyUplFvEfF/szgAgkASmUktiqNMtb0TkfOBspdQV5vgSYLRS6qry0tstb+LH/PnzSzieNEUa27Oz7v/GI4Q55O1E7/wvk2KLmW1z+pHboi+tD6/icLuxDPjVMwmVZ8vug5z0jx4sbjGVCdmvsmvcnXQ8vdzmxpJENMQtb74DusQcdzZhFoulhogKo3AIutNISZaemwojjosC/DhJYCoNBvT4btjXHEieZcos9U9dK7cvgF4i0l1EvMAMwO4eWA/MmjWrSffaGiOCNksqbxopFEASbDTsEEaJmwJJxRVIvAkwHNLKzfGlE1ZCyHpLNlnqVLkppYLAVcAiYAPwglKqrP931fnEWzRLI6cxPjOOmQqgPGm4CUOwKNEi4UJPLC9y/LiToecWDADg8frIx4eyPbcmS51P4lZKvQ0c93pRfr+fgwcP0rp16xq5sluaLkopDh48iN/vT7QocUVUGMQFPu0sES7MwfEk9h4dtEzFThqe0IGEygIQMj03n9dDHn6UncTdZEn6FUo6d+7Mzp07SUZPSkvy4vf76dy5c6LFiCsOIULiRnzazb0g7whpGW0TJk84rFfgV46b4iSZnhCZU+n3eslTfsQuv9VkSXrl5vF4SqwAYrE0VVwqiBIXLr9WboV5Ryh/+n/9EFJ6wjTiIuhOxVec+C1mwiG9C4DP5yMfP+lJskyZpf6xCydbLA0ElwqhHDcufzMACvMSO0E5ZHpuOA4hdxp+lfieW9h4S3q9XvLw4wQSL5MlMVjlZrE0EBxChMWNJ0Urt+JkUW7iJuxJw08xhGq/9VOtZDL7tzkuD0VOStIsU2apf6xys1gaCG4VQjkuvKnaoSTR+6eFlMJDCOXyEPYaA2mCzYAqpL0lHbeHYiclKTw4LYnBKjeLpYHgEEKJG2+q7rmFChLr5h4KKdwEwXGDV48DkuAluEIR5ebyUJREy5RZ6h+r3CyWBoILPebmT4+svpHYnlswFMIlChwPjvHgDCZ4Xlk4YpZ0ewm60vCFrHJrqljlZrE0ENxob8kUo9wSvVdZRJEolwfxa1NpYf6RRIpE2EwFcLndhNwp+FVhUqzkYql/rHKzWBoIkTllaampFCsXKsFzuCLOGzge3Ea5FecmtjcZHXNzeQl50vUk82BhQmWyJAar3CyWBoJLhcBxk+pxkUcKJFi5qYhyc3lwpWjlVpTgcUBl5rk5Hi/Kk6oDk2ArHkv9Y5WbxdJAcJsxN7fLIR8/ToKVW2QdR3F58JrpCcEEbw4aMjK53V6Uxzi52FVKmiRWuVksDQGl8EgIHA+AXoU/wXO4wmbhZuW48aRGNgdNDrOk2+MFX0S52bluTRGr3CyWBoAK6x2mcVwAFDopuBK8+oYyzhvi8uBPjXhwJtpUqmVyu495cKoiuzNAU8QqN4ulAXDMeUMvB1vspOIJJbZHEooZc0tJN3PvEjw9IbK2pMvjia7BGUjwOKAlMVjlZrE0ACLjWyqi3FypeBM8hysYMIrE7SXN7yFP+RJuAlShSG/Se2wNzgSPA1oSg1VuFksDIBxx3jDKLehOxRtO7Cr8gWI95ubyeEnzubUHZ6I9E0PHeriRccBiq9yaJFa5WSwNgGBAKzdc2qEk5E4jJcHKLRTTc0v1uMhTvoTvn6bCZuFmx40v4uSSb70lmyJWuVksDYDi4ogiMcrNk0YKiVVuweAx5eZ2OeRLCk6iPTgjuxK4PHiNk0uilwSzJAar3CyWBkBxQJsAHZc2SypvOh6CYNzxE0HEocTj9QJQJCm4Er05qJkKgOMhNSWVoHIIWeXWJLHKzWJpAER6bm63ViSRVfhVAse4QsZU6jIyFTmpuBPs5CLhiPnWTbrfQx7+hJaRJXFY5WaxNAACRXp9RMfjA0DMHK6iBG5YGja9yUjPLRk8OJ2AMdV6Ukn1uqxya8JY5WaxNACCRdrc5/j0eomOWag4Pzc7USKhzCTy6HwyV2rCt5hxQvkEcIPLQ7rPTb7yIwGr3JoiVrlZLA2AkOl9OMYc6TYKpSiRbu7GM9Jj5pOFPGn4VGKdXNzBfIrED0Caz00ufsQuv9UkscrNYmkAhEzPzeVPA8BtFipOpHJTZqmt1Ayzv5wnLeH7p7mCBRQ5KQB43Q4FpCR8DU5LYrDKzWJpAISNcov02DypWrkFEqncjLkvspdb2JOGg0roKiWecAEBV0r0uMjx4w7a3bibIla5WSwNgMiCxJGJyb40M4crkavwF+Xp8a2oB6fuVSZUuYUKCLhSo8fFTlrCPTgticEqN4ulARAs1AojLU0rt5S0yELFiXOWcAK55HOsl0QSrMLvUwWEYnpuAXdKwj04LYnBKjeLpQEQUWLpZnzLZ5RbOIETlF2BPIocf/TY8Zm1HBO0Cn8gFCYlnE/YkxYNC7pS8SV4mTJLYrDKzWJpCBQdIaBceI1DSXpqGgHlSmwvKXCYPFfz6LE7RSu3gtwjCZHncF4xbeQIobQTomGhiJNLOJwQmSyJwyo3i6UB4Ck4wCFpDo7+y6b5PeST2C1mmgUOku9rGz2ObDFTnJcY5XYwp4DWHIX0dtEwFenFJXpZMEu9UyvlJiJzROQ7EVllPj+IifudiGwRkU0iclbtRbVYmi7ewgPkuFpGjz0uhzxSErYKv1KKluFDFKcc6yV5U/SYW6LMkocP7sUtYTzNjim3qInSznVrcrjjkMcDSqn7YgNEpD8wAxgAdATeE5HeSqlQHK5nsTQ50ooPUuBrUyKsIIELFe86eJgOHGV3847RMK/x4AwkyIPz8M7NALTo0D0aFlmmzCq3pkddmSWnAM8rpYqUUtuALcCoOrqWxdKoUeEw7UK7KUzrWCK8SBI3QXn316txRJHSaUA0LLrFTKIcSvasB6D5iZnRsKhyS+DYpCUxxEO5XSUiX4nIEyISsZt0AnbEpNlpwsogIj8XkeUisnz//v1xEMdiaVzs2plFM8lHTuhbIrzIlbhV+I9uXQLACb1GRMNSoh6ciTGVpuz9knxJRVp2i4a5jHILJEjhWhJHlcpNRN4TkbXlfKYAjwE9gSHAbuD+mgqglPqnUmqEUmpE27Ztqz7BYmli7F3/EQDNewwvEV7sJG4V/vTtH7DXaUfzTscUblqqnyLlSYgH5/6jBWQWLue7VqPBcUXDXcaDszCRa3BaEkKVY25KqdOrk5GIPA78P3P4HdAlJrqzCbNYLDWkeNN75JJC18xTS4QH3Gn4CutfuW3evJ6hRctZ13kG7USi4WleN3n4UAlwcvn8Pws4Vw6yZ+jUEuGeyBqceUfJqHepLImktt6SHWIOpwJrze83gBki4hOR7kAvYFltrmWxNEWOHs2m/+H/sbnZyXh9vhJxIXcqflW/yq24OEDOS9cQFoce595QIi7N5yZP1b8H5zfbtzNs3f+xz92R9if/uEScx/TcEjUOaEkctfWWvEdEhgAKyAJ+AaCUWiciLwDrgSDwa+spabHUnDXPz2EseTSbcE2ZuOgE5Xri6JFDbPrnLEYWf8GawbeQ2a57iXiv2yFP/DiB+lO469auxPPyLDrLYY6c9yq4PCXiIyu52DG3pketlJtS6pJK4u4E7qxN/hZLU2bV+wsZ8918lrc8ixHDJpZN4E3HRwBCgTKNejwJBEMse+cpuq/4C8PUflb0mc3wqTeUm7ZIUkivh+kJe/YfYO0rd3PKrqcIiZu9k56iS/9Ty6RLMQtNhxK4TJklMcRjnpvFYokzX739T/ou/T3b3D3o+9N/lp/Ipycoq6IcJLVV3GUIBEN8/u5C2n1xL2PVN+xwdWbr2S8yfOQZFZ5T6KTSog6nJ+w+cJBVrz7AqJ1PcbocZX3zcXSe+Xe6tOtabvrU1FSKlJtwkd2Nu6lhlZvFkkSEgwFWPnENw3c9x1rPQLpc+SLpGS3KTSu+yIalOfjjqNyCwSBL//Msrb58mFPDX7PHace6kXfR/6wrkCp6iAFXCp7Q4bjJEmH33r2sfe1+hu1awDlylK8zRhA8Zw79B4yv9Lx0n5s8/AmbnmBJHFa5WSxJwtEDe9j5r+kML1zFJ63OY8TPH8Pv91eY3mU2Ls3PycbfpvyeS00IBYMsf3sebVc+wli1nd1Oe9YP/xP9zvkF7d2+qjMAAq40vHEcc9u7ewcbXruXYXte5AzJZ1Oz0YTOupleA79XrfPTfG7y8UOxNUs2NZqEcivMz+HAd9+QfWgfxTmHCBUcIRQK4oiDxyWINxXH3wzHn4EvvQWpGS1JTW9BekYzPG5X1RewWGrJN2uXkvLyxZwUPsRnmXcwdto1SIybfXlEFiouquVCxeFQmFWL5nPCF/cyWu1iu6sLa0fcx4AzZ9GhhmN5IU8a/qLaK7dDB/ax/qU/MWz3Qk6lmHUtTuOEH/yOPn3G1CifNJ+L/cqPu56WKTty9Ai7t64le+dGQoe2IQWHkcIjeMKFhMUFjhvxpaNS2+Ckt8HbvD1pLdvTvG1HWrTtFN1p3VJ7GpVyKy4qZNu6ZRze+gXOntWk53xDm+LvOIFDdEZPtqsJISUcIZV8SaHASaPISSXgSkUcF2EEJQ5EvxUoZb5BCINSCAqU2W7DHEfiAESF9TkoJJLe5KXTRj46T/1t0tfgXmqStjxUrU6u/tm1uk5t847jxctmVXnmndVeciSdrZNf4pQR5TiPlEPEzb2wFsptzSf/D+8HcxgW+pptTldWjv4bQ868BHGO76UuHPHgVAqqUM7lkZ+fyxcL72Fw1jxOIY9VLb5Ph8m3kXnS4OOSx+d2kU8KLepobcl9e3ez5fM3CH/7Oe2OrKJHKIu+cqyui5WbHEmnSHw4hHGpIKkqnzQpKje/PPwccVqS425Jvrs5YccHLh9hx01I3IgK46gQjgohKoCEQ4gK4qggEg7hqKCJ198uzLcK4lIhHEIIYZQS80QKSiTamoQxbVokDkFJzO+Y1kiJ8J37RE773et1Ura1pVEpt283LKfPG5MBOKrS+M7ble0tR/NN8244LbuS1vIE/Bmt8aa1wOPxEAqHCQTDBIvydW+uIIdA/hH9u/AoqjAHKc5BinNxB3JwB/Pwh3JRwTCCwiGMKP2tEKNBdIwCEP078iAA+lhEx4mAOdbn67QI5qFyYtRZ5EGL5BPJuxrNaLwabSn3Z4Uh1Y+tKu+aUeb8SgJqfK0qTjjeF47N3qF0Ou/P9OtQffOiN9VsMXMcbu6Hdmex49mrGJz7MXulNcuH/JmhP/wl3d21axKUNx03IQgWgadik2p5rFr8Cm0/vJnT1F7WpY3i6A//xLD+NeuplUeR48cVjJ+p9Jtvvmb7R8/Qeuf79Aus4xQJk4efb1P682Xb7+PrNJCWXfrR9sS++NOa07qUkldKkZN7lJyDezh6cDd5h/dQlL2HUM5enLz9uAsOkFp8iBZFu3GpAK5wEDcBPAQJ4xDETQgXYXEIiZsw+lv/dhESNwHxE3a5CYsLJW7C4kY5+ltEcMSosOiLZxitk1XMCzfRF/NjafVLeCQ+6E3eVaUalXLr1n8EK3b/jY79xtD+xN70c+x2dZbGiz/dLFRcg6WlVDjEly//lT7r7qe3CvFxt18xcvofaJcaH3OYeGO2mKmmctu/dyffPDOb0Tn/ZYfTiY2nP82AsefGRR7Qy5S5Q7VbtzYnN5fV7z9HyrqFDClaQQ9RZLm7s6rrZbQZPoWuA0+hfzVNuCJCRkZzMjKa07Fbn1rJZamYRqXcPF4/w8+ZlWgxLJZ6wW8mKFd3Dtf2jSsoePkqhgfW85V3KM0ueJjxvTKrPrEGiE+bSgMFR/Gkta40bTgUZunrf6fvV3cxVOWz9MQrGDLzDnxmt/F4Uew6/jU4d+zex/o3H2TId88xTg6zT9rwVfef0vV7V9DtxH50i6uklnjSqJSbxdKUSDU9t1AVbu5FhXmsfPZWhm2fT56k8vng/2P0ub/EccXfshFZqLggJxtPm4rTZW3+iqMvXc3JxavY5OlPyrRHGN13eMUn1IKgOxVfYc3G3NZ/vZVv3/krpxx8hbMkn6/ThpEz7gF6jp7MCS7bbDYEbC1ZLA2UtLQMQkoIV7IK/4bP/h/p/72BMWoXS5udQY+LH+TkdjV1rao+br9Wbvm52TQrJ76wsIDlz93OiG//RWtxs2LgLQw777rjdmCpDoW+1mQU5ECwGNzeStOu+mo1+9+9j/E579CXIJtbnUbg7Jvp1efkOpPPUjdY5WaxNFBSfW6OkkooP7tM3L7dO9i24HpGH13Ed9KOVROeYPSEaXUuU0ZrvW3jkf07aB8TrpRi+Ydv0vbD3zFO7WR1xql0mfkwwzt0q3OZwukdIBvI3QstupSJV0rx5bKPyP/gAU4u+BAlDls6TOLEyTfTt1P/OpfPUjdY5WaxNFBEhL3uDqTnbIuGHT64n02v/oVBO55hGEGWdp5F5o//TKe0+tnwpW3XfgAU7dkMaMWx7stPKX73dkYWLWO3nMDaCY8zeMKF9SIPgLdFR9gJhYd24I9RboVFxXzx/kukr/wHwwOryMPPxq4z6XnujfRrc2K9yWepG6xys1gaMAfTezPgyGJWLXqK4o3vMvDQfxkjRaxIP40OU//M6JMG1as8HU5ow3bVjvSsRXz+Qkuaff0yAwPrOEIaX/a6hsxpN9Ghnicqp3XJhLWwb8OnnNBxGBtWfMiRla/R/8A7jOcwB6QVK/tcS//J1zAwPf5rdFoSg6gaTLCta0aMGKGWL1+eaDEslgbDmiX/pd87F+KWMAXKy5qWp9PujN/QdUDt54cdL+/O/xNnZt0HwE6nA3tPmkG/H15NarPKvSfriqOFAXb8ZSR9yaIYDylSTFA5bMgYg2fYTPqcegFSzeXFLHWDiKxQSo2Ia55WuVksDZtvN68m58AuThoyHn+c5qvVBqUUW9atINXnpmPPQUgSzDddvWY1uYsfwuv1ktJjDCeNnoS/WSXunJZ6xSo3i8VisTQ66kK5Jf6VymKxWCyWOGOVm8VisVgaHUlllhSR/cC3cciqDXAgDvnUB1bWuqMhyduQZIWGJW9DkhUalrzxkrWrUiquqzAnlXKLFyKyPN7227rCylp3NCR5G5Ks0LDkbUiyQsOSN5lltWZJi8VisTQ6rHKzWCwWS6OjsSq3fyZagBpgZa07GpK8DUlWaFjyNiRZoWHJm7SyNsoxN4vFYrE0bRprz81isVgsTRir3CwWi8XS6GhUyk1EzhaRTSKyRURuTrQ8sYhIFxH5QETWi8g6EfmNCZ8jIt+JyCrz+UGiZY0gIlkissbItdyEtRKR/4rI1+a7ZRLI2Sem/FaJyFERmZ1MZSsiT4jIPhFZGxNWblmK5iHzHH8lIsOSQNZ7RWSjkedVEWlhwruJSEFMGc+tT1krkbfCuheR35my3SQiZyWBrAtj5MwSkVUmPBnKtqJ2Kymf3RIopRrFB3ABW4EegBdYDfRPtFwx8nUAhpnfGcBmoD8wB/htouWrQOYsoE2psHuAm83vm4G7Ey1nOc/BHqBrMpUtcCowDFhbVVkCPwDeAQQYAyxNAlnPBNzm990xsnaLTZdEZVtu3Zv/3GrAB3Q3bYYrkbKWir8fuC2Jyraidispn93YT2PquY0CtiilvlFKFQPPA1MSLFMUpdRupdSX5ncOsAHolFipjospwFPm91PAjxInSrl8H9iqlIrHSjdxQyn1EXCoVHBFZTkF+LfSLAFaiEiHehGU8mVVSr2rlAqawyVA5/qSpyoqKNuKmAI8r5QqUkptA7ag2456oTJZRUSAC4EF9SVPVVTSbiXlsxtLY1JunYAdMcc7SVLlISLdgKHAUhN0lenCP5EMZr4YFPCuiKwQkZ+bsHZKqd3m9x6gXWJEq5AZlGwckrVsoeKyTPZn+XL023mE7iKyUkQ+FJHxiRKqHMqr+2Qu2/HAXqXU1zFhSVO2pdqtpH92G5NyaxCISDrwMjBbKXUUeAzoCQwBdqPNEsnCOKXUMOAc4NcicmpspNJ2iKSZSyIiXuBc4EUTlMxlW4JkK8uKEJE/AEHgWRO0GzhRKTUUuA54TkSaJUq+GBpM3cdwESVfzJKmbMtpt6Ik67PbmJTbd0CXmOPOJixpEBEP+gF5Vin1CoBSaq9SKqSUCgOPU48mkqpQSn1nvvcBr6Jl2xsxM5jvfYmTsAznAF8qpfZCcpetoaKyTMpnWURmAT8EZpoGDWPeO2h+r0CPYfVOmJCGSuo+WcvWDZwHLIyEJUvZltdu0QCe3cak3L4AeolId/MGPwN4I8EyRTH29HnABqXUX2PCY+3RU4G1pc9NBCKSJiIZkd9oh4K16DL9iUn2E+D1xEhYLiXefJO1bGOoqCzfAC41nmdjgCMxJqCEICJnAzcC5yql8mPC24qIy/zuAfQCvkmMlMeopO7fAGaIiE9EuqPlXVbf8pXD6cBGpdTOSEAylG1F7RYN4dlNlCdLXXzQnjqb0W84f0i0PKVkG4fuun8FrDKfHwBPA2tM+BtAh0TLauTtgfYqWw2si5Qn0Bp4H/gaeA9olWhZjVxpwEGgeUxY0pQtWunuBgLocYifVlSWaE+zR81zvAYYkQSybkGPpUSe3bkm7TTzfKwCvgQmJ0nZVlj3wB9M2W4Czkm0rCZ8PnBlqbTJULYVtVtJ+ezGfuzyWxaLxWJpdDQms6TFYrFYLIBVbhaLxWJphFjlZrFYLJZGh1VuFovFYml0WOVmsVgslkaHVW4Wi8ViaXRY5WaxWCyWRodVbhaLxWJpdFjlZrFYLJZGh1VuFovFYml0WOVmsVgslkaHVW4Wi8ViaXQkvXITkW4iosx+R5YGiohcLSK7RGR1Aq49R0SeqYfrzBKRTyqJXywiV9S1HE2NyurX1n3DREQOi8i3IjLjePNIeuVmqTkiMldEcs2nWEQCMcfvJEisOcCvlFKDY+ScIyJzEiRPUmFe4rJqmP4DEckXkY0icnolaS8Ukc9M2sWl4nqLyOsisl9EDonIIhHpUyrNtSKyR0SOisgTIuKrqRwi8n5NXlKNsphfnbQNnTque5+ps6OmDq+LiRsjIv819b5fRF6M3QdPRFqIyFMiss985pST/29EZJuI5InIBhHpbcIniEg4pt3JFZGfxJy3WEQKY+I2xearlGoJ3AvcXN1yKU2dKzfb46p/lFJXKqXSlVLpwP8BCyPHSqlzIunquW5akXybhdaYJHqeFwAr0ftq/QF4SUTaVpD2EPAgcFc5cS3Q+531AdqhN+6MbkArImehG5jvA13R+/zdXhM5RGQm4KnJzSUjDbTu56A3Oe0KTARuFL3xLEBL4J9ANxOfAzwZc+4DQKqJHwVcIiKXRSJNT/SnwCQgHb1L+4GY83fFtDvpSqmnSsl2VUxcH8qy1tzjcVEnyk1EskTkJhH5CsgTEbd5S/hMRLJFZLWITIhJv1hE/iIiy8wbxusi0qqCvC8zbwg5IvKNiPyiVPwUEVll8tkaqUgRaS4i80Rkt4h8JyJ/FrPLbSX30VNE/iciB0XkgIg8KyItYuIOicgwc9zRvP1MMMfnisg6c7+LRaRfqfL5rYh8JSJHRGShiPhrXtI1p4K6USJyUkya+SLy55jjH5oyzTZ1OKiG14yUc7iKdDea+tklIlfEymVkelRE3jJ1v1REesac+zcR2WHqfYWIjC+Vvd+Uc46IfCkisT3Im82zkiMi60VkakzcLBH5VEQeEJGD6Maiqvu9T7RZZZuInFMquqvJL0dE3hWRNlXlV07+vYFhwB+VUgVKqZfRG0NOKy+9Uuo9pdQLwK5y4pYppeYppQ4ppQLoBq2PiEQalZ8A85RS65RSh4E/AbOqK4eINAf+iN7F+7gRkUtFm6kOisit5jku02MREY+ILBCRl0XEa4KbbN2j6+9PSqnDSqkNwOOY+lNKvaOUelEpdVTp3dUfAcbGnDsZuEcpla+UykLvyH25kcNB1+u1Sqn1SrNVKXWopvdUCWHg+F8o6mj31iz0jq1dgBSgE3qX5B+gFeoZ5ritSb8Y+A4YiN5R+WXgGRPXDb0TrNscTwJ6ond8PQ3IB4aZuFHAEZO/Y67b18S9CvzD5H8C+g31F1Xcx0kmLx/QFvgIeDAm/mfAevTbzSLgPhPeG8gz53rQf+wtgDemfJYBHdE9mg2U2oW31E642ZV8xlVxD3MiZVle3ZgwBZwUk2Y+8GfzeyiwDxgNuNB/lizAV4Pn4WygEEirIs0eYIApz2di5TIyHTR17AaeBZ6POf9i9FueG7je5OWPKYMAcL6pj98C2wCPib/A1IUDTDd118HEzQKCwNUm75RK7mGWuc7PTFn9Eq1QIpsCL0bvUNwb/b9YDNxVQV5/B/5eQdxUYEOpsEeAh6uohyuAxVWk+RGwO+Z4NTA95riNqZfW1ZEDvSvztZT6H9ewPekP5KL/C17gPlPOp8c+46ZM3zLPiqup1z26Z6aAdjFh5wNrKsh7NrAk5vgAMCrm+A/AYfP7RJP3b9A7tG9D9+gdEz8BKAb2mrgHiPn/m/vfb67xKTChHHl6mPIfUtNnRilVp8rt8pjjm4CnS6VZBPwk5kbvionrbwrGRRV/CuA14Dfm9z+AB8pJ0w4oin04gYuAD2p4Xz8CVpYKe4Nj29n7TNitwAsxaRy08p4QUz4Xx8TfA8yto7qYQ1nldnmpNJUpt8fQb36x6TcBp1Xz+stN/tdUke4J4C8xxydRVrn9Kyb+B8DGSvI7DAyOKYPYP60D7AbGV3DuKmCK+T0L2F7Ne50FbIk5TjX30D7mOb8lJv5XwH+Oo04vib0fE3YnML+K8ypVbkBn85xeFBO2FTg75thj7qlbVXIAI0xZuqmdcrsNWFCqXIspqdzeAD4EHsIolKZe9+gXWIV5yTNhZwBZ5aQdhDZfj48JewZ4BchA/x+3AkUm7hST91to03Y3YDPwMxPfHt2OO0B3dMfgHzF5jzb5+tAvzDlAz3Lkus9c57WallVdjrntiPndFbjAmLWyRSQb/RbWoYL036L/RGW67SJyjogsMSbBbHQjF0nXBV0Bpelq8tsdc/1/oHtwFSIi7UTkedFmzKPoyi4t0+PoHufDSqkiE9bR3AMASqmwub9OMeftifmdj7ZZ1xc7qk4SpStwfam664K+x+owEpgBzBGRysZdOpaSqzwZKywzY+bdYMy82UBzStZVND9THzsj92BMXqti7m9gRedWg6iMSpt6oGTdxqPec4FmpcKaoRuI40L0mM276B7DgkquFfmdU5kcxmz1d/SLZ/B45TKUeDZMuR4slWYMuoG+S5lWMYamWve5MfEVpjWm/3fQdfVxTNQ1QAHwNXocdgG67DDhoM2W2UqbLf+Bbo9RSu1R2lwZVkptQ1uvoqZTpdRSpVSOUqpI6bG4TyPnxsh1gpHhVKXUj8q5v0qpS+UW+4DtQPfcWsR80pRSsQPcXWJ+n4ju4scOTiLaS+tltDZvp5RqAbyNNlFGrtOTsuxA99zaxFy/mVJqQBX38H/mPjKVUs3Qpq/ItRCRdPRA/Tx04x0ZJ9yFVgqRdGLu77sqrlcGERkvJT2OSn9Kjy1Vh9J//nz0m2aE9jG/dwB3lqq71FINYMUX0g3Na2gTSYdKku5G9xwidKkoYWlMGdwIXAi0NM/FEWLqKjY/0/B2BnaJSFf0C8pVQGtz7tpS55Yur0SzDughIhkxYYNNeI0RkZZoxfaGUurOcq41uNR19iqlDlYhRzN0z22hiOwBvjDxO4/jmS3xbIhICmUdDd4F/gK8LyLtSsU1ybpXeox0N2XrL5rWlMF7aOvM06XOP6SUmqmUam/aSgc9nALaelNMyfKprKwUlesbRclyB+0Ic6SUwq029TUV4BlgsoicJSIuEfGLdhWNbcwuFpH+IpIK3AG8pJQKlcrHi+7G7geCZsD2zJj4ecBlIvJ9EXFEpJOI9FVK7UY//PeLSDMT11NETqtC7gz0288REekE3FAq/m/AcqXUFeju+VwT/gIwycjhQY8BFQGfVVVQpVFKfaxKehyV/hxXxZdiFfBjUzdno8cyIzwOXCkio0WTJiKTIn8u0Y4e86u4h0iP1ltJshfQddfPPAO31kD+DLRtfj/gFpHbKPt2O1xEzhPt8TYbXR9L0GOwypyLaG+wgTW4dr2jlNqMrrM/mv/SVHSv5eXy0kf+c2jzoGPO8Zi4Zughgk+VUuW5Xf8b+Kn5b7YAbkGbiKuS4wi6dzTEfCJv5cOBpebai6V6U0FeQrcfp4h2EplD2YYQpdQ9wHNoBRfb+2qydY+uv1tEpKWI9EWPCc4HMG3a/4BHlFJzS59o2sjW5vk5B/g58GcjRz6wEO19mWHa8p8D/8+cO1FEupo2owvaU/d1E9fC6AK/aIe2mcCpwH9KieBB19VxUS/KTSm1A5gC/B79IO1AK4rY6z+NLvQ9gB/dHS2dT44JfwE9pvJjtK09Er8MuAw9eHkEbYOP9KAuRTeu6825L1F5TwL0AOkwk9dbaPszoL0y0U4QvzRB1wHDRGSmUmoTupf3MLr3ORmYrJQqruJ6ieI3aBmzgZnonhYASqnl6D/EI+hy24LxtjJ0QZsUqqLSNzel1Dvo8ZIPzDWWmKjqPNyL0H+MzWhzcCFlzUmvox0GDqPHLc5TSgWUUuuB+4HP0YPfmdW8nzpF9FzFMg1ODDPQPaPD6IbjfKVUpJGeKSKxb/KXoM1IjwHjze/HTdxUtOn4slIWgRMBlFL/QY8JfwBsR5fvH6uSQ2n2RD4YBYLu9UX+B9V6dpRS69BOHc+jeyK5aCenMs+GUupP6Of3vRhLSlOu+z+ih2q+RbeH95o6BT0G2wNtdYrWfcy5w9H+BDnoXvFMUxcRrkLXxS50GT6HHjsH7Yj2GdpB5zOTT6RN96CVZMSh5GrgR0Zxx+KiCg/ryoh48iQU0RNLn1FK/SvRsliqj3mLXg0MUtqNvLK0u4AblVLVWi1C9NSJtWgnndqO2ViSDPOm/4JS6pTjODcd/SLWy4znWBohInIjWnGPOp7z7QolluNGKVWslOpXlWIz3Iw2payoKIGITBW9okJL4G7gTavYGidKqZ01UWwiMllEUkUkDT3mvgbt+WtphIjIfrQX5e1Vpa2IJq/cpORSVbGfyswClhqilPq3UqqXUmp4Jcl+gTY3bQVCHDP5Jg32eUkYU9Dmr11oR4MZ5XhF1im27usPpVRbpdQApdRbx5tHUpglLRaLxWKJJ02+52axWCyWxkeyLAQKQJs2bVS3bt0SLYbFYrFY6pEVK1YcUEpVtPjzcZFUyq1bt24sX7480WJYLBaLpR4RkW+rTlUzrFnSYrFYLI0Oq9wsliRj3769rFj6UaLFsFgaNElllrRYLJA9bxrDi9ZQOHgvfn+9bPNnsTQ6kl65BQIBdu7cSWFhYaJFsTQg/H4/nTt3xuNpeBtA9y5aA8C+nVs48aSkXurQYklakl657dy5k4yMDLp164ZImbVSLZYyKKU4ePAgO3fupHv37okWp8aElOASRf6RA1Untlgs5ZL0Y26FhYW0bt3aKjZLtRERWrdu3WB7+4XiA6Aop/SWZRaLpbokvXIDrGKz1JiG/Mzki95aL5CXnVhBLJYGTINQbhZLU6JQUgAI5R1OsCQWS8PFKrdqICJcf/310eP77ruPOXPmJE6gKli8eDGffVbjfVGjrFq1ipNPPpkBAwYwaNAgFi5cGEfpLFVR6KQBEC6wys1iOV6scqsGPp+PV155hQMH4jvAr5QiHD7uvfgqpLbKLTU1lX//+9+sW7eO//znP8yePZvs7Oz4CWiplJBoPy9VlJNgSSyWhotVbtXA7Xbz85//nAceeKBM3P79+5k2bRojR45k5MiRfPqp3sh3zpw53HfffdF0AwcOJCsri6ysLPr06cOll17KwIED2bFjBzfccAMDBw4kMzMz2ktavHgxEyZM4Pzzz6dv377MnDmT8nZweOihh+jfvz+DBg1ixowZZGVlMXfuXB544AGGDBnCxx9/XKmMl1xyCSeffDK9evXi8cf15sy9e/emV69eAHTs2JETTjiB/fv3l7n2iy++yMCBAxk8eDCnnnoqoB2ALrvsMjIzMxk6dCgffPABAPPnz+dHP/oRZ5xxBt26deORRx7hr3/9K0OHDmXMmDEcOnQIgMcff5yRI0cyePBgpk2bRn5+fpnrjhkzhnXrjm0IPGHChEa1bJuYzYed4twqUtaMYDDEu4vepDgY3xcqpRSBUPxf0sJhu2OJ5fhJ+qkAsdz+5jrW7zoa1zz7d2zGHycPqDLdr3/9awYNGsSNN95YIvw3v/kN1157LePGjWP79u2cddZZbNiwodK8vv76a5566inGjBnDyy+/zKpVq1i9ejUHDhxg5MiRUUWxcuVK1q1bR8eOHRk7diyffvop48aNK5HXXXfdxbZt2/D5fGRnZ9OiRQuuvPJK0tPT+e1vfwvAj3/84wpl/Oqrr1iyZAl5eXkMHTqUSZMm0bFjx2j+y5Yto7i4mJ49e5a5jzvuuINFixbRqVOnaM/u0UcfRURYs2YNGzdu5Mwzz2TzZr17/Nq1a1m5ciWFhYWcdNJJ3H333axcuZJrr72Wf//738yePZvzzjuPn/3sZwDccsstzJs3j6uvvrrEdadPn84LL7zA7bffzu7du9m9ezcjRoyotMwbEqK0onAF4qvcVi6az5lfXMd7h27n9Itmxy3fhU8/Rtr2xUy+5YW45ZlfFCDrzuEcHPJLxp+XdNv6WRoAtudWTZo1a8all17KQw89VCL8vffe46qrrmLIkCGce+65HD16lNzcyhulrl27MmbMGAA++eQTLrroIlwuF+3ateO0007jiy++AGDUqFF07twZx3EYMmQIWVlZZfIaNGgQM2fO5JlnnsHtLv9dpTIZp0yZQkpKCm3atGHixIksW7Yset7u3bu55JJLePLJJ3Gcso/K2LFjmTVrFo8//jihUCh6PxdffDEAffv2pWvXrlHlNnHiRDIyMmjbti3Nmzdn8uTJAGRmZkbvbe3atYwfP57MzEyeffbZEj20CBdeeCEvvfQSAC+88ALnn39+peXd0HCULkt3MC+u+RZn7wag2cHVcc13xje/Y3JwEcWB+G2anr0ni/7Ot5y8+vdxy9PStGhQPbfq9LDqktmzZzNs2DAuu+yyaFg4HGbJkiVllklyu90lxtNi51ylpaVV63o+ny/62+VyEQyWbTzeeustPvroI958803uvPNO1qxZUyZNRTJCWZf5yPHRo0eZNGkSd955Z1QRl2bu3LksXbqUt956i+HDh7NixYpq34/jONFjx3Gi9zZr1ixee+01Bg8ezPz581m8eHGZfDp16kTr1q356quvWLhwIXPnNq6NkCM9N0+orEm2Nrhd+gUlXEcbFOcePUyr1vHZtUQZZxq3xN/caWka2J5bDWjVqhUXXngh8+bNi4adeeaZPPzww9HjVatWAXr7ni+//BKAL7/8km3btpWb5/jx41m4cCGhUIj9+/fz0UcfMWrUqGrJEw6H2bFjBxMnTuTuu+/myJEj5ObmkpGRQU7OMWeEimQEeP311yksLOTgwYMsXryYkSNHUlxczNSpU7n00ksr7RVt3bqV0aNHc8cdd9C2bVt27NjB+PHjefbZZwHYvHkz27dvp0+fPtW6H4CcnBw6dOhAIBCI5lMe06dP55577uHIkSMMGjSo2vk3BBwz5uYNxbfnJqFiAMLhUFzzjZAXxxVVQoHiuOVlaZpY5VZDrr/++hJekw899BDLly9n0KBB9O/fP9qLmDZtGocOHWLAgAE88sgj9O7du9z8pk6dyqBBgxg8eDDf+973uOeee2jfvn21ZAmFQlx88cVR541rrrmGFi1aMHnyZF599dWoQ0lFMoI2a06cOJExY8Zw66230rFjR1544QU++ugj5s+fz5AhQxgyZEhUId5222288cYbANxwww1kZmYycOBATjnlFAYPHsyvfvUrwuEwmZmZTJ8+nfnz55fosVXFn/70J0aPHs3YsWPp27dvNPyNN97gtttuix6ff/75PP/881x44YXVzruhIMYs6Y9zz41QAABXsCC++RriuVxYKBiIW16WpomU54GXKEaMGKFKe71t2LCBfv36JUiixs2cOXNKOJ40Nhrqs7Pj9r50UbvZJ6054Y/fxC3fpfNvYnTWXFakjmf4jf8vbvkypzkAX02cz6DTpsYlyy3L3+Wk/3eByf9IXPK0JC8iskIpFVevMNtzs1iSDMeMuaWoOPewQnpc0xuOr7kzQrAgfkooHLA9N0vtaFAOJZb4ksyrrDRlIvPcUlUBKAXxWiczrJWbL97mTkOwIH6TzsNBO+ZmqR2252axJBkRhxKXKEJFcexlhSM9t7oZcwsXxlG5hY55Bqs6WMXH0vixys1iSTIiyg2gMC+O401GufnjrNwCuABQRfGbdB4OHeu5FRXWTU/T0rixys1iSTJcKkye0nMSC3Pjp9wkotziPJYXNs2IiuNyYeGYOZ15Odlxy9fSdLDKzWJJMhzC5Iie6F8XPbfUOCs3pw7WwlQxPbfCPLuAtKXmWOVWTV577TVEhI0bN1aYJisri4EDB9apHKtWreLtt98+7vMjk7779+/PgAED+Nvf/hZH6SzxwCFMnpMOQHE8lZsyY24SJBwoilOeCg96Xp4TiN/4YDh0zFuyKN9OBbDUHKvcqsmCBQsYN24cCxYsKDe+vKWxakpkfcbKqK1yc7vd3H///axfv54lS5bw6KOPsn79+uPOzxJ/XIQpNMotUBC/hcIlZmWSgrw45auOjQ+64rgWpopxKImrgrc0Gaxyqwa5ubl88sknzJs3j+effz4avnjxYsaPH8+5555L//79Aa3kZs6cSb9+/Tj//POjW7a8//77DB06lMzMTC6//HKKivSbc7du3bjpppsYNmwYL774Yonrlt5Spri4mNtuu42FCxcyZMgQFi5cSF5eHpdffjmjRo1i6NChvP7664DeYmbKlClMmDCBXr16cfvttwPQoUMHhg0bBkBGRgb9+vXju+++K3PPH374YXR1kqFDh5KTk4NSqsLteU477TSmTJlCjx49uPnmm3n22WcZNWoUmZmZbN26FYA333yT0aNHM3ToUE4//XT27t1b5rozZszgrbfeih7PmjUrukhyU8EhTKE7A4i3cjvWGyqI11he+JgS8gTj5/gR23MrjuMUA0vToWHNc3vnZthTdmHgWtE+E865q9Ikr7/+OmeffTa9e/emdevWrFixguHDhwN63ci1a9fSvXt3srKy2LRpE/PmzWPs2LFcfvnl/P3vf+eqq65i1qxZvP/++/Tu3ZtLL72Uxx57jNmzZwPQunXr6DqUsZTeUsbr9XLHHXewfPlyHnnkEQB+//vf873vfY8nnniC7OxsRo0axemnnw7o7WrWrl1LamoqI0eOZNKkSSW2hsnKymLlypWMHj26zLXvu+8+Hn30UcaOHUtubi5+v59XXnmlwu15Vq9ezYYNG2jVqhU9evTgiiuuYNmyZfztb3/j4Ycf5sEHH2TcuHEsWbIEEeFf//oX99xzD/fff3+J60a2s5k0aRLFxcW8//77PPbYY9WszMaBizABo9zCcWzYI8t6ARTGqecWDgaib8hxXQszRrmFrHKzHAe251YNFixYwIwZMwDds4g1TY4aNYru3btHj7t06cLYsWMBuPjii/nkk0/YtGkT3bt3j64v+ZOf/ISPPvooes706dPLvW55W8qU5t133+Wuu+5iyJAhTJgwgcLCQrZv3w7AGWecQevWrUlJSeG8887jk08+iZ6Xm5vLtGnTePDBB2nWrFm5177uuut46KGHyM7Oxu12V7o9z8iRI+nQoQM+n4+ePXty5plnAiW3s9m5cydnnXUWmZmZ3HvvveVuZ3POOefwwQcfUFRUxDvvvMOpp55KSkpKuffeGFFK4RAm4NV1Ei6qG7NkUX588g3GrAEZz/lzsWbJYBznz1maDg2r51ZFD6suOHToEP/73/9Ys2YNIkIoFEJEuPfee4Gy29dUtIVMZVS0BU51tpRRSvHyyy+XWXl/6dKlFcoSCASYNm0aM2fO5Lzzziv32jfffDOTJk3i7bffZuzYsSxatKjSe6jOdjZXX3011113Heeeey6LFy8ud4UUv9/PhAkTWLRoEQsXLoy+VDQVQmGFizB4MwgrQRXGzwNRVPzHsYKhIF7zO57z51RMzy0cx/lzlqZDnffcRORsEdkkIltE5Oa6vl68eemll7jkkkv49ttvycrKYseOHXTv3p2PP/643PTbt2/n888/B+C5555j3Lhx9OnTh6ysLLZs2QLA008/zWmnnVbltcvbUqb0djZnnXUWDz/8MJEFsFeuXBmN++9//8uhQ4coKCjgtddeY+zYsSil+OlPf0q/fv247rrrKr12ZmYmN910EyNHjmTjxo212p4H4MiRI3Tq1AmAp556qsJ006dP58knn+Tjjz/m7LPPrnb+jYFQOIQjCrfHQx5+iKN7vYSDhJR+wQnGSWkGY9aAjOdamFa5WWpLnSo3EXEBjwLnAP2Bi0Skf11eM94sWLCAqVNLrnQ+bdq0Cr0m+/Tpw6OPPkq/fv04fPgwv/zlL/H7/Tz55JNccMEFZGZm4jgOV155ZZXXLm9LmYkTJ7J+/fqoQ8mtt95KIBBg0KBBDBgwgFtvvTV6/qhRo5g2bRqDBg1i2rRpjBgxgk8//ZSnn36a//3vf1GHkYj35dy5c6Pb4Tz44IMMHDiQQYMG4fF4OOecc2q1PQ/otSwvuOAChg8fTps2baLhy5cv54orrogen3nmmXz44YecfvrpeL3e8rJqtISDxq3e5SGPFJzi+JnkHBXiqGgvzGBhfMySIWM+PEIaqRQQt11GjKNKSAkSRwVvaTrU6ZY3InIyMEcpdZY5/h2AUuov5aW3W97Ej/nz55dwPGmKNMRnJy8vl7R7O7Gsx1W0+eZV8lv0YeDsV+OS95r/O40Wgb10UbtZPvAWRpx/Q63zPLBzC23+NZxd0o6Oai/5N+0mNSW11vku+de1jNrxJDmksvGEcxj963lVn2RpsDTELW86ATtijneasCgi8nMRWS4iy/fv31/H4lgsyU2kJ4TjolBScMVxYrSjghSY+XMqTk4aEXnzTb55OfGbYhDARYGkIAG7tqSl5iTcW1Ip9U+l1Ail1Ii2bdsmWpxGw6xZs5p0r62hEo54xYqLIicVTyh+JjmXClHkStOOKsXxUZohM+ZW6NbenYW58TF3SjhICBdFTgruOE4OtzQd6lq5fQd0iTnubMJqRDLtFm5pGDTUZyYc03MrdqXhjePea44Kolxe8vHHbRwraBw/ij1GucVrNZFwkGBUudmem6Xm1LVy+wLoJSLdRcQLzADeqEkGfr+fgwcPNtjGylL/KKU4ePAgfr8/0aLUmGjPzXERcKfFdWNRhxBKHArEj8TJ3BlZSSRk5uXFa/4c4SBBcVHspOKpo81VLY2bOp3nppQKishVwCLABTyhlCo7c7cSOnfuzM6dO7HjcZaa4Pf76dy5c6LFqDEqspyVOIQ8afgL4tewu1QIJW4K4jiWFzKTuMO+5gAE4qTcJBwgjIuAO5WUot1xydPStKjzSdxKqbeB417p1+PxlFgBxGJpzERWohHHRdiTFtftaVwqSNjxUCQpuOJk6guZCfqS0gKI31qYEg4SxE3InYq/oG52Drc0bhLuUGKxWI4RO+YW9mbgIQjB+GxP4xAiLG6KXKlxWwcysqmoK7UlEL+lsiQcJCwuQp40fKowLnlamhZWuVksSYQK6y1kRNyIz7jtF8VHYbhVEOW4CLhS8YTi0xuKjLm507RyC8dLuSntLancqXHfXNXSNLDKzWJJIsKRMTfHQXx6Z4B4eSC6CKEcNwFXKr5wfMyS4aDeMduT3hoAFaelsiQcJCRulDeDVCmK9hAtlupilZvFkkREzJLiuHD82gOxICc7Lnm70A4lYU8q/jj1hsLGocTxpxNUDhIv5aaChMSF+PSi4vn5dmcAS82wys1iSSJU+JhDiTvFKLc4bSzqJgSOm5AnPW6LHEd6bi6PL65TDJxwkJB4oqbZwnhtrmppMljlZrEkEZHV8MVx40nVyq04Tu71buMtqTxppKgiMON7tUGFtHJzXF4KJAUnEJ+em0sFCIkbl1+bZgviNTnc0mSwys1iSSIik7iV48YbVW7xGnMLg+MGXzqOKIJxMCFGHEpcHi+FTmrclspyVJCwuHEb5VZkzZKWGmKVm8WSRISNWdJxXKSktwAgFKe5Y26C4LgRrx7HKsirfb7KmCXdHq9eCzNO8+dc4SAhx4M7RZsli+Mgq6VpYZWbxZJERMfcXA7+dL3qRzz2XlPhEC5RKMeDEzX1xUO5mZ6b20MwjlMMXCpAWDx4Us3KJ3Haf87SdLDKzWJJIiLLb4m4SUnXZslwHHbNjiyThXNsHCseK/irsJnn5vUTcKfiU3HquakgynHjT9WyBgvshqWWmmGVm8WSRKjICiUuNxkpKRQoL8RhEncwoM2HOG7cKVphFMfB3BkxS7rcHkKedPxxmj/nQpslfWlawYfiNDnc0nSwys1iSSIi+6M5bg9+j0MuKXGZOxbpuYnLjccfR0eVqEOJj7AnjZQ4LZWlV1PxRMcdw3GaP2dpOljlZrEkEdF5Y24vIkJ+nNzrj5klj/WG4mLqM2ZJj9eL8qSRRgHBUO2nGLhUECVuUtN0LzNeK59Ymg5WuVksSUTUtd7tBaAwTtvThIzSxOU+ZuoriIOpL7K2pNsHvnT8EiCvoPYLPbvRG6t6vD6KlAfitLmqpelglZvFkkSEYrwPAYqcVNzB2jfsgWKt3MTlJTXqhVl75aZCAcJK8HjcOGYtzLzc7Frn60GbJQHdey2Oz/w5S9PBKjeLJYmIrPjh9uieW5ErDW8cdqIuNsrN7XaTntECiI8XpoQCBHAjItEpBoVxmGLgVkGU65hyi4eCtzQtrHKzWJKI6ELExiwZcKfhjYMHYqBYmwpdHi9+vzb1qXiY+sIBgrgA8KREphjU3lFFTzjXyq1A0nDHaVkvS9PBKjeLJYmIrC3p9uiGPehOi4t7faBQm/Ucb6pxVPEjcVBuKhQgKFq5RRZ6rq0XpgqH8UoIXDG9V9tzs9QQq9wsliQiuvmnMUuG3WmkxmFidLBY5+Eyq+zHbZHjUDFBtCL2mgnXgVou9FwcODY+CFDsTo/bzuGWpoNVbhZLMhHU5kO3xw9A2JuOn2II1W6zzqDpubl9qYBxVImDcnMFCygULWvECzNQyykGBQVaETtGwQc96aSErXKz1Ayr3CyWJEKCehK0y68XN8Z4IKri2nk2hoq0cnCZzT8LnTQ8cTD1uUP5FDlauaWkaS/MUC3XgSzM0/cqXt3LDHoySFVWuVlqhlVuFksSIUG98LA3qtx0A19US1OfMmZJj8m32J2OPw6mPk+ogGInBeDYaiK1nGJQZPZuc4ysypdBmioApWqVr6VpYZWbxZJESKCAQuXB63YDHNusMye7VvmGzTwxb4pWGEFPBinh2vfcPOECih1t6oyYJWu7mkix2bvNZZYJw9cMj4QoisPUBUvTwSo3iyWZCORTiA/HEQBcfm3qK6zlTtSqWPcIIz23kDcjLo4qvlABAZfuuYknlRBSay/MgFnQ2e3XvVbHeGHmHjlcq3wtTQur3CyWJEKCBRSKL3rsNh6IRbVUbkEz5paRYbbR8WaQrvJR4dqtA+lTBQTdxoQqQgEpSC2XCwtGlJvZidxllFtBjlVulupjlZvFkkQ4wQICMcrNF9mss5ZjbuHCHILKwW/Mkvhb4JEQBbX0bPSpAsSbGj2OxxSDYrPmZYpRbu6UFjpvq9wsNcAqN4sliXCChRTHKDevaeCDtVRunsKDHJFmINrcKWY8K68Wpr5wKESGykf5mkfD9FqYtduNu9j0Upu1aAWAz3hh1rb3amlaWOVmsSQRrlAhAZc/euw3Hoi1XeTYW3SYo84xJeQyPcL8nEPHnWdu9gE8EkKltY2GFTspeGrphaly9wLQrHUHAHzpWskF8mzPzVJ9rHKzWJIIfyiHIlda9DjFrOBfW/d6f+Awee4W0WNPqv5dWAtTX/b+nQA4zdpFw4pdqbVe6Nmdt5ds0nF5zfw5s9BzMB6bq1qaDLVSbiIyR0S+E5FV5vODmLjficgWEdkkImfVXlSLpfGTHsqm2NsqepyWlkaxckFR7cyS6YFDBPyto8e+tBYAFOdlH3ee2fu+AyCjdadoWNCdhq+Wa2F6Cg6Q7cSUQTP9u7aTwy1NC3cc8nhAKXVfbICI9AdmAAOAjsB7ItJbKRWKw/UslkZL8/BRslKOKaE0r4ujpNRqs87ioiLaq3181+ycaJgvo6WOq8U4VsG+rQC06tgjGhbypOFXtRtzyyjcRa7vWG8wvZmWVVnlZqkBdWWWnAI8r5QqUkptA7YAo+roWhZLo6AgL4dUKYK0NtEwt8shn5RazR3bu2MzbgkjrXtGw1KMcgsVZB93vuH9myhUHtp0OikaprxppKoC1HGuJhIKhegc2kles2Oyutxu8pUPqWXv1dK0iIdyu0pEvhKRJ0SkpQnrBOyISbPThJVBRH4uIstFZPn+/fvjII7F0jA5uGsbAK5m7UuEF0gKrlrMHduz4TMA2vQcFg1LNaa+cMHx99yaHV7LTk9XXO5jBiDlTSeNQoqCxzd/LmvTSlKkGHeHgSXCcyUNp5bra1qaFlUqNxF5T0TWlvOZAjwG9ASGALuB+2sqgFLqn0qpEUqpEW3btq36BIulkXJoxwYAMjr2LRFe6KTiDh6/cgtlfU6e8tO1/zHjSXp6c8JK4DhNfYUFeZxUtJF9rUaUCBdvOilSTG5B4XHle2DNewC0H/T9EuEFThouq9wsNaDKMTel1OnVyUhEHgf+nzn8DugSE93ZhFkslgoo2LMJgBO69S8RXuRKI+04V/APh0J0O/gxW1IHM9jtiYY7Lj2WJ8XHp9w2fPQyQyVAs/5nlAh3zELP+blHoVlaeadWSso3i9gl7ejYrayC99RCwVuaHrX1luwQczgVWGt+vwHMEBGfiHQHegHLanMti6WxIwe3cJQ0WrUpaZYM1MK9/qvFL9GeAwQHXFAmLk9Sj8vUp5TCWfEE+2hFn7HnlohzzOTwgtyamzu3bVrNwMKVbO98LuKUbJqK3en4QnbhZEv1qe2Y2z0iskZEvgImAtcCKKXWAS8A64H/AL+2npIWS+W0yF7HDl+vMg170J2G/zjc60PBIGmf3cMuOYFBZ15SJr7AScMdqLlyW/vJGwwuXsmOXpfgMRuKRnCnRNbCrFmPUCnFoTf+QCFe+k6eXSY+4E7Hfxwblh7cv4fl7z5X4/MsDZ9aTQVQSpX9xxyLuxO4szb5WyxNhZycI3QPbuPLDpeWiQt50kg5jhX8ly34EyeHtrBixL109PrLxBe60vHWcB3Io9kHafm/G9kl7Rhw3k1l4j1mubCi/Owa5fvl2/MYnvcxS3v8itEndC4TH/Kkk1JDBR8KBsl/9DRGsIct7btx0qBTanS+pWFjVyixWJKAras/wyMh0nuOKRMX9maQQmGNNutc+9k7DN/yCCvTxjLsB1eUm6ampr5wKMzXj8+ifXgfOec8cmwR5hh8ZheDQA0WZN781TJ6L7uFze7eDP/x7eVf25tBWg134/78X9fRhT0AHPjg7zU619LwscrNYkkCcr7+GICuQyaUjfSm46CguHqN+7ebV9P53SvY42pHj58+VcbMGSHgTielBqa+z/81m+F5H7G81zX0GXVmuWkiixxHtq2pil07vqHZKxdRJH5aXfY87lJmzmMZNyNNiggEiquV78cvPsS4PU/xZZvJfNF6CkMP/Yd9u7ZX61xL48AqN4slCcjYu4ztThfSW7YvEyfGA7E6pr79+3YhC6ajcHBf/BLNW1U8vaYmG5YuXXg3Y3c/xRetz2X0j/9YYTq/UW7hgqrH8o4cOUzek9NoRg555y+gTaeeFaaN7GKQezS7yny/fP9Fxqydw/qUYQz+xTw6T7oRD0G+fvO+Ks+1NB6apHILBYPkFxYSCBSjQsEamXsslngTDAToWbCWvS2HlRvv8mtTX35O5R6I+fm57P3n+bQP7+fgD5+gY4/+laYPe5tpU18Vz/+qd59m5Pq/sDL1FIb98okKe4IQs9BzUeXKrbi4mK1/v5AeoW1kfe9Rug48udL0TorON+9o5bsYfL3yQ/p89Gt2uLvS7Vcv4/L46NBjIKubnUrmrhc5cvj4d0GoLuGwoigQIByyPnSJJB5rSyYd2Qf2sGvTMnJ2rid44BtS83bQrGgPaaGjZKhc0qSQ1Jj0AeUiV1LJJ4V8J40iJ41idxpBdxpBTzrKkwG+dPBl4PJn4Ha7QJySHxQohYp+QiWOUWH9Oxw24eYbBeGw/o5Np/SxqDCgEHQDJCqMiImrrBCk0sMaU6b5q+J9oGx0yZCq3ieqfN1QlR7G9XpVv/uoSo7KBpSOdxdlM0EKcLqPKzd3t2nYCytxrw8Fg2x4ZDrDg+tYc/JfyRxxRoVpo/ia4ZUQRYV5+FLSy02yceki+n16LZs9fen76xdwxcyVK1dWs9uAFFYsqwqHWfnoTxhdtIyVg29j6KllpymUzVeXQUFOdoVpdmxZS+vXL+aI05xmV7xGasaxxZebn34DzV79IZ+9+SCnXHpHlderTPZ9321l75aV5O9cixzcgr9wL+nFB2kRPkSKKsRDEJ9oxVas3BTipUh8FIqfIieFIieFgCuNoDuVkDuNsCcV5U0HbzriS8flT8flcse0JSXbECJtSzgEKhRtUzDHmDRKhSEcRlQIIu2Iil05RqL7++nf5jvSWsTGmS+FIKY1EoF8fzu+f9F1x12edUmjUm7frF1K6kszac9+WpiwfHzsddpzxNeBw/4+hL3NCXszcNwewuEwoXAYCRbiDuTiCebgDuThCeaQGjyAv3g7/nA+qeTjJ5DIW7M0cnJIo/vIs8uNcxsPxMIKFjlW4TAr5l7BqPxP+KLPDYw8+6fVumZ0w9Kjh8pVbtvWr6DjO5ex1zmBE37xKilpGVVn6kmhEC9OJZPDl8y7lpOPvM3SLlcw+rzrqyWrNzWi4Mvfomf/nh3Is9MQFMGLXqRjh64l4nsMHs+6d4bS+5unOHLo6krNtbGEQyG+Wb+M/Wv+h2/nZ3TPX007cogs63yAFhx2tyXX355D/oGEvemI2wcuHyGlcIKFOMECJFiIE8zHHczDHSogPXgIX/F3+MMF+CkgTRXiSN1ZkMJKCCPR12StwswLc/SbGsvwleoJWOVW57Tu1IOvMzLJOiGT1K7D6HDSUNq070L3Sswo1UUFi8nPPUJezhGKA0GUCus3J8KoUBgEHBEcx8FxXBD5LYI4DiKR3y797RIccRDHMd/62HFcOA5ItEcYebsS00uUY2Fy/PdVemFbpWJe1AxSOsBSZ2QgUMFz6ou411eg3JY+9TvGHHiVz9vP5OSLbqn2NV2mR5h/9DCt2p1YIm739i2kvHAhxXhw/+RVWrXtUF4W5ZIj6XiLs8uN+/y5Ozn5u/ksbTmZUZfdW+08fel62dpAOVv0HD16mMOPT6VL+BA7zn2B3r2HlJuH/6zbaf7aVNY9fjF9r3kVf0pqmTThYJBvNy5j31fv49v5Gd3yv+IkcjkJ2CXt2NJiHKGOw8joMojOfYbRptUJtCl7qZqjFEWFueTnHKEg9yiBYOBY+xFtH3QbgcuF47gRR3A5LsTlNu2Gg+NyRX+7XG7E0VYmR+T4xqBMOxG1NClA25lAKfon8ZBOo1JuzVu2ZcT1r9ZJ3uL2ktaiLWktGsf6l6XVllVjyUtkN+5AOR6In7/4V07+di5fND+T0T97uEb5us2eboWlTH2H9++mcP5U2pLH/vNfpXu3PjXKN8/JwBsoK+uyN//J6E33sip9LCN+/WSlY3el8ZsNSwOlNiwtLMhj2yPnMSC4lY0T5jJw+MQK8+g59DS++PomRq7/P7bdO4Z9vabja9OVUGEOgX1bSdu/km6F6+hOAd2B76Qdm1ucitN9HF2GnkHHE3vTsdoS1xARfCkZ+FIyaHlCXV3kODAvuCIu/Z1IWWpIo1JuFktjJMUot2B+SYWx4s3HGL32DtakjmTIr5/BcblqlK/XKLeivGOmviOH9nFo7iQ6hXaTdfZ8+lbh6FEe+a5mpARLKqFV7z7N0OU3s9k3gH5XVT12V5rU6BY9x/ItKipg00NTGVz8JV8Ou5NhE6dXmc/IC29i9X870+LzvzB60z2w6VjcNudE1rU8E6fbyXQZejqdTuxV/lYmlgaBVW4WS5LTvLkxycX0Wpa+9igjV/6Bdb7B9Lr6VTxeX43zjZr6zBSDQ/u+Y/8/ptA9+C3rJ8xlyMk/PC5583zt6Jy7Onr8xdvzGbL0OrZ6etH5129W6LxSGenNtXNIZMPSwvxc1j18AcMLlrKk/y2MmXJVtfMafMZM1Ok/Zs/Ob8g5uAdvSiptOp1E9/QMutdYMkuyYpWbxZLkNG/enBxSUNnbCYfCLPv37xjz7VzW+YfQ85o38adWw9GjHNJa6NGi4uy9fLtpFa7nZ9A1fIDNpz3KkIlVezBWRKBFD9odfZ/C/FxWvXo/Izc/wBZvXzpd9XZUSdUUjy+NbJWO72gW+3dv5+ATFzK0eCMrBv6OMRfcUOP8RIT2XXrSvkvFc+ssDRur3CyWZEeEbz0n0f3gx6y793TGFK5gabOzGPKr+fj8ZZ0iqkuHTt3ZQxt6bPg7aevvo0h8fDPpeQaOqtYuVxWS0nU4zo5/kn3vEMao/axIH0//Xz5HSnqz489UhKzUgQw4+C5F//iQ7qqQVSc/yPCzZ9VKVkvjpUlO4rZYGhp5/WdwAgfpUbCOpf1+z6jZz9dKsQGI45CVeQ0eFWBD+miKfvYx/Wup2AAGnjaNlSljCCthSd/fMez612un2AzOab/lsDRnp68nu2csYphVbJZKkNIu4YlkxIgRavny5YkWw2JJSr7dvJoWbTvTvGXrRItiscQVEVmhlBpRdcrqY82SFksDoWvvwYkWwWJpMFizpMVisVgaHVa5WSwWi6XRkVRjbiKyH/g2Dlm1AQ7EIZ/6wMpadzQkeRuSrNCw5G1IskLDkjdesnZVSsV1+aekUm7xQkSWx3twsq6wstYdDUnehiQrNCx5G5Ks0LDkTWZZrVnSYrFYLI0Oq9wsFovF0uhorMrtn4kWoAZYWeuOhiRvQ5IVGpa8DUlWaFjyJq2sjXLMzWKxWCxNm8bac7NYLBZLE8YqN4vFYrE0OhqVchORs0Vkk4hsEZGbEy1PLCLSRUQ+EJH1IrJORH5jwueIyHcissp8fpBoWSOISJaIrDFyLTdhrUTkvyLytflumQRy9okpv1UiclREZidT2YrIEyKyT0TWxoSVW5aiecg8x1+JyLAkkPVeEdlo5HlVRFqY8G4iUhBTxnPrU9ZK5K2w7kXkd6ZsN4nIWUkg68IYObNEZJUJT4ayrajdSspntwRKqUbxAVzAVqAH4AVWA/0TLVeMfB2AYeZ3BrAZ6A/MAX6baPkqkDkLaFMq7B7gZvP7ZuDuRMtZznOwB+iaTGULnAoMA9ZWVZbAD4B3AAHGAEuTQNYzAbf5fXeMrN1i0yVR2ZZb9+Y/txrwAd1Nm+FKpKyl4u8Hbkuisq2o3UrKZzf205h6bqOALUqpb5RSxcDzwJQEyxRFKbVbKfWl+Z0DbIAGuYv9FOAp8/sp4EeJE6Vcvg9sVUrFY6WbuKGU+gg4VCq4orKcAvxbaZYALUSkQ70ISvmyKqXeVUoFzeESoHN9yVMVFZRtRUwBnldKFSmltgFb0G1HvVCZrCIiwIXAgvqSpyoqabeS8tmNpTEpt07AjpjjnSSp8hCRbsBQYKkJusp04Z9IBjNfDAp4V0RWiMjPTVg7pdRu83sP0C4xolXIDEo2DslatlBxWSb7s3w5+u08QncRWSkiH4rI+EQJVQ7l1X0yl+14YK9S6uuYsKQp21LtVtI/u41JuTUIRCQdeBmYrZQ6CjwG9ASGALvRZolkYZxSahhwDvBrETk1NlJpO0TSzCURES9wLvCiCUrmsi1BspVlRYjIH4Ag8KwJ2g2cqJQaClwHPCcitd+ZtPY0mLqP4SJKvpglTdmW025FSdZntzEpt++ALjHHnU1Y0iAiHvQD8qxS6hUApdRepVRIKRUGHqceTSRVoZT6znzvA15Fy7Y3YmYw3/sSJ2EZzgG+VErtheQuW0NFZZmUz7KIzAJ+CMw0DRrGvHfQ/F6BHsPqnTAhDZXUfbKWrRs4D1gYCUuWsi2v3aIBPLuNSbl9AfQSke7mDX4G8EaCZYpi7OnzgA1Kqb/GhMfao6cCa0ufmwhEJE1EMiK/0Q4Fa9Fl+hOT7CfA64mRsFxKvPkma9nGUFFZvgFcajzPxgBHYkxACUFEzgZuBM5VSuXHhLcVEZf53QPoBXyTGCmPUUndvwHMEBGfiHRHy7usvuUrh9OBjUqpnZGAZCjbitotGsKzmyhPlrr4oD11NqPfcP6QaHlKyTYO3XX/ClhlPj8AngbWmPA3gA6JltXI2wPtVbYaWBcpT6A18D7wNfAe0CrRshq50oCDQPOYsKQpW7TS3Q0E0OMQP62oLNGeZo+a53gNMCIJZN2CHkuJPLtzTdpp5vlYBXwJTE6Ssq2w7oE/mLLdBJyTaFlN+HzgylJpk6FsK2q3kvLZjf3Y5bcsFovF0uhoTGZJi8VisVgAq9wsFovF0gixys1isVgsjQ6r3CwWi8XS6LDKzWKxWCyNDqvcLBaLxdLosMrNYrFYLI2O/w+k9cZmYSDdjQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtoElEQVR4nO2deZgUxfn4P+9cO7vLJYfIJYdys9yXAgpGRSWKigoRVDTGGDXeRnPoF038RVGjokQSo+KBilc84n0hYoIIAnKJiq4cInItsPfOTP3+qJqhd3Zmz4ad2a3P88wz3VXV1W9XV9dbx1tVopTCYrFYLJbGgqe+BbBYLBaL5WBiFZ/FYrFYGhVW8VksFoulUWEVn8VisVgaFVbxWSwWi6VRYRWfxWKxWBoVKaP4RKSLiCgR8dW3LA0dEZkuIosO0r0yReQNEdktIr87GPeMu3+uiBx/EO6zQEQuTuJn83Y9ISJzReQvNfVzWYYZIvJUJf4HJY82FExZ8r2ITKltHCmj+Cy1w3xUZSKS7/gddAVTCccD/YFOSqmZUUfzsXepN6lSCPMOZ9Qg/Lnmwy8QkZdFpGUlYf8pIutFJCIi0+P8LhCRZSKyV0Q2i8jMqHIWkQwRecTcZ5+IrBCRk+OuP0dE1hn/tSJyusNPROQvIrJFRPaYikFfh/9MEdlk7v29iPyhBs9fo/RKZ0RkrIgsqEH4geadFpr/gZWEbSki/zb56HsROdfhN05EVolInojsNOE6JIlju7MiLSJT48qjQlPxG2L8rxGRb827/0FE7o2vFIrIVSLynZFtnYj0iPoppQ4B7gJuqm66xOOa4rO12XplvlKqieM3s+pLDhotgVylVH59C1IXTEFe7xVFozz+AZwHtAUKgb9XcslK4DLg8wR+WcDVQGtgBPAz4Hrj5wM2AccCzYE/Ac9FKyumEHwKuBZoBtwAPC0ih5rrzwYuAsag88D/gCcd934E6KWUagYcDUwVkTOrkQQpSSqUfyISAF5Bv5dDgMeBV4x7ImYDpeh8NBV4yFE5WQuMV0q1ANoDXwMPJYjjTmCd00EpNc9ZHqHz37fsz4OvAoPNu+8HDACudDzHxcAvgQlAE+DnwI64+64GWiVNjCqo04dsau03isgXQIGI+ERkpIj819QUVorIWEf4BSLyVxFZYrT9K8lqqyJyoaM2+a2I/DrOf6Kphe4VkQ0icpJxb25qqltNbfMvIuKt4jmOEJEPTM1mh4jME5EWDr9dIjLYnLc3NZyx5vw0EVljnneBiPSOS5/rReQLU+udLyLBmqd0zRGRm0y6RGvjZyQJJ6bG9ZNJy1Ui0s/4ZYjI3SKyUUS2icgcEcmsoSg+IFKFrK1E5DVz/8/MO3PWIJWIXCoiX5t0ni0iYvySvjsHw0wa7BaRx6LvQEQOEZH/mPe52xx3dNx3gYjcLiKfoBVMtyqetbOIfGLS/B0RaR3nP9Wk5Q4R+WMVcSVjKvCaUmqhqUzcDJwpIk0TBVZKzVZKvQ8UJ/B7SCn1sVKqVCm1BZgHjDJ+BUqpGUqpXKVURCn1H+A7YIi5vCOQp5R6U2leBwqAI4x/V2CRUupbpVQYXRj3cdx7vVKqwCFOBDiyNgkiIr8z3/sPInKxyS8V4hKRpiLyoYjMiuYfoLWIvGve2Uci0tkR/n7Z3ypdJiJjHH4zROQFEXlKRPYC06sQMyAiT5j7rBGRoXH+A10oJ8aiv7f7lFIlSqlZgADHxQcUkWxgEnCzUipfKbUIrZDOA1BKbVNK/eC4JEzc+xGRo9GK67Eq5LoAeEKZZcKUUhuUUnnRaHC8e9GVy/8DrlFKrTV5a4NSaldcnBHzrLVDKVXrH5ALrAA6AZlAB2AncApaqZ5gztuY8AuALejEygZeBJ4yfl0ABfjM+QT0RyToWmchupYAMBzYY+L3mPv2Mn7/RteIs4FDgSXAr6t4jiNNXBlAG2AhOvNE/X+FrgFlAW8Ddxv3HuiP/QTAD/wO+AYIONJnCbrG1BJdM7o0iQyjgbxKfqOTXDcjmoZx7meb+3qAyUbOdsZvOrpQAhgPLANamLTu7Qh3L/pjaAk0BV4D/lqD/OFH1/IryBcX7lnzy0IXjpui8kW/FeA/RsbDge3ASdV8d7no2mEn8xyfAH8xfq3QH3+Web7ngZcd1y4ANgJ90R+Zv5JnWABsMHki05zfEZe3HzZ+A4ASoHeSuCp7368AN8a55QNDqkjjRcD0KsK8HJU5gV9btPKMfmde4CPgNHN8OrAZyDb+nU2+6mHywUxn2powNxnZFbpF0LEWZdBJwI/mHWWhFawCjjT+c4G/mHe9JPruHX77gGNM/rk/Lt9NM9f5gOvMfYKO767MPLcHyKxExhkm7U4xafVXYHFcHq1uOfEf4KYkftcAbyYIf12CsIOAwji369GVquj54SYvRsyzTnf4edEtuCE4ypME9+mMVppd49zPBfaad7UdGOC4pwKuQpcD3wG3Ap6467sBIWBgTfOMUsoVxXeR4/xG4Mm4MG8DF5jjBTg+LHQhV2oSsQsOxZfko7zKHP8DuDfJx1nizITAL4APa/hcpwPL49xeBVYBXwAZxu1m4DlHGA9asY91pM80h/9MYE5d0jyBrDNMGuY5fu0ThFsBTDTHsYyKrg1+BYx0Zi60EiwAjnC4HQV8V025BpqPZRumEEoSzmvC9XS4/YWKim+04/w5kn/85d6deQeXOs5PATZUIvNux/kC4LZqPu8C4E+O88uAt8xxNG93dPgvAabU4n2/T1yh6MxzlVxXqeJDd0tuBlon8PMD7wH/iHP/JVpxhdAV0wkOvwBakSjj/x1xhZ8jnw1CF25Na5Eej+KojKErQvGK71F05eeGuGvnAs86zpugC+lOSe61m/0F9AxgYTVlnAG85zjvAxTF5dE6lxPo8ujZOLd5wIwEYccAP8a5/QpYkCBsS3TZPtLhdg3wkDmeTnLFd3OiOB3+3YE/A4eZ86PN+3sdXdHtgi6ffpXg2rtN2JdrmlZujFlschx3Bs423VF5IpKHbsm0SxL+e/RHFd8lhIicLCKLTTdjHrrAiobrhK5dx9PZxLfVcf9/oFt+SRGRtiLyrOiu0b3oWmO8TA+jW6oPKKVKjFt78wwAKKUi5vmcg8A/Oo4L0R+X2zynlGrh+P0gIueL7gqOpkM/EqSzUuoD4EF0f/9Poo0hmqFbT1nAMkccbxn3KlFKrUC3ov6HHkdKRhv2jydF2ZQgXMJ0rOa7i89z7c21WSLyD9ED+3vRrcUWUr5rPJEsyajqXbuRF/LRY2pOmqFbLrVCtFHKX4GTlVI74vw86FZ7KXCFw/14dAE9Fq3kjgX+JfuNKW4BhqG/1SBasX0gIlnO+JVmOVBkwtSU9lSddyagW9pzEvjFwivddbyL/fnjetHDLXtM/m9O+bxVl7wRlPLjggc7b1Q7rNLdjNHxQp+ItEePyVWnu/58c21ClFJfA2vYP05dZP5nKqXylFK56DL8FOd1oseSrwSOUUqdXg05yuGG4lOO403oFp+zEM5WSt3hCNPJcXw4urYf/7FloLtB7wbaKj3A+ga6dhi9zxFUZBO6xdfacf9mSqm+CcI6+X/mOXKUHnCd5rgXItIEuA89ID9D9o9L/oBWttFwYp5vSxX3q4CIjJHyllDxvzFVxxKLqzNaUV8BtDLpt9r5TE6UUrOUUkPQNdEeaEOFHehM2NeRls2VHqyuFkqpYuBNHGM7CdiObhF0dLh1ShI2EZW+uwTxHY5+b6C7r3oCI8y1xxh35/XO/J0KrEF3lQIgIt3Q3XRf1SYy0WPjDwOnKqVWxfkJOs+3BSYppcoc3gPRLZ6lSo8BfgZ8irbijfrPV0ptVkqFlFJz0QYXyfKCj8TfdFVspeq88zC60vaGGdsiUXjznbcEfjDf2++Ac4BDzDe0h9TPG/0d45egLarXJAj7FeATke4OtwFJwoJ+P4eileNwdGNmrYj8iG7ZDxeRH52VRhEZha5EvFCF3M53vx5dyXKmbaJ07g7sUUp9XEXcCXHbSu0p4FQRGS8iXhEJijbHdWbMaSLSx9T8bgNeUHrw20kA/TFvB0KizahPdPg/AlwoIj8TEY+IdBCRXkqprcA7wD0i0sz4HSEix1Yhd1N0DWiPaGu1G+L87weWKqUuRjfBozXH54AJRg4/uiAtAf5bVULFo7SRQZNKfjV5wdns7ztHRC5Et/gqICLDRGSEkb8APRYRMa3Xh4F7Te0Kk87jHdcqcRgvJaEE/T4TYt79S+gKRZaI9ELXEqtLVe8O4HIR6WgqLH8E5juuLQLyjN//1eC+9cU89Dc2xhTitwEvKaUStvhEJGAMJQTwm2/SY/yOM/FNUkotSXD5Q+gx31OVUkVxfp8BY6ItPBEZhO4++8Lhf7ZpkXtE5Dx0b8w35vzXoo2LRESGA5eju3GjcudK3PSLJDyHLgt6mzLl5iThrkAXqq9JeQOtU0RktGjLxz+jx942ofNGCP0N+UTkFiq2kFKNBeiu2itFG6ZFW+gfxAdU2rDoJeA2Eck2SmoixvJWRM4UkZ7mXbUB/oYeQtiFrsx2QVduBqJb98vR423OsvwC4MX4vCnaAClapvQBfo9590qpQvT3+TvRxkgdgUvQY5VO/OiypVa4qvhMhpkI/AGdYTahCyLnfZ5E963/iO4CuZI4TEJdic7Uu9EDoa86/JcAF6KNL/agB9mjLa/z0QXtWnPtC5Tvak3ErcBgE9fr6AwBaOtR9AD6b4zTtcBgEZmqlFqPbmE8gG4hnYouJEqruN8BRSm1FrgH3c24DchBG3Ukohlawe1GdwPuRM+RAd2v/w2w2HQFvoduISEindDdIqviI4wjQtX57Ap0N9KP6PzxDNXP1EnfnYOn0RWib9Fd5NFJy/ehu8B2AIvRrYJ6p7IWvlJqDXApWmH9hC6gL3Nc+6aUnxP3Dlq5Hw380xxHW7Y3o9P9DUfPwpsmns7Ar9EF248O/6lGjo/QY1cviMg+dA/N/1NKvWPivhM9lWIFetz5GrSCzTP+Z6DfxT50hfkB84ua5bdCv5NKUUq9CcwCPsTkVeNVEhdOoQvQzeguu6jV5NPoCs8utKHGNOP+Njo/fIX+LoqpWdfmASHB+41hyp3T0WVgHnrc9vRoeSQif4i+X8Nl6Pz/E/qb+43JX6CHa95i/zceQb8zlLYY/TH6Q397ZeY4KmcQ3VpO1M05ClglIgXonrw30DojyhXoyuwP6DLsafQ4rRMvVViLV4aYQcKDguiJmE8ppf510G5qOSCIyDR0N+jvqwh3Irpg66UqmiQnu+ZO9GD3BXWX1JJuiMho4HKl1C9qcW1vdLd+hlIq5LpwlpRA9CIdZymlhtfm+nqfdGlJT5RSSZdgimMB8C6wRkTuUUrdHR/AdG8G0DXLYWhrwYTLf1kaPkrPKav2knqi56i+gTbGuhNtkm+VXgNFRLajW6m1XqGq3leiOFiInnydyGgkkaWXxSWUnhw9VSnVLpHSMzRFd1EWoPv370HPV0spkuSfGhkeWQ4Iv0YXhBvQY1y/qTy4+5guyER5o9pLsVmqh1KqjVKqr9KLJtSKg9rVabFYLBZLfdNoWnwWi8VisUCKjfG1bt1adenSpb7FsFgsFstBZNmyZTuUUtVaHMMNUkrxdenShaVLl9a3GBaLxWI5iIjI91WHcg/b1WmxWCyWRoVVfBZLimMN0CwWd7GKz2JJcb7+yzCWPWSnNVosbpFSY3yJKCsrY/PmzRQXV9hH02JJSjAYpGPHjvj9/voWpc70CH8N274G7IJHFosbpLzi27x5M02bNqVLly5IuUXHLZbEKKXYuXMnmzdvpmvXrvUtjsViSTFSvquzuLiYVq1aWaVnqTYiQqtWrWwvgcViSUjKKz7AKj1LjWkweSbsWHLSGrlYLK6QForPYmm0hPa3WosKar3JusVicWAVXzUQEa677rrY+d13382MGTPqT6AqWLBgAf/9b433wi3HSSedRIsWLfj5z3/uklSWWhHZ3+Ir3LuzHgWxWBoOVvFVg4yMDF566SV27NjharxKKSKRWu+lmBQ3FN8NN9zAk08+6ZJEllqj9uePkvzd9SiIxdJwsIqvGvh8Pi655BLuvffeCn7bt29n0qRJDBs2jGHDhvHJJ3qj8xkzZnD33ft34enXrx+5ubnk5ubSs2dPzj//fPr168emTZu44YYb6NevHzk5OcyfPx/Qymvs2LGcddZZ9OrVi6lTpyacyDxr1iz69OlD//79mTJlCrm5ucyZM4d7772XgQMH8vHHH1cq43nnncdRRx1F9+7defjhh2Px/uxnP6Np06aVpsvzzz9Pv379GDBgAMccozf1Li4u5sILLyQnJ4dBgwbx4YcfAjB37lxOP/10TjjhBLp06cKDDz7I3/72NwYNGsTIkSPZtUvvUfvwww8zbNgwBgwYwKRJkygsLKxw35EjR7JmzZrY+dixYxvsUneRcDh2XFxouzotFjdI+ekMTm59bQ1rf9jrapx92jfj/07tW2W4yy+/nP79+/O735Xf+/Cqq67immuuYfTo0WzcuJHx48ezbt26SuP6+uuvefzxxxk5ciQvvvgiK1asYOXKlezYsYNhw4bFlMjy5ctZs2YN7du3Z9SoUXzyySeMHj26XFx33HEH3333HRkZGeTl5dGiRQsuvfRSmjRpwvXXXw/Aueeem1TGL774gsWLF1NQUMCgQYOYMGEC7du3r1ba3Xbbbbz99tt06NCBvLw8AGbPno2IsGrVKr788ktOPPFEvvrqKwBWr17N8uXLKS4u5sgjj+TOO+9k+fLlXHPNNTzxxBNcffXVnHnmmfzqV78C4E9/+hOPPPIIv/3tb8vdd/LkyTz33HPceuutbN26la1btzJ06NBqyZxuhCPhWO20tMgqPovFDWyLr5o0a9aM888/n1mzZpVzf++997jiiisYOHAgp512Gnv37iU/P7/SuDp37szIkSMBWLRoEb/4xS/wer20bduWY489ls8++wyA4cOH07FjRzweDwMHDiQ3N7dCXP3792fq1Kk89dRT+HyJ6zGVyThx4kQyMzNp3bo148aNY8mSJdVOk1GjRjF9+nQefvhhwqZlsmjRIqZNmwZAr1696Ny5c0zxjRs3jqZNm9KmTRuaN2/OqaeeCkBOTk7s2VavXs2YMWPIyclh3rx55Vp2Uc455xxeeOEFAJ577jnOOuusasucboQdVp1lVvFZLK6QVi2+6rTMDiRXX301gwcP5sILL4y5RSIRFi9eTDAYLBfW5/OVG79zzinLzs6u1v0yMjJix16vl1AoVCHM66+/zsKFC3nttde4/fbbWbVqVYUwyWSEimb/NZkGMGfOHD799FNef/11hgwZwrJlyyoN73wej8cTO/d4PLFnmz59Oi+//DIDBgxg7ty5LFiwoEI8HTp0oFWrVnzxxRfMnz+fOXPmVFvmdENF9nd1hoorr1BZLJbqYVt8NaBly5acc845PPLIIzG3E088kQceeCB2vmLFCkBvsfT5558D8Pnnn/Pdd98ljHPMmDHMnz+fcDjM9u3bWbhwIcOHD6+WPJFIhE2bNjFu3DjuvPNO9uzZQ35+Pk2bNmXfvv2tg2QyArzyyisUFxezc+dOFixYwLBhw6p1b4ANGzYwYsQIbrvtNtq0acOmTZsYM2YM8+bNA+Crr75i48aN9OzZs9px7tu3j3bt2lFWVhaLJxGTJ09m5syZ7Nmzh/79+1c7/nQjHN5feQoXWcVnsbiBVXw15Lrrritn3Tlr1iyWLl1K//796dOnT6z1MWnSJHbt2kXfvn158MEH6dGjR8L4zjjjDPr378+AAQM47rjjmDlzJocddli1ZAmHw0ybNi1mSHLllVfSokULTj31VP7973/HjFuSyQi6q3TcuHGMHDmSm2++OTa+N2bMGM4++2zef/99OnbsyNtvvw3ALbfcwquvvgpoy8+cnBz69evH0UcfzYABA7jsssuIRCLk5OQwefJk5s6dW66lVxV//vOfGTFiBKNGjaJXr14x91dffZVbbrkldn7WWWfx7LPPcs4551Q77nTEadyiSq3is1jcQFJpy5OhQ4eqeOu8devW0bt373qSqGEzY8aMckYwDY2GkHd2b/6SQ/41AoBPu1zKiOl31rNEFov7iMgypdRBs1CzLT6LJYVxtviktKAeJbFYGg5pZdxicZdUXn3GonEaSEmZVXwWixvYFp/FksJEHFadUlZxMr/FYqk5VvFZLCmMcnR1ekNW8VksbmAVn8WSwoQdLT6fVXwWiytYxWexpDBO4xZ/2Co+i8UNrOKrJi+//DIiwpdffpk0TG5uLv369TugcqxYsYI33nijTnFcdNFFHHrooQdcVkvdiY7xhZUQiBTVszQWS8PAKr5q8swzzzB69GieeeaZhP6JlhOrKWFH7T4Zbii+6dOn89Zbb9UpDsvBIar48skiwyo+i8UVrOKrBvn5+SxatIhHHnmEZ599Nua+YMECxowZw2mnnUafPn0ArQCnTp1K7969Oeuss2Lb6rz//vsMGjSInJwcLrroIkpKSgC9tNmNN97I4MGDef7558vdN37bn9LSUm655Rbmz5/PwIEDmT9/PgUFBVx00UUMHz6cQYMG8corrwB6G6CJEycyduxYunfvzq233hqL95hjjqFly5aVPvNHH33EwIEDGThwIIMGDWLfvn0opZJuoXTssccyceJEunXrxk033cS8efMYPnw4OTk5bNiwAYDXXnuNESNGMGjQII4//ni2bdtW4b5Tpkzh9ddfj51Pnz49tiB1YyTa1VkomQRVcRWhLRZLdUiveXxv3gQ/VlyEuU4clgMn31FpkFdeeYWTTjqJHj160KpVK5YtW8aQIUMAvQ7n6tWr6dq1K7m5uaxfv55HHnmEUaNGcdFFF/H3v/+dK664gunTp/P+++/To0cPzj//fB566CGuvvpqAFq1ahVb19NJ/LY/gUCA2267jaVLl/Lggw8C8Ic//IHjjjuORx99lLy8PIYPH87xxx8PwJIlS1i9ejVZWVkMGzaMCRMmVHv7nrvvvpvZs2czatQo8vPzCQaDvPTSS0m3UFq5ciXr1q2jZcuWdOvWjYsvvpglS5Zw//3388ADD3DfffcxevRoFi9ejIjwr3/9i5kzZ3LPPfeUu290y6EJEyZQWlrK+++/z0MPPVQtmRsi0UWqCyWb5pEf61kai6VhYFt81eCZZ55hypQpgG6ROLs7hw8fTteuXWPnnTp1YtSoUQBMmzaNRYsWsX79erp27Rpbr/OCCy5g4cKFsWsmT56c8L6Jtv2J55133uGOO+5g4MCBjB07luLiYjZu3AjACSecQKtWrcjMzOTMM89k0aJF1X7mUaNGce211zJr1izy8vLw+XyVbqE0bNgw2rVrR0ZGBkcccQQnnngiUH7Loc2bNzN+/HhycnK46667Em45dPLJJ/Phhx9SUlLCm2++yTHHHENmZma15W5oRLs6S7zZBCktt1uDxWKpHenV4quiZXYg2LVrFx988AGrVq1CRAiHw4gId911F1Bxi6HabPOTbJui6mz7o5TixRdfrLADwqefflqnLYduuukmJkyYwBtvvMGoUaNii1QnozpbDv32t7/l2muv5bTTTmPBggUJV44JBoOMHTuWt99+m/nz58cqHI0VZXZnKPVl4wkpigoLyGzSrJ6lsljSmwPe4hORk0RkvYh8IyI3Hej7uc0LL7zAeeedx/fff09ubi6bNm2ia9eufPzxxwnDb9y4kf/9738APP3004wePZqePXuSm5vLN998A8CTTz7JscceW+W9E237E7/l0Pjx43nggQeILja+fPnymN+7777Lrl27KCoq4uWXX461RKvDhg0byMnJ4cYbb2TYsGF8+eWXddpCCWDPnj106NABgMcffzxpuMmTJ/PYY4/x8ccfc9JJJ1U7/oZItMVX5msCQEH+nvoUx2JpEBxQxSciXmA2cDLQB/iFiPQ5kPd0m2eeeYYzzjijnNukSZOSWnf27NmT2bNn07t3b3bv3s1vfvMbgsEgjz32GGeffTY5OTl4PB4uvfTSKu+daNufcePGsXbt2phxy80330xZWRn9+/enb9++3HzzzbHrhw8fzqRJk+jfvz+TJk2Kje/94he/4KijjmL9+vV07Ngxtr/gnDlzYlsW3XffffTr14/+/fvj9/s5+eST67SFEui1Qc8++2yGDBlC69atY+5Lly7l4osvjp2feOKJfPTRRxx//PEEAoFqx98QiU1n8GvFV1K4tz7FsVgaBAd0WyIROQqYoZQab85/D6CU+mui8HZbIveYO3duOSOYxkhDyDurP3qJfh9eyH/bTuXobfP4ZtJbHJlzVH2LZbG4SkPblqgDsMlxvtm4xRCRS0RkqYgs3b59+wEWx2JJL2LGLBlNASgr3FdJaIvFUh3q3apTKfVPpdRQpdTQNm3a1Lc4DYbp06c36tZeQyGq+DyZ2qCltMgqPoulrhxoxbcF6OQ472jcakQq7RJvSQ8aSp6J7sfnM4ovVJRfn+JYLA2CA634PgO6i0hXEQkAU4BXaxJBMBhk586dDaYgsxx4lFLs3LmTYDBY36LUmahxiy+zOQChYtvis1jqygGdx6eUConIFcDbgBd4VClVcdZyJXTs2JHNmzdjx/8sNSEYDNKxY8f6FqPuKK34Ak1aABApsS0+i6WuHPAJ7EqpN4Bar6rs9/vLrYxisTQmomt1ZmS3AECVFNSjNBZLw6DejVssFkslKD3G589sSkQJqtS2+CyWumIVn8WSwkRbfB6Pl0IJIqW2xWex1BWr+CyWFEaZMT6v10sxQaTM7sJusdQVq/gslhRGmekMXp+XYk8mvpBt8VksdcUqPoslhYlNYPd4KfFk4g3bFp/FUles4rNYUhhljFu8Xh9lnkz8oaJ6lshiSX+s4rNYUhjlMG4p82YRiNgWn8VSV6zis1hSmGhXp9fnI+zLIiNiW3wWS12xis9iSWWU3r3e6wsQ9mcRVMX1LJDFkv5YxWexpDJhrfg8Pi/Kn01Q2RafxVJXrOKzWFKZiFZ8Pl8AFWhCFsWEwpF6FspiSW+s4rNYUpnodAavDwLZBCRMYbFt9VksdcEqPoslhRHT4hOPH09GEwAK8/fUp0gWS9pjFZ/FksqoEBEl4PHEFF9xvt2Tz2KpC1bxWSypTCRMyHymvqBWfCWFtsVnsdQFq/gslhRGIiHCeAHwZTYFoLTQbk1ksdQFq/gslhRGVIiwaMUXMIqvrGhvfYpksaQ9VvFZLKlMJEzEfKaBrGYAlBXbFp/FUhes4rNYUhgJl1GGD4CMbN3iCxdZ4xaLpS5YxWexpDASKSEkfgCCpsUXLrEtPoulLljFZ7GkMJ7wfsWXZVp8WMVnsdQJq/gslhTGEymLKT5fUCs+VWp3YbdY6oJVfBZLCuOJlFImGfrE66OYAFJmFZ/FUhes4rNYUhhvpJSwxx87LyKIxyo+i6VOWMVnsaQwvkgJYU8gdl4iQbxldhd2i6UuWMVnsaQwGZEiSj1ZsfMSTybesFV8FktdsIrPYklhgpEiQv4msfNSbxZ+q/gsljphFZ/FksIEVRH497f4yryZBMJ2Pz6LpS7USfGJyAwR2SIiK8zvFIff70XkGxFZLyLj6y6qxdK4KAuFaE4+kcyWMbeQN4uMiFV8Fktd8LkQx71KqbudDiLSB5gC9AXaA++JSA+lVNiF+1ksjYJ9u36ipURQWa1jbmF/NhnKKj6LpS4cqK7OicCzSqkSpdR3wDfA8AN0L4ulQbJv11YAvE0PjbkpfxaZqri+RLJYGgRuKL4rROQLEXlURA4xbh2ATY4wm41bBUTkEhFZKiJLt2/f7oI4FkvDYPdPWwBo2qpdzC3izyaLYsIRVV9iWSxpT5WKT0TeE5HVCX4TgYeAI4CBwFbgnpoKoJT6p1JqqFJqaJs2bWp6ucXSYCne9jUAh3TsGXOTQBMypZTC4pL6EstiSXuqHONTSh1fnYhE5GHgP+Z0C9DJ4d3RuFkslmoS2baWQpVB6/bd9jsGsgEoLthH06xgPUlmsaQ3dbXqbOc4PQNYbY5fBaaISIaIdAW6A0vqci+LpbHRdtcycoO98Hi9MTcJ6Dl9xQV2F3aLpbbU1apzpogMBBSQC/waQCm1RkSeA9YCIeBya9FpsVSfzblfcUTkOxa3/205d29QK76SQrsZrcVSW+qk+JRS51Xidztwe13it1gaKxvf/BvtlNBt3LRy7h6j+EqLbIvPYqktduUWiyXF+OaL/zH0x+dY0fIkDj28Vzk/f6beky9UZDejtVhqixsT2C0Wi0ts3fg1TV86lz3SjK5T7q7g7zctvlDxgevqLAuF2PTNGvbt3IqKlNGkVSc6d++D3x+o+mKLJQ2wis9iSRH27PqJkrln0Ioidp7zCl3adqwQJpCprTpDJe4uVL31+/V8+/FzNNv4HkeUrKOblJ8usYdsvm46HE/v0+hz7FkEs5vV7AaRCPm7trBjx3bKSkrwqDLEl4EnszmZTZqT3ewQsjIy8HjExaeyWBJjFZ/FkgIUFxWw5aEzODK8lW/GP06fPiMShguYrs5wad0VX1lpCSvee5qMFY/Tv3Q57YDvvYez6tBTCXQcQGbrzojHS+H2jYS+/ZhueZ/QasmHFH16I180G0mk16m0OmIwTQ5pS0QpCvJ+onDHZgp3bCK0eyPevZvJLNpKi9IfaR3ZThNCNKlEniIVIJ8sCiSbYk8Wxd5sIt4M/KJAhREVBhXBEwnhVWV4VQivCuMlhE+FzH8YHyFEIIyXCB52+g/jkAvn06Z9lzqnmaVh0OAUn4pEKCrcR/6eXRTu3Ulx/h7CoTKUUhAJoSJhFCDiQTyCRzyIeHRN0+NFRPB4tFvU3ePxQuzYY871MQgKAfGA6P/K1tRQSTyTuVcvbMWLE0UX76YS3DThddW5X8xJkoZK/Iy1k0FVKkNyEoWpfVxVy17d91r89q0MK1vNsuF3M+TonycNF8zSLb5wHVp8pcVFfP7qgxy+9h8MYzvbpDWfdrmUTmPOp/MRfemc8KrLCIdCrP70bfYse4Huuz7k0M8Wwmf7Q7RyhI4oYYe0YKevLZsye/Ft9nGoFp3IbNYafyCDED484RIo3Ue4eB+qeB9Ssg8p3YevdB/+0D6yQwV4Q/sIKQ9KPCjxosRDxJtBqScb5fGjxEfE49PHHj/K4yMiPsIKiIQhUsaA3e+y+ZGzCFzxNs0PaRX/YFVSUpDHtq1bKNrzE6F9OykpLSZUVoaHsDaS8AbAl4H4g3h8GXgCQbyBID5fAJ/PF/v5fX58fn+s/ACTP0wm2Z9V1P68peJzp4rLU46TiIpzdZwrp6vaf09V/gqn4/78HX9PR1CPnw6Hd0vsmcI0KMX37epP6fT8yWRJmKyqg1ssKcXiLr9h5IRfVRommKVbfJQW1Dj+SDjCZ2/NpcvS2xmpdvCVvycrR/6ZnGPPpq2v6qLA6/PRb9QEGDWBkrIyvlq9mN2bvkQV7UYB/uxD8B/SgRZtO9OmQ1cOzczi0CpjPfCsfP9Zei+8jM0PHMeuSf+ka9+KrWkVibBz67ds/3YVhVvWIjvWk73vW9qWfE8L9nJ4PcidDqxS3ehw6/L6FqPGNCjF1+LQjiztMA0JNkcyW+DLboE/sxkenx8RL+LxxCYDq4hCqQgRFYkdq0gElCISiehzpXQLUUX9FUqVP/cQARRialFCxEhT87GKZFdINaJKFCTxdVKNMImuqjqgSMVqYXWir63siS5MfD+pMkz106HqGyYWvXIZ/E3bMOKoM6q8fyCoW3yqrGYtvg1ff8nO569kROmnbPB2Y+uYmQw45gzEUzvD7gy/nx6DxsCgMbW6/mAy4GdTWOPPoP0Hv6X5c+P5MtCbvOyueDxevCW7OaR4M4eFfqC1lBDdB2O3asIPvk6saTaG8CFdyTrkMALNDsXXpDXBYCb+gJ8IXhSgQiVEykqIlBYRLitBlRUTDpUQCZUSCYeJhEOEwyEi5icqkkBKnSOi2UQhjiwTn1skzslx4shnYuIp71UxbNRFOb/yuPyqJK4EMP5lgRYJniX1aVCKr+WhHTjqkln1LYbFcsAQX4Ay5YWy6m1NVFxSyn+f+X+M+O7vtBf4os8N9DvzRjw+/wGWNLXoe8wZ5PU5msWv3kOrHxbQPe8TFFDkyWZnoAPbWg6FVj3I6tCHNt36c9hhHTnEa2d7NVQalOKzWBoDxZKBVEPxffHZQjLevJrjIhtY13QE7c79O/3bH3kQJExNWrRuy9EXzazg3ilBWEvDxio+iyXNKJEMPKHkXZ179+ax8skbOfqn+eRJc74cdT+9j7+g+v25FksDxyo+iyXN2CfNCJblVXBXkQgr3nmCdov/zBh2sPzQ0+k17W/0al5zS0aLpSFjFZ/Fkmbk+VrRvKz8ps1fLnmX0vf+wqDSFWzwdOXrU+YwaOgJ9SShxZLaWMVnsaQZRRmH0jE/l7zdO/j6w3lkr5tPn7I17KYZS3vfxMAzr8NnlxezWJJiFZ/FkmaoNr1os+8tuP8IhgGbpD2fdr+OfqddxdCmzetbPIsl5bGKz2JJM3LOuJZP5u3E6wvQevDPOWLgWDrVcj6exdIYsYrPYkkzmjVtzqhLH6xvMSyWtMVWEy0Wi8XSqLCKz2KxWCyNCkm0wnx9ISLbge9diKo1sMOFeA4GVtYDRzrJm06yQnrJm06yQnrJ65asnZVSbVyIp1qklOJzCxFZqpQaWt9yVAcr64EjneRNJ1khveRNJ1khveRNJ1md2K5Oi8VisTQqrOKzWCwWS6OioSq+f9a3ADXAynrgSCd500lWSC9500lWSC9500nWGA1yjM9isVgslmQ01BafxWKxWCwJsYrPYrFYLI2KBqX4ROQkEVkvIt+IyE31LY8TEekkIh+KyFoRWSMiVxn3GSKyRURWmN8p9S1rFBHJFZFVRq6lxq2liLwrIl+b/0NSQM6ejvRbISJ7ReTqVEpbEXlURH4SkdUOt4RpKZpZJh9/ISKDU0DWu0TkSyPPv0WkhXHvIiJFjjSeczBlrUTepO9eRH5v0na9iIxPAVnnO+TMFZEVxj0V0jZZuZWSebfaKKUaxA/wAhuAbkAAWAn0qW+5HPK1Awab46bAV0AfYAZwfX3Ll0TmXKB1nNtM4CZzfBNwZ33LmSAf/Ah0TqW0BY4BBgOrq0pL4BTgTUCAkcCnKSDriYDPHN/pkLWLM1wKpW3Cd2++uZVABtDVlBne+pQ1zv8e4JYUSttk5VZK5t3q/hpSi2848I1S6lulVCnwLDCxnmWKoZTaqpT63BzvA9YBHepXqloxEXjcHD8OnF5/oiTkZ8AGpZQbKwC5hlJqIbArzjlZWk4EnlCaxUALEWl3UAQlsaxKqXeUUiFzuhjoeLDkqYokaZuMicCzSqkSpdR3wDfosuOgUJmsIiLAOcAzB0ueqqik3ErJvFtdGpLi6wBscpxvJkUVi4h0AQYBnxqnK0y3wKOp0HXoQAHviMgyEbnEuLVVSm01xz8CbetHtKRMoXzBkappC8nTMtXz8kXoWn2UriKyXEQ+EpEx9SVUAhK9+1RO2zHANqXU1w63lEnbuHIrXfMu0LAUX1ogIk2AF4GrlVJ7gYeAI4CBwFZ0V0eqMFopNRg4GbhcRI5xeirdt5Ey82FEJACcBjxvnFI5bcuRammZDBH5IxAC5hmnrcDhSqlBwLXA0yLSrL7kc5A2797BLyhfaUuZtE1QbsVIl7zrpCEpvi1AJ8d5R+OWMoiIH5155imlXgJQSm1TSoWVUhHgYQ5it0tVKKW2mP+fgH+jZdsW7bow/z/Vn4QVOBn4XCm1DVI7bQ3J0jIl87KITAd+Dkw1hR2my3CnOV6GHjPrUW9CGip596matj7gTGB+1C1V0jZRuUWa5d14GpLi+wzoLiJdTc1/CvBqPcsUw/TfPwKsU0r9zeHu7P8+A1gdf219ICLZItI0eow2bliNTtMLTLALgFfqR8KElKsxp2raOkiWlq8C5xsLuZHAHke3Ur0gIicBvwNOU0oVOtzbiIjXHHcDugPf1o+U+6nk3b8KTBGRDBHpipZ3ycGWLwHHA18qpTZHHVIhbZOVW6RR3k1IfVvXuPlDWxR9ha4Z/bG+5YmTbTS6O+ALYIX5nQI8Cawy7q8C7epbViNvN7T120pgTTQ9gVbA+8DXwHtAy/qW1ciVDewEmjvcUiZt0Qp5K1CGHvf4ZbK0RFvEzTb5eBUwNAVk/QY9dhPNu3NM2Ekmf6wAPgdOTZG0TfrugT+atF0PnFzfshr3ucClcWFTIW2TlVspmXer+7NLllksFoulUdGQujotFovFYqkSq/gsFovF0qiwis9isVgsjQqr+CwWi8XSqLCKz2KxWCyNCqv4LBaLxdKosIrPYrFYLI0Kq/gsFovF0qiwis9isVgsjQqr+CwWi8XSqLCKz2KxWCyNCqv4LBaLxdKoSBnFJyJdRESZfaksBxARmS4iiw7SvTJF5A0R2S0ivzsY94y7f66IHH8Q7rNARC5O4mfzdj0hInNF5C819XNZhhki8lQl/gcljzYUTFnyvYhMqW0cKaP4LLXDfFRlIpLv+B10BVMJxwP9gU5KqZlRR/Oxd6k3qVII8w5n1CD8uebDLxCRl0WkZSVh/yki60UkYjaSdfpdICLLRGSviGwWkZlR5Wz2q3vE3GefiKwQkZPjrj9HRNYZ/7UicrrDT0TkLyKyRUT2mIpBX4f/TBHZZO79vYj8oQbPX6P0SmdEZKyILKhB+IHmnRaa/4GVhG0pIv82+eh7ETnX4TdORFaJSJ6I7DThOiSJY7uzIi0iU+PKo0JT8Rti/K8RkW/Nu/9BRO6NrxSKyFUi8p2RbZ2IxDbgVUodAtwF3FTddInHNcVna7P1ynylVBPHb2bVlxw0WgK5Sqn8+hakLpiCvN4rikZ5/AM4D2gLFAJ/r+SSlcBl6P3c4skCrgZaAyOAnwHXGz8fev+9Y4HmwJ+A56KVFVMIPgVcCzQDbgCeFpFDzfVnAxcBY9B54H/oPfKiPAL0Uko1A44GporImdVIgpQkFco/0Rtwv4J+L4cAjwOvGPdEzAZK0floKvCQo3KyFhivlGoBtEfvu/dQgjjuBNY5HZRS85zlETr/fcv+PPgqMNi8+37AAOBKx3NcjN5TcQLQBPg5sCPuvqvRewLWijp9yKbWfqOIfAEUiIhPREaKyH9NTWGliIx1hF8gIn8VkSVG27+SrLYqIhc6apPfisiv4/wnmlroXhHZIHqHaESkuampbjW1zb+I2cW4kuc4QkQ+MDWbHSIyT0RaOPx2ichgc97e1HDGmvPTRGSNed4FItI7Ln2uF5EvTK13vogEa57SNUdEbjLpEq2Nn5EknJga108mLVeJSD/jlyEid4vIRhHZJiJzRCSzhqL4gEgVsrYSkdfM/T8z78xZg1QicqmIfG3SebaIiPFL+u4cDDNpsFtEHou+AxE5RET+Y97nbnPc0XHfBSJyu4h8glYw3ap41s4i8olJ83dEpHWc/1STljtE5I9VxJWMqcBrSqmFpjJxM3CmiDRNFFgpNVsp9T5QnMDvIaXUx0qpUqXUFmAeMMr4FSilZiilcpVSEaXUf4DvgCHm8o5AnlLqTaV5HSgAjjD+XYFFSqlvlVJhdGHcx3Hv9UqpAoc4EeDI2iSIiPzOfO8/iMjFJr9UiEtEmorIhyIyK5p/gNYi8q55Zx+JSGdH+Ptlf6t0mYiMcfjNEJEXROQpEdkLTK9CzICIPGHus0ZEhsb5D3ShnBiL/t7uU0qVKKVmoTeGPS4+oIhkoze6vVkpla+UWoRWSOcBKKW2KaV+cFwSJu79iMjRaMX1WBVyXQA8oczmr0qpDUqpvGg0ON696Mrl/wHXKKXWmry1QSm1Ky7OiHnW2lHH3Xlz0TvydgIygQ7oXbBPQSvVE8x5GxN+AbAFnVjZwIvAU8avC3qnX585n4D+iARd6yxE1xIAhgN7TPwec99exu/f6BpxNnAosAT4dRXPcaSJKwNoAyxEZ56o/6/QNaAs4G3gbuPeA/2xnwD4gd+hd6oOONJnCbrG1BJdM7o0iQyjgbxKfqOTXDcjmoZx7meb+3qAyUbOdsZvOrpQAhgPLANamLTu7Qh3L/pjaAk0BV4D/lqD/OFH1/IryBcX7lnzy0IXjpui8kW/FeA/RsbDge3ASdV8d7no2mEn8xyfAH8xfq3QH3+Web7ngZcd1y4ANgJ90R+Zv5JnWIDedboH+ltYANwRl7cfNn4DgBKgd5K4KnvfrwA3xrnlA0OqSONFwPQqwrwclTmBX1u08ox+Z17gI+A0c3w6ekfxbOPf2eSrHiYfzHSmrQlzk5FdoVsEHWtRBp0E/GjeURZawSrgSOM/F/iLeddLou/e4bcPOMbkn/vj8t00c50PuM7cJ+j47srMc3uAzEpknGHS7hSTVn8FFsfl0eqWE/8Bbkridw3wZoLw1yUIOwgojHO7Hl2pip4fbvJixDzrdIefF92CG4KjPElwn85opdk1zv1cYK95V9uBAY57KuAqdDnwHXAr4Im7vhsQAgbWNM8opVxRfBc5zm8EnowL8zZwgTlegOPDQhdypSYRu+BQfEk+yqvM8T+Ae5N8nCXOTAj8Aviwhs91OrA8zu1VYBXwBZBh3G4GnnOE8aAV+1hH+kxz+M8E5tQlzRPIOsOkYZ7j1z5BuBXARHMcy6jo2uBXwEhn5kIrwQLgCIfbUcB31ZRroPlYtmEKoSThvCZcT4fbX6io+EY7zp8j+cdf7t2Zd3Cp4/wUYEMlMu92nC8Abqvm8y4A/uQ4vwx4yxxH83ZHh/8SYEot3vf7xBWKzjxXyXWVKj50t+RmoHUCPz/wHvCPOPdfohVXCF0xneDwC6AViTL+3xFX+Dny2SB04da0FunxKI7KGLoiFK/4HkVXfm6Iu3Yu8KzjvAm6kO6U5F672V9AzwAWVlPGGcB7jvM+QFFcHq1zOYEuj56Nc5sHzEgQdgzwY5zbr4AFCcK2RJftIx1u1wAPmePpJFd8NyeK0+HfHfgzcJg5P9q8v9fRFd0u6PLpVwmuvduEfbmmaeXGmMUmx3Fn4GzTHZUnInnolky7JOG/R39U8V1CiMjJIrLYdDPmoQusaLhO6Np1PJ1NfFsd9/8HuuWXFBFpKyLPiu4a3YuuNcbL9DC6pfqAUqrEuLU3zwCAUipins85CPyj47gQ/XG5zXNKqRaO3w8icr7oruBoOvQjQTorpT4AHkT39/8k2hiiGbr1lAUsc8TxlnGvEqXUCnQr6n/ocaRktGH/eFKUTQnCJUzHar67+DzX3lybJSL/ED2wvxfdWmwh5bvGE8mSjKretRt5IR89puakGbrlUitEG6X8FThZKbUjzs+DbrWXAlc43I9HF9Bj0UruWOBfst+Y4hZgGPpbDaIV2wcikuWMX2mWA0UmTE1pT9V5ZwK6pT0ngV8svNJdx7vYnz+uFz3cssfk/+aUz1t1yRtBKT8ueLDzRrXDKt3NGB0v9IlIe/SYXHW668831yZEKfU1sIb949RF5n+mUipPKZWLLsNPcV4neiz5SuAYpdTp1ZCjHG4oPuU43oRu8TkL4Wyl1B2OMJ0cx4eja/vxH1sGuhv0bqCt0gOsb6Brh9H7HEFFNqFbfK0d92+mlOqbIKyT/2eeI0fpAddpjnshIk2A+9AD8jNk/7jkD2hlGw0n5vm2VHG/CojIGClvCRX/G1N1LLG4OqMV9RVAK5N+q53P5EQpNUspNQRdE+2BNlTYgc6EfR1p2VzpwepqoZQqBt7EMbaTgO3oFkFHh1unJGETUem7SxDf4ej3Brr7qicwwlx7jHF3Xu/M36nAGnRXKQAi0g3dTfdVbSITPTb+MHCqUmpVnJ+g83xbYJJSqszhPRDd4lmq9BjgZ8CnaCveqP98pdRmpVRIKTUXbXCRLC/4SPxNV8VWqs47D6MrbW+YsS0ShTffeUvgB/O9/Q44BzjEfEN7SP280d8xfgnaonpNgrBfAT4R6e5wG5AkLOj3cyhaOQ5HN2bWisiP6Jb9cBH50VlpFJFR6ErEC1XI7Xz369GVLGfaJkrn7sAepdTHVcSdELet1J4CThWR8SLiFZGgaHNcZ8acJiJ9TM3vNuAFpQe/nQTQH/N2ICTajPpEh/8jwIUi8jMR8YhIBxHppZTaCrwD3CMizYzfESJybBVyN0XXgPaItla7Ic7/fmCpUupidBM8WnN8Dphg5PCjC9IS4L9VJVQ8ShsZNKnkV5MXnM3+vnNE5EJ0i68CIjJMREYY+QvQYxER03p9GLjX1K4w6Tzeca0Sh/FSEkrQ7zMh5t2/hK5QZIlIL3QtsbpU9e4ALheRjqbC8kdgvuPaIiDP+P1fDe5bX8xDf2NjTCF+G/CSUiphi09EAsZQQgC/+SY9xu84E98kpdSSBJc/hB7zPVUpVRTn9xkwJtrCE5FB6O6zLxz+Z5sWuUdEzkP3xnxjzn8t2rhIRGQ4cDm6Gzcqd67ETb9IwnPosqC3KVNuThLuCnSh+pqUN9A6RURGi7Z8/DN67G0TOm+E0N+QT0RuoWILKdVYgO6qvVK0YVq0hf5BfEClDYteAm4TkWyjpCZiLG9F5EwR6WneVRvgb+ghhF3oymwXdOVmILp1vxw93uYsyy8AXozPm6INkKJlSh/g95h3r5QqRH+fvxNtjNQRuAQ9VunEjy5baoWris9kmInAH9AZZhO6IHLe50l03/qP6C6QK4nDJNSV6Ey9Gz0Q+qrDfwlwIdr4Yg96kD3a8jofXdCuNde+QPmu1kTcCgw2cb2OzhCAth5FD6D/xjhdCwwWkalKqfXoFsYD6BbSqehCorSK+x1QlFJrgXvQ3YzbgBy0UUcimqEV3G50N+BO9BwZ0P363wCLTVfge+gWEiLSCd0tsio+wjgiVJ3PrkB3I/2Izh/PUP1MnfTdOXgaXSH6Ft1FHp20fB+6C2wHsBjdKqh3KmvhK6XWAJeiFdZP6AL6Mse1b0r5OXHvoJX70cA/zXG0ZXszOt3fcPQsvGni6Qz8Gl2w/ejwn2rk+Ag9dvWCiOxD99D8P6XUOybuO9FTKVagx52vQSvYPON/Bvpd7ENXmB8wv6hZfiv0O6kUpdSbwCzgQ0xeNV4lceEUugDdjO6yi1pNPo2u8OxCG2pMM+5vo/PDV+jvopiadW0eEBK83xim3DkdXQbmocdtT4+WRyLyh+j7NVyGzv8/ob+535j8BXq45i32f+MR9DtDaYvRH6M/9LdXZo6jcgbRreVE3ZyjgFUiUoDuyXsDrTOiXIGuzP6ALsOeRo/TOvFShbV4ZYgZJDwoiJ6I+ZRS6l8H7aaWA4KITEN3g/6+inAnogu2XqqiSXKya+5ED3ZfUHdJLemGiIwGLldK/aIW1/ZGd+tnKKVCrgtnSQlEL9JxllJqeG2ur/dJl5b0RCmVdAmmOBYA7wJrROQepdTd8QFM92YAXbMchrYWTLj8l6Xho/ScsmovqSd6juobaGOsO9Em+VbpNVBEZDu6lVrrFarqfSWKg4XoydeJjEYSWXpZXELpydFTlVLtEik9Q1N0F2UBun//HvR8tZQiSf6pkeGR5YDwa3RBuAE9xvWbyoO7j+mCTJQ3qr0Um6V6KKXaKKX6Kr1oQq04qF2dFovFYrHUN42mxWexWCwWC6TYGF/r1q1Vly5d6lsMi8VisRxEli1btkMpVa3FMdwgpRRfly5dWLp0aX2LYbFYLJaDiIh8X3Uo97BdnRaLxWJpVFjFZ7GkENv3FrFo2cr6FsNiadBYxWexpBCfz72e0a8dw65tG+tbFIulwZJSY3yJKCsrY/PmzRQXV9hH02JJSjAYpGPHjvj9/voWpUYM3q1XTdu+dRMt2x5ez9JYLA2TlFd8mzdvpmnTpnTp0gUpt+i4xZIYpRQ7d+5k8+bNdO3atb7FqRGF3iYQ2kHJnp/qWxSLpcGS8l2dxcXFtGrVyio9S7UREVq1apWWvQTFvuYAlO3dVs+SWCwNl5RXfIBVepYak655psSvFV84f0cVIS0WS21JC8VnsTQWIn69QXm4aE89S2KxNFys4qsGIsJ1110XO7/77ruZMWNG/QlUBQsWLOC//63xXrgxVqxYwVFHHUXfvn3p378/8+fPr/oii0uYlmpJfv2KYbE0YKziqwYZGRm89NJL7NjhbveTUopIpNZ7KSalroovKyuLJ554gjVr1vDWW29x9dVXk5eX556AlqSI2cDaU1ZQz5JYLA0Xq/iqgc/n45JLLuHee++t4Ld9+3YmTZrEsGHDGDZsGJ98ojc6nzFjBnffvX8Xnn79+pGbm0tubi49e/bk/PPPp1+/fmzatIkbbriBfv36kZOTE2tdLViwgLFjx3LWWWfRq1cvpk6dSqKdNGbNmkWfPn3o378/U6ZMITc3lzlz5nDvvfcycOBAPv7440plPO+88zjqqKPo3r07Dz/8MAA9evSge/fuALRv355DDz2U7du3V7j3888/T79+/RgwYADHHKM39S4uLubCCy8kJyeHQYMG8eGHHwIwd+5cTj/9dE444QS6dOnCgw8+yN/+9jcGDRrEyJEj2bVL71H78MMPM2zYMAYMGMCkSZMoLCyscN+RI0eyZs2a2PnYsWMbzlJ3SleEvGXutvg2bVjL/164z9U4Abbt3ud6nPuKShPmdYvFLVJ+OoOTW19bw9of9roaZ5/2zfi/U/tWGe7yyy+nf//+/O535fc+vOqqq7jmmmsYPXo0GzduZPz48axbt67SuL7++msef/xxRo4cyYsvvsiKFStYuXIlO3bsYNiwYTElsnz5ctasWUP79u0ZNWoUn3zyCaNHjy4X1x133MF3331HRkYGeXl5tGjRgksvvZQmTZpw/fXXA3DuuecmlfGLL75g8eLFFBQUMGjQICZMmED79u1j8S9ZsoTS0lKOOOKICs9x22238fbbb9OhQ4dYi3D27NmICKtWreLLL7/kxBNP5KuvvgJg9erVLF++nOLiYo488kjuvPNOli9fzjXXXMMTTzzB1VdfzZlnnsmvfvUrAP70pz/xyCOP8Nvf/rbcfSdPnsxzzz3HrbfeytatW9m6dStDhw6tNM3TBqP4fCF3W3zy1Jkcpbay74Tzadq8pStxLl/4GoM+mMbqk1+g34gTXIkzb/cuWtzflY+6Xc+x59/sSpwWSzy2xVdNmjVrxvnnn8+sWbPKub/33ntcccUVDBw4kNNOO429e/eSn195bb1z586MHDkSgEWLFvGLX/wCr9dL27ZtOfbYY/nss88AGD58OB07dsTj8TBw4EByc3MrxNW/f3+mTp3KU089hc+XuB5TmYwTJ04kMzOT1q1bM27cOJYsWRK7buvWrZx33nk89thjeDwVs8qoUaOYPn06Dz/8MOFwOPY806ZNA6BXr1507tw5pvjGjRtH06ZNadOmDc2bN+fUU08FICcnJ/Zsq1evZsyYMeTk5DBv3rxyLbso55xzDi+88AIAzz33HGeddVal6Z1ORLs6/WF3FV+zSB4AeT/muhbnrq8XAxD54gXX4iwy8xeHfDvbtTgBXnv5WRbef6GrcVrSl7Rq8VWnZXYgufrqqxk8eDAXXrj/A4pEIixevJhgMFgurM/nKzd+55xTlp2dXa37ZWRkxI69Xi+hUKhCmNdff52FCxfy2muvcfvtt7Nq1aoKYZLJCBXN/qPne/fuZcKECdx+++0xJR3PnDlz+PTTT3n99dcZMmQIy5Ytq/bzeDye2LnH44k92/Tp03n55ZcZMGAAc+fOZcGCBRXi6dChA61ateKLL75g/vz5zJkzp9L7phNRxZcRrtjFW6d4zX/Rvt2uxakyWgDujkeqUh1XQJW5FifAScsvwy9hVPF9SLC5q3Fb0g/b4qsBLVu25JxzzuGRRx6JuZ144ok88MADsfMVK1YAeoulzz//HIDPP/+c7777LmGcY8aMYf78+YTDYbZv387ChQsZPnx4teSJRCJs2rSJcePGceedd7Jnzx7y8/Np2rQp+/btH3tJJiPAK6+8QnFxMTt37mTBggUMGzaM0tJSzjjjDM4///xKW1MbNmxgxIgR3HbbbbRp04ZNmzYxZswY5s2bB8BXX33Fxo0b6dmzZ7WeB2Dfvn20a9eOsrKyWDyJmDx5MjNnzmTPnj3079+/2vGnPGZsKyNS5Gq0pRLQ/wXuTZOQQKb+D7kna8RYs3pw1+grjyYAlO7e4mq8lvTEKr4act1115Wz7pw1axZLly6lf//+9OnTJ9b6mDRpErt27aJv3748+OCD9OjRI2F8Z5xxBv3792fAgAEcd9xxzJw5k8MOO6xasoTDYaZNmxYzJLnyyitp0aIFp556Kv/+979jxi3JZATdVTpu3DhGjhzJzTffTPv27XnuuedYuHAhc+fOZeDAgQwcODCmLG+55RZeffVVAG644QZycnLo168fRx99NAMGDOCyyy4jEomQk5PD5MmTmTt3brmWXlX8+c9/ZsSIEYwaNYpevXrF3F999VVuueWW2PlZZ53Fs88+yznnnFPtuNOBaIsvU7nb4osqvjIX5wd60Era66LiU6U6Lp+4q/iKlX7+wn12fqQFJJWsp4YOHarirfPWrVtH796960mihs2MGTPKGcE0NNIx76yZeQJ9C5dQqDLIutW99Tq/v60fnSOb+GzAXxh2xm+rvqAavP/M3/jZ+lv5OnsI3W/4wJU4c5e8Rpc39BgxM9xTUt/c0psjPT+w9bRnaDf4FNfitbiDiCxTSh00CzXb4rNYUglj1ZklJUSMwZAblHp0qztS7KJVdETL5wu72NUZcndsL0oxusVXUuiuVbglPUkr4xaLu6Ty6jONFXGMbRUW7KFJM3emHoREKz7louJT4VLAZcUXrmjA5QZRxVdqFZ8F2+KzWFIKj9rfyitycTwqIuZTL3XRAtO0SL2RUtfiPFCKrxS9L2Oo0I7xWazis1hSClGOKTD5ea7FG1WoUureSisqrLsl/cpNxefo3g2VuBZvqUS7eu0aqBar+CyW1MKh+EoK3VNSElsKzcWJ8RHdOvO5qfgi+xVf2EUlpUyLV5XYrk6LVXwWS0rhIUKJ0t1yJS7OufOaFp+bS6Epo/gCbio+h3FLkYst3gwxCtXuemHBKr5q8/LLLyMifPnll0nD5Obm0q9fvwMqx4oVK3jjjTdqfX10wnufPn3o27cv999/v4vSWeqKqDB70XvyhYrca50I0aXQ3JsfKKar003FpxwtvmIXDVH8Zl6gx+XFvy3piVV81eSZZ55h9OjRPPPMMwn9Ey0nVlPC1TBfr6vi8/l83HPPPaxdu5bFixcze/Zs1q5dW+v4LO4iSlEoekm7kIsWmB7lvuKLTmfwSxjl0nic07jFzRZv9Pk9pVbxWaziqxb5+fksWrSIRx55hGeffTbmvmDBAsaMGcNpp51Gnz59AK0Ap06dSu/evTnrrLNi2+q8//77DBo0iJycHC666CJKSnRB0aVLF2688UYGDx7M888/X+6+8dv+lJaWcssttzB//nwGDhzI/PnzKSgo4KKLLmL48OEMGjSIV155BdDbAE2cOJGxY8fSvXt3br31VgDatWvH4MGDAWjatCm9e/dmy5aKyzh99NFHsVVbBg0axL59+1BKJd1C6dhjj2XixIl069aNm266iXnz5jF8+HBycnLYsGEDAK+99hojRoxg0KBBHH/88Wzbtq3CfadMmcLrr78eO58+fXpsQerGgBCm0KOX1woXuVdIRwt+N5dCE7VfSRUXuDMeGe0+BSh1KU4Ar5HVG3J3RRxLepJe8/jevAl+rLgIc504LAdOvqPSIK+88gonnXQSPXr0oFWrVixbtowhQ4YAeh3O1atX07VrV3Jzc1m/fj2PPPIIo0aN4qKLLuLvf/87V1xxBdOnT+f999+nR48enH/++Tz00ENcffXVALRq1Sq2rqeT+G1/AoEAt912G0uXLuXBBx8E4A9/+APHHXccjz76KHl5eQwfPpzjjz8e0FsKrV69mqysLIYNG8aECRPKbd+Tm5vL8uXLGTFiRIV733333cyePZtRo0aRn59PMBjkpZdeSrqF0sqVK1m3bh0tW7akW7duXHzxxSxZsoT777+fBx54gPvuu4/Ro0ezePFiRIR//etfzJw5k3vuuafcfaNbDk2YMIHS0lLef/99HnrooWq+zPTHoyKUeLMhAqrEvYI/uvalq4rPoaQK8/eQ2bx1neN0WnWWutjV68UY4ri8+LclPbEtvmrwzDPPMGXKFEC3SJzdncOHD6dr166x806dOjFq1CgApk2bxqJFi1i/fj1du3aNrdd5wQUXsHDhwtg1kydPTnjfRNv+xPPOO+9wxx13MHDgQMaOHUtxcTEbN24E4IQTTqBVq1ZkZmZy5plnsmjRoth1+fn5TJo0ifvuu49mzZolvPe1117LrFmzyMvLw+fzVbqF0rBhw2jXrh0ZGRkcccQRnHjiiUD5LYc2b97M+PHjycnJ4a677kq45dDJJ5/Mhx9+SElJCW+++SbHHHMMmZmZCZ+9IeIhQpkvm4gSlIuGGFHjlkwOTIvPrW5JFdlv3BIudlHxH4iuXkvakl4tvipaZgeCXbt28cEHH7Bq1SpEhHA4jIhw1113ARW3GEq2zU9lJNumqDrb/iilePHFFyvsgPDpp58mlaWsrIxJkyYxdepUzjzzzIT3vummm5gwYQJvvPEGo0aN4u233670Gaqz5dBvf/tbrr32Wk477TQWLFiQcOWYYDDI2LFjefvtt5k/f36swtFoUBHweCgkiLg4HhVdESZLFesdIKqRL6vCU66r0y3Ft7+CF3JR8flwv6vXkr4c8BafiJwkIutF5BsRuelA389tXnjhBc477zy+//57cnNz2bRpE127duXjjz9OGH7jxo3873//A+Dpp59m9OjR9OzZk9zcXL755hsAnnzySY499tgq751o25/4LYfGjx/PAw88QHSx8eXLl8f83n33XXbt2kVRUREvv/wyo0aNQinFL3/5S3r37s21115b6b1zcnK48cYbGTZsGF9++WWdtlAC2LNnDx06dADg8ccfTxpu8uTJPPbYY3z88cecdNJJ1Y6/IeAhgsJLoWS6aoHoZb8hSmlJcRWhq4c4lFSpS3MOlcO4xc3J5tGuTqv4LHCAFZ+IeIHZwMlAH+AXItLnQN7TbZ555hnOOOOMcm6TJk1Kat3Zs2dPZs+eTe/evdm9eze/+c1vCAaDPPbYY5x99tnk5OTg8Xi49NJLq7x3om1/xo0bx9q1a2PGLTfffDNlZWX079+fvn37cvPNN8euHz58OJMmTaJ///5MmjSJoUOH8sknn/Dkk0/ywQcfxIxXolaic+bMiW1ZdN9999GvXz/69++P3+/n5JNPrtMWSqDXBj377LMZMmQIrVvvHw9aunQpF198cez8xBNP5KOPPuL4448nEAhUO/6GgEdFUOKlWDJdNcRw7m9X5FLrTBzLq5W5NB7nbPG5NedOKYXPyBpUVvFZDvC2RCJyFDBDKTXenP8eQCn110Th7bZE7jF37txyRjCNkXTMOz/e2p3cpgNpWfAdxYFD6H/ju67Eu+v/OpJFMUEpY+uFS2jXufqbAyfj45mTGFP4HgDLh97BoJ//ps5xfvrEHxnx7YOUKD9rO5zFoEvmVH1RFYTCEX68rTsdxeyjefMO8PrrHK/FPRratkQdgE2O883GzWKxJECPxXko9Wbhd3GVFQ8RCsz8wJICd1pnHhUi30y2j7g19cJYiu4ly7Wu3lBExcb4AFcX6rakJ/Vu1Skil4jIUhFZun379voWp8Ewffr0Rt3aS1c8REC8lHkzyYi419XpIxKbH1ji0g4FHhWiwMQZcWnqRXTHhwLJwuPSuqJRxVemvIC71qKW9ORAK74tQCfHeUfjFkMp9U+l1FCl1NA2bdokjCSVdom3pAfpmmf0GJ+HkC/bVUMMDxGKvVpJlRW605LyqDAlnizCSsAtC1QVIqyEIk82PrcUXziCjzD5psVb7FKL15K+HGjF9xnQXUS6ikgAmAK8WpMIgsEgO3fuTNuCzHLwUUqxc+dOgsFgfYtSY4QIyuMl7G/imiFGJKLwEqbE1xSAMpdaPB4VJix+Cgm6pvhUJEwYD6WeTNcmm5eFdYsv2jotsoqv0XNA5/EppUIicgXwNuAFHlVKVZy1XAkdO3Zk8+bN2G5QS00IBoN07NixvsWoMR4iiHiI+IJkuaT4wkrhJUKZvykUQdglC0yvChERL0USRNwaN4uECeOl1JNF8/AOV6IMRxR+whR5m0HkB0rsLuyNngM+gV0p9QZQ61WV/X5/uZVRLJaGjBfd1UmgCZlSSiRUhsdXNwvEcDhCUCKEA3qFnrBL0wREhYl4fBRJFl63DHEiISLiocyXRaDEHcVfFo7gI6RbvGVQZhVfo6fejVssFst+osYtkqG75Qpd6JaLLnenMrTiUy5NDPeqMBHxUuLJxOfWnMNIhAh6jDPoknFPOBzGK4qQUfylRda4pbFjFZ/FkkIICsQTU3xubMYaMpu7SkZTIi4aongIocRLiScLf9ilFp8KEcZLxJdFULmzwkwopPcLDAea63+r+Bo9VvFZLCmEV0XA48Ub1K2T4vy6Tz2ImIJfeaOGKO4oKa/p6gx5M/GHXbJAjYSJ4EEFmpBFMUQiVV9TBWGj+FXQKD47naHRYxWfxZJCeNBLlvkytQVmiQt70kULfjx+iiTo2vw4L2EieClzsVsSFSYiHlTALNzugqzR55fMFgBESuwE9saOVXwWSwrhIYJ4PPizdIvPjcnmkbBu8eH1mzVA3Sn4PSqM8vgI+7LIiLjTLemJhAjjQwK6q7fUBUOUUJl+/kAwiyIVQNld2Bs9VvFZLKmCUnhFIeIlYBRfyIWpB2GzLZR43DVE8RImIj4i/iZk4U6cnkgZIfHFxjjdWF5NmRZfRiBAAS5OvbCkLVbxWSwpQmz3cY+HYHZU8dW9q1OFoi2+AKXeLNcmhntVCOXxmvG4ElfG48S0+Lymq7fIjRafUXweX4Ail/c5tKQnVvFZLClC2CzQjHgJZrcAIOKCIUZsjMvr12uAuqX4iKDEh5jxODemCXhUiLD48AW14it1YQulSEzx+SmSTDwubvdkSU+s4rNYUoRwrMXnJbOJmXPnwuLPkbCxavT6XF0D1EsYJT7IMK0zFyxQteLz4s+MjnG6oPjNGKd4/aar13Z1Nnas4rNYUoTYWJx4yM5uRlgJERdWWYm1eDw+Ir4sMlyaH+czXZ3eYHQNzLorPm+kjLD4XR3jjBjjFq/P7+oaoJb0xSo+iyVFCJkWn3i8eLweCl0aj3JadUb82a6tAeolgvL48JpuSTfWwPSoEBHxORRf3Z8/WqHw+vyUebNc6+q1pC9W8VksKYIK77e+BPR4lAvz2FS0Jen1xyaGKxcMUXyEUB6fY86hS4rP44t19YZLXGjxhfe3+Mp8WQRc3O7Jkp5YxWexpAj7W3z6s3Rrzl10jE+8Pgg0wSOKIhdaUl6zrmiGsUB1Y/HnaIsvNsZZ7MIE9lhXZ4CIL5ugS3MOLemLVXwWS4oQiVp1evSmKcWeLPwuKD7lsOoUMx5XsC+vTnFG9/jD68dvWnxuTL3wqBDK4yc7GKRY+d0x7jHTObyBIBF/FpnYFl9jxyo+iyVFiFp1ekxXZ6nXHcUXXaTZ6wvgjU4Mz69b66w0FCZDQuD1k9lEr4EZcmHqhc8ovqyAl3wyXVmyjDLdwvMGMon4m+AnBNG5jZZGiVV8FkuKELU+VF69/16ZN4sMF9bAjCo+nz+A10wTKK6jBWZpqeku9AUJZmnF50brTE+K9yEiFBHE48IqKyqkZfUFgrEVYdyQ1ZK+WMVnsaQI0S458QYAXJtzF53A7vP5Y/Pj6joeV1ZsFLIvSHZTrfjcWPzZi17/E9wb49yv+DKRDD3ZvqTQrt7SmLGKz2JJEZzbBwGE/dkEXZh6EC7Tii8QCMTG48rqOD8uVKrlEl+QYEaAIhVwZeqFT4XAo5+/xOOO4pNQiY47IzPW1evGnENL+uKrbwEsFotmf4tPF/wRfxNX5tyFTbz+QAYR0Z98XSeGh6ItPn8QETFzDuuupHyEYoq/xJtFpgvLi0nYjPH5M/GYOYfFLky9sKQvtsVnsaQI0e1zvP4M7ZDRhKCUxVZeqS1Rher3Bwg2iW7GWrfWWVm0xecPAtE5hy60+Njf4gt5swi4sc+fafHhy8CfaYx7XFgKzZK+WMVnsaQIoTJdQHt9uuAXswZmQX5eneJVRkn5g03IzI6Ox9Wt4A+VaIUk/kwAV9bADIUj+MwUCYAyt9YVjSm+IIHoGKcLS6FZ0her+CyWFCFUasaiTCsqqviK9tVtPErMlAB/VpPY1APquAZouHT/FAGAEk/dtzsqC4XJlhIivix9D5c2uFVlUQvUDPxZZtcHF+YcWtIXq/gslhQhbFp8voC26owu/lzXqQfRZc8CwaYEAu4YopQWR+PUSqrUm0mgjoqvMDruZhS+8mcRxAXFFyqmFD+IEMx2p6vXkt5YxWexpAhh0yXpC2qT+/1rYNa9xVeoMvD5dRdioWTWWfGVFGkll2EUX8ibRSBct27Jon27AWIGKASyyaAMwnUb46SsmDLRzx40i19HrOJr1FjFZ7GkCKpMKxNfQCuT6Jy70joaYkhpPkUSjJ0XuTA/rtRYdWZlaSUd9mURqON2R9EpBt6gfm7MBrd13ZopENpHoUe3nrPNGqBubPdkSV+s4rNYUgRlDEaiLb4M0y1XV0MMKS2g2KH4iqXuhiiqSLfOgk1b6XN/JsE6Kr4Ss5Gtzyh8j5lzV1jH5dUyw3sp9Oo4szJ1Vy8uzDm0pC9W8VksKULUUjIrSxf40V0P6jrnzhsqpMSTFTsv8Wbhr+P8OE/RLgAyW7QGQPmy6qz4Ss1qMgGj8L1R4546zrnLLMujNHAIABk+L4UEoczuydeYsYrPYkkRVLFu8WQ304V0pktz7oKhPZR4m8bOSz3ZdTZEoXAnhSqDjMz943FBKYtt+lobivZqZdq0eUsAvLE5d7VXfLsLSmkW2Ytkt9p/H3FnDVBL+lInxSciM0Rki4isML9THH6/F5FvRGS9iIyvu6gWS8PGU5JHgQriC+huyawmLYC6L6jcIrSDguChsfOQC5uxeop3sdfTLHYuZlyysA6ts/CeLQC0OKwzQGx5tbpscPvtT3m0ld0EWhwWcyuWTDwuLIVmSV/cWLLsXqXU3U4HEekDTAH6Au2B90Skh1Iq7ML9LJYGia8kj73ShGxznpWVTUh5oA6KLxyO0Cqyi83ZbWNuIV8WQVW3Fl9m8XbyfYfEzqPjccWF+bEWW03x7PuBEvwEm7UB9iu+usy52/ntSjKllMzDh8bc9GR729XZmDlQXZ0TgWeVUiVKqe+Ab4DhB+heFkuDwFe6hwLP/i5J8XgooG5TD3Zs20yGlOFp0SHmFvY3IbOOa4C2Kd3E3qzOsXOfmXNYlxafP38LOz2tQQTYP/WgrA67xUc2fwbAIT1HxdzKPJn46zj1wpLeuKH4rhCRL0TkURGJVgE7AJscYTYbtwqIyCUislRElm7fvt0FcSyW9MRfkkdZoEU5t2LJwFNW+0L6pw3LAQi27+e4URZZqhiUqlWcO3ftpK3aiWp5RMwtOtm+tKD2Suqwom/YmbU/zgxj5FOXMc4m21eQJ83wteoacyvzZuGv6xinJa2pUvGJyHsisjrBbyLwEHAEMBDYCtxTUwGUUv9USg1VSg1t06ZNTS+3WBoEkYiiTehHSrLbl3MvkSCeOhTS+d8sBuDw3vs7XFSgCR5RREprp1A3r/wQjygyuh0dc/ObKRjFteyW3LJlM50iP1B6aE7MLStq3FPLrl4VidA5fwU/NOkXa0WC7up1ZQ1QS9pS5RifUur46kQkIg8D/zGnW4BODu+Oxs1isSTgp507OEx2s8XRigIo9WTiDdW+kG6x5UO+8R3Jka3bxdw8ZjPWwsK9NMnISnZpUgrWvEWp8nLkkONibgEzHheqpeL7bvG/6SCKQwf/POaWaSabq1pucLt65RJy2Mbyrr8u5x7xZbmyz6ElfamrVWc7x+kZwGpz/CowRUQyRKQr0B1YUpd7WSwNmW3f6U8n47Ce5dzLPMFaj0d9u24ZvUPr2NmpvFF11BClqBYTw/ft3U2f7W+yptkYgln7xyMz6rD4cyQcocXaeWz1tKVjn6Ni7pnBTEqUD0prp0zzFv6DMuWl57GTy9/Pn0WQklrFaWkY1HWMb6aIrBKRL4BxwDUASqk1wHPAWuAt4HJr0WmxJKfgh/UAtDy8Tzn3Um8W/lp0y6lIhL2v/p5ClUGvCb8t5+c1Lb6SwpqPna16+mZaSD7Nxl1dzn3/eFzNW2eLX3+MfuF1/NTvEsTj3S+nRygiiJTWvKv3q9XLGLHrFda0OZmsVh3L+Ukgi0xKaj3GaUl/6jSdQSl1XiV+twO31yV+i6WxEP7pKyJKaNO5d3l3byaB0m01jm/pC3cxrOhTFve4jpGt25Xzi1pg1nRi+KfvPs/IrU+xtOUpDB08rpxfplllJlzDieHfr1lMzrI/8q3/CHJOu6qCf7EEkRqusrJv11aCL06jSDLpNnlmBX/xmx0ligsImEnylsaFXbnFYkkBAnu+Y5unTWx/uyhhX2aNF39e/c5chqz5K58HRzJ88h8q+Mfmx9Vg8etln31Cj0VXs9nfmb6//EcF/0zT1RmpwXjcD9+upcnzkymQbILnzcdjNuB1UixBvDWYc1e0L4+f/n4qh0a2s+WkR2nWpqIxuZgWb1GB3ZOvsWIVn8WSArQs+p6dwcMruEd8mWTWQPF9uehlenxyLWv9feh++fN4fBU7dQJGSZVVc5rAmtXLOfw/5xL2BGjxyxdiRidOoq1Iqtni27H1e3jydDyEKZz8PO07d08YrsSTWW3FV1pcyLcPTqRz2QZWHj2LPiMTLxjlMwY9RXXc9cKSvljFZ7HUM5FwhPbhLRQ27VrBT/mzq73484blCzj83UvY6D2c9pe+TNOmFRUUEFtfM1QNxffthvUc8sJZ+CWCXPAyzdolVlD4ApThq5bi27NrO/sePo0WkTy2nfoU3XoPThpWTzavWvGFyspY88A59C1ZwdKBf2HE+HOTho2OcRbXYozT0jCwis9iqWd+2vo92VIMrSoqFeXPIlNKCYcrtw3buP5zWr0ylV2eQ2jyy1do2frQpGEzsk23ZBWKb8vm7/E+eTrNKKR4yvO06jKg0vCFZMZ2e08apmAvPzx0Gh3Cm9nws4fpNWRspeHLvJn4I5Ur/kg4wtK/X8iggo/5X/frGXnG5ZWGj805tC2+Rosba3WmDHt2bmP9wueIFO1BFe9BSvYipflIJISgIBJGiJjQYia1Cko8iAiIB4Ug4nDDo8MJ+tjjAUcY7aGPFWi3SozFampHViG8qsI/YRy1uMgZvBrhKwYp76IU5SYR1+Y+1bpHFVQZpMqkSuBSY7nLEyzaxmFAZrteFfyiiz8XFe6jSdMWCa//ceNXBJ+ZRAgfatq/OaxD54ThomQZxReuZDPWHT/9SPGjp9Genfw08Rk69xpZxVNAsSdY6Qa3pSUlrH/gLAaUrmPlUfcy6JiJVcYZ8mURKN2c1F8pxaJ/XsUxu1/j044XctTUm6uM0x9dZabQ/YWqf9j8PVvX/Y/QlhVI3vdkFm6haWgXgUgJGZQiKErxUyIZlEkGpZ4gIW8mZd4swr5Mwr4sIv5s8GdBIAuvz48HpfOYiuhvOWL+VdyxMmWbiiBKoYiYzKn9JWFOlEpOE32vUs65MONQfnb+H+uSZPVCg1J8eT9tZvjKP8XOC1SQQskkjBclHiIIEbS5tM4ECqOuEBUxKiz6r/YfG79oeHH8Ep1bDOI8tOlSGbulBZ37jKjgLoGoIcbehIpv509bKHtsIs0pZvuklzniiD4VwsQTtcCMJOmW3LtnFzv/cSpdw5vJPWkuPQb9rFrPUCJZSRd/DpWVsfKByQwr/pSl/W9h6EkXVivOsC+LYCXTORY99keO2fYEy1pPZPhFf6tWnFFLztI6bvcEUFxcxOpFr1Gy7m067/qEjmor0bV3fqIlef5DycvsQtiXSZknA4XgV6V4wyV4wsX4wkUEw/k0K9tOUBWRoUrIVEUEpazOsoWVxJVOFRVZ8u+yonsiNbiWroBVfPVKu259+eGCT8ludoj++QOxle4tllTmkCTu0VVWShKsgbln9w52/eM0OkW2k3vKPHrlVFSciQhkBClV3oTjcYUF+9g4eyK9Qt+w7pjZ5Bx1arWfodSbRSBcMc5IOMJnsy/gqPwP+ezIqxg26bpqxxnxZREkcVfnoqf/ypiNs1nR/GcM/s2jiKd6IzdBM+ewOmOciVCRCKuWLGDfkifou/Ndhko+RQT4OnMQP3Q6l5ZHjqBtz2Ec2rwlyTucq7hHOERJ0T6KSsoAwePxIB797xV9LB4PHvFoP9NDJRLtoRK8Vd6l7lTe+Z26NCjFF8gI0r5rxe4iiyVd8UUVX9yKKPl7d/Pj3yfQNfQdXx77EP1H1GzLy6IE8+OKCgtYP+tMBpSsYsXwmQz+WXIDkUSUebMIxHWfqkiE/z30a0blvc5nh/+SYdNuq1GcKpCtrVqVKtdV/t+XHmT0V3ewKvtocq54FvFWvygLmq7eUA2XQguFQix7Zx7Nls2mf3g9xcrPuubH4B88hV4jJ9A/6F41W7w+gk0OIWinGR4QGpTis1gaGtFdD5xb8+zds4vND/6c7qVf88VR9zPkuMnJLk9KMUE8DsVXVLCPrx+YyKCSZawYdCuDJ1xS4zhDviyyin+KnUfCYT6d82tG7XiepYedw7ALa7yGPRLIxicRykqL8JtpCJ+8cD8jV/0fazMH0fO3L+L1B2oUZ2a2TtNISfWmSRQVFfH56/+kw5p/MEJt4Qc5jM/7/Yk+43/JoKa123vQUr9YxWexpDD+6HiUafFt27yBgsfOpHtoE6uPuochJyVdPKlSCj1NCJTtAWDHti1s+9fZ9Ctdy2cD/8yw06+sVZylgUNor1YCUFxUyMqHpnPU3rdZ0nYywy55qErjpkREMloAULT7J7xtDufjJ/6PY7+fxZrMIRx55csEgjVfZDszK7r4deVWnXvydrPy1Vn0+PZxRrGT73zd+GLo3+h3/Pm0TzDZ3pI+WMVnsaQwma30JiehXbl88eELtP/oOg5VJawd9y8GjT2z1vHuDLSnTfFmVi9+m9ZvXc4RKo9VR/2NYSddVOs487M70WrnXjatXUzRi1cwIvw1S7pcyvAL7qiV0gOQ1t1gPWxd91/2PnkVxxYsYGWzcfS+7BkCwcyqI0gUZ0ZTClUGGUWJ9//cumUjG/5zDzk/PM8xUsCXGTnsGXMPPY6eWO1xREtqYxWfxZLCtOvcg2LlZ/CK/wPgO8/h5J/1CAP6DK/iysopbt6Nztv+B2+dw4/Shk2n/5sBA8fUKc6Mtj1gI3R6bjz7yGTV6L8z/PipdYqzTed+8An0/Og3hJWwpPtVDDt3Rt0UkAjbpRVZxfvXQC0uKWXVJ/8h8vlTDNy3kLaEWNV0NM1/dh29Bo2rJDJLOmIVn8WSwmQEAnzW8kR67fqANZ2mMHDq7QQz625E0enEK1g7/wv2tBrEgKl/5rAmLeocZ7+xZ/Hf9W8S8HrofNbt5HToVuc4u3fvyYftLqbl3nU0P/lmhvc7quqLqsFOb2s65a/ik2fvIrD5E47Yt5Rhso+9ZLPmsNNoP/4aBnTLqToiS1oiKoW25hg6dKhaunRpfYthsVgaOK89dgenfv9XAHZwCBtbDCez3ykcOeacmBGN5eAhIsuUUkMP1v1si89isTQ6JlxwI1+vOY7mzZtxaKeetK7lGKQlPbGKz2KxNDo8HqF7Tt3GSS3pizVRslgsFkujwio+i8VisTQqUsq4RUS2A9+7EFVrYIcL8RwMrKwHjnSSN51khfSSN51khfSS1y1ZOyul2rgQT7VIKcXnFiKy9GBaCNUFK+uBI53kTSdZIb3kTSdZIb3kTSdZndiuTovFYrE0Kqzis1gsFkujoqEqvn/WtwA1wMp64EgnedNJVkgvedNJVkgvedNJ1hgNcozPYrFYLJZkNNQWn8VisVgsCbGKz2KxWCyNigal+ETkJBFZLyLfiMhN9S2PExHpJCIfishaEVkjIlcZ9xkiskVEVpjfKfUtaxQRyRWRVUaupcatpYi8KyJfm/9DUkDOno70WyEie0Xk6lRKWxF5VER+EpHVDreEaSmaWSYffyEig1NA1rtE5Esjz79FpIVx7yIiRY40nnMwZa1E3qTvXkR+b9J2vYiMTwFZ5zvkzBWRFcY9FdI2WbmVknm32iilGsQP8AIbgG5AAFgJ9KlvuRzytQMGm+OmwFdAH2AGcH19y5dE5lygdZzbTOAmc3wTcGd9y5kgH/wIdE6ltAWOAQYDq6tKS+AU4E1AgJHApykg64mAzxzf6ZC1izNcCqVtwndvvrmVQAbQ1ZQZ3vqUNc7/HuCWFErbZOVWSubd6v4aUotvOPCNUupbpVQp8CwwsZ5liqGU2qqU+twc7wPWAR3qV6paMRF43Bw/Dpxef6Ik5GfABqWUGysAuYZSaiGwK845WVpOBJ5QmsVACxFpd1AEJbGsSql3lFIhc7oY6Hiw5KmKJGmbjInAs0qpEqXUd8A36LLjoFCZrCIiwDnAMwdLnqqopNxKybxbXRqS4usAbHKcbyZFFYuIdAEGAZ8apytMt8CjqdB16EAB74jIMhG5xLi1VUptNcc/Am3rR7SkTKF8wZGqaQvJ0zLV8/JF6Fp9lK4islxEPhKRum3j7i6J3n0qp+0YYJtS6muHW8qkbVy5la55F2hYii8tEJEmwIvA1UqpvcBDwBHAQGAruqsjVRitlBoMnAxcLiLHOD2V7ttImfkwIhIATgOeN06pnLblSLW0TIaI/BEIAfOM01bgcKXUIOBa4GkRaVZf8jlIm3fv4BeUr7SlTNomKLdipEveddKQFN8WoJPjvKNxSxlExI/OPPOUUi8BKKW2KaXCSqkI8DAHsdulKpRSW8z/T8C/0bJti3ZdmP+f6k/CCpwMfK6U2gapnbaGZGmZknlZRKYDPwemmsIO02W40xwvQ4+Z9ag3IQ2VvPtUTVsfcCYwP+qWKmmbqNwizfJuPA1J8X0GdBeRrqbmPwV4tZ5limH67x8B1iml/uZwd/Z/nwGsjr+2PhCRbBFpGj1GGzesRqfpBSbYBcAr9SNhQsrVmFM1bR0kS8tXgfONhdxIYI+jW6leEJGTgN8BpymlCh3ubUTEa467Ad2Bb+tHyv1U8u5fBaaISIaIdEXLu+Rgy5eA44EvlVKbow6pkLbJyi3SKO8mpL6ta9z8oS2KvkLXjP5Y3/LEyTYa3R3wBbDC/E4BngRWGfdXgXb1LauRtxva+m0lsCaankAr4H3ga+A9oGV9y2rkygZ2As0dbimTtmiFvBUoQ497/DJZWqIt4mabfLwKGJoCsn6DHruJ5t05Juwkkz9WAJ8Dp6ZI2iZ998AfTdquB06ub1mN+1zg0riwqZC2ycqtlMy71f3ZJcssFovF0qhoSF2dFovFYrFUiVV8FovFYmlUWMVnsVgslkaFVXwWi8ViaVRYxWexWCyWRoVVfBaLxWJpVFjFZ7FYLJZGxf8HUpTvLrzGm/gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABrwUlEQVR4nO2dd3yURfrAv8+WZFOoAZUmRQEpCb0ooGABPVREUFAsyHmeerbTs1zRQ++8s56KevI7RbEdgg311MOzoKIi0qsoaKSISAuE1M3u/P6Y2eXNZjfZhA3ZhPl+WPK+M/PO+7zzzjvPlGdmRCmFxWKxWCwNGVddC2CxWCwWS21jlZ3FYrFYGjxW2VksFoulwWOVncVisVgaPFbZWSwWi6XBY5WdxWKxWBo8SafsRKSDiCgR8dS1LJaaIyLXisiPIrKiDu49VUReOAT3mSwiCyrxny8il9e2HJbyiMhwEdlSXb8Ey1BpOXao8mhDQUQeE5HdIvKiiNRIbyWdsrNUHxGZLiL7za9URPyO83frSKypwNVKqV4OOaeKyNQ6kiepMIVhbjXDfyQihSLytYicWknY80XkcxN2foRfFxF5Q0R2mMJjnoh0dfhfKiJLRGSfiGwRkfucBbaR4x0R2SMiP5lCyOl/sogsNdd/JyJXOPxGiMgqEckTkV0i8rqItKnG8+fGl1r1HxHJFZEOcYZNFZGnTZr/JCI3VhH+tybcPnNdqsPvI5M39onIChEZEyOOp40yP9bhtj/iFxCRR41fdxFZbPLNHhF5X0S6R8TZV0Q+MdduF5HrQ35KqWuArsBYICeedIkk4crOtsgOPUqpK5VSmUqpTOBvwOzQuVLqjFC4Q/xumgOrD+H9aoUkys+zgGVAFvBH4BURaRkj7G7gYeCeKH5NgTfRBceRwCLgDYd/OnAD0AIYBJwC/M7h/0/gZ6AV0Bs4CbgaQES8wOvA/wFNgAnAP0QkVOFZC4xSSjUFWgPfAk9U9eDJShLljalAZ6A9MAK4RUROjxZQREYBt6Hfa3ugE3CnI8j1QCulVGPgCuAFEWkVEcdQ4JjIuB1lTiZwFFAEvGy8fwTGo8uFFug8+JIjzhbAf9F5Jws4FngvIv4d6LyXVWlqxCAhys7UQm4VkZVAgYh4RGSwqV3mmRrCcEf4+SLydxFZZGoQb4hI8xhxXyYi60Qk39QUfx3hP0ZElpt4NoZesog0EZEZIrJNRLaKyF9FxF3FcxwjIh+aWudO0U3mpg6/3SLS15y3NjWg4eb8bBFZY553voh0i0if34nIShHZKyKzRcRX/ZSuPjHeTWSNbKaI/NVxfqZJ0zzzDqtVk3Kkc7CKcLeY9/OjiFzulMvI9LiIvG3e/Zcicozj2kdEZLN570tEZFhE9D6TzvmiWxrOFuZtJq/ki8haERnr8JssIp+JyEMisgtdkFT1vA+Y2ur3InJGhHd7E1++iLxnPupqISJdgL7An5VSRUqpV4FVwLho4ZVS7yul5qALmEi/RUqpGUqp3UopP/AQ0FVEsoz/E0qpT5VSpUqprcCLwBBHFB2BOUqpYqXUT+gCqofxaw40Bp5Xmq+AdUB3E/d2pZRTpgC6UKs2olsBy0y6vmze9V9jhL3OvOe2Drc/mG88V0QmOdxHm3j3mfw11eEX6pr8pYhsAj6MQ9RJIrLJ3OuPEX4pIvKceYY1ItK/eqkQ5lLgL0qpPUqpdcCTwORKws5QSq1RSu0B/uIMq5RaqZQqC50CXqBdyF+0gn8UuLYKmcahFdOnJt48pVSu0kt2CRXf/Y3APKXUi0qpEqVUvnmWSIJAzSoZSqmD/gG5wHJ0oqQBbYBdwC/QCvU0c97ShJ8PbAV6AhnAq8ALxq8DOpE95nw0uhYh6FpkIdDX+A0E9pr4Xea+xxm/UA0zAzgCXYP9dRXPcayJKxVoCXwCPOzw/xW6dpoOzAMeMO5dgAJzrRe4BdgApDjSZxG6NtscXQBcGUOGoUBeJb+hVTzD1FBaRns3xk0BxzrCzAT+ao77oDPpIMCN/jhygdRq5IfTgWIgo4owP6ELynTgBadcRqZd5h170IXuS47rL0LX8DzATSYunyMN/OiapBfdMvke8Br/88y7cKFbHwXo2izoD78M/TF7QmkW4xkmm/v8yqTVVWgFI458vtHkjzRzfk+MuP4J/DOG31hgXYTbY8CjVbyHy4H5VYQ5B9hWif9cp8zAr4HnzDtrg269j3X4/xv4jUmP401eaufwPxqdj4Mm7SbXoLxJAX5At0K8wLlAqSMPDwe2mOM7gKUcKHuGm/f7D/R3fpJ5/10d/tkmb+QA24FzIsqm59DlSmV5IxT2SfPuewElQDdHHi1Gl5Fu4O/AwhhxXQisjOHXzNznSIfbeGBVjPArgAmO8xbm+iyH23+MbApdmXE5/G4GHolWjkTc50NgahT3PJP+QeBPEeEfAT43eeYt4Ogo138M3Ae4q51vqntBjAfLBaY4zm9F1+6cYeYBl5rj+ZT/gLqbzOomQtnF+PiuN8f/BzwUJcyRJmOlOdwuAD6q5nOdAyyLcHsTXateiVEAwO3o2m4ojAutzIc70ucih/99wPREpH0UmadSUdlNiQhTmbJ7Al1LdIZfD5wU5/0Xm/ivqyLc08DfHefHUlHZPeXw/wXwdSXx7QF6OdJgocPPBWwDhsW4djkwxhxPBjbF+ayTgQ2O83TzDEc58rnzg74a+G8N3unFRBSEwN3AzCquq1TZAW1NPr0ghv8UYAvQwuHWDViCLrCUeU/i8D8LrSDKzO9XMeJuji4nBtcgPU40cjvvu4Dyym4rWqEtAJo4wg03cmU43OYAt8e418OYMoYDZVOnOGQMhW3rcFsETHTk0fcdft2BohqkRTtzH5/D7TQgN0b4jcDpjnOvub5DRDgvcAZwY8S9NoTSkxjKDt09GgA6xpAhw3wLox1u36AV4QDAB0wDPoty7fFAPrp8P6I6aZXIMbvNjuP2wHmmGyxPRPLQLZZWMcL/gE7cCl08InKGiCw0XYh56EIvFK4d+uVF0t7Et81x//9Dt/BiIiJHishLpttzH7q1ESnTk+gW6aNKqRLj1to8AwBKqaB5Pufg+0+O40IgszJZEszmqoOEaQ/cFPHu2qGfMR4GABOBqaLHcGLROkKuaDLGTDPTLbzOdAvnoceInO8qHJ95H1tCzyAilzi6afPQ7zPqtXEQllEpVWgOM6P5Rz5DNdiP7h500hj90dcI0eN976Fbk7Oi+J+Dbm2coZTaadxc6Jr+a+gCqwW6ZXGv8T8OPQ5zCbr11QM9fjQ6Mn6l1G7gWeANqf7YV2tgqzKlnyHynTVFjzn9XSm1N8Jvj1KqwHH+AwfyxiA5YKSxF7iSimVAjfIHFd9/pJ+vBmmx3/x15o/K8kZkXgodlwuvlPIrpd4FRorI2cb5YeCuKOkZycXAAqXU99E8TdpPB54TkVCZXAS8rpT6SilVjB5HPEFEmkRc/nt0L0+GUurnKuQoRyKVXWTGe14p1dTxy1BKOQfM2zmOj0Z3aex0RijaSuhV4AF0M70p8A66SzN0nwoDpca9BF0jDd2/sVKqR5SwTv5mniNb6QHaixz3QkQy0S98BrowD40z/ohWEqFwYp5vaxX3q4CIDJOKVk3OX+TYVDyoiPNCdCskxFGO483A3RHvLj1agRj1RroAmosuBFtVEnQbumURol2sgJGYNLgFOB9oZvLFXhzvivLjDC5zrx9FpD26wnINuuumKborznltZHrVNWuATiLSyOHWy7hXGxFphlZ0byql7o7ifzo6jc5SSq1yeDVHf6uPKT2usgt4Bl0BBV1p+EYpNU8pFVRKrQfeRrcQouFBV0AjFXlVbAPamO8sRGT+2QOcCTwjIkMi/JqJSIbj/GgOjG/+G917004p1QRdKEvE9UmTP5Qed9uGzg8hKssba6KE3W7eZTQ8HChjTwHuF23JGVLUX4jIhRHXXIKuyFSGiwNd4aB7ypzpGiuNuwFvqQPjinFTW1MPXgDOEpFRIuIWEZ/o+S3Owu0i0eao6cBdwCtKqUBEPCnofvUdQJkZ/B/p8J8BXCYip4iIS0TaiMhxSqlt6I/5QRFpbPyOEZGTqpC7Ebrms1e0SfTNEf6PAIuVUpejP+Lpxn0OMNrI4UWPIZWg+5+rhdLGAZmV/D6tbpxRWA5caN7N6ehxixBPAleaGq6ISIYZtG8EYcORmVU8Q6jFm1JJsDnod9fN5IHbqyF/I3RX1A7AIyJ3ULHA7Cci55qa8g3o97EQ3SJR5lpE5DJ0IZ20KKW+Qb+zP5tvKWR+/Wq08KFvDl1Qucw1XuPXGD2k8JlS6rYo156MrjmPU0otipBjJ3rs8yrRhk5N0WO6K02QZUBn0dMPRLRB0Zkhf/M+uprvsSW6m3GZaeWFpqbMjyNJvkB3k11j5BiDHtuNTLf5wCTgNRGJ9L9TRFJMxelMDlgNNgJ2K6WKzTWRBXky8hzwJxFpZlrXv0J3L8cK+0tT9jYF/hQKKyLHie5JSxMRr4hchO4y/thc2wWtHHubH+hu69dDkYvICWgFFkrPkPtpItLH5M3G6He/B22/ALrSNFZEepu8eju6dRjZivSiv+VqUyvKTim1GRgD/AFdqGxGKw7n/Z5HJ/JP6D7a66LEk2/c56AT5kJ0rSvkvwi4DG1Rthf9UkItrFBXylpz7StU3tIA3XTua+J6G91dA2irT7RRxVXG6Uagr4hMMjXYi9BWSjvRGeAspVRpFferK65Hy5iHLgzmhjyUUovRH8tj6HTbQHnLrnbAZ3HcQ1FJ/jJdJNOAj8w9FhqveDLyPHR32jfoLqhiKnYtvYE2PtmD7lY513TNrAUeRBeY29HGCPE8T60ieq7k9EqCTAT6o5/nHmC80qbYiMgkEXHW5C9Gdws9AQwzx08av7HorubLInoMjjb+t6O7hN+R6HM1z0V/BzvQ780P/BZAKbURPc43DdiH/h5fBZ4y17ZBv7d89Lh30MgTIq68Zb6rc4FfovPwRWijigp5Ryn1PyPTW2IsqdFlzh50a+5FtLHY18bvauAuEclHG7fMqUqe2ibK+43kz+jhnB/QaX6/Uuq/5tqjne/XuN+H/u42mWv+HLoVeizxZ/T7vR5tzLLUXPuzUuqn0M9cs1MpVeSQ5VLgNVN2O2mKnj6z18h6DHrssNjE/SFaX7xt7n8s0Ssabqqw8o5FyGrskGJqby8opZ6qKqwleRCRFLQ1V47SZuuVhf0RuEUpFdcqEaKnaqxGG/1Uu4vCUv8RkeXAKZV0qVV27Zdoo69nEi6YJSkQkZCBTB9Taa0WdgUVS9woPfeqW1WKznAbutttSawAIjJW9OoPISOHGvXFWxoGSqne8So6ETlJRI4y3ZiXort1/1u7ElrqChGZhu79+VdNFB0chspOyi+t5fxV1oVkqSZKqeeUUp2VUv0qCfZrdJfFRvQYzFWVhK0TbH5JWrqiexny0GPk481Y/SHDdC9Gyxs1MhyyxEYpdZ1Sqo1SqqrJ7DGpk25Mi8VisVgOJYddy85isVgshx/JspApAC1atFAdOnSoazEsFovFcghZsmTJTqVUrIXNE0JSKbsOHTqwePHiuhbDYrFYLIcQEfmh6lAHh+3GtFgsFkuDxyo7i6UeYg3LLJbqYZWdxVLPWPLFh2ydeiw/b6+wXZ3FYolBUo3ZRcPv97NlyxaKi4vrWhRLPcLn89G2bVu83so2XqifBBc8QlvZydql/+GIM66oa3EslnpB0iu7LVu20KhRIzp06IBI5OLjFktFlFLs2rWLLVu20LFjx7oWJ+EUm03ug35bAbRY4iXpuzGLi4vJysqyis4SNyJCVlZWg+0N8Lj1Z1viT9Z1xi2W5CPplR1gFZ2l2jTkPCMevXNSoGhfHUtisdQf6oWys1gsDtxa2aniGm9UbrEcdlhlFwciwk033RQ+f+CBB5g6dWrdCVQF8+fP5/PPq71vbDlOP/10mjZtyplnnpkgqSyJQpTezktKbcvOYokXq+ziIDU1lddee42dO3cmNF6lFMFgjfYhrJREKLubb76Z559/PkESWRKKUXYe//46FsRiqT9YZRcHHo+HK664goceeqiC344dOxg3bhwDBgxgwIABfPaZ3mh56tSpPPDAA+FwPXv2JDc3l9zcXLp27coll1xCz5492bx5MzfffDM9e/YkOzub2bNnA1phDR8+nPHjx3PccccxadKkqBOJp02bRvfu3cnJyWHixInk5uYyffp0HnroIXr37s2nn35aqYwXX3wxxx9/PJ07d+bJJ58Mx3vKKafQqFGjStPl5ZdfpmfPnvTq1YsTTzwR0AZFl112GdnZ2fTp04ePPvoIgJkzZ3LOOedw2mmn0aFDBx577DH+8Y9/0KdPHwYPHszu3bsBePLJJxkwYAC9evVi3LhxFBYWVrjv4MGDWbPmwC4qw4cPP6yWmZOg3vLPKjuLJX6SfuqBkzvfWsPaHxPbddO9dWP+fFaPKsP95je/IScnh1tuuaWc+/XXX89vf/tbhg4dyqZNmxg1ahTr1q2rNK5vv/2WZ599lsGDB/Pqq6+yfPlyVqxYwc6dOxkwYEBYcSxbtow1a9bQunVrhgwZwmeffcbQoUPLxXXPPffw/fffk5qaSl5eHk2bNuXKK68kMzOT3/3udwBceOGFMWVcuXIlCxcupKCggD59+jB69Ghat24dV9rdddddzJs3jzZt2pCXlwfA448/joiwatUqvv76a0aOHMk333wDwOrVq1m2bBnFxcUce+yx3HvvvSxbtozf/va3PPfcc9xwww2ce+65/OpXvwLgT3/6EzNmzODaa8tvYTVhwgTmzJnDnXfeybZt29i2bRv9+/ePS+aGgKgAAJ5AUR1LYrHUH2zLLk4aN27MJZdcwrRp08q5v//++1xzzTX07t2bs88+m3379rF/f+U17vbt2zN48GAAFixYwAUXXIDb7ebII4/kpJNO4quvvgJg4MCBtG3bFpfLRe/evcnNza0QV05ODpMmTeKFF17A44led6lMxjFjxpCWlkaLFi0YMWIEixYtijtNhgwZwuTJk3nyyScJBALh57nooosAOO6442jfvn1Y2Y0YMYJGjRrRsmVLmjRpwllnnQVAdnZ2+NlWr17NsGHDyM7O5sUXXyzXggtx/vnn88orrwAwZ84cxo8fH7fMDQLTjem1ys5iiZt61bKLpwVWm9xwww307duXyy67LOwWDAZZuHAhPp+vXFiPx1NuPM455ysjIyOu+6WmpoaP3W43ZWVlFcK8/fbbfPLJJ7z11lvcfffdrFq1qkKYWDJCRRP96pjsT58+nS+//JK3336bfv36sWTJkkrDO5/H5XKFz10uV/jZJk+ezNy5c+nVqxczZ85k/vz5FeJp06YNWVlZrFy5ktmzZzN9+uG1aXioG9MbtMrOYokX27KrBs2bN+f8889nxowZYbeRI0fy6KOPhs+XL18O6O2Kli5dCsDSpUv5/vvvo8Y5bNgwZs+eTSAQYMeOHXzyyScMHDgwLnmCwSCbN29mxIgR3Hvvvezdu5f9+/fTqFEj8vMPmKXHkhHgjTfeoLi4mF27djF//nwGDBgQ170BNm7cyKBBg7jrrrto2bIlmzdvZtiwYbz44osAfPPNN2zatImuXbvGHWd+fj6tWrXC7/eH44nGhAkTuO+++9i7dy85OTlxx98gMC27VKvsLJa4scqumtx0003lrDKnTZvG4sWLycnJoXv37uFWxrhx49i9ezc9evTgscceo0uXLlHjGzt2LDk5OfTq1YuTTz6Z++67j6OOOiouWQKBABdddFHYGOS6666jadOmnHXWWbz++uthA5VYMoLuBh0xYgSDBw/m9ttvD4/XDRs2jPPOO48PPviAtm3bMm/ePADuuOMO3nzzTUBbbGZnZ9OzZ09OOOEEevXqxdVXX00wGCQ7O5sJEyYwc+bMci26qvjLX/7CoEGDGDJkCMcdd1zY/c033+SOO+4In48fP56XXnqJ888/P+64GwqhMTur7CyW+JFk2iqkf//+KtKqbt26dXTr1q2OJGrYTJ06tZwhS0OjoeadpfefSd+CTynER/rU7XUtjsVy0IjIEqVUrVqZ2ZadxVLPCLXs0imGWpinabE0ROqVgYolsSTzKjCW2IRWUAFQ/gIktfL5kBaLxbbsLJZ6h6gDVrklhXZiucUSD1bZWSz1DGfLrqTAro9pscSDVXYWSz3DqeyKi+zOBxZLPFhlZ7HUM1zGQAWgtNAqO4slHqyyi5O5c+ciInz99dcxw+Tm5tKzZ89alWP58uW88847BxXHlClTOOKII2pdVkvtICpAifICVtlZLPFilV2czJo1i6FDhzJr1qyo/tGW8qouofUlKyMRym7y5Mn897//Pag4LHWHiyD5pANQZjdwtVjiwiq7ONi/fz8LFixgxowZvPTSS2H3+fPnM2zYMM4++2y6d+8OaKU3adIkunXrxvjx48Nb1HzwwQf06dOH7OxspkyZQklJCaCXFbv11lvp27cvL7/8crn7Rm6hU1payh133MHs2bPp3bs3s2fPpqCggClTpjBw4ED69OnDG2+8AegtdcaMGcPw4cPp3Lkzd955ZzjeE088kebNm1f6zB9//DG9e/emd+/e9OnTh/z8fJRSMbcjOumkkxgzZgydOnXitttu48UXX2TgwIFkZ2ezceNGAN566y0GDRpEnz59OPXUU9m+veKE6IkTJ/L222+HzydPnhxe9NmiERWgQLSyCxRba0yLJR5qfZ6diJwOPAK4gaeUUvfUOLJ3b4OfKi50fFAclQ1nVC7SG2+8wemnn06XLl3IyspiyZIl9OvXD9DrXq5evZqOHTuSm5vL+vXrmTFjBkOGDGHKlCn885//5JprrmHy5Ml88MEHdOnShUsuuYQnnniCG264AYCsrKzwOppOIrfQSUlJ4a677mLx4sU89thjAPzhD3/g5JNP5umnnyYvL4+BAwdy6qmnArBo0SJWr15Neno6AwYMYPTo0XFvhfPAAw/w+OOPM2TIEPbv34/P5+O1116LuR3RihUrWLduHc2bN6dTp05cfvnlLFq0iEceeYRHH32Uhx9+mKFDh7Jw4UJEhKeeeor77ruPBx98sNx9Q9v3jB49mtLSUj744AOeeOKJuGQ+XHCpAEWuDAhCoMQqO4slHmq1ZScibuBx4AygO3CBiHSvzXvWBrNmzWLixImAbnk4uzIHDhxIx44dw+ft2rVjyJAhAFx00UUsWLCA9evX07Fjx/D6mJdeeimffPJJ+JoJEyZEvW+0LXQiee+997jnnnvo3bs3w4cPp7i4mE2bNgFw2mmnkZWVRVpaGueeey4LFiyI+5mHDBnCjTfeyLRp08jLy8Pj8VS6HdGAAQNo1aoVqampHHPMMYwcORIov33Pli1bGDVqFNnZ2dx///1Rt+8544wz+OijjygpKeHdd9/lxBNPJC0tLW65DwdcBClxZwIQtMrOYomL2m7ZDQQ2KKW+AxCRl4AxwNoaxVZFC6w22L17Nx9++CGrVq1CRAgEAogI999/P1Bxu56abJkTa8ufeLbQUUrx6quvVthZ4Msvvzyo7Xtuu+02Ro8ezTvvvMOQIUPCC0HHIp7te6699lpuvPFGzj77bObPnx91BRefz8fw4cOZN28es2fPDlcyLAdwqSClngzwgyopqGtxLJZ6QW2P2bUBNjvOtxi3MCJyhYgsFpHFO3bsqGVxqs8rr7zCxRdfzA8//EBubi6bN2+mY8eOfPrpp1HDb9q0iS+++AKAf//73wwdOpSuXbuSm5vLhg0bAHj++ec56aSTqrx3tC10IrfvGTVqFI8++iihBb2XLVsW9vvf//7H7t27KSoqYu7cueEWZzxs3LiR7Oxsbr31VgYMGMDXX399UNsRAezdu5c2bfTrf/bZZ2OGmzBhAs888wyffvopp59+etzxHy64COByeylUqVBqlZ3FEg91bqCilPqXUqq/Uqp/y5Yt61qcCsyaNYuxY8eWcxs3blxMq8yuXbvy+OOP061bN/bs2cNVV12Fz+fjmWee4bzzziM7OxuXy8WVV15Z5b2jbaEzYsQI1q5dGzZQuf322/H7/eTk5NCjRw9uv/328PUDBw5k3Lhx5OTkMG7cuPB43QUXXMDxxx/P+vXradu2bXh/vunTp4e3/3n44Yfp2bMnOTk5eL1ezjjjjIPajgj0WpznnXce/fr1o0WLFmH3xYsXc/nll4fPR44cyccff8ypp55KSkpK3PEfLrgIIm4PRaSCv7CuxbFY6gW1usWPiBwPTFVKjTLnvwdQSv09Wni7xU/imDlzZjlDlsORhpp3tk7tzPamfTgibxm7mveh13Vz6loki+WgaAhb/HwFdBaRjiKSAkwE3qzle1osDRo3QZS4KZY03LZlZ7HERa0aqCilykTkGmAeeurB00qpiiZ4loQzefJkJk+eXNdiWGoBFwFwuSkRH+6A3a3cYomHWp9np5R6BzioJT+UUtWyJLRYarN7vq5xqyBKPPjdaWQEbMvOYomHOjdQqQqfz8euXbsadOFlSSxKKXbt2oXP56trUWoFN2Uol5tSdzopVtlZLHGR9DuVt23bli1btpCM0xIsyYvP56Nt27Z1LUat4CEILg8BdxoppcV1LY7FUi9IemXn9XrLrVBisRzuuAmAeAh40klVdszOYomHpO/GtFgsB1BK4SaAcrkJejNIU7ZlZ7HEQ9K37CwWywECQRXuxsTrJo0SCAbBZeutFktl2C/EYqlHlAUCuEShXB5I0WuqBu2SYRZLlVhlZ7HUI4IBPwDi8kCq3vmguHBfXYpksdQLrLKzWOoRZWVa2eH24E7VLbuiArtbucVSFVbZWSz1iIBfb5eEy4M71LIrsC07i6UqrLKzWOoRgbJQN6Ybt68RACW2G9NiqRKr7CyWekQwaLoxXV5S0nTLzl9kdyu3WKrCKjuLpR4RMLu+i9uDN1237EqL7JidxVIVVtlZLPWIYMhAxeXBl94YgIBt2VksVWKVncVSjzgwZuch1bTsAiVW2VksVWGVncVSjwgGDnRjpmXqll3QKjuLpUqssrNY6hHhSeVuD+kZumWHXUHFYqkSq+wslnpEyEAFl4dUr4dClYqyys5iqRKr7CyWekRozM7t8SIiFIkPl99u4GqxVIVVdhZLPcJvlJ3HozcsKcKH+G3LzmKpCqvsLJZ6RMBfCoDH6wWg1OXDXWY3cLVYqsIqO4ulHhEo1V2WnpR0AEpcaXgCthvTYqkKq+wslnpEsEQrNrdP73jgd6fjDdiWncVSFVbZWSz1CGWMUTxme58ydxopQavsLJaqsMrOYqlHKNON6fXpRaDLPOmkWmVnsVSJVXYWSz0ipOxSTDdm0JOOTxXXpUgWS73AKjuLpR4R6sb0mdVTlNcqO4slHqyys1jqESEDlVSftsZU3gzSpQQVDNSlWBZL0mOVncVSjwiWFlJEKuIyn26K7s4ssdv8WCyVYpWdxVKPcJXupwjfgfNUbahSuH9vXYlksdQLrLKzWOoRvtLd7HM3DZ+LmYJQUmB3K7dYKsMqO4ulHpFetpsCT7PwucenDVWKC62ys1gq46CUnYhMFZGtIrLc/H7h8Pu9iGwQkfUiMurgRbVYLJn+PZSmZoXPPWYKQmmRVXYWS2V4EhDHQ0qpB5wOItIdmAj0AFoD74tIF6WUNRmzWGpIqb+MLLWHHZlHhN1S0vVu5X7bsrNYKqW2ujHHAC8ppUqUUt8DG4CBtXQvi+Ww4OetG/U0g6xjw27eNN2N6S+21pgWS2UkQtldIyIrReRpEQkNJrQBNjvCbDFuFRCRK0RksYgs3rFjRwLEsVgaJj9+sxSAZkdnh9186VrZBYpty85iqYwqlZ2IvC8iq6P8xgBPAMcAvYFtwIPVFUAp9S+lVH+lVP+WLVtW93KL5bCh5LvP8Ss37XqeEHZLNSupBEtsy85iqYwqx+yUUqfGE5GIPAn8x5xuBdo5vNsaN4vFUgMCgSAdfnqPDWnZdDNdlwDpGU0ACJbY3cotlso4WGvMVo7TscBqc/wmMFFEUkWkI9AZWHQw97JYDmcWv/cC7fiJkp4XlHNPS9eTyim1ys5iqYyDtca8T0R6AwrIBX4NoJRaIyJzgLVAGfAba4lpsdSMn7b+QMcv/8wmdztyRk0p5+dyuylUqVbZWSxVcFDKTil1cSV+dwN3H0z8FsvhzsYN6/G+OJaWaj9F587C5U2pEKZQ0pCywjqQzmKpP9gVVCyWJEQpxcdvPkvz50+hudpN7i+ep32PwVHDlkgqbr9t2VkslZGISeUWiyWB7N23lxUzruGkvW+Sm3IsjSc9S7cOPWOGL5E03LXYsgsEAqxf/hn71vwP18+raVb0A75AAYiw19uS/CZdSe8+kq6DfoEvNIZosSQZVtlZLEnE1yu+IHXurzhRbWZ524vJueQBXCm+Sq8pdafjCRQlVA4VDLJ++Wfs+vxZjtv5Ht3RuypskyPY5WvH/pROBIMBMou30efnufh2vEzh/FSWNzme1OyxdB4yFk96k7jvFwgqdu0rYNf2rezduZXi3T/iKtyOt3gXwUAAERculxvxeBGPD3dqGp6UNNyp6XhT0/H60klNTcOXnkFqWga+tAw8Keng9YEnDVy2E+twxyo7iyUJUMEgC1/6O33XP0S+ZPLNyOfofcKYuK71u3ykBBLTsisuLmLFf5+m5aonOS7wPaXKw5pGJ7DpuNG07/8LWh11NK0iryncz4pF8yhaMZdj93xMi8/mU/LZ71ib3o/CI/rgbnY0qWmZBHChivdSmr+TQP4OXAU7SC3ZQaZ/F82Du2lBPkeISshzOMmjMT+c9BC9RoxPeNyW+oMolfjMVVP69++vFi9eXOPriwv3s3XDCooL8vEX7ydYUoAqLUT5iwgGyggGAwQCQYQgLhSCQgARQURABOHAMYj5EzoWEJc+BURc5cPp2ECEA6kaOjd3C12M/qvM9SHiex2VB4oniprcximbivAM+akIh2j3UREHFc9jXxsZb2R6qYpBHecqZtjIa2okU+S1EfeJ/m614xFb32dAwXxWpA+m45SZNG4RqVJis+z+0TQt2kzHO1bGfU0kpaV+lr7+EB3XPcGR7CbX1Y7tXS+hx6gpZDZtEXc8xSWlLP/iPYpXzKVz3ie0UdujhvMrN3tcTcn3ZFGU2oJAektodBTeJkeR1qwNjVq2IaVpa1KbHkmKN4VgMEipv4zSkhJKSwooLiykpLiA0uJCSooK8JcUUlZSSFlpEcGSIgKlRVBWBP4SOm57mw6BH/iq5ViOu/B+mjSP/3lCKKXYvWcPO7f9QMGOHwju+5GywnwCJQVIWRHuQDGoAEEEZUoXRBCXGyUecLnNz6N/4kbcnrCbhP66PYhL/1wuF+ISXOgS4kD2URHfwYH8J5HfZbDcFxEOpwlGelUIG9XTkZEDKU0YdNrBVyJEZIlSqv9BR1QJDaplt+37NRzz2i+qDmixJBlBJXzR6RoGX/yXA7uQx0mZJ51UVVyz+wYV8z98hzaf/YnB6jvWpvRk15D76DZsHB1q0PXnS01h8PAzYfiZAOzL38u+n36goLAAN0E86U1olnUUjZs24wiXmyOqiC+E2w1p3lTS0jOA5tWSqbjgNr589ncM3D6H4kfe4csWp+M77jSat+9Jk6xWBIJB/KXF7Nu5lf07t1K850eCe7fiyt+Gr+gnGpf+TFZwF1lSQFaMe5QoD0FcDlWncBHEXQst1WRileoECVB2h4IGpexatuvC0uMfIyUtk5S0TDy+TDy+DDypGXi9XrweD26PG5e40e07QSlFUIFSQYLBIEopAsEgKIWq4gdBVFChFASVQiRU49IZXMLHB9wFcdSMlAkTgVR0qm4QiSOOeG4UbsVGiTfyajEukfcud405kQMXRb02mmSx44+Is1w85SOsEH+U5znwt+rnIYbckTKVT7eKT+dKbcTxjeNvzTlRnnR8qvpjdmu//Y6tr97KacXvsUuyWDvkEbqdckm1lW1lNG7UhMaNchIWX03wZTTm+Kv/xcaVk9nzwT/otfNtfJ/Nhc/Kh3Mq3qAS9kgT9nhakJ/ejt0ZA6FxK1KatSW9xdH4mrchrXFzMjMbkerLJNUdoyhVClSQYJmfQLCMQJmfQFkZwUDob/ljZcKoUE+UEl22EDvjHuh9CuUtKZ+vI/0cl0f7Nh0uTs/yj2X8GrkrH09OJhqUssts3Iy+o2JO/bNYGiTBlAzSq6Hs9hUWM3/W/Zy46Qm6SDHfHjuFY8ffSZavcS1KWfcck3MC5JxAcVEha1cuoOCnjZTt34W4XIgnBW/jI8nIak2zI9rS/Kj2ZKX4Yrbk4kYExI0rxY0L8CbgOSw1o0EpO4vlcCSQ2gyf+Ckr3o/HV7np/xefzKPpR7/nbLWR7xv1xTPxUTq3jT2toSHiS0un+6CRdS2G5RBjlZ3FUs8JpOkxrMK8n2l8VHRlt/2nrax/8WaG7nuHPa5mbBoxjY4nXhJvf7fFUu+xys5iqed4G+mtsfbt2kbjozqV8/P7S1n86j/otu5RTqCQVUdPovsFd5OV3rQOJLVY6g6r7CyWek7jLG3YkrdjK22NWzAQYNkHL5H1xd84Xm1hra8XTcc9RK8u/epOUIulDrHKzmKp5zRvr8fcSjcvY/f2E/hm/r9ptf45+gU3s0VasWLI4+SccmFCrSwtlvqGVXYWSz3nqCOPYp2rC703PIHa8ASDRbHR3YnF/e6j96jJtE1JrWsRLZY6xyo7i6WeIyKkTZzBonn/gIyWHDlwHMf0GGSNTywWB1bZWSwNgA5dcujQZWZdi2GxJC22E99isVgsDR6r7CwWi8XS4EmqXQ9EZAfwQwKiagHsTEA8hwIra+1Rn+StT7JC/ZK3PskK9UveRMnaXinVMgHxxCSplF2iEJHFtb1dRKKwstYe9Une+iQr1C9565OsUL/krU+y2m5Mi8VisTR4rLKzWCwWS4OnoSq7f9W1ANXAylp71Cd565OsUL/krU+yQv2St97I2iDH7CwWi8VicdJQW3YWi8VisYSxys5isVgsDZ4GpexE5HQRWS8iG0TktrqWx4mItBORj0RkrYisEZHrjftUEdkqIsvN7xd1LWsIEckVkVVGrsXGrbmI/E9EvjV/myWBnF0d6bdcRPaJyA3JlLYi8rSI/Cwiqx1uUdNSNNNMPl4pIn2TQNb7ReRrI8/rItLUuHcQkSJHGk8/lLJWIm/Mdy8ivzdpu15ERiWBrLMdcuaKyHLjngxpG6vcSsq8WylKqQbxA9zARqATkAKsALrXtVwO+VoBfc1xI+AboDswFfhdXcsXQ+ZcoEWE233Abeb4NuDeupYzSj74CWifTGkLnAj0BVZXlZbAL4B3AQEGA18mgawjAY85vtchawdnuCRK26jv3nxzK4BUoKMpM9x1KWuE/4PAHUmUtrHKraTMu5X9GlLLbiCwQSn1nVKqFHgJGFPHMoVRSm1TSi01x/nAOqBN3UpVI8YAz5rjZ4Fz6k6UqJwCbFRKJWIlnoShlPoE2B3hHCstxwDPKc1CoKmItDokghJdVqXUe0qpMnO6EML7xNY5MdI2FmOAl5RSJUqp74EN6LLjkFCZrCIiwPnArEMlT1VUUm4lZd6tjIak7NoAmx3nW0hSZSIiHYA+wJfG6RrT5H86GboFHSjgPRFZIiJXGLcjlVLbzPFPwJF1I1pMJlK+sEjWtIXYaZnseXkKuvYeoqOILBORj0VkWF0JFYVo7z6Z03YYsF0p9a3DLWnSNqLcqnd5tyEpu3qBiGQCrwI3KKX2AU8AxwC9gW3oboxkYahSqi9wBvAbETnR6al0v0XSzF0RkRTgbOBl45TMaVuOZEvLWIjIH4Ey4EXjtA04WinVB7gR+LeINK4r+RzUm3fv4ALKV9SSJm2jlFth6kvebUjKbivQznHe1rglDSLiRWeYF5VSrwEopbYrpQJKqSDwJIewS6UqlFJbzd+fgdfRsm0PdUuYvz/XnYQVOANYqpTaDsmdtoZYaZmUeVlEJgNnApNMAYfpDtxljpegx8C61JmQhkrefbKmrQc4F5gdckuWtI1WblHP8i40LGX3FdBZRDqaGv5E4M06limM6Y+fAaxTSv3D4e7szx4LrI68ti4QkQwRaRQ6RhsorEan6aUm2KXAG3UjYVTK1YyTNW0dxErLN4FLjGXbYGCvo8uoThCR04FbgLOVUoUO95Yi4jbHnYDOwHd1I+UBKnn3bwITRSRVRDqi5V10qOWLwqnA10qpLSGHZEjbWOUW9SjvhqlrC5lE/tCWQN+ga0B/rGt5ImQbim7qrwSWm98vgOeBVcb9TaBVXctq5O2EtlpbAawJpSeQBXwAfAu8DzSva1mNXBnALqCJwy1p0hathLcBfvQ4xi9jpSXaku1xk49XAf2TQNYN6LGYUN6dbsKOM/ljObAUOCtJ0jbmuwf+aNJ2PXBGXctq3GcCV0aETYa0jVVuJWXerexnlwuzWCwWS4OnIXVjWiwWi8USFavsLBaLxdLgscrOYrFYLA0eq+wsFovF0uCxys5isVgsDR6r7CwWi8XS4LHKzmKxWCwNHqvsLBaLxdLgscrOYrFYLA0eq+wsFovF0uCxys5isVgsDR6r7CwWi8XS4Ek6ZSciHUREmf2dLPUUEblWRH4UkRV1cO+pIvLCIbjPZBFZUIn/fBG5vLblsJRHRIaLyJbq+iVYhkrLsUOVRxsKIvKYiOwWkRdFpEZ6K+mUnaX6iMh0EdlvfqUi4necv1tHYk0FrlZK9XLIOVVEptaRPEmFKQxzqxn+IxEpFJGvReTUSsKeLyKfm7DzI/y6iMgbIrLDFB7zRKSrw/9SEVkiIvtEZIuI3OcssI0c74jIHhH5yRRCTv+TRWSpuf47EbnC4TdCRFaJSJ6I7BKR10WkTTWePze+1Kr/iEiuiHSIM2yqiDxt0vwnEbmxivC/NeH2metSHX4fmbyxT0RWiMiYGHE8bZT5sQ63/RG/gIg8avy6i8hik2/2iMj7ItI9Is6+IvKJuXa7iFwf8lNKXQN0Re9NmBNPukSScGVnW2SHHqXUlUqpTKVUJvA3YHboXCl1RijcIX43zUm+zVKrTRLl51nAMvQ+Yn8EXhGRljHC7gYeBu6J4tcUvb9bV+BI9Malzg1404EbgBbAIOAU4HcO/3+id6VuBfQGTgKuhvCO1q8D/wc0ASYA/xCRUIVnLTBKKdUUaI3eC+2Jqh48WUmivDEVvbFre2AEcIvozXYrICKjgNvQ77U9et/KOx1Brkfv/dcYuAJ4QcpvhIuIDAWOiYzbUeZkAkcBRcDLxvtHYDy6XGiBzoMvOeJsAfwXnXeygGOB9yLi34HOe1mVpkYMEqLsTC3kVhFZCRSIiEdEBpvaZZ6pIQx3hJ8vIn8XkUWmBvGGiDSPEfdlIrJORPJNTfHXEf5jRGS5iWdj6CWLSBMRmSEi20Rkq4j8Vcyuv5U8xzEi8qGpde4U3WRu6vDbLSJ9zXlrUwMabs7PFpE15nnni0i3iPT5nYisFJG9IjJbRHzVT+nqE+PdRNbIZorIXx3nZ5o0zTPvsFo1KUc6B6sId4t5Pz+KyOVOuYxMj4vI2+bdfykixziufURENpv3vkREhkVE7zPpnC+6peFsYd5m8kq+iKwVkbEOv8ki8pmIPCQiu9AFSVXP+4CprX4vImdEeLc38eWLyHvmo64WItIF6Av8WSlVpJR6Fb0x5rho4ZVS7yul5qALmEi/RUqpGUqp3UopP/AQ0FVEsoz/E0qpT5VSpUqprcCLwBBHFB2BOUqpYqXUT+gCqofxaw40Bp5Xmq+AdUB3E/d2pZRTpgC6UKs2olsBy0y6vmze9V9jhL3OvOe2Drc/mG88V0QmOdxHm3j3mfw11eEX6pr8pYhsAj6MQ9RJIrLJ3OuPEX4pIvKceYY1ItK/eqkQ5lLgL0qpPUqpdcCTwORKws5QSq1RSu0B/uIMq5RaqZQqC50CXqBdyF+0gn8UuLYKmcahFdOnJt48pVSu0huoChXf/Y3APKXUi0qpEqVUvnmWSIJAzSoZCdrNNhe9g207IA1og941+hdohXqaOW9pws8HtgI90TtMvwq8YPw6oBPZY85Ho2sRgq5FFgJ9jd9AYK+J32Xue5zxC9UwM4Aj0DXYX1fxHMeauFKBlsAnwMMO/1+ha6fpwDzgAePeBSgw13qBW9A7O6c40mcRujbbHF0AXBlDhqFAXiW/oVU8w9RQWkZ7N8ZNAcc6wswE/mqO+6Az6SDAjf44coHUauSH04FiIKOKMD+hC8p04AWnXEamXeYde9CF7kuO6y9C1/A8wE0mLp8jDfzomqQX3TL5HvAa//PMu3ChWx8FmJ2s0R9+Gfpj9oTSLMYzTDb3+ZVJq6vQCia0KfJ89I7NXdDfxXzgnhhx/RP4Zwy/scC6CLfHgEereA+XA/OrCHMOsK0S/7lOmYFfA8+Zd9YG3Xof6/D/N/Abkx7Hm7zUzuF/NDofB03aTa5BeZMC/IBuhXiBc4FSRx4eDmwxx3egd/lu6fArA/6B/s5PMu+/q8M/2+SNHGA7cE5E2fQculypLG+Ewj5p3n0voATo5sijxegy0g38HVgYI64LgZUx/JqZ+xzpcBsPrIoRfgUwwXHewlyf5XD7j5FNoSszLoffzcAj0cqRiPt8CEyN4p5n0j8I/Cki/CPA5ybPvAUcHeX6j4H7AHe18011L4jxYLnAFMf5rejanTPMPOBSczyf8h9Qd5NZ3UQouxgf3/Xm+P+Ah6KEOdJkrDSH2wXAR9V8rnOAZRFub6Jr1SsxCgC4HV3bDYVxoZX5cEf6XOTwvw+Ynoi0jyLzVCoquykRYSpTdk+ga4nO8OuBk+K8/2IT/3VVhHsa+Lvj/FgqKrunHP6/AL6uJL49QC9HGix0+LmAbcCwGNcuB8aY48nApjifdTKwwXGebp7hKEc+d37QVwP/rcE7vZiIghC4G5hZxXWVKjugrcmnF8TwnwJsAVo43LoBS9AFljLvSRz+Z6EVRJn5/SpG3M3R5cTgGqTHiUZu530XUF7ZbUUrtAVAE0e44UauDIfbHOD2GPd6GFPGcKBs6hSHjKGwbR1ui4CJjjz6vsOvO1BUg7RoZ+7jc7idBuTGCL8RON1x7jXXd4gI5wXOAG6MuNeGUHoSQ9mhu0cDQMcYMmSYb2G0w+0btCIcAPiAacBnUa49HshHl+9HVCetEjlmt9lx3B44z3SD5YlIHrrF0ipG+B/QiVuhi0dEzhCRhaYLMQ9d6IXCtUO/vEjam/i2Oe7/f+gWXkxE5EgRecl0e+5DtzYiZXoS3SJ9VClVYtxam2cAQCkVNM/nHHz/yXFcCGRWJkuC2Vx1kDDtgZsi3l079DPGwwBgIjBV9BhOLFpHyBVNxphpZrqF15lu4Tz0GJHzXYXjM+9jS+gZROQSRzdtHvp9Rr02DsIyKqUKzWFmNP/IZ6gG+9Hdg04aoz/6GiF6vO89dGtyVhT/c9CtjTOUUjuNmwtd038NXWC1QLcs7jX+x6HHYS5Bt756oMePRkfGr5TaDTwLvCHVH/tqDWxVpvQzRL6zpugxp78rpfZG+O1RShU4zn/gQN4YJAeMNPYCV1KxDKhR/qDi+4/089UgLfabv878UVneiMxLoeNy4ZVSfqXUu8BIETnbOD8M3BUlPSO5GFiglPo+mqdJ++nAcyISKpOLgNeVUl8ppYrR44gniEiTiMt/j+7lyVBK/VyFHOVIpLKLzHjPK6WaOn4ZSinngHk7x/HR6C6Nnc4IRVsJvQo8gG6mNwXeQXdphu5TYaDUuJega6Sh+zdWSvWIEtbJ38xzZCs9QHuR416ISCb6hc9AF+ahccYf0UoiFE7M822t4n4VEJFhUtGqyfmLHJuKBxVxXohuhYQ4ynG8Gbg74t2lRysQo95IF0Bz0YVgq0qCbkO3LEK0ixUwEpMGtwDnA81MvtiL411RfpzBZe71o4i0R1dYrkF33TRFd8U5r41Mr7pmDdBJRBo53HoZ92ojIs3Qiu5NpdTdUfxPR6fRWUqpVQ6v5uhv9TGlx1V2Ac+gK6CgKw3fKKXmKaWCSqn1wNvoFkI0POgKaKQir4ptQBvznYWIzD97gDOBZ0RkSIRfMxHJcJwfzYHxzX+je2/aKaWaoAtlibg+afKH0uNu29D5IURleWNNlLDbzbuMhocDZewpwP2iLTlDivoLEbkw4ppL0BWZynBxoCscdE+ZM11jpXE34C11YFwxbmpr6sELwFkiMkpE3CLiEz2/xVm4XSTaHDUduAt4RSkViIgnBd2vvgMoM4P/Ix3+M4DLROQUEXGJSBsROU4ptQ39MT8oIo2N3zEiclIVcjdC13z2ijaJvjnC/xFgsVLqcvRHPN24zwFGGzm86DGkEnT/c7VQ2jggs5Lfp9WNMwrLgQvNuzkdPW4R4kngSlPDFRHJMIP2jSBsODKzimcItXhTKgk2B/3uupk8cHs15G+E7oraAXhE5A4qFpj9RORcU1O+Af0+FqJbJMpci4hchi6kkxal1Dfod/Zn8y2FzK9fjRY+9M2hCyqXucZr/BqjhxQ+U0rdFuXak9E153FKqUURcuxEj31eJdrQqSl6THelCbIM6Cx6+oGINig6M+Rv3kdX8z22RHczLjOtvNDUlPlxJMkX6G6ya4wcY9Bju5HpNh+YBLwmIpH+d4pIiqk4nckBq8FGwG6lVLG5JrIgT0aeA/4kIs1M6/pX6O7lWGF/acrepsCfQmFF5DjRPWlpIuIVkYvQXcYfm2u7oJVjb/MD3W39eihyETkBrcBC6RlyP01E+pi82Rj97veg7RdAV5rGikhvk1dvR7cOI1uRXvS3XG1qRdkppTYDY4A/oAuVzWjF4bzf8+hE/gndR3tdlHjyjfscdMJciK51hfwXAZehLcr2ol9KqIUV6kpZa659hcpbGqCbzn1NXG+ju2sAbfWJNqq4yjjdCPQVkUmmBnsR2kppJzoDnKWUKq3ifnXF9WgZ89CFwdyQh1JqMfpjeQydbhsob9nVDvgsjnsoKslfpotkGvCRucdC4xVPRp6H7k77Bt0FVUzFrqU30MYne9DdKuearpm1wIPoAnM72hghnuepVUTPlZxeSZCJQH/089wDjFfaFBsRmSQizpr8xehuoSeAYeb4SeM3Ft3VfFlEj8HRxv92dJfwOxJ9rua56O9gB/q9+YHfAiilNqLH+aYB+9Df46vAU+baNuj3lo8e9w4aeULElbfMd3Uu8Et0Hr4IbVRRIe8opf5nZHpLjCU1uszZg27NvYg2Fvva+F0N3CUi+WjjljlVyVPbRHm/kfwZPZzzAzrN71dK/ddce7Tz/Rr3+9Df3SZzzZ9Dt0KPJf6Mfr/Xo41Zlpprf1ZK/RT6mWt2KqWKHLJcCrxmym4nTdHTZ/YaWY9Bjx0Wm7g/ROuLt839jyV6RcNNFVbesQhZjR1STO3tBaXUU1WFtSQPIpKCtubKUdpsvbKwPwK3KKXiWiVC9FSN1Wijn2p3UVjqPyKyHDilki61yq79Em309UzCBbMkBSISMpDpYyqt1cKuoGKJG6XnXnWrStEZbkN3uy2JFUBExope/SFk5FCjvnhLw0Ap1TteRSciJ4nIUaYb81J0t+5/a1dCS10hItPQvT//qomig8NQ2Un5pbWcv8q6kCzVRCn1nFKqs1KqXyXBfo3ustiIHoO5qpKwdYLNL0lLV3QvQx56jHy8Gas/ZJjuxWh5o0aGQ5bYKKWuU0q1UUpVNZk9JnXSjWmxWCwWy6HksGvZWSwWi+XwI1kWMgWgRYsWqkOHDnUthsVisVgOIUuWLNmplIq1sHlCSCpl16FDBxYvXlzXYlgsFovlECIiP1Qd6uCw3ZgWi8ViafBYZWexJBl5haV8sG57XYthsTQorLKzWJKMd1/6J51mDePHn36qOrDFYomLpBqzi4bf72fLli0UFxfXtSiWeoTP56Nt27Z4vZVtvJCcDNnyL452bWfd1vW0Puqoqi+wWCxVkvTKbsuWLTRq1IgOHTogErn4uMVSEaUUu3btYsuWLXTs2LGuxak2xa4MCEJxfrVXzbJYLDFI+m7M4uJisrKyrKKzxI2IkJWVVW97A0pcevelsv2761gSi6XhkPTKDrCKzlJt6nOeKfXo/T2DBVbZWSyJol4oO4vlcKLMo/cVVUVW2VksicIquzgQEW666abw+QMPPMDUqVPrTqAqmD9/Pp9/Xu19Y8MsX76c448/nh49epCTk8Ps2bMTKJ2lSkR/lqpkfx0LYrE0HKyyi4PU1FRee+01du7cmdB4lVIEgzXah7BSDlbZpaen89xzz7FmzRr++9//csMNN5CXl5c4AS2VIiqgD0oL6lYQi6UBYZVdHHg8Hq644goeeuihCn47duxg3LhxDBgwgAEDBvDZZ3qj5alTp/LAAw+Ew/Xs2ZPc3Fxyc3Pp2rUrl1xyCT179mTz5s3cfPPN9OzZk+zs7HArav78+QwfPpzx48dz3HHHMWnSJKLtUDFt2jS6d+9OTk4OEydOJDc3l+nTp/PQQw/Ru3dvPv3000plvPjiizn++OPp3LkzTz6pN7Pu0qULnTt3BqB169YcccQR7Nixo8K9X375ZXr27EmvXr048cQTAW1QdNlll5GdnU2fPn346KOPAJg5cybnnHMOp512Gh06dOCxxx7jH//4B3369GHw4MHs3q277J588kkGDBhAr169GDduHIWFhRXuO3jwYNasObCLyvDhwxvUMnNitvRz+62ys1gSRdJPPXBy51trWPvjvoTG2b11Y/58Vo8qw/3mN78hJyeHW265pZz79ddfz29/+1uGDh3Kpk2bGDVqFOvWras0rm+//ZZnn32WwYMH8+qrr7J8+XJWrFjBzp07GTBgQFhxLFu2jDVr1tC6dWuGDBnCZ599xtChQ8vFdc899/D999+TmppKXl4eTZs25corryQzM5Pf/e53AFx44YUxZVy5ciULFy6koKCAPn36MHr0aFq3bh2Of9GiRZSWlnLMMcdUeI677rqLefPm0aZNm3DL7/HHH0dEWLVqFV9//TUjR47km2++AWD16tUsW7aM4uJijj32WO69916WLVvGb3/7W5577jluuOEGzj33XH71q18B8Kc//YkZM2Zw7bXlt7CaMGECc+bM4c4772Tbtm1s27aN/v37V5rm9QlXULfs3IGKiv5gKSktZeFDE2k24jpyBg5PaNz7iv18vmEXo3ocmXADoe82bcJNkPZHd0hovJbDB9uyi5PGjRtzySWXMG3atHLu77//Ptdccw29e/fm7LPPZt++fezfX/lYS/v27Rk8eDAACxYs4IILLsDtdnPkkUdy0kkn8dVXXwEwcOBA2rZti8vlonfv3uTm5laIKycnh0mTJvHCCy/g8USvu1Qm45gxY0hLS6NFixaMGDGCRYsWha/btm0bF198Mc888wwuV8WsMmTIECZPnsyTTz5JIBAIP89FF10EwHHHHUf79u3Dym7EiBE0atSIli1b0qRJE8466ywAsrOzw8+2evVqhg0bRnZ2Ni+++GK5FlyI888/n1deeQWAOXPmMH78+ErTu74R6sb0lhUlPO7dm9dzUtEHHPHfKxIe9/9eeYp+Lw9gw4b1CY+71Yx+tH+6V8LjtRw+1KuWXTwtsNrkhhtuoG/fvlx22WVht2AwyMKFC/H5fOXCejyecuNxzjlfGRkZcd0vNTU1fOx2uykrK6sQ5u233+aTTz7hrbfe4u6772bVqlUVwsSSESqa6IfO9+3bx+jRo7n77rvDijmS6dOn8+WXX/L222/Tr18/lixZEvfzuFyu8LnL5Qo/2+TJk5k7dy69evVi5syZzJ8/v0I8bdq0ISsri5UrVzJ79mymT29Ym4aHlV0w8S07VajHnVWgYl46WDpuepmWso/tP30NnY9LaNxpUprQ+CyHH7ZlVw2aN2/O+eefz4wZM8JuI0eO5NFHHw2fL1++HNDbFS1duhSApUuX8v3330eNc9iwYcyePZtAIMCOHTv45JNPGDhwYFzyBINBNm/ezIgRI7j33nvZu3cv+/fvp1GjRuTn51cpI8Abb7xBcXExu3btYv78+QwYMIDS0lLGjh3LJZdcUmmraePGjQwaNIi77rqLli1bsnnzZoYNG8aLL74IwDfffMOmTZvo2rVrXM8DkJ+fT6tWrfD7/eF4ojFhwgTuu+8+9u7dS05OTtzx1wfcZswuJZD4ll2gtETfg0Di4xa9NFtpYX4VIQ+CWjDoshweWGVXTW666aZyVpnTpk1j8eLF5OTk0L1793ArY9y4cezevZsePXrw2GOP0aVLl6jxjR07lpycHHr16sXJJ5/Mfffdx1FxrocYCAS46KKLwsYg1113HU2bNuWss87i9ddfDxuoxJIRdDfoiBEjGDx4MLfffjutW7dmzpw5fPLJJ8ycOZPevXvTu3fvsIK84447ePPNNwG4+eabyc7OpmfPnpxwwgn06tWLq6++mmAwSHZ2NhMmTGDmzJnlWnRV8Ze//IVBgwYxZMgQjjvuQOvgzTff5I477gifjx8/npdeeonzzz8/7rjrCy6j7FJVLSi7Mt1CSiXxLaUyt1n5pTAv4XGH8NvpGJYaItEs/OqK/v37q0irunXr1tGtW7c6kqhhM3Xq1HKGLA2N+pp31vxtGD1KV7KTprSYmtg9Lb/77FU6/W8KxcqL787ETqX59MELGZb/Ngu7/I7BF96e0LiZ2gSAvVevpskR7RIbt6XOEZElSqlatTKzLTuLJclwmTG7tFpo2QUDfgB84k943MqjW/BSvDfhcYcoKkisNbbl8KFeGahYEksyrwJzOOMy42kZUkIgEMDtdics7mBZ4pVcGKXH06Sk9hRSiVV2lhpiW3YWS5IRatkBFCXY2EPVorJzBfVYo6sWJ8OXFNZeq9HSsLHKzmJJMpzKrnh/YlsywcABw5REj9dLLSk75bDA9NempaelQWOVncWSZLidLbsEd9s5uzFLShNrkRla5syT4JVfQgsWAPiLrLKz1Ayr7CyWJMNFgFKlx+lKChOr7FTwwGTyooLEKg5XUCtST4JXfikrO6CUA0V2zM5SM6yyi5O5c+ciInz99dcxw+Tm5tKzZ89alWP58uW88847Nb4+NAm9e/fu9OjRg0ceeSSB0lkSgYsA+0WvsuMvSuy8sqBDcRTl5yU07lDLLiXBK7/4/QdkDtp5dpYaYpVdnMyaNYuhQ4cya9asqP7RlvKqLs7umlgcrLLzeDw8+OCDrF27loULF/L444+zdu3aGsdnSTxuFaDAKLvSRHfbBQ50YxYnuNUYWvklNZjYll3Af0BmVWqVnaVmWGUXB/v372fBggXMmDGDl156Kew+f/58hg0bxtlnn0337t0BrfQmTZpEt27dGD9+fHiLmg8++IA+ffqQnZ3NlClTKCnRyzZ16NCBW2+9lb59+/Lyyy+Xu2/kFjqlpaXccccdzJ49m969ezN79mwKCgqYMmUKAwcOpE+fPrzxxhuA3lJnzJgxDB8+nM6dO3PnnXcC0KpVK/r27QtAo0aN6NatG1u3bq3wzB9//HF49ZQ+ffqQn5+PUirmdkQnnXQSY8aMoVOnTtx22228+OKLDBw4kOzsbDZu3AjAW2+9xaBBg+jTpw+nnnoq27dvr3DfiRMn8vbbb4fPJ0+eHF70+XDBTYAiVyYAgeIEW2MGHWN2CVZ2oTU9fQlWdn5Ha9Tu8WepKfVrnt27t8FPFRc6PiiOyoYz7qk0yBtvvMHpp59Oly5dyMrKYsmSJfTr1w/Q616uXr2ajh07kpuby/r165kxYwZDhgxhypQp/POf/+Saa65h8uTJfPDBB3Tp0oVLLrmEJ554ghtuuAGArKys8DqaTiK30ElJSeGuu+5i8eLFPPbYYwD84Q9/4OSTT+bpp58mLy+PgQMHcuqppwJ6e57Vq1eTnp7OgAEDGD16dLmtcHJzc1m2bBmDBg2qcO8HHniAxx9/nCFDhrB//358Ph+vvfZazO2IVqxYwbp162jevDmdOnXi8ssvZ9GiRTzyyCM8+uijPPzwwwwdOpSFCxciIjz11FPcd999PPjgg+XuG9q+Z/To0ZSWlvLBBx/wxBNPxPkyGwYuFaTYnQGBWlB2jgWgE72GZWiZszRqr2UnVtlZaoht2cXBrFmzmDhxIqBbHs6uzIEDB9KxY8fwebt27RgyZAgAF110EQsWLGD9+vV07NgxvD7mpZdeyieffBK+ZsKECVHvG20LnUjee+897rnnHnr37s3w4cMpLi5m06ZNAJx22mlkZWWRlpbGueeey4IFC8LX7d+/n3HjxvHwww/TuHHjqPe+8cYbmTZtGnl5eXg8nkq3IxowYACtWrUiNTWVY445hpEjRwLlt+/ZsmULo0aNIjs7m/vvvz/q9j1nnHEGH330ESUlJbz77ruceOKJpKWlRX32hoqLIH6PbtkFixPcbefoxky0ZaPbGL+kq+Jy0wUOloDDgtRVZpWdpWbUr5ZdFS2w2mD37t18+OGHrFq1ChEhEAggItx///1Axe16Ym2ZUxmxtvyJZwsdpRSvvvpqhZ0Fvvzyy5iy+P1+xo0bx6RJkzj33HOj3vu2225j9OjRvPPOOwwZMoR58+ZV+gzxbN9z7bXXcuONN3L22Wczf/78qCu4+Hw+hg8fzrx585g9e3a4knE44SJImVdXQFSCDTKcLbuyBCvSUMvOJYri4gJ86Y0SEq/TGtNdlvhtjyyHB7XeshOR00VkvYhsEJHbavt+ieaVV17h4osv5ocffiA3N5fNmzfTsWNHPv3006jhN23axBdffAHAv//9b4YOHUrXrl3Jzc1lw4YNADz//POcdNJJVd472hY6kdv3jBo1ikcffTQ8QXjZsmVhv//973/s3r2boqIi5s6dy5AhQ1BK8ctf/pJu3bpx4403Vnrv7Oxsbr31VgYMGMDXX399UNsRAezdu5c2bdoA8Oyzz8YMN2HCBJ555hk+/fRTTj/99Ljjbyi4CBLwplOmXJBogwzHmF0gwcrOuW1Q0f7ErXQScBh/JXpag+XwoVaVnYi4gceBM4DuwAUi0r0275loZs2axdixY8u5jRs3LqZVZteuXXn88cfp1q0be/bs4aqrrsLn8/HMM89w3nnnkZ2djcvl4sorr6zy3tG20BkxYgRr164NG6jcfvvt+P1+cnJy6NGjB7fffmC1+YEDBzJu3DhycnIYN24c/fv357PPPuP555/nww8/DBughKw7p0+fHt7+5+GHH6Znz57k5OTg9Xo544wzDmo7ItBrcZ533nn069ePFi1ahN0XL17M5ZdfHj4fOXIkH3/8MaeeeiopKSlxx99QcBFExEUhaUiilV2g9iwbQ9aYAEUJXPkl4Jh64E3whHXL4UOtbvEjIscDU5VSo8z57wGUUn+PFt5u8ZM4Zs6cWc6Q5XCkvuadwj8fwfKjzuWY7e+xqelABtzwUtUXxcny6ZdzzLb/0EiK+LTdlQz75b0Ji3vjnT3pqLbgQvH9+Hl07Bl9h/vqsn7ZArq+MRqA79yd6HT7siqusNQ3GsIWP22AzY7zLcYtjIhcISKLRWTxjh07alkciyX5cRMEcVPsSkv4GJUKllFMCn7cCTfjd6sA+ejx50Qu2BzalihfpZGa4AnrlsOHOrfGVEr9SynVXynVv2XLlnUtToNh8uTJh3Wrrj7jMsquxJWOJ8HWhxIsI4Bbd5EmeMFmD2UUuLRhTSIXbA5ZY+6XTHyqOGHxWg4valvZbQWc2wq3NW7VIpl2U7fUD+pznnETBJeLUnc6KYkeowqWERA3xeLD7U9s3B4VoMitp0yUJXBaQ9AYqBS6MxM+h89y+FDbyu4roLOIdBSRFGAi8GZ1IvD5fOzatateF16WQ4tSil27duHz+epalOoTDOIShRIPfnd6wteZJFhGEDclrjTcCW41uimj1KunG5QlcMpEaFuiYncj0imBBM7hsxw+1Oo8O6VUmYhcA8wD3MDTSqmKM4kroW3btmzZsgU7nmepDj6fj7Zt29a1GNVGBcsQAJebgCcdX1FiWzISDBDATZkrDW8gsXG7CeD3NgEgmMCVX4JmbmCptzGUQmnxflLSKy6EYLFURq1PKldKvQPUeOVir9dbboUSi6UhEwwGcAOIm4A3E59KsLJTfgLixu9Ox5tA4xelFB4ClKVqZZfIyfChnRpCE+2LC/KtsrNUmzo3ULFYLAcIT6B2uVDeDNITreyCAYLipsyTTkowccYegaDCSwDlzcSv3KgEWnqGWnYBo0gTvaGt5fDAKjuLJYkImIJdXB5IycQnfsr8idtRXFQZATwEPOkJ3YqnLKhbdrg9FIkPVwInrKvQRHifVnaJ3q3BcnhglZ3FkkSEF/x2uSBVWzYW5CeucBelW3bKm0FaAs34A4EgXgmAy0MRPiSBlp4ha0xXWlPAKjtLzbDKzmJJIkJddogbt09bNhYWJG6CtitYhhI3QW8GaRQTCCbGyrkstA2PK4ViV1pC5weqoG7ZujOaAonfrcFyeGCVncWSRATD3Zhu3D7dsitJpLJTAQIuD5KSQQbFFJb4q74oDsrK9GbEuD1mMnwCjV/MpHJvRnN9ryK7W7ml+lhlZ7EkEcFgqBvTjSctZH2YOGUnqgyFG0nNwCWKgoLEKI5gaM85txe/Ky2hCzaHxuzSGhtll+ANbS2HB1bZWSxJRLhlJ25SzH5widxR3KUCKJcHV6qOuzhBlo2hPefE5cHvSSclgcYvoZ0a0pro5QQTvqGt5bDAKjuLJYkIj9m53KSka+vDsqLEGWS4VBlB8YS7SBOl7AL+Ay27Mk9GQi09Q8ouM6TsEryhreXwwCo7iyWJCFljisuNL0MrO38Cx6hcxhrTExoPTJBlYyDUsnN7CXrSEzoZXpnlwjKbNCOoJOG7NVgOD6yys1iSCBWeeuDBl6HH7ILFiWvZudHTA1LSQl2kCRqzM60vcXtRKRmkJVDZidld3eP1UYgPErxbg+XwwCo7iyWJCAbNmJ3bTXqjxC+95VJlKJcnvNyWP0HGHqFuTHF7UN4MMqTkwJzBg6WsFL9yg8tFkSR2Dp/l8MEqO4sliXDOs0tNyySoJKHKzq10yy41w+xOkKAu0mC4GzMVMcYvhfsTY0UqQT9lopfx1VsT2ZadpfpYZWexJBHKTD1wudyIy02RpCIJXHor1I3pywy1GhOjkJTfdFt6U5HUkPFLYlqNEizFT0jZJXbCuuXwwSo7iyWJCDrXxgSKSMOVwJZMSNmlpYe24klUy04vPSYeH25fBgBFCZofKEE/ZUbZlbrT8SR4ayLL4YFVdhZLEhEoMy07txuAIld6QlsybqUXa/YYZUeCWo1lJXoFFU9qGh6fHg8sSdC0Bgn48ZtuzBJ3BqkB27KzVB+r7CyWJKLMWDW6PaZwT/A6k6mUotyp4EnFjwdXaaIMVHRry5Piw5MWmtaQmLhdQT8BvAD4PZn4glbZWapPrW/earFY4ie0oLLbowv3UncG3gS1ZAKBAD7xo9xpABSQlrCteAKlIWWXBioIJG4yvMthoFLmySAtaK0xLdXHtuwsliQi6NdjX+4UHwB+dzqpCRqj8pdoJRH06rgT2UUa9OtuzBRfGqmhaQ0J2p3ApfwEjLILpGSSjh2zs1Qfq+wsliQiYJSG2yikMk8GPpWYlkxI2eHRcZe40vGWJchAxShpb0paeOWXRC3rJUE/AdEtXZWSiY9SKEvchraWwwOr7CyWJEKVlVd2AW/iViPxF2tlpzy6G7PEnUFKgrpIg2bMLiU1DV9maOWXBCm7QCnKpZUdKTruRK4Xajk8sMrOYkkigkbZeVJSAd2SSU+Qsisp0orNlZIOgN+dQWqCtuJRpkWampZORmgOX4LGA1OCxfjdWvmLL7ET1i2HD1bZWSxJRNCvu+c8pmVHSiZpUkpp6cF32xWbdTC9qUbZJbCLlLLQmF06bm8qpcqTsGkNvmABfreeu+cy0xqK9+clJG7L4YNVdhZLEhHqxvSmHlB2AEUJaMmEWnZen1Z2QW8m6QlTdkUEleD2pABQKD5cCdqdIE0VUebV6eBOC83hy0tI3JbDB6vsLJZkokRbMKaYQt0V7rbLO/ioi7XySTUrnARMF6lS6qDjlpJ8CiQNRAC9rFeiVn5JV0UEvVpmr5kMX5rA3dsthwdW2VksyYTp+stoZJSd2YonEauRlJlJ3l6zAzopjciQEkpK/Qcdt6d0L/slM3yeqDUsVTBIBkUETcvOmxYyULHKzlI9rLKzWJKJ0v0UqFQ8ZgUVjyncixPQkgkU7gYgtZHe8ZvUxHWRev37KHQ1Cp+XuNMTMhl+f8F+PBIEs5NCamZTwFpjWqqPVXYWSxLhKt1PkaSFz0MtGX8CdhRXBbsAyGimlZ0YY4+iBHSRppblU+w5oOz87nRSEmDpuWePVtCh/fd8RtkFrbKzVBOr7CyWJMLtL6BI0sPniVyNJFCwi1LlpkmTZvpe4VZj3kHHnRbIp9TbOHxe6skkNQHLeu3ftQWAlKatAEjPbGT2+EvM6iyWwwer7CyWJMJdVkCx60DLLrTvXCABLRlX0S72SWPEpT/7UBfpwRp7KKVoFthNWVrLsFsgQWtYFu3aCoCveRsAMn0p7McXNuSxWOLloJSdiEwVka0istz8fuHw+72IbBCR9SIy6uBFtVgaPill+yk1c8oAUsNLbx184Z5RtI09ngMKKSVBXaR79uymiRSgmrQLuwW9GaQlYA3L4t1a2TU5Used5nWzn7SE7dZgOXxIxK4HDymlHnA6iEh3YCLQA2gNvC8iXZRSgQTcz2JpsDQq28X2zO7h8wwzRqUSsPRW89KtbMvsET5PMYq0rPDgWna7Nn9LcyAl6+iwWzClERmqCBUMhluSNSG4ayN+5SbryPYAiIje0DaBu7dbDg9qqxtzDPCSUqpEKfU9sAEYWEv3slgaBCoYpHlwD/70I8JuvrR0ypQLDrIlU7B/H0cFfybYtFPYLTWjKQCB4oOLe9d3SwHI6tgr7KZSMnGLorTk4CwyM/Z+y1ZPW8RMVgcodKXjSdAC1pbDh0Qou2tEZKWIPC0izYxbG2CzI8wW41YBEblCRBaLyOIdO3YkQByLpX6yPz+PdClBZR4VdhOXi0LSkINsyeSu+hy3KFKO7hd2SzPjgcGDVHZqy2KKVAptjj2g7FxmqkDhvrwax1tWVkbHorXsbtytnHuJKwNvAje0tRweVKnsROR9EVkd5TcGeAI4BugNbAMerK4ASql/KaX6K6X6t2zZsuoLLJYGyvbv1wDga9mhnHthAlYj2bf6XcqUi2P6nxJ2S2/UFABVUvMxOxUM0m7XAr5N74PLbDgLID49h+9g5gd+s3wBzSQfOo0o557I3Roshw9VjtkppU6NJyIReRL4jzndCrRzeLc1bhaLJQZ7N68GoFmHXuXci10HtxpJsKyMo398l699OfRsdmTYPTU1lSKVghyE8cvarz6gB9vZ3vmqcu6eNN1qPBhlt+eL5yhVHroMHVvOvdSdQepBdo9aDj8O1hqzleN0LLDaHL8JTBSRVBHpCHQGFh3MvSyWho7/p3X4lZtWHbuXcy85yB3FF7/7NG3Udkp6X1bOXUQOqtWogkHKPryHfWTQfeSUcn7haQ01tPT88Ydv6LvzLVY3P4VMh4IGKPNk4kvQtkeWw4eDtca8T0R6AwrIBX4NoJRaIyJzgLVAGfAba4lpsVRO+s5VbPYcTafQjgeGEld6jfed27v7Zzou+RvfuTvRZ+TFFfwLJR23v2bjgV+99S8GlixmUZebGGjG/0KkmPU3/TVo2QUDAX6adQ3NgLbn3l3BP5CSoXdrUCq88LTFUhUHpeyUUhW/ngN+dwMVc6rFYqlAaWkpxxSvZc0Ro+kU4VfmyaBR8e5qxxkoLWLr/42ns9pH3lkv4HK7K4QpknQ8NVB23676kp5L72BtSk/6nXdbBf+UsKVn9Vt2n8/8PUOLv2Rp91vp265zBf+gNxMXCkoLwut7WixVYVdQsViSgI2rvyRDiknpeEIFvzJPerU3WVUBP+sfO4/uJStY3PsvdO49NGq4Elf1F2z+8bu1NH11AoWSzpFTZuH2plQI4wvN4SuqniL9ZPaDDN38fyxtchp9oihRILwotF1FxVIdrLKzWJKA3es+BqBdr5Mr+AW9GaSp4rjjUsEgK5+YTPd9n/K/9jdy/NjfxAxb6s4gtRrKbvuWDcjzZ+OhjPzzXyWr1dFRw4WWOaMalp6fz53O0LV/YU36AHKufj7mZHSVqscDgzVoNVoOX6yys1iSgNStC9kmR5DVJrITE4Jmk9V4Wfr0dfTa+R8+OvIyTp18R6Vh/Z4MfHGuYbnzp82UzjiLzOB+dp4zi47d+8UMm5FpFFKcra9F7z7PwGW/5xtfTzpfOxdPalrMsKENbePZrUEpxb6CBO3GbqnXWGVnsdQxwUCQToUr2Nq4T/QAKZmkSBllpVW37r564Q76bXmeBc3GctIV/0CqMOAo82bgC1atSPfu2k7+v84kK7iLLaOfp3PvYZWGT/V6yFfxTYZf+uGr9F54A9+ndKbDtf8hJa3ycbjQbuVVKbtgIMhHD02m9L6u5O3cXqUcloZNItbGTBqKC/ez+ZtllBTux1+0n2BpAfiLUKWFBINlBANBAsEAKIULhYugLgxEEDhwLK6wldeBYzH/QmEk7C7mGoWjYBEx5wfCKQQlaLdKUCox6aFITEQV5VGV+ld21yrDVnWvasVd+c3CpyGFoGLfq6p3EuldWXgV6Vm0m5PZx8b2FcfrAMQYYRTu30vj5r6oYQC+evUfDNjwCIsyT2bwb57C5a66LhvwZpJO5S2f/L272f7EmbQPbOWbU2eQPfC0KuPV0xp8uEor7yJd9fm7dPv4SrZ42nHUb94O71dXGaHFsYsrUXYqGOTz//sNJ++bCwILP3qBwefdVGXcleEvLWHzN8vZ++M3lO7Mhb2bcRXtxlNWQEqgEFfQTxAXiAslLoIuL0FXKkF3CsqdCp4UcPvAk4J4UhGvD7fXh8ubijtFHwfdKQRcKQQkhaB4QCkUCqUUQaX0eegvcOC/ICrspsIZUKkgwoE8JyhH5lSIqHDmFWcJ5sijldWXylKbMvi08w4qXQ8VDUrZbft+LZ3nnlnXYlgs1SaghHb9To/qJ8Ygoyg/j8bNj4waZsl/nqTfyrtYkTaAXtf+O7zTeVWolExS8UNZqS6MIygs2Mfmx86is38ja4Y9Tu9hY+J8IiiuYlrDusXz6TjvMna6W9L812/TqGl8Kyj5jKVnSYxpDUopFjx9K8N+/jeLjziXlrsWc8S6ZwkGbohqkRqLn3/cRO5Xb8MPn9F871qOLvuBTlIW9i9Uqex1NaHIlU6JK52geLXCUGVIMIi7LB+38uNVpXiVH4/yk0opKZSRKv645UhmVqlOYJXdoeeIdp1ZNnQ6Kb50UtIa4fVl4EpJx+PLwOv1kuLx4HG7EZeLIC6CgAqia0wogsEgQRUkGFQoFQzXooLBUC1JoYJBU9MyNSkVBAXBoKkl6YCg23Hh43BNSakq2nWaRE0fiiee+OSpPFSkt0TEWtnlVV17sPeSmCcgEY2sqtIrMh0igzu9KzxH5Knj3JPWhKOaR10+1rHJavTCfcX/XqTXV7ewLqUnXa59ndRKxrsqYBRpoDgfd2ZWOa/iokI2PDqWHqVrWD7wAfqdekH88WKmNcSYDL9h1UJa/+dC9rkak/bLt2l6RPRnj0ZGY70Eb6x9+D557k5O2vIvljY7g35XPsWyd56i7+Jb+OLVhzn+/Nitu/35e/l20TyK17/PkTsX0in4A0cAe8lgU2oXlracgKdtb5q07UZW62No1uIo0qu5o4NSCn9Asbe0jJLiIopLiigtLqa0uJDSkiLcQT9uVYorUIJLlYEILnGhO5JCvVAu01lkepWgXC8TCOJy9DqF/MMZTh/rIsnZ83QgnlCwqnpiGrtTq/X8dUmDUnYZjZvRp5ofpMWS7HjTtEIqibIayepP59JtwXVs9Hbm6GveJC2jUfUiN5aNRfv3kOlQdqUlxax9dDx9ixfzVe+/MGD05dWWu8SdTloUS8/v1i2l2avnU0IqcumbtGjTsVrxZjZuCkBZUUVl9+kLf+Wk7x9iZeOT6P2b5xGXmz6/uJzVq2bRd83f+XyOos+ZV5OWnk7enl1s/XoR+9Z9SONtX9C5dC19JECJ8rLB15NFbcfQImcUHXoeT3Y1WoSVISKkeIQUTwqkpwBNqrzGkhgalLKzWBoiIWUXucnqyvmv0vmjK9nibsuRV/2HRk2aVztut7FsLMjPI7TZQnFRAeumjaNv0Rd8edxtDBp7XY3k9rvTaVz2Uzm3jau/pOkr5yFA6aTXadvhuGrH2zgzgxLlRUXs1vD5v//GsA33syJzKD2vfTm8MLW43LS/cg7fTz+XE9b+Bf+av7EfL02lmKZAUAnfeTqxrPUFZHY/jWP6nUqPdDtZvaFhlZ3FkuRkNm0BQNHeA1tgLX33GXouvInNnvY0u+ItmmYdEevySmncRHcJ7t69kyPRxijf/3M8fUqW8GX3PzHo/JtrLHfQ14zGeevC5+u++oBWb1+CnxSt6Dr3rlG8jXxe8kgjUKSVvwoGWfD0LQzb8iQrMobQ47pXcXvLd681anYEXW/9hLUL5pL/zSeIv4hgxhGkt+1O+14nc2zWkRxb4ye11AessrNYkpwj2nUlqITAzo0EyspY/OytDNr8FGtTetDmqjdo0rzmW2M1baXn9RVu+5ZN3xyFeukiuge2srjPXxl0zrUHJXdps2PJynuH4n27WPn+v+m14k52u5oRvHgubTr1qDqCGLhdwl53Mzz5W9i3dzdfP3UFw/L/x9Jmo8i56jk8KdEtVsXlovuJ58KJ59b43pb6i1V2FkuSk5aRyTZpwVGb3+Hbez5hUNk6FjU5nZxfz8B3kN1tR3XqwT6VTrvlD9Fk2Z0Uio+vRz5H/yFnHbTcGUf3hu9hz0ODGKh2sCa1F22vmE2TFq2qvLYqtjXqyZC9b/PTQwPor3axqNNVDLj4bzFXXbFYbM6wWOoBG9qOpX1wMy3LfmRx378z4PpZB63oAFK9XlZ2voo0VciqxicSuGIBPROg6AB6DDmbpb5BoBQLO9/Ecbd8kBBFB5B1yg1s4UjyvC35dvQcBl56j1V0lkqRChNc65D+/furxYsX17UYFkvSoYJBcr9eylHtjyMtwxpPWBoWIrJEKdW/Nu9huzEtlnqAuFx07F6rZYHF0qCx7X6LxWKxNHissrNYLBZLgyepxuxEZAfwQwKiagHsTEA8hwIra+1Rn+StT7JC/ZK3PskK9UveRMnaXilV8zk0cZBUyi5RiMji2h7sTBRW1tqjPslbn2SF+iVvfZIV6pe89UlW241psVgslgaPVXYWi8ViafA0VGX3r7oWoBpYWWuP+iRvfZIV6pe89UlWqF/y1htZG+SYncVisVgsThpqy85isVgsljBW2VksFoulwdOglJ2InC4i60Vkg4jcVtfyOBGRdiLykYisFZE1InK9cZ8qIltFZLn5/aKuZQ0hIrkissrItdi4NReR/4nIt+ZvsySQs6sj/ZaLyD4RuSGZ0lZEnhaRn0VktcMtalqKZprJxytFpG8SyHq/iHxt5HldRJoa9w4iUuRI4+mHUtZK5I357kXk9yZt14vIqCSQdbZDzlwRWW7ckyFtY5VbSZl3K0Up1SB+gBvYCHQCUoAVQPe6lsshXyugrzluBHwDdAemAr+ra/liyJwLtIhwuw+4zRzfBtxb13JGyQc/Ae2TKW2BE4G+wOqq0hL4BfAuIMBg4MskkHUk4DHH9zpk7eAMl0RpG/Xdm29uBZAKdDRlhrsuZY3wfxC4I4nSNla5lZR5t7JfQ2rZDQQ2KKW+U0qVAi8BY+pYpjBKqW1KqaXmOB9YB7SpW6lqxBjgWXP8LHBO3YkSlVOAjUqpRKzEkzCUUp8AuyOcY6XlGOA5pVkINBWRxOyNEwfRZFVKvaeUKjOnC4G2h0qeqoiRtrEYA7yklCpRSn0PbECXHYeEymQVEQHOB2YdKnmqopJyKynzbmU0JGXXBtjsON9CkioTEekA9AG+NE7XmCb/08nQLehAAe+JyBIRucK4HamU2maOfwKOrBvRYjKR8oVFsqYtxE7LZM/LU9C19xAdRWSZiHwsIsPqSqgoRHv3yZy2w4DtSqlvHW5Jk7YR5Va9y7sNSdnVC0QkE3gVuEEptQ94AjgG6A1sQ3djJAtDlVJ9gTOA34jIiU5PpfstkmbuioikAGcDLxunZE7bciRbWsZCRP4IlAEvGqdtwNFKqT7AjcC/RaRxXcnnoN68ewcXUL6iljRpG6XcClNf8m5DUnZbgXaO87bGLWkQES86w7yolHoNQCm1XSkVUEoFgSc5hF0qVaGU2mr+/gy8jpZte6hbwvz9ue4krMAZwFKl1HZI7rQ1xErLpMzLIjIZOBOYZAo4THfgLnO8BD0G1qXOhDRU8u6TNW09wLnA7JBbsqRttHKLepZ3oWEpu6+AziLS0dTwJwJv1rFMYUx//AxgnVLqHw53Z3/2WGB15LV1gYhkiEij0DHaQGE1Ok0vNcEuBd6oGwmjUq5mnKxp6yBWWr4JXGIs2wYDex1dRnWCiJwO3AKcrZQqdLi3FBG3Oe4EdAa+qxspD1DJu38TmCgiqSLSES3vokMtXxROBb5WSm0JOSRD2sYqt6hHeTdMXVvIJPKHtgT6Bl0D+mNdyxMh21B0U38lsNz8fgE8D6wy7m8CrepaViNvJ7TV2gpgTSg9gSzgA+Bb4H2geV3LauTKAHYBTRxuSZO2aCW8DfCjxzF+GSst0ZZsj5t8vAronwSybkCPxYTy7nQTdpzJH8uBpcBZSZK2Md898EeTtuuBM+paVuM+E7gyImwypG2scisp825lP7tcmMVisVgaPA2pG9NisVgslqhYZWexWCyWBo9VdhaLxWJp8FhlZ7FYLJYGj1V2FovFYmnwWGVnsVgslgaPVXYWi8ViafD8P0lW1woyCkTLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEYCAYAAAAqIzNgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiPElEQVR4nO2dd3xVRdqAn/fmpkIgNJEmTekJAWkuIGChyKeoqFgRWddVV9detuiHbvmsq6KurCyKBRUr2HUtqLgigoAUQUEiAekQSAJp9873x5wbTm7uTSHl3lze5/e7yTkzc2beM2fOvFPeMyPGGBRFURQlVvFEWgBFURRFqUtU0SmKoigxjSo6RVEUJaZRRacoiqLENKroFEVRlJhGFZ2iKIoS00StohORTiJiRMQbaVliHRGZIiIL6ymtZBF5V0T2isit9ZFmUPpZInJKPaSzQEQuD+OnZbuOEJHZIvLX6vrVsgzTROT5CvzrpQzGCiKyQkS2isgNhxtH1Co65fBwXrJiEclz/epdoVTAKUAG0MEYc1/A0Xn5O0VMqijCeYbTqhH+QhH5WUTyRWSeiDSvIGymiCwVkQPO/0yX33tB5aZIRFa6/D8VkZ0ist+pfCa4/MaLyEIRyRGRbSLybxFJdfmvDoq7RETeqov8aMiIyEgRWVCN8GGfZ4iwzUXkDaec/CwiF4YJ95TTEDvW5dbJ1UDdJiKPuRtqInK6iKxynu1/RaRXUJw3ONftd+JPDLqHL0Rkn4hsFpE73NcaY/oCvwH+t6r5EkydKTptrUaUucaYxq7ffZVfUm80B7KMMXmRFqQmiCXiDUUR6Q38C7gEaA0cAP4ZJmwCMB94HmgGPAPMd9wxxoxzlxvgv8ArriiuA9oYY5oAVwDPi0gbx68p8FegLdATaAfcH7jQGNPbFW8qkB0Ud4MiGuq3yp5nCB4HirDl5CLgCaf8uOMcBnQNce0/gR1AGyATGAFc7VxzHDAHuBJIA94C3gzkkYiMAW4HTgY6Al2Au1xxvwB8jq0bRgBXi8gZQemvApqKSFy4/KiIWn1RnVb5bSLyHZAvIl4RGeJo+BynFTjSFX6BiPyfiCx2NP38cK1REblMRL4XkVwR+UlEfhvkP0FEljvxbBCRsY57UxGZJbbru0VE/lpZZolIVxH5RER2i8guEZkjImkuvz0i0t85b+u0ckc652c4rdcc5/56BuXPzSLyndN6mSsiSdXP6eojIrc7+ZIrImtE5Kww4UREHhKRHU5erhSRPo5foog8ICKbRGS7iMwQkeRqiuIF/JXI2kJE3nLS/8Z5Zgtd/kZErhSRH518flxExPEL++xcDHTyYK+IPB14BiLSTETedp7nXue4vSvdBSLyNxH5EqtQulRyrx1F5Esnzz8UkZZB/hc5eblLRP5USVzhuAh4yxjzudN4uAM4W1y9KRcjsfn/sDGm0BgzHRDgpOCAYnvXw4FnA27GmO+MMSWBUyAe6OD4vWCMed8Yc8AYsxeYCQwNI/OJQEvgtererCPbrc77/IuIXC5BvQ9XuFSxvdDpgfIBtBSR/zjP5DMR6egK/4iIZDvlbqmIDHf5TRORV0XkeRHZD0ypRMwEEXnWSWe1iAwI8s+shXpgJFV/no2AicAdxpg8Y8xC4E1sAykQxgs8ClwbIq3OwMvGmAJjzDbgfSCgJMcAXxhjFjrl415sQ2eE438pMMsYs9opG3+hbP51AuYYY3zGmA3AQlfcAQJ1xuE1MIwxtfYDsoDl2MKf7NzsbuA0rFI91Tlv5YRfAGwB+gCNsAX/ecevE/Zl8jrn47EtDXEy8ADQ3/EbBOxz4vc46fZw/N7AtngbAUcBi4HfVnIfxzpxJQKtsK2Nh13+vwHWACnAB8ADjns3IN+5Nh64FVgPJLjyZzG21dsc+B64MowMw4CcCn7Dwlw3LZCHQe7nOul6gEmOnG0cvynAQud4DLAU2zITbOs8EO4h7MvRHNsqfwv4v2qUj3jguVDyBYV7yfmlAL2wrf+FLn8DvO3IeAywExhbxWeXhW0ddnDu40vgr45fC2xlkOLc3yvAPNe1C4BN2JfQC8RXcA8LgA1OmUh2zu8JKtszHb++QCHQM0xcFT3v+cBtQW55wPEhwt4AvBfk9jZwU4iwdwILQri/DRQ48r8PeMLI9TDwUhi/p4DZh1nHjAW2Oc8gBdubMcCxjv9sbM+yBfZd+6vr2tlALlbRJgKPBJWri53rvMBNTjpJrveqGDgT+w4lVyDjNCePTgPigP8DFgWVwarWA28Dt4fxq87z7AccCHK7GdtICpzfAjzieseOdfn9FtvoScHWr6uAsxy/a4B3XWHjnPu/zjlfAUxy+bd04m/hnP8duAdbP3QHNgMDg2RNBg4C/3NY5eZwLqrgAWcBU13ntwHPBYX5ALjUOV6A8/I7572wXes4ghRdiLTmuTLyX8BDIcK0xlYgyS63C4BPq3lfZwLLgtzeBFYC3wGJjtsd2FZPIIwHq8hHuvLnYpf/fcCMWn4G05w8zHH92oYItxyY4BxP4ZCiOwn4ARiCqxLDKr18oKvL7QRgYxXlysRWFNvdL1CIcHFOuO4ut79SXtENc52/TPjKoMyzc57Bla7z04ANFci813W+ALi7ive7APiz6/xq4H3nOFC227v8FwPnH8bz/pigStJd5oLc7yBI+WCHnKaFCLsemBImzXhgHHBjGP9Tgb1AtxB+KcD+UPJV8X6fwtW4wjZsghXdU9iK+Jaga2e77x9oDPiw88Wh0toL9DWH3qvPqyjjNOAj13kv4GBQGaxxPVDN5zkc2Bbk9hucxgy24bceaOqcByu6ntgGcInjNxsQx68Htm4YCSQ4cvmBPzj+G3Aaoq7yY4BOzvmvnLQDcd8V5n6vdeJdXt28qos5hmzXcUfgXGd4KUdEcrA9lTZhwv/sZELwEA8iMk5EFjnDhjnYCioQrgM2M4Pp6MS31ZX+v7A9u7CISGsReUnsUOd+bKsxWKaZ2J7oo8aYQsetrXMPABhj/M79tXNdt811fAD7stU2Lxtj0ly/X0Rkstih3UA+9CFEPhtjPgEew47n7xCRJ0WkCbZ3lAIsdcXxvuNeKcaY5dhe0lfA9RUEbYVtUbvLRXaIcCHzsYrPLrjMtXWuTRGRf4mdqN+P7Q2mSdmh7lCyhKOyZ10bZSEPaBLk1gTbczmssGLnaY4GXg2VoDGm2BjzHjBaguZSRGQIds7lHGPMDyEuPxvYA3wW8m4qpy2Vl43x2B7AjBB+peGNHerdw6Hnf7PY6ZF9TvluStmyU5NnnyRl5/Wi7dk/jG3E7Qu+UOxc9PvA69iRsZbYOcF7AYwxa7HDk48BWx3/NdieWai0A8e5Yqeq3gfuBpKwdfkYEbk6SAYvdl7vEmzvtFrUhaIzruNsbI/OXek2Msbc4wrTwXV8DLY1v8sdoVgLndeAB4DWxpg04F1sLyOQTqgJ1Gxsj66lK/0mxpjg8d9g/u7cR7qxE+8Xu9JCRBpjC8YsYJocmlf8BatcA+HEub8tlaRXDhEZLmWt1IJ/wyuPpTSujljFfA12uCAN2+KVUOGNMdONMcdjW6LdsEMau7BDB71dednUWOOCKmGMKQDec+INx05sy669y61DmLChqPDZhYjvGOxzAztc1R0Y7Fx7ouPuvt5dvqOB1dihTwBEpAt2WC6UklkNZLjmq8BawK4OCncp8Lqp3GDIi+u9E5F+2JGOqcaYj8NccynwrHGa6IfBViovGzOxlee7ztwUocI773Fz4BfnfboVOA9o5rwj+4j+Z1+V5wm2PHjFGo4E6OsKezJwv1jLyIAS/kqsZWZz7HvymLFzgbuBp7GdDQCMMa8aY/oYY1pgrSM7Ad+45Cwto87xdieeLoDPGPOsMabEGLMZO21xGmVpjVWu8w6n7NS11djzwOkiMkZE4kQkSaz5rLugXiwivUQkBavVXzXG+ILiScC+vDuBEhEZB4x2+c8CLhORk0XEIyLtRKSHMWYr8CHwoIg0cfy6isiISuROxbZC9olIO2xF7+YRYIkx5nLgHQ61HF8GxjtyxGMrzkKs9Vq1MMZ8YcpaTgb/vqhGdI2wL+lOsIY92B5dOURkoIgMduTPx461+53e6UzgIRE5ygnbTqxFVeBaIy5jozAUYp9nSJxn/zq2AZEiIj2AyVW6S0tlzw7gdyLS3mmg/AmY67r2IJDj+P1vNdKNFHOw79hwp1K/G6ukQrXqF2CH6n4v1rDoGsf9k0AAscZF52GHpnC593BGVZJFJF5ELsY2BD5z/Ptglcu1xpiQnw047/0orHVgsF+WiEypwv2+jH3Xezp1xh1hwl0DrAPekrIGU6eJyDCxlol/wc6dZWOffQn2HfGKyJ2U7wFFGwuo5HkGMMbkY9+ru0WkkYgMBSZg58zBNmj7YofrMx2304E3jDG7gI3AVWINDNOwDZbvAvGLyPFOHd8KeBJ40+npgZ3b+7VTz6cBf+ZQ+frBXi4XOvXz0VgbgtK4HeKd/4UcBnWq6JwCNAH4I7YAZWMrHne6z2Fvehu26/r7EPHkOu4vY8fNL8S2HAP+i4HLsMYS+7AvX6BnNRlbsa5xrn2VskOnobgL6O/E9Q62gADWuhM7IX6V43Qj0F9ELjLGrMP2IB7F9oBOB043xhRVkl6dYoxZAzyIHTbcDqRjjTBC0QSr0PZih/V2c8hM/DbsWPoiZ2jvI2wPCBHpgB0GWRkcYRB+Ki9312CHjbZhy8eLVL2Ah312Ll7ANoB+wg55Bz4ifhg75LULWIStuCNORT14Y8xqrFn3HKz5dyqO2bdz7Xsi8kcnbBF2znIydu52KnBmUPk80/H7NFgM7NzTDuy7fB3WwOBbx/8m7LDzLNeoQ3DP4hLgK2Mt69z3l4A1AllUQTYE7vc9YLoj33rXNYVB4Qz2E4jNWJP7gFXjC9gGzB7geOz7CtZ24H1sxfsztoFXnaHKOsH9/IKp7HmKyB9F5D3XJVdjy/cO7Dt1lVN+MMbsMMZsC/yc8LuMMQed47Ox9d5ObL4XY41hAjziyLAOW3f8xiXn+9h5yE+xxlw/4zQijTH7nbhvcK5bjh1tCv6wPzB9UKHFdjgCk4kRQeyHkc8bY/4dMSGUWsFp4fc2xvyhknCjsT39HsaYPVWM+17gaGPMpTWXVIk2xM4J/s4Yc8FhXNsTWzEmmkOfPigxhoichx06rdC+IhwR/+hRiQ2MMWGXPApiAfAfYLWIPGiMeSA4gDNcmYDtHQ4Efg2EXE5LafgY+01XlZegE/sN6LtY46h7sSbyquRiFBFZih3hue1w4zhiFZ2IzODQsIWb540xV9a3PEcKzrDKRZUES8UOrbTFDrU+iP1eLKoQkXDGGuOqOYeqVI/fYqc7fNhpiqsrDF0HOEOCoYaT/26M+Xt9yxPLOIZxNSKiQ5eKoiiKUtfU2BhFRK4VkbVil7m5z3E7VewSOiud/+WWpFEURVGU+qBGQ5ciMgprVdnXGFMYMDvHsTh0PlTug7VoahcungAtW7Y0nTp1qolIiqIoSgNj6dKlu4wxVVp84nCo6RzdVdglvArBmqg6/5e5wqwGkkUk0bWCSEg6derEkiVLaiiSoiiK0pAQkZ8rD3X41HToshswXES+FrsS+MAQYSYC31am5BRFURSlLqi0RyciH2HXvQvmT871zbELAA8EXhaRLoElWsTudXQvZVcxCY7/CuyHnRxzzDHVlV9RFEVRKqRSRWeMCbvlu4hchV1uyACLRcSPXdBzp7PczxvA5OCVEILifxK7ZAwDBgxQE1BFAfZs20Tek2NJatKKo675ELyJlV+kKEpIajpHNw+7dt2nItIN+5HvLmc9s3ewW6eEW2qqShQXF7N582YKCgpqKKpyJJGUlET79u2Jj4+vPHAU8sPbDzHEvwVytrD2o9n0GPvbyi9SFCUkNVV0TwFPicgq7B5olxpjjLO46LHAnc7iqACjA8Yq1WHz5s2kpqbSqVMnpMwi3YoSGmMMu3fvZvPmzXTu3DnS4hwWbX75D98lZNKy+BeKVrwKqugU5bCpkaJzVrkot7qIMeavlF+U87AoKChQJadUCxGhRYsW7Ny5M9KiHBZ5+3bT0Z/Nf48eT37+DvruegdfSQlx3iN2ISNFqRF1vU1PraBKTqkuDbnMbFppl31M6TqEhM5DSJFCflr9TSVXKYoSjgah6BTlSCJnk93dpkOP42nT2+79uveHGk11K8oRjSq6KiAi3HTTTaXnDzzwANOmTYucQJWwYMEC/vvfau/1WoaxY8eSlpbG//zP/9SSVEpVkb0/cYBEmrdqT5uO3dlnGsG24H0oFUWpKqroqkBiYiKvv/46u3btqtV4jTH4/Ye1j2CF1Iaiu+WWW3juuecqD6jUOil5P7Mtri3i8SAeD78kdCJ1//pIi6UoDRZVdFXA6/VyxRVX8NBDD5Xz27lzJxMnTmTgwIEMHDiQL7+0Q0zTpk3jgQcObbXWp08fsrKyyMrKonv37kyePJk+ffqQnZ3NLbfcQp8+fUhPT2fu3LmAVVYjR47knHPOoUePHlx00UWE2mli+vTp9OrVi4yMDM4//3yysrKYMWMGDz30EJmZmXzxxRcVynjJJZdwwgkncNxxxzFz5szSeE8++WRSU1MrzJdXXnmFPn360LdvX0480Q6xFRQUcNlll5Genk6/fv349FO7UfXs2bM588wzOfXUU+nUqROPPfYY//jHP+jXrx9Dhgxhzx67B+vMmTMZOHAgffv2ZeLEiRw4cKBcukOGDGH16kObV48cOTKmlo5rXrCZvUkdSs/zmhxL26IsTB00ihTlSKBBmXHd9dZq1vyyv1bj7NW2Cf97eu9Kw/3ud78jIyODW2+9tYz7ddddxw033MCwYcPYtGkTY8aM4fvvv68wrh9//JFnnnmGIUOG8Nprr7F8+XJWrFjBrl27GDhwYKnSWLZsGatXr6Zt27YMHTqUL7/8kmHDhpWJ65577mHjxo0kJiaSk5NDWloaV155JY0bN+bmm28G4MILLwwr43fffceiRYvIz8+nX79+jB8/nrZt21Yp7+6++24++OAD2rVrR05ODgCPP/44IsLKlStZu3Yto0eP5ocffgBg1apVLFu2jIKCAo499ljuvfdeli1bxg033MCzzz7L9ddfz9lnn81vfvMbAP785z8za9Ysrr322jLpTpo0iZdffpm77rqLrVu3snXrVgYMGFAlmaMdv89Ha/92spucXOpmWvWg6e757NiazVHtOkZQOkVpmGiProo0adKEyZMnM3369DLuH330Eddccw2ZmZmcccYZ7N+/n7y8cPtxWjp27MiQIUMAWLhwIRdccAFxcXG0bt2aESNG8M031sJu0KBBtG/fHo/HQ2ZmJllZWeXiysjI4KKLLuL555/HG8b8vCIZJ0yYQHJyMi1btmTUqFEsXry4ynkydOhQpkyZwsyZM/H5fKX3c/HF9ouTHj160LFjx1JFN2rUKFJTU2nVqhVNmzbl9NNPByA9Pb303latWsXw4cNJT09nzpw5ZXpuAc477zxeffVVAF5++WXOOeecKssc7ezesYUE8eFtemizj5R2tiG286flEZJKURo2DapHV5WeV11y/fXX079/fy677LJSN7/fz6JFi0hKSioT1uv1lpl/c6/s0qhRoyqll5h4aNmnuLg4SkpKyoV55513+Pzzz3nrrbf429/+xsqVK8uFCScjlDfDr45Z/owZM/j666955513OP7441m6dGmF4d334/F4Ss89Hk/pvU2ZMoV58+bRt29fZs+ezYIFC8rF065dO1q0aMF3333H3LlzmTFjRpVljnZydmymFZDQ7FCv+qiu/eBjOLBlFXZXLEVRqoP26KpB8+bNOe+885g1a1ap2+jRo3n00UdLz5cvXw7YLYe+/fZbAL799ls2btwYMs7hw4czd+5cfD4fO3fu5PPPP2fQoEFVksfv95Odnc2oUaO499572bdvH3l5eaSmppKbm1upjADz58+noKCA3bt3s2DBAgYODLUBRWg2bNjA4MGDufvuu2nVqhXZ2dkMHz6cOXPmAPDDDz+wadMmunfvXuU4c3NzadOmDcXFxaXxhGLSpEncd9997Nu3j4yMjCrHH+0c2J0NQHKLQz26Vke3Z79JwexSgxRFORxU0VWTm266qYz15fTp01myZAkZGRn06tWrtHcxceJE9uzZQ+/evXnsscfo1q1byPjOOussMjIy6Nu3LyeddBL33XcfRx8darOI8vh8Pi6++OJSw4/f//73pKWlcfrpp/PGG2+UGqOEkxHs0OeoUaMYMmQId9xxR+n83PDhwzn33HP5+OOPad++PR988AEAd955J2+++SZgLTPT09Pp06cPv/rVr+jbty9XX301fr+f9PR0Jk2axOzZs8v05CrjL3/5C4MHD2bo0KH06NGj1P3NN9/kzjvvLD0/55xzeOmllzjvvPOqHHdDoHDvVgCatDpkjCIeD7/Ed6BR7k+REktRGjQSypIvUgwYMMAEW899//339OzZM0ISxTbTpk0rY7QSazTEsrPo6dsY8vMMCm/fSmJSSqn74n+cR+f939BqWuiRAUVpyIjIUmNMnVmUaY9OUaIIydtODo3LKDmAkubH0Yo9HMjdEyHJFKXh0qCMUZTaJZpXdzlSSSjYyV5Pc9KC3BOP7gFZsHXDKrpmnhgByRSl4aI9OkWJIhKLcjjoTSvn3qyjtTjel13+cwtFUSpGFZ2iRBEpvn0UJTQt5962cy+KTRzF29dFQCpFadioolOUKKKxfz8lic3KuSclJfGL52gSc/QTA0WpLqroFCVKKCnx0cTkYZLSQvrvTupIswM/169QihIDqKKrIvPmzUNEWLt2bdgwWVlZ9OnTp07lWL58Oe+++26N4pg6dSpHHXVUncuqVI99+3NIEB+S0iKk/8GmXWnj24K/pLieJVOUho0quiry4osvMmzYMF588cWQ/qGW56ougfUiK6I2FN2UKVN4//33axSHUvvk7tkBQFzj5iH9Pa26kSA+tmf/UJ9iKUqDRxVdFcjLy2PhwoXMmjWLl156qdR9wYIFDB8+nDPOOINevXoBVuFddNFF9OzZk3POOad0m5mPP/6Yfv36kZ6eztSpUyksLATsUmG33XYb/fv355VXXimTbvA2OEVFRdx5553MnTuXzMxM5s6dS35+PlOnTmXQoEH069eP+fPnA3ZbnAkTJjBy5EiOO+447rrrrtJ4TzzxRJo3D12ZBvjss8/IzMwkMzOTfv36kZubizEm7JZCI0aMYMKECXTp0oXbb7+dOXPmMGjQINLT09mwYQMAb731FoMHD6Zfv36ccsopbN++vVy6559/Pu+8807p+ZQpU0oXcI51Du63K+54G7cM6d+kvS1ju7NW1ZtMihILNKzv6N67HbaVX7S4RhydDuPuqTDI/PnzGTt2LN26daNFixYsXbqU448/HrDrWK5atYrOnTuTlZXFunXrmDVrFkOHDmXq1Kn885//5JprrmHKlCl8/PHHdOvWjcmTJ/PEE09w/fXXA9CiRYvSdTHdBG+Dk5CQwN13382SJUt47LHHAPjjH//ISSedxFNPPUVOTg6DBg3ilFNOAWDx4sWsWrWKlJQUBg4cyPjx46u8nc0DDzzA448/ztChQ8nLyyMpKYnXX3897JZCK1as4Pvvv6d58+Z06dKFyy+/nMWLF/PII4/w6KOP8vDDDzNs2DAWLVqEiPDvf/+b++67jwcffLBMuoEteMaPH09RUREff/wxTzzxRJVkbugU7t8JQEJq6KHL1l3SATj4S8XbQCmKUhbt0VWBF198kfPPPx+wPQ738OWgQYPo3Llz6XmHDh0YOnQoABdffDELFy5k3bp1dO7cuXS9y0svvZTPP/+89JpJkyaFTDfUNjjBfPjhh9xzzz1kZmYycuRICgoK2LRpEwCnnnoqLVq0IDk5mbPPPpuFCxdW+Z6HDh3KjTfeyPTp08nJycHr9Va4pdDAgQNp06YNiYmJdO3aldGjRwNlt+DZvHkzY8aMIT09nfvvvz/kFjzjxo3j008/pbCwkPfee48TTzyR5OTkKsvdkCnJ2w1AUpNWIf1btDyKXTRFdv9Yn2IpSoOnxj06EbkW+B3gA94xxtzq8jsGWANMM8Y8ECaKqlNJz6su2LNnD5988gkrV65ERPD5fIgI999/P1B+y53D2fYm3LY9VdkGxxjDa6+9Vm6HgK+//rpGW/DcfvvtjB8/nnfffZehQ4eWLuocjqpswXPttddy4403csYZZ7BgwYKQK7MkJSUxcuRIPvjgA+bOnVvawDgS8OVbRdcoLbSiExG2xR9Dap6ud6ko1aFGPToRGYXdIKuvMaY3EKzM/gG8V5M0Is2rr77KJZdcws8//0xWVhbZ2dl07tyZL774ImT4TZs28dVXXwHwwgsvMGzYMLp3705WVhbr19tvoJ577jlGjBhRadqhtsEJ3oJnzJgxPProowQW5162bFmp33/+8x/27NnDwYMHmTdvXmlPsyps2LCB9PR0brvtNgYOHMjatWtrtKUQwL59+2jXzm4/88wzz4QNN2nSJJ5++mm++OILxo4dW+X4GzwH9wKQ2iy0ogPY37gzrYs21ZdEihIT1HTo8irgHmNMIYAxZkfAQ0TOBDYCDXrNohdffJGzzjqrjNvEiRPDWl92796dxx9/nJ49e7J3716uuuoqkpKSePrppzn33HNJT0/H4/Fw5ZVXVpp2qG1wRo0axZo1a0qNUe644w6Ki4vJyMigd+/e3HHHHaXXDxo0iIkTJ5KRkcHEiRNL5+cuuOACTjjhBNatW0f79u1L99ebMWNG6RY+Dz/8MH369CEjI4P4+HjGjRtXoy2FwK6tee6553L88cfTsuUhg4slS5Zw+eWXl56PHj2azz77jFNOOYWEhIQqx9/QkYM55JlkEhPLb5AbwN/8ONLIJW/P1nqUTFEaNjXapkdElgPzgbFAAXCzMeYbEWkM/Ac4FbgZyKvK0KVu01N7zJ49u4zRypFIQys73zxyIcfsXUTraeH3nVu+YB6ZCy7l+1OeoeewM+tPOEWpQyK+TY+IfCQiq0L8JmDn+JoDQ4BbgJfFTgRNAx4yxuRVIf4rRGSJiCzZuXNnze5GURowccW5HPSkVBimY8Yw/EbYv35RPUmlKA2fSo1RjDGnhPMTkauA143tFi4WET/QEhgMnCMi9wFpgF9ECowx5boXxpgngSfB9ugO6y6UckyZMoUpU6ZEWgylGniL8ymMC22YFKBZ85ZkedqRtH1ZheEURTlETa0u5wGjgE9FpBuQAOwyxgwPBBCRadihy8MeQzPGVMtiUFFqMiQfKRJ8+RR7K+7RAexs0oeu+/6L8fsRj34hpCiVUdO35Cmgi4isAl4CLjW1XMMkJSWxe/fuBllxKZHBGMPu3btJSgpv1BGNJPryKfE2rjScr8NgmrOfreuX171QihID1KhHZ4wpAi6uJMy0mqTRvn17Nm/ejM7fKdUhKSmJ9u3bR1qMapFsDrA7vnJF1zJzPKy6ix3fvk3bbv0rDV9S4mPVsq/Ys/ojEvb8QELRXuL9hRiPF583BX98I0x8I0xCI0hojCexEZ7ExsQlNQZxqggBSkdVyo6ulG2DBjVIzaGDck1VcyhACN9aI6V5O3oPOrnO4lein6hfAiw+Pr7MyiOKEqukmIP4EypXdF27dmO9dCQp6yPgzrDhCouK+O/8Jzlm9QwyyQZgH6nkeFtQLIlIiY/EomyS/AdIMoWkUIBHYm/kxG+EnC7rSGvZOtKiKBEi6hWdohwJlJT4aMxB/AmplYYVEba0HsWwrc+wb9tGmh5dviG4ZtUyfK9fySj/WrLjO7E6fRpdhp5L0xbtKb9/ucX4/Rw8mM+BvH0U5OdSeGC/nQfEYPA7gQzGgIjB3bMT93HwfHppR1DKhCv1qsP5963fzGNI1hPk79+tiu4IRhWdokQB+fn7aSoGSWxSpfDtRv0GeeEZNrz7CP2nPlzq7vf5+e/c+zh+3YMUSzxrh9xPj9GXQxWMVsTjIblRKsmNKle2DYXdm76HLCg6mFtpWCV2UZMtRYkCDubmACBJVVMyx3bvw9eNRtJr0/NsW28/Ndj5y8+seOA0hv3wf2xI6QtXLaLH2CuqpORilbgkOxRceDA/wpIokUR7dIoSBRTk5QDgSa5ajw6g7bn3k/fMySQ/N55vE3vQs3AlvfHzTY9bGDDpD4gnro6kbTh4E+13iSUFla5docQwR25TT1GiiML8HADiq6HoOnY+jtwL3mJLs0E08+1mbaux7Jj8OQMv+LMqOYd4p0dXUnggwpIokUR7dIoSBRTl7wfAmxzOVCQ0nbv3he7z6kCi2CAx2fbofNqjO6LRHp2iRAElB/cBkNAoLbKCxBjxybZH5yvSHt2RjCo6RYkCfI6iS25cvR6dUjFJKVbRmUI1RjmSiSlFdzBvP4v+fQPff13xbtiKEm34C6z5e1IjVXS1SZLzqYTRHt0RTUwpOvEIQzY/Rc7azyMtiqJUC5/T42jUuOrGKErlJCU5u0EUq6I7kokpRZeY1Igi40UK9kVaFEWpFqboAH4jJCVXvnuBUnU8cXEcMIlQfDDSoigRJKYUnXg87JfGeApzIi2KolSP4gMUSIJuu1MHFEoCoj26I5qYe6vypTHeov2RFkNRqoWUHKSAhrWtUEOhgCQ8Pu3RHcnEnKI7GJdKYrEqOqVhEVdykEJJjLQYMUmRJ5G4ElV0RzIxp+gKvKkk+nQBV6Vh4Sk5SKFoj64uKJRk4rRHd0QTc4quKL4JKT5dBUFpWMT7DlLsUUVXF5R4kohXRXdEE3OKriShKY2MKjqlYeH1F1Acp4quLij2JquiO8KJOUVnEpuQavLB74+0KIpSZRL8BZR4kiMtRkxS4m1Mol+tLo9kYk7RkZyGRwwHnW1PFKUhEO8voMSriq4u8MU3JsWoojuSiTlF501pBkDOnh0RlkRRqk6iKcCvQ5d1gj8hlRSjQ5dHMjGn6BJSWwCQl7MzwpIoStVJpBC/V1dFqQtMYiopUkhxcVGkRVEiRMwpupSmzQHI37c7wpIoStVJNoX443Xosi6QRLuw84HcnMgKokSMGis6EblWRNaKyGoRuc/lniEiXznuK0Xq5yOhRk2PAqBgvyo6pWHg8/lIliJEe3R1gsfZtT1//94IS6JEihrtMC4io4AJQF9jTKGIHOW4e4HngUuMMStEpAVQXGNpq0CTlm0A8OVur4/kFKXGFBzMpxFAgvbo6gKvo+gK1EDtiKWmPbqrgHuMMYUAxpiABcho4DtjzArHfbcxxlfDtKpEarPW+IxAnhqjKA2DggN2JR+J1x5dXRCfYvf4K8zPiawgSsSoqaLrBgwXka9F5DMRGehyNyLygYh8KyK3hotARK4QkSUismTnzpobkEiclxxpgvfgrhrHpSj1QeEBu8CBJDaKsCSxSYKj6IrydfuuI5VKhy5F5CPg6BBef3Kubw4MAQYCL4tIF8d9mON2APhYRJYaYz4OjsQY8yTwJMCAAQPMYd5HGfZ7mpFQqIpOaRgUHbSKzpOoPbq6ILFxGgDFB1XRHalUquiMMaeE8xORq4DXjTEGWCwifqAlsBn43Bizywn3LtAfKKfo6oK8+GakFO2pj6QUpcYUHbS7i3sTG0dYktgkOTUNAN8B3dXkSKVGxijAPGAU8KmIdAMSgF3AB8CtIpICFAEjgIdqmFaVKUhoQcu8LTWKY8P3y9jy7Xuw8wcSC3Zi/D48IhR5G1Gc0BST2BSSmxGfkkpCShpJjZrgTW6CJKXi9Sbg9XrxeuPwxsXh9XoRTxwAxtVnNRw6MS4PE8INf+jObqmrMUHxhY7n0KFxnRtEQBA8IoiAR2woj0fwYBCRMgkaTGlcpkxcZe8xSMoKKX9dpVdU94Jqp3E4Qwymmons27IOgDjt0dUJKal2EQlTUIMenTH89O3H7F3yCo12r6RJ8S7iTAlFxFPkSabAm0pxfColpXVDGnEpacQ3bk5S42YkN2lJUmozJCkNifOUzhn5/Aaf34/P58NnDD6f3767ThkS532EsvNMxpR5221Y5yzwrgqm1O2Qb1XLZhXf2bh42nc8ropxRo6aKrqngKdEZBVWoV3q9O72isg/gG+wOfauMeadGqZVZXwprUjbn4Px+6u9Y/PKL99BPv0rfUrW0BXIJYV9cS3xe7zg95NcnE+j/FxSKKgb4ZUjjmOc/0nOYgdK7dK4cVOKTRzmMIcut2V9z76Xfkv3ghUUmHg2xHdjS+M+iDcRj78IT/EBEor30+TgZlLy19LY5NNYjoz6YaW/C+3vXhZpMSqlRorOGFMEXBzG73nsJwb1jqdpW5K3F7F79w5atAo1vVie4uJils78HUN2zGWbtOKb7jdx7PBJNGvfndRQF/hK8B3MIXffXnL37yE/NwffwVwozMVXUozfaaX5/T78Ph9ifKXtKznUzHK1uMp6SFmfUIHLH0nZawK9tHDXiiucQWwr0ekJ+o3TU3Pc/O70QkZZtkEhQeKYUPcTgqqFCrrmcC6qbhrVlKy6MnlTmpKefkL1LlKqhHg87JNUPAXVn874acmHHPX2ZFKM8FnXm+l7xjX0TmtW4TXGGHIPHGR/zm5yc3ZxYN9uCvL24MvfS3xJHhgfxg9GAiMoQpzHg4jg8QggrgJ0aLTE3W+r7P06NOIiIfpmVXwXqxCsOKHivIgWatqji0oSW3aCH2D35vVVUnRFhYWseuRshhxYyNetziFjysMc3SikejtEnJe4xi1Ja9yStHa1I7eiKHVDnieV+MLqfTC+ZfVCjn77YnZIS/wXv86IY3tU6ToRIbVRCqmNUqBdh8MRV6llYm4JMIDU1l0AyN2+sdKwxu/n2yem0v/AQhb3uJXBv5tFcmVKTlGUBsWBuDQSi3OqHD5/7w7iX72UvTQh/tfv0aWKSk6JTmJS0bXsYCdHi3ZnVRp20asPMSTnbb5uP5VB5/+pjiVTFCUSFCY0pVFJ1efoNjx7NU39Oewc+yTt2nesQ8mU+iAmFV2TZkeRb5KQnE0VhtuY9RO9Vj/ImsRMBk19sJ6kUxSlvilKaEZjf9U+L9i4+F0y9v6H/7aZTOaQk+pYMqU+iElFhwg74lqTlJ8dNogxhs1zbyRZCml94ePVts5UFKXh4E9uTlOTi/H7Kwxn/D7kwz+ymdb0v/CuepJOqWtitnbfk9yJVgfDz9F99dFrDD/4KWu7/poWHfvUo2SKotQ3ktKcePGRW8lWPas/eYFOJRv5OeM6mjZpUj/CKXVOzCq6opY9aWe2kReiYOfl59H+yz/zi6cNvSdpq01RYh1Po5YA5O7eGjaM8ftptOgfbJI2DPyf39SXaEo9ELOKrlGHDAA2rV1azm/ZnDs5hq0cOPU+4nRrFEWJeRLT7GdGubt+CRtm7X/fpHPJT2T3upKEhIT6Ek2pB2JW0bXpbjdS2LfhmzLum35cweAtz7Cs6Skce8IZkRBNUZR6pnErazlZsOvnsGEK/vsv9tKE47U3F3PErKJr2e5YfqEVjTZ/Uepm/H5yX72OAhLocEG9Lb2pKEqEadamMwDFe0MbqG3f9CMZ+V+xtu1ZJCXrdkmxRswqOvF42Jg2hC55S/EVFwKw5p3H6V24jJU9rqPl0cdUEoOiKLFCWrMW5JpkZH/oxd43fvAYAB3HXFOfYin1RMwqOoDE9DNpzEHWfDCTHeu/pePSv7Hcm8HAc26OtGiKotQjHo+wK64V3rzyc3RFBQfptuV1VqScQNuO3SIgnVLXxLSiyxxxFms9x9FtyTQaPT+OAyaJphf8m4T4mFziU1GUCshNaE1KwfZy7qs+fo7m7Mcz6PIISKXUBzGt6LzeOOIvnMPixF/xbeJgci6YT+eu3SMtlqIoEaCwcXtal2wt99F48opnyJY2pJ94ZmQEU+qcmO/adD22O13/8GakxVAUJcKUtOxO011vsHvbJlq07QTAz2u+oWfRKv7b5Xo6xMVFVkClzojpHp2iKEqA1GPst7Wbfzj0be22T56g0MTTY+xvIyWWUg+oolMU5YigU6/B+I2Q/9PXAOzbu4veO99lZdMRND+qbYSlU+oSVXSKohwRNE5ryU/ezqRt+wqANW/cS2M5SLNTb4mwZEpdo4pOUZQjht1tRtC9cCXLPptP35+fYVnKULqmD4m0WEodo4pOUZQjho5jrqUEL/0+nYxf4mhz/iORFkmpB1TRKYpyxHB0h65kjXuGb1qdzc5z53H0McdFWiSlHoj5zwsURVHcdB8yHoaMj7QYSj2iPTpFURQlplFFpyiKosQ0YoyJtAyliMhOIPyGUVWnJbCrFuKpDxqSrNCw5FVZ646GJG9DkhUalry1JWtHY0yrWognJFGl6GoLEVlijBkQaTmqQkOSFRqWvCpr3dGQ5G1IskLDkrehyKpDl4qiKEpMo4pOURRFiWliVdE9GWkBqkFDkhUalrwqa93RkORtSLJCw5K3Qcgak3N0iqIoihIgVnt0iqIoigKoolMURVFinJhSdCIyVkTWich6Ebk90vIEIyIdRORTEVkjIqtF5DrHfZqIbBGR5c7vtEjLCiAiWSKy0pFpiePWXET+IyI/Ov+bRYGc3V15t1xE9ovI9dGUryLylIjsEJFVLreQeSmW6U45/k5E+keBrPeLyFpHnjdEJM1x7yQiB115PKM+Za1A3rDPXkT+4OTtOhEZEwWyznXJmSUiyx33aMjbcHVWVJbdsBhjYuIHxAEbgC5AArAC6BVpuYJkbAP0d45TgR+AXsA04OZIyxdC3iygZZDbfcDtzvHtwL2RljNEOdgGdIymfAVOBPoDqyrLS+A04D1AgCHA11Eg62jA6xzf65K1kztcFOVtyGfvvG8rgESgs1NnxEVS1iD/B4E7oyhvw9VZUVl2w/1iqUc3CFhvjPnJGFMEvARMiLBMZTDGbDXGfOsc5wLfA+0iK1W1mQA84xw/A5wZOVFCcjKwwRhTGyvs1BrGmM+BPUHO4fJyAvCssSwC0kSkTb0ISmhZjTEfGmNKnNNFQPv6kqcywuRtOCYALxljCo0xG4H12LqjXqhIVhER4DzgxfqSpzIqqLOisuyGI5YUXTsg23W+mShWIiLSCegHfO04XeN09Z+KhuFABwN8KCJLReQKx621MWarc7wNaB0Z0cJyPmUrimjM1wDh8jLay/JUbKs9QGcRWSYin4nI8EgJFYJQzz6a83Y4sN0Y86PLLWryNqjOalBlN5YUXYNBRBoDrwHXG2P2A08AXYFMYCt2+CIaGGaM6Q+MA34nIie6PY0dq4ia71NEJAE4A3jFcYrWfC1HtOVlOETkT0AJMMdx2gocY4zpB9wIvCAiTSIln4sG8+xdXEDZRlrU5G2IOquUhlB2Y0nRbQE6uM7bO25RhYjEYwvMHGPM6wDGmO3GGJ8xxg/MpB6HUirCGLPF+b8DeAMr1/bAUITzf0fkJCzHOOBbY8x2iN58dREuL6OyLIvIFOB/gIucyg1nCHC3c7wUO+fVLWJCOlTw7KM1b73A2cDcgFu05G2oOosGVnZjSdF9AxwnIp2dlv35wJsRlqkMzhj8LOB7Y8w/XO7uMeyzgFXB19Y3ItJIRFIDx1hjhFXYPL3UCXYpMD8yEoakTIs4GvM1iHB5+SYw2bFgGwLscw0TRQQRGQvcCpxhjDngcm8lInHOcRfgOOCnyEh5iAqe/ZvA+SKSKCKdsfIurm/5QnAKsNYYszngEA15G67OogGVXSB2rC7NIYufH7Atnz9FWp4Q8g3DdvG/A5Y7v9OA54CVjvubQJsokLUL1jptBbA6kJ9AC+Bj4EfgI6B5pGV15GoE7AaautyiJl+xCngrUIydt/h1uLzEWqw97pTjlcCAKJB1PXbuJVBuZzhhJzrlYznwLXB6lORt2GcP/MnJ23XAuEjL6rjPBq4MChsNeRuuzorKshvup0uAKYqiKDFNLA1dKoqiKEo5VNEpiqIoMY0qOkVRFCWmUUWnKIqixDSq6BRFUZSYRhWdoiiKEtOoolMURVFiGlV0iqIoSkyjik5RFEWJaVTRKYqiKDGNKjpFURQlplFFpyiKosQ0UavoRKSTiBhnnyalDhGRKSKysJ7SShaRd0Vkr4jcWh9pBqWfJSKn1EM6C0Tk8jB+WrbrCBGZLSJ/ra5fLcswTUSer8C/XspgrCAiK0Rkq4jccLhxRK2iUw4P5yUrFpE816/eFUoFnAJkAB2MMfcFHJ2Xv1PEpIoinGc4rRrhLxSRn0UkX0TmiUjzCsJmishSETng/M90+b0XVG6KRGSly/9TEdkpIvudymeCy2+8iCwUkRwR2SYi/w7sZ+j4rw6Ku0RE3qqL/GjIiMhIEVlQjfBhn2eIsM1F5A2nnPwsIheGCfeU0xA71uXWydVA3SYij7kbaiJyuoiscp7tf0WkV1CcNzjX7XfiTwy6hy9EZJ+IbBaRO9zXGmP6Ar8B/req+RJMnSk6ba1GlLnGmMau332VX1JvNAeyjDF5kRakJjgbS0a8oSgivYF/AZcArYEDwD/DhE3AbpD5PNAMeAaY77hjjBnnLjfAf4FXXFFch93XrQlwBfC8HNrgtCnwV6At0BNoB9wfuNAY09sVbyp2bzt33A2KaKjfKnueIXgcKMKWk4uAJ5zy445zGNA1xLX/xO4i3gbIBEYAVzvXHAfMAa4E0oC3gDcDeSQiY4DbgZOBjti9Lu9yxf0C8Dm2bhgBXC0iZwSlvwpoKs5GtNWlVl9Up1V+m4h8B+SLiFdEhjgaPsdpBY50hV8gIv8nIosdTT8/XGtURC4Tke9FJFdEfhKR3wb5TxCR5U48G8TuiIyINBWRWWK7vltE5K+VZZaIdBWRT0Rkt4jsEpE5IpLm8tsjIv2d87ZOK3ekc36G03rNce6vZ1D+3Cwi3zmtl7kiklT9nK4+InK7ky+5IrJGRM4KE05E5CER2eHk5UoR6eP4JYrIAyKySUS2i8gMEUmupihewF+JrC1E5C0n/W+cZ7bQ5W9E5EoR+dHJ58dFRBy/sM/OxUAnD/aKyNOBZyAizUTkbed57nWO27vSXSAifxORL7EKpUsl99pRRL508vxDEWkZ5H+Rk5e7RORPlcQVjouAt4wxnzuNhzuAs8XVm3IxEpv/DxtjCo0x07EbZZ4UHFBs73o48GzAzRjznTGmJHAKxAMdHL8XjDHvG2MOGGP2AjOBoWFkPhFoCbxW3Zt1ZLvVeZ9/EZHLJaj34QqXKrYXOj1QPoCWIvIf55l8JiIdXeEfEZFsp9wtFZHhLr9pIvKqiDwvIvuBKZWImSAizzrprBaRAUH+mbVQD4yk6s+zEXYj1zuMMXnGmIXYDWkvcYXxAo8C14ZIqzPwsjGmwBizDXgfCCjJMcAXxpiFTvm4F9vQGeH4XwrMMsasdsrGXyibf52AOcYYnzFmA7DQFXeAQJ1xeA2MWt6NNgu7A20HINm52d3YHWk9wKnOeSsn/AJgC9AHu0P0a8Dzjl8n7Mvkdc7HY1sa4mTgAaC/4zcI2OfE73HS7eH4vYFt8TYCjgIWA7+t5D6OdeJKBFphWxsPu/x/A6wBUoAPgAcc925AvnNtPHArdmfmBFf+LMa2epsD3xO0q3DQzr45FfyGhbluWiAPg9zPddL1AJMcOds4flOAhc7xGGAptmUm2NZ5INxD2JejObZV/hbwf9UoH/HYnZ/LyRcU7iXnlwL0wrb+F7r8DfC2I+MxwE5gbBWfXRa2ddjBuY8vgb86fi2wlUGKc3+vAPNc1y4ANmFfQi8QX8E9LMDustwN+y4sAO4JKtszHb++QCHQM0xcFT3v+cBtQW55wPEhwt4AvBfk9jZwU4iwdwILQri/DRQ48r8PeMLI9TDwUhi/p4DZh1nHjAW2Oc8gBdubMcCxjv9sbM+yBfZd+6vr2tlALlbRJgKPBJWri53rvMBNTjpJrveqGDgT+w4lVyDjNCePTgPigP8DFgWVwarWA28Dt4fxq87z7AccCHK7GdtICpzfAjzieseOdfn9FtvoScHWr6uAsxy/a4B3XWHjnPu/zjlfAUxy+bd04m/hnP8duAdbP3TH7rw+MEjWZOAg8D+HVW4O56IKHnAWMNV1fhvwXFCYD4BLneMFOC+/c94L27WOI0jRhUhrnisj/wU8FCJMa2wFkuxyuwD4tJr3dSawLMjtTexW8d8BiY7bHdhWTyCMB6vIR7ry52KX/33AjFp+BtOcPMxx/dqGCLccmOAcT+GQojsJ+AEYgqsSwyq9fKCry+0EYGMV5crEVhTb3S9QiHBxTrjuLre/Ul7RDXOdv0z4yqDMs3OewZWu89OADRXIvNd1vgC4u4r3uwD4s+v8auB95zhQttu7/BcD5x/G8/6YoErSXeaC3O8gSPlgh5ymhQi7HpgSJs14YBxwYxj/U4G9QLcQfinA/lDyVfF+n8LVuMI2bIIV3VPYiviWoGtnu+8faAz4sPPFodLaC/Q1h96rz6so4zTgI9d5L+BgUBmscT1Qzec5HNgW5PYbnMYMtuG3HmjqnAcrup7YBnCJ4zcbEMevB7ZuGAkkOHL5gT84/htwGqKu8mOATs75r5y0A3HfFeZ+r3XiXV7dvKqLOYZs13FH4FxneClHRHKwPZU2YcL/7GRC8BAPIjJORBY5w4Y52AoqEK4DNjOD6ejEt9WV/r+wPbuwiEhrEXlJ7FDnfmyrMVimmdie6KPGmELHra1zDwAYY/zO/bVzXbfNdXwA+7LVNi8bY9Jcv19EZLLYod1APvQhRD4bYz4BHsOO5+8QkSdFpAm2d5QCLHXF8b7jXinGmOXYXtJXwPUVBG2FbVG7y0V2iHAh87GKzy64zLV1rk0RkX+Jnajfj+0NpknZoe5QsoSjsmddG2UhD2gS5NYE23M5rLBi52mOBl4NlaAxptgY8x4wWoLmUkRkCHbO5RxjzA8hLj8b2AN8FvJuKqctlZeN8dgewIwQfqXhjR3q3cOh53+z2OmRfU75bkrZslOTZ58kZef1ou3ZP4xtxO0LvlDsXPT7wOvYkbGW2DnBewGMMWuxw5OPAVsd/zXYnlmotAPHuWKnqt4H7gaSsHX5GBG5OkgGL3Ze7xJs77Ra1IWiM67jbGyPzl3pNjLG3OMK08F1fAy2Nb/LHaFYC53XgAeA1saYNOBdbC8jkE6oCdRsbI+upSv9JsaY4PHfYP7u3Ee6sRPvF7vSQkQaYwvGLGCaHJpX/AWrXAPhxLm/LZWkVw4RGS5lrdSCf8Mrj6U0ro5YxXwNdrggDdvilVDhjTHTjTHHY1ui3bBDGruwQwe9XXnZ1FjjgiphjCkA3nPiDcdObMuuvcutQ5iwoajw2YWI7xjscwM7XNUdGOxce6Lj7r7eXb6jgdXYoU8ARKQLdlgulJJZDWS45qvAWsCuDgp3KfC6qdxgyIvrvRORftiRjqnGmI/DXHMp8KxxmuiHwVYqLxszsZXnu87cFKHCO+9xc+AX5326FTgPaOa8I/uI/mdflecJtjx4xRqOBOjrCnsycL9Yy8iAEv5KrGVmc+x78pixc4G7gaexnQ0AjDGvGmP6GGNaYK0jOwHfuOQsLaPO8XYnni6AzxjzrDGmxBizGTttcRplaY1VrvMOp+zUtdXY88DpIjJGROJEJEms+ay7oF4sIr1EJAWr1V81xviC4knAvrw7gRIRGQeMdvnPAi4TkZNFxCMi7USkhzFmK/Ah8KCINHH8uorIiErkTsW2QvaJSDtsRe/mEWCJMeZy4B0OtRxfBsY7csRjK85CrPVatTDGfGHKWk4G/76oRnSNsC/pTrCGPdgeXTlEZKCIDHbkz8eOtfud3ulM4CEROcoJ206sRVXgWiMuY6MwFGKfZ0icZ/86tgGRIiI9gMlVuktLZc8O4Hci0t5poPwJmOu69iCQ4/j9bzXSjRRzsO/YcKdSvxurpEK16hdgh+p+L9aw6BrH/ZNAALHGRedhh6ZwufdwRlWSRSReRC7GNgQ+c/z7YJXLtcaYkJ8NOO/9KKx1YLBflohMqcL9vox913s6dcYdYcJdA6wD3pKyBlOnicgwsZaJf8HOnWVjn30J9h3xisidlO8BRRsLqOR5BjDG5GPfq7tFpJGIDAUmYOfMwTZo+2KH6zMdt9OBN4wxu4CNwFViDQzTsA2W7wLxi8jxTh3fCngSeNPp6YGd2/u1U8+nAX/mUPn6wV4uFzr189FYG4LSuB3inf+FHAZ1quicAjQB+CO2AGVjKx53us9hb3obtuv6+xDx5DruL2PHzS/EthwD/ouBy7DGEvuwL1+gZzUZW7Guca59lbJDp6G4C+jvxPUOtoAA1roTOyF+leN0I9BfRC4yxqzD9iAexfaATgdON8YUVZJenWKMWQM8iB023A6kY40wQtEEq9D2Yof1dnPITPw27Fj6Imdo7yNsDwgR6YAdBlkZHGEQfiovd9dgh422YcvHi1S9gId9di5ewDaAfsIOeQc+In4YO+S1C1iErbgjTkU9eGPMaqxZ9xys+Xcqjtm3c+17IvJHJ2wRds5yMnbudipwZlD5PNPx+zRYDOzc0w7su3wd1sDgW8f/Juyw8yzXqENwz+IS4CtjLevc95eANQJZVEE2BO73PWC6I9961zWFQeEM9hOIzViT+4BV4wvYBswe4Hjs+wrWduB9bMX7M7aBV52hyjrB/fyCqex5isgfReQ91yVXY8v3Duw7dZVTfjDG7DDGbAv8nPC7jDEHneOzsfXeTmy+F2ONYQI84siwDlt3/MYl5/vYechPscZcP+M0Io0x+524b3CuW44dbQr+sD8wfVChxXY4ApOJEUHsh5HPG2P+HTEhlFrBaeH3Nsb8oZJwo7E9/R7GmD1VjPte4GhjzKU1l1SJNsTOCf7OGHPBYVzbE1sxJppDnz4oMYaInIcdOq3QviIcEf/oUYkNjDFhlzwKYgHwH2C1iDxojHkgOIAzXJmA7R0OBH4NhFxOS2n4GPtNV5WXoBP7Dei7WOOoe7Em8qrkYhQRWYod4bntcOM4YhWdiMzg0LCFm+eNMVfWtzxHCs6wykWVBEvFDq20xQ61Poj9XiyqEJFwxhrjqjmHqlSP32KnO3zYaYqrKwxdBzhDgqGGk/9ujPl7fcsTyziGcTUiokOXiqIoilLXRHytPkVRFEWpS6Jq6LJly5amU6dOkRZDURRFqUeWLl26yxhTpcUnDoeoUnSdOnViyZIlkRZDURRFqUdE5OfKQx0+OnSpKIqixDSq6BQlysj+aR3fLT7cpSAVRQkmqoYuFUWBds8OpgMGBpVbX1dRlMMg6hVdcXExmzdvpqCgINKiKA2IpKQk2rdvT3x8fOWBowyPs3awv6QEjzfqX1FFiXqi/i3avHkzqampdOrUibKLdCtKaIwx7N69m82bN9O5c+dIi3PYHDywn0ZNmlceUFGUCon6ObqCggJatGihSk6pMiJCixYtGvwowMEDle2SoyhKVYh6RQeoklOqTSyUmcIDByItgqLEBA1C0SnKkUhhQagt5RRFqS6q6KqAiHDTTTeVnj/wwANMmzYtcgJVwoIFC/jvf6u912spy5cv54QTTqB3795kZGQwd+7cyi9Sap3CA/mRFkFRYgJVdFUgMTGR119/nV27dtVqvMYY/P7D2kewQmqq6FJSUnj22WdZvXo177//Ptdffz05OTm1J6BSJYoLVNEpSm2giq4KeL1errjiCh566KFyfjt37mTixIkMHDiQgQMH8uWXduPuadOm8cADh7Za69OnD1lZWWRlZdG9e3cmT55Mnz59yM7O5pZbbqFPnz6kp6eX9p4WLFjAyJEjOeecc+jRowcXXXQRoXaamD59Or169SIjI4Pzzz+frKwsZsyYwUMPPURmZiZffPFFhTJecsklnHDCCRx33HHMnDkTgG7dunHccccB0LZtW4466ih27txZLu1XXnmFPn360LdvX0488UTAGg9ddtllpKen069fPz791G5UPXv2bM4880xOPfVUOnXqxGOPPcY//vEP+vXrx5AhQ9izx+7BOnPmTAYOHEjfvn2ZOHEiB0LMUw0ZMoTVqw9tXj1y5MiYXDqupECNURSlNoj6zwvc3PXWatb8sr9W4+zVtgn/e3rvSsP97ne/IyMjg1tvvbWM+3XXXccNN9zAsGHD2LRpE2PGjOH777+vMK4ff/yRZ555hiFDhvDaa6+xfPlyVqxYwa5duxg4cGCp0li2bBmrV6+mbdu2DB06lC+//JJhw4aVieuee+5h48aNJCYmkpOTQ1paGldeeSWNGzfm5ptvBuDCCy8MK+N3333HokWLyM/Pp1+/fowfP562bduWxr948WKKioro2rVrufu4++67+eCDD2jXrl1pj+/xxx9HRFi5ciVr165l9OjR/PDDDwCsWrWKZcuWUVBQwLHHHsu9997LsmXLuOGGG3j22We5/vrrOfvss/nNb34DwJ///GdmzZrFtddeWybdSZMm8fLLL3PXXXexdetWtm7dyoABAyrM84aIr+hgpEVQlJhAe3RVpEmTJkyePJnp06eXcf/oo4+45ppryMzM5IwzzmD//v3k5VXcEu/YsSNDhgwBYOHChVxwwQXExcXRunVrRowYwTfffAPAoEGDaN++PR6Ph8zMTLKyssrFlZGRwUUXXcTzzz+PN8zHxRXJOGHCBJKTk2nZsiWjRo1i8eLFpddt3bqVSy65hKeffhqPp3xRGTp0KFOmTGHmzJn4fL7S+7n4YrufbY8ePejYsWOpohs1ahSpqam0atWKpk2bcvrppwOQnp5eem+rVq1i+PDhpKenM2fOnDI9twDnnXcer776KgAvv/wy55xzToX53VDxF+nQpaLUBg2qR1eVnlddcv3119O/f38uu+yyUje/38+iRYtISkoqE9br9ZaZf3N/09WoUaMqpZeYmFh6HBcXR0lJSbkw77zzDp9//jlvvfUWf/vb31i5cmW5MOFkhPJm+IHz/fv3M378eP72t7+VKuVgZsyYwddff80777zD8ccfz9KlS6t8Px6Pp/Tc4/GU3tuUKVOYN28effv2Zfbs2SxYsKBcPO3ataNFixZ89913zJ07lxkzZlSYbkPFrz06RakVtEdXDZo3b855553HrFmzSt1Gjx7No48+Wnq+fPlywG459O233wLw7bffsnHjxpBxDh8+nLlz5+Lz+di5cyeff/45gwYNqpI8fr+f7OxsRo0axb333su+ffvIy8sjNTWV3NxDpunhZASYP38+BQUF7N69mwULFjBw4ECKioo466yzmDx5coW9pQ0bNjB48GDuvvtuWrVqRXZ2NsOHD2fOnDkA/PDDD2zatInu3btX6X4AcnNzadOmDcXFxaXxhGLSpEncd9997Nu3j4yMjCrH3xAoxC5bZor0OzpFqQ1U0VWTm266qYz15fTp01myZAkZGRn06tWrtHcxceJE9uzZQ+/evXnsscfo1q1byPjOOussMjIy6Nu3LyeddBL33XcfRx99dJVk8fl8XHzxxaWGH7///e9JS0vj9NNP54033ig1RgknI9ihz1GjRjFkyBDuuOMO2rZty8svv8znn3/O7NmzyczMJDMzs1Q53nnnnbz55psA3HLLLaSnp9OnTx9+9atf0bdvX66++mr8fj/p6elMmjSJ2bNnl+nJVcZf/vIXBg8ezNChQ+nRo0ep+5tvvsmdd95Zen7OOefw0ksvcd5551U57oZCsaPoKNYenaLUBhLKki9SDBgwwARbz33//ff07NkzQhLFNtOmTStjtBJrNNSys29aO5qSx5dtL2PoFQ9HWhxFqXNEZKkxps4syrRHpyhRhgc7t+sp0aFLRakNGpQxilK7RPPqLkcycVgLVilp2ItSK0q0oD06RYkyPCbQo1NFpyi1gSo6RYkySocufaroFKU2UEWnKFFGnKPovKroFKVWUEWnKNGEMcSJtYSO8xdGWBhFiQ1U0VWRefPmISKsXbs2bJisrCz69OlTp3IsX76cd99997CvD3xg3qtXL3r37s0jjzxSi9IpNcXvLKUGEO/XHp2i1Aaq6KrIiy++yLBhw3jxxRdD+odanqu6+FyVXDhqqui8Xi8PPvgga9asYdGiRTz++OOsWbPmsONTahef/1A5itcenaLUCnWu6ERkrIisE5H1InJ7XadXF+Tl5bFw4UJmzZrFSy+9VOq+YMEChg8fzhlnnEGvXr0Aq/AuuugievbsyTnnnFO6zczHH39Mv379SE9PZ+rUqRQW2kqsU6dO3HbbbfTv359XXnmlTLrB2+AUFRVx5513MnfuXDIzM5k7dy75+flMnTqVQYMG0a9fP+bPnw/YbXEmTJjAyJEjOe6447jrrrsAaNOmDf379wcgNTWVnj17smXLlnL3/Nlnn5WuitKvXz9yc3MxxoTdUmjEiBFMmDCBLl26cPvttzNnzhwGDRpEeno6GzZsAOCtt95i8ODB9OvXj1NOOYXt27eXS/f888/nnXfeKT2fMmVK6QLORwK+kuLS43ijik5RaoM6/Y5OROKAx4FTgc3ANyLypjHm8LoQ790O28ovWlwjjk6HcfdUGGT+/PmMHTuWbt260aJFC5YuXcrxxx8P2HUsV61aRefOncnKymLdunXMmjWLoUOHMnXqVP75z39yzTXXMGXKFD7++GO6devG5MmTeeKJJ7j++usBaNGiRem6mG6Ct8FJSEjg7rvvZsmSJTz22GMA/PGPf+Skk07iqaeeIicnh0GDBnHKKacAdoudVatWkZKSwsCBAxk/fnyZ7WyysrJYtmwZgwcPLpf2Aw88wOOPP87QoUPJy8sjKSmJ119/PeyWQitWrOD777+nefPmdOnShcsvv5zFixfzyCOP8Oijj/Lwww8zbNgwFi1ahIjw73//m/vuu48HH3ywTLqBLXjGjx9PUVERH3/8MU888UQVH2bDx+871KNLUEWnKLVCXffoBgHrjTE/GWOKgJeACXWcZq3z4osvcv755wO2x+Eevhw0aBCdO3cuPe/QoQNDhw4F4OKLL2bhwoWsW7eOzp07l653eemll/L555+XXjNp0qSQ6YbaBieYDz/8kHvuuYfMzExGjhxJQUEBmzZtAuDUU0+lRYsWJCcnc/bZZ7Nw4cLS6/Ly8pg4cSIPP/wwTZo0CZn2jTfeyPTp08nJycHr9Va4pdDAgQNp06YNiYmJdO3aldGjRwNlt+DZvHkzY8aMIT09nfvvvz/kFjzjxo3j008/pbCwkPfee48TTzyR5OTkkPcei7ifc6IpiqAkihI71PXKKO2AbNf5ZqBM90FErgCuADjmmGMqjq2SnlddsGfPHj755BNWrlyJiODz+RAR7r//fqD8ljvhtr2piHDb9lRlGxxjDK+99lq5HQK+/vrrsLIUFxczceJELrroIs4+++yQad9+++2MHz+ed999l6FDh/LBBx9UeA9V2YLn2muv5cYbb+SMM85gwYIFIVdmSUpKYuTIkXzwwQfMnTu3tIFxpGAcRVdkvCShPTpFqQ0iboxijHnSGDPAGDOgVatWkRanHK+++iqXXHIJP//8M1lZWWRnZ9O5c2e++OKLkOE3bdrEV199BcALL7zAsGHD6N69O1lZWaxfvx6A5557jhEjRlSadqhtcIK34BkzZgyPPvoogcW5ly1bVur3n//8hz179nDw4EHmzZvH0KFDMcbw61//mp49e3LjjTdWmHZ6ejq33XYbAwcOZO3atTXaUghg3759tGvXDoBnnnkmbLhJkybx9NNP88UXXzB27Ngqxx8LlDhzdAckmWQporikcgMlRVEqpq4V3Ragg+u8vePWYHjxxRc566yzyrhNnDgxrPVl9+7defzxx+nZsyd79+7lqquuIikpiaeffppzzz2X9PR0PB4PV155ZaVph9oGZ9SoUaxZs6bUGOWOO+6guLiYjIwMevfuzR133FF6/aBBg5g4cSIZGRlMnDiRAQMG8OWXX/Lcc8/xySeflBqbBKw4Z8yYUbqFz8MPP0yfPn3IyMggPj6ecePG1WhLIbBra5577rkcf/zxtGzZstR9yZIlXH755aXno0eP5rPPPuOUU04hISGhyvHHAn6/VWwFYodrDx7UXcYVpabU6TY9IuIFfgBOxiq4b4ALjTHlJ2fQbXpqk9mzZ5cxWjkSaYhlZ8fmnzjq3/3IiutIJ9/P7Lx6La2OahNpsRSlTqnrbXrqdI7OGFMiItcAHwBxwFPhlJyiKOB3vqMr8iSDD4q0R6coNabOt+kxxrwLHP4XzsphMWXKFKZMmRJpMZRq4ncMd4riGkExFKqiU5QaE3FjlKoQTbugKw2DhlpmAt/RlXitJW5xoW6+qig1JeoVXVJSErt3726wFZdS/xhj2L17N0lJSZEWpdoEjFF83hQAigu0R6coNSXqdxhv3749mzdvZufOnZEWRWlAJCUl0b59+0iLUW2M06Pzx2uPTlFqi6hXdPHx8WVWHlGUWCbQozMJVtH5C7VHpyg1JeqHLhXlSMLn9OgksTEAJUXao1OUmqKKTlGiCOP06AKKzl94MJLiKEpMoIpOUaKIgNWlJzHVnhepolOUmqKKTlGiiECPzpvsKLpiVXSKUlNU0SlKFBGwuoxzenQU6xydotQUVXSKEkX4fQGry2T8RhDt0SlKjVFFpyhRhDGOMYrEUSCJUKKKTlFqiio6RYkiAkOXnjgvhSTgKSmIsESK0vBRRacoUUTp5wVxcRRJIh6fKjpFqSmq6BQliggourg4L0WeROJ06FJRaowqOkWJIgJLgIknjiJJwuvXHp2i1BRVdIoSRZR+XhDnpcSThFeHLhWlxqiiU5QowldSDIDXG09xXBLx/sIIS6QoDR9VdIoSRZgSq9i8icn44pKIN9qjU5SaoopOUaIIU2wVW3xCMv64JBK1R6coNUYVnaJEEz6r2OKTkvF5k0lAFZ2i1BRVdIoSRZhiZ+gyIQnjTSbJqKJTlJqiik5RogjxHRq6NN5kkijEGBNhqRSlYaOKTlGiCCkppMjEER/vhfgUEsRHYaH26hSlJqiiU5RowldEEQmICBKfDMDBA/kRFkpRGjaq6BQlihBfIUV47XFCCgCFB/MiKZKiNHhU0SlKFCElBRRJAgCeRKvoilTRKUqNUEWnKNFESSElAUXn9OiKCnToUlFqgio6RYkixFdIiScegLjERgAUF2iPTlFqgio6RYki4kvyKPRYBed1FF1JwYFIiqQoDR5VdIoSRaT4cin0pgIQn+QoukIdulSUmqCKTlGiiBR/HkXxTQCIT7JzdL5C7dEpSk2okaITkWkiskVElju/01x+fxCR9SKyTkTG1FxURYl9Gps8iuObAhCf1BgAf5H26BSlJnhrIY6HjDEPuB1EpBdwPtAbaAt8JCLdjDG+WkhPUWKS4uJimpCPpKQBkJgSUHTao1OUmlBXQ5cTgJeMMYXGmI3AemBQHaWlKDHBnp2/AOBNPQqAxGSr6EzRwYjJpCixQG0oumtE5DsReUpEmjlu7YBsV5jNjpuiKGHYty0LAG+zYwBISrbGKBRrj05RakKlik5EPhKRVSF+E4AngK5AJrAVeLC6AojIFSKyRESW7Ny5s7qXK0rMkLdjIwCNj+oIgDchkWITB8Xao1OUmlDpHJ0x5pSqRCQiM4G3ndMtQAeXd3vHLVT8TwJPAgwYMED3I1GOWA5u+xGAdp17lroVSAJSoopOUWpCTa0u27hOzwJWOcdvAueLSKKIdAaOAxbXJC1FiXW8u9exQ1qQ3KR5qVshiXhU0SlKjaip1eV9IpIJGCAL+C2AMWa1iLwMrAFKgN+pxaWiVEyLAxvYkdiJo1xuhaKKTlFqSo0UnTHmkgr8/gb8rSbxK8qRQklxMe1LslnRanAZ9yJJIs7ZdVxRlMNDV0ZRlCjgl6y1JEkxca17lXEv9iSqolOUGlIbH4wrilJDdm1cwTFA02PSy7gXe5Lw+g9f0Rm/j42rFrFrwzJ8uTvwxMXhSU4jLq0djVp0oGnrdrRo3or4hMTyF/v9+P0+fH4fvpISfD4ffn/4GQgRCeVo/5V1DPZ2HQRCSGl8IoFz8IggAbdQ6YXCEw9xWtUdyejTV5QooHDrGgDaHNe3jHtJXBKNivdUO76cXdtZPf8BumW/Qhf20qWS8AUmHj8evPjw4McrfsAO+XiA+GpLED3kkIr3xu9o7DLyUY4sVNEpShQQt2cDO2jOUUGVcYkniXh/YdUjMobFb87g2GV/Yyi5rEgexE/dJtCuz4k0P7oDxSV+8nN2cmBXNgd2Z1O0bxuF+fvwFucBBj9xGPGAeMATBxKHiAc8Hud/XLneVyDdCoSqOFwIN+P8PeR16Ni4LzGmNHa3u3H84nM3MWzf26z9fjE9Bo+tQEYlllFFpyhRQNP8jexMPKaMxSWA35tMgqna0GVhQT4r/3U5g/a+yw/xPdg34WH69jmhfFrNWkDnHrUgdfTzy88/wtNvk7tpJaiiO2KJOWOUXduyKw+kKFGE8ftpU5xNXmr5AUZfXDKJpvIe3b49O9j4wMkM2PsuC9tdTtfb/0vnEEruSOPo9l3Zb1Jgx+pIi6JEkJjq0W3LXk/SrBEsPmocfadOJ9HZz0s5cjChhsGCnIJDBF9T3j/4elOhf+Xpl3XYs20z7eUAtDyu/LXeJBJNUYXx7921nV1PjKNLSRbfnvAIw8ZOqVigIwhPnIctCZ1onLM20qIoESSmFF3L1h345qjxnLBjLtvuWcDGDmfRqOsQUpodjUfg4IE8ivbvxJe7A3/eTjwHduEpyCGuOBdvcR6JvnySTT5eU4IHP3H48Bjnf7nqL4gqGoAFMNW9oMK4gg9qEldtynU4cYW+idqSq07yvYY0wQ8Cjdv2LOdn4pNJotBqyxBzY3t2/MKef43nmJJs1o38F/1HnVtLUsUO+1oeT/9fXuBA7l5SUptVfgGwa9smNq/6koJta/Hs2UDygV9ILtlHii+XFJNPnPERhx8vPuIob4nqLmfBZa5suQn2k7LhJLRf+evChQsRZ5j0K5IzXJzrpRMD/3dhuVijjZhSdN6ERE64+km++2wc8V8+wOBNM/FkPxk2fK5JZr+kctDTmCJvI/KTWrM3rhH+uAQ7Ce+JA48XIx77K1vqCHUSsvIzZQ+ldKq9cv1YmQV1davtkOEl8M+EDFXumirJFF4NlL88KL3gACaEeqqqaXm5FEwYGSqLPtQVFVVZVYnTRUJqSGMJ8SYTJ4biogLiE5PL+OXs2s7eGafR3reZ9SfPJP3EsyqR4Mikca9TSdj6HCu+mM/A06aEDFNwMJ81C+fjW/M27XKW0tZso6Xjt4cm7PIeTb63GXuTO+FLTEU8CRiPF7/EWQMd7CcQxqklDjU+3XWDQVzGMoIJOQLhWNKUxmLAdZ1xvaflkXLxHTqXoHqqwngqMCBy++1PaB02jmgiphRdgIwRZ8GIs8jZtY0tPy6nOHcnPuMhMSmZpLSjSEk7miYt29A4JYXUalaYilKvJNjh94KDeWUU3b69u9j5xGl09GXzw8n/po8qubD0OuE0dnzSgkbf/gvfmEuIi7OKqeBALmu/eA3/qnl03/8V/aWA/aSwPqUfP7e9gLRuQ2l7bF+aNz8K/TChYROTii5AWsujSWupllZKw0UcRVd0IB/SWgGQu28PWx8fT5eSjawd8QQZquQqxOONZ1OfaxmwchrLHziNgpbpJO75nu5535ApheymKatajCYl40x6/Go8/ROSIi2yUsvEtKJTlIaOJ9CjO7AfgB1bssiddSZdfZtYPfQRMk+aFEnxGgwDzr6er/N20mPjbJpmL2KLtGZVizEk9TuXnkPGMjg+IdIiKnWIKjpFiWKSmtmdsPbvyCYvZwdN3v4tbUwua0/6N5kjzo6wdA0IEQZf+nf8vr9S5CuhXUIC7SItk1JvqKJTlCgmtZ21xGz5n2tp5t/Ldk8rtp79OukZwyIsWcPEE+chIU57b0caqugUJYpp37Er22jF0WYni5udRvcpj9EurUWkxVKUBoUqOkWJYuK9XpKvW8wv+3YyqFP3SIujKA0SVXSKEuU0bdacps3UwF1RDpeYW+tSURRFUdyoolMURVFiGgm5BE2EEJGdwM+1EFVLYFctxFMfNCRZoWHJq7LWHQ1J3oYkKzQseWtL1o7GmFa1EE9IokrR1RYissQYMyDSclSFhiQrNCx5Vda6oyHJ25BkhYYlb0ORVYcuFUVRlJhGFZ2iKIoS08Sqogu/N0/00ZBkhYYlr8padzQkeRuSrNCw5G0QssbkHJ2iKIqiBIjVHp2iKIqiAKroFEVRlBgnphSdiIwVkXUisl5Ebo+0PMGISAcR+VRE1ojIahG5znGfJiJbRGS58zst0rICiEiWiKx0ZFriuDUXkf+IyI/O/2ZRIGd3V94tF5H9InJ9NOWriDwlIjtEZJXLLWReimW6U46/E5H+USDr/SKy1pHnDRFJc9w7ichBVx7PqE9ZK5A37LMXkT84ebtORMZEgaxzXXJmichyxz0a8jZcnRWVZTcsxpiY+AFxwAagC5AArAB6RVquIBnbAP2d41TgB6AXMA24OdLyhZA3C2gZ5HYfcLtzfDtwb6TlDFEOtgEdoylfgROB/sCqyvISOA14DxBgCPB1FMg6GvA6x/e6ZO3kDhdFeRvy2Tvv2wogEejs1BlxkZQ1yP9B4M4oyttwdVZUlt1wv1jq0Q0C1htjfjLGFAEvARMiLFMZjDFbjTHfOse5wPfQ4PZ/nAA84xw/A5wZOVFCcjKwwRhTGyvs1BrGmM+BPUHO4fJyAvCssSwC0kSkTb0ISmhZjTEfGmNKnNNFQPv6kqcywuRtOCYALxljCo0xG4H12LqjXqhIVhER4DzgxfqSpzIqqLOisuyGI5YUXTsg23W+mShWIiLSCegHfO04XeN09Z+KhuFABwN8KCJLReQKx621MWarc7wNaB0Z0cJyPmUrimjM1wDh8jLay/JUbKs9QGcRWSYin4nI8EgJFYJQzz6a83Y4sN0Y86PLLWryNqjOalBlN5YUXYNBRBoDrwHXG2P2A08AXYFMYCt2+CIaGGaM6Q+MA34nIie6PY0dq4ia71NEJAE4A3jFcYrWfC1HtOVlOETkT0AJMMdx2gocY4zpB9wIvCAiTSIln4sG8+xdXEDZRlrU5G2IOquUhlB2Y0nRbQE6uM7bO25RhYjEYwvMHGPM6wDGmO3GGJ8xxg/MpB6HUirCGLPF+b8DeAMr1/bAUITzf0fkJCzHOOBbY8x2iN58dREuL6OyLIvIFOB/gIucyg1nCHC3c7wUO+fVLWJCOlTw7KM1b73A2cDcgFu05G2oOosGVnZjSdF9AxwnIp2dlv35wJsRlqkMzhj8LOB7Y8w/XO7uMeyzgFXB19Y3ItJIRFIDx1hjhFXYPL3UCXYpMD8yEoakTIs4GvM1iHB5+SYw2bFgGwLscw0TRQQRGQvcCpxhjDngcm8lInHOcRfgOOCnyEh5iAqe/ZvA+SKSKCKdsfIurm/5QnAKsNYYszngEA15G67OogGVXSB2rC7NIYufH7Atnz9FWp4Q8g3DdvG/A5Y7v9OA54CVjvubQJsokLUL1jptBbA6kJ9AC+Bj4EfgI6B5pGV15GoE7AaautyiJl+xCngrUIydt/h1uLzEWqw97pTjlcCAKJB1PXbuJVBuZzhhJzrlYznwLXB6lORt2GcP/MnJ23XAuEjL6rjPBq4MChsNeRuuzorKshvup0uAKYqiKDFNLA1dKoqiKEo5VNEpiqIoMY0qOkVRFCWmUUWnKIqixDSq6BRFUZSYRhWdoiiKEtOoolMURVFimv8Hu4BfHlL81TQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjkUlEQVR4nO2dd5xU1fm4n3dmK1tYWHov0tmlSFNAIbGjoqJiRBGNJprYNcYUDZpmi92EXwyKhShW0K8FExVbRKR3VGTpICzswsLWmff3x7mz3J2d2QK7O7Oz5/kw7L2nvvecc8972j1HVBWLxWKxWGIJT6QFsFgsFoulrrHKzWKxWCwxh1VuFovFYok5rHKzWCwWS8xhlZvFYrFYYg6r3CwWi8USc0S9chORbiKiIhIXaVksR4+I3CAiO0RkRQTini4iLzZAPNNE5PMq7BeIyNX1LUdTQ0TGici22trVsQxV1lMNVQZjBRG5Q0T2i8h8EWl2NGFEvXKz1B4RmSEiBc6vRERKXffvRUis6cAvVHWQS87pIjI9QvJEFU7lmFNL9x+LyGERWS8ip1ThNlFEnhGRAyKyS0RuddlNcZWNAic8FZHjHftbROR7x+8OEXkkUIGLSBsReckxzxeRL0RkpCvs3waFXSgifhFpVdfp0dgRkRwR6VZDt2HzM4z7Wxx3Bxx/iSHcnOzk+59cZiIifxKR7U7+LhCRAS77jiIyT0T2icg2Ebk2KMzBIrLEKVNLRGRw0DPMEJHdjv+3RaRjwF5VHwA6AX2B02qSLsHUu3KzPa6GR1WvVdVUVU0F/gLMCdyr6pkBdw2cNy2B1Q0YX70QReX5JWAZkAn8DnhNRFqHcTsd6AV0BcYDd4jIGQCqOttVNlKBXwDfA0sdv28BQ1U1HRgIDAJudOxSga+B4zH5+xzwjoikOmH/JSjs+4EFqrq3rhKhIYmivJ9OmPwMRkROB+4Efuy47wHcE+QmHngM+CrI+0XAVcBYTP5+Cbzgsn8R2AS0BSYAfxGR8U6YCcA8x00LTNmY55gD3AScAGQDHYD9wBPuyFX1kBN+ZtXJEZp6UW5OK+TXIrISOCQicSIySkT+JyJ5IrJCRMa53C8Qkb+KyCKndTFPRFqGCftKEVknIgedFuXPg+wnishyJ5yNgUwXkeYiMlNEdjotkT+JiLea5+gpIh+JSK6I7BWR2SKS4bLbJyJDnfsOIrIn8Fwicq6IrHGed4GI9AtKn9tFZKXTIpojIkm1T+naEyZvVESOc7mZFdSCO9tJ0zwnD7NrGWcgnf3VuLvDyZ8dInK1Wy5HpqdE5B0n778SkZ4uv4+JyFYn35eIyNig4JOcdD4oIktFxN2DvNMpKwdFZK2InO+ymyamR/KIiORiKpbqnvchMUMqm0TkzCDrrk54B0XkA6lBLyZE+L2BocAfVLVQVV8HVgGTwni5Avijqu5X1XXA08C0Ktw+r87WRaq6UVXzAlFj8vA4x+57VX1YVXeqqk9V/wkkAH1CyCzAVEwlV2tEZKiILHPS7VUnL/8Uxu2NTj52cpn91nmHc0Rkist8ghPuAaf8THfZBYYafyoiW4CPaiDqFBHZ4sT1uyC7BBF53nmGNSIyrHapUE5t83Omqq5R1f3AH0O4vQ34AFgfZN4d+NzJZx9GUfUHENOAGQf8WVVLVXUF8BpGGeLYxQGPqmqxqj6OKT8/coU9X1V3q2oRMAco7xW68Dvh1B5VrfMfkAMsBzoDyUBHIBc4C6NQT3XuWzvuFwDbMS3DFOB14EXHrhugQJxzPwHo6STUycBhTMsSYASQ74TvceLt69i9Cfw/J/w2wCLg59U8x3FOWIlAa+BTTGYF7K8B1gLNgPnAQ455b+CQ4zceuAP4Dkhwpc8iTIulJbAOuDaMDGOAvCp+Y6p5humBtAyVN4E6DDjO5WYW8CfnegjwAzAS8GJelhwgsRbl4QygCEipxs0uTAFvhnmRyuVyZMp18jgOmA287PJ/GaaFF4d5WXcBSa40KAUudPLjdkyLMN6xv8jJCw8w2cm79o7dNKAMuMEJO7mKZ5jmxHONk1bXATsAcZXzjU75SHbu7wsT1t+Bv4exOx9YF2T2JPBECLctnHRs6zK7EFgVwm1XwAd0DzK/FDjghLMHGBRGrsFOPjcPYXcSUACkHkV9kgBsxrT244ELgBJXGR0HbHOu78b0Olu77MqAhzHv8clO/vZx2Wc5eZ8N7AbOC6p7nsfUG1XlfcDt007eDgKKgX6uMliEqQO9wF+BhWHCuhRYGcauxvnp2K0AJrvuWzn+M115/g2mFz4rkKYuuyVOeY0HHgDmOnZpTjhtXO6fBpY517cA7wXJ8n/Abc71MOALzHvXDPg3rrrV5ec5zChFQq3LTW091LAw5gBXue5/DbwQ5GY+cIVzvQDXS45pHZQ4hSBQaOLCxDUXuMm5/n/AIyHctHUKWrLL7CfAx7V8rvMCmecyewvTal6JU+EDdwGvuNx4MMp7nCt9LnPZPwDMqKe8mE5l5XZVkJuqlNs/MK1Et/sNwMk1jH+xE/6N1bh7Bvir6/44Kiu3f7nszwLWVxHefpxK2EmDhS47D7ATGBvG73JgonM9DdhSw2edBnznum/mPEM7Vzn/vcv+F8D7R5GnlxNUMQJ/BmaFcNvZkSHJZXYqkBPC7V2YYcNw8fbCtPzbhbBLd96D34TxOzOUfDV83pOc90dcZp9TUbltxyiwz3EpV44otxSX2SvAXWHiehSnDuFI3dOjBjIG3HZymS0CLnGVwf+67PoDhUeRFjXOT8duI3CG6z7e8d/NuZ+Ho/yorNwSMMOV6qThJlwNHyetnwCSMCMJ+4ANrrL0cpAss4HpznVz4GVX2MuAliHk74lpqJYCw2qTVvU557bVdd0VuMgZ1soTkTxMj6R9GPebMZlQachGRM4UkYXOkGAeppILuOuMycxgujrh7XTF//8wPbiwiEhbEXnZGcY8gOlNBMv0NKbH+YSqFjtmHZxnAEBV/c7zdXT52+W6PoxpOTUUW6t3Uk5X4LagvOuMecaaMBy4BJguZmw/HB2C5AolY9g0c4Z51znDvHmYl8edV+XhOfmxLfAMIjLVNeyah8nPkH5rQLmMqnrYuUwNZR/8DLWgAKNM3KQDB8O4DdhX57bKYUNV/RZYg+lVliMiycDbGIX712B/Yla7XVRV2NXQAdiuTm3nEJwnGcDPMA2k/CC7/WrmbwJs5kjejxSzMGePiOQD11L5HT+q/Kdy/gbbJUnt5/Fqk58B98FuAQ6KyDlAmqrOCeP3bsz72xmjwO4BPpIjqxenYIYXt2IawS9i3qtQ8QbL+RSmJ52J6RW/AYRa7HYTZl43XVUXh5EzJPWp3IIL4guqmuH6pajqfS43nV3XXTCausLEs5hVPq8DD2G65RnAu5ghykA8PanMVkzPrZUr/nRVDTXG6+YvznNkqZlQv8wVV2Dc+VFMq3S6HJkn3IFRCgF34jzf9mriq4SIjJWKK86Cf8FzSzVBg+4PY3oZAdq5rrdixtXdeddMVV+qUUSmQpqLGU5pX4XTnZjVUQE6h3MYjJMGdwAXAy2ccpGPK6/c4YmIx4lrh4h0xTRQrscM1WRgFr64/QanV6RZA/QQkTSX2SDHvAJq5ll2OvZh3YrIaEyF/1o1ccfhesecd3IuplL7eRg/52Na9QuqCTscO4GOznsUILh87AfOBp51nsVNCxFJcd13wbyjYIbD3gI6q2pzYAYV8x6iKP9rmp8u1oRwu1tVczGLTIaJWUm5CzMkf7OIzHPcDsYsRtumqmWqOgvzHvd3ZNmsqmeramtVHYlpFCxyxZsdlGfZLjkHY3ry+5xOwRPAiBBz0P0woxuFVSZMCBrqU4AXgXNE5HQR8YpIkpjvT9yV2WUi0t9pFdwLvKZmEtNNAkbb7wHKnMl69zLRmcCVIvJjEfGIWaraV1V3YiZM/yYi6Y5dTxE5uRq50zAtkHwxy1R/FWT/GLBYVa8G3sG8GGCGPSY4csRj5oCKgf9Vl1DBqOpn6lpxFuL3WW3DDMFy4FInb87AzEsEeBq41mnhioikOJPwaVC+0GNWNc8Q6NEmVOHsFUze9XPKwF21kD8NM7SxB4gTkbup3Go8XkQucFrKN2PyYyGm1aiOX0TkSkzPLWpR1W8wefYH5106H1NxvB7Gy/PA70WkhYj0xcwJzgpycwXwuqpW6AGIWdjTxrnuD/wG+NC5j8cow0LMFEO4BUNX4Fqk4gp7uogsqP6J+RIzF3i9mAVQEzFzrxVQ1QWY3sQbIhJsf4+IJDgNobOBVx3zNGCfqhY5fi6tgTyRpib56Xb7U6duzQB+73J7F2Y+bbDzewvzvl/p2H+NGXFr69SZl2NGwL4DcN7VNCddL8PUxQ87fhdg8uxGMcv+r3fMP3KFPVXMQr94zBD9Dq28kjYe867WmgZRbqq6FZgI/BZTiWzFKAp3/C9gEn0Xpgt8I0E4L96NmIpwP6YgvuWyX4TJmEcwLfdPONKDmoqpXNc6fl+j6p4EmG74UCesdzBdZ8CsysQsgrjOMboVGCoiU1R1A6aX9wSm93kOcI6qllQTX6S4CSNjHqZymBuwcIYCrsEsWNiPKdjTXH47YyaGq0Oporyp6nvA48DHThwLHauaFOz5wPuYifHNmIn74KGkeZiW6X7MnNUFalZ5rQX+hqlAd2MWF9TkeeoVMd8AzajCySWYSfn9wH3AhaoaUNBTRMTdkv8DZrh+M+adeFBV33fFlYTp9YYaNhwNrBKRQ5hRkncx7zHAiRhFcRqQF2o0wWkU/ghTyQZTo7LjvDcXAD/FlNHLMIsTKpUNVf0PZsXe2+KsZMbUKfsxvbXZmMVbgZWBvwDuFZGDmGG4V6qTp74JkX/BhM1PEeni5EEXAMf8Acx7tcXx8wfH7qCq7gr8MI2UQ6q6z4nnfsyClOWYdL8FmKRHVs+ejvlsZD9mOPeMQBl08uw8TL2bh8mT81x14O2Y9/RbjE44C9PDD8ZLNauswyFBjamI4LTeXlTVf0VaFkvNEfPNygogW1VLq3G7A7hDVWu0S4OYTydWYxbplB2zsJaoQ0SWAz92hshq6/crzCKsZ+tcMEtU4PQ01wJXq+q7tfVvdyixHDWqWqKq/apTbA53YobRloRzICLnO0MYLTCtxretYotdVHVwTRWbmB002jnDkldghmHfr86fpXEiIrdjvrv7BGcYvLY0eeUmFbeqcv+qGhKy1BJVfV5Ve6nq8VU4+znmm7qNmPH666pwGxFseYkYfTCjBHmYOewLnbn0BkMqb1UW+FU1hGg5ClT1IVVtp6o/cc3Z14qoGJa0WCwWi6UuafI9N4vFYrHEHtGyESgArVq10m7dukVaDIvFYrE0IEuWLNmrquE2/j4qokq5devWjcWLa/URusVisVgaOSKyuXpXtcMOS1osFosl5rDKzWKJcny+o/qG1WJp0ljlZrFEMQue/T2+e1vxySNTUb9VchZLTYmqObdQlJaWsm3bNoqKiiItiqURkZSURKdOnYiPr+oggujmh20bOTHn7xRKMifnz+Prj95g+CkXRlosi6VREPXKbdu2baSlpdGtWzdEgjfrtlgqo6rk5uaybds2unfvHmlxjpoN//kXY8XHD1Peo+Tf56GL/h9Y5Wax1IioH5YsKioiMzPTKjZLjRERMjMzG31vP3PnZ3zv7UGnXtls7TiBIcVL2L2r1qcmWSxNkqhXboBVbJZa09jLTPHhfHoVr2Vna3M0WauRk4kXH9/+b25kBbNYGgmNQrlZLE2N71cvIl58JPc8EYDOA04gnzRk44LICmaxNBKscqsBIsJtt91Wfv/QQw8xffr0yAlUDQsWLOB//6v1uagVOOOMM8jIyODss8+uI6kstWHfRnN4QvcBowAQj5ec9GH0PLTErpq0WGqAVW41IDExkTfeeIO9e4MPiT02VBV/PVRUdaHcfvWrX/HCCy/UkUSW2uL9YTV5pNKi/ZEFMSVdxtCOXLZuXB1BySyWxoFVbjUgLi6On/3sZzzyyCOV7Pbs2cOkSZMYPnw4w4cP54svzMHC06dP56GHHip3N3DgQHJycsjJyaFPnz5MnTqVgQMHsnXrVn71q18xcOBAsrKymDNnDmAU1Lhx47jwwgvp27cvU6ZMIdQJDo8//jj9+/cnOzubSy65hJycHGbMmMEjjzzC4MGD+eyzz6qU8fLLL+eEE06gV69ePP300+Xh/vjHPyYtLa3KdHn11VcZOHAggwYN4qSTTgLMAqArr7ySrKwshgwZwscffwzArFmzOO+88zj11FPp1q0bTz75JA8//DBDhgxh1KhR7NtnDv99+umnGT58OIMGDWLSpEkcPny4UryjRo1izZojp4yMGzcu5rZtyzj4LdsTeoBr7rBN/5MB2Lnms0iJZbE0GqL+UwA397y9hrU7DtRpmP07pPOHcwZU6+6Xv/wl2dnZ3HHHHRXMb7rpJm655RbGjBnDli1bOP3001m3bl2VYX377bc899xzjBo1itdff53ly5ezYsUK9u7dy/Dhw8sVxbJly1izZg0dOnRg9OjRfPHFF4wZM6ZCWPfddx+bNm0iMTGRvLw8MjIyuPbaa0lNTeX2228H4NJLLw0r48qVK1m4cCGHDh1iyJAhTJgwgQ4dOtQo7e69917mz59Px44dycvLA+Cpp55CRFi1ahXr16/ntNNO45tvvgFg9erVLFu2jKKiIo477jjuv/9+li1bxi233MLzzz/PzTffzAUXXMA111wDwO9//3tmzpzJDTfcUCHeyZMn88orr3DPPfewc+dOdu7cybBhw2okc2OhTdkONmaOq2DWufcQCkhGty4CfhkRuSyWxoLtudWQ9PR0pk6dyuOPP17B/L///S/XX389gwcP5txzz+XAgQMUFBRUGVbXrl0ZNcrMpXz++ef85Cc/wev10rZtW04++WS+/vprAEaMGEGnTp3weDwMHjyYnJycSmFlZ2czZcoUXnzxReLiQrdVqpJx4sSJJCcn06pVK8aPH8+iRYtqnCajR49m2rRpPP300/h8vvLnueyyywDo27cvXbt2LVdu48ePJy0tjdatW9O8eXPOOeccALKyssqfbfXq1YwdO5asrCxmz55doYcW4OKLL+a1114D4JVXXuHCC2Pr26/8vH205AC+5t0qmHvi4shJ6kfm/pWREcxiaUQ0qp5bTXpY9cnNN9/M0KFDufLKK8vN/H4/CxcuJCkpqYLbuLi4CvNp7m+uUlJSahRfYmJi+bXX66WsrKySm3feeYdPP/2Ut99+mz//+c+sWrWqkptwMkLlJfO1WUI/Y8YMvvrqK9555x2OP/54lixZUqV79/N4PJ7ye4/HU/5s06ZNY+7cuQwaNIhZs2axYMGCSuF07NiRzMxMVq5cyZw5c5gxI7YOwd67ZT3NgYTWPSrZHW49hL5bnuXAgTzS0zMaXDaLpbFge261oGXLllx88cXMnDmz3Oy0007jiSeeKL9fvnw5YI7vWbp0KQBLly5l06ZNIcMcO3Ysc+bMwefzsWfPHj799FNGjBhRI3n8fj9bt25l/Pjx3H///eTn51NQUEBaWhoHDx6sVkaAefPmUVRURG5uLgsWLGD48OE1ihtg48aNjBw5knvvvZfWrVuzdetWxo4dy+zZswH45ptv2LJlC3369KlxmAcPHqR9+/aUlpaWhxOKyZMn88ADD5Cfn092dnaNw28MHNj5HQBp7XtVskvpeQJx4mfTis8bWiyLpVFhlVstue222yqsmnz88cdZvHgx2dnZ9O/fv7wXMWnSJPbt28eAAQN48skn6d27d8jwzj//fLKzsxk0aBA/+tGPeOCBB2jXrl2NZPH5fFx22WXlizduvPFGMjIyOOecc3jzzTfLF5SEkxHMsOb48eMZNWoUd911V/l829ixY7nooov48MMP6dSpE/Pnzwfg7rvv5q233gLMisqsrCwGDhzIiSeeyKBBg/jFL36B3+8nKyuLyZMnM2vWrAo9tur44x//yMiRIxk9ejR9+/YtN3/rrbe4++67y+8vvPBCXn75ZS6++OIah91YKNmzEYDWnSs3CroOMotKDn53bKthLZZYR0KtwIsUw4YN0+BVb+vWraNfv34Rkii2mT59eoWFJ7FGYy07Xz85jV57/kPz6dtCDhNvu7cfuxO7cfyv34uAdBZL3SMiS1S1TleF2Z6bxRJlJBzaQa63ddj5zx/Ss+hauMZ+zG2xVEGjWlBiqVuieZeVpkxKyR4OJbYOa+/vOJxWefPZsmk9XXr2b0DJLJbGg+25WSxRRoZvH8XJbcPaZ/Yz3zruWvNpQ4lksTQ6rHKzWKKI0pJiWmo+vpTwyq1L32Ec1kR8W75uQMkslsaFVW4WSxSx74dteESR9PC7xHjj4tmU2IdW+1c0oGQWS+PCKjeLJYo48MNWAOIzqt4C7UCrwXQr+56iw1XvhmOxNFWscqshc+fORURYv359WDc5OTkMHDiwXuVYvnw577777jGFcdVVV9GmTZt6l9VSew7nbgMgpVWnKt0ldh9FvPjIWfVFQ4hlsTQ6jlm5icgNIrJeRNaIyANBdl1EpEBEGv2HVC+99BJjxozhpZdeCmkfamus2hLYn7Eq6kK5TZs2jffff/+YwrDUDyV5OwBo3qZLle66ZJuPufd/Y5WbxRKKY1JuIjIemAgMUtUBwENBTh4GGv2XpgUFBXz++efMnDmTl19+udx8wYIFjB07lnPPPZf+/c2S7LKyMqZMmUK/fv248MILy49s+fDDDxkyZAhZWVlcddVVFBcXA2abrl//+tcMHTqUV199tUK8wUfKlJSUcPfddzNnzhwGDx7MnDlzOHToEFdddRUjRoxgyJAhzJs3DzBHzEycOJFx48bRq1cv7rnnnvJwTzrpJFq2bFnlM3/yyScMHjyYwYMHM2TIEA4ePIiqhj2e5+STT2bixIn06NGDO++8k9mzZzNixAiysrLYuNHsuPH2228zcuRIhgwZwimnnMLu3bsrxXvJJZfwzjvvlN9PmzatfJPkpoAe2IlPhZatqx6WbNW2EzukHQk7YuuoH4ulrjjW79yuA+5T1WIAVf0hYCEi5wGbgEPHGMcR3rsTdlXeGPiYaJcFZ95XpZN58+Zxxhln0Lt3bzIzM1myZAnHH388YPaNXL16Nd27dycnJ4cNGzYwc+ZMRo8ezVVXXcXf//53rr/+eqZNm8aHH35I7969mTp1Kv/4xz+4+eabAcjMzCzfh9JN8JEyCQkJ3HvvvSxevJgnn3wSgN/+9rf86Ec/4plnniEvL48RI0ZwyimnALBo0SJWr15Ns2bNGD58OBMmTKjx0TAPPfQQTz31FKNHj6agoICkpCTeeOONsMfzrFixgnXr1tGyZUt69OjB1VdfzaJFi3jsscd44oknePTRRxkzZgwLFy5ERPjXv/7FAw88wN/+9rcK8QaOs5kwYQIlJSV8+OGH/OMf/6iRzDHB4VzyJY2WCfHVOt2RMZRe+z7BV1aGN8yJEBZLU+VYhyV7A2NF5CsR+UREhgOISCrwa+CeKn0btz8TkcUisnjPnj3HKE798NJLL3HJJZcApmfhHpocMWIE3bsfOS25c+fOjB49GoDLLruMzz//nA0bNtC9e/fy/SWvuOIKPv30yDdKkydPDhlvqCNlgvnggw+47777GDx4MOPGjaOoqIgtW7YAcOqpp5KZmUlycjIXXHABn39e8812R48eza233srjjz9OXl4ecXFxVR7PM3z4cNq3b09iYiI9e/bktNNOAyoeZ7Nt2zZOP/10srKyePDBB0MeZ3PmmWfy8ccfU1xczHvvvcdJJ51EcnJyjeVu7MQV7uOAp3nNHPccT3M5xPcr7SbKFksw1Tb3ROS/QKidfH/n+G8JjAKGA6+ISA9gOvCIqhZUd4SKqv4T+CeYvSWrdFxND6s+2LdvHx999BGrVq1CRPD5fIgIDz74IFD5+JqjOUIm3BE4NTlSRlV5/fXXK+28/9VXXx3TcTZ33nknEyZM4N1332X06NHlGyeHoybH2dxwww3ceuutnHvuuSxYsCDkDilJSUmMGzeO+fPnM2fOnPJGRVMhsXQ/hXEZNXLbbfjZ+L++g9wV79Fr6Lh6lctiaWxU23NT1VNUdWCI3zxgG/CGGhYBfqAVMBJ4QERygJuB34rI9fX3GPXHa6+9xuWXX87mzZvJyclh69atdO/enc8++yyk+y1btvDll18C8O9//5sxY8bQp08fcnJy+O47c5TJCy+8wMknn1xt3KGOlAk+zub000/niSeeILAB9rJly8rt/vOf/7Bv3z4KCwuZO3dueY+yJmzcuJGsrCx+/etfM3z4cNavX39Mx/MA5Ofn07FjRwCee+65sO4mT57Ms88+y2effcYZZ5xR4/BjgRRfPkXxGTVy26ptBzbG9yR9R+iyaLE0ZY51WHIuMB5ARHoDCcBeVR2rqt1UtRvwKPAXVX3yGOOKCC+99BLnn39+BbNJkyaFXTXZp08fnnrqKfr168f+/fu57rrrSEpK4tlnn+Wiiy4iKysLj8fDtddeW23coY6UGT9+PGvXri1fUHLXXXdRWlpKdnY2AwYM4K677ir3P2LECCZNmkR2djaTJk0qn2/7yU9+wgknnMCGDRvo1KlT+fl0M2bMKD8O59FHH2XgwIFkZ2cTHx/PmWeeeUzH84DZy/Kiiy7i+OOPp1WrVuXmixcv5uqrry6/P+200/jkk0845ZRTSEhIqHH4sUCa/wClSVUv9nGT2+4kepesI++H7fUolcXS+DimI29EJAF4BhgMlAC3q+pHQW6mAwWqGrySshL2yJu6Y9asWRUWnjRFGlvZ8ft8+O9txdedruCEax6tkZ9vVy2i1+unsrj/bxh28Z31K6DFUk/Ux5E3x7TESlVLgMuqcTP9WOKwWJoKBXm5pIsfmmXW2M9xA4fz/ZtdSfv2TaD2ym1TziZ2rPwvJbs2kFiwDU9ZIV4tQ70J+OJS8MWn4k9IhcR0SErDk5iOt1k68c2aE5fcnKSkZJIT42iWGE9CXByKh8BBPOpXVBVFUQXFb/6qY67g9yt+Vfx+P34FVT8eERK8QkKcB6+AX8GvfjQoTL9fAXX8gWLC8/kVP85fv5KS0YYeXav+btASe9j1wzHKtGnTmDZtWqTFsNSCA/t2kQ54U8MfdxOMiLCr23mc+P1jbF6zkK4DRlXr5+DBAyx952nafPsy/XzfEFjrmystKJZkyiSOOC0lyX+YZApJpuToHihKKNZ48m/+huYtaj7ca2n8NArlpqq1WulnsUTTCfM15XCe+Uw0Ib1VNS4r0m/CDRQ8/k/2vX8fXQfMDeuutLSURXOfpNeaxzmZfWzxdmVZrxtoM+gMOvQeSmZCs9AefWWUFh6g8GAeRQX7KTmcR8mhfMoO5VFSWkJJaRklZT7KfD5E/XhQEDnyzgoIHsytIAEz8eARo6ADP4+ATwWf30+JDxRFxGP8IIjLPbj8OmF6AI9HEASPB4o3fsHQH95gz76dVrk1MaJeuSUlJZGbm0tmZqZVcJYaoark5uaSlJQUaVFqRXG+UW6JzdvUyl+LzNZ80XEyo3fM4puv3qH3yAmV3Kz67C1SPv49o/2b+Ta+LwdOeYrjRpxJl5q8U9444lNbEp/akvRaSRZ5ls5Pgh/eoPhQXqRFsTQwUa/cOnXqxLZt24jWD7wt0UlSUhKdOlW9+XC0UXLQlPHUjPBnuYUj+yf3svXh+WS+9wt2tpxL+15DANj17VJ2zP0DQw99yk5pw8oTHiXr1CsQT9PYMz2+WRoAJYcORFgSS0MT9cotPj6+wg4gFkus4j+UC0BaZu2VW1pac7Zf8ALNXp9E5ounsCZpAMllB+jh20S6JrKw27UMnnwX7Zul1rXYUU18M9PXLC20yq2pEfXKzWJpMhzOpUjjSU+r4fZbQfTNGs7mtI9ZM+/PtD24msPxLfik4wT6nPULRrXrWMfCNg4Sm2UAUGaVW5PDKjeLJUqQojwOSCptPEc/t9y1W0+63vRMHUrVuElMNT03X5FVbk2NpjHwbrE0ArwlBzjsaVrDhvVNSloLAPyFB6txaYk1rHKzWKKE+NIDFHmtcqtLUp0hXn+xVW5NDavcLJYoIbGsgJK4tEiLEVN4vV4OaRJY5dbksMrNYokSkv0FlMY3ti/Jop/D0gxPSUGkxbA0MDGl3A7m72PFfaew9P1ZkRbFYqk1Kf5D+BKscqtrijzJeEsPRVoMSwMTU8otMSmFQUVfU7JjbaRFsVhqhd/nJ41D+JOO7jMAS3iKPCnEldmeW1MjppRbQmIi+ZqCpzA30qJYLLWioCCPOPFDUkakRYk5SuOakeA7HGkxLA1MTCk3gAOedOKK90VaDIulVhw+YMqsJ9n23Oqa0rg0kn2259bUiDnlVuDNIKF4f6TFsFhqReEBM9rgdXbUsNQdpQnpNFOr3JoaMafciuJb0KzMKjdL46K4wJTZ+JQWEZYk9vAlNCdN7YKSpkbMKbfSpBak+fIjLYbFUitKHOWWkGqVW12jSRk0k2KKigojLYqlAYk55eZPzqS5HsDv81fv2GKJEkqd88aS0+yBmnWNOPOYh/L3RlgSS0MSc8pNUlqTID7y8+yKSUvjwV+YB0ByulVudY3HmccMzGtamgYxp9zi01sDkL93R4QlsVhqjhaaofRUq9zqnLhmJk2LrHJrUsScckts0QGAgtxtEZbEYqk5UpzPIU0kOSkp0qLEHIlpmQAUHbQLzZoSMafcUlp1BqB43/YIS2Kx1BxP8QEOSTNEjv4sN0toUpoHlJvtuTUlYk65NW/TFQBfvh2WtDQePKUFFEqzSIsRk6RmtAKg7JDtuTUlYk65ZWS04JAmwoGdkRbFYqkxcWWHKPZY5VYfNG9hlJv/sFVuTYmYU27i8ZDryST+8K5Ii2Kx1Jj4skOUeK1yqw/iEpI4TCIU5UVaFEsDEnPKDeBgfCuSi36ItBgWS41J8B2mNC4l0mLELAWSiqfYbu7QlDhm5SYiN4jIehFZIyIPuMyzReRLx3yViDTYMrDCpDakl9kPNi2Nh0QtxGeVW71xyJNOQklepMWwNCBxx+JZRMYDE4FBqlosIm0c8zjgReByVV0hIplA6TFLW0PKUtrRKn8Bfp8fjzcmO6eWGCNZD+NPSI20GDHLofgWJJfaObemxLHW/NcB96lqMYCqBsYCTwNWquoKxzxXVX3HGFeN8aR3IEHK2LfXzrtZoh9VJUWL0Hir3OqL4oSWpPnyIi2GpQE5VuXWGxgrIl+JyCciMtxlriIyX0SWisgd4QIQkZ+JyGIRWbxnz55jFMeQ0LIjAPt35dRJeBZLfVJcXESilKKJVrnVF6VJLcnw2zm3pkS1w5Ii8l+gXQir3zn+WwKjgOHAKyLSwzEf45gdBj4UkSWq+mFwIKr6T+CfAMOGDdOjfI4KpLTtCUDB7o3AiXURpMVSbxw+mEcS4ElMi7QoMYsmtyJVCikpPERCsp3bbApUq9xU9ZRwdiJyHfCGqiqwSET8QCtgG/Cpqu513L0LDAUqKbf6oE2XPgCU/LCxIaKzWI6JwoIDAIjtudUfqWbP2QO5O2nV6bgIC2NpCI5pQQkwFxgPfCwivYEEYC8wH7hDRJoBJcDJwCPHGFeNad6yDfmkwP5NDRWlxXLUFDvH3cQlp0dWkBgmoXlbAPJzd9S5csvLz2PrxnVoyWEQoXmrdrRt35mkZrYnHkmOVbk9AzwjIqsxSuwKpxe3X0QeBr4GFHhXVd85xrhqxZ64DiQVbKmTsHw+P+uWfUHu8ndI2r+e9KIdJGkRoj6KJJnSuGaUxKdTltgCf1IG0iwTb0omiemZJKW3JiWjNemZbUlt3grxxteJTKFQVfzOwK4AIlTaq1BV8fmNO0XxiOAVCem2ITHFJrIyNAR+v+JTdfJH8AiUHDY9N2+yrQzri5QWZmalYF/dLDLL37eXdW8/TObmd+nl30RGCDcHaUautzUFiW0pTukA6R1JaNmF1DZdSW/bjWatupCUbPcTrS+OSbmpaglwWRi7FzGfA0SEg8060+rA2mMKo6zMxxfz/kmn1X9noBpFucvThn0Jncj3tsYvXhL9hSSUFpBemEPqoVWk60HiJfzC0AKaUYYXRfDhRUXw40HxoDgVvKN4gtSSsUPRcgUW8GGuzd8jCFrhWquxD+U/cH/k/XP50cp+joZQE61hw6xtZHUyi3sUBMupFf5UoCs+EEhMyahnoZou6a3MaSFFece2uYP6/Sya+yT9VvyVUXKYb+L7sajLz0lt3wdvcjp+v3I4bzfFebvg4A4SD+8kvWg3HQ6to+WegxA0U1Ks8RSTQInEU0ICZeLFg5a/e+a9DLpW8OCvbB7iWvC7zAMPUcXzBd1X97ptkO4Mnb6w2nSLBMfac4tafBndaJf/CYcKi0hJrv3345s3fcve2ddwctkytsZ1YcXAezjupMm0a9k+5OqaAOr3c/BgHgdyf6Ag7weK8vdQfGAPZYdy8R/ahxTlIepH1AfqN9f4wNVzEXPhKBQpb+VTyQ5EPE7hxdFAUl4iVQPFPKANPZX8qzqvgxrVp4rz2igo+B0zUPyOLO44AvIFAiwPvzxWDfw7kkbOX48Y3x454h9VRx7HXeC+PCgttwt+8cI1gKWCvAGzMPdBF6F11JEGhla2dDU5KuL1ePB6nOeFimEkpjNo0JjQD2A5Zlq2Mcqt9MDuow6jqLiEpTOu5sT981iXmMWesx+kd/YJNfKrquzNy2fvjk3k78qhbP9W4gp2IiUH0bIiKCsmzl+Mx19m3jkoV0uBUqjO+63iMWblBV4CwzTlas24E5c7qfiOOu9E5cZr+Rsdshyry0iBgsQ2NXr+SBCzyi2+TW/it/jI2biaXgOH1crv8q8/o/3/TaWfHGLN4Lvpf+7NdPZ4a+RXPB7SmrckrXlLoO9RSG6xWOqapGbpFJKIFBydcvP7/Cx76nJOPPA+X3ecytArH8EbV/PqU0Ro1SKDVi2GwIAhRyWDpXbE7PYdad1MATqweXmt/C1b+DHH/d9FeDweDl76LgPOuw2poWKzWCxRigh7PK1JOnx0p4V8Pus3nHDgfZZ0+znDr3miVorNEhliNofa98imVL2U7VxVYz85G1bQ5b2pHPKkkfDz/9CiXbf6E9BisTQo+fFtSCuu/YKShR++yUlbZ7A84zSGTr2vHiSz1Acx23NLbtaMbd5OJOWuq5H7fbl78L48GRHQqXOtYrNYYoxDSe1pWVa7XZDy8/bR5bNfsd3TgYE/fwbxxGyVGXPEdE7tS+1Nu8Jvq3Xn8/n59ukraO/fTe7Zz9Cu+4AGkM5isTQkZWkdaMV+SosLa+xn5ezf0Fb3UnT234mzn2o0KmJauZV1OJ627GPn5g1Vuvv8xXsZWfQFawfcRq9hpzaQdBaLpSFJaNkVgB+2f18j9yvXrmXED6+zutVZ9Bw6vj5Fs9QDMa3c2mT9CIBtyz4I62bNog858fvHWZU6huyLftdQolkslgYm3Zlq2Lu9Ztvy/fB/9+IRpdfFf6pHqSz1RUwrt659h7GfNHTjgpD2+3N/oOW7P2OvJ5Pu1zwf/kMpi8XS6GndMbChevXb8i1d+jXjDs3n284X0axtj/oWzVIPxLRy83i9fN/yJPof+IIDBQcr2Pl8fjb+6woydT+Hzp1JavPMCElpsVgagpYdj6NUvfj3flelO1Xl8Pw/Uirx9LjgDw0knaWuiWnlBpAxfDKpUsjq/86uYP7F83cxrPB/rO5/K8cNOSlC0lksloZC4hLY6e1ASn7Vym3xV58ypvgTvutxOUkt2jeQdJa6JuaVW48RE9js6UyHFU9w0Om9ffXmE5y0+UlWpI9n6MV2ns1iaSrkJnejdVFOWHtVhQ//yAFS6XPB7xtOMEudE7MfcQcQbxxF4/5An4+uZuVjEyhMas3Ig/9lTeJg+lw3286zWSxNiMKM42hf8AUlRYUkJCVXsv/6s/cYUfo1K/veQnZqiwhIaKkrYr7nBtDnpItYknU33Uu/JevgZ3zd/lJ63TqfJHsir8XSpEjsmE2c+Nm6/utKdn6fn+RP/kSutKD/ebdHQDpLXRLzPbcAx0+6DT3/ZgCG270iLZYmSfsBJ8Ei2L/hMxhcca79qw9f5QTfGlZk30Vmkj0VvbHTZJQbYDdAtliaOO279GQnrZAtX1UwLystpc3Cv7BT2pJ1zg0Rks5SlzSJYUmLxWIBc/TMzhbDOa5gMYcLD5ebL3v77/T057B75J144hMjKKGlrrDKzWKxNCmSBk+iuRxi3advArB39zZ6rPwbG+L6Mui0aZEVzlJnWOVmsViaFL1POIc9tKDZosfYuy+XHc9cTpoeInnSk3bX/xjC5qTFYmlSxCUk8cOo39LPt4GMx44ju3gpq4ZMp0u/4ZEWzVKHNKkFJRaLxQIw4IyfsVIS0O8XkJB1HsePOS/SIlnqGKvcLBZLkyT79GnAtAhLYakv7LCkxWKxWGIOq9wsFovFEnOIqkZahnJEZA+wuQ6CagXsrYNwGoLGJCs0LnmtrPVHY5K3MckKjUveupK1q6q2roNwyokq5VZXiMhiVR0WaTlqQmOSFRqXvFbW+qMxyduYZIXGJW80y2qHJS0Wi8USc1jlZrFYLJaYI1aV2z8jLUAtaEyyQuOS18pafzQmeRuTrNC45I1aWWNyzs1isVgsTZtY7blZLBaLpQljlZvFYrFYYo6YUm4icoaIbBCR70TkzkjLE4yIdBaRj0VkrYisEZGbHPPpIrJdRJY7v7MiLSuAiOSIyCpHpsWOWUsR+Y+IfOv8bREFcvZxpd1yETkgIjdHU7qKyDMi8oOIrHaZhUxLMTzulOOVIjI0CmR9UETWO/K8KSIZjnk3ESl0pfGMhpS1CnnD5r2I/MZJ2w0icnoUyDrHJWeOiCx3zKMhbcPVWVFZdiugqjHxA7zARqAHkACsAPpHWq4gGdsDQ53rNOAboD8wHbg90vKFkDcHaBVk9gBwp3N9J3B/pOUMUQ52AV2jKV2Bk4ChwOrq0hI4C3gPEGAU8FUUyHoaEOdc3++StZvbXRSlbci8d963FUAi0N2pM7yRlDXI/m/A3VGUtuHqrKgsu+5fLPXcRgDfqer3qloCvAxMjLBMFVDVnaq61Lk+CKwDOkZWqlozEXjOuX4OOC9yooTkx8BGVa2LnW7qDFX9FNgXZBwuLScCz6thIZAhIu0bRFBCy6qqH6hqmXO7EOjUUPJUR5i0DcdE4GVVLVbVTcB3mLqjQahKVhER4GLgpYaSpzqqqLOisuy6iSXl1hHY6rrfRhQrDhHpBgwBvnKMrne68c9Ew1CfgwIfiMgSEfmZY9ZWVXc617uAtpERLSyXULFyiMZ0DRAuLaO9LF+FaZ0H6C4iy0TkExEZGymhQhAq76M5bccCu1X1W5dZ1KRtUJ0V9WU3lpRbo0FEUoHXgZtV9QDwD6AnMBjYiRmaiAbGqOpQ4EzglyJykttSzThE1HxLIiIJwLnAq45RtKZrJaItLcMhIr8DyoDZjtFOoIuqDgFuBf4tIumRks9Fo8l7Fz+hYsMsatI2RJ1VTrSW3VhSbtuBzq77To5ZVCEi8ZhCMltV3wBQ1d2q6lNVP/A0DThMUhWqut35+wPwJkau3YFhBufvD5GTsBJnAktVdTdEb7q6CJeWUVmWRWQacDYwxanQcIb3cp3rJZg5rN4RE9KhiryP1rSNAy4A5gTMoiVtQ9VZNIKyG0vK7Wugl4h0d1rwlwBvRVimCjhj6jOBdar6sMvcPSZ9PrA62G9DIyIpIpIWuMYsKFiNSdMrHGdXAPMiI2FIKrR8ozFdgwiXlm8BU52VZ6OAfNcQUEQQkTOAO4BzVfWwy7y1iHid6x5AL+D7yEh5hCry/i3gEhFJFJHuGHkXNbR8ITgFWK+q2wIG0ZC24eosGkPZjdRKlvr4YVbqfINp4fwu0vKEkG8Mpvu+Elju/M4CXgBWOeZvAe2jQNYemFVlK4A1gfQEMoEPgW+B/wItIy2rI1cKkAs0d5lFTbpilO5OoBQzD/HTcGmJWWn2lFOOVwHDokDW7zBzKYFyO8NxO8kpH8uBpcA5UZK2YfMe+J2TthuAMyMtq2M+C7g2yG00pG24Oisqy677Z7ffslgsFkvMEUvDkhaLxWKxAFa5WSwWiyUGscrNYrFYLDGHVW4Wi8ViiTmscrNYLBZLzGGVm8VisVhiDqvcLBaLxRJzWOVmsVgslpjDKjeLxWKxxBxWuVksFosl5rDKzWKxWCwxh1VuFovFYok5ol65iUg3EVHnvCNLI0VEbhCRHSKyIgJxTxeRFxsgnmki8nkV9gtE5Or6lqOpISLjRGRbbe3qWIYq66mGKoOxgojcISL7RWS+iDQ7mjCiXrlZao+IzBCRAudXIiKlrvv3IiTWdOAXqjrIJed0EZkeIXmiCqdyzKml+49F5LCIrBeRU6pwmygiz4jIARHZJSK3uuymuMpGgROeisjxjv0tIvK943eHiDwSqMBFpI2IvOSY54vIFyIy0hX2b4PCLhQRv4i0quv0aOyISI6IdKuh27D5Gcb9LY67A46/xBBuTnby/U8uMxGRP4nIdid/F4jIAJd9RxGZJyL7RGSbiFwbFOZgEVnilKklIjI46BlmiMhux//bItIxYK+qD2AOOu2LOUuy1tS7crM9roZHVa9V1VRVTQX+AswJ3KvqmQF3DZw3LYm+w0JrTRSV55eAZZhztX4HvCYircO4nY456LIrMB64Q8zho6jqbFfZSAV+gTkQc6nj9y1gqKqmAwOBQcCNjl0q5pDg4zH5+xzwjoikOmH/JSjs+4EFqrq3rhKhIYmivJ9OmPwMRkROB+4Efuy47wHcE+QmHngM+CrI+0XAVcBYTP5+iTknL8CLwCagLTAB+IuIjHfCTMAcYPoi0AJTNuY55gA3AScA2UAHYD/whDtyVT3khJ9ZdXKEpl6Um9MK+bWIrAQOiUiciIwSkf+JSJ6IrBCRcS73C0TkryKyyGldzBORlmHCvlJE1onIQadF+fMg+4kistwJZ2Mg00WkuYjMFJGdTkvkT+KcclvFc/QUkY9EJFdE9orIbBHJcNntE5Ghzn0HEdkTeC4ROVdE1jjPu0BE+gWlz+0istJpEc0RkaTap3TtCZM3KiLHudzMCmrBne2kaZ6Th9m1jDOQzv5q3N3h5M8OEbnaLZcj01Mi8o6T91+JSE+X38dEZKuT70tEZGxQ8ElOOh8UkaUi4u5B3umUlYMislZEznfZTRPTI3lERHIxFUt1z/uQmCGVTSJyZpB1Vye8gyLygdSgFxMi/N7AUOAPqlqoqq9jDoacFMbLFcAfVXW/qq4DngamVeH2eXUOelTVjaqaF4gak4fHOXbfq+rDqrpTVX2q+k8gAegTQmYBpmIquVojIkNFZJmTbq86efmnMG5vdPKxk8vst847nCMiU1zmE5xwDzjlZ7rLLjDU+FMR2QJ8VANRp4jIFieu3wXZJYjI884zrBGRYbVLhXJqm58zVXWNqu4H/hjC7W3AB8D6IPPuwOdOPvswiqo/gJgGzDjgz6paqqorgNcwyhDHLg54VFWLVfVxTPn5kSvs+aq6W1WLgDlAea/Qhd8Jp/bU0+mtOZgTWzsDyUBHzCnJZ2EU6qnOfWvH/QJgO6ZlmAK8Drzo2HXDnAQb59xPAHo6CXUycBjTsgQYAeQ74XucePs6dm8C/88Jvw3maPmfV/McxzlhJQKtgU8xmRWwvwZYCzQD5gMPOea9gUOO33jgDsxJxgmu9FmEabG0BNYRdApv0Em4eVX8xlTzDNMDaRkqbwJ1GHCcy80s4E/O9RDgB2Ak4MW8LDlAYi3KwxlAEZBSjZtdmALeDPMilcvlyJTr5HEcMBt42eX/MkwLLw7zsu4CklxpUApc6OTH7ZgWYbxjf5GTFx5gspN37R27aUAZcIMTdnIVzzDNiecaJ62uA3ZA+aHACzAnFPfGvBcLgPvChPV34O9h7M4H1gWZPQk8EcJtCycd27rMLgRWhXDbFfAB3YPMLwUOOOHsAQaFkWuwk8/NQ9idBBQAqUdRnyQAmzGt/XjgAqDEVUbHAduc67sxvc7WLrsy4GHMe3yyk799XPZZTt5nA7uB84Lqnucx9UZVeR9w+7STt4OAYqCfqwwWYepAL/BXYGGYsC4FVoaxq3F+OnYrgMmu+1aO/0xXnn+D6YXPCqSpy26JU17jgQeAuY5dmhNOG5f7p4FlzvUtwHtBsvwfcJtzPQz4AvPeNQP+jatudfl5DjNKkVDrclNbDzUsjDnAVa77XwMvBLmZD1zhXC/A9ZJjWgclTiEIFJq4MHHNBW5yrv8f8EgIN22dgpbsMvsJ8HEtn+u8QOa5zN7iyHH2iY7ZXcArLjcejPIe50qfy1z2DwAz6ikvplNZuV0V5KYq5fYPTCvR7X4DcHIN41/shH9jNe6eAf7quj+OysrtXy77s4D1VYS3H6cSdtJgocvOA+wExobxuxyY6FxPA7bU8FmnAd+57ps5z9DOVc5/77L/BfD+UeTp5QRVjMCfgVkh3HZ2ZEhymZ0K5IRwexdm2DBcvL0wLf92IezSnffgN2H8zgwlXw2f9yTn/RGX2edUVG7bMQrsc1zKlSPKLcVl9gpwV5i4HsWpQzhS9/SogYwBt51cZouAS1xl8L8uu/5A4VGkRY3z07HbCJzhuo93/Hdz7ufhKD8qK7cEzHClOmm4CVfDx0nrJ4AkzEjCPmCDqyy9HCTLbGC6c90ceNkV9jKgZQj5e2IaqqXAsNqkVX3OuW11XXcFLnKGtfJEJA/TI2kfxv1mTCZUGrIRkTNFZKEzJJiHqeQC7jpjMjOYrk54O13x/z9MDy4sItJWRF52hjEPYHoTwTI9jelxPqGqxY5ZB+cZAFBVv/N8HV3+drmuD2NaTg3F1uqdlNMVuC0o7zpjnrEmDAcuAaaLGdsPR4cguULJGDbNnGHedc4wbx7m5XHnVXl4Tn5sCzyDiEx1DbvmYfIzpN8aUC6jqh52LlND2Qc/Qy0owCgTN+nAwTBuA/bVua1y2FBVvwXWYHqV5YhIMvA2RuH+NdifmNVuF1UVdjV0ALarU9s5BOdJBvAzTAMpP8huv5r5mwCbOZL3I8UszNkjIvnAtVR+x48q/6mcv8F2SVL7ebza5GfAfbBbgIMicg6Qpqpzwvi9G/P+dsYosHuAj+TI6sUpmOHFrZhG8IuY9ypUvMFyPoXpSWdiesVvAKEWu92EmddNV9XFYeQMSX0qt+CC+IKqZrh+Kap6n8tNZ9d1F4ymrjDxLGaVz+vAQ5hueQbwLmaIMhBPTyqzFdNza+WKP11VQ43xuvmL8xxZaibUL3PFFRh3fhTTKp0uR+YJd2CUQsCdOM+3vZr4KiEiY6XiirPgX/DcUk3QoPvDmF5GgHau662YcXV33jVT1ZdqFJGpkOZihlPaV+F0J2Z1VIDO4RwG46TBHcDFQAunXOTjyit3eCLiceLaISJdMQ2U6zFDNRmYhS9uv8HpFWnWAD1EJM1lNsgxr4CaeZadjn1YtyIyGlPhv1ZN3HG43jHnnZyLqdR+HsbP+ZhW/YJqwg7HTqCj8x4FCC4f+4GzgWedZ3HTQkRSXPddMO8omOGwt4DOqtocmEHFvIcoyv+a5qeLNSHc7lbVXMwik2FiVlLuwgzJ3ywi8xy3gzGL0bapapmqzsK8x/0dWTar6tmq2lpVR2IaBYtc8WYH5Vm2S87BmJ78PqdT8AQwIsQcdD/M6EZhlQkTgob6FOBF4BwROV1EvCKSJOb7E3dldpmI9HdaBfcCr6mZxHSTgNH2e4AyZ7LevUx0JnCliPxYRDxilqr2VdWdmAnTv4lIumPXU0ROrkbuNEwLJF/MMtVfBdk/BixW1auBdzAvBphhjwmOHPGYOaBi4H/VJVQwqvqZulachfh9VtswQ7AcuNTJmzMw8xIBngaudVq4IiIpziR8GpQv9JhVzTMEerQJVTh7BZN3/ZwycFct5E/DDG3sAeJE5G4qtxqPF5ELnJbyzZj8WIhpNarjFxG5EtNzi1pU9RtMnv3BeZfOx1Qcr4fx8jzwexFpISJ9MXOCs4LcXAG8rqoVegBiFva0ca77A78BPnTu4zHKsBAzxRBuwdAVuBapuMKeLiILqn9ivsTMBV4vZgHURMzcawVUdQGmN/GGiATb3yMiCU5D6GzgVcc8DdinqkWOn0trIE+kqUl+ut3+1KlbM4Dfu9zehZlPG+z83sK871c69l9jRtzaOnXm5ZgRsO8AnHc1zUnXyzB18cOO3wWYPLtRzLL/6x3zj1xhTxWz0C8eM0S/QyuvpI3HvKu1pkGUm6puBSYCv8VUIlsxisId/wuYRN+F6QLfSBDOi3cjpiLcjymIb7nsF2Ey5hFMy/0TjvSgpmIq17WO39eouicBphs+1AnrHUzXGTCrMjGLIK5zjG4FhorIFFXdgOnlPYHpfZ4DnKOqJdXEFyluwsiYh6kc5gYsnKGAazALFvZjCvY0l9/OmInh6lCqKG+q+h7wOPCxE8dCx6omBXs+8D5mYnwzZuI+eChpHqZluh8zZ3WBmlVea4G/YSrQ3ZjFBTV5nnpFzDdAM6pwcglmUn4/cB9woaoGFPQUEXG35P+AGa7fjHknHlTV911xJWF6vaGGDUcDq0TkEGaU5F3MewxwIkZRnAbkhRpNcBqFP8JUssHUqOw4780FwE8xZfQyzOKESmVDVf+DWbH3tjgrmTF1yn5Mb202ZvFWYGXgL4B7ReQgZhjulerkqW9C5F8wYfNTRLo4edAFwDF/APNebXH8/MGxO6iquwI/TCPlkKruc+K5H7MgZTkm3W8BJumR1bOnYz4b2Y8Zzj0jUAadPDsPU+/mYfLkPFcdeDvmPf0WoxPOwvTwg/FSzSrrcEhQYyoiOK23F1X1X5GWxVJzxHyzsgLIVtXSatzuAO5Q1Rrt0iDm04nVmEU6ZccsrCXqEJHlwI+dIbLa+v0Kswjr2ToXzBIVOD3NtcDVqvpubf3bHUosR42qlqhqv+oUm8OdmGG0JeEciMj5zhBGC0yr8W2r2GIXVR1cU8UmZgeNds6w5BWYYdj3q/NnaZyIyO2Y7+4+wRkGry1NXrlJxa2q3L+qhoQstURVn1fVXqp6fBXOfo75pm4jZrz+uircRgRbXiJGH8woQR5mDvtCZy69wZDKW5UFflUNIVqOAlV9SFXbqepPXHP2tSIqhiUtFovFYqlLmnzPzWKxWCyxR7RsBApAq1attFu3bpEWw2KxWCwNyJIlS/aqariNv4+KqFJu3bp1Y/HiWn2EbrFYLJZGjohsrt5V7bDDkhaLxWKJOaxys1iiEFXl3VU7KS4L3qTHYrHUBKvcLJYoZPmqVRz36o+Z88Yb1Tu2WCyViKo5t1CUlpaybds2ioqKIi2KpRGRlJREp06diI+v6iCCKGbHUnp7tnMg5znMhvoWi6U2RL1y27ZtG2lpaXTr1g2R4M26LZbKqCq5ubls27aN7t27R1qco8LrMYMq4fcitlgsVRH1w5JFRUVkZmZaxWapMSJCZmZmo+7tq9/Zdcxv59wslqMh6pUbYBWbpdY0+jJTao6vkkqnPlkslprQKJSbxdLk8Dnb6dnt8SyWo8IqtxogItx2223l9w899BDTp0+PnEDVsGDBAv73v1qfi1rO8uXLOeGEExgwYADZ2dnMmRPuFHpLvVFmjr3y1ujABYvFEoxVbjUgMTGRN954g717gw+JPTZUFb+/7hcMHKtya9asGc8//zxr1qzh/fff5+abbyYvL6/uBLRUS2DOzSo3i+XosMqtBsTFxfGzn/2MRx55pJLdnj17mDRpEsOHD2f48OF88YU5WHj69Ok89NBD5e4GDhxITk4OOTk59OnTh6lTpzJw4EC2bt3Kr371KwYOHEhWVlZ5L2nBggWMGzeOCy+8kL59+zJlyhRCneDw+OOP079/f7Kzs7nkkkvIyclhxowZPPLIIwwePJjPPvusShkvv/xyTjjhBHr16sXTTz8NQO/evenVqxcAHTp0oE2bNuzZs6dS3K+++ioDBw5k0KBBnHTSSYBZAHTllVeSlZXFkCFD+PjjjwGYNWsW5513HqeeeirdunXjySef5OGHH2bIkCGMGjWKffvM4b9PP/00w4cPZ9CgQUyaNInDhw9XinfUqFGsWXPklJFx48bF3LZt6iwkifdH6+HtFkt0E/WfAri55+01rN1xoE7D7N8hnT+cM6Bad7/85S/Jzs7mjjvuqGB+0003ccsttzBmzBi2bNnC6aefzrp166oM69tvv+W5555j1KhRvP766yxfvpwVK1awd+9ehg8fXq4oli1bxpo1a+jQoQOjR4/miy++YMyYMRXCuu+++9i0aROJiYnk5eWRkZHBtddeS2pqKrfffjsAl156aVgZV65cycKFCzl06BBDhgxhwoQJdOjQoTz8RYsWUVJSQs+ePSs9x7333sv8+fPp2LFjec/uqaeeQkRYtWoV69ev57TTTuObb74BYPXq1SxbtoyioiKOO+447r//fpYtW8Ytt9zC888/z80338wFF1zANddcA8Dvf/97Zs6cyQ033FAh3smTJ/PKK69wzz33sHPnTnbu3MmwYcOqTPNGh8/03OKwPTeL5WiwPbcakp6eztSpU3n88ccrmP/3v//l+uuvZ/DgwZx77rkcOHCAgoKCKsPq2rUro0aNAuDzzz/nJz/5CV6vl7Zt23LyySfz9ddfAzBixAg6deqEx+Nh8ODB5OTkVAorOzubKVOm8OKLLxIXF7qtUpWMEydOJDk5mVatWjF+/HgWLVpU7m/nzp1cfvnlPPvss3g8lYvK6NGjmTZtGk8//TQ+n6/8eS677DIA+vbtS9euXcuV2/jx40lLS6N169Y0b96cc845B4CsrKzyZ1u9ejVjx44lKyuL2bNnV+ihBbj44ot57bXXAHjllVe48MILq0zvxkig5xZnDyK3WI6KRtVzq0kPqz65+eabGTp0KFdeeWW5md/vZ+HChSQlJVVwGxcXV2E+zf3NVUpKSo3iS0xMLL/2er2UlVWu6N555x0+/fRT3n77bf785z+zatWqSm7CyQiVl8wH7g8cOMCECRP485//XK6Ig5kxYwZfffUV77zzDscffzxLliyp8fN4PJ7ye4/HU/5s06ZNY+7cuQwaNIhZs2axYMGCSuF07NiRzMxMVq5cyZw5c5gxIwYPwfYHem5WuVksR4PtudWCli1bcvHFFzNz5sxys9NOO40nnnii/H758uWAOb5n6dKlACxdupRNmzaFDHPs2LHMmTMHn8/Hnj17+PTTTxkxYkSN5PH7/WzdupXx48dz//33k5+fT0FBAWlpaRw8eLBaGQHmzZtHUVERubm5LFiwgOHDh1NSUsL555/P1KlTq+wVbdy4kZEjR3LvvffSunVrtm7dytixY5k9ezYA33zzDVu2bKFPnz41eh6AgwcP0r59e0pLS8vDCcXkyZN54IEHyM/PJzs7u8bhNxYCPbdEtXNuFsvRYJVbLbntttsqrJp8/PHHWbx4MdnZ2fTv37+8FzFp0iT27dvHgAEDePLJJ+ndu3fI8M4//3yys7MZNGgQP/rRj3jggQdo165djWTx+Xxcdtll5Ys3brzxRjIyMjjnnHN48803yxeUhJMRzLDm+PHjGTVqFHfddRcdOnTglVde4dNPP2XWrFkMHjyYwYMHlyvEu+++m7feeguAX/3qV2RlZTFw4EBOPPFEBg0axC9+8Qv8fj9ZWVlMnjyZWbNmVeixVccf//hHRo4cyejRo+nbt2+5+VtvvcXdd99dfn/hhRfy8ssvc/HFF9c47EaF03NLojjCglgsjRMJtQIvUgwbNkyDV72tW7eOfv36RUii2Gb69OkVFp7EGo257Cx++nqGbX+BYo0j8Z7cSItjsdQrIrJEVet0VZjtuVksUYg4PbdEKaO01K6YtFhqS6NaUGKpW6J5l5Umj2tPyaLCQ8THZ0ROFoulEWJ7bhZLNOI6DaC4sPKH7BaLpWqscrNYohH/kU8ASooORVAQi6VxUu/KTUTOEJENIvKdiNxZ3/FZLDGBa1iypMj23CyW2lKvyk1EvMBTwJlAf+AnItK/PuO0WGIBcQ1LllrlZrHUmvruuY0AvlPV71W1BHgZmFjPcdYLc+fORURYv359WDc5OTkMHDiwXuVYvnw577777lH7D3z03b9/fwYMGMBjjz1Wh9JZ6gxXz6202A5LWiy1pb6VW0dgq+t+m2PW6HjppZcYM2YML730Ukj7UFtj1ZbA/oxVcazKLS4ujr/97W+sXbuWhQsX8tRTT7F27dqjDs9SP7h7bmXFtudmsdSWiC8oEZGfichiEVkc6liVaKCgoIDPP/+cmTNn8vLLL5ebL1iwgLFjx3LuuefSv78ZbS0rK2PKlCn069ePCy+8sPzIlg8//JAhQ4aQlZXFVVddRXGx2XmiW7du/PrXv2bo0KG8+uqrFeINPlKmpKSEu+++mzlz5jB48GDmzJnDoUOHuOqqqxgxYgRDhgxh3rx5gDliZuLEiYwbN45evXpxzz33ANC+fXuGDh0KQFpaGv369WP79u2VnvmTTz4p351kyJAhHDx4EFUNezzPySefzMSJE+nRowd33nkns2fPZsSIEWRlZbFx40YA3n77bUaOHMmQIUM45ZRT2L17d6V4L7nkEt55553y+2nTppVvktykUKvcLJZjob6/c9sOdHbdd3LMylHVfwL/BLNDSZWhvXcn7Kq8MfAx0S4LzryvSifz5s3jjDPOoHfv3mRmZrJkyRKOP/54wOwbuXr1arp3705OTg4bNmxg5syZjB49mquuuoq///3vXH/99UybNo0PP/yQ3r17M3XqVP7xj39w8803A5CZmVm+D6Wb4CNlEhISuPfee1m8eDFPPvkkAL/97W/50Y9+xDPPPENeXh4jRozglFNOAcxxNatXr6ZZs2YMHz6cCRMmVDgaJicnh2XLljFy5MhKcT/00EM89dRTjB49moKCApKSknjjjTfCHs+zYsUK1q1bR8uWLenRowdXX301ixYt4rHHHuOJJ57g0UcfZcyYMSxcuBAR4V//+hcPPPAAf/vb3yrEGzjOZsKECZSUlPDhhx/yj3/8o4aZGTuI+vCr4BHFV1IYaXEslkZHfffcvgZ6iUh3EUkALgHequc465yXXnqJSy65BDA9C/fQ5IgRI+jevXv5fefOnRk9ejQAl112GZ9//jkbNmyge/fu5ftLXnHFFXz66aflfiZPnhwy3lBHygTzwQcfcN999zF48GDGjRtHUVERW7ZsAeDUU08lMzOT5ORkLrjgAj7//PNyfwUFBUyaNIlHH32U9PT0kHHfeuutPP744+Tl5REXF1fl8TzDhw+nffv2JCYm0rNnT0477TSg4nE227Zt4/TTTycrK4sHH3ww5HE2Z555Jh9//DHFxcW89957nHTSSSQnJ4d89lhG1MdhzCkO/hLbc7NYaku99txUtUxErgfmA17gGVWtXKPVlGp6WPXBvn37+Oijj1i1ahUigs/nQ0R48MEHgcrH14Q7QqYqwh2BU5MjZVSV119/vdLO+1999VVYWUpLS5k0aRJTpkzhggsuCBn3nXfeyYQJE3j33XcZPXo08+fPr/IZanKczQ033MCtt97Kueeey4IFC0LukJKUlMS4ceOYP38+c+bMKW9UNDXE7+OwJJNKIX7bc7NYak29z7mp6ruq2ltVe6rqn+s7vrrmtdde4/LLL2fz5s3k5OSwdetWunfvzmeffRbS/ZYtW/jyyy8B+Pe//82YMWPo06cPOTk5fPfddwC88MILnHzyydXGHepImeDjbE4//XSeeOIJAhtgL1u2rNzuP//5D/v27aOwsJC5c+cyevRoVJWf/vSn9OvXj1tvvbXKuLOysvj1r3/N8OHDWb9+/TEdzwOQn59Px45mPdFzzz0X1t3kyZN59tln+eyzzzjjjDNqHH4sIeqjWEzPTUutcrNYakvEF5REOy+99BLnn39+BbNJkyaFXTXZp08fnnrqKfr168f+/fu57rrrSEpK4tlnn+Wiiy4iKysLj8fDtddeW23coY6UGT9+PGvXri1fUHLXXXdRWlpKdnY2AwYM4K677ir3P2LECCZNmkR2djaTJk1i2LBhfPHFF7zwwgt89NFH5QtGAqsvZ8yYUX4czqOPPsrAgQPJzs4mPj6eM88885iO5wGzl+VFF13E8ccfT6tWrcrNFy9ezNVXX11+f9ppp/HJJ59wyimnkJCQUOPwYwlRH0WeZgBoaVE1ri0WSzD2yJsYZdasWRUWnjRFGnPZWfOXsYj66V+6mv91vIoTr3kk0iJZLPWGPfLGYmkieNSHX+Io1AQosz03i6W22CNvYpRp06Yxbdq0SIthOUo86qPUk0SxJCBWuVkstaZR9NyiaejU0jho7GXGgw+/J44SEvFY5Wax1JqoV25JSUnk5uY2+srK0nCoKrm5uSQlJUValKPGo2WoeCnxJODxWeVmsdSWqB+W7NSpE9u2bSNat+ayRCdJSUl06tQp0mIcNXFahl/iKJVEPL7iSItjsTQ6ol65xcfHV9gBxGJpCnjUDEuWeRKJ89uem8VSW6J+WNJiaYrEUYZKvKPcbM/NYqktVrlZLFGIR32ox2uVm8VylFjlZrFEIXH4UE88fm8SCWqVm8VSW6xys1iiEC9lqMTh8yYSb3tuFkutifoFJRZLUyQOH3jj8GsyiZREWhyLpdFhe24WSxTiVR8qcWhcEglqlZvFUltsz81iiULMnFsciIckSlDVGp0NaLFYDLbnZrFEG6rEiw+88Wh8MolSSnFpWaSlslgaFVa5WSxRhvpKzV9PPBKfDEBR4aFIimSxNDqscrNYooyyMqPcxOMtV27FhYcjKZLF0uiwys1iiTJ8Zc4CEm88ngSz+XNJYUEEJbJYGh9WuVksUUZpqVFu4onHk9AMgJJi23OzWGqDVW4WS5RRVuIoN2883gQzLFlqe24WS62wys1iiTKKHeXmjU/Am5QKQFmRXVBisdQGq9wsliijtLgQAG98It5ER7kV256bxVIbrHKzWKKMUqeXJgnNiHd6bn7bc7NYaoVVbhZLlFFadBAAb2Iq8cmOciuxys1iqQ1WuVksUYbPWRnpSWxGYrM0x8wqN4ulNljlZrFEGQFFFpeYUq7c1PbcLJZaYZWbxRJl+J2emzcphWYpAeVmv3OzWGqDVW4WS5RR5vTckpulEp+QSIl6wSo3i6VWWOVmsUQZgQ+2U5xeW5Ek4Sm1w5IWS22wys1iiTL8Ts8tNa05AEUkImWFkRTJYml0WOVmsUQZUrSfIo0nIcnsK1ksSXjL7LCkxVIbrHKzWKKM+OL95Es6OCdvl3iS8fpsz81iqQ1WuVksUUZ88X4OetLL70s8ScRb5Wax1IpjUm4iMl1EtovIcud3lsvuNyLynYhsEJHTj11Ui6VpkFCaR1F88/L7Mm8y8b6iCEpksTQ+4uogjEdU9SG3gYj0By4BBgAdgP+KSG9V9dVBfBZLTNOidC/bmw8uvy/zJpNWsjtyAlksjZD6GpacCLysqsWqugn4DhhRT3FZLDGDv7SYNrqXwtQu5Wa+uGYk+m3PzWKpDXWh3K4XkZUi8oyItHDMOgJbXW62OWYWi6UKdm3+Bo8o8a16lJv545NJxCo3i6U2VKvcROS/IrI6xG8i8A+gJzAY2An8rbYCiMjPRGSxiCzes2dPbb1bLDHF7s3rAGjesXe5mcY1I1mLIyWSxdIoqXbOTVVPqUlAIvI08H/O7Xags8u6k2MWKvx/Av8EGDZsmNYkLoslVinduhS/Cu17DTlimJBCspRQVlZGXFxdTJNbLLHPsa6WbO+6PR9Y7Vy/BVwiIoki0h3oBSw6lrgslqZA2g9f872nC81btC43kwTzMffhwwcjJZbF0ug41mbgAyIyGFAgB/g5gKquEZFXgLVAGfBLu1LSYqka9ZXS5fBqlmacwXEuc0lIAaD40EFIbxHas8ViqcAxKTdVvbwKuz8Dfz6W8C2WpsSODYvpSBHSdVQFc2+iUW5FhwsiIZbF0iixO5RYLFHCD6s/AqDjoB9XMPeUKzc7LGmx1BQ7O22xRAnerQvZThu6de9VwTwuKRU4chTOsZD7ww727/iOsrIyUlu0o1XHHiQlJR1zuBZLtGGVm8USDajS+eByNqSOpKOzYXKA+GTTcystOjrltnPbJja98zDddn1AB91FpsvOp8J2Txv2JnTicGo3/C17kpTRBk98MuKNQ8qKzHE7pUWIrxjKSlB/GfhKwV8Kfh+qfvwKflX8Kpgp+ACuwaEKj+W6kYrXErATtysBBBFQ5687HHH/F/AnJu645u0YOOH6ivFYYh6r3CyWKGD3ptW05QC+zqMq2SUkm0NLy2qp3IoKD7PshTsZsv3ftMbHmuTjyel4KUltexIXF09J/g/49uUQl7+J5oc30zP3XVJza75Bs1+FMjxohdmNI4pNKlxXRGroziN183XQll6j6dJnaJ2EZWkcWOVmsUQBO1Z+TFugzcBxlewCys1XC+W29ZvllL08lRP8m/k64zQ6nX8vg7r1q9qTKvl7t7Mvdw++kkL8ZaVIfDISn4QnIRlPfBLeuCQ88fHExcXjjYsjziN4PUKcx4PXufZIeXBHgq4QjVYw8ysoWtF9kJk6/gJO1HgiYBKwU1Uov4ZdOWvIevMUfli9wCq3JoZVbhZLFFC2+SvySKVH38oVcGIzM+fmc07oro71X75Dh/nXUIaXVeNmMnzchTUTQoTmrTvRvHWnGstdTXDhbOok/JqQOfB49r6ZgW75ssHitEQHMbdacu2X71FaYrcqsjQuWuWvZHNyf7zeyq9kUjNztpuWVK/clnwwmx7vX84+T0sKp35AVk0VW4zi8XrYkjaEHvlf4S8ri7Q4lgYkpnpuO3I20Ov9Kez8Tzt2Z/+CfqdMJTU1vXqP4VDFV1rM4aIiysp8oD78vjLU7wNfGf4QXirPLYQwkMAkeEXbqua7JciyUjx12Uo+qon38H60qmmTOo6rJvHUbhan/tPv8MF8uvq28nXbs0LaJ6eYYUktOVxlOCs+mkPWFzeQE9+TNte9S0Zm6yrdNxV8fc8m8+uPWf3V+wwcfXadhFlSUsrhvB84fLiAoqJCKCtCfCWICCoeEC94vIjzw+PF6/Ei4sHjEcTjxePxOtcePB4vXvGA14OIB7MqpnblSKGal60Kv0fpD/HQPKPl0fmtZ2JKubXv0ovlY56kxZd/Yfjy31G8bDprE/txMLU7vtR2eBOSKVMP4i/BW3oIT/EBvKUFxJUVEFd2mHjfYRJ9h0nSwyRrIclaRJz4SYv0g1limhYAAik9Twxp741PwqcCVfTcVn86l76f/JItcd1od/17pGe0qh9hGyFZ4y7m0Ne/o2jhM1Ab5aZK4c51bFn9JXmbVxK//ztaFG8j3befFnqADFEy6k3qxsEqfw+y7l0WaTFCElPKTTwehpx6KfrjS9jw9fvsWzKPzH1L6bPvIzL2VfwAtkw9FNCMQ9KMIk8yxZ5mHPKmkhfflrK4FPzxKWhCKsQ3Iz4+HvHGgXhNq8zjNS0zqdj3Cm77aLBJVY2joJaT1tQuRDDlDb6jao3V3o8chZ+j9nfUi+cqeqxRo/goW7NH0xf1JKUx9MQwFa8IhZKElIbuua378l16fngN270daXWdVWzBJKWk82XbCxix6yW+W/k/jssO3YhAlQNbV7Fz6Xuw+Qva5i0nQ/Ppg6kvdng7kJvYiT3J2WhKG7RZKzxJKcQlJCFxifgkHgBRP6jP/PWXoepHAp9M+BXUD+rH7/c714qqzyySwdwLfkQVbaiRDTiqUZTihOjstUGMKbcA4vHQZ+RZMPLIME9pcSGFxUXEC8TFx+ONb0aG19PkW16WxkERSXjKKiu3b77+D13fn8Zub1vSf/4uGa3aRkC66GfAxX8g94n3SXljKuuL/k6fYaegCjs3r2PX2v8h339El/0LaaX7SAe2aBuWJw+nqMMIMvuOoe+AwXRJSaFLtTFZooWYVG6hiE9MJj4xOdJiWCxHRbEnEW9ZxW/Q1i3+mM7/dzl7PZk0u/pdWrW15wGHIz2zHXvOf57mb15G33cvovCdBLz46ShldATyNYX1zY5nRaeTaJl1Ov36DaBLvDfSYluOgSaj3CyWxkyJJOP1HVFu6/73f3SafzX5nnQSfvoObTrYPkV19Bw0loLuy/nqP8+jP6xDPV48rY6jZc9hdBswipHx8ZEW0VKHWOVmsTQCDnvTSCndD8BXbz7BkOV/YLu3IylXzaVNpx4Rlq7xkJregpGTboq0GJYGwCo3i6URcKB5X07Y8wrLHzyLkYe+YG3SIDr+/HWat7TL/S2WUMTcR9wWSyySOnQSZeqhX8Ei/tflWnrf/qFVbBZLFdiem8XSCMg64Qx2dFhEYnIKJ7bpEGlxLJaoxyo3i6WR0KFrr+odWSwWwA5LWiwWiyUGscrNYrFYLDGHHPWGmfWAiOwBNtdBUK2AvXUQTkPQmGSFxiWvlbX+aEzyNiZZoXHJW1eydlXVOl0hFVXKra4QkcWqOizSctSExiQrNC55raz1R2OStzHJCo1L3miW1Q5LWiwWiyXmsMrNYrFYLDFHrCq3f0ZagFrQmGSFxiWvlbX+aEzyNiZZoXHJG7WyxuScm8VisViaNrHac7NYLBZLE8YqN4vFYrHEHDGl3ETkDBHZICLficidkZYnGBHpLCIfi8haEVkjIjc55tNFZLuILHd+Z1UXVkMgIjkissqRabFj1lJE/iMi3zp/W0SBnH1cabdcRA6IyM3RlK4i8oyI/CAiq11mIdNSDI875XiliAyNAlkfFJH1jjxvikiGY95NRApdaTyjIWWtQt6weS8iv3HSdoOInB4Fss5xyZkjIssd82hI23B1VlSW3Qqoakz8AC+wEegBJAArgP6RlitIxvbAUOc6DfgG6A9MB26PtHwh5M0BWgWZPQDc6VzfCdwfaTlDlINdQNdoSlfgJGAosLq6tATOAt4DBBgFfBUFsp4GxDnX97tk7eZ2F0VpGzLvnfdtBZAIdHfqDG8kZQ2y/xtwdxSlbbg6KyrLrvsXSz23EcB3qvq9qpYALwMTIyxTBVR1p6ouda4PAuuAjpGVqtZMBJ5zrp8DzoucKCH5MbBRVetip5s6Q1U/BfYFGYdLy4nA82pYCGSISPsGEZTQsqrqB6pa5twuBDo1lDzVESZtwzEReFlVi1V1E/Adpu5oEKqSVUQEuBh4qaHkqY4q6qyoLLtuYkm5dQS2uu63EcWKQ0S6AUOArxyj651u/DPRMNTnoMAHIrJERH7mmLVV1Z3O9S6gbWREC8slVKwcojFdA4RLy2gvy1dhWucBuovIMhH5RETGRkqoEITK+2hO27HAblX91mUWNWkbVGdFfdmNJeXWaBCRVOB14GZVPQD8A+gJDAZ2YoYmooExqjoUOBP4pYic5LZUMw4RNd+SiEgCcC7wqmMUrelaiWhLy3CIyO+AMmC2Y7QT6KKqQ4BbgX+LSHqk5HPRaPLexU+o2DCLmrQNUWeVE61lN5aU23ags+u+k2MWVYhIPKaQzFbVNwBUdbeq+lTVDzxNAw6TVIWqbnf+/gC8iZFrd2CYwfn7Q+QkrMSZwFJV3Q3Rm64uwqVlVJZlEZkGnA1McSo0nOG9XOd6CWYOq3fEhHSoIu+jNW3jgAuAOQGzaEnbUHUWjaDsxpJy+xroJSLdnRb8JcBbEZapAs6Y+kxgnao+7DJ3j0mfD6wO9tvQiEiKiKQFrjELClZj0vQKx9kVwLzISBiSCi3faEzXIMKl5VvAVGfl2Sgg3zUEFBFE5AzgDuBcVT3sMm8tIl7nugfQC/g+MlIeoYq8fwu4REQSRaQ7Rt5FDS1fCE4B1qvqtoBBNKRtuDqLxlB2I7WSpT5+mJU632BaOL+LtDwh5BuD6b6vBJY7v7OAF4BVjvlbQPsokLUHZlXZCmBNID2BTOBD4Fvgv0DLSMvqyJUC5ALNXWZRk64YpbsTKMXMQ/w0XFpiVpo95ZTjVcCwKJD1O8xcSqDcznDcTnLKx3JgKXBOlKRt2LwHfuek7QbgzEjL6pjPAq4NchsNaRuuzorKsuv+2e23LBaLxRJzxNKwpMVisVgsgFVuFovFYolBrHKzWCwWS8xhlZvFYrFYYg6r3CwWi8USc1jlZrFYLJaYwyo3i8ViscQc/x8urf4jXQ2PhQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjpklEQVR4nO2deXxVxdn4v8/NHkhYwr6DspOwBlBAwSJIraLiQosi+rO+WrWlVqtdtGhrX0WtK69Ui+JCFVfEuouiYkUEQXZQNCwCyhayb/fO74+ZxJube7OQkHuTPN8Pl5wzM2fmOTPPmWe2c0aMMSiKoihKU8ATbgEURVEUpb5Qo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJkUKOnKIqiNBkixuiJSA8RMSISHW5ZGjsiMktEVtRTWgki8oaIHBGR39dHmgHpZ4jIxHpIZ7mIXBHCT3U7DFSW7/VZJi6dE0P41duz2BgQkd+7uuRtEUk8ljgixugpx4aIzBGRYhHJ8fvVu3GphIlAGtDVGDO31NEZox5hkyqCcGU4pwbhfyEiO0UkV0SWiEjrSsIOEZE1IpLn/g7x82spIk+KyA/uNyfItR+LyFER2SMitwT4/0REtrq4PxCR7kHSby0iB/wrdhEZLSLvishh5/eCiHSswf03mZeLXWNqfDXDiojcJSKH3O8uEZFKwlepRyLSW0QKROQZP7c/BtQ3+SLiE5E2zv8eEflKRLKdfswMiPMsEdnorv2viAwI8O8lIv9x1x8UkbJ6w9UhXYB+wKTq5EsgdWb0tBUbVhYbY5r7/eZWfUm90RrIMMbkhFuQ2uAqlLA3EkVkIPBP4BKgPZAH/F+IsLHAq8AzQCvgSeBV5w5wH5AI9ABGApeIyGV+Ufwb+AhbhqcCvxKRs13cbYCXgVuc/2pgcRAx7gK2BLi1Ah516XYHsoEnqnH7EUkE1X1XAucAg7ENzbOA/wkWsAZ6NA/43N/BGPN3//oGW8bLjTEHXZBcl3YL4FLgARE52aXbG1gEXAW0BF4DlpbmodPNd4H3gQ5YA1dmcF36ucC3QEo18qQCtXqIXWv9JhFZD+SKSLRrxf1XRDJF5Ev/VoprtfyviKwSkSwReTVUK1VELhORLc7afyMi/xPgP1VE1rl4dojIGc69hYgsEJF9IvKdiPxNRKKquI8TROR91zo6KCKLRKSln99hERnmzju51ul4d362iGxy97tcRPoH5M8NIrJebGt5sYjE1zyna46I3OzyJVtENovIuSHCiYjcJ7alnyUiG0RkkPOLc622XSLyvYjMF5GEGooSDfiqkDVFRF5z6X/uysy/Z2BE5CrXeswUkXkitgVbWdn5ke7y4IiIPFFaBiLSyrUoDzi//4hIF790l4vIHSLyCbZS6FXFvXYXkU9cnr/jDIM/M1xeHhSRP1URVyhmAK8ZYz5yDYlbgPNEJClI2PHY/L/fGFNojHkQEOA0538WMNcYk2eMyQAWAJf7Xd8DWGSM8RpjdgArgIHO7zxgkzHmBWNMATAHGCwi/UovdhXdIAIMmjHmTXddljEmD3gYGHMsmSEiPUXkI5fn7zndeCZE2GnumRzk53y5iOx19cUNfmFHisinTt/2icjD8mNjoVQnrxGRr4CvqiHqxGD66xffPU4HvxWRKTXMhlIuBe41xuwxxnwH3AvMChG2Sj0SkelAJrAsVILuPmZiG1QAGGP+YozZaozxGWM+Az4GTnLek4GPjTErjDElWIPZGduowsm71xjzD2NMrjGmwBizPkjSPqxu1xxjzDH/gAxgHdAVSHDCHwJ+ijWop7vzti78cuA77IPQDHgJeMb59QAMEO3OzwROwD6kp2IrnWHObyRw1MXvcen2c36vYFswzYB2wCrgf6q4jxNdXHFAW2zr9n4//18Cm7Gt4reBe5x7H2yr5nQgBvg98DUQ65c/q4BO2NbwFuCqEDKMxSpYqN/YENfNKc3DAPcLXLoe4CInZ0fnNwtY4Y4nA2uwrS4B+vuFuw9Y6mRPwrbK/rcG+hEDPB1MvoBwz7lfIjAA2F0qn/M3wH+cjN2AA8AZ1Sy7DGAjVkdbA58Af3N+KcA0l24S8AKwxO/a5cAubEUfDcRUcg/LgR1OJxLc+Z0Buv2Y8xsMFAL9Q8RVWXm/CtwU4JYDDA8S9rfAmwFu/wF+544PAiP9/P4EHPE7/ztwpyvHvsAeIN35PQA8EhD3RmCaO44CvgCG++tbiHuaDaw8xjroU+AeIBb7DGURpE4BLsM+mycG+D2LrStSnV5NdP7DgdHu2h7YZ3d2gE6+63QqoQoZK9PfWUAxto6JAq4G9gISqo6oJJ2jwCi/8xFA9rHoEZAMbMf2tOYQ4hkGTnHXNQ/hnwDs87vfa4E3/PyjgALgN+78cWyd8abTz+VAapB4n3RlF1tjnTkWRfNLOAO43O/8JuDpgDBvA5e64+W4isCdDwCK3I2XKWiItJb4Zcw/gfuChGmPrUwS/Nx+DnxQw/s6B1gb4LYU2ACsB+Kc2y3A835hPFijPt4vfy72858LzK9NngeRdY7Lw0y/X6cg4dYBU93xLH40eqc55R4NePzCC9ZQnuDndhLwbTXlGoJ9mL/HVTQhwkW5cH393P5GRaM31u/8eeDm6pSdK4Or/M5/CuyoROYjfufLgdureb/LgT/7nf8KeMsdl+p2Fz//VcD0YyjvZQQ0nPx1LsD9FuC5ALdFwBx3/Ax2iDIJ23jYART6hT0ZayhKnPy3+fktwO9Zdm6fALPc8W9xRpFKjB52GO4wMO4Y8qKbky3Rz+0ZKhq9G7CNVv/8L/Xr5+c2F1gQIq3ZwCsBOnlaNeUMqb8ub77280t04TscQ354A+6nt4srmAGtVI+wjZqb3PEcQhu9BcDCSmR6EnirVAbsXFwudhQi1umoD/iD838HWx9Mcf43At8QYNywHaL9LuyImuRTXcxR7PY77g5c4LrwmSKSiW2ddAwRfie2FRk4DISITBGRlW5oMRNbWZWG64p9QAPp7uLb55f+P7E9vpCISHsReU7scGgW9sEJlOkxbA/1IWNMoXPr5O4BAGOMz91fZ7/r9vsd5wHNK5PlGHneGNPS77dXRGaKHf4tzYdBBMlnY8z72OGlecAPIvKoiCRje02JwBq/ON5y7lVijFmHrUw/xVYYoWiLbU3768XuIOGC5mM1yy5Q5zq5axNF5J9iJ/OzsL3EllJ+ODyYLKGoqqzrQhdysK1wf5Kx82I1DftrIB87PPcqtuW8B+wCFGx53w7EY5+5ySLyq6riFpFOLu5Kh3DFrmh8E9uY/biysCHoBBw2doi0lGDldSMwzxizJ4hfKN3o44a79zvd+DuV61VVVFb2ZX5+91IXupEM5BhnJaoIWxo+W+xip4nYkZ6QiF09eQF+Q5sB/ndj650LS2UwxmzFDsM+jO0BtsE2SErLJh/bQHrTGFOE7cWnYEeg/PkNdq4x2RizujI5A6kLo+efobuxPT3/CriZMeZOvzBd/Y67YS31QT83RCQOO/R5D9DeGNMSeAPb+yhN54QgsuzG9vTa+KWfbIwZGCSsP39395FqjEkGLvZLCxFpDtyPbdXMkR/nIfdiDW1pOHH3910V6VVARMZJ+RVRgb9xNYirO9ZIXwukuPzb6H9P/hhjHjTGDMf2vPtgK4mDWAUc6JeXLYyduK4Wxs71vOniDcUBbGu9i59b1xBhg1Fp2QWJrxu23AB+hx22G+WuPcW5+18frMIIJ5uww6OAXemGHdrdHiJsWsD8UZpzxxhz2BgzwxjTwT0jHmwPFOz8pdcY85QxpsQZjOewjc9gcjTDPpObsNMPHYHNIrIf22sY6QxIlAvfHXgP+Ksx5uljzIt9QGspv3Q9mO5MAv4sItOC+IXSjUeArUBvpxt/pKJeRbRuuONN1QkboEfjsT3hXa78bgCmicgXAXGci+2lLw+MXERuw/bWJhljsvz9jDEvGmMGGWNSgL+4tEoXy6ynevnaHzuSkl+NsOWo69VozwBnichkEYkSkXgRGe+/OAC4WEQGOEW9HXjRGOMNiCcWWwAHgBI3seu/PHUBcJnYJdMeEeksIv2MMfuw3eN7RSTZ+Z0gIqdWIXcStuVzVEQ6Yyt9fx4AVhtjrgBeB+Y79+eBM50cMdhKtBD4b1UZFYgx5mNTfgVm4K8mLeFmWMU5AHZRELbFVQERSReRUU7+XOz4us/1Wh8D7hORdi5sZxGZ7HetkaqXUxdiyzMoruxfxjYmEsUuhJgZKnwQqio7gGtEpItrrPyJH1cZJmENe6bz+0sN0g0Xi7DP2DhnaG4HXjbGBOvpLccOef1a7KKka537+1C2CCjFPatTsKv//ubCbLdB5BfuOeqAnRsuXVTwCjBI7OKQeOBWYL1ryb+JrciGuN+twFpgiDHG68rpfeBhY0zps1SG2HfXMqrKCGPMTuyq0TkiEisiJ2EX5wSyCTgDmCdu9akftzi9G4id9/PXjSwgx+nk1VXJEwE8BVzvntNO2PpoYYiwlenRo9gGzBD3m4+t9yYHxHEp8FRgT1JE/gD8Ajs/eigwYREZ7nSurUtrqdMbsDZktIhMdA2k2dgGeOAK4Bhs3VJj6tToGWN2A1OxraID2J7XjQHpPI0tiP3YYZNfB4kn27k/DxzBZuBSP/9VWAW9Dzt5+yE/9rhmYivZze7aFyk/vBqM24BhLq7XsZUwYFeJYh+YUqW/HhgmIjOMMduwPYuHsAVzFnCW65aHDWPMZuzKrU+xc2qp2PmWYCRjjdsR7PDOIeBu53cTdk5npRvieQ/bM0JEumKHyTZUIY6PqvXsWuzy5v1Y/XiW6it0yLLz49/YxtA32GHx0or9fuxE+0FgJXY4L+xU1rM3xmzCLvdeBPyArZx/5XftmyLyRxe2CDvHORM713s5cI6ffg7Hll828L/ADBc/rnV+HnZu7gh2TngjLu+MMQewi4DucP6jgOnOr9AYs7/0hy2bYncMcAW2JznHfzTD7za7ElpfA5mBnWs+5GRbTBDdMcZ8CfwMeEzKr478EKvjy7AL1N5x7jdg651s7PMR7HWMeqV0NKiSIP/ELjbbgC2r151b6fVlelWZHhm7mte//HKAAlfmpXF1xq4HeCqIHH/H9pq/9ivfP/r5P4DVx21Y3fllqYdfnTrf+U0Fzg5Sp0ZRxarwUIgJOtx7fBCR5dgJ0X/VW6LKcUFELsYOff6hinCTsK23fsaYw9WM+y7sRP6ltZdUaWiIyDvYeb7A1n11rl0MbDXGNIReu3IMiH0laTNwhTHmjZpeH/aXbZWGiTHmmaoMnmM5dmn3JvF7D8ofEeknImliGQn8P+zwmdIEMcZMqq7Bc8PzJ7gh2DOwPYMlx1VAJWy4OmQrtoce8v3ByoiULwkcd0RkPrbbHMgzxpir6luepoIblphRRbAk7JBmJ+xw7L3Y1YQRRSVDS1OOcfWhUns6YIe0U7ArAK82xqytTwHckOGbwfxqsvBLqRpjzD3YBY7HTL0ObyqKoihKONHhTUVRFKXJEFHDm23atDE9evQItxiKoihKPbJmzZqDxphqffiitkSU0evRowerV9fo5XpFURSlgSMiO6sOVTfo8KaiKIrSZFCjpygRjM+nC80UpS5Ro6coEcqGjV/y4e0TWfpUpd/9VRSlBkTUnF4wiouL2bNnDwUFBeEWRWlAxMfH06VLF2JiYsItyjGT9fqtTGA1hTvWsWfvRXTp1CncIilKgyfijd6ePXtISkqiR48elP9YvKIExxjDoUOH2LNnDz179gy3OMdEVlYmw/M+YWdCP7oXbCXj05foMu26cIulKA2eiB/eLCgoICUlRQ2eUm1EhJSUlAY9OrBz46fESzFZ6bPJJhF2rQy3SIrSKIh4oweowVNqTEPXmewdnwHQJfUUdiYMpFN2VZtZKIpSHRqE0VOUpkbs92vZJ21p1a4zOa3608W7h6KisO5YpSiNAjV61UBE+N3vfld2fs899zBnzpzwCVQFy5cv57//rfE+tuU444wzaNmyJT/72c/qSCqlJrTJ/ZofEvsAENO+L7HiZe+3Nd5pR1GUANToVYO4uDhefvllDh48WKfxGmPw+Y5pH8RKqQujd+ONN/L000/XkURKTSguLqajbz9FLewinBZd7ab3hzI2hlMsRWkUqNGrBtHR0Vx55ZXcd1/F96UOHDjAtGnTSE9PJz09nU8+sRs+z5kzh3vu+XEHjEGDBpGRkUFGRgZ9+/Zl5syZDBo0iN27d3PjjTcyaNAgUlNTWbzYbtC8fPlyxo8fz/nnn0+/fv2YMWMGwXbEePDBBxkwYABpaWlMnz6djIwM5s+fz3333ceQIUP4+OOPK5Xxkksu4aSTTqJ379489thjZfH+5Cc/ISkpqdJ8eeGFFxg0aBCDBw/mlFNOAezCo8suu4zU1FSGDh3KBx98AMDChQs555xzOP300+nRowcPP/ww//jHPxg6dCijR4/m8GG7v+xjjz1Geno6gwcPZtq0aeTl5VVId/To0WzatKnsfPz48Y3q83U/7PmGOClBUk4EoNOJqQDk79OenqLUloh/ZcGf217bxOa9WXUa54BOyfzlrIFVhrvmmmtIS0vj97//fTn33/zmN/z2t79l7Nix7Nq1i8mTJ7NlS+WV01dffcWTTz7J6NGjeemll1i3bh1ffvklBw8eJD09vcyArF27lk2bNtGpUyfGjBnDJ598wtixY8vFdeedd/Ltt98SFxdHZmYmLVu25KqrrqJ58+bccIPds/UXv/hFSBnXr1/PypUryc3NZejQoZx55pl0qub7YLfffjtvv/02nTt3JjMzE4B58+YhImzYsIGtW7cyadIktm/fDsDGjRtZu3YtBQUFnHjiidx1112sXbuW3/72tzz11FPMnj2b8847j1/+8pcA/PnPf2bBggVcd135pfoXXXQRzz//PLfddhv79u1j3759jBgxoloyNwQO795KZyChgx3eTExO4TDJRGV+G17BFKURUOuenohcJyJbRWSTiMx1bqeLyBoR2eD+nlZ7UcNLcnIyM2fO5MEHHyzn/t5773HttdcyZMgQzj77bLKyssjJCbXXqKV79+6MHj0agBUrVvDzn/+cqKgo2rdvz6mnnsrnn38OwMiRI+nSpQsej4chQ4aQkZFRIa60tDRmzJjBM888Q3R08DZMZTJOnTqVhIQE2rRpw4QJE1i1alW182TMmDHMmjWLxx57DK/XW3Y/F19s9+rt168f3bt3LzN6EyZMICkpibZt29KiRQvOOussAFJTU8vubePGjYwbN47U1FQWLVpUrkdXyoUXXsiLL74IwPPPP8/5559fbZkbAvn7bX617tavzO1wdHsS8veFSyRFaTTUqqcnIhOAqcBgY0yhiLRzXgeBs4wxe0VkEPA20Ll2olKtHtnxZPbs2QwbNozLLruszM3n87Fy5Uri4+PLhY2Oji43X+f/zlizZs2qlV5cXFzZcVRUFCUlJRXCvP7663z00Ue89tpr3HHHHWzYUHFpeygZoeLS/pos9Z8/fz6fffYZr7/+OsOHD2fNmjWVhve/H4/HU3bu8XjK7m3WrFksWbKEwYMHs3DhQpYvX14hns6dO5OSksL69etZvHgx8+fPr7bMDQFf5i6KTBTtOvUoc8uJ70jL3B3hE0pRGgm17eldDdxpjCkEMMb84P6uNcbsdWE2AQkiEhcijgZD69atufDCC1mwYEGZ26RJk3jooYfKztetWwfYbZK++OILAL744gu+/Tb40NS4ceNYvHgxXq+XAwcO8NFHHzFy5MhqyePz+di9ezcTJkzgrrvu4ujRo+Tk5JCUlER2dnaVMgK8+uqrFBQUcOjQIZYvX056enq10gbYsWMHo0aN4vbbb6dt27bs3r2bcePGsWjRIgC2b9/Orl276Nu3b7XjzM7OpmPHjhQXF5fFE4yLLrqIuXPncvToUdLS0qodf0PAk72PQ54UoqKiytyKmnehve8AXm/dL3xSlKZEbY1eH2CciHwmIh+KSLAacxrwRalhDERErhSR1SKy+sCBA7UU5/jzu9/9rtwqzgcffJDVq1eTlpbGgAEDynod06ZN4/DhwwwcOJCHH36YPn36BI3v3HPPJS0tjcGDB3Paaacxd+5cOnToUC1ZvF4vF198cdmikV//+te0bNmSs846i1deeaVsIUsoGcEOj06YMIHRo0dzyy23lM3njRs3jgsuuIBly5bRpUsX3n77bQBuvfVWli5dCtgVnqmpqQwaNIiTTz6ZwYMH86tf/Qqfz0dqaioXXXQRCxcuLNfDq4q//vWvjBo1ijFjxtCv34/De0uXLuXWW28tOz///PN57rnnuPDCC6sdd0MhoeB7smLK76cpLbuQIEUcOqhDnIpSGyTYisByAUTeA4LVwn8C7gA+AH4NpAOLgV7GRSoiA4GlwCRjTJVjMyNGjDCBq/C2bNlC//79q74TpcbMmTOn3IKXxkZD1Z1dt/XjUFJ/hl7/Spnb+veeIW3FNWw5+zX6DzsljNIpSt0jImuMMfWyGq3KOT1jzMRQfiJyNfCyM3KrRMQHtAEOiEgX4BVgZnUMnqIoYHw+2voOsT+xfDszqUMvAHK//wZQo6cox0ptX1lYAkwAPhCRPkAscFBEWgKvAzcbYz6pZRrKcSKSvyrTVDl65CAtpQiT1LGce5vOJwBQdGhXOMRSlEZDbef0Hgd6ichG4DngUtfruxY4EbhVRNa5X7vKIlIUBY7szwAgulX5xc5JLduRb2Ih67swSKUojYda9fSMMUXAxUHc/wb8rTZxK0pTJPeg7cklpHQr7yHCwai2xOXuDXKVoijVRT9DpigRRMERuzozuU3F11qPxrSjeeH39S2SojQq1OgpSgRRlGVf22ndrmMFv/yEjrQqifzXehQlklGjV02WLFmCiLB169aQYTIyMhg0aNBxlWPdunW88cYbtYrj8ssvp127dsddVqXmmJyDFJoYEpu3rODnTepEG3OEosKgr7wqilIN1OhVk2effZaxY8fy7LPPBvUP9omwmlL6/crKqAujN2vWLN56661axaEcH6IKDnHUkwxBPgfnadkFjxgOucUuiqLUHDV61SAnJ4cVK1awYMECnnvuuTL35cuXM27cOM4++2wGDBgAWOM3Y8YM+vfvz/nnn1+2Nc6yZcsYOnQoqampXH755RS61nqPHj246aabGDZsGC+88EK5dAO37ikqKuLWW29l8eLFDBkyhMWLF5Obm8vll1/OyJEjGTp0KK+++ipgt/KZOnUq48ePp3fv3tx2221l8Z5yyim0bt260nv+8MMPGTJkCEOGDGHo0KFkZ2djjAm5DdKpp57K1KlT6dWrFzfffDOLFi1i5MiRpKamsmOHfU3ztddeY9SoUQwdOpSJEyfy/fcV56emT5/O66+/XnY+a9asso9LNwXiio6QE9UyqF+8W9xyVI2eohwzDWprId68GfZX/KByreiQClPurDTIq6++yhlnnEGfPn1ISUlhzZo1DB8+HLDf1dy4cSM9e/YkIyODbdu2sWDBAsaMGcPll1/O//3f/3Httdcya9Ysli1bRp8+fZg5cyaPPPIIs2fPBiAlJaXsO53+BG7dExsby+23387q1at5+OGHAfjjH//IaaedxuOPP05mZiYjR45k4kT7PYFVq1axceNGEhMTSU9P58wzz6z2Fjz33HMP8+bNY8yYMeTk5BAfH8/LL78cchukL7/8ki1bttC6dWt69erFFVdcwapVq3jggQd46KGHuP/++xk7diwrV65ERPjXv/7F3Llzuffee8ulW7pt0JlnnklRURHLli3jkUceqZbMjYGE4kzyYlsG9Utu3wOA3AP6rp6iHCva06sGzz77LNOnTwdsT8R/iHPkyJH07Nmz7Lxr166MGTMGgIsvvpgVK1awbds2evbsWfb9zUsvvZSPPvqo7JqLLrooaLrBtu4J5J133uHOO+9kyJAhjB8/noKCAnbtspXi6aefTkpKCgkJCZx33nmsWLGi2vc8ZswYrr/+eh588EEyMzOJjo6udBuk9PR0OnbsSFxcHCeccAKTJk0Cym8btGfPHiZPnkxqaip333130G2DpkyZwgcffEBhYSFvvvkmp5xyCgkJCdWWu6GT5M2kKLZVUL+UTlbPSo6o0VOUY6Vh9fSq6JEdDw4fPsz777/Phg0bEBG8Xi8iwt133w1U3CboWLbqCbXVUHW27jHG8NJLL1XYyeCzzz6r1bZBN998M2eeeSZvvPEGY8aMKfvgdCiqs23Qddddx/XXX8/ZZ5/N8uXLg34RJj4+nvHjx/P222+zePHissZGU6GFyeK7+JSgfkktWpNlEiFL39VTlGNFe3pV8OKLL3LJJZewc+dOMjIy2L17Nz179uTjjz8OGn7Xrl18+umnAPz73/9m7Nix9O3bl4yMDL7++msAnn76aU499dQq0w62dU/gtkGTJ0/moYceovTD4WvXri3ze/fddzl8+DD5+fksWbKkrAdaHXbs2EFqaio33XQT6enpbN26tVbbIAEcPXqUzp3t+2dPPvlkyHAXXXQRTzzxBB9//DFnnHFGteNv6OTn5dFc8jGJwY0ewKGotsTl6k4LinKsqNGrgmeffZZzzz23nNu0adNCruLs27cv8+bNo3///hw5coSrr76a+Ph4nnjiCS644AJSU1PxeDxcddVVVaYdbOueCRMmsHnz5rKFLLfccgvFxcWkpaUxcOBAbrnllrLrR44cybRp00hLS2PatGll83k///nPOemkk9i2bRtdunQp2x9w/vz5ZdsO3X///QwaNIi0tDRiYmKYMmVKrbZBAvutzwsuuIDhw4fTpk2bMvfVq1dzxRVXlJ1PmjSJDz/8kIkTJxIbG1vt+Bs6mYesMfM0bxMyTFZsO5oX6QvqinKsVLm1UH2iWwvVHQsXLiy34KUp0tB05+v1/+XEl6ew9uSHGTrpkqBhVj5wMX2PfEirObvrWTpFOX7U59ZC2tNTlAghP9P24OJbtA0ZxpvUmVZkUVyQW19iKUqjQo1eI2XWrFlNupfXECk8+gMAiS1DDxlHtewCwKG939aLTIrS2GgQRi+ShmCVhkFD1JmS3MMAJLcK3dNLaNMdgKPfZ9SHSIrS6Ih4oxcfH8+hQ4caZCWmhAdjDIcOHSI+Pj7cotQIb95RAJJbhl69mdzeGr08fUFdUY6JiH9Pr0uXLuzZs4cDB/Tr8kr1iY+Pp0uXLuEWo0ZI4VHyTSwJsaGNdZuyF9R1IYuiHAsRb/RiYmLKffFEURornsIscqUZlX1/JikpmcMmCU+27qCuKMdCrYc3ReQ6EdkqIptEZG6AXzcRyRGRG2qbjqI0dmKKs8j1NK8y3KGotsTqC+qKckzUqqcnIhOAqcBgY0yhiLQLCPIP4M3apKEoTYWY4mwKoqo2ernxHWhRsKceJFKUxkdthzevBu40xhQCGGN+KPUQkXOAbwF9oUhRqkG8N4eCEB+b9qcwuQedcj/HW1JCVHT1H+GMrzdxaM2reA9+TUKUD09SB6I69KdZz9G07XIC8bERP9uhKLWmtlreBxgnIncABcANxpjPRaQ5cBNwOlDp0KaIXAlcCdCtW7daiqMoDZcEXw7ZMVU/A562fYnbX8zeXdvp1GtAleGPHDnM9qd/w4hDr9FDDJmmGSVE0XpfNp6vDHwMB0wLNsScSG6rfsR3Gkh8q85Et2hPVGwzoqI9RHmiifYY8BVTUuLFW1KM11uCt8SLr6SYEl8JvpJi+0F2XwlivIjxIaYEIfTKa0Ooj6Bb94rfSA8RvpKPqTdr3Ym+w04JnUFKk6JKoyci7wHB3pb9k7u+NTAaSAeeF5FewBzgPmNMTlVf9jfGPAo8CvYzZDURXlEaE81MDt7Y5CrDNe86EDbAoYz1VRq9H/bvIeufZ5Lu28nq9hfQ+Yzr6dSzH0VeH3sOZ5GZsQ7v7tXE7F9Lu8wtdDrwHDEHgm9j1VDxGiGz2zZatmkfblGUCKBKo2eMmRjKT0SuBl429iW6VSLiA9oAo4Dz3cKWloBPRAqMMfqJEEUJgvH5aG7y8MW1qDJsu15pAOTv3VJpuCOZmWQ/+jO6+L5jx+SFjDz5nDK/uOgourVrRbd2E2DkhDJ3X3Eh32VsIe/wPkqyf8BXXIDP58V4vZQYAU8Unqho94vC44nBEx1FVFSMdYuORiQKPFEYiQaPB/Bg/Bu/psJBQGYYTFA/ExgMCNn3A+DA2tcZvXM+OZkH1OgpQO2HN5cAE4APRKQPEAscNMaMKw0gInOAHDV4ihKa3LwcmosXia+6p9c6pR0HaInn0PaQYbw+w6rHrmOy71s2/2QBA/wMXmV4YuLo3HsIMKRa4SOdrB92wU4odC/+K0ptjd7jwOMishEoAi41+ukURakxuUcP0RyQhJZVhhUR9sf1pFXWtpBh3lr6HGfmLmV7j4sZcMr5dSdoAyM6IQmAorysMEuiRAq1MnrGmCLg4irCzKlNGorSFMg7ar+7GZ1Y9epNgKOtB9N/71MU5B4lvln5IdHde/czdO2f2Bfbld6/uLvOZW1IxCTannOxGj3FEfHf3lSUpkBBjjV6Mc1bVit8sxNPJlp87Fj3cTl3YwzfPnMt7ThC7PmPIrGJdS1qgyIuwRo9b0FOmCVRIgU1eooSARQ5oxfXvHW1wp8w/DRKjIecze+Wc//kPws5Je9dNp94BSl9T65zORsacc1KjZ729BSLGj1FiQCKczMBSEiq3vBmcsu2bIpNpfO+d8uWMe7/bif9V9/KtzEnMGj6346XqA2KBNdzNoXa01MsavQUJQLw5mUCkJBUvZ4eQF7vs+ni+46vVr1Ffn4+B5+8hEQKiLvgX3hi4o6TpA2LhOa2p+dTo6c41OgpSgTgK8wGoHlyy2pfk/rT/+F7WpH01nXsuPc0BhV9yaaht9Kpz7DjJGXDIy42lgITgxSp0VMsavQUJRIozMVrhLj4ZtW+pHnzJPafsYBin4cOxd/x5bA7GHHOdcdRyIaHiJBHPJ4i/QSwYmlUX5j1eb0c2JdBfEJzWqTo1xeUBkRxLnkST5KnZu3QwaN/QnH6VoyBNtHahg1GviTgKVGjp1ga1VOSffQw7f81jC1v/TPcoihKjfAU51JQ6faxoYmJ8hCrBi8kBZ5EoorV6CmWRvWkJLdModDEQM7+cIuiKDUiqiSPAokPtxiNkiJPAjFeNXqKpVEZPfF4OORpRXTuD1UHVpQIIrokl0LPsfX0lMopjmpGdEleuMVQIoRGZfQAsqJSSCg8EG4xFKVGxHjzKIpq2l9POV6UxCQS58sPtxhKhNDojF5ubBuaFx8KtxiKUiNivfkUq9E7LvhimhHv056eYml0Rq8ooS2tfIfDLYai1Ig4Xz4l0Wr0jgcmtjnxpiDcYigRQqMzer5m7Ukml+ICnbhWGg7xJh+fGr3jQ2wSzcmjqLgk3JIoEUCjM3pRyR0BOPz97jBLoijVJ8Hk442p/ovpSvWRxJZEiSEn60i4RVEigEZn9BLbdAbU6CkNB+PzkUgBxKrROx54EuxHvHOP6ly/0giNXqv23QDI+mFXmCVRlOpRkJ9HlBiITQq3KI2S6GbW6OUfPRhmSZRIoNEZvbZdewNQcvDbMEuiKNUjLycTAInTnt7xILZ5CvDjRr1K06bWRk9ErhORrSKySUTm+rmnicinzn2DSP18biK+eSuOkEzUUe3pKQ2Dgly7w4InrnmYJWmcxCdZo1esRk+hlh+cFpEJwFRgsDGmUETaOfdo4BngEmPMlyKSAhTXWtpqciC6A83ydE5PaRgU5tldvaPj1egdDxJa2D0Kvbl1aPR8PhCxP6VBUdtdFq4G7jTGFAIYY0q//zUJWG+M+dK51+sMclZCFzrmbD7m643Px46Nn3Fw23+JOvINpigPDz5MbBImoRWexNbEJrchvkU7mrdqT3KbDjRLboNENapNK5R64kejp3N6x4PmLdoAYPKPffVmQX4u6974F82/XkqX/G20JBuvEXKkGUei23EkoRuFyT2QlBNIbH8CrTt0p22nHsQmaEMm0qhtLd0HGCcidwAFwA3GmM+duxGRt4G2wHPGmLnBIhCRK4ErAbp161ZLcSxFSd1ol/Uh3pJioqJjqn1dcXERny+ZR9fNj3Ki2cuJQKGJIU/iMQjNTB5xEvxdH58RsiSRImLxSjReovBJFF6iAkKaH48MCMbPxXqL/a+MCm1JU3qN++v+EwT3D8EgrhVael6RYG7+6Vb0F2MCwlQdZ2A8gdcEl62BIOX+APiVSTCPijnUwRSDQExii+MhYZMnsXkLik0U5B89puu3rFpG8zevYbTZxy7pxOYWp+Jr3h4xXsg/QmLeXtrkbKNj1kdEf+crd222SSBfEijyxFEkcZQQgwcfHgz2mTV4sNeI8fk9q+bHMCbg3P0qEIbHaIenB6Nv/aD+E64FVRo9EXkP6BDE60/u+tbAaCAdeF5Eejn3sc4tD1gmImuMMcsCIzHGPAo8CjBixIg6KbbolJ7E7PXy3a6v6dyrf7Wu2bljC/n/vpSTvdv4Oro3q/vPofPwKbTv2ptWUdZw+bw+juZmk3P4B3IyfyAv83sKjx6gJOcg5B0muvAIeIsQXzHiK8HjK0FMiTVHQplRckf8eCqlLgg/6q5/Zhg/f5EfrxEBj9irfVhDagz4MPhM+XP/GrjsyM8w2v/KT/MGLxAJCBNgxoIM+QQzhZXGUY0YIgHDj3lsjG1o2DL50R9j/3pKy/5HNUAQPAImLpm0tJPDcxONHPF4yJZmSGFmja9d/c6/Sf3k1xz2tGLT+AUMOOU8uoXY87CkqJD9e77i8N4d5BzcTUnmXqLzDkBxLlKcT7SvgChT4mfyPNZ8iTN1IuDn5x50EHfuwhjkRz8oX5f86FJjKr0qhGdWbDDTENlUafSMMRND+YnI1cDLxhgDrBIRH9AG2AN8ZIw56MK9AQwDKhi940HLrv1hA+z/5stqGb0taz6k42u/oDU+vhx5L2lnXI4EUWxPlIcWyS1okdwC6H0cJFcU5XiQ40kiqoZGb+Nny0j75Dp2xfSk3dX/oWNK5RV8dGwcHXoNokOvQbWQVDne1Hb15hJgAoCI9AFigYPA20CqiCS6RS2nAsc+yVZDOvdNB6Bw95dVht25aSWdX5tOgSSSM/M9Bv/0iqAGT1GUhktudCsSiqq/kCXr4H7avXkFBz0ptPvV6yRXYfCUhkNta/fHgV4ishF4DrjUWI4A/wA+B9YBXxhjXq9lWtWmWYvW7JN2xB7aUmm4H77fR8wLl5BPPGbW63TsNbCeJFQUpT7Ji02heUn1jd72Z35DK3OUvHOeILl1++MomVLf1GohizGmCLg4hN8z2NcWwsL3CSfSPndbSP+SkhL2LLiYVHOI3ee+TK/ufepROkVR6pPi+Da0yvm8WmE3ffI6IzLf4pPOsxgzeMxxlkypbxrtOF5e++F0NXs58sOeoP6fLbyZYUWr2TzkT/QaMr5+hVMUpV7xNmtHEnkUF1axr54xxHwwh/20YdiMO+pHOKVeabRGr+XAnwCwc83bFfw2fPACJ+3+F2tansHgc66vb9EURalnPEl2iPLoge8qDff1x4vpU7KdbwZeQ0IzfceuMdJojd6JaWPIohklW8sbve93bqXbh7P5NqoHA375L/2igqI0AWKTS43e3tCBjCF2xd3spCNDzvpVPUmm1DeN1ujFxsaysdVPGJj5ATluS5HC3CMUPnUBGEP0L54hoZl+AUNRmgLN23QBIOdg8OkOgH3rl9Gt6Gu29rqMxPh6+VSwEgYardEDSDnlShKkiK3P3kze4b3sfPBndCrZw7ZT59H9RH2XRlGaCikduwNQcDj0N3kzl93PEZPE0J9dWV9iKWGgURu9vkPHsaLVuYzY/zyJD/ane8FWVg69i5GnnRtu0RRFqUdat+tKvolFjuwM6p+5Zxt9j67gi3bn0q51q3qWTqlPGv0Xkkdd8y8+fGkIvsPf0ubkixk7OD3cIimKUs94ojzs87QnPie40ct44x8MwEPPKb+uZ8mU+qbRG72Y6GhOvWh2uMVQFCXMZMZ1pnV+xdWbBdlH6L13CaubT+DkXvp5wcZOox7eVBRFKaUwqSvtSvZhfOV3Qtj8xjyaUUCzU68Nk2RKfaJGT1GUJoGk9CZRCjm495syN19JCR23PsnG6IGkpY8Pn3BKvaFGT1GUJkHzniMA2Lfl0zK3jR88S0fzA3lDf1m2/6TSuFGjpyhKk6DXoJEUmyjyv7Xf4DQ+H7Gr/o99tGXopBlhlk6pL9ToKYrSJEhslsT22H60/f4jADZ8+BL9ijezq/+VxMTEhlk6pb5Qo6coSpPhaLfJ9PJ+y9ZP36D1R3/mO2nP0HP0NYWmhBo9RVGaDP3PvIbDJNHv7Z/TwfcDOWc8SGycfnKsKdHo39NTFEUppVXrNmw/dzE7/ruQFsOn0XfkGeEWSaln1OgpitKk6DN4DOjmsE0WHd5UFEVRmgxq9BRFUZQmgxhjwi1DGSJyAAj+Rdia0QY4WAfx1AcNSVZoWPKqrMePhiRvQ5IVGpa8dSVrd2NM2zqIp0oiyujVFSKy2hgzItxyVIeGJCs0LHlV1uNHQ5K3IckKDUvehiRrKTq8qSiKojQZ1OgpiqIoTYbGavQeDbcANaAhyQoNS16V9fjRkORtSLJCw5K3IckKNNI5PUVRFEUJRmPt6SmKoihKBdToKYqiKE2GRmX0ROQMEdkmIl+LyM3hlicQEekqIh+IyGYR2SQiv3Huc0TkOxFZ534/DbesACKSISIbnEyrnVtrEXlXRL5yf1tFgJx9/fJunYhkicjsSMpXEXlcRH4QkY1+bkHzUiwPOj1eLyLDIkDWu0Vkq5PnFRFp6dx7iEi+Xx7Pr09ZK5E3ZNmLyB9c3m4TkckRIOtiPzkzRGSdc4+EvA1VZ0Wk7lYLY0yj+AFRwA6gFxALfAkMCLdcATJ2BIa54yRgOzAAmAPcEG75gsibAbQJcJsL3OyObwbuCrecQfRgP9A9kvIVOAUYBmysKi+BnwJvAgKMBj6LAFknAdHu+C4/WXv4h4ugvA1a9u55+xKIA3q6OiMqnLIG+N8L3BpBeRuqzopI3a3OrzH19EYCXxtjvjHGFAHPAVPDLFM5jDH7jDFfuONsYAvQObxS1ZipwJPu+EngnPCJEpSfADuMMXXxZZ86wxjzEXA4wDlUXk4FnjKWlUBLEelYL4ISXFZjzDvGmBJ3uhLoUl/yVEWIvA3FVOA5Y0yhMeZb4Gts3VEvVCariAhwIfBsfclTFZXUWRGpu9WhMRm9zsBuv/M9RLBBEZEewFDgM+d0rRsOeDwShgwdBnhHRNaIyJXOrb0xZp873g+0D49oIZlO+UojEvO1lFB5Gem6fDm2NV9KTxFZKyIfisi4cAkVhGBlH8l5Ow743hjzlZ9bxORtQJ3VUHW3URm9BoOINAdeAmYbY7KAR4ATgCHAPuwQRyQw1hgzDJgCXCMip/h7GjueETHvvIhILHA28IJzitR8rUCk5WUoRORPQAmwyDntA7oZY4YC1wP/FpHkcMnnR4Mpez9+TvkGW8TkbZA6q4yGorulNCaj9x3Q1e+8i3OLKEQkBqs8i4wxLwMYY743xniNMT7gMepxuKUyjDHfub8/AK9g5fq+dLjC/f0hfBJWYArwhTHme4jcfPUjVF5GpC6LyCzgZ8AMV9HhhgkPueM12DmyPmET0lFJ2Udq3kYD5wGLS90iJW+D1Vk0MN31pzEZvc+B3iLS07X4pwNLwyxTOdyY/QJgizHmH37u/mPe5wIbA6+tb0SkmYgklR5jFzJsxObppS7YpcCr4ZEwKOVaypGYrwGEysulwEy3Em40cNRvKCksiMgZwO+Bs40xeX7ubUUkyh33AnoD34RHyh+ppOyXAtNFJE5EemLlXVXf8gVhIrDVGLOn1CES8jZUnUUD0t0KhHslTV3+sCuHtmNbRH8KtzxB5BuLHQZYD6xzv58CTwMbnPtSoGMEyNoLu8rtS2BTaX4CKcAy4CvgPaB1uGV1cjUDDgEt/NwiJl+xxngfUIyd5/h/ofISu/JtntPjDcCICJD1a+xcTanezndhpzn9WAd8AZwVIXkbsuyBP7m83QZMCbeszn0hcFVA2EjI21B1VkTqbnV++hkyRVEUpcnQmIY3FUVRFKVS1OgpiqIoTQY1eoqiKEqTQY2eoiiK0mRQo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJkUKOnKIqiNBnU6CmKoihNBjV6iqIoSpNBjZ6iKIrSZIgYoyciPUTEuH2llOOIiMwSkRX1lFaCiLwhIkdE5Pf1kWZA+hkiMrEe0lkuIleE8FPdDgOV5Xt9lolL58QQfvX2LDYGROT3ri55W0QSjyWOiDF6yrEhInNEpFhEcvx+9W5cKmEikAZ0NcbMLXV0xqhH2KSKIFwZzqlB+F+IyE4RyRWRJSLSupKwQ0RkjYjkub9D/PxaisiTIvKD+80Jcu3HInJURPaIyC0B/j8Rka0u7g9EpHuQ9FuLyAH/il1ERovIuyJy2Pm9ELD/XVX332S2hnGNqfHVDCsicpeIHHK/u9x+eKHCV6lHItJbRApE5Bk/tz8G1Df5IuITkTbO/x4R+UpEsp1+zAyI8ywR2eiu/a+IDAjw7yUi/3HXHxSRsnrD1SFdgH7YPT5rTJ0ZPW3FhpXFxpjmfr+5VV9Sb7QGMowxOeEWpDa4CiXsjUQRGQj8E7gEaA/kAf8XImwsdnPPZ4BWwJPAq84d4D4gEeiB3Vn8EhG5zC+KfwMfYcvwVOBXInK2i7sN8DJwi/Nfjd+u337cBWwJcGsFPOrS7Q5kA09U4/Yjkgiq+64EzgEGYxuaZwH/EyxgDfRoHnaD7jKMMX/3r2+wZbzcGHPQBcl1abfAbjD7gIic7NLtDSwCrgJaAq8BS0vz0Onmu8D7QAesgSszuC79XOBb7J5+NaZWD7Frrd8kIuuBXBGJdq24/4pIpoh86d9Kca2W/xWRVSKSJSKvhmqlishlIrLFWftvROR/Avynisg6F88OsTs7IyItRGSBiOwTke9E5G/idh+u5D5OEJH3XevooIgsEpGWfn6HRWSYO+/kWqfj3fnZIrLJ3e9yEekfkD83iMh6sa3lxSISX/OcrjkicrPLl2wR2Swi54YIJyJyn9iWfpaIbBCRQc4vzrXadonI9yIyX0QSaihKNOCrQtYUEXnNpf+5KzP/noERkatc6zFTROaJ2BZsZWXnR7rLgyMi8kRpGYhIK9eiPOD8/iMiXfzSXS4id4jIJ9hKoVcV99pdRD5xef6OMwz+zHB5eVBE/lRFXKGYAbxmjPnINSRuAc4Tt8t9AOOx+X+/MabQGPMgdpPP05z/WcBcY0yeMSYDu0P25X7X9wAWGWO8xpgdwApgoPM7D9hkjHnBGFMAzAEGi0i/0otdRTeIAINmjHnTXZdl7C7sDwNjjiUzRKSniHzk8vw9pxvPhAg7zT2Tg/ycLxeRva6+uMEv7EgR+dTp2z4ReVh+bCyU6uQ1IvIVdiPVqpgYTH/94rvH6eC3IjKlhtlQyqXAvcaYPcaY74B7gVkhwlapRyIyHcjEbhYbFHcfM7ENKgCMMX8xxmw1xviMMZ8BHwMnOe/JwMfGmBXGmBKsweyMbVTh5N1rjPmHMSbXGFNgjFkfJGkfVrdrTi131c3A7qTbFUhwwh/C7qzrAU53521d+OXAd9gHoRnwEvCM8+uB3aE32p2fCZyAfUhPxVY6w5zfSOCoi9/j0u3n/F7BtmCaAe2AVcD/VHEfJ7q44oC22Nbt/X7+vwQ2Y1vFbwP3OPc+2FbN6UAM8HvsDtOxfvmzCuiEbQ1vIWB35IAdijMr+Y0Ncd2c0jwMcL/ApesBLnJydnR+s4AV7ngysAbb6hKgv1+4+7C7TrcGkrCtsv+tgX7EYHewriBfQLjn3C8RGIDdoXuFn78B/uNk7AYcAM6oZtllABuxOtoa+AT4m/NLwe5Oneju7wVgid+1y4Fd2Io+Goip5B6WY3eL7oN9FpYDdwbo9mPObzBQCPQPEVdl5f0qcFOAWw4wPEjY3wJvBrj9B/idOz4IjPTz+xNwxO/878Cdrhz7Ynf6Tnd+DwCPBMS9EZjmjqOwu30P99e3EPc0G1h5jHXQp8A9QCz2GcoiSJ0CXIZ9Nk8M8HsWW1ekOr2a6PyHA6PdtT2wz+7sAJ181+lUQhUyVqa/s7C7qP/S5dnVwF6wG3wHqyMqSecoMMrvfASQfSx6BCQD27E9rTmEeIaBU9x1zUP4J2B3ii+932uBN/z8o4AC4Dfu/HFsnfGm08/lQGqQeJ90ZRdbY505FkXzSzgDuNzv/Cbg6YAwbwOXuuPluIrAnQ8AityNlyloiLSW+GXMP4H7goRpj61MEvzcfg58UMP7OgdYG+C2FNgArAfinNstwPN+YTxYoz7eL38u9vOfC8yvTZ4HkXWOy8NMv1+nIOHWAVPd8Sx+NHqnOeUeDXj8wgvWUJ7g53YS8G015RqCfZi/x1U0IcJFuXB9/dz+RkWjN9bv/Hng5uqUnSuDq/zOfwrsqETmI37ny4Hbq3m/y4E/+53/CnjLHZfqdhc//1XA9GMo72UENJz8dS7A/RbguQC3RcAcd/wMdogyCdt42AEU+oU9GWsoSpz8t/n5LcDvWXZunwCz3PFvcUaRSowedhjuMDDuGPKim5Mt0c/tGSoavRuwjVb//C/16+fnNhdYECKt2cArATp5WjXlDKm/Lm++9vNLdOE7HEN+eAPup7eLK5gBrVSPsI2am9zxHEIbvQXAwkpkehJ4q1QG7FxcLnYUItbpqA/4g/N/B1sfTHH+NwLfEGDcsB2i/S7siJrkU13MUez2O+4OXOC68JkikoltnXQMEX4nthUZOAyEiEwRkZVuaDETW1mVhuuKfUAD6e7i2+eX/j+xPb6QiEh7EXlO7HBoFvbBCZTpMWwP9SFjTKFz6+TuAQBjjM/dX2e/6/b7HecBzSuT5Rh53hjT0u+3V0Rmih3+Lc2HQQTJZ2PM+9jhpXnADyLyqIgkY3tNicAavzjecu5VYoxZh61MP8VWGKFoi21N++vF7iDhguZjNcsuUOc6uWsTReSfYifzs7C9xJZSfjg8mCyhqKqs60IXcrCtcH+SsfNiNQ37ayAfOzz3KrblvAfsAhRsed8OxGOfucki8quq4haRTi7uSodwxa5ofBPbmP24srAh6AQcNnaItJRg5XUjMM8YsyeIXyjd6OOGu/c73fg7letVVVRW9mV+fvdSF7qRDOQYZyWqCFsaPlvsYqeJ2JGekIhdPXkBfkObAf53Y+udC0tlMMZsxQ7DPoztAbbBNkhKyyYf20B60xhThO3Fp2BHoPz5DXauMdkYs7oyOQOpC6Pnn6G7sT09/wq4mTHmTr8wXf2Ou2Et9UE/N0QkDjv0eQ/Q3hjTEngD2/soTeeEILLsxvb02viln2yMGRgkrD9/d/eRaoxJBi72SwsRaQ7cj23VzJEf5yH3Yg1taThx9/ddFelVQETGSfkVUYG/cTWIqzvWSF8LpLj82+h/T/4YYx40xgzH9rz7YCuJg1gFHOiXly2MnbiuFsbO9bzp4g3FAWxrvYufW9cQYYNRadkFia8bttwAfocdthvlrj3FuftfH6zCCCebsMOjgF3phh3a3R4ibFrA/FGac8cYc9gYM8MY08E9Ix5sDxTs/KXXGPOUMabEGYznsI3PYHI0wz6Tm7DTDx2BzSKyH9trGOkMSJQL3x14D/irMebpY8yLfUBrKb90PZjuTAL+LCLTgviF0o1HgK1Ab6cbf6SiXkW0brjjTdUJG6BH47E94V2u/G4AponIFwFxnIvtpS8PjFxEbsP21iYZY7L8/YwxLxpjBhljUoC/uLRKF8usp3r52h87kpJfjbDlqOvVaM8AZ4nIZBGJEpF4ERnvvzgAuFhEBjhFvR140RjjDYgnFlsAB4ASN7Hrvzx1AXCZ2CXTHhHpLCL9jDH7sN3je0Uk2fmdICKnViF3Erblc1REOmMrfX8eAFYbY64AXgfmO/fngTOdHDHYSrQQ+G9VGRWIMeZjU34FZuCvJi3hZljFOQB2URC2xVUBEUkXkVFO/lzs+LrP9VofA+4TkXYubGcRmex3rZGql1MXYsszKK7sX8Y2JhLFLoSYGSp8EKoqO4BrRKSLa6z8iR9XGSZhDXum8/tLDdINF4uwz9g4Z2huB142xgTr6S3HDnn9WuyipGud+/tQtggoxT2rU7Cr//7mwmy3QeQX7jnqgJ0bLl1U8AowSOzikHjgVmC9a8m/ia3IhrjfrcBaYIgxxuvK6X3gYWNM6bNUhth31zKqyghjzE7sqtE5IhIrIidhF+cEsgk4A5gnbvWpH7c4vRuInffz140sIMfp5NVVyRMBPAVc757TTtj6aGGIsJXp0aPYBswQ95uPrfcmB8RxKfBUYE9SRP4A/AI7P3ooMGERGe50rq1La6nTG7A2ZLSITHQNpNnYBnjgCuAYbN1SY+rU6BljdgNTsa2iA9ie140B6TyNLYj92GGTXweJJ9u5Pw8cwWbgUj//VVgFvQ87efshP/a4ZmIr2c3u2hcpP7wajNuAYS6u17GVMGBXiWIfmFKlvx4YJiIzjDHbsD2Lh7AFcxZwluuWhw1jzGbsyq1PsXNqqdj5lmAkY43bEezwziHgbud3E3ZOZ6Ub4nkP2zNCRLpih8k2VCGOj6r17Frs8ub9WP14luordMiy8+Pf2MbQN9hh8dKK/X7sRPtBYCV2OC/sVNazN8Zswi73XgT8gK2cf+V37Zsi8kcXtgg7xzkTO9d7OXCOn34Ox5ZfNvC/wAwXP651fh52bu4Idk54Iy7vjDEHsIuA7nD+o4Dpzq/QGLO/9Ictm2J3DHAFtic5x380w+82uxJaXwOZgZ1rPuRkW0wQ3THGfAn8DHhMyq+O/BCr48uwC9Tece43YOudbOzzEex1jHqldDSokiD/xC4224Atq9edW+n1ZXpVmR4Zu5rXv/xygAJX5qVxdcauB3gqiBx/x/aav/Yr3z/6+T+A1cdtWN35ZamHX5063/lNBc4OUqdGUcWq8FCICTrce3wQkeXYCdF/1VuiynFBRC7GDn3+oYpwk7Ctt37GmMPVjPsu7ET+pbWXVGloiMg72Hm+wNZ9da5dDGw1xjSEXrtyDIh9JWkzcIUx5o2aXh/2l22Vhokx5pmqDJ5jOXZp9ybxew/KHxHpJyJpYhkJ/D/s8JnSBDHGTKquwXPD8ye4IdgzsD2DJcdVQCVsuDpkK7aHHvL9wcqIlC8JHHdEZD622xzIM8aYq+pbnqaCG5aYUUWwJOyQZifscOy92NWEEUUlQ0tTjnH1oVJ7OmCHtFOwKwCvNsasrU8B3JDhm8H8arLwS6kaY8w92AWOx0y9Dm8qiqIoSjjR4U1FURSlyRBRw5tt2rQxPXr0CLcYiqIoSj2yZs2ag8aYan34orZElNHr0aMHq1fX6OV6RVEUpYEjIjurDlU36PCmoiiK0mRQo6coEcb6/77F4QP7wi2GojRK1OgpSgSRX1hM2jsXkT0/8ItPiqLUBRE1pxeM4uJi9uzZQ0FBQbhFURoQ8fHxdOnShZiYmHCLUiPy87JJALp7622KQ1GaFBFv9Pbs2UNSUhI9evSg/MfiFSU4xhgOHTrEnj176NmzZ7jFqRG+wso+ragoSm2J+OHNgoICUlJS1OAp1UZESElJaZCjA6ZAjZ6iHE8i3ugBavCUGtNQdcZX0vAMtaI0JBqE0VOUpoLxHdNuKYqiVBM1etVARPjd735Xdn7PPfcwZ86c8AlUBcuXL+e//63xPrZlrFu3jpNOOomBAweSlpbG4sVh30qsyeDzloRbBEVp1KjRqwZxcXG8/PLLHDx4sE7jNcbgOw4t+9oavcTERJ566ik2bdrEW2+9xezZs8nMzKw7AZWQ+HzecIugKI0aNXrVIDo6miuvvJL77ruvgt+BAweYNm0a6enppKen88kndsPnOXPmcM89P+6AMWjQIDIyMsjIyKBv377MnDmTQYMGsXv3bm688UYGDRpEampqWa9q+fLljB8/nvPPP59+/foxY8YMgu2I8eCDDzJgwADS0tKYPn06GRkZzJ8/n/vuu48hQ4bw8ccfVyrjJZdcwkknnUTv3r157LHHAOjTpw+9e/cGoFOnTrRr144DBw5USPuFF15g0KBBDB48mFNOOQWwC48uu+wyUlNTGTp0KB988AEACxcu5JxzzuH000+nR48ePPzww/zjH/9g6NChjB49msOH7f6yjz32GOnp6QwePJhp06aRl5dXId3Ro0ezadOmsvPx48c3ms/X+ff0dAcURal7Iv6VBX9ue20Tm/dm1WmcAzol85ezBlYZ7pprriEtLY3f//735dx/85vf8Nvf/paxY8eya9cuJk+ezJYtle9/+dVXX/Hkk08yevRoXnrpJdatW8eXX37JwYMHSU9PLzMga9euZdOmTXTq1IkxY8bwySefMHbs2HJx3XnnnXz77bfExcWRmZlJy5Ytueqqq2jevDk33GD3bP3FL34RUsb169ezcuVKcnNzGTp0KGeeeSadOnUqi3/VqlUUFRVxwgknVLiP22+/nbfffpvOnTuX9QTnzZuHiLBhwwa2bt3KpEmT2L59OwAbN25k7dq1FBQUcOKJJ3LXXXexdu1afvvb3/LUU08xe/ZszjvvPH75y18C8Oc//5kFCxZw3XXXlUv3oosu4vnnn+e2225j37597Nu3jxEjRlSa5w0F/55/UVEBcXEJYZRGURof2tOrJsnJycycOZMHH3ywnPt7773Htddey5AhQzj77LPJysoiJ6fyZefdu3dn9OjRAKxYsYKf//znREVF0b59e0499VQ+//xzAEaOHEmXLl3weDwMGTKEjIyMCnGlpaUxY8YMnnnmGaKjg7dhKpNx6tSpJCQk0KZNGyZMmMCqVavKrtu3bx+XXHIJTzzxBB5PRVUZM2YMs2bN4rHHHsPr9Zbdz8UX2716+/XrR/fu3cuM3oQJE0hKSqJt27a0aNGCs846C4DU1NSye9u4cSPjxo0jNTWVRYsWlevRlXLhhRfy4osvAvD8889z/vnnV5rfDQnj+7Gnl59dtw08RVEaWE+vOj2y48ns2bMZNmwYl112WZmbz+dj5cqVxMfHlwsbHR1drtXu/85Ys2bNqpVeXFxc2XFUVBQlJRUXObz++ut89NFHvPbaa9xxxx1s2LChQphQMkLFpf2l51lZWZx55pnccccdZQY6kPnz5/PZZ5/x+uuvM3z4cNasWVPt+/F4PGXnHo+n7N5mzZrFkiVLGDx4MAsXLmT58uUV4uncuTMpKSmsX7+exYsXM3/+/ErTbUgYr5/O5GUB7cMnjKI0QrSnVwNat27NhRdeyIIFC8rcJk2axEMPPVR2vm7dOsBuk/TFF18A8MUXX/Dtt98GjXPcuHEsXrwYr9fLgQMH+Oijjxg5cmS15PH5fOzevZsJEyZw1113cfToUXJyckhKSiI7O7tKGQFeffVVCgoKOHToEMuXLyc9PZ2ioiLOPfdcZs6cWWkvaseOHYwaNYrbb7+dtm3bsnv3bsaNG8eiRYsA2L59O7t27aJv377Vuh+A7OxsOnbsSHFxcVk8wbjooouYO3cuR48eJS0trdrxRzo+v55eYZ729BSlrlGjV0N+97vflVvF+eCDD7J69WrS0tIYMGBAWa9j2rRpHD58mIEDB/Lwww/Tp0+foPGde+65pKWlMXjwYE477TTmzp1Lhw4dqiWL1+vl4osvLls08utf/5qWLVty1lln8corr5QtZAklI9jh0QkTJjB69GhuueUWOnXqxPPPP89HH33EwoULGTJkCEOGDCkzlLfeeitLly4F4MYbbyQ1NZVBgwZx8sknM3jwYH71q1/h8/lITU3loosuYuHCheV6eFXx17/+lVGjRjFmzBj69etX5r506VJuvfXWsvPzzz+f5557jgsvvLDacTcE/EcHCvOyKwmpKMqxIJG0QmzEiBEmcBXeli1b6N+/f5gkatzMmTOn3IKXxkZD1J1tn7xC33dnAbB50r8ZcPKZ4RVIUeoBEVljjKmX1Wja01OUCMJ4f3xPr0S/w6kodU6DWsii1C2R/FWZporx+Ru93DBKoiiNE+3pKUoE4f9FFm+RGj1FqWvU6ClKBOHf0/MVqtFTlLpGjZ6iRBD+Rs+o0VOUOkeNnqJEEP5Gj+L88AmiKI0UNXrVZMmSJYgIW7duDRkmIyODQYMGHVc51q1bxxtvvHHM15e+zD5gwAAGDhzIAw88UIfSKbWlvNGr+LFtRVFqhxq9avLss88yduxYnn322aD+wT4RVlO83qq3lamt0YuOjubee+9l8+bNrFy5knnz5rF58+Zjjk+pW/w3kRU1eopS56jRqwY5OTmsWLGCBQsW8Nxzz5W5L1++nHHjxnH22WczYMAAwBq/GTNm0L9/f84///yyrXGWLVvG0KFDSU1N5fLLL6ewsBCwnyu76aabGDZsGC+88EK5dAO37ikqKuLWW29l8eLFDBkyhMWLF5Obm8vll1/OyJEjGTp0KK+++ipgt/KZOnUq48ePp3fv3tx2220AdOzYkWHDhgGQlJRE//79+e677yrc84cfflj2NZahQ4eSnZ2NMSbkNkinnnoqU6dOpVevXtx8880sWrSIkSNHkpqayo4dOwB47bXXGDVqFEOHDmXixIl8//33FdKdPn06r7/+etn5rFmzyj4u3RTw7+l5SnR4U1Hqmob1nt6bN8P+ih9UrhUdUmHKnZUGefXVVznjjDPo06cPKSkprFmzhuHDhwP2u5obN26kZ8+eZGRksG3bNhYsWMCYMWO4/PLL+b//+z+uvfZaZs2axbJly+jTpw8zZ87kkUceYfbs2QCkpKSUfafTn8Cte2JjY7n99ttZvXo1Dz/8MAB//OMfOe2003j88cfJzMxk5MiRTJw4EbDbAm3cuJHExETS09M588wzy23Bk5GRwdq1axk1alSFtO+55x7mzZvHmDFjyMnJIT4+npdffjnkNkhffvklW7ZsoXXr1vTq1YsrrriCVatW8cADD/DQQw9x//33M3bsWFauXImI8K9//Yu5c+dy7733lku3dNugM888k6KiIpYtW8YjjzxSzcJsBDijl2viiPKq0VOUukZ7etXg2WefZfr06YDtifgPcY4cOZKePXuWnXft2pUxY8YAcPHFF7NixQq2bdtGz549y76/eemll/LRRx+VXXPRRRcFTTfY1j2BvPPOO9x5550MGTKE8ePHU1BQwK5duwA4/fTTSUlJISEhgfPOO48VK1aUXZeTk8O0adO4//77SU5ODpr29ddfz4MPPkhmZibR0dGVboOUnp5Ox44diYuL44QTTmDSpElA+W2D9uzZw+TJk0lNTeXuu+8Oum3QlClT+OCDDygsLOTNN9/klFNOISGh6ewpV7q1UK4kEl2iw5uKUtcc956eiJwBPABEAf8yxlTeraqMKnpkx4PDhw/z/vvvs2HDBkQEr9eLiHD33XcDFbcJCrVVT2WE2mqoOlv3GGN46aWXKuxk8Nlnn4WUpbi4mGnTpjFjxgzOO++8oGnffPPNnHnmmbzxxhuMGTOGt99+u9J7qM62Qddddx3XX389Z599NsuXLw/6RZj4+HjGjx/P22+/zeLFi8saG02F0uHNfEkgyldQRWhFUWrKce3piUgUMA+YAgwAfi4iA45nmnXNiy++yCWXXMLOnTvJyMhg9+7d9OzZk48//jho+F27dvHpp58C8O9//5uxY8fSt29fMjIy+PrrrwF4+umnOfXUU6tMO9jWPYHbBk2ePJmHHnqI0g+Hr127tszv3Xff5fDhw+Tn57NkyRLGjBmDMYb/9//+H/379+f666+vNO3U1FRuuukm0tPT2bp1a622QQI4evQonTt3BuDJJ58MGe6iiy7iiSee4OOPP+aMM86odvyNAmMXshR6EolVo6codc7xHt4cCXxtjPnGGFMEPAdMPc5p1inPPvss5557bjm3adOmhVzF2bdvX+bNm0f//v05cuQIV199NfHx8TzxxBNccMEFpKam4vF4uOqqq6pMO9jWPRMmTGDz5s1lC1luueUWiouLSUtLY+DAgdxyyy1l148cOZJp06aRlpbGtGnTGDFiBJ988glPP/0077//ftlCldLVoPPnzy/bduj+++9n0KBBpKWlERMTw5QpU2q1DRLYb31ecMEFDB8+nDZt2pS5r169miuuuKLsfNKkSXz44YdMnDiR2NjYasffGChdvalGT1GOD8d1ayEROR84wxhzhTu/BBhljLnWL8yVwJUA3bp1G75z585ycTTE7WEigYULF5Zb8NIUaYi6s/q5vzFi6918kXASHfO/puOcr8MtkqIcd5rU1kLGmEeNMSOMMSPatm0bbnEUJby4Ob3i6GbEUxhmYRSl8XG8F7J8B3T1O+/i3JTjzKxZs5g1a1a4xVBqSOlCFm9Mc+KNDm8qSl1zvHt6nwO9RaSniMQC04GlNY0kknZ3VxoGDVZnjDV6JiaJBCnCV42v9CiKUn2Oq9EzxpQA1wJvA1uA540xFV/OqoT4+HgOHTrUcCsxpd4xxnDo0CHi4+PDLUqNKV3IYuLsaywF+bp7uqLUJcf9PT1jzBvAMX8sskuXLuzZs4cDBw7UoVRKYyc+Pp4uXbqEW4ya43p6njj7wYCC3GwSm7cIp0SK0qiI+M+QxcTElPviiaI0atxwpie+OQAF+bqnnqLUJWFfvakoih/GS4nxEBNvhzeL8rOruEBRlJqgRk9RIgnjxYuHaNfTK9I5PUWpU9ToKUokYXwYpMzoFevwpqLUKWr0FCWS8Pnw8uPwZkmhDm8qSl2iRk9RIglTgg8PsQm2p1dSoD09RalL1OgpSiTh8zmjlwSAt1D31FOUukSNnqJEEGK8eMVDfKId3jRF2tNTlLpEjZ6iRBDG2J5efDPb0zOFavQUpS5Ro6coEYQYHwYP8W540xTnh1kiRWlcqNFTlEjC58WHB09UFAUmBinWOT1FqUvU6ClKBCHGGj2AAolHinV4U1HqEjV6ihJBiPHhE2f0iMdTosObilKXqNFTlIjCh48oAAo88USp0VOUOkWNnqJEEj4vBgGgyJNAtFeNnqLUJWr0FCWC8B/eLPbEE+1To6codYkaPUWJIMR4MW54syQqgTjt6SlKnaJGT1EiCPGV4BVr9IqjE4nVnp6i1Clq9BQlgvCYYryeWAB8UQnEmYIwS6QojQs1eooSQUT5ivBKDAC+mETiKQyzRIrSuFCjpygRRJQpwespNXrNSNCenqLUKWr0FCWCiDZF+JzRIyaRGPHiLdbenqLUFWr0FCWCiDIl+NycnsTa7YXycrPCKZKiNCrU6ClKBBFtijGup1dq9Apzs8MpkqI0KtToKUoEkWDyKYlKAMAT54xenvb0FKWuUKOnKBFEIvmUxDQHICre/i3MywmnSIrSqFCjpygRgvF5SaQQYq2xi463G8kWF+jwpqLUFWr0FCVCyM89CoDEWWMXk2CHN4vzdU89Rakr1OgpSoSQl2WNnsf18GLc3xLt6SlKnVEroycic0TkOxFZ534/9fP7g4h8LSLbRGRy7UVVlMZNnuvpRSVYYxeXaP/6CrWnpyh1RXQdxHGfMeYefwcRGQBMBwYCnYD3RKSPMcZbB+kpSqMkL+swALGJLYAfjZ5XjZ6i1BnHa3hzKvCcMabQGPMt8DUw8jilpSiNgrzDewFIbN0JgPhm1uiZQl29qSh1RV0YvWtFZL2IPC4irZxbZ2C3X5g9zq0CInKliKwWkdUHDhyoA3EUpWFSlGmNXst2XQFITLSrOE2xbi+kKHVFlUZPRN4TkY1BflOBR4ATgCHAPuDemgpgjHnUGDPCGDOibdu2Nb1cURoNJms/PiO0amfbhzHRUeSbWFCjpyh1RpVzesaYidWJSEQeA/7jTr8Duvp5d3FuiqKEICZrFwekNe2jY8rcCiQOKVGjpyh1RW1Xb3b0Oz0X2OiOlwLTRSRORHoCvYFVtUlLURo7ybkZ/BDXvZxbIXF41OgpSp1R29Wbc0VkCGCADOB/AIwxm0TkeWAzUAJcoys3FSU0Pq+PziW72dj6Z+XcC0WNnqLUJbUyesaYSyrxuwO4ozbxK0pTYf/eb+kkBUjbPuXciz1xRHl1I1lFqSvq4j09RVFqyYFv1tMJSOo8oJx7kcQTXQujV5Cfy5dvPUHsttfoUrCNRJPHIU8Ke1sMJar/zxgw9myaNWse8npjDNk5WZTkZlLs9eH1GWJj44iNiyc2Lp64uHjEE3XM8ilKfaNGT1EigLzvNgHQ/sTB5dxLouKJ89V8eNP4vKxe8hA919/HKDL5Tjqwq+UovHHJxOZ8x8DM90n69HVy/vtbVjdLp6RNfyQuCW9hLjG5+0jI3UOLov209B4mWSpPv9hEUSzRFBFDCTF4JQqMQTB48OHBZ49N6XGArBXO/UNI2Z/y4QJjCeZiyYxOod31nxDvXvZXmjZq9BQlApCD28mkOa3bdS3nXuKJp3nJkRrFtXfndrIXzSK9aBNbYwbw/akPMuDks+js+XHdWklRAVs/e5Pc9UvofPAT2u9cgUesWTlMMgei2vNDwgnsbTYGad4OX3xLojweBPB6SzAlBZiSQkxJMXgLkZJC8NrjKFOCEQ8iHox4INivFPOjKTOAONNmj/0wvjL30kuM33/GOD+/eA2QkP896QWfsHXTZ/RLr9ZCdKWRo0ZPUSKA5Owd7IvpTksp31/xRsUTawqrHc/mj16m0/vXkWy8/Df1r4w+91o8URUXaUfHxtNv3Lkw7lwAigryyc3Lo3mzRFrHJdC6drcTMezN2AYLR5KdsQ7U6Ck0QqNnfD7Eo5tHKA0H4/PRqTiD7a1Pq+Dni04g1lc9o/fpkn+SvvZmdkZ1I/HiRZzca1C1ZYiNTyA2PqHa4RsKHbr2Jsskwvcbqw6sNAkaldEryM9l972ncviEcxl63u+IjYsPt0hKNTHGBJwH+FcVvoJ/4PWVx19RnppdX5l8VcmWeWAv3cnBtO1bQQ5fdAJxVG30lj37DyZsvZ2t8Wl0ueZVkpNbVXlNU8AT5WFPbC+SMzfXWZzG58Pn8+H1luDzFuMtKQFAPIIgiIg79uDxCCJ2WFjcMQiI8ON8Zem5Uh80KqOXc/QQBVFJjNo2l8P/O5+vWo7FtE8lNrktxhONKcrDV5iHryALCo8ihdlEFWURXZxDbEkO8d4cEn05JJJPtLGKXDrxLpiy+QZ/Kptc95+Qr2yy3oScgq9+uHBQhd1QHIGlFnjeFh8INOtSsWdmohOIr2J4c/kzf+cnX9/F1ubp9L5uCTHxoVdjNkWy2o9kxO6FHM08RIuWKdW6JvPAPnatX07O7o3EZO6gee4umpVk0txkk2xyiBYfx2PNqs9Y7bDzk1L2zPv/DfQjyHl9sU16MnzOp/Webm1oVEavTYdupNy0jA0fL6H484X0yfyYVplvBA1bYjzkSCJ50ow8T3MKo5qRFd+JwzFJeGOTMJ4YjNiWmxFxk+8BLbJyTXZT7k/5k8BuQajrgnQfyhavBTcxVal5Bf8qHKqMr4bPVcXkKo+gtunX6G6k0tOqgtf4+gqX+99MXBL9R0+pGCgmnjgpxnhLkKiKj+vHT/6F8d/ez8bmY+j/65eJitXRjUCSB04ies/jfLXiZUb87JdBw/hKivlq9TtkffEybQ+upIdvDy2d3wFacSCmMwebncj+uJb44ltiouLBE2V/4mf+jLGjAsb93CIbytx85cO541L/H6+115SaOAAJcBO/uiNU/XC8yY5rF5Z0a0OjMnoA4vGQeup5cOp5GJ+Pgz98R3bmQcRbRHR8c2Lim9E8uRWJzZJo6fGUKbaiRCQxiQAUFuQS36xFmbPx+fh04R8Yt2s+65LHk3rdC0TFxIZLyoimX/rp7HunHUnrHsM35XI8UdZIlRQVsH3lf8hf9wonHP6QvmSTb2LZnjiETzucQ3KfsfQYOIq2ya3RT+E3Hhqd0fNHPB7adOhKmw5dqw6sKBGIxNjFJYV5OWVGz+f1sfKfv+LkH55ldYvJDL1uEVF+H6lWyuOJjmZ32q8Z+eWfWXfPT8lvN4SYQ9vpk/MZA8gl2ySwJelkGHA2/caew+DkluEWWTmONGqjpygNHYl1Pb18u5FsQX4uG+ZfxslH32ZV2/MZcdWjZT0XJTTpU69hZdZ+BnzzBMk7V/I9KWxrMRYZeA4Dxk5lZGKzcIuo1BNq9BQlgolp1hKA7CM/UFBYQMFzl5Pu/ZrPul/JyEvv0tdzqol4PIy+9A683tspLC6gfXwz2odbKCUsqNFTlAimeZeBACS+egUp3oMUSBzrx81n1E9+HmbJGiZRUVFERWmvrimjRk9RIphuJ6ayl7Z08u1ndctJ9Jh+L2kdu4VbLEVpsKjRU5QIJiE+jvxrP2FfQS4juvQKtziK0uBRo6coEU7rNjr7pCh1hc6CK4qiKE0GNXqKoihKk0ECP9wbTkTkALCzDqJqAxysg3jqg4YkKzQseVXW40dDkrchyQoNS966krW7MaZePnwTUUavrhCR1caYEeGWozo0JFmhYcmrsh4/GpK8DUlWaFjyNiRZS9HhTUVRFKXJoEZPURRFaTI0VqP3aLgFqAENSVZoWPKqrMePhiRvQ5IVGpa8DUlWoJHO6SmKoihKMBprT09RFEVRKqBGT1EURWkyNCqjJyJniMg2EflaRG4OtzyBiEhXEflARDaLyCYR+Y1znyMi34nIOvf7abhlBRCRDBHZ4GRa7dxai8i7IvKV+9sqAuTs65d360QkS0RmR1K+isjjIvKDiGz0cwual2J50OnxehEZFgGy3i0iW508r4hIS+feQ0Ty/fJ4fn3KWom8IcteRP7g8nabiEyOAFkX+8mZISLrnHsk5G2oOisidbdaGGMaxQ+IAnYAvYBY4EtgQLjlCpCxIzDMHScB24EBwBzghnDLF0TeDKBNgNtc4GZ3fDNwV7jlDKIH+4HukZSvwCnAMGBjVXkJ/BR4ExBgNPBZBMg6CYh2x3f5ydrDP1wE5W3QsnfP25dAHNDT1RlR4ZQ1wP9e4NYIyttQdVZE6m51fo2ppzcS+NoY840xpgh4DpgaZpnKYYzZZ4z5wh1nA1uAzuGVqsZMBZ50x08C54RPlKD8BNhhjKmLL/vUGcaYj4DDAc6h8nIq8JSxrARaikjHehGU4LIaY94xxpS405VAl/qSpypC5G0opgLPGWMKjTHfAl9j6456oTJZRUSAC4Fn60ueqqikzopI3a0OjcnodQZ2+53vIYINioj0AIYCnzmna91wwOORMGToMMA7IrJGRK50bu2NMfvc8X6IuA2op1O+0ojEfC0lVF5Gui5fjm3Nl9JTRNaKyIciMi5cQgUhWNlHct6OA743xnzl5xYxeRtQZzVU3W1URq/BICLNgZeA2caYLOAR4ARgCLAPO8QRCYw1xgwDpgDXiMgp/p7GjmdEzDsvIhILnA284JwiNV8rEGl5GQoR+RNQAixyTvuAbsaYocD1wL9FJDlc8vnRYMrej59TvsEWMXkbpM4qo6HobimNyeh9B3T1O+/i3CIKEYnBKs8iY8zLAMaY740xXmOMD3iMehxuqQxjzHfu7w/AK1i5vi8drnB/fwifhBWYAnxhjPkeIjdf/QiVlxGpyyIyC/gZMMNVdLhhwkPueA12jqxP2IR0VFL2kZq30cB5wOJSt0jJ22B1Fg1Md/1pTEbvc6C3iPR0Lf7pwNIwy1QON2a/ANhijPmHn7v/mPe5wMbAa+sbEWkmIkmlx9iFDBuxeXqpC3Yp8Gp4JAxKuZZyJOZrAKHycikw062EGw0c9RtKCgsicgbwe+BsY0yen3tbEYlyx72A3sA34ZHyRyop+6XAdBGJE5GeWHlX1bd8QZgIbDXG7Cl1iIS8DVVn0YB0twLhXklTlz/syqHt2BbRn8ItTxD5xmKHAdYD69zvp8DTwAbnvhToGAGy9sKucvsS2FSan0AKsAz4CngPaB1uWZ1czYBDQAs/t4jJV6wx3gcUY+c5/l+ovMSufJvn9HgDMCICZP0aO1dTqrfzXdhpTj/WAV8AZ0VI3oYse+BPLm+3AVPCLatzXwhcFRA2EvI2VJ0VkbpbnZ9+hkxRFEVpMjSm4U1FURRFqRQ1eoqiKEqTQY2eoiiK0mRQo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJk+P8Rr3lbP1PkOgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABlGklEQVR4nO2dd5hU1dnAf+/MdnbpiPTe2aUXAygYrKhEQUGxIJ8xmmgk9i+JBk3MZ42VSEJQ7IJdY8FYEDEi0jsIstJhWdhlC9tm3u+Pc3eZnZ2Z3WV3mdnh/J5nnrn31Peec+55T7vniKpisVgsFks04wq3ABaLxWKx1DVW2VksFosl6rHKzmKxWCxRj1V2FovFYol6rLKzWCwWS9RjlZ3FYrFYop6IU3Yi0lFEVERiwi2L5fgRkZtFZI+IrA5D3DNE5OUTEM9UEVkcwn6hiFxX13JYyhMq3U9UnojIXBH5Swh7FZGudS1HNCAirUUkR0Q2i8iZxxtOxCk7S/URkVkikuv8ikSk2Of+4zCJNQP4tar285FzhojMCJM8EYXTqEuvpvsvRSRfRDaJyNgQbuNF5DkROSIi+0TkVj/760Rkq1M+PhGR1n5+Z4nIfhE5JCIfiEgbH/umIvKOiOSJyE8ickUQGZ7zrdCdcOc4fnJEZJWInFeN558rIlOr6r4+4zSi5lbD/c+dMpHvlJEOIdxWqRyJyOe+nQ4Rae9Tp5T+VERuc+zHichiEclyyty/RCTFJ7w2IvKeU6Z2icgNfvG5ReQvTgM5R0RWikhjAFXdo6opwAfAb6uaLv7UurKzPbITj6reoKrJqpoM/BWYV3qvqmUVygnOm6bAuhMYX50QQeX5NWAl0Az4A/CmiLQI4nYG0A3oAIwB7hSRcwFEZDSmjIzH5NF2J+xSbgFOA9KA1sBh4Gkf+5lAEdASmAI8KyJ9fCMXkZFAFz+ZYoCdwBlAI+CPwHwR6Vj5o0cmIuKOABmaA28D92DycxkwL4SXSsuRiEwBYn3NVHWHT52SDKQCXuAtx0kj4C+YMtMLaAM84hPEy5iy1hIYB/xVRMb42N8H/AxT9hoCVwEFfrKvc+Q+LmpF2YlIuojcJSJrgDwRiRGR4SLyX0fTr3ZeslL3C0Xk/0RkqdP6fE9EmgYJ+1oR2eho+x9F5Fd+9uOdVuIREdnm81I3clqSe0Vkt9NqCFk4RaSLiHwhIpkiclBEXiltXTh2h0RkoHPfWkQySp9LRC4SkfXO8y4UkV5+6XO7iKwRkWwRmSciCdVP6eoTJG/KDaGI35CLiFzgpGmWk4dp1YyzNJ29lbi708mfPWJ6G749gbkiMlNEPnTy/jsR6eLj90kR2enk+3IRGeUXfIKTzjkiskJEfHuYdztlJUdENojIxT52U0XkGxF5XEQyMYqjsud9VEQOi8h2qdhb6eCElyMinzqVU7UQke7AQOBPqnpUVd8C1gITgni5Bvizqh5W1Y3AbGCqY3cB8IaqrlfVIuDPwOk+adsJWKCq+1W1AFNx9nHkaODEeY+q5qrqYuB9TMVUKmsMRjne7CuQquap6gxVTVdVr6r+G1P5DTqO9HCLyGPOO7pdRG6SIFMfItLKee/u8DHuEqzuEZE3xPRMskVkkfgocqdMPisiH4lIHqYhEYomwcqvw1gR+cF5z2aKiFQ3LYBLgPWq+oaTXzOAfiLS099hVcqRiDQC/gTcWUm8VwOLVDUdQFVfVdVPVDVfVQ9jytwIJ8xkYDTwgKoWq+pq4E1gmmPfBJgO/FJVf1LDOud5fPFiGk3Hh6rW+AekA6uAdkAiRqtnAudjFOpZzn0Lx/1CYDfQF2iAaR287Nh1BBSIce7HYVqJgmkV5gMDHbuhQLYTvsuJt6dj9w7wDyf8U4ClwK8qeY6uTljxQAtgEfCEj/0vgQ1AErAAeNQx7w7kOX5jMQVlKxDnkz5LMa2epsBG4IYgMowEskL8RlbyDDNK0zJQ3jhmCnT1cTMX+ItzPQA4AAwD3JiKMx2Ir0Z5OBfTKmtQiZt9mIo0CdPyK5PLkSnTyeMY4BXgdR//V2JaeTHAbU5YCT5pUAxMdPLjdkzFGuvYX+rkhQuY5ORdK8duKlCCqaxjStMsyDNMdeL5pZNWNwJ7APEp59uc8pHo3D8YJKy/A38PYncxsNHP7Bng6QBumzjp2NLHbCKw1rl+1DcezDujwHjnfjDwjZM+ScCrOO+AUzby/eK7HfjA5/4O4MlA5czPX0unjPQ8jvrmBsx72NZ53s8oX2csBK7DKO4twPU+fhcSpO5x7KcBKZg64Algld97ko2pxF2l5S2IjHMJXX4V+DfQGGgPZADnBglrDXBFELsngWf9zNYBE46nHGF67r/Drx728yOYcj01xPM/Ufq8TnoqcIqP/WxgpXN9OqZuuwvzHm8BfhMgzDGYkYb21S0zqlqrym6az/1dwEt+bhYA1/gUuAd97HpjhkbcoRLZcfsucItz/Q/g8SAvUiE+FRVwOfBlNZ/rF6UZ4mP2PqY1tAZHAWCGEOb7uHFhXqjRPulzpY/9w8Cs2kj7ADLPoKKym+bnJpSyexbTK/B1vxk4o4rxL3PC/20l7p4D/s/nvisVld2/fOzPBzaFCO8w0M8nDZb45cdeYFQQv6s4VtlPBXZU8VmnAlt97pOcZzjVp5z/0cf+18Anx5GnV/k+j2P2ADA3gNt2jgwJPmZnAenO9VjgIGaYMtF5h7zA5Y59I+B1J4wSzJBXU8duFLDPL75fAgt94t4KNApUznz8xGIU1D+Os4x/gU/D1Xkmf2X3N6fsX+7ndyFB6p4A8TR2wi19nrnAi1WUMWT5dcId6XM/H7j7ONJiDn4NKExjZWp1yxGmobMKo5w7ElzZjQJygeQgMp2FeR+7+5gtxvT4EzC9y0PAZsfuCieuOU6ZTMMo/7MChP2G4/aJ6qZVbc7Z7fS57gBc6nTPs0QkC9NjaRXE/U+YF6DCEI+InCciS5whxCxMoSl11w7TwvCngxPeXp/4/4Hp4QVFRFqKyOtihj2PYHob/jLNxrQKn1bVQsestfMMAKiq13m+Nj7+9vlc5wPJoWSpZXZW7qSMDsBtfnnXDvOMVWEIMBmYISKxIdy19pMrkIxB08wZFt7oDDdlYSpp37wqC8/Jj12lzyAiV/sM02Zh8jOg3ypQJqOq5juXyYHs/Z+hGuRi5jF8aQjkBHFbal/Brap+hhmmegujDNIdu12O25mYXk0zTM/nbaB0kVNlcjwB3K+q2cEeRERcwEsYBXNTMHeVUJWyMwXT4HwzgF3AuscZHn3QGeI+gkkbqIWyQeC8D0fZCOjWyZe/YzoSJZXEeQ3wlqrm+luIyHDMaMBEVd3iYzUF09PeiWlQv8yxMnfU+b9fzfDqGkyD63y/sAc6Zj1VdXolMlagNpWd+lzvxPTsGvv8Gqjqgz5u2vlct8cMBx30DVBE4jEv5aOYYZnGwEeYbnRpPP7j4KXmhUBzn/gbqmqfAG59+avzHKmq2hAzVFY2ju6MPT+BaYHM8Bnr34NREqXuxHm+3ZXEVwERGSUVVz35/vznpqqC+t3nY3ohpZzqc70TM7bum3dJqvoaVUBN8+tdzPBSqxBO92KGoUppF8yhP04a3AlcBjRxykU2PnnlG57zIrcF9ohZqTYbU9E2c/yu8/Prn17hZj3QWXxWtwH9HPNyqJkv2evYB3SrqjNVtZuqtsS8XzEcW0zUH9PSP+Q05p4GhjpzjVuAGBHpFiTsnwOPOHNepRX5t+Ks2HTeizmYkZcJqlpczXQopSplZwamPnlVKs7VB6t7rsAs3BmLaTx1dNxEetkoy2tnXrULAcoGoctRQ0zPbp6Td9879rt86xwRScRMA7zgH7iIDMCMfE1T1c997dTMxV2gqi1UdRimAbHUsV5T6szXSwD5ewEbVHVzALtKqatPD14GLhSRc5zWUoKIjBYR3wJ6pYj0FpEk4H7gTVX1+IUTh2llZgAlzuT/2T72c4BrxSy9dYlZ3tpTVfcCnwKPiUhDx66LiJxRidwpmNZPtpjl1nf42T8JLFPV64APgVmO+XxgnCNHLGYOqRD4b2UJ5Y+qfq0+q54C/L6ubpgBWAVc4eTNuZi50FJmAzeIyDAxNBCzrDgFyibp51byDKU93rgQzuZj8q6XUwbuqYb8KZghtgxM5XsvFVusg0TkEjGLFqZj8mMJpreijl9E5FpMzy5icVrIq4A/Oe/SxZihnreCeHkR+KOINHEWKvwSM6yG47+vk7ftgX9i5tgOO36/B64Ws8ArFjP0ukdVD6pqHqand79TLkZglMNLjt/umMqzv/MDuBAzfw6mRd8LuFBVS1vzZYhZZDK6CkkyH7jFed8bY6ZN/CnGVMoNgBedBk8pweqeFEw5ycQ0Bv9aBVnCzTtAXxGZIGbR273AGlXd5O+wknKUjekx93d+pb2qQcB3PsFcjBmi/NI3bBHpC3wC3KyqH/jH7bznKSISJyJXYurxvzlybQO+Bv4g5hOVXpjRoX/7BROLyZ/jok6UnaruxLwEv8dUKjsxisM3vpcwL+A+zDhuhe8nVDXHMZ+PSeArMC2HUvulwLXA45jM+opjPayrMZXtBsfvm4TuaYBZ/jrQCetDzIsNmFWfmEUVNzpGtwIDRWSK09K4EtMKPoh5wS9Us9otErkFI2MWZnjh3VILVV2GqRyfwaTbVo6t5APTKv6mCnEoIcqXqn4MPIV5abZiFBFUrTAvwLxYWzDDUAVUHF56D7P45DBmruISNSvBNgCPAd8C+zFLqKvyPHWKmG/bZoVwMhnT8j4MPIgZJipV2FNExLcl/yfM8P5PmHfiEVX9xLFLwAwz5WJa1t9SvqFxOyY9f8C8u+djKrhSfo2ZVzmAWcZ+o6quB1DVA6q6r/TnuD+oqkedHvWvMBXpPp+RiinOM7TDDL2trTy1mI1pzK7BzCl+hGn8lGssO+/fJZie5HM+Ci9Y3fOik2a7MfXGEiIAMau8pwSyc8rABMzc22HMwrLJPn79y1XAcqQG37zLcNzv96vHrsGM2vn3vG7DLOqb45O3vmXyHOBHJ94bMItxMnzsL8fU3ZmYuvce/94hZk1HyBXeoZCKMtc9IrIQs4jiXyc8cstxIyJxwGogrbIhKBHZA9ypqlXaycRpza3DLPqpbM7AEmU4rf0+qvq/x+H3PMyCrw6VOrbUS5yGylOYFZ2XHU8YdgcVS5VR1SJV7VXFuZa7McMly4M5EJGLnWGLJsBDmCXsVtGdhKjqy1VVdCKSKCLni/lmtA2mJ/tOZf4s9RMxO/xkAMMxozLHxUmn7KT81lq+v1BDSJZqoqovOosgQn00/CvMcNg2zBDUjSHchgVbXiISwUw5HMYMY27EzFWdWCHM8GKgshFwyNFyfKjZLqyZqg5W1e8q9xGYsAxjWiwWi8VyIjnpenYWi8ViOfmIlE1uAWjevLl27Ngx3GJYLBaL5QSyfPnyg6oabGPzWiGilF3Hjh1ZtmxZuMWwWCwWywlERH6q3FXNqPEwpphDOjc5k7UPO2ZnidmJfq3zf9wH7lksFovFUlNq1LMTcx7ReMwGvIUiUrr35EHMR9V7nC/rF1B+n0iLxVINVBU5rhNgLBYL1LxndyNmx+1CMDsoOP8rVXWP42Y9kChmn0uLxVINtLiALTMvZfV9Q1m7ZmW4xbFY6i01nbPrDowSkQcwWwzdrqrf+7mZAKzw2S+xWhQXF7Nr1y4KCvzP8bNYgpOQkEDbtm2JjQ118ELks+jV/+OMjE8BWPredLx9F+Jy2R6exVJdKlV2IvIZ5XfFL+UPjv+mmC/bhwDzRaRz6b5pYk75fYjymzf7h389cD1A+/btK9jv2rWLlJQUOnbsaIdxLFVCVcnMzGTXrl106tQp3OIcN+r10iX9dTbFp+LpchZDN/yNNau/J23A0HCLZrHUOyodxlTVsaraN8DvPcx5RG87m4guxWzS2RxAzAkH7wBXO7taBwv/n86X8YNbtKi48rSgoIBmzZpZRWepMiJCs2bN6v1owNZNq2mr+8jrOp5OZ07Dq8LB714Pt1gWS72kpnN272KOSkdEumNOGTjoHLvxIebk3RrvKG8VnaW6REOZ2b/yIwA6Dr+IpObtSE/oQfMD1T41ymKxUHNl9xzmMMB1mJNlr3GGMG8CugL3ijkRepXPSk2LxVIFEvYuY5+0oFm7HgAcaTmcnp4tHDh0KMySWSz1jxopO2cX/CudYc2BqvqFY/4XNSeT9/f5HagdkU88IsJtt91Wdv/oo48yY8aM8AlUCQsXLuS//61ZD+Dcc8+lcePGXHDBBbUklaW6nJK3iX1JPcruk3uOJk48bF+5MHxCWSz1FLs3ZhWIj4/n7bff5uDBg7Uarqri9R73WYRBqQ1ld8cdd/DSSy9V7tBSJ2QfPkR73UNhi7Qysw5ppwOQ+6PdZchiqS5W2VWBmJgYrr/+eh5//PEKdhkZGUyYMIEhQ4YwZMgQvvnGTFHOmDGDRx99tMxd3759SU9PJz09nR49enD11VfTt29fdu7cyR133EHfvn1JTU1l3rx5gFFYo0ePZuLEifTs2ZMpU6YQ6ISKp556it69e5OWlsbkyZNJT09n1qxZPP744/Tv35+vv/46pIxXXXUVp512Gt26dWP27Nll4f785z8nJSUlZLq88cYb9O3bl379+nH66aYiLigo4NprryU1NZUBAwbw5ZdfAjB37lx+8YtfcNZZZ9GxY0eeeeYZ/va3vzFgwACGDx/OIWdobvbs2QwZMoR+/foxYcIE8vPzK8Q7fPhw1q8/dgjy6NGjo26buV2blgKQ1GFAmVlscjP2uVrS4FBVDvO2WCy+RNTemJVx3wfr2bDnSK2G2bt1Q/50YZ9K3f3mN78hLS2NO++8s5z5Lbfcwu9+9ztGjhzJjh07OOecc9i4cWPIsH744QdeeOEFhg8fzltvvcWqVatYvXo1Bw8eZMiQIWWKY+XKlaxfv57WrVszYsQIvvnmG0aOHFkurAcffJDt27cTHx9PVlYWjRs35oYbbiA5OZnbb78dgCuuuCKojGvWrGHJkiXk5eUxYMAAxo0bR+vWrauUdvfffz8LFiygTZs2ZGVlATBz5kxEhLVr17Jp0ybOPvtstmzZAsC6detYuXIlBQUFdO3alYceeoiVK1fyu9/9jhdffJHp06dzySWX8Mtf/hKAP/7xj8yZM4ebb765XLyTJk1i/vz53Hfffezdu5e9e/cyePDgKslcX8jbswmAZh1Ty5lnJPek9ZHNdkcVi6Wa2J5dFWnYsCFXX301Tz31VDnzzz77jJtuuon+/ftz0UUXceTIEXJzc0OG1aFDB4YPHw7A4sWLufzyy3G73bRs2ZIzzjiD77833+UPHTqUtm3b4nK56N+/P+np6RXCSktLY8qUKbz88svExARuu4SScfz48SQmJtK8eXPGjBnD0qVLq5wmI0aMYOrUqcyePRuPx1P2PFdeeSUAPXv2pEOHDmXKbsyYMaSkpNCiRQsaNWrEhRdeCEBqamrZs61bt45Ro0aRmprKK6+8Uq4HV8pll13Gm2++CcD8+fOZOHFilWWuL3gObqVI3bRs162cedEpqbRnHxkHM8IkmcVSP6lXPbuq9MDqkunTpzNw4ECuvfbaMjOv18uSJUtISEgo5zYmJqbcfJzvN18NGjSoUnzx8cd2WHO73ZSUlFRw8+GHH7Jo0SI++OADHnjgAdaurTjEFUxGqLhEvzq9hVmzZvHdd9/x4YcfMmjQIJYvXx7Sve/zuFyusnuXy1X2bFOnTuXdd9+lX79+zJ07l4ULF1YIp02bNjRr1ow1a9Ywb948Zs2KvkPD47O3s9fdig5+DZgGHQbDVti9cQmntLgoTNJZLPUP27OrBk2bNuWyyy5jzpw5ZWZnn302Tz/9dNn9qlWrAHNc0YoVKwBYsWIF27dvDxjmqFGjmDdvHh6Ph4yMDBYtWsTQoVXbIcPr9bJz507GjBnDQw89RHZ2Nrm5uaSkpJCTk1OpjADvvfceBQUFZGZmsnDhQoYMGVKluAG2bdvGsGHDuP/++2nRogU7d+5k1KhRvPLKKwBs2bKFHTt20KNHj0pCOkZOTg6tWrWiuLi4LJxATJo0iYcffpjs7GzS0tKCuquvNCnYyeGEijsKte41DIC8n+w+mRZLdbDKrprcdttt5VZlPvXUUyxbtoy0tDR69+5d1suYMGEChw4dok+fPjzzzDN07949YHgXX3wxaWlp9OvXjzPPPJOHH36YU08NtDtbRTweD1deeWXZYpDf/va3NG7cmAsvvJB33nmnbIFKMBnBDIOOGTOG4cOHc88995TN140aNYpLL72Uzz//nLZt27JgwQIA7r33Xt5//33ArNhMTU2lb9++/OxnP6Nfv378+te/xuv1kpqayqRJk5g7d265Hl1l/PnPf2bYsGGMGDGCnj17lpm///773HvvvWX3EydO5PXXX+eyyy6rctj1Ba/HQyvPHgoadqxg17B5aw7ShJiMisO7FoslOBJohV+4GDx4sPqvqtu4cSO9evUKk0TRzYwZM8otZIk26mvZ2bvjB1o9N5ilfe5h6KUV82bdQ2OJLzxIt3tXnXjhLJY6QESWq2qdrjKzPTuLJcI4vNcMeSe26BjQ/mjTXrT37OTo0fq996fFciKpVwtULLVLJO8CczKTl7EDgEYtOwS0j22dSvzuErb8sJruacNOpGgWS73F9uwslgij+NBOAJq27hLQvmmXQQAc/jH06leLxXIMq+wslgjDlbObXBJJbtQ0oH2brmkUaizevXYnFYulqlhlZ7FEGHF5e8l0NQ9q746JZWdMe5KzNp1AqSyW+o1VdhZLhJFcuJ8jcaFPxMpM6U7rwqBnIlssFj+ssqsi7777LiLCpk3BW9Pp6en07du3TuVYtWoVH330UY3CmDZtGqecckqdy2o5Ppp6MihIDP2tpadFH5qRTdb+nSdIKoulfmOVXRV57bXXGDlyJK+99lpA+0BbeVWX0v0lQ1Ebym7q1Kl88sknNQrDUjcUFh6lqWbjSWkT0l1S+/4A7NkSXac9WCx1hVV2VSA3N5fFixczZ84cXn/99TLzhQsXMmrUKC666CJ69+4NGKU3ZcoUevXqxcSJE8uOqPn8888ZMGAAqampTJs2jcLCQsBsK3bXXXcxcOBA3njjjXLx+h+hU1RUxL333su8efPo378/8+bNIy8vj2nTpjF06FAGDBjAe++9B5gjdcaPH8/o0aPp1q0b9913X1m4p59+Ok2bBl78UMpXX31F//796d+/PwMGDCAnJwdVDXoc0RlnnMH48ePp3Lkzd999N6+88gpDhw4lNTWVbdvMcNsHH3zAsGHDGDBgAGPHjmX//v0V4p08eTIffvhh2f3UqVPLNn0+GcjcuwOXKO5GoZVd6x5mW7f8HatOgFQWS/2nfn1n9/HdsK+WV6CdmgrnPRjSyXvvvce5555L9+7dadasGcuXL2fQILP8e8WKFaxbt45OnTqRnp7O5s2bmTNnDiNGjGDatGn8/e9/56abbmLq1Kl8/vnndO/enauvvppnn32W6dOnA9CsWbOyfTR98T9CJy4ujvvvv59ly5bxzDPPAPD73/+eM888k+eee46srCyGDh3K2LFjAVi6dCnr1q0jKSmJIUOGMG7cuCofhfPoo48yc+ZMRowYQW5uLgkJCbz99ttBjyNavXo1GzdupGnTpnTu3JnrrruOpUuX8uSTT/L000/zxBNPMHLkSJYsWYKI8K9//YuHH36Yxx57rFy8pcf3jBs3jqKiIj7//HOeffbZKskcDeQcNMOScU1CK7sWLVqyl2Z22zCLpYrYnl0VeO2115g8eTJgeh6+Q5lDhw6lU6dOZfft2rVjxIgRAFx55ZUsXryYzZs306lTp7L9Ma+55hoWLVpU5mfSpEkB4w10hI4/n376KQ8++CD9+/dn9OjRFBQUsGOH+Sj5rLPOolmzZiQmJnLJJZewePHiKj/ziBEjuPXWW3nqqafIysoiJiYm5HFEQ4YMoVWrVsTHx9OlSxfOPvtsoPzxPbt27eKcc84hNTWVRx55JODxPeeddx5ffvklhYWFfPzxx5x++ukkJiZWWe76Tv6hfQA0aNYqpDsRYU98V5rmbDkRYlks9Z761bOrpAdWFxw6dIgvvviCtWvXIiJ4PB5EhEceeQSoeFzP8RyZE+zIn6ocoaOqvPXWWxVOFvjuu+9qdHzP3Xffzbhx4/joo48YMWJE2UbQwajK8T0333wzt956KxdddBELFy4MuINLQkICo0ePZsGCBcybN6+skXGyUJRtlF3D5qF7dgC5jXvSb9/3aPFRJPbkaRBYLMeD7dlVwptvvslVV13FTz/9RHp6Ojt37qRTp058/fXXAd3v2LGDb7/9FoBXX32VkSNH0qNHD9LT09m6dSsAL730EmeccUalcQc6Qsf/+J5zzjmHp59+mtINvVeuPHb0y3/+8x8OHTrE0aNHeffdd8t6nFVh27ZtpKamctdddzFkyBA2bdpUo+OIALKzs2nTxlTiL7zwQlB3kyZN4vnnn+frr7/m3HPPrXL40YA3x8xjNmkRumcH4GqVSox4OfDj6roWy2Kp91hlVwmvvfYaF198cTmzCRMmBF2V2aNHD2bOnEmvXr04fPgwN954IwkJCTz//PNceumlpKam4nK5uOGGGyqNO9AROmPGjGHDhg1lC1TuueceiouLSUtLo0+fPtxzzz1l/ocOHcqECRNIS0tjwoQJZfN1l19+OaeddhqbN2+mbdu2ZefzzZo1q+z4nyeeeIK+ffuSlpZGbGws5513Xo2OIwKzF+ell17KoEGDaN782EfTy5Yt47rrriu7P/vss/nqq68YO3YscXFxVQ4/GpD8DLJpQGxcxYN2/WnSeQAAB7dWnO+1WCzlsUf8RClz584tt5DlZKQ+lp0Vj1xI86M/0v7eyhee5BcUwv+1Y1PrXzDwV/88AdJZLHWDPeLHYjnJSCjKJDcm9GchpSQlxPNTTEcSD22sY6kslvpPjZWdiNwsIptEZL2IPOxn115EckUkOk8HjWCmTp16Uvfq6ispJYcpiG9WZfdHGvWgTeE21OutQ6kslvpPjZSdiIwBxgP9VLUP8Kifk78BH9ckDoBIGmq11A/qa5lp7D1McULwTaD9cbVKpSF57Eq3nyBYLKGo6acHNwIPqmohgKoeKLUQkV8A24G8mkSQkJBAZmYmzZo1q9bSecvJi6qSmZlJQkLlizwiifz8XFLkKCS3qLKfln3OgPUPsHvVf2jXuWe149y7by8//OdfpOxeRKuCH0nRHDy4yXWlcDC2NdkNOuJt1o3EVr1o0bEPbdp3JS7WXe14LJZwU1Nl1x0YJSIPAAXA7ar6vYgkA3cBZwEhhzBF5HrgeoD27dtXsG/bti27du0iIyOjhqJaTiYSEhJo27ZtuMWoFtkZu0kCXMmhTzzwpV3PwRyiIe70r4Cbq+wvLy+P7165j+G753K6FLLD1ZbdjQfhiW+CqhfX0UM0LthJl8Of0ODwO7AV+BpyNYF0dxvy4ppTGNuI4rjGuGLjcbkErwqqgHrA6wH1gpaA1+vcm594vYh6EDy48OJSr8+/MQP/nnn5hq5Wcg/mu1KXQHGDU+n3q+dxxdSvz4ottUuluS8inwGB1pf/wfHfFBgODAHmi0hnYAbwuKrmVtYbU9V/Av8EsxrT3z42NrbcDiUWS7SSd8h8YxfTsOrKTlxufkwZTKcj36NeL+KqfGZi9759ZM3+BWd6NrKu0Rm0uOCPtO8+lIpNTUCV/Myd7PtxHUd2bcSbsZn47O00LDpIcuGPJGsOMepB8CKAoHilVGX5/tx4xVyruPCU3buPuZFj7rXCDEvFYWnxM/O/V4VkTxZt8peyb8+PnNq+e6VpY4leKlV2qjo2mJ2I3Ai8rWaCZKmIeIHmwDBgorNgpTHgFZECVbUrJiyWIBzNNrMACY2qruwAtOMZNF/7BT+sW0q3tOEh3a7dvJXY1ybSnR1s/NkT9D372tCBi5DUvD2dm7eHoedXS65IYMXHz9Pmu+kU5BwOtyiWMFPT1ZjvAmMARKQ7EAccVNVRqtpRVTsCTwB/tYrOYglNUc5BAJIaVX3ODqDrqEspUReZ3wXe6KCUTVs2k/TqRXRiNwcvmEuvyhRdFBCT1BiAwlyr7E52aqrsngM6i8g64HXgGq2vy+AsljBTnHsIgIZNq9eza3JKG9YlDKTDng/xBtkw/Mct62nw6oW0kkyOTHydVoMvqrG89YG45MYAFOZlhVUOS/ipkbJT1SJVvVJV+6rqQFX9IoCbGarq/0mCxWLxQ/MyAWjYpHo9O4CStCtopRms/ezlCna7tqwi+dULaEge2Ze+RYu+P6+xrPWFhAZNACjJzw6zJJZwY3dQsVgihYIsckjCHRNbba/9z76adGlDk+8eoaggv8x824ovaPDqhbjwknXZO7TqM7I2JY54EhsaZeexyu6kxyo7iyVCiCk8TI40PD6/sbFkjvgT7b072TzzMnav+5qlL/wvbd+7jFxpQO7l79Ohd9VPqIgWGjQ0W695C6yyO9mxH55YLBFCbFE2+e6U4/Y/aOwkvty9mdN//BvuN7+mDbA0cQQdr53NKS0rPx8vGmmQ1IAidaMFR8ItiiXMWGVnsUQIiSXZFMQ1rlEYY665l40bL+HApiV06jWAoT0H1Y5w9RRxuciTBkihVXYnO1bZWSwRQpInh4y4DjUOp1evvvTq1bcWJIoO8iUJV5FVdic7ds7OYokQGmoOnvjG4RYj6ihwJxNbnBtuMSxhxio7iyUCKC4uppHk4U1oEm5Roo5CdzJxJVbZnexYZWexRABHDjsbnSdaZVfbFMU1JNGTE24xLGEmKpWdPcjSUt/IzzbKzt2g6ge3WqpGcVwTUtTO2Z3sRJWyy87cR9aMNnw3/+HKHVssEUSpsotNtsquttGExjTSXLwe2wg+mYkqZZfSuAVJWgDZu8ItisVSLYpyzL6YcQ2tsqttNLEpseIh50hWuEWxhJGoUnYut5sDrubE5e0OtygWS7Uozi098aB5mCWJPlwNzC4quYcPhFkSSziJKmUHkBXbkqSj+8IthsVSLTx55giapIbV3wTaEprYZNOAyM+2yu5kJuqUXX5iK5oU7w+3GBZLtdCjZu/GlMZNwyxJ9BHX0Ci7giMZYZbEEk6iTtl5G7aluR6isLAg3KJYLFWnIJs8jSchPj7ckkQdic5huMW5mWGWxBJOok7ZxTZtj1uUA7vTwy2KxVJlpCiHPGkQbjGikgaNjbLzWGV3UhN1yi6pZVcADu3aFGZJLJaq4y7O4ajLKru6oPQwXM0/FGZJLOEk6pRd0/Y9ASjYtyXMklgsVSe2OIcCt1V2dUFCfDzZ2gCOWmV3MhN1yq5Fq47kazySuS3colgsVSa+JI8id3K4xYhaclwpuAsOh1sMSxiJOmXncrvZ625FfE56uEWxWKpMgjeXktjjP7jVEpp8d0Nii7LCLYYljESdsgPISmxHk4Kd4RbDYqkySZqHJ84qu7qiMLYRCcXZ4RbDEkaiUtkVN+pEK88+iouLwi2KxVIpqkqy5uO1yq7OKIpvRkNPVrjFsISRqFR2sad0I1Y87EnfHG5RLJZKOVpwlAQphoRG4RYlailOOoWmethuBn0SU2NlJyI3i8gmEVkvIg/7mKeJyLeO+VoRSahpXFWlYftUADJ/XH2iorRYjpu8bGeVoFV2dUfyKcSJh5wsu2XYyUpMTTyLyBhgPNBPVQtF5BTHPAZ4GbhKVVeLSDOguMbSVpFW3QfhUaFk9yrgyhMVrcVyXOTnmFWC7kSr7OoKd8NWAGRn7KZRs1NrL2BVMnduImfvVkqOZuNxJ5HStCVN2/ciIcVu/RZJ1EjZATcCD6pqIYCqljabzgbWqOpqx/yEbl2QnNyQdFdr4jM31FqYe/fs5KdVX1Kydy3kHiTem4dXYvC44tGkprhSTiWucWuSmrWiUfM2ND2lDQlJdim5pXIKc7MAiEmyyq6uiG/cGoDcg7uAQTUO7+D+PaR/+Agddr5LCz1EoIOZDtKE/fEdyG/UFdcpPUlpn0qrrv1JaVqLytZSZWqq7LoDo0TkAaAAuF1Vv3fMVUQWAC2A11U14ImqInI9cD1A+/btayjOMQ406EH7vLU1CsPr8bL08zdIWDaL1MKVtBIF4AgNyJMkYtRDHEU0OpQb0H+uJpIljTgS04RidwM87gRK3PFGQbricLkEl4BgwkXNv7lXRJ1/FNT8l9k5ZqXujpkDKKVBVoWKTrU6t9VCg95U4raGcVcv3spj0QBOAsWhQSL09Z9YkgVAbFLjSuO1HB8pLdoAcPTQnhqHteSDOfRcdi8DyGNV4jC2dByL+9RexCY1wlWcT37WfvTgD8Qe2kLj3B/ptf9Dkg+8CeuM/8M0JNPdnLyYJhTENYX4hmhMPF5XHOqOwyXgUi+oB/GWmH/1gNcD6kUcO3PtQbxeoNT82H+wkiwcqykC2wazElTBqyZcVSUjtjXjbp1dk+Q8YVSq7ETkMyBQU+QPjv+mwHBgCDBfRDo75iMds3zgcxFZrqqf+weiqv8E/gkwePDgmtSj5Shu0YdTc7/gSOYBGjY7pdr+t21eQ/4bv2Z4yVr2S3NWdbiWJv0voH3vYTRMSKahj1tPcRHZB3eTdWAXeZm7KMjah+dIBq6jGcQezSShKJMGJdnEFGcQq4XEUUSsmlFdM10uvmrKuRa8ZepNHLcu1Me9cevyUX9Szr5SQpXraqRVdalW2FLetdRI1R6nDFUISCoJNaCNj+HW+N607VnzHoclMM1PbQdAUfbe4w5DVfnmubsYufMfbInryZFLnmFQryGV+vN4vOzcsZWM7WvI372e2EM/kFCYQVLRIVrm7iAxJ59YLSGOYmLk2AKaYnXjxUUJLry48Dj/XnH+caEIXtzm3zFXcZXVB6HLefl3qSpuS92ImLA9Wpc1Re1SqbJT1bHB7ETkRuBtVVVgqYh4gebALmCRqh503H0EDAQqKLu6onHnwbAdtq/9mn6jJ1TL77fvziJt5b14xc2qtD+SeuFvaRkbfDd6d2wcTVt1ommrTjUV22Kx1AEpjZqSTzx65PjPuvzmxRmM3PkPljc+h/6/eQl3iDrBF7fbRbtO3WnXqTswMbRjrwevgoqLGDFKJZLPwai9sbi6p6arMd8FxgCISHcgDjgILABSRSTJWaxyBlB7E2hVoGP/0ZSoi4KtX1fZj3q9LHrubk5bdRc7E7pR8qv/0v+SO6pcqC0WS+Ry2NUUd/7xrcZctuAVRm5/glUpoxlw06t1Vye43LjcbtwuQaT+9JrqAzWds3sOeE5E1gFFwDVOL++wiPwN+B7T//1IVT+sYVzVokFKYzbGdKPx/u+q5F5VWTz7Vk7f+zyrGp9F3xtfIiY+sY6ltFgsJ4ojsaeQXFj9g5337viBrv+9k22xXej1m1dxxdS02rSEgxrlmqoWEWRtv6q+jPn8IGxknTKMwXteISf7ECmNQi8DXvziDEbtfZ4VzS5kwG9eQFzuEyOkxWI5IeQltaHD4W+r5UdV2f3qzfSmmMTLXyQ+wZ5MUV+Jyh1USmmYdj6x4uHHb94K6W7JG48xavsTrGw4hv43zrWKzmKJQkoatqcFhynID7x6OhArv/mEwQXfsqnrdbTu0rcOpbPUNVGt7LoPOYv9NEXWB1d2Kz78F0PX/ZnViUPpe9PrdojCYolS3E07ApCxa2uV3Hs9XhK+nMFBaULfCf9bh5JZTgRRrexiY2LY1vJceuUuJXN3xfPtNnw5j9Sld7Ixrg/db3qH2LgTtqOZxWI5wSSc0gWAnL0/VMn9sgUv0duziV39phOXZDfpru9EtbIDaHPOdBT46e17y5lv+OJVuiz8DT/GdKbtrz8gsYHd7cRiiWaatesGQO6+Hyt1W1RURMvvH2KHqy1pF/ymrkWznACiXtl16NyDJadMYmDmv1n3xp8p3P8DK567hZ5f/ZrtMZ1ofsMHNGpi97CzWKKdVq07cFTjKDlYcZTHn+XvPkkH3U32iD/giok9AdJZ6pqTYoJq8LTHWPr4NoaufxTWP8pA4L+NzqX3//yDxo0ah1s8i8VyAhCXiz2x7WhwJPQwZl5ONt02PMOm2N70HTP5BElnqWtOCmWXlJjEgDs/YuF/3qb44Haa9zqd0wYNtx9tWiwnGVkp3Wh/eAmqGvT9X/vmXxlOFplnz0FcUT/4ddJwUig7MItVRp93WbjFsFgsYcTTog8tDn9CxoFdtGjZroL94QO7SU2fy4oGIxk4JOhOiZZ6iG22WCyWk4YG7foBsH/zsoD2P7z5J+IpoulFD5xIsSwnAKvsLBbLSUOrvqOC7pm7L30j/fe/zfdNL6Bjz/4nXjhLnWKVncViOWlo2qQpP8R0JWXfkgp2B966kxJi6DTxz2GQzFLXWGVnsVhOKjKaD6dL4UbyDh072+6H7z4iLWcR37e9hlPbdAyfcJY6wyo7i8VyUtFk2BRixMvWz54DoCj/CIkLbmcPLRh0+b2V+LbUV6yys1gsJxV9+g9jrbs37Tb+k/w9G9j898tp7dnDrtMfJTnZbgsWrVhlZ7FYTipcLqFw7F+J9x4l6Z+nkZq7mK+73s7QM38RbtEsdchJ852dxWKxlDL4tDF8536PjBXvk9JtFKefeV64RbLUMVbZWSyWk5JhQ0+DoaeFWwzLCcIOY1osFosl6rHKzmKxWCxRj6hquGUoQ0QygJ9qIajmwMFaCOdEUJ9khfolr5W17qhP8tYnWaF+yVtbsnZQ1Ra1EE5QIkrZ1RYiskxVB4dbjqpQn2SF+iWvlbXuqE/y1idZoX7JW59ktcOYFovFYol6rLKzWCwWS9QTrcrun+EWoBrUJ1mhfslrZa076pO89UlWqF/y1htZo3LOzmKxWCwWX6K1Z2exWCwWSxlW2VksFosl6okqZSci54rIZhHZKiJ3h1sef0SknYh8KSIbRGS9iNzimM8Qkd0issr5nR9uWQFEJF1E1joyLXPMmorIf0TkB+e/SQTI2cMn7VaJyBERmR5J6Soiz4nIARFZ52MWMC3F8JRTjteIyMAIkPUREdnkyPOOiDR2zDuKyFGfNJ51ImUNIW/QvBeR/3XSdrOInBMBss7zkTNdRFY55pGQtsHqrIgsuyFR1aj4AW5gG9AZiANWA73DLZefjK2Agc51CrAF6A3MAG4Pt3wB5E0HmvuZPQzc7VzfDTwUbjkDlIN9QIdISlfgdGAgsK6ytATOBz4GBBgOfBcBsp4NxDjXD/nI2tHXXQSlbcC8d9631UA80MmpM9zhlNXP/jHg3ghK22B1VkSW3VC/aOrZDQW2quqPqloEvA6MD7NM5VDVvaq6wrnOATYCbcIrVbUZD7zgXL8A/CJ8ogTk58A2Va2NnXhqDVVdBBzyMw6WluOBF9WwBGgsIq1OiKAEllVVP1XVEud2CdD2RMlTGUHSNhjjgddVtVBVtwNbMXXHCSGUrCIiwGXAaydKnsoIUWdFZNkNRTQpuzbATp/7XUSwIhGRjsAA4DvH6Can2/9cJAwNOijwqYgsF5HrHbOWqrrXud4HtAyPaEGZTPnKIhLTtZRgaRnpZXkapvVeSicRWSkiX4nIqHAJFYBAeR/JaTsK2K+qP/iYRUza+tVZ9a7sRpOyqzeISDLwFjBdVY8AzwJdgP7AXsxQRiQwUlUHAucBvxGR030t1YxbRMy3KyISB1wEvOEYRWq6ViDS0jIYIvIHoAR4xTHaC7RX1QHArcCrItIwXPL5UG/y3ofLKd9Qi5i0DVBnlVFfym40KbvdQDuf+7aOWUQhIrGYQvOKqr4NoKr7VdWjql5gNidwWCUUqrrb+T8AvIORa3/psITzfyB8ElbgPGCFqu6HyE1XH4KlZUSWZRGZClwATHEqOJzhwEznejlmDqx72IR0CJH3kZq2McAlwLxSs0hJ20B1FvWs7EJ0KbvvgW4i0slp4U8G3g+zTOVwxuTnABtV9W8+5r5j2hcD6/z9nmhEpIGIpJReYxYorMOk6TWOs2uA98IjYUDKtYwjMV39CJaW7wNXOyvbhgPZPkNGYUFEzgXuBC5S1Xwf8xYi4nauOwPdgB/DI+UxQuT9+8BkEYkXkU4YeZeeaPkCMBbYpKq7Sg0iIW2D1VnUo7JbRrhXyNTmD7MSaAumBfSHcMsTQL6RmO7+GmCV8zsfeAlY65i/D7SKAFk7Y1atrQbWl6Yn0Az4HPgB+AxoGm5ZHbkaAJlAIx+ziElXjBLeCxRj5jH+J1haYlayzXTK8VpgcATIuhUzF1Nabmc5bic45WMVsAK4MELSNmjeA39w0nYzcF64ZXXM5wI3+LmNhLQNVmdFZNkN9bPbhVksFosl6ommYUyLxWKxWAJilZ3FYrFYoh6r7CwWi8US9VhlZ7FYLJaoxyo7i8VisUQ9VtlZLBaLJeqxys5isVgsUY9VdhaLxWKJeqyys1gsFkvUY5WdxWKxWKIeq+wsFovFEvVYZWexWCyWqCfilJ2IdBQRdc53stRTRORmEdkjIqvDEPcMEXn5BMQzVUQWh7BfKCLX1bUclvKESvcTlSciMldE/hLCXkWka13LEQ2ISGsRyRGRzSJy5vGGE3HKzlJ9RGSWiOQ6vyIRKfa5/zhMYs0Afq2q/XzknCEiM8IkT0ThNOrSq+n+SxHJF5FNIjI2hNt4EXlORI6IyD4RudXP/joR2eqUj09EpLWf31kisl9EDonIByLSxse+qYi8IyJ5IvKTiFwRRIbnfCt0J9w5jp8cEVklIudV4/nnOofHRj1OI2puNdz/3CkT+U4Z6RDCbZXKkYh87tvpEJH2PnVK6U9F5DbHfpyILBaRLKfM/av0PEzHvo2IvOeUqV0icoNffG4R+YvTQM4RkZUi0hhAVfeoagrwAfDbqqaLP7Wu7GyP7MSjqjeoarKqJgN/BeaV3qtqWYVygvOmKZF3WGq1iaDy/BqwEnOO2B+AN0WkRRC3MzAHfXYAxgB3ijl8FREZjSkj4zF5tB2fA2+BW4DTgDSgNXAYeNrHfiZQBLQEpgDPikgf38hFZCTQxU+mGMx5eGcAjYA/AvNFpGPljx6ZiHOwaphlaA68DdyDyc9l+Jx2HoBKy5GITAFifc1UdYdPnZIMpAJezAnmYPL0L5gy0wtoAzziE8TLmLLWEhgH/FVExvjY3wf8DFP2GgJXAQV+sq9z5D4uakXZiUi6iNwlImuAPBGJEZHhIvJfR9Ovdl6yUvcLReT/RGSp0/p8T0SaBgn7WhHZ6Gj7H0XkV372451W4hER2ebzUjdyWpJ7RWS302oIWThFpIuIfCEimSJyUEReKW1dOHaHRGSgc99aRDJKn0tELhKR9c7zLhSRXn7pc7uIrBGRbBGZJyIJ1U/p6hMkb8oNoYjfkIuIXOCkaZaTh2nVjLM0nb2VuLvTyZ89Ynobvj2BuSIyU0Q+dPL+OxHp4uP3SRHZ6eT7chEZ5Rd8gpPOOSKyQkR8e5h3O2UlR0Q2iMjFPnZTReQbEXlcRDIxiqOy531URA6LyHap2Fvp4ISXIyKfOpVTtRCR7sBA4E+qelRV38IcjDkhiJdrgD+r6mFV3QjMBqY6dhcAb6jqelUtAv4MnO6Ttp2ABaq6X1ULMBVnH0eOBk6c96hqrqouxhyMepWPrDEY5Xizr0CqmqeqM1Q1XVW9qvpvTOU36DjSwy0ijznv6HYRuUmCTH2ISCvnvbvDx7hLsLpHRN4Q0zPJFpFF4qPInTL5rIh8JCJ5mIZEKJoEK78OY0XkB+c9mykiUt20AC4B1qvqG05+zQD6iUhPf4dVKUci0gj4E+ZU+lBcDSxS1XQAVX1VVT9R1XxVPYwpcyOcMJOB0cADqlqsqquBN4Fpjn0TYDrwS1X9SQ3rnOfxxYtpNB0ftXSabTrmBNt2QCJGq2diTrR1AWc59y0c9wuB3UBfzAnTbwEvO3YdMSfjxjj34zCtRMG0CvOBgY7dUCDbCd/lxNvTsXsH+IcT/inAUuBXlTxHVyeseKAFsAh4wsf+l8AGIAlYADzqmHcH8hy/sZiCshWI80mfpZhWT1NgI36nEvudDJwV4jeykmeYUZqWgfLGMVOgq4+bucBfnOsBwAFgGODGVJzpQHw1ysO5mFZZg0rc7MNUpEmYll+ZXI5MmU4exwCvAK/7+L8S08qLAW5zwkrwSYNiYKKTH7djKtZYx/5SJy9cwCQn71o5dlOBEkxlHVOaZkGeYaoTzy+dtLoR2ANlhyIvxJzY3B3zXiwEHgwS1t+BvwexuxjY6Gf2DPB0ALdNnHRs6WM2EVjrXD/qGw/mnVFgvHM/GPjGSZ8k4FWcd8ApG/l+8d0OfOBzfwfwZKBy5uevpVNGeh5HfXMD5j1s6zzvZ5SvMxYC12EU9xbgeh+/CwlS9zj204AUTB3wBLDK7z3JxlTirtLyFkTGuYQuvwr8G2gMtAcygHODhLUGuCKI3ZPAs35m64AJx1OOMD333+FXD/v5EUy5nhri+Z8ofV4nPRU4xcd+NrDSuT4dU7fdhXmPtwC/CRDmGMxIQ/vqlhlVrVVlN83n/i7gJT83C4BrfArcgz52vTFDI+5Qiey4fRe4xbn+B/B4kBepEJ+KCrgc+LKaz/WL0gzxMXsf0xpag6MAMEMI833cuDAv1Gif9LnSx/5hYFZtpH0AmWdQUdlN83MTStk9i+kV+LrfDJxRxfiXOeH/thJ3zwH/53PflYrK7l8+9ucDm0KEdxjo55MGS/zyYy8wKojfVRyr7KcCO6r4rFOBrT73Sc4znOpTzv/oY/9r4JPjyNOrfJ/HMXsAmBvAbTtHhgQfs7OAdOd6LHAQM0yZ6LxDXuByx74R8LoTRglmyKupYzcK2OcX3y+BhT5xbwUaBSpnPn5iMQrqH8dZxr/Ap+HqPJO/svubU/Yv9/O7kCB1T4B4Gjvhlj7PXODFKsoYsvw64Y70uZ8P3H0caTEHvwYUprEytbrlCNPQWYVRzh0JruxGAblAchCZzsK8j919zBZjevwJmN7lIWCzY3eFE9ccp0ymYZT/WQHCfsNx+0R106o25+x2+lx3AC51uudZIpKF6bG0CuL+J8wLUGGIR0TOE5ElzhBiFqbQlLprh2lh+NPBCW+vT/z/wPTwgiIiLUXkdTHDnkcwvQ1/mWZjWoVPq2qhY9baeQYAVNXrPF8bH3/7fK7zgeRQstQyOyt3UkYH4Da/vGuHecaqMASYDMwQkdgQ7lr7yRVIxqBp5gwLb3SGm7IwlbRvXpWF5+THrtJnEJGrfYZpszD5GdBvFSiTUVXzncvkQPb+z1ANcjHzGL40BHKCuC21r+BWVT/DDFO9hVEG6Y7dLsftTEyvphmm5/M2ULrIqTI5ngDuV9XsYA8iIi7gJYyCuSmYu0qoStmZgmlwvhnALmDd4wyPPugMcR/BpA3UQtkgcN6Ho2wEdOvky98xHYmSSuK8BnhLVXP9LURkOGY0YKKqbvGxmoLpae/ENKhf5liZO+r8369meHUNpsF1vl/YAx2znqo6vRIZK1Cbyk59rndienaNfX4NVPVBHzftfK7bY4aDDvoGKCLxmJfyUcywTGPgI0w3ujQe/3HwUvNCoLlP/A1VtU8At7781XmOVFVtiBkqKxtHd8aen8C0QGb4jPXvwSiJUnfiPN/uSuKrgIiMkoqrnnx//nNTVUH97vMxvZBSTvW53okZW/fNuyRVfY0qoKb59S5meKlVCKd7McNQpbQL5tAfJw3uBC4DmjjlIhufvPINz3mR2wJ7xKxUm42paJs5ftf5+fVPr3CzHugsPqvbgH6OeTnUzJfsdewDulXVmaraTVVbYt6vGI4tJuqPaekfchpzTwNDnbnGLUCMiHQLEvbPgUecOa/SivxbcVZsOu/FHMzIywRVLa5mOpRSlbIzA1OfvCoV5+qD1T1XYBbujMU0njo6biK9bJTltTOv2oUAZYPQ5aghpmc3z8m77x37Xb51jogkYqYBXvAPXEQGYEa+pqnq5752aubiLlDVFqo6DNOAWOpYryl15uslgPy9gA2qujmAXaXU1acHLwMXisg5TmspQURGi4hvAb1SRHqLSBJwP/Cmqnr8wonDtDIzgBJn8v9sH/s5wLVilt66xCxv7amqe4FPgcdEpKFj10VEzqhE7hRM6ydbzHLrO/zsnwSWqep1wIfALMd8PjDOkSMWM4dUCPy3soTyR1W/Vp9VTwF+X1c3zACsAq5w8uZczFxoKbOBG0RkmBgaiFlWnAJlk/RzK3mG0h5vXAhn8zF518spA/dUQ/4UzBBbBqbyvZeKLdZBInKJmEUL0zH5sQTTW1HHLyJyLaZnF7E4LeRVwJ+cd+lizFDPW0G8vAj8UUSaOAsVfokZVsPx39fJ2/bAPzFzbIcdv98DV4tZ4BWLGXrdo6oHVTUP09O73ykXIzDK4SXHb3dM5dnf+QFciJk/B9Oi7wVcqKqlrfkyxCwyGV2FJJkP3OK8740x0yb+FGMq5QbAi06Dp5RgdU8KppxkYhqDf62CLOHmHaCviEwQs+jtXmCNqm7yd1hJOcrG9Jj7O7/SXtUg4DufYC7GDFF+6Ru2iPQFPgFuVtUP/ON23vMUEYkTkSsx9fjfHLm2AV8DfxDziUovzOjQv/2CicXkz3FRJ8pOVXdiXoLfYyqVnRjF4RvfS5gXcB9mHLfC9xOqmuOYz8ck8BWYlkOp/VLgWuBxTGZ9xbEe1tWYynaD4/dNQvc0wCx/HeiE9SHmxQbMqk/MooobHaNbgYEiMsVpaVyJaQUfxLzgF6pZ7RaJ3IKRMQszvPBuqYWqLsNUjs9g0m0rx1bygWkVf1OFOJQQ5UtVPwaewrw0WzGKCKpWmBdgXqwtmGGoAioOL72HWXxyGDNXcYmalWAbgMeAb4H9mCXUVXmeOkXMt22zQjiZjGl5HwYexAwTlSrsKSLi25L/E2Z4/yfMO/GIqn7i2CVghplyMS3rbynf0Lgdk54/YN7d8zEVXCm/xsyrHMAsY79RVdcDqOoBVd1X+nPcH1TVo06P+leYinSfz0jFFOcZ2mGG3tZWnlrMxjRm12DmFD/CNH7KNZad9+8STE/yOR+FF6zuedFJs92YemMJEYCYVd5TAtk5ZWACZu7tMGZh2WQfv/7lKmA5UoNv3mU47vf71WPXYEbt/Htet2EW9c3xyVvfMnkO8KMT7w2YxTgZPvaXY+ruTEzde49/7xCzpiPkCu9QSEWZ6x4RWYhZRPGvEx655bgRkThgNZBW2RCUiOwB7lTVKu1k4rTm1mEW/VQ2Z2CJMpzWfh9V/d/j8HseZsFXh0odW+olTkPlKcyKzsuOJwy7g4qlyqhqkar2quJcy92Y4ZLlwRyIyMXOsEUT4CHMEnar6E5CVPXlqio6EUkUkfPFfDPaBtOTfacyf5b6iZgdfjKA4ZhRmePipFN2Un5rLd9fqCEkSzVR1RedRRChPhr+FWY4bBtmCOrGEG7Dgi0vEYlgphwOY4YxN2Lmqk6sEGZ4MVDZCDjkaDk+1GwX1kxVB6vqd5X7CExYhjEtFovFYjmRnHQ9O4vFYrGcfETKJrcANG/eXDt27BhuMSwWi8VyAlm+fPlBVQ22sXmtEFHKrmPHjixbtizcYlgsFovlBCIiP1XuqmbYYUyLxWKxRD1W2VksEcjWHzby47YtlTu0WCxVIqKGMS0Wi6HrK8PNxYygeypbLJZqEPHKrri4mF27dlFQ4H+On8USnISEBNq2bUtsbKiDFywWy8lCxCu7Xbt2kZKSQseOHZHjOsjXcrKhqmRmZrJr1y46deoUbnEsFksEEPFzdgUFBTRr1swqOkuVERGaNWsWFaMBdtMHi6V2iHhlB1hFZ6k20VJmCguP+0QTi8XiQ71QdhbLycrRvEAHTlsslupilV0VEBFuu+22svtHH32UGTNmhE+gSli4cCH//W+1z40tY9WqVZx22mn06dOHtLQ05s2bV4vSWarD0bwj4RbBYokKrLKrAvHx8bz99tscPHiwVsNVVbze4z6LMCg1VXZJSUm8+OKLrF+/nk8++YTp06eTlZVVewJaQuMzT1d4NDeMglgs0YNVdlUgJiaG66+/nscff7yCXUZGBhMmTGDIkCEMGTKEb74xh17PmDGDRx99tMxd3759SU9PJz09nR49enD11VfTt29fdu7cyR133EHfvn1JTU0t60UtXLiQ0aNHM3HiRHr27MmUKVMCLlZ46qmn6N27N2lpaUyePJn09HRmzZrF448/Tv/+/fn6669DynjVVVdx2mmn0a1bN2bPng1A9+7d6datGwCtW7fmlFNOISMjo0Lcb7zxBn379qVfv36cfvrpgFlQdO2115KamsqAAQP48ssvAZg7dy6/+MUvOOuss+jYsSPPPPMMf/vb3xgwYADDhw/n0KFDAMyePZshQ4bQr18/JkyYQH5+foV4hw8fzvr1xw5BHj16dHRtM6fHGkBF+XYY02KpDSL+0wNf7vtgPRv21O6wTu/WDfnThX0qdfeb3/yGtLQ07rzzznLmt9xyC7/73e8YOXIkO3bs4JxzzmHjxo0hw/rhhx944YUXGD58OG+99RarVq1i9erVHDx4kCFDhpQpjpUrV7J+/Xpat27NiBEj+Oabbxg5cmS5sB588EG2b99OfHw8WVlZNG7cmBtuuIHk5GRuv/12AK644oqgMq5Zs4YlS5aQl5fHgAEDGDduHK1bty4Lf+nSpRQVFdGlS5cKz3H//fezYMEC2rRpU9bzmzlzJiLC2rVr2bRpE2effTZbtpidQNatW8fKlSspKCiga9euPPTQQ6xcuZLf/e53vPjii0yfPp1LLrmEX/7ylwD88Y9/ZM6cOdx8883l4p00aRLz58/nvvvuY+/evezdu5fBgweHTPN6hddTdllke3YWS61ge3ZVpGHDhlx99dU89dRT5cw/++wzbrrpJvr3789FF13EkSNHyM0NXUF16NCB4cPNDhmLFy/m8ssvx+1207JlS8444wy+//57AIYOHUrbtm1xuVz079+f9PT0CmGlpaUxZcoUXn75ZWJiArddQsk4fvx4EhMTad68OWPGjGHp0qVl/vbu3ctVV13F888/j8tVsaiMGDGCqVOnMnv2bDweT9nzXHnllQD07NmTDh06lCm7MWPGkJKSQosWLWjUqBEXXnghAKmpqWXPtm7dOkaNGkVqaiqvvPJKuR5cKZdddhlvvvkmAPPnz2fixIkh07veoceUXXGBVXYWS21Qr3p2VemB1SXTp09n4MCBXHvttWVmXq+XJUuWkJCQUM5tTExMufk432++GjRoUKX44uPjy67dbjclJSUV3Hz44YcsWrSIDz74gAceeIC1a9dWcBNMRqi4RL/0/siRI4wbN44HHnigTDH7M2vWLL777js+/PBDBg0axPLly6v8PC6Xq+ze5XKVPdvUqVN599136devH3PnzmXhwoUVwmnTpg3NmjVjzZo1zJs3j1mzouzQcJ+enccqO4ulVrA9u2rQtGlTLrvsMubMmVNmdvbZZ/P000+X3a9atQowxxWtWLECgBUrVrB9+/aAYY4aNYp58+bh8XjIyMhg0aJFDB06tEryeL1edu7cyZgxY3jooYfIzs4mNzeXlJQUcnKOzfUEkxHgvffeo6CggMzMTBYuXMiQIUMoKiri4osv5uqrrw7Za9q2bRvDhg3j/vvvp0WLFuzcuZNRo0bxyiuvALBlyxZ27NhBjx49qvQ8ADk5ObRq1Yri4uKycAIxadIkHn74YbKzs0lLS6ty+PUCn56dt9AqO4ulNrDKrprcdttt5VZlPvXUUyxbtoy0tDR69+5d1suYMGEChw4dok+fPjzzzDN07949YHgXX3wxaWlp9OvXjzPPPJOHH36YU089tUqyeDwerrzyyrLFIL/97W9p3LgxF154Ie+8807ZApVgMoIZBh0zZgzDhw/nnnvuoXXr1syfP59FixYxd+5c+vfvT//+/csU5L333sv7778PwB133EFqaip9+/blZz/7Gf369ePXv/41Xq+X1NRUJk2axNy5c8v16Crjz3/+M8OGDWPEiBH07NmzzPz999/n3nvvLbufOHEir7/+OpdddlmVw643+PTstKjiAh2LxVJ9JJK2Ixo8eLD6r6rbuHEjvXr1CpNE0c2MGTPKLWSJNupt2cnNgEe7AvDfLr/jZ1fNCK88FksdIyLLVbVOV5nZnp3FEmGo99jcrBbbnp3FUhvUqwUqltolkneBOZnxeEqOvZh2GNNiqRVsz85iiTBKPMfm7FwlR8MoicUSPVhlZ7FEGF6fT0zEKjuLpVawys5iiTA8nuKya7dVdhZLrWCVncUSYXh8hjHdnvp/AK3FEglYZVdF3n33XUSETZs2BXWTnp5O375961SOVatW8dFHHx23/9KP0Hv37k2fPn148skna1E6S23g27OL8diencVSG1hlV0Vee+01Ro4cyWuvvRbQPtBWXtXFt0UfjJoqu5iYGB577DE2bNjAkiVLmDlzJhs2bDju8Cy1j9enHMR6bc/OYqkNrLKrArm5uSxevJg5c+bw+uuvl5kvXLiQUaNGcdFFF9G7d2/AKL0pU6bQq1cvJk6cWHZEzeeff86AAQNITU1l2rRpFBYWAmZbsbvuuouBAwfyxhtvlIvX/widoqIi7r33XubNm0f//v2ZN28eeXl5TJs2jaFDhzJgwADee+89wBypM378eEaPHk23bt247777AGjVqhUDBw4EICUlhV69erF79+4Kz/zVV1+V7Z4yYMAAcnJyUNWgxxGdccYZjB8/ns6dO3P33XfzyiuvMHToUFJTU9m2bRsAH3zwAcOGDWPAgAGMHTuW/fv3V4h38uTJfPjhh2X3U6dOLdv0+WTB49NwssrOYqkd6vw7OxE5F3gScAP/UtUHjzuwj++GfRU3Oq4Rp6bCeaFFeu+99zj33HPp3r07zZo1Y/ny5QwaNAgw+16uW7eOTp06kZ6ezubNm5kzZw4jRoxg2rRp/P3vf+emm25i6tSpfP7553Tv3p2rr76aZ599lunTpwPQrFmzsn00ffE/QicuLo7777+fZcuW8cwzzwDw+9//njPPPJPnnnuOrKwshg4dytixYwFzPM+6detISkpiyJAhjBs3rtxROOnp6axcuZJhw4ZViPvRRx9l5syZjBgxgtzcXBISEnj77beDHke0evVqNm7cSNOmTencuTPXXXcdS5cu5cknn+Tpp5/miSeeYOTIkSxZsgQR4V//+hcPP/wwjz32WLl4S4/vGTduHEVFRXz++ec8++yzVczM6MDrMcouRxOJ08IwS2OxRAd12rMTETcwEzgP6A1cLiK96zLOuuC1115j8uTJgOl5+A5lDh06lE6dOpXdt2vXjhEjRgBw5ZVXsnjxYjZv3kynTp3K9se85pprWLRoUZmfSZMmBYw30BE6/nz66ac8+OCD9O/fn9GjR1NQUMCOHTsAOOuss2jWrBmJiYlccsklLF68uMxfbm4uEyZM4IknnqBhw4YB47711lt56qmnyMrKIiYmJuRxREOGDKFVq1bEx8fTpUsXzj77bKD88T27du3inHPOITU1lUceeSTg8T3nnXceX375JYWFhXz88cecfvrpJCYmBnz2aKVU2eVLIvFqe3YWS21Q1z27ocBWVf0RQEReB8YDxzdJVEkPrC44dOgQX3zxBWvXrkVE8Hg8iAiPPPIIUPG4nmBH5oQi2JE/VTlCR1V56623Kpws8N133wWVpbi4mAkTJjBlyhQuueSSgHHffffdjBs3jo8++ogRI0awYMGCkM9QleN7br75Zm699VYuuugiFi5cGHAHl4SEBEaPHs2CBQuYN29eWSPjZKJ0zu6oJNLEmxVeYSyWKKGu5+zaADt97nc5ZmWIyPUiskxElmVkZNSxONXnzTff5KqrruKnn34iPT2dnTt30qlTJ77++uuA7nfs2MG3334LwKuvvsrIkSPp0aMH6enpbN26FYCXXnqJM844o9K4Ax2h4398zznnnMPTTz9N6YbeK1euLLP7z3/+w6FDhzh69CjvvvsuI0aMQFX5n//5H3r16sWtt94aMu7U1FTuuusuhgwZwqZNm2p0HBFAdnY2bdqY7H/hhReCups0aRLPP/88X3/9Neeee26Vw48WPE7PrtCVRAJFRNJm7RZLfSXsC1RU9Z+qOlhVB7do0SLc4lTgtdde4+KLLy5nNmHChKCrMnv06MHMmTPp1asXhw8f5sYbbyQhIYHnn3+eSy+9lNTUVFwuFzfccEOlcQc6QmfMmDFs2LChbIHKPffcQ3FxMWlpafTp04d77rmnzP/QoUOZMGECaWlpTJgwgcGDB/PNN9/w0ksv8cUXX5QtQCld3Tlr1qyy43+eeOIJ+vbtS1paGrGxsZx33nk1Oo4IzF6cl156KYMGDaJ58+Zl5suWLeO6664ruz/77LP56quvGDt2LHFxcVUOP1rwOhtBF7mTiJdiCouKK/FhsVgqo06P+BGR04AZqnqOc/+/AKr6f4Hc2yN+ao+5c+eWW8hyMlJfy84P375PtwVXsTxxBIOOfsPhW7bTpEnTcItlsdQZ0XDEz/dANxHpJCJxwGTg/TqO02Kp16gzjFkSmwxAQb49rdxiqSl1ukBFVUtE5CZgAebTg+dUteISPEutM3XqVKZOnRpuMSzHQemcnTfWLFwqPGqVncVSU+r8OztV/Qg4/i0/TBhVWtVosZRSnxd1lPbsND4FgCKr7CyWGhP2BSqVkZCQQGZmZr2uvCwnFlUlMzOThISEcItyXHhL98aMM8qu2Co7i6XGRPxJ5W3btmXXrl1E4mcJlsglISGBtm3bhluM46K0Z+dKbARAcWFeOMWxWKKCiFd2sbGx5XYosViiHW+ZsjM725QUWGVnsdSUiB/GtFhOOpzv7GKcnp2nyCo7i6WmWGVnsUQYpT27uAaNAfDYnp3FUmOssrNYIg2nZ5eQbHp2WpQfTmkslqjAKjuLJcIoXaCSkNzE3BfZ08otlppilZ3FEml4zacHsUlmgYoW256dxVJTrLKzWCIMdYYxXbEJFBGDWGVnsdQYq+wslkjDGcaMiYmjgHikxA5jWiw1xSo7iyXCKOvZxcRSKPG4rLKzWGqMVXYWS6RR+ulBTAyFkoDbKjuLpcZYZWexRBjqLaFY3cTGuCh2JRDjscrOYqkpVtlZLJGGpwQPLtwuMcrOa5WdxVJTrLKzWCIM9XoowY2IUOxKJM5TEG6RLJZ6j1V2FkuEod4SPLgBKIlJJE6tsrNYaopVdhZLhCHeYjxiXk2PO5F4r1V2FktNscrOYok0vCV4nZ6dNzaJBKyys1hqilV2Fkuk4fVQ4hw1qTFJJNhhTIulxlhlZ7FEGOItwSumZ6exSSRSREmJJ8xSWSz1G6vsLJYIw+UtKlugQlwSLlHyj+aGVyiLpZ5jlZ3FEmHEeAsodCUAIHENACjIywmnSBZLvccqO4slwoj1FlAkRtm5442yK8q3PTuLpSZYZWexRBgxngKKnJ6dy1F2hfm2Z2ex1ASr7CyWCCPWW4DHnQiAOyEZgKICq+wslppglZ3FEmHEeQvwxpieXayj7IrtAhWLpUZYZWexRBhxWog3xvTsSpVdSUFeOEWyWOo9VtlZLBFGAgVoTBIAsYlG2XkKrbKzWGqCVXYWSwShXi8JWgSxZhgzIckoO69VdhZLjbDKzmKJII7mZRErHrwJTQBISGoIWGVnsdQUq+wslggiK2MfADHJLQCIb2B6dhRbZWex1IQaKTsRmSEiu0VklfM738fuf0Vkq4hsFpFzai6qxRL95B02yi62oVF2cfEN8KqgRVbZWSw1IaYWwnhcVR/1NRCR3sBkoA/QGvhMRLqrqt3N1mIJwdGs/QAkNmkJgLhcHCUOKc4Pp1gWS72nroYxxwOvq2qhqm4HtgJD6yguiyVqOHrwJwCatep0zEwScJUcDZdIFktUUBvK7iYRWSMiz4lIE8esDbDTx80ux6wCInK9iCwTkWUZGRm1II7FUo/J3EaextP81PZlRoWSgMv27CyWGlGpshORz0RkXYDfeOBZoAvQH9gLPFZdAVT1n6o6WFUHt2jRorreLZaoIjHnJ/a5WyOuY69moSQQ47E9O4ulJlQ6Z6eqY6sSkIjMBv7t3O4G2vlYt3XMLBZLEFSVZke3cyCldznzYpdVdhZLTanpasxWPrcXA+uc6/eBySISLyKdgG7A0prEZbFEO7t3bqcNB/C0HlzOvMidSKzXKjuLpSbUdDXmwyLSH1AgHfgVgKquF5H5wAagBPiNXYlpsYRm1+ovaAs07zOmnHmJO5HE4uzwCGWxRAk1UnaqelUIuweAB2oSvsVyMuHd/g15JNC+97By5iXuJBK05j07b0kJm5d/QdaGz5HcfXhjk4lr259uP/sFjZra+XJLdFMb39lZLJZaoGXWcn5M6EtqTGw5c09MEvFacNzhFhUWsPK9p2i3YTa9OABAFskkaQFx+16m6Pu7WJ08nJj+k+h5+qW445MChuMtKSFjz49k7N7O0UO70KNZlJSUEOMCiUvGldgId1Ij4ho0JiEpmYTEZBokp+CKjcdb4sFTUoi3pBhP6c/rwespwevx4vGWoB4PqBeXC1wiuMSFiOB2ibl3OT8Rx9x1zLzcvwuXgIgzS5PYBJJPOe70s0QHVtlZLBHAwQP76OL9iaWtxlWw09gGJB6nstvy/WfEfHwrw7w/sTm2J8v63UnPURNo3KgpnpISNq9ayKGl8+l64FNafPNbcr+5mx+ajKKwUWdUFTmaRXzODpoW7qCVZx8tpYSWNX3YE0wRMRz9zWoatWgbblEsYcQqO4slAvhp5ec0Bxr1HF3RMq4BiRTi9Xhwud1VCs/r8fDtC3/gtJ9mcUCasWbULFLHTCr3SYM7JoYeg8fC4LEUFhWx9Ot/U7Tydfoe/obGhxcAkK/xZLhP4VBiR/Y0HIM060xyiw6ktGhLQsPmJMTFUeRVivNyKMzPoigvi+L8bIoL8ig5mkdJYT4ubyGIG9yx5ueKxeV2Iy434opB3G5EXIjLDeLCo4AqXlW8Xi8KeL2Kqvl5VVGvY69+5qp4vaBq/EnOHsbtncn67z9hwPnX1TSbLPUYq+wslgig8MfFFGkMnfqNqmCn8cm4RMk/mktScqNKwzqae4Qf/n4ZI/K/ZUWjn9P1ujmkNWwS0k98XBxDf34J/PwSVJXCwqO4XS4SY+PpIEKH436y8FJcXETOX56jeNsiwCq7k5moO/XAU1ISbhEslmrTNHM52+J6EJdQcb7MFWdOPsjPrXxFZmbmQbY/cQ598pbwbfc7GDD9TRpWouj8ERHiE5KIiUtARKrlN9KIjY1jW4P+tMv8Bq/HG25xLGEkqnp2BUfzOPTwAHY2PY2UIZfTfeAYYuLiayVsj1fxekrAW4wqgKkEtKwucC6cykFwHbv2qS9KL8smz33Mytw6E/DVQY1QPvc+15W5rWDvaxc83Ioy+N1X4lfL2VVdJn/LuorHP9xKbquVbr63Rfm5dCneyoo2VxIIV4JRdgW5RwLal5JxYC+Zsy6km+dH1v3sCU47Z2pI9ycLJT0upNXK37Np5Zf0HPzzWgu3ID+X/NxsigvyKSrIo7ikCMGNy+3G7XbjcseYRTQxMbjdMbhcjllMLG63G3dMDG5XDC53DLjc5SsKS60TVcouPyeLXQ0H0O/ghyR88i65HyeyK64TRxp0RBOboLHJIILLW4KnpAgtKYCSAqT4KG5PAS5PAbHeAmK9hcRpIfFq/hMoIoFC4iVye40CeDXwy+Jval+pyMIlCgJJ3UYGtHcnpABQmB9c2R3Yt4sj/7yAzp6dbDtzFv3OuKxOZK2PdD9jMgUr/sSRxf+Caiq77EMH2b3xW3J2rIGMTSTn/kRKyUGaeg6RLEdJqEU5vSp4cKEh39Dgrc1QviSEv8rsQ4W7nk6k3rcyZNiRQlQpu6antGHo7+aRl32IZf99H922kKTsH+ic9S0NDueRKEVlbos0hmKJoZB4iiSeIlcCJa54SmISKHE14qg7gbyYBDzuRDQmAY1JxONOwCtOkglIWfnQcv+CBuwCaQX3fvaAaIX+RPkAAvQSA9kZ++DFtIJNBb8hOFHx+HsN0fKtLJxQjeaKMoYOLWSlUokgEuROEpLpM/IXAf3EJpqeXdHRnID2+3enc/Rf42jjPcD2s+fQc0TgcE5WGjZuxpJTxjPowDv8tHE5HXoNCur2SOY+ti9bQMG2xTTPXEanku30dl70LJLZF9uOjKSu7Ek8BU0+BVd8ChKbiCsuEVdMHKiiXg/qLcHr9YDXg9frQZ1r9XpAPeApAfWgXi84doIHUW+liilUIStVlIFc+CtR/2ACKVkJcOVLXnz9+T4zqpRdKQ0aNWXweVOBqWVmqkpJSbEpRuImLsZNHNAgLBJaLFUnNqkhAEX5FZXd7vQteF+4iFO8h9hx/ov0GHbeiRavXtB1wp/ImfUprvlXsn3C83TqOxyAI1kZpK9eTN6mz2lx4L90LvmRfqLkazw/JvRiaZvrSew8nFbdBtGiVTsau6JumcNJQ1Qqu0CICDGxceEWw2KpNvGOsispKK/sftq8ioTXLiGJo+y56DV6DKq9+ahoo/mp7dl0/hxO/ehaGr95DgffbIwLL005QhpQrG5+iOvNkg7X07DPWXTtN4q+CbU5SGkJNyeNsrNY6iuJyY0B8OQdLjPb8N2nnPrx/6AIBye+Q1enp2IJTs+hZ5PVeTnfLpiN++BGVNx4G3ckuX1/ugz+Ob2ddLZEJ1bZWSwRTrNWHSlSNxz6Ea/Hw9L5DzJo02MccLXAc8UbdOqWFm4R6w2Nm5/KaVPuCbcYljBglZ3FEuHExsaS7mpFu72fsuXBkQwv3sCqpOF0uv4VGjVpHm7xLJZ6gZ1ttVjqATvbjqOV7qdl8S6Wpv2Ffnd8bBWdxVINbM/OYqkHjJj6ID9uvpRWHXszNMmuIbZYqotVdhZLPcDldtG595Bwi2Gx1FvsMKbFYrFYoh6r7CwWi8US9Yj/xrjhREQygJ9qIajmwMFaCOdEUJ9khfolr5W17qhP8tYnWaF+yVtbsnZQ1TrdeyyilF1tISLLVHVwuOWoCvVJVqhf8lpZ6476JG99khXql7z1SVY7jGmxWCyWqMcqO4vFYrFEPdGq7P4ZbgGqQX2SFeqXvFbWuqM+yVufZIX6JW+9kTUq5+wsFovFYvElWnt2FovFYrGUYZWdxWKxWKKeqFJ2InKuiGwWka0icne45fFHRNqJyJciskFE1ovILY75DBHZLSKrnN/54ZYVQETSRWStI9Myx6ypiPxHRH5w/ptEgJw9fNJulYgcEZHpkZSuIvKciBwQkXU+ZgHTUgxPOeV4jYgMjABZHxGRTY4874hIY8e8o4gc9UnjWSdS1hDyBs17EflfJ203i8g5ESDrPB8500VklWMeCWkbrM6KyLIbElWNih/gBrYBnYE4YDXQO9xy+cnYChjoXKcAW4DewAzg9nDLF0DedKC5n9nDwN3O9d3AQ+GWM0A52Ad0iKR0BU4HBgLrKktL4HzgY0CA4cB3ESDr2UCMc/2Qj6wdfd1FUNoGzHvnfVsNxAOdnDrDHU5Z/ewfA+6NoLQNVmdFZNkN9Yumnt1QYKuq/qiqRcDrwPgwy1QOVd2rqiuc6xxgI9AmvFJVm/HAC871C8AvwidKQH4ObFPV2tiJp9ZQ1UXAIT/jYGk5HnhRDUuAxiLS6oQISmBZVfVTVS1xbpcAbU+UPJURJG2DMR54XVULVXU7sBVTd5wQQskqIgJcBrx2ouSpjBB1VkSW3VBEk7JrA+z0ud9FBCsSEekIDAC+c4xucrr9z0XC0KCDAp+KyHIRud4xa6mqe53rfUDL8IgWlMmUrywiMV1LCZaWkV6Wp2Fa76V0EpGVIvKViIwKl1ABCJT3kZy2o4D9qvqDj1nEpK1fnVXvym40Kbt6g4gkA28B01X1CPAs0AXoD+zFDGVEAiNVdSBwHvAbETnd11LNuEXEfLsiInHARcAbjlGkpmsFIi0tgyEifwBKgFcco71Ae1UdANwKvCoiDcMlnw/1Ju99uJzyDbWISdsAdVYZ9aXsRpOy2w2087lv65hFFCISiyk0r6jq2wCqul9VParqBWZzAodVQqGqu53/A8A7GLn2lw5LOP8HwidhBc4DVqjqfojcdPUhWFpGZFkWkanABcAUp4LDGQ7MdK6XY+bAuodNSIcQeR+paRsDXALMKzWLlLQNVGdRz8ouRJey+x7oJiKdnBb+ZOD9MMtUDmdMfg6wUVX/5mPuO6Z9MbDO3++JRkQaiEhK6TVmgcI6TJpe4zi7BngvPBIGpFzLOBLT1Y9gafk+cLWzsm04kO0zZBQWRORc4E7gIlXN9zFvISJu57oz0A34MTxSHiNE3r8PTBaReBHphJF36YmWLwBjgU2quqvUIBLSNlidRT0qu2WEe4VMbf4wK4G2YFpAfwi3PAHkG4np7q8BVjm/84GXgLWO+ftAqwiQtTNm1dpqYH1pegLNgM+BH4DPgKbhltWRqwGQCTTyMYuYdMUo4b1AMWYe43+CpSVmJdtMpxyvBQZHgKxbMXMxpeV2luN2glM+VgErgAsjJG2D5j3wBydtNwPnhVtWx3wucIOf20hI22B1VkSW3VA/u12YxWKxWKKeaBrGtFgsFoslIFbZWSwWiyXqscrOYrFYLFGPVXYWi8ViiXqssrNYLBZL1GOVncVisViiHqvsLBaLxRL1/D+LnIMBsMnnNQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEYCAYAAADPvfYMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmlUlEQVR4nO2dd5yUxf3435+9fnBw9C5NOgcH0hRQMAgYoqioaFBEo0YTE0tiSdGgKT9rrHwlGhS7YNdo1EhExAgIgjRB2lEU5CjH9bqf3x8ze+7t7e7dcQe7dzfv12tf+zxTP8/MPPOZ9syIquJwOBwOR2PFE2kBHA6Hw+GIJE4ROhwOh6NR4xShw+FwOBo1ThE6HA6Ho1HjFKHD4XA4GjVOETocDoejURPVilBEuomIikhspGVp6IjILBFZepziShKR90TksIjccjziDIg/Q0QmHId4FovIlSHsXNmOAOHS/XjmiY3nxBB2x+1dbAiIyC22LvlARJKPJoyoVoSOo0NEZotIiYjk+v2Ou8IJwwRgENBFVe/1GVoF1S1iUkURNg9n18D9T0Vkp4jkicibItIyjNsnRGSziHhFZFYQ+xtFZJ+IZIvIUyKS4GeXLiKfisgREdkjIreHiOMOW9lP8DPrJCJvicgh6/eaAD9q5feV2X/W4PkbzQfRtoE1rppuRUTuEZGD9nePiEgY91WWIxHpJSKFIvJ8gHkbEXnRlo3DIvKCn939IrJFRHJEZJOIzAzwe5aIrLf5/j8R6e9nNzegLisSkRyfva1DOgN9gYnVSZdAjqkidK3diLJAVZv6/e6t2stxoyWQoaq5kRakNthKJuKNSREZAPwDuBRoB+QD/xfGy1fAL4Avg4Q1CbgN+BHQFegB3Onn5EVgCSYPTwN+ISJnB4TRE7gA2BsQ/PPADivjFOBvIjI+wM1gvzIbtDddH4iiuu9q4BxgMKbxeRbw82AOa1CO5gBfBDF/HdgHnAC0Be73s8uzcTcHLgMeFpFTbLy9gBeAa4BU4B3gbV8aquo1/nUZ8BLwin/EqpqHKVutQqZEGOr8Jbat+ltFZC2QJyKxIjLKavksEfnKvzVjWzf/T0RW2BboW6FasyJyuYh8bVsV20Xk5wH2U0VkjQ1nm4hMtubNRWSeiOwVkW9F5C8iElPFc/QUkf/aVtQBEXlBRFL97A6JyFB731FEMn3PJSJni8gG+7yLRaRfQPr8VkTW2pbTAhFJrHlK1xwRuc2mS46IbBSRc0O4ExF5UET227RcJyIDrV2Cbd3tEpHvbWstqYaixALeKmRtJSLv2Pi/sHm21M9eReQa28rMEpE5IqalGy7v/Bhu0+CwiDztywMRaSEi/7L5edhed/aLd7GI/FVEPsNUFD2qeNauIvKZTfMPRaR1gP0Mm5YHROQPVYQVihnAO6q6xDYubgfOE5GUYI5VdY6qLgIKg1hfBsxT1Q2qehj4MzDLz74b8IKqlqnqNmApMCAgjDnArUCxz0BEmgLjgL+qaomqfgW8ClxR04etChHpLiJLbJp/ZMvG8yHcTrPv5EA/4ytE5DtbX/zWz+0IEfnclre9IvKYiMT72auI/FJEtgBbqiHqhGDl1y+8+20Z3CEiZ9YwGXxcBjygqntU9VvgASrmpz9VliMRuQjIAhYFyDoR6ALcrKpHbB6v9tmr6p9UdZOqelV1OfApcLK1ngR8qqpLVbUUuAfohGloVUBEmgDTgGeCyO/F1C01R1Xr9AdkAGtsoiTZBzoI/BijeM+w922s+8XAt8BAoAnwGvC8tesGKBBr76cAPQGxiZQPDLV2I4AjNnyPjbevtXsD09JpgmmprAB+XsVznGjDSgDaYFrBD/nZXwVsBJKBD4D7rXlvTOvnDCAOuAXYCsT7pc8KoCOmVf01cE0IGcZgCl2o35gQ/mb70jDA/AIbrweYbuXsYO1mAUvt9SRgFaZ1JkA/P3cPAm9b2VMwrbf/V4PyEQc8F0y+AHcv218y0B/Y7ZPP2ivwLyvjCUAmMLmaeZcBrMeU0ZbAZ8BfrF0rzIuWbJ/vFeBNP7+LgV2Yyj8WiAvzDIuBbbZMJNn7uwPK9pPWbjBQBPQLEVa4/H4LuDXALBc4qYo0XgrMCjD7Cpjud9/aytnK3v8NuNvmYx9gDzA8oIy95ZfOE+x1ig2nrZ/bJ4HVAXn6HaZX8TrQ7SjroM8xvZF4zDuUTZA6Bbgc826eGGD3EqauSLPlyvcMJwGjrN9umHf3hgD5/2PLVFIVMoYrv7OAEkwdEwNca9NFQtURYeI5Aoz0ux8G5BxNOQKaAd9ghiFn4/cOA3dg6sHnMfX7F8BpIeJJwowW+J73OuA9P/sYTCPt+iB+ZwLbQ6TFMzbv4mtcZo6moFWRwRnAFX73twLPBbj5ALjMXi/GVg72vj+mJRlDgCIMEtebvsTCKLoHg7hph6lgkvzMLgY+ruFznYPfS2vN3gbWAWuBBGt2O7DQz40Ho+jH+aXPJX729wJz6zgPZts0zPL7dQzibg0w1V7P4gdFeLot8KMAj597wSjPnn5mJwM7qilXOuYF/x5b+YRwF2Pd9fEz+wuVFeEYv/uFwG3VyTubB9f43f8Y2BZG5sN+94uBu6r5vIuBP/rd/wJ43177ynZnP/sVwEVHkd+LCGhM+Ze5MP6CKcJt2ArK3sdZObvZ+1MwyqPUmt/p5zYF0xPyuc3AKhG/+B4FEoGhwCFgs5/9qRjllQo8hmmsBH33wzzTCVa2ZD+z56msCH+Lacj6p7/Prq+f2b2YHnKwuG4A3ggok6dXU86Q5RfzLm71s0u27tsfRdkoC3ieXjasYIokbDkCHsYqSiorwidsuD+zZcbXc2wdJJ5ngPd9MmDm9vIwIwbxmDrUC/wuhIyzQzxrT0wjqgQYVpN0OlbzG7v9rrsCF9juf5aIZGFaMR1CuN+JScjAISRE5EwRWWaHJbMwFZjPXRfMSxxIVxveXr/4/4HpGYZERNqJyMtihlKzMS9ToExPYnqyj6pqkTXraJ8BAFX12ufr5Odvn991PtA0nCxHyUJVTfX7fSciM8UMHfvSYSBB0llV/4upiOYA+8UsrmiG6V0lA6v8wnjfmleJqq7BVJafYyqRULTBtLr9y8XuIO6CpmM18y6wzHW0fpNF5B9iFgxkY3qTqVJxKD2YLKGoKq/roizkYlrr/jQDcoK4rWlYvuscMVMW7wN3YZRZF2CSiPzCupmNafRmhAh7BtAdk36PY/Jlj89SzZBcsapmAddbt/2ChBOOjsAhVc33MwuWXzcDc1R1TxC7UGWjtx0q32fLxt8IX66qIlzel9v5PUtdlI1mQK5azVGFW5/7HBFJxyxyezBEPAWYef95aoZFX8akxWh/RyJyH6beudAng6puwgzhPobpKbbGNFL2BPg9AaMsnw0hw/WYnmgzVV0Zwk1QjpUi9E/k3ZiXw79SbqKqd/u56eJ3fQJGox/wD1DMyrXXMEMe7VQ1FXgP00vxxdMziCy7MT3C1n7xN1PVwHmNQP5mnyNNVZsBl/jF5ZvzeAiYB8yWH+Y1v8MoX587sc/3bRXxVUJExkrF1VKBv7E1CKsrRnFfhxnmSsW0uIOuIFPVR1T1JEwPvTem4jiAKfAD/NKyuZoJ7GqhqoXAv224ocjEtOo7+5l1CeE2GGHzLkh4J2DyDeA3mCG/kdbvqdbc33+wSiSSbMAMrQIgIj0ww8Lf1DYse/29qh7EzIeWqeqzqlpqlcjLmAYpmAU2v7aKYh8mjReKyK0AqrpTVX+iqm1UdSSmwlsRRhYlRPkMw16gpVRcRh+s7EwE/igi04LYhSobjwObgF62bPw+iHxRXTbs9YbquA0oR+MwPeZdNm9/C0wTEd+Cq7VUfvYK9yJyJ3AmMFFVsys4VH1VVQeqaivgTzauwAU5lwKfqer2EPL3w4y4FISwD8nxWPH2PHCWiEwSkRgRSRSRcf4LEIBLRKS/Lbx3Aa+qallAOPGYTMkESu3ksf9S2XnA5SLyIxHxiFmq3VdV9wIfAg+ISDNr11NETqtC7hRMC+mIiHTCKAJ/HgZWqlnZ9i4w15ovBKZYOeIwFWsR8L+qEioQVf1UK678DPx9WoPgmmAKZiaYhUeYllklRGS4iIy08udhxuu9tnf7JPCgiLS1bjuJWWno86tS9dLuIkx+BsXm/euYBkayiPTFzA1Ul6ryDuCXItLZNmD+ACzw81sAZFm7P9Ug3kjxAuYdG2sXE9wFvK6qQXuEIhIvZnGQAHH2nfTVBc8CP7PvYyrwR2C+tfvGeJef2veoPWauea21/xGmTKXb33eYFYpzbLz9RCTFxn8J5v39u7UbIObTjBjbyHwA03j82trPEpGMqhJCVXcCKzFlJ15ETsasVgxkAzAZmCMBq16B2225G4CZR/QvG9lAri2T11YlTxTwLHCTfU87Yuqj+SHchitHT2A6Gun2NxdT7/ne/TeAFiJymc3D8zEN2c8AROR3wE8xQ+UHAyMWkZOsvzY2rrdtT9GfmWFkBzPyVxTGPiTHXBGq6m5gKqb1lInpod0cEPdzmAfchxly+XWQcHKs+ULgMCZR3/azX4EptA9iJog/4Yee2UxMxbvR+n2VikOzwbgTM49xBJPhr/ssRGQq5iXyvQg3AUNFZIaqbsb0QB7F9KDOAs5S1WIiiKpuxFQun2Pm6NKwhTQIzTAK7zBmaOggcJ+1uxUzR7TMDg99hOlBISJdMMNx66oQx0vVZe86zFLrfZjy8RLVL+Qh886PFzENpO2YIfW/WPOHMJP5B4BlmKHAiBNuBEBVN2CWnr8A7MdU2L/w8/tvEfm9n5cPMcr+FEylU4Dt+arq+5h5sY8xi4J2YhsDthV/HnAjpmyswYwq/MXaH1TVfb4fZn7qsP7wmcwkTHoftvJOVtVMa9cOo3CyrZtuwE9UtcTadyF0eQ1kBmbu+qCVbQFByo6alas/AZ6UiqsyP8GU8UWYRXAfWvPfYuqdHMz7sYAI4xs1CuPkH5gFbeswefWuNfP5Ly9X4cqRquYH5G0uUOjLP1U9BJyNSaMjmE9wpqqqb2Tvb5je9Va/ES3/MvkwZk5xM6Z8XBXwnCdjFGuFzyYCiKGK1eih8E1WRgwRWYyZdK32x7OO6MS28geo6u+qcDcRM1LQ175A1Qn7HsxigctqL6mjviEiH2IWxn19FH4XAJtUtT707h1HgR292Ahcqarv1dR/xD8GdjQcVPX5qpSgZTFmmfkG8ftOyx8R6Ssig8QwArMa7Y26k9ZRn1DVidVVgnZov6cdvp2MGZF685gK6IgYtg7ZhOnJL6rCeVCiZfeDiCAiczHDmIE8r6rXBDF31AF2mHhGFc5SMMOhHTFDuQ9gvnOKKsIMS51ZwzlcR93RHjMc3gqz8vBa9fu4+3hghxv/HcyuJovLHFWjqvdTcRebGhPxoVGHw+FwOCJJnQyNisivxGykukFE/DdR/p2IbBWzwe+kEH67i8hy626B+G1Z5HA4HA7HsabWPUIxm+b+AZiiqkUi0lZV94vZPfwlzNZnHTGrC3sHfhYhIgsxS3RftkOVX6nq4+HibN26tXbr1q1WcjscDocjOli1atUBVa3WxhzHgrqYI7wWs0VaEYCq7rfmU4GXrfkOEdmKUYqf+zyKiGC28/qpNXoGsztFWEXYrVs3Vq6s0cYBDofD4YhSRGRn1a6OHXUxNNobGGuHNz8RkeHWvBMVtxvaQ8VtxsBMZmep2XE8lBsARORqEVkpIiszMzODOXE4HA6Ho8ZUq0coIh9hVmIF8gcbRkvMBs3DMVsqVXU0TY1R1ScwH/8ybNgwt8LH0WjxTWdI6PNVHQ5HDaiWIlTVCaHsRORazByfAitExIvZQ/BbKu7Z15nK+20exGxoHGt7hcHcOBwOS05BEYsemEm8KKdc/wypTWt6FKTD4QikLuYI3wTGAx+LSG/MVmYHMNufvSgif8cslulFwAa7qqoi8jFwPmbz3ss4ym/FSkpK2LNnD4WFwc4adTiCk5iYSOfOnYmLi4u0KNVi5YcvcU6p2fVt8UcvMe6cOj/X1uFodNSFInwKeEpE1mPOwLvM9g432BWhGzEnCfzSt2JURN7DbIXzHWbvypdF5C/Aaszm2TVmz549pKSk0K1bNzdk5KgWqsrBgwfZs2cP3bt3j7Q41aLpljc4TDPiKUG3fMgxOODd4Wh01FoR2l1Cgu3Ogqr+FfhrEPMf+11vx6wmrRWFhYVOCTpqhIjQqlUr6sviK/V66Zn7JVubjyLFm03XnLWoqivzDkctaVB7jboKwVFT6lOZ+S5jEy3JpqzzKArapNODb8k8dDjSYjkc9Z4GpQgdjobM7k3mnNJ2vYfRpJM513jX1lBnrDocjuriFGEdIiL85je/Kb+///77mT17duQEqoLFixfzv//V+LzgCkyePJnU1FR+8pOf1JFUjlCU7V2PV4VOvYaS2qUfAAV7N0dYKoej/uMUYR2SkJDA66+/zoEDB6p2XANUFa/3qM6bDEtdKMKbb76Z5557ro4kcoQj+fAmvvV0ID45hZZWEXJoa2SFcjgaAE4R1iGxsbFcffXVPPjgg5XsMjMzmTZtGsOHD2f48OF89pk5bHv27Nncf/8PJ4gMHDiQjIwMMjIy6NOnDzNnzmTgwIHs3r2bm2++mYEDB5KWlsaCBeZw7MWLFzNu3DjOP/98+vbty4wZMwi2f+wjjzxC//79GTRoEBdddBEZGRnMnTuXBx98kPT0dD799NOwMl566aWcfPLJ9OrViyeffLI83B/96EekpKSETZdXXnmFgQMHMnjwYE499VTALG66/PLLSUtLY8iQIXz88ccAzJ8/n3POOYczzjiDbt268dhjj/H3v/+dIUOGMGrUKA4dMuf4PvnkkwwfPpzBgwczbdo08vPzK8U7atQoNmz4Yehw3Lhx9XprvhYFuziQYD7NjU1KIYsUPDl7IyyVw1H/aZDnEd75zgY2fpddp2H279iMP501oEp3v/zlLxk0aBC33HJLBfPrr7+eG2+8kTFjxrBr1y4mTZrE11+HP2d0y5YtPPPMM4waNYrXXnuNNWvW8NVXX3HgwAGGDx9erlRWr17Nhg0b6NixI6NHj+azzz5jzJgxFcK6++672bFjBwkJCWRlZZGamso111xD06ZN+e1vzdm4P/3pT0PKuHbtWpYtW0ZeXh5DhgxhypQpdOzYsVppd9ddd/HBBx/QqVMnsrKyAJgzZw4iwrp169i0aRMTJ07km2++AWD9+vWsXr2awsJCTjzxRO655x5Wr17NjTfeyLPPPssNN9zAeeedx1VXXQXAH//4R+bNm8evfvWrCvFOnz6dhQsXcuedd7J371727t3LsGHDqiVztKFeL23L9vJdi+HlZodjW5NYsC+CUjkcDQPXI6xjmjVrxsyZM3nkkUcqmH/00Udcd911pKenc/bZZ5OdnU1ubqgzXQ1du3Zl1KhRACxdupSLL76YmJgY2rVrx2mnncYXX5jFEyNGjKBz5854PB7S09PJyMioFNagQYOYMWMGzz//PLGxwds/4WScOnUqSUlJtG7dmvHjx7NixYqgYQRj9OjRzJo1iyeffJKysrLy57nkEvPVTd++fenatWu5Ihw/fjwpKSm0adOG5s2bc9ZZZwGQlpZW/mzr169n7NixpKWl8cILL1To+fm48MILefXVVwFYuHAh559/frVljjaOHNhLMkVIy27lZnnxbWlWvD+0J4fDUS0aZI+wOj23Y8kNN9zA0KFDufzyy8vNvF4vy5YtIzExsYLb2NjYCvN//jvjNGnSpFrxJSQklF/HxMRQWlpayc27777LkiVLeOedd/jrX//KunXrKrkJJSNU/sygJp8dzJ07l+XLl/Puu+9y0kknsWrVqrDu/Z/H4/GU33s8nvJnmzVrFm+++SaDBw9m/vz5LF68uFI4nTp1olWrVqxdu5YFCxYwd+7casscbezbtYlUIKndieVmxcntaZ+3yX1L6HDUEtcjPAa0bNmSCy+8kHnzftgkZ+LEiTz66KPl92vWrAHMkVJffvklAF9++SU7duwIGubYsWNZsGABZWVlZGZmsmTJEkaMqN4+BF6vl927dzN+/Hjuuecejhw5Qm5uLikpKeTk5FQpI8Bbb71FYWEhBw8eZPHixQwfPpzqsm3bNkaOHMldd91FmzZt2L17N2PHjuWFF14A4JtvvmHXrl306dOn2mHm5OTQoUMHSkpKysMJxvTp07n33ns5cuQIgwYNqnb40UbO3i0AtOjUu9xMUzrQWo5wJCf8yILD4QiPU4THiN/85jcVVo8+8sgjrFy5kkGDBtG/f//y3sm0adM4dOgQAwYM4LHHHqN3795Bwzv33HMZNGgQgwcP5vTTT+fee++lfftgB4JUpqysjEsuuaR8Ycqvf/1rUlNTOeuss3jjjTfKF8uEkhHM0Or48eMZNWoUt99+e/n84NixY7ngggtYtGgRnTt35oMPPgDgjjvu4O233wbMytK0tDQGDhzIKaecwuDBg/nFL36B1+slLS2N6dOnM3/+/Ao9war485//zMiRIxk9ejR9+/YtN3/77be54447yu/PP/98Xn75ZS688MJqhx2NFGeaBlL7rj+Uj7iWZuFM5ncRPcrN4aj31PqE+kgwbNgwDVz99/XXX9OvX78ISdSwmT17doVFNQ2N+lB2lj/0U3pmfUbr2T8ovS1LX6PXR1ew+oyFDBk9KYLSORy1Q0RWqWrEVrK5HqHDUQ9ILNxPVmzrCmbJLToAUHjk+0iI5HA0GBrkYhlH3RLNu+M0FpoWZ5Kb2KGCWUprc1+a7VaOOhy1wfUIHY56QAvvQYqT21UwS2lh7r15dbuTkcPR2HCK0OGIcvLz82hJDt6mFXuEEp9MHkl48uvHMVIOR7TiFKHDEeUc2LsLgNjUyjv5HPGkEl948HiL5HA0KJwidDiinCP7zUrRpJadK9nlxbYgodidSehw1AanCOuYN998ExFh06ZNId1kZGQwcODAYyrHmjVreO+992oVxhVXXEHbtm2PuayO8OQf/BaAlLZdKtkVxLegaWnWcZbI4WhYOEVYx7z00kuMGTOGl156Kah9sO3Paopvv85w1IUinDVrFu+//36twnDUnrIjRhE2b9e1kl1pYiuae7OOs0QOR8PCKcI6JDc3l6VLlzJv3jxefvnlcvPFixczduxYzj77bPr3NyeLl5aWMmPGDPr168f5559ffozQokWLGDJkCGlpaVxxxRUUFRUBZiu2W2+9laFDh/LKK69UiDfwmKPi4mLuuOMOFixYQHp6OgsWLCAvL48rrriCESNGMGTIEN566y3AHHs0depUxo0bR69evbjzzjvLwz311FNp2bJl2Gf+5JNPSE9PJz09nSFDhpCTk4Oqhjwy6rTTTmPq1Kn06NGD2267jRdeeIERI0aQlpbGtm3bAHjnnXcYOXIkQ4YMYcKECXz/feXv5C666CLefffd8vtZs2aVb7Dd0PDk7qNI40hp3rqSnTe5NS3IprC4JAKSORwNg1p/RygivwJ+CZQB76rqLSJyBnA3EA8UAzer6n+D+J0NXAX4lr39XlVr140B+PdtsK/yptK1on0anHl3WCdvvfUWkydPpnfv3rRq1YpVq1Zx0kknAWYf0fXr19O9e3cyMjLYvHkz8+bNY/To0VxxxRX83//9H9dddx2zZs1i0aJF9O7dm5kzZ/L4449zww03ANCqVavyfUn9CTzmKD4+nrvuuouVK1fy2GOPAfD73/+e008/naeeeoqsrCxGjBjBhAkTAFixYgXr168nOTmZ4cOHM2XKlGofV3T//fczZ84cRo8eTW5uLomJibz++ushj4z66quv+Prrr2nZsiU9evTgyiuvZMWKFTz88MM8+uijPPTQQ4wZM4Zly5YhIvzzn//k3nvv5YEHHqgQr++IpSlTplBcXMyiRYt4/PHHqyVzfSMuP5NDkkoHT+V2qzRpQ6x4yTyUSYf21TsWy+FwVKRWPUIRGQ9MBQar6gDAd8LsAeAsVU0DLgPCHWH+oKqm21/tlWAEeemll7jooosA02PxHx4dMWIE3bt3L7/v0qULo0ePBuCSSy5h6dKlbN68me7du5fvN3rZZZexZMmScj/Tp08PGm+wY44C+fDDD7n77rtJT09n3LhxFBYWsmuXWY14xhln0KpVK5KSkjjvvPNYunRptZ959OjR3HTTTTzyyCNkZWURGxsb9sio4cOH06FDBxISEujZsycTJ04EKh6xtGfPHiZNmkRaWhr33Xdf0COWzjzzTD7++GOKior497//zamnnkpSUlK15a5PxBcdIjsmNahdXLO2AOQccAf0OhxHS217hNcCd6tqEYCq7rf/q/3cbACSRCTB5+6YU0XP7Vhw6NAh/vvf/7Ju3TpEhLKyMkSE++67D6h8pNLRHGsU6lim6hxzpKq89tprlU54WL58ea2OWLrtttuYMmUK7733HqNHjy7fdDsU1Tli6Ve/+hU33XQTZ599NosXLw66s01iYiLjxo3jgw8+YMGCBeUNkIZIUslhcuNaBbVLTDUf1ecddorQ4ThaajtH2BsYKyLLReQTEQl2Ns804MswSvA6EVkrIk+JSItQEYnI1SKyUkRWZmZG3wfEr776Kpdeeik7d+4kIyOD3bt30717dz799NOg7nft2sXnn38OwIsvvsiYMWPo06cPGRkZbN26FYDnnnuO0047rcq4gx1zFHjE0qRJk3j00UfxbbK+evUPbZX//Oc/HDp0iIKCAt58883ynmp12LZtG2lpadx6660MHz6cTZs21erIKIAjR47QqVMnAJ555pmQ7qZPn87TTz/Np59+yuTJk6sdfn2jadkRihOCz9U2sfuNFmW5/UYdjqOlSkUoIh+JyPogv6mYHmVLYBRwM7BQ/LoTIjIAuAf4eYjgHwd6AunAXuCBEO5Q1SdUdZiqDmvTpk01H+/48dJLL3HuuedWMJs2bVrI1aN9+vRhzpw59OvXj8OHD3PttdeSmJjI008/zQUXXEBaWhoej4drrrmmyriDHXM0fvx4Nm7cWL5Y5vbbb6ekpIRBgwYxYMAAbr/99nL/I0aMYNq0aQwaNIhp06aVzw9efPHFnHzyyWzevJnOnTuXn684d+7c8iOaHnroIQYOHMigQYOIi4vjzDPPrNWRUWD2Nr3gggs46aSTaN36hwUiK1eu5Morryy/nzhxIp988gkTJkwgPj6+2uHXK1RJ1SOUJQZXhM3aGEVYluP2G3U4jpZaHcMkIu8D96jqx/Z+GzBKVTNFpDPwX+ByVf2sGmF1A/6lqlV+tOaOYao75s+fX2FRTWMkmstOfs5hkh/oxuc9rufkmXdVsteyUvSu1vyv8xWMuervEZDQ4ag99f0YpjeB8QAi0huzSvSAiKQC7wK3hVOCIuK/eeK5wPpayuNwNCiyDuwDIKZp8FEQiYklS1KIcfuNOhxHTW0V4VNADxFZD7wMXKami3kdcCJwh4issb+2ACLyTxHxaf57RWSdiKzFKNQbaymPo4bMmjWrUfcGo53cQ0YRxjcPPR2QHdPC7TfqcNSCWq0aVdVi4JIg5n8B/hLCz5V+15fWJv4gYddoxaPDUZupgeNBgV0Ek5TaLqSbvNiWJJccOl4iORwNjgazs0xiYiIHDx6M+orNET2oKgcPHiQxMTHSooSkyB66m9KyQ2g3CS1JKXMbbzscR0uDOaG+c+fO7Nmzh2j8tMIRvSQmJtK5c+VTHaKFshxTnlPbhF51W5rUhtQjWW5ExOE4ShqMIoyLi6uwc4vD0RCQvEwKNJ7kJs1DutEmbWgqheTkZpOSEtqdw+EIToMZGnU4GiIxhYc5Is0gTE8v1m6zdiTT7S7jcBwNThE6HFFMbEk2+Z6mYd3ENzfDpjn23EKHw1EznCJ0OKKYhJJsCmJTwrpJamEUYf7hfcdDJIejweEUocMRxSSV5VAc2yysm+atzfFLJUfcfqMOx9HgFKHDEcU08eZQEh9+AUxqG6MIvbluv1GH42hoMKtGHY6GSFPNoywhvCKMS0gmh2Qkr2afDpWWlvL5O/OI3fwOScWHyI9vhXQbTZ/TL6Vl2061EdvhqFc4RehwRCklxYUkSxEkVv1JxBFPKrEFB6od9pFDB9j5+HmMLfmKTGlNVmInOhZupO2mJZR8fS9fNjkZHXQRA8adT2Jiwzzw2OHw4RShwxGlZB/OpBUgSSGP6SwnJ641yUXV6xEW5uey9/+m0LdkC6uH3EX62dfRxhMDwPaNK8hc8jQn7nuXVsuWkvX5baxqMpKyziNo2bkvHTufQMumSRQVl3DoSDaHjxwhOyeb3Jxs8nOzKSvKx1NWgKe0gNiyAuK1iHhvIbGUAWI/AxEQQHwzMwLiQcvtBPFzq+WfjkjYz0iqQ7P0cxg4ekqtwnA0PJwidDiilLwjB2kFxDapWhEWJHWgY9aqaoW75qlfM6p0E2tOeZQhk2ZWsOvRfwQ9+o+grLSEdUvfwvvVy/TPWkGLbxbBNz+4SwA62F8oiomjSBIoIoFSiQEFQREUUIxKM/ei5tqDF6CCmx/8hKPqrRWTtZCNS7aAU4SOAJwidDiilPxsc6JEXJPgh/L6U5LSiTaHP6S4qIj4hISQ7jYt/4BRB15jedvpjAxQgv7ExMaRNu58GHc+qHLou618m7GFzH17OJRXRNPEOFKaptAspRnNmzenZYtUmjRJQeKbQFwSxCYRHxNLPBD+44/jx9q7f0RiaXakxXBEIU4ROhxRSlGOOVEiIaVqRehJPYGY3cr+fRl06NonqBtvWRkx//kD+2lJ2sz7qi+ICC079aJlp17V9xOFlMY2IaHYfWvpqIz7fMLhiFJKco0iTGrWqkq38a26AnBk77aQbtZ/9Cy9SreQkX4zyU0b356kpXFNSfLmR1oMRxTiFKHDEaWU5ZujlZqktq7SbWrHngDkfZ8R3IEqTb94jF3SkaFTrqorEesV3rimJGtBpMVwRCFOETocUYrXKsKU1Kp7hO26nAhA8aGdQe23r3iXHqVb2dnnZ8TGxdWdkPUIjU+hqRSg3rJIi+KIMpwidDiiFCk8Qr4mkJBQ9Xd8iUlNyKQlsVnbg9oXf/Ig+7UFg39yTV2LWX9IMMt28nOPRFgQR7ThFKHDEaV4io6QK02q7X5vYnda5FaeI8zc8gV981eyrvPFNGsa/iSLhowkWUWYkxVZQRxRh1OEDkeUEluSS76n+oowr3lvOpfuoqy0tIL59+/fT64m0ucnv65rEesVMXaHngLXI3QE4BShwxGlxJblUeRJrrb7mHYDSJQS9u7YUG6Wn7mTPgf/w4oWU+jcIdzn7w2fWNsjLMrLiqwgjqij1opQRH4lIptEZIOI3GvNuolIgYissb+5Ify2FJH/iMgW+1/1FhoORyMhvjSf4pjqK8IWvUYAsH/DknKzLf/6Ox710vaMG+pavHpHXLLpERbnuR6hoyK1UoQiMh6YCgxW1QHA/X7W21Q13f5CzdDfBixS1V7AInvvcDiARG8eJbHVn9Pr0X84B2iO7PgEgMIj++m5cyFfJI9h4IBBx0rMekNCk1QASvKdInRUpLY9wmuBu1W1CEBVa3og2lTgGXv9DHBOLeWpFmvumcTnT954PKJyOI6aRG8+ZbHVnyOMifGwtelwehz5nNLCPLa98keStIDECX88hlLWHxKbpgJQVui2WXNUpLaKsDcwVkSWi8gnIjLcz667iKy25mND+G+nqnvt9T6gXaiIRORqEVkpIiszM2t27logTYszST64rlZhOBzHmiQK8MZVXxECxJw0k+bksuPRnzBgzwI+TjmLwUNHHiMJ6xdJdjcdb4FThI6KVLnXqIh8BLQPYvUH678lMAoYDiwUkR7AXuAEVT0oIicBb4rIAFUNWQJVVUUk5BbyqvoE8ATAsGHDqt5qPgzZiR1pVZBRmyAcjmOKer0kayHe+Jp97jD01LP4zxdTOCPvXZZ7hjDg8oeRWh5d1FBo1twsQShzitARQJWKUFUnhLITkWuB11VVgRUi4gVaq2om4BsuXSUi2zC9x5UBQXwvIh1Uda+IdABqOrR6VBQ16Uzb3OWo14t43MJZR/RRVJhPopSVfwReXWJiPJx603Os3r6b/l06kpIUf4wkrH/EJyRSqHF4C3MiLYojyqitFngTGA8gIr2BeOCAiLQRkRhr3gPoBQTb8uJt4DJ7fRnwVi3lqR6pJ5AkxRw5sLdqtw5HBMizH317Emt+iFFCbAxDendzSjAIudIET7HrEToqUltF+BTQQ0TWAy8Dl9ne4anAWhFZA7wKXKOqhwBE5J8iMsz6vxs4Q0S2ABPs/TEnvnU3AA5+u/V4ROdw1BjfR9+eGvYIHeHJ9TQjrigr0mI4ooxanUeoqsXAJUHMXwNeC+HnSr/rg8CPaiPD0dCsfQ8AjuzbDpx2vKN3OKqk0H7rFpPULMKSNCzyY5uTWJIVaTEcUUajnCDr1L03AIX7XY/QEZ34PvqOc4qwTimKa0ZymRsadVSkUSrC5JSWHKAFMYdCH2LqcESSkgKjCBMa4QG6x5KS+FSaep0idFSkUSpCgO8TupKa5xShIzopKTArGxOSXY+wLilLbEFzzQGt1RdYjgZGreYI6zO5zU5k4P5/1eoTitysTL7dsob8A3soKS0hLj6RuKatiG/WhmYt29OiTTsS4hPqWHJHY8BrFWGi6xHWKZrYkngppTA/m8QmNU9bVWXd8kXkLn+WNkfW0dybhSIciW1FQVIHSpp3I6HtibQ8oR/tuvYjtnlHcJ9oRT2NVhHSpi9NMl/l+++2067zidX2VlJcyJp35pK66UV6lWymTxi3XhUO05RsT3PyYlMpjG8B8U1QTyxeicMrsagnxjhWUBRVUADVH+4rNV7DtWaD2FkjsReBLiRseKEJ6S9MaztcXOE/+w7uL3x4YZ4rhFX4tDjKuI7CT2reDgCS7LZgjrpBmrQEIOdwZo0VYeb+vWybfw2j8hdTQALbkgayI6EvMXiJL8gkNXcLHbKXEr+nDL40fgqJZ39cJ7ISO1OY2A5i4yE2EfXEoV4vaCl4y0DLwFuGeEtBvfZnX371oiiiXkARVQT9ofyUvzhS4R0SfiixaioYlB9ezx/qG+PPf98FERuWmFB91141frxexYuiXogZ91tGjTi5RmkZbTRaRZjSZSBshH3frK62Ity04gOa/vt6hutetnm681mXn5Pc7SSate1GQmICRQX5FOUcoCTnAKXZ+/HmHYD8A8QWHCKx+BCtCjKIyyskllJiKSNWy4ihDPUV30qaILRqCFWF+sIK9KlhwwpuF75qD+Xn6GWubhwAGsIq0s8ZXo3W7DnXJQxlQEpqmBAdNSW2aSsA8rIyaVODBvDujK2UPjOVod59rOpxDQOm/Y6BQRop+YVFbN+xhf07N5K39xtiszJoXrCbNrk76Jr9JXGUkkAxMXYTrTIVTC3goYwYvOKhDA8/qDrfz2MUER6jzOx/JbRyGQzcWEj86ptyZVrxLzDIHxrT/lWVmP/tDWCnnkarCLsNGIn3fSFvx3Lggirdr1hwN8M23s0+T1tWj32S9PHn09MNeTiOIR0jLUADJLFZGwDysqq/idWBQwcpemYa7fUg3/7kBU4aPjmk2+TEBPr2G0jffgNDuinzKkWlJcTFxBIT4yGm+uJHJcH236xvNFpFmNysJdtju9I088sq3W568RZGfPMPViefQs9rX6RjM3dsosNRH2nWsi0A+VnV27jf61W2/PNnjPDuJGPys/QMowSrS4xHiIl3u/5EE426S5OZmk6Pgo14S0tDutn8xt30/eYffJw8mX43vEUzpwQdjnpLi9am/1KcXb0e4f/ee46T8z9mba9r6Xny2cdSNEcEadSKMKbryTSVArau/Syo/Zb/zKPPV/+P/8WPZvivniUxwbXiHI76TErL9pRoDORUvc9wbm42vVb+iYyYbqRfNPvYC+eIGI1aEZ54yjmUqofDqyrvBrd92Vt0W3oza2LS6PfLl2ma5D6DcDjqO+KJ4ZCnBbF531fpdtmrD9GOQxRPugeJde9/Q6ZRK8LU1u3ZmDSErt++S1lJUbn57vVLaf/+1WR4utDh56/Torn7qNnhaChkxbYmuTD80OiBI7n02/EM25LS6D2i9vOCjuimUStCgJJhP6c9B1j9+gMAbF/9X1Jenc5hmpEw6w3atW0bYQkdDkddkh/fhmal4RfLrHjnCTrJAZJPv/k4SeWIJI1eEQ49/QK+SjiJ9I33sfHucZzw5jRyaErJjDc4oWuPSIvncDjqmKLkdrT0Hgxpn11QRO+t8/g2vgcdhrkFMo2BRq8IxeOh6zUL+SJ1MglFh1je+jyaXvcJ3XqF/g7I4XDUY1I6kkIB2UcOBbVe+u5znMgevKNvqPw1uqNB0mi/I/QntUVrTr7xJQB6RlgWh8NxbEls2x22w94dm2iWfkoFu6KSUrpsmMv+mPZ0GTMjQhI6jjeNvkfocDgaFy1PGADAkT0bKtn9b9FbpOkWsof+AmJcP6Gx4BShw+FoVLTvPgCvCqXfb65g7vUqTb94lMOSSs8zroqQdI5I4BShw+FoVMQnNWW/pzVxhyueR7pq+WKGl63mu76zkPjkCEnniAROETocjkbH/sTutMnfUsGs9JO/k0syvX9yQ2SEckSMWitCEfmViGwSkQ0icq81myEia/x+XhFJD+J3toh86+fux7WVx+FwOKoir+1JdPPuJvug+bB+09oVjCz4lC1dpxPXxO0n3NiolSIUkfHAVGCwqg4A7gdQ1RdUNV1V04FLgR2quiZEMA/63Krqe7WRx+FwOKpDat/TANiy/F1Ulaz37iJfEjnxnN9FWDJHJKjtsqhrgbtVtQhAVYPtW3Qx8HIt43E4HI46o/fwM8j8oAUxq59hcQmML/yU1T2uZUiLdpEWzREBajs02hsYKyLLReQTERkexM104KUwYVwnImtF5CkRcWMSDofjmBMTG8v3A64kvWQ141ffQEZcL9Km/ynSYjkiRJU9QhH5iOCHEP/B+m8JjAKGAwtFpIeqqvU7EshX1fUhgn8c+DOg9v8B4IoQclwNXA1wwgknVCW2w+FwhGXAebfxVVkZscVZdD/7d8QmJEVaJEeEEKuzjs6zyPvAPar6sb3fBoxS1Ux7/yCQqap/q0ZY3YB/qWqVe5sNGzZMV65cedRyOxwOhyN6EJFVqjosUvHXdmj0TWA8gIj0BuKBA/beA1xImPlBEengd3suEKrn6HA4HA7HMaG2i2WeAp4SkfVAMXCZ/tDFPBXYrarb/T2IyD+Buaq6ErjXflahQAbw81rK43A4HA5HjajV0GikEJFMYGctg2mN7b1GOfVFTqg/sjo56576IquTs+6pC1m7qmqbuhDmaKiXirAuEJGVkRyTri71RU6oP7I6Oeue+iKrk7PuqU+yhsJtseZwOByORo1ThA6Hw+Fo1DRmRfhEpAWoJvVFTqg/sjo56576IquTs+6pT7IGpdHOETocDofDAY27R+hwOBwOh1OEDofD4WjcNDpFKCKTRWSziGwVkdsiLY8/ItJFRD4WkY32fMfrrXnUndsoIhkiss7Ks9KatRSR/4jIFvsf0U3URaRPwLmY2SJyQ7Skp91ofr/dkMJnFjQNxfCILbdrRWRohOW8z55DulZE3hCRVGveTUQK/NJ27vGSM4ysIfNbRH5n03SziEyKsJwL/GTMEJE11jxiaRqmToq6clorVLXR/IAYYBvQA7Md3FdA/0jL5SdfB2CovU4BvgH6A7OB30ZavgBZM4DWAWb3ArfZ69sw+9BGXFa/vN8HdI2W9MTsvjQUWF9VGgI/Bv4NCGaT++URlnMiEGuv7/GTs5u/uyhJ06D5bd+tr4AEoLutG2IiJWeA/QPAHZFO0zB1UtSV09r8GluPcASwVVW3q2oxZh/UqRGWqRxV3auqX9rrHOBroFNkpaoRU4Fn7PUzwDmRE6USPwK2qWptdySqM1R1CXAowDhUGk4FnlXDMiA1YK/e4yqnqn6oqqX2dhnQ+XjIUhUh0jQUU4GXVbVIVXcAWzF1xDEnnJwiIph9msMdX3dcCFMnRV05rQ2NTRF2Anb73e8hShWNPY1jCLDcGkXbuY0KfCgiq8QckQXQTlX32ut9QDSdcnoRFSuWaEtPH6HSMJrL7hWYXoCP7iKyWswZpWMjJVQAwfI7WtN0LPC9qm7xM4t4mgbUSfWxnIaksSnCeoGINAVeA25Q1WzMuY09gXRgL2bYJNKMUdWhwJnAL0XkVH9LNeMkUfFtjojEA2cDr1ijaEzPSkRTGoZCRP4AlAIvWKO9wAmqOgS4CXhRRJpFSj5LvchvPy6mYqMt4mkapE4qpz6U06pobIrwW6CL331naxY1iEgcpsC9oKqvA6jq96papqpe4EmO0/BNOFT1W/u/H3gDI9P3vmEQ+78/chJW4EzgS1X9HqIzPf0IlYZRV3ZFZBbwE2CGrQyxw4wH7fUqzLxb74gJSdj8jsY0jQXOAxb4zCKdpsHqJOpROa0OjU0RfgH0EpHutpdwEfB2hGUqx84NzAO+VtW/+5lH1bmNItJERFJ815iFE+sxaXmZdXYZ8FZkJKxEhRZ2tKVnAKHS8G1gpl2VNwo44jc0ddwRkcnALcDZqprvZ95GRGLsdQ+gF7A9eCjHhzD5/TZwkYgkiEh3jKwrjrd8AUwANqnqHp9BJNM0VJ1EPSmn1SbSq3WO9w+zqukbTKvqD5GWJ0C2MZghhrXAGvv7MfAcsM6avw10iLCcPTCr7b4CNvjSEWgFLAK2AB8BLaMgTZsAB4HmfmZRkZ4Y5bwXKMHMpfwsVBpiVuHNseV2HTAswnJuxcwF+crpXOt2mi0Ta4AvgbOiIE1D5jfwB5umm4EzIymnNZ8PXBPgNmJpGqZOirpyWpuf22LN4XA4HI2axjY06nA4HA5HBZwidDgcDkejxilCh8PhcDRqnCJ0OBwOR6PGKUKHw+FwNGqcInQ4HA5Ho8YpQofD4XA0apwidDgcDkejxilCh8PhcDRqnCJ0OBwOR6PGKUKHw+FwNGqcInQ4HA5HoyaqFaGIdBMRtWd0OY4hIjJLRJYep7iSROQ9ETksIrccjzgD4s8QkQnHIZ7FInJlCDtXtiNAuHQ/nnli4zkxhN1xexcbAiJyi61LPhCR5KMJI6oVoePoEJHZIlIiIrl+v+OucMIwARgEdFHVe32GVkF1i5hUUYTNw9k1cP9TEdkpInki8qaItAzj9gkR2SwiXnu4bqD9jSKyT0SyReQpEUnws0sXkU9F5IiI7BGR20PEcYet7Cf4mXUSkbdE5JD1e02AH7Xy+8rsP2vw/I3mGB3bwBpXTbciIveIyEH7u8eeMRjKfZXlSER6iUihiDwfYN5GRF60ZeOwiLzgZ3e/iGwRkRwR2SQiMwP8niUi622+/09E+vvZzQ2oy4pEJMdnb+uQzkBfzNmoNeaYKkLX2o0oC1S1qd/v3qq9HDdaAhmqmhtpQWqDrWQi3pgUkQHAP4BLgXZAPvB/Ybx8BfwCc7ZdYFiTgNuAHwFdMWdP3unn5EVgCSYPTwN+ISJnB4TRE7gAc96eP88DO6yMU4C/icj4ADeD/cps0N50fSCK6r6rgXOAwZjG51nAz4M5rEE5moM55DyQ14F9wAlAW+B+P7s8G3dzzEG+D4vIKTbeXsALwDVAKvAO8LYvDVX1Gv+6DHOW4yv+EatqHqZstQqZEmGo85fYtupvFZG1QJ6IxIrIKKvls0TkK//WjG3d/D8RWWFboG+Fas2KyOUi8rVtVWwXkZ8H2E8VkTU2nG1iTtFGRJqLyDwR2Ssi34rIX8Se+BzmOXqKyH9tK+qAiLwgIql+dodEZKi97ygimb7nEpGzRWSDfd7FItIvIH1+KyJrbctpgYgk1jyla46I3GbTJUdENorIuSHciYg8KCL7bVquE5GB1i7Btu52icj3trWWVENRYgFvFbK2EpF3bPxf2Dxb6mevInKNbWVmicgcEdPSDZd3fgy3aXBYRJ725YGItBCRf9n8PGyvO/vFu1hE/ioin2Eqih5VPGtXEfnMpvmHItI6wH6GTcsDIvKHKsIKxQzgHVVdYhsXtwPniUhKMMeqOkdVFwGFQawvA+ap6gZVPQz8GZjlZ98NeEFVy1R1G7AUGBAQxhzgVqDYZyAiTYFxwF9VtURVvwJeBa6o6cNWhYh0F5ElNs0/smXj+RBup9l3cqCf8RUi8p2tL37r53aEiHxuy9teEXlMROL97FVEfikiWzAH1lbFhGDl1y+8+20Z3CEiZ9YwGXxcBjygqntU9VvgASrmpz9VliMRuQjIwhzK6y/rRKALcLOqHrF5vNpnr6p/UtVNqupV1eXAp8DJ1noS8KmqLlXVUuAeoBOmoVUBEWmCOaj4mSDyezF1S805BicaZ2BOMe4CJNkHOog51dgDnGHv21j3i4FvgYGY08RfA563dt0wpyPH2vspQE/MKcinYSqiodZuBHDEhu+x8fa1dm9gWjpNMC2VFcDPq3iOE21YCUAbTCv4IT/7q4CNQDLwAXC/Ne+Naf2cAcQBt2BO8473S58VQEdMq/prAk6kDjgdOivMb0wIf7N9aRhgfoGN1wNMt3J2sHazgKX2ehKwCtM6E6Cfn7sHMad8twRSMK23/1eD8hGHOTG8knwB7l62v2SgP+Y09KV+9gr8y8p4ApAJTK5m3mUA6zFltCXwGfAXa9cK86Il2+d7BXjTz+9iYBem8o8F4sI8w2LMSd29Me/CYuDugLL9pLUbDBQB/UKEFS6/3wJuDTDLBU6qIo2XArMCzL4Cpvvdt7ZytrL3fwPutvnYB3O6+vCAMvaWXzpPsNcpNpy2fm6fBFYH5Ol3mF7F60C3o6yDPsf0RuIx71A2QeoU4HLMu3ligN1LmLoizZYr3zOcBIyyfrth3t0bAuT/jy1TSVXIGK78zsKcXH8VEANca9NFQtURYeI5Aoz0ux8G5BxNOQKaAd9ghiFn4/cOA3dg6sHnMfX7F8BpIeJJwowW+J73OuA9P/sYTCPt+iB+ZwLbQ6TFMzbv4mtcZo6moFWRwRnAFX73twLPBbj5ALjMXi/GVg72vj+mJRlDgCIMEtebvsTCKLoHg7hph6lgkvzMLgY+ruFznYPfS2vN3gbWAWuBBGt2O7DQz40Ho+jH+aXPJX729wJz6zgPZts0zPL7dQzibg0w1V7P4gdFeLot8KMAj597wSjPnn5mJwM7qilXOuYF/x5b+YRwF2Pd9fEz+wuVFeEYv/uFwG3VyTubB9f43f8Y2BZG5sN+94uBu6r5vIuBP/rd/wJ43177ynZnP/sVwEVHkd+LCGhM+Ze5MP6CKcJt2ArK3sdZObvZ+1MwyqPUmt/p5zYF0xPyuc3AKhG/+B4FEoGhwCFgs5/9qRjllQo8hmmsBH33wzzTCVa2ZD+z56msCH+Lacj6p7/Prq+f2b2YHnKwuG4A3ggok6dXU86Q5RfzLm71s0u27tsfRdkoC3ieXjasYIokbDkCHsYqSiorwidsuD+zZcbXc2wdJJ5ngPd9MmDm9vIwIwbxmDrUC/wuhIyzQzxrT0wjqgQYVpN0OlbzG7v9rrsCF9juf5aIZGFaMR1CuN+JScjAISRE5EwRWWaHJbMwFZjPXRfMSxxIVxveXr/4/4HpGYZERNqJyMtihlKzMS9ToExPYnqyj6pqkTXraJ8BAFX12ufr5Odvn991PtA0nCxHyUJVTfX7fSciM8UMHfvSYSBB0llV/4upiOYA+8UsrmiG6V0lA6v8wnjfmleJqq7BVJafYyqRULTBtLr9y8XuIO6CpmM18y6wzHW0fpNF5B9iFgxkY3qTqVJxKD2YLKGoKq/roizkYlrr/jQDcoK4rWlYvuscMVMW7wN3YZRZF2CSiPzCupmNafRmhAh7BtAdk36PY/Jlj89SzZBcsapmAddbt/2ChBOOjsAhVc33MwuWXzcDc1R1TxC7UGWjtx0q32fLxt8IX66qIlzel9v5PUtdlI1mQK5azVGFW5/7HBFJxyxyezBEPAWYef95aoZFX8akxWh/RyJyH6beudAng6puwgzhPobpKbbGNFL2BPg9AaMsnw0hw/WYnmgzVV0Zwk1QjpUi9E/k3ZiXw79SbqKqd/u56eJ3fQJGox/wD1DMyrXXMEMe7VQ1FXgP00vxxdMziCy7MT3C1n7xN1PVwHmNQP5mnyNNVZsBl/jF5ZvzeAiYB8yWH+Y1v8MoX587sc/3bRXxVUJExkrF1VKBv7E1CKsrRnFfhxnmSsW0uIOuIFPVR1T1JEwPvTem4jiAKfAD/NKyuZoJ7GqhqoXAv224ocjEtOo7+5l1CeE2GGHzLkh4J2DyDeA3mCG/kdbvqdbc33+wSiSSbMAMrQIgIj0ww8Lf1DYse/29qh7EzIeWqeqzqlpqlcjLmAYpmAU2v7aKYh8mjReKyK0AqrpTVX+iqm1UdSSmwlsRRhYlRPkMw16gpVRcRh+s7EwE/igi04LYhSobjwObgF62bPw+iHxRXTbs9YbquA0oR+MwPeZdNm9/C0wTEd+Cq7VUfvYK9yJyJ3AmMFFVsys4VH1VVQeqaivgTzauwAU5lwKfqer2EPL3w4y4FISwD8nxWPH2PHCWiEwSkRgRSRSRcf4LEIBLRKS/Lbx3Aa+qallAOPGYTMkESu3ksf9S2XnA5SLyIxHxiFmq3VdV9wIfAg+ISDNr11NETqtC7hRMC+mIiHTCKAJ/HgZWqlnZ9i4w15ovBKZYOeIwFWsR8L+qEioQVf1UK678DPx9WoPgmmAKZiaYhUeYllklRGS4iIy08udhxuu9tnf7JPCgiLS1bjuJWWno86tS9dLuIkx+BsXm/euYBkayiPTFzA1Ul6ryDuCXItLZNmD+ACzw81sAZFm7P9Ug3kjxAuYdG2sXE9wFvK6qQXuEIhIvZnGQAHH2nfTVBc8CP7PvYyrwR2C+tfvGeJef2veoPWauea21/xGmTKXb33eYFYpzbLz9RCTFxn8J5v39u7UbIObTjBjbyHwA03j82trPEpGMqhJCVXcCKzFlJ15ETsasVgxkAzAZmCMBq16B2225G4CZR/QvG9lAri2T11YlTxTwLHCTfU87Yuqj+SHchitHT2A6Gun2NxdT7/ne/TeAFiJymc3D8zEN2c8AROR3wE8xQ+UHAyMWkZOsvzY2rrdtT9GfmWFkBzPyVxTGPiTHXBGq6m5gKqb1lInpod0cEPdzmAfchxly+XWQcHKs+ULgMCZR3/azX4EptA9iJog/4Yee2UxMxbvR+n2VikOzwbgTM49xBJPhr/ssRGQq5iXyvQg3AUNFZIaqbsb0QB7F9KDOAs5S1WIiiKpuxFQun2Pm6NKwhTQIzTAK7zBmaOggcJ+1uxUzR7TMDg99hOlBISJdMMNx66oQx0vVZe86zFLrfZjy8RLVL+Qh886PFzENpO2YIfW/WPOHMJP5B4BlmKHAiBNuBEBVN2CWnr8A7MdU2L/w8/tvEfm9n5cPMcr+FEylU4Dt+arq+5h5sY8xi4J2YhsDthV/HnAjpmyswYwq/MXaH1TVfb4fZn7qsP7wmcwkTHoftvJOVtVMa9cOo3CyrZtuwE9UtcTadyF0eQ1kBmbu+qCVbQFByo6alas/AZ6UiqsyP8GU8UWYRXAfWvPfYuqdHMz7sYAI4xs1CuPkH5gFbeswefWuNfP5Ly9X4cqRquYH5G0uUOjLP1U9BJyNSaMjmE9wpqqqb2Tvb5je9Va/ES3/MvkwZk5xM6Z8XBXwnCdjFGuFzyYCiKGK1eih8E1WRgwRWYyZdK32x7OO6MS28geo6u+qcDcRM1LQ175A1Qn7HsxigctqL6mjviEiH2IWxn19FH4XAJtUtT707h1HgR292Ahcqarv1dR/xD8GdjQcVPX5qpSgZTFmmfkG8ftOyx8R6Ssig8QwArMa7Y26k9ZRn1DVidVVgnZov6cdvp2MGZF685gK6IgYtg7ZhOnJL6rCeVCiZfeDiCAiczHDmIE8r6rXBDF31AF2mHhGFc5SMMOhHTFDuQ9gvnOKKsIMS51ZwzlcR93RHjMc3gqz8vBa9fu4+3hghxv/HcyuJovLHFWjqvdTcRebGhPxoVGHw+FwOCKJGxp1OBwOR6OmXg6Ntm7dWrt16xZpMRwOh8NRB6xateqAqlZrY45jQb1UhN26dWPlyhptHOBwOByOKEVEdlbt6tjhhkYdDofD0ahxitDhiHLyC/JZ8vky3MI2h+PY4BShwxHlrJp/K6d+MIntW0JtEelwOGpDvZwjDEZJSQl79uyhsDDYWaMOR3ASExPp3LkzcXFxkRYlJE2PmL2z83atgd5Bt4d1OBy1oMEowj179pCSkkK3bt0QqemG9Y7GiKpy8OBB9uzZQ/fu3SMtTkhK45pAIZQUHM2pSg6HoyoazNBoYWEhrVq1ckrQUW1EhFatWkX9KEJZrDlRSIvyq3DpcDiOhgajCAGnBB01pj6UmdIYqwiL8yIsicPRMGlQitDhaIh4Y5PMv1OEDscxwSnCOkRE+M1vflN+f//99zN79uzICVQFixcv5n//q/F5weWsWbOGk08+mQEDBjBo0CAWLIj48WwNEvXYqXynCB2OY4JThHVIQkICr7/+OgcOHKjacQ1QVbzeozpvMiy1VYTJyck8++yzbNiwgffff58bbriBrKysuhPQYfCWAeApDnf+qsPhOFqcIqxDYmNjufrqq3nwwQcr2WVmZjJt2jSGDx/O8OHD+ewzc9j27Nmzuf/+H04QGThwIBkZGWRkZNCnTx9mzpzJwIED2b17NzfffDMDBw4kLS2tvPe1ePFixo0bx/nnn0/fvn2ZMWNG0A+vH3nkEfr378+gQYO46KKLyMjIYO7cuTz44IOkp6fz6aefhpXx0ksv5eSTT6ZXr148+eSTAPTu3ZtevXoB0LFjR9q2bUtmZmaluF955RUGDhzI4MGDOfXUUwGzuOnyyy8nLS2NIUOG8PHHHwMwf/58zjnnHM444wy6devGY489xt///neGDBnCqFGjOHTInOP75JNPMnz4cAYPHsy0adPIz6+8kGTUqFFs2PDDt3fjxo2rl1vzqZYCICVusYzDcSxoMJ9P+HPnOxvY+F12nYbZv2Mz/nTWgCrd/fKXv2TQoEHccsstFcyvv/56brzxRsaMGcOuXbuYNGkSX38d/pzRLVu28MwzzzBq1Chee+011qxZw1dffcWBAwcYPnx4uVJZvXo1GzZsoGPHjowePZrPPvuMMWPGVAjr7rvvZseOHSQkJJCVlUVqairXXHMNTZs25be/NWfj/vSnPw0p49q1a1m2bBl5eXkMGTKEKVOm0LFjx/LwV6xYQXFxMT179qz0HHfddRcffPABnTp1Ku8xzpkzBxFh3bp1bNq0iYkTJ/LNN+Z7ufXr17N69WoKCws58cQTueeee1i9ejU33ngjzz77LDfccAPnnXceV111FQB//OMfmTdvHr/61a8qxDt9+nQWLlzInXfeyd69e9m7dy/Dhg0Lm+ZRiR0N8JQVRFgQh6Nh4nqEdUyzZs2YOXMmjzzySAXzjz76iOuuu4709HTOPvtssrOzyc0NP9TVtWtXRo0aBcDSpUu5+OKLiYmJoV27dpx22ml88cUXAIwYMYLOnTvj8XhIT08nIyOjUliDBg1ixowZPP/888TGBm//hJNx6tSpJCUl0bp1a8aPH8+KFSvK/e3du5dLL72Up59+Go+ncpEaPXo0s2bN4sknn6SsrKz8eS65xJyJ3LdvX7p27VquCMePH09KSgpt2rShefPmnHXWWQCkpaWVP9v69esZO3YsaWlpvPDCCxV6fj4uvPBCXn31VQAWLlzI+eefHza9oxW1Q6OxpU4ROhzHggbZI6xOz+1YcsMNNzB06FAuv/zycjOv18uyZctITEys4DY2NrbC/J//N21NmjSpVnwJCQnl1zExMZSWllZy8+6777JkyRLeeecd/vrXv7Ju3bpKbkLJCJU/M/DdZ2dnM2XKFP7617+WK+1A5s6dy/Lly3n33Xc56aSTWLVqVbWfx+PxlN97PJ7yZ5s1axZvvvkmgwcPZv78+SxevLhSOJ06daJVq1asXbuWBQsWMHfu3LDxRi0+RVgW3d87Ohz1FdcjPAa0bNmSCy+8kHnz5pWbTZw4kUcffbT8fs2aNYA5UurLL78E4Msvv2THjh1Bwxw7diwLFiygrKyMzMxMlixZwogRI6olj9frZffu3YwfP5577rmHI0eOkJubS0pKCjk5P+xWEkpGgLfeeovCwkIOHjzI4sWLGT58OMXFxZx77rnMnDkzbG9r27ZtjBw5krvuuos2bdqwe/duxo4dywsvvADAN998w65du+jTp0+1ngcgJyeHDh06UFJSUh5OMKZPn869997LkSNHGDRoULXDjyZETUMpzut6hA7HscApwmPEb37zmwqrRx955BFWrlzJoEGD6N+/f3nvZNq0aRw6dIgBAwbw2GOP0bt376DhnXvuuQwaNIjBgwdz+umnc++999K+fftqyVJWVsYll1xSvjDl17/+NampqZx11lm88cYb5YtlQskIZmh1/PjxjBo1ittvv52OHTuycOFClixZwvz580lPTyc9Pb1ced5xxx28/fbbANx8882kpaUxcOBATjnlFAYPHswvfvELvF4vaWlpTJ8+nfnz51foCVbFn//8Z0aOHMno0aPp27dvufnbb7/NHXfcUX5//vnn8/LLL3PhhRdWO+xoQ9T0COO9rkfocBwLpD4e7TJs2DANXP339ddf069fvwhJ1LCZPXt2hUU1DY1oLztLHryEU4+8wz5a0372tkiL43DUOSKySlUjtpLN9QgdjihH7BxyIq5H6HAcCxrkYhlH3RLNu+M0BgQzNJqkRRGWxOFomLgeocMR5YidvkiQEkpKSiIsjcPR8HCK0OGIcnyLZQDy89yZhA5HXeMUocMR7egP35kW5bv9Rh2OusYpQocjyvH49QgL8+t260CHw+EUYZ3z5ptvIiJs2rQppJuMjAwGDhx4TOVYs2YN77333lH7932A379/fwYMGMDDDz9ch9I5aoLgeoQOx7HEKcI65qWXXmLMmDG89NJLQe2DbX9WU3z7dYajtoowNjaWBx54gI0bN7Js2TLmzJnDxo0bjzo8x9EjfkOjJYVOETocdY1ThHVIbm4uS5cuZd68ebz88svl5osXL2bs2LGcffbZ9O/fHzAKccaMGfTr14/zzz+//BihRYsWMWTIENLS0rjiiisoKjJL5rt168att97K0KFDeeWVVyrEG3jMUXFxMXfccQcLFiwgPT2dBQsWkJeXxxVXXMGIESMYMmQIb731FmCOPZo6dSrjxo2jV69e3HnnnQB06NCBoUOHApCSkkK/fv349ttvKz3zJ598Ur6rzJAhQ8jJyUFVQx4ZddpppzF16lR69OjBbbfdxgsvvMCIESNIS0tj2zbzsfg777zDyJEjGTJkCBMmTOD777+vFO9FF13Eu+++W34/a9as8g22Gxoefmj4OEXocNQ9DfM7wn/fBvsqbypdK9qnwZl3h3Xy1ltvMXnyZHr37k2rVq1YtWoVJ510EmD2EV2/fj3du3cnIyODzZs3M2/ePEaPHs0VV1zB//3f/3Hdddcxa9YsFi1aRO/evZk5cyaPP/44N9xwAwCtWrUq35fUn8BjjuLj47nrrrtYuXIljz32GAC///3vOf3003nqqafIyspixIgRTJgwATBHKK1fv57k5GSGDx/OlClTKhxXlJGRwerVqxk5cmSluO+//37mzJnD6NGjyc3NJTExkddffz3kkVFfffUVX3/9NS1btqRHjx5ceeWVrFixgocffphHH32Uhx56iDFjxrBs2TJEhH/+85/ce++9PPDAAxXi9R2xNGXKFIqLi1m0aBGPP/54NTOzfiHqxYvgQSlzitDhqHNcj7AOeemll7jooosA02PxHx4dMWIE3bt3L7/v0qULo0ePBuCSSy5h6dKlbN68me7du5fvN3rZZZexZMmScj/Tp08PGm+wY44C+fDDD7n77rtJT09n3LhxFBYWsmvXLgDOOOMMWrVqRVJSEueddx5Lly4t95ebm8u0adN46KGHaNasWdC4b7rpJh555BGysrKIjY0Ne2TU8OHD6dChAwkJCfTs2ZOJEycCFY9Y2rNnD5MmTSItLY377rsv6BFLZ555Jh9//DFFRUX8+9//5tRTTyUpKSnos9d3POolD/NspYV5EZbG4Wh4REWPUEQmAw8DMcA/VTV816sqqui5HQsOHTrEf//7X9atW4eIUFZWhohw3333AZWPVAp1rFE4Qh3LVJ1jjlSV1157rdIJD8uXLw8pS0lJCdOmTWPGjBmcd955QeO+7bbbmDJlCu+99x6jR4/mgw8+CPsM1Tli6Ve/+hU33XQTZ599NosXLw66s01iYiLjxo3jgw8+YMGCBeUNkIaIaBkFkkyK5uMtcorQ4ahrIt4jFJEYYA5wJtAfuFhE+kdWqprz6quvcumll7Jz504yMjLYvXs33bt359NPPw3qfteuXXz++ecAvPjii4wZM4Y+ffqQkZHB1q1bAXjuuec47bTTqow72DFHgUcsTZo0iUcffRTfJuurV68ut/vPf/7DoUOHKCgo4M0332T06NGoKj/72c/o168fN910U9i409LSuPXWWxk+fDibNm2q1ZFRAEeOHKFTp04APPPMMyHdTZ8+naeffppPP/2UyZMnVzv8+oagFHqSAfAW50dYGoej4RFxRQiMALaq6nZVLQZeBqZGWKYa89JLL3HuuedWMJs2bVrI1aN9+vRhzpw59OvXj8OHD3PttdeSmJjI008/zQUXXEBaWhoej4drrrmmyriDHXM0fvx4Nm7cWL5Y5vbbb6ekpIRBgwYxYMAAbr/99nL/I0aMYNq0aQwaNIhp06YxbNgwPvvsM5577jn++9//li+G8a1CnTt3bvkRTQ899BADBw5k0KBBxMXFceaZZ9bqyCgwe5tecMEFnHTSSbRu3brcfOXKlVx55ZXl9xMnTuSTTz5hwoQJxMfHVzv8+oZQRlGMHQ0odj1Ch6OuifgxTCJyPjBZVa+095cCI1X1ulB+3DFMdcf8+fMrLKppjER72Vn/l1OIiY2jV8Falne6lNFXPxJpkRyOOsUdw1RNRORqEVkpIiszMzMjLY7DcdzwqBfFQ4Ek4ClxQ6MOR10TDYrwW6CL331na1YBVX1CVYep6rA2bdocN+EaOrNmzWrUvcH6gOBFxUMhiUhJQaTFcTgaHNGgCL8AeolIdxGJBy4C3j6agCI9zOuof9SHMuOhDBUPRZJITJlThA5HXRNxRaiqpcB1wAfA18BCVa384VgVJCYmcvDgwXpRsTmiA1Xl4MGDJCYmRlqUsHjUi0oMxZ5EYkqdInQ46pqo+I5QVd8Djn5jTKBz587s2bMHN3/oqAmJiYl07tw50mKExYMXLx5KPInEuh6hw1HnRIUirAvi4uIq7NzicDQUPJgeYUlMEnGlbrGMw1HXRHxo1OFwhMcMjXooi0ki3lsYaXEcjgaHU4QOR5TjWzVaFpNEgjpF6HDUNQ1maNThaKj4hka9sU4ROhzHAtcjdDiiHI96QTxobDKJWhRpcRyOBodThA5HlOOxQ6Man0wSRZSVeav25HA4qo1ThA5HlOPBixKDxCURK14KCt0nFA5HXeIUocMR5XjwgseDxJsTKArysiMskcPRsHCK0OGIcmIoQyUGj1WERfk5VfhwOBw1wSlChyPK8a0ajUn0KcLcCEvkcDQsnCJ0OKIc3wf1MQlNASgqcIfzOhx1iVOEDkeUE4MXPLHEJRlFWFroeoQOR13iFKHDEeXEUmYUYaJRhCWFbo7Q4ahLnCJ0OKIYVSXGKsL4JDNHWFbohkYdjrrEKUKHI4opLSsjRhTxxJKQnAJAWZFThA5HXeIUocMRxZSWlJiLmFgSk4wi9BY7Rehw1CVOETocUUxJaTEAEhNHYhOjCHE9QoejTnGK0OGIYkpLSs2FJ5Z4u2pUS9zhvA5HXeIUocMRxZSVmNMmxBMLnhgKiQOnCB2OOsUpQocjiiktNT1CiYkDoJBEPCVu022Hoy5xitDhiGLKSm2PMMacoV0kCXhKXY/Q4ahLnCJ0OKKYsmJ7In1cIgBFkkhMmVOEDkdd4hShwxHFeIut0otNAqDEk0RsaWEEJXI4Gh5OETocUYy3yCrCOKsIYxKJ87o5QoejLnGK0OGIYkqtIoxNSAagJCaJOK/rETocdYlThA5HFFNi9xWNt2cRlsUkEe8UocNRpzhF6HBEMSV2Fxnfx/RlsckkqFOEDkdd4hShwxHFlNmh0QR78oTGJpHoFKHDUac4RehwRDGlRWZhTGKy6RESl0wSRXi9GkGpHI6GxXFRhCIyW0S+FZE19vdjP7vfichWEdksIpOOhzwOR31B7UkTSfYIJuKTSZJiCn2nUjgcjloTexzjelBV7/c3EJH+wEXAAKAj8JGI9FbVsuMol8MRtUjBIUrVQ1LT5uY+3gyR5uflkJzQKpKiORwNhkgPjU4FXlbVIlXdAWwFRkRYJocjavAUHCRLmuGJiQF+UIRF+e4oJoejrjieivA6EVkrIk+JSAtr1gnY7edmjzVzOBxAXOEhcjyp5feeBJ8izImQRA5Hw6POFKGIfCQi64P8pgKPAz2BdGAv8MBRhH+1iKwUkZWZmZl1JbbDEdUklhwiPy61/D7Wfk9YVOAUocNRV9TZHKGqTqiOOxF5EviXvf0W6OJn3dmaBQv/CeAJgGHDhrklc45GQeuSfexIPbn8Ptb2CEsKciMlksPR4Dheq0Y7+N2eC6y3128DF4lIgoh0B3oBK46HTA5HtJOXk0UbDlPWonu5WZz9sN4pQoej7jheq0bvFZF0QIEM4OcAqrpBRBYCG4FS4JduxajDYdi7YyMnAglte5Wb+XaYKS1yi2UcjrriuChCVb00jN1fgb8eDzkcjvrE4T2bAGjRpW+5WflWa7VUhAcz9/LNR/OJ/XY5sWUFFLQexIlTfk3b9l2q9uxwNDCO53eEDoejBpR8/w0AHbr3LzdL9CnC4qM7nDc/5zAbXr6d/nsWcrIUsU/aUCjJDNq1nLy5z/PlqP/H0MmzQvovLCpi86rFFOxcRVnOPkQ8kNiCxE4DaH/iENp36o4nJvSMS1FxEVkH91NakI14YpHYeGLj4klISiYxsQlxcXGIyFE9m8NxtDhF6HBEKXGHtrCP1rRv0rzcLMFutVZ+TmENWPPRy3Rc+jtO0sOsbD6BtpNvplv/kQDs2bKG/AVXMXTZ9Szf9CF9L/07zVu1R71evt22nm+/fJ+4nYvplfclg8Vs+1aqHgQlRhS2AUsgR5PYG3cCBfEtKfPEE1eaR1LpEZLKckjRbJqRT7swMpZoDMXEUSTxlNrqyYMXAEHNT80/KBLE3uNzB+B/L8rq9hcy7Jonapx2joaNU4QOR5SSmr+DzMSutPczK998u6T6h/OWlZaw/Mlfc8r3L7LD040Dk//JiBE/quCmc690Sm75lBXP3MywPc9R9sgH7IppT4o3m85k0xnYK234pvUZJPSdQPu08bRq2wkRD9mHvmfv1tXk7FxL2f5NNMneRpOi74n1FlPsSSI3tjmHk07Am9gCklriadoKiW+Kqhe8JWhJMd7SIvNMpYWI71dWDOIBEdtLlPJ7MGYqHmPns/epQsHvWlCFtvsW0/77JbXKE0fDxClChyMK8ZaV0bl0N1+1GlbBXOLMAb1Uc2i0pCCb7Y9O5ZT8L1nR+jwGXzmHhMTkoG7j4hMZcdWjbN9wKfuWzCchdxd745qhHYfSacgZdO6ZRgdP5WHPZq3a06zVmTDyzJo95HHmf0/dwqidT1CYl01ik2aRFscRRThF6HBEIft2b6WjFONp26eihSeGIuKgtOoeYVHeYXY/8hN6Fm7kv31nc/rFN1Yr7h4DRtBjQMPb6TC+0yA8u5Q9m1dz4tDTIi2OI4polIrwi4cuprRZZ/pP/S3NW4WbsagCVbxeLyWlJXjLvKDeym4CJv4rLASotCgg4D6cvUiAdWi/EmgXhOqsT6juEobqLHaoflh1E19NUFX7b773UVW03A4URdXf/Q9m6heGWjtjEN5NeQzWfufmL+kIpHQZUEm+IhKQKhRhQfYhvn3sx3Qt+oalg+/l9POuqmkyNDg69DoJPoeDW5fXWhGqKgX5OZTm51LiLaWstIyyslJTrsWDx+NBxIN4zHCuiODxxCAI4okBj+ARc11uJ4JYf+X+7XvuFhAdWxqdIiwpLiK2JJvhu56g+JF5rE9MIye1HzRtCzEJeMqK0aJsKMrFU5xDbEkOcaW5JJTlkejNpYnm00TziaOUGFE8QEKkH6qGeLX+vFTV2ULoWG4z5Jt5Ot60E/NUHXoMrmRXJIl4wijC3KxMvp9zJicUb2f5sL8z7qxZx0rMekXHbn3YS2sSdy0BbqmWn7zcbLav/oSCjBVw4Bua5WXQsjSTZppNshyfo7C8Kse0jNeW/4x8ikk/Pi/SYtSKRqcI4+ITGHLzu2xfv5z9nz1Dm/2f03PfayRJcbkbrwp5kkgeTSjwNKEopglF8S3IjevC/vgUSmKbojHxiMSAJwbxeEBi/CbsfQQUX79uROWiHdptoL0E9EgqV9Rh4qkUbjUVSTXfxLp8YbU6oR2rGkJ8f/LDrVSwMms3kIpepHJ++FrzUsEsMKzKbuLa9KBvG/9NmQzFngRiQyjC7AP7ODD3TDqX7OLLkx9lzOQZQd01RsTjYWfqKAZkLaKoqICEhKSg7r7dvpGdS1+m5e7/0KN4M2li9vjIpAWZCV3IaDIcb3IrSGqJN64JnpgY26MzJ4QoCuo1IwvqtV1+LwSYi6pZMKRabkcIP5FpjlWPLt16Ve0oyml0itBHj4Ej6THQLB33lpWRX5BLaVERxMXRtElzUmI8pERYRocjGCWeRGLKCiuZH/p+D0eemELH0m9Zf+pcRv3ogghIF90kp59HyuJ/seJf/2DEtBvKzffu3MzOT56n9c53ObFsG52ArTE9WdVxBk17j6VT2mm0ad2ONhGT3HEsabSK0B9PTAzJTZtD00hL4nBUTaknkdgARbh/91aKnj6b9mWZbP7RPE46dWqEpItuBo49l82f3cuAtf+Pzw/vQrSM1P3L6VvyNR2Ab2J7s/zEG+k69iJO7NqXEyMtsOO44BShw1HPKItJJK7khy3Wtm9cQfLCi0nVPLZPfo7BJ0+OoHTRjSfGQ+plL5Lx7CxO3jOPUvWwPbYny7r9ki6nXkrvHv0iLaIjAjhF6HDUM4rjUmiW/x3q9bL8zTkM+urP5EsS+6e9xoBBoyMtXtTTrnNP2v3+Uwpys4mJi6d3QmKkRXJEGKcIHY56xuHk7qQdWcymu0czqngjmxIG0mrWi/Ts2DXSotUrkpq6j+odhuNyHqHD4ag7mvQeB0Cn4gyW9fsDvW/5hDZOCTocR43rEToc9YyTxp/DrhOW0aptR0alNK/ag8PhCItThA5HPeSEnm5Rh8NRV7ihUYfD4XA0apwidDgcDkejRjTIllvRjohkAjtrGUxr4EAdiHOsqS9yQv2R1clZ99QXWZ2cdU9dyNpVVSO2cU+9VIR1gYisVNVhVbuMLPVFTqg/sjo56576IquTs+6pT7KGwg2NOhwOh6NR4xShw+FwOBo1jVkRPhFpAapJfZET6o+sTs66p77I6uSse+qTrEFptHOEDofD4XBA4+4ROhwOh8PhFKHD4XA4GjeNThGKyGQR2SwiW0XktkjL44+IdBGRj0Vko4hsEJHrrflsEflWRNbY34+jQNYMEVln5VlpzVqKyH9EZIv9bxFhGfv4pdkaEckWkRuiJT1F5CkR2S8i6/3MgqahGB6x5XatiAyNsJz3icgmK8sbIpJqzbuJSIFf2s49XnKGkTVkfovI72yabhaRSRGWc4GfjBkissaaRyxNw9RJUVdOa4WqNpofEANsA3oA8cBXQP9Iy+UnXwdgqL1OAb4B+gOzgd9GWr4AWTOA1gFm9wK32evbgHsiLWdA3u8DukZLegKnAkOB9VWlIfBj4N+AAKOA5RGWcyIQa6/v8ZOzm7+7KEnToPlt362vgASgu60bYiIlZ4D9A8AdkU7TMHVS1JXT2vwaW49wBLBVVberajHwMjA1wjKVo6p7VfVLe50DfA10iqxUNWIq8Iy9fgY4J3KiVOJHwDZVre2ORHWGqi4BDgUYh0rDqcCzalgGpIpIh0jJqaofqmqpvV0GdD4eslRFiDQNxVTgZVUtUtUdwFZMHXHMCSeniAhwIfDS8ZAlHGHqpKgrp7WhsSnCTsBuv/s9RKmiEZFuwBBguTW6zg41PBXpIUeLAh+KyCoRudqatVPVvfZ6H9AuMqIF5SIqVizRlp4+QqVhNJfdKzC9AB/dRWS1iHwiImMjJVQAwfI7WtN0LPC9qm7xM4t4mgbUSfWxnIaksSnCeoGINAVeA25Q1WzgcaAnkA7sxQybRJoxqjoUOBP4pYic6m+pZpwkKr7NEZF44GzgFWsUjelZiWhKw1CIyB+AUuAFa7QXOEFVhwA3AS+KSKSPgq8X+e3HxVRstEU8TYPUSeXUh3JaFY1NEX4LdPG772zNogYRicMUuBdU9XUAVf1eVctU1Qs8yXEavgmHqn5r//cDb2Bk+t43DGL/90dOwgqcCXypqt9DdKanH6HSMOrKrojMAn4CzLCVIXaY8aC9XoWZd+sdMSEJm9/RmKaxwHnAAp9ZpNM0WJ1EPSqn1aGxKcIvgF4i0t32Ei4C3o6wTOXYuYF5wNeq+nc/c/8x9nOB9YF+jyci0kREUnzXmIUT6zFpeZl1dhnwVmQkrESFFna0pWcAodLwbWCmXZU3CjjiNzR13BGRycAtwNmqmu9n3kZEYux1D6AXsD0yUpbLFCq/3wYuEpEEEemOkXXF8ZYvgAnAJlXd4zOIZJqGqpOoJ+W02kR6tc7x/mFWNX2DaVX9IdLyBMg2BjPEsBZYY38/Bp4D1lnzt4EOEZazB2a13VfABl86Aq2ARcAW4COgZRSkaRPgINDczywq0hOjnPcCJZi5lJ+FSkPMKrw5ttyuA4ZFWM6tmLkgXzmda91Os2ViDfAlcFYUpGnI/Ab+YNN0M3BmJOW05vOBawLcRixNw9RJUVdOa/NzW6w5HA6Ho1HT2IZGHQ6Hw+GogFOEDofD4WjUOEXocDgcjkaNU4QOh8PhaNQ4RehwOByORo1ThA6Hw+Fo1DhF6HA4HI5Gzf8HJxTZjr/rX8YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 6)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmQklEQVR4nO2dd5xU1fn/38/M9kZZei/S2WVBmgEUEsVCFBUUDIpIjF+TaOwl30RDTMzPGrsSCYotCpZYvmpMLKgYAekdAVlh6bAs29g28/z+OHfX2dmZ7cvMDuf9Yth7zzn33M8999zznHbvEVXFYrFYLJZIxhVqARaLxWKxNDXW2FksFosl4rHGzmKxWCwRjzV2FovFYol4rLGzWCwWS8RjjZ3FYrFYIp6wM3Yi0kNEVESiQq3FUn9E5HoR2Ssia0Nw7jki8vIJOM8sEVlSjf9iEbm6qXVYKlNdup+oeyIiC0Tkz9X4q4ic0tQ6IgER6SQieSKyVUR+XN94ws7YWeqOiMwVkXznVyIipT77H4ZI1hzgV6o6xEfnHBGZEyI9YYVTqcusY/jPRKRQRLaIyJnVhL1URP7rhF0cwD9DRFY6/itFJMPHL9bJTwdEJFtE3hORzgHi6CMiRb6VCjH8TkR2iUiuiLwmIik+/guc/Jnv83PX8voXiMis2oRt7jiVqAV1CP8TJ08UOnmkezVha5WPROSTQI0OEblBRHaKSIGIbBaRvo77JBFZIiI5IrJfRP4uIsk+x3UWkXecPJUlItf6+I3zyxP5zrmnAKjqXlVNBt4DflPbdPGn0Y2dbZGdeFT1WlVNUtUk4C/AwvJ9VT23PNwJvjetgQ0n8HxNQhjl51eB1UAq8DvgDRFpGyRsNvAocJ+/h4jEAO8ALwOtgBeAdxx3gBuA04B0oBNwFHgiwDmeAr7xc5sJXAGMcY6ND3DsAz55M0lVPcEuONypraFuYg1tgLeAuzDP3ApgYTWH1JiPRGQGEB3gXFcDPwcmAUnAT4HDjncL4M+Y+z4A6Aw86HP4y8BOoL1z/F9EZAKAqn7pmyecePOBf/lJ2ODorheNYuxEJFNE7hCRdUCBiESJyGindpkjImtFZLxP+MUi8v9EZLlTA3xHRFoHifsqpwaRJyLficj/+PlPFpE1Tjw7ROQcx72FiMwXkX0iskdE/lxT5hSR3iLyqYgcEZHDIvKKiLT08csWkWHOficROVR+XSJygYhsdK53sYgM8EufW0VknYgcE5GFIhJX95SuO0HuTaUuFPHrchGRnzppmuPcw/Q6nrM8nb01hLvduT97ReRqX12OpqdE5H3n3i8Tkd4+xz4mIrud+75SRMb5RR/npHOeiKwSEd8W5p1OXskTkU0icpGP3ywR+UpEHhGRI5gWak3X+5CIHBVT4z3Xz7u7E1+eiPzbKZzqhJja8zDgD6p6XFXfBNYDUwKFV9WPVXURsDeA93ggCnhUVYtV9XFAgPLuoZ7AR6p6QFWLMAXnID8904Ec4BO/uM8H5qvqblXNB+4HpolIQl2vuTpExC0iDzvP6E4RuU6CDH2ISEfnubvNx7l3sLJHRF4X0zI5JiJfiMggH78FIvKMiHwgIgXAhBqktgqWfx3OFJFtznP2lIhIPZLjYmCjqr7u3K85wBAR6e8fsDb5SERaAH8Abvc71uW436Sqm9SwQ1WzAVT1H6r6L1UtVNWjwDxMpQcRScLku3tVtVRV1wJvALODXNOVwBuqWuDn7sXk3fqhqg3+AZnAGqArpjbXGTgCnIcxqGc5+22d8IuBPcBgIBF4E3jZ8esBKBDl7E8CemMeyDOAQmCY4zcSOObE73LO29/x+yfwNyf+dsBy4H9quI5TnLhigbbAF5hCodz/F8AmIAH4CHjIce8LFDjHRmMyynYgxid9lmNqPa2BzcC1QTSMxRQkwX5ja7iGOeVpGejeOG4KnOITZgHwZ2d7KHAQGAW4MRkvE4itQ344BygCEmsIsx9TkCZgan4VuhxNR5x7HAW8Arzmc/zlmFpeFHCLE1ecTxqUAlOd+3ErplYZ7fhf4twLFzDNuXcdHb9ZQBlwvRN3fDXXMMs5zy+ctPolxsCITz7f4eSPeGf/viBxPQ08HcTvImCzn9uTwBM13IergcV+bjcBH/q5/R9wi7M9HPjKSZ8E4B9UfgZSgG+BLgHy2hvA7T77Y5x7OsTnnmY7v5XAlHqWN9dinsMumNbpx1QuMxY7197T0XqNz7GLCVL2OP6zgWRMGfAosMbvOTnmXJerPL8F0biA6vOvOuneEugGHALOCRLXOuBnQfweA57xc9sQKG1rk48wLfabqFoOd3P2bwB2Y56nPwKuILoeLb9eJz0VaOfjPw9YHeC4RCAPGB/AbwKmp6FbvfJNfQ4KICITmO2zfwfwkl+Yj4ArfTLcfT5+A4ESTIFRKZEDnOtt4AZn+2/AIwHCtAeK8SmogMuAz+p4XRf63xDgXUxtaB2OAcB0ISzyCePCPFDjfdLnch//B4C5jZH2ATTPoaqxm+0Xpjpj9wzwJ7/wW4Ezann+FU78v6kh3HPA//PZP4Wqxu7vPv7nAVuqie8oPxSqc4ClfvdjHzAuyLFrgMnO9ixgVy2vdRaw3Wc/wbmGDj75/Pc+/r8C/lWPe3qF7/U4bvcCC2o4LpCxuwufQtdxewWY42y3AF5zrqMM0+XV2ifsY8AdQfLa1Rjj0sOJ510nntMc/2H8UEE5D1OojalHenyKT8UVOJOqxu6vTt6/zO/YxQQpewKcp6UTbwufPPliLTVWm3+deMf67C8C7qxHWszHrwKFqazMqms+wlR01jj3p4dfmv7I2X/fSZcezr3+RYDznIV5Hvv6uC3BdGnHOfkgG9gaRONOnApjAP/XHR2P1jWtGnPMbrfPdnfgEqd5niMiOZgWS8cg4b/H1MCrdPGIyLkistTpQszBZJrycF0xNWd/ujvx7fM5/98wLbygiEh7MYPqe0QkF9Pa8Nc0D1MrfEJVix23Ts41AKCqXuf6fAf29/tsF2L6vE8Uu2sOUkF34Ba/e9cVc421YQQwHZgjIlX6/X3o5KcrkMagaeZ0C292uptyMIWr772qiM+5H1nl1yAiM326aXMw9zPgsbWgQqOqFjqbSYH8/a+hDuRjWlS+pGCMRWPH9RSmVZOKqWW/BXwIZmILxrA8EiTu5zBjQouBjcBnjnsWgKquUtUjqlqmqh9gjOzF9biG2uSdGZgK5xsB/AKWPU736H1OF3cuxlhCI+QNAt/7E503goZ1uimfxjQkygIce9z5+4Cq5qhqJqZMPc83kIiMxvQGTFXVb328ZmBa2rsxFeqXcfKFH1diKhTq7yFmCOk8TO/djQGOrZbGNHa+4nZjWnYtfX6Jquo7YN7VZ7sbpjvosI8bIhKL6WZ4CGivqi2BDzBdmuXn8e8HL3cvBtr4nD9FVQcFCOvLX5zrSFPVFExXWUU/utP3/CimNjXHp69/L8ZIlIcT5/r21HC+KkjgmUm+P/+xqdrgn3EKMa2Qcjr4bO/G9K373rsEVX21VicymfRtTPdSx2qC7sN0Q5XTNVhAf5w0uB24FGjl5Itj+Nwr3/icB7kLsFfMTLV5wHVAqnPsBr9jqzxoIWYj0Et8ZrcBQxz3+sSV7jc+lO4TVwampp/tVOaeAEY6Y43jMTX6XSKyH9M9PEVEVoGpVKjqH1S1h6p2ceLcQ/DnQKmc7rWlNnlnDqY8+YdUHasPVvb8DJiMMegtMNcK4Z83hpTviEgipkwMlDeqy0cpmJbdQufelk8+ynKet62YFrDv9VdKCxEZimnNz1bVSuO5qvq9qv5UVduq6ihMBWK53/FdMXnsxSDXOgDYpKpbg/hXS1O9evAycL6InO3UluJEZLyI+GbQy0VkoDN4fQ9mQNJ/ZlYMppZ5CChzBv8n+vjPB64SM/XWJWZ6a39V3Qf8G3hYRFIcv94ickYNupMxtZ9jYqZb3+bn/xiwQlWvxjTn5zrui4BJjo5ozBhSMfDfmhLKH/WbmRTg92Vd4wzAGuBnzr05BzMWWs484FoRGSWGRDHTipOhYpB+QQ3XUN7ijakm2CLMvRvg5IG76qA/GdPFdgiIEpG7qVpjPVVELhYzaeFGzP1YimmtqHMsInIVpmUXtjg15DXAH5xn6SKMgXozUPjyZw7THeVyjilvZS8GPMBvxLxmcJ3j/qnz9xtgppgJXtGYrte9qnoYeBZTkGY4v7mY5+Bs57ytnedMRGQgpivxHqdljYhMFZEk53mciKlMvuujW8VnIls1LAJucJ73lphhE39KMWOzicCLToWnnGBlTzImnxzBVAb/UgstoeafwGARmeLc87uBdaq6xT9gDfnoGKbFnOH8yltspwLLnF6LhcDtIpLslOXXYMYdEZHBmNmT16vqe/7ndp7zZBGJEZHLMeX4X/2CXQH8V1UD9daBaYEXB/GrkSYxdqq6G1ND+l9MobIbYzh8z/cSpl97P6Yft8r7E6qa57gvwvQB/wyfh0NVlwNXYbpVjgGf80MLayamsN3kHPsG1bc0wAy4DnPieh/ThQOYWZ+YSRW/dJxuBoaJyAynpnE5phZ8GDMr7XxVLanhfKHiBozGHEz3wtvlHqq6AjPh4klMum3HjE2V0xUzJlATSjX5S1U/BB7HdHVtxxgiqF1m/gjzYH2L6YYqomr30juYySdHMQ/RxWpmgm0CHga+Bg4AabW8niZFzLttc6sJMh1T8z6KeaVgqqqWG+wZIuJbk78C0+30DDDO2Z4H4OTJCzHPRw5mQsaFPnn1Vkx6bsM8u+dhJjagZqbd/vIfpmJYVK4DU1v/ADPh50PgOVV91kfXDZhWXg5mWvovVHWxcw1dMV1v62tOLeZhKrPrMGOKH2AqP5Uqy841XYwZw3/Ox+AFK3texOSnPZhyYylhgJhZ3jMC+TlpPwUz9nYUM7Fsus+x/vkqYD5Sg++9Lb+nB3zyxnWYe74X8/z8A9N1DaaC3xaY79ML5Zsnzwa+c857LWYyziEqMxPzKkww3NQww7s6ymeNnVDEvOj6sqr+/YSf3FJvxLyLtRZIV9XSGsLuxczMq9WXTMS8qrEBM+kn0JiBJYJxavuDVPW39Tj2XMyEr+41BrY0S5yKyuOYGZ2X1icO+wUVS61R1RJVHVCToXO4E9NdsjJYABG5yOlKa4V5J+s9a+hOTlT15doaOhGJF5HzxLwz2hnz/tc/m1ahJVSISCdMS3M0plemXpx0xk4qf1rL91ddF5Kljqjqi6raR1VPrSbY/2De6duB6YL6ZTVhQ4LNL2GJYIYcjmK6MTdjxqpOrAjTvRgobwTscrTUDzWfC0tV1eGquqy+8YSkG9NisVgslhPJSdeys1gsFsvJR7h85BaANm3aaI8ePUItw2KxWCwnkJUrVx5W1WAfNm8UwsrY9ejRgxUrVoRahsVisVhOICLyfc2hGobtxrRYLBZLxGONncXSDPB4Kz6Ea7FY6oE1dhZLmPPu26/y6Zyf8Ozz80ItxWJptoTVmF0gSktLycrKoqioKNRSLM2IuLg4unTpQnR0dQsvhD9Z+w5wxupbaOEqIO/7TSzfOIGRg/qEWpbF0uwIe2OXlZVFcnIyPXr0QOq1kK/lZENVOXLkCFlZWfTs2TPUchrE9o/nMV4KOHzmI7T5+CYOfv53GHR/qGVZLM2OsO/GLCoqIjU11Ro6S60REVJTUyOiN6Dlro/Z5e5Gm7Gz2RXXj+4HP6bMU+9v4VosJy1hb+wAa+gsdSYS8kzOsRwGlGzgcPuxABT2PItBuoMtmXVZP9RisUAjGDsRuV5EtjjfiXvAcTtLRFaKyHrn748bLtViObnI2rCEWCklpq95fFIHjsclyv4NjbGkocVyctEgYyciEzDr1g1xVgF/yPE6jFnPLQ2zzPpLDVIZYkSEW265pWL/oYceYs6cOaETVAOLFy/mv/+t87qxlTjnnHNo2bIlP/3pTxtJlaWuFGSuAqDDgNMAaNP3NMpw4d31dShlWSzNkoa27H4J3Fe+MrWqHnT+rlbVvU6YjUC8iMQ28FwhIzY2lrfeeovDhw83aryqitfb+OMvjWHsbrvtNl56qVnXUZo90QfXcYDWtGnfBQCJTWJvTC9a5WwIsTKLpfnRUGPXFxgnIstE5HMRGREgzBRgVblB9EdErhGRFSKy4tAh/4Vrw4OoqCiuueYaHnnkkSp+hw4dYsqUKYwYMYIRI0bw1Vdm0es5c+bw0EMPVYQbPHgwmZmZZGZm0q9fP2bOnMngwYPZvXs3t912G4MHDyYtLY2FCxcCxmCNHz+eqVOn0r9/f2bMmBHwpeLHH3+cgQMHkp6ezvTp08nMzGTu3Lk88sgjZGRk8OWXX1ar8YorruC0006jT58+zJv3w3tcP/nJT0hOTq42XV5//XUGDx7MkCFDOP300wEzoeiqq64iLS2NoUOH8tlnnwGwYMECLrzwQs466yx69OjBk08+yV//+leGDh3K6NGjyc7OBmDevHmMGDGCIUOGMGXKFAoLC6ucd/To0Wzc+MMiyOPHj4/Iz8y1yd/KnrjKrxnktuhP97JMiko9QY6yWCyBqPHVAxH5GOgQwOt3zvGtMYvqjQAWiUgvdUplERmEWZRzYrD4VfVZ4FmA4cOHV/uJiD++t5FNe3NrklwnBnZK4Q/nD6ox3K9//WvS09O5/fbbK7nfcMMN3HTTTYwdO5Zdu3Zx9tlns3nz5mrj2rZtGy+88AKjR4/mzTffZM2aNaxdu5bDhw8zYsSICsOxevVqNm7cSKdOnRgzZgxfffUVY8eOrRTXfffdx86dO4mNjSUnJ4eWLVty7bXXkpSUxK233grAz372s6Aa161bx9KlSykoKGDo0KFMmjSJTp061Srt7rnnHj766CM6d+5MTk4OAE899RQiwvr169myZQsTJ07k22+/BWDDhg2sXr2aoqIiTjnlFO6//35Wr17NTTfdxIsvvsiNN97IxRdfzC9+8QsAfv/73zN//nyuv/76SuedNm0aixYt4o9//CP79u1j3759DB8+vFaamwue4kI6l+3m+3Y/qezRYRDtDv0f3+7+nr69eoVGnMXSDKmxZaeqZ6rq4AC/d4As4C01LAe8QBsAEemCWT14pqruaMqLOBGkpKQwc+ZMHn/88UruH3/8Mddddx0ZGRlccMEF5Obmkp+fX21c3bt3Z/To0QAsWbKEyy67DLfbTfv27TnjjDP45ptvABg5ciRdunTB5XKRkZFBZmZmlbjS09OZMWMGL7/8MlFRgesu1WmcPHky8fHxtGnThgkTJrB8+fJap8mYMWOYNWsW8+bNw+PxVFzP5ZdfDkD//v3p3r17hbGbMGECycnJtG3blhYtWnD++ecDkJaWVnFtGzZsYNy4caSlpfHKK69UasGVc+mll/LGG28AsGjRIqZOnVprzc2FPTs24BYlpmPlilhytwwADu9YFQJVFkvzpaEvlb8NTAA+E5G+QAxwWERaAu8Dd6rqVw08RwW1aYE1JTfeeCPDhg3jqquuqnDzer0sXbqUuLi4SmGjoqIqjcf5vvOVmJhYq/PFxv4wzOl2uykrK6sS5v333+eLL77gvffe495772X9+vVVwgTTCFWn6Ndlyv7cuXNZtmwZ77//PqeeeiorV66sNrzv9bhcrop9l8tVcW2zZs3i7bffZsiQISxYsIDFixdXiadz586kpqaybt06Fi5cyNy5kbdo+MHvN9ENaNNjYCX39n3Mwu+lWeuAyDPyFktT0dAxu+eAXiKyAXgNuNLpwrwOOAW4W0TWOL92DTxXyGndujWXXnop8+fPr3CbOHEiTzzxRMX+mjVrALNc0apVpva9atUqdu7cGTDOcePGsXDhQjweD4cOHeKLL75g5MiRtdLj9XrZvXs3EyZM4P777+fYsWPk5+eTnJxMXl5ejRoB3nnnHYqKijhy5AiLFy9mxIhAw66B2bFjB6NGjeKee+6hbdu27N69m3HjxvHKK68A8O2337Jr1y769etX6zjz8vLo2LEjpaWlFfEEYtq0aTzwwAMcO3aM9PT0WsffXDi+fysAXXpXruDFtWxPtrQg6ui2UMiyWJotDTJ2qlqiqpc73ZrDVPVTx/3Pqpqoqhk+v4ONIzm03HLLLZVmZT7++OOsWLGC9PR0Bg4cWNHKmDJlCtnZ2QwaNIgnn3ySvn37BozvoosuIj09nSFDhvDjH/+YBx54gA4dAg2RVsXj8XD55ZdXTAb5zW9+Q8uWLTn//PP55z//WTFBJZhGMN2gEyZMYPTo0dx1110V43Xjxo3jkksu4ZNPPqFLly589NFHANx99928++67gJmxmZaWxuDBg/nRj37EkCFD+NWvfoXX6yUtLY1p06axYMGCSi26mvjTn/7EqFGjGDNmDP37969wf/fdd7n77rsr9qdOncprr73GpZdeWuu4mxMxOTs5TEtiE1tW8Tsc242UgswTrsliac5IOC0bMnz4cPWfVbd582YGDBgQIkWRzZw5cypNZIk0mnPe2Xzvj1BxMfB/l1TxW/v0TLoc+IyUu78n2t0sPoJksVSLiKxU1SadZWafFIslDGlXuofchG4B/Vxt+5Aquezek3WCVVkszZewX/XA0nSE81dgTmZKjheQSg5bUgIbu+ROA2AjHPhuA726BQ5jsVgqY1t2FkuYcXDPdwBEte4a0L9trzQACvdtOWGaLJbmjjV2FkuYcXSfMXbJ7XoE9E9s15tSouDw9hOoymJp3lhjZ7GEGQWHvgegVacgX0hxR3EwqiOJ+YFfZ7FYLFWxxs5iCTPKsnfhVaFtxx5BwxxL6EHb4l0nTpTF0syxxq6WvP3224gIW7YEHyfJzMxk8ODBTapjzZo1fPDBBw2KY/bs2bRr167JtVrqR1TeXrKlJVGx8UHDlLbqTRfdT3Ze1Q9lWyyWqlhjV0teffVVxo4dy6uvvhrQP9CnvOpK+fclq6MxjN2sWbP417/+1aA4LE1HQtE+sqOq/+BQTPt+xEoZezPtJBWLpTZYY1cL8vPzWbJkCfPnz+e1116rcF+8eDHjxo3jggsuYOBA8w3DsrIyZsyYwYABA5g6dWrFEjWffPIJQ4cOJS0tjdmzZ1NcbFY86tGjB3fccQfDhg3j9ddfr3Re/yV0SkpKuPvuu1m4cCEZGRksXLiQgoICZs+ezciRIxk6dCjvvPMOYJbUmTx5MuPHj6dPnz788Y9/rIj39NNPp3Xr1tVe8+eff05GRgYZGRkMHTqUvLw8VDXockRnnHEGkydPplevXtx555288sorjBw5krS0NHbsMN8Bf++99xg1ahRDhw7lzDPP5MCBA1XOO336dN5///2K/VmzZlV89PlkoUXpQfLj2lcfpptplR/dVfVD2RaLpSrN6z27D++E/VU/dNwgOqTBufdVG+Sdd97hnHPOoW/fvqSmprJy5UpOPdV8kHfVqlVs2LCBnj17kpmZydatW5k/fz5jxoxh9uzZPP3001x33XXMmjWLTz75hL59+zJz5kyeeeYZbrzxRgBSU1MrvqPpi/8SOjExMdxzzz2sWLGCJ598EoD//d//5cc//jHPPfccOTk5jBw5kjPPPBOA5cuXs2HDBhISEhgxYgSTJk2q9VI4Dz30EE899RRjxowhPz+fuLg43nrrraDLEa1du5bNmzfTunVrevXqxdVXX83y5ct57LHHeOKJJ3j00UcZO3YsS5cuRUT4+9//zgMPPMDDDz9c6bzly/dMmjSJkpISPvnkE5555plaaY4IVGnrOcTehDHVBmvX07x+UHbAtuwsltpgW3a14NVXX2X69OmAaXn4dmWOHDmSnj17Vux37dqVMWNMQXX55ZezZMkStm7dSs+ePSu+j3nllVfyxRdfVBwzbdq0gOcNtISOP//+97+57777yMjIYPz48RQVFbFrl5m4cNZZZ5Gamkp8fDwXX3wxS5ZU/fRUMMaMGcPNN9/M448/Tk5ODlFRUdUuRzRixAg6duxIbGwsvXv3ZuJEs4Sh7/I9WVlZnH322aSlpfHggw8GXL7n3HPP5bPPPqO4uJgPP/yQ008/nfj44GNXkUZ+3lESpBhNrn5NwajEVhyRVsTaD0JbLLWiebXsamiBNQXZ2dl8+umnrF+/HhHB4/EgIjz44INA1eV66rNkTrAlf2qzhI6q8uabb1ZZWWDZsmUNWr7nzjvvZNKkSXzwwQeMGTOm4kPQwajN8j3XX389N998MxdccAGLFy8O+AWXuLg4xo8fz0cffcTChQsrKhknC9kHdpMExLSo+WPgB2O706rQvn5gsdQG27KrgTfeeIMrrriC77//nszMTHbv3k3Pnj358ssvA4bftWsXX3/9NQD/+Mc/GDt2LP369SMzM5Pt281LwC+99BJnnHFGjecOtISO//I9Z599Nk888QTlH/RevXp1hd9//vMfsrOzOX78OG+//XZFi7M27Nixg7S0NO644w5GjBjBli1bGrQcEcCxY8fo3LkzAC+88ELQcNOmTeP555/nyy+/5Jxzzql1/JFA7sE9AMS37lhj2MKU3nQp243H460xrMVysmONXQ28+uqrXHTRRZXcpkyZEnRWZr9+/XjqqacYMGAAR48e5Ze//CVxcXE8//zzXHLJJaSlpeFyubj22mtrPHegJXQmTJjApk2bKiao3HXXXZSWlpKens6gQYO46667Ko4fOXIkU6ZMIT09nSlTplSM11122WWcdtppbN26lS5dulSszzd37tyK5X8effRRBg8eTHp6OtHR0Zx77rkNWo4IzLc4L7nkEk499VTatGlT4b5ixQquvvrqiv2JEyfy+eefc+aZZxITE1Pr+COBwqN7AUhp07nmwG36kizH2Z+V2bSiLJYIwC7xE6EsWLCg0kSWk5HmmHeWvPJnxm57kPwbviWpVfUzMrd89S79/3MFaya8SMYZk0+QQoul8bFL/FgsJxmSf4BSdZPUom2NYdv1Miu0F+7d1NSyLJZmT/OaoGKpNbNmzWLWrFmhlmGpI1GFhzgqLWnnqrke2qp9N/KJRw9tPQHKLJbmTbNo2YVTV6uledBc80xc8WFyo1rVKqy4XByI6UZi7o4mVmWxNH/C3tjFxcVx5MiRZlt4WU48qsqRI0eIi4sLtZQ6k1iaTUF0aq3D57foS7fS7ygprflTcxbLyUzYd2N26dKFrKwsDh06FGoplmZEXFwcXbp0CbWMOtPCk012XP9ah5dOGbQ+9B7bvttKn34D633evJzDrF66mPzDu/HiIqZND9r3HkLf7l2Jj3HXO16LJVxosLETkeuBXwMe4H1Vvd3HrxuwCZijqg/VJ/7o6OhKXyixWCIV9ZTRSo+xLaH6j0D70uqUkbAWDm1bVi9jl/XdZo68dxcDsj/jdPH5mPl28H4tbKE7O5OGoj3G0n3oWQzs1Q23q/YfJ7BYwoUGGTsRmQBMBoaoarGI+D+lfwU+bMg5LJaThbyjB0kRLyTW3th16jucMnXhyVoNXFWn833z9tOkrb6b1rhYlnoBHUZcTM/e/XHj4XDWNo7tWEbCrv9yVt7/EbPxn3g3CN9KNw6kpONq04f4Dn1IbNmeqPhkYuPiiHV5KSstoej4cUqKCigpKqSsqICy4kK8JYV4So6jJYVo6XHcnuNEeYsRQMWFIj/8xY2KgLhQcQHi/Cv/a6j4K2K2nTDihCl3j2rZkSEX3VKntLFEHg1t2f0SuE9ViwFU9WC5h4hcCOwEChp4DovlpCD3UBYpQFRK9e/X+eKOTWBndHeSj26o07m+fvH3nPbdE2yMHULbmQsY16Xyquht2/Wn7bDzzU5pETnbl7J/3ce4d/2XYbmfkpz7HnxXp1NW4jgxFBODF8GFYsycFzdeBMWlisvZjhIvXq1fa9IlCt/D4VFTaNOpR/0FW5o9DTV2fYFxInIvUATcqqrfiEgScAdwFnBrdRGIyDXANQDdunVroByLpfmSf9QseRTbovbGDuBIymD6HPmUstJSoqKjawz/6dvP8+PvnmBl8gTSr19IdExs9QdEx9FywHhaDhhv9lUpyDnI/p2bKMw9gqcoF09pMcVeN+6oWKJiY4mJTSQ6PoHYuETiEpKIjTd/4+ISccXEEy9CXT7vXZuZdKqKV8GrilcVVVj70QJGrbiZ/JxD1tid5NRo7ETkYyDQN6F+5xzfGhgNjAAWiUgvYA7wiKrm1/TxYVV9FngWzBdU6iLeYokkio6ZjpHEVrXvxgSQXqfTIvs9tm1cSp+McdWG/eab/zJy9Z3sjO1LxnX/wF2ToQt4QiGxVXt61/CFlxONiOAWcPNDmROfbNZtLMrPDpUsS5hQo7FT1TOD+YnIL4G31LwXsFxEvEAbYBQwVUQeAFoCXhEpUtWT99tVFksNlOQdBqBFau2/NwrQfdjZsOI2std/DNUYuwMH9tP+/asodcXR4Zo3cMcmNEhvcyAmybyzWJJ3NMRKLKGmod2YbwMTgM9EpC8QAxxW1YonTkTmAPnW0Fks1ePJPwJAi9Z1azG16dSd711dSMz6PGiYstJS9s6fwWA9xIGL3qBVm+4N0tpciE82xq600Bq7k52GvlT+HNBLRDYArwFXqn3722KpH8ezySOemNi6dy3u6fAT+hetJffQ3oD+K5+/maElK9iY8Xu6DPlxQ5U2G+JTzAv6nsJjIVZiCTUNMnaqWqKql6vqYFUdpqqfBghT73fsLJaTiaiibPKkRb2ObTXqZ0SJl22LX6zit+k/Cxi190WWtppMxkU3N1RmsyKlpTF23uM5oRViCTlh/7kwi+VkIbokh4Ko+hm7/umj2Oo+hY6bF6Ce0gr3fesX0+urW9ngHsiQa/7WSEqbD3Fx8RRqLFhjd9JjjZ3FEiYklB2jqJ7GTkQ4POxGOnn3seG1uwE4vGkxCW9ezkFSSZ61kPj4ukz2jxzyJREpzg21DEuIscbOYgkTkjy5lMTUbsWDQJx2zgy+jJ9A2ranOXDvIFovupCjmsSxqQvp3vXkfYe10JWEu8Qau5Mda+wsljChheZSFtey3se73C4yrvsH77W7lu2edrzfcgbeqz8mbXBGo2lsjhRFJRFTlhdqGZYQE/arHlgsJwNFxwtJlCI0vvbL+wQiOTGB8391fyOpigxKo1KILzpYc0BLRGNbdhZLGJB/1BTGktA6xEoij5LYliR5bTfmyY41dhZLGJCfY76LGZXcJsRKIg9PXGtaaJ5dAPokxxo7iyUMOJ5jPhUWk9w2xEoiD41PJUGKKSyw43YnMxFl7IoK81nxf8+SuXlFqKVYLHWiJNd0Y8amWGPX2LgSzThobvaBECuxhJKIMnYeTxnDV9zG/mVvhVqKxVInygrMdzETW1pj19hEOa3lgqN2ksrJTEQZu8TklhykNe6cBqwqabGEAK/zoeLk1tbYNTblreWiY4dCrMQSSiLK2AEciu5McsH3oZZhsdQJPX6MYo0mOTEp1FIijviWZn3Akjxr7E5mIs7Y5Sf1oF1pVqhlWCx1QoqPkSeJ1LTYsaXuJDmL4XryD4dYiSWURJyxI7U3rcnl6BHbP29pPriKcymUxFDLiEhatGqHVwV1xkUtJycRZ+wSOvUHYN/2dSFWYrHUnuiyPI67bRdmUxATE80xSYJCa+xOZiLO2LXpPQyAvF1rQivEYqkDsWV5FEelhFpGxJInKbiLskMtwxJCIs7Yte/Sh1xNwHVgQ6ilWCy1Jt6TT1lMcqhlRCyFUS2ILckJtQxLCIk4Y+dyu8iK6UXysa2hlmKx1JokzccTU7+17Cw1UxTdioSyo6GWYQkhEWfsAPJa9KVLyU48Hm+opVgsNeL1eEnSAjTWdmM2FcXxbWnltcbuZCYijZ27YxpJcpzdO7eEWorFUiP5hXnEiAfibMuuqShLbE8rcikrKQq1FEuIiEhjl9p3JACHtvw3xEoslpopOGYmTki8NXZNhTu5AwDZB5rmHdyCggKyD+2n6HhBk8RvaTgNXrxVRK4Hfg14gPdV9XbHPR34G5ACeIERqnpCqlVd+42gUGPx7loGXN2oceccO0bBkT2UFh+nxAvx8Ukkte5ASkoKbpd9IdhSd47nminx7oRWIVYSucS27gxAzsFdtOt6SoPjU1VWLfmQ4m9eoHvuSjpziPK3JHNJZH9UZw4n9aO07WCSug+lc/9TaZ+aaj8aEEIaZOxEZAIwGRiiqsUi0s5xjwJeBq5Q1bUikgqUNlhtLYmKiWVLTD9Ss1c1OK7jhYWs+/RVZMv7dM1fS0cO0zJAuHyNI0dakBfViuMxqZTFt0ET2yFJ7XAltyMmqTWx8Ym4YxKQ6Dhc0XG4RXCL4nIBqqBe1KuoevB6FVUvqBevesELXvWg6kW9XlCMu3p93BSvKqpqoiuPFrMPIAKCUP7MuQTE8fDdFsBlAuPCiYvy/8rjVh83rQijFf+Vhz3xD3iNhUoTFTq+aVKe7uqbZk6YcgevKoV7NtALiE5o2SSaLJDUpisABYcb3rLbm/U9e176H0YUf00+8XyXMoo9qQMgOhFvSSGat4+UvO8YnPMpKTnvwTbw/kfIlI7sizuF4636k9CuB8ltuxHTqgvxyS1JTEohKTEJXFF4vR48njK8njI8njLKyjx4ykopKyvF4/PzlpVS5ikFTxmiHsRbBuV//amS36WSV9Vn1G+/0vE/bGtMIv2HnFavdDzRNLRl90vgPlUtBlDV8s+WTATWqepax/2Ev82Z2+5U+me9QGH+MRKS6t49VHS8kG/eeIhBO+YxilyO0JLdKUPZ02YgktIRiUnELV48Rfl4Cw4jBYdwFR4mtvgwrYt206JwPa2O2NWRLbUnpV2XUEuIWFp2MMau9OieBsWzadUSUt+9gsHks7rPbxg85Q7S44J8DECV3APfsX/rNxTuWkPUoY30yv+WDvu+gH0NkhE2rPf2giGrQy2jVjTU2PUFxonIvUARcKuqfuO4q4h8BLQFXlPVBwJFICLXANcAdOvWrYFyfiDplDFE7XmeTSs/Jf2Mi+p07NY1XxHzzrWM011sihvKgbE30v+0n5LqrltyFRcXcezwfgqP7uN4bjbFRQVQVoyUHYeyYrwKHgWPCiCmRSUuxCUgbsfJ/YO7+IQRV8U2LuNXHqZSS83ZL6+Y/dDiU7zlLTKtaLDhVafl4bRMvE7LpPx4kR/qdcIPO/7nca4oJNS8HnUTrVitUJ4kldJCpFK6gbk35S1oAeKSWtJ9wMim0WWhdZtOlKobb97+esexfcNyOr4znRJXLIcveY+hA0dXf4AIKR16k9KhNzC9wtlblM++rB3k7N+FN3cvpcfzKSsuwFtcgBsPKi7z/LvcIG5cbje4oxFXFC53FFK+HRWNuKPAFY263Ki4UVcUiKtSS03887vPrullqOxfNbzvfmU/b3Tz+epPjaW3iHwMdAjg9Tvn+NbAaGAEsEhEejnuYx23QuATEVmpqp/4R6KqzwLPAgwfPrzRSqHeI86maHE0xzd+AHUwdt+8+VeGrPszuZLCpvF/Z+D4S+qtITY2jnade0DnHvWOw2KxNBy3281haYm7oH4LuB7cn0XyG9Mpkyi48j269hhYby2uuCQ6nzKEzqcMqXcclrpTo7FT1TOD+YnIL4G31FQPlouIF2gDZAFfqOphJ9wHwDCgirFrKhKTUlibMJQuhz5HvV7EVf3EU6/Hw1d/+w3jDr7MuvjhdLv6FQa2CWTjLRZLcyQnqi3xhXXvP/R4POx/fib9NJd9U9+lRwMMnSV0NPTVg7eBCQAi0heIAQ4DHwFpIpLgTFY5A9jUwHPVmaJeZ9NZD7Bj3VfVhistKWbVY5cy7uDLrGx7IYNu/RctraGzWCKKvIQutCqtu7H7+rX7SC9eybr039Ij7UdNoMxyImiosXsO6CUiG4DXgCvVcBT4K/ANsAZYparvN/Bcdab/T2ZxXGM4+uW8oGGKCvPZ9Mj5DM/9mKU9f82pv1qAOyr6BKq0WCwngrKUbrT3HqKkuLjWx+z9fhtDv32cDfEjGH7RTU2oztLUNGiCiqqWAJcH8XsZ8/pByGjRug3LWv2EtMP/4vC+TNp07FHJ/2j2EfY8M5m0kg0sG/g7Rk+7PTRCLRZLkxOV2ouoLC+7dm+j2ymDa3XM/oU30BKl7fSnahwKsYQ3EX/3Op9/F248fP/qzeZdNIe9OzZy9MkJ9C/ZyNoRDzDKGjqLJaJJ6tgbgOys2n0kfv1XHzCs8CvW97qa9t37NaU0ywmgwV9QCXe69B7E191nc9quZ1n+1CwShk0nf+ti0r5/gQSJYvvEBQwdMznUMi0WSxPTpqtZ2Lno4I4aw6rXS8xnczhIa4Zc8tumlmY5AUS8sQMYeeV9/Pdvufzo4Gvwn3cAWJ1wGu2nPUb/HrbGZrGcDKR27E6xRqNHvqsx7Nr/vEhG2VaWp9/DyAS7zmAkcFIYO7fbzY9+9TcOZd3K3m1r6HjKEIZ27RtqWRaL5QQiLjdZ7i4kHdtWbThPaQltl93HTlc3hp3/qxOkztLUnBTGrpy2XfrQtkufUMuwWCwh4khSX3rlLqs2zNr3nmSYdx/LT3uantF2ZnakEPETVCwWi6UcT7tBtCGHowcDfyOz5HgBXdY/yeao/gw/87ITrM7SlFhjZ7FYThqSewwFYM/mrwP6r3v7YdrpEYpO/z0uty0eIwl7Ny0Wy0lD17RxlKqb49u+qOJXmHeU3lvnsTZmGBnjfhoCdZamxBo7i8Vy0tCiRSu2R/cl5UDVcbuNr/+JVuQSPfFuu8hqBGKNncViOak42mEMp5RsJffArgq3fd9tZMj3L7As6ScMHD4hhOosTYU1dhaL5aSizY+uwC3Kt/9+FgD1lJGz6JeUEE33y/4aYnWWpsIaO4vFclLRd2AGa6Mz6LPjeXKzNrN+3jUMKFrLqkF30sGuPRmxWGNnsVhOOmLPfxCXekj5+2jS97/Jp62nM+6SG0Ity9KEnFQvlVssFgtA//SRbOB99n69iLhuQxl/9jQ7KSXCscbOYrGclAxOP5XB6aeGWoblBGG7MS0Wi8US8VhjZ7FYLJaIR1Q11BoqEJFDwPeNEFUb4HAjxHMiaE5aoXnptVqbjuaktzlphealt7G0dlfVto0QT1DCytg1FiKyQlWHh1pHbWhOWqF56bVam47mpLc5aYXmpbc5abXdmBaLxWKJeKyxs1gsFkvEE6nG7tlQC6gDzUkrNC+9VmvT0Zz0Niet0Lz0NhutETlmZ7FYLBaLL5HasrNYLBaLpQJr7CwWi8US8USUsRORc0Rkq4hsF5E7Q63HHxHpKiKficgmEdkoIjc47nNEZI+IrHF+54VaK4CIZIrIekfTCsettYj8R0S2OX9bhYHOfj5pt0ZEckXkxnBKVxF5TkQOisgGH7eAaSmGx518vE5EhoWB1gdFZIuj558i0tJx7yEix33SeO6J1FqN3qD3XkR+66TtVhE5Owy0LvTRmSkiaxz3cEjbYGVWWObdalHViPgBbmAH0AuIAdYCA0Oty09jR2CYs50MfAsMBOYAt4ZaXwC9mUAbP7cHgDud7TuB+0OtM0A+2A90D6d0BU4HhgEbakpL4DzgQ0CA0cCyMNA6EYhytu/30drDN1wYpW3Ae+88b2uBWKCnU2a4Q6nVz/9h4O4wSttgZVZY5t3qfpHUshsJbFfV71S1BHgNmBxiTZVQ1X2qusrZzgM2A51Dq6rOTAZecLZfAC4MnZSA/ATYoaqN8SWeRkNVvwCy/ZyDpeVk4EU1LAVaikjHEyKUwFpV9d+qWubsLgW6nCg9NREkbYMxGXhNVYtVdSewHVN2nBCq0ypm2YVLgVdPlJ6aqKbMCsu8Wx2RZOw6A7t99rMIY0MiIj2AocAyx+k6p9n/XDh0DToo8G8RWSki1zhu7VV1n7O9H2gfGmlBmU7lwiIc07WcYGkZ7nl5Nqb2Xk5PEVktIp+LyLhQiQpAoHsfzmk7Djigqtt83MImbf3KrGaXdyPJ2DUbRCQJeBO4UVVzgWeA3kAGsA/TlREOjFXVYcC5wK9F5HRfTzX9FmHz7oqIxAAXAK87TuGarlUIt7QMhoj8DigDXnGc9gHdVHUocDPwDxFJCZU+H5rNvffhMipX1MImbQOUWRU0l7wbScZuD9DVZ7+L4xZWiEg0JtO8oqpvAajqAVX1qKoXmMcJ7FapDlXd4/w9CPwTo+tAebeE8/dg6BRW4VxglaoegPBNVx+CpWVY5mURmQX8FJjhFHA43YFHnO2VmDGwviET6VDNvQ/XtI0CLgYWlruFS9oGKrNoZnkXIsvYfQP0EZGeTg1/OvBuiDVVwumTnw9sVtW/+rj79mlfBGzwP/ZEIyKJIpJcvo2ZoLABk6ZXOsGuBN4JjcKAVKoZh2O6+hEsLd8FZjoz20YDx3y6jEKCiJwD3A5coKqFPu5tRcTtbPcC+gDfhUblD1Rz798FpotIrIj0xOhdfqL1BeBMYIuqZpU7hEPaBiuzaEZ5t4JQz5BpzB9mJtC3mBrQ70KtJ4C+sZjm/jpgjfM7D3gJWO+4vwt0DAOtvTCz1tYCG8vTE0gFPgG2AR8DrUOt1dGVCBwBWvi4hU26YozwPqAUM47x82BpiZnJ9pSTj9cDw8NA63bMWEx5vp3rhJ3i5I81wCrg/DBJ26D3Hvidk7ZbgXNDrdVxXwBc6xc2HNI2WJkVlnm3up/9XJjFYrFYIp5I6sa0WCwWiyUg1thZLBaLJeKxxs5isVgsEY81dhaLxWKJeKyxs1gsFkvEY42dxWKxWCIea+wsFovFEvFYY2exWCyWiMcaO4vFYrFEPNbYWSwWiyXiscbOYrFYLBGPNXYWi8ViiXjCztiJSA8RUWd9J0szRUSuF5G9IrI2BOeeIyIvn4DzzBKRJdX4LxaRq5tah6Uy1aX7ibonIrJARP5cjb+KyClNrSMSEJFOIpInIltF5Mf1jSfsjJ2l7ojIXBHJd34lIlLqs/9hiGTNAX6lqkN8dM4RkTkh0hNWOJW6zDqG/0xECkVki4icWU3YS0Xkv07YxQH8M0RkpeO/UkQyfPxinfx0QESyReQ9EekcII4+IlLkW6lw1jD7nYjsEpFcEXnNd2VtxwCU+OTN/PL12mpx/QucxWMjHqcStaAO4X/i5IlCJ490ryZsrfKRiHwSqNEhIjeIyE4RKRCRzSLS13GfJCJLRCRHRPaLyN/L18N0/DuLyDtOnsoSkWt9/Mb55Yl859xTAFR1r6omA+8Bv6ltuvjT6MbOtshOPKp6raomqWoS8BdgYfm+qp5bHu4E35vWhN9iqXUmjPLzq8BqzDpivwPeEJG2QcJmA48C9/l7iFnY+B3gZaAV8ALwjuMOcANwGpAOdAKOAk8EOMdTmAWTfZkJXAGMcY6ND3DsAz55M0lVPcEuONypraFuYg1tgLeAuzDP3Ap8VjsPQI35SERmANEBznU1Zq3ASUASZtX6w453C+DPmPs+AOgMPOhz+MvATqC9c/xfRGQCgKp+6ZsnnHjzgX/5Sdjg6K4XjWLsRCRTRO4QkXVAgYhEichop3aZIyJrRWS8T/jFIvL/RGS5UwN8R0RaB4n7KqcGkSci34nI//j5TxaRNU48O8SsqIyItBCR+SKyT0T2iMifa8qcItJbRD4VkSMiclhEXhGRlj5+2SIyzNnvJCKHyq9LRC4QkY3O9S4WkQF+6XOriKwTkWMislBE4uqe0nUnyL2p1IUifl0uIvJTJ01znHuYXsdzlqezt4Zwtzv3Z6+IXO2ry9H0lIi879z7ZSLS2+fYx0Rkt3PfV4rIOL/o45x0zhORVSLi28K808kreSKySUQu8vGbJSJficgjInIE00Kt6XofEpGjYmq85/p5d3fiyxORfzuFU50QU3seBvxBVY+r6puYhTGnBAqvqh+r6iJgbwDv8UAU8KiqFqvq45gFN8u7h3oCH6nqAVUtwhScg/z0TAdyMIt3+nI+MF9Vd6tqPnA/ME1EEup6zdUhIm4Redh5RneKyHUSZOhDRDo6z91tPs69g5U9IvK6mJbJMRH5QkQG+fgtEJFnROQDESkAJtQgtVWw/Otwpohsc56zp0RE6pEcFwMbVfV1537NAYaISH//gLXJRyLSAvgDZlV632NdjvtNqrpJDTtUNRtAVf+hqv9S1UJVPQrMw1R6EJEkTL67V1VLVXUt8AYwO8g1XQm8oaoFfu5eTN6tH420mm0mZgXbrpjaXGfMqtHnYQzqWc5+Wyf8YmAPMBizwvSbwMuOXw/MyrhRzv4koDfmgTwDKASGOX4jgWNO/C7nvP0dv38Cf3PibwcsB/6nhus4xYkrFmgLfIEpFMr9fwFsAhKAj4CHHPe+QIFzbDQmo2wHYnzSZzmm1tMa2IzfqsR+KwPnVPMbW8M1zClPy0D3xnFT4BSfMAuAPzvbQ4GDwCjAjcl4mUBsHfLDOUARkFhDmP2YgjQBU/Or0OVoOuLc4yjgFeA1n+Mvx9TyooBbnLjifNKgFJjq3I9bMbXKaMf/EudeuIBpzr3r6PjNAsqA652446u5hlnOeX7hpNUvMQamfFHkxZgVm/tinovFwH1B4noaeDqI30XAZj+3J4EnargPVwOL/dxuAj70c/s/4BZnezjwlZM+CcA/qPwMpADfAl0C5LU3gNt99sc493SIzz3Ndn4rgSn1LG+uxTyHXTCt04+pXGYsdq69p6P1Gp9jFxOk7HH8ZwPJmDLgUWCN33NyzLkuV3l+C6JxAdXnX3XSvSXQDTgEnBMkrnXAz4L4PQY84+e2IVDa1iYfYVrsN1G1HO7m7N+AWbF+J/BHwBVE16Pl1+ukpwLtfPznAasDHJcI5AHjA/hNwPQ0dKtXvqnPQQFEZAKzffbvAF7yC/MRcKVPhrvPx28gUIIpMColcoBzvQ3c4Gz/DXgkQJj2QDE+BRVwGfBZHa/rQv8bAryLqQ2twzEAmC6ERT5hXJgHarxP+lzu4/8AMLcx0j6A5jlUNXaz/cJUZ+yeAf7kF34rcEYtz7/Cif83NYR7Dvh/PvunUNXY/d3H/zxgSzXxHeWHQnUOsNTvfuwDxgU5dg0w2dmeBeyq5bXOArb77Cc419DBJ5//3sf/V8C/6nFPr/C9HsftXmBBDccFMnZ34VPoOm6vAHOc7RbAa851lGG6vFr7hH0MuCNIXrsaY1x6OPG868RzmuM/jB8qKOdhCrUx9UiPT/GpuAJnUtXY/dXJ+5f5HbuYIGVPgPO0dOJt4ZMnX6ylxmrzrxPvWJ/9RcCd9UiL+fhVoDCVlVl1zUeYis4a5/708EvTHzn77zvp0sO5178IcJ6zMM9jXx+3JZgu7TgnH2QDW4No3IlTYQzg/7qj49G6plVjjtnt9tnuDlziNM9zRCQH02LpGCT895gaeJUuHhE5V0SWOl2IOZhMUx6uK6bm7E93J759Puf/G6aFFxQRaS9mUH2PiORiWhv+muZhaoVPqGqx49bJuQYAVNXrXJ/vwP5+n+1CTJ/3iWJ3zUEq6A7c4nfvumKusTaMAKYDc0SkSr+/D538dAXSGDTNnG7hzU53Uw6mcPW9VxXxOfcjq/waRGSmTzdtDuZ+Bjy2FlRoVNVCZzMpkL//NdSBfEyLypcUjLFo7LiewrRqUjG17LeAD8FMbMEYlkeCxP0cZkxoMbAR+MxxzwJQ1VWqekRVy1T1A4yRvbge11CbvDMDU+F8I4BfwLLH6R69z+nizsUYS2iEvEHge3+i80bQsE435dOYhkRZgGOPO38fUNUcVc3ElKnn+QYSkdGY3oCpqvqtj9cMTEt7N6ZC/TJOvvDjSkyFQv09xAwhnYfpvbsxwLHV0pjGzlfcbkzLrqXPL1FVfQfMu/psd8N0Bx32cUNEYjHdDA8B7VW1JfABpkuz/Dz+/eDl7sVAG5/zp6jqoABhffmLcx1pqpqC6Sqr6Ed3+p4fxdSm5vj09e/FGInycOJc354azlcFCTwzyffnPzZVG/wzTiGmFVJOB5/t3Zi+dd97l6Cqr9bqRCaTvo3pXupYTdB9mG6ocroGC+iPkwa3A5cCrZx8cQyfe+Ubn/MgdwH2ipmpNg+4Dkh1jt3gd2yVBy3EbAR6ic/sNmCI416fuNL9xofSfeLKwNT0s53K3BPASGescTymRr9LRPZjuoeniMgqMJUKVf2DqvZQ1S5OnHsI/hwoldO9ttQm78zBlCf/kKpj9cHKnp8BkzEGvQXmWiH888aQ8h0RScSUiYHyRnX5KAXTslvo3NvyyUdZzvO2FdMC9r3+SmkhIkMxrfnZqlppPFdVv1fVn6pqW1UdhalALPc7vismj70Y5FoHAJtUdWsQ/2ppqlcPXgbOF5GzndpSnIiMFxHfDHq5iAx0Bq/vwQxI+s/MisHUMg8BZc7g/0Qf//nAVWKm3rrETG/tr6r7gH8DD4tIiuPXW0TOqEF3Mqb2c0zMdOvb/PwfA1ao6tWY5vxcx30RMMnREY0ZQyoG/ltTQvmjfjOTAvy+rGucAVgD/My5N+dgxkLLmQdcKyKjxJAoZlpxMlQM0i+o4RrKW7wx1QRbhLl3A5w8cFcd9CdjutgOAVEicjdVa6ynisjFYiYt3Ii5H0sxrRV1jkVErsK07MIWp4a8BviD8yxdhDFQbwYKX/7MYbqjXM4x5a3sxYAH+I2Y1wyuc9w/df5+A8wUM8ErGtP1uldVDwPPYgrSDOc3F/McnO2ct7XznImIDMR0Jd7jtKwRkakikuQ8jxMxlcl3fXSr+Exkq4ZFwA3O894SM2ziTylmbDYReNGp8JQTrOxJxuSTI5jK4F9qoSXU/BMYLCJTnHt+N7BOVbf4B6whHx3DtJgznF95i+1UYJnTa7EQuF1Ekp2y/BrMuCMiMhgze/J6VX3P/9zOc54sIjEicjmmHP+rX7ArgP+qaqDeOjAt8OIgfjXSJMZOVXdjakj/iylUdmMMh+/5XsL0a+/H9ONWeX9CVfMc90WYPuCf4fNwqOpy4CpMt8ox4HN+aGHNxBS2m5xj36D6lgaYAddhTlzvY7pwADPrEzOp4peO083AMBGZ4dQ0LsfUgg9jZqWdr6olNZwvVNyA0ZiD6V54u9xDVVdgJlw8iUm37ZixqXK6YsYEakKpJn+p6ofA45iuru0YQwS1y8wfYR6sbzHdUEVU7V56BzP55CjmIbpYzUywTcDDwNfAASCtltfTpIh5t21uNUGmY2reRzGvFExV1XKDPUNEfGvyV2C6nZ4Bxjnb8wCcPHkh5vnIwUzIuNAnr96KSc9tmGf3PMzEBtTMtNtf/sNUDIvKdWBq6x9gJvx8CDynqs/66LoB08rLwUxL/4WqLnauoSum6219zanFPExldh1mTPEDTOWnUmXZuaaLMWP4z/kYvGBlz4uY/LQHU24sJQwQM8t7RiA/J+2nYMbejmImlk33OdY/XwXMR2rwvbfl9/SAT964DnPP92Ken39guq7BVPDbAvN9eqF88+TZwHfOea/FTMY5RGVmYl6FCYabGmZ4V0f5rLETipgXXV9W1b+f8JNb6o2Yd7HWAumqWlpD2L2YmXm1+pKJmFc1NmAm/QQaM7BEME5tf5Cq/rYex56LmfDVvcbAlmaJU1F5HDOj89L6xGG/oGKpNapaoqoDajJ0DndiuktWBgsgIhc5XWmtMO9kvWcN3cmJqr5cW0MnIvEicp6Yd0Y7Y97/+mfTKrSEChHphGlpjsb0ytSLk87YSeVPa/n+qutCstQRVX1RVfuo6qnVBPsfzDt9OzBdUL+sJmxIsPklLBHMkMNRTDfmZsxY1YkVYboXA+WNgF2Olvqh5nNhqao6XFWX1TeekHRjWiwWi8VyIjnpWnYWi8ViOfkIl4/cAtCmTRvt0aNHqGVYLBaL5QSycuXKw6oa7MPmjUJYGbsePXqwYsWKUMuwWCwWywlERL6vOVTDsN2YFovFYol4rLGzWMKQ1Su/5sCBA6GWYbFEDNbYWSxhhqoy9L1zKJj7k1BLsVgihrAaswtEaWkpWVlZFBUVhVqKpRkRFxdHly5diI6ubuGF8CSvsJAUoJfW5QP7FoulOsLe2GVlZZGcnEyPHj2Qei3kaznZUFWOHDlCVlYWPXv2DLWcOuMpyAm1BIsl4gj7bsyioiJSU1OtobPUGhEhNTW12fYGeEsKaw5ksVjqRNgbO8AaOkudac55xuvxX+nKYrE0lGZh7CyWkwmPJ1xXhrJYmi/W2NUCEeGWW26p2H/ooYeYM2dO6ATVwOLFi/nvf+u8bmwFa9as4bTTTmPQoEGkp6ezcOHCRlRnqQnbsrNYGh9r7GpBbGwsb731FocPH27UeFUVr7feaxEGpaHGLiEhgRdffJGNGzfyr3/9ixtvvJGcnJzGE2ipFo+nzGe78fOHxXIyYo1dLYiKiuKaa67hkUceqeJ36NAhpkyZwogRIxgxYgRffWUWvZ4zZw4PPfRQRbjBgweTmZlJZmYm/fr1Y+bMmQwePJjdu3dz2223MXjwYNLS0ipaUYsXL2b8+PFMnTqV/v37M2PGDAKtUPH4448zcOBA0tPTmT59OpmZmcydO5dHHnmEjIwMvvzyy2o1XnHFFZx22mn06dOHefPmAdC3b1/69OkDQKdOnWjXrh2HDvkvKgyvv/46gwcPZsiQIZx++umAmVB01VVXkZaWxtChQ/nss88AWLBgARdeeCFnnXUWPXr04Mknn+Svf/0rQ4cOZfTo0WRnZwMwb948RowYwZAhQ5gyZQqFhVUna4wePZqNG39YBHn8+PER9Zk59f7QsisqspNVLJbGIOxfPfDlj+9tZNPe3EaNc2CnFP5w/qAaw/36178mPT2d22+/vZL7DTfcwE033cTYsWPZtWsXZ599Nps3b642rm3btvHCCy8wevRo3nzzTdasWcPatWs5fPgwI0aMqDAcq1evZuPGjXTq1IkxY8bw1VdfMXbs2Epx3XfffezcuZPY2FhycnJo2bIl1157LUlJSdx6660A/OxnPwuqcd26dSxdupSCggKGDh3KpEmT6NSpU0X8y5cvp6SkhN69e1e5jnvuuYePPvqIzp07V7T8nnrqKUSE9evXs2XLFiZOnMi3334LwIYNG1i9ejVFRUWccsop3H///axevZqbbrqJF198kRtvvJGLL76YX/ziFwD8/ve/Z/78+Vx//fWVzjtt2jQWLVrEH//4R/bt28e+ffsYPnx4tWnenPBt2RUV5pGYmBRCNRZLZGBbdrUkJSWFmTNn8vjjj1dy//jjj7nuuuvIyMjgggsuIDc3l/z8/Grj6t69O6NHjwZgyZIlXHbZZbjdbtq3b88ZZ5zBN998A8DIkSPp0qULLpeLjIwMMjMzq8SVnp7OjBkzePnll4mKClx3qU7j5MmTiY+Pp02bNkyYMIHly5dXHLdv3z6uuOIKnn/+eVyuqlllzJgxzJo1i3nz5uFxxpmWLFnC5ZdfDkD//v3p3r17hbGbMGECycnJtG3blhYtWnD++ecDkJaWVnFtGzZsYNy4caSlpfHKK69UasGVc+mll/LGG28AsGjRIqZOnVptejc31GfMrrigcSt3FsvJSrNq2dWmBdaU3HjjjQwbNoyrrrqqws3r9bJ06VLi4uIqhY2Kiqo0Huf7zldiYmKtzhcbG1ux7Xa7KSsrqxLm/fff54svvuC9997j3nvvZf369VXCBNMIVafol+/n5uYyadIk7r333grD7M/cuXNZtmwZ77//PqeeeiorV66s9fW4XK6KfZfLVXFts2bN4u2332bIkCEsWLCAxYsXV4mnc+fOpKamsm7dOhYuXMjcuZG1aLjXp2VXcjwvhEoslsjBtuzqQOvWrbn00kuZP39+hdvEiRN54oknKvbXrFkDmOWKVq1aBcCqVavYuXNnwDjHjRvHwoUL8Xg8HDp0iC+++IKRI0fWSo/X62X37t1MmDCB+++/n2PHjpGfn09ycjJ5eT8UksE0ArzzzjsUFRVx5MgRFi9ezIgRIygpKeGiiy5i5syZ1baaduzYwahRo7jnnnto27Ytu3fvZty4cbzyyisAfPvtt+zatYt+/frV6noA8vLy6NixI6WlpRXxBGLatGk88MADHDt2jPT09FrH3xzw+LTsSgutsbNYGgNr7OrILbfcUmlW5uOPP86KFStIT09n4MCBFa2MKVOmkJ2dzaBBg3jyySfp27dvwPguuugi0tPTGTJkCD/+8Y954IEH6NChQ620eDweLr/88orJIL/5zW9o2bIl559/Pv/85z8rJqgE0wimG3TChAmMHj2au+66i06dOrFo0SK++OILFixYQEZGBhkZGRUG8u677+bdd98F4LbbbiMtLY3Bgwfzox/9iCFDhvCrX/0Kr9dLWloa06ZNY8GCBZVadDXxpz/9iVGjRjFmzBj69+9f4f7uu+9y9913V+xPnTqV1157jUsvvbTWcTcX1PtDy660yBo7i6UxkEAz/ELF8OHD1X9W3ebNmxkwYECIFEU2c+bMqTSRJdJornln01fvMfA/Ztxz3bi5pP/kshArsliaFhFZqapNOsvMtuwsljBDfd+zKy4IoRKLJXJoVhNULI1LOH8F5mTG6/OendcaO4ulUbAtO4slzPAds7PGzmJpHKyxs1jCDN/37LTEGjuLpTGwxs5iCTN8uzEpPR46IRZLBGGNncUSZvh+G1NK7bcxLZbGwBq7WvL2228jImzZsiVomMzMTAYPHtykOtasWcMHH3xQ7+PLX0IfOHAggwYN4rHHHmtEdZbGwOszZidl1thZLI2BNXa15NVXX2Xs2LG8+uqrAf0DfcqrrnhqsY5ZQ41dVFQUDz/8MJs2bWLp0qU89dRTbNq0qd7xWZoAn3zgsi07i6VRsMauFuTn57NkyRLmz5/Pa6+9VuG+ePFixo0bxwUXXMDAgQMBY/RmzJjBgAEDmDp1asUSNZ988glDhw4lLS2N2bNnU1xcDJjPit1xxx0MGzaM119/vdJ5/ZfQKSkp4e6772bhwoVkZGSwcOFCCgoKmD17NiNHjmTo0KG88847gFlSZ/LkyYwfP54+ffrwxz/+EYCOHTsybNgwAJKTkxkwYAB79uypcs2ff/55xddThg4dSl5eHqoadDmiM844g8mTJ9OrVy/uvPNOXnnlFUaOHElaWho7duwA4L333mPUqFEMHTqUM888kwMHDlQ57/Tp03n//fcr9mfNmlXx0eeThfIxuwKNxe0pqiG0xWKpDc3rPbsP74T9VT903CA6pMG591Ub5J133uGcc86hb9++pKamsnLlSk499VTAfPdyw4YN9OzZk8zMTLZu3cr8+fMZM2YMs2fP5umnn+a6665j1qxZfPLJJ/Tt25eZM2fyzDPPcOONNwKQmppa8R1NX/yX0ImJieGee+5hxYoVPPnkkwD87//+Lz/+8Y957rnnyMnJYeTIkZx55pmAWZ5nw4YNJCQkMGLECCZNmlRpKZzMzExWr17NqFGjqpz7oYce4qmnnmLMmDHk5+cTFxfHW2+9FXQ5orVr17J582Zat25Nr169uPrqq1m+fDmPPfYYTzzxBI8++ihjx45l6dKliAh///vfeeCBB3j44Ycrnbd8+Z5JkyZRUlLCJ598wjPPPFPLmxkhlBs7ScDtsRNULJbGoMlbdiJyjohsFZHtInJnU5+vKXj11VeZPn06YFoevl2ZI0eOpGfPnhX7Xbt2ZcyYMQBcfvnlLFmyhK1bt9KzZ8+K72NeeeWVfPHFFxXHTJs2LeB5Ay2h48+///1v7rvvPjIyMhg/fjxFRUXs2rULgLPOOovU1FTi4+O5+OKLWbJkScVx+fn5TJkyhUcffZSUlJSA57755pt5/PHHycnJISoqqtrliEaMGEHHjh2JjY2ld+/eTJw4Eai8fE9WVhZnn302aWlpPPjggwGX7zn33HP57LPPKC4u5sMPP+T0008nPj4+4LVHKuXv2RVJPNHW2FksjUKTtuxExA08BZwFZAHfiMi7qlq/QaIaWmBNQXZ2Np9++inr169HRPB4PIgIDz74IFB1uZ5gS+ZUR7Alf2qzhI6q8uabb1ZZWWDZsmVBtZSWljJlyhRmzJjBxRdfHPDcd955J5MmTeKDDz5gzJgxfPTRR9VeQ22W77n++uu5+eabueCCC1i8eHHAL7jExcUxfvx4PvroIxYuXFhRyTiZKJ+NWeRKINprjZ3F0hg0dctuJLBdVb9T1RLgNWByE5+zUXnjjTe44oor+P7778nMzGT37t307NmTL7/8MmD4Xbt28fXXXwPwj3/8g7Fjx9KvXz8yMzPZvn07AC+99BJnnHFGjecOtISO//I9Z599Nk888QTlH/RevXp1hd9//vMfsrOzOX78OG+//TZjxoxBVfn5z3/OgAEDuPnmm6s9d1paGnfccQcjRoxgy5YtDVqOCODYsWN07twZgBdeeCFouGnTpvH888/z5Zdfcs4559Q6/ojBadkVuxOJ8doxO4ulMWhqY9cZ2O2zn+W4VSAi14jIChFZcejQoSaWU3deffVVLrrookpuU6ZMCTors1+/fjz11FMMGDCAo0eP8stf/pK4uDief/55LrnkEtLS0nC5XFx77bU1njvQEjoTJkxg06ZNFRNU7rrrLkpLS0lPT2fQoEHcddddFcePHDmSKVOmkJ6ezpQpUxg+fDhfffUVL730Ep9++mnFBJTy2Z1z586tWP7n0UcfZfDgwaSnpxMdHc25557boOWIwHyL85JLLuHUU0+lTZs2Fe4rVqzg6quvrtifOHEin3/+OWeeeSYxMTG1jj9SUGfR39KoJGK0OMRqLJbIoEmX+BGRqcA5qnq1s38FMEpVrwsU3i7x03gsWLCg0kSWk5Hmmne+fvkeTtv+MMtTJtI/9ytS5uwNtSSLpUmJhCV+9gBdffa7OG4WiyUYasbsPNFJxKvtxrRYGoOmNnbfAH1EpKeIxADTgXeb+JwWzPtpJ3OrrjlTPkFFY5KIFg9aVhJiRRZL86dJjZ2qlgHXAR8Bm4FFqlp1vnnN8TS2NEuE06zzjGPsJM68ElJUaFc+sFgaSpO/VK6qHwD1/r5VXFwcR44cITU1tVbT+C0WVeXIkSPExcWFWkr9KP82ZqwxdscLc4lPaRVCQRZL8yfsv6DSpUsXsrKyCMeZmpbwJS4uji5duoRaRr0Q9eBVwRWXDEBxYV4NR1gslpoIe2MXHR1d6QslFkvE4y2jDBdRseZjA8WF+SEWZLE0f+yHoC2WMEO0DA9uouKSACg5blt2FktDscbOYgk3vB7H2JmWXUmRnaBisTQUa+wsljBDvGV4cBETb8bsyopsN6bF0lCssbNYwgxRDx5xExNvWnYea+wslgZjjZ3FEmaUj9nFJZqWnafYdmNaLA3FGjuLJcwQZ8wuLsG8Z+e1xs5iaTDW2FksYYaoMXbxTstOSwtDrMhiaf5YY2exhBni9eARFzGxcZSqG0qssbNYGoo1dhZLmOHSMry4ASiSGMS27CyWBmONncUSZpR3YwIUEYerzBo7i6WhWGNnsYQZoh68YoxdscThKjseYkUWS/PHGjuLJcxwaRmecmPnisdtjZ3F0mCssbNYwgzxeirG7EpdcUR7bDemxdJQrLGzWMIMUQ/qMsauxJ1AtNe27CyWhmKNncUSZoiWoWJW3yqLSiDWGjuLpcFYY2exhBkunwkqHnc8sd6iECuyWJo/1thZLGGGqAd1jJ03OpE4rLGzWBqKNXYWS5jhUg/qMt2YGh1PglpjZ7E0FGvsLJYww62lFWN2Gp1ErJRSVloSYlUWS/PGGjuLJcyI0yLK3PEASKxZ066wIC+UkiyWZo81dhZLmBGrxXjccQBIjDF2xYXW2FksDcEaO4slzIijmLIo07JzxyYBUFRwLJSSLJZmjzV2Fks4oUqcFiPRCQC444yxKy7MD6Uqi6XZY42dxRJGlJYcxyUKTvdllGPsSotsN6bF0hCssbNYwojj+caouWJMyy463jF2dszOYmkQ1thZLGFEoWPU3M4szJj4ZAA8RbYb02JpCNbYWSxhRFFBZWMXm9ACAE+xNXYWS0Owxs5iCSOK8w4D4E5sDUBsounG9BQXhEyTxRIJNMjYicgcEdkjImuc33k+fr8Vke0islVEzm64VIsl8jl+dD8ACS3bAxCfmAKAWmNnsTSIqEaI4xFVfcjXQUQGAtOBQUAn4GMR6auqnkY4n8USsZTkHgQguW0nAOLjk/CqQIntxrRYGkJTdWNOBl5T1WJV3QlsB0Y20bkslojBk2eMXavUDgC43C6OE4uU2tXKLZaG0BjG7joRWSciz4lIK8etM7DbJ0yW41YFEblGRFaIyIpDhw41ghyLpfkSlbubw7QkLj6hwu24xOEqtd2YFktDqNHYicjHIrIhwG8y8AzQG8gA9gEP11WAqj6rqsNVdXjbtm3rerjFElEk5WdyILpLJbciicNVZlcrt1gaQo1jdqp6Zm0iEpF5wP85u3uArj7eXRw3i8VSDe1Ks9jeclwltxKJw11muzEtlobQ0NmYHX12LwI2ONvvAtNFJFZEegJ9gOUNOZfFEukc2LuLVI5B236V3Etc8UR5bMvOYmkIDZ2N+YCIZAAKZAL/A6CqG0VkEbAJKAN+bWdiWizV8/3qj2kPtBl4eiX3Uncc0d7GW6382NFstn/zL0qys3C16MiAsReQktyi0eK3WMKRBhk7Vb2iGr97gXsbEr/FcjLh2fkVhRpLj8E/quRe5o4nsexog+P/ftt6Drz3J4Yc+5RTpbTCPXvpb/l66O8YPflaRKTB57FYwpHGeM/OYrE0Au2yV/Jd/CAGR8dUcvdGxRN7vP4tu7zcHDa9cgen7l9EO6JY1+58UoZdQrseAzmcuR799F5OW3Mn3+z8jLRr5hGXWE0rz+sl+7tV7Fv9AWVZq4kp2EuUtwSvRJEb046ylj2Ibd+P1t3T6HDKEOKSWweMprT4OMeOHqLg6CHycw5RlJcNnhIQN7jcuKOjiYqOIyrG/GJi44iOTSA6No6YmHhwR4F6QT3g9YCq2VYPol7HzfhHJ7YiLrVbvdPPEhlYY2exhAE5Rw7R05PJNx2qfmzIExVPjBbXK96ty/5F0r9+wyg9wNLWF9Bn+r2MaP9Dwd+qYw+8I85l6Yu/ZeT389jz8I/QqfPpNnB0RZjcA7vIXPkBuu0TuuUso7UeozWwm/bkxXagKLYVLk8JHYozab93KTH7ymCNOfYILcl1tcDjiibKW0KiN59ECkigmDZAm3pdVd0oVTfZv1pD6/bW4J3MWGNnsYQB363+hGGitOh/RhU/jUogTuvWslOvl/++8idGbX+U/a52bD13IaNHnRMwrCsqitGzH2TV4rF0/ew3tF10NjvdvTgelUKrkn101AOkA0c0hc2JwynqPp6OGefQt09f3K7K3Z6lpaXs3LmZg9+tp3jfZmJzthNVmofbW4q6YzgQnYInJgXiW+JKaE10Umtik9sQl9KaqJhY1OtBPR7KSksoKymirKQIT2kRZaXFeEuO4y0tRsuKcakHr7gBwStuVFzmhwv12ffm7ufM7x8hc8W/aD3pmjqloSWysMbOYgkDirZ/SYm66Tnk9Cp+Gp1APMWo14u4ap5A7S0tZsMzlzMm+9+sSRpHr1+8QJeWqTUeN2z8ZI4MHM6S958kaf8yYj2FZCX0Y1u7y2g96Cf0HfIjfhRdfZERHR1Nz77p9OybXuP5TgRlpaUc+/OzlO34HLDG7mTGGjuLJQxofXgF38X0o7+zWKsvEpNAlHgpKikmLi6+2njKjuex48mLSC/4hk87XcP4n9+Py137N4xS23Vm7FX/r876w5Wo6Gh2Jg+jR/Z/8ZSV4Y6yRd7JSkTd+bLSEnbcP46j7UbSYsj59B4yjpgaCoda4fVSVnKc4jJnIBwwb1sAqgSawCbi8tkWX4+A7oJU+Jk/zrbfMSDlZ65wr5AE6A++ldx9qW1431318azsHviAYPH6S6pNvErgCILqqOX5K527jmlV63iDavxhp7SokFNKt7Gq8+UBNUiMWdvueEFetcauOO8we548n1OKNvPvPndx1oxb7OxKoGzAhbT75ku2fPMR/U+b1ChxqtfLsWNHOX7sIKXH8ykpKaG0tAS3enC5XYg7GldUTMXPHWX23W43bncUbnc07ig3UW437qgootxRiCsKatFyD5Zvq3u2gmbwKkfVMSwQ5TehKlyJKGOXc2Q/xVFJnLrnFaL3vkjJB1F85+5CblxHimNaI1GxeFzRiLcMt7cEl6cYl6cIt6eYKG8RUd4ior3FRGsxsd5iYighTouJlVKiiLDEsoQXAol9xwX0cpUbu/xcWqW2Cxim8Oh+Dj99Dp1LsvhsyMNMvPjnTSa1udH/jEspWP47cr9eAHU0dnkFheze+F8KdnyN5+A2kgp20rZ0Ly29x2gppbRsAr0erVpBCVZlcUkww3RiWO/tRdo9q0OqobZEVPndpkM32tz5CbnZB1m3/CPKvl9KbM4OUor3kVy4lSgtJUZKKcNNCTEUE0OZRFPiiqPUFctxVxJ5UW3wumPxuOPxRsWhUfEQFQfRcbhdLkRAy7OeiFMJ8s+KgWtUGsTdxKAVzhXbgKjPts/x4l/LClKDlyB71VX4Jch2sCdOgnhUe46gcdUcqLq2Sq3i9d2T6sIF01VzvLVtUJUHc8UlM2jchQHDuOKMsSsuCvwx6NzDe8h55lzale1l6einOPPcabU7+UlCUlIKy9pPZviBRezc9A09B44IGraoqIgtqz4nZ9NnpBxYRv+SjQwUMxP2KMkciO5KZvKpeBPb4kpsiyS2xhWTSFS0ab15JQqv14N6SsFTinrKUE8JeMvMvteDestQjwdVL16veXVCvR5EPbjUC3gJnBMDZzzx/RBWtfkusKcGcg+Sgf1N6/HYEzGftnGIKGNXTkrrdpx6zhVA0HfeLZZmQ3SsY+wKcqv4Hdm3i4J559LGc4i1p8/jjJ9cdKLlNQtOmfoHjj39IVGvz+S7S16kl2Pwjhfk8d3aL8nd+iUJ+5fRp2gDGY5x2xXVg62dJhPVaxztB0+gbYcutLLdws2WiDR2Fksk4Uo0Myk9+ZWXwNq7czOeFy8m1XuEb896nlFjG2c8KhJJbdeZLefOp8OHV9Fy0Znspw2CkqpHGSReADJd3dnY/nzi+55Br1Mn0q1VB+ybeZGDNXYWS5iT2MYsBVl8dG+F2+ZvPqH9+7Nw4WXXpFfIGHlWqOQ1G/qPmsjh7ktZ+p95uA9vRnGzM7kT8b1G0iP9DHq06UiPUIu0NBnW2FksYU67Tt0BKM7Zi9fjYfnCvzBs66MccrXBe9lCBvTNCK3AZkSbDl1pc8U9oZZhCQHW2FksYU5CYgpHaEHHXf/Htvs+YXTpFlYnnEavnz9PizYda47AYrE0bD07i8VyYtjc/qf08HxPq9KDLB/yZzJu+8AaOoulDtiWncXSDDjtmifYsfkqOvcexMj4hFDLsViaHdbYWSzNALfbTe/Bwd8Ps1gs1WO7MS0Wi8US8VhjZ7FYLJaIRzToRz9PPCJyCPi+EaJqAxxuhHhOBM1JKzQvvVZr09Gc9DYnrdC89DaW1u6q2rYR4glKWBm7xkJEVqjq8FDrqA3NSSs0L71Wa9PRnPQ2J63QvPQ2J622G9NisVgsEY81dhaLxWKJeCLV2D0bagF1oDlpheal12ptOpqT3uakFZqX3majNSLH7CwWi8Vi8SVSW3YWi8VisVRgjZ3FYrFYIp6IMnYico6IbBWR7SJyZ6j1+CMiXUXkMxHZJCIbReQGx32OiOwRkTXO77xQawUQkUwRWe9oWuG4tRaR/4jINudvqzDQ2c8n7daISK6I3BhO6Soiz4nIQRHZ4OMWMC3F8LiTj9eJyLAw0PqgiGxx9PxTRFo67j1E5LhPGs89kVqr0Rv03ovIb5203SoiZ4eB1oU+OjNFZI3jHg5pG6zMCsu8Wy2qGhE/wA3sAHoBMcBaYGCodflp7AgMc7aTgW+BgcAc4NZQ6wugNxNo4+f2AHCns30ncH+odQbIB/uB7uGUrsDpwDBgQ01pCZwHfAgIMBpYFgZaJwJRzvb9Plp7+IYLo7QNeO+d520tEAv0dMoMdyi1+vk/DNwdRmkbrMwKy7xb3S+SWnYjge2q+p2qlgCvAZNDrKkSqrpPVVc523nAZqBzaFXVmcnAC872C8CFoZMSkJ8AO1S1Mb7E02io6hdAtp9zsLScDLyohqVASxE5Yev5BNKqqv9W1TJndynQ5UTpqYkgaRuMycBrqlqsqjuB7Ziy44RQnVYREeBS4NUTpacmqimzwjLvVkckGbvOwG6f/SzC2JCISA9gKLDMcbrOafY/Fw5dgw4K/FtEVorINY5be1Xd52zvB9qHRlpQplO5sAjHdC0nWFqGe16ejam9l9NTRFaLyOciMi5UogIQ6N6Hc9qOAw6o6jYft7BJW78yq9nl3Ugyds0GEUkC3gRuVNVc4BmgN5AB7MN0ZYQDY1V1GHAu8GsROd3XU02/Rdi8uyIiMcAFwOuOU7imaxXCLS2DISK/A8qAVxynfUA3VR0K3Az8Q0RSQqXPh2Zz7324jMoVtbBJ2wBlVgXNJe9GkrHbA3T12e/iuIUVIhKNyTSvqOpbAKp6QFU9quoF5nECu1WqQ1X3OH8PAv/E6DpQ3i3h/D0YOoVVOBdYpaoHIHzT1YdgaRmWeVlEZgE/BWY4BRxOd+ARZ3slZgysb8hEOlRz78M1baOAi4GF5W7hkraByiyaWd6FyDJ23wB9RKSnU8OfDrwbYk2VcPrk5wObVfWvPu6+fdoXARv8jz3RiEiiiCSXb2MmKGzApOmVTrArgXdCozAglWrG4ZiufgRLy3eBmc7MttHAMZ8uo5AgIucAtwMXqGqhj3tbEXE7272APsB3oVH5A9Xc+3eB6SISKyI9MXqXn2h9ATgT2KKqWeUO4ZC2wcosmlHerSDUM2Qa84eZCfQtpgb0u1DrCaBvLKa5vw5Y4/zOA14C1jvu7wIdw0BrL8ystbXAxvL0BFKBT4BtwMdA61BrdXQlAkeAFj5uYZOuGCO8DyjFjGP8PFhaYmayPeXk4/XA8DDQuh0zFlOeb+c6Yac4+WMNsAo4P0zSNui9B37npO1W4NxQa3XcFwDX+oUNh7QNVmaFZd6t7mc/F2axWCyWiCeSujEtFovFYgmINXYWi8ViiXissbNYLBZLxGONncVisVgiHmvsLBaLxRLxWGNnsVgslojHGjuLxWKxRDz/H7yU/NvzKLIoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 6)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABg/klEQVR4nO2deZhUxfWw39M9KzBsAyKbLMrODItsCigYBA1RVFQ0KCIxRhNNjInRLBo08fe5RkVNMAbFLQhuiHGNCypGVBBkR0WHTWRfZoDZus/3R90Zema6Z3qYpXtmzvs8/fS9tdw6t6punapTdW+JqmIYhmEYDQFfrAUwDMMwjNrClJ5hGIbRYDClZxiGYTQYTOkZhmEYDQZTeoZhGEaDwZSeYRiG0WCIG6UnIp1FREUkIday1HdEZKqILKqltFJF5DUR2Ssiv6uNNEulnyUiY2ohnYUickUEP6vbMUBEpovI05X1q2YZyn3Wyqs3RllE5BUR2Skidx/tNeJG6RlHh/fwFohITsiv1pVLOYwBMoGOqnpXkaOnjDrHTKo4wivD6ZUI/2MR2SgiB0Vkvoi0LCdsfxFZKiKHvP/+pdItXXe6RhlXROROEdnt/e4UEYkmruc/UEQ+8NLcLiK/ivLep4rI7GjC1nW8zlJWJcO/5+X5uvI6eyKSLCKPicgBEfleRK4vdR0tVS9uDvFvKSJzvXLfJSLPiEjTEP+/iMhKESksXa+9evNHEdnkpf1sqbj3iMhXIpLt3cOU0PiqehYwGvitiDSPNm9CqTalZ73YmDJXVZuE/O6qOEqt0RLIUtWcWAtSFbyHNeadRBHpAzwCXAq0AQ4Bf48QNgl4GXgaaAE8AbzsuRdRuu58E2XcK4FzgH64Ts1ZwM+iiSsirYA3vPtIB04A3qpSxsSQOGr75gDLcHn6R+B5EWkdIex0oBvQCadEficiZ5QK0zykXvwlxP2vuHLtAhyPq4fTQ/y/Bn4HvBom3Sm4ujscaAekAg+G+B/E1aVmwGXAAyJycugFVHWVd5ge4d7KpUoPsddbv1FEVgAHRSRBRIaJyP9EZJ+IfCEio0LCLxSR/ycin3pa/uVIvVQRuVxE1noa/xsR+Vkp/wkisty7zoaiAhORZiIyS0S2ichWEfmriPgruI/jReTdUj2X5iF+e0RkoHfeTtzwepR3fraIrPbud6GI9CqVP78VkRUist/rHaVUPqcrj4jc5OVLtoisEZFzI4QTEblPRHZ4eblSRPp6fslez2uTuN74TBFJraQoCUCwAlnTxZktDojIZ16ZLQrxVxG5yusB7hORh0XcqKK8sgthsJcHe0Xk8aIyEJEWIvIfrzz3escdQtJdKCK3i8hHOOXSlfLpJCIfeXn+lte4hzLZy8tdIvLHCq4VicnAK6r6gdeRuBk4T0TSwoQdhcv/+1U1T1VnAAKcFkU6FcW9DLhXVbeo6lbgXmBqlHGvB95U1Wc8/2xVXRt9FhxBRKaIG/XuFpGbJYI5W0QSRWSOiLwgRxR3ivdMZovI5yLSLyR8xOdH3GjzI++52U3JBj+SnPd4dexbETmzlHdF9SaafOgODAT+rKqHVfUFYCUwMUKUy4C/qOpeL+8f5Uj5VUQXYL6qHlDV/cBLQJ8iT1V9QlVfB7LDxD0LmKWqm736eycwSUQaeXH/rKrrVDWoqp8AHwInhbmO4upYpamOnuvFwHigOU7jv4rrCbQEfgu8ICV7G1OAaUBboBCYEeG6O4AfAU2By4H7QhTPEOBJ4AYv3VOALC/ebO+6JwADgLFARTZzAf4frufRC+iIV5FVdQNwI/C0VzCPA0+o6kKvos0BrgNaA68Br0jJnvSFwBm4ipJJhIolIiO8Bj3Sb0QF91CaDcBIXI/pVk/+tmHCjcXlX3cv7IXAbs/vDs+9Py4/2wO3RCuAiCTiGsBNpf1UtbOqZnmnD+N6eMfiHsbLwlzuR8BgXB5eCIwrSoYIZRfCZC/88d79/Mlz9+HKsxNwHHAYeKhU3Etxo5o0YGN59wv8GFdXjwGScPU/lBFAD+AHwC1FHSRVna6qxTJXUN59gC+KTrz6me/dV7iwK7TktwZXENJAAWeJ69StFpGrKxG3hBzecZ8o4w4D9ojrHO/wOjzHRbjfEqjqbFWdCiAivXGj3Mm49qQZro6WwOuozQfygAtVNd/zmgA8h2ur/g3M9+osVPz8DAW+wbV5t1cg9lBgPdAKuAuYVdRp8whbb1Q1S1U7h9zH30Uk7Kgel7ffqGqoogktk2JEpAUuvyKVXxEbRWSL11EMVcQPAz/yOo0tcIr19QhyhUNKHSfjRp2l5UzFPfOrw1xjMzCmVD5Gh6oe9Q+naKaFnN8IPFUqzJvAZd7xQuCOEL/euAfWD3TG094R0poP/Mo7fgS4L0yYNriKnRridjHwXiXv6xxgWSm3Bbie0wog2XO7GZgXEsYHbAVGheTPJSH+dwEzq5LnYWSd7uXhvpBfuzDhlgMTvOOpwCLv+DTgS1xD5AsJLzhFdHyI20nAt1HK1R8oALYDJ5QTzu+F6xHi9tci+bxzBUaEnM8Dboqm7LwyuCrk/IfAhnJk3htyvhC4Lcr7XQj8KeT858Ab3nFR3e4Q4v8pcNFRlPc7offjuRXXuVLuNwPPlnJ7BpjuHffGdRb8wMnANuDiKOMGgJ4hft28e5Qo4n7p1dPBQAqu4/vRUeTFLcCckPNGuGdhTMizsQB430tDSj03i0POfd79j4yQ1nJKPj+bopRxKvB1KRkVOLaielPJvLg09H48t9uB2WHCdvRkSAlxOx03DQHQBBiEG0m1AZ7HjcyLwrYD3sZZcILAf4GkMOk8XVTmIW5XeOXfGdehWODJclKY+E/gzOASxu9cr6z3VTavqmOktznkuBNwQegIBde7bRsh/EYgEdcDKoGInCkii71e6D5cY1UUriOuJ1aaTt71toWk/wiuBxUREWkjbkJ1q4gcwBVWaZkeBfoCD6pqnufWjpDev6oGvfsL7W1+H3J8CFehqpt5qto85PedZ/ZZHpIPfQmTz6r6Lm508zCwQ0T+KW5iuTXuAV0aco03PPcKUdXluNHRx7iRcCRa4x6u0HqxOUy4sPkYZdmVrnPtvLiNROQRzzx2APgAaC4lzeHhZIlERWVdHXUhB2f9CKUp4U1J5YZV1TWq+p2qBlT1f8ADwPlRplPavymQo65FqijuYeAlVf1MVXNxI6mTRaRZmHsoj3aElI+qHuKIlaKIYTjrwB2ebKGExg0CWzhSNyp6fo6qXngyQsmyj0W9KPIvE1ZVc1R1iaoWqup24BpgbIgJfR5OcaV58TbgnrtoeAxnHVuIG8G957lvCQ0kbnVmX9zIPNyuCLfiOi4RF3FFojqUXqhAm3EjvdAGuLGq3hESpmPI8XG4Xv6u0AuKSDLwAnAP0EZVm+NMh0VD2c04U1VpNuNGeq1C0m+qqmWG+KX4P+8+MlS1KXBJSFqISBPgfmAWMF2OzEN+h1O0ReHEu7+tFaRXBhEZKSVXS5X+jazEtTrhlPQ1QLqXf6soaVYoRlVnqOqJuJ5/d5zZeBeuceoTkpfNVDXqB9Jr0F73rhuJnThzdIcQt44Rwoaj3LILc73jcOUG8BucuXGoF/cUzz00frxtQ7Iat3gEAHGrLZNxjVC4sJmlTECZhDcXwZGRWjRxS8jhHa+OMu4KSubr0ebxNkLqjWcOK7244S2c+fsdEWlTyq+4XohbpNQB+C7K5yce60VXKTm3G1omxajqXlzeRSq/MlG8/yJ90R94RFUPqpuXm4kblFSIurm6P6ub3ujgpbmVkDZTRG4FzgTGquqBCJfqBbzsdVYqRXWvRnsaN0cwTkT8IpIiIqMkZHEAcImI9Pbmx24DnlfVQKnrJOEe5J1AoTfxOzbEfxZwuYj8QER8ItJeRHqq6jZcJb9XRJp6fseLyKkVyJ2G6/3sF5H2uEY/lAeAJap6BW7OcqbnPg8Y78mRiGtE84D/VZRRpVHVD7XkKrrSvw8rcbnGuIq6E9yiIFyvqQwiMlhEhnryHwRygaBXmR7FzaUe44VtLyLjQuKqhCxUikAerjzD4pX9i7jORCMR6Ymb942WisoO4Bci0sHrrPwRmBsS9zCwz/P7cyXSjRXP4J6xkSLSGPcMvagl53KKWIgzQ/5S3KKkazz3d6F4MVgLcQwBfolbdVlhXNyc+vVenWiHq/uzo4z7OHCuuNcaEnHm0EXqFkUULSCaHkVePO/lxcni5tGnE6Zjp241879xii90tHaiiJwnbvXldbi6uphKPD/xgqp+iTPB/tlrd8/FdTReiBDlSeBPXvn3BH6KV35ee9DDaz/TcabhhUXlA3wGXCHuHdxU3Jz3iqILi1s0lILTLwmePH7Pr6XXJou4Odm/4aYQgp7/73FznGNUtfSoPZQEXHlVmmpVeqq6GTc5/AdchdmMa4RC03kKl7nf4+z5vwxznWzPfR6wF5cJC0L8P8Vb3ALsx9nsi0ZcU3CN7Bov7vOUNK+G41bcyqf9OKX2YpGHiEzALUQpmuS/HhgoIpNVdT1uZPEgbmR0FnCWHpkojwmquga3mu5j3JxaBvBRhOBNccptL870txsoevHzRtzy48We+e9t3MgIEemIM4esrECcIBXXs2tw9v3vcfVjDtFX6IhlF8K/cZ2hb3CmmL967vfjlkzvwjV2b0SZZo1S3sheVVcDV+GU3w6c4v55SNzXReQPXth83BznFNwc2jTgnJD6eRGufLNxjeCdqvpElHEfAV7Blf8qXN4/Ek1cz6T+By/ODtwiqR+H3GZHItfX0nlxLfAsbuSS412vTN1Rt+R+PvB2iKXmZWASru5fCpynqgWVfH5qDXGrp2eWE+Qi3FzcXtwitPNVtUhxTxaR0JHcn3HPwkZc+3m3qhbV/664ZyEbV7Z5uLURRUzDzcltwY3QulJy8dmjuM7kxbhO5mFc/oIzEb+G62C/Djymqv8Mift/OGvM1yFWrj+Uyoei6YdKj/LAmyCsLURkIfC0qv6r1hI1agQRuQRn+vx9BeHG4iwAPVV1T5TXvhM30R9uFadRj/GsQvNU9eQKA5eN2wSnZLup6rfVLZsRH3hWiY9x7xGGs3CUS8xftjXqJqr6dEUKz2MhbnXXahEpvYQfABHpKSKZIWa2n+De/TEaGOre+4ta4YnIWZ5ZvDFuDcBKjry+ZNQzRGQ+znp389EoPDjKl/vqIp5Z4JIwXk+r6lW1LU9DwTNpTa4gWBrOpNkOZ066lyNzS3GDiET6qsyZlZxzNaqPCTiTuABLcK+B1OoiE2tbag9VPaeq16hV86ZhGIZhxBIzbxqGYRgNhrgyb7Zq1Uo7d+4cazEMwzCMWmTp0qW7VDWqD19UlbhSep07d2bJkiWxFsMwDMOoRUSkou/aVhtm3jQMwzAaDKb0DMMwjAaDKT3DiEO2PnUle2/rzNdL3461KIZRr4irOb1wFBQUsGXLFnJzc2MtilGHSElJoUOHDiQmJlYcOM7Y/NUKOm5wnwfd/d/pcGKZPVENwzhK4l7pbdmyhbS0NDp37owcxX6BRsNDVdm9ezdbtmyhS5cusRan0uz+4nU6Agsbn8Gog2+w97sNtGgXblMRwzAqS9ybN3Nzc0lPTzeFZ0SNiJCenl5nrQOJWxazRVvT4Ye/A2D9R/NjK5Bh1CPiXukBpvCMSlOX60xazga+Szme43sNYDfNSNj8caxFMox6Q51QeobRUAgUFtC2YAt5zU5AfD6+bdyPDtnLYy2WYdQbTOlFgYjwm9/8pvj8nnvuYfr06bETqAIWLlzI//5X6X1sS3DGGWfQvHlzfvSjH1WTVEY0fPftGhIlQHLbngDkHTuIY3Une7ZvjrFkhlE/MKUXBcnJybz44ovs2rWrWq+rqgSDR7UPYrlUh9K74YYbeOqpp6pJIiNa9m7LAiDtWLdwpcXxgwHYuGpxrEQyjHqFKb0oSEhI4Morr+S+++4r47dz504mTpzI4MGDGTx4MB995DZYnj59Ovfcc09xuL59+5KVlUVWVhY9evRgypQp9O3bl82bN3PDDTfQt29fMjIymDvXLVVfuHAho0aN4vzzz6dnz55MnjyZcDtizJgxg969e5OZmclFF11EVlYWM2fO5L777qN///58+OGH5cp46aWXctJJJ9GtWzceffTR4uv+4Ac/IC0trdx8ee655+jbty/9+vXjlFNOAdzCo8svv5yMjAwGDBjAe++9B8Ds2bM555xzOP300+ncuTMPPfQQf/vb3xgwYADDhg1jzx63v+yjjz7K4MGD6devHxMnTuTQoUNl0h02bBirVx/ZBHrUqFH15vN1h/dsAaBZ644AdOl7EgAHN34eM5kMoz5R5VcWRORa4BdAAHhVVX8X4nccsAaYrqr3RLhE1Nz6ymrWfHegqpcpQe92TfnzWX0qDPeLX/yCzMxMfve735Vw/9WvfsWvf/1rRowYwaZNmxg3bhxr164t91pfffUVTzzxBMOGDeOFF15g+fLlfPHFF+zatYvBgwcXK5Bly5axevVq2rVrx/Dhw/noo48YMWJEiWvdcccdfPvttyQnJ7Nv3z6aN2/OVVddRZMmTfjtb92erT/+8Y8jyrhixQoWL17MwYMHGTBgAOPHj6ddu3ZR5d1tt93Gm2++Sfv27dm3bx8ADz/8MCLCypUrWbduHWPHjuXLL78EYNWqVSxbtozc3FxOOOEE7rzzTpYtW8avf/1rnnzySa677jrOO+88fvrTnwLwpz/9iVmzZnHttdeWSHfSpEnMmzePW2+9lW3btrFt2zYGDRoUlczxTuG+7wBo2bYTAKlNW7DF15aUXStjKZZh1BuqpPREZDRuE8d+qponIseUCvI34PWqpBEvNG3alClTpjBjxgxSU1OL3d9++23WrFlTfH7gwAFyciLtNero1KkTw4YNA2DRokVcfPHF+P1+2rRpw6mnnspnn31G06ZNGTJkCB06dACgf//+ZGVllVF6mZmZTJ48mXPOOYdzzjknbHrlyThhwgRSU1NJTU1l9OjRfPrppxGvU5rhw4czdepULrzwQs4777zi+ylSUj179qRTp07FSm/06NGkpaWRlpZGs2bNOOusswDIyMhgxYoVgFOMf/rTn9i3bx85OTmMGzeuTLoXXnghY8eO5dZbb2XevHmcf/75UclbF/BlbyObRqQ1blrstrNxT9pmryknlmEY0VLVkd7VwB2qmgegqjuKPETkHOBb4GAV0ygmmhFZTXLdddcxcOBALr/88mK3YDDI4sWLSUlJKRE2ISGhxHxd6DtjjRs3jiq95OTk4mO/309hYWGZMK+++ioffPABr7zyCrfffjsrV5YdEUSSEcou7a/MUv+ZM2fyySef8Oqrr3LiiSeydOnScsOH3o/P5ys+9/l8xfc2depU5s+fT79+/Zg9ezYLFy4sc5327duTnp7OihUrmDt3LjNnzoxa5ngn6fB29vhaEWpYLjgmg/bZ77Fn13ZatmoTM9kMoz5Q1Tm97sBIEflERN4XkcEAItIEuBG4taILiMiVIrJERJbs3LmziuLULC1btuTCCy9k1qxZxW5jx47lwQcfLD5fvnw54LZJ+vxzNw/z+eef8+2334a95siRI5k7dy6BQICdO3fywQcfMGTIkKjkCQaDbN68mdGjR3PnnXeyf/9+cnJySEtLIzs7u0IZAV5++WVyc3PZvXs3CxcuZPDgwVGlDbBhwwaGDh3KbbfdRuvWrdm8eTMjR47kmWeeAeDLL79k06ZN9OjRI+prZmdn07ZtWwoKCoqvE45JkyZx1113sX//fjIzM6O+frzTJH8H2UmtSrg17nwiAFvW2GIWw6gqFSo9EXlbRFaF+U3AjRRbAsOAG4B54oYK04H7VLV8Ox+gqv9U1UGqOqh161rZQ7BK/OY3vymxinPGjBksWbKEzMxMevfuXTzqmDhxInv27KFPnz489NBDdO/ePez1zj33XDIzM+nXrx+nnXYad911F8cee2xUsgQCAS655JLiRSO//OUvad68OWeddRYvvfRS8UKWSDKCM4+OHj2aYcOGcfPNNxfP540cOZILLriAd955hw4dOvDmm28CcMstt7BgwQLArfDMyMigb9++nHzyyfTr14+f//znBINBMjIymDRpErNnzy4xwquIv/zlLwwdOpThw4fTs2fPYvcFCxZwyy23FJ+ff/75PPvss1x44YVRX7su0KxwD4eTSyq9jr2cKTwnq/yRtGEYFSPhVgRGHVnkDeBOVX3PO9+AU4AvAh29YM2BIHCLqj5U3vUGDRqkpVfhrV27ll69eh21jEZkpk+fXmLBS32jLtadg39uw8pjz2HY1Y+UcP/+1hPY0iSDQb95KUaSGUbNISJLVbVWVqNVdU5vPjAaeE9EugNJwC5VHVkUQESmAzkVKTzDaOjk5h6mseRCaosyftsa9aBNzroYSGUY9YuqKr3HgMdEZBWQD1ymVRk6GrVKPH9VpiFyYM9OUgBfo7JKL7dVXzpuXET2/j2kNWtZ+8IZRj2hSkpPVfOBSyoIM70qaRhGQyF73w6OARKbtCrj16jTibDRLWbpddIPa184w6gn2BdZDCNOOLTPrV5OSksv49fOW8xy4Jv68eUZw4gVpvQMI07Iy94NQKNmZVcxt257HDtoScKOFbUtlmHUK0zpGUacUJDjlF6T5uFf3fkutTuts8v/xJ1hGOVjSi9K5s+fj4iwbl3kFXRZWVn07du3RuVYvnw5r732WpWuMW3aNI455pgal9WoHHrQfXS7SYvSX/Nz5LTqR4fAVg7tj++POBhGPGNKL0rmzJnDiBEjmDNnTlj/cJ8IqyyBQKDCMNWh9KZOncobb7xRpWsY1Y8vby8F6icl5LuboTTufgo+UbKWvl3LkhlG/cGUXhTk5OSwaNEiZs2axbPPPlvsvnDhQkaOHMnZZ59N7969Aaf8Jk+eTK9evTj//POLt8Z55513GDBgABkZGUybNo28vDzAfa7sxhtvZODAgTz33HMl0i29dU9+fj633HILc+fOpX///sydO5eDBw8ybdo0hgwZwoABA3j55ZcBt5XPhAkTGDVqFN26dePWW498Ee6UU06hZcvyl72///779O/fn/79+zNgwACys7NR1YjbIJ166qlMmDCBrl27ctNNN/HMM88wZMgQMjIy2LBhAwCvvPIKQ4cOZcCAAYwZM4bt27eXSfeiiy7i1VdfLT6fOnUqzz//fHQFVcfx5R0gRxohvvCPZbeBo8jTRA599X4tS2YY9Ycqby1Uq7x+E3xfzVusHJsBZ95RbpCXX36ZM844g+7du5Oens7SpUs58UT3PcTPP/+cVatW0aVLF7Kysli/fj2zZs1i+PDhTJs2jb///e9cc801TJ06lXfeeYfu3bszZcoU/vGPf3DdddcBkJ6eXvydzlBKb92TlJTEbbfdxpIlS3joIfeu/x/+8AdOO+00HnvsMfbt28eQIUMYM2YMAJ9++imrVq2iUaNGDB48mPHjx0e9Bc8999zDww8/zPDhw8nJySElJYUXX3wx4jZIX3zxBWvXrqVly5Z07dqVK664gk8//ZQHHniABx98kPvvv58RI0awePFiRIR//etf3HXXXdx7770l0i3aNmj8+PHk5+fzzjvv8I9//CMqmes6vvwcDksqZd/SczRp3IRVST1psfOzWpXLMOoTNtKLgjlz5nDRRRcBbiQSauIcMmQIXbp0KT7v2LEjw4cPB+CSSy5h0aJFrF+/ni5duhR/f/Oyyy7jgw8+KI4zadKksOkWbd3z6KOPRjR9vvXWW9xxxx3079+fUaNGkZuby6ZNmwA4/fTTSU9PJzU1lfPOO49FixZFfc/Dhw/n+uuvZ8aMGezbt4+EhISI2yABDB48mLZt25KcnMzxxx/P2LFjAbdtUFZWFgBbtmxh3LhxZGRkcPfdd5fYCLaIM888k/fee4+8vDxef/11TjnllBJbOdVn/IUHyfM1KjfMvjbD6FKwgYN7ttWSVIZRv6hbI70KRmQ1wZ49e3j33XdZuXIlIkIgEEBEuPvuu4Gy2wQdzVY9kbYaimbrHlXlhRdeKLOTwSeffFKlbYNuuukmxo8fz2uvvcbw4cOLPzgdiWi2Dbr22mu5/vrrOfvss1m4cGHYL8KkpKQwatQo3nzzTebOnVvc2WgIJBYeqlDppfU7C9+WR9mw6Dkyz/5lLUlmGPUHG+lVwPPPP8+ll17Kxo0bycrKYvPmzXTp0oUPP/wwbPhNmzbx8ccfA/Dvf/+bESNG0KNHD7Kysvj6668BeOqppzj11FMrTDvc1j2ltw0aN24cDz74IEVff1u2bFmx33//+1/27NnD4cOHmT9/fvEINBo2bNhARkYGN954I4MHD2bdunVV2gYJYP/+/bRv3x6AJ554ImK4SZMm8fjjj/Phhx9yxhlnRH39uk5i8BAF/vKVXt+BI/mO1vjWvVJLUhlG/cKUXgXMmTOHc889t4TbxIkTI67i7NGjBw8//DC9evVi7969XH311aSkpPD4449zwQUXkJGRgc/n46qrrqow7XBb94wePZo1a9YUL2S5+eabKSgoIDMzkz59+nDzzTcXxx8yZAgTJ04kMzOTiRMnFs/nXXzxxZx00kmsX7+eDh06FO8POHPmzOJth+6//3769u1LZmYmiYmJnHnmmVXaBgnctz4vuOACTjzxRFq1OvKprSVLlnDFFVcUn48dO5b333+fMWPGkJSUFPX16zrJgUMUJpa/wbDf7+ObNuPoeXAJ2Tuyakcww6hHVGlroeqmqlsLBQoLYcdqDqccQ5OWbWtCxDrD7NmzSyx4aYjUta2Fvp/ela0thnLir8J3qIpYs2YlPeaOZGXny+l/+X21JJ1h1Bx1aWuhuEJ8go8gBCt+380w4o1GephgUpMKw/XuncHiRiPot/EZDu74FY2P6RzV9XNz9nFg704OH8zGV3AQggFUfKgIiA8Q73UJwScg4iMIBIJKIAhBhYDXR/b7BL/fh098+H2CiBBUJaBCIKAEVAmq4hchKcFHol9ITPCR5PcDUBAIUlAYpCAYpKBQKdQgPtycs08E8bl/nzcNHW46OvIMdUmftOatad66YXeCjSPUL6UnPlSBOBq9xoqpU6cyderUWIthREleQSGNOYwkp0UVPu2sO9C5p7HtsUvoct0b+FNClKUqe77bwOYv3qXw2//RbO9KWhVso7kcJKWG5I9n8jSR7Ou/tC2ZDKCOKD1VjWrloYgQRECDtSCVEc/Ek9k+Gg4ezKGlKEQx0gPo07svb/edzmmr/sCOu07k++N+hPoSYPfXtD+wjGN0Ny2BbE3l2+SefH1MJvlNOuBr3Ap/SmOCCakgfkQUNOjGRhoEDXp9RkU1iCD4feATN/Lyi8vXQFDRYJCAKqpKMKj4xI0A3QjNjdICqhQGlMJAkIKg+wdI8LsRYoJPSPQLPnHLCxRF1ZVfUf81WIWyDHy7iKF7FrB7705TegZQB5ReSkoKu3fvJj09PSrFFxRBqFsNnlG9qCq7d+8mJaXujGtyc/YDRD3SA/jB+VezqNkxNF98F5nfzsInynZasrFxBl+2G0rLXqdyfN8hZDagxUClWfIfH+xZQEHuwViLYsQJca/0OnTowJYtW9i5M7qP7Ab27aTQd4Dk3YdrWDIjnklJSaFDhw6xFiNq8g45pedLjW6kB86yMXLs+ejpE9m5PwefwDFNm9CmEu9j1nd8Se7DBgV5h2IsiREvxL3SS0xMLPHFk4rYcus5bE/rS6/rX6hBqQyjesk/eAAAf0r0I70iRIRjmlc+XkMgIdm991iYa0rPcNS79/QKJAl/IDfWYhhGpSg4XKT0wu+wYBwd/iSn9AryzPJjOOqh0kvGF8yPtRiGUSkKDjmll9TIlF51kpjiXvYP5NmcnuGod0qv0JdMQtBGekbdIpDnPi1nSq96SfTMm4ECM28ajnqn9AK+JBKCebEWwzAqheY6pZfcuFmMJalfJKa6kV4w38ybhqPeKT030jPzplG3KDK/pTa2BSnVSXKKG+mZ0jOKqHdKL+BPIVFN6Rl1Cy1wjXJqI1N61UlS0Zdq8s28aTjqndIL+pNJUjNvGnULzT9EUIWk5LrzQn1dIDnVjfS00Ob5DUe9VHo20jPqHAW55EpS+C8rG0dNcnIyBeqHAjNvGo4qKz0RuVZE1onIahG5K8Q9U0Q+9txXikitdGE1IYVkTOkZdQsJ5JJHcsUBjUohIuSRhBSa0jMcVfoii4iMBiYA/VQ1T0SO8dwTgKeBS1X1CxFJBwqqLG0UqD+FZBvpGXUMX2Eu+dJwv5FZk+RJEmLmTcOjqiO9q4E7VN0kmqru8NzHAitU9QvPfbeq1somd5qYQoIECRbWio41jGrBH8glX2ykVxPkkYzPlJ7hUVWl1x0YKSKfiMj7IjI4xF1F5E0R+VxEflfFdKLGl+g+MJt7OKe2kjSMKuMP5FJgI70aIV+S8Nm7u4ZHheZNEXkbODaM1x+9+C2BYcBgYJ6IdPXcR3huh4B3vO3g3wlz/SuBKwGOO+64o7yNI/gS3dTh4UMHaZTWosrXM4zawB/Mo8BnKzdrggJfMn6b0zM8KlR6qjomkp+IXA28qG7Hzk9FJAi0ArYAH6jqLi/ca8BAoIzSU9V/Av8EGDRoUJU3wivaSiT3sL2XY9QdEoJ5FPrMvFkTBHzJ+AM20jMcVTVvzgdGA4hIdyAJ2AW8CWSISCNvUcupwJoqphUVCcnus0N5h7NrIznDqBYSg7mm9GqIQn+KfY/XKKaq++k9BjwmIquAfOAyb9S3V0T+BnwGKPCaqr5axbSiwu9twplvc3pGHSIxmEfAb+bNmqDQn0qj/N2xFsOIE6qk9FQ1H7gkgt/TuNcWapVEbxPOgkM20jPqDkmaT9CUXo1QmNCElKDN6RmOevdFlsRUtzVLYa4pPaPukEwewQRTejVBMLExqZjSMxz1T+l5+5EFTOkZdYhkzUdtpFcjBJOa0FhN6RmOeqf0UrytWYK5Nqdn1A1UlWTyUe8dU6N60aTGJEkh+Xm2mMWoj0qvkduEM5hnSs+oGxTk55MoATDzZo0gSa4jfDhnX2wFMeKCeqf0Ups486bkm9Iz6ga5uW4DWbGRXo3g8xa3HcrZH2NJjHig3im9pKQkcjUR8g/GWhTDiIq8otdrkkzp1QT+VKf08g6a0jPqodIDOCQp+ApM6Rl1g4Jct8jCZyO9GiEhxVl/8g8eiLEkRjxQL5VeLqn4Cu0zZEbdIN8zb/pspFcjJHgjvYLDpvSM+qr0fKn4baRn1BEKPKXnT2ocY0nqJ0mN3eI2U3oGVP0zZHFJvq8R/sJqVnrBIAQL3XGCbQFjVB+Fec4q4U+2kV5NkOopvcLq/kpTMAgi7mfUGeql0itMSCWxiubN7Wv/x5YPnyJ91xLS87eSxhElWqB+DkkKh0nlsKSQK6kUSiIBSaTQl0RQEgn6Egj6EkF8+ES8n4sfbisJ1dJ+WiKcIN6/e8Y0xFPDHFWMhDnyzqvxGdYq7ptR/r2VL2hlbiOW7VZK7k4AEpIbxU6IekyTps0BKMw9+pFeMDeHr99/hsNr3qB19jqaB3fTCLdzQ1CFfEkkn0QKJIkCSaRAkimUJAI+9yv0pxDwJVEgSQRIQPHqp4jTm2HSLHrWBVf7Vd07ncXHpcKWiV+JOh02qIQelg0hAvuS2nLa1fdHn1AcUC+VXiChMY3ydh1V3O2bvmLvvF/QM+cTmmsiaxJ6srHZ6QQbpePzJwCCv/AQCYFDJBQeIiFwmKTAQZKC+fiCBfj1MP5AAQmFBfjV7d6uXstfrADC1DAp/le0gua6+IGpIY5OddYvqrzHVSXZ4O9Cmy59aznVhkGR0gsejXlTla/feoT0xf9Hd93P96SzMbU3WU1GEkxuiqgSDBaigXykMA8J5OML5OIP5uP3/hMK8knI30Oy5pNMPokUlqxfESqbQom2QEIOKvPcRV2Xj6LSH/J1qnykGFM/lV5SUxrnVP49vXVL3qXdfy6hiRbyVodr6HfOrxnQulUNSGgYRm2RkJTCIU3Gl7uvUvG0MJ8vHplG/52vsMLXi9UjHmTQyPEcm1Qvm82jol2sBTgK6mXpBVOa01RzCAYVny+6PlHWqsV0eOXH7PM1IzD5ecZ2y6hhKQ3DqC0OSFP8eXujj6DKykcup//O//Bum6mcNO0eUpMTa05Ao9aol6s3NbUFqZJPzsHoJq4P7NtF4gtTOCiNSPjJ63QyhWcY9YocfxrJBfuiDv/pnL+QufM/vNvmckZfdb8pvHpEvVR6vtQWAGTvjW5e78snruGY4C72/eifHNuha02KZhhGDDjkb0ZKQXRfZPnuq2X0Wz+DZaknM+rKvyG2OrNeUS+Vnr9xSwAO7a9Y6a355G0G7X2dJe0m02PQmJoWzTCMGJCX2IxGgYoXsmgwSPZz13CIFNpf+gg+f71sIhs09bJEk9LSAcjLLl/paTBIwtt/YAct6T/5r7UhmmEYMaAguQVNghVPdyz577P0yF/F+t6/5Jh2x9WCZEZtUy+VXnJTp/Tys3eXG275B/PpXrCerD6/ILVJs9oQzTCMWJDagjTNIRgIRAwSKCyk1Sd3sNXXlsHnXVd7shm1Sr1Ueo2atQag8OCecsMl/u8+dtKSAWf/vDbEMgwjRvgap+MX5UA58/zL3n2OLsGN7Bh4Pf5E++pSfaVeKr0mzZ3SCx6KrPS+Wv4RffNXsKHbVBLtSxiGUa9JSnPv2+7f833EMLL0MXbTgsxxl9WWWEYMqJ9KL605BepHyxnpbX//n+RpIr3H2yjPMOo7yc3bApCza2tY/y/Xr2JA7mds6jwRf2JybYpm1DL1UumJz8duaUHCoe1h/Q9kHyBzz1usbTGKpt6o0DCM+kuj1u5zWXm7N4X13/Lfv6PA8WdeW4tSGbGgXio9gH0JrWmUG17prfzv0zSVQ6SddHktS2UYRixo2bYLAIG9m8v47TuQTb+dr7C+2Qiatulcy5IZtU29VXo5ycfQrGBnWL+0tXPYJm3oOviMWpbKMIxY0LRpU/ZqGhzYUsZv2ZtPki4HaDLyZzGQzKht6q3Sy2t0LOnBXWX2tvn2y5VkFqxga5eJiM8fI+kMw6hNRITdCceQdPC7Eu6qSqt1T7PN35bjThwfI+mM2qTeKj1p1p5U8sgu9VWWre/9i4AKx59+ZYwkMwwjFuQkt6FpXskpj5Wf/4+MwBp2dP8x+Optc2iEUOVSFpFrRWSdiKwWkbs8t0QReUJEVorIWhH5fdVFrRwp6e5rCjs2f1Pslp9fQLdtC1jTeDAtPBu/YRgNg9y0TrQLfEdhQX6x24EPHyGPRLqPuzqGkhm1SZWUnoiMBiYA/VS1D3CP53UBkKyqGcCJwM9EpHNV0qosTdueAMD+rWuL3b5Y+Dxt2IMMvLQ2RTEMIw5IaJdBshSw+auVAOzdvZMBe99gbcvTSbVV3A2Gqo70rgbuUNU8AFXd4bkr0FhEEoBUIB84im2Lj54O3QcQUOHw5pXFbv7PZ7Ob5vQ69aLaFMUwjDig1QmDANj51WcArH397zSWPJqPttcUGhJVVXrdgZEi8omIvC8igz3354GDwDZgE3CPqoZ9U1xErhSRJSKyZOfO8Kstj4aURk34PqEdibvWAPDdxq/od/gTNnQ41z4xZBgNkI49BrKfxvDNexw6lEPXr59kXVIfOmecHGvRjFqkwp3TReRt4NgwXn/04rcEhgGDgXki0hUYAgRwu8m3AD4UkbdV9ZvSF1HVfwL/BBg0aJCW9q8Ku5pl0G33RxQUFPDNq/dxLNB57FXVmYRhGHUEf0IiXzc7mR77PmTpzJ8xkl3sP21GrMUyapkKR3qqOkZV+4b5vQxsAV5Ux6dAEGgF/Bh4Q1ULPJPnR8CgmryRsLJ3O50Wks0Hz81g4Pbn+aLFGI45rmdti2EYRpzQauwNNOYwIw/8h89bnEmPYfaaQkOjqubN+cBoABHpDiQBu3AmzdM898a4keC6KqZVaXqfOokdks4PvryNoPjpeP7ttS2CYRhxRKc+Q9l2/nzWnvw3+v/iqViLY8SACs2bFfAY8JiIrMItVrlMVVVEHgYeF5HVgACPq+qKKqZVaZIapRG48BlWffgvWpw8lfYdetS2CIZhxBkdM06FjFNjLYYRI0S1WqfRqsSgQYN0yZIlsRbDMAzDqEVEZKmq1soUmH2CwDAMw2gwmNIzDMMwGgxxZd4UkZ3Axmq4VCvcgpq6QF2SFeqWvCZrzVGX5K1LskLdkre6ZO2kqrXyWZy4UnrVhYgsqS37cFWpS7JC3ZLXZK056pK8dUlWqFvy1iVZizDzpmEYhtFgMKVnGIZhNBjqq9L7Z6wFqAR1SVaoW/KarDVHXZK3LskKdUveuiQrUE/n9AzDMAwjHPV1pGcYhmEYZTClZxiGYTQY6pXSE5EzRGS9iHwtIjfFWp7SiEhHEXlPRNaIyGoR+ZXnPl1EtorIcu/3w1jLCiAiWSKy0pNpiefWUkT+KyJfef8t4kDOHiF5t1xEDojIdfGUryLymIjs8L5TW+QWNi/FMcOrxytEZGAcyHq3iKzz5HlJRJp77p1F5HBIHs+sTVnLkTdi2YvI7728XS8i4+JA1rkhcmaJyHLPPR7yNlKbFZd1NypUtV78AD+wAeiK2+3hC6B3rOUqJWNbYKB3nAZ8CfQGpgO/jbV8YeTNAlqVcrsLuMk7vgm4M9ZyhqkH3wOd4ilfgVOAgcCqivIS+CHwOu5j7cOAT+JA1rFAgnd8Z4isnUPDxVHehi1773n7AkgGunhthj+Wspbyvxe4JY7yNlKbFZd1N5pffRrpDQG+VtVvVDUfeBaYEGOZSqCq21T1c+84G1gLtI+tVJVmAvCEd/wEcE7sRAnLD4ANqlodX/apNlT1A2BPKedIeTkBeFIdi4HmItK2VgQlvKyq+paqFnqni4EOtSVPRUTI20hMAJ5V1TxV/Rb4Gtd21ArlySoiAlwIzKkteSqinDYrLutuNNQnpdce2BxyvoU4Vigi0hkYAHziOV3jmQMeiweToYcCb4nIUhG50nNro6rbvOPvgTaxES0iF1Gy0YjHfC0iUl7Ge12ehuvNF9FFRJaJyPsiMjJWQoUhXNnHc96OBLar6lchbnGTt6XarLpad+uV0qsziEgT4AXgOlU9APwDOB7oD2zDmTjigRGqOhA4E/iFiJwS6qnOnhE377yISBJwNvCc5xSv+VqGeMvLSIjIH4FC4BnPaRtwnKoOAK4H/i0iTWMlXwh1puxDuJiSHba4ydswbVYxdaXuFlGflN5WoGPIeQfPLa4QkURc5XlGVV8EUNXtqhpQ1SDwKLVobikPVd3q/e8AXsLJtb3IXOH974idhGU4E/hcVbdD/OZrCJHyMi7rsohMBX4ETPYaOjwz4W7veClujqx7zIT0KKfs4zVvE4DzgLlFbvGSt+HaLOpY3Q2lPim9z4BuItLF6/FfBCyIsUwl8Gz2s4C1qvq3EPdQm/e5wKrScWsbEWksImlFx7iFDKtweXqZF+wy4OXYSBiWEj3leMzXUkTKywXAFG8l3DBgf4gpKSaIyBnA74CzVfVQiHtrEfF7x12BbsA3sZHyCOWU/QLgIhFJFpEuOHk/rW35wjAGWKeqW4oc4iFvI7VZ1KG6W4ZYr6Spzh9u5dCXuB7RH2MtTxj5RuDMACuA5d7vh8BTwErPfQHQNg5k7Ypb5fYFsLooP4F04B3gK+BtoGWsZfXkagzsBpqFuMVNvuKU8TagADfP8ZNIeYlb+fawV49XAoPiQNavcXM1RfV2phd2olc/lgOfA2fFSd5GLHvgj17ergfOjLWsnvts4KpSYeMhbyO1WXFZd6P52WfIDMMwjAZDfTJvGoZhGEa5mNIzDMMwGgym9AzDMIwGgyk9wzAMo8FgSs8wDMNoMJjSMwzDMBoMpvQMwzCMBoMpPcMwDKPBYErPMAzDaDCY0jMMwzAaDKb0DMMwjAaDKT3DMAyjwRA3Sk9EOouIevtKGTWIiEwVkUW1lFaqiLwmIntF5He1kWap9LNEZEwtpLNQRK6I4Gd1OwaIyHQRebqyftUsQ7nPWnn1xiiLiLwiIjtF5O6jvUbcKD3j6PAe3gIRyQn51bpyKYcxQCbQUVXvKnL0lFHnmEkVR3hlOL0S4X8sIhtF5KCIzBeRluWE7S8iS0XkkPffv1S6petO1yjjiojcKSK7vd+d3t5rFcb1/AeKyAdemttF5FdR3vtUEZkdTdi6jtdZyqpk+Pe8PF9XXmfP20/wMRE5ICLfi8j1pa6jperFzSH+LUVkrlfuu0TkGQnZ0V1E/iIiK0WksHS99urNH0Vkk5f2s6Xi3iMiX4lItncPU0Ljq+pZwGjgtyLSPNq8CaXalJ71YmPKXFVtEvK7q+IotUZLIEtVc2ItSFXwHtaYdxJFpA/wCHAp0AY4BPw9Qtgk3OaeTwMtgCeAlz33IkrXnW+ijHslcA7QD9epOQv4WTRxRaQV8IZ3H+nACcBbVcqYGBJHbd8cYBkuT/8IPC8irSOEnY7blLYTTon8TtxGwaE0D6kXfwlx/yuuXLsAx+Pq4fQQ/69xGw6/GibdKbi6OxxoB6QCD4b4H8TVpWa4zWkfEJGTQy+gqkUbAqdHuLdyqdJD7PXWbxSRFcBBEUkQkWEi8j8R2SciX4jIqJDwC0Xk/4nIp56WfzlSL1VELheRtZ7G/0ZEflbKf4KILPeus6GowESkmYjMEpFtIrJVRP4q3u7D5dzH8SLybqmeS/MQvz0iMtA7bydueD3KOz9bRFZ797tQRHqVyp/fisgKEdnv9Y5SKp/TlUdEbvLyJVtE1ojIuRHCiYjcJyI7vLxcKSJ9Pb9kr+e1SVxvfKaIpFZSlAQgWIGs6eLMFgdE5DOvzBaF+KuIXOX1APeJyMMiblRRXtmFMNjLg70i8nhRGYhICxH5j1eee73jDiHpLhSR20XkI5xy6Ur5dBKRj7w8f8tr3EOZ7OXlLhH5YwXXisRk4BVV/cDrSNwMnCfeLvelGIXL//tVNU9VZ+A2+TwtinQqinsZcK+qblHVrcC9wNQo414PvKmqz3j+2aq6NvosOIKITBE36t0tIjdLBHO2iCSKyBwReUGOKO4U75nMFpHPRaRfSPiIz4+40eZH3nOzm5INfiQ57/Hq2LcicmYp74rqTTT50B0YCPxZVQ+r6gu4TVwnRohyGfAXVd3r5f2jHCm/iugCzFfVA6q6H3gJ6FPkqapPqOrrQHaYuGcBs1R1s1d/7wQmiUgjL+6fVXWdqgZV9RPgQ+CkMNdRXB2rNNXRc70YGA80x2n8V3E9gZbAb4EXpGRvYwowDWgLFAIzIlx3B/AjoClwOXBfiOIZAjwJ3OClewqQ5cWb7V33BGAAMBaoyGYuwP/D9Tx6AR3xKrKqbgBuBJ72CuZx4AlVXehVtDnAdUBr4DXgFSnZk74QOANXUTKJULFEZITXoEf6jajgHkqzARiJ6zHd6snfNky4sbj86+6FvRC3AznAHZ57f1x+tgduiVYAEUnENYCbSvupamdVzfJOH8b18I7FPYyXhbncj4DBuDy8EBhXlAwRyi6EyV744737+ZPn7sOVZyfgOOAw8FCpuJfiRjVpwMby7hf4Ma6uHgMk4ep/KCOAHsAPgFuKOkiqOl1Vi2WuoLz74Hazx4u7Acj37itc2BVacqfoFYQ0UMBZ4jp1q0Xk6krELSGHd9wnyrjDgD3iOsc7vA7PcRHutwSqOltVpwKISG/cKHcyrj1phqujJfA6avOBPOBCVc33vCYAz+Haqn8D8706CxU/P0OBb3Bt3u0ViD0Ut0t7K+AuYFZRp80jbL1R1SxV7RxyH38XkbCjelzefqOqoYomtEyKEZEWuPyKVH5FbBSRLV5HMVQRPwz8yOs0tsAp1tcjyBUOKXWcjBt1lpYzFffMrw5zjc3AmFL5GB1V3Eo+C5gWcn4j8FSpMG8Cl3nHC4E7Qvx64x5YP9AZT3tHSGs+8Cvv+BHgvjBh2uAqdmqI28XAe5W8r3OAZaXcFuB6TiuAZM/tZmBeSBgfsBUYFZI/l4T43wXMrEqeh5F1upeH+0J+7cKEWw5M8I6nAou849OAL3ENkS8kvOAU0fEhbicB30YpV3+gANgOnFBOOL8XrkeI21+L5PPOFRgRcj4PuCmasvPK4KqQ8x8CG8qReW/I+ULgtijvdyHwp5DznwNveMdFdbtDiP+nwEVHUd7vhN6P51Zc50q53ww8W8rtGWC6d9wb11nwAycD24CLo4wbAHqG+HXz7lGiiPulV08HAym4ju9HR5EXtwBzQs4b4Z6FMSHPxgLgfS8NKfXcLA4593n3PzJCWssp+fxsilLGqcDXpWRU4NiK6k0l8+LS0Pvx3G4HZocJ29GTISXE7XTcNARAE2AQbiTVBngeNzIvCtsOeBtnwQkC/wWSwqTzdFGZh7hd4ZV/Z1yHYoEny0lh4j+BM4NLGL9zvbLeV9m8qo6R3uaQ407ABaEjFFzvtm2E8BuBRFwPqAQicqaILPZ6oftwjVVRuI64nlhpOnnX2xaS/iO4HlRERKSNuAnVrSJyAFdYpWV6FOgLPKiqeZ5bO0J6/6oa9O4vtLf5fcjxIVyFqm7mqWrzkN93ntlneUg+9CVMPqvqu7jRzcPADhH5p7iJ5da4B3RpyDXe8NwrRFWX40ZHH+NGwpFojXu4QuvF5jDhwuZjlGVXus618+I2EpFHPPPYAeADoLmUNIeHkyUSFZV1ddSFHJz1I5SmhDcllRtWVdeo6neqGlDV/wEPAOdHmU5p/6ZAjroWqaK4h4GXVPUzVc3FjaROFpFmYe6hPNoRUj6qeogjVooihuGsA3d4soUSGjcIbOFI3ajo+TmqeuHJCCXLPhb1osi/TFhVzVHVJapaqKrbgWuAsSEm9Hk4xZXmxduAe+6i4TGcdWwhbgT3nue+JTSQuNWZfXEj89LlBq7OTMeN0itFdSi9UIE240Z6oQ1wY1W9IyRMx5Dj43C9/F2hFxSRZOAF4B6gjao2x5kOi4aym3GmqtJsxo30WoWk31RVywzxS/F/3n1kqGpT4JKQtBCRJsD9wCxguhyZh/wOp2iLwol3f1srSK8MIjJSSq6WKv0bWYlrdcIp6WuAdC//VlHSrFCMqs5Q1RNxPf/uOLPxLlzj1CckL5upatQPpNegve5dNxI7ceboDiFuHSOEDUe5ZRfmesfhyg3gNzhz41Av7imee2j8cA9cLFmNWzwCgLjVlsm4Rihc2MxSJqBMwpuL4MhILZq4JeTwjldHGXcFJfP1aPN4GyH1xjOHlV7c8BbO/P2OiLQp5VdcL8QtUuoAfBfl8xOP9aKrlJzbDS2TYlR1Ly7vIpVfmSjef5G+6A88oqoH1c3LzcQNSipE3Vzdn9VNb3Tw0txKSJspIrcCZwJjVfVAhEv1Al72OiuVorpXoz2NmyMYJyJ+EUkRkVESsjgAuEREenvzY7cBz6tqoNR1knAP8k6g0Jv4HRviPwu4XER+ICI+EWkvIj1VdRuukt8rIk09v+NF5NQK5E7D9X72i0h7XKMfygPAElW9AjdnOdNznweM9+RIxDWiecD/Ksqo0qjqh1pyFV3p34eVuFxjXEXdCW5REK7XVAYRGSwiQz35DwK5QNCrTI/i5lKP8cK2F5FxIXFVQhYqRSAPV55h8cr+RVxnopGI9MTN+0ZLRWUH8AsR6eB1Vv4IzA2JexjY5/n9uRLpxopncM/YSBFpjHuGXtSSczlFLMSZIX8pblHSNZ77u1C8GKyFOIYAv8StuqwwLm5O/XqvTrTD1f3ZUcZ9HDhX3GsNiThz6CJ1iyKKFhBNjyIvnvfy4mRx8+jTCdOxU7ea+d84xRc6WjtRRM4Tt/ryOlxdXUwlnp94QVW/xJlg/+y1u+fiOhovRIjyJPAnr/x7Aj/FKz+vPejhtZ/pONPwwqLyAT4DrhD3Dm4qbs57RdGFxS0aSsHplwRPHr/n19Jrk0XcnOzfcFMIQc//97g5zjGqWnrUHkoCrrwqTbUqPVXdjJsc/gOuwmzGNUKh6TyFy9zvcfb8X4a5TrbnPg/Yi8uEBSH+n+ItbgH242z2RSOuKbhGdo0X93lKmlfDcStu5dN+nFJ7schDRCbgFqIUTfJfDwwUkcmquh43sngQNzI6CzhLj0yUxwRVXYNbTfcxbk4tA/goQvCmOOW2F2f62w0Uvfh5I2758WLP/Pc2bmSEiHTEmUNWViBOkIrr2TU4+/73uPoxh+grdMSyC+HfuM7QNzhTzF899/txS6Z34Rq7N6JMs0Ypb2SvqquBq3DKbwdOcf88JO7rIvIHL2w+bo5zCm4ObRpwTkj9vAhXvtm4RvBOVX0iyriPAK/gyn8VLu8fiSauZ1L/gxdnB26R1I9DbrMjketr6by4FngWN3LJ8a5Xpu6oW3I/H3g7xFLzMjAJV/cvBc5T1YJKPj+1hrjV0zPLCXIRbi5uL24R2vmqWqS4J4tI6Ejuz7hnYSOu/bxbVYvqf1fcs5CNK9s83NqIIqbh5uS24EZoXSm5+OxRXGfyYlwn8zAuf8GZiF/DdbBfBx5T1X+GxP0/nDXm6xAr1x9K5UPR9EOlR3ngTRDWFiKyEHhaVf9Va4kaNYKIXIIzff6+gnBjcRaAnqq6J8pr34mb6A+3itOox3hWoXmqenKFgcvGbYJTst1U9dvqls2IDzyrxMe49wjDWTjKJeYv2xp1E1V9uiKF57EQt7prtYiUXsIPgIj0FJHMEDPbT3Dv/hgNDHXv/UWt8ETkLM8s3hi3BmAlR15fMuoZIjIfZ727+WgUHhzly311Ec8scEkYr6dV9aralqeh4Jm0JlcQLA1n0myHMyfdy5G5pbhBRCJ9VebMSs65GtXHBJxJXIAluNdAanWRibUttYeqnlPVa9SqedMwDMMwYomZNw3DMIwGQ1yZN1u1aqWdO3eOtRiGYRhGLbJ06dJdqhrVhy+qSlwpvc6dO7NkyZJYi2EYhmHUIiJS0Xdtqw0zbxqGYRgNBlN6hhGHrNi0k407I32ByTCMo8WUnmHEIZ1nZZD34LBYi2EY9Y64mtMLR0FBAVu2bCE3NzfWohh1iJSUFDp06EBiYmLFgeOQpnKYplLp75YbhlEBca/0tmzZQlpaGp07d0aOYr9Ao+GhquzevZstW7bQpUuXWItjGEYcEffmzdzcXNLT003hGVEjIqSnp5t1wDCMMsS90gNM4RmVxuqMYRjhqBNKzzAaFMGj2jHFMIwoMKUXBSLCb37zm+Lze+65h+nTp8dOoApYuHAh//tfpfexLWb58uWcdNJJ9OnTh8zMTObOnVtxJKP6KLOnsmEY1YUpvShITk7mxRdfZNeuXdV6XVUlWAO9+qoqvUaNGvHkk0+yevVq3njjDa677jr27dtXfQIa5RMoKD7UoClAw6hOTOlFQUJCAldeeSX33XdfGb+dO3cyceJEBg8ezODBg/noI7fB8vTp07nnnnuKw/Xt25esrCyysrLo0aMHU6ZMoW/fvmzevJkbbriBvn37kpGRUTyqWrhwIaNGjeL888+nZ8+eTJ48mXA7YsyYMYPevXuTmZnJRRddRFZWFjNnzuS+++6jf//+fPjhh+XKeOmll3LSSSfRrVs3Hn30UQC6d+9Ot27dAGjXrh3HHHMMO3fuLJP2c889R9++fenXrx+nnHIK4BYeXX755WRkZDBgwADee+89AGbPns0555zD6aefTufOnXnooYf429/+xoABAxg2bBh79rj9ZR999FEGDx5Mv379mDhxIocOHSqT7rBhw1i9+sgm0KNGjapXn6/T4BGll59X9v4Nwzh64v6VhVBufWU1a76r3q9U9G7XlD+f1afCcL/4xS/IzMzkd7/7XQn3X/3qV/z6179mxIgRbNq0iXHjxrF27dpyr/XVV1/xxBNPMGzYMF544QWWL1/OF198wa5duxg8eHCxAlm2bBmrV6+mXbt2DB8+nI8++ogRI0aUuNYdd9zBt99+S3JyMvv27aN58+ZcddVVNGnShN/+1u3Z+uMf/ziijCtWrGDx4sUcPHiQAQMGMH78eNq1a1d8/U8//ZT8/HyOP/74Mvdx22238eabb9K+ffvikeDDDz+MiLBy5UrWrVvH2LFj+fLLLwFYtWoVy5YtIzc3lxNOOIE777yTZcuW8etf/5onn3yS6667jvPOO4+f/vSnAPzpT39i1qxZXHvttSXSnTRpEvPmzePWW29l27ZtbNu2jUGDBpWb53WJYCCA3zvOP3yQ5NS0mMpjGPUJG+lFSdOmTZkyZQozZswo4f72229zzTXX0L9/f84++2wOHDhATk6kvUYdnTp1Ytgw97WNRYsWcfHFF+P3+2nTpg2nnnoqn332GQBDhgyhQ4cO+Hw++vfvT1ZWVplrZWZmMnnyZJ5++mkSEsL3YcqTccKECaSmptKqVStGjx7Np59+Whxv27ZtXHrppTz++OP4fGWryvDhw5k6dSqPPvoogUCg+H4uucTtp9mzZ086depUrPRGjx5NWloarVu3plmzZpx11lkAZGRkFN/bqlWrGDlyJBkZGTzzzDMlRnRFXHjhhTz//PMAzJs3j/PPP7/c/K5rFBTkHznOOxxDSQyj/lGnRnrRjMhqkuuuu46BAwdy+eWXF7sFg0EWL15MSkpKibAJCQkl5utC3xlr3LhxVOklJycXH/v9fgoLC8uEefXVV/nggw945ZVXuP3221m5cmWZMJFkhLJL+4vODxw4wPjx47n99tuLFXRpZs6cySeffMKrr77KiSeeyNKlS6O+H5/PV3zu8/mK723q1KnMnz+ffv36MXv2bBYuXFjmOu3btyc9PZ0VK1Ywd+5cZs6cWW66dY1AYah505SeYVQnNtKrBC1btuTCCy9k1qxZxW5jx47lwQcfLD5fvnw54LZJ+vzzzwH4/PPP+fbbb8Nec+TIkcydO5dAIMDOnTv54IMPGDJkSFTyBINBNm/ezOjRo7nzzjvZv38/OTk5pKWlkZ2dXaGMAC+//DK5ubns3r2bhQsXMnjwYPLz8zn33HOZMmVKuaOoDRs2MHToUG677TZat27N5s2bGTlyJM888wwAX375JZs2baJHjx5R3Q9AdnY2bdu2paCgoPg64Zg0aRJ33XUX+/fvJzMzM+rr1wUCIZ2bwjx7wd4wqhNTepXkN7/5TYlVnDNmzGDJkiVkZmbSu3fv4lHHxIkT2bNnD3369OGhhx6ie/fuYa937rnnkpmZSb9+/TjttNO46667OPbYY6OSJRAIcMkllxQvGvnlL39J8+bNOeuss3jppZeKF7JEkhGceXT06NEMGzaMm2++mXbt2jFv3jw++OADZs+eTf/+/enfv3+xorzllltYsGABADfccAMZGRn07duXk08+mX79+vHzn/+cYDBIRkYGkyZNYvbs2SVGeBXxl7/8haFDhzJ8+HB69uxZ7L5gwQJuueWW4vPzzz+fZ599lgsvvDDqa9cVCgtDzJv5tpDFMKoTCbcisFoTEDkDeADwA/9S1TsihR00aJCWXoW3du1aevXqVaMyNlSmT59eYsFLfaOu1p1dG1fT6vGTAfj6R89zwqDTYyyRYdQsIrJUVWtlNVqNjvRExA88DJwJ9AYuFpHeNZmmYdR1CkMWshTmm3nTMKqTml7IMgT4WlW/ARCRZ4EJwJoaTteIgnj+qkxDJnROL2BKzzCqlZqe02sPbA453+K5FSMiV4rIEhFZEu4FaMNoaAQDR5ResMBWbxpGdRLzhSyq+k9VHaSqg1q3bh1rcQwj5gRCFrIEbaRnGNVKTSu9rUDHkPMOnpthGBEIlBjpmdIzjOqkppXeZ0A3EekiIknARcCCGk7TMOo0wZA5PTWlZxjVSo0qPVUtBK4B3gTWAvNUtex3peoA8+fPR0RYt25dxDBZWVn07du3RuVYvnw5r7322lHHL3qZvXfv3vTp04cHHnigGqUzqoNgyC4LgUJTeoZRndT4nJ6qvqaq3VX1eFW9vabTqynmzJnDiBEjmDNnTlj/cJ8IqyxF368sj6oqvYSEBO69917WrFnD4sWLefjhh1mzxhbTxhOhC1kozIudIIZRD4n5Qpa6QE5ODosWLWLWrFk8++yzxe4LFy5k5MiRnH322fTu7V4/LCwsZPLkyfTq1Yvzzz+/eGucd955hwEDBpCRkcG0adPIy3ONWefOnbnxxhsZOHAgzz33XIl0S2/dk5+fzy233MLcuXPp378/c+fO5eDBg0ybNo0hQ4YwYMAAXn75ZcBt5TNhwgRGjRpFt27duPXWWwFo27YtAwcOBCAtLY1evXqxdWvZadb333+/+GssAwYMIDs7G1WNuA3SqaeeyoQJE+jatSs33XQTzzzzDEOGDCEjI4MNGzYA8MorrzB06FAGDBjAmDFj2L59e5l0L7roIl599dXi86lTpxZ/XLqhEAz59iZm3jSMaqVOfXCa12+C78t+ULlKHJsBZ0b8SAzgvk95xhln0L17d9LT01m6dCknnngi4L6ruWrVKrp06UJWVhbr169n1qxZDB8+nGnTpvH3v/+da665hqlTp/LOO+/QvXt3pkyZwj/+8Q+uu+46ANLT04u/0xlK6a17kpKSuO2221iyZAkPPfQQAH/4wx847bTTeOyxx9i3bx9DhgxhzJgxgNsWaNWqVTRq1IjBgwczfvz4ElvwZGVlsWzZMoYOHVom7XvuuYeHH36Y4cOHk5OTQ0pKCi+++GLEbZC++OIL1q5dS8uWLenatStXXHEFn376KQ888AAPPvgg999/PyNGjGDx4sWICP/617+46667uPfee0ukW7Rt0Pjx48nPz+edd97hH//4R5SFWT8IlBjpmdIzjOrERnpRMGfOHC666CLAjURCTZxDhgyhS5cuxecdO3Zk+PDhAFxyySUsWrSI9evX06VLl+Lvb1522WV88MEHxXEmTZoUNt1wW/eU5q233uKOO+6gf//+jBo1itzcXDZt2gTA6aefTnp6OqmpqZx33nksWrSoOF5OTg4TJ07k/vvvp2nTpmHTvv7665kxYwb79u0jISGh3G2QBg8eTNu2bUlOTub4449n7NixQMltg7Zs2cK4cePIyMjg7rvvDrtt0Jlnnsl7771HXl4er7/+Oqeccgqpqalh772+oiFzehIw86ZhVCd1a6RXwYisJtizZw/vvvsuK1euREQIBAKICHfffTdQdpugSFv1lEekrYai2bpHVXnhhRfK7GTwySefRJSloKCAiRMnMnnyZM4777ywad90002MHz+e1157jeHDh/Pmm2+Wew/RbBt07bXXcv3113P22WezcOHCsF+ESUlJYdSoUbz55pvMnTu3uLPRkFCb0zOMGsNGehXw/PPPc+mll7Jx40aysrLYvHkzXbp04cMPPwwbftOmTXz88ccA/Pvf/2bEiBH06NGDrKwsvv76awCeeuopTj311ArTDrd1T+ltg8aNG8eDDz5I0YfDly1bVuz33//+lz179nD48GHmz5/P8OHDUVV+8pOf0KtXL66//vpy087IyODGG29k8ODBrFu3rkrbIAHs37+f9u3dB3meeOKJiOEmTZrE448/zocffsgZZ5wR9fXrC8HgEaXns5GeYVQrpvQqYM6cOZx77rkl3CZOnBhxFWePHj14+OGH6dWrF3v37uXqq68mJSWFxx9/nAsuuICMjAx8Ph9XXXVVhWmH27pn9OjRrFmzpnghy80330xBQQGZmZn06dOHm2++uTj+kCFDmDhxIpmZmUycOJFBgwbx0Ucf8dRTT/Huu+8WL1QpWg06c+bM4m2H7r//fvr27UtmZiaJiYmceeaZVdoGCdy3Pi+44AJOPPFEWrVqVey+ZMkSrrjiiuLzsWPH8v777zNmzBiSkpKivn59Qb2RcZ4mmtIzjGqmxrcWqgy2tVD1MXv27BILXhoidbXufPbiAwxecQv7tAkbm2TS74bXYy2SYdQo9WZrIcMwjgLPvHlYUvDbSM8wqpW6tZDFiJqpU6cyderUWIthHAVFc3q5koo/mF9BaMMwKkOdGOnFkwnWqBvU5TpTtHoz35dKgik9w6hW4l7ppaSksHv37jrdiBm1i6qye/duUlJSYi3K0eGN9PL9qSSoKT3DqE7i3rzZoUMHtmzZgm0wa1SGlJQUOnToEGsxjoqikV6hP5WEwl0xlsYw6hdxr/QSExNLfPHEMOo9QfdFloKEJiTm2kjPMKqTuDdvGkZDQ7zPkAUTGpNk5k3DqFZM6RlGvBHIJ1/9aEISiRRUHN4wjKgxpWcYcYYECyggAU1IIUlN6RlGdWJKzzDijUAhhSSAP5lkKUCDwVhLZBj1BlN6hhFnSDCfAkmEBPfKRaFtJGsY1YYpPcOIMyRQQCEJSKJTermHD8VYIsOoP5jSM4w4Q4IFFEoCvgS3J2F+nik9w6guTOkZRpzhC+YTkCMjvYLcwzGWyDDqD6b0DCPOkGABAUnAl+QpvTxTeoZRXZjSM4w4wxcsICCJ+IpGevm2kMUwqgtTeoYRZ/iChQQkEX9iKgAFuTanZxjVhSk9w4gzfFpA0JeI3zNvFtpIzzCqDVN6hhFn+LWQoCSQkOxGeoF8G+kZRnVhSs8w4gx/sICgL4GEpCKlZyM9w6guTOkZRpyRSD4BXzKJ3kgvmG+rNw2jujClZxhxRkowlwJ/YxJTGgMQLDClZxjVhSk9w4gzUjlMILERiSneSM+UnmFUG6b0DCPOSNXDkNiY5NQmzsHMm4ZRbZjSM4w4Ii/vMEkSgOTGpKQ0AkBtpGcY1YYpPcOIIw5lHwDAl9yExMQkAipoYV6MpTKM+oMpPcOIIw4f3A+ALzkN8fnIIwkptFcWDKO6MKVnGHHE4ex9ACSmpgGQJ0lIoZk3DaO6MKVnGHFE3oEdACSktQYgnyR8ATNvGkZ1YUrPMOKIQ3u3A5CW3haAfElGTOkZRrVhSs8w4oj8/U7ptWjVDoACXxL+gM3pGUZ1USWlJyLTRWSriCz3fj8M8fu9iHwtIutFZFzVRTWM+o/mbCegQlrLYwAolCT8NtIzjGojoRqucZ+q3hPqICK9gYuAPkA74G0R6a6qgWpIzzDqLY2zv+U737F09LtHs9CXQkLQlJ5hVBc1Zd6cADyrqnmq+i3wNTCkhtIyjHpD+uFv+T6pc/F5wJ9sSs8wqpHqUHrXiMgKEXlMRFp4bu2BzSFhtnhuZRCRK0VkiYgs2blzZzWIYxh1Ey3M59jCreQ0PaHYLeBLJlHzYyiVYdQvKlR6IvK2iKwK85sA/AM4HugPbAPurawAqvpPVR2kqoNat25d2eiGUW/Ys2UdiQTwH9Oj2C3oTyZRbaRnGNVFhXN6qjommguJyKPAf7zTrUDHEO8OnpthGBHY+c1K0oGmx/Utdgv4U0iykZ5hVBtVXb3ZNuT0XGCVd7wAuEhEkkWkC9AN+LQqaRlGfefQ1tUAtDshs9hNE0zpGUZ1UtXVm3eJSH9AgSzgZwCqulpE5gFrgELgF7Zy0zDKx797PVtpTbuWLYvdNCGFZEzpGUZ1USWlp6qXluN3O3B7Va5vGA2JZjnfsD25M+1FjjgmpJAq+QQCQfx++5aEYVQVe4oMIw7QQCFtCzdzqOnxJdwlIQWA3NxDsRDLMOodpvQMIw7YueVLkinAd0zPEu6SlApA3mFTeoZRHZjSM4w4YPuGLwBodlxGCXdJLBrpHax1mQyjPlIdnyEzDKOKHNy6FoD2J/Qr4e5LdCO9/KMY6eUePsi6j18l9+sPScjeTGrebkSDCEEUHypFPz9B8aPih9DzetAnTvAJpLWl37QHEJ8/1uIYcYApPcOIA2TPt+wjjebpJT/Q4E9uBEBBJUZ6h3MO8MXcW+mxeS79ySZf/ezwHUN2QkuCkkBQEhBVhAD+YCGiAXwaxEcA8f7deRBFKk4wjknRw7Tev5eNX11Bpx79Yy2OEQeY0jOMOKDRwc3sSGhL81Lufm9OrzA/ut3TV/3vNVq99UuGsZPljU5my5Cf0G3IODo0SqtegesI65a8Q+v/nMeezWtN6RlAPVR6B7P306hxGuKr+6YZo+HQsuA7vk/rW8Y9wVN6BXkVK73F8+7hxNX/x/e+NqweN4/+w2xHr7Zd+gCQ9/2XMZbEiBfqlWbYtnE92fcO5LOXH461KIYRNfl5ebQJ7qSgaacyfgmeeTOQV/6c3qfP/41ha/7C2kYn0vxXi+hjCg+AZunHsp/GyJ6vYy2KESfUq5Femw4nsC7xWHp+8f/Ymjma9seX7TlXRGFhIYcPHkAL8ggEAwQDAYLBQgIBdxw7ws+tSDVNuUS+TvQJVOvsT3XdWOUTrvUUd3/3Db0liL/V8WX8ipReYTkjvaWvzWLQytv4InUwva57haTklBqTtS6yKakb6ftXV/1CquTnHiT3UA65uXkUFuZBwM2JlqFM/S15XmauNCS8O4zsXzapIr/o41QX4k+kTbuynbV4pl4pPZ/fT9NJjxB4+gwSnzqLZSfdSo+RE2nUqDEaDLJ7+xZ2bfmK7O+/IX/PRnwHtpJy6Dua5m0nLbifRnqYRuSSJhrrWzEaEG28/7T2Pcv4JaV4I72C8EpvxcIXyPjkBtYn9ab7tS+ZwgvDgVYD6LX1CQ7l7KdRk2YVht+1YxvfrXiXQxuX4d/7NS1zN5NWuIemmk2KFJAENK15sesEK4NdaXPbsliLUSnqldID6HBCX745/3n8L/6EAR9fS+B/vySHFJLIp5UEaBUSdj9N2O1vTXZyG3Yn9yKYlAbJaZDchKA/BRFxy5x9fnw+P4i/mnpPlVSqEYLXhmoWjS4VrWZppFbuLn7wpzRl4ImnlXEvUnrB/LLmzXWf/pcT3ruazQmdaPfzBaQ2bpiLVSqiee/RJHz3OCsWvcTAM6aW8VdVNqxdxvcfPUX7be/QJbiRVkBQhW2+Y9iV1JFdTbpDaksCKc2RxMb4E5MQfwLqS0Dxo6EjtTLPTPnnoXVdwwQv+yxomcMyYSI8t9X9VOUnt6g4UJxR75QeQNe+w8jvtpQvFr1EbtYSJP+AU2JN25F6TFeatzueYzqcQLMmzam432cYsSPJM29qQW4J9w0rP6Hda5ex25dOs58uoFmLVuGiG0CPoT9k19vNSf58Fjp2SvEit+82fkXW+0/ROusVugW/oasKa5Mz+bT9j2jS41SO63sy7Zukhd/92qiz1EulB5CUnEK/H1wMXBxrUQzjqElKbQyAhpg3N65fTvMXLiCXZBKmzqfVsR0jRTeAhMRENvT6OUPX/h/L7hlPXlonWuz+nB6F62kHfJnQg8+6/44TRl9KnzbHxVpco4apt0rPMOoDyaklR3qbN6whZc65ABy++CU6deoRMa5xhCEX3MDHs3fRe9MzpBz8jI2JXfi4yzV0GvFjuh/fJ9biGbWIKT3DiGMkIYVC9eHPz+bLZR/S8uVLSCDAvgtforO9bB014vNx0rS7gbvRYJDu9h5vg8VK3jDiGRE2+jpw8vdP0WH+RAokkX2T5tO59+BYS1ZnsQ9XNGys9A0jztmePgSAb1J6kXzVe3TuNSjGEhlG3cXMm4YR5wz92T/Y/O219Dkh00YphlFFTOkZRpzjT0yiY/f+sRbDMOoF1m00DMMwGgym9AzDMIwGg2iUn5mqDURkJ7CxGi7VCthVDdepDeqSrFC35DVZa466JG9dkhXqlrzVJWsnVW1dcbCqE1dKr7oQkSWqWieWuNUlWaFuyWuy1hx1Sd66JCvULXnrkqxFmHnTMAzDaDCY0jMMwzAaDPVV6f0z1gJUgrokK9QteU3WmqMuyVuXZIW6JW9dkhWop3N6hmEYhhGO+jrSMwzDMIwymNIzDMMwGgz1SumJyBkisl5EvhaRm2ItT2lEpKOIvCcia0RktYj8ynOfLiJbRWS59/thrGUFEJEsEVnpybTEc2spIv8Vka+8/xZxIGePkLxbLiIHROS6eMpXEXlMRHaIyKoQt7B5KY4ZXj1eISID40DWu0VknSfPSyLS3HPvLCKHQ/J4Zm3KWo68EcteRH7v5e16ERkXB7LODZEzS0SWe+7xkLeR2qy4rLtRoar14gf4gQ1AVyAJ+ALoHWu5SsnYFhjoHacBXwK9genAb2MtXxh5s4BWpdzuAm7yjm8C7oy1nGHqwfdAp3jKV+AUYCCwqqK8BH4IvA4IMAz4JA5kHQskeMd3hsjaOTRcHOVt2LL3nrcvgGSgi9dm+GMpayn/e4Fb4ihvI7VZcVl3o/nVp5HeEOBrVf1GVfOBZ4EJMZapBKq6TVU/946zgbVA+9hKVWkmAE94x08A58ROlLD8ANigqtXxZZ9qQ1U/APaUco6UlxOAJ9WxGGguIm1rRVDCy6qqb6lqoXe6GOhQW/JURIS8jcQE4FlVzVPVb4GvcW1HrVCerCIiwIXAnNqSpyLKabPisu5GQ31Seu2BzSHnW4hjhSIinYEBwCee0zWeOeCxeDAZeijwlogsFZErPbc2qrrNO/4eaBMb0SJyESUbjXjM1yIi5WW81+VpuN58EV1EZJmIvC8iI2MlVBjClX085+1IYLuqfhXiFjd5W6rNqqt1t14pvTqDiDQBXgCuU9UDwD+A44H+wDaciSMeGKGqA4EzgV+IyCmhnursGXHzzouIJAFnA895TvGar2WIt7yMhIj8ESgEnvGctgHHqeoA4Hrg3yLSNFbyhVBnyj6EiynZYYubvA3TZhVTV+puEfVJ6W0FOoacd/Dc4goRScRVnmdU9UUAVd2uqgFVDQKPUovmlvJQ1a3e/w7gJZxc24vMFd7/jthJWIYzgc9VdTvEb76GECkv47Iui8hU4EfAZK+hwzMT7vaOl+LmyLrHTEiPcso+XvM2ATgPmFvkFi95G67Noo7V3VDqk9L7DOgmIl28Hv9FwIIYy1QCz2Y/C1irqn8LcQ+1eZ8LrCodt7YRkcYiklZ0jFvIsAqXp5d5wS4DXo6NhGEp0VOOx3wtRaS8XABM8VbCDQP2h5iSYoKInAH8DjhbVQ+FuLcWEb933BXoBnwTGymPUE7ZLwAuEpFkEemCk/fT2pYvDGOAdaq6pcghHvI2UptFHaq7ZYj1Sprq/OFWDn2J6xH9MdbyhJFvBM4MsAJY7v1+CDwFrPTcFwBt40DWrrhVbl8Aq4vyE0gH3gG+At4GWsZaVk+uxsBuoFmIW9zkK04ZbwMKcPMcP4mUl7iVbw979XglMCgOZP0aN1dTVG9nemEnevVjOfA5cFac5G3Esgf+6OXteuDMWMvquc8GrioVNh7yNlKbFZd1N5qffYbMMAzDaDDUJ/OmYRiGYZSLKT3DMAyjwWBKzzAMw2gwmNIzDMMwGgym9AzDMIwGgyk9wzAMo8FgSs8wDMNoMPx/hcQ8dqc12x0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABl4ElEQVR4nO2deXhU1fn4P+9kTwgEArLvshP2ABZQsIgoVVRUtKIiVauttNS9ixZt/X1dq1WptIjiVsR9qQtWFFErIvsioCCRgMiekJA98/7+ODdhMpmZTNaZTM7neeaZe8/63nPOPe/Z7jmiqlgsFovFEsm4Qi2AxWKxWCz1jVV2FovFYol4rLKzWCwWS8RjlZ3FYrFYIh6r7CwWi8US8VhlZ7FYLJaIJyyVnYh0ExEVkehQy2KpOSIyW0R+EJENIYh7rog83wDxzBSRzwLYLxeRq+tbDssJAtUfDVm3OPGc7McuYLmxVEREpotItoj8T0Q61CSMsFR2luojIvNFJNf5FYlIscf9eyESay7wK1Ud7CHnXBGZGyJ5wgqn4s2opvuPRSRPRLaJyMQAbuNE5CkROSYiP4rIjV7hqEf5yBWRO4Lx69j/1Ik/z5GnazX8JorIP0TkkFN5rajG8zeZj4KdRtL4IN2KiNwnIoed330iIgHc/1xEvheR4yLyhoi08oq3wKNcbPfyO1tEdjn5u1pExnrYTXDKQ7avci0iPxGRVSKSIyIbvfxOEZHPRCTLKTdPikhymb2qLgFaO7cXB5Mu3tSLsrM9soZHVa9T1Waq2gz4f8CSsntVPavMXQPnTStgcwPGVy+EUXleDKwDUoE/Aq+ISBs/bucCvYCuwATgVhGZ7OUmxaOM/CUYvyLSGngNuAOTv6uBJdWI91+Ov37O/++CfPawI4zKxbXAecBgYBBwDvBLXw5FZADwT+ByoC2QB/zDy9kNHuWij4ffUcC9wIVAC2Ah8LqIRDlOjgNPAbf4iLcV8DbwAJAC3A+8LSItHSctgL8CHTBlo6PjthxVLQa+wZT/alNnyk5EMkTkNhHZCBwXkWgRGe10O7NEZINnS8VpQfyfo+mPicibni0Mr7CvEpGtTovgOxH5pZf9VBFZ74Sz0+PFbCEiC0Vkn4jsFZG/emSMv+foKSIfOS2kQyLygoikeNgdEZFhzn0HETlY9lwicq6IbHGed7mI9PNKn5udFk22iCwRkfjqp3T18ZM3FYZYRGSRiPzV4/5nTppmOXk4qJpxlqWzuwp3tzr584OIXO0plyPTPBF5x8n7L0Wkp4ffv4tIppPva0RknFfw8U4654jIWhHx7GHe7pSVHBH5WkTO97CbKSKfi8jDInIYU4FX9bwPishRMa3es7ysuzrh5YjIB47CqBYi0hsYBvxZVfNV9VVgEzDNj5crgb+o6lFV3QosAGYGGV0gvxcAW1T1ZVUtwKTNYBHpW5Vfx825wLWqelBVS1V1TZAyVUBEuovICidNP3TKic9haxGZ5rwDAz2MZzllbp+I3OzhdqSIfOGU+30i8riIxHrYq4j8WkS+Bb4NQtSJIvKtE948kYo9rirKTbBcCTykqntUdS/wEP7z+jLgbVVdoaq5mEbLBeLRiwpAN0zer1Gz9dazmN7WSQCqukpVnwO+8+H3J8CPTrkpVdXngYOY8oSq/ltV31fVPFU9iik3Y3yE4wZq1shQ1Tr5ARnAeqAzkIDRzIeBszFK9Qznvo3jfjmwFxgIJAGvAs87dt0ABaKd+ylAT0CA0zCtkWGO3Ugg2wnf5cTb17F7HdOKScJkyCrgl1U8x8lOWHFAG2AF8IiH/TXA10AisBR40DHvjWnZnAHEALcCO4BYj/RZhWm5tAK2Atf5kWEskBXgN7aKZ5hblpa+8sYxU+BkDzeLgL8610OBA8AoIArzMmUAcdUoD5OBAiCpCjc/AgOc9HzeUy5HpsNOHkcDLwAvevifgWnlRQM3OWHFe6RBMaYVGgPcDOwCYhz7i5y8cAHTnbxr79jNBEqA2U7YCQGeYaYTzzVOWl0P/ACIRznf6ZSPBOf+Xj9h/QP4hx+784GtXmaPA4/5cNvSSce2HmYXApu83q+9wB7gaaB1kH7/DjzhFd9mjNKtyu8VGAX9MHDIuZ5Ww/rmC+BBIBbzvhzDR/0BXIV5D0/2sluMqRfSMJXuRMd+ODDa8dsN857O8YhXgf9i3mG/5cLD7X8wPZkuTjyTgyk3vuqDAPFkA6M87kcAOX7cvgnc5mWWCwz3KK8Hnfz5HBjv4a45sIYT9cJszEiDeIU3EcjwMvsZ8LWX2bfAw37kfASPd93D/C7gEwLUK37TqSYFzY9wGcAsj/vbgOe83CwFrvRI1Hs97PoDRU4ilhdWP3G9AfzWuf6nrwTDdNELPQskcCnwcTWf6zxgnZfZW5gXdSOOAsC0kF7ycOPCVCbjPdJnhof9/cD8ukp/L/nmUlnZzfJyE0jZPYFpnXu63w6cFmT8q53wf1OFu6eA//O4P5nKyu5JD/uzgW0BwjsKDPZIg5Ve+bEPGOfH73pgqnM9E9gd5LPOBHZ43Cc6z9DOo5z/ycP+V8D7NcjTyz2fxzG7B1jkw21nR4Z4D7MzcCogoBmmQox23pNXgKVB+l2Il7LGVIozg/D7B8d+LkZJnYapaPtVMy26YBojiR5mz1NZ2d2MaZh28nBXZtfXw+x+YKGfuOYAr3u9N6cHKafi0TAFXgJuD6bcVDM9Sr2ep5cTli/FuQyvRjYV66lRQDKmsX8lkAP0dOzEycNiJ/0PAek+4vCl7FIxDfVLMY3PKzG9tH/68H8G5l3u7cOuJWYosxS4oDrpVNdzdpke112Bi5zue5aIZGFaKO39uP/eSYRKQzwicpaIrHSGELMwlV6Zu86YlrM3XZ3w9nnE/0+cLrc/RKStiLzoDHsew7xE3jItwPRIH1PVQsesg/MMAKiq23m+jh7+fvS4zsNUOg1FZtVOyukK3OSVd50xzxgM6cAlwFwRiQngroOXXL5k9JtmzrDwVmdYOAsz7u+ZV+XhOfmxp+wZROQKj2HaLEx++vQbBOUyqmqec9nMl733M1SDXEzL2pPmmMrIl9sy+0puVTVXVVeraomq7gduACY5Q1kB/VYhR1V+8zEV5V9VtUhVPwE+Bib5eIZAdACOeKQ1+M6vW4B5qrrHh5133VNWLnqLyH/ELJI4hpn/9n7/a1Q2qJz3VZWbYPHOk+ZArjraoQq3Ze7LysaXqpqjqoWq+gymIXO24+4XmJ7yAExjZQbwHwlidaSqHgamAjcC+zGjOh9i3slyRGQ08G/gQlX9xkdQV2F68a1U9bWq4vWkrpWdZ+JmYnp2KR6/JFW918NNZ4/rLpgX4ZBngCIShxnifBAzPJICvItpZZTF05PKZGJ6dq094m+uqgOqeIb/5zxHmqo2x2Ro+Ti7iDTDdLEXYirzsnnGHzBKosydOM+3t4r4KiEi46TiSjnvn/fcVDB4F/w8TGuyjHYe15nAPV55l6iqi4OKyLxkb2BaYe0DON0HdPK47+zPoTdOGtyKWZnV0ikX2XjklWd4IuJy4vpBzOrBBZhKPtXxu9nLr6+KIpRsAXp4za0MdswroGbOY59jH9BtmRfn3xWE3y2ediKShHn/tgThd2OAuKvDPqCViHiWX19lZxLwJxHxNa/pXff84Fw/AWwDejnv/x+oWC5qKnN9UiFPCJzX3vnXA9OL86VYwOkhOtdDgP+o6jeq6lbV9zF58ZNghFTVT1Q1XVVbYUYq+mKmdspkGYoZNZulqsv8BNMPMzqXHUycntTnpwfPA+eIyJkiEiUi8SIyXkQ8K7cZItLfKbR3A6+oaqlXOLGYzDgIlDiTuJ4twYXAVWKWQ7tEpKOI9FXVfcAHwEMi0tyx6ykip1Uhd1nrNltEOlJ5ZdHfgdWqejXwDjDfMX8JmOLIEYOZQyoE/ldVQnmjqp/qidVQvn6fVjdMH6wHfu7kzWTMkFIZC4DrRGSUGJLELA1OhvKFI4uqeIayHm9sAGcvYfKun1MG7gjg1ptkzFDKQSBaRO6kcot1uIhcIGbV3BxMfqzEzNWo4xcRuQrTswtbnFbueuDPzrt0Pmbl3at+vDyLqehbilkYcg1mWBgnX/s470Qq8Ciw3KMC8esXMw8+UMyij3jgTmCjqm4Lwu8KYDfwezGLpMZgVmwudeSaKUF8iqGq32OGyueKSKyInIJZgejNFkwPYp6InOtld4eYzyAGYHoLZStKkzE9h1xH/uurkicMeBa40an7OmDqnkV+3L6AqZfHOQ2Vu4HXVDVHRFKc+jreyZ/LgFOB9x2/X2HquB5OvXAGZi56M5gGpVMmYsytxEvFxT1DRSRGRJpjOi+ZqlqW9wOdeGar6tsBnjUG8x5Xm3pTdqqaiem2/gFTqWRiFIdnnM9hMuVHIB74jY9wchzzlzDjuD/HaP8y+1WYwvowpmX/CSd6WFdgKtuvHb+vELinAWYCdJgT1juYZdaAWfWJeXnKXoAbgWEicpmqbsf0Ah/D9E7PAc5R1aIq4gsVv8XImIVZofVGmYWqrsZUUo9j0m0HFVd3dcYMb1SFEqCMqep7mIr2YyeOlY5VMIV5Kebl+AYzDFVA5eGlNzGLT45iWpIXqGqxqn6NWbH2BWZIJS3I56lXxHwrOT+Ak0swc21HcZaAq2qZwr5MRDxb83/GDO9/j3knHnBa4gA9MGmXg6moCjFzKVX6deKbhpkvPIqZ47kkSL/FmDrhbMz7tQC4wkNRBluuwJTZUzALmP6KUVaVyo2qbsAsjlggFVc7foIpc8swi8w+cMxvxtQxOY58np9VhISykZ4ATv6JWda/CZOf7zhmZf7LR4NUdQtwHUbpHcAo9185TmMwaVm2QGU2cJ7HcOKzwIuYeehjmHf3lx75dypmqPpdTG85H9PhKONWJ9xMTD18vofdTZgFgQs9RrB89U6jqGKFtz/KVow1OCKyHDOh/GRIBLDUCKeltgEY5FRegdz+ANyqZplxMGH3w7yscapaUmthLY0KEfkAs/Bsaw38LsEsXvpz3UtmCQdEJAH4DLOYyPvbwCqxO6hYqoWzsKBfVYrO4XbMsJvfb6lE5Hwxu260BO7DfANkFV0TRFUnBavoRCTdmZZwOcPwU/EYnbBEFiJyMWa0YD9mlK/aNEllJxW31vL8BRpCslQTVX1WVXup6vAAzn6JGU7ZiVlOHHZzJLa8hCXtMMNpuZjhtOtVdV1DCiABFpI1pBxNAVV9SVVPUtWzVfVQ1T4qE7JhTIvFYrFYGoom2bOzWCwWS9MiXDYyBaB169barVu3UIthsVgslgZkzZo1h1TV36bmdUJYKbtu3bqxevXqUIthsVgslgZERL6v2lXtsMOYFovFYol4rLKzWMIZVfOzWCy1IqyGMS0Wywm+376epCUXUKCxcOVbdOrWO9QiWSyNlrBXdsXFxezZs4eCgoJQi2JpRMTHx9OpUydiYgIduhDe5Lz9B9qVHiMJ4duXZtPp1qWhFsliabSEvbLbs2cPycnJdOvWDal4yK/F4hNV5fDhw+zZs4fu3buHWpwacezIfvrl/I9P284gLiGJU76fz7ebV9Nr4IhQi2axNEpqPWcnIrNFZJuIbBGR+73sujg7Ctzsz39VFBQUkJqaahWdJWhEhNTU1EY9GrB1xWtEidJ+9EX0/9lsSlU48L+gthi1WCw+qFXPTkQmYPakG6yqhSLifTDq34D3ahOHE09tg7A0MRp7mXFnfkUecfQaNAZXdDSb4ofSdd/7qGqjfzaLJRTUtmd3PXBv2dllqnqgzEJEzgN24f8QQYvF4ocW2V+zO/ZkXNGmPVrQ8yw66T52bvd1/qnFYqmK2iq73sA4EflSRD4RkXQoP837NszZcAERkWtFZLWIrD548GAtxakfRISbbrqp/P7BBx9k7ty5oROoCpYvX87//lftM2MrMHnyZFJSUvjZz35WR1JZgqWoqJhuxd+R0+rEebLdR5uzR39c859QiWWxNGqqVHYi8qGIbPbxm4oZBm0FjMYczPqSmDGWucDDqlrl7t+q+i9VHaGqI9q0qdfdYmpMXFwcr732GocO1Wizbb+oKm53jc4hDEhdKLtbbrmF5557ro4kslSHH7/fSqIUQru0crPWXfqy19WepMxPQiiZxdJ4qVLZqepEVR3o4/cmsAdzpLs6J4a7gdaY04vvF5EMYA7wBxG5of4eo36Jjo7m2muv5eGHH65kd/DgQaZNm0Z6ejrp6el8/rk5aHnu3Lk8+OCD5e4GDhxIRkYGGRkZ9OnThyuuuIKBAweSmZnJLbfcwsCBA0lLS2PJEnMw8vLlyxk/fjwXXnghffv25bLLLsPXCRWPPvoo/fv3Z9CgQVxyySVkZGQwf/58Hn74YYYMGcKnn34aUMbLL7+cU045hV69erFgwYLycH/605+SnJwcMF1efvllBg4cyODBgzn11FMBs6DoqquuIi0tjaFDh/Lxxx8DsGjRIs477zzOOOMMunXrxuOPP87f/vY3hg4dyujRozly5AgACxYsID09ncGDBzNt2jTy8vIqxTt69Gi2bDkxOj5+/PiI2mbuSKY5+Dm5Q98K5ntTx9Anfz0F+ZXTxGKxBKa2nx68AUwAPhaR3kAscEhVx5U5EJG5QK6qPl7LuLjr7S18/cOx2gZTgf4dmvPncwZU6e7Xv/41gwYN4tZbb61g/tvf/pbf/e53jB07lt27d3PmmWeydWvg8ye//fZbnnnmGUaPHs2rr77K+vXr2bBhA4cOHSI9Pb1ccaxbt44tW7bQoUMHxowZw+eff87YsWMrhHXvvfeya9cu4uLiyMrKIiUlheuuu45mzZpx881mEezPf/5zvzJu3LiRlStXcvz4cYYOHcqUKVPo0KFDUGl39913s3TpUjp27EhWVhYA8+bNQ0TYtGkT27ZtY9KkSXzzzTcAbN68mXXr1lFQUMDJJ5/Mfffdx7p16/jd737Hs88+y5w5c7jgggu45pprAPjTn/7EwoULmT17doV4p0+fzksvvcRdd93Fvn372LdvHyNGRM6S/LwfdwDQtmtFZRfX56ckHnyFzWs+YuBYO7xssVSH2s7ZPQX0EJHNwIvAlRqhB+Q1b96cK664gkcffbSC+YcffsgNN9zAkCFDOPfcczl27Bi5uYFHb7t27cro0aMB+Oyzz7j00kuJioqibdu2nHbaaXz11VcAjBw5kk6dOuFyuRgyZAgZGRmVwho0aBCXXXYZzz//PNHRvtsugWScOnUqCQkJtG7dmgkTJrBq1aqg02TMmDHMnDmTBQsWUFpaWv48M2bMAKBv37507dq1XNlNmDCB5ORk2rRpQ4sWLTjnnHMASEtLK3+2zZs3M27cONLS0njhhRcq9ODKuPjii3nllVcAeOmll7jwwguDlrkxoEd3kUccKW06VjDvmT6ZEnVxbOuHIZLMYmm81Kpnp6pFwIwq3MytTRyeBNMDq0/mzJnDsGHDuOqqq8rN3G43K1euJD4+voLb6OjoCvNxnt98JSUlBRVfXFxc+XVUVBQlJSWV3LzzzjusWLGCt99+m3vuuYdNmzZVcuNPRqi8RL86y9rnz5/Pl19+yTvvvMPw4cNZs2ZNQPeez+NyucrvXS5X+bPNnDmTN954g8GDB7No0SKWL19eKZyOHTuSmprKxo0bWbJkCfPnR9aB4Ym5u9kf1Z7uropt0WYtWrEtti+p+z8PkWQWS+PFbgRdDVq1asXFF1/MwoULy80mTZrEY489Vn6/fv16wBxXtHbtWgDWrl3Lrl27fIY5btw4lixZQmlpKQcPHmTFihWMHDkyKHncbjeZmZlMmDCB++67j+zsbHJzc0lOTiYnJ6dKGQHefPNNCgoKOHz4MMuXLyc9PT2ouAF27tzJqFGjuPvuu2nTpg2ZmZmMGzeOF154AYBvvvmG3bt306dPn6DDzMnJoX379hQXF5eH44vp06dz//33k52dzaBBg4IOvzGQUriPrDjfQ8lZ7X7CycXfkn3kgE97i8XiG6vsqslNN91UYVXmo48+yurVqxk0aBD9+/cv72VMmzaNI0eOMGDAAB5//HF69/a9ie/555/PoEGDGDx4MKeffjr3338/7dq1C0qW0tJSZsyYUb4Y5De/+Q0pKSmcc845vP766+ULVPzJCGYYdMKECYwePZo77rijfL5u3LhxXHTRRSxbtoxOnTqxdKnZl/HOO+/krbfeAsyKzbS0NAYOHMhPfvITBg8ezK9+9SvcbjdpaWlMnz6dRYsWVejRVcVf/vIXRo0axZgxY+jb98Sc1VtvvcWdd95Zfn/hhRfy4osvcvHFFwcddmOhpfswRYm+y0BK2iSiRNmxqtZ7NVgsTQoJpym2ESNGqPequq1bt9KvX78QSRTZzJ07t8JClkijMZad48dzSXqgI192/xWjrvy/SvbFRYUU3dOFza0nM2r2MyGQ0GKpe0RkjarW6yoz27OzWMKIg/t2AxDTwvcwZkxsHDsSh9DxyJcNKZbF0ugJ+1MPLPVHOO8C01TJPpAJQEJqJ79uCrqcSqft97N313Y6dg9+PtRiacrYnp3FEkYUHt0LQFJqR79u2g2dDMCete82iEwWSyRglZ3FEkaUZu8DoMVJnf266dJ7KAdoRfSu5Q0klcXS+LHKzmIJIyT3R4o0iuSWbf27cbn4vkU6PXLX4HY+5rdYLIGxys5iCSNi8g5wWFriigr8akrPCbQkh52bvmggySyWxo1VdkHyxhtvICJs27bNr5uMjAwGDhzo174uWL9+Pe++W7u5mlmzZnHSSSfVu6yW6hNXeJhjUS2rdNdt5BTcKhxa+2YDSGWxNH6ssguSxYsXM3bsWBYvXuzT3tdWXtWlNIghqbpQdjNnzuT999+vVRiW+iG+OIv8mJQq3bVu14WtcWl0yvwPWg/HRFkskYZVdkGQm5vLZ599xsKFC3nxxRfLzZcvX864ceM499xz6d+/P2CU3mWXXUa/fv248MILy4+oWbZsGUOHDiUtLY1Zs2ZRWFgImG3FbrvtNoYNG8bLL79cIV7vI3SKioq48847WbJkCUOGDGHJkiUcP36cWbNmMXLkSIYOHcqbb5qW/qJFi5g6dSrjx4+nV69e3HXXiXN0Tz31VFq1ahXwmT/55BOGDBnCkCFDGDp0KDk5Oaiq3+OITjvtNKZOnUqPHj24/fbbeeGFFxg5ciRpaWns3LkTgLfffptRo0YxdOhQJk6cyP79+yvFe8kll/DOO++U38+cObN80+emQGLpMYpjU4Jym9N7Gp31B77b+Fn9CmWxRACN6zu7926HHytvdFwr2qXBWfcGdPLmm28yefJkevfuTWpqKmvWrGH48OGA2fdy8+bNdO/enYyMDLZv387ChQsZM2YMs2bN4h//+Ac33HADM2fOZNmyZfTu3ZsrrriCJ554gjlz5gCQmppavo+mJ95H6MTGxnL33XezevVqHn/cnJj0hz/8gdNPP52nnnqKrKwsRo4cycSJEwFYtWoVmzdvJjExkfT0dKZMmRL0UTgPPvgg8+bNY8yYMeTm5hIfH89rr73m9ziiDRs2sHXrVlq1akWPHj24+uqrWbVqFX//+9957LHHeOSRRxg7diwrV65ERHjyySe5//77eeihhyrEW3Z8z5QpUygqKmLZsmU88cQTQckcCTR3H2N3fNXDmAB9J1xG0aa/cOizp+k55NR6lsxiadxEVM9OUdzuUlTrdlhn8eLFXHLJJYDpeXgOZY4cOZLu3buX33fu3JkxY8YAMGPGDD777DO2b99O9+7dy/fHvPLKK1mxYkW5n+nTp/uM19cROt588MEH3HvvvQwZMoTx48dTUFDA7t1mF44zzjiD1NRUEhISuOCCC/jss+B7AGPGjOHGG2/k0UcfJSsri+jo6IDHEaWnp9O+fXvi4uLo2bMnkyZNAioe37Nnzx7OPPNM0tLSeOCBB3we33PWWWfx8ccfU1hYyHvvvcepp55KQkJC0HI3ZgoK8mkm+ZAQuNddRkpqGzam/JS0g+9w7HDlXrLFYjlB4+rZVdEDc5eUEHVgE7lxbWmWGtwBpFVx5MgRPvroIzZt2oSIUFpaiojwwAMPAJWP66nJkTn+jvwJ5ggdVeXVV1+tdLLAl19+Wavje26//XamTJnCu+++y5gxY8o3gvZHMMf3zJ49mxtvvJFzzz2X5cuX+9zBJT4+nvHjx7N06VKWLFlS3shoCmQdPkA7IKpZ66D9tDzjFhJfWcrnr93PmGseqtqDxdJEaVzKrgpcZed/1WHP7pVXXuHyyy/nn//8Z7nZaaedxqeffurT/e7du/niiy845ZRT+Pe//83YsWPp06cPGRkZ7Nixg5NPPpnnnnuO0047rcq4y47QGTVqFO+99x6ZmZmVju8588wzeeyxx3jssccQEdatW8fQoUMB+O9//8uRI0dISEjgjTfe4Kmnngr6uXfu3ElaWhppaWl89dVXbNu2jXHjxvHPf/6TK6+8kiNHjrBixQoeeOCBgCtUPcnOzqZjR7MzyDPP+N/EePr06Tz55JOsXr2aRYsWBS1zYyfnyH7aATHJqUH76TkwnQ1LT2PYnmfZsOlKBqdV77ijkuJisg7vI+fwjxzPOkBpcSEuFEERnAaSK4qoKBcuVxQulwtXVDRRzjUuF8iJn4gLdf6NmTjmUY65GDOHsssyE6lk7ruBpvjewN7XvvYJLVJpnhJ8A8ISmUSUshOXC7dKnSq7xYsXc9ttt1UwmzZtGosXL/Y5/NinTx/mzZvHrFmz6N+/P9dffz3x8fE8/fTTXHTRRZSUlJCens51111XZdy33HIL3377LarKT3/6UwYPHkyXLl3Khy1///vfc8cddzBnzhwGDRqE2+2me/fu/Oc//wHMEOu0adPYs2cPM2bMKJ+vu/TSS1m+fDmHDh2iU6dO3HXXXfziF78oP/rnuuuu45FHHuHjjz/G5XIxYMAAzjrrLGJjY/niiy8YPHgwIlJ+HFGwym7u3LlcdNFFtGzZktNPP738jL/Vq1czf/58nnzyScCcv3f55ZczdepUYmNjgwo7Eig4dhCAuOQ21fLXc8bf0SdG43rtao51X0bzZsl+3WZ+v4tdq/5D9O4VtM79li7uPbSWYiJZFeRrLLk3fUOz5sHNhVoik4g74qfkhw0URjcn6aTuVTuOYBYtWlRhIUtTpLEd8bPm/WcYvvI3fHfhUnoMHF0tvzuXP0/P5b9mc/RAos+fR5/+pkFy/PhxdqxZRs6W92l38H+c7DYNjKO0YF9ib/JSelPaoivRyW2Ia96a6NgEENO3c6sZJndrKVrqxu0uPfErdeN2u0FLQd0ICm43gttpbLrBrebe7QbUceeu3PvSsj/1ZYxqhc5gOUENymeuYtTRt9l7xZd07NG3aveWkNAQR/xEVM8OQHHVac/OYmko3LnmUODEFtXr2QH0HD+DDXl59F71RxJePo1M2qEI7fQAg6WUYo1iZ/wA1nb5De2H/4z2vdNp6Yqo9Wk+WfPeIvjybYrys0MtiiXERJyycyOIVXbMnDmTmTNnhloMSzVw5x0BoFnLk2rkf/DZ15I1fDLblz0J+zeBKj8mTyKh5yn0GnkWfZul1KG0jYPoeDOkW5SfU4VLS6TTKJSdqga9ktD07MJnaNYSGsJpeD5YXPlHyNdYkpKa1TiMlLZdGPLzu+tQqsZNVIJJy5L83BBLYgk1YT+OER8fz+HDh4OuvFRcZp7A0mRRVQ4fPkx8fHyoRakWUniMXEmq1icilsDEJpieXYnt2TV5wr5n16lTJ/bs2cPBgweDcl+UvR/BTUxW42vZW+qO+Ph4OnXyf9p3OBJVlEOe+P7m0lIzYhMdZVdge3ZNnbBXdjExMRV2KKmKNQ/cxkn5O+h859f1KJXFUvdEl+RSEGWVXV2SkNQCAHeh7dk1dcJ+GLO6lMQkEusuCLUYFku1iS3JpTC65vN1lsokNGsOgNv27Jo8EafsNDqRBKyyszQ+4t3HKbHKrk5JSkrGrYIWWmXX1Ik4ZUdsEvFqlZ2l8ZHoPk5pjP/dTyzVJyoqinzioPh4qEWxhJiIU3YSm0islFJYaBWepfGgqiRpHu44q+zqmnyJR4qssmvqRKCyMxP8ebl2QtrSeCgsLCRRCpH45qEWJeIokARcJVbZNXUiTtm54sycR36u3R7I0ng4lm12T5H4FiGWJPIociUQXZIXajEsISbilF10vKPsjh8LsSQWS/Dk5RwFICrBKru6pjAqkeiS/FCLYQkxkafsEk1lUXQ8K7SCWCzVoDA3CzhRfi11R0lUInFuO4zZ1Km1shOR2SKyTUS2iMj9HuaDROQLx3yTiDTI3k0xiSmAVXaWxkVZebXKru4pjmlGvFV2TZ5a7aAiIhOAqcBgVS0UkZMc82jgeeByVd0gIqlAca2lDYJYZ2f3knw7jGlpPJQpu9iklJDKEYmUxDYnSe2cXVOnttuFXQ/cq6qFAKp6wDGfBGxU1Q2O+eFaxhM0cU5l4bbnV1kaEe48U17jm9nTtOsad2xzkvU46nYjTeAMP4tvapvzvYFxIvKliHwiIuke5ioiS0VkrYjc6i8AEblWRFaLyOpgN3sORGKyqSyssrM0JtwFjrJLtsqurtG45sRKCYUFtnfXlKmyZyciHwLtfFj90fHfChgNpAMviUgPx3ysY5YHLHOOXV/mHYiq/gv4F8CIESNqfVRBmbKj0A5jWhoRTnlNSm4VYkEij7LPOY7nHCE+0W7H1lSpUtmp6kR/diJyPfCamsPmVomIG2gN7AFWqOohx927wDCgkrKra2JjY8jVeKTIflRuaTxI4TEKNYb4hIRQixJxiPM5R8GxI9C2S4ilsYSK2g5jvgFMABCR3kAscAhYCqSJSKKzWOU0oMHO3MmTRFxW2VkaEa6iXI5Lgj24tR6ISkgBoMD5vMPSNKntApWngKdEZDNQBFzp9PKOisjfgK8ABd5V1XdqGVfQ5EkiUVbZWRoRUnycfGyvrj6Icxb9FOYcCbEkllBSK2WnqkXADD92z2M+P2hwCqKaEV1ij/SwNB6iivMocFllVx8ktjDzoIW5R0MsiSWUROQ63KLoZsRZZWdpRESX5lFslV290MxRdnajiaZNRCq7kugk4kvtjgmWxkNMaT7FUVbZ1QctUloDUJqfFVpBLCElIpVdaWxzEuyOCZZGRKw7n5LoxFCLEZHEJyZToi7UfnvbpIlIZadxySRpHmatjMUS/sRqAaXRSaEWIzIRIVeSkEKr7JoyEansiGtBohSSX2CP9bA0DhI0H42xw5j1RZ6rGVF2o4kmTWQqu8RUAHKO1n77MYulIUjQAtwxtmdXXxyPak5ccVaoxbCEkIhUdlHNzIT08az9IZbEYqmaoqJiEqQIrLKrN/JjUkgqyQq1GJYQEpHKLjbZ9OwKsw+FWBKLpWryjzsbIMTZfRvri6LYVjR32zm7pkxEKru45m0AKMqxys4S/hTkmbkkV6zt2dUXJfGtSNFjYBetNVkiUtklpbQFoCTHztlZwp/CMmUXb5VdfeFObE2cFJOfa3t3TZWIVHYtWhtlV5pre3aW8Kcwz+z244pLDrEkkYskmXn8nCM/hlgSS6io7UbQYUlSYiK5moDm1d0B6bs3fcr+Va/S7MAaWhXtI1GPIygFxJMXlUx+dAsKYltSEt8KTWxNVLM2xLY4iZjkNkQ1O4nYZinExycQn5BIYkIiUTHx4OvU5LJhlvLhFvWwUtwKqm7cCm7HjSqI404EBEFEEUBEcDlmlcM68VM14ZTfV5EeVe3NH2j3/kB+q9r0XwL4DuRXFRTnOTHPr445znN7myvGsee9SX+tkE0V3XmE4+W3LI3LrsHEe3DvXnoB0fFW2dUXsc7URs6RHzmpa99ah+cuLmTX/14ha/N/ST72Dc2LDxOthSguilzx5EalkBedQlFcK1MnJLQiqllropu1Jq55a6KapRIXn0hsXALx8QnExSUQFx+Py6kTzHtsOPFf9r57/Ve4PlEnoB7X5XYeZbfsYTyGdsvjEqc+cUw8362ya2MnxMY3jk9mIlLZiQjZruZE5dd+l/O921aR8/qN9C3cRHuNYkf0yexKGkJpXAtUXESV5BFTlEVcUTbNc3fR/Nh6UsghSqqeG3CrKTWuINyCKYhRtXkYH2HVVXiW2pPUPCXUIkQsiS3N+dPHa9mzKy0p5quXH6T39ifoSTa5msCumJP5Lr4f7uhERN1ElxwnsSSLlgWZNM/bTHPNIVrcQYXvVgm6PggHNrl7kHb3ulCLERQRqewAjke1IKaodrucr375fgZvvpc4mvF5r5vpdeYv6dfmpKrjzi/kyOH9HDu8j6JjByD3EKUFOZQWF+AuysddXIS4i3BpCYqYXoE47bayaz3RSytr5pl2lJiWldO8Krsv60WYIMp6GuLclzXe1JiJGb82vS850VITp61W2yPVAryrtXmNA/oNGKc66ejVWnZuXOVpSQU3iHi0dD39nrjxtj/Ro5WK4Xn694zP8Rud0ILuaWMCPaGlFrRo3QGAguyaf450aP8e9j85ndHFm9kSO5itw65n4LjzSEuqomejSkHuUXKOHOB41n4Ksg/izjtCaVG+qROKi3AXF6AlhVA+qnLi3TX/UsEcrzLkaVZ+689dhfJbMR7vOD0NfI335MWmBnrysCJilV1BTAoJtVB2q5+9nRHfPcG6hFF0uuoZxrRtH7TfpIQ4kjp1gU72VGSLJRxIPcm8v8XHDtTI/97MXehTk+npPsyaYf+PYedcj/iahvCFCPHJrYhPbkWbOhhCtdSMiFV2xXEtaZ2/q0Z+V73yN0Z+9wQrkycxbPYLxMbG1rF0FoulIYlLbE4eccjx6iu77KOHKXr6XNrqUTLPeZHhIybWg4SW+iYiV2MClCScRGs9irs0uLHyMjI2r2TIpr+yMX4EI2Y/bxWdxRIhHHa1Ji6venN26naz/V9X0rl0DxlnPEkvq+gaLRGr7DS5PbFSwrFqTEjnH89FXruabGlOh6ueIzo2rh4ltFgsDUl2zEkkFVavZ7fy5YcYmf8pG/r8hv5jzq0nySwNQcQqu6iUjgBkH9gdtJ91L86lqzuTH8c/ROu2HepLNIvFEgLy4tvSqiT4jSb2Zu5i4NcPsSV+KMMuubMeJbM0BBGr7Jq16QzAsf0ZQbnfn/ktQ3c/w5pm40kbP60eJbNYLKGguFkHUvUI7pLioNz/sORG4iim9fR5iMt+pNPYiVhl16p9NwDyDu8Jyv0PL98GQPuLHqgvkSwWSwhxpXQiSpRDP1Y92rN55VLScz9iXderaNt9QANIZ6lvIlbZtW7XhVIVSrOqVnbfbv6KwdkfsbbDpXTo2rsBpLNYLA1NYptuABze+21Ad6pK6Yd/5QgtGDzdDl9GChGr7KKiYzjkSiUmZ2+Vbg+/938USCxpF/6hASSzWCyhIKWT+cYt74ftAd2t+eRtBpdsZHf/64hPat4QolkagIhVdgAHYjrRIj/wkMWObRtIz/2IrR0vpnlquwaSzGKxNDTtu/SmUGMoOfCNXzfqdhP/2b0clFYMPPe3DSidpb6JaGWXm9SFk4oDD2MefO9eSojm5Km3NZBUFoslFMTGxrAvqj2xWTv9ulmz/HUGlmxhz4DribZHLkUUEa3sSD2ZFHLJPuz7W7vMXdsZkbWUTW2n0uKkzg0snMViaWiyEruRWpDh007dbpI+v4/90pq0c2Y3rGCWeieilV1Se7PY5IedW3zaZ759Lwp0O/f3DSiVxWIJFUWp/ejk/pGc7Monoqz96GX6lW5nT9oNRMc1jmNrLMET0cqudc9hAORkrK1k98OeXQw//DYbU8+idaeTG1o0i8USAmK6jcIlyt4tn1cwLy110/x/9/KDtGPwz34VIuks9UlEK7t2nXtxmOa49q2pZPfdG/9HFKV0PvdPIZDMYrGEgm6DTgXg8LbPKpivef8Zerm/Y/+w39ptAiOUiFZ2rigXmQn9aJ29uYL5jz/sZvjB19nYahJtu/ULkXQWi6WhaZnahu+ie9Dqh0/KzYoK8mm7+gF2uzox+KxrQyidpT6JaGUHkN8unW7uTA7v/a7c7LvX/0IcxXQ8x/bqLJamxo+dzqJfyVb2fW++t1v977l01b1kjfszruiIPfWsyRPxyu6kURcBsPOTFwDYsWU16QdeZXXqObTtkRZK0SwWSwjoPuFKijWKzFf+yKr3niH9+wWsTZ7AoAkXh1o0Sz1Sa2UnIrNFZJuIbBGR+x2zGBF5RkQ2ichWEQnZcseefYewI6onHb59gYP7M5HXriFPEuh96X2hEslisYSQ9l37sKbzlYzM+S8jv/wNmdFd6X3NU6EWy1LP1KrPLiITgKnAYFUtFJGTHKuLgDhVTRORROBrEVmsqhm1E7dm5J/6R3p89AtcTwykpbrYcto/GdzGHuFjsTRVRs16iC0fDaMo9wj9zrjKbgvWBKjtAPX1wL2qWgigqmUnIyqQJCLRQAJQBByrZVw1Ju20aWwoLSF/639JGXExg0dNCpUoFoslDBCXiwETLw+1GJYGRFS15p5F1gNvApOBAuBmVf1KRGKA54CfAonA71T1X37CuBa4FqBLly7Dv//++xrLY7FYLJbGh4isUdUR9RlHlT07EfkQ8LVD8h8d/62A0UA68JKI9ABGAqVAB6Al8KmIfKiq33kH4ijBfwGMGDGi5prXYrFYLBY/VKnsVHWiPzsRuR54TU33cJWIuIHWwM+B91W1GDggIp8DI4BKys5isVgslvqmtnN2bwATgI9FpDcQCxwCdgOnA8+JSBKm5/dIVYGtWbPmkIjUxThma0eOxkBjkhUal7xW1vqjMcnbmGSFxiVvXcnatQ7CCEht5+xigaeAIZhFKDer6kci0gx4GugPCPC0qj5Qe3GDlmt1fY//1hWNSVZoXPJaWeuPxiRvY5IVGpe8jUnWWvXsVLUImOHDPBfz+YHFYrFYLCEn4ndQsVgsFoslUpWdz88cwpTGJCs0LnmtrPVHY5K3MckKjUveRiNrrebsLBaLxWJpDERqz85isVgslnKssrNYLBZLxBNRyk5EJovIdhHZISK3h1oeb0Sks4h8LCJfO6dE/NYxnysie0VkvfM7O9SyAohIhnNyxXoRWe2YtRKR/4rIt85/yzCQs49H2q0XkWMiMiec0lVEnhKRAyKy2cPMZ1qK4VGnHG8UkWFhIOsDzukmG0XkdRFJccy7iUi+RxrPb0hZA8jrN+9F5PdO2m4XkTPDQNYlHnJmONswhkva+quzwrLsBkRVI+IHRAE7gR6Yj9s3AP1DLZeXjO2BYc51MvAN5lvEuZhvFEMuo5e8GUBrL7P7gdud69uB+0Itp49y8CPmI9WwSVfgVGAYsLmqtATOBt7DfKM6GvgyDGSdBEQ71/d5yNrN010Ypa3PvHfetw1AHNDdqTOiQimrl/1DwJ1hlLb+6qywLLuBfpHUsxsJ7FDV79R8//ci5vihsEFV96nqWuc6B9gKdAytVNVmKvCMc/0McF7oRPHJT4GdqhpWO4qr6grgiJexv7ScCjyrhpVAioi0bxBB8S2rqn6gqiXO7UqgU0PJUxV+0tYfU4EXVbVQVXcBOzB1R4MQSFYREeBiYHFDyVMVAeqssCy7gYgkZdcRyPS430MYKxIR6QYMBb50jG5wuv1PhcPQoIMCH4jIGjGnUwC0VdV9zvWPQNvQiOaXS6hYWYRjupbhLy3DvSzPwrTey+guIutE5BMRGRcqoXzgK+/DOW3HAftV9VsPs7BJW686q9GV3UhSdo0GMdupvQrMUdVjwBNAT8y2a/swQxnhwFhVHQacBfxaRE71tFQzbhE2366I2b7uXOBlxyhc07US4ZaW/hCRPwIlwAuO0T6gi6oOBW4E/i0i4XASaqPJew8upWJDLWzS1kedVU5jKbuRpOz2Ap097js5ZmGFmLP+XgVeUNXXAFR1v6qWqqobWEADDqsEQlX3Ov8HgNcxcu0vG5Zw/g/4D6HBOQtYq6r7IXzT1QN/aRmWZVlEZgI/Ay5zKjic4cDDzvUazBxY75AJ6RAg78M1baOBC4AlZWbhkra+6iwaWdmFyFJ2XwG9RKS708K/BHgrxDJVwBmTXwhsVdW/eZh7jmmfD2z29tvQiEiSiCSXXWMWKGzGpOmVjrMrMYf3hgsVWsbhmK5e+EvLt4ArnJVto4FsjyGjkCAik4FbgXNVNc/DvI2IRDnXPYBehMFRXgHy/i3gEhGJE5HuGHlXNbR8PpgIbFPVPWUG4ZC2/uosGlHZLSfUK2Tq8odZCfQNpgX0x1DL40O+sZju/kZgvfM7G3Oq+ybH/C2gfRjI2gOzam0DsKUsPYFUYBnwLfAh0CrUsjpyJQGHgRYeZmGTrhglvA8oxsxj/MJfWmJWss1zyvEmYEQYyLoDMxdTVm7nO26nOeVjPbAWOCdM0tZv3mMOnt4JbAfOCrWsjvki4Dovt+GQtv7qrLAsu4F+drswi8VisUQ8kTSMabFYLBaLT6yys1gsFkvEY5WdxWKxWCIeq+wsFovFEvFYZWexWCyWiMcqO4vFYrFEPFbZWSwWiyXiscrOYrFYLBGPVXYWi8ViiXissrNYLBZLxGOVncVisVgiHqvsLBaLxRLxhKWyE5FuIqLOGU+WRoqIzBaRH0RkQwjinisizzdAPDNF5LMA9stF5Or6lsNygkD1R0PWLU48J/uxC1huLBURkekiki0i/xORDjUJIyyVnaX6iMh8Ecl1fkUiUuxx/16IxJoL/EpVB3vIOVdE5oZInrDCqXgzqun+YxHJE5FtIjIxgNs4EXlKRI6JyI8icqNXOOpRPnJF5I5g/Dr2P3Xiz3Pk6VoNv4ki8g8ROeRUXiuq8fxN5ogWp5E0Pki3IiL3ichh53efcw6dP/c/F5HvReS4iLwhIq284i3wKBfbvfzOFpFdTv6uFpGxHnYTnPKQ7atci8hPRGSViOSIyEYvv1NE5DMRyXLKzZPinKcJoKpLgNbO7cXBpIs39aLsbI+s4VHV61S1mao2A/4fsKTsXlXPKnPXwHnTivA7MLXahFF5Xgysw5wl9kfgFRFp48ftXMxhn12BCcCtYg5g9STFo4z8JRi/ItIaeA24A5O/q/E4XTuIeP/l+Ovn/P8uyGcPO8KoXFwLnAcMBgYB5wC/9OVQRAYA/wQuB9oCecA/vJzd4FEu+nj4HQXcC1wItMAc6vq6OAfMAseBp4BbfMTbCngbeABIAe4H3haRlo6TFsBfgQ6YstHRcVuOqhZjzitNDZQY/qgzZSciGSJym4hsBI6LSLSIjHa6nVkissGzpeK0IP7P0fTHRORNzxaGV9hXichWp0XwnYj80st+qoisd8LZ6fFithCRhSKyT0T2ishfPTLG33P0FJGPnBbSIRF5QURSPOyOiMgw576DiBwsey4ROVdEtjjPu1xE+nmlz81OiyZbRJaISHz1U7r6+MmbCkMsIrJIRP7qcf8zJ02znDwcVM04y9LZXYW7W538+UFErvaUy5Fpnoi84+T9lyLS08Pv30Uk08n3NSIyziv4eCedc0RkrYh49jBvd8pKjoh8LSLne9jNFJHPReRhETmMqcCret4HReSomFbvWV7WXZ3wckTkA0dhVAsR6Q0MA/6sqvmq+irmcMxpfrxcCfxFVY+q6lZgATAzyOgC+b0A2KKqL6tqASZtBotI36r8Om7OBa5V1YOqWqqqa4KUqQIi0l1EVjhp+qFTTnwOW4vINOcdGOhhPMspc/tE5GYPtyNF5Aun3O8TkcdFJNbDXkXk1yLyLebg0qqYKCLfOuHNE6nY46qi3ATLlcBDqrpHVfcCD+E/ry8D3lbVFaqai2m0XCAevagAdMPk/Ro1B6E+i+ltnQSgqqtU9Tl8n6b+E+BHp9yUqurzwEFMeUJV/62q76tqnqoexZSbMT7CcQM1a2TU4Ym2GZhTbDsDCRjNfBhzqq0LOMO5b+O4Xw7sBQZiTpl+FXjeseuGOR032rmfAvTEnIJ7GqY1MsyxGwlkO+G7nHj7OnavY1oxSZgMWQX8sornONkJKw5oA6wAHvGwvwb4GkgElgIPOua9MS2bM4AY4FbM6c6xHumzCtNyaQVsxetkYq/TgbMC/MZW8Qxzy9LSV944Zgqc7OFmEfBX53oocAAYBURhXqYMIK4a5WEyUAAkVeHmR2CAk57Pe8rlyHTYyeNo4AXgRQ//MzCtvGjgJieseI80KMa0QmOAm4FdQIxjf5GTFy5gupN37R27mUAJMNsJOyHAM8x04rnGSavrgR+g/GDk5ZhTm3tj3ovlwL1+wvoH8A8/ducDW73MHgce8+G2pZOObT3MLgQ2eb1fezGnZT8NtA7S79+BJ7zi24xRulX5vQKjoB8GDjnX02pY33wBPAjEYt6XY/ioP4CrMO/hyV52izH1Qhqm0p3o2A8HRjt+u2He0zke8SrwX8w77LdceLj9D6Yn08WJZ3Iw5cZXfRAgnmxglMf9CCDHj9s3gdu8zHKB4R7l9aCTP58D4z3cNQfWcKJemI0ZaRCv8CYCGV5mPwO+9jL7FnjYj5yP4PGue5jfBXxCgHrFbzrVpKD5ES4DmOVxfxvwnJebpcCVHol6r4ddf6DIScTywuonrjeA3zrX//SVYJgueqFngQQuBT6u5nOdB6zzMnsL86JuxFEAmBbSSx5uXJjKZLxH+szwsL8fmF9X6e8l31wqK7tZXm4CKbsnMK1zT/fbgdOCjH+1E/5vqnD3FPB/HvcnU1nZPelhfzawLUB4R4HBHmmw0is/9gHj/PhdD0x1rmcCu4N81pnADo/7ROcZ2nmU8z952P8KeL8GeXq55/M4ZvcAi3y47ezIEO9hdgZOBQQ0w1SI0c578gqwNEi/C/FS1phKcWYQfv/g2M/FKKnTMBVtv2qmRRdMYyTRw+x5Kiu7mzEN004e7srs+nqY3Q8s9BPXHOB1r/fm9CDlVDwapsBLwO3BlJtqpkep1/P0csLypTiX4dXIpmI9NQpIxjT2rwRygJ6OnTh5WOyk/yEg3UccvpRdKqahfimm8Xklppf2Tx/+z8C8y7192LXEDGWWAhdUJ53qes4u0+O6K3CR033PEpEsTAulvR/33zuJUGmIR0TOEpGVzhBiFqbSK3PXGdNy9qarE94+j/j/idPl9oeItBWRF51hz2OYl8hbpgWYHuljqlromHVwngEAVXU7z9fRw9+PHtd5mEqnocis2kk5XYGbvPKuM+YZgyEduASYKyIxAdx18JLLl4x+08wZFt7qDAtnYcb9PfOqPDwnP/aUPYOIXOExTJuFyU+ffoOgXEZVzXMum/my936GapCLaVl70hxTGflyW2Zfya2q5qrqalUtUdX9wA3AJGcoK6DfKuSoym8+pqL8q6oWqeonwMfAJB/PEIgOwBGPtAbf+XULME9V9/iw8657yspFbxH5j5hFEscw89/e73+NygaV876qchMs3nnSHMhVRztU4bbMfVnZ+FJVc1S1UFWfwTRkznbc/QLTUx6AaazMAP4jQayOVNXDwFTgRmA/ZlTnQ8w7WY6IjAb+DVyoqt/4COoqTC++laq+VlW8ntS1svNM3ExMzy7F45ekqvd6uOnscd0F8yIc8gxQROIwQ5wPYoZHUoB3Ma2Msnh6UplMTM+utUf8zVV1QBXP8P+c50hT1eaYDC0fZxeRZpgu9kJMZV42z/gDRkmUuRPn+fZWEV8lRGScVFwp5/3znpsKBu+Cn4dpTZbRzuM6E7jHK+8SVXVxUBGZl+wNTCusfQCn+4BOHved/Tn0xkmDWzErs1o65SIbj7zyDE9EXE5cP4hZPbgAU8mnOn43e/n1VVGEki1AD6+5lcGOeQXUzHnsc+wDui3z4vy7gvC7xdNORJIw79+WIPxuDBB3ddgHtBIRz/Lrq+xMAv4kIr7mNb3rnh+c6yeAbUAv5/3/AxXLRU1lrk8q5AmB89o7/3pgenG+FAs4PUTnegjwH1X9RlXdqvo+Ji9+EoyQqvqJqqaraivMSEVfzNROmSxDMaNms1R1mZ9g+mFG57KDidOT+vz04HngHBE5U0SiRCReRMaLiGflNkNE+juF9m7gFVUt9QonFpMZB4ESZxLXsyW4ELhKzHJol4h0FJG+qroP+AB4SESaO3Y9ReS0KuQua91mi0hHKq8s+juwWlWvBt4B5jvmLwFTHDliMHNIhcD/qkoob1T1Uz2xGsrX79PqhumD9cDPnbyZjBlSKmMBcJ2IjBJDkpilwclQvnBkURXPUNbjjQ3g7CVM3vVzysAdAdx6k4wZSjkIRIvInVRusQ4XkQvErJqbg8mPlZi5GnX8IiJXYXp2YYvTyl0P/Nl5l87HrLx71Y+XZzEVfUsxC0OuwQwL4+RrH+edSAUeBZZ7VCB+/WLmwQeKWfQRD9wJbFTVbUH4XQHsBn4vZpHUGMyKzaWOXDMliE8xVPV7zFD5XBGJFZFTMCsQvdmC6UHME5FzvezuEPMZxABMb6FsRWkypueQ68h/fVXyhAHPAjc6dV8HTN2zyI/bFzD18jinoXI38Jqq5ohIilNfxzv5cxlwKvC+4/crTB3Xw6kXzsDMRW8G06B0ykSMuZV4qbi4Z6iIxIhIc0znJVNVy/J+oBPPbFV9O8CzxmDe42pTb8pOVTMx3dY/YCqVTIzi8IzzOUym/AjEA7/xEU6OY/4SZhz35xjtX2a/ClNYH8a07D/hRA/rCkxl+7Xj9xUC9zTATIAOc8J6B7PMGjCrPjEvT9kLcCMwTEQuU9XtmF7gY5je6TnAOapaVEV8oeK3GBmzMCu03iizUNXVmErqcUy67aDi6q7OmOGNqlAClDFVfQ9T0X7sxLHSsQqmMC/FvBzfYIahCqg8vPQmZvHJUUxL8gJVLVbVrzEr1r7ADKmkBfk89YqYbyXnB3ByCWau7SjOEnBVLVPYl4mIZ2v+z5jh/e8x78QDTkscoAcm7XIwFVUhZi6lSr9OfNMw84VHMXM8lwTptxhTJ5yNeb8WAFd4KMpgyxWYMnsKZgHTXzHKqlK5UdUNmMURC6TiasdPMGVuGWaR2QeO+c2YOibHkc/zs4qQUDbSE8DJPzHL+jdh8vMdx6zMf/lokKpuAa7DKL0DGOX+K8dpDCYtyxaozAbO8xhOfBZ4ETMPfQzz7v7SI/9OxQxVv4vpLedjOhxl3OqEm4mph8/3sLsJsyBwoccIlq/eaRRVrPD2R9mKsQZHRJZjJpSfDIkAlhrhtNQ2AIOcyiuQ2x+AW9UsMw4m7H6YlzVOVUtqLaylUSEiH2AWnm2tgd8lmMVLf657ySzhgIgkAJ9hFhN5fxtYJXYHFUu1cBYW9KtK0Tncjhl28/stlYicL2bXjZbAfZhvgKyia4Ko6qRgFZ2IpDvTEi5nGH4qHqMTlshCRC7GjBbsx4zyVZsmqeyk4tZanr9AQ0iWaqKqz6pqL1UdHsDZLzHDKTsxy4nDbo7ElpewpB1mOC0XM5x2vaqua0gBJMBCsoaUoymgqi+p6kmqeraqHqraR2VCNoxpsVgsFktD0SR7dhaLxWJpWoTLRqYAtG7dWrt16xZqMSwWi8XSgKxZs+aQqvrb1LxOCCtl161bN1avXh1qMSwWi8XSgIjI91W7qh12GNNisVgsEY9VdhZLGPPd7ky27/R1YorFYqkOYTWMabFYKtL+qeEkUAhzq70VoMVi8SDslV1xcTF79uyhoKAg1KJYGhHx8fF06tSJmJhAhy6EPwk12wbQYrF4EfbKbs+ePSQnJ9OtWzek4iG/FotPVJXDhw+zZ88eunfvHmpxLBZLGBD2c3YFBQWkpqZaRWcJGhEhNTU1okYD3CXB7M5msVj8Ue/KTkQmi8h2EdkhIrfXMIy6FssS4URamSkoyKvakcVi8Uu9KjsRiQLmAWcB/YFLRaR/fcZpsUQiBflW2VkstaG+e3YjgR2q+p1zrtuLmN3JGxUiwk033VR+/+CDDzJ37tzQCVQFy5cv53//q/aZseWsX7+eU045hQEDBjBo0CCWLAn5kV5NnoK846EWwWJp1NS3sutIxQM19zhm5YjItSKyWkRWHzx4sJ7FqRlxcXG89tprHDpUo822/aKquN01OocwILVVdomJiTz77LNs2bKF999/nzlz5pCVlVV3AlqCw2OT9sJC27OzWGpDyBeoqOq/VHWEqo5o06Zet0arMdHR0Vx77bU8/PDDlewOHjzItGnTSE9PJz09nc8/Nwctz507lwcffLDc3cCBA8nIyCAjI4M+ffpwxRVXMHDgQDIzM7nlllsYOHAgaWlp5b2o5cuXM378eC688EL69u3LZZddhq8TKh599FH69+/PoEGDuOSSS8jIyGD+/Pk8/PDDDBkyhE8//TSgjJdffjmnnHIKvXr1YsGCBQD07t2bXr16AdChQwdOOukkfDVEXn75ZQYOHMjgwYM59dRTAbOg6KqrriItLY2hQ4fy8ccfA7Bo0SLOO+88zjjjDLp168bjjz/O3/72N4YOHcro0aM5cuQIAAsWLCA9PZ3Bgwczbdo08vIqV/KjR49my5YThxiPHz8+IreZU/eJY/2KI2ixjcUSCur704O9QGeP+06OWY246+0tfP3DsVoL5Un/Ds358zkDqnT361//mkGDBnHrrbdWMP/tb3/L7373O8aOHcvu3bs588wz2bo18PmT3377Lc888wyjR4/m1VdfZf369WzYsIFDhw6Rnp5erjjWrVvHli1b6NChA2PGjOHzzz9n7NixFcK699572bVrF3FxcWRlZZGSksJ1111Hs2bNuPnmmwH4+c9/7lfGjRs3snLlSo4fP87QoUOZMmUKHTp0KA9/1apVFBUV0bNnz0rPcffdd7N06VI6duxY3vObN28eIsKmTZvYtm0bkyZN4ptvvgFg8+bNrFu3joKCAk4++WTuu+8+1q1bx+9+9zueffZZ5syZwwUXXMA111wDwJ/+9CcWLlzI7NmzK8Q7ffp0XnrpJe666y727dvHvn37GDFiRMA0b4yUFheWv6AlRbZnZ7HUhvru2X0F9BKR7iISC1wCvFXPcdYLzZs354orruDRRx+tYP7hhx9yww03MGTIEM4991yOHTtGbm7gsxu7du3K6NGjAfjss8+49NJLiYqKom3btpx22ml89dVXAIwcOZJOnTrhcrkYMmQIGRkZlcIaNGgQl112Gc8//zzR0b7bLoFknDp1KgkJCbRu3ZoJEyawatWqcn/79u3j8ssv5+mnn8blqlxUxowZw8yZM1mwYAGlpaXlzzNjxgwA+vbtS9euXcuV3YQJE0hOTqZNmza0aNGCc845B4C0tLTyZ9u8eTPjxo0jLS2NF154oUIProyLL76YV155BYCXXnqJCy+8MGB6N1aKi4rKr0uKbM/OYqkN9dqzU9USEbkBWApEAU+pauXaK0iC6YHVJ3PmzGHYsGFcddVV5WZut5uVK1cSHx9fwW10dHSF+TjPb76SkpKCii8uLq78OioqipKSkkpu3nnnHVasWMHbb7/NPffcw6ZNmyq58ScjVF6iX3Z/7NgxpkyZwj333FOumL2ZP38+X375Je+88w7Dhw9nzZo1QT+Py+Uqv3e5XOXPNnPmTN544w0GDx7MokWLWL58eaVwOnbsSGpqKhs3bmTJkiXMnx+ZB4YXFxWQ4FyX2p6dxVIr6n3OTlXfVdXeqtpTVe+p7/jqk1atWnHxxRezcOHCcrNJkybx2GOPld+vX78eMMcVrV27FoC1a9eya9cun2GOGzeOJUuWUFpaysGDB1mxYgUjR44MSh63201mZiYTJkzgvvvuIzs7m9zcXJKTk8nJyalSRoA333yTgoICDh8+zPLly0lPT6eoqIjzzz+fK664ImCvaefOnYwaNYq7776bNm3akJmZybhx43jhhRcA+Oabb9i9ezd9+vQJ6nkAcnJyaN++PcXFxeXh+GL69Oncf//9ZGdnM2jQoKDDb0yUFJ/o2ZXanp3FUitCvkClsXHTTTdVWJX56KOPsnr1agYNGkT//v3LexnTpk3jyJEjDBgwgMcff5zevXv7DO/8889n0KBBDB48mNNPP53777+fdu3aBSVLaWkpM2bMKF8M8pvf/IaUlBTOOeccXn/99fIFKv5kBDMMOmHCBEaPHs0dd9xBhw4deOmll1ixYgWLFi1iyJAhDBkypFxB3nnnnbz1lhmJvuWWW0hLS2PgwIH85Cc/YfDgwfzqV7/C7XaTlpbG9OnTWbRoUYUeXVX85S9/YdSoUYwZM4a+ffuWm7/11lvceeed5fcXXnghL774IhdffHHQYTc2SopPKLjS4vwQSmKxNH7E1wq/UDFixAj1XlW3detW+vXrFyKJIpu5c+dWWMgSaTT2svPDjo10eH4cAF8M/n+ccv6vQyyRxVI/iMgaVa3XVWa2Z2exhCklxSdOPNBie/qBxVIbwv7UA0v9Ec67wFjMpwdlqB3GtFhqhe3ZWSxhSgVlV2IXqFgstcEqO4slTCktObEaE6vsLJZaYZWdxRKmlHp8eoCds7NYaoVVdhZLmFJB2ZUW+XdosViqxCq7IHnjjTcQEbZt2+bXTUZGBgMHDqxXOdavX8+7775bY/9lH6H379+fAQMG8Pe//70OpbPUJe6SE705KbXDmBZLbbDKLkgWL17M2LFjWbx4sU97X1t5VZey/SUDUVtlFx0dzUMPPcTXX3/NypUrmTdvHl9//XWNw7PUH+oxZ+cqtcOYFkttsMouCHJzc/nss89YuHAhL774Yrn58uXLGTduHOeeey79+5sD2EtKSrjsssvo168fF154YfkRNcuWLWPo0KGkpaUxa9YsCgtN5dWtWzduu+02hg0bxssvv1whXu8jdIqKirjzzjtZsmQJQ4YMYcmSJRw/fpxZs2YxcuRIhg4dyptvvgmYI3WmTp3K+PHj6dWrF3fddRcA7du3Z9iwYQAkJyfTr18/9u6tfBDFJ598Ur57ytChQ8nJyUFV/R5HdNpppzF16lR69OjB7bffzgsvvMDIkSNJS0tj586dALz99tuMGjWKoUOHMnHiRPbv318p3ksuuYR33nmn/H7mzJnlmz43Ndweyk7sMKbFUisa13d2790OP1be6LhWtEuDs+4N6OTNN99k8uTJ9O7dm9TUVNasWcPw4cMBs+/l5s2b6d69OxkZGWzfvp2FCxcyZswYZs2axT/+8Q9uuOEGZs6cybJly+jduzdXXHEFTzzxBHPmzAEgNTW1fB9NT7yP0ImNjeXuu+9m9erVPP744wD84Q9/4PTTT+epp54iKyuLkSNHMnHiRMAcz7N582YSExNJT09nypQpFY7CycjIYN26dYwaNapS3A8++CDz5s1jzJgx5ObmEh8fz2uvveb3OKINGzawdetWWrVqRY8ePbj66qtZtWoVf//733nsscd45JFHGDt2LCtXrkREePLJJ7n//vt56KGHKsRbdnzPlClTKCoqYtmyZTzxxBNBZmZk4S4pBiCfOKLctmdnsdQG27MLgsWLF3PJJZcApufhOZQ5cuRIunfvXn7fuXNnxowZA8CMGTP47LPP2L59O927dy/fH/PKK69kxYoV5X6mT5/uM15fR+h488EHH3DvvfcyZMgQxo8fT0FBAbt37wbgjDPOIDU1lYSEBC644AI+++yzcn+5ublMmzaNRx55hObNm/uM+8Ybb+TRRx8lKyuL6OjogMcRpaen0759e+Li4ujZsyeTJk0CKh7fs2fPHs4880zS0tJ44IEHfB7fc9ZZZ/Hxxx9TWFjIe++9x6mnnkpCQkIld00BdYYu80jEVVocYmkslsZN4+rZVdEDqw+OHDnCRx99xKZNmxARSktLEREeeOABoPJxPf6OzAmEvyN/gjlCR1V59dVXK50s8OWXX/qVpbi4mGnTpnHZZZdxwQUX+Iz79ttvZ8qUKbz77ruMGTOGpUuXBnyGYI7vmT17NjfeeCPnnnsuy5cv97mDS3x8POPHj2fp0qUsWbKkvJHRFCmbsytwJdiencVSS2zPrgpeeeUVLr/8cr7//nsyMjLIzMyke/fufPrppz7d7969my+++AKAf//734wdO5Y+ffqQkZHBjh07AHjuuec47bTTqozb1xE63sf3nHnmmTz22GOUbei9bt26crv//ve/HDlyhPz8fN544w3GjBmDqvKLX/yCfv36ceONNwaMOy0tjdtuu4309HS2bdtWq+OIALKzs+nYsSMAzzzzjF9306dP5+mnn+bTTz9l8uTJQYcfaZxQdklEq52zs1hqg1V2VbB48WLOP//8CmbTpk3zuyqzT58+zJs3j379+nH06FGuv/564uPjefrpp7noootIS0vD5XJx3XXXVRm3ryN0JkyYwNdff12+QOWOO+6guLiYQYMGMWDAAO64445y/yNHjmTatGkMGjSIadOmMWLECD7//HOee+45Pvroo/IFKGWrO+fPn19+/M8jjzzCwIEDGTRoEDExMZx11lm1Oo4IzF6cF110EcOHD6d169bl5qtXr+bqq68uv580aRKffPIJEydOJDY2NujwIw11hi6LopOIctthTIulNtgjfiKURYsWVVjI0hRp7GVn5VO3MHr3v9jUbAwJx/dy8p83hFoki6VesEf8WCxNmdIiijUKd1Q8MXYY02KpFbVSdiLygIhsE5GNIvK6iKQ45t1EJF9E1ju/+VUEZaljZs6c2aR7dRFBaTHFRKNRcURjhzEtltpQ257df4GBqjoI+Ab4vYfdTlUd4vyqnqAKQDgNtVoaBxFRZkqLKJFoNDqWWNuzs1hqRa2Unap+oKpl+2StBDrVXqSKxMfHc/jw4ciovCwNgqpy+PBh4uPjQy1KrRD3iZ5dLMX2HbBYakFdfmc3C1jicd9dRNYBx4A/qarPtfoici1wLUCXLl0q2Xfq1Ik9e/Zw8ODBOhTVEunEx8fTqVOdt70altIiSoiG6HjiKKao1E1cdFSopbJYGiVVKjsR+RDwtb78j6r6puPmj0AJ8IJjtw/ooqqHRWQ48IaIDFDVY96BqOq/gH+BWY3pbR8TE1NhhxKLpangchdTItEQFUu8FJNdVGqVncVSQ6pUdqo6MZC9iMwEfgb8VJ1xFlUtBAqd6zUishPoDaz2F47FYqmIuIsplRgkxgzHFhYVQGLT/e7QYqkNtV2NORm4FThXVfM8zNuISJRz3QPoBXxXm7gslqaGy11MqUTjijZbrxXl54dYIoul8VLbObvHgTjgv86+iyudlZenAneLSDHgBq5T1SO1jMtiaVKYYcwYJNb07IqK7AGuFktNqZWyU9WT/Zi/Crxam7AtlqaOy12MW6JxOcOYxYV5VfiwWCz+sDuoWCxhSowWUuyKJyraKLuSQjuMabHUFKvsLJYwJcZdSIkrHldsWc/OKjuLpaZYZWexhClxWkBJVDzRsebw2hI7Z2ex1Bir7CyWMCVWC3FHJxDt9OxKimzPzmKpKVbZWSxhilF28UTHmZ5dabHt2VksNcUqO4slTInXQohJKB/GdNthTIulxlhlZ7GEISUlJSRIERKTSEycGca0PTuLpeZYZWexhCF5+ccBkNhEYuNNz06LC0MpksXSqLHKzmIJQ/JzcwBwxSYSG1um7GzPzmKpKVbZWSxhSGGu2V1PEloQ4yxQcZdYZWex1BSr7CyWMKQo5ygAroSW5aceUGKHMS2WmmKVncUShuQfOwRAfPNUiDKnHlhlZ7HUHKvsLJYwpCDHDGMmtUiFaKvsLJbaYpWdxRKGFB03yq5Fy9YgQiExSKlVdhZLTbHKzmIJQyR3P24Vklu2A6CEGLDKzmKpMVbZWSxhSPTx/RyRFrhiYgEoklhcVtlZLDXGKjuLJQyJKzhAVlRq+X2JxBJVWhRCiSyWxo1VdhZLGJJcuJ/j8W3L70skBpfbKjuLpabUStmJyFwR2Ssi653f2R52vxeRHSKyXUTOrL2oFkvTwF1SQsfSH8hv3r3crMQVi8tthzEtlpoSXQdhPKyqD3oaiEh/4BJgANAB+FBEeqtqaR3EZ7FENAf27qSdFENqz3KzUlcsUaXFIZTKYmnc1Ncw5lTgRVUtVNVdwA5gZD3FZbFEFJnfrAcgtXP/crNSVyzRtmdnsdSYulB2N4jIRhF5SkRaOmYdgUwPN3scs0qIyLUislpEVh88eLAOxLFYGjf5331BqQpdB55SbuZ2xRGjds7OYqkpVSo7EflQRDb7+E0FngB6AkOAfcBD1RVAVf+lqiNUdUSbNm2q691iiThSDq3m+5iexCallJu5o2KJVjuMabHUlCrn7FR1YjABicgC4D/O7V6gs4d1J8fMYrEEIC8/j15F29nS/nx6eJi7o2zPzmKpDbVdjdne4/Z8YLNz/RZwiYjEiUh3oBewqjZxWSxNgR0bPidBiojvObaCuUbFEaPFqGqIJLNYGje1XY15v4gMARTIAH4JoKpbROQl4GugBPi1XYlpsVTNse2fAtBlyE8rmGtULLFSTIlbiYmSUIhmsTRqaqXsVPXyAHb3APfUJnyLpamR+OMq9rg60KmN13qu6DjiKKawxE1MlN0LwmKpLvatsVjChNLSUnrkbeLHlKGV7CQ6jlhKKCy2AyQWS02wys5iCRMytq8jRXKRLqdUtoyOJ44iCkvcDS+YxRIBWGVnsYQJBzcvB6B92umV7CQmnlgppaDIfn5gsdQEq+wsljDBtWcVh0mhffd+le2c08qLCvMbWiyLJSKoi70xLRZLHdAuZzOZif1JdVVug0pMPADFtVB2+XnH+X7z/8jZ/x1SmEOpRBMVE09MQjLRCc2Jb9aC+ETzn5ScQlxiMwDUrYA6nz0o6nZ73Z/4HEIx195fSJTd+7MHEAFBzL/nNSAizr+5rhbR8RAVUz0/lojDKjuLJQzIPnKQLrqXvW3P82nvik0EoLggr9ph71j/KUc//BuDcj6lr1R/GLSxf+hwjGa4freJZi1ahVoUSwixys5iCQMyN31KC6BZj9E+7aPiEgAoKTwedJj5ucdY//RvGHXoDY5LPOvbnEN8n4m07NKf2KQUREsoyj9OQV4OhcezKcrLobTgGKX5OZQW5iBFeYiAmj6V6VY5/77MKiFlf+LLuKIWVfOxrpZd4PyVmTs36uUeDz/l93rCXeyx3Zya/SZbv15Jv1PKTyCzNEGssrNYwoC871biVqHLwLE+7aNikwAoKQhO2R3c+x1ZC6cxqnQXq9tdRJ9L72NUStPr2RzY+z0seJNjGevAKrsmTcQpO3dpKa6oqFCLYbFUi9iDm8l0daRrS98KKSrODGOWFlU9jLl3315KnvwZ7dxH2DJ+ASMnXFSnsjYm2rTvzGFa4PpxQ6hFsYSYiFqNefDH3Xz7fz9h48cvh1oUi6VatM7fyeGknn7to+NMz85dhbI7mJXD/gUX017388OUZ0lrwooOQFwuvk8aROdja32virE0GSJK2TVr1oJodyHdl89m26oPQi2OxRIUuTnZdHDvpzi1r1830fFG2WkAZVdYXMLm+TMZ5t7MvvEP0WfkpDqXtTFS0GkM7fQge3dtC7UolhASUcOYCc1akDzrVbIW/ozu7/ycL76+hrTzbwm4Cqu41M2RI0fJPrSHnMP7KDi6j9Kc/cjxA8QVHiGqJB8pLQJ3MS53MS4txqUndrFQnLXRmEl7KTMrsy+bwK8GWi33Uq3gtdJFADe+7KpsHGsdhOFHHh/+fAdV0TRQfD6tArr3bxlsWN5G8e58RogS1zHNb9gxVSg7VeXjBbcyueBDtve7gT7jZ/oNq6nRLf1nsP1eMv+3hI495lbbf0lxMXu/20LWnm0U7v+W0uy9RBVkEVOcTWxJDlHuEgQ3LtxO3VCWw2KunMU7ZYt6yusJj3rjxGoex49XvUL5giCPcDkRbsWwTrjxDFvLw647Dsd0YOLvnqrjUOuHiFJ2ACd16kn2rz9iy9PXcErGPyj42wK2xvYmN7ET7qg4okoLiS7KJq7oKMmlR2ml2bSVQtr6COsoyeSTQIlEUyoxlDr/bnEBinjUwieK34niJM53SNWh7otj9cL2qTerufa8svPgAvC5Sq9G8QV26Nu9+LysMs46knVX9BB6pfvvicUlON+8Ffn+zu7jV/7B5AML+brNWfS/+K/VEyrC6XByGtui+9Duu1dwl96Jq4qNtEuKi9m2+iOOb36X5ENr6Vawna5SSFfHPk/jOCbJ5LmaURDVjJKoeNziQnGhElWuzMrWl5YtKxWve3DeyfLWmOPGYxmq8eNGnBWm5fWMqqP7FNETavREOGWqz6M+qoe65VhpXJ2HWV9EnLIDaNG6PcNu+Q/b164g68vnaX5kE52y15q9BYnleFRzimKacyi5C/sT2+BKPono5u2IT2lHs9QOtGjdgcSW7WgZFUPLUD+MxcKJnh3FlVdjrvv8fcZsvpNvEgbR95pFvj8DaOIcH3QVfdfezldvzyP9vNmV7PNys9j2+duUfP0fTs7+nIHkUKxRfBfdg40nnUNUx2Ekd+xLm679aNW6HYk+PvxvivifZQ4/IlLZldFn2Kkw7NRQi2Gx1BpXoml2xRRmVTD/fsdmuv73ag5GnUTHX76KKzY+BNKFP0OmXMu2Tc+Stu4uVhbk0n7wJPJysji26yviM5bRN28dw6SYYyTxbfNT2N3vbE7+yfn0sR+iRwwRrewsloghKoZsTSKu6Gi50ZEDPyAvXIwLJXrGyyS1PCmEAoY3UVFRtLnmVb578mJGb7sXtt1bbrdH2rG27QUkD/oZfUaeyfDYxjM0Zwkeq+wslkZClqsFMQWHAbM7ysF/nUc39wEyzn6ePj0Ghli68Cf1pA60un0FOzb9j+zMrUTHJ3FSr+F07NyLTnZYMuKxys5iaSTkx7QktuAg+bnH+Pbx8xhQ/A0bfvIYw0ZNDrVojQZxuTh58FgY7HunGkvkUqvmjIgsEZH1zi9DRNY75t1EJN/Dbn6dSGuxNGGOJPdlQPFmfnh4PAPy17J2yF8YdubloRbLYmkU1Kpnp6rTy65F5CEg28N6p6oOqU34FovlBMkjLqbk/ddpU7KPDT95lPQzrwi1SBZLo6FOhjHFHDB1MVD5iGWLxVInpJ0ymb0dVtMsuTnDWrUJtTgWS6OirmZlxwH7VfVbD7PuIrJORD4RkXH+PIrItSKyWkRWHzx4sI7EsVgik45de9LCKjqLpdpU2bMTkQ+Bdj6s/qiqbzrXlwKLPez2AV1U9bCIDAfeEJEBqnrMOxBV/RfwL4ARI0bYnVotFovFUudUqexUdWIgexGJBi4Ahnv4KQQKnes1IrIT6A2srpW0FovFYrHUgLqYs5sIbFPVPWUGItIGOKKqpSLSA+gFfFdVQGvWrDkkIt/XgUytgUN1EE5D0JhkhcYlr5W1/mhM8jYmWaFxyVtXsnat2kntqAtldwkVhzABTgXuFpFiwA1cp6pHqgpIVetkMkJEVqvqiLoIq75pTLJC45LXylp/NCZ5G5Os0LjkbUyy1lrZqepMH2avAq/WNmyLxWKxWOoCu0eOxWKxWCKeSFV2/wq1ANWgMckKjUteK2v90ZjkbUyyQuOSt9HIKlrdY6MtFovFYmlkRGrPzmKxWCyWcqyys1gsFkvEE1HKTkQmi8h2EdkhIreHWh5vRKSziHwsIl+LyBYR+a1jPldE9nqcEnF2qGUFcE6y2OTItNoxayUi/xWRb53/lmEgZx+PtFsvIsdEZE44pauIPCUiB0Rks4eZz7QUw6NOOd4oIsPCQNYHRGSbI8/rIpLimIf8hBM/8vrNexH5vZO220XkzDCQNWxPjwlQZ4Vl2Q2IqkbED4gCdgI9gFhgA9A/1HJ5ydgeGOZcJwPfAP2BucDNoZbPh7wZQGsvs/uB253r24H7Qi2nj3LwI+Yj1bBJV8y3p8OAzVWlJXA28B4gwGjgyzCQdRIQ7Vzf5yFrN093YZS2PvPeed82AHFAd6fOiAqlrF72DwF3hlHa+quzwrLsBvpFUs9uJLBDVb9T1SLgRWBqiGWqgKruU9W1znUOsBXoGFqpqs1U4Bnn+hngvNCJ4pOfYo6XqoudeOoMVV0BeG+s4C8tpwLPqmElkCIi7RtEUHzLqqofqGqJc7sS6NRQ8lSFn7T1x1TgRVUtVNVdwA5M3dEgBJJVpPz0GO9NOkJGgDorLMtuICJJ2XUEMj3u9xDGikREugFDgS8doxucbv9T4TA06KDAByKyRkSudczaquo+5/pHoG1oRPOL944+4ZiuZfhLy3Avy7MwrfcyuksQJ5yEAF95H85pW+PTYxoCrzqr0ZXdSFJ2jQYRaYbZYWaOmpMgngB6AkMwJ0Y8FDrpKjBWVYcBZwG/FpFTPS3VjFuEzbcrIhILnAu87BiFa7pWItzS0h8i8kegBHjBMSo74WQocCPwbxFpHir5PGg0ee+Bv9NjQp62PuqschpL2Y0kZbcX6Oxx38kxCytEJAZTaF5Q1dcAVHW/qpaqqhtYQAMOqwRCVfc6/weA1zFy7S8blnD+D4ROwkqcBaxV1f0Qvunqgb+0DMuyLCIzgZ8BlzkVHM5w4GHneg1mDqx3yIR0CJD34Zq2ZafHLCkzC5e09VVn0cjKLkSWsvsK6CUi3Z0W/iXAWyGWqQLOmPxCYKuq/s3D3HNM+3xgs7ffhkZEkkQkuewas0BhMyZNr3ScXQm86TuEkFChZRyO6eqFv7R8C7jCWdk2Gsj2GDIKCSIyGbgVOFdV8zzM24hIlHMd9Akn9U2AvH8LuERE4kSkO0beVQ0tnw98nh4T6rT1V2fRiMpuOaFeIVOXP8xKoG8wLaA/hloeH/KNxXT3NwLrnd/ZwHPAJsf8LaB9GMjaA7NqbQOwpSw9gVRgGfAt8CHQKtSyOnIlAYeBFh5mYZOuGCW8DyjGzGP8wl9aYlayzXPK8SZgRBjIugMzF1NWbuc7bqc55WM9sBY4J0zS1m/eA3900nY7cFaoZXXMF2FOh/F0Gw5p66/OCsuyG+hntwuzWCwWS8QTScOYFovFYrH4xCo7i8VisUQ8VtlZLBaLJeKxys5isVgsEY9VdhaLxWKJeKyys1gsFkvEY5WdxWKxWCKe/w9SCLvAb5pwdwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiRklEQVR4nO2deXxVxdn4v8/NHghbWGRflJ2EsASwgIJFUKmiomJFEa3ta6u2qLXaRX9o7fu6VkWtWEVxQcUdrWtdULFFFtlXQcK+hC2QPbl3fn/MSTi5uTe5Icu9SZ7v53OTc2bmzDxnZs48M8/MOSPGGBRFURSlseAJtwCKoiiKUpeo4lMURVEaFar4FEVRlEaFKj5FURSlUaGKT1EURWlUqOJTFEVRGhURo/hEpJuIGBGJDrcsDR0RmS4ii+oorQQR+VBEjojIH+oiTb/0M0RkXB2ks1BErgvip3U7TDj5flpV/WpYhqB1UETGiMiu2pahoSAiHUTkuIhsEpGzTjaeiFF8yskhIjNFpEhEsl2/OlcwFTAOSAU6G2MeKHF0GoNuYZMqgnDKcGYVwl8hIttFJEdE3hWRVhWETROR5SKS6/xPc/nFichsEdkvIodF5H0R6Rggjp4iki8iL7vcJorIIhE5KiL7RORZEUly+bcSkfkickhEDorIPBFp5vLPEJE8V539tAr332jqjojMFZHpVQh/s1Mex0TkORGJqyDsT0Vko1M3vhSRrgHCtBKRTHdHWURiReRNpxyMiIzxu+Yjv/aoUETWuPzTROQbEckSkV0icqff9ZeJyAZHwa0XkQtL/Iwxe4wxScD7wG9DzRd/akzxaW82rMw3xjR1/R6o/JI6oxWQYYzJDrcg1UEsYe8oikh/4GngKqAdkAv8I0jYWGAB8DLQEngBWOC4A/wOOB3bMekAHAEeDxDVk8BSP7fmwL3OdX2BjsCDLv97nTS7A6c6ss70i+N8V50dX9F9RzKR0vaJyATgDuCnQFegB3B3kLCtgbeBO7HP6DJgfoCg9wMbArgvAq4E9vl7GGPOdbdHwH+AN1xBXgG+dtI9E/iNiFzgyNURW19vAZoBtwGviEhbv2TWAsmB7i0UqvUgOxr/dhFZDeSISLSIjBCR/zg9wVXu3oBYc9D/icgSp0eyIFhvVUSucWn9H0Xkf/z8J4nISieerSJyjuPeXETmiMheEdktIveKSFQl93GqiHzh1ztt4fI7LCKDnfMOTg9ojHN+gYisc+53oYj09cuf34vIaqd3M19E4que01VHRO5w8qWk13RRkHAiIo+IyAEnL9eIyADHL05EHhKRHWJHBbNFJKGKokQDvkpkTRY72jgmIkudMnP3MI2IXC8iPzj5/KSIiOMXtOxcpDt5cEREni8pAxFpKSL/csrziHPcyZXuQhH5m4h8i1UwPSq5164i8q2T5586jYubqU5eHhSRP1cSVzCmAu8bY752OhN3AheLa7TlYgw2/x81xhQYY2YBApSYiLoDnxhj9htj8rENX393BCJyOXAU+Nztbox5xRjzsTEm1xhzBHgGGOkK0h141xhzzBiTBbzjH3dNUFnd8Qs7SkR2StkRynlO+3JQRB4Up3NTWb2SAG1fJaKmVdQOiMitzjO4V0SuOZm8AK4G5hhj1jll8ldgepCwFwPrjDFvOGU/ExgoIn1cMv0EGAA8777QGFNojHnUGLMI8FYkkNiR+WjgRZdzN2CeMcZrjNmKVaIldaMTcNQY85GxfADkYDtPbnzYun1yGGNO+gdkACuBzkACttd3CDgPq1TPds7bOOEXAruxmdkEeAt42fHrBhgg2jmf6NysYHsFucBgx28YkOXE73HS7eP4vYPtETcB2gJLgP+p5D5Oc+KKA9pgeyOPuvx/CawHEoFPgIcc917YQjkbiAH+AGwBYl35swTbK26F7TldH0SGUdgGJthvVJDrZpbkoZ/7pU66HmCKI2d7x286sMg5ngAsB1o4ed3XFe4R4D1H9hLzwv9VoX7EAC8Fks8v3GvOLxHoB+wskc/xN8C/HBm7AJnAOSGWXQa2d9jZuY9vgXsdv2RgspNuErZX+q7r2oXADuxDGQ3EVHAPC4GtTp1IcM7v86vbzzh+A4ECoG+QuCoq7wXA7X5u2cCQAGFvBj7yc/sXcKtzPNTJjw5OHrzil3fNgM3YxihgPXOFfRR4zXX+M+BD7KivJfAFMMOvXPY7ZfkpMPAk26BQ6s5pwDmO3zA/vy+detHFudfrqlCvVjr1KiGEdjJgO4DtnBQD92Cfl/OwbV3LAPF0cepGlyDprAKmuM5bO/eYHCDsY8BTfm5rgcnOcRTwPTAEV3sRIJ5dwJgK7v0uYKGf2/8C9zn329uJI92V7lfABc7xhY5/E784xmItFAHzotJ6czIX+RXota7z24GX/MJ8AlztHC/EaQyc835AoXOD3XApvgBpvQv8zjl+GngkQJh22AYlweX2c+DLKt7XhcAKP7f3gDXAaiDOcbsTeN0VxoNV7GNc+XOly/8BYHZ18jyArDOdPDzq+nUIEG4lMMk5Lq3I2N7/ZmAE4HGFF5yelsvtdGBbiHKlAUXYxu20CsJFOeF6u9zupXzjNcp1/jpwRyhl55TB9a7z84CtFch8xHW+ELgnxPtdCPzFdf4b4GPnuKRud3L5LwEuP4ny/hy/zpO7zvm534lLGTlu84CZznFzrNIw2MZ3BdDKFfYxHCVLBYoPqyCOAL1cbh2Az7A9cx/wb5wOoeM/EtsJSAT+iDWZtahiXoRad/4IbAcG+F1vcDpQrjL7vAr16toQ5cwgSDuAVXx5uNo94AAw4iTqxla/+4lx7rFbgLBzcLXFjtu3wHTn+GYcxUj1FN+Wkjhdbj9x3Isd+e728/8FtjNXjO0ETAwS9xvO9Y9WNa9qYs5ip+u4K3CpY446KiJHsSOZ9kHCb8cWjr9JCBE5V0QWO2bGo9gGqyRcZ2wh+9PViW+vK/2nsSO/oIhIOxF5Taxp9BjWxuwv0zPYkerjxpgCx62Dcw8AGGN8zv25Fwi4beC5QNOKZDlJXjfGtHD99ojINLGm4JJ8GECAfDbGfAE8gZ3HOSAi/xS7CKENtlFa7orjY8e9UowxK7GjqP8CMyoI2gY7mnLXi50BwgXMxxDLzr/OdXCuTRSRp8UuFDmG7dW3kLKm8UCyBKOysq6JupCNHYm5aQYcP4mwT2JHNMlYC8nbwEdgFyBgFyY9UpEwIjICO1K8xBiz2eX1OrZDleSkuRVbNgAYY741xuQZayr9P2yHbXRFaQUg1LozA/uMrA3gF6xuVLVeVUZFZX/IGFNcgX+o+Jd3yXGV6oaIdMAuHDlZczxgTcvAKcCbLrdW2HbkHiAe25ZPEJHfOP7jsB2DMUAs1tr3rLgWZTnhBmN1Qh9jzIyqylYTis+4jndiR3zuRriJMeY+V5jOruMu2B7bQXeEYlcivQU8BLQzxrTAmk3ElY6/zbfEvQBo7Uq/mTGmsrmF/3XuI8UY0ww7aVuSFiLSFGvKmQPMlBPzknuwyrYknDj3t7uS9MohIqOl7Eoo/1/IjYLY1VnPADdizRwtsGYMCRTeGDPLGDMEOwLvhZ1QPojtifZ35WVzYyerQ8LYuYOPnHiDkYnt2XVyuXUOEjYQFZZdgPi6YMsN4FasqWW4c+0Zjrv7enf9jgTWYU2lAIhID6zy2hwkbGrJfKhDquMOdoQ71xhz2OnMPQ4Mc+Ymx2BHqjtEZB/we2CyiHzvSnsQ1hJyrTGmzBygE/fTxpgcY+ciZ2MbqmAYgtTPCgi17lwKXCgivwvgF6xuhFKvIrpuOMf7jTGHKgsrIk2wbeo67FRSe2C9U/aPYevFPqlkvYQfVwNvm7IL23oAXmPMi8aYYmPMLqzVoaRupAFfG2OWGWN8xpilwHfYTpibvsB6Y8ymKshTSk2vUnsZOF9EJohIlIjEi31PxV0xrxSRfiKSiNX6bxpj/CdIY7EPcyZQLCLnAu5VX3OAa8Qux/WISEcR6WOM2YudL3hYRJo5fqeKyJmVyJ2E7QFliV1VdJuf/2PAMmPMdcAH2IcYbK92oiNHDLYhLcCuYqoSxphvTNmVmf6/b6oQXRPsQ5kJdqEQdsRXDhFJF5Hhjvw5QD7gc0avzwCPiLOiysnnCa5ryy1lDkABtjwD4pT929gORaIzuT4tpLu0VFZ2ADeISCenw/JnTqxeS8Iq96OO3/+rQrrhYh72GRvtNFb3YBuXQL36hdjFB78Vu1DpRsf9C+f/UmCa2AVhMVhT3x5jzEHgn9iGMM35zcbW/QkAYhdAfQzcZIx5P0DaS4HrxL7HmQD8CjtNgIh0EZGRYpfFx4vIbdjR1LeO/xgRqVSpVKHu7MGudPydiPzaz+82sYucOmNXubrrRmX1KtJ4EfiF0762AP4CzA0S9h1ggIhMFrvQ5i5gtTFmI7az2o0TZX8X1gyeVtJWO/WpZIFOSTm6BwsJwGUB0t9sveUKp30+BbsGYbXjvxQYXTLCczpXo13+JcRg25aTokYVnzFmJzAJ+BO20d2JrTDudF7CZsY+7FC33LsYzkP8W6xiOQJcge1ZlvgvAa7BmmGysJOhJSOvadiGdr1z7ZuUNbUG4m5gsBPXB9iHCbCrR7ET4yUPzC3AYBGZ6vQ2rsT2lA8C52OXaBdWkl6tYoxZDzyMNTPuB1JwGpUANMMquCNYU88hTixLvx1ri1/smHs+w46QcBqK49h5z4rwUXk9uxE737QPWz9eJfRKHbTsXLyC7RD9iDW53eu4P4qdZzoILMY25GGnohG+MWYdcD1WAR7ANtC/cV37kYj8yQlbiJ2bmoY1JV4LXOiqn7/HdnR+wD6v5wEXOdfmGmP2lfywSiDfGJPpXHsr1tQ4x2WVKBlJ4qTVDTsHtBvb07/a8UsCnsLWud3Y5+tc18ikM6F3HkOqO8aYHVjld4eU/dDAAuzirpXY+jPHcQ+lXtUpTochW0S6BPI3xnyMNRN+iV2UtR1XZ07s6vOpTthM7MKuv2HLYThwueNX4Ff2WUCRc1zCJmynsSN2HUceLusXtt4ddWRxy3gMu6L0ZifdlVhr1L2O/1fY+eQ3ReQ41vL3v8YY//c8o6hktXhFiDNJWCeIyELsBPmzdZaoUiuIyJVYM+gfKwk3HmsJ6GOMORxi3PcDpxhjrq40sNLgEJFngTeMMZ+cxLVadxo4Yl85mQW0NcZcdjJxRMSLl0r9wxjzcuWhAGtu+zewTkQeNsY85B/AMVHFYkeP6dhVXQE//6U0fJwphZDQutO4ELvwZg2wDbjhZONpNIpPRGZjzZL+vGyMub6u5WksOGa1qZUES8KaqDpgTbMPY01QEYWIBPv6zLlVnINVao6w1x3H9Lg+iHc/x8yq1ADGmD1U44stJdSpqVNRFEVRwk3Yvz2oKIqiKHVJRJk6W7dubbp16xZuMRRFUZQ6ZPny5QeNMSF9HKMmiCjF161bN5YtWxZuMRRFUZQ6RES2Vx6q5lBTp6IoitKoUMWnKBGMLj5TlJpHFZ+iRCgH9u/hw3svZsFLj4VbFEVpUETUHF8gioqK2LVrF/n5+eEWRalHxMfH06lTJ2JiYsItykmz4dU/M9H7Bb4tX7J6/ThS+9X4Pq6K0iiJeMW3a9cukpKS6NatG2U/Mq8ogTHGcOjQIXbt2kX37t3DLc5JUVxUyIAjn7EjviddCn7g4NK3QBWfotQIEW/qzM/PJzk5WZWeEjIiQnJycr22Emxdt5RkOcbBlF+xz3MKiburvOGHoihBiHjFB6jSU6pMfa8z+zdYRdc1dTSZrYZwasF6Cor9d+9SFOVkqBeKT1EaGzH7V3GMJiR37oO060cbyWLXrl3hFktRGgSq+EJARLj11ltLzx966CFmzpwZPoEqYeHChfznP9UzjZ1zzjm0aNGCn/3sZzUklVIVkrM3sSOuJ4iQ2DkFgIPbVoZXKEVpIKjiC4G4uDjefvttDh48WKPxGmPw+U56L8Wg1ITiu+2223jppZdqSCKlKhifj1OKdpGb1AOAdqcNAiB/97qKLlMUJURU8YVAdHQ0v/rVr3jkkUfK+WVmZjJ58mTS09NJT0/n22/tRuczZ87koYdObD03YMAAMjIyyMjIoHfv3kybNo0BAwawc+dObrvtNgYMGEBKSgrz588HrPIaM2YMl1xyCX369GHq1KkBX2aeNWsW/fr1IzU1lcsvv5yMjAxmz57NI488QlpaGt98802FMl511VWcfvrp9OzZk2eeeaY03p/+9KckJSVVmC9vvPEGAwYMYODAgZxxxhmAXYx0zTXXkJKSwqBBg/jyS7sB89y5c7nwwgs5++yz6datG0888QR///vfGTRoECNGjODwYbtH7TPPPEN6ejoDBw5k8uTJ5Obmlkt3xIgRrFt3QgmMGTOmQX3qbv/+PTSTXDzJVvE1Se5MNolEHdocZskUpWEQ8a8zuLn7/XWs33OsRuPs16EZ/+/8ypeJ33DDDaSmpvKHP/yhjPvvfvc7br75ZkaNGsWOHTuYMGECGzZsqDCuH374gRdeeIERI0bw1ltvsXLlSlatWsXBgwdJT08vVSIrVqxg3bp1dOjQgZEjR/Ltt98yatSoMnHdd999bNu2jbi4OI4ePUqLFi24/vrradq0Kb///e8BuOKKK4LKuHr1ahYvXkxOTg6DBg1i4sSJdOjQIaS8u+eee/jkk0/o2LEjR48eBeDJJ59ERFizZg0bN25k/PjxbN5sG+y1a9eyYsUK8vPzOe2007j//vtZsWIFN998My+++CIzZszg4osv5pe//CUAf/nLX5gzZw433XRTmXSnTJnC66+/zt13383evXvZu3cvQ4cODUnm+sCB7es5BUg4pbd1EOFg9CnE5+gcn6LUBDriC5FmzZoxbdo0Zs2aVcb9s88+48YbbyQtLY0LLriAY8eOkZ0dbL9SS9euXRkxYgQAixYt4uc//zlRUVG0a9eOM888k6VLlwIwbNgwOnXqhMfjIS0tjYyMjHJxpaamMnXqVF5++WWiowP3YyqScdKkSSQkJNC6dWvGjh3LkiVLQs6TkSNHMn36dJ555hm8Xm/p/Vx5pd3vt0+fPnTt2rVU8Y0dO5akpCTatGlD8+bNOf/88wFISUkpvbe1a9cyevRoUlJSmDdvXpmRXQmXXXYZb775JgCvv/46l1xyScgy1wfy9v0AQPNOvUvdchM70rJwb7hEUpQGRb0a8YUyMqtNZsyYweDBg7nmmmtK3Xw+H4sXLyY+Pr5M2Ojo6DLzd+53ypo0aRJSenFxcaXHUVFRFBcXlwvzwQcf8PXXX/P+++/zt7/9jTVr1pQLE0xGKL/svyqvAcyePZvvvvuODz74gCFDhrB8+fIKw7vvx+PxlJ57PJ7Se5s+fTrvvvsuAwcOZO7cuSxcuLBcPB07diQ5OZnVq1czf/58Zs+eHbLM9QFzOAOA1p16lroVN+tCt6wlHM8rJCkhNkySKUrDQEd8VaBVq1ZcdtllzJkzp9Rt/PjxPP7446XnK1euBOwWS99//z0A33//Pdu2bQsY5+jRo5k/fz5er5fMzEy+/vprhg0bFpI8Pp+PnTt3MnbsWO6//36ysrLIzs4mKSmJ48ePVyojwIIFC8jPz+fQoUMsXLiQ9PT0kNIG2Lp1K8OHD+eee+6hTZs27Ny5k9GjRzNv3jwANm/ezI4dO+jdu3clMZ3g+PHjtG/fnqKiotJ4AjFlyhQeeOABsrKySE1NDTn++oAc38shWhCfkHjCrVU3EqWAA/vU3Kko1UUVXxW59dZby6zunDVrFsuWLSM1NZV+/fqVjj4mT57M4cOH6d+/P0888QS9evUKGN9FF11EamoqAwcO5KyzzuKBBx7glFNOCUkWr9fLlVdeWbqQ5Le//S0tWrTg/PPP55133ild3BJMRrCm0rFjxzJixAjuvPPO0vm90aNHc+mll/L555/TqVMnPvnkEwDuuusu3nvvPcCu/ExJSWHAgAH85Cc/YeDAgfzmN7/B5/ORkpLClClTmDt3bpmRXmX89a9/Zfjw4YwcOZI+ffqUur/33nvcddddpeeXXHIJr732GpdddlnIcdcX4vL2cSS6dRm3hDbdADi6Z0sYJFKUhoVE0rYnQ4cONf6r8zZs2EDfvn3DJFHDZubMmWUWwTQ06mvd2XrPQHISOpB620elbplbv6fNS2NZNPB+Rl10fRilU5SaR0SWG2PqbIVatUd8InKTiGwUkXUi8oDjdraILBeRNc7/s6ovqqI0fIwxJHsPUphYdtTfqqOd7/MeqdONqhWlQVKtxS0iMhaYBAw0xhSISFvH6yBwvjFmj4gMAD4BOlZPVKWmieSvzzRWjmcfp4Vk40tqX8Y9Kj6JLJoSdWx3mCRTlIZDdVd1/hq4zxhTAGCMOeD8X+EKsw5IEJG4knCKogTmyL7tNAOimpfvJx6Kbkdi3p66F0pRGhjVNXX2AkaLyHci8pWIBFoSOBn4PpjSE5FficgyEVmWmZlZTXEUpX6TnbkTgLhWncr55cSfQovCfXUtkqI0OCod8YnIZ0CgZYZ/dq5vBYwA0oHXRaSHcVbMiEh/4H5gfLD4jTH/BP4JdnFLVW9AURoSeYft6wpN23Qu51fQtCPdjy/H6/URFaULshXlZKlU8RljxgXzE5FfA287im6JiPiA1kCmiHQC3gGmGWO21pTAitKQKco6AEDLNgE+G9e8C0335bP/4AHatQvtlRdFUcpT3W7ju8BYABHpBcQCB0WkBfABcIcx5ttqphERvPvuu4gIGzduDBomIyODAQMG1KocK1eu5MMPP6xWHNdeey1t27atdVmVquPLOYjXCM1atinnF9e6CwCH9V0+RakW1VV8zwE9RGQt8BpwtTP6uxE4DbhLRFY6v7YVRRTpvPrqq4waNYpXX301oH+gz4lVlZLvXVZETSi+6dOn8/HHH1crDqV2kLxDZEkS4okq55fUrjsA2fsz6lgqRWlYVEvxGWMKjTFXGmMGGGMGG2O+cNzvNcY0McakuX4Hakbkuic7O5tFixYxZ84cXnvttVL3hQsXMnr0aC644AL69esHWAU4depU+vbtyyWXXFK6rc7nn3/OoEGDSElJ4dprr6WgwK716datG7fffjuDBw/mjTfeKJOu/7Y/hYWF3HXXXcyfP5+0tDTmz59PTk4O1157LcOGDWPQoEEsWLAAsNsATZo0iTFjxtCzZ0/uvvvu0njPOOMMWrVqVeE9f/XVV6SlpZGWlsagQYM4fvw4xpigWyideeaZTJo0iR49enDHHXcwb948hg0bRkpKClu3Wkv3+++/z/Dhwxk0aBDjxo1j//795dK9/PLL+eCDD0rPp0+fXvpB6sZAbMFhjke1COiX3PE0AAoP6bt8ilId6tVHqvnoDthX/iPM1eKUFDj3vgqDLFiwgHPOOYdevXqRnJzM8uXLGTJkCGC/w7l27Vq6d+9ORkYGmzZtYs6cOYwcOZJrr72Wf/zjH9x4441Mnz6dzz//nF69ejFt2jSeeuopZsyYAUBycnLpdz3d+G/7Exsbyz333MOyZct44oknAPjTn/7EWWedxXPPPcfRo0cZNmwY48bZadklS5awdu1aEhMTSU9PZ+LEiSFv3/PQQw/x5JNPMnLkSLKzs4mPj+ftt98OuoXSqlWr2LBhA61ataJHjx5cd911LFmyhMcee4zHH3+cRx99lFGjRrF48WJEhGeffZYHHniAhx9+uEy6JVsOTZw4kcLCQj7//HOeeuqpkGRuCCQUHSE3ukVAv6RW7ck3MUjWzroVSlEaGLo0LAReffVVLr/8csCOSNzmzmHDhtG9e/fS886dOzNy5EgArrzyShYtWsSmTZvo3r176fc6r776ar7++uvSa6ZMmRIw3UDb/vjz6aefct9995GWlsaYMWPIz89nx44dAJx99tkkJyeTkJDAxRdfzKJFi0K+55EjR3LLLbcwa9Ysjh49SnR0dIVbKKWnp9O+fXvi4uI49dRTGT/eLuR1bzm0a9cuJkyYQEpKCg8++GDALYfOPfdcvvzySwoKCvjoo48444wzSEhICFnu+k7T4izyY1oG9hQhM6otsTn6Lp+iVIf6NeKrZGRWGxw+fJgvvviCNWvWICJ4vV5EhAcffBAov8XQyWzzE2ybolC2/THG8NZbb5XbAeG7776r1pZDd9xxBxMnTuTDDz9k5MiRpR+pDkYoWw7ddNNN3HLLLVxwwQUsXLgw4Jdj4uPjGTNmDJ988gnz588v7XA0FpqZLPbHBzdDH4ttR1K+7sunKNVBR3yV8Oabb3LVVVexfft2MjIy2LlzJ927d+ebb74JGH7Hjh3897//BeCVV15h1KhR9O7dm4yMDLZssavxXnrpJc4888xK0w607Y//lkMTJkzg8ccfp+Rj4ytWnPhozr///W8OHz5MXl4e7777bulINBS2bt1KSkoKt99+O+np6WzcuLFaWygBZGVl0bGj/SLJCy+8EDTclClTeP755/nmm28455xzQo6/vlNUVERzk40vITlomLzEDrTy1tvpckWJCFTxVcKrr77KRRddVMZt8uTJQVd39u7dmyeffJK+ffty5MgRfv3rXxMfH8/zzz/PpZdeSkpKCh6Ph+uvr/wL+4G2/Rk7dizr168vXdxy5513UlRURGpqKv379+fOO+8svX7YsGFMnjyZ1NRUJk+eXDq/9/Of/5zTTz+dTZs20alTp9L9BWfPnl26ZdGjjz7KgAEDSE1NJSYmhnPPPbdaWyiB/TbopZdeypAhQ2jd+sS2O8uWLeO6664rPR8/fjxfffUV48aNIza28Wy6mnV4Px4xSJPWQcN4m3WiDUfJzc2uQ8kUpWGh2xI1UObOnVtmEUxjpL7Vne0bltN1/lksT3+IIRN/GTDM8gVPMmTFn9h+xTd07dWwNuBVGi/1blsiRVFqhpwj9vWOuGbBX3lNbGsXUmXt21YnMilKQ6R+LW5RQmb69OlMnz493GIoVaDgmFV88S3aBQ3Ton0PAPIyM+pCJEVpkNSLEV8kmWOV+kF9rDNF2YcASGoVfMTXukM3fEbwHdlRV2IpSoMj4hVffHw8hw4dqpcNmRIejDEcOnSI+Pj4cItSJYpzjgLQPMB3OkuIiY3noLQk6rhuSKsoJ0vEmzo7derErl270L36lKoQHx9Pp07l97SLZEzeUQpNFPEJTSsMdzimHU10Q1pFOWkiXvHFxMSU+TKKojRUPIXHyJYmtKrkQwM58e05Jbv8V28URQmNiDd1KkpjIbrwGLmeikd7AL7mnWjjO0h+YVEdSKUoDQ9VfIoSIcQWHScvBMUXl9yVWPGyY/vJvdJQWFjI4YMHyMsvPKnrFaW+E/GmTkVpLMR5symIrlzxtejQE1ZB5o6N9OrZK6S4TVEe6//1OAnr5tO1aCutxOA1wj5pzc6EXuQkpxDfOY3Wpw6ifadTaRIfU93bUZSIRRWfokQICd5sDiVU/gm4tqelAZC/ew1wQaXhj2SsJmfelfQv2s56T08Wd7ya2KTWmNyjRGf9SIfsjXTc9S3sAv4Lx0wim6QteTEtKIxpQVR0DCLgMwbj84EpBp8Xj3H98BFlvHiw51HOf8GuxjZAycylETlxDCd8jOufnDi3buXnPf3XeZuAc6NCdmwbBsx4l5jYuAD+SmNEFZ+iRAhNTDYHYpIqDRffqgvHaULcoQ2Vhj28ZSlR8y4izufhsyFPMvZnU4nylFcQhdlH2L1pKcd3rMaTuYGo43toUnCENvmbMcaHMeARg5EofEThE9cPD17HrUjiyvgbHCUnAqZECZpSTSjl1JeUcysfhhDUoL0uqeAAg3L/w96922nfNbTRsdLwqbbiE5GbgBsAL/CBMeYPLr8uwHpgpjHmoeqmpSgNmaYmB29c88oDirAn7lRaZm+pMFjWof14500h3xfL/ovfZNzAwUHDxjZtSfch42HI+KqKHdEs/3AOLLmF/Jxj4RZFiSCqpfhEZCwwCRhojCkQEf9PTvwd+Kg6aShKYyA/L4d4KYJQFB+Q3bwXvfd/QEFREXEx5efjjM/Hljm/IMV3lE0/e5tBFSi9hkx0QjMACnKzwiyJEklUd1Xnr4H7jDEFAMaY0o3CRORCYBugLxwpSiUcz7KfK5PE0BRfbKc0mkoeP25cGdB/0RuPMCT3G1b2vImU9DE1JGX9I8ZRfEW5xysJqTQmqqv4egGjReQ7EflKRNIBRKQpcDtwd2URiMivRGSZiCzTr7MojZW8Y4cBiEpoEVL4dgN/CsDhdV+W88vYuIIh6+9nffxg0q+4q8ZkrI/EJdo506I8VXzKCSpVfCLymYisDfCbhDWVtgJGALcBr4uIADOBR4wxle6WaYz5pzFmqDFmaJs2wb9RqCgNmRLFF9OkZUjh23bpS6YkE7NjURn3ooI8vG/+ggKJ5ZTpcxFPVI3LWp+Ia2JH0L58neNTTlDpHJ8xZlwwPxH5NfC2sV+QXiIiPqA1MBy4REQeAFoAPhHJN8Y03l1RFaUCCrOPAHaRSUiIsKPVSPof/ITs40dpmtQCgFVzb2Fo8VaWjvgH6ad0rSVp6w/xTa3i8+briE85QXVNne8CYwFEpBcQCxw0xow2xnQzxnQDHgX+V5WeogSnMNcqvoSkViFf03T4VTSRAtZ8/BwAPyycx9C9r/Btq4tIP2dqrchZ30hsauf4TEFOmCVRIonqvs7wHPCciKwFCoGrje4fpChVxpt7FICEZiGO+IBeQ8ex+dNe9F73CMuzd5OyfS7rPb0Y+Isna0nK+kdCQlO8RqBQR3zKCaql+IwxhcCVlYSZWZ00FKUx4HUWXzRtFvqITzwe4i79J0WvXcKQ7c+yInog7a57jaZNmtSWmPUO8XjIIQEp1BGfcgL9couiRAIFdh1YYpPKv9zipmvvQRT8cT079+4mrXM3xKPfnfcnTxLwqOJTXOhToiiRQGEOuSbupFZhxsXG0blrD1V6Qcj3JBBVXOkCc6URoU+KokQAnuIcciUh3GI0SAokkeji3HCLoUQQqvgUJQKIKsohXxVfrVAYlUisV02dyglU8SlKBBBVnEuBRxVfbVAUlUCsLy/cYigRhCo+RYkAYry5FEQlhluMBklxdBPiVPEpLhqU4ss6tJ91/zua5R8+G25RFKVKxHlzKVbFVyv4YpuSYHSOTzlBg1J8TZsn07NgHUU7V4ZbFEWpErEmj+IoNXXWBia2KU1MHvptDaWEBqX4oqKj2RvVgbhjP4ZbFEWpEvG+PLzRTcMtRsMkviVxUkR+ri5wUSwNSvEBHI7vTMu8HeEWQ1GqRAJ5+GLV1FkbeBJbAHD86MHwCqJEDA1O8eU3604H7158xcXhFkVRQsL4fCSafEyMfmqsNohqkgxATpbu96lYGpzi87TpRawUs3/XlnCLoighUVCQR7T4IFYVX20Q6+x4kZ+lIz7F0uAUX1LHPgAc+HFNmCVRlNDIPX4UAImr2nc6ldCIS7IjvoLsQ2GWRIkUGpzi69x7MAA5O1aGVxBFCZH8HLszgydeF7fUBonNWwNQ5Gz2qygNTvEltWzLHmlHXObqcIuiKCFRkJsFQHScKr7aoGmLNgCY3MNhlkSJFBrktkT7mvShfc7GasWRl5vLrh/XkX0gg9yc40T5ijAxCUTFJ5HQpDnxTZvRpGkLmjRvSVLT5niiG2RWKnVAQc4xAKISmoVZkoZJUrOWFBsPJq96I75V331B9ncv0vboSpJ9h4iliBxpwjFPS47HtaW4aUdiWnWh2SndaNPxNJLadUOatgPdNSPiaJCtdUGbFDpkf0XW4QM0b9U25Otyc46z+oOnSdr6Pj3z19BTvCFfm0ccuSSQJwkUSxQggAdEMOLBAAYpDS+4XqZ1Hbrdy4Qp4142vAkQXqr8sm71Xu6tkVeDqxhJTb+OLJUHqRVamnwAYhN0jq82iIrycIimePKPntT1hzL3svn5X3N67pfkEcuPCSlsaTIQn8TiKcgiofAQrfJ30iZnOU0O5IOrz11oojggyeRLAsUSg1di8Hmi8WCfV8GHGIMHL2JKzn2lfiUY498eWPzdytfh2n1pf3tUF874y8e1mkZtUG3FJyI3ATcAXuADY8wfHPdU4GmgGeAD0o1xnvBapkXP02HbE2xd/hmDz76i0vA+r5el78yi59q/M4JjbPd0YtkpU2jSdRAJbXvQrFkLjEThK8qnMPcY+TlZFOYcoyjvGN68Y/jyj2MKs/EU5RBbnAPGC8ZgjM/WWKdyWyXlVE0p/QOUVYpl3U+4GAkWRkrPylRzCRZ/YMqFqMShyooiwAVVjSNcyqkyqtu8bI9JImXA6TUii1KeHE9ToguOVvm6Xds24X3xIob49vN9j/+h38V/pH9Sy4BhvV4fO/fvZ8+OzRzds42o7N0k5O6lacF+PN48PN4ixFdIrK8IrwFDFD6JweB0jsUDeFzHUvoMi4AEVH3g/1T4P+tl242apTCmQ63FXZtUS/GJyFhgEjDQGFMgIm0d92jgZeAqY8wqEUkGiqotbYicOvin5H4SR+Gmz6ASxZeZuY99z17O8IIVrI9N4cBZf6bP8HPoWouVRVGUuiU3qhnRRVlVuibrcCa+Fy+kpcli28RXGDxsQoXho6I8dO7Qns4d2gNnVkNapbap7ojv18B9xpgCAGPMAcd9PLDaGLPKca/TdcSx8QlsSBxIx0P/rTDcth/WIa9cSm/ffr4bcBfDJt+su1grSgOkMKYZCYWhN0M+r4/t//w5fXz7+fG8V+hTidJT6hfVbeV7AaNF5DsR+UpE0l3uRkQ+EZHvReQPwSIQkV+JyDIRWZaZWXNfVsjvehadzR5+WLMkoP/6pV/QbN65tDRZ7Dr/VYZfeqsqPUVpoBTFtaKZ92jI4Ze+8yip+UtZ0e8P9Bl+Tu0JpoSFSlt6EflMRNYG+E3CjhhbASOA24DXRUQc91HAVOf/RSLy00DxG2P+aYwZaowZ2qZNm5q6L/qOu4ZCE83Br54u57f845fo/q8pFEg8uVd+SI+h42ssXUVRIo/ixHa0MkfxeitfsHZ4/y76rX2AtbEDGXbpbXUgnVLXVKr4jDHjjDEDAvwWALuAt41lCXYRS2vH/WtjzEFjTC7wITC4Nm/En2atT2FVy3EMzlzA9i1r7b34fHz34p8Z9N+b2BnTnYRff0n70wbWpViKooSDZqcQI16OHtpXadCNr99Jgimg6cWzEE9UHQin1DXVte29C4wFEJFeQCxwEPgESBGRRGehy5nA+mqmVWW6X3ofhRJN1LxLWDLvbjbcdwbDf3yC75uNpcstn9Oybce6FklRlDAQ3bw9AMcO7Kww3J4f15N+cAEr21xAtz5pdSCZEg6qq/ieA3qIyFrgNeBqZ/R3BPg7sBRYCXxvjPmgmmlVmdYdu7PrvJfw4GXYD3+nTeEuFve7k8Ez3iI+Ud+ZUpTGQkKrTgDkHNpVYbjd79+LFw9dL76nLsRSwkS1VnUaYwqBK4P4vYx9pSGs9B12NsWD1pN5cC8t23RghH5hRVEaHU1bW+tOwZG9QcPs2bWNgYc/YVWb80nv0LWuRFPCQKNYxhgdE0Ob9l2IVqWnKI2S1u27AFB0dE/QMNs+eIRovHT5WdBF6EoDoVEoPkVRGjeJiU05TDM8WTsC+uccO0LK3jdYlTSadt361bF0Sl2jik9RlEbB/phONM0JrPjWf/gPmpFL/Jib61gqJRyo4lMUpVGQldCFtkXlV3X6iovpsOlFNkb3oc+QsWGQTKlrVPEpitIoKGrRndbmSOn+hyWs/eoNOpp9HEv7JaLf6G0UqOJTFKVRkHhKLwB2/rCmjHvUktnsozVp46eFQywlDKjiUxSlUdC21zAAjm458f3ejPXf0b9gJVu7/ZzY2NhwiabUMar4FEVpFHTs3o/DJgnZtbTU7fBH/0eOiaffz24Ko2RKXaOKT1GURoEnysO2pml0PfIfjLeYjHXfMfj4l6zq9HNatm4XbvGUOkQVn6IojYbC3hfQmqOs/+wFit+5gSMk0ffiP4dbLKWOUcWnKEqjYdD4q9gmnen/31voUbSFzel/o2VyzW2HptQP9BteiqI0GuLjE4ie9jbffPokCT3HMPysi8ItkhIGVPEpitKo6Ny9F53/57Fwi6GEETV1KoqiKI0KVXyKoihKo0KMMeGWoRQRyQS210BUrbE7wdcH6pOsUL/kVVlrj/okb32SFeqXvDUla1djTJ2tMoooxVdTiMgyY8zQcMsRCvVJVqhf8qqstUd9krc+yQr1S976JKsbNXUqiqIojQpVfIqiKEqjoqEqvn+GW4AqUJ9khfolr8pae9QneeuTrFC/5K1PspbSIOf4FEVRFCUYDXXEpyiKoigBUcWnKIqiNCoalOITkXNEZJOIbBGRO8Itjz8i0llEvhSR9SKyTkR+57jPFJHdIrLS+Z0XblkBRCRDRNY4Mi1z3FqJyL9F5Afnf8sIkLO3K+9WisgxEZkRSfkqIs+JyAERWetyC5iXYpnl1OPVIjI4AmR9UEQ2OvK8IyItHPduIpLnyuPZdSlrBfIGLXsR+aOTt5tEZEIEyDrfJWeGiKx03CMhb4O1WRFZd0PGGNMgfkAUsBXoAcQCq4B+4ZbLT8b2wGDnOAnYDPQDZgK/D7d8AeTNAFr7uT0A3OEc3wHcH245A9SDfUDXSMpX4AxgMLC2srwEzgM+AgQYAXwXAbKOB6Kd4/tdsnZzh4ugvA1Y9s7ztgqIA7o7bUZUOGX1838YuCuC8jZYmxWRdTfUX0Ma8Q0DthhjfjTGFAKvAZPCLFMZjDF7jTHfO8fHgQ1Ax/BKVWUmAS84xy8AF4ZPlID8FNhqjKmJLwDVGMaYr4HDfs7B8nIS8KKxLAZaiEj7OhGUwLIaYz41xhQ7p4uBTnUlT2UEydtgTAJeM8YUGGO2AVuwbUedUJGsIiLAZcCrdSVPZVTQZkVk3Q2VhqT4OgI7Xee7iGClIiLdgEHAd47TjY5p4LlIMB86GOBTEVkuIr9y3NoZY/Y6x/uASNu6+nLKNhyRmK8lBMvLSK/L12J79SV0F5EVIvKViIwOl1ABCFT2kZy3o4H9xpgfXG4Rk7d+bVZ9rbtAw1J89QYRaQq8BcwwxhwDngJOBdKAvVhzRyQwyhgzGDgXuEFEznB7GmvbiJj3YUQkFrgAeMNxitR8LUek5WUwROTPQDEwz3HaC3QxxgwCbgFeEZFm4ZLPRb0pexc/p2ynLWLyNkCbVUp9qbtuGpLi2w10dp13ctwiChGJwVagecaYtwGMMfuNMV5jjA94hjo0vVSEMWa38/8A8A5Wrv0lpgvn/4HwSViOc4HvjTH7IXLz1UWwvIzIuiwi04GfAVOdxg7HZHjIOV6OnTPrFTYhHSoo+0jN22jgYmB+iVuk5G2gNot6Vnf9aUiKbynQU0S6Oz3/y4H3wixTGRwb/hxggzHm7y53tw38ImCt/7V1jYg0EZGkkmPs4oa12Dy92gl2NbAgPBIGpEyPORLz1Y9gefkeMM1ZITcCyHKZlcKCiJwD/AG4wBiT63JvIyJRznEPoCfwY3ikPEEFZf8ecLmIxIlId6y8S+pavgCMAzYaY3aVOERC3gZrs6hHdTcg4V5dU5M/7Iqizdie0Z/DLU8A+UZhTQKrgZXO7zzgJWCN4/4e0D4CZO2BXf22ClhXkp9AMvA58APwGdAq3LI6cjUBDgHNXW4Rk69YhbwXKMLOe/wiWF5iV8Q96dTjNcDQCJB1C3bupqTeznbCTnbqx0rge+D8CMnboGUP/NnJ203AueGW1XGfC1zvFzYS8jZYmxWRdTfUn36yTFEURWlUNCRTp6IoiqJUiio+RVEUpVGhik9RFEVpVKjiUxRFURoVqvgURVGURoUqPkVRFKVRoYpPURRFaVSo4lMURVEaFar4FEVRlEaFKj5FURSlUaGKT1EURWlUqOJTFEVRGhURo/hEpJuIGGdfKqUWEZHpIrKojtJKEJEPReSIiPyhLtL0Sz9DRMbVQToLReS6IH5at8OEk++nVdWvhmUIWgdFZIyI7Arkp5RHRDqIyHER2SQiZ51sPBGj+JSTQ0RmikiRiGS7fnWuYCpgHJAKdDbGPFDi6DQG3cImVQThlOHMKoS/QkS2i0iOiLwrIq0qCJsmIstFJNf5n+byixOR2SKyX0QOi8j7ItIxQBw9RSRfRF52uU0UkUUiclRE9onIsyX7Nzr+rURkvogcEpGDIjLPvXu4U/55rjr7aRXuv9HUHRGZ62wAHGr4m53yOCYiz4lIXAVhfyoiG5268aWIdA0QppWIZLo7yiISKyJvOuVgRGSM3zUf+bVHhSKyxuWfJiLfiEiWiOwSkTv9rr9MRDY4Cm69iFxY4meM2WOMSQLeB34bar74U2OKT3uzYWW+Maap6/dA5ZfUGa2ADGNMdrgFqQ7Oxpph7yiKSH/gaeAqoB2QC/wjSNhY7AahLwMtgReABY47wO+A07Edkw7AEeDxAFE9id3o2U1z4F7nur5AR+BBl/+9TprdgVMdWWf6xXG+q86Or+i+I5lIaftEZAJwB/BToCt2T827g4RtDbwN3Il9Rpfh2v3dxf3AhgDui4ArgX3+HsaYc93tEfAf4A1XkFeAr510zwR+IyIXOHJ1xNbXW4BmwG3AKyLS1i+Ztdg9AU+Kaj3Ijsa/XURWAzkiEi0iI0TkP05PcJW7NyDWHPR/IrLE6ZEsCNZbFZFrXFr/RxH5Hz//SSKy0olnq9gdohGR5iIyR0T2ishuEblXnF2MK7iPU0XkC7/eaQuX32ERGeycd3B6QGOc8wtEZJ1zvwtFpK9f/vxeRFY7vZv5IhJf9ZyuOiJyh5MvJb2mi4KEExF5REQOOHm5RkQGOH5xIvKQiOwQOyqYLSIJVRQlGvBVImuy2NHGMRFZ6pSZu4dpROR6EfnByecnRUQcv6Bl5yLdyYMjIvJ8SRmISEsR+ZdTnkec406udBeKyN9E5FusgulRyb12FZFvnTz/1Glc3Ex18vKgiPy5kriCMRV43xjztdOZuBO4WFyjLRdjsPn/qDGmwBgzC7tRaImJqDvwiTFmvzEmH9vw9XdHICKXA0exm46WYox5xRjzsTEm1xhzBHgGGOkK0h141xhzzBiTBbzjH3dNUFnd8Qs7SkR2StkRynlO+3JQRB4Up3NTWb2SAG1fJaKmVdQOiMitzjO4V0SuOZm8wO6EPscYs84pk78C04OEvRhYZ4x5wyn7mcBAEenjkuknwADgefeFxphCY8yjxphFgLcigcSOzEcDL7qcuwHzjDFeY8xWrBItqRudgKPGmI+M5QMgB9t5cuPD1u2To5q782Zgd+TtDCRge32HsDv0eoCznfM2TviFwG5sZjYB3gJedvy6YXf6jXbOJzo3K9heQS4w2PEbBmQ58XucdPs4fu9ge8RNgLbAEuB/KrmP05y44oA22N7Ioy7/XwLrgUTgE+Ahx70XtlDOBmKAP2B3qo515c8SbK+4FbbndH0QGUZhG5hgv1FBrptZkod+7pc66XqAKY6c7R2/6cAi53gCsBxo4eR1X1e4R7C7V7cCSswL/1eF+hGD3Qm7nHx+4V5zfolAP+xO34tc/gb4lyNjFyATOCfEssvA9g47O/fxLXCv45eM3eU60bm/N7CNdcm1C4Ed2IcyGoip4B4WYned7oV9FhYC9/nV7Wccv4FAAdA3SFwVlfcC4HY/t2xgSICwNwMf+bn9C7jVOR7q5EcHJw9e8cu7ZsBmbGMUsJ65wj4KvOY6/xnwIXbU1xL4ApjhVy77nbL8FBh4km1QKHXnNOAcx2+Yn9+XTr3o4tzrdVWoVyudepUQQjsZsB3Adk6KgXuwz8t52LauZYB4ujh1o0uQdFYBU1znrZ17TA4Q9jHgKT+3tcBk5zgKu+v7EFztRYB4dgFjKrj3u4CFfm7/C9zn3G9vJ450V7pfARc4xxc6/k384hiLtVAEzItK683JXORXoNe6zm8HXvIL8wlwtXO8EKcxcM77AYXODXbDpfgCpPUu8Dvn+GngkQBh2mEblASX28+BL6t4XxcCK/zc3gPWAKuBOMftTuB1VxgPVrGPceXPlS7/B4DZ1cnzALLOdPLwqOvXIUC4lcAk57i0ImN7/5uBEYDHFV5welout9OBbSHKlQYUYRu30yoIF+WE6+1yu5fyjdco1/nrwB2hlJ1TBte7zs8DtlYg8xHX+ULgnhDvdyHwF9f5b4CPneOSut3J5b8EuPwkyvtz/DpP7jrn534nLmXkuM0DZjrHzbFKw2Ab3xVAK1fYx3CULBUoPqyCOAL0crl1AD7D9sx9wL9xOoSO/0hsJyAR+CPWZNaiinkRat35I7AdGOB3vcHpQLnK7PMq1KtrQ5QzgyDtAFbx5eFq94ADwIiTqBtb/e4nxrnHbgHCzsHVFjtu3wLTneObcRQj1VN8W0ridLn9xHEvduS728//F9jOXDG2EzAxSNxvONc/WtW8qok5i52u467ApY456qiIHMWOZNoHCb8dWzj+JiFE5FwRWeyYGY9iG6yScJ2xhexPVye+va70n8aO/IIiIu1E5DWxptFjWBuzv0zPYEeqjxtjChy3Ds49AGCM8Tn3514g4LaB5wJNK5LlJHndGNPC9dsjItPEmoJL8mEAAfLZGPMF8AR2HueAiPxT7CKENthGabkrjo8d90oxxqzEjqL+C8yoIGgb7GjKXS92BggXMB9DLDv/OtfBuTZRRJ4Wu1DkGLZX30LKmsYDyRKMysq6JupCNnYk5qYZcPwkwj6JHdEkYy0kbwMfgV2AgF2Y9EhFwojICOxI8RJjzGaX1+vYDlWSk+ZWbNkAYIz51hiTZ6yp9P+wHbbRFaUVgFDrzgzsM7I2gF+wulHVelUZFZX9IWNMcQX+oeJf3iXHVaobItIBu3DkZM3xgDUtA6cAb7rcWmHbkXuAeGxbPkFEfuP4j8N2DMYAsVhr37PiWpTlhBuM1Ql9jDEzqipbTSg+4zreiR3xuRvhJsaY+1xhOruOu2B7bAfdEYpdifQW8BDQzhjTAms2EVc6/jbfEvcCoLUr/WbGmMrmFv7XuY8UY0wz7KRtSVqISFOsKWcOMFNOzEvuwSrbknDi3N/uStIrh4iMlrIrofx/ITcKYldnPQPciDVztMCaMSRQeGPMLGPMEOwIvBd2Qvkgtifa35WXzY2drA4JY+cOPnLiDUYmtmfXyeXWOUjYQFRYdgHi64ItN4BbsaaW4c61Zzju7uvd9TsSWIc1lQIgIj2wymtzkLCpJfOhDqmOO9gR7lxjzGGnM/c4MMyZmxyDHanuEJF9wO+BySLyvSvtQVhLyLXGmDJzgE7cTxtjcoydi5yNbaiCYQhSPysg1LpzKXChiPwugF+wuhFKvYrouuEc7zfGHKosrIg0wbap67BTSe2B9U7ZP4atF/ukkvUSflwNvG3KLmzrAXiNMS8aY4qNMbuwVoeSupEGfG2MWWaM8RljlgLfYTthbvoC640xm6ogTyk1vUrtZeB8EZkgIlEiEi/2PRV3xbxSRPqJSCJW679pjPGfII3FPsyZQLGInAu4V33NAa4RuxzXIyIdRaSPMWYvdr7gYRFp5vidKiJnViJ3ErYHlCV2VdFtfv6PAcuMMdcBH2AfYrC92omOHDHYhrQAu4qpShhjvjFlV2b6/76pQnRNsA9lJtiFQtgRXzlEJF1Ehjvy5wD5gM8ZvT4DPCLOiionnye4ri23lDkABdjyDIhT9m9jOxSJzuT6tJDu0lJZ2QHcICKdnA7Lnzmxei0Jq9yPOn7/rwrphot52GdstNNY3YNtXAL16hdiFx/8VuxCpRsd9y+c/0uBaWIXhMVgTX17jDEHgX9iG8I05zcbW/cnAIhdAPUxcJMx5v0AaS8FrhP7HmcC8CvsNAEi0kVERopdFh8vIrdhR1PfOv5jRKRSpVKFurMHu9LxdyLyaz+/28QucuqMXeXqrhuV1atI40XgF0772gL4CzA3SNh3gAEiMlnsQpu7gNXGmI3Yzmo3TpT9XVgzeFpJW+3Up5IFOiXl6B4sJACXBUh/s/WWK5z2+RTsGoTVjv9SYHTJCM/pXI12+ZcQg21bTooaVXzGmJ3AJOBP2EZ3J7bCuNN5CZsZ+7BD3XLvYjgP8W+xiuUIcAW2Z1nivwS4BmuGycJOhpaMvKZhG9r1zrVvUtbUGoi7gcFOXB9gHybArh7FToyXPDC3AINFZKrT27gS21M+CJyPXaJdWEl6tYoxZj3wMNbMuB9IwWlUAtAMq+COYE09hzixLP12rC1+sWPu+Qw7QsJpKI5j5z0rwkfl9exG7HzTPmz9eJXQK3XQsnPxCrZD9CPW5Hav4/4odp7pILAY25CHnYpG+MaYdcD1WAV4ANtA/8Z17Uci8icnbCF2bmoa1pR4LXChq37+HtvR+QH7vJ4HXORcm2uM2VfywyqBfGNMpnPtrVhT4xyXVaJkJImTVjfsHNBubE//ascvCXgKW+d2Y5+vc10jk86E3nkMqe4YY3Zgld8dUvZDAwuwi7tWYuvPHMc9lHpVpzgdhmwR6RLI3xjzMdZM+CV2UdZ2XJ05savPpzphM7ELu/6GLYfhwOWOX4Ff2WcBRc5xCZuwncaO2HUcebisX9h6d9SRxS3jMeyK0puddFdirVH3Ov5fYeeT3xSR41jL3/8aY/zf84yiktXiFSHOJGGdICILsRPkz9ZZokqtICJXYs2gf6wk3HisJaCPMeZwiHHfD5xijLm60sBKg0NEngXeMMZ8chLXat1p4Ih95WQW0NYYc9nJxBERL14q9Q9jzMuVhwKsue3fwDoRedgY85B/AMdEFYsdPaZjV3UF/PyX0vBxphRCQutO40Lswps1wDbghpONp9EoPhGZjTVL+vOyMeb6upanseCY1aZWEiwJa6LqgDXNPow1QUUUIhLs6zPnVnEOVqk5wl53HNPj+iDe/Rwzq1IDGGP2UI0vtpRQp6ZORVEURQk3Yf/2oKIoiqLUJRFl6mzdurXp1q1buMVQFEVR6pDly5cfNMaE9HGMmiCiFF+3bt1YtmxZuMVQFEVR6hAR2V55qJpDTZ2KoihKo0IVn6JEGEszDrP7aF64xVCUBosqPkWJMHbMuYrnH72z8oCKopwUETXHF4iioiJ27dpFfn5+uEVR6hHx8fF06tSJmJiYcItSJYzPx+SoRdi9Ocu9668oSg0Q8Ypv165dJCUl0a1bN8p+ZF5RAmOM4dChQ+zatYvu3buHW5wq4fV6I/+hVJR6TsSbOvPz80lOTlalp4SMiJCcnFwvrQTF3uLKAymKUi0iXvEBqvSUKlNf64xPFZ+i1Dr1QvEpSmNBR3yKUvuo4gsBEeHWW28tPX/ooYeYOXNm+ASqhIULF/Kf/1R5L9xSVq5cyemnn07//v1JTU1l/vz5lV+k1AjeYteezPodXUWpFVTxhUBcXBxvv/02Bw8erNF4jTH4fCe9l2JQqqv4EhMTefHFF1m3bh0ff/wxM2bM4OjRozUnoBIUb/GJEV9xQW4YJVGUhosqvhCIjo7mV7/6FY888kg5v8zMTCZPnkx6ejrp6el8+63d6HzmzJk89NCJ5egDBgwgIyODjIwMevfuzbRp0xgwYAA7d+7ktttuY8CAAaSkpJSOrhYuXMiYMWO45JJL6NOnD1OnTiXQThqzZs2iX79+pKamcvnll5ORkcHs2bN55JFHSEtL45tvvqlQxquuuorTTz+dnj178swzzwDQq1cvevbsCUCHDh1o27YtmZmZ5dJ+4403GDBgAAMHDuSMM84A7GKka665hpSUFAYNGsSXX9oNmOfOncuFF17I2WefTbdu3XjiiSf4+9//zqBBgxgxYgSHD9s9ap955hnS09MZOHAgkydPJje3fOM/YsQI1q07sdn3mDFjGsyn7rwuU2deXrBdkBRFqQ71auX03e+vY/2eYzUaZ78Ozfh/5/evNNwNN9xAamoqf/jDH8q4/+53v+Pmm29m1KhR7NixgwkTJrBhw4YK4/rhhx944YUXGDFiBG+99RYrV65k1apVHDx4kPT09FIlsmLFCtatW0eHDh0YOXIk3377LaNGjSoT13333ce2bduIi4vj6NGjtGjRguuvv56mTZvy+9//HoArrrgiqIyrV69m8eLF5OTkMGjQICZOnEiHDh1K41+yZAmFhYWceuqp5e7jnnvu4ZNPPqFjx46lI8Inn3wSEWHNmjVs3LiR8ePHs3nzZgDWrl3LihUryM/P57TTTuP+++9nxYoV3Hzzzbz44ovMmDGDiy++mF/+8pcA/OUvf2HOnDncdNNNZdKdMmUKr7/+OnfffTd79+5l7969DB06tMI8ry/4fCdMnfm52SS1bBdGaRSlYaIjvhBp1qwZ06ZNY9asWWXcP/vsM2688UbS0tK44IILOHbsGNnZFffUu3btyogRIwBYtGgRP//5z4mKiqJdu3aceeaZLF26FIBhw4bRqVMnPB4PaWlpZGRklIsrNTWVqVOn8vLLLxMdHbgfU5GMkyZNIiEhgdatWzN27FiWLFlSet3evXu56qqreP755/F4yleVkSNHMn36dJ555hm8Xm/p/Vx5pd3vt0+fPnTt2rVU8Y0dO5akpCTatGlD8+bNOf/88wFISUkpvbe1a9cyevRoUlJSmDdvXpmRXQmXXXYZb775JgCvv/46l1xySYX5XZ/wuUydBbnHwyiJojRc6tWIL5SRWW0yY8YMBg8ezDXXXFPq5vP5WLx4MfHx8WXCRkdHl5m/c79T1qRJk5DSi4uLKz2OioqiuLj8ir8PPviAr7/+mvfff5+//e1vrFmzplyYYDJC+WX/JefHjh1j4sSJ/O1vfytV0v7Mnj2b7777jg8++IAhQ4awfPnykO/H4/GUnns8ntJ7mz59Ou+++y4DBw5k7ty5LFy4sFw8HTt2JDk5mdWrVzN//nxmz55dYbr1CfeqzgI1dSpKraAjvirQqlUrLrvsMubMmVPqNn78eB5//PHS85UrVwJ2i6Xvv/8egO+//55t27YFjHP06NHMnz8fr9dLZmYmX3/9NcOGDQtJHp/Px86dOxk7diz3338/WVlZZGdnk5SUxPHjJ0YLwWQEWLBgAfn5+Rw6dIiFCxeSnp5OYWEhF110EdOmTatwNLV161aGDx/OPffcQ5s2bdi5cyejR49m3rx5AGzevJkdO3bQu3fvkO4H4Pjx47Rv356ioqLSeAIxZcoUHnjgAbKyskhNTQ05/kjH5y0qPS5UxacotYIqvipy6623llndOWvWLJYtW0Zqair9+vUrHX1MnjyZw4cP079/f5544gl69eoVML6LLrqI1NRUBg4cyFlnncUDDzzAKaecEpIsXq+XK6+8snQhyW9/+1tatGjB+eefzzvvvFO6uCWYjGBNpWPHjmXEiBHceeeddOjQgddff52vv/6auXPnkpaWRlpaWqmyvOuuu3jvvfcAuO2220hJSWHAgAH85Cc/YeDAgfzmN7/B5/ORkpLClClTmDt3bpmRXmX89a9/Zfjw4YwcOZI+ffqUur/33nvcddddpeeXXHIJr732GpdddlnIcdcHSkzGAN58VXyKUhtIoJWC4WLo0KHGf3Xehg0b6Nu3b5gkatjMnDmzzCKYhkZ9rDub1y2n1xtnAbDi9McZNGFamCVSlNpHRJYbY+pshZqO+BQlgvC5Rny+gpwwSqIoDZd6tbhFqVki+eszjRX3tzq9har4FKU20BGfokQQ7hGf0S+3KEqtoIpPUSIIr+/Eqk5TpIpPUWoDVXyKEkEY74l3P6VQFZ+i1Aaq+BQlgjCuT5ZRnBc+QRSlAaOKL0TeffddRISNGzcGDZORkcGAAQNqVY6VK1fy4YcfnvT1JS+89+vXj/79+/PYY4/VoHRKdTGuxS0eNXUqSq2gii9EXn31VUaNGsWrr74a0D/Q58Sqivvl5WBUV/FFR0fz8MMPs379ehYvXsyTTz7J+vXrTzo+pWYx5kQd8Hh1xKcotYEqvhDIzs5m0aJFzJkzh9dee63UfeHChYwePZoLLriAfv36AVYBTp06lb59+3LJJZeUbqvz+eefM2jQIFJSUrj22mspKCgA7KfNbr/9dgYPHswbb7xRJl3/bX8KCwu56667mD9/PmlpacyfP5+cnByuvfZahg0bxqBBg1iwYAFgtwGaNGkSY8aMoWfPntx9990AtG/fnsGDBwOQlJRE37592b17d7l7/uqrr0q/2jJo0CCOHz+OMSboFkpnnnkmkyZNokePHtxxxx3MmzePYcOGkZKSwtatWwF4//33GT58OIMGDWLcuHHs37+/XLqXX345H3zwQen59OnTSz9I3Rgwrs5PlJo6FaVWqF/v8X10B+wr/xHmanFKCpx7X4VBFixYwDnnnEOvXr1ITk5m+fLlDBkyBLDf4Vy7di3du3cnIyODTZs2MWfOHEaOHMm1117LP/7xD2688UamT5/O559/Tq9evZg2bRpPPfUUM2bMACA5Obn0u55u/Lf9iY2N5Z577mHZsmU88cQTAPzpT3/irLPO4rnnnuPo0aMMGzaMcePGAXZLobVr15KYmEh6ejoTJ04ss31PRkYGK1asYPjw4eXSfuihh3jyyScZOXIk2dnZxMfH8/bbbwfdQmnVqlVs2LCBVq1a0aNHD6677jqWLFnCY489xuOPP86jjz7KqFGjWLx4MSLCs88+ywMPPMDDDz9cJt2SLYcmTpxIYWEhn3/+OU899VSIhdkAcK3qjPblVxBQUZSTpdZHfCJyjohsEpEtInJHbadXG7z66qtcfvnlgB2RuM2dw4YNo3v37qXnnTt3ZuTIkQBceeWVLFq0iE2bNtG9e/fS73VeffXVfP3116XXTJkyJWC6gbb98efTTz/lvvvuIy0tjTFjxpCfn8+OHTsAOPvss0lOTiYhIYGLL76YRYsWlV6XnZ3N5MmTefTRR2nWrFnAtG+55RZmzZrF0aNHiY6OrnALpfT0dNq3b09cXBynnnoq48ePB8puObRr1y4mTJhASkoKDz74YMAth84991y+/PJLCgoK+OijjzjjjDNISEgIeO8NEePs6JFNIjFq6lSUWqFWR3wiEgU8CZwN7AKWish7xpiTm1SqZGRWGxw+fJgvvviCNWvWICJ4vV5EhAcffBAov8VQsG1+KiLYNkWhbPtjjOGtt94qtwPCd999F1SWoqIiJk+ezNSpU7n44osDpn3HHXcwceJEPvzwQ0aOHMknn3xS4T2EsuXQTTfdxC233MIFF1zAwoULA345Jj4+njFjxvDJJ58wf/780g5HY6FkVWeuJBCjIz5FqRVqe8Q3DNhijPnRGFMIvAZMquU0a5Q333yTq666iu3bt5ORkcHOnTvp3r0733zzTcDwO3bs4L///S8Ar7zyCqNGjaJ3795kZGSwZcsWAF566SXOPPPMStMOtO2P/5ZDEyZM4PHHH6fkY+MrVqwo9fv3v//N4cOHycvL491332XkyJEYY/jFL35B3759ueWWWypMOyUlhdtvv5309HQ2btxYrS2UALKysujYsSMAL7zwQtBwU6ZM4fnnn+ebb77hnHPOCTn+hoDx2U5CviQSq4pPUWqF2lZ8HYGdrvNdjlspIvIrEVkmIssyMzNrWZyq8+qrr3LRRReVcZs8eXLQ1Z29e/fmySefpG/fvhw5coRf//rXxMfH8/zzz3PppZeSkpKCx+Ph+uuvrzTtQNv+jB07lvXr15cubrnzzjspKioiNTWV/v37c+edd5ZeP2zYMCZPnkxqaiqTJ09m6NChfPvtt7z00kt88cUXpYtXSlaJzp49u3TLokcffZQBAwaQmppKTEwM5557brW2UAL7bdBLL72UIUOG0Lp161L3ZcuWcd1115Wejx8/nq+++opx48YRGxsbcvwNgZIRX0FUInGmIMzSKErDpFa3JRKRS4BzjDHXOedXAcONMTcGCq/bEtUcc+fOLbMIpjFSH+vO4vefZcTyW1kbP5iu+RtJmrk33CIpSq3T0LYl2g10dp13ctwURQlAyesMxdFNdMSnKLVEbSu+pUBPEekuIrHA5cB7tZymgn3/rTGP9uotxs7xeaObECtefEWFYRZIURoetar4jDHFwI3AJ8AG4HVjTPk17JXHU9OiKQ2c+lpnSub4vLFNAcjLzQ6nOIrSIKn1F9iNMR8CJ/2Nrfj4eA4dOkRycnJIrwYoijGGQ4cOER8fH25Rqo6j+ExsEgAFecdp0rxVOCVSlAZHxH+5pVOnTuzatYtIXPGpRC7x8fF06tQp3GJUmZIRnzgjvgId8SlKjRPxii8mJqbMl1EUpUFj7JdbJN5+TacgTxWfotQ0+pFqRYkgxHmB3ZNgTZ1FqvgUpcZRxacoEUSJqTM6oTkARfmq+BSlplHFpyiRhLMfX0yiNXV683PCKY2iNEhU8SlKBCHOHF9soh3xFReo4lOUmkYVn6JEECWmzrgmVvF5VfEpSo2jik9RIglH8SUktQDAFKriU5SaRhWfokQQ4szxJTgjPlOYG05xFKVBoopPUSIJR/HFJybhM4Ip0l3YFaWmUcWnKJGEz0ux8RAV5SGPOKRITZ2KUtOo4lOUCEJMMcVEAZAvcYiO+BSlxlHFpygRhPiK8ZYoPuLxFKviU5SaRhWfokQQ4iumWKziK/TE4fGq4lOUmkYVn6JEEr4iip1vxxd64onWEZ+i1Diq+BQlghBfMT7H1FnkiSfalx9miRSl4aGKT1EiCLeps9iTQIwqPkWpcVTxKUok4SvC65g6vVHxxKriU5QaRxWfokQQ4vPic0Z83ugE4owqPkWpaVTxKUoEIb5ivGJHfL7oBOJMQZglUpSGhyo+RYkgok0hXokBwBedSLyO+BSlxlHFpygRRJSvkCKJBUBiEoiXotKtihRFqRlU8SlKBBFtCin2WMVHbBMACvKywyiRojQ8VPEpSgQR7SvE64kDQGITAcjLUcWnKDWJKj5FiSCiTSEmyo74PHF2xJefezycIilKg0MVn6JEEDG+QnxR8QB4nBFfoZo6FaVGUcWnKBFEE3LwxjQFIDpe5/gUpTZQxacoEYLx+Whi8vDGJgEnFF9xvm5Gqyg1iSo+RYkQCgtyiBEvJq4ZALEJVgEW5+uIT1FqElV8ihIh5B07Yg/irMKL0RGfotQK1VJ8IjJTRHaLyErnd57L748iskVENonIhOqLqigNm2NZhwGIadIcgLiSEV+BKj5FqUmiayCOR4wxD7kdRKQfcDnQH+gAfCYivYwx+gkKRQnC8SMHAUhISgYgLtGO+EyhKj5FqUlqy9Q5CXjNGFNgjNkGbAGG1VJaitIgyDu8B4DE5I4AJDSxIz5TmBs2mRSlIVITiu9GEVktIs+JSEvHrSOw0xVml+NWDhH5lYgsE5FlmZmZNSCOotRPvFm7AWjetjMA8fH2tQZVfIpSs1Sq+ETkMxFZG+A3CXgKOBVIA/YCD1dVAGPMP40xQ40xQ9u0aVPVyxWlweDL2kORiaJF6w4AeKKjyTcxUKSKT1Fqkkrn+Iwx40KJSESeAf7lnO4GOru8OzluiqIEIeZYBvuj2tEpKqrULV/ikGJVfIpSk1R3VWd71+lFwFrn+D3gchGJE5HuQE9gSXXSUpSGTqu87RyO71rGLZ94PEV5YZJIURom1V3V+YCIpAEGyAD+B8AYs05EXgfWA8XADbqiU1GCU1hYREfvbla1OKOsuyeOKK8qPkWpSaql+IwxV1Xg9zfgb9WJX1EaC3u3b6CrFBPdtncZ90KJJ8pbvV3Yjc/H1vXLOLJjPQK06T6Azr0G44nS71cojZOaeI9PUZRqcnDbWroCzTv3L+Ne5Ikn5iRHfNnHs1j99kN0y3iN08yBEx5LIJOWZCSfQbO0C+k5/Dw8sfFlri3Mz+XgngyOHdhO7qFdFB7dC8Yg0TF4ouPwxCYSFZdAdFwisXGJRMcn4vPE4TXg9fko9vrw+XxgjI3QGMAgmNJjjEGsZzl/kVDu0JQ5EwSPR4gSEBE8HvAgNGl1Cm1PG3xSeag0TFTxKUoEULB3AwCnnDawjHtxVAKxxceqHN/qz1+h/Td/4iccYV1cGrt63cApvYdT5IPDW77Ds/Uz+h38mCafLyD78wT2xHSlmGgSvcdo4TtCC47TAfv1ifqO1wgHf72a1qd0CbcoSoSgik9RIoDow5vJpCVtmieXcfdGxRNbeCDIVeUpyM9l1dO/ZNiRf7HV051D5/yT/sPGlwlzaurpwAyyc7JZ/M17+DZ9RNPcXcSYIg7Hd2Ff/CB8TdsT1aIj8a06kdS2C63adSEqKoqiwgIKCwsoyM+hMC+XwvwcCvNz8BbkEm0KiRLwiAePR/B4PIhHAOcn9r9BrFM5N9dxAIwJ4CilY0aMMfh84MPg8xmMgdzdaxi9+T72blyqik8pRRWfokQAzXN+5EBcV/zfZC2OTiTWFIQUx5HMvez752SGFa3jvx2uZvDV9xMXlxA0fNMmTRlxzhVwzhXVkDyyOXIwHTbfR+6u1cDkcIujRAiq+BQlzBifj45FO1nf8rzyftEJxJvKF7cc2L2d/GfPpbvvAMuGPczpE6+rDVHrHS1bt+MArYjK3BBuUZQIokEpPp/Xy4pHL8HXfQy9zrqS5i2SK72mIozPR0FBPgUFeUHsLCHgN0sf0px9CDP7IcUTUlISUnqhSFBj91YuyMndrUjNrFo8qeypAof27qCj5GHa9C7n54tOIL6SEd/BfTvIe/Y82vgOknHeywwdfk5tiVov2ZtwGm2Or6uRuIzPR0FOFnm52eTlF2B8XsR4ifKAR+ziGhFxzL0exFloI+IBEWv09ZRUKI/r+RPnX1mzMARzo6xbaSUN/DyfbPNVOUJ8QmJtRV5rNCjFd3DfDtpmb6Tz6i/wrfp/bIvqQlZ8BwpjW9pKZwziK8LjK8TjLSDal0+Ur5BoXyExpoAYU0iMKSKOAmJNEXEUES+G+MqTVpSTpuQjtk07DijvGZNIAgX4vL6Arx8c2r+T7H+eR1tfJtvPfYG+qvTKkddxJAO3PELm7q206XhqSNfs2fkj+9YupGDnKmKzttIqfyfNvYdpZrKJFx/xQMtKY2n4rPH1IOWeFeEWo8o0KMXXtmN3zJ3r2Lj8C46u+YSEzFU0zd9Hs9zNCAYvHnzioUjiKJJYij1xFHtiKYxOwuuJwxcVhy86DhMVj4mOg6h4iIlHomIxnqjKBfDnpLpZJ9c1k5NI62Q7gYHSMiHEJiGEqbmeaQ1FVGPRVByRJ74ZQ4cH2LYyNhGPGHILcklMbFrG60jmXo49PZF23gNsmzCX/iPOrRlhGxit086DLY+w7b/v0OaS3wcM4y0uZsN3H5O94i06HfoPncw+OgDFxsPeqPYciutMZuJAvPEt8ca1JCoukeiYGMQTjRcPxoDPgDH2FQ5jfM55yWsbxtaB0gruHBuwy3FOPFf2OXGOjeu4pA458VGyDMgVZyjPWE2SH9e6TtOrKRqU4gMQj4c+6eMgPaRPjCpKRCOx1oyUl3O8jOLLOpzJwdkT6eLdw+Zxc0j5Sfn5QcVyar+hbPN0pc36FygouJG4OGvD8RUX88PSTzm2/HV6HPyCAWSRZ2LZ2GQoezpNpUWfM+nSbxid4xPKfHhYqf80OMWnKA0Jj6P4CnKzS92OZR1mzz9+xqnFGWwc8zSpoyeFS7x6gXg8ZJ9+Gynf3siqRyaS32k0nkOb6XbkP/TmCLkmjvVJp5PR70L6nTGZQU2bhVtkpZZRxacoEUxUnB3lFebal9gP7ttB1jMX0rN4G+tHzSJ17KXhFK/ekHL2VSzOzKDf5n/QbMsyskwTtjUdTEbfC+l75qUMTWoebhGVOkQVn6JEMJ4W1siWl5nBlrxsEt+/jva+LNae+TRpZ10WZunqFyOuuJPiotvJyj5GUrOWpEWdxLy90iBQxacoEUybrn0AaPXFbbQyRzkoLdlz4ZukDTqjkiuVQETHxNK8Zf1ckKHUHPp5dkWJYE5p34Wd0oF2HGJV87NI/O1/OU2VnqJUCx3xKUoE44ny0PqW/7Ln0H6Gdiv/gruiKFVHFZ+iRDgJSS1ISGoRbjEUpcGgpk5FURSlUaGKT1EURWlUiKm9r5dWGRHJBLbXQFStgYM1EE9dUJ9khfolr8pae9QneeuTrFC/5K0pWbsaY/x35ao1Ikrx1RQisswYMzTccoRCfZIV6pe8KmvtUZ/krU+yQv2Stz7J6kZNnYqiKEqjQhWfoiiK0qhoqIrvn+EWoArUJ1mhfsmrstYe9Une+iQr1C9565OspTTIOT5FURRFCUZDHfEpiqIoSkBU8SmKoiiNigal+ETkHBHZJCJbROSOcMvjj4h0FpEvRWS9iKwTkd857jNFZLeIrHR+EbGdtohkiMgaR6ZljlsrEfm3iPzg/G8ZAXL2duXdShE5JiIzIilfReQ5ETkgImtdbgHzUiyznHq8WkQGR4CsD4rIRkeed0SkhePeTUTyXHk8uy5lrUDeoGUvIn908naTiEyIAFnnu+TMEJGVjnsk5G2wNisi627IGGMaxA+IArYCPYBYYBXQL9xy+cnYHhjsHCcBm4F+wEzg9+GWL4C8GUBrP7cHgDuc4zuA+8MtZ4B6sA/oGkn5CpwBDAbWVpaXwHnAR4AAI4DvIkDW8UC0c3y/S9Zu7nARlLcBy9553lYBcUB3p82ICqesfv4PA3dFUN4Ga7Misu6G+mtII75hwBZjzI/GmELgNWBSmGUqgzFmrzHme+f4OLAB6BheqarMJOAF5/gF4MLwiRKQnwJbjTE18QWgGsMY8zVw2M85WF5OAl40lsVACxFpXyeCElhWY8ynxphi53Qx0Kmu5KmMIHkbjEnAa8aYAmPMNmALtu2oEyqSVUQEuAx4ta7kqYwK2qyIrLuh0pAUX0dgp+t8FxGsVESkGzAI+M5xutExDTwXCeZDBwN8KiLLReRXjls7Y8xe53gf0C48ogXlcso2HJGYryUEy8tIr8vXYnv1JXQXkRUi8pWIjA6XUAEIVPaRnLejgf3GmB9cbhGTt35tVn2tu0DDUnz1BhFpCrwFzDDGHAOeAk4F0oC9WHNHJDDKGDMYOBe4QUTK7IBqrG0jYt6HEZFY4ALgDccpUvO1HJGWl8EQkT8DxcA8x2kv0MUYMwi4BXhFRJqFSz4X9absXfycsp22iMnbAG1WKfWl7rppSIpvN9DZdd7JcYsoRCQGW4HmGWPeBjDG7DfGeI0xPuAZ6tD0UhHGmN3O/wPAO1i59peYLpz/B8InYTnOBb43xuyHyM1XF8HyMiLrsohMB34GTHUaOxyT4SHneDl2zqxX2IR0qKDsIzVvo4GLgfklbpGSt4HaLOpZ3fWnISm+pUBPEenu9PwvB94Ls0xlcGz4c4ANxpi/u9zdNvCLgLX+19Y1ItJERJJKjrGLG9Zi8/RqJ9jVwILwSBiQMj3mSMxXP4Ll5XvANGeF3Aggy2VWCgsicg7wB+ACY0yuy72NiEQ5xz2AnsCP4ZHyBBWU/XvA5SISJyLdsfIuqWv5AjAO2GiM2VXiEAl5G6zNoh7V3YCEe3VNTf6wK4o2Y3tGfw63PAHkG4U1CawGVjq/84CXgDWO+3tA+wiQtQd29dsqYF1JfgLJwOfAD8BnQKtwy+rI1QQ4BDR3uUVMvmIV8l6gCDvv8YtgeYldEfekU4/XAEMjQNYt2Lmbkno72wk72akfK4HvgfMjJG+Dlj3wZydvNwHnhltWx30ucL1f2EjI22BtVkTW3VB/+skyRVEUpVHRkEydiqIoilIpqvgURVGURoUqPkVRFKVRoYpPURRFaVSo4lMURVEaFar4FEVRlEaFKj5FURSlUfH/AeS8PnVFq60MAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 8)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABk1ElEQVR4nO2deXyUxfnAv8/u5k44wiWXHMpNQrhRQMB6lioqKFo80FqrVVtv7aFFq/15td6Vlqp4IGLVghYV64E3Ish9g4b7hhBC7t3n98e8iZvNbrIhCbvZzPfDkvedmXfmeed93nnmemdEVbFYLBaLJZZxRVoAi8VisVjqG2vsLBaLxRLzWGNnsVgslpjHGjuLxWKxxDzW2FksFosl5rHGzmKxWCwxT9QZOxHpLCIqIp5Iy2I5ekTkRhHZISLLIpD2FBF55RikM1lEvqjCf76IXF3fclgqIiLTReT+mvrVsQxV6qCIZIvIafUtR6wgIu+IyF4ReeRo44g6Y2epOSIyVUTynF+xiJT4nb8XIbGmAL9W1X5+ck4RkSkRkieqcCp12TUM/4mI5IvI2qoKShFJEJHnRSRXRHaJyC0B/heJyBoROSwiq0XkvBDxfORf8RSR1iIy06nEHBKRL0VkaMA1N4rID07ai0RkhJ/flADdzBORrmHef6PRHREZLSLzaxA+S0QWO7qxWESyqgibLiL/EZEjIrJZRH4eItzzzrM/0c/tBueZFonI9IDwkwKea75z/UDHP8Epp3aLyAHHeLX3u76ziLwrIgcdnX3av8GjqucAY4DbRKRZuHnjT50bO9siO/ao6rWqmqqqqcBfgFll56p6dlm4Y/xs0oGVxzC9eiGK9HkmsARoAfwBeENEWoUIOwXoBnTCFBB3iMhZAE4B8wpwC9AEuB14VURa+0cgIpOAuIB4U4FvgYGY5/siMFdEUp1rhgIPAhOApsBzwH9ExO0Xh79upqrq9zXNiGghGnRDROKBOZhn2hzzTOY47sF4BigG2gCTgGdFpE9AnCOAE4JcuwO4H3g+0ENVZ/g/V+DXwPfAd06Q3wInAZlAO+Ag8JRfFH8H9gBtgSxglBOHfxpl5UmLEPdWJXVi7Jwm+Z0ishw4IiIeERkmIl+JSI6ILBOR0X7h54vI/4nIQqcGOEdE0kPEfaVfLfR7EflVgP84EVnqxLPJ76VuKiLPichOEdkuIvcHvHTB0jpBRD4Wkf0isk9EZpTVIhy/AyIywDlvJ6ZZPdo5P1dEVjn3O19EegXkz20istypEc8SkcSa53TNCfFsAmtsFbp2RORnTp7mOM8ws4ZpluWzr5pwdzjPZ4eIXO0vlyPTMyIy13n234jICX7XPiEiW53nvlhERgZEn+jk82ER+U5E/FuYdzm6UtayOd/Pb7KYFstjIrIfYziqu99HnRrpDyJydoB3Jye+wyLygYi0rC6+IPF3BwYAf1LVAlV9E1gBjA9xyRXAn1X1oKquAaYBkx2/DkCOqr6nhrnAEfwKNxFpCvwJuMM/UlX9XlX/pqo7VdWrqv8E4oEeTpDOwCpVXaxmaaaXgJZABUNaF1SlOwHh0sS0iJ8UEXGcW4rI/5xn8qmIdPILH1KvxLQu3xCRV0Qklx/zNBTxIvKSk84qERkU4J9VB2XCaMADPK6qRar6JCDAqYEBRSQFozN3q2qeqn4BvA1c5hfGgzFCNwZer6pvqepsYH8Ycl0BvKQ/LtHVBZinqrtVtRCYBfgb2S7A66paqKq7gPcD/MvFcO635qhqrX9ANrAU6AgkAe0xGfJTjEE93Tlv5YSfD2wH+gIpwJvAK45f57Ibcs7HYl5EwVj7fGCA4zcEOOTE73LS7en4/Qf4hxN/a2Ah8Ktq7uNEJ64EoBXwGUaJyvx/CawGkoF5wKOOe3dMgXE6pjZ8B7ARiPfLn4WYGk06sAa4NoQMI4CcKn4jqrmHKWV5GezZOG4KnOgXZjpwv3PcH1PDGgq4MUqbDSTUQB/OAgqBlGrC7MIodDKmZloulyPTfucZe4AZwGt+11+KqeF5gFuduBL98qAE08KIA24DfgDiHP8LnWfhAiY6z66t4zcZKMW87J6yPAtxD5OddH7p5NV1mNqv+On5Jkc/kpzzB0PE9Xfg7yH8zgfWBLg9DTwVJGxzJx/b+LlNAFY4x27gU+Bc5/g8YJv/s8LU/m8m4F0MklaW85ybOudNgMV+unMjpjValh9TMO/rAWAVcN1Rljfh6M79jn4sxNFtP7/DwCmY9/wJ4Isa6tV5ju5UpRtTnLz5qZMX/wcsCHgvwy0T/gvcFcLvZuC9IOFvDRK2P5Af4HYb8I7f+e3AE8HKCb8w9wPTq7j3ToAX6OLnNgj40rnfZOBVKpatv8JUjpIx5fhK4PwgcW8Gri/TqRrpzdEoWxABsoGr/M7vBF4OCDMPuMI5no/fSw/0xjSt3VT/gs0Gfusc/wN4LEiYNkCRvzIClwCf1PC+zgOWBLi9jalVL8cxAMDdmFpJWRgXxpiP9sufS/38Hwam1kXeB5F5CpWN3VUBYaoyds9iWgX+4dcBo8JMf5ET/2+qCfc88H9+5ydSucD6l5//T4G1VcR3EOjnlwf+BYsL2AmMDHHtUmCcczwZ2BLmvU4GNvqdJzv3cJyfnv/Rz//XwPtH8Uwv878fx+0BghQ4mEqN4hTQjtvpQLbf+S+APIxRzwfG+vkNcvLDQxXvIsawrQB+5+cmwO8xBqEU2AcM9vPvjSns3MDJzjO55CjyIxzdeR5TYN4ecO10KlaaUjEFc8cw9eqzMGWcAnwYcO8FfufZ1EGZgCl7XgtwmwFMCRJ2JLArwO2XwHw/3dnIj5WXozV2d5fF6efWFHjNibMUUwlK9/PvhakolTphphPEoGEqfsWY3oka5VVdjtlt9TvuBFzodIPliEgOpsXSNkT4zZgaeKUuHhE5W0QWOF2IOZhCryxcR0zNOZBOTnw7/dL/B9V0p4hIGxF5TUy3Zy6mxhgo0zRMi/QpVS1y3No59wCAqvqc+2vvd90uv+N8zEt2rNhafZByOgG3Bjy7jph7DIfBwMXAFBEJHPPxp12AXMFkDJlnTrfwGqcLKAfzMvk/q/L4nOexreweRORyv27aHMzzDHptGJTLqKr5zmFqMP/Ae6gBeRjj4k8TTAslWNgy/0phxUxseRjT/RWP6S35l5hJDi5MC/O3qloaShgRSQLewRjg//Pz+gVwJabFFY9pJf1XRNoBqOpqVd2hpgv0K0yrakI19x6McHRnLKY1PTWIn79u5GFammW6EbZehUHgs0+UiuN8kdCNqsI+DtynqoeOQg5/LseMHfrzDKYl3QLT2/YW8B6Ao3fvO24pmPxuDjwUJO57MRWJoMNeVVGXxk79jrdiWnbN/H4pqvqgX5iOfsfHY2qD+/wjFJEETBfno5humWbAu5gaZFk6wQZSt2Jadi390m+iqsH6gP35i3MfGaraBPOylqWFmIH4xzED71Pkx3HGHRgjURZOnPvbXk16lRCRkVJxVlPgL3BsKhw04Dwf0wop4zi/463AAwHPLllVZ4aVkKl+zcYoa9sqgu7EjB+V0TFUwECcPLgDuAho7ujFIfyelX98zsvUAdjhjM9MA24AWjjXrgy4NjC/Is0qoKuIpPm59XPcK6CqBzF52y9E2CxM62SRqvpU9VvgG+A0TME3CJglIrswk1EAtpXpnfNOzsZUHiqMnztx/1dV1ztxv+/IcnKI+1Iq5nu4hKM70zAF6LvOWBXBwjvvdDpGN8LRq2jUjUy/8Ugwk0Aq6QawHvCISDc/N3/d+AnwiJjZkGWG+GsJMWMzGCIyHFNxeCPAKwvTGjzgNBKeAoY4Y9jpGBvwtJpxx/3AC5iGTSC9gDlOBbZG1NenB68A54jImSLiFpFEMdNp/RX0UhHpLSLJwH3AG6rqDYgnHlMb2AuUOoP/Z/j5PwdcKSI/ERGXiLQXkZ6quhP4APiriDRx/E4QkVHVyJ2Gqf0cEjNr7fYA/yeARap6NTCXH2uNrwNjHTniMH39RcBX1WVUIKr6uVacrRb4+7ymcQZhKfBz59mchandlzENuFZEhoohRUTGlhW0YiaOTK/mHspavKFmhIHJsytFpJejA3fXQP40THfHXszLew+Va6wDReQCpyZ9E+Z5LMDUHNW5FhG5EtOyi1pUdT3mmf3JeZfOxxRob4a45CXgjyLSXER6Yrqqpjt+3wIjxZmeLiL9Md1byzEFeztMwZTFj4XNQOAbR7ffAAowQxKBBc63mPegq6M7p2PGK1c6aY1zZBIRGQL8BjOTEMc/W0Qmh5El4erODZgu+Hec1mgZPxWREWJmLP4Z00LdSnh6FW3Mx3TD/kbM9P4bHPePAwOq6hFM6+k+570eDowDXnaCdMcYvyznB3AOZv4DYia3JWK6ocvK9cDJIlcAb6pqYMvyW+ByMRMH4zBd+jtUdZ+q7sOMqV/npNHMiWd5kPv1YN7lGlMvxs5RnHGY/vu9mNbC7QHpvYx5AXcBiRjFD4znsOP+Oqbv/OeYMbMy/4WYbpPHMC/qp/zYwrocU9iudq59g6pbGmCayAOcuOZiFAMwLypmYPw6x+kWYICITFLVdZhW4FOY1uk5wDmqWlxNepHitxgZczDTj2eXeajqIkzh+DQm3zZScdZZR8xAc3UoVeiXqr4HPAl84qSxwPEKR5HnYWrt6zHdx4VU7l6ag5l8chAz5nWBqpao6mrgr8DXwG4gI8z7qVfEfIMUrMutjIsxra6DONP7VbXMYE8SEf+a/J8w3fubMe/EI04rC1X9FNMN9IaIHMYYzL+o6gdq2FX2w6kQALsdXT4Z+BmmwpkTpLfhJcy4zHwgF/N8f6Wqa/3uYSOm2+wl4CFVfdG5h3hMF1eZHoQkXN1xehmuwbRC58iPsx1fdfLoAMaQX+q4h6NXxxwReU9Efh/Mz3ku52HKuxzgKuC8srJHRH4vFb+1/TWme3cP5nOW61R1lRPXnoDnD7BPVQuc4z9iKjp3YfKswHErkzMR0yoO7MIEMxGmENiA0aufYsbfyrgAU77uxTzTEszkG/98CGuWdyjKZkkdU8R8MPmKqv7rmCduOWqcAmkZkKmqJdWE3QHcoaphrWQi5lONlZhJPyHHiyyxiZhvu65X1UuO4lqrO40Apzfga6BZkJZjtdgVVCxho6rFqtqrOkPncBem221xqAAicr7T9VI2GP2OLawaJ6r6RU0MndWdxoWIzMb0zt19NIYOGqGxk4pLa/n/qupCstQQVX1JVbup6sAqgv0K052yCTPucF0VYSOC1ZeoJeK643QvBtONoF2OlqNHVc9T1eNV9S9HG0dEujEtFovFYjmWNLqWncVisVgaHxFfyNSfli1baufOnSMthsVisViOIYsXL96nqqEWNq8TosrYde7cmUWLFkVaDIvFYrEcQ0Rkc/WhaoftxrRYLBZLzGONncUS5dhJZBZL7bHGzmKJZrylfPe389lz74nsWfp+pKWxWBosUTVmF4ySkhK2bdtGYWFhpEWxNCASExPp0KEDcXFVbbwQ/Xz/8fMMPPwJBRrPodnXk3viMpqkHssNMyyW2CDqjd22bdtIS0ujc+fOiBzNAumWxoaqsn//frZt20aXLl0iLU6tKF34HBs4nsIxfyJj/i/46uOZnHzuLyMtlsXS4Ij6bszCwkJatGhhDZ0lbESEFi1aNPjegF3bt3Bi8ToOdhlL35HncUCa4lrzTqTFslgaJLU2diJyo4isFZFVIvKw43a6iCwWkRXO31NrmUZtxbQ0MmJBZ7YvnotLlPSsnyFuD9ktRtM3/xsKi45qhxOLpVFTK2MnImMwW/n0czZGfdTx2ofZ4iYDsy/RyyGisFgsISjasoh8TaBLn2EAxHcbRaoUsm5ZjbdJtFgaPbVt2V0HPFi2Waeq7nH+LlHVHU6YVUCSmB2OGyQiwq233lp+/uijjzJlypTICVQN8+fP56uvalcgnnXWWTRr1oyf/exndSSVpaY0PbiKrYndcHvM0Hqn/qcBkLOmLvbvtVgaF7U1dt0xux5/IyKfisjgIGHGA9/57V7d4EhISOCtt95i3759dRqvquLzHdU+hFVSF8bu9ttv5+WXbYM8UpSUlNCl9Htym/cpd0tr3Ymd0prUPQsjKJnF0jCp1tiJyIcisjLIbxxmNmc6MAyzE/nr4jdYIiJ9MHtN/aqK+K8RkUUismjv3r2hgkUUj8fDNddcw2OPPVbJb+/evYwfP57BgwczePBgvvzSbHo9ZcoUHn300fJwffv2JTs7m+zsbHr06MHll19O37592bp1K7fffjt9+/YlIyODWbNmAcZgjR49mgkTJtCzZ08mTZoU9OPiJ598kt69e5OZmcnFF19MdnY2U6dO5bHHHiMrK4vPP/+8Shkvu+wyTjrpJLp168a0adPK4/3JT35CWlpalfny73//m759+9KvXz9OOeUUwEwouvLKK8nIyKB///588sknAEyfPp3zzjuP008/nc6dO/P000/zt7/9jf79+zNs2DAOHDgAwLRp0xg8eDD9+vVj/Pjx5OfnV0p32LBhrFr148bco0ePjrll5nZsWk6yFCFt+1Vw356WSYcjqyMklcXScKn20wNVPS2Un4hcB7ylphReKCI+oCWwV0Q6AP8BLlfVTVXE/0/gnwCDBg2qcqmIe99ZxeodudWJXCN6t2vCn87pU22466+/nszMTO64444K7r/97W+5+eabGTFiBFu2bOHMM89kzZo1Vca1YcMGXnzxRYYNG8abb77J0qVLWbZsGfv27WPw4MHlhmPJkiWsWrWKdu3aMXz4cL788ktGjBhRIa4HH3yQH374gYSEBHJycmjWrBnXXnstqamp3HbbbQD8/Oc/Dynj8uXLWbBgAUeOHKF///6MHTuWdu3ahZV39913H/PmzaN9+/bk5OQA8MwzzyAirFixgrVr13LGGWewfv16AFauXMmSJUsoLCzkxBNP5KGHHmLJkiXcfPPNvPTSS9x0001ccMEF/PKXZmr9H//4R5577jluvPHGCulOnDiR119/nXvvvZedO3eyc+dOBg0aFJbMDYV93y+nE9CsS/8K7qWtM2iT+yEH9uwgvXV4z8lisdS+G3M2MAZARLoD8cA+EWkGzAXuUtUva5lGVNCkSRMuv/xynnzyyQruH374ITfccANZWVmce+655ObmkpeXV2VcnTp1YtgwM+ngiy++4JJLLsHtdtOmTRtGjRrFt99+C8CQIUPo0KEDLpeLrKwssrOzK8WVmZnJpEmTeOWVV/B4gtddqpJx3LhxJCUl0bJlS8aMGcPCheF3kQ0fPpzJkyczbdo0vF5v+f1ceumlAPTs2ZNOnTqVG7sxY8aQlpZGq1ataNq0Keeccw4AGRkZ5fe2cuVKRo4cSUZGBjNmzKjQgivjoosu4o033gDg9ddfZ8KECWHL3FAo2GXyrMMJFStiaZ2N8du21nZlWiw1obYflT8PPC8iK4Fi4ApVVRG5ATgRuEdE7nHCnlE2geVoCacFVp/cdNNNDBgwgCuvvLLczefzsWDBAhITEyuE9Xg8Fcbj/L/5SklJCSu9hIQf5/S43W5KS0srhZk7dy6fffYZ77zzDg888AArVqyoFCaUjFB5in5NpuxPnTqVb775hrlz5zJw4EAWL15cZXj/+3G5XOXnLper/N4mT57M7Nmz6devH9OnT2f+/PmV4mnfvj0tWrRg+fLlzJo1i6lTY2/TcE/O9+yjOS1TmlZw79h7GHwIednfwSnnRUY4i6UBUquWnaoWq+qlqtpXVQeo6seO+/2qmqKqWX6/Whm6aCA9PZ2LLrqI5557rtztjDPO4Kmnnio/X7p0KWC2K/ruu+8A+O677/jhhx+Cxjly5EhmzZqF1+tl7969fPbZZwwZMiQseXw+H1u3bmXMmDE89NBDHDp0iLy8PNLS0jh8+HC1MgLMmTOHwsJC9u/fz/z58xk8ONgco+Bs2rSJoUOHct9999GqVSu2bt3KyJEjmTFjBgDr169ny5Yt9OjRI+w4Dx8+TNu2bSkpKSmPJxgTJ07k4Ycf5tChQ2RmZoYdf0OhSf4W9sZ3qOye3obd0pK4PZUrNRaLJTRRv4JKtHHrrbdWmJX55JNPsmjRIjIzM+ndu3d5K2P8+PEcOHCAPn368PTTT9O9e/eg8Z1//vlkZmbSr18/Tj31VB5++GGOO+64sGTxer1ceuml5ZNBfvOb39CsWTPOOecc/vOf/5RPUAklI5hu0DFjxjBs2DDuvvvu8vG6kSNHcuGFF/LRRx/RoUMH5s2bB8A999zD22+/DZgZmxkZGfTt25eTTz6Zfv368etf/xqfz0dGRgYTJ05k+vTpFVp01fHnP/+ZoUOHMnz4cHr27Fnu/vbbb3PPPfeUn0+YMIHXXnuNiy66KOy4GxJtSreTl3J8UL9dyd1pfWT9MZbIYmnYSDRtHzJo0CANnFW3Zs0aevXqFSGJYpspU6ZUmMgSazRU3cnLPUDq37rwddcbOeny+yv5L3z+NgZt/hf5t20mNa1pkBgsloaFiCxW1XqdZWZbdhZLlLFni2m1xbfsGtQ/oUM/XKJsXRdbn1tYLPVJ1O96YKk/onkVmMbMwV3ZADQ9rnNQ/zY9BsNXcOiHpTDoJ8dMLoulIWNbdhZLlFG0bwsA6W2Dt+zadOxGHkmwy05SsVjCxRo7iyXK0EPbKFUXzVtXno0JIC432+K60DR33TGWzGJpuFhjZ7FEGZ4ju9jvSkfcoUcZcpv2pGPxD/icj/ktFkvVWGNnsUQZKYW7OOhpXWUYaduXVClg52bburNYwsEauzCZPXs2IsLatWtDhsnOzqZv3771KsfSpUt59913axXHVVddRevWretdVsvR0bRkD/mJbaoM06zzAAB2b7AzMi2WcLDGLkxmzpzJiBEjmDlzZlD/YEt51RRvGF1SdWHsJk+ezPvvv1+rOCz1g8/ro5VvHyUpbasM17HnQHwqFG1bfowks1gaNtbYhUFeXh5ffPEFzz33HK+99lq5+/z58xk5ciTnnnsuvXv3BozRmzRpEr169WLChAnlW9R89NFH9O/fn4yMDK666iqKisz2fp07d+bOO+9kwIAB/Pvf/66QbuAWOsXFxdxzzz3MmjWLrKwsZs2axZEjR7jqqqsYMmQI/fv3Z86cOYDZUmfcuHGMHj2abt26ce+995bHe8opp5Cenl7lPX/66adkZWWRlZVF//79OXz4MKoacjuiUaNGMW7cOLp27cpdd93FjBkzGDJkCBkZGWzaZDa9eOeddxg6dCj9+/fntNNOY/fu3ZXSvfjii5k7d275+eTJk8sXfW4MHNy/i0QpgabtqwyXmNKE7a62JO632/1YLOHQsL6ze++uup9ufVwGnP1glUHmzJnDWWedRffu3WnRogWLFy9m4MCBgFn3cuXKlXTp0oXs7GzWrVvHc889x/Dhw7nqqqv4+9//zg033MDkyZP56KOP6N69O5dffjnPPvssN910EwAtWrQoX0fTn8AtdOLj47nvvvtYtGgRTz/9NAC///3vOfXUU3n++efJyclhyJAhnHaa2ZVp4cKFrFy5kuTkZAYPHszYsWPD3grn0Ucf5ZlnnmH48OHk5eWRmJjIW2+9FXI7omXLlrFmzRrS09Pp2rUrV199NQsXLuSJJ57gqaee4vHHH2fEiBEsWLAAEeFf//oXDz/8MH/9618rpFu2fc/YsWMpLi7mo48+4tlnnw1L5ljg4O7NtADim1Vt7AD2pnTjuCOhu9UtFsuP2JZdGMycOZOLL74YMC0P/67MIUOG0KVLl/Lzjh07Mnz4cAAuvfRSvvjiC9atW0eXLl3K18e84oor+Oyzz8qvmThxYtB0g22hE8gHH3zAgw8+SFZWFqNHj6awsJAtW8x3WqeffjotWrQgKSmJCy64gC+++CLsex4+fDi33HILTz75JDk5OXg8niq3Ixo8eDBt27YlISGBE044gTPOOAOouH3Ptm3bOPPMM8nIyOCRRx4Jun3P2WefzSeffEJRURHvvfcep5xyCklJSWHL3dDJP7ATgKT06veqK27Zh3a6m8OHDtS3WBZLg6dhteyqaYHVBwcOHODjjz9mxYoViAherxcR4ZFHHgEqb9dzNFvmhNryJ5wtdFSVN998s9LOAt98802ttu+56667GDt2LO+++y7Dhw8vXwg6FOFs33PjjTdyyy23cO655zJ//vygK7gkJiYyevRo5s2bx6xZs8orGY2FooO7AEhtUb2xS+rYD7Jh29pv6TX0zHqWzGJp2NiWXTW88cYbXHbZZWzevJns7Gy2bt1Kly5d+Pzzz4OG37JlC19//TUAr776KiNGjKBHjx5kZ2ezceNGAF5++WVGjRpVbdrBttAJ3L7nzDPP5KmnnqJsQe8lS5aU+/3vf//jwIEDFBQUMHv27PIWZzhs2rSJjIwM7rzzTgYPHszatWtrtR0RwKFDh2jf3nTPvfjiiyHDTZw4kRdeeIHPP/+cs846K+z4Y4HSw2Ycs1nr6rsx23Q32zHlZi+pJqTFYrHGrhpmzpzJ+eefX8Ft/PjxIWdl9ujRg2eeeYZevXpx8OBBrrvuOhITE3nhhRe48MILycjIwOVyce2111abdrAtdMaMGcPq1avLJ6jcfffdlJSUkJmZSZ8+fbj77rvLrx8yZAjjx48nMzOT8ePHl4/XXXLJJZx00kmsW7eODh06lO/PN3Xq1PLtfx5//HH69u1LZmYmcXFxnH322bXajgjMWpwXXnghAwcOpGXLluXuixYt4uqrry4/P+OMM/j000857bTTiI+PDzv+mODIHgo1jpTUZtUGbdO+CzmkIrvtsmEWS3XYLX5ilOnTp1eYyNIYaYi68+1jF9Ihdwlt/7QxrPDLHjyNpsW76XyPNXiWhovd4sdiaWQkFu7jsLt52OEL2gyks28Lhw7sqUepLJaGjzV2McrkyZMbdauuoZJScoD8+BZhh2/aYyQA3y/5pL5EslhiggYxG1NVazST0GKJpu75mtDEl8O+xPCXcevS7xRK57nI3/gl/CT4JyzVoaqs3fQDu9d8RenBzajPR0pSIvHpx5PapgttO/WgaVO7I7qlYRP1xi4xMZH9+/fTokULa/AsYaGq7N+/n8TExEiLUiO8paU010P4kluFfU1iShM2xHWj5d5vapxeSamXz9+dQfOlU+nnXU0vCV1B2Es6+xPaU9SkM3Etu5Latjup7bqRlJZOfGIq7oRkFKGwqISCoiIKioopKi6iqLiY4uJiSkqKKSkuobS0BJd6can5K+rFhQ9BEEDE+URGAAQRwVV+bGQRcTnHjj9QquD1+SjxKiVexeUS0pLiaJoYR/PW7Ulq27PG+WOJLaLe2HXo0IFt27axd+/eSItiaUAkJibSoUPw/eCilYP7d9FSFEmteseDQHYfdwonb/0XeQd3kdo8vNmxW7M3sPuVazi19Dv2uFqzpvu1tMw8g1bH90Q88eQcOsSBXdnk78mmYPdG9MD3pORt4bg9n9Nm7zuwpnKcAiQ5v2iiVF3k3byB1GYtqw9siVmi3tjFxcVVWKHEYolVDu/bTkvA06TqHQ8CadrvZ7i2TWPjl7PJ+ln1n7RkL/+MZm/9nJYUszrrD/T62U209lT8xKN5Skuatzuh0rUlXh/rd+xhz+a1lOz7Hl/RYSguQErzcQMejwdPXByeuDjiPHG4PfHm3BOHJy4ejycOdXnwiQufxKEuN4qgKiiK8w+f+swBiqqialrsZW1P9fkcb8WH4hYhzi14XILH7cLn85FbWErOqg8ZtfslcvZut8aukVNrYyciNwLXA15grqre4ed3PLAamKKqj9Y2LYsllsnPMb0XCU1q1rLr1X8Ee+c2h3VzoRpjt+Gbd2n33pXk0IRDl/yX3j2yapRWnNtF947H0b3jccDoGl0bCb4ryofdL1F4OCfSolgiTK2MnYiMAcYB/VS1SEQC39K/Ae/VJg2LpbFQdHgfAElNa2bsPB4P61qezpC9b3J4/w7SQiw1tmb+LLp+cj07XMcRf+XbdDq+a61ljnbiU5oBUHTkYGQFsUSc2n56cB3woKoWAahq+cc+InIe8ANQebVfi8VSiZLD+wFIbV7z7rYWo64hXrysf+/vQf1XvPsPun1yLdmezqRe+wHtG4GhA0hINd8slubnRFYQS8SprbHrDowUkW9E5FMRGQwgIqnAncC9VV5twl4jIotEZJGdhGJpzPjyjbFrml6zMTuAnn0HsTR+ICdufIG8g34fmKuy7PX7yVh4B6vj+9Lmhg9o1ab6RaZjhcS0MmN3KMKSWCJNtcZORD4UkZVBfuMw3aDpwDDgduB1Md8HTAEeU9W86uJX1X+q6iBVHdSqVfhTri2WmCP/IAUaT2Jyao0vFRHizr6fJC1g6z8nUnj4APt2bWHRExPpt/oRvkkcSdeb3qNZ86o37Y01UpqY+/UWWGPX2Kl2zE5VTwvlJyLXAW+p+YJ3oYj4gJbAUGCCiDwMNAN8IlKoqnZJD4slBO6iHA5L6lFP3e/T/2Q+3XAPw1fdiz56Iun4aIqLrzpezZDJD+HxRP3k6zonrWlzfCqoNXaNntpq/2xgDPCJiHQH4oF9qjqyLICITAHyrKGzWKomruggee4m1Gx6SkVGXXQTSxf2J+fbWaSkNqH54Is5uXdWXYnY4IjzeDhMIhTlRloUS4SprbF7HnheRFYCxcAV2lDXabJYIkxCaS4Fntovy5U1ZBQMqX6/xMbCEUlBrLFr9NTK2KlqMXBpNWGm1CYNi6WxkFx6iIMpjWOW5LGkwJ2Kp+Rw9QEtMY3d9cBiiRLS9DClCc0iLUbMUeROIa6k2rlylhjHGjuLJQrwen000Tx8iY1rtuSxoNiTRpLXdmM2dqyxs1iigNxDB4kTLySHv3GrJTxK4puR6rPdmI0da+wslijgsPMhuCcl/I1bLeFRmticJnq4we5xaKkbrLGzWKKAglyzLmZcqu3GrGs0KZ1kKaKwID/SolgiiDV2FksUUJRrlsqLT7Pb0NQ1kmwqEIf9l1GzNDqssbNYooCSPLMuZmJTu2ReXeNJNV3DR3KssWvMWGNnsUQB3iMHAEhpalt2dU18qsnTwkN2ofnGjDV2FksU4HPWbky1xq7OKWstFzv7BVoaJzFl7HJz9vP11OtY9dW7kRbFYqkZhYco0jgSk452GWhLKFKaGWNX1lVsaZzElLFLSExi0M5ZHF41L9KiWCw1wlWUS54kY3bIstQlqelmaW3NPxBhSSyRJMaMXTLb3O1JOrgu0qJYLDXCVXKYfEmJtBgxSVpKKvmaANbYNWpiytgB7E85kdb5GyMthsVSI+JKDlPgrvmmrZbqERFyJQ1XgTV2jZmYM3beVn1oy14OHrCD0ZaGQ0JpHsUea+zqizx3EzxFOZEWwxJBYs7YpXUeAMCWVV9FWBKLJXwSvXmUWGNXbxR6mpJQYncrb8zEnLFrn2E2Sc//fkGEJbFYwidZ8/HGp0VajJilOL4ZKd6cSIthiSAxZ+yaNm/FZmlP0u4lkRbFYgkLVSVFj+CLr/0u5ZbglCS1It13MNJiWCJIzBk7gN1NMjg+fyXq80VaFIulWoqKi0mRIjTBtuzqC1/qcaRIIUcO50RaFEuEiElj5z5+MOnk8sOGVZEWxWKpliO5ZpagJNmWXX3hatIGgEN7tkdYEkukiElj167f6QDsXvp+hCWxWKqnINd0r7kSm0RYktgloWlbAHL314+x239gP9kb17Bpwxp27NpJaam3XtKxHD2eSAtQH7Q9IZNdtCJxy3zg9jqLV1XZm5NL7r4dFBfkgSriEhKSm5CQ2pzklKakJMYR74nJOoSlnig4bIydJ7lZZAWJYZJbtAeg6EDdGbtVS7/m4Kf/oNPBr+nILvy33T2iCfzgbk9OcidKm59IYttetOrSl7ZdM3AnJNeZDJbwiUljhwjZzYfR9+CHlBQXERefcNRRbc3eQPbnM0nY/jWdCtbSRg7QOkRYrwqHSWY3yeRLMgWSTKE7hSJ3CiXuFErjUnF74nC7PXg8cbg9HtyeOFT8jKMGHlZyILiDhvYKPNWqr616Q+cqxkEDLvQ/E7SKeDWkvFL5pn/000o5FJBwFddWzl2/ACEErSJjNEBWreZ5+JNwZCfdgDhr7OqNJq06AFByaGet48o5eIDV029gWM67lOBhfdpQdreZgLtJG1wieAsO4T24hcRD39P+yGqOOzwf11aFheBTYYerNbvjOlCckI4vuSUkt8DrSQZXHLjjwJOAS8CND4/4cKkX9XnBW4LPZ47V58Pn86FqjtXnQ9WHqA/BZyri6jPvXbD3QCHo26WgEhjO6LPqj+FVzfucG9+K866ZUus8PRbEprEDEnqeQerX77By4Tz6jji3xtevWjCPkvmPklW4kI7AdldbdqUPYnv6iXiatMWdlAoIqA9v4WG04BAU5SJFubiKD+MuySO1JI907yHivTtILMknMb8AN17ceHFVVfpZjgm+src6yHKUVT0dDXZBCP/AkKGuPUQabbr2qTJey9HTotVxlKgbb+7uWsWzedNqfK9cxBDfdr5r/3P6TLyPjGp2qijMz2PrhpXs27yC0t1rScn9nqaFW0nJ20qT3EMkS1GtZArEq4IPF4o4v8qE0uAKoSXQvfJV611dgSlHL+wxpNbGTkRuBK4HvMBcVb3Dcc8E/gE0wTQHBqtqYW3TC5eeI84n76s7OLJoJtTA2OXs38P66dcx5PCHHKQJC4//JZ1PnUz7zn1pX5cC+nx4vaUUlRQjPi9lihR0HWA/x0B/8Rt2rewXeK0E+FcRr1TRFVvlYsVV+B3tddVde5SLJ0dTZ7OdmlK/xHk87JZmuI4cvbHbsXkDcS+PI4V8vj/rZQad9LOwrktMTqVbv2F06zeskp+qUliQh7coH19pEb6SYrwlxXgVShG8uPDixu02PUEetweXx4PH48HjduPxuPG4PbhdLhAXiOAG3Ed9lzWjIVXPamXsRGQMMA7op6pFItLacfcArwCXqeoyEWkBlNRa2hqQlJLGovQx9DnwCbm5OTRp0qzaa5Z/+hZtPrmV/nqIhZ1+SebFf2JIcj1NB3e5cLviSY6Lr5/4LRZLBQ55WpBYcHTG7lDOQYpevICWHObAhDfp3nd4ncgkIiQmp0F9lTOWcmpbub0OeFBViwBUtWzf+zOA5aq6zHHfr6rHfHpSsxFXkyoFrJv7VJXhCvJyWfj0ZDI/uZJCVwqbz5/DkKseNUposVhigtyEdjQvqfmYnfp8rP3X1Rzv3cqOM6bRqY4MneXYUltj1x0YKSLfiMinIjLYz11FZJ6IfCcid4SKQESuEZFFIrJo7969tRSnIicMOJUVcZl0Wfcv8nODb9y46buPOPDXwQzaO5uvW19Cm9sWcGLWyDqVw2KxRJ7C1A608e5BvaU1uu6rOf9kaN6HfNf1OnqcfE49SWepb6o1diLyoYisDPIbh+kGTQeGYeb4vy5mYMgDjAAmOX/PF5GfBItfVf+pqoNUdVCrVq3q6r7KZMd95v0001w2/OsXFZS8KP8QS/55LZ3njEfUx8rTZ3DSr6eSmGwX47VYYpJmnYgTL4f2bA37kr17dtBz2QNsiOvJwEl/rkfhLPVNtWN2qnpaKD8RuQ54S1UVWCgiPqAlsA34TFX3OeHeBQYAH9WJ1DWg96BRfLriekZtfoq1j5xKYbefoQe30HnbHPrpYb5sfi4ZVzxOZvP0Yy2axWI5hiS17gLrYN+2DTRr2yWsa76fcQsD9Aj545/G5YnZyeuNgtp2Y84GxgCISHcgHtgHzAMyRCTZmawyClhdy7SOmlMm/5n5Pe6mZUE2WSseoO/WV9kU35OlZ77OyJteopk1dBZLzNO8fXcAcneFt7nz+mVfMTjnfZa0v4SOPQdXf4ElqqltVeV54HkRWQkUA1c4rbyDIvI34FvMJ0vvqurcWqZ11IgIoy+5jcKi3/DDzq00bdaSQc3sZG+LpTFx3PEn4lOhZN8PYYUvfO9uciWFXhfdW8+SWY4FtTJ2qloMXBrC7xXM5wdRQ2JCPF06nxBpMSwWSwRITk5hh7Qk7uCmasOu/vJtMgsXseDEWxjWrOqPxi0Ng2j6rtZisVjqld2JXUnPq7obU31eEj65lx20Imt83a2ta4ks1thZLJZGQ0HzHrT3bqOkOPRiTqs/fIkTSjfyQ+bNJCbZRZtjBWvsLBZLoyG+XV/ixMu2DcuC+vtKimm24GE2SScGn/OrYyydpT6xxs5isTQaWnQbAsDBDQuC+q9491na+3awZ/BtxMfZTw1iCWvsLBZLo6HjiZns1ya4tnxdya+4MJ+2S59gtbsHQ84MOu/O0oCxxs5isTQaPB43m5L70fbgokr7Ey5740Fa636KTvkjbrctGmMN+0QtFkujoqjTaNroXnat/bF1l7srmz4bp/Jd4jCyTrHrX8Yi1thZLJZGRddRP6dIPWyf/7xx8PnY/so1iCpp5/+t0r6PltjAGjuLxdKoaN+2HYvSfkLf3bPZv+ojVr/wa3rlfcOXXW+iW4+GtB2ppSZYY2exWBodbS/4Cwe1CS3+fQG9t87kf00uYNSkuyItlqUesXNrLRZLo6Nr1xNZfen/WPTZqyQc15PRZ15AnMcdabEs9Yg1dhaLpVHSu9sJ9O52d6TFsBwjbDemxWKxWGIea+wsFovFEvOIBnxYGUlEZC+wuQ6iaonZRLYh0JBkhYYlr5W1/mhI8jYkWaFhyVtXsnZS1VZ1EE9IosrY1RUiskhVB0VajnBoSLJCw5LXylp/NCR5G5Ks0LDkbUiy2m5Mi8ViscQ81thZLBaLJeaJVWP3z0gLUAMakqzQsOS1stYfDUnehiQrNCx5G4ysMTlmZ7FYLBaLP7HasrNYLBaLpRxr7CwWi8US88SUsRORs0RknYhsFJGoW9VVRDqKyCcislpEVonIbx33KSKyXUSWOr+fRlpWABHJFpEVjkyLHLd0EfmfiGxw/jaPAjl7+OXdUhHJFZGboilfReR5EdkjIiv93ILmpRiedPR4uYgMiAJZHxGRtY48/xGRZo57ZxEp8MvjqcdS1irkDfnsReR3Tt6uE5Ezo0DWWX5yZovIUsc9GvI2VJkVlbpbJaoaEz/ADWwCugLxwDKgd6TlCpCxLTDAOU4D1gO9gSnAbZGWL4i82UDLALeHgbuc47uAhyItZxA92AV0iqZ8BU4BBgArq8tL4KfAe4AAw4BvokDWMwCPc/yQn6yd/cNFUd4GffbO+7YMSAC6OGWGO5KyBvj/FbgnivI2VJkVlbpb1S+WWnZDgI2q+r2qFgOvAeMiLFMFVHWnqn7nHB8G1gDtIytVjRkHvOgcvwicFzlRgvITYJOq1sVKPHWGqn4GHAhwDpWX44CX1LAAaCYibY+JoASXVVU/UNVS53QB0OFYyVMdIfI2FOOA11S1SFV/ADZiyo5jQlWyitk19iJg5rGSpzqqKLOiUnerIpaMXXtgq9/5NqLYkIhIZ6A/8I3jdIPT7H8+GroGHRT4QEQWi8g1jlsbVd3pHO8C2kRGtJBcTMXCIhrztYxQeRntunwVpvZeRhcRWSIin4rIyEgJFYRgzz6a83YksFtVN/i5RU3eBpRZDU53Y8nYNRhEJBV4E7hJVXOBZ4ETgCxgJ6YrIxoYoaoDgLOB60XkFH9PNf0WUfPtiojEA+cC/3acojVfKxFteRkKEfkDUArMcJx2Aseran/gFuBVEWkSKfn8aDDP3o9LqFhRi5q8DVJmldNQdDeWjN12oKPfeQfHLaoQkTiM0sxQ1bcAVHW3qnpV1QdM4xh2q1SFqm53/u4B/oORa3dZt4Tzd0/kJKzE2cB3qrobojdf/QiVl1GpyyIyGfgZMMkp4HC6A/c7x4sxY2DdIyakQxXPPlrz1gNcAMwqc4uWvA1WZtHAdBdiy9h9C3QTkS5ODf9i4O0Iy1QBp0/+OWCNqv7Nz92/T/t8YGXgtccaEUkRkbSyY8wEhZWYPL3CCXYFMCcyEgalQs04GvM1gFB5+TZwuTOzbRhwyK/LKCKIyFnAHcC5qprv595KRNzOcVegG/B9ZKT8kSqe/dvAxSKSICJdMPIuPNbyBeE0YK2qbitziIa8DVVm0YB0t5xIz5Cpyx9mJtB6TA3oD5GWJ4h8IzDN/eXAUuf3U+BlYIXj/jbQNgpk7YqZtbYMWFWWn0AL4CNgA/AhkB5pWR25UoD9QFM/t6jJV4wR3gmUYMYxfhEqLzEz2Z5x9HgFMCgKZN2IGYsp09upTtjxjn4sBb4DzomSvA357IE/OHm7Djg70rI67tOBawPCRkPehiqzolJ3q/rZ5cIsFovFEvPEUjemxWKxWCxBscbOYrFYLDGPNXYWi8ViiXmssbNYLBZLzGONncVisVhiHmvsLBaLxRLzWGNnsVgslpjHGjuLxWKxxDzW2FksFosl5rHGzmKxWCwxjzV2FovFYol5rLGzWCwWS8wTdcZORDqLiDr7O1kaKCJyo4jsEJFlEUh7ioi8cgzSmSwiX1ThP19Erq5vOSwVEZHpInJ/Tf3qWIYqdVBEskXktPqWI1YQkXdEZK+IPHK0cUSdsbPUHBGZKiJ5zq9YREr8zt+LkFhTgF+raj8/OaeIyJQIyRNVOJW67BqG/0RE8kVkbVUFpbNX2/Mikisiu0TklgD/i0RkjYgcFpHVInJeiHg+8q94ikhrEZnpVGIOiciXIjI04JobReQHJ+1FIjLCz29KgG7mOfu0hXP/jUZ3RGS0iMyvQfgsEVns6MZiEcmqImy6iPxHRI6IyGYR+XmIcM87z/5EP7cbnGdaJCLTA8JPCniu+c71Ax3/BKec2i0iBxzj1d7v+s4i8q6IHHR09mn/Bo+qngOMAW4TkWbh5o0/dW7sbIvs2KOq16pqqqqmAn8BZpWdq+rZZeGO8bNJJ/o2S60xUaTPM4ElmH3E/gC8ISKtQoSdgtnosxOmgLhDzOarOAXMK8AtQBPgduBVEWntH4GITALiAuJNxWySPBDzfF8E5opIqnPNUOBBYALQFLPp53/E2YDUwV83U1U14hu9Hi3RoBtiNqqeg3mmzTHPZI7jHoxngGKgDTAJeFZE+gTEOQI4Ici1O4D7gecDPVR1hv9zBX6N2Wj2OyfIb4GTgEygHXAQeMovir9jdjtvC2QBo5w4/NMoK09ahLi3KqkTY+c0ye8UkeXAERHxiMgwEflKRHJEZJmIjPYLP19E/k9EFjo1wDkikh4i7iv9aqHfi8ivAvzHichSJ55Nfi91UxF5TkR2ish2Ebk/4KULltYJIvKxiOwXkX0iMqOsFuH4HRCRAc55OzHN6tHO+bkissq53/ki0isgf24TkeVOjXiWiCTWPKdrTohnE1hjq9C1IyI/c/I0x3mGmTVMsyyffdWEu8N5PjtE5Gp/uRyZnhGRuc6z/0ZETvC79gkR2eo898UiMjIg+kQnnw+LyHci4t/CvMvRlbKWzfl+fpPFtFgeE5H9GMNR3f0+6tRIfxCRswO8OznxHRaRD0SkZXXxBYm/OzAA+JOqFqjqm5iNMceHuOQK4M+qelBV1wDTgMmOXwcgR1XfU8Nc4Ah+hZuINAX+hNmZvBxV/V5V/6aqO1XVq6r/BOKBHk6QzsAqVV2sZqPMl4CWQAVDWhdUpTsB4dLEtIifFBFxnFuKyP+cZ/KpiHTyCx9Sr8S0Lt8QkVdEJJcf8zQU8SLykpPOKhEZFOCfVQdlwmjAAzyuqkWq+iRmA9VTAwOKSApGZ+5W1TxV/QKzse1lfmE8GCN0Y+D1qvqWqs7GbJJcHVcAL+mPG6Z2Aeap6m5VLQRmAf5GtgvwuqoWquou4P0A/3IxnPutOXW0m202ZgfbjkAS0B6TIT/FGNTTnfNWTvj5wHagL2aH6TeBVxy/zmU35JyPxbyIgrH2+cAAx28IcMiJ3+Wk29Px+w/wDyf+1sBC4FfV3MeJTlwJQCvgM4wSlfn/ElgNJAPzgEcd9+6YAuN0TG34DszOzvF++bMQU6NJB9YQsCtxwM7AOVX8RlRzD1PK8jLYs3HcFDjRL8x04H7nuD+mhjUUcGOUNhtIqIE+nAUUAinVhNmFUehkTM20XC5Hpv3OM/YAM4DX/K6/FFPD8wC3OnEl+uVBCaaFEQfcBvwAxDn+FzrPwgVMdJ5dW8dvMlCKedk9ZXkW4h4mO+n80smr6zC137JNkedjdmzujnkv5gMPhojr78DfQ/idD6wJcHsaeCpI2OZOPrbxc5sArHCO3cCnwLnO8XmYHbNT/MI/A9xMwLsYJK0s5zk3dc6bAIv9dOdGTGu0LD+mYN7XA5gduK87yvImHN2539GPhTi67ed3GDgF854/AXxRQ706z9GdqnRjipM3P3Xy4v+ABQHvZbhlwn+Bu0L43Qy8FyT8rUHC9gfyA9xuA97xO78deCJYOeEX5n5gehX33gnwAl383AYBXzr3mwy8SsWy9VeYylEyphxfCZwfJO7NwPVlOlUjvTkaZQsiQDZwld/5ncDLAWHmAVc4x/Pxe+mB3pimtZvqX7DZwG+d438AjwUJ0wYo8ldG4BLgkxre13nAkgC3tzG16uU4BgC4G1MrKQvjwhjz0X75c6mf/8PA1LrI+yAyT6GysbsqIExVxu5ZTKvAP/w6YFSY6S9y4v9NNeGeB/7P7/xEKhdY//Lz/ymwtor4DgL9/PLAv2BxATuBkSGuXQqMc44nA1vCvNfJwEa/82TnHo7z0/M/+vn/Gnj/KJ7pZf7347g9QJACB1OpUZwC2nE7Hcj2O/8FkIcx6vnAWD+/QU5+eKjiXcQYthXA7/zcBPg9xiCUAvuAwX7+vTGFnRs42XkmlxxFfoSjO89jCszbA66dTsVKUyqmYO4Ypl59FqaMU4APA+69wO88mzooEzBlz2sBbjOAKUHCjgR2Bbj9Epjvpzsb+bHycrTG7u6yOP3cmgKvOXGWYipB6X7+vTAVpVInzHSCGDRMxa8Y0ztRo7yqyzG7rX7HnYALnW6wHBHJwbRY2oYIvxlTA6/UxSMiZ4vIAqcLMQdT6JWF64ipOQfSyYlvp1/6/6Ca7hQRaSMir4np9szF1BgDZZqGaZE+papFjls75x4AUFWfc3/t/a7b5Xecj3nJjhVbqw9STifg1oBn1xFzj+EwGLgYmCIigWM+/rQLkCuYjCHzzOkWXuN0AeVgXib/Z1Uen/M8tpXdg4hc7tdNm4N5nkGvDYNyGVU13zlMDeYfeA81IA9jXPxpgmmhBAtb5l8prJiJLQ9jur/iMb0l/xIzycGFaWH+VlVLQwkjIknAOxgD/H9+Xr8ArsS0uOIxraT/ikg7AFVdrao71HSBfoVpVU2o5t6DEY7ujMW0pqcG8fPXjTxMS7NMN8LWqzAIfPaJUnGcLxK6UVXYx4H7VPXQUcjhz+WYsUN/nsG0pFtgetveAt4DcPTufcctBZPfzYGHgsR9L6YiEXTYqyrq0tip3/FWTMuumd8vRVUf9AvT0e/4eExtcJ9/hCKSgOnifBTTLdMMeBdTgyxLJ9hA6lZMy66lX/pNVDVYH7A/f3HuI0NVm2Be1rK0EDMQ/zhm4H2K/DjOuANjJMrCiXN/26tJrxIiMlIqzmoK/AWOTYWDBpznY1ohZRznd7wVeCDg2SWr6sywEjLVr9kYZW1bRdCdmPGjMjqGChiIkwd3ABcBzR29OITfs/KPz3mZOgA7nPGZacANQAvn2pUB1wbmV6RZBXQVkTQ/t36OewVU9SAmb/uFCJuFaZ0sUlWfqn4LfAOchin4BgGzRGQXZjIKwLYyvXPeydmYykOF8XMn7v+q6non7vcdWU4OcV9KxXwPl3B0ZxqmAH3XGasiWHjnnU7H6EY4ehWNupHpNx4JZhJIJd0A1gMeEenm5+avGz8BHhEzG7LMEH8tIWZsBkNEhmMqDm8EeGVhWoMHnEbCU8AQZww7HWMDnlYz7rgfeAHTsAmkFzDHqcDWiPr69OAV4BwROVNE3CKSKGY6rb+CXioivUUkGbgPeENVvQHxxGNqA3uBUmfw/ww//+eAK0XkJyLiEpH2ItJTVXcCHwB/FZEmjt8JIjKqGrnTMLWfQ2Jmrd0e4P8EsEhVrwbm8mOt8XVgrCNHHKavvwj4qrqMCkRVP9eKs9UCf5/XNM4gLAV+7jybszC1+zKmAdeKyFAxpIjI2LKCVszEkenV3ENZizfUjDAweXaliPRydODuGsifhunu2It5ee+hco11oIhc4NSkb8I8jwWYmqM61yIiV2JadlGLqq7HPLM/Oe/S+ZgC7c0Ql7wE/FFEmotIT0xX1XTH71tgpDjT00WkP6Z7azmmYG+HKZiy+LGwGQh84+j2G0ABZkgisMD5FvMedHV053TMeOVKJ61xjkwiIkOA32BmEuL4Z4vI5DCyJFzduQHTBf+O0xot46ciMkLMjMU/Y1qoWwlPr6KN+Zhu2N+Imd5/g+P+cWBAVT2CaT3d57zXw4FxwMtOkO4Y45fl/ADOwcx/QMzktkRMN3RZuR44WeQK4E1VDWxZfgtcLmbiYBymS3+Hqu5T1X2YMfXrnDSaOfEsD3K/Hsy7XGPqxdg5ijMO03+/F9NauD0gvZcxL+AuIBGj+IHxHHbcX8f0nf8cM2ZW5r8Q023yGOZF/ZQfW1iXYwrb1c61b1B1SwNME3mAE9dcjGIA5kXFDIxf5zjdAgwQkUmqug7TCnwK0zo9BzhHVYurSS9S/BYjYw5m+vHsMg9VXYQpHJ/G5NtGKs4664gZaK4OpQr9UtX3gCeBT5w0Fjhe4SjyPEytfT2m+7iQyt1LczCTTw5ixrwuUNUSVV0N/BX4GtgNZIR5P/WKmG+QgnW5lXExptV1EGd6v6qWGexJIuJfk/8Tpnt/M+adeMRpZaGqn2K6gd4QkcMYg/kXVf1ADbvKfjgVAmC3o8snAz/DVDhzgvQ2vIQZl5kP5GKe769Uda3fPWzEdJu9BDykqi869xCP6eIq04OQhKs7Ti/DNZhW6Bz5cbbjq04eHcAY8ksd93D06pgjIu+JyO+D+TnP5TxMeZcDXAWcV1b2iMjvpeK3tr/GdO/uwXzOcp2qrnLi2hPw/AH2qWqBc/xHTEXnLkyeFThuZXImYlrFgV2YYCbCFAIbMHr1U8z4WxkXYMrXvZhnWoKZfOOfD2HN8g5F2SypY4qYDyZfUdV/HfPELUeNUyAtAzJVtaSasDuAO1Q1rJVMxHyqsRIz6SfkeJElNhHzbdf1qnrJUVxrdacR4PQGfA00C9JyrBa7goolbFS1WFV7VWfoHO7CdLstDhVARM53ul7KBqPfsYVV40RVv6iJobO607gQkdmY3rm7j8bQQSM0dlJxaS3/X1VdSJYaoqovqWo3VR1YRbBfYbpTNmHGHa6rImxEsPoStURcd5zuxWC6EbTL0XL0qOp5qnq8qv7laOOISDemxWKxWCzHkkbXsrNYLBZL4yPiC5n607JlS+3cuXOkxbBYLBbLMWTx4sX7VDXUwuZ1QlQZu86dO7No0aJIi2GxWCyWY4iIbK4+VO2w3ZgWi8ViiXmssbNYopBtu/awfFWD3w7QYokaoqob02KxGIqmjiGTbdCntmvyWiwWaADGrqSkhG3btlFYWBhpUSwNiMTERDp06EBcXFUbL0QvJ7ANgJLSUuI8Uf+aWixRT9S/Rdu2bSMtLY3OnTsjcjQLpFsaG6rK/v372bZtG126dIm0OLWi4NAB4lrU+UbfFkujI+rH7AoLC2nRooU1dJawERFatGgRE70B+fm5kRbBYokJot7YAdbQWWpMrOhMUf5RLQNosVgCaBDGzmJprBTl51UfyGKxVIs1dmEgItx6663l548++ihTpkyJnEDVMH/+fL76qsb7xpazdOlSTjrpJPr06UNmZiazZs2qQ+ksNaGo8EikRbBYYgJr7MIgISGBt956i3379tVpvKqKz3dU+xBWSW2NXXJyMi+99BKrVq3i/fff56abbiInJ6fuBLSETUmBbdlZLHWBNXZh4PF4uOaaa3jssccq+e3du5fx48czePBgBg8ezJdfmk2vp0yZwqOPPloerm/fvmRnZ5OdnU2PHj24/PLL6du3L1u3buX222+nb9++ZGRklLei5s+fz+jRo5kwYQI9e/Zk0qRJBNuh4sknn6R3795kZmZy8cUXk52dzdSpU3nsscfIysri888/r1LGyy67jJNOOolu3boxbdo0ALp37063bt0AaNeuHa1bt2bv3r2V0v73v/9N37596devH6eccgpgJhRdeeWVZGRk0L9/fz755BMApk+fznnnncfpp59O586defrpp/nb3/5G//79GTZsGAcOHABg2rRpDB48mH79+jF+/Hjy8/MrpTts2DBWrfpxY+7Ro0fH7DJzpbZlZ7HUCVH/6YE/976zitU76nZ2Wu92TfjTOX2qDXf99deTmZnJHXfcUcH9t7/9LTfffDMjRoxgy5YtnHnmmaxZs6bKuDZs2MCLL77IsGHDePPNN1m6dCnLli1j3759DB48uNxwLFmyhFWrVtGuXTuGDx/Ol19+yYgRIyrE9eCDD/LDDz+QkJBATk4OzZo149prryU1NZXbbrsNgJ///OchZVy+fDkLFizgyJEj9O/fn7Fjx9KuXbvy+BcuXEhxcTEnnHBCpfu47777mDdvHu3bty9v+T3zzDOICCtWrGDt2rWcccYZrF+/HoCVK1eyZMkSCgsLOfHEE3nooYdYsmQJN998My+99BI33XQTF1xwAb/85S8B+OMf/8hzzz3HjTfeWCHdiRMn8vrrr3Pvvfeyc+dOdu7cyaBBg6rM84aKr9gaO4ulLrAtuzBp0qQJl19+OU8++WQF9w8//JAbbriBrKwszj33XHJzc8nLq7rrqVOnTgwbNgyAL774gksuuQS3202bNm0YNWoU3377LQBDhgyhQ4cOuFwusrKyyM7OrhRXZmYmkyZN4pVXXsET4uPjqmQcN24cSUlJtGzZkjFjxrBw4cLy63bu3Mlll13GCy+8gMtVWVWGDx/O5MmTmTZtGl6vt/x+Lr30UgB69uxJp06dyo3dmDFjSEtLo1WrVjRt2pRzzjkHgIyMjPJ7W7lyJSNHjiQjI4MZM2ZUaMGVcdFFF/HGG28A8PrrrzNhwoQq87sh4yuyxs5iqQsaVMsunBZYfXLTTTcxYMAArrzyynI3n8/HggULSExMrBDW4/FUGI/z/+YrJSUlrPQSEhLKj91uN6WlpZXCzJ07l88++4x33nmHBx54gBUrVlQKE0pGqDxFv+w8NzeXsWPH8sADD5Qb5kCmTp3KN998w9y5cxk4cCCLFy8O+35cLlf5ucvlKr+3yZMnM3v2bPr168f06dOZP39+pXjat29PixYtWL58ObNmzWLq1NjbNLwYD/GUosUFkRbFYokJbMuuBqSnp3PRRRfx3HPPlbudccYZPPXUU+XnS5cuBcx2Rd999x0A3333HT/88EPQOEeOHMmsWbPwer3s3buXzz77jCFDhoQlj8/nY+vWrYwZM4aHHnqIQ4cOkZeXR1paGocP//h9VigZAebMmUNhYSH79+9n/vz5DB48mOLiYs4//3wuv/zyKltNmzZtYujQodx33320atWKrVu3MnLkSGbMmAHA+vXr2bJlCz169AjrfgAOHz5M27ZtKSkpKY8nGBMnTuThhx/m0KFDZGZmhh1/Q6EEs8yZllQes7RYLDXHGrsacuutt1aYlfnkk0+yaNEiMjMz6d27d3krY/z48Rw4cIA+ffrw9NNP071796DxnX/++WRmZtKvXz9OPfVUHn74YY477riwZPF6vVx66aXlk0F+85vf0KxZM8455xz+85//lE9QCSUjmG7QMWPGMGzYMO6++27atWvH66+/zmeffcb06dPJysoiKyur3EDec889vP322wDcfvvtZGRk0LdvX04++WT69evHr3/9a3w+HxkZGUycOJHp06dXaNFVx5///GeGDh3K8OHD6dmzZ7n722+/zT333FN+PmHCBF577TUuuuiisONuSPgwLWyxxs5iqRMk2Ay/SDFo0CANnFW3Zs0aevXqFSGJYpspU6ZUmMgSazRk3TkypQ0pFPJlq4sYfv20SItjsdQrIrJYVet1lplt2VksUYgbM+HHZVt2Fkud0KAmqFjqlmheBaax41YfCLi8DX8xa4slGrAtO4slCnFjZvK6rbGzWOoEa+wslmjD58MlZizd47WfHlgsdYE1dhZLtKHe8sM427KzWOoEa+wslijDV1pSfhynRRGUxGKJHayxC5PZs2cjIqxduzZkmOzsbPr27VuvcixdupR33333qK8v+wi9d+/e9OnThyeeeKIOpbPUBV7vj8Yu3mdbdhZLXWCNXZjMnDmTESNGMHPmzKD+wZbyqill60tWRW2Nncfj4a9//SurV69mwYIFPPPMM6xevfqo47PUPf56EG9bdhZLnVDvxk5EzhKRdSKyUUTuqu/06oO8vDy++OILnnvuOV577bVy9/nz5zNy5EjOPfdcevfuDRijN2nSJHr16sWECRPKt6j56KOP6N+/PxkZGVx11VUUFZlCrHPnztx5550MGDCAf//73xXSDdxCp7i4mHvuuYdZs2aRlZXFrFmzOHLkCFdddRVDhgyhf//+zJkzBzBb6owbN47Ro0fTrVs37r33XgDatm3LgAEDAEhLS6NXr15s37690j1/+umn5aun9O/fn8OHD6OqIbcjGjVqFOPGjaNr167cddddzJgxgyFDhpCRkcGmTZsAeOeddxg6dCj9+/fntNNOY/fu3ZXSvfjii5k7d275+eTJk8sXfW4slPp1YyZYY2ex1An1+p2diLiBZ4DTgW3AtyLytqoeXVPivbtgV+WFjmvFcRlw9oNVBpkzZw5nnXUW3bt3p0WLFixevJiBAwcCZt3LlStX0qVLF7Kzs1m3bh3PPfccw4cP56qrruLvf/87N9xwA5MnT+ajjz6ie/fuXH755Tz77LPcdNNNALRo0aJ8HU1/ArfQiY+P57777mPRokU8/fTTAPz+97/n1FNP5fnnnycnJ4chQ4Zw2mmnAWZ7npUrV5KcnMzgwYMZO3Zsha1wsrOzWbJkCUOHDq2U9qOPPsozzzzD8OHDycvLIzExkbfeeivkdkTLli1jzZo1pKen07VrV66++moWLlzIE088wVNPPcXjjz/OiBEjWLBgASLCv/71Lx5++GH++te/Vki3bPuesWPHUlxczEcffcSzzz4b5sOMDXwlxtjlawKJFKGqlRbstlgsNaO+W3ZDgI2q+r2qFgOvAePqOc06Z+bMmVx88cWAaXn4d2UOGTKELl26lJ937NiR4cOHA3DppZfyxRdfsG7dOrp06VK+PuYVV1zBZ599Vn7NxIkTg6YbbAudQD744AMefPBBsrKyGD16NIWFhWzZsgWA008/nRYtWpCUlMQFF1zAF198UX5dXl4e48eP5/HHH6dJkyZB077lllt48sknycnJwePxVLkd0eDBg2nbti0JCQmccMIJnHHGGUDF7Xu2bdvGmWeeSUZGBo888kjQ7XvOPvtsPvnkE4qKinjvvfc45ZRTSEpKCnrvsYrXa7rE8yWJJIopKqm+e9tisVRNfa+g0h7Y6ne+DajQjBCRa4BrAI4//viqY6umBVYfHDhwgI8//pgVK1YgIni9XkSERx55BKi8XU+oLXOqItSWP+FsoaOqvPnmm5V2Fvjmm29CylJSUsL48eOZNGkSF1xwQdC077rrLsaOHcu7777L8OHDmTdvXpX3EM72PTfeeCO33HIL5557LvPnzw+6gktiYiKjR49m3rx5zJo1q7yS0Zgom6BS4ErB5cuhsDCfxPjKFRKLxRI+EZ+goqr/VNVBqjqoVatWkRanEm+88QaXXXYZmzdvJjs7m61bt9KlSxc+//zzoOG3bNnC119/DcCrr77KiBEj6NGjB9nZ2WzcuBGAl19+mVGjRlWbdrAtdAK37znzzDN56qmnKFvQe8mSJeV+//vf/zhw4AAFBQXMnj2b4cOHo6r84he/oFevXtxyyy1Vpp2RkcGdd97J4MGDWbt2ba22IwI4dOgQ7du3B+DFF18MGW7ixIm88MILfP7555x11llhxx8reJ3KQZHLtGgLC6reDNhisVRPfRu77UBHv/MOjluDYebMmZx//vkV3MaPHx9yVmaPHj145pln6NWrFwcPHuS6664jMTGRF154gQsvvJCMjAxcLhfXXntttWkH20JnzJgxrF69unyCyt13301JSQmZmZn06dOHu+++u/z6IUOGMH78eDIzMxk/fjyDBg3iyy+/5OWXX+bjjz8un4BSNrtz6tSp5dv/PP744/Tt25fMzEzi4uI4++yza7UdEZi1OC+88EIGDhxIy5Yty90XLVrE1VdfXX5+xhln8Omnn3LaaacRHx8fdvyxgs/pxix2mxZ/0ZHDVQW3WCxhUK9b/IiIB1gP/ARj5L4Ffq6qlQdrsFv81CXTp0+vMJGlMdJQdWfb+iV0eHU0y1KG0+/Il6y/8BO69xkQabEslnrjWGzxU69jdqpaKiI3APMAN/B8KENnsVgMvtJiAEo9pmVXUngkkuJYLDFBvW/xo6rvAkf/FbTlqJg8eTKTJ0+OtBiWo8DrM7MvffGpAJRaY2ex1JqIT1AJh2jaTd3SMGjIOuNzJqhofBoAJUXW2FkstSXqjV1iYiL79+9v0IWX5diiquzfv5/ExMRIi3JUlC0ELYnG2HmtsbNYak3U71TeoUMHtm3bxt69eyMtiqUBkZiYSIcOHSItxlFR1o3pSigzdvmRFMdiiQmi3tjFxcVVWKHEYol11Pn0wJ3UFABfsTV2FkttifpuTIulseFzVlDxJFtjZ7HUFdbYWSxRRtlH5Z5kZ4kwa+wsllpjjZ3FEmWUdWNKXLJxKCmIoDQWS2xgjZ3FEmV4ndmY7rgECkhASm3LzmKpLdbYWSxRhjpjdq64eApJwGVbdhZLrbHGzmKJMrTU7E7u9sRTLAm4vIURlshiafhYY2exRBllLTt3XALFrgTcXtuys1hqizV2FkuUoV6zELQ7Lp4SScRtW3YWS62xxs5iiTLUWRvT44mnxJ1InM8aO4ultlhjZ7FEG14zZueJS8DrssbOYqkLrLGzWKINn7NcWFwcpZ4kEnx2zM5iqS3W2FksUYY639nFxSXi9SSToEURlshiafhYY2exRBnic9bGjIvD50kmUW03psVSW6yxs1iiDW8xxerG43ahcSkkU2j3c7RYaok1dhZLtOEroRQPIoIvPoUkKaaouCTSUlksDRpr7CyWKEN8JZSUbTUZlwJAwZHDEZTIYmn4WGNnsUQZ4i2lFDcArgRj7AoLrLGzWGqDNXYWS5Sh3hJKxbTsxDF2xUdyIymSxdLgscbOYok2fMV4HWPnSkgDoDjftuwsltpgjZ3FEmW4SgsplXgA4pKMsSspsC07i6U2WGNnsUQZcd4CCl1ml/K4JNONWVJ4JJIiWSwNHmvsLJYoI957hGLH2CUkNwGgtNB2Y1ostcEaO4slyoj3FVDiTgJ+NHbegrxIimSxNHissbNYooxEXwHFbtN9mZxqjJ2vyBo7i6U2WGNnsUQZiVqAOh+TJ6U4xq7YGjuLpTZYY2exRBGqahZ+TkwFID4xBZ8KFNsJKhZLbbDGzmKJIgoLCkiWIiShqXEQIV8SEWvsLJZaYY2dxRJF5O7bbg7SWpe7FZCIlORHSCKLJTaolbETkSkisl1Eljq/n/r5/U5ENorIOhE5s/aiWiyxT97+HQB40o4rdytyJeEutcbOYqkNnjqI4zFVfdTfQUR6AxcDfYB2wIci0l1VvXWQnsUSs+Ts3QZAs9bty92KXYm4vdbYWSy1ob66MccBr6lqkar+AGwEhtRTWhZLzFC893sAWrQ74Uc3VxJxpQWREsliiQnqwtjdICLLReR5EWnuuLUHtvqF2ea4VUJErhGRRSKyaO/evXUgjsXScPEc3MQhTaFpy7blbiXuZOJ9tmVnsdSGao2diHwoIiuD/MYBzwInAFnATuCvNRVAVf+pqoNUdVCrVq1qernFElMk5X7PrrgOiOvHV7PUk0y8rzCCUlksDZ9qx+xU9bRwIhKRacB/ndPtQEc/7w6Om8ViCUFRSSntir5na6tTKrj7PMkkqu3GtFhqQ21nY7b1Oz0fWOkcvw1cLCIJItIF6AYsrE1aFkuss3H1EtLlMK5OJ1Vw93mSSVLbsrNYakNtZ2M+LCJZgALZwK8AVHWViLwOrAZKgevtTEyLpWr2r/4EgPaZP6noEZ9CEoX4fIrLJbVOp6S4iPz8I6SlNsHlqYsJ2RZL9FMrTVfVy6rwewB4oDbxWyyNifjt33CApqQf3yvAI5UEKSWvsJDU5KSjivtI7gGW//fvpH//Nl1KNtFUSjmiCWxK7EtR34vIPP0yEhJT6uAuLJboxFbrLJYoQFU5Pm8ZW9KySJeKrTdJMEaoIC+3xsbOV1rKt288Qve1f+ckctnoPoEl7S6GlFa4crfSfu/ntFt8JwcXP8DydufS/tRraXdCX/CTISfnIDs2ryNn+waK9v4AOVtIK9hO09J9qPoQBHV58LoT8boTUU8ieJLQuCQkzriVuBIokQRUfeDzoj4fqBd83gp/RX2IehHUufnAkRZHLhG07NjPze8PHhHcbhdxTduSMf6uCvdkaXxYY2exRAFbs9dzPHvZ0eGkSn7uMmOXnwu0CTvOnZvXcXDGLxhavIKVCVnsOeNeegwczYl+YXxeL8u/fIeSBdPov/1VPK+8wgGacMidjku9NPMdpBl5NPO7poAE9rqPIyeuFbjc4POBrxR3SRHxRYeI0yLitIhEist/HvGFlNOnghcXPnHhw4UXl2PIjMH70aQ556rl15a7oQTDhY948ZLd81Q69x0adt5ZYg9r7CyWKGDnso85HmjVZ3QlP1diGgCFR3LDjm/NN/M47r1fcLyW8m3/Bxh07q8rfM5QHrfbTeYp58Ep57Fjyya2fPU6smsFccU5iLjYkTgYd9N2JLXuSrP23Wh9fHeSmrTheBGOr0aGEq+P/CIvRwCXluD2FeJ2uXC7PbjdHsTlAZcbl0i9rG6hqmz+fh2dXx7KnlUfW2PXyLHGzmKJAnxbFpBHEh17Dq7kF5dkjF1xmLuVL/rvP8n89nfscrWGSbMY3C0zrOvaHX8C7Y7/XfhCV0Oc20XT5DIzFgck11nc4SAidOrag520wr3ly2OatiX6sLseWCxRQOucZWQn9go6OzLO2duuJL/6lt3id55lwLd3sCGhF01vmM/xYRq6WEVE2JY+jB55iygssKvQNGZiqmXn83pZ+cjp5LfMJPGEkXTsOZj0Nh2Cdt8cFarg8+IrLaaktAhvSQmlJUV4S0sp9SkaZNjAjIn/ODBeaYg8YCq5VAghFf5UcK1irF0DPCvIJYIGG9/QipFWCCES9N4qxVP1qSOLBpwHCVTpmmrSDRqmav/wwtQ8neBZW/U9Fxceppc3m0Wtg6/fkJBsWnYlBYeD+pex5N3nyFr0O1Yl9OPE384lKSW1yvCNhfiM80j99B2WfjmHrNMuqZM4S0qKObhnBwV5ORQXHKao4AjiLQJxg7gQEXC5EXEhTtetuD243W5cbg8ulxu3Ow5xu3G7Pbg8pmvX7fKgbneQiTl++Kp6aTTgr79XVXoYPE4Ncl0FXB6at2gYK1/FlLHbv3c78aX59N76Ip5tL8CnkKvJHHI1I9/ThGJJLDc+guLSUlxairv8rxe3luKmFI96cVNKHKV48OLRUuLEfCroAhIieaOW2EMgrfvIoF7xjrHzFobuxlw67yUyvrmNdfF96Hrj29bQ+dHr5HPY/2lTZPHzUENjl7N/L9tWfk7elqW4966hWf4PNC/dS7oeorWEUVOLcVb4utL8viWRFiMsYsrYtTrueFr9cQF5uQfYuuJLDm5ZSdzBjbgKDhBXnEO8rxBVU1ERAa94KHUl4xUPKh58LvNTiUNdHnwu85eyv+648mNxx4E7DnXFOTU1MbU5f7T8P+c0jKZPuV/wGppSceZZ2b0Exlmp4ScV46rkHxhPebiqX+jg6QQ61XzKd6As4aUThku1olQfSzgz2MO5Y/943IlN6HXyz4KGS0wxu5Z7i4LvVr78o5n0+eomNsb1oOMN75CS1jSM1BsP8QkJrOv0c07e/Cyrvn6fPiedFTJs7uFc1n/7EQXrPqbVvgV0K91AX8eo7SWdXQmd+D61GxtT2+Jq2hZXYhPiElPxJKag7gTAZ2anqg9Q1FuKT33g9eLzlaLeUtTnNT+v81fNXxw/wYto0P6XH6lSCSVkkMBeH6nCr2JSwf2K4psHdY9GYsrYlZHaJJ1ew8+B4edEWhSLpdYkpTYBQIsqt+xWzv83PT+7gR88XWl7w1zSmqYfa/EaBP0n3MX2v71Fq3nXsTb+eXoOHANAQX4+m1d+wYFVH5O28yu6F61mkJRQqi6+T+jJd+1/QVL3UbTvOYRWLY+jYXTYWYIRk8bOYoklEpzZmL7iii27ZfPfpOcn17HZ04k2179L02YtIiFegyAprRnFF84g7vWL6PnOeex9pzle3LTS/fR0Wm4/uLuwot0EUnv9hC4DT6d7SrPICm2pU6yxs1iiHXc8JbiR4h9bdkv/9wq9vriJbZ6OtLruPZqmt46ggA2DLr0Hk3fLYr55dyquXcsR9ZGd1p74jgPpMvA0urQ8ji6RFtJSb1hjZ7FEOyIcoBnJBbtQn48FM+5l6MYn2BDXnbbXvUOTFuGvqtLYSW2SztCLfx9pMSwRwBo7i6UBsDOpG91zv2LVwz/hpMLvWJJ2Cj2vm2lnXVosYWI/KrdYGgBFvS6gCUfoUrCar3v+jqxb5lhDZ7HUANuys1gaAEPP/RWbe51Ms1btOamZnXFpsdQUa+wslgZCp24ZkRbBYmmw2G5Mi8ViscQ81thZLBaLJeaRwIV5I4mI7AU210FULYF9dRDPsaAhyQoNS14ra/3RkORtSLJCw5K3rmTtpKr1ukBNVBm7ukJEFqnqoEjLEQ4NSVZoWPJaWeuPhiRvQ5IVGpa8DUlW241psVgslpjHGjuLxWKxxDyxauz+GWkBakBDkhUalrxW1vqjIcnbkGSFhiVvg5E1JsfsLBaLxWLxJ1ZbdhaLxWKxlGONncVisVhinpgydiJyloisE5GNInJXpOUJREQ6isgnIrJaRFaJyG8d9ykisl1Eljq/n0ZaVgARyRaRFY5Mixy3dBH5n4hscP42jwI5e/jl3VIRyRWRm6IpX0XkeRHZIyIr/dyC5qUYnnT0eLmIDIgCWR8RkbWOPP8RkWaOe2cRKfDL46nHUtYq5A357EXkd07erhORM6NA1ll+cmaLyFLHPRryNlSZFZW6WyWqGhM/wA1sAroC8cAyoHek5QqQsS0wwDlOA9YDvYEpwG2Rli+IvNlAywC3h4G7nOO7gIciLWcQPdgFdIqmfAVOAQYAK6vLS+CnwHuAAMOAb6JA1jMAj3P8kJ+snf3DRVHeBn32zvu2DEgAujhlhjuSsgb4/xW4J4ryNlSZFZW6W9Uvllp2Q4CNqvq9qhYDrwHjIixTBVR1p6p+5xwfBtYA7SMrVY0ZB7zoHL8InBc5UYLyE2CTqtbFSjx1hqp+BhwIcA6Vl+OAl9SwAGgmIm2PiaAEl1VVP1DVUud0AdDhWMlTHSHyNhTjgNdUtUhVfwA2YsqOY0JVsoqIABcBM4+VPNVRRZkVlbpbFbFk7NoDW/3OtxHFhkREOgP9gW8cpxucZv/z0dA16KDAByKyWESucdzaqOpO53gXEG3bZF9MxcIiGvO1jFB5Ge26fBWm9l5GFxFZIiKfisjISAkVhGDPPprzdiSwW1U3+LlFTd4GlFkNTndjydg1GEQkFXgTuElVc4FngROALGAnpisjGhihqgOAs4HrReQUf081/RZR8+2KiMQD5wL/dpyiNV8rEW15GQoR+QNQCsxwnHYCx6tqf+AW4FURaRIp+fxoMM/ej0uoWFGLmrwNUmaV01B0N5aM3Xago995B8ctqhCROIzSzFDVtwBUdbeqelXVB0zjGHarVIWqbnf+7gH+g5Frd1m3hPN3T+QkrMTZwHequhuiN1/9CJWXUanLIjIZ+BkwySngcLoD9zvHizFjYN0jJqRDFc8+WvPWA1wAzCpzi5a8DVZm0cB0F2LL2H0LdBORLk4N/2Lg7QjLVAGnT/45YI2q/s3P3b9P+3xgZeC1xxoRSRGRtLJjzASFlZg8vcIJdgUwJzISBqVCzTga8zWAUHn5NnC5M7NtGHDIr8soIojIWcAdwLmqmu/n3kpE3M5xV6Ab8H1kpPyRKp7928DFIpIgIl0w8i481vIF4TRgrapuK3OIhrwNVWbRgHS3nEjPkKnLH2Ym0HpMDegPkZYniHwjMM395cBS5/dT4GVgheP+NtA2CmTtipm1tgxYVZafQAvgI2AD8CGQHmlZHblSgP1AUz+3qMlXjBHeCZRgxjF+ESovMTPZnnH0eAUwKApk3YgZiynT26lO2PGOfiwFvgPOiZK8DfnsgT84ebsOODvSsjru04FrA8JGQ96GKrOiUner+tnlwiwWi8US88RSN6bFYrFYLEGxxs5isVgsMY81dhaLxWKJeayxs1gsFkvMY42dxWKxWGIea+wsFovFEvNYY2exWCyWmOf/AcqdCmj2LgHDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 8)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACFQklEQVR4nO2dd5xVxfm4n/fce/febbA0qUpR6UtvCigau1FUbIkNTTOJSYwm0W8SDZryM0aj0RhJDIpdbLFEjcaCNYggSFMUZGnSYdm+t5z5/TFzL2d379a7dws7z+ezcO/MnDnvPWfOeed9550ZUUphsVgsFktHwWltASwWi8ViaUms4rNYLBZLh8IqPovFYrF0KKzis1gsFkuHwio+i8VisXQorOKzWCwWS4eizSg+ERkgIkpE/K0ty8GOiMwWkfda6FyZIvKyiOwTkV+0xDmrnb9ARE5ogfMsFJFv15Jn23YrUc99qTWvmWWYLyK/qyNficgR6ZbjYEBEjhKRIhFZLiL5Ta2nzSg+S9MQkTkiEhGREs9fiyuYOjgBGAUcqpS6NZ5oFNKAVpOqDWHu4ZxGlP+miGwUkVIReU5EutZR9h8islZEXBGZnST/pyKy3bxM7heRoCdvjIi8KyL7RWSLiNxQ7djzReRTESkWkTUicpYnb261NlkpIsWe/JJqfzERubuBv39+st9yMGI6qfMbUf5rIvKZiJSJyFsi0r+OsgNMmTJzzAmevMtEZKlpF1tE5NZ4x01EgiIyz7TBYqOETq1Wr6p2f2/w5AdNWysybe8aT95wEVliOsr7ROR1ERkez1dK/Q/IAz4HvtXQ61KdZlN8tjfbqixQSuV4/m6t/5AWoytQoJQqaW1BUkE0rd5RFJERwN+BS4CeQBnwtzoO+QT4AfBxkrpOBq4Hvgb0BwYBN3mKPAa8g76HxwI/EJEzzbF9gUeAa4BOwM+Bx0TkEACl1JXeNgk8DjwVr7haXi+g3Jvf3hARXxuQoTvwLHAD+p4tARbUccjjwDKgG/Ar4GkR6WHysoCrge7AZHQb+ZnJ8wOb0W2iM/Br4MkkHdk8z33+rSd9DnAkus0dB/xCRE4xeV8B5xr5uwMvAE94K1VKucAaI3eTSOlBNr3260RkBVAqIn4RmSIiH4hIoYh8IiIzPOUXisj/E5HFRts/X1tvVUQu9/QmvxSR71XLn2l6GkUisj5+4USks+mNbBORrSLyu/oapYgcLiJvisgeEdktIo+KSJ4nb6+IjDPf+4jIrvjvEpEzRWS1+b0LRWRYtevzMxFZIbrXvEBEQo2/0o1HRK431yXeGz+7lnIiIneIyE5zLVeKyEiTFxSR20Rkk4jsEN2Lz2ykKH7ArUfWbiLyojn/R+aevefJVyJypYh8Ya7zPSIiJq/We+dhorkG+0Tkgfg9EJEuIvJvcz/3mc/9POddKCK/F5H30QpmUD2/tb+IvG+u+WvmReTlInMtd4vIr+qpqzYuAl5USr1jOhM3AOeISG6ywkqpe5RSbwAVSbIvA+YppVYrpfYBvwVme/IHAI8qpWJKqfXAe8AIk9cPKFRKvaI0LwGlwOHVTyIi2cAs4MFaftMsYCfwbh2/Oyki4hOR28013SAiV0ktbmUR6W2exZ97kg+v7X0kIk+Jtkj2i8g7ojsd8bz5InKvaDd+KfoFXhddROQl0zY+FJHq1+mEZO27kZwDrFZKPaWUqkArmNEiMrR6QREZDIwDfqOUKldKPQOsRN8LlFL3KqXeVUqFlVJbgUeBqSavVCk1RylVoJRylVL/BjYA4xso52XAb5VS+5RSnwL3YdqdUqrQ1KsAAWJAMjewi363NA2lVJP/gAJgOXAokAn0BfYAp6GV6onmew9TfiGwFRgJZAPPAI+YvAGAAvzm++noh0jQPYsyYJzJmwTsN/U75rxDTd6/0D3ibOAQYDHwvXp+xxGmriDQA93LvdOT/x10DyMLeBW4zaQPRj/sJwIB4BfAOiDDc30WA33QPZhPgStrkWEaUFjH37RajpsTv4bV0s8z53WAC4ycvU3ebOA98/lkYCnafSDAME+5O9A9rq5ALvAi8P8a0T4CwMPJ5KtW7gnzlwUMR/cm3/PkK+DfRsbDgF3AKQ28dwXAKnQb7Qq8D/zO5HVDP+hZ5vc9BTznOXYhsAn9svcDgTp+w0JgvWkTmeb7LdXa9n0mbzRQCQyrpa667vfzwHXV0kqA8fVc4/eA2dXSPgEu8HzvbuTsZr7/AbjF3MchwBZgosnzAW8DZ5rPZ5n87CTnvhT4EpBaZHsTmNPEd9CV6GezH9AFeJ2q75GFwLeBgWj32Her3bOk7yOTf4VpF0HgTmC5J28++h00Ff2MheqQcT76PTjJtKNHgSca0r6T1LUC+GYteX8B7q2WtgqYlaTs2cCn1dL+CtxdS93Pxdtzkrye6I5V/B0cb+9bTZt4AOhu8rqYvJ6e488FViZ5BqJoBffrJOe83NzPbk1qN005yHPyAuAKz/frgIerlXkVuMzT0G7x5A0HwugHJ36x/HVc+J+Yz38H7qjlBlQCmZ60bwBvNfJ3nQUsq5b2ArpHtAIImrQbgCc9ZRxzs2d4rs/FnvxbgbmpXPMkss4x17DQ89cnSbnlwEzzeTYHFN/xpgFNARxPecH04D1pRwEbGijXGCAC7ACOqKOcz5Qb4kn7HTUV3zTP9yeB6xty78w9uNLz/TRgfR0y7/N8Xwjc3MDfuxDPA4p2L/7HfI637X6e/MXAhU24329QrfPkbXN1HJdM8a3H84JFKzgFDDDfj0Z35KIm/aZqx38LrXSj6I7p6XXIPKeWvP7oXv3AJrb/N/F0bNFjytUV359NO/hGknuW9H2U5Dx5pt7O5vt84KEGyjgf+Ge1NvhZU9p3PeeZRzXlhO7ozU5S9hJgUbW03wPzk5S9Aq3AuifJC6A7G3/3pOUAE9BKvifwNPCqyTvU/N6Qp/yJ6OGQ6nVnm+eoRrsy5/3A1HV1Y69Vc4xZbPZ87g+cZ8z1QhEpRFsyvWspv9H8gOouIUTkVBFZZNyMhejGEi93KPqhrU5/U982z/n/jrb8akVEeorIE6Jdo0XosYvqMt2H7hnerZSqNGl9zG8AEr7nzWgLNM52z+cydKNobp5USuV5/r4SkUtFu4Lj12EkSa6zUupNdE/vHmCn6GCITmjrKQtY6qnjPya9XpRSy9G95f+hxwpqowcHxgzibE5SLul1bOC9q97m+phjs0Tk76IH6YvQ1mKeVHWNJ5OlNuq7183RFkrQY2peOgHFSco2tq7452Lj8vsPcDMQQj9zJ4vIDwBEB0LcCswAMtBemX+KyBjvCUTkMFPmoVpkuATdydnQBPlB38v62s5F6M7B00nykr6PjAv1FtHDBUVoxQlV21Z7bhsNKis6YOn/AacqpXZXy3PQHp0wcFU8XSlVopRaopSKKqV2mLyTjDs+PtZfvd3VkFEpVQrMBR4SM3bs4Qx0m+yjlLozye+rk+ZQfMrzeTPa4vO+hLOVUrd4yhzq+XwYurdf/YIG0W6H29AmcR7wMtoKiZ+nxliCSa9E90zi5++klBqRpKyXP5jfka+U6gRc7DkXIpKDdnXMA+Z4xgG+QivbeDkxv29rPeergYhMl5qRbt6/6Y2oqz9aUV+FdgXkoV0eSccNlFJ3KaXGo3u8g9GBCrvRAQcjPNeys9LBCA1C6XGGV0y9tbELbTH086QdWkvZZNR575LUdxj6vgFci3bhTTbHHmPSvcd723dbYDXaVQqAiAxCu+I+T7Uu83mHUmoPejwzppR6yLzAtqDd0aeZsmOAd8wLzlVKfQR8iLa4vFwCvK+U+rIWGS6l9rG/hrCN+tvOHHR7fkxqjvfX9j76JjAT/Xs6o612aF9tIxv9nlxdS9lB1caGR3vLio6buA84Qym10nuwedfNQ1t0s5RSkTrkil8nR+mx5G3UbHfJZASto7KoakyAHpJZpJTaVsd5a6W5o9QeAc4QkZNNjykkIjO8AQPAxaJDVrPQvcmnlVKxavVkoB/mXUBUdKjsSZ78ecDlokN3HRHpKyJDzUV4DbhdRDqZvMNF5Nh65I73RPaLjlb7ebX8vwBLlFLfBl5C90JAuyRON3IE0C/SSrQJ3iiUHkjOqeOvMQP/2ejGtgt0oBDa4quBiEwUkclG/lK0r9411ut9wB3x3pa5zid7jlXiCV6qhUr0/UyKuffPojsUWWYg/tIG/UpNffcO4Ici0s90WH7FgUi3XLRyLzR5v2nEeVuLR9HP2HTzYrsZeFYpldTiE5EM0cE8AgTMMxl/7h8CvmWexzx0dN58k/e5Ply+aZ6jXuix4hUm/yNgetzCE5GxwHRPfpxLPXVWl+1o9AutRjRnA9sW6GfwJ6Zt5qGHW6oTQY95Z6OtB+97r7b3US667e5Bv3j/0ABZWpt/ASNFZJa55zcCK5RSn1UvqJT6HD388RvTJs5GTzt6BkBEjke3tVlKqcVJznUvWvmcoZQq92aY98kQ0266AXcBC5VS+02Rh4Bfiw4uG4qOoZhvjj1RRMYa/dEJ7abeh46P8BJA358m0ayKTym1Gd1L+iX6pbsZ/SLynudh9I/cjnah/DhJPcUm/Un0j/4meowtnr8YPbh5B3qA+W0OWF6Xol+0a8yxT1PV1ZqMm9ARTvvRiu3ZeIaIzAROAb5vkq4BxonIRUqptWgL4250L/EMdEMI13O+tKKUWgPcjnYz7gDy0b7+ZHRCK7h9aFfPHuBPJu869BjPIuPueR1tISEih6LdEyurV1gNl/rb2VXoXvV2dPt4nIY36lrvnYfH0B2iL9Eu8vhk4jvRwSa7gUVo116rU5eFr5RajQ7oeBQdCZmLHgeJH/uKiPzSc8hraOV+NPAP8/kYU9d/0O7Kt9BBPBsxyl8pVYSOEvwpum0sR3sNfmfy30ZbUk+Lnp/3DPAHpdRrHlmOQltjtU1TuIwkSrsRbQt0230NrXCXoT1DUfS4YQLzTJ6DtlDu9yi/2t5HD5nrsRX9LlnUAFnSjugI8ouS5SmldqGDtX6PvmeTgQs9x84VkbmeQy5Ej8XtQwcxnWvqAB2/0Bl42eN1esXU0x/4Htrq3+7Jj8s1CP0sFaPbTCU61iLOb9DP4Ub0u/tPpi2CHkt9HP08r0dbrKcY75EXH/VEi9eFmIHCFkFEFqKjpv7ZYie1pAURuRjtBv2/esqdhPYEDFVK7W1g3X8EeimlLktdUkt7o6Ftq5ZjT0UHkPWvt7ClXSJ6qsqz6AChJi3W0eoTci3tE6XUIw18MS0E/gusFpGfJSsgIkNFZJRoJqGjBf/VfNJa2hONaFuIXhLvNNFziPuirQnbdg5SRGQK2jrPQ3swmkSHWW3FmPgXJ8l6RCl1ZUvL01EwLqakrhkPuWj3Rh+0a/Z29Hy1NoWI1Lb6zKmNHIO1NB+CdncvQLtxX0KPbbWsECKr8QS6efieUurRlpbnYEUptYgk0emNpUVdnRaLxWKxtDbW1WmxWCyWDkWbcnV2795dDRgwoLXFsFgsFksLsnTp0t1KqQYtjtEctCnFN2DAAJYsWdLaYlgsFoulBRGRjfWXaj6sq9NisVgsHQqr+CyWNowNPrNYmp8Or/g+37KTt397MlvXfdLaolgsVdhS8Dmf/GY8K1Ysa21RLJaDijY1xpeMSCTCli1bqKhIto9m6pSXFnPICdewd08hRZHqy8FZ2iuhUIh+/foRCARaW5QmU/Dhi0xz1vPxwlth1OMtcs6t27dRsPgVpp55RYucD2Dp6rV0yfIzaGCydectluanzSu+LVu2kJuby4ABA5AmbUpcN0X7dtGpPEC5k01mr8HNXr+l5VFKsWfPHrZs2cLAgQNbW5wmE8jUC+c7kdIWO+fex69k6v6F7Bo1hR4D6tpUo/kY/9Qk/WHO/roLWizNRJt3dVZUVNCtW7e0KD0Ax1Tr1NggwtJeERG6deuWNi9BSxFvk060vJ6SzUeoRG8xV7x7S4ud02Jpadq84gPSpvS8WMV3cNESbSbdSFQrbl8LKj4c7QSqKNpdT8HmwQbvWFqDdqH40op58KTpO1xYLGlBYlrxBdyWU3xRXxYAlSWFLXI+16v3YnXtZWqxNB9W8Rmkjs2URYRrr7028f22225jzpw5LSBV01i4cCEffNDovXCrcMopp5CXl8fXv/71ZpLK0mhcrQgCbpP322w0Mb9WfOHSfS1yvqh7oMMZKWkZK9Ni6fCKL+5qceqw+ILBIM8++yy7dzfvg6mUwnWb39JsDsX385//nIcffriZJLI0CVe73zNUyym+qFF8VLRMoIm3+Zfsb9B2jRZLynR4xQdxV2ft+P1+vvvd73LHHXfUyNu1axezZs1i4sSJTJw4kfff1xudz5kzh9tuuy1RbuTIkRQUFFBQUMCQIUO49NJLGTlyJJs3b+bnP/85I0eOJD8/nwULFgBaec2YMYNzzz2XoUOHctFFFyUdD7nrrrsYPnw4o0aN4sILL6SgoIC5c+dyxx13MGbMGN599906Zbzkkks46qijOPLII7nvvvsS9X7ta18jNze3ziv31FNPMXLkSEaPHs0xxxwD6GCkyy+/nPz8fMaOHctbb70FwPz58znrrLM48cQTGTBgAH/961/585//zNixY5kyZQp79+qX3n333cfEiRMZPXo0s2bNoqysrMZ5p0yZwurVqxPfZ8yYcXAudWe0QqjG5tPpIz42KuHieko2D16Lr7S4sEXOabG0+ekMXm56cTVrvipq1jqP7Ornd1Prvww//OEPGTVqFL/4RdUNf3/yk5/w05/+lGnTprFp0yZOPvlkPv207vmAX3zxBQ8++CBTpkzhmWeeYfny5XzyySfs3r2biRMnJpTIsmXLWL16NX369GHq1Km8//77TJs2rUpdt9xyCxs2bCAYDFJYWEheXh5XXnklOTk5/Oxnet/Xb37zm7XKuGLFChYtWkRpaSljx47l9NNPp0+fPg26djfffDOvvvoqffv2pbCwEIB77rkHEWHlypV89tlnnHTSSXz++ecArFq1imXLllFRUcERRxzBH//4R5YtW8ZPf/pTHnroIa6++mrOOeccvvOd7wDw61//mnnz5vGjH/2oynkvuOACnnzySW666Sa2bdvGtm3bmDBhQoNkbk8oE3AVouUsPjHn9IWb9zmrDa/FFylrmXNaLNbi847tqdrdjp06deLSSy/lrrvuqpL++uuvc9VVVzFmzBjOPPNMioqKKCmpbb9STf/+/ZkyZQoA7733Ht/4xjfw+Xz07NmTY489lo8++giASZMm0a9fPxzHYcyYMRQUFNSoa9SoUVx00UU88sgj+P3JFXhdMs6cOZPMzEy6d+/Occcdx+LFi+uU3cvUqVOZPXs29913H7FYLPF7Lr5Y7/c7dOhQ+vfvn1B8xx13HLm5ufTo0YPOnTtzxhlnAJCfn5/4batWrWL69Onk5+fz6KOPVrHs4px//vk8/fTTADz55JOce+65DZa5XWFcnZmEE0FYLXVOf0tZfLED0dRhq/gsLUS7svh+c8aIZq+zeM82qNwOgHJdxFd7X+Dqq69m3LhxXH755Yk013VZtGgRoVCoSlm/319l/M47pyw7O7tBsgWDwcRnn89HNBqtUeall17inXfe4cUXX+T3v/89K1eurFGmNhmhZth/Y6YBzJ07lw8//JCXXnqJ8ePHs3Tp0jrLe3+P4ziJ747jJH7b7Nmzee655xg9ejTz589n4cKFNerp27cv3bp1Y8WKFSxYsIC5c+c2WOZ2RXwenygqK0oJZuak/ZRxiy8QbRnFF4sdaNPW4rO0FNbi8/SklVv3XL6uXbty/vnnM2/evETaSSedxN133534vnz5ckBvsfTxxx8D8PHHH7Nhw4akdU6fPp0FCxYQi8XYtWsX77zzDpMmTWqQ6K7rsnnzZo477jj++Mc/sn//fkpKSsjNzaW4+MCLqzYZAZ5//nkqKirYs2cPCxcuZOLEiQ06N8D69euZPHkyN998Mz169GDz5s1Mnz6dRx99FIDPP/+cTZs2MWTIkAbXWVxcTO/evYlEIol6knHBBRdw6623sn//fkaNGtXg+tsTytNxKitumWATMV6PYLRlVovxKr5YhVV8lpbBKj4PrlvToqrOtddeWyW686677mLJkiWMGjWK4cOHJ6yPWbNmsXfvXkaMGMFf//pXBg9Ovhza2WefzahRoxg9ejTHH388t956K7169WqQvLFYjIsvvjgRSPLjH/+YvLw8zjjjDP71r38lgltqkxG0q/S4445jypQp3HDDDYnxvenTp3Peeefxxhtv0K9fP1599VUAbrzxRl544QVAR37m5+czcuRIjj76aEaPHs0PfvADXNclPz+fCy64gPnz51ex9Orjt7/9LZMnT2bq1KkMHTo0kf7CCy9w4403Jr6fe+65PPHEE5x//vkNrrvd4XG9l5e00HJexuLLcGsGFaWDmMeL4Va23NJslo6NtKWVEyZMmKCqR+d9+umnDBs2LG3nLN69ldzwTgAieYcTyOqUtnO1NebMmVMlCOZgI91tJ918dN+PmLj1IQC+POcVBo06Ou3nXH3riYwoW8xu6Ur33yT3UjQnm7bt4LC/607hxwO/y7jL/pT2c1raHiKyVCnVYhFq1uLzKH63HlenxdKieCy+yrKWcnWagBrVMqvFeF2dVNYdFGaxNBftKrgl3dQ3xnew0ZZXn7GQiLCElgv8iI/xZVKhO4VpXvPU6+qUsFV8lpbBWnze6QwdTPFZ2jiehdOj5S2l+EwkKQrVAorI9Vh8vhYKqLFYrOLz0NEsPksbx+PqjFW0zPQC8ZyzogUCaqoovhbcd9DSsbGKTzVsArvF0uIol0qlRyNaTPFxoPPXEpGkrmcCe8BafJYWwio+9NYoMSXW4rO0KUTFKMEsGt1CgR/efSlbwuLzBrcEYi0zhcJisYoPPYDv4lRx81TnueeeQ0T47LPPai1TUFDAyJEj0yFkguXLl/Pyyy+nVMcVV1zBIYccknZZLSnixoiJn1IVbLFFo0W5lCi9wk9laWHaz+d1dYZaaO6gxWIVn3F1ujhVggmq8/jjjzNt2jQef/zxpPnJlhNrLLFY/RZncyi+2bNn85///CelOiwtgHJxEcols8UiHh3lUmyszJaIJI27OkvIIqis4rO0DFbxAQrBldotvpKSEt577z3mzZvHE088kUhfuHAh06dP58wzz2T48OGAVoAXXXQRw4YN49xzz01sq/PGG28wduxY8vPzueKKK6is1CvuDxgwgOuuu45x48bx1FNPVTlv9W1/wuEwN954IwsWLGDMmDEsWLCA0tJSrrjiCiZNmsTYsWN5/vnnAb0N0MyZM5kxYwZHHnkkN910U6LeY445hq5du9Z5Td5++23GjBnDmDFjGDt2LMXFxSilat1C6dhjj2XmzJkMGjSI66+/nkcffZRJkyaRn5/P+vXrAXjxxReZPHkyY8eO5YQTTmDHjh01znvhhRfy0ksvJb7Pnj07sSB1R0OUi4tDuWS1WOCHEKNE9JqgkRZYQiy+WlKJ5JDVQnMHLZb2NY/vlethe81FmFMh2OkwOOpKXBz8tSi+559/nlNOOYXBgwfTrVs3li5dyvjx4wG9DueqVasYOHAgBQUFrF27lnnz5jF16lSuuOIK/va3v3HVVVcxe/Zs3njjDQYPHsyll17Kvffey9VXXw1At27dEut6eqm+7U9GRgY333wzS5Ys4a9//SsAv/zlLzn++OO5//77KSwsZNKkSZxwwgkALF68mFWrVpGVlcXEiRM5/fTTG7x9z2233cY999zD1KlTKSkpIRQK8eyzz9a6hdInn3zCp59+SteuXRk0aBDf/va3Wbx4MX/5y1+4++67ufPOO5k2bRqLFi1CRPjnP//Jrbfeyu23317lvPEth04//XTC4TBvvPEG9957b4NkPuhQMRQOFU4W/hYK/HCUS5mTCy5Ey9PvXo2Pq5c5OfSK7YRYFHzt67VkaX9Yiw89k0+Jg9SyC/vjjz/OhRdeCGiLxOvunDRpEgMHDkx8P/TQQ5k6dSoAF198Me+99x5r165l4MCBifU6L7vsMt55553EMRdccEHS8ybb9qc6r732GrfccgtjxoxhxowZVFRUsGnTJgBOPPFEunXrRmZmJueccw7vvfdeA6+IPvc111zDXXfdRWFhIX6/v84tlCZOnEjv3r0JBoMcfvjhnHTSSUDVLYe2bNnCySefTH5+Pn/605+Sbjl06qmn8tZbb1FZWckrr7zCMcccQ2ZmZoPlPpgQFcMVh7Avi4xYS1l8LpV+vQGx2wJzB91YBIBKv7YyVQuNZVo6Nu2ra3XqLc1eZeX2L8l0S1A4icm7Xvbu3cubb77JypUrERFisRgiwp/+pNcUrL7FUFO2+altm6KGbPujlOKZZ56psQPChx9+mNKWQ9dffz2nn346L7/8MlOnTk0sUl0bDdly6Ec/+hHXXHMNZ555JgsXLky6ckwoFGLGjBm8+uqrLFiwINHh6IhoV6ePsC+bTuGabuF04KgYUX82sUppkUhSZTp0YX8uVEJ5SRFZmV3Sfl5LxybtFp+InCIia0VknYhcn+7zNRVt8dVcsPvpp5/mkksuYePGjRQUFLB582YGDhzIu+++m7SeTZs28b///Q+Axx57jGnTpjFkyBAKCgpYt24dAA8//DDHHntsvTIl2/an+pZDJ598MnfffTfxxcaXLVuWyPvvf//L3r17KS8v57nnnktYog1h/fr15Ofnc9111zFx4kQ+++yzlLZQAti/fz99+/YF4MEHH6y13AUXXMADDzzAu+++yymnnNLg+g824hZf1J9NyG0hVycuPr+fUjKhBayvuKszktEZgPLifWk/p8WSVsUnIj7gHuBUYDjwDREZns5zNh6FQkB8OElcnY8//jhnn312lbRZs2bVGt05ZMgQ7rnnHoYNG8a+ffv4/ve/TygU4oEHHuC8884jPz8fx3G48sor65Us2bY/xx13HGvWrEkEt9xwww1EIhFGjRrFiBEjuOGGGxLHT5o0iVmzZjFq1ChmzZqVGN/7xje+wVFHHcXatWvp169fYn/BuXPnJrYsuvPOOxk5ciSjRo0iEAhw6qmnprSFEui1Qc877zzGjx9P9+7dE+lLlizh29/+duL7SSedxNtvv80JJ5xARkZGg+s/2IgHt7gZOS22aLSDC+KjlJaJJFUmuMUNGsVX2kLbL1k6NGndlkhEjgLmKKVONt//D0Ap9f+SlW+NbYlKtq8n6JZR5s+jc3Q39B4N0v6HPufPn18lCKYj0t63JVpx68lkVe5k1yFHM/arBYRu2l3/QSmya85Avsw7mh6FyyntfDj5P30href74M3nOfqdS/lwwJVMLpjLl6c8zKApZ6b1nJa2x8G2LVFfYLPn+xaTlkBEvisiS0Rkya5du9IsTjIUIOD49FfXLltmaRvEx/hUIIeQRIiGK9N+TocYOD4dSRpJ/7y6+Bifk5kHQLiFdqGwdGxa3bRRSv1DKTVBKTWhR48erSCA2Z/BWHkHy7Jls2fP7tDW3sFAfIxPQnpz5LLi9LsBfbgocaj0ZRFogUjS+PPmz8oDWm4XCkvHJt2KbytwqOd7P5PWKNK7S7yuW4zFZzejPThIb5tpGUS5KBx8IR3qX1aS/sAPBxccHxGnZaZQxBVfIEcvqBCzis/SAqRb8X0EHCkiA0UkA7gQaNSgQSgUYs+ePWl+kYlH8aW+9JildVFKsWfPHkKhUGuLkhKCiysOvkxt8VW0QOCHo3RwSySQ0yJrZ8YVX9AoPreFdqGwdGzSOo9PKRUVkauAVwEfcL9Squas5Tro168fW7ZsIV3jf5X7d+DDJRasJFixi+hOF38wKy3nsrQcoVCIfv36tbYYKaFdnT78ccXXArslxC2+mD+bkNsCkaSmo5mVnUOlCqAqreKzpJ+0T2BXSr0MNHlV5UAgUGVllOZm8R9+wiFqNztPvJsxr57Pl8fezaDjLk3b+SyWhiLKRYmfjCwd6h8pa5kxPsSHm5FDFuV6EfdGLHzQWOIWX2ZGgBJCLbYYt6Vj0+rBLa2NqBhKHELZ5uVixxgsbQSHGEp8BHN022yJtTPjFp/KyMFPDKIVaT1fXPGJz0eZZOFErOKzpB+r+JSLEh8h83Kxg+uWtoJumwc6ZdHy9Fp8Silj8TmQkWvOmebnwSg+xxegQjLxWYvP0gJ0eMXnoCPnsozis4PrlraCYzplWTl67cp0t81YzMURhTg+xESSlqd7CoUZ43PicwdbaBcKS8emwys+7er0kZMZokwFUS2wMK/F0hAE7YbPytWdMtIc+BGN74bu+BMBNeXp3oXd4+oM+7LJiNnNaC3pp8MrPse4k7KDfkoJIXZbFEsbwVEuCh8ZGRmUqwxUmt2AsWhc8fkSUygq0zyFQpkdUXw+PxFfFsEWWozb0rHp8IpP0O6kgM9psYV5LZaG4OCiHP2IlkoWTroVn9kbTxwfgSyj+NK8hJg3uCUayCbYElMoLB2eDq/4HBPVCVAuWfgitsdpaRvEA68AHfiR5ojHWNQoIfERNFMoouleO9ONW3wBYoEcspR1dVrST4dXfGLmLQFUOJn4o9bis7QNHGKJNWTLnSz8ae6UxeJjfD4fwRaKJI0Ht/h8flRGDllU2IXiLWmnwys+x9OrDrfQwrwWS0Nw8LTNFlg7M674RHxk5eTptDTPHRSllZzj80NQT6FQdpzdkmY6vOITYmDGUcK+HII2qszSRqjSKfOnP+IxaoJbHJ8/EUma9iXE3AMBNWIUX0VJYXrPaenwdHjF53256PUJreKztA2c+GRyIOrPJpTmiMdoVAe3OD4f2aEApSoI6Q72Sii+AE5IK76W2H7J0rGxis8zxhfLyCZT2agyS9tAR3WathnIIZTmthkzm8KK4yPo91HSAlHOouLjioEDi3G3wC4Ulo5Nh1d8fmIoR6/V7WbkEiQMJqzbYmlNvJ0yN5BDVpoVXzSid3gXfxCAcslM+xQK8UyaD7TQ3EGLxSo+ognFJxl6maZ0r5BhsTQEn8fVSTCHTAkTi4TTdj7X1O34AgBUtMT0HjdCFAdEyMjOAyDcArtQWDo2HVrxua4yFp9+0AlqxWd3aLC0BbzjzxLU1lBZGq2hWFQrPvEbxefLJhBL/xhf1OyOFszWvzHtcwctHZ4OrfiiriJAFGV6uBIy6xPaqDJLGyC+RRCQCPwoL96XtvPFEsEtGQBEfFkE0h3lHIsSQ//GkJlCEa2wis+SXjq44nMJEANj8flD8XBq62qxtD4+XCSu+DLT3zaVsfh8AaP4/Nnpn97jRhIWX3zuoLI7pFjSTAdXfKpKcIu/hdYntFjqIxZzCUoEfDrQJCOxW0JLuDq14ov6s9MeSSpuFNeMY+ZkZ1Op/HaHFEva6dCKLxZT+IkmLL54VFnYKj5LKxMO6whLjBIKmLUzI6Xpa5uucXX6zDndFlg7U9wIUdHPXyjg6B1SbHCZJc10aMUXicXIkBiYMb6QiSqzg+uW1qayUltaYsbb4oEfkTSunRl3dTomuEVl5BAkktbpPX63grBoq1ZEKJMsnIhVfJb00qEVX2VFBXBg3lLI7MIes1GdllYmUlmtbcY7ZeXpcwOqqD6nE8jUCSbKOZ07vwfcCsISSnwvl0y7Q4ol7XRsxWcW4HWC2QBkxhWfdbVYWplwXPEFtOLLys0DwE1jxGPMWJnBzCwAHLN2ZlkaA2oCbiURJ5j4XuFkE7A7pFjSTIdWfBHTe5aAftCzs7KoVH47gd3S6kQjxvryxxVf+heNjoX1eF4opDuCTgtEOQfcCiLOAYsv7MsiELXr5VrSS4dWfOFy7VLxGZdOdlCvT4iNKrO0MlHTNsW4HYPBEJUqkNa26UaMxZelFV/ATKEoLy1M2zkDbgUxn1fxZRNM82LcFkuHVnxR8xLxhbTFF/T7KGuBhXktlvqIVmgry8nsnEgrlUwkjXvVqbBRfOZ5CGRpxVdZlr7nIcOtxPVnJr5H/Tl2hxRL2unYii9u8YVyEmllkokvYhWfpXUJm/l6GdkHFF+6Az+ccBExJYk1azPiUyjSuHZmUFWiPIovFrA7pFjST4dWfDFj8QUyDyi+CsnCH7WuFkvrEjFTaoI5BxRfhWThS2Pb9If3UyzZiY2Zg9na4oukaRd2pRRBKiFwQPGpjFyyqAA3lpZzWizQwRVfZZl+oHNyOh1I82URsIrP0srEjJWVaaYxAFT6sslIs+IrlQOdwKzsLlqWNE3vKQ9HyKEclXHgnMqMt6tKO6XIkj5SUnwiMkdEtorIcvN3mifv/0RknYisFZGTUxe1+Ym7cHI6dT2Q5ssmw44xWFqZ+JSarFxP2/RnkRFLp+IrotyXm/ieaTqEbpoCavbt3klAYkjOIYk0CcbHFa3is6SP5rD47lBKjTF/LwOIyHDgQmAEcArwNxGzv0obwindAYC/U69EWsSfZQfXLa2OW7YPVwk5nQ64OqP+7LS2zVC0iHDggPcjJyeHmJK0rZ1ZuHsbABmdeybSfIldKArTck6LBdLn6pwJPKGUqlRKbQDWAZPSdK4mEyjbSTHZEDgQTh0L2KgyS+vjK9nGHsnDZ5YPAxPxmMbAj66x3VRkHlBCwYCfUjIhTZGkpXu2ApDdtXcizQlpRV9hFZ8ljTSH4rtKRFaIyP0i0sWk9QU2e8psMWltiozyHRT5u1VJcwM5ZnDdbSWpLBbIKt/OPn+PKmkqI32LRu8vLqYne4l0OqxKeplkIuH0nLNidwEAnXoNTKT5zRSKCuvqtKSRehWfiLwuIquS/M0E7gUOB8YA24DbGyuAiHxXRJaIyJJdu3Y19vAmo5TikPAmirL6V03P0JN3iVirz9J6dA5vozTUq0qaysghWypxY80f8bhl/RoAsnseUSW9QkJpm97j7vyMSgJ07XNkIi2YGY8ktVOKLOnDX18BpdQJDalIRO4D/m2+bgUO9WT3M2nJ6v8H8A+ACRMmqIacqznYunMP/dU2Vnc/rUq6GMWnwiVIMCfZoRZLWtm/fx/93O1s735m1QzTHstK91cJyGqWc37xAQDdjqw6IlHppG96T5fC1XwV6M9A34HXUNBYfBG7Ga0ljaQa1dnb8/VsYJX5/AJwoYgERWQgcCSwOJVzNTfrP/oPfnHpOmxGlXTHvFwqS+2DZ2kdNn7yNo4oMvtPqJIej3isKG7+CeXBDa+zhy70GjSySnrYycQfa/5xxV27djI08imFPadUSQ+ZuYOxCjulyJI+6rX46uFWERkDKKAA+B6AUmq1iDwJrAGiwA+VUm1mRqpSiuCKh9lPLv3GfK1Kns8s0FteVkQo2cEWS5opW/kiFSrAEZNOrZKeiHhs5l3Yt278kpGlH7Ky19l0c6oGX0d9mWRFdzfr+QBWvTyX4yRC9ykXVUkPmZVq0jWFwmKBFBWfUuqSOvJ+D/w+lfrTxXsvP8r08CJWHH4lozyrRsCBBautxWdpDYqK9jFs5yusyT2acdm5VfL8Zmm95pzjplyXrU9dSw9c+p92bY38qD+LjHBFs50P4KstBYz98u98njmawSOOqpKXZX6zVXyWdNKhVm5RSvG/5//B+MXXUOAfxIjzf1OjjN/0qsNpWqbJYqmLdQ/+iFzK6Py1a2rk+TP1HLtwWfO0TeW6vDfvF0wqeZNPBn6HHv2H1igT82cRcpvP1bl7WwHF959DBhFyz/kLiFTJzwoFqVABVNi6Oi3pI1VXZ7th4+cr2P3c/3FU2Xt8HhxG3yufxRfMqlEuviJ9utYntFhq45OX72Pcnhd5p9elHDN2Ro38jCyt+CLNsIRYYeFe1jzwQ6bvf5mPu5zC+Ev+kLScCmQRonksvs/efJTe7/yCw1SYTV+7hyGDx9Yok+F32EuoWaZQuDGXxU/fRtaGVykZ/wOmfO0cHEfqP9By0HPQK76vNn5BwXO/Y+LeF+lOgMWDfsD4b96EL5CRtHzQLFgdqUi/q6WiopyCtcvZs24J7FyLr2wnwUghrviI+TKJdj4Mf++RDBh/Mof0PrT+Ci3tlq/Wr+KIxb9mjX84k791W9IyQaP4oimG+n/8zksc8uZPmaJ28tFhVzDh8tsQJ/nCSiqQTaaqAKVqWGcNpbykiDUP/JDxe15grXM46uz7GJo/vtbyFRJCUowk3bJpA7se/Q5TKj+ijCBZ71/Bkg/vQZ0whwmTpyNN/C2Wg4ODVvFt37yOjc/9lrG7X6Q7sPyQmRx+7s1M6lm3Aon3qmNpUHyxmMu6lf9j1yf/IXfruwypXMVQiQAQVj72OV0o9XVClCLoltGz+E18WxUsuZYvnQHs7DGF7KEncOSkkxJBAPVRHo6xZ98+9u/dSWnhDsr27yFcvBvK9hKoLCQYKcQXKyeGA04A8QcQXwbiD0IgE19GCF9GFv5gJoFgFhnBTJyMTJQvhPKHcH1BQCFuFNwIKhYhFo2iYhHcqP7uujFc1zV/MVxX4boxBBdRrj4e/SJSiOf9eiAN4u9dk+l5ccVfYgdqMeU85cVbdz0vvQOnlyo1VinjkVGh3ej6f/2PAlwtFPGlEJRSKMWB8onP0Hf5HWThJ++ShwhmBJOeM5hYO7NpFl9JSTEfz/8Z03YtYLuvJwWnPcnECSfVfVBGNn5xiYQrCAQz6y6bhM8+fpvsF69krLuNd3tdwoTZfyIzs+569NzBpll8rqt4+/l5jFk+h+5UsHTkLxlz5o9Y9cKfGbL6b2S/cibvvnMiAy/4I4f2H9SouqOV5Xy1YQ17N66iYvtaKNmBv3wPofAeMmLliIrh4BKTAJW+bCL+HCIZubjBPMjqii+rK4HcboQ69SA7rzs5eT3whTqBCI4oHISYcolFwsQiEaLRMLFomGgkioqFiUbCuLEobjRMLBrBNc+YG4sknjc3FgU3hoijd9kQ8+c4iDiI+MzuGw5i0uJ5iIOIadHKRSmlG6dyATfRtuN5SiliGblMPO6sJt2r1uSgU3z7C/ew5rFfMn7HU3QFlnc/g/5n/ZqJhx5Z77EAmfFw6srmGWNQrsva5e+za9HjDNr5X4awkyHARl9/VvU6m0D/SRwyeCK9Bo6gpy9Q5dhIZTkbP13MrhWvkb31PcZuf4bgjieILPSx0deHwlA/whldIJCJAvzRUpxIKf5wEZnR/eTEiuhMMf0kQr9a5CsjSDmZ+IjhI4pfxQgQxS925ZqWxFXCiml/Y0z/2ttpltmpwW1CqP/KJe+S89L3OUZt5uOe5zBi9p0Es+rvPDlmXmt5SVGjFF84HOF/j9zI0Rv/zl7JY81JjzB96tcbdGylk4kv2njFt2nbdtY/dBXHlf+XDcEjiVx4P+MHjQJg5Hm/JnzK91n91BymbHyMyP1TeL/XufScejEDhk3AH/cAKUVJ4Q52rF9J0ZY1xHauJVi4nq4VBfSK7eAwUcTXtikim/3SmRJ/Fyoz8lDiQ4kPx40QiJaQW7GJrLJSclUxmRJu9O9pD6xUg8AqvtZl3Sfv0eVf32SyKmJJ19M49Kw5TOo/uFF1ZJoxvlQX5t2zZxerXv47h335BEPVZg5XPj7PnsDOIT+m/+SZ9O91GP3rqSMQzGTQmGMZNOZYAMpLS1i+5HXK1r5Fxr4v6FaxheyytQRUBEFRJplUOFmEfdmUZvahKDSCrzK74svuRiC3G8FOPcjJ60FOl0PI7NwdyexKViBE9ZFOpRSRaITy8lLKy8ooLyuhsrycyooSKsvLcCMV+GKVOLFKHLcCcFCOD1f8OD5tNTo+P+IL4Pj0Z7/PwXF8+Bwfjvks4qBEDlh06F5kQg4tDAf+U6bcAaWsXJUoXeVIlShucuL1JBI9pT1HqgOpVa9JlW9V0sUYl/p/0Z1sBMf0nuMWqWMszri16DjanhSEjM49GNPrcOoiK8dEeVY2fPw5HIny3sNzmLbxbxQ7nfj8xPmMm3p2g493gkbxlRbRqVvPekprCtavpejxKzg2uopPOh/HoCvuY2Rej/oPNEScTIKNmDuolOLVV/5F/oc/5xj2sGbw9xh2we8Qf9XhjIzcbuRfcTd7Nv6AzU9fx+Ttj+N/9lEqVYBCyQaEzhSRQ4z40hUVKsBWX1++yhzKhrzTCfQcQpdDR9DniHw65XamUw1pklNRVsL+fbso3reTssJdVBTtIVqyB1+kBNe0f1eBIwKJZ8cPvozEZ/1cmT9/AJ/57gtkmM8Z+AMB7bZW2quC0p4W3ChKuShXodwYroqBq0xaTHsp3Kh5UhzTSB1wxLRpB8z/uj0LIkJmfKWrdsZBpfj6HjGaNTlj2XfCz5g0ZnqT6sjOzKBMBVFNtPjWb1jPthd/z9g9/+ZYqWRdYDBLhs5hyPHfZESXhr04aiMzO4cxx54Fx56VND8vpdoPICIEAhkEAhl06tSl/gMsLUIgEKBMBaGBu7AXfLmW/Y99m+OjK1jV+RgGXv5PBjeyDfrMFIqK0vrdq0op3n/+PvKXzaGHxFg18RZGn3Zlo8cGI75McqM7G1R2T2ERH97/M07Z/yS7Ar3ZN+tFhg+r+9nv1n8Y3a59gd3bN7Pxo39TuWUlTrgIpVyiwa6QcwiZvYfStf9I+vQ/ksMzAtTdJamfUFYOoawcevYdWH9hS9o5qBRfZnYu43/2fEp1hPw+9tLwl0ucrV9t5bNnfsfRu5/mMGKs7HoSPY6/iiPyp6Ukj8XipVxCSLhub4RSig+ev4+Ry+ZwiERZOf535H/9qiYFp8TnDlbUE1Czb99ePr3/e0wrfo11waF0uWg+I/sPa/T5AKK+LDLC9Vt8Sz96n9yXfsBpFLC23zkMvvSuxOo2DaF7r0Ppfsb3mySjpX1zUCm+5sBxhHJCOA0cXN+zdw+fPPX/mPjVIxxHBWu6n8yhZ9/MuH5D0iyppSNSLpn46uiUFe7bw2fzvsfUkv+yLjiUvIvmk99EBQQQiC8aXVb7ajErF71Ol//8gMlqJx8P/A5jLvoDTi1R0w3BDWQRKq19CkU4EuXth3/LMRvvoczJYtOJ8xhy9LlNPp+l42EVXxIqJYRTz+B6cUkxS565nVFfzuN4KWJ15+n0nHkzIw8f10JSWjoilZKJv5a2ueqDl+j62tVMVLtYOvC7jL3o9ykpIIBAJ707ultc0/VYGa7kwwd/xdFb5rHb6c7GM55i3PgTUzofQCTQiRxKkk6hKPhyLYWPfYcTo5/waeepDLj8frp06VVLTRZLcqziS0Kpk0N2pDBpXll5GUue+yuD187lOPbwWdY4yk+7iRH5x7SskJYOSaUvi4xoVbdjSUkRqx76GVN2LmCL9KbgzGcZP+74ZjlfMK8PAG7x9irpX3zyAbxwFcfE1rOsy0kMvvzv9OrcPDtGhLN6EiSCW7oHJ6c7ANFolA+f/jOjP/0zh4jL6vG/Y0QT3bcWi1V8SSjM6E2fypVV0kpKivn4xb9zxNq5HMMu1mUM5cuv3cXQyQ0L0bZYmoOSUG/6lywHIBaLseyl++j38Z+Ywm7+130Wo2ffQVZOw+Z4NoRePXtRqQJECrcBsGv7Jr54+mYm7XqGQunEJ0fdxdiTL2u28wEEuvSDjbBn2wa6H9GNVYtexXl9DlNjn7I6cyw9vzmXEYfVXF7NYmkoVvElIZLTl6673yJSUcraTz6gcPEC8ne/zDFSyvqMIXx+zK0Mnnq27W1aWpxwl8H0LH6dD+f9jD5bXmKC+oovfIez/6S/cdTkk5v9fBkBH+udPvTZ/iaL7r6MUbtfYRIRPun+dY68+HZGdzmk2c/Zuc9gWA5bX7qFbWW7GBX+hN3ksXL87xl5+g9MaL3F0nSs4kuCf+DR+HY/hO+WPowEIsrHms7HkHX0dzhy8mlW4VlajT5HnUv5xn8yefN9fO4fzMdjb2PMKVfg+JIvOdYcbB54HjO+vI2uu19mdZfj6fX1XzP+iPy0nW/42Kl8+p8jGVP4OtukB0sH/5QRZ11LflbDIzYtlroQVXVmbqsyYcIEtWTJktYWg2g0xgeP/Y5QUQHBQUdz+NFnkdOICbgWSzrZsXUDsUiYPgNaJnJYKcXWLz+l6yG9ycptmXmd5WWl7N66jn6Hj6x1HVHLwYOILFVKTai/ZDOdzyo+i8VisbQmLa34rLPcYrFYLB0Kq/gsFovF0qFoU65OEdkFbGyGqroDu5uhnpbAypo+2pO87UlWaF/ytidZoX3J21yy9ldKtVggRZtSfM2FiCxpSX9xKlhZ00d7krc9yQrtS972JCu0L3nbk6xerKvTYrFYLB0Kq/gsFovF0qE4WBXfP1pbgEZgZU0f7Une9iQrtC9525Os0L7kbU+yJjgox/gsFovFYqmNg9Xis1gsFoslKVbxWSwWi6VDcVApPhE5RUTWisg6Ebm+teXxIiKHishbIrJGRFaLyE9M+hwR2Soiy83faa0taxwRKRCRlUauJSatq4j8V0S+MP+3zOKNdcs5xHP9lotIkYhc3ZaurYjcLyI7RWSVJy3ptRTNXaYdrxCRFt3duBZZ/yQinxl5/iUieSZ9gIiUe67x3JaUtQ55a733IvJ/5tquFZHm39Ki8bIu8MhZICLLTXpbuLa1vbfaZNttMEqpg+IP8AHrgUFABvAJMLy15fLI1xsYZz7nAp8Dw4E5wM9aW75aZC4AuldLuxW43ny+Hvhja8uZpB1sB/q3pWsLHAOMA1bVdy2B04BXAAGmAB+2AVlPAvzm8x89sg7wlmtD1zbpvTfP3CdAEBho3hm+1pS1Wv7twI1t6NrW9t5qk223oX8Hk8U3CVinlPpSKRUGngBmtrJMCZRS25RSH5vPxcCnQN/WlapJzAQeNJ8fBM5qPVGS8jVgvVKqOVYAajaUUu8Ae6sl13YtZwIPKc0iIE9EereIoCSXVSn1mlIqar4uAvq1lDz1Ucu1rY2ZwBNKqUql1AZgHfrd0SLUJauICHA+8HhLyVMfdby32mTbbSgHk+LrC2z2fN9CG1UsIjIAGAt8aJKuMm6B+9uC69CDAl4TkaUi8l2T1lMptc183g70bB3RauVCqr442uq1hdqvZVtvy1ege/VxBorIMhF5W0Smt5ZQSUh279vytZ0O7FBKfeFJazPXttp7q722XeDgUnztAhHJAZ4BrlZKFQH3AocDY4BtaFdHW2GaUmoccCrwQxE5xpuptG+jzcyHEZEM4EzgKZPUlq9tFdratawNEfkVEAUeNUnbgMOUUmOBa4DHRKRTa8nnod3cew/foGqnrc1c2yTvrQTtpe16OZgU31bgUM/3fiatzSAiAXTjeVQp9SyAUmqHUiqmlHKB+2hBt0t9KKW2mv93Av9Cy7Yj7row/+9sPQlrcCrwsVJqB7Tta2uo7Vq2ybYsIrOBrwMXmZcdxmW4x3xeih4zG9xqQhrquPdt9dr6gXOABfG0tnJtk723aGdttzoHk+L7CDhSRAaanv+FwAutLFMC47+fB3yqlPqzJ93r/z4bWFX92NZARLJFJDf+GR3csAp9TS8zxS4Dnm8dCZNSpcfcVq+th9qu5QvApSZCbgqw3+NWahVE5BTgF8CZSqkyT3oPEfGZz4OAI4EvW0fKA9Rx718ALhSRoIgMRMu7uKXlS8IJwGdKqS3xhLZwbWt7b9GO2m5SWju6pjn/0BFFn6N7Rr9qbXmqyTYN7Q5YASw3f6cBDwMrTfoLQO/WltXIOwgd/fYJsDp+PYFuwBvAF8DrQNfWltXIlQ3sATp70trMtUUr5G1ABD3u8a3ariU6Iu4e045XAhPagKzr0GM38bY715SdZdrHcuBj4Iw2cm1rvffAr8y1XQuc2tqymvT5wJXVyraFa1vbe6tNtt2G/tklyywWi8XSoTiYXJ0Wi8VisdSLVXwWi8Vi6VBYxWexWCyWDoVVfBaLxWLpUFjFZ7FYLJYOhVV8FovFYulQWMVnsVgslg6FVXwWi8Vi6VBYxWexWCyWDoVVfBaLxWLpUFjFZ7FYLJYOhVV8FovFYulQtBnFJyIDRESZfaksaUREZovIey10rkwReVlE9onIL1rinNXOXyAiJ7TAeRaKyLdrybNtu5Wo577UmtfMMswXkd/Vka9E5Ih0y3EwICJHiUiRiCwXkfym1tNmFJ+laYjIHBGJiEiJ56/FFUwdnACMAg5VSt0aTzQKaUCrSdWGMPdwTiPKf1NENopIqYg8JyJd6yj7DxFZKyKu2Ui2ev5PRWS7eZncLyJBT94YEXlXRPaLyBYRuaHaseeLyKciUiwia0TkLE/e3GptslJEij35JdX+YiJydwN///xkv+VgxHRS5zei/NdE5DMRKRORt0Skfx1lB5gyZeaYEzx5l4nIUtMutojIrfGOm9nLcJ5pg8VGCZ1arV5V7f7e4MkPmrZWZNreNZ684SKyxHSU94nI6yIyPJ6vlPofkIfefu5bDb0u1Wk2xWd7s63KAqVUjufv1voPaTG6AgVKqZLWFiQVzMaard5RFJERwN+BS4CeQBnwtzoO+QT4AXo/t+p1nQxcD3wN6I/eg/EmT5HHgHfQ9/BY4AcicqY5ti/wCHAN0An4OfCYiBwCoJS60tsm0fvQPRWvuFpeL6Dcm9/eELNhbCvL0B14FrgBfc+W4NnRPQmPA8vQe+v9CnhaRHqYvCzgaqA7MBndRn5m8vzovRmPBToDvwaeTNKRzfPc59960uegN9XtDxwH/EL0RscAXwHnGvm7o/dSfMJbqVLKBdYYuZtESg+y6bVfJyIrgFIR8YvIFBH5QEQKReQTEZnhKb9QRP6fiCw22v752nqrInK5pzf5pYh8r1r+TNPTKBKR9fELJyKdTW9km4hsFZHf1dcoReRwEXlTRPaIyG4ReVRE8jx5e0VknPneR0R2xX+XiJwpIqvN710oIsOqXZ+ficgK0b3mBSISavyVbjwicr25LvHe+Nm1lBMRuUNEdppruVJERpq8oIjcJiKbRGSH6F58ZiNF8QNuPbJ2E5EXzfk/MvfsPU++EpErReQLc53vERExebXeOw8TzTXYJyIPxO+BiHQRkX+b+7nPfO7nOe9CEfm9iLyPVjCD6vmt/UXkfXPNXzMvIi8XmWu5W0R+VU9dtXER8KJS6h3TmbgBOEdEcpMVVkrdo5R6A6hIkn0ZME8ptVoptQ/4LTDbkz8AeFQpFVNKrQfeA0aYvH5AoVLqFaV5CSgFDq9+EhHJRm+q+mAtv2kWsBN4t47fnRQR8YnI7eaabhCRq6QWt7KI9DbP4s89yYfX9j4SkadEWyT7ReQd0Z2OeN58EblXtBu/FP0Cr4suIvKSaRsfikj163RCsvbdSM4BViulnlJKVaAVzGgRGVq9oIgMBsYBv1FKlSulnkFvHDsLQCl1r1LqXaVUWCm1FXgUmGrySpVSc5RSBUopVyn1b2ADML6Bcl4G/FYptU8p9SlwH6bdKaUKTb0KvaltDEjmBnbR75amkeLuvAXoHXkPBTKBvuhdsE9DK9UTzfcepvxCYCswEr1j9jPAIyZvAHqnX7/5fjr6IRJ0z6IMGGfyJgH7Tf2OOe9Qk/cvdI84GzgEWAx8r57fcYSpKwj0QPdy7/Tkfwfdw8gCXgVuM+mD0Q/7iUAA+AV6p+oMz/VZDPRB92A+pdouy9V2Oi6s429aLcfNiV/DaunnmfM6wAVGzt4mbzbwnvl8MrAU7T4QYJin3B3oHldXIBd4Efh/jWgfAfRO2DXkq1buCfOXBQxH9ybf8+Qr4N9GxsOAXcApDbx3BcAqdBvtCrwP/M7kdUM/6Fnm9z0FPOc5diGwCf2y9wOBOn7DQvSu04PRz8JC4JZqbfs+kzcaqASG1VJXXff7eeC6amklwPh6rvF7wOxqaZ8AF3i+dzdydjPf/wDcYu7jEPSO4RNNng94GzjTfD7L5GcnOfelwJegN75Okv8mMKeJ76Ar0c9mP6ALejdw73tkIfBtYCDaPfbdavcs6fvI5F9h2kUQuBNY7smbj34HTUU/Y6E6ZJyPfg9OMu3oUeCJhrTvJHWtAL5ZS95fgHurpa0CZiUpezbwabW0vwJ311L3c/H2nCSvJ7pjFX8Hx9v7VtMmHgC6m7wuJq+n5/hzgZVJnoEoWsH9Osk5Lzf3s1uT2k1TDvKcvAC4wvP9OuDhamVeBS7zNLRbPHnDgTD6wYlfLH8dF/4n5vPfgTtquQGVQKYn7RvAW438XWcBy6qlvYDuEa0AgibtBuBJTxnH3OwZnutzsSf/VmBuKtc8iaxzzDUs9Pz1SVJuOTDTfJ7NAcV3vGlAUwDHU14wPXhP2lHAhgbKNQaIADuAI+oo5zPlhnjSfkdNxTfN8/1J4PqG3DtzD670fD8NWF+HzPs83xcCNzfw9y7E84Ci3Yv/MZ/jbbufJ38xcGET7vcbVOs8edtcHcclU3zr8bxg0QpOAQPM96PRHbmoSb+p2vHfQivdKLpjenodMs+pJa8/ulc/sInt/008HVv0mHJ1xfdn0w6+keSeJX0fJTlPnqm3s/k+H3iogTLOB/5ZrQ1+1pT2Xc955lFNOaE7erOTlL0EWFQt7ffA/CRlr0ArsO5J8gLozsbfPWk5wAS0ku8JPA28avIONb835Cl/Ino4pHrd2eY5qtGuzHk/MHVd3dhr1RxjFps9n/sD5xlzvVBECtGWTO9aym80P6C6SwgROVVEFhk3YyG6scTLHYp+aKvT39S3zXP+v6Mtv1oRkZ4i8oRo12gReuyiukz3oXuGdyulKk1aH/MbgITveTPaAo2z3fO5DN0ompsnlVJ5nr+vRORS0a7g+HUYSZLrrJR6E93TuwfYKToYohPaesoClnrq+I9Jrxel1HJ0b/l/6LGC2ujBgTGDOJuTlEt6HRt476q3uT7m2CwR+bvoQfoitLWYJ1Vd48lkqY367nVztIUS9Jial05AcZKyja0r/rnYuPz+A9wMhNDP3Mki8gMA0YEQtwIzgAy0V+afIjLGewIROcyUeagWGS5Bd3I2NEF+0PeyvrZzEbpz8HSSvKTvI+NCvUX0cEERWnFC1bbVnttGg8qKDlj6f8CpSqnd1fIctEcnDFwVT1dKlSilliilokqpHSbvJOOOj4/1V293NWRUSpUCc4GHxIwdezgD3Sb7KKXuTPL76qQ5FJ/yfN6Mtvi8L+FspdQtnjKHej4fhu7tV7+gQbTb4Ta0SZwHvIy2QuLnqTGWYNIr0T2T+Pk7KaVGJCnr5Q/md+QrpToBF3vOhYjkoF0d84A5nnGAr9DKNl5OzO/bWs/5aiAi06VmpJv3b3oj6uqPVtRXoV0BeWiXR9JxA6XUXUqp8ege72B0oMJudMDBCM+17Kx0MEKDUHqc4RVTb23sQlsM/Txph9ZSNhl13rsk9R2Gvm8A16JdeJPNsceYdO/x3vbdFliNdpUCICKD0K64z1Oty3zeoZTagx7PjCmlHjIvsC1od/RppuwY4B3zgnOVUh8BH6ItLi+XAO8rpb6sRYZLqX3sryFso/62Mwfdnh+TmuP9tb2PvgnMRP+ezmirHdpX28hGvydX11J2ULWx4dHesqLjJu4DzlBKrfQebN5189AW3SylVKQOueLXyVF6LHkbNdtdMhlB66gsqhoToIdkFimlttVx3lpp7ii1R4AzRORk02MKicgMb8AAcLHokNUsdG/yaaVUrFo9GeiHeRcQFR0qe5Infx5wuejQXUdE+orIUHMRXgNuF5FOJu9wETm2HrnjPZH9oqPVfl4t/y/AEqXUt4GX0L0Q0C6J040cAfSLtBJtgjcKpQeSc+r4a8zAfza6se0CHSiEtvhqICITRWSykb8U7at3jfV6H3BHvLdlrvPJnmOVeIKXaqESfT+TYu79s+gORZYZiL+0Qb9SU9+9A/ihiPQzHZZfcSDSLRet3AtN3m8acd7W4lH0MzbdvNhuBp5VSiW1+EQkQ3QwjwAB80zGn/uHgG+Z5zEPHZ033+R9rg+Xb5rnqBd6rHiFyf8ImB638ERkLDDdkx/nUk+d1WU7Gv1CqxHN2cC2BfoZ/Ilpm3no4ZbqRNBj3tlo68H73qvtfZSLbrt70C/ePzRAltbmX8BIEZll7vmNwAql1GfVCyqlPkcPf/zGtImz0dOOngEQkePRbW2WUmpxknPdi1Y+Zyilyr0Z5n0yxLSbbsBdwEKl1H5T5CHg16KDy4aiYyjmm2NPFJGxRn90Qrup96HjI7wE0PenSTSr4lNKbUb3kn6JfuluRr+IvOd5GP0jt6NdKD9OUk+xSX8S/aO/iR5ji+cvRg9u3oEeYH6bA5bXpegX7Rpz7NNUdbUm4yZ0hNN+tGJ7Np4hIjOBU4Dvm6RrgHEicpFSai3awrgb3Us8A90QwvWcL60opdYAt6PdjDuAfLSvPxmd0ApuH9rVswf4k8m7Dj3Gs8i4e15HW0iIyKFo98TK6hVWw6X+dnYVule9Hd0+HqfhjbrWe+fhMXSH6Eu0izw+mfhOdLDJbmAR2rXX6tRl4SulVqMDOh5FR0LmosdB4se+IiK/9BzyGlq5Hw38w3w+xtT1H7S78i10EM9GjPJXShWhowR/im4by9Feg9+Z/LfRltTToufnPQP8QSn1mkeWo9DWWG3TFC4jidJuRNsC3XZfQyvcZWjPUBQ9bpjAPJPnoC2U+z3Kr7b30UPmemxFv0sWNUCWtCM6gvyiZHlKqV3oYK3fo+/ZZOBCz7FzRWSu55AL0WNx+9BBTOeaOkDHL3QGXvZ4nV4x9fQHvoe2+rd78uNyDUI/S8XoNlOJjrWI8xv0c7gR/e7+k2mLoMdSH0c/z+vRFuspxnvkxUc90eJ1IWagsEUQkYXoqKl/tthJLWlBRC5Gu0H/r55yJ6E9AUOVUnsbWPcfgV5KqctSl9TS3mho26rl2FPRAWT96y1saZeInqryLDpAqEmLdbT6hFxL+0Qp9UgDX0wLgf8Cq0XkZ8kKiMhQERklmknoaMF/NZ+0lvZEI9oWopfEO030HOK+aGvCtp2DFBGZgrbO89AejCbRYVZbMSb+xUmyHlFKXdnS8nQUjIspqWvGQy7avdEH7Zq9HT1frU0hIrWtPnNqI8dgLc2HoN3dC9Bu3JfQY1stK4TIajyBbh6+p5R6tKXlOVhRSi0iSXR6Y2lRV6fFYrFYLK2NdXVaLBaLpUPRplyd3bt3VwMGDGhtMSwWi8XSgixdunS3UqpBi2M0B21K8Q0YMIAlS5a0thgWi8ViaUFEZGP9pZoP6+q0WCwWS4fCKj6LpQ2xfetGVnz4ZmuLYbEc1LQpV6fF0tGJPngWo8JfUjlmB8Fgi2zdaLF0ONq84otEImzZsoWKimT7aKZONOYSKdlDRnYePn8gLeewtDyhUIh+/foRCLSve9ovrNdy3vPVBvoMHFZPaYvF0hTavOLbsmULubm5DBgwAGnSpsR1U7hvN3nlYSp8WYR6Jtvo19LeUEqxZ88etmzZwsCBA1tbnEZRSYAgEUr27QSr+CyWtNDmx/gqKiro1q1bWpQegGN2zNCbEVgOBkSEbt26pc1LkE7CZiOLssIdrSyJxXLw0uYVH5A2pQfgmKodq/gOKtLZZtJJpaPH9cJFu+spabFYmkq7UHwtgaOirS2CxUK5o/f5VWVW8Vks6cIqPrNWqdSxtZOIcO211ya+33bbbcyZMyfdkjWZhQsX8sEHjd4LN8Hy5cs56qijGDFiBKNGjWLBggX1H2RpFiK+LABURdJ9ZS0WSzNgFZ9BqH2x7mAwyLPPPsvu3c3bC1dK4brN72JNVfFlZWXx0EMPsXr1av7zn/9w9dVXU1hY2HwCWmol3g4lbBWfxZIuOrzii+9O4dRh8fn9fr773e9yxx131MjbtWsXs2bNYuLEiUycOJH339cbnc+ZM4fbbrstUW7kyJEUFBRQUFDAkCFDuPTSSxk5ciSbN2/m5z//OSNHjiQ/Pz9hXS1cuJAZM2Zw7rnnMnToUC666CKS7aRx1113MXz4cEaNGsWFF15IQUEBc+fO5Y477mDMmDG8++67dcp4ySWXcNRRR3HkkUdy3333ATB48GCOPPJIAPr06cMhhxzCrl27apz7qaeeYuTIkYwePZpjjjkG0MFIl19+Ofn5+YwdO5a33noLgPnz53PWWWdx4oknMmDAAP7617/y5z//mbFjxzJlyhT27tV71N53331MnDiR0aNHM2vWLMrKymqcd8qUKaxevTrxfcaMGQfPUndmrFnCte2A1Dj+d+vZvL/gTynXo5Ti/X8/yLbN65ulrjfffJXKSOrDC2WVYd75z5OoNHQgLQcvbX46g5ebXlzNmq+KmrXOI7v6+d1UP/WFQvzwhz9k1KhR/OIXVTf8/clPfsJPf/pTpk2bxqZNmzj55JP59NNP66zriy++4MEHH2TKlCk888wzLF++nE8++YTdu3czceLEhBJZtmwZq1evpk+fPkydOpX333+fadOmVanrlltuYcOGDQSDQQoLC8nLy+PKK68kJyeHn/1M7/v6zW9+s1YZV6xYwaJFiygtLWXs2LGcfvrp9OnTJ1H/4sWLCYfDHH744TV+x80338yrr75K3759ExbhPffcg4iwcuVKPvvsM0466SQ+//xzAFatWsWyZcuoqKjgiCOO4I9//CPLli3jpz/9KQ899BBXX30155xzDt/5zncA+PWvf828efP40Y9+VOW8F1xwAU8++SQ33XQT27ZtY9u2bUyYMKHOa95eiHfAfJHUFZ/rKo4qexM+fRP4eUp17d1fzNQlP2bHsl5ww9qU6lq1+C2Of+d8Xv/8O5xw5W31H1AHbz1yC6dvvp1PAxUM+9qlKdVl6Th0eIuvoXTq1IlLL72Uu+66q0r666+/zlVXXcWYMWM488wzKSoqoqSk7pdW//79mTJlCgDvvfce3/jGN/D5fPTs2ZNjjz2Wjz76CIBJkybRr18/HMdhzJgxFBQU1Khr1KhRXHTRRTzyyCP4/cn7MXXJOHPmTDIzM+nevTvHHXccixcvThy3bds2LrnkEh544AEcp2ZTmTp1KrNnz+a+++4jFoslfs/FF+v9focOHUr//v0Tiu+4444jNzeXHj160LlzZ8444wwA8vPzE79t1apVTJ8+nfz8fB599NEqll2c888/n6effhqAJ598knPPPbfO692eEGPx+ZtB8YVjzWcFuUXbAegZ255yXRkx7cbtuefDlOvKLtRtSxVtS7kuS8ehXVl8vzljRLPXWbxnG1Sah1m5ILX3Ba6++mrGjRvH5ZdfnkhzXZdFixYRClVdXsrv91cZv/POKcvOzm6QbMFgMPHZ5/MRjdZ0Db300ku88847vPjii/z+979n5cqVNcrUJiPUDPuPfy8qKuL000/n97//fUJJV2fu3Ll8+OGHvPTSS4wfP56lS5c2+Pc4jpP47jhO4rfNnj2b5557jtGjRzN//nwWLlxYo56+ffvSrVs3VqxYwYIFC5g7d26d521PiNIdiECspou3sYRjLs216Fm0srSZagJfrBIAx42kXFckoKNg3WaUz3LwYy0+D8qN1ZnftWtXzj//fObNm5dIO+mkk7j77rsT35cvXw7oLZY+/vhjAD7++GM2bNiQtM7p06ezYMECYrEYu3bt4p133mHSpEkNktd1XTZv3sxxxx3HH//4R/bv309JSQm5ubkUFx8IjqhNRoDnn3+eiooK9uzZw8KFC5k4cSLhcJizzz6bSy+9tE5rav369UyePJmbb76ZHj16sHnzZqZPn86jjz4KwOeff86mTZsYMmRIg34PQHFxMb179yYSiSTqScYFF1zArbfeyv79+xk1alSD62/rxINbQrHUX+SRSN3tuTGoaLj56gprpd4cU4gkkAlApMIqPkvDsYrPEzBSn+IDuPbaa6tEd951110sWbKEUaNGMXz48IT1MWvWLPbu3cuIESP461//yuDBg5PWd/bZZzNq1ChGjx7N8ccfz6233kqvXr0aJHosFuPiiy9OBJL8+Mc/Ji8vjzPOOIN//etfieCW2mQE7So97rjjmDJlCjfccAN9+vThySef5J133mH+/PmMGTOGMWPGJJTljTfeyAsvvADAz3/+c/Lz8xk5ciRHH300o0eP5gc/+AGu65Kfn88FF1zA/Pnzq1h69fHb3/6WyZMnM3XqVIYOHZpIf+GFF7jxxhsT388991yeeOIJzj///AbX3R5wjMUXcpvB4ot6LKokgVGNIRZL3TpLECkHwO9WplyV37jgY+HylOuydBwkWaRgazFhwgRVPTrv008/Zdiw9K1ZWLx7K7nhnQBEuw7GH2qYG/JgYM6cOVWCYA420t120sG23w6ld2wb+1QuXW7aklJdm3fs4dB7BwFQ8fPNhLI7NbmuDcsXMvC5mfrLnP0pybX2pbsY8tENbFI9Oeymz1Oq6+25P+HY7fNZ0v0sJlz1YEp1WVoPEVmqlGqxCDVr8XlwG2DxWSzpRExHNJuylEP0w5ED7smyor0p1aWa0eJTMe3izKIZrDQjly9iXZ2WhtOuglvSQhVXZ8datqwtrz7TUXHQna8MiVFaXkZ2dk6T64qEDyi+8pLClOSKedymbjSKU0sEcUNwjbIKkfq4oZjOqj/aPPMeLR0Da/F5aMgYn8WSTryLpZcVF6ZUV8wTkFJRmtr8V6/FV5ZiXXHPSiapj/GhtFwBq/gsjcAqPhoX3GKxpBMHl0qlN88tS9FKi0QOKKvK0tTqinmm0pQV70uprrir0ycq5aCbuMUXbIbpH5aOg1V83ufOLntkaWUElyL0QtWVqVp8njG+SGlqASlxZQVQkaJC9tblphiNKWYuYMi1Y3yWhmMVHwoV73gqa/FZWhdHuZSKjiyuLEvNpegdl4uWp7botXc6Q0VJihafx7OSqlUbn/Cf2QzTPywdB6v4UCgghlOnxffcc88hInz22We1likoKGDkyJFpkPEAy5cv5+WXX27y8fEJ78OHD2fEiBH85S9/aUbpLKni4FLmywUgUlaYUl3ecblYRYrjch4rLZzyeKHHbZqq4jMBaZnNESFq6TBYxQcggotTp8X3+OOPM23aNB5//PGk+cmWE2ss8fUu6yJVxef3+7n99ttZs2YNixYt4p577mHNmjVNrs/SvDi4VBrFF03R4vMqPlWZ4jZHMY/btDxFuVyv2zQ1F2x89ZcgkcTUBoulPqziU9ric5HEljDVKSkp4b333mPevHk88cQTifSFCxcyffp0zjzzTIYPHw5oBXjRRRcxbNgwzj333MS2Om+88QZjx44lPz+fK664gspKHdE2YMAArrvuOsaNG8dTTz1V5bzVt/0Jh8PceOONLFiwgDFjxrBgwQJKS0u54oormDRpEmPHjuX5558H9DZAM2fOZMaMGRx55JHcdNNNAPTu3Ztx48YBkJuby7Bhw9i6dWuN3/z2228nVm0ZO3YsxcXFKKVq3ULp2GOPZebMmQwaNIjrr7+eRx99lEmTJpGfn8/69XormxdffJHJkyczduxYTjjhBHbs2FHjvBdeeCEvvfRS4vvs2bMTC1J3BBxcwgGt+GIpbkbrtdJoxrpSdZt6XZ2VzeTqBHDt5r2WBtK+5vG9cj1sr7kIcyoEO/WHo76HK05iuajqPP/885xyyikMHjyYbt26sXTpUsaPHw/odThXrVrFwIEDKSgoYO3atcybN4+pU6dyxRVX8Le//Y2rrrqK2bNn88YbbzB48GAuvfRS7r33Xq6++moAunXrlljX00v1bX8yMjK4+eabWbJkCX/9618B+OUvf8nxxx/P/fffT2FhIZMmTeKEE04A9JZCq1atIisri4kTJ3L66adX2b6noKCAZcuWMXny5Brnvu2227jnnnuYOnUqJSUlhEIhnn322Vq3UPrkk0/49NNP6dq1K4MGDeLb3/42ixcv5i9/+Qt33303d955J9OmTWPRokWICP/85z+59dZbuf3226ucN77l0Omnn044HOaNN97g3nvvbeRdbb8IimhAr7CSqpWmPItAS4q7PVQJSEnRbYrH4gunaNU6nrrKS/eTnd01pfosHQNr8ZmwToWT2BKmOo8//jgXXnghoC0Sr7tz0qRJDBw4MPH90EMPZerUqQBcfPHFvPfee6xdu5aBAwcm1uu87LLLeOeddxLHXHDBBUnPm2zbn+q89tpr3HLLLYwZM4YZM2ZQUVHBpk2bADjxxBPp1q0bmZmZnHPOObz33nuJ40pKSpg1axZ33nknnTrVXMpq6tSpXHPNNdx1110UFhbi9/vr3EJp4sSJ9O7dm2AwyOGHH85JJ50EVN1yaMuWLZx88snk5+fzpz/9KemWQ6eeeipvvfUWlZWVvPLKKxxzzDFkZmYm/e0HIz5cooEcXCVQmaJL0RPc4qS4sa3X4lOVKSpRj8UXKUvN1em1+FKdpG/pOLQvi+/UW5q9ysodX5IZK0GJD1E1V5LYu3cvb775JitXrkREiMViiAh/+pPe1br6FkO1bfNTF7VtU9SQbX+UUjzzzDM1dkD48MMPa5UlEokwa9YsLrroIs4555yk577++us5/fTTefnll5k6dSqvvvpqnb+hIVsO/ehHP+Kaa67hzDPPZOHChUlXjgmFQsyYMYNXX32VBQsWJDocHQWHGDh+SiWEpKhgvJZVqiubVFnVKNXd4T11perO9Xl2eKhMccqGpeNgLT4zj0+Jk9j92svTTz/NJZdcwsaNGykoKGDz5s0MHDiQd999N2l1mzZt4n//+x8Ajz32GNOmTWPIkCEUFBSwbt06AB5++GGOPfbYekVLtu1P9S2HTj75ZO6++27ii40vW7Yskfff//6XvXv3Ul5eznPPPcfUqVNRSvGtb32LYcOGcc0119R57vz8fK677jomTpzIZ599ltIWSgD79++nb9++ADz4YO0LCl9wwQU88MADvPvuu5xyyikNrr/doxQ+FEp8lEkWToruSdcT7BGIpjjPzdTlKkFSVHziRqkwk/RTdZuKimrrGAiX2jE+S8NIu+ITkVNEZK2IrBOR69N9vsajg1sUDpJE8T3++OOcffbZVdJmzZpVa3TnkCFDuOeeexg2bBj79u3j+9//PqFQiAceeIDzzjuP/Px8HMfhyiuvrFeyZNv+HHfccaxZsyYR3HLDDTcQiUQYNWoUI0aM4IYbbkgcP2nSJGbNmsWoUaOYNWsWEyZM4P333+fhhx/mzTffTASvxKNE586dm9iy6M4772TkyJGMGjWKQCDAqaeemtIWSqDXBj3vvPMYP3483bt3T6QvWbKEb3/724nvJ510Em+//TYnnHACGRkZDa6/3RN3tTsOFZKd+vqTRlkVkZPyxrbxMb795KSskJUbo5gsXCWoitTq8qkY+0WvZxpO0W1q6TikdVsiEfEBnwMnAluAj4BvKKWSxs+3xrZEJdvXE3TLKPN3plN0D9J7DDTAPdnWmT9/fpUgmI5Iu9uWKBaB33bn7b7fpffOd6hwshj1f281ubq3X3iQYz/+Mdt8vYkoh8NubPq0lcUP38Ck9XexWXqzO3MQY3/R9Ck1S++6iH57PyBLlfNZrzOZ+P1/NLmu1b+dTCd3P4eqbayeeAsjTv9+k+uytB4H27ZEk4B1SqkvlVJh4AlgZprP2UiM4hcHgVqnNFgsaSce9OH4CPuyyEh1F3YT1Vnu60zITW2Cd3yMr9zJwZ+i21RUlBg+yiQz5WhTR8Uod7TFl+okfUvHId2Kry+w2fN9i0lLICLfFZElIrJk165daRYnOQoB8enPB8myZbNnz+7Q1l67JN72xEfEn5PyLuxx92RloBPZKsUlvYziqwh0IiPV5cHcGC4+yiULX4qKz6eilPt1VHLK0ywsHYZWD25RSv1DKTVBKTWhR48etZVJpwAAiKMvhWrA6imWtk9a20yaSEROOj5igZzU15809UUy8siWCtxU2nYsSkwJUX9O6jshqBiuOFQ6WfhT3EDWRwzXn0Wl8qc8zcLScUi34tsKHOr53s+kNZhQKMSePXvS/CITcLTFZ3dhb/8opdizZw+hUKi1RWkUsahue+L4cDNyyErVSjPLjMVCeQCUpRLu70aJ4scNZJOpUlwX043hio/KZnDnOiqG4/NTSijlaFNLxyHd8/g+Ao4UkYFohXch8M3GVNCvXz+2bNlCutyglft34iNKNKOCUOVuYrsUvoyOM2H6YCUUCtGvX7/WFqNRxNyYfiAdHyojl2wqiEZj+P2+plUY78TFFV9RITmdmriyiRslioMbyElZ8TlmjC/iz6FTRWo7PfiIoRy/Hi+0is/SQNKq+JRSURG5CngV8AH3K6VqLtdRB4FAoMrKKM3N4j9cTU+1k20z/szY/57PxhPuo/+089N2PoulNhKuSHGQYC6OKIpLi+jcuUsTK9TBLZLVDUhxZRNXKysVzCGbcmIxF5+vaQ4jcWMo8RHzZxNK0arVis9HhWThS9Ftauk4pH3lFqXUy0DTY5/TjKgYCh8ZWXph4HCKW8FYLE0lvued4/hwzHqdZcWFKSg+rUgDOdrKS2VlE3GjRMWHZOTgE0VRWTGdcjs3rTKlXZ2xZrAefbggfiqdzJSjTS0dh1YPbmltBBdXHEI5+uWS6srzFktTcWPxCew+fJla8VWksAu7GEXqz9EWX2Uq++i5UVx8OCHdQSwvbroSdVQMJQ4qI0dHm6Ywfu9XUZT4qPRlE0h1+oelw2AVn3kIs0zv1YZEW1qLxELQ4sOfZRRfaWHTK1Ra8WUYxRctb3pdYlydvrjiS8FtKiqKK34I5uIXl3BF092dPlyU4yfqyyIj1WhTS4ehwys+R7ko8ZGdlUNE+VBW8VlaiZhxTYrPR0aW7oiltG2Pmc4Q6hRXfE33ZoiKERV/QiGXp+A29RnFJyE98bysuOkBLvHglqg/m2CKk/QtHYcOr/gEFyUOuZkBSsi0c4EsrUY8uEXERygnD4BICgrGqab4YinsnC5KuzozjAs2nILb1DGKzwkZJdrEXdiVUvjMbhaxQDaZqU7/sHQYOrzi0+MNPoJ+x8wFsmN8ltbBG9wSNIovVpHa3LuI8pGVq+tKZWNbcaO44pCRrZVVJAVL1KdiuOInkBlXfIVNqsdV4McFx4/KyCGL8pTGCy0dhw6v+ERpi09EKLMh0ZZWJGHxOT6ycsyYcyruSTdKTByCoSzCyg8peDP0+pp+QtlarmgK1qNPRXGdAH7jzm1qtGnMPWDxkZGjt3SKWKvPUj8dXvE5uIl1OiuaYe1Ai6WpxExwi/h8ZOfqKONUrbSombGkF4ROpS49BSEzYYk2vS6t+PwEs1KzHmMxF7+44PiQRNCN3ZrIUj8dXvGJCW4BqPRl2ZBoS6sRM9MZHMeHLyNkrLRUAlJ0JCagvRkprGyix+UOWKKpKGQfUZT4D4xjNtF6jEb1kmyIHwlaxWdpOB1e8TnEQPRliPiyCVrFZ2kl4tMZHJ9WVqWShZOSlXZA8VWkOMFbj/H5yTBWWipBYH4VRTmBA9ZjExVfLGp2mPf5CWRaxWdpOFbxKRdlFqiO+LNT3grGYmkq8TE+x9HuyXLJTNlKi7s6K51sAikoPscEpOD4KCeY0rqYPmLg85OZ4tzZuGsYnx+/CZRJZXUaS8fBKj7PGF80kPoeaBZLU4lHdYovbqVl4Y+mEJDiavck6E5dKt4Mx6yQAnq80EkhCExbfBlkZ3fGVdLkoBs3bvE5/uaZ92jpMHR4xecjijI9bB0SXQGu3YXd0vLE94KMuzr1MlxN74g5sTARCQBG8aXQqXNULOEZSTUIzG8sPsenpxDRxClE0bjiEz9BE20aKbMWn6V+Orzi85uVHwBUhh4nwG5vYmkF4iu3OF7XeypWmhsmIhkAuIHU9vdLuDqBCl/T3aZKKfxEwdEKuVwycZr4vEUiWvH5AoFEoEzMrrxkaQAdWvG5rjKKTz+EEtRLKNmHx9IaVB/ji/pzCLkpuBTdMFFj8bkZqe2E4Hg8I2FfdpM3kI2ZZw6fUXwpuHMTis8XINNM0o/ZReYtDaBDK76oq3ufCcUXSm0lCYslFVy3qqszmpGbkpXmU5VEnaD+kpFDtlQmlEVjia9wBKkFgUWiMfziIkbxVTpZ+KNNrCtcCYDP7yc3V48XqkrbabXUT4dWfDFXkeFRfPHIsAobEm1pBVR8yTKfcb0HcslW5agmLsPlcyPEjMVHULft0ia27fgUBEjNEg0bZYVPu2DDvmwymug2jYS1BesEMgkGfJSQiaQwv9DScejQii/quviJIeZFk9gDzYZEW1oBFdVKQfzGSgvlEpQIlRVNc1EGVJiYsfgS2wk1cSeEDMK4Pl2Xm6EVclOIKz7Hl3rQjVupFaYvmIWIUJrCeKGlY9GhFV+s2hhfYhd2q/gsrYFZicTJ0AomvhpJaRM3o/WrCDHTtn2Zqe2EEKKSqC8T0EFg2ZQRjcYaXU80on9j3NUZ9WeT2UTrMVqpFaYTzALskoOWhtOhFV8k6hKIL3ILBLPju7DbcQJLy+NG42NWxkqLK6smKr6AOmClJSZ4N1XxqTDKn2m+5JIhMUrLG2+pRcMVAIjfRJtm5JJJ06xH1yg+f4ZRfE4WgRTmPVo6Dh1a8VVUVuCIQgIhAIJmy5VoubX4LC1PzFhDGUHdHn2Zem5aU3dhD6gIrqMVTEZ2fIJ349t2JBIhKBEIaAXjmPHCpmwgGzWLW6uMnMT/2aoc1YS5syqiFabfWHyVvmwCTQyUsXQsOrTii5jQZ8f0GOMh0W6F7TVaWp5YRFtDGUFtWQXMaiRNDbYKEEYZ6zExwbsJ3ozyMv2ciHlOUrFE40uKxdfWJJiLX1zKyxvv7nTDxuILabn0eKFda9dSPx1a8VWah00ysgHIycomrHwoO4/P0gq4ZowvGNKKL74ZbVNXIwmoCI5fW4+ZZleFpiwIXVmmO4KSoeXyZzU9+jlSruvyG8XnxMcxixpvPcYtvoCZfxtJcd6jpePQoRVf3OLzmQcnO+inhEy7coulVYi/yEPGggll5wEQLS9sdF3hSJQQ4YQbP8ssCN2UffTiHcS4ZySQWBezCXKZtTTjuzzEo03LmqBEoyaqMztH1+Fm5JCVwiR9S8ehQyu+qHFp+oLa4gv6HUrJRJq4dqDFkgoSKcNVkhizyuyUBzTNSisrKcQnCjekA7aycuIb2za+U1dhXJ3++HMSV8hNWBA6rnjjm9DGLb+m7KoQM8EtwUx9vVRGrlZ8dq1dSz10aMUXqTDzgEL6gRYRs2GndZdYWh4nUkoFGSACkNiF3W2ClVa+fzcAkpkHgC8jRET5mrSxbZkZy4sHf4XiQWBNcMHGO5shY6UFjAIMlzZeiUrFfiL4kUBc8XXCEUUshb0CLR2DDq34YuYhDGTmJNIqJDOlrWAslqbiRMspl1DiezCUTVQ5SBPGnMuKtOLzmyk6oLcTkiZ06ir37wIgM68nAFkJhdwEi8+4R3M7dQUOBN1UNsGqzQjvY7/kJjoKEkpt3qOl49ChFV+lceHkmPEPSH0rGIulqfgixZRLVuK7OA6l0jTXe0nhHgCyOndPpJVLFr4mdOqixTsAyO7aW9dpop9VE6xHKdlJGD/BHK34QkbxNcVtGqzcS7GTl/h+YJJ+01ansXQcUlJ8IjJHRLaKyHLzd5on7/9EZJ2IrBWRk1MXtfmJmN5njul9AkRSWHneYkmFYLiQMl+nKmllTVyNpLxwJwC5XXom0iqcTHxN2EBWlWiLr1O3XoCeNxdRviatixko38k+6ZKw0uLRpk1x54Yi+6jIOGDRJtbatRafpR78zVDHHUqp27wJIjIcuBAYAfQBXheRwUqpxq9xlEZ8pbon6+/UK5EW8WcTiliLz9LyZEaLKM3oViWtwslukuJThRsB6Nx7YCIt7MtqkjdDFW+nhCxy4kMCZl1MaUL0c6hyN/v93Yir47jbtLHRpkopukR3s6vzgd8XjzatbOKEf0vHIV2uzpnAE0qpSqXUBmAdMClN52oy/rKdFJEDgQPjKrFANpkp7FRtsTSVHLeIcEZelbQKp4m7F+zbRCG55HQ6YBFpb0bj23ZOaQHb/X2rpJVLFk4jFbJSiu7hLZRnHagrmNW0zZ/3FxXRW/YQzjug+IKJ1WnsPFxL3TSH4rtKRFaIyP0iEn/K+gKbPWW2mLQ2RUbZDooCVXvYbiCHTCrAbVPGqeUgR7kuuW4RsWCXKulhf9Nc752L17Ezo1+VtGgT9tFTStGzchNF2f2rpDdlXcw9+/bRl11Euw1JpInPTzlBaGQk5qYvVgCQ2etAXYld2O1au5Z6qFfxicjrIrIqyd9M4F7gcGAMsA24vbECiMh3RWSJiCzZtWtXYw9vMkopeoc3UpQ9sGq6WUMQ6+60tCC7dm4lWypxulZVME3Z+y5cWcmgyOfsyRtVJT0WyCbUyI1tv9q8gV7sRvUaUyW9wskm0EhLdPOKtwHIOmxclfQyMhvtzt3/xQcA9B5+dCLtwC7sVvFZ6qbeMT6l1AkNqUhE7gP+bb5uBQ71ZPczacnq/wfwD4AJEyY0bcfNJlCwdRv92c6q7mdXSRczSdetKEksp2SxpJtdG1ZzCFUtGIBoIKfRu7B/vmwhIyVC5qCjqqSrjByyVAVKKcQEl9THxsUv0hfonv+1KukRfzahcOOiJ0s/fZ2I8jFwwolV0iucTJxGBt1kbnyLndKNQ/oOTqRlJ9batYrPUjepRnX29nw9G1hlPr8AXCgiQREZCBwJLE7lXM1NwYcv4IiiR35Vve6Y5cuaMq/IYmkqJV+tBaD7YcOqpKtAdqOX4Spa/AQVKsDhR82sWldGDtmUUxlpuBs/5/N/8ZX05LDhU6qkN3ZdzHA4zBE7XuHzrHEJl2ScSicLfyOsx+3bt5JfvoRNPb+WiA4FyM7MpFxlNGmSvqVjkeoY360islJEVgDHAT8FUEqtBp4E1gD/AX7YliI6YzGXrmseYqfTg14jj6mSF1+3s6LEPjyWliO2ex0R5eOQwwZXzQjmkiWVRCORBtWzd+dXjN7zEmu6HEdu565V8pxgDn5xKSltmFtxzdJ3GBVextaB5yFO1VdFrJGW6NKX76cXe3AnXFEjL+zLalTQzefP30ZQIvT92g+qpPscsUsOWhpESopPKXWJUipfKTVKKXWmUmqbJ+/3SqnDlVJDlFKvpC5q87Hwkd8zOraaXaOuTOwEHccfMorPRoZZWpBg0Qa2Oz3x+au2x/jOIaUN7Ih9/sT/ESJMt1P+r0aeE18Qurj+pcai0Sjyn+soJIcRZ11bI98N5jbYEi0u2seg5bey3n84I2ecX/Nc/myCDQy6KVi3hglfPcqK3GPofeTYGvllkoVjF5m31EOHWrmloqKCd+/9EV/bcBtrco5i+Jk/rVEmvmhuuNz2Gi0tR5fyzewNHVYjPaGsGrCI84r3XmTK3udY3OtC+g8dVyPfFzITvBswz+2DJ25hWGQNX477JVmdutYskKEt0Ui4ss56lFKsuP9H9GQPsZNvRXw1wwpiDVR8kUiEoie/jxKh74V/SVqm3MkiELHPrqVuOoTic2MuH700j91/HMP0HQ+xtNsZDPnRs4jjq1E2vkFmxCo+SwvhxmL0jn1FeacBNfJ8pj3Wt/fd7m2b6PX6j9nq9GbMpX9KWibetivqWRD68yVvMOWLP7MqewrjzvhB8kKhhu3Cvuj5fzC18EWW9ruMwROTx8k1dDuh/827llHh5Xwx9pd06zsoaZlKX06jo00tHY/mWLmlzeLGYix//TFyP7yDie56CpzDWHXsfYxP4m6JE98nLJpmxVdRUcH6lYso2vARzvYVZBZvpHN0NzluCUr0Ytl7A70o6TIM34CpDJpwIj169Kq/Yku7Y+dXBfSSMNLtiBp5cQ9EXa73aLiSXQ98g/6qlF3nPkFmdvJo5Iz4BO86rMfd2zeR9+9vs8vpzqHferhK8IgXydR1le7fS+duydvlutVLGbXsRtYGRzBmdu0zndyMXLIpJxpz8fuS98U/fOUhjtn+IB93O4NxM39Sa12V/lw6hzfXmt9cVFSUs3HNR+zdsBy1Yw2h0i1khAsJumWECRIO5FKa0x9/r5F0HXYMg4aMwu+v2dG2tA4HpeJzYzE++e9D5C2+k3FuAVulF8vG/YHRp30Px1/3T86Mb7lS0by9RqUUBetW89VHLxLa9DZDy5cxQioA2E822wOHsS/nCHaZCcy+cBE5ZVsYuv0pMnY8jrtI+MI3kJ3dJxM68lgOH3sced16Jn0xKTdG8b7d7Nu9jeJ9Oykv3Ell0S5iJbtRZXvxVewlFCkkJ7afoCpHKVCIrkscYhIg5mSgnAD4AihfBhL/82eAPwNXArhOgJgEUD79vyt+XPRkbOXGwI3hujFQscR3XBelXFAxHOXiEEOUQvDsoSai5dFfqv4vJM8T/X+NvCqX58CXBkbzN7icUgf+V3g/q6Rp3mNC5TvoBWT3rhbYAmRkxrftqV1ZffzPHzIpvIpF425lyvDJtZbLMHvyRWvZQDZcWcmOed9gkCrhq1n/pm/XQ2qty2+2O6osTW7x7d29g+DTF1EpQbrNfqTG2KUXZQJ49pdX0Dknq0b++s+WM3zRL1gfOJL87/6j1noAIoFcMiuaf4xPuS7rVi5m9/IXyf7qfxxRsYohot28lSrAdl8vyv2dKc/oTkCFyYvsYuju5WTufhJWwS6Vx/qs0UR6jaHLERPpdcRYuvXoXcPrpGIRSov2ULx3J2X7d1GxfyeR4j3ESvagyvYiFfsIVO4jEClCxSKIiuHg4qCIip+IBIlIENcXJOYLoXz6M/6QeXZDSCCI4w+COCg3hnJd84y6YJ5NzHMrJg8VQ5R+dkXFEDcGyqU42JMTvvvHZr/e6eagU3yffvga/tf+j7GxdWySviwZdwtjT/s2fet48LyEsnRwi9tMe3p9tWk9Xy58mO4b/83Q2BcMBLZJTz7tcSqBI2fQe9gUevQbTGcneU83WlnGupXvsXf1m+R+9QETdjxNcOfj8D6UEmKfdCEmfhRCpionS5WSrcrpJIpOSeoL46dIOlHq60yJrzP7fV1wRBAUrlLgxnDciP6LVuBzI/hUFJ+K4FdRMiRCgCgBYmQQJSgNizYEcJUQk/hjKsQf2RgOcaUlKOJq4oAKU57/a887oKNUlTxPUtoRr3CNYI/TjcNGTKmRHkzsfZfc4vvwuXuYvPMpPjjkQo6e+b06z5FpFF+sFsX30X0/ZGpkFR9P/BPj8mtXoAD++C7sJTXrCofDbP7HhQxzd7LpjAUc0Se5WzKOE9J1lRXvraH49u/biyy4hJj46Tz7cQLBmorRSyyQS7Zqvk5rwar/seODx+iz7b8cqbZxJFDgHMbqnmfgHzSNXoMn0qv/UPonGbtUboytX65i16o3kY0fMLBwGT03vA0bgP9CVDkUSQ4KB1AEVZgcKScHyKlRG0SUj/3kUOx0oszJBX8AJUGiOLgIPhUlqMJkx0oIRCsJuJVkqDABImSoMBlEcaTxD0JUHXhOXRxcEf0/PtZK3fe2rXJQKb7PFv+XYa+cx066smTsHxh7+vc4rB4LrzpZ2bm4Spq0U3WcaDTKx289i7Pkn4yrWEwfUaz3H8HSwdfQ7+jz6D1gOL3rrwbQK+EfMeEkmHASAOHyUtYuf4vd65bC/s1kVOzBUVFQLhF/Fm5GJwjmIlndCOR2J9T5EHK6HEKnbr3o3K0XGcEcuovQvZ7zJiPmKsrCUaIxRRSIAqVK6R5hLIzEwjiO4Pf58Pl8+H1+fH4/4vhBHByRjjGo3ASCtaSHjOs9ksSKWbP0XUYv+w2rg6OZ+J276z1HZqf4Pno1rccPn76Dqbuf4qNeFzDx69+tt64MMxcvksTiW/yPq5gW/phl437L2GqT1ZPhGOuxvGgf9D6wzFokEuHLv19AvruF9Sc/yJB+R9ZblxvsRDYVEItCEmXUEIr272XlK/Po8cUTDI6to6/y8VnmaHYe+R36Tz2PAb0OY0AD6hHHR98jRtP3iNGYmV4U7d7GhlUfULF9LdGiHfgrC4m5Lj4RlD9ILJiHCuXhz+6KP7c7mZ16kJnXg9y8Q+iU14XuAX+Tnl0AlCIaqaSioozK8jIEcBwf4vfjc/Qz6/gcfI4Px/Hj+PzgOHUqiZpdtfbBQaX4hkz4Gh9uvIH8U7/DhJzO9R+QhOyQn1JCqCZs2FlRWcmHz93LwM/mMkltYy+d+bj/5fQ99goOPzy/SfJUJyMzmyFHfZ0hR329WeprDD5HyA3VZjnX3RO3NI3E+pPVViPZsWUdPV68hEInj77feYJAIKPeuuIWH9XqWvXei4xb+VtWZE5g3LfvaZBc8f30ouVVlegHT/+FabsXaAU688cNqssf34y2ZG8iTSnFon9cxfSKxSzN/zXjjz6zQXURygP0lmOB3MapiL17drHq2VsYs+UxpkoZBb4BfDj0Og4//nLyD2loV7VuOnXvzegZs5qlrkYjgj8jRE5GqMpWbB2Rg0rxieMw+byfpVRHhs+hkCDSiCWUwpEoi/49j8M+uZNj+YovA0ewctztDP/axUzICNVfgcVSC1m5xmHtUVZF+/dS9sAsuqsK9pz/Ir169GlQXRIIUUkAx7OyScHaTzj09e/xla8PA658ss6xOC+ZZjshVV6YSFu28FkmrLyJ1ZnjGqxAAQJZeUDVccz3n/wz03c9wdKe5zH+3J83uC7HBN2U7d9D5wYqvn1797Dq2VsYtflRjpFSVuROI/u4azl83HEMaOggr6VdcVApvuZARKiQEE4DFqmOxVwWv/oIPT66nWNUAZv8/fli2lyOPPbChkdFWCx1EMzKo1QFCZTrjWUrykrYeM/ZDItuYvVx8xg9fGKj6ttLHqFKXdfWDWvJfPxsXHwEL32KTnnd6jn6AJ3MqjBRMydwzZK3GPzWlWz1H8ZhVz7VYAUKkNFZW1OqSK9/sejFf3LUmt+yOmsiY79zb4PrAfAZJVq6fw+d+8GbD/2ObgX/ZvDP3iAzK7tK2f2Fe1n57K2M3Pgw06WEFblTyTv1RkYlGWu1HFxYxZeESql7p2rluix56zlyPvh/HBX7nK1Ob9ZMuZ1hJ8xOOkHXYmkyIux2uhMo2UZpSRFf3j2TEZWfsHz8Hxg345xGV7cr0Jvc8q1s/fJT1MNnkUkFu855msMHDKv/YA/ZmSG20Q3//gJWLXqVw165nP1OHp2+8wK5eY1zMWb31DukuHs3sOjf8xi/5BesC47g8KuexWmEAgXI6aEXASjc9gXrPnyR4zf9DYCVy94mf+ppgFZ4q567neEFDzKNYlZmT6HwlBsYNWpao85lab/Yt3QSCp0u9IzsrpHuxlyWvP0CmR/8iYnRVeyQ7qwY91tGnnolfRswxmKxNIXiYE+OKFnMtjtmMCL6JUvG/JZJZ9YysbweynL6M2rfixQ9dDwKYdfMxzh81NH1H5iEbRkDGVf4GhWvvMVuXw8Clz1Ht141V5+pjx5dOrON7oxePxffl4q1GcM59KoXCWUni0uumz6DxxJ9yWHIuz9huChWZU9mWMliyv/3T9Zm57H7o6cYuWUBU6WUlZmT2Hfyr8kfc2yjz2Np39gguySUZPYhL7w98b20tJT/Pf931vxhKpPeuYxesa/4eMQv6Xb9Kkad+WMcq/QsaWRfvxPIpZxesa9YcczfmXT2j5pcV+5Rl1Omgux1elB80SscPnZGk+uKjrmUShXgi8zR5Fz5Oj37D6n/oCSICJ8NvAyApV1OY+C1byRfJq0BdM/rzPudTyOGw0eHfYsR177Csn4XM6nkDYY8dypTt97PhtxxrD/rRfKv+y+DrNLrkIhSLTTBqQFMmDBBLVmypLXF4L/3/ZITt97DkmHXE/1qBYML36WrFLNNerJz5LcY8fUf4a9nPpHF0lzEYi4r3n2OfkMn0KMJFlV1ykuLCWVm19hxoSlUVpYTDGamXA/o1YxCodSDwZRSxCJh/Bl6kohyY3z63r+oLNrNYeNOplufgfXUYGlpRGSpUmpCi53PKr6arFmzisMWfI0cqaCYLNZ1OorsyZdy5FFnJF3f02KxWCxNp6UVnx3jS8Lw4SPZ/t3F7N63ncOGjGWsdWVaLBbLQYNVfLXQq29/6Nu/tcWwWCwWSzNjg1ssFovF0qGwis9isVgsHYo2FdwiIruAjc1QVXeg5kS8tomVNX20J3nbk6zQvuRtT7JC+5K3uWTtr5Tq0Qz1NIg2pfiaCxFZ0pIRQqlgZU0f7Une9iQrtC9525Os0L7kbU+yerGuTovFYrF0KKzis1gsFkuH4mBVfP9obQEagZU1fbQneduTrNC+5G1PskL7krc9yZrgoBzjs1gsFoulNg5Wi89isVgslqRYxWexWCyWDsVBpfhE5BQRWSsi60Tk+taWx4uIHCoib4nIGhFZLSI/MelzRGSriCw3f6e1tqxxRKRARFYauZaYtK4i8l8R+cL836UNyDnEc/2Wi0iRiFzdlq6tiNwvIjtFZJUnLem1FM1dph2vEJFxbUDWP4nIZ0aef4lInkkfICLlnms8tyVlrUPeWu+9iPyfubZrReTkNiDrAo+cBSKy3KS3hWtb23urTbbdBqOUOij+AB+wHhgEZACfAMNbWy6PfL2BceZzLvA5MByYA/ysteWrReYCoHu1tFuB683n64E/tracSdrBdqB/W7q2wDHAOGBVfdcSOA14BRBgCvBhG5D1JMBvPv/RI+sAb7k2dG2T3nvzzH0CBIGB5p3ha01Zq+XfDtzYhq5tbe+tNtl2G/p3MFl8k4B1SqkvlVJh4AlgZivLlEAptU0p9bH5XAx8CvRtXamaxEzgQfP5QeCs1hMlKV8D1iulmmMFoGZDKfUOsLdacm3XcibwkNIsAvJEpHeLCEpyWZVSrymloubrIqBfS8lTH7Vc29qYCTyhlKpUSm0A1qHfHS1CXbKKiADnA4+3lDz1Ucd7q0223YZyMCm+vsBmz/cttFHFIiIDgLHAhybpKuMWuL8tuA49KOA1EVkqIt81aT2VUtvM5+1Az9YRrVYupOqLo61eW6j9Wrb1tnwFulcfZ6CILBORt0VkemsJlYRk974tX9vpwA6l1BeetDZzbau9t9pr2wUOLsXXLhCRHOAZ4GqlVBFwL3A4MAbYhnZ1tBWmKaXGAacCPxSRY7yZSvs22sx8GBHJAM4EnjJJbfnaVqGtXcvaEJFfAVHgUZO0DThMKTUWuAZ4TEQ6tZZ8HtrNvffwDap22trMtU3y3krQXtqul4NJ8W0FDvV872fS2gwiEkA3nkeVUs8CKKV2KKViSikXuI8WdLvUh1Jqq/l/J/AvtGw74q4L8//O1pOwBqcCHyuldkDbvraG2q5lm2zLIjIb+DpwkXnZYVyGe8znpegxs8GtJqShjnvfVq+tHzgHWBBPayvXNtl7i3bWdqtzMCm+j4AjRWSg6flfCLzQyjIlMP77ecCnSqk/e9K9/u+zgVXVj20NRCRbRHLjn9HBDavQ1/QyU+wy4PnWkTApVXrMbfXaeqjtWr4AXGoi5KYA+z1upVZBRE4BfgGcqZQq86T3EBGf+TwIOBL4snWkPEAd9/4F4EIRCYrIQLS8i1taviScAHymlNoST2gL17a29xbtqO0mpbWja5rzDx1R9Dm6Z/Sr1panmmzT0O6AFcBy83ca8DCw0qS/APRubVmNvIPQ0W+fAKvj1xPoBrwBfAG8DnRtbVmNXNnAHqCzJ63NXFu0Qt4GRNDjHt+q7VqiI+LuMe14JTChDci6Dj12E2+7c03ZWaZ9LAc+Bs5oI9e21nsP/Mpc27XAqa0tq0mfD1xZrWxbuLa1vbfaZNtt6J9dssxisVgsHYqDydVpsVgsFku9WMVnsVgslg6FVXwWi8Vi6VBYxWexWCyWDoVVfBaLxWLpUFjFZ7FYLJYOhVV8FovFYulQ/H9z7LUAIEZfOAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 9)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8JElEQVR4nO2dd5yUxf3435/te42DA+lVOtxxdAygaBRbFBULiiD6NYlJNNZEf0k0xG+SrxqNxhJJDBFbFDsYNRoLKioiSK+C9M7BHde2z++P59llb2/36t7e3jHv12vv9pmZZ+bzzDM7nymfmRGlFBqNRqPRtGYszS2ARqPRaDRNjVZ2Go1Go2n1aGWn0Wg0mlaPVnYajUajafVoZafRaDSaVo9WdhqNRqNp9aSdshORXiKiRMTW3LJoGo6I3CQie0VkVTOkPVtEnk9BOrNEZHEN/otE5PqmlkNTlZreS23vLIkyTBKR3TX4zxOR3ze1HK0FEVklIvtE5NaGxpF2yk5Tf0RkjoiUmR+fiPijrt9tJrFmAz9VSg2LknO2iMxuJnnSCrNRt72e4T8WkQoR2SgiZ9YQ9nIR+cIMuyiOf6GILDf9l4tIYZSf0yxPB0TkiIi8JSJdY+R4R0SOish+EXk83DAVkYlR5S78USIy1fSfE+PnFZHSOj7/pHjP0loRkTovgBaRdiLyhoiUi8gOEbmqhrAiIveLSJH5uV9ExPTrLyILROSQ+e7fE5EBUfdeY5aXYyKyW0QeiO6UmI07T9T73RST9lWmfOUi8qaItIvye95UZsdEZHNsI9GsR34I/Lau+RJL0pWd7pGlHqXUDUqpLKVUFvBHYH74Wil1bjhcit9NO2BtCtNrEtKoPL8IrADygF8Dr4pIhwRhjwCPAPfFeoiIA1gAPA+0BZ4BFpjuADcDpwAFQBfgKPBYVBR/BQ4CnYFC4DTgpwBKqc+iyl0W8AOgDPiP6X9DjP+LwCv1zok0IY3KxhOAD+gITAeeFJEhCcL+CLgIGIbxji8Afmz65QILgQFmXEsxykqYDOAWoD0wFvg+cEdM/DdGveNoRTkE+Bsww4y7AqMshfk/oJdSKge4EPi9iIyMiXst0EZErAmerUaSouxEZLuI3Ckiq4FyEbGJyDizdVlsdkEnRYVfJCL/JyJLTU2+IFrLx8R9rYhsEJFSEflORH4c4z9FRFaa8WwVkXNM9zYiMtdsLewRkd/XlkkicrKIfGS2eA6LyAsikhvld0RERpjXXcwW0CTz+kIRWWc+7yIRGRSTP3eIyGoRKRGR+SLiqn9O158E70aJSN+oMFWGVETkB2aeFpvvsKCeaYbzOVRLuF+a72eviFwfLZcp0xMi8rb57r8SkZOj7v2LiOwy3/tyEZkYE73LzOdSEflGRKJ7mHeZZaVURNaLyMVRfrNE5HMReVhEijB6qLU974Ni9HS2ici5Md49zfhKReR9EWlfW3xx4u8PjAB+q5SqVEq9BqwBpsYLr5T6QCn1MrA3jvckwAY8opTyKqUeBQQ4w/TvDbynlDqglPIA84HoirM38LJSyqOU2o+hyBJVrNcAryqlyuM8U6Yp/zM1PHpCRGSyiGwyf09/FZFPJMGQsYj8SUQWi0ib407yuHnvRhH5flTYhPWNmEOT5u9pP/B0HeS8XUQOmuX82hjvtonKdz3yIZyPdyulypRSizEU1owEt1wDPKSU2q2U2gM8BMwCUEotVUrNVUodUUr5gYeBASKSZ/o/aTZofOa9LwDj6yjqdOAtpdSnSqky4G7gEhHJNuNep5TymmGV+YnNj3B90rBGhlKq0R9gO7AS6A64ga5AEXAehkI9y7zuYIZfBOwBhgKZwGvA86ZfL/NBbeb1+eZDC0YrsgIYYfqNAUrM+C1mugNNvzcwWhKZwEkYrZQf1/Icfc24nEAH4FOMSiHs/0NgPUYL5z3gQdO9P1Bu3msHfglsARxR+bMUo6XcDtgA3JBAhglAcQ2fCbU8w+xwXsZ7N6abAvpGhZkH/N78Phyj5T4WsGL8OLYDznqUh3MAD5BZS5j9GBVlBkZPIyKXKVOR+Y5tGD+sl6Luvxqjl2MDbjfjckXlgR+41HwfdwDbALvpf5n5LizAFea762z6zQICwE1m3O4anmGWmc4Pzbz6CYaCkahyvtUsH27z+r4Ecf0V+GsCv4uBDTFujwOP1fIergcWxbjdCrwb4/Zv4Hbz+yjgczN/MoB/UfU38GPgWdOvK0Zr++I4aWcCpcCkBLLNBL4L51U965v2wDHgEvMd3Wy+h+uj3sti8/0+hfFbzYh5v7eaZeMKjDqkXR3qm0nmvfdj1BE1lY1w2HvNdM4z42pbl/IdE9ddwL8T+A0HKmLc7sBQLPHClwBjo65HAaUJwl4E7KvhGd+MLs9m+T4EHDbL0KQovwXAnTH3lwEjY34DFRj1wDdAVkx4N1AJ/KC+ZUYplVRld13U9Z3AczFh3gOuicqU6EwajNENtxKj7BJk8M3m978BD8cJ0xHwRhdG4Erg43o+10XAihi3hRit6tWYCgCjlfJyVBgLhjKfFJU/V0f5PwDMSUbex5F5NtWV3XUxYWpSdk8C/xsTfhNwWh3TX2bG//Nawv0T+L+o675UV3b/iPI/D9hYQ3xHgWFRebAk5n3sAyYmuHclMMX8PgvYWcdnnQVsibrOMJ+hU1Q5/02U/0+B/zTgnc6Ifh7T7Q/AvFrui6fs7iamUsWoaGeb39sAL5nPEcAYOm0XFXYQsNz0U+Z7qqawTJm3xfMz/T8Mp9mA/JgJfBl1LcAuqiq7rzB6pa9hNjqj/PZGy4XREJ2RIK03OV7fTMKop1x1kHESRsVsi3I7CIxrSPmuIZ2JwP4Ytx/GvvcovyBmh8C87me+R4kJ1w2jDrsyQTzXAbuB9lFuY4FsjIbANRiNnZOj3vcNMXFE6sgoNytGg/83mI3TGP+bMHp4K+ubV8mcs9sV9b0ncJk5DFYsIsXmA3ROEH4HRuun2hCPiJwrIkvMIcRijEIRDtcdo+UcS08zvn1R6f8No4eXEBHpKCIviTHseQyjtxEr01MYPdLH1PFudxfzGQBQSoXM5+sadd/+qO8VQFZNsiSZXbUHidATuD3m3XXHeMa6MBqYBswWEXsN4brEyBVPxoR5Zg4LbzCHoooxKunodxWJz3wfu8PPICIzo4ZpizHeZ9x760BERqVUhfk1K55/7DPUgzIgJ8YtB6MySXZcT2BUVnkYvbPXgXcBRMSCMWz5uunXHmPe7/446VwDPKvMGioaEemBoQyebYD8EFN2zDRiLR/7AlOA3ymlfDF+e2Lk2sHxslFTfQNwSBnDu3WhSCkViLqOff/NUTZiw+cAZdH5IcZc8PsYIw0vxkYgIhdhzLGdq5Q6HHZXSn2llCpVxvD4Mxi9u/PqI6dSKqiModhuGCMl0enagN9hNKSGJ3i+hCRT2UUXnl0YPbvcqE+mUip6wrx71PceGMMQh6PcEBEnRsvsQaCjUioXeAejJRdOJ9449y6Mnl37qPRzlFKJ5hbC/NF8jnxlTJReHZUWIpKFMfE/F6MyD88z7sVQEuFwYj7fnlrSq4bEt2iL/sTOTdWF2AqnAqMXEqZT1PddwB9i3l1GvEIfNyHjR/MmRiXYuYag+zAKdJjuiQLGYubBL4HLMYaFcjGGZyQqWPeo8BYzrb0i0hOjwXIjkGfeuzbm3moVdDOzDugTnt8wGWa6NySuArOMhimIiqsQo8d4xGzMPQaMMeca22H8Vh83K7QijHmr86LiQkS6U7MymwF8rpT6rgHyQ0zZMZ+lW0yYDcC1wLsSZVFo0jXm+XtglI3a6htIv7KxGbCJSL8ot5rKxjrTP25YEWmLoegWKqX+EHuzGDYRTwEXKKXW1CKb4njeVUlXRPpgNKo2J7jXRvW6vSNGvfJmvEZUbTTV0oPngQtE5GwRsYqIy5zcjS6QV4vIYBHJwBjXflUpFYyJx4GRIYeAgDn5PznKfy5wrYh8X0QsItJVRAYqpfZhvLCHRCTH9DtZRE6rRe5sjBZIiRjm1r+I8f8LsEwpdT3wNjDHdH8ZON+Uw44xh+QFvqgto2JRMRZtcT6f1TfOOKwErjLfzTkYcxNhngJuEJGxYpApIueHK1oxDEfm1fIM4R6vo4ZgL2O8u0FmGbi7HvJnYwyjHcL4od9D9VbjSBG5xGwN3oLxPpZg9EiUeS+m0cDQeqSdcpRSmzHe2W/N39LFGArqtXjhw785jArDYt4T7mUvwhjK+rkYywxuNN0/Mv9/DcwUw8DLjjH0ulcpddhsxW8DfiKGoVMuRg9udYwIM4AvlFLxRl3AGIacF0fuWsuWydtAvohcZL7fn1G1wQaA2UD7FfBBjPHHSRjPbxeRyzCGZt+h9vom7VCG8c/rwL3mb3U8Ro/2uQS3PAvcZtaVXTDqqnkAIpKDMd30uVLqrtgbReQMjCHvqUqppTF+uWZ97zLLxnTgVExLXPO+C8zGfCZGnf+6UqpURE4SkWkikmWW3bMxpp0+jBEhXIa9NIAmUXZKqV0YGf4rjIKzC0NxRKf3HEYm7wdcwM/jxFNqur+MMSdzFcacWdh/KUbr7WGMlv0nHO9hzcQovOvNe1+l5p4GGF3kEWZcb2MUIsCw+sQwqgh3rW8DRojIdKXUJoxe4GMYvdMLMFo+scMn6cLNGDIWY1hJvRn2UEotwxjzfxwj37ZgWmuZdMcYnqgNRQ3lSyn1LvAo8LGZxhLTqy4F+T2MH9FmjCEoD9WHHhdgGB8cxah8L1FK+ZVS6zEs0L4EDgD5dXyeJkWMNWhzaggyDcOY4CjGkoJLlVJhhT1dRKJb8jMw5ouexJjTqcRoxGCWyYswfh/FGHMvF0WV1Tsw8vNbjN/ueRgGMmEuwfgdHMJ4b34MY49oZpLAylJETsHohcVbclCnsmUq3csw5r6LMOb8lxGn7JjDafcCH4lIL9P5K4y5qsMYc5+XKqWKaqtvmgsR+ZXUvF72pxjGGwcxlnP8RCm1zrx3ooiURYX9G/AWht3BWox67m+m38UY0xDXxowm9TD978aYLnhHqq/jtQO/57iByk0Y5WozGNaWwA0YSu8gRoP1p+a9CqNe3Y2R7w8CtyilYvO+TlbeiQhbjaUUMRaHPq+U+kfKE9c0GDHWYq0CCpRhmlxT2L3AL5VSddrJRIylGmsxjH4CtYXXtC7qU7bi3GvBqCinK6U+bgr5NM2PiFyOMYReo+1FIvQOKpo6o4z1NYPqWBndhTHstjxRABG52BxKCxs5vKUV3YlJPcsW5pBZrjnP9iuMuaEltdymaaGY9cgfMSz9G8QJp+yk+pZF4U9NQ0iaeqKUelYp1U8pFbsLQjQ/xhjS2Ioxj/STGsI2C7q8pC2nYJSb8LTBRUqpylQKYA4vxisbzbVFX6tFKTVSKdVXKfV0Q+NolmFMjUaj0WhSyQnXs9NoNBrNiUe6bGQKQPv27VWvXr2aWwyNRqPRpJDly5cfVkol2tg8KaSVsuvVqxfLli1rbjE0Go1Gk0JEZEftoRqHHsbUaDQaTatHKzuNRqPRtHq0stNoWgBfLZjD/tkn4/PVa721RqMxSas5u3j4/X52796Nx1PXjcY1GnC5XHTr1g27vaaDF1oOQ1fMJpNKdu/6lm4nD055+v999o+Ejmzj7FueSnnaSileePTX9Bw4nIlnX5by9DWtg7RXdrt37yY7O5tevXohVTYq12jio5SiqKiI3bt307t37+YWJyn4sJEJlB/di7EVZGo567vwKT6pV3bHyiu4+ugTxm6mWtlpGkjaD2N6PB7y8vK0otPUGREhLy+vVY0G+M0DJDzHjjavHN6K2gMlmUDlsZSnqWl9pL2yA7Si09Sb1lZmvBa38b+sqFnlKDlyKOVpBn2tp9GiaT5ahLLTaE50vBYXAKqypFnlqDx2JOVpBn0p3fJS00rRyq4OiAi333575PrBBx9k9uzZzSdQLSxatIgvvqj3ubFVOOecc8jNzeUHP/hBkqTSNAa/2bPD07zKzleW+mFU5dc9O03j0cquDjidTl5//XUOHz6c1HiVUoRCDTqHsEaSoex+8Ytf8NxziQ471qSakBjnVlqaWdl5y5uhZxel7FSgQYdUazRa2dUFm83Gj370Ix5++OFqfocOHWLq1KmMHj2a0aNH8/nnxkHLs2fP5sEHH4yEGzp0KNu3b2f79u0MGDCAmTNnMnToUHbt2sUvfvELhg4dSn5+PvPnzwcMhTVp0iQuvfRSBg4cyPTp04l3QsWjjz7K4MGDKSgoYNq0aWzfvp05c+bw8MMPU1hYyGeffVajjDNmzOCUU06hX79+PPXUcUu773//+2RnZ9eYL6+88gpDhw5l2LBhnHrqqYBhUHTttdeSn5/P8OHD+fhj4yzNefPmcdFFF3HWWWfRq1cvHn/8cf785z8zfPhwxo0bx5EjRiX61FNPMXr0aIYNG8bUqVOpqKhuEDFu3DjWrTt+MPekSZNa/TZzFhUEQPxltYRsWoLlxSlPM1rBecq0sYqmYaT90oNofvfWOtbvTW5hH9wlh99eMKTWcD/72c8oKCjgl7/8ZRX3m2++mVtvvZUJEyawc+dOzj77bDZs2FBjXN9++y3PPPMM48aN47XXXmPlypWsWrWKw4cPM3r06IjiWLFiBevWraNLly6MHz+ezz//nAkTJlSJ67777mPbtm04nU6Ki4vJzc3lhhtuICsrizvuuAOAq666KqGMq1evZsmSJZSXlzN8+HDOP/98unTpUqe8u/fee3nvvffo2rUrxcXFADzxxBOICGvWrGHjxo1MnjyZzZs3A7B27VpWrFiBx+Ohb9++3H///axYsYJbb72VZ599lltuuYVLLrmEH/7whwD85je/Ye7cudx0001V0r3iiit4+eWX+d3vfse+ffvYt28fo0aNqpPMLZWwsrM0t7LzpF7ZhALHz/OtLC/Bnduk+wVrWim6Z1dHcnJymDlzJo8++mgV9w8++IAbb7yRwsJCLrzwQo4dO0ZZWc0VUs+ePRk3bhwAixcv5sorr8RqtdKxY0dOO+00vv76awDGjBlDt27dsFgsFBYWsn379mpxFRQUMH36dJ5//nlstvhtl5pknDJlCm63m/bt23P66aezdOnSOufJ+PHjmTVrFk899RTBYDDyPFdffTUAAwcOpGfPnhFld/rpp5OdnU2HDh1o06YNF1xwAQD5+fmRZ1u7di0TJ04kPz+fF154oUoPLszll1/Oq6++CsDLL7/MpZdeWmeZWyqCkb+2QHmzyhH0lKY8zVDwuLLzlqc+fU3roEX17OrSA2tKbrnlFkaMGMG1114bcQuFQixZsgSXy1UlrM1mqzIfF73mKzMzs07pOZ3OyHer1UogqoUb5u233+bTTz/lrbfe4g9/+ANr1qypFiaRjFDdRL8+Jvtz5szhq6++4u2332bkyJEsX768xvDRz2OxWCLXFosl8myzZs3izTffZNiwYcybN49FixZVi6dr167k5eWxevVq5s+fz5w5rf/Q8HDPzhZI/To3AJ+y4pAgypt6ZROMUnaeCj2MqWkYumdXD9q1a8fll1/O3LlzI26TJ0/msccei1yvXLkSMI4r+uabbwD45ptv2LZtW9w4J06cyPz58wkGgxw6dIhPP/2UMWPG1EmeUCjErl27OP3007n//vspKSmhrKyM7OxsSkuPV0qJZARYsGABHo+HoqIiFi1axOjRo+uUNsDWrVsZO3Ys9957Lx06dGDXrl1MnDiRF154AYDNmzezc+dOBgwYUOc4S0tL6dy5M36/PxJPPK644goeeOABSkpKKCgoqHP8LZWwsnMGU6/slFJYMOeLvakfRg2Fjis7fzMvvdC0XLSyqye33357FavMRx99lGXLllFQUMDgwYMjvYypU6dy5MgRhgwZwuOPP07//v3jxnfxxRdTUFDAsGHDOOOMM3jggQfo1KlTnWQJBoNcffXVEWOQn//85+Tm5nLBBRfwxhtvRAxUEskIxjDo6aefzrhx47j77rsj83UTJ07ksssu48MPP6Rbt2689957ANxzzz0sXLgQMCw28/PzGTp0KN/73vcYNmwYP/3pTwmFQuTn53PFFVcwb968Kj262vjf//1fxo4dy/jx4xk4cGDEfeHChdxzzz2R60svvZSXXnqJyy+/vM5xt2Qs5jCmM5T6YcxQSGETY5SiOeYMo+fsfBXNO2epablIPAu/5mLUqFEq1qpuw4YNDBo0qJkkat3Mnj27iiFLa6M1lZ1d9w6me2gPRbQlb/b2lKbt9Xlx/vEkAFa2OYPCW99IafrrP36JwZ/8GIBVox9g2Pk/Tmn6mqZHRJYrpZrUykz37DSaFkB4GNNN6ncTie5Z2fzN0LOMmrMLenTPTtMwWpSBiia5pPMuMJqqWDGGETPwQCgEltS1UwMBX+S7vTnmDEPB49+bwUBG0zrQPTuNpgUQnrMD8Kd4rVt0z84RbN6enWoGAxlN60ArO42mBWBVQULKWBZSWZpai8RA4Pjp6M5QMwyjBo8renzNu85Q03LRyk6jaQFYCVKCsT6zMsVbdkX3rNyh5hjGPJ6+NMOcoaZ1oJWdRtMCsBKkVAxl5y1rnp5dicpsFgOZsLLzKStWrew0DUQruzry5ptvIiJs3LgxYZjt27czdOjQJpVj5cqVvPPOO42K47rrruOkk05qclk1ycNKkHKLsTG3N8W7iITn7EolExc+CFbfyacpUeYwZhkZWJtpBxlNy0cruzry4osvMmHCBF588cW4/vG28qovwei5iQQkQ9nNmjWL//znP42KQ5NarISoNJWdP8XKLmhaY1aY6ad6f8ywNWa5ZGJrBmtQTetAK7s6UFZWxuLFi5k7dy4vvfRSxH3RokVMnDiRCy+8kMGDBwOG0ps+fTqDBg3i0ksvjRxR8+GHHzJ8+HDy8/O57rrr8HqNY0t69erFnXfeyYgRI3jllVeqpBt7hI7P5+Oee+5h/vz5FBYWMn/+fMrLy7nuuusYM2YMw4cPZ8GCBYBxpM6UKVOYNGkS/fr143e/+10k3lNPPZV27drV+MyffPIJhYWFFBYWMnz4cEpLS1FKJTyO6LTTTmPKlCn06dOHu+66ixdeeIExY8aQn5/P1q1bAXjrrbcYO3Ysw4cP58wzz+TAgQPV0p02bRpvv/125HrWrFmRTZ9PZKwqiNduKJtAZWqVXXgYsdKaZfwvK26W9Cssmc2y9EHTOmhZ6+zevQv2V9/ouFF0yodz76sxyIIFCzjnnHPo378/eXl5LF++nJEjRwLGvpdr166ld+/ebN++nU2bNjF37lzGjx/Pddddx1//+lduvPFGZs2axYcffkj//v2ZOXMmTz75JLfccgsAeXl5kX00o4k9QsfhcHDvvfeybNkyHn/8cQB+9atfccYZZ/DPf/6T4uJixowZw5lnngnA0qVLWbt2LRkZGYwePZrzzz+/zkfhPPjggzzxxBOMHz+esrIyXC4Xr7/+esLjiFatWsWGDRto164dffr04frrr2fp0qX85S9/4bHHHuORRx5hwoQJLFmyBBHhH//4Bw888AAPPfRQlXTDx/ecf/75+Hw+PvzwQ5588sk6ydxqUcZ2XX57G6iEUIqXHgSDxpyd15YDfvCUl5CVwvTDys5jzaZdKLkHKGtOHJq8Zyci54jIJhHZIiJ3NXV6TcGLL77ItGnTAKPnET2UOWbMGHr37h257t69O+PHjwfg6quvZvHixWzatInevXtH9se85ppr+PTTTyP3XHHFFXHTjXeETizvv/8+9913H4WFhUyaNAmPx8POnTsBOOuss8jLy8PtdnPJJZewePHiOj/z+PHjue2223j00UcpLi7GZrPVeBzR6NGj6dy5M06nk5NPPpnJkycDVY/v2b17N2effTb5+fn86U9/int8z7nnnsvHH3+M1+vl3Xff5dRTT8XtdtdZ7laJMhaUBx05AIRSPIwYnrPzmel7ylNrIBMexvTZsnE1w9IHTeugSXt2ImIFngDOAnYDX4vIQqXU+gZFWEsPrCk4cuQIH330EWvWrEFECAaDiAh/+tOfgOrH9TTkyJxER/7U5QgdpRSvvfZatZMFvvrqq0Yd33PXXXdx/vnn88477zB+/PjIRtCJqMvxPTfddBO33XYbF154IYsWLYq7g4vL5WLSpEm89957zJ8/P9LIOJFRQT8C4MwiqCTlC6vDyi7oaAOAvzzVw6iGsvM7snFXamWnaRhN3bMbA2xRSn2nlPIBLwFTmjjNpPLqq68yY8YMduzYwfbt29m1axe9e/fms88+ixt+586dfPnllwD861//YsKECQwYMIDt27ezZcsWAJ577jlOO+20WtOOd4RO7PE9Z599No899hjhDb1XrFgR8fvvf//LkSNHqKys5M0334z0OOvC1q1byc/P584772T06NFs3LixUccRAZSUlNC1a1cAnnnmmYThrrjiCp5++mk+++wzzjnnnDrH31oJr3Oz2x2U4UZ8KVZ25jCmcuUC4EvxnCGh48rWTSWk0eb1mpZDUyu7rsCuqOvdpluL4cUXX+Tiiy+u4jZ16tSEVpkDBgzgiSeeYNCgQRw9epSf/OQnuFwunn76aS677DLy8/OxWCzccMMNtaYd7wid008/nfXr10cMVO6++278fj8FBQUMGTKEu+++O3L/mDFjmDp1KgUFBUydOjUyX3fllVdyyimnsGnTJrp16xY5n2/OnDmR438eeeQRhg4dSkFBAXa7nXPPPbdRxxGBsRfnZZddxsiRI2nfvn3EfdmyZVx//fWR68mTJ/PJJ59w5pln4nA46hx/ayVgKhssNipwp/yYnbCyFXeuIU+qDWTMIXzlaoMVhdK7qGgaQJMe8SMilwLnKKWuN69nAGOVUjdGhfkR8COAHj16jNyxY0eVOFrTMS2pZN68eVUMWU5EWkvZqSg5RMbDffm87x103voS5dl9yL/trZSlv/aLtxn6/lUsLnyACSt/yeqCX1NwyS9Tlv4Xc+/ge7ue4pO+d3Lalvvx3LwBV9suKUtf0/S0hiN+9gDdo667mW4RlFJ/V0qNUkqN6tChQxOLo9G0PEKB4z07j2RgS/HCamX27KyZxnKVUKqP2QkFCClBnMbSi8oU7yCjaR00tbL7GugnIr1FxAFMAxY2cZoajPVpJ3KvrjURDA8jWm34rBnYA6kdxgsPY7ozcvArK6T6mJ1QiCAWbG7TGlQrO00DaFJlp5QKADcC7wEbgJeVUtXtzWuPJ9miaVo5ranMBE1rSLFY8VozcaR4M2Zlzhm6XQ7KcYEv9TuohLBgcxs9u1QvfdC0Dpp8UblS6h2gwftbuVwuioqKyMvLq5fpvObERSlFUVERLperuUVJCuGeHRYbAVsmLm9qlV3INP232e2GgUyKDUQkFCAoFhwZ5tKHFG+XpmkdpP0OKt26dWP37t0cOnSouUXRtCBcLhfdunVrbjGSQsQa0mIlaMvErZppzs5qp1LcWAOpnbNTKkgIK45MYxjTn+qlD5pWQdorO7vdXmWHEo3mRCPaQCXkyDq+1ixFIx3hdXZiteOxZGBL8TE7EgoSxILbVHaByhTPGWpaBXojaI0mzQnvQGOxGsrORggCnpSlf7xnZ8VryUj5yQOiAgSw4c7OBVK/XZqmdaCVnUaT5kQPY+IwtmBO5cLu8EbMVpsdnzUDZ7A55uysZGQZc3Za2WkaglZ2Gk2aE1Z2Fpsdi8tca1ZenLL0wzuYWG12/LYMnCnejFlCfoJYyXQ5qVBOVIq3S9O0DrSy02jSnPDSA4vFisWZ+rVmkZ6d1U7QloUrxUsfLCpAUGxYLUIFrpTvDappHaS9gYpGc6ITNhCx2OzY3FYAvKlcaxaes7PZCNkzU24gIyHDGhOgQtxYU2wgo2kd6J6dRpPmBEPHDVTs5lozXwqP2Tk+Z9c8BjLhnh2A15KBNcU7yGhaB1rZaTRpTihqB5WwskvpWrPQ8Tk7zP0pVQq3DDOUndmjtaR+uzRN60ArO40mzQlFGYg4Mw1l1zzWmDbEaViD+lK4i4mEAoTMnp3PmoE9xUsfNK0Drew0mjQnMmdnteIyF1an1Pw+vF2YzXHcGrSsOGXJW1SQkNmz89sycabYQEbTOtDKTqNJc44v6naQaa41UylVdsetQa0uQ9l6U2gNalEBQmI3RLFn4k7x0gdN60ArO40mzQlFGahkuJ2Up3itmTJ7dmKxYTdPHkjlMKah7IyeXdCeiRvds9PUH63sNJo05/iicisZdivluFO61kxCAYJKwGKJbMacSmVnJYiymKukHNlk4IVQKGXpa1oHWtlpNGlO9KJui0XMY3ZSO4wZNNe5OSPWoKkbxrSq4wYqmAYy3gp9pp2mfmhlp9GkOeGlB1arUeF7LG4sqVxYHQoSFKOqyDA3Y07lyQNWFSBk9uzE3EGmsrQ4ZelrWgda2Wk06U7QB4DV7gCMtWa2FK41k5CPgLnZUla20bMLptBAxkIQzJ6dxW2kX1l6NGXpa1oHWtlpNGmOmLuVWB0ZAPismTgCqTPSsAS9eDEUbXaGm0rlSKk1qE0FIz07mzmMWll2JGXpa1oHWtlpNOlORNm5jUtbJs5Q6np2lqAHnzgBcNktlOGGFBrIWAlEDFTsmbkA+FO5N6imVaCVnUaT5ii/oeycbqNnF7Rn4krhWjNr0INfjJ6diFApbiy+1ClbqwoiVmOdncNUdoGK4pSlr2kdaGWn0aQ5KuAhpASn0+jZhRxZxskDKcIa9OG3OCPXHsnA4k9Nz04phQM/WA1l68rKBSCQQmtQTetAKzuNJs2RgAcvdqxW8+fqzMaFL3L0TlNjDXkJmD07AK81dQYy/kAIN16UPROAjJy2ACit7DT1RCs7jSbNkYAXH/bj1+bJA54UzVvZQ16CUT07vzUDR4o2Y/Z4K7FLEOzGEG5GZg4BZUF5Unjqg6ZVoJWdRpPmSMCDV44rG6vLWFhdniLze5vyErAeTz+VBjLecsPqU5mWqJlOO6VkIF6t7DT1Qys7jSbNsQS9+OV4z87mNhZWV6RoYbU95CNodUWuU2kg46s05gbFYSh4q0UoIwNrKneQ0bQKtLLTaNKcaNN/ALup7DwpOnnArryoqJ6dcmSRkSIDGZ/HUHYWZ2bErUIysfm1stPUD63sNJo0xxKorDJn5jAPcPWmaDNmt/JE5swMAbIMo5EUGMh4yo1ndLizIm6VlkxsgdSt89O0DrSy02jSHFfwGB5bzvFrc62ZLwWbIfv8AXIoI+RqG3ET8wDX8rKmV7YVZUYPzp2ZHXHzWDNxamWnqSda2Wk0aU5m8BheR27k2m0e4BpIQc+urPgwVlGQ0S7iZg0ruxQYyPhKiwDIyMk77mbLwhlM4UbYmlaBVnYaTZqTo0rxRym7LPPkgWAKzO/Lig8CYMlsH3ELG8hUpmDOMFhmpJ/ZrmvEzW/PJkNpZaepH41SdiIyW0T2iMhK83NelN//E5EtIrJJRM5uvKgazYmH3+8nh3JU1DBiZk4uACFP0w/lFRcdAMDd5riys0c2Yy5u8vQpM9LPatcp4hS0Z+NWFaBU06evaTXYkhDHw0qpB6MdRGQwMA0YAnQBPhCR/kqpYBLS02hOGA7t30UXwN6mY8TN6nDhUzbwNr2yqzi0E4A2HXtG3BwZRs/OW54CA5myg5SQRRv78R1cQs5sbITAVx45zFWjqY2mGsacAryklPIqpbYBW4AxTZSWRtNqKdm7GQBHh5OruFeIG0nBWrNg0XcA5HXrH3Fzm9agvhTMGWZV7OKwvUsVN2Ue4IpeWK6pB8lQdjeKyGoR+aeIhMdaugK7osLsNt00Gk09OLbHUHZ53fpVca8Ud0o2Y5YjWzlCm8gGzADuyGnlTatslFJ09O2gJLNXVZlMZecr1we4aupOrcpORD4QkbVxPlOAJ4GTgUJgH/BQfQUQkR+JyDIRWXbo0KH63q7RtGqCe1dRgZMuvQdVcU/VaeWdStexN2NAFbeMFJ1WvnPndjpThKXT0CruVvO0ck+KdpDRtA5qnbNTSp1Zl4hE5Cng3+blHqB7lHc30y1e/H8H/g4watQoPeOs0URx0tFv2OHozyCrvYq735qBvYk3Y967Ywt91E6WdrqwinuGufQh1MTKbvfyd+kJtBs8qYq7xTSQ8ZQdJaf6bRpNXBprjdk56vJiYK35fSEwTUScItIb6AcsbUxaGs2Jxp7vNtA3+B0lPaq3N322rCY/eeC7Rc8A0PV7l1dxF3sGQQS8TavsMja+ygFpT/ehE6q4hw9w9ZUXN2n6mtZFY60xHxCRQkAB24EfAyil1onIy8B6IAD8TFtiajT1Y8d/HqGjstD71Kuq+QXtmWRUxB0sSQrFR4sYtO0Z1ruGM7jvsKqeIlTgRnxNN2e48ov3GO5bzvI+P6WjxVrFL6zs/Pq0ck09aJSyU0rNqMHvD8AfGhO/RnOismXtUkYdeIWVbSczqkf/av7KnkWGapqeXSAQYMs/ZlGoSik+5964YTySgdXfNHOGhw7socP7N7JPOjB06i+r+buyDDu4YAq2S9O0HvQOKhpNmnHwwB4cr82iTDI5efojccMoZxYZePAGkjtgUlZexoq/XM6o8k9Z0f9mTi48NW44rzUDaxMYyOzatomyOeeQp47iufApnJltq4UJH+Aa8mhlp6k7yVhU3uLx+PxUVJQTwEJuZiYOu7X2mzSaJmDb1k0Enr+c7qGDbDvvBQZ16Bw3nDizycTDkUo/zuzklNeVn79H7ge3Mlrt4as+NzJ2+uyEYb3WDOxJVHYqFGTVgr/Qd9UDCIod5z7LgOGnxw2b5bZThlufVq6pFyeUslOhELu/W8feNZ/g372Cdsc20s6/jzxVTDsxWsjlysl2S2f2Zw3B0vd0Bn7vQtp36FhLzBpN41m7fDEd3rqaTDzsP+9pBo1NvMuexZWNRRRlpcdon+1KGK4ulJQUs+bZ2/je4dc5ZGnPt5OfYez3LqrxnoAtE0eS1vnt/W49xfNvoNC7ilX2QtpNe5IBJw9OGD7bZeeoSo/Tyr3eSjwV5fi9FYRC4MrOJSsjC4tVD5qlG61e2VWWl7Jp8Rt4N7xH9+Kv6M4hugMVONlpP5ndbcewJ6sTypmDlSBUFOEq2cqI0o/JWvE2gW9+yVpnPhW9zqTP+Mto33NQrWnWFU9lBcVFB/CWHcXvrcDvrcTnrSTk92IRC1htiMWOWK1Y7Q4sNidWuwO7w4Ut/LG7sDtdOBwu7DYLVosgIkmTMS417UnY1GknERX1HNGPpOL5V7kv7Bb//vhxqoTpAKxfNJ/BX9xGhSWTsiv/Ta/+o2qU3eYyTysvOwqcVGPYmvjm49fp9MmdTOAgyztdypAZD9ExagF5IoK2TFyhgw1OFyAYCLBs/h8p2PwY2Vj5YshvGTv1Fqy1KIpMh5WdZGBPkbJToRD7dm1l36aleHetwFW0kRzvXtoFD9GOYzhjwnuVjSJLO4rsXajI7EGobW+cHfvRrvtAOvUaiCsjO246DZXN6/PiKS/D7y2HhHaAglgsWCxWrFYrFqsVi8WG1Wox/1uxWCyIxQZiAUvrU9atUtn5fR7WLnqVwOpXGVz6BYXipRQ332WOZHfPH3FSwZn06FvAQFvix1dBPzvWfMbBZQtpv/cjhm5+CDY/xG5rd/Z1nIStx2hyuvSnfccuON1Z2Gw2fN4KvOWllJeVUH5kH56j+/Ed2w+lB7FUHsbhOYLTf5SsYAk5oWNkSSWdEkpQf3zKigc7fuz4sBEQO0GsWERhJYSFEBYUFhXCQtC8Nt0IIaioDwgKoq4tNH4ZZEhVVYaxMRopJb6Od09Y0qalZiUez7c+an+M+Nlq70veD98gt2OPWsPbzArTU9qweaviokNsfPZmxpW8zW5LF7ac9wojR02u8/0hRxZuVYlSqkGNq63rvibwxs8YG9jEioxxdJr+JN/r1qdO94oIFZYM8prQGnTPtk3sXvEelu2f0fPYMrpwhC4Y5XePtQtHHV04mjuEzVldwJmF2JwIAp4SQp4SbKV7yKncRfejH5N7dCF8B3xpxH2APIocXah0tCPoyCbkyCFkdSJKIaKMRlbAi8VfjjVQgS1QgS1YiSNkfpQXp/LiUl6c+HBJiMb17eMTVGLUEGLUDqFILWH8tyjFJunN6NmfN0HqyadVKbvD+3fy7YL7GbBvIcM5xlFyWN/+HNzDL2XA2HMYFrWZbG2I1U7PwjPoWXgGANu3rGP7F6/TZtcHFO75F/a9z1W7xwZkALFT6j5l5YjkUmrNpcKWS4m7Bzvd7SAjD0tme8Sdi93pxuZwYXe6sdqdhEIKFfITCgZRwQAq6CcY8BDy+1ABr/Hxe1FBLwR8EPQiAR8q6EPMjyXkQ0J+gkoIKAtKLCgx1F74uxJD1RnXFkDM3pn5XwAsxj+xGMpHQMRo+Yn5RzheuR+v+qqqoOoqqWYVJXF7kInjlGj1IrGyJEijSgCJ8y0qjVoikzhXifRANWdXGwZOuQNXZt2WSTvNzZg9DVhrtuy/8+nx+V2MVkf5uttMhl19Hw53Zv0icWSRiYcKX5BMZ92rEb/fx9IXfsfobXOoEDfLRz3IiPP+B6lnT8JrzcIeSN52YaFgiM1rllD09at03vcBfUI76AocIYdtWSPY3v0Uck8eRY9Bo+me2abKjhm1caz4EAe2baBkzyZ8B7dgK95GTuUuOlRsxV1WTpYqx45x6rsyS5tPHFTiwiNuvBY3Pqsbj60NZbZOBK0ulM1tfOxusGdgsRvflSR6F0EIKVAhVCgIKogKhVAqCKEQSoUgFDJ6huZ3FfUdFTTVnYo0kJVYKHXGn1NOR1qVsvNWlDFy74usyzqFnSOvYcjEixhdDwVXE736DqFX3yHA3ZSXFrNt61pK931L5bEi8FeiAj6wu7E4M7C5snG16UhWXhfadOhK23Yd6GS1JLUXpzmxCZvfeyvqvrC75OgR1s27ie+V/Jvt1h6UXfgso4dNbFD64swmi0qKKv11VnY7Nq+i8uUfMT6wkZXZp9Jr5hxGntSwLXN91iwcwV21B6yBQCDA+q8/4tiK1+l18CMGcoCgEjY7h/JVr9vpVHguPQaOpF0jh/RycjuQM7wDDI9v2RoPB6DPc0gurUrZde0zmOKbNjC8fdMalGRm59K/cAIUTqg9sEbTBEROK6/jZsyrPltIhw9vZ6w6xLLu1zBsxv3Yne6GC5DRDrsEjdPKc2uOJxQM8tX8/6Nw01/wiZ0VYx5k+LnXN2p+12/Pwl1Rf2vQyspKNn75Np41Czn56KcUcBSfsrI5cyQH+/2UvhMuZ1CHLrVHpGlxtCplB5DbxIpOo0kH3KYRSaiWXUQqyo+x6unbOOXwK+y2dGbb+a8yamSdtrutEcnqAEBl8QHonlg57N2+iSP/up5TfKtZkzGGLjP/wfDOPROGryshRw4Z5eWGxU8NSnP38nfYv/g5gsEgWRW7Odm/meHipwInm7PHsX/QD+g34TKG5lRfz6dpXbQ6ZafRnAjYcg0FY6s4kDDMhqUfkPXuTZyi9rL0pMsouObPdZ4TrA17tmEB6iuJn74Khfj69UcYvOYB2qBYVngvI6fcVO+5uUSEnNlYCYG/AhzV5xs95cfY+NxtFO5/hfbKTomlDSW2DqzpfCnu/pPof8oFFNZ3nlLTotHKTqNpiTgyKSELV+X+al6eygq+efZOxu59jkOW9qw783nGTLggqcnbc4wRlOCx6unv3fEth//1Y8Z4l7PONYy8q55iVM8B1cI1hvDOKp6yo7jaVVVaa7/8D23fv5lCtZ9P2l3G0Bl/omPbtugxnxMbrew0mhZKkaU9WZV7I9dKKVYveo22n93D90J7+DrvAgbNepROOe2SnnZWZ2O/Tin6NuLm9Vay4pUHGPLtk+QSYumQXzFq6h1YrMnfkSirXSfYCof2bKN7u24AHNq/m29fvJNxxW+z33ISK7//AqdN/EHS09a0TLSy02haKIdyBjOw+FMCPg+bvv6A4GcPM8yzjF3ShTWT5jJ60qVNlnb79u3ZTSdc+76msryM1f+ZS5e1TzJO7WONexQnXfkEY3oObLL02/UbC1/D4XWLcLXvybdvP8LQXS8yGi8rulzB4Kvup4t5orpGAyCqpt0wUsyoUaPUsmXLmlsMjaZFsPyD+Yxc/CO8yo5T/BTRhi19r2P4ZXfhcDbFMuOqfPrkTZx64Fn8yopdgnxn7UX5xLvJb0IlG0aFQmz8/RgGhYyeZUgJa7K+R/spf6Rr/8ImT1+TXERkuVKq5m2DGonu2Wk0LZQRZ1zGkuL9sPcbrD3Hkj/5Gsam0Ohi9DX3s3h+NlZfCbn55zJw3HlJM0CpDbFYyJrxL774z8OIK4fuE65iWL9htd+oOWHRPTuNRqPRNCup6Nm1vt0+NRqNRqOJQSs7jUaj0bR60moYU0QOATuSEFV74HAS4kkFWtamoyXJ25JkhZYlb0uSFVqWvMmStadSqkMS4klIWim7ZCEiy5p6/DdZaFmbjpYkb0uSFVqWvC1JVmhZ8rYkWfUwpkaj0WhaPVrZaTQajabV01qV3d+bW4B6oGVtOlqSvC1JVmhZ8rYkWaFlydtiZG2Vc3YajUaj0UTTWnt2Go1Go9FE0MpOo9FoNK2eVqXsROQcEdkkIltE5K7mlicaEekuIh+LyHoRWSciN5vus0Vkj4isND/nNbesYURku4isMeVaZrq1E5H/isi35v9mP+JZRAZE5d9KETkmIrekU96KyD9F5KCIrI1yi5uXYvCoWY5Xi8iINJD1TyKy0ZTnDRHJNd17iUhlVB7PSaWsNcib8N2LyP8z83aTiJydBrLOj5Jzu4isNN3TIW8T1VtpWXZrRCnVKj6AFdgK9AEcwCpgcHPLFSVfZ2CE+T0b2AwMBmYDdzS3fAlk3g60j3F7ALjL/H4XcH9zyxmnHOwHeqZT3gKnAiOAtbXlJXAe8C4gwDjgqzSQdTJgM7/fHyVrr+hwaZS3cd+9+ZtbBTiB3madYW1OWWP8HwLuSaO8TVRvpWXZrenTmnp2Y4AtSqnvlFI+4CVgSjPLFEEptU8p9Y35vRTYAHRtXqkaxBTgGfP7M8BFzSdKXL4PbFVKJWMnnqShlPoUOBLjnCgvpwDPKoMlQK6IdE6JoMSXVSn1vlIqYF4uAbqlSp7aSJC3iZgCvKSU8iqltgFbMOqOlFCTrCIiwOXAi6mSpzZqqLfSsuzWRGtSdl2BXVHXu0lTZSIivYDhwFem041ml/+f6TAsGIUC3heR5SLyI9Oto1Jqn/l9P9CxeURLyDSqVhbpmreQOC/TvSxfh9F6D9NbRFaIyCciMrG5hIpDvHefznk7ETiglPo2yi1t8jam3mpxZbc1KbsWgYhkAa8BtyiljgFPAicDhcA+jGGMdGGCUmoEcC7wMxE5NdpTGeMWabN2RUQcwIXAK6ZTOudtFdItLxMhIr8GAsALptM+oIdSajhwG/AvEclpLvmiaDHvPoorqdpQS5u8jVNvRWgpZbc1Kbs9QPeo626mW9ogInaMAvOCUup1AKXUAaVUUCkVAp4ihUMqtaGU2mP+Pwi8gSHbgfCwhPn/YPNJWI1zgW+UUgcgvfPWJFFepmVZFpFZwA+A6WYFhzkcWGR+X44xB9a/2YQ0qeHdp2ve2oBLgPlht3TJ23j1Fi2s7ELrUnZfA/1EpLfZwp8GLGxmmSKY4/FzgQ1KqT9HuUePZ18MrI29tzkQkUwRyQ5/xzBQWIuRp9eYwa4BFjSPhHGp0jJO17yNIlFeLgRmmpZt44CSqCGjZkFEzgF+CVyolKqIcu8gIlbzex+gH/Bd80h5nBre/UJgmog4RaQ3hrxLUy1fHM4ENiqldocd0iFvE9VbtKCyG6G5LWSS+cGwBNqM0QL6dXPLEyPbBIyu/mpgpfk5D3gOWGO6LwQ6N7esprx9MKzWVgHrwvkJ5AEfAt8CHwDtmltWU65MoAhoE+WWNnmLoYT3AX6MeYz/SZSXGJZsT5jleA0wKg1k3YIxFxMuu3PMsFPN8rES+Aa4IE3yNuG7B35t5u0m4NzmltV0nwfcEBM2HfI2Ub2VlmW3po/eLkyj0Wg0rZ7WNIyp0Wg0Gk1ctLLTaDQaTatHKzuNRqPRtHq0stNoNBpNq0crO41Go9G0erSy02g0Gk2rRys7jUaj0bR6tLLTaDQaTatHKzuNRqPRtHq0stNoNBpNq0crO41Go9G0erSy02g0Gk2rJ+2UnYj0EhFlnu+kaaGIyE0isldEVjVD2rNF5PkUpDNLRBbX4L9IRK5vajk0VanpvdT2zpIowyQR2V2D/zwR+X1Ty9FaEJFVIrJPRG5taBxpp+w09UdE5ohImfnxiYg/6vrdZhJrNvBTpdSwKDlni8jsZpInrTAbddvrGf5jEakQkY0icmYNYS8XkS/MsIvi+BeKyHLTf7mIFEb5Oc3ydEBEjojIWyLSNUaOd0TkqIjsF5HHww1TEZkYVe7CHyUiU03/OTF+XhEprePzT4r3LK0VEanzcTQi0k5E3hCRchHZISJX1RBWROR+ESkyP/ebZ9YhIv1FZIGIHDLf/XsiMiDq3mvM8nJMRHaLyAPRnRKzceeJer+bYtK+ypSvXETeFJF2UX7Pm8rsmIhsjm0kmvXID4Hf1jVfYkm6stM9stSjlLpBKZWllMoC/gjMD18rpc4Nh0vxu2lH+h2WWm/SqDy/CKzAOEfs18CrItIhQdgjwCPAfbEeYhxsvAB4HmgLPAMsMN0BbgZOAQqALsBR4LGoKP6KcSp1Z6AQOA34KYBS6rOocpeFcap5GfAf0/+GGP8XgVfqnRNpQhqVjScAH9ARmA48KSJDEoT9EXARMAzjHV8A/Nj0y8U4+2+AGddSqh7OnAHcArQHxgLfB+6Iif/GqHccrSiHAH8DZphxV2CUpTD/B/RSSuUAFwK/F5GRMXGvBdqIeaBtfUmKshOR7SJyp4isBspFxCYi48zWZbHZBZ0UFX6RiPyfiCw1NfmCaC0fE/e1IrJBREpF5DsR+XGM/xQRWWnGs1WME5URkTYiMtdsLewRkd/XlkkicrKIfGS2eA6LyAsikhvld0RERpjXXcwW0CTz+kIRWWc+7yIRGRSTP3eIyGoRKRGR+SLiqn9O158E70aJSN+oMFWGVETkB2aeFpvvsKCeaYbzOVRLuF+a72eviFwfLZcp0xMi8rb57r8SkZOj7v2LiOwy3/tyEZkYE73LzOdSEflGRKJ7mHeZZaVURNaLyMVRfrNE5HMReVhEijB6qLU974Ni9HS2ici5Md49zfhKReR9EWlfW3xx4u8PjAB+q5SqVEq9hnEw5tR44ZVSHyilXgb2xvGeBNiAR5RSXqXUoxgHbp5h+vcG3lNKHVBKeYD5QHTF2Rt4WSnlUUrtx1BkiSrWa4BXlVLlcZ4p05T/mRoePSEiMllENpm/p7+KyCeSYMhYRP4kIotFpM1xJ3ncvHejiHw/KmzC+kbMoUnz97QfeLoOct4uIgfNcn5tjHfbROW7HvkQzse7lVJlSqnFGAprRoJbrgEeUkrtVkrtAR4CZgEopZYqpeYqpY4opfzAw8AAEckz/Z80GzQ+894XgPF1FHU68JZS6lOlVBlwN3CJiGSbca9TSnnNsMr8xOZHuD5pWCMjSafZbsc4wbY74Aa6YpwafR6GQj3LvO5ghl8E7AGGYpww/RrwvOnXy3xQm3l9vvnQgtGKrABGmH5jgBIzfouZ7kDT7w2MlkQmcBJGK+XHtTxHXzMuJ9AB+BSjUgj7/xBYj9HCeQ940HTvD5Sb99qBX2Kc7OyIyp+lGC3ldsAGYk4ljjkZuLiGz4RanmF2OC/jvRvTTQF9o8LMA35vfh+O0XIfC1gxfhzbAWc9ysM5gAfIrCXMfoyKMgOjpxGRy5SpyHzHNowf1ktR91+N0cuxAbebcbmi8sAPXGq+jzuAbYDd9L/MfBcW4Arz3XU2/WYBAeAmM253Dc8wy0znh2Ze/QRDwYQPRV6EcWJzf4zfxSLgvgRx/RX4awK/i4ENMW6PA4/V8h6uBxbFuN0KvBvj9m/gdvP7KOBzM38ygH9R9TfwY+BZ068rRmv74jhpZwKlwKQEss0EvgvnVT3rm/bAMeAS8x3dbL6H66Pey2Lz/T6F8VvNiHm/t5pl4wqMOiR80nZN9c0k8977MeqImspGOOy9ZjrnmXG1rUv5jonrLuDfCfyGAxUxbndgKJZ44UuAsVHXo4DSBGEvAvbV8IxvRpdns3wfAg6bZWhSlN8C4M6Y+8uAkTG/gQqMeuAbICsmvBuoBH5Q3zKjlEqqsrsu6vpO4LmYMO8B10RlSnQmDcbohluJUXYJMvhm8/vfgIfjhOkIeKMLI3Al8HE9n+siYEWM20KMVvVqTAWA0Up5OSqMBUOZT4rKn6uj/B8A5iQj7+PIPJvqyu66mDA1Kbsngf+NCb8JOK2O6S8z4/95LeH+Cfxf1HVfqiu7f0T5nwdsrCG+o8CwqDxYEvM+9gETE9y7Ephifp8F7Kzjs84CtkRdZ5jP0CmqnP8myv+nwH8a8E5nRD+P6fYHYF4t98VTdncTU6liVLSzze9tgJfM5whgDJ22iwo7CFhu+inzPVVTWKbM2+L5mf4fhtNsQH7MBL6MuhZgF1WV3VcYvdLXMBudUX57o+XCaIjOSJDWmxyvbyZh1FOuOsg4CaNitkW5HQTGNaR815DORGB/jNsPY997lF8Qs0NgXvcz36PEhOuGUYddmSCe64DdQPsot7FANkZD4BqMxs7JUe/7hpg4InVklJsVo8H/G8zGaYz/TRg9vJX1zatkztntivreE7jMHAYrFpFi8wE6Jwi/A6P1U22IR0TOFZEl5hBiMUahCIfrjtFyjqWnGd++qPT/htHDS4iIdBSRl8QY9jyG0duIlekpjB7pY+p4t7uL+QwAKKVC5vN1jbpvf9T3CiCrJlmSzK7ag0ToCdwe8+66YzxjXRgNTANmi4i9hnBdYuSKJ2PCPDOHhTeYQ1HFGJV09LuKxGe+j93hZxCRmVHDtMUY7zPuvXUgIqNSqsL8mhXPP/YZ6kEZkBPjloNRmSQ7ricwKqs8jN7Z68C7ACJiwRi2fN30a48x73d/nHSuAZ5VZg0VjYj0wFAGzzZAfogpO2YasZaPfYEpwO+UUr4Yvz0xcu3geNmoqb4BOKSM4d26UKSUCkRdx77/5igbseFzgLLo/BBjLvh9jJGGF2MjEJGLMObYzlVKHQ67K6W+UkqVKmN4/BmM3t159ZFTKRVUxlBsN4yRkuh0bcDvMBpSwxM8X0KSqeyiC88ujJ5dbtQnUykVPWHePep7D4xhiMNRboiIE6Nl9iDQUSmVC7yD0ZILpxNvnHsXRs+ufVT6OUqpRHMLYf5oPke+MiZKr45KCxHJwpj4n4tRmYfnGfdiKIlwODGfb08t6VVD4lu0RX9i56bqQmyFU4HRCwnTKer7LuAPMe8uI16hj5uQ8aN5E6MS7FxD0H0YBTpM90QBYzHz4JfA5RjDQrkYwzMSFax7VHiLmdZeEemJ0WC5Ecgz710bc2+1CrqZWQf0Cc9vmAwz3RsSV4FZRsMURMVViNFjPGI25h4Dxphzje0wfquPmxVaEca81XlRcSEi3alZmc0APldKfdcA+SGm7JjP0i0mzAbgWuBdibIoNOka8/w9MMpGbfUNpF/Z2AzYRKRflFtNZWOd6R83rIi0xVB0C5VSf4i9WQybiKeAC5RSa2qRTXE876qkKyJ9MBpVmxPca6N63d4Ro155M14jqjaaaunB88AFInK2iFhFxGVO7kYXyKtFZLCIZGCMa7+qlArGxOPAyJBDQMCc/J8c5T8XuFZEvi8iFhHpKiIDlVL7MF7YQyKSY/qdLCKn1SJ3NkYLpEQMc+tfxPj/BVimlLoeeBuYY7q/DJxvymHHmEPyAl/UllGxqBiLtjifz+obZxxWAleZ7+YcjLmJME8BN4jIWDHIFJHzwxWtGIYj82p5hnCP11FDsJcx3t0gswzcXQ/5szGG0Q5h/NDvoXqrcaSIXGK2Bm/BeB9LMHokyrwX02hgaD3STjlKqc0Y7+y35m/pYgwF9Vq88OHfHEaFYTHvCfeyF2EMZf1cjGUGN5ruH5n/vwZmimHgZccYet2rlDpstuK3AT8Rw9ApF6MHtzpGhBnAF0qpeKMuYAxDzosjd61ly+RtIF9ELjLf78+o2mADwGyg/Qr4IMb44ySM57eLyGUYQ7PvUHt9k3Yow/jndeBe87c6HqNH+1yCW54FbjPryi4YddU8ABHJwZhu+lwpdVfsjSJyBsaQ91Sl1NIYv1yzvneZZWM6cCqmJa553wVmYz4To85/XSlVKiInicg0Eckyy+7ZGNNOH8aIEC7DXhpAkyg7pdQujAz/FUbB2YWhOKLTew4jk/cDLuDnceIpNd1fxpiTuQpjzizsvxSj9fYwRsv+E473sGZiFN715r2vUnNPA4wu8ggzrrcxChFgWH1iGFWEu9a3ASNEZLpSahNGL/AxjN7pBRgtn9jhk3ThZgwZizGspN4MeyillmGM+T+OkW9bMK21TLpjDE/UhqKG8qWUehd4FPjYTGOJ6VWXgvwexo9oM8YQlIfqQ48LMIwPjmJUvpcopfxKqfUYFmhfAgeA/Do+T5Mixhq0OTUEmYZhTHAUY0nBpUqpsMKeLiLRLfkZGPNFT2LM6VRiNGIwy+RFGL+PYoy5l4uiyuodGPn5LcZv9zwMA5kwl2D8Dg5hvDc/hrFHNDNJYGUpIqdg9MLiLTmoU9kyle5lGHPfRRhz/suIU3bM4bR7gY9EpJfp/BXGXNVhjLnPS5VSRbXVN82FiPxKal4v+1MM442DGMs5fqKUWmfeO1FEyqLC/g14C8PuYC1GPfc30+9ijGmIa2NGk3qY/ndjTBe8I9XX8dqB33PcQOUmjHK1GQxrS+AGDKV3EKPB+lPzXoVRr+7GyPcHgVuUUrF5Xycr70SErcZSihiLQ59XSv0j5YlrGowYa7FWAQXKME2uKexe4JdKqTrtZCLGUo21GEY/gdrCa1oX9Slbce61YFSU05VSHzeFfJrmR0QuxxhCr9H2IhF6BxVNnVHG+ppBdayM7sIYdlueKICIXGwOpYWNHN7Siu7EpJ5lC3PILNecZ/sVxtzQklpu07RQzHrkjxiW/g3ihFN2Un3LovCnpiEkTT1RSj2rlOqnlIrdBSGaH2MMaWzFmEf6SQ1hmwVdXtKWUzDKTXja4CKlVGUqBTCHF+OVjebaoq/VopQaqZTqq5R6uqFxNMswpkaj0Wg0qeSE69lpNBqN5sQjXTYyBaB9+/aqV69ezS2GRqPRaFLI8uXLDyulEm1snhTSStn16tWLZcuWNbcYGo1Go0khIrKj9lCNQw9jajQajabVo5WdRpNm7C0q4Zv1m2oPqNFo6oxWdhpNmrHryYsZ8fIYQsEGbRSh0WjikFZzdvHw+/3s3r0bj6euG41rNOByuejWrRt2e00HL6QnYwPGOvyio0V0aN+kc/YazQlD2iu73bt3k52dTa9evZAqG5VrNPFRSlFUVMTu3bvp3bt3c4vTYIoP7dHKTqNJEmk/jOnxeMjLy9OKTlNnRIS8vLwWPxrgLTnQ3CJoNK2GtFd2gFZ0mnrTkstMmXIDECg91MySaDSthxah7DSaEwmPGMcA+stLmlkSjab1oJVdHRARbr/99sj1gw8+yOzZs5tPoFpYtGgRX3xR73NjI6xcuZJTTjmFIUOGUFBQwPz585MonaY2vLgACFYea2ZJNJrWg1Z2dcDpdPL6669z+PDhpMarlCIUSr55eWOVXUZGBs8++yzr1q3jP//5D7fccgvFxcXJE1BTIz6LE4CQRys7jSZZaGVXB2w2Gz/60Y94+OGHq/kdOnSIqVOnMnr0aEaPHs3nnxsHLc+ePZsHH3wwEm7o0KFs376d7du3M2DAAGbOnMnQoUPZtWsXv/jFLxg6dCj5+fmRXtSiRYuYNGkSl156KQMHDmT69OnEO6Hi0UcfZfDgwRQUFDBt2jS2b9/OnDlzePjhhyksLOSzzz6rUcYZM2Zwyimn0K9fP5566ikA+vfvT79+/QDo0qULJ510EocOVZ8/euWVVxg6dCjDhg3j1FNPBQyDomuvvZb8/HyGDx/Oxx8bZ2nOmzePiy66iLPOOotevXrx+OOP8+c//5nhw4czbtw4jhw5AsBTTz3F6NGjGTZsGFOnTqWioqJauuPGjWPduuMHc0+aNKlVbTMXMn+WyluatDg3bVzHf196NGnxAewvroxbJhtKpS9IpS+YtPiUUhRX+GoPqDkhSPulB9H87q11rN+b3Nbu4C45/PaCIbWG+9nPfkZBQQG//OUvq7jffPPN3HrrrUyYMIGdO3dy9tlns2HDhhrj+vbbb3nmmWcYN24cr732GitXrmTVqlUcPnyY0aNHRxTHihUrWLduHV26dGH8+PF8/vnnTJgwoUpc9913H9u2bcPpdFJcXExubi433HADWVlZ3HHHHQBcddVVCWVcvXo1S5Ysoby8nOHDh3P++efTpUuXSPxLly7F5/Nx8sknV3uOe++9l/fee4+uXbtGen5PPPEEIsKaNWvYuHEjkydPZvPmzQCsXbuWFStW4PF46Nu3L/fffz8rVqzg1ltv5dlnn+WWW27hkksu4Yc//CEAv/nNb5g7dy433XRTlXSvuOIKXn75ZX73u9+xb98+9u3bx6hRo2rM85aEKKO3b/GVJS3OrFcu46zgHo4cmU67dnmNju/A3h10+nsB7wy8j/OmJecYwrfum05ZyMF1s59NSnxvLnydzGVPMOLml2nfvn1S4tS0XHTPro7k5OQwc+ZMHn20auv4gw8+4MYbb6SwsJALL7yQY8eOUVZWcyXVs2dPxo0bB8DixYu58sorsVqtdOzYkdNOO42vv/4agDFjxtCtWzcsFguFhYVs3769WlwFBQVMnz6d559/HpstftulJhmnTJmC2+2mffv2nH766SxdujRy3759+5gxYwZPP/00Fkv1ojJ+/HhmzZrFU089RTAYjDzP1VdfDcDAgQPp2bNnRNmdfvrpZGdn06FDB9q0acMFF1wAQH5+fuTZ1q5dy8SJE8nPz+eFF16o0oMLc/nll/Pqq68C8PLLL3PppZfWmN8tDStGXlr8yVN2nQN7ATi2f2tS4juyayMAg75N3hm2l4fe5ToWJC2+7qsfZbJ1OUe2rUhanJqWS4vq2dWlB9aU3HLLLYwYMYJrr7024hYKhViyZAkul6tKWJvNVmU+LnrNV2ZmZp3Sczqdke9Wq5VAIFAtzNtvv82nn37KW2+9xR/+8AfWrFlTLUwiGaG6iX74+tixY5x//vn84Q9/iCjmWObMmcNXX33F22+/zciRI1m+fHmdn8disUSuLRZL5NlmzZrFm2++ybBhw5g3bx6LFi2qFk/Xrl3Jy8tj9erVzJ8/nzlzWteh4RazZ2cLlCctTq/YceOjsvRoUuKrLC0GQJG+SzwyxfjNVR4ramZJNOmA7tnVg3bt2nH55Zczd+7ciNvkyZN57LHHItcrV64EjOOKvvnmGwC++eYbtm3bFjfOiRMnMn/+fILBIIcOHeLTTz9lzJgxdZInFAqxa9cuTj/9dO6//35KSkooKysjOzub0tLj8z2JZARYsGABHo+HoqIiFi1axOjRo/H5fFx88cXMnDmzxl7T1q1bGTt2LPfeey8dOnRg165dTJw4kRdeeAGAzZs3s3PnTgYMGFCn5wEoLS2lc+fO+P3+SDzxuOKKK3jggQcoKSmhoKCgzvG3BCxmz84eTKKyw2hYeJKk7AgPsarkG1h5vcnZDEBZjK3ivKVa2Wm0sqs3t99+exWrzEcffZRly5ZRUFDA4MGDI72MqVOncuTIEYYMGcLjjz9O//7948Z38cUXU1BQwLBhwzjjjDN44IEH6NSpU51kCQaDXH311RFjkJ///Ofk5uZywQUX8MYbb0QMVBLJCMYw6Omnn864ceO4++676dKlCy+//DKffvop8+bNo7CwkMLCwoiCvOeee1i4cCEAv/jFL8jPz2fo0KF873vfY9iwYfz0pz8lFAqRn5/PFVdcwbx586r06Grjf//3fxk7dizjx49n4MCBEfeFCxdyzz33RK4vvfRSXnrpJS6//PI6x91SCA9jOpOo7Hzm2j1fRXLW7qmgYfjhVMlRTMGoUYvy4uRYPQdNZUfFkaTEp2nZSDKtqRrLqFGjVKxV3YYNGxg0aFAzSdS6mT17dhVDltZGSy07h2b3pAPF7JCu9Pzt+qTEuefeQXQN7eWLQb/he1f8otHxff3GY4xe9RuOkEO72bsaHZ+nsgLX/Z0B2Hv1Z3Tp2/je+or7z2F45Zd83eN/GH3dnxsdn6bpEJHlSqkmtTLTPTuNJs0Iz9m5VfVlFw3FZzHma1WS1u6poB+ADFWZlPgCgeNLBLxlyRlqFYyGvPiSt4RD03JpUQYqmuSSzrvAnMiEhzEzlLGOLRn7fAbCP/Ukrd0LKzuX+JMSX9B/PJ5kDbVKyIjTmsQlHJqWi+7ZaTRphhWjZ5clHiq9yVkUbVGGAk1WLyes7JJFdM/Onyxlp8JLOJI396lpuWhlp9GkEUqpiLIDKC9NzrCjVRkGINZkKbvQcYOSZCi+6J5doDI5MlpMGZO5hEPTctHKTqNJI4IhhZUgx8gGoLysOCnxWjEqfnsgSUN6UQrOU9545RTds0vWnqDhnp0jmLy5T03LRSs7jSaNCIQUNoKUW7MA8CRL2ZkVvz1JvZzo3lx5aeNN+4OB4/Ela0/QcG82mUs4NC0XrezqyJtvvomIsHHjxoRhtm/fztChQ5tUjpUrV/LOO+80+P7wIvTBgwczZMgQ/vKXvyRROk1jCQZDWEXhtRo9O295koYxwz27YHKsJwkd37DZU9Z4GaOHMZNlRBNenO8M6Z6dRiu7OvPiiy8yYcIEXnzxxbj+8bbyqi/h/SVrorHKzmaz8dBDD7F+/XqWLFnCE088wfr1yVnLpWk8QXOeyWtPsrIL93KSVfGHjisnbxIOmQ1GDWNKkqwnw8/sTtLyCE3LRiu7OlBWVsbixYuZO3cuL730UsR90aJFTJw4kQsvvJDBgwcDhtKbPn06gwYN4tJLL40cUfPhhx8yfPhw8vPzue666/B6vYCxrdidd97JiBEjeOWVV6qkG3uEjs/n45577mH+/PkUFhYyf/58ysvLue666xgzZgzDhw9nwQJjI9158+YxZcoUJk2aRL9+/fjd734HQOfOnRkxYgQA2dnZDBo0iD179lR75k8++SSye8rw4cMpLS1FKZXwOKLTTjuNKVOm0KdPH+666y5eeOEFxowZQ35+Plu3GpsPv/XWW4wdO5bhw4dz5plncuDAgWrpTps2jbfffjtyPWvWrMimzycC4R5OwNHG+J+kA1xtZi8naRV/1DBmMqwno5WdxZecYcewBaqbSkijzTM0zUPLWmf37l2wv/pGx42iUz6ce1+NQRYsWMA555xD//79ycvLY/ny5YwcORIw9r1cu3YtvXv3Zvv27WzatIm5c+cyfvx4rrvuOv76179y4403MmvWLD788EP69+/PzJkzefLJJ7nlllsAyMvLi+yjGU3sEToOh4N7772XZcuW8fjjjwPwq1/9ijPOOIN//vOfFBcXM2bMGM4880zAOJ5n7dq1ZGRkMHr0aM4///wqR+Fs376dFStWMHbs2GppP/jggzzxxBOMHz+esrIyXC4Xr7/+esLjiFatWsWGDRto164dffr04frrr2fp0qX85S9/4bHHHuORRx5hwoQJLFmyBBHhH//4Bw888AAPPfRQlXTDx/ecf/75+Hw+PvzwQ5588sk6vsyWT9BUIiFncpVdeBgzacouyhrTnwQZo7cLsybJiCas4O0EIeABuzsp8WpaJrpnVwdefPFFpk2bBhg9j+ihzDFjxtC7d+/Idffu3Rk/fjwAV199NYsXL2bTpk307t07sj/mNddcw6effhq554orroibbrwjdGJ5//33ue+++ygsLGTSpEl4PB527twJwFlnnUVeXh5ut5tLLrmExYsXR+4rKytj6tSpPPLII+Tk5MRN+7bbbuPRRx+luLgYm81W43FEo0ePpnPnzjidTk4++WQmT54MVD2+Z/fu3Zx99tnk5+fzpz/9Ke7xPeeeey4ff/wxXq+Xd999l1NPPRW3+8SppJRZ6StXrvHfm6SendnLyaQSn7/xB6RKlLJLxlKBUFTPLllGNOHF+QC+Cn3q+4lOk/fsROQc4C+AFfiHUqrmblRN1NIDawqOHDnCRx99xJo1axARgsEgIsKf/vQnoPpxPYmOzKmJREf+1OUIHaUUr732WrWTBb766quEsvj9fqZOncr06dO55JJL4qZ91113cf755/POO+8wfvx43nvvvRqfoS7H99x0003cdtttXHjhhSxatCjuDi4ul4tJkybx3nvvMX/+/Egj40QhPGcX7tkpb5LmrwgSUoJNQhwtL8OR26ZR8UnIj19ZsUswKUsFQkFzrlLZcSRL2akAXmw4JUBlaTGONh2TEq+mZdKkPTsRsQJPAOcCg4ErRWRwU6aZbF599VVmzJjBjh072L59O7t27aJ379589tlnccPv3LmTL7/8EoB//etfTJgwgQEDBrB9+3a2bNkCwHPPPcdpp51Wa9rxjtCJPb7n7LPP5rHHHiO8ofeKFccPqvzvf//LkSNHqKys5M0332T8+PEopfif//kfBg0axG233VZj2vn5+dx5552MHj2ajRs3Nuo4IoCSkhK6du0KwDPPPJMw3BVXXMHTTz/NZ599xjnnnFPn+FsDIbNhELRlEcQCyVgErhQOCXJMjOUMFWVJ2KEkdDw+5Wm8jOE5uxKycCTJiMZKiFJTxsokGNFoWjZNPYw5BtiilPpOKeUDXgKmNHGaSeXFF1/k4osvruI2derUhFaZAwYM4IknnmDQoEEcPXqUn/zkJ7hcLp5++mkuu+wy8vPzsVgs3HDDDbWmHe8IndNPP53169dHDFTuvvtu/H4/BQUFDBkyhLvvvjty/5gxY5g6dSoFBQVMnTqVUaNG8fnnn/Pcc8/x0UcfRQxQwtadc+bMiRz/88gjjzB06FAKCgqw2+2ce+65jTqOCIy9OC+77DJGjhxJ+/btI+7Lli3j+uuvj1xPnjyZTz75hDPPPBOHw1Hn+FsDyuzhiNVKBa6kGGuEe03llrCyK250nBLy4xMnXmU7frZdIwjLWGbJwp0kZWcjQJmp7LzlxUmJU9NyadIjfkTkUuAcpdT15vUMYKxS6sZ44fURP8lj3rx5VQxZTkRaYtnZuW0TPZ4ZwzeF/0u31Y/ybcYIxt/xcqPi9FaW4by/K1vs/enr38zaC99m6IgJjYpz6YMX0aViExnBUrZ1PIuRP326UfEtf/9fjPziJ6y1DaF3YCuZs6tb6tYHpRTlszux096HwYH1fHvmXPpNSHwQsaZ5OSGO+BGRH4nIMhFZdujQoeYWR6NpVkLhnUSsNrwWN7YkWCYG/MYQodduzNP5krB2zxIKEBQbFeJOykbLIdMK1WPLIRMPhBp3AnpIGdaYHrthfBWo0Mf8nOg0tbLbA3SPuu5mukVQSv1dKTVKKTWqQ4cOTSzOicOsWbNO6F5dSyVkWt2K2PBZM7AHGj+kF7t2LxmWiaKChLDisWRg9SdvGNNvyqgaOVcZCIWwEcRvKvhAkvbb1LRcmlrZfQ30E5HeIuIApgEL6xtJOp2mrmkZtNQyE+7hiNVKwJqZlB1P/AFjA4OgMxdIzto9iwoQEhseS3IUcnivzYApo6eRvc9AIIRNQgRMq9ZgEoxoNC2bJlV2SqkAcCPwHrABeFkpVX1xVQ24XC6KiopabOWlST1KKYqKinC5XM0tSr1R4T0nLTYC9qykKLvIvpPutsZ1Eip+YxjTis+SiSMJGy2HDXOUy5CxsrS4UfEFwsPBprJD9+xOeJp8nZ1S6h2gwZs5duvWjd27d6Pn8zT1weVy0a1bt+YWo96oQLhnZyNkzyJDNV7ZhefsJKMdAKEkbLRsUQGU2PDbMnB69zU6PoJhGQ1l52nkUoHwKQp2h4ty5UyKxaimZZP224XZ7fYqO5RoNK2ZkLmo3GKxohxZZFKJNxDEabM2OM6g3xjGDDnNnXKSsFDdooIELXYCtkxclY1XyOG5SqupkBu7VCBoKnir3UE5bq3sNM1vjanRaI5zfJ2dDRyZZOKh3NO4EzWCZpzYM/BiT8qpAlYVIGSxErJn4U5C75OQoZzs2XkA+BtpRBMIz31abFSKO2mbS2taLlrZaTRpRNgqUSx2xJWDTUKUlzdOOYV7OWJ1GBV/EpYKWAiixEbIkZWUpQJhJe8ylV1jjWgiSzhsdiolIylLODQtG63sNJo0QoWO9+ysLmPYsbyRO56E568sNhveJCk7q2mNicPcMqyRvcWwssvMNZYfNXZz6cg8pcWG15KRtM2lNS0Xrew0mjRChdfZWa3YMowDXD2NtEwMnyhgsdrxWpNT8VtVAGWxgcuUsbHbcZmHwWa0MbaRa+x+m6GIoY/dWK8Y1KeVn+hoZafRpBEqaq7J7jZ6dt5Gzl8d79nZ8VszcCSh4g8PY1qchrKrKG3kRstmzy4juw0+ZW300UbB4HFl57dl4NTK7oRHKzuNJo0wlqYalbQz01B2jTXWCEWUnQO/LTkL1W0qQMhqx+YO9+wauY4t5CeohExncqwnQ/7jSzgCtixcyTCi0bRotLLTaNKI8DCm1WrDlWksiG68sjOGMW12B0FbJq4knFZux0/I4sDmDu+32bienYT8+MWG1SJU4MbSyO3Cwj07i9VG0J5FRrJOaNe0WLSy02jSiMjSA4sNd3YuAMFG7v4RMJWd1WZHObJwq8pG70hkJ4Cy2HFkGL1PX0XjlV0AOwAV4sbaSCMaZW6RJjYHypGJE19kqFRzYqKVnUaTRihl9OwsUT27UCONNcK7stjsjshC9Up/sFFx2lWAkMWBw5Qx2MilApagD5+5x4XHkoGtkUY0IX9Y2TlRYYvRJOwco2m5aGWn0aQTZu/DYrMhLnNfx0Yaa4SC4WFMJ+I01sWVVfobFacdP8pqx2XOKwYaqZAtIR9+s2fntWY22mJUmb1ZsbkQZ9jQR59WfiKjlZ1Gk06Ejg9j4sgiiAVLY5VduGdns2NxZmEVRVljFqorhUOCYHHgModaQ40carWE/ATEUHbJsBgNmcOYFrsDiys5Szg0LRut7DSaNCK8g4rVagMRKiQDm69xikSFe3YONxZzoXpl6dEGxxfea1NZHWRlZBFQFpSncdaT1pDvuLKzZeEKNa5nF/R7ALA5XFiTZTGqadFoZafRpBFhZWe3m8YalqxGb3WlzIrf7nRjyzCGRr2NsJ70+4z4lNVOptNOOS5o5HyYJeTHbyq7oD0TdyOtJ8NzdnaHK2q9oh7GPJHRyk6jSSPCVoQ2hxMAjyUTR6BxikQCZi/H5caemQuAr7zhPTt/lPGHxSKUS0ajN5eO7tkpRzaZVDZqv81wz87ucGPPCC/h0MruREYrO40mnTCVnd3pBsBry8YdbOQmxoFwzy4DZ6ZxXpy/Edt7eSuNXpfFZipkcWPxN05GS8hPyFR24mz8fpsq3LNzuo4vzk/CCe2alotWdhpNOhEMV9IZAPjt2bhCjVMkEvQSUBZsNjuubPO08kb0crxeQ0ar2fv0WjIavS7OonyELKayMw1KGrNNWriH7HC4cWXlAhBs5ObSmpaNVnYaTToR8BJSgt3uMC7t2WQ10ljDEvAa59iJ4M4xTyv3FDc4Pp/X6NlZ7aays2ZiDzZORmvIT8hqPLMtfNrDsYYPtYZ3jbE73bizkrNeUdOy0cpOo0kjJGgoJqvV+GkGHTlkUkEw1PAdTyTowYuhSJzmnB2NWCoQNlCxmcOYAVtmozdatio/ymLIaDd3ZWnU5tLm0K3D5SLLnYFX2RttRKNp2Whlp9GkEWFlF8GVQ45UUu7xNjzSgBefGIoERzYhBGnE2j2fx+jZ2RwuAEL2zEZvtGxTfpTZs7Obu7I06tigyBZpTjKdVspwgVcf4Hoio5WdRpNGWALeiAk+AOYuKuXHihscpwS9BMLKzmKhHDfWRqzdC5hKw+bKBCDkyMbdSGXnUF5CVqOnGN4mrTHLIwh68SsrWCzYrBYqknCSgqZlo5WdRpNGSMiHzxxyBLC4cwGoLD3S4DgtAQ9+izNyXWHJxOZv+JBeeO7LYq5fU84cMlUlKtTw/TYzVSUBu2GYkmHuytKYpQIWfznl4o5ceyyNtxjVtGy0stNo0ghLsGrPLrwI3NMIZWcNeo737IBKSxb2RixUDyu78GJtXG2wiqK8rGHKSYVCZFFJyG4sOQgru0AjrCetvlIqJDNy7bVkYNPK7oRGKzuNJp0I+AhGKSaHuS7O14j5K2ewHK8tK3LttWbhaoSyU6ayc5gm/eHeZ3lxUYPi81SUYhFFyGH07LLDFqOVDe/Z2QKleCwZkWufNRO7Pq38hEYrO40mjbCEvAQsUcouy1B2gUYou4xQKV5bduTa2Huy4couYFpy5uTkAmDLMP43dKj1WMkRMx6jp+gKW082wmLUESjHaz2u4AO2zEZvLq1p2Whlp9GkEdZgJUGrK3LtyjZ6OcHK4gbHmRUqxW/PiVz77Tm4G7F2L1R5jJASMsydSeymQm6osistMdbTOcwhWxGhVDKx+Bres3MFy/Dbjg9jBpNgMapp2Whlp9GkERnBsipDjhmRIb3iBsWnQiGyVBnK1TbiFnRkk6UasQjcU0KZZCAWo/pwZoW3IGvYIvCKY8bwp8Nc/A1QIZlYfQ2fs3OHyiMGLwDKkUWGVnYnNFrZaTRpRGaoDJ/9eKWfaW7vpRo4pHes9BgOCWI1hxoBlDObLCoJBBpmPenyHuKopV3k2m32Pv1lxQ2Kz1+834gnt0vErdKahcPfsGcOBkO0U8UEMzocd3Rmk4mnURajmpaNVnYaTRqRTRkBx3FlZ7U7qFDOBh/gWnJwJwCWnE4RN+Vsg01ClJc1LM5M32FKbXmR64wc43uosmE9O9/R3QDkdOwecfNYs3A0cAPsI0UHcYsPiXpmcRq9vEp9pt0JS6OUnYjMFpE9IrLS/JwX5ff/RGSLiGwSkbMbL6pG07rxeipw441YN4YplcwGLwI/tn8bAM68nhE3i9tQpuHhw/qS4z+M132815TVxuh9NtR6MlCyl4Cy0K5D14ib356Dq6HKbt8OABxtu0XcrObm0mXH9DE/Jyq2JMTxsFLqwWgHERkMTAOGAF2AD0Skv1JKjyFoNAk4cvgAnQF7Vl4V98pGLAIv3b8VgI49+kbcrKayqyyrf0/MU1lOR3WY3W16RdxcTidlyo14G6ZIXKU7OGg9iS4Wa8QtYM8ms4FGNKX7vgUg86Q+EbewpWd5aXGD4tS0fJpqGHMK8JJSyquU2gZsAcY0UVoaTaug9KDRI7FH9UjAWATe0ANcLQfXUaGcdOh6XNmFlwp4GzDHtuvbNVhFYes4oIp7mWQ2eKi1feU2Drl6V3ELOts02IjGs3cdAF37F0bcwge4ehqg4DWtg2QouxtFZLWI/FNEwiZfXYFdUWF2m27VEJEficgyEVl26NChJIij0bRMyg8aQ44ZJ1Wt+L22LJwNXASeW7yObY6+iPX4II7dXAzeEOvJoo2fAdBl0Lgq7uUN7H0WFR2iR3AX/g5Dq7iLKwen+PF7629BmXFoJXulE66s4xaoLrNn59FzdicstSo7EflARNbG+UwBngROBgqBfcBD9RVAKfV3pdQopdSoDh061H6DRtNKqTxgDDl2ihpyBPDZsnE3YBF4RVkxvXxbKMsbVsU9rAQCDdh70rbzcw7Sjo69hlRx91iycDRA2W1f9j5WUeQMPqOqh7kBdlk9d2Xx+fz0rVjJ3rajq0ZnbkHma8R+m5qWTa1zdkqpM+sSkYg8BfzbvNwDdI/y7ma6aTSaBGQdXsUuOtE9t30Vd789h4wGzF+t++RVRoufrIILqrhHFqrXs+I/VnKEQaVfsLH9WZxkqdpO9tqyaROo/8hMYN0CSnHTa9ikKu7hpRIVx4po27F79RsTsHbxAkZIBc5Bk6u4Z5hr+Pz6tPITlsZaY3aOurwYWGt+XwhMExGniPQG+gFLG5OWRtOqUYquZWvZkTG4mlfIkUUW5aDqd4Br5qp5HJD2DBpzVhX3jJzw2r3iesW3/r1/kClessZdW83Pb8/GXU/ryQN7d1BQ8jGb8ibjcGVU8bNnhndlqd9Qqyz9O8VkMejUy6q4h9cr1lfBa1oPjZ2ze0BE1ojIauB04FYApdQ64GVgPfAf4GfaElOjSUzF4Z3kqSP4Og6v5hdytsFOEOWv+/zV2sULGexbw7a+M7HY7FX8MjOyjbPe6rFQvaL8GH3WP8lm+wD6jzyjmn/AkUNmPQ1Ktr42GzsBup5/ZzW/8J6g3rK6b0G2Zsl/Ge75is19rsHmdFfxC5+RF9IHuJ6wNGrpgVJqRg1+fwD+0Jj4NZoThZ2rP2Ug0Kbf96p7OsOWhMW422VW94+hsqKCnA/vYrd0ovDi26v5W60WSsjAUo/tuFY9cwencISiM5+MbBMWTciZY1hPhkIQxz+WjUv/y9jDb/BNh4sY3WdINX9XlrkrSx2NaDyV5WS/fyuHaEvB1OrKE7ubIBbw6mHMExW9g4pGkwaUf7cEr7LTt+CUan6WjPotAl/7z5/SQ+2h5PT/w5WRFTdMuWRiq+NC9dWLXuWUg/P5qsOlDBp7TvxATuNMO19l7XGWFB8h690bOWDpwMAZf44bJqONOa9Yx9MevvnnLfQK7eLA6X+O9OKqIEKlPq38hCYZi8pbJJWVHvZ9t5qju7+l4ug+xFeKHxtWdxvcnfrTY+BoOnbIqz0ijSYJZB1eyVZbHwZnVe+5Wc0dVTx1mL9avvBJRh9+g887Tmf8qZckDFdpycRWh7V7u77bRLdFt7LN0pP8WY8kDCfhM+1KinBk5iYMFwoE+O5vV5IfOsiW816kS5t2ccNlmluQ1eW0hyUL5vC9Qy+z9KTLGHNaTc+sD3A9kTlhlN3RokN8u/RdQt99Qt6RFfQI7KCPBOIHXge+D6ystg2iuOtEOo68mP75o+MO32g0jSXo99HTs4llHS6O62+PLAKvWdl9u3oJg5ffwzpHPqP/55Eaw1Zas3DVUvGXlRbje/5ycgnguuo5MjKzE4a1Rawnj9C2y8kJwy17+jbGVC7hq8G/YmyiXiKQnZmFV9nAU7NByYZlHzP8m9+wwZnPiOsfrzGs15KBNdCI0x7qSWVFOds3fM2RLcuxHt6AvXwfWd4DZIbKsKggCiiztqHc3g5Pmz5YOw2lXe/h9Bw0EofTVWv8mvrRqpXd9m/XsvfL+bTf9R4n+zYzRhQVysl3rkGs6TgNS+d82nQbRIfOPXDntMUSCnLsyAEO71hL+bef02bvZxTsfBJ2PsneN09iV/vTaFN4AX1GTsbhctcuQJhQkIqSQ5Qc3kfZ0QN4Sg7iO3aQUNlhqCgCTwkS8GIN+bAoH7aQHwUEsaIstqiPnZDFgbI6IPyxORGrA7E5EZsTi92J2ByELA5CVgcKC6KCoEKICiIqBCoEphsh83vI+PGhFEqFzP8KVMj4j4pxi/+oSkCir80riXJVEnarAYnjW8Ut0d1CtGgJ5UxwldjgUUWeJWE8qvrXmuILY608wkTx4+g5Om5Iex2O0DlyYBdZr19NmWTR6fp/4XA4EoYFCNiycPl2JfQPBYNsefJKhgZ3sun7/2RI32EJwwLYTOtJTw1n2q34998Ys+cZlrS9kLGX/aLG+CxWS627shzcs432/76WI5a2dPnRK9gcNSsIvy0Du7/plJ3PU8G3yz+iZP0HtD3wJX393zJIDLu8cuXikPUkypwdOGDvgRIbFhQO31FyfQfpsv8bXAdehFXge8PKFlsvitsMQjoXknvySNr1GEJuuw41N7iVwu8tp7zkKJXlJVSWFuMtL8FfWYK/ooRg5TFCnjLwHkN8ZVj85ahQiPCvNPzLUWIhKHaU1Q4WG8riAJsDLHbEZtQ7Rp3jIJDRgfHnz2yyPE0mrU7ZHTm4l83//QcdvnuTk4Nb6QV8a+3H0h7X075gMr2HncrQGn4UbbPyaNtjMEy8HICSAzvZ8vmr2L59j2EH38T131fwvm9nm60rxa5uhFy5BGxZWEUhoQAhvwe7rwS3v5jMYDFZwRJyVBkZosiIk16pclMmWQQsDvxiJyAOgmJHBBzKiyUQwKICWFUQq/JjUwHs+LGb/x34sUr9TNI16UclTvqMnBzXz2XueJJoEbinspxD/7iUHqqE3Re/Tr+OPWpNL+jIwVWZuOL/+p+3MrbiC74ccCennBq/xxlN+Ew7X4Le58ZlHzH461+zzpHP8BueqtMoSXkNG2B7KsooefoyuqhKDl3+Cp3bd44bLpqALRNnkg1Ujh07yvpPXsO68S2GlH3JEPESUBa+c/Tnm25X4+o5iq4Dx5DXrR+9ovb+jCUY8LN72zoObv4a7+6VZB1Zx8lFn9D2yL/B2P0Mv7JSLG3wiYOQWAlhwab8OJUHNx5cyotdFLlAbg0y+5WVcnHjwUVIjssUrkUshLCpIDYCxkcFsBPAJqFqca1SJ4NWdqln8zeL6LXgEsZJkM3WfnzV91b6nHoV/Xr0p18D42zTsQcjL7kNuI2ysmMs/+ItfN99jrtkK20rd+AuX0eWqiSE4MdGQOyUWbIps7ahxNkHv7MtIXc7yOiALbs9zpwOuHM7ktOuM23adyQrI4PseL2YOhIKKSp9frzeCnxeDz6vl4CvEgl6kZAfQkGjdSZWxCIosYJYEYsFi8WKmB+LxQIiWMSCWML/rVhEEBHDzWIxPmKErSa2UjE9mThK2AwQL5wKh1fxelqqauiYLpNSqoo8VfqAVdylmhu1hDW+qzjxRvsniKOO79ZtdeK2x2+EhQ9wDVYUV/NToRDrnpzBSP9Glo/7CyMLJ9YpPeXKIbM4/lKGr958grF7nmFJ2ymMm3ZXneILL1T3xel97t25lbx/X0eRpR1dfvQKzjoO0SXaADsUDLHmr1cz0r+FVROeYPjg+D3iWIL2LNyh/XUKWxOhYJA1n7+Nd+nTFJR+xjjxc4Q2rGt/NtaB59FvzNn0TzAXmQirzU63foV061cYlU6IHTu+5fC3X+Mv2kao9BDWysNYgl5QQSwqgLI4CNgyCNoyUPYMxJGJuHKwunKwZeTgyGiDI7MNrqxc3Nm5ZGXn4nZnktuAKRkVDOD3+/D5PAR8PgI+Lye1oHZ2q1J2vYeewrKvp9N54kz61/EHUB+ysnIYOXk6ML3GcCclPeXEWCyC2+XA7ap52ErTcsnLzcWnrATiKLsl8+7klGMf8mXvn3HKubPqHKe425IllVRUVpDhPj7msOaLdxm+4h7WuYYx8id164FBlPVkjIzHiouonDeVNlRSdMVrtO1Qew8sjMeajTuOEc2Xc29lfNnHLO17E2POqvm3GE3Q2ZY8SvEFQjhs9a/si4sOsentv9Bt28sMUwcoIYvVJ11Im1GX03/UmYy2Jrc6tVgt9OwzgJ59BtQeOAWI1YbDaqu2AUBLoVUpO7vDySk/fqy5xdBokkqmy84RMqpZJi5741FO2fl3lrU5m3Ezfl+vOCXHOBW8eP8OMnoPAmD7+qX0fP869ls70uOGV7A7nHWOL6+dscWZP2oRuKeygp1PXsKA4E42nflPhg4cWS8ZffYc8iqr9sS+mv8A4/fOY1nehYyefm+94gu682hLKSWVXvKy6z7nvnfPTjYvfICR+19lrFSy1lHAvvzbyT/rasa4al/3qEkPWpWy02haKxWWLCTqcNTl785j+Mp7WO0aScFPnqm3pbDdPMy1ZN93dOk9iJ1b1pHx8hV4cGGb+QbZbTvWKz6X08kB2mEtMY4p8vu8rH18GqO8K1k64j7GTLyoXvEB+LK7c1LZZ4QCfiw2O18ufIqx6//IyoxxFN4wt/7W0Zl52CREWUkRedndag2+e8cWti28j5GHF3IqPtblnkbWWXcydGichf+atEcrO42mBXDE0ZW2ldsBWPH2U+QvvZMtjoH0vemN+lkGm3TpMwQ+hpIdq9na5iRyXrkMO35KLn+Dnr0aNmy239GLtuVb8VSUsf7xKxhVsZivB9zOmCk/aVB8lg79cewPsnfbenauXsSY1b/lW+cQBt74CjZ7/YftLVnGBIOneD90S6zsdmxZx95//x8jjr5LJ0KszZtMlx/8ivw+NVukatIbrew0mhZAZfuhDNn9DF8/NpPRRQtY5xhKj58tiOzmX186dD2ZPXSk76Y5ZGx8mApxc+SyN+gzuOFnLJd3Gs2wnX9j75+GM0Id5KuBdzJ22q8aHF/ngu/DmruRF6YyjkOsdY/g5BsX4MrMaVB8lrZGbzZwaCswqpr/5tVLOPrfPzHy2Ed0xsLqky6g54X/j8Lu6TFnpmkcepW0RtMC6DjxWnzYGV20gK9yf8DJt71PdsxRQPVBLBb2jPkVgmJTxkj44SL6DGm4ogMY8INbWG8bhFcyWD1pbqMUHUCvfkNY3GkmFkIs6XYdA2/7D+6shik6gA69CwCo2L064hYMBFi16HVW3HcW/V8/m/zSz1jR+QrKfvINo342jw5a0bUaRNXz2JCmZNSoUWrZsmXNLYZGk5bs3fUdfm8FPfsOrT2wJi5b7i3EgZ+i0Xfg2f4VvQ/8l04c5ig5fNv7agZdeCvZbVNpT60BEJHlSqnq3e0koocxNZoWQpfufZpbhBbPkdG3M3zJzfT46ha8ys4mdyG7839F/venacvKVo5WdhqN5oRhzLkz2FdwKmWHdtKt33AKMuOfCqFpfWhlp9FoTig6d+0JXXs2txiaFKMNVDQajUbT6tHKTqPRaDStnrSyxhSRQ8COJETVHjichHhSgZa16WhJ8rYkWaFlyduSZIWWJW+yZO2plOqQhHgSklbKLlmIyLKmNmNNFlrWpqMlyduSZIWWJW9LkhValrwtSVY9jKnRaDSaVo9WdhqNRqNp9bRWZff35hagHmhZm46WJG9LkhValrwtSVZoWfK2GFlb5ZydRqPRaDTRtNaenUaj0Wg0EbSy02g0Gk2rp1UpOxE5R0Q2icgWEbmrueWJRkS6i8jHIrJeRNaJyM2m+2wR2SMiK83Pec0taxgR2S4ia0y5lplu7UTkvyLyrfm/bRrIOSAq/1aKyDERuSWd8lZE/ikiB0VkbZRb3LwUg0fNcrxaREakgax/EpGNpjxviEiu6d5LRCqj8nhOKmWtQd6E715E/p+Zt5tE5Ow0kHV+lJzbRWSl6Z4OeZuo3krLslsjSqlW8QGswFagD+AAVgGDm1uuKPk6AyPM79nAZmAwMBu4o7nlSyDzdqB9jNsDwF3m97uA+5tbzjjlYD/QM53yFjgVGAGsrS0vgfOAdwEBxgFfpYGskwGb+f3+KFl7RYdLo7yN++7N39wqwAn0NusMa3PKGuP/EHBPGuVtonorLctuTZ/W1LMbA2xRSn2nlPIBLwFTmlmmCEqpfUqpb8zvpcAGoGvzStUgpgDPmN+fAS5qPlHi8n1gq1IqGTvxJA2l1KfAkRjnRHk5BXhWGSwBckWkc0oEJb6sSqn3lVIB83IJ0C1V8tRGgrxNxBTgJaWUVym1DdiCUXekhJpkFREBLgdeTJU8tVFDvZWWZbcmWpOy6wrsirreTZoqExHpBQwHvjKdbjS7/P9Mh2HBKBTwvogsF5EfmW4dlVL7zO/7gY7NI1pCplG1skjXvIXEeZnuZfk6jNZ7mN4iskJEPhGRic0lVBzivft0ztuJwAGl1LdRbmmTtzH1Vosru61J2bUIRCQLeA24RSl1DHgSOBkoBPZhDGOkCxOUUiOAc4Gficip0Z7KGLdIm7UrIuIALgReMZ3SOW+rkG55mQgR+TUQAF4wnfYBPZRSw4HbgH+JSE5zyRdFi3n3UVxJ1YZa2uRtnHorQkspu61J2e0BukdddzPd0gYRsWMUmBeUUq8DKKUOKKWCSqkQ8BQpHFKpDaXUHvP/QeANDNkOhIclzP8Hm0/CapwLfKOUOgDpnbcmifIyLcuyiMwCfgBMNys4zOHAIvP7cow5sP7NJqRJDe8+XfPWBlwCzA+7pUvexqu3aGFlF1qXsvsa6Ccivc0W/jRgYTPLFMEcj58LbFBK/TnKPXo8+2Jgbey9zYGIZIpIdvg7hoHCWow8vcYMdg2woHkkjEuVlnG65m0UifJyITDTtGwbB5REDRk1CyJyDvBL4EKlVEWUewcRsZrf+wD9gO+aR8rj1PDuFwLTRMQpIr0x5F2aavnicCawUSm1O+yQDnmbqN6iBZXdCM1tIZPMD4Yl0GaMFtCvm1ueGNkmYHT1VwMrzc95wHPAGtN9IdC5uWU15e2DYbW2ClgXzk8gD/gQ+Bb4AGjX3LKacmUCRUCbKLe0yVsMJbwP8GPMY/xPorzEsGR7wizHa4BRaSDrFoy5mHDZnWOGnWqWj5XAN8AFaZK3Cd898GszbzcB5za3rKb7POCGmLDpkLeJ6q20LLs1ffR2YRqNRqNp9bSmYUyNRqPRaOKilZ1Go9FoWj1a2Wk0Go2m1aOVnUaj0WhaPVrZaTQajabVo5WdRqPRaFo9WtlpNBqNptXz/wFESzWNwXqeigAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 9)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Falsestep10.1000.030Spikecount1.0001.0001.0000.0000.0000.0000.000
time_to_first_spike4.7004.7004.3720.0000.0000.3287.510
time_to_last_spike4.7004.7004.3720.0000.0000.3287.510
step20.1000.030Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike1.7001.7001.4420.0000.0000.25817.878
....................................
Truestep10.1090.023time_to_last_spike41.60041.70041.2900.1000.2400.4100.994
step20.1090.023Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike2.2002.2001.8000.0000.0000.40022.246
time_to_second_spike14.30014.30013.9030.0000.0000.3972.859
time_to_last_spike49.40049.40049.0570.0000.0000.3430.700
\n", + "

120 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Neuron Arbor \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 1.000 1.000 \n", + " time_to_first_spike 4.700 4.700 \n", + " time_to_last_spike 4.700 4.700 \n", + " step2 0.100 0.030 Spikecount 5.000 5.000 \n", + " time_to_first_spike 1.700 1.700 \n", + "... ... ... \n", + "True step1 0.109 0.023 time_to_last_spike 41.600 41.700 \n", + " step2 0.109 0.023 Spikecount 5.000 5.000 \n", + " time_to_first_spike 2.200 2.200 \n", + " time_to_second_spike 14.300 14.300 \n", + " time_to_last_spike 49.400 49.400 \n", + "\n", + " Arbor_int \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 1.000 \n", + " time_to_first_spike 4.372 \n", + " time_to_last_spike 4.372 \n", + " step2 0.100 0.030 Spikecount 5.000 \n", + " time_to_first_spike 1.442 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 41.290 \n", + " step2 0.109 0.023 Spikecount 5.000 \n", + " time_to_first_spike 1.800 \n", + " time_to_second_spike 13.903 \n", + " time_to_last_spike 49.057 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + " time_to_last_spike 0.000 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.100 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + " time_to_second_spike 0.000 \n", + " time_to_last_spike 0.000 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + " time_to_last_spike 0.000 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.240 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 0.000 \n", + " time_to_second_spike 0.000 \n", + " time_to_last_spike 0.000 \n", + "\n", + " abs_diff eFEL to Arbor-internal \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.328 \n", + " time_to_last_spike 0.328 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 0.258 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.410 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 0.400 \n", + " time_to_second_spike 0.397 \n", + " time_to_last_spike 0.343 \n", + "\n", + " rel_abs_diff eFEL to Arbor-internal [%] \n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "False step1 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 7.510 \n", + " time_to_last_spike 7.510 \n", + " step2 0.100 0.030 Spikecount 0.000 \n", + " time_to_first_spike 17.878 \n", + "... ... \n", + "True step1 0.109 0.023 time_to_last_spike 0.994 \n", + " step2 0.109 0.023 Spikecount 0.000 \n", + " time_to_first_spike 22.246 \n", + " time_to_second_spike 2.859 \n", + " time_to_last_spike 0.700 \n", + "\n", + "[120 rows x 7 columns]" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results_fine_dt = joint_spike_analysis(arb_responses_fine_dt, nrn_responses_fine_dt, replace_axon, params)\n", + "spike_results_fine_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.0140.0360.0000.0000.0000.0000.10028.0000.3291.248-0.1080.0000.0000.0005.263
time_to_last_spike40.0000.0250.0490.0000.0000.0000.0000.20028.0000.4021.2330.0000.0000.0000.2255.263
time_to_second_spike12.0000.0170.0390.0000.0000.0000.0000.10012.0000.0670.1580.0000.0000.0000.0000.439
\n", + "
" + ], + "text/plain": [ + " abs_diff Arbor to Neuron \\\n", + " count mean std min 25% 50% \n", + "efel \n", + "Spikecount 40.000 0.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike 28.000 0.014 0.036 0.000 0.000 0.000 \n", + "time_to_last_spike 40.000 0.025 0.049 0.000 0.000 0.000 \n", + "time_to_second_spike 12.000 0.017 0.039 0.000 0.000 0.000 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + " 75% max count mean std \n", + "efel \n", + "Spikecount 0.000 0.000 28.000 0.000 0.000 \n", + "time_to_first_spike 0.000 0.100 28.000 0.329 1.248 \n", + "time_to_last_spike 0.000 0.200 28.000 0.402 1.233 \n", + "time_to_second_spike 0.000 0.100 12.000 0.067 0.158 \n", + "\n", + " \n", + " min 25% 50% 75% max \n", + "efel \n", + "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike -0.108 0.000 0.000 0.000 5.263 \n", + "time_to_last_spike 0.000 0.000 0.000 0.225 5.263 \n", + "time_to_second_spike 0.000 0.000 0.000 0.000 0.439 " + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results_fine_dt[['abs_diff Arbor to Neuron',\n", + " 'rel_abs_diff Arbor to Neuron [%]']].groupby('efel').describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The outlier in `time_to_last_spike` is gone now, both visually and quantitatively." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Truestep10.1200.030time_to_last_spike48.10048.30047.8920.2000.4160.4080.853
0.1090.023time_to_last_spike41.60041.70041.2900.1000.2400.4100.994
Falsestep20.0500.050time_to_last_spike2.4002.5002.1420.1004.1670.35816.694
step10.1200.030time_to_last_spike41.70041.80041.5240.1000.2400.2760.664
Truestep20.1000.030time_to_last_spike41.70041.80041.3980.1000.2400.4020.970
\n", + "
" + ], + "text/plain": [ + " Neuron Arbor \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "True step1 0.120 0.030 time_to_last_spike 48.100 48.300 \n", + " 0.109 0.023 time_to_last_spike 41.600 41.700 \n", + "False step2 0.050 0.050 time_to_last_spike 2.400 2.500 \n", + " step1 0.120 0.030 time_to_last_spike 41.700 41.800 \n", + "True step2 0.100 0.030 time_to_last_spike 41.700 41.800 \n", + "\n", + " Arbor_int \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "True step1 0.120 0.030 time_to_last_spike 47.892 \n", + " 0.109 0.023 time_to_last_spike 41.290 \n", + "False step2 0.050 0.050 time_to_last_spike 2.142 \n", + " step1 0.120 0.030 time_to_last_spike 41.524 \n", + "True step2 0.100 0.030 time_to_last_spike 41.398 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "True step1 0.120 0.030 time_to_last_spike 0.200 \n", + " 0.109 0.023 time_to_last_spike 0.100 \n", + "False step2 0.050 0.050 time_to_last_spike 0.100 \n", + " step1 0.120 0.030 time_to_last_spike 0.100 \n", + "True step2 0.100 0.030 time_to_last_spike 0.100 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "True step1 0.120 0.030 time_to_last_spike 0.416 \n", + " 0.109 0.023 time_to_last_spike 0.240 \n", + "False step2 0.050 0.050 time_to_last_spike 4.167 \n", + " step1 0.120 0.030 time_to_last_spike 0.240 \n", + "True step2 0.100 0.030 time_to_last_spike 0.240 \n", + "\n", + " abs_diff eFEL to Arbor-internal \\\n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "True step1 0.120 0.030 time_to_last_spike 0.408 \n", + " 0.109 0.023 time_to_last_spike 0.410 \n", + "False step2 0.050 0.050 time_to_last_spike 0.358 \n", + " step1 0.120 0.030 time_to_last_spike 0.276 \n", + "True step2 0.100 0.030 time_to_last_spike 0.402 \n", + "\n", + " rel_abs_diff eFEL to Arbor-internal [%] \n", + "replace_axon protocol gnabar_hh gkbar_hh efel \n", + "True step1 0.120 0.030 time_to_last_spike 0.853 \n", + " 0.109 0.023 time_to_last_spike 0.994 \n", + "False step2 0.050 0.050 time_to_last_spike 16.694 \n", + " step1 0.120 0.030 time_to_last_spike 0.664 \n", + "True step2 0.100 0.030 time_to_last_spike 0.970 " + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results_fine_dt[ [el[spike_results_fine_dt.index.names.index('efel')] == 'time_to_last_spike'\n", + " for el in spike_results_fine_dt.index] ].sort_values(\n", + " by='abs_diff Arbor to Neuron', ascending=False).head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.3250.0420.2480.2990.3270.3480.40028.00012.9136.573-0.3587.82014.73718.01822.566
time_to_last_spike28.0000.3320.0430.2480.3010.3280.3610.41028.0007.5076.9180.5940.8845.85214.58920.832
time_to_second_spike12.0000.3440.0430.2790.3050.3470.3750.40512.0004.3825.9041.3182.0522.3802.71222.101
\n", + "
" + ], + "text/plain": [ + " abs_diff eFEL to Arbor-internal \\\n", + " count mean std min 25% \n", + "efel \n", + "Spikecount 40.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike 28.000 0.325 0.042 0.248 0.299 \n", + "time_to_last_spike 28.000 0.332 0.043 0.248 0.301 \n", + "time_to_second_spike 12.000 0.344 0.043 0.279 0.305 \n", + "\n", + " \\\n", + " 50% 75% max \n", + "efel \n", + "Spikecount 0.000 0.000 0.000 \n", + "time_to_first_spike 0.327 0.348 0.400 \n", + "time_to_last_spike 0.328 0.361 0.410 \n", + "time_to_second_spike 0.347 0.375 0.405 \n", + "\n", + " rel_abs_diff eFEL to Arbor-internal [%] \\\n", + " count mean std \n", + "efel \n", + "Spikecount 28.000 0.000 0.000 \n", + "time_to_first_spike 28.000 12.913 6.573 \n", + "time_to_last_spike 28.000 7.507 6.918 \n", + "time_to_second_spike 12.000 4.382 5.904 \n", + "\n", + " \n", + " min 25% 50% 75% max \n", + "efel \n", + "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", + "time_to_first_spike -0.358 7.820 14.737 18.018 22.566 \n", + "time_to_last_spike 0.594 0.884 5.852 14.589 20.832 \n", + "time_to_second_spike 1.318 2.052 2.380 2.712 22.101 " + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spike_results_fine_dt[['abs_diff eFEL to Arbor-internal',\n", + " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Furthermore, the mean deviation between Arbor and Neuron for eFEL spike times is significantly reduced." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt
efel
SpikecountNaN
time_to_first_spike0.211
time_to_last_spike0.169
time_to_second_spike0.143
\n", + "
" + ], + "text/plain": [ + " ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt\n", + "efel \n", + "Spikecount NaN \n", + "time_to_first_spike 0.211 \n", + "time_to_last_spike 0.169 \n", + "time_to_second_spike 0.143 " + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(spike_results_fine_dt[['abs_diff Arbor to Neuron']].groupby('efel').mean()/\\\n", + " spike_results[['abs_diff Arbor to Neuron']].groupby('efel').mean()).rename(\n", + " columns={'abs_diff Arbor to Neuron': \n", + " 'ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt'})\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "581988038cf9ce8838e7faf3da7c29f4ff88d898cd43cb17e0086e389d8deda2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/setup.py b/setup.py index b471af39..aeb7e22b 100644 --- a/setup.py +++ b/setup.py @@ -37,6 +37,7 @@ 'pandas>=0.18', 'deap', 'efel>=2.13', + 'arbor>=0.7', 'ipyparallel', 'pickleshare>=0.7.3', 'Jinja2>=2.8', From c0af192da6157ab06cea836caf6dd8f84b97fb2e Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 28 Jul 2022 21:30:51 +0200 Subject: [PATCH 11/42] Formatting fix, support for myelinated section in Arbor cable cell (commented out) --- bluepyopt/ephys/models.py | 13 ++++++------- bluepyopt/ephys/morphologies.py | 3 ++- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 214d682d..a348622a 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -334,13 +334,12 @@ def _create_sim_desc(self, param_values, radius=0.5 * section.diam, tag=morphologies._arb_tags['axon']) for section in self.icell.axon] - # TODO: if there is a myelinated section, - # append to replace_axon - # dict(nseg=5, - # length=1000, - # radius=?, - # tag=morphologies._arb_tags['myelin']) - # Where is the myelinated section instantiated, though? + # Requires safe iteration over myelin section + # replace_axon += [dict(nseg=section.nseg, + # length=section.L, + # radius=0.5 * section.diam, + # tag=morphologies._arb_tags['myelin']) + # for section in self.icell.myelin] else: replace_axon = None else: diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 2755384d..7e17939d 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -343,7 +343,8 @@ def replace_axon(morphology, replacement=None): ' of radii %s.', str(ar_radius)) if replacement is not None: - ar_seg_scaling = numpy.cumsum([0] + [r['length'] for r in replacement]) + ar_seg_scaling = numpy.cumsum([0] + + [r['length'] for r in replacement]) else: ar_seg_scaling = numpy.cumsum([0, 30, 30]) ar_seg_scaling /= numpy.linalg.norm(ar_dist_center - ar_prox_center) From de52dea80ae0ae754b180223443f4596448c4083 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Fri, 29 Jul 2022 18:04:18 +0200 Subject: [PATCH 12/42] Making Arbor an extra dependency --- bluepyopt/ephys/create_acc.py | 15 +++++++++++---- bluepyopt/ephys/morphologies.py | 19 +++++++++++++------ setup.py | 8 ++++++-- tox.ini | 1 + 4 files changed, 31 insertions(+), 12 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index f52a3473..4fd7fc64 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -2,7 +2,6 @@ # pylint: disable=R0914 -from dataclasses import replace import os import logging @@ -11,10 +10,8 @@ import numpy import jinja2 - import json import shutil -import arbor logger = logging.getLogger(__name__) @@ -319,7 +316,7 @@ def create_acc(mechs, of a custom template ''' - if morphology[-4:] not in ['.swc', '.asc']: + if morphology[-4:].lower() not in ['.swc', '.asc']: raise RuntimeError("Morphology file %s not supported in Arbor " " (only supported types are .swc and .asc)." % morphology) @@ -415,6 +412,16 @@ def read_acc(cell_json_filename): cell_json_filename (str): The path to the JSON file containing meta-information on morphology, label-dict and decor of exported cell ''' + + try: + import arbor + except ImportError as e: + raise ImportError("Loading an ACC/JSON-exported cell model into an" + " Arbor morphology and cable cell components" + " requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") + with open(cell_json_filename) as cell_json_file: cell_json = json.load(cell_json_file) diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 7e17939d..819e82c1 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -24,8 +24,6 @@ import os import platform import logging -import numpy -import arbor from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin @@ -259,10 +257,6 @@ def replace_axon(sim=None, icell=None): ) -def _mpt_to_coord(mpt): - return numpy.array([mpt.x, mpt.y, mpt.z]) - - class ArbFileMorphology(Morphology, DictMixin): @staticmethod @@ -278,6 +272,19 @@ def replace_axon(morphology, replacement=None): interpreted so that the axon replacement is formed from a single branch of stacked cylindrical segments. ''' + import numpy + try: + import arbor + except ImportError as e: + raise ImportError("Creating Arbor morphology with axon replacement" + " requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") + + def _mpt_to_coord(mpt): + '''Convert arbor.mpoint 3d center coordinates to numpy array''' + return numpy.array([mpt.x, mpt.y, mpt.z]) + # Check if prune_tag, prune_tag_roots, distal_radii are available if not hasattr(morphology, "to_segment_tree"): raise NotImplementedError( diff --git a/setup.py b/setup.py index aeb7e22b..c82c0268 100644 --- a/setup.py +++ b/setup.py @@ -28,6 +28,10 @@ 'scoop>=0.7', ] +EXTRA_ARBOR = [ + 'arbor>=0.7', +] + setuptools.setup( name="bluepyopt", version=versioneer.get_version(), @@ -37,7 +41,6 @@ 'pandas>=0.18', 'deap', 'efel>=2.13', - 'arbor>=0.7', 'ipyparallel', 'pickleshare>=0.7.3', 'Jinja2>=2.8', @@ -45,8 +48,9 @@ 'Pebble>=4.3.10' ], extras_require={ - 'all': EXTRA_SCOOP, + 'all': EXTRA_SCOOP + EXTRA_ARBOR, 'scoop': EXTRA_SCOOP, + 'arbor': EXTRA_ARBOR, }, packages=setuptools.find_packages( exclude=( diff --git a/tox.ini b/tox.ini index c847afcb..b08ef2cb 100644 --- a/tox.ini +++ b/tox.ini @@ -20,6 +20,7 @@ deps = flake8 mock neuron-nightly + arbor sh pytest-cov download = true From 152033e2bf6d3a114b2fd245b1b20c59c5c4548b Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Tue, 2 Aug 2022 16:41:47 +0200 Subject: [PATCH 13/42] Moved Arbor all to default properties, explicit mechanism qualification for GUI-compatibility --- bluepyopt/ephys/create_acc.py | 28 ++++++++++++------- .../templates/acc/decor_acc_template.jinja2 | 2 +- bluepyopt/tests/test_ephys/test_create_acc.py | 23 +++++++++++++++ examples/simplecell/simplecell_arbor.ipynb | 15 ++++++---- 4 files changed, 52 insertions(+), 16 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 4fd7fc64..b0475162 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -52,9 +52,12 @@ def _nrn2arb_var_value(param): return param.value -def _arb_is_global_param(loc, param): - """Returns if location-specific variable is a global one in Arbor.""" - return loc == 'all' and param.name in ['membrane-capacitance'] +def _arb_is_global_property(loc, param): + """Returns if region-specific variable is a global property in Arbor.""" + return loc == 'all' and param.name in ['membrane-potential', + 'temperature-kelvin', + 'axial-resistivity', + 'membrane-capacitance'] # Define BluePyOpt to Arbor region mapping @@ -115,7 +118,7 @@ def _make_tagged_region(region, tag): # return dict(globals=globals, ranges=ranges) # suffix skipped # mechs = dict() -# for cat in ['allen', 'bbp', 'default']: +# for cat in ['allen', 'BBP', 'default']: # mechs[cat] = dict() # cat_dir = 'arbor/mechanisms/' + cat # for f in os.listdir(cat_dir): @@ -144,7 +147,7 @@ def _make_tagged_region(region, tag): 'NaV': {'globals': None, 'ranges': ['gbar']}, 'Nap': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, 'SK': {'globals': None, 'ranges': ['gbar', 'ik']}}, - bbp={ + BBP={ 'CaDynamics_E2': {'globals': None, 'ranges': ['decay', 'gamma', 'minCai', 'depth', 'initCai']}, @@ -220,21 +223,26 @@ def _arb_convert_params_and_group_by_mech_local(params, channels): mechs = {mech: [] for mech, _ in mech_params} for mech, param in mech_params: mechs[mech].append(param) - for i, param in enumerate(mechs.get(None, [])): - if _arb_is_global_param(loc, param): + none_local_params = [] + for param in mechs.get(None, []): + if _arb_is_global_property(loc, param): global_params[param.name] = param - del mechs[None][i] + else: + none_local_params.append(param) + if None in mechs: + mechs[None] = none_local_params local_params.append((loc, list(mechs.items()))) return local_params, global_params def _arb_nmodl_global_translate(mech_name, mech_params): """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms - into mechanism name""" + into mechanism name and add catalogue prefix""" arb_mech = None - for cat in ['bbp', 'default', 'allen']: # in order of precedence + for cat in ['BBP', 'default', 'allen']: # in order of precedence if mech_name in _arb_mechs[cat]: arb_mech = _arb_mechs[cat][mech_name] + mech_name = cat + '::' + mech_name break if arb_mech is None: # not Arbor built-in mech return (mech_name, mech_params) diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index c177aed3..e9765bf3 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -2,7 +2,7 @@ (meta-data (version "0.1-dev")) (decor {%- for param_name, param in global_params.items() %} - {%- if param.mech is defined %} + {%- if param.mech is defined %} (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) {%- else %} (default ({{ param.name }} {{ param.value }})) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index 83fc69d8..667df70d 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -193,6 +193,7 @@ def test_cell_model_output_and_read_acc(): create_acc.read_acc( os.path.join(acc_dir, cell.name + '.json')) assert 'replace_axon' not in cell_json['morphology'] + cable_cell = arbor.cable_cell(arb_morph, arb_labels, arb_decor) assert isinstance(cable_cell, arbor.cable_cell) assert len(cable_cell.cables('"soma"')) == 1 @@ -202,6 +203,17 @@ def test_cell_model_output_and_read_acc(): assert len(arb_morph.branch_segments( cable_cell.cables('"axon"')[0].branch)) == 5 + # Create cell model + arb_cell_model = arbor.single_cell_model(cable_cell) + arb_cell_model.properties.catalogue = arbor.catalogue() + arb_cell_model.properties.catalogue.extend( + arbor.default_catalogue(), "default::") + arb_cell_model.properties.catalogue.extend( + arbor.bbp_catalogue(), "BBP::") + + # Run a very short simulation to test mechanism instantiation + arb_cell_model.run(tfinal=0.1) + def test_cell_model_output_and_read_acc_replace_axon(): """ephys.create_acc: Test output_acc and read_acc w/ axon replacement""" @@ -235,6 +247,17 @@ def test_cell_model_output_and_read_acc_replace_axon(): assert len(arb_morph.branch_segments( cable_cell.cables('"axon"')[0].branch)) == 4 + # Create cell model + arb_cell_model = arbor.single_cell_model(cable_cell) + arb_cell_model.properties.catalogue = arbor.catalogue() + arb_cell_model.properties.catalogue.extend( + arbor.default_catalogue(), "default::") + arb_cell_model.properties.catalogue.extend( + arbor.bbp_catalogue(), "BBP::") + + # Run a very short simulation to test mechanism instantiation + arb_cell_model.run(tfinal=0.1) + def test_cell_model_create_acc_replace_axon_without_instantiate(): """ephys.create_acc: Test output_acc and read_acc w/ axon replacement""" diff --git a/examples/simplecell/simplecell_arbor.ipynb b/examples/simplecell/simplecell_arbor.ipynb index a39dd17c..86529064 100644 --- a/examples/simplecell/simplecell_arbor.ipynb +++ b/examples/simplecell/simplecell_arbor.ipynb @@ -211,7 +211,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Protocol steps configuration\n", + "# Protocol prots configuration\n", "protocol_steps = []\n", "for name, amplitude in [('step1', 0.01), ('step2', 0.05)]:\n", " protocol_steps.append(dict(name=name,\n", @@ -321,15 +321,20 @@ " instantiate_stimuli(decor, step)\n", " instantiate_spike_recordings(decor)\n", " \n", - " # Set initial membrane potential to -65 mV\n", - " decor.set_property(Vm=-65)\n", " # Create cable cell\n", " cable_cell = arbor.cable_cell(morph, labels, decor)\n", - " # can output and visualize the cable_cell in arbor_gui using\n", + " # can output and visualize the cable cell in the Arbor GUI using\n", " # arbor.write_component(cable_cell, '.acc')\n", "\n", " # Create single cell model\n", " arb_cell_model = arbor.single_cell_model(cable_cell)\n", + "\n", + " # Add catalogues with qualifiers\n", + " arb_cell_model.properties.catalogue = arbor.catalogue()\n", + " arb_cell_model.properties.catalogue.extend(\n", + " arbor.default_catalogue(), \"default::\")\n", + " arb_cell_model.properties.catalogue.extend(\n", + " arbor.bbp_catalogue(), \"BBP::\")\n", " \n", " # Instantiate remaining voltage recording\n", " instantiate_voltage_recordings(arb_cell_model)\n", @@ -342,7 +347,7 @@ "# Run multiple protocol steps and extract voltage traces/detected spikes\n", "def arb_protocols_run(protocols, cell_model, params, dt=0.025):\n", " arb_resp = dict()\n", - " for step in protocol_steps:\n", + " for step in protocols:\n", " arb_cell_model = output_acc_and_run_protocol_step(\n", " step, cell_model, params, dt)\n", " arb_resp[step['recording_name']] = \\\n", From f2ca1ed51917de4a619cbf49cf1b184806b83f83 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Fri, 5 Aug 2022 17:59:49 +0200 Subject: [PATCH 14/42] Support for range parameters in Arbor via iexprs, Arbor mechanism catalogue to JSON, global ion properties, create_acc with axon replacement simplified --- bluepyopt/ephys/create_acc.py | 582 +++++++++++++----- bluepyopt/ephys/create_hoc.py | 27 +- bluepyopt/ephys/models.py | 35 +- bluepyopt/ephys/static/arbor_mechanisms.json | 289 +++++++++ .../templates/acc/decor_acc_template.jinja2 | 23 +- .../acc/label_dict_acc_template.jinja2 | 2 +- bluepyopt/tests/test_ephys/test_create_acc.py | 76 ++- .../acc/templates/cell_json_template.jinja2 | 11 +- .../acc/templates/decor_acc_template.jinja2 | 23 +- .../templates/label_dict_acc_template.jinja2 | 2 +- setup.py | 1 + 11 files changed, 842 insertions(+), 229 deletions(-) create mode 100644 bluepyopt/ephys/static/arbor_mechanisms.json diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index b0475162..7cb8fa69 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -12,29 +12,40 @@ import jinja2 import json import shutil +import ast logger = logging.getLogger(__name__) -from .create_hoc import Location, Range, _get_template_params, format_float +from .create_hoc import Location, RangeExpr, \ + _get_template_params, format_float, DEFAULT_LOCATION_ORDER from .morphologies import _arb_tags, ArbFileMorphology + # Define Neuron to Arbor variable conversions ArbVar = namedtuple('ArbVar', 'name, conv') +# Inhomogeneous expression for soma-distance-scaled parameter in Arbor +RangeIExpr = namedtuple('RangeIExpr', 'name, value, scale') + + def _make_var(name, conv=None): # conv defaults to identity return ArbVar(name=name, conv=conv) _nrn2arb_var = dict( - cm=_make_var(name='membrane-capacitance', - conv=lambda cm: cm / 100.), # NEURON: uF/cm^2, Arbor: F/m^2 - ena=_make_var(name='ion-reversal-potential \"na\"'), - ek=_make_var(name='ion-reversal-potential \"k\"'), v_init=_make_var(name='membrane-potential'), celsius=_make_var(name='temperature-kelvin', conv=lambda celsius: celsius + 273.15), - Ra=_make_var(name='axial-resistivity') + Ra=_make_var(name='axial-resistivity'), + cm=_make_var(name='membrane-capacitance', + conv=lambda cm: cm / 100.), # NEURON: uF/cm^2, Arbor: F/m^2 + **{species + loc[0]: + _make_var(name='ion-%sternal-concentration \"%s\"' % (loc, species)) + for species in ['na', 'k', 'ca'] for loc in ['in', 'ex']}, + **{'e' + species: + _make_var(name='ion-reversal-potential \"%s\"' % species) + for species in ['na', 'k', 'ca']} ) @@ -52,12 +63,42 @@ def _nrn2arb_var_value(param): return param.value +def _nrn2arb_param(param, name): + if isinstance(param, Location): + return Location(name=_nrn2arb_var_name(name), + value=_nrn2arb_var_value(param)) + elif isinstance(param, RangeExpr): + return RangeExpr(location=param.location, + name=_nrn2arb_var_name(name), + value=_nrn2arb_var_value(param), + inst_distribution=param.inst_distribution) + else: + raise ValueError('Invalid parameter expression type.') + + def _arb_is_global_property(loc, param): """Returns if region-specific variable is a global property in Arbor.""" - return loc == 'all' and param.name in ['membrane-potential', - 'temperature-kelvin', - 'axial-resistivity', - 'membrane-capacitance'] + return loc == 'all' and ( + param.name in ['membrane-potential', + 'temperature-kelvin', + 'axial-resistivity', + 'membrane-capacitance'] or + param.name.split(' ')[0] in ['ion-internal-concentration', + 'ion-external-concentration', + 'ion-reversal-potential']) + + +def _arb_pop_global_properties(loc, mechs): + global_properties = [] + local_properties = [] + if None in mechs: + for param in mechs[None]: + if _arb_is_global_property(loc, param): + global_properties.append(param) + else: + local_properties.append(param) + mechs[None] = local_properties + return [(None, global_properties)] # list of (mech, params) tuples # Define BluePyOpt to Arbor region mapping @@ -93,92 +134,52 @@ def _make_tagged_region(region, tag): myelinated=_make_tagged_region('myelin', _arb_tags['myelin']), ) -# # Generated with NMODL in arbor/mechanisms -# import os, re, pprint - -# nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' -# suffix_pattern = nmodl_pattern % 'SUFFIX' -# globals_pattern = nmodl_pattern % 'GLOBAL' -# ranges_pattern = nmodl_pattern % 'RANGE' - -# def process_nmodl(nmodl_str): -# nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, -# flags=re.MULTILINE).group(1) -# suffix = re.search(suffix_pattern, nrn, -# flags=re.MULTILINE) -# suffix = suffix if suffix is None else suffix.group(1) -# globals = re.search(globals_pattern, nrn, -# flags=re.MULTILINE) -# globals = globals if globals is None \ -# else re.findall(r'\w+', globals.group(1)) -# ranges = re.search(ranges_pattern, nrn, -# flags=re.MULTILINE) -# ranges = ranges if ranges is None \ -# else re.findall(r'\w+', ranges.group(1)) -# return dict(globals=globals, ranges=ranges) # suffix skipped - -# mechs = dict() -# for cat in ['allen', 'BBP', 'default']: -# mechs[cat] = dict() -# cat_dir = 'arbor/mechanisms/' + cat -# for f in os.listdir(cat_dir): -# with open(os.path.join(cat_dir,f)) as fd: -# print(f"Processing {f}", flush=True) -# mechs[cat][f[:-4]] = process_nmodl(fd.read()) -# pprint.pprint(mechs) - - -_arb_mechs = dict( - allen={ - 'CaDynamics': {'globals': ['F'], - 'ranges': ['decay', 'gamma', 'minCai', 'depth']}, - 'Ca_HVA': {'globals': None, 'ranges': ['gbar']}, - 'Ca_LVA': {'globals': None, 'ranges': ['gbar']}, - 'Ih': {'globals': None, 'ranges': ['gbar']}, - 'Im': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, - 'Im_v2': {'globals': None, 'ranges': ['gbar', 'ik']}, - 'K_P': {'globals': None, 'ranges': ['gbar', 'g', 'ik']}, - 'K_T': {'globals': None, 'ranges': ['gbar']}, - 'Kd': {'globals': None, 'ranges': ['gbar', 'ik']}, - 'Kv2like': {'globals': None, 'ranges': ['gbar']}, - 'Kv3_1': {'globals': None, 'ranges': ['gbar', 'ik']}, - 'NaTa': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, - 'NaTs': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, - 'NaV': {'globals': None, 'ranges': ['gbar']}, - 'Nap': {'globals': None, 'ranges': ['gbar', 'g', 'ina']}, - 'SK': {'globals': None, 'ranges': ['gbar', 'ik']}}, - BBP={ - 'CaDynamics_E2': {'globals': None, - 'ranges': ['decay', 'gamma', 'minCai', - 'depth', 'initCai']}, - 'Ca_HVA': {'globals': None, 'ranges': ['gCa_HVAbar']}, - 'Ca_LVAst': {'globals': None, 'ranges': ['gCa_LVAstbar']}, - 'Ih': {'globals': None, 'ranges': ['gIhbar']}, - 'Im': {'globals': None, 'ranges': ['gImbar']}, - 'K_Pst': {'globals': None, 'ranges': ['gK_Pstbar']}, - 'K_Tst': {'globals': None, 'ranges': ['gK_Tstbar']}, - 'NaTa_t': {'globals': None, 'ranges': ['gNaTa_tbar']}, - 'NaTs2_t': {'globals': None, 'ranges': ['gNaTs2_tbar']}, - 'Nap_Et2': {'globals': None, 'ranges': ['gNap_Et2bar']}, - 'SK_E2': {'globals': None, 'ranges': ['gSK_E2bar']}, - 'SKv3_1': {'globals': None, 'ranges': ['gSKv3_1bar']}}, - default={ - 'exp2syn': {'globals': None, 'ranges': ['tau1', 'tau2', 'e']}, - 'expsyn': {'globals': None, 'ranges': ['tau', 'e']}, - 'expsyn_stdp': {'globals': None, - 'ranges': ['tau', 'taupre', 'taupost', 'e', - 'Apost', 'Apre', 'max_weight']}, - 'gj': {'globals': None, 'ranges': ['g']}, - 'hh': {'globals': None, - 'ranges': ['gnabar', 'gkbar', 'gl', 'el', 'q10']}, - 'kamt': {'globals': ['minf', 'mtau', 'hinf', 'htau'], - 'ranges': ['gbar', 'q10']}, - 'kdrmt': {'globals': ['minf', 'mtau'], - 'ranges': ['gbar', 'q10', 'vhalfm']}, - 'nax': {'globals': None, 'ranges': ['gbar', 'sh']}, - 'nernst': {'globals': ['R', 'F'], 'ranges': ['coeff']}, - 'pas': {'globals': ['e'], 'ranges': ['g']}} -) + +def _arb_load_mech_catalogues(): + """Load Arbor's built-in mechanism catalogues""" + + # # Generated with NMODL in arbor/mechanisms + # import os, re + # + # nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' + # suffix_pattern = nmodl_pattern % 'SUFFIX' + # globals_pattern = nmodl_pattern % 'GLOBAL' + # ranges_pattern = nmodl_pattern % 'RANGE' + # + # def process_nmodl(nmodl_str): + # nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, + # flags=re.MULTILINE).group(1) + # suffix = re.search(suffix_pattern, nrn, + # flags=re.MULTILINE) + # suffix = suffix if suffix is None else suffix.group(1) + # globals = re.search(globals_pattern, nrn, + # flags=re.MULTILINE) + # globals = globals if globals is None \ + # else re.findall(r'\w+', globals.group(1)) + # ranges = re.search(ranges_pattern, nrn, + # flags=re.MULTILINE) + # ranges = ranges if ranges is None \ + # else re.findall(r'\w+', ranges.group(1)) + # return dict(globals=globals, ranges=ranges) # suffix skipped + # + # mechs = dict() + # for cat in ['allen', 'BBP', 'default']: + # mechs[cat] = dict() + # cat_dir = 'arbor/mechanisms/' + cat + # for f in os.listdir(cat_dir): + # with open(os.path.join(cat_dir,f)) as fd: + # print(f"Processing {f}", flush=True) + # mechs[cat][f[:-4]] = process_nmodl(fd.read()) + # print(json.dumps(mechs, indent=4)) + + catalogues = os.path.abspath( + os.path.join( + os.path.dirname(__file__), + 'static/arbor_mechanisms.json')) + with open(catalogues) as f: + arb_cats = json.load(f) + + return arb_cats def _find_mech_and_convert_param_name(param, mechs): @@ -186,62 +187,68 @@ def _find_mech_and_convert_param_name(param, mechs): mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) for mech in mechs])[0] if mech_suffix_matches.size == 0: - return None, Location(name=_nrn2arb_var_name(param.name), - value=_nrn2arb_var_value(param)) # TODO: Range + return None, _nrn2arb_param(param, name=param.name) elif mech_suffix_matches.size == 1: mech = mechs[mech_suffix_matches[0]] name = param.name[:-(len(mech) + 1)] - return mech, Location(name=_nrn2arb_var_name(name), - value=_nrn2arb_var_value(param)) # TODO: Range + return mech, _nrn2arb_param(param, name=name) else: raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % (param.name, repr(mechs[mech_suffix_matches]))) -def _arb_convert_params_and_group_by_mech_global(params, channels): - """Group global params by mechanism, rename them to Arbor convention""" +def _arb_convert_params_and_group_by_mech(params, channels): mech_params = [_find_mech_and_convert_param_name( - Location(name=name, value=value), channels['all']) - for name, value in params.items()] + param, channels) for param in params] mechs = {mech: [] for mech, _ in mech_params} for mech, param in mech_params: mechs[mech].append(param) - if len(mechs) > 0: - assert list(mechs.keys()) == [None] - return {param.name: param for param in mechs[None]} - else: - return {} + return mechs + + +def _arb_convert_params_and_group_by_mech_global(params, channels): + """Group global params by mechanism, rename them to Arbor convention""" + return _arb_convert_params_and_group_by_mech( + [Location(name=name, value=value) for name, value in params.items()], + channels['all'] + ) def _arb_convert_params_and_group_by_mech_local(params, channels): """Group section params by mechanism, rename them to Arbor convention""" - local_params = [] - global_params = {} + local_mechs = dict() + global_properties = dict() for loc, params in params: - mech_params = [_find_mech_and_convert_param_name( - param, channels[loc]) for param in params] - mechs = {mech: [] for mech, _ in mech_params} - for mech, param in mech_params: - mechs[mech].append(param) - none_local_params = [] - for param in mechs.get(None, []): - if _arb_is_global_property(loc, param): - global_params[param.name] = param - else: - none_local_params.append(param) - if None in mechs: - mechs[None] = none_local_params - local_params.append((loc, list(mechs.items()))) - return local_params, global_params - - -def _arb_nmodl_global_translate(mech_name, mech_params): + mechs = _arb_convert_params_and_group_by_mech(params, channels[loc]) + + # move Arbor global properties to global_params + for mech, props in _arb_pop_global_properties(loc, mechs): + global_properties[mech] = global_properties.get(mech, []) + props + local_mechs[loc] = mechs + return local_mechs, global_properties + + +def _arb_append_scaled_mechs(mechs, scaled_mechs): + """Append scaled mechanism parameters to constant ones""" + for mech, scaled_params in scaled_mechs.items(): + if mech is None and len(scaled_params) > 0: + raise ValueError('Non-mechanism parameters cannot have' + ' inhomogeneous expressions in Arbor', + scaled_params) + mechs[mech] = mechs.get(mech, []) + \ + [RangeIExpr( + name=p.name, + value=format_float(p.value), + scale=_arb_generate_iexpr(p)) for p in scaled_params] + + +def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms into mechanism name and add catalogue prefix""" arb_mech = None for cat in ['BBP', 'default', 'allen']: # in order of precedence - if mech_name in _arb_mechs[cat]: - arb_mech = _arb_mechs[cat][mech_name] + if mech_name in arb_cats[cat]: + arb_mech = arb_cats[cat][mech_name] mech_name = cat + '::' + mech_name break if arb_mech is None: # not Arbor built-in mech @@ -255,20 +262,233 @@ def _arb_nmodl_global_translate(mech_name, mech_params): for param in mech_params: assert param.name in arb_mech['globals'] or \ param.name in arb_mech['ranges'] - mech_params_dict = dict(mech_params) - arb_mech_name = mech_name + '/' + ','.join( - [p + '=' + mech_params_dict[p] for p in arb_mech['globals']]) - arb_mech_params = [mech_param for mech_param in mech_params - if mech_param.name not in arb_mech['globals']] - return (arb_mech_name, arb_mech_params) - - -def _arb_nmodl_global_translate_local(params): - ret = [] - for loc, mechs in params: - ret.append((loc, [_arb_nmodl_global_translate(*mech) - for mech in mechs])) - return ret + mech_name_suffix = [] + remaining_mech_params = [] + for mech_param in mech_params: + if mech_param.name in arb_mech['globals']: + mech_name_suffix.append(mech_param.name + '=' + + mech_param.value) + if isinstance(mech_param, RangeIExpr): + remaining_mech_params.append( + RangeIExpr(name=mech_param.name, + value=None, + scale=mech_param.scale)) + else: + remaining_mech_params.append(mech_param) + mech_name += '/' + ','.join(mech_name_suffix) + return (mech_name, remaining_mech_params) + + +def _arb_nmodl_global_translate(mechs, arb_cats): + """Translate all mechanisms in a region""" + return dict([_arb_nmodl_global_translate_mech(mech, params, arb_cats) + for mech, params in mechs.items()]) + + +def _arb_filter_scaled_mechs(mechs): + """Returns all mechanisms with scaled parameters in Arbor""" + scaled_mechs = dict() + for mech, params in mechs.items(): + range_iexprs = [p for p in params if isinstance(p, RangeIExpr)] + if len(range_iexprs) > 0: + scaled_mechs[mech] = range_iexprs + return scaled_mechs + + +class ArbIExprValueEliminator(ast.NodeTransformer): + """Divide expression (symbolically) by value and replace + non-linear occurrences by numeric value""" + def __init__(self, value): + self._stack = [] + self._nodes_to_remove = [] + self._remove_count = 0 + self._value = value + + def generic_visit(self, node): + self._stack.append(node) # keep track of visitor stack + + node = super(ArbIExprValueEliminator, self).generic_visit(node) + + nodes_removed = [] + for node_to_remove in self._nodes_to_remove: + if node_to_remove in ast.iter_child_nodes(node): + # replace this node and remove child + node = node.left if node.right == node_to_remove \ + else node.right + nodes_removed.append(node_to_remove) + self._remove_count += 1 + if self._remove_count > 1: + raise ValueError( + 'Unsupported inhomogeneous expression in Arbor' + ' - must be linear in the parameter value.') + self._nodes_to_remove = [n for n in self._nodes_to_remove + if n not in nodes_removed] + + self._stack.pop() + + # top-level expression node that is non-linear in the value + if len(self._stack) == 2 and self._remove_count == 0: + return ast.BinOp(left=node, op=ast.Div(), + right=ast.Constant(value=self._value)) + else: + return node + + def _is_linear(self, node): + """Check if expression is linear in this node""" + prev_frame = node + for next_frame in reversed(self._stack[2:]): + if not isinstance(next_frame, ast.BinOp) or \ + not (isinstance(next_frame.op, ast.Mult) or + isinstance(next_frame.op, ast.Div) and + next_frame.left == prev_frame): + return False + prev_frame = next_frame + return True + + def visit_Name(self, node): + if node.id == '_arb_parse_iexpr_value': + # remove if expression is linear in value, else replace by constant + if self._is_linear(node) and \ + self._remove_count + len(self._nodes_to_remove) == 0: + self._nodes_to_remove.append(node) + return node + else: + return ast.Constant(value=self._value) + else: + return node + + +class ArbIExprEmitter(ast.NodeVisitor): + """Emit Arbor S-expression from parse tree""" + + _iexpr_symbols = { + ast.Constant: 'scalar', + ast.Num: 'scalar', + ast.Add: 'add', + ast.Sub: 'sub', + ast.Mult: 'mul', + ast.Div: 'div', + 'math.pi': 'pi', + 'math.exp': 'exp', + 'math.log': 'log', + } + + def __init__(self, constant_formatter): + self._base_stack = [] + self._emitted = [] + self._constant_formatter = constant_formatter + + def emit(self): + return ' '.join(self._emitted) + + def _emit(self, expr): + return self._emitted.append(expr) + + def generic_visit(self, node): + self._base_stack.append(node) + + # fail if more than base stack + if len(self._base_stack) > 2: + raise ValueError('Arbor inhomogeneous expression generation' + ' failed: Unsupported node %s' % repr(node)) + + ret = super(ArbIExprEmitter, self).generic_visit(node) + self._base_stack.pop() + return ret + + def visit_Constant(self, node): + self._emit( + '(%s %s)' % (self._iexpr_symbols[type(node)], + self._constant_formatter(node.value)) + ) + + def visit_Num(self, node): + self._emit( + '(%s %s)' % (self._iexpr_symbols[type(node)], + self._constant_formatter(node.n)) + ) + + def visit_Attribute(self, node): + if node.value.id == 'math' and node.attr == 'pi': + self._emit( + '(%s)' % self._iexpr_symbols['math.pi'] + ) + else: + raise ValueError('Unsupported attribute %s in Arbor' + % node) + + def visit_UnaryOp(self, node): + if isinstance(node.op, ast.UAdd): + self.visit(node.value) + elif isinstance(node.op, ast.USub): + if isinstance(node.operand, ast.Constant): + self.visit(ast.Constant(-node.operand.value)) + else: + self.visit(ast.BinOp(left=ast.Constant(-1), + op=ast.Mult(), + right=node.operand)) + else: + raise ValueError('Unsupported unary operation %s in Arbor' + % node.op) + + def visit_BinOp(self, node): + op_type = type(node.op) + if op_type not in self._iexpr_symbols: + raise ValueError('Unsupported binary operation %s in Arbor' + % op_type) + self._emit( + '(' + self._iexpr_symbols[type(node.op)] + ) + self.visit(node.left), + self.visit(node.right) + self._emit( + ')' + ) + + def visit_Call(self, node): + func = node.func + if func.value.id == 'math': + if len(node.args) > 1: + raise ValueError('Arbor iexpr generation failed:' + ' math functions can only have a' + ' single argument.') + func_symbol = func.value.id + '.' + func.attr + if func_symbol not in self._iexpr_symbols: + raise ValueError('Arbor iexpr generation failed - ' + ' Unknown symbol %s.' % func_symbol) + self._emit( + '(' + self._iexpr_symbols[func_symbol] + ) + self.visit(node.args[0]) + self._emit( + ')' + ) + + def visit_Name(self, node): + if node.id == '_arb_parse_iexpr_distance': + self._emit( + '(distance (region "soma"))' + ) + + +def _arb_generate_iexpr(range_expr, constant_formatter=format_float): + """Generate Arbor iexpr from instantiated distribution + of NrnSegmentSomaDistanceScaler""" + scaler_expr = range_expr.inst_distribution.format( + value='_arb_parse_iexpr_value', + distance='_arb_parse_iexpr_distance') + + # Parse expression + scaler_ast = ast.parse(scaler_expr) + + # Turn into scaling expression, replacing non-linear occurrences of value + value_eliminator = ArbIExprValueEliminator(range_expr.value) + scaler_ast = value_eliminator.visit(scaler_ast) + + # Generate S-expression + iexpr_emitter = ArbIExprEmitter(constant_formatter=constant_formatter) + iexpr_emitter.visit(scaler_ast) + return iexpr_emitter.emit() def _read_templates(template_dir, template_filename): @@ -352,39 +572,67 @@ def create_acc(mechs, for name in templates.keys()} # postprocess template parameters for Arbor - global_params = template_params['global_params'] - section_params = template_params['section_params'] channels = template_params['channels'] - range_params = template_params['range_params'] - - global_params = \ - _arb_convert_params_and_group_by_mech_global(global_params, channels) - section_params, additional_global_params = \ - _arb_convert_params_and_group_by_mech_local(section_params, channels) - global_params.update(additional_global_params) - # no nmodl translate on global_params as no mechs - section_params = _arb_nmodl_global_translate_local(section_params) - # TODO: range_params = _arb_convert_params_and_group_by_mech_local( - # range_params, channels) - - template_params['global_params'] = global_params - template_params['section_params'] = section_params - template_params['channels'] = channels - template_params['range_params'] = range_params + banner = template_params['banner'] + + # global_mechs refer to default mechanisms/params in Arbor + # [mech -> param] + global_mechs = \ + _arb_convert_params_and_group_by_mech_global( + template_params['global_params'], channels) + + # section_mechs refer to locally painted mechanisms/params in Arbor + # [loc -> mech -> param.name/.value] + section_mechs, additional_global_mechs = \ + _arb_convert_params_and_group_by_mech_local( + template_params['section_params'], channels) + for mech, params in additional_global_mechs.items(): + global_mechs[mech] = \ + global_mechs.get(mech, []) + params + + # scaled_mechs refer to params with iexprs in Arbor + # [loc -> mech -> param.location/.name/.value/.inst_distribution] + range_params = {loc: [] for loc in DEFAULT_LOCATION_ORDER} + for param in template_params['range_params']: + range_params[param.location].append(param) + range_params = list(range_params.items()) + + section_scaled_mechs, global_scaled_mechs = \ + _arb_convert_params_and_group_by_mech_local( + range_params, channels) + + # join mechs constant params with inhomogeneous ones on mechanisms + _arb_append_scaled_mechs(global_mechs, global_scaled_mechs) + for loc, mechs in section_scaled_mechs.items(): + _arb_append_scaled_mechs(section_mechs[loc], section_scaled_mechs[loc]) + + # translate mechs to Arbor's convention + arb_cats = _arb_load_mech_catalogues() + global_mechs = _arb_nmodl_global_translate(global_mechs, arb_cats) + global_scaled_mechs = _arb_filter_scaled_mechs(global_mechs) + section_mechs = {loc: _arb_nmodl_global_translate(mechs, arb_cats) + for loc, mechs in section_mechs.items()} + section_scaled_mechs = {loc: _arb_filter_scaled_mechs(mechs) + for loc, mechs in section_mechs.items()} return {filenames[name]: template.render(template_name=template_name, + banner=banner, morphology=morphology, replace_axon=replace_axon_json, filenames=filenames, regions=_loc2arb_region, - **template_params, + global_mechs=global_mechs, + global_scaled_mechs=global_scaled_mechs, + section_mechs=section_mechs, + section_scaled_mechs=section_scaled_mechs, **custom_jinja_params) for name, template in templates.items()} def output_acc(output_dir, cell, parameters, - template_filename='acc/*_template.jinja2'): + template_filename='acc/*_template.jinja2', + sim=None): '''Output mixed JSON/ACC format for Arbor cable cell to files Args: @@ -393,8 +641,10 @@ def output_acc(output_dir, cell, parameters, parameters (): Values for mechanism parameters, etc. template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) + sim (): Neuron simulator instance (only used used with axon + replacement if morphology has not yet been instantiated) ''' - output = cell.create_acc(parameters, template_filename) + output = cell.create_acc(parameters, template_filename, sim=sim) if not os.path.exists(output_dir): os.makedirs(output_dir) diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index f374b2ed..6f84b2d4 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -23,6 +23,7 @@ format_float) Location = namedtuple('Location', 'name, value') +RangeExpr = namedtuple('RangeExpr', 'location, name, value, inst_distribution') Range = namedtuple('Range', 'location, param_name, value') DEFAULT_LOCATION_ORDER = [ 'all', @@ -60,6 +61,19 @@ def _generate_reinitrng(mechs): return reinitrng_content +def _range_exprs_to_hoc(range_params): + """Process raw range parameters to hoc strings""" + + ret = [] + for param in range_params: + value = param.inst_distribution + value = re.sub(r'math\.', '', value) + value = re.sub('{distance}', FLOAT_FORMAT, value) + value = re.sub('{value}', format_float(param.value), value) + ret.append(Range(param.location, param.name, value)) + return ret + + def _generate_parameters(parameters): """Create a list of parameters that need to be added to the hoc template""" param_locations = defaultdict(list) @@ -92,11 +106,11 @@ def _generate_parameters(parameters): if isinstance( param.value_scaler, NrnSegmentSomaDistanceScaler): - value = param.value_scaler.inst_distribution - value = re.sub(r'math\.', '', value) - value = re.sub('{distance}', FLOAT_FORMAT, value) - value = re.sub('{value}', format_float(param.value), value) - range_params.append(Range(loc, param.param_name, value)) + range_params.append( + RangeExpr(loc, + param.param_name, + param.value, + param.value_scaler.inst_distribution)) elif isinstance(param.value_scaler, NrnSegmentLinearScaler): value = param.value_scale_func(param.value) section_params[loc].append( @@ -203,6 +217,9 @@ def create_hoc(mechs, parameters, ignored_globals, disable_banner) + template_params['range_params'] = _range_exprs_to_hoc( + template_params['range_params'] + ) re_init_rng = _generate_reinitrng(mechs) if custom_jinja_params is None: diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index a348622a..f9a49669 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -324,11 +324,6 @@ def _create_sim_desc(self, param_values, replace_axon += morph_modifier_hoc elif sim_desc_creator is create_acc.create_acc: if self.morphology.do_replace_axon: - if self.icell is None: - raise ValueError('Need to instantiate_morphology' - ' on CellModel before creating' - ' JSON/ACC-description with' - ' axon replacement.') replace_axon = [dict(nseg=section.nseg, length=section.L, radius=0.5 * section.diam, @@ -375,13 +370,29 @@ def create_hoc(self, param_values, def create_acc(self, param_values, ignored_globals=(), template='acc/*_template.jinja2', disable_banner=False, - template_dir=None): - """Create hoc code for this model""" - return self._create_sim_desc(param_values, - ignored_globals, template, - disable_banner, - template_dir, - sim_desc_creator=create_acc.create_acc) + template_dir=None, + sim=None): + """Create JSON/ACC-description for this model""" + destroy_cell = False + if self.morphology.do_replace_axon: + if self.icell is None: + if sim is None: + raise ValueError('Need an instance of NrnSimulator in sim' + ' to instantiate morphology in order to' + ' create JSON/ACC-description with' + ' axon replacement.') + self.instantiate_morphology(sim=sim) + destroy_cell = True + + ret = self._create_sim_desc(param_values, + ignored_globals, template, + disable_banner, + template_dir, + sim_desc_creator=create_acc.create_acc) + + if destroy_cell: + self.destroy(sim=sim) + return ret def __str__(self): """Return string representation""" diff --git a/bluepyopt/ephys/static/arbor_mechanisms.json b/bluepyopt/ephys/static/arbor_mechanisms.json new file mode 100644 index 00000000..64e29e71 --- /dev/null +++ b/bluepyopt/ephys/static/arbor_mechanisms.json @@ -0,0 +1,289 @@ +{ + "allen": { + "CaDynamics": { + "globals": [ + "F" + ], + "ranges": [ + "decay", + "gamma", + "minCai", + "depth" + ] + }, + "Ca_HVA": { + "globals": null, + "ranges": [ + "gbar" + ] + }, + "Ca_LVA": { + "globals": null, + "ranges": [ + "gbar" + ] + }, + "Ih": { + "globals": null, + "ranges": [ + "gbar" + ] + }, + "Im": { + "globals": null, + "ranges": [ + "gbar", + "g", + "ik" + ] + }, + "Im_v2": { + "globals": null, + "ranges": [ + "gbar", + "ik" + ] + }, + "K_P": { + "globals": null, + "ranges": [ + "gbar", + "g", + "ik" + ] + }, + "K_T": { + "globals": null, + "ranges": [ + "gbar" + ] + }, + "Kd": { + "globals": null, + "ranges": [ + "gbar", + "ik" + ] + }, + "Kv2like": { + "globals": null, + "ranges": [ + "gbar" + ] + }, + "Kv3_1": { + "globals": null, + "ranges": [ + "gbar", + "ik" + ] + }, + "NaTa": { + "globals": null, + "ranges": [ + "gbar", + "g", + "ina" + ] + }, + "NaTs": { + "globals": null, + "ranges": [ + "gbar", + "g", + "ina" + ] + }, + "NaV": { + "globals": null, + "ranges": [ + "gbar" + ] + }, + "Nap": { + "globals": null, + "ranges": [ + "gbar", + "g", + "ina" + ] + }, + "SK": { + "globals": null, + "ranges": [ + "gbar", + "ik" + ] + } + }, + "BBP": { + "CaDynamics_E2": { + "globals": null, + "ranges": [ + "decay", + "gamma", + "minCai", + "depth", + "initCai" + ] + }, + "Ca_HVA": { + "globals": null, + "ranges": [ + "gCa_HVAbar" + ] + }, + "Ca_LVAst": { + "globals": null, + "ranges": [ + "gCa_LVAstbar" + ] + }, + "Ih": { + "globals": null, + "ranges": [ + "gIhbar" + ] + }, + "Im": { + "globals": null, + "ranges": [ + "gImbar" + ] + }, + "K_Pst": { + "globals": null, + "ranges": [ + "gK_Pstbar" + ] + }, + "K_Tst": { + "globals": null, + "ranges": [ + "gK_Tstbar" + ] + }, + "NaTa_t": { + "globals": null, + "ranges": [ + "gNaTa_tbar" + ] + }, + "NaTs2_t": { + "globals": null, + "ranges": [ + "gNaTs2_tbar" + ] + }, + "Nap_Et2": { + "globals": null, + "ranges": [ + "gNap_Et2bar" + ] + }, + "SK_E2": { + "globals": null, + "ranges": [ + "gSK_E2bar" + ] + }, + "SKv3_1": { + "globals": null, + "ranges": [ + "gSKv3_1bar" + ] + } + }, + "default": { + "exp2syn": { + "globals": null, + "ranges": [ + "tau1", + "tau2", + "e" + ] + }, + "expsyn": { + "globals": null, + "ranges": [ + "tau", + "e" + ] + }, + "expsyn_stdp": { + "globals": null, + "ranges": [ + "tau", + "taupre", + "taupost", + "e", + "Apost", + "Apre", + "max_weight" + ] + }, + "gj": { + "globals": null, + "ranges": [ + "g" + ] + }, + "hh": { + "globals": null, + "ranges": [ + "gnabar", + "gkbar", + "gl", + "el", + "q10" + ] + }, + "kamt": { + "globals": [ + "minf", + "mtau", + "hinf", + "htau" + ], + "ranges": [ + "gbar", + "q10" + ] + }, + "kdrmt": { + "globals": [ + "minf", + "mtau" + ], + "ranges": [ + "gbar", + "q10", + "vhalfm" + ] + }, + "nax": { + "globals": null, + "ranges": [ + "gbar", + "sh" + ] + }, + "nernst": { + "globals": [ + "R", + "F" + ], + "ranges": [ + "coeff" + ] + }, + "pas": { + "globals": [ + "e" + ], + "ranges": [ + "g" + ] + } + } +} \ No newline at end of file diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index e9765bf3..6a9919ee 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -1,23 +1,32 @@ (arbor-component (meta-data (version "0.1-dev")) (decor - {%- for param_name, param in global_params.items() %} - {%- if param.mech is defined %} - (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- for mech, params in global_mechs.items() %} + {%- if mech is not none %} + {%- if mech in global_scaled_mechs %} + (default (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in global_scaled_mechs[mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + {%- else %} + (default (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + {%- endif %} {%- else %} + {%- for param in params %} (default ({{ param.name }} {{ param.value }})) + {%- endfor %} {%- endif %} {%- endfor %} - {%- for loc, mech_parameters in section_params %} - {%- for mech, params in mech_parameters %} + {%- for loc, mech_parameters in section_mechs.items() %}{# paint-to-region instead of default #} + {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} + {%- if mech in section_scaled_mechs[loc] %} + (paint {{regions[loc].ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + {%- else %} (paint {{regions[loc].ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + {%- endif %} {%- else %} {%- for param in params %} (paint {{regions[loc].ref}} ({{ param.name }} {{ param.value }})) {%- endfor %} {%- endif %} {%- endfor %} - - {%- endfor %}{# TODO: range params #})) + {%- endfor %})) diff --git a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 index d1a7b9f2..9c705325 100644 --- a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 @@ -1,7 +1,7 @@ (arbor-component (meta-data (version "0.1-dev")) (label-dict - {%- for loc, parameters in section_params %} {# could also use channels.keys() #} + {%- for loc in section_mechs.keys() %} {# could also use channels.keys() #} {%- if regions[loc].defn is not none %} {{ regions[loc].defn }} {%- endif %} diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index 667df70d..c0465763 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -134,6 +134,26 @@ def test_create_acc_filename(): assert custom_param_val in cell_json_dict['produced_by'] +@pytest.mark.unit +def test_create_acc_iexpr_generator(): + """ephys.create_acc: Test iexpr generation from range expression""" + range_expr = ephys.create_hoc.RangeExpr( + location='apic', + name='gIhbar_Ih', + value=2.125, + inst_distribution='(0.62109375 - 0.546875*math.exp(' + '({distance})*0.421875))*{value}') + + iexpr = ephys.create_acc._arb_generate_iexpr( + range_expr, + constant_formatter=lambda v: '%.9g' % v) + + assert iexpr == '(sub (scalar 0.62109375) ' \ + '(mul (scalar 0.546875) ' \ + '(exp (mul (distance (region "soma")) ' \ + '(scalar 0.421875) ) ) ) )' + + @pytest.mark.unit def test_create_acc_replace_axon(): """ephys.create_acc: Test create_acc with axon replacement""" @@ -164,14 +184,18 @@ def make_cell(replace_axon): 'somatic', seclist_name='somatic') mechs = [ephys.mechanisms.NrnMODMechanism( name='hh', suffix='hh', locations=[somatic_loc])] + gkbar_hh_scaler = '(-0.62109375 + 0.546875*math.log(' \ + '({distance})*0.421875 + 1.25))*{value}' params = [ ephys.parameters.NrnSectionParameter( name='gnabar_hh', param_name='gnabar_hh', locations=[somatic_loc]), - ephys.parameters.NrnSectionParameter( + ephys.parameters.NrnRangeParameter( name='gkbar_hh', param_name='gkbar_hh', + value_scaler=ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + distribution=gkbar_hh_scaler), locations=[somatic_loc])] return ephys.models.CellModel( 'simple_ax2', @@ -180,6 +204,19 @@ def make_cell(replace_axon): params=params) +def run_short_sim(cable_cell): + # Create cell model + arb_cell_model = arbor.single_cell_model(cable_cell) + arb_cell_model.properties.catalogue = arbor.catalogue() + arb_cell_model.properties.catalogue.extend( + arbor.default_catalogue(), "default::") + arb_cell_model.properties.catalogue.extend( + arbor.bbp_catalogue(), "BBP::") + + # Run a very short simulation to test mechanism instantiation + arb_cell_model.run(tfinal=0.1) + + @pytest.mark.unit def test_cell_model_output_and_read_acc(): """ephys.create_acc: Test output_acc and read_acc w/o axon replacement""" @@ -203,16 +240,7 @@ def test_cell_model_output_and_read_acc(): assert len(arb_morph.branch_segments( cable_cell.cables('"axon"')[0].branch)) == 5 - # Create cell model - arb_cell_model = arbor.single_cell_model(cable_cell) - arb_cell_model.properties.catalogue = arbor.catalogue() - arb_cell_model.properties.catalogue.extend( - arbor.default_catalogue(), "default::") - arb_cell_model.properties.catalogue.extend( - arbor.bbp_catalogue(), "BBP::") - - # Run a very short simulation to test mechanism instantiation - arb_cell_model.run(tfinal=0.1) + run_short_sim(cable_cell) def test_cell_model_output_and_read_acc_replace_axon(): @@ -221,11 +249,9 @@ def test_cell_model_output_and_read_acc_replace_axon(): param_values = {'gnabar_hh': 0.1, 'gkbar_hh': 0.03} - sim = ephys.simulators.NrnSimulator() - cell.instantiate_morphology(sim) - with tempfile.TemporaryDirectory() as acc_dir: - create_acc.output_acc(acc_dir, cell, param_values) + create_acc.output_acc(acc_dir, cell, param_values, + sim=ephys.simulators.NrnSimulator()) try: cell_json, arb_morph, arb_labels, arb_decor = \ create_acc.read_acc( @@ -247,16 +273,7 @@ def test_cell_model_output_and_read_acc_replace_axon(): assert len(arb_morph.branch_segments( cable_cell.cables('"axon"')[0].branch)) == 4 - # Create cell model - arb_cell_model = arbor.single_cell_model(cable_cell) - arb_cell_model.properties.catalogue = arbor.catalogue() - arb_cell_model.properties.catalogue.extend( - arbor.default_catalogue(), "default::") - arb_cell_model.properties.catalogue.extend( - arbor.bbp_catalogue(), "BBP::") - - # Run a very short simulation to test mechanism instantiation - arb_cell_model.run(tfinal=0.1) + run_short_sim(cable_cell) def test_cell_model_create_acc_replace_axon_without_instantiate(): @@ -265,8 +282,9 @@ def test_cell_model_create_acc_replace_axon_without_instantiate(): param_values = {'gnabar_hh': 0.1, 'gkbar_hh': 0.03} - with pytest.raises(ValueError, match='Need to instantiate_morphology' - ' on CellModel before creating' - ' JSON/ACC-description with' - ' axon replacement.'): + with pytest.raises(ValueError, + match='Need an instance of NrnSimulator in sim' + ' to instantiate morphology in order to' + ' create JSON/ACC-description with' + ' axon replacement.'): cell.create_acc(param_values) diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 index 0b712d9d..42362f42 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 @@ -4,7 +4,16 @@ "produced_by": "{{banner}} (from {{ custom_param }})", {%- endif %} {%- if morphology %} {# feed morphology separately as a SWC/ASC file #} - "morphology": "{{morphology}}", + {%- if replace_axon is not none %} + "morphology": { + "path": "{{morphology}}", + "replace_axon": {{replace_axon}} + }, + {%- else %} + "morphology": { + "path": "{{morphology}}" + }, + {%- endif %} {%- else %} execerror("Template {{template_name}} requires morphology name to instantiate") {%- endif %} diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 index 6876c97c..8500ab1a 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 @@ -2,23 +2,32 @@ (meta-data (version "0.1-dev")) (meta-data (info "test-decor")) (decor - {%- for param_name, param in global_params.items() %} - {%- if param.mech is defined %} - (default (density (mechanism "{{ param.mech }}" ("{{ param.name }}" {{ param.value }})))) + {%- for mech, params in global_mechs.items() %} + {%- if mech is not none %} + {%- if mech in global_scaled_mechs %} + (default (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in global_scaled_mechs[mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + {%- else %} + (default (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + {%- endif %} {%- else %} + {%- for param in params %} (default ({{ param.name }} {{ param.value }})) + {%- endfor %} {%- endif %} {%- endfor %} - {%- for loc, mech_parameters in section_params %} - {%- for mech, params in mech_parameters %} + {%- for loc, mech_parameters in section_mechs.items() %}{# paint-to-region instead of default #} + {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} + {%- if mech in section_scaled_mechs[loc] %} + (paint {{regions[loc].ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + {%- else %} (paint {{regions[loc].ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + {%- endif %} {%- else %} {%- for param in params %} (paint {{regions[loc].ref}} ({{ param.name }} {{ param.value }})) {%- endfor %} {%- endif %} {%- endfor %} - - {%- endfor %}{# TODO: range params #})) \ No newline at end of file + {%- endfor %})) diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 index 1502a3cf..1a1d4cbe 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 @@ -2,7 +2,7 @@ (meta-data (version "0.1-dev")) (meta-data (info "test-label-dict")) (label-dict - {%- for loc, parameters in section_params %} {# could also use channels.keys() #} + {%- for loc in section_mechs.keys() %} {# could also use channels.keys() #} {%- if regions[loc].defn is not none %} {{ regions[loc].defn }} {%- endif %} diff --git a/setup.py b/setup.py index c82c0268..76d04beb 100644 --- a/setup.py +++ b/setup.py @@ -87,6 +87,7 @@ }, package_data={ 'bluepyopt': [ + 'ephys/static/arbor_catalogues.json', 'ephys/templates/cell_template.jinja2', 'ephys/templates/acc/_json_template.jinja2', 'ephys/templates/acc/decor_acc_template.jinja2', From 2c672585199b19c0f44da21f5c31900f1a3a2428 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Fri, 5 Aug 2022 20:11:29 +0200 Subject: [PATCH 15/42] Added existing section lists to instantiated cell to prevent crash on iterating over deleted myelin section --- bluepyopt/ephys/models.py | 29 +++++++++++++++++------------ 1 file changed, 17 insertions(+), 12 deletions(-) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index f9a49669..6fbec5db 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -102,6 +102,7 @@ def __init__( # Cell instantiation in simulator self.icell = None + self.icell_existing_secs = None self.param_values = None self.gid = gid @@ -240,6 +241,10 @@ def instantiate_morphology(self, sim=None): self.morphology.instantiate(sim=sim, icell=self.icell) + self.icell_existing_secs = [ + sec for sec in self.secarray_names + if sim.neuron.h.section_exists(sec, self.icell)] + def instantiate(self, sim=None): """Instantiate model in simulator""" @@ -268,6 +273,7 @@ def destroy(self, sim=None): # pylint: disable=W0613 sim.neuron.h.Vector().size() self.icell = None + self.icell_existing_secs = None self.morphology.destroy(sim=sim) for mechanism in self.mechanisms: @@ -289,7 +295,8 @@ def _create_sim_desc(self, param_values, ignored_globals=(), template=None, disable_banner=False, template_dir=None, - sim_desc_creator=None): + sim_desc_creator=None, + sim=None): """Create simulator description for this model""" to_unfreeze = [] @@ -324,17 +331,15 @@ def _create_sim_desc(self, param_values, replace_axon += morph_modifier_hoc elif sim_desc_creator is create_acc.create_acc: if self.morphology.do_replace_axon: - replace_axon = [dict(nseg=section.nseg, - length=section.L, - radius=0.5 * section.diam, - tag=morphologies._arb_tags['axon']) - for section in self.icell.axon] - # Requires safe iteration over myelin section - # replace_axon += [dict(nseg=section.nseg, - # length=section.L, - # radius=0.5 * section.diam, - # tag=morphologies._arb_tags['myelin']) - # for section in self.icell.myelin] + replace_axon = [] + for sec in ['axon', 'myelin']: + if sec in self.icell_existing_secs: + replace_axon += \ + [dict(nseg=section.nseg, + length=section.L, + radius=0.5 * section.diam, + tag=morphologies._arb_tags[sec]) + for section in getattr(self.icell, sec)] else: replace_axon = None else: From ab004f693a9c6b8eeed86a2bc8ff159d478a0924 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 8 Aug 2022 11:00:09 +0200 Subject: [PATCH 16/42] Arbor package data fixes --- MANIFEST.in | 1 + bluepyopt/ephys/create_acc.py | 12 ++++++------ bluepyopt/ephys/models.py | 3 ++- bluepyopt/ephys/morphologies.py | 23 +++++++++++------------ setup.py | 2 +- 5 files changed, 21 insertions(+), 20 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index 06b76d58..0781bf41 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,5 +1,6 @@ include versioneer.py include bluepyopt/_version.py +include bluepyopt/ephys/static/arbor_mechanisms.json include bluepyopt/ephys/templates/cell_template.jinja2 include bluepyopt/ephys/templates/acc/_json_template.jinja2 include bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 7cb8fa69..52cce9c6 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -18,7 +18,7 @@ from .create_hoc import Location, RangeExpr, \ _get_template_params, format_float, DEFAULT_LOCATION_ORDER -from .morphologies import _arb_tags, ArbFileMorphology +from .morphologies import ArbFileMorphology # Define Neuron to Arbor variable conversions @@ -127,11 +127,11 @@ def _make_tagged_region(region, tag): # defining "all" region for convenience here, else use # all=_arb_defined_region('(all)') to omit "all" in label_dict all=_make_region('all', '(all)'), - somatic=_make_tagged_region('soma', _arb_tags['soma']), - axonal=_make_tagged_region('axon', _arb_tags['axon']), - basal=_make_tagged_region('dend', _arb_tags['dend']), - apical=_make_tagged_region('apic', _arb_tags['apic']), - myelinated=_make_tagged_region('myelin', _arb_tags['myelin']), + somatic=_make_tagged_region('soma', ArbFileMorphology.tags['soma']), + axonal=_make_tagged_region('axon', ArbFileMorphology.tags['axon']), + basal=_make_tagged_region('dend', ArbFileMorphology.tags['dend']), + apical=_make_tagged_region('apic', ArbFileMorphology.tags['apic']), + myelinated=_make_tagged_region('myelin', ArbFileMorphology.tags['myelin']), ) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 6fbec5db..21cdd9bb 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -338,7 +338,8 @@ def _create_sim_desc(self, param_values, [dict(nseg=section.nseg, length=section.L, radius=0.5 * section.diam, - tag=morphologies._arb_tags[sec]) + tag=morphologies. + ArbFileMorphology.tags[sec]) for section in getattr(self.icell, sec)] else: replace_axon = None diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 9a2bf492..6dda9816 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -247,18 +247,17 @@ def replace_axon(sim=None, icell=None): ''' -# Arbor morphology tags -_arb_tags = dict( - soma=1, - axon=2, - dend=3, - apic=4, - myelin=5 -) - - class ArbFileMorphology(Morphology, DictMixin): + # Arbor morphology tags + tags = dict( + soma=1, + axon=2, + dend=3, + apic=4, + myelin=5 + ) + @staticmethod def replace_axon(morphology, replacement=None): '''return a morphology with the axon replaced by two 30 um segments @@ -291,8 +290,8 @@ def _mpt_to_coord(mpt): "Need a newer version of Arbor for axon replacement.") # Arbor tags - axon_tag = _arb_tags['axon'] - soma_tag = _arb_tags['soma'] + axon_tag = ArbFileMorphology.tags['axon'] + soma_tag = ArbFileMorphology.tags['soma'] # Prune morphology to remove axon (myelin not assumed to exist) st = morphology.to_segment_tree() diff --git a/setup.py b/setup.py index 76d04beb..7cebc763 100644 --- a/setup.py +++ b/setup.py @@ -87,7 +87,7 @@ }, package_data={ 'bluepyopt': [ - 'ephys/static/arbor_catalogues.json', + 'ephys/static/arbor_mechanisms.json', 'ephys/templates/cell_template.jinja2', 'ephys/templates/acc/_json_template.jinja2', 'ephys/templates/acc/decor_acc_template.jinja2', From e68599075fa05e65e4c49e8377d8ed861c41a02a Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 11 Aug 2022 17:22:16 +0200 Subject: [PATCH 17/42] Validation of simulation output with Arbor vs. Neuron for L5PC mechs incl. functional test --- Makefile | 10 +- bluepyopt/ephys/create_acc.py | 24 +- bluepyopt/ephys/morphologies.py | 21 +- bluepyopt/tests/test_l5pc.py | 31 + .../l5pc_soma_arbor/param_values.json | 112 ++ examples/l5pc/l5pc_model.py | 22 +- examples/l5pc/l5pc_soma_arbor.ipynb | 1092 +++++++++++++++++ examples/l5pc/l5pc_soma_arbor_pm.py | 208 ++++ 8 files changed, 1498 insertions(+), 22 deletions(-) create mode 100644 bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json create mode 100644 examples/l5pc/l5pc_soma_arbor.ipynb create mode 100644 examples/l5pc/l5pc_soma_arbor_pm.py diff --git a/Makefile b/Makefile index 42371deb..35984710 100644 --- a/Makefile +++ b/Makefile @@ -15,7 +15,11 @@ l5pc_nbconvert: jupyter cd examples/l5pc && \ jupyter nbconvert --to python L5PC.ipynb && \ sed '/get_ipython/d;/plt\./d;/plot_responses/d;/import matplotlib/d;/neurom/d;/axes/d;/fig/d;/for index/d' L5PC.py >L5PC.tmp && \ - mv L5PC.tmp L5PC.py + mv L5PC.tmp L5PC.py && \ + python l5pc_soma_arbor_pm.py --prepare-only --regions somatic --param-values ../../bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json && \ + jupyter nbconvert --to python l5pc_soma_arbor_somatic.ipynb && \ + sed '/get_ipython/d;/plt\./d;/import matplotlib/d;/from IPython.display/d;/multiprocessing/d;s/pool.map/map/g;s/# test_l5pc: insert //g;/# test_l5pc: skip/d' l5pc_soma_arbor_somatic.py >l5pc_soma_arbor_somatic.tmp && \ + mv l5pc_soma_arbor_somatic.tmp l5pc_soma_arbor_somatic.py l5pc_nrnivmodl: cd examples/l5pc && nrnivmodl mechanisms l5pc_zip: @@ -41,6 +45,8 @@ coverage_test: test jupyter: pip install jupyter pip install ipython --upgrade + pip install papermill + pip install scipy install_test_requirements: pip install -q $(TEST_REQUIREMENTS) --upgrade test: clean unit functional @@ -65,6 +71,8 @@ clean: rm -rf bluepyopt/tests/coverage.xml rm -rf bluepyopt/tests/coverage_html rm -rf examples/l5pc/L5PC.py + rm -rf examples/l5pc/l5pc_soma_arbor_somatic.ipynb + rm -rf examples/l5pc/l5pc_soma_arbor_somatic.py rm -rf examples/l5pc/x86_64 rm -rf examples/stochkv/x86_64 rm -rf .coverage diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 52cce9c6..3566dd76 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -4,7 +4,7 @@ import os import logging - +import pathlib from collections import namedtuple from glob import glob @@ -14,6 +14,17 @@ import shutil import ast +try: + import arbor +except ImportError as e: + class arbor: + def __getattribute__(self, _): + raise ImportError("Loading an ACC/JSON-exported cell model into an" + " Arbor morphology and cable cell components" + " requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") + logger = logging.getLogger(__name__) from .create_hoc import Location, RangeExpr, \ @@ -544,7 +555,7 @@ def create_acc(mechs, of a custom template ''' - if morphology[-4:].lower() not in ['.swc', '.asc']: + if pathlib.Path(morphology).suffix.lower() not in ['.swc', '.asc']: raise RuntimeError("Morphology file %s not supported in Arbor " " (only supported types are .swc and .asc)." % morphology) @@ -671,15 +682,6 @@ def read_acc(cell_json_filename): meta-information on morphology, label-dict and decor of exported cell ''' - try: - import arbor - except ImportError as e: - raise ImportError("Loading an ACC/JSON-exported cell model into an" - " Arbor morphology and cable cell components" - " requires missing dependency arbor." - " To install BluePyOpt with arbor," - " run 'pip install bluepyopt[arbor]'.") - with open(cell_json_filename) as cell_json_file: cell_json = json.load(cell_json_file) diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 6dda9816..57390fa1 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -27,6 +27,19 @@ from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin +try: + import arbor + import numpy +except ImportError as e: + class arbor: + def __getattribute__(self, _): + raise ImportError("Loading an ACC/JSON-exported cell model into an" + " Arbor morphology and cable cell components" + " requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") + + logger = logging.getLogger(__name__) # TODO define an addressing scheme @@ -271,14 +284,6 @@ def replace_axon(morphology, replacement=None): interpreted so that the axon replacement is formed from a single branch of stacked cylindrical segments. ''' - import numpy - try: - import arbor - except ImportError as e: - raise ImportError("Creating Arbor morphology with axon replacement" - " requires missing dependency arbor." - " To install BluePyOpt with arbor," - " run 'pip install bluepyopt[arbor]'.") def _mpt_to_coord(mpt): '''Convert arbor.mpoint 3d center coordinates to numpy array''' diff --git a/bluepyopt/tests/test_l5pc.py b/bluepyopt/tests/test_l5pc.py index a3bcdfb4..859edbf4 100644 --- a/bluepyopt/tests/test_l5pc.py +++ b/bluepyopt/tests/test_l5pc.py @@ -174,3 +174,34 @@ def test_exec(): finally: os.chdir(old_cwd) output.close() + + +@pytest.mark.slow +def test_l5pc_soma_arbor(): + """L5PC Soma Arbor Notebook: test execution""" + import numpy + numpy.seterr(all='raise') + old_cwd = os.getcwd() + output = StringIO() + try: + os.chdir(L5PC_PATH) + with stdout_redirector(output): + # When using import instead of execfile this doesn't work + # Probably because multiprocessing doesn't work correctly during + # import + if sys.version_info[0] < 3: + execfile('l5pc_soma_arbor_somatic.py') # NOQA + else: + with open('l5pc_soma_arbor_somatic.py') as l5pc_file: + globals = {} + exec(compile(l5pc_file.read(), + 'l5pc_soma_arbor_somatic.py', + 'exec'), globals, globals) # NOQA + stdout = output.getvalue() + # mean relative L1-deviation between Arbor and Neuron below tolerance + assert 'Default dt ({:,.3g}): test_l5pc OK!'.format(0.025) + \ + ' The mean relative Arbor-Neuron L1-deviation and error' \ + in stdout + finally: + os.chdir(old_cwd) + output.close() diff --git a/bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json b/bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json new file mode 100644 index 00000000..09dc0805 --- /dev/null +++ b/bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json @@ -0,0 +1,112 @@ +[ + { + "gNaTs2_tbar_NaTs2_t.apical": 0.024728378969164945, + "gSKv3_1bar_SKv3_1.apical": 0.03798941330025154, + "gImbar_Im.apical": 0.0002539253963547741, + "gNaTa_tbar_NaTa_t.axonal": 1.4077868264399775, + "gNap_Et2bar_Nap_Et2.axonal": 0.4883696674077984, + "gK_Pstbar_K_Pst.axonal": 0.2094093687043327, + "gK_Tstbar_K_Tst.axonal": 0.014394661257078424, + "gSK_E2bar_SK_E2.axonal": 0.08531938445280127, + "gSKv3_1bar_SKv3_1.axonal": 1.9458756462007896, + "gCa_HVAbar_Ca_HVA.axonal": 0.00047482720978403063, + "gCa_LVAstbar_Ca_LVAst.axonal": 0.003298061450166594, + "gamma_CaDynamics_E2.axonal": 0.0016672175965771645, + "decay_CaDynamics_E2.axonal": 107.99372196248892, + "gNaTs2_tbar_NaTs2_t.somatic": 0.016894566815433776, + "gSKv3_1bar_SKv3_1.somatic": 0.5504181382385894, + "gSK_E2bar_SK_E2.somatic": 0.0014684200840784367, + "gCa_HVAbar_Ca_HVA.somatic": 0.0009900677505308665, + "gCa_LVAstbar_Ca_LVAst.somatic": 0.004837611369100268, + "gamma_CaDynamics_E2.somatic": 0.04468460763916868, + "decay_CaDynamics_E2.somatic": 700.3244890996936 + }, + { + "gNaTs2_tbar_NaTs2_t.apical": 0.012563715900342314, + "gSKv3_1bar_SKv3_1.apical": 0.030532088135424608, + "gImbar_Im.apical": 0.0003896322863148641, + "gNaTa_tbar_NaTa_t.axonal": 0.8703921802368879, + "gNap_Et2bar_Nap_Et2.axonal": 2.709684677548464, + "gK_Pstbar_K_Pst.axonal": 0.5684212625540379, + "gK_Tstbar_K_Tst.axonal": 0.046099219765027045, + "gSK_E2bar_SK_E2.axonal": 0.043249366076373946, + "gSKv3_1bar_SKv3_1.axonal": 0.9098265241750978, + "gCa_HVAbar_Ca_HVA.axonal": 0.0008372326923436864, + "gCa_LVAstbar_Ca_LVAst.axonal": 0.004471958629720602, + "gamma_CaDynamics_E2.axonal": 0.028712619127496453, + "decay_CaDynamics_E2.axonal": 545.1278177178857, + "gNaTs2_tbar_NaTs2_t.somatic": 0.871765930712021, + "gSKv3_1bar_SKv3_1.somatic": 0.3138873150781861, + "gSK_E2bar_SK_E2.somatic": 0.030636708881805065, + "gCa_HVAbar_Ca_HVA.somatic": 0.000529125383577793, + "gCa_LVAstbar_Ca_LVAst.somatic": 0.00962925219116365, + "gamma_CaDynamics_E2.somatic": 0.033127331525490814, + "decay_CaDynamics_E2.somatic": 167.9228279662214 + }, + { + "gNaTs2_tbar_NaTs2_t.apical": 0.023754244090072044, + "gSKv3_1bar_SKv3_1.apical": 0.006212933071327114, + "gImbar_Im.apical": 0.0009715296912019645, + "gNaTa_tbar_NaTa_t.axonal": 0.7373787531734117, + "gNap_Et2bar_Nap_Et2.axonal": 0.14550976345268296, + "gK_Pstbar_K_Pst.axonal": 0.1500413898237769, + "gK_Tstbar_K_Tst.axonal": 0.0019137698820653637, + "gSK_E2bar_SK_E2.axonal": 0.06696554369807915, + "gSKv3_1bar_SKv3_1.axonal": 0.511825279299768, + "gCa_HVAbar_Ca_HVA.axonal": 0.0007806372330552697, + "gCa_LVAstbar_Ca_LVAst.axonal": 0.007394490284020838, + "gamma_CaDynamics_E2.axonal": 0.04003636754376934, + "decay_CaDynamics_E2.axonal": 254.82663985773573, + "gNaTs2_tbar_NaTs2_t.somatic": 0.9463622816113636, + "gSKv3_1bar_SKv3_1.somatic": 0.2409150965622644, + "gSK_E2bar_SK_E2.somatic": 0.027392704914052657, + "gCa_HVAbar_Ca_HVA.somatic": 0.0003139343269991607, + "gCa_LVAstbar_Ca_LVAst.somatic": 0.001884976561409778, + "gamma_CaDynamics_E2.somatic": 0.02683739540253667, + "decay_CaDynamics_E2.somatic": 422.10139260028944 + }, + { + "gNaTs2_tbar_NaTs2_t.apical": 0.00028168114836296, + "gSKv3_1bar_SKv3_1.apical": 0.0002791900939042247, + "gImbar_Im.apical": 3.061981691214699e-05, + "gNaTa_tbar_NaTa_t.axonal": 2.408780313553162, + "gNap_Et2bar_Nap_Et2.axonal": 1.4061498137665431, + "gK_Pstbar_K_Pst.axonal": 0.3943872359829874, + "gK_Tstbar_K_Tst.axonal": 0.035561350976474206, + "gSK_E2bar_SK_E2.axonal": 0.02171178703228345, + "gSKv3_1bar_SKv3_1.axonal": 1.7696510942499797, + "gCa_HVAbar_Ca_HVA.axonal": 0.0006580710297293586, + "gCa_LVAstbar_Ca_LVAst.axonal": 0.0063160804680408205, + "gamma_CaDynamics_E2.axonal": 0.023213952061165458, + "decay_CaDynamics_E2.axonal": 967.0051783210414, + "gNaTs2_tbar_NaTs2_t.somatic": 0.6021516164385508, + "gSKv3_1bar_SKv3_1.somatic": 0.6231231198067643, + "gSK_E2bar_SK_E2.somatic": 0.031180502899348185, + "gCa_HVAbar_Ca_HVA.somatic": 1.8482399998351218e-05, + "gCa_LVAstbar_Ca_LVAst.somatic": 0.0006089857296922108, + "gamma_CaDynamics_E2.somatic": 0.014921182004896194, + "decay_CaDynamics_E2.somatic": 220.06396960215915 + }, + { + "gNaTs2_tbar_NaTs2_t.apical": 0.03414645624289801, + "gSKv3_1bar_SKv3_1.apical": 0.03716027643455195, + "gImbar_Im.apical": 0.0006141579238080173, + "gNaTa_tbar_NaTa_t.axonal": 1.3903172305839067, + "gNap_Et2bar_Nap_Et2.axonal": 0.8426141730398107, + "gK_Pstbar_K_Pst.axonal": 0.6391552213781772, + "gK_Tstbar_K_Tst.axonal": 0.09532353467899872, + "gSK_E2bar_SK_E2.axonal": 0.0003580425070283666, + "gSKv3_1bar_SKv3_1.axonal": 1.6453573616166768, + "gCa_HVAbar_Ca_HVA.axonal": 0.0008843062363314521, + "gCa_LVAstbar_Ca_LVAst.axonal": 0.004350888951090779, + "gamma_CaDynamics_E2.axonal": 0.013015501138335075, + "decay_CaDynamics_E2.axonal": 317.84821369565793, + "gNaTs2_tbar_NaTs2_t.somatic": 0.5411660208241308, + "gSKv3_1bar_SKv3_1.somatic": 0.16267060224572238, + "gSK_E2bar_SK_E2.somatic": 0.019600545141054505, + "gCa_HVAbar_Ca_HVA.somatic": 0.0001971878789850715, + "gCa_LVAstbar_Ca_LVAst.somatic": 0.003305523187140309, + "gamma_CaDynamics_E2.somatic": 0.03067667559799945, + "decay_CaDynamics_E2.somatic": 984.7729355155103 + } +] \ No newline at end of file diff --git a/examples/l5pc/l5pc_model.py b/examples/l5pc/l5pc_model.py index fa39689d..5c2b8e8d 100644 --- a/examples/l5pc/l5pc_model.py +++ b/examples/l5pc/l5pc_model.py @@ -36,12 +36,22 @@ def define_mechanisms(): """Define mechanisms""" - mech_definitions = json.load( + mech_definitions = load_mechanisms() + return create_mechanisms(mech_definitions) + + +def load_mechanisms(): + + return json.load( open( os.path.join( config_dir, 'mechanisms.json'))) + + +def create_mechanisms(mech_definitions): + mechanisms = [] for sectionlist, channels in mech_definitions.items(): seclist_loc = ephys.locations.NrnSeclistLocation( @@ -61,7 +71,15 @@ def define_mechanisms(): def define_parameters(): """Define parameters""" - param_configs = json.load(open(os.path.join(config_dir, 'parameters.json'))) + param_configs = load_parameters() + return create_parameters(param_configs) + + +def load_parameters(): + return json.load(open(os.path.join(config_dir, 'parameters.json'))) + + +def create_parameters(param_configs): parameters = [] for param_config in param_configs: diff --git a/examples/l5pc/l5pc_soma_arbor.ipynb b/examples/l5pc/l5pc_soma_arbor.ipynb new file mode 100644 index 00000000..629a2512 --- /dev/null +++ b/examples/l5pc/l5pc_soma_arbor.ipynb @@ -0,0 +1,1092 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "# Simulating optimized cells in Arbor and cross-validation with Neuron\n", + "\n", + "This notebook demonstrates how to run a simulation of a simple single compartmental cell with fixed/optimized parameters in Arbor. We follow the standard BluePyOpt flow of setting up an electrophysiological experiment and export the cell model to a mixed JSON/ACC-format. We then cross-validate voltage traces obtained with Arbor with those from a Neuron simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "# Choose subset of L5PC mechanisms to run (all regional mechs get re-mapped to soma)\n", + "mechanism_defs = dict(\n", + " all=['pas'],\n", + " somatic=['hh'])\n", + "\n", + "extra_params = dict(\n", + " v_init='global',\n", + " # celsius='global',\n", + " cm=['all'],\n", + " Ra=['all'],\n", + " g_pas=['all'], # add 'pas' to mechs on all above\n", + " e_pas=['all'], # add 'pas' to mechs on all above\n", + ")\n", + "\n", + "param_values_json = None\n", + "\n", + "default_dt = 0.025\n", + "\n", + "fine_dt = 0.001\n", + "\n", + "voltage_residual_rel_l1_tolerance = 5e-2\n", + "\n", + "run_spike_time_analysis = True\n", + "\n", + "run_fine_dt = True" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "%load_ext autoreload\n", + "%autoreload" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "First we need to compile the L5PC mechanisms and import the module that contains all the functionality to create electrical cell models" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "!nrnivmodl mechanisms\n", + "import bluepyopt as bpop\n", + "import bluepyopt.ephys as ephys" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "import tempfile\n", + "from dataclasses import dataclass\n", + "import typing\n", + "import warnings\n", + "import multiprocessing\n", + "\n", + "import numpy\n", + "import pandas\n", + "import scipy.integrate\n", + "import scipy.interpolate\n", + "\n", + "import arbor\n", + "\n", + "from IPython.display import display" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "If you want to see a lot of information about the internals, \n", + "the verbose level can be set to 'debug' by commenting out\n", + "the following lines" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# import logging\n", + "# logger = logging.getLogger()\n", + "# logger.setLevel(logging.DEBUG)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Setting up the cell model\n", + "\n", + "We use a single-compartimental cell model with the same morphology as in the `simplecell` example, but mechanisms from the `l5pc` model. They are instantiated with different options for axon replacement policy and (by default randomly sampled) mechanism parameter values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# parameter randomization\n", + "import json\n", + "import random\n", + "\n", + "# os.chdir('../../../BluePyOpt/examples/l5pc')\n", + "import l5pc_model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Creating the protocols\n", + "\n", + "A protocol consists of a set of stimuli and recordings. These responses will later be used to compare voltage traces from simulations between Arbor and Neuron for different parameter values and axon replacement configurations.\n", + "\n", + "For the protocols, we apply stimuli centrally at the soma and probe the membrane voltage at a slightly displaced location. For this purpose, we introduce locations in Arbor, which are specified by a relative position `pos` on a `branch` of the morphology." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Arbor location\n", + "class ArbLocation(ephys.locations.Location):\n", + " def __init__(self, name, branch, pos, comment=''):\n", + " super().__init__(_arb_label(name), comment)\n", + " self.branch = branch\n", + " self.pos = pos\n", + "\n", + " def instantiate(self):\n", + " return _arb_unlabel(self.name), '(location %s %s)' % (self.branch, self.pos)\n", + "\n", + "\n", + "# Helper functions\n", + "def _arb_label(name):\n", + " return '\"%s\"' % name\n", + "\n", + "\n", + "def _arb_unlabel(name):\n", + " return name[1:-1]\n", + "\n", + "\n", + "# Make locations available to Arbor by instantiating them on the label dictionary \n", + "def instantiate_locations(labels, locations):\n", + " labels.append(\n", + " arbor.label_dict(\n", + " dict([loc.instantiate() for loc in locations.values()])))\n", + "\n", + "\n", + "# Define locations on branch 0 of the morphology (soma)\n", + "arb_locations = dict(\n", + " stim_loc=ArbLocation(\n", + " name='stim_loc',\n", + " branch=0,\n", + " pos=0.5\n", + " ),\n", + " probe_loc=ArbLocation(\n", + " name='probe_loc',\n", + " branch=0,\n", + " pos=0.75\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "nrn_locations = dict(\n", + " stim_loc=ephys.locations.NrnSeclistCompLocation(\n", + " name='soma',\n", + " seclist_name='somatic',\n", + " sec_index=0,\n", + " comp_x=0.5),\n", + " probe_loc=ephys.locations.NrnSeclistCompLocation(\n", + " name='probe',\n", + " seclist_name='somatic',\n", + " sec_index=0,\n", + " comp_x=0.75)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "We use a modified version of the L5PC protocols with shortened stimulus duration and reduced amplitudes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Protocol prots configuration\n", + "protocol_steps = []\n", + "for name, amplitude, duration in [('bAP', 0.19, 5), ('Step1', 0.0458, 50), ('Step3', 0.095, 50)]:\n", + " protocol_steps.append(\n", + " dict(name=name,\n", + " total_duration=120,\n", + " stimuli=[\n", + " dict(name='%s.iclamp' % name,\n", + " location='stim_loc',\n", + " amplitude=amplitude,\n", + " delay=40,\n", + " duration=duration)],\n", + " recordings=[\n", + " dict(name='%s.soma.v' % name,\n", + " location='probe_loc')]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The current stimuli, voltage and spike recordings are made available to Arbor by lazily instantiating them on decors/cell models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Current stimuli\n", + "def instantiate_stimuli(decor, stimuli, locations):\n", + " for stim in stimuli:\n", + " decor.place(locations[stim['location']].name,\n", + " arbor.iclamp(stim['delay'],\n", + " stim['duration'],\n", + " current=stim['amplitude']),\n", + " stim['name'])\n", + "\n", + "# Spike detection with a voltage threshold of -10 mV\n", + "# (different from spike_time observables in eFEL that measure 'peak_time')\n", + "def instantiate_spike_recordings(decor, recordings, locations):\n", + " for i, rec in enumerate(recordings):\n", + " decor.place(locations[rec['location']].name,\n", + " arbor.spike_detector(-10),\n", + " 'spike_detector' + '.%s' % i)\n", + "\n", + "# Attach voltage probe sampling at 10 kHz (every 0.1 ms).\n", + "def instantiate_voltage_recordings(cell_model, recordings, locations):\n", + " for i, rec in enumerate(recordings):\n", + " # alternatively arbor.cable_probe_membrane_voltage\n", + " cell_model.probe('voltage',\n", + " locations[rec['location']].name,\n", + " frequency=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The protocols for Neuron are defined analogous to the L5PC model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "sweep_protocols = []\n", + "for prot_def in protocol_steps:\n", + " stims = []\n", + " for stim in prot_def['stimuli']:\n", + " stims.append(ephys.stimuli.NrnSquarePulse(step_amplitude=stim['amplitude'],\n", + " step_delay=stim['delay'],\n", + " step_duration=stim['duration'],\n", + " location=nrn_locations[stim['location']],\n", + " total_duration=prot_def['total_duration']))\n", + "\n", + " recs = []\n", + " for rec in prot_def['recordings']:\n", + " recs.append(ephys.recordings.CompRecording(\n", + " name=rec['name'],\n", + " location=nrn_locations[rec['location']],\n", + " variable='v'))\n", + "\n", + " protocol = ephys.protocols.SweepProtocol(prot_def['name'], stims, recs)\n", + " sweep_protocols.append(protocol)\n", + "\n", + "nrn_protocol = ephys.protocols.SequenceProtocol('multistep', protocols=sweep_protocols)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Running a protocol on an Arbor cable cell\n", + "\n", + "To run a protocol in Arbor, we need to export the cell model to a mixed JSON/ACC-format and assemble an Arbor cable cell on which we instantiate the locations, protocol stimuli and recordings. We use this cell to build a `single_cell_model` that sets up the constituents of an Arbor simulation and enables running a sweep protocol.\n", + "\n", + "To run the protocols also with Neuron, we follow the standard flow by creating a simulator object." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class ArbSequenceProtocol(ephys.protocols.Protocol):\n", + " '''Run multiple sweep protocol steps and extract voltage traces/detected spikes'''\n", + "\n", + " def __init__(self, name, protocols, locations):\n", + " super().__init__(name)\n", + " self.protocols = protocols\n", + " self.locations = locations\n", + "\n", + " @staticmethod\n", + " def run_sweep_protocol(prot_def, locations, cell, params, dt):\n", + " '''Write cell model to ACC/JSON and run sweep protocol step'''\n", + " # Export cell model to mixed JSON/ACC-format\n", + " with tempfile.TemporaryDirectory() as acc_dir:\n", + " ephys.create_acc.output_acc(acc_dir, cell, params)\n", + " cell_json, morph, labels, decor = \\\n", + " ephys.create_acc.read_acc(\n", + " os.path.join(acc_dir, cell.name + '.json'))\n", + "\n", + " # Instantiate protocols on cable cell components\n", + " instantiate_locations(labels, locations)\n", + " instantiate_stimuli(decor, prot_def['stimuli'], locations)\n", + " instantiate_spike_recordings(decor, prot_def['recordings'], locations)\n", + " \n", + " # Create cable cell\n", + " cable_cell = arbor.cable_cell(morph, labels, decor)\n", + " # can output and visualize the cable cell in the Arbor GUI using\n", + " # arbor.write_component(cable_cell, '.acc')\n", + "\n", + " # Create single cell model\n", + " arb_cell_model = arbor.single_cell_model(cable_cell)\n", + "\n", + " # Add catalogues with explicit qualifiers\n", + " arb_cell_model.properties.catalogue = arbor.catalogue()\n", + " arb_cell_model.properties.catalogue.extend(\n", + " arbor.default_catalogue(), \"default::\")\n", + " arb_cell_model.properties.catalogue.extend(\n", + " arbor.bbp_catalogue(), \"BBP::\")\n", + " \n", + " # Instantiate remaining voltage recording\n", + " instantiate_voltage_recordings(arb_cell_model, prot_def['recordings'], locations)\n", + "\n", + " # Run the simulation for the protocol step\n", + " arb_cell_model.run(tfinal=prot_def['total_duration'], dt=dt)\n", + "\n", + " # Collect results\n", + " arb_resp = dict()\n", + " for i, rec in enumerate(prot_def['recordings']):\n", + " arb_resp[rec['name']] = \\\n", + " dict(time=arb_cell_model.traces[i].time,\n", + " voltage=arb_cell_model.traces[i].value,\n", + " spikes=arb_cell_model.spikes) # TODO: handle global callback\n", + "\n", + " return arb_resp\n", + "\n", + "\n", + " def run(self, cell_model, params, dt):\n", + " arb_resp = dict()\n", + " for prot_def in self.protocols:\n", + " arb_resp.update(self.run_sweep_protocol(\n", + " prot_def, self.locations, cell_model, params, dt))\n", + " return arb_resp\n", + "\n", + "\n", + "arb_protocol = ArbSequenceProtocol('multistep', protocol_steps, arb_locations)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cross-validation of Arbor and Neuron voltage traces\n", + "\n", + "To validate Arbor's simulation output with that of Neuron, we run the protocols over a set of parameter values, either loaded from a JSON-file or randomly sampled from the parameter bounds (using `random.uniform(*bounds)`) and both with and without axon replacement.\n", + "\n", + "First, we gather L5PC mechanisms and parameters according to `mechanism_defs` and `extra_params` in the top cell of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mechanisms = l5pc_model.create_mechanisms(\n", + " dict(all=mechanism_defs['all'],\n", + " somatic=[mech for loc, mechs in mechanism_defs.items() \n", + " if loc != 'all' for mech in mechs]))\n", + "\n", + "l5pc_param_configs = l5pc_model.load_parameters()\n", + "l5pc_param_names = []\n", + "for p in l5pc_param_configs:\n", + " if 'mech' in p and p['mech'] in mechanism_defs.get(p['sectionlist'], []):\n", + " l5pc_param_names.append(p['param_name'] + '.' + p['sectionlist'])\n", + "\n", + "param_configs = []\n", + "for p in l5pc_param_configs:\n", + " if 'mech' not in p:\n", + " if p['param_name'] in extra_params and (p['type'] == 'global' or \\\n", + " p['sectionlist'] in extra_params[p['param_name']]):\n", + " if p['type'] != 'global' and p['sectionlist'] != 'all':\n", + " p['sectionlist'] = 'somatic' # remap to soma\n", + " param_configs.append(p)\n", + "\n", + " elif p['mech'] in mechanism_defs.get(p['sectionlist'], []):\n", + " p['sectionlist'] = 'somatic' # remap to soma\n", + " param_configs.append(p)\n", + "\n", + "if 'somatic' in mechanism_defs and 'hh' in mechanism_defs['somatic']:\n", + " for param_name, bounds in [('gnabar', (0.05, 0.125)),\n", + " ('gkbar', (0.01, 0.075))]:\n", + " param_configs.append({\n", + " \"param_name\": param_name + \"_hh\",\n", + " \"mech\": \"hh\",\n", + " \"bounds\": bounds,\n", + " \"dist_type\": \"uniform\",\n", + " \"type\": \"range\",\n", + " \"sectionlist\": \"somatic\"\n", + " })\n", + "\n", + "parameters = l5pc_model.create_parameters(param_configs)\n", + "\n", + "# Print the names of all parameters\n", + "[p.name for p in parameters]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We either randomly sample or read the values of non-frozen parameters from a file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not hasattr(arbor, \"prune_tag\"): # skip axon replacement if not yet supported\n", + " replace_axon = [False]\n", + "else:\n", + " replace_axon = [False, True]\n", + "\n", + "non_frozen_parameters = [param for param in parameters if not param.frozen]\n", + "param_names = [param.name for param in non_frozen_parameters]\n", + "\n", + "if param_values_json is not None:\n", + " with open(param_values_json) as f:\n", + " params = []\n", + " for param_sample in json.load(f):\n", + " ps = dict()\n", + " for p_name, p_value in param_sample.items():\n", + " if p_name in l5pc_param_names:\n", + " ps[p_name.split('.')[0] + '.somatic'] = p_value\n", + " params.append(ps)\n", + "else:\n", + " params = [{param.name: random.uniform(*param.bounds)\n", + " for param in non_frozen_parameters}\n", + " for i in range(10)]\n", + "params" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " We use a factory to create cell models with different configurations. This enables us to run both Arbor and Neuron simulations for the defined sequence protocols and each combination of axon replacement and parameter values..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@dataclass\n", + "class CellModelFactory:\n", + " mechanisms: typing.List[ephys.mechanisms.NrnMODMechanism]\n", + " parameters: typing.List[ephys.parameters.NrnParameter]\n", + "\n", + " def create_cell_model(self, do_replace_axon):\n", + "\n", + " morphology = ephys.morphologies.NrnFileMorphology(\n", + " '../simplecell/simple.swc', do_replace_axon=do_replace_axon)\n", + "\n", + " return ephys.models.CellModel(\n", + " 'simple_cell',\n", + " morph=morphology,\n", + " mechs=self.mechanisms,\n", + " params=self.parameters)\n", + "\n", + "@dataclass\n", + "class SimulationRunner:\n", + " cell_factory: CellModelFactory\n", + " arb_protocol: ArbSequenceProtocol\n", + " nrn_protocol: ephys.protocols.SequenceProtocol\n", + "\n", + " def run_all(self, replace_axon_policies, param_list, dt=0.025):\n", + " arb_resp = dict()\n", + " nrn_resp = dict()\n", + "\n", + " nrn_sim = ephys.simulators.NrnSimulator(dt=dt)\n", + "\n", + " for do_replace_axon in replace_axon_policies:\n", + " for param_i in range(len(param_list)):\n", + "\n", + " cell_model = self.cell_factory.create_cell_model(do_replace_axon=do_replace_axon)\n", + "\n", + " # calculate morphology with axon-replacement in Neuron\n", + " cell_model.instantiate_morphology(nrn_sim)\n", + "\n", + " key = (do_replace_axon, param_i)\n", + " arb_resp[key] = self.arb_protocol.run(cell_model, param_list[param_i], dt=dt)\n", + "\n", + " # need to destroy instantiated cell model first to avoid Hoc serialization error\n", + " cell_model.destroy(sim=nrn_sim)\n", + "\n", + " nrn_resp[key] = self.nrn_protocol.run(cell_model, param_list[param_i], nrn_sim)\n", + " return arb_resp, nrn_resp\n", + "\n", + "\n", + "cell_factory = CellModelFactory(mechanisms, parameters)\n", + "simulation_runner = SimulationRunner(cell_factory, arb_protocol, nrn_protocol)\n", + "arb_responses, nrn_responses = simulation_runner.run_all(replace_axon, params, default_dt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "...and to plot the responses for visual validation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_response_comparison(arb_resp, nrn_resp, title):\n", + " num_protocols = len(protocol_steps)\n", + " num_recs = max([len(step['recordings']) for step in protocol_steps])\n", + " assert num_recs == 1 # add j as a second index with multiple recordings\n", + " fig, ax = plt.subplots(num_protocols, num_recs, figsize=(12,7))\n", + " for i, step in enumerate(protocol_steps):\n", + " for j, rec in enumerate(step['recordings']):\n", + " rec_name = rec['name']\n", + " ax[i].plot(nrn_resp[rec_name]['time'], nrn_resp[rec_name]['voltage'], label='Neuron ' + rec_name)\n", + " ax[i].plot(arb_resp[rec_name]['time'], arb_resp[rec_name]['voltage'], label='Arbor ' + rec_name)\n", + " ax[i].set_title(title)\n", + " ax[i].legend(loc='upper left')\n", + " plt.tight_layout()\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To analyze the responses, we compare the difference of voltage traces between Arbor and Neuron in the L1-norm. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def voltage_trace_residual_l1_norm(int_resp, ref_resp):\n", + " int_resp_func = scipy.interpolate.interp1d(int_resp['time'], int_resp['voltage'], kind='cubic')\n", + " ref_resp_func = scipy.interpolate.interp1d(ref_resp['time'], ref_resp['voltage'], kind='cubic')\n", + " abs_diff = lambda t: abs(int_resp_func(t)-ref_resp_func(t))\n", + " with warnings.catch_warnings():\n", + " warnings.filterwarnings(\"ignore\", category=scipy.integrate.IntegrationWarning)\n", + " return scipy.integrate.quad(abs_diff, ref_resp['time'][0], ref_resp['time'][-1], limit=400)\n", + "\n", + "\n", + "def voltage_trace_residual_l1_norm_sweep_protocol(args):\n", + " arb_resp = args['arb_resp']\n", + " nrn_resp = args['nrn_resp']\n", + "\n", + " residual_l1_norm, residual_error = voltage_trace_residual_l1_norm(\n", + " nrn_resp, arb_resp)\n", + "\n", + " nrn_to_min_l1_norm, nrn_to_min_error = \\\n", + " voltage_trace_residual_l1_norm(\n", + " nrn_resp,\n", + " dict(time=nrn_resp['time'].values,\n", + " voltage=numpy.full(nrn_resp['voltage'].shape,\n", + " numpy.min(nrn_resp['voltage']))))\n", + " return dict(\n", + " residual_rel_l1_norm=residual_l1_norm/nrn_to_min_l1_norm,\n", + " residual_rel_l1_error=residual_error/residual_l1_norm + \\\n", + " nrn_to_min_error/nrn_to_min_l1_norm\n", + " )\n", + "\n", + "\n", + "def analyze_voltage_traces_l1(arb_resp, nrn_resp):\n", + " indices = [(key,step) for key in arb_resp for step in arb_resp[key]]\n", + "\n", + " # test_l5pc: insert if True:\n", + " with multiprocessing.Pool(multiprocessing.cpu_count()) as pool:\n", + " l1_task_results = pool.map(voltage_trace_residual_l1_norm_sweep_protocol,\n", + " [dict(arb_resp=arb_resp[key][step],\n", + " nrn_resp=nrn_resp[key][step])\n", + " for key, step in indices])\n", + "\n", + " l1_results = []\n", + " for l1_task_result, (key, step) in zip(l1_task_results, indices):\n", + " l1_results.append(\n", + " dict(replace_axon=key[0],\n", + " param_i=key[1],\n", + " **params[key[1]],\n", + " protocol=step,\n", + " **l1_task_result))\n", + "\n", + " return pandas.DataFrame(l1_results)\n", + "\n", + "\n", + "l1_results = analyze_voltage_traces_l1(arb_responses, nrn_responses)\n", + "pandas.options.display.float_format = '{:,.3g}'.format\n", + "l1_results.sort_values(by='residual_rel_l1_norm', ascending=False).head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def print_voltage_trace_l1_results(config_str, l1_results):\n", + " voltage_residual_rel_l1_error_tolerance = 1e-2 * voltage_residual_rel_l1_tolerance\n", + "\n", + " mean_rel_l1_norm = l1_results['residual_rel_l1_norm'].mean()\n", + " mean_rel_l1_error = l1_results['residual_rel_l1_error'].mean()\n", + " # max_l1_norm_record = l1_results.loc[l1_results['residual_rel_l1_norm'].idxmax()]\n", + "\n", + " message = '{}: test_l5pc %s! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are {:,.3g} ({:,.3g}), {:,.3g} ({:,.3g}).'.format(\n", + " config_str, mean_rel_l1_norm, voltage_residual_rel_l1_tolerance, mean_rel_l1_error, voltage_residual_rel_l1_error_tolerance)\n", + " if mean_rel_l1_norm < voltage_residual_rel_l1_tolerance and mean_rel_l1_error < voltage_residual_rel_l1_error_tolerance:\n", + " print(message % 'OK')\n", + " else:\n", + " print(message % 'ERROR')\n", + "\n", + "\n", + "print_voltage_trace_l1_results('Default dt ({:,.3g})'.format(default_dt), l1_results)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def compare_responses(arb_resp, nrn_resp, l1_results, *key):\n", + " if key in arb_resp:\n", + " plot_response_comparison(arb_resp[key], nrn_resp[key], 'replace_axon = %s, param_i = %s ' % (key[0], key[1]))\n", + " display(l1_results[(l1_results['replace_axon'] == key[0]) & (l1_results['param_i'] == key[1])])\n", + "\n", + "\n", + "for param_i in range(len(params)): # test_l5pc: skip\n", + " for do_replace_axon in replace_axon: # test_l5pc: skip\n", + " compare_responses(arb_responses, nrn_responses, l1_results, do_replace_axon, param_i) # test_l5pc: skip" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The voltage traces look mostly similar between Arbor and Neuron. Under certain conditions, we can perform spike time analysis to understand this quantitatively. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Spike time cross-validation\n", + "\n", + "To compare Arbor and Neuron voltage traces further, we analyze the spike counts and times with the eFEL library and Arbor's built-in spike detector. Note that while eFEL measures the `peak_time`, Arbor's spike detector as configured above will measure the time when the voltage passes a threshold of -10 mV." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis:\n", + "\n", + " efel_features = ['Spikecount',\n", + " 'time_to_first_spike',\n", + " 'time_to_second_spike',\n", + " 'time_to_last_spike']\n", + "\n", + "\n", + " # Extract spike observables from protocol simulation responses\n", + " def get_spike_data(protocols, do_replace_axon, param_values,\n", + " arb_resp, nrn_resp):\n", + " spike_res = []\n", + "\n", + " for step in protocols:\n", + " recording_name = step['recordings'][0]['name'] # use only first recording\n", + " stim_start = min([stim['delay'] for stim in step['stimuli']])\n", + " stim_end = max([stim['delay'] + stim['duration'] for stim in step['stimuli']])\n", + "\n", + " for efel_feature_name in efel_features:\n", + " # Calculate spike observables with eFEL\n", + " feature_name = '%s.%s' % (step['name'], efel_feature_name)\n", + " feature = ephys.efeatures.eFELFeature(\n", + " feature_name,\n", + " efel_feature_name=efel_feature_name,\n", + " recording_names={'': recording_name},\n", + " stim_start=stim_start,\n", + " stim_end=stim_end)\n", + "\n", + " # Calculate spike observables with Arbor\n", + " try:\n", + " if efel_feature_name == 'Spikecount':\n", + " arbor_int = len(arb_resp[recording_name]['spikes'])\n", + " elif efel_feature_name == 'time_to_first_spike':\n", + " arbor_int = arb_resp[recording_name]['spikes'][0]-stim_start\n", + " elif efel_feature_name == 'time_to_second_spike':\n", + " arbor_int = arb_resp[recording_name]['spikes'][1]-stim_start\n", + " elif efel_feature_name == 'time_to_last_spike':\n", + " arbor_int = arb_resp[recording_name]['spikes'][-1]-stim_start\n", + " except Exception:\n", + " arbor_int = numpy.nan\n", + "\n", + " spike_res.append(dict(\n", + " replace_axon=do_replace_axon,\n", + " protocol=step['name'],\n", + " **param_values,\n", + " efel=efel_feature_name,\n", + " Neuron=feature.calculate_feature(nrn_resp),\n", + " Arbor=feature.calculate_feature(arb_resp),\n", + " Arbor_int=arbor_int))\n", + " return spike_res\n", + "\n", + "\n", + " # Compare spike observables between Arbor and Neuron\n", + " def analyze_spikes(spike_res):\n", + " spike_res_df = pandas.DataFrame(spike_res)\n", + " spike_res_df.set_index(\n", + " ['replace_axon', 'protocol',\n", + " *param_names, 'efel'], inplace=True)\n", + " spike_res_df.dropna(how='all', inplace=True) # drop all-NaN rows\n", + "\n", + " # Arbor to Neuron cross-validation with eFEL\n", + " spike_res_df['abs_diff Arbor to Neuron'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: abs(r['Arbor']-r['Neuron']), axis=1)\n", + " spike_res_df['rel_abs_diff Arbor to Neuron [%]'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: 100.*abs(r['Arbor']-r['Neuron'])/r['Neuron']\n", + " if r['Neuron'] != 0 else numpy.nan, axis=1)\n", + "\n", + " # Cross-validation of eFEL's spike detection with Arbor's\n", + " spike_res_df['abs_diff eFEL to Arbor-internal'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: abs(r['Arbor']-r['Arbor_int']), axis=1)\n", + " spike_res_df['rel_abs_diff eFEL to Arbor-internal [%]'] = \\\n", + " spike_res_df.apply(\n", + " lambda r: 100.*abs(r['Arbor']-r['Arbor_int'])/r['Arbor_int']\n", + " if r['Arbor_int'] != 0 else numpy.nan, axis=1)\n", + " return spike_res_df\n", + "\n", + "\n", + " # Aggregate all simulations into a single data frame \n", + " def joint_spike_analysis(arb_resp, nrn_resp, replace_axon_policies, param_list):\n", + " return pandas.concat(\n", + " [analyze_spikes(get_spike_data(protocol_steps,\n", + " replace_axon_policies[key[0]],\n", + " param_list[key[1]],\n", + " arb_resp[key],\n", + " nrn_resp[key]))\n", + " for key in arb_resp], axis=0)\n", + "\n", + "\n", + " pandas.options.display.float_format = '{:,.3g}'.format\n", + " # pandas.options.display.max_rows = None # uncomment for full view\n", + " spike_results = joint_spike_analysis(arb_responses, nrn_responses, replace_axon, params)\n", + " display(spike_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To understand the deviations over the entire parameter set and different axon replacement policies, we explore the per eFEL-observable statistics. Compare the `Spikecount`s that are usually fully consistent between Arbor and Neuron, whereas `time_to_last_spike` are the least consistent of these variables." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis:\n", + " display(spike_results[['abs_diff Arbor to Neuron',\n", + " 'rel_abs_diff Arbor to Neuron [%]']].groupby('efel').describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can inspect the traces with highest difference in `time_to_last_spike` to identify outliers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis:\n", + " display(spike_results[ [el[spike_results.index.names.index('efel')] == 'time_to_last_spike'\n", + " for el in spike_results.index] ].sort_values(\n", + " by='abs_diff Arbor to Neuron', ascending=False).head(5))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the spike times, we find the anticipated bias between eFEL and Arbor's internal spike detector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis:\n", + " display(spike_results[['abs_diff eFEL to Arbor-internal',\n", + " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running protocols with a finer time step\n", + "\n", + "To rule out the discretization as a possible source of the above error in `time_to_last_spike`, we can re-run the simulations at a smaller `dt` of 0.001 ms (default is 0.025 ms)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_fine_dt:\n", + " arb_responses_fine_dt, nrn_responses_fine_dt = simulation_runner.run_all(replace_axon, params, dt=fine_dt)\n", + "\n", + " l1_results_fine_dt = analyze_voltage_traces_l1(arb_responses_fine_dt, nrn_responses_fine_dt)\n", + "\n", + " display(l1_results_fine_dt.sort_values(by='residual_rel_l1_norm', ascending=False).head(5))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_fine_dt:\n", + " print_voltage_trace_l1_results('Fine dt ({:,.3g})'.format(fine_dt), l1_results_fine_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_fine_dt:\n", + " for param_i in range(len(params)):\n", + " for do_replace_axon in replace_axon:\n", + " compare_responses(arb_responses_fine_dt,\n", + " nrn_responses_fine_dt,\n", + " l1_results_fine_dt,\n", + " do_replace_axon, param_i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis and run_fine_dt:\n", + " spike_results_fine_dt = joint_spike_analysis(arb_responses_fine_dt, nrn_responses_fine_dt, replace_axon, params)\n", + " display(spike_results_fine_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis and run_fine_dt:\n", + " display(spike_results_fine_dt[['abs_diff Arbor to Neuron',\n", + " 'rel_abs_diff Arbor to Neuron [%]']].groupby('efel').describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The outlier in `time_to_last_spike` is gone now, both visually and quantitatively." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis and run_fine_dt:\n", + " display(spike_results_fine_dt[ [el[spike_results_fine_dt.index.names.index('efel')] == 'time_to_last_spike'\n", + " for el in spike_results_fine_dt.index] ].sort_values(\n", + " by='abs_diff Arbor to Neuron', ascending=False).head(5))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis and run_fine_dt:\n", + " display(spike_results_fine_dt[['abs_diff eFEL to Arbor-internal',\n", + " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Furthermore, the mean deviation between Arbor and Neuron for eFEL spike times is significantly reduced." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if run_spike_time_analysis and run_fine_dt:\n", + " display((spike_results_fine_dt[['abs_diff Arbor to Neuron']].groupby('efel').mean()/\n", + " spike_results[['abs_diff Arbor to Neuron']].groupby('efel').mean()).rename(\n", + " columns={'abs_diff Arbor to Neuron': \n", + " 'ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt'}))\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "581988038cf9ce8838e7faf3da7c29f4ff88d898cd43cb17e0086e389d8deda2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/l5pc/l5pc_soma_arbor_pm.py b/examples/l5pc/l5pc_soma_arbor_pm.py new file mode 100644 index 00000000..13148895 --- /dev/null +++ b/examples/l5pc/l5pc_soma_arbor_pm.py @@ -0,0 +1,208 @@ +#!/usr/bin/env python + +import os +import sys +import traceback +import json +import argparse +import random +import itertools +try: + import papermill +except ImportError: + raise ImportError('Please install papermill to batch-process' + ' l5pc_soma_arbor notebook.') + + +import logging +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger() + +SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) + +parser = argparse.ArgumentParser(description= + 'Run l5pc_soma_arbor notebook with papermill using different options.') +parser.add_argument('--output-dir', type=str, default='.', + help='Output directory') +parser.add_argument('--regions', type=str, nargs='+', required=True, + help='L5PC mechanisms to use: region[:mech1,mech2,...].') +parser.add_argument('--powerset', type=int, + help='Process powerset of local mechs up to this size.') +parser.add_argument('--param-values', type=str, + help='JSON file with parameter values' + ' (instead of using random sampling).') +parser.add_argument('--prepare-only', action='store_true', + help='Prepare notebooks only, do not run them.)') +parser.add_argument('--default-dt', type=float, default=0.025, + help='dt used for time-integration by default.') +parser.add_argument('--rel-l1-tolerance', type=float, default=0.05, + help='Tolerance for rel. Arbor-Neuron L1-difference.') +args = parser.parse_args() + +output_dir = os.path.abspath(args.output_dir) +os.makedirs(output_dir, exist_ok=True) +output_dir = os.path.relpath(output_dir, start=SCRIPT_DIR) + +param_values_json = args.param_values +if param_values_json is not None: + param_values_json = os.path.relpath(param_values_json, start=SCRIPT_DIR) + +os.chdir(SCRIPT_DIR) + +import l5pc_model + +# load all mechs and params of L5PC +all_mechanisms = l5pc_model.load_mechanisms() + +all_parameters = l5pc_model.load_parameters() + +if param_values_json is None: + param_values_json = os.path.join(output_dir, 'param_values.json') + + num_samples = 5 + with open(param_values_json, 'w') as f: + param_values = [{param['param_name'] + '.' + param['sectionlist']: + random.uniform(*param['bounds']) + for param in all_parameters + if 'bounds' in param} + for i in range(num_samples)] + + if 'hh' in all_mechanisms.get('somatic', []): + for i in range(len(param_values)): + param_values[i].update({ + 'gnabar_hh.somatic': random.uniform(0.05, 0.125), + 'gkbar_hh.somatic': random.uniform(0.01, 0.075)}) + json.dump(param_values, f, indent=4) + + logger.info('Dumped parameter values to %s.' % param_values_json) + + +def powerset(mechs): # from itertools docs + mechs = list(mechs) + for count in range(len(mechs) + 1): + for mech_comb in itertools.combinations(mechs, count): + yield list(mech_comb) + + +def get_extra_params(loc, mechs): + extra_params = { + p['param_name']: p['type'] for p in all_parameters + if p['type'] == 'global' + } + + for p in all_parameters: + if 'sectionlist' in p and \ + p['sectionlist'] in ['all', loc] and \ + 'mech' not in p: + if p['param_name'] == 'ena' and \ + not any([m[:2] in ['Na'] for m in mechs]): + continue + if p['param_name'] == 'ek' and \ + not any([m[:2] in ['Im', 'K_', 'SK'] for m in mechs]): + continue + if p['param_name'] == 'eca' and \ + not any([m[:2] in ['Ca'] for m in mechs]): + continue + if p['param_name'] not in extra_params: + extra_params[p['param_name']] = [p['sectionlist']] + else: + extra_params[p['param_name']].append(p['sectionlist']) + return extra_params + + +for loc, loc_mechs in all_mechanisms.items(): + + if args.regions is not None: + region = [r for r in args.regions if r.startswith(loc)] + if len(region) == 0: + continue + elif len(region) > 1: + raise ValueError('Multiple values supplied for region %s.' % loc) + else: + region = region[0] + if ':' in region: # filter for selected mechs + loc_mechs_subset = region.split(':')[1].split(',') + for mech in loc_mechs_subset: + if mech not in loc_mechs: + raise ValueError('Mechanism %s not in region %s.' + % (mech, loc)) + logger.info('Reducing local mechs on %s from %s to %s.', + region, loc_mechs, loc_mechs_subset) + loc_mechs = loc_mechs_subset + + + # First test the entire region + mechanism_defs = { + 'all': ['pas'], + loc: loc_mechs + } + + extra_params = get_extra_params(loc, loc_mechs) + + target_file = os.path.join(output_dir, 'l5pc_soma_arbor_%s.ipynb' % loc) + if os.path.exists(target_file): + raise FileExistsError('Invalid target file - exists already: ', + target_file) + + logger.info('Outputting l5pc_soma_arbor notebook to %s ' + 'with all local mechs/params...\n' + 'mechs = %s\nextra_params = %s', + target_file, mechanism_defs, extra_params) + + try: + papermill.execute_notebook( + 'l5pc_soma_arbor.ipynb', + target_file, + parameters=dict(mechanism_defs=mechanism_defs, + extra_params=extra_params, + param_values_json=param_values_json, + default_dt=args.default_dt, + run_spike_time_analysis=False, + run_fine_dt=False, + voltage_residual_rel_l1_tolerance= + args.rel_l1_tolerance), + prepare_only=args.prepare_only + ) + except papermill.exceptions.PapermillException: + traceback.print_exception(*sys.exc_info()) + + # Test subsets of local mechanisms in ascending size + if args.powerset is not None: + for mechs in powerset(loc_mechs): + if len(mechs) < 1 or len(mechs) > args.powerset or \ + len(mechs) == len(loc_mechs): + continue + + mechanism_defs = { + 'all': ['pas'], + loc: mechs + } + + extra_params = get_extra_params(loc, mechs) + + target_file = os.path.join(output_dir, 'l5pc_soma_arbor_%s_%s.ipynb' % \ + (loc, '_'.join(mechs))) + if os.path.exists(target_file): + raise FileExistsError('Invalid target file - exists already: ', + target_file) + logger.info('Outputting l5pc_soma_arbor notebook to %s' + ' with...\nmechs = %s\nextra_params = %s', + target_file, mechanism_defs, extra_params) + + try: + papermill.execute_notebook( + 'l5pc_soma_arbor.ipynb', + target_file, + parameters=dict(mechanism_defs=mechanism_defs, + extra_params=extra_params, + param_values_json=param_values_json, + default_dt=args.default_dt, + run_spike_time_analysis=False, + run_fine_dt=False, + voltage_residual_rel_l1_tolerance= + args.rel_l1_tolerance), + prepare_only=args.prepare_only + ) + except papermill.exceptions.PapermillException: + traceback.print_exception(*sys.exc_info()) + From 26f3af133e1d2596813a7a1de3647af87346daf4 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Wed, 24 Aug 2022 11:00:23 +0200 Subject: [PATCH 18/42] Minor changes on ACC exporter --- bluepyopt/ephys/create_acc.py | 12 ++++++------ examples/l5pc/l5pc_soma_arbor_pm.py | 8 +++++--- 2 files changed, 11 insertions(+), 9 deletions(-) mode change 100644 => 100755 examples/l5pc/l5pc_soma_arbor_pm.py diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 3566dd76..408697f9 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -8,7 +8,6 @@ from collections import namedtuple from glob import glob -import numpy import jinja2 import json import shutil @@ -195,17 +194,18 @@ def _arb_load_mech_catalogues(): def _find_mech_and_convert_param_name(param, mechs): """Find a parameter's mechanism and convert name to Arbor convention""" - mech_suffix_matches = numpy.where([param.name.endswith("_" + mech) - for mech in mechs])[0] - if mech_suffix_matches.size == 0: + mech_suffix_matches = [i for i, mech in enumerate(mechs) + if param.name.endswith("_" + mech)] + if len(mech_suffix_matches) == 0: return None, _nrn2arb_param(param, name=param.name) - elif mech_suffix_matches.size == 1: + elif len(mech_suffix_matches) == 1: mech = mechs[mech_suffix_matches[0]] name = param.name[:-(len(mech) + 1)] return mech, _nrn2arb_param(param, name=name) else: raise RuntimeError("Parameter name %s matches multiple mechanisms %s " - % (param.name, repr(mechs[mech_suffix_matches]))) + % (param.name, + [repr(mechs[i]) for i in mech_suffix_matches])) def _arb_convert_params_and_group_by_mech(params, channels): diff --git a/examples/l5pc/l5pc_soma_arbor_pm.py b/examples/l5pc/l5pc_soma_arbor_pm.py old mode 100644 new mode 100755 index 13148895..5bda3a9e --- a/examples/l5pc/l5pc_soma_arbor_pm.py +++ b/examples/l5pc/l5pc_soma_arbor_pm.py @@ -24,7 +24,7 @@ 'Run l5pc_soma_arbor notebook with papermill using different options.') parser.add_argument('--output-dir', type=str, default='.', help='Output directory') -parser.add_argument('--regions', type=str, nargs='+', required=True, +parser.add_argument('--regions', type=str, nargs='+', help='L5PC mechanisms to use: region[:mech1,mech2,...].') parser.add_argument('--powerset', type=int, help='Process powerset of local mechs up to this size.') @@ -35,6 +35,8 @@ help='Prepare notebooks only, do not run them.)') parser.add_argument('--default-dt', type=float, default=0.025, help='dt used for time-integration by default.') +parser.add_argument('--run-fine-dt', action='store_true', + help='Run time-integration with fine dt (0.001).') parser.add_argument('--rel-l1-tolerance', type=float, default=0.05, help='Tolerance for rel. Arbor-Neuron L1-difference.') args = parser.parse_args() @@ -158,7 +160,7 @@ def get_extra_params(loc, mechs): param_values_json=param_values_json, default_dt=args.default_dt, run_spike_time_analysis=False, - run_fine_dt=False, + run_fine_dt=args.run_fine_dt, voltage_residual_rel_l1_tolerance= args.rel_l1_tolerance), prepare_only=args.prepare_only @@ -198,7 +200,7 @@ def get_extra_params(loc, mechs): param_values_json=param_values_json, default_dt=args.default_dt, run_spike_time_analysis=False, - run_fine_dt=False, + run_fine_dt=args.run_fine_dt, voltage_residual_rel_l1_tolerance= args.rel_l1_tolerance), prepare_only=args.prepare_only From a7453f8754417b4c82ba568c61d08120ec64766c Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 25 Aug 2022 21:35:37 +0200 Subject: [PATCH 19/42] Adding ACC morphology output with axon replacement --- bluepyopt/ephys/create_acc.py | 83 +++++++++++++------ bluepyopt/ephys/morphologies.py | 44 ++++++---- .../ephys/templates/acc/_json_template.jinja2 | 7 +- .../test_ephys/testdata/acc/CCell/CCell.json | 2 +- .../acc/templates/cell_json_template.jinja2 | 7 +- 5 files changed, 95 insertions(+), 48 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 408697f9..bcd456d8 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -565,8 +565,14 @@ def create_acc(mechs, "ArbFileMorphology.replace_axon after loading " "morphology in Arbor.") replace_axon_json = json.dumps(replace_axon) + if hasattr(arbor, 'prune_tag'): + modified_morphology = \ + pathlib.Path(morphology).stem + '_modified.acc' + else: + modified_morphology = None else: replace_axon_json = None + modified_morphology = None templates = _read_templates(template_dir, template_filename) @@ -631,6 +637,7 @@ def create_acc(mechs, banner=banner, morphology=morphology, replace_axon=replace_axon_json, + modified_morphology=modified_morphology, filenames=filenames, regions=_loc2arb_region, global_mechs=global_mechs, @@ -641,6 +648,37 @@ def create_acc(mechs, for name, template in templates.items()} +def _instantiate_morphology(morpho_filename, replace_axon): + '''Load morphology and optionally perform axon replacement + Args: + morpho_filename (str): Path to file with original morphology. + replace_axon (): list of segments to replace axon with (if not None). + ''' + + morpho_suffix = pathlib.Path(morpho_filename).suffix + + if morpho_suffix == '.acc': + morpho = arbor.load_component(morpho_filename).component + if replace_axon is not None: + morpho = ArbFileMorphology.replace_axon(morpho, replace_axon) + elif morpho_suffix == '.swc': + morpho = arbor.load_swc_arbor(morpho_filename) + if replace_axon is not None: + morpho = ArbFileMorphology.replace_axon(morpho, replace_axon) + elif morpho_suffix == '.asc': + morpho = arbor.load_asc(morpho_filename) + if replace_axon is not None: + morpho = \ + ArbFileMorphology.replace_axon(morpho.morphology, replace_axon) + else: + morpho = morpho.morphology + else: + raise RuntimeError( + 'Unsupported morphology {} (only .swc and .asc supported)'.format( + morpho_filename)) + return morpho + + def output_acc(output_dir, cell, parameters, template_filename='acc/*_template.jinja2', sim=None): @@ -657,6 +695,12 @@ def output_acc(output_dir, cell, parameters, ''' output = cell.create_acc(parameters, template_filename, sim=sim) + cell_json = [comp_rendered + for comp, comp_rendered in output.items() + if pathlib.Path(comp).suffix == '.json'] + assert len(cell_json) == 1 + cell_json = json.loads(cell_json[0]) + if not os.path.exists(output_dir): os.makedirs(output_dir) for comp, comp_rendered in output.items(): @@ -667,10 +711,18 @@ def output_acc(output_dir, cell, parameters, f.write(comp_rendered) morpho_filename = os.path.join( - output_dir, os.path.basename(cell.morphology.morphology_path)) + output_dir, cell_json['morphology']['original']) if os.path.exists(morpho_filename): raise RuntimeError("%s already exists!" % morpho_filename) - shutil.copy2(cell.morphology.morphology_path, output_dir) + shutil.copy2(cell.morphology.morphology_path, morpho_filename) + + if 'replace_axon' in cell_json['morphology']: + if hasattr(arbor, 'prune_tag'): + morpho = _instantiate_morphology( + morpho_filename, cell_json['morphology']['replace_axon']) + arbor.write_component( + morpho, + os.path.join(output_dir, cell_json['morphology']['modified'])) # Read the mixed JSON/ACC-output, to be moved to Arbor in future release @@ -687,28 +739,11 @@ def read_acc(cell_json_filename): cell_json_dir = os.path.dirname(cell_json_filename) - morphology_filename = os.path.join(cell_json_dir, - cell_json['morphology']['path']) - if 'replace_axon' in cell_json['morphology']: - replace_axon = cell_json['morphology']['replace_axon'] - else: - replace_axon = None - - if morphology_filename.endswith('.swc'): - morpho = arbor.load_swc_arbor(morphology_filename) - if replace_axon is not None: - morpho = ArbFileMorphology.replace_axon(morpho, replace_axon) - elif morphology_filename.endswith('.asc'): - morpho = arbor.load_asc(morphology_filename) - if replace_axon is not None: - morpho = \ - ArbFileMorphology.replace_axon(morpho.morphology, replace_axon) - else: - morpho = morpho.morphology - else: - raise RuntimeError( - 'Unsupported morphology {} (only .swc and .asc supported)'.format( - morphology_filename)) + morpho_filename = os.path.join(cell_json_dir, + cell_json['morphology']['original']) + morpho = _instantiate_morphology( + morpho_filename, + cell_json['morphology'].get('replace_axon', None)) labels = arbor.load_component( os.path.join(cell_json_dir, cell_json['label_dict'])).component diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 57390fa1..87813d48 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -289,14 +289,33 @@ def _mpt_to_coord(mpt): '''Convert arbor.mpoint 3d center coordinates to numpy array''' return numpy.array([mpt.x, mpt.y, mpt.z]) - # Check if prune_tag, prune_tag_roots, distal_radii are available - if not hasattr(morphology, "to_segment_tree"): + def _find_ais_centers(st, axon_parent=None): + if axon_parent is None or axon_parent == arbor.mnpos: + soma_segs = [i for i, s in enumerate(st.segments) + if s.tag == ArbFileMorphology.tags['soma']] + soma_terminals = [i for i in soma_segs if st.is_terminal(i)] + if len(soma_terminals) > 0: + axon_parent = soma_terminals[-1] + elif len(soma_segs) > 0: + axon_parent = soma_segs[-1] + else: + raise ValueError('Morphology without soma,' + ' cannot replace axon.') + + ar_prox = st.segments[axon_parent].dist + ar_prox_center = _mpt_to_coord(ar_prox) + ar_dist = st.segments[axon_parent].prox + ar_dist_center = 2 * ar_prox_center - _mpt_to_coord(ar_dist) + + return ar_prox_center, ar_dist_center + + # Check if prune_tag, prune_tag_roots are available + if not hasattr(arbor, 'prune_tag'): raise NotImplementedError( "Need a newer version of Arbor for axon replacement.") # Arbor tags axon_tag = ArbFileMorphology.tags['axon'] - soma_tag = ArbFileMorphology.tags['soma'] # Prune morphology to remove axon (myelin not assumed to exist) st = morphology.to_segment_tree() @@ -318,6 +337,10 @@ def _mpt_to_coord(mpt): ar_dist = st.segments[axon_root].dist ar_dist_center = _mpt_to_coord(ar_dist) + if all(ar_prox_center == ar_dist_center): + ar_prox_center, ar_dist_center = \ + _find_ais_centers(st, axon_parent) + if ar_radius is None: median_distal_radii = \ arbor.median_distal_radii(st, axon_tag, 60) @@ -331,21 +354,8 @@ def _mpt_to_coord(mpt): else: if ar_radius is None: ar_radius = [0.5, 0.5] - soma_segs = [i for i, s in enumerate(st.segments) - if s.tag == soma_tag] - soma_terminals = [i for i in soma_segs if st.is_terminal(i)] - if len(soma_terminals) > 0: - axon_parent = soma_terminals[-1] - elif len(soma_segs) > 0: - axon_parent = soma_segs[-1] - else: - raise ValueError('Morphology without soma,' - ' cannot replace axon.') - ar_prox = st.segments[axon_parent].dist - ar_prox_center = _mpt_to_coord(ar_prox) - ar_dist = st.segments[axon_parent].prox - ar_dist_center = 2 * ar_prox_center - _mpt_to_coord(ar_dist) + ar_prox_center, ar_dist_center = _find_ais_centers(st) # create new branch for replaced axon not to break # existing location expressions diff --git a/bluepyopt/ephys/templates/acc/_json_template.jinja2 b/bluepyopt/ephys/templates/acc/_json_template.jinja2 index 600c7193..ffb4a163 100644 --- a/bluepyopt/ephys/templates/acc/_json_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/_json_template.jinja2 @@ -6,12 +6,13 @@ {%- if morphology %} {# feed morphology separately as a SWC/ASC file #} {%- if replace_axon is not none %} "morphology": { - "path": "{{morphology}}", - "replace_axon": {{replace_axon}} + "original": "{{morphology}}", + "replace_axon": {{replace_axon}}{%- if modified_morphology is not none %}, + "modified": "{{modified_morphology}}"{%- endif %} }, {%- else %} "morphology": { - "path": "{{morphology}}" + "original": "{{morphology}}" }, {%- endif %} {%- else %} diff --git a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json index 3318cf41..853816c1 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json +++ b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell.json @@ -2,7 +2,7 @@ "cell_model_name": "CCell", "produced_by": "Created by BluePyOpt(1.12.62) at 2022-07-28 17:15:28.166082", "morphology": { - "path": "CCell.swc" + "original": "CCell.swc" }, "label_dict": "CCell_label_dict.acc", "decor": "CCell_decor.acc" diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 index 42362f42..0bd1ed00 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/cell_json_template.jinja2 @@ -6,12 +6,13 @@ {%- if morphology %} {# feed morphology separately as a SWC/ASC file #} {%- if replace_axon is not none %} "morphology": { - "path": "{{morphology}}", - "replace_axon": {{replace_axon}} + "original": "{{morphology}}", + "replace_axon": {{replace_axon}}, + "modified": "{{modified_morphology}}" }, {%- else %} "morphology": { - "path": "{{morphology}}" + "original": "{{morphology}}" }, {%- endif %} {%- else %} From fac077dfcd3f89005950b6c7333b4feef958958b Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Sat, 24 Sep 2022 21:15:17 +0200 Subject: [PATCH 20/42] Support for point processes in Arbor cable cell exporter --- bluepyopt/ephys/create_acc.py | 181 +++++++++++++++--- bluepyopt/ephys/create_hoc.py | 46 ++++- bluepyopt/ephys/locations.py | 16 +- bluepyopt/ephys/morphologies.py | 33 ++-- .../templates/acc/decor_acc_template.jinja2 | 9 + bluepyopt/tests/test_ephys/test_locations.py | 8 +- examples/l5pc/l5pc_soma_arbor.ipynb | 2 +- 7 files changed, 231 insertions(+), 64 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index bcd456d8..7a65923d 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -26,9 +26,17 @@ def __getattribute__(self, _): logger = logging.getLogger(__name__) -from .create_hoc import Location, RangeExpr, \ +from .create_hoc import Location, RangeExpr, PointExpr, \ _get_template_params, format_float, DEFAULT_LOCATION_ORDER from .morphologies import ArbFileMorphology +from .locations import (NrnSeclistLocation, + NrnSeclistSecLocation, + NrnSectionCompLocation, + NrnPointProcessLocation, + NrnSeclistCompLocation, + NrnSomaDistanceCompLocation, + NrnSecSomaDistanceCompLocation, + NrnTrunkSomaDistanceCompLocation) # Define Neuron to Arbor variable conversions @@ -82,10 +90,22 @@ def _nrn2arb_param(param, name): name=_nrn2arb_var_name(name), value=_nrn2arb_var_value(param), inst_distribution=param.inst_distribution) + elif isinstance(param, PointExpr): + return PointExpr(name=_nrn2arb_var_name(name), + point_loc=param.point_loc, + value=_nrn2arb_var_value(param)) else: raise ValueError('Invalid parameter expression type.') +def _nrn2arb_mech_name(name): + """Neuron to Arbor mechanism name conversion.""" + if name in ['Exp2Syn', 'ExpSyn']: + return name.lower() + else: + return name + + def _arb_is_global_property(loc, param): """Returns if region-specific variable is a global property in Arbor.""" return loc == 'all' and ( @@ -115,25 +135,24 @@ def _arb_pop_global_properties(loc, mechs): # (relabeling locations to SWC convention) # Remarks: # - using SWC convetion: 'dend' for basal dendrite, 'apic' for apical dendrite -ArbRegion = namedtuple('ArbRegion', 'ref, defn') - +ArbLabel = namedtuple('ArbLabel', 'ref, defn') def _make_region(region, expr=None): """Create Arbor region with region name and defining expression (name for decor, defined in label_dict) or region expression only - (for decor, no defined label in label_dict).""" + (for decor, no label defined in label_dict).""" if expr is not None: - return ArbRegion(ref='(region \"%s\")' % region, - defn='(region-def \"%s\" %s)' % (region, expr)) + return ArbLabel(ref='(region \"%s\")' % region, + defn='(region-def \"%s\" %s)' % (region, expr)) else: - return ArbRegion(ref=region, defn=expr) + return ArbLabel(ref=region, defn=None) def _make_tagged_region(region, tag): return _make_region(region, '(tag %i)' % tag) -_loc2arb_region = dict( +_arb_regions = dict( # defining "all" region for convenience here, else use # all=_arb_defined_region('(all)') to omit "all" in label_dict all=_make_region('all', '(all)'), @@ -145,6 +164,61 @@ def _make_tagged_region(region, tag): ) +def _raise_section_index_unsupported(loc): + raise ValueError('Translation of Neuron section index to' + ' Arbor morphology not yet supported' + ' (Neuron section index != Arbor segment index).') + +_loc2arb_conv = { + + # areal locations + NrnSeclistLocation: lambda loc: _arb_regions[loc.seclist_name], + NrnSeclistSecLocation: _raise_section_index_unsupported, + + # point locations + NrnSectionCompLocation: lambda loc: + ArbLabel(ref='(on-components %s %s)' % + (format_float(loc.comp_x), + _arb_regions[loc.seclist_name].ref), + defn=None), + NrnPointProcessLocation: lambda loc: + [_loc2arb_label(loc) for loc in loc.pprocess_mech.locations], + NrnSeclistCompLocation: _raise_section_index_unsupported, + + # distance-based point locations + NrnSomaDistanceCompLocation: lambda loc: + ArbLabel(ref='(restrict (distal-translate (on-components 0.5' + ' %s) %s) %s)' % + (_arb_regions['somatic'].ref, + format_float(loc.soma_distance), + _arb_regions[loc.seclist_name].ref), + defn=None), + NrnSecSomaDistanceCompLocation: _raise_section_index_unsupported, + NrnTrunkSomaDistanceCompLocation: _raise_section_index_unsupported +} + +def _loc2arb_label(location): + """Convert location from Neuron to Arbor.""" + + return _loc2arb_conv[type(location)](location) + + +def _arb_eval_point_proc_locs(pprocess_mechs): + + result = {loc: dict() for loc in pprocess_mechs} + + for loc, mechs in pprocess_mechs.items(): + for mech, point_exprs in mechs.items(): + result[loc][mech.name] = dict( + mech=mech.suffix, + params=[Location(point_expr.name, point_expr.value) + for point_expr in point_exprs], + point_locs=[_loc2arb_label(loc) for loc in mech.locations]) + + return result + + + def _arb_load_mech_catalogues(): """Load Arbor's built-in mechanism catalogues""" @@ -194,18 +268,29 @@ def _arb_load_mech_catalogues(): def _find_mech_and_convert_param_name(param, mechs): """Find a parameter's mechanism and convert name to Arbor convention""" - mech_suffix_matches = [i for i, mech in enumerate(mechs) - if param.name.endswith("_" + mech)] - if len(mech_suffix_matches) == 0: + if not isinstance(param, PointExpr): + mech_matches = [i for i, mech in enumerate(mechs) + if param.name.endswith("_" + mech)] + else: + param_pprocesses = [loc.pprocess_mech for loc in param.point_loc] + mech_matches = [i for i, mech in enumerate(mechs) + if mech in param_pprocesses] + + if len(mech_matches) == 0: return None, _nrn2arb_param(param, name=param.name) - elif len(mech_suffix_matches) == 1: - mech = mechs[mech_suffix_matches[0]] - name = param.name[:-(len(mech) + 1)] + + elif len(mech_matches) == 1: + mech = mechs[mech_matches[0]] + if not isinstance(param, PointExpr): + name = param.name[:-(len(mech) + 1)] + else: + name = param.name return mech, _nrn2arb_param(param, name=name) + else: raise RuntimeError("Parameter name %s matches multiple mechanisms %s " % (param.name, - [repr(mechs[i]) for i in mech_suffix_matches])) + [repr(mechs[i]) for i in mech_matches])) def _arb_convert_params_and_group_by_mech(params, channels): @@ -257,10 +342,12 @@ def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms into mechanism name and add catalogue prefix""" arb_mech = None + arb_mech_name = _nrn2arb_mech_name(mech_name) + for cat in ['BBP', 'default', 'allen']: # in order of precedence - if mech_name in arb_cats[cat]: - arb_mech = arb_cats[cat][mech_name] - mech_name = cat + '::' + mech_name + if arb_mech_name in arb_cats[cat]: + arb_mech = arb_cats[cat][arb_mech_name] + mech_name = cat + '::' + arb_mech_name break if arb_mech is None: # not Arbor built-in mech return (mech_name, mech_params) @@ -290,13 +377,27 @@ def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): return (mech_name, remaining_mech_params) -def _arb_nmodl_global_translate(mechs, arb_cats): - """Translate all mechanisms in a region""" +def _arb_nmodl_global_translate_density(mechs, arb_cats): + """Translate all density mechanisms in a region""" return dict([_arb_nmodl_global_translate_mech(mech, params, arb_cats) for mech, params in mechs.items()]) -def _arb_filter_scaled_mechs(mechs): +def _arb_nmodl_global_translate_points(mechs, arb_cats): + """Translate all point mechanisms in a region""" + result = dict() + + for synapse_name, mech_desc in mechs.items(): + mech, params = _arb_nmodl_global_translate_mech( + mech_desc['mech'], mech_desc['params'], arb_cats) + result[synapse_name] = dict(mech=mech, + params=params, + point_locs=mech_desc['point_locs']) + + return result + + +def _arb_project_scaled_mechs(mechs): """Returns all mechanisms with scaled parameters in Arbor""" scaled_mechs = dict() for mech, params in mechs.items(): @@ -565,7 +666,7 @@ def create_acc(mechs, "ArbFileMorphology.replace_axon after loading " "morphology in Arbor.") replace_axon_json = json.dumps(replace_axon) - if hasattr(arbor, 'prune_tag'): + if hasattr(arbor.segment_tree, 'tag_roots'): modified_morphology = \ pathlib.Path(morphology).stem + '_modified.acc' else: @@ -590,6 +691,7 @@ def create_acc(mechs, # postprocess template parameters for Arbor channels = template_params['channels'] + point_channels = template_params['point_channels'] banner = template_params['banner'] # global_mechs refer to default mechanisms/params in Arbor @@ -620,16 +722,34 @@ def create_acc(mechs, # join mechs constant params with inhomogeneous ones on mechanisms _arb_append_scaled_mechs(global_mechs, global_scaled_mechs) - for loc, mechs in section_scaled_mechs.items(): + for loc in section_scaled_mechs: _arb_append_scaled_mechs(section_mechs[loc], section_scaled_mechs[loc]) + # section_pprocess_mechs refer to locally placed mechanisms/params in Arbor + # [loc -> mech -> param.name/.value] + pprocess_mechs, global_pprocess_mechs = \ + _arb_convert_params_and_group_by_mech_local( + template_params['pprocess_params'], point_channels) + if any(len(params) > 0 for params in global_pprocess_mechs.values()): + raise ValueError('Point process mechanisms cannot be' + ' placed globally in Arbor.') + + # Evaluate synapse locations + # (no new labels introduced, but locations explicitly defined) + pprocess_mechs = _arb_eval_point_proc_locs(pprocess_mechs) + # translate mechs to Arbor's convention arb_cats = _arb_load_mech_catalogues() - global_mechs = _arb_nmodl_global_translate(global_mechs, arb_cats) - global_scaled_mechs = _arb_filter_scaled_mechs(global_mechs) - section_mechs = {loc: _arb_nmodl_global_translate(mechs, arb_cats) - for loc, mechs in section_mechs.items()} - section_scaled_mechs = {loc: _arb_filter_scaled_mechs(mechs) + global_mechs = _arb_nmodl_global_translate_density(global_mechs, arb_cats) + section_mechs = { + loc: _arb_nmodl_global_translate_density(mechs, arb_cats) + for loc, mechs in section_mechs.items()} + pprocess_mechs = { + loc: _arb_nmodl_global_translate_points(mechs, arb_cats) + for loc, mechs in pprocess_mechs.items()} + + global_scaled_mechs = _arb_project_scaled_mechs(global_mechs) + section_scaled_mechs = {loc: _arb_project_scaled_mechs(mechs) for loc, mechs in section_mechs.items()} return {filenames[name]: @@ -639,11 +759,12 @@ def create_acc(mechs, replace_axon=replace_axon_json, modified_morphology=modified_morphology, filenames=filenames, - regions=_loc2arb_region, + regions=_arb_regions, global_mechs=global_mechs, global_scaled_mechs=global_scaled_mechs, section_mechs=section_mechs, section_scaled_mechs=section_scaled_mechs, + pprocess_mechs=pprocess_mechs, **custom_jinja_params) for name, template in templates.items()} @@ -717,7 +838,7 @@ def output_acc(output_dir, cell, parameters, shutil.copy2(cell.morphology.morphology_path, morpho_filename) if 'replace_axon' in cell_json['morphology']: - if hasattr(arbor, 'prune_tag'): + if hasattr(arbor.segment_tree, 'tag_roots'): morpho = _instantiate_morphology( morpho_filename, cell_json['morphology']['replace_axon']) arbor.write_component( diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 6f84b2d4..26fafcd2 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -15,6 +15,7 @@ from bluepyopt.ephys.parameters import (NrnGlobalParameter, NrnSectionParameter, NrnRangeParameter, + NrnPointProcessParameter, MetaParameter) from bluepyopt.ephys.parameterscalers import (NrnSegmentSomaDistanceScaler, @@ -22,7 +23,9 @@ FLOAT_FORMAT, format_float) +# Consider renaming Location as name already used in locations module Location = namedtuple('Location', 'name, value') +PointExpr = namedtuple('PointExpr', 'name, point_loc, value') RangeExpr = namedtuple('RangeExpr', 'location, name, value, inst_distribution') Range = namedtuple('Range', 'location, param_name, value') DEFAULT_LOCATION_ORDER = [ @@ -37,17 +40,27 @@ def _generate_channels_by_location(mechs, location_order): """Create a OrderedDictionary of all channel mechs for hoc template.""" channels = OrderedDict((location, []) for location in location_order) + point_channels = OrderedDict((location, []) for location in location_order) for mech in mechs: name = mech.suffix for location in mech.locations: # TODO this is dangerous, implicitely assumes type of location - channels[location.seclist_name].append(name) - return channels + if isinstance(mech, mechanisms.NrnMODPointProcessMechanism): + point_channels[location.seclist_name].append(mech) + else: + channels[location.seclist_name].append(name) + return channels, point_channels def _generate_reinitrng(mechs): """Create re_init_rng function""" + for mech in mechs: + if isinstance(mech, mechanisms.NrnMODPointProcessMechanism): + raise NotImplementedError( + 'HOC generation for models with point process mechanisms' + ' is not yet supported.') + reinitrng_hoc_blocks = '' for mech in mechs: @@ -87,9 +100,15 @@ def _generate_parameters(parameters): assert isinstance( param.locations, (tuple, list)), 'Must have locations list' for location in param.locations: - param_locations[location.seclist_name].append(param) + if not isinstance(param, NrnPointProcessParameter): + param_locations[location.seclist_name].append(param) + else: + for pprocess_location in location.pprocess_mech.locations: + param_locations[ + pprocess_location.seclist_name].append(param) section_params = defaultdict(list) + pprocess_params = defaultdict(list) range_params = [] location_order = DEFAULT_LOCATION_ORDER @@ -119,11 +138,19 @@ def _generate_parameters(parameters): value = param.value_scale_func(param.value) section_params[loc].append( Location(param.param_name, format_float(value))) + elif isinstance(param, NrnPointProcessParameter): + value = param.value + pprocess_params[loc].append( + PointExpr(param.param_name, param.locations, format_float(value))) + ordered_section_params = [(loc, section_params[loc]) for loc in location_order] - return global_params, ordered_section_params, range_params, location_order + ordered_pprocess_params = [(loc, pprocess_params[loc]) + for loc in location_order] + + return global_params, ordered_section_params, range_params, ordered_pprocess_params, location_order def _read_template(template_dir, template_filename): @@ -157,9 +184,9 @@ def _get_template_params( This iterable contains parameter names that aren't checked ''' - global_params, section_params, range_params, location_order = \ + global_params, section_params, range_params, pprocess_params, location_order = \ _generate_parameters(parameters) - channels = _generate_channels_by_location(mechs, location_order) + channels, point_channels = _generate_channels_by_location(mechs, location_order) ignored_global_params = {} for ignored_global in ignored_globals: @@ -178,8 +205,10 @@ def _get_template_params( ignored_global_params=ignored_global_params, section_params=section_params, range_params=range_params, + pprocess_params=pprocess_params, location_order=location_order, channels=channels, + point_channels=point_channels, banner=banner) @@ -217,6 +246,11 @@ def create_hoc(mechs, parameters, ignored_globals, disable_banner) + + # delete empty dicts to avoid conflict with custom_jinja_params + del template_params['pprocess_params'] + del template_params['point_channels'] + template_params['range_params'] = _range_exprs_to_hoc( template_params['range_params'] ) diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index bb1823e8..6d9aae7d 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -125,7 +125,7 @@ class NrnSectionCompLocation(Location, DictMixin): def __init__( self, name, - sec_name=None, + seclist_name=None, comp_x=None, comment=''): """Constructor @@ -137,7 +137,7 @@ def __init__( """ super(NrnSectionCompLocation, self).__init__(name, comment) - self.sec_name = sec_name + self.seclist_name = seclist_name self.comp_x = comp_x def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 @@ -145,13 +145,13 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 # Dont see any other way but to use eval, apart from parsing the # sec_name string which can be complicated - isection = eval('icell.%s' % self.sec_name) # pylint: disable=W0123 + isection = eval('icell.%s' % self.seclist_name) # pylint: disable=W0123 icomp = isection(self.comp_x) return icomp def __str__(self): - return '%s(%s)' % (self.sec_name, self.comp_x) + return '%s(%s)' % (self.seclist_name, self.comp_x) class NrnPointProcessLocation(Location): @@ -340,7 +340,7 @@ def __init__( name, soma_distance=None, sec_index=None, - sec_name=None, + seclist_name=None, comment="" ): """Constructor @@ -354,7 +354,7 @@ def __init__( super(NrnSecSomaDistanceCompLocation, self).__init__( name, soma_distance=soma_distance, - seclist_name=sec_name, + seclist_name=seclist_name, comment=comment, ) self.sec_index = sec_index @@ -411,7 +411,7 @@ def __init__( name, soma_distance=None, sec_index=None, - sec_name=None, + seclist_name=None, direction=None, comment="" ): @@ -429,7 +429,7 @@ def __init__( name, soma_distance=soma_distance, sec_index=sec_index, - sec_name=sec_name, + seclist_name=seclist_name, comment=comment ) diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 87813d48..82b939a8 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -309,28 +309,36 @@ def _find_ais_centers(st, axon_parent=None): return ar_prox_center, ar_dist_center - # Check if prune_tag, prune_tag_roots are available - if not hasattr(arbor, 'prune_tag'): + # Check if tag_roots is available + if not hasattr(arbor.segment_tree, 'tag_roots'): raise NotImplementedError( "Need a newer version of Arbor for axon replacement.") # Arbor tags axon_tag = ArbFileMorphology.tags['axon'] - # Prune morphology to remove axon (myelin not assumed to exist) + # Prune morphology at axon root st = morphology.to_segment_tree() - pruned_st = arbor.prune_tag(st, axon_tag) - pruned_roots = arbor.prune_tag_roots(st, axon_tag) - assert len(pruned_roots) <= 1 + axon_roots = st.tag_roots(axon_tag) + if len(axon_roots) > 1: + raise ValueError("Axon replacement is only supported for axon with a single root.") + elif len(axon_roots) == 1: + axon_root = axon_roots[0] + pruned_st, axon_st = st.split_at(axon_root) + else: + pruned_st = st if replacement is not None: ar_radius = [r['radius'] for r in replacement] else: + if len(axon_roots) > 1: + ValueError('Please specify axon replacement explicitly ' + 'for morphology with pre-existing axon.') ar_radius = None # Create axon replacement building on the pruned root - if len(pruned_roots) == 1: - axon_root = pruned_roots[0] + if len(axon_roots) == 1: + axon_root = axon_roots[0] axon_parent = st.parents[axon_root] ar_prox = st.segments[axon_root].prox ar_prox_center = _mpt_to_coord(ar_prox) @@ -341,13 +349,8 @@ def _find_ais_centers(st, axon_parent=None): ar_prox_center, ar_dist_center = \ _find_ais_centers(st, axon_parent) - if ar_radius is None: - median_distal_radii = \ - arbor.median_distal_radii(st, axon_tag, 60) - ar_radius = [ar_prox.radius, - median_distal_radii[0] - if len(median_distal_radii) > 0 - else ar_prox.radius] + # Could approximate ar_radius based on original morphology + # here if it is None (caught above) logger.debug('Replacing axon with root %d with AIS' ' of radii %s.', axon_root, str(ar_radius)) diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index 6a9919ee..76f10522 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -15,7 +15,9 @@ {%- endif %} {%- endfor %} + {%- for loc, mech_parameters in section_mechs.items() %}{# paint-to-region instead of default #} + {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} {%- if mech in section_scaled_mechs[loc] %} @@ -29,4 +31,11 @@ {%- endfor %} {%- endif %} {%- endfor %} + + {%- for synapse_name, mech_param_locs in pprocess_mechs[loc].items() %} + {%- for point_loc in mech_param_locs.point_locs %} + (place {{point_loc.ref}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") + {%- endfor %} + {%- endfor %} + {%- endfor %})) diff --git a/bluepyopt/tests/test_ephys/test_locations.py b/bluepyopt/tests/test_ephys/test_locations.py index c870ef17..780a0b8a 100644 --- a/bluepyopt/tests/test_ephys/test_locations.py +++ b/bluepyopt/tests/test_ephys/test_locations.py @@ -47,11 +47,11 @@ def setup(self): """Setup""" self.loc = ephys.locations.NrnSectionCompLocation( name='test', - sec_name='soma[0]', + seclist_name='soma[0]', comp_x=0.5) self.loc_dend = ephys.locations.NrnSectionCompLocation( name='test', - sec_name='dend[1]', + seclist_name='dend[1]', comp_x=0.5) assert self.loc.name == 'test' self.sim = ephys.simulators.NrnSimulator() @@ -282,11 +282,11 @@ def setup(self): self.loc = ephys.locations.NrnTrunkSomaDistanceCompLocation( 'test', soma_distance=150, - sec_name='testdend') + seclist_name='testdend') self.loc_other = ephys.locations.NrnTrunkSomaDistanceCompLocation( 'test', soma_distance=350, - sec_name='testdend') + seclist_name='testdend') assert self.loc.name == 'test' self.sim = ephys.simulators.NrnSimulator() diff --git a/examples/l5pc/l5pc_soma_arbor.ipynb b/examples/l5pc/l5pc_soma_arbor.ipynb index 629a2512..bbaaeb09 100644 --- a/examples/l5pc/l5pc_soma_arbor.ipynb +++ b/examples/l5pc/l5pc_soma_arbor.ipynb @@ -540,7 +540,7 @@ "metadata": {}, "outputs": [], "source": [ - "if not hasattr(arbor, \"prune_tag\"): # skip axon replacement if not yet supported\n", + "if not hasattr(arbor.segment_tree, 'tag_roots'): # skip axon replacement if not yet supported\n", " replace_axon = [False]\n", "else:\n", " replace_axon = [False, True]\n", From 6aa15deb6a8b30f2df871d06d34578bf417a6dae Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Sun, 2 Oct 2022 23:07:07 +0200 Subject: [PATCH 21/42] Arbor locations/labels, stimuli, protocols and optimization in simple-cell, l5pc and expsyn examples, updated cross-validation --- Makefile | 6 +- bluepyopt/ephys/create_acc.py | 95 +- bluepyopt/ephys/create_hoc.py | 25 +- bluepyopt/ephys/locations.py | 199 +- bluepyopt/ephys/morphologies.py | 51 +- bluepyopt/ephys/protocols.py | 242 + bluepyopt/ephys/simulators.py | 50 + bluepyopt/ephys/stimuli.py | 74 +- .../templates/acc/decor_acc_template.jinja2 | 2 +- bluepyopt/tests/test_ephys/test_create_hoc.py | 11 +- bluepyopt/tests/test_ephys/test_locations.py | 4 +- bluepyopt/tests/test_simplecell.py | 36 +- examples/expsyn/ExpSyn.ipynb | 2 +- examples/expsyn/ExpSyn_arbor.ipynb | 371 ++ examples/expsyn/expsyn.py | 90 +- examples/l5pc/L5PC_arbor.ipynb | 1094 ++++ examples/l5pc/config/protocols.json | 8 +- examples/l5pc/generate_acc.py | 19 +- examples/l5pc/l5pc_evaluator.py | 68 +- examples/l5pc/l5pc_soma_arbor.ipynb | 5463 ++++++++++++++++- examples/simplecell/.gitignore | 1 + examples/simplecell/generate_acc.py | 17 +- examples/simplecell/simplecell_arbor.ipynb | 3398 ++-------- examples/simplecell/simplecell_model.py | 25 +- 24 files changed, 8003 insertions(+), 3348 deletions(-) create mode 100644 examples/expsyn/ExpSyn_arbor.ipynb create mode 100644 examples/l5pc/L5PC_arbor.ipynb diff --git a/Makefile b/Makefile index 35984710..e00a5783 100644 --- a/Makefile +++ b/Makefile @@ -32,7 +32,11 @@ sc_prepare: jupyter cd examples/simplecell && \ jupyter nbconvert --to python simplecell.ipynb && \ sed '/get_ipython/d;/plt\./d;/plot_responses/d;/import matplotlib/d' simplecell.py >simplecell.tmp && \ - mv simplecell.tmp simplecell.py + mv simplecell.tmp simplecell.py && \ + jupyter nbconvert --to python simplecell_arbor.ipynb && \ + sed '/get_ipython/d;/plt\./d;/plot_responses/d;/import matplotlib/d' simplecell_arbor.py >simplecell_arbor.tmp && \ + mv simplecell_arbor.tmp simplecell_arbor.py + meta_prepare: jupyter cd examples/metaparameters && \ jupyter nbconvert --to python metaparameters.ipynb && \ diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 7a65923d..a34efcbf 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -29,18 +29,10 @@ def __getattribute__(self, _): from .create_hoc import Location, RangeExpr, PointExpr, \ _get_template_params, format_float, DEFAULT_LOCATION_ORDER from .morphologies import ArbFileMorphology -from .locations import (NrnSeclistLocation, - NrnSeclistSecLocation, - NrnSectionCompLocation, - NrnPointProcessLocation, - NrnSeclistCompLocation, - NrnSomaDistanceCompLocation, - NrnSecSomaDistanceCompLocation, - NrnTrunkSomaDistanceCompLocation) # Define Neuron to Arbor variable conversions -ArbVar = namedtuple('ArbVar', 'name, conv') +ArbVar = namedtuple('ArbVar', 'name, conv') # turn into a class # Inhomogeneous expression for soma-distance-scaled parameter in Arbor @@ -131,94 +123,23 @@ def _arb_pop_global_properties(loc, mechs): return [(None, global_properties)] # list of (mech, params) tuples -# Define BluePyOpt to Arbor region mapping -# (relabeling locations to SWC convention) -# Remarks: -# - using SWC convetion: 'dend' for basal dendrite, 'apic' for apical dendrite -ArbLabel = namedtuple('ArbLabel', 'ref, defn') - -def _make_region(region, expr=None): - """Create Arbor region with region name and defining expression - (name for decor, defined in label_dict) or region expression only - (for decor, no label defined in label_dict).""" - if expr is not None: - return ArbLabel(ref='(region \"%s\")' % region, - defn='(region-def \"%s\" %s)' % (region, expr)) - else: - return ArbLabel(ref=region, defn=None) - - -def _make_tagged_region(region, tag): - return _make_region(region, '(tag %i)' % tag) - - -_arb_regions = dict( - # defining "all" region for convenience here, else use - # all=_arb_defined_region('(all)') to omit "all" in label_dict - all=_make_region('all', '(all)'), - somatic=_make_tagged_region('soma', ArbFileMorphology.tags['soma']), - axonal=_make_tagged_region('axon', ArbFileMorphology.tags['axon']), - basal=_make_tagged_region('dend', ArbFileMorphology.tags['dend']), - apical=_make_tagged_region('apic', ArbFileMorphology.tags['apic']), - myelinated=_make_tagged_region('myelin', ArbFileMorphology.tags['myelin']), -) - - -def _raise_section_index_unsupported(loc): - raise ValueError('Translation of Neuron section index to' - ' Arbor morphology not yet supported' - ' (Neuron section index != Arbor segment index).') - -_loc2arb_conv = { - - # areal locations - NrnSeclistLocation: lambda loc: _arb_regions[loc.seclist_name], - NrnSeclistSecLocation: _raise_section_index_unsupported, - - # point locations - NrnSectionCompLocation: lambda loc: - ArbLabel(ref='(on-components %s %s)' % - (format_float(loc.comp_x), - _arb_regions[loc.seclist_name].ref), - defn=None), - NrnPointProcessLocation: lambda loc: - [_loc2arb_label(loc) for loc in loc.pprocess_mech.locations], - NrnSeclistCompLocation: _raise_section_index_unsupported, - - # distance-based point locations - NrnSomaDistanceCompLocation: lambda loc: - ArbLabel(ref='(restrict (distal-translate (on-components 0.5' - ' %s) %s) %s)' % - (_arb_regions['somatic'].ref, - format_float(loc.soma_distance), - _arb_regions[loc.seclist_name].ref), - defn=None), - NrnSecSomaDistanceCompLocation: _raise_section_index_unsupported, - NrnTrunkSomaDistanceCompLocation: _raise_section_index_unsupported -} - -def _loc2arb_label(location): - """Convert location from Neuron to Arbor.""" - - return _loc2arb_conv[type(location)](location) - - def _arb_eval_point_proc_locs(pprocess_mechs): + """Evaluate point process locations""" result = {loc: dict() for loc in pprocess_mechs} for loc, mechs in pprocess_mechs.items(): - for mech, point_exprs in mechs.items(): + for mech, point_exprs in mechs.items(): result[loc][mech.name] = dict( mech=mech.suffix, params=[Location(point_expr.name, point_expr.value) for point_expr in point_exprs], - point_locs=[_loc2arb_label(loc) for loc in mech.locations]) + point_locs=[loc.acc_label() + for loc in mech.locations]) return result - def _arb_load_mech_catalogues(): """Load Arbor's built-in mechanism catalogues""" @@ -407,6 +328,7 @@ def _arb_project_scaled_mechs(mechs): return scaled_mechs +# Translating parameter scaling expressions to Arbor S-expressions class ArbIExprValueEliminator(ast.NodeTransformer): """Divide expression (symbolically) by value and replace non-linear occurrences by numeric value""" @@ -579,7 +501,8 @@ def visit_Call(self, node): def visit_Name(self, node): if node.id == '_arb_parse_iexpr_distance': self._emit( - '(distance (region "soma"))' + '(distance %s)' % + ArbFileMorphology.region_labels['somatic'].ref ) @@ -759,7 +682,7 @@ def create_acc(mechs, replace_axon=replace_axon_json, modified_morphology=modified_morphology, filenames=filenames, - regions=_arb_regions, + regions=ArbFileMorphology.region_labels, global_mechs=global_mechs, global_scaled_mechs=global_scaled_mechs, section_mechs=section_mechs, diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 26fafcd2..9586b967 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -45,10 +45,11 @@ def _generate_channels_by_location(mechs, location_order): name = mech.suffix for location in mech.locations: # TODO this is dangerous, implicitely assumes type of location + seclist_name = getattr(location, 'seclist_name', 'all') if isinstance(mech, mechanisms.NrnMODPointProcessMechanism): - point_channels[location.seclist_name].append(mech) + point_channels[seclist_name].append(mech) else: - channels[location.seclist_name].append(name) + channels[seclist_name].append(name) return channels, point_channels @@ -99,13 +100,14 @@ def _generate_parameters(parameters): else: assert isinstance( param.locations, (tuple, list)), 'Must have locations list' - for location in param.locations: + for location in param.locations: # FIXME: NrnSectionCompLocation if not isinstance(param, NrnPointProcessParameter): param_locations[location.seclist_name].append(param) else: for pprocess_location in location.pprocess_mech.locations: - param_locations[ - pprocess_location.seclist_name].append(param) + pprocess_seclist = getattr(pprocess_location, + 'seclist_name', 'all') + param_locations[pprocess_seclist].append(param) section_params = defaultdict(list) pprocess_params = defaultdict(list) @@ -141,8 +143,8 @@ def _generate_parameters(parameters): elif isinstance(param, NrnPointProcessParameter): value = param.value pprocess_params[loc].append( - PointExpr(param.param_name, param.locations, format_float(value))) - + PointExpr(param.param_name, param.locations, + format_float(value))) ordered_section_params = [(loc, section_params[loc]) for loc in location_order] @@ -150,7 +152,8 @@ def _generate_parameters(parameters): ordered_pprocess_params = [(loc, pprocess_params[loc]) for loc in location_order] - return global_params, ordered_section_params, range_params, ordered_pprocess_params, location_order + return global_params, ordered_section_params, range_params, \ + ordered_pprocess_params, location_order def _read_template(template_dir, template_filename): @@ -184,9 +187,11 @@ def _get_template_params( This iterable contains parameter names that aren't checked ''' - global_params, section_params, range_params, pprocess_params, location_order = \ + global_params, section_params, range_params, \ + pprocess_params, location_order = \ _generate_parameters(parameters) - channels, point_channels = _generate_channels_by_location(mechs, location_order) + channels, point_channels = _generate_channels_by_location( + mechs, location_order) ignored_global_params = {} for ignored_global in ignored_globals: diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index 6d9aae7d..02766f86 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -25,8 +25,13 @@ from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin +from bluepyopt.ephys.parameterscalers import format_float +from bluepyopt.ephys.morphologies import ArbLabel, ArbFileMorphology import numpy as np +import logging +logger = logging.getLogger(__name__) + class Location(BaseEPhys): @@ -104,6 +109,15 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 return icomp + def acc_label(self): + """Arbor label""" + raise EPhysLocAccException( + '%s not supported in Arbor' % type(self) + + ' (uses branches instead of NEURON sections).' + ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' + ' instead (consider using the Arbor GUI to identify the' + ' precise branch/segment index and relative position).') + def __str__(self): """String representation""" @@ -125,7 +139,7 @@ class NrnSectionCompLocation(Location, DictMixin): def __init__( self, name, - seclist_name=None, + sec_name=None, comp_x=None, comment=''): """Constructor @@ -137,7 +151,7 @@ def __init__( """ super(NrnSectionCompLocation, self).__init__(name, comment) - self.seclist_name = seclist_name + self.sec_name = sec_name self.comp_x = comp_x def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 @@ -145,13 +159,22 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 # Dont see any other way but to use eval, apart from parsing the # sec_name string which can be complicated - isection = eval('icell.%s' % self.seclist_name) # pylint: disable=W0123 + isection = eval('icell.%s' % self.sec_name) # pylint: disable=W0123 icomp = isection(self.comp_x) return icomp + def acc_label(self): + """Arbor label""" + raise EPhysLocAccException( + '%s not supported in Arbor' % type(self) + + ' (uses branches instead of NEURON sections).' + ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' + ' instead (consider using the Arbor GUI to identify the' + ' precise branch/segment index and relative position).') + def __str__(self): - return '%s(%s)' % (self.seclist_name, self.comp_x) + return '%s(%s)' % (self.sec_name, self.comp_x) class NrnPointProcessLocation(Location): @@ -178,6 +201,10 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 return self.pprocess_mech.pprocesses + def acc_label(self): + """Arbor label""" + return [loc.acc_label() for loc in self.pprocess_mech.locations] + def __str__(self): """String representation""" @@ -212,6 +239,10 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 return (isection for isection in isectionlist) + def acc_label(self): + """Arbor label""" + return ArbFileMorphology.region_labels[self.seclist_name] + def __str__(self): """String representation""" @@ -249,6 +280,15 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 isection = _nth_isectionlist(isectionlist, self.sec_index) return isection + def acc_label(self): + """Arbor label""" + raise EPhysLocAccException( + '%s not supported in Arbor' % type(self) + + ' (uses branches instead of NEURON sections).' + ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' + ' instead (consider using the Arbor GUI to identify the' + ' precise branch/segment index).') + def __str__(self): """String representation""" @@ -320,6 +360,30 @@ def instantiate(self, sim=None, icell=None): return self.find_icomp(sim, iseclist) + def acc_label(self): + """Arbor label""" + # Potentially non-unique location - in that case to be refined in the + # Arbor GUI (create ArbLocsetLocation directly). + # Alternatives to (on-components 0.5 (region "soma")) are + # - '(segment )' + # - '(proximal (region %s)))' % self.seclist_name + # If outer restrict results in non-unique location (cf. GUI) use + # specific branch or similar instead of seclist_name, e.g. + # - (proximal-interval (distal (branch ))) + # for a branch distally from the desired location + acc_label = ArbLabel( + 'locset', self.name, + '(restrict (distal-translate (on-components 0.5 %s) %s) %s)' % + (ArbFileMorphology.region_labels['somatic'].ref, + format_float(self.soma_distance), + ArbFileMorphology.region_labels[self.seclist_name].ref)) + logger.warning( + 'Make sure that ACC label %s' % acc_label.loc + + ' for NrnSomaDistanceCompLocation (%s) ' % str(self) + + ' instantiates to a unique location on the morphology.' + ' Use the Arbor GUI to validate/refine the location expression.') + return acc_label + def __str__(self): """String representation""" @@ -392,6 +456,10 @@ def instantiate(self, sim=None, icell=None): return self.find_icomp(sim, branches) + def acc_label(self): + """Arbor label""" + raise EPhysLocAccException('%s not supported in Arbor.' % type(self)) + class NrnTrunkSomaDistanceCompLocation(NrnSecSomaDistanceCompLocation): """Location at a distance from soma along a main direction. @@ -460,12 +528,133 @@ def instantiate(self, sim=None, icell=None): self.set_sec_index(icell=icell) return super().instantiate(sim=sim, icell=icell) + def acc_label(self): + """Arbor label""" + raise EPhysLocAccException('%s not supported in Arbor.' % type(self)) + + +class ArbLocation(Location): + """Arbor Location""" + + pass + + +class ArbSegmentLocation(ArbLocation): + """Segment in an Arbor morphology. + """ + + def __init__(self, name, segment, comment=''): + super().__init__(name, comment) + self.segment = segment + + def acc_label(self): + """Arbor label""" + return ArbLabel('region', self.name, '(segment %s)' % (self.segment)) + + +class ArbBranchLocation(ArbLocation): + """Branch in an Arbor morphology. + + Arbor's counterpart of NrnSeclistSecLocation. + """ + + def __init__(self, name, branch, comment=''): + super().__init__(name, comment) + self.branch = branch + + def acc_label(self): + """Arbor label""" + return ArbLabel('region', self.name, '(branch %s)' % (self.branch)) + + +class ArbSegmentRelLocation(ArbLocation): + """Relative position on a segment in an Arbor morphology. + """ + + def __init__(self, name, segment, pos, comment=''): + super().__init__(name, comment) + self.segment = segment + self.pos = pos + + def acc_label(self): + """Arbor label""" + return ArbLabel('locset', self.name, + '(on-components %s (segment %s))' % + (format_float(self.pos), self.segment)) + + +class ArbBranchRelLocation(ArbLocation): + """Relative position on a branch in an Arbor morphology. + + Arbor's counterpart of NrnSeclistCompLocation. + """ + + def __init__(self, name, branch, pos, comment=''): + super().__init__(name, comment) + self.branch = branch + self.pos = pos + + def acc_label(self): + """Arbor label""" + return ArbLabel('locset', self.name, + '(location %s %s)' % + (self.branch, format_float(self.pos))) + + +class ArbLocsetLocation(ArbLocation): + """Arbor location set defined by a user-supplied string. + """ + + def __init__(self, name, locset, comment=''): + super().__init__(name, comment) + self.locset = locset + + def acc_label(self): + """Arbor label""" + return ArbLabel('locset', self.name, self.locset) + + +class ArbRegionLocation(ArbLocation): + """Arbor region defined by a user-supplied string. + """ + + def __init__(self, name, region, comment=''): + super().__init__(name, comment) + self.region = region + + def acc_label(self): + """Arbor label""" + return ArbLabel('region', self.name, self.region) + + +class ArbIexprLocation(ArbLocation): + """Arbor iexpr location defined by a user-supplied string. + """ + + def __init__(self, name, iexpr, comment=''): + super().__init__(name, comment) + self.iexpr = iexpr + + def acc_label(self): + """Arbor label""" + return ArbLabel('iexpr', self.name, self.iexpr) + class EPhysLocInstantiateException(Exception): - """All exception generated by location instantiation""" + """All exceptions generated by location instantiation""" def __init__(self, message): """Constructor""" super(EPhysLocInstantiateException, self).__init__(message) + + +class EPhysLocAccException(Exception): + + """All exceptions generated by ACC label creation""" + + def __init__(self, message): + """Constructor""" + + super(EPhysLocAccException, self).__init__(message) diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 82b939a8..0b695483 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -260,7 +260,37 @@ def replace_axon(sim=None, icell=None): ''' +class ArbLabel: + """Arbor label""" + + def __init__(self, type, name, defn): + self._type = type + self._name = name + self._defn = defn + + @property + def defn(self): + """Label definition for label-dict""" + return '(%s-def "%s" %s)' % (self._type, self._name, self._defn) + + @property + def ref(self): + """Reference to label defined in label-dict""" + return '(%s "%s")' % (self._type, self._name) + + @property + def name(self): + """Name of the label""" + return self._name + + @property + def loc(self): + """Expression defining the location of the label""" + return self._defn + + class ArbFileMorphology(Morphology, DictMixin): + """Arbor morphology utilities""" # Arbor morphology tags tags = dict( @@ -271,6 +301,24 @@ class ArbFileMorphology(Morphology, DictMixin): myelin=5 ) + # Correspondence of BluePyOpt to Arbor region labels + # (renaming locations according to SWC convention: using + # 'dend' for basal dendrite, 'apic' for apical dendrite) + region_labels = dict( + all=ArbLabel( + type='region', name='all', defn='(all)'), + somatic=ArbLabel( + type='region', name='soma', defn='(tag %i)' % tags['soma']), + axonal=ArbLabel( + type='region', name='axon', defn='(tag %i)' % tags['axon']), + basal=ArbLabel( + type='region', name='dend', defn='(tag %i)' % tags['dend']), + apical=ArbLabel( + type='region', name='apic', defn='(tag %i)' % tags['apic']), + myelinated=ArbLabel( + type='region', name='myelin', defn='(tag %i)' % tags['myelin']), + ) + @staticmethod def replace_axon(morphology, replacement=None): '''return a morphology with the axon replaced by two 30 um segments @@ -321,7 +369,8 @@ def _find_ais_centers(st, axon_parent=None): st = morphology.to_segment_tree() axon_roots = st.tag_roots(axon_tag) if len(axon_roots) > 1: - raise ValueError("Axon replacement is only supported for axon with a single root.") + raise ValueError("Axon replacement is only supported for " + "morphologies with a single axon root.") elif len(axon_roots) == 1: axon_root = axon_roots[0] pruned_st, axon_st = st.split_at(axon_root) diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index edf92512..93bb5bca 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -21,7 +21,9 @@ # pylint: disable=W0511 +import os import collections +import tempfile # TODO: maybe find a better name ? -> sweep ? import logging @@ -29,6 +31,10 @@ from . import locations from . import simulators +from . import stimuli +from .responses import TimeVoltageResponse +from . import create_acc +arbor = create_acc.arbor class Protocol(object): @@ -355,3 +361,239 @@ def step_delay(self): def step_duration(self): """Time stimulus starts""" return self.step_stimulus.step_duration + + +class ArbSweepProtocol(Protocol): + + """Arbor Sweep protocol""" + + def __init__( + self, + name=None, + stimuli=None, + recordings=None, + use_labels=False): + """Constructor + + Args: + name (str): name of this object + stimuli (list of Stimuli): Stimulus objects used in the protocol + recordings (list of Recordings): Recording objects used in the + protocol + use_labels (bool): Add stimuli/recording locations to label dict + """ + + super(ArbSweepProtocol, self).__init__(name) + self.stimuli = stimuli + self.recordings = recordings + self.use_labels = use_labels + + @property + def total_duration(self): + """Total duration""" + + return max([stimulus.total_duration for stimulus in self.stimuli]) + + def subprotocols(self): + """Return subprotocols""" + + return collections.OrderedDict({self.name: self}) + + def _run_func(self, cell_json, param_values, sim=None): + """Run protocols""" + + try: + # Loading cell constituents from ACC + cell_json, morph, labels, decor = \ + create_acc.read_acc(cell_json) + + # Locations of stimuli and recordings can be instantiated + # as labels (useful for visualization in Arbor GUI) + if self.use_labels: + labels = self.instantiate_locations(labels) + + # Adding stimuli to decor (could also be written/loaded from ACC) + decor = self.instantiate_stimuli( + decor, + use_labels=self.use_labels) + + arb_cell_model = sim.instantiate(morph, labels, decor) + + # Adding recordings to cell model (no representation in ACC) + arb_cell_model = self.instantiate_recordings( + arb_cell_model, + use_labels=self.use_labels) + + try: + sim.run(arb_cell_model, tstop=self.total_duration) + except (RuntimeError, simulators.NrnSimulatorException): + logger.debug( + 'ArbSweepProtocol: Running of parameter set {%s} ' + 'generated an exception, returning None in responses', + str(param_values)) + responses = {recording.name: + None for recording in self.recordings} + else: + if len(self.recordings) != len(arb_cell_model.traces): + raise ValueError('Number of Arbor voltage traces ' + '(%d) != number of recordings (%d)' % + (len(self.recordings), + len(arb_cell_model.traces))) + responses = { + recording.name: TimeVoltageResponse( + recording.name, trace.time, trace.value) + for recording, trace in zip(self.recordings, + arb_cell_model.traces)} + + return responses + except BaseException: + import sys + import traceback + raise Exception( + "".join( + traceback.format_exception(*sys.exc_info()))) + + def run( + self, + cell_model, + param_values, + sim=None, + isolate=None, + timeout=None): + """Instantiate protocol""" + + # Export cell model to mixed JSON/ACC-format + with tempfile.TemporaryDirectory() as acc_dir: + create_acc.output_acc(acc_dir, cell_model, param_values) + cell_json = os.path.join(acc_dir, cell_model.name + '.json') + + # protocols are directly instantiated on Arbor cell + # (serialization would require representation for probes) + + if isolate is None: + isolate = True + + if isolate: + def _reduce_method(meth): + """Overwrite reduce""" + return (getattr, (meth.__self__, meth.__func__.__name__)) + + import copyreg + import types + copyreg.pickle(types.MethodType, _reduce_method) + import pebble + from concurrent.futures import TimeoutError + + if timeout is not None: + if timeout < 0: + raise ValueError("timeout should be > 0") + + with pebble.ProcessPool(max_workers=1, max_tasks=1) as pool: + tasks = pool.schedule(self._run_func, kwargs={ + 'cell_json': cell_json, + 'param_values': param_values, + 'sim': sim}, + timeout=timeout) + try: + responses = tasks.result() + except TimeoutError: + logger.debug('SweepProtocol: task took longer than ' + 'timeout, will return empty response ' + 'for this recording') + responses = {recording.name: + None for recording in self.recordings} + else: + responses = self._run_func(cell_json=cell_json, + param_values=param_values, + sim=sim) + return responses + + def instantiate_locations(self, label_dict): + """Instantiate protocol (stimuli/recordings) locations on label_dict""" + + stim_rec_labels = [] + + for stim in self.stimuli: + arb_loc = stim.location.acc_label() + for loc in (arb_loc if isinstance(arb_loc, list) + else [arb_loc]): + stim_rec_labels.append((loc.name, loc.loc, stim)) + + for rec in self.recordings: + arb_loc = rec.location.acc_label() + assert not isinstance(arb_loc, list) or len(arb_loc) == 1 + stim_rec_labels.append((arb_loc.name, arb_loc.loc, rec)) + + stim_rec_label_dict = dict() + + for label_name, label_loc, stim_rec in stim_rec_labels: + if label_name in label_dict and \ + label_loc != label_dict[label_name]: + raise ValueError( + 'Label %s already exists in' % label_name + + ' label_dict with different value: ' + ' %s != %s.' % (label_dict[label_name], label_loc) + + ' Choose different location name for %s.' % stim_rec) + elif label_name in stim_rec_label_dict and \ + label_loc != stim_rec_label_dict[label_name]: + raise ValueError( + 'Label %s defined multiple times' % label_name + + ' with different values: ' + ' %s != %s.' % (stim_rec_label_dict[label_name], + label_loc) + + ' Choose different location name for %s.' % stim_rec) + elif label_name not in label_dict and \ + label_name not in stim_rec_label_dict: + stim_rec_label_dict[label_name] = label_loc + + label_dict.append(arbor.label_dict(stim_rec_label_dict)) + + return label_dict + + def instantiate_stimuli(self, decor, use_labels=False): + """Instantiate stimuli""" + + for i, stim in enumerate(self.stimuli): + if hasattr(stim, 'envelope'): + arb_iclamp = arbor.iclamp(stim.envelope()) + else: + raise ValueError('Stimulus must provide envelope method ' + ' to be supported in Arbor.') + + arb_loc = stim.location.acc_label() + for loc in (arb_loc if isinstance(arb_loc, list) + else [arb_loc]): + decor.place(loc.ref if use_labels else loc.loc, + arb_iclamp, + '%s.iclamp.%d.%s' % (self.name, i, loc.name)) + + return decor + + def instantiate_recordings(self, cell_model, use_labels=False): + """Instantiate recordings""" + + # Attach voltage probe sampling at 10 kHz (every 0.1 ms) + for i, rec in enumerate(self.recordings): + # alternatively arbor.cable_probe_membrane_voltage + arb_loc = rec.location.acc_label() + assert not isinstance(arb_loc, list) or len(arb_loc) == 1 + cell_model.probe('voltage', + arb_loc.ref if use_labels else arb_loc.loc, + frequency=10) # could be a parameter + + return cell_model + + def __str__(self): + """String representation""" + + content = '%s:\n' % self.name + + content += ' stimuli:\n' + for stimulus in self.stimuli: + content += ' %s\n' % str(stimulus) + + content += ' recordings:\n' + for recording in self.recordings: + content += ' %s\n' % str(recording) + + return content diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index d44b7854..aa97e0ec 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -9,6 +9,17 @@ import platform import warnings +try: + import arbor +except ImportError as e: + class arbor: + def __getattribute__(self, _): + raise ImportError("Loading an ACC/JSON-exported cell model into an" + " Arbor morphology and cable cell components" + " requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") + logger = logging.getLogger(__name__) @@ -175,3 +186,42 @@ def __init__(self, message, original): super(NrnSimulatorException, self).__init__(message) self.original = original + + +class ArbSimulator(object): + + """Arbor simulator""" + + def __init__(self, dt=None): # TODO: add discretization policies, etc. + """Constructor + + Args: + dt (float): the integration time step used by Arbor. + """ + + self.dt = dt + + def instantiate(self, morph, labels, decor): + cable_cell = arbor.cable_cell(morph, labels, decor) + arb_cell_model = arbor.single_cell_model(cable_cell) + + # Add catalogues with explicit qualifiers + # (could also be a simulator-option) + arb_cell_model.properties.catalogue = arbor.catalogue() + arb_cell_model.properties.catalogue.extend( + arbor.default_catalogue(), "default::") + arb_cell_model.properties.catalogue.extend( + arbor.bbp_catalogue(), "BBP::") + return arb_cell_model + + def run(self, + arb_cell_model, + tstop=None, + dt=None): + + dt = dt if dt is not None else self.dt + + if dt is not None: + return arb_cell_model.run(tfinal=tstop, dt=dt) + else: + return arb_cell_model.run(tfinal=tstop) diff --git a/bluepyopt/ephys/stimuli.py b/bluepyopt/ephys/stimuli.py index 686aad0b..a86be5d2 100644 --- a/bluepyopt/ephys/stimuli.py +++ b/bluepyopt/ephys/stimuli.py @@ -56,6 +56,13 @@ def __init__(self, self.current_vec = None self.time_vec = None + def envelope(self): + """Stimulus envelope""" + + envelope = list(zip(self.time_points, self.current_points)) + + return envelope + def instantiate(self, sim=None, icell=None): """Run stimulus""" @@ -187,6 +194,19 @@ def __init__(self, self.total_duration = total_duration self.iclamp = None + def envelope(self): + """Stimulus envelope""" + + envelope = [(0., 0.), + (self.step_delay, 0.), + (self.step_delay, self.step_amplitude), + (self.step_delay + self.step_duration, + self.step_amplitude), + (self.step_delay + self.step_duration, 0.), + (self.total_duration, 0.)] + + return envelope + def instantiate(self, sim=None, icell=None): """Run stimulus""" @@ -254,6 +274,31 @@ def __init__(self, self.iclamp = None self.persistent = [] # TODO move this into higher abstract classes + def envelope(self): + """Stimulus envelope""" + + envelope = [ + # at time 0.0, current is 0.0 + (0.0, 0.0), + + # until time ramp_delay, current is 0.0 + (self.ramp_delay, 0.0), + + # at time ramp_delay, current is ramp_amplitude_start + (self.ramp_delay, self.ramp_amplitude_start), + + # at time ramp_delay+ramp_duration, current is ramp_amplitude_end + (self.ramp_delay + self.ramp_duration, + self.ramp_amplitude_end), + + # after ramp, current is set 0.0 + (self.ramp_delay + self.ramp_duration, 0.0), + + (self.total_duration, 0.0) + ] + + return envelope + def instantiate(self, sim=None, icell=None): """Run stimulus""" @@ -268,33 +313,12 @@ def instantiate(self, sim=None, icell=None): self.ramp_amplitude_end ) + times, amps = zip(*self.envelope()) + # create vector to store the times at which stim amp changes - times = sim.neuron.h.Vector() + times = sim.neuron.h.Vector(times) # create vector to store to which stim amps over time - amps = sim.neuron.h.Vector() - - # at time 0.0, current is 0.0 - times.append(0.0) - amps.append(0.0) - - # until time ramp_delay, current is 0.0 - times.append(self.ramp_delay) - amps.append(0.0) - - # at time ramp_delay, current is ramp_amplitude_start - times.append(self.ramp_delay) - amps.append(self.ramp_amplitude_start) - - # at time ramp_delay+ramp_duration, current is ramp_amplitude_end - times.append(self.ramp_delay + self.ramp_duration) - amps.append(self.ramp_amplitude_end) - - # after ramp, current is set 0.0 - times.append(self.ramp_delay + self.ramp_duration) - amps.append(0.0) - - times.append(self.total_duration) - amps.append(0.0) + amps = sim.neuron.h.Vector(amps) # create a current clamp self.iclamp = sim.neuron.h.IClamp( diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index 76f10522..72fc6342 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -34,7 +34,7 @@ {%- for synapse_name, mech_param_locs in pprocess_mechs[loc].items() %} {%- for point_loc in mech_param_locs.point_locs %} - (place {{point_loc.ref}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") + (place {{point_loc.loc}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") {%- endfor %} {%- endfor %} diff --git a/bluepyopt/tests/test_ephys/test_create_hoc.py b/bluepyopt/tests/test_ephys/test_create_hoc.py index c133318d..8a266a5a 100644 --- a/bluepyopt/tests/test_ephys/test_create_hoc.py +++ b/bluepyopt/tests/test_ephys/test_create_hoc.py @@ -24,7 +24,7 @@ def test__generate_channels_by_location(): """ephys.create_hoc: Test _generate_channels_by_location""" mech = utils.make_mech() - channels = create_hoc._generate_channels_by_location( + channels, point_channels = create_hoc._generate_channels_by_location( [mech, ], DEFAULT_LOCATION_ORDER) assert len(channels['apical']) == 1 @@ -33,13 +33,17 @@ def test__generate_channels_by_location(): assert channels['apical'] == ['Ih'] assert channels['basal'] == ['Ih'] + for loc in point_channels: + assert len(point_channels[loc]) == 0 + @pytest.mark.unit def test__generate_parameters(): """ephys.create_hoc: Test _generate_parameters""" parameters = utils.make_parameters() - global_params, section_params, range_params, location_order = \ + global_params, section_params, range_params, \ + pprocess_params, location_order = \ create_hoc._generate_parameters(parameters) assert global_params == {'NrnGlobalParameter': 65} @@ -48,6 +52,9 @@ def test__generate_parameters(): assert section_params[4][0] == 'somatic' assert len(section_params[4][1]) == 2 assert range_params == [] + for loc, pparams in pprocess_params: + assert loc in DEFAULT_LOCATION_ORDER + assert len(pparams) == 0 assert location_order == DEFAULT_LOCATION_ORDER diff --git a/bluepyopt/tests/test_ephys/test_locations.py b/bluepyopt/tests/test_ephys/test_locations.py index 780a0b8a..28868742 100644 --- a/bluepyopt/tests/test_ephys/test_locations.py +++ b/bluepyopt/tests/test_ephys/test_locations.py @@ -47,11 +47,11 @@ def setup(self): """Setup""" self.loc = ephys.locations.NrnSectionCompLocation( name='test', - seclist_name='soma[0]', + sec_name='soma[0]', comp_x=0.5) self.loc_dend = ephys.locations.NrnSectionCompLocation( name='test', - seclist_name='dend[1]', + sec_name='dend[1]', comp_x=0.5) assert self.loc.name == 'test' self.sim = ephys.simulators.NrnSimulator() diff --git a/bluepyopt/tests/test_simplecell.py b/bluepyopt/tests/test_simplecell.py index 0d976895..93a6c564 100644 --- a/bluepyopt/tests/test_simplecell.py +++ b/bluepyopt/tests/test_simplecell.py @@ -12,7 +12,7 @@ class TestSimpleCellClass(object): - """Simple cell example test class""" + """Simple cell example test class for NEURON""" def setup(self): """Setup""" @@ -24,7 +24,7 @@ def setup(self): @staticmethod def test_exec(): - """Simplecell: test execution""" + """Simplecell NEURON: test execution""" # When using import instead of execfile this doesn't work # Probably because multiprocessing doesn't work correctly during # import @@ -39,3 +39,35 @@ def teardown(self): sys.stdout = self.old_stdout os.chdir(self.old_cwd) + + +class TestSimpleCellArborClass(object): + + """Simple cell example test class for Arbor""" + + def setup(self): + """Setup""" + self.old_cwd = os.getcwd() + self.old_stdout = sys.stdout + + os.chdir(SIMPLECELL_PATH) + sys.stdout = open(os.devnull, 'w') + + @staticmethod + def test_exec(): + """Simplecell Arbor: test execution""" + # When using import instead of execfile this doesn't work + # Probably because multiprocessing doesn't work correctly during + # import + if sys.version_info[0] < 3: + execfile('simplecell_arbor.py') # NOQA + else: + with open('simplecell_arbor.py') as sc_file: + exec(compile(sc_file.read(), + 'simplecell_arbor.py', 'exec')) # NOQA + + def teardown(self): + """Tear down""" + + sys.stdout = self.old_stdout + os.chdir(self.old_cwd) diff --git a/examples/expsyn/ExpSyn.ipynb b/examples/expsyn/ExpSyn.ipynb index 0a526595..fbad4f5e 100644 --- a/examples/expsyn/ExpSyn.ipynb +++ b/examples/expsyn/ExpSyn.ipynb @@ -308,7 +308,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xU1b3//9eazIQk5AJDQkIgXJKAgCCIiUUughDo7xQFi9gGFY43kIJY0apftdieUkr4okYrpeixPyvFI1AraD0qGFCiXCQgitwEgghIIAm5kAshmcz6/rGTkZCLk8vMniSf5+PBYyZ79p79zk6YT/Zae6+ltNYaIYQQohksZgcQQgjR+kkxEUII0WxSTIQQQjSbFBMhhBDNJsVECCFEs0kxEUII0WxWswOY6cyZM03aLjw8nNzc3BZO03ySq3EkV+NIrsbx1VzQvGzR0dF1LpczEyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJtPdMCvW7eOzZs3ExoaCsD06dMZNmwYAOvXr2fLli1YLBbuuecehg4dWmv77OxsXnjhBYqKioiNjWX+/PlYrT7xrQkhRLvgM5+4kyZNYvLkyTWWnT59mu3bt/P888+Tn5/PokWLePHFF7FYap5QrV69mkmTJjFy5EheeeUVtmzZwsSJE70ZXwgh2jWfbubKyMhgxIgR2Gw2unbtSlRUFMeOHauxjtaaAwcOMHz4cADGjh1LRkaGGXGFEKLd8pkzk40bN5Kenk5sbCwzZ84kODiYvLw8+vbt61rHbreTl5dXY7uioiKCgoLw8/Ord51qaWlppKWlAZCSkkJ4eHiTslqt1iZv60neyKW15uLGDVj79MX/qkE+k6spJFfjSK7G8dVc4JlsXismixYtoqCgoNby5ORkJk6cyLRp0wBYu3Ytq1atYu7cuS2eISkpiaSkJNfXTb1px1dvRvJGLv3tEZwvLwPA8uc1qMAgn8jVFJKrcSRX4/hqLvDMTYteKyYLFy50a73x48ezdOlSwDjLOH/+vOu1vLw87HZ7jfVDQkIoLS2lsrISPz+/OtcRLUfvu6wJ8eCXcN0I88IIIXyGT/SZ5Ofnu57v2rWLmJgYABISEti+fTsVFRVkZ2eTlZVFfHx8jW2VUlx99dXs3LkTgE8++YSEhATvhW9vzp0BewQEBqH37zE7jRDCR/hEn8nq1as5ceIESikiIiKYPXs2ADExMdxwww088sgjWCwW7rvvPteVXEuWLOGBBx7Abrdz55138sILL7BmzRr69OnDuHHjzPx22jSdew4io6FDIPrIfrPjCCF8hE8Uk/nz59f72tSpU5k6dWqt5U8++aTreWRkJEuWLPFINnGF89moaxIhPBL95U50aQkqqKPZqYQQJvOJZi7ROmhnJVwogE52VK84Y+HJTHNDCSF8ghQT4b6LpcZjx2DoZfRd6e+kmAghpJiIxigtMR6DglEhYWAPh++ONbyNEKJdkGIi3FdaDPBDH0nPePSp4yYGEkL4Cikmwn0lRjEhKBgA1b0nnMtCV5SbGEoI4QukmAj3XfyhmQuA7r1AO+Hs9+ZlEkL4BCkmwm3a1WdiNHOp6J7G8u+/MyuSEMJHSDERddKOitoLyy8Zjx0CjMfIaPDzgzMnvRdMCOGTpJiIWpwfvYNzfjL64N6aL1QXE/8OACirDbpGo6WYCNHuSTERtehP3gdHBc731tZ8ofwSKAVWm2uR6t5LzkyEEFJMRE36Qj5kZ4G/Pxw7jK66HBgwiol/B5RSPyyL7gm559CXyrwfVgjhM6SYiJpyzgGgxt1iXKn1zWWDOVYVk8up7j1Ba8g65c2UQggfI8VE1JRvTJijrhsB/v7ob77+4bVLl8DmX3P96F4A0m8iRDsnxUTUoPOrJiOLiIKY2Jpjb9VxZkLXKKMP5XspJkK0Z1JMRE35uUZ/SVAwqlc8nDqOdjoB0HU1c1n8oFsPOTMRop2TYiJqKi6C4FCjk71nHFwqM2ZXBKgor31mQtXNi2fkxkUh2jPTJ8dat24dmzdvJjQ0FIDp06czbNgw9u3bxxtvvIHD4cBqtTJjxgwGDRrk9vaiafTFUgisusO9Vxwa0CczUd16GM1cAUG1N+reCz7fir5Yigqs43UhRJtnejEBmDRpEpMnT66xLCQkhCeeeAK73c7JkydZvHgxL7/8stvbiya6WOIqJnSLMTrcT2bCT8YYxSQkrNYmKronGoz7TeL6ezWuEMI3+GwzV58+fbDb7YAxF3x5eTkVFXUM8SFa1sUSqDq7UH5+0KP3D53wDodx1/uVqsfokn4TIdotnzgz2bhxI+np6cTGxjJz5kyCg4NrvP75558TGxuLzVbHB5kb21dLS0sjLS0NgJSUFMLDw5uU12q1NnlbT2qJXLmXyrB1thNW9T4X+g6kbPtmunTpwnntxBYc7Hqtmrbbye4QQGBeNiF17L8tHy9PkFyNI7kazxPZvFJMFi1aREFBQa3lycnJTJw4kWnTpgGwdu1aVq1axdy5c13rnDp1ijfeeIOnn366zvf+se0vl5SURFJSkuvr3NzcJn0/4eHhTd7Wk1oiV2VJEU6Ln+t9nOFR6OIico9+g7O8HKejsu59dIuhNPMbLtXxWls+Xp4guRpHcjVec7JFR0fXudwrxWThwoVurTd+/HiWLl3q+vr8+fM8++yzzJs3j6ioqDq36dSpU73bi8bRWhvzvF/Wia669zL6Q77/DhwVYK37V0Z174n+eo93ggohfI7pfSb5+fmu57t27SImJgaAkpISUlJSuOOOO+jfv/5O3fq2F01Q6YDKSugQ+MOy7lV3uH9/AhyOGoM81tC9N1woQBcVejymEML3mN5nsnr1ak6cOIFSioiICGbPng3Ahx9+yNmzZ3nrrbd46623APjtb39LWFgYK1euZMKECcTFxdW7vWiC8qrpdy8bMkV1DAZ7OJw+AZU/cmYCxhlM/2s8HlUI4VtMLybz58+vc/ltt93GbbfdVudrc+bM+dHtRRO45iu5Yvyt7r2N2RQdDvCr58ykeoyu70+ipJgI0e6Y3swlfEhF1ZnJlUOm9OhljL3ldNZ7ZkJYZwgOge9PeDajEMInSTERP3A1c10xZEr33sZw9FB/M5dSEN1L7jURop2SYiJ+UGE0c6krmrlUVSc8UH8HfPV6339nXBUmhGhXpJi0U86Mz3Du+Ljmwuo+kyvnLInq/sPz+pq5wLjyq+wi5OW0TEghRKthege88D6dfQb9yv81nkdEouIHGi+U19NnYrVBxxAoKQK/+n9lXPeknP4OunT1QHIhhK+SM5N2SB/Y+8Pzz7f+8IKrA/6KMxP44eykoTMT1xhdMhy9EO2NFJP2KOsUBHZEXTcSvWd7zcmvoHYHPKAiq4pJ9Tp1UEEdwR5hnJkIIdoVKSbtkM7NNpqhBidAUSFknTZeaOjMJLpqZIHqaX3r072XnJkI0Q5JMWmP8nIgvCuqr9FXoo8eMJZX1L4Dvpoa+zPU6Imo8bc0+Naqey/IOo12OFo0shDCt0kxaY/yclD2CIiIgjA7HD1oLK8uAHVc/qs6BGCZ+SAqtFOt12ro3tMY4yv7TAuHFkL4Mikm7Yx2OIyRgavneY/thz5x1Hixupg0cMXWj1Hdexv7+V6auoRoT6SYtDcXS4zHIGMCMdUrHrLPoEtLjIEcoeErtn5MVHewWIwBH4UQ7YYUk/amtLqYGPO8q17xxtcnM40zE6WMYtBEyuYPXaPlzESIdkaKSXtTWgyAqjozoaqY6O+qiomf1Wj+agYV0wdOfdus9xBCtC5STNqbEqOY0LHqzCQk1LhM+LtjxsRYzWniqhbTB85no6sKlxCi7ZNi0s7o6j6TwOAfFvaKQ393rMHJrxpD9ehjPDl9otnvJYRoHUwfm2vdunVs3ryZ0NBQAKZPn86wYcPIzs5mwYIFrsnr+/btW+csisXFxaSmppKTk0NERAQLFiwgODi41nqiyhVnJgCqZxz6ix0QE1v/5FeNEWMUE33qW1S/Qc1/PyGEzzO9mABMmjSJyZMn11oeFRXFsmXLGtx2w4YNDB48mFtvvZUNGzawYcMG7rrrLk9Fbf3KSo3HwMuKSe++aEB/+03LNHOFdYaQMDh1vPnvJYRoFVp9M1dGRgZjxowBYMyYMWRkZJicyMfVNcx8rzjjMS+3WfeYVFNKQUwf9KkTzX4vIUTr4BNnJhs3biQ9PZ3Y2FhmzpzpaqbKzs7m8ccfJzAwkOTkZAYMGFBr28LCQjp37gxAp06dKCwsrHc/aWlppKWlAZCSkkJ4eHiT8lqt1iZv60nu5Cqy+lFqtRHR9bIh4sPDyYmIxJlzDr8OHVrkeyvqdzWl762jS6dOrfp4mUFyNY7kajxPZPNKMVm0aBEFBQW1licnJzNx4kSmTZsGwNq1a1m1ahVz586lc+fOrFixgpCQEI4fP86yZct47rnnCAoKqnc/SqkGL2tNSkoiKSnJ9XVubm6Tvp/w8PAmb+tJ7uRyFhaCzb/Wes7uvSHnHJVKtcj35uwSCY4Kcg98RcSQ61rt8TKD5GocydV4zclW3Y99Ja8Uk4ULF7q13vjx41m6dCkANpsNm83oDI6NjSUyMpKsrCzi4uJqbBMWFkZ+fj6dO3cmPz/f1ZEv6lFRXmvyK6jqhP/yc6ioaJHdqJhYox/m1HEYcl2LvKcQwneZ3meSn5/ver5r1y5iYoyhzi9cuICzap6Nc+fOkZWVRWRkZK3tExIS2LrVmOBp69atJCYmeiF1K1Z+qc4h5lXPWOPJ2dMts5+o7saAkXLzohDtgul9JqtXr+bEiRMopYiIiHBd/nvw4EHWrVuHn58fFouFWbNmufpSVq5cyYQJE4iLi+PWW28lNTWVLVu2uC4NFvXTFeV1DjFPz6ozPq1bZD/Kz8+Y20SKiRDtgunFZP78+XUuHz58OMOHD6/ztTlz5rieh4SE8Mwzz3gkW5tUXk8x6WRv8V2pmD7oLz9Ht1CBEkL4LtOLifCyivK6m7mUQv3iPugY0nL76tEHPvsIZ34u0LzxvoQQvk2KSXtTfqnGDYuXs0yY0qK7UjF90IDj26PQq1+LvrcQwreY3gEvvKyeMxOP6NEbqComQog2TYpJe1Nebsw54gUqqCNERFFx/Buv7E8IYR4pJu2NN89MMCbfqsiUYiJEWyfFpL2puAS22jctekyvOJzZWejiC97bpxDC66SYtDfl3j8zAeC7TK/tUwjhfW4VE4fDwcmTJzl8+DAnT57E4XB4OpfwAK210czlpT4TwDUisT4hnfBCtGUNXhr8xRdfsGnTJvbv34+fnx+BgYFcvHiRyspKBg0axIQJE7juOhl3qdWodBh3uHuxmKigYPy69aDypJyZCNGW1VtMFi5cSMeOHRk1ahSzZ8/Gbv/hDum8vDwOHjzIRx99xIYNG1i0aJFXwopmqqw0HltiAqxGsMb1p/LgV17dpxDCu+r9VJk1axY9e/as8zW73c6oUaMYNWoUJ0+e9Fg40XT60iWcr6WiesVj+Q9jiH+qmyf9/LyaxRbXn0ufpaGLClEhYV7dtxDCO+rtM+nZsydffPGFa+TehtYTvkdvT4M929Fvr0JnHjYWVlYXkxaY570RbPH9jSffHfPqfoUQ3tNge8df//pXlFKMGjWKsWPHSuFoRfThfcY87JfK0NvSUHH9TTszscZeZWQ6cQw1SPrYhGiLGiwmL7/8Mnv37iU9PZ2nnnqK6OhobrzxRkaPHk1YmDRX+LQTR1EDhoDFD717G/qOOT+cmXi5z8QS1BEiu6Pl8mAh2qwGP1UsFgvXXXcd1113HaWlpWzfvp1PP/2UN998k8GDBzN27Nh6h4kX5tHllyAvF7r1QHWLQe/8GE4cheCqEYH9vD++p+oVjz56wOv7FUJ4h9ufKkFBQa451I8cOcKLL75Iamoqa9eubVaAdevWsXnzZtd0u9OnT2fYsGF8+umnvPvuu671Tp48ydKlS+ndu7db27dreVVzO9u7wlWDQSn0oa9Q1xqFX3n5zAQw7jfZtRV9IR8V2tn7+xdCeJTbnyoVFRXs2rWL9PR0vv76a6666ipuv/32FgkxadIkJk+eXGPZ6NGjGT16NGAUkmXLltUqJA1t364VFQKgwjqjgkMhJhZ9+CvUNVVTGnu5zwRA9Y5Hg3En/OAEr+9fCOFZP1pMDh48SHp6Ojt37iQsLIwbb7yR+++/n4iICG/kA+Czzz5jxIgRXttfq1dUYDxWXYarBlyDTvs3lBYby718NRcAPWONM6Rvj6KkmAjR5jRYTObNm0dpaSk33HADTz75JFdddZVHQmzcuJH09HRiY2OZOXOma673ajt27OCxxx5r8vbtjb5gnJkQWlVM+l+D3rgefWS/sdyEZi4VEATdYmRYFSHaqAY/Ve68804SExOx2Zr3l+yiRYsoKCiotTw5OZmJEycybZpxU93atWtZtWoVc+fOda1z9OhR/P39670s+ce2v1xaWhppaWkApKSkEB4e3qTvx2q1NnlbT6rOVex0UAKE94pF2Ww4E0eSoxTW44epAMLsdvy9mL86V+GAa7i061O6dOmCUuZP4+vrP0dfI7kax1dzgWeyNVhMLm9aysnJ4bvvvqOsrKzGOqNGjfrRnSxcuNCtMOPHj2fp0qU1lm3bto2RI0fWu02nTp0a3P5y1RcQVMvNzXUr15XCw8ObvK0nVedynj0DQR05X1j4w4vde1NRNaRJYXEJyov5Xbmie6KLCsk9tB/VtZvX9v9juXyN5GocydV4zckWHR1d53K32jvWr1/Pv/71L3r06IH/ZcOXV9/Q2Bz5+fl07mxc3bNr1y5iYmJcrzmdTnbs2MEf/vCHJm3fbl0srTXPu4ofgD79rfGFGVdzAarPVWhAf3vEJ4qJEKLluPWp8t5775GSkkKPHj1aPMDq1as5ceIESikiIiKYPXu267VDhw4RHh5OZGRkjW1WrlzJhAkTiIuLa3D79kqXlUJgUM2F8QPgk/eN5ybcZwJAdE/w7wDfHoGfjDEngxDCI9z6VAkODvbY1Vvz58+v97Wrr76axYsX11o+Z84ct7Zvty6WQkDNYqLiBxqX5oJpxUT5+UHveLTMCS9Em+PW5Fh33303L7/8MpmZmeTm5tb4J3xQ2cVaZyaqy2V/DJjUzAWg+vSDU8fRFeWmZRBCtDy3PlUcDgf79u1j27ZttV5r7h3wwgMuljbcJ2HCTYvVVNwA9Mb1xgjC8QNNyyGEaFluFZNXX32V6dOnM3LkyBod8MJH1dVnAqgJU9AfvQMdAk0IVSXOGI5eZx5GSTERos1wq5g4nU5uuukmLBa3WsWE2couQoeAWovV7feiJv4c1dG8mzpVaCfo2g197BD81LQYQogW5lZ1uOWWW9iwYQNa6x9fWZhKaw0V5WDrUOs1pRSqk72OrbxLxQ2AzMPy+yREG+LWmckHH3xAQUEB69evrzVUyV//+lePBBNNVOkArcGXmyPj+8OOLZCdBZF13wAlhGhd3ComcvltK1JedZWUzXeLiYozLlPWmYdQUkyEaBPcKiYDB0pHaavh8P1iQrceENQRjh2CEePNTiOEaAH19pm8//77VFRUNLhxRUUF77//fouHEs1QfWbiw81cymKB2P7ozMNmRxFCtJB6z0wKCgp46KGHuPbaaxk4cCDR0dEEBARQVlbGmTNnOHjwIHv37mXMGBkWw6dUtIIzE0DF9Ufv34MuKTb16jIhRMuot5jccccd3HzzzXzyySds2bKFkydPUlJSQnBwMD179uTaa69l+vTphISEeDOv+DFVxUT5ejGJH2AM73L8Gxh8ndlxhBDN1GCfSWhoKJMnT5YpcVuTVtABD0CffmCxoI8dQkkxEaLVk7sQ25oK3+8zAVAdAoy56Y8dMDuKEKIFSDFpa1pJnwmA6nc1HD8igz4K0QZIMWlrWlMxuWowOCrg+BGzowghmkmKSRujW8GlwS59B4JS6CP7zU4ihGgmtye2KCoqYu/eveTn5zNlyhTy8vLQWtOlS5cWCfLBBx+wceNGLBYLw4YN46677gKMKYO3bNmCxWLhnnvuYejQobW2zc7O5oUXXqCoqIjY2Fjmz5+P1cQ5O0xVfWZi9f1iooKCoUdvKSZCtAFunZkcPHiQhx9+mE8//ZR//etfAJw9e5b//u//bpEQ+/fvZ/fu3Sxbtoznn3+eW265BYDTp0+zfft2nn/+eZ5++mn+9re/4XQ6a22/evVqJk2axEsvvUTHjh3ZsmVLi+RqlVpJB3w11W8QHD+MdjR8g6wQwre5VUz+/ve/8/DDD/P000/jVzWxUnx8PJmZmS0SYtOmTUyZMgWbzQZAWFgYABkZGYwYMQKbzUbXrl2Jiori2LFjNbbVWnPgwAGGDx8OwNixY8nIyGiRXK1Sa7k0uIrqN8jIfOKo2VGEEM3gVltQTk4OgwcPrrmh1UplZWWLhMjKyuLw4cOsWbMGm83GjBkziI+PJy8vj759+7rWs9vt5OXl1di2qKiIoKAgV5Gra51qaWlppKWlAZCSkkJ4eHiT8lqt1iZv60lWq5UgfxslQHhUN2POdR/Q0PFyDh9Nzl+XEHT6WzoOv9FncplJcjWO5Go8T2Rzq5j06NGDL7/8skZ/xddff03Pnj3d3tGiRYsoKCiotTw5ORmn00lxcTGLFy8mMzOT1NRUli9f7vZ7uyspKYmkpCTX102dwz48PLzJ23pSeHg4pRcugLJwPj/f7DguP3q8uvei+IudXBw7yXuh8O2fo+Ryn+RqvOZki46ue6Rvt4rJjBkzWLp0Kddeey3l5eW88sor7Nmzh8cee8ztAAsXLqz3tU2bNnH99dejlCI+Ph6LxUJRURF2u53z58+71svLy8Nurzm5U0hICKWlpVRWVuLn51fnOu1KpcPUOd6bQg0Ygt76Ibqi3OeHgRFC1M2tPpN+/fqxbNkyYmJiuOmmm+jatSt/+tOfiI+Pb5EQiYmJHDhg3Al95swZHA4HISEhJCQksH37dioqKsjOziYrK6vWPpVSXH311ezcuROATz75hISEhBbJ1SpVVoJf67qSTfUfYlw4cOyQ2VGEEE3k9qeO3W5nypQpHgkxbtw4VqxYwaOPPorVamXevHkopYiJieGGG27gkUcewWKxcN9997nmoV+yZAkPPPAAdrudO++8kxdeeIE1a9bQp08fxo0b55GcrUJlBbS2y6KvutoYp+vQV6gBQ8xOI4RoArc+dV566SWUUrU3tlrp0qULiYmJ9O7du+khrFYeeuihOl+bOnUqU6dOrbX8ySefdD2PjIxkyZIlTd5/m1JZ2fqauQKCoE8/9OF9ZkcRQjSRW81cQUFBZGRkoLXGbrejtWb37t1YLBa+//57fvvb37J161ZPZxXuqHS0umYuMPpNOHEMXVpsdhQhRBO49amTlZXFk08+Sf/+/V3Ljhw5wtq1a1m4cCFffvklf//732WiLF/QCs9MoKoT/r218M1+uHa42XGEEI3k1pnJ0aNHa9zvARAbG+u6gXDIkCE1rroSJnK0zjMTYq8C/w7oQ1+anUQI0QRuFZPevXvz5ptvUl51d3V5eTlr16519ZNkZ2cTHCxTr/oCXelofR3wgLLa4KrB6AN7zY4ihGgCtz515s2bx5///Gf+8z//k+DgYIqLi4mLi3N1mhcXF3P//fd7NKhwUytt5gJQVw9Df70bnX0G1bXuG6OEEL7JrWLStWtX/vjHP5Kbm0t+fj6dO3eucSt+XFycxwKKRmqlHfAAavAw9BrQB/ZKMRGilWnUfCbh4eHEx8djt9txOp11juArTNaaz0y6RkNEFHr/F2ZHEUI0klt/wubl5fG3v/2NQ4cOUVJSUuO1tWvXeiSYaKLW2gFfRQ0aht62GV1RgaoaRVoI4fvcOjN55ZVXsFqtPPPMMwQEBLB06VISEhKYNWuWp/OJxmrFzVwA6urroPwSHDtodhQhRCO4VUyOHDnCr371K3r37o1Sit69e/OrX/2K9957z9P5RGO14mYuAK4aBFYrev8es5MIIRrBrWJisVhc84V07NiRCxcu0KFDh3rnDREmau1nJgGB0G8Qel87nuBMiFbIrWISHx/P3r3G9f9DhgwhNTWVZ599Vq7i8kWVDp+ZFKup1DXXw9nv0We/NzuKEMJNbhWT+fPnM3DgQADuvvtuBg0aRExMDL/+9a89Gk78OOenm3C+/hL6QtVkWJWVrfKmxcupIYkA6H27TE4ihHCXW8Vk3759rjvc/f39ue2227jrrrs4fPiwR8OJhunvT6JXLUd/9hHOV55Fa93qm7kAVHgkdO+F/kqauoRoLdwqJitXrqxz+csvv9yiYUTjVP/lrib9Ar75mvKv97T+Dvgqasj1cOwgukRGERaiNWiwmJw7d45z587hdDrJzs52fX3u3Dn27duHv79MsWom/c3X0C0GNemX0KkLpW+93ibOTADUNYngdMpVXUK0Eg1+6lw+YdX8+fNrvNapUyduv/32FgnxwQcfsHHjRiwWC8OGDeOuu+5i3759vPHGGzgcDqxWKzNmzGDQoEG1tl23bh2bN28mNDQUgOnTpzNs2LAWyeXzTn2LGpyAstlQY/4/yt95AyyWVt9nAkCffhASBnt3wk9kagMhfF2DnzrVd7f/7ne/47/+6788EmD//v3s3r2bZcuWYbPZKCwsBCAkJIQnnngCu93OyZMnWbx4cb3NapMmTWLy5MkeyeerdPkluFAAEVEAqBHj0O/+DzidbaOZy2JBXTsc/flWdPkllH8HsyMJIRrgVp+JpwoJwKZNm5gyZQq2qqEzwsLCAOjTpw92ux2AmJgYysvLqaio8FiOVud8tvHYpSsAyh6B/zUJxrI20MwFoIaNgEtlcFCGpRfC19X7qfPMM8/UOe/7lZpbaLKysjh8+DBr1qzBZrMxY8YM4uPja6zz+eefExsb6yo4V9q4cSPp6enExsYyc+bMeudWSUtLIy0tDYCUlJQaIx83htVqbfK2LeXSd0cpADrF9cO/Kkv5hMmUf5VBUEgIwSbnu1xTj5ceeRM5rz6L/4EvCEu62WdyeZrkahzJ1XieyFZvMRk3blyL7WTRokUUFBTUWp6cnIzT6aS4uJjFixeTmZlJamoqy3aISbQAACAASURBVJcvdxWyU6dO8cYbb/D000/X+d4TJ05k2rRpgNEst2rVKubOnVvnuklJSSQlJbm+zs3NbdL3Ex4e3uRtW4rzW2OWy0I/f1RVli4Jo6BHHy527kqZyfku16zjNTiRsl2fUn42y5hAy1dyeZDkahzJ1XjNyRYdXff0EPUWk7FjxzZpR3VZuHBhva9t2rSJ66+/HqUU8fHxWCwWioqKCA0N5fz58zz77LPMmzePqKioOrfv1KmT6/n48eNZunRpi+X2acVG3xKhYa5FqkMH/H73okmBPENdNwK9Ywsc/hoGtZMLK4RohdxuXP/4449JT08nLy8Pu93OjTfeyE033dTsAImJiRw4cIBBgwZx5swZHA4HISEhlJSUkJKSwh133EH//v3r3b56si6AXbt2ERMT0+xMrUJJMXQIbPG/1n3OwKEQEIje/RlKiokQPsutYvL222+zdetWbrnlFtfp0bvvvkt+fj5Tp05tVoBx48axYsUKHn30UaxWK/PmzUMpxYcffsjZs2d56623eOuttwD47W9/S1hYGCtXrmTChAnExcWxevVqTpw4gVKKiIgIZs+e3aw8rUZJEQSHmJ3C45TN37iq64sd6DvnoGxyb5MQvsitYrJ582Z+//vfExER4Vo2ZMgQfve73zW7mFit1hr3s1S77bbbuO222+rcZs6cOa7nV97/0l7okmLoWPeFBm2N+slY9I6P4evdMGyE2XGEEHVw69LgS5cuuW4KrBYSEkJ5eblHQgk3lBRBx7Z/ZgJA/2sgtBPOz7eanUQIUQ+3isnQoUP585//zJkzZygvL+f7779n+fLlDBkyxNP5RH1KilFB7eTMxM8PlTga9mWgS2WsLiF8kVvF5N577yUwMJDf/OY3zJgxg8cff5yAgADuvfdeT+cT9WknfSbV1E/GgsOB3rPd7ChCiDo02GfidDqxWCwEBQXx4IMPMnfuXIqKiggJCcFicasOCU8pLYagjman8J7e8dA1Gv35Vhg90ew0QogrNFgR5syZw+rVqzl58qSxssVCWFiYFBKTaUeFMdR8h0Czo3iNUgr1kzFwZD86/7zZcYQQV2iwKsyaNYvs7GyefPJJnnjiCd5//30uXLjgrWyiPpcuGY8d2tfgh2r4GNAavSvd7ChCiCs02MyVmJhIYmIiJSUlbN++nfT0dFavXs2QIUMYM2YMCQkJWNvCcOetzaWLxqN/gLk5vEx1jYY+/dDbN6Mn3urW2HFCCO9wq72qY8eOTJgwgUWLFpGamkpcXByvv/46DzzwgKfzibq4zkzaVzEBUKMnwpmTkHnI7ChCiMs0qvPD4XCQmZnJ0aNHKSwspGfPnp7KJRpSXgaAao/FJHG0MbxK+kazowghLuNWG9Xhw4fZunUrO3fuJDQ0lNGjR3P//ffXuCNeeNElo5i0yzOTgEDU8LHobZvRv5yFaiejAAjh6xosJuvWrePTTz+luLiY4cOH88QTTzQ46KLwkupmrnY6+6Aa/VP0Jx+gd36MGn+L2XGEEPxIMTl27BjJyckkJibi7y8D7PmM8vZ7ZgKgesZC777orR+ix90sHfFC+IAG+0yeeuopRo4cKYXEx+h23MxVTd34U8g6JR3xQvgIufuwNWqn95lcztURv1U64oXwBVJMWqPqZq52dp/J5VRAIOqGm9C7P0UX5JkdR4h2T4pJa1TdzNVOO+CrqaTJUFmJ/vh/zY4iRLvnE7evf/DBB2zcuBGLxcKwYcO46667yM7OZsGCBa7J6/v27VvnLIrFxcWkpqaSk5NDREQECxYsIDi4jV8uWn4JbP6odj5GmuoaDdcON67s+o9pqID2M1aZEL7G9GKyf/9+du/ezbJly7DZbBQWFrpei4qKYtmyZQ1uv2HDBgYPHsytt97Khg0b2LBhA3fddZenY5vL4YC2Pve7mywTf47zix3obZtR4282O44Q7Zbpf9pu2rSJKVOmYLMZH45hYWGN2j4jI4MxY8YAMGbMGDIyMlo84+X0F9spfvNVj+7jR1VUgIyJBoCK6w9x/dFp76CdlWbHEaLdMv0TKSsri8OHD7NmzRpsNhszZswgPj4egOzsbB5//HECAwNJTk5mwIABtbYvLCykc+fOAHTq1KnGmc2V0tLSSEtLAyAlJYXw8PBG573w3TFK0zfRdfr9jd62pRRa/Sj371Arv9VqbdL35GmezlV220wK/+9ThBw7QMCIcT6Tq6kkV+NIrsbzRDavFJNFixZRUFBQa3lycjJOp5Pi4mIWL15MZmYmqampLF++nM6dO7NixQpCQkI4fvw4y5Yt47nnniMoKKje/SilGryBLSkpiaSkJNfXubm5jf5enJVO9KWyJm3bUpzFxWiLpVaG8PBwU3PVx9O5dNwAiIii8K1VFPUd7PZNjO31eDWV5GocX80FzctW3Y99Ja8Uk4ULF9b72qZNm7j++utRShEfH4/FYqGoqIjQ0FBX01dsbCyRkZFkZWURFxdXY/uwsDDy8/Pp3Lkz+fn5hIaGevR7wd8fKsrRTqdpHeDaUSF9JpdRFj/UT6eiV6+AA1/AoOvMjiREu2N6n0liYiIHDhwA4MyZMzgcDkJCQrhw4QJOpxOAc+fOkZWVRWRkZK3tExIS2Lp1KwBbt24lMTHRs4GrL8etKPfsfhriqACbFJPLqZHjoUtXnBveQGttdhwh2h3T+0zGjRvHihUrePTRR7FarcybNw+lFAcPHmTdunX4+flhsViYNWuW65LflStXMmHCBOLi4rj11ltJTU1ly5YtrkuDPcpWVUzKy80bzsRRAX6m/+h8irLaUDf/Ev36S/DV5zB0uNmRhGhXTP9EslqtPPTQQ7WWDx8+nOHD6/5AmDNnjut5SEgIzzzzjMfy1VI9Tln5Je/t80oOh5yZ1EHdMA79wVs43/kfLNdc3+7vwxHCm+R/W2O5mrnMLCbSZ1IX5eeHuiUZTp+AL7abHUeIdkWKSSOp6mJi6pmJFJP6qOtvhG4xON99U+47EcKLpJg0li8UkwopJvVRFj8sU+6ErFPo9E1mxxGi3ZBi0li26j4Tc6/mUnIHfP2G3QD9BqHfWY0uKTY7jRDtghSTxurgA2cmlTI2V0OUUlimz4KSEvS7/2N2HCHaBSkmjVV1ZqLNvM9Emrl+lOrRBzXmp+hP3kd//53ZcYRo86SYNJYv9JnIpcFuUVPuhIAgnGtflRsZhfAwKSaN5RP3mciowe5QwaGoKXfAoa/QO7aYHUeINk2KSWP5X3YHvAm01lV3wMuZiTvU2P+AvgPRb76Czjlrdhwh2iwpJo1lM7mZy+kErcEmZybuUBY/LPcuAKVw/v+pcu+JEB4ixaSRlJ+f0cRk1h3wjgrjUTrg3abCI1F3PADHDqE/+JfZcYRok6SYNIHqEAhlZebsXIpJk6ifjEUljkb/+030iaNmxxGizZFi0gQqKAjKSs3ZucNhPEoHfKMopVB3/gpCO+N89Xn0JZP+GBCijZJi0gSWoGD0xYvm7LyyqpjIEPSNpjoGY7nn13Due/Rbr5kdR4g2RYpJE6jAjnCxxJydV1Z1IPv5mbP/Vk4NGIKaeCv6kw+4tHub2XGEaDOkmDSB6tgRysw6M6kqJhYpJk2lbp0B3XtxYfmf0PnnzY4jRJvgE20lH3zwARs3bsRisTBs2DDuuusuPv30U959913XOidPnmTp0qX07t27xrbr1q1j8+bNrrnfp0+fzrBhwzya1zgzMWmIjupLW6WZq8mUzYZl1mPolMfRL/4ey2NLUB2DzY4lRKtm+ifS/v372b17N8uWLcNms1FYWAjA6NGjGT16NGAUkmXLltUqJNUmTZrE5MmTvRUZS1Cwec1cVcVE+clJZXOo7j0JezKF/EWP4Fy+CMvDf0BVD+IphGg00z+RNm3axJQpU7BVjTUVFhZWa53PPvuMESNGeDtavVSQNHO1Bf7XJGC5/1HIPIzz5aXo6ivlhBCNZvqZSVZWFocPH2bNmjXYbDZmzJhBfHx8jXV27NjBY489Vu97bNy4kfT0dGJjY5k5cybBwXU3WaSlpZGWlgZASkoK4eHhTcp8MTgEKsrpEhaG8vKAixV558gDQjvb6XBFfqvV2uTvyZN8OVfET6dQqp0UvbwM/7X/Tej8p02fO96Xj5fkcp+v5gLPZPNKMVm0aBEFBQW1licnJ+N0OikuLmbx4sVkZmaSmprK8uXLUUoBcPToUfz9/enZs2ed7z1x4kSmTZsGwNq1a1m1ahVz586tc92kpCSSkpJcX+fm5jbp+wkKCDS2P30KFRLapPdoKp1ndBhfKClGXZE/PDy8yd+TJ/l8roTRqLPfU/bO/3DJPwDL7ff4Ri4fI7kax1dzQfOyRUdH17ncK8Vk4cKF9b62adMmrr/+epRSxMfHY7FYKCoqcnWob9u2jZEjR9a7fadOnVzPx48fz9KlS1sueD1UYEfjycUS8HIxkWYuz1CTfgkXCtGb1uMMDcPy06lmRxKiVTG9zyQxMZEDBw4AcObMGRwOByEhIQA4nU527NjRYDHJz893Pd+1axcxMTGeDQxYqguIGVPCVsrVXJ6glEIlzzKGXHnr7zj/d53MgSJEI5j+iTRu3DhWrFjBo48+itVqZd68ea4mrkOHDhEeHk5kZGSNbVauXMmECROIi4tj9erVnDhxAqUUERERzJ492+OZLWGdjSfFhR7fVy3Vlwab3K7fFimLBe59GJQFvWE1nP0eZj7o9X4xIVoj04uJ1WrloYceqvO1q6++msWLF9daPmfOHNfz+fPneyxbfVSo0bSmLxSivL3zSqfxKHfAe4Sy2uD+R6BbD/Q7b6BzsrDMfcr1MxdC1E3+vG0CU89MZGwuj1NKYbn5l6jZj8PJ4zj/9BuZR16IHyHFpAlUQCDY/OGCmc1ccmbiaZbEUVgeWwIOB86Ux9Ff7zY7khA+S4pJEyilICQMimpf7uxp2tUBLz86b1B9+mJ56lmIiML50h9x/ut1tFmzbArhw+QTqalCwtBFZjRzydVc3qbs4VieWIoaOR794b9w/uFh9NGDZscSwqdIMWmqTnYoyPP+fqWZyxSqQwCW/5yPZcEfwFGBc9mTOP/nZbRZw+oI4WOkmDSRskfA+Wzv79gpzVxmUgOHYvn9S6hxN6M/eR/n7+ejD+w1O5YQppNPpKYK7woXS9GlXr5xUZq5TKcCArEkz8Ly+BKw2XC+8Dsq//wH9Lcyt7xov6SYNJHqUnUjZa6Xz05kOBWfoeIHYnnmRdStd8Hxb3D+6VEqX/wv9PFvzI4mhNdJMWmq8K7GY+457+5Xmrl8irL5Y5n0Cywp/436+Qw4cQTnkseofPH36MzDZscTwmukraSpIo2RM3XWKRQ3eG+/rjvg5UfnS1RAEOpnt6PHTUJ//IExYGTK49CnH2pkEipxtDEPjhBtlHwiNZEKCIKIKDj1rXd3XH0HvDRz+SQVEIT6j9vQN/0M/dlHxr/VK9DrXkUNG4n6yRjoP9gYtkWINkSKSXP06I0+fcK7+5SBHlsFFRCISpqMHn8LnDiG3vYRelc6eufHENgRNSQRNWwEDByK6hBgdlwhmk2KSTOo3n3Re3eiLxR4byDASif4+blGVha+TSkFffqi+vRF//J+OPgVeu929Je70Ds/AasV4gagBgxBDRwKveLMjixEk0gxaQY1YCh6/T/Qh74ymi+8odIhTVytlLL5w5BE1JBEY1icI/vRB75AH/oKvWG1Mex9QCD5/a7G2SMWFXsVxPZDhYSZHV2IHyXFpDl6xRrDquz+DLxVTJyVUkzaAOXnBwOGoAYMAUAXFaIPfQVHD+I8mYn+8C20s+piizA79OiF6tEbuvdGde1m9NeFhMkZqvAZUkyaQVn8UKMmoD98G51zFhUR5fmdOp0yl0kbpELCUNffCNffSJfwcHK+P230tXx3FE6fQJ8+gd78b3A4cM3/2CHQKCpdo4zfvYhuxmMnO4R1hqBgKTbCa3yimKSmpnLmzBkASktLCQoKYtmyZQCsX7+eLVu2YLFYuOeeexg6dGit7bOzs3nhhRcoKioiNjaW+fPnY7V651tTY3+G3vIezr//GcuCP6A8vd/KSikm7YDqEABXDUJdNci1TDsckJMF2WfROVmQcxadcxbOnETvy6hZaMC4fDysE4R0grDOqLDOENoJgkOMQhPUEQKDoWPVY1BHCAiUAiSaxCeKyYIFC1zPV61aRVBQEACnT59m+/btPP/88+Tn57No0SJefPFFLFdcybR69WomTZrEyJEjeeWVV9iyZQsTJ070SnZlD0fd8QD6tRdxPvsUlv+YBrH9UdXzxLc06TNpt5TVCt1ioFtMrRk+tbMS8vMg9yy6IM+YHqGwAArz0RfyIT8X/d0xYw4ebTSf1TnDvbKAfwfo0MF4rP7XIYD84GAqUSj/gMteDzAerVbjjxy/mo/Kaq21rN5Hi8XYv8UCSlU9Vz88r2uZXNXoM3yimFTTWrNjxw6eeeYZADIyMhgxYgQ2m42uXbsSFRXFsWPH6NevX41tDhw4wK9//WsAxo4dyz//+U+vFRMAy4jxOP2s6LWv4lz+R2OhzR8Cg4zH6l/46v8IVP1naIqCPAgMbJHcou1QFj/oEgFdIhqcSlo7K+FiKZSWVP0rhtISY4y56mXll6r+lRlzt1T9cxbmQ0lJjWWUXwJdZ1ky9tfy32ot56DhwoPCOChVR6b6/57rQF2x3LX48uU/sk0dy3MsFpxO5xXvU8f7uzv5t7ufGW6sVj7/aejaw733c5NPFZNDhw4RFhZGt27dAMjLy6Nv376u1+12O3l5NYd9LyoqIigoCL+qpp+61qmWlpZGWloaACkpKYSHhzcpp9Vqrb3tpNvQE2+h4tA+Kr49irMwD11SbPzH09r1T2snOKu+bmJB8b96KEF1ZK8zlw+QXI3jy7kcDkeNZVprKC9HOyqg0mE0xTkqjKvVHA50peOH5a7X61mGNoqdUxtnT1qD02nsw1n1tXa6nmunE7QTCwpnpeOHdV3/xy5br7qsaVfwmo/1vY6uta6rQP7IeyjFDxdR1Fr3yv00TLu5nrvl2xoc2uK/Y14rJosWLaKgoPbMhMnJySQmJgKwbds2Ro4c6bEMSUlJJCUlub7Ozc1t0vuEh4fXv210b+OfBzmA0jr232AuE0muxmn1uSw245+XbvJv9cfLBJZmZIuOjq5zudeKycKFCxt8vbKykl27dpGSkuJaZrfbOX/+vOvrvLw87HZ7je1CQkIoLS2lsrISPz+/OtcRQgjhWT7Te/X1118THR1Nly5dXMsSEhLYvn07FRUVZGdnk5WVRXx8fI3tlFJcffXV7Ny5E4BPPvmEhIQEr2YXQoj2zmeKSV1NXDExMdxwww088sgjLF68mPvuu891JdeSJUtcfSN33nkn7733HvPnz6e4uJhx48Z5Pb8QQrRnSrvfs9PmVN/b0li+2hYquRpHcjWO5GocX80FzctWX5+Jz5yZCCGEaL2kmAghhGg2KSZCCCGaTYqJEEKIZmvXHfBCCCFahpyZNMH/+T//x+wIdZJcjSO5GkdyNY6v5gLPZJNiIoQQotmkmAghhGg2v9///ve/NztEaxQbG2t2hDpJrsaRXI0juRrHV3NBy2eTDnghhBDNJs1cQgghmk2KiRBCiGbzqZkWW4Mvv/yS1157DafTyfjx47n11ltNyZGbm8tf/vIXCgoKUEqRlJTEz372M9atW8fmzZsJDTXmoJ8+fTrDhg3zarZ58+YREBCAxWLBz8+PlJQUiouLSU1NJScnh4iICBYsWEBwcLDXMp05c4bU1FTX19nZ2fziF7+gpKTE68drxYoVfPHFF4SFhfHcc88B1Ht8tNa89tpr7N27lw4dOjB37lyPtcPXlesf//gHe/bswWq1EhkZydy5c+nYsSPZ2dksWLDANehf3759mT17ttdyNfR7vn79erZs2YLFYuGee+5h6NChXsuVmprqGkC2tLSUoKAgli1b5tXjVd9ng8d/x7RwW2VlpX7wwQf12bNndUVFhf7Nb36jT506ZUqWvLw8nZmZqbXWurS0VD/00EP61KlTeu3atfqdd94xJVO1uXPn6sLCwhrL/vGPf+j169drrbVev369/sc//mFGNK218XO8//77dXZ2tinH68CBAzozM1M/8sgjrmX1HZ89e/boxYsXa6fTqb/55hv95JNPejXXl19+qR0Ohytjda5z587VWM+T6spV38/t1KlT+je/+Y0uLy/X586d0w8++KCurKz0Wq7Lvf766/qf//yn1tq7x6u+zwZP/45JM1cjHDt2jKioKCIjI7FarYwYMYKMjAxTsnTu3Nn110NgYCDdu3d3ze/iizIyMhgzZgwAY8aMMe24gTERW1RUFBEREabsf+DAgbXOyuo7Prt37+bGG29EKUW/fv0oKSkhPz/fa7mGDBmCn58fAP369TPld6yuXPXJyMhgxIgR2Gw2unbtSlRUFMeOHfN6Lq01O3bs8Og05PWp77PB079j0szVCHl5eTVmguzSpQtHjx41MZEhOzubb7/9lvj4eA4fPszGjRtJT08nNjaWmTNnerU5qdrixYsBmDBhAklJSRQWFtK5c2cAOnXqRGFhodczVbtyIjZfOF71HZ+8vDzCw8Nd63Xp0oW8vDzXut60ZcsWRowY4fo6Ozubxx9/nMDAQJKTkxkwYIBX89T1c8vLy6Nv376udex2uykF8NChQ4SFhdGtWzfXMjOO1+WfDZ7+HZNi0sqVlZXx3HPPcffddxMUFMTEiROZNm0aAGvXrmXVqlXMnTvXq5kWLVqE3W6nsLCQP/7xj7Um01FKoZTyaqZqDoeDPXv2cMcddwD4xPG6kpnHpz5vv/02fn5+jB49GjD++l2xYgUhISEcP36cZcuW8dxzzxEUFOSVPL74c7vclX+wmHG8rvxsuJwnfsekmasR7HY758+fd319/vx57Ha7aXkcDgfPPfcco0eP5ic/+Qlg/MVhsViwWCyMHz+ezMxMr+eqPiZhYWEkJiZy7NgxwsLCXKfO+fn5ro5Tb9u7dy99+vShU6dOgG8cL6De42O322vMiGfG79wnn3zCnj17eOihh1wfQDabjZCQEMC4+S0yMpKsrCyvZarv53bl/9G8vDyvH6/Kykp27dpV4yzO28errs8GT/+OSTFphLi4OLKyssjOzsbhcLB9+3YSEhJMyaK1ZuXKlXTv3p2bb77Ztfzyts5du3YRExPj1VxlZWVcvHjR9Xzfvn307NmThIQEtm7dCsDWrVtJTEz0aq5qV/7FaPbxqlbf8UlISCA9PR2tNUeOHCEoKMirTVxffvkl77zzDk888QQdOnRwLb9w4QJOpxOAc+fOkZWVRWRkpNdy1fdzS0hIYPv27VRUVJCdnU1WVhbx8fFeywVGn1x0dHSNJnFvHq/6Phs8/Tsmd8A30hdffMHrr7+O0+nkpptuYurUqabkOHz4MM888ww9e/Z0/bU4ffp0tm3bxokTJ1BKERERwezZs7364XPu3DmeffZZwPgLbdSoUUydOpWioiJSU1PJzc015dJgMIrb3LlzWb58ueu0/6WXXvL68XrhhRc4ePAgRUVFhIWF8Ytf/ILExMQ6j4/Wmr/97W989dVX+Pv7M3fuXOLi4ryWa/369TgcDtfPqvqS1p07d7Ju3Tr8/PywWCzcfvvtHvvDqq5cBw4cqPfn9vbbb/Pxxx9jsVi4++67ufbaa72Wa9y4cfzlL3+hb9++TJw40bWuN49XfZ8Nffv29ejvmBQTIYQQzSbNXEIIIZpNiokQQohmk2IihBCi2aSYCCGEaDYpJkIIIZpNiokQTfT222+zcuVKr+1v4cKFfPvtty36nrt3764xmrIQTSXDqQhRjxkzZriel5eXY7VasViMv79mz57t1XuMdu/eTUBAAH369GnR901ISODNN9/ku+++o1evXi363qJ9kftMhHDDvHnzeOCBB7jmmmtM2f+SJUsYNWqUa2yslvT222+Tn5/Pfffd1+LvLdoPOTMRoonWrVvH2bNneeihh8jOzubBBx/kV7/6FevWraOsrIzp06cTGxvLypUryc3NZfTo0TU+sLds2cK///1vCgoKiI+PZ/bs2XUOi+9wONi/f3+NyZTWrVvH6dOnsVqt7N69m4iICB599FE+//xz/vd//xebzcacOXMYMmQIYIyv9dZbb3HhwgVCQkJITk52FaaBAwfy0ksvSTERzSJ9JkK0oKNHj/Liiy/y8MMP8/rrr/P222+zcOFCnn/+eXbs2MHBgwcBY96N9evX8+ijj/Lqq6/Sv39/XnzxxTrfMysrC4vFUmOsJ4A9e/Zw44038tprr9GnTx8WL17sGpfptttu45VXXgGMYWRee+01nnrqKVatWsUf//hHevfu7XqfHj16kJOTQ2lpqWcOimgXpJgI0YKmTZuGv78/Q4YMoUOHDowaNYqwsDDsdjv9+/d3daB/9NFH/PznP6dHjx74+fnx85//nBMnTpCTk1PrPUtKSggICKi1vH///gwdOhQ/Pz+GDx/OhQsXuPXWW7FarYwcOZKcnBxKSkoAY8jxkydPUl5eTufOnWsMaFn93lJMRHNIM5cQLSgsLMz13N/fv9bXZWVlAOTk5PDaa6+xatUq1+taa/Ly8mo1dQUHB7u2a2hfoaGhrgsE/P39AeOspEuXLjz88MP8+9//ZuXKlVx11VXMnDmT7t27u9YBvDYXiWibpJgIYYLw8HCmTp3qVod6VFSUq9A0dW6OoUOHMnToUMrLy1mzZg0vv/wyf/jDHwA4ffo0ERERUkxEs0gzlxAmmDBhAhs2bODUqVOA0cS0Y8eOOte1Wq0MHjzY1d/SWAUFBWRkZFBWVobVaiUgIKDGLHsHDx702DDtov2QMxMhTHD99ddTVlbGCy+8QG5uLkFBQQwePJgbbrihzvUnTJjAhx9+yKhRoxq9L6017733HsuXL0cpePW3xgAAAHNJREFURe/evZk1a5br9W3btjF//vwmfy9CgNxnIkSrsXDhQu69994WvXFx9+7dpKen88gjj7TYe4r2SYqJEEKIZpM+EyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJsUEyGEEM0mxUQIIUSzSTERQgjRbP8PEcaoAXDvuuMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xU1b3//9eazIQk5AJDQkIgXJKAgCCIiUUughDo7xQFi9gGFY43kIJY0apftdieUkr4okYrpeixPyvFI1AraD0qGFCiXCQgitwEgghIIAm5kAshmcz6/rGTkZCLk8vMniSf5+PBYyZ79p79zk6YT/Zae6+ltNYaIYQQohksZgcQQgjR+kkxEUII0WxSTIQQQjSbFBMhhBDNJsVECCFEs0kxEUII0WxWswOY6cyZM03aLjw8nNzc3BZO03ySq3EkV+NIrsbx1VzQvGzR0dF1LpczEyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJtPdMCvW7eOzZs3ExoaCsD06dMZNmwYAOvXr2fLli1YLBbuuecehg4dWmv77OxsXnjhBYqKioiNjWX+/PlYrT7xrQkhRLvgM5+4kyZNYvLkyTWWnT59mu3bt/P888+Tn5/PokWLePHFF7FYap5QrV69mkmTJjFy5EheeeUVtmzZwsSJE70ZXwgh2jWfbubKyMhgxIgR2Gw2unbtSlRUFMeOHauxjtaaAwcOMHz4cADGjh1LRkaGGXGFEKLd8pkzk40bN5Kenk5sbCwzZ84kODiYvLw8+vbt61rHbreTl5dXY7uioiKCgoLw8/Ord51qaWlppKWlAZCSkkJ4eHiTslqt1iZv60neyKW15uLGDVj79MX/qkE+k6spJFfjSK7G8dVc4JlsXismixYtoqCgoNby5ORkJk6cyLRp0wBYu3Ytq1atYu7cuS2eISkpiaSkJNfXTb1px1dvRvJGLv3tEZwvLwPA8uc1qMAgn8jVFJKrcSRX4/hqLvDMTYteKyYLFy50a73x48ezdOlSwDjLOH/+vOu1vLw87HZ7jfVDQkIoLS2lsrISPz+/OtcRLUfvu6wJ8eCXcN0I88IIIXyGT/SZ5Ofnu57v2rWLmJgYABISEti+fTsVFRVkZ2eTlZVFfHx8jW2VUlx99dXs3LkTgE8++YSEhATvhW9vzp0BewQEBqH37zE7jRDCR/hEn8nq1as5ceIESikiIiKYPXs2ADExMdxwww088sgjWCwW7rvvPteVXEuWLOGBBx7Abrdz55138sILL7BmzRr69OnDuHHjzPx22jSdew4io6FDIPrIfrPjCCF8hE8Uk/nz59f72tSpU5k6dWqt5U8++aTreWRkJEuWLPFINnGF89moaxIhPBL95U50aQkqqKPZqYQQJvOJZi7ROmhnJVwogE52VK84Y+HJTHNDCSF8ghQT4b6LpcZjx2DoZfRd6e+kmAghpJiIxigtMR6DglEhYWAPh++ONbyNEKJdkGIi3FdaDPBDH0nPePSp4yYGEkL4Cikmwn0lRjEhKBgA1b0nnMtCV5SbGEoI4QukmAj3XfyhmQuA7r1AO+Hs9+ZlEkL4BCkmwm3a1WdiNHOp6J7G8u+/MyuSEMJHSDERddKOitoLyy8Zjx0CjMfIaPDzgzMnvRdMCOGTpJiIWpwfvYNzfjL64N6aL1QXE/8OACirDbpGo6WYCNHuSTERtehP3gdHBc731tZ8ofwSKAVWm2uR6t5LzkyEEFJMRE36Qj5kZ4G/Pxw7jK66HBgwiol/B5RSPyyL7gm559CXyrwfVgjhM6SYiJpyzgGgxt1iXKn1zWWDOVYVk8up7j1Ba8g65c2UQggfI8VE1JRvTJijrhsB/v7ob77+4bVLl8DmX3P96F4A0m8iRDsnxUTUoPOrJiOLiIKY2Jpjb9VxZkLXKKMP5XspJkK0Z1JMRE35uUZ/SVAwqlc8nDqOdjoB0HU1c1n8oFsPOTMRop2TYiJqKi6C4FCjk71nHFwqM2ZXBKgor31mQtXNi2fkxkUh2jPTJ8dat24dmzdvJjQ0FIDp06czbNgw9u3bxxtvvIHD4cBqtTJjxgwGDRrk9vaiafTFUgisusO9Vxwa0CczUd16GM1cAUG1N+reCz7fir5Yigqs43UhRJtnejEBmDRpEpMnT66xLCQkhCeeeAK73c7JkydZvHgxL7/8stvbiya6WOIqJnSLMTrcT2bCT8YYxSQkrNYmKronGoz7TeL6ezWuEMI3+GwzV58+fbDb7YAxF3x5eTkVFXUM8SFa1sUSqDq7UH5+0KP3D53wDodx1/uVqsfokn4TIdotnzgz2bhxI+np6cTGxjJz5kyCg4NrvP75558TGxuLzVbHB5kb21dLS0sjLS0NgJSUFMLDw5uU12q1NnlbT2qJXLmXyrB1thNW9T4X+g6kbPtmunTpwnntxBYc7Hqtmrbbye4QQGBeNiF17L8tHy9PkFyNI7kazxPZvFJMFi1aREFBQa3lycnJTJw4kWnTpgGwdu1aVq1axdy5c13rnDp1ijfeeIOnn366zvf+se0vl5SURFJSkuvr3NzcJn0/4eHhTd7Wk1oiV2VJEU6Ln+t9nOFR6OIico9+g7O8HKejsu59dIuhNPMbLtXxWls+Xp4guRpHcjVec7JFR0fXudwrxWThwoVurTd+/HiWLl3q+vr8+fM8++yzzJs3j6ioqDq36dSpU73bi8bRWhvzvF/Wia669zL6Q77/DhwVYK37V0Z174n+eo93ggohfI7pfSb5+fmu57t27SImJgaAkpISUlJSuOOOO+jfv/5O3fq2F01Q6YDKSugQ+MOy7lV3uH9/AhyOGoM81tC9N1woQBcVejymEML3mN5nsnr1ak6cOIFSioiICGbPng3Ahx9+yNmzZ3nrrbd46623APjtb39LWFgYK1euZMKECcTFxdW7vWiC8qrpdy8bMkV1DAZ7OJw+AZU/cmYCxhlM/2s8HlUI4VtMLybz58+vc/ltt93GbbfdVudrc+bM+dHtRRO45iu5Yvyt7r2N2RQdDvCr58ykeoyu70+ipJgI0e6Y3swlfEhF1ZnJlUOm9OhljL3ldNZ7ZkJYZwgOge9PeDajEMInSTERP3A1c10xZEr33sZw9FB/M5dSEN1L7jURop2SYiJ+UGE0c6krmrlUVSc8UH8HfPV6339nXBUmhGhXpJi0U86Mz3Du+Ljmwuo+kyvnLInq/sPz+pq5wLjyq+wi5OW0TEghRKthege88D6dfQb9yv81nkdEouIHGi+U19NnYrVBxxAoKQK/+n9lXPeknP4OunT1QHIhhK+SM5N2SB/Y+8Pzz7f+8IKrA/6KMxP44eykoTMT1xhdMhy9EO2NFJP2KOsUBHZEXTcSvWd7zcmvoHYHPKAiq4pJ9Tp1UEEdwR5hnJkIIdoVKSbtkM7NNpqhBidAUSFknTZeaOjMJLpqZIHqaX3r072XnJkI0Q5JMWmP8nIgvCuqr9FXoo8eMJZX1L4Dvpoa+zPU6Imo8bc0+Naqey/IOo12OFo0shDCt0kxaY/yclD2CIiIgjA7HD1oLK8uAHVc/qs6BGCZ+SAqtFOt12ro3tMY4yv7TAuHFkL4Mikm7Yx2OIyRgavneY/thz5x1Hixupg0cMXWj1Hdexv7+V6auoRoT6SYtDcXS4zHIGMCMdUrHrLPoEtLjIEcoeErtn5MVHewWIwBH4UQ7YYUk/amtLqYGPO8q17xxtcnM40zE6WMYtBEyuYPXaPlzESIdkaKSXtTWgyAqjozoaqY6O+qiomf1Wj+agYV0wdOfdus9xBCtC5STNqbEqOY0LHqzCQk1LhM+LtjxsRYzWniqhbTB85no6sKlxCi7ZNi0s7o6j6TwOAfFvaKQ393rMHJrxpD9ehjPDl9otnvJYRoHUwfm2vdunVs3ryZ0NBQAKZPn86wYcPIzs5mwYIFrsnr+/btW+csisXFxaSmppKTk0NERAQLFiwgODi41nqiyhVnJgCqZxz6ix0QE1v/5FeNEWMUE33qW1S/Qc1/PyGEzzO9mABMmjSJyZMn11oeFRXFsmXLGtx2w4YNDB48mFtvvZUNGzawYcMG7rrrLk9Fbf3KSo3HwMuKSe++aEB/+03LNHOFdYaQMDh1vPnvJYRoFVp9M1dGRgZjxowBYMyYMWRkZJicyMfVNcx8rzjjMS+3WfeYVFNKQUwf9KkTzX4vIUTr4BNnJhs3biQ9PZ3Y2FhmzpzpaqbKzs7m8ccfJzAwkOTkZAYMGFBr28LCQjp37gxAp06dKCwsrHc/aWlppKWlAZCSkkJ4eHiT8lqt1iZv60nu5Cqy+lFqtRHR9bIh4sPDyYmIxJlzDr8OHVrkeyvqdzWl762jS6dOrfp4mUFyNY7kajxPZPNKMVm0aBEFBQW1licnJzNx4kSmTZsGwNq1a1m1ahVz586lc+fOrFixgpCQEI4fP86yZct47rnnCAoKqnc/SqkGL2tNSkoiKSnJ9XVubm6Tvp/w8PAmb+tJ7uRyFhaCzb/Wes7uvSHnHJVKtcj35uwSCY4Kcg98RcSQ61rt8TKD5GocydV4zclW3Y99Ja8Uk4ULF7q13vjx41m6dCkANpsNm83oDI6NjSUyMpKsrCzi4uJqbBMWFkZ+fj6dO3cmPz/f1ZEv6lFRXmvyK6jqhP/yc6ioaJHdqJhYox/m1HEYcl2LvKcQwneZ3meSn5/ver5r1y5iYoyhzi9cuICzap6Nc+fOkZWVRWRkZK3tExIS2LrVmOBp69atJCYmeiF1K1Z+qc4h5lXPWOPJ2dMts5+o7saAkXLzohDtgul9JqtXr+bEiRMopYiIiHBd/nvw4EHWrVuHn58fFouFWbNmufpSVq5cyYQJE4iLi+PWW28lNTWVLVu2uC4NFvXTFeV1DjFPz6ozPq1bZD/Kz8+Y20SKiRDtgunFZP78+XUuHz58OMOHD6/ztTlz5rieh4SE8Mwzz3gkW5tUXk8x6WRv8V2pmD7oLz9Ht1CBEkL4LtOLifCyivK6m7mUQv3iPugY0nL76tEHPvsIZ34u0LzxvoQQvk2KSXtTfqnGDYuXs0yY0qK7UjF90IDj26PQq1+LvrcQwreY3gEvvKyeMxOP6NEbqComQog2TYpJe1Nebsw54gUqqCNERFFx/Buv7E8IYR4pJu2NN89MMCbfqsiUYiJEWyfFpL2puAS22jctekyvOJzZWejiC97bpxDC66SYtDfl3j8zAeC7TK/tUwjhfW4VE4fDwcmTJzl8+DAnT57E4XB4OpfwAK210czlpT4TwDUisT4hnfBCtGUNXhr8xRdfsGnTJvbv34+fnx+BgYFcvHiRyspKBg0axIQJE7juOhl3qdWodBh3uHuxmKigYPy69aDypJyZCNGW1VtMFi5cSMeOHRk1ahSzZ8/Gbv/hDum8vDwOHjzIRx99xIYNG1i0aJFXwopmqqw0HltiAqxGsMb1p/LgV17dpxDCu+r9VJk1axY9e/as8zW73c6oUaMYNWoUJ0+e9Fg40XT60iWcr6WiesVj+Q9jiH+qmyf9/LyaxRbXn0ufpaGLClEhYV7dtxDCO+rtM+nZsydffPGFa+TehtYTvkdvT4M929Fvr0JnHjYWVlYXkxaY570RbPH9jSffHfPqfoUQ3tNge8df//pXlFKMGjWKsWPHSuFoRfThfcY87JfK0NvSUHH9TTszscZeZWQ6cQw1SPrYhGiLGiwmL7/8Mnv37iU9PZ2nnnqK6OhobrzxRkaPHk1YmDRX+LQTR1EDhoDFD717G/qOOT+cmXi5z8QS1BEiu6Pl8mAh2qwGP1UsFgvXXXcd1113HaWlpWzfvp1PP/2UN998k8GDBzN27Nh6h4kX5tHllyAvF7r1QHWLQe/8GE4cheCqEYH9vD++p+oVjz56wOv7FUJ4h9ufKkFBQa451I8cOcKLL75Iamoqa9eubVaAdevWsXnzZtd0u9OnT2fYsGF8+umnvPvuu671Tp48ydKlS+ndu7db27dreVVzO9u7wlWDQSn0oa9Q1xqFX3n5zAQw7jfZtRV9IR8V2tn7+xdCeJTbnyoVFRXs2rWL9PR0vv76a6666ipuv/32FgkxadIkJk+eXGPZ6NGjGT16NGAUkmXLltUqJA1t364VFQKgwjqjgkMhJhZ9+CvUNVVTGnu5zwRA9Y5Hg3En/OAEr+9fCOFZP1pMDh48SHp6Ojt37iQsLIwbb7yR+++/n4iICG/kA+Czzz5jxIgRXttfq1dUYDxWXYarBlyDTvs3lBYby718NRcAPWONM6Rvj6KkmAjR5jRYTObNm0dpaSk33HADTz75JFdddZVHQmzcuJH09HRiY2OZOXOma673ajt27OCxxx5r8vbtjb5gnJkQWlVM+l+D3rgefWS/sdyEZi4VEATdYmRYFSHaqAY/Ve68804SExOx2Zr3l+yiRYsoKCiotTw5OZmJEycybZpxU93atWtZtWoVc+fOda1z9OhR/P39670s+ce2v1xaWhppaWkApKSkEB4e3qTvx2q1NnlbT6rOVex0UAKE94pF2Ww4E0eSoxTW44epAMLsdvy9mL86V+GAa7i061O6dOmCUuZP4+vrP0dfI7kax1dzgWeyNVhMLm9aysnJ4bvvvqOsrKzGOqNGjfrRnSxcuNCtMOPHj2fp0qU1lm3bto2RI0fWu02nTp0a3P5y1RcQVMvNzXUr15XCw8ObvK0nVedynj0DQR05X1j4w4vde1NRNaRJYXEJyov5Xbmie6KLCsk9tB/VtZvX9v9juXyN5GocydV4zckWHR1d53K32jvWr1/Pv/71L3r06IH/ZcOXV9/Q2Bz5+fl07mxc3bNr1y5iYmJcrzmdTnbs2MEf/vCHJm3fbl0srTXPu4ofgD79rfGFGVdzAarPVWhAf3vEJ4qJEKLluPWp8t5775GSkkKPHj1aPMDq1as5ceIESikiIiKYPXu267VDhw4RHh5OZGRkjW1WrlzJhAkTiIuLa3D79kqXlUJgUM2F8QPgk/eN5ybcZwJAdE/w7wDfHoGfjDEngxDCI9z6VAkODvbY1Vvz58+v97Wrr76axYsX11o+Z84ct7Zvty6WQkDNYqLiBxqX5oJpxUT5+UHveLTMCS9Em+PW5Fh33303L7/8MpmZmeTm5tb4J3xQ2cVaZyaqy2V/DJjUzAWg+vSDU8fRFeWmZRBCtDy3PlUcDgf79u1j27ZttV5r7h3wwgMuljbcJ2HCTYvVVNwA9Mb1xgjC8QNNyyGEaFluFZNXX32V6dOnM3LkyBod8MJH1dVnAqgJU9AfvQMdAk0IVSXOGI5eZx5GSTERos1wq5g4nU5uuukmLBa3WsWE2couQoeAWovV7feiJv4c1dG8mzpVaCfo2g197BD81LQYQogW5lZ1uOWWW9iwYQNa6x9fWZhKaw0V5WDrUOs1pRSqk72OrbxLxQ2AzMPy+yREG+LWmckHH3xAQUEB69evrzVUyV//+lePBBNNVOkArcGXmyPj+8OOLZCdBZF13wAlhGhd3ComcvltK1JedZWUzXeLiYozLlPWmYdQUkyEaBPcKiYDB0pHaavh8P1iQrceENQRjh2CEePNTiOEaAH19pm8//77VFRUNLhxRUUF77//fouHEs1QfWbiw81cymKB2P7ozMNmRxFCtJB6z0wKCgp46KGHuPbaaxk4cCDR0dEEBARQVlbGmTNnOHjwIHv37mXMGBkWw6dUtIIzE0DF9Ufv34MuKTb16jIhRMuot5jccccd3HzzzXzyySds2bKFkydPUlJSQnBwMD179uTaa69l+vTphISEeDOv+DFVxUT5ejGJH2AM73L8Gxh8ndlxhBDN1GCfSWhoKJMnT5YpcVuTVtABD0CffmCxoI8dQkkxEaLVk7sQ25oK3+8zAVAdAoy56Y8dMDuKEKIFSDFpa1pJnwmA6nc1HD8igz4K0QZIMWlrWlMxuWowOCrg+BGzowghmkmKSRujW8GlwS59B4JS6CP7zU4ihGgmtye2KCoqYu/eveTn5zNlyhTy8vLQWtOlS5cWCfLBBx+wceNGLBYLw4YN46677gKMKYO3bNmCxWLhnnvuYejQobW2zc7O5oUXXqCoqIjY2Fjmz5+P1cQ5O0xVfWZi9f1iooKCoUdvKSZCtAFunZkcPHiQhx9+mE8//ZR//etfAJw9e5b//u//bpEQ+/fvZ/fu3Sxbtoznn3+eW265BYDTp0+zfft2nn/+eZ5++mn+9re/4XQ6a22/evVqJk2axEsvvUTHjh3ZsmVLi+RqlVpJB3w11W8QHD+MdjR8g6wQwre5VUz+/ve/8/DDD/P000/jVzWxUnx8PJmZmS0SYtOmTUyZMgWbzQZAWFgYABkZGYwYMQKbzUbXrl2Jiori2LFjNbbVWnPgwAGGDx8OwNixY8nIyGiRXK1Sa7k0uIrqN8jIfOKo2VGEEM3gVltQTk4OgwcPrrmh1UplZWWLhMjKyuLw4cOsWbMGm83GjBkziI+PJy8vj759+7rWs9vt5OXl1di2qKiIoKAgV5Gra51qaWlppKWlAZCSkkJ4eHiT8lqt1iZv60lWq5UgfxslQHhUN2POdR/Q0PFyDh9Nzl+XEHT6WzoOv9FncplJcjWO5Go8T2Rzq5j06NGDL7/8skZ/xddff03Pnj3d3tGiRYsoKCiotTw5ORmn00lxcTGLFy8mMzOT1NRUli9f7vZ7uyspKYmkpCTX102dwz48PLzJ23pSeHg4pRcugLJwPj/f7DguP3q8uvei+IudXBw7yXuh8O2fo+Ryn+RqvOZki46ue6Rvt4rJjBkzWLp0Kddeey3l5eW88sor7Nmzh8cee8ztAAsXLqz3tU2bNnH99dejlCI+Ph6LxUJRURF2u53z58+71svLy8Nurzm5U0hICKWlpVRWVuLn51fnOu1KpcPUOd6bQg0Ygt76Ibqi3OeHgRFC1M2tPpN+/fqxbNkyYmJiuOmmm+jatSt/+tOfiI+Pb5EQiYmJHDhg3Al95swZHA4HISEhJCQksH37dioqKsjOziYrK6vWPpVSXH311ezcuROATz75hISEhBbJ1SpVVoJf67qSTfUfYlw4cOyQ2VGEEE3k9qeO3W5nypQpHgkxbtw4VqxYwaOPPorVamXevHkopYiJieGGG27gkUcewWKxcN9997nmoV+yZAkPPPAAdrudO++8kxdeeIE1a9bQp08fxo0b55GcrUJlBbS2y6KvutoYp+vQV6gBQ8xOI4RoArc+dV566SWUUrU3tlrp0qULiYmJ9O7du+khrFYeeuihOl+bOnUqU6dOrbX8ySefdD2PjIxkyZIlTd5/m1JZ2fqauQKCoE8/9OF9ZkcRQjSRW81cQUFBZGRkoLXGbrejtWb37t1YLBa+//57fvvb37J161ZPZxXuqHS0umYuMPpNOHEMXVpsdhQhRBO49amTlZXFk08+Sf/+/V3Ljhw5wtq1a1m4cCFffvklf//732WiLF/QCs9MoKoT/r218M1+uHa42XGEEI3k1pnJ0aNHa9zvARAbG+u6gXDIkCE1rroSJnK0zjMTYq8C/w7oQ1+anUQI0QRuFZPevXvz5ptvUl51d3V5eTlr16519ZNkZ2cTHCxTr/oCXelofR3wgLLa4KrB6AN7zY4ihGgCtz515s2bx5///Gf+8z//k+DgYIqLi4mLi3N1mhcXF3P//fd7NKhwUytt5gJQVw9Df70bnX0G1bXuG6OEEL7JrWLStWtX/vjHP5Kbm0t+fj6dO3eucSt+XFycxwKKRmqlHfAAavAw9BrQB/ZKMRGilWnUfCbh4eHEx8djt9txOp11juArTNaaz0y6RkNEFHr/F2ZHEUI0klt/wubl5fG3v/2NQ4cOUVJSUuO1tWvXeiSYaKLW2gFfRQ0aht62GV1RgaoaRVoI4fvcOjN55ZVXsFqtPPPMMwQEBLB06VISEhKYNWuWp/OJxmrFzVwA6urroPwSHDtodhQhRCO4VUyOHDnCr371K3r37o1Sit69e/OrX/2K9957z9P5RGO14mYuAK4aBFYrev8es5MIIRrBrWJisVhc84V07NiRCxcu0KFDh3rnDREmau1nJgGB0G8Qel87nuBMiFbIrWISHx/P3r3G9f9DhgwhNTWVZ599Vq7i8kWVDp+ZFKup1DXXw9nv0We/NzuKEMJNbhWT+fPnM3DgQADuvvtuBg0aRExMDL/+9a89Gk78OOenm3C+/hL6QtVkWJWVrfKmxcupIYkA6H27TE4ihHCXW8Vk3759rjvc/f39ue2227jrrrs4fPiwR8OJhunvT6JXLUd/9hHOV55Fa93qm7kAVHgkdO+F/kqauoRoLdwqJitXrqxz+csvv9yiYUTjVP/lrib9Ar75mvKv97T+Dvgqasj1cOwgukRGERaiNWiwmJw7d45z587hdDrJzs52fX3u3Dn27duHv79MsWom/c3X0C0GNemX0KkLpW+93ibOTADUNYngdMpVXUK0Eg1+6lw+YdX8+fNrvNapUyduv/32FgnxwQcfsHHjRiwWC8OGDeOuu+5i3759vPHGGzgcDqxWKzNmzGDQoEG1tl23bh2bN28mNDQUgOnTpzNs2LAWyeXzTn2LGpyAstlQY/4/yt95AyyWVt9nAkCffhASBnt3wk9kagMhfF2DnzrVd7f/7ne/47/+6788EmD//v3s3r2bZcuWYbPZKCwsBCAkJIQnnngCu93OyZMnWbx4cb3NapMmTWLy5MkeyeerdPkluFAAEVEAqBHj0O/+DzidbaOZy2JBXTsc/flWdPkllH8HsyMJIRrgVp+JpwoJwKZNm5gyZQq2qqEzwsLCAOjTpw92ux2AmJgYysvLqaio8FiOVud8tvHYpSsAyh6B/zUJxrI20MwFoIaNgEtlcFCGpRfC19X7qfPMM8/UOe/7lZpbaLKysjh8+DBr1qzBZrMxY8YM4uPja6zz+eefExsb6yo4V9q4cSPp6enExsYyc+bMeudWSUtLIy0tDYCUlJQaIx83htVqbfK2LeXSd0cpADrF9cO/Kkv5hMmUf5VBUEgIwSbnu1xTj5ceeRM5rz6L/4EvCEu62WdyeZrkahzJ1XieyFZvMRk3blyL7WTRokUUFBTUWp6cnIzT6aS4uJjFixeTmZlJamoqy3aISbQAACAASURBVJcvdxWyU6dO8cYbb/D000/X+d4TJ05k2rRpgNEst2rVKubOnVvnuklJSSQlJbm+zs3NbdL3Ex4e3uRtW4rzW2OWy0I/f1RVli4Jo6BHHy527kqZyfku16zjNTiRsl2fUn42y5hAy1dyeZDkahzJ1XjNyRYdXff0EPUWk7FjxzZpR3VZuHBhva9t2rSJ66+/HqUU8fHxWCwWioqKCA0N5fz58zz77LPMmzePqKioOrfv1KmT6/n48eNZunRpi+X2acVG3xKhYa5FqkMH/H73okmBPENdNwK9Ywsc/hoGtZMLK4RohdxuXP/4449JT08nLy8Pu93OjTfeyE033dTsAImJiRw4cIBBgwZx5swZHA4HISEhlJSUkJKSwh133EH//v3r3b56si6AXbt2ERMT0+xMrUJJMXQIbPG/1n3OwKEQEIje/RlKiokQPsutYvL222+zdetWbrnlFtfp0bvvvkt+fj5Tp05tVoBx48axYsUKHn30UaxWK/PmzUMpxYcffsjZs2d56623eOuttwD47W9/S1hYGCtXrmTChAnExcWxevVqTpw4gVKKiIgIZs+e3aw8rUZJEQSHmJ3C45TN37iq64sd6DvnoGxyb5MQvsitYrJ582Z+//vfExER4Vo2ZMgQfve73zW7mFit1hr3s1S77bbbuO222+rcZs6cOa7nV97/0l7okmLoWPeFBm2N+slY9I6P4evdMGyE2XGEEHVw69LgS5cuuW4KrBYSEkJ5eblHQgk3lBRBx7Z/ZgJA/2sgtBPOz7eanUQIUQ+3isnQoUP585//zJkzZygvL+f7779n+fLlDBkyxNP5RH1KilFB7eTMxM8PlTga9mWgS2WsLiF8kVvF5N577yUwMJDf/OY3zJgxg8cff5yAgADuvfdeT+cT9WknfSbV1E/GgsOB3rPd7ChCiDo02GfidDqxWCwEBQXx4IMPMnfuXIqKiggJCcFicasOCU8pLYagjman8J7e8dA1Gv35Vhg90ew0QogrNFgR5syZw+rVqzl58qSxssVCWFiYFBKTaUeFMdR8h0Czo3iNUgr1kzFwZD86/7zZcYQQV2iwKsyaNYvs7GyefPJJnnjiCd5//30uXLjgrWyiPpcuGY8d2tfgh2r4GNAavSvd7ChCiCs02MyVmJhIYmIiJSUlbN++nfT0dFavXs2QIUMYM2YMCQkJWNvCcOetzaWLxqN/gLk5vEx1jYY+/dDbN6Mn3urW2HFCCO9wq72qY8eOTJgwgUWLFpGamkpcXByvv/46DzzwgKfzibq4zkzaVzEBUKMnwpmTkHnI7ChCiMs0qvPD4XCQmZnJ0aNHKSwspGfPnp7KJRpSXgaAao/FJHG0MbxK+kazowghLuNWG9Xhw4fZunUrO3fuJDQ0lNGjR3P//ffXuCNeeNElo5i0yzOTgEDU8LHobZvRv5yFaiejAAjh6xosJuvWrePTTz+luLiY4cOH88QTTzQ46KLwkupmrnY6+6Aa/VP0Jx+gd36MGn+L2XGEEPxIMTl27BjJyckkJibi7y8D7PmM8vZ7ZgKgesZC777orR+ix90sHfFC+IAG+0yeeuopRo4cKYXEx+h23MxVTd34U8g6JR3xQvgIufuwNWqn95lcztURv1U64oXwBVJMWqPqZq52dp/J5VRAIOqGm9C7P0UX5JkdR4h2T4pJa1TdzNVOO+CrqaTJUFmJ/vh/zY4iRLvnE7evf/DBB2zcuBGLxcKwYcO46667yM7OZsGCBa7J6/v27VvnLIrFxcWkpqaSk5NDREQECxYsIDi4jV8uWn4JbP6odj5GmuoaDdcON67s+o9pqID2M1aZEL7G9GKyf/9+du/ezbJly7DZbBQWFrpei4qKYtmyZQ1uv2HDBgYPHsytt97Khg0b2LBhA3fddZenY5vL4YC2Pve7mywTf47zix3obZtR4282O44Q7Zbpf9pu2rSJKVOmYLMZH45hYWGN2j4jI4MxY8YAMGbMGDIyMlo84+X0F9spfvNVj+7jR1VUgIyJBoCK6w9x/dFp76CdlWbHEaLdMv0TKSsri8OHD7NmzRpsNhszZswgPj4egOzsbB5//HECAwNJTk5mwIABtbYvLCykc+fOAHTq1KnGmc2V0tLSSEtLAyAlJYXw8PBG573w3TFK0zfRdfr9jd62pRRa/Sj371Arv9VqbdL35GmezlV220wK/+9ThBw7QMCIcT6Tq6kkV+NIrsbzRDavFJNFixZRUFBQa3lycjJOp5Pi4mIWL15MZmYmqampLF++nM6dO7NixQpCQkI4fvw4y5Yt47nnniMoKKje/SilGryBLSkpiaSkJNfXubm5jf5enJVO9KWyJm3bUpzFxWiLpVaG8PBwU3PVx9O5dNwAiIii8K1VFPUd7PZNjO31eDWV5GocX80FzctW3Y99Ja8Uk4ULF9b72qZNm7j++utRShEfH4/FYqGoqIjQ0FBX01dsbCyRkZFkZWURFxdXY/uwsDDy8/Pp3Lkz+fn5hIaGevR7wd8fKsrRTqdpHeDaUSF9JpdRFj/UT6eiV6+AA1/AoOvMjiREu2N6n0liYiIHDhwA4MyZMzgcDkJCQrhw4QJOpxOAc+fOkZWVRWRkZK3tExIS2Lp1KwBbt24lMTHRs4GrL8etKPfsfhriqACbFJPLqZHjoUtXnBveQGttdhwh2h3T+0zGjRvHihUrePTRR7FarcybNw+lFAcPHmTdunX4+flhsViYNWuW65LflStXMmHCBOLi4rj11ltJTU1ly5YtrkuDPcpWVUzKy80bzsRRAX6m/+h8irLaUDf/Ev36S/DV5zB0uNmRhGhXTP9EslqtPPTQQ7WWDx8+nOHD6/5AmDNnjut5SEgIzzzzjMfy1VI9Tln5Je/t80oOh5yZ1EHdMA79wVs43/kfLNdc3+7vwxHCm+R/W2O5mrnMLCbSZ1IX5eeHuiUZTp+AL7abHUeIdkWKSSOp6mJi6pmJFJP6qOtvhG4xON99U+47EcKLpJg0li8UkwopJvVRFj8sU+6ErFPo9E1mxxGi3ZBi0li26j4Tc6/mUnIHfP2G3QD9BqHfWY0uKTY7jRDtghSTxurgA2cmlTI2V0OUUlimz4KSEvS7/2N2HCHaBSkmjVV1ZqLNvM9Emrl+lOrRBzXmp+hP3kd//53ZcYRo86SYNJYv9JnIpcFuUVPuhIAgnGtflRsZhfAwKSaN5RP3mciowe5QwaGoKXfAoa/QO7aYHUeINk2KSWP5X3YHvAm01lV3wMuZiTvU2P+AvgPRb76Czjlrdhwh2iwpJo1lM7mZy+kErcEmZybuUBY/LPcuAKVw/v+pcu+JEB4ixaSRlJ+f0cRk1h3wjgrjUTrg3abCI1F3PADHDqE/+JfZcYRok6SYNIHqEAhlZebsXIpJk6ifjEUljkb/+030iaNmxxGizZFi0gQqKAjKSs3ZucNhPEoHfKMopVB3/gpCO+N89Xn0JZP+GBCijZJi0gSWoGD0xYvm7LyyqpjIEPSNpjoGY7nn13Due/Rbr5kdR4g2RYpJE6jAjnCxxJydV1Z1IPv5mbP/Vk4NGIKaeCv6kw+4tHub2XGEaDOkmDSB6tgRysw6M6kqJhYpJk2lbp0B3XtxYfmf0PnnzY4jRJvgE20lH3zwARs3bsRisTBs2DDuuusuPv30U959913XOidPnmTp0qX07t27xrbr1q1j8+bNrrnfp0+fzrBhwzya1zgzMWmIjupLW6WZq8mUzYZl1mPolMfRL/4ey2NLUB2DzY4lRKtm+ifS/v372b17N8uWLcNms1FYWAjA6NGjGT16NGAUkmXLltUqJNUmTZrE5MmTvRUZS1Cwec1cVcVE+clJZXOo7j0JezKF/EWP4Fy+CMvDf0BVD+IphGg00z+RNm3axJQpU7BVjTUVFhZWa53PPvuMESNGeDtavVSQNHO1Bf7XJGC5/1HIPIzz5aXo6ivlhBCNZvqZSVZWFocPH2bNmjXYbDZmzJhBfHx8jXV27NjBY489Vu97bNy4kfT0dGJjY5k5cybBwXU3WaSlpZGWlgZASkoK4eHhTcp8MTgEKsrpEhaG8vKAixV558gDQjvb6XBFfqvV2uTvyZN8OVfET6dQqp0UvbwM/7X/Tej8p02fO96Xj5fkcp+v5gLPZPNKMVm0aBEFBQW1licnJ+N0OikuLmbx4sVkZmaSmprK8uXLUUoBcPToUfz9/enZs2ed7z1x4kSmTZsGwNq1a1m1ahVz586tc92kpCSSkpJcX+fm5jbp+wkKCDS2P30KFRLapPdoKp1ndBhfKClGXZE/PDy8yd+TJ/l8roTRqLPfU/bO/3DJPwDL7ff4Ri4fI7kax1dzQfOyRUdH17ncK8Vk4cKF9b62adMmrr/+epRSxMfHY7FYKCoqcnWob9u2jZEjR9a7fadOnVzPx48fz9KlS1sueD1UYEfjycUS8HIxkWYuz1CTfgkXCtGb1uMMDcPy06lmRxKiVTG9zyQxMZEDBw4AcObMGRwOByEhIQA4nU527NjRYDHJz893Pd+1axcxMTGeDQxYqguIGVPCVsrVXJ6glEIlzzKGXHnr7zj/d53MgSJEI5j+iTRu3DhWrFjBo48+itVqZd68ea4mrkOHDhEeHk5kZGSNbVauXMmECROIi4tj9erVnDhxAqUUERERzJ492+OZLWGdjSfFhR7fVy3Vlwab3K7fFimLBe59GJQFvWE1nP0eZj7o9X4xIVoj04uJ1WrloYceqvO1q6++msWLF9daPmfOHNfz+fPneyxbfVSo0bSmLxSivL3zSqfxKHfAe4Sy2uD+R6BbD/Q7b6BzsrDMfcr1MxdC1E3+vG0CU89MZGwuj1NKYbn5l6jZj8PJ4zj/9BuZR16IHyHFpAlUQCDY/OGCmc1ccmbiaZbEUVgeWwIOB86Ux9Ff7zY7khA+S4pJEyilICQMimpf7uxp2tUBLz86b1B9+mJ56lmIiML50h9x/ut1tFmzbArhw+QTqalCwtBFZjRzydVc3qbs4VieWIoaOR794b9w/uFh9NGDZscSwqdIMWmqTnYoyPP+fqWZyxSqQwCW/5yPZcEfwFGBc9mTOP/nZbRZw+oI4WOkmDSRskfA+Wzv79gpzVxmUgOHYvn9S6hxN6M/eR/n7+ejD+w1O5YQppNPpKYK7woXS9GlXr5xUZq5TKcCArEkz8Ly+BKw2XC+8Dsq//wH9Lcyt7xov6SYNJHqUnUjZa6Xz05kOBWfoeIHYnnmRdStd8Hxb3D+6VEqX/wv9PFvzI4mhNdJMWmq8K7GY+457+5Xmrl8irL5Y5n0Cywp/436+Qw4cQTnkseofPH36MzDZscTwmukraSpIo2RM3XWKRQ3eG+/rjvg5UfnS1RAEOpnt6PHTUJ//IExYGTK49CnH2pkEipxtDEPjhBtlHwiNZEKCIKIKDj1rXd3XH0HvDRz+SQVEIT6j9vQN/0M/dlHxr/VK9DrXkUNG4n6yRjoP9gYtkWINkSKSXP06I0+fcK7+5SBHlsFFRCISpqMHn8LnDiG3vYRelc6eufHENgRNSQRNWwEDByK6hBgdlwhmk2KSTOo3n3Re3eiLxR4byDASif4+blGVha+TSkFffqi+vRF//J+OPgVeu929Je70Ds/AasV4gagBgxBDRwKveLMjixEk0gxaQY1YCh6/T/Qh74ymi+8odIhTVytlLL5w5BE1JBEY1icI/vRB75AH/oKvWG1Mex9QCD5/a7G2SMWFXsVxPZDhYSZHV2IHyXFpDl6xRrDquz+DLxVTJyVUkzaAOXnBwOGoAYMAUAXFaIPfQVHD+I8mYn+8C20s+piizA79OiF6tEbuvdGde1m9NeFhMkZqvAZUkyaQVn8UKMmoD98G51zFhUR5fmdOp0yl0kbpELCUNffCNffSJfwcHK+P230tXx3FE6fQJ8+gd78b3A4cM3/2CHQKCpdo4zfvYhuxmMnO4R1hqBgKTbCa3yimKSmpnLmzBkASktLCQoKYtmyZQCsX7+eLVu2YLFYuOeeexg6dGit7bOzs3nhhRcoKioiNjaW+fPnY7V651tTY3+G3vIezr//GcuCP6A8vd/KSikm7YDqEABXDUJdNci1TDsckJMF2WfROVmQcxadcxbOnETvy6hZaMC4fDysE4R0grDOqLDOENoJgkOMQhPUEQKDoWPVY1BHCAiUAiSaxCeKyYIFC1zPV61aRVBQEACnT59m+/btPP/88+Tn57No0SJefPFFLFdcybR69WomTZrEyJEjeeWVV9iyZQsTJ070SnZlD0fd8QD6tRdxPvsUlv+YBrH9UdXzxLc06TNpt5TVCt1ioFtMrRk+tbMS8vMg9yy6IM+YHqGwAArz0RfyIT8X/d0xYw4ebTSf1TnDvbKAfwfo0MF4rP7XIYD84GAqUSj/gMteDzAerVbjjxy/mo/Kaq21rN5Hi8XYv8UCSlU9Vz88r2uZXNXoM3yimFTTWrNjxw6eeeYZADIyMhgxYgQ2m42uXbsSFRXFsWPH6NevX41tDhw4wK9//WsAxo4dyz//+U+vFRMAy4jxOP2s6LWv4lz+R2OhzR8Cg4zH6l/46v8IVP1naIqCPAgMbJHcou1QFj/oEgFdIhqcSlo7K+FiKZSWVP0rhtISY4y56mXll6r+lRlzt1T9cxbmQ0lJjWWUXwJdZ1ky9tfy32ot56DhwoPCOChVR6b6/57rQF2x3LX48uU/sk0dy3MsFpxO5xXvU8f7uzv5t7ufGW6sVj7/aejaw733c5NPFZNDhw4RFhZGt27dAMjLy6Nv376u1+12O3l5NYd9LyoqIigoCL+qpp+61qmWlpZGWloaACkpKYSHhzcpp9Vqrb3tpNvQE2+h4tA+Kr49irMwD11SbPzH09r1T2snOKu+bmJB8b96KEF1ZK8zlw+QXI3jy7kcDkeNZVprKC9HOyqg0mE0xTkqjKvVHA50peOH5a7X61mGNoqdUxtnT1qD02nsw1n1tXa6nmunE7QTCwpnpeOHdV3/xy5br7qsaVfwmo/1vY6uta6rQP7IeyjFDxdR1Fr3yv00TLu5nrvl2xoc2uK/Y14rJosWLaKgoPbMhMnJySQmJgKwbds2Ro4c6bEMSUlJJCUlub7Ozc1t0vuEh4fXv210b+OfBzmA0jr232AuE0muxmn1uSw245+XbvJv9cfLBJZmZIuOjq5zudeKycKFCxt8vbKykl27dpGSkuJaZrfbOX/+vOvrvLw87HZ7je1CQkIoLS2lsrISPz+/OtcRQgjhWT7Te/X1118THR1Nly5dXMsSEhLYvn07FRUVZGdnk5WVRXx8fI3tlFJcffXV7Ny5E4BPPvmEhIQEr2YXQoj2zmeKSV1NXDExMdxwww088sgjLF68mPvuu891JdeSJUtcfSN33nkn7733HvPnz6e4uJhx48Z5Pb8QQrRnSrvfs9PmVN/b0li+2hYquRpHcjWO5GocX80FzctWX5+Jz5yZCCGEaL2kmAghhGg2KSZCCCGaTYqJEEKIZmvXHfBCCCFahpyZNMH/+T//x+wIdZJcjSO5GkdyNY6v5gLPZJNiIoQQotmkmAghhGg2v9///ve/NztEaxQbG2t2hDpJrsaRXI0juRrHV3NBy2eTDnghhBDNJs1cQgghmk2KiRBCiGbzqZkWW4Mvv/yS1157DafTyfjx47n11ltNyZGbm8tf/vIXCgoKUEqRlJTEz372M9atW8fmzZsJDTXmoJ8+fTrDhg3zarZ58+YREBCAxWLBz8+PlJQUiouLSU1NJScnh4iICBYsWEBwcLDXMp05c4bU1FTX19nZ2fziF7+gpKTE68drxYoVfPHFF4SFhfHcc88B1Ht8tNa89tpr7N27lw4dOjB37lyPtcPXlesf//gHe/bswWq1EhkZydy5c+nYsSPZ2dksWLDANehf3759mT17ttdyNfR7vn79erZs2YLFYuGee+5h6NChXsuVmprqGkC2tLSUoKAgli1b5tXjVd9ng8d/x7RwW2VlpX7wwQf12bNndUVFhf7Nb36jT506ZUqWvLw8nZmZqbXWurS0VD/00EP61KlTeu3atfqdd94xJVO1uXPn6sLCwhrL/vGPf+j169drrbVev369/sc//mFGNK218XO8//77dXZ2tinH68CBAzozM1M/8sgjrmX1HZ89e/boxYsXa6fTqb/55hv95JNPejXXl19+qR0Ohytjda5z587VWM+T6spV38/t1KlT+je/+Y0uLy/X586d0w8++KCurKz0Wq7Lvf766/qf//yn1tq7x6u+zwZP/45JM1cjHDt2jKioKCIjI7FarYwYMYKMjAxTsnTu3Nn110NgYCDdu3d3ze/iizIyMhgzZgwAY8aMMe24gTERW1RUFBEREabsf+DAgbXOyuo7Prt37+bGG29EKUW/fv0oKSkhPz/fa7mGDBmCn58fAP369TPld6yuXPXJyMhgxIgR2Gw2unbtSlRUFMeOHfN6Lq01O3bs8Og05PWp77PB079j0szVCHl5eTVmguzSpQtHjx41MZEhOzubb7/9lvj4eA4fPszGjRtJT08nNjaWmTNnerU5qdrixYsBmDBhAklJSRQWFtK5c2cAOnXqRGFhodczVbtyIjZfOF71HZ+8vDzCw8Nd63Xp0oW8vDzXut60ZcsWRowY4fo6Ozubxx9/nMDAQJKTkxkwYIBX89T1c8vLy6Nv376udex2uykF8NChQ4SFhdGtWzfXMjOO1+WfDZ7+HZNi0sqVlZXx3HPPcffddxMUFMTEiROZNm0aAGvXrmXVqlXMnTvXq5kWLVqE3W6nsLCQP/7xj7Um01FKoZTyaqZqDoeDPXv2cMcddwD4xPG6kpnHpz5vv/02fn5+jB49GjD++l2xYgUhISEcP36cZcuW8dxzzxEUFOSVPL74c7vclX+wmHG8rvxsuJwnfsekmasR7HY758+fd319/vx57Ha7aXkcDgfPPfcco0eP5ic/+Qlg/MVhsViwWCyMHz+ezMxMr+eqPiZhYWEkJiZy7NgxwsLCXKfO+fn5ro5Tb9u7dy99+vShU6dOgG8cL6De42O322vMiGfG79wnn3zCnj17eOihh1wfQDabjZCQEMC4+S0yMpKsrCyvZarv53bl/9G8vDyvH6/Kykp27dpV4yzO28errs8GT/+OSTFphLi4OLKyssjOzsbhcLB9+3YSEhJMyaK1ZuXKlXTv3p2bb77Ztfzyts5du3YRExPj1VxlZWVcvHjR9Xzfvn307NmThIQEtm7dCsDWrVtJTEz0aq5qV/7FaPbxqlbf8UlISCA9PR2tNUeOHCEoKMirTVxffvkl77zzDk888QQdOnRwLb9w4QJOpxOAc+fOkZWVRWRkpNdy1fdzS0hIYPv27VRUVJCdnU1WVhbx8fFeywVGn1x0dHSNJnFvHq/6Phs8/Tsmd8A30hdffMHrr7+O0+nkpptuYurUqabkOHz4MM888ww9e/Z0/bU4ffp0tm3bxokTJ1BKERERwezZs7364XPu3DmeffZZwPgLbdSoUUydOpWioiJSU1PJzc015dJgMIrb3LlzWb58ueu0/6WXXvL68XrhhRc4ePAgRUVFhIWF8Ytf/ILExMQ6j4/Wmr/97W989dVX+Pv7M3fuXOLi4ryWa/369TgcDtfPqvqS1p07d7Ju3Tr8/PywWCzcfvvtHvvDqq5cBw4cqPfn9vbbb/Pxxx9jsVi4++67ufbaa72Wa9y4cfzlL3+hb9++TJw40bWuN49XfZ8Nffv29ejvmBQTIYQQzSbNXEIIIZpNiokQQohmk2IihBCi2aSYCCGEaDYpJkIIIZpNiokQTfT222+zcuVKr+1v4cKFfPvtty36nrt3764xmrIQTSXDqQhRjxkzZriel5eXY7VasViMv79mz57t1XuMdu/eTUBAAH369GnR901ISODNN9/ku+++o1evXi363qJ9kftMhHDDvHnzeOCBB7jmmmtM2f+SJUsYNWqUa2yslvT222+Tn5/Pfffd1+LvLdoPOTMRoonWrVvH2bNneeihh8jOzubBBx/kV7/6FevWraOsrIzp06cTGxvLypUryc3NZfTo0TU+sLds2cK///1vCgoKiI+PZ/bs2XUOi+9wONi/f3+NyZTWrVvH6dOnsVqt7N69m4iICB599FE+//xz/vd//xebzcacOXMYMmQIYIyv9dZbb3HhwgVCQkJITk52FaaBAwfy0ksvSTERzSJ9JkK0oKNHj/Liiy/y8MMP8/rrr/P222+zcOFCnn/+eXbs2MHBgwcBY96N9evX8+ijj/Lqq6/Sv39/XnzxxTrfMysrC4vFUmOsJ4A9e/Zw44038tprr9GnTx8WL17sGpfptttu45VXXgGMYWRee+01nnrqKVatWsUf//hHevfu7XqfHj16kJOTQ2lpqWcOimgXpJgI0YKmTZuGv78/Q4YMoUOHDowaNYqwsDDsdjv9+/d3daB/9NFH/PznP6dHjx74+fnx85//nBMnTpCTk1PrPUtKSggICKi1vH///gwdOhQ/Pz+GDx/OhQsXuPXWW7FarYwcOZKcnBxKSkoAY8jxkydPUl5eTufOnWsMaFn93lJMRHNIM5cQLSgsLMz13N/fv9bXZWVlAOTk5PDaa6+xatUq1+taa/Ly8mo1dQUHB7u2a2hfoaGhrgsE/P39AeOspEuXLjz88MP8+9//ZuXKlVx11VXMnDmT7t27u9YBvDYXiWibpJgIYYLw8HCmTp3qVod6VFSUq9A0dW6OoUOHMnToUMrLy1mzZg0vv/wyf/jDHwA4ffo0ERERUkxEs0gzlxAmmDBhAhs2bODUqVOA0cS0Y8eOOte1Wq0MHjzY1d/SWAUFBWRkZFBWVobVaiUgIKDGLHsHDx702DDtov2QMxMhTHD99ddTVlbGCy+8QG5uLkFBQQwePJgbbrihzvUnTJjAhx9+yKhRoxq9L6017733HsuXL0cpePW3xgAAAHNJREFURe/evZk1a5br9W3btjF//vwmfy9CgNxnIkSrsXDhQu69994WvXFx9+7dpKen88gjj7TYe4r2SYqJEEKIZpM+EyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJsUEyGEEM0mxUQIIUSzSTERQgjRbP8PEcaoAXDvuuMAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/examples/expsyn/ExpSyn_arbor.ipynb b/examples/expsyn/ExpSyn_arbor.ipynb new file mode 100644 index 00000000..2f5ecdf0 --- /dev/null +++ b/examples/expsyn/ExpSyn_arbor.ipynb @@ -0,0 +1,371 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimising synaptic parameters " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook shows how the parameters of an Arbor point process (in this case a synapse), can be optimised using BluePyOpt." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First some initial setup:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "%reload_ext autoreload\n", + "%autoreload\n", + "\n", + "import os\n", + "\n", + "import bluepyopt as bpopt\n", + "import bluepyopt.ephys as ephys" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need a Simulator (NEURON), Morphology (one compartment) and two Location objects (the 'somatic' sectionlist and the center of the soma)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# NEURON simulator\n", + "nrn_sim = ephys.simulators.ArbSimulator()\n", + "\n", + "# Single compartment\n", + "morph = ephys.morphologies.NrnFileMorphology('simple.swc')\n", + "\n", + "# Object that points to sectionlist somatic\n", + "somatic_loc = ephys.locations.NrnSeclistLocation('somatic',seclist_name='somatic')\n", + "\n", + "# Object that points to the center of the soma\n", + "somacenter_loc = ephys.locations.ArbBranchRelLocation(\n", + " name='somacenter',\n", + " branch=0,\n", + " pos=0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also add a leak channel:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "pas_mech = ephys.mechanisms.NrnMODMechanism( \n", + " name='pas', \n", + " suffix='pas', \n", + " locations=[somatic_loc]) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now comes the code which will add the synapse. We specify the suffix of the point process MOD file, and the location (or the list of locations) where to add it." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Add ExpSyn synapse pointprocess at the center of the soma\n", + "expsyn_mech = ephys.mechanisms.NrnMODPointProcessMechanism( \n", + " name='expsyn', \n", + " suffix='ExpSyn', \n", + " locations=[somacenter_loc]) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once we have defined a point process, we can create a Location object that points to it" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "expsyn_loc = ephys.locations.NrnPointProcessLocation( \n", + " 'expsyn_loc', \n", + " pprocess_mech=expsyn_mech) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using this location, we can specify the parameters of the synapse. Let's fit the decay time constant:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "expsyn_tau_param = ephys.parameters.NrnPointProcessParameter( \n", + " name='expsyn_tau', \n", + " param_name='tau', \n", + " value=2, \n", + " bounds=[0, 50], \n", + " locations=[expsyn_loc])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's put all these concepts together in a cell model:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "cell = ephys.models.CellModel( \n", + " name='simple_cell', \n", + " morph=morph, \n", + " mechs=[pas_mech, expsyn_mech], \n", + " params=[expsyn_tau_param]) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we need to define the fitness function. The idea is to stimulate the synapse 5 times, and let the resulting train of EPSPs reach exactly -50 mV.\n", + "\n", + "We first create a stimulus that injects the presynaptic events:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "stim_start = 20\n", + "number = 5\n", + "interval = 5\n", + "\n", + "netstim = [\n", + " ephys.stimuli.NrnSquarePulse(\n", + " step_amplitude=5e-4,\n", + " step_delay=stim_start + i*interval,\n", + " step_duration=1,\n", + " location=expsyn_loc,\n", + " total_duration=200) for i in range(number)]\n", + "\n", + "stim_end = stim_start + interval * number\n", + "\n", + "rec = ephys.recordings.CompRecording(\n", + " name='soma.v', \n", + " location=somacenter_loc,\n", + " variable='v')\n", + "\n", + "protocol = ephys.protocols.ArbSweepProtocol('netstim_protocol', netstim, [rec])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then we define an eFELFeature that will target the maximum voltage and we put everything in an evaluator" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "max_volt_feature = ephys.efeatures.eFELFeature( \n", + " 'maximum_voltage', \n", + " efel_feature_name='maximum_voltage', \n", + " recording_names={'': 'soma.v'}, \n", + " stim_start=stim_start, \n", + " stim_end=stim_end, \n", + " exp_mean=-50, \n", + " exp_std=.1)\n", + "\n", + "max_volt_objective = ephys.objectives.SingletonObjective( \n", + " max_volt_feature.name, \n", + " max_volt_feature) \n", + "\n", + "score_calc = ephys.objectivescalculators.ObjectivesCalculator( \n", + " [max_volt_objective]) \n", + "\n", + "cell_evaluator = ephys.evaluators.CellEvaluator( \n", + " cell_model=cell, \n", + " param_names=['expsyn_tau'], \n", + " fitness_protocols={protocol.name: protocol}, \n", + " fitness_calculator=score_calc, \n", + " sim=nrn_sim) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try out the evaluator with a decay time constant of 10.0" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'maximum_voltage': 142.04225284539575}\n" + ] + } + ], + "source": [ + "default_param_values = {'expsyn_tau': 10.0} \n", + "\n", + "print(cell_evaluator.evaluate_with_dicts(default_param_values)) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can run the optimisation:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "optimisation = bpopt.optimisations.DEAPOptimisation( \n", + " evaluator=cell_evaluator, \n", + " offspring_size=10) \n", + "\n", + "_, hall_of_fame, _, _ = optimisation.run(max_ngen=5) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And then we can plot the best individual:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best individual: [1.4173738261003155]\n", + "Fitness values: (142.04225284539575,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvdUlEQVR4nO3df1RUdeI//ue93IERQwQHNDItHTrq8taVBM1Skx1bz7pv8bhptMFuvY9pibmR/eK90dcjS7BLLtUitmvWm9R3NLtW8D4dgsj3ip9UELMfYOx7obIfIDjyG5wZx7nfP8hZCWaYH9yZAZ6Pczoyc++dec6FePK6PwVZlmUQERF5QPR1ACIiGv1YJkRE5DGWCREReYxlQkREHmOZEBGRx1gmRETkMcnXAXypqanJreU0Gg0MBsMIp/Ecc7mGuVzDXK7z12ye5IqKihryeY5MiIjIYywTIiLyGMuEiIg8xjIhIiKP+cUO+NLSUpSVlUEURcTGxiI5Odk2zWAwIC0tDRs2bMDatWsHLfvSSy+hsbERkiRh9uzZ2Lx5MyTJLz4WEdG44fPfurW1taipqUFubi5UKhU6OzsHTC8sLMTChQvtLn/HHXfgkUceAQC8+OKLOHLkCO666y5FMxMR0UA+L5Py8nIkJiZCpVIBAEJDQ23TqqurERkZiaCgILvLx8bG2r7WarW4ePGicmGJiGhIPi+T5uZm1NfXo6ioCCqVCikpKdBqtTAajSguLkZGRgZKSkqGfR2LxYJjx47h/vvvtztPRUUFKioqAAA5OTnQaDRuZZYkye1llaRkLlmWcan0MKwd7S4v2yeKUFutCqTyDHO5hrlc56/ZhMSkEf9d4ZUyyczMREdHx6Dnk5KSYLVa0dPTg6ysLDQ2NiIvLw/5+fnQ6/VYs2YN1Gq1U+/xyiuvYO7cuZg7d67deXQ6HXQ6ne2xuyftjMUTkYYjf3cO1n1/7H8gCIq8BxF5h3r5KnRcMrm1rL2TFr1SJhkZGXanlZeXIz4+HoIgQKvVQhRFdHd3o6GhAVVVVTh06BB6e3shCAICAwOxevXqQa/x17/+FV1dXdi8ebOSH2N8a+svKfHpP0CYPcelRcdj+XqCuVzjr7kA/80maTTACOfy+WauuLg41NXVISYmBk1NTbBYLAgJCcGuXbts8+j1eqjV6iGL5IMPPsAnn3yCZ599FqLII50VY/7+r5gg50aKRDS++Py3b0JCAlpaWrBjxw68+OKLSE1NhTDMZpTs7Gy0tbUBAPbt24fOzk789re/xRNPPIG//e1v3og97shXyyTQ/sEQRDR++XxkIkkStm/f7nCejRs3Dnicnp5u+7qoqEiRXPQDLBMicsDnIxMaJVgmROQAy4ScwzIhIgdYJuQcswkQRQi8VA0RDYFlQs4xmzgqISK7WCbkHLOZZUJEdrFMyDkcmRCRAywTcorMMiEiB1gm5ByWCRE5wDIh55hNQGCgr1MQkZ9imZBzODIhIgdYJuQclgkROcAyIedcNkNgmRCRHSwTcg5HJkTkAMuEnMMyISIHWCbkHJYJETnAMqFhyRYLcOUKoOKhwUQ0NL+4BGxpaSnKysogiiJiY2ORnJxsm2YwGJCWloYNGzZg7dq1g5bdu3cvvvjiC8iyjOuvvx6pqalQq3lr2RHFy88T0TB8Xia1tbWoqalBbm4uVCoVOjs7B0wvLCzEwoUL7S7/61//GsHBwbZ533vvPaxbt07JyOMPy4SIhuHzMikvL0diYiJUKhUAIDQ01DaturoakZGRCAqy/0vsapHIsgyz2axs2PGKZUJEw/B5mTQ3N6O+vh5FRUVQqVRISUmBVquF0WhEcXExMjIyUFJS4vA1CgoKcObMGUyfPh2/+tWv7M5XUVGBiooKAEBOTg40Go1bmSVJcntZJSmVy9LbiYsAJmk0ULvx+uNtfXmKuVzjr7kA/82mRC6vlElmZiY6OjoGPZ+UlASr1Yqenh5kZWWhsbEReXl5yM/Ph16vx5o1a5za/7F161ZYrVa8+uqrOH78OFauXDnkfDqdDjqdzvbYYDC49Xk0Go3byypJqVxyawsAoNtkRo8brz/e1penmMs1/poL8N9snuSKiooa8nmvlElGRobdaeXl5YiPj4cgCNBqtRBFEd3d3WhoaEBVVRUOHTqE3t5eCIKAwMBArF69esjXEUURS5cuRUlJid0yITdd3czFo7mIyA6fb+aKi4tDXV0dYmJi0NTUBIvFgpCQEOzatcs2j16vh1qtHlQksiyjpaUF06ZNgyzLqKmpsdua5AHuMyGiYfi8TBISElBQUIAdO3ZAkiSkpqZCEASHy2RnZ2PLli2YPHky9uzZg76+PgDAzJkzsWnTJm/EHl9sZcKRCRENzedlIkkStm/f7nCejRs3Dnicnp5u+zozM1ORXPQvssnY/0Ugz98hoqHxDHga3tWRSRDLhIiGxjKh4Zmulgn3mRDR0FgmNDzbZi6WCRENjWVCwzMbAUkFQQzwdRIi8lMsExqe2cT9JUTkEMuEhmcycX8JETnEMqHhmYw8LJiIHGKZ0LBk3mWRiIbBMqHhmbmZi4gc8/kZ8OQ/rG/8BXLle4MnWCxAzK3eD0REowbLhGzk2o+AqTdAmL9o0DRhwWIfJCKi0YJlQv/S1wNh0R0Q1//a10mIaJThPhP6F+5oJyI3sUwIQP+9YVgmROQulgn1u2zu/5f3LCEiN7BMqB/vpkhEHvCLMiktLcWjjz6Kxx57DAcPHhwwzWAwICUlBSUlJQ5f49VXX0VKSoqSMcc289WRCcuEiFzn86O5amtrUVNTg9zcXKhUKnR2dg6YXlhYiIULFzp8jcbGRvT29ioZc+zjyISIPODzkUl5eTkSExOhUqkAAKGhobZp1dXViIyMxPTp0+0ub7VacfDgQSQnJyuedUz7vkwElgkRucHnI5Pm5mbU19ejqKgIKpUKKSkp0Gq1MBqNKC4uRkZGhsNNXO+99x5uvfVWhIWFDfteFRUVqKioAADk5ORAo9G4lVmSJLeXVZInucyGZrQDmBQRgaAR/mxjcX0piblc46+5AP/NpkQur5RJZmYmOjo6Bj2flJQEq9WKnp4eZGVlobGxEXl5ecjPz4der8eaNWugVtu/Wm1bWxtOnDiBnTt3OpVDp9NBp9PZHhsMBlc/CgBAo9G4vaySPMklt7YAALoumSCM8Gcbi+tLSczlGn/NBfhvNk9yRUVFDfm8V8okIyPD7rTy8nLEx8dDEARotVqIooju7m40NDSgqqoKhw4dQm9vLwRBQGBgIFavXm1b9quvvsL58+exfft2AIDZbMYjjzyCP/3pT4p/pjHHts+EhwYTket8vpkrLi4OdXV1iImJQVNTEywWC0JCQrBr1y7bPHq9Hmq1ekCRAEBsbCz27dtne5ySksIicZPMHfBE5AGf74BPSEhAS0sLduzYgRdffBGpqakQBMHhMtnZ2Whra/NSwnHiMg8NJiL3+XxkIkmSbTOVPRs3bhzwOD09fcj5Dhw4MGK5xh2OTIjIAz4fmZCfYJkQkQdYJtTP9H2ZqLgDnohcxzKhfmYTIKkgiPyRICLX8TcH9ePl54nIAywT6scyISIPsEyoH8uEiDzAMiEAgHzZzDIhIrc5dZ6JwWDAuXPn0Nvbi4kTJ2LmzJl+efEy8oDZBASxTIjIPXbLxGKxoKKiAu+//z5aW1sxbdo0qNVqGI1GnD9/HpGRkVi1ahV0Oh0kyefnPpKnzCYeFkxEbrPbAk888QRiYmKwefNmREdHQ7zmkFGr1YqGhgYcO3YMTz75JP74xz96JSwpyGwCgq/zdQoiGqXslsnOnTsH3KjqWqIo4pZbbsEtt9yCrq4uxcKRF5lNvDEWEbnN7g740NBQlJWVDXs73EmTJo14KPIBHs1FRB5wuLPjyJEjeP3117Fw4ULceeediI2NHbC5i8YQlgkRecBhmfz+97/H119/jcrKSuzfvx9//vOfsXTpUqxYsQKzZs3yVkbyBrOJN8YiIrcNexjWjBkzkJycjPvuuw+fffYZKisrsXPnTkRERGDFihVYu3atN3KSgmSrFTCbgUD7t0gmInLE6W1WgiBg/vz52LZtG5566ikYjUYcOnRIyWzkLVdvjMXzTIjITU6fINLW1obKykpUVlbi4sWLWLx4Me68884RCVFaWoqysjKIoojY2FgkJyfbphkMBqSlpWHDhg1DjoL27NmDs2fPIjg4GACQmpqKm266aURyjRsmY/+/QRyZEJF7HJaJyWTCyZMnUVlZibNnz2LevHlYt24dFi9ejKAR+iu2trYWNTU1yM3NhUqlQmdn54DphYWFWLhwocPXSElJwZIlS0Ykz7h0tUy4A56I3OSwTDZt2gSNRoPly5dj69atmDJlyogHKC8vR2JiIlQqFQAMOLeluroakZGRI1ZcZIftLoscmRCRexyWybPPPovo6GhFAzQ3N6O+vh5FRUVQqVRISUmBVquF0WhEcXExMjIyUFJS4vA13njjDfztb39DTEwM7rvvPlsx/VBFRQUqKioAADk5OW5fX0ySJL+8Npm7uS63taINQGhEBIIU+FxjbX0pjblc46+5AP/NpkQuh2VybZF8/vnn+PLLL2E0GgfMs379+mHfJDMzEx0dHYOeT0pKgtVqRU9PD7KystDY2Ii8vDzk5+dDr9djzZo1UKsd/7X8y1/+EpMnT4bFYsGf//xnFBcX4+677x5yXp1OB51OZ3tsMBiGzT4UjUbj9rJKcjeX3HoeANBlMkNQ4HONtfWlNOZyjb/mAvw3mye5oqKihnzeqR3wr776Kk6cOIE5c+Yg8JpzEQRBcOrNMzIy7E4rLy9HfHw8BEGAVquFKIro7u5GQ0MDqqqqcOjQIfT29kIQBAQGBmL16tUDlg8LCwMAqFQqrFy5Ev/zP//jVCa6hombuYjIM06VybFjx7B7926Eh4ePeIC4uDjU1dUhJiYGTU1NsFgsCAkJwa5du2zz6PV6qNXqQUUCAO3t7QgLC4Msyzh16hRuvPHGEc841sm2fSbcN0VE7nGqTDQajd39EJ5KSEhAQUEBduzYAUmSkJqaOuyIJzs7G1u2bEF4eDheeukl28UmZ86cic2bNyuScyyQTUbIJ44AlssDJ3zZ0P8vD3QgIjcJsizLw83U2NiIt99+G7fffvugKwnPmzdPsXBKa2pqcmu50bod1Pr/3odc+KehJwZPhPiH1yAocK7JaF1fvsJcrvHXXID/ZvPZPpMvvvgCZ86cweeffz5gnwkA7N27161A5AMXWwFBgJh3EPjh6E8VBEGh0ScRjX1Olckbb7yBp556CvPnz1c6DynJZAQC1RAmhvg6CRGNMU5dmysoKGhUb86i7/HKwESkEKfK5J577sF//dd/oaOjA1ardcB/NIqYzTxii4gU4dRmrqv7Rd5///1B0958882RTUTK4Q2wiEghTpVJfn6+0jnIC2SWCREpxKkyiYiIUDoHeQP3mRCRQuzuMyksLBzyelrX6ujoQGFh4UhnIqVwZEJECrE7MomKikJ6ejqmT5+OuXPnIioqChMmTMClS5fQ3NyMs2fPoqmpyakLPZKfMJuA0JG/JA4Rkd0yWbVqFVauXImamhqcOXMGp06dQl9fHyZOnIgZM2Zg1apVuPXWWxEQEODNvOQJswkCRyZEpACH+0wkScKSJUt4F8Ox4rKZ198iIkU4dZ4JjRHcZ0JECmGZjCc8mouIFMIyGSfkK1cAi4UjEyJSBMtkvLj8/Q2wVCwTIhp5Tp20CADfffcdTpw4gY6ODmzatAnfffcdLBYLZs6c6XGI0tJSlJWVQRRFxMbGIjk52TbNYDAgLS0NGzZswNq1awctK8syioqKcPLkSYiiiFWrVuFnP/uZx5nGHN5NkYgU5FSZnDhxAvv370d8fDw+/PBDbNq0CUajEf/93//t8P7uzqitrUVNTQ1yc3OhUqnQ2dk5YHphYSEWLlxod/m///3vuHjxIvLy8iCK4qDl6XsmlgkRKcepMtHr9XjmmWdw00034cSJEwD6b5H71VdfeRygvLwciYmJttsCX3snx+rqakRGRiLIweGs5eXl+M1vfgNRFActT9cwm/v/ZZkQkQKcKpPOzs5Bm7MEQRj2Xu3OaG5uRn19PYqKiqBSqZCSkgKtVguj0Yji4mJkZGSgpKTE7vItLS04fvw4qqurMWnSJDzwwAO4/vrrPc415ny/z4QnLRKREpwqk1mzZqGyshIrVqywPffhhx9Cq9U69SaZmZlDXucrKSkJVqsVPT09yMrKQmNjI/Ly8pCfnw+9Xo81a9ZArXZ8T/LLly9DpVIhJycHVVVV2Lt3L3bt2jXkvBUVFaioqAAA5OTkQKPROJX/hyRJcntZJTnKZW75Bu0AQiMiEOjl7KNxffkSc7nGX3MB/ptNiVxOlckDDzyA3/3udzhy5AhMJhOysrLQ1NSEZ555xqk3cbRfpby8HPHx8RAEAVqtFqIooru7Gw0NDaiqqsKhQ4fQ29sLQRAQGBiI1atXD1h+ypQpWLx4MQAgPj4eBQUFdt9Lp9NBp9PZHhsMBqfy/5BGo3F7WSU5yiVfaAUAdF4yQvBy9tG4vnyJuVzjr7kA/83mSa6oqKghn3eqTG644Qa88MILOH36NG699VZMmTIFt95667CjBmfExcWhrq4OMTExaGpqgsViQUhIyIDRhV6vh1qtHlQkV5evra1FQkICzp49a/eDjns8mouIFOT0ocFBQUFYunTpiAdISEhAQUEBduzYAUmSkJqaOuy+mOzsbGzZsgXh4eFYt24dXnrpJbz77rtQq9XYsmXLiGccC2SWCREpyKkyefbZZ4f8BS9JEqZMmYL4+HgsWrTIvQCShO3btzucZ+PGjQMep6en276eOHHigMdkB8uEiBTk1Bnw8+bNQ2trK+bOnYtly5Zh7ty5uHDhAmbPno3Q0FDs3bsXxcXFSmclT7BMiEhBTo1MPv30U/z2t7/F9OnTbc8tW7YMe/bswXPPPYfFixfjxRdfRGJiomJByUM8z4SIFOTUyOS7777D1KlTBzwXERGBpqYmAIBWqx32Fr/kY2YTIIiA5PRuMiIipzlVJnPnzkVBQQHOnz8Ps9mM8+fP4+WXX8acOXMAAF9//TXCwsIUDUoe+v7y8yNxoikR0Q859Wfqtm3b8MorryAtLQ1WqxUBAQGIj4/H1q1b+19EkvCb3/xG0aDkIRNvjEVEynGqTK677jo8+uijsFqt6OrqwqRJk2zXwgLsn8RCfsRsZJkQkWJc2oBuMplgNptx4cIF23M/3JdC/kk2m4Agz08yJSIailNl8u233+Kll17CuXPnBk178803RzwUKcBkZJkQkWKc2gH/yiuv4Ec/+hFeffVVBAcH47XXXsOqVauQmpqqdD4aKdxnQkQKcqpMzp07h/vuuw8TJ06ELMsIDg5GcnIyRyWjCfeZEJGCnCoTlUqFK1euAABCQkJgMBggyzJ6enoUDUcjyGyCwM1cRKQQp/aZzJkzBydOnMCdd96JJUuW4LnnnoNKpcKPfvQjpfPRSDGZAAd3rCQi8oRTZfLYY4/Zvr733ntx4403wmg0DrhZFvk5kxEI5MiEiJTh1Gaua2+bK4oili9fjrvuugvvv/++YsFohJm5A56IlOPUyOTw4cNYu3btkM///Oc/H/FQ5L4rL/x/wLdfDZ5gucxDg4lIMQ7LpLa2FgBgtVptX1/V0tKCCRMmKJeMXGbt7gLqzgDaeRCibhw4URQhLF7um2BENOY5LJO9e/cCAMxms+1rABAEAZMnT8Z//Md/jEiI0tJSlJWVQRRFxMbGIjk52TbNYDAgLS0NGzZsGHJ09Oyzz+LSpUsAgK6uLsyePRtPPvnkiOQabaw9XQAAYcVPIS5Z6eM0RDSeOCyTPXv2AADy8/Oxbds2RQLU1taipqYGubm5UKlU6OzsHDC9sLAQCxcutLv8tfeKf/755xEXF6dIztFANhkBAAL3jRCRlzm1A16pIgGA8vJyJCYmQqVSAQBCQ0Nt06qrqxEZGTngplz29PX1oa6ujmUCcEc7EXmd3ZHJww8/7NQLXLv5yx3Nzc2or69HUVERVCoVUlJSoNVqYTQaUVxcjIyMjAFHk9lz6tQpxMTEIDg42O48FRUVqKioAADk5ORAo9G4lVmSJLeXVdKVlm8AAKERkQj0o3z+ur6YyzXM5Tp/zaZELrtl8sgjj4zYm2RmZg55J8akpCRYrVb09PQgKysLjY2NyMvLQ35+PvR6PdasWQO12rkjkD788EMkJCQ4nEen00Gn09keGwwGlz7HVRqNxu1llRTS1wcA6LxkhOBH+fx1fTGXa5jLdf6azZNc9m45YrdM5s2b59YbDSUjI8PutPLycsTHx0MQBGi1WoiiiO7ubjQ0NKCqqgqHDh1Cb28vBEFAYGAgVq9ePeg1urq60NDQgMcff3zEMo9Gsvn7zVwqbuYiIu9y6jwTi8WCt956C5WVlWhvb0dYWBiWL1+O9evXQ/LwnuJxcXGoq6tDTEwMmpqaYLFYEBISMmDHul6vh1qtHrJIAODkyZOIjY1FYGCgR1lGu3/tMxnf64GIvM+pJjh48CAaGxvx4IMPIiIiAhcuXMDhw4fR19eH+++/36MACQkJKCgowI4dOyBJElJTU4e9T3l2dja2bNmC8PBwAMDx48exbt06j3KMBbLZ1P8Fr8FFRF7mVJmcPHkSubm5CAkJAdC/zezmm2/GE0884XGZSJKE7du3O5xn48aNAx6np6cPeLxz506PMowVPJqLiHzFqUODZVlWOgeNANn0/ciE+0yIyMucGpncdttt+P3vf4+7777bdhTA4cOHcdtttymdj1wgm4yAJEEICPB1FCIaZxyWidVqhSiKSE5OxuHDh7F//360t7cjPDwcS5cuxS9+8Qtv5SQnyCbeTZGIfMNhmTz00ENYvnw5li9fjnvuuQf33HOPt3KRO0xGbuIiIp9wWCYPPvggjh07hvT0dEyfPh0rVqzAHXfcgUmTJnkrH7lANpt4WDAR+YTDMomLi0NcXBx6e3tx/PhxVFZW4uDBg1iwYAFWrFiBRYsWeXyeCY0cbuYiIl9xqgkmTpyIVatWYdWqVWhpacGxY8dQWFiIffv2Yf/+/UpnJCfJvJsiEfmIU4cGX2WxWNDY2Ih//vOf6OzsxIwZM5TKRW7gyISIfMWpkUl9fT2OHj2KkydPYtKkSVi2bBk2bdqEiIgIpfORC2STCQi+ztcxiGgcclgmer0ex44dQ09PD5YsWYKnnnoKc+bM8VY2cpFsMgKTw30dg4jGIYdl0tDQgKSkJMTFxY37iyiOBrLJyLssEpFPOCyT//zP//RWDhoB3GdCRL7i0g548nM8mouIfIRlMkbIssxDg4nIZ1gmY4XFAlitLBMi8gmWyVhx9cZYLBMi8gG/uBZKaWkpysrKIIoiYmNjkZycbJtmMBiQlpaGDRs2YO3atYOW/eyzz3Dw4EFYrVao1WqkpqZi2rRp3ozvH2xlwqPuiMj7fF4mtbW1qKmpQW5uLlQqFTo7OwdMLywsxMKFC+0u/8orr+CJJ57A9OnTUVZWhsOHDyM1NVXp2P6HIxMi8iGfl0l5eTkSExOhUqkAAKGhobZp1dXViIyMRNAw9zS/dOkSAKCvrw9hYWHKhfVn35eJwEvQE5EP+LxMmpubUV9fj6KiIqhUKqSkpECr1cJoNKK4uBgZGRkoKSmxu/xDDz2E7OxsBAYGYsKECcjKyrI7b0VFBSoqKgAAOTk50Gg0bmWWJMntZZViNjSjHcCkiEgE+Vk2f1xfAHO5irlc56/ZlMjllTLJzMxER0fHoOeTkpJgtVrR09ODrKwsNDY2Ii8vD/n5+dDr9VizZg3UarXD13733XeRnp6O6OholJSU4PXXX8dDDz005Lw6nQ46nc722GAwuPV5rt662J/IrecBAF1GEwQ/y+aP6wtgLlcxl+v8NZsnuaKiooZ83itlkpGRYXdaeXk54uPjIQgCtFotRFFEd3c3GhoaUFVVhUOHDqG3txeCICAwMBCrV6+2LdvV1YVz584hOjoaALB06VKHI5Mx7eo+kyDH5UtEpASfb+aKi4tDXV0dYmJi0NTUBIvFgpCQEOzatcs2j16vh1qtHlAkQP99Vvr6+tDU1ISoqCh8+umnuOGGG7z9EfyCbLpaJtxnQkTe5/MySUhIQEFBAXbs2AFJkpCamgpBEBwuk52djS1btiA8PBxbtmzB7t27IYoiJk6ciIcffthLyf2Mydj/L4/mIiIf8HmZSJKE7du3O5xn48aNAx6np6fbvo6Pj0d8fLwi2UYVbuYiIh/iGfBjhW1kwjIhIu9jmYwVZhMgBgCSzwebRDQOsUzGCpMRglo97P4mIiIl8M/YUUbuaodc9zEgywOf//YriNxfQkQ+wjIZZeSSNyAffW/IaWL0PMhDTiEiUhbLZJSRW5uBGbMgPvT0oGnhs7S42N3jg1RENN6xTEYbswm4bhKEiMGX2ReC1ADLhIh8gDvgRxsTb81LRP6HZTLamE0QWCZE5GdYJqONmSMTIvI/LJPR5rIZUPHWvETkX1gmow1HJkTkh1gmo4hstfaPTFgmRORnWCajyWVz/7+8ZwkR+RmWyWhy9TLzHJkQkZ9hmYwmLBMi8lN+cQZ8aWkpysrKIIoiYmNjkZycbJtmMBiQlpaGDRs2YO3atYOWra2txYEDB2CxWHDzzTfj4YcfRkBAgDfjew/LhIj8lM/LpLa2FjU1NcjNzYVKpUJnZ+eA6YWFhVi4cOGQy1qtVuzZswcZGRmIiorCm2++iaNHjyIhIcEb0b3v+zLhSYtE5G98vpmrvLwciYmJUKlUAIDQ0FDbtOrqakRGRmL69OlDLtvT0wNJkhAVFQUAmD9/PqqqqpQP7Svm73fA8zwTIvIzPh+ZNDc3o76+HkVFRVCpVEhJSYFWq4XRaERxcTEyMjJQUlIy5LIhISG4cuUKGhsbMXv2bJw8eRIGg8Hue1VUVKCiogIAkJOTA41G41ZmSZLcXtYTpm+D0AEgNHIqAod4f1/lGg5zuYa5XOOvuQD/zaZELq+USWZmJjo6OgY9n5SUBKvVip6eHmRlZaGxsRF5eXnIz8+HXq/HmjVroFbbv+GTIAh49NFHUVhYiMuXL2PBggUQRfuDLZ1OB51OZ3vsqHgc0Wg0bi/rCfnCBQBAZ98lCEO8v69yDYe5XMNcrvHXXID/ZvMk19UtQT/klTLJyMiwO628vBzx8fEQBAFarRaiKKK7uxsNDQ2oqqrCoUOH0NvbC0EQEBgYiNWrVw9Y/pZbbsGuXbsAAJ988gmampoU/Sy+JHMHPBH5KZ9v5oqLi0NdXR1iYmLQ1NQEi8WCkJAQW0EAgF6vh1qtHlQkANDZ2YnQ0FBcvnwZxcXFWL9+vTfjexfLhIj8lM/LJCEhAQUFBdixYwckSUJqaioEQXC4THZ2NrZs2YLw8HCUlJTgo48+gtVqxV133YWYmBgvJfeBq2XCM+CJyM/4vEwkScL27dsdzrNx48YBj9PT021fp6SkICUlRZFsfocjEyLyUz4/NJhcYDYDggBIKl8nISIagGUymphNgCpw2M2ARETexjIZTXgvEyLyUyyT0YRlQkR+imUymrBMiMhPsUxGEZllQkR+imUymrBMiMhPsUxGE97/nYj8FMtkNDEZgUBefp6I/A/LZDQxGSEE2r+KMhGRr7BMRhOzidflIiK/xDIZTcwmIIgjEyLyPyyTUUKW5e/3mbBMiMj/sExGC4sFsFq5A56I/BLLZLSw3cuEIxMi8j8sk9HCZOz/l2VCRH7I5zfHAoDS0lKUlZVBFEXExsYiOTkZra2tSEtLs928Pjo6Gps3bx60bE9PD/Ly8nDhwgVEREQgLS0N1113nbc/gvLM35cJT1okIj/k8zKpra1FTU0NcnNzoVKp0NnZaZs2bdo05ObmOlz+nXfewb/9279h3bp1eOedd/DOO+8gOTlZ6djeZ+rfzCVwZEJEfsjnZVJeXo7ExESoVP13DwwNDXVp+VOnTmHnzp0AgBUrVmDnzp2Klon1YAEMX/wDVywWxd5jSLxlLxH5MZ+XSXNzM+rr61FUVASVSoWUlBRotVoAQGtrK5588klMmDABSUlJmDt37qDlOzs7ERYWBgCYPHnygJHND1VUVKCiogIAkJOTA41G43Le3htvgsVihmSVXV7WU8KEOITcugTixKE340mS5NZnUhpzuYa5XOOvuQD/zaZELq+USWZmJjo6OgY9n5SUBKvVip6eHmRlZaGxsRF5eXnIz89HWFgYCgoKEBISgi+++AK5ubnYvXs3goOD7b6PIAgOb2mr0+mg0+lsjw0Gg+sfZsXPoPnFr9xbdgS0XTICl4xDTtNoND7L5QhzuYa5XOOvuQD/zeZJrqv7sX/IK2WSkZFhd1p5eTni4+MhCAK0Wi1EUUR3dzcmTZpk2/Q1a9YsTJ06Fc3NzZg9e/aA5UNDQ9He3o6wsDC0t7dj0qRJin4WIiIazOeHBsfFxaGurg4A0NTUBIvFgpCQEHR1dcFqtQIAWlpa0NzcjKlTpw5aftGiRTh69CgA4OjRo4iLi/NeeCIiAuAH+0wSEhJQUFCAHTt2QJIkpKamQhAEnD17Fnq9HgEBARBFEQ8++KDtkN+XX34Zq1atwuzZs7Fu3Trk5eXhyJEjtkODiYjIuwRZlr2/J9lPNDU1ubXcWNwOqiTmcg1zucZfcwH+m02JfSY+38xFRESjH8uEiIg8xjIhIiKPsUyIiMhj43oHPBERjQyOTNzw9NNP+zrCkJjLNczlGuZynb9mUyIXy4SIiDzGMiEiIo+xTNxw7cUi/QlzuYa5XMNcrvPXbErk4g54IiLyGEcmRETkMZYJERF5zOdXDR5tPv74Y7z22muwWq34yU9+gnXr1nk9g8FgwJ49e9DR0QFBEKDT6fCzn/0Mer0eH3zwge2eLvfeey9iY2O9ni81NRVqtRqiKCIgIAA5OTno6elBXl4eLly4YLu689WrQHtDU1MT8vLybI9bW1uxceNG9Pb2en2dFRQU4KOPPkJoaCh2794NAHbXjyzLeO2113DmzBkEBQVh69atmDVrltdyHThwAKdPn4YkSZg6dSq2bt2KiRMnorW1FWlpabaL/kVHR2Pz5s1ey+XoZ/3tt9/GkSNHIIoiHnjgAfz4xz/2Wq68vDzbBWT7+voQHByM3Nxcr64ve78fFP8Zk8lpV65ckbdt2yafP39evnz5svz444/L33zzjddztLW1yY2NjbIsy3JfX5+8fft2+ZtvvpHffPNNubi42Ot5fmjr1q1yZ2fngOcOHDggv/3227Isy/Lbb78tHzhwwAfJ+l25ckXetGmT3Nra6pN1VldXJzc2NsqPPfaY7Tl76+f06dNyVlaWbLVa5X/84x9yenq6V3N9/PHHssVisWW8mqulpWXAfEoaKpe979s333wjP/7447LZbJZbWlrkbdu2yVeuXPFarmsVFhbKf/3rX2VZ9u76svf7QemfMW7mckFDQwOmTZuGqVOnQpIkLF26FKdOnfJ6jrCwMNtfDhMmTMANN9yAtrY2r+dwxalTp7BixQoAwIoVK3yy3q767LPPMG3aNERERPjk/efNmzdoVGZv/dTU1GD58uUQBAG33HILent70d7e7rVcCxYsQEBAAADglltu8cnP2VC57Dl16hSWLl0KlUqFyMhITJs2DQ0NDV7PJcsyTpw4gdtvv12R93bE3u8HpX/GuJnLBW1tbZgyZYrt8ZQpU/DPf/7Th4n6N9d8+eWX0Gq1qK+vR1lZGSorKzFr1iz86le/8uqmpGtlZWUBAFatWgWdTofOzk6EhYUBACZPnozOzk6f5AKADz/8cMD/5P6wzuytn7a2Nmg0Gtt8U6ZMQVtbm21ebzpy5AiWLl1qe9za2oonn3wSEyZMQFJSEubOnevVPEN939ra2hAdHW2bJzw83CcF+PnnnyM0NBTXX3+97TlfrK9rfz8o/TPGMhnFjEYjdu/ejfvvvx/BwcG46667cPfddwMA3nzzTbz++uvYunWr13NlZmYiPDwcnZ2d+N3vfjfoZjqCIEAQBK/nAgCLxYLTp0/jl7/8JQD4zTq7li/Xjz1vvfUWAgICsGzZMgD9f/0WFBQgJCQEX3zxBXJzc7F7924EBwd7JY8/ft+u9cM/WHyxvn74++FaSvyMcTOXC8LDw3Hx4kXb44sXLyI8PNwnWSwWC3bv3o1ly5Zh8eLFAPr/2hBFEaIo4ic/+QkaGxt9ku3qOgkNDUVcXBwaGhoQGhpqGzq3t7fbdpx625kzZ3DzzTdj8uTJAPxnndlbP+Hh4QPuiOeLn7m///3vOH36NLZv3277BaRSqRASEgIAmDVrFqZOnYrm5mavZbL3ffvh/6NtbW1eX19XrlxBdXX1gFGct9fXUL8flP4ZY5m4YPbs2WhubkZrayssFguOHz+ORYsWeT2HLMt4+eWXccMNN+DnP/+57flrt3NWV1fjxhtv9Ho2o9GIS5cu2b7+9NNPMWPGDCxatAhHjx4FABw9ehRxcXFezwYM/ovRH9YZALvrZ9GiRaisrIQsy/i///s/BAcHe3UT18cff4zi4mI89dRTCAoKsj3f1dUFq9UKAGhpaUFzczOmTp3qtVz2vm+LFi3C8ePHcfnyZbS2tqK5uRlardZruYD+fXJRUVEDNol7c33Z+/2g9M8Yz4B30UcffYTCwkJYrVasXLkS69ev93qG+vp6PPvss5gxY4btL8V7770XH374Ib766isIgoCIiAhs3rzZ69vWW1pa8PzzzwPo/wvtjjvuwPr169Hd3Y28vDwYDAafHBoM9Jfb1q1bkZ+fbxv2/+lPf/L6OnvhhRdw9uxZdHd3IzQ0FBs3bkRcXNyQ60eWZezfvx+ffPIJAgMDsXXrVsyePdtrud5++21YLBbb9+rqIa0nT56EXq9HQEAARFHEhg0bFPvDaqhcdXV1dr9vb731Fv73f/8Xoiji/vvvx8KFC72WKyEhAXv27EF0dDTuuusu27zeXF/2fj9ER0cr+jPGMiEiIo9xMxcREXmMZUJERB5jmRARkcdYJkRE5DGWCREReYxlQuSmxx57DHV1dV55r2+//RZPP/00Rvrgy+effx5nzpwZ0dek8YmXUyGyIyUlxfa12WyGJEkQxf6/vzZv3ow//vGPXstSVFSEf//3fx/xS2CsW7cO+/btU+xcDBo/WCZEdhw4cMD2dWpqKrZs2YL58+d7PUd7ezvq6uqwffv2EX9trVaLS5cuobGxUbGTIWl8YJkQuenagtHr9fj2228hSRJqamoQERGBHTt2oKqqCu+++y5UKhUeeughLFiwAED/jZMKCwtx5swZCIKAlStXYuPGjbaRz7U+/fRTzJo1C4GBgQPe+6c//SkqKyvR0tKCpUuX4t5770VBQQHq6+sRHR1tO8PZbDbj5Zdfxscffwyr1Yrrr78eTz31lO36ZPPmzcNHH33EMiGPcJ8J0Qg5ffo0li9fjtdeew0333wzsrKybNdJ+sUvfoG//OUvtnn37NmDgIAAvPTSS/jDH/6ATz75BB988MGQr/v1118PuJT5VVVVVXjmmWfw4osv4vTp08jOzsa9996LV155BVarFaWlpQD6r8PU19eHvXv34tVXX8WDDz44oJimT5+Oc+fOjfDaoPGGZUI0QubMmYMf//jHCAgIwJIlS9DV1YV169ZBkiTcfvvtuHDhAnp7e9HR0YEzZ87g/vvvh1qtRmhoKNasWYPjx48P+bq9vb2YMGHCoOdXr16NyZMnIzw8HHPmzIFWq8XNN9+MwMBAxMfH48svvwQABAQEoKenB+fPn4coipg1a9aAS5Kr1Wr09vYqs1Jo3OBmLqIREhoaavs6MDAQkyZNsm22ujoSMBqNaG9vx5UrVwbcA1yW5QFXmb3WddddZ7sSs6P3++Fjk8kEAFi+fDkuXryIF154AX19fVi2bBmSkpIgSZIt08SJE9392EQAWCZEXjdlyhRIkoT9+/fbbonryIwZM2yXDneHJEnYsGEDNmzYgNbWVmRnZyMqKgoJCQkA+g87njlzptuvTwRwMxeR14WFhWHBggV4/fXX0dfXB6vVivPnz+Ps2bNDzj9//nx8+eWXMJvNbr1fbW0tvv76a1itVgQHB0OSpAGHGH/++ec8NJg8xpEJkQ9s27YNhw4dwmOPPYZLly5h6tSpSExMHHLeyZMnIyYmBjU1NQPu3uesjo4O7Nu3D21tbVCr1bjtttuwfPlyAEBDQwPUarXXbyBFYw/vZ0I0Cnz77bfYs2cPnnvuuRE9cfH5559HQkICYmNjR+w1aXximRARkce4z4SIiDzGMiEiIo+xTIiIyGMsEyIi8hjLhIiIPMYyISIij7FMiIjIY/8/uCnNBDKQPsAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "best_ind = hall_of_fame[0] \n", + "\n", + "print('Best individual: ', best_ind)\n", + "print('Fitness values: ', best_ind.fitness.values)\n", + "\n", + "best_ind_dict = cell_evaluator.param_dict(best_ind) \n", + "responses = protocol.run( \n", + " cell_model=cell, \n", + " param_values=best_ind_dict, \n", + " sim=nrn_sim) \n", + "\n", + "time = responses['soma.v']['time'] \n", + "voltage = responses['soma.v']['voltage'] \n", + "\n", + "import matplotlib.pyplot as plt \n", + "plt.style.use('ggplot') \n", + "plt.plot(time, voltage) \n", + "plt.xlabel('Time (ms)') \n", + "plt.ylabel('Voltage (mV)') \n", + "plt.show() " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/expsyn/expsyn.py b/examples/expsyn/expsyn.py index feb879d6..1d791639 100644 --- a/examples/expsyn/expsyn.py +++ b/examples/expsyn/expsyn.py @@ -4,14 +4,18 @@ import os +import argparse import bluepyopt as bpopt import bluepyopt.ephys as ephys -def main(): +def main(args): """Main""" - nrn_sim = ephys.simulators.NrnSimulator() + if args.sim == 'nrn': + sim = ephys.simulators.NrnSimulator() + else: + sim = ephys.simulators.ArbSimulator() morph = ephys.morphologies.NrnFileMorphology( os.path.join( @@ -21,11 +25,17 @@ def main(): 'somatic', seclist_name='somatic') - somacenter_loc = ephys.locations.NrnSeclistCompLocation( - name='somacenter', - seclist_name='somatic', - sec_index=0, - comp_x=0.5) + if args.sim == 'nrn': + somacenter_loc = ephys.locations.NrnSeclistCompLocation( + name='somacenter', + seclist_name='somatic', + sec_index=0, + comp_x=0.5) + else: + somacenter_loc = ephys.locations.ArbBranchRelLocation( + name='somacenter', + branch=0, + pos=0.5) pas_mech = ephys.mechanisms.NrnMODMechanism( name='pas', @@ -52,16 +62,27 @@ def main(): number = 5 interval = 5 - netstim = ephys.stimuli.NrnNetStimStimulus( - total_duration=200, - number=5, - interval=5, - start=stim_start, - weight=5e-4, - locations=[expsyn_loc]) - stim_end = stim_start + interval * number + if args.sim == 'nrn': + netstim = ephys.stimuli.NrnNetStimStimulus( + total_duration=200, + number=5, + interval=5, + start=stim_start, + weight=5e-4, + locations=[expsyn_loc]) + else: + # emulating NrnNetStimStimulus as not yet supported in Arbor + netstim = [ + ephys.stimuli.NrnSquarePulse( + step_amplitude=5e-4, + step_delay=stim_start + i*interval, + step_duration=1, + location=expsyn_loc, + total_duration=200) for i in range(number)] + + cm_param = ephys.parameters.NrnSectionParameter( name='cm', param_name='cm', @@ -80,10 +101,16 @@ def main(): location=somacenter_loc, variable='v') - protocol = ephys.protocols.SweepProtocol( - 'netstim_protocol', - [netstim], - [rec]) + if args.sim == 'nrn': + protocol = ephys.protocols.SweepProtocol( + 'netstim_protocol', + [netstim], + [rec]) + else: + protocol = ephys.protocols.ArbSweepProtocol( + 'netstim_protocol', + netstim, + [rec]) max_volt_feature = ephys.efeatures.eFELFeature( 'maximum_voltage', @@ -105,7 +132,7 @@ def main(): param_names=['expsyn_tau'], fitness_protocols={protocol.name: protocol}, fitness_calculator=score_calc, - sim=nrn_sim) + sim=sim) default_param_values = {'expsyn_tau': 10.0} @@ -126,7 +153,8 @@ def main(): responses = protocol.run( cell_model=cell, param_values=best_ind_dict, - sim=nrn_sim) + sim=sim, + isolate=False) time = responses['soma.v']['time'] voltage = responses['soma.v']['voltage'] @@ -136,8 +164,26 @@ def main(): plt.plot(time, voltage) plt.xlabel('Time (ms)') plt.ylabel('Voltage (ms)') + + if args.output is not None: + if not os.path.exists(args.output): + output_dir = os.path.dirname(args.output) + if len(output_dir) > 0: + os.makedirs(output_dir, exist_ok=True) + plt.savefig(args.output) + plt.show() if __name__ == '__main__': - main() + parser = argparse.ArgumentParser(description='expsyn') + parser.add_argument('--sim', default='nrn', + help='Simulator (choose either nrn or arb)') + parser.add_argument('-o', '--output', + help='Path to store voltage trace plot to') + args = parser.parse_args() + + if args.sim not in ['nrn', 'arb']: + raise argparse.ArgumentError('Simulator must be either nrn or arb') + + main(args) diff --git a/examples/l5pc/L5PC_arbor.ipynb b/examples/l5pc/L5PC_arbor.ipynb new file mode 100644 index 00000000..0562ab04 --- /dev/null +++ b/examples/l5pc/L5PC_arbor.ipynb @@ -0,0 +1,1094 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimisation of a Neocortical Layer 5 Pyramidal Cell in Arbor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook shows you how to optimise the maximal conductance of Neocortical Layer 5 Pyramidal Cell as used in Markram et al. 2015.\n", + "\n", + "Author of this script: Werner Van Geit @ Blue Brain Project\n", + "\n", + "Choice of parameters, protocols and other settings was done by Etay Hay @ HUJI\n", + "\n", + "What's described here is a more advanced use of BluePyOpt. We suggest to first go through the introductary example here: https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb\n", + "\n", + "**If you use the methods in this notebook, we ask you to cite the following publications when publishing your research:**\n", + "\n", + "Van Geit, W., M. Gevaert, G. Chindemi, C. Rössert, J.-D. Courcol, E. Muller, F. Schürmann, I. Segev, and H. Markram (2016, March). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. ArXiv e-prints.\n", + "http://arxiv.org/abs/1603.00500\n", + "\n", + "Markram, H., E. Muller, S. Ramaswamy, M. W. Reimann, M. Abdellah, C. A. Sanchez, A. Ailamaki, L. Alonso-Nanclares, N. Antille, S. Arsever, et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell 163(2), 456–492.\n", + "http://www.cell.com/abstract/S0092-8674%2815%2901191-5\n", + "\n", + "Some of the modules loaded in this script are located in the L5PC example folder: https://github.com/BlueBrain/BluePyOpt/tree/master/examples/l5pc " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first load the bluepyopt python module, the ephys submodule and some helper functionality" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc\n", + "Mod files: \"mechanisms/CaDynamics_E2.mod\" \"mechanisms/Ca_HVA.mod\" \"mechanisms/Ca_LVAst.mod\" \"mechanisms/Ih.mod\" \"mechanisms/Im.mod\" \"mechanisms/K_Pst.mod\" \"mechanisms/K_Tst.mod\" \"mechanisms/Nap_Et2.mod\" \"mechanisms/NaTa_t.mod\" \"mechanisms/NaTs2_t.mod\" \"mechanisms/SK_E2.mod\" \"mechanisms/SKv3_1.mod\"\n", + "\n", + "COBJS=''\n", + " -> \u001b[32mCompiling\u001b[0m mod_func.c\n", + "x86_64-linux-gnu-gcc -O2 -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c mod_func.c -o mod_func.o\n", + " => \u001b[32mLINKING\u001b[0m shared library ./libnrnmech.so\n", + "x86_64-linux-gnu-g++ -O2 -DVERSION_INFO='8.0.2' -std=c++11 -shared -fPIC -I /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -o ./libnrnmech.so -Wl,-soname,libnrnmech.so \\\n", + " ./mod_func.o ./CaDynamics_E2.o ./Ca_HVA.o ./Ca_LVAst.o ./Ih.o ./Im.o ./K_Pst.o ./K_Tst.o ./Nap_Et2.o ./NaTa_t.o ./NaTs2_t.o ./SK_E2.o ./SKv3_1.o -L/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib -lnrniv -Wl,-rpath,/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib \n", + "rm -f ./.libs/libnrnmech.so ; mkdir -p ./.libs ; cp ./libnrnmech.so ./.libs/libnrnmech.so\n", + "Successfully created x86_64/special\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload\n", + "\n", + "from __future__ import print_function\n", + "\n", + "!nrnivmodl mechanisms\n", + "import bluepyopt as bpopt\n", + "import bluepyopt.ephys as ephys\n", + "\n", + "import pprint\n", + "pp = pprint.PrettyPrinter(indent=2)\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Enable the code below to enable debug level logging" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# import logging \n", + "# logging.basicConfig() \n", + "# logger = logging.getLogger() \n", + "# logger.setLevel(logging.DEBUG) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model description" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Morphology" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're using a complex reconstructed morphology of an L5PC cell. Let's visualise this with the BlueBrain NeuroM software:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: neurom in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (3.2.2)\n", + "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", + "Requirement already satisfied: pandas>=1.0.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.4.1)\n", + "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", + "Requirement already satisfied: click>=7.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (8.1.3)\n", + "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", + "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", + "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", + "Requirement already satisfied: tqdm>=4.8.4 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (4.63.1)\n", + "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", + "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (3.0.7)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from pandas>=1.0.5->neurom) (2022.1)\n", + "Requirement already satisfied: six>=1.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib>=3.2.1->neurom) (1.16.0)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_986325/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", + " neurom.viewer.draw(neurom.load_neuron('morphology/C060114A7.asc'));\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANYAAAEbCAYAAACm4nrwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABHtElEQVR4nO2dd3hU17W33z0z0qg31FABiSKEAFEN2HQDNq7YcTc2JnHiexOnVzs337VzE9+U6zg38Y0dx3HBFTuu2KYYm2Js00GI3oQAgVDvdcr+/lgz1kiogqQZSed9nnlGc86ec/YZnd/Za6+99tpKa42BgUH3YvJ2BQwM+iOGsAwMegBDWAYGPYAhLAODHsAQloFBD2AIy8CgBzCEZWDQAxjC6iaUUnFKqb8opU4opRqUUmeVUquVUte69luVUk8qpYqVUjVKqZVKqaRWjnOPUipLKVXvKvtSi/3jlFKblFJ1rnP8p1JKeewfo5R6SymVo5TSSqlHWznHbNf5z7rKLOvg2p5xlftpG/t/rJRyKKUea2Xfo67vtvaKbe+8fRlDWN2AUioF2A1cDTwMZAILgI+Av7uK/S9wC3AXMAsIAz5USpk9jvN94H+Ax4GxwDzgfY/9YcA6oAC4DPgB8DPgxx7VCQJygV8BJ9uocgiw3/X9ug6u7VZgKnCunWL3A78Hlnlej4vHgcEtXpuAjVrrwvbO3afRWhuvS3wBq4CzQEgr+yKAcKARWOKxPRlwAld7lKsBFrZznm8DlUCgx7Zfuc6tWim/H3i0g7pXA8va2DfUdezRiFh/2kqZyxGh+wHHges7OF8y4ADu7qDcPcAOoAooBP4FJHrs9wP+igi+ATgD/N5jvz/w38Ap1/4c4Pu9dU8YLdYlopSKAhYBf9NaV7fcr7UuByYjN8LHHtvPAIeAK1ybrgLMQJxS6qDLTHtXKTXM43CXA5u11p6tzFogAUjptosClFIW4HXgt1rrQ+0U/SawQmttA15xfW6P+4Ey4O0OyvkDjwDjgeuBaFd93HwfuBm4ExgJ3AEc8di/HFiKtOajXect7+Cc3Yalt07UjxkBKEQkbRGPPKWLW2wvcO0DGIaY5r8CfgiUAv8JbFBKjdZa17rK5rVyDPc52jL9LoZfA8Va66fbKqCUCgFuR0xWgJeBXyql4rXW51spbwa+AbystW5o7+Ra6+c9PuYopb4NHFJKJWmt85DW9CjyoNHAaeBL13lGIoK7Rmu9xn2MDq+4GzFarEtHdVykU5iQVu37Wus1WuvtwBIgFrihm87RKZRSc4FlyFO+Pe4E8rTWOwG01icQ8+2+NsovQkzBZztRh0lKqfeVUqeUUlXATteuIa73F4EJwFGl1N+UUtcppdz380TEzN7Q0Xl6CkNYl84xQCPmRlucR8y86Bbb41z7APJd7wfdO7XWFUgfwn0znXd9p+Ux3Pu6i7mIkyFfKWVXStmRFuIPSinPFvObwCh3GVe5y2lbkA8AX2qtD7axHwClVDBi4tYC9yKOmkWu3f4AWuvdiPn7MHIfLwfWeYjLu/RmJ7+/voDViAA6cl7c7bE9iebOizREoPM9yoQgN9ftrs9u50WAR5lf0s3OC6SVHNvidRbx8I1ylRnjqu+CFuUuc13r7BbHTADsLc/VRp0mu46d6rHta65tc9v4zjTX/jSP33KR1+4Jb9+U/eGF9I/ygcPAbcAoIN0lhNOuMk8j/aMFiKmyAcgCzB7Hec8lhhlABuIJywWCXPvDkZZphesm/ppLaD/xOIY/YiJNQLx0f3f9PcKjTIhHmVqkLzcBGNLONebi4RUE/gzsbqPsauClFtt+BVS4r6XFvkTXb3ez63MMUA/8yfXbXgcc8BQW4pS4C7EURgB/8Tw+8Ibr974FSEWGOO7ttXvC2zdlf3khptOTSCe5AWnBVrufmoDVtb/EdTN/ACS3OEYo0v8oRTxnHwDDW5QZB3zmuvHyEc+Z8tif4roBW742epSZ20aZF9u5vq+E5RJvEfDLNsp+w3WN4a7PCnGsPNVGeXedl3lsuwM44brO7cgYoaewvoWMHVYhD5dNwBUe37cCf0Ra2gbXsb7bW/eDclXCwMCgG/GNjp6BQT/DEJaBQQ9gCMvAoAcwhGVg0AMMuJCm6OhonZKS4u1qGPQTdu3aVay1jmm5fcAJKyUlhZ07d3Zc0MCgEyilTrW23TAFDQx6AENY/Yyyk2XY6+3ersaAZ8CZgn2ZmsIaDv7rIGarmYxbMwiICLigTO7GXE59forhC4cz7s5xXqilARgtVp/CbrMz7p5xKLPi459/3GqZ+sp6gqKCGDpraC/XzsATQ1h9BK01eTvy+PLxL5mwbAKRKZHseXFPszL5Wfnkbs4ldnws/qH+nNx0kmOrj1FbUsuxtcfY8OsNHHy/3RkbBt2EIaw+glKKMTeNoa6yjvLT5Uz59hROf3Yap8MJgL3BzvantqOdmnM7zrH/jf3seWUP/mH+7H9jP0WHiijPLSdm1AWeYQB2PbeLstyyr47naHRgbzD6aheL0cfqYyRPTSZ3Qy4Tl00kPCWcvG15DLliCCfWnSAyJZLkacmExIeQcmUK/qH+FB8uJnlWMtue2Ma1f70Wa6i12fFqS2tRZsXJ9SfxD/bn+NrjWKwWgmKCiMuMIyI5wjsX2scxWqw+xKnPTpE8M5lzu85hq7Mx8tqRnPj4BE6Hk5x1OaTOTaWhpgG/ID/8A/3J35lP0tQkdv59JyOuGdFMVE67k9NfnOaz33zG+l+tp7a4lmMfHaPkUAlBMUE4Gh2GqC4BQ1h9iOj0aAr3FTJkxhC2PLGFuPFx2OvsHFt7DMzwxeNfkLMuh7gJcdQU1WCvtxM3Lo6IpAhM1ub/apPFxIG3D3By00lObz/NqMWjuOHZG7jqiasozy1n9OL2Mg0YdIQhrD5EcGww9eX1jL1jLCarieOrjzN48mCyXshi6OyhVBdXkzA5gaDIILRTY/aX3JkmPxPBg4IvOF5cZhxV+VXEZ8Qz7TvT8AvwQzs1AeEBKFN35cgZmHhFWEqp55VShUqp/R7bopRS65RSx1zvka7tSin1V6XUcaVUtlJqksd37nOVP6aUaiszUL/C5GfC0ehg7G1jOfnJSYYtHEbZ0TLCh4QTPy6eipMVNNY00ljdSGV+JTv+sYOz284SO+bCbM6VpyvBARm3ZXy1LeeTnFbLGnQNb7VYL9KUdcfNQ8CnWuuRwKeuzwDXIAkZRyJZfp6GrxJlPoIkEZkKPOIWY3/GYrVQV1lHxNAIQhJCOL35NKFDQsn7Mo+YMTHUltdSdKCI0KRQGssbMfubiR8fT2Bk4AXHUiZF5NBIRiwcAUDV+Spqi2sZPHFwb19Wv8MrwtJaf4bkdfBkMZLCCtf7TR7bX9LCViBCKTUYyYGwTmtdqrUuQ3KatxRrvyNpWhL52yRTmtPmJD8rn9R5qRTtLyI0IRRriJWy3DLqiusIiAygaH8RVeeqWj1W0eEikmYmYfYzo52ao6uOMua2Mb15Of0WX+pjxWmt3bn1PPPnJSJ5ud3kuba1tf0ClFIPKKV2KqV2FhUVdW+te5nQwaHUV9XL3wmh2GpslOWWETcxjtOfnyZ8SDh5X+ZRcboCi9VC7PhYastrLziOo9GBo85B0nRZ8GTfin2kLUrDYjVGYLoDXxLWV2jJcNNtWW601v/QWk/RWk+JiWl9gLQv4R/kT01xDfET43E4HNjr7Iy/bzyVeZWU5pbSWNOIdmpsNTbyvshr1bRzOpw4bU6CBgWxb8U+otOjCU0I9cLV9E98SVgFLhMP17t7iZezSFpiN0mubW1t7/cMv2o4R96T/P8RiREU7C2g/FQ5IxaMoHB/IYHRgfiH+1NbVotWmpDBIRccI/u1bBprGsnZkENESgQJkxJ6+zL6Nb4krJU05fy+j6Z1oVYCS13ewelAhctkXAtcpZSKdDktrnJt6/f4Bfox8f6JlJ8sZ8/yPfgF+XHwjYNk3ptJQFgAeV/mUX2umqq8KtKuTZN8uy60U1OVX8WRlUewRlhJvz6d5OnyfHI6nOz/1/42zmrQFbzlbn8d2ILk/c5TSrkXLluolDqGZIv9vav4KiQJ5nEkmeV3ALTWpcBvkCT8O4D/cm0bEDTWNJK3Tcy8oOggKvMqMfuZmbBsAqXHSyk+VIx2atKuS6PqvDgv8rbnkf1KNodXHqb6fDXx4+NJvlxE5XA42Lt8L8nTkts7rUEn8UpPVWt9Vxu75rdSVgMPtnGc54HnW9vX3zn8/mFKj5Vyw7M3cGbLGTb/YTOHVx4m865Mtjyxhe1/305wTDCOegf+wf7sfXkvkamRjF86nhcXvIg1zMrsX84GZKrJgTcPMPK6kYQNDvPylfUPfMkUNOgCeVvyCIgMICgqiPQb0gkbHEbWy1n4h/iTMjeFilMVBMUGYQm0YAmwYLfZGTJzCAfePUBNYQ0TvzGRIx8cYfvT2zn49kHG3TnOEFU3YgirjzLmtjHUV9azb8U+ADJuzsBWbePQykPglIHk+vJ6lFI0lDcQnhxO7me5bP/rdmIyYqgtrGXorKFM/fZUJn19Ev4h/l6+ov6FIaw+SsqcFOInxHN45WEAIkdGYg21svkPmwkbGkZ4YjgVpyqw1dqoLqqm7FgZB98+iMlkwi/Aj/FLxxMUHeTlq+i/GMLqw2TckkFtSS0V5yqISY+hOr8aZ6OTxqpGQpND0VpzeM1hTm48yfGPjxOaGEpAZACTvzW51RAng+7DEFYfJiY9hkHDB7HuJ+uwWC1opwYLnNl6BmuYleDoYD575DNiM2K54+07GHXtKCwBMonRoGcxhNWHUUox/QfTKTxQyJEPjhA9JprawloqTlfQWNeIw+4gIDKAG/9xIyazidNbTmOymIgYGuHtqvd7DGH1caJGRFGZV8kX//sFk+6fhL3BTk1hDWXHyghNDGX6D6ZjtpipLqgmf2c+KXNTjHjAXsAQVh/H7Gfmumeuwz/In7qSOvwD/HE0OAhPDaexvJHhC4fjdDjZ89weUJBxa0bHBzW4ZAxh9QPG3TaOhEkJnNl6BnutnaD4IPJ35mMNsxIQFsCxNcc4v+c8E+6dgDXE2vEBDS4ZQ1j9hBHXjqDkeAkAgycMxlZno6aohuqiag69dYj4yfEkzzDClXoLQ1j9hCGXDyEoIginw0lAaAB+QX5UF1RTtK+IurI6Mr5mmIC9iSGsfoLZYmbw+ME46h3UltYSECV53U9uOElIfAiD0gZ5uYYDC0NY/YhRN43CEmjBaXcSFhdGeEo4RQeKGLFohLerNuAwhNWPCB0cSkRqBHVFdQDYq+2Y/Eykzkv1cs0GHoaw+hnWUCsNlQ3YamzYam1Ep0cTEH7hcj8GPYshrH5G9OhobLU2yvPKMVlNjLpplLerNCAxhNXPiEyNpLG2EVuFjehR0SRMNHJZeAMjtqWfYY2wop0ah81B2g1p3q7OgMVosfoZ9eX1oCEwNpDAcGNqiLcwhNXPKNhbgNnfjF+AX6trFBv0Doaw+hl1ZeJqN5vMmPyNf6+38JlfXik1SimV5fGqVEr9UCn1qFLqrMf2az2+87BrFZIjSqmrvVl/XyFyWCSWQAvWCCsN5Q3ers6AxWecF1rrI8AEAKWUGclq+y7wdeDPWuvHPcsrpTKAO4ExQALwiVIqTWvt6M16+xoBYQGYLWZqS2sxmXzmuTng8NVffj5wQmt9qp0yi4EVWusGrfVJJKHn1F6pnQ9jtpi/WjyurqLO29UZsPiqsO4EXvf4/F3XonPPe6yBNSBXG+mIqoIqTBYTdaV1WAJ8xiAZcPicsJRS/sCNwL9cm54GhiNmYj7wp64es7+tNtIegVGBaK0xW81Yw4xJjd7C54SFrOC4W2tdAKC1LtBaO7TWTiR3u9vcG7CrjbRHbZH0rSz+FiMJpxfxRWHdhYcZ6F7ax8XNgHs5jJXAnUopq1IqFVlKdXuv1dJHsdXY0Gi0XaOUsUC3t/ApI1wpFQwsBP7NY/MflVITkIXoct37tNYHlFJvAgcBO/DgQPcINtY0Yqu1ydKnWksUhoFX8Clhaa1rgEEttt3bTvnHgMd6ul59BYfNQXBMMBZ/C8qsqC29cIlUg97Bp4RlcGnY6+3UldVhsphQZoWzwdnxlwx6BF/sYxlcJHXFdTjtTkISQmioaMCJISxvYQirH2Grt2ENteK0O3E6ncbCB17EEFY/wmQxgYaGqgYxBRuNFstbGMLqR9SX1GNrtDFo1CC0XeMfboxjeQtDWP0J17BVUGQQsZmx1BTUeLc+AxhDWP0I9/Ko+fvyqcyvpOhgERVnK9i3Yh/VhdXert6AwhBWP8IcaCYgNABdr4kZGcPEb0ykILuAIVcMISQ2xNvVG1AY41j9CHudHafTSXVRNYNGDSJiSASRQyM7/qJBt2O0WP2IilMV+AX5YQ4w01DdIEFgBl7BEFY/wuRvQimFQmEym9DaUJa3MITVj6g4XYElwELi1EQayhporGn0dpUGLIaw+hBaa7b9bRv2Bnur++31dqryq7DV2ogcGYl/sDGO5S0MYfUh3GbegTcPtLrfHXyrzIqGsgZMZuPf6y2MX76PkXFrBvnZ+WS/lk3ZyTIKDxaindKXqjhVQXB0MM5GJxHDIrxb0QGO4W7vA+RuyqWupA6H3YHT5qS2oJbP//g5wTHBJE5NBAfM+fUcnHYn2qEJHRxKbYkxF8ubGC2Wj2NvtHNq4ykaaxqpK6nDXmdn1n/MYun6pYQlhjH121MJjA5k51M7sTfY8Qvyo/xkOdYQI5GMNzFaLB/H4m9hziNzWt03YdkEtjyxhRkPzeCj731E5alKJt4/EVudDWXqXL4L7dSdLmvQeYwWqw+TOjeVlCtT+Ow3nzHmjjGYg8zk78oHDX7Bfm1+z2FzcGz1MTY8soFTn7WXE9XgYjFarD7OqOtHUVVYRcmREkKiQjBbzdRX16PMF7ZCjkYHB985yOnPThOaFMqY28cQOybWC7Xu/xjC6gdMWDKBN+56A12nMfmZsDfY0Y6mqAutNXlb88h+OZvo0dHMe2weQZFBXqxx/8fnhKWUygWqAAdg11pPUUpFAW8AKUgKtNu11mVKEuf9BbgWqAWWaa13e6Pe3sRitTD+nvFsemQTcZlxRA6PpORYCQClJ0rZ8dQOnE4nU78/lZj0/p0J2Ffw1T7WPK31BK31FNfnh4BPtdYjgU9dn0Gy5o50vR5A0lEPSNIWpYFDcgtqh6axqpGC/QVs/t1mMm7L4Jo/X2OIqhfxVWG1ZDGw3PX3cuAmj+0vaWErENEic+6AwT/InyGzhmCvsxOdHo05wMy6h9cx/KrhJE9P7vgABt2KLwpLAx8rpXYppR5wbYvTWue7/j4PxLn+7tSKIwNltZHQpFDqS+sJiAqg6HARjgYHAREBVJyp8HbVBhy+KKyZWutJiJn3oFJqtudOLXMhujQfoj+tNrJjR9v7TCYT/mH+lOeUU3OuhuGLhnN45WGUnzFO1dv4nLC01mdd74XIio5TgQK3ied6L3QVH3Arjhw9CnVtrCcXOSISe72dXc/tIjItEmuolSnfmkJYfFjvVtLAt4SllApWSoW6/wauQlYXWQnc5yp2H/C+6++VwFIlTAcqPEzGfsncOZpNm+TvxupGnI6m3IHxE+KpK60jND4UpRTFB4qJHx/vpZoObHzN3R4HvOtafsYCvKa1XqOU2gG8qZS6HzgF3O4qvwpxtR9H3O1f7/0q9y6FH2dx5IMy/LdATWEN2CE4LpjRt44mblwcsWNjyc/Ox1ZnI31xurerO2DxKWFprXOA8a1sL0HWJW65XQMP9kLVfIbMezPZc66AEfMcxE+IAw0F+ws48OYBdj61k5rSGooOFGEJsVBVUOXt6g5YfEpYBh1j9jOTPC0BWzz4B8u25OnJJE1L4uBbBznx8QkCwgIIjA5k8IQBOfLgE/hUH8ugc1x5JWzaBA0NTduUUoy5bQzjl41HKUVDeQPWcGPqiLcwhNUHMZvh+uth7doL90WmRBKdHo1/kD/lueW9XjcDwRBWHyU2FmpbmSQcEh9CdEY0TruTxiojS5O3MITVh2lt7W5lUlTnV1NXVkf+nn498uDTGMLqI1RUwPbtzbc5HPLyRClF6OBQHA0Oqs71nldw/XpYsQIKCnrtlD6NIaw+Qng4ZGWBZ3Lb4ODWzcHEyxMJjgvm7PazvZIN99gxiQa5806Ii+u4/EDAEFYfQik4d67pc2goFBdfWC4mTeIhHXUOynLKerROpaXw7LMw/4JRxoGNIaw+xNKlsHkzfPyxfM7MlNjBlgwaNQizv5m68jrO7zvfY/XZuxdefBGSkyEgoMdO0ycxhNWHsFrF3PL3h3XrYNAgKGulQVJKkTovFVudjfKc8i6dY9euC/ttraE1bNgA6emwbFmXTjEgMITVB5k7V0T12mtw8GDzgWI32qkJiQ3BGtm1QeKiotbF2pLsbJg4Ea69VkxSg+YYwuqjTJoES5bArbe2Pkcr6fIkokdFc3Tl0S6tOlJdDWGdmGVy+DBcdlkXKjzAMITlw9hbX1SkGePGwfHjzb2FAKlXplJ4oJCwhDCq8jvvdrfZxNRsj717ITISgoxET21iCMuHWbkS9u1rv4xSMHNmk0PDTX15PUNmDaHkeAlBg7pXAdu3w1VXdesh+x2GsHyYq2ZUs/+TfHbtan8sasQIKCxs7nSwhlkJigrCEmChtrjzCyS0Fs3hyYcfGiZgZzCE5cMExwYzLrGErc/uZfvLh9tccA5gxgxYs6bpc2BUIOWnywkMD+TkJyc7fc72xpN37YLAQJgwodOHG7AYwvJh3FNB5l0XwqbVNWx5ejfFh1sZEQaGDYPKSigvb/pu8hXJOOwOlKXzyWTaarFKSuDAAWMguLMYwvJxlFJk3DCCJb8aRvZBP9b/v/V88h+fcG73uQvK3nQTvPMONLqcgPZ6O0opSo6WdOpcWrcurKoqOe6dd17ChQwwDGH1ERIyIhl560SSly0AYM/zezjwrwM4nU3JZAIDIe7EZt5+W+w5p032hcSHdOocNTUyCO1JXh689RbcdVfH3kKDJgxh9TJOp7w6Q0Nl85HfhQvhRFkUiYunEpoQyp4X9vDe0vfYt2KfrOaoNSGBThISFFu2QOLURCrPVlKaU9qpYNyiInGjuykvh08+gfvug5DOaZOTne/O9Wt8RlhKqWSl1Aal1EGl1AGl1A9c2x9VSp1VSmW5Xtd6fOdhpdRxpdQRpdTV3qt95ykshNWrO1f28MrDzWYBKyXm2Jf7wrj8JzOY8u9TsARZ2PLEFpYvWM7eV/dSVVzFrFlOcnLgyMenaKhu4OjKo2S/mt2huI4cgYyMps+rV8Ptt4OpC3dJy6ktAxVfSiZjB36itd7tyi24Sym1zrXvz1rrxz0LK6UygDuBMUAC8IlSKk1r3YlIN+8RHy8R4Z1h3F3j2PCfG4gaEcX4peMxmU1YLDB2LBw6YibzxnRGXD2CkuMlHHzrIDv+bwe2WhvvffM95v1oDq+/40dEoB/RGdEUHiwkd1MuqXNT2zxfaSm4EwUXFYnp19VB4NpaGWT2a3vduwGBz7RYWut89xI8Wusq4BCt5GH3YDGwQmvdoLU+ieQWnNrzNb10rNYmB0N7mMwm5vznHGoKa1j9w9Wc3HAS7dRMmQKHDkkZi9VC3Jg45j0yj7s/uJvpP5iOxc/Clj9upP6zLZTV+uEX4EfcuDgOvHWArOVZbZ7PbJb33Fz44APJq9FVrrsOXnih/evrhSliXsdnhOWJUioFmAhsc236rlIqWyn1vFLK3Qvo1IIIruN5dVEEp7N5eNKYMTIm1BksVgszfj6DyQ9M5uSnJ/noux+x5587qS+rpaGqgfy9+RQdKsLeYCc4JphJ90/ixmduJDIlktAYK7WltUz8j6s5u+UsmXdnUny4mPNZTVNJagprqDpfRUODtFA2mySpWbr0QkdGZ4iNlQmYzz7b+n6HA156qfP9zL6KzwlLKRUCvA38UGtdiax5NRyYAOQDf+rqMb29KEJlpUxbd5ORASdOwNlOZplXShE/Lp4rf3sl8/97PmarGb1xEy/esYpjHx5j+5Pb2f70dpz2prtV2zWBYYEMSQ8iOzeKqd+dyr7X9xEzIYa9L+2lrlwSwNeW1VJ2ooysLEhLEw/g7Nlg6WInwemE99+H5cslfnHwYPEytizzyivihOlKv60v4lOXp5TyQ0T1qtb6HQCtdYHW2qG1dgLP0mTu9ZkFESIiIDFRprBDkxNi9erOmYSeBEYEMnHZRO57fRH+tywm88HZXPfUdTRWNpL1YtZX4oqfFE9Jbgnn95yjsbyWQWmDyFySSdHeIgZPHkzWC1lorTm/+zxx4+I4eRJGj5aWdfTortVp0yZ49VWYPFk8iJmZEr/4/vtNLZPTKWXmzIGEhK4dvy/SaWEppd5TSl2vlOoRMbqWPX0OOKS1fsJju2c615uRRRJAFkS4UyllVUqlIqs6+qxPavZs2Lmz6bPFAldfLYG2F4NSijvvNrFqlUwbueInV1B0qIh3lr7DK9e9wrqH1tFY20jyZclUbdnH+fOQNDUJp91JbVkt1eer2bN8D06HE2uYFa3h009h/AUJvttn61ZxdNx7LyQlNW2PjYWpU+GNN6R1/uc/JdFoSsrFXW9foysiqUHWAc5TSv23UmpkN9dlBnAvcGUL1/oflVL7lFLZwDzgRwBa6wPAm8BBYA3woC97BM3mC6MakpNlfGjLlq4fz1Zrw+rn5O67JYPTqnfqsQRbKMkpIX5yPMmzkrEGWqkpqmHq3EDefktTUamY8//m0FDaQOy4WI5+eJRzeySCo7ZWMixlZnbu/KdPS19JKZkT1hrDhklLtX49fPOb0moPFDptSWutlyilwoAlyKoeDymlPgf+CfxLa93Gqk2dPv7nQGuRaqva+c5jwGOXct7eJDxcPG6eT+1Fi6TfMX5811zbNUU15HySQ9CgIOIabJTvrqQgJpWvfzoL/2B/tFPz1pK30A5N8b58vvGbTJYvh6uvtjIoPZriI0X4B/ljq7KR/Vo2WTszeOKvHd8OFRWSFsBigbvvbr8vVlMD+/fD/ff3/z5VS7p0uVrrSq3101rrqcA4YBfwDJCvlHpGKdVF63xgsXChRDK0ZNy4znsJ3UQMjWDS/ZMYtmAYo24cxS1PXMHw+cNYv1nijmx1NgaNHITT4aRwfyGBgZKbIuvDM3z2bjFnt55lxs9nsOB3C6g+X03g9o1gt7V7zv37ZdrIggUSl9iRg2PPHmmpR4zo2rX1By7qOaKUSkDGka5HBnbfRhwJ2Uqpn3Zf9foXFov0PSpaLAmcmQk5ORd3TP8Qf/wD/VFKMW2abFu5EkxWf7RDo1AERgZSfLgYR2UNfgf3kjJ/BJaZ0wiMCiRoUBBX/PgKHFGxfPbYZ81iD92cOiVm36lTkg4gIqLjetls0jrPnSsBvC2vub/TFeeFn1LqVqXUKmTxt5uAPwKDtdb3a62vBW4BftUjNe0nZGbKk9wTpbovUmHRIjErX3gBLAmxWEOtVORWcH7vefa8uIfkK5K59puJBIco3n9fYWt0sncvhM0cR/rN6ZSfLP/qWE6neC6zssTsu+66ztfjgw/EM7hgAcybJy3dQKIroxX5SB/oNeAhrXV2K2U+A3o2Q2QfJz4eXn4ZZs1qinQAiUwvL+9ca9ARQ4eK2/ut10ZReXIv1IuJV11QzaRvTmLXLiiptpKSVMI/Hz6PKW0k6emKxMlN3oWSEhnTuvJKGNmOm0praZ1KSuD8eelXbdwomaPcEyLDwro+LtbX6crl/ghxUtS3VUBrXQ60HYxmQECABKqeOCEDsm5SUyUyfOLE7jmPvz9cdUUVL7waTVRYI9ue2obZZCZ/dz6TFwwngmDWvF6OrqtnyxfiLndTVQVvvy3b3A4Vp1NiCRsapMU9fRqio2UcLjBQouItFoiKktRs3/pW0xhWeXnnMj/1J7riFXy5JysykEhMlMgET0aOFLOru4QFcH5PPiE1BRSWKcxlxQSMSSEgUlLWBpsbGB9/lsjJI9nxooQvORzi8SsthXvuEcFs3CgRIiaTiCMoSFrV8nKJfG/JO+9c6NiIjJTok4HEAGugfYOHHxYz6957m27A4ODWE29eDNmvZZN+Szq1xbU4yqtozKtEmS2Ez5xGaHIUAOZgM7kbcpn505nMOiETGpcvl37RokXy+dNPRehz5zY//v79MrjdEq1lPKzlQ8Nk6lx23f7EABtd8A2GDpWb96WXmospIkKiGC6VsKQw1v9yPaU5pUSkRhAU7kfIxBGkzhjKmo2BOJ1O1v1kHUPnDkVrmYd1/Li0QJWVUq8DByTsqrUB47Fjm6aXeLJvX9uu9YE2jcQQlpcYPBgWL5bgXPfTPDm5e2bgpsxOYdGfFhESF8K5veewVdu47OpYDr57EFNtBW8+uBGHzUFQdBCl5+vIzRXz9I03pC733istUlei27WG3bsljKmt/QMJwxT0IoMGiSt6+XK4/HLp7F/MVI22CEsKIyg8CFOUCeUHYSd3c2D5exAfzdCR/liDrARFBDJyJFxxRdeDbz05elRaq7YiLAaasIwWy8sMGQJf/7oEs1ZUdD63RGcw+5kJiQ0hZmwMxz8+ToDVhN+sSajaOnBCRV4FBTtyqTldRER9PpXnKnE6XK68zqyM4EF2tuSTb4uOEoH2NLW1rS/S11MYwvIBlJJVOz76SFqx7iJhcgJxmXGc+eIMMaNjuP3N20kNr0XPupKJSycSlxlH/q58rAf3cuyjY2z67SY+/PcPqftiV/NQ/A44eFC8he3FOnrbeXHwoESC9BaGsHyEuDhxHqxd29xs+mry4gcfdNltWF9Zz6nPTxESG8LQK4aSvzsfPz8nY28cyvEDdQybP4zBkwfjTEhkwvdnc8NTNzA4M4rnbvmQU5ZhnTpHYyN8+aU8GNqipMS7A8QFBRI9ktqLI6yGsHyIKVNkEuCmTU3bsl93ZVeaOrXDuKCWKagDIwNJmp6EUznZ+8pe7PV2Jn9zMleMr+XYlgJ2/3MPgVGBhE8bLUuw5ucz5cwHTFycwscPrWfb37aRuzkX7Wy7g7Rnj9S7PVPv888vdNn3JqtXi7kdGNh75zSE5WPMmiV9rb175XPS9CSyXsyiSgdJU+YOg28lavfwW/txbJG5nuW55ZzeeprdL++mYGcBdocdh81BcHww2cv3kjo1gYrhk4kbG4dSYLI1wBNPoOZfyYxn7uO+9fdh8begUGx7ahunPz/dan0PHBD3e1s4neLC90JGBEBCrMLDm4eP9QaGV9AHcbvh4+MhbmQ0kSmR7H9jP4lT5hJ9aLP4tU+dgl//+qs7RmvN2awCSlbswh53jMbQKEqPl6LrNEGDg1A2RVlOGdXF1eTvzyc61caZMxJlUVMDQwq2yd0/fz7U1uIfHMSIa0ZwfO1xLnvgMkx+Fz6Ds7LEk9iembd6tTwsvMXGjW0PAfQkRovlYzgdThprGrn5Ztj5P+vRhw5j9jOTeXcmeTvzKEqfKTMHa2uxf+12qv7vBWrPlbLpN5soyykj/O5riQh1kBp0nrG3j2X4wuGkXZPGvP+ax5R/m8KJT06AE67/+/VMmgR//7tkjXJ8uEpil95446s5HuFJ4aQuTCXnkxxUK7begQN8NVWlNbQW4XprOn5xscQ9emPmstFi+RjaqTn8vohp5K3j2frBQS7ftRNltTJ+eDJHss9ybuc5TtXOJWpuBJt/tgH9gz8TMTqWsKGR5KzJITw5kcqKMvL/dy2NodHkbcsjLDmMzY9t5syOMyRdLskpMjPhqScdXL/3t/if3QofvicBgSdOfJV1MzwhnLzNeRfUs7xcxtzamxn88ccwfXrP/E4dUV0tyWzuucc75zeE5WO4W6fq89Xkbsol63QEOiSYpPGDMB07RtDna6nRg8j9sIS9pTKPJ3GIhSsid2O96nqK/BI5lziNEUMaKdz3NLVnS9F+Vk5/fpqYcTGMu28cRz88itYaVVjIv2/7IWHnj+L3z0fgzTfFC5GU9FUzY7aYSV+c3qyOTqcUveuutq/DbpcWo7WYwt5g7Vr42te6d8C9KxjC8lFC4kMYe8dYUq+H999xUHWikMxxYyj5/CBq+uXcNPwwAYEQfd911Nn8OLXmENm/fpWywgYsSWtYEzqS2jMmVFEN8ROCCY4JZsTCEcRGK2LiT5OdcTuZxZsIHX4lL9/zCQtjI5l+Y+t18Q9pvszImjUinPXrpT/YGlu2tD9g3JOcOSP9Ps8FHnobo4/l4wQHw933mqkPj2fHyvPUny7CVFlGRUomfjiwV9Vhq7dhjgxl4oofUh8SR86hSsz7shg9wYIt1Z+cfbvZe2gr/v/3BPZrbiD+fx9msM7nxB/fYvsPVpA2LZITJzpXn5wciWD4zndkPtaGDReWKSyUwdiuhkh1ZSWWtigrk7wiF5Meuzvp88JSSi1yrTZyXCn1kLfr01OkOQ5THx5N1bQFZHz8Z9IKPqcgcAhHf/cuxYeKiUiNoK64gaBpw4hMH8xloceZmf8KGaceZZ5jOfdkPUnIl+8S7V8J6enEvvkURfYI/Bz1KCUTMDuKYiooECHdcot8njFDHBTr1jUvt2ZN63O1OuLLLyVC4lJYuVLSCPS2e70lfdoUVEqZgb8BC5Hc7TuUUiu11pf47/E9hi0YxmjVSNHRFDYU3U/GqvdIn1MGpnPwzKcQFUXc175G2m1mtq4LIqYihfD3PsJh0Uy226gEiv1iCQ9uwO/Xv4bnn6ds1PdJtp8g128MCxbIJMVly5oGez/7TFz+aWniXfvwQ8np7ukgvPJKGXN77TVxZNTXS0vW2b5NVZV8x2YTE27mzEv7nfz9vdev8qRPCwtJN31ca50DoJRagWSP6nfCsubnwuHDxAQEcPUvp3L4bSt7Vm0gM6YCc26u2FAPP4w+fYayhnmMST1Lo38g88MDcRaeJwqw2yo5WxTG8dfPM+OuRUxc8SS7/S6jfnYaDQ1+zJ3l4M1nKrh9iT8n3sumNOAyZs+WiVTr1sFtt7U+r2r8eHlpDY8/LtPzX3lF+jjjxkmgcUvKyqRl8/OT1tJuF0/e9u0XP+508mTXlx3qKfq6sFpbceSCkRWl1APAAwBDWvsv9wVGjZKXi/QfJJF/+3W8tAbu+AcEHc2CzZvZ89pBwnPOEXpqP3WDInD6RWILNFFbV80gUy3hcy8jfOPjHNg+jjNDZhJVvpUhm18h+PAkYseN5NSpaF64186oG0Zy0z1ye5SUSIvSUd6KmhpxJt54o4isuFgCRTZtguHDZbwsPFzc8KWl4vhwC2HtWsnrvm+f9CvHjGn9HPX1Mug8YULz2L+CAgmdWrLkon/hbqWvC6tTaK3/AfwDYMqUKX1iZtC5c2KGtTdONHgw3DZ0Gzu+d4SUK1Owp11NyayRzKv7FZwLJPDfvsWHcd9l5s+mQrCVhimZhCy6msjUFCb86y2CjpVzYshcvvSfxc+OvUpRQBSBNSZGLZ6KJWMUKOn3HDki/ZaO+PDDpmBcpSSQY9Ei+bx/v4hnwwZpwYYNk0UiIiObMlSlpcnr9delrxURIUG+lZXNf4d58yQ/oxu7Xcas7rvPdzLu9nVh9ZkVR7pKVZWYSqNHi2l0QWe8sBA++oigkWlk/GwRq14px9FoY9myIZhWFKJtdo7f9DMG/ehxdl73KLYde7jp2LvwxBFITcUydAimy25lbME5qj/eTOmIJOpXfsrUH92GOvAsW3ZP5JmsJQwfLgGstbUSkBEeLlZnfX1zs+vECZlL1lqrprUIrbYWfv97OYbNJmL74AOZyzVtmqRPi4uT8bG6OhGU2SxTadoK8m1okPCvxYt9o2/lRnVm0WdfRSllAY4C8xFB7QDudi2Y0CpTpkzRO7sw18ibOJ1y82VliWk0ebJrx4cfyp19002c3V1ARXEj9rAockvDGXffGKJthVSFJuC8fAYWNL8K/z/G137B90avh5/9DJ58Ev72N2rLammYOotHC77DlF8s5J6qp1DBwdQvvoMj9/wXJ6KnMfzHN3HkiMynWrRIhPP005JVyj3463RKnox7773wAXDokIxpjRols6TdLUphofTDLrtMYglLSmQKmKdncupUadna4+WXpV7eCvJVSu3SWk9pub1Pt1haa7tS6rvAWsAMPN+eqPoaJpOEHWVmyjI4W79wMP3sW0y4ZxzmcRmUlMDnJyUQbkgkRNWcJqHhNJsX/j9mH/gn/uYi+OEPqXvKTOHwGeD8RGy7hx6CJUuo+N6jNGzL5k79JEc2+qGeXEbD937KOyVXMfuZ35G73cHatfDtb0NoqIjrn/8Ud7tnJqZNm6TF8RRVaSmsWiXbbDbZ7xbVJ59I63fDDVKdyy6TVskzSsOdhXfXLjmv3S4tXVCQJONJTBQT0mr1nqjao08LC0BrvYp2ViTpL8yZA7WrN2NdNJufPDcYp1NSk91yC4RZG+Cdd9j/17U46+qY8fkTFAQmYh0yidgZMzD9HeptZrj/PnHbDR0KaWmYnnmOLethxtHnOPhuNpX2OWz2X0T6vjfZnPBDrrzSzOKvNdXh/ffhqquai8rplEHjefPkc3m5jCWFh8sgbUSEtFjf+Y5EQ4wbJxFT7rGwkBBxZtzYIurDZLowpXV1tZiHJ06Ii7+mRs69bZvMCfP22JUnfV5YA4HSUjGbysvnMiNerLmgIHFNv/+Og1tWfYughgqGnNqPc1A0FanjqYwcRbF9JDlbxWzLzUVcczfeKE3QSy8Rl5iI0wmfBN+Mf/5j/HnJLqoS5vHdojXcdadu1rFZs0aySLWchbtmjSSiATh8WHJ3zJwpM1v+8hdJ5xYUJONfkyaJ8DxXdBw8WFqv8+fFWdMeISHy8vy+0ylR9itWiGg7u75XT2MIy0fRWrpRWVnwj39IizBliqxf7Obq+XZqn3yWU41xFExYyrTk1ZzdcRbGjCUlM5YxGWF8XClePT8/5A5eu1YGmn73O2x/+ivbt5tIS4sid+4D3HTqLyT87AfUvRDH1iV/YfhvvkHM8DDKy6WlcHv43DidIli3iXjihAjlwAG5ye+6S4ToOfbV2jjT7bdLUO+kSW272dvCZJJzjRvXte/1NH3aeXEx9LbzwuGQf75S0k8oL5f+ituD5V5U4Px5SZp5+rSYNO6B0zVr4NFH23iav/669PyTkihd9QUlf34Jm8nK8cS5BJ89yvnUyxnx9Tk895wcd80aRGVhYZz/zT/YHbmAvSEzaGyUMaCZqWcZWfg5sWG1+Nnr2TNmKSMnBJOdLanNHA4RU3a2CO3wYTH5oqKkVXzwQbm2i8HpFJPQ4ejaqibepl86L3yJ9evFnVxVJZ/NZrlZHI4m299slhuxvFzE1Ngo7yEh8qRPSZEQITcOh/QrWhXVa69Jc5CUBAUFRIU4iJqdBEeOkPrf86n90xFOjw5l9aci2EOHRFgLF45i/XqoDr+GjD2vcWjONEqqLDz4IJSWJlJUdQdZZ8WEO7EWqt+WeqalfaVhJk6U8ai77mry9l1qpluTSVrELVsktOraa+XB0lcxWqxuwmaTsZeQkO4bpHz1VVkF0nMwtF0eflhmF48YAT/5CXz/+zB0KDt2wH/9l7SOw4ZJlEJqimZRzlMUn2sk/ZkfkZwsrU1rdS8rE5N09Wox1bQWkQ0f3j3X2ZL8fLFY77vP+/kIO8JosXoYP7/uzU++bZt00jstKodDmkL30vXl5eJtQNzZM2ZIqxUSAnfcATNmKF547tssyfop/uyH8LYzwkRGSh9v+HB4913YsUNOV1kpURRRUSKAoiJxn8+cKeFMTqeMewUEyG8THCwtcHBw+3kyBg+WvuTOnVL3voghLB+ksVFEsGxZF76Uny92ZkCA2KUtmp+lS+HnP5djpqWJAMZmmvC3ThLfdXupllwMGQI/+IHksfnyS+kTnT8v40nR0bLfLYiICGnB8/PlvbFRnDHuVVXq6+XBMX9+6+eaOhVefFFaSF8JrO0KhrB8jIoKCazoxH3enKoquQO1ljvy979vtjshQbxuubnSqB0/LmKjOrFLWW9BhsGGDpW/nU6Z7pGXJwG0IGI5f17EByIqdz9zyJCmlR7feksWuAsMlNwYUVHNz7N4sXgLly71nRjAzmIIy8d44w0ZPO1yqum4OLG/iovFdvMc7HExZYqML9XUSNQD0LTi3UViMjUJbepUMRNfeUUSeV53HaSntz5tBODWW6UulZVNzp85c6S8Uk0m6CuvuB4CfQhDWN1AcbGYQpeK0yk300Xlb8/Olk7OihVtehXS0mR3XJxHPoiEBLHNOjNC2wF+fjJYfMUV4jE8cUKi1LdsEaE4HOLtCw9v+k5wsLzcIvv8c+kaup0WQ4dKFQ8ebD6G5+sYwuoGdu6UINLrrru0xblLSprfdF3i73+X/pXFIivGtUJcnLRYv/2tx0aTSWyzzz67uPn0bWC1ihA8xVBVJQs/REeLM6Vlyufg4NazOs2fL9bt8OG+FcHeHoawuoFFi0QU69dLp9xtiVVWyn3e6rSPVigru0jPYmOjeAm+9z159LeBw9HkoWvGyJFNHaIeJDRUNJ+TI/GE7ukkpaXSv9JazOCW9VNKcr9/+WVTTKKv08e6hN1LTY1EJNTXX/qxBg2SPHZ33900TT05WXIwvPSSeMY6Yt8+j6khXcFigUceaVdUINHmUVFNg9hf4Q4N6SWGDROX/513yvhfeLg8G6DtNaxSU8Xx0leGXQdsi2W3yw2fliaBo+4oifBwiX64FBdvQkKT7yAxUcT7i1+ISZOcLOcym+UmT0pqas1KSzue/t4qJlPzkI1WKC+XMaQxY+S9GZMnN7nqegmtZUwsPV2cKiCzplevlv/DrFnN+1ogZQ8e7Ho8oTcYsMIymeCmmy5c4d096l9XJ//8hATpD/j7t3qYdmlokADajAx44gm5od2xgPX14vLetk2EZrNJ8GpPddJXrZLrzcpqRVhe6LisWiW/rVtUIJ/vvFN+t82b4Uc/Eu/lwoXygJowQbymhrB8GJPpQlGBbLv55qbPx45J7JrdLv2TjAyZLt8Zy8nPD775zaZOekRE284Nh0NuqLNnZXD4hhsuTsytUV4udQgKkpu3pqZ7jtsaTqf0n266qe0yBw6IcFpGy7uxWmHBAvEuPvustGLu31Br6ct20EB7nQErrM4ycqS8QG7+rVvlqWkyScszcaJ0yqOjLxSbydT5xc7MZrnx3YOrb78tx5s4sVlypotiyxZpdUFu2gtarG7CbpeA+/YWmVu7Vt6/8Q3417/aLxsUJBHzW7bIA27aNDnHM8+I2ZiQALNne3e1yLbwwSr5LmZz0w0K4gTYskWe0mVlst8d2hMXJzdGV2a11tWJGMPDZUhp+nT44guZ0JiQIN7Fi5mWUVLSFHPo59cz6wE7nbB8ubjL3eGKLTl0SEze66+X8jExHY8BWizS35o5U77r7y+ZBbZtk9kAr7zSNMqgtfTDgoPF8ujNFRwvqLf3Tt33CQ2Vqepu6urkJj56VJLAVFTIPzw4WPoHgwa1L4yRI+XmGzlSHBmBgWISaS2DrR9/LH2zmBjpd3TGHD10qHlOCPf8r+6kokJan6uualtUIF5P9xR8k0mi119/vXNR7Eo1mcZDhkiLlZcnsY9aN5nSR45Ii797t1ynwyHhYb3smzGE1Z0EBsqN5XlzOZ0ituzspsQoDofcKFareCVzc+WmMZkkr8TYsTJmM2hQU+tSWip/Wyxygx47Jk96t/vZ3TLabHIc9/bNmyVM6I03xKXtaRZ2B5WV0gddsqT9FiInh69yxLuxWuVVUyNR911h+nRxgGzbJiaixSKvliucaC0t/rPPSqs/apR4Xs+elf5yV/w2e/bIIHVnPLfGfCwvUl8vHfnwcBHW++9La5WaKjfDnDmy3W4X07CrfYk9e+Rm9nxaZ2dLyrD/+Z9Lr39xsbjMlyzpeHhi+fIL876DCG7//guTyXSWTZvkwXTvvR0H6paVybkqK0Vkx4/L/yAgQKwNP7+mY7hlYbc3DVjn5kqf7vLLm47Z1nwstNZefwH/AxwGsoF3gQjX9hSgDshyvf7u8Z3JwD7gOPBXXA+Jjl6TJ0/WvojTqfXBg917zNde09rhaH6O/fu1XrxY67KySzt2cbHWzz6rdW1t58q/+mrb+1at0nrz5uZ17QqHD2v93nsX992uYLdfWEdgp27lPvMVU3Ad8LCWPIF/AB4GfuHad0JrPaGV7zwNfAvYhqQ/WwRcfJi2l1Gq6+tJtYfTKcd0P4HPnJGss/X1sn3nTum/uXFPXCwpkTLueVYxMeLuPn26KYPt4MGyAEFSEvz1r/L9yMimOEetm8xRi0WOffgwvPeetA7BwfI+erSYgNdcI32i556ThRe6Gm85apQkAH3jDWlhQIJ9u3vhua44onzOFFRK3QzcqrVeopRKAT7UWo9tUWYwsEFrne76fBcwV2v9bx0d35dMwUuhrExu0LbGunJyxNSprhaTbetWeOop+NOfpE/ywgsy1uRe6M1kkuOFhYmgBg2SfefOyfvo0dIvCQuTiY61tSLQuDj5bl6emFNKSV8uPV1Cu5xOqaM7LXVlpZSrqpLzeQbi19SI+CIjxbt4sXkCq6vlYWC3y1hZT67s2JYp6IvC+gB4Q2v9iktYB5A00pXAr7TWm5VSU4Dfa60XuL4zC/iF1rrVdfxarDYy+dSpU71wJT2H3S7pxgIDmxwG7pvabJYW4o03xDHy05/KTfyf/ymexIgImTBcWipC6wm0lhbx+PGmMER3mFd1tQhs0CCZEtJavzEnR5LVLFzY9lyuzuCeNJqaKs6Onpgs6fWcF0qpT4DWJvz8h9b6fVeZ/wDswKuuffnAEK11iVJqMvCeUqrLAS3aC6uNHDkiwabdmQcDxKX8+uvi2o6Pl7+rq8UMs1qbcp+bTNKh//RTMbtmzBAxXn45PPYY/PKXTVHl3Y1SkqvCna/C6RSRnTsndQkJkdCxnTvlIeHvL2NSY8fKg2LYMBHUJ66M2EFB0vK4W2e3mau1iKesTB4YkZFNzhF3Fqz588Xp8OKLkntwzBg5Tk8PKvtMi6WUWgb8GzBfa91qjLNSaiPwU2QBBJ82BU+ckClOS5deeurj3Fy5ITdskJvp6qvliZ+bK8Jwu3/Ly8UTePiwZIT1dKu/8IKEAZWVyXefe076IRe7yFt34nDIg+jwYXlwgPxm7luzrEzG4+x2aeXcM4y1lnHBiIgmgfn5ifAsFtlnNss+94qR+flyzEmTmvI32mxiFl/MgLLXW6z2UEotAn4OzPEUlVIqBijVWjuUUsOAkUCO1rpUKVWplJqOOC+WAk96o+5tMXy4/NNeekme3F3OYeFCa5nuvn69PG1DQ8UJ4c5b6BnXGBEhUQqFhReOVZWVyXHcM0vcadB8AbP5wkmRWjc5QdzYbDIud/asBOSnpV1cy1NUJGNgsbEypFFfL2kab7vtImcXtEZrrsLefiEu8zO0cKsDtyB9rCxgN3CDx3emAPuBE8D/4aPudqdT6zVrtH733a65kx0OrTdu1Pqll7TeskWOU1MjLl/3/vJyrZ97TuuGhqbv7dun9c6drdfjD39o+vzRR1o//vhFXZLXaWiQ3+TFF7X+4AOtS0ou7jhnz2q9YoXWBQXy29bUdP0YtOFu9xlTsLfwllfw5Ekx5e64Q7xh7aG1JOucNKnjKSTnzkmG27Q0aRlXr5ZOf2vnWLdOvHtJSdL/+Pd/l35XX8uA5MmpUzKY7h7gnTnzq3SKvYJPm4IDgdRU6dusWCF9m9amrIDc8K+/LlMm3FH17ZGQIPFyR4/KdI316+UYTqc4NKZOlf5IVJQIzk1NjfTb+rKooHkqNrf56AsYwupFwsLEmfH++3JTX3ddkxfL6RS7v7xctncl65PJJONG7nGl2bNl+7lzsHGjOAQsFulDuM8XECDeRM/c8n0dpXwnJXUff171Pfz8xIGQmirzitxzo0wmEcQ991x8KrU9e5o7LRISJDnL3XeL88QdmeB0yrnj4sShYdD9GC2WlxgzRkyYlSvFzTt//qV5pOrqmnJptEZGhpiGy5c3RZjPni1BqdOnX/x5DVrHEJYXCQmR1qSkRBwb5eXiBp85s+smze7dHWd4SkwU8UVFiZinTRM3s0H3YwjLBxg0SPKUg0zreOUVGWNZuLDzzoWamguXMW3JO+/IwPGQIRLWFBt7aQlGDdrG6GP5GJmZEoqUliaDy+XlnfvelCkykbIt9u+XwNlp08Rr6J4/1Vcyy/Y1jBbLR0lNlSkba9eKWfi1r7VfPjKydRHW14sXMjRUHCMgY1w7d4pZePKkRDR0d0zjQMdosXyYkBDx6qWny/hXe7kqlBKHyMaNTdv27JExsSuvlLEzN9HR4sgYNEhMzddfl1Ahg+7DaLH6ABkZYrq9/bZ8Dg2V6faJic3LTZok0+5rasQZYrfL4HFrjpCEBPl+crJMrd++Xdai8hzrMrh4DGH1EVJS5AUSPJuVJSFKt9zSlPmpoUFaoocegh//uH1nRmioTIB0M3WqODNeeEEWHujIEWLQPoaw+iBxcTJ1pKZGzLhrrpG5SxaLzNEaNqxjYaSnSz/L4ZC+lskkwl26VPp1GzfKUIDh3Lg4DGH1YYKDJdf5Rx/JYK9bTAUFTWJpi+homSafmCihT+6UbRaLhFQVFop7vrFRpth3Ji+f0ymt4P79MGLEpc3+7esYwurjhIRIxLwnLecxtYXWIsZTpy5MtBkbK6sygrRer78ufTaLpWkuGEh/zB3xYbfL4HN6+iUvDtnnMYTVz3A4Op/pVrtWU9m+vf1y7eVXN2gdw93ezzhxomvzkQICmqbDG3QfRovVzxgxovPCcrvV+8u0EV/CaLH6GZ1dOshub55G2aB7MYQ1QLFYxKMIEojbU2tmDVQMYRng7989C5wbNGEIywCrVSZKGnQfPiEspdSjSqmzSqks1+taj30PK6WOK6WOKKWu9ti+yLXtuFLqIe/UvH9QVdWN+fQMAN/yCv5Za/245walVAZwJzAGSAA+UUqluXb/DVgI5AE7lFIrtdYHe7PC/YWQEJmr5V4txODS8SVhtcZiYIXWugE4qZQ6DriTIh/XWucAKKVWuMoawroI+lOmJl/BJ0xBF99VSmUrpZ5XSrkXXklEMuS6yXNta2t7qyilHlBK7VRK7SwqKuruevd5amqMKfrdTa8JSyn1iVJqfyuvxcgicsOBCcgKI3/qznNrrf+htZ6itZ4S47nStQEgjou21tkyuDh6zRTUrrWsOkIp9SzwoevjWcAzjiDJtY12tht0AV/JHNvf8AlT0LVCo5ubkcUOAFYCdyqlrEqpVGS1ke3ADmCkUipVKeWPODhW9mad+wulpYZHsCfwFefFH5VSEwAN5CLrZKG1PqCUehNxStiBB7XWDgCl1HeBtYAZeF5rfcAL9e7zHD/euRzxBl3DJ4Sltb63nX2PAY+1sn0Vsqi3wSVQUGAIqyfwCVPQwHvU1ck4lkH3YghrgNPQYOQU7AkMYQ1wAgJkgNigezGENcAZNAjOn/d2LfofhrAGOImJsli2QfdiCGuAYwirZzCENcAJDTXmYvUEhrAMsPjEaGb/whDWAEdrI/1ZT2AIa4BjjGP1DIawBjglJbLAnUH3YghrgLN3L4we7e1a9D8MYQ1w3CuOGHQvhrAGOMbqjT2DIawBjrGSSM9gCGuAExfn7Rr0TwxhGRj0AIawDAx6AKUHWJoepVQRcMoLp44Gijss1X8YKNc7VGt9wUjggBOWt1BK7dRaT/F2PXqLgXa9LTFMQQODHsAQloFBD2AIq/f4h7cr0MsMtOtthtHHMjDoAYwWy8CgBzCEZWDQAxjC6gX647KuSqlcpdQ+19K2O13bopRS65RSx1zvka7tSin1V9f1ZyulJnm39j2PIaweRillRpZ1vQbIAO5yLQHbH5intZ7gMV71EPCp1nok8KnrM8i1j3S9HkDWQ+vXGMLqeabiWtZVa90IuJd17Y8sBpa7/l4O3OSx/SUtbAUiWizd1O8whNXzdGlZ1z6EBj5WSu1SSj3g2hantc53/X0ecMfO99ffoE2MxFcGF8tMrfVZpVQssE4pddhzp9ZaK6UG7FiO0WL1PO0t99pn0Vqfdb0XAu8iJm+B28RzvRe6ivfL36A9DGH1PP1uWVelVLBSKtT9N3AVsrztSuA+V7H7gPddf68Elrq8g9OBCg+TsV9imII9jNba3g+XdY0D3lWSMMMCvKa1XqOU2gG8qZS6H5mac7ur/CrgWuA4UAt8vfer3LsYIU0GBj2AYQoaGPQAhrAMDHoAQ1gGBj2AISwDgx7AEJaBQQ9gCMvAoAcwhGVg0AMYwjIw6AEMYRkAoJSKUUrlK6Ue8diWqZSqV0rd5s269UWMyAuDr1BKXQ18AMwBsoCdwHatdb8PQepuDGEZNEMp9b/AjcAmYBYwQWtd7dVK9UEMYRk0QyllBfYi0+iv0Fpv83KV+iRGH8ugJSnI3CkNDPNuVfouRotl8BVKKT9gK3AU2AY8AozXWp/2asX6IIawDL5CKfV74G4gE6gAVgMBwJVaa6c369bXMExBAwCUUnOAnwBLtdblWp64y5CUbb/wZt36IkaLZWDQAxgtloFBD2AIy8CgBzCEZWDQAxjCMjDoAQxhGRj0AIawDAx6AENYBgY9gCEsA4Me4P8DHE1QKQqkXdUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "!pip install neurom --upgrade\n", + "import neurom.viewer\n", + "neurom.viewer.draw(neurom.load_neuron('morphology/C060114A7.asc'));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To load the morphology we create a NrnFileMorphology object. We set 'do_replace_axon' to True to replace the axon with a AIS." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "morphology/C060114A7.asc\n" + ] + } + ], + "source": [ + "morphology = ephys.morphologies.NrnFileMorphology('morphology/C060114A7.asc', do_replace_axon=True)\n", + "print(str(morphology))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since we have many parameters in this model, they are stored in a json file: https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/config/parameters.json" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['g_pas', 'e_pas', 'cm', 'Ra', 'v_init', 'celsius', 'ena', 'ek', 'cm', 'ena', 'ek', 'cm', 'ena', 'ek', 'gIhbar_Ih', 'gNaTs2_tbar_NaTs2_t', 'gSKv3_1bar_SKv3_1', 'gImbar_Im', 'gIhbar_Ih', 'gNaTa_tbar_NaTa_t', 'gNap_Et2bar_Nap_Et2', 'gK_Pstbar_K_Pst', 'gK_Tstbar_K_Tst', 'gSK_E2bar_SK_E2', 'gSKv3_1bar_SKv3_1', 'gCa_HVAbar_Ca_HVA', 'gCa_LVAstbar_Ca_LVAst', 'gamma_CaDynamics_E2', 'decay_CaDynamics_E2', 'gNaTs2_tbar_NaTs2_t', 'gSKv3_1bar_SKv3_1', 'gSK_E2bar_SK_E2', 'gCa_HVAbar_Ca_HVA', 'gCa_LVAstbar_Ca_LVAst', 'gamma_CaDynamics_E2', 'decay_CaDynamics_E2', 'gIhbar_Ih']\n" + ] + } + ], + "source": [ + "import json\n", + "param_configs = json.load(open('config/parameters.json'))\n", + "print([param_config['param_name'] for param_config in param_configs])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The directory that contains this notebook has a module that will load all the parameters in BluePyOpt Parameter objects" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "g_pas.all: ['all'] g_pas = 3e-05\n", + "e_pas.all: ['all'] e_pas = -75\n", + "cm.all: ['all'] cm = 1\n", + "Ra.all: ['all'] Ra = 100\n", + "v_init: v_init = -65\n", + "celsius: celsius = 34\n", + "ena.apical: ['apical'] ena = 50\n", + "ek.apical: ['apical'] ek = -85\n", + "cm.apical: ['apical'] cm = 2\n", + "ena.somatic: ['somatic'] ena = 50\n", + "ek.somatic: ['somatic'] ek = -85\n", + "cm.basal: ['basal'] cm = 2\n", + "ena.axonal: ['axonal'] ena = 50\n", + "ek.axonal: ['axonal'] ek = -85\n", + "gIhbar_Ih.basal: ['basal'] gIhbar_Ih = 8e-05\n", + "gNaTs2_tbar_NaTs2_t.apical: ['apical'] gNaTs2_tbar_NaTs2_t = [0, 0.04]\n", + "gSKv3_1bar_SKv3_1.apical: ['apical'] gSKv3_1bar_SKv3_1 = [0, 0.04]\n", + "gImbar_Im.apical: ['apical'] gImbar_Im = [0, 0.001]\n", + "gIhbar_Ih.apical: ['apical'] gIhbar_Ih = 8e-05\n", + "gNaTa_tbar_NaTa_t.axonal: ['axonal'] gNaTa_tbar_NaTa_t = [0, 4]\n", + "gNap_Et2bar_Nap_Et2.axonal: ['axonal'] gNap_Et2bar_Nap_Et2 = [0, 4]\n", + "gK_Pstbar_K_Pst.axonal: ['axonal'] gK_Pstbar_K_Pst = [0, 1]\n", + "gK_Tstbar_K_Tst.axonal: ['axonal'] gK_Tstbar_K_Tst = [0, 0.1]\n", + "gSK_E2bar_SK_E2.axonal: ['axonal'] gSK_E2bar_SK_E2 = [0, 0.1]\n", + "gSKv3_1bar_SKv3_1.axonal: ['axonal'] gSKv3_1bar_SKv3_1 = [0, 2]\n", + "gCa_HVAbar_Ca_HVA.axonal: ['axonal'] gCa_HVAbar_Ca_HVA = [0, 0.001]\n", + "gCa_LVAstbar_Ca_LVAst.axonal: ['axonal'] gCa_LVAstbar_Ca_LVAst = [0, 0.01]\n", + "gamma_CaDynamics_E2.axonal: ['axonal'] gamma_CaDynamics_E2 = [0.0005, 0.05]\n", + "decay_CaDynamics_E2.axonal: ['axonal'] decay_CaDynamics_E2 = [20, 1000]\n", + "gNaTs2_tbar_NaTs2_t.somatic: ['somatic'] gNaTs2_tbar_NaTs2_t = [0, 1]\n", + "gSKv3_1bar_SKv3_1.somatic: ['somatic'] gSKv3_1bar_SKv3_1 = [0, 1]\n", + "gSK_E2bar_SK_E2.somatic: ['somatic'] gSK_E2bar_SK_E2 = [0, 0.1]\n", + "gCa_HVAbar_Ca_HVA.somatic: ['somatic'] gCa_HVAbar_Ca_HVA = [0, 0.001]\n", + "gCa_LVAstbar_Ca_LVAst.somatic: ['somatic'] gCa_LVAstbar_Ca_LVAst = [0, 0.01]\n", + "gamma_CaDynamics_E2.somatic: ['somatic'] gamma_CaDynamics_E2 = [0.0005, 0.05]\n", + "decay_CaDynamics_E2.somatic: ['somatic'] decay_CaDynamics_E2 = [20, 1000]\n", + "gIhbar_Ih.somatic: ['somatic'] gIhbar_Ih = 8e-05\n" + ] + } + ], + "source": [ + "import l5pc_model\n", + "parameters = l5pc_model.define_parameters()\n", + "print('\\n'.join('%s' % param for param in parameters))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see there are two types of parameters, parameters with a fixed value and parameters with bounds. The latter will be optimised by the algorithm." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mechanism" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also need to add all the necessary mechanisms, like ion channels to the model. \n", + "The configuration of the mechanisms is also stored in a json file, and can be loaded in a similar way." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ih.basal: Ih at ['basal']\n", + "pas.all: pas at ['all']\n", + "Ih.apical: Ih at ['apical']\n", + "Im.apical: Im at ['apical']\n", + "SKv3_1.apical: SKv3_1 at ['apical']\n", + "NaTs2_t.apical: NaTs2_t at ['apical']\n", + "Ca_LVAst.axonal: Ca_LVAst at ['axonal']\n", + "Ca_HVA.axonal: Ca_HVA at ['axonal']\n", + "CaDynamics_E2.axonal: CaDynamics_E2 at ['axonal']\n", + "SKv3_1.axonal: SKv3_1 at ['axonal']\n", + "SK_E2.axonal: SK_E2 at ['axonal']\n", + "K_Tst.axonal: K_Tst at ['axonal']\n", + "K_Pst.axonal: K_Pst at ['axonal']\n", + "Nap_Et2.axonal: Nap_Et2 at ['axonal']\n", + "NaTa_t.axonal: NaTa_t at ['axonal']\n", + "NaTs2_t.somatic: NaTs2_t at ['somatic']\n", + "SKv3_1.somatic: SKv3_1 at ['somatic']\n", + "SK_E2.somatic: SK_E2 at ['somatic']\n", + "CaDynamics_E2.somatic: CaDynamics_E2 at ['somatic']\n", + "Ca_HVA.somatic: Ca_HVA at ['somatic']\n", + "Ca_LVAst.somatic: Ca_LVAst at ['somatic']\n", + "Ih.somatic: Ih at ['somatic']\n" + ] + } + ], + "source": [ + "mechanisms = l5pc_model.define_mechanisms()\n", + "print('\\n'.join('%s' % mech for mech in mechanisms))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cell model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the morphology, mechanisms and parameters we can build the cell model" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l5pc:\n", + " morphology:\n", + " morphology/C060114A7.asc\n", + " mechanisms:\n", + " Ih.basal: Ih at ['basal']\n", + " pas.all: pas at ['all']\n", + " Ih.apical: Ih at ['apical']\n", + " Im.apical: Im at ['apical']\n", + " SKv3_1.apical: SKv3_1 at ['apical']\n", + " NaTs2_t.apical: NaTs2_t at ['apical']\n", + " Ca_LVAst.axonal: Ca_LVAst at ['axonal']\n", + " Ca_HVA.axonal: Ca_HVA at ['axonal']\n", + " CaDynamics_E2.axonal: CaDynamics_E2 at ['axonal']\n", + " SKv3_1.axonal: SKv3_1 at ['axonal']\n", + " SK_E2.axonal: SK_E2 at ['axonal']\n", + " K_Tst.axonal: K_Tst at ['axonal']\n", + " K_Pst.axonal: K_Pst at ['axonal']\n", + " Nap_Et2.axonal: Nap_Et2 at ['axonal']\n", + " NaTa_t.axonal: NaTa_t at ['axonal']\n", + " NaTs2_t.somatic: NaTs2_t at ['somatic']\n", + " SKv3_1.somatic: SKv3_1 at ['somatic']\n", + " SK_E2.somatic: SK_E2 at ['somatic']\n", + " CaDynamics_E2.somatic: CaDynamics_E2 at ['somatic']\n", + " Ca_HVA.somatic: Ca_HVA at ['somatic']\n", + " Ca_LVAst.somatic: Ca_LVAst at ['somatic']\n", + " Ih.somatic: Ih at ['somatic']\n", + " params:\n", + " g_pas.all: ['all'] g_pas = 3e-05\n", + " e_pas.all: ['all'] e_pas = -75\n", + " cm.all: ['all'] cm = 1\n", + " Ra.all: ['all'] Ra = 100\n", + " v_init: v_init = -65\n", + " celsius: celsius = 34\n", + " ena.apical: ['apical'] ena = 50\n", + " ek.apical: ['apical'] ek = -85\n", + " cm.apical: ['apical'] cm = 2\n", + " ena.somatic: ['somatic'] ena = 50\n", + " ek.somatic: ['somatic'] ek = -85\n", + " cm.basal: ['basal'] cm = 2\n", + " ena.axonal: ['axonal'] ena = 50\n", + " ek.axonal: ['axonal'] ek = -85\n", + " gIhbar_Ih.basal: ['basal'] gIhbar_Ih = 8e-05\n", + " gNaTs2_tbar_NaTs2_t.apical: ['apical'] gNaTs2_tbar_NaTs2_t = [0, 0.04]\n", + " gSKv3_1bar_SKv3_1.apical: ['apical'] gSKv3_1bar_SKv3_1 = [0, 0.04]\n", + " gImbar_Im.apical: ['apical'] gImbar_Im = [0, 0.001]\n", + " gIhbar_Ih.apical: ['apical'] gIhbar_Ih = 8e-05\n", + " gNaTa_tbar_NaTa_t.axonal: ['axonal'] gNaTa_tbar_NaTa_t = [0, 4]\n", + " gNap_Et2bar_Nap_Et2.axonal: ['axonal'] gNap_Et2bar_Nap_Et2 = [0, 4]\n", + " gK_Pstbar_K_Pst.axonal: ['axonal'] gK_Pstbar_K_Pst = [0, 1]\n", + " gK_Tstbar_K_Tst.axonal: ['axonal'] gK_Tstbar_K_Tst = [0, 0.1]\n", + " gSK_E2bar_SK_E2.axonal: ['axonal'] gSK_E2bar_SK_E2 = [0, 0.1]\n", + " gSKv3_1bar_SKv3_1.axonal: ['axonal'] gSKv3_1bar_SKv3_1 = [0, 2]\n", + " gCa_HVAbar_Ca_HVA.axonal: ['axonal'] gCa_HVAbar_Ca_HVA = [0, 0.001]\n", + " gCa_LVAstbar_Ca_LVAst.axonal: ['axonal'] gCa_LVAstbar_Ca_LVAst = [0, 0.01]\n", + " gamma_CaDynamics_E2.axonal: ['axonal'] gamma_CaDynamics_E2 = [0.0005, 0.05]\n", + " decay_CaDynamics_E2.axonal: ['axonal'] decay_CaDynamics_E2 = [20, 1000]\n", + " gNaTs2_tbar_NaTs2_t.somatic: ['somatic'] gNaTs2_tbar_NaTs2_t = [0, 1]\n", + " gSKv3_1bar_SKv3_1.somatic: ['somatic'] gSKv3_1bar_SKv3_1 = [0, 1]\n", + " gSK_E2bar_SK_E2.somatic: ['somatic'] gSK_E2bar_SK_E2 = [0, 0.1]\n", + " gCa_HVAbar_Ca_HVA.somatic: ['somatic'] gCa_HVAbar_Ca_HVA = [0, 0.001]\n", + " gCa_LVAstbar_Ca_LVAst.somatic: ['somatic'] gCa_LVAstbar_Ca_LVAst = [0, 0.01]\n", + " gamma_CaDynamics_E2.somatic: ['somatic'] gamma_CaDynamics_E2 = [0.0005, 0.05]\n", + " decay_CaDynamics_E2.somatic: ['somatic'] decay_CaDynamics_E2 = [20, 1000]\n", + " gIhbar_Ih.somatic: ['somatic'] gIhbar_Ih = 8e-05\n", + "\n" + ] + } + ], + "source": [ + "l5pc_cell = ephys.models.CellModel('l5pc', morph=morphology, mechs=mechanisms, params=parameters)\n", + "print(l5pc_cell)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For use in the cell evaluator later, we need to make a list of the name of the parameters we are going to optimise.\n", + "These are the parameters that are not frozen." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "param_names = [param.name for param in l5pc_cell.params.values() if not param.frozen] " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Protocols" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a cell model, we can apply protocols to it. The protocols are also stored in a json file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'bAP': {'stimuli': [{'delay': 295, 'amp': 1.9, 'duration': 5, 'totduration': 600}], 'extra_recordings': [{'var': 'v', 'somadistance': 660, 'type': 'somadistance', 'name': 'dend1', 'seclist_name': 'apical', 'arbor_branch_index': 251, 'arbor_branch_index_with_replaced_axon': 123}, {'var': 'v', 'somadistance': 800, 'type': 'somadistance', 'name': 'dend2', 'seclist_name': 'apical', 'arbor_branch_index': 251, 'arbor_branch_index_with_replaced_axon': 123}]}, 'Step3': {'stimuli': [{'delay': 700, 'amp': 0.95, 'duration': 2000, 'totduration': 3000}, {'delay': 0, 'amp': -0.126, 'duration': 3000, 'totduration': 3000}]}, 'Step2': {'stimuli': [{'delay': 700, 'amp': 0.562, 'duration': 2000, 'totduration': 3000}, {'delay': 0, 'amp': -0.126, 'duration': 3000, 'totduration': 3000}]}, 'Step1': {'stimuli': [{'delay': 700, 'amp': 0.458, 'duration': 2000, 'totduration': 3000}, {'delay': 0, 'amp': -0.126, 'duration': 3000, 'totduration': 3000}]}}\n" + ] + } + ], + "source": [ + "proto_configs = json.load(open('config/protocols.json'))\n", + "print(proto_configs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And they can be automatically loaded" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bAP:\n", + " stimuli:\n", + " Square pulse amp 1.900000 delay 295.000000 duration 5.000000 totdur 600.000000 at ArbBranchRelLocation: soma ()\n", + " recordings:\n", + " bAP.soma.v: v at ArbBranchRelLocation: soma ()\n", + " bAP.dend1.v: v at ArbLocsetLocation: dend1 ()\n", + " bAP.dend2.v: v at ArbLocsetLocation: dend2 ()\n", + "\n", + "Step3:\n", + " stimuli:\n", + " Square pulse amp 0.950000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " recordings:\n", + " Step3.soma.v: v at ArbBranchRelLocation: soma ()\n", + "\n", + "Step2:\n", + " stimuli:\n", + " Square pulse amp 0.562000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " recordings:\n", + " Step2.soma.v: v at ArbBranchRelLocation: soma ()\n", + "\n", + "Step1:\n", + " stimuli:\n", + " Square pulse amp 0.458000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " recordings:\n", + " Step1.soma.v: v at ArbBranchRelLocation: soma ()\n", + "\n" + ] + } + ], + "source": [ + "import l5pc_evaluator\n", + "fitness_protocols = l5pc_evaluator.define_protocols_arb(do_replace_axon=morphology.do_replace_axon)\n", + "print('\\n'.join('%s' % protocol for protocol in fitness_protocols.values()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## eFeatures" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For every protocol we need to define which eFeatures will be used as objectives of the optimisation algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{ 'Step1': { 'soma': { 'AHP_depth_abs': [-60.3636, 2.3018],\n", + " 'AHP_depth_abs_slow': [-61.1513, 2.3385],\n", + " 'AHP_slow_time': [0.1599, 0.0483],\n", + " 'AP_height': [25.0141, 3.1463],\n", + " 'AP_width': [3.5312, 0.8592],\n", + " 'ISI_CV': [0.109, 0.1217],\n", + " 'adaptation_index2': [0.0047, 0.0514],\n", + " 'doublet_ISI': [62.75, 9.6667],\n", + " 'mean_frequency': [6, 1.2222],\n", + " 'time_to_first_spike': [27.25, 5.7222]}},\n", + " 'Step2': { 'soma': { 'AHP_depth_abs': [-59.9055, 1.8329],\n", + " 'AHP_depth_abs_slow': [-60.2471, 1.8972],\n", + " 'AHP_slow_time': [0.1676, 0.0339],\n", + " 'AP_height': [27.1003, 3.1463],\n", + " 'AP_width': [2.7917, 0.7499],\n", + " 'ISI_CV': [0.0674, 0.075],\n", + " 'adaptation_index2': [0.005, 0.0067],\n", + " 'doublet_ISI': [44.0, 7.1327],\n", + " 'mean_frequency': [8.5, 0.9796],\n", + " 'time_to_first_spike': [19.75, 2.8776]}},\n", + " 'Step3': { 'soma': { 'AHP_depth_abs': [-57.0905, 2.3427],\n", + " 'AHP_depth_abs_slow': [-61.1513, 2.3385],\n", + " 'AHP_slow_time': [0.1968, 0.0112],\n", + " 'AP_height': [19.7207, 3.7204],\n", + " 'AP_width': [3.5347, 0.8788],\n", + " 'ISI_CV': [0.0737, 0.0292],\n", + " 'adaptation_index2': [0.0055, 0.0015],\n", + " 'doublet_ISI': [22.75, 4.14],\n", + " 'mean_frequency': [17.5, 0.8],\n", + " 'time_to_first_spike': [10.5, 1.36]}},\n", + " 'bAP': { 'dend1': {'AP_amplitude_from_voltagebase': [45, 10]},\n", + " 'dend2': {'AP_amplitude_from_voltagebase': [36, 9.33]},\n", + " 'soma': { 'AP_height': [25.0, 5.0],\n", + " 'AP_width': [2.0, 0.5],\n", + " 'Spikecount': [1.0, 0.01]}}}\n" + ] + } + ], + "source": [ + "feature_configs = json.load(open('config/features.json'))\n", + "pp.pprint(feature_configs)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "objectives:\n", + " ( AP_width for {'': 'bAP.soma.v'} with stim start 295 and end 600, exp mean 2.0 and std 0.5 and AP threshold override -20 )\n", + " ( AP_height for {'': 'bAP.soma.v'} with stim start 295 and end 600, exp mean 25.0 and std 5.0 and AP threshold override -20 )\n", + " ( Spikecount for {'': 'bAP.soma.v'} with stim start 295 and end 600, exp mean 1.0 and std 0.01 and AP threshold override -20 )\n", + " ( AP_amplitude_from_voltagebase for {'': 'bAP.dend1.v'} with stim start 295 and end 600, exp mean 45 and std 10 and AP threshold override -55 )\n", + " ( AP_amplitude_from_voltagebase for {'': 'bAP.dend2.v'} with stim start 295 and end 600, exp mean 36 and std 9.33 and AP threshold override -55 )\n", + " ( AP_height for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 19.7207 and std 3.7204 and AP threshold override -20 )\n", + " ( AHP_slow_time for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 0.1968 and std 0.0112 and AP threshold override -20 )\n", + " ( ISI_CV for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 0.0737 and std 0.0292 and AP threshold override -20 )\n", + " ( doublet_ISI for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 22.75 and std 4.14 and AP threshold override -20 )\n", + " ( adaptation_index2 for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 0.0055 and std 0.0015 and AP threshold override -20 )\n", + " ( mean_frequency for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 17.5 and std 0.8 and AP threshold override -20 )\n", + " ( AHP_depth_abs_slow for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean -61.1513 and std 2.3385 and AP threshold override -20 )\n", + " ( AP_width for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 3.5347 and std 0.8788 and AP threshold override -20 )\n", + " ( time_to_first_spike for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean 10.5 and std 1.36 and AP threshold override -20 )\n", + " ( AHP_depth_abs for {'': 'Step3.soma.v'} with stim start 700 and end 2700, exp mean -57.0905 and std 2.3427 and AP threshold override -20 )\n", + " ( AP_height for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 27.1003 and std 3.1463 and AP threshold override -20 )\n", + " ( AHP_slow_time for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 0.1676 and std 0.0339 and AP threshold override -20 )\n", + " ( ISI_CV for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 0.0674 and std 0.075 and AP threshold override -20 )\n", + " ( doublet_ISI for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 44.0 and std 7.1327 and AP threshold override -20 )\n", + " ( adaptation_index2 for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 0.005 and std 0.0067 and AP threshold override -20 )\n", + " ( mean_frequency for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 8.5 and std 0.9796 and AP threshold override -20 )\n", + " ( AHP_depth_abs_slow for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean -60.2471 and std 1.8972 and AP threshold override -20 )\n", + " ( AP_width for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 2.7917 and std 0.7499 and AP threshold override -20 )\n", + " ( time_to_first_spike for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean 19.75 and std 2.8776 and AP threshold override -20 )\n", + " ( AHP_depth_abs for {'': 'Step2.soma.v'} with stim start 700 and end 2700, exp mean -59.9055 and std 1.8329 and AP threshold override -20 )\n", + " ( AP_height for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 25.0141 and std 3.1463 and AP threshold override -20 )\n", + " ( AHP_slow_time for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 0.1599 and std 0.0483 and AP threshold override -20 )\n", + " ( ISI_CV for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 0.109 and std 0.1217 and AP threshold override -20 )\n", + " ( doublet_ISI for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 62.75 and std 9.6667 and AP threshold override -20 )\n", + " ( adaptation_index2 for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 0.0047 and std 0.0514 and AP threshold override -20 )\n", + " ( mean_frequency for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 6 and std 1.2222 and AP threshold override -20 )\n", + " ( AHP_depth_abs_slow for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean -61.1513 and std 2.3385 and AP threshold override -20 )\n", + " ( AP_width for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 3.5312 and std 0.8592 and AP threshold override -20 )\n", + " ( time_to_first_spike for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean 27.25 and std 5.7222 and AP threshold override -20 )\n", + " ( AHP_depth_abs for {'': 'Step1.soma.v'} with stim start 700 and end 2700, exp mean -60.3636 and std 2.3018 and AP threshold override -20 )\n" + ] + } + ], + "source": [ + "fitness_calculator = l5pc_evaluator.define_fitness_calculator(fitness_protocols)\n", + "print(fitness_calculator)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to define which simulator we will use. In this case it will be Arbor, i.e. the ArbSimulator class" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [], + "source": [ + "sim = ephys.simulators.ArbSimulator()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With all the components defined above we can build a cell evaluator" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [], + "source": [ + "evaluator = ephys.evaluators.CellEvaluator( \n", + " cell_model=l5pc_cell, \n", + " param_names=param_names, \n", + " fitness_protocols=fitness_protocols, \n", + " fitness_calculator=fitness_calculator, \n", + " sim=sim) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This evaluator can be used to run the protocols. The original parameter values for the Markram et al. 2015 L5PC model are:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "release_params = {\n", + " 'gNaTs2_tbar_NaTs2_t.apical': 0.026145,\n", + " 'gSKv3_1bar_SKv3_1.apical': 0.004226,\n", + " 'gImbar_Im.apical': 0.000143,\n", + " 'gNaTa_tbar_NaTa_t.axonal': 3.137968,\n", + " 'gK_Tstbar_K_Tst.axonal': 0.089259,\n", + " 'gamma_CaDynamics_E2.axonal': 0.002910,\n", + " 'gNap_Et2bar_Nap_Et2.axonal': 0.006827,\n", + " 'gSK_E2bar_SK_E2.axonal': 0.007104,\n", + " 'gCa_HVAbar_Ca_HVA.axonal': 0.000990,\n", + " 'gK_Pstbar_K_Pst.axonal': 0.973538,\n", + " 'gSKv3_1bar_SKv3_1.axonal': 1.021945,\n", + " 'decay_CaDynamics_E2.axonal': 287.198731,\n", + " 'gCa_LVAstbar_Ca_LVAst.axonal': 0.008752,\n", + " 'gamma_CaDynamics_E2.somatic': 0.000609,\n", + " 'gSKv3_1bar_SKv3_1.somatic': 0.303472,\n", + " 'gSK_E2bar_SK_E2.somatic': 0.008407,\n", + " 'gCa_HVAbar_Ca_HVA.somatic': 0.000994,\n", + " 'gNaTs2_tbar_NaTs2_t.somatic': 0.983955,\n", + " 'decay_CaDynamics_E2.somatic': 210.485284,\n", + " 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333\n", + "}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Running the responses is as easy as passing the protocols and parameters to the evaluator. (The line below will take some time to execute)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [], + "source": [ + "nrn_sim = ephys.simulators.NrnSimulator()\n", + "\n", + "if morphology.do_replace_axon:\n", + " l5pc_cell.instantiate_morphology(nrn_sim)\n", + " # l5pc_cell.destroy(sim=nrn_sim) # not run as Neuron not used\n", + "\n", + "release_responses = evaluator.run_protocols(protocols=fitness_protocols.values(), param_values=release_params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now plot all the responses" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADKGUlEQVR4nOzdd5wcd33/8ddnr3eVO0mnYnVZltwRtgEbGwwYG4OBBGIIJRUScEISkvxskhAIJCH0kADGBBOKC6Y47gVj4W7Zkq1eT72crvd+u9/fHzN7t5JO0u3e7s7c6v18SI/dm93Z73e+3ymf+c53vmPOOURERERExBMJOgMiIiIiImGiAFlEREREJIECZBERERGRBAqQRUREREQSKEAWEREREUmgAFlEREREJIECZBERERGRBAqQRUTGwcwuN7PnzazDzFrN7Dkze62Z/YGZPZvGdN5kZqv9dPal63dFRGT8FCCLiJyGmVUCDwL/BUwD5gCfBwYykFwPcDvwdxn4bRERGQcFyCIip7cMwDl3l3Mu6pzrc849DgwBtwKvM7NuM2sHMLMiM/uqmR0wswYzu9XMSvzPrjKzQ2b2GTNrNrN9Zvb78YSccy85534C7Dldpsys2sweNLN2v1X7GTOL+J+dY2a/9T/bYmbvSpjvf83sO2b2iJ/v58xslpl908zazGy7mV2U8P2bzWy3mXWZ2VYze89J8nOpmR01s7yEae8xs41JlbaISMAUIIuInN5OIGpmPzKza81sKoBzbhvwZ8ALzrly59wU//tfwguqLwSW4LU4fzbh92YB1f70jwK3mdnZKeTr08AhoAaYCXwGcGZWADwAPA7MAP4CuOO4NN4P/KOfjwHgBeAV/+9fAF9P+O5u4AqgCq/l/KdmVnt8Zpxza/BawN+cMPmDwJ0pLJuISGAUIIuInIZzrhO4HHDA94EmM7vfzGYe/10zM+BjwF8751qdc13AvwE3HvfVf3LODTjnngIewgtYkzUE1ALznXNDzrlnnHMOuAwoB77knBt0zj2J10XkAwnz3uucW+ec6wfuBfqdcz92zkWBnwEjLcjOuZ87544452LOuZ8Bu4BLTpKnu+LpmFkFcJ0/TURk0lCALCIyDs65bc65P3DOzQXOBWYD3xzjqzVAKbDO797QDjzqT49rc871JPy93/+9ZH0FqAMeN7M9ZnazP302cNA5FzsujTkJfzckvO8b4+/y+B9m9hEzW5+wPOfitTSP5U7gvWZWBLwXeMU5tz/5RRMRCY4CZBGRJDnntgP/ixcouuM+bsYLMFc656b4/6ucc+UJ35lqZmUJf58FHEkhH13OuU875xYB7wL+xsyu9n9rXrw/ckIah5NNw8zm47Wa3wRM97uRbAbsJHnaiheMX4u6V4jIJKUAWUTkNMxsuZl92szm+n/Pw+tG8CJey+tcMysE8Fttvw98w8xm+N+fY2bXHPeznzezQjO7Arge+Ln/3YiZFQMF3p9WHP/tMfJ1vZkt8bt1dABRIAasAXqBvzezAjO7CngncHcKi1+GdxLQ5Kf5h3gnBqdyJ/Ap4I3x5RIRmUwUIIuInF4XcCmwxsx68ALjzXg3yT0JbAGOmlmz//3/h9f14UUz6wSeABJvkDsKtOG19N4B/JnfKg1eUNkHPIzX6tuHd7MdAP6IFPFRL5b6v92Nd5Pdd5xzq51zg3gB8bV4LdrfAT6SkMa4+S3CX/N/vwE4D3guIT9XmFn3cbPdBVwJPOmca0ZEZJIx734OERHJBr8196d+X2YREQkhtSCLiIiIiCRQgCwiIiIikkBdLEREREREEqgFWUREREQkQX7QGUhUXV3tFixYEHQ2REREROQMsG7dumbnXM3x00MVIC9YsIC1a9cGnQ0REREROQOY2ZhP+lQXCxERERGRBAqQRTLgQ/+zhpvufCXobIiIiEgKFCCLZMCzdc08uLE+5fmPtPfRPTCcxhxN3Et7WxkYjgadjVDqGRhGIwKNcs5xpL0v6GyExgMbjvCzlw8EnQ3xxWKOrzy2ncau/kDzcd/6w9y5RutFWClAFgmh13/pSX7nO88HnY0Ruxq6eP/3XuALD24NOisARGOO//rNrlCcRLR0D7Dynx/j26vrgs4Kh9v7eHJ7Q9DZ4PvP7OH1X3qSXQ1dgebjF+sOseDmhxgcjgWaj7+461X+3y83BZoHgDvW7Ke1ZzDQPHzxwa2c97nHAs3Dy/ta+fbq3fztzzcGmo9P3b2ez9wb/HohY1OALBJSOwIOLhK19Q4BsL0+HHl6eFM9X/v1Tr70yLags0JD5wDAhK4YpMvbv/k0f/S/wd/o/MLuFgAOtPYGmo/4+tHeF2xQGAY7jnbxD/du5lN3vxpoPv7n2b109Qd7Yhv1r/YMDOmKmJycAmQROS0z7zUsnQgG/BbB3oHgD3AjZROCwgk68Igzv1CCL5OQrbgBireiB92CHAbmrxdaLeRUFCCLyGlZ0Bk4TpjyE4kHgzrcjghL/YTtxC5IFpZKCQGVhYyHAmQRGbew3YgWhtyEqQU5bIIukojq5gQqiwQqCzkFBcgiclpha4kbDUrDkqPwlE0YhKWFbvRSumonTiURniscEm4KkEVkHMJ1SAlLAAajJROmYD0swlImIclGoMK0zYSFTpzkVBQgi8i4hS3QCEN2wta6Hg7huAlKdXOisJy0BCk8N5FKmClAFpHTClugYaFq0Q5TXiSRWvdHhWubCZZa02U8FCCLyGmF9XgShrhn5GAbgrzEKSD0qKVQTkWrhZyKAmQRGb+QRBphatGOx8exkJQNBF9NGtkjfFQno3RlQcZDAbKInNZIS1zA+QijMJZN0HkJyxUHBYWj1K1glMpCxkMBsoicVliPJ2FoARptjQo0G8cIQ7l4gs3H6JWGsJRH8FQWo1QScioZD5DN7O1mtsPM6szs5kynJyKZE5a4K0yttmFsjQq6XMJSJroxbdTImNBBrxyhoLKQ08togGxmecC3gWuBFcAHzGxFJtMUkfQLW0tcmMKeMD6MIiz9oYPOhrpYjArLSUsYqCxkPDLdgnwJUOec2+OcGwTuBm7IcJoikmahbYkLQeATP9jGYsHmI1HQAaGFZRxk/zUsJwxhoJIYpbKQU8l0gDwHOJjw9yF/mohMImELAtUCFG5habkNU1ecoGmTGTVSFkGvoBJqgd+kZ2YfM7O1Zra2qakp6OyIyBjCNKwajLZQhqFlMIzBetDlEpYuOWG8gTIoIye5KoyREyeRU8l0gHwYmJfw91x/2gjn3G3OuVXOuVU1NTUZzo6IpGL0Bp9wHFwjIWmhhNGDbZgCj6CzEhkpk2DzkdBUGGQuQsHCdpYbAioKOZVMB8gvA0vNbKGZFQI3AvdnOE0RSbOIv6cIOvCKC1NrWBhbKYMul9En2AWbj4iepDcibP2xg1w3wrjNSvjkZ/LHnXPDZnYT8BiQB9zunNuSyTRFJP0iIWslDVPf0jAF63FBt9yGpYU/no9o0BkJgUiIthnw1o2gejqEpQuQhFtGA2QA59zDwMOZTkdEMidsrU+RkLRQennwXoMOSsELCGMu+HIJywnVSD5CcnNpkMJ2IhdzjkhAtw5qvZDxCPwmPREJvzC12EJiwB5oNo4RdFAK4en7G5b6CWP/8KCE7UEhQa4bYTmBk3BTgCwipxWWYbviRvtEB5+heA7CcLANy4E/LH2QNVbBiUKwmgLBrqNh259JOClAFpFxCzrwihsd5i3gjCQIRVZGxqsOOkD2XkOyugij/W3Dsg0HmY2wnEhKuClAFpFxC8vxJEz9KeOtpEEHpRCerg2RkNwEpeFuTxSGbQaCzUckRPsPCS8FyCIybtGgIy9fGIfvClFWAj/wh6UvdFyY1pOghOlmUgh+HQWtF3JqCpBF5LTiB5Kg+5TGhekS6WjZBJsPCE/LeljyERd0S3YYxEsgJFUSikA9BFmQEFOALCLjFrYDSpguoYfl5AGCD4IsJC388fUjLFc+ghSm9RPCkR+tF3IqCpBFZNzC0iIYRmE61gZdT6MPCgl6FItwdfUIUtjKIMj8hGnkGQkvBcgiMm5hO8iGwWjfzuALJywBYWjyEZJAPQzCVgZh2F5CkAUJMQXIInJa8YOrDignF6aiCTr4iPf5DUsXmKAD9TAIWxkEvY5C+E4aJFwUIIvIacUPrmEJeMJ001U8L2E42FpIxkGOC3p1Cdsj0oMUtjIIMjthG9FDwkkBsoiclg6upxeGPIVlHOSwCdv6G4SwlUGQ+QlbWUg4KUAWkdMK293eYTrAhakPclyY8hIGKo7EMghHYQS5Swnb/kzCSQGyiJxW/OAa9CXzuDCNPRwXpmOuAmSf3+ckLAFRkN1wwrbNBNkNaGR/FpIdWhi6Z8mJFCCLyGmFLeAKU37Ck5PwjD8cFmHrgxxknB6WMogLMjvxsghLkYTk/E2OowBZRE4rGpYjiS9k2QmdoIOhsNTP6DBvweYjTv1uRwWZn7Dtz8JWN+JRgCwipxW/BBiWS5JhOqCE8fKoWqSOFZb1JdgAObCkxxRkkKr9mYyHAmSRkFHAdXphyk+IshK6LgVBC9uoHrFYcGmHbb8SZH6iAdbDWIJcL+TkFCCLhExYDuaJwnKTU1yYHlwStsADwjMOcliE5YRBLcij1B97VNjyIx4FyCIhE8adZTxPFpJxLMJ0sB8OU2biDwoJUZbCICwnMeqDPEplMSps+RGPAmSRkAlbay2E7xJgmA4ow9Hw5CUsXSxGbo4LNBejo3qE5ZJ6GFpNg66TuCD3KeHbnwWdAxmLAmSRDEql5SpULZK+oAOu44UpP6E8oQnJKBZBV1NYThjiAu36Eo4iGKEW5FHqEhVOCpBFMiiV/V40RC2ScSNdLMLRwyLwwCtR/IQmLGUD4SmfoAMRG+lyEo4CUR/kUUFWiYZ5k/GYUIBsZp8zs8Nmtt7/f13CZ7eYWZ2Z7TCzayaeVZHJJ5XWxeGwXf8jfDvwMOUnnpdICCLkeJeCsJRPWIKykBRHKLpYhEWQ+RkZ5i2wHBwrLNuJHCs/Db/xDefcVxMnmNkK4EZgJTAbeMLMljnnomlIT2TSSOUgEMpL9iGL2cNURPE+yJGwHG0JT/kEfXNc/KbSsASHgQ5tNjLySzjKItDW9JDtz8JSJ3KsTHWxuAG42zk34JzbC9QBl2QoLZHQSmW/F+Y+yGGJAcMS8MDoCY2FoAU5Lix9GsNSTyEpjkAv7cdCtp4GWScjJwvBZeEYYevyIZ50BMg3mdlGM7vdzKb60+YABxO+c8ifdgIz+5iZrTWztU1NTWnIjkiwElsDUgkQwjQqQlxYAp24+MHeheAQF+8SE46wwxOW+go6MI2vHyqP0RPvsFzpCLLVdPSqTzgKI+jtRMZ22gDZzJ4ws81j/L8B+C6wGLgQqAe+lmwGnHO3OedWOedW1dTUJDu7SOgk7vdTaRnoHhhOY27So613CIC8vHAcUFp6BgEoys8LOCfQ7pdNfsCRh3OOjj4vL0F304mXSZD5cM7R6q8nQbao9w6Obs9B5iNeFnkBrqfDCePtBblutPQMAFCYH9w4BT0D4Vgv5ORO2wfZOfeW8fyQmX0feND/8zAwL+Hjuf40kZzXk3BA7OgdorK44LTzDEdjbDrcweNbG7j3ldFNJRZzRAI4oA1FY2yr72Td/jbW7GnlN9sbACgvOv2yZEL/UJRNhztYf6Cd53c389RO72pTEA1Ag8MJZbO3hSe3NwIws6o4q/lwztHUPcCGgx28tLeF1TtGr8Bl+ySrpXuAbfVdrNnbwtO7mtlwsB2Azv6hrOXBOUdD5wDb6jt5cU8LT+1sYndTD5Dd8hiKxtjX3MPW+k6eq2vmye2j9dI7mL3bcDr6hthW38nmwx08tbOJF3a3ADC9rChreYjGHPtaethW38maPa0j2wpAZ3/26qStZ5Bt9Z1sOtzBb3c0sWZvvCwKs5aHweEYuxq72HKkk7X7Wnli22hZ9A3p9qwwmtBNemZW65yr9/98D7DZf38/cKeZfR3vJr2lwEsTSUtksrjt6T0j74+09zFvWukJ3xmKxth8uIMX97Ty4p4W1u5rpWcwSl7EeMOSal67cBoPbDhCS88gNRWZO6B19A6xu7mb3Y3d7G7qYXdTN7ubujnQ0jtySba2qpgPXTaf7fVd7G/pyVhewGvl2t3UzZ4mLz/x1wOtvSMtTmdNK+XjVy7m+bpmmroGMpaXjr4hrzwau6lr6mZ3o5ef/Ql5mTOlhA9dNp/dTT1sPdKRkXzEYo7D7X3UNXZT19jNrsaukffxIKMwP8KF86bwhRtW8k/3bclIuTjnaOkZZFdDN3WNXexs6GZnQxe7GrtHWicjBufNncI/vuMcvvvb3TR3DaY9H7GYo6Grn92NPX76o3np8sujIM+4aN5U/v295/FP/7eZxgyUR/9QlIOtvexr6aWusZsdRzvZfrSLPU09DPotpZXF+bxhSTXn1Fby9V/vpLGrn7NnVaQtD845mrsH2dfSw96mHva29LCroYtt9V0cbu8b+d7imjL++IqFbK/31p10Gxj2ymJvcy/7mnvY1djF9qNd7DjaxcCwVxYlBXm8Ycl0/vSKhXzuga00d6e3TpxzNHUNsLe5h30tPexp7mHH0S621XfS0Dma1tkzK/jEVUtYf7D9mDJKl+6BYfY197A34f+uxi52Hu0eWS8qivJ58zkzWDqjnK8+vpPGzgGWzUzfeiHpMdFRLL5sZhfi9XXfB3wcwDm3xczuAbYCw8AnNYKFnAme393Mf6+u4+rlM3h6VxOfvW8LH3vjIpbNrKC5Z4CtRzpZs7eVtftaR1qTls4o570Xz+WyRdN5/eLpTC0rZM2eFh7YcITf7mjkfavmnSbVU4sHWLubEoJgPyBOPEgV5kVYUF3K2TMruO7cWpbXVnDxWVOZPaUEgO89tZt/f6SFbfWdnFNbmXJ+hqIxDrT2sichL3uavffxS/PgBX0Lp5dxTm0F159fy/lzp3DhvCkjJwz/9vA2fvjcXg629o55EjIe/UNRDrX1sq+5l/2tvacvm1kVvOP8Ws6eVcGq+dOY5bca/88ze3h6ZxOvHGjj4rOmniy5k4rFHI1dA+xr6WF/Sw/7Wnq91+Ze9jR30z80emm6uryQxTXlvOvC2SypKWfF7CrOn1tFcUEezjn+e3UdT25v5A/esCDpLijxVun9LV6gsy8hL/ube+lKaImtKMpn6cxy3rZiJktmlHP2rAounDeFCv+KyVM7m3hxTwutPYNMS7KlLhZzHO3s99Jv9ssi/r6155jymFpawNKZFdxw4WyWzaxg6QwvHyWF3rL/+IX9PL2ziU++aQlVJcldAYkHfvuae70gtHk0H0c6+o7pTjW7qphlsyq48uwazp5ZwdmzKjh7ZgX5eREau/r5xhM7eWhjPa9bNJ38vPFf2o93nYmnvbe513vv/0+sk/yIsaC6jIvnT+VDl83nnNoKVtRWMqPSW0+/vbqOp3Y2sWZPC5cump5UWQwOx7xtxc/DvpH89HCkve+YfrTTywpZXlvBhy+bz/LaSpbPqmDpzHKK8vMYisb42uM7eWTzUW64cDalheMPQ+InaftHyqGbfX557G/poSehhb4gz1hcU87rF1dzTm0F59RWsnxW5cj+4xu/3snzu5t5aW8rlyycllRZ9AwMc6itz8/Hsf+PPxmbM6WERTVl/OHlC1g5u4qVsytZML2MvIjR2NnP1369k/9bf5hLFk4LtMuHnMjCNLzIqlWr3Nq1a4POhkhKGrv6ue4/n6WqJJ8H/uJynt7ZxL89vJ0Drb3HfG/pjHIuWzSdyxZN55KF08ZsIY7FHO/+znPsaerh1g+9hsuXVp8y7eFojPqOfj/A8gOall4v0GnpGWnFAZhSWsCSmnIW15SzeEaZ91pTztypJac8cDd1DXDtfz4NGP/9wYu47BQH2K7+IQ609nKgxQs8R9/3cKS9/5j+hzUVRSyqLmPxjPKR18XV5cyZWnLK/pL7W3q4/r+epSg/j397z7m85ZyZJ3RHGY7GaOoeoL6jn/r2fva3eoHe/tYeDrT0Ut/Zf0yQU1VSwJIZ5Syu8crFe3/6smnpHuCd//Usrb2DfPqtZ/N7l8w7pmtNLOYd2Os7+jjS3u+/9o3U0fFBX37EOGtaKWdNLx3Jx5IZ5SypKWfqaYLNn764n3/8v80sn1XB311zNq9fXD0SLPYPRenoG/LLo4/D7V5+jrT3caC194QgIy9izJtawvzpZSysLmO+n59lMyuYWVl0yhERnq9r5g9++DKVJfl86uqlvGXFTGrKvXm6+odo7x2isWuAI34+4mVzqM0rk8R1tjA/wvxppX4+vNdF1WUsnVlBdXnhKfPx8KZ6/uKuV5leVshNb17CG5fWUO1vcx19Q7T1DNLcPeCXRR+H20bLpb7j2MCvqqSABdVlLJxeOlImC6q919MF3/9832Z+9MJ+Vs6u5ONXLuaieVMoL8pnOOZo7x2kpWeQlu5BDrf3cqjNy8chPy+JXUTMYO7UEhb4ZRBPf2F1GXOmnHo9bezq573feZ7D7X387sVzec9Fc1hQXUZ+ntE3GKWlZ5DW7kGOdvZzOKEsDrf10dB17LZSUZzvLf/0eB5KWVhdzsLpZVSVnros/ueZPXzxoW3MmVLCn16xkNcunMaU0kKcc7T3DtHWGy+L0TI43NbLkfb+Y7ojxNfPBX4+4vWxqLqM2VNOvf842tHP73zXK4v3XDSHd104mwXTy8iPGAPDUZq7vTw0dfVzpMNbLw+29nGorXfknoy46WWFI3WwsKaMhdO91wXTyyguOPVJ6r88sJXbn9vLopoy/ugNC7lw3hQWVJdRXpSOUXhlPMxsnXNu1QnTFSCLTJxzjg//4CXW7m/l/psuH7lcFo05ttV3cqS9j6qSApbPqjztwSPuaEc/H739JXY0dHHV2TVc6B9QB4ZjtPcOcrRzgIaOfo52egFO4vBwRfkR5vsH8QV+ULPYD/aSbc1LtKuhiz/+0VoOtPayoraSJTPKyc8zBoZitPYM0tDVT0NH/zFBFnitfGdNL2P+tFLOmlbKguoyFteUsaimPOlWvUQ7G7r4xB2vUNfYzbSyQub5QXXvYJS23kGaugZOuEO8uryQ+fG8TC9lwfQyzppeyvxppUwrO3WwdSqNXf38/S828tsdTZjBjIoiCvIi9AwM09k/fMJNSUX5Ec6aNlpH86u91wXTy6itKk6qlfF4T25v4B/u3Ux9Rz9m3uXtaMwdE3TGlRbmMXtKyUjQFQ+EF0wvY87UEgomkI/tRzv5zK828cqB9tN+d2ppAbOnlDBnymjAEy+X2sriCfXF33Sog3/8v01sOHTqbjD5EWNWVbFXHlNKmDutdCQgXzi97LQnJ6finOPhTUf5t4e3nfbSfkVxPnOnljLHr5d4mSysLmXetNIJ3Zza1T/EN5/YxU9f3D/m+hAXLwsvD6XMmVrCvKlea+iC6WUT2lYAXtrbyhcf2srG09TJtLJC5vjrxZyRsvDWz3nTSie0fnYPDPNfT+7ix8/vP2U/4KL8CHOnjpZD/P28qSUsqi4f9z79ZFZvb+TfH9nGzgav+8vMyiJevOXq0AzJl+sUIItk0H3rD/Opu9fzhXefy4cvm5+23+0ZGOZ7T+3m/9YfOaYlujA/wqzKYmZVFjOzqthv5YsHW2XMqCjK2M19fYNR7liznye3N3KorY9ozFFUEGFqaSEzK4uYWVnMzMpi5k0tZf50Lwgdz42KqRqKxnh4Uz3P1TVztHOAaCxGWWE+VSUF1FYVM6uqhFlVRcyqLOGs6aUZb5l59UAbT+1s4mhHPwPDMcqL8qkozmdGRRG1/oG+tqp4wgHG6QwOx3hmVxObD3fS1T9EJGJUlRRQWVLArMpiZk/xgp+qkoKM5sM5x5Yjnbx6oI223iGiMUdVSQFVJQXUVBQxe0oJs6cUJ3WpPdV8bD/axaZDHbT3DeKc1yI8tayQ6WWFzJlawoyK4oyP8hCNOdYfbKOusZu+wSiRiDGl1MvDtLJCZvt1kmmd/UO8eqCdI+3eNlxckMf0skKmlhUyo8LbjrMx4sXupm621XfSMzCMYVSVFjCtrJCppYVZWS/AG2lk/cF26tv7ASjIj1BdVsj08iKml3t1k+lg1TnH7qZuPnf/Vp6ta2bdP76F6eXZu6HyTKYA+ST6BqP89c/W8+ZzZvD+Cfb1lDNT/1CUK768mtlVxfzqE2/I2EFlcDhG31CU4oIIhXkRtS6IiOSY53c388Hvr+HWD72Gt587K+jsnBFOFiCf8T3Ciwsi7Gjo4scv7DtmjEaR8br7pQM0dQ3wD+9YkdEWl8L8CFUlBRTl5yk4FhHJQa9dMI2ppQXcv0Ej4wbtjA+QzYy/fusyNh/u5CuP7wg6OzLJDEVjfO/pPVyyYFrSd0KLiIgkKsiL8P7XzuPRzUc50NJ7+hkkY874ABngnefX8qHLzuJ7T+3h1qd2B/oITJlcntzeSH1HPx9746KgsyIiIjngD1+/kPxIhK/9Wo12QVKAjNeK/Ll3ruT682v50iPb+cy9m495PKjIyfx87SFqKoq46mw9Jl1ERCZuVlUxf3blIu5bf2TkqaGSfQqQffl5Eb5140X82ZWLueulA1z7n8/w0MZ6PSNdTqq9d5DVOxp570VzJjQkl4iISKJPvGkJy2aW86m7X834E0xlbDqqJ4hEjJuvXc5df3oZhXkRPnnnK7z1G0/xvad2cyQDj6SUye2pnU1EY053GouISFoVF+Rx24dX4RzceNuL7GroCjpLZ5wzfpi3k4nGHA9uPMKPX9jPuv1tgPc8+8sWTWfF7ErOqa2c8IMFZHK75VebeGjjEV797NuyMl6oiIicWbbVd/LhH6yhZyDKLdct5wOXnDWhh6PIiTQO8gTsaermye2NPLOrmVf2t9GV8NjPwrwIM6uKmFZaSGlhPmVFeZQV5VOQFyFiYBiRCIARMXDgP67T4Zz33uGIJbz3/+Gcw4H/mfce/ztjzTvym2PMC6Pfj88bG+s3j5uXbKwfGT7ByNSv723uYcH0Uu676fIMpSAiIme6ox39/O3PN/BsXTPzp5fywUvO4voLZjNnSknG0x6OxugfjtE3GKV/yPvfNxSlb9B77R+KHTMtGnNEnSMac8T89zHH6PuYG/mOc4y8rywu4OZrl2d8ecaiADlNnHMcautj+9EuDrX1crSzn6Md/bT3DtE7OEzPQJSewWGGhmN+kOn8YNSb14sFDTMvcDODiJn/3gvlzPz/flBt/ueMzGPHzMtx0xLnJXF6wvci/oTRz+yYec2O/c3MlmkGfztzP41zjhsunMPvvmZuBlMREZEznXOO32xr5Nu/reNV/9Htc6aUcO6cSuZNLWVWlffUwZLCCHmRCEPDMYZjMQajjoGheHDrPWyqbyhK/2CU/uHRQLdvKHbCtP6hKEPR9BxFIwZ5ESNiRl7EyDMvzsiLeH/XVpXwwF8E09ikAFlERERkktvb3MPq7Y2s3d/KzoZuDrX10j90+gedRQxKC/MpLohQXJBHSUEeJYV5FOfnUVyYR0lBhJKCPIr9/yWFef7fo9NHp+Ud+xsFEYrz88jPszED4TB3RT1ZgJz5h5yLiIiISFosrC5j4eUL+aPLFwJe63Jn//BIy280FqMgL0JBXoT8PKMozwtiC/Is1IFq2ChAFhEREZmkzIyqkgKqSgqCzkpO0a2QIiIiIiIJQtUH2cyagP0BJV8NNAeUtoxNdRJOqpfwUZ2Ek+olnFQv4RNkncx3zp3wONxQBchBMrO1Y3XSluCoTsJJ9RI+qpNwUr2Ek+olfMJYJ+piISIiIiKSQAGyiIiIiEgCBcijbgs6A3IC1Uk4qV7CR3USTqqXcFK9hE/o6kR9kEVEREREEqgFWUREREQkgQJkEREREZEEZ3yAbGZvN7MdZlZnZjcHnZ8zjZntM7NNZrbezNb606aZ2a/NbJf/OtWfbmb2Lb+uNprZxcHmPjeY2e1m1mhmmxOmJV0HZvZR//u7zOyjQSxLLjlJvXzOzA7728t6M7su4bNb/HrZYWbXJEzXPi5NzGyema02s61mtsXMPuVP1/YSoFPUi7aXgJhZsZm9ZGYb/Dr5vD99oZmt8cv3Z2ZW6E8v8v+u8z9fkPBbY9ZVxjnnztj/QB6wG1gEFAIbgBVB5+tM+g/sA6qPm/Zl4Gb//c3Af/jvrwMeAQy4DFgTdP5z4T/wRuBiYHOqdQBMA/b4r1P991ODXrbJ/P8k9fI54G/H+O4Kf/9VBCz092t52selvU5qgYv99xXATr/stb2Es160vQRXJwaU++8LgDX+NnAPcKM//Vbgz/33nwBu9d/fCPzsVHWVjWU401uQLwHqnHN7nHODwN3ADQHnSbw6+JH//kfAuxOm/9h5XgSmmFltAPnLKc65p4HW4yYnWwfXAL92zrU659qAXwNvz3jmc9hJ6uVkbgDuds4NOOf2AnV4+zft49LIOVfvnHvFf98FbAPmoO0lUKeol5PR9pJh/jrf7f9Z4P93wJuBX/jTj99W4tvQL4Crzcw4eV1l3JkeIM8BDib8fYhTb1SSfg543MzWmdnH/GkznXP1/vujwEz/veore5KtA9VN9tzkX66/PX4pH9VL1vmXgC/CaxnT9hISx9ULaHsJjJnlmdl6oBHvJHA30O6cG/a/kli+I2Xvf94BTCfAOjnTA2QJ3uXOuYuBa4FPmtkbEz903jUWjUUYINVBqHwXWAxcCNQDXws0N2coMysHfgn8lXOuM/EzbS/BGaNetL0EyDkXdc5dCMzFa/VdHmyOknOmB8iHgXkJf8/1p0mWOOcO+6+NwL14G1FDvOuE/9rof131lT3J1oHqJguccw3+QScGfJ/RS42qlywxswK8IOwO59yv/MnaXgI2Vr1oewkH51w7sBp4HV43o3z/o8TyHSl7//MqoIUA6+RMD5BfBpb6d1UW4nUMvz/gPJ0xzKzMzCri74G3AZvx6iB+V/dHgfv89/cDH/HvDL8M6Ei4rCnplWwdPAa8zcym+pcx3+ZPkzQ6rs/9e/C2F/Dq5Ub/TvCFwFLgJbSPSyu/T+QPgG3Oua8nfKTtJUAnqxdtL8Exsxozm+K/LwHeitc3fDXwu/7Xjt9W4tvQ7wJP+ldjTlZXGZd/+q/kLufcsJndhLdjygNud85tCThbZ5KZwL3evo184E7n3KNm9jJwj5n9MbAfeL///Yfx7gqvA3qBP8x+lnOPmd0FXAVUm9kh4J+BL5FEHTjnWs3sC3gHGIB/cc6N9wYzGcNJ6uUqM7sQ7xL+PuDjAM65LWZ2D7AVGAY+6ZyL+r+jfVz6vAH4MLDJ71sJ8Bm0vQTtZPXyAW0vgakFfmRmeXiNsfc45x40s63A3Wb2ReBVvBMb/NefmFkd3s3JN8Kp6yrT9KhpEREREZEEZ3oXCxERERGRYyhAFhERERFJoABZRERERCSBAmQRERERkQQKkEVEREREEihAFhERERFJoABZRERERCSBAmQRERERkQQKkEVEREREEihAFhERERFJoABZRERERCSBAmQRERERkQQKkEVExsHMLjez582sw8xazew5M3utmf2BmT2bxnT+zsw2m1mXme01s79L12+LiMj45AedARGRsDOzSuBB4M+Be4BC4ApgIBPJAR8BNgKLgcfN7KBz7u4MpCUiImNQC7KIyOktA3DO3eWcizrn+pxzjwNDwK3A68ys28zaAcysyMy+amYHzKzBzG41sxL/s6vM7JCZfcbMms1sn5n9fjwh59yXnXOvOOeGnXM7gPuAN4yVKTOrNrMHzazdb9V+xswi/mfnmNlv/c+2mNm7Eub7XzP7jpk94uf7OTObZWbfNLM2M9tuZhclfP9mM9vtt2pvNbP3nCQ/l5rZUTPLS5j2HjPbmGrBi4gEQQGyiMjp7QSiZvYjM7vWzKYCOOe2AX8GvOCcK3fOTfG//yW8oPpCYAkwB/hswu/NAqr96R8FbjOzs49P1MwMr6V6y0ny9WngEFADzAQ+AzgzKwAeAB4HZgB/AdxxXBrvB/7Rz8cA8ALwiv/3L4CvJ3x3t5+PKuDzwE/NrPb4zDjn1gA9wJsTJn8QuPMk+RcRCSUFyCIip+Gc6wQuBxzwfaDJzO43s5nHf9cPaj8G/LVzrtU51wX8G3DjcV/9J+fcgHPuKeAhvID1eJ/D20//8CRZGwJqgfnOuSHn3DPOOQdcBpQDX3LODTrnnsTrIvKBhHnvdc6tc871A/cC/c65HzvnosDPgJEWZOfcz51zR5xzMefcz4BdwCUnydNd8XTMrAK4zp8mIjJpKEAWERkH59w259wfOOfmAucCs4FvjvHVGqAUWOd3b2gHHvWnx7U553oS/t7v/94IM7sJry/yO5xzJ+vr/BWgDq+f8h4zu9mfPhs46JyLHZfGnIS/GxLe943xd3lCXj5iZusTludcvJbmsdwJvNfMioD3Aq845/af5LsiIqGkAFlEJEnOue3A/+IFiu64j5vxAsyVzrkp/v8q51x5wnemmllZwt9nAUfif5jZHwE3A1c75w6dIh9dzrlPO+cWAe8C/sbMrvZ/a168P3JCGoeTXVYzm4/Xan4TMN3vRrIZ72bCsfK0FS8YvxZ1rxCRSUoBsojIaZjZcjP7tJnN9f+eh9eN4EW8lte5ZlYI4Lfafh/4hpnN8L8/x8yuOe5nP29mhWZ2BXA98HP/u7+P1yXjrc65PafJ1/VmtsTv1tEBRIEYsAboBf7ezArM7CrgnUAqI2GU4Z0ENPlp/iHeicGp3Al8CnhjfLlERCYTBcgiIqfXBVwKrDGzHrzAeDPeTXJP4t1Ed9TMmv3v/z+8rg8vmlkn8ASQeIPcUaANr6X3DuDP/FZpgC8C04GX/REmus3s1viM/ogU8VEvlvq/3Y13k913nHOrnXODeAHxtXgt2t8BPpKQxrj5LcJf83+/ATgPeC4hP1eYWfdxs90FXAk86ZxrRkRkkjHvfg4REckGvzX3p35fZhERCSG1IIuIiIiIJFCALCIiIiKSQF0sREREREQSqAVZRERERCSBAmQRERERkQT5QWcgUXV1tVuwYEHQ2RARERGRM8C6deuanXM1x08PVYC8YMEC1q5dG3Q2REREROQMYGb7x5quLhYiafSVx7bz7C49F0FERGQyU4AskkbfXr2bD/1gTdDZEBERkQlQgCwSgCPtfdy55kBW09x8uIN3/tez9A4OZy3NI+19vOc7z9HaM5i1NN936/Pc9VJ2yrajb4irv/Zbth/tzEp66w+2s/VIdtJas6eF1Tsas5LWP/7fJn7ywr6MpxOLOW57ejdd/UMZTyub9rf0EItlfsjWhzbW8+DGIxlP52BrL59/YEtWlilbegaG6R+KBp0NSYICZJEAfOT2l/jMvZtoy2Lg+MWHtrLpcAfrD7RnLc3bnt7DqwfauffVw1lL8+V9bdzyq01ZSevZXc3sburhP5/YlZX03v3t57juW89kJa3fu+1F/vCHL2clrZ++eIB/um9LxtNZvaORf3t4O198cFvG07r1qd28/9YXMp7O7qZurvzKb/nWk5lfBz955yvcdOerGU/npjtf4YfP7WNLhk8GnXN86ZHtHGrrzWg6ACv/+TGu/tpTGU9H0kcBskgA4i2q0Sw+qMcwALLZJmNekuTqA4niyyeTQ/9QDIDOLLQgf+mR7by0rzXj6Rzt6AdgzZ7Mp5Ut8YZjl+G91bb6Lm59ajefvOOVjKYTd7i9LyvpSHooQBYJQDyuymbcGEQwZ5wZEWSOxv85JxdPaHJwkRJOrDObTsxPYDCqDVhOpABZJABBHqgVzKVPLgYnZ4Jc3AYy3doahEwvUS6eMEn6KEAWCVA2D2qBtCBnqSUoaLkYnOSinIyHcnAby3Y95WoXMJkYBcgigQjuUJ3VoDyANLNJLVCTUy6tj7ncjSnTgWsul51MnAJkkSBlsw9y/Ca9HO/3HAQ1QE0OuXxFI6cWybJ/Q7HI8RQgiwRg5EAdQJpByMWAxHOGnAHkjNyrr1w8Cc3WIuVi2Un6KEAWCUCQ++XsBuVnRktQri9frsnJ+srBhcrWiXXunsDLRChAFglQEDvmbN6QkusNNGqBmlxysb5ycJGyVk+5uD5I+ihAFgnAaBeLbI5iEeCNgTneQpPry5drcrG+cunGw1HZWabcLDuZKAXIIgEI4u7p0RElsp9orh6ARmsxN5cv1+Rig2GQJ76ZkrU+yAHcuCyThwJkkQAFMqJEACNn5L4zZTlzRe5FRLkY5GV6mXLw3ELSKOMBspm93cx2mFmdmd2c6fREJoMgRrGIC6I1NxcP3jL5jNw0mkPrY5D7kkzJ9s29uVR2kj4ZDZDNLA/4NnAtsAL4gJmtyGSaIpNBEA0XIw3IWTwaRM6YFhodYieDXFwdtUzhT0cmp0y3IF8C1Dnn9jjnBoG7gRsynKbIpJHVESUCuJ44+mAGBZASHrm4NubiNpa9Yd5yr+xk4jIdIM8BDib8fcifNsLMPmZma81sbVNTU4azIxIOQV7qPVPSzIZcvGSfy3LxhC0X+9Fme5i33FkbJJ0Cv0nPOXebc26Vc25VTU1N0NkRyYqIv+XFcnxM4pG7xANIOxsCGRlEUpbLAVFOLlPG9485eHYhaZPpAPkwMC/h77n+NJEzWiTIFuQspjXaYpfFRLMoF1skc1lujqqSe8uUrXrK9f2TTEymA+SXgaVmttDMCoEbgfsznKZI6MUD5Ky2IAeRZtZSCkYut0jmslwMiHJymTL8+6MNFTlYeDJh+Zn8cefcsJndBDwG5AG3O+e2ZDJNkckgHjjGAhgHObtjL3uJRnP0AKQHDUwuuXhCk8vLlOmT+SD2wzJ5ZDRABnDOPQw8nOl0RCaT0ZtQsrdnjgTQHSDnW2hyMDjJZZaD62MkB/sJZKsL2ujJRe6UnaRP4DfpiZyJRrs7ZC/NSCBpeq85dOw+xujY0jm6gDkmkqWWyUSZXjfiy5RLV2niNzFnPED2t+BYLLPpyOSkAFkkAEEEjiOtMtlstY5kv99zNgUxtrSkbuQkMYsBUaZX/SCWKdOydY9GfF+Yq/snmRgFyCIBCOYmPe81msUm5NG+hFlLMquCeDqhpC6IS+oZ70ebg918sn1DsbZfGYsCZJEAZTNADmJouVzvg6w+jJNLEN2MMt31IRe3sWydeMZ/Xy3IMhYFyCIBCCZY9V6z2sUigD6f2aRRLCaXIILJbN1olkvbWLb3G7lTcpJOCpBFApCtm1ASWQB9FUdugsnRI1AODiCQ0yIBdPnJdJem0VbQjCaTVdlq6Y//fC61vkv6KEAWCcBo4BhEf+DcTjObRh81nZvLl2uCeFhOttLKpW1MfZAlDBQgi6RJMq0QQdxYkxdAt468SG53QRhtgQo0GzJOQdw0mq20cmkdzNYoP/F9di6dXEj6KEAWSZNU9rG53po7+qSq3DwAxRcrN5cud2Xzknosa10scmctzHZf8VzqniLpowBZJE1SOUBl+uCZKJAHheT4OMgxRciTkrpYhFv8Ho1s9UHOpbKT9FGALJImqezMsxmsBtH/MttPDMz2zTY6rE4uI62tWbxRNfNBnt9NIIceFJL1ezS0IcsYFCCLpEkyO/Mguh5EAuj3PNqXMDePQPHl0k16k0s2ayt7N5rlzjqYre5gudg9RdJHAbJImoS9D/LoI2mz2Qc5tx/FfCbcpJdLgRcjra2508UiF4d5y/bNvTlUdJJGCpBF0iSVA2EQDwoJorUkawe6bC/aGdAFOZcCr7js9kHOTjq5dBUj21fY1IIsY1GALJImKd2kF0B/4Ow+nISsp5lN8aAkt1pZj5WLwUNWu1hkKUKO5lAf5Kw9KCTeRSr3VnFJAwXIImmSyj42qyNKBHGTnv+aS61bic6EQSxyKUCOb2+5NIpFMFeEMptmtm4ojubQui3ppwBZJE1cCi04uRR8jMWy3AU52+U5EiDncDXm0rLFH/uczdUy04+aHlmmLC5Uxh/gQXbqKZdG/pD0U4Askiap9UHOXvQxctDJ4pE0fpNethZzOMsdZt1xr7kol07iYrHsbwOZXiWDqJ9spZnpeoovR7ZP5GVyUIAskiapPSgkAxk5iXj2gjgWZOsQnv0W5NxvQs6lm/Til9SzuQ1k+iQ43vc4q63imW9CzorRKwqKkOVECpBF0iS1B4XkUPQxhmxdKo3L9OXs46kFeXLJ9voBmQ8mc3FUmtHhE7PTB1ktyDIWBcgiaZLKzjybx2sXwMEg3roVyVKi2e5TeAY0IKfUtz6sgriknul1MptjOo+kmfGxnV1W0xEZiwJkkTRJ5TiV3T7I2ZftFprhrN91k/tP0sutFmTvNZuX1LM1EkNWg/4srRKZTieI7ikyeUwoQDazz5nZYTNb7/+/LuGzW8yszsx2mNk1E8+qSLilNg5yBjISojSj/hEoWwfvbA/bFFQLcjZPrHKpFS+ILhYZD5AD6Eeb6XKM/3rWyk59LGQM+Wn4jW84576aOMHMVgA3AiuB2cATZrbMORdNQ3oioZTUrjyAMYlHg7ksBiQjSeVoF4t4ulmOu2IO8rJ0TM98K172g/1cam3NxXGQR8erzmgyOXV1RNIvU10sbgDuds4NOOf2AnXAJRlKSyQUUukLmNUAmez060sU9SPWSM63IGc33eyeWOXOwxpyswXZe82loH8knQwnlLVHWefSUDBnkHQEyDeZ2UYzu93MpvrT5gAHE75zyJ92AjP7mJmtNbO1TU1NaciOSDCS2ddm6yaURPEDaTYfSTsUzXIf5Cw/b3dg2Lsolp+F5tzEQDW7T4LL7O8PDmevzuJpZeumUch8cJStZcrm+hc/sc50OgNDXjp5GT6DH8yl54CfQU7bxcLMngBmjfHRPwDfBb6Ad6XxC8DXgD9KJgPOuduA2wBWrVql0yyZtMa7M69r7GbjoQ4AhoYzv8o3dQ3w2JajPLjxCJCd4Kqjb4hfb23gzjUHACjIy+z9wAPDUdbta+O7T+3OaDpxnf1DrN7eyLdX1wFQXV6UsbSGozHW7W/jzpcOJExzFKWjg9xxYjHHqwfb+MW6QyPThjJ0cB+Kxniurpmfvrg/I7+fqK1nkEe3HOV7/voxszIz9RWNObYc6eCXCeWXqfi4qWuA1dsbR9b5OVNKMpJO/1CUVw60ccea0fUvE0G/c45djd08vKmehzcd9dLJUNk1dPbz1I4mbvXLbt60zJRd32CUZ3Y18dOEsnPOqc/zJHHaXaxz7i3j+SEz+z7woP/nYWBewsdz/WkiOaurf/iUn2842M4Pn9vLgxvryY8YwzFHa+9gWvMwMBxlV0M3W+s72Xy4gxf3tLCzoRuAc+dUsvlwJ+1pTnM4GmNvcw9b6zvZcLCDNXtb2FrfiXOwuKYMgI7eobSl55zjcHsfW490srW+k1cOtPPS3hb6h2JUFnu7tLLCvLQdiGIxx96WHjYcbGfDwXbWH+pg65EOhqJuJCjpH0rf7RUNnf1sPNTBpkPtbDzcwasH2unoG6IwP8LU0gLaeodo7xuiLA0Rckv3ABsOtbP+YIe3fIfaae8doiDPqK0qpr6jn46+oWN25qmIxbw623y4g1cPtrP+QDsbD7fTPxSjvCifiqJ8ugaG6R0cprRwYsvVNxilrrGbrfUdvLK/nXUH2qhr9LaBJTPKgfQ8cTG+Hu442sW2+k5e3tfGK/vb6BoYpjAvwpIZ5dQ1dtMzeOr9wnh0Dwyz42gX2492svlwJy/tbWF3Uw8AS/1lSofhaIx9LT1sq/eW6dUD7bxyoI2BYa+e5kwp4XB7H539w8yoTD0d5xwNnQNsO9rJtvpOthzuZM3eFpq7vX3T5Uuqebaume7T7FPHo7N/iO3+8mw90nnC+pCu1uPB4Rh7mrvZcbRrpNy2HulkOOaYVlbIzMoiGjoH6Owbpqq0IC1pSmZNaE9kZrXOuXr/z/cAm/339wN3mtnX8W7SWwq8NJG0RMLu/g2j54B9g1FKCvNo6R7g8a0N/HztQV450E55UT4fumw+n3zTEt745dUc7ehPKS3nHE1dA+xq7B7Z8W+t76SusXvk4F9amMdr5k/lPRfN5fIl1Zw7p5Irv/Jb6lNME6C9d3Dk4LmtvpNtRzvZ2dA9cpm3KD/CxWdN5a+uXsblS6dz8VlTec93nudoZ2ppdg8MU9fYTV1jN9vrO9niL2dHnxdwm8GSmnJufO1ZvH7xdC5fWs2daw7wxYe20dE3xJTSwnGnFYs5jnT0sauhm50NXexq7GZXQ5cf5HgBcFlhHufOqeKPL1/EW1fM4KJ5U/nEHa+wq7Er6WVr6fbqb1djN7sbu9nV2MXOhm6augYAr9/2spkVXLNyJledPYMrllazZk8rf/LjtTR1DYy7xdA5R0vPILsavDTir3WN3SMByUhaK2bx+iXTedPyGexq6OZ3vvv8SH7G4/gy3JmQVq9fhoV5EVbOqeQDl5zF6xdXc8XSah7cWM/f/nwDDZ0DLKwe32FpcNg7MdvR0MXOo13saOhiV0MX+1t7R7o7TSkt8NbBi+bwxqU1nDunko//ZB17m3vGvUzOOZq6B9jT1MMOP50dR700uwZGA7ilM8q5/oLZXLJwKlctm0HvUJQ3fOnJpLbx3sFh9jT1sKe5h7qGLrb5QfHB1r6R71QU57Nq/lTet2oer1s0nfPnVvGXd69nw8H2caczHI1xqK2PPc3d7GnqYWdDF9vqu9jZ0MWAvy3nR4yzZ1Xwocvm87pF03nd4ulsONTOB7+/hobO/pGTjdOWXdcAu5t62NPcze7GHrbVd7L9aCdtCSfNc6aUcMXSGl63aDpvWFrNnCklvOYLv+ZoZ98pfv1YHX1D7Gnq9suvm10N3Ww7ruymlRVy3pwq3veaubxhSTUrZ1fy97/YyFM7x9+9cygaY39LDzsbvGA4vt3ua+4Z2feWFORxwbwqPvbGRVy6aDqvXzydhzbW81c/W09Td78C5Eliok0QXzazC/G6WOwDPg7gnNtiZvcAW4Fh4JMawUJyWd9glJ+9fJCywjx6BqOs/OdHKSvKH2lVXlRTxmevX8H7Vs2lotjbOV501hQe2VzPx69cRG3V2MFOvOWtrnE00Ij/70xoXZlZWcSK2krevHwGK2ZXsqK2kvnTy05oHblw3hSe3N7I5sMdnDun6qRpHunw0tzd1OO/drOnaTSgAqguL+Sc2ko++rr5nFNbyTm1lSyuKacw/9juFOfPreLulw7y2x2NXHX2jBPSc87R3D3oLVeTFyzGlzExsC7Kj7C8tpLrzqtlxexKVs6uZPmsihNaHFfM9pq2vvb4Tv7+7WePlHfcwHCUAy297G3uYW+zd6Cra/QC4ngQB1BTUcSymeW8b9U8VtRWcuFZU1hcc2KL03lzq3h0y1F+8Oxefv/SsyguyBv5bCga43BbH/tbe73lauqmzg8aEwOEssI8lswo54ql1Zw7u4oL5lWxoraKksK8Y9JaOacSM/jqYzv4zHXncE5txUgr+cBwlIOtvexr7mVfSzzIOjGtiuJ8ls4o5+rlM1k6s5zz5lRx7pyqE1qkl8zw6vKbv9lFUUGESxZMIz8vgnOOzv5h9rf0jJThPv/1+DKcUVHEspkVvH/VPJbNrGDF7ErOqa2gKP/Y5Tp3jldn/3z/Fv7izUu4cN4UCvIi9A9Faeoa4EBrL3uae9jb1MPe5m72NvdwsK1v5Ka7vIixsLqMlbOrePdFczh7ZgVnz6pgYXXZCVcRVs6u4vGtDfz7w9v4ndfMZUmNF+g19wzQ0DHglZ2fTjzNxEC4sjif5bMqvXRmVbB8VgVLZ1ZQVXLselYRjTG9rJBbn9pNXsS4alkNU8sK6RuK0tDRz+H2Pj+dnpFANfHkNWKwqKacC+ZO4cbXnsXyWd4yzZlScsIynTu7kgc2HOEf7t3Eey+ey9KZ5UTMaOke4Eh7Pwfber3Asclbpv0tPSP3BwBML/O25Y/42/LyWZUj9Z/o7JkV5EeMLz60jT+9YiGXLZpOWVE+vYPDHGnv50h7n7c8TWOXXXFBhLNnVXLNylkj+4yzZ51YduBtxw9sqGdGRTFvXTGT2VNKGI7GaOgc4HB7Hwdbe72gu8mrr+bu0RO5vIgxf1op5/tlt8JPa2Zl0RjrQyU/X3eIv7lnPe++0KtTM2jpHqShs599zT3s8/cX+1p6OJSw3pnB/GmlLPVPZJfNrGDZzAqWzign/7huZfF1/O9+sZGPvm4BF86bQmlRHh29QyPr+L6WXva39DCzspjPvWvlCWUi2WVhepLMqlWr3Nq1a4POhkjS7n7pADf/ahM/+9hl7GocbU2YPaWY1y/2WiqO3zG/eqCND/3PGvLzIrx/1VwW15QzGI1xpL2fQ/EDWnM3/UOjfUCrywtZMqPc+19TzpIZFSyvrRh3H9h9zT28/3sv0NY7yNvPreVcP5hs6vIOOgdavXT7EroMTCkt8NMqZ3FNOctmVXBObQUzKorHlWZDZz+//z9rqGvs5oK5VayYXeUfgAY41OYd6BKD/bLCPBb7y7c4vqwzypk/rfSEg85YnHP8032b+emLBygrzOOCeVMoLcyns2+IIx19HGnvO6ZvYzwQXjqjgqUzy0cOcONtfe7sH+KTd7zCM7uaKSnIY/GMMgyjrXeQ+o7+Y0ZOqCopYOmMcpbO9OpuyYxyls4op7aqeNzdQX743F6+8tgOegejTC8rpLKkgM6+IVp7B4+5UXRKqZfWkhne8iyb6S3fjIoTg4ST+dUrh/jiQ9to7RmkKD9CRXE+nf3Dx9xYZwazq0pYUF2achkC3PrUbr79ZB1dA8PkRYzCvMgx6yF4LXMLq8tYWFPGwullI2ktqik7Ieg+ma7+IW751SYe2Xz0mEAnseziy7SopoxF1WUsrC5jUY2X1lhB1sk8vbOJzz+wZaQ7xFgqivNZVFPO4uoyFtWUsbC63H8tO+Zk61R6B4f55/u2cN+GIye96bEgz5g/3VueRTVeGotrylhUXc7UsvHX033rD/PVx3cc0zJ7vDlTRssuntaimnJqK4uJjLNLw97mHj5732aerWs+6Q3QU0sLWJzw+/H0zppWekJwfzL9Q1H+9aFt/PKVQ8ec3CUqK8xjQXUZC6q99W5RTRnLZlawuKb8hJPYU/npi/v5zuo6jpzkqkJBnlFSkEdn/zA7vvj2ca/TMjFmts45t+qE6QqQRSbGOcd133oW5xyPfOqKpPq97m7q5t8f3s7qHY0jB2uv/2cJC6vL/ABn9H8yAcfJtPUM8p+/2cX9G47Q2uO1CBcXRJgzpYS5U0tZXFPO4hllI0HxtLLCCfflHRiO8tMXD/DgxiPsb+klYjCltJB5U700F1aXjSxjMsHiqWw81M7dLx9kW30nfYNRppQWMKOi2DvIVZeyYLoXhKSjTJ1zrNnbyqObj7KvpQcDKksKmDe1lLOme2ktqC6lpnz8wdWptPUM8tCmejYd6qBncJjKkgJqyotYkOblAu/qyG+2N7DhYDvdA8NUFhcwvbyQs6Z56cyfXjruQO50ugeGWb29ke1HOxkYilFVUsCMyiLmTStlUXV5UsHp6Rzt6OfpXU0cau0FoLqiyF8/vDJM1zI551jv91/vHhimMD/CrKoSaquKWTC9jOryiW9fcR29Qzy/u5mDbV43k+nlRdRWFfvbdsm4TjDHIxZzrD/UPrJtlRTmMbuqhNopxcyfVpZU0Hg69R19rNvfRlPXAPl5EWZUFDG7ylueZAL70+kZGGbd/jYOtPbinGNaWREzKouYPz192y2M3si5/ajXnaWyOJ+acm8dnz2lhF+uO8Tf/3Ijv/3bq1hQXZaWNOXUFCCLZMirB9p4z3ee51/fcy6/f+n8lH5jYDhKc/cgBXnG9LKijA87FNc9MIzh9VfWndUiIsHaVt/Jtf/5DF/53fN536qJ3h4r43GyADmzYy9NAv1DUb786HZ+s60h6KzIJHX3SwcpLczjhgvHHOp7XIry85gzpYQZFcVZC44ByovyKSvKV3AsIhICy2dVMKOiiF9vVUwStDM+QC7Kj/DLVw7xw+f2Zf1pWDL59QwM88DGI1x/fi3lmRiYVkREzhhmxg0XzubJ7Y20dI9/BBlJvzM+QDYz/vSKRTxb13zMQOgi4/H0ziZ6B6O8+6LUW49FRETi3r9qHsMxp5gkYGd8gAzwh29YyFVn1/DP92/h0c1Hg86OTCK/3tZAVUkBlyyYFnRWREQkByydWcFbV8zk+8/sSetDliQ5CpDxxkz87w9ezHlzqvjEHev4wbN7M/IoTcktw9EYT25v5M3LZ6Tt7nAREZG/eesyegaG+deHtwadlTOWjuq+8qJ87vzTS3nz8pl84cGtfPj2NWyr7ww6WxJi24920d47xFVn1wSdFRERySHn1Fby8SsXc8/aQzyw4UjQ2TkjKUBOUFqYz/c/8hr+7T3nsfFgB9d96xk+9uO1PLm9geHo2IOvy5nrpb2tAFyyUN0rREQkvf7qLUt57YKpfPqeDTy5XaNaZJtuuz+OmfHBS8/iuvNm8T/P7OWulw7w+NYGKovzef3iai5bNI0Vs6tYXltBZbGep34m21bfSU1F0UkfEy0iIpKqovw8vv+RVfz+/6zhT360lr9+yzI+fuXicT8lUCZGDwo5jcHhGKt3NPLktkae2dV0zCMip5UVMrOymNqqYqaWFlJWlEdZUT5lhXkU5keI+GPLRsww816dczi8x5p6r85/7xKmJfztTjH9+GlAzH9z7G970+NVffy8MRd/zGr8t4+fnlmZHoI3Uz//XF0z1RVF3H/T5RlKQUREznQ9A8P8v19u5MGN9SyqLuOPr1jIOy+YndVGuqFojIHhGMPRGIPRGMNRx1A0xpD/Ohx1/nR/WixGNOqIOkcs5r867ymM0djo9JiDqHOUFuTxO6+Zm7XlSaQn6aWBc46jnf1sr+9i29FODrX10dDRT31HPx19Q/QMDtMzMMxQNDtlauYFf2aG4QXgjEwDYzQwN0j4zEbmjQfvYAm/NzrPZH+ARCbXbwfc+Nqz+NRblmYsDREREYDfbGvgG0/sZPPhTvIjxmvmT+W8OVUsnVnOjIpippcXUlyQR8S8Y3c05ugbjNI7GKV/KErfkPe+d3CYnoHR176hY//uHRz2vxelZ3CY3oEogxnuZjq7qpjnb7k6o2mcjALkLBoYjjIUdTj/jAnnteDGnBsJZkcC2MixQW5iYHvM++O/M8kDVxEREUmOc45XDrTz+NajPF/Xws6GLgaGUwteIwZlhfmUFHpXv0sL8ygrzKe0KI/SwjxKC70r4qVF+ZQW5FFckEd+nlGQF6HAf83Pi1CYZ+RHIuTnGYX+tPw8oyASwcwbKSwvYkTMe80zIxJh5O+IGQV5xpTSwjSX1vicLEBWH+QMKMrPQw9VExERkXQy81qOXzN/KuANN3qkvZ/mngFauwcZGI6NNMjlRyKUFEYoLvCC3ZKCeODrBcRF+RE1tp2CwjgRERGRSSg/L8JZ00s5a3pp0FnJOboVUkREREQkQaj6IJtZE7A/oOSrgeaA0paxqU7CSfUSPqqTcFK9hJPqJXyCrJP5zrkTnvgVqgA5SGa2dqxO2hIc1Uk4qV7CR3USTqqXcFK9hE8Y60RdLEREREREEihAFhERERFJoAB51G1BZ0BOoDoJJ9VL+KhOwkn1Ek6ql/AJXZ2oD7KIiIiISAK1IIuIiIiIJFCALCIiIiKS4IwPkM3s7Wa2w8zqzOzmoPNzpjGzfWa2yczWm9laf9o0M/u1me3yX6f6083MvuXX1UYzuzjY3OcGM7vdzBrNbHPCtKTrwMw+6n9/l5l9NIhlySUnqZfPmdlhf3tZb2bXJXx2i18vO8zsmoTp2seliZnNM7PVZrbVzLaY2af86dpeAnSKetH2EhAzKzazl8xsg18nn/enLzSzNX75/szMCv3pRf7fdf7nCxJ+a8y6yjjn3Bn7H8gDdgOLgEJgA7Ai6HydSf+BfUD1cdO+DNzsv78Z+A///XXAI4ABlwFrgs5/LvwH3ghcDGxOtQ6AacAe/3Wq/35q0Ms2mf+fpF4+B/ztGN9d4e+/ioCF/n4tT/u4tNdJLXCx/74C2OmXvbaXcNaLtpfg6sSAcv99AbDG3wbuAW70p98K/Ln//hPArf77G4GfnaqusrEMZ3oL8iVAnXNuj3NuELgbuCHgPIlXBz/y3/8IeHfC9B87z4vAFDOrDSB/OcU59zTQetzkZOvgGuDXzrlW51wb8Gvg7RnPfA47Sb2czA3A3c65AefcXqAOb/+mfVwaOefqnXOv+O+7gG3AHLS9BOoU9XIy2l4yzF/nu/0/C/z/Dngz8At/+vHbSnwb+gVwtZkZJ6+rjDvTA+Q5wMGEvw9x6o1K0s8Bj5vZOjP7mD9tpnOu3n9/FJjpv1d9ZU+ydaC6yZ6b/Mv1t8cv5aN6yTr/EvBFeC1j2l5C4rh6AW0vgTGzPDNbDzTinQTuBtqdc8P+VxLLd6Ts/c87gOkEWCdneoAswbvcOXcxcC3wSTN7Y+KHzrvGorEIA6Q6CJXvAouBC4F64GuB5uYMZWblwC+Bv3LOdSZ+pu0lOGPUi7aXADnnos65C4G5eK2+y4PNUXLO9AD5MDAv4e+5/jTJEufcYf+1EbgXbyNqiHed8F8b/a+rvrIn2TpQ3WSBc67BP+jEgO8zeqlR9ZIlZlaAF4Td4Zz7lT9Z20vAxqoXbS/h4JxrB1YDr8PrZpTvf5RYviNl739eBbQQYJ2c6QHyy8BS/67KQryO4fcHnKczhpmVmVlF/D3wNmAzXh3E7+r+KHCf//5+4CP+neGXAR0JlzUlvZKtg8eAt5nZVP8y5tv8aZJGx/W5fw/e9gJevdzo3wm+EFgKvIT2cWnl94n8AbDNOff1hI+0vQToZPWi7SU4ZlZjZlP89yXAW/H6hq8Gftf/2vHbSnwb+l3gSf9qzMnqKuPyT/+V3OWcGzazm/B2THnA7c65LQFn60wyE7jX27eRD9zpnHvUzF4G7jGzPwb2A+/3v/8w3l3hdUAv8IfZz3LuMbO7gKuAajM7BPwz8CWSqAPnXKuZfQHvAAPwL8658d5gJmM4Sb1cZWYX4l3C3wd8HMA5t8XM7gG2AsPAJ51zUf93tI9LnzcAHwY2+X0rAT6DtpegnaxePqDtJTC1wI/MLA+vMfYe59yDZrYVuNvMvgi8indig//6EzOrw7s5+UY4dV1lmh41LSIiIiKS4EzvYiEiIiIicgwFyCIiIiIiCRQgi4iIiIgkUIAsIiIiIpJAAbKIiIiISAIFyCIiIiIiCRQgi4iIiIgkUIAsIiIiIpJAAbKIiIiISAIFyCIiIiIiCRQgi4iIiIgkUIAsIiIiIpJAAbKIiIiISAIFyCIi42Bml5vZ82bWYWatZvacmb3WzP7AzJ5NYzp/bWZ7zKzTzI6Y2TfMLD9dvy8iIqenAFlE5DTMrBJ4EPgvYBowB/g8MJCB5O4HLnbOVQLnAhcAf5mBdERE5CQUIIuInN4yAOfcXc65qHOuzzn3ODAE3Aq8zsy6zawdwMyKzOyrZnbAzBrM7FYzK/E/u8rMDpnZZ8ys2cz2mdnvxxNyzu12zrX7fxoQA5aMlSkzqzazB82s3W/VfsbMIv5n55jZb/3PtpjZuxLm+18z+46ZPeLn+zkzm2Vm3zSzNjPbbmYXJXz/ZjPbbWZdZrbVzN5zkvxcamZHzSwvYdp7zGxj8kUuIhIcBcgiIqe3E4ia2Y/M7FozmwrgnNsG/BnwgnOu3Dk3xf/+l/CC6gvxgts5wGcTfm8WUO1P/yhwm5mdHf/QzD5oZp1AM14L8vdOkq9PA4eAGmAm8BnAmVkB8ADwODAD+AvgjsQ0gPcD/+jnYwB4AXjF//sXwNcTvrsbuAKowms5/6mZ1R6fGefcGqAHeHPC5A8Cd54k/yIioaQAWUTkNJxzncDlgAO+DzSZ2f1mNvP475qZAR8D/to51+qc6wL+DbjxuK/+k3NuwDn3FPAQXsAaT+9Ov4vFMrwW6oaTZG0IqAXmO+eGnHPPOOcccBlQDnzJOTfonHsSr4vIBxLmvdc5t8451w/cC/Q7537snIsCPwNGWpCdcz93zh1xzsWccz8DdgGXnCRPd8XTMbMK4Dp/mojIpKEAWURkHJxz25xzf+Ccm4vXN3g28M0xvloDlALr/O4N7cCj/vS4NudcT8Lf+/3fOz7NXcAW4DsnydZXgDrgcf/Gvpv96bOBg8652HFpzEn4OzHo7hvj7/L4H2b2ETNbn7A85+K1NI/lTuC9ZlYEvBd4xTm3/yTfFREJJQXIIiJJcs5tB/4XL1B0x33cjBdgrnTOTfH/VznnyhO+M9XMyhL+Pgs4cpLk8oHFJ8lHl3Pu0865RcC7gL8xs6v935oX74+ckMbh8S3hKDObj9dqfhMw3e9Gshmvf/RYedqKF4xfi7pXiMgkpQBZROQ0zGy5mX3azOb6f8/D60bwIl7L61wzKwTwW22/D3zDzGb4359jZtcc97OfN7NCM7sCuB74uf/dP0mYbwVwC/Cbk+TrejNb4nfr6ACieDf1rQF6gb83swIzuwp4J3B3CotfhncS0OSn+Yd4JwancifwKeCN8eUSEZlMFCCLiJxeF3ApsMbMevAC4814N8k9idcN4qiZNfvf/394XR9e9G+2ewJIvEHuKNCG19J7B/Bnfqs0wBuATX46D/v/PxOf0R+RIj7qxVL/t7vxbrL7jnNutXNuEC8gvhavRfs7wEcS0hg3v0X4a/7vNwDnAc8l5OcKM+s+bra7gCuBJ51zzYiITDLm3c8hIiLZ4Lfm/tTvyywiIiGkFmQRERERkQQKkEVEREREEqiLhYiIiIhIArUgi4iIiIgkyA86A4mqq6vdggULgs6GiIiIiJwB1q1b1+ycqzl+eqgC5AULFrB27dqgsyEiIiIiZwAzG/NJn+piITJBu5u6eWhjfdDZEBERkTQJVQuyyGR09deeAuAd578j4JyIiIhIOqgFWUREREQkgQJkEREREZEECpBFRERERBIoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFMmDToQ5aewaDzoaIiIikQAGySAa887+f5V3//ewpvzMwHGVbfWeWcjS2xq5+WroHAs2DiIhI2ChAFsmQQ219p/z8H+/dzLX/+QyNnf0p/f7+lh62HOlIad64S/71N7zmi0+kPH8s5mjqSj3A3nCwndue3p3SvB29Qyy4+SH+97m9Kc2/4OaH+I9Htyc9X3P3AAtufoi7XzqQ9LzD0RgdfUNJzzcR3/rNLu5ZezDp+f7lga186u5Xk55vZ0MXmw8nv14ebO2lOUsna42d/fzV3a/SPxRNar7f7mhMqSxT0dQ1wJo9LUnPd/uze9nX3JPUPM3dA2w42J7UPM45vr26LukrZZsPd/DKgbak5knVr145xMHW3qykJblHAbJIQNb5B4nO/uGU5r/yK7/lHd86dSt1pn391zt57b8+kXKQf8O3n+PfHk4+SAWo7/ROQO5MIVCN++5vkw/O97d4B9y7X04+UPqHezdzwecfZzgaS2q+/qEoi255iPvWH046za//eid//4uNSc93+3N7uW/9kaTne9s3nub6/0p+vbziy6tZleTJ2nA0xoKbH+InL+5Par5/f2Q7/7f+SNKPiP+DH76cdFkORWO8/3svsHZfa1Lzvfvbz/F7t72Y1Dy9g8P8y4Nb+b3bXkhqvnd86xlu+PZzSc3z8r42vvLYjqTL4/r/epb3fuf5pObpGRjmR8/vwzmX1Hx/c8+GpJfrYz9ey/mfeyypefoGo/zqlUNJ5+/bq+uoa+xKah7JHgXIIgGxkXfJ7VTD5IltDQA0d2e/v7X5JZjkMWni6drpv3My977qBbjDseQy3dQ1QMzBlx/dkXriOajXbwH+j0eSO8maQBUmbX9LDy/tbeXvf5lcIHm4/dRXoMYS3xY6+5I76W7oTL7lPn6S1z2Q+SsiX3xoK/98/xZ+u7Mp6XmTbeF+fGtD0o0W//rwVv7mng28sHv8Lf59g1G+8tgOfue7yZ3MSPYoQBYJiFkwAV4muACC/Higmu2U48FVSulmMzI7A0y0OLOx7lgWV9SJnLwln5j3ko39V1uPF4T3DSbXJSZb4icYqVwNHBgO5zKJAmSRwEwo0AqJIIP8oGLN0YBnMtdcbkn20vZocJf5Ooyvp7GspOVvj1nYq4ymlXlZDfxTMJGrgdqNhJcCZJGATeYdZBiOW9kIcsZMN4V5Rk6Kko3nwlDQITRygpbsfFkN7rIfSGZjkwj7OpnN/UIkhYaCoK6AyfgpQBYJyOgOUrvIVATexSKFhFMNKkZb6rWuJEo1RstmcBcJ4IJDVoLxbCYWTyqkq3/Ej6SSvLVAQi7jAbKZvd3MdphZnZndnOn0RIKSbPAS1E1muSOYJqx0BFepnhRpVRlbij0sstMveILdHpLZr4x8NSstyFnszpFCY0I296up1LH2++GX0QDZzPKAbwPXAiuAD5jZikymKRKUVC+bT+YdZZCXWUfSDqj8UgkMUj0pCvnV7MAlWxfZvHoz0e08lVbJybBcSaUV9i1gImUxiff/uS7TLciXAHXOuT3OuUHgbuCGDKcpEohUb8JRF4vUBBUfp+NgrRpPj4mWY1a7PaSYVlItyH6JZCdojacZTtnMV7wPcjLHgJG6Cm0JSqYD5DlA4mj6h/xpI8zsY2a21szWNjUlP8ahSFgk29KTyo0dYRXkMmS7X+5EWs7i86Z8MpUD60o6pVr32WyRHF1fUstrai3I2aN+8ald4VGxhV/gN+k5525zzq1yzq2qqakJOjsiKUs26FEXi1GpHGSzOTrAWFIKkFOcVzd0nlrq5Zl5kQmup2Ht1xrE9hfWfeVE9uVhXSbJfIB8GJiX8Pdcf5pIzkl1Rxf24ZLGY6KBWzaDzXSZULJJ90HOgZUkA1K9J22iLfnZTCuV2bK7XBlParSPbxKzZLNlO5WxrrN4P6WkKNMB8svAUjNbaGaFwI3A/RlOUyQQZ+Jl83QFbqmUXVAnFhO9ZA4TGdEg5SRzW9Llkr3uTRMdrSaZ+UaCrlRvCEwi2o1k8RJY2E8PU3lgkrqmhF9+Jn/cOTdsZjcBjwF5wO3OuS2ZTFMkKKl2scgFE21Fmkzjh07kpGD0Zp4k09RDBcYU3+SS3fYiaTjJGa+JtrRms1tNzDki41y/I9lsQfYld8Ni9kzkKkE2WvslNRkNkAGccw8DD2c6HZGgJR30kPydz2GTrkAjpRbkLD5WN110k16auWNexi3VE5VUTLTOoklkcuLb4fi/m8rIDakK+w3NqeRvoq39knmB36QnkiuSflBIDrQKputGnYl0sYjFJph4qummkOeIf0aRzKXsRJP5ZCqTUm1BzkZ5jg69lr1RLFKVWgtoBjJynLA/KCQS8vxJahQgi6RJ8nfST/7HB6evBTn1ebNdfhNpzYrPG01y5lS7EuS6VMf9tQBakFMO4rMYISeTx0gW91+TpQU5qaoK6bLIKAXIImmSeitWBjKTJekKNJK5jHy8bJdfXiSebgotyH6dp7q82QyWJoNUA6ZsBnepjlaQysnURJcmmfUyMoHtIFmp9OPOZterVK4qTaauYWcqBcgiaZJ8H2RPbrQgT+x3JlIGybbGTlzqJwWp3O0O2X1C2mSSanCW1S4WfhrJntxMtDtOKlLrg5yhzIyZVjg3gFQaCkK6KJJAAbJImiQb5E30AQJhYGk6cKXSohpPMpXgOh0nJdlsQVYXi7GlWhojwWcWu1gkW3Uj60oyrZITHU0miQJJZezfVIW9MSEymsFxzxPOJZFECpBFJijVYZwsgD6G6Zaug2Rqj9NNvVU1HcfZVIL6VPsgx03iVSUjJvpwnmyecCTfBSt7QXxcSg+6yGILcnLjDGcoM2NIpa7CGuzLKAXIIhOUapCYzRuFMiWSpqE4JhKoZL+LReqBeap9X+PfVgvysVLtx5nNm75GWpCTnC/PUuhiMdF7AUI6ju9of+eMJ5WSVLqAhHRRJIECZJE0SflhBZN4V5muA1cqB9mRbgepdM9Ieo4x0p3A0HTRJIemiwfUio+Pk2oLcnz2lMejTv5mrFQfJJTUOMhZfOR7Nrv9pKsrVzJS2a+oD3JuUYAsMkGp3ng10UfQxgV5qS5dDzuZTKNYxKWS5zz/rCjlUSx0VD1GqqUx0ackpxIIJVvlI+tKEpnM5mgy2VwXUzmhmfA+KYn5U3n8/GRuGDlTKEAWSZOkW5D9rW/CN9YEuJ+daF/OiTzsYyLdDiZyUjGabvLzptodRzfpjS3lPsgjT2FMTXKtuv5rqn2Qs/okveRvCMxqH+Qk5pn4fnX8PzDS1SwJ2pTDTwGyyASNBj3JzTfRG7biJtL6OlETHYkjHcM3BbX8qY1iMbHlDWsfzKCk3gfZnz/lFuTkg9bkH2bivWazBTmZE9VYisuVilQemjLhG4eTKItUhg1UgBx+CpBF0iT1oCd7rT7pNtEn6cVPLlI5SZhIv9zg+yDr6JgOKRfjyIldaj+QSgty8utLvAV5/HNM9LJ9WK9QpDTO8ATTTKYsUstfOMtaRilAFkmT0YBtfDu+VC6hjiXIg9rIgSGFLhIwsSeaxedILbhOepYTpFJvqd5sFGQdh3k4qomemKW6aKmMTZzyMJBZaJVMZczlWJL7u4lIqSxS3CfFpdIHWS3IuUUBskiaxA+A493xpas1MdA+yP5ryt1EUhzVASZ2gJlI6006Li0nW2dB1nGqaWflMc6prnYTHJ0wueBrYt1AkmqtTrk8kj9RTXX4ulSk1Md3oiN6JNXFIoVxmpPMj2SfAmSRNEn20nu6HgQQ5OV6m2Ar+EQeNJJsi32iVFu8YWKtuSMnFEmWV5AtyLnYXzp+k16qEWU2nm4Xz2MqrbrJp+VJ5kR1oieKmX5q34T3q0ndpOe9JneCEeINRAAFyCITdvzltfHumFO5sWMsQT6JL5UbiRKN3KiY4TFHT5w39Zkn0nKW6tMTgzyYhnlIuom2IKe6DqXSBzlZqawrE04rqWHK4q+ZXz/ijwZPbpzm7HVdGx3ucvy/r/g4/BQgi6TJaIA83j1fesYQDsNNeqkGGhMZjzYepKSSdFCjZqRyIE3l++mUcj/dLGR6wpfRsxDcTbD3UZJdLFJsQU7hRHWiD69Jqo+v/5rMKjXxET2Sb0EO602OkhoFyCITdPwDP8a7j0ylj+FYsv+o5VETvdFwIkPdTeQSbzq6WEykhSrZ5Q3ywJvq+pWNLE/0prRsBP+pBuEpjYwwwWA8mzeZJTO/pTDqyMRH9Bj/d1N5WJRi6fBTgCySJsm2IKdjDGAIdkc7kS4SMNE+yCklmXJ66Zg31S4WEwnoJyrV5c3GiVvqXQqy+KCQibZkZqO1OoUrQSM3JaeWZJIP4vDTymIAmlwf5BRuctRteqGnAFlkoo47uIy7g8UEniKXKNAxddP2JL3UW5BTMbF5vdeJlPqkukkvxH2Qgzq5zGbQmo3HP4/cEJjNLhZJdWFIPn/ZvLcjtWHyks2RZJsCZJE0SbUFeaItbekIRFLuLuAmlof4XKkcLCZSbhOZN37gzGYLdpBXCVI9kGfj5tGUR08ZGeYtxdbxJNJN9QQ2XudJjZiRUkqJ9wKkEuClegKVzHe9L8cD0fHIZst9fFmSGY5ODwsKvwkFyGb2OTM7bGbr/f/XJXx2i5nVmdkOM7tm4lkVCafRhw74gVOSLcITflBIGi6/p3wQ9w+OqYxjDKPLntIoFhMot4mUWTxgScdYyuM1HGAfi9RHsUhzRsYwFE0xwPXny08m4kqQzLINpVh38f1JMuv54HBqaQ1Hk98OB/2NPpUxiiG55Ypvc5ZEWqmWRVwydRz16zib+ZPMy0/Db3zDOffVxAlmtgK4EVgJzAaeMLNlzrloGtITCaX4DrV/eHyr+aH2PiC11szeweGR96kGT83dAyPvh6KO/Lzk5nfOcbA19WUYjsboGfTKKpUgbGdDNwAVxcnvxnY0dCU9T9zWI50ATC0tTGq+geEoO/10kz2heOVAOwBlhclV0sZD7SPvYzE3MlzW6exv6Rl5P5REZnc3dY+8H05ivud3N4/7u4l+u7MRGG0BHY+B4SjP724BIC+JGesaR9eZ8Z7gOOd4fEsDAFNLC8ad1tGOfo509APj3zacczy0qX7cacQdbO0dCXbHe8IxHI3x0MYjANRUFI07rZf2to68Hxzn+tHRN8RTO5qA8bdwO+f4v/WHx52vuMTtZbzrfUffEKv9/I33fCsac9z76iEg9ZM0ybx0BMhjuQG42zk3AOw1szrgEuCFDKUnErh4i8gzu059sB8YjvKfT+xiw8F2ALr6h0/5/UQ9A8M8tuUo//Vk3ci0ZOYH6BuM8n/rD/Pfx/zGECXjDL6cc6zb38Z/r65j0+EOILnWkOFojKd2NvGt3+wamdY9MP5l2Nfcw/8+v4871uwHYNnMinHPe7C1lztfOsDtz+4Fxh9cO+fYeKiDH72wj1+94h14F0wvG9e8/UNR7l9/hO89vXvkJGowevqTKOccrxxo5/bn9vLQRi/wWTLOZd3b3MOPnt/HXS8dGJk2GI1RHDl1HR9o6eWOl/bz0xf2j0wbT93saermJy/u5+6XDo5M6+wfZkblyedxzrHpcAf/+9w+7t9wZDSfwzEK809+cXNgOMozO5v5wbN7eWGPF+gurD59XbR0D/DAhiN8/5m9HPZPTrtOs2zOObbWd3LHmgP8Yt2hY/J4Kt0Dw/xmWwM/eHYvGw9528hZ00pPm9aOhi5+ue4Qd6w5tt5Ol9YTWxv44XN72eCnNX/66dPacqSTn718kHvWjtZZV//QKedr6R7g4c1Huf3Zvext9k6iyopOvQ0NR2O8uKeVO9bs59EtR49Ja2Zl8Unn293UzX2vHuZHL+wfyVff0Km3m47eIR7dUs+PX9jPFv9EdmblqQP44WiMl/a2ctfLB0eCfoDOvlOXxa6GLu5bf4Qfv7CPXv9E/3T5a+ke4OFNXv52NXonk3OnlpxyHglOOgLkm8zsI8Ba4NPOuTZgDvBiwncO+dNOYGYfAz4GcNZZZ6UhOyLZldiPdldDF//ywBYACvMjOOeOeYzrb7Y18oWHtrK/pZffWzWPe9YdpK138JS/3z8UZfX2Rh7YeIQntzfSPxRjyYxy/uotS/nmE7toP82OHLwDx2+2N/DYlqM8tbOJ/qEY58+t4m0rZ/LD5/bR0TfEjFMcrGIxx7oDbTyy6SiPbq7nSEc/U0oLuPna5fzHo9tp6zn1MgxHY7ywp4WHNtbz2JajtPUOMWdKCX//9rP58qM76Og79fwHW3t5aFM9D248wubDneRFjPe9Zi77W3ppSmgJH0tT1wC/3trAfesPs2ZvK2Zw/fmzAXh8y9Fj6iiRc466xm4e3XyUhzcfZVt9JyUFefzpFQvZcqST1lMsc99glKd2NvHI5nqe3NZI18AwZ8+s4Ju/dyF/9bP1tPaMXWfxQPzhzfU8sukoB1p7qSjO55NvWkxdYzfbj5685XtPUzcPb6rnoU1eXgvyjHddMIezppXyjSd20tozyOwpJx6M42X70MZ6Nh3uIOKXz2sXTOWf7tty0qBpT1M3j2w+yiOb69l82EvvHefVcumi6dzyq010jLFexoPihzaNLl9pYR4fft18qsuL+MpjO2jtGWRW1bHr4lA0xrN1zTy4oZ7Htx6lq3+Ymooi/un6FWyv72T1jsYx89jaM8hjW47y0MZ6XtjTQjTmuPisKfz7e8/j//1y45gnl/Hg8eFN9Ty8qZ59Lb0U5kf4nYvn8vrF0/mLu16lZYy67x+K8uT2Rh7ceITfbGtkYDjGWdNK+fLvnM9zu5tZt79tzDzWNXbz4MYjPLixnrrGbiIG77xgNr9/6Xze/70XaOk+Ma2+wdG0ntzupTVvWglfeu95bDjUwWMJgejxy/WQv1z7W3opyDPee9Fcfuc1c3n/914Ys87ae70yfHBjPc/v9spwRW0lt37oYn6x7vDIyUai4WiMNXtbedDf3lt7BqkozuemNy1h6cwK/vKuV8dM60CLty4+sOEIW+s7MYOrl8/gr96yjD/44ctjbnOd/UP8dkcTD2w4wlM7mhiMxlhUXcZX33cBW450cM/LB0+YJxpzvLS3lYc2HeHRzUdp7h6kvCifj71xMZcumsYf/vDlMfMXX+cf2HCE7Ue7iBhcfc5M/uotS/nj/11L6xh11dozyJPbG3lgwxGerWsmGnMsn1XBf3/wItbsaeXBhKBcwuW0AbKZPQHMGuOjfwC+C3wBL0b4AvA14I+SyYBz7jbgNoBVq1ap17pMPv5ae7Ctl0/fs57C/Dw+eOls7lxzgN7BKGVF+Ww81M5XH9/J0zubWDKjnJ/88SVcsbSGZ+uaOdR24gFmcDjGM7u8nf6vtzbQMxiluryQ31s1j+svmM1rzprKgdZevvnELo6McYACaOzq59dbG3h081Fe2N3CcMwxs7KI96+ax3Xn1XLpwmk8V9fCD5/bx9HOfpYe1zoZb1l5ZPNRHt1ylKauAQrzI7xxaTWfftvZXHPuLMqL8vnBs3s52tl/Qvr9Q1Fe2NPC41uO8uhmLyguK8zj6nNmct15tbx5+QyGojG+/OgOGjqPDXKdc+xu6uGJbQ08svnoSGv7BfOm8I/vOIfrzqtl9pQSPnvfZjYf7jih+8CBll4e23KUx7YcZd2BNpzzWhn/9m3LeM/Fc5kzpYTvP72HBzYcoa13iGllXneJWMyx+UgHj/rLvKfJayW7+Kwp/MsNK3n3RXOoLC7gll9tYmt95zHpdvQO8dSuJh7dXM/q7U30DUWZWlrAtefN4j0XzeWyRdMA+LtfbKA+oc4Gh2O8eqCNx/26OtzeR37EeP2Saj5x1WLeecFsyory+fwDW3h6Z/NIC2s8r6u3e4F4PHi++CyvjK4/fzazqop5Yqt3if9QWx+zp5QQi3mtor/d0cjjWxtGWjgvmDeFz1y3nOvOq2Xu1FI2+1cHDrb28Zr53vqw4VAHT+9s4tHNR0e6qVw4bwq3XLuc91w8hxkVxSOXqQ+29vKa+VPpGRhm7f42nt7ZxGNbjnKozVu+Nyyp5pNvWszbV9ZSVVowEtTtaepmZmUR9R39vLyvldXbG/ntzibae4eoKM7nmpWzeMf5tVy+pJqCvAhffWwHbb1DNHT2U1lcwJ7mbp6va2H1jkbW7G0lGnMsmF7Kn125iOvOq2VFbSVmRk1FEXWN3XT2D9E/GGVLfSdP72ziye2N7G/pJS9ivH7xdD5+5WKuWTmLaWWFI11PNh/uYOXsSho6+3n1QDurtzfy3O5m+odiVJcXcuNrR7fTSMTY3dRNY+cAu5u6KcyLUNfYzXN1zTy5o5E9TT2YwSULpvHRd5/LtefOorq8iGjMkRcxNh3u4GBrLy09g2w42M7qHY28sLuFgeEY1eVF3Pjaebzzgtlc7Kd1tHMnbb2DvHqgjbKifHY3dvPc7mae2tnEwda+keX6xFWLeduKWUwtK6RvMErEYP3Bdi6eP5WmrgHWH2znqR1NrDvQRjTmOGtaKR9/4yKuP38259RWYGY8vauZF3Y3s+lQB1Hn2Hm0i2frmnlmVxNtvUOU+tv7O86bxVVnz6C4IG9kvXq+roXCvDwOt/eybn8bq3c0Uee3ql501hQ+e/0KrjuvduRkaUZFEVuOdLLhYDud/UNsPtzJM7uaeGlvK8Mxx6zKYj7yuvm868LZnDenCjOjtWeAnsEoT25voLyogLrGbl7Y08Izu7z1qaQgjzefM4Prz6vlqrNnUFKYN7I/fa6uhcqSAuo7+nn1QBurtzeyr6UXgFXzp/L5d63k2vNmMaPCz19lEZuPdPLS3lY6+4bYcsTL3ysH2og5mDOlhI+9cRHvumA2y2d55benqYe23iF+s62BAn+9eGlvK6VFeXz9/ReOsVeXbLJ0PcLUzBYADzrnzjWzWwCcc//uf/YY8Dnn3Cm7WKxatcqtXbs2LfkRyZal//DwSN+9yuJ87vrYZTR2DvCH//syb10xk/beQV7e18aU0gL+4s1L+cjr5lOQ511CvuVXG/nFukN89voVnFNbyZ6mHp7a1cTTO5roGhhmSmkB1547i3eeP5tLF00nLyEIdM5x+X+sprggwrc+cBFzp5Syu7mb53Y189ud3o7ZOVgwvZRrzp3F21fO4oK5U44JJLv6h3jNF5/ggrlV3HLdORTn57GtvpOndzXx9E7vIFdSkMebltfw9nO9oLb8uEuqn7hjHU/taOKW687hrGml7GmKH4SavROE+EHy/FquXFZDccGxl/nf8a1naOwa4ONvXERJYR7b672DbPwS7nlzqnjH+bW847xa5h13mfr+DUf4y7te5W0rZnLunCrqO/p5aW8Lu/3AdkVtJW9bOZNrVs4aOSjFrT/Yzru//RwXzK3ignlTaOwc4OV9rbT0DJIXMS5bNI23r5zFW1fMOqFF8771h/nU3eu5cN4U5kwp4UBrL1uOdBBzXp/Ma1bO5NpzvZOQ/Lxjuwt8+AdreHFPCxefNZWhaIztR7voHYxSmBfhiqXVXHteLW89ZyZVx/VZ/c22Bv74R2uprSpmWlkhB1p7R1pAV82fynXn1XLtebOorTq2lbitZ5DXf+lJwLvc3Ng1MHJJ+IK5Xtlee+6JZTscjfH6Lz1Jc/cA08qK6OgbZCjqMIPXLpjGtefO4pqVs05olR6Kxrj8P56koXOAssK8kX7mhfkR3rB4OtedV8tbV8xkynF9uDt6h3jDfzxJ98AwZqOjEEwvK+TKs2u47txarlhWTdFxneVfOdDGe7/zPMc7e2YFV58zg3ecPxoUJ/qv3+zia7/eecy0ovwIly2aztv9ZYufOMU557j2P585oSV/3rQS3nz2DN62chaXHbedAqzd18r7vvfCMSMrFOZFuHTRNK5ePoNrz6sds7vBn/90HY9sPrY1eMH0Ut60fAZvPWfmCfsEgC1HOrjhv59jOKHvcmlhHq9fXM1bzvHyePxyAfzJj9byxLaGY6atnF3Jm86ewdtWzhwJOhM9u6uZD9++5pjlqi4v4splNbzlnBkjQWeiaMzxtm88NbKNJpbFm86ewVtXzDxhXQT47m938x+Pbj9m2rKZ5Vx9zkyuXj5j5AQh0Z6mbq771jP0D412U4nn783LZ/Cm5TWUFp7YTvi+W5/n5X2jLf6F+RFev3g6b14+g6vPmcmcMa7E/ODZvXzhwa3HTDt3TiVXL5/J1efMGLP8djV0cf1/PcvAGF12dv/bdSfUrWSGma1zzq06YfpEAmQzq3XO1fvv/xq41Dl3o5mtBO7E63c8G/gNsPR0N+kpQJbJaMHND428v+NPLuUNS6qJxhy3/GojT2xrZFZlMe+8YDYfuuwsKoqPDXpaewb50x+vPebya01FkXcgWzGLNyypPmV/zOfrmvn4T9ad0JfyvDlVvOWcmbz93Fksm1l+yrurf/XKIW751aZjdtLV5YW8cVkNb1sxkyuXnXiQS3SwtZeP/2QdW+s7R6bVVhVz9TneweR1i6afEBQn2ny4g7/9+YaRoKO8KJ+L50/lrefM4C0rZp4Q8CWKxhxffXwHP3v54Mhl3FXzp/KGJdVcs3LWmAfaRHes2c9PXtjPkfY+ppcXcdG8Kbx+STVXL5/B1DGCiLhYzHHbM3t4dPNROvuGmFVVzGsXTOOKpdVcdNbUUx7YGjr7+a8nd7HjaBf5kQhLZpRz+dJqXr94+gnrRyLnHL965TBP7mikd2CY2VNKeO2CaVy+tJrq8lP3s1x/sJ1fvXKI1p5BaiqKOG9OFW9cVnPa+fY29/DLdYdo7h5galkh58+p4nWLp58Q3B7vQEsv9284TGvPENPLCzl3ThWXLpx2yvUAvBvhHt/aQM/AMLMqizlv7hTOn1N12psL1+1v4+V9XmvxvGmlvHbB1FOuN+CtO7/Z1sCBVq8LxZKaci6eP/W0eWzvHeSJbY30Dg4ztdRbtgXTS087gsGWIx0jracLppdx3tyqMYOzRP1DUZ7e2URH3xCVJQWsqK087ToNXmC46XAHZsZZ00pZUVt5yv1IPK0X9rTQMzDMlJJCltdWnHb9AK/O6hq7yY9EWFhTxsLpZaetr67+Idbub2M46phRUcTZsypOW+7x7kfN3QOUFOaxfFblmIH+8Ro6+9lW30nEjAXTy5g7teS0+esfirL+YDtD0RjTy4pYMqP8tOUHsP1oJ01dA5QW5rNsZvkpt+e4xs5+6pq88lswvZQHN9bzLw9uZf1n33ra7UzSI1MB8k+AC/EuMu8DPp4QMP8DXneLYeCvnHOPnO73FCDLZNM7OMyKzz4GwJ9duZibr12e9G/E+wY2dw8wd2opi6pPf4BJ1NI9wG+2NdLZP8TcqV7QNH0cB7ZErT2DvORfjl48o4xlMyqSyoPXJaKb9t4hZk8pobaqOKkhj8AbVWMoGmNGRXFKLSenu7lLRCTsfrnuEJ/++QZW/+1V47r5VCbuZAHyhG7Sc859+BSf/SvwrxP5fZGwi7d6fu/Dr+GalWN11T89M+PcOVUp52F6eRHvf+28lOcHmFZWyNvPTS3/4C3DkhnjH01iLONprToVBcciMtktqPauEOxu7FaAHDAdUUQmID6U0MrZpxjPSkREZBzOnuUdS7YldFmTYChAFpmArUc6qCopGPOmDRERkWSUF+WzZEY5L59kWEDJnjM+QO4bjPLJO185ZhB4kfHaeqSTlbNPvENeREQkFZcvqealvS30n+bBI5JZZ3yAXFwQYduRTn7w7N6kHqkqMuwP0bWiVt0rREQkPd64rJr+oRgv+k+KlGCc8QGymfF315zNtvpOPnvf5nE/613kYFsfA8Mxls2a2M1pIiIica9fXE1VScHIY+0lGGd8gAxw7Xm1fOKqxdz10kE+e98WhtWSLOOwz3+QxeIa3WksIiLpUVyQxw0Xzh55TLcEQwGy7++uOZuPvXERP3lxPx/6wRoO+I+UFDmZPX6AvGC6AmQREUmfj7xuPoPRGN97anfQWTljKUD2mRmfue4cvvK757P5cCdv++ZTfOHBrTR09gedNQmpAy09VBTlj+tpTiIiIuO1ZEYF775wDj98fh91jV2nn0HSTgHycd63ah6//ps3ct25tfzv8/t4/Zee5KO3v8Q9Lx/kYKtalWVUe5/3GF2NYCEiIul2y3XLKSvM4y/vWk/3wHDQ2TnjTOhR0+kWtkdN72/p4WcvH+S+9Uc43N4HwOyqYpbXVrJkRjkLppcxo6KImooiqiuKKCvMo7ggj6L8SFqCJucczkHMORz+q8P7jyPmvO/EHDDm9/zvJHw3U9Wd7hgxE0Fnun/xb3++ga7+YR74i8vT/MsiIiKwensjf/LjtbzmrKnc+uHX6IplBpzsUdMKkMfBOceuxm5e2N3C2v1t7GroYk9TD4MnuZnPDIrz88iLjIZkxwdn4wp6JfTeuKyGH//RJUFnQ0REctQDG47w6Z9vYFppITdfu5zrz68lPy/YDgDOOQaGY/QPRekdjNI3FGUoGmNw2P/vvx+KOv/vKEPDjoFojKFjPvdey4ry+curlwayLAqQ02w4GqOha4DmrgEauwZo6R6gb8hbSfr9lSUe5B5fxA5HxIyIeS2lZmDE/4aImTed+HtO+V2O+Z7/nfjvJ3w3/pvplpE1KAM/6tL8o87BJQunsaimPK2/KyIikmjToQ5uuXcjmw93MqOiiLefO4tVC6axpKacOVNKqCzJP+bKq3POC06jMXoHh+kb9ALZ3sEofX6Mkjg9/nf88/g07/1wwndG54+moSXPDArzIsybVsoTf3PlhH8vtTwoQBYRERGZlGIxx6+3NfDztYd4fnczvYPHPmmvMD9CYV7Ea5WNxpLuUhkxKC3Mp6Qwj9LCPEoKvNfjp8Xflxbmj3ynuCBvJP3C/AgF/mv8b2+aUZgfoSgvj4J8ozAvQl7EAr+P52QBcn4QmRERERGR8YtEjGtWzuKalbNGnuR6oLWXI+19dPYPMzAcZXA4NhKUFvmBaUlCIFtSmEdpwbFBb3x6YV567p/KFQqQRURERCaR/LwI586p4tw5VUFnJWdpmDcRERERkQSh6oNsZk3A/oCSrwaaA0pbxqY6CSfVS/ioTsJJ9RJOqpfwCbJO5jvnao6fGKoAOUhmtnasTtoSHNVJOKlewkd1Ek6ql3BSvYRPGOtEXSxERERERBIoQBYRERERSaAAedRtQWdATqA6CSfVS/ioTsJJ9RJOqpfwCV2dqA+yiIiIiEgCtSCLiIiIiCRQgCwiIiIikuCMD5DN7O1mtsPM6szs5qDzc6Yxs31mtsnM1pvZWn/aNDP7tZnt8l+n+tPNzL7l19VGM7s42NznBjO73cwazWxzwrSk68DMPup/f5eZfTSIZcklJ6mXz5nZYX97WW9m1yV8dotfLzvM7JqE6drHpYmZzTOz1Wa21cy2mNmn/OnaXgJ0inrR9hIQMys2s5fMbINfJ5/3py80szV++f7MzAr96UX+33X+5wsSfmvMuso459wZ+x/IA3YDi4BCYAOwIuh8nUn/gX1A9XHTvgzc7L+/GfgP//11wCOAAZcBa4LOfy78B94IXAxsTrUOgGnAHv91qv9+atDLNpn/n6RePgf87RjfXeHvv4qAhf5+LU/7uLTXSS1wsf++Atjpl722l3DWi7aX4OrEgHL/fQGwxt8G7gFu9KffCvy5//4TwK3++xuBn52qrrKxDGd6C/IlQJ1zbo9zbhC4G7gh4DyJVwc/8t//CHh3wvQfO8+LwBQzqw0gfznFOfc00Hrc5GTr4Brg1865VudcG/Br4O0Zz3wOO0m9nMwNwN3OuQHn3F6gDm//pn1cGjnn6p1zr/jvu4BtwBy0vQTqFPVyMtpeMsxf57v9Pwv8/w54M/ALf/rx20p8G/oFcLWZGSevq4w70wPkOcDBhL8PceqNStLPAY+b2Toz+5g/baZzrt5/fxSY6b9XfWVPsnWgusmem/zL9bfHL+Wjesk6/xLwRXgtY9peQuK4egFtL4ExszwzWw804p0E7gbanXPD/lcSy3ek7P3PO4DpBFgnZ3qALMG73Dl3MXAt8Ekze2Pih867xqKxCAOkOgiV7wKLgQuBeuBrgebmDGVm5cAvgb9yznUmfqbtJThj1Iu2lwA556LOuQuBuXitvsuDzVFyzvQA+TAwL+Hvuf40yRLn3GH/tRG4F28jaoh3nfBfG/2vq76yJ9k6UN1kgXOuwT/oxIDvM3qpUfWSJWZWgBeE3eGc+5U/WdtLwMaqF20v4eCcawdWA6/D62aU73+UWL4jZe9/XgW0EGCdnOkB8svAUv+uykK8juH3B5ynM4aZlZlZRfw98DZgM14dxO/q/ihwn//+fuAj/p3hlwEdCZc1Jb2SrYPHgLeZ2VT/Mubb/GmSRsf1uX8P3vYCXr3c6N8JvhBYCryE9nFp5feJ/AGwzTn39YSPtL0E6GT1ou0lOGZWY2ZT/PclwFvx+oavBn7X/9rx20p8G/pd4En/aszJ6irj8k//ldzlnBs2s5vwdkx5wO3OuS0BZ+tMMhO419u3kQ/c6Zx71MxeBu4xsz8G9gPv97//MN5d4XVAL/CH2c9y7jGzu4CrgGozOwT8M/AlkqgD51yrmX0B7wAD8C/OufHeYCZjOEm9XGVmF+Jdwt8HfBzAObfFzO4BtgLDwCedc1H/d7SPS583AB8GNvl9KwE+g7aXoJ2sXj6g7SUwtcCPzCwPrzH2Hufcg2a2FbjbzL4IvIp3YoP/+hMzq8O7OflGOHVdZZoeNS0iIiIikuBM72IhIiIiInIMBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiEgKzGyfmb0li+n91sz+JAO/u8DMnJnlp/u3RUQmKwXIIiIZYGYLzSxmZt8d4zNnZj1m1m1mh83s62aWF0Q+j2dm7zez582s18x+G3R+RESCoABZRCQzPgK0Ab9nZkVjfH6Bc64cuBr4IPCn2czcKbQC3wS+FHA+REQCowBZRCR1rzWzrWbWZmY/NLNiADMzvAD5H4Eh4J0n+wHn3HbgGeDcxOlm9lYz225mHWb234Ad9/kfmdk2P+3HzGx+wmfOzP7MzHaZWbuZfdvPE2aWZ2ZfNbNmM9sDvOO4/DzhnLsHOHKqBTezIv+3z02YVmNmfWY241TzioiEnQJkEZHU/T5wDbAYWIYXEANcDswF7gbuAT56sh8wsxXAFcCrCdOqgV/5v1cN7AbekPD5DcBngPcCNXgB9l3H/fT1wGuB84H3+/kEr6X6euAiYBXwu0ktsc85N+Dn8QMJk98PPOWca0zlN0VEwkIBsohI6v7bOXfQOdcK/CujweJHgUecc23AncDbx2hVfcXM2oAHgP8Bfpjw2XXAFufcL5xzQ3hdHo4mfP5nwL8757Y554aBfwMuTGxFBr7knGt3zh0AVgMX+tPfD3wzId//PoHlvxO4MeHvD/rTREQmNQXIIiKpO5jwfj8w28xKgPcBdwA4514ADuAFj4kuds5Ndc4tds79o3MulvDZ7MTfds6549KaD/yn38WhHa/fsAFzEr6TGFD3AuVj/baf71StBkrN7FIzW4AXhN87gd8TEQkFBcgiIqmbl/D+LLx+u+8BKoHvmNlRMzuKF7ietJvFGOoTf9vvP5yY1kHg4865KQn/S5xzzyf7236+U+Kci+J1IfmA//9B51xXqr8nIhIWCpBFRFL3STOba2bTgH8AfoYXCN8OnIfXonohXv/hC8zsvHH+7kPASjN7rz8+8V8CsxI+vxW4xcxWAphZlZm9b5y/fQ/wl36+pwI3J37o38RXDOQDETMrNrOCU/zencDv4fXHVvcKEckJCpBFRFJ3J/A4sAfvRrpv4w3b9k3n3NGE/+uARzn1zXq3mtmtAM65ZrxuGl8CWoClwHPx7zrn7gX+A7jbzDqBzcC148zz94HHgA3AK3g32iX6MNAHfBfv5sE+f554PrvN7IqEvKwBevC6bjwyzjyIiISaeV3bREREREQE1IIsIiIiInIMBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSID/oDCSqrq52CxYsCDobIiIiInIGWLduXbNzrub46aEKkBcsWMDatWuDzoaIiIiInAHMbMyniaqLhYhIDnHO8fzuZlp7BoPOiojIpKUAWUQkh9z+3D4++P01fPT2l9A49yIiqVGALCKSI2Ixx/88sweATYc72HKkM+AciYhMTgqQRURyxNr9bdR39PP5d60EYPX2xoBzJCIyOSlAFhHJEWv3twLw7gvnsHRGOa8caAs4RyIik5MCZBGRHLHhYDuLqsuoKi3gorOm8OrBdvVDFhFJgQJkEZEcsauhm+W1FQBcMG8K7b1DHGrrCzhXIiKTjwJkEZEc4JzjcHsfc6aUAHBObSUA2+p1o56ISLIUIIuI5IDWnkEGhmPM9gPks2d6Lcnbj3YFmS0RkUlpQgGymX3OzA6b2Xr//3UJn91iZnVmtsPMrpl4VkVE5GTqO/oBqK3yAuSyonzmTy9l+1G1IIuIJCsdj5r+hnPuq4kTzGwFcCOwEpgNPGFmy5xz0TSkJyIix+noGwJgSmnByLRzZlWyvV4tyCIiycpUF4sbgLudcwPOub1AHXBJhtISETnjdfV7AXJF8Wi7x/LaCva29NA3qLYJEZFkpCNAvsnMNprZ7WY21Z82BziY8J1D/rQTmNnHzGytma1tampKQ3ZERM48nf3DAFQWj7YgL59ViXOws0GtyCIiyThtgGxmT5jZ5jH+3wB8F1gMXAjUA19LNgPOuducc6ucc6tqamqSnV1ERIBuP0BObEE+xx/yTSNZiIgk57R9kJ1zbxnPD5nZ94EH/T8PA/MSPp7rTxMRkQzo8gPksqLR3fq8qaWUF+UrQBYRSdJER7GoTfjzPcBm//39wI1mVmRmC4GlwEsTSUtERE6uq3+IkoI8CvJGd+uRiHFObQVbjihAFhFJxkRHsfiymV0IOGAf8HEA59wWM7sH2AoMA5/UCBYiIpnT1T98TPeKuJWzq7hn7UFiMUckYgHkTERk8plQgOyc+/ApPvtX4F8n8vsiIjI+XQNDYwbIK2ZX0jsYZW9LD4trygPImYjI5KMn6YmI5ICu/mHKE0awiFs523vktLpZiIiMnwJkEZEc0NU/TOUYLchLZ1RQmBdhy5GOAHIlIjI5KUAWEckBXf1jd7EozI+wbFY5W9WCLCIybgqQRURyQFf/MBVFJ3axAFhZW8WWI50457KcKxGRyUkBsohIDugeGHsUC4Dz51XR2jPIgdbeLOdKRGRyUoAsIjLJDUdj9A5GKT9JgPzaBdMAeHlfWzazJSIyaSlAFhGZ5LoH4o+ZHruLxZKaciqL81m7rzWb2RIRmbQUIIuITHLxx0yfrItFJGKsWjCNtfvVgiwiMh4KkEVEJrnO/iGAMYd5i1u1YCp1jd209gxmK1siIpOWAmQRkUmu229BLj/JKBYAly70+iG/sLslK3kSEZnMFCCLiExyp+tiAXDB3ClUFOfz9M6mbGVLRGTSUoAsIjLJdQ14XSxOFSDn50W4Ymk1T+1s0njIIiKnoQBZRGSSG21BPnkXC4Arl9VwtLOfHQ1d2ciWiMikpQBZRGSSG08XC4Arl80A4DfbGjOeJxGRyUwBsojIJNfZP0RhXoSi/FPv0mdVFXPxWVN4cGN9lnImIjI5KUAWEZnkuvq9x0yb2Wm/+84LZrOtvpO6RnWzEBE5GQXIIiKTXDxAHo93nFeLGdy/Qa3IIiInowBZRGSS6+ofOu0NenEzKou5fEk1v1h7kGhMo1mIiIxFAbKIyCSXTAsywO9fOp8jHf38ZltDBnMlIjJ5KUAWEZnkvBbk8QfIbzlnBrMqi/nJi/szmCsRkclLAbKIyCTntSCPr4sFeA8N+dBlZ/HMrma2HOnIYM5ERCYnBcgiIpNcsl0sAD78ugVUFOfzrd/sylCuREQmLwXIIiKTWDTm6B4YpjKJFmSAqpIC/ugNC3lsS4NakUVEjqMAWURkEuseGN9T9MbyR5cvZEppAV94cCvOaUQLEZE4BcgiIpNYV/8QQNItyOC1Iv/t287mxT2terqeiEgCBcgiIpNYZ1/qLcgAH7jkLFbOruSLD22lvXcwnVkTEZm0Jhwgm9lfmNl2M9tiZl9OmH6LmdWZ2Q4zu2ai6YiIyIniLcjJjGKRKC9i/MfvnE9L9yD/cO9mdbUQEWGCAbKZvQm4AbjAObcS+Ko/fQVwI7ASeDvwHTPLm2BeRUTkOF39E2tBBjh3ThV//dZlPLSpnl++cjhdWRMRmbQm2oL858CXnHMDAM65Rn/6DcDdzrkB59xeoA64ZIJpiYjIcboG4i3IqQfIAH925WIuXTiNf7h3ExsPtachZyIik9dEA+RlwBVmtsbMnjKz1/rT5wAHE753yJ92AjP7mJmtNbO1TU1NE8yOiMiZZbQFObUuFnF5EePbv38x1eVFfOzH62js7E9H9kREJqXTBshm9oSZbR7j/w1APjANuAz4O+AeM7NkMuCcu805t8o5t6qmpialhRAROVN19vmjWJRMrAUZoLq8iO9/ZBWd/UN8+Acv0dajm/ZE5Mx02gDZOfcW59y5Y/y/D69l+FfO8xIQA6qBw8C8hJ+Z608TEZE0ausdorQwj6L89NzmsWJ2Jd//yCr2tvTw0R++NHIToIjImWSiXSz+D3gTgJktAwqBZuB+4EYzKzKzhcBS4KUJpiUiIsdp6x1kamlhWn/zDUuq+e7vX8zWI5186H/W0NI9kNbfFxEJu4kGyLcDi8xsM3A38FG/NXkLcA+wFXgU+KRzLjrBtERE5DjtvUNMLZtY/+OxXH3OTG790GvYfrSL9936Agdbe9OehohIWE0oQHbODTrnPuR3ubjYOfdkwmf/6pxb7Jw72zn3yMSzKiIix2vtSX8LctxbVszkjj+5lObuAd773edZu681I+mIiISNnqQnIjKJtWegi0WiVQum8cs/fz1lhXnceNuL/PiFfXqYiIjkPAXIIiKTmNeCnP4uFomWzqzgvpsu58plNXz2vi385d3r6ejVzXsikrsUIIuITFLD0Rid/cNMLctcC3JcVUkB3//IKv72bct4ZFM913zzaZ7ZpbHrRSQ3KUAWEZmk2vxW3GlZCJABIhHjpjcv5d5PvIGyojw+/IOX+PtfbKBV4yWLSI5RgCwiMkk1+E+7m1lZnNV0z5tbxUN/eQUfv3IRv3rl/7d353F2lvX9/1+fs81klmSSzJCQBRIggIAmhLBYFmVR4xr1RymIlVr7pVqrtrWLWB9fW78/2mpbtX5RKCJoWxEoglJbNwSFYgUS1kBAkpCQhOzbZNazfb5/3PeZuefMmWyz3OfMeT8fj/M4933d133dn3OuzJ3Puc5132cLF//Dz/n2oxspFDU3WUQmByXIIiI1auv+IEE+dtrEJsgAjekk1731NfzXJy7k1Nmt/OW9q3n7Vx7mZ2u26yI+Eal5SpBFRGrUtv29AMyOIUEuOXlWK3dcex5fuepMenMFPvStlVx+0//wy3W7lCiLSM1SgiwiUqO2dfaRShjtzQ2xxmFmvGvxHO7/kzfwN+95LZv39vC+rz/Kiq8+wn88/Sr5QjHW+EREjlQq7gBqXaHo9GTz9OYK9GWL9OYKZPPBfwZm4QPDDBpSCaZkkjSmkkzJJGlIJTCzmF+BiNSqDbt6mDt9ColEdZxH0skE7zv3ON67dC7ffWIztzz8Mh/7zpPMmz6Fq845jsvPmjfh86VFRI6GEuRD6O7Ps35nN+t3dbFuRxcbdvew40Afu7uy7OrqH7iK/GhNSQfJcktDitbGFFMb08HzlPSw9akD62mmTknRGm5LJ/VFgEg9WrOtk1NmtcYdxjCN6SRXn3s8V519HPev2c43/vtl/v7HL/LFn/6ai0/p4DeXzecNJ3fQmE7GHaqISEVKkIFnN+8nVyyytzvLht09bNjVzbqdXazf2c228CpxgITBvOlNzJrawEnHtHDuCTOY2dxAa2OKxnSSKekkjekkmVSQsLo7wUXdwXM2H4ww9+UK4Yhzgb58kZ5sngN9waOzN8fG3T109uU40Jenqz9/yPinpJMVk+pSIj21MUiuyxPrUr3mTKpqRqBE5PDs68myYVc371o8J+5QRpRIGG8+fTZvPn02L+/q5q6Vm7h71WbuX7OD5kySi089hreecSxvPKWD5gb9dyQi1UNnJODym35Jf35wjlxrY4oTOlr4jZNmcmJHCyd2NHNCRwvHz2yiITWxIx6FotPVl6ezLxc8evMc6MvR2Rc+h+sHwjoH+vLs7cnyyp6ege3ZQ8z/MwuS7KZMMJodjGqnaCorC5ZTNGWC5YZ0kkzSyKQSZJLBB4N0uN5QoSyTStCQTJJOGcmEkUokSBiaZiJyhIpF5+aH1lN0uPiUY+IO57AsbG/mL5afyiffdDK/XLebH67exk+e28YPntlKJplg6fFtXLiogwtOaueMudNI6kO7iMTIqukq42XLlvnKlSsn/LgPvrgDHKY1pVkws5npTelJlbT15QoDyXNplPpAKcEOy3uzBXpyheA5m6cnGyz3DpQVBuZa5wpj+28mmTCSFiTNyYSRMEglEyTMSCUGywceYd1EYnB+twGYYTCwbkPWg8Ih6wyfJ86w/Yaq9MrL/4TK6xzO39jwNobvM6zO0ewzrEKFWMoKj+T1+UBZhbph4fA6Xl5l2P6V3sPy/aNVyvfz8g0Hq3OQtit1Zfn+Q+Mo279CHUasM/L7Wig6Xf153nPmXL70W0uGB1UjCkXnsZf38OCLO3j4pV2s2doJBIMUi+e1sWR+G2ceFzzPbIn3QkSpP+5OoRh8A1x0xz34mw6eI98SVygPnsNzwED50HrF4uDf/kj7M6R8sF4pniPeP4z5YHGV9g8aH3oei56nouc+j+wwtM5A6UD7RPYttduYTrL8jNmj6a6jZmar3H3ZsHIlyHKkcoXBqSK5gpPNFwcfhQLZvJMtDJblwuX+SFkxPPHki06x9OxOvhA+F4sUigzdNlA33OZediKK/MFG/+DL/vip8Adb3g6R9fLPShU/OpVVKq9T6fPW8DoHb6NSO1Ze67COc4g2KtU5xD4VX19YaBXq2WHUIfIhZuR2yupEKg3EWHH/ocetfIyy2MqOWfn1HKROeUNHun9ZXIvnT2PF4rmTanrUrq5+Hlm7i0df3sNTr+zjxe0HBn58pL2lgZNntXDyrFZOOqaFk45pYW7bFI6d1khK12EctWIxOF/3R87VpfN2f75ItlAkV3oOt+eL4fm7MHgeL7hTKES2DXkuDjnXD5QXhm4vRB7R9VIyWHQPH5Hl4mCyWPAKdYtD9ysliBXbLasrE2fOtEZ+ed2lsRxbCbKIiNSUnmye1Vs6eWbzPl7cdoBf7+hi7fYDdGcLA3WSCWP21Ebmtk1hTlsjM1samNGcYWZzJnhuyTBtSobmhiTNDcHUsYlOqEtJaK5QJFfwwUS0MDQpHTqw4OGAQ5FsZCAium/0uVI7uUJ0OWijv6yNifj1w9K3f6khz4nB9eTQbxFTyWB70oJ9zYLtiQQkLFhPGCQjy4nI9kSkbKBuoqyuBXPky+smy44RrRv9xtLCbTD8W0ezkb7ZHCxPWPRbzUidg36jaeFxgSGxDN+/YtsEr4WyWKLxWlnb0RiItMNA3crl0Q/70Q/5pfYH9wmkkwnmz2gaxb+yozdSgqw5yCIiUpWaMinOWTiDcxbOGChzd17d38f6nV1s2dvLln29bNnby+Z9vazcuJc93Vl6Igl0JQ2pBM0NKaaEF1WXkrZSYpaKJHMDo4leeSTSCUZSR0p+c+Eo61hKGOH1HaXrPRKkw+dSeSZ8jW3J4eUNkWtDSmWZsueB8rJt6WSw78B1JAlIJQbfw2QymgjrOhOpXUqQRUSkZpgZc9umMLdtyoh1+nIFdndn2dOVZXd3P/t7c/RkC3T3B9dbdIfXVHT3F8iFo6j5YpF8+JV/aTlXKA6MniUSRjoccSyNLpZGAhMJiySQFiaRpUQ0fKQskmBGLl5ODk1Go/sNlhkNkYueNaVEZPwpQRYRkUmlMZ08ZBItInIw+hgqIiIiIhJRVRfpmdlOYGNMh28HdsV0bKlMfVKd1C/VSf1SfdQn1Un9Un3i7JPj3b2jvLCqEuQ4mdnKSlcxSnzUJ9VJ/VKd1C/VR31SndQv1aca+0RTLEREREREIpQgi4iIiIhEKEEedHPcAcgw6pPqpH6pTuqX6qM+qU7ql+pTdX2iOcgiIiIiIhEaQRYRERERiVCCLCIiIiISUfcJspktN7MXzWytmX0q7njqiZndamY7zGx1pGyGmf3UzF4Kn6eH5WZmXwn76RkzWxpf5JOXmc03swfN7Hkze87MPhGWq19iZGaNZvaYmT0d9stfh+ULzezR8P2/08wyYXlDuL423L4g1hcwiZlZ0syeNLMfhOvqk5iZ2QYze9bMnjKzlWGZzmExM7M2M7vbzF4wszVm9vpq7pe6TpDNLAl8FXgrcBpwlZmdFm9UdeWbwPKysk8BP3P3RcDPwnUI+mhR+LgWuHGCYqw3eeCT7n4acB7w0fBvQv0Sr37gEndfDCwBlpvZecDngS+5+0nAXuBDYf0PAXvD8i+F9WR8fAJYE1lXn1SHi919SeTeujqHxe+fgB+5+6nAYoK/m6rtl7pOkIFzgLXuvt7ds8AdwIqYY6ob7v4QsKeseAXwrXD5W8C7I+X/4oFfAW1mduyEBFpH3H2ruz8RLh8gOIHNRf0Sq/D97QpX0+HDgUuAu8Py8n4p9dfdwKVmZhMTbf0ws3nA24FbwnVDfVKtdA6LkZlNAy4CvgHg7ll330cV90u9J8hzgU2R9c1hmcRnlrtvDZe3AbPCZfXVBAu/Aj4TeBT1S+zCr/KfAnYAPwXWAfvcPR9Wib73A/0Sbt8PzJzQgOvDl4E/B4rh+kzUJ9XAgZ+Y2SozuzYs0zksXguBncBt4ZSkW8ysmSrul3pPkKWKeXAPQt2HMAZm1gJ8F/gjd++MblO/xMPdC+6+BJhH8O3XqfFGVN/M7B3ADndfFXcsMswF7r6U4Gv6j5rZRdGNOofFIgUsBW509zOBbganUwDV1y/1niBvAeZH1ueFZRKf7aWvUcLnHWG5+mqCmFmaIDn+trvfExarX6pE+LXkg8DrCb52TIWbou/9QL+E26cBuyc20knvfOBdZraBYHreJQRzLNUnMXP3LeHzDuBegg+UOofFazOw2d0fDdfvJkiYq7Zf6j1BfhxYFF51nAGuBO6LOaZ6dx9wTbh8DfD9SPkHwitbzwP2R76WkTESzon8BrDG3b8Y2aR+iZGZdZhZW7g8BXgTwfzwB4HLw2rl/VLqr8uBB1y/CjWm3P06d5/n7gsI/u94wN2vRn0SKzNrNrPW0jLwZmA1OofFyt23AZvM7JSw6FLgeaq4X+r+l/TM7G0E88iSwK3ufn28EdUPM/sO8EagHdgOfBb4HnAXcBywEbjC3feEidsNBHe96AE+6O4rYwh7UjOzC4CHgWcZnFf5aYJ5yOqXmJjZ6wguYEkSDGzc5e6fM7MTCEYvZwBPAu93934zawT+lWAO+R7gSndfH0/0k5+ZvRH4U3d/h/okXuH7f2+4mgJud/frzWwmOofFysyWEFzQmgHWAx8kPJ9Rhf1S9wmyiIiIiEhUvU+xEBEREREZQgmyiIiIiEiEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRI6CmW0ws8sm8Hg/N7PfG4d2F5iZm1lqrNsWEalVSpBFRMaBmS00s6KZ3Vhhm5tZt5l1mdkWM/uimSXjiLOcmf2Dmb1kZgfM7AUz+0DcMYmITDQlyCIi4+MDwF7gt8ysocL2xe7eAlwKvA/4XxMZ3EF0A+8EpgHXAP9kZr8Rb0giIhNLCbKIyNE728yeN7O9ZnabmTUCmJkRJMifAXIECWdF7v4C8DBwRrTczN4UjuDuN7MbACvb/rtmtiY89o/N7PjINjezD4cjwfvM7KthTJhZMhwl3mVm64G3l8XzWXd/wd2L7v5oGNvry+M2s4aw7TMiZR1m1mtmxxze2yciUp2UIIuIHL2rgbcAJwInEyTEABcA84A7gLsIRmIrMrPTgAuBJyNl7cA9YXvtwDrg/Mj2FcCngfcCHQRJ7HfKmn4HcDbwOuCKME4IRqrfAZwJLAMuP0hsU8I2nivf5u79YYxXRYqvAH7h7jtGalNEpBYoQRYROXo3uPsmd98DXM9gsngN8EN33wvcDiyvMKr6hJntBf4DuAW4LbLtbcBz7n63u+eALwPbIts/DPytu69x9zzwN8CS6Cgy8Hfuvs/dXwEeBJaE5VcAX47E/bcHeX03AU8DPx5h++3AlZH194VlIiI1TQmyiMjR2xRZ3gjMCUddfxP4NoC7/w/wCkHyGLXU3ae7+4nu/hl3L0a2zYm27e5edqzjCeYG7zOzfcAegikYcyN1ogl1D9BSqe0w7mHM7O8Jpn1cER6/kgeBJjM718wWECTh945QV0SkZihBFhE5evMjy8cBrwLvAaYCXzOzbWa2jSBxHXGaRQVbo22H84ejx9oE/L67t0UeU9z9l0fadhj3EGb218BbgTe7e+dIDbl7gWAKyVXh4wfufuAwYhARqWpKkEVEjt5HzWyemc0A/hK4kyARvhV4LcGI6hKC+cOLzey1h9nufwKnm9l7w/sTfxyYHdl+E3CdmZ0OYGbTzOw3D7Ptu4CPh3FPBz4V3Whm1xGMdl/m7rsPo73bgd8imI+t6RUiMikoQRYROXq3Az8B1hNcSPdVgtu2fdndt0Ueq4AfcfCL9W4ys5sA3H0XwTSNvwN2A4uAR0p13f1e4PPAHWbWCawmGPE9HF8nmFP8NPAEwYV2UX9DMKq8NrxPc5eZfToSZ5eZXRiJ5VGCW8PNAX54mDGIiFQ1G3lqmYiIiIhI/dEIsoiIiIhIhBJkEREREZEIJcgiIiIiIhFKkEVEREREIlJxBxDV3t7uCxYsiDsMEREREakDq1at2uXuHeXlVZUgL1iwgJUrV8YdhoiIiIjUATOr+GuimmIhIjIJ9ecL7OnOxh2GiEhNUoIsIjLJ9OUKrLjhEc6+/n7+69mtcYcjIlJzlCCLiEwy//nMVl7YdoBMMsFn73uOnmw+7pBERGqKEmQRkUnmh6u3MrdtCrd98Gx2Hujne0++GndIIiI1RQmyiMgk4u48vmEvFy5q59yFMzhlVit3rtwUd1giIjVFCbKIyCSyaU8v+3tzvG5eG2bGFWfP5+lN+3hx24G4QxMRqRlKkEVEJpGnN+8D4HXzpgHw7iVzSCWMe57cHGNUIiK1ZVQJspn9lZltMbOnwsfbwvIFZtYbKb9pbMIVEZGDWbO1k1TCOHlWKwAzWxp4w8kdfP/JVykUPeboRERqw1j8UMiX3P0fKpSvc/clY9C+iIgcpg27u5k/o4lManD84z1L5/KzF3bwq/W7Of+k9hijExGpDZpiISIyiby8q4cFM5uGlF32mlm0NqS454ktMUUlIlJbxiJB/kMze8bMbjWz6ZHyhWb2pJn9wswuHGlnM7vWzFaa2cqdO3eOQTgiIvXJ3dm4u5sF7c1DyhvTSd722mP50eqt9GYLMUUnIlI7Dpkgm9n9Zra6wmMFcCNwIrAE2Ar8Y7jbVuA4dz8T+BPgdjObWql9d7/Z3Ze5+7KOjo6xeE0iInVpx4F+erIFFpYlyBBMs+jOFvjJ89tiiExEpLYccg6yu192OA2Z2deBH4T79AP94fIqM1sHnAysPPpQRUTkYDbv7QFg/oymYdvOWTCDuW1TuOeJLaxYMneiQxMRqSmjvYvFsZHV9wCrw/IOM0uGyycAi4D1ozmWiIgc3PbOfgBmT20cti2RMN595hwefmknOw70TXRoIiI1ZbRzkL9gZs+a2TPAxcAfh+UXAc+Y2VPA3cCH3X3PKI8lIiIHsb0zSHxnVUiQAd5z5jyKDvc9pZ+eFhE5mFHd5s3df3uE8u8C3x1N2yIicmS2dfaRThrTm9IVt590TAuvmzeNe5/cwu9deMIERyciUjt0mzcRkUliR2c/x7Q2YmYj1nnPmXN57tVOfr1dPz0tIjISJcgiIpPE9s4+Zk1tOGiddy6eQzJhuieyiMhBKEEWEZkkdnX1095y8AS5vaWBixa18/2ntlDUT0+LiFSkBFlEZJLY35ujbYT5x1HvXTqPrfv7+O+1uyYgKhGR2qMEWURkktjfm2PalEMnyG8+fRbtLRm++csN4x+UiEgNUoIsIjIJ9OcL9OWKh5UgN6SSXH3u8Tzwwg5e3tU9AdGJiNQWJcgiIpPA/t4cANOaModV/+rzjiOdNL6lUWQRkWGUIIuITAL7e8IE+TBGkAGOaW3kna+bw7+v3ERnX248QxMRqTlKkEVEJoGBEeTDTJABfveChXRnC9z+6CvjFZaISE1SgiwiMgkcTYJ8xtxpXLionVseXk9vtjBeoYmI1BwlyCIik8DRJMgAf3jxSezqyvKdxzSKLCJSogRZRGQSKCXIbUeYIJ97wkzOWTiDf35oHX05jSKLiIASZBGRSaGUIE89wgQZ4OOXLGJ7Zz//vmrzWIclIlKTlCCLiEwC+3pytDakSCbsiPc9/6SZnHX8dG544CXNRRYRQQmyiMik0NmbO6rRYwAz4y+Wn8r2zn5ufeTlMY5MRKT2KEEWEZkEDvdnpkdyzsIZXPaaY7jp5+vY050dw8hERGqPEmQRkUlgf2+OtqajT5AB/mL5qXRn8/zfB14ao6hERGqTEmQRkUlgtCPIAItmtXLFsvn82682snZH1xhFJiJSe5Qgi4hMAvvGIEEG+OSbT6ExneSv7nsOdx+DyEREao8SZBGRSWB/b45po5xiAdDR2sCfvvkU/nvtLv7r2W1jEJmISO0ZdYJsZh8zsxfM7Dkz+0Kk/DozW2tmL5rZW0Z7HBERqawvVyCbL47JCDLA+887ntPnTOX//OB5uvvzY9KmiEgtGVWCbGYXAyuAxe5+OvAPYflpwJXA6cBy4GtmlhxlrCIiUsG+ntKv6GXGpL1kwvjcijPY1tnH3//4xTFpU0Sklox2BPkjwN+5ez+Au+8Iy1cAd7h7v7u/DKwFzhnlsUREpILSr+iN1QgywFnHT+d3fmMB3/zlBh5dv3vM2hURqQWjTZBPBi40s0fN7BdmdnZYPhfYFKm3OSwbxsyuNbOVZrZy586dowxHRKT+7OsJ7ls82tu8lfvz5adw/Mwm/uzuZ+jJaqqFiNSPQybIZna/ma2u8FgBpIAZwHnAnwF3mdkR/c6pu9/s7svcfVlHR8dRvQgRkXo2HiPIAE2ZFF/4/17HK3t6+PwPXxjTtkVEqlnqUBXc/bKRtpnZR4B7PLgX0GNmVgTagS3A/EjVeWGZiIiMsX3jlCADnHvCTD54/gJue2QDF53cwaWvmTXmxxARqTajnWLxPeBiADM7GcgAu4D7gCvNrMHMFgKLgMdGeSwREalgf3iR3ljc5q2Sv1h+KqcdO5VP/vvTvLqvd1yOISJSTUabIN8KnGBmq4E7gGs88BxwF/A88CPgo+5eGOWxRESkgv29OZIJo7XhkF8KHpXGdJKvXr2UXL7Ix7/zJLlCcVyOIyJSLUaVILt71t3f7+5nuPtSd38gsu16dz/R3U9x9x+OPlQREalkX2+WqY0pjvASkCOysL2Zv3nva1m5ca9u/SYik974DDeIiMiE2d+bp61pbO6BfDArlszl8Q17uPmh9Zw8q5XLz5o37scUEYmDfmpaRKTG7evJMnUcLtCr5LPvPJ3XnzCTT9/zLKs27pmQY4qITDQlyCIiNW5fT47p43SBXrl0MsHXrl7KsW2N/P6/rmLTnp4JOa6IyERSgiwiUuN2dfXT3tIwYceb3pzhG9csI1dw3v+NR9lxoG/Cji0iMhGUIIuI1DB3Z3dXlpkt4z8HOeqkY1q57YNns6Ozn2tufXzgx0pERCYDJcgiIjXsQH+ebKFIe/PEjSCXLD1uOjd/4CzW7jjA737zcQ70KUkWkclBCbKISA3b3ZUFoL11YkeQSy5c1MFXrjyTpzft4/3feGzgR0tERGqZEmQRkRq2q6sfgJkxjCCXvPW1x/K1q5ey5tVOrvr6r9gdxiQiUquUIIuI1LBSMjrRc5DLvfn02Xz9mmWs29nF5Tf9Dy/v6o41HhGR0VCCLCJSw3aVplhM4F0sRvKGkzv4t987l309Wd7ztUd47GXdJ1lEapMSZBGRGrajs4+EwYzmeEeQS85eMIN7/+B8ZjRluPqWX3HHY6/g7nGHJSJyRJQgi4jUsM37epk1tZF0snpO5wvam7n3D87n3IUz+dQ9z/LJu56muz8fd1giIoetes6oIiJyxLbs7WXe9ClxhzHMtKY03/rdc/jjy07m3qe28K4b/pvVW/bHHZaIyGFJxR3AZOXu9OeLdPfn6e4v0JcvYIAZmBlJM5oakjRnUjRlkphZ3CGLSA3avLeXsxdMjzuMipIJ4xOXLeLsBdP5xJ1PseKrj/CRN5zIxy49iYZUMu7wRERGpAR5lDr7cjy3pZPnXt3Pi9sOsGVfL6/u62Xr/j7688XDasMMmjMpWhpSzGjOMLMlw8zmDDNbGpjZkqG9OXxuaaCjtYH2lgYyKQ3+i9S7/nyBbZ19zJ/RFHcoB/UbJ7Xz0z++iP/zgzXc8OBafvzcNj634gxef+LMuEMTEalICfIRcnee2byf+9ds56GXdvHM5n2Urj9pb2nguBlTOGPuNN502izamjK0NKRobkjRmE7gDh62USg63dlCOMKcp6s/z4G+PHu7s+zqzvLyrm72dGfpyRYqxjFtSpqO1gY6wqS5lDiXljtaGmhvzTCzuYFkQqPTIpPR2h1dFIrOKbNb4w7lkNqaMvzjFYt5x+Jj+cy9q7nq67/iLafP4tNvew3Hz2yOOzwRkSGUIB+mvd1Zbn/sFb77xGbW7+wmYbBkfhsfu2QRS49r4/Q50+hoHfvbLPVk8+zuyrK7O8uuA/3s7Opn54HgsStcfnrzPnYe6K+YTAdXt5cS6MyQBLo8wZ42Ja2pHiI15LktnQCcOntqzJEcvotPOYafffINfP2h9dz4i3W86YsPccXZ8/jwG05k3vTqHgkXkfqhBPkQtnf2cePP13Hn45vozRU4Z+EMrr3wBN56xrFMa0qP+/GbMimaZqQO6yvU7v78QNK8M0ymy5Pq9Tu72Xmgn2xh+PSPdNIGR6HD57amDK2NKaZOSTO1MUVrY4rWxjRTG9PhcormTIqERqlFJtyDL+7gmNYGTuyorRHYxnSSj126iCvOns+X73+JOx/fxB2PbeK9S+dy7UUncNIx1T8iLiKTmxLkEfTlCtzy8Hq+9vN1ZPNFViyZy++/4QROnlW9J+7mcDrHob6udHc6e/Ps7Opj54FsxVHprfv7eGbLfvb1ZMkVDn4P04RBS0OKpkyKKZkkU9LJgefGdJKmaNlAeYJUIkE6lSCTNNLJROQxuJ5JBcupRLCcsMgjQWQdEokRlq1sOcZkvvx+sOW3h/WD1R3WVnTbwdsdHsfh73u0MZVvPNhxhrcz8nGGxzdywAeN7yhiGrLdB/ePTp8q7TtY1we2R/crbS9vZ8jzsH0HI37u1U5+/Nw2Pnj+wpr95mfW1Eb+9r2v5WOXnMTND63nO4+9wl0rN3Puwhm8/7zjecvps3W9hYjEwqrpBu7Lli3zlStXxh0Gqzbu5ZN3PcWG3T0sP302173t1LqdI1e6G0dnX47O3jwH+nIc6AvmS3f25QbWO3tz9OYK9OaK9GbzwXJ2+Hpfrlhx9FpEjtzS49q49XfOpq2pOn4kZLR2dfXz7ys3c/tjG9m0p5e2pjTLT5/N2193LK8/YSapKrrXs1SvYtEphNf6FMLl4pBlhpW5O0UPPpwW3SmGH4hLH2CDbYPPHh7HCerjUAz3HVrmkTYBhh6n9MF6sN7gh/HScQdjGXrc8g/mMPQDuDPSB/CRt3u44BXairZP5NgHHwAYbCt49UOPXRpAmNaU5rq3vmYs/xkcNjNb5e7LhpWPNkE2s48BHwUKwH+6+5+b2QJgDfBiWO1X7v7hQ7UVd4KczRf5p5/9mht/vo5jp03hC5e/jvNPao8tnskqVyjSny+SLwTJcq7g5AtFcoUi2byTC5dzhehykWzBB04khWLppBGcQArFoculE0oheuIZOBFO7Ot1IDq+Vz7YZwwtiG4vHxcctu9BRg7H9DiRGocarIzGdOh2K+93qLrlGw92nIO97iPdFxusb2YDt24s7VeqP1hmA8co3z7YTnik0j6RtgfqDmyzgRhmNGd47dxpNTt6fDDFovPQSzv53pNb+Onz2+nOFpjelObCRR1cuKidCxd1MHtaY9xhTkqlQZH+XJH+fCFYzgeDG6Xl8u3Z8HyeKzi5YpF86Zxe9MHyQlA+sL0YnO/z4XquUCRf9IFzf6EYrBejSW002Q0T4GJZ0lsoVs+gXy0rnaOi57mBs5INPadF64abI3Uqb4+e9wyYPa2R+/7wgol8iQNGSpBHNcXCzC4GVgCL3b3fzI6JbF7n7ktG0/5EWr+zi0/c8RTPbtnPb541j//9ztNobRz/Ocb1qDR9QkSkkkTCeOMpx/DGU46hL1fg5y/u5MfPbePhl3Zx39OvAnBCezOL57exeN40Fs9v49TZU5mSmdz3VnZ3soUivdkCPeEjWM4PrPeE39j1ZAv09IfluUr1CkGCW5b4Zg/z9qSHI520YCpdOG0uNWw9EdYxUskEjekErY0pUokEqYSRTAa/GZAMp8wlE0SWB5+HbA+n0ZWeU4mhdUvbkuEUvdL+NmRKHkDwXCq3geUgTUyUEr8wSSxN7YsmhZXqJsq2DbYfPjO0bqXjDEtah3yIHr59yIf+Cknt0A/6k+8D99Ea7RzkjwB/5+79AO6+Y/QhTay+XIF//sV6/vmhdWRSCW56/1ksP2N23GGJiAjBBX3Lz5jN8jNm4+68sO0AD7+0k5Ub9vLI2l3c++QWIPgPfm7bFE7saOHEjhaOn9nErKmNzJ7WyOypjXS0TvwtL4tFpycXJKpd4Y9GdWeDW3tGb/NZKu/qz4d1g2S2dAvQnmyBrv48vdkC+SMcIZ2STtLcEFz/0ZQOrhNpyiSZ3pSmMZ2kIZWkIZ2gIZUIllOJcD1cTiVoSEeWI/Ubw/JMJNkNrhkZTDpFatWopliY2VPA94HlQB/wp+7+eDjF4jng10An8Bl3f3iENq4FrgU47rjjztq4ceNRx3M0+vMFLv3HX3DGnGl89l2ncey06vvJVhERGc7d2dbZx9Ob9vHr7V2s2xk+dnTTmxt628uEEdyBZ0qK1obwuTFIEtNJI51IkE4NXiBcPn2rEK4Xi042X6QvnHbQlyuEj6CsPywrjeIeroZUYuC++U2Z5MByc/iLq6XypkySKZnB5aZwuZT4NmcGk+DGVFJ3GBI5hKOeg2xm9wOVhlT/ErgeeBD4OHA2cCdwApABWtx9t5mdBXwPON3dOw92rLjmIHf25Ziq6RQiIpNCsejs7s6yvbOPbfv72NbZx47OPvb35ujsCy427uwNLjTO5kvXQgRzYUvLRmkUdPBr/dLX75lw9LQxnaAxlRxYbkgnw/Vge3NDiuZM8NwSSXybGlK0NCTDpDeoowsQReJx1HOQ3f2ygzT6EeAeD7Lsx8ysCLS7+06gNO1ilZmtA04G4r9FRQVKjkVEJo9EwgZ+AOmMudPiDkdEatBoP7J+D7gYwMxOJhg53mVmHWaWDMtPABYB60d5LBERERGRcTfai/RuBW41s9VAFrjG3d3MLgI+Z2Y5oAh82N33jPJYIiIiIiLjrqp+KMTMdgITe5XeoHZgV0zHlsrUJ9VJ/VKd1C/VR31SndQv1SfOPjne3TvKC6sqQY6Tma2sNElb4qM+qU7ql+qkfqk+6pPqpH6pPtXYJ7psVkREREQkQgmyiIiIiEiEEuRBN8cdgAyjPqlO6pfqpH6pPuqT6qR+qT5V1yeagywiIiIiEqERZBERERGRiLpPkM1suZm9aGZrzexTccdTT8zsVjPbEd5Hu1Q2w8x+amYvhc/Tw3Izs6+E/fSMmS2NL/LJy8zmm9mDZva8mT1nZp8Iy9UvMTKzRjN7zMyeDvvlr8PyhWb2aPj+32lmmbC8IVxfG25fEOsLmMTMLGlmT5rZD8J19UnMzGyDmT1rZk+Z2cqwTOewmJlZm5ndbWYvmNkaM3t9NfdLXSfI4a/9fRV4K3AacJWZnRZvVHXlm8DysrJPAT9z90XAz8J1CPpoUfi4FrhxgmKsN3ngk+5+GnAe8NHwb0L9Eq9+4BJ3XwwsAZab2XnA54EvuftJwF7gQ2H9DwF7w/IvhfVkfHwCWBNZV59Uh4vdfUnk1mE6h8Xvn4AfufupwGKCv5uq7Ze6TpCBc4C17r7e3bPAHcCKmGOqG+7+EFD+C4srgG+Fy98C3h0p/xcP/ApoM7NjJyTQOuLuW939iXD5AMEJbC7ql1iF729XuJoOHw5cAtwdlpf3S6m/7gYuNTObmGjrh5nNA94O3BKuG+qTaqVzWIzMbBpwEfANAHfPuvs+qrhf6j1BngtsiqxvDsskPrPcfWu4vA2YFS6rryZY+BXwmcCjqF9iF36V/xSwA/gpsA7Y5+75sEr0vR/ol3D7fmDmhAZcH74M/DlQDNdnoj6pBg78xMxWmdm1YZnOYfFaCOwEbgunJN1iZs1Ucb/Ue4IsVcyDW6zoNisxMLMW4LvAH7l7Z3Sb+iUe7l5w9yXAPIJvv06NN6L6ZmbvAHa4+6q4Y5FhLnD3pQRf03/UzC6KbtQ5LBYpYClwo7ufCXQzOJ0CqL5+qfcEeQswP7I+LyyT+GwvfY0SPu8Iy9VXE8TM0gTJ8bfd/Z6wWP1SJcKvJR8EXk/wtWMq3BR97wf6Jdw+Ddg9sZFOeucD7zKzDQTT8y4hmGOpPomZu28Jn3cA9xJ8oNQ5LF6bgc3u/mi4fjdBwly1/VLvCfLjwKLwquMMcCVwX8wx1bv7gGvC5WuA70fKPxBe2XoesD/ytYyMkXBO5DeANe7+xcgm9UuMzKzDzNrC5SnAmwjmhz8IXB5WK++XUn9dDjzguun9mHL369x9nrsvIPi/4wF3vxr1SazMrNnMWkvLwJuB1egcFit33wZsMrNTwqJLgeep4n6p+x8KMbO3EcwjSwK3uvv18UZUP8zsO8AbgXZgO/BZ4HvAXcBxwEbgCnffEyZuNxDc9aIH+KC7r4wh7EnNzC4AHgaeZXBe5acJ5iGrX2JiZq8juIAlSTCwcZe7f87MTiAYvZwBPAm83937zawR+FeCOeR7gCvdfX080U9+ZvZG4E/d/R3qk3iF7/+94WoKuN3drzezmegcFiszW0JwQWsGWA98kPB8RhX2S90nyCIiIiIiUfU+xUJEREREZAglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRERERCKUIIuIiIiIRChBFhEZBTPbYGaXxR2HiIiMHSXIIiLjyMwWmlnRzG6ssM3NrNvMusxsi5l90cySccQpIiKDlCCLiIyvDwB7gd8ys4YK2xe7ewtwKfA+4H9NZHAiIjKcEmQRkdE728yeN7O9ZnabmTUCmJkRJMifAXLAO0dqwN1fAB4GziiVWeBLZrbDzDrN7FkzOyPcNs3M/sXMdprZRjP7jJklwm2/Y2aPhPvuM7P1ZvYbYfmmsL1rIsd5u5k9GR5jk5n9VaUYzawhbC8aY4eZ9ZrZMaN4/0REqooSZBGR0bsaeAtwInAyQUIMcAEwD7gDuAu4puLegJmdBlwIPBkpfjNwUdjmNOAKYHe47f+GZScAbyBIxD8Y2fdc4BlgJnB7GMPZwEnA+4EbzKwlrNsd7t8GvB34iJm9uzxGd+8H7gGuihRfAfzC3XeM9NpERGqNEmQRkdG7wd03ufse4HoGE8hrgB+6+16CJHV5hZHWJ8xsL/AfwC3AbZFtOaAVOBUwd1/j7lvDecpXAte5+wF33wD8I/DbkX1fdvfb3L0A3AnMBz7n7v3u/hMgS5As4+4/d/dn3b3o7s8A3yFIuiu5PTx2yfvCMhGRSUMJsojI6G2KLG8E5pjZFOA3gW8DuPv/AK8QJJRRS919uruf6O6fcfdiaYO7PwDcAHwV2GFmN5vZVKAdSIfHih53bmR9e2S5N2yvvKwFwMzONbMHw+ka+4EPh8eo5EGgKdxnAbAEuHeEuiIiNUkJsojI6M2PLB8HvAq8B5gKfM3MtpnZNoIEdsRpFpW4+1fc/SzgNIKpFn8G7CIYXT6+7LhbjjL+24H7gPnuPg24CbAR4ikQTBe5Knz8wN0PHOVxRUSqkhJkEZHR+6iZzTOzGcBfEkxpuAa4FXgtwSjrEuB8YLGZvfZwGjWzs8OR2jTBPOE+oBhJUq83s1YzOx74E+DfjjL+VmCPu/eZ2TkMH+UudzvwWwRzrzW9QkQmHSXIIiKjdzvwE2A9sI5gSsSlwJfdfVvksQr4EQe/WO8mM7spXJ0KfJ3gNnEbCS7Q+/tw28cIkub1wH+HMdx6lPH/AfA5MzsA/G+C5DsaU5eZXVhad/dHw2PPAX54lMcUEala5u5xxyAiIiIiUjU0giwiIiIiEqEEWUREREQkQgmyiIiIiEiEEmQRERERkYhU3AFEtbe3+4IFC+IOQ0RERETqwKpVq3a5e0d5eVUlyAsWLGDlypVxhyEiIiIidcDMNlYq1xQLEREREZEIJcgiIjXoqpt/xR/f+VTcYYiITEpKkEVEatD/rN/NvU9uiTsMEZFJSQmyiIiIiEiEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRGqYu8cdgojIpKMEWUSkhuWLSpBFRMaaEmQRkRqWKxTjDkFEZNJRgiwiUsOyeSXIIiJjTQmyiEgNy2oEWURkzClBFhGpYbmC5iCLiIw1JcgiIjUspykWIiJjTgmyiEgN00V6IiJjb9wTZDNbbmYvmtlaM/vUeB9PRKSeaA6yiMjYG9cE2cySwFeBtwKnAVeZ2WnjeUwRkXqiOcgiImNvvEeQzwHWuvt6d88CdwArxvmYIiJ1Q1MsRETG3ngnyHOBTZH1zWHZADO71sxWmtnKnTt3jnM4IiKTiy7SExEZe7FfpOfuN7v7Mndf1tHREXc4IiI1RXOQRUTG3ngnyFuA+ZH1eWGZiIiMAc1BFhEZe+OdID8OLDKzhWaWAa4E7hvnY4qI1A3NQRYRGXup8Wzc3fNm9ofAj4EkcKu7PzeexxQRqSdKkEVExt64JsgA7v5fwH+N93FEROpRVhfpiYiMudgv0hMRkaOnOcgiImNPCbKISA3TFAsRkbGnBFlEpIYpQRYRGXtKkEVEapjugywiMvaUIIuI1LBcXnOQRUTGmhJkEZEapikWIiJjTwmyiEiNcR8cNVaCLCIy9pQgi4jUmEh+rDnIIiLjQAmyiEiNKWgEWURkXClBFhGpMcVogqyL9ERExpwSZBGRGlOMDBprBFlEZOwpQRYRqTHRKRaagywiMvaUIIuI1JjoFItsXgmyiMhYU4IsIlJjikVdpCciMp6UIIuI1JhIfkyuoIv0RETGmhJkEZEaUyhqDrKIyHhSgiwiUmP0S3oiIuNLCbKISI3Jaw6yiMi4UoIsIlJjoneu0A+FiIiMPSXIIiI1pj9MkJMJ0wiyiMg4UIIsIlJj+vMFAFoaUrpIT0RkHChBFhGpMaUR5JaGlEaQRUTGwagSZDP7KzPbYmZPhY+3RbZdZ2ZrzexFM3vL6EMVERGAvlwwgtzamBpIlkVEZOykxqCNL7n7P0QLzOw04ErgdGAOcL+ZnezuhTE4nohIXevPBUlxR2sDa3d04e6YWcxRiYhMHuM1xWIFcIe797v7y8Ba4JxxOpaISF0pjRp3tDSQLzq9OY09iIiMpbFIkP/QzJ4xs1vNbHpYNhfYFKmzOSwbxsyuNbOVZrZy586dYxCOiMjkVrpIr6O1AYADffk4wxERmXQOmSCb2f1mtrrCYwVwI3AisATYCvzjkQbg7je7+zJ3X9bR0XGku4uI1J3SCHJ7SylBzsUZjojIpHPIOcjuftnhNGRmXwd+EK5uAeZHNs8Ly0REZJTW7+wik0pw4jHNAGzb389Jx7TGHJWIyOQx2rtYHBtZfQ+wOly+D7jSzBrMbCGwCHhsNMcSEZHAr9bvYelxbZy9YAbppPHFn75Id7+mWYiIjJXRzkH+gpk9a2bPABcDfwzg7s8BdwHPAz8CPqo7WIiIjN7+3hzPvbqfcxfOpLUxzfvPO54nXtnHYxv2xB2aiMikMarbvLn7bx9k2/XA9aNpX0REhlq5YQ9Fh/NOmAnAhy5YyG2PbGDb/r6YIxMRmTz0S3oiIjXksQ17yCQTnHlcGwCzpzbS3tLAHY9vYm93Nt7gREQmCSXIIiI15OlN+3jNnKk0ppMApJIJ/vc7T2P1lv1c8PkH+JM7n+JHq7eyr0fJsojI0RqLX9KreT9avY1506cwf0YTUxtT+kUqEalKxaKzeksn7zlz6G3l37V4DqfObuWWh9fzw9XbuOfJLZjB6XOmcv6J7Zy9YAZnHT+d6c2ZmCIXEaktdZ8g5wpFPn7Hk2TD+4q2NKSY09bInLYpzJ7ayMyWDDOaG2hvyTCzuYGZLRlmtmSY3pQhndQAvIhMnD09Wbr685x0TMuwbSfPauULly/m/3/3a3lm8z4eWbubX67bxW2PbOCfH1oPwAkdzZx13HSWHNfGKbNaWXRMK9Oa0hP9MkREql7dJ8iphPGTP7qI57d2smVvL1v29fLqvl5e3d/L8692srs7S6HoFfdtTCdoaUgztTFFa2OK1sY0LQ2Dy1MyCaakkzSmkzSkk+HyYFljOhE+J8kkE2RSCVIJI51KkE4kSCeNZMI0oi0iAOzq6gcGfyCkkkwqwbIFM1i2YAafuGwRfbkCz2zez8qNe3hi417uX7Odf1+1eaB+R2sDC9ubmds2hWOnNXJs2xTmTGtkZksD05vStDVl9M2aiNSduk+QzYwF7c0saG+uuL1YdDr7cuzqyrK7q5/d3cHzvp4cB/rzHOjL0dmX50Bfnq6+HNs7+zjQF5T35gqMkFsfkUwyQSpppJNB0pyOricSpFNG0oxEInw2I5GAZCJYTiaGbg+SboaVJxJGMsHAcmnfhAX1DcJnIxGulJeZMfAfqRnBvpE6pe2DZcH6QdsjqBhtq3JfViijcuUj+b9+pMSgUumIsVWoPXLdw2+3cm2ZrH69/QAAM1sOf6pEYzrJOQtncM7CGQC4O5v39vLSjgO8tL2LX2/v4pU93Tz28h62d/aRr3DSSiWMtkiy3NyQoqUh+pykuSFFc6ZUlhz48N+YTtKQSgwMCjSkwsGBVJJEQv9+ReLi7riDl5YhXA/KKVsvrzfYUHTRI+1XrIKHG6JlCTNmVNkUsLpPkA8lkTDamjK0NWUqfq15MO5OruD05Qv0ZQv05Yr05Qv0Zgv05Qr05sKyXIFsoUi+4OQKxfDh5EvLRSeXL5IvOtlCcchyPqxbKDpFH3wuFoPpI9Hy6LI7FEr1ix4uU9ZGUF4sHsYfiIhMCDOYP6NpFPsb82c0MX9GE5ecOmvItkLR2dXVz6v7etnbk2VPd459PVn2dGfZ25Njb3eWA/3BoMDW/X109+fp6s/T3Z8/qsGATDJBQypBw0DynCCTSpJOGqmEkUomBgYIUomyAYLE0IGDVDJBOmEkEwkSFpy7Sx/Skza4PLgtXLbSh3Eb3B7Wr8QPkQwcKikoL2dYAjJ0nWjiMiSJiSQaB2mjdOzDar9CG0TP+wdrf4Q2KK0fTvtlr83L35+DtT9CG8Pen2Gvf+T/30Z8fw75/kdjH+H9OZL3rrze4bR/iNdWbeZMa+SX110adxhDKEEeR2ZGJmVkUgmmNk7OeX7ln0CLw06cQdJd8Q+87I+26NGTZdBOMVKXUp2KcVQoO0jMFcsPs92Rao9U90ja9SNptwpPcjL+WhtTzG2bMi5tJxPGrKmNzJraeET7uTv9+eJAstzVn6cvV6Q/V6AvX6A/HBwoDQj054PnvlyR/rC8VDebd/LFwQGDnmyefNGHDhoUhtYprecK+qM4GtFv86Lf4lH2zWF5PaLrFdqA4d8+RusNHPtw2i9rg/LysjaGfiN5kNeWACMxrI1h7R/uaxv23lVug2GveWgbh/3eldc7nPaHvT/D2xix/bL3Z+DfUNm/p8rlNqxOqaQpU33paPVFJDWldGIM1+IMRURiYmYD0ykONj96vA18SA+fix5+G1b6oF4cWlZezweWg9H0w/qPfkh5qWx4IlBuSNsjJCvDk5wKSd4hk8iDtHEkc81E6owSZBERmRTMjGQpsxQRGQXdp0xEREREJMJGmo8ZBzPbCWyM6fDtwK6Yji2VqU+qk/qlOqlfqo/6pDqpX6pPnH1yvLt3lBdWVYIcJzNb6e7L4o5DBqlPqpP6pTqpX6qP+qQ6qV+qTzX2iaZYiIiIiIhEKEEWEREREYlQgjzo5rgDkGHUJ9VJ/VKd1C/VR31SndQv1afq+kRzkEVEREREIjSCLCIiIiISoQRZRERERCSi7hNkM1tuZi+a2Voz+1Tc8dQTM7vVzHaY2epI2Qwz+6mZvRQ+Tw/Lzcy+EvbTM2a2NL7IJy8zm29mD5rZ82b2nJl9IixXv8TIzBrN7DEzezrsl78Oyxea2aPh+3+nmWXC8oZwfW24fUGsL2ASM7OkmT1pZj8I19UnMTOzDWb2rJk9ZWYrwzKdw2JmZm1mdreZvWBma8zs9dXcL3WdIJtZEvgq8FbgNOAqMzst3qjqyjeB5WVlnwJ+5u6LgJ+F6xD00aLwcS1w4wTFWG/ywCfd/TTgPOCj4d+E+iVe/cAl7r4YWAIsN7PzgM8DX3L3k4C9wIfC+h8C9oblXwrryfj4BLAmsq4+qQ4Xu/uSyL11dQ6L3z8BP3L3U4HFBH83VdsvdZ0gA+cAa919vbtngTuAFTHHVDfc/SFgT1nxCuBb4fK3gHdHyv/FA78C2szs2AkJtI64+1Z3fyJcPkBwApuL+iVW4fvbFa6mw4cDlwB3h+Xl/VLqr7uBS83MJiba+mFm84C3A7eE64b6pFrpHBYjM5sGXAR8A8Dds+6+jyrul3pPkOcCmyLrm8Myic8sd98aLm8DZoXL6qsJFn4FfCbwKOqX2IVf5T8F7AB+CqwD9rl7PqwSfe8H+iXcvh+YOaEB14cvA38OFMP1mahPqoEDPzGzVWZ2bVimc1i8FgI7gdvCKUm3mFkzVdwv9Z4gSxXz4B6Eug9hDMysBfgu8Efu3hndpn6Jh7sX3H0JMI/g269T442ovpnZO4Ad7r4q7lhkmAvcfSnB1/QfNbOLoht1DotFClgK3OjuZwLdDE6nAKqvX+o9Qd4CzI+szwvLJD7bS1+jhM87wnL11QQxszRBcvxtd78nLFa/VInwa8kHgdcTfO2YCjdF3/uBfgm3TwN2T2ykk975wLvMbAPB9LxLCOZYqk9i5u5bwucdwL0EHyh1DovXZmCzuz8art9NkDBXbb/Ue4L8OLAovOo4A1wJ3BdzTPXuPuCacPka4PuR8g+EV7aeB+yPfC0jYyScE/kNYI27fzGySf0SIzPrMLO2cHkK8CaC+eEPApeH1cr7pdRflwMPuH4Vaky5+3XuPs/dFxD83/GAu1+N+iRWZtZsZq2lZeDNwGp0DouVu28DNpnZKWHRpcDzVHG/1P0v6ZnZ2wjmkSWBW939+ngjqh9m9h3gjUA7sB34LPA94C7gOGAjcIW77wkTtxsI7nrRA3zQ3VfGEPakZmYXAA8DzzI4r/LTBPOQ1S8xMbPXEVzAkiQY2LjL3T9nZicQjF7OAJ4E3u/u/WbWCPwrwRzyPcCV7r4+nugnPzN7I/Cn7v4O9Um8wvf/3nA1Bdzu7teb2Ux0DouVmS0huKA1A6wHPkh4PqMK+6XuE2QRERERkah6n2IhIiIiIjKEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiIS8f8AUtT1rHzW82cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def plot_responses(responses):\n", + " fig, axes = plt.subplots(len(responses), figsize=(10,10))\n", + " for index, (resp_name, response) in enumerate(sorted(responses.items())):\n", + " axes[index].plot(response['time'], response['voltage'], label=resp_name)\n", + " axes[index].set_title(resp_name)\n", + " fig.tight_layout()\n", + "plot_responses(release_responses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Running an optimisation of the parameters now has become very easy. \n", + "Of course running the L5PC optimisation will require quite some computing resources. \n", + "\n", + "To show a proof-of-concept, we will only run 2 generations, with 2 offspring individuals per generations.\n", + "If you want to run all full optimisation, you should run for 100 generations with an offspring size of 100 individuals. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [], + "source": [ + "opt = bpopt.optimisations.DEAPOptimisation( \n", + " evaluator=evaluator, \n", + " offspring_size=2) \n", + "final_pop, halloffame, log, hist = opt.run(max_ngen=2, cp_filename='checkpoints/checkpoint.pkl')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The first individual in the hall of fame will contain the best solution found." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.001017834439738432, 0.021656498911739864, 0.0009391491627785106, 1.5248169507528497, 0.8663975885224535, 0.4221165755827173, 0.0029040787574867947, 0.022169166627303505, 0.8757751873011441, 0.0004958122413818507, 0.002330844502575726, 0.011927893806278723, 234.40541659093483, 0.4596034657377336, 0.28978161459048557, 0.0021489705265908877, 0.0008375779756625729, 0.005564543226524335, 0.03229357096515606, 202.18814057682334]\n" + ] + } + ], + "source": [ + "print(halloffame[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These are the raw parameter values. \n", + "The evaluator object can convert this in a dictionary, so that we can see the parameter names corresponding to these values." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{ 'decay_CaDynamics_E2.axonal': 234.40541659093483,\n", + " 'decay_CaDynamics_E2.somatic': 202.18814057682334,\n", + " 'gCa_HVAbar_Ca_HVA.axonal': 0.0004958122413818507,\n", + " 'gCa_HVAbar_Ca_HVA.somatic': 0.0008375779756625729,\n", + " 'gCa_LVAstbar_Ca_LVAst.axonal': 0.002330844502575726,\n", + " 'gCa_LVAstbar_Ca_LVAst.somatic': 0.005564543226524335,\n", + " 'gImbar_Im.apical': 0.0009391491627785106,\n", + " 'gK_Pstbar_K_Pst.axonal': 0.4221165755827173,\n", + " 'gK_Tstbar_K_Tst.axonal': 0.0029040787574867947,\n", + " 'gNaTa_tbar_NaTa_t.axonal': 1.5248169507528497,\n", + " 'gNaTs2_tbar_NaTs2_t.apical': 0.001017834439738432,\n", + " 'gNaTs2_tbar_NaTs2_t.somatic': 0.4596034657377336,\n", + " 'gNap_Et2bar_Nap_Et2.axonal': 0.8663975885224535,\n", + " 'gSK_E2bar_SK_E2.axonal': 0.022169166627303505,\n", + " 'gSK_E2bar_SK_E2.somatic': 0.0021489705265908877,\n", + " 'gSKv3_1bar_SKv3_1.apical': 0.021656498911739864,\n", + " 'gSKv3_1bar_SKv3_1.axonal': 0.8757751873011441,\n", + " 'gSKv3_1bar_SKv3_1.somatic': 0.28978161459048557,\n", + " 'gamma_CaDynamics_E2.axonal': 0.011927893806278723,\n", + " 'gamma_CaDynamics_E2.somatic': 0.03229357096515606}\n", + "None\n" + ] + } + ], + "source": [ + "best_params = evaluator.param_dict(halloffame[0])\n", + "print(pp.pprint(best_params))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then we can run the fitness protocols on the model with these parameter values" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [], + "source": [ + "best_responses = evaluator.run_protocols(protocols=fitness_protocols.values(), param_values=best_params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And then we can also plot these responses. \n", + "\n", + "When you ran the above optimisation with only 2 individuals and 2 generations, this 'best' model will of course be very low quality." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACOl0lEQVR4nOzdeZwkdX3/8de7e669b/ZedpEFWUAOlyuKQfFAPIgXwQuiJhgD6i/RJGj8/aJGEmPiEeNBUDF4AOKBIt4IKiLXLvcuIMuysAd7sfc1R/fn90dVz9T0zuzO7M5Mdc++n49HP7rqW9+q+vZ8t3vfVf2takUEZmZmZmaWKOTdADMzMzOzWuKAbGZmZmaW4YBsZmZmZpbhgGxmZmZmluGAbGZmZmaW4YBsZmZmZpbhgGxmZmZmluGAbGZ2gCS9UNIfJG2VtEnS7ZJOkfQXkn4/gPt5saRb0/2sGKjtmplZzxyQzcwOgKSxwE3AfwMTgZnAx4DWQdjdTuAq4O8HYdtmZlbFAdnM7MAcBRAR10ZEKSJ2R8QvgXbgCuAMSTskbQGQ1CzpPyU9LWmdpCskjUiXnSVplaQPS9ooaYWkt1Z2FBF3R8Q3geX7a5SkyZJukrQlPat9m6RCuuwYSb9Jly2R9NrMev8r6UuSfpa2+3ZJ0yR9TtJmSY9KOilT/zJJT0jaLmmppNf10p7TJK2VVMyUvU7Sg/36a5uZDSEHZDOzA/NHoCTpakmvlDQBICIeAf4auCMiRkfE+LT+J0lC9YnAkSRnnP9fZnvTgMlp+UXAlZKOPoB2fQBYBUwBpgIfBkJSI/Bj4JfAYcB7gW9X7eN84CNpO1qBO4B70/nvAZ/J1H0COBMYR3Lm/FuSplc3JiLuIjkD/pJM8VuAaw7gtZmZDQkHZDOzAxAR24AXAgF8Bdgg6UZJU6vrShJwMfC3EbEpIrYD/wpcUFX1/0ZEa0T8FvgJSWDtr3ZgOnB4RLRHxG0REcDpwGjgkxHRFhG3kAwReXNm3RsiYnFE7AFuAPZExDciogR8B+g8gxwR342INRFRjojvAI8Dp/bSpmsr+5E0Bjg3LTMzq0kOyGZmBygiHomIv4iIWcBxwAzgcz1UnQKMBBanwxu2AD9Pyys2R8TOzPxT6fb66z+AZcAvJS2XdFlaPgNYGRHlqn3MzMyvy0zv7mF+dGVG0oWS7s+8nuNIzjT35Brg9ZKagdcD90bEU/1/aWZmQ8MB2cxsAETEo8D/kgTFqFq8kSRgHhsR49PHuIgYnakzQdKozPwcYM0BtGN7RHwgIo4AXgv8naSz023NroxHzuxjdX/3IelwkrPmlwKT0mEkDwPqpU1LScL4K/HwCjOrAw7IZmYHQNJzJX1A0qx0fjbJMII7Sc68zpLUBJCetf0K8FlJh6X1Z0p6RdVmPyapSdKZwKuB76Z1C5JagMZkVi2VbffQrldLOjId1rEVKAFl4C5gF/APkholnQW8BrjuAF7+KJKDgA3pPt9BcmCwL9cA7wdeVHldZma1ygHZzOzAbAdOA+6StJMkGD9McpHcLcASYK2kjWn9fyQZ+nCnpG3AzUD2Arm1wGaSM73fBv46PSsNSajcDfyU5KzvbpKL7QBI70hRuevF/HTbO0gusvtSRNwaEW0kgfiVJGe0vwRcmNlHn6VnhD+dbn8dcDxwe6Y9Z0raUbXatcCfArdExEbMzGqYkms3zMwsL+nZ3G+lY5nNzCxnPoNsZmZmZpbhgGxmZmZmluEhFmZmZmZmGT6DbGZmZmaW0ZB3Aw7E5MmTY+7cuXk3w8zMzMzq2OLFizdGxJTq8roMyHPnzmXRokV5N8PMzMzM6pikHn/V00MszMzMzMwyHJDNBtm37nyK+f/0U8plXxBrZmZWDxyQzQbZx3+8lPZS0FYq590UMzMz6wMHZLPBprwbYGZmZv3hgGw2yCr52LccNzMzqw8OyGaDTD6DbGZmVlcckM2GSOBTyGZmZvXAAdlskCkdZOEhFmZmZvXBAdlskHmIhZmZWX1xQDYbIj6BbGZmVh8ckM0GWdddLByRzczM6oEDstkgUzrGwvHYzMysPjggmw0yD0E2MzOrLw7IZkPEIyzMzMzqgwOy2WDrHIScayvMzMysjxyQzQZZVz52QjYzM6sHNRGQJZ0j6TFJyyRdlnd7zAZS50V6zsdmZmZ1IfeALKkIfBF4JbAAeLOkBfm2ymzgVH4oxPnYzMysPuQekIFTgWURsTwi2oDrgPNybpPZgKkMsSj7FLKZmVldqIWAPBNYmZlflZaZDQseYmFmZlZfaiEg94mkiyUtkrRow4YNeTfHrN98kZ6ZmVl9qIWAvBqYnZmflZZ1ExFXRsTCiFg4ZcqUIWuc2cHq/KEQ52MzM7O6UAsB+R5gvqR5kpqAC4Abc26T2YDxT02bmZnVl4a8GxARHZIuBX4BFIGrImJJzs0yGzCVu1j4Ij0zM7P6kHtABoiInwI/zbsdZoOhkAbkUtkB2czMrB7UwhALs2Gt6LtYmJmZ1RUHZLNBVhmD7CEWZmZm9cEB2WyQdY1BzrcdZmZm1jcOyGaDrOAzyGZmZnXFAdlskFUu0iv7FLKZmVldcEA2G2RdZ5BzboiZmZn1iQOy2SDzfZDNzMzqiwOy2SDzGGQzM7P64oBsNsgKvg+ymZlZXXFANhtk8i/pmZmZ1RUHZLNB5iEWZmZm9cUB2WyQFdJ3mU8gm5mZ1QcHZLNBJipjkJ2QzczM6oEDstkQ8RlkMzOz+uCAbDZEfJGemZlZfXBANhsiHmJhZmZWHxryboDZcBckwbgccPUfVvCrpeuYO3kkJ86ewGnzJjJ74sicW2hmZmZZDshmg6xy4njzrjY+ftNSxrQ08MDKLXzrzqcBmDl+BKfNm8hpR0zktHmTOHzSSFS5ebKZmZkNOQdks0FWCch/eGIjpXLwtYsWctLsCfxx/XbuWr6Ju558lt/+cQM/uG81ABNHNXHYmGYmj25m3MhGWhqKtDQWGNFYpKUxmW4spo+GAk1Fdc0XCzQ1VM0XCzSmZU3FAk0NlWVdZYWCA7mZmVmFA7LZEFmyZhsFwbEzxlEoiOdOG8tzp43loj+ZS0SwbP0O7nxyE0tWb2XjjjY27mhlzdbdtLaX2d1eYk/6GIxr/YoFdQvMjVWhulug7iFgV+o3FYvpc1LWUBSNheS5oVigsZA+F0VDWt59ukBDQZ3rNhTSupl1u22zIJ9tNzOzAeeAbDZElq7ZxtxJo2hpLO61TBLzp45h/tQx+9xGRNBeCjrKZdo7grZSmfbMoy1b1lFOpyOzvGq+lGyn23ymrGv70bn+ztaObut1q5Pus61UZqiuSWwoqNcg3nN5VxDfK6xXBfXewnxjURQzIb1YSMqTZ1HMlDcWM+XV9dL2FAvJvotV2ysIHwCYmeXAAdlskFVyYkc5OHravgPw/kiiqUE0UYCmg2/bYCqVu4J3RyloLyfP2en2UpmOctCRBuyOqvLKuh3ldHlnebpOOVu2d93O5aXoNr2jo6NP+6+0Nc8bkHQF5h4Cd7GHwN0ZvAtVZYW9wnvDvupVhf3KQUJ1vUJBFCWKBSgWChQLyc+rNxQKFAqky7oeBXVto2vd7ss7l1Ut9wGDmQ0VB2SzQZa9vdtzp43NsSVDKwk1xR7PmNebStjPhulSOQnUyXM6nynvqJrvVq8clCoHDJX5dPs91utpW6XquuW0nV3z7aUyu9v3blv3el37yG6vVu/bXRDdwnchc1Cw73DdPYgn61a2JYrqCvh7bauXkF+ZLojOZylTVhDKLCtI6fK96xcLVesqu262blrWQ/3sfvdqS2Z7UvILn8kzJMcc2Xl1lld+CbRyXCLtvbyyHtXzPW1L9Lqf7LHP3m3M1PVBkg2BIQnIkj4K/BWwIS36cET8NF32IeBdQAl4X0T8YijaZJaHgz2DbPmohP1DSURXYE4C/N5Bv71UphxBqZwcRJSja1k5uoJ2qRyUIiin65bT+ezyru2U0/p01e9lW6Wq5eVIDwQqyyOzvTKd7StntrO7vdSP9nZtrxxdrzki2XbyyLvnDh3V4bmrLA3imTLoHsKrA3ylMFue3Ue3ssw2K0vVj/11a3+mbnY7I5oauPLtz/dtQHM0lGeQPxsR/5ktkLQAuAA4FpgB3CzpqIgoDWG7zIbMcx2QrU5ISsdu592S+hNpUK6E5kqArgTr3paX04OC7oE7UzcN+dWBvHp7lXp7bTuis25Eco/25Lnrm65u5WnYryyPdKb7et3nqdSrLEvn97mfzHxlWeXvuL/9VK9XXZZ96r5vuu8r3XZ1P3Z7LdXty0yTbUMP2+xpO3RrR3TW29VW4ldL13HXk5sOOCCXysGOPR1s29POzrYOdreVOi/23t2WXPi9u73EnrYSu7otK7Gno9R5XUn1ELbsULWOzDdP2b4uR/d/V5XpzvLq5emyz19wEi8/dtoBvd7BkPcQi/OA6yKiFXhS0jLgVOCOfJtlNjjm+GyA2bAnpUM2us5NmvVZe6nMGf/2a6783ROMaCwypqWBPe0ldrZ1sH1P8ti2p51tuzvYvqc9LWvvXLZ9Tzs72/p3nrGpWEhuJ9qUDIvr6W5CjcUCI5r2vttQMR06lAzhyQyNUdcQmYKqhstk6lWGA82ZVFv/Pw5lQL5U0oXAIuADEbEZmAncmamzKi3bi6SLgYsB5syZM8hNNRscvt+wmZntS2OxwKfPP5H3X3cfl1xzb491mhoKjG1pYExLI2NaGhjT0sBhY1rS6a6ysS2NjGpuYGQafEc0FRnRmD6akkdLQ4GGYmGIX2XtG7CALOlmoKdz4/8EfBn4F5Iz6v8CfBp4Z3+2HxFXAlcCLFy40KO8rG5MGdPMo2u386dHTcm7KWZmVgf+9Kgp3Pmhs1m2fgd72ku0NBYZ1dzQGXybPfZp0A1YQI6Il/alnqSvADels6uB2ZnFs9Iys2GjuSE5Mv/CW07KuSVmZlYvWhqLHDdzXN7NOGQNyTl1SdMzs68DHk6nbwQukNQsaR4wH7h7KNpkNlTKAcfPHMeYlsa8m2JmZmZ9MFRjkD8l6USSIRYrgHcDRMQSSdcDS4EO4BLfwcKGm3IEHnpsZmZWP4YkIEfE2/ex7HLg8qFoh1keyuEb25uZmdUTX7ZoNsjKZZ9BNjMzqycOyGaDLBli4YRsZmZWLxyQ+6Hs3xC1A7CnvURTg99qZmZm9cL/a/fRpdfcyz9+/8G8m2F1ZvPONh5evY1jpo/NuylmZmbWRw7IfTRxVBM/uG8196zYlHdTrI7c+MAa2kpl3nDyrLybYmZmZn3kgNxHH3zF0cyaMIL3XnMfz+5ozbs5Vie+t3gVx84Yy4IZPoNsZmZWLxyQ+2hsSyNffMvJbNrVxt98+152tXXk3SSrcY+v285Dq7fyep89NjMzqysOyP1w3Mxx/Mcbn8c9Kzbx9q/dzfpte/JuktWwH9y3mmJBnHfijLybYmZmZv3ggNxP5504ky+85WSWrNnKuZ+/jZseXEOE725h3UUEN96/hhfNn8zk0c15N8fMzMz6wQH5AJx7/HR+fOkLOWxMC5decx+v//If+MmDz9BeKufdNKsRj6/fweotu3n5sdPyboqZmZn105D81PRwNH/qGH783hfy3UUr+eJvlnHJNfcyYWQjL37uYfzpUVN43qzxzJ000j8xfIi644lnAThz/uScW2JmZmb95YB8EIoFccGpc3jTwtn85rH13PTgM9zy6Hp+cO9qAMY0NzBr4khmjh/B9HEtjB3RwJiWRkY3N9DcUKAgUShAQUISIvnVNYAICCJ5DgiSr+07nzvLMvXSFcuRrdu1bmW75W7LknXJbLfcwzar61fqkG1bpk1dr+PQHH5y79NbGNlUZOb4EXk3xczMzPrJAXkAFAvi7GOmcvYxU+kolfnjuh08tHoLS9ZsY9Xm3azctIt7Vmxi+5526vXH+CQQIImCQCQF6lymzjoFZZcl5YeiFz/3MH+DYGZmVocckAdYQ7HAgl7uexsR7G4vsX1PB20d5c4zreXMWd9KoOwMl1QFUPVSDqD0bHQP65KuW+hhXTLzhertO+CZmZnZIcYBeQhJYmRTAyOb/Gc3MzMzq1W+i4WZmZmZWYbq8SIqSRuAp3LY9WRgYw77tZ65P2qL+6O2uD9qi/ujtrg/ak9efXJ4REypLqzLgJwXSYsiYmHe7bCE+6O2uD9qi/ujtrg/aov7o/bUWp94iIWZmZmZWYYDspmZmZlZhgNy/1yZdwOsG/dHbXF/1Bb3R21xf9QW90ftqak+8RhkMzMzM7MMn0E2MzMzM8twQDYzMzMzy3BA7gNJ50h6TNIySZfl3Z5DhaQVkh6SdL+kRWnZREm/kvR4+jwhLZekz6d99KCkk/Nt/fAg6SpJ6yU9nCnrdx9Iuiit/7iki/J4LcNBL/3xUUmr0/fJ/ZLOzSz7UNofj0l6Rabcn2kDQNJsSbdKWippiaT3p+V+j+RgH/3h90gOJLVIulvSA2l/fCwtnyfprvRv+x1JTWl5czq/LF0+N7OtHvtpUEWEH/t4AEXgCeAIoAl4AFiQd7sOhQewAphcVfYp4LJ0+jLg39Ppc4GfAQJOB+7Ku/3D4QG8CDgZePhA+wCYCCxPnyek0xPyfm31+OilPz4KfLCHugvSz6tmYF76OVb0Z9qA9sd04OR0egzwx/Tv7vdIbfWH3yP59IeA0el0I3BX+u/+euCCtPwK4D3p9N8AV6TTFwDf2Vc/DXb7fQZ5/04FlkXE8ohoA64Dzsu5TYey84Cr0+mrgT/LlH8jEncC4yVNz6F9w0pE/A7YVFXc3z54BfCriNgUEZuBXwHnDHrjh6Fe+qM35wHXRURrRDwJLCP5PPNn2gCJiGci4t50ejvwCDATv0dysY/+6I3fI4Mo/Xe+I51tTB8BvAT4Xlpe/f6ovG++B5wtSfTeT4PKAXn/ZgIrM/Or2PcbzgZOAL+UtFjSxWnZ1Ih4Jp1eC0xNp91PQ6e/feC+GXyXpl/ZX1X5Oh/3x5BKvw4+ieQsmd8jOavqD/B7JBeSipLuB9aTHPg9AWyJiI60SvZv2/l3T5dvBSaRU384IFste2FEnAy8ErhE0ouyCyP57sX3KcyR+6AmfBl4DnAi8Azw6VxbcwiSNBr4PvB/ImJbdpnfI0Ovh/7weyQnEVGKiBOBWSRnfZ+bb4v6zgF5/1YDszPzs9IyG2QRsTp9Xg/cQPLmWlcZOpE+r0+ru5+GTn/7wH0ziCJiXfqfUBn4Cl1fPbo/hoCkRpIw9u2I+EFa7PdITnrqD79H8hcRW4BbgTNIhhY1pIuyf9vOv3u6fBzwLDn1hwPy/t0DzE+vumwiGTh+Y85tGvYkjZI0pjINvBx4mORvX7nC+yLgR+n0jcCF6VXipwNbM19x2sDqbx/8Ani5pAnpV5svT8tsAFSNtX8dyfsEkv64IL0yfB4wH7gbf6YNmHR85NeARyLiM5lFfo/koLf+8HskH5KmSBqfTo8AXkYyLvxW4I1pter3R+V980bglvQbmN76aVA17L/KoS0iOiRdSvJhVQSuioglOTfrUDAVuCH5vKMBuCYifi7pHuB6Se8CngLOT+v/lOQK8WXALuAdQ9/k4UfStcBZwGRJq4B/Bj5JP/ogIjZJ+heS/3QAPh4Rfb3QzDJ66Y+zJJ1I8jX+CuDdABGxRNL1wFKgA7gkIkrpdvyZNjBeALwdeCgdZwnwYfweyUtv/fFmv0dyMR24WlKR5ITs9RFxk6SlwHWSPgHcR3JQQ/r8TUnLSC5GvgD23U+DyT81bWZmZmaW4SEWZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmYHSNILJf1B0lZJmyTdLukUSX8h6fcDuJ+/l/SwpO2SnpT09wO1bTMz21tD3g0wM6tHksYCNwHvAa4HmoAzgdbB2B1wIfAg8Bzgl5JWRsR1g7AvM7NDns8gm5kdmKMAIuLaiChFxO6I+CXQDlwBnCFph6QtAJKaJf2npKclrZN0haQR6bKzJK2S9GFJGyWtkPTWyo4i4lMRcW9EdETEY8CPgBf01ChJkyXdJGlLelb7NkmFdNkxkn6TLlsi6bWZ9f5X0pck/Sxt9+2Spkn6nKTNkh6VdFKm/mWSnkjPai+V9Lpe2nOapLWSipmy10l68ED/8GZmg80B2czswPwRKEm6WtIrJU0AiIhHgL8G7oiI0RExPq3/SZJQfSJwJDAT+H+Z7U0DJqflFwFXSjq6eqeSRHKmekkv7foAsAqYAkwFPgyEpEbgx8AvgcOA9wLfrtrH+cBH0na0AncA96bz3wM+k6n7RNqOccDHgG9Jml7dmIi4C9gJvCRT/Bbgml7ab2aWOwdkM7MDEBHbgBcCAXwF2CDpRklTq+umofZi4G8jYlNEbAf+Fbigqur/jYjWiPgt8BOSwFrtoySf3V/vpWntwHTg8Ihoj4jbIiKA04HRwCcjoi0ibiEZIvLmzLo3RMTiiNgD3ADsiYhvREQJ+A7QeQY5Ir4bEWsiohwR3wEeB07tpU3XVvYjaQxwblpmZlaTHJDNzA5QRDwSEX8REbOA44AZwOd6qDoFGAksToc3bAF+npZXbI6InZn5p9LtdZJ0KclY5FdFRG9jnf8DWEYyTnm5pMvS8hnAyogoV+1jZmZ+XWZ6dw/zozNtuVDS/ZnXcxzJmeaeXAO8XlIz8Hrg3oh4qpe6Zma5c0A2MxsAEfEo8L8kQTGqFm8kCZjHRsT49DEuIkZn6kyQNCozPwdYU5mR9E7gMuDsiFi1j3Zsj4gPRMQRwGuBv5N0drqt2ZXxyJl9rO7va5V0OMlZ80uBSekwkodJLibsqU1LScL4K/HwCjOrAw7IZmYHQNJzJX1A0qx0fjbJMII7Sc68zpLUBJCetf0K8FlJh6X1Z0p6RdVmPyapSdKZwKuB76Z130oyJONlEbF8P+16taQj02EdW4ESUAbuAnYB/yCpUdJZwGuAA7kTxiiSg4AN6T7fQXJgsC/XAO8HXlR5XWZmtcoB2czswGwHTgPukrSTJBg/THKR3C0kF9GtlbQxrf+PJEMf7pS0DbgZyF4gtxbYTHKm99vAX6dnpQE+AUwC7knvMLFD0hWVFdM7UlTuejE/3fYOkovsvhQRt0ZEG0kgfiXJGe0vARdm9tFn6RnhT6fbXwccD9yeac+ZknZUrXYt8KfALRGxETOzGqbk2g0zM8tLejb3W+lYZjMzy5nPIJuZmZmZZTggm5mZmZlleIiFmZmZmVmGzyCbmZmZmWU4IJuZmZmZZTTk3YADMXny5Jg7d27ezTAzMzOzOrZ48eKNETGlurwuA/LcuXNZtGhR3s0wMzMzszomqcefvfcQC7NBtKe9xPuvu481W3bn3RQzMzPrIwdks0F08yPr+NH9a/jET5bm3RQzMzPrIwdksyEglHcTzMzMrI8ckM3MzMzMMhyQzQaRf4fHzMys/jggmw0Fj7AwMzOrGw7IZmZmZmYZDshmZmZmZhkOyGaDyEOQzczM6o8DstkQ8BBkMzOz+uGAbGZmZmaW4YBsZmZmZpbhgGw2BDwW2czMrH44IJuZmZmZZTggmw0iX5xnZmZWf2oiIEs6R9JjkpZJuizv9piZmZnZoSv3gCypCHwReCWwAHizpAX5tspsgHkQspmZWd3IPSADpwLLImJ5RLQB1wHn5dwmswGhdIxFOCGbmZnVjVoIyDOBlZn5VWlZN5IulrRI0qINGzYMWePMDoY8CtnMzKzu1EJA7pOIuDIiFkbEwilTpuTdHLN+CZ9ANjMzqxu1EJBXA7Mz87PSMrO61znEwgHZzMysbtRCQL4HmC9pnqQm4ALgxpzbZDYgPMDCzMys/jTk3YCI6JB0KfALoAhcFRFLcm6W2YDyRXpmZmb1I/eADBARPwV+mnc7zAaah1iYmZnVn1oYYmE2jHmQhZmZWb1xQDYbAj6BbGZmVj8ckM0GkYdYmJmZ1R8HZDMzMzOzDAdkMzMzM7MMB2SzQdR1iZ7HWJiZmdULB2SzQaR0ELLHIJuZmdUPB2QzMzMzswwHZLMh4BPIZmZm9cMB2WwQRTq2IjzGwszMrG44IJsNIsdiMzOz+uOAbDaIKieOHZTNzMzqhwOy2aCqDLHIuRlmZmbWZw7IZoPIwdjMzKz+OCCbDaKoejYzM7Pa15B3A8yGs+wZ5B8/sIZ7Vmzi+YdP4OhpYzjqsDEUCup9ZTMzM8uFA7LZICpnEvKXfvMEjzyzjW/c8RQAY1saeP7hEzhl3kROmTuR580aR3NDMa+mmpmZWcoB2WwQVeJxqVxm+YYdXHTG4bz19MN5ePVW7lmxmUUrNnHrY48B0NRQ4IRZ4zhm+lgmj25myphmxo1oZERjkRFNxc7nloYijQ2iqVigsaFAUzF5+Gy0mZnZwHBANhtElR8IeXrTLlo7yhw7cxxHTR3DUVPH8PqTZwGwaWcbi59KwvLdKzbxo/vXsHV3e7/31VAQjcUCTQ0FGosFmhsKNBZFU0NXWVO6vKlY6FY3KVO3+a5tdM03FpU+F2goJiG9oSAaGwo0Fgo0NoiGQrL9hs666qzfWHCQNzOz2ueAbDYEVm7aDcBRU8fstWziqCZetmAqL1swtbOstaPEszva2Lannd1tJXa3l9jTXmJXW4k97WXaS2XaOpLn1o7u820dZdpK0W2+vVSmLZ3e0drRVa+jTHsp9tpGR3nwLissFkRDQVUhOgnSDcXuQbyhkIT2SvjvqV5DGswbC1XBfa+AnhwEFAvJsoZCsm6P0+m+G4qiWEi2XUwDfrEgGotCctA3MxuuHJDNBlH1bd7mHza6T+s1NxSZMX4EMxgxCK3av3I5kkBdKtPe0RWu20tBR7lMe0fQXk6WdaR1O0pBR7pORyloL5VpL0daJ1m3vZQG8FJ0r5c+d5TLtHUk+6jU2dna0X3ddJvt5ei2rfZSeUhvq1cQXUE6G6r3CthJSO8M2ml593rZdZOwXgni3dYvFjoPMHpcPxP2s4G+EvQbCqKgrnrFQoGiRLGYWVZI5ovqWqdY8AGBmR1aHJDNBlFkbvA2c/wIRjXXx1uuUBAthSItjfV10WCp3D2EV0J6R6lyhjwoldMAXo4k1GemS2mQr2ynVA7ay0EpDeYd6ba61s3Mp6G+xzrlcuc2O8pldrd338e+1k/aMLThvycF0RncK4+GgihkQnS2vFgoUCyQnLEvZAJ3MRPE95qvWqfQPaT3vN8CRUGxuPd+ij3uN/saoJAu7/7cvbyQbqdQoHN7hUrdqnIfSJgND/Xxv7VZncqGmqOm9u3ssR24JPTUX7Dvi3IalJNgnQb9Us9Bv9t0qUwpkvqVMF4qd58vd5aXu9Xpviw6t9NRCsrRFfz3uU6566CkVA5aO0o9tqMUXQcEXfspd58vR+4HCvsjsVdwLhQyYTsN4JXyriDOXkE9Ceb9L+8M9J37zrQjfRYgJfstSEhd8yItT68XKPRaL6kjJdur1Ouq0zWfrLv/epX5bD1E598uW6/yGkiqJOUkbcz2R6WsenllHSrLO9fRvrdXtbxrP8lG997H3vVR1zrZ5WlrOoeIWX6GJCBL+ijwV8CGtOjDEfHTdNmHgHcBJeB9EfGLoWiT2VDI/md+ZB+HV5j1pFAQzYXhF/z7q5wJzD0H/vJeBwDdDgaqgng5E9AjglKZPpWXI3mUyqTPySOi0r59lGf2XY6gFPSwv73L2zsPGOihHUE56NxfT+0rd24/KQuSC4nLlfkaP/g4lDQVC/zo0hdwzPSxeTflkDWUZ5A/GxH/mS2QtAC4ADgWmAHcLOmoiCgNYbvMBk32/5vnTHFANjtYhYIoIIbhlwQ1oRKYs8EZSAN3V5Curhdp4O6sV+6+Xo/1yskwtEpg77FeGvyr65UjOj9gK8sqRZV1k9eT1uhc1jX0LVu/q+6+t0emLb1tj86Dj8y2+7K/tGzr7nau+G1y3/zBDsilcrCrrYNdbclF4DtbK9MdnfO720vsbE3KKteiVIaytVWuIenIzncNVascGJbLXf92SunBW6U/S+k3Q5e/7jjOOvqwQX29/ZH3EIvzgOsiohV4UtIy4FTgjnybZTYwKh+EAEc4IJtZjZOSYRpdAw5sqLV2lPjmHSv46UNree0JM2jIDLWISO46tH1PBztaO9jZ2sH2PcnzjsyjUl6ZrpTvai2xMxN+WzvKfW6XROd99xsbuu4QVLltaGND192GWhoLFAuFzqE52WE6hUJPZWLiqKbB+HMesKEMyJdKuhBYBHwgIjYDM4E7M3VWpWV7kXQxcDHAnDlzBrmpZgOj+xnkUbm1w8zM6kNzQ5G/efGR/McvHuOkf/kVE0Y2USpHZ8gtlfc/FkaC0c0NnY9R6fNhY5oZ1dTAyOYiI5saGNlUzMwnZaOaGhjRVGRUc7FruqmBlsbCIXUR6oAFZEk3A9N6WPRPwJeBfyHJC/8CfBp4Z3+2HxFXAlcCLFy40COlrD5k/qXW2tGxmZnVpr856zkcPXUMv/3jBna0dlCQGN1cZHRLEnbHZELv6JaGbmF4dEsDIxqLh1SYHQwDFpAj4qV9qSfpK8BN6exqYHZm8ay0zGxYqIzfu/7dZ/jDyszM+kQSL10wlZdmfkDKhtaQ3ENE0vTM7OuAh9PpG4ELJDVLmgfMB+4eijaZDYXKCeTZE/P5wQ8zMzPrv6Eag/wpSSeS5IUVwLsBImKJpOuBpUAHcInvYGHDSeUaPfmCFzMzs7oxJAE5It6+j2WXA5cPRTvMhlrl9j8eXWFmZlY//DMtZoOo6wyymZmZ1QsHZLNBVLkPsi/QMzMzqx8OyGaDaGdbMqR+RJN/9svMzKxeOCD30eU/Wcp//uKxvJthdebh1VuZOraZUQ7IZmZmdcMBuY/Wb2/la79/kmXrd+TdFKsT5XJw5/JNnDZvkodYmJmZ1REH5D760CuPYURTkUuvuZc97b4Tne3f0me2sXFHKy86akreTTEzM7N+cEDuo2njWvjM+Sfw6NrtXPb9B/v0W+h2aLvl0fVIcNbRDshmZmb1xAG5H846+jA++PKj+OH9a/jA9ff7TLLt062Pred5s8YzeXRz3k0xMzOzfnBA7qdLXzKfv3/F0fzw/jW84ct/4NG12/JuktWgna0dPLByCy+aPznvppiZmVk/OSAfgEtefCRfvXAhq7fs5tz/uo0P/eBBntjgi/esywMrt1AOOPnwCXk3xczMzPppSH5qejh66YKp3PqBs/jczX/k2rtXcu3dKzl13kRevmAqZx09hSMmj6ZQ8J0LDlVL1iTfLJw4a3y+DTEzM7N+U+WXvurJwoULY9GiRXk3o9PGHa1ce9fT3PTgMzy2bjsAY5obWDBjLIdPGsmsCSOZNraFMS0NjGlpZExLA43FAsWCKAgKBVGUCLp+eS2ZTqYiuuajMp+Zrui2PN1W9Xay284uD5KVqvfTVT+py15tyCzbX5uzr69z23tvazj46UPPcOfyTSz9+Ct8izczM7MaJWlxRCysLvcZ5AEweXQz7z17Pu89ez5PP7uLu558lgdWbWHpmm385rENrN/emncTLQfHzRzrcGxmZlaHHJAH2JxJI5kzaSRvWji7s2xPe4kN21vZvqeD7Xva2b6ng45ymXJAqRyUIyiVAwmEyGYqSQi6LavMk5nfq25an876yqzXfVvste3q/XTfV09toqdt76fNlfDY07aGA9+9wszMrD45IA+BlsYisyeOzLsZZmZmZtYHvouFmZmZmVlGXV6kJ2kD8FQOu54MbMxhv9Yz90dtcX/UFvdHbXF/1Bb3R+3Jq08Oj4i9fvK2LgNyXiQt6ulKR8uH+6O2uD9qi/ujtrg/aov7o/bUWp94iIWZmZmZWYYDspmZmZlZhgNy/1yZdwOsG/dHbXF/1Bb3R21xf9QW90ftqak+8RhkMzMzM7MMn0E2MzMzM8twQDYzMzMzy3BA7gNJ50h6TNIySZfl3Z5DhaQVkh6SdL+kRWnZREm/kvR4+jwhLZekz6d99KCkk/Nt/fAg6SpJ6yU9nCnrdx9Iuiit/7iki/J4LcNBL/3xUUmr0/fJ/ZLOzSz7UNofj0l6Rabcn2kDQNJsSbdKWippiaT3p+V+j+RgH/3h90gOJLVIulvSA2l/fCwtnyfprvRv+x1JTWl5czq/LF0+N7OtHvtpUEWEH/t4AEXgCeAIoAl4AFiQd7sOhQewAphcVfYp4LJ0+jLg39Ppc4GfAQJOB+7Ku/3D4QG8CDgZePhA+wCYCCxPnyek0xPyfm31+OilPz4KfLCHugvSz6tmYF76OVb0Z9qA9sd04OR0egzwx/Tv7vdIbfWH3yP59IeA0el0I3BX+u/+euCCtPwK4D3p9N8AV6TTFwDf2Vc/DXb7fQZ5/04FlkXE8ohoA64Dzsu5TYey84Cr0+mrgT/LlH8jEncC4yVNz6F9w0pE/A7YVFXc3z54BfCriNgUEZuBXwHnDHrjh6Fe+qM35wHXRURrRDwJLCP5PPNn2gCJiGci4t50ejvwCDATv0dysY/+6I3fI4Mo/Xe+I51tTB8BvAT4Xlpe/f6ovG++B5wtSfTeT4PKAXn/ZgIrM/Or2PcbzgZOAL+UtFjSxWnZ1Ih4Jp1eC0xNp91PQ6e/feC+GXyXpl/ZX1X5Oh/3x5BKvw4+ieQsmd8jOavqD/B7JBeSipLuB9aTHPg9AWyJiI60SvZv2/l3T5dvBSaRU384IFste2FEnAy8ErhE0ouyCyP57sX3KcyR+6AmfBl4DnAi8Azw6VxbcwiSNBr4PvB/ImJbdpnfI0Ovh/7weyQnEVGKiBOBWSRnfZ+bb4v6zgF5/1YDszPzs9IyG2QRsTp9Xg/cQPLmWlcZOpE+r0+ru5+GTn/7wH0ziCJiXfqfUBn4Cl1fPbo/hoCkRpIw9u2I+EFa7PdITnrqD79H8hcRW4BbgTNIhhY1pIuyf9vOv3u6fBzwLDn1hwPy/t0DzE+vumwiGTh+Y85tGvYkjZI0pjINvBx4mORvX7nC+yLgR+n0jcCF6VXipwNbM19x2sDqbx/8Ani5pAnpV5svT8tsAFSNtX8dyfsEkv64IL0yfB4wH7gbf6YNmHR85NeARyLiM5lFfo/koLf+8HskH5KmSBqfTo8AXkYyLvxW4I1pter3R+V980bglvQbmN76aVA17L/KoS0iOiRdSvJhVQSuioglOTfrUDAVuCH5vKMBuCYifi7pHuB6Se8CngLOT+v/lOQK8WXALuAdQ9/k4UfStcBZwGRJq4B/Bj5JP/ogIjZJ+heS/3QAPh4Rfb3QzDJ66Y+zJJ1I8jX+CuDdABGxRNL1wFKgA7gkIkrpdvyZNjBeALwdeCgdZwnwYfweyUtv/fFmv0dyMR24WlKR5ITs9RFxk6SlwHWSPgHcR3JQQ/r8TUnLSC5GvgD23U+DyT81bWZmZmaW4SEWZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZmZmZhkOyGZmZmZmGQ7IZmZmZmYZDshmZgdI0gsl/UHSVkmbJN0u6RRJfyHp9wO4n7+VtFzSNklrJH1WUsNAbd/MzLpzQDYzOwCSxgI3Af8NTARmAh8DWgdhdzcCJ0fEWOA44ATgfYOwHzMzwwHZzOxAHQUQEddGRCkidkfEL4F24ArgDEk7JG0BkNQs6T8lPS1pnaQrJI1Il50laZWkD0vaKGmFpLdWdhQRT0TElnRWQBk4sqdGSZos6SZJW9Kz2rdJKqTLjpH0m3TZEkmvzaz3v5K+JOlnabtvlzRN0uckbZb0qKSTMvUvk/SEpO2Slkp6XS/tOU3SWknFTNnrJD3Y/z+5mdnQcEA2MzswfwRKkq6W9EpJEwAi4hHgr4E7ImJ0RIxP63+SJFSfSBJuZwL/L7O9acDktPwi4EpJR1cWSnqLpG3ARpIzyP/TS7s+AKwCpgBTgQ8DIakR+DHwS+Aw4L3At7P7AM4HPpK2oxW4A7g3nf8e8JlM3SeAM4FxJGfOvyVpenVjIuIuYCfwkkzxW4Bremm/mVnuHJDNzA5ARGwDXggE8BVgg6QbJU2tritJwMXA30bEpojYDvwrcEFV1f8bEa0R8VvgJySBtbK/a9IhFkeRnKFe10vT2oHpwOER0R4Rt0VEAKcDo4FPRkRbRNxCMkTkzZl1b4iIxRGxB7gB2BMR34iIEvAdoPMMckR8NyLWREQ5Ir4DPA6c2kubrq3sR9IY4Ny0zMysJjkgm5kdoIh4JCL+IiJmkYwNngF8roeqU4CRwOJ0eMMW4OdpecXmiNiZmX8q3V71Ph8HlgBf6qVZ/wEsA36ZXth3WVo+A1gZEeWqfczMzGdD9+4e5kdXZiRdKOn+zOs5juRMc0+uAV4vqRl4PXBvRDzVS10zs9w5IJuZDYCIeBT4X5KgGFWLN5IEzGMjYnz6GBcRozN1JkgalZmfA6zpZXcNwHN6acf2iPhARBwBvBb4O0lnp9uaXRmPnNnH6r69wi6SDic5a34pMCkdRvIwyfjontq0lCSMvxIPrzCzOuCAbGZ2ACQ9V9IHJM1K52eTDCO4k+TM6yxJTQDpWduvAJ+VdFhaf6akV1Rt9mOSmiSdCbwa+G5a9y8z6y0APgT8upd2vVrSkemwjq1AieSivruAXcA/SGqUdBbwGuC6A3j5o0gOAjak+3wHyYHBvlwDvB94UeV1mZnVKgdkM7MDsx04DbhL0k6SYPwwyUVyt5AMg1graWNa/x9Jhj7cmV5sdzOQvUBuLbCZ5Ezvt4G/Ts9KA7wAeCjdz0/Tx4crK6Z3pKjc9WJ+uu0dJBfZfSkibo2INpJA/EqSM9pfAi7M7KPP0jPCn063vw44Hrg9054zJe2oWu1a4E+BWyJiI2ZmNUzJtRtmZpaX9Gzut9KxzGZmljOfQTYzMzMzy3BANjMzMzPL8BALMzMzM7MMn0E2MzMzM8toyLsBB2Ly5Mkxd+7cvJthZmZmZnVs8eLFGyNiSnV5XQbkuXPnsmjRorybYWZmZmZ1TFKPv+rpIRZmg6Sto8xXb1tOR6m8/8pmZmZWMxyQzQbJV25bzid+8gjX3P103k0xMzOzfnBANhsk2/a0A7CjtSPnlpiZmVl/OCCbDZKCBIDvpGhmZlZfHJDNBonyboCZmZkdEAdks0HmH+MxMzOrLw7IZoMkHWHhIRZmZmZ1xgHZbJAoHWThfGxmZlZfHJDNBok8CNnMzKwuOSCbDTIPsTAzM6svDshmg6RyAjk8yMLMzKyuOCCbDRbfB9nMzKwuOSCbDRIPQTYzM6tPDshmg8wnkM3MzOqLA7LZIOm8i4XHWJiZmdUVB2SzQeL7IJuZmdUnB2SzQeL7IJuZmdWnmgjIks6R9JikZZIuy7s9ZgPBIyzMzMzqU+4BWVIR+CLwSmAB8GZJC/JtldnBq5xBLjshm5mZ1ZXcAzJwKrAsIpZHRBtwHXBezm0yO2iSxyCbmZnVo1oIyDOBlZn5VWlZN5IulrRI0qINGzYMWePMDpZPIJuZmdWXWgjIfRIRV0bEwohYOGXKlLybY7ZfvkjPzMysPtVCQF4NzM7Mz0rLzOpaofOnpn0K2czMrJ7UQkC+B5gvaZ6kJuAC4Mac22R20Aq+SM/MzKwuNeTdgIjokHQp8AugCFwVEUtybpbZQaucQS47H5uZmdWV3AMyQET8FPhp3u0wG0jqDMhOyGZmZvWkFoZYmA1LlSEWzsdmZmb1xQHZbJBUbmLhM8hmZmb1xQHZbJAUCpW7WOTcEDMzM+sXB2SzQVIZg1xyQjYzM6srDshmg6RrDLIDspmZWT1xQDYbJJ23eSvn3BAzMzPrFwdks0HSeQYZn0E2MzOrJw7IZoNE/qEQMzOzuuSAbDZICv6hEDMzs7rkgGw2SCr3QXY+NjMzqy8OyGaDpJC+u1Zu2sWHb3iIPe2lfBtkZmZmfeKAbDZIKkMsFj21mWvueppfP7I+5xaZmZlZXzggmw2SykV6Fd++6ykeXLXFZ5LNzMxqXEPeDTAbrlQ1/4cnnuW1X7idhoKYP3UMx80Yy/GzxrFg+lhmTRjJlDHNFAvVa5mZmdlQc0A2GyTV1+Zd/+4z2LijlSVrtvLQ6m38+tH1fHfxqs7lxYI4bEwzE0Y2MaalgTEtjelzAyOaijQ3FGluKGQeRZobM9MNBZoaCjQWCzQURVNx7+nGhgINhWS+4DBuZmbWIwdksyEwe+IITp03EYBzj58OJD9BvXbbHh55ZhvPbN3D2q17eGbrHrbsamPbng7WbNnN9tZ2tu/pYE97iT3tA/uTfMWCaCyKxkISnBuLoqFQCdlKw3WBph6mewvhDek2GouioZiE8YZCMl3ZfkPmuceyzLJiIdlGZR+NhQLFojrLfMbdzMwGgwOy2SCJzP3dRjXt/VaTxPRxI5g+bkSft9deClo7SrR2lJNH+97THeUybR1BeymZbu8I2kplOkpl2kvJdHupTEcpqdNWNd1eirRumbbM9M62Eu3p9ttLQVtmur0j3U45KA3hL6NIdAbqYiVIZwJ1sdAVuBuKBRoLmXp9DvNd63bWK3Yva0z31VDILC8kAb6hc1lXncrBSXa+oaDO8F9pt8/ym5nlwwHZbAiMaTn4t5okmhpEU0OBMQPQpsFSLgcd5aCjnATmjkrILifPlbL2zukkZJfKQXu53K1+qVwJ7NEZxnsq69xuuRL2s/tPyzL739XWQUc5OtfN7rtz3W7P+dzMWmKvYN013xXYi5WyzFn3nup0fy50hvLGyvxeYT4pbyz2sF5V+G/InN3vsb3FrgOI7uvu/bqKBe11kauZ2VByQDYbJNkzqVPGNOfYkqFVKIimgmgaRjfJiYiusF8J0p1hviuMt6dhu3ImvSMN/h3lrvJK/W71ykGpM+Rn1y13r1PuHtq7ysuZfaUHG6UybR1ldrWVutfLbL9bO0rd95H3T6QXlAwDKigJzYVMeM6WVQ4OispMZ8qy61WXdS6rKstuq6eynvbZ27Ya0vb2Z1vFAhQLhaSsWNkmycFEZrrzWXvfNcfMDo4DstkgyQaMqWNb8muIHTQpHa9dBCjm3ZwhUa4K5XsH+u7fEvRar9z1DUFvYb7zTH86XyoH5fSgJNuObFmlXqmXslJmvq2jTCl631bn+lXrVW8r74OGfakcUEhdYVtpWVFpeYHMdKaOkhBfSMN5QV2hviAy05WAT2Y6Cezd6iiznUodkalfVSe7r876mX0V9tee6u331J6etk+39qpSnu5D6lpeOQgpZMsy63fV7VrXBy31zQHZbJCUM/+bTnNAtjpT+SYgcWgcFOxPRFdoLpdJzrSnz9VlSbAuU+pHWfdQnpR1hvroHuY70pBfypSVo6teOeg8EEjq0XOdyKxbJlM/XTdtY1tHOV03s51yENXbSNfpto1KW3qqE8k2hqNsaK4cuHQL34Xew/eo5iJfu+gUZk8cmffLOGQ5IJsNknLmU3/aOAdks3onpWOpO0t84DAQInoK9N1DdM+BvnsAzwb2ZLrrgCMqdaJSTmedcnQdGETnNOl8Znk5W7fS7mxdqurse3n1viuvd8vudn61dB1L1mx1QM7RkARkSR8F/grYkBZ9OCJ+mi77EPAuoAS8LyJ+MRRtMhtspUxA9hALM7OeJWdX8W0bU2u27OZXS9exZVd73k05pA3lGeTPRsR/ZgskLQAuAI4FZgA3SzoqIvxbvFb3suMVZ47v263czMzs0DZhZBMAz2zdk3NLDm15D7E4D7guIlqBJyUtA04F7si3WWYHLzsGeYYDspmZ9cGIpiLHzRzLr5au431nz6+rM+uV+/W3lbrfp7+to9x5D//dbSV2tXWwszV9biuxq7WD1544gyMPq52bmA5lQL5U0oXAIuADEbEZmAncmamzKi3bi6SLgYsB5syZM8hNNTt42THI9fQBZ2Zm+XrXC+fxt995gNd/6XaOmT6WUjnY01GmvSP54ab2cnT+cFNf767Sl/+FSpVx0eXoNia8sywzXjq7PPsjVgdy0aUEx0wfOzwDsqSbgWk9LPon4MvAvwCRPn8aeGd/th8RVwJXAixcuHCYXvNqw0nlQ+vf33B8vg0xM7O68mcnzqS1vcy373qaXz+6noaCaG4o0NxQpKGY/BpoY+YXO/cn2H9siiBza7y+3Tawcqu9pmIhbV+BprSdzY2FzjZXypsaCoxsamBkU5FRTQ2MbE6eWxoLNXdbvAELyBHx0r7Uk/QV4KZ0djUwO7N4VlpmVvcqQyzOPX56zi0xM7N6IokLTp3DBaf6G/O8DMlPXUnKJoTXAQ+n0zcCF0hqljQPmA/cPRRtMhtslSEWHl5hZmZWX4ZqDPKnJJ1IMsRiBfBugIhYIul6YCnQAVziO1jYcFEZYlGosa+NzMzMbN+GJCBHxNv3sexy4PKhaIfZUKqcQXY+NjMzqy9DMsTC7FAUaUD2GWQzM7P64oBsNki27emguaFAg8cgm5mZ1RUH5D56dO027n5yU97NsDqyctMuZk0YUXO3rjEzM7N9c0Duo7/7zgN8+IaHaO3wNYTWN6s272bWhJF5N8PMzMz6yQG5j/7uZUexbP0OPnHTI3k3xerEys27mD3RPzFtZmZWbxyQ++ilC6Zy8YuO4Jt3PsUN963KuzlW47bubmfLrnbmTPQZZDMzs3ozVPdBHhb+/hVH88DKLXzwuw9SkDjvxJl5N8lq1NPP7gJgzsRRObfEzMzM+stnkPuhsVjgqxct5PlzJvD+6+7n8p8s9Zhk69FTm3YCcPgkn0E2MzOrNw7I/TSmpZFvvOtU3nb6HL5y25O87DO/48cPrKGjVM67aVZD1mzZDcDMCR6DbGZmVm88xOIAtDQW+cSfHc/LF0zj8p88wnuvvY/p41p4w8mzeOmCqTxv5jgKvvftIW3b7g4KgjHNfouZmZnVG//vfRBedNQUXnDkZG5+ZB3fuvMpvvSbZXzh1mWMG9HI8TPHcezMscyZOJKZ40cwbVwLY1saGdXcwOjmBooDEKAjggiIyjTJzxunP+DWOV1ZXg4gIEjKy+k6EV3rR7q8HF3br95W1z4q2znolzLsrNq8i9HNDb4HspmZWR1yQD5IxYJ4xbHTeMWx09i8s43f/HE9dz+5iYdWb+Wq3z9Je6nn9NhYFJIoKPkp4oKE6B5AK0G22zTdQ7DVrnmTfYGemZlZPXJAHkATRjXxupNm8bqTZgFQKgfrt+9hzZY9rN26hx2t7Wzf08HO1hJ7OkqdZ27L6dndckRnUJZAUvJM5TkJ05Xp6uWFdB32qpfMU1mHrrqd+6nsE6XLkmnSdbPbqZwUrQT8yv6tu/mHjc67CWZmZnYAHJAHUbEgpo8bwfRxvlDLzMzMrF74LhZmZmZmZhmKOhzMKmkD8FQOu54MbMxhv9Yz90dtcX/UFvdHbXF/1Bb3R+3Jq08Oj4gp1YV1GZDzImlRRCzMux2WcH/UFvdHbXF/1Bb3R21xf9SeWusTD7EwMzMzM8twQDYzMzMzy3BA7p8r826AdeP+qC3uj9ri/qgt7o/a4v6oPTXVJx6DbGZmZmaW4TPIZmZmZmYZDshmZmZmZhkOyH0g6RxJj0laJumyvNtzqJC0QtJDku6XtCgtmyjpV5IeT58npOWS9Pm0jx6UdHK+rR8eJF0lab2khzNl/e4DSRel9R+XdFEer2U46KU/Pippdfo+uV/SuZllH0r74zFJr8iU+zNtAEiaLelWSUslLZH0/rTc75Ec7KM//B7JgaQWSXdLeiDtj4+l5fMk3ZX+bb8jqSktb07nl6XL52a21WM/DaqI8GMfD6AIPAEcATQBDwAL8m7XofAAVgCTq8o+BVyWTl8G/Hs6fS7wM0DA6cBdebd/ODyAFwEnAw8faB8AE4Hl6fOEdHpC3q+tHh+99MdHgQ/2UHdB+nnVDMxLP8eK/kwb0P6YDpycTo8B/pj+3f0eqa3+8Hskn/4QMDqdbgTuSv/dXw9ckJZfAbwnnf4b4Ip0+gLgO/vqp8Fuv88g79+pwLKIWB4RbcB1wHk5t+lQdh5wdTp9NfBnmfJvROJOYLyk6Tm0b1iJiN8Bm6qK+9sHrwB+FRGbImIz8CvgnEFv/DDUS3/05jzguohojYgngWUkn2f+TBsgEfFMRNybTm8HHgFm4vdILvbRH73xe2QQpf/Od6SzjekjgJcA30vLq98flffN94CzJYne+2lQOSDv30xgZWZ+Fft+w9nACeCXkhZLujgtmxoRz6TTa4Gp6bT7aej0tw/cN4Pv0vQr+6sqX+fj/hhS6dfBJ5GcJfN7JGdV/QF+j+RCUlHS/cB6kgO/J4AtEdGRVsn+bTv/7unyrcAkcuoPB2SrZS+MiJOBVwKXSHpRdmEk3734PoU5ch/UhC8DzwFOBJ4BPp1raw5BkkYD3wf+T0Rsyy7ze2To9dAffo/kJCJKEXEiMIvkrO9z821R3zkg799qYHZmflZaZoMsIlanz+uBG0jeXOsqQyfS5/VpdffT0OlvH7hvBlFErEv/EyoDX6Hrq0f3xxCQ1EgSxr4dET9Ii/0eyUlP/eH3SP4iYgtwK3AGydCihnRR9m/b+XdPl48DniWn/nBA3r97gPnpVZdNJAPHb8y5TcOepFGSxlSmgZcDD5P87StXeF8E/CidvhG4ML1K/HRga+YrThtY/e2DXwAvlzQh/Wrz5WmZDYCqsfavI3mfQNIfF6RXhs8D5gN348+0AZOOj/wa8EhEfCazyO+RHPTWH36P5EPSFEnj0+kRwMtIxoXfCrwxrVb9/qi8b94I3JJ+A9NbPw2qhv1XObRFRIekS0k+rIrAVRGxJOdmHQqmAjckn3c0ANdExM8l3QNcL+ldwFPA+Wn9n5JcIb4M2AW8Y+ibPPxIuhY4C5gsaRXwz8An6UcfRMQmSf9C8p8OwMcjoq8XmllGL/1xlqQTSb7GXwG8GyAilki6HlgKdACXREQp3Y4/0wbGC4C3Aw+l4ywBPozfI3nprT/e7PdILqYDV0sqkpyQvT4ibpK0FLhO0ieA+0gOakifvylpGcnFyBfAvvtpMPmnps3MzMzMMjzEwszMzMwswwHZzMzMzCzDAdnMzMzMLMMB2czMzMwswwHZzMzMzCzDAdnMzMzMLMMB2czMzMwswwHZzMzMzCzDAdnMzMzMLMMB2czMzMwswwHZzMzMzCzDAdnMzMzMLMMB2cxsgEhaIemlQ7i/30j6y0HY7lxJIalhoLdtZlYPHJDNzIaIpHmSypK+3MOykLRT0g5JqyV9RlIxj3ZWk3S+pD9I2iXpN3m3x8xssDkgm5kNnQuBzcCfS2ruYfkJETEaOBt4C/BXQ9m4fdgEfA74ZM7tMDMbEg7IZmYD6xRJSyVtlvR1SS0AkkQSkD8CtAOv6W0DEfEocBtwXLZc0sskPSppq6QvAKpa/k5Jj6T7/oWkwzPLQtJfS3pc0hZJX0zbhKSipP+UtFHScuBVVe25OSKuB9bs64VLak63fVymbIqk3ZIO29e6Zma1xAHZzGxgvRV4BfAc4CiSQAzwQmAWcB1wPXBRbxuQtAA4E7gvUzYZ+EG6vcnAE8ALMsvPAz4MvB6YQhKwr63a9KuBU4DnAeen7YTkTPWrgZOAhcAb+/WKUxHRmrbxzZni84HfRsT6A9mmmVkeHJDNzAbWFyJiZURsAi6nKyxeBPwsIjYD1wDn9HBW9V5Jm4EfA18Fvp5Zdi6wJCK+FxHtJEMe1maW/zXwbxHxSER0AP8KnJg9iwx8MiK2RMTTwK3AiWn5+cDnMu3+t4N4/dcAF2Tm35KWmZnVDQdkM7OBtTIz/RQwQ9II4E3AtwEi4g7gaZLwmHVyREyIiOdExEciopxZNiO77YiIqn0dDvxXOsRhC8m4YQEzM3WygXoXMLqnbaftPlC3AiMlnSZpLkkIv+EgtmdmNuQckM3MBtbszPQcknG7rwPGAl+StFbSWpLg2uswix48k912On44u6+VwLsjYnzmMSIi/tDfbaftPiARUSIZQvLm9HFTRGw/0O2ZmeXBAdnMbGBdImmWpInAPwHfIQnCVwHHk5xRPZFk/PAJko7v43Z/Ahwr6fXp/YnfB0zLLL8C+JCkYwEkjZP0pj5u+3rgfWm7JwCXZRemF/G1AA1AQVKLpMZ9bO8a4M9JxmN7eIWZ1R0HZDOzgXUN8EtgOcmFdF8kuW3b5yJibeaxGPg5+75Y7wpJVwBExEaSYRqfBJ4F5gO3V+pGxA3AvwPXSdoGPAy8so9t/grwC+AB4F6SC+2y3g7sBr5McvHg7nSdSjt3SDoz05a7gJ0kQzd+1sc2mJnVDCXD2MzMzMzMDHwG2czMzMysGwdkMzMzM7MMB2QzMzMzswwHZDMzMzOzjIa8G3AgJk+eHHPnzs27GWZmZmZWxxYvXrwxIqZUl9dlQJ47dy6LFi3KuxlmZmZmVsck9fjLoR5iYWY2TO1pL/Grpet4YOWWvJtiZlZX6vIMspmZ7dvO1g7e8pU7eWDVVgBef9JM/u0Nx9PcUMy5ZWZmtc8B2cxsGLrit0/wwKqt/Mcbn8fKzbv5/K8fp7VU5r8vOIlCQXk3z8yspjkgm5kNM8/uaOUrty3nNSfM4E0LZwMwprmBy3/6CNPGtvB/X70g5xaamdU2B+Q6sWz9dn79yHoeWLWF5Rt2smF7KzvbOihKNDUUmDS6mSmjm5kxfgTzp45m/mGjmX/YGGZNGOGzRWaHmO8sWsme9jLve8mRnWV/9aIjWLN1N1/7/ZPMnTyKt59+eI4tNDOrbQ7INaxcDn728Fq+/NtlPLx6GwCzJ47g6KljOGnOBEY3F4mA1o4yG3e0sn57K7c9voHv37uqcxtjWhp43qxxPG/WeE6YNZ4TZo9j2tgWJIdms+GoVA6+fefTnHHEJOZPHdNt2UdetYCnn93FR29cwuwJIzjr6MNyaqWZWW1zQK5RT27cyd9/9wEWPbWZI6aM4p9fs4Bzj5/O1LEt+1136+52lq3fwePrtvPQ6q08sGoLX/ndcjrKAcBhY5p53qxxHD9zfPI8axyTRzcP9ksysyFw5/JnWb1lNx8+95i9lhUL4vNvPok3XXEHl15zH997zxk8d9rYHFppZlbbFBF5t6HfFi5cGMP5Psg3L13He6+9j8ai+MirF/CGk2dRPMhhEnvaSzzyzDYeWLmFB1dt5cHVW3liww4q3T9jXAvHp2eak/A8jvEjmwbg1ZjZUPrQDx7ixvtXs/j/voyWxp7vWPHM1t2c94XbaSwWuOGSP+GwMfs/8DYzG44kLY6IhdXlPoNcY65ftJLLvv8gx80cx5VvX8i0cQPzH1dLY5GT5kzgpDkTOst2tHawZPVWHlq9lQdXJc+/WLKuc/m0sS3peOYx3cY1jxvZOCBtMrOB1VEq84sla3nJMVN7DccA08eN4GsXncL5/3MH7/rfRXzzXaf6gNjMLMMBuYb8/OG1XPb9B3nBkZP5n7c/n5FNg9s9o5sbOO2ISZx2xKTOsq2721myOjnD/Md121m2fgfX3v00u9tLnXUmjGxk9sSRzJ4wklkTRjBr4khmTxjBzPEjOGxMC2NHNHiMs1kO7npyE5t2tvGq46ftt+7xs8bxhbecxHu+dS/n/88dXP3OU5k+bsQQtNLMrPZ5iEWNWLJmK6/70h84dsZYvv2Xpw16OO6PcjlYvWU3y9bv4I/rtvPUpl2s3LSLVZt3s3rzbtpK5W71mxoKTBndzJQxXY/Jo5oYO6KRcSMaO5+zj5FNRYdqs4P04Rse4of3rebefQyvqPaHZRu5+JuLGdlU5L8uOIkznjNp/yuZmQ0TvQ2xcECuATtaO3jNf/+eXW0d/PR9ZzKpji6YK5eD9dtbWbl5F2u27GbD9taux46u6U272tjXP7WCYGRTAyOaioxsKjKiMXke2dRAS+d0kRFNRZoaCjQXCzQWCzQ1JI/KdHNlurh3eUNRNBREsVBIn5V5LlAsqlu5A7vVk1I5OO1fb+a0Iybxxbec3K91H3lmG5dccy8rNu7kr848gveePZ/RzbVzkG5mNlg8BrmGfeKmpTz17E6u/avT6yocAxQKYtq4lv2OlS6Xg+17Oti2p52tu5PHtt1d09v3dLCrrcTu9uR5V1uJ3W0ldrV1sHFHK7vbk7I9bSVaS2XaOsr73N+AvDaRBOdKkC5WBepMwC4WRENRFJUE62IhmS4UkjsHFJQ8KtPFtFxK6mXLCxKFwr7LO5+V9EExU14QmfV6Ly8oU1a1v57KlZYVtXd5oXo6fb2FSrurp4UPQAbY3U9uYuOONs45dv/DK6odM30sP770hfzLTUv5n98t54f3r+a9L5nPG58/q89nos3MhhMH5Jzd/eQmrrtnJRe/6IhuY4GHm0JBjBvZyLiRjcwegO1FBB3loK2jTHsamFsr0+l8eykpa0sfpXKyTtdzuWu+1Et5t+U9lFfql5LpciTlnc9laC+VKUdQLgelCErl5IChHMl8pbxcZq/1k+m9y8v198XPXiQ6g7Qy4T07XQnThaqQ3lmvh/UrBwOVoF4d4LMHAT2F972CfoHOA5nKAUmharqyrHJwVD2dfS2VA6PKgY8y++mqV7X9tF6hl3ZI4r9veZyxLQ285LkHdm/jUc0NfPINz+P8U2bz8R8v5SM/fJjP3fxH3vj82bz2hBkcM32MD2rM7JDhIRY5ai+VOfe/bmNXW4lf/d2LamrcsdW2iCCCNHB3D+TVwbtUTuuW+1BeFcgr5eW0Xk9BvZypU47IHAwk7SxXDgoiiMx01yNzwJCtly6L7L7KXeuU0nrlctd0aa920G0/yWvu/no621D9OspV+8msE72sn/fH6b+cdyxvP2PuQW8nIrhj+bN89bYn+e0fN1AqB7MmjOCMIyZx6ryJHDN9LM+ZMpoRTbVxdrlcDtpKyUFxeynS5zKR6Zdy5t9Tuao8ovu/E0gO4ERy8KHO+eTgicx8odBVXqlHt/mu9asP4PZ1oOZvXMyGhodY1KDr7lnJ4+t38NULFzocW7+ocmYU4W/Aa0c2fHUegKTBK8pd09nwXqlXObDZ6yCihwOKnoL6lDHNHDtj3IC8Dkn8yXMm8yfPmcymnW389KFnuO3xDfzqkXV8d/GqtA7MGDei60Lc0c2MSq8VaGkq0tKQ/MOM9O9SUSpH1zc7pTKt7aXkuaP7Nz6tHaXOsFv5Rig7nw3EpeHwlcp+dAbs6nBd6Onbib2D9t7fpmTq9fKtS3VIz66X/SakkH6bs/ey7t/49DwUa+9vXrLDypJvWJLX2e2bnOqDjV4OPHobBtbTNzPZej1+C9TbwU11uQ9uhgWnspzsauvg879+nFPnTuTsY/xzr2bDQeU/8+IwOnCZOKqJt51+OG87/XDK5WD5xh38cV1yR5unn93F+u2tPP3sLu59ajO720vsbi/16Ux6QdDcUOy8iLZywW22bERjkXEjGmksqvPi28ZigcaGqvm0LDvfkI6hF3QGlmworJzdLWTCYOVsLyTBnoAgORCJ6Ar7yXNSITm4ydSj64AgqtbPnq3u6RuSfX3j0vktRux9cNT9G429t1nZV9c3Iz18O1N1QNZRLlMudZ15z67XNd39ILD6G5tu6/T0TVONfPMy2LIHBD0eKGQDeQ8HDdUhXD0dQPT4LUT/DhqyQ8q6H/RU7a/bvnsYeraPg5feD8DE8w+fMGC//TAQHJBz8vXbV7BheytffuvJPro0s7pQKIgjDxvDkYeN4dzjp/dYJyI5Q7wnvXe6SMYaVD7milJ6V5nCUDXbalxP37z09A1KKXuAUe4+3e1goDqo9zJ8qts3Mz2sU72P/R3cZA82qg9u9j5I6W14Gn1+rUm97IFV5Rum8gD8TfbdvuxwpIFyxdtO5pxxPX+u5MEBOQc7Wjv4n98+wdnPPYyFcyfm3RwzswEjiZbGou9+YX02HL95ORREVA8P6+GApadvMqqHn6UHE9PH187ZY3BAzsV37lnJtj0dXPqSI/NuipmZmVm/Za+FGY5hcsi+45L0XkmPSloi6VOZ8g9JWibpMUmvGKr25KW9VOaq3z/JqXMnctKcCXk3x8zMzMyqDEnol/Ri4DzghIholXRYWr4AuAA4FpgB3CzpqIgoDUW78vDTh55h9ZbdfOy1x+bdFDMzMzPrwVCdQX4P8MmIaAWIiPVp+XnAdRHRGhFPAsuAU4eoTUMuIvjKbcs5YsqoA76Zv5mZmZkNrqEKyEcBZ0q6S9JvJZ2Sls8EVmbqrUrL9iLpYkmLJC3asGHDIDd3cNyx/FkeXr2NvzrzCAoF37nCzMzMrBYN2BALSTcD03pY9E/pfiYCpwOnANdLOqI/24+IK4ErIfklvYNrbT6+8rvlTB7dxOtO6vEYwMzMzMxqwIAF5Ih4aW/LJL0H+EEkd0+/W1IZmAysBmZnqs5Ky4adP67bzq2PbeADLzvKtz8yMzMzq2FDNcTih8CLASQdBTQBG4EbgQskNUuaB8wH7h6iNg2pr/xuOSMai7zt9MPzboqZmZmZ7cNQ3bruKuAqSQ8DbcBF6dnkJZKuB5YCHcAlw/EOFuu27eGH96/mLafOYcKoprybY2ZmZmb7MCQBOSLagLf1suxy4PKhaEde/ue3yykH/OWZ/Rp2bWZmZmY5GLIfCjlUbdjeyjV3P8XrTprJ7Ikj826OmZmZme2HA/Ig++pty2nrKHPJi/2z0mZmZmb1wAF5EG3a2cY373yK15wwg3mTR+XdHDMzMzPrAwfkQXTV759kd3uJS3322MzMzKxuOCAPkq272vnfP6zg3OOmM3/qmLybY2ZmZmZ95IA8SL7+hyfZ0drBpS/x2WMzMzOzeuKAPAi272nnqt8/ycsWTOWY6WPzbo6ZmZmZ9YMD8iD4xh1PsW1PB+97yfy8m2JmZmZm/eSAPMB2tnbw1duW8+Kjp3D8rHF5N8fMzMzM+skBeYB9686n2Lyrnfee7bPHZmZmZvXIAXkAtXWUuer2J3nBkZM4ec6EvJtjZmZmZgfAAXkA/fiBNazb1spfnXlE3k0xMzMzswPkgDyArr5jBfMPG82fHjUl76aYmZmZ2QFyQB4gT27cyYOrtvLnp8xGUt7NMTMzM7MD5IA8QG56YA0SvOp50/NuipmZmZkdBAfkAXLb4xs5fuY4po8bkXdTzMzMzOwgOCAPgN1tJe5buZkzjpiUd1PMzMzM7CA5IA+Ae5/eTHspOP05DshmZmZm9c4BeQDcv3ILgO99bGZmZjYMOCAPgMfWbmfm+BGMG9GYd1PMzMzM7CA5IA+AR9du45jpY/JuhpmZmZkNAAfkg9TWUWb5hp0cPc0B2czMzGw4cEA+SCs376KjHDxnyui8m2JmZmZmA8AB+SCt3rwbgNkTR+bcEjMzMzMbCA7IB2lVGpBnjvcPhJiZmZkNBw7IB2nV5l00FMTUsS15N8XMzMzMBoAD8kFatXk3M8aPoFhQ3k0xMzMzswHggHyQVm3e5eEVZmZmZsOIA/JBWrV5N7MmOCCbmZmZDRcOyAehtaPE+u2tzHRANjMzMxs2HJAPwrqtrQDM8BALMzMzs2HDAfkgrN6S3OJtxjgHZDMzM7PhwgH5IDyzNQnI08f7Fm9mZmZmw4UD8kFY4zPIZmZmZsOOA/JBWLN1DxNGNjKiqZh3U8zMzMxsgDggH4SVm3b5DhZmZmZmw8yQBWRJ75X0qKQlkj6Vls2VtFvS/enjiqFqz0B4fN0OjjpsTN7NMDMzM7MB1DAUO5H0YuA84ISIaJV0WGbxExFx4lC0YyA9u6OVtdv2cNQ0B2QzMzOz4WSoziC/B/hkRLQCRMT6IdrvgLl92UYeX7e9c/4nDz0DwAueMzmvJpmZmZnZIBiSM8jAUcCZki4H9gAfjIh70mXzJN0HbAM+EhG39bQBSRcDFwPMmTNnCJrcJSL42I+X8Pj6HRwzbSxNDQUeXr2VU+ZO4LiZY4e0LWZmZmY2uBQRA7Mh6WZgWg+L/gm4HLgVeB9wCvAd4AigCRgdEc9Kej7wQ+DYiNi2r30tXLgwFi1aNCDt7qtNO9v41p1Pce/Tm+koBUceNppLXnwkU8Y0D2k7zMzMzGxgSFocEQurywfsDHJEvHQfO38P8INI0vjdksrA5IjYAFSGXSyW9ATJ2eahTb99MHFUE+87e37ezTAzMzOzQTZUY5B/CLwYQNJRJGeON0qaIqmYlh8BzAeWD1GbzMzMzMz2MmBDLPa5E6kJuAo4EWgjGYN8i6Q3AB8H2oEy8M8R8eM+bG8D8NTgtbhXk4GNOezXeub+qC3uj9ri/qgt7o/a4z6pLXn1x+ERMaW6cEgC8nAhaVFP41QsH+6P2uL+qC3uj9ri/qg97pPaUmv94V/SMzMzMzPLcEA2MzMzM8twQO6fK/NugHXj/qgt7o/a4v6oLe6P2uM+qS011R8eg2xmZmZmluEzyGZmZmZmGQ7IZmZmZmYZDsh9IOkcSY9JWibpsrzbc6iQdJWk9ZIezpRNlPQrSY+nzxPSckn6fNpHD0o6Ob+WD0+SZku6VdJSSUskvT8td5/kQFKLpLslPZD2x8fS8nmS7kr/7t9J70OPpOZ0flm6fG6uL2CYklSUdJ+km9J590dOJK2Q9JCk+yUtSsv8eZUTSeMlfU/So5IekXRGLfeHA/J+pL/090XglcAC4M2SFuTbqkPG/wLnVJVdBvw6IuYDv07nIemf+enjYuDLQ9TGQ0kH8IGIWACcDlySvhfcJ/loBV4SESeQ/AjTOZJOB/4d+GxEHAlsBt6V1n8XsDkt/2xazwbe+4FHMvPuj3y9OCJOzNxf159X+fkv4OcR8VzgBJL3Sc32hwPy/p0KLIuI5RHRBlwHnJdzmw4JEfE7YFNV8XnA1en01cCfZcq/EYk7gfGSpg9JQw8REfFMRNybTm8n+XCbifskF+nfdUc625g+AngJ8L20vLo/Kv30PeBsSRqa1h4aJM0CXgV8NZ0X7o9a48+rHEgaB7wI+BpARLRFxBZquD8ckPdvJrAyM78qLbN8TI2IZ9LptcDUdNr9NITSr4NPAu7CfZKb9Ov8+4H1wK+AJ4AtEdGRVsn+zTv7I12+FZg0pA0e/j4H/ANQTucn4f7IUwC/lLRY0sVpmT+v8jEP2AB8PR2C9FVJo6jh/nBAtroVyT0KfZ/CISZpNPB94P9ExLbsMvfJ0IqIUkScCMwi+bbrufm26NAl6dXA+ohYnHdbrNMLI+Jkkq/rL5H0ouxCf14NqQbgZODLEXESsJOu4RRA7fWHA/L+rQZmZ+ZnpWWWj3WVr1nS5/VpuftpCEhqJAnH346IH6TF7pOcpV9V3gqcQfJVZEO6KPs37+yPdPk44Nmhbemw9gLgtZJWkAzFewnJmEv3R04iYnX6vB64geQg0p9X+VgFrIqIu9L575EE5prtDwfk/bsHmJ9eidwEXADcmHObDmU3Ahel0xcBP8qUX5he+Xo6sDXztY0NgHR85NeARyLiM5lF7pMcSJoiaXw6PQJ4Gcm48FuBN6bVqvuj0k9vBG4J/1LUgImID0XErIiYS/L/xC0R8VbcH7mQNErSmMo08HLgYfx5lYuIWAuslHR0WnQ2sJQa7g//kl4fSDqXZGxZEbgqIi7Pt0WHBknXAmcBk4F1wD8DPwSuB+YATwHnR8SmNLx9geSuF7uAd0TEohyaPWxJeiFwG/AQXWMsP0wyDtl9MsQkPY/kopYiycmO6yPi45KOIDmDORG4D3hbRLRKagG+STJ2fBNwQUQsz6f1w5uks4APRsSr3R/5SP/uN6SzDcA1EXG5pEn48yoXkk4kuYC1CVgOvIP0s4sa7A8HZDMzMzOzDA+xMDMzMzPLcEA2MzMzM8twQDYzMzMzy3BANjMzMzPLcEA2MzMzM8twQDYzMzMzy3BANjMzMzPLcEA2MzMzM8twQDYzMzMzy3BANjMzMzPLcEA2MzMzM8twQDYzMzMzy3BANjMbIJJWSHrpEO7vN5L+chC2O1dSSGoY6G2bmdUDB2QzsyEiaZ6ksqQv97AsJO2UtEPSakmfkVTMo53VJP2npMclbZf0qKQL826TmdlgckA2Mxs6FwKbgT+X1NzD8hMiYjRwNvAW4K+GsnH7sBN4DTAOuAj4L0l/km+TzMwGjwOymdnAOkXSUkmbJX1dUguAJJEE5I8A7SSBs0cR8ShwG3BctlzSy9IzuFslfQFQ1fJ3Snok3fcvJB2eWRaS/jo9E7xF0hfTNiGpmJ4l3ihpOfCqqvb8c0Q8GhHliLgrbdsZ1e2W1Jxu+7hM2RRJuyUd1rc/n5lZ/hyQzcwG1luBVwDPAY4iCcQALwRmAdcB15Ocie2RpAXAmcB9mbLJwA/S7U0GngBekFl+HvBh4PXAFJIQe23Vpl8NnAI8Dzg/bSckZ6pfDZwELATeuI+2jUi3saR6WUS0pm18c6b4fOC3EbG+t22amdUaB2Qzs4H1hYhYGRGbgMvpCosXAT+LiM3ANcA5PZxVvVfSZuDHwFeBr2eWnQssiYjvRUQ78DlgbWb5XwP/FhGPREQH8K/AidmzyMAnI2JLRDwN3AqcmJafD3wu0+5/28fruwJ4APhFL8uvAS7IzL8lLTMzqxsOyGZmA2tlZvopYEZ61vVNwLcBIuIO4GmS8Jh1ckRMiIjnRMRHIqKcWTYju+2IiKp9HU4yNniLpC3AJpIhGDMzdbKBehcwuqdtp+3ei6T/IBn2cX66/57cCoyUdJqkuSQh/IZe6pqZ1SQHZDOzgTU7Mz0HWAO8DhgLfEnSWklrSYJrr8MsevBMdtvp+OHsvlYC746I8ZnHiIj4Q3+3nba7G0kfA14JvDwitvW2oYgokQwheXP6uCkitvehDWZmNcMB2cxsYF0iaZakicA/Ad8hCcJXAceTnFE9kWT88AmSju/jdn8CHCvp9en9id8HTMssvwL4kKRjASSNk/SmPm77euB9absnAJdlF0r6EMnZ7pdGxLN92N41wJ+TjMf28AozqzsOyGZmA+sa4JfAcpIL6b5Ictu2z0XE2sxjMfBz9n2x3hWSrgCIiI0kwzQ+CTwLzAdur9SNiBuAfweuk7QNeJjkjG9ffIVkTPEDwL0kF9pl/SvJWeVl6X2ad0j6cKadOySdmWnLXSS3hpsB/KyPbTAzqxnqfRiZmZmZmdmhx2eQzczMzMwyHJDNzMzMzDIckM3MzMzMMhyQzczMzMwyGvJuwIGYPHlyzJ07N+9mmJmZmVkdW7x48caImFJdXpcBee7cuSxatCjvZpiZmZlZHZPU4y+H1mVAti6720ps3NFKe6lMsSBGNzcwcVQTyY9smZmZmVl/OSDXmVWbd/GTB5/hD088y0Ort7JpZ9tedZqKBaaOa+bIKaM5etpYjpk+hufNGs/cSSMdnM3MzMz2wwG5Tjy0aiv/9evHufmRdQAcNXU0Lz3mMOZOHsXkUc00NRToKAfb97Szdtsentmyh8fX7+D3y5bTXkp+DGby6Caef/gETpk7kYVzJ3LsjLE0Fn2dptlwtnbrHq656ylWbdnNkYeN5nUnzWT6uBF5N8vMrKbV5S/pLVy4MA6VMcg7Wzv41M8f5eo7nmLciEYu+pO5vPHkWcyZNLJP67eXyjyxYQf3Pb2Fe1ZsYtGKzTy9aRcAIxqLnYH51HkTOWnOeFoai4P5csxsCD28eitv+9pdbNvdzmFjWli7bQ+NRfG20w/nAy8/mtHNPkdiZoc2SYsjYuFe5Q7ItWvlpl286+p7eHz9Di46Yy4fePlRjGlpPOjtrt+2h3tWbOaeFZu468lNPLp2GxHQWBTPmzWeU+dN5NS5E3n+3AmMHYD9mdnQ276nnZd95ncUBN/8y9N4zpTRrNy0iy/95gmuu+dppo9t4V9ffzxnHX1Y3k01M8uNA3KdWbJmKxd+7W46ysGX3noyLzhy8qDta+vudhY/lYTlu5/cxEOrttJRDiQ4ZtpYTp03kdPmTeSkOROYOrbZ45jN6sCnf/kY/33LMm74mz/hpDkTui1b/NRmLvv+gzy+fgfnL5zFR169wAfDZnZIckCuI8vWb+f8/7mTloYC3/rL0zhiyugh3f+utg7uf3oLdz25iXtWbOLepzezp70MwKRRTSyYMZZjZ4zj2BljOXbGWA6fNIpiwaHZrFas3bqHs/7zVl62YBr//eaTeqyzp73Ef/36cf7nt08wNT2b/GKfTTazQ4wDcp14dkcrr/nv39NeDq5/9xnMmzwq7ybR1lHmodVbeXDVFpas2caSNdt4fN12OsrJv52mYoHDJ43kiCmjOGLKaI6YPIojpoxi1oSRTBndTMHh2WxI/eP3HuSG+1bz6w/8KbMn7vt6hQdWbuGD332Ax9fv4E3PT84mjxvhs8lmdmjoLSAPyBUakt4LXAKUgJ9ExD+k5R8C3pWWvy8iftHDuvOA64BJwGLg7RGx973LDgEdpTLvvfY+nt3Zxvff8yc1EY4BmhoKPP/wCTz/8K6vaVs7Sjy+bgdL12zjiQ07eGLDTh5fv4NfP7K+MzhDMq556tgWZowfwczxI5g+roXDxjQzcXQzk0c1MXF0E5NGNTNhZCMNvqOG2UF7bO12vrt4Je98wbz9hmOAE2aP56b3vZD/uvlxrvjtE9z2+EY+ft6xvGzBVA+nMrND1kEHZEkvBs4DToiIVkmHpeULgAuAY4EZwM2SjoqIUtUm/h34bERcJ+kKkkD95YNtVz3671uW8YcnnuU/3vg8jps5Lu/m7FNzQ5HjZo7bq50dpTIrN+9mxcadrN6ymzWdjz3c/eQm1m3b0y1AZ40f2cj4EY2MaWlkTEsDY1oaGN2cTI9taWB0SwNjWhoZ2VSkuaFIS2OBlsYiIxqLtDQm8yMaizSn003Fgv+Dt0POv/3sEUY3N3DpS47s8zrNDUX+4Zzn8opjp/H333uAi7+5mIWHT+DvX3E0px0xaRBba2ZWmwbiDPJ7gE9GRCtARKxPy88DrkvLn5S0DDgVuKOyopL08hLgLWnR1cBHOQQD8pI1W/nircs478QZvGnh7Lybc8AaigXmTR7V69nvUjnYurudZ3e08uzONp7d0camna1s3NHGsztb2bq7gx172tm+p4MVG3exo7WDbXva2dHaQX9HAxWUnP1uLFYeoqFQSMuS6caGAo0FJcsz0w1F0ZQ+FwsFGgqiWBAFiYZi8lwsQLFQoNhjGRQLybqdZQWS9bPT6XoNhQKFAlXbSp4LEoW0fvKga1khnZdQ5zqk5em0stvDBw3D2O8f38hvHtvAh899LuNHNvV7/RNmj+cn7zuT6xet5PO/fpw/v/JOFh4+gYv+ZC7nHDfN9003s0PGQATko4AzJV0O7AE+GBH3ADOBOzP1VqVlWZOALRHRsY86w157qczff/dBxo9s4qOvOTbv5gyqYkFMHNXExFFNzO/HeuVysKu9xPY97exuK7Gnvczu9hKt7SX2dJTY3VZmT+d0idaOMrvbSrSVyrSnj45S0JY+J2XRbdnu3e10lMu0dwTt5XS9jqAUQbkcdJS7nrNl9UZpaE5CdVfYzk7vHcR7W0edYT+7jtK6PQX7npYl5UnQzwb/vZYVetlWDwcF6jw4SJaJ5OCgxzoFOl9PIbNer/W7La/efled6u33a5uVbRRA9LDNzPqS2Lqrnf/3o4eZO2kkF54x94D/fTQWC7z1tMN5w8mzuOaup7n6jhW899r7mDy6mVcdP41XPW8Gzz98gi/MNbNhrU8BWdLNwLQeFv1Tuo2JwOnAKcD1ko4YsBZ2teFi4GKAOXPmDPTmc3XNXU+z9JltfPmtJzNhVP/P+hwKCgUxurmhJn/YoDM8R1CqCtKVssqjr2WlTFk5oByRPpL9VZZFkIT1NLCXg851e1sWkQb8btsiXafnZT2V72tZ5TW0lbrvf3/tzm4rsq+/st292pB379cGic57mV/9zlMH5Ad/WhqLvPOF8/iLP5nLrY+t53uLV3HdPSs7f7To1HkTOf2ISRw/cxxHTxszLC/si/R9VI6g8k+tciCUPPsbGbPhqk9pIyJe2tsySe8BfhDJ7TDullQGJgOrgexYgVlpWdazwHhJDelZ5J7qVNpwJXAlJHex6Eu768HWXe189uY/8ifPmcQ5x/V0DGK1rlAQTT6blotsgCllpithPMrdDy4iDTrZg42IvetkD0r22ma3kN69fmXbEUG5TP+3ma1fzi6HoPt89+XJR+JLF0zlebPGD+jfuFAQZx8zlbOPmcqO1g5ueXQ9tz++kTuWP8uvlq7rrDd9XAuzJ4xk6rgWpo9rYdKoJka3NHQe2I5oLCbBMnMGHOj2TU57qUxbKWjv6D7flp3vKNOWPle+Caou63wuBW0dpc467aVy1d+95+dKX/ZnWJfUQ3gmKczOV9cj801Jj98gVH2T0v3bg+7feGS/RelpO8U+Lu9tP31Zvq9vYfa3vPdvgfq2PDvMbF9/x16XF7qXVX+T09O+K9+q+UBp+BmI03E/BF4M3CrpKKAJ2AjcCFwj6TMkF+nNB+7OrhgRIelW4I0kd7K4CPjRALSpbnz+lsfZurudj7xqgd9gZv3UGbjQwNySx/ZpdHMDrz1hBq89YQaQ3G/5kWe28eja7Ty+bjurt+zmwVVb+MWSPbR1lAd8/8WCaEyvD6hcX9D5nF5H0Fws0NxYYHRLQ7ey5DoDdY7Xrw55VM1XD8mpnKWvBOcgOufJBOpseWWezvm9l8VeB1CV+UxZee9Qn61b2sfyUrnc7RuaXvdTjh4PHg5k+aEo++/pQA5Oej8I6OmAoqeDjZ4PXLJD4PZ5gFXoaT+ZIWSZA4J9Ld/rAKMfB03PP3wC08eNyLsrOw3E/ylXAVdJehhoAy5KzyYvkXQ9sBToAC6p3MFC0k+Bv4yINcA/AtdJ+gRwH/C1AWhTXVi1eRffuGMFf75wNgtmjM27OWZm/TJtXAvTxrXw4ud2/4GRiGBnW4mdrR3saO1gZ2sHu9tKmTPsXc9JyFXmYtpK2O0qa05DsMc914eevjEplaMqmPe8vLdvVw50eU/fEu11gFDu/u8yO8yr54OTng5cej/42O/BSa9/g57+Xt2HuWUPgqq3XRkC1+uBTdUQuah6bXu93qrtDLQr3nby8ArI6T2L39bLssuBy3soPzczvZzk7haHnC/95gmEeP9L+3O5mplZbZO6rhmYmndjbMglF89CER/QDFcRPR2sZIa79TC8bX8HTdPGteT9srrxt5I5WbNlN99dtJI/P2V2TR0xmZmZme1LdnjbcOWbWubky795AoD3nNX3m/mbmZmZ2eBzQM7Bum17+M49K3nj82cxc7zPHpuZmZnVEgfkHFz9hxV0lMu850999tjMzMys1jggD7HdbSWuvftpXnrMVOZMGpl3c8zMzMysigPyEPvh/avZvKudd75wXt5NMTMzM7MeOCAPoYjg67c/yTHTx3LavIl5N8fMzMzMeuCAPIRuX/Ysf1y3g3e+YK5/Nc/MzMysRjkgD6Gv3/4kk0Y18Zr0Z1rNzMzMrPY4IA+RJzfu5JbH1vPW0w+npbGYd3PMzMzMrBcOyEPk6j+soKEg3nb6nLybYmZmZmb74IA8BLbtaee7i1bymufN4LAxtfVb42ZmZmbWnQPyELj+npXsbCvxjhf41m5mZmZmtc4BeZCVysHVd6zglLkTOH7WuLybY2ZmZmb74YA8yH79yDpWbtrts8dmZmZmdcIBeZBddfuTzBw/gpcvmJp3U8zMzMysDxyQB9HSNdu4c/kmLjzjcBqK/lObmZmZ1QOntkH09dufZERjkQtO8a3dzMzMzOqFA/Ig2bSzjR89sIY3PH8m40Y25t0cMzMzM+sjB+RBcv2ilbR1lLnojLl5N8XMzMzM+uGgA7Kk90p6VNISSZ9Ky14mabGkh9Lnl/Sy7kclrZZ0f/o492DbUwtK5eDbdz3F6UdMZP7UMXk3x8zMzMz6oeFgVpb0YuA84ISIaJV0WLpoI/CaiFgj6TjgF8DMXjbz2Yj4z4NpR6353R83sHLTbi4755i8m2JmZmZm/XRQARl4D/DJiGgFiIj16fN9mTpLgBGSmiv1hrtv3vkUU8Y08/JjfWs3MzMzs3pzsEMsjgLOlHSXpN9KOqWHOm8A7t1HOL5U0oOSrpI0obcdSbpY0iJJizZs2HCQzR48qzbv4tbH1vPmU2bT6Fu7mZmZmdWd/SY4STdLeriHx3kkZ6AnAqcDfw9cL0mZdY8F/h14dy+b/zLwHOBE4Bng0721IyKujIiFEbFwypQpfXx5Q+9H968hAt60cHbeTTEzMzOzA7DfIRYR8dLelkl6D/CDiAjgbkllYDKwQdIs4Abgwoh4opdtr8ts6yvATf1sf02JCH5w7ypOnTuR2RNH5t0cMzMzMzsABzsG4IfAiwEkHQU0ARsljQd+AlwWEbf3trKk6ZnZ1wEPH2R7crVkzTae2LCTPzupt+sRzczMzKzWHWxAvgo4QtLDwHXARenZ5EuBI4H/l7mF22EAkr4qaWG6/qfSW8E9SBK0//Yg25OrHz+4hoaCOPf4aXk3xczMzMwO0EHdxSIi2oC39VD+CeATvazzl5nptx/M/mvNbx7dwKnzJjJ+ZFPeTTEzMzOzA+TbLAyQ1Vt289i67bz46MP2X9nMzMzMapYD8gC59dH1ALz4uQ7IZmZmZvXMAXmA3PXkJqaPa+E5U0bl3RQzMzMzOwgOyAPk4dVbed6scWRuA21mZmZmdcgBeQBs39POkxt3cvzMcXk3xczMzMwOkgPyAFi6ZhsAxzogm5mZmdU9B+QB8HAakI+b4YBsZmZmVu8ckAfAw6u3MnVsM1PGNOfdFDMzMzM7SA7IA+Dh1Vt99tjMzMxsmHBAPki72jp4YsMOjvP4YzMzM7NhwQH5ID3yzHbKgQOymZmZ2TDhgHyQlqzZCsBxM8fm3BIzMzMzGwgOyAfpoVVbmTSqiWljW/JuipmZmZkNAAfkg/Twmm0cO9O/oGdmZmY2XDggH4Q97SUeX7ed4z28wszMzGzYcEA+CEuf2UZHOfwT02ZmZmbDiAPyQbj3qc0AnDxnQs4tMTMzM7OB4oB8EG5ftpHDJ43kMF+gZ2ZmZjZsOCAfoKee3cltj2/knOOm5d0UMzMzMxtADsgHYHdbifdddz9NDQXe9YJ5eTfHzMzMzAbQQQdkSe+V9KikJZI+lZbNlbRb0v3p44pe1p0o6VeSHk+fa34w7/Y97Vz09bt5cNUWPnP+iR5eYWZmZjbMNBzMypJeDJwHnBARrZIOyyx+IiJO3M8mLgN+HRGflHRZOv+PB9OmwbR5Zxt/8fW7WbJmG/91wUkeXmFmZmY2DB1UQAbeA3wyIloBImJ9P9c/Dzgrnb4a+A01GpCvvftpvnDLMjbsaOWKtz2fly6YmneTzMzMzGwQHOwQi6OAMyXdJem3kk7JLJsn6b60/Mxe1p8aEc+k02uBXlOnpIslLZK0aMOGDQfZ7P772cNrGTuike+++wyHYzMzM7NhbL9nkCXdDPQ0luCf0vUnAqcDpwDXSzoCeAaYExHPSno+8ENJx0bEtt72ExEhKfax/ErgSoCFCxf2Wm+wfPEtJzG6ucE/KW1mZmY2zO03IEfES3tbJuk9wA8iIoC7JZWByRGxAagMu1gs6QmSs82LqjaxTtL0iHhG0nSgv0M0hsyYlsa8m2BmZmZmQ+Bgh1j8EHgxgKSjgCZgo6Qpkopp+RHAfGB5D+vfCFyUTl8E/Ogg22NmZmZmdlCUnPw9wJWlJuAq4ESgDfhgRNwi6Q3Ax4F2oAz8c0T8OF3nq8AVEbFI0iTgemAO8BRwfkRs6sN+N6T1h9pkYGMO+7WeuT9qi/ujtrg/aov7o/a4T2pLXv1xeERMqS48qIB8qJG0KCIW5t0OS7g/aov7o7a4P2qL+6P2uE9qS631h39Jz8zMzMwswwHZzMzMzCzDAbl/rsy7AdaN+6O2uD9qi/ujtrg/ao/7pLbUVH94DLKZmZmZWYbPIJuZmZmZZTgg94GkcyQ9JmmZpMvybs+hQtJVktZLejhTNlHSryQ9nj5PSMsl6fNpHz0o6eT8Wj48SZot6VZJSyUtkfT+tNx9kgNJLZLulvRA2h8fS8vnSbor/bt/J70dJ5Ka0/ll6fK5ub6AYUpSUdJ9km5K590fOZG0QtJDku6XtCgt8+dVTiSNl/Q9SY9KekTSGbXcHw7I+5H+4MkXgVcCC4A3S1qQb6sOGf8LnFNVdhnw64iYD/w6nYekf+anj4uBLw9RGw8lHcAHImIByc/LX5K+F9wn+WgFXhIRJ5Dci/4cSacD/w58NiKOBDYD70rrvwvYnJZ/Nq1nA+/9wCOZefdHvl4cESdmbh/mz6v8/Bfw84h4LnACyfukZvvDAXn/TgWWRcTyiGgDrgPOy7lNh4SI+B1Q/cMx5wFXp9NXA3+WKf9GJO4Exqc/X24DJCKeiYh70+ntJB9uM3Gf5CL9u+5IZxvTRwAvAb6Xllf3R6WfvgecLUlD09pDg6RZwKuAr6bzwv1Ra/x5lQNJ44AXAV8DiIi2iNhCDfeHA/L+zQRWZuZXpWWWj6kR8Uw6vRaYmk67n4ZQ+nXwScBduE9yk36dfz+wHvgV8ASwJSI60irZv3lnf6TLtwKThrTBw9/ngH8g+QVZSP6+7o/8BPBLSYslXZyW+fMqH/OADcDX0yFIX5U0ihruDwdkq1uR3ILFt2EZYpJGA98H/k9EbMsuc58MrYgoRcSJwCySb7uem2+LDl2SXg2sj4jFebfFOr0wIk4m+br+Ekkvyi7059WQagBOBr4cEScBO+kaTgHUXn84IO/famB2Zn5WWmb5WFf5miV9Xp+Wu5+GgKRGknD87Yj4QVrsPslZ+lXlrcAZJF9FNqSLsn/zzv5Il48Dnh3alg5rLwBeK2kFyVC8l5CMuXR/5CQiVqfP64EbSA4i/XmVj1XAqoi4K53/Hklgrtn+cEDev3uA+emVyE3ABcCNObfpUHYjcFE6fRHwo0z5hemVr6cDWzNf29gASMdHfg14JCI+k1nkPsmBpCmSxqfTI4CXkYwLvxV4Y1qtuj8q/fRG4JbwjfAHTER8KCJmRcRckv8nbomIt+L+yIWkUZLGVKaBlwMP48+rXETEWmClpKPTorOBpdRwf/iHQvpA0rkkY8uKwFURcXm+LTo0SLoWOAuYDKwD/hn4IXA9MAd4Cjg/Ijal4e0LJHe92AW8IyIW5dDsYUvSC4HbgIfoGmP5YZJxyO6TISbpeSQXtRRJTnZcHxEfl3QEyRnMicB9wNsiolVSC/BNkrHjm4ALImJ5Pq0f3iSdBXwwIl7t/shH+ne/IZ1tAK6JiMslTcKfV7mQdCLJBaxNwHLgHaSfXdRgfzggm5mZmZlleIiFmZmZmVmGA7KZmZmZWYYDspmZmZlZhgOymZmZmVmGA7KZmZmZWYYDspmZmZlZhgOymZmZmVmGA7KZmZmZWYYDspmZmZlZhgOymZmZmVmGA7KZmZmZWYYDspmZmZlZhgOymdkAk7RC0kvzboeZmR0YB2QzsyEmaZ6ksqQv97AsJO2UtEPSakmfkVTMo51mZocqB2Qzs6F3IbAZ+HNJzT0sPyEiRgNnA28B/mooG2dmdqhzQDYzGxynSFoqabOkr0tqAZAkkoD8EaAdeE1vG4iIR4HbgOMqZUp8VtJ6SdskPSTpuHTZOEnfkLRB0lOSPiKpkC77C0m3p+tukbRc0p+k5SvT7V2U2c+rJN2X7mOlpI/21EZJzen2sm2cImm3pMMO4u9nZpYbB2Qzs8HxVuAVwHOAo0gCMcALgVnAdcD1wEU9rg1IWgCcCdyXKX458KJ0m+OA84Fn02X/nZYdAfwpSRB/R2bd04AHgUnANWkbTgGOBN4GfEHS6LTuznT98cCrgPdI+rPqNkZEK/AD4M2Z4vOB30bE+t5em5lZLXNANjMbHF+IiJURsQm4nK4AeRHws4jYTBJSz+nhTOu9kjYDPwa+Cnw9s6wdGAM8F1BEPBIRz6TjlC8APhQR2yNiBfBp4O2ZdZ+MiK9HRAn4DjAb+HhEtEbEL4E2krBMRPwmIh6KiHJEPAhcSxK6e3JNuu+Kt6RlZmZ1yQHZzGxwrMxMPwXMkDQCeBPwbYCIuAN4miRQZp0cERMi4jkR8ZGIKFcWRMQtwBeALwLrJV0paSwwGWhM95Xd78zM/LrM9O50e9VlowEknSbp1nS4xlbgr9N99ORWYGS6zlzgROCGXuqamdU8B2Qzs8ExOzM9B1gDvA4YC3xJ0lpJa0kCbK/DLHoSEZ+PiOcDC0iGWvw9sJHk7PLhVftdfYDtvwa4EZgdEeOAKwD10p4SyXCRN6ePmyJi+wHu18wsdw7IZmaD4xJJsyRNBP6JZEjDRcBVwPEkZ1lPBF4AnCDp+L5sVNIp6ZnaRpJxwnuAciak/v/27j5Yrrq+4/jnu7v35t6E5ObpGiEBEghCY8cESBGROio+YGUKrY7F0YrolHbAFlutI46trR3aaquoUweHh6h9oECp0oyCimKnYCuQKPIshkAIl4c8P9+7dx++/eP8zu7ZvXsfcrjZs3fzfs1k9pzfefru+W32fn+/8ztnrzazuWZ2oqQ/k/SvKeOfK2mXu4+Y2Vka28vd7CZJv6do7DXDKwDMaCTIAHBk3CTpB5I2S3pK0ZCI8yR9yd1fTPzbKOl7mvhmva+Z2dfC7DxJ1yt6TNwWRTfo/UNY9seKkubNku4NMaxLGf/lkj5rZvsl/aWi5DsZ0wEz+8143t3vC8c+TtKdKY8JAB3B3D3rGAAAAICOQQ8yAAAAkECCDAAAACSQIAMAAAAJJMgAAABAQiHrANJYvHixL1++POswAAAAMINt3Lhxh7sPNpfPyAR5+fLl2rBhQ9ZhAAAAYAYzsy2tyhliAQAAACSQIKd06wNbdfKn7lCpUs06FAAAAEwjEuSU/vbOx1WpuvaPlLMOBQAAANOIBDmlQs4kSeUqPcgAAADdhAQ5pZxFCXKlyk91AwAAdBMS5JTiHmQSZAAAgO5CgpxSPh8lyIywAAAA6C4kyCkVctGpYwwyAABAdyFBTinPEAsAAICuRIKcUj7cpFeqkCADAAB0ExLklPI85g0AAKArkSCnVMjTgwwAANCNSJBTqvUg81PTAAAAXYUEOaV4DHKZm/QAAAC6CglySnEPcokeZAAAgK5CgpxSPAa5zBhkAACArkKCnFKeHwoBAADoSiTIKYUOZJ5iAQAA0GU6IkE2s/PN7JdmtsnMPpl1PFNBDzIAAEB3yjxBNrO8pK9KeoekVZLea2arso1qcoUcz0EGAADoRpknyJLOkrTJ3Te7+6ikmyVdmHFMk6o/B5kEGQAAoJt0QoK8VNLWxPxzoayBmV1mZhvMbMP27dvbFtx4cvzUNAAAQFfqhAR5Stz9Ondf6+5rBwcHsw6HIRYAAABdqhMS5CFJxyfml4WyjhYPsajQgwwAANBVOiFBfkDSKWa2wsx6JV0saX3GMU2KHmQAAIDuVMg6AHcvm9lHJH1fUl7SOnd/NOOwJpXjJj0AAICulHmCLEnufoekO7KO43CE3wnhJj0AAIAu0wlDLGakuN+YIRYAAADdhQQ5JQ95cblCDzIAAEA3IUFOLcqQy1V6kAEAALoJCXJK8dDjEj3IAAAAXYUEOSUPPcgkyAAAAN2FBDmleAwyN+kBAAB0FxLklOK0uFiuZBoHAEjS0J5hbhoGgGlCgpxSNXQhF0v8QQKQrYPFsl7/93fr07c/knUoANAVSJDTCl3IxTIJMoBs7To4Kkm6+YGtGUcCAN2BBDmleIjFKAkygIztHS5lHQIAdBUS5JQ8HmLBGGQAGdtziAQZAKYTCXJKVYZYAOgQyR7kkRKNdgB4uUiQU6o/xYIEGUC29gyP1qaf2z2cYSQA0B1IkFOqDbGgtwZAxpJDLLbuOpRhJADQHUiQU6rdpMdzRwFkLB5ikTPpZ8/uzjgaAJj5ClkHMGPFY5B5DjKAjO09VNKSebN0wsLZ+tbPhnTc/H7lc6b3rD0+69AAYEaiBzmlcjVKjBmDDCBre4ZHNb+/Vx9/26naebCoq771sD5x20PafXB08o0BAGOQIKdUrkRdyKOVqqrxIy0AIAO7D5U00N+j1560SD+96jx97K2vkiTtPFjMODIAmJlIkFMqJ5JixiEDyNLOA0UtntsrSZo/u1dnnrhAkrR9Pz3IAJAGCXJK8RALiWEWALK1fX9Ri4+ZVZtfFKa37R/JKiQAmNFIkFMqVeo9yPyaHoCsFMsV7RspazCRIK9YPEe9hZweGdqbYWQAMHORIKc0mug15kkWALKy40A0jGJwbj1B7i3ktHrZgO751Y7aM9sBAFNHgpxS8qddX84Y5JFSRdv2jej5PcPauuuQnt15SC/sHdaug6M6WCyrzPhmABPYFRLkhXN6G8ovOn2pnnhxv+7dtCOLsABgRuM5yCntPjSqV8ydpW37i1PuQd4/UtLdT2zTTzbt0KPP79OWnYd0oFiedLt8zjSrkNOsQk59PXn19eSj+fDa15NXX5jvC/P1dXOaVai/zurJqTefUz5nKuRNhVxOhZzV5vNhPlpWn0+unzPJzJQzKWemnJnMJEvMx+sAOLJ2HWqdIP/u6ct04z1P68qbH9RXLj5d556yOIvwAGBGIkFOoVJ17R0u6TVLB6IEeZIxyNv3F3Xtfz+lm+7fopFSVQtm9+jXlw7oN5Yv1OJjejUwu1c9OVMuFyWX5UpVxXJVxXJFxVJVI2NeqyqWKhopVzVSqmjvcEnbShUVw/xIYjrrJ9A1J9GtXnO1+eT02HXMTCZJ8TLVk3KpvjyXk0whaY/Lw3QtmZeF/dTXjZfF+8oltx9vP4nta8efJFYLC6zp+I3HiN/zJMePgh2zn1wuPieNxx831hbHT8bX/D6az/v472Pic5WMr/EY9ePXz1Wr9zG2/pqPPya+CY5fP+9Wi1214zR+floeX/X9t8uekCAvaEqQ+3vzuuGStbr0Gw/o/Tfep9XLBvSWX1ui1cfP12nHztXgMbNoxALAOEiQU9g7XJK7tGRen6S9Ez7F4vafD+kz6x/VgWJZF645Tu896wSdecKCWgJzJLm7ShVXsVzRSKlaey1XqypXXOWqqxKmK9Vovtw0XyuvVGuvLqnq0f6r7qq6VHWX18pUK2+1TrXqYR9hPrGOu6taTWyvaJ1K2MY9elXymIq3jRbE+4zWV327eN1qfb/RdtXaevV9RhsnY4j3GxYljpE4lje+t3j455RjTRzfm4+vxuXxPtGZWiXoatHAqSXhyXUTybaSjaUWjZCD4SrUgtm9Y2I4afAYff+jb9BN9z2r2x8c0hfuerK2bFYhp6Xz+7VkXp8G+ns0r7+geX09mjOroJ68qZCPrh715HMq5KPvq+T/jebPfPIzGos/8/G0pNq60XTjMiW2rx2raf3kfhrOtxrPUUNZrTEX6qGhfhq3kRrPf/Jcx/tUi8ZacwzJOrXafltsE8fWtL9k/VvTviZqcCa315j9Tbzv3JjYWjcGJ4ut3ng+zNiaz19zw3O82MacGxp+ePlIkFPYHXpsXjnQJ6nxhr1Ypeq6+ruPa91PntaZJy7Q5971Gq18xTFtjdPM1Fsw9RZymtvX1kOjzWrJdCJZmTCZb2gkJBOcemJfT+brSUmyAREfs57oH05jIrmfxgZE8vjJbRsbRWOP39zA8aZ9Np6fFscPwU50HpMNnHqsh3F8RQtd9YZi4zG8xX6i95hs2MXrxPtatqBfC2b3tPxs9PXk9aFzV+hD567Q3uGSHh3aqydf2q+hPcMa2jOsbfuK2rzjgPYNl7VvpKRDozyVB91hokbqeAl2Q8NmnOR7vO1rx5zKvjX2qmXLxk/Y6ZgGW3MM40yP2XfTfGMjZ+xV1rHHa34/jds3NNomONdqUf7utct02ivnTffHIDUS5BTin289dqBfkjRcavyDUq26/vSWB7X+F8/r0tcv16ffuUr5NvQY4+hlZsrH31jAOAb6e3TOysU6Z+X445Hd46tGrlK1qlK5WvthpMPp+Ys/ic09qNEuGntsldy+Yb3EH9Pkei16CJMNldq8Ghsz9XVbXJlJLFOL5ZIa9idvmq9NNzYqm3u/GxuKtYgaGkStGooTxd3c4Gt+782xjnnf4zYkJ4gteV7GxJxswI2//VSuRDQ3FhvPxxT3PU4jdbztx/v8NMQ6zntr2HfzZ6LpXCcb52PPdevzMd7nI2pAV8fdvtX5GG/fyc9A6/dT337iczXO+xln3689adHRlyCb2V9J+gNJ20PRp9z9jrDsKkkfllSR9Cfu/v12xPRy7D4UPcFixeI5kupjAGN/d+fjWv+L5/Xnbz9VV7xpZdvjA4C0zEw9eVNPXupXPutwpiw5DCKUZBUKgC7Qzh7ka9z9H5MFZrZK0sWSXi3pOEk/NLNXuXtHX+OLe5BXviJKkHcerCfI6+59Wtff87Q+eM5yXf7GkzOJDwAAAOll/RzkCyXd7O5Fd39a0iZJZ2Uc06T2DMdjkPvV35PXzvAc0jsffkF/893H9PZXL9FfXLCKGwUAAABmoHYmyB8xs4fMbJ2ZLQhlSyVtTazzXCgbw8wuM7MNZrZh+/btrVZpmwPFqIN7dk9ex83v0zM7Dur/ntqpK295UGecsEBfvvh0xhwDAADMUNOWIJvZD83skRb/LpR0raSTJa2R9IKkLxzu/t39Ondf6+5rBwcHpyvsVEZKFfX35JXLmc4+aZF+9MQ2ffDr9+vEhbN1wwfWqq9n5ozbAwAAQKNpG4Ps7m+Zynpmdr2k74TZIUnHJxYvC2UdbXi0ov7eKAm+/E0r9eRL+7Vozix99qJXj3lYPwAAAGaWdj3F4lh3fyHM/o6kR8L0ekk3mdkXFd2kd4qk+9sR08sxHHqQJWnp/H79xx+dk3FEAAAAmC7teorF581sjaJH3j0j6Q8lyd0fNbNbJT0mqSzpik5/goUU9SD39WR9fyMAAACOhLYkyO7++xMsu1rS1e2IY7oMlyqa3ctvrAAAAHQjukFTGB6tD7EAAABAdyFBTmG4VFFfLwkyAABANyJBTiF6zBunDgAAoBuR5aVwoFhmDDIAAECXIsubov/dtEMv7hvR0O5hDe0Z1rsWzs46JAAAABwBJMhT9IW7ntTGLbslSauXDeh9rz0h44gAAABwJJAgT9EX37Na7tKC2b0amN2TdTgAAAA4QkiQp+jERXOyDgEAAABtwE16AAAAQIK5e9YxHDYz2y5pSwaHXixpRwbHRWvUR2ehPjoL9dFZqI/OQ510lqzq40R3H2wunJEJclbMbIO7r806DkSoj85CfXQW6qOzUB+dhzrpLJ1WHwyxAAAAABJIkAEAAIAEEuTDc13WAaAB9dFZqI/OQn10Fuqj81AnnaWj6oMxyAAAAEACPcgAAABAAgkyAAAAkECCPAVmdr6Z/dLMNpnZJ7OO52hhZuvMbJuZPZIoW2hmd5nZr8LrglBuZvaVUEcPmdkZ2UXenczseDP7sZk9ZmaPmtmVoZw6yYCZ9ZnZ/Wb2i1Affx3KV5jZfeG832JmvaF8VpjfFJYvz/QNdCkzy5vZz83sO2Ge+siImT1jZg+b2YNmtiGU8X2VETObb2a3mdkTZva4mb2uk+uDBHkSZpaX9FVJ75C0StJ7zWxVtlEdNb4h6fymsk9K+pG7nyLpR2FeiurnlPDvMknXtinGo0lZ0sfcfZWksyVdEf4vUCfZKEp6s7uvlrRG0vlmdrakz0m6xt1XStot6cNh/Q9L2h3KrwnrYfpdKenxxDz1ka03ufuaxPN1+b7Kzpclfc/dT5O0WtH/k46tDxLkyZ0laZO7b3b3UUk3S7ow45iOCu7+P5J2NRVfKOmbYfqbki5KlP+zR34qab6ZHduWQI8S7v6Cu/8sTO9X9OW2VNRJJsJ5PRBme8I/l/RmSbeF8ub6iOvpNknnmZm1J9qjg5ktk/ROSTeEeRP10Wn4vsqAmQ1IeoOkGyXJ3UfdfY86uD5IkCe3VNLWxPxzoQzZWOLuL4TpFyUtCdPUUxuFy8GnS7pP1ElmwuX8ByVtk3SXpKck7XH3clglec5r9RGW75W0qK0Bd78vSfqEpGqYXyTqI0su6QdmttHMLgtlfF9lY4Wk7ZK+HoYg3WBmc9TB9UGCjBnLo2cU8pzCNjOzYyT9p6SPuvu+5DLqpL3cveLuayQtU3S167RsIzp6mdkFkra5+8asY0HNue5+hqLL9VeY2RuSC/m+aquCpDMkXevup0s6qPpwCkmdVx8kyJMbknR8Yn5ZKEM2Xoovs4TXbaGcemoDM+tRlBz/m7t/KxRTJxkLlyp/LOl1ii5FFsKi5Dmv1UdYPiBpZ3sj7Wqvl/TbZvaMoqF4b1Y05pL6yIi7D4XXbZK+ragRyfdVNp6T9Jy73xfmb1OUMHdsfZAgT+4BSaeEO5F7JV0saX3GMR3N1ku6JExfIum/EuUfCHe+ni1pb+KyDaZBGB95o6TH3f2LiUXUSQbMbNDM5ofpfklvVTQu/MeS3h1Wa66PuJ7eLelu55eipo27X+Xuy9x9uaK/E3e7+/tEfWTCzOaY2dx4WtLbJD0ivq8y4e4vStpqZqeGovMkPaYOrg9+SW8KzOy3FI0ty0ta5+5XZxvR0cHM/l3SGyUtlvSSpM9Iul3SrZJOkLRF0nvcfVdI3v5J0VMvDkm61N03ZBB21zKzcyXdI+lh1cdYfkrROGTqpM3M7DWKbmrJK+rsuNXdP2tmJynqwVwo6eeS3u/uRTPrk/QvisaO75J0sbtvzib67mZmb5T0cXe/gPrIRjjv3w6zBUk3ufvVZrZIfF9lwszWKLqBtVfSZkmXKnx3qQPrgwQZAAAASGCIBQAAAJBAggwAAAAkkCADAAAACSTIAAAAQAIJMgAAAJBAggwAAAAkkCADAAAACf8PgJzGSCjN6lAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_responses(best_responses)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "581988038cf9ce8838e7faf3da7c29f4ff88d898cd43cb17e0086e389d8deda2" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/l5pc/config/protocols.json b/examples/l5pc/config/protocols.json index 5a25d94f..44201e42 100644 --- a/examples/l5pc/config/protocols.json +++ b/examples/l5pc/config/protocols.json @@ -14,14 +14,18 @@ "somadistance": 660, "type": "somadistance", "name": "dend1", - "seclist_name": "apical" + "seclist_name": "apical", + "arbor_branch_index": 251, + "arbor_branch_index_with_replaced_axon": 123 }, { "var": "v", "somadistance": 800, "type": "somadistance", "name": "dend2", - "seclist_name": "apical" + "seclist_name": "apical", + "arbor_branch_index": 251, + "arbor_branch_index_with_replaced_axon": 123 } ] }, diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index deb42ecd..30df2ed3 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -1,22 +1,19 @@ #!/usr/bin/env python -'''Example for generating a mixed JSON/ACC Arbor cable cell description +'''Example for generating a mixed JSON/ACC Arbor cable cell description (with optional axon-replacement) $ python generate_acc.py --output-dir test_acc/ --replace-axon Will save 'l5pc.json', 'l5pc_label_dict.acc' and 'l5pc_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: - 'with open("test_acc/l5pc_cell.json") as cell_json_file: - cell_json = json.load(cell_json_file) - morpho = arbor.load_asc("test_acc/" + cell_json["morphology"]["path"]) - labels = arbor.load_component("test_acc/" + cell_json["label_dict"]).component - decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' - An implementation with axon-replacement is available in ephys.create_acc.read_acc. - An Arbor cable cell is then created with - cell = arbor.cable_cell(morpho.morphology, labels, decor) + 'cell_json, morpho, labels, decor = \ + ephys.create_acc.read_acc("test_acc/l5pc_cell.json")' + An Arbor cable cell can then be created with + 'cell = arbor.cable_cell(morpho, labels, decor)' The resulting cable cell can be output to ACC for visual inspection - in the Arbor GUI (File > Cable cell > Load) using - arbor.write_component(cell, "l5pc.acc") + and e.g. validating/deriving custom Arbor locset/region/iexpr + expressions in the Arbor GUI (File > Cable cell > Load) using + 'arbor.write_component(cell, "l5pc_cable_cell.acc")' ''' import argparse diff --git a/examples/l5pc/l5pc_evaluator.py b/examples/l5pc/l5pc_evaluator.py index 4580b25d..448abad3 100644 --- a/examples/l5pc/l5pc_evaluator.py +++ b/examples/l5pc/l5pc_evaluator.py @@ -36,21 +36,43 @@ def define_protocols(): - """Define protocols""" + """Define protocols for Neuron""" + protocol_definitions = load_protocols() + return create_protocols(protocol_definitions) - protocol_definitions = json.load( + +def define_protocols_arb(do_replace_axon): + """Define protocols for Arbor""" + protocol_definitions = load_protocols() + return create_protocols(protocol_definitions, do_replace_axon, sim='arb') + + +def load_protocols(): + + return json.load( open( os.path.join( config_dir, 'protocols.json'))) + +def create_protocols(protocol_definitions, do_replace_axon=None, sim='nrn'): + protocols = {} - soma_loc = ephys.locations.NrnSeclistCompLocation( - name='soma', - seclist_name='somatic', - sec_index=0, - comp_x=0.5) + if sim == 'nrn': + soma_loc = ephys.locations.NrnSeclistCompLocation( + name='soma', + seclist_name='somatic', + sec_index=0, + comp_x=0.5) + elif sim == 'arb': + soma_loc = ephys.locations.ArbBranchRelLocation( + name='soma', + branch=0, + pos=0.5) + else: + raise ValueError('Simulator must be either nrn or arb, not %s' % sim) for protocol_name, protocol_definition in protocol_definitions.items(): # By default include somatic recording @@ -65,10 +87,20 @@ def define_protocols(): if 'extra_recordings' in protocol_definition: for recording_definition in protocol_definition['extra_recordings']: if recording_definition['type'] == 'somadistance': - location = ephys.locations.NrnSomaDistanceCompLocation( - name=recording_definition['name'], - soma_distance=recording_definition['somadistance'], - seclist_name=recording_definition['seclist_name']) + if sim == 'nrn': + location = ephys.locations.NrnSomaDistanceCompLocation( + name=recording_definition['name'], + soma_distance=recording_definition['somadistance'], + seclist_name=recording_definition['seclist_name']) + else: + # L5PC has disconnected topology + location = ephys.locations.ArbLocsetLocation( + name=recording_definition['name'], + locset='(restrict (distal-translate (proximal %s) %s) (proximal-interval (distal (branch %s))))' % + (ephys.morphologies.ArbFileMorphology.region_labels[recording_definition['seclist_name']].ref, + recording_definition['somadistance'], + recording_definition['arbor_branch_index_with_replaced_axon'] if do_replace_axon else + recording_definition['arbor_branch_index'])) var = recording_definition['var'] recording = ephys.recordings.CompRecording( name='%s.%s.%s' % (protocol_name, location.name, var), @@ -90,10 +122,16 @@ def define_protocols(): location=soma_loc, total_duration=stimulus_definition['totduration'])) - protocols[protocol_name] = ephys.protocols.SweepProtocol( - protocol_name, - stimuli, - recordings) + if sim == 'nrn': + protocols[protocol_name] = ephys.protocols.SweepProtocol( + protocol_name, + stimuli, + recordings) + else: + protocols[protocol_name] = ephys.protocols.ArbSweepProtocol( + protocol_name, + stimuli, + recordings) return protocols diff --git a/examples/l5pc/l5pc_soma_arbor.ipynb b/examples/l5pc/l5pc_soma_arbor.ipynb index bbaaeb09..338f1231 100644 --- a/examples/l5pc/l5pc_soma_arbor.ipynb +++ b/examples/l5pc/l5pc_soma_arbor.ipynb @@ -8,14 +8,14 @@ } }, "source": [ - "# Simulating optimized cells in Arbor and cross-validation with Neuron\n", + "# Simulating optimized cell models in Arbor and cross-validation with Neuron\n", "\n", "This notebook demonstrates how to run a simulation of a simple single compartmental cell with fixed/optimized parameters in Arbor. We follow the standard BluePyOpt flow of setting up an electrophysiological experiment and export the cell model to a mixed JSON/ACC-format. We then cross-validate voltage traces obtained with Arbor with those from a Neuron simulation." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "tags": [ "parameters" @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" @@ -79,14 +79,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "pycharm": { "name": "#%%\n" }, "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc\n", + "Mod files: \"mechanisms/CaDynamics_E2.mod\" \"mechanisms/Ca_HVA.mod\" \"mechanisms/Ca_LVAst.mod\" \"mechanisms/Ih.mod\" \"mechanisms/Im.mod\" \"mechanisms/K_Pst.mod\" \"mechanisms/K_Tst.mod\" \"mechanisms/Nap_Et2.mod\" \"mechanisms/NaTa_t.mod\" \"mechanisms/NaTs2_t.mod\" \"mechanisms/SK_E2.mod\" \"mechanisms/SKv3_1.mod\"\n", + "\n", + "COBJS=''\n", + " -> \u001b[32mCompiling\u001b[0m mod_func.c\n", + "x86_64-linux-gnu-gcc -O2 -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c mod_func.c -o mod_func.o\n", + " => \u001b[32mLINKING\u001b[0m shared library ./libnrnmech.so\n", + "x86_64-linux-gnu-g++ -O2 -DVERSION_INFO='8.0.2' -std=c++11 -shared -fPIC -I /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -o ./libnrnmech.so -Wl,-soname,libnrnmech.so \\\n", + " ./mod_func.o ./CaDynamics_E2.o ./Ca_HVA.o ./Ca_LVAst.o ./Ih.o ./Im.o ./K_Pst.o ./K_Tst.o ./Nap_Et2.o ./NaTa_t.o ./NaTs2_t.o ./SK_E2.o ./SKv3_1.o -L/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib -lnrniv -Wl,-rpath,/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib \n", + "rm -f ./.libs/libnrnmech.so ; mkdir -p ./.libs ; cp ./libnrnmech.so ./.libs/libnrnmech.so\n", + "Successfully created x86_64/special\n" + ] + } + ], "source": [ "!nrnivmodl mechanisms\n", "import bluepyopt as bpop\n", @@ -95,7 +113,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "pycharm": { "name": "#%%\n" @@ -161,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false, "jupyter": { @@ -189,7 +207,7 @@ } }, "source": [ - "## Creating the protocols\n", + "## Creating locations for Arbor\n", "\n", "A protocol consists of a set of stimuli and recordings. These responses will later be used to compare voltage traces from simulations between Arbor and Neuron for different parameter values and axon replacement configurations.\n", "\n", @@ -198,45 +216,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "# Arbor location\n", - "class ArbLocation(ephys.locations.Location):\n", - " def __init__(self, name, branch, pos, comment=''):\n", - " super().__init__(_arb_label(name), comment)\n", - " self.branch = branch\n", - " self.pos = pos\n", - "\n", - " def instantiate(self):\n", - " return _arb_unlabel(self.name), '(location %s %s)' % (self.branch, self.pos)\n", - "\n", - "\n", - "# Helper functions\n", - "def _arb_label(name):\n", - " return '\"%s\"' % name\n", - "\n", - "\n", - "def _arb_unlabel(name):\n", - " return name[1:-1]\n", - "\n", - "\n", - "# Make locations available to Arbor by instantiating them on the label dictionary \n", - "def instantiate_locations(labels, locations):\n", - " labels.append(\n", - " arbor.label_dict(\n", - " dict([loc.instantiate() for loc in locations.values()])))\n", - "\n", - "\n", "# Define locations on branch 0 of the morphology (soma)\n", "arb_locations = dict(\n", - " stim_loc=ArbLocation(\n", + " stim_loc=ephys.locations.ArbBranchRelLocation(\n", " name='stim_loc',\n", " branch=0,\n", " pos=0.5\n", " ),\n", - " probe_loc=ArbLocation(\n", + " probe_loc=ephys.locations.ArbBranchRelLocation(\n", " name='probe_loc',\n", " branch=0,\n", " pos=0.75\n", @@ -246,7 +237,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "pycharm": { "name": "#%%\n" @@ -281,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -306,51 +297,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The current stimuli, voltage and spike recordings are made available to Arbor by lazily instantiating them on decors/cell models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Current stimuli\n", - "def instantiate_stimuli(decor, stimuli, locations):\n", - " for stim in stimuli:\n", - " decor.place(locations[stim['location']].name,\n", - " arbor.iclamp(stim['delay'],\n", - " stim['duration'],\n", - " current=stim['amplitude']),\n", - " stim['name'])\n", - "\n", - "# Spike detection with a voltage threshold of -10 mV\n", - "# (different from spike_time observables in eFEL that measure 'peak_time')\n", - "def instantiate_spike_recordings(decor, recordings, locations):\n", - " for i, rec in enumerate(recordings):\n", - " decor.place(locations[rec['location']].name,\n", - " arbor.spike_detector(-10),\n", - " 'spike_detector' + '.%s' % i)\n", - "\n", - "# Attach voltage probe sampling at 10 kHz (every 0.1 ms).\n", - "def instantiate_voltage_recordings(cell_model, recordings, locations):\n", - " for i, rec in enumerate(recordings):\n", - " # alternatively arbor.cable_probe_membrane_voltage\n", - " cell_model.probe('voltage',\n", - " locations[rec['location']].name,\n", - " frequency=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The protocols for Neuron are defined analogous to the L5PC model." + "## Defining protocols to run with Arbor\n", + "\n", + "To define a protocol in Arbor, we perform the same steps as for Neuron. That is we create stimuli and recordings and initialize an `ArbSweepProtocol` with it as a basic building block (analogous to `SweepProtocol` for Neuron). Note that we use location objects specific to Arbor, where the corresponding ones for Neuron are not well-defined on an Arbor morphology. The sweep protocol can then be assembled into other protocols as usual.\n", + "\n", + "The protocols defined in the following are analogous to those of the L5PC model." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "pycharm": { "name": "#%%\n" @@ -358,121 +314,51 @@ }, "outputs": [], "source": [ - "sweep_protocols = []\n", + "nrn_sweep_protocols = []\n", + "arb_sweep_protocols = []\n", + "\n", "for prot_def in protocol_steps:\n", - " stims = []\n", + " nrn_stims = []\n", + " arb_stims = []\n", " for stim in prot_def['stimuli']:\n", - " stims.append(ephys.stimuli.NrnSquarePulse(step_amplitude=stim['amplitude'],\n", - " step_delay=stim['delay'],\n", - " step_duration=stim['duration'],\n", - " location=nrn_locations[stim['location']],\n", - " total_duration=prot_def['total_duration']))\n", - "\n", - " recs = []\n", - " for rec in prot_def['recordings']:\n", - " recs.append(ephys.recordings.CompRecording(\n", - " name=rec['name'],\n", - " location=nrn_locations[rec['location']],\n", - " variable='v'))\n", + " stim_args = dict(step_amplitude=stim['amplitude'],\n", + " step_delay=stim['delay'],\n", + " step_duration=stim['duration'],\n", + " total_duration=prot_def['total_duration'])\n", "\n", - " protocol = ephys.protocols.SweepProtocol(prot_def['name'], stims, recs)\n", - " sweep_protocols.append(protocol)\n", - "\n", - "nrn_protocol = ephys.protocols.SequenceProtocol('multistep', protocols=sweep_protocols)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## Running a protocol on an Arbor cable cell\n", + " nrn_stims.append(ephys.stimuli.NrnSquarePulse(location=nrn_locations[stim['location']],\n", + " **stim_args))\n", "\n", - "To run a protocol in Arbor, we need to export the cell model to a mixed JSON/ACC-format and assemble an Arbor cable cell on which we instantiate the locations, protocol stimuli and recordings. We use this cell to build a `single_cell_model` that sets up the constituents of an Arbor simulation and enables running a sweep protocol.\n", + " arb_stims.append(ephys.stimuli.NrnSquarePulse(location=arb_locations[stim['location']],\n", + " **stim_args))\n", "\n", - "To run the protocols also with Neuron, we follow the standard flow by creating a simulator object." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class ArbSequenceProtocol(ephys.protocols.Protocol):\n", - " '''Run multiple sweep protocol steps and extract voltage traces/detected spikes'''\n", - "\n", - " def __init__(self, name, protocols, locations):\n", - " super().__init__(name)\n", - " self.protocols = protocols\n", - " self.locations = locations\n", - "\n", - " @staticmethod\n", - " def run_sweep_protocol(prot_def, locations, cell, params, dt):\n", - " '''Write cell model to ACC/JSON and run sweep protocol step'''\n", - " # Export cell model to mixed JSON/ACC-format\n", - " with tempfile.TemporaryDirectory() as acc_dir:\n", - " ephys.create_acc.output_acc(acc_dir, cell, params)\n", - " cell_json, morph, labels, decor = \\\n", - " ephys.create_acc.read_acc(\n", - " os.path.join(acc_dir, cell.name + '.json'))\n", - "\n", - " # Instantiate protocols on cable cell components\n", - " instantiate_locations(labels, locations)\n", - " instantiate_stimuli(decor, prot_def['stimuli'], locations)\n", - " instantiate_spike_recordings(decor, prot_def['recordings'], locations)\n", - " \n", - " # Create cable cell\n", - " cable_cell = arbor.cable_cell(morph, labels, decor)\n", - " # can output and visualize the cable cell in the Arbor GUI using\n", - " # arbor.write_component(cable_cell, '.acc')\n", - "\n", - " # Create single cell model\n", - " arb_cell_model = arbor.single_cell_model(cable_cell)\n", - "\n", - " # Add catalogues with explicit qualifiers\n", - " arb_cell_model.properties.catalogue = arbor.catalogue()\n", - " arb_cell_model.properties.catalogue.extend(\n", - " arbor.default_catalogue(), \"default::\")\n", - " arb_cell_model.properties.catalogue.extend(\n", - " arbor.bbp_catalogue(), \"BBP::\")\n", - " \n", - " # Instantiate remaining voltage recording\n", - " instantiate_voltage_recordings(arb_cell_model, prot_def['recordings'], locations)\n", - "\n", - " # Run the simulation for the protocol step\n", - " arb_cell_model.run(tfinal=prot_def['total_duration'], dt=dt)\n", - "\n", - " # Collect results\n", - " arb_resp = dict()\n", - " for i, rec in enumerate(prot_def['recordings']):\n", - " arb_resp[rec['name']] = \\\n", - " dict(time=arb_cell_model.traces[i].time,\n", - " voltage=arb_cell_model.traces[i].value,\n", - " spikes=arb_cell_model.spikes) # TODO: handle global callback\n", + " nrn_recs = []\n", + " arb_recs = []\n", + " for rec in prot_def['recordings']:\n", + " rec_args = dict(name=rec['name'],\n", + " variable='v')\n", "\n", - " return arb_resp\n", + " nrn_recs.append(ephys.recordings.CompRecording(location=nrn_locations[rec['location']],\n", + " **rec_args))\n", "\n", + " arb_recs.append(ephys.recordings.CompRecording(location=arb_locations[rec['location']],\n", + " **rec_args))\n", "\n", - " def run(self, cell_model, params, dt):\n", - " arb_resp = dict()\n", - " for prot_def in self.protocols:\n", - " arb_resp.update(self.run_sweep_protocol(\n", - " prot_def, self.locations, cell_model, params, dt))\n", - " return arb_resp\n", + " nrn_protocol = ephys.protocols.SweepProtocol(prot_def['name'], nrn_stims, nrn_recs)\n", + " nrn_sweep_protocols.append(nrn_protocol)\n", "\n", + " arb_protocol = ephys.protocols.ArbSweepProtocol(prot_def['name'], arb_stims, arb_recs)\n", + " arb_sweep_protocols.append(arb_protocol)\n", "\n", - "arb_protocol = ArbSequenceProtocol('multistep', protocol_steps, arb_locations)" + "nrn_protocol = ephys.protocols.SequenceProtocol('multistep', protocols=nrn_sweep_protocols)\n", + "arb_protocol = ephys.protocols.SequenceProtocol('multistep', protocols=arb_sweep_protocols)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Cross-validation of Arbor and Neuron voltage traces\n", + "## Mechanisms and parameters for cross-validation of Arbor and Neuron\n", "\n", "To validate Arbor's simulation output with that of Neuron, we run the protocols over a set of parameter values, either loaded from a JSON-file or randomly sampled from the parameter bounds (using `random.uniform(*bounds)`) and both with and without axon replacement.\n", "\n", @@ -481,9 +367,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['g_pas.all',\n", + " 'e_pas.all',\n", + " 'cm.all',\n", + " 'Ra.all',\n", + " 'v_init',\n", + " 'gnabar_hh.somatic',\n", + " 'gkbar_hh.somatic']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "mechanisms = l5pc_model.create_mechanisms(\n", " dict(all=mechanism_defs['all'],\n", @@ -536,9 +439,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "[{'gnabar_hh.somatic': 0.09693182372859019,\n", + " 'gkbar_hh.somatic': 0.015340882449785893},\n", + " {'gnabar_hh.somatic': 0.12110759452040755,\n", + " 'gkbar_hh.somatic': 0.031924882338782865},\n", + " {'gnabar_hh.somatic': 0.1195562418075583,\n", + " 'gkbar_hh.somatic': 0.06459497861401894},\n", + " {'gnabar_hh.somatic': 0.08847815492981193,\n", + " 'gkbar_hh.somatic': 0.07276510608711441},\n", + " {'gnabar_hh.somatic': 0.0508411837015028,\n", + " 'gkbar_hh.somatic': 0.013581640668739951},\n", + " {'gnabar_hh.somatic': 0.11162357675013847,\n", + " 'gkbar_hh.somatic': 0.06336568536943277},\n", + " {'gnabar_hh.somatic': 0.05371039783711741,\n", + " 'gkbar_hh.somatic': 0.012373142311124232},\n", + " {'gnabar_hh.somatic': 0.08471921358507173,\n", + " 'gkbar_hh.somatic': 0.044725101387279524},\n", + " {'gnabar_hh.somatic': 0.06995132468412933,\n", + " 'gkbar_hh.somatic': 0.012159179133505723},\n", + " {'gnabar_hh.somatic': 0.12452462089090967,\n", + " 'gkbar_hh.somatic': 0.05454205682315694}]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "if not hasattr(arbor.segment_tree, 'tag_roots'): # skip axon replacement if not yet supported\n", " replace_axon = [False]\n", @@ -568,12 +501,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " We use a factory to create cell models with different configurations. This enables us to run both Arbor and Neuron simulations for the defined sequence protocols and each combination of axon replacement and parameter values..." + "## Running an Arbor protocol\n", + "\n", + "The interface of an Arbor protocol is the same as that for Neuron with the only difference that an instance of `ArbSimulator` must be supplied to the `run` method. In addition, if axon-replacement is used, the morphology must be instantiated on the cell model.\n", + "\n", + "Upon invoking the `protocol.run` method, the cell model is exported to a mixed JSON/ACC-format (cf. [generate_acc.py](generate_acc.py)) and an Arbor cable cell is assembled. Protocol stimuli and recordings are instantiated on this cell and an Arbor simulation is run.\n", + "\n", + "To create cell models with different configurations for the cross-validation, we use a factory in the following. This enables us to run both Arbor and Neuron simulations for the defined sequence protocols and each combination of axon replacement and parameter values..." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -596,7 +535,7 @@ "@dataclass\n", "class SimulationRunner:\n", " cell_factory: CellModelFactory\n", - " arb_protocol: ArbSequenceProtocol\n", + " arb_protocol: ephys.protocols.SequenceProtocol\n", " nrn_protocol: ephys.protocols.SequenceProtocol\n", "\n", " def run_all(self, replace_axon_policies, param_list, dt=0.025):\n", @@ -604,6 +543,7 @@ " nrn_resp = dict()\n", "\n", " nrn_sim = ephys.simulators.NrnSimulator(dt=dt)\n", + " arb_sim = ephys.simulators.ArbSimulator(dt=dt)\n", "\n", " for do_replace_axon in replace_axon_policies:\n", " for param_i in range(len(param_list)):\n", @@ -614,7 +554,7 @@ " cell_model.instantiate_morphology(nrn_sim)\n", "\n", " key = (do_replace_axon, param_i)\n", - " arb_resp[key] = self.arb_protocol.run(cell_model, param_list[param_i], dt=dt)\n", + " arb_resp[key] = self.arb_protocol.run(cell_model, param_list[param_i], arb_sim)\n", "\n", " # need to destroy instantiated cell model first to avoid Hoc serialization error\n", " cell_model.destroy(sim=nrn_sim)\n", @@ -637,7 +577,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -661,28 +601,139 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "### The cross-validation metric\n", + "\n", "To analyze the responses, we compare the difference of voltage traces between Arbor and Neuron in the L1-norm. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
5False10.1210.0319Step3.soma.v0.162.49e-07
49True60.05370.0124Step1.soma.v0.1257.9e-07
0False00.09690.0153bAP.soma.v0.1136.71e-07
1False00.09690.0153Step1.soma.v0.1053.17e-06
26False80.070.0122Step3.soma.v0.1036.99e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "5 False 1 0.121 0.0319 Step3.soma.v \n", + "49 True 6 0.0537 0.0124 Step1.soma.v \n", + "0 False 0 0.0969 0.0153 bAP.soma.v \n", + "1 False 0 0.0969 0.0153 Step1.soma.v \n", + "26 False 8 0.07 0.0122 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "5 0.16 2.49e-07 \n", + "49 0.125 7.9e-07 \n", + "0 0.113 6.71e-07 \n", + "1 0.105 3.17e-06 \n", + "26 0.103 6.99e-07 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "\n", "def voltage_trace_residual_l1_norm(int_resp, ref_resp):\n", " int_resp_func = scipy.interpolate.interp1d(int_resp['time'], int_resp['voltage'], kind='cubic')\n", " ref_resp_func = scipy.interpolate.interp1d(ref_resp['time'], ref_resp['voltage'], kind='cubic')\n", " abs_diff = lambda t: abs(int_resp_func(t)-ref_resp_func(t))\n", " with warnings.catch_warnings():\n", " warnings.filterwarnings(\"ignore\", category=scipy.integrate.IntegrationWarning)\n", - " return scipy.integrate.quad(abs_diff, ref_resp['time'][0], ref_resp['time'][-1], limit=400)\n", + " if isinstance(ref_resp, pandas.DataFrame):\n", + " time_start, time_end = (ref_resp['time'].iloc[0], ref_resp['time'].iloc[-1])\n", + " else:\n", + " time_start, time_end = (ref_resp['time'][0], ref_resp['time'][-1])\n", + " return scipy.integrate.quad(abs_diff, time_start, time_end, limit=400)\n", "\n", "\n", "def voltage_trace_residual_l1_norm_sweep_protocol(args):\n", - " arb_resp = args['arb_resp']\n", - " nrn_resp = args['nrn_resp']\n", + " arb_resp = args['arb_resp'].response\n", + " nrn_resp = args['nrn_resp'].response\n", "\n", " residual_l1_norm, residual_error = voltage_trace_residual_l1_norm(\n", " nrn_resp, arb_resp)\n", @@ -729,9 +780,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Default dt (0.025): test_l5pc OK! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are 0.0364 (0.05), 7.25e-06 (0.0005).\n" + ] + } + ], "source": [ "def print_voltage_trace_l1_results(config_str, l1_results):\n", " voltage_residual_rel_l1_error_tolerance = 1e-2 * voltage_residual_rel_l1_tolerance\n", @@ -753,9 +812,1850 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXxddZ34/9f7LrlJ7s2+b03StEl3SimbgII6gA7r6ICKAjrqV0fHZVzGUX+KfHW+M24o4ogLIw4ggoCAgBubyE4L3bcszZ5m35O7f35/nJM0bZM2bW96k9z38/Hoo7nnnnvO+27nnvf5fD7vjxhjUEoppZRSSil18hzxDkAppZRSSimlFgtNsJRSSimllFIqRjTBUkoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkqpeUJEKkTEiIgr3rEsdiJyo4g8H+845hsRuUBE9sY7DqWUWsg0wVJKKbWgichNIhISkZEp/74Y77gWImPM34wxNbHeroisF5HNIjJm/78+1vtQSqn5QhMspZSKEW15iqv7jDG+Kf++He+AYmkhf7ZEJAl4BLgbyAJ+BTxiL1dKqUVHEyyllDoJItIoIv8mItuAURFxicg5IvKiiAyIyFYRuXDK+s+KyP8TkVdFZEhEHhGR7Bm2/UER2S0iwyLSICL/57D7rxSRLfZ26kXkUnt5hojcISIdItImIt8UEecxnkeViDwtIr0i0iMi94hI5pT7+kRkg327WES6J56XiFwhIjvt5/usiKw87PX5vIhsE5FBEblPRJKP/5U+fiLyJft1GRaRXSJy9QzriYjcIiJd9mu5XUTW2Pd5ROS7ItIsIp0icruIpMxy/3fa6//FjuGvIlI+5f4fikiLvc/NInLBlPtuEpEHRORuERkCbhSRs0TkJft17hCR26YmKXb30n8WkVp7f//Xfu9etPdx/7GSGhG5UERaZ/P8jsOFgAv4gTEmYIy5FRDgrTHej1JKzQuaYCml1Ml7L/D3QCZQADwOfBPIBj4PPCgieVPWvx74EFAEhIFbZ9huF3AZkA58ELhlSpJzFvC/wBfs/b4ZaLQfd6e93WXA6cDFwIeP8RwE+H9AMbASKANuAjDG1AP/BtwtIqnAL4FfGWOeFZFq4F7gM0Ae8ATw+8NO5K8BLgUqgXXAjdMGIHK+nTzM9O/8YzyHw9UDFwAZwDfs+IumWe9irNev2l73GqDXvu8/7eXrsV7PEuBrxxHDdcD/BXKBLcA9U+57zd5uNvBr4LeHJZ9XAg9gvb/3ABHgs/a2zgXeBvzzYfu7BDgDOAf4IvAz4P1Y7+carM/qCbMT5Znen/+e4WGrgW3GGDNl2TZ7uVJKLTqaYCml1Mm71RjTYowZxzqZfcIY84QxJmqM+QuwCXjnlPXvMsbsMMaMAv8fcM10LUzGmMeNMfXG8lfgz1gJA8A/Af9jjPmLvZ82Y8weESmw9/UZY8yoMaYLuAV4z9GegDGmzt5WwBjTDXwfeMuU+38O1AGvYCWGX7HvuhZ43H5sCPgukAK86bDXp90Y0wf8HiupmC6G540xmUf5d7SiFNccdrJfbIz5rb3fqDHmPqAWOGuax4aANGAFIMaY3caYDhER4KPAZ40xfcaYYeA/jvVaHuZxY8xzxpgA1mt2roiU2c/3bmNMrzEmbIz5HuABpo5/eskY87Ad/7gxZrMx5mV7/Ubgp0x5j2zfNsYMGWN2AjuAPxtjGowxg8AfsBLuE2aMWXeU9+fwZG+CDxg8bNkg1muulFKLzoLt062UUvNIy5S/y4F/FJHLpyxzA8/MsH6TfX/u4RsVkXcAX8dqQXEAqcB2++4yrNaiw5Xb2+uw8gOwH9syzbpT91UA/BArgUuzH9N/2Go/Bx4FPmonDGC1eDVNrGCMiYpIC1ZLz4QDU/4esx8Ta/cbY94/dYGIXA/8K1BhL/IxzetsjHlaRG4DfgyUi8hDWC2PyViv+eYpr6UAR+1ueZjJ190YMyIifVjPv0VEPo+VKBcDBqulMne6x9rPpxor8d1ox+UCNh+2v84pf49Pc7vwOGKPlRGs5zZVOjAch1iUUmrOaQuWUkqdvKldn1qwWqimXtn3GmP+c8o6ZVP+XoLVgtIzdYMi4gEexGoRKjDGZGIlVBNn+i1A1TSxtAABIHfK/tONMcfqjvUf9vNYa4xJx2qJO5hViPiAHwB3ADfJwXFj7VhJ3cR6Yj+/tmPs7whilQgfOcq/C469lcltlWMlhJ8EcuzXb8fU5zSVMeZWY8wZwCqshPYLWO/JOLB6ymuZYYzxHcfTmnyv7dcwG2i3n8sXsbojZtnxDR4W39TPFcBPgD3Acvs9+vJMz2euiDXWbqb35/YZHrYTWCdTslSsrqI75z5ipZQ69TTBUkqp2LobuFxELhERp4gk24UDSqes834RWWWPZ7oZeMAYEzlsO0lYXca6gbDdmnXxlPvvAD4oIm8TEYeIlIjICmNMB1ZXwu+JSLp9X5WIHN6V7HBpWC0NgyJSgpVgTPVDYJMx5sNYY8wmTqbvB/7ejsMNfA4rwXvxWC/U4ewS4b6j/PvbcWzOi5WgdINVMARrDNIRRORMETnbjn8U8ANRY0wUK0m7RUTy7XVLROSSKY81MqWIyTTeaY8tS8Iai/WyMaYF6/UO2/G5RORrHNnKc7g0YAgYEZEVwMePsX7MGWNWH+X9+dgMD3sWa/zYp8QqGvJJe/nTpyRopZQ6xTTBUkqpGLJPnq/Eal3oxmpR+gKHHm/vwipEcQCrG9qnptnOsL38fqyueu/D6p43cf+r2IUvsFo+/srBlqTrsRK0XfZjH8AaN3U03wA22Nt6HHho4g4RuRKrSMXECf2/AhtE5DpjzF6s1q4fYbX4XA5cbowJHmN/c8oYswv4HvASVje5tcALM6yejpVI9WN1d+wFvmPf929YY89eFqua35PY46TssVTDHOy2OZ1fY3Xz7MMqPjHRjfFPwB+BffY+/RyjGydWt8X32fv8OXDfMdafF+zPwlVYn8sBrAIvV8X7M6KUUnNFDi3qo5RSai6JyLPA3caYX8Q7FnVyROT9WN0H/32G++8EWo0xXz2lgSmllIorLXKhlFJKnQBjzN3xjkEppdT8o10ElVIqQYg16e3xFCdQi5CIfHmGz8Ef4h2bUkotBjHrIigijVj9wiNA2Biz0a4ydR9WidxG4BpjzOFlf5VSSimllFJqUYh1C9ZFxpj1xpiN9u0vAU8ZY5YDT9m3lVJKKaWUUmpRinUL1kZjTM+UZXuBC40xHSJSBDxrjKmZaRu5ubmmoqIiJvEopZRSSiml1FzZvHlzjzEm7/DlsSxyYYA/i4gBfmqM+RnW5Jgd9v0HgILDHyQiHwU+CrBkyRI2bdoUw5CUUkoppZRSKvZEpGm65bFMsM43xrTZkzH+RUT2TL3TGGPs5IvDlv8M+BnAxo0btWa8UkoppZRSasGK2RgsY0yb/X8X8DvgLKDT7hqI/X9XrPanlFJKKaWUUvNNTBIsEfGKSNrE38DFwA7gUeAGe7UbgEdisT+llFJKKaWUmo9i1UWwAPidiExs89fGmD+KyGvA/SLyT0ATcM3xbjgUCtHa2orf749RqGohS05OprS0FLfbHe9Q1CL0i2f30dS4l69e9w48bp2HXSmllFLHLyZnEMaYBuC0aZb3Am87mW23traSlpZGRUUFdgKnEpQxht7eXlpbW6msrIx3OGoRavjL7fyH+w7qfnMDyz5wa7zDUUoppdQCFOt5sGLO7/eTk5OjyZVCRMjJydHWTDUnBsdDLJM2AIobfgsh/ZwppZRS6vjN+wQLSPjkKhKN0jnkJxSJxjuUuEv0z4KaOx2D4xRIHwCpZoxQ3dNxjkgppZRSC9GCSLASXd9okKThFiJd+yAaiXc4Si1KI/4whdJPs3ctQeOkc/sz8Q5JKaWUUguQJlizICJ87nOfm7z93e9+l5tuuumU7T8YDJElIySbcaLjA4fcd+GFFx51cuarrrqKc84555BlN910EyUlJaxfv541a9bw6KOPzkXY6hQZGAvyYn1PvMNY8IYDYQqlj+T8KnaYpUjLy/EOSS0Q48EIg2OheIeh5qGRQJjtrYPxDkPNQ8FwlNeb++MdhpojmmDNgsfj4aGHHqKnJ7YnscYYotFjd/szkYM/3JGx2X8ZBwYG2Lx5M4ODgzQ0NBxy32c/+1m2bNnCb3/7Wz70oQ/NKg41P9306E6u+/lLNP3236H2L/EOZ8EaGQ+QzwCurFIaUtdSMLwLQuPxDkstADf+8lU+9d2fMbpXu5WqQ33ld9u5/LbnaXv0m/DkN+IdjppH/uOJ3fzDf7/IU7s74W/fg92/j3dIKoY0wZoFl8vFRz/6UW655ZYj7uvu7uZd73oXZ555JmeeeSYvvPACYLUSffe7351cb82aNTQ2NtLY2EhNTQ3XX389a9asoaWlhS984QusWbOGtWvXct999wHw7LPPcuGFF/Lud7+bC990Ntd98iuMR104Q6NgzCEx3HXXXZOtUa+++urk8oceeojLL7+c97znPfzmN7+Z9rmtXLkSl8t1SPL4pS99iVWrVrFu3To+//nPA9DY2Mhb3/pW1q1bx9ve9jaam5sBuPHGG/n4xz/OOeecw9KlS3n22Wf50Ic+xMqVK7nxxhsnt/nxj3+cjRs3snr1ar7+9a8fEcfg4CDl5eWTid7o6ChlZWWEQnpV+Fheaujlvc5nKN/533D/9Ud8PtTsBEf6cUsEV1oB/qKzcBEm2vp6vMNS89ywP8Qr+3v5n8hX8N57NbS8euwHqYTx9J4uHEQpef078Pz3oWt3vENS88TfarsBePyVXfDUzXDf+6G3Ps5RqVhZUBO9fOP3O9nVPhTTba4qTufrl68+5nqf+MQnWLduHV/84hcPWf7pT3+az372s5x//vk0NzdzySWXsHv30Q+gtbW1/OpXv+Kcc87hwQcfZMuWLWzdupWenh7OPPNM3vzmNwPwxhtvsHPnTsDwj1f+Pc9s3sc7z1xqXVVPSp3c3tjYGFu2bOG5557jQx/6EDt27ADg3nvv5Wtf+xoFBQW8613v4stf/vIRsbzyyis4HA7y8vIA6O3t5Xe/+x179uxBRBgYGADgX/7lX7jhhhu44YYb+J//+R8+9alP8fDDDwPQ39/PSy+9xKOPPsoVV1zBCy+8wC9+8QvOPPNMtmzZwvr16/nWt75FdnY2kUiEt73tbWzbto1169ZNxpGRkcH69ev561//ykUXXcRjjz3GJZdcovNdHUM0augdCVLtaLEWhMagaxcUHPszrQ4VGB8FICnFS3r12bAf+vY8R27leXGOTM1nHYN+MhjFKfaFjT2PQ9lZ8Q1KzQuBcIRhf5gNUndw4c6HIX9l3GJS84Mxho5Bq1JtV9Oug3fs+xOc+89xikrFkrZgzVJ6ejrXX389t9566Nw4Tz75JJ/85CdZv349V1xxBUNDQ4yMjBx1W+Xl5ZPjop5//nne+9734nQ6KSgo4C1veQuvvfYaAGeddRalpaUkOaKsX11D44FeAKLB0UO29973vheAN7/5zQwNDTEwMEBnZye1tbWcf/75VFdX43a7JxMvgFtuuYX169fz+c9/nvvuu2+yOl9GRgbJycn80z/9Ew899BCpqVYi99JLL/G+970PgA984AM8//zzk9u6/PLLERHWrl1LQUEBa9euxeFwsHr1ahobGwG4//772bBhA6effjo7d+5k164pBxTbtddeO9mC95vf/IZrr732qK+jgp7RAOGooTJlnICxk9GmF+Mb1AIVtcuyu5JSWFVVQVM0n/HmN+IclZrv2gfGKZGDPQBM3ZNxjEbNJ32jQQDOybB/uz2Z0PRCHCNS88VoMMJYMMKKwjSyA20H76jXbsaLxYJqwZpNS9Nc+sxnPsOGDRv44Ac/OLksGo3y8ssvk5ycfMi6LpfrkHFNU+du8nq9s9qfx+MBwGnCOJxOwEHYOCAwhsN3cL3DS5eLCPfffz/9/f2TE/IODQ1x77338q1vfQuwxmBNdP87PO5XX32Vp556igceeIDbbruNp58++hd+Ik6HwzH598TtcDjM/v37+e53v8trr71GVlYWN95447RzWV1xxRV8+ctfpq+vj82bN/PWt7712C9SgusftbpQVqaOsy1QyZqUAVJaXoGzPhLnyBaeSNAab+VMSqEy18tTUs4ZfUdeCFBqqt6RIMVinUA/F1nLBd27rTnU3MnHeKRa7HpHrATrjHwnNEN74UWUtjwBkRA4tXdGIhvxhwF464p8nN2d1sI174KGv1rd/HVKmgVPW7COQ3Z2Ntdccw133HHH5LKLL76YH/3oR5O3t2zZAkBFRQWvv26N33j99dfZv3//tNu84IILuO+++4hEInR3d/Pcc89x1lmHdi9xEsUgJLkc+EnChMYOuX+i1ef5558nIyODjIwM7r33Xv74xz9OjvvavHnzjOOwphoZGWFwcJB3vvOd3HLLLWzduhWAN73pTZOPv+eee7jggguOua0JQ0NDeL1eMjIy6Ozs5A9/+MO06/l8Ps4880w+/elPc9lll+F0Ome9j0TlD1ll+7PNIIOOTOo9q6B15qqS6ijCAQDEnYzTIfR4q8kKtMJhLcZKTTUeilBst2D9OboRiYaha2eco1LzwUQLVnWmdbH1Dec6iASgZ188w1LzwEjAujhaU5jGUncvQ64cKDsHxnpguCPO0alY0ATrOH3uc587pCDErbfeyqZNm1i3bh2rVq3i9ttvB+Bd73oXfX19rF69mttuu43q6uppt3f11Vezbt06TjvtNN761rfy7W9/m8LCwsn7jTEIURDB6RD84sEZDYA52DqWnJzM6aefzsc+9jHuuOMOGhsbaWpqOqQ8e2VlJRkZGbzyyivTxvHOd76T9vZ2hoeHueyyy1i3bh3nn38+3//+9wH40Y9+xC9/+UvWrVvHXXfdxQ9/+MNZv2annXYap59+OitWrOB973sf5513cEzL1772tUPKxF977bXcfffd2j1wlgJh63OQFOyD1By2hcugfz8Ejt5NVR3J2F0EcVmtsOG81TgwmE49WVYzC4SjFEkfxpnEi5xmLezYGt+g1LwwFrRaKVLNKGOSwgtjJdYdB3Yc5VEqEQzbLVhpyS6KU8IMmhQossel6/FjUVhQXQTjZeqYqoKCAsbGDrYg5ebmTrYgTZWSksKf//znabc3dSyUiPCd73yH73znO4esc+GFF3LhhRcSjRocGH74H/8f7sKVdHV24IgMWlfb3Sk8++yz0+6jra3tiGUTLWpnn332Efc98cQTk39PrUQ4oby8fNqugnfeeefk3xUVFYc8t6n3Tf17qptvvvmQ2+9+97sxWgVv1vyhCEIUd6Afd0EBL7Tn8T4HVqWqsjPjHd7CEp5IsKyuXd7y9dAEQ/tfJ0OLFqgZ+EMR0hkHTxpJvqWMDKfha98S77DUPDB5ASw0QtDp49meTHB64MA2OE0vIiay0YDV+8TncZOTFGZgNInCvFW4ESvBqnlHnCNUJ0tbsOa5qDEIBiPWWyXuFIAjugmqxBQIR8lkBDFR0rIL2Roqte7o1Cukx+2wBGtJ5QqGTCrDzVviF5Oa9wLhKCkSBHcKK4sz2G0q9Qq0AiAQshIsV3iEqCedAyNhQrkr9PisJrsI+jwuMlwhxkiith/IXQ4d2+IbnIoJTbDmOQM4MIA14NHpSSFqhEhAEyxlXz0X67OQm1dAq8kl7PKCdms7fvYYrIkEa0VROrvNEpxdWuhCzSwQiuCVIOL2srIojc2hckzXLquQgUpogbDVSuEMDuFKzQCgz1dtdRHUnhoJbaKLoM/jwucIMmY81HYNQ9FpeoFmkTjpBEtEykTkGRHZJSI7ReTT9vKbRKRNRLbY/9558uEmHmO3YGG3YCW7nfhxHxwvohJaIBzFg3UiV5iTiUOErpQqTbBOgEQOHYOVluym3V1Oxki9ngypGQXCUbwOq8v2isJ09kZLkUgQ+qYvbKQSh99uwXIGh0n2ZQFQ76y0ChmMdMYzNBVnowE7wUp24Yn6GZdkajtHrDksh1rBPxjnCNXJikULVhj4nDFmFXAO8AkRWWXfd4sxZr3974mZN6FmEjV2C5adYHlcTgIk4YhogqWsFqyJBCvJk0pZdir1jgorwdKk4LjIYS1YACPpy0iNjsBIV5yiUvOdPxQhVYLgTmV5gY86Yxcy6Nkb38BU3E20YDmCwyR5M8n1edgS1G7cCkbsBMvrcSKhMRxJXuq6RiDXLojWU3eUR6uF4KQTLGNMhzHmdfvvYWA3UHKy21WWqVUEAZwOIexIwmnCEI3EOToVb4FwlGSsUsC4k1mW52NrsBgCgzDUHt/gFhhH5MgEy5Fn/dhFunbHIyS1AFgJVgCSUilMT+aA2z6B7tYEK9EFwlEcAgSGIDmD5fk+Xh3Jte7UE+iE5g9Znw2PywmhUZJTfVYXwdwaawW9QLPgxXQMlohUAKcDE7XAPyki20Tkf0Qka4bHfFRENonIpu7u7liGsygc3oIFYJz2CWBYW7ESnT8UwSP2WA9XMsum/oD31sYvsAXIEZ1IsA5Olu0rWwPAYJNebVbTC4SjpGAVuRARivLz6HXmQo9+/xJdIBzF43IigWHwpFGV7+X1HicmOVPnwkpwgXDESq4AgmOk+jJo7B0jmL4EHG79fCwCMUuwRMQHPAh8xhgzBPwEqALWAx3A96Z7nDHmZ8aYjcaYjXl5ebEKJ+YefvhhRIQ9e/bMuE5jYyNr1qyJ2T5vvPFGfvfgg4eMwQJrIlSAT3/2c5SUlBCNHpwT68477yQvL4/169ezatUqfv7zn8csHjX/HNKC5fJQle9jb8ieR01P8I7LdC1YpWVLGTKpjLXrmDY1PX8oQgoBcHsBqMrzUR8t0SvQikAogscl1sVQVwpVeT6G/BHCWcv0BDrBBcNRklwOqydSJEBaegaRqKGxPwA5VdCtn4+FLiYJloi4sZKre4wxDwEYYzqNMRFjTBT4ObCgJ5K59957Of/887n33nunvT8cDp/0PiKRI7v8GcwRLVjupGTCkSgPP/oYZWVl/PWvfz3kMddeey1btmzh2Wef5ctf/jKdnTqYdrEKhCL4nPZnz/4B7yTLqiSoCdZxcUYChHGC8+D0gMsK0qgzxYieDKkZWBc5rCIXAMvyfewMFWJ69uk4yATnD0XJcNm/6+5kqvJ8APSnVujxOcFZrZsOCI4CkJmRCWCPw1quCfgiEIsqggLcAew2xnx/yvKiKatdDSzYPjYjIyM8//zz3HHHHfzmN7+ZXP7ss89ywQUXcMUVV7BqlVXXIxwOc91117Fy5Ure/e53T05K/NRTT3H66aezdu1aPvShDxEIWFfLKyoq+Ld/+zc2bNjAb3/72yP2/czTT3HmO69j9ZkX8NhjjwHgcTt58qUtrKpZxsc//vEZk778/HyqqqpoamqaXHbrrbeyatUq1q1bx3ve8x4A+vr6uOqqq1i3bh3nnHMO27ZZczDcdNNN3HDDDVxwwQWUl5fz0EMP8cUvfpG1a9dy6aWXEgpZXdNuvvlmzjzzTNasWcNHP/rRIyYKjkajVFRUMDAwMLls+fLlmvjFQCAcxTuZYHlYlu8DhL6UJXqAPk6OaJCwJB2yLCPFTatrCenD9XGKSs13/lAEjwmAOxWAqjwv9aYYCY7qOMgEFwhH8LntBMuVTFW+lWC1Okth5IBWiktgky1YdoKVk5WFCFYlwdwa6GuAcDDOUaqT4Tr2Ksd0HvABYLuIbLGXfRl4r4isx5rKqRH4Pye9pz98CQ5sP+nNHKJwLbzjP4+6yiOPPMKll15KdXU1OTk5bN68mTPOOAOA119/nR07dlBZWUljYyN79+7ljjvu4LzzzuNDH/oQ//3f/80nP/lJbrzxRp566imqq6u5/vrr+clPfsJnPvMZAHJycnj99den3XdzUxOvPn4Xe7oCXHzFNdTV1eFJ8nDvw3/i2isv4eqrr+bLX/4yoVAIt9t9yGMbGhpoaGhg2bJlk8v+8z//k/379+PxeCYTnq9//eucfvrpPPzwwzz99NNcf/31bNmyBYD6+nqeeeYZdu3axbnnnsuDDz7It7/9ba6++moef/xxrrrqKj75yU/yta99DYAPfOADPPbYY1x++eWT+3Q4HFx55ZX87ne/44Mf/CCvvPIK5eXlFBQUzPptUtPzhyJkOMIQBdwpZKS4yUvz0OIoJb935u6s6kiuaICQI4nkw5YPp1WRNvg0jPVBanZcYlPzV2AiwUqaSLB8/MoUW3f27IMMrfmUqALhKGlTLoAVpSeT4nayN1LEBrAKXZSeEc8QVZxMtmCFrIvwSSk+yrJS2dc1DKurwUSgfz/k1cQ5UnWiYlFF8HljjBhj1k0tyW6M+YAxZq29/ApjTEcsAo6He++9d7K15z3vec8hLUZnnXUWlZWVk7fLyso477zzAHj/+9/P888/z969e6msrKS62qpIdsMNN/Dcc89NPubaa6+dcd9XXX01DoeD6uXLWLp0KXv27CEcDvHnZ57jHy65gHSfj7PPPps//elPk4+57777WL9+Pe9973v56U9/Snb2wZPCdevWcd1113H33Xfjcln59fPPP88HPvABAN761rfS29vL0NAQAO94xztwu92sXbuWSCTCpZdeCsDatWtpbGwE4JlnnuHss89m7dq1PP300+zceeR4lWuvvZb77rsPgN/85jdHfc5q9gLhKKnOiSIXVnGGZXk+9oQKYLAFgjoh9Wy5pmnBAiarOpluTVjVkSIhPw6ik10Ey3O8NGBXEtRW5IQWCEfxOSdasFJwOISqfC9vjOVby/TzkbAC4ShJLudkCxbuVJbl+2joHgW7eq1WIl3YYtGCdeoco6VpLvT19fH000+zfft2RIRIJIKI8J3vfAcAr9d7yPpil1Of6fZ0Dt/GdMQegyUi/OlPf2JwcIh1b7sGnG7GxsZJSUnhsssuA6xk5rbbbpt2O48//jjPPfccv//97/nWt77F9u1HbxH0eKyTdofDgdvtnnw+DoeDcDiM3+/nn//5n9m0aRNlZWXcdNNN+P1HVjc899xzqauro7u7m4cffpivfvWrx3zO6tj8oQhex8QVUqvtZVm+jzfacrlOgN46KFoXvwAXEJcJEnF6jlieWrIa6mGweQeZ5W+KQ2RqXguNW//bXQSTXA68WUWMjXtJ1RPohOYPRcg/7AJYVZ6Pl/eP25Xi9AQ6UVlVBA+2YJGUSlWelxfqeohmr7daP/T4saDFtEz7YvTAAw/wgQ98gKamJhobG2lpaaGyspK//e1v067f3NzMSy+9BMCvf/1rzj//fGpqamhsbKSuzpr34q677uItb3nLrPb/yMO/IxqNUr+/iYaGBmpqarj33nu55Ye30vjK4+zf9Qb79+/nL3/5y+R4r5lEo1FaWlq46KKL+K//+i8GBwcZGRnhggsu4J577gGscWW5ubmkp6fPKr6JZCo3N5eRkREeeOCBadcTEa6++mr+9V//lZUrV5KTkzOr7aujC4SjpDoOlmkHawzIjqBdSVBLtc+aOxog4nAfsby4fDljxsNIq1YSVEdyhg9NsACW5qfRKKV6BTrBHdqCNXF89tE8GCKaVaGFLhLY5Bisiel27CJVgXCUtjEnpJdqgrXAaYJ1DPfeey9XX331Icve9a53zVhYoqamhh//+MesXLmS/v5+Pv7xj5OcnMwvf/lL/vEf/5G1a9ficDj42Mc+Nqv9l5aUcNbff4DL/uFabr/9dqLRKH/84x+59O+vwBiIBP14vV7OP/98fv/730+7jQ9/+MNs2rSJSCTC+9//ftauXcvpp5/Opz71KTIzM7npppvYvHkz69at40tf+hK/+tWvZv36ZGZm8pGPfIQ1a9ZwySWXcOaZZ07ed/vtt3P77bdP3r722mu5++67tXtgDPlDEVIkDE7P5GTUVfk+9ptCDKKTWR4HlwkRcRzZgrW8MIM6U6wny2pajskEK2VyWVW+l90TlQRVwgqEI6Q6Do7BAiYrCY6kLdUT6AQ2OQYrfHB6kIkiKPXddiVB/c1Z0BZWF8E4eOaZZ45Y9qlPfWry7wsvvHDy74qKihnnyXrb297GG2+8ccTyiXFM07nzzjvp6+8je7wJk12FJFutSn19fYwFwgR7OnHY3VMeeuihycfdeOONh2znF7/4xeTfzz///BH7yc7O5uGHHz5i+U033XTI7ZGRkWnv++Y3v8k3v/nNIx5/eBK5cePGIyoMqpPjD0VIcYTAfbA0Q1WejwBJjCYX4dMf8FlzmRDRaVqwsr1JvOQsY8mwjsFSR3KE/eDm0AQrz0dtpAgZ+Sv4hyB5dj0C1OISCEXxJts9DOzPR1W+NSSgM2kJ6X1PQSQEziOPO2pxC9qTUB9MsJKoyppIsEa5MLcattxjTfUwi6Emav7RFqz5zk5IRA59qzxuBwGSYGJyVJWQrDl4QodMjluYnkxqkpMDSWXaRXCWjDE4CWMc0xS5AIZ8S8kMdVkny0rZIlGDRCcm+j70IkeDsWcq0e9gwgqEo6TKoS1YFTleRKDeFEM0DP2N8QtQxc3kGKwpLVjZ3iSyUt0HW7CCIzC8YOvDJTxNsOY5a55mjriC4XQ4CEkSzmhQJ7NMYFYXweAhJ3cOh7A0z0t9tMjqIqifj2MKRw0eQkSd0ydYkclKgtplQx0UDEfxYLdQTPnsTMyFBWg33QQ22cMAJo/RyW4nZVmpbPdPVBLUBDwRBSMTXQQnxmAd7EJaPzHZMOjnYwFbEAlWQncrm3zuRzYRR50eHBiIJM5kdAn9WZhGYOIEz3Xo7E1VeT7rBzykk53ORjAcxU0YM00XQYDU4tUADLcs2PnS1RzwhyJ45MgWrMzUJEZTS4ng1HE2CSwQjpJyWJVXgKV5Xl4Zsgs96ecjIQVCdpGLyMEWLLATrO5RyLVLtWsL+II17xOs5ORkent7E/fEerIFa5q3yv5CmtCRZdEXI2MMvb29JCcfPhVs4vKHoiQRmrz6NaEqz8fmsTzrhh6gjykYjpJEGDNDC1Zh+QoCxs2QJlhqCn84crAF67Dv4JK8LDqdhfr9S2CBcIQUpu9CuqMPjDdfWygS1BFFLuzfnqp8Lz0jAQaduZDk08/HAjbvi1yUlpbS2tpKd3d3vEOJi5HhQboig9DvAsehb9eYP0iPv4toZxBHggyiTk5OprS0NN5hzBuBcAQPwUMG2IN1hfSeqD0GpKcWll546oNbQEIRK1GNTjMPFsCyogzqTTHpXbtPcWRqPguErMQcOLIVOd9L7YFCivUEKSEZY6wxsnJoF0GwEix/KEowswqPJuAJ6cgy7QdbsADqe0fZkLNME6wFbN4nWG63m8rKyniHETd33/Z13t/zA/jXPZBedMh9rzX2kfvLywhVXULx9b+YfgNqUbNO8ILgyjhkeVWej06yCLtScWkXlGMKhKO4JUzANX0XwTyfh02OUs4dqj/Fkan5zD9xgQPAdWjrZ1Wejz3hQt7c+yQSjYDDGYcIVbwEI1GMAc9EgnVIpVerkmBvSjnFrX/USnEJyCpy4YTwxPHj0DL+9V0jbMhdDs2vxCtEdZLmfRfBhBc59Ms31bI8H/WmBEevnkAnomjUEIxESYoGwXVoC1ZlrhcRoSe5XK+AzUIwYrdEzNCCJSIMeKvICh2AwMi066jEEwhFD55ATzMOssEUI5EADLbEIToVT4Gw1b1/MgGfcmyZmO+oRUrAPwBjvac6PBVH4UiUqOFgC5YzaTLBLs1KIcnpODgOa7AFgmNxjlidCE2w5jmZSLCmGRuS5U2izVlK+kiDVopLQBM/4C4TPCIBT3Y7Kc1KodlRqgnWLIQmEqxpLmRM0EqC6nD+0NQxWIcmWJOVPEG/gwkoEJpIsEJW937nwQ5DOd4kMlLc7AkXWgv085FQJpPviTFYU44dLqeDitxUq1R7zjLAQJ/2nFiINMGa5+QoLVgAI2lVpEaGYbTnFEal5oNAOAKA2wSPOLkD6wr67mAhDLVqq8sxWEUuQsgMRS4AUorXADDSqoUulMVvf26AI47RpVmptDjs8aJ6Ap1wJo7PSdNUeRWxptLYPJprLdBu3AklaCdYk1UEDzt2LM312XNh2ZUE9fixIGmCNc85ogGiyBEFLiYYe64E073nVIal5gG/fYXUFQ0c0r9/QlWe7+APeK/OxXM0wVCEJMLIUVqwCipqCBgXQ82aYClLYGoL1mHdS50OITOnkBFHmp5AJ6CJ43OSCcx4AezVPq/1udFCFwklMDXBCgeOOHZU5Xtp7h0jlFkJiCZYC9ScJ1gicqmI7BWROhH50lzvb7GRSJCwuGccAOsrsefnadPqZolm4gqpMzrzD/jusHZRmo1gKIRDDA73zC1YywuzaDDFmG79rimLP2yNwTLiPKQL2ISqAh+NFOsFjgQ0mx4GB0bCRLKr9PicYCZasJJdTmsM1jTTrISjhqYhA5llmoAvUHOaYImIE/gx8A5gFfBeEVk1l/tcbJzREBGZvrIZQPGSKkaNh+GWnacwKjUfHNKCNe0PuJcmU4ARB/TouKGjCdlzyTmO1oKV7mG/lOId1JNlZZlowTIzfG6q8nzsCRVi9AQ64Uy0UrinGSMLBysJDnsrtIUzwUwk3x73kWOwYEolwe4RyFmun48Faq5bsM4C6owxDcaYIPAb4Mo53uei4ogGCTtmPulbVphOgynSE+gEZB2kDY7IDAlWvo8gboaSS/QAfQyRoJ1guWf+rokI/b4qsoIdEBw9VaGpeWxyDJZz+snPl+Z5qYsWISMHwD90iqNT8RSYvAB25DyFcLCSYIe7DPqbDk44qxa9g0UunHaCdWjPiaV28m2Nw1oOPXVayGwBmusEqwSYWp+21V42SUQ+KiKbRGRTok4mfDTOaPCoLVh5Pg9NjlJShxpOYVRqPvCHoriJIJhpr5BOVKpqdy/RLijHEAlZJzdHa8ECiGTbg461kqBiyhgs1/RdS61S7XY3Xe3mk1AmWimsHgZHHleWZKficgj1phhMBPr2n+oQVZz4Q3YL1kSZ9sMukKYluylI91DfNWolWKFRGGqPR6jqJMS9yIUx5mfGmI3GmI15eXnxDmfecZoQEcfM40JEhCHvUrJCnVopLsEEwhGSJ+ZYmeYKqYhQleelNlJkjQGJRk5xhAtHOGglWM6jtGABJE9WEtQuucq6Eu2REDJNCzLA0jyfdQINepEjwfintmBN8/lwOx0syUll23i+tUB7GSSMI8u0T9eF1HewiyDoBZoFaK4TrDagbMrtUnuZmiWXCRE9SoIFEJ38AurYkETiD0WnzMEz8xiQLf58a8LqgaZTGN3CMtGCdawEK79ihVVJsGX7qQhLzXP+UIRkQtNW8QTweVwEfEuI4NQEK8EcWoRo5uPzy0NZ1g09gU4YB8dgOe0y7dMXQanvHpmsFK3Hj4VnrhOs14DlIlIpIknAe4BH53ifi0Y4EiXJBIkeZW4egOSilQAM61X1hBIIR0iWiXnSjmzBAusK+paxiSukeoCeSdQucuFMmv5EecKywkwaTBHRTq0kqKwr0cmOo5f3X5KfyQFngZ5AJ5iJVgprjOz0x+eqPB+7+wwmrViPzwlkchLqyTLtR57jVeV5GfaH6SYLknz6+ViA5jTBMsaEgU8CfwJ2A/cbYzQLmKWAPYDaHKMFK698JWHjYEgrCSYUqwXr6BNRV+V5D44B0S4oM5ptC1ZxRgr7pZRUrSSosFqwUiR0xDw2U1Xl+dgXKdJKggnm0ARr5uNzKGLwZyzVE+gEMvHZSHY7px2DBQeLoNR3j9mFLvT3e6GZ8zFYxpgnjDHVxpgqY8y35np/i0kgHCVJwphjtGAtK86hyRQQ7tKB94kkEJ4yyek0Y7DAOkgPkIY/KVsP0EcRDVuJqjvp6AmWwyEM+arIDHZAcOxUhKbmsUAoSrKEZzyBBuskel+4EHrrdRxkAvEHrfd6piqvYPUwAOhNtgsRaaW4hDDZRdDlgND49FUmDy/VrkNAFpy4F7lQMwtOtGDNUKFqQnFGMk1SQspg/SmKTM0H/lD0YJGLGU7wJipVdXu0kuDRGLsFyzXDWJqponkrcGAwOjVCwvOHIyRLaMYTaLAuctSbYiQSgIHmUxidiqeJSnESCcw4Rm9iLqwmKYXAIIx0nbL4VPwcUuQiNA7u1CPWKUxPJjXJaZdqr4bBFp0eZIHRBGses1oowkftfgJWtbi+1Aqy/S0QCZ+i6FS8BcIRPDJR5GL6H3C300F5TiqN6FxYRxO156BxzCLBSitbC0Df/q1zGpOa/wKhKCkEIOnIE6QJS/N8NEQnSrXrVehEMR6K4HIIMkMXMIDM1CRyfUnsDhZYC3ScXkKYHIPlds7YguVwCEvzvNR3j0LuMmthr15EX0g0wZrHJsZgHe3q6IRQ1jJchKG/ce4DU/PCoWOwpu8iCFZXgx3BQhjrhdHeUxTdwmImJvl0zjzn3ISSqjWMmySGG9+Y46jUfOcPR0gmMO0V6AlF6cm0u+xiutqKnDD8oeiUMTYzXyRdmudj02iudUMvgiWEyS6CEoFoaOYu/nk+6rvsFizQz8cCownWPOYP2S0UxxiDBZBUaFUSHGvXQheJIhCO4HPaYzqONgYkX3/Aj0XC49YfRzlRnrCiOJO9pgxn1445jkrNd1aZ9sCMJ0hgXYnOyi1kxJEG2q00YYyHIqS4xJoi42hdSPN8vNaXYh17NAFPCIFwFIeAK2pVrz1agtU2MM54WgUg+vlYYDTBmscmxthIkveY62YvsSZA7W/WBCtR+IMRfM6jdxEE6yC9N6KVBI/GMZlgzXyiPCE1yUVL0jKyhvfpoPQEFwhH8Zijt2ABVOWnUUcZdO05RZGpeAuEIqS7Jy6AHe347KV3LEw4a6kenxNEIBzF43IioWMnWAANA2HIroRunR5kIdEEax4bD0VIIYAkHfukr7K0iE6TSfCA/oAnivFQhAynPebuKGNAqvK8tJtcIk6P/oDPQMITP3THbsECGMlagS86BEM6b3oiGw+ESTJHb8ECWJrnZXuoGNO9W5PyBDEeipAxiwRrmV2Oe8C7FLq1hTMRBEIRPG4HTFzYm2metHzr4np99yjkr4IuTbAWEk2w5jF/MEwKQRyeY7dglWWnUm9K8fTrCXSiGAtGyHDaY4eO0sq5NM9HFAf9KeX6Az6D42nBAnAWrwNgvEULXSSycNCPA3PMxLy6II290TLEPwjDHacoOhVP/lCENNexu3DXFKYB0OKqsCrF+YdOQXQqnqwWLLuCIMz4u1OR40UEGrpHIH+lVeRiYrywmvc0wZrHgoExHGJwziLBcjqErpSl5Izth2j0FESn4s0fiuBz2EUu3DN/RjJS3OSneWh0VkDXrlMT3ALjOI4xWAC5S08HoK9+01yFpBaA6MRcaMf43NQUplEbLbVu6HcwIYyHIqRNjJE9yoWbwvRk0pJd7AgXWwu6tRfKYjfRRZDQ0Y8fyW4nZVmpdgvWSjARHYe1gGiCNY+Fxq05D1ye2Z30jWbW4DF+6N8/l2GpeWIsGCHNEbCKoDhdR123pjCN7aFiq0vbeP8pinDhkPA4AZLAMbtDYvWSIvZHCwi3b5/jyNS8NnmCdPSWz4ocL41Ou5KgdvNJCP5QFJ9rYozszC1YIkJNQRovDxdaCzQBX/T8ocisWrDA6uJf2zkMeVYhMz1+LByaYM1jEf8IAK5k36zWdxWtBiCgJ30JYTwUwesIHrV74ISagjReHLbnWtGB9kdwRcYJOo4+39xUJZkp1Dkq8Pbrj12iMsYg4dm1YDkdQm5+MQOObD1BShD+UIS0iTGyx5hqpbowjRd6UjBJPv18JICxYIRUjwuOUeQCrO7FDd2jVhEUh0sT8AVEE6x5LBywfrzds+giCJBVvo6oEQZ0AtSEMB6M4CVw1O6BE2oK09gZKrFudGmlycM5I35Ccuz55iaICL2+GrKDbRAYnsPI1HwVCEdJNnYX3aMUmZlQU5jGXlOqJ9AJwh+yexjAMS+C1RSkMeCPEMquhk49Pi92Y8Ew3iTnrFrAqwvSCEaiNA6EIWe5Hj8WEE2w5rGJ/v2u5NklWJXF+TSbfMIHdH6eRDAeipAq/lmd3K0oTKedHEIuvUI6HVfET8g5+wQLIFKwFgeGcPu2OYpKzWfjQXsOLJhVcZQVhWnsCJVguvfoONkEMB6KkC7258OTdtR1qwus+3u9VXp8TgCjgQipSc4pXQRn/g2f+GzUdg5b47C0BWvB0ARrHosGrTFYs6kiCFCe42UfZST3aaW4RDAWjJCCf1ZdBJcX+HCIVQiFTj1AH84d9RNxHF+Clb3sbAB69708FyGpeW4sFCFFJorMHPsiR3VBGvtMKRIag4GmOY5OxZs/FMUndgtF0rESLGsYQKOjHMZ6YKR7rsNTcTQeipCa5JpSpv3oZfxFYF/niFWqfaAJAiOnKFJ1MjTBmsfMLCtUTUhyOehMriLL33LwyohatMaDEZLN7LoIJrudVOR4qZMlVhdBnYvnEEkmQPg4W7BqllXRZnLwN702R1Gp+Ww8GCbluFqw0tk3WUlQWykWu/FQBJ/YY2w8Rx9HnePzkOvzsC040Y1bL4ItZqOB8GEtWDMfP1KSrEqC+7rsFiyAHr2IvhCcVIIlIt8RkT0isk1EficimfbyChEZF5Et9r/bYxJtgjGzrFA1lT+7BgdRne9okTPGMB6KkGzGZ9VFEKwxIG/4i0Dn4jlCUtRPdIbJHmdSkeNlt1Th7dGiMonIakGefQtWQbqHA55y60a3JliLWSRqCIajpBo7wUo6dqGqmkIfLwznWTc0wVrUxoJ2C5bdS+nY8+j5DnYRBL1As0CcbAvWX4A1xph1wD7g36fcV2+MWW//+9hJ7icxHWcLFoCrcA0AoQ4dh7WYBSNRIlFDkpldF0GwEqyXR+xSwNpNcFIoEiWFwHEnWA6H0Juxhtxgq5a+T0BjwQgpMvsWLBGhrLCQLke+niAtciMBq3qgT8YBmdUxurogjde6XZjUHE2wFjFjDKPBMF6PEwJD1jQr7qP3nlhuVxIMpi0BV4oePxaIk0qwjDF/NsbYdUh5GSg9+ZDUBJnFAMjD5SxZgd+4GWrWSoKLmT9oDZJPiozPqosgWF2U9uhkp0cYD1nFCo43wQKQkg0ABJs3xzosNc+NhyKkYV8E86TP6jE1hWnsiZRg9Pu3qE0mWIxbBS5EjvmYmoI0xkNRAlk1egK9iAXCUYyxuv7hH4TkjGM+pqYgjXDU0Njvh7wa/f1eIGI5ButDwB+m3K4UkTdE5K8icsFMDxKRj4rIJhHZ1N2tAzunOpEugssKs6g1JUQ6tNTrYjYStH7A3dHZdxFcUZjGAGmMe/L0AD3FWMAuVnAc37MJucutQhfde1+KdVhqnhsLRMiQUYw4jlklbkJ1YRq7IqXQUwuR0BxHqOJl2G+9tylmfFbdA8H6bAB0ptiVBHWc7KI0aiff3iQX+IdmlWAtt4ug7JvoJqg9UBaEYyZYIvKkiOyY5t+VU9b5ChAG7rEXdQBLjDGnA/8K/FpEpr3EZ4z5mTFmozFmY15e3sk/o0VEJvrnzrILGEBVvpd9Zgmp/ToGazEbHAsBBnd4fNafjyXZqaS4nbR5KnWulSmG/SG8+JFjDESfzpqqJdRHiwi1aAtWohnyh8hgFOPJmFULBVgXOfZGS5FIEHrr5zhCFS8jfuskOtmMHbPAxYSJctwNUgbBERhonrP4VPyMBiIAVpGLWbZgVeX5cExWElwJIwdgrG+uQ1Un6ZgJljHm7caYNdP8ewRARG4ELgOuM8a65GKMCRhjeu2/NwP1QPWcPYtFKik8RECSweme9WM8LifdqVX4Qj0w2juH0al4GhwPkUoAhwlBcuasHuNwCNUFPvZGS60iKNHI3Aa5QAyN+UmTcRwpWcf92Pz0ZOpcy8js10IXiWZgLES6jEJK5qwfU52fxl5TZt3QVuRFa9hOsDyRsVm3YPk8LsqyU3jdX2Qt0M/HojQwbhXGyUxNmnWClex2Up7jtQtdrLYWajfSee9kqwheCnwRuMIYMzZleZ6IOO2/lwLLgYaT2VciSg4PM+469pfvcKHciUoz2kqxWA35Q2QxbN1IzZ7142oK03httAgiAejTryTA+LB1IcLpPf4EC2Ag6zQywz0w2BrLsNQ8NzgeIlPGkONIsDJS3YykVRHBoSfQi9iw3Q3MHZl9CxZATUE6fx2we/JoL4NFqX/M6j6aleq2EqxZjt9cnu+zuggWrLIW6PFj3jvZMVi3AWnAXw4rx/5mYJuIbAEeAD5mjNH2zONgjMEbHSbonl3f/qlSS9cBEGjXSoKLlXVyZ082mHI8CVY6myaukOoPOACBYevQ5PGdWILlKLfGYY3WvRCzmNT8NzgeItsxhsziCvRUS4uyaXWU6DiKRWxiDJYrNDzrE2iwupDu7DWYjCV6Ar1IDYxNacEKzG4MFlhdSBt7xwik5Fu9VvT3e9472SqCy4wxZYeXYzfGPGiMWW0v22CM+X1swk0c46EI6YwQSso87seWlVXQZ3wMN22LfWBqXhgaD5E1kWAdRwvWisI0ak2pNTBff8ABCNotWElpOSf0+NIVZzJmPPTvfT6WYal5bmg8RKZjdNZddCfUFKSxI1yC0R4Gi9ZEF0GXvx9SZ39cqSlMIxI1DGdU6wn0IjVgt2BlTrRgzTbBsj8bDT1jULBaf78XgFhWEVQxNOwPk8kIEc/xdxFcUZTB3ugS7SK4iA2dcAtWGgGSGEwp0x9wW2TUmsMqNT33hB6/tjyPLaYKV9trsQxLzXOD4yGrTPtxdBEE6zu4O1KG9DdCYGROYlPx1TcaJNkFjPWAd/bFu1YWWT1W2j1LrUqT4cAcRajiZTLBckcg7D+OFqzDKglqpcl5TxOseWriBNokH3+3pdKsFOodS0gbqoNodA6iU/E2OB6iyG0PezyOFqxcn4dcXxLNrgq9AmaLjFkJVpJv9q/jVD6Pi+bUteSN7tUT5gQyOBbEFx2Z9QnShOqCNPYZez667j1zEJmKt56RAJXeEGIix5VgVeR4SXI52BMtAxOBnn1zGKWKh/6xIGkeF66gPYZ6lsePylwvTodQ2zkC+aus7oWDLXMYqTpZmmDNUz3DATIZxXUCA+8dDmEwrRpPdAwGtdTrYtQzEqQoyZ6I+ni7KBWmsT1UCn37YWIqgAQWGrHGYMkJVBGc3EbxmTiJEmnVcu2Jwj86iJvQcXUBA1iW72OfWWLd0FbkRalvNEhlin0BzDv7lnGX08GyPB8vj+k42cVqcDxEptdtlVoHSCuc1eM8LicVOal2oQu7kqCO45zXNMGap/oHB/FI6ITHhUi+VUnQ6AF6Ueoa9lPoGoOkNHAlHddjawrSeWWkADB6BR2IjFstWMfb1WuqnBXnAdCz+7kYRKTmO2MMzpEO60Za8XE9NtntxJFdgV+StRV5keodCVLmsS9eHUcLFljjZJ/rSQdnkiZYi1D/WJDMlCQYnkiwimb92OqCNGq77LmwQI8f85wmWPPUSH8nAKkZ+Sf0+LRyq5LgaIsWuliMuoYDFDkHIK3guB+7vMDHtnCJdUOvgOEY77fmm3N5Tngb65ZXsDdaSqjx5RhGpuar/rEQucaeZzD9+BIsgOWF6ewXHQe5WPWOBCh2n1iCVVOYRvtwmHCOFrpYjLqGAuT6kmCo3VowyxYsgOUFaTT1juJ3+iCjTBOseU4TrHkq3G/1rU3JXXJCj68qLaQlmsdYi06AutgYY+gaCpAf7bIOssepusBHsykg4tQr6MYYUoM9jCadWEvxhJLMFHa5VpLdt0XHPSaAziE/hWLPPJI++yvQE2oK0tgWKsF07dKB6otMOBKlazhAscseY3McXQTBSrAA+n3VCX98XozaBsYpyUqxW7AEfLO/SFpTkEbUQF2XPQ5LL5DOa5pgzVeDbQA4MktP6OErCtPZY8pw9+ps34vNcCDMeChCVqgTMo7/87EsP40oDnpTlyb8FdIhf5gc008w+cRaiieICMN5G0iNjmi3ywTQOeSnEDvBOo4uPhOqC9PYEy1DxnphpCvG0al46hwOEI4ayqQLXMmQenwJ1soia96sJlcFDHfAmE4huliMBMIMjocoyUy13ltvHjjds378RCXB2i67kmDPPoiE5ipcdZI0wZqvhlqt/9NLTujh2d4kWtwVpI82aanXRaalbwwPQVKDvZB5/C2cGSluCtI97HdWJPwV0gODfvLpJ3IcVxFnklxljcMa3KfzYS12Lf3jFEof0eRscKcc9+NrCtLYM1HoIsG/g4tNS59V3CI31A5ZleA4vtOs/DQPmalutoUmunEn9kWwxaR9wCpMVZKVYnURPI7ugQAVuV7cTmFf54hV6CIassr5q3lJE6x5yjPazpjDB8mznwX+cONZNTjRUq+LTUP3KEVij/84gS6CAMvz09geKoHR7oS+gn5gyE++DOA6gW5eh6tZsY4ek85wrSZYi11D9whVzk4ku+KEHl+R66VBNMFajFr7rZPo9LFWyK487seLCDUFaTw/ZF/00c/HotFmfzZKMpOt87KcZcf1eLfTQWWul9rOYauLIOjnYx7TBGseCoajZAQ7GU0+vqsbh3MWrgEgekCvgC0m+3tGqRJ7gGz20hPaxvICHy8O2z/gCXyFtKe3F5/48WQdf6GCw60qyeANakjp1FLti1199yg1jrbJaq3Hy+10kJVXzKAjS8dRLDJNvaM4xOAearJasE5ATWEar/a4MSnZ0LkjxhGqeNnfYxU+KUsTGGiGvJrj3sbygjSrBSu3GhyuhP79nu80wZqH2gbGWS6t+DOqTmo7OeWrCBonw81bYxSZmg/294xydqpdIrpg1QltY3l+GluDdheUBL4CNtxjdcX15Z7YWMep3E4HnenryAm0JnSrYCLo7uog2/Sf0AnShOqCNGopgy49QVpMdrUPcV7OKBIeh9zja6GYUJXnYyQQIZSzArp0HPVisbtjiFxfEnmBZsBYSdJxqs5Po6V/jPGoE3KW6+djHtMEax6qa26n3NGFq3jtSW2nMj+TelNC6EDinkAvRtvbBjk9qdW6OupJO6FtVBf46CWDoCc7oQ/QIbtapyvr5BMsAJacC0Cg4cXYbE/NO4NjIdIH7XEPeSfWggVWK8XWYAmmaw9EIzGKTsXbjvZB3p5hFami+PQT2sbSPC8AfSnl1hgbrTS5KOzqGGJlUToy0Wp9Ai3gNYU+zEQlwYJVeoFmHtMEax46UPcGALnLzjip7VTmeqk3RbgHGmIRlpoHBsaC1HUNUxOphaJ1J7yd5flWYtabvAT6EvfzIYNWgnUi1RinU7LqHPzGTd/uv8Zke2r+ea2xj42OvdaN0o0nvJ3l+T72mDKrpaO/MTbBqbjqHg7QORTgdOd+a6Lg/NUntJ2leVa1uFZnKfgHYKw3hlGqePCHItR2jrCqOB2aX4LkDMg9sS6CAHs77UqCA80QGI51uCoGTirBEpGbRKRNRLbY/9455b5/F5E6EdkrIpecfKgJpG0TAO6SE7v6NSHbm0S7swTfWBuEg7GITMXZ5qZ+lkgX6YEOqLjghLeTkeomP81DixRDb10MI1xYPKMdRJETrtZ5uNMrC9hiluFofSUm21Pzz6uNfZzj3EM0byWkZp/wdipzvdRH7bF/WglsUXixvgeAqrEtVuuVK+mEtlOUnkyy28G+iF18RwtVLXibGvsJRqKcU5kDzS9D2TnHXWESoDw7lSSnwyp0MZGg6fFjXopFC9Ytxpj19r8nAERkFfAeYDVwKfDfIuKMwb4WPX8oQsnAJno8ZSc0geVUIsKor9KqJDjQFKMIVTw9taeLt7vtyaOXXnhS21qW72NPKB9GOhP2CpjP38GIKxtcnphsLzM1ifrkteQO74bASEy2qeaXTXubONuxG8dJfv/KslPZj32M79UTpMXgqd1d1HhH8fZsg+V/d8LbcTiEylwfb4zac2jpCfSC97fabtxO4ZysQejZC0vfckLbcTkdLM3zsq9z+OAYrgS+SDqfzVUXwSuB3xhjAsaY/UAdcNYc7WtReXFXE29iG4ElJ/blO0KOXShDD9ALXjAc5fFtHbzf+yrkrTjuEq+Hq8z1smXM/gHvrY9BhAuLPxQhN9LNWMrJl2g/ZLtFZ+EkSrRlU0y3q+JvR9sgS7r/ShIhWH3VSW0r2e0kNSOfEWeGHp8XAX8owrN7u/h4vl31r+adR3/AMSzN8/JavxecHm3BWuAiUcPvt7bzpqpcUvY9ai1cecUJb696opJgdiWIQ48f81QsEqxPisg2EfkfEcmyl5UALVPWabWXqWNof/VBkiVE/jnvicn2UopWABDq1gP0Qvfk7k6K/PUsHd8Bp70HRE5qe5W5Xnb486wbCXgF7MCgn2LpJeyL7aEpe8V5RI3Qv1fHYS0297/WzI3uPxPJrITSk79mWJGbSrOUJOT3b7F58PVWhv1BLh57Aoo3WBPBnoSqXC/NAwGiOVX6+Vjg/rqvi/ZBP+8+vRA2/RLKz4fME5vDEqwiVW0D44xGnJBZri3g89QxEywReVJEdkzz70rgJ0AVsB7oAL53vAGIyEdFZJOIbOru7j7ehy8qBwbGWdVyH71JJbgr3xSTbRYVFtJj0hlt2xOT7an4CEei3PpULV9J/R0mKQ023HDS21ya56XJFGCQhGzB6hgYp0R6kMwYVRC0rVu2hN1mCaH9WklwMWkfGOfA5kdZL3U43/SJExo/cbiKHC97wwV6BXqBC4aj/Oy5Bj6Rt5XUwVo4559PeptL83xEDYz6KrUFawGLRA0/fLKWkswU3hF6EgZb4NxPnNQ2q+1CF7VdI5C7HHo0AZ+PjvkLYYx5uzFmzTT/HjHGdBpjIsaYKPBzDnYDbAOmpuel9rLptv8zY8xGY8zGvLy8k30+C9pTv7+LDY5aHG/6JDhiM2Rtaa6P/aaQqH4BF7QfP1NPRddTXBB5BTn/Myc1uH5CZa6PAEmMpRQm5BXS/p52kiVEUm5FTLe7NNfLdsdKsvq2QiQc022r+IhGDf/vt89xs+MXhLKqYnKBA6xW5D2hQhjtAv9gTLapTr0fPV3LWG8b/xL6JRSdBmveddLbnCjV3pVUBv1NWqhqgfr53xrY2jrITecl43rq67DkTVDzjpPa5kSCte/AsDUXVm8dRKOxCFfF0MlWEZw6eOFqYGLK8UeB94iIR0QqgeXAqyezr8Vuy779XFj3X3R5lpB1wUditt2K3FQaosUkDyZuKe6F7o87Onjhmd/zQ8/tVteTN30qJtstzUrB6RC6k8oSMsEa67IKv6TlV8R0uyLCYN4ZeKLjcGBbTLetTj1jDP/16Gvc0PJVcp1juK+584Srwx2uPMdLg5moFJd438HF4JEtbfzy6W38LvMHeCLjcNVPYtO6mWslWE1SDEYLVS1Ez+zt4nt/3ss/rkzm7ds/Z104v/r2k+7eX2ZXEmzoGbUmsw6Pw1BrjKJWsXKyR4Fvi8h2EdkGXAR8FsAYsxO4H9gF/BH4hDFGZ1KcQWtnD3LvteTJAN5rfw5Od8y2nZbspiuphNRQb8JWiluojDHc+cJ+/vKbW/lV0n9Zk+G+996Yndy5nQ6WZKfSRJHVRTDBJrMM91snLMm55THfdkrV+QCM1P4t5ttWp86wP8R//OoRrnr9nzjdUY/zXT89qfnnDleZm3owwdJxFAtKJGq47elafnT/4/zRdzMlgQa45n9PeuzVhPRkNzneJHYH860FCXgRbKEyxnDXS4189H83cWlON/858DmkrwHe/UvIOvnfG6dDKMtOobFn9GAlQe1mPO+4TubBxpgPHOW+bwHfOpntJ4Ltu3fD/R9granjwMU/oXjpOTHfRzC9HAaAvv0xPTlQc2dTYx/3P/p7Luv+OTe6thMuOQfntb+CtMKY7qcy18vuznzeEhi0JrP05sZ0+/OZY8jutZxx4oONZ7J+zSoaXizEu+vP+C78dMy3r+ZWIBzhiRfeYOzZW/h89I+YJC+O9zyALHtrTPdTlp1KKwVEceLQcTYLgjGGl+p7+ekTL3Ju1338wfMnXO405LqHofLNMd1XZa6XTSP2ha8EHCe70BhjeLG+lx8+WUtzYy0/zn2Kvxt5DEnNgesfhSVnx2xfFTleGntHIceeC6u3Dpa9LWbbVyfvpBIsdeJGxgO8dN+3OXv/f+OSKB0X/5SSN107J/uS7Co7wWrQBGse6x0J8MdXd9G36becN/Invu2oI5CcibnoW7jO/hg4Y/91rcz18np9DjixDtAJlGAlj7YRkGQ8KVnHXvk4rSnO4B7HRt7b/Ser5diTFvN9qNiKRA079rey54Xfk7v/Ed4Z3YRLogxWv4vsK/8f+GI/RtjjcpKXmUZPuIh8vQI9r7X2j/HnLU20bnqMdUNP83Pnq7hdEVh7DXLxN8GXH/N9VuR6eW7fGKRkawvWPNY17OdPOw7w6OZ6Mtpf4KOeF7koZROOMYOsvw7eflNMxk1PVZHr5cX6Xow3D/GkawvWPKQJ1inW1dPL1id+Sk3Dr/g7DrDPt5Hi626jpHjlnO3TW7gMGiDYXUdsOpepWBjyh9i5r5723S9jGp+nZnQT75VGHGLoT6siePY38Jz1IUhOn7MYKnK9/CVcYCVYPbWwJPYtqPOVL3CAgaQCCk6yP/x0HA6ht+zvcLU8RrTuKRwnOWeSir1AOEJDYyOtu15mfP8rlPS/wjpTy2kSYciZRU/1+ym+5DNkZ1fOaRyVuV4aDxSTryfQ84Yxhu7hANsbD9C86xWk6QUqR97gWsdevBIgkJyBY90NyJs+cXCuyTlQmevlgc2tRJYuxamfj3mjbzTIa419bKlrYaD+VTL7tnGu7OQe5x6SkkKYlBxk7T9Z1SRj0CVwOhU5qYyHInSNBCnIWaZdjOchTbBOgdGxMbb/7RFk+29ZO/w8fycB9ntq2H/+N6g+/9qTHvB4LMUF+XSbDNwH9mmCFQeBUJimllYONO5iqKOOSE8d2UN7WBqu41zpBSCMkwOZ6+ir/ldyN1xOVtH6Of9cgFXxrs3kEnUk4UigA3QoEiUn0s14jCcZnmrp6RfR3+wjvPlh8jTBiptQKEhXSwM9rXsZaNtHsLsB71A9laFaVkofK4EoQntKNY1lH6Lo9HeQXv0W0uegxXg6lbledjYXcGbvViQaiVkFWTU7/lCEpq5BWvbvoa95N3RuJ3NoL0sjjVwoHTjF6qLXl7aUaNV74LQr8FS+JaZjpWdSkWMVuhj2lpN54KU53586lD8UobV3mLamWrqb9zLeWYdjoInMQCtV0sHbpdX6fLggkLmMpBUfgWVvQ07B56Pc/mzs7xmlIHc5NL4wp/tTx08TrDkQDgWp3/o8fTufwtf+Isv8OzhHggziY3f+Oyh58wepXPOWU3ICDdYP+H5TyLIe7cM9V4KBAF2tdfS17sPfVUe0bz9JQ82kjbdSGDlAtYxTPWX9TncpA/lnsL90AwUrzia14kxK49CNrDLXSwQnQ6llZCZQFbPu4QDF0sNg2ulzto+3rynh8UfO4or9f4Cxvph3EVEWYwx9vV10Ne9lpKOWUE8DzoFmUkdbyA61UxDtpkSikzPdh3DR7S6mP+9M+otOI3f52eRXn0lpckZc4l+a62V3uBCRgDVHTlZFXOJYrCZao1p6BulprWP8wD5Mbz2e4SYyx1soirSzVHqokYN1uPrchQznruBA8T+St3wjSZVvIjsO3acr7UqCB9ylZA63Q3AUkrynPI7FyhhD90iA1q4++lr3MXagjmhfA8nDzaSPt1IY6WCJdLNsymcjjIsRXzHkLMNUvheWnAUlZ+A5xcf3ic9GU+8o5+Qsh2336edjntEEKwaikQgNO1+lZ/tfSG59gWVjW6mRcQD2O8rZVnAlWWsuYdm5V3CG23PK41uSk8qfogWsHtp9yve9WBhj6Ontobt5DyMddYS663EMNuEdbSHHPokrlSgTU9YGjJsDjgKGkkuozTiTpLylZJZUk19eQ1LOUgqSUimI6zOyFKYnk+x20OEqIzOBBtl39faxXoYYzloyZ/tITXLRveqDeHY/zcCf/oPMq78LQP2BfrweN4VZvjnb92IzNj7GgeY6+ttq8XfVQ18jnpFmMvxtFEQOkCNj5ExZv490etxFHEhbQ0v6EpzZlXgLl1GydCUZ+eUUO5wUx+3ZHKoyz8fj0Sml2jXBOm7jwQgtfSMcaGtiqKOOQE8jjoEmkkdbyQp2UGy6OE16ccnBuYLGJYVeTynjvnXsz64krbiGvPKVuApXk52SyXy4HFKRmwrAflPECrDGUReujWtMC40/FKG1b4wDB9oYaNtHoLsBR38j3tFmsoNtlNLJBuk/5DFjkkqfp4Rx32qasipJzl9GfvkKPPlVuNJLyJwHrcxFGcm4ncL+njFYstxa2FtnzcOm5gVNsE6AiUZp2reVzq1/xt38PJWjb7CMYZYBLVLMztyLcVW9hYozLqGyoJS57cF/bOnJbrrcJXiDz+kVjqMY9QfpaG2gv3Uf45310L8fz3Az6eNtFEY6yJNhpg5zHyCNblcxnWmraUmvwJldgbdwOdll1eQVV1LujP9B+FgcDqEix0u9KWZl//MQCZ2Sri/xNty+F4Ck/OpjrHly3v2Oi7l/98Vcs/Xn7OrsomckyNnDT/J66pso/LdH53TfC0k4HKGzs53eln2MdNYR7tmPe6gJ71gruaEOCkwPS+XgNAIB46bTWcCAp4Q9aRsgs5zk/KVkFC8nv6yG7LT5cYI8G0tzvYeWal/+9vgGNA9Fo4auIT/tHW30t9cy3tWA6W8iabiFdH87+ZFOyqWHagkd8rhBZzbDvmJCaRtpy64gpXA5maUrSMpfToo3j9JT1IvkRKUmuShI97AzkM87wDqB1gTrEMYYekeDNPcM093WwOiBOiI9DbiHmkgba6Eg0sES6WSZfdF7Qr8zh6G0MkbSL6AhZynewmVkllTjyVtGamo2qfP8s+FyOijLTqWpdxQ22AlWT60mWPOIJlizdKClnuZNj+No+CsVw5uoYIAK4AC51GWej1ReQNkZl1BWuozYF30+eeNp5TBEQl/hMMbQOzTKgeZaBtv2EOyqx9m/n9TRZnKCbRSbLpZN+YEOGwfdzjz6PSXs976VhuxKPHlVpBcvJ3/JCjLTssiM39OJmcpcL9tb8rksGrZK+efNbdIxH4S6rNa69NK5Ky4DkJ+ezPIbbuPhez7FOzoeZ4m48UiIM8ZesOYdm+c/4rE05g/Q3lxHX8s+/F210LeflJFmMv2tFEU7KZHxyW58AL1k0ZtURGfm6bRllOPKWYqvaBm5ZTVk5peyxOFk7tofT53izBSGXZmMO9NISeBKYKFIlNaeIbpa9jHSvpdQdz2uwUa8Y21khzoooZsN4j/kMcOSxqCnGL9vFS2Z5XjyKsksXoavsArJXEKGO4X4dPyMncpcL5uH7eNEgpZqj0YNB4b8NHUP0NtSy1hnLfRY3TyzAq2UmE5WSzceCU8+JoyL/qRCRjOX0J15LoN5VaQXVZNevBzJqiArKZXY1489tSpyvOzvGYXsVYBopcl5RhOso6jd8jf6nv8lRX0vsyTaRiHQSwaNaWewv+ICSk6/lKKKFRTGYNb2uRbNrbESrO59iz7BGhwZo6VhF/0tuwl01uEa2I9vrIX8UBvFdJM7pZvIGMl0u4oYSl/GrvS34sxdiq9wOTml1aQXVlLkSmLuyiDMD5W5Xl7anQtuoGffok2wolFD++A4ze0HiDS+AkBa8dw/19MrC1j/ld8w7A+SluTkmd98n4tqv8VYZx2phcvnfP+n0pg/QGvDHnqbdhDsqsU50EjqaAs5wTaKTNchYxmCuOh0FjKYWsretLOQ7EpS8qvILKkmr3QZOSlph3T7W6ycdityu7+UqkVeaCYYjtLUNUBH0z5GD+wj3F2HZ7CR9PFmiiLtlNFN5ZTj8ygp9CUVMZ5VQUvGm3HnVJJWuJTskuW4cypIS05nsU+AUJnr5U87RyCteFEnWNGooW1gnMbOfvraahk7UAt9DaQMN5IdaKOcDs6UnsO6eaYykFqKP201HdmVpBYuI7OkhqQ8qytfnsNJ7CdXmD8qcry8VN+LcSUjmWWLtlT7xG93Q/coS7JTqchdGL2wNME6ioHGbazr/j21KafRXnYtBesvpWLlmeQsgITqcKlFKwjXO+DALlyLYCosYwwdPX101G9npHUn0a69pA7Vkedvosx0sGbKidwIqfQklTKUvYb+zErcectIL6khd8kKUjOLKE+gVoTpVOZ6+d9IoZVgLYITvHAkSlPfGI3NTQw0bifUuYeUgVpy/U1USStvsvvbd7hKKDpF3WVFhPQUa/yle8lGqIXefS8v2ASrt7+f9rrtDNrfPc9gPbnjjZRG26mechV5hFS63UUMpq+gJ+MSXLlLSSuqJrd8Bel5SyhzOOdli/+pVpnrpb6pkKqePfEOJSZGAmEa2rvpbtzBeNtOHD17SR+ppzjUTCWdLJ96kUtS6E0qYzRrHfuyKkkurCazdAVZpTV4vXl4E/z4XJHjpW80SLhkKa5FcHyORA0tfWPUtXXR27ST4IHdJPXvI3tsP0tNK+dK56FJlMPLgK+MQMYZdOQsxVtcTUbJCpy5y0hJzSElgT8flblWqfYDQ36KcpYv+N/vSNTQ1DvKvs5h9rd1Mty6E2fPXjJH66k0rewxS9j+tq/ziYuWxTvUWdEE6yjWXnIjcukHWZecGu9QTlpFQSaNppD8th3M3axKc2NozE/Dnq0MNGzCdGzHN1RLYbCZEroptsdlRBA6nUX0pS1lR9bfkVS4guwlq8grX4nPl4svgQ/Cx1KZ62WEVALJ+Xi698Y7nFmbOBg3tB1gcP8bmI5tpA7sJc9OpKpkZHJdv6TQl1bBWOYFNBesIL10JYXL3xSXuAuq1uN/0o2/8VV48wfiEsNsjfqDNOzbQW/9ZkzHVtIH9lAUbKSY7snWpYgROp2F9Hor2ZH5FtwFK8hcspr8itX40vP0uzcLS/N8bN+Xz8XhZxbUxNTRqKGxq5+WvW8w0rwFuvaQMdpAWbiZNdKNwz4+h3HS5S5hOGcFdbmX4y2sIatsBb6iGlK9ufN+vEs8TVSL6/ctJ6/2PlggpfwjUUNj7yh1Hb307d9OpGM7nv5acsb3U0Urbz3s89GfUoY/YzWd+f9AWskK0oqrkRxNoo5mRZF1NrerfYii3OXw+ssLouv5RGvlvs5h6tp7GGnZgaNrB+kj9VSZVtY42rhUeibXDzvdDPsqqa4sx3f2wukYrgnWUSSnLIxmyNlYUZjOLlNOUee2eIcyI2MMB/r6ad29ieHG13F17SBnxJqPZL0EAatb0QH3Egaz19KXU01y8WryKteSVbqCYnfyvKkMtpBM/IB3emtY0v5GnKOZnj8UYXfHEPX7GxjevxlX13ZyR/axgv283dE5ud6II43+9KUMZL8Df/FKsivWkVy0kuT0EornyY9OVWEWW1lKVueWeIdyiK7+AZr3vM7Q/tdxdO0gZ2gPlZH9rLXHvYRw0u4qoytzPR3Zy0kuWkFOxVryy1dRnKTfvZOxojCNJyJF9oTf+6DkjHiHdAR/KEJ9cysH9m0i0LKF5L5dFI/XspRWlto9BkK46PaUMZpzGvV5K/CVriZ36Wm4c5dR7NJZGE9ETaGVbNe6qsgLjVmfj/y5HTt6vPyhCHsPDFPb2Mzg/tehcwc5w3upoZGLpI2kyc+Hm37vEvxZG+gsXEXmkjWkFK/Glb2UPP18HLeVRemIwM72Id6WuxxCozDUBhmlx37wKTIejLDnwBA72odobG4i2LadtP5dLDONrJIm3iJtky2WYWcSI2mVmLzzCJauJqlwNeStwJVVQZbTteDGzGmClSAqc7086KzhCv9LMNQO6fE9HYpEDY0tLRzY9yr+5i0k9+6kcGwfFaaNIvuq1ghe2lOWsTf73XhKTyO/+kxyKtaxJAGq3J1KOT4PxRnJbGU5S7qfB/8gxGlOIIDBsRA72/tprd/JePMbJHXvpMhfy2pp5HQZnFyvP6WE0ay1dBS/n6yqjSSXrceXVjTvW0wcDqEzbRWrRh6H4BgkndoW8mjU0NLeRvueVxlv2YKneyf59ncv3z4RGiOZtuTl1Gddgbt0PXnLN5JbuY5ydwrlpzTaxHB6WRb/Ga2ybrS8GvcEq38kQH3dbvrqNxPt2Eb6wG6WhOpZLT2sttcZcGTRk1FNfd7b8ZWfTkH1GSTlLadYj88xtSQ7lVxfEn8bKeVNAO1vxDXBGhwPsattkOb6nYw3b8Hds5OC8VpWShOnSe/kesOeXEayVjJQdBkZlRvwlJyGO3sp+adoAu9E4PO4qMjxsrN9EGrWWwtbX4tbgjU4HmJX+xA72/o50LSXaMc2sob2sFKaeJujiWLps1Z0wFhyPsHcNUSW/COuktOgYA2u7Mp5UQI/VvSTniCcDiFcfCa03wnNL8Oafzhl+x4PhKmv301P7SYi7Vvx9e+mLFBLlfRin1LQ7cilO62aHXnvxFt+OkUrzsaXv5TqeX6yvFicWZnNH2tLuRwDza9A9cVzvk9jDF3DAXa1dHOgbgvB1i14+3ZRHqpjnTTzJrvlJIyTPl8lwby30l9+OpmVG5CidWQlZyy4K1oTwssuxrPld3S9/hj551wzZ/sJhMI01u+hu/Y1wm1b8fbvpsRfR7n0TCZKPZJNl6+anbkXk1q+nqKas0grXM7yBTjWdKEqy04h6C2i11FITtMLcM7HT8l+jTG09o7QuG8bw42bcR7YRu7wbpZFG9goYwBEEQ64yxjK28DewrVkLT2D3GVnkJleuCiqqM53IsLpS7L40wHh31JzoOFZWP++Od/vxPF5Z2sf7XXbCbZuIbVvB+WBOlY7Gjl38vPhoM9bTjD3XPrL1pO5dANSuJY0X/6iL0AyH5y+JJNn9nQRec+FON1eaHweVl895/vtHg6ws32QXW199DbuwHFgG0Vje1ntaORaaSLNLosfdTkZTa/CUXwRpmw9UrgWCtdaXYPnPMr40gQrgRStOIv+Nh+eHY+ROkcJVt/QCPv3vGF1Eziwg6yh3VSGG1gjo4A1VqrDVUZv9gZ6C9eRsXQDRTVnkZeev6ir/cx3Z1Vmc/OWpUTSfDj3PBbzBCtq98ff19hCX8PrRDu2kTG4h6rIfs6T1skuJH5JoT+zmsHCf8RUnkFa+em48leS7zr1E3TPpTPecjk9b/wboy/fATFKsAaGhmnaa333zIEdZA3upiLcQI2MUYM1VqrDVUpv9ul0F6wlvXIDxSvOJDejkNyYRKBOlIhwblUOf6tdzZX1zyKhcXCnxHQfwXCUuo4+2mrfYLzpdZK6d1Awtpca00iZBKx1cNORXEV79qV0l1gtlxkV6ylO8moX0Dg6qyKbv+zqZPS0N+Oteyrm47AiUcP+nlF2t/XQU7+VSPtW0vt3UhWp5xxpJnXi8yFJ9GcuZ7jgSqTyDNIqNuDIX0VujD+ravbeUp3HQ6+3sbVjlA0V50HtnyEahRhdIItGDU19Y+xqH2JvWxfDTdtwde+gPFDLGkcjH5Jmku3pbUJJHsayV+EqfS+UrYeidTjyVpLmTo5JLAvNSSVYInIfUGPfzAQGjDHrRaQC2A1MjJh/2RjzsZPZlzp5b15RxJ//vJGra/940t3AAuEI+5tb6arbRLB1K57eXRSM1VIRbeEM+2Q5QBLtSZU0515MW8lp5FZtJH/Z6ZR6fMyfHsIK4JLVhXz9EQ970t7E6l2PwMXfhOQTK4cyEghTe2CQ9sa9DDe+jqNrJ7kj+6im8ZCBq0OubIayV9JT/PdkLd1AypINJGdVUpQALSdFWWk8mHMt7+r7OV2bHiZ/41Wzfmw4EqW5eT+dtZvxt24luWcX+eO1lEfbOM3uy+4nibakpTTkXoKz+DRyqjZSuHwDpR6vfvfmqcvWFfGrHedwlXkKdj0Cp73nhLZjjDUpb/3+Bnr3byXcsYOUgX2U+utYLi2ssqs8jksKnd7ltOS+m+TyDRRUn0Vy0UrKtYvfvPPOdUX8xx9284ycy2Vjv4O9f4CVl53Qtqzj8xANjQ0MNm2Drl1kDNVRzX4ukZaDF7scqQxkr2So6H04qjaSXLaBpNxqCrSL37zy5uV5uJ3Cw2+0sWHtNfDQh6HxOVh64XFvazwYobZrmF1tg7Q0N+Bv24Gnbw+V0WZWO5q4WFpxT5zfJfvw56xBllwMZRug6DTcOcvIWERd/E6WGGNisyGR7wGDxpib7QTrMWPMmuPZxsaNG82mTZtiEo+a3pdu+1/+s+dfCGz8GJ7L/uuY64/4Q7Q11dHfvINAxx7orSV9pIHicAsFMjC5Xp9k0Zm6nEDOKlKWrKew+kwySlaAHowXjE/c8zo9e1/kPsdX4JxPwKX/MeO6xhh6R4M0d/XT3biL0fbdmO59pA03UBRuZql04LWvekZw0Ju8hPHsVXhKTyO76gySSk4DX/6pemrzUktXH6P/fREVtNOy9lOUXngjKdmlIML4uJ/erlYGutsYbK8n1LWPpMEGMsaaKA63kSXDk9vplly6vMsJ5qzEU3oahcs3kr1k5YKoNKYO8ocivPU7T/PryOco90WR//McpGbPuH44EqWtb4T2pjr62/cR6txHcv9ecsfqqTQtZE+pojnsSKc3bQWh/LWkVZxBXvVZOHOqYnaVW829G/7nVbY39/JaxhdxupPhI0/PWG3SGEPfaJC6A4N0tNQx1L6PaE8dvsE6ysL7qZZWsqZ8PkZc2YxmrsBZsp7Mqo24StZDVqV+PhaILz6wlUe2tPOHT2xk6a8vAG8efOhPM47vHRwLUdc9Qv2Bfrpb6xnrrMXZ30CBv4FqaaFaWsmwu4ACjHtyCOetJWXJ6dZno+g0yKqY99UKTxUR2WyM2XjE8lgkWCIiQDPwVmNMrSZY89fWlgF2/OyfuM75JM2Ff4e/8mKCnmyC/lHGhgcID3XiHmkjebSNzOABCk3X5IkywDCpdHnKGU+vwpFfQ0blBvKXb8SdURjHZ6VioaVvjHfe+je+7vgf3h39I90FF9BdfBFDjgzGR0cIjg0SHerEM9ZGeuAAhfRQRC9OOXgM6XUVMJK2FJNbja90DdlLz8BRuCrm3Z0Wi537ahn5zUc4O2pVbwwaJ1EcJBGeLGE8oUey6fGUMZa2FGdBDZmVGyhafgZJ6drBb7H4444OfnbPb/iN51sEU/I4UHk1IymljEec+If7iIx04xjrxjveRl6onVK6JlscAEYllZ6UpQSyakgqXk3u0vX4ytZaJ1x6MrSg1XYOc+WPX+Dtnj38IHQz475S2suvos9dxGgwythwP5HhThxj3WQEDlBiDlAmh34+rDmllhHOXYGvbC2ZFach+avAq8eQhax9YJzLfvQ8DhG+vnw/l+3+AqPpy2gqfifdjlz6/IbxwR7MaDdufw+FkU7KpZMS6ZlskQLwu9IYy6zBXbgKb9laHAWrIG8leBNhyvcTN9cJ1puB70/swE6wdgL7gCHgq8aYv83w2I8CHwVYsmTJGU1NTScdjzq6Z3e30fLQ17gs+MdDrmJNGMJHr6uAsZQiIullOPJrSCtdRV7lGlKzivWHehHb0TbI1x/eytntd/F+15MHq/7YIjjod+YxmlJIKK0UZ3YFqcUrySlfiyt/OZyiiXsXk1Akyhuv/o3x2udIGu8EE8Xl8eJILyI5q5DsokryylfhSo1fZUd16jy2rZ3HHvsdH/bfyelSe8gFDIBh8dHvLmTMtwSTVUlKQRXZpfa8QRmlenxexF5v7uebj+0iufV5/t31a9Y6Go9YZ9iRzoinAH9aOY6cKtKKq8ksqcaRU2VVD9bPx6K098Aw/98jO3itsY8L5Q0+77qf1Y4jz6dHnRmMpRYTzawgOX8ZacXVOHKWQnYVpBXq5+MEnHCCJSJPAtM1T3zFGPOIvc5PgDpjzPfs2x7AZ4zpFZEzgIeB1caYoaPtS1uwTp1o1NDUM8Rw627c4RHcKV6ys3LIzCnEkbLQpiJWsTYwFqRjYAzHcAc+xsjMyCDVl4GkZGm3T6XmmDGG9kE/g/29JIcHSZEwWdm5JGfkg46RSnjdwwG6hv2If5AsM4gvyYEvPRPx6ecj0fWPBukeCeAPRchkhEwZIc2N9dudmqO/33NgzlqwRMQFtAFnGGNaZ1jnWeDzxpijZk+aYCmllFJKKaUWgpkSrFiMYHw7sGdqciUieSLitP9eCiwHGmKwL6WUUkoppZSat2LRVvge4N7Dlr0ZuFlEQkAU+Jgxpu+IRyqllFJKKaXUInLSCZYx5sZplj0IPHiy21ZKKaWUUkqphSRm82DFgoh0A/OtjGAu0HPMtdRioe934tD3OrHo+5049L1OHPpeJ5b5+H6XG2PyDl84rxKs+UhENk03eE0tTvp+Jw59rxOLvt+JQ9/rxKHvdWJZSO+3TtOtlFJKKaWUUjGiCZZSSimllFJKxYgmWMf2s3gHoE4pfb8Th77XiUXf78Sh73Xi0Pc6sSyY91vHYCmllFJKKaVUjGgLllJKKaWUUkrFiCZYSimllFJKKRUjmmAdhYhcKiJ7RaRORL4U73hU7IhImYg8IyK7RGSniHzaXp4tIn8RkVr7/6x4x6piQ0ScIvKGiDxm364UkVfs7/d9IpIU7xhVbIhIpog8ICJ7RGS3iJyr3+3FSUQ+ax/Dd4jIvSKSrN/txUNE/kdEukRkx5Rl036XxXKr/b5vE5EN8YtcHa8Z3uvv2MfxbSLyOxHJnHLfv9vv9V4RuSQuQR+FJlgzEBEn8GPgHcAq4L0isiq+UakYCgOfM8asAs4BPmG/v18CnjLGLAeesm+rxeHTwO4pt/8LuMUYswzoB/4pLlGpufBD4I/GmBXAaVjvu363FxkRKQE+BWw0xqwBnMB70O/2YnIncOlhy2b6Lr8DWG7/+yjwk1MUo4qNOznyvf4LsMYYsw7YB/w7gH2+9h5gtf2Y/7bP2+cNTbBmdhZQZ4xpMMYEgd8AV8Y5JhUjxpgOY8zr9t/DWCdgJVjv8a/s1X4FXBWXAFVMiUgp8PfAL+zbArwVeMBeRd/rRUJEMoA3A3cAGGOCxpgB9Lu9WLmAFBFxAalAB/rdXjSMMc8BfYctnum7fCXwv8byMpApIkWnJFB10qZ7r40xfzbGhO2bLwOl9t9XAr8xxgSMMfuBOqzz9nlDE6yZlQAtU2632svUIiMiFcDpwCtAgTGmw77rAFAQr7hUTP0A+CIQtW/nAANTDtz6/V48KoFu4Jd2l9BfiIgX/W4vOsaYNuC7QDNWYjUIbEa/24vdTN9lPW9b3D4E/MH+e96/15pgqYQmIj7gQeAzxpihqfcZaw4DncdggRORy4AuY8zmeMeiTgkXsAH4iTHmdGCUw7oD6nd7cbDH3lyJlVQXA16O7GKkFjH9LicGEfkK1tCOe+Idy2xpgjWzNqBsyu1Se5laJETEjZVc3WOMeche3DnRpcD+vyte8amYOQ+4QkQasbr6vhVrjE6m3a0I9Pu9mLQCrcaYV+zbD2AlXPrdXnzeDuw3xnQbY0LAQ1jfd/1uL24zfZf1vG0REpEbgcuA68zByXvn/XutCdbMXgOW29WIkrAG0z0a55hUjNhjcO4Adhtjvj/lrkeBG+y/bwAeOdWxqdgyxvy7MabUGFOB9T1+2hhzHfAM8G57NX2vFwljzAGgRURq7EVvA3ah3+3FqBk4R0RS7WP6xHut3+3Fbabv8qPA9XY1wXOAwSldCdUCJCKXYnXvv8IYMzblrkeB94iIR0QqsQqbvBqPGGciB5NBdTgReSfW2A0n8D/GmG/FNyIVKyJyPvA3YDsHx+V8GWsc1v3AEqAJuMYYc/gAW7VAiciFwOeNMZeJyFKsFq1s4A3g/caYQBzDUzEiIuuxCpokAQ3AB7EuKOp3e5ERkW8A12J1H3oD+DDWWAz9bi8CInIvcCGQC3QCXwceZprvsp1k34bVTXQM+KAxZlMcwlYnYIb3+t8BD9Brr/ayMeZj9vpfwRqXFcYa5vGHw7cZT5pgKaWUUkoppVSMaBdBpZRSSimllIoRTbCUUkoppZRSKkY0wVJKKaWUUkqpGNEESymllFJKKaViRBMspZRSSimllIoRTbCUUkoppZRSKkY0wVJKKaWUUkqpGNEESymllFJKKaViRBMspZRSSimllIoRTbCUUkoppZRSKkY0wVJKKaWUUkqpGNEESymllFJKKaViRBMspZSaJ0SkQkSMiLjiHctiJyI3isjz8Y5jvhGRC0Rkb7zjUEqphUwTLKWUUguaiNwkIiERGZny74vxjmshMsb8zRhTE+vtish6EdksImP2/+tjvQ+llJovNMFSSqkY0ZanuLrPGOOb8u/b8Q4olhbyZ0tEkoBHgLuBLOBXwCP2cqWUWnQ0wVJKqZMgIo0i8m8isg0YFRGXiJwjIi+KyICIbBWRC6es/6yI/D8ReVVEhkTkERHJnmHbHxSR3SIyLCINIvJ/Drv/ShHZYm+nXkQutZdniMgdItIhIm0i8k0RcR7jeVSJyNMi0isiPSJyj4hkTrmvT0Q22LeLRaR74nmJyBUistN+vs+KyMrDXp/Pi8g2ERkUkftEJPn4X+njJyJfsl+XYRHZJSJXz7CeiMgtItJlv5bbRWSNfZ9HRL4rIs0i0ikit4tIyiz3f6e9/l/sGP4qIuVT7v+hiLTY+9wsIhdMue8mEXlARO4WkSHgRhE5S0Resl/nDhG5bWqSYncv/WcRqbX393/t9+5Fex/3HyupEZELRaR1Ns/vOFwIuIAfGGMCxphbAQHeGuP9KKXUvKAJllJKnbz3An8PZAIFwOPAN4Fs4PPAgyKSN2X964EPAUVAGLh1hu12AZcB6cAHgVumJDlnAf8LfMHe75uBRvtxd9rbXQacDlwMfPgYz0GA/wcUAyuBMuAmAGNMPfBvwN0ikgr8EviVMeZZEakG7gU+A+QBTwC/P+xE/hrgUqASWAfcOG0AIufbycNM/84/xnM4XD1wAZABfMOOv2ia9S7Gev2q7XWvAXrt+/7TXr4e6/UsAb52HDFcB/xfIBfYAtwz5b7X7O1mA78GfntY8nkl8ADW+3sPEAE+a2/rXOBtwD8ftr9LgDOAc4AvAj8D3o/1fq7B+qyeMDtRnun9+e8ZHrYa2GaMMVOWbbOXK6XUoqMJllJKnbxbjTEtxphxrJPZJ4wxTxhjosaYvwCbgHdOWf8uY8wOY8wo8P8B10zXwmSMedwYU28sfwX+jJUwAPwT8D/GmL/Y+2kzxuwRkQJ7X58xxowaY7qAW4D3HO0JGGPq7G0FjDHdwPeBt0y5/+dAHfAKVmL4Ffuua4HH7ceGgO8CKcCbDnt92o0xfcDvsZKK6WJ43hiTeZR/RytKcc1hJ/vFxpjf2vuNGmPuA2qBs6Z5bAhIA1YAYozZbYzpEBEBPgp81hjTZ4wZBv7jWK/lYR43xjxnjAlgvWbnikiZ/XzvNsb0GmPCxpjvAR5g6vinl4wxD9vxjxtjNhtjXrbXbwR+ypT3yPZtY8yQMWYnsAP4szGmwRgzCPwBK+E+YcaYdUd5fw5P9ib4gMHDlg1iveZKKbXoLNg+3UopNY+0TPm7HPhHEbl8yjI38MwM6zfZ9+cevlEReQfwdawWFAeQCmy37y7Dai06XLm9vQ4rPwD7sS3TrDt1XwXAD7ESuDT7Mf2HrfZz4FHgo3bCAFaLV9PECsaYqIi0YLX0TDgw5e8x+zGxdr8x5v1TF4jI9cC/AhX2Ih/TvM7GmKdF5Dbgx0C5iDyE1fKYjPWab57yWgpw1O6Wh5l83Y0xIyLSh/X8W0Tk81iJcjFgsFoqc6d7rP18qrES3412XC5g82H765zy9/g0twuPI/ZYGcF6blOlA8NxiEUppeactmAppdTJm9r1qQWrhWrqlX2vMeY/p6xTNuXvJVgtKD1TNygiHuBBrBahAmNMJlZCNXGm3wJUTRNLCxAAcqfsP90Yc6zuWP9hP4+1xph0rJa4g1mFiA/4AXAHcJMcHDfWjpXUTawn9vNrO8b+jiBWifCRo/y74NhbmdxWOVZC+Ekgx379dkx9TlMZY241xpwBrMJKaL+A9Z6MA6unvJYZxhjfcTytyffafg2zgXb7uXwRqztilh3f4GHxTf1cAfwE2AMst9+jL8/0fOaKWGPtZnp/bp/hYTuBdTIlS8XqKrpz7iNWSqlTTxMspZSKrbuBy0XkEhFxikiyXTigdMo67xeRVfZ4ppuBB4wxkcO2k4TVZawbCNutWRdPuf8O4IMi8jYRcYhIiYisMMZ0YHUl/J6IpNv3VYnI4V3JDpeG1dIwKCIlWAnGVD8ENhljPow1xmziZPp+4O/tONzA57ASvBeP9UIdzi4R7jvKv78dx+a8WAlKN1gFQ7DGIB1BRM4UkbPt+EcBPxA1xkSxkrRbRCTfXrdERC6Z8lgjU4qYTOOd9tiyJKyxWC8bY1qwXu+wHZ9LRL7Gka08h0sDhoAREVkBfPwY68ecMWb1Ud6fj83wsGexxo99SqyiIZ+0lz99SoJWSqlTTBMspZSKIfvk+Uqs1oVurBalL3Do8fYurEIUB7C6oX1qmu0M28vvx+qq9z6s7nkT97+KXfgCq+XjrxxsSboeK0HbZT/2AaxxU0fzDWCDva3HgYcm7hCRK7GKVEyc0P8rsEFErjPG7MVq7foRVovP5cDlxpjgMfY3p4wxu4DvAS9hdZNbC7www+rpWIlUP1Z3x17gO/Z9/4Y19uxlsar5PYk9TsoeSzXMwW6b0/k1VjfPPqziExPdGP8E/BHYZ+/TzzG6cWJ1W3yfvc+fA/cdY/15wf4sXIX1uRzAKvByVbw/I0opNVfk0KI+Siml5pKIPAvcbYz5RbxjUSdHRN6P1X3w32e4/06g1Rjz1VMamFJKqbjSIhdKKaXUCTDG3B3vGJRSSs0/2kVQKaUShFiT3h5PcQK1CInIl2f4HPwh3rEppdRioF0ElVJKKaWUUipGtAVLKaWUUkoppWJkXo3Bys3NNRUVFfEOQymllFJKKaWOavPmzT3GmLzDl8+rBKuiooJNmzbFOwyllFJKKaWUOioRaZpuuXYRVEoppZRSSqkY0QRLKaWUUkoppWJEEyyllDqKjsFxHtnShlZcVUoppdRszKsxWNMJhUK0trbi9/vjHUrcRI1hJBDGm+TC6ZB4h7NgJCcnU1paitvtjncoagH70gPb+FzT/2H/9vNZ+oHb4h2OUkoppea5eZ9gtba2kpaWRkVFBSKJmVx0D/spHGol1REhpWAZOJzxDmneM8bQ29tLa2srlZWV8Q5HLWDB9u2sc+yH+v0w9BVIL4p3SEoppZSax+Z9F0G/309OTk7CJlcAwVCIHBkmxYwRHR+MdzgLgoiQk5OTEC2fo4Ew21v1czEXolHDhsCrk7dDe/4Qx2iUUkoptRDM+wQLSOjkCsCEQ5N/R8b64xjJwpIon5ubf7+Ly2/7G42PfRuaXox3OIvKkD9EDoOMSyodJpuhnX+Jd0hKKaUWsBfqevjhY68QGe6KdyhqDi2IBCvRmaiVYAWMC0doFHSwvZriudpurnK8QMWmb8G97413OItK72gQH+NEk9J4KbqK5I5X4h2SUkqpBexz92/lLa9+HOf3loN/KN7hqDmiCdYsiAif+9znJm9/97vf5aabbjpl+3dGwwCMOdNwEoHwwW5vL7/8MmeffTbr169n5cqVk3E9++yzvPjiybVmXHrppWRmZnLZZZed1HbU3DHG0DsS5DRHvbXAPwC99XGNaTHpHw3ilXHwpNGeuhJvsBeGOuIdllJKqQXIH4pwYGic9RO/2W/cFd+A1JzRBGsWPB4PDz30ED09PTHdrjGGaDR6zPWcWAlWOCnDelxwdPK+G264gZ/97Gds2bKFHTt2cM011wCxSbC+8IUvcNdd+uWfz/pGgwQjUZYkjx9c2Ph8/AJaZMZDEdIYx3jSkOL1AJj21+MblFJKqQWpdzRImUzpGrj/b/ELRs2peV9FcKpv/H4nu9pj25y6qjidr1+++qjruFwuPvrRj3LLLbfwrW9965D7uru7+djHPkZzczMAP/jBDzjvvPO46aab8Pl8fP7znwdgzZo1PPbYYwBccsklnH322WzevJknnniC2267jT/84Q+ICF/96le59tprefbZZ7npppvIzc1l65Y3OHNdDbf97++IjAsmMIbLa+2/q6uLoiKrqpnT6WTVqlU0NjZy++2343Q6ufvuu/nRj37EihUrZoyzvr6euro6enp6+OIXv8hHPvIRAN72trfx7LPPHvW1+e1vf8s3vvENnE4nGRkZPPfcc/j9fj7+8Y+zadMmXC4X3//+97nooou48847efjhhxkdHaW2tpbPf/7zBINB7rrrLjweD0888QTZ2dn8/Oc/52c/+xnBYJBly5Zx1113kZqaesh+zznnHO644w5Wr7beuwsvvJDvfve7bNy48ajxLja9o0EAKlPHeWNgGauTu0lqfRXOuCHOkS0OwXCULBnHJBWTXrmBSIPgb9yMd8Xfxzs0pZRSC0zfSJAV0gLArmg5K5pewBGNaHXoRUhbsGbpE5/4BPfccw+Dg4dWa/v0pz/NZz/7WV577TUefPBBPvzhDx9zW7W1tfzzP/8zO3fuZNOmTWzZsoWtW7fy5JNP8oUvfIGODqsL0htvvMEPfvADXnnmCRqa23hj08v4ScKEDrZWfPazn6Wmpoarr76an/70p/j9fioqKvjYxz7GZz/7WbZs2cIFF1xw1Di3bdvG008/zUsvvcTNN99Me3v7rF+Xm2++mT/96U9s3bqVRx99FIAf//jHiAjbt2/n3nvv5YYbbpis5rdjxw4eeughXnvtNb7yla+QmprKG2+8wbnnnsv//u//AvAP//APvPbaa2zdupWVK1dyxx13HLHfa6+9lvvvvx+Ajo4OOjo6Ei65AgiErBbQXBmmnwyaUlZD6+Y4R7V4BMNRfHYL1vLSAupMCf5mfX2VUkodv76xIBli9UJ6Mno6jsAQ9DfGNyg1JxZUC9axWprmUnp6Otdffz233norKSkpk8uffPJJdu3aNXl7aGiIkZGRo26rvLycc845B4Dnn3+e9773vTidTgoKCnjLW97Ca6+9Rnp6OmeddRYlJSUMtddy2uoVtLc0419eSkpkxCp0IcLXvvY1rrvuOv785z/z61//mnvvvXfaVqejxXnllVeSkpJCSkoKF110Ea+++ipXXXXVrF6X8847jxtvvJFrrrmGf/iHf5h8Tv/yL/8CwIoVKygvL2ffvn0AXHTRRaSlpZGWlkZGRgaXX345AGvXrmXbtm2AlYR99atfZWBggJGRES655JIj9nvNNddw8cUX841vfIP777+fd7/73bOKd7HxhyMAeIL9RFLK2BnJYXnPKxAOgMsT5+gWvmAkik/GIcnHysJ0njSVvKN7++T3TymllJqt/tEgXqwLzpujNdbCzh2QUxXHqNRcWFAJVrx95jOfYcOGDXzwgx+cXBaNRnn55ZdJTk4+ZF2Xy3XI+Kqp8zF5vd5Z7c/j8VjncURxOl1EIhEizmQc0SGIBCdPoKuqqvj4xz/ORz7yEfLy8ujt7T1iWzPFCUeWMz+e8ua33347r7zyCo8//jhnnHEGmzcf/eq+x3PwpN/hcEzedjgchMPWWLMbb7yRhx9+mNNOO40777xz2oSxpKSEnJwctm3bxn333cftt98+65gXE6sFy+AO9OHKzufl3jyuMhHo2QeFa+Md3oIXCFktWJKcRnqqmxbPclJDf4ORTkgrjHd4SimlFpDhQBgvVi+knsx1RMccOA7sgFVXxjkyFWvaRfA4ZGdnc8011xzSZe3iiy/mRz/60eTtLVu2AFBRUcHrr1uD4V9//XX2798/7TYvuOAC7rvvPiKRCN3d3Tz33HOcddZZk/dHMTiYUpbdbbWeTXQTfPzxxzF22fba2lqcTieZmZmkpaUxPDx8zDgBHnnkEfx+P729vTz77LOceeaZs35N6uvrOfvss7n55pvJy8ujpaWFCy64gHvuuQeAffv20dzcTE1Nzay3OTw8TFFREaFQaHI707n22mv59re/zeDgIOvWrZv19heTQNgqwuCIhvBmFbDZX2zd0bnr6A9UsxIIR/Dhx+FJByCcu9K6o3tvHKOKr5se3cknbnuQ4PjRW+oXs5fqexkcCx17xUWqa8hPXdfwsVdcpKJRw+amPiJRnTJFHZ9AKIJP/BhnEkuKi2iRYujcGe+w1BzQBOs4fe5znzukmuCtt97Kpk2bWLduHatWrZpsSXnXu97F/8/ee4fHUd37/6+zXdpd9V6sZklucgHbQOiEmoQWCJBLIEASfrkJKaTf5CYhucn35pKekIRASEKA0Akl9A4GDLbBvcqyZElW79L2nfP7Y3Zl2VbXSqvdPa/n0aOd2Zkzn53dmTnv8ymnu7ubpUuXctttt1FVVTVqe5deeinLly9nxYoVnHXWWdx6663k5R0eGdc9WBKJ7lUyWpKQEjSfC4B77rmH6upqVq5cyTXXXMN9992H0Wjkwgsv5F//+hcrV67kzTffHNNOgOXLl3PmmWdy4okn8v3vf5+CAr2Tfuqpp/KJT3yCl19+maKiIp5//nkAfvCDHwznW33zm9+kpqaGZcuW8aEPfYgVK1bwhS98AU3TqKmp4corr+Tvf//7EZ6rifif//kfTjjhBE4++WQWLVo0vP7JJ5/kBz/4wfDy5ZdfzgMPPDBcOTER8fg1UoXe0c3IzuOAzEMzmKFdCaxIoHmHMAiJIUkXWM6iJQD4W3dF06yoEQhqPPz2Lv7QeQPGX5SD3zPxTnHGpoZuPnnneh786y9h8/3RNicq3HD3Bj72qxfpf+tOaN0WbXPmnIc3NXLZn97h/lc2wpNfhsGOaJukiBHcvqDuwbI4WJyfwrZAEVrb9mibpZgFhJzhpLVCiGLgH0AuIIE7pJS/FULcAnwOCN95viulfGa8tlavXi03btx4xLpdu3axePHiGdkYy/gCQYJtuzGarVhyFjLo8WPq2oPRkoQ5e+Yxu0dXO4w34v3389j7Tfzh4Wd42fpNBi+8k2UP29mU9UMy88vg6oejbV7Mc/fz6/n0O+fhu+BXWE74DP/e0sxpj60msPQyMq64LdrmzTm17YN87dd/5Unr9/UVn34Kyk6LrlFzzO2v7+e55/7N49bQYM93W8CSPP5OcUSfy8+KH7/A/2d8iv8y3w/FJ8Jnno+2WXPK5+/ZxHM7WvmX8xes8r8PH/4BnPr1iXdUJDw/f343Feu+waWZDbxwzots+ef3+Zb5IfhOI9hSom2eYhoIITZJKY+pshYJD1YA+LqUcglwIvBFIcSS0Hu/llKuDP2NK64Uo6OFPFjhhHqr2YgXMyLojbJlivmAN6BhQy/V7rA7yHJYOWgsVSGCkSI055zJ5gBgYa6TfbKQYHtihgjWdw6xUDQfXtEws7n2YpE9rQMsNIw4B/WJNY/N/k7dY14qWvUVzRvBm1jhgg3degRJkS80WeyeZ6NojSKW8Pg1UgwehMVJRbaD3XKB/oaKOok7ZiywpJQtUsr3Q68HgF1A4UzbVehIiZ6DJfSvymw04BcWjJpPf3OG3HLLLXHrvUoEPP4gVkK5ICYrFdl2dgSLoL8JPH3j76yYEC2gh8AZQgVlyrLs7JeFJPfVRtOsqNHj8lFpaCaAiX2yCHnw3WibNOe0D3hYnDxiPsaGt6JnTBRo7dOviUpLt75CC0BjYv0O2vs95NpNZBL6HRz6ICHDZRVTx+0P4jR4wOpgQUYydRTpb3Tuja5hiogT0RwsIUQpsAoI321vEkJsFUL8VQiRHsljJQp69tVhgQWgGa36uoDyYiU63oCGVYQFlo2KHAcbh7L15c7EFAGRRIY7TSa9+qbVZKQzqRS7vxuGjq3WGe/0uvwUiQ6GkvLZqpUSbN8dbZPmnK5BH1W2XjpJ45C1HBLsHPSGinuUmLp4SwtNndKeODmJ/qBG15CPS6pMGITkUMYJusjsSJxzoJg+Hr9eOAmLA4vJgCl9AX7M0Lkv2qYpIkzEBJYQwgE8CnxVStkP/AmoAFYCLcAvx9jvRiHERiHExo4OlSh6NMMeLEaUTg919mRAjZglOl6/hjUUIojJRkW2g22ekMDqUgJrpmj+0CCGyTK8zpceKljTmXhhgj0uH3bhxZScRq1WhGnwEHj6J94xjugc9JEnO+mz5LFXK0q4jnWv24dAIyPQxjatDH9SdkKJzM5B/Z6wKk3//4EtVPU3AYt9KKaOxx/U51a0OgEozUml2ZCnntdxSEQElhDCjC6u7pNSPgYgpWyTUgallBpwJ7B2tH2llHdIKVdLKVdnZ2dHwpy4QpMSgQaGw1+V0aILLE2FJCQ83kAQe9iDZbZRkW3noMxFCgN0qRGxmSLDXmLj4SqY5ny9aEqwLbE61gC9bj+pBi+2ZD0XDUi40JZel4+MQAc+ez6bvXnQexC8iVOyvs/lJ880hFHz0yIz6U4uTyiROeDR52vMlLoHe513IZjtKu9VMSk8fo1k9BBBgIocO3sDeUjlwYo7ZiywhD4r7V3ALinlr0aszx+x2aWAqkM5DaSUGASIESGCVrMZvzSi+dxRtEwxH/D4NRymoL4Q8mD5MTGYVKhGxCJBWGCZDgusnMIKXNLKYFPizV3S6/LhMHgx2hz0O0JVTDsSx3vhC2gENIlNG8DsyGBnICQyE2hetB6Xj4Ik/Z7jNtg5aFqgf/4I5ATHAi6f/tmdAV1gvd+TBJkVakBLMSk8/iDJUi/TDlCR5aBWy4eeAxAMRNk6RSSJhAfrZOAa4CwhxObQ30eAW4UQ24QQW4EzgZsjcKyo8fjjjyOEYPfusTsT9fX1LFu2LGLH3LNnDx8572xWnnMVNSeczo033gjArh3beOLlt2EGlQRvuOEGcnJyImqvYu7xBoLYDaGbsslKYVoSVpOBVnOxysGKAHIUgbUwN4VaWYC/LXGERZgBTwC78ILFjjW7DB/mhBJY7lDn2hx0Y3eksleGEtQTyIPT6/KTY9PvOXZnCruDheAbhL7GKFs2N7h8+mdPDuihsQdcVnxpFSqHRjEp3P4gZukDcxKge7DqZD5CC0BvQ5StU0SSSFQRXCelFFLK5SNLskspr5FS1oTWXySlbImEwdHi/vvv55RTTuH++0efWDIQmPnIQzAYPGL5y1/+Ml/4wk1sfvEBtm9Yx5e+9CUAtm/dwnOvvoUx6J32qOF1113Hc889N2ObFdHFG9BINoYFlg2DQVCe7aBOy4Pu/aBp0TUw1gkeGyJYkeNgnyzE1pN4HSq3L0gSHrDYKc1OoY4CZAJ5b1z+ACAxB92kpKZxUOYSMFgTqshDn9tPlkUPS05NTWeTK09/I0HysMIi2yo9aMKEDzOd1gV6qKgK21dMgNcXwIJ/OJe+PMtBnRYK+FIiPa6IaBXBWefZ78DfPhrZv2e/M+FhBwcHWbduHXfddRcPPPDA8PrXXnuNU089lYsuuoglS/SpvwKBAFdffTWLFy/m8ssvx+XS58t4+eWXWbVqFTU1Ndxwww14vXrHrbS0lG9/+9scd9xxPPzwkRPDtrS0UFBQoC8IAzU1Nfh8Pn74wx/y+JPPcNw5V/DgA/9kaGiIG264gbVr17Jq1SqeeOIJAP7+979z8cUXc8YZZ1BZWcmPfvSj4bZPO+00MjIyxv3cr7/+OitXrmTlypWsWrWKgYEBpJR885vfZNmyZdTU1PDggw8On4vTTz+diy++mPLycr7zne9w3333sXbtWmpqati/X58v5KmnnuKEE05g1apVnH322bS1tR1z3Kuuuoqnn356ePm6667jkUcemfB7SkQ8/pEeLP2GXZFt1wtd+F0wcCiK1sU+InBskYsUm5l2ywIcvvaEm//H7Q9ik3oFrLIsO3uChWgJlIvm8gWx4UMgSXak4rBZaLcuSCgvnssXJM2kC6yM9HTW9WXpbySIFy8cImjVXGCxA1AvCgAJ3XVRtEwRCwznzoeiItLtFnqTSvR1Ksw0rogtgRUlnnjiCc4//3yqqqrIzMxk06ZNw++9//77/Pa3v2XvXj3Re8+ePXzhC19g165dpKSk8Mc//hGPx8N1113Hgw8+yLZt2wgEAvzpT38abiMzM5P333+fq6666ojj3nzzzVx04Ue54FM38ds//pne3l4sFgs//vGPufiSS9j84gNc+fGL+OlPf8pZZ53Fe++9x6uvvso3v/lNhob0CVLfe+89Hn30UbZu3crDDz/Mxo0bJ/25f/GLX/CHP/yBzZs38+abb5KUlMRjjz3G5s2b2bJlCy+99BLf/OY3aWnRnZNbtmzh9ttvZ9euXdxzzz3s3buX9957j89+9rP8/ve/B+CUU05h/fr1fPDBB1x11VXceuutxxz3yiuv5KGHHgLA5/Px8ssv89GPfnTSdicS3oBGsuFwmXaA8mwH7w+FOj0qD2tGiODhCo0j8aSF8o8SbMTR7Q1g09xgsVOWbWe/VoCxvxH8iZEP6vYFsaN3kITFTnm2g3oSK9/R5QvgNOgDD7mZGXQGkwkmZSXMOTgcJupBWOxYTAZ2+3P1N1UHWTEBhwVW0vC6zJw8+kVKwj1P4h1TtA2YEhf8LCqHvf/++/nKV74C6N6V+++/n+OPPx6AtWvXUlZWNrxtcXExJ598MgCf+tSn+N3vfsc555xDWVkZVVV6eedPf/rT/OEPf+CrX/0qoAuK0bj++us54aSTWP/M/Tz+ytvc+bd72bJli/6mUf/qNL+bF154gSeffJJf/OIXAHg8Hg4ePAjAOeecQ2ZmJgAf//jHWbduHatXr57U5z755JP52te+xtVXX83HP/5xioqKWLduHZ/85CcxGo3k5uZy+umns2HDBlJSUlizZg35+bqru6KignPPPReAmpoaXn31VQCampq48soraWlpwefzHXHuwlxwwQV85Stfwev18txzz3HaaaeRlJR0zHYKXWAlGfwgjMO/iYpsOw+ODDkoPyN6BsY4QgsJLKPliPWm7GroAtm5D1F4XBQsiw4BvxcjQTAnU55l5zEZCg/rroPcpdE1bg5w+YIki1AHyWKnItvBjq5sPuR5AwK+Izyd8YrHrw0LrLysLOAQg45SUrv2R9ewOSKcg2XS3AhLMqWZybw/5OAGUB1kxcSEB6NG5PVWZDuoa81nZYJcQ4mC8mBNQHd3N6+88gqf/exnKS0t5ec//zkPPfQQMpT7ZLfbj9heL6o49vJoHN3GSPJyc7nhqkt4/OH7MZlMbN+uF2M0GowEpYGgz4OUkkcffZTNmzezefNmDh48yOLFi6dtT5jvfOc7/OUvf8HtdnPyySePW+ADwGo9fMMwGAzDywaDYThH7Utf+hI33XQT27Zt489//jMez7Ex6zabjTPOOIPnn3+eBx98cEwBqtBDBJNE4AgPS3mWgzbSCRiTQd2wZ4QheGQ4R5i0omoC0oDrUGKERQ3j0z3jWBwUpiVxUIRCmBPEe+HyBbATChu12CnPtrPDkw1Sg576qNo2V7h8ARxCPwcFufrgXZu5KHF+A37dg2UK6CGC5VkOdnUFwVmQMOdAMQPCeb0jn9nZeql2LcGmvIh3lMCagEceeYRrrrmGhoYG6uvraWxspKysjDfffHPU7Q8ePMg777wDwD//+U9OOeUUqqurqa+vp7ZWv/nec889nH766RMe+7nnnsPv0y/GtrYOurq6KCwsxOl04hoaxIsZAh7OO+88fv/73w+Lvg8++GC4jRdffJHu7m7cbjePP/74sHdtMuzfv5+amhq+/e1vs2bNGnbv3s2pp57Kgw8+SDAYpKOjgzfeeIO1a0ed4mxU+vr6KCzUSxvffffdY2535ZVX8re//Y0333yT888/f9LtJxregIZN+I8QAGXZdkDQk1SsQlZmiCEcImg8UmCV5WbQKLNxtyRO7g2ACOg5pVjsmIwGgukhD3SCdCzdvqA+hw3oYZJZdg6EvXgJcg5cviD2kBcvKz0Dh9VEA/kw2JYQk067fUGEAEPABWY9VPZgtwstc6HyYCkmZDiv13xYYJVlOaiT+RiG2sHTFyXLFJFGCawJuP/++7n00kuPWHfZZZeNWU2wurqaP/zhDyxevJienh7+8z//E5vNxt/+9jc+8YlPUFNTg8Fg4POf//yEx37hhRc4+eRTWHH2lZx/0aX8/Oc/Jy8vjzPPPJM9u3dxwrmX8fBjT/D9738fv9/P8uXLWbp0Kd///veH21i7di2XXXYZy5cv57LLLhsOD/zkJz/JSSedxJ49eygqKuKuu+4C4Pbbb+f2228H4De/+Q3Lli1j+fLlmM1mLrjgAi699FKWL1/OihUrOOuss7j11lvJy8ub9Pm85ZZb+MQnPsHxxx9PVlbW8PqNGzfy2c9+dnj53HPP5fXXX+fss8/GYon/sJvp4vUHSRKHS74COKwmclOsNBkSKzdkNjBofoIYhsMvw1Tk2NkvCzB2J06HKqhJzMHDAgsgLzuHLpGRMJ5SPUQw7MFyUJqZWAIrqEk97xMPIBDmZMqy7Oz05egbdMf/78DlC5JsNiJ8LrDon98flAw5ShLi8yumTyCoYZaje7AOyFBYf4LcSxOB2MrBigLh3KGRfPnLXx5+fcYZZwy/Li0tHTOM7sMf/vARnqUw9fX1Yx77V7/6Fd/77n+R6WuCrKrhTk1GRgYbNmygs6WBLNkNVgt//vOfR22jqKiIxx9//Jj1YwnEkcIvXJjiaH7+85/z85///Ih1Z5xxxhHn4rXXXhv1vYsvvpiLL774mDZXr17NX/7yl+Fls9lMd3f3qMdXHMYb0LCKwDEhbOVZDvb05rFq4DV9styj3ldMDqPmJSgsGI9an5di41lDEWcMPQ9aEAxHbxF/uP2HCzyEJ8ksz7ZTW5dLRmctkw8+jl1cR5wDO6UZyfTjwGVOJzkBBJYnFB6XhD4XGgYDpVl2NtaHKtJ27YeCVVG0cPZx+YIkWUx6uGxaMeVZ+nO5zVyE090Drm5IHr9CryIx8QU1rISLUh1+JhenJ1NPONx6PyRQXm88ozxY857QPEbi2K9KGkMjIGGXsyLh8PqDWPEdU+WuPNvOZlemnhvSfSBK1sU+Rs1PwGA+Zr0QgkFHGSbp0+e/SQBcvsAI743eqSzLsrM/mIeWIKFRnpEhguZkki0m8lJstJqKEmLkOVyiPEm6wZwM6L+BDf2pSERCePHcvgDJFqM+DYZZDxMFOKCFPZnx/ztQTA9fQMMqjqz6C2AxGZDpZWgIFdYfRyiBNd8Znkj42PFhEYrh1QKjT2543XXXcdttt82WZYp5gDcQGhE72oOV7WCHV5UOnilG6SNoGN37JzMr9RcJIy60Ed6bw53rOlmA0dOtj9zHOSPzj8JevOE8rIQQF7rA0udCC4vsZDzSQsCZGCHJLl9QF1i+IbDYybBbSE0ys8MbCnlXYYKKMfAGNGyMPvVHUXYabYachLiGEoWYEFhyWGQkIDLswTpWYJksNqSEoC8x5qCZKonwu/H4g1jwHTGnBoRjukMjqgkiAGYDk+YjKI71YAEkF+iVOv1tiVHowuUPjCjwcJS4gISYZNXlD+AwhDpIIYFRmmVnhzcbBlvjfuJpdyhE0KK5h38DpZn6eehPLkmIzqHbHyRpWGAlI4SgLMvO+wOpeqSJ8mApxsAXGBkieFTUSZad2mAeMgGuoURh3gssm81GV1dXQnSWRyf0uUcJEbSajfgwIf2je7ASGSklXV1d2Gy2iTeOYbwBDYv0HePBqshyMEgybmuWeuBPEyklJulHM45eZKWwsIhu6WCgeeccWxYdjizwoHeqc5xWWkxF+roE6Bi4fUHSjCGBFQqRK8+ys9MbKvIQ59daeA4oa9B9RJgocDhMMs6f1S5fEIdZ6OW2zfpnL8+yU9vpg7QFCXEdKKaHNxAcNQcL9Oq/tcE8ZGdt3F9DicK8L3JRVFREU1MTHR0d0TYlKgz199CuDUDv3mNElpQSb18nZiExdvqiZOH8xWazUVRUFG0zZo1AUCOgSczy2ByswvQkLCYD7ZZiSlSI4LTwByUW/GOGCFZkO9gvCyjrSIzz6/EdWeAB9Fw0c2YpwR4DxgToWLp8QVKMXjDoBR5A92A9MuzF2w8FK6Nn4CwTDhE0ay6w6CFxackW0pPN1Mk8lnr7YagTHNnRNHNWcfmCFCSFIktGiMzHPmgmWFiOUYUIKsZAn1YlPEBzZNRJWZadZ2U+Bv+QPuWBc/LVmRXzk3kvsMxmM2VlZdE2I2rc98ubuXrgr/DdluG8h5E88JP/5ePB57F8v3X4ga9IDLwB/SFvHsWDZTQISjOTqdcKKOl8OxrmxTzhik9yDA9WSWYyT8gClvRvnWPLooPriAIPhydHL85Oo6U3l6IECEV1+4I4Dd4j7sVlWXbqZWIUOAiHCBoDhz1YEAqT9GRzIegenLgWWAHSjLonbzgXMVs/F33JJWQ0vad7IEYJ61ckNt5xQgQrsh2HS7V37lMCKw5QPfJ5jkELJ0SOPoruTqnAIr3Q3zSHVinmA2GBZZK+Y0bDQC/VvsObC+4eGOqaa/NiHl9Aw0IAzTC6wLKZjXQllWL3J0aBB7c/iF140YzWI+YFK8uysy+Qi5YQHqwADuE9QlwsyEjGLyz0W+K/0EW4iqAp6DriHJRl2tkwGC7VHv/nINUU9kIcGSbZYiwA3yAMtkfLPMU8Rs/BGr1Pl+O00moq1Bfi/BpKFJTAmueIoE+f6HSMeXaM2Xols2D73rk0SzEP8AZCo8nasR4s0AtdbBoKVbZSYYJTxhfQsAg/0jj2HGK+1HL9RQI8EN0hD5Y0H+lJ1ysJ5uveG02LknVzg15F0Ddc4AH0EsuF6UkcMsV/Fb1wiKDBP3SMB+uD/hSkwZwQ58BpCHkhjspD2x8cESqqUBzFeB4sIQRJWQvwCUvcX0OJwqwLLCHE+UKIPUKIWiHEd2b7ePGGCPoIiNFH0AGcRUsA6G/cMVcmKeYJHn/Ig6V5j7lZg16qfZ82IuRAMSXCFZ+kaezrz5y7CACtI/4HOHQPlucIcQGHKwkaAm4YaImSdXOD2x8kWXiOEBcAZVkOaoMhD1YcJ6iHQwQN/qM8WFl2NAz4UkvjunMopcTlC5BiCBd70Qcbki0m8lNtbPWEB7Ti9xwopo8vlIOlGcyjDpqXZqfQSH7chxonCrMqsIQQRuAPwAXAEuCTQogls3nMeMMo/QTGKBMNUFy0gF5pZ6hl1xxapZgPDHuwgt5RPVgV2XaaZLZ+M++MfwEQaXzBIBb8MI4HK7OoEp80Mtgc/9efyxckCS/iGHER8mBB3HcsXb4gyXIUgZWZzHZPNnj6wBW/4bguXxATAUTQe4TQDntwem3Fcd059AY0NAn2sMAyHykyP+hzgMEc1+dAMX3CVQTHioooz7KzN0HCrROB2fZgrQVqpZR1Ukof8ABw8SwfM64waD6ChrEF1sJcJ/tlAUJ5KBIOr18DJMZxPFgahlCnR92wp4rHr+dgMUaRC4Dy3DTqZR6+1vifC8vt16sICuuRHqy0ZAvd1mJ9Ic5/Z25fkCTcwyXaw5Rl2dntDxV2iONz4PYHSebIUv2ghwgCephkdx1owWiYN+uEQyQd4si50ED/Dezv8kBGmQoRVIzK8DxYozyvQQ/rr5N5iJ4DEPTPsXWKSDPbAqsQaByx3BRaN4wQ4kYhxEYhxMZELcU+HkbNR3CMJHvQOzfNxiKcgwfm0CrFfECfZDhUzWqUG3Zqkpksh4VmU7EKEZwGvqCGVfjBPPZcahXZdupkAaae+O1Uh/H4gzgMx3qwAOxZxXiENe5H7t3+IDZ5bJhkaZb9cAWwOD4Hbl+ADPOR+UcADquJLIdVz0EKeqEvPosuuUIhknYRnq7gyGqSvS4/vtSyuP4NKKaPN6Bhw4cco2hZeZZeSVBoAeg9OMfWKSJN1ItcSCnvkFKullKuzs6O39Ku08Wk+dHGCREEGHCUkRLoAk//HFmlmA+Eb9bA2CNiWQ72BfNAjYhNGb2KoB/DGA9DgAx7aIDD1Rj35/dwBT3HMe+VZqdwkPy49t6Afg4s2rEhguVZDj0cV5ji+hy4/UHSwwLLfPQ5sLPNE99ePHdoouWkYS/e4WuhIlt/3WMrCnnx4rvgi2Lq+AL6oJ0Y43ldmpVMnZYY4daJwGwLrGageMRyUWidYhJIKTFJ/5hlosNomXolQam8FAnFkRWJxhgRy7azxZUNWgB6GubQutgnXKZdjCOwhBAMpZRjJAg99XNnXBRw+7RQkYtj5+Mry0qO+9wBTZN62KjmOkZgFaTZMBhN9Fjju5Kgyxck3XSsBwv0zuG7/eFS7fHpwQmXqbfJcA7WkR4sgCZDIQQ8MHBozu1TzG/COVijTasC4LSZGbCX6gtxfB9JFGZbYG0AKoUQZUIIC3AV8OQsHzNuCGgSM360cXJAAJLz9UpmA80758IsxTzB4w/qIWwwbkz31vCosip0MSW8YQ/WOCGCACJLH+CI9/Pr9gf0iYZHCREsC4e29NTHrSfP7Q9iQMOseY85ByajgQUZyTQZCuJWXIB+z0kzHZt/BHqY5O7BJKTFHrc5SGGBlSTd+ooRAqsoPQmTQbAvkKuvUB1kxVH4QlEnYpxnSkZ2HgPCqX4/ccCsCiwpZQC4CXge2AU8JKVU9cQnSThESU7gwcopWYRfGulvVAIrkfCOnLRwjBt2eZaD/cO5IcrDORW8fj9WEcBgHtuDBeAoXAyAuyW+C124fUF95H6UEMGyLDsHtDyEDMatp9QVmgcMGENk6hMu0x2/84G5fEHSTMeGx4E+2TAIPCllcds5DBe5sEiPLq4Mh7tQJqOBBZnJbHVl6iviWGgrpod3OERw7GdKebY+WKXypmOfWc/BklI+I6WsklJWSCl/OtvHiye8AQ2LCCAn8GBV5KVzUOYQTIC5eBSHGQ43gHE9WP048Fgy1Q17ivi9ekdyIg9WcX4+7TIN16H4LtXu9vqxjeHBKs1KHlHkIX4710mjVNALU5ZlZ4s7Sw8P64/PSHi3L0iKYXQPVlm2vtxtjd+qpWEPlkXzHFNJEvQ8tPd7ksCUpOdhKRQj0OfBGjsHC0Kl2oN5aJ3xeQ0lElEvcqEYG29An4dnvIlOAfJTbTSIQpL61IhZIuHxjyxyMfqIWHFGMiaDoCOOOz2zRcCneyuMlvEFVkWOg/1aQdwLWM3vxoAcVVwkW0wMOUr1hTj9nbn8gRHV40Yp9JFlpzYY3+Fhbn9wxCS7R/4OSjL05WZDoV4BLeCda/NmHVeoyIWehzdaLqKdum43MiN+vXiK6eMNaCSJsXOwIFSqXcvDMNgC3sE5tE4RaZTAmsfocyYEwDB+iJIQgu6kEtI9TRAMzJF1imjjDUycg2UOha00EP8CINIEfHqehWkiD1Z6EgcoILm/DqScC9Oigy/0sB9FYAFkZufRL1LiNhTV5QtiH8+DlWk/XAEsTnOQ3L4gDuPoHqwki5H8VBv7grkgtbgs+uIOlWk3Bd3HVFEEPbzLF9Bwp6hS7Ypj0Sv/+sccEIVQuLWM7/tIoqAE1jwmnGTPBB4sAH/6Qsz4oTc+8x8Ux+L1axOGCIKeh7XTnwuuTnB1z5F1sY/mn5wHy2Q00JtcSlKwH4Y658K06OAb0v+P4r0BPUTsgMyL246le2QO1ijhYWXZdtpIJ2C0xe050EXm+Hlom11Z+kIcenDCIYKmgAuso+ciAnRZinSBqQY8FSMYHhQd53ldnJFMvQhNF9uxZ44sU8wGSmDNY7x+vUz0eBdjGEtuNQDuVnVBJgqeQBC7ceyJhsNUZNvZOBS/nZ7ZIuDXvRWmCYpcAAQywpUE4/f6MwZc+otRxAXoHpx9wTy0OPWUunzBcUMEc502bGYjnZb4Dcf1+IP6XGgGE4ySG7wwx8HbPan6Qhyeg7DAMviHRhWY5SGB1SjyQfNDn5osVnEYX7gw1TjPa7PRQDCtnCBG6IjvwknxjhJY8xhPIIhNeBGjxHofTVrxEgB6GrbPtlmKeYLXr+EYFljjVSWyszeQpy/Eaed3NtBCIYJGy9jx8mFsBfr152+J30qewh8SWGOECJZl6SFyhsHWuMwdcPkC4xa5MBgEpZl2DoqCuBQXMKKSosUOQhzzfmWOg2avjWBSZlyeA5c3gN1iRPgGRxXZ2U4rdouR3f5wLp4qdKE4jDegYZXjCyyAktx0fcoH5cGKaZTAmsfoVat8iEl08EqKi+iUKXhb1YhHouD2BUkxhkIEx/AqgJ4X0Chz0AzmuM2PmQ20kAdrPPEapnDBQvpkMv0Ht8yyVdFBSqmHRcGYIYILcxzUxXHuwKB3ZJGL0UVmebad3f4cvVR9wDeH1s0+Ukrc/iBJeMb5DTgBGHSUxmWY5JAvQLLVpOcjWp3HvC+EoCzbzvtD4VLt8ScyFdPHF9D0VI4JnimVOQ52BfKR7ao/F8sogTWP8YRGTA1jPMxHUpJpp04WYO5RHehEwe0PkjKccD6OwMqyE8RIX1KxGhGbAsMCa4JpEgCq853skcXItvj0YHkDmt6xhjHFRXF4ol2Iy46lyztyHqyxBcZmVxbIYNzlw3r8+txeNjl6qX6Aylz9vLSZiuLyNzDoDeKwmnQP7VgiO8vBlm4T2NJUiJfiCDw+H2YC41YRBKjKdbJHK4SeurisxpkoKIE1j/F6PRiFxGCdWGCZjQZaraWkD8V5JTPFMHrJ5PBEw2P/RjLsFtKSzTSaSqA9vudqiiQyEOpMTyIHsiTTTq0sxtG3Ny6vP/cExQ0AjAaBMatCX4hD78WgNzCiiuDoAxqVOQ4OaKFw3DgTGOEKerbwJLujkBm619TJPBhsA+/AXJo467i8AexWo+7BGqvYS5adpl4PWvYiNaClOIKgL/xMmcCDleugVitESE2F9ccwSmDNYwJevWqXyTpxDhbAYGoVdm0QBlpm0yzFPMHtC+IwhBLOx6k0KYSgKtfJrkChXtnK55o7I2MYGZh8iKDZaKDbsRBbcDAuJ5l1+4Mki7C4GL1jCVCSm0mryI47cQF6DlaK0QfCMKborsp1Hg6TjDOReXgOKPeYvwEhBJU5DrZ7wkV14uscDHoDOM0Sgr5RqwiCHiYqJQw4K6BjV1wOuCimRzivd6JBu4psB7UU6QvKCxqzKIE1jzkssCb2YAGIXD3RPtC6Y9ZsUswf3P4gdoNvXO9VmOpcJ+uHcgAZ15XuIsmwwJpEiCCAlr1YfxGHXkLXyBLl44SjVuY42BfIJRiHo66D3iCpRq8uLkYp8AC692LQ4MRlSo27fMchr+7BsmquMb2YoIdJru9L1xfiTGgP+QJkmUN5r+N4sAAOmUvB3QOD7XNknWK+E/RPLirCZjYSSKtAw6C8oDGMEljzmKAnJLBskxNYzuIaAHrr4zPRXnEk7vDEp5OoMlmV52SLN5QfE4cCYDYQwx6siUMEAeyh68/TvHW2TIoaAx4/duFBIsA0dv5AZa6D/bIAOuIvVHLIG/JgjSMuLCYDpZnJNJviL99x0KsLC3PQPe45qMxxsM2dhRTx1zl0eYOkm8N5r6MLrNKQwNo37IFQ91uFjgxHj0zimVKal0GzIV95sGIYJbDmMUGvfjGaJymwFhQV0SbT8DSrUu2JwHDY1jgVBMNU5zppkLl6JUElsCaFCE4uXj5MaVERrTKdocZts2hVdBjwBEjBRdDiBMPYj42FOU72ymKM/kHoa5xDC2cfly+gzwE1QdEhPRy3CNp3xpXI7PfoIYKm4PgerMpcB14seJwl+jmIIwa9AdKGCwuNfg5SbGayHFY2u0Ol2uNMZCqmj/RP/pmiKgnGPkpgzWO00GiHcRIeCtDjdvdoxZi71A09EdDL+E/Sg5XrIIiR7uQyJbAmidEfmstplHLMo6FXfipGxOH5HfAESBEuNGvquNuVZCZTKxboC3FWUXHQG8BhGLvAQ5jKHAcb3fng6YP+Q3Nk3ewzEBZY/qFx8/AqQ6Xa25Mq4k5gDXkDpBlDnu1x7guVOQ42dVv1SoJxeD9QTJ2gJjEHQx6sSTxTqnKd7NUK9Skv4mzKh0RBCax5zLA7eRIeCgC71cQhSynpQ/tB02bRMsV8wO0PYhtnTpqRpCVbyE2x0mBYoEIOJolxgnmfjqYoPYk6wwJSBusgGJhFy+aeAY+fFFwIa8q425mNBnwZVfpCe3zlgrp8QZy4YYJzUJnrZLcWCg+Lo871oCeAkSAG/yDYxhbauSlWnFYT+0UJdB8A39AcWjl7aJpkyBckxThxsZfqPCf72geR2YvU/VYB6M9rpwgVuZjgHgK6J3ifVoiQwbicVzARmJHAEkL8XAixWwixVQjxLyFEWmh9qRDCLYTYHPq7PSLWJhr+sMCaeKLhMAMplVikF3rrZ8cmxbzB7Qti1SYeUQ9Tletke6BAD93y9M+ydbGPOeAiIMzjVmgciRCCgZQqTNIH3XWzbN3c0u/xkyKGEEnje7AAivPz9UqCcSQuIOTBkoOQlDbudlW5+pxoQFyJTF1kh8TSOOdACMHCXAebvQWAjBuBES5TnzLcSR5bYC3Od+LyBRlMWahfB3EUKqqYHi5fAAfh387EHixVSTD2makH60VgmZRyObAX+K8R7+2XUq4M/X1+hsdJSKR/ah4sAHL0SoJanIXnKI4kENTwBTVs0j2pEEEIVRIcyNEX1A17QszBIbyGKVx7HK7kKeMsNGrAE8CJG2Ny2oTbVuc62BkoJBhn1Uz73QEc2sCEAqs0K5lBg5MBS3yJzAFPgHRDWGClj7vtwmwHb/aH7jVx8iwa9Ope6RRCocPjnIPqPN1D0WQqAU+vqiSo0KdVmYQ4D2MzG/GnVaAhQOVhxSQzElhSyheklOFYmPUQltuKSCDCCZFT8GA5i5cBMBCHifaKw3gCegioRfNMqkw76JUEtwcK9YU46vjNFtagC79x8tceQErxMjQpcDXGVyXBAU+AVIMLMU5oWJjqvBT2yGJE1z4I+ufAutlHSkmvy0eyNjChuLCajJRmJnPQGF9FHga9AfIsofA4W9q421blOtkylI40JcXNOehx6XkwacMCK2PMbatyHQgBu4Khyq2qkmDC4/IFcTD5HCyAkrwsWkSu+v3EKJHMwboBeHbEcpkQ4gMhxOtCiFPH2kkIcaMQYqMQYmNHR0cEzYl9hj1YE1StGklpQQ4HtWy8TUpgxTOu0GiqWZuaB6tJZhMwJimBNQGaJrFJNwHT5K89gMqibOplLu7m+Lr++sPhYZMQWIvy9GIfBs0fN/MgDXoDGDUvZs07obgAWJSXwjZ/oV5BTgvOvoFzQL/HT645NOg3gRevOs+JhoGh1IXQFh+ezO4hXWA55QAYreMOfCZbTJRkJPPuUKiSYJx48RTTZ8gbwDE8l+Dk8norcxzsChaitavCZbHIhAJLCPGSEGL7KH8Xj9jme0AAuC+0qgVYIKVcBXwN+KcQYtSsPinlHVLK1VLK1dnZ2TP/RPGEf/JzJoSpzHGwRxZj6lIu5XjmcMnkyedgVeY6kBjoSipTI2IT4PbrE+tOVWAtyktht1yAuTO+zu+g24d9EgUeAArTkjhoKtEX4qRz3euaXP5RmOo8JxvdeRDw6IUe4oABT4AccyjEaQKRuShPH6E/ZC2PGw9Wr0v3xiYHQ17MMSabDlOd52RDpxns2XFzHSimT5/bj0O4CZrsYDBOap/qPL1gjuiuhfC8jIqYYUKBJaU8W0q5bJS/JwCEENcBHwOullLP5JRSeqWUXaHXm4D9QNWsfYo4xeQfIIhhSiGCmQ4rjaYSUofqVWnPOKbf48dEAFNwcp1e0EdVF2QkU2dYoDxYEzDkC+AQHjTz5EYaw2TYLTSay3C6m+KmehqA392PATkpD5bBIDDmLtLvXXHSue5x+UgVk8s/gnDHKL4KXfS6fIcF1gQiM9tpJT3ZzF5ZDEMdMBj70SlhD1ZSoG+Sv4EU6juHCOYsiZvfgGL69Ln9OHAjJxkeCOFS7UUILRA30QCJxEyrCJ4PfAu4SErpGrE+WwhhDL0uByqB+CqrNQfYAv24jSkTjpQdjSutCiNB6No3S5Ypok2f209qeEQ9eexcgKOpynWy1ZsPg23g6p4l62KfIW8QO27kFMJzw7jTF+liJJ4Sk929+v9JCCyAhfkZNJCPjJOR+x6X/3DuzaRCBJ3UykIkIm7Cw7qGfGSbJufBEkJQlevkPVe+viIOBEZvKAfL4uub1D13cZ4TTUKPvVIf0IqTUFHF9Ohz+3EKN2IKAqs8206tCA/UqEHRWGOmOVi3AU7gxaPKsZ8GbBVCbAYeAT4vpVS9uSmSFBzAa5qcd2IkxtylAGht6oKMV/rdftLExNWsjqY6z8G7g6HqXuqGPSb9bj924ZnSwzCMpXA5AMHW+MnDMrhCHghHzqS2r851siNYjBYnlQR7j/BgpU24fXF6MgZLMl3W4rgQFwA9Qz4yDC49ZN08cdj6ojwnr/Vk6QtxIDJ7XH6SLUYMnp5JezEB6oyloVBRNcacyIQ9WAbb5J8pVpMRLX1hKBpAPa9jjZlWEVwopSw+uhy7lPJRKeXS0LrjpJRPRcbcxCEQ1HBog/gsUxdYGSVLCUgDA3FWyUxxmH5PgHQG9IUpCawUdgbDk6DGfqdntgg/DI1JUxdYuQuqGJJWBhq2zIJlc4+UEou7U1+YrMDKS2G3tgBjf3zMudYz5CNThD5HcuaE2xsMgspcpz7Zbhx48YKapNftJ4PeKf0GDvqcBJMy40Jk9gz5SE+2gLtnUiK7JNOOzWxgiy90v23bPrsGKuY1fW4/qQYPYhIl2kdSlpdBkyhQU6vEIJGsIqiIIIPeAKliiIBlciE5I1lYkMkBmY+3Wd3Q4xXdgzX5nJAw1blOWsnAZ05RAmscel0+7HgwJ019gGNRQSp7ZDHBlvjwYPW7A6TLHn3BkTupfRblOdkt4ye0pcflJ5fQOXDmT2qfRblONnkLkN0HwDs4i9bNPr0uH1JCerBr0p8/7MHpdVbGiQfLR0ayUc8ps09ckMto0MMk3+7PAmGIi3OgmD59bj+ZhoFJDdCMpCrXyc5AgZrbNAZRAmueMuAJkMYgmjVtyvtW5TrYI4uwdqvSnvFKv9tPtnHqOVhlWXZMBgNttrK46PjOFu6BbkxCw5ySNeV9F+Y42CNLSO7ZA3rdn5imY9BLFn36wiQ6lgDpdgsdyQv1hTgYue9x+Sg29+mdI5N1Uvssyney2VuAQMb86HPnoJ5/5PB3TVpkhwVWo7ksLnKQul1+Smwu0AKQUjipfapznWxr80Jm/JSrV0yPfrefDPomfQ8NU53nZI8sQvQcAL97lqxTzAZKYM1Tel1+UsUQYhKhCEfjtJlptZbh9DTHVSUzxWF6XX5yhyt6Td6DZTEZKM+2s59i3YMVBwJgNvD3tQJgS82b8r5Wk5FO+0KSgv3QfyjSps05nYNeskUvfms6GM2T3i81r5whkRwXHctDvW6KTf2T9t6A3jHaJRfoCzF+Dlr69HtNkrd90ufAYTVRlJ7EtsACCLhjPgeppddNpS0UJppSMKl9FuWn0DnoxZOxOC4GGhTTZ2hoCIccAvvkQmzDVOU69EqCSH1ePUXMoATWPKVzwE0KLszOqbmTw3jSq/VKZuqCjEs6Br3kW1wgjJMu0x6mKtfJ+5588PTBQMssWRjbBAf1nCNzytQehmECWUv0FzHesQZo6/eQLfrQkqd2LqrzUtilFSPjILSlqcdNnqEHnJMX3IvyUmiS2fiMsS8y2/o9JOHB5BsA5+Q8WKCHir41GDpnMVz0xRsI0j7gpdwa8uROVmCFvHitSRXQ2wDegdkyUTHPEa5wHuvUPFglmXYOiNC8gjHuCU80lMCap/T1dGIQEptj8uFfIzHnLwMgEAedG8WxtA94yDUNTWrCy6OpzHHy3lCo06PysEZFhuftmWI4RxhHyQoAvM2xX2imqcdNvujClDa5TmWY6jwnu4LFyLbtMe8pbe51kym7pySwMuwWspxJHLKUxbzAaunzkCt69QXH5M9BdZ6TN3oykMIY0x6cll4PAIXGXn2Fc2oCa2/Yk6nCshOW4GC7/mKKHiyz0YAhq5wAJvW8jjGUwJqnuHt0z0JyxtRDlABySqvxSjMDDbHfwVMcS3u/lzy6IHVyuQAjqcx1sEcL7ace+KMih2YmsMoKC2iSWQw1xn4lwcZuF6WGdoyZ5VPab1FeCrvlAgy+AehrnCXrZp9+jx+fx4XT3wUpRVPad1Gek13aAl1cxLDIbOpxs9wemmklvXTS+1XlOnFpZrxpFTEtMpt79RDJHNkJBtOk7wuZDitZDisb3KGwyhgWmYrp0+/xk+wLXT/TeKZU5KVTLwrja27FBEAJrHmK7G0CwJqxYFr7V+WlsU8W4m+J3YeaYnSCmqRryEdWsANSi6e8/8IcBz2k4LFmKYE1BsZwWfIpVnwKsyjfyW6tGEMcjDh2dbaSyiBkTE1gVeY62BMHOUiHet2UiDY9ByKrckr7Vocn2/X0xnQ+Xl3HIKvCAitz4aT3W5Snhy932CuhNXbFRXOPLrAyPAchvQwMk+86Lc53sr7LDhZnTF8HiulzqNdNlgiFl04xRBB0T7CqJBh7KIE1T5H9zfqLaXgoACqyHeyVRST17o2gVYr5QNeQl6CmkeprhdSpjagDlGbaMRoErbZyFXIwBlZPF26jY0pFHUZSmJZEnaEU5+ABCHgjbN3cIrsP6C8yyqa0n81sxJNerS/EcMfyYJeLchHKVZyCuAC9Y7QtEJ4HKTbPgZSS/R1DVJvbdZEwyXmwAMqz7ZiNglpRBv1N4OqeRUtnj8YeFwYBSX11kF09pX2rc53sbR9E5i5VpdoTlEO9bopFO1IYJh1eOpKqXCd7tGIM/Y0qjy+GUAJrnmIcaEZDTOtiBL1z05FUgdPXrk+MqIgbGrpcegGUoGtaAstiMlCSmUwtxXrIgabNgpWxizcQJCvYzqBtetcegBCCwbRqjAShM3YHOTz+IM6hBn1hih4sgOL8XA6J3JgVFwC7WwcoN0xPYC3KSxnhxYtND073kI8+t58F8hBkVkwp59NsNFCR7eB9b+haitEBnV0tA1Rl2RDd+yGrakr7LspPwRvQ6E+t0q+DGA4VVUyP5h43paINLaUYTJYp71+V62CfDA22q8JlMYMSWPOUJHcrg6b0aV2MYfyZoZE2FbcbVxzoGKJQhELYJjkfy9FU5jj4wJOvl0/urY+ccXFAc48eEuZzTi88N4whTy80I2M4NGpP6wCLqSdosExZXIDuwdkRKEKL4XOw81A/x9sO6flXVseU9q3MdTAkkumz5sesyKxtHwQk2UN7IWfxlPevznPyWm/I6xWjv4NdLf2cltmvz4E1VYEVKnRx0FQG3j7oa5oNExXzmOZeD6WiDUNmxbT2L05Ppt4YqiSowvpjBiWw5iFD3gBZgTbcSZOfc2U0bIU1ACoPK86o6xxikTEUQjrFcJUwlTlO3hkMlVtWN+wjqO8coFh0YMya3sMwTFbJErzSHNOFLrYf6qNGHCCQvXRa4ZKL8pzsksX6yL/fMwsWzj67WvtZQS0UHT/lfW1mI6VZdhqMJTHrvdnc2EsBXVg9nVA49XNQnedkW38SWnIWtMVeqfZel4/mXjcn2UKhsoXHTWn/hTkODAJ2xHioqGL6HOwapNzQiphioaAwBoMgOaccHxb1vI4hlMCahxzsdlFtaMSbPr3Oc5jcogoGZBKDjaqSYDxxoHOQNcktYDBD5tSS7sMszHGwJxgK21F5AUfQ3lyPVfhx5k/dYzOS6oJ09spCvM2x16kMs72xm2XGA1iKVk1r/+q8FHZrCxAyCJ2xF9rSOehloKuVrEDLtMQF6CJzi79IDxWNwXy8TQ09nJMa8rpMUVxA2IMjGEytjklx8UFjLwCLA7vBljrle67NbKQ828HbgyEvXnvsnQPFzOg4VI8D15S9nyOpyE1jP0XQoQRWrKAE1jxk/4E6skQ/SUU1M2qnLNtBrSxEUyGCccWWxj5WmJt079U0Q0gX5jgYIgl3ckFM5wjNBu4W/QGWnDf9hyHoI/e7tQXYumPzgSilpHvfuzhxI8pOmVYbCzKSOWAs1RdisHP95r4OPmQI2b3gpGm1UZ2bwruufD28LMautaAm2dTQw3nJu8HigNypP5OqQ5UEm6wV+uh7MBBpM2eV1/d0YDMbyOneCEVrp1RBMEx1npPN7RLSFsTkdaCYPkPeAJl9oUG2aQ7SgJ6HtTNYqCoJxhBKYM1Duus2A5BRPr1R4zAlmcnUyTys/fUzN0oxLzjU66at30WFbw/kr5h2OxXZDoSADnMRdO+PoIWxj6FV9/iK/OUzaifFZqbFVoHd1wVDnZEwbU5p6HJRNbgBiYCyM6bVhtEgsGQv1ENbYrBj+fqeDs63bkUmZUy7c1QdngsLYu4cfHCwh64hLys9G6D8jGkN6BSk2nBaTfo5CHhi7n7zxt4OLil2YejeD5XnTquNxXlODna7CGQtibnfgGJmfHCwlxViP5rBDLnLpt1OWZadvVoRhsFWVbgsRpiRwBJC3CKEaBZCbA79fWTEe/8lhKgVQuwRQpw3c1MTB3PLBjQExoLpd6ABnDYz7eZCHN428LkiZJ0immxs6GGxOIjN3wulp067nSSLkaL0JBrIg67Y6vDMJr6ARtbAbnot+ZCcMfP2MkNFAWKwU/XM9hY+anwXX/5qsE9vPjCAyvw0akVxzFXR8wU03tnTzIfFJkTluWAwTqudRXlO6mWeXigkxs7B8ztaWWPaT7K7BaovmFYbQgiq8py8O5Snr4iha2F/xyB1nUN8ImmTvqL6/Gm1Uz08H9hC6NwXk6Giiumxvq6Lkw07kPmrwGybdjtlWXb2yFAen4pKigki4cH6tZRyZejvGQAhxBLgKmApcD7wRyHE9J5OCUaf20/pwPt0JC+MSAfP7QzNXdNdN+O2FNHnxZ1tnGsLdVDKTptRWxXZDnb7svVJUGN0fppIs6d1gBpqcWdNf6RxJNZQmG8wxqqnSSnZ+t7rLDI0Yl115YzaWpTnZLu/CK01djrWoF9rJ3jfJkkbhJWfnHY7CzKSsZgttNnKYkpcePxBHn2/mS+lrwdzMiy5eNptVec5eaUrDSmMMZWk/9CGRswGycrOf+sDWmnTqywariS4X5SADKpS2wnExu07WW6ow7hoeuI8THFGMrVhgdWhBFYsMFshghcDD0gpvVLKA0AtsHaWjhVXvLVtL2vEbmTFhyPSngiXBY2xsAzFsQx5A7y0s40rreuhcPW0J6EOU5pp54OhkGdCebEA2LlzCwsMHdgqT49IewX5xfRIB4NNsdOxBnhtTwcXDDyC32SH5VfMqK3qPCe75QIMrg4YbI+QhbOLlJI73tjPTdZnkJmVUDr9wQyDQejz2BBb+TdPbG7GONTGKUMvwfIrweqcdluL8px0egwE02NncvN+j59/vneQby/Yi7GvAVbfMO22itKTcFhNfOAN3bNj6HegmD57Wgeo6X5BX1j0sRm1ZTMbkc5C/MKi+nMxQiQE1k1CiK1CiL8KIdJD6wqBxhHbNIXWHYMQ4kYhxEYhxMaOjo4ImBPbdG94BJPQyF47s05NGHu+XonQ1x5bydWKY3lmWwuLA7vI9+yHFVfNuL3SzGT2+LP1BXXDBmBg50sApC89JyLtVeQ6qZUFBNtjZ8Q6ENR49OlnuND4DoY1n9Erp82A6jwnu2Rs5SA9+n4zZYeepkoeQJz2jWkVNhjJorwUNroLYLAtJvLxhrwBfv3iPv437XEEEk7+8ozaq87VxVm3fWHM/AZ+/tweNO8g1w79FbKqZ+TBE0KwMMfBu31pYLLFXKioYnr8461aPmV6GX/h2mlPqTKSkmwnLYZ8NSAaI0z41BBCvCSE2D7K38XAn4AKYCXQAvxyqgZIKe+QUq6WUq7Ozs6e6u5xxcHOIY5re5S2pAqMRVMvhzsahbk5tMk0hg4pgRXLePxB/vhqLf9tfxyZlA4r/2PGbZZm2Tkoc5HCoG7YwIDHz5Lul+ixFkXkYQhQkW1nn1ZIUl9tRNqbC/7++m5u6vsFfmsGxtO+PuP2sh1W2myh+V9iwHvRPuDhzqde53+s/0AWHA81Mx/sqs5z8r43PC3C/BcYP35qJ8uH1nG250XESV+EjOnN3xNmUSgHqcFYAj314BuKgJWzx4b6bu5Z38BdxS9gGWiEj/162jl4YapyHexud+v3lhj4DShmxt62Acwf3E2JaMN86lcj0mZJpp3aYK56XscIEwosKeXZUsplo/w9IaVsk1IGpZQacCeHwwCbgeIRzRSF1inG4c0n/8ISQwO2074MQkSkzdKsZOplHrIrdjp4imP59Yt7WdXzHMcFNiNO/w5Y7DNusyzLjh8TQ7Z85cEC3np/OyeKnbgWfTxi15/TZqbdWkqSvxeGuiLS5mzy7v5OnK9+l0WGRiyX3Q5JaTNuUwhBbl4RvSJt3uffePxBvn7vO/yf/BV2E4jL7pyx9wr0ELm9WmzkTzy0sZGNm9bz26S/6JVKz/zujNtMTTaTl2Jju78QkPP6HLT2efjSPz/gBue7nNj+AKz5LJSePON2K3OcdA568WYujomBBsX08QaC/P7Bf/Nt0334S06H6o9MvNMkKM1MZm8gB9lzALRgRNpUzB4zrSKYP2LxUiDs934SuEoIYRVClAGVwHszOVa8s2nnPs5u+BWtSQtJPeGaiLVbkmmnTsvHpkq1xyxPbG5m+7on+T/rX6HkZP2BHwEK05IwGQQdliI1IgZ0rv8nBiHJP+XaiLbrSw9NWDzPJ9p9r66LHf+4mSuNr+I96auIqumVpB4NfU6wQuQ8FlguX4Cv37OO/6/le6wQdRg+fjuEc1hnSFWekw7S8JpS5rXIfHhjI3c89iwPJ/0Mm9UGn/g7mKwRabs6z8m6gVx9YZ7O5dPY7eLKO97hJM8bfD/4R72wxXn/G5G2K3MdALTaKvRQ0UGVEhGPeANBfnLf83y984cYLHbMl98RwQFzO/UyDxH0QV9TRNpUzB4zHZq7VQixTQixFTgTuBlASrkDeAjYCTwHfFFKqeT2GDS2dmJ56JOkCRepn7xzxqEII3FYTXRaCkn2d4N3IGLtKmYfKSV/ebOONx7+HX+1/hJj1kK44h4wmiLSvsloYEFGsl6qvbsOpIxIu7FIfccAJ/U+RatzKYbsyoi2bcpdBICcx5XDXtpaT/vfP8UN4kmGaq7Feu4tEW2/Os/J7mAhsn33vPydNfe6uem2f/Gl+i/yIeNuxCV/hMUXRqz9TLuF9GQLh6xl81Jg+YMatzy5g6cf+wdPWn9Iuk0grn18xqGBI6nOc/JWtwNpSpqX5+D9gz1c8ae3uHzoAX5l+C2iaDVcee+0J3M/mqpQHto+UaKvaFdhgvFGc6+bn/3+j9xU95/kW1xYr30EnHkRa780084BLeTXUFFJ854Z9dSklGO6WqSUPwV+OpP2E4Ede/agPXA1S6il/fw7yV8QmdyrkfhSFkAv0H0AZjh5qmJu+OBgD/c+/jQXdfyZz5q3Eiw+GcMVd89oPqLRKM2ys6sthzO8/XryvSMx8yDXPX0PnzK00HfqDyLednZhOa7tVmTzDuyrI978jPD4g/zt0ac4fecPWGQ4yNCp/439rG9EbMQ1THWek0dlEQb/oD7ymlY88U5zgJSSp7Yc4oMnfs9vtLtJspkxXPkoVJwZ0eMIIajMdbK3t5Cyjrd0kRnhczxdmnvdfO+Bdzm16XZ+aHkOcpYhPnl/xL+jyhwHngB4M6qwzSNx4Q9q3PFGHQ+8+Da/sd3FCWyGZZfBRbeBJTlix8lPteGwmnjfXcDZoOdhlZ8RsfYV0aN9wMNzLzxL0Zbf80PDJgZSKrB+6h7IXRrR4yzISOaADAm27jogMtWmFbNDZIbCFVPG4/Oz7qHfcPy+32ATflrP/TOFJ35iVo4l0stDAqtOCax5TL/Hz7ObamlZ/zAn9j3DLw278NpSkGf+BOOJX4ioZzNMaaadzfszwYieh5WAAqtjwMviA3+nx5JH+vGRqd45korcFPbLfIpadzHzzLnI8cb2AzQ88VM+43sMnyWVwMfvx75kepPJTkRV7lE5SPNAYDV0DXHbw89ycfOv+KFxB+7CEzFffjtklM3K8apyHWxqyeM8+mCgFVLyJ95pFvEFNP7x9gE2vvQQPxF3UWTq0MOPz/lxRHI8jybswelMrqCobV3E258Ob9d28qMntnB698O8ZP0XFoOAj/wGjr8u4gI4XEnwg24j2HPmbZikYnIMuH28u2kDPR88xaKO57jWcIAhk5O+E79D6plfBXNSxI+ZZDFiTMnD60/CqsL65z1KYM0xfYMuNjzzN0p2/ZmzZQO1ycvJ/eSfKFwQmYlNRyM5byEcAH9nHeZZO4piqvgCGrsa26nb9g6+2tcp6X2XS8UeLCJIn70Y79rvYT3xc5CUPnFj06QsK5lXAtm6wOraDwtOnLVjzVdeeP4JrhZ76DzhxxELvxzJwhwHb8lCynrmR0hHbWsv6x75PR/p+AuniV7ayy4i54rfRmRi87FwWE0MpS0EN3p4WGVkyuBPh+4hH/e+uJ6c93/D/4pX0SxJaOf9iqTV10ekoMVYVOU6edaXDxagY1fUBJamSZ7aeohnnn2K61x381njTvxpFXDpP6DkQ7N23IU5eg5SvWEBRUPtusfcnjVrxxuP2vZBfvPCbsTOf/EX66MUm1ug6iNwwf9NezLhyVCV6+CV3R2wYKkq1R5DaJqkvr2Xpt0bcR9Yj7n1Ayo82zhb6PP6tdgr6Tz+R2Sdcv2Mp7WYiJIsO83t+ZSrwlTzHiWw5oBgUGP7xtcYfO9eFnW+yNminybTAmpP/BULP3zDrIeK5Ofm0ClTMLXuI21Wj6QYDSklHf1DNNTto/PgLjyt+7D37KDIvYclNLJC6OmJrfZKehd+juzjLyK15ENzEkJUmmWnSWajCROGBIzpHvD4Kdj+Z4YMTrJO/cysHCPbYaXRWIzD8xZ4B8HqmJXjTMTBjgFee/xOTmi8i+sMTbSm1uD/+EPklJ4wJ8cvyCukqz6dzChVkOv3+Lnv5U2Y3vsjn+NZzAYN78rrsZ/9X3PiuV2Y42CPFvLcte+CirNm/ZgjkVLyyu52Hn32BT7W8w/+bHwPnz0TeeatmI+/PmK5RmNht5ooTEtii6+IU0CvpFc2/Qmcp0NdxyC/e2kvg9v/zTdMD7PIchAtewl8+DdQff6sH78yx8lDG5vwZCzGtvmveiW4WYhMUEwdTZO0D3hp7uiit3kPvpZdGLv24hjYT5a7nhJaKBcBAHoNaXRmLqe+6iYWrLmI/MzZ8XqPRlmWnf0tuZQn4PM61lACa5Zoa66jYcOziAOvs6BvAyvoxivN7E49hcEPXUvJ2ktmdbR0JKWZdhpkLmWdasRjNnG7hmhv2E1P8168bfug5wCWgYNkepvIlx3kiMN1XgaEk/bUJTQUnE9W1QmkVZ1CniNnzm0uzbQTwMRgchEpXfvm/PjR5rlXXuETbKR1xVexz5LwEULgTqmAfqBzLxRGPs9yPOra+nj3qb+wpvEurhXNdCaXMnD2HeQdf8Wc5gEtynOye38hJ7XtjMgM95Ola9DLo6+ux77pT1wnXyZJ+OivvISkC27BNEvhgKNRleukmxTc5nSS5rDIQyCo8fS2Fl5/6Sk+0vcAfzR+QMCajHbyd7B86CawOufMlqpcB+t6cvgi6CFycySw6joG+ePLu/Ft+xefN/2bJeZ6gmll8OG7MCz9+Jw9i8OVBJutZVQEPHrYflZki+ooRkdKSfeQj6aOHroP1TLUWkeguwFjfyN2dzMZ/lYK6eB40Te8TxAD7cY8+lLLOJB1Dvay48ldfAppmSWkRSmHsiTTzh5/Dmf3vIcI+sGo4pLmK0pgRYi+7nb2b3gO375XKeh6lwWymVyghxTqHMfRXn0OlWf8ByucsxeGMxYlmcm8InOpGlAjHjNBSklnZwcdB3czcGgvgc79GHsbcLoOkuU/RLbspkRIQjWiGJBJtJsL6U1dTG/6R0jOqyR7wSJSC6twphTinAdJ7gVpSViMBlrNxaR0JtbvwxfQcGz8Ax5hI++cr8zqsQw51XMusHYc7GDT03dwSss9fNLQQltSOX0fvoOs4y+Pyqh5dZ6TvVohJ3W8AZo2653aph4X/3rhFYp2/JnrxVsYBPRXXUrSud8iJUITSU+FLIeVDLuFQ5ZSKubAi+fxB3l0UyObX32Ey90P8yvDbry2NIIf+i6mEz43qyGhY1GV6+Rv+zuRzgzEHMwF9cHBHv766i5S9z7El01Ps8DcTiCjEk79A8blV8555zSch7ZLLqAC9DBBJbAiRr/HT1N7N53NdQy11RHoqsfQf5Bk1yHSfS0U0MEK0XvEPn5M9JhzGUotoNe5nIHMUpJzF5JeUoM1t4p8s43oZkseSWmmnRe1fIQMQu/BiE0loYg8SmBNE/fQIPs2vcTQrpfIal9PeaCW44TEJa3UJi2npegKslacT9mSNRxvjG4IQFqyhTZjPnbPWxDwRmxek3jE4wvQcqiB7sY9uFpr0brrsPY3kOppIi/QQrYYYGQwURdpdJoLaExdzYHUUszZ5Tjyq8hesIj0rDycczQyOl2MBsGCzGQOyHyqut9LqJCVV955j3OCb9Ky6NMUz3JnM62wGv8+I8GWXdhWzN5xpJRs2F3P/udu48zeR7lW9NDmqKTvw3eRu2ruRupHY1Gek7/KIgwBN/QdhPTSWTnOntYBnnnu3yypu4svio0EjBaGll1H2odvJj3KxTUqcxzs6S2kov31WaskOOgNcP/6Ourf+CdX+x/jakMDbnse2mn/i/X4T89KAYvJsjDHgS8g8WRUkzRLAktKyWt7OvjHq1tY3PQwt5ifI9Pchz//eDjt15iqPxK16yBcSfCDoSw+Jox6JcGll0bFlljE7QvS3NlDR/N+Blvr8HXVY+htJMnVRJqvhXzZzpKjBFQAI92mXAZTCuhxLqM/o4Sk7DLSCxeSnFOO2ZFHzjx/To+kNGtEJcGu/UpgzWOUwJokwUCA/VvfomvrczgPvUWldyfLhR+/NFJrWcSGBZ8lbdnZVKw6g+UWW7TNPQa3YwGGQamXas9ZFG1zosqgx0dz4wF6Gnfhbt2H6K4jabCBDG8TBVorZcJLOHAoKAUdxmy6rUXUpZ8FGeVYcipIK9RFVKY9lcgWTp97SjOT2dGaw3lBrz4iNodhU9FCSon/zd8ihYGij3xj1o9XnpdOg8wl69AOZuPuoGmSN9/fStfLv+Ns19OsFW6a0tcwdO43yV187rwoCV6aZadOhAoItO2IqMCSUrLhQDfrXniYtc3/4GbjDtxmJ0Orv4rztJuwRKmYwtFU5TrZcKiAj4gB6DkQ0Xmm2vo93LtuN4Pv3centScoNbThSqtAnvkHkmqumPUcq8mwKC8F0CfbLWt8PKKeTH9Q46kth3j41Q2c3vMIt5lexm52Eyj/MJz2NcwlJ0f9OghXEtzZ4dc9V23zp1z9fEDTJG29A7Q11tLbsh9fRx2y9yC2wWZSvS3kynbK6WGhODyXXhADXaYcBh0F9DgW0ZdRSlJ2GWkFFThyyzGlFJBjMDL3AfizQ0mGPtkwEJoLK3ITwisiixJY49DZ0sCBdx7HcOBVygc2UoU+Ue9+Yxkf5F1O8qKzWLjmXBY70qJr6CTwZ1TCINC5JyEElscX4GDDfjoaduFp24fo3o89JKKKZCvVwje8rQ8T7cZ8+uxF7E35EMbMMpLyKsksWkR6YQV5JiuRmypw/lGaaWfjviz9btBVG/cCq3vIxzsbN3CO90UaF1xEeWrRrB+zItvBbllIbtfeiLbr8gV46fXXMb37B872v4ZRSBrzz8X6kW9RtOD4iB5rppiNBjxZywj0GjE1bYBFH51xm4GgxvNbDlL7yt84t/9RvmZoZDApC9dJt5D8oc/OaX7RZFicn8I975aBFWjaFBGBtfNQPw+8tpHsXfdwneFFMsUArpzlcNYvSF70sah6LY+mOs+J1WRgh7+QMt8g9DVCesnEO47DkDfAAxsaefX1V7nQ/QR3m9ZhNmnIpZfAKTdjmmdTk1TnOnl+Zyty8RJE86YZtyelZEN9Dy/vbuM/1i6gJHM+TQZxLB5/kPr2Xjob9zHYshetcz+W/gOkuA6SF2imgE7yhTa8fRAD3cZs+u0F9DpOpi99AdasMtIKF5KWX4HRWUCO0RQ3AmoikixGLM5sXEEHyQlQSVDTJM3dgzQ37KWpc4CqpStZXpQWbbMmhRJY47D/9X9ywu6f0UE6taknIxaeRfnaj1KRW0SsOWVteYvhIATb92BcEm1rIseA28vB/bvpadiKr3UX1u59pLsPsCDYSJXwUBXazoeJdlMB/c5i9qSeiilrIY6CKrJLlmDPLqHIYGT2u9nzk9IsO48F8vS7Qee+qJbQjhRS6hWh9jW101G/Hc+hHVh69pE+VEeJ1sRHDS14hYXCS26ZE3uKM5J5jHLOH9oAru4Z57+09rp5+YXHKdp5JxexCS9Wmiuuovgj36A0K3JekUhTlpfJ3r5SljRtnFE7g94Aj7+1Ddfbd3Cp/2k+KvroSanEd8ZtOFZeMW/DoI8vSef7soiAMQlT03uwfHpzH0opeX1vB8++8iqrmv/J94xvYTX6cZWdC6d/heR54K0ZDYvJwIqiNN7oz+VjAC1bpi2wGrtd/OPtOpo2/ptPBv/NZ4zbCFptGFZ9GvGhmxAR9A5GkuNL03lwYyNd9kqyeh8Ddy8kpU25HW8gyJObD3HPur1UdzzHKYbt/Hjf57njposwGqL/3fe5fNQfbKC7fiu+lp0Yu/fjcDWQ52+mQnSyaETRJxdJdFqLGEytYXd6OZbsClLzK8koWog5rZBso5nEm6FxbEqy7DR3FFAZR3NheQNB6lp7OXRgB66mHYiO3TgHasnzNVBKK8XCz/PB1bxp+bMSWPFA5VnXcqDmLEoXryF7Ho0CTofC3CwatWzSmncwv8Z0J4c3EOTAgf2073kP/6Gt2Hr3keU+wAKtmaUjvFGdIoOOpDL2pV6MMaea1KJF5JYtxZZRTFGC5BZNlbIsO904CVhSMMVgJcGeIR/7Wrppq9uGt+kDzF17SRuqo1Rr5EOiA0MonCSAkS5rMa6UJdRnX0rmcRfhzJzZ6PlkMRoEXekrof9BaNoIVdML69jR0MbW5/7CiuYHudrQwIAhlUPLv0r+OV+ibJ6EwY1HTVEa72yvYlHjqxh8LrAkT2n/xm4XT7/6Bunb/sJl8nWShI+O/FMJfvhrpC88c16KipFU5jhItlo5kLSMyrrXpry/xx/kyQ+aef+1xzh/4DH+z7gFv8WKtvxTcMpNJGctjLzREWZVSRr3rMvm/+wORN1rsOSiSe8rpWRjQw/3vLEbx55HuMH0LAvFIfyOHPjQDzAef31UindMhRPL9KDyTSziPIADr8OSiye9f8eAl/vebeCZd7bwEe8z3G1+hXRzLwBlnS387MkivnfJ3HivpZS09XloOFhPb8NW/K07sfbsI9N9gFLtICvE4PC2bmx0WotwpdVwILMcW24l6cWLcORXk+zIYcE8v3bnE4vzU9h1KJeFHXuItbMWCGo0dA7QXLud/sZtyPZdOPr3UeA7SIU4xOKQ8NYQdJry6Esrpy7jw9jyqllbsZpzK2LHvaEE1jhk5BSSkVMYbTMiQnWukz2yiBNa5//khi6vn/37dtC1byPBQ5tJ6dlJqb+WRaKPcHBjuyGbruQy9qR/CHPeYtJLlpNTvpwsezrzv5s5vyjNsgOCLnsluS1bo23OmGiapKHbxc6D7XTsfx/t0GbS+nZRHtjPCtGIVfgBvSpUp60ET9oqmnMXk7agBmfxMkwZ5eRGMQ8lZeGJ+DYZMdS9jmkKAssf1Hhz42b637yd0waeZqkYpC25nK6Tfk7mSZ/COUWREk3OWpTD959ZyWeCz+ody+oLJtxH0yRv7D7E9lcfZEXbY3zesA2/MNNf9XGSzr6Z7JzFc2B5ZDAYBKdUZvHUgWV8bfBvepnuSXhaDnQO8ei6bcgt9/Px4PNcYWjBk5xJ4KTvYV7zGbDHTiboyRVZ/Pn1Ojoy15Cz78VJFftw+4I8s62F5958h+M7n+BHptdINw/gy1kOJ9+Ceeml8yLHbDIUZyRRkGrjXx2ZnGdNgb0vTCiwpJRsa+7jH2/X07L1Za4UL/KMcQNGUxAqz4MTvwB+NzX3X0Xvpq/wE37Hty9cidkYmYHhQFCjsdvFwYMH6GvYhta2E1tfLdnuA1TQyAliaHjbQeGgI6mM1tRz6MhdTOqCZWSXryQptYBiJaIiwrLCVDa/W8pFA2/CQBs4c6Nt0qh4A0H2NXXSvHcTroMfYO3cQb57L9UcpEJ4h7frMOXTn1nBwaxzsRfVkFm+HEvuInIs9pgO/VQCK0GozHXwMgv58MAj4OkHW0q0TQKgb9BD3e4P6KnbiGjZSlq/3mGuES4AAhg4ZC6lNfsU2gpWkLlwDbmVx5OTlBrTF958Ij/FRorNxB5jJbmtj82LSpNBTXKgc5Bd9Yfo2r8JWraQ3reLKlnHeaIZUyhG32Vw0JO5mPbcM3GUHU9a2fGYMxeSb5x/t7a11UW8vWEZa7c9gem8n0zYqWzq6mfDCw+SvvdBTtM2IQQczDkdy9lfIbfqjHnvrRmNsiw77enHM+hy4Nhy/7gCq2PAy/Nvb8S/4e9c4H+RM0QPA7YcBo7/Js6TbyQzCvPGRYJzl+byyx0rudkqEJv/CWf996jb+YMaL+9s4503X2DZoUe4yfgONuFnIGcV8uTvY6u5POrX6XT4UEUmWQ4LT2sncn3fq3DgDSg/fdRttzf38fB7B+jf8gSXBl/kTuM2NLMRrfJ8+NAXsMzTUMjxEELw0eX5/O2tejwrz8e283G44Gej5gv2uf08sbmZp9bvYlnn0/yn6WUqTIcIWlMxrroRVn8GRngt5UW/59Qnv0TK+5/l8/tu5uPnnc3ZS3KwmiaO3gjPE3Wgc4jm5oO4mrZj6NiFvb+WPM8BFoomykYIqQGDky5HOW0ZH6E7dzHppTWkLajB4czDEWPfSayxrDCFB7VQrnTLZnCeF1V7QB8E2dvQSNveDXgbN5PcvYMiby2LaGZZ+HktkulwVtGc/QmSileSVbEKW/5isi32uAwBnX+9EMWsYDMbGcxaieh5GJo3QcWZc25De3cfDbvfp//ARoxt28gc3E1FsJ5VoZEML2aarRU0ZJ+PuXAl2VVryCxfxQJz0pzbmkgYDILjStJ5rb2E04I+aN0GRavn7Pj+oEZt+yB7DtTTt38jom0bWf27qKaej4rW4RC/AXMGA+lL6C68hPSFazAXriQ5bQHJMfIwP2VhFj8xncwZQ3+Euleh4qxjthn0+Hl7/Vt4N97LCQMvcqnopc+QTvPiz1B07k2UZZTOveER5ooTK7jn+TP5/K6nEC1bIP9w3Xq3L8hrW/bS8s5DLOp8nv8QO0FAZ94p+E//T5zV58E8FM9T4fyl+fwkuZCN5hNZ/d4diNWfgRR9ph0pJZsbe3njnfVYdv+Lc4NvcL6hBZ8lieCyT8JJn8M5z4o2TBWT0cAlKwu59e0hrknJxPTqT6Hk5OHvtbXPw7Pbmtn93gvUdL/IV4zvkSEG8Drz0dZ+F8Nx12JImU8zE02dq9Yu4M43D3Cfdi6f8T0E634NH/4BoIeBvrG3gxe2HCCw+1kukG/xT+NmzOYAgYLjYc1/Y1x66ajhtYbjrgFbCkse/zJ3Dn2Jlx9exf8Tq/FnLSIlrxx7cjJWi4Wg14XB3QWuLkT/IZKHDpLqbQ5V0W1ltRgYbnPI4KQ7tZyu9I8wULCMjLLl2AuX4bRnz4u5HBORhdkOao3lBIUR48F3oGpuBdagN8Deugba964n2PQBzp4dlPr3sUJ0DG/TY8igO30RB3I/Slr5cWRWrCE5o5SSGE+3mQpCSjnxVnPE6tWr5caNM0t+VozN757exOffOwdO/AKWC34ya8eRUtLc1knT7vcYbPgAS/s2cob2UC4PYgnF1w6RREtSJa6MpVgXHEde9VpSi5eqWcmjxB9ereWu5zewKekLiNO+CWd+d1aO4/EH2dvaz/66WvrrN2Fu20rO4B4WiXqKROfwdj2WfFwZS7EUryKj4niMhavAGfu1HH/7/HYuf/si0pxO7J97BlILaevqZsfGN/HuepbqntcpF4cIYKA+4xTSPnQ9WasujKvrwu0L8vFfPsXd3ptxWAw0VN9Ai99O/6F9FPRtYiV7sYgg3bZi5NLLyDzl+lmbMyta3PduA395/EWes30PX1I2ewoupWkQAu17WBXYSoWhBQ1Bb/ZaUtd+EmPNZfMm6iAS9Ln8nPPr17lAe50fBX9He8YatjhOprmrj8z+XZxo2Em26CdgsKFVnY/luP+AhWfH1Rx9//34Nu5df5B/FdzDqu5n2ZV3Me/7F9DX2cIybQ9rjHtIwoc/KRvz8sthxVVQsHJyjQ92oL3zR/zv34fV3Tbh5hqCfnMOLscCyCjHVrCU1AU1GPOWgCM35ryEicCVf36H77V/g+VZAv5z3awdp8/lZ0/dATr2vot2aDOpPTsoD+w74nndbsqnJ3UJIn8FGQtXk1mxGjFPwxZnAyHEJinlMaPSSmAlEOv2dRL4x8dZm9JN8te3RqR8rzcQpL6+jo59G/E1byGpayf57r0skIc9D33CSWtyNd6sGpJLjiNv0VoceVXzqnxworOrpZ8Lfvsm7+b/klzjIHzx3Rk/VF2+ALuae2mq3cpQw/tYOnaQ597HYlFPZmiEVEPQbSvGk1WDbcFxpJevxliwfN4nqk8Xly/Aj267kx/1fR+TCDKAA6ccxCQ0AhhocByHedlFFJ98JSIOBOVY7O8Y5P/u/hdf7v8Fywz1gP5baE2uQis7g4KTrsJQuCpuO3ZSSv7wai1vvfI0PzbcQaWhGQCPSKInew3pNedhW/FxSCmIsqWzx85D/Xztoc2s6nicr5keJlv0AzBoyUYrPZWUZR/RQ0itjihbOjt4/EFueXIHj2+s47+M93KV8TWswo+GwJ1aga3qLIyLPwalp0xfWEqpT0bbVQt9jcign2AwiNGajEjOhORMfeAqbUFMhpsmMne+UUfH87fyXfP98MUNkF018U7joGmSpm4XdXV76DmwBVq2kNG/k4XBWgpF1/B27aYCetOWYihcSWblWtIr1kBS+kw/TkwzKwJLCPEgUB1aTAN6pZQrhRClwC5gT+i99VLKz0/UnhJYs0sgqPE//3sLPwr8FvmJuxFLL5n0vpomae3ooLl2M/2NO9Had5PWv5tSfx3Zom94uzZDLp2OKoI5NThLV5G/+ARsGQvitqMUT5z/mzc40/MS3/b8Fq68FxZfOKn9fAGNAx2DHGyope/gdgJtu0nu28cC336qRSNJoSqPfsx02cvxZ9fgKFlFWvlxiLzlcduBGoshb4CnX3+b1L0P49QGSErJJLPqJIpXnImIoWIFM0XTJM09LgZ7WilK8uPMKYEECwf2BzVaej0k4ybTEkA4chLqXimlpKXPg6ZpZJuGsFpsceWpmwz9Hj/dgz7SbAbSZL9esl2JHcUEtPZ5uPjWf7HO8mXMNZfCx++Y9L7dQz4amg/RVbcFd/NWzF27yR6qZSEHSQ3lvwO0m4voS1+KsXAVmZVrSS07flpTCsQ7s+7BEkL8EuiTUv44JLD+LaVcNpU2lMCaff7x1n7WPn8xJZZ+jJfdgaXq7OHYd48vQFdnGz2H9tPXUou3swHRW0/a0AHy/Y3kie7hdvyYaLGU0J+6CJFfQ2rZavIqj8fkiE/PQyLwwo5WvnDPu7yZ+kNyRS+GC38NVRcgTVb63QE6+vrpONRA36Fa3J0NiN6DJA8dJM93kHJxCIfwDLc1ZHDS7axGy11GatnxpJYdh8iujqtQN4VCoVAoosUtT+4g871b+ZLpcfwfuhnzSZ8HZx5BTdLe209HSyP9HU24Ow4Q6NiPtb+eNE8jxbLliIHxIZFMZ/JCfJmLsBXWkFNxHNaiGrClRvHTxQ6zKrCEEAI4CJwlpdynBNb8RdMkP73333y69mYWGDpwY6VfOLBIHw7pwjxi8j/Qc6XaLAsYdJYRzKjCWbSUvIXLceRVqs5yHPKrF/fy+Cvr+Kv55yw0HEJDMCiTsOEdzp8bSY8xiz57GVpmJcmFS8gorcGSuxgSbCReoVAoFIq5xOMP8uV73+O8up9ymfFNALzSjARsoWlLRtJtyKQ3qRh/aimmrAqcC5aTVb4KQ7qKMpoJsy2wTgN+FT5ASGDtAPYC/cB/SynfHGPfG4EbARYsWHB8Q0PDjO1RjI+Uknf3NNG88UkyuzaRrA2hmZMwJaVhcmZhziwlPb+CnOJKTI5MdeElGLtb+3lj1yFsTesoGtxGCkOYbXbMSSkkZ+STVrCQ1LxyRGoRmG3RNlehUCgUioRESsn6um7qtr1Devu7pAa7sBgFFnsa1rR87FkFpOWV4cyvAos92ubGJdMWWEKIl4DRsq2/J6V8IrTNn4BaKeUvQ8tWwCGl7BJCHA88DiyVUvaPdyzlwVIoFAqFQqFQKBSxwFgCa8IJRaSUZ0/QsAn4OHD8iH28gDf0epMQYj9QBSj1pFAoFAqFQqFQKOKWSNTJPhvYLaVsCq8QQmQLIYyh1+VAJVAXgWMpFAqFQqFQKBQKxbxlQg/WJLgKuP+odacBPxZC+AEN+LyUsvuYPRUKhUKhUCgUCoUijphXEw0LITqA+VblIgvonHArRbygvu/EQX3XiYX6vhMH9V0nDuq7Tizm4/ddIqXMPnrlvBJY8xEhxMbRktcU8Yn6vhMH9V0nFur7ThzUd504qO86sYil7zsSOVgKhUKhUCgUCoVCoUAJLIVCoVAoFAqFQqGIGEpgTcwd0TZAMaeo7ztxUN91YqG+78RBfdeJg/quE4uY+b5VDpZCoVAoFAqFQqFQRAjlwVIoFAqFQqFQKBSKCKEElkKhUCgUCoVCoVBECCWwxkEIcb4QYo8QolYI8Z1o26OIHEKIYiHEq0KInUKIHUKIr4TWZwghXhRC7Av9T4+2rYrIIIQwCiE+EEL8O7RcJoR4N3R9PyiEsETbRkVkEEKkCSEeEULsFkLsEkKcpK7t+EQIcXPoHr5dCHG/EMKmru34QQjxVyFEuxBi+4h1o17LQud3oe99qxDiuOhZrpgqY3zXPw/dx7cKIf4lhEgb8d5/hb7rPUKI86Ji9DgogTUGQggj8AfgAmAJ8EkhxJLoWqWIIAHg61LKJcCJwBdD3+93gJellJXAy6FlRXzwFWDXiOX/A34tpVwI9ACfiYpVitngt8BzUspFwAr0711d23GGEKIQ+DKwWkq5DDACV6Gu7Xji78D5R60b61q+AKgM/d0I/GmObFREhr9z7Hf9IrBMSrkc2Av8F0Cov3YVsDS0zx9D/fZ5gxJYY7MWqJVS1kkpfcADwMVRtkkRIaSULVLK90OvB9A7YIXo3/Hdoc3uBi6JioGKiCKEKAI+CvwltCyAs4BHQpuo7zpOEEKkAqcBdwFIKX1Syl7UtR2vmIAkIYQJSAZaUNd23CClfAPoPmr1WNfyxcA/pM56IE0IkT8nhipmzGjftZTyBSllILS4HigKvb4YeEBK6ZVSHgBq0fvt8wYlsMamEGgcsdwUWqeIM4QQpcAq4F0gV0rZEnqrFciNll2KiPIb4FuAFlrOBHpH3LjV9R0/lAEdwN9CIaF/EULYUdd23CGlbAZ+ARxEF1Z9wCbUtR3vjHUtq35bfHMD8Gzo9bz/rpXAUiQ0QggH8CjwVSll/8j3pD6HgZrHIMYRQnwMaJdSboq2LYo5wQQcB/xJSrkKGOKocEB1bccHodybi9FFdQFg59gQI0Uco67lxEAI8T301I77om3LZFECa2yageIRy0WhdYo4QQhhRhdX90kpHwutbguHFIT+t0fLPkXEOBm4SAhRjx7qexZ6jk5aKKwI1PUdTzQBTVLKd0PLj6ALLnVtxx9nAweklB1SSj/wGPr1rq7t+Gasa1n12+IQIcR1wMeAq+XhyXvn/XetBNbYbAAqQ9WILOjJdE9G2SZFhAjl4NwF7JJS/mrEW08Cnw69/jTwxFzbpogsUsr/klIWSSlL0a/jV6SUVwOvApeHNlPfdZwgpWwFGoUQ1aFVHwZ2oq7teOQgcKIQIjl0Tw9/1+rajm/GupafBK4NVRM8EegbEUqoiEGEEOejh/dfJKV0jXjrSeAqIYRVCFGGXtjkvWjYOBbisBhUHI0Q4iPouRtG4K9Syp9G1yJFpBBCnAK8CWzjcF7Od9HzsB4CFgANwBVSyqMTbBUxihDiDOAbUsqPCSHK0T1aGcAHwKeklN4omqeIEEKIlegFTSxAHXA9+oCiurbjDCHEj4Ar0cOHPgA+i56Loa7tOEAIcT9wBpAFtAE/BB5nlGs5JLJvQw8TdQHXSyk3RsFsxTQY47v+L8AKdIU2Wy+l/Hxo+++h52UF0NM8nj26zWiiBJZCoVAoFAqFQqFQRAgVIqhQKBQKhUKhUCgUEUIJLIVCoVAoFAqFQqGIEEpgKRQKhUKhUCgUCkWEUAJLoVAoFAqFQqFQKCKEElgKhUKhUCgUCoVCESGUwFIoFAqFQqFQKBSKCKEElkKhUCgUCoVCoVBECCWwFAqFQqFQKBQKhSJCKIGlUCgUCoVCoVAoFBFCCSyFQqFQKBQKhUKhiBBKYCkUCoVCoVAoFApFhFACS6FQKBQKhUKhUCgihBJYCoVCMU8QQpQKIaQQwhRtW+IdIcR1Qoh10bZjviGEOFUIsSfadigUCkUsowSWQqFQKGIaIcQtQgi/EGJwxN+3om1XLCKlfFNKWR3pdoUQK4UQm4QQrtD/lZE+hkKhUMwXlMBSKBSKCKE8T1HlQSmlY8TfrdE2KJLE8m9LCGEBngDuBdKBu4EnQusVCoUi7lACS6FQKGaAEKJeCPFtIcRWYEgIYRJCnCiEeFsI0SuE2CKEOGPE9q8JIf5XCPGeEKJfCPGEECJjjLavF0LsEkIMCCHqhBD/31HvXyyE2BxqZ78Q4vzQ+lQhxF1CiBYhRLMQ4idCCOMEn6NCCPGKEKJLCNEphLhPCJE24r1uIcRxoeUCIURH+HMJIS4SQuwIfd7XhBCLjzo/3xBCbBVC9AkhHhRC2KZ+pqeOEOI7ofMyIITYKYS4dIzthBDi10KI9tC53CaEWBZ6zyqE+IUQ4qAQok0IcbsQImmSx/97aPsXQza8LoQoGfH+b4UQjaFjbhJCnDrivVuEEI8IIe4VQvQD1wkh1goh3gmd5xYhxG0jRUoovPQLQoh9oeP9T+i7ezt0jIcmEjVCiDOEEE2T+XxT4AzABPxGSumVUv4OEMBZET6OQqFQzAuUwFIoFIqZ80ngo0AakAs8DfwEyAC+ATwqhMgesf21wA1APhAAfjdGu+3Ax4AU4Hrg1yNEzlrgH8A3Q8c9DagP7ff3ULsLgVXAucBnJ/gMAvhfoABYDBQDtwBIKfcD3wbuFUIkA38D7pZSviaEqALuB74KZAPPAE8d1ZG/AjgfKAOWA9eNaoAQp4TEw1h/p0zwGY5mP3AqkAr8KGR//ijbnYt+/qpC214BdIXe+1lo/Ur081kI/GAKNlwN/A+QBWwG7hvx3oZQuxnAP4GHjxKfFwOPoH+/9wFB4OZQWycBHwa+cNTxzgOOB04EvgXcAXwK/ftchv5bnTYhoTzW9/PHMXZbCmyVUsoR67aG1isUCkXcoQSWQqFQzJzfSSkbpZRu9M7sM1LKZ6SUmpTyRWAj8JER298jpdwupRwCvg9cMZqHSUr5tJRyv9R5HXgBXTAAfAb4q5TyxdBxmqWUu4UQuaFjfVVKOSSlbAd+DVw13geQUtaG2vJKKTuAXwGnj3j/TqAWeBddGH4v9NaVwNOhff3AL4Ak4ENHnZ9DUspu4Cl0UTGaDeuklGnj/I1XlOKKozr7BVLKh0PH1aSUDwL7gLWj7OsHnMAiQEgpd0kpW4QQArgRuFlK2S2lHAD+30Tn8iiellK+IaX0op+zk4QQxaHPe6+UsktKGZBS/hKwAiPzn96RUj4est8tpdwkpVwf2r4e+DMjvqMQt0op+6WUO4DtwAtSyjopZR/wLLrgnjZSyuXjfD9Hi70wDqDvqHV96OdcoVAo4o6YjelWKBSKeUTjiNclwCeEEBeOWGcGXh1j+4bQ+1lHNyqEuAD4IboHxQAkA9tCbxeje4uOpiTUXouuDyC0b+Mo2448Vi7wW3QB5wzt03PUZncCTwI3hgQD6B6vhvAGUkpNCNGI7ukJ0zritSu0T6R5SEr5qZErhBDXAl8DSkOrHIxynqWUrwghbgP+AJQIIR5D9zza0M/5phHnUgDjhlsexfB5l1IOCiG60T9/oxDiG+hCuQCQ6J7KrNH2DX2eKnThuzpklwnYdNTx2ka8do+ynDcF2yPFIPpnG0kKMBAFWxQKhWLWUR4shUKhmDkjQ58a0T1UI0f27VLKn43YpnjE6wXoHpTOkQ0KIazAo+geoVwpZRq6oAr39BuBilFsaQS8QNaI46dIKScKx/p/oc9RI6VMQffEHVYVQjiA3wB3AbeIw3ljh9BFXXg7Efp8zRMc7xiEXiJ8cJy/UyduZbitEnRBeBOQGTp/20d+ppFIKX8npTweWIIuaL+J/p24gaUjzmWqlNIxhY81/F2HzmEGcCj0Wb6FHo6YHrKv7yj7Rv6uAP4E7AYqQ9/Rd8f6PLOF0HPtxvp+bh9jtx3AcjFCpaKHiu6YfYsVCoVi7lECS6FQKCLLvcCFQojzhBBGIYQtVDigaMQ2nxJCLAnlM/0YeERKGTyqHQt6yFgHEAh5s84d8f5dwPVCiA8LIQxCiEIhxCIpZQt6KOEvhRApofcqhBBHh5IdjRPd09AnhChEFxgj+S2wUUr5WfQcs3Bn+iHgoyE7zMDX0QXe2xOdqKMJlQh3jPP35hSas6MLlA7QC4ag5yAdgxBijRDihJD9Q4AH0KSUGrpI+7UQIie0baEQ4rwR+0oxoojJKHwklFtmQc/FWi+lbEQ/34GQfSYhxA841stzNE6gHxgUQiwC/nOC7SOOlHLpON/P58fY7TX0/LEvC71oyE2h9a/MidEKhUIxxyiBpVAoFBEk1Hm+GN270IHuUfomR95v70EvRNGKHob25VHaGQitfwg9VO8/0MPzwu+/R6jwBbrn43UOe5KuRRdoO0P7PoKeNzUePwKOC7X1NPBY+A0hxMXoRSrCHfqvAccJIa6WUu5B93b9Ht3jcyFwoZTSN8HxZhUp5U7gl8A76GFyNcBbY2yegi6ketDDHbuAn4fe+zZ67tl6oVfze4lQnlQol2qAw2Gbo/FP9DDPbvTiE+EwxueB54C9oWN6mCCMEz1s8T9Cx7wTeHCC7ecFod/CJei/y170Ai+XRPs3olAoFLOFOLKoj0KhUChmEyHEa8C9Usq/RNsWxcwQQnwKPXzwv8Z4/+9Ak5Tyv+fUMIVCoVBEFVXkQqFQKBSKaSClvDfaNigUCoVi/qFCBBUKhSJBEPqkt1MpTqCIQ4QQ3x3jd/BstG1TKBSKeECFCCoUCoVCoVAoFApFhFAeLIVCoVAoFAqFQqGIEPMqBysrK0uWlpZG2wyFQqFQKBQKhUKhGJdNmzZ1Simzj14/rwRWaWkpGzdujLYZCoVCoVAoFAqFQjEuQoiG0darEEGFQqFQKBQKhUKhiBBKYCkUCoVCoVAoFApFhFACS6FQKI5CSok/qEXbDIVCoVAoFDHIvMrBGg2/309TUxMejyfapihiDJvNRlFREWazOdqmKGKMHz21k5TNf+aa/7iW7IWro22OQqFQKBSKGGLeC6ympiacTielpaUIIaJtTtTwBYJYTMZomxEzSCnp6uqiqamJsrKyaJujiDH2vP8a93M3vn8+DD9oibY5CoVCoVAoYoh5HyLo8XjIzMxMaHHV7/bT1NpOf1crqImhJ4UQgszMTOX5VEwZjz/IOYE3ALBoLmjfHWWLFAqFQqFQxBLzXmABCS2uAAY9PsoNraR4W5C+oWibEzMk+u9GMT363H6yRS8+9NDSgZ3PR9kihUKhUCgUsURMCKxERwv4h18Hh7qjaIliPnLfuw2c+YvX6GjYDZ6+aJsT8/S6/Dhx02VfyH4tn6FdL0XbJIVCoVAoFDGEEliTQAjB17/+9eHlX/ziF9xyyy1zdnwZ1AWWJgHfwBHvrV+/nhNOOIGVK1eyePHiYbtee+013n777Wkfs6GhgeOOO46VK1eydOlSbr/99mm3pZhd/v5WPcld28n+2wnw8HXRNifm6XX5cAoXNkc6WwyLcHZuVaG5CoVCoZgT2nt6+e0vfsiT7486f60iRlACaxJYrVYee+wxOjs7I9qulBJNm7gUtEHqAmtQODFpPgge9mh9+tOf5o477mDz5s1s376dK664Api5wMrPz+edd95h8+bNvPvuu/zsZz/j0KFD025PMXu09nu40PiOvrD/FXD3RtWeWKfX7ceJC0NSKr2pS7EHe6H3YLTNUigUCkUC0Pzcb/nK4G/Y+cQvo22KYgYogTUJTCYTN954I7/+9a+Pea+jo4PLLruMNWvWsGbNGt566y0AbrnlFn7xi18Mb7ds2TLq6+upr6+nurqaa6+9lmXLltHY2Mg3v/lNli1bRk1NDQ8++CCgC6QzzjiDyy+/nNNPPY2rb/oeXrMT4Ig8rPb2dvLz8wEwGo0sWbKE+vp6br/9dn7961+zcuVK3nzzzXHtvOaaazjppJOorKzkzjvvBMBisWC1WgHwer1jCsHf/e53LFmyhOXLl3PVVVcB0N3dzSWXXMLy5cs58cQT2bp16/CxPv3pT3PqqadSUlLCY489xre+9S1qamo4//zz8ft14fjjH/+YNWvWsGzZMm688UbkUd4DTdMoLS2lt7d3eF1lZSVtbW0TfpfxxqA3wIAnQK5xhGfzwBvRMygO8PiDOIUbYUtBFB0PgL9pU5StUigUCkUiYG9dD8DH5OvUd6q8+1hl3pdpH8mPntrBzkP9EW1zSUEKP7xw6YTbffGLX2T58uV861vfOmL9V77yFW6++WZOOeUUDh48yHnnnceuXbvGbWvfvn3cfffdnHjiiTz66KNs3ryZLVu20NnZyZo1azjttNMA+OCDD9ixYwdmvFxy8aW898F2PrI0A83nwpiUBsDNN99MdXU1Z5xxBueffz6f/vSnKS0t5fOf/zwOh4NvfOMbAPzHf/zHmHZu3bqV9evXMzQ0xKpVq/joRz9KQUEBjY2NfPSjH6W2tpaf//znFBQUHPNZfvazn3HgwAGsVuuw4PnhD3/IqlWrePzxx3nllVe49tpr2bx5MwD79+/n1VdfZefOnZx00kk8+uij3HrrrVx66aU8/fTTXHLJJdx000384Ac/AOCaa67h3//+NxdeeOHwMQ0GAxdffDH/+te/uP7663n33XcpKSkhNzd3wu8x3mjv16skVju87BkootLUhqHpPVhyUZQti128AQ0nLqQthbyS4/FtN9K77z1yaj4ebdMUCoVCEecUDGwDYIlo4LE9ByjNWhZlixTTQXmwJklKSgrXXnstv/vd745Y/9JLL3HTTTexcuVKLrroIvr7+xkcHBy3rZKSEk488UQA1q1bxyc/+UmMRiO5ubmcfvrpbNiwAYC1a9dSVFSERWisWLaI1uYmvJjRvK7htn7wgx+wceNGzj33XP75z39y/vnnj3rM8ey8+OKLSUpKIisrizPPPJP33nsPgOLiYrZu3UptbS133333qB6i5cuXc/XVV3PvvfdiMpmGP9M111wDwFlnnUVXVxf9/bowvuCCCzCbzdTU1BAMBoftrampob6+HoBXX32VE044gZqaGl555RV27NhxzHGvvPLKYW/fAw88wJVXXjnuOY9XXL4gAHmmQVrJoNW+GBo3RNmq2Mbv9+MQHgy2VJYuyGaXLEFrVh4shUKhUMwymkayNsQe8xIMQjKwb/qpHoroElMerMl4mmaTr371qxx33HFcf/31w+s0TWP9+vXYbLYjtjWZTEeE1Y2cj8lut0/qeFarFSklAonBYEJIDTdWUoLuI7arqKjgP//zP/nc5z5HdnY2XV1dx7Q1lp1wbDnzo5cLCgpYtmwZb775JpdffvkR7z399NO88cYbPPXUU/z0pz9l27ZtE34m0L1QZrN5+FgGg4FAIIDH4+ELX/gCGzdupLi4mFtuuWXUuaxOOukkamtr6ejo4PHHH+e///u/xz1uvOIN6L+xpEAvPstCdol0ClpfAE0Dgxo/mQ7So4dbiqRUijOSWG+ooKrnHb3QhSr9r1AoFIrZwjeIAY09jjVU9uzC0vZBtC1STBPVA5sCGRkZXHHFFdx1113D684991x+//vfDy+HQ+FKS0t5//33AXj//fc5cODAqG2eeuqpPPjggwSDQTo6OnjjjTdYu3bt8PsSMKB37AwGQcBgwygDw4Uunn766eEcpX379mE0GklLS8PpdDIwcDgvZyw7AZ544gk8Hg9dXV289tprrFmzhqamJtxuXcj19PSwbt06qqurj7Bd0zQaGxs588wz+b//+z/6+voYHBzk1FNP5b777gP0XLKsrCxSUlImdY7DYiorK4vBwUEeeeSRUbcTQnDppZfyta99jcWLF5OZmTmp9uMNr1/3YFm83RgcWWzy5IF/CHpV9aHpIry6t9WYlIoQgv7URSRpg9DfHGXLFAqFQhHXhJ4/3qRceq2FZA7V4g0Eo2yUYjoogTVFvv71rx9RTfB3v/sdGzduZPny5SxZsmS4nPlll11Gd3c3S5cu5bbbbqOqqmrU9i699FKWL1/OihUrOOuss7j11lvJy8sbfl9KEBwu8iDNSfoLvy5+7rnnHqqrq1m5ciXXXHMN9913H0ajkQsvvJB//etfw0UuxrIT9DC/M888kxNPPJHvf//7FBQUsGvXLk444QRWrFjB6aefzje+8Q1qamoA+OxnP8vGjRsJBoN86lOfoqamhlWrVvHlL3+ZtLQ0brnlFjZt2sTy5cv5zne+w9133z3p85uWlsbnPvc5li1bxnnnnceaNWuG37v99tuPsPvKK6/k3nvvTdjwQNA9WDa8GAMuktLyeHtAL3hC+87oGhbDGMICKzkVAJGzCADZPn5upUKhUCgUMyI0l6WwpeLNXEQljexrGz/tRDE/EUdXaIsmq1evlhs3bjxi3a5du1i8eHGULIo+gaCGt3U3ZpMJS24Vnf1DZA3uRXPmY3DmTdzABNxyyy1HFMOIN+L99/Pc9hZ+dO+LvGP7ErtW/4TL1hWw03YDnPk9OP1bEzegOIb7H3mIT27/HPLqRxGVZ/PQG1u44pXT6Dv1h6R++GvRNk+hUCgUcUrgwDpMd3+Ux5b9gdOt+0jb+FuevnATF62uiLZpijEQQmySUq4+er3yYM1ztLAHK5T7YTFb8Ekjms89wZ6KRMDj10gSXgByszJxYWMgqQjaji0MopgcMqCfT2HW8xXLFhTTIVNxNW2PplkKhUKhiHP8Q736C1sqKaUrMQpJb8PWqNqkmB4zLnIhhCgG/gHkoqcM3SGl/K0Q4hbgc0BHaNPvSimfmenxEg0pZSgHS9fCNrMBLxaSAscWfpgOt9xyS0TaUUQHbyCIDR8A6alOHFYTTZYyFqsQwWmj+XWBhVEvyFKV42S7VsTCrj1RtEqhUCgU8U5gqEd/YU3BnK9PjRNs3QFcmdLc1wAAa95JREFUGj2jFNMiEh6sAPB1KeUS4ETgi0KIJaH3fi2lXBn6U+JqGkjCOVi6B8tsNODFjCHo0xO0FAmNx69hRS94IkxJVGTb2a0tgK5a8EdGhCcaMhgSWCYLAKnJZprNC0gdrFPXnEKhUChmDc3dC+g5WGSU4xMW7L17o2uUYlrMWGBJKVuklO+HXg8Au4DCmbar0NGO8mAJIdCMVgxow5UEFYmLNxDEKkK/A5OVihwHm1y5IDXo3h9d42IUETjSgwUwlFqJTXNBX1OUrFIoFApFvKO59SJLIjkFDEZ6ksvI9R7A41eVBGONiOZgCSFKgVXAu6FVNwkhtgoh/iqESB9jnxuFEBuFEBs7OjpG2yShGa4iKEZ8VabQXFYRChNUxC5evzYcIog5iYpsBx+4svTlzn3RMyyWCRzpwQIQOXqhlGD77mhYpFAoFIoEQPP045FmLBa9YrQ/vYIyWjjQORRlyxRTJWICSwjhAB4Fviql7Af+BFQAK4EW4Jej7SelvENKuVpKuTo7OztS5sQNR+dgARhCF17QrwpdJDqeQJAkEdAXTFYqsh0ckKHqkl1KYE0HEQwJVtPhSblTFywDoL9h/Im0FQqFQqGYLtLvxoMFm1nv81lzqigSndQe6oqyZYqpEhGBJYQwo4ur+6SUjwFIKduklEEppQbcCawdr435zuOPP44Qgt27xx7Brq+vZ9myZRE75p49e7jg3LM57twrWX7Smdx4440A7N65k6deegvNNz0PlsfjYe3ataxYsYKlS5fywx/+MGI2K+YWr1/DbgwLLBsLcxy4sOG25UJnbXSNi1WCx4YILigqokOm4j6kKgkqFAqFYnbQQgLLajICkFq8BIOQdDWpIkuxxowFlhBCAHcBu6SUvxqxPn/EZpcCMd0zuf/++znllFO4//77R30/EAjM+BjB4JExtl/+8pf5z5u+xOYXH2Dbe2/wpS99CYDdO7bx71fennaIoNVq5ZVXXmHLli1s3ryZ5557jvXr18/YfsXc4wkERwgsKyWZyZgMgnZLsV7oQjFlDMMerMMhgguznezVijB2qoecQqFQKGYJvwevNGM16d1zS04lAL5W9eyJNSLhwToZuAY4SwixOfT3EeBWIcQ2IcRW4Ezg5ggcKyoMDg6ybt067rrrLh544IHh9a+99hqnnnoqF110EUuW6IUTA4EAV199NYsXL+byyy/H5XIB8PLLL7Nq1Spqamq44YYb8Hr1UfLS0lK+/e1vc9xxx/Hwww8fcdyWlhYK8kM6VRioqanB5/Px4x/dwqNPPceasy7mwQcfZGhoiBtuuIG1a9eyatUqnnjiCQD+/ve/c/HFF3PGGWdQWVnJj370I70pIXA4HAD4/X78fj8iNM/WSB5++GGWLVvGihUrOO200wDd+3X99ddTU1PDqlWrePXVV4ePdckll3DOOedQWlrKbbfdxq9+9StWrVrFiSeeSHd3NwB33nkna9asYcWKFVx22WXD52ckJ554Ijt2HJ7H6YwzzuDoCagVOl6/hsMYLnKRhNloYEFmMgco0EMEVdW7KSNG8WDplQSLSR2Kj0qCUkquu2s9D//j94dzzhQKhUIRVaTfgxfzsAeLzIUAmHrromiVYjrMeB4sKeU6wjXEjyTyZdmf/Q60RjgHIq8GLvjZuJs88cQTnH/++VRVVZGZmcmm/7+9945v5Srz/99HXZZkyUXu3bf4Nt/0QkJIo6SQLASS7MJCgIWlfVn4LcvC0hbYsJTdpYYeCCUkhCQkIT2k15vbe7N93XuTbHVpzu+PkW+1r5tsSfZ5v173FWs0MzqTmZHOZ57n+Txbt3L22WcDsG3bNvbs2UNtbS2tra0cPHiQ22+/nYsuuogPfvCD/OQnP+GTn/wkt9xyC08//TSrVq3ife97Hz/96U/59Kc/DUBBQQHbtm075XM/85nPcN21V3PR2eu54s1v458+9v/weDx8/etf58Xnn+P2W/8FijfwH1/+Cpdffjm//vWvGR0d5bzzzuPKK68E4PXXX2fPnj3k5ORw7rnncs0113DOOeeQSCQ4++yzaWpq4hOf+ATnn3/+KZ//9a9/nSeeeILy8nJGR0cBuO222xBCsHv3bg4cOMBb3vIWDh3SLUT37NnD9u3bCYfDrFixgm9/+9ts376dz3zmM/zud7/j05/+NO985zv58Ic/DMCXvvQlbr/99qORuQluuukm7rnnHr72ta/R09NDT08P55xzSpNsBRCJa+QYjkWwAFZ4neztKuLSiA8Cg+BUtY2zwaAlI1hG8wnLA656bL7HYawXcksn2TJ72N4xiqX5cd5t+R7B+3aQc9Pt6R6SQqFQKOLhE2qwsOUyZi4gN9CKpkkMhsmm24pMJKUugkuVu+66i5tvvhmAm2+++YQ0wfPOO4/a2tqjrysrK7nooosAeO9738tLL73EwYMHqa2tZdWqVQC8//3v54UXXji6zU033TTp537gAx/gtdc38+5rr+SFl17hggsuOBr5wpB8uhEP8+STT/Ktb32LM844g0svvZRwOEx7ezsAb37zmykoKMBut/POd76Tl156CQCj0ciOHTvo7Ow8KsJO5qKLLuKWW27hl7/85dH0xZdeeon3vve9ADQ0NFBdXX1UYF122WW4XC68Xi9ut5u3v/3tAGzYsIHW1lZAF2FvfOMb2bBhA3feeecJkaoJbrzxRu69914A7rnnHt71rndN+v9HAeFY4jiBpZsy1Bc52Roo0Jcpo4tZY0hEiQoLnBTVFV79/pUD2Z+qsbNjlEsNOwCwHXgg61s+PLyrmyu+cT8dT/0EtOy2M+73h/nSA7vpHs1+E6M+f5j/eeIg/b4AJPv7ZCv9Y2G+9dgBBsYiED0180KhSAUiEUlGsI5Nz4POGqrpptuX/d8Jy4l5R7AWlWkiTQvB8PAwzzzzDLt370YIQSKRQAjBd7/7XQAcDscJ65+cajdZ6t3JnLyP4yktKeaDN/8d7//ov7DxvEuOCaGkwNJiYaSU3HfffaxevfqEbTdt2jTteDweD5dddhmPP/74KQYdP/vZz9i0aROPPPIIZ599Nlu3bj3tcVitx1KqDAbD0dcGg+Fojdott9zCAw88wMaNG7njjjt47rnnTtlPeXk5BQUF7Nq1iz/96U/87Gc/O+3nLmcicY0cEdNdJpMRl7pCBw8nSvS7e/AwVL8hvYPMMgwyRlyYsZy03FmxDprA37kXd/2l6RhaymgbCvI+oy4UDTIOPbug4uw0j2ru/OblVt4buZvKl5+AnDhc9Kl0D2nOfO9vh3jy9T18cv97oa4Rbvp9uoc0Z378TBO/f62NCw7/L0WDf4J/awFHQbqHNSd++PRh/vBaOyVDr3FL07/ATX+ANW9P97AUSwwRDxOWx0wuAChYQe3wY+wdCFCRl5O+wSlmhYpgTcO9997LP/7jP9LW1kZraysdHR3U1tby4osvTrp+e3s7r776KgB//OMfufjii1m9ejWtra00NemmA7///e9505veNO1nP/7440SjerpSX98gQ0NDlJeX43K5CAZDaFKQiIV461vfyo9+9CNksjZk+/btR/fx1FNPMTw8TCgU4oEHHuCiiy5iYGDgaMpfKBTiqaeeoqGh4ZTPb25u5vzzz+frX/86Xq+Xjo4O3vjGN3LnnXcCcOjQIdrb208RdqdjbGyM0tJSYrHY0f1Mxk033cR3vvMdfD4fjY2NM97/ciMcS2AXMT16lRTPdV4nXdJLwmBREaw5YNSiJMTJ8grKK2rxSzvjnfvSMKrU0jEcpESM8Jo9+T3Ukb0mN1JKDvWNcaFBPy9yx9TfK9nA9vZRzjMcoCTSCvsfgqHsbRi+pW0EO2EuHvyTvmDzL9M7oHmwvX0UgLzmh/QFT/xH+gajWLIYJolgOcoaKBR+Oru70zgyxWxRAmsa7rrrLt7xjnecsOyGG26Y0k1w9erV3HbbbaxZs4aRkRE+9rGPYbPZ+M1vfsO73/1uNmzYgMFg4KMf/ei0n/3kk09y0YUXsvHKm7jq+hv47ne/S0lJCZdddhmHDh7gjLfczD1/vo8vf/nLxGIxGhsbWbduHV/+8peP7uO8887jhhtuoLGxkRtuuIFzzjmHnp4eLrvsMhobGzn33HN585vfzLXXXgvAV77yFR56SP8B+bd/+zc2bNjA+vXrecMb3sDGjRv5+Mc/jqZpbNiwgZtuuok77rjjhMjVdHzjG9/g/PPP56KLLjpB1D300EN85StfOfr6Xe96F3fffTc33njjjPe9HInENWyG+NH6K4B6rwMNAz57pbJqnwNGLUrcYD5l+coSFy2ybEmI1uD4KDmECBaup0960Hqz1+S12xcmER6nwdBBQFoRAwcgOJzuYc2JeEKjZSDAGeb2YwsPP5W+Ac0DKSWtgwHWmXuPLWx+Nn0DmgexhMbhvnHsZiNnJXbpC0fb9XpMhSKFGBITNVjHIliOMv0h9ljX/nQNSzEHsitFMA1MuOQdz6c+dSz95NJLLz36d01NzZR9sq644ooTIksTTNQmTcb//d//8cUv/QcF4Q4oWAlW3fkvPz+fzZtfx999GKchislu5+c///mk+6ioqOCBBx44YVljY+OkYwHd2GKC+++//5T3J8Tiydxyyy3ccsstkx7X8e997GMf42Mf+9gp21933XVcd911R18XFxenxPp+qROJa9iIgcl+dJknx0KBw0KXsYJ8ZdU+a0xy8ghWgcPCK4YKav2n1g1mG5bQAACOgnIOt5bj7tmPbZptMpXu0RAlQhdUDyYu4h9Mz0DHJlh9VZpHNnt6fGGiCY3LCnrYP1pFjSOGvev0qdmZSp8/QiiW4LqVceiAIe/5FPTsgHj0hBYI2cDAWIRoQuMfziylfPcg/cWXUNT3ArS9Auvfme7hKZYQhkSUCGYsx0WwRIFu1a6pB6ZZhYpgZToTltAn1U4ZhCBusGKUMdC0NAxMkQlEYglsInpCBAugzuvgcKIERo5kvYHBYmPSYnp65UkIIRhz1uGOD0LYn4aRpQ5bWBdYBcVVHJYVmIYPZq39/OBYhGIxAsCz8kx9YX92pnGOBvV7tUzrpUWW0mOtg/7sfGrdNaobQZyXFwBgm+syvXdjf/Y9oOgf082l3lwJBiHZaT8PDCbo3ZXmkSmWGkYtTAwrxuPdAvNqSGDE5juSvoEpZo0SWJmOTIonceqpkkar7o+fmLyPzS233MKPf/zjhRubIu1E4hpWYkcdBCeo9zrZGfSCFoeRtjSNLjsxyRiacfIn7ImCpJPg4KHFHFLKccYGASiprKVJlmOKB8HfleZRzY3B8Qgl6BGsiKeeYVMRZKnToy+kCyxbdJiorZBDsgIGD2blQ5KJYymI9xHAzgtR/d6hf/Isj0ymzx8GoMrsA2B/OE/vT5Sl15kiczFpUeInP+AzWRizl1EU62A8ojJ7soWsEFgyS5+spoSjx36qG6Ew65NqGQsv4oCyh+Vw3YRjiaTAOjWCtTtcqL9YAjVDi4WUEpOMok0SwQLIKdMbio93Zt9T+AliCQ1PQhckzvwyhu3JNhMD2TfxBRgYj1Ji0CNYzsIqmmV51h6LLxTDQgxT1I/RVcS2cCkkojCcfU1GJwRWTrAbn6WEF4dcetRnMPtESX9SYBVqQwDs9uWAd3XWXmeKzMWkRYgbTq1rj7rrqBO9tAyMp2FUirmQ8QLLZrMxNDS0LCbLkzJFiiCAyaILrERM9UY4GSklQ0ND2GzZWlkyM/QIVgTM9hOW13udNMsy/cWgElgzJZaQWER8SoFVVL2aqDTi78jOFDSAsXCcXBFAIsDm0SeKAAPZGZUbHI9QbfaB1U1lSSF7oqXIgUNZmTrtC8XIR08/tXtKeHmsSH8jC1Mefcl0R0t4kFhOEW2jMbT8uqy8zoYD+rFMRH53+uwkChpgpBXU768iVWgaJjl5irq5aCU1opeW/rE0DEwxFzLe5KKiooLOzk4GBgbSPZS0MD42Sn/CDyPmY82Fk0TjGh3jQwjTOEanL00jzFxsNhsVFRXpHsaCEoknMMsYmFwnLK/zOvHhJGLJw6oiWDMmmtBTLuUUKYIrSz20yhLsWZwaNBaOkUuQmNmFxWCguLSC4W4XeQMHJomTZz6jwSjFRj84i6gvdLJVK0fEQ+Brh7yadA9vVvhCMQqELrA83jKa9rmQwoDo2wfr3jHN1pmFP6ynMpmifkyOFUgJAVc9riyMYPnDMRwWI8ZAL5owMaA56bfVUCo1/QFWqWolokgBcT1SGjee+mDYWb4G864I/V1H4KzKxR6ZYg5kvMAym83U1tamexhp4w/f/zzvHf0pfO4I5OSf8F4wGmfzNz7KGneUos9uStMIFekioUliCYlZRk+pwarMs2M2CvqtVVQq56EZE4trWIghjZO3HijJtbFHlHOGL3t7E/lDegQrYckFkoYospwze/ef0lw5GxgLx8kTQbB7qPM6uFsr198YOJiVAqvUqAssb0klEYIEHNU4szGCFdJFiQiPYivSmwv3W6txDT8B8cgpac2ZjD8UI9duhuAwCVseMmSgmXJKQb/OlMBSpIKkwNIm+f0xe3UnwXDvQeCSxRyVYo5kfIrgckck9EbDk/0Y5VhM9FmqcAdaszIdRjE/IvEEAGYZOUVgmYwGqgsctFIOWW7IsJhEExoW4sgpJn9CCEYcteRHOnW76SxkIoKlTQisQifNWikiSy39/aEYuSIANg/1XidNE6mxWVgf4wvFKLfornul5ZUIAT3Wmqw0U/CFYuTaTBAexZWn14M2U6EbN2VZ82R/OEauzQzhUYw5eQDsCnlBGLPyOlNkKKcRWBTqAss4nJ3f08sRJbAyHKElHQKneKIeyK3DKsMwpjp8LzfCMV1UTxbBAqgrdLA3WgTBwaxtvLrYROMaVhGDKVIEAeJ5KzGi6Rb4WYg/HCNXBMF2LILVIsswR4az8joZC8dxyXGwe8hzWDDm5OE3FWSlKPGHYpSYdXtza66Xijw7R2RZVrZb8IdiFNsToMWxOPIpclnZEy3R38yyNEFfKEau3QShEQw5eZR77BwajEBBvRJYitSRFFhykhRBXKVEDDm4Aq0ktGXqSZBlKIGV4RgSMTQMYJw8m9OQLFDX+lWUYrkxEcEyaqf2wQKoL3KyLeDVX2RpdGKxicT1CNZUDzQArKUNAAS6si9tC/TamFyCCLsb0NMeuwzJtLosvE784RgObVw37EA3eOkwlGeluYsvFKPAGNLbclhc1Hud7IkUZWW7BV8oRqk1+YAwmb75+lgyzT3LjC78oThuuxlCo2DTj6VlMAAFK7PynlFkKElHaDnJA1OEIOCsplp20z2qjFWygQUXWEKItwkhDgohmoQQn1/oz1tqGLQocWGe8n1XhW4b7cti22jF3IgkI1gm7VQXQdAjWIcSE0+Ms2tCky6icQ0rUYRp6ghWQdU6AEbb9yzWsFLKWDiOSwQxJVOdDAZBPK9efzMLRclYKIo9MQZ2D6BH5A7ESrKyPYEvFCPfGARrLhgM1BU6ed2fFCVZdjy+UIxic3IiaPNQW+jk4FAC3JVZdyzHpwhi91BX6KBlIIAsWKFb6GuJdA9RsRRIRrCmqk+UBSupEz00K6v2rGBBBZYQwgjcBlwFrAX+XgixdiE/c6kxncCqrKzGJ3MIdO1fxFEpMoHwRAQrMXnBeJ3XSYcsQjOYs3LinA4marAwT23vX1deQpcsINaXnalB/lCMXAKYHJ6jy+zFdcQxZt3ENxxLYE0EEMijEaw6r5N90SIIjUBgKL0DnCW+UAy3CIJNjy7WFznYHyvW38yye3gsHMdrSk4Y7R7qvQ5GgjFiefVZdyy+CZOLkA/sedR5nYxH4ow5a/Q+ZaPZFV1UZCgTKYKmUx+YAthLVlEuBmntza7vteXKQkewzgOapJQtUsoocDdw/QJ/5pLCoEUn7YkwwYoiF82yDJFlEyPF/NEjWBKjdqrJBUC910ECIz5bRdZNaNJFNOkiKE6TIlieZ+cI5VhGsjM1aCwUxUkYQ1KQANR43bRpRSSy7DrR68l0U4ijEaxCB82yVF+WZd+LvpBuQHJUYCXbLcSseVl5LIUmvZ4Mm5vaQgcAI/YaPa0uS3pbappkPBLHbRUQ8R1NEQRoE8k2IFl23ygylKTAEubJf3/spQ0YhMTflV01jMuVhRZY5UDHca87k8uOIoT4iBBiixBiy3LtdXU6TFqUxGkiWHkOC53GSpxjLYs4KkUmEI4l9GgLTBrB8uRYKHBY6DJlX0pOuojFohiFnPIHDsBoEAzZqskPtWbNJPF4osFRDEIeNbkAPerTIsuI92XXdTIWjuMmKbCOi2C1ZGGTbU2Tej2ZHD8qsCYm8sP2asiidgvxhMZ4JE6eYUJgeajzOgHoNJZDdBzGetI4wpkzFokjJRSaj0XjJo7lQDw7o4uKDCWu1yyKKSJYIukkmMiyGsblStpNLqSUv5BSniOlPMfr9aZ7OBmHUZu8q/fxjDlrcccHIexfpFEpMoFIXMPGhI3/5F/IdV4HhxKlep1AlrmQpYN4VJ9EGabp0RPxrMAmw+DvWoxhpRQtOKr/kZzEg36dNMtSTL4jWVVP4g/FcJ8UwarKz6FHFOmp1Vn0YGFiIp+jBY6eG6/TistmotNQkVVmCmPJJsPHn5uKPDsmg9C/jyBrRIk/pH9vFhiP1ZOV5tqwm43sHzWDPT+rrjNFBhPTrzExVYp6wQoAbD71QD0bWGiB1QUc33K6IrlMMQOklJhkDG0agaUV6E81ZJb8YClSQySuYSUpmqYQBPVeJzuD3qx0IUsH8Yj+A2c4TQQLwFysu3eGerKv9lEL+/Q/rMciWLWFDlpkqe5IOdqeppHNnrGkIyJwNIJlMRmoyHfSby7Lmkk8HJvI2xJjR49FCEG918mhRDEE+mHi3GU4vuSx5BIABFjdmI0Gqgpy2BGccDbNjnMzcSye48SiwSD0e2ZwXO9PlEXRRUUGk4xgGS2TPzDF6mTcUkRRrIOxsHpgmukstMDaDKwUQtQKISzAzcBDC/yZS4a4JjETQztNTx4Ae+kaAMay1DZaMTfCsYTeswkmrcECPTKxM1ykv1BOgtMyEcEyTfUDl8RdtR6A4dYsdBKcmKQfF8Fy2cyM2Kr1F1kUKfGHj4tgHR+RK9R7e2WTwJqYyFviYyccS733uHYLWTKRnzgWpzaup6Ia9KlGXaGTrcM2MDuy5tz4kxPZY9eZB0j2jxuYsGrPjmNRZDZaMoI1pcACIp466kSvfu0pMpoFFVhSyjjwSeAJYD9wj5RS+YnPkImCe3magnuAkprVxKQRf4f6X7uciCQtxYEpXe/qvU5aJgr+lcCalniyD4nRMrWLIEBVZQ2j0kGkN/siWIZIMpX4uEk8AIV6+km2THxhIoJ1Yoog6JPfPZEiZBY16PWFYhhJYIoHT0nf3BYo0F9kyUR+QmDlaMeicaC7IrYNh5AF2eMk6A/p6Y4nX2d1XiedI0Hi+fUw3qdS9BXzZiKD4nQCy+RdSZ3oprl/bLGGpZgjC16DJaV8VEq5SkpZL6W8daE/bykRiWtYRHzaCFZ9SR5tshitXznLLCfCsQQ2potgOfHjIGwtyJrJWTqJR/UUDdNpbNoBqpMREuNw9v0/NUaTP8zHmVwAeIvL8eHIqutkogZLCiNYnEeX13mdHI6XIrIoNdYXiuGaSHc8TizWe520y2L9GLNFlCSjPtb42CnHEk1oBFx1WXOdTaRuOrRk76GjDa0daBL6LMkqiCw5HkXmEo/q97/JOrXAcpStwS2C9PZ0LtawFHMk7SYXiqmJxBNYiME0Aqsk10abKMfmV4WPy4kTIlhT1GBV5tkxGwX9luqsmZylk0RUf4Josp5eYJmNBvqs1bgDrYswqtQhpcQcmxBYnhPeq/M6adZKifVnT6RzLBw/1jdKiKPL65I1ZUDWTHx9oRi54pit+QQrihzEMBHIqciqYwGwxPwnRrCSroj9lkoY7Tha1J/JTIjFnKMCK+nwWKgL+hZtwrEyO9I3FZlLIhnBMp9GYJmKVgEQ6snOPozLCSWwMphITMNKHKZJERRCMJJTQ364M2vSYRTzJxI/vgZr8i9kk9FAdYGDVkqVwJoBWjJF0DxNiiBAyF2HJzEModEFHlXqCMc0HDKZ6mR1nfBenVePymWTWY4vFKPQGESclO5Y53Ue64WVJcfjC8WOs5w/djxV+Q6MBqFHSrJkEj8hsExR/0m1cbooOUIZIGGoOR3DmxX+UAwhwBrz6w87zfp3bW1SLO4J5YMwqhRsxbxJxEJEpBmbxTT1SkknQTGcHd8FyxklsDKYaEKvwZoqOnHCunkrMJE96TCK+ROOHR/BmloQ1BU62BstgdAwBFQH+NORiCVTBKcxuQAQXt1cJtKTPbWPemPeIDGjHYwn9terK3TSopViCfZBJDvy+/3hGHnG0AlpaACFTgvS5mHc5Mmaia8vFCPfeGoEy2IyUJWfwxFZCsPNoGlpGuHM8YfiWIwGRMR3wrnJc+i9+fZEkv2jsiAi5w/HcVlNiPCoHo1LRkqdVhPFuVYOD0UgryYrjkWR2WjRMBHM2EzGqVfyVBEXFnLHW0lo2deHcTmhBFYGc9QlbpoUQQBLiW4bHexRToLLhUg8gdOY7Fl0GhFeX+Rka5YVyacLLa5HsMQMHmo4qjYCMNyyfUHHlErGwnqdT9zsOuW9ijw7bSKZ7pQlToL+UAyPCJ5i2CGE0E0IDOVZcyy+UIwSiy7wTz6eeq9DFyXxMPg60jC62eELxci1mxGh0VNSUeu9Tjb78/QXWRBd9CePhbDvFCFfV+jU3dyUVbsiBWjREGEs2MynEVgGI+POKmrponMkuHiDU8waJbAymHBMbyQrLI5p182vXAfASFv2PE1XzI9ITMNp1B2upotgHUwoJ8GZIGMTEcHpH2pUVq/AJ3OIdO1e4FGlDl8oTq4IollyT3nPZDQQdtfrL7JksugPx3EROGUSD1Bf6OBQvCQrJvGgixKvWRf4pwosJ5vH8vUXWfCQxB+KUWhLQCJyiiipL3KwbygBuRVZcW58oRi5NjNMRLCOo77IQcvAOLJgRdZEFxWZi4yHiUgzVvPpp+ZaQQOrRKeyas9wlMDKYEKxBHYiiBmkK9VWltMvPUT7VOHjciEYjeM2JmuwLDlTrlfnddIlvSQMlqyY0KQTLdnocbq6R4Bar5ODsgrzYPZYtY+FY+QSQJ5s0Z7E6q1HQ2TFJB70ibxTjp9qOY9eU7Y7UgzBQQiNpGF0s8MfilE4hcCq8ybFImSF+PWHY5RZJ6JxnhPeq/c6GQ5EieWtyIrrzB+OkWs36bWWJ5+XQif+cJxxV23WRBcVmYuMzSCCBdjK11NpGKCtp3+RRqaYC0pgZTDhaBw7UQwziGBV5tlpluVYstA2WjE3QjENl3GiD9bUAqve60DDwKi9CgaUAD8tyRTBmdQ92sxGuix15AcOg8yOXHh/OI5LhBC2UyNYAFXF+XRJL9pAdkQ6faEYOVrglCgJ6A8WjvWAy3xR4gvFyDeEQBhOsJwHXZQM4CZudmaFKPGFYpRMiMWTI1he/diG7VX6A58Mv3f8oThuezKCdXKKYNLoosNQoS/IgnOjyGDiM6jBAnLK9YylQJcqCclklMDKYKKREAYhMdqmF1gmo4E+Wy0FwRaVprBMCEXj5BqST4lPI8I9ORYKnRbaTTXQrwTWaZmIYM1AYAGMuVdj14Iw2r6Ag0odExEswySCBPQJY7NWSqwvO3rqRcIBzDI6ZQSrRU7UlGX+xNcXiuExnGo5DxOiRDBsr86KmrLRYIxiS9KCfZIIFkCnsRyi4zDWu8ijmx3+cDJFcIp6MoCDsaRpRxYIeUUGEwsTxjJtiiBFusGSemCa2SiBlcHEw3rfDaN16ujE8QQ9q7DJkEpTWCaEYgmchigYzKc4wp3MqmIXe2Ll4GuHsH+RRpiFxJMRwRmkCAKIEv1JYrx3z0KNKKX4Q3oEy5QzeYpgQ4mLQ7IC00gTJOKLPLrZEYknsEzR0wugttBBtygikSUNen2h2LGeXieR57CQ77DQaaiALIgujgajeM3JhxUnifnyPDsWk4GD8ezoU6bXYBkh4j/lWMo8+rHs91v185bhx6LIbERCr8GaLkWQvFriwozLrwR9JqMEVgYTj0x09Z4+ggUgivXJXrQ7OyZ7ivkRiiZwGiKnjV5NsLrExWvjRfqLgeyITqSFxEQEa3qTC4DcqkYAfEd2LNCAUstoMEIuAUw5eZO+v7LIxUFZiVGLwnBmNy7Xmwyf2jdqAqvJSGWhm35Tecabu2ia1N3q5BjY8yddp67Qwb5EBYx1Z3RNWUKT+MNx8g0TlvOeE943GgR1hQ62jiedTTNY/MYSGsFoAq8lBlI75TqbOJamgQAUrlLfrYp5YYwFCWLDZppmam40MZpTQ0W87WjPOUXmoQRWBhOP6JMH8wxSBAHc1fpkb6R154KNSZE5BKMJcsQMBVaxi12xZLpUv8rbngpjYqIGa3pjGYDa8mLatCKi3dnhJBgIBLCIxJQ1WHaLkbHcVfqL/sx2JPWFYuSSnMRPkfK4usTFfq0C+jL7WMbCcTQJzoQPciYXWPVeJ68HkkYX/ZlrrOJPTvg8hgnx6zllndUlLjYN2sDsyGhRMhbWo7iFxqmPZWWxi4O9Y+Bt0L9bM7ymTJG5mOIBxrFNH8ECYgWrWWXopGVgfBFGppgLSmBlMFoygjVTgVVbXkKnLCTWoyJYy4FwLEEOkdMaXEywqsRFp/SSMNozenKWbkzxIHGMM67BWlHk5KCsxDqUHf9PI+PD+h9TuAgCWEvWkMCQ8deJPxQ7LoLlmXSd1cUutofLYOQIRDJ3IjIU0COnOQn/lBGs+iIHrweTAiuDBeNIUE+z9TAGiEnF7+oSF52+CPHChox+4DMhFvOMyXqySY6locRF12iIcMEaCA7BuHJ2U8wNUzxAQM5MYFlL11AhBmlVToIZixJYGUwiqk8eDKex4D6e2kIHh7RKrMOZ+0RQkTqC0QR2wqe1aJ9gVbELiYHBnNqMntCkG0siSMSQc4rJwFTkWEz02uvxhNohFl7g0c2fRGBU/+M0AquurJA2rZhET+ZO4kF3RMxlGoFV4uKArNJfZHBB+IQoscZGIadg0nXqCp30kk/c4sroe3g0KUpcCR/Y88Bw6mRxTYkeQR12rYK+PRkb9ZlIv8oTk6c7gi6wANqMNfqCDI/8KjIXSyJIxJiD0TD9789EevpYh7reMhUlsDIYEU1+qZtnFsGymY302GrJC7ZCQuXlLnVCsQQ2GZnR9eG0mqjIs9MiqjI+MpFOLFqQqGFm6YETxArXYkDL6An8BFrYp/9xGoHVUOLigKzMeOMO3wkRrMmPZ3WxfiyAPpHPUIbGo5iJY4qNT5kiuKJIdxIccayEvswVWL6g/tuTEx8FR+Gk66xOipIjxhq9nmysZ5FGNzsmBFbuxHU2WQSrVBeLu2Ll+oIMji4qMphEDJOMEjPObL5nKl6rb5bB3wXLnXkJLCHEd4UQB4QQu4QQfxFCeJLLa4QQISHEjuS/n6VktMsM7ajAmvmEL+BejYl4Vlj5KuZHOJbAJsMzqsECfeK8K1oGgX4IDC7w6LITczxIzDiziPEEOZX6k8RAR+bXPsoZCKzVJS4OapVY/G2QjKJnIsPjEdycXmBV5ucwaCrWo5IZPBEZDkTxkExhtE9uQFKVn4PDYqTVWK0/JMnQqM9oSI/G2U4TjSt128i1mdgZTfaPylBRMpG6mXua66zMbcNlM7Fz2AjOkow9FkWGE9Xv/4RpZr/n5NcSE2bso5lrErPcmW8E6ylgvZSyETgEfOG495qllGck/310np+zLBGxZN73DGpsJjCWJJ9q9Kov+aVMLKERS0gscmYpgqCnCb46luzXoqJYk2LVQsRNsxNYFXXrCEszo1ngJGiOjOp/TDGJB6gucNBiqEYgMzoqNxyI4jX4kDbPlK6PRoNgZbGbdlN1Rk98h4NR8kTScn4KUWIwCNaU5rIjWg4RH/g6F3GEM2ckoEd9LJHhKY9FCEFDaS4v+pPOphkaXRwc08VibiLp2ujwnrKOEIKGkqTRRfG6jL7OFBlMskZUm+EDUwxGRnNqKA4fIRxLLODAFHNlXgJLSvmklHKiWcprQMX8h6Q4Smz2ESx35Tri0oC/LfOfpivmTij5hWrRgjNOIV1d4tJtnkEJrEmIJzTshGb+BDHJuop8PQ2tL7OdBEPRBG5t6oniBEaDIFbYoL/I4OtkMBClzDiGcBaddr1VxS52xyr02pgMjfoMj0cpMSW/76dIEQRYW5bLC77k8WZoHdZIMIpBgCE0PGWKIOgR9e39EunOXJfHwfEIFqMBa3gQrLlT/havLnFxoHcMWbRWfyiR4T3kFBlIMoIlZ/h7DhDLX81KQxdN/Zlr4LOcSWUN1geBx457XSuE2C6EeF4I8capNhJCfEQIsUUIsWVgYCCFw8l+5NEI1swFVn1pPkdkKbEML1BXzI9gRBdY5sTMI1irS1z04yFqzs3YyVk6CUQSOAjP/AliknyHhVZTPR7fwYydwIOeuuUVfhIG82lTBAFyS1cSxpLRaXVD4xGKjX5wnF5gNZS42BEty+han+FAlGpbMg3tNMeztjSXnZFkg94MFSX9/ghehxkRHJoyggXQUJLLeCROOG9Nxh7LwHiEQqcFEeg/7UOJ1SW5jIXjjOSugkRUpegrZs+Ey6nVNeNNrGXrqBCDNHf2LtCgFPNhWoElhPibEGLPJP+uP26dLwJx4M7koh6gSkp5JvD/AX8UQkzaeEVK+Qsp5TlSynO83qm/wJYj4mgEa+YpS0dto4czN7VHMX/8YT0Nx5wIzfj6qCt0YjIY6LPVZXRkIl2MR+M4CM3qCeLRbfMacGh+8HctwMhSw2gwRgE+otaCaV0SV5V6OKhVEOvetUijmz3DgSiF+GCaCNaa0lwOaEknwQwVjEOBKFXmZH2cq2TK9daW5eLHQchemrEPSfrGwtS5EiATkDN1BGvC6KLHXq83go5HFmuIM2ZwPEqhywrjA+AsnnK9NcljOTxhqKKcBBWzJaqnCAurc8abeJK9T0fbMvd7ejkzrcCSUl4ppVw/yb8HAYQQtwDXAu+RUn98K6WMSCmHkn9vBZqBVQt2FEsUc2yMmDDPuCcPgMtmpsdaizvcldEF6or54QvFsBLFqEWmbLJ6MhaTgTqvgyYqM7pIPl0EInFyRGRWP3ATmMo2AhDp2J7qYaWMgbEIhcKHljP9g6w1pbns1WoQvTsz9joZGo/ikaPTCqz1Ze6MdxIcCUYpM/rAaD1tfdyqYhcGAd22FdCTmZOqXl+YVTnJerLc0inXmxBYh2QVaHFdZGUYg2MRCp1WGO877XW2Knks20LFIIyQ4Q6cigwkGcEy2mYewTKWrANUzX2mMl8XwbcBnwOuk1IGj1vuFUIYk3/XASuBlvl81nLEGvcTMubOuCfPBJG8ifoJFcVaqvhDsWMOaqeZkJ3M6pJctoVL9SL5DI62pIOxcBwnoTkJLO+Ks9CkYKh56wKMLDX0+sIUCh8G5/QCa11ZLrtlLaaoX2/Sm2FIKRn1+7FrgdOmbgG4c8y4870MmYqhJzNrUwfGIpQYRvTo1Wm+721mI/VeJ3tkrS5IMrB5cv9YhDrLqP4it3zK9ZxWE9UFObweSoqwDBQlg8kUQQL9pxVYuTYzVfk57OoJgbcBejO7HlOReciI/lDCZJ802WtyPNVEhA2nL/MeTijmX4P1Y8AFPHWSHfslwC4hxA7gXuCjUsrheX7WsiMn4SdinsXNlsRcrj/ViKunGksWXyh2zHXMPnVR/MmsLnayaVw5CU5GIBTGJmKzeoI4QUN1GUdkCfGuzJzAA/T4whQIPxb31CloE3hyLPQ71+gvuncs7MDmgC8UwxlLtho4TUrdBBvK3eyWddCzY2EHNgdiCY0+fxivHAbX1BGfCdaW5fLieAUgM24iH4knGA5EqTCO6gtyy067/voyN0/3u/Q05ww7N5omGQ5EKbFLCE+firqh3M3uLh+UnQHd2zM28qvITOIBfYpsdMz89xyDgVFnPeXR1qNlA4rMYb4ugiuklJUn27FLKe+TUq5LLjtLSvnX1Ax3+RCJJ8iV48TmILCKqxoISQv+9sxMIVHMH38ohmeOEayDR+sEMrOGI11EAn4ATPbZC6wyt40mQw3OkcwVrf2+MYrEKEb39JN4AHv5emKYMm7iC9A5EqJcJAWWp2ra9deVuXk9XAXDLbrZRQbR6wujSfAkhsE1dZ3PBGtLc3l+PBkZ6s6slNR+v15HVSyGAHHauiWA9eVu2kaixIs3ZNyxDIxHiGuSekvy2bCn+rTrb6hw0zkSIliwAYKDGWujr8hMYv5+YtKIxTHz33OAeOEaVhk6ONw3tkAjU8yVVLoIKlLIWDiOWwRIWD2z3nZ1qZtDsoJET+alXChSgy8Ux3O0b85sIlgufDgJWosytuA/XUTH9Qm7yTG189lUCCEYyV1DfqwHQqMpHllqCA93YUKbdqI4wZpKLwe0CuKdmTXxBV1gVYik6+wMBNaGcje7ZJ3+IsPSBLtGQ4DEEe6B3Ok7nawty2WAPCL24owTv/1jYQAKEkO6uDKaT7v+hnLdzbLPuVavKcsge/OOYb3qocY0pC+YTmAlj+WgcYW+IMPOjSKzifr7GcFFnnPmNfcAORUb8Ao/rW1tCzQyxVxRAitDmRBYmvX0dsqTUed1cFhWYh9VeblLFX84dqxvziwiWBV5dnIsRrotNSqCdRIRXz8AjrzpU84mpWQDAPGezErbmsDga9f/8FTOaP11Zbns1mp1QZJh6U5do7rAksJw2jqfCdaXu9mj1egvMizlsWskRBGjGBNhyK+ddv21pXpWQ69jdcZFfXp8usDKDXeDe3qxuL5cP5Z9og7iIRg8uKDjmw0dI/r3a6nUvxemE/Lry/Tf6k3BUjCYMu7cKDIbbXyQIeki3zF50/SpcFefAcB4h8pYyjSUwMpQhgNR3AQwzCYfN4nVZGQwpx5nbAgCQwswOkW6GQlEKbYk+6TNogbLYBCsLHZxQKuEgYOgqQ7wE8T9+kTK6j59rcVUeOrOAmDw8OaUjSmVWMa79T9mGMFaX+5mj6zDFPXBaGY9He0aCVFjGARX2bRREtB7lTk8RQyaSzNu4ts1GqJGJPvY5NdNu36B00q5x84eWQeDhyGSOalBLQMBhAD72BEoWDHt+p4cC5X5dl4OJkV/Bp2bjmH9+zU/1gtGy7Tpju4cM9UFOezoiYB3TUYdiyILCA4yJHMpcMwugmUoWav/oTJSMg4lsDKUIf84LhHC4py9wAKIFU44CaqbbinSPxah1BwEk23GjYYnWF3sZEuwBBIRvSZFAYAM6CmCwjF1757TsaKunn7pIdyxI4WjSg3+cIyCWHISP4PIAkCh00pPzmr9RaZFfUaDrDAPIPJqZrzNurJcXZRkWOpW21CQ9TnJOp8ZRLAANla6eT4DjS6a+sepdwsMY91QOL3AAj217pl+F1hcGSVKOoaDFLmsmEZa9IcShumnS+uV0YVijpjCwwyTO+sIFg4v40Y3uWOHF2ZgijmjBFaG4h/R6wtsrrkJLEe5nq4U6c6cH19F6ugfC1NsHIOc2dcLrSp2sSWcNDpQAvwohlAy2jtHgVVb6OQA1diGMu//6eG+MeoN3YRyymbVV89aviEjjS6a+sao1TqgqGHG22wod/NaqBJGWiGYOaa2+3v8nJkzqKeVuWeWvrmh3MOzvqRDXwaJkqb+cS7wJBsmzyCCBbooaR+JECtuzKhjOdw/Tp3XobutFq2Z0TYbyt10jYYIFDbqZiqj7Qs8SsVSwRIZZljmkpczfUT+BITAn7uKmkQbg+OZ16x7OaMEVoYSG9F7FOUUzOwH92TKq2oZkU7G2pXAWor0j0UoYXDGE7LjWVHkpEmWIxEqreA4zOFhIsIGFsectjcaBP05qygMHYF4NMWjmx+H+sZZJTqgaO2stltT4eWgVkEig4wugtE4oaEOcmRgxhNfgPUVxxtd7FiYwc2SWEKjqX+ctYZ2Pa1sBumOAI0Vbgbw6EYXGRJd1DRJy+A4Z9uTkdLCVTPa7pjRxRq9F1Yi/XbTCU1yoNfPxhKrHuWf4X1z1OjCkBSXGSQYFRlMNIgtMU7YWoDJOIdpedEaVopODvX4Uj82xZxRAitD0ZIWr+b8uQms1SW5HJIVKkKxBInEE4wGYxTE+2ac7nU8K4tdhLEyllOlro/jsEWHCZg889pHzLseE3Fkhv1/beodoV50YytbP6vt1pfrRheyZ0fGpDsd7B3TxSLoomSGrC/LPKOLloEA0YRGefjwUZOUmbA+OZHvzmnImEl812iIcEyjQbboqcuFq2e03YQo2Sfq9bTlDOjPd2QwQDimcZ5jEJAzFvLHjC5KwGDOmHOjyHCSkc6gY3rDnslwVjXiFGG62pSxWSahBFam4tMjWDOx7Z2MqvwcmqjC6TucMRMjRWro9YURaDgjcxNYZW4bDouRLnONElhJEpokNz5I2Dr7lMvjyak+E4CRlm2pGFbKCHTtxyISiOLZRbB0o4taTJHRjEl32tfjZ6No1iOwJTMXjF6XFYe7kAFzWcZMfA/0+vEyii0yOKtjcdvN1BY62K3VwFBTRhhdbGvX+4tVhQ/qYtFomtF2R40uApljdLGvR++Jt04mXQ3LzpjRdhNGFzu7Q1C8NmMipYoMZ6QVgHjuzAyITsZV2QhAsFNlLGUSSmBlKObxbuKYwOGd0/YGg8DnWolNC6iGh0uMI4MBCvFhlPE5CSwhBCuKnOzXKvX0l1hoAUaZXfSPhSlngKhzbhHjCarq1xGQVsZaM0dgxRMaOb1b9BcV58xq2+JcG+32ZJ1Td2Yc064OH+eZm/QJrG12bSwaK9y69XyGRLB2dvh4gzn51Lny/Fltu6HczfNjSaOLDOjttbl1GI8Vcob2QNlZs9p2Q7mbZ/sd+vnMAIG1rW0Eq8mAd2QHOEtm7LwJxxtdnKmMLhQzIjHcCoCtqH5O24tkhNU4kP7or+IYSmBlIFJKcsK9+C3FM3IumnI/E+kzKkqxpDgyGKBKTPRmmdsTrxVFLjaHikFqul37MqdraJwyMYTIr5nXfhrK8jggqzD2Z06T791dPtZp+4lYC2ZkA34y1rL1RDFBV/oFlpSSlw92c5bhMKLygllv31jh4bVwFfjaIekamU5ebRni2txmMDugdOOstm2scPPcePIBSwacmy2tI9xQ3IOIBaD2klltqxtdhIgVn5ERAuv5QwNcWJePseNVqDofhJjxto1Jo4vxgg0Q9imnVsW0BPqaCEgrxSVzSxHElsuIpYS88SakEvQZgxJYGcjgeJRK2UPYObf0wAlcVXpOvwobLy1aBwOcYU2mkM6iyP94VhY7eT2QbKibATUP6Wa49whmkcBeNDOb7KmwW4x0WldQMHYQNC1Fo5sfrzQNcpFhL1S/YVYTxQnWVBSyT6sm0bl1AUY3Ow70jlEZ2IVdC8KKK2a9/cYKD7tk8ilxmify/WNh9vf4OC+xTT83MzS4mKCxwsMQbsI5ZWmPLvb4QhzoHeMq2z4QBqi5eFbbT9Rh9TrWQN9eiKfPDa11MMCRwQDvKBsFfxesuHJW2zdWeADYr4wuFDMk1r2HFlnKimLXnPcRcK+iTrbTnWz2rUg/SmBlIEf6/awSnSS8s6uXOJmKslK6ZT6hTtXheylxqG+cc21dejrNHFIEAVZ4nbTKEjSjRUU4gbGeZgDcpSvnva9g/jrsMpgxzXm7979GiRjBuvbqOW2/vtzNDq1eT6tLc2PqZw/28xbDFqTRArVvmvX2G8r1FEGJgK70CsYn9vaxVrThDnfBmmtnvf26slyEgA57Q9ojWI/s6gEkjf7noPoisHtmtf2EOcQ+UQ9aTBdZaeK5g3p2wCXaJn3ByrfOavsNFW6EgNf8xWCyp/06U2Q4UpIztJe9so61pbNLeT4eY8k66kU3h7szpwXFckcJrAyktWkPdhHFXTO7lJGTqSlw0KyVIYabUzQyRbqJJzR2do6yztgOxevnFJEAPYKVwMiYvUovkl/mxPr0NElr8fwFlrlcv28D7el/cj0wFqG65zESwjjrieIE68vd7NLqMMYDMJg+lyopJY/vaOed5lcRq68Cq3PW+3DnmPEWFNBjrkq7KHlgexcfdG1CGkyw+ppZb++wmljhdbJDq9PFfGBoAUY5Mx7a2c07igewjDbD+nfOevs8h4WKPDsvBZIPjNIYkXtwZzcrvQ7yDt+npzq6ime1vdNqot7rZEf3OJQ2pv06U2Q4I63YE34GXGuwW4xz3o27qhGLSNDXqh6YZgpKYGUggTZ9YpZbfca89lOZn0MrpeSMtapC2yXCgd4xZDRAefDQrA0LjqciLweryUCPqQyGlADPGT1ISOTMqa/YyZSsOJO4NDDcvCUFI5sfD25u5h3GlwjVXAmOuTkklrlttNmSRhdpnCxu7xilpv9vuKUfznjvnPfTWOFhe6JOn8Sn6Xtxd6eP/W09XKs9h2i4FpxzMzNqrPDwtG9ClKRH0O/oGGVXp4+P5Tyt15Ktv2FO+9lQ7ub5PpvePD1Nx7K328f29lE+W9+hO7ud+Y9z2k9juZudnT5k2Vm6AUkintqBKpYMWutL+n/L5/57DpBTprdFCPWomupMYV4CSwjxn0KILiHEjuS/q4977wtCiCYhxEEhxNwenS5T3P2bCQubHqGYB2ajgVF7FbbEeEYUdCvmz6Yjw5xnOIhBxuaUIjWB0SCo9zppTpTAyJG0p36lk1hCoyTcwrCjfs4RweNpqCqiWZYhe9Jb+xiOJfC9cjte4cP5xo/PeT9CCBxlDQSxpzWy8NOnD/Ipy0NoBStnXRdzPI0Vbl6LVENgIG0Oq9954gAfsT+DLe6DCz8x5/00Vrh5OZjeqM/3njrEevswK3sfhTPfO2tnxwlONLrYkdIxzpQfPd1ErtXAFX2/gdxyWPeOOe2nscLN4HiE0fwNEA+BcndTTMHIrsfokx7q18/ORfQU8vXaUpWxlDmkIoL1PSnlGcl/jwIIIdYCNwPrgLcBPxFCzD32uYxo6htjY3Q7Q/lnzbroeTKinqRrmEoDWxL8dWc3Nzl3gjkHqi6c177qvA72RLyQiIKvI0UjzD6a+/2sFu1ECxpSsr9Cp5VmYy25o+mdVP362X28N3YvvqLz5yXGAdZV5LFTq0VLk9HFK82DlDX9kRV0YLjiK/NyV91Y6WGnNmF0sfii5OWmQQ4fPsjHDffraZuV5815Xxsq3IyRw7irNi3Rxddahnj+UD+35d2NMFnh4s/MeV/HjC4adOOdaDBVw5wRm1qGeHxvL/+zah+mnq1w+Zfm/BvcWOkBYLdMGl2oOizFZEQDONuf5Xl5Fpc2zC4V9RTsHsZNHpyBzKj9VSxciuD1wN1SyoiU8gjQBMz9V2QZsXXzy9QbenBsvD4l+zN59ZoSOXQ4JftTpI+2oQD7O/q5XHsFGq4FS8689ldb6GD7eL7+YhmnCTbv245bBHHUz0+wHs9obgOe+EDa6mI6R4LYX/pvisUo7mv+c96RuQ3lbl2U9O1ZdIe3sXCMH9z7Nz5r/jOJ2kthzdvntb91ZbkcooqEMC36xDcQifOlv+zmf3J+h1lIuPo789rf2tJcTAZBm3X1oqc8BqNx/v2+XXwo93Wqh1+CK74CuaVz3t+EwNojVoBMQO/iRYDHI3E+d98uNrqDvLnzNqg4FxpvnvP+Js7LayO5YPOoOizFpER33otVC9JacR1O68wac5+OgKOacq2b4UA0BaNTzJdUCKxPCiF2CSF+LYTISy4rB45/JN6ZXHYKQoiPCCG2CCG2DAwMpGA42YumSYy7/kgcI56zZl8oPBl5pfVEpZGgysvNen77Shs3mZ7HFvfDWe+b9/50E5SkVfsy7tUSan4FAO/a2fXuOR2JYr1FQqJn8R084wmN3/7+N3zA8AjjjbfoFuDzZH2Z7iRo0GK6yFokNE3y5Xu38KXAt7CbjRjf/r15i8Uci4ma4nzazHWLOvHVNMm/37eLq31/5GJtM+LKr0Jezbz2aTMbWVXsYlu8Fsb7wN+dmsFOg6ZJPvvnnThG9vEf2i/0JsnnfWRe+8xzWCj32HkxsLg1ZZom+fd7d9E37OMP7p8i4mG4/rZ5RUknzsvubj+Un5V2G31FBpKIEXr2f9inVfOmK+b30GgCLa+OGtFL88B4SvanmB/TfoMIIf4mhNgzyb/rgZ8C9cAZQA/wv7MdgJTyF1LKc6SU53i9cyv0XSo8t/Mgb4k8SU/5W8FZlJJ91hS5aZfFRPpUBCubOdQ3xoOb9vFv1geg8oJZ95mZjJpCBwN4iJscyzqF1DmwlTGDG1GwImX7dNWcCcBoy+JGSDRN8oO7HuL/Df0XPtcKnNd+MyX7rcy302JZpb9YJFEipeS//7qDdxz8HOsNrZhu+PmcGiVPRmOFmy3RGmTPzkXpVyal5OsP78O+9y7+zXQPbLgRzv9oSvbdWOHmKV/y+eUiTOSllHzjkX0c3LOVPzu/h9GeBzf+DgzzrwLYUO7m5T4zuEoX7Vi+/vA+ntrdzhNlv8TVvxWu/zF4V8973xsr3eyaMLro27foKY+KzGbsmf/FHWzn4cIPcl7d3AyITsZespoSMUJbT39K9qeYH9MKLCnllVLK9ZP8e1BK2SelTEgpNeCXHEsD7AKOt+OqSC5TTEEknmD8sa/hEBFKr/mPlO23ttDBEVmKYWT5poBlO+FYgn+9eyv/Y/o5Ts2vpxWlwIyhrtABCEZtFcs2RdAXjLEyso+BvI0p+X86QX1VNd0yn3DHjpTtczoSmuT//nA/7zv8KQwWO+4P/QUsjpTsWwhBYVkdo8KzKAIrltD4wp9e4w1b/oU3GXfBdT+EhtlbmU9FY4WHzbEaRMS/4A8XEprkKw/uRdv0c75j/iWy/nK47kcpu94aKzxsClXodu8LHPWJJzS+9MAeXnnlBR50fJMcM/De+8BVkpL9b6hw0zYUJFa8ccGPJaFJvvjAHu5+5SAPF/+S6qGX4NrvzclmfjIaKzz4QjH6c9cteMpjQpM8c6CPaDwzmpsrTk94z8PkvPxtHpUXcsPf/xMiRd8Frgq9jtjXlb52GopjzNdF8PiE63cAE7kjDwE3CyGsQohaYCXw+nw+a6nz4F0/57roo3SvfC+msg0p22+Zx047JTjGOxblSa0itQSjcT7629f44OB3uYzXEW+9FUrn1x9tgjyHBbfdTLexHJap89Cew03UG3owVF2Q0v2uLHayT6vBOrg46XThWILbfnMHH2n+JDarDedHHgdPVUo/Y32Fh22JOuQC1y2NR+J87ld/5X37/plLjbuQ1/4AkYKU2OPZWOFhh7bwBgRj4Rj/fMer1G75Bl83/xZWX4W4+Y9gtqXsMxor3ESw4HetXFDx6wvG+MjvtzK0+V4esn8dh92GuOVRKF6bss9orNDrsLpz1sDgYQj7U7bv4/GHY3zot5t5dtN2nsv/Fit9L8M1/wvnfDBlnzFxLNsTyajrAl1nQ+MR3vurTXzwji3c8cqRBfkMRYqQEv8rv8F07/vYq9XgfPdPqPfOvp/fVBgLdPOeaL8SWJnAfGuwviOE2C2E2AVcBnwGQEq5F7gH2Ac8DnxCSrl8faBPg5SSv97/e65v+godOeuovHF+Rc8nYzQI/DmVmGUExnpSum/FwrKjY5R/+cEf+XT7/+Mdxpd0V6sLPpbSz6gpdNCiFcNIGyRiKd13NjC4X+9BUrRufi57J2MzG+m2ryA/1AaxUEr3fTJtg+P8/v8+y8fb/z8SOV5cH38avKtS/jnry93sSNTpzYYjYynfP8CBXj/f+MGP+XL3x1lhHUG8517EObek/HNWl7joMFQQNSyc9fyeLh8f/sF9fLz1U3zQ9Dhc8AnETX8Asz2ln7Oq2IXFaNBTOLu3L4jRxZbWYd7+g2c5v/mH/MzyfaylaxH/lPrrrLHcA8AuWQdIvYdUitnaNsI1P3wRU9OTPJv7FUri3Yh/+BOc+08p/ZxVxS6sJgNbBi265fsCXGdb20a49kcv0dnezPuMT/Ds3vS0HVBMT7T3AO0/+Ttyn/w0W2QD/e/4E5esT03K81GSKdTmUSW0M4F52ZZIKafswielvBW4dT77X+qMB0M895uvcFX/r+iz1lD28b+m/McXIOGphT50IwP3pF4jigxBSsmW1mGefvZJVhz5Iz83vohmc8H1v4V1f5fyz6styGFPcyF/JxO6yCpMXR1SNmDsep0YJnKq59fkcTLCBWsx9GjQt3deTaFPxzPb9pN46FN8mNfpr3wLRe/91Zz7EE3H+rJc7pd1CKTep6j2jSnbd0KT/P6FfZif+U++bXiSoGcllvf9CZJPZFONxWRgdambJv8K1qY46hNPaPzixRYO/+0OfmW6HZvVCNf/JmWpZydjMRlYU+pic7SGM8MP6t/zKfr/ltAkP32uib/+7Vl+bvs5a4xNcPYH4Kpvg8maks84HneOmbpCB8/6bbwddMGYoussoUlue7aJnz29l6/Z7+Hd5kcgbwO86/aU1FydjNloYG1ZLrs6fVB2ZkojWPGExs9faOF7Tx3i751b+arjl5giPr7Qaabffz5FuamLkCrmQWScri1/JbTpDlb4XyNf2viD+0Nc+J6vckHxAnxPW52Mmb14Qh3EEhpm40IZhStmwvx9IRWzJhpL8OpTf6Z8861cK9s5XHg59f/0Wwz23AX5PLO3HvpADrcgUjgpUqQGTZPs6xph79YXGNv3JBeHX+Dzhg5iZivxcz+B5U3/Cjn5C/LZtYVOnt9ZAFb0NMFlJLASmqTMv5Mex2qqUpiyNYGp/GzogWjndiwpFli+UIz7//gLrm3/Nh4RYPTir1J0xWdSWkd2MjUFDprME0YXW1M28W3qH+NXd93NPw99l2pDP8Gz/5mct31tQR42HU9jhYfXt1ezpvcpRDwKJsu899nUP8atdz/LjQM/5OOmzcTKzsV0469Tnq55Mo0VHp7YXs5HBLooSYHAOtDr5wv37uDsnrt52HoPRmsuvP13sDY1LUSmorHCzcstQ/r/sxRFfQ70+vn3+3aT0/UyzzvuwBvrggs+AVd+dUGE4gQbKzzcs6UDbe3ZGA48DMHheX+XH+ob47N/3klPZyv3FN7DWePPQ9lZREN+3jP0N+7f/nE++qaFeTChOD1aeIz+A68yfOgVTO0vUzO+jXLi9Mo8/pr/fryXf5z3rF+dspqryQjn1lAT6aFtKMiKotSlHypmjxJYi8jgQB+7n7yDssN38SaO0G/w0nz5L1h58Y0LOjHKK6kluttIrO8wqSl5V8yH4UCU5tZWBg69RqxjO7kjezhD28d6oVurDuVvIHL+p7Ce8W6w502zt/lRU5jDHTJZoD54GFa9dUE/L5M43D3IOlpoL33Pguy/vGYlI5udaC1bKLjgwynb70u7D+P/y7/yAe15+hyrkO+5HU95Y8r2PxUGg6CyvJLe3mJKUjDxjSU0fvPMbiwv/De3Gh8n7CxDvPuv5CzSQ6DGCjfPvV7HLSIC/Xv1KMMcicQT/OK5Jvqf/wU/NP6RHHMCedlXMb/hU2Bc+J/ZDRVu7nqtBM1hw9C1DTa8a877CscS3PZsEy88/ze+ab6ddeZm5OprENf+AJwL7/S7sdLDAzu6CVdvxDbP6OLEsdz53E6+bL2bd1ieBmctvP0hqEttWvBkNFa4ueOVVrpy1uiuX93bYcUVc9pXOJbgZ88385Nnm3iv5Xm+4LoTcyiq9x97w6ewbPk16x/7HN9/7UXkJXULOolf7shYiOH2fQy27ibSsx/j0GFcY82Ux9soQVICtMhynvP8Hay6inMuuZq3u+bXt3KmiIIV1Aw+wraBcSWw0owSWAtMb0czrZsfxXjoMRpDm7hMxOk017D/zG+y+soPUWRZ+FB+lTeXDllEXl+TEliLyNjoEB3N+xjuPEC4rwnDaCuuUCflWjfniuGj6/VbKvAVXYFhw1txr3szBSmy6J8JtYUORsglavFgWWbNqFt3v0qDiOFZvTAT+obSXHZrtazvTU0dyYA/zKN3/5iru35Inhin98xPU3LNF1MSeZkpZ1fnsbWjlqu6ts2rgHdP5ygP3f0zPjD2c4qNI0Q2vh/HVd8A28JE8SdjY6WHH8gJA4JtcxZYrzQP8vP7H+fjYz/ifOMBopVvwPh3P16w9MbJaKxwE8fESG4DBfMQv68fGeZr973GDaO/5S/mJyGnAK66HbH+hgV9CHg8Gys9ALTa19Ew+lfw98ypgfHm1mE+f+9OVg4/x3P23+HSfHDRp+HSzy94dHSCxgoPAFti1UmBtW1OAuuVpkG+9MAetKEmHvH8npWhHVB2Mbz9B8eyDta/C+3x/+C8sSd54fA1vGnV8m57Mx+04CgjPS34eo8QHGgjPtKOYayLnGA3udE+ChKDFAhJAaBJQQdF9FmraSq+DGPVeRQ1XMTKmkrq0pCi5yhbjf3QXXT29MC61Lh7KuaGElgpZmSwl5bNjxFveo7S4depkt2UAEMij91l76b44vdTufaCRfuxAj21p0UWkz+iCh9TSSKh0d/TxlD7AYJ9TSSGWrD423AFOyiK9+BhjOP9tUaFG5+tgqD7AlpKG8lfcR6e+nMoWqCamZlQU6hL7mFbFSWDy6sXVuTIqwAUrlkYgVWZl8OThjouGnsE4pE5pyJpmuSvz76I98Uv8n520etaS+Kmn1BSOfeIy1w5uyaPl1+o5xrfazA+MOuIhi8Y4/aHn+OM3bfyH8bt+D0NGN79Z+wLVKN2Ouq9TobNJQSNbnK6tsG5H5rV9oPjEb778HbK9vyMX5gexmC1w1U/wnLmPy7q9zvACq8Tu9nIQXMDb+j6i26sMgsRMTge4TuP7ce3/S/8xvJ7vKZhxDkf1KMjds/CDXwS1pbmYjUZeCG6igaAtpdnFZEbHI/wrccOsHnbFr5l/wMXWraBtxGu+wuUnbFQw56UukIHTquJbX0a7yhYCZ2zq8MaHI9w6yP7eXT7Eb7geoz32f+CQbPD238IZ/7jic2QHQXIlW/hnYde5tPPHlQCayoScQLDXQx1NTPW10JsqB18nZgD3TjDPeTH+3ERpACY6E4Vk0Z6KWDYVESv/QzirkoMRatwVaynqG4dlfl5VBsyI2JoL10DQLBrH7D4vxGKYyiBNU/Gx0Zp2vwkoYPP4B18nbp4C2cLSUDaaM5ppLviZoo3vpWatedSkIJGjHOhPM/O8xRz8fiLusOUSh2YMWOBIL3th/F1HSTc34QYacU+3k5epIuSRC+lIsrEs9WEFPQZvAxbyjiYexmapwZHyUqKqhsoqmrAY8/Fk86DmYRcm5lCp4UOQwUlQ4vbFDfd5A1to99URpGreEH2bzAIRtxrMfofhP79c5rc7e8YYPtd/8kNgT+RMJgZeOOtlFz6sZQ0dZ0LZ1Xm8VMtGfXp3jbjlFJNk/xlaytdj36Xj2l/xmA2EnrT18m9+BOLkkI3GUaDYH25h51D67iw5bkZfzdqmuRPm9vZ9Njv+az8DRWmQRLrbsD4tv+GBbqWpsNkNHBmlYdHR1fzhkQE2l+F+sun3S6hSe7c1MZdT7zIv2m/5nLLNrSidYjr7lkwY5bpsJmNnF9XwL1dVj5idUPzszMSWPGExp2b2vnxk7u4JXE/37I9jNFkhUtv1Zs6p+E6MxgEjRVuNrcOQ90bYM/9ulur0Xza7RKa5K7X2/nO4/t5Q/x1Xnf/EXekB9a/C95665R9x4zn3ELhoUcpbvsr29vXcWbVwqaYZyLxoI+hnhZ8PS0E+1tJjHRgHNejT+5oHwVyCAfaCdk8I9LJgMFLv6WEVueZJHIrMOZVYi+swVNSS3FpFRUOK5XZMHdKOnuKIWXVnm6UwJol4XCIpm3PMbbvb7j7XmVl9ABniARRaeKwdS2vV/wznnVvpv6MN9JoWbji2dlgNhoYtVViiQUhMACLmIKW6WiapG9wiP62A4z1HCI+2IzJ14Yz2EFhrJsSOchKcax/WAgL/cZSfPYKBlwXIfJrsRevIL9iNd7KFZRZbJSl8XjmQk2Bg0PBEs4d74Owb8Fc6DKJfn+INfH9jJS+kYW8G3KqzoI9EOvYgnkWAms8EufB++/kwgP/zT+IHjoqrqLipu+RM4dUqVTizjEjSzcSHzZian1xRgJrf4+f+//0G24a/hk3GLrx17yV3Hf8L3gqp912obmgroAH29dxYfQV3e2xZP1p19/WPsIv/vIUNw/+mO8bdxIpWA3X/RZjzcWLNOKpuWx1Ef/3aDXfcFgRh56YVmBtbRvm1r9s4bLBO3nQ9Agmiwku+waGCz42rQBYaC5ZWch/PTJAsPEycg49DlritA8VtrYN8+W/7KGy/xketf8RL32w/kZ4yzdS1gR5rly62ss3Hz3A4MVvonDbb6HtldPWf21qGeJrf91HsPcgv829mzPZDLlr4OpfTm8ss/ItJIrW88n+h/jiY9dx50fesLRqsaQkONzNYFcz/r4jRAdbkb5OLONduJLRp1zGKQYmHnXEpJE+oUefBh0bOeAoB08FloIaXEU1FJTV4S3IJ2+pOO55qokJC07/8uxtmUkogTUNUtNoPbCNvu2PYu94gZWhXawXERJS0Gxeydby9+BccwUrzr6CdTmudA93SiLuOhhENzJYZgIrltDo7htgoG0fgd7DJAaasPhbcYc6KI53UypGOX7a6sPFoKWMIU8jfe4azIV1OEtXUljVQK63kuql9IOFnia440Ah7wEYbIKKs9M9pAXn0K5NXCx8BOovWdDPWdWwge7d+dj2/Y3886fvs5PQJI89/wqOF/6T98jXGbKWE7j+z1Sue8uCjnM2vHFdDS89v5437nkA45u/MWXUZ3A8wp0P/43Gfd/hi4YdjLmq0d5+N7kNVy3yiKfm2sZS3vP0mWgWI4bdf55SYPX6wvzwkc1U7vs5PzQ9hrBakVd8E+t5H0m7GJngsoYibn3URmv+xdTuuR/ecuukUZvu0RD/+8R+Ejv/zM8td+M1DSM33Ii48j8zpo3HZQ1F/Ncj+3nZfAFvDj4AR56fVDB2DAf57hMHObzrVb5q+xMXWHYgC9bC1b+BmosWf+CTcOWaYr756AEeGW/g/WYH7L5nUoHVNRrim4/u58VdTXzO8Qh/b38Eg7TBW78JM73OhMD4ps9S++dbKG9/gCf21vG29el9KDNbItEofe2HGOnYT6T3IIahJnICbbgjPRRqg+QQ43hPzjFpp9/gZchSQqerEc1VjjGvGntRDXmltRSVVlNht1KRtiNaZAxGxhzVlPs6GQ5EyXcsXo2u4kSUwDoNWx7+BVVb/ptahqkF2g3l7C56O7ZVl1N77ltZ5SlM9xBnjChq0AXWwIGM+eFJNb5AiI7mfYy27Sbetx/T6BFyg+2UJrqpFj6qj1t3SOQzZC2nO++NdOXVYiteSV7FKgorV+N25LH0YzjHqC10cH/Qq1u1Dx1ecgIroUk6R4K0dfcz3L6HWO9+NnbdDUDpOdcs6GefV1fAE4lGru98adrUoE37j9D+wNe5LvwQmsFE9zmfo+yt/woLYCE/H67eUMJtT7+BS/0/heZnTinaD0bj3PX0Ziyv/YCP8yQJk43QJV/DdfHHF9WQYyasKnaRV1zB64GzOX/7HxCX/BtYjzlv+YIxfv38fmKv/pzPib/gNgWJr3835remPzJyMiuKnJxdncevfOdza/hp2Hs/NN549H1fKMZPn23i8KsP8C+GP9NoaSZRcgZcfTei6vz0DXwS6r1OLqjL51stRq7MKUC89rMTBJYvGOO255p44uUtfNp4Dz+wvghWN7zpvxHnfThjRC9AnddJY4Wb324Z4B/XvRPDnvvg8q8cTScdDkT5+fPN3PXqIf6BJ3nd+RDW+Bhi481w5X/O/jpbcz2y8ny+3HkXNz54IefVXptxk+xAJE57Zycj7XsJ9R7EMNyEY6wVb6SdMq2HKhE/KqJ80kGPqZwu2ypaHJci3ZVYCqpxFddQUL4Cr7eY+gypf8oUYnkrWOHfRsvAOPmOhWnxopgeJbBOgz2vnA7XRtpqLqXq3GuoqlrJwnYzWTjySmoY32vD1LOPzJquzQ4pJf2jY3Q178Hfvget/wD20cN4w61Uym7Wi/jRdYdEPsO2Cnqdl9BTUI+9eCUFVWvIq1hFgdV1tIB1uVNb6KBdFiOFETGYvU6CUkq6RkMc6ehi6MguIr37sY4coiDYSq3o4hIxeHTdGCaai95Cfd7CPtf05Fho9V6KbeQ55KEnEGuuPWWdpq5+ttz/Pa4Y/APnCz/t1e+g8l3/TVma0wGnYkWRi9H6t9PbcQ8FT3wFc/VFYLbhC8V45PlXSbz+S/4h8TgWESew9mZyr/5aRkfNP3HZCr79p2v4S/yr8OSX4Jr/o9sf4YGXdxLd/Fv+Xj5GiWGEUNWliKu+gbl04S3x58qH31jLx/4wxKcLVuF98stQdSFdFPKHlw4yvPk+bpSP8XnjYeKuCrj8Jxg3/v2JRgkZxAcvquUjv9/KS6tu5o2Hb4Mdd9FRdT1/eLWVHa8/x43ao/y7+RUMRhPigk/BxZ9Z8LYWc+X/Xb6SD/9uC79bfT23JO6Chz/Dkctv4+6tvTz+2k6u1Z7mRdvTuONDUH2FLqzmep0ZDIi3/xDnzy7mC5Ef8K93l/KLW85f9KazUkoGRvx0tezD17mPWP9hLKMt5IVaqdC6WJNsSwIQx0ivsYwRRxW73JdiKFyJo6yBgpp1FHrLcGfoNZqpWEsaKGx/nC29w5xTk70Ca8IOv+/wNkJdezgYycN76cd489r01LrOFiGlTPcYjnLOOefILVu2pHsYS5LnDvbjufNt1JYV4f7o4+kezoxIaJK2zk56Dm4i3L4D2+AeSkOHqJI9mJJ1UZoU9BuLGc6pI5K/EkvJGvKqGymu24BxgRo3LzX2dfu5+ocvsqfwizjL18Lf/zHdQ5qW4UCUfV0+ulv3E+3Yjm1oL0WBQ6zmCMVi9Oh6EWFl2F5DxLMCU8ka3FUbcFWsg7zaRSt6v39zK294+FLshdW4P/Hs0Qnt4c5edj50G2/s+x3FYpROzzl43/FtrNXpMReYDYf6xvjej7/PT43/Q599BQcta3GMHuJscQANA8P111N49ZcX1ap8rmia5EO/3cwFzd/nn02P0G0oZSxuZKXowiAk4xVvxHn5vy1K36T5IqXk/921nabdm7jf+jUMaBzRiqkWfeSICFFXFZZLPq070GVYNHEy/vWenTy0rZX7HN+mMbGXZq0UtwhQKPxoJjuGs98PF34yI+r5ToeUkk//aQcP7ujm855n+Gj4VwxIN0GsVIt+faX6y3Ub+VRdZ1vvgL/+C3fHL+Wlhi/yPzedjc2cenOcWDxBV+cRBo7sIdh9AIaacYwfoSjSTjn9GMWxOeawyGPYXk3EXYehcAWOsjUU1KzDUVSfNrObpYi2614M93+IX63/Pf/0ruvSPZwZkfD10HfodXwtW6BvD7n+wxTHuzChz/Vi0sjfzJcw/rYf8e5zMut+F0JslVKe8sOtBNYyoc8f5qnv/AM3Wjdh+WJHxj21jMTiHDnSzMChTUQ7d+Ac3kdl5DBlx0Ud+g1eBhyriRc2YCtbR2FtI/lVaxGWxWngt1QJRuOs++oTPFrxO9aEdsC/HsgYp0kpJf1jEfZ2DNHdtIto53Ycw/uojjWxVrSRK4IAJDAwYKsjkL8GS9l68qs34KhYB+6qtF/r4ViCH/zv1/j38A9oL76CztyziXRs49zQSzhFmHbXmXiu/iq5ay5L6zhny6vNQ/ztvl/y7sCdlIkh/PZKzGuvofiSD4I7uyoeonGNnz3XhNx5N5fEXybXbsW74mxyz343FK+dfgcZRDyhcccrrezZvY23Bx+g3jpKQWUDrsZroeaStN8Ps2HCGfCFfR28NfAg5xqb8BYV41xxMay5NmMjVpMRT2j87tU2njnQz/nxzbxNvkSFx4a9bB2svQ68q1P/oc/cCi98h5cT6/iV51P88zvezPm1+bM2vpBSMjwyQu+Rvfg79xHvP4TFdwRPsJXyRDdOETq6bhgLveYKxhw1aPkrsJWspqB6HQVVaxCLbPm/bBk4BLedy28KP8sHPvnldI/mRKQkPHCEngOvEWjbhrl/N97AQfK1kaOrtMliui21BDyrMJWso6DuDGpWbcDlyMxOrkpgKfivW7/El2I/go9vgqKGtI1jPByl+eBuhps2I3t24h7dT02smQLhB/SoVI+pnOHcBmRxI+66syltOB9LrurrsVC87fsv8A88xvtGfwKf2ZuWCbKUks6REPva+xho2kq8aye5o/upSzTTIDqwiRgAUWFlxLUKrbgRZ+1ZuKrPgqK1GVerdDxNfX5e+PUX+PvwPdhFlHEcdJVeQemlHyF31cUZI2gVCsUSY9vviT/678h4hCcTZ3HAeSH22vOpqV+FNz8fT44FTZPEQ3608X7Gh3uIDrUjRlux+o856hYzfHSXmhS6sYStipC7DmPhSlwVaympXYfTW51VIn5JommM/1cVLxjP5+ov3pfGcSQYbd9L76FNRDp2YB/aS2nwEC4CAMSlgRZRQY99FaGC9diqzqJ09TnUlpdiMWXPNTSVwFIx2WWEufp8aPoRWuvLGBZJYA36xmk9sA1fyxYMfbvJ9x+gLnGEjcknXjFMdJur6Sq6hJ6yM8hfcQ4lK8+h3OYiM/yslgfn1uTz0LZK3mcAjrwAZ/zDgn5eQpMcGRznYGsnI81bkD278Pj3s0o7whWi+2gKaNDgZLRwLaOll+OpOwdb5ZlYCldSnKY+UHNlRXEutf/+Yzr6v4ZLhCgoqmC1ElUKhWKhOesfMa18M/EXv88V2+/mmtDrsA/YB1FpRABmkZh000HyGLSU0ZV3Ph15ddhKV5NftY6i6jWU2Bxkls2L4igGA33ujawb3oUvEMW9CCYnWjRMX/N2Bg9vJtG1A+foPioizXiI4gHC0kyzoYatrsuIF23AUXMWFavPYaU3j1VL9LdQCaxlRH3DGbQeKqZw14M4z/tQSvctpaSrt5/Og5sJtm3HNLAXb+AQdVob5ySNJ4LY6LbV05J3LeaKMyhadT4FNRuozuDIw3LhwvoC/vBaJZH8EqwHHkmpwIrGNQ71+jnScgh/6zYMfbspGD9EgzzCNYaBo+v5TIWM561jqOKd5NWdg6XiDHI8VeQskS9fo0FQU5I9zqMKhWKJ4CrBdPW3ML3tmzB4iHjnNgZ724mODxOOS4TBhLS40HIKsecVk1tUjbtsJYVWB+obKzsxrbma6lde4pnXn+fyy96c0n1HxofpOrAZX8tWRO9uPP79lMfaKRUJStGt81tM9WzKvx5Z0oin7mxqGs5knXN5lXPMS2AJIf4ETCQOe4BRKeUZQogaYD9wMPnea1LKj87nsxTz55LVXu6X5/PhrkdgpBXyaua0H38owpHmgwy17CDRvQvHyH4qwoepEn1He034hIte+yoOFF6MveoMSldfgKt8NSuyLPKwXLi8oQin1cKr1ou59NCDMNox68JxKSUDYxEOdQ/Sf2Qv0c4dWAf3UhI6TINoZ33SNUpDMGyrJJR/Fv1VZ5Jffw6msjNwO73Lyh5foVAoFhWDAYoaMBU1qOjTEqfyDTcRe+UryM23wxwFlkzEGexsord5O6GOnVgH91IUOEip1kddcp0B6aHDuoL2kosxlm2kcOV5VK9Yy0ZL5rRKSBfzElhSypsm/hZC/C/gO+7tZinlGfPZvyK1FLlsdK/6R+JNjxH+y2dwvP+eKfuFaJqkZ3CIvrZDjHXtRes/hM3XRH6wlUqti40icnTdXmMpQ5417Ch6N66asyhrOA93fgXuJRJ5WA7YzEZuPq+S/3jpTbxkfwjDw5+Bm/4waV1TOJagczhAd1cHvu7DxHr3Yxo+jDvYSrXWyYXimHNUVFgYdK3E772aRPWZ5NedjaFkHYXH9RpSKBQKhUKROgzOQg5Uvps3tf+Jlx/7IxddNXVWSiQwQk/bIUba9xHrPYBl5DCeQAsl8U68xJiofm+nlPacBg4VvBN75VmUrD6XisoavKoP2aSkxORC6JY07cDlUsrDyQjWw1LK9bPZjzK5WHh6fWHu+P4X+bz8FUOWMrq8byJk9qBFQyRCPizhQb1jeqL/qOnEBH3Cy7C9hmjeCqylayisbaSg/iyETcUdlgJj4Rh/d9vLXDjyV/7L9CvGzF5a8y7AJ3KJR4IQGcMeHqQw0Ue5GDxqOgEQxcyQrYqwuw5TUQPu6vXkVp8J+cp+V6FQKBSKxSYaGKX7e5dRE2/hkGUtfncDUhgxxsYxRn24Ir0UxPtxc6wnmSYFPcJLn7WacVc9puIG3FXrqVh1Nu687O2ptZAsqIugEOIS4P8mPiApsPYChwA/8CUp5YtTbPsR4CMAVVVVZ7e1tc17PIrT0zYU4PH7bqex6x7O4CB2ESUuDQREDuNGN6OWUqLOcoSnkpyievKq11FQtRaDzZXuoSsWmOFAlB8+fRj/3id5W+hhzhKHyBVBIliJGHIIWvKJOMrBU4XNW4O7dAWuirWIvBpQ6Z8KhUKhUGQMoXEf2//83xR0PkVRvA8jCQIih6DBwZilmKC9jHhuFfaiatzlDZTUbyDXpR6az4Y5CywhxN9g0nTdL0opH0yu81OgSUr5v8nXVsAppRwSQpwNPACsk1L6J9nPUVQEa3GRUhKKJTBoMSxmK4ZF7vSuUCgUCoVCoVBkK3O2aZdSXjnNjk3AO4Gzj9smAkSSf28VQjQDqwClnjIIIQQ5FhPKTFKhUCgUCoVCoUgNqQhZXAkckFJ2TiwQQniFEMbk33XASqAlBZ+lUCgUCoVCoVAoFBlLKkIXNwN3nbTsEuDrQogYoAEflVIOn7KlQqFQKBQKhUKhUCwh5i2wpJS3TLLsPuC++e5boVAoFAqFQqFQKLKJlLgIpgohxACQaTaChcBgugehWDTU+V4+qHO9vFDne/mgzvXyQZ3r5UUmnu9qKaX35IUZJbAyESHElsncQRRLE3W+lw/qXC8v1PlePqhzvXxQ53p5kU3nW/lyKxQKhUKhUCgUCkWKUAJLoVAoFAqFQqFQKFKEEljT84t0D0CxqKjzvXxQ53p5oc738kGd6+WDOtfLi6w536oGS6FQKBQKhUKhUChShIpgKRQKhUKhUCgUCkWKUAJLoVAoFAqFQqFQKFKEElinQQjxNiHEQSFEkxDi8+kejyJ1CCEqhRDPCiH2CSH2CiH+Jbk8XwjxlBDicPK/eekeqyI1CCGMQojtQoiHk69rhRCbkvf3n4QQlnSPUZEahBAeIcS9QogDQoj9QogL1b29NBFCfCb5Hb5HCHGXEMKm7u2lgxDi10KIfiHEnuOWTXovC50fJs/7LiHEWekbuWK2THGuv5v8Ht8lhPiLEMJz3HtfSJ7rg0KIt6Zl0KdBCawpEEIYgduAq4C1wN8LIdamd1SKFBIH/lVKuRa4APhE8vx+HnhaSrkSeDr5WrE0+Bdg/3Gvvw18T0q5AhgBPpSWUSkWgh8Aj0spG4CN6Odd3dtLDCFEOfAp4Bwp5XrACNyMureXEncAbztp2VT38lXAyuS/jwA/XaQxKlLDHZx6rp8C1kspG4FDwBcAkvO1m4F1yW1+kpy3ZwxKYE3NeUCTlLJFShkF7gauT/OYFClCStkjpdyW/HsMfQJWjn6Of5tc7bfA36VlgIqUIoSoAK4BfpV8LYDLgXuTq6hzvUQQQriBS4DbAaSUUSnlKOreXqqYALsQwgTkAD2oe3vJIKV8ARg+afFU9/L1wO+kzmuARwhRuigDVcybyc61lPJJKWU8+fI1oCL59/XA3VLKiJTyCNCEPm/PGJTAmppyoOO4153JZYolhhCiBjgT2AQUSyl7km/1AsXpGpcipXwf+BygJV8XAKPHfXGr+3vpUAsMAL9JpoT+SgjhQN3bSw4pZRfwP0A7urDyAVtR9/ZSZ6p7Wc3bljYfBB5L/p3x51oJLMWyRgjhBO4DPi2l9B//ntR7GKg+BlmOEOJaoF9KuTXdY1EsCibgLOCnUsozgQAnpQOqe3tpkKy9uR5dVJcBDk5NMVIsYdS9vDwQQnwRvbTjznSPZaYogTU1XUDlca8rkssUSwQhhBldXN0ppbw/ubhvIqUg+d/+dI1PkTIuAq4TQrSip/pejl6j40mmFYG6v5cSnUCnlHJT8vW96IJL3dtLjyuBI1LKASllDLgf/X5X9/bSZqp7Wc3bliBCiFuAa4H3yGPNezP+XCuBNTWbgZVJNyILejHdQ2kekyJFJGtwbgf2Syn/77i3HgLen/z7/cCDiz02RWqRUn5BSlkhpaxBv4+fkVK+B3gWeFdyNXWulwhSyl6gQwixOrnoCmAf6t5eirQDFwghcpLf6RPnWt3bS5up7uWHgPcl3QQvAHzHpRIqshAhxNvQ0/uvk1IGj3vrIeBmIYRVCFGLbmzyejrGOBXimBhUnIwQ4mr02g0j8Gsp5a3pHZEiVQghLgZeBHZzrC7nP9DrsO4BqoA24EYp5ckFtoosRQhxKfBZKeW1Qog69IhWPrAdeK+UMpLG4SlShBDiDHRDEwvQAnwA/YGiureXGEKIrwE3oacPbQf+Cb0WQ93bSwAhxF3ApUAh0Ad8FXiASe7lpMj+MXqaaBD4gJRySxqGrZgDU5zrLwBWYCi52mtSyo8m1/8iel1WHL3M47GT95lOlMBSKBQKhUKhUCgUihShUgQVCoVCoVAoFAqFIkUogaVQKBQKhUKhUCgUKUIJLIVCoVAoFAqFQqFIEUpgKRQKhUKhUCgUCkWKUAJLoVAoFAqFQqFQKFKEElgKhUKhUCgUCoVCkSKUwFIoFAqFQqFQKBSKFPH/A+OIbsjBH9CDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
0False00.09690.0153bAP.soma.v0.1136.71e-07
1False00.09690.0153Step1.soma.v0.1053.17e-06
2False00.09690.0153Step3.soma.v0.09721.81e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "0 False 0 0.0969 0.0153 bAP.soma.v \n", + "1 False 0 0.0969 0.0153 Step1.soma.v \n", + "2 False 0 0.0969 0.0153 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "0 0.113 6.71e-07 \n", + "1 0.105 3.17e-06 \n", + "2 0.0972 1.81e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hc5ZX48e+Zrhk1q8uWLMm9Y8AYEkxNARIIISQYQghls/wgDUjvcbLLbpawISHJBpKQEEocaoCEEiBUE5oNBtyr3GWrl5Gm3vf3x72SJVvNtuSRNOfzPPN4bj9zZ0a+Z973PVeMMSillFJKKaWUOnKuVAeglFJKKaWUUmOFJlhKKaWUUkopNUQ0wVJKKaWUUkqpIaIJllJKKaWUUkoNEU2wlFJKKaWUUmqIaIKllFJKKaWUUkNEEyyllBphRKRSRIyIeFIdi0oPIrJaRE5PdRxKKTUWaIKllFJq1BOR20SkzXnERCTebfrJVMc30hljZhtjXhjKfYqIX0T+ICItIlIjIl8Zyv0rpdRIJXqjYaWUGloi4jHGJI5g+0pgK+A9kv2kKxFZAkwxxnyml2VH9N4cTaMp1t6IyH8Di4CPASXA88AVxpinUhqYUkoNM23BUkqpISAi1SLyTRF5FwiLiEdEThKRf4lIk4i8070Lloi8ICL/LSJvOL/wPyoieX3s+0oRWSsirSKyRUT+3wHLzxeRlc5+NovI2c78HBG5Q0T2iMguEflPEXEP8Domi8hzIlIvInUicq+I5HZb1iAixznT40WktvN1icjHnK5mTc7rm3nA+fmaiLwrIs0icp+IBA79TB+6Pt4bIyJTuq1zp4j8Z7fpc51z2uS8h/MGeazTRWSniHzHOX/VInJpt+UfFZG3nfdqh5MMdi7r7Br6byKyHXjOmf+A0wLULCIvicjsA+L+PxF50mmte0VESkTk5yLSKCLrROTYQZ6jDw7mNR6Cy4H/MMY0GmPWAr8DrhjiYyil1IijCZZSSg2dS4CPArlAMfA48J9AHvA14CERKey2/meBq4BSIAHc2sd+9wHnAtnAlcAt3ZKchcBdwNed454KVDvb3ensdwpwLPBh4HMDvAYB/hsYD8wEyoElAMaYzcA3gXtEJAj8EfiTMeYFEZkGLAWuBwqBJ4C/iYiv274vAs4GqoB59HGxLSKLnMSmr8eiAV5Db7rem4FahZyE5A/A/wPygduBx0TEP8hjlQAFwATsJOO3IjLdWRbGft9znXiuFZGPH7D9adjn/ixn+klgKlAEvAXce8D6FwHfc44ZBV511isAHgR+Nsi4eyUi3+rv/ehjm3HYn+t3us1+B5jd2/pKKTWWaIKllFJD51ZjzA5jTAfwGeAJY8wTxhjLGPMMsBz4SLf17zbGrDLGhIHvAxf11sJkjHncGLPZ2F4EngZOcRb/G/AHY8wzznF2GWPWiUixc6zrjTFhY8w+4Bbg4v5egDFmk7OvqDGmFvvi/LRuy38HbAJex76A/q6zaDHwuLNtHLgZyADef8D52W2MaQD+BszvI4Zlxpjcfh7L+nsNfej+3gzkauB2Y8zrxpikMeZP2InLSYdwvO875/BF7ET7IgBjzAvGmPec9+pd7KT0tAO2XeK8Zx3ONn8wxrQaY6LYye4xIpLTbf2/GmNWGGMiwF+BiDHmLmNMErgPO7k+bMaYn/T3fvSxWabzb3O3ec1A1pHEopRSo4EmWEopNXR2dHteAXzqgF/6F2EnJb2tvw3wYrc69CAi54jIa073vCbsxKlzvXJgcy+xVDj729Pt+Ldjt4L0SUSKReQvTpfCFuCeXmL6HTAH+KVz0Q92i9e2zhWMMZbz+iZ0266m2/N29l+EHw07Bl6lSwXw1QPeu3Ls1zgYjU7S3Glb57YicqKIPO90rWwGruHg89sVq4i4ReQnYnf9bGF/62T3bfZ2e97Ry/TRPM+d2px/s7vNywZaUxCLUkodVZpgKaXU0OleNWgHdgtV91/7Q8aYn3Rbp7zb84lAHKjrvkOnW9pD2C1CxU6LwRPYXfk6jzO5l1h2YLe6FHQ7frYxZqAuWv/lvI65xphs7Ja4zmMhIpnAz4E7gCWyf9zYbuzEpHM9cV7frgGOdxAROUX2VwDs7XHKwHs5yIEVndqBYLfpkm7PdwA3HvDeBY0xSwd5rHEiEuo2PRH7/AD8GXgMKDfG5AC30e389hLrp4HzgQ8COUClM//AbYaNM56sz/ejt22MMY3AHuCYbrOPAVYfjZiVUiqVNMFSSqnhcQ9wnoic5bRCBJwCCGXd1vmMiMxyxjP9GHjQ6dbVnQ/wA7VAQkTOwR5L1ekO4EoR+YCIuERkgojMMMbswe5K+L8iku0smywiB3ZHO1AWdutDs4hMwB7b1d0vgOXGmM9hd327zZl/P/BRJw4v8FXsBO9fA52oAxljXjbGZPbzePlQ99mLlcCnnffmbHp20/sdcI3T2iQiEhK7OEUWdBWWuHOA/f9IRHxOMngu8IAzPwtoMMZEnPFznx5gP1nY57EeOyH8r0N4jUPCGPNf/b0f/Wx6F/A9ERknIjOAf8ceF6iUUmOaJlhKKTUMjDE7sFsevoOdHO3ATla6/929G/uCswYIAF/uZT+tzvz7gUbsC/LHui1/A6fwBfYYlxfZ35L0WewEbY2z7YP07KLYmx8Bxzn7ehx4uHOBiJyPXaTiWmfWV4DjRORSY8x67NauX2K3wp0HnGeMiQ1wvFS5DjvGJuBS4JHOBcaY5djJwK+wz9smehbkKAde6WffNc52u7ELUlxjjFnnLPs88GMRaQV+gP2+9ucu7C6Gu7Dfx9cGemEjyA+xu69uw/5c/lRLtCul0oHeB0sppVJARF4A7jHG/D7VsajBc6oivgPMc4p5HLj8dOz3tezAZUoppdKDJ9UBKKWUUqOF0yI3c8AVlVJKpS3tIqiUUmlGRG7ro2DBbQNvrUYjEZnYT6GKiamOTymlxhLtIqiUUkoppZRSQ0RbsJRSSimllFJqiIyoMVgFBQWmsrIy1WEopZRSSimlVL9WrFhRZ4wpPHD+iEqwKisrWb58earDUEoppZRSSql+ici23uZrF0GllFJKKaWUGiKaYCmllFJKKaXUENEESymllFJKKaWGyIgag9WbeDzOzp07iUQiqQ5FjQCBQICysjK8Xm+qQ1Fj1No9Ldy39A9ceuJEpp78iVSHo5RSSqlRZsQnWDt37iQrK4vKykpEJNXhpA3LGFwj7HwbY6ivr2fnzp1UVVWlOhw1Rj37zOMsafkhPAMs+DD4M1MdklJKKaVGkRHfRTASiZCfn6/J1VHU1B5j46562lqbUx1KDyJCfn6+tmaqYeXZ917X88iqx1IYiVJKKaVGoxGfYAGaXB1lDeEYFVJDZusWiIVTHU4P+llQwy3Ytp0oXppMiOY1z6U6HKWUUkqNMqMiwVJHVzyeICBxAKxwfYqjUeroaYnEKU3upiWjnBXWNLx7VqQ6JKWUUkqNMppgDYKI8NWvfrVr+uabb2bJkiWpC6ib008/vd+bM3/84x/npJNO6jFvyZIlTJgwgfnz5zNnzhwee2x/NyjLMnitDgCSxgXRFjBmeIJXaoRpCsepkL3EsivYljGLvPYtEBlZXWWVUkopNbJpgjUIfr+fhx9+mLq6uiHdrzEGy7KGdJ/dNTU1sWLFCpqbm9myZUuPZTfccAMrV67kgQce4KqrruqKI5608JAEoJFMXFYckrFhi1GpkaS5I06+tGCFiujIn2XP3LcutUEppZRSalTRBGsQPB4PV199NbfccstBy2pra7nwwgs54YQTOOGEE3jllVcAu5Xo5ptv7lpvzpw5VFdXU11dzfTp0/nsZz/LnDlz2LFjB1//+teZM2cOc+fO5b777gPghRde4PTTT+eTn/wkM2bM4NJLL8X00ZJ09913d7VGvfHGG13zH374Yc477zwuvvhi/vKXv/S67cyZM/F4PF3JY8Iy3PTfNzLr9As55UPn8bUf3wKJCNXV1Zx55pnMmzePD3zgA2zfvh2AK664gmuvvZaTTjqJSZMm8cILL3DVVVcxc+ZMrrjiiq7jXHvttSxYsIDZs2fzwx/+8KA4mpubqaio6Er0wuEw5eXlxOPxPt8XpYZac0ecTDpwZ+TgHz8bgHjN6hRHpZRSSqnRZMSXae/uR39bzZrdLUO6z1njs/nhebMHXO8LX/gC8+bN4xvf+EaP+ddddx033HADixYtYvv27Zx11lmsXbu2331t3LiRP/3pT5x00kk89NBDrFy5knfeeYe6ujpOOOEETj31VADefvttVq9ezfjx4zn55JN55ZVXWLRo0UH7a29vZ+XKlbz00ktcddVVrFq1CoClS5fygx/8gOLiYi688EK+853vHLTt66+/jsvlorCwEIDaujqeeuofbHjpQXYFppK1722Id/ClL32Jyy+/nMsvv5w//OEPfPnLX+aRRx4BoLGxkVdffZXHHnuMj33sY7zyyiv8/ve/54QTTmDlypXMnz+fG2+8kby8PJLJJB/4wAd49913mTdvXlccOTk5zJ8/nxdffJEzzjiDv//975x11ll6vyt1VLWEwwQkjjeYTUnZVNqX++nY/h75C1MdmVJKKaVGC23BGqTs7Gw++9nPcuutt/aY/+yzz/LFL36R+fPn87GPfYyWlhba2tr63VdFRUXXuKhly5ZxySWX4Ha7KS4u5rTTTuPNN98EYOHChZSVleFyuZg/fz7V1dW97u+SSy4B4NRTT6WlpYWmpib27t3Lxo0bWbRoEdOmTcPr9XYlXgC33HIL8+fP52tf+xr33XdfV3W+zKxsAn4///bV/+DZJx/HHcjEinfw6quv8ulPfxqAyy67jGXLlnXt67zzzkNEmDt3LsXFxcydOxeXy8Xs2bO7Yr7//vs57rjjOPbYY1m9ejVr1qw56HUsXry4qwXvL3/5C4sXL+73PCo11NqdWxP4QrlMK8lhkxlPcm//P5gopZRSSnV3xC1YIlIO3AUUAwb4rTHmFyKyBPh3oNZZ9TvGmCeO5FiDaWkaTtdffz3HHXccV155Zdc8y7J47bXXCAQCPdb1eDw9xld1v3dTKBQa1PH8fn/Xc7fbTSKR6HW9A0uXiwj3338/jY2NXTfkbWlpYenSpdx4442APQbra1/72sH7crl57u/38+Zrr/CXp57ij7/5OS889IdBxelyuXrE7HK5SCQSbN26lZtvvpk333yTcePGccUVV/R6L6uPfexjfOc736GhoYEVK1Zw5pln9ntcpYZaNGwnWIFQNpX5If5uyqhq0gRLKaWUUoM3FC1YCeCrxphZwEnAF0TEGR3OLcaY+c7jiJKrkSAvL4+LLrqIO+64o2vehz/8YX75y192Ta9cuRKAyspK3nrrLQDeeusttm7d2us+TznlFO677z6SySS1tbW89NJLLFx4aP2ROlt9li1bRk5ODjk5OSxdupSnnnqqa9zXihUr+hyH1V1LSyvh1iY+8uEP8L+3/IxVa9YjVpT3v+99Xdvfe++9nHLKKYOOr6WlhVAoRE5ODnv37uXJJ5/sdb3MzExOOOEErrvuOs4991zcbvegj6HUUEhG7C7IvmAOPo+L+uAksuJ10NGY4siUUkopNVoccYJljNljjHnLed4KrAUmHOl+R6qvfvWrPaoJ3nrrrSxfvpx58+Yxa9YsbrvtNgAuvPBCGhoamD17Nr/61a+YNm1ar/u74IILmDdvHscccwxnnnkmN910EyUlJYcUUyAQ4Nhjj+Waa67hjjvuoLq6mm3btvUoz15VVUVOTg6vv/56r/v4yEc+wu7du2lubeGiyz/PMaedxwdOP43v/fCHCPDLn93EH//4R+bNm8fdd9/NL37xi0HHd8wxx3DssccyY8YMPv3pT3PyySd3LfvBD37Qo0z84sWLueeee7R7oEqNqJ1gSSDbnhw33Z6vlQSVUkopNUjSV2W6w9qZSCXwEjAH+ApwBdACLMdu5TroZ2ARuRq4GmDixInHb9u2rcfytWvXMnPmzCGLUfVvZ2M7xR2b8AZzIXciW2saqLK2Qe5ECOanOjxAPxNq+Nx91++4bMvX4HP/hLIF/Oav/+Tadz5B8txf4F5wRarDU0oppdQIIiIrjDELDpw/ZEUuRCQTeAi43hjTAvwGmAzMB/YA/9vbdsaY3xpjFhhjFnRWslOpYwy4MCD2R8Pl9WEAEtGUxqXU0eCKt9pPfJkAFEyYTNR4adul47CUUkopNThDkmCJiBc7ubrXGPMwgDFmrzEmaYyxgN8BWuh4FLCMwYXVlWD5PW5ixovRBEulAVcsbD/xZwFQUZhNtSkmvm9jCqNSSiml1GhyxAmW2CXs7gDWGmN+1m1+abfVLgBWHbitGnmMMQj0SLCieDHxg6v+KTXWuOPOLRacBKuyIMhWU4q3cXMKo1JKKaXUaDIUNxo+GbgMeE9EVjrzvgNcIiLzsUu3VwP/bwiOpYZbZ2l5p/S73+MijJesZIvdf/CAkvBKjSWehNOC5XQRLMz0s9M1gcz2tyCZAPeouje7UkoppVLgiK8WjDHLgN6uukd9WfZ0ZPfopKsFy+d10YgXwUAyDh5fCqNTani5kxFiePG57M+/iNCWWYE7nISmbZA/OcURKqWUUmqkG7IiF2qMOCDB8rhcJMRJqpI6DkuNba5khLj4e8xL5k2xn9RvSkFESimllBptNMEapEceeQQRYd26vu+HU11dzZw5c4bsmFdccQUPPvhgn8uvv/56JkyYgNXZrQ+48847KSwsZP78+cyaNYvf/e53h3bQAxIsADzOBWdCx2Gpsc2djBJ39UywMkrse2El9m1IRUhKKaWUGmU0wRqkpUuXsmjRIpYuXdrr8kQiccTHSCaTg17Xsiz++te/Ul5ezosvvthj2eLFi1m5ciUvvPAC3/nOd9i7d+/gg+glwXJ7fFiIlmpXY57HipI4IMEqKZ1Ao8kkvFtLtSullFJqYJpgDUJbWxvLli3jjjvu4C9/+UvX/BdeeIFTTjmFj33sY8yaNQuwE61LL72UmTNn8slPfpL29nYA/vnPf3Lssccyd+5crrrqKqJRO1mprKzkm9/8JscddxwPPPDAQcd+9tlnWbBgAdOmTePvf/97j2PPnj2ba6+9ts+kr6ioiMmTJ9P95s233nors2bNYt68eVx88cUANDQ08PGPf5x58+bxiXPP4d01G0BcLFmyhMsvv5xPnvshKhd+hAcfeYxvfOMbzJ07l7PPPpt4PA7Aj3/8Y0444QTmzJnD1VdfzYE3r7Ysi8rKSpqamrrmTZ069dASP6WOAo8VOSjBqiwIscWUkqzVLoJKKaWUGtjoKon15Leg5r2h3WfJXDjnJ/2u8uijj3L22Wczbdo08vPzWbFiBccffzwAb731FqtWraKqqorq6mrWr1/PHXfcwcknn8xVV13F//3f//HFL36RK664gn/+859MmzaNz372s/zmN7/h+uuvByA/P5+33nqr12NXV1fzxhtvsHnzZs444ww2bdpEIBBg6dKlXHLJJZx//vl85zvfIR6P4/V6e2y7ZcsWtmzZwpQpU7rm/eQnP2Hr1q34/f6uhOeHP/whxx57LI888gh/vv8BPnvd91j59rkAbN68mb8/9QxrX3+Wsz62mIcefpibbrqJCy64gMcff5yPf/zjfPGLX+QHP/gBAJdddhl///vfOe+887qO6XK5OP/88/nrX//KlVdeyeuvv05FRQXFxcWDf5+UOgq8JkbS3TPBqsoP8U9TyozmNSmKSimllFKjibZgDcLSpUu7WnsuvvjiHi1GCxcupKqqqmu6vLyck08+GYDPfOYzLFu2jPXr11NVVcW0adMAuPzyy3nppZe6tlm8eHGfx77oootwuVxMnTqVSZMmsW7dOmKxGE888QQf//jHyc7O5sQTT+Qf//hH1zb33Xcf8+fP55JLLuH2228nLy+va9m8efO49NJLueeee/B47Px62bJlXHbZZRhjOPn976e+sZmW1lYAzjnnHDIz/EydMZukleTssz4MwNy5c6murgbg+eef58QTT2Tu3Lk899xzrF69+qDXsXjxYu677z4A/vKXv/T7mpVKFa8VJekO9Jg3LuRjl7uMUKwOoq0pikwppZRSo8XoasEaoKVpODQ0NPDcc8/x3nvvISIkk0lEhJ/+9KcAhEKhHuvLAfeJOnC6NwfuY6D9/eMf/6CpqYm5c+cC0N7eTkZGBueea7c6LV68mF/96le97u/xxx/npZde4m9/+xs33ngj7723v0XQGOxy7LD/RsN+Pz63i7jLj9fjQZJxcLlxuVwkEgkikQif//znWb58OeXl5SxZsoRI5OBiGO973/vYtGkTtbW1PPLII3zve98b8LwodTQlLYOfGMadfdCySHYltGBXEhx/7FGPTSmllFKjh7ZgDeDBBx/ksssuY9u2bVRXV7Njxw6qqqp4+eWXe11/+/btvPrqqwD8+c9/ZtGiRUyfPp3q6mo2bbLHcNx9992cdtppgzr+Aw88gGVZbN68mS1btjB9+nSWLl3K73//e6qrq6murmbr1q0888wzXeO9+mJZFjt27OCMM87gf/7nf2hubqatrY1TTjmFe++9F8sYXn/1XxTk5ZKdk9u1ncslWK7eS7V3JlMFBQW0tbX1WfVQRLjgggv4yle+wsyZM8nPzx/U61fqaIkmkgSIYXkCBy/Mn2r/W7/56AallFJKqVFHE6wBLF26lAsuuKDHvAsvvLDPwhLTp0/n17/+NTNnzqSxsZFrr72WQCDAH//4Rz71qU8xd+5cXC4X11xzzaCOP3HiRBYuXMg555zDbbfdhmVZPPXUU3z0ox/tWicUCrFo0SL+9re/9bqPz33ucyxfvpxkMslnPvMZ5s6dy7HHHsuXv/xlcnNzWbJkCStWrODY+fP57//+CX/6+Y846KPRVaq9Z4KVm5vLv//7vzNnzhzOOussTjjhhK5lt912G7fddlvX9OLFi7nnnnu0e6AakSJxy2nBOjjByiydimWExL71KYhMKaWUUqOJHFjxLZUWLFhgli9f3mPe2rVrmTlzZooiSi/ReJLGfTsokUYoOQZc+5OsXY3tlHRsxBXMQ3LLUxilfibU8NjV1IHcMotI+alM+tyfeiz72zu7mf/QqWRPez85n7krRREqpZRSaiQRkRXGmAUHztcWLNXFMgbB2KOwDhj75fe4iRovRm82rMaoSNzuIogn46BlVU6pduo2piAypZRSSo0mmmCpLpYBFwZwHZRg+Twuonj0ZsNqzLITrDji7TvBymittqvBKKWUUkr1YVQkWCOpG+NYZozBhYXppfKh3+Mihg+x4mBZKYjOpp8FNVwiMbsFS3wHj8EK+T3U+cvxJduhtSYF0SmllFJqtBjxCVYgEKC+vl4vrI8Cq7NMuxz8sfB5XMTwInBQJcGjxRhDfX09gUAvVd6UOkKxaAcuMbh8B7dgAcRyJtlP6rWboFJKKaX6NuLvg1VWVsbOnTupra1NdShjXkcsCe11BFwW0rj2oOX1za20mUaoM9BLN6qjIRAIUFZWlpJjq7EtHrVvc+D2BXtd7i6aBg3Y98KqOvUoRqaUUkqp0WTEJ1her5eqqqpUh5EWHlqxk5wnvsipJXF8X3jloOVfvON5frXjIvjgj2DR9Uc/QKWGUayjM8Hq/ceDvNJKOtb6kJr1aBuqUkoppfoy7F0EReRsEVkvIptE5FvDfTx1+CKJJBnEwNv7L/jFxcXUm2yM3mxVjUEJpwXL4+/9819VmE21KSG6d8PRDEsppZRSo8ywJlgi4gZ+DZwDzAIuEZFZw3lMdfgicYuAxHqtogZ2JbWtpoTYPh2DosaeRGyABKsgxGZTirth09EMSymllFKjzHC3YC0ENhljthhjYsBfgPOH+ZjqMEXidguWq48LzEkFIapNCTRsOcqRKTX8krEOALx9fP4n5gWpNqUEw7sgETuaoSmllFJqFBnuBGsCsKPb9E5nXhcRuVpElovIci1kkVrReJIMorj6GORfWRBii1WCv2MvRNuOcnRKDa9k1EmwAr1//n0eF83BClwkobH6KEamlFJKqdEk5WXajTG/NcYsMMYsKCwsTHU4aS2SsAhIHPH03kWwJDvALtd4e0JbsdQYY8XtLoJ9tWABJPMm20+0VLtSSiml+jDcCdYuoLzbdJkzT41AkXiSDIn2WYLd5RLiOU5FxwYtdKHGFuOMweprDCKAv3iavW6djsNSSimlVO+GO8F6E5gqIlUi4gMuBh4b5mOqw9Q5Bqu/e1z5iqbYT+r1AlONLSYesZ/08/kfX1JKncmmfc+6oxSVUkoppUabYU2wjDEJ4IvAP4C1wP3GmNXDeUx1+CKxBP4BEqzxRQXUmHFYddqCpcYWE7fHYOHp+y5XU4qy2GJKSWglTaWUUkr1YdhvNGyMeQJ4YriPo45cZxW1/hKsSqeSYO6+jXqzVTWmSGLgz//U4kyetUqZ2/zuUYpKKaWUUqNNyotcqJHDcsag9HWjYbBLtW+1SnA1aguWGmMSUfvfflqw8kM+arxlZMQaoKPp6MSllFJKqVFFEyy13yC6SHXebNgXbdQLTDWmuAbRgiUixHI6KwnqjwxKKaWUOpgmWKqLxMP2E1+oz3XyQj72ep1bmekFphpDXIkoSVzg9va7nrd4KgBGS7UrpZRSqheaYKkuEh+4i6CIEM/trCSoF5hq7HBZEeLiH3C9vLLpJI3Qvmf9UYhKKaWUUqONJliqS1cXKV/fCRaAv3gKCdxQq6Wq1djhTkaIuwZOsCaX5LHDFNGhpdqVUkop1QtNsFQXd8JpwfJl9rteRWEOW6wSknv1AlONHZ5kdFAJ1tTiTLaYUlx6LzillFJK9UITLNXFnewc5N9/C1ZVQYhNZgLJfZpgqbHDY6IkB5FgFWX52eYuJytcDcnE8AemlFJKqVFFEyzVxZMcXBfBqoIQG80EvM3bIB45CpEpNfy81uASLBGhJWsaXhMDbcVSSiml1AE0wVIAWJbBb3W2YPVdRRBgUmEmm60JCBY0aCVBNTb4TJSkp+8S7d2Z4jn2v3tXDWdISimllBqFNMFSALTHkwRxbrQ6QAtWpt9Dc+Yke0ILXagxIJ60CNJBwtP/jwud8ivnEjduwttXDm9gSimllBp1NMFSAISjCTLESbAG8Su+r3iafc+g2g3DHJlSwy8cTZBJBGuA1ttOM8ry2WTGE9357jBHppRSSqnRRhMsBUBbNEGQKAl3BrgG/lhUlRaw0xRiaaELNQa0RROEJILxZw1q/RklWaw1Ffga9POvlFJKqZ40wVKA/Qt+kCjWIMegTCnKZIM1gcTetcMcmVLDLxxNEqIDGWSClRXwUhOYRFZ0L7Q3DHN0SimllBpNNMFSgP0LfoZEsTz9j7/qNK04i81mAp7GLVqqWo16bZEYmURwDTLBAogXzLKf7F09TFEppZRSajTSBEsB9i/4QaIDFrjoNKUok43WBFwmDo1bhzk6pYZXe7gVlxjcGYNPsDLKjwEgtlvHYSmllFJqvyNKsETkpyKyTkTeFZG/ikiuM79SRDpEZKXzuG1IolXDxu4iGBmwRHsnu5JglT1Ru34YI1Nq+MXCzQB4MrIHvU3FxCrqTDYt1SuHKSqllFJKjUZH2oL1DDDHGDMP2AB8u9uyzcaY+c7jmiM8jhpmbdEE2dKOZOQMehtP8Qz7iZZqV6NctL0FAG9w8AnWrPE5rLEqcNVoC5ZSSiml9juiBMsY87QxpnMAzmtA2ZGHpFIhHE2QRTuuYO6gt5lYWsxuk4+lLVhqlIu32y1Y/uDgf2AoG5fBOvcUclo3QrxjuEJTSiml1CgzlGOwrgKe7DZdJSJvi8iLInJKXxuJyNUislxEltfW1g5hOOpQhKMJciSMJzhu0Nt0jsOK79FB/mp0S3a0AhDIzB30NiJCW/483CSh5r1hikwppZRSo82ACZaIPCsiq3p5nN9tne8CCeBeZ9YeYKIx5ljgK8CfRaTXvjfGmN8aYxYYYxYUFhYe+StSh6UtkiCHMJKRO+htphVnsc6U42nYqJUE1aiWjNhdBD2HUOQCIFCxAID4juVDHpNSSimlRqcBEyxjzAeNMXN6eTwKICJXAOcClxpjjLNN1BhT7zxfAWwGpg3bq1BHLBppxStJCOQOepupRZlssMpxWzFo2DJ8wSk1zJJOF0H8gx+DBTB58jT2mlxaNr8xDFEppZRSajQ60iqCZwPfAD5mjGnvNr9QRNzO80nAVECvwEewWGuj/SQw+DEoIb+Hpuwp9sQ+7SaoRrGI8/kP5h3SZvPLc3nXmox7z9vDEJRSSimlRqMjHYP1KyALeOaAcuynAu+KyErgQeAaY0zDER5LDaNE2Hl7DqGLIICveCZJXLBv7dAHpdRR4o002J9j/+B/YAAozg6wxTeN3PZqiDQPT3BKKaWUGlU8R7KxMWZKH/MfAh46kn2ro8t0NNlPDqGLIEBVaQHbqouprFmtd61Wo5Yv1kjYnUO269A/xZGiY2DPUtj9Nkw6feiDU0oppdSootfECgATabKfHGIL1vSSLNZZ5SRqtIugGr0y4s10eA6t9apT5qSFAHRUvzmUISmllFJqlNIES5G0DP5Ykz2RMfgy7WBXEtxgyvA2V0OsfcD1lRppLMuQaTUT8x3aZ7/TzKoKtlglhDe/OsSRKaWUUmo00gRL0dwRpwhnkH9W6SFtO6kwxAYzEcFA7bphiE6p4dUaSTCOVhKBQytw0WleeS4rzHRCe98Eyxri6JRSSik12miCpWgIRymWRqK+XPD4D2lbv8dNOHe6PaGFLtQo1NAeI09aMMH8w9o+0+9hV/Z8MhItULdhiKNTSiml1GijCZaiptlOsBLB4sPaPqt0KlF8sG/NEEem1PCraWwjj1a8WYd/o3NXxfsBSGx9ZajCUkoppdQopQmWYndTB0XSiCv70LoHdppakssGazzJmlVDHJlSw6+5djtuMQQKJh72PqbMmEetyaFlw8tDGJlSSimlRiNNsBQ7mzooliZ84yYc1vbTSzLZYMqx9moLlhp9wrU7AMgqrjzsfSyoyuNNazreXa8NUVRKKaWUGq00wVLsbWimSJpw5xxegjWt2C7V7m3fB+16P2k1uiQa7QQrkFd+2PsoygqwOWMuWZE90LxzqEJTSiml1CikCZbCqt+CGwsKph7W9hX5ITa7KuwJHYelRhlp2WU/yT68Hxg6JcpOAsDapuXalVJKqXSmCZZCGjbZT/KnHNb2bpeQyHcqCWo3QTXKeNp2E5EMCBzejYY7lU0/gTYT0HFYSimlVJrTBCvNNYRj5HdstycOswULoKCkkmYyYd/qIYpMqeEXT1rkRXbQlDERRI5oX8dPKuQtaypm27+GKDqllFJKjUaaYKW5dTUtTHdtJxosAX/WYe9nWmk266wyEjXagqVGj2317UxiF/Fxk454X1UFIVZ7Z5HTuknHIiqllFJpTBOsNLd2TyvHyibMhAVHtJ/pxVmst8rtmw0bM0TRKTW8tuyppUzq8BbPOOJ9iQgdE07GhcFsfWkIolNKKaXUaKQJVppbu3ETFa59+CsWHtF+ppVksd6U44m3ahU1NWrUbVuHSwy55bOHZH+ls04mbPy0rP3nkOxPKaWUUqOPJlhpLGkZ3NvsX9ql4v1HtK/xOQG2eyrtCa0kqEaJaM06AAKlR96CBXDS1FJet2YiW14ckv0ppZRSavQ5ogRLRJaIyC4RWek8PtJt2bdFZJOIrBeRs448VDXU3t7eyPuSy4n68mDCcUe0LxHBFDoXqXu10IUaHTwNG+0neZOHZH+V+UHe880nu30bNO8akn0qpZRSanQZihasW4wx853HEwAiMgu4GJgNnA38n4i4h+BYagj97c2NfMj1Fq6ZHwHXkb895ePHs4d8zL61QxCdUsMraRly26tp8pWALzgk+xQR4hWnAGBteWFI9qmUUkqp0WW4ugieD/zFGBM1xmwFNgFHNshHDanWSBz36vsJSQTvgsuHZJ/TizNZlywjUbNqSPan1HDa1dhBFbvoyD7yCoLdVc1aSL3JomWNjsNSSiml0tFQJFhfFJF3ReQPIjLOmTcB2NFtnZ3OPDVC/Oml9VxlHiFceCyUnTAk+7QLXUzEXb8RkvEh2adSw2VTTSNTZRdSPDQFLjq9b0ohr1qz8W5/SStqKqWUUmlowARLRJ4VkVW9PM4HfgNMBuYDe4D/PdQARORqEVkuIstra2sPdXN1GLbWhfEtu4kyqSN0zpIjvsFqp+nFWayzynFZcajfPCT7VGq47Nu2Br/Eya6cP6T7HZ+bwfrgcYSitVC3cUj3rZRSSqmRb8AEyxjzQWPMnF4ejxpj9hpjksYYC/gd+7sB7gLKu+2mzJnX2/5/a4xZYIxZUFhYeKSvRw2guT3OPX+4latdj9I+59Mw6fQh23d+pp+9gSp7Yp8WulAjW3z3ewAEy+YN+b5N1WkAJDY9N+T7VkoppdTIdqRVBEu7TV4AdA6+eQy4WET8IlIFTAXeOJJjqSNX1xblt7f9L98M30xLwbEEz79lyI/hKZ5OEpd9w2GlRjB/wzr7s1o4fcj3PW/OMWyxSmh957Eh37dSSimlRjbPEW5/k4jMBwxQDfw/AGPMahG5H1gDJIAvGGOSR3gsdQRefG8zNY98n68nH6ex4DjGXfUQeANDfpzK4ny27Smlau9qhqbjoVJDzxhDYXgT9RkVFHn8Q77/U6cXcRcn8m81f4f2BgjmDfkxlFJKKTUyHVGCZYy5rJ9lNwI3Hsn+1ZExxvDmumq2PP1/fKhhKadJK3VzrqLg/P8Cb8awHHNqcSZrkmVMrFl9xNm7UsOlpiXCVLYRHjc0BV4OFPC6qSs/G/euR7HWPYHruM8My3GUUkopNfLoNfAYtKOmjlX/+jv+tQ/z/ti/WChxduSfRPbHb6Rg4oJhPfaUokxetco5t/l1iIXBFxrW4yl1OKp31vA+qWNbyZxhO8as409l584CQivuZ5wmWEoppVTa0ARrDKhvbGTjyldo3vgv8vb9i3nxVZwjcdokxI7KTzDxA9dQPvG4oxLL1KIs/mSc+ib71kHZ8UfluGr0sixDWyxBS0eclo4Ere3ttLe1EO9oJR6LEk/EScRiJBIJEvEoyUScZNIiKR4sl5eky4vl8iKeDFyhcQQzgoT8HjL9bsYFfZTmZFCc48fv2X8z7ebtKwHIqjhm2F7XWXNKueux0/j3XQ9D4zYYVzFsx1JKKaXUyKEJ1ihiknFqtm9kz+b3aNm1Duo2UNK2hilWNSeJBcBuTzkbJl5E8XHnUjTnTKYOwzir/hRk+tjjr7JH5e1brQlWGumIJWkIR2luaqC1sZaOljoiLXUkww2YjkZcHU24Y014Y834E634ku34rHb8VoRM6SBIhEKi+OXI7qHWbvw0EaLZZFJjxvGyKWCXKaDFX0I0qxxTMJ3Auhc52wu5lccO0as/WIbPTWL+5STefoTYc/9L5oW3Dtux1MhlWYbWSJzWlibCTbV0tDbREW4mEm4hEWnDirZhYm24YmEkHsYVD+NKdGCSccRKIFYCt0ngIonbJMAY4rhJ4sYSN8blwRIvMXcGUXcIy5uFCWQjgVxMZiH+cRPILSynqDCf8bkZZAe8qT4lSik15mmCNdIYQ6RxN3urV9Gycx2JfRvxNm8ht307xcndlJKks3RjKyF2B6fzbuEV5Ex9PxPnncr47GLGpzB8ESGjaArRvX78Wklw1EpahsZwlIamJlrrdtPRvJd4816SrbXQXoe7ox5vtAF/vJmMRAshq5Vs2igmzAQn2e9NBB9hVzYRdyZxf5CkJxfLG6LDFyLiz6LJn4k7IwtvRhaeQAi3N4DH68Xr9eH1evF4vIjLa9+7zUpAImrf1DoZw8TbSbQ3IW31ZIcbyWqvp6x1N962twjEGsECmu1H1OOhVbLIyhne+59fcPpCHnjrA1z83t2YEy9H9AeHUa0jGqehYR9t9TWEm/YRaakj3lZPItwIHY24os34Ys34Ey0Ekq1kWq1kmjA5hMmRwdV5aidAVAJY4sESD0lxdz23xA0iuLFwmQQuk0BMEncyTiDeQYZpx0Xv379Wk8FeM46VUky9v5x4TiWewsnkTJhOacU0JhXnEvC6e91WKaXUodEEK0US4UZqt62lccdqojUbcDduIStcTXF8J0EidHYmihovO1yl7PJPZFPeafiKp5E3cRYTp84lK7eY6UN0k+ChNLkkm017y5illQRHlGgiSUNLG837dtNWv4uOphriLbVYbbW4OurwRurxxxrJTDSRY5rJp5mCPlqTOgjQ4sqhw5NDNJhNh7+c9sA49maMwx3Kw5eVTyC7gMzcAoI5BbiDeZCRS8CbwXC1qQrgdR4HiYWheSc0bIHa9bj3rSNYesyQ3WS7L+NzM+g45TvULFtBzp2fJH7uL+goOIa8wlICft+wHlsNrCMap75uH031uwk37CXWss/+ESFci8v5ESEYaySUbCLbaiaPlj5/QLAQ2gjR7s6kw51NNJBNq6+cZn8OOzPGIRm59ncjlEMglENGZg4ZoWwCwWw8GVn2eFVPBkGXi+DhviBj7M96tAUizSRaamit3UG4fiexxt24WnYztW07CyPPEKjtgFpgDcSNmx2miD3eMlpDlZj8KQRLZ1BUOYfKikoy/HqpMNIYY4gnDZYxAFjGYBmwLAuTtDAmac+zklhWEiyDMSAuF+Jy43K7cbvd9nMBt0twSecD+1+X/g+u1OES43w5R4IFCxaY5cuXpzqMIZOIdrBv+zoat68lsnc9Ur+ZUFs1hbEd5JmmrvWSRtgtRezzlhHOrMTKm4y/ZBp55bOYUDmVzMDouhD74ytbCT15HZ/MXoPrG5tSHc6Y1xFLUltfR9PeHbTV7yTSWIPVsgdp24u3Yx/BWD05yXryTSN50tbrPqL4aHblEPbkEfOPIx7Ih2A+rqwifNlFZOQWExxXQmZeCd6sIvAd9iVg2jHG8Ov7n+Dc1TdQ6doLwBs5Z7PwhvtSHNnYlLQM9c3N9vehbhcdjbtJNu+B1ho8HbUEonVkxevITTYyjhY8fSRMrQRpdeUS9uYS8eWR8OdhBfNxZRbiySoikFNAMKeY7HEFZOYWIoEccB3RrSWPHmMgXEt030bqt60hvGcD1G8i2LqVwthOfOz/YaXFBNnpHk9zRiXxcZPwFU8nf+JsJkyZTTCUncIXkXpWIk60o42O9laiHe3EOtqIRcLEOsIkou0komGS0XasWDtWrAMTa4d4O5LowJ2M4EpGESuOy4o5/yZwW3FcJo7bxHGbBB7nX7dJ4CWBx/nXTRIXBsHChbEfcnjXcwnjwnL2ZOHq2nPnvwk8xMVDAg9JsR8JvCRdnS2r9ljYzu6qltsLzr/G5QWXF9xecPsQt/1cnOfi8SJuD+LyIB4vbpcH8fhwuT2I24PL7cPt8eBye3F7fbg8HtxuL26PF5fH7tXg8fjA7UEQxCUILnCJ/QOaCAKIuJzlILgQl0C39e1/BREwVhLLspNT4/xrGQtjWRgrSdJKYixnPWM5/5qu5ZZlYZz1LWv/cjrXtYy93Nj7N1YSY1lgTNd29jLL3s5KYrr9a4wz3bWuhROQvdxK2t9xZ//2fGv/PAOYpLON/RkSY/8dFGN/EoCuH8j3f6qcOT1+mOw5z3RtdeB8emwjIl3r2Ks471W35/a/LntdEZqypjFj4YeoyB9ZxdNEZIUx5qAKcvqz1BFKJi1qdmymfvtqOvasg7qNBFuryY/uoNjax3gxXV32ak0ONd4y1ma9n2jOJHzF08gtm0lp5QzKcrIoH4GtUYdjalEWz5syXO0vQrgOQgWpDmlUSlqG2uZ29tXsoGXvNqL12zHNO3G37SGjYw+hWJ2TODUxUaJMPGD7GB6aXXm0efPpyKxiZ/BEdoSK8OSU4s8tJTOvlOyCUoK5xfh9IYrGyOdvpBERvrj4o6zefgLPvvUEC9/+NlNaXrP/s9NzfkjaOqLU7tlGS0017XXbSDTuxLTtxdu+j4xoLdmJBvJNA0XSTtEB2yaN0OjKpcWdTzijmB2BOWwPFeDOLMKXU0gwt4TguBKy80sI5BSR5fGTlZJXeRSIQGYR/swixk86uecyK0m8YTu11atp2rGaxL6N+Jo3M7l9JUXhZ2EnsMJetYYCan0T6AgUY2WW4M4uISNvPBl5EwjmFpOVm08oOw/xZhz9z3oyAfEw8UiYSHsr0fY2oh2txDrCxKNhEh1hklH7YcXaMbGwnfzEO5B4O65EBHeyA0+yA7cVxWtF8FlRfCaKnyh+E8UnSTKAQ7npiWWEiPiI4CeGj4R4SYiHpHid5MUu2hOTDCyngI9xeTFuL8blsxMWtw9xuRG3G3A5iYSrx0O65u3/VxDnojoJVrLrohzLci68LaTzwrv78mQcsWJgJXBZ8R7JoNfEcVlh3In9iaDbxPHQLSkkgcck8Q6ym6xSvflj4iziExaOuASrL5pgDVK0o5Xdm1fRuG0V0b0b8DZuIre9mtLELiZIlM6RHG0mg92eCewKzWZLznm4C6eQNX4GRVWzKSwopDANLqhmj8/mNuNc7u9dDZNOS21AI1RrR4yavTU07d5Ee2018YYduFp34W+vITO6lwKrjiIaKTngP6UoPurdBbR5C2nOmktDqBhXdgm+3BJC+WXkFJWRVVCGL2MchSIUpuj1qZ5mTyxi9sQreKp5D2dv/Qnx2k14i6amOqwRI55IUrNnBw27t9CydxuJRuf7EN5DVmwveYlaCmmk6oAWpwg+mlzjaPPm0x6cTEvwfZjMYjw5pQTyxpOZX0ZuUTkZuUUUuNzozz0DcLnxFlQxvqCK8QvO7bEo0dHK7q2radi2mo6aDfiaNpPdvoOi1rcY19yIb3fvF9AxPIQlRIcrRMyV0ZVE2A8fxu3Dcjmdew0Ixn6CcX5hN4gxiInjStotPC4rhtuK2S08VhyPieHFvuD3Yl/Yw/5uwwMly5YROrATn6j4iUqAmPiJuwJ0uLNJegux3Bkk3QGMJ4DxBsGbgXiDuHwZiC+Ixx/E7bf/9QZC+DMy8QUy8WeE8AczyQhm4vb6CYocfjfQ0cyySCZixONR4rEI8a7qsDGsRJxkMk4yHiOZSGAl41jJOMlEHCuZwDjLrWQCk4zbj0Qcy0pgkgnEimN/XrB/vMJymk2cthNj2bOdz1Rf/xpcTsOJGyOCdCan4sKIG+maZ7eSiTNvf2LrJLcul7Oe227Y7tzWtX99cdljKl2u/fsVl9tuXRM3Lle3eeJC3C5cYi/vnO9yjiNOLC5ne7vrZ+e/zrbOcex1XN22dR2UoO/v3NZ5/owz1a0tqnOe6blO5zbGWD2mO9fpfB/sVr/Ot8yy/+1qcTPOw24FBMO57gyycvOO6CN4NGmC1Y9Vyx4j8tofKApvoMzaTZUYqrD/ENe4iqjzT2RVwQm4CqaROWEGBZVzKSgpZ9po6SYyTMaFfLTnTod2YN+atE2wEkmLPXWN7NuxkZY9m4jXbcHVvJ2M8E7y4nuYYPYyVTp6bBPFS6O7gLaMYpqCC2jMnoB3XDnBgonkFFeSVVyBP5jP+DRI1Mcq/6RFsBVq3nuO8g+kT4KVtAz76uqp3bGe1prNJOq2IM3bCYV3khfbTYm1l3KJUd5tmyheGlwFtPiK2ZdzAnuyxuPOLSOQP5Hs4irGlVYRyMqjRL8PR4UnI4uJs05i4qyTDlpmJZPU1tVQu2c7HQ27ibfWkgg3kexogkgLrmgLnngLnmTE7gIXj+M27bhNMx4Tx2sSIAY7vRLnkkycTnB2d6GkeIh0tfQESbpysdxeki5fV6JmXF4st99JgDqTnxBuv/3wBEJ4A5n4MkJ4M7IIZIQIhLIIBjPJ8HkI6bij4eNy4fYFcPsCBEI5qY5GqWGlCVY/Ig27GR9ew97gVHbmfRRv6SzyJs5iwqTZjA9mprRa30hXMbGSfevyKNz5JsK1qQ5n2MSTFtv2NVJTvZbw7nWYuo1ktGxlXMd2ipN7KJemAy4YfdR7imnLLmNH1kIkrxJ/wSRySicxrrQKf2ahXiyOcbOPWUD9s1mEN74MH/h/qQ5nSFmWYU9tLfu2rqJt11qs2o34WqrJjuyiOFlDqbR0VUEFCJNBraeU1lAFq7NPwTWugmBBBbmlleSPn4Q/q4hSkR7bqJHJ5XZTWDyBwuLhrcyplFKjgSZY/Tj+3KuRj12jidRhOLZiHP9aPYPztryMewyMNWntiLF9ezX1W98lUrMOV8NmssPVlCR2UkUtU7oNLm6UXOoDE9mXuYh94yoIFE4md8JU8iZMxZ9VzPg0b+FMd0XZGbzinc3U2jdG7Tis1vYI1ZvX0bR9NbF9G/A2biYnXE1pYicTpLGry3TSCLXuIpoCE9iZeQY7cyvxF04ie/xUCsqnEsoqJDQKX79SSinVH02w+iF6IXzYTqjM405rNh9v/5fdTbB4dqpDGpTWSJyNO/dRs3klsV3v4W9YS0F4M1XWNmZLS9d6HQSo9ZURzp3HhvypBEunkz9xFpkTZjAukMO4FL4GNfK1V36Iok3/Qd26ZRTMPCXV4fSpPRpnW/Um6jevJLbnPfwN6yls30yFtZO53Ur4t5DFPn85e8a9n935U8gonUFBxWzyyqZT4g1QksLXoJRSSh1tmmCpYTGjJIvVoZOwYr/HtfZvIy7BSlqGbXWtbN+8hpbqlbBvDdkt65kYr2a+7O0qdxvBz75AFftyz6C2ZDbZE+dRVDWXjNwJTNRf3tVhmv6BywhvvIna5341IhKsaCLJ1h27qd3yNh073sNbv4688CYqk9XMlPau9eokn9rgZNaMW4S/ZCbjKmZRWDmH7KxC0rtgt1JKKbWfJlhqWIgIC+bM5M0VM1jw9lLcp34dXO6UxNLcHmdjdTV1m98mvvs9Ao3rKOrYwlR2MEmigH2T0DrvBFqLZlFd/ClyquaTVzmfQF4VE1MUtxq7JpYW84/c8/lg7QM0bn2bcVXHHpXjGmOoaWhmx4Z3aNn2jvPDwgbK4tXMkHpmOOuFCVITqGJ77tm4S2aTUzWf4snHUpCZr1X4lFJKqQFogqWGzSULJ/KL1z7Eic23wppHYc4nhvV48aRFdU09uzauJLzjPVy1a8hr3UilVc0Caepar8WVQ332FHYWnESwbB6FU47DXzqLIl/ooHvnKDVcpn7iezT/4Unal15JzvXP4woObcfScCRG9aY11G95m/ie1WQ0rqcosoVKs5tSp9R5HA813nKaChbQVDyL7Ir5FE05llDeRCZrC61SSil1WDTBUsNmekkW8akfZUP1I0x66rt4qk6DUP4R79cYQ01TmG2bVtO87R2smjVkNm9gfGwrVdQw1bl4jOFhr7+KpnGLaC2ZQ8GkY8mpmk92ZjHZevGoUmxSRQVPHvs/fODtL7Ht1o9QdNWfCRVVHfJ+2iIxdmzdQMP2tcT3rMJTv4788GYqktuZ7bTQAtS4SmjMnsyagrMJls2jeMpxZE2YQbnbO5QvSymllEp7YowZeK2+Nha5D5juTOYCTcaY+SJSCawF1jvLXjPGXDPQ/hYsWGCWL19+2PGokWdbfZhv/fIu/sT3IW8Svk/fCwWDu/dPPGmxc28d+6rX0Lp7PYm6zWQ0b6awYzOTzE4CziB7C6HWU0pz1hRM4UxC5fMomno8vsKp4NbfENTIZYzh6Qd/x6JV38MlsKHwLNzTPkRO+WwyxhUjLg+RSIRYRystdbsJ1+8i1rQHV/MOMtqqyY/uYIK1F3+3ghMNksO+wGQ6xk3HVzqb/EnHUjRpHq4MHSWllFJKDSURWWGMWXDQ/CNJsA44wP8CzcaYHzsJ1t+NMXMOZR+aYI1Nr22p54677uQmcwvZEmZP4SKi40/EZJYQcQVJxCN0hMPEWuuQthq87XvJiOyjJLmbEmnssa96Vz71wcnEC2YQGD+H4snHklk+G3yhFL06pY7cqjXv0fjEf3Bc6wuEurU69SWKl73uUlqCE4nnVOEtmkJu2QwKJ8/Hn6M1+5RSSqmjYVgTLBERYDtwpjFmoyZY6kC7mzr409OvUbzmj3zQ+hcTXbW9rhfBR4Mrn3ZfAZGsiZA3mWDpNAomziR7wnTwZx3lyJU6elrb2tix9g1aazYj4TqMsfB4fbh8QTLGlZJTWMa44jICOcUpKxqjlFJKKdtwJ1inAj/rPICTYK0GNgAtwPeMMS/3se3VwNUAEydOPH7btm1HHI8auYwx7GrqoL5uH4nWWjJMB15fgOysLPIKS/AGc0fljVeVUkoppVR6OewES0SehV7vE/ldY8yjzjq/ATYZY/7XmfYDmcaYehE5HngEmG2MaellP120BUsppZRSSik1GvSVYA1YAcAY88EBduwBPgEc322bKBB1nq8Qkc3ANECzJ6WUUkoppdSY5RqCfXwQWGeM2dk5Q0QKRcTtPJ8ETAW2DMGxlFJKKaWUUmrEGooa1hcDSw+YdyrwYxGJAxZwjTGmYQiOpZRSSimllFIj1pCVaR8KIlILjLQqFwVAXaqDUEeNvt/pQ9/r9KHvdXrR9zt96HudXkbi+11hjCk8cOaISrBGIhFZ3tvgNTU26fudPvS9Th/6XqcXfb/Th77X6WU0vd9DMQZLKaWUUkoppRSaYCmllFJKKaXUkNEEa2C/TXUA6qjS9zt96HudPvS9Ti/6fqcPfa/Ty6h5v3UMllJKKaWUUkoNEW3BUkoppZRSSqkhogmWUkoppZRSSg0RTbD6ISJni8h6EdkkIt9KdTxq6IhIuYg8LyJrRGS1iFznzM8TkWdEZKPz77hUx6qGhoi4ReRtEfm7M10lIq873+/7RMSX6hjV0BCRXBF5UETWichaEXmffrfHJhG5wfkbvkpElopIQL/bY4eI/EFE9onIqm7zev0ui+1W531/V0SOS13k6lD18V7/1Pk7/q6I/FVEcrst+7bzXq8XkbNSEnQ/NMHqg4i4gV8D5wCzgEtEZFZqo1JDKAF81RgzCzgJ+ILz/n4L+KcxZirwT2dajQ3XAWu7Tf8PcIsxZgrQCPxbSqJSw+EXwFPGmBnAMdjvu363xxgRmQB8GVhgjJkDuIGL0e/2WHIncPYB8/r6Lp8DTHUeVwO/OUoxqqFxJwe/188Ac4wx84ANwLcBnOu1i4HZzjb/51y3jxiaYPVtIbDJGLPFGBMD/gKcn+KY1BAxxuwxxrzlPG/FvgCbgP0e/8lZ7U/Ax1MSoBpSIlIGfBT4vTMtwJnAg84q+l6PESKSA5wK3AFgjIkZY5rQ7/ZY5QEyRMQDBIE96Hd7zDDGvAQ0HDC7r+/y+cBdxvYakCsipUclUHXEenuvjTFPG2MSzuRrQJnz/HzgL8aYqDFmK7AJ+7p9xNAEq28TgB3dpnc689QYIyKVwLHA60CxMWaPs6gGKE5VXGpI/Rz4BmA50/lAU7c/3Pr9HjuqgFrgj06X0N+LSAj9bo85xphdwM3AduzEqhlYgX63x7q+vst63Ta2XQU86Twf8e+1JlgqrYlIJvAQcL0xpqX7MmPfw0DvYzDKici5wD5jzIpUx6KOCg9wHPAbY8yxQJgDugPqd3tscMbenI+dVI8HQhzcxUiNYfpdTg8i8l3soR33pjqWwdIEq2+7gPJu02XOPDVGiIgXO7m61xjzsDN7b2eXAufffamKTw2Zk4GPiUg1dlffM7HH6OQ63YpAv99jyU5gpzHmdWf6QeyES7/bY88Hga3GmFpjTBx4GPv7rt/tsa2v77Jet41BInIFcC5wqdl/894R/15rgtW3N4GpTjUiH/ZgusdSHJMaIs4YnDuAtcaYn3Vb9BhwufP8cuDRox2bGlrGmG8bY8qMMZXY3+PnjDGXAs8Dn3RW0/d6jDDG1AA7RGS6M+sDwBr0uz0WbQdOEpGg8ze9873W7/bY1td3+THgs041wZOA5m5dCdUoJCJnY3fv/5gxpr3boseAi0XELyJV2IVN3khFjH2R/cmgOpCIfAR77IYb+IMx5sbURqSGiogsAl4G3mP/uJzvYI/Duh+YCGwDLjLGHDjAVo1SInI68DVjzLkiMgm7RSsPeBv4jDEmmsLw1BARkfnYBU18wBbgSuwfFPW7PcaIyI+Axdjdh94GPoc9FkO/22OAiCwFTgcKgL3AD4FH6OW77CTZv8LuJtoOXGmMWZ6CsNVh6OO9/jbgB+qd1V4zxlzjrP9d7HFZCexhHk8euM9U0gRLKaWUUkoppYaIdhFUSimllFJKqSGiCZZSSimllFJKDRFNsJRSSimllFJqiGiCpZRSSimllFJDRBMspZRSSimllBoimmAppZRSSiml1BDRBEsppZRSSimlhogmWEoppZRSSik1RDTBUkoppZRSSqkhogmWUkoppZRSSg0RTbCUUkoppZRSaohogqWUUkoppZRSQ0QTLKWUGmFEpFJEjIh4Uh2LSg8islpETk91HEopNRZogqWUUmrUE5HbRKTNecREJN5t+slUxzfSGWNmG2NeGMp9iohfRP4gIi0iUiMiXxnK/Sul1EglxphUx6CUUmOKiHiMMYkj2L4S2Ap4j2Q/6UpElgBTjDGf6WXZEb03R9NoirU3IvLfwCLgY0AJ8DxwhTHmqZQGppRSw0xbsJRSagiISLWIfFNE3gXCIuIRkZNE5F8i0iQi73TvgiUiL4jIf4vIG84v/I+KSF4f+75SRNaKSKuIbBGR/3fA8vNFZKWzn80icrYzP0dE7hCRPSKyS0T+U0TcA7yOySLynIjUi0idiNwrIrndljWIyHHO9HgRqe18XSLyMaerWZPz+mYecH6+JiLvikiziNwnIoFDP9OHro/3xojIlG7r3Cki/9lt+lznnDY57+G8QR7rdBHZKSLfcc5ftYhc2m35R0Xkbee92uEkg53LOruG/puIbAeec+Y/4LQANYvISyIy+4C4/09EnnRa614RkRIR+bmINIrIOhE5dpDn6IODeY2H4HLgP4wxjcaYtcDvgCuG+BhKKTXiaIKllFJD5xLgo0AuUAw8DvwnkAd8DXhIRAq7rf9Z4CqgFEgAt/ax333AuUA2cCVwS7ckZyFwF/B157inAtXOdnc6+50CHAt8GPjcAK9BgP8GxgMzgXJgCYAxZjPwTeAeEQkCfwT+ZIx5QUSmAUuB64FC4AngbyLi67bvi4CzgSpgHn1cbIvIIiex6euxaIDX0Juu92agViEnIfkD8P+AfOB24DER8Q/yWCVAATABO8n4rYhMd5aFsd/3XCeea0Xk4wdsfxr2uT/LmX4SmAoUAW8B9x6w/kXA95xjRoFXnfUKgAeBnw0y7l6JyLf6ez/62GYc9uf6nW6z3wFm97a+UkqNJZpgKaXU0LnVGLPDGNMBfAZ4whjzhDHGMsY8AywHPtJt/buNMauMMWHg+8BFvbUwGWMeN8ZsNrYXgaeBU5zF/wb8wRjzjHOcXcaYdSJS7BzremNM2BizD7gFuLi/F2CM2eTsK2qMqcW+OD+t2/LfAZuA17EvoL/rLFoMPO5sGwduBjKA9x9wfnYbYxqAvwHz+4hhmTEmt5/Hsv5eQx+6vzcDuRq43RjzujEmaYz5E3bictIhHO/7zjl8ETvRvgjAGPOCMeY95716FzspPe2AbZc471mHs80fjDGtxpgodrJ7jIjkdFv/r8aYFcaYCPBXIGKMucsYkwTuw06uD5sx5if9vR99bJbp/NvcbV4zkHUksSil1GigCZZSSg2dHd2eVwCfOuCX/kXYSUlv628DvNitDj2IyDki8prTPa8JO3HqXK8c2NxLLBXO/vZ0O/7t2K0gfRKRYhH5i9OlsAW4p5eYfgfMAX7pXPSD3eK1rXMFY4zlvL4J3bar6fa8nf0X4UfDjoFX6VIBfPWA964c+zUORqOTNHfa1rmtiJwoIs87XSubgWs4+Px2xSoibhH5idhdP1vY3zrZfZu93Z539DJ9NM9zpzbn3+xu87KB1hTEopRSR5UmWEopNXS6Vw3agd1C1f3X/pAx5ifd1inv9nwiEAfquu/Q6Zb2EHaLULHTYvAEdle+zuNM7iWWHditLgXdjp9tjBmoi9Z/Oa9jrjEmG7slrvNYiEgm8HPgDmCJ7B83ths7MelcT5zXt2uA4x1ERE6R/RUAe3ucMvBeDnJgRad2INhtuqTb8x3AjQe8d0FjzNJBHmuciIS6TU/EPj8AfwYeA8qNMTnAbXQ7v73E+mngfOCDQA5Q6cw/cJth44wn6/P96G0bY0wjsAc4ptvsY4DVRyNmpZRKJU2wlFJqeNwDnCciZzmtEAGnAEJZt3U+IyKznPFMPwYedLp1decD/EAtkBCRc7DHUnW6A7hSRD4gIi4RmSAiM4wxe7C7Ev6viGQ7yyaLyIHd0Q6Uhd360CwiE7DHdnX3C2C5MeZz2F3fbnPm3w981InDC3wVO8H710An6kDGmJeNMZn9PF4+1H32YiXwaee9OZue3fR+B1zjtDaJiITELk6RBV2FJe4cYP8/EhGfkwyeCzzgzM8CGowxEWf83KcH2E8W9nmsx04I/+sQXuOQMMb8V3/vRz+b3gV8T0TGicgM4N+xxwUqpdSYpgmWUkoNA2PMDuyWh+9gJ0c7sJOV7n9378a+4KwBAsCXe9lPqzP/fqAR+4L8sW7L38ApfIE9xuVF9rckfRY7QVvjbPsgPbso9uZHwHHOvh4HHu5cICLnYxepuNaZ9RXgOBG51BizHru165fYrXDnAecZY2IDHC9VrsOOsQm4FHikc4ExZjl2MvAr7PO2iZ4FOcqBV/rZd42z3W7sghTXGGPWOcs+D/xYRFqBH2C/r/25C7uL4S7s9/G1gV7YCPJD7O6r27A/lz/VEu1KqXSg98FSSqkUEJEXgHuMMb9PdSxq8JyqiO8A85xiHgcuPx37fS07cJlSSqn04El1AEoppdRo4bTIzRxwRaWUUmlLuwgqpVSaEZHb+ihYcNvAW6vRSEQm9lOoYmKq41NKqbFEuwgqpZRSSiml1BDRFiyllFJKKaWUGiIjagxWQUGBqaysTHUYSimllFJKKdWvFStW1BljCg+cP6ISrMrKSpYvX57qMJRSSimllFKqXyKyrbf52kVQKaWUUkoppYaIJlhKKaWUUkopNUQ0wVIHaY3Euf/NHUTiyVSHopRSSiml1KgyosZg9SYej7Nz504ikUiqQ0kbzR1xJsTbWPf2NvyZeSCS6pAOSyAQoKysDK/Xm+pQlFJKKaVUmhjxCdbOnTvJysqisrISGaUX+qPNxr2tTE1uAsDkFCOh/BRHdOiMMdTX17Nz506qqqpSHY4aA4wxNIRj5Gf6Ux2KUkoppUawEd9FMBKJkJ+fr8nVUWKMwSRi+6c7mlIXzBEQEfLz87XlUw2ZP7+xnaU/+XcafnkmJKKpDkcppZRSI9SIT7AATa6OoqRl8Bn74rHD+CDWBsZKcVSHRz83aii98Ppyvuh5lLz6FbDhH6kORymllFIj1KhIsNTRk7AMHrGLWzSTiQtLf61Xac8Yg9Rv7ppOrn4kdcEopZRSakTTBGsQRISvfvWrXdM333wzS5YsSV1A3bz22muceOKJzJ8/n5kzZ3bF9cILL/Cvf/3rkPeXtAxu7Bariy+7ktyZp3Luxz4+hBErNfo0tscpSuwG4C1rContb6Y4IqWUUkqNVJpgDYLf7+fhhx+mrq5uSPdrjMGyjqz73eWXX85vf/tbVq5cyapVq7jooouAI0uwPCQxCNd86Sv86Rf/AUbLtav0tqe5gwrZS8IV4OnkAvyt2yFcn+qwlFJKKTUCjfgqgt396G+rWbO7ZUj3OWt8Nj88b3a/63g8Hq6++mpuueUWbrzxxh7Lamtrueaaa9i+fTsAP//5zzn55JNZsmQJmZmZfO1rXwNgzpw5/P3vfwfgrLPO4sQTT2TFihU88cQT/OpXv+LJJ59ERPje977H4sWLeeGFF1iyZAkFBQWsWrWK448/nnvuueegcUX79u2jtLQUALfbzaxZs6iurua2227D7XZzzz338Mtf/pIZM2b0GefmzZvZtGkTdXV1fOG6r3D5BR8El4cPfuhDrHiyFmP1nWA98MAD/OhHP8LtdpOTk8NLL71EJBLh2muvZfny5Xg8Hn72s59xxhlncOedd/LII48QDofZuHEjX/va14jFYtx99934/X6eeOIJ8vLy+N3vfsdvf/tbYrEYU6ZM4e677yYYDPY47kknncQdd9zB7Nn2e3f66adz8803s2DBgn7fS6UOR3N7nArZSyyrnC3MAAvY8zZM+WCqQ1NKKaXUCHPELVgiUi4iz4vIGhFZLSLXOfOXiMguEVnpPD5y5OGmzhe+8AXuvfdempube8y/7rrruOGGG3jzzTd56KGH+NznPjfgvjZu3MjnP/95Vq9ezfLly1m5ciXvvPMOzz77LF//+tfZs2cPAG+//TY///nPWbNmDVu2bOGVV145aF833HAD06dP54ILLuD2228nEolQWVnJNddcww033MDKlSs55ZRT+o3z3Xff5bnnnuPVV1/lpz+5kX01e8DlIeBxE8Pbb5GLH//4x/zjH//gnXfe4bHHHgPg17/+NSLCe++9x9KlS7n88su7qvmtWrWKhx9+mDfffJPvfve7BINB3n77bd73vvdx1113AfCJT3yCN998k3feeYeZM2dyxx13HHTcxYsXc//99wOwZ88e9uzZo8mVGjZNHXFyJIwJFWAVzLBn1m5IbVAj0ObaNr1BuVJKqbQ3FC1YCeCrxpi3RCQLWCEizzjLbjHG3DwExwAYsKVpOGVnZ/PZz36WW2+9lYyMjK75zz77LGvWrOmabmlpoa2trd99VVRUcNJJJwGwbNkyLrnkEtxuN8XFxZx22mm8+eabZGdns3DhQsrKygCYP38+1dXVLFq0qMe+fvCDH3DppZfy9NNP8+c//5mlS5fywgsvHHTM/uI8//zzycjIICMjg/efchorV77DtIpz8HtdxPAgxoJkAtwHf1xOPvlkrrjiCi666CI+8YlPdL2mL33pSwDMmDGDiooKNmywL0bPOOMMsrKyyMrKIicnh/POOw+AuXPn8u677wJ2Eva9732PpqYm2traOOussw467kUXXcSHP/xhfvSjH3H//ffzyU9+st9zrtSRaGqPU0U77owKSrPKadyXRW7terRO5X4rtjWy+Dcv8Z3KjVx1wUegeFaqQxoxttaFuerON/nqCV7OnVsKeZNSHdKI8cbWBr7+4Dv8zyfmctIEHwSyUx3SiPHUqj3c/PQGfnfpPKoSW2DC8akOSSk1SEecYBlj9gB7nOetIrIWmHCk+x2Jrr/+eo477jiuvPLKrnmWZfHaa68RCAR6rOvxeHqMr+p+P6ZQKDSo4/n9+29o6na7SSQSva43efJkrr32Wv793/+dwsJC6usPHhvSV5zQs5y5MeAWg7g9eFxCHK+9INEB7qyDtr3tttt4/fXXefzxxzn++ONZsWLFoF+Ty+Xqmna5XF2v74orruCRRx7hmGOO4c477+w1YZwwYQL5+fm8++673Hfffdx22239HlepI9HUESOTDrzBXKYWZ7LRGs/8vevwpTqwEeQfq2v4sGs5V9XcivnDrci3toHeKgGA+97cQXVdK+c+/xl4HvhuDXgzBtwuHfzxla1sq2/H9cBlEHsTrv0XFE5LdVgjws+f3cimfW1sf/DbVNUuhc8+BpNOS3VYSqlBGNIiFyJSCRwLvO7M+qKIvCsifxCRcX1sc7WILBeR5bW1tUMZzpDLy8vjoosu6tFl7cMf/jC//OUvu6ZXrlwJQGVlJW+99RYAb731Flu3bu11n6eccgr33XcfyWSS2tpaXnrpJRYuXDjomB5//HGMMYDd9dDtdpObm0tWVhatra0Dxgnw6KOPEolEqK+v59VlL7Fw/iwQl514uZ1LyD5KtW/evJkTTzyRH//4xxQWFrJjxw5OOeUU7r33XgA2bNjA9u3bmT59+qBfU2trK6WlpcTj8a799Gbx4sXcdNNNNDc3M2/evEHvX6lD1dweJ0vacQeymVKUySZrPFKnXQS721LbxjyX/XdOos1Q826KIxo51te08D7X/h4EvPdg6oIZYd7d2UwW7SyM/AusOLx7X6pDGhHiSYvNtW2A4Zhae/w2y25JaUxKqcEbsgRLRDKBh4DrjTEtwG+AycB87Bau/+1tO2PMb40xC4wxCwoLC4cqnGHz1a9+tUc1wVtvvZXly5czb948Zs2a1dWScuGFF9LQ0MDs2bP51a9+xbRpvf8id8EFFzBv3jyOOeYYzjzzTG666SZKSkoGHc/dd9/N9OnTmT9/Ppdddhn33nsvbreb8847j7/+9a/Mnz+fl19+uc84AebNm8cZZ5zBSSedxJe/9i0mlBSAuDjllFP4wtVX8s9X3qRs2lz+8Q/75qo/+MEPusZbff3rX2fu3LnMmTOH97///RxzzDF8/vOfx7Is5s6dy+LFi7nzzjt7tFwN5D/+4z848cQTOfnkk5kxY0bX/Mcee4wf/OAHXdOf/OQn+ctf/tJVOVGp4dLSESNTOsBJsDab8XijDVpJsJvq+nZODu1it8mzZ2x+LrUBjSDV9e2cnr0XAIMLtr+a4ohGhnjSYk9zBx8sbNo/c8NTKYtnJNlWHyaeNJxSasjF+bF0xxt2d32l1Ignna0fR7QTES/wd+Afxpif9bK8Evi7MWZOf/tZsGCBWb58eY95a9euZebMmUcco+rdgdUOt9WFmRjbgGQWQ/Z49rZEyG7dTCAQQPInpzjaQ6efHzUUvv7nf/HTDefAB5dgTr6ea374E253/QSufBIq3p/q8FLOGMP07z/FWxlf4GUznwWspnD6++BTd6Y6tJRLJC1mfP8plk58lNl7/sr23BOY4d4DX34r1aGl3M7Gdhb9z/PcMW8dH9jwY7YUn82kfc/At3eCLzjwDsawf22q49O/f52b3p/korcuo2biRynZ/jhc/QKMPzbV4SmlHCKywhhzUJW1oagiKMAdwNruyZWIlHZb7QJg1ZEeSw0/g7EH7ov90fB77EIXpo8ugkqlhYhzewh/NiJCNHeqPV27PnUxjSCRuEU8kSAYb8SVM55VViXs0S6CYFegTFiGQquORk8hK5JToGHz/s9UGtvV2AHANPceYnj4V2CRfd/FvXq5UBeOAXBcbjsA72Sdbi/YvTI1ASmlDslQdBE8GbgMOPOAkuw3ich7IvIucAZwwxAcSw2xJUuWdLVeAdBZmKNbghXFiyRjdgUMpdKQxJwuOoEcAEJFFUTwQd3GFEY1crRG4+QQxoVFMLeIFdFyO4mI9l9RNR2Eo3aXruzYXiLBEl5vdbrC62eHxnY7ichK1NPkzuOl8ER7wZ53UhjVyNDQZv+oWYrdDXlZbAp4g6BjP5UaFYaiiuAy6LVa8RNHum919JnOe1451b98zr2wBAPJGHgGP5ZKqbHC3Zlg+e1KmhMLsti2sZip9ZuGtlLQKBWOJskT+xxl5ZWwyTj3wqrfBOPnpy6wEaA1YidYwUgNdXkn815dCfiBuvVQlt5lt9ui9ufEH28h7Mvl1To/xpeJ1G9KcWSpVx+O4RLI6KghjpcVtR4omKqt5kqNEnptoHoyPVuw3C4hKf1XElRqrHPHnZYYv32Pnqr8EFutEpJ1eiEIdivNOGcgfkHxeLYYp4e4Xig7LVgGf7Qe/7jxbDdFWC6fXiizv3XPE21EMvJojSRJ5E7WVhqgri1GXsiHK7yXsK+ATXVhrPxpem6UGiU0wVI9HZBgAftbrTTBUmlqf4KVCUBFfpBqU4K7ebtW9cJupelswSoqHs92iu3RnNoNjrZoggyiiLHIyc0jiZvW4ES9UMY+NwDuaBO+rHwAGoMVoD9c0BCOkh/yQ7QVE8gmlrBoyZoEzTu0661So4AmWKqnXhIst9dHEoGkJlgqPbkT9mB8fPZNwisLQmw1JbisuH3Bk+bC0f0Jli+rkOK8XOo9xdqChZ1EZGJ/frJzxuFzu9jtmwi161IcWeq1RRN4XIJ0NJKRY49N2+Mps79TsfYUR5daTe1xcoJeiLbiDthdk/d4KuyFmpwrNeJpgjVIjzzyCCLCunV9/6dYXV3NnDn9VqI/JOvXr+f0009n/vz5zJw5k6uvvhqwbxL8xBNHNsTtqquuoqio6KB4BaeQRbcEy+9xETNerHjkiI6p1GjlSjqffU8GAEVZfna5xtvzGjanKKqRIxxLkNd5r55gPpMKQlQzHuq1BastmiBT7M+PK5BNRX6QTdZ4aKyGNP+bGo4myPS5kEgTwZwCfB4XW8x4wKT996o9liTT74FoK75QLgAbzQR7oSZYSo14mmAN0tKlS1m0aBFLly7tdXkiceTdhJLJZI/pL3/5y9xwww2sXLmStWvX8qUvfQkYmgTriiuu4KmnermhYy8tWD6Pmyhe7SKo0pY76bRgee0ES0Swxk2y59VvSVFUI0drJEGutGLcAfAFqSwIsTZejKnfnPbVR8PRBCE6W0AzqSoI8U60xP5bm+ZJRFs0QYk/BsZCgvlU5AV5L1JkL0zz7qXhaIKgzw2xNvzBbAJeF6s78sDl1fF7So0CR1xF8Kh68ltQ897Q7rNkLpzzk35XaWtrY9myZTz//POcd955/OhHPwLghRde4Pvf/z7jxo1j3bp1PP300yQSCS699FLeeustZs+ezV133UUwGOSf//wnX/va10gkEpxwwgn85je/we/3U1lZyeLFi3nmmWf4xje+wcUXX9x13D179lBWVtY1PXfuXGKxGD/4wQ/o6Ohg2bJlfPvb3+bcc8/lS1/6EqtWrSIej7NkyRLOP/987rzzTv7617/S3NzMrl27+MxnPsMPf/hDAE499VSqq6t7vE5jDGIsuyakCC+++CLXXXcdxoCVjPPKw7eTVZTkG9/8Fk8++SQiwve+9z0WL17MCy+8wA9/+ENyc3N57733uOiii5g7dy6/+MUv6Ojo4JFHHmHy5Mn87W9/4z//8z+JxWLk5+dz7733Ulxc3COOiy++mMsuu4yPfvSjgJ0MnnvuuXzyk5883HdZqcNmWQZPMmr/HOXdf/PT7IIy2lsyCKb5RTJ0JhERjD8LAaoKQqxPlCDSBq17IHt8qkNMmbZokixxEix/JpMKM3l1fR54gfrNUDw7pfGlUjiaoNTbDlEgmEdFfojl9ePshWnevTQcSxDy2S1Y4s9kYl6QLY0xGFeZ9om5UqOBtmANwqOPPsrZZ5/NtGnTyM/PZ8WKFV3L3nrrLX7xi1+wYYPdZL9+/Xo+//nPs3btWrKzs/m///s/IpEIV1xxBffddx/vvfceiUSC3/zmN137yM/P56233uqRXAHccMMNnHnmmZxzzjnccsstNDU14fP5+PGPf8zixYtZuXIlixcv5sYbb+TMM8/kjTfe4Pnnn+frX/864XAYgDfeeIOHHnqId999lwceeIDly5f3+TqN6dlF8Oabb+bXv/41b7/9Ng88/DDBgJ+HH7iflStX8s477/Dss8/y9a9/nT179gDwzjvvcNttt7F27VruvvtuNmzYwBtvvMHnPvc5fvnLXwKwaNEiXnvtNd5++20uvvhibrrppoPiWLx4Mffffz8AsViMf/7zn13JllJHWySRJEOiWOIGt7drfkVhiGrjtNKkubDTDU78zhi1/ND+SoJp3hLRFkmQ743bE/4sqgqCbE46rTRpfqEcjiYp9DrJZyCHyvwgGxqTmJyytO8GF44mCfk9dkELfzYV+SG21Ychb5K2mis1CoyuFqwBWpqGy9KlS7nuuusAu3Vl6dKlHH+8ff+ShQsXUlVV1bVueXk5J598MgCf+cxnuPXWW/nQhz5EVVUV06ZNA+Dyyy/n17/+Nddffz1gJxS9ufLKKznrrLN46qmnePTRR7n99tt5552Db8D49NNP89hjj3HzzTcDEIlE2L59OwAf+tCHyM+3qzN94hOfYNmyZSxYsKDX41nG4JLO7jwuTj75ZL7yla9w6aWXsvDkU/Fkeli27GUuueQS3G43xcXFnHbaabz55ptkZ2dzwgknUFpqX1RNnjyZD3/4w4Dd8vb8888DsHPnThYvXsyePXuIxWI9zl2nc845h+uuu45oNMpTTz3FqaeeSkZGRq8xKzXcOmJJAsRIuAL4ZP8t/yrzQ2yxiplauwlvP9ung9ZogixXFPHZVRarCkJUWyX2woYtMOm0FEaXWuFogjxPFJKAL4vK/BBtBIkF8vE1pPeFcms0Qa7HvtkwvkwqCkJE4haxnCr8DVtTG1wKGWMIxxJk+oB4GHyZVOYHeWlDLWZGFVK9zPlFtLdbkCqlRgJtwRpAQ0MDzz33HJ/73OeorKzkpz/9Kffffz/GGVcQCoV6rC8H/ME7cLo3B+6ju/Hjx3PVVVfx6KOP4vF4WLVq1UHrGGN46KGHWLlyJStXrmT79u3MnDnzkOOxDLi6tWB961vf4ve//z0dHR188uPnsW7TVjDJPrf3+/ffhNjlcnVNu1yurjFqX/rSl/jiF7/Ie++9x+23304kcvAg70AgwOmnn84//vEP7rvvvj4TUKWOho54kgxiWO6eN9nuLNXuadkOyXiKohsZwk6ChZNgjc/NoM6dT0J8doKVxto6EywAfyaVBfbf+6ZAOaRxEgH256YrwfJnUpFnd8FtCpSl9ecmErcwhp7nJj9ENGHREpxoJ11te1MbpFKqX5pgDeDBBx/ksssuY9u2bVRXV7Njxw6qqqp4+eWXe11/+/btvPrqqwD8+c9/ZtGiRUyfPp3q6mo2bbL7lN99992cdtrAv+g+9dRTxOP2hVtNTQ319fVMmDCBrKwsWltbu9Y766yz+OUvf9mV9L399ttdy5555hkaGhq6xkF1tq71xhiDi/1FLjZv3szcuXP55je/yTHHLmDNpm2ccuLx3HfffSSTSWpra3nppZdYuHDhgK+lU3NzMxMm2JWQ/vSnP/W53uLFi/njH//Iyy+/zNlnnz3o/Ss11CLxJAGJYnl6tqJW5oeoNiWISULT9hRFNzKEo0myJNJVxt7tEsryMqn1lKb1hTLYCVauuzPByqIoy0+G181u93h7DFYaC0cT5Licc+PLpDLf/vzUuMZDRwN0NKYwutTpvD9Y17nxZ3Wdm91d1UvT+3ul1EinCdYAli5dygUXXNBj3oUXXthnNcHp06fz61//mpkzZ9LY2Mi1115LIBDgj3/8I5/61KeYO3cuLpeLa665ZsBjP/3008yZM4djjjmGs846i5/+9KeUlJRwxhlnsGbNGubPn899993H97//feLxOPPmzWP27Nl8//vf79rHwoULufDCC5k3bx4XXnhhV/fASy65hPe9732sX7+esrIy7rjjDiwDd919D7fd9SCI8POf/5w5c+Ywb948/D4vZ5x+OueffQbz5s3jmGOO4cwzz+Smm26ipKRk0OdzyZIlfOpTn+L444+noKCga/7y5cv53Oc+1zX94Q9/mBdffJEPfvCD+Hy+Qe9fqaHWEbPsFqwDEqyS7AC7xLnYSfML5dZogpBEu27EDFCVH2KbKU77C8G2aIIcd9SuzOoNIiJU5AfZkiyG1t1pfb+ntmiCbPf+BGt8bgCPS9hsOYWP0vSz0x6zE6wsp7w/vkwq8u3Wvc2WM34vzf/mKDXSja4xWCnQOXaouy9/+ctdz08//fSu55WVlX3eJ+sDH/hAj5alTgdW8uvuZz/7GT/72c8Omp+Xl8ebb77ZY97tt9/e6z7Kysp45JFHDprfW4IYjia48rJPUyAtINJVmAKgpSOO1bAVScb46U9/yk9/+tMe255++uk9zsULL7zQ67Lzzz+f888//6BjL1iwgN///vdd016vl4aGhl5fk1JHU3ssQQZRzAEJlsslJMdVQStarCCaIEhHVxdBsG/GvHZLISc2vIdYFrjS8/e8cDRBtjjnxumiXZkfYvWufD4B0Lg1LSsJGmPsrqXSmWCF8LhdlOcFWRMpsM9Nw1aYcHwqw0yJzhasrgTLn8X43Ay8bmFNew7nujxpm3wqNVqk5/94qlfGGASDkYM/Fj6PiyhexIrtv1eWUmmgI54kQLzrHljd5RSMJ0ww7X9NDkcTZJjIQQnW5mQRkuiAtpoURpdarZEEma4I+LO65lUUBHmrNc+eSNML5Y54EstAqKuVxu4CV5EfZEVrjj0vTc9Ne8we65zZVd4/C7dLKB8XpLoh6pRqT89zo9RooQnWGHbFFVfwq1/9atDr20UurB43Ge7k87iI4UUAErGhC1KpES4St8u0Sy8JVmVBiK2mJO1LtbdGEvitjq6LZLC7CFabbpUE01Q4Zt8jrHvyWZUfYlMyvbt6dbbSBOmw7y/ncgN2696mhiQme0Lafm7C3c8NdH12KvKDbK1rt0u1p3mruVIj3ahIsDqLN6jhZRe5ML0mWC4RLJczFioZPcqRHR793KihYLdgxRBf8KBlFU6p9mRdet8UNRbtwEOiR4JlV1lM77E0xhjaIglCpr3H+LSK/BCtBIn589L23ISjditN8IDksyI/SGs0QTynUs+N6ewi2JlghdheH8aMq7K7T+r/cUqNWCM+wQoEAtTX1+vF8lHQVaa9r1LuHqdMdWLkJ1jGGOrr6wkEAqkORY1ydpGLKK5eEqzKfLsFy926c1R8L4aDMQZibfZEt25w43MzqHcVkhRP2rbSRBMWCcsQMB09zk1VZ6n2jIlpnETYrTQBq71HYt5ZLa85I31LtYdjnecmbM/wZwNQmR8kHEvSlllpf+fa9qUoQqXUQIa9yIWInA38AnADvzfGHNLdgsvKyti5cye1tbXDEp/aLxxN4O6ow+8WpP7g5U3tMdpidbj8HZDRywojTCAQoKysLNVhqFGuPZYgQ2K4e23BCvKgVYoYCxqroXD60Q8wxaIJy+4eCD0ulN0uYUJ+FrUdpZSk6YVyW48kYmLX/KIsPwGvixp3KUUN76YqvJTqPDd+6+AWLIAa93gKw7UQaYFAdkpiTJX2rnPjVJh0zk/nPdR2u0qZDnYCmlWcggiVUgMZ1gRLRNzAr4EPATuBN0XkMWPMmsHuw+v1UlVVNVwhqm7+sGwr856+iqlVJXiv/Fuvy49/+gpmTpqI74pHUxChUkdfJJ4kQBR34OAbgo/PzWCnq9SeqN+clgmWXUFwfznp7irzQ2zbUUxJmt5Qt7OVxpds79GC5XIJFXkhtiSLmdeyyy7V3ksCP5a1Rexz40327D5ZNi6IS2CrVcJcsKsslh6TmiBTJOwUufAl28Hl6eo90tm6tzlZ5CRYm6HifSmKUinVn+HuIrgQ2GSM2WKMiQF/AQ6u0a1GhEjCHmvi6mUwP9jdWraZYkxdenb3UempcwxWb98Lt0tI5Do/AKXpoPNwNGkXcYCDEqyqgiDrYoWYhi1pOV6ks5XGlwj3SLAAKguCrIo69wJsrD7KkaVeZzc4b7JnF0Gfx8WEcRmsiTjnJg1bP8PRBB6X4I632Z8bp9v+hHEZuF3C2o5cO/FKw3Oj1Ggx3AnWBGBHt+mdzrwuInK1iCwXkeXaDTC1onFnrIm/919SOyum+dp2aSVBlTZi0Rg+SfZa5AIgv6CEFslK23FGrdH4QaW2O1XkO6Xa4+G0HC9it9IY3Ilwr617b7WOsyfS8EK5M/n0JNp7PzdtufZEGn6vwtEEIb8HibWBb39i7nW7KBuXwZaGKOROTMtzo9RokfIiF8aY3xpjFhhjFhQWFqY6nLQWSSQJSBzx9N6CVTYug+2UIljQtO0oR6dUaiRizjiIPlp2K/JDbLWKMdqC1aOrF3S2eneWak+/8xOOJfATx2USB52bivwQmxJOqfZ0PDdOguWKtx2UYFXkB1nfYEFmiV0tL82EY0lCPjdEWw/63FTmh9hWH4a8yWmZmCs1Wgx3grULKO82XebMUyNQNG6RIdE+LyS9bhcdmc5Abf3lTKUJK+pU8urje1FZEGSzVYKVpl1nw9EEIQ4ucgH7W72BtLwYbI0kyOw8N/6ehRoqC4K0ECKepqXa25xS5BIP95pENHfESeRWpuW5aY8lCPo9ToJ1QNfS/CDb6toxeVqqXamRbLgTrDeBqSJSJSI+4GLgsWE+pjpM9mD+eJ8XkgCugin2kzT8xVWlJ6urBav3LoIV+SGqrRLcrbsg3nEUIxsZWqMJguKUqPf1vBgszQ5Q5y4iKe60vFAOR5Pduk8enEQANGWUp+UPVm2RBCGfC4m29dq1FKA5ozwtPzdt0SQhv8cuxX5Q616I1miC9sxKiLVCWIdWKDUSDWuCZYxJAF8E/gGsBe43xqwezmOqwxeJJQjQdwsWQEFhKc0mhEnDCwKVnpIxJ2ny9H5Ptcr8INVdrTRp2J0p2q2V5oALZZdLKMvPos5dkqYXyvFuLVg9L5RLsgP4PS72uEvT9nOT5zdgkr0kn/aPGXu9E6CtBmLhVISYMu3RhNNFsO3g1r0C+9zsdjvVS9Pwe6XUaDDsY7CMMU8YY6YZYyYbY24c7uOpw5eIR+0bDfdxIQlQVZhJtSkmXrvpKEamVAoN0II1ITeD7ZLG44yiCYISwYir1x9nKvLt6qPpeCHYFk12S7B6tu65XEJFfpCtVjG07Ey71s+2WIICX9yeOCDBKs8LIk6pdiDtEtC2aIKgr68ugvaPGFsSzv2v9MdOpUaklBe5UCPHQF2hwB5TUW1KsPSPukoXCefCt4+WXY/bRSJ3kj2Rht+L1kiCEFH7ItkpJ91dVUGI9fFCTH36lWpvi3RPIrIOWl6RH2J1JD1LtYej3c7NAa00Aa+b0uwA66L59ow0S87bY0ky/W6ni2DPz03nfcLWduRCmna9VWo00ARLdTGdv6B6+2nByrcTLF/bbkhEj1JkSqWOdH0v+v7hoaCgkCbJSdsWrBxXBPEdfCNmsH9x35wsRmKtEK47ytGlVjiaIM/j/J08IIkAuyvcitY8eyLNkvNwNME4T2fyefBnpyKNy9i3xxIE+6gi2HmfsC2NMbtUexr+zVFqNNAES+03iBas8bkBdlCCCwsatVS7GvtkgBYsgMmFmWyxitNybGI4liDbHTuom1enyoIg1cbpzpRmF8ptPRKsg1uwKgtCbEw4tydJu3OTZJzHuZ9iLwlWZUGQdY1AqDANz02CXE8MML1/bvJDVNeHIV9LtSs1UmmCpbq4EgP/Uu9xu2jPrrQn6jcOf1BKpZgknCpwAyRYm5PpWaq9NZIg2xXp9SIZDrwXVnpdDLZFE+S6Oyss9taCFaKFTOL+cWnXEtEWjXdLsHrvPlkfjpHIrUqrz03SMkTilpNg0efnZmtdGDOuCtKw661So4EmWKqLK+G0YPn6TrAAXAXT7Ce164c5IqVSz50cTIJl3+/JHU6/imfhaIKQRPtswSrOClDrLsbClVYXymAnWDn9JVgFTjnyQPqVIw9Hk2S7O0vY99KC5VQSbA2m17kJx+wbMOe6+m75rMgP0hpJ0JFV6ZRqT6+ut0qNBppgqS7uzgTL2/sv0Z2Ki4rZZ8Zh6jYchaiUSi1PchBdBIsyu5VqT5+LQbAvlDPp6PVCEOxqeRPyc6j3FKVdK004miDb1WEnV66D/7stzQ7g87jY4xmflpXysl19j0/rvBfWXu8EaEmfe8yFo3aC1ZV89tFFEGCPe7w9I83+5ig1GmiCpbq4Oy8kB2jBqiwIsdEaT7xm3VGISqnUiSctfMa5COyn62x+yEe9v8yeSLNxWK3RBCHa+0ywwB5Ps82Upt2FYGskQZZE+mzdc7mEiXlOqfbmnRCPHOUIUyOetIglLPvcQK/np8JpwdqadMbvpUmVxbaIk2D1c24674W1xSqyZ6TZDxdKjQaaYKkunq4xWP23YFXlh9hkxuNq2Kh9v9WY1hFPkiExu3ub29fneiKCp2CKPVGfXveIC0cTBE07BLL7XKeyIMT6WKFdBCSN/maEYwlCRHptoelUmR9iTaQAMGmTRHS20mTi9JroJTkP+jxMyM1gdcQp1Z4mP1y0dp6bzgSrl89OeZ5dqn11OFdLtSs1QmmCpQAwxuzvCjVAC9akwhCbzAQ88TZo3XMUolMqNSKxJBlESbr9vd7jqbsJxQXUMi7tLnbaogkCVv8tWFX5ITZZxUi0BcK1RzG61DHGOPcIG6B1Lz/I8q5y5GmSRDitNCHTAW4/ePy9rje5KJPXW5wy9mnSJb2zBWv/DaoP/uHC73EzMS/IxvoY5JanTfKp1GiiCZYCIJa0CNA5mL//BKs0J8Aud7k9oYUu1BjWEU8SJELC03+rLsCUIrtUe6I2fVqwjDFEI+14TLzfJKIiP8RG43ShrE2PrsUd8SRJy5BhOvrsIghQURBiQ6Kzq1d6JOdtTitNkHC/LZ9TCjNZVWcw2RPS5v+a/eems+hU75+dKUWZbNzXCnlaql2pkUgTLAXYA9WDdFa76v9iUkSwCqbbE2nyq6JKT+2xJFnSgTVAt1mwS7VvtUrS6l5Y0YRFIOlUTezll/ZOVQUhNloT7Ik0uVBu6bAvlANW3wVAwG7ds0u156XN39OWDvsGwxnJcL+fm8lFITriSaK5U6AuPT43nS1YAauzBav3BGtyUSZb68JYeZPsbslp1PVWqdFAEywF2H3iMyRGUjzg9g64fn5xOa0E0+ZiSaWncNQeQ2P1cp+eA00uzGSrKcUbqYOOpuEPbgRo6YiTKZ0Xgn2fo+JsPy3eAqKu9Pmb0RKxkwh/shUCOX2uN7nITt4bglVpdG46k4iBW7AA6gKVULshLZKIzjFYgWSbPb6qjx4lUwoziScN9cEqiLXZlRaVUiOGJlgKsAdjZxDF8vTfPbDT1JIsNlrjSexNj+4+Kj21RhJ2AtFPF69OZeMy2Cqd3eDS50K5v7EinUSEivwQOz0T06YlotVJsHzxln4TrJLsAFl+D9tc5Xb3yTRIIjpbsHyJtgFasOzv3TZXOcTDdqXFMa6zBcsbb4GM3D7Hfk4ttn/QqBbtrq/USKQJlgKcSmBEsTx93+unu6lFmWyyJmDS5GJJpafWaIIsOpB+fmXv5HG7iIxzus7uWzPMkY0MLZE4WYNowQK7m+AGK33G0rR0JHBh2cWAArl9riciTCnOZHViPESaobXm6AWZIp2te554a78tWPkhH7lBL6vjzj3m0uD/m7ZonIDXhTva3H/LZ6Hd8rkq5pybNPleKTVaaIKlAGiLJglKBDNAgYtOU4uy2GTG4+2og47GYY5OqdRoiyQI0YF7EAkWQFZxJe0EYN/aYY5sZGiNJMjqp9R2d1OKMnknUgxte9Pib0ZLJL7/3GTk9rvu1KJMXm8ttCfSoAhI5/g0V6wF/H0nESLC5MJM3mjrPDdjP4loiybI9Hvtbsb9JOZZAS8l2QHea/RCRl5afG6UGk00wVKAMwaL6IAVBDtNGJfBdpfTHapu4zBGplTqtEXtMUaejIHHYAFMLs5hvVVGMm0SrHi3LoL9n6NpxVms7yp0MfaLObREEuSIUwCkn5YIsM/N8vbOloixf6HcEokT8rmRSP8tWGCPNVpZ74ZgflokWC2RBFkBj92aOUBiPqUok821YSickRbnRqnR5IgSLBH5qYisE5F3ReSvIpLrzK8UkQ4RWek8bhuSaNWwsQfzRxH/wNXSANwuIZE31Z7QP+xqjLJbsCJ4Mvq/QO40oySLDVYZZm+adBHs6J5E5Pa77vQSu9UbSIskojUSJ5vBnZspRZnUkU3cl5sW56alI05uwAWx1n7HYIFzbtpixPOmpkWVxab2GOOCXog0Depzs2lfG6ZwetqM31NqtDjSFqxngDnGmHnABuDb3ZZtNsbMdx7XHOFx1DALRxNkSxjJGDfobbJKJhPFmxb94lV6au9oxy8JJDBwkQuwk4gNpgxPRx2E64Y5utRrjcQZJ60YZMBf2yvzQ+yVIuIuf1pcKLd0JChwO617g2jBAqEhNCktfrBqicQp9dvjsAZqwZpWYreM2lUWx34S0RCOkxfyOV0E+//cTCnKJBxL0pI5yU7I0uQm3kqNBkeUYBljnjbGJJzJ14CyIw9JpUI4liRHwriDuYPeZkpJLlusEq0kqMaseHuL/WSAX9k7VeaH2OKaaE+kQTfBlkicPGmDjHHgcve7rs/jorIwi92e8vRopYnEKfI5N28fIPkszQmQ6few3VVuf27GeBLR0pFgvN9p3QsW9LvuDCfB2ibl9ti9Mf7DRWM4Rl5nC9YgugiCU2UR0uJ7pdRoMZRjsK4Cnuw2XSUib4vIiyJySl8bicjVIrJcRJbX1uqvL6nSFk2QTTuuAf6gdzelKJMNppzk3rF/IanSkxVxEqxBlGkHu+tssmCmPZEOCVZHgiJ3GxLMG9T604qzWJ8cD/vG/oVgayRBoaezBSu333VFhClFmayOT7AvrNv2DXt8qdQSiVPqcRKsUH6/6xZl+RkX9PJurNSeMYYrdBpjaGiPUZRhgZUY8HMzzSnVvqrz3KRB66dSo8WACZaIPCsiq3p5nN9tne8CCeBeZ9YeYKIx5ljgK8CfRaTXn4CNMb81xiwwxiwoLCw88lekDktHJEq2tCOHkGBNLcpkvVWGv20nRFuHLzilUsTq6GzBGlyRC4Ci0ok0kzmmLwQ71YejFLjDdgGCQZhenMWKyARo2QntDcMcXWrVt0Up9TkJ1iD+rk4tyuT1Nqc1p3ZsJ+dN7XGKPINrwRIRZpRks6y12J6xd9UwR5c67bEksYRFiXdwn5u8kI+CTB8rmwLgy9IES6kRZMAEyxjzQWPMnF4ejwKIyBXAucClxtj9GowxUWNMvfN8BbAZmDZsr0IdsWi42X4ywC9m3VXkh9ja2R1K/7CrMcgdcZKAUP8Xgd3NKM1mnVVGvGb1MEU1ctS1xciXNrtM9CBMK8lirXH+Zuwd2+entjVKqbvFbv30DVw8aHpJFm+2d7bSjN0EyxhDXVuUEk+bPWMQyfn0kize2OfGZBZDzdhNsBrCMQCK3c4PO6GiAbeZVpzFhn1h6Cx0oZQaEY60iuDZwDeAjxlj2rvNLxQRt/N8EjAV2HIkx1LDKxZ27kszwKDa7twuIZpmN1ZV6cXV4SRYg2yhAafQhVWGpMFYmrq2KDm0HFIL1lqrwp4Ywy0RALVtUQqlBUKD65kxszSbOnKIBfLHdBLRFk0QTVgUuAafYM0szaI9liSSNxP2vjfMEaZOY7udYBXi/OCZWTzgNtOKs9i4t9WpJKg/dCo1UhzpGKxfAVnAMweUYz8VeFdEVgIPAtcYY8Z2f5BRLtnuJFiH0EUQIKd0MhF8Y/oXV5W+vNHDS7DWmgo88VZo2j5MkY0Mda0RMpMtEBxc9dHyvCCt3jzaPOPGdBIRS1g0tccZZ5oGdZEMdoIFsDc4FWreHcboUqu2NQpAHi32fRd9A997cXqJfW5qMqbYSUQyPqwxpkpnC1auabJnZA6cnE8ttisJNmdOhvC+Md/1VqnR4kirCE4xxpQfWI7dGPOQMWa2M+84Y8zfhiZcNVxMe5P95BBasACmlNg3Vk2kQXcolV4i8SSZVrNTgnzwty8ozPSzyz/ZnhjDrTTRRBITacVrYoNupXG7hGnFWWx1V43pc1MftpOI7GTDoC6SwR5PU5ztZ4M45cjHaBJR12YnEdn/n737Do+jOhc//j1btdqi3nu35Q62MS0YEkpCC4EEEkJNQshN5ab80kNyb+5NJTedFAglhF5DrwYMGLBxL7JlW7J6X5Xtu3N+f8xKyLYsq6y8Wvl8nkePNbMzZ87s7MrzzjnnPVr/hB9cVOc4EALqKIVIcM6m+R9uwXJFhrsmT6yLIMABQzSJ8xx9bxQl0cQyi6CSwERgeAzW5AKsmpzja2JV5fjR4wmSziBBc8pRU5CPJoTAkLMADTGnW2l6hoLkiuiNoKtgwvvNz3WxMViA7NwJkfDRd0hAw600tmDPhFuwAGrzXLzry5/TQUT3kP7eOELd4Myd0D7JFhMl6cm864uOUZuj36ueaPBpD/bq/xebk466T3X2oZkE1TgsRZkNVIClEAhHcISjXQQn+CR6WHWOkzpZhNnXBZ6eGaidosRH71CQNDFIKGliCRxGK83P4oDMRbbP3fEi3UOBqQVYeU42BgoRkQD01M9Q7eKrazCAiTCWoHtCrRDD5ue5WOOOBh1zNIgYDj6t3jZImfjUmfNyXbzWmwpGy5xt/Wzr92MzG7H4uyb8uUlJNpPjsrKh3wEmG3TNzcBcURKNCrAUPWWu6EPDMOkAqzDNRsNIJkE1DkuZO3o8ATIYRE5wjqfR5ue52K4VEW6duwFWx8DoACtvwvvV5qewU87tRBddgwFyRfSh1STem/l5LvZouWhG65wdh9XW78dsBONgy6QC85pcJ3t7AmiZ8+bs56at30deahJioHXCrXswnEnQC5lVqgVLUWYJFWAp9HqCZOPWs1dNoisUgMEgCGXM0xdUogtlDukcCJAt+jBOoovXsNo8Fzu1EswDDXN2jrgDvV7yiAZYzokHEfPynOyV+USECeZoC19bv58iEZ0sOLVkwvvNz3MRwYjbUTln35sDvR4WpEYQYf+kWrDm5znRJLhdNXO2da/V7acg1QbuRkgrnfB+VdlO9nQOIrPmqUyCijJLqABLob3fT47oI2Kf+BOz0TLzShnArgIsZU5pdXvJFz1YM0snvW9VjoPdDLfSzM3xiU29XopNvUh7FpisE97PlWQmJ81Jm6VkzrZENPR4WGx36wtpEw+wyjLtJJkNNJjK9fdmDqb5P9DrZZEzmqJ9UgGWnkmw0VSqZ8sb6pyB2sVXq9tHsRMY6pjU56Ym14E/pOG2l+uTeM/RhzqKkkhUgKXQ4vaRI9wYUyb+FHq06lwnu1QmQWWOGehpxyaCGNOKJr2v1WTEn1mrL8zReXuaer1UmzsRaWWT3rc2z8X2SPGcnWy4odtDra0XhBFcEw8ijAZBTa6LzeEi8PbAYNsM1jI+DvR4qU2KjtdNmfh3qygtGYfVxKZQdJ851sLnCYTpHAywIDmacGoS36uqaCbBRmP0vZmjCVIUJZGoAEuh1e0jW/RhSc2f0v7VOU72aIV6C9YcfOKqHJ9CfdE5rCZxEzhaVn6F3rI7x24Ehx3o9VIiWyGzetL7zs9zsd6frwcQcyw5jpSSfd0eyozdeguN0TSp/WvznLw2MDcTXbi9QQb8YapEq74is2rC+xoMgto8F2v6o11251jrZ0OPB4BqS7e+YhJdS6uyHQBsD0Y/N6qboKLEnQqwFLp7e8kUAxhSJ/6kdbTqXCd1shBTsB8G22NcO0WJD+lu0n9JnVqAVVuQwg6tmFDr3EtWEI5odPd2kxLphczKSe8/P8/FDi2aHGeOJXPo8QQZ9IcpDDVCVs2k95+f52K9L/qwa469Nw09XgDyIwcgpRgs9kntX5vv4t0OkM78ORd87uvSA6ziSPTBziSCT2eSmYJUG+sHUsBgVokuFGUWUAGWguzZp/+SMfE/6KPlpyTRZCrVFzrn5ngT5fjiD0VI9kQDrCm2YC3Id7FTK8bQuRO0SAxrF3/1XUMUR5r1hSn83ViQ72KHFn1CP8da+PZ3ezATJtW7H3IWTHr/+XkuBknGZy+ac600de0DAGR490PW5Fs+a/NdeIMRvOnz51zwWdc+iNEgyBjao//NsaVOav+qHAe7Ov3RTIKqBUtR4k0FWMc5KSWG3j36Qsbkn0SDPrFqJFNlElTmjv3dHqpoxm/NhCmkaYdoK40swRjxQe/+GNcwvrY297PIED2nvMWT3r8wzUbYmo7bnDPnbpQ3N7kpF60YtBDkLJz0/vNy9fE0rba5l0lwZ9sgKRYNS98eyK6d9P4L8vVEFy1J1fo4o6A31lWMm+2t/VRlOzB2bp9SYF6d42Rv1xBaZo0KsBRlFlAB1nGuazBATnD4SXTFlMvJyyukm1QVYClzQn3nENWGZsKZ86dcRorNTK8j+pR+jiW62N46wImmfcjkzCm18AkhmJfnZI+hDNrmVoC18YCbM+zR1s/cRZPe35lkpjg9mZ1aCfTshaAnxjWMnw2NfVyQ1YWIBKFwxaT3r8p2YjYKtmmlILU502NCSsnWln5OyDHrgeMUPjdV2Q6CYQ23vQz6GiDki31FFUWZMBVgHed2tQ8yz3AAv6MYzLYpl1OV42BXpEBlElTmhLq2fqpEC0n5k3/KPlpS/gIiGObceJFNTW5WmvYiCk4EIaZURm2ei3f8hcju3XMqiNh4oI8PJtdDcsaUEoCAPufTOm8+IOdMmv9+X4jtrf2c7YqOMZpCgGUxGajKdrLWEx2j1rYpdhWMo/rOIbqHgpyb0gAyAiWnTLqMmmjL5wFDESBVJkFFiTMVYB3ndrYNsNRQjyg8cVrlVOc42S2LEF27QNNiVDtFiY/OvZtIFgFMBcumVU51QRb1Wj7htrnTgtXrCdLZvJeCSDOUnT7lcubnudgUKkYg50y69sYeD639PhYEt0DxydMIPlPez5Y3R7pQvru/F03CkuBGSC8H19SmBVmQ7+K1jiRkUuqcaf18a5+eSXNpZJue2r9w5aTLqIxmEtwWKtBXdKpEF4oSTyrAOs7trt9NvujFWjL5P+ij1eQ6qZNF+niT/gMxqp2iHHuhiIa94119oXjVtMqqzXexUxajzaEAa01dJ6cboje2FR+ccjnz81xs06Jz/bRtjkHN4u+Zbe3ME004/G1QdfaUy6nNd9EsMwlbUubMOKzX9nThNIVJ7VgHVedMuZwF+S66PSGCWQvnTPC5pq6LwjQbrgMv6q1XVseky0i2mChKt/H2YJqeSbBzbjy0UJREpQKs41g4omE5sFZfmOaNZLbTSos5mhVMjcNSEtiW5n6WyR34k7IgrXRaZemZBEuweFrB2xubCsbZizs7+JjlbWRaKWRPfYxaTa6TDpGOz5QyZ26Un9nWzrWpmwABNR+Zcjm1+S5A0O2onhPvTTCs8e/NrXytqB4R9kPNh6dc1oKCFAA6kqv17pORUKyqGRdub5DX93RxVWVA7wEy74Ipl1WT46Su06d3TVX/DytKXE0rwBJC3CyEaBFCbIr+fGTUa98RQtQLIeqEEOdOv6pKrG1o7OMUbb2eKS1v6bTKEkIgsoYzCc6NMQPK8enl7S2cYdiCoersKXfxGpaXksQBS7m+MAe6wXUO+Nm6Ywcr5DbEoo9P6/1JMhspz3Ky31QxJ1qw9nd72NrUy/naK1BxJjiyp1xWfkoSKTYze4zl+ucmEo5hTY+9l3d10ucN8VHWgDMfSqfetXQ4y+IuyiASSPiMeY9vaiUUkXyMV8BgggWXTLmsqhwn+7o8aNnz58zYPUVJVLFowfqNlHJp9OdpACFELXAFsAA4D/iTEMIYg2MpMfTU+j180LAR0/yPgGH6H4XCvFxayUSqJ2dKgpJS0rH1RVKEB0vt1Fsghgkh3k/VPQfmNLrrrUauEs/ocdUJV0+7vPl5LjaGivWn7QneEvGPN/ZzgekdnIEOOPG6aZUlhKA2z8UGfyGE/dCzJ0a1PPaklPzjjf2c5Ogko+01OPFaMEz9dsCZZKY0I5m3fIX6igRu4QtHNO54s4GTCyxk7bkP5p0Pzpwpl1ed4yCsSfrslTDQDP7+GNZWUZTJmKkughcD90kpA1LK/UA9ML1BPkpMDfpDmLY/qA/kP3H6N0oANTkOdkUKVSZBJWG9d6CPU4eeJ2hyQuXUx9CMVlhUSrdMSfhxWP2+EM+u28Q15pcQCy+F1OJplzk/z8k6XyFEgtCVuIPym3q9PPzOXr5vf0zvnjXv/GmXWZvv4iV3rr6QwMkcXqnr5O39vfw69WGwOGHFZ6dd5oL8FF7pcoE5OaHfmwfWN7O/28N/Z72oB0On3TSt8qqy9da9/cbh7vqJ+51SlEQXiwDrS0KILUKI24UQadF1BUDTqG2ao+uUWeKu13dzPY/hzVoKhctjUuZwJkFjT33CP41Wjk8Pv7aRjxjeQSz+OJiTYlJmbb6LHVoxwZbEvREE+OWzO/lm+K+YDRJWfycmZdbmudguS/WFBL1RjmiSbzy4mRuN/yY7cADO/Z9ptdAMq81zsSOUi2ZMSthWGn8owv88vYtPpmyjsPt1WP1tsGdMu9zafBcNfQHCWbUJ+950DwX49fN1XFIwQPnuv8OST0L+9LKWVmQ5EAK2BIczCaqHnYoSL0cNsIQQLwohto3xczHwZ6ACWAq0Ab+ebAWEEDcIIdYLIdZ3dXVNdndlCg70eBFrf02h6Cb5vB9Ne5zJsKocJ3VaIQYtCL37YlKmohwrO1oHKK27DYsIYz7lizErtzYvhZ2yGHNvXcI+eHhhRweB9XdzrnE9hg/+YFqTko9Wm+div8wlZLQl7I3yn16pJ9zwFl80PgoLPjat7IGj1ea7iGCk31WVsGPU/vupHXg7G/gxf4bsWjjp8zEpV08CAj2OGj0wT7CpQSKa5JsPbiYSGOJ/+R3C6oRz/nva5dosRgrTbLzX7wCLQyW6UJQ4OmqAJaX8kJRy4Rg/j0spO6SUESmlBvyN97sBtgBFo4opjK4bq/y/SimXSymXZ2VlTfd8lKMYCoS5/Y6/cCOP4J1/GVScFbOyMx0W2pOiaZdVogslwdzx5Ctca3qO0MLLIbMyZuVWZNnZI0oxakHoTryxNFua3dxz7938j/l2IqUfgFX/EbOys5xW0u1JtFgTM9HF89vbeeyl17gj+beItGI4f9LPGI+oIsuBxWigwVyhB59SxqzsY+Hvr+/j3+t28Gj677EQgU/cDUZzTMpeEA2w9hgrIDgIfftjUu6xIKXkB49v4/W6Nv6dfwdJvbvgY38He2ZMyq/KdlLf5dEzfKpEF4oSN9PNIjh6psBLgOFR3E8AVwghrEKIMqAKeGc6x1Kmb8Af4g9/vZVvDvwvQ2nzSb7k9zEtXwiBIbsGDYN6cqYklAfePcDZTf+HMJiwnHNzTMs2GQ0EMmr1hQRLdLGhsZc///0v/Nn4C0RGBcbL745J97dhQghq811s1Ur1+Z4SqCXi6a1t/N+/HuPBpP/CYTEiPnk/JKfHrHyLyUBVjoNNoWJ9fI47MeYXlFJy66t7+ftTa/l3yi/IDjTCx++I6UOLbGcSWU4r7/qjz3ETpPUzokm+/9g2Hn17N8/k/o2izjXw4V9A1YdidoyqHIeeSTCrVn/QmWCBuaLMFdMdg/ULIcRWIcQW4EzgJgAp5XbgAWAH8CzwRSllZJrHUqZhY0Mnj9zyZb7R/QNCKWW4PvMYWJJjfpySnAwOkKMyCSoJY2fbANuf+D/ONr6H8UM/AFfe0XeaJGdhLUFMyASZNFZKyd9f28uLf/8ev+dnGLOqMF33JNhSY36s+Xku3vQUQHAoIVoiwhGNW17YzTP3/oFHzD8kNdmCuO5pyKqO+bHm57lYMxD9PCZAEOENhrnp/k08/+wTPGf/EUWyHXHFvVA59Qmpj6Q2z8XLvRl6avMEGL/XMxTgujveZe077/Bq+v9Q6V4LH/kVrPxcTI9Tle0kGNHotVeArxeGOmJavqIoEzOtAEtKeZWUcpGUcrGU8iIpZduo134qpayQUtZIKZ+ZflWVqdjb3se//vZL0m4/jWuD9+Iuv4DU/3hhWqlgx1OZ5WBnpJCI6pqgJIBBf4hf3PUY3zHeTbD0TAwx7P422vyCdPZoBQSaZ/+NYK8nyDdve5ryF67n/xn/hVb9ESyfeXpa8zqNZ36eky3haNazWd5NcFf7ANf88VlKXvtPfm/5A5aiZRg+/xpkz5uR49XmuXjbk4sUhlkfRGxo7OVjv3uJedt+zUPWn+ByOhGfeSGmrTOjLch3sbMrgJZZM6s/N1JKntnaxkf+71XK99/Li/YfkC17EJ9+KObBFUBVtgOAfYbhTILq/2JFiQdTvCugxJ7HH2L9u28w+O6/OKn/WT4l+umwV+K74LdkLvjwjB67KsfBe7KI8/o2QMgfs0xsihJrUkp+/MCb/ND7U4w2J+bL/hqT+eDGUpvvYqcsobJz9nYRDEc0/vXWXjpf+j0/1u7DahbIc36O5aTPxywRzlhq81LYLQvRhAlD22ZY+LEZO9ZUeYNh/rJmD22v3cEfTP8ixeRFnvYNDKu/HbNxRWOpzXfhx4rXWY59lrZgtff7+c3zdXRsepK/WO6hxNSiz5F29n/NSIvnsAX5KYQ1SX9qLWkta/SucDP4OZ2Kpl4vNz+xnba6d/hH8t3UGndC8Wq48HeQVjIjx6yIBlhbgvn6oPiOHTEda60oysSoAGsO0DTJ7vrdNG15FVPjq1QPrOMM0U0YA40Zp2H5wOfIWXzBjN08jlaZ7eBerRAhNejeDXmLZ/yYytwgpcQXijDgCzPgD+ENRgiEIvhDYUIBP6FggGAwQDAUIiQNaMIEBhPSYAJhxGwyYreacFhNI/+m2y1kOa0YDYffeN21tp6L9nyPYlM3xk8+OWMtNADzcl08LYu5zP8aDHXO6LEmS0rJ67s7ee2xv/Epz92UG9oZKjkL0yX/N2M3gaOVZ9kRRgudtnJyZ1kQEY5oPLi+iXeev48bQncz39REKO9EDB/9PeQsmPHjz8/Tkzm0JFVSPctasAb8IW5ds5e33niZb4h7ONW8DS2lDC589Jjc0A8nuthvqiDN8yAMts9I996p6BoM8MdX6nn97Xe4yfggF1jfQFrS4NxbYckVMxoIOqwmClJtbHWbwZ6txkMr0yKlJKxJItrhY/kMQmA2CsQse7AxW6gAK8FEwiGa9tfRtncLnpYd2Ls3U+LbwTy6mQd4SaIx9SQCtedRcvLHqHDlHtP65bqSaDaX6gudO1WAdZwZDpJ6BgP0D7gZ7OskMNBNaKiHyFAP+PqQgUFEYBARGsIUGsIc9mCJeEnSPNjx4xA+cvFjJoyZMCYxscQHQzKJfuwMyGQGsNMgXbwlM+ggA68tl7CzkEh6JekZmUgJOW/+mA+YtqJd8DsoOXlG3xe71USfowb86MkcZmBMymRJKXm1rpM3nr2Pi3tv5/uGBgZTq5Ef+Q2Omg8fs9YAs1FP5lAXKCO3bcOsaIkIRTQee6+ZN196nCu8/+SThl34U0rgnNswL/jYMXlYBZBiM1OYZmO7Vkr14LPg6Y5Ztrmp8oci/OvtA7z40rNcFX6YbxjXI5NSYfXPMSy/HkyWY1KP4vRkHFYTG0NFnAD6GLU4B1j93hB/fX0vT69dz3U8zg/MLyFMFlj1n4hTvzqjLXqjVeU42N0xpGcSVHNhHXeklAz4wwz4Qgz4QwwNDeEf6CY42EPQ6ybsHSTkG0QLDEFwEBnwYAh5MEe8WDQfZs2PQQsjZASDFsJIBBMaJhFGIghJE2GMBDERESY0gxm/wYHf5CRocqElpWB0ZGBMKcSaUUxaVj5l2U6K05MxG4/N387ZQAVYs5GUBAe76dy/DXfTdkKduzH37SPF20BuuJVSEaE0ummnIYv2lMV0F62gYOEHyKhcyfxj9B/cWIQQmLIqCXebMKm+3wkvokl6hwK4+/sY6m3D19dOsL+DyFA3mqcX4e/DFOjDEuzHFu7Hrg2QyhDZDFEkwkcuFwM+kYzfkEzQmEzY6iBizkSzOPFaHPisDoyWJAwmC0azFYPJjMlsxWi2YjIaMRBBaBFkJARaGBEJQmAIp9eN3ddHvt+N0deN1bsVc8QHIaBX/+nYk0aLzOAEUz3+E28g6cRrjsl7aSxYDHvRx4vEMcDSNMnz21vZ/NydnD9wP98zNDCYnE/o3FtxLvlETLMETtSighTe3FrAGTwHg23gyj/mdQA9eHjw3UZ2vHIflwce4uOGvfiTs5Bn/Vr/nMxgd8Ajqc1zsbYtn0sgrp+doUCYf65rZMNrT/Lp4ENcb9xCxObCsOobcPKXjlnwMMxgEMzPc7LGbeAzoL831ece0zoMa+v3cfva/bz99ptcLR/nReMbGAwCccI1cMb/A+exfdBZle3gzb09aNW1GDbcoWfnPEYPBZTYklLiCUbo8wTpGxhisK8dv7tDf3Dp6UXz9ILPjTH6/7A1PIA9MoALD6liiAqGSBJHn38xggG/IZmAIZmIyYo20jvEhDSakcKMJuyAxCDDGLUQQgYQkTAGLYA1PIQtOIgxGAEv+v+3UQFpok1m8C6ZdFmKGXKVY86ZT2bZIirLqyjKSJ6TrWAqwIojGfLR07SLnobt+Np3IXr2Yh/aT3agCRdDFKJPIBaURppFHm3WYhozz8CaU01W2UIKKheT7cxi9nQ20pXnpLK/O58q1TVhVgpFNHoHPPR1tzHU04qvr4PgQAfaYBfC24XZ34st2IM93Eeq7CeDfrKO8Ac6iIkhgwuf0YXflkLYWkFPUhq9tnQMjgwszkySXBkkubJITs3EYs+ApBSMZhsOIXDM9MlKCX439LeAuxG695DdVUd65y6CWVeS9JH/nekajCgtLGTvnjyKG9dhPv2YHXZEOKLx9MYG9r/4Ny72Psx5hg4GnKWEV/8O57JPHrOWh7GcWJLGfeuLwIqezOEYB1hDgTD3vVVP6+t3cWXoEa4ytOFzFiFX/4akpZ+K61jS2nwXd+zM1d+b9i3HPMDqHPBz55v72bfuCa7THuZGQx2h5AzkaT/CuOKzkOQ6pvUZbUF+Cg+uH0BmViDikOhiT8cgf3ltH42bX+EGwxN8z7ABzWTDsPzz+nxxqUVHL2QGVGU7CYb1TIKZYZ+enTNGk4Mr0xfRJH3eIN0DXtw9HQz16kFTeKADzdOF8PZg8feQHOrDFXGTygCZop8i4T1imX5hxWtwEbC6CFlS0Kz5eJNS8drSMCanY3SkY3WkY3Wmk+xwYUpy6pNRWxxgdWA0WrALgX06Jyalng3W5wZvD5H+FrxdjXi6GjD2HKB0oIml3tdI7n1GD8B2woC0sVUU0pVcQShjPvbixeRXL6e0qGjMrv2JRAVYM03TcHc00tWwDU/rLrTuPST17yPDf4CsSCeZQjLc4aNDptFmLqIt5SzCqeVYcmtIK15AQWk15XYb5XE9kYmrzHawY0shFR07pj0PgDJxvmCErt5eetsPMNTTTLC3hchAG4ahDqz+LuzBLlIivaTJfnLEEGPlkQxhot+QgseUjt+ZiTupBrc9C+HIwuzMJiktF3taLo60HCzOTCwWO+mz+cmTEGBL039yF+qrgGPfDqGPGXlXq6H4wNvH9ImyLxjh8XU76H/9L3ws+AQXiX76MhYR+dCvcM0/NmMzj2Z5aTo/kiVIhH6jXHPeMTluW7+Pf72+HW39nXxaPkme6GUooxZ51k+x1V4Mxvj/F7m4MAW3dOB3FJPU9O4xO+6ejkFuf3UX2paHuM7wFPMMTQSd+fCBX2BedtWMTPMxWbX5LjzBCJ70WhzHMMBa39DLrWvqCe9+ni+an2SFaSeRpDRY9R0MK2+I6XxoU1GZoz+62itK9PuLzp0qwJphUkr6fSHaB/z09PYy1N1CoK+FyEA7YrAds6+TJH8XznAPKZE+MsQA1QxiEIePbYpgYMjgwmtJI2DNIJxUSmdyBt2ObEyubGwpOSSnZZPsysRgT4ekVJLMScQ9pZgQYHXqP6lFGPOX4pwPztHbSAlDHQTbd9K5Tx/q4uipo9T7Jq6mZ6EJeAM6ZRot1jI8KTWY8haQWbGMouqlWG0z/lg2ZuL/v8ccMdDfS8e+bQw07yDcuQeLey+p3kZyIy2kEiA1ut2QTKLFkM9eWy07Ui7AmFmFo3AeuWWLyM3MICfBI3bQuyds0Aq5eOBN8A/E9QnnXBCKaHT1e+hpP4Cns4FAbxOR/jbEUDsWXyfJgS5SIz1kyD6KhY/iQ/YPYMZtSGfQkonXUcWALZMDjixMzmySUnOwp+fhysgnOS0Xc1IKmUIQ31Eec1NtvosnZQ1XBNfoCWBmKLX3sM4BP4+tWYf1vb9ziXwRl/DRnXsa2jnfIq38A3Ef5zRaaUYyyQ4XHYYScpvenvHjbWvp58GX11Gw+y4+a3iZFOFlMH8VfPCbOCo+OKvem+Wl6RgE1CcvYeGBtTManEspWbevl3+t2Ujxvvu5yfQ82SY3wfR5cPofsSz6RFxbOg9VG00C0pBUy8L+f+st1SkFM3KsiCZ5aWcH/3h1J8UtT/Ft87NUWpqIOAvg1J9jPOEqsEzr+X/MVEYzCW7y53AS6Kna518Q1zolslBEo3MwQEfvAP2dB/B2NRLua0YOtmHy6oGTK9xNhnRTINzME77Dyghipt+UgdeWSTCpkp7kLPocWZhd+v/Dzow8ktNyEfZsjLZUUgxGUuJwrjNOCHDmYnHmUlh15vvrpSTc30Z7/Xv07tuE1rGdlP7dzO98iKSue2EL3KedheOyP3LB4vh0IZ8sFWBNgtQ0utsa6Ni3laHmHdC9G/vgPrKDB8ihl+EwIiIFbSKHLmsxLWkrIKMCW9480ksWkF9YSo15br/t8/Nc3CujXSO66qBoRXwrNMsN+oJ0tLfR27YXT9cBQr1NGAaaSfK24Qq2k6l1k00f+Yckewhgoc+QzpAlE49zHgP2bAyuPCyp+dgzC0nJKsKRWYjVlkqOEGO2WCnHTrYziX22hRAGDrw1YwHWrvYBnn/uSSr33sn14h2EAHf5+cizv0Fm/tIZOeZ0CSE4sSSNtY0LuKzxZQgHwGSN6TE0TfLyrk5eefkZTuq4jx8Y3sZgBH/l+bD6azgLl8f0eLHiSjJTm+/i1WANC33/ho6tkLckpscIRTSe2dbO02te59SuB/il6TWSzEGCpWfCaV/GUnHWrAo6h9XkOnFaTbwUmMdCgP2vwtJPxfQYQ4EwD65v4om1G1k9+AR/Mr1EmnkALWcRnPw9jIsui8vYvPG4ksyUZdpZ3xbi82mlai6scUgp6R4K0tw7RHd7E4OdjQR7DiAGWrB623AG2smIdJEnelhK/2EtTgGsDJgz8DmzCCcvpMuZizslH2taHo6sImxp+QhnLhZbGlmz8Ds0awiBKTWfwuX5FC5//2GAFg7TvH87HfXvERxyMi/XOU4hs8vcvtOfppa922he/xSifQvpg3XkhZvIwk9W9PVBbLSZimlKXcn+tCosuTWkFteSV1pLoc1GYVxrHz95KUl0J5frN5JdO4/7ACsQjtDS2UtX024G2/YQ6t6Huf8ATl8TmeE28mUXlSJ48D6Y6TVmMWTLoc9+Er2uQkxphSRllpKSW0pKdjFWWyq56g92QknJr6G3KYX0xjdg+XUxK1dKyWt17Wx54Z+c0nU/XzHswWd24Fn8eVJWf4mMlNn/12hFaTrP7JzHZZanoPGNmKX69gUjPLK+gT2v3ccF3sf4qWE3QYuDyAmfx3TKF0g+Bqnop+vk8gz++WYl/2EWiN3PxSzA6vUEufftRra/+TSXBB7jVuN7RMxm5OLL4ZQvYsmpjclxZorZaOCUygwePGDkK/YsxJ7nYxZgNfV6ufPNBja++zqf1J7kAeObmEwRZPV5cPIXMZSeNiuDzmFLi1JZW9+NLJ+P6Dh+AywpJT2eII09Hto7OhhqryfcvR/jQCPJnibSA60U0skC0Y1FRA7aNyCS6Ldk47PlMeRYjDeaFc+RU4ozqxjhysNqdanAaQYZTCYKq5ZQWLWEE+NdmUlSAdY4mjc8w0k7/wc3DposlWzJvBCRVY2joJbcisVk5BRSPQvGL8w2Qgiyi6rx7Ldhb92oTzo5xw0FwjS1ddB7YDu+1l2I3r1YBptI8beQq7VTLtwHjaHzYqPbks9QSgV7XGdiTCsiKbOE1Nwy0vLKsTqyyFN/tOecM2qyeXn/Ei7Z/TzGcHDa3a08gTBPvrML9xu3cb7vCc4Q3fQnF+I97X9JXnE1Nmvi9Fc/uzaHXz61iKAxGcv2x6YdYLW4fTy4djvhDXdxeeRprjR04XEUEjntf7GceJU+TiBBnLcwl7+9vp++7MWk73gCPvDNad3c17UPcvfruwhveYgrxbN80dBAMDkNedL/w7jys7NqnrajWV2TzXPbO+hbeg7pux+FoHfK48OklKxv7OMfr9cT3PUc1xuf4fuG7USsNozLroNVX0AkyFimpUWpPLqxhcH0RbjqngVvb9zHhs2U4Vaoxu4hWlubRsa7W/obcPmayZMdVIhOThSeg/YbNKYw4Cwg6FxGa2oRtsxSXLml2DJLwFWA1ZZGtvp/WJkiFWCNY94Hr6Zj1UfJLqwgVQVSk7KkOJ136qv5wP61HPukzzNDSknPkJ+m/bvpbdxGsKMOc99eUr0NFGotzBd9I9tGMNBjyKTfVkCH4wy60kux5VSQXlhNSn4VyckZFKs/3Medsxfk8oOnVnJZ4DWofxHmfWRK5ezv9vDcSy+RtvMuzpev4xB+ujJXEDrr/0iZ/5G4pFqfrpIMO5X5mawdOokztz+KOPenkw6CNE3yxt5uXlnzIlUH7ucGw5skiwADuSuQq2/BPu/8hHxvlhWlketK4ilxOld1/AFaN0LBCZMqIxTReHlXJ8+9/gbzmh/mG8Y1pBo9BNKq4LTfYll8OZhtM3MCM+jDC3P50ePbeTxyCteF7oHtj8CyT0+qDE8gzBObW3nyrc0s6fw33zO/TIG5i4gjH1b9GOOJ1+iJchLIsuJUADabFnE6EhrfTPhxWFJK2gf81DV3096wC0/rToy9e0j1NlIsW6gSrSwflWkvjAl3Uh5+RxFDaScTyqrAlV+JNasCUktwJrlInMcsSqJRAdY4UjJySMlQI1emYllxKq9p8zmz5z4Y7ABn4ryPUkra+v00NOyjv2ETsmMb9r46cv31lMhWlo1KWT4k7HQnldDnOhV3VjW23Hlkli7EnltJtsk661LoK/FVkGojXHYmnS23k7nuzxgmEWCFIxqv7Whmz5p/cmLXo9xo2E1QWBiovBD7mV8mq2DZDNb82LjypBJ+99iZnGV9BdbfDqd+dUL79XmCPL6+nvY37+Nc31P80FBPyGwlOP9SOPUGXPmJ/d4YDIJPrizmly8u4VNOB8bXfw1X3DOhfZt6vTz0zj5a332cC4LPcotxCxGzkUj1+bDqBqyzvKvb0aQmWzh3YS6/3iW4KqsW0xu/hcWXT2hc1M62Af61bj8HNr3Mpdpz3GF8F7M5TKTkNFj5S4zzLph146smakF+Cul2C491pnC62Q57X0qoAGvQH2J3ez/N+3bibdqMqXMH6Z7dlGsHOF10Yhw1FmrAkonHUcZQxgrCefNJKZyPKbsaU0oRmQn4QEWZG1SApcyI5SXp/NJ4AnAf1D0d0/EmseQPRdjb1kPLns14mjZj7tpOhmcPlbKRU8TAyHY9hgy6nZXsSTsDS2416SULyShegMORhSOBb06UY++a06r4yz8/zA8a7oFdTx+1FWt3ez9vrXkaR90jnKW9yVliiL7kYgZP+jHOk64mcw51+7lkWQG/f3kh70SWs+LVXyBqzofMyjG3DYY1XtnRys43/01J61NcJt7FIfwMusoJn/K/mJd9CvMxnvx2Jl17Sil/f30fD1o/xhW77oLtj8GCj465bb8vxPPb2tj+7stUtD3JNYa3SBdD+B3ZRFZ8G+PyazG68o5p/WfSV86q5Kktrdxt+zTXNX0XXvsVnPmdMbftGgzw9NY21r/7JvO6nuHzxjcpFN2EbU6Myz4Lyz+DMav6GJ9B7BkNgtXVWbxc14k272wMO5+Ej/xq1rXghiIa+7s97D3QjLthE1r7NpzuOopC+5kvmjhRBAC9V0ivtRBv6mLac2pIK1pAcv48yKjEleRC5SpWZhsVYCkzwmIykFN5Igf25VK47WEMcQ6wpJR0Dfip31dP376NRNq2YnfXURTcS41oZUE0Q18AC122MtzpZ+HJX0Ra2TJSSpaSYc8gI65noMwVZ83L5p7yK9l14HUqH74B0xV3HTTeSNMku5o72fn281D/Eif5X+ca0U1AJNFb8iHCp3+GtIrVs2L+qlizWYz890cX8p93XcXTth+S/I/zMX34f2H+hUiDifZ+L5u3bqFj+2ukt7/OyXIz54oBfGYn/qpLYNWncZacmtAtMkeSkmzmJx9dwLfu93NSyjuUPvI5hLsRll1FJCmN/V1DbN2xjbadb5HetpYPGDbycdFL2GwlWHkeLL+SpIqzErZFZjxVOU7+Y3UlP35Fsiz/wyx99Wfg7YZTv0bQns+ezkHe27GL1l3vktHxJh8wbOYaQwuayUCk9AxYdgWm+RfOmjTrsXJ2bQ6PbGxhe9pZLNrxmN4tufrcuNRFSknHQIC61l7a9m8n0LIVa89Osr31VIsDfFh0j2zrMbjoS6uiO/tUHCVLSCtbhjFrHlmzYO41RZkoIeXhk5zFy/Lly+X69evjXQ0lRl7Y0cHGe77Pt8wPwBfegmOUkSoY1tjX1kXrnk14DmzG1L2DzKE9VMgG0sXQyHY9xmzcrmq07AU4S5aQVbkcY0bFrJhcVJnbej1BvnrrE9zc/30qDG202apot5YSCARJ8R2gXDZjFSFCmOnIWEnKSZ/CueSjkEBJK6bjgXebuOuxp/mN8bdUGVoIYcKNA6f0kBTtojtkTMFTeDqZKy/HWHNuzNO6z1Z/f30ff3pmPbcY/8Bqoz65br+0k0QQa/S9CRiS8RWdTsqSCxG1F0HSnJxR5yARTfJfT+7gnjfr+YH5bj5lfAkTGkPShgGN5GhLSFhYCBSchH3hBbDwYwmV0GOyQhGN037+MvOzbdzR/xlIL4drn5rxBxBDgTB17YM0HDjAYOMm6NxO6sBuyrUGqkXzyHc4goFeWyn+jPlY8heTXr4Uc/5icObNyYckytwkhNggpTxsng8VYCkzJhzRuORX/+Y+343YKk7G8OmHY/pHU2+V8rF/7076ohPT2d11FAT3U0brSB9tP1Y6beX40vU/4pmVy3AWL0m4QcvK3OINhvnn6zvRNtzNCd61FNAFBhNDyYWI7FpylpxNyvwz59xT9Ylq6/fx6IYDGOufp8i7nUzDEHZnGq7iBRTUnIQhf8mcbMWbiMYeD09uaWOo4T1qh9aRZ+zH4XCSUVRNZuVyRN7SWTUh8LG0s22AZ7a2MdC6m0XedZQYOkm128gqqiKleDEUrphylsFEdOure/nZM7t47tRd1Gz4CXzsb7D4EzEpOxzRaOjxsLulm+79Wwm1biPZvYuCwD5qDE3kCPfItoOmNAZTahA5C3GVLsVetASyao6bByPK3DUjAZYQ4n6gJrqYCrillEuFEKXATqAu+to6KeWNRytPBVhzz7Pb2lh37/9ws/ku5KlfQ3zwR1O6Ker3BDnQ3EDP/q34W7Zi7d1JpmcvZbIJh/CPbNdpysXtrEZGW6WyK5djyiyfdf3OFUVRFGWmBcMaF/z+dXoHvLya/SvsPdvgklthwSUTLiMU0Wjs8bC3tZfOpjr8bbuw9u4i07uXag5QKtoxRbvZh4QZd3IZocz5JBctxVWyFEPewjndUqgc32a8BUsI8WugX0r5k2iA9aSUcuFkylAB1tz00ye3U7bue3zK9Ar9OauwfeDLWMpPPagFKRzR6Ontpbe9kcGuAwx2HkDr2YdtYD/pgSaKZBtO4RvZfkC46EquIJA+j6SCRWRVLsNZtCih5rZRFEVRlJnW2OPh8r+sQ3q6eTD19xR7thIoPQux6FJEzgJ85gw8YejpH6S7t5fB7mYCfa1oA+1Yh5rJCDRRQjv5ovug7H191gJ8qTWY8heSWroES/4iSFfd7JXjy4wGWEIIARwAzpJS7lEBljKalJK73myg8fk/cCMPkR3tNhDAgpckTISxyCBWET5ovwgGuo3Z9NuKCaWWYcqqIqWolqyKEzC6clUfbUVRFEWZgO6hAD97ZhfPbmrgap7iWtNzI/8Xj8drsNNvKyacWoY1p5qUwnlYs6v17n3HyZhQRRnPTAdYHwBuGT5ANMDaDuwGBoDvSylfP8K+NwA3ABQXF5/Y2Ng47foos5MnEGZtXSvuXa/i6NmGNdhHMj4wWjBZbJicmVhSC7BnFpKVX4Ijp0L1z1YURVGUGOn3hdjU5OZAzxDmnl04PM2kSjdJRkhOtpHicpGaXYg9vVCfv9LqUg8zFWUcUw6whBAvArljvPQ9KeXj0W3+DNRLKX8dXbYCDilljxDiROAxYIGUcmCMckaoFixFURRFURRFURLBkQKso3aUlVJ+6CgFm4CPASeO2icABKK/bxBC7AWqARU9KYqiKIqiKIoyZ8Uix+2HgF1SyubhFUKILCGEMfp7OVAF7IvBsRRFURRFURRFUWatWKR6uQK495B1HwB+IoQIARpwo5SyNwbHUhRFURRFURRFmbVm1UTDQoguYLZlucgEuuNdCeWYUdf7+KGu9fFDXevji7rexw91rY8vs/F6l0gpsw5dOasCrNlICLF+rMFrytykrvfxQ13r44e61scXdb2PH+paH18S6XrHYgyWoiiKoiiKoiiKggqwFEVRFEVRFEVRYkYFWEf313hXQDmm1PU+fqhrffxQ1/r4oq738UNd6+NLwlxvNQZLURRFURRFURQlRlQLlqIoiqIoiqIoSoyoAEtRFEVRFEVRFCVGVIA1DiHEeUKIOiFEvRDi2/GujxI7QogiIcQrQogdQojtQoivRtenCyFeEELsif6bFu+6KrEhhDAKITYKIZ6MLpcJId6Ofr/vF0JY4l1HJTaEEKlCiIeEELuEEDuFECer7/bcJIS4Kfo3fJsQ4l4hRJL6bs8dQojbhRCdQohto9aN+V0Wut9Fr/sWIcQJ8au5MllHuNa/jP4d3yKEeFQIkTrqte9Er3WdEOLcuFR6HCrAOgIhhBH4I/BhoBb4pBCiNr61UmIoDHxdSlkLrAK+GL2+3wZeklJWAS9Fl5W54avAzlHLPwd+I6WsBPqAz8SlVspM+C3wrJRyHrAE/bqr7/YcI4QoAL4CLJdSLgSMwBWo7/Zccgdw3iHrjvRd/jBQFf25AfjzMaqjEht3cPi1fgFYKKVcDOwGvgMQvV+7AlgQ3edP0fv2WUMFWEe2EqiXUu6TUgaB+4CL41wnJUaklG1Syveivw+i34AVoF/jO6Ob3Ql8NC4VVGJKCFEInA/8PbosgLOAh6KbqGs9RwghUoAPALcBSCmDUko36rs9V5kAmxDCBCQDbajv9pwhpXwN6D1k9ZG+yxcDd0ndOiBVCJF3TCqqTNtY11pK+byUMhxdXAcURn+/GLhPShmQUu4H6tHv22cNFWAdWQHQNGq5ObpOmWOEEKXAMuBtIEdK2RZ9qR3IiVe9lJj6P+BbgBZdzgDco/5wq+/33FEGdAH/iHYJ/bsQwo76bs85UsoW4FfAAfTAqh/YgPpuz3VH+i6r+7a57Xrgmejvs/5aqwBLOa4JIRzAw8DXpJQDo1+T+hwGah6DBCeEuADolFJuiHddlGPCBJwA/FlKuQzwcEh3QPXdnhuiY28uRg+q8wE7h3cxUuYw9V0+Pgghvoc+tOOeeNdlolSAdWQtQNGo5cLoOmWOEEKY0YOre6SUj0RXdwx3KYj+2xmv+ikxcypwkRCiAb2r71noY3RSo92KQH2/55JmoFlK+XZ0+SH0gEt9t+eeDwH7pZRdUsoQ8Aj69119t+e2I32X1X3bHCSEuBa4ALhSvj9576y/1irAOrJ3gapoNiIL+mC6J+JcJyVGomNwbgN2SilvGfXSE8A10d+vAR4/1nVTYktK+R0pZaGUshT9e/yylPJK4BXgsuhm6lrPEVLKdqBJCFETXfVBYAfquz0XHQBWCSGSo3/Th6+1+m7PbUf6Lj8BXB3NJrgK6B/VlVBJQEKI89C7918kpfSOeukJ4AohhFUIUYae2OSdeNTxSMT7waByKCHER9DHbhiB26WUP41vjZRYEUKcBrwObOX9cTnfRR+H9QBQDDQCn5BSHjrAVklQQojVwDeklBcIIcrRW7TSgY3Ap6WUgThWT4kRIcRS9IQmFmAfcB36A0X13Z5jhBA/Bi5H7z60Efgs+lgM9d2eA4QQ9wKrgUygA/gR8BhjfJejQfYf0LuJeoHrpJTr41BtZQqOcK2/A1iBnuhm66SUN0a3/x76uKww+jCPZw4tM55UgKUoiqIoiqIoihIjqougoiiKoiiKoihKjKgAS1EURVEURVEUJUZUgKUoiqIoiqIoihIjKsBSFEVRFEVRFEWJERVgKYqiKIqiKIqixIgKsBRFURRFURRFUWJEBViKoiiKoiiKoigxogIsRVEURVEURVGUGFEBlqIoiqIoiqIoSoyoAEtRFEVRFEVRFCVGVIClKIqiKIqiKIoSIyrAUhRFURRFURRFiREVYCmKoswyQohSIYQUQpjiXRfl+CCE2C6EWB3veiiKoswFKsBSFEVREp4Q4lYhxFD0JyiECI1afibe9ZvtpJQLpJRrYlmmEMIqhLhdCDEghGgXQvxnLMtXFEWZrYSUMt51UBRFmVOEECYpZXga+5cC+wHzdMo5XgkhbgYqpZSfHuO1aV2bYymR6joWIcT/AqcBFwG5wCvAtVLKZ+NaMUVRlBmmWrAURVFiQAjRIIT4f0KILYBHCGESQqwSQrwphHALITaP7oIlhFgjhPhfIcQ70Sf8jwsh0o9Q9nVCiJ1CiEEhxD4hxOcPef1iIcSmaDl7hRDnRdenCCFuE0K0CSFahBD/LYQwHuU8KoQQLwsheoQQ3UKIe4QQqaNe6xVCnBBdzhdCdA2flxDiomhXM3f0/OYf8v58QwixRQjRL4S4XwiRNPl3evKOcG2kEKJy1DZ3CCH+e9TyBdH31B29hosneKzVQohmIcR3o+9fgxDiylGvny+E2Bi9Vk3RYHD4teGuoZ8RQhwAXo6ufzDaAtQvhHhNCLHgkHr/SQjxTLS17g0hRK4Q4v+EEH1CiF1CiGUTfI8+NJFznIRrgP+SUvZJKXcCfwOujfExFEVRZh0VYCmKosTOJ4HzgVQgB3gK+G8gHfgG8LAQImvU9lcD1wN5QBj43RHK7QQuAFzAdcBvRgU5K4G7gG9Gj/sBoCG63x3RciuBZcA5wGePcg4C+F8gH5gPFAE3A0gp9wL/D/inECIZ+Adwp5RyjRCiGrgX+BqQBTwN/FsIYRlV9ieA84AyYDFHuNkWQpwWDWyO9HPaUc5hLCPX5mitQtGA5Hbg80AG8BfgCSGEdYLHygUygQL0IOOvQoia6Gse9OueGq3PF4QQHz1k/zPQ3/tzo8vPAFVANvAecM8h238C+H70mAHgreh2mcBDwC0TrPeYhBDfHu96HGGfNPTP9eZRqzcDC8baXlEUZS5RAZaiKErs/E5K2SSl9AGfBp6WUj4tpdSklC8A64GPjNr+binlNimlB/gB8ImxWpiklE9JKfdK3avA88Dp0Zc/A9wupXwhepwWKeUuIURO9Fhfk1J6pJSdwG+AK8Y7ASllfbSsgJSyC/3m/IxRr/8NqAfeRr+B/l70pcuBp6L7hoBfATbglEPen1YpZS/wb2DpEeqwVkqZOs7P2vHO4QhGX5ujuQH4i5TybSllREp5J3rgsmoSx/tB9D18FT3Q/gSAlHKNlHJr9FptQQ9Kzzhk35uj18wX3ed2KeWglDKAHuwuEUKkjNr+USnlBimlH3gU8Esp75JSRoD70YPrKZNS/my863GE3RzRf/tHresHnNOpi6IoSiJQAZaiKErsNI36vQT4+CFP+k9DD0rG2r4RMKO3OhxECPFhIcS6aPc8N3rgNLxdEbB3jLqURMtrG3X8v6C3ghyRECJHCHFftEvhAPDPMer0N2Ah8PvoTT/oLV6NwxtIKbXo+RWM2q991O9e3r8JPxaajr7JiBLg64dcuyL0c5yIvmjQPKxxeF8hxElCiFeiXSv7gRs5/P0dqasQwiiE+JnQu34O8H7r5Oh9Okb97htj+Vi+z8OGov+6Rq1zAYNxqIuiKMoxpQIsRVGU2BmdNagJvYVq9NN+u5TyZ6O2KRr1ezEQArpHFxjtlvYweotQTrTF4Gn0rnzDx6kYoy5N6K0umaOO75JSHq2L1v9Ez2ORlNKF3hI3fCyEEA7g/4DbgJvF++PGWtEDk+HtRPT8Wo5yvMMIIU4X72cAHOvn9KOXcphDMzp5geRRy7mjfm8CfnrItUuWUt47wWOlCSHso5aL0d8fgH8BTwBFUsoU4FZGvb9j1PVTwMXAh4AUoDS6/tB9Zkx0PNkRr8dY+0gp+4A2YMmo1UuA7ceizoqiKPGkAixFUZSZ8U/gQiHEudFWiKRoAoTCUdt8WghRGx3P9BPgoWi3rtEsgBXoAsJCiA+jj6UadhtwnRDig0IIgxCiQAgxT0rZht6V8NdCCFf0tQohxKHd0Q7lRG996BdCFKCP7Rrtt8B6KeVn0bu+3Rpd/wBwfrQeZuDr6AHem0d7ow4lpXxdSukY5+f1yZY5hk3Ap6LX5jwO7qb3N+DGaGuTEELYhZ6cwgkjiSXuOEr5PxZCWKLB4AXAg9H1TqBXSumPjp/71FHKcaK/jz3oAeH/TOIcY0JK+T/jXY9xdr0L+L4QIk0IMQ/4HPq4QEVRlDlNBViKoigzQErZhN7y8F304KgJPVgZ/Xf3bvQbznYgCfjKGOUMRtc/APSh35A/Mer1d4gmvkAf4/Iq77ckXY0eoO2I7vsQB3dRHMuPgROiZT0FPDL8ghDiYvQkFV+IrvpP4AQhxJVSyjr01q7fo7fCXQhcKKUMHuV48fJV9Dq6gSuBx4ZfkFKuRw8G/oD+vtVzcEKOIuCNccpuj+7Xip6Q4kYp5a7oa/8B/EQIMQj8EP26jucu9C6GLejXcd3RTmwW+RF699VG9M/lL1WKdkVRjgdqHixFUZQ4EEKsAf4ppfx7vOuiTFw0K+JmYHE0mcehr69Gv66Fh76mKIqiHB9M8a6AoiiKoiSKaIvc/KNuqCiKohy3VBdBRVGU44wQ4tYjJCy49eh7K4lICFE8TqKK4njXT1EUZS5RXQQVRVEURVEURVFiRLVgKYqiKIqiKIqixMisGoOVmZkpS0tL410NRVEURVEURVGUcW3YsKFbSpl16PpZFWCVlpayfv36eFdDURRFURRFURRlXEKIxrHWqy6CiqIoiqIoiqIoMaICLEVRFEVRFEVRlBhRAZYypnBEi3cVFEVRFEVRFCXhzKoxWGMJhUI0Nzfj9/vjXZXjhi8Yod/rI81mwmpNind1piwpKYnCwkLMZnO8q6IkqKe3tFBg7GNJ7QIQIt7VURRFURQlAcz6AKu5uRmn00lpaSlC3eAcE/u7PcwPNGATQcgqAXNyvKs0aVJKenp6aG5upqysLN7VURLQ3q4hzA9exRLjBkIf/yfmBRfGu0qKoiiKoiSAWd9F0O/3k5GRoYKrYygQCunBFaB5uuNcm6kRQpCRkaFaPpUpe6O+m5WGnQC4190d59ooiqIoipIoZn2ABajg6hjSpMQS8Ud/B/yD8a3QNKjPjTIdne2tpAgvAKktr0IkHOcaKYqiKIqSCBIiwFKOnVBEw4R+I9mHE4MWhEgwzrVSlGNP66oD4BXLasyaH7p2xrlGiqIoiqIkAhVgTYAQgq9//esjy7/61a+4+eab41ehUdatW8dJJ53E0qVLmT9//ki91qxZw5tvvjnp8iKaxCQ0GptbWX3eJSw9+woWLFrCrbfeGuOaK8rsljTYAEBjwQUAyJb34lgbRVEURVESxaxPcjEbWK1WHnnkEb7zne+QmZkZs3KllEgpMRimHudec801PPDAAyxZsoRIJEJdnf7Ufc2aNTgcDk455ZRJlRfRJEYiZGRn8eizL1MpmhkSKSw8+Swuuugi8vPzp1xXRUkk1kAfAOayUxjYl4yp8T2ST7wmzrVSFEVRFGW2Uy1YE2Aymbjhhhv4zW9+c9hrXV1dXHrppaxYsYIVK1bwxhtvAHDzzTfzq1/9amS7hQsX0tDQQENDAzU1NVx99dUsXLiQpqYmvvnNb7Jw4UIWLVrE/fffD+gB0urVq7nsssuYN28eV155JVLKw47f2dlJXl4eAEajkdraWhoaGrj11lv5zW9+w9KlS3n99dfHredVV13FySefTFVVFbff9ndMRLBYbTidToLSiN/Tj6aNPS/W7373O2pra1m8eDFXXHEFAL29vXz0ox9l8eLFrFq1ii1btowc65prruH000+npKSERx55hG9961ssWrSI8847j1AoBMBPfvITVqxYwcKFC7nhhhsOO29N0ygtLcXtdo+sq6qqoqOj4+gXU1EmyBgaIoKR8vwc6mU+wXbVRVBRFEVRlKObdguWEKIIuAvIASTwVynlb4UQNwOfA7qim35XSvn0dI71439vZ0frwHSKOExtvosfXbjgqNt98YtfZPHixXzrW986aP1Xv/pVbrrpJk477TQOHDjAueeey86d49+I7dmzhzvvvJNVq1bx8MMPs2nTJjZv3kx3dzcrVqzgAx/4AAAbN25k+/bt5Ofnc+qpp/LGG29w2mmnHVTWTTfdRE1NDatXr+a8887jmmuuobS0lBtvvBGHw8E3vvENAD71qU8dsZ5btmxh3bp1eDwelixdyrmrFpBemEl3RwsfvOjj7Gs8wC9/+asxW69+9rOfsX//fqxW60jA86Mf/Yhly5bx2GOP8fLLL3P11VezadMmAPbu3csrr7zCjh07OPnkk3n44Yf5xS9+wSWXXMJTTz3FRz/6Ub70pS/xwx/+EICrrrqKJ598kgsvfD9FtsFg4OKLL+bRRx/luuuu4+2336akpIScnJyjXkdFmQgpJZbwIEGLnepcJy9qhczv2xLvaimKoiiKkgBi0YIVBr4upawFVgFfFELURl/7jZRyafRnWsFVvLlcLq6++mp+97vfHbT+xRdf5Etf+hJLly7loosuYmBggKGhoXHLKikpYdWqVQCsXbuWT37ykxiNRnJycjjjjDN49913AVi5ciWFhYUYDAaWLl1KQ0PDYWX98Ic/ZP369Zxzzjn861//4rzzzhvzmOPV8+KLL8Zms5GZmcmpp5/Bxk2bwWCiorSUl198hj1rH+fOO+8cs4Vo8eLFXHnllfzzn//EZDKNnNNVV10FwFlnnUVPTw8DA3pg/OEPfxiz2cyiRYuIRCIj9V20aNHI+b3yyiucdNJJLFq0iJdffpnt27cfdtzLL798pLXvvvvu4/LLLx/3PVeUyfAGI9jxEjI7yHBYaTMXYQv1grc33lVTFEVRFGWWm3YLlpSyDWiL/j4ohNgJFEy33LFMpKVpJn3ta1/jhBNO4LrrrhtZp2ka69atIykp6aBtTSbTQd3qRs/HZLfbJ3Q8q9U68rvRaCQcHjtNdEVFBV/4whf43Oc+R1ZWFj09PYdtc6R6wsHpzKUEk5BgNGExGfBjpTg3i4W183j99de57LLLDtr3qaee4rXXXuPf//43P/3pT9m6deuEzslgMGA2m0eObTAYCIfD+P1+/uM//oP169dTVFTEzTffPOZcVieffDL19fV0dXXx2GOP8f3vf3/c4yrKZPT7QrjwETE7AQikVUIv0L0bilfFt3KKoiiKosxqMR2DJYQoBZYBb0dXfUkIsUUIcbsQIi2Wx4qH9PR0PvGJT3DbbbeNrDvnnHP4/e9/P7I83BWutLSU997Ts46999577N+/f8wyTz/9dO6//34ikQhdXV289tprrFy5csJ1euqpp0bGKO3Zswej0UhqaipOp5PBwffnsDpSPQEef/xx/H4/PT09vLn2NVYuraWlrYuA30/EYKXPPcDaN96kpqbmoGNrmkZTUxNnnnkmP//5z+nv72doaIjTTz+de+65B9DHkmVmZuJyuSZ0PsPBVGZmJkNDQzz00ENjbieE4JJLLuE///M/mT9/PhkZGRMqX1EmYtAfxim8aFY9wDJmz9NfiKZuVxRFURRFOZKYBVhCCAfwMPA1KeUA8GegAliK3sL16yPsd4MQYr0QYn1XV9dYm8wqX//61+nu7h5Z/t3vfsf69etZvHgxtbW1I+nML730Unp7e1mwYAF/+MMfqK6uHrO8Sy65hMWLF7NkyRLOOussfvGLX5Cbmzvh+tx9993U1NSwdOlSrrrqKu655x6MRiMXXnghjz766EiSiyPVE/RufmeeeSarVq3iK9/4NoW5Wezcs5eTTjqJj5x9Jmdc9lm+8eXPs2jRIgA++9nPsn79eiKRCJ/+9KdZtGgRy5Yt4ytf+QqpqancfPPNbNiwgcWLF/Ptb3+bO++8c8Lnk5qayuc+9zkWLlzIueeey4oVK0Zeu/XWWw+q9+WXX84///lP1T1QiTlfKIILL9KiPxhIy6/AL83421SiC0VRFEVRxifGykw36UKEMANPAs9JKW8Z4/VS4Ekp5cLxylm+fLlcv379Qet27tzJ/Pnzp11HZWw333zzQckwGns8FAX2YHBkgauAVrePTE895mQnIq00vpWdAvX5Uabirb09FN55EkkVp5J1zZ28uKOD/PvOpqC4jJTPPh7v6imKoiiKMgsIITZIKZcfun7aLVhCH0RzG7BzdHAlhMgbtdklwLbpHkuZeVJKDEgQ+kfDajIQxIQMBeJcM0U5dvyhCE7hhSS9Bas0085emYexd2+ca6YoiqIoymwXi4mGTwWuArYKITZF130X+KQQYil66vYG4PMxOJYSYzfffPPBK2Q0MceoACuAmeSI99hWTFHiyB8M48CHOxpgFaXbeFrmcb73HQgHwWSJcw0VRVEURZmtYpFFcC0gxngpodOyH6/e7zIaDbDMRgYwY5ARiITBGIuYXFFmt6Dfg0loGJP0JBdWk5F+WzGGkAZ9DZA19phKRVEURVGUmGYRVOaAQ1qwTAZBiOjT+ojqJqgcH4IBvcXWaH1/SoVIWrn+i+omqCiKoijKOFSApRxsJMAS0X/E+92hwirAUo4PkWiAZUp6P8CyZOutVrJ7T1zqpCiKoihKYlABlnKwQ1qwAITJigQVYCnHjXA0wLJYk0fW5eTm0ScdBDrnZoAVimgMBcaezFxRFEVRlIlTAdYEPfbYYwgh2LVr1xG3aWhoYOHCcTPRT0pdXR2rV69m6dKlzJ8/nxtuuAHQJwl++umpD3Hz+/2sXLmSJUuWsGDBAn70ox+NvCbGCLAsJhNBaUKG/VM+pqIkkshIF0HbyLqyzGT2y1yCHXMzwPrqfRv5f//1U1reeybeVVEURVGUhKYCrAm69957Oe2007j33nvHfD0cnv6T30gkctDyV77yFW666SY2bdrEzp07+fKXvwxMP8CyWq28/PLLbN68mU2bNvHss8+ybt06/cXhJBcHBVgGgpiRqgVLOU5EgnqAJczvdxEszbCzX+Zicu+PV7VmTK8nyBtb6/mj6RYKnrgCWjfFu0oxV9c+yE+f2sGgd24+KGrr9/Ha7i5iMbflbHSgx8uu9oF4V2PG1LUP0ur2xbsaiqLEiAqwJmBoaIi1a9dy2223cd99942sX7NmDaeffjoXXXQRtbW1gB5oXXnllcyfP5/LLrsMr1e/UXvppZdYtmwZixYt4vrrrycQ0IOV0tJS/t//+3+ccMIJPPjggwcdt62tjcLCwpHlRYsWEQwG+eEPf8j999/P0qVLuf/++/F4PFx//fWsXLmSZcuW8fjj+kSod9xxBxdffDGrV6+mqqqKH//4x4A+rsrhcAAQCoUIhUIIIaL/Mb/fgvXggw+ycOFCzjh5OedcejUiHMDv83HdddexaNEili1bxiuvvDJyrI9+9KOcffbZlJaW8oc//IFbbrmFZcuWsWrVKnp7ewH429/+xooVK1iyZAmXXnrpyPsz2qpVq9i+ffvI8urVqzl0AmpFmUkyGL3RMSeNrCtMS+aAzCPZ3w7BuTVtwY7WAU41jJqqcMfcm0z5O49sYcvapzHdUgV7Xoh3dWLuxn++x423v0bXbR+Hva/EuzoxFQhHuOzWN7nwt68w8MhNUDe3Wlmb+7x85Hevc/7vXif0yi/gvbviXSVFUaYpsXJuP/NtaN8a2zJzF8GHfzbuJo8//jjnnXce1dXVZGRksGHDBk488UQA3nvvPbZt20ZZWRkNDQ3U1dVx2223ceqpp3L99dfzpz/9iS996Utce+21vPTSS1RXV3P11Vfz5z//ma997WsAZGRk8N577x123JtuuomzzjqLU045hXPOOYfrrruO1NRUfvKTn7B+/Xr+8Ic/APDd736Xs846i9tvvx23283KlSv50Ic+BMA777zDtm3bSE5OZsWKFZx//vksX76cSCTCiSeeSH19PV/84hc56aST0KTEIKWedF8Y+MlPfsJzzz1HTm4ee+q2Iwjzxz/8HiEEW7duZdeuXZxzzjns3r0bgG3btrFx40b8fj+VlZX8/Oc/Z+PGjdx0003cddddfO1rX+NjH/sYn/vc5wD4/ve/z2233TbSMjfs8ssv54EHHuDHP/4xbW1ttLW1sXz5YZNkK8qMkaFoAGV6v4ugxWSgP7kEgkDvPsiNXXfgeNvVPsBKwy4ChmQ2hYs5cffzmD70o6PvmCCGAmE2Nrl5wnw3tvAAPPsdqDo73tWKmfZ+P5ub3HzR+CzZzS/A3S/A97vmzHxt6xv66BwMcIZhO64tt8OW2+Hru8GZE++qxcSru7uIaBK7rwXzqz/VV2bWQPFJ8a2YoihTplqwJuDee+/liiuuAOCKK644qJvgypUrKSsrG1kuKiri1FNPBeDTn/40a9eupa6ujrKyMqqr9Sxk11xzDa+99trIPpdffvmYx73uuuvYuXMnH//4x1mzZg2rVq0aafka7fnnn+dnP/sZS5cuZfXq1fj9fg4cOADA2WefTUZGBjabjY997GOsXbsWAKPRyKZNm2hubh4JwjQpEeL9LIKnnnoq1157Lbff9ncCmv5RWbv2dT796U8DMG/ePEpKSkYCrDPPPBOn00lWVhYpKSlceOGFgN7y1tDQAOhB2Omnn86iRYu45557DmqpGvaJT3yChx56CIAHHniAyy67bOwLoygzRIaGW7BsB62PpM/NVO0tbh+lxm5CKSW8q9Vg6NoFobnTXWlH6wBGGWa+oZmANEPPHuhvjne1YmZzsxuAD1u3vL+y+d34VGYGbGnuB+BS24b3V+55Lk61ib31DX1kOqxcZBn1oHXXv+NXIUVRpi2xWrCO0tI0E3p7e3n55ZfZunUrQggikQhCCH75y18CYLfbD9peCDHu8lgOLWO0/Px8rr/+eq6//noWLlzItm3bDttGSsnDDz9MTU3NQevffvvto9YnNTWVM888k2effZaa+bUYeH8M1q233srbb7/NU089xU8+/GE2P3Pn+1kGx2C1Wkd+NxgMI8sGg2FkjNq1117LY489xpIlS7jjjjtYs2bNYeUUFBSQkZHBli1buP/++7n11luPeExFmRGh6DidUV0EAazZldAOsrt+zNnVE1XnQIBCYx+W9Gq2dpRjkGHo2A6Fc6PluKHHQ6lox0SY2yPnc4PpKWh4A5aM/XAr0dR3DgGSSkMrj4dO4SLTOsT+V6H01HhXLSb2dg2R47Ky3NzK2sFFnJrai6h/EU64Ot5Vi4mGHg/VOQ5O7Wumw5dFTtkCqH8JzvnveFdNUZQpUi1YR/HQQw9x1VVX0djYSENDA01NTZSVlfH666+Puf2BAwd46623APjXv/7FaaedRk1NDQ0NDdTX1wNw9913c8YZZxz12M8++yyhUAiA9vZ2enp6KCgowOl0Mjg4OLLdueeey+9///uRwc0bN24cee2FF16gt7cXn8/HY489xqmnnkpXVxdutxsAn8/HCy+8wLx58/QugqMCrL1793LSSSfxk5/8hIzMLA60dnD6quXcc889AOzevZsDBw4cFtiNZ3BwkLy8PEKh0Eg5Y7n88sv5xS9+QX9/P4sXL55w+YoSC4bwcAtW8kHr87Oz6ZSpcy5Ve+egn1zZhSW9mGZb9PvctimudYqlNrefGqG3WD2hnULAaJ9TLTzNfT6qk70khQfYqFXS76qBpnfiXa2YaXX7yE+1kRFqpUHLZjBzGbRuPPqOCaKp10tJRjJlxi72RbII5S2Hrl0Q9MS7aoqiTJEKsI7i3nvv5ZJLLjlo3aWXXnrEbII1NTX88Y9/ZP78+fT19fGFL3yBpKQk/vGPf/Dxj3+cRYsWYTAYuPHGG4967Oeff56FCxeyZMkSzj33XH75y1+Sm5vLmWeeyY4dO0aSXPzgBz8gFAqxePFiFixYwA9+8IORMlauXMmll17K4sWLufTSS1m+fDltbW2ceeaZLF68mBUrVnD22WdzwQUXICX88pe/5onnXwVh4Jvf/CaLFi1i4cKFrFi1ivm1tXzh2k+iaRqLFi3i8ssv54477jio5epo/uu//ouTTjqJU089lXnz5o2sf+KJJ/jhD384snzZZZdx33338YlPfGLCZStKzAxPSWA6uAWrNJqqPTzHAqyBfjcOOQQpBaTnleHFBl27412tmGnr91Gb1AVAOK2KZlMJdO6Mc61ip8XtY7mjG4AGUUCTuXxOnV9bv59yZwRr0M0BmU1jUg24D4CnJ95VmzZvMEz3UJDCtGTSQ+00aVm0JM/Te4u0H95jRVGUxJBYXQTjYDhL3mhf+cpXRn5fvXr1yO+lpaVHnCfrgx/84EEtS8OGxyaN5ZZbbuGWW245bH16ejrvvnvw09e//OUvY5ZRWFjIY489dtC6xYsXj1kXTUq+/c2vkSUGQAgeeeSRkdf6vEGCfftwmOAf//jHYftee+21XHvttWOe1+jXvvCFL/CFL3zhsP0vuugiLrroopHlnJycmKS+V5SpMESGuwgePAarNMPOO1ouS9wxTrYTR1JKTEMtYARchdTkutjblMfCrro50w2ytd/PqZYhkCmU5WWys6GAis4N+rQUE+jGPdu1uX2sTuqHARCppeyI9LJo6Cnw9kJyeryrNy1SSlrdPq4s0ccftxpy2RwpZRFA+2aoOCuu9Zuu7sEgALnJkiR/FwdkNnZZTilA22aV6EJREpRqwVJGaBK9i+AYNxxWoz4XlggH3p8rS1HmKGPEj4YBjAdnYStMS6aRXJKCPeDvj1PtYmswEMYRjp6LI4uyLDu7tXy0rrr4ViyG2vt95Bv7wZHNvFwXG/y54OsFT1e8qxYTfd4QuQZ9jqj03ELe8Uaz63XuiGOtYqPXEyQQ1ig16q1VpvQS3hrM1l+cA5/RPq8eYOVJ/bPYJrLYMmADqwu6E//8FOV4pQKsOezaa68dSeU+EVJKBBI5xsfCYjIQwIxAA021LClzmzHiJ2SwHvawYSRVO0DP3Mgk6PaESBVD+oItjbJMO3u1AoxDbRAYHH/nBNEzFCQDNzhzqc5xUKcV6S/MgQBESonbGyRLuMGcTEluNq/3RwOsjsQ/v+4hPQDJMuifxdTMfDb1mCEpdU4FWBlCf8hhSslnT6cHMqvnxPkpyvEqIQKsuToz/WzzfgvW4R8Lk9FAWJj1hfDhqeJnI/W5UabKpAUIG8YeWyjThlO17zuGNZo5/b4QKaMCrPJMB3tlvr7cnfjjsKSUuH0hUsK94MiOttANB1hjd+lOJEOBMGFNkqr1gSOb6lwnnaQStqbMiQDSHQ1AUtA/o1nZ+bT0+9Eyq6E78cdCur16IqsUGQ0gM3LY3TEIWfPmxPdPUY5Xsz7ASkpKoqenR90sHwNSSgxoYwZYABijN5yR2R9gSSnp6ekhKSnp6BsryiHMmp+wYezPTlJOFQByDtzcAbh9QVKIZiuzpZHjstJkjAYgcyDRxVAgTESTOMI94MilNMNONy58prkSgOg36K5IHzhyqMx2AAK3o2punJ9PPz9HpB9MNopzMwAYcJTPiS50wy1YTk0PsHJy82ju8xFMr4ShDvC541g7RVGmasaTXAghzgN+iz6E+u9SyklNZlVYWEhzczNdXXOjr/xs5gmEMfq6sRpB9B7+ep8ngCfUhejw690zZrmkpCQKCwvjXQ0lwUQ0iUUGiRjHbsEqzE6nWWaS1VnPxPNnzl79Pr2LoDSYEBYHQggMGeWE3UZMc+AG1u0NkYwfc8QHjiySzEYKUpNpMZRSOQcy7Q3foNuDPZBZQ3G6HaNB0GwqIbPzxYRP5DHcgmUL90NyOmWZ+ryRbeZiUj1dCZ/Io88bQojo+QF5uQXAAG3mYkpAb8UqWhnPKiqKMgUzGmAJIYzAH4GzgWbgXSHEE1LKCT9WM5vNlJWVzVQVlVHuequBmmc+y8LidMyffeaw13/74h4ufO3LlNSuxHjF3XGooaLMvEA4gpUgEaNtzNdLM5Jp0HJI69ozdwIsPGhJqRijN+LFWS5a+vMomQOtdG5viHQRHUuWnAlAWaad+u58KnvWxbFmsTHcgmUN9IAjG4vJQFGajd1aHksD/XoiD0d2nGs5dSPnF+oH2/sBVr2Wz3zQA5DiVfGr4DS5vUFcSWYM/l4w2SjN0z+j9VqBHmB17VIBlqIkoJnuIrgSqJdS7pNSBoH7gItn+JjKFPlD+o2lsBzhxjIzmQaZS6hrbgzuV5Sx+IIRbASQprG7CJZm2tkv8zD3758TGTWHx2AJW9rIurJMO7sjucju+jjWLDb0LpDvjzED/fy2+LPA15fwcyn1eYMINExBNyTr3efKsxxs9mbpGyR4kNznDWE2CoyBPkhOx241ketKYnMgmsgjwRNB9HlDpCWbwds30kInBGzzpujd8hP8/BTleDXTAVYB0DRquTm6boQQ4gYhxHohxHrVDTC+/CENG0EMluQxXy/LtNMoczC558aNpaKMxR/WSBIhtCN0ESyKpmq3hAb07kkJrt8bIl14MIzqZlWW6WCvlqsn8tAicazd9PV5Q6QNJ/GInmNZpp0dwegNek9iByBubwgnPoTURgLIiiw7b/VHA+YEP79+X5AUmwXh7Rm5fuVZdja4nfpE4AmeCMLtDZKabAFvD9jSo11Ybezt9kNmVcIHyIpyvIp7kgsp5V+llMullMuzsrLiXZ3jmj8UwSaCGMxHasGys1/mYop49cG3ijIH+UMRkggizWM/aLCYDAzai/WFnsRv4en3hUg3eA4aV1mWmcw+mYfQguA+EL/KxUC/N0jqSAvW+zfo+0YyJSb2DWyfNzgqzf7w+TnYH05HMyYl/Pm5R1p4ekfOryzTzt5uLzK9POG/g33eoH5+vl5I1oPi8iwH+7qHIKMi4QNkRTlezXSA1QIUjVoujK5TZqHhFiyOEGC5ksz0WqOXc46kqFaUQw13EeQIXQQBtLRK/ZfexO8uqye58Iy0foDegrVfy9MXEny+L7f34Hm+AMozHTTLLCIGc8LfwLq9IfKtPn1h5PzsSAx4naUJH2D1eYOk2Yzgd49qwXIw4A8TTK1I/PPzhEhLthwUQJZn2tnX5UFmVEFfI4SDca6loiiTNdMB1rtAlRCiTAhhAa4AnpjhYypT5A9HSBJHDrAAtLRowpEEv+lSlCMJhCNYRQgxzvcgOaeCMIaEf3oOeoDlYvCgACst2UzX8MOUBA9A+rwhcozvp6EHKEizYTQa6bMWQoKPM3N7gxRa/frCqAAE0K9hgl8/tzdEnjUIUjsoAAHoSSqGvoaEDkBGugj6ekfG0FVkO/AGI/qk5jICffvjXEtFUSZrRgMsKWUY+BLwHLATeEBKuX0mj6lMXSCkkTROCxaAPbuMMMY58eReUcbij34PxguwijJdNGlZBDsT++YVYNDjI1n6DgqwhBCkZObjEfaEDyLdviDZZh9YHGCyAGA0CEoy7DQZChJ+DE+fN0Su+eAWrEyHBWeSiQbyE74FxO0NkW/x6gsjSTz0AKtJFEQDkIY41W56gmENTzCit9D5+kYC5IpoANkookPWE7yVTlGORzM+BktK+bSUslpKWSGl/OlMH0+ZumAoiJkwmI58Y1mS5aJRyybcldg3XYpyJMNdBI+UTROgNMNOg8ydE98DbXgi01EBFuitIA3kJ/zNndsbItM4NNL6Maws086uUK7eOhAJxal20+f2BskxRwOQ6DUUQlCe5dATeSR4C4jbFyTHHG2BjAYghWnJmI2CneHETlQyPMdXtiVwcAtdtAVyRzCaXj9Bz09RjmdxT3KhzB5aMPqf9DhP7kujmQRD3aoFS5mb/KEwSQQxHiGbJujfgwaZi2UOpGo3+N36L4cEWGWZdurCOWiJ3oLlDepJPGypB60vz7KzyZsFWlhv5UlQfd4QmcNdIEclKqnItLN+UG/xSdQg2R+K4A9p759fNAAZboF8z6PPGZWo59cXneMr23RwlssclxW7xUid2wD27ITvxqooxyMVYCkjZDDazWS8ACv65N7sbkj4G0tFGUsgGMAo5LgBVlG6jQbyMUV8MNh+DGsXWxFNYg669YXDWrDs7NPyMAy0QNBz7CsXI25fSJ8HK/ngFqyKTAe7I7n6QgK3EPR5g6SLIbCmgNE0sr4i28G7Q9EAK0HPb3iS4fSRNPvvf0bLM+1s70EPQBL0/PqiLVjpYriFTr9ewy2Qe7uG9FTtCXp+inI8UwGW8r7QxFqwRlK1J/CNpaIcSciv3+wYrUf+HlhNRryOEn0hgVt4BnwhUsTBCSCGlUUnVAYSOmuo2xvCpQ0c3kUwy87e4fNL0BaQcERj0B8mhcHDAsjyTDtDJBNKzk7Y83P79AAk7ZA0+6B3ozvQ60VmVCZsC89wF8FUMaivOOj89EyCZFQm7PVTlOOZCrCUESIUvdE6wvw/AA6rCXdSob6gEl0oc1AkoD9oMCXZx93OkFml/5LA3wO3LzRqjqjUg14ry7SzL8EDECkl/b4Qdm1gzABkAAc+c1rCJrro9+ktPM6xzi86jsedXJqw16/PM+r8hBGSUkZeK8+yE4pIhhxlCdvCM9xF0KVFA6yDWugctLh9hNIq9AyDc2BSc0U5nqgASxkhQtEugpbxbywj6dEbywS9KVGU8QwHWGbr+N+DjIIygtKElqBPzyGaIvqQOaKGJVtM+J3DrXSJGUQO+MNILUJSePCwFqx0u4UUm5kOS1HCtkIO36DbI4e30JVkJCMEtBkLEzYA6Y+2YCVH+vUAUoiR1yqimQTbLYXg7UnIAGS4i6BdG9BXjLqGFdn6+bWZhqdLSMzPqKIcr1SApYwQ4eExWEduwQJwZpfgwwpdKsBS5p5INNmLcZwsggAV2Sk0yhx87Yn7PRiZZBgOah0Ylp+dQZchK3Fv0L0hXHgQyMNaePRxLnb2ycTNlDjcxcwa6j/s/JLMRgrTbOzRcvUU4J6eeFRxWobHYNnC/WNkgdRb6PbJfH1FAl5DtzeE1WTAEug7vIUuen57ZXScYAKen6Icz1SApYwwDgdY4wzuByjJclKv5RHu3HUMaqUox1YkmuxFHOV7UJntYL/MRSZo6w7oAVYKQ0SsKWAwHvZ6WaadvVouMkGfnvd5g6SJw8fvDCvLtLMtkA3ebj0ISTDDLViWoHskQcJo5ZkONvuy9IUEDJLfP7/DA8h0u4XUZDNb/YmbyrzPEyQt2aK3vh3SQlcWnQtrqycNDOaEPD9FOZ6pAEsZYdKGW7DG7xpVlmGnXhagddYdg1opyrE1kk3TlDTudhXRAMs22Aha5BjULPbc3pDeRXBUeu/RyjMd7A7nIrv3JGTW0D5vkDSGEwikHfZ6RdaoACQBu3q6vfrchcbQ4fN8gX5+6/qj6xOwBcTtDWIxGTD4e8c8v/JMO+8NuPQAJAHPr88bIjXZrI+xOuT8bBYjBak29vb4Ib0sIc9PUY5nKsBSRpgn2IJVlmWnXivA4mmFwNAxqJmiHEPDKcmPMhbRYTXRm1SMUYagv/kYVCz29BYsDyL58JtX0L/r+2UuhsAAeLqPce2mr390lsQxzrE80/5+F7MEbCFwe0OkcniChGHlWXbqQxlIoyUhz6/PGyQ92YIYbuE5RHmWg/ruaACSgK2sbu8hLViHeD+TYFVCnp+iHM9UgKUA+nw4FunXF47SglWaYWcfw/3eE3f8iaKMxRCKPjSwOI66rZZWrv+SoDc/bm+IdIMHwxg356DPFZXIAUifZ/wWrPIsB00yC02YEvJvWa83SNYhk/COVp5lR8OgTymQgC0gvZ4QacMtPEcIQDoHA3qmvQQ8vz5vkDS7We+eeoQWyH1dQ3oq+t59CdtSrijHIxVgKQB4gmGSCegL48yDBfrgaW9Kpb6QgDclijKu4RYs69EDLGvuPABkV2J2l+33hUgzeMYMPgAK0mw0iWiq9gQMIt2+0PtjsMa4QS/JSCYiTLiTChLzBt0TpCgp+mBsjDFYFdFU7d3W4sQ8P2+QvOQIRIJH7CII0Gcr0QOQSPhYV3Fa3N4QqckWPQviEVogPcEIA/ZS/T1wNx77SiqKMiUqwFIA8AYi2IQfiThqgAVgy6kkggES9MZSUY7EEBxuwRq/JRcgN7+YXunA27Jthms1M/p9QVI4coBlNAgsGSWESMwxLm5viByzF4QBrIdnSUwy6+Ncmo2FCRlA9niCFFqjXbvHCCCznVbsFiONIh/69kMkdIxrOD19niAF45zf8FxfLcZC0EIJFYBIKfUHADZTtIvgkQPkA2K4x0jifUYV5XilAiwFgKGA3oIVMSYdlMnoSMpz0miQuWgqVbsyxxjDw2OwnEfdtjLHSZ1WTKQtQQMsTwCnHDpigAVQkZtKs8hNyACkzxsk2+TVz88w9n935Vl6Io9E7ILV5wmSZ9GnFRirhUdPRe9gZygHtDD0JU4AAnoXyHxz9PzGCEBKMpIxCNgVjqYyT6DP6IA/TESTZCVpEAkcsYsnwM6R80u8hxyKcrxSAZYCgGc4wDKNn+BiWFWOg3otn3CHStWuzC2msIegsIDRdNRtK7Md1MlCbO49oGnHoHaxFfb1Y0AbN8CqznayPZyP1rnzGNYsNtzeEJmG8QPIqmwH73kzE7ILVq8nSJbpyEk8QL9JXz+UeKnawxGNfl+IHFN0DJ0967BtrCYjhWnJbPRm6isSqJW1Z0jvkp9viraYj3F+ua4kki1GdrjN+mc4gc5PUY53KsBSAD3AsokA8iiTDA+rynZSL/Mx9TckXLcTRRmPOeIlaJzY9yDDbqHJXIo54oX+AzNcs9gz+qKZAce4uRtWneOgTitC9DW8Pz4tQbiH58Eao3VgWE2Ok7pQYk7m2usNkiE8+uTwR+jaXZHl4O2BxEvV3u8LISVkiQF9hT1zzO2qsh1s6jbo17g7cbqs93j0SaKzjcPnd/h3cGQy7G4PZFarMc+KkkBUgKUA4AlG9CQXEwywKrIc7JUFGGRY71qjKHOEJeIlZDz6+CvQb4BCGXqiCxKshUdKidnfqy+M0f1qWFWOkzpZhEBCgk0u3ufVJ1I+UusOQHWuk30ymsgjgW5gh1t40sTguAFkeZadAeyEbVkJFYD0efUAJJ1+fcURHgLU5DrZ1+VBy65NqO9g96DegpXO+AFkeaaeSZDsWujYnpDz0SnK8WhaAZYQ4pdCiF1CiC1CiEeFEKnR9aVCCJ8QYlP059aY1FaZMZ5AGBuBo86BNcxmMdLviKaoVokulDkiFNFIlj7CpokFWADJhYsB0Nq3z1S1ZoQnGMGlufWFcVqwSjOS2SdK9IXOxDrHnqEATm38AKQ6x0EfLjzmjIS6QXdHW3hc2sCYGeiGlWfqiRL6HBXQseNYVW/aej16z4gUrV+f9PsI0ybU5DoJaxK3s1o/vwTpqtsdbcFKPcp3sDzLTovbRyizFvxuGGg9NhVUFGVaptuC9QKwUEq5GNgNfGfUa3ullEujPzdO8zjKDBsKhHEJLyLp8ExbR2LOrtF/SaCnoooyHn0soh9tgmMRASoKc2mWmXibt85gzWKvezBAhhge3zL203MAk9GAObOMgEhKqADEGwzjCYZxhHvHPb9ki4ni9GQazWXQnjjXsC96g26P9I/bAlkWTWXeZK7Qr1+CJPLoHT6/cB8kZx4x+dK8XBcAjaZSCHnA3XCMajg9w2Ow7OE+fcWRWrCyHEgJLdYyfUVHYj3kUJTj1bQCLCnl81LK4Ykn1gGF06+SEg+eQBgn3iNOODqW4rxsWmUGWqcKsJS5YSgQxi58aBOYZHjY/DwXdVoRWoLd+HQPBd7vnpR85AAEoCo3hb0UJtTNXfegnoLeKEPgzBt32+ocJ9vCRdC1K2HmUhoew5Mc7AZH7hG3s1mMFKXb2BYphLAvYbp093j0AMQW6hs3QC7PsmM2CraGo7cfCdJK1zMUJDXZjNHXo2csPeIYOj1A3qUV6SsSrBVZUY5XsRyDdT3wzKjlMiHERiHEq0KI04+0kxDiBiHEeiHE+q6urhhWR5kMTyBMivBgSk6d8D6V2Q72aAWEOhLnqbaijGcoEMaBHzmJAKsy28FuirAP7oNwcAZrF1vdQwEyxAARiwtMlnG3rc5xsDVUiJYgN68AXUN+soVbX3DmjLttTa6Dt715eibBBEn13TkYACQWXxc4jxxgAdTmuVg7EN2mIzGmFOgYCCAEWP3d43ZhNRsNVGQ5eHMgCxAJ8xCgxxMgw26BoU6wH7kFsiLLgdEg2NYjIKUoYc5PUY53Rw2whBAvCiG2jfFz8ahtvgeEgXuiq9qAYinlMuA/gX8JIVxjlS+l/KuUcrmUcnlW1pH/iCozyxMIk4IHYUud8D5V2Q7qZBGmnt0J0+1EUcYz6A/jFF5E0tHnwBqWZDbS76jEKCMJlQa7azBApuhHHqX1CvRuWLtlIQZvFwwlxoOwrsEg2SLa/WqcFh6AmlwX2yPF+kKCBCDt/T5SGcKgBY8aYM3Pc/GqOx0pjNCeGOfX0e8n02FFDLaBK3/cbWtynWztDEN6WcK08HQPBslwWGGwDZxHPr8ks5HKLAc72gbeT3ShKMqsd9QAS0r5ISnlwjF+HgcQQlwLXABcKaWe3kZKGZBS9kR/3wDsBapn7CyUafP7BjGLCExiDFZVjpPdshCjFoTe/TNYO0U5NnqHAqQyhGmcJ8pj0XL1RBeJNIanayhIrujDkDL+zSvAwoIUdsnhLkqJ0YrVNRQgG7e+cJQApCbHyV6ZjyZMCRRgBSi1RLt4TiDACkgz/pSKhLlBbx/wU+g0gqcLXAXjbluT63w/EUSCnF/bgI+8lCQYaDlqADk/z8mO1gHIWaBnukyglnJFOV5NN4vgecC3gIuklN5R67OEEMbo7+VAFZAYHb+PU8Gh6JPeSQRYDquJPnulvpAgN12KMp6hQTdWEcbimlxrenrxAnzSQuDAezNUs9jrGvRTYOjFkDL+zStAjstKZ1KFvpAg3/X2fh+5Bre+4Bi/i2BZph1pMNNtK02YG/T2AR/V9ui8ZEcZY1abp3cg6bAlToDVMeCnOjl6fkcJQObl6i3OXbYK6NkLQe+428dbOKLR5vZTmJoEA0dvoavNd9E+4GcodR5o4YSaTkBRjlfTHYP1B8AJvHBIOvYPAFuEEJuAh4AbpZS90zyWMoMinuEAK3VS+5lyatAQ+uBwRUlwPrc+8W5SyuQCrHn5qeyUxQSaN85EtWZES6+HbHqPenMH+nxfeYUl9InUhOli1tznoyJpAKwusI4/ps5iMlCd42Q3JQlzfm39fiqTolkgjxJAFqbZcCaZ2E2xPiG2zz3zFZym9gE/lUlufcF19CQlAHtECSBn/f9HHYMBwpqk3BGESOCoLXS1efqDz91EW5ETJEhWlOPZdLMIVkopiw5Nxy6lfFhKuSC67gQp5b9jU11lpkS8bv2XSbRgAZTmZdMssxJq8LuiHEloUB9fZHEefVzSaLV5LrZpZSR1b0+YeXg8fe2YiBz15m7YgnwXWyIlaK2JEUQ29XopN3VDasmEtl9UkMK7vjwYbAXv7H8e2N7vp8zUDcIAKeMn8BVCMD/XxdveaDA9y1sh/aEIbm+IYpNbX3GUz2hBqo0Um1m/fjDru3k29+otbGVmt75iAl0EAd4bygCjZdafn6Iosc0iqCSyQL/+7ySSXIA+DqtOKyLcpp6oKYkv7OkBQIwzr9BYspxW9psrsUQ80Df7xyNKKaG/RV+YYIC1MD+FLVoZomsXhHwzWLvYaO7zkS87IbV4QtsvLEzhvcBwqu/ZfQMb0SSdgwEK6ARXIRjNR92nNt/FS33Z+sIsb6Vrceufr3yiCVUmEEAuLkzh1S67nvK8bfNMV3Fahs+vQAyf3/jfwQyHlRyXlR0dPn0cVtumGa6hoijTpQIsBU2TmANufcE28XmwQB8cXicLMbn3QTgQ+8opyrHk1QOs8SZuHYsQglD2In0hAW5+uoYCZGud+sIExmCB3oK1TStDyMis76LkD0XoHPSTEWqDtIm3YG3XSvWF1k0zVrdYaHX7iGiSrPDEz29+npOGoIuILRNmeSvk/i597FWe1gb2bLAePavnwoIUdnV4iOQtgZbZPRayuU8PsDICzfqK9PKj7lOb59IzCeYv0z+fCdJSrijHKxVgKQz4Q2QzsXTGh6rMdrBbFmGQ4YSZP0ZRjsTgj34PbOmT3jelZDFBaSTcsim2lZoBLX0+ykS7vjCBmzuA4vRk9pmr9IVZfoPe3OcjnUHMmn/CXQTn5ToZMKTQb8mD1tl9g97QowcgKf6WCQdYC/JTAEGXa8GsP7993UMApHoPTPjzubgghVBE0uNaoLdAzuJMe819XnJcVkzu/frfmgk82KzNd7Gnc4hgzlIIDEDv3pmvqKIoU6YCLIU+b4gs4SZocoIleVL72ixGBpzDmQTVhMNKYrP4e9AwTLqrLMCCokzqZBG+xtl98wp6AFIq2gkn50yodQDAYBCk5ZXRL1yzvpWuqc9LuWjVFyZ4g55kNlKd46TOWDnrW0Aauj3Y8emTDKeVTWifmlwnVpOBOmMVdNVBYHCGazl1+7s9ZNgtmPobIKNiQvssKtTHD+80VukTRs/i+bCa+3wUpiXrGQ8neH5LClOJaJI9psR4yKEoxzsVYCl0DvjJEX2EkrOntL81t4Ywxlk/cFpRxiOlxBHoYMicCQbjpPdfVJDCNq0Mc9c20KcEnLX2dXkoM7QjJnhzN2xhQSpbtVLkLO9Ct7dziGpDdIxZ9rwJ77eoIIU3/SXgboToeLzZaG+Xh0WWaACZXTuhfcxGAwvyXbzhKwLkrB6ntLfLw/x0oU/CO8EAuSDVRrrdwlve6Ji7WRwk7+0aoiQjGmClTzDAKkoF4J3BLDDZZvX5KYqiAiwFaO33kS3ciKNMVnkkFbnp7NdyVSZBJaH1eUPkyG78yVP7HhSm2dhrqiAp5Ib+5thWLsZ2tvZTZWjDmFU5qf0W5LvYHCnV02CH/DNTuRjY2TbIYmsbWByQUjTh/RYVpvB2INrlbha3EOxqH+A0VzRBQvb8Ce+3uDCVJ7ujGetm8Q36/m4PJzuiXVhzFk5oHyEECwtSeLXTpne7m6XdIHs9QToGAixNj+gZK3MWTGi/HFcSua4kNrUOQd6SWf35VBRFBVgK0Or2k0MflrSJDXY/VHWOkzpZRLhdBVhK4mp1+8gTPUScU/seCCEIZUVvBmdx6wBAT9t+UhmAnEWT2m9hQQpbtXKEFp7ViS7qOgZYbG6BrBoQYsL7LSpIYatWhkRAy4YZrOHUSSnZ1T7IsqQ2MCdPeIwZwJKiFFpDdoLOolkbgHQO+ukaDLDUEn1IkTuxAAv0cVi7O4eI5C2btYlKdrUPAIw6v4l/BxcXprCluR8KTtD/xkTCM1FFRVFiQAVYCq19Q+QY+jCljD+Z45FU5Tio0wqxDDRC0BPj2inKsdHS5yVP9GJKm3iLx6EcJUuJSEFkFie68ATCpAxEx0vmLZ7UvhVZdnYbo12aZukNejCsUd8xQEVoj55xbRJqcp34DXZ6bCWz9vwae7y4vSGqw7v1m3PDxP8bX1yYCkC7Y/6sbcHadMANQLXcp098P8FpBEBvgYxokk7XAn1McNA7M5Wchu0teoBVHo4mqcid+HdwSVEq+7s9eDMWQdg36ydUVpTjmQqwFALdjVgIT7gv+KEqshzsGZ5hvqsuhjVTlGOnr6uVJBEiOXNi8yaNZX5xDvWyAG/j+hjWLLZ2tg2wUOzXW2km2P1qmMloICO/gn6RMmtv0Le29FMcacKqeaFwxaT2TTIbqcl1slNEE13MwrF07zT0YiFExsDOSZ9fWYYdp9XEdiqj48y6Z6iWU7exyY3ZKMjo3aif3yRbIAF2igqQEWjfMlPVnLINjX0UpdtwdG7QWx/tE58SYkk0QN5hiHbtVd0EFWXWUgGWgmE43Wtm1ZT2TzIb8aRU6wsqk6CSoLxt+sOB5NypfQ8g2sVMlmPu2Dwrb84B3trbw0qxi0j2ArA6Jr3/kqI0NkQqkM2zM4h8Z38vKwzRBz2TDEBAv4ZrfcXg6YSBlhjXbvre3d/LKbYmDFoQilZOal+DQbC4KIXXPNGJe2fhDfp7jX2sygVD924oOWVS++alJJHpsPC6J/rAb5adn5SS9Y19LC9OgwNvQcmpk9p/OFPiOncKWFNmbSuroigqwDru+YIR7EP79YWMyQ14H82eW0EAi8okqCSsSKfe3UZk1Uy5jOL0ZOqMlSQFe2flzTnAW3taOdFYj6n8A1Paf2lxKu9FKhA9u8Hnjm3lYuDt/T2cZ9uhJ7eYYAa60RYVpvC2v1RfmIWtdO829PKxlN0gDFB6+qT3X1yYytPdudFxZrPr/Ab8ITYecHNJanROxUkGIEIIPUBuN4Ezf9ad3672QbqHApyX1aNPaj7JADLFZqY8087mlkHIV4kuFGU2UwHWcW5P5yAVtBAyO8GeNeVyqnNT2aPlE1GZBJUElTywj5CwQOrUuwgKIfBlLtEXZuHNjycQxtL8FlaCUDbFAKsolU1yuIvS7LqBHQqEeXdvByu0rVBx5qS6lw1bVpTGTlmMJkyz7vx2dwzS0OPlFG0DFJwIyZOfEHtJYQr9WhL+1IpZd36v7OokGNE4Q27QMwEWLp90GcuK06jvGiKUu2TWnd+aOj3z46nau/qKqnMmXcaSolQ2N7kh/wRo3zars3kqyvFMBVjHuV3tgywx7CWcs2RKNyPDqnKc1MlClapdSUhub5CC0AH67aVTmgNrNFfpEkLSSKR5dt3cAbxR381ZrCditEH56imVUZBqo9kWnVuqeXZl2nt5VycnaZtI0jww74IplVGd48BosdGeVDHrMgk+vqmFUkMnmQPboeYjUypjONFFi22+fn6zqCvrc9vbKXAI0ltfgepzp/RdXFacipTQkrwAeurB2zsDNZ2aJza3sqQwBcfep6BgOThzJl3GksIUOgcD9KUvAS0E7VtnoKaKokyXCrCOc9saO5gnmrCWTK4v/6Gqc5zs1oowe9rB1xej2inKsbG5yc3i4QcN0zSvKIfdshBvw+wbo/TkpkYuNL2NqD4HzLYplSGEoLK4gEZDIbTMrnN8aEMzV1rXIpNSofzMKZVhMhpYXJjCRlkJLRtBi8S2klMkpeTxTa18NTMa9C28dErl6OOUrHorpKdLT3YxCwwFwryyq4svFexG+Pth8SemVM6SolSEgPe0aCvrLAmSd7QOsLNtgM9UefSgaIrntzg64fCm4fNrfidGNVQUJZZUgHWcG9jzFmYRwVA0+cHgo5Vl2qkfziTYqVLHKomlfvc20sUQqVWrpl3WooIUtmjlWDpnV6KL7qEAhl1PksYAhhOumlZZS4tSeTdUjta8ftac47aWfvbv2caZ8h3E8uvAZJlyWcuK03hlqASCg7MmFfYb9T1097n5iP9JqD4P0iY+/9VoQgiWFKbw/EC0K2zTuzGs5dQ9tL4JXyjMRd5H9ex6ZWdMqRxXkpnKLAcv9Bfo49SaZkcAcs/bjViMBs4deAhMNlj08SmVU5vnwmQQvNtjgZRiaJ4d109RlIOpAOs41uL2MW9oHRFhgrLJD5YezWIy4EuLJgdQiS6UBBPYvw6ApJLpPWgAKElPZo+xEmuoH/oapl1erPxj7V5uFI8STKuEirOmVdbSojQ2aRUYvN2zpgXkz2v2cqPlOYTBCCs/P62ylhWl8m4k2kIwS27Q/7SmnmuT38Qa7INTvjKtspYWpfJSbybSbJ8VLSCBcIS/vb6f63L3Y+/aBKfdNK2uusuKU1nX7EfmLJgVAUjHgJ8H1zfzuUUC646HYfn1Uxo/B3rW3nl5TjY3u/UxarMkQFYU5WDTCrCEEDcLIVqEEJuiPx8Z9dp3hBD1Qog6IcS506+qEmtPbmrhHMN6ggWrwOqcdnlpuWV4sKlU7UpCCYY1cnrewWd0TnpeqLEYDAJvVnTy0FmS6KK5z8uBNx5gnqEJy5nfnvY4s0WFKWwc6aIU/26CezoG2bV9A5cbXkIsuRxcU5s0fdjS4lQaZQ4+c+qsuEF/pa6TbXsP8BXTo1C4ctLZ5w51QkkaEYy40xbNigDy7rcaaXN7uMn4IDjzYOmnplXesuI0+rwhBjOX6V0ENS1GNZ2aXz5Xh0TyH9p9+nfvlC9Pq7wlhalsaepHK1wBA80w0BqjmiqKEiuxaMH6jZRyafTnaQAhRC1wBbAAOA/4kxBiev+jKzElpWT3uy9QbmjHduL0/jMbVp3rYpdWqDIJKgnljfouTmIrg7mrph14DHMVLyEoTURmSZro3zy5gW8b7iaUXg0LPzbt8lJsZkIZ8wgKS9zHuEQ0ybce2sz/WO7AYLHBWT+cdpnZziQK05LZY5kf9wCkzxPku49s5SfOR7CFeuEjv5hWQiLQxykZBOy2zIeObRD0xqi2k9fU6+WWF3bz33lv4OrZDGf/F5is0ypzWXEqALvN8yAwENdunm/Wd/PQhmZ+urAd++5H4dSvTfsBwJKiVAYDYVocC/QVs+AhgKIoB5upLoIXA/dJKQNSyv1APTC9LApKTK3Z3cV5Aw8QMLtgwUdjUmZ1joM6rRDZsWPWjMtQlKN57921FIpu0pZ8OGZlLijOZIcsxt8Y/wH2z25rY0Xdr8gTvZgv+VPMgshFxVnskOVxn3D4j6/Uc1Lr3ZzENgwfunlKmdnGsqw4jTf85dCzJ26Z6DRN8vUHN3OiZy0fDT2DOOlGyF827XIdVhPVOU7W+stAC8etpTUY1vjSv95joWE/Vwz+A6rOhUWXTbvcqmwndouRtf7oPGhxCkC6BgN89f5NrMzwc1nLzyBrHnzgG9Mu94TiNADWeQvBaFUBlqLMQrEIsL4khNgihLhdCJEWXVcANI3apjm67jBCiBuEEOuFEOu7urpiUB3laEIRjWf//SBnG9/DeMqXwGKPSblVOU52yyJMgT49O5WizHLBsEby3qfRMGCuvShm5S4sSGGrVo65c0tcuydta+nnnQd/xRWmNchTvgLTTGYz2tLiVN4Nl0PbZggHY1buZDy7rY2NL93Pt8wPIBdcoo9tiZFlRam86ivTF+IURP5pTT0ddW9zi/Uv+rxXH7o5ZmWfUJLGY935+kIcxmFpmuTbD2+hvXk/d9p+iyE5Ey7+w7Rb5wCMBsGSolRe7LDr82nF4fy8wTA3/nMDYf8gd9p/hyEwBJfdPu3WOYCKLDtpyWbeOTAEeUvUOCxFmYWOGmAJIV4UQmwb4+di4M9ABbAUaAN+PdkKSCn/KqVcLqVcnpU19YlulYn727Pv8OXBW/AmF2I6dXp9wUcrzUhmvxjOJKi6CSqz39r6Ls7S1tGftRwcsfv7U5Zhp85QiSU8BL37YlbuZOzuGOTOv/8f3xW34y/9IMYPTb/r3GhLC1PZpFUiIgHo3B7TsidiTV0n/7rvn9xq+S3kLkJcFJub82HLilPZrJWjCWNcbtDvfLOBp154gQdsP8PsSIdP3B2Tm/NhJxSn0eRPJphSdsxv0COa5IdPbOPNjVt4LvXn2CJDcMU94MiO2TGWFaeys32ISMHyYx4g+0MRbvzne+w80M4Lubdi69oCH/sr5CyISflCCE4sSWNDYx8UrdRbIOP0kENRlLEdNcCSUn5ISrlwjJ/HpZQdUsqIlFID/sb73QBbYDhnNwCF0XVKnD30xg7+f3v3HR5XcS5+/Dtne9Nq1bslW7Lcux2agTj0zoUk5CYQUm9+yQ256SGNBAIJIRhCIHAT4GJMaMYYF6oNBtxwMBhc5CYXdWnVtknaPr8/1e8DJgAAJfZJREFUdu04xlXelWR5Ps+jR1uOzow8ntV5z8y8M2P9LeRrPqxfegqM1pSdW6/TCGXtzySoEl0oQ98/33+Paq0Rx9STX5d0ME0TBAcx0cXu9gBP/u1P/F7eT7RwBuYvzEvZ1MD9xhQ6qNGqEk8G+AJ22aZmFs1/kMf0f0CfMxLtxkVgsqe0jHFFGcR0VtyWUQO6Disel/zxte0sW7qQ5y2/x2rPQNy8DJyHnQTSb/vXKTXZJyYCyAGa1h2KxvjuMx+yZv16XnXejTPugRtfhKIpKS1naqmLWFzSYp+QWIPV50np+Y/E2xvhpsf+Sc2uWlblzyWnfT1c8wiM7d/G10cyfUQWezp68OdOgVgI2tSGw4oylJxsFsGDV2peC2xJPl4C3CCEMAkhKoAqYPBTFZ3GYnHJ/y19i7Gv38B0bRfi2kdSMpf/UDn5JXjIUCNYypAXisbIqn2JOBr6Cdek/PzOERPpk0biA5wEYuW2Vl576Pv8LnY/4aJZmG9elJIsoYcy6DSyikbRqWVD/XspP//hxOKSuW9sZ9tzt3Gf/gFEyXR0X30VbNkpL8uk1zG+OIOPGZ3MRJf+DYeDkRi3PLsR96rHecZ8F/bMPMTNL4OrPOVljcyxkWk1JDas7WkfkC0F3L4gNz72T3xbl/Oa7Te4dH2Im15KjMKk2JRkAPmRTN4EGIBNsWuafVz54Gr6Gj7inay7yA7UJkbmJn8+5WXNKE+syNgYH514QU0TVJQh5WTXYP1RCLFZCLEJ+DTwfQAp5VbgeaAGeA34jpQy/X+dlMP6aHcT/7jnFj634QYq9J3EPv8M+knXpaWsynwH2+IlxFUmQWWIW7XDzWW8i6fg7JPO6nU4E0qz2CrLCdYNzOiOlJK/r/iY0NNf4js8T8/Yz2H9yuKUj+wcbEqZi7XRamTdmrSPgHT1hPnvR1cwddU3+bHheeT469B/eXG/9xM6HlNLXawIjIBwIO03jba1+PjcX1ZwXs1t/Mnwv+jKz0J8YwVkVaSlPCEEU0szef3AhsPpvQf6zs52rrx/JXOa/pf5xj9gyiqFb6xM7OWUBjl2E2VZVpb7ykDTQ93atJSz34sfNnLtX1dzaehVFpt/jU2Lws3LYMzlaSlvYrETg06wpt0IzlKoT+/vpyjKidGfzA9LKW88ynt3AneezPmV/ovG4qzdsIHOVY9xjv8VpggfLYVzKLjhAURm6bFP0E+VeYlMgrPcyQuuFK6JUJRU2r7+dS4QHUTP+FJazj+x2MmqeAVT2t9NjH6keIrewdr9IR57+mn+s+lOSnSdhC+4E9vZ30l7/5talsm6dWO40r8WuvdC1si0lLNyu5tFC+bx6+hfyTP4kZfORTfjqwPy+/1+TTWYgb2roGBiysuIxyWPr9nLK6+/wgP6hxihb4Hzfoo49yegO6k/0cc0rczFfTtyiGdmou19Ny0jLZFYnHvf2MnL767lCesjjNV2wNQb4ZI/pDX4h0T7rd3diSyejtjzDnwm9WV094S5bclWVn+8nXmZT3FGcHViI+9r/5bSdZ2HMht0TCh28sG+7sS+aLvfUn9zFWUISe+ntzKgfH1htn24hu6PX6bQ/Q7nspMYGg05Z2O77BcUjjoz7XWoynOwVpaii/SAtwEyy9JepnJ6icUl0WRmPoFACBAkMoeJ47y4CEZiFNW9REhnwTTuyrTUc2SOncf0Vehjr0PHTsgbm5Zylm9uYN+Lv+HH8YX02IoQN7yCcUT6+zrAmSOzuT8+JvFk35qUB1iBUJR7Fv+TcZvu5gH92wSzqtB99sW0TG8+nE9VZNFMDh5LGZl7VsKZ307p+Zs8ffxqwfvMqvsbL+hfRtrzEdctgYpzU1rOkZw5Kpt7l2u0ZX+Kwj0rU36BvrnRy08XfMjMjkWssDyP0WCE/3gCxl+bsjKO5syR2Sz+qJmuSWeQ/eFfIOgFszNl539jays/X7SFM4PvssY+D3OkFz5zW2KvKy1du+D8y4wRLuatqyMy/QwMm55LJNTJHpX2chVFOTYVYJ2i4nFJfaub5po1hPe9h7VtI6PC2/iU8ANQZx7Drsr/oeIz36DcVTJg9SrPsbJLJstzb1MBlgIk7mL7+iL4ekMEfN30BTz0BbyEejxEerxEgz7ifX5kyA8hPyLSA7EIIh5Gi0f+9SWjCBknikYUfeK71BNDowcLfToHIb2DiDGDoNFFxFaIMauM3CwXhU4LRZkWijLN7Gx0cyHv0TXiUgpTtE3BoTRNJAKBZhL71KQ4wOrqCfPEghe5ZM9dXKjV4R3zOZzX3gvmjJSWczTZdhOmgrH4vE4y6tbAtCNOajhhK7e7WbrwSX4UfogCvYfoWd/HPOfWlGbSO5a8DDPV+Q7ej07mwn1vJTK16Y0nfd5oLM4Ta/fx9vIl/E48Qrm+BTnty2gX3ZHSAOBYJpdmYjfpeY+JXOt7HTprIafqpM8bjMS4f8Uu3l79DvcYH2WiYSeMvACuuB/SOIPiUOdU5QCwXk7gMhmHunVQfclJn7e7J8zty2pYvXEr9zn+wWz9GsibCtc8nLYbKYczszyLv6/ayzYqmATQtlUFWMoRxeKSYCRGMBIjFIki41GQcUAipExO85bo9RpWix2LyYhOUyOi/aUCrKEuHsPv3kP73q34GrcRce/A7N1LbqiBctFJefKwRl0pLfnn0105m9JZVzEiM/VrSo6HSa8j6BoNPSQCrNEXD0o9lPSJxuJ4esN4ujvwd7vp9XQQ9LUTDXQS6+lC9HWhC3kwhD1YIl5scR9O6SdT9FAheo+rjDBGokJPTDMQFwZihsR3qekRQkMjhiZjaPEoQsbQyQiGWC+GeBBiQF/yyws0g1daaZK57JGFrJdFWAlxob4P01k3pfFfCkoqJ+NuysS58y1M01JTlpSSJe/vwvvK7XxPLqPPlE3kmqdwjk/PSNyxnDM6l3fXjePyXcsRKZgK2eYL8udF73JG7Vzm6tbR56pC++wLaMXTU1TjE3NOVQ6L1o/mQt3SRLa98nNO6nybG738buFarmh/lCf1bxLPKIFrFiNGnp+aCp8Ag07jjJHZPNsykmsBdq886QBr1a527njpIy73Ps0y4xI0sxMufTSxgfAAT18rcVkpz7byUkcml+nNiWl0JxFgxeOSFz5o5O5XtnBV5DVW2xZgjEfgM7+Gs76X9imdhzpzVDZ6TbC83cUkoSUCrBTu56cMDcFIjK6eMN5AD73eTkKBbkKBbsI93cR7vcSDHujzooV96MM+DFE/5lgAQzyIQYYxyVDiizAWQtgIky0ixyw3LHX0YSQkjEQw0KuzE9RnEjG5iJtdCFs2mrMIW14FuSWjyMgfmfZpv6cSFWANERF/B217N+Np2E7EvQND924yeuvIjzbjIML+HGA+aaXVUEJr1kzcuVVkjJxJ0fhzKHFkM3DjVEdXkF+Ae28OeSpV+ylBSokvGKWzqwtfRzM93a2EPG1E/W3IQDu6vg7MoS6s0W4csW4ypRcXAXLEkTfQDQg7PboMgiYnEWMevaZqAuZMhMWFZs3EYM3AZHNitmVicWRisTsRJkci253RgVGnp1/jBNEQBH0Q9EDADb4m8DZi8zRS3rGPis5dXB5Yj0DSay3COuq8/v6zHZdZI7NZtXICV+55O7Hh8ElOG6rv7OWZZ5/gC21zKdPa8Yz/EplX3gmWzJTUtz9mV+by9KqZXNG7DurX9TsAicUlT6/bTdMbf+HnPIdZHyM6+2dYzv3BgI5aHeqcqhxuWT2WuF6HtuuNfv9+PaEo976+Hf/6J3nY8AwufQA+9V/o5/xqUC9KZlflcNu2NiJ5IzDseh0+9c1+nafNF+T2ZTX4t7zGo6b5lOmbYeLn4eLfpyXL4/GaXZXLCx80Eh37afQ1i+GS3/frJsC2Fh+/emkL4foNLLDNY6SshRHnw2X3Qk5l6it+HBxmA9NHuFi+y8cPs0ZC25Zj/5AyqKKxOJ6+CF2+nsQNyu62xA1KXzvx3g603k50wW6M4W5sUQ+2mBcXPlwEKBJH3+ssio4eYaNPZyessxExWIjpnMR0Fnr0ZgJ6C+jNSIMFobcgNT1SaIBIfgeJIBaPISNBZKQPGQkhon0QDaIP+zBFPDh9O8nwenHSg078e3Ijv7DjMRbR4yiHnCpsRWPJqZiAJb86pdsCnQpUgDWA4uEgnQ3b6KyvIdiyA9FZiy2QGI1y4qeExIZhYamjSRTQZiplT+ZZkF2FtbCa3PIJlJWWMVqX/rndJ6Mqz8622mJy3TWoweXB0xuO4u7sprutnt7OJiKeZuL+Fgh0oA92Yg51Yot2kxH3kI2PkSJ02PP0YMWvy6TH4CJkr6DFnE2LNRudLRuDIxtzRg52Vx52Vy5Gey6Yndh1egblklFvSiwst+f+2514PQd92EX6oHM3Vosr7eskJhY7WSAmcV14NbRu6vdeP+FonOfeWo9r9e38VFuL11FO/Pp5ZFacndoK98OMche36KYREUYM25b2KwD5qMHD0wtf4OauB7hRq6O37NPor5mbtqQZJ+KsUdkIcwbbrdMZt3URXPDbExqJkVLy8uYWnlv6KreEHmGmYSfRopmIK+dC4aQ01vz4XDy+gN8s3cpH9nOZuecZ6O06ocyMkVic+evqeH75Kn4k53GBcQNx1yi4bCFUXpDGmh+fyycVMv+9OjY6L2Tmzldh3yo4gdHCQCjK/ct3snDtFm41LuCzpuVgzodL/i+xlmyQk0pcMqGA3y6tITC+GnvbwG/4rUBfOEa7P0SHx4OvvYne7mYinhbi/jZ0ve2YQx3Ywp3YYh4y4j6yhY/RR5nNERA2enRO+kyZhE0leMxZeCwudFYXOmsmRpsLo92FxZGFJSMLg80FZid6gxWnEAzEJON4XOLpCdLZWk93yx4CrXsId9ej8zXi6GuiuH0jxe3L0bb/KwDr1OXisZYTcVViyh+Nq3QszpIxiMyytCaBGiwqwEoxGY/T2bqPjn1b6WnejuzYhdm7l6xQPfmxNnKFZH9eIbd00WIooSXjPKKuURjzq3GVjqW4YiwVdgvpSc6bfpV5drbHS5jdviIlU4aUfxeKxujo6qa7tR5/RyOh7iZi3la0QCuGoBtbqB1ntIscuigXfQemke4XRYdHOOnRu+izZuExV9JtzUFz5GLIyMfiKsCRXURGdiE6ey42g5n0rFIaJAYLFEwYkKLMBh2y4nyo+yvx2rfQ+hFgrdrWRM1Ld/PF4HOYdDH8n/ohzs/8BAzmVFe3X8wGHeeMK2f1jsmcX7MYcdGdxz1Vyu0L8vDS1Yzd9gB/1L9Dr7UAedWTWMdeNegXrvuZ9DqumFzEExtn8Eftr4kL9ONMQrGlyct9i9cyu/lxntCvIG7JhIsfRD/liwOSBOF4FDjNnFOZw0PuqTwRnw8fP3vcyTxW7nBzz9KNXOx5liX6peiNBjjvN2hnfHtQRx0PNqs8iyKnmb+3jmam0QGbFhxXgBWPS17c2MTc17ZwQe8rrLK8hC3uR3zq/8H5tw7oWsejuXxiIbcvq+HjcAlnd78CoYCappUCUkr8oSitnj7cHe0E3HVEuhuJ+VoQPW4Mve1Ywh3YI11kSQ+5wkOZ6PvEeeII/JqTgD6LoCWLiHkELdZsWq056B25mJy5WDPzsWflY3TkgiULu944ODcoT4CmCbIcFrIc1VBV/Yn3g5EYtW2dtO2rIdC4jXjHTqy+PeT46in3bcFR3wfJrdsi6OkyFdPrKEe6RmHIqyQjrxxHXhlaZgmYM4fM34MToQKsfgr2BmjcvYXu+i2EW3dg8tSS2VtHUbSRHBEiJ3lcjzTRrCumwTKW2ozLELlV2IvGklc+jsK8PPKG4QLC0fkO1soStFgIuvYO2vSJU1E4Gqety0NH81787n2EOuqR3kYMPS3Ygy24ou3kyQ6KRR/Fh/xsCCMeXRZ+Qw59jtHssxWgZeRjzCzGml2MI7cUR04JequLHCEO/B9V0uvsKRPYtLeCUR8vxHbuD4775+o7e3lhwZNc3Xw/s7UW2ovnYL9+LoY07Yt0Mq6bXsLTm8/h0/77YPvSY2aJC0ZizH+nhsiq+/gxyzAa4oRnfRfrnJ8NyYvD/5hazBfXz+J2x9OY1z54zACrzRfkwTc24/jo7/xZvwSrIQzTv4Jhzi/Tum9Xf103rYT/ea4Db8k0nOsfhplfP2oyj11tfu5atoX8PS8wz7iIXH0ncsL1iIvugIyiAaz5sWma4JqpxTzyzm68Uy7HuWVhYs2UI/+IP7Nudye/W7aVoraVLLA8R7GhCUpnw8V3DYlRx4PlZZg5tyqXxc0uzkZC+/a07S02XOyfFt/i6aXD3UzAXU+ws4GYtxl9TzPm3jYyIm7yZCfFoovRh5nd0Sus+PXZ9DmyiVom0GbLoyOjAJOrEHt2MfbsInQZBWjWHJw6/YCMKg0lZoOO0SV5jC7JA84/8Ho8Lmnx9rGlvo7uhhpCbTvRuveQ0VNHkXs35e1rMe369/VhQWHCo8/j49wrKb78Z0woPjX+NVWAdQzBvh7qtm3Av/dD4u7tmH17yAnWURB3U5mcexqXgjYtF7dpBB9nTYfsKiyF1eSUj6eguIIq/ek1gjM638Eekcwe6K5RAdZBgpEYDW2ddDTspM9dS7xzLzpfPZa+VpzhNnLj7ZQKH4fm2fIIJ15DHj0Z5eyxn4WWUYQhsxBrdgmZeaVk5JZismSSLwRHvmxQBsOcsXn8+cXz+FXnE9D0IRRPO+rxvmCEF195gxEf3cMPtI14rSVErn6W3LGXDkyF+2F2ZQ53555Hve95St78HVr1ZYcdwQhFYyxcv4vWt/7GjdEXyBVeeqquQn/p7WnbUDcVpo9wMW1kIX9vuYzv7noaalccdvpbRyDEo29uJbxhHt/WllCo7yJSeQnaxXdA7uhBqPnxuXRiAX98zcy9wau5PXAbrHsQZn/yZkCt289Db25HblnErw0vUmFoIV48Ey58CjHirEGo+fH52jkVzF9Xx93+S7gztgCx4ja49pFPHPdBXTd/eXMnonY5fzAtYaJxB9I1Gi58LpGwaYjeRf/CrFLueKowsV9b88bTPsCSUtLdG6G+M4C7pR5/y24infvQvA3Y+hpxhVspkm4qRBdjDkn2EEPDq8+hx55H2DaBVkcRhqwSrNmlOHLLMGUVgy0Pq9HK6bWiKDU0TVDsslLsGguT/z3jprcvwq4OP11tDQTc+wh1NSC9TRh7W3CE2nivOcaZnj4VYA0H65+/h+lb76I6uZi/Txpp0pfQbB9PnetqTAVjyCqbQOGocRRaHAxO3r6hx6jXMBWOJd4u0Nq2nHZZjby9YZob9tLVuJM+925k115MgXoyg00UxNuoEh4OztPVh5lOfR49tgJabBNodZZiyi7FnldOVtFITFmlZBosZA7WL6SclAyzgdD4z+HdtgDz8t9h+vLCw16o9YVjvPTmu9jX38dN8l2Ceiv+M3+B8/xbhsx0wCPRNMGPLxvPL+d9iSe77kYu/m/ENX8FnQFIpJR/bfV6et9/imsjL5Mt/HjzZ8GVd2ErnTnItT82IQS/vGIs1//lIq61raZ44TcQ//kclM5CSsnWZh9vvPMu1u0L+YZYQbbOT7BwJlz8FIbywV8ndywmvY5fXTGO//ePPq7PO4+JK+9EOAph8g3EJKyu7eCtNeuw7V7GT3XLKTB0Ec0eAxfORau+dMgGHvtl2018Z04lf3h1O1dV3swZHz8GmSPg3B8TkoLlNW0sWbOZgsaX+bnhbUYb65COEpg9FzHtpgP/j4eq80bn8d9aLj5jHhn7VsOsbwx2ldIuGInR0NVLU0c3nsYdhN21aN27MQcayQw1UyjdjBEdTDkkgPLpXPjthYRsk2l0lmDIKsGeO4KMvBHoM0vQ2fPI0nQMvXHm4c9pMeAszYLSLGDyJ95Pb0qq1BNSymMfNUBmzJghN2zYMNjVOGDnh+/Q+cEizKVTyamaQeGIavR6FZMej98u3cpnN/wnYyrK0G5eOtjVSblwNE59awcte7cQaNqG7NiFzb+H3FA9I2QztoOmFMQRdGq5eM3FhBylaFnlmPNG4SyuIrNwNJo9Z8hfoCgnp76zl3/c/xNu1c0nesEd6M+55cB7bk8Pb69YQs7Wxzk//j4xoccz6avkXvKzITmd7Gjufm07YtW9/MTwPB5zMXUZM+juCZET2MEEsReAzqLzybr4p0N6xONIXvywkQcWvM7Tpt9TRDtNxpG0RGwUxFsoER3E0egrn4Pt0z+CAdrsOZXmvrGDx9/axHzLXKbKGtp1+TTEssiJd1CmtQMQLpuN8ZzvQuWFQ2Yd2fGIxyU/WbiJFz+o5xH7o1wUfRuv5qQ2VkiG9DNKa0ZDEs+fhHbGf8Gkzw/5wOpgV/5lNT/pvZfZ2mb44c5Tqm2OREpJuz9EbZsHd/0uepq3E+/cjdW/l9xwEyO1ForoRDsok51fy8BnLiJsL0G4RmDJHYmzcBTm3IrEvpynWSY7Jf2EEB9IKT8xbKwCLCUtFn/UROcLP+Bm09totzakZHPOwdAbjrK3sZWOPR8SatyMrmsXGT17KYo2Uiw6DhwXR9Cpy6PbOoKQcxS63CocRVXklFZjySkfMgu+lcHz/D/34lj6DS7VvU+DYzJu8yiCvg6qgx+RI3z0aA4842+i+KLvHXV9yFAmpWTBhkY2vfUMFwSWMUnbg9T0+O0V2MZeSO5ZXzrlNx//oK6b+Ss3MbppIbPiH5NpiKJ3lZA/7jwsU647Zdtuv9W7Opi/djeVzUuYFf+YUoMPi6uQ3PHnoR9zyZDI7Nhf8bhk6aZmnn+/nvKOd5jDPxlp6MKRmUNW5Sy0MZdCwcTBrma/3PlyDd3rnuJP+ofg629ByeDsG9cf4Wicus4edrsDuBtrCTdvxti1nZzALkbJekaKFgwiduD4Ps2G1zqCSOZIdLmV2AvH4CiuRmSPGtCNuhUFVIClDDC3P8itv/8jjxnvhRsXwag5g12lo4rG4uxr91FXuxV/3UcI91ay/Dspj+6jNHnnFqAHC+2mMnodFZAzGnvxGPIqJmLOr0pkp1OUo1hZ08SeV+7nTP/rFNJJny4DX9Z4sqZfR970q8A4fPI1hqIxDJqGNgwT+SjKUPNBXRdfeXg5H1m+jXbmt+GiOwa7Sp8gpaTZG2RHq4/dDc0E6jeha68hq6eWalFPtWgk46D05d3GAgLOakTeWOzFY3AWj0HkVIE1W836UIaMIwVYar6bkhZ5DjOegrPp63oIS82SIRVgeXsj7KxroH33h4SbNmHp2k5BsJYqGqlMTu2LoeE2luHPnsrO/PHYR0whd9Q0bK5SbOqDXemnT48r5tPj7kHKPwLgEoKhlXMtdUynWXIfRRlMU0td2J05fChmMOPjZ2DOrwZ15kggFGVHq58dzZ101tUQb9mC1buDilgdY7QG5hw0AyRotBNwjiaSfz3BskmYiydB3lhc5gxcg/YbKMrJUQGWkjYXTi7ntRXTuWrzC+guugNMjgEtPx6X7Gv30rBrC766j9DcW3H6d1IR28tM0XngOL+WQUdGFU05Z2Etm0Je5XQMBWMpNJhV4hIlLYQK0hVFSSFNE3z5rHL+/Pr5zDe+Bxvnw8yvpb3ceFxS39XLtmYvDfV76G3chKlzG/nBPYwRDVwnmjCJKAAxdPicFcRzzyJYNhlz8UTIH485oxiz+kxUhhkVYClpc/30Er61/BKuDa+B9f8L5/4obWV5+yLs3rePjt0fEmregqVrGwV9u6mkgZHJLEJRdLiNZQRyZrG7cALZI6fhrJiCw1GIQ324K4qiKKewL54xgsdXz2CzHM+Et36HqL4MMlJ3m9AfjLCj1c+uhla66zZB21YyfDuplHWcIRq4VAT+dawln1BWNaHiKzCWTUbkj0eXMxrXKboeW1FO1EmtwRJCPAfs38I5E/BIKacIIcqBbcCO5HvvSSm/dazzqTVYw88dy2qYtf4WLjBuRvf1N6Dwk6k3T0Q0FqeutZPm2o301G9Ca6/BFailPLaPXOE9cJxXc9JhG000ZxzWssnkVU7HVDhWJZtQFEVRhq03t7Vx1/zFvGL6FXpXCbovLwZnyQmdoy8cY09HgL2tnXj2bSbUUoO5ewcFoX1Uaw2UHDS9L6RZ8WdUIQrG4yibjLFoIuSNPeUyoCpKf6U9yYUQ4l7AK6W8PRlgLZNSTjiRc6gAa/gJhKJ87cFlPOD/Ptn6ELor70NMvB60o6/P8PaGaajbTVdDDcHWXWhdu7EF6iiM1FFG24G0rCGMtJnK6XFVYyiYQNbIqbgqpiBO8UxeiqIoitIfT6+vZ/HiBTxm/BNGDdxjb8Iy8SosRWOIm5z0hWP0hqO0dXnpbm/G19lCtKsOuusw++vIDjdTJtyUCfeBv7URYcBrHUE0ewy2kgnYSyciCiaAs2xYpIRXlP5Ka4AlEgsK6oE5UspdKsBSDtbY3csv573G97vuYLK2B68+B3fmZEKWfPqEBRkNEw31ovV1Ygt34Ix2kCu7sIjwgXOEMeA2FBOwlxPPHYe9bBIFVdMw5lYeM1hTFEVRlNPJliYv85a9yWca/8pF2oYDgVJQGpAINCSmQzbhBejRMghYS4hllmMsGENG2USMhRMS6fl1alWJohwq3QHWucDc/QUkA6ytwE7AB/xSSrnqWOdRAdbwFY7GeemDfbS+v4jqjuVUx/eQJXzYCRJGT1gY8WsZBAy5BM25kFGIMbcSZ0k1OWXjMGapu2SKoiiKciI6AyF27d1LcPcajL56bNFO9JoOnSYwOVzYXPlkZBdizh4BrnKwZA52lRXllNLvAEsIsQIoOMxbv5BSLk4e8zBQK6W8N/ncBNillJ1CiOnAS8B4KaXvMOf/JvBNgLKysul1dXUn9Ispp6ZILE5fJIZZp2HQayqrmqIoiqIoinJKSdsIlhBCDzQB06WUjUc45m3gR1LKow5PqREsRVEURVEURVFOBUcKsFIx5+oCYPvBwZUQIlcIoUs+HglUAXtSUJaiKIqiKIqiKMqQlYoVizcAzxzy2rnA7UKICBAHviWl7EpBWYqiKIqiKIqiKEPWSQdYUsqbD/PaQmDhyZ5bURRFURRFURTlVJKyfbBSQQjRDgy1LBc5QMcxj1KGC9Xepw/V1qcP1danF9Xepw/V1qeXodjeI6SUuYe+OKQCrKFICLHhcIvXlOFJtffpQ7X16UO19elFtffpQ7X16eVUam+1sZCiKIqiKIqiKEqKqABLURRFURRFURQlRVSAdWx/G+wKKANKtffpQ7X16UO19elFtffpQ7X16eWUaW+1BktRFEVRFEVRFCVF1AiWoiiKoiiKoihKiqgAS1EURVEURVEUJUVUgHUUQohLhBA7hBC1QoifDXZ9lNQRQpQKIVYKIWqEEFuFEN9Lvp4lhFguhNiV/O4a7LoqqSGE0AkhNgohliWfVwgh1if793NCCONg11FJDSFEphDiBSHEdiHENiHEmapvD09CiO8nP8O3CCGeEUKYVd8ePoQQjwsh3EKILQe9dti+LBIeSLb7JiHEtMGruXKijtDW9yQ/xzcJIRYJITIPeu/WZFvvEEJcPCiVPgoVYB2BEEIHPARcCowDviCEGDe4tVJSKAr8UEo5DjgD+E6yfX8GvCmlrALeTD5XhofvAdsOen43cJ+UshLoBr42KLVS0uHPwGtSyjHAZBLtrvr2MCOEKAZuAWZIKScAOuAGVN8eTp4ALjnktSP15UuBquTXN4GHB6iOSmo8wSfbejkwQUo5CdgJ3AqQvF67ARif/Jm/Jq/bhwwVYB3ZLKBWSrlHShkGngWuHuQ6KSkipWyRUn6YfOwncQFWTKKN5yUPmwdcMygVVFJKCFECXA48mnwugDnAC8lDVFsPE0IIJ3Au8BiAlDIspfSg+vZwpQcsQgg9YAVaUH172JBSvgt0HfLykfry1cCTMuE9IFMIUTggFVVO2uHaWkr5hpQymnz6HlCSfHw18KyUMiSl3AvUkrhuHzJUgHVkxUDDQc8bk68pw4wQohyYCqwH8qWULcm3WoH8waqXklL3Az8B4snn2YDnoA9u1b+HjwqgHfi/5JTQR4UQNlTfHnaklE3An4B6EoGVF/gA1beHuyP1ZXXdNrx9FXg1+XjIt7UKsJTTmhDCDiwE/kdK6Tv4PZnYw0DtY3CKE0JcAbillB8Mdl2UAaEHpgEPSymnAj0cMh1Q9e3hIbn25moSQXURYOOTU4yUYUz15dODEOIXJJZ2/GOw63K8VIB1ZE1A6UHPS5KvKcOEEMJAIrj6h5TyxeTLbfunFCS/uwerfkrKnA1cJYTYR2Kq7xwSa3Qyk9OKQPXv4aQRaJRSrk8+f4FEwKX69vBzAbBXStkupYwAL5Lo76pvD29H6svqum0YEkLcDFwBfFH+a/PeId/WKsA6sveBqmQ2IiOJxXRLBrlOSook1+A8BmyTUs496K0lwJeTj78MLB7ouimpJaW8VUpZIqUsJ9GP35JSfhFYCVyfPEy19TAhpWwFGoQQ1cmXPgPUoPr2cFQPnCGEsCY/0/e3terbw9uR+vIS4KZkNsEzAO9BUwmVU5AQ4hIS0/uvklL2HvTWEuAGIYRJCFFBIrHJPwejjkci/hUMKocSQlxGYu2GDnhcSnnn4NZISRUhxDnAKmAz/1qX83MS67CeB8qAOuBzUspDF9gqpyghxPnAj6SUVwghRpIY0coCNgJfklKGBrF6SooIIaaQSGhiBPYAXyFxQ1H17WFGCPFb4PMkpg9tBL5OYi2G6tvDgBDiGeB8IAdoA24DXuIwfTkZZD9IYppoL/AVKeWGQai20g9HaOtbARPQmTzsPSnlt5LH/4LEuqwoiWUerx56zsGkAixFURRFURRFUZQUUVMEFUVRFEVRFEVRUkQFWIqiKIqiKIqiKCmiAixFURRFURRFUZQUUQGWoiiKoiiKoihKiqgAS1EURVEURVEUJUVUgKUoiqIoiqIoipIiKsBSFEVRFEVRFEVJkf8PKIYLByou/pcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
30True00.09690.0153bAP.soma.v0.02371.91e-06
31True00.09690.0153Step1.soma.v0.1013.73e-06
32True00.09690.0153Step3.soma.v0.0921.6e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "30 True 0 0.0969 0.0153 bAP.soma.v \n", + "31 True 0 0.0969 0.0153 Step1.soma.v \n", + "32 True 0 0.0969 0.0153 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "30 0.0237 1.91e-06 \n", + "31 0.101 3.73e-06 \n", + "32 0.092 1.6e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADp2UlEQVR4nOzdd3ydddn48c91RnJO9k6b0SYUuhsKtAWkZSpLhoBSkFVQeUBRQAEVFauPPr/nQRRlCKIICljK3nuUUlYHdA+60qY7zV4nZ31/f9x30tM0sznJSZrr/XqdV869vvd17nNOcl/5LjHGoJRSSimllFKq9xyxDkAppZRSSimlDhWaYCmllFJKKaVUlGiCpZRSSimllFJRogmWUkoppZRSSkWJJlhKKaWUUkopFSWaYCmllFJKKaVUlGiCpZRSA4SIFImIERFXrGM51InILBFZEOs4BhoRmSEi62Idh1JKDWaaYCmllBrURGS2iAREpD7icVus4xqMjDEfGmPGRLtcEXlIRNaJSFhEZkW7fKWUGkj0v6RKKRUlIuIyxgRjHccQNdcYc3msg+grh8BnaxkwF/i/WAeilFJ9TWuwlFKqF0SkVER+KiLLgQYRcYnIcSLysYhUi8gyETk5Yv95IvL/RGShiNSKyIsiktFB2VeLyBoRqRORTSLyX222ny8iS+1yNorImfb6VBF5WER2ish2EfmdiDi7eB2jROQ9EakQkb0i8oSIpEVsqxSRo+3lPBEpb3ldInKeiKyyX+88ERnX5vrcIiLLRaRGROaKiKfnV7rnRORn9nWpE5HVInJBB/uJiNwtInvsa7lCRCba2+JF5C4R2Soiu0XkQRHxdvP8j9r7v23H8IGIjIzY/hcRKbPPuUREZkRsmy0iz4jI4yJSC8wSkWki8ol9nXeKyH0iEhdxjBGR74vIevt8/22/dx/b53gqcv8OYj5ZRLZ15/X1hDHmfmPMu4Av2mUrpdRAowmWUkr13qXA14E0IBd4FfgdkAHcAjwrItkR+18JXAMMB4LAPR2Uuwc4B0gBrgbujkhypgH/Bm61z3siUGof96hd7uHAUcDpwHe7eA0C/D8gDxgHFAKzAYwxG4GfAo+LSALwCPAvY8w8ERkNzAFuArKB14CX29zIXwycCRQDJcCsdgMQmW4nDx09pnfxGtraCMwAUoHf2PEPb2e/07Gu32h734uBCnvb/9rrJ2Ndz3zgjh7EcBnw30AWsBR4ImLbIrvcDOA/wNNtks/zgWew3t8ngBBws13W8cBpwPfbnO8M4BjgOOA24CHgcqz3cyLWZ/Wg2YlyR+/PX3tTtlJKHSo0wVJKqd67xxhTZoxpwrqZfc0Y85oxJmyMeRtYDJwdsf9jxpiVxpgG4FfAxe3VMBljXjXGbDSWD4C3sBIGgO8A/zTGvG2fZ7sxZq2I5NrnuskY02CM2QPcDVzS2Qswxmywy2o2xpQDfwJOitj+d2AD8BlWYvgLe9NM4FX72ABwF+AFvtLm+uwwxlQCL2MlFe3FsMAYk9bJo7NBKS5uc7OfZ4x52j5v2BgzF1gPTGvn2ACQDIwFxBizxhizU0QEuBa42RhTaYypA/6nq2vZxqvGmPnGmGasa3a8iBTar/dxY0yFMSZojPkjEA9E9n/6xBjzgh1/kzFmiTHmU3v/UuBvRLxHtjuNMbXGmFXASuAtY8wmY0wN8DpWwn3QjDElnbw/bZM9pZQakrQPllJK9V5ZxPORwLdE5NyIdW7g/Q7232Jvz2pbqIicBfwaqwbFASQAK+zNhVi1RW2NtMvbaeUHYB9b1s6+kefKBf6ClcAl28dUtdnt78BLwLV2wgBWjdeWlh2MMWERKcOq6WmxK+J5o31MtD3Vtg+WiFwJ/Bgoslcl0c51Nsa8JyL3AfcDI0XkOayaRw/WNV8ScS0F6LS5ZRut190YUy8ilVivv0xEbsFKlPMAg1VTmdXesfbrGY2V+E6x43IBS9qcb3fE86Z2lof1IHallFIHQWuwlFKq90zE8zKsGqrI/+wnGmP+N2KfwojnI7BqUPZGFigi8cCzWDVCucaYNKyEquVOvwwY1U4sZUAzkBVx/hRjzIQuXsP/2K9jkjEmBasmbl9WIZIE/Bl4GJgt+/qN7cBK6lr2E/v1be/ifAcQa4jw+k4eM7oupbWskVgJ4Q1Apn39Vka+pkjGmHuMMccA47ES2lux3pMmYELEtUw1xiT14GW1vtf2NcwAdtiv5Tas5ojpdnw1beKL/FwBPACsBY6w36PbO3o9fUWsvnYdvT8P9mcsSik1UGmCpZRS0fU4cK6InCEiThHx2AMHFETsc7mIjLf7M/0WeMYYE2pTThxWk7FyIGjXZp0esf1h4GoROU1EHCKSLyJjjTE7sZoS/lFEUuxto0SkbVOytpKBeqBGRPKxEoxIfwEWG2O+i9XHrOVm+ing63YcbuAnWAnex11dqLbsIcKTOnl82IPiErESlHKwBgzB6oN0ABGZKiLH2vE3YA3EEDbGhLGStLtFJMfeN19Ezog41kjEICbtONvuWxaH1RfrU2NMGdb1DtrxuUTkDqwarM4kA7VAvYiMBa7vYv+oM8ZM6OT9ua6j40Qkzu5fJoDb/l7oPYhS6pCkv9yUUiqK7Jvn87FqF8qxapRuZf/ft49hDUSxC6sZ2o/aKafOXv8UVlO9b2M1z2vZvhB74Ausmo8P2FeTdCVWgrbaPvYZrH5TnfkNcLRd1qvAcy0bROR8rEEqWm7ofwwcLSKXGWPWYdV23YtV43MucK4xxt/F+fqUMWY18EfgE6xmcpOAjzrYPQUrkarCau5YAfzB3vZTrL5nn4o1mt872P2k7L5Udexrttme/2A186zEGnyipRnjm8AbwJf2OX100YwTq9nit+1z/h1r2PPB4i2s2sCvYA280YQ1sIhSSh1yxJi2LRCUUkr1FRGZBzxujPlHrGNRvSMil2M1H/x5B9sfBbYZY37Zr4EppZSKKR3kQimllDoIxpjHYx2DUkqpgUebCCql1BAh1qS3OjjBECcit3fwOXg91rEppdShQJsIKqWUUkoppVSUaA2WUkoppZRSSkXJgOqDlZWVZYqKimIdhlJKKaWUUkp1asmSJXuNMdlt1w+oBKuoqIjFixfHOgyllFJKKaWU6pSIbGlvvTYRVEoppZRSSqko0QRLKaWUUkoppaJEEyyllFJKKaWUipIB1QerPYFAgG3btuHz+WIdihoAPB4PBQUFuN3uWIeiDjGN/iA/+PcnXDU6yMknnhLrcJRSSik1SA34BGvbtm0kJydTVFSEiMQ6HBVDxhgqKirYtm0bxcXFsQ5HHWIWbq7kW1t+y8nbFmKOXIWkFsQ6JKWUUkoNQgO+iaDP5yMzM1OTK4WIkJmZqbWZqk9UVFVztnMhAOULn4lxNEoppZQarAZ8ggVocqVa6WdB9ZW66vLW5/41b8QwEqWUUkoNZoMiwVJKqb7WWF8LQAMeMqpXQDgc44iUUkopNRhpgtUNIsJPfvKT1uW77rqL2bNnxy6gCCeffHKnkzN/4xvf4Ljjjttv3ezZs8nPz2fy5MlMnDiRl156qa/DVGrg89cDsD7haBLC9VC5McYBKaWUUmow0gSrG+Lj43nuuefYu3dvVMs1xhDuw/+SV1dXs2TJEmpqati0adN+226++WaWLl3K008/zTXXXNOncSg1GDgCTQDUD7f+IdG4ZUksw1FKKaXUIKUJVje4XC6uvfZa7r777gO2lZeXc9FFFzF16lSmTp3KRx99BFi1RHfddVfrfhMnTqS0tJTS0lLGjBnDlVdeycSJEykrK+PWW29l4sSJTJo0iblz5wIwb948Tj75ZL75zW8yduxYLrvsMowx7cb32GOPtdZGLVy4sHX9c889x7nnnssll1zCk08+2e6x48aNw+Vy7Zc8/uxnP2P8+PGUlJRwyy23AFBaWsqpp55KSUkJp512Glu3bgVg1qxZXH/99Rx33HEcdthhzJs3j2uuuYZx48Yxa9as1jKvv/56pkyZwoQJE/j1r399QBw1NTWMHDmyNdFraGigsLCQQCDQbtxKRZsj2AhAUvEUgsZBxeZlMY5IKaWUUoPRgB+mPdJvXl7F6h21US1zfF4Kvz53Qpf7/eAHP6CkpITbbrttv/U33ngjN998M9OnT2fr1q2cccYZrFmzptOy1q9fz7/+9S+OO+44nn32WZYuXcqyZcvYu3cvU6dO5cQTTwTgiy++YNWqVeTl5XHCCSfw0UcfMX369APKa2xsZOnSpcyfP59rrrmGlStXAjBnzhzuuOMOcnNzueiii7j99tsPOPazzz7D4XCQnZ0NQEVFBc8//zxr165FRKiurgbghz/8IVdddRVXXXUV//znP/nRj37ECy+8AEBVVRWffPIJL730Eueddx4fffQR//jHP5g6dSpLly5l8uTJ/P73vycjI4NQKMRpp53G8uXLKSkpaY0jNTWVyZMn88EHH3DKKafwyiuvcMYZZ+h8V6rfOO0Eq2B4HltMLq49a2MckVJKKaUGI63B6qaUlBSuvPJK7rnnnv3Wv/POO9xwww1MnjyZ8847j9raWurr6zsta+TIka39ohYsWMCll16K0+kkNzeXk046iUWLFgEwbdo0CgoKcDgcTJ48mdLS0nbLu/TSSwE48cQTqa2tpbq6mt27d7N+/XqmT5/O6NGjcbvdrYkXwN13383kyZO55ZZbmDt3buvofKmpqXg8Hr7zne/w3HPPkZCQAMAnn3zCt7/9bQCuuOIKFixY0FrWueeei4gwadIkcnNzmTRpEg6HgwkTJrTG/NRTT3H00Udz1FFHsWrVKlavXn3A65g5c2ZrDd6TTz7JzJkzO72OSkVTS4KVmZ7GJikksWZ9jCNSSiml1GA0qGqwulPT1Jduuukmjj76aK6++urWdeFwmE8//RSPx7Pfvi6Xa79+TZFzNyUmJnbrfPHx8a3PnU4nwWCw3f3aDl0uIjz11FNUVVW1TshbW1vLnDlz+P3vfw9YfbBamv+1jXvhwoW8++67PPPMM9x3332899573YrT4XDsF7PD4SAYDLJ582buuusuFi1aRHp6OrNmzWp3LqvzzjuP22+/ncrKSpYsWcKpp57a6XmViiaXnWBJfDJViaPIaFwMAR+4PV0cqZRSSim1j9Zg9UBGRgYXX3wxDz/8cOu6008/nXvvvbd1eenSpQAUFRXx+eefA/D555+zefPmdsucMWMGc+fOJRQKUV5ezvz585k2bVqP4mqp9VmwYAGpqamkpqYyZ84c3njjjdZ+X0uWLOmwH1ak+vp6ampqOPvss7n77rtZtszqh/KVr3yl9fgnnniCGTNmdDu+2tpaEhMTSU1NZffu3bz++uvt7peUlMTUqVO58cYbOeecc3A6nd0+h1K95QrZSb87gUDmaByEoUJrsZRSSinVM5pg9dBPfvKT/QaEuOeee1i8eDElJSWMHz+eBx98EICLLrqIyspKJkyYwH333cfo0aPbLe+CCy6gpKSEI488klNPPZU777yTYcOG9Sgmj8fDUUcdxXXXXcfDDz9MaWkpW7Zs2W949uLiYlJTU/nss8/aLePss89mx44d1NXVcc4551BSUsL06dP505/+BMC9997LI488QklJCY899hh/+ctfuh3fkUceyVFHHcXYsWP59re/zQknnNC67Y477thvmPiZM2fy+OOPa/NA1e/c4UbCCLi9xA23asvry1Z2cZRSSiml1P6ko5HpYmHKlCmm7ZxOa9asYdy4cTGKSA1E+plQfeGl/7uKr/nexPvrXcxbtY3pT01iz5HXk3fh/8Q6NKWUUkoNQCKyxBgzpe16rcFSSikgLtyEX6z+ViNz09lmsgnu1cmGlVJKKdUzvU6wRKRQRN4XkdUiskpEbrTXzxaR7SKy1H6c3ftwlVKqb8SFfTQ7vAAUpHvZSi5xNaWxDUoppZRSg040RhEMAj8xxnwuIsnAEhF52952tzHmrk6OVUqpAcEd9hFwWjVYbqeDirh8UprmgzHQZqROpZRSSqmO9LoGyxiz0xjzuf28DlgD5Pe2XKWU6k8uEyDkiGtdbkoaQUK4AZqqYhiVUkoppQabqPbBEpEi4CigZai6G0RkuYj8U0TSOzjmWhFZLCKLy8vLoxmOUkp1m9MECDv2VeqbDGsOOVOh/bCUUkop1X1RS7BEJAl4FrjJGFMLPACMAiYDO4E/tnecMeYhY8wUY8yU7OzsaIWjlFI94jBBjMPduuzJOQKA+l06F5ZSSimlui8qCZaIuLGSqyeMMc8BGGN2G2NCxpgw8HegZ7PnDjAvvPACIsLatWs73Ke0tJSJEydG7ZyzZs3imWee6XD7TTfdRH5+PuFwuHXdo48+SnZ2NpMnT2b8+PH8/e9/j1o8Sh3KXCZIOKKJYGaBlWDV7fgyViEppZRSahCKxiiCAjwMrDHG/Cli/fCI3S4ABvWMnXPmzGH69OnMmTOn3e3BYLDX5wiFQt3eNxwO8/zzz1NYWMgHH3yw37aZM2eydOlS5s2bx+23387u3bt7HZtShzoXQUxEE8HC3Ex2mAwC5dpEUCmllFLdF40arBOAK4BT2wzJfqeIrBCR5cApwM1ROFdM1NfXs2DBAh5++GGefPLJ1vXz5s1jxowZnHfeeYwfPx6wEq3LLruMcePG8c1vfpPGxkYA3n33XY466igmTZrENddcQ3NzMwBFRUX89Kc/5eijj+bpp58+4NzvvPMOU6ZMYfTo0bzyyiv7nXvChAlcf/31HSZ9OTk5jBo1ii1btrSuu+eeexg/fjwlJSVccsklAFRWVvKNb3yDkpISjjvuOJYvXw7A7Nmzueqqq5gxYwYjR47kueee47bbbmPSpEmceeaZBAIBAH77298ydepUJk6cyLXXXkvbyavD4TBFRUVUV1e3rjviiCM08VMDhjEGV5smggXpXraYYbh0qHallFJK9UCvh2k3xiwA2hvD+LXeln2A138Gu1ZEt8xhk+Cs/+10lxdffJEzzzyT0aNHk5mZyZIlSzjmmGMA+Pzzz1m5ciXFxcWUlpaybt06Hn74YU444QSuueYa/vrXv3LDDTcwa9Ys3n33XUaPHs2VV17JAw88wE033QRAZmYmn3/+ebvnLi0tZeHChWzcuJFTTjmFDRs24PF4mDNnDpdeeinnn38+t99+O4FAALfbvd+xmzZtYtOmTRx++OGt6/73f/+XzZs3Ex8f35rw/PrXv+aoo47ihRde4L333uPKK69k6dKlAGzcuJH333+f1atXc/zxx/Pss89y5513csEFF/Dqq6/yjW98gxtuuIE77rgDgCuuuIJXXnmFc889t/WcDoeD888/n+eff56rr76azz77jJEjR5Kbm9vtt0mpvhQIGdwECTn3fYfiXU72uvOY2LgkhpEppZRSarCJ6iiCh6o5c+a01vZccskl+9UYTZs2jeLi4tblwsJCTjjhBAAuv/xyFixYwLp16yguLmb06NEAXHXVVcyfP7/1mJkzZ3Z47osvvhiHw8ERRxzBYYcdxtq1a/H7/bz22mt84xvfICUlhWOPPZY333yz9Zi5c+cyefJkLr30Uv72t7+RkZHRuq2kpITLLruMxx9/HJfLyq8XLFjAFVdcAcCpp55KRUUFtbW1AJx11lm43W4mTZpEKBTizDPPBGDSpEmUlpYC8P7773PssccyadIk3nvvPVatWnXA65g5cyZz584F4Mknn+z0NSvV3wKhMG6CENEHC6AxcQTJoSporotRZEoppZQabKIx0XD/6aKmqS9UVlby3nvvsWLFCkSEUCiEiPCHP/wBgMTExP32lzYTkrZdbk/bMroq780336S6uppJkyYB0NjYiNfr5ZxzzgGsZOa+++5rt7xXX32V+fPn8/LLL/P73/+eFSs6rxGMj48HrFoot9vdGo/D4SAYDOLz+fj+97/P4sWLKSwsZPbs2fh8vgPKOf7449mwYQPl5eW88MIL/PKXv+z0vEr1p0AojFtCNDn3T7DCGcVQC1RuhuElsQlOKaWUUoOK1mB14ZlnnuGKK65gy5YtlJaWUlZWRnFxMR9++GG7+2/dupVPPvkEgP/85z9Mnz6dMWPGUFpayoYNGwB47LHHOOmkk7p1/qeffppwOMzGjRvZtGkTY8aMYc6cOfzjH/+gtLSU0tJSNm/ezNtvv93a36sj4XCYsrIyTjnlFP7v//6Pmpoa6uvrmTFjBk888QRg9e3KysoiJSWlW/G1JFNZWVnU19d3OOqhiHDBBRfw4x//mHHjxpGZmdmt8pXqD367Bkuc+//PyZNjNa9t2KUjCSqllFKqezTB6sKcOXO44IIL9lt30UUXdTiwxJgxY7j//vsZN24cVVVVXH/99Xg8Hh555BG+9a1vMWnSJBwOB9ddd123zj9ixAimTZvGWWedxYMPPkg4HOaNN97g61//eus+iYmJTJ8+nZdffrndMr773e+yePFiQqEQl19+OZMmTeKoo47iRz/6EWlpacyePZslS5ZQUlLCz372M/71r3918+pAWloa3/ve95g4cSJnnHEGU6dObd324IMP8uCDD7Yuz5w5k8cff1ybB6oBxx8ME0cQ2tRgpeaPAaBmu86FpZRSSqnukbYjvsXSlClTzOLFi/dbt2bNGsaNGxejiNRApJ8JFW2b9zaQe28x24/4Nkdc/ufW9et315H+1/HUF51O0dUPxy5ApZRSSg04IrLEGDOl7XqtwVJKDXmtg1y0qcEqzEhgi8nFWb05RpEppZRSarDRBEspNeT5A0HcEsLh3H+qA4/byR5XHkkNZTGKTCmllFKDzaBIsAZSM0YVW/pZUH0hGLAm/hZX3AHb6hNHkB7cA4Gm/g5LKaWUUoPQgE+wPB4PFRUVemOtMMZQUVGBx+OJdSjqEBPwd5xghdLsee6qSvsxIqWUUkoNVgN+HqyCggK2bdtGeXl5rENRA4DH46GgoCDWYahDTCgQAMDRToIVl3M4lFlDtSfm6OAqSimllOrcgE+w3G43xcXFsQ5DKXUIC9lNBB2u+AO2peSPhSVQu20diTrXsFJKKaW6MOCbCCqlVF8LBlsSLPcB2wryhlNlkmjes6G/w1JKKaXUIKQJllJqyAvafbCc7TQRHJmRSKkZhrN6U3+HpZRSSqlBSBMspdSQFw76AXC4D2wi6I1zstuVR2LD1v4OSymllFKDUJ8nWCJypoisE5ENIvKzvj6fUkr1VEuC5WwnwQKoSxhBWmAPBHz9GZZSSimlBqE+TbBExAncD5wFjAcuFZHxfXlOpZTqqZCdYLk6SLCCacU4MDpUu1JKKaW61Nc1WNOADcaYTcYYP/AkcH4fn1MppXokbI8i6GqnDxaAO+dwAJp2f9lvMSmllFJqcOrrBCsfKItY3mavayUi14rIYhFZrHNdKaViobWJYFz7CVZq/hgAarav67eYlFJKKTU4xXyQC2PMQ8aYKcaYKdnZ2bEORyk1BIWD1kTDHTURzBueR5VJwr97fX+GpZRSSqlBqK8TrO1AYcRygb1OKaUGDBPseJh2gJGZiWwxuUjV5v4MSymllFKDUF8nWIuAI0SkWETigEuAl/r4nEop1SMtCZa4Pe1uT4p3sdOZr0O1K6WUUqpLfZpgGWOCwA3Am8Aa4CljzKq+PKdSSvVY0B5+3dV+ggVQl1BIWmC3DtWulFJKqU65+voExpjXgNf6+jxKKXXQ7EEucLXfBwsgkFaMo8FA9RbIHtNPgSmllFJqsIn5IBdKKRVz3ajBisu2hmpv1qHalVJKKdUJTbCUUkOehKw+WJ3VYKUVjgWgsmxNf4SklFJKqUFKEyyl1JC3L8HquAZrZEEBFSYZ/661/RSVUkoppQYjTbCUUkOeI9RMCAc4Ou6WOjIzgQ0mH1elzoWllFJKqY5pgqWUGvIcoWYCuEGkw33iXU52x40krWEzGNOP0SmllFJqMNEESyk15DlCzQSk/UmGIzWkjCIxXAcN5f0QlVJKKaUGI02wlFJDnjPsJ+joOsESe3j20G7th6WUUkqp9mmCpZQa8lzhZoLdqMFKKhgPQOXWFX0dklJKKaUGKU2wlFJDnlWD1fEQ7S3yRxxOvfHQtF2HaldKKaVU+zTBUkoNeS7TvSaCo3KT2WjykAqdbFgppZRS7dMESyk15LmNn3A3EqwUj5vtzkKS6zb1Q1RKKaWUGow0wVJKDXmubiZYALXJh5EWLAdfbR9HpZRSSqnBSBMspdSQF2f8hJ1d98ECCGeMBsDs1WaCSimllDqQJlhKqSHNGIPbBLqdYHnzrZEEa8tW9WVYSimllBqkepVgicgfRGStiCwXkedFJM1eXyQiTSKy1H48GJVolVIqypqDYeLxY1zdS7ByRo7Fb5zUbdMESymllFIH6m0N1tvARGNMCfAl8POIbRuNMZPtx3W9PI9SSvWJRn+IeAkgLk+39j98WBqlZhhmz7o+jkwppZRSg1GvEixjzFvGmKC9+ClQ0PuQlFKq/zQ0B4kngLi7l2DlJMdTKgV4azf2cWRKKaWUGoyi2QfrGuD1iOViEflCRD4QkRkdHSQi14rIYhFZXF5eHsVwlFKqaw3+IEk0IfHJ3dpfRKhOPIyM5u0Q8PVxdEoppZQabLpMsETkHRFZ2c7j/Ih9fgEEgSfsVTuBEcaYo4AfA/8RkZT2yjfGPGSMmWKMmZKdnd37V6SUUj3Q2NhIvAQRT7u/otoVyByDgzBUrO/DyJRSSik1GLm62sEY89XOtovILOAc4DRjjLGPaQaa7edLRGQjMBpY3NuAlVIqmvwN1QA4vd1PsDx546EM6spWkDxsUh9FppRSSqnBqLejCJ4J3AacZ4xpjFifLSJO+/lhwBHApt6cSyml+oK/oQYAlzet28fkFE0gaBzUbF3ZR1EppZRSarDqsgarC/cB8cDbIgLwqT1i4InAb0UkAISB64wxlb08l1JKRV2wsRoAd2L3a7AOz8uk1AwjbvfqPopKKaWUUoNVrxIsY8zhHax/Fni2N2UrpVR/CDZaNVhxiendPmZYiod3pICjajb0VVhKKaWUGqSiOYqgUkoNOmFfLQDxSWndPkZEqEocpSMJKqWUUuoAmmAppYa0YJOVYHkS03p0nI4kqJRSSqn2aIKllBrSwk1WE0HxpPboOE/eeMAaSVAppZRSqoUmWEqpIc3YTQTp5kTDLbJ1JEGllFJKtUMTLKXUkOZorsFPHLjienTc4cOtkQTDu9f0UWRKKaWUGow0wVJKDWlefyW1ru6PINhieKqHzVJAQo32wVJKKaXUPppgKaWGtKRgFY3ujB4fJyJU6kiCSimllGpDEyyl1JBljCE1XEVzfOZBHR/MGK0jCSqllFJqP5pgKaWGrKrGAFlUE07IPqjjPfkTAKgv04EulFJKKWXRBEspNWTtqmogg1ocKcMO6viskePtkQR1qHallFJKWTTBUkoNWZV7d+EUQ3xq7kEdf0ReFltMLiEdSVAppZRSNk2wlFJDVv3eMgASM/MP6vjhqR42SiGJOpKgUkoppWyaYCmlhix/xRYAUoYddlDHiwh7PcWkN2+HYHM0Q1NKKaXUIKUJllJq6KrZBoA7Y8RBF+FLPcwaSbCqNEpBKaWUUmow61WCJSKzRWS7iCy1H2dHbPu5iGwQkXUickbvQ1VKqehy12/HjxsSD24UQQBn9igAQns3RCsspZRSSg1i0ajButsYM9l+vAYgIuOBS4AJwJnAX0XEGYVzKaVU1CQ07aLSlQMiB11G0vCxANRtXxutsJRSSik1iPVVE8HzgSeNMc3GmM3ABmBaH51LKaUOSnpgFw2egxuivcXw4cOpNEn4dn0ZpaiUUkopNZhFI8G6QUSWi8g/RSTdXpcPlEXss81edwARuVZEFovI4vLy8iiEo5RSXWtoDpJryvEnFfSqnKLMRErNMKjcGKXIlFJKKTWYdZlgicg7IrKyncf5wAPAKGAysBP4Y08DMMY8ZIyZYoyZkp198P0glFKqJ3ZWVpMr1Uha7xKsYSketpBHQl1pdAJTSiml1KDm6moHY8xXu1OQiPwdeMVe3A4URmwusNcppdSAsHf7Zg4H4jOLelWOwyFUewtJaZ4P/kaIS4hKfEoppZQanHo7iuDwiMULgJX285eAS0QkXkSKgSOAhb05l1JKRVP9HmsOrORhxb0uy59il1G5qddlKaWUUmpw67IGqwt3ishkwAClwH8BGGNWichTwGogCPzAGBPq5bmUUipqAvYkw2lRSLAc2YdDOZiKDciwib0uTymllFKDV68SLGPMFZ1s+z3w+96Ur5RSfUVqrHF4XOmFXezZtaS8MbAa6neuI3lCr4tTSiml1CDWV8O0K6XUgBbXsJ0qRzq44ntdVkFuNntMGk07dah2pZRSaqjTBEspNSQlN++mJq53c2C1GJmRyGYzDNGh2pVSSqkhTxMspdSQEwobMkN78CXkRaW8vDQPW8xwEupLo1KeUkoppQYvTbCUUkNOea2PPPYSTm13/vMeczkdVHkLSQxUga8mKmUqpZRSanDSBEspNeTs2b4RjwRwZh4WtTKbU+3RCCu0maBSSik1lGmCpZQacup3rAUgIW9c1Mp0ZR0OgNEESymllBrSejsPluomYwzhsCEUChEOhwiFQoTCIUw4DCaMCCAOxHqCOBzWMoI4rHUOhxNEEAGHCAKICA7BPk4p1R2hPdZofxkjojemembhWEKrhfqylaSWfCtq5aruCYXC+JubaG6sw+9rIOCrJxAIEPAHCAb9EApiwkFoeYQCEA4RNoYwghHBGDA4cDgEh8NhP5z2stNeduFwOnE4XTjtn47Wny5cTificOJyWetdTjcOex3ihAN+6v85lVLqUKMJVidWzH8R/6JHkFAAhwngDPtxhAM4TRCX8eM0QZwmgMsEiSOAiyAuQjhMGMHgwCCEcdjPnWJwRim2kBG7dCEE9hnAsG89yH7rsJ+33ExEbqed41rWGTt5C+NoZ1vLc0fr+sgfByMqqaIxvS6i5ZX2VRndLT06qXOMr4fpWRmd7RWN61FiamjAQ2JmQRRKs4wpzOFLU0j21kVRK3Mo8fsDVO3dSW35Duqrd+OvryDUWA1N1RhfNc7mGtz+WtyBWjzBOtzhJuLDPuJNMx58ePHjFYM31i/kIARxELYfpuW5WD9DrcvO1n3CYu1nbXNiJOJ4EcI9/kvTwTfOdLxHV9/lDvfvpMy22p6jW/v3YfntHdP1/j3X89+1PY2p57/Le/o6Du7vRd9eWzmI+4Jo3AdE+xz98f4NxM/UEmcJTaf/gUunjejxuWJBE6xONNfuJqd+HSFxExQ3IYebsLgJOBNpdqRhHG7CjjjCDrf9iANxYlr+Kyn7HtLy0+Gw/3O5b51p/ZgZxITt5MB+GGP/0WhZDrd5DhDGGPtYsNa3/ow8dv/nLeUajP2Lx1jlEEZa19Mmlpbzc0A5LdtMlFKT3jLtlNHTUk0PD5B2zhCVX88HWUMZeVR71+NgmIhYDr7EPnp/u1nsHiCYP41jo1jzO3ZYMi+Yw/nG3kUQDrdbM7GqdCfLn7+LxLyxnDfze1E790DW5POza0cp1Ts307R3C+Ga7Uj9HtxN5cQ3V5AUrCQ1XEW6qSVXDLntlBE0DuolkXpJotGZTLMziYb4HMLuBIzLi3F5CbsTwO0FdwLEJeBwe3G44q2aJJcLcbjB6bZqjZwuxOECpwuHAAYrPRHAGMImTDi87xEKhzHhMOFwCGO3QgiHgmBChEMhCAetbeEQJhTGGOs5LevCITD7lolYtn6GI5at52LCiLFSLOtnGIeJeB6xvnU/DA77uenol1eHH/ke/7Lr9Hds+6XJgUtdnrbj3zf7f31b/om4/5p2ztjhKbp/BXp2rXr6u3ffPz77zkGV38Pfl339Gg7mHAcXUw/PcVAvewC+jj4uH/a/n+iS5zBykns/b2V/0QSrE1POuRbOuTbWYSilBgGP28me9KPw1L4HOz6Hgimt28r21jH/2fs4bcffuFSqKK3JAw6NBKumvoldZRuo3fEl/vINSPVWXPU7SPLtIj24h2xTSbGE9zvGZ9xUO9Kpc6VT782j0lPCxoRsHMk5uFNy8ablkpiaiTcli8TUTDyJqaSJkBabl6iUUirGjol1AD2kCZZSSkWJd9K5NC+4h+ZPHiHlW1PYXd3Aghf+xuTNf+cy2cGOpPF8ETeNo6reJFRXjjM5O9Yhd4sJBajYtp49pauo2/EloYpNeOq2kNm8neFmN2Mk1Lqv37jY68iiJi6HnUnHsD0lH1d6Id6skaQOKyZtWBGepHSGiRCdaZ6VUkqpgUUTLKWUipJvHDee5xeczCWrHmfppo0Mb1zDRVLNLu9hVH/17+Qd/U3WvP0yfPImFWs+IGfaN2Md8n7CAT+7SldTUboc347VuCq+JK1xE3nBbWQRIMverx4ve1x5VKeMoTL9DFxZo0gcPpqMgjGk5hSS53ASnSmclVJKqcFHEyyllIqS7OR4hn/rj7z+ws2U+FZRlTEZOf4Khk25sLVPVvaY42j+2E3d+o9ilmD5m33s3LSSitLlBHauJq5qPekNm8gLbSdPQuQBYSPskBx2xxexLeMrSPYYUgvGMqx4PFk5+Rymo98ppZRS7dIESymlouikiSNh4nMdbh9fmM0yRpGz/bM+j6WxsYFtG1ZSvXU5wZ2r8VStJ9O3mfzQDkZKmJFYI5LucAyj3FPM9tSTceaOJWXEJPJHlVCQlkb0xllUSimlhoZeJVgiMhcYYy+mAdXGmMkiUgSsAdbZ2z41xlzXm3MppdShwOV0sCPtGI6smUOwciuujN4POVtdW8f2jSuo3rKS0O7VeKvXk+3bTEF4J6PtASaCxsEO53AqvMVsT/sa7mHjSR85ibxREylMTKaw11EopZRSCnqZYBljZrY8F5E/AjURmzcaYyb3pnyllDoUJX/lO8hr/2HL87/msO880q1jGpp87ChdR1XZWny7v0SqNpNYv4Us/zbyzB4m2IlUyAg7nXlUJB7GnvQziRs+jvSiEoYfVsIIj5fBMYOIUkopNXhFpYmgiAhwMXBqNMpTSqlD2YlTj+al+RfxjbJnWHdPFYEx50JiNkG/j+bGOoK1ezC123HV7yDRt5u0YDnDzF6OiBitrwEPe1z5VKeOZ2/a14nPm0BG0ZHkFE+gIM6rTfuUUkqpGIlWH6wZwG5jzPqIdcUi8gVQC/zSGPNheweKyLXAtQAjRuj/VpVShz6HQzjl+vt45WEP0yueJ+2T9w/YJ2CcVDgyqYnLpTJpEnuSC3FlH05KwRhyiiaQmD6c4ihOlKyUUkqp6BBjOp+rWUTegXanK/mFMeZFe58HgA3GmD/ay/FAkjGmQkSOAV4AJhhjajs715QpU8zixYt7/iqUUmqQqqlrZOeGLwg1VuP2JJCYlEpyRjbJmXmIwxnr8JRSSinVARFZYoyZ0nZ9lzVYxpivdlGwC7iQiEmWjTHNQLP9fImIbARGA5o9KaVUhNTkBFKPOiHWYSillFIqSqIxkclXgbXGmG0tK0QkW0Sc9vPDgCOATVE4l1JKKaWUUkoNWNHog3UJMKfNuhOB34pIAAgD1xljKqNwLqWUUkoppZQasHqdYBljZrWz7lng2d6WrZRSSimllFKDSZeDXPQnESkHtsQ6jjaygL2xDkL1G32/hw59r4cWfb+HDn2vhw59r4eWgfh+jzTGZLddOaASrIFIRBa3NzqIOjTp+z106Hs9tOj7PXToez106Hs9tAym9zsag1wopZRSSimllEITLKWUUkoppZSKGk2wuvZQrANQ/Urf76FD3+uhRd/voUPf66FD3+uhZdC839oHSymllFJKKaWiRGuwlFJKKaWUUipKNMFSSimllFJKqSjRBKsTInKmiKwTkQ0i8rNYx6OiR0QKReR9EVktIqtE5EZ7fYaIvC0i6+2f6bGOVUWHiDhF5AsRecVeLhaRz+zv91wRiYt1jCo6RCRNRJ4RkbUiskZEjtfv9qFJRG62f4evFJE5IuLR7/ahQ0T+KSJ7RGRlxLp2v8tiucd+35eLyNGxi1z1VAfv9R/s3+PLReR5EUmL2PZz+71eJyJnxCToTmiC1QERcQL3A2cB44FLRWR8bKNSURQEfmKMGQ8cB/zAfn9/BrxrjDkCeNdeVoeGG4E1Ecv/B9xtjDkcqAK+E5OoVF/4C/CGMWYscCTW+67f7UOMiOQDPwKmGGMmAk7gEvS7fSh5FDizzbqOvstnAUfYj2uBB/opRhUdj3Lge/02MNEYUwJ8CfwcwL5fuwSYYB/zV/u+fcDQBKtj04ANxphNxhg/8CRwfoxjUlFijNlpjPncfl6HdQOWj/Ue/8ve7V/AN2ISoIoqESkAvg78w14W4FTgGXsXfa8PESKSCpwIPAxgjPEbY6rR7/ahygV4RcQFJAA70e/2IcMYMx+obLO6o+/y+cC/jeVTIE1EhvdLoKrX2nuvjTFvGWOC9uKnQIH9/HzgSWNMszFmM7AB6759wNAEq2P5QFnE8jZ7nTrEiEgRcBTwGZBrjNlpb9oF5MYqLhVVfwZuA8L2ciZQHfGLW7/fh45ioBx4xG4S+g8RSUS/24ccY8x24C5gK1ZiVQMsQb/bh7qOvst633ZouwZ43X4+4N9rTbDUkCYiScCzwE3GmNrIbcaaw0DnMRjkROQcYI8xZkmsY1H9wgUcDTxgjDkKaKBNc0D9bh8a7L4352Ml1XlAIgc2MVKHMP0uDw0i8gusrh1PxDqW7tIEq2PbgcKI5QJ7nTpEiIgbK7l6whjznL16d0uTAvvnnljFp6LmBOA8ESnFaup7KlYfnTS7WRHo9/tQsg3YZoz5zF5+Bivh0u/2oeerwGZjTLkxJgA8h/V91+/2oa2j77Letx2CRGQWcA5wmdk3ee+Af681werYIuAIezSiOKzOdC/FOCYVJXYfnIeBNcaYP0Vsegm4yn5+FfBif8emossY83NjTIExpgjre/yeMeYy4H3gm/Zu+l4fIowxu4AyERljrzoNWI1+tw9FW4HjRCTB/p3e8l7rd/vQ1tF3+SXgSns0weOAmoimhGoQEpEzsZr3n2eMaYzY9BJwiYjEi0gx1sAmC2MRY0dkXzKo2hKRs7H6bjiBfxpjfh/biFS0iMh04ENgBfv65dyO1Q/rKWAEsAW42BjTtoOtGqRE5GTgFmPMOSJyGFaNVgbwBXC5MaY5huGpKBGRyVgDmsQBm4Crsf6hqN/tQ4yI/AaYidV86Avgu1h9MfS7fQgQkTnAyUAWsBv4NfAC7XyX7ST7Pqxmoo3A1caYxTEIWx2EDt7rnwPxQIW926fGmOvs/X+B1S8riNXN4/W2ZcaSJlhKKaWUUkopFSXaRFAppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppQYIESkSESMirljHcqgTkVkisiDWcQw0IjJDRNbFOg6llBrMNMFSSik1qInIbBEJiEh9xOO2WMc1GBljPjTGjIl2uSLykIisE5GwiMyKdvlKKTWQ6H9JlVIqSkTEZYwJxjqOIWquMebyWAfRVw6Bz9YyYC7wf7EORCml+prWYCmlVC+ISKmI/FRElgMNIuISkeNE5GMRqRaRZSJycsT+80Tk/4nIQhGpFZEXRSSjg7KvFpE1IlInIptE5L/abD9fRJba5WwUkTPt9aki8rCI7BSR7SLyOxFxdvE6RonIeyJSISJ7ReQJEUmL2FYpIkfby3kiUt7yukTkPBFZZb/eeSIyrs31uUVElotIjYjMFRFPz690z4nIz+zrUiciq0Xkgg72ExG5W0T22NdyhYhMtLfFi8hdIrJVRHaLyIMi4u3m+R+193/bjuEDERkZsf0vIlJmn3OJiMyI2DZbRJ4RkcdFpBaYJSLTROQT+zrvFJH7RCQu4hgjIt8XkfX2+f7bfu8+ts/xVOT+HcR8sohs687r6wljzP3GmHcBX7TLVkqpgUYTLKWU6r1Lga8DaUAu8CrwOyADuAV4VkSyI/a/ErgGGA4EgXs6KHcPcA6QAlwN3B2R5EwD/g3cap/3RKDUPu5Ru9zDgaOA04HvdvEaBPh/QB4wDigEZgMYYzYCPwUeF5EE4BHgX8aYeSIyGpgD3ARkA68BL7e5kb8YOBMoBkqAWe0GIDLdTh46ekzv4jW0tRGYAaQCv7HjH97OfqdjXb/R9r4XAxX2tv+110/Gup75wB09iOEy4L+BLGAp8ETEtkV2uRnAf4Cn2ySf5wPPYL2/TwAh4Ga7rOOB04DvtznfGcAxwHHAbcBDwOVY7+dErM/qQbMT5Y7en7/2pmyllDpUaIKllFK9d48xpswY04R1M/uaMeY1Y0zYGPM2sBg4O2L/x4wxK40xDcCvgIvbq2EyxrxqjNloLB8Ab2ElDADfAf5pjHnbPs92Y8xaEcm1z3WTMabBGLMHuBu4pLMXYIzZYJfVbIwpB/4EnBSx/e/ABuAzrMTwF/ammcCr9rEB4C7AC3ylzfXZYYypBF7GSirai2GBMSatk0dng1Jc3OZmP88Y87R93rAxZi6wHpjWzrEBIBkYC4gxZo0xZqeICHAtcLMxptIYUwf8T1fXso1XjTHzjTHNWNfseBEptF/v48aYCmNM0BjzRyAeiOz/9Ikx5gU7/iZjzBJjzKf2/qXA34h4j2x3GmNqjTGrgJXAW8aYTcaYGuB1rIT7oBljSjp5f9ome0opNSRpHyyllOq9sojnI4Fvici5EevcwPsd7L/F3p7VtlAROQv4NVYNigNIAFbYmwuxaovaGmmXt9PKD8A+tqydfSPPlQv8BSuBS7aPqWqz29+Bl4Br7YQBrBqvLS07GGPCIlKGVdPTYlfE80b7mGh7qm0fLBG5EvgxUGSvSqKd62yMeU9E7gPuB0aKyHNYNY8erGu+JOJaCtBpc8s2Wq+7MaZeRCqxXn+ZiNyClSjnAQarpjKrvWPt1zMaK/GdYsflApa0Od/uiOdN7SwP60HsSimlDoLWYCmlVO+ZiOdlWDVUkf/ZTzTG/G/EPoURz0dg1aDsjSxQROKBZ7FqhHKNMWlYCVXLnX4ZMKqdWMqAZiAr4vwpxpgJXbyG/7FfxyRjTApWTdy+rEIkCfgz8DAwW/b1G9uBldS17Cf269vexfkOINYQ4fWdPGZ0XUprWSOxEsIbgEz7+q2MfE2RjDH3GGOOAcZjJbS3Yr0nTcCEiGuZaoxJ6sHLan2v7WuYAeywX8ttWM0R0+34atrEF/m5AngAWAscYb9Ht3f0evqKWH3tOnp/HuzPWJRSaqDSBEsppaLrceBcETlDRJwi4rEHDiiI2OdyERlv92f6LfCMMSbUppw4rCZj5UDQrs06PWL7w8DVInKaiDhEJF9ExhpjdmI1JfyjiKTY20aJSNumZG0lA/VAjYjkYyUYkf4CLDbGfBerj1nLzfRTwNftONzAT7ASvI+7ulBt2UOEJ3Xy+LAHxSViJSjlYA0YgtUH6QAiMlVEjrXjb8AaiCFsjAljJWl3i0iOvW++iJwRcayRiEFM2nG23bcsDqsv1qfGmDKs6x2043OJyB1YNVidSQZqgXoRGQtc38X+UWeMmdDJ+3NdR8eJSJzdv0wAt/290HsQpdQhSX+5KaVUFNk3z+dj1S6UY9Uo3cr+v28fwxqIYhdWM7QftVNOnb3+Kaymet/Gap7Xsn0h9sAXWDUfH7CvJulKrARttX3sM1j9pjrzG+Bou6xXgedaNojI+ViDVLTc0P8YOFpELjPGrMOq7boXq8bnXOBcY4y/i/P1KWPMauCPwCdYzeQmAR91sHsKViJVhdXcsQL4g73tp1h9zz4VazS/d7D7Sdl9qerY12yzPf/BauZZiTX4REszxjeBN4Av7XP66KIZJ1azxW/b5/w71rDng8VbWLWBX8EaeKMJa2ARpZQ65IgxbVsgKKWU6isiMg943Bjzj1jHonpHRC7Haj748w62PwpsM8b8sl8DU0opFVM6yIVSSil1EIwxj8c6BqWUUgOPNhFUSqkhQqxJb3VwgiFORG7v4HPweqxjU0qpQ4E2EVRKKaWUUkqpKNEaLKWUUkoppZSKkgHVBysrK8sUFRXFOgyllFJKKaWU6tSSJUv2GmOy264fUAlWUVERixcvjnUYSimllFJKKdUpEdnS3nptIqiUUkoppZRSUaIJllJKKaWUUkpFiSZYSinViY837mXjntpYh6GUUkqpQWJA9cFqTyAQYNu2bfh8vliHogYZj8dDQUEBbrc71qGoQaq8rpm3/vkbZrv/jflZGeJJiXVISimllBrgBnyCtW3bNpKTkykqKkJEYh2OGiSMMVRUVLBt2zaKi4tjHY4apFbvrOW7rtcAqFjwMFlfvTnGESmllFJqoBvwTQR9Ph+ZmZmaXKkeEREyMzO15lP1SnWjn3rjBcC/5o0YR6OUUkqpwWDAJ1iAJlfqoOjnRvVWXUMTxbITgPSqFRAOxzgipZRSSg10gyLBUkqpWAjX7iBegqyJm4Q33AB718U6JKWUUkoNcJpgdYOI8JOf/KR1+a677mL27NmxCyjCp59+yrHHHsvkyZMZN25ca1zz5s3j448/7lXZZ555JmlpaZxzzjlRiFSpwae5oQ6A6pypAPh3rIxlOEoppZQaBDTB6ob4+Hiee+459u7dG9VyjTGEe9nk6KqrruKhhx5i6dKlrFy5kosvvhiIToJ166238thjj/WqDKUGM5+vEYD4/BJCRqjeuiLGESmllFJqoBvwowhG+s3Lq1i9I7rz0YzPS+HX507odB+Xy8W1117L3Xffze9///v9tpWXl3PdddexdetWAP785z9zwgknMHv2bJKSkrjlllsAmDhxIq+88goAZ5xxBsceeyxLlizhtdde47777uP1119HRPjlL3/JzJkzmTdvHrNnzyYrK4uVK1dyzDHH8Pjjjx/Qr2jPnj0MHz4cAKfTyfjx4yktLeXBBx/E6XTy+OOPc++99zJ27NgO49y4cSMbNmxg79693HbbbXzve98D4LTTTmPevHmdXpunn36a3/zmNzidTlJTU5k/fz4+n4/rr7+exYsX43K5+NOf/sQpp5zCo48+ygsvvEBDQwPr16/nlltuwe/389hjjxEfH89rr71GRkYGf//733nooYfw+/0cfvjhPPbYYyQkJOx33uOOO46HH36YCROs9+7kk0/mrrvuYsqUKZ3Gq1RPhP1WgpWTncNWk0PcrrUxjkgppZRSA53WYHXTD37wA5544glqamr2W3/jjTdy8803s2jRIp599lm++93vdlnW+vXr+f73v8+qVatYvHgxS5cuZdmyZbzzzjvceuut7Nxpdar/4osv+POf/8zq1avZtGkTH3300QFl3XzzzYwZM4YLLriAv/3tb/h8PoqKirjuuuu4+eabWbp0KTNmzOg0zuXLl/Pee+/xySef8Nvf/pYdO3Z0+7r89re/5c0332TZsmW89NJLANx///2ICCtWrGDOnDlcddVVraP5rVy5kueee45Fixbxi1/8goSEBL744guOP/54/v3vfwNw4YUXsmjRIpYtW8a4ceN4+OGHDzjvzJkzeeqppwDYuXMnO3fu1ORKRV/Q+tzmZqSxkXziq9bHOCCllFJKDXSDqgarq5qmvpSSksKVV17JPffcg9frbV3/zjvvsHr16tbl2tpa6uvrOy1r5MiRHHfccQAsWLCASy+9FKfTSW5uLieddBKLFi0iJSWFadOmUVBQAMDkyZMpLS1l+vTp+5V1xx13cNlll/HWW2/xn//8hzlz5rRb69RZnOeffz5erxev18spp5zCwoUL+cY3vtGt63LCCScwa9YsLr74Yi688MLW1/TDH/4QgLFjxzJy5Ei+/PJLAE455RSSk5NJTk4mNTWVc889F4BJkyaxfPlywErCfvnLX1JdXU19fT1nnHHGAee9+OKLOf300/nNb37DU089xTe/+c1uxatUT0iwGQC3J4Hy+CLSml6CUBCcg+pXp1JKKaX6kd4l9MBNN93E0UcfzdVXX926LhwO8+mnn+LxePbb1+Vy7de/KnI+psTExG6dLz4+vvW50+kkGAy2u9+oUaO4/vrr+d73vkd2djYVFRUH7NNRnHDgcOY9Gd78wQcf5LPPPuPVV1/lmGOOYcmSJZ3uH/maHA5H67LD4Wh9fbNmzeKFF17gyCOP5NFHH203YczPzyczM5Ply5czd+5cHnzwwW7HrFR3Scj+3ro8NKUdjqs8CFWbIeuI2AY2CNQ0BZj1yEIunTqCi6cWxjqcQWH1jlp21/o4ZWxOrEMZFCob/Hy4vpxzS/JwOHRaDqXUwKFNBHsgIyODiy++eL8ma6effjr33ntv6/LSpUsBKCoq4vPPPwfg888/Z/Pmze2WOWPGDObOnUsoFKK8vJz58+czbdq0bsf06quvYowBrKaHTqeTtLQ0kpOTqaur6zJOgBdffBGfz0dFRQXz5s1j6tSp3T7/xo0bOfbYY/ntb39LdnY2ZWVlzJgxgyeeeAKAL7/8kq1btzJmzJhul1lXV8fw4cMJBAKt5bRn5syZ3HnnndTU1FBSUtLt8pXqrpYaLFweXLljAQjt1n5Y3fHxhr2kbpvHsa+cBosObOarDjTzoU94+N//JHjvNGiqjnU4A94f3lzLjU8u5eMF78DqF2MdjlJKtdIEq4d+8pOf7Dea4D333MPixYspKSlh/PjxrTUpF110EZWVlUyYMIH77ruP0aNHt1veBRdcQElJCUceeSSnnnoqd955J8OGDet2PI899hhjxoxh8uTJXHHFFTzxxBM4nU7OPfdcnn/+eSZPnsyHH37YYZwAJSUlnHLKKRx33HH86le/Ii8vD7CSv29961u8++67FBQU8OabbwJWs8SW/la33norkyZNYuLEiXzlK1/hyCOP5Pvf/z7hcJhJkyYxc+ZMHn300f1qrrry3//93xx77LGccMIJjB07tnX9Sy+9xB133NG6/M1vfpMnn3yydeREpaLNEVGDlVRgNVGu27a6kyNUiy931/M1xxJGym6Cy5+JdTgDnj8Yps4X5BbXU7gq1sGq52Md0oD35e56kmlk+nvfhKeuhOqyWIeklFIASEvtx0EXIFII/BvIBQzwkDHmLyIyG/geUG7versx5rXOypoyZYpZvHjxfuvWrFnDuHHjehWj6ljb0Q4PNfr5Ub3xt/+7hf9q+jv8tJTPdoY57F+TCR5+JsOv+HusQxvwZr+0iuMW3ciZzkWEnF6ct2/Tvmud2FLRwEl/mMcrcbcz0VEKR5wOlz0d67AGtBPvfB931Xrejb/VWvHNf8LEi2IblFJqSBGRJcaYA0ZZi0YNVhD4iTFmPHAc8AMRGW9vu9sYM9l+dJpcKaXUQOMM72siOCIzgTKTA1WlMY1psKho8JPrsKbVcIaaoHxNjCMa2LZXN+EiyFixptJg96rYBjTAGWPYVesji4ipW8oWxi4gpZSK0Ot/JxpjdgI77ed1IrIGyO9tuap/zJ49O9YhKDVgOUP7EqzcZFjIMA6r3xDboAaJqgY/ua46NobyGcV2qNgAwybFOqwBq84XJIkmXBJmDxnk1G6Hpirwpsc6tAGp1hfEHwxzVFYA6iHsSsCxR5vvKqUGhqj2wRKRIuAo4DN71Q0islxE/iki7f6VEJFrRWSxiCwuLy9vbxellIoJV7iZgMSBCA6HUOvJJ8W/B4L+WIc24FU1+kkLV7PZY0+vUbExtgENcL5ACC/W52pJaJS1co/W+nWkyR8CYGKq9U+QioyjoGJTLENSSqlWUUuwRCQJeBa4yRhTCzwAjAImY9Vw/bG944wxDxljphhjpmRnZ0crHKWU6jWXaSboiGtd9qeMxEEYarQzfVeCzU0kmEYCKSMpJx0q2x9JVVl8gRAJYg2qsiJcbK2s0NrSjvgCVoI1wtNI2Ail3vFQuw0CTTGOTCmlopRgiYgbK7l6whjzHIAxZrcxJmSMCQN/B7o/9rhSSg0ArrCfoETM3ZZRBIDRZKFLCYFKADzpw9kUziW4V5OFzvgCYTx2DdZGk0dYXNrfrxO+oJVgpYWrqZZk1oeGWxv0mimlBoBeJ1hizUr7MLDGGPOniPXDI3a7AFjZ23MppVR/ijPNBJ37Eixv7uEA1O/SZKErcUFrHr6UtEw2h4dpE8EuNAVCJGA1d2vES238MK3160RLE0FPoIoGVxormjKtDZXaTFApFXvRqME6AbgCOFVEltqPs4E7RWSFiCwHTgFujsK5YuaFF15ARFi7tuNJRktLS5k4cWLUzrlu3TpOPvlkJk+ezLhx47j22msBa5Lg117r3aCM11xzDTk5OVGNV6lDiTEGl/ETcuxLsHLyRuAzbho0weqSBK3mbhlpKWwxw3A1lYOvtoujhi5fIIRXrAQrISmF3c5hWhvTCV8gDIA71ETYncSi2jRrgybySqkBoNcJljFmgTFGjDElkUOyG2OuMMZMstefZ482OGjNmTOH6dOnM2fOnHa3B4PBXp8jFArtt/yjH/2Im2++maVLl7JmzRp++MMfAtFJsGbNmsUbb7zRqzKUOpQFwwYPAcIRNVgjMpPZanIIa81Cp4wxrQlWVlo6m409eXqVXreONAVCpDgDAKSmpFIaztHr1YmWJoLusA9nnJcNdW6MNwMqNcFSSsXe4Jr18fWfwa4V0S1z2CQ463873aW+vp4FCxbw/vvvc+655/Kb3/wGgHnz5vGrX/2K9PR01q5dy1tvvUUwGOSyyy7j888/Z8KECfz73/8mISGBd999l1tuuYVgMMjUqVN54IEHiI+Pp6ioiJkzZ/L2229z2223cckll7Sed+fOnRQUFLQuT5o0Cb/fzx133EFTUxMLFizg5z//Oeeccw4//OEPWblyJYFAgNmzZ3P++efz6KOP8vzzz1NTU8P27du5/PLL+fWvfw3AiSeeSGlpaaev+4MPPuDGG28EQESYP38+SUlJ3Hbbbbz++uuICL/85S+ZOXMm8+bN49e//jVpaWmsWLGCiy++mEmTJvGXv/yFpqYmXnjhBUaNGsXLL7/M7373O/x+P5mZmTzxxBPk5ubud95LLrmEK664gq9//euAlQyec845fPOb3+zee6pUFARCYeLxE46owSpI9/KRyaGkZksMIxv4AiFDvN3cLSkpiXK3PXNHxUYYfmQMIxu4mgNhkp1WH6yMtFS+rMrijFAVNFWDNy2msQ1EPruJoDPkw+2xBin2pRTh1SaCSqkBIKrDtB+qXnzxRc4880xGjx5NZmYmS5Ysad32+eef85e//IUvv/wSsJr1ff/732fNmjWkpKTw17/+FZ/Px6xZs5g7dy4rVqwgGAzywAMPtJaRmZnJ559/vl9yBXDzzTdz6qmnctZZZ3H33XdTXV1NXFwcv/3tb5k5cyZLly5l5syZ/P73v+fUU09l4cKFvP/++9x66600NDQAsHDhQp599lmWL1/O008/zeLFi7v9uu+66y7uv/9+li5dyocffojX6+W5555j6dKlLFu2jHfeeYdbb72VnTutyslly5bx4IMPsmbNGh577DG+/PJLFi5cyHe/+13uvfdeAKZPn86nn37KF198wSWXXMKdd955wHlnzpzJU089BYDf7+fdd99tTbaU6i+BoCFOgvvVYHncTvbG5ZHs2wbGxDC6ga05GMKDVRsjbi+hdHtUPK2R6VCTP0SqXYOVlZ7BKl+GtaFak/n2tNRgOUM+4r2JAFR5CnWodqXUgDC4arC6qGnqK3PmzGmtybnkkkuYM2cOxxxzDADTpk2juLi4dd/CwkJOOOEEAC6//HLuuecevva1r1FcXMzo0aMBuOqqq7j//vu56aabACuhaM/VV1/NGWecwRtvvMGLL77I3/72N5YtW3bAfm+99RYvvfQSd911FwA+n4+tW7cC8LWvfY3MTKvz74UXXsiCBQuYMmVKt173CSecwI9//GMuu+wyLrzwQgoKCliwYAGXXnopTqeT3NxcTjrpJBYtWkRKSgpTp05l+HBrbJNRo0Zx+umnA1bN2/vvvw/Atm3bmDlzJjt37sTv9+937VqcddZZ3HjjjTQ3N/PGG29w4okn4vV6uxWzUtESCIeJI4hxuvdb35hYiKe2CRr2QpJOLdGeyBHxcHvJzUynqiaV9CpNFjriC4ZIcgYgBDmZaWwN51gbKjdrrV87WvpgOUI+vAlJAOx25JJXu92ap84V19nhSinVp7QGqwuVlZW89957fPe736WoqIg//OEPPPXUUxj7v9eJiYn77W8NqtjxcnvalhEpLy+Pa665hhdffBGXy8XKlQcOxmiM4dlnn2Xp0qUsXbqUrVu3Mm7cuIOOp8XPfvYz/vGPf9DU1MQJJ5zQ6QAfAPHxEcNZOxytyw6Ho7WP2g9/+ENuuOEGVqxYwd/+9jd8Pt8B5Xg8Hk4++WTefPNN5s6d22ECqlRfCoTCuAliHPsnWKa1Nqa0/4MaJHyBEB7Zl2AVpiewJZyN0dqYDjX5QyQ7rGs2PDuTrcZOsPRz1q6WUQQdIR9xnkQS45xsCWcDRuepU0rFnCZYXXjmmWe44oor2LJlC6WlpZSVlVFcXMyHH37Y7v5bt27lk08+AeA///kP06dPZ8yYMZSWlrJhgzXy2GOPPcZJJ53U5bnfeOMNAgGryciuXbuoqKggPz+f5ORk6urqWvc744wzuPfee1uTvi+++KJ129tvv01lZWVrP6iW2rXu2LhxI5MmTeKnP/0pU6dOZe3atcyYMYO5c+cSCoUoLy9n/vz5TJvW/SnOampqyM+3+mP861//6nC/mTNn8sgjj/Dhhx9y5plndrt8paIlEDS4CYJz//+Ee7JHAdBcriMJdqQ5GMJr98HC5aEwI4Gt4WzCFdpEsCO+YJgE8YPDRUFWCvUk4HOnabPKDrQ0EZRAE+L2UpiRwLpmbVaplBoYNMHqwpw5c7jgggv2W3fRRRd1OJrgmDFjuP/++xk3bhxVVVVcf/31eDweHnnkEb71rW8xadIkHA4H1113XZfnfuutt5g4cSJHHnkkZ5xxBn/4wx8YNmwYp5xyCqtXr2by5MnMnTuXX/3qVwQCAUpKSpgwYQK/+tWvWsuYNm0aF110ESUlJVx00UWtzQMvvfRSjj/+eNatW0dBQQEPP/wwAA8++CAPPvggAH/+85+ZOHEiJSUluN1uzjrrLC644AJKSko48sgjOfXUU7nzzjsZNmxYt6/n7Nmz+da3vsUxxxxDVlZW6/rFixfz3e9+t3X59NNP54MPPuCrX/0qcXHa1EP1v0DYrsFq00QwJc+aC6t25/pYhDUoWE0ErX8O4fYyIiOBMpONo3Y7hEOdHzxE+fwhkhzN4E4kN9lDnNNBVdxwqN4a69AGpJYmggR9Vi1pRgLLG9KsddoUVSkVY2IGUEftKVOmmLaDMKxZs6a1uZvqmUcffZTFixdz3333xTqUmNHPjzpYa3fVkvTAUVA0g4KrH21dv6ysmpx/HEW46CTyI9arfRaXVvLRP37Cja7n4NfVbCiv5x9/mc3/uv8BN62AtBGxDnHAOe++BfzEdx8n8QXcso5T7prHH/kTR8dtgx99HuvwBpz/99oanvhkAyudl8Mpv+C/685hzmebWeW+CvnKDfDV2bEOUSk1BIjIEmPMAYMbaA2WUkq1IxA0xLXTRHBkZgJbTQ6OmtLYBDYI+ALWEPchpwdEKEi3arAArV3ogC8QIoFmiEsArCkBNoeyrP5E4XCMoxt4mgIhUl12bahdS9oYgFBKvn7GlFIxpwnWIWzWrFlDuvZKqd5oaSLYNsFK9brZ6RhGYoN2pO+IL2D1wTIuD2ANb9+YYM/pp/1j2tUUCFkjL7pbEqwE1vkyIOSHup0xjm7g8UUmWC4PIzKs69aYUKCfMaVUzA2KBGsgNWNUg4d+blRvBIJWgiVthnsWEeq8BaQE9kKgKUbRDWw+ex6slgQLwJ0xgjAOrV3ogNVvzdeaYBVmeCMGbdB+WG35AmFSXC39/BIozLCm8qh0D9fPmFIq5gZ8guXxeKioqNCbZdUjxhgqKirweDxd76xUOwIhaxRBcR44yEogdaT1RG/k2uULhK1h2u1kASA/M4U9ZGrtQgd8/hDxZl8TwcLIZpV6zQ7QFAiR4rKm/8DtoSDdum47JAca90JzfQyjU0oNdQN+ouGCggK2bdtGeXl5rENRg4zH46GgoCDWYahBKhAKES9BxOU+YJsz8zDYBaGKTThzxsYguoHNFwiRjB8iarAK071sDmeTU1U68P+zFwO+YIh4E1mDlcB2Y4+0qon8AXyBEDlOuwbL5cXjdpKbEs+mYBZfAavWL3d8LENUSg1hAz7BcrvdFBcXxzoMpdQQEwxY8zg5XPEHbEsafgSsgrqd60nTQSoP0NIHS9ze1nUFGQmUhbOZWrlOE6w2gqEwgZAhzjTvS7DSvTQTR0N8Nolag3WA5kCYZGdLDZb1OStMT2BNU7q1rnqLJlhKqZjRv3NKKdWOUMAPcEAfLIBhuXnUGS9Nu3Wy4fY0B8PESwBH3L4Eq2UuLFfDLgj4YhjdwOMLWqMExoWaWpOFjMQ4EuOcVLi0T1F7mgIhkpz75loD6zO2tC7FWqfXTCkVQ32eYInImSKyTkQ2iMjP+vp8SikVDeFgSw3WgQnWiMxEtpocTOXm/g5rUPDZI+JJ3L4+WIUZCZSZHGuhRkdgjNTkt0bDc4V9EJcIWIOpFGYksJ0cHeSiHb5AiCTH/glWYUYCq+viMe4E7bemlIqpPk2wRMQJ3A+cBYwHLhURrbNXSg14Qb9Vg9VeE8G8NC9l5BJfp4lCe3yBEAniRyL6YA1L8bDTYSdYVaWxCWyA8gXsBCuiBgushGFTMBNqt0EoEKvwBiRfMESCY18fLLBqsIwRAsmFWoOllIqpvq7BmgZsMMZsMsb4gSeB8/v4nEop1WsmZCVYTveBNVhOh1AVn0dK83adBLYdvkAYr/j3SxacDiGYPMJa0ARrP75ACBdBnCYI7sTW9YXpCaxuSgcThpptMYxw4Gnyh0lsrcGyEvlCey6sOk+e1mAppWKqrxOsfCDyX7zb7HVKKTWghQMdNxEE8CWNxG0COglsO3ytk+Z691ufmJmHH7fe/LbhC4TxYiX0kddsRIbXqsECvWZtNAdCVhIPrQODtEw2XN7Sb02nd1FKxUjMB7kQkWtFZLGILNah2JVSA0XITrCc7gObCAJIRpH1pEr7YbXVHAzjIdDadKtFQWYS28nW5lttNAVCeLA+b3TUb02v2X58wYgEy26KmpMcT5zLwTaywV8HTVUxjFApNZT1dYK1HSiMWC6w17UyxjxkjJlijJmSnZ3dx+EopVT3GLvPS0cJlifncAAad+lIgm35AiHiaW5tutWiMD2BLaFsQpos7Mfqs2YnWBGTM4/ISGCnySAsTq3BitAyrH3bWj+HQyhI97LBb9f6aVNUpVSM9HWCtQg4QkSKRSQOuAR4qY/PqZRSvWbsUQRd7fTBAsjIKyZoHNTtWt+fYQ0KzYEAboIH1GC1DNWuN777awqEIpKFfQlWQXoCIZzUxQ/TkQQjtAxr78EPzjhwOFu3jchIYGVjmrWgSalSKkb6NMEyxgSBG4A3gTXAU8aYVX15TqWUioZwsONRBAFGZKey3WQR3LupP8MaFMLNTdaTNn2wCjO8lJlsnM014KuJQWQDky8QIgF7brCIBMsb5yQ7OZ5yZ642EYzQMuqiVUt6YBK/pFbnwlJKxVaf98EyxrxmjBltjBlljPl9X59PKaWioaWJYHsTDYPV3G2rycFVozdxbZlg+wnWiIwEtppca0Fvflv5AiE8Lf2JIvpgARSmW0mp1sbs0zJvWLzxt1tLutMXR9iTrtdMKRUzMR/kQimlBqKWJoI420+wEuNd7HHlkdSow2cfINBo/XTt3wcr1eum0j3MWtCb31a+QJiElkEu2klKN/gzoX43BJpiEN3A0xy0Eqw4c2A/v4J0K0H1JRVoEq+UihlNsJRSqj32PFg43R3u0pBYSGJIm7sdINDS3G3/ZEFEMGlF1oLe/Lay+mC1JFiJ+20rzEhgdVOataD9sAArIQVwm+b9mlTCvqHaa+J1LiylVOxogqWUUu2xmwjibL8PFkAodaT1RAdt2F8HTQQBMrKyqSdRb34j+AIhvNJ+DVZhegJbwvZQ7ZpgAVZCCuAONx9QS1qYYV2/3Y5c63rpROBKqRjQBEsppdphgi01WO03EQRwZx0GQGDvxv4IafAI2jVYbW5+oaXvWjZGk9JWTYEQyQ47oY87sAarzNhTmOg1A/YNcuEK+w6owUr2uElPcLMlnG3VQtfvikWISqkhThMspZRqh3SjiWBq/mgAaret64+QBg1XsP0mggAjMhPYGs4mVFHav0ENYM2BMMnO/ed0alGY4WUvqYQccVrrZ2tpIugKH9gHC6xmguuaM6wFbYqqlIoBTbCUUqodjlDHzdxajBiey26Thm/3l/0U1cAXChuc4c5rsMpMNo6arWBMP0c3MDX5QyQ5/IAccM2Gp3pxOpxUx+VB5ebYBDjAtDQRdIZ87X/GMhJY0ZBmLWhSqpSKAU2wlFKqHY5Omrm1KM5OZFM4D2flhn6KauBrDobwYDd3a9N8C/Y1eXOEfFC/p5+jG5gaAyGSHX7reonst83pEPLTvWx35kGlzrkG0OQPAnaC1c5nbERGAktqkqwFrcFSSsWAJlhKKdUOR6jjZm4tUjxudrrySW7Qm7gWTf4QHlqau7VXu+Blq7GHateEAbAShiRH4IA5sFqMyEhgQyjXul46aEPrPFiOoK+Dz1gCjWE3waThUKW1fkqp/qcJllJKtcMRbCaIs9M+WAB1SUXWUO2Nlf0U2cDmC4YjRsQ7MGGIdzlpTCmyFiq05g+sJm+JDn+HyfxhWYmsaMqyBg+p3d7P0Q08jXYTQQk2dliDBdCQOBIqdAAapVT/0wRLKaXa4Qz7CEjHQ7S3yhxl/dRkAbBGeEvErv2LS2p3H292MQFces1sjf4QCdJ8wBxYLYqyElkbsIdqr9SEockfQsSAv6Hdz1hLgrU3vlCvl1IqJjTBUkqpdjjDzQQcXSdYnmFjAWjcsaavQxoUfIEQCeLD4OiwRqY4O4WtJhejCRZgJQxemju+XlmJbA7bzSq1RoYmf4h0dwgxYYg/MMEanurB6RDKZDg0VmjtslKq32mCpZRS7XCFmglKx3NgtcgqOIKAcVK7fW0/RDXw+QJhkvARamfAhhZFmQlsDA8jVK4JFlg1WF78B8yB1aI4K5HdpBN0eDTBwmoimOlumTfswATL5XSQl+ZhfTDXWqF9/ZRS/UwTLKWUaoc77CPo7HgEwRbFuWlsNTkE9+hQ7WDXYOEj7Go/WQAozk5isxmGo0oHbQCrD5YHX4c1WPlpXlxOJ5WeAm3yBvj8ITLcdj+/DpqhjshIYFlTlrWgNaVKqX6mCZZSSrXDbZoJdqOJYGFGApvJI75G/0sO9pxO0kS4g9oYsAZt2GyG4wj7oXZbP0Y3MDX5Q8Sb5nYHbACrRqYwI4Ftkqc1WFg1fumulhqs9j9nIzISWFSdAuLQa6aU6neaYCmlVDvcppmQs+sEy+10UBFfSJqvDMKhfohsYKtvDpJAc4c1CwB5aV7KJM9aGOK1C8YYGv1B4sLtz+nUojgzkfXBHGvY8VCwHyMceJoCIdJc9lQA7fTBAhiZmcjuRkM4deSQ/4wppfpfrxIsEfmDiKwVkeUi8ryIpNnri0SkSUSW2o8HoxKtUkr1A2MMccZP2NnxHFiRfKmH4TYBqCnr48gGvvrmIIniw9HBjS9Yk+cG0g6zFoZ47UJzMEzYQHy4AeKTO9yvOCuRpY1ZEA5CzdZ+jHDgafKHSHV03kSwKNOq2apPGqEJllKq3/W2ButtYKIxpgT4Evh5xLaNxpjJ9uO6Xp5HKaX6TSBk8OAn7Oq6DxaAI+sIAMI6aIOVYNHUaYIFkJpdQCPeIX/z6wuEEMLEBRvAk9LhfkVZdg0WDPmktDEQJNXZeYJVnGUlWHvjR1jXy5j+Ck8ppXqXYBlj3jLGtLRV+BQo6H1ISikVW75gCA9+TDcGuQBIyreGaq/ZtrovwxoUGpqDJNKM09txbQzAYdlJbDa5mCGeLFgJqQ8HYfCkdrjfYVmJlJrh1sIQv2Z1viBpTruJYAd9sEZmWs0ttzIcAg1Qt6u/wlNKqaj2wboGeD1iuVhEvhCRD0RkRkcHici1IrJYRBaXl5dHMRyllDo4Pn+IeAlgulmDlZc3glrjpXHnuj6ObOCr8wVJEh/SySAXYNXIbAoPI1i+vp8iG5hqm4Ik02QtdJJgFWUlspcU/K6kIT+SYG1TYF8NVgfNKj1uJ3mpHtb6dYJmpVT/6zLBEpF3RGRlO4/zI/b5BRAEnrBX7QRGGGOOAn4M/EdE2m37YIx5yBgzxRgzJTs7u/evSCmleqm+OYiXZiSue32wDstJZpMZjlQM7WQB7Bos8XU6yAVYTbg2meG4ardC0N9P0Q08tb4AKdJgLcR33ERwWIoHj9vJ3riCId2s0hhDnS9IcmsfrI4T+ZGZiXzemGktDOFrppTqf66udjDGfLWz7SIyCzgHOM0Yq5GzMaYZaLafLxGRjcBoYHFvA1ZKqb7W0BwiFz91HcxL1FZWUhyfOfIoqtMEq94XwIuv0xtfsJq8PRkejpgwVJVC9uj+CXCAqW0KkEKjtdBJDZbDIRRlJrI1MJy8IdxE0BcIEwwbksQHDhe4Oh7psygrkTdXJIAzXhMspVS/6u0ogmcCtwHnGWMaI9Zni4jTfn4YcASgk8QopQaFel8AD36c8R0Pmx1JRKhJKCItsBv8jV0fcAgL+WpxYMCT1ul+2cnx7HLpUO21viDJ0pJgdVyDBVat37pAjjVaZbC5H6IbeGp91vxXSaYevOmd7luclUBlU4hQevGQ77emlOpfve2DdR+QDLzdZjj2E4HlIrIUeAa4zhhT2ctzKaVUv/A11OAUgzMhrdvHBNNHWU+GeF8PR5P9qz4hs9P9RASTYV+zoZxg7VeDldbpvkVZiSxrzAIThsrNfR/cAFTXkmCFqiEhq9N9W4Zqr0scqQmWUqpfddlEsDPGmMM7WP8s8GxvylZKqVgJNFQA4EzI6PYxcTmjYTs07/6S+GGT+iq0ga/RunZdJVgA2TnDqK5OIW0IJ1h1kTVYnfTBAqsG66PQMOsvd+VGyBnb9wEOMLU+a+DihEB1l5+xlqHay+MKSSt7z5qg2dmr2x6llOqWaI4iqJRSh4RgQxUAcUndT7DSCu2h2suG9lDtDl/3arDAugHeGM4lPIRrF2p9AbKcLaMIdp5gWUO1D7MWhmhSWtNk1WDFB6qhi3+AFGYkIIJ1zcI6EbhSqv9ogqWUUm2EG2sAiE/uvI9HpBHDstlhMgjs+bKvwhrwAqEwXn+1tdCN2r+izEQ2m+GE9w7NZAGgqsHPcHeDNepiJwM2gJWQ1pJIkzt9yCZYe+usvmdxzVVdJvHWUO1e1vjtEYqHePNdpVT/0QRLKaXaCDVatTCe5K5rYVoUZSayKTwcV9XQvYmravSTLnXWQjdqsIqyEtgcHoarYRf4G/o4uoGpvL6ZPFcNJOV2uW9GYhzJHhd74gqHbJ+iigY/QhiHr+sEC6zP2JKGlqHadawtpVT/0ARLKaXaCNlNBB3etG4fkxjvYqe7kJSGLWDNWDHkVDUEyJA6wuLucALYSEWZEU3eKofmzW95XTM5Ug3Jw7rcV0TsZoLDh3QNVo67GTGh7iVYmYksq4yzagiH6DVTSvU/TbCUUqqNsM9qIkgPEiyA+qQivOF6aCiPflCDQEVDM+nUEfSkgUiX+2ckxrE7rsA+eGje/O6tbyYjXNWtGiywmgmu9mdD/W7w1fZxdAPP3vpmDkuw+6x1s59fdVOQYFqxNhFUSvUbTbCUUqoNh6+aMA6I67oWJlI43R5YdYgmC7tqfAyXSkzS8G7tLyI4Mg+zFoZgk7dgKExFg5+UYEW3arDAHqq9yR6efAgmDHvr/Rzhsf8Bkprf5f4jW4dqHzEkP2NKqdjQBEsppdpw+WtpciSCo2e/IuOHHQGAb9favghrwNtR3USBlOPKHNntY3KzsiiXjCF587u33k+CaSIu3NTtBKs4y+rrBwzJa7ajuokx8VYTXtJGdLl/cZY1WfhudwFUb4VQoC/DU0opQBMspZQ6QFJgL/Xu7g/R3iIz/3CajZu67UM4wXLsxZne/QSrODOBjaFcwkOw1m9rZSPDxZ43LDmvW8cclpXEFpOLQYZcghUOG7ZVN1HkqgBxduuaFWYk4BDYbIaDCUHVln6IVCk11GmCpZRSEcJhQ0ZoL42e7tUoRCrKTqHU5BLas74PIhv46it34sHfrZqFFkVZiWwKD8MMwaHat1Y2Mkp2WguZo7p1TFFWAs3EURc/bMg1Rd1b34w/GGa42QMp+d2aNDje5SQvzcuaZnuo9iF2zZRSsaEJllJKRdhT18xwqSCU1L0ahUhFmYlsNTm4aofmf8kDezdbT1ILu33MSHskQaevEpqq+yawAWprZSOjHC0J1uHdOibZ4yYrKZ5drvwhlyyUVjQCkBnY1aMkvjgrkc/r7RrpIdhvTSnV/zTBUkqpCDsqqsmmBmdaQY+P9cY5qXQPJ7lpx5Abqt0XCJFaZ9/wZ4/p9nHFWZFDtQ+tm98Ne+qY6Cm3RhD0pHT7uKLMBDabYVYTwSH0OVu7qxYhTHLtOsgZ2+3jRmYmsLzSifGkDblmlUqp2NAESymlIlTsKsMhBm929/9DHqkxMZ940wSNFVGObGDbWF7PWNlC0JUA6cXdPi49wW1NnAtD7uZ35fZaxju3Q9boHh1XkO7lS38WNNeAr7pvghuAVu+oZYK3Goe/HoZN6vZxRZmJ1PqChNIPG3JJvFIqNjTBUkqpCPW7rRuw1GHdTxIihVLsxKx6aDUT/GJrNRMcpQSzJ/Ro9EURwZlpX+vKzX0U3cBT0xhgd2U1hf71kH9Mj44tSE9gdVO6tTCEBm1Ys7OW09J3WQs9SLCKs6yh2mu8I6BiaE5orZTqX5pgKaVUhPCu1QB48yYe1PGuzCIAQhWlUYpocFhRuosSx2biR0zp8bG5GanslXSo2doHkQ1MS7dVM0k24TQhKJzWo2Pz071sDdtzYVUPjWtW3xxk9c5apsetB5cHciZ0+9giO8Ha4xwGtdt0qHalVJ/TBEsppSJ4qtZR70ju9rxEbSXkWoMVtNSEDQXGGJo2fkI8AWTUKT0+Pj/NS1k4CzNEkgWA99fu4WT3Kow4oPC4Hh1bkO6lzNij4g2RmtKPN+wlEDJMaPocRn4F3J5uH1uYbg3VvjWcCSYMtTv6MFKllOplgiUis0Vku4gstR9nR2z7uYhsEJF1InJG70NVSqm+FQyFGebbRGXiKBA5qDKGZWdRaZJoLh86zd1W7ahlctMnhBxuGHlCj4/PsxOscNXQSLCMMby7djfnxX+BFB4HiZk9Oj4/zUstiQRcSUOmBmvel+WMi9tDQs16GHVaj46NcznIT/eyrtluVjlErplSKnaiUYN1tzFmsv14DUBExgOXABOAM4G/iogzCudSSqk+s3bbXibIZgI5JQddRn66lzKTg6kqjV5gA9yry8o41/kJoVGnQ3xSj4/PT/Oy3WQhtdshHO6DCAeWL8qqSapay4jAJhh/Xo+Pz0vzAkJ1fN6Q6IPlC4R4dflOfpi1BBCYeGGPyxiZkciqxjRroaYsqvEppVRbfdVE8HzgSWNMszFmM7AB6Fkjc6WU6melKxbgkQDp43vezK1FfprVfCuuflsUIxu4mvwhahbNJVtqiJty5UGVkZ/uZZvJxhEOQP2uKEc48Dz6USnXxr2JcXmgZGaPj/e4neQkx7PbkTMkamNeXLqd5qZ6vtbwKhxxOqT0fI66/DQvy2vs5H8IXDOlVGxFI8G6QUSWi8g/RcSufycfiPwX0TZ73QFE5FoRWSwii8vLy6MQjlJKHRz/+vcJI2SMPemgy/C4nVS4hpPs2zkkamP+9cEq/iv0JE1po62b34PQUoMFHPI3vyu317BhxSecL/ORKd+BhIyDKie/pR9W9ZZDei6sRn+QP7+znl9lvIu7uRJm/PigyslP97KzIYxJGgbVWoOllOpbXSZYIvKOiKxs53E+8AAwCpgM7AT+2NMAjDEPGWOmGGOmZGdn9/RwpZSKilpfgDHV89meNLHHfWLa8iUMw2UC0Lg3StENTKt21OD58P8x0rEH7zf+3KPh2SOlet1UuHKthUP45tcXCHH7Uwu5N+5+SMyCGT856LIK0hNY78+AQOMhPefa7JdWMaxuBZf65sKEC2BEzwYEaZGf5gWgOTF/SI1WqZSKDVdXOxhjvtqdgkTk78Ar9uJ2oDBic4G9TimlBqRFiz7jNCll29if97qsUHI+NGD19UjK6X1wA1BFfTMvPnIntzteo/HIq0ko6vngFi1EBNJGQC2H7Kh4gVCYW+Yu5vrK/2OUcxtc8FyvEvn8NK/Vp8iFdc0Ss6IW60DxyEeb+WTJEl5Lvh9HYj6cc/dBl5WfbiVYdZ7heKpXRitEpZRqV29HERwesXgB0PJb6yXgEhGJF5Fi4AhgYW/OpZRSfcn/2T8I4CLvxKt7XZYj3fr/kqk5NPthlVU08Pg9v+Sn/vupzZ9Bwrl39rrMzPQ0qiX1kByAoM4X4Mf/ms8F637KWc5FcOb/weE9Gwmvrfx0L2UhO0E7xD5nobDhz+98yXOvvMLLCb8jyRmAmU+AN73rgzvQUoO115UDNYfeYCq+QCjWISilInRZg9WFO0VkMmCAUuC/AIwxq0TkKWA1EAR+YIzRb79SakDavKOcr9S9yebsUxidktvr8hKyRgLg27sVb69LGziMMbz22XKcb/yUG/mE6hGnkXb5v8EV1+uy89O8bN+SRdoh1gfr4417eeHpf3Nr0wMUuCrh7D/B1O/0utyCyH5rNYdOA5GyykZuf3oxk7Y+xvPxz+FMzEUufxZyxvWq3GGpHhwC200W48IBqNsJqe12DR9UGv1B7nl3Aw8v2MSPTj2CH552RKxDUkrRywTLGHNFJ9t+D/y+N+UrpVR/+PzlB7hIGgmf+v2olJeZNYxGE09Teekhk2CtLN3N0uf/yNnVT5AsPqqO+ynpp/8UHNGZgSMvzcuWUCbjqsv6bHjb/rSxvJ65r77JURsf4E7nIppSi3F887GD7kPUVl6alxoSCToTcB0CNVg1TQEeeG8duz6Zy387n6bIvRMz7jzk3L8c9EAgkdxOB7kpHjYHWmr9ygZ1ghUIhXlqcRn/fPtzzml6mTfiF/PTd65i9LDLOGPCwU2SrpSKnt7WYCml1KC2dU81x+34F2VJEygcd/DDs0canu5lp8kguXpw3/gaY1i6bgMb3v47M/Y+xeVSxY7MY0md+RfSc3tXo9BWfpqXHSYTalZYo+Id5ETPsWSMYenWSha8/QKHb3mS250LaY5LJHDCz/GeeDO44qN2rrw0DyDUxeeQPoibVe6saeKxD9fRsOg/zDIvUuzaRTDjCDjrWeSIbnUB77b8NC/rfKnWwiBNSisb/Dy5aCtvfvIF5zQ8xyvu9/C6fRCGRz1/4oInMxh27QUcWZgW61CVGtI0wVJKDWkLX7iPb8peqk+/N2o39XmpXr40WYyvHZw3cY0+H1+89yyy9HGmNn/GURJiW+pRNJzzKHmjT+6Tc+ane1lmsnAEm6CpKiq1Fv1lT62Ptz9eROjzxznF9y4/dJTji0uiceqPSTjxh33yWpI9bpI9LiqcOaQPsmQhEAozb105Cz6eT9GWZ/ieYwHpUk9T9iQ49U5cY8+JWs1opPx0L8u3pFgLg6wp6srtNTy24EsaV77CN/iA/3IuQ9yCTLoITrgJ4hJJ+NvJPMjdXPVoFnN+cBqFGQmxDlupIUsTLKXUkLV1TzXHb3+EbYkTKCg5K2rlZifHM58sjm5cEbUy+5oxhhXLlrB3wT+ZWP4aJ0gVVZLK+uLLKP7af1GQP7FPz5+X5mVH5FxYAzzB8gfDvL+ilK0fPcnEPS9zmWM1YYTdOcfR+JXfkTDpfHD3bQPR/DQvO4JZHF6zuE/PEy0b9tTz4mdrafziGc4Jvs1vHBsIuVw0H342HHcN3sNO7tOay7w0L68uF0xqOjIIav2qG/28vGwHSz97n5K9r3K782NSnQ0EEofhPOomOOYqSC9q3d/xzYc57PGLuD30ALP+mcRz359OaoI7ZvErNZRpgqWUGrIWv3APF8peqs68L6o3dk6HUBufS1LgfQg2R7VpWLTt2LOXVe/8m5wNT3NkeDUhI6xLPp6aKVdy+PQLSe+n2HOT49lJxKh4eZP75bw9tXJbNZ/Nf4P0L5/ia+ZjzpAmqrwFVEy+lczjr2J4WmHXhURJXpqXLbvSwbcHAj5we/rt3N1V6wvw2rLtrP7kVY6seJ3rHAtJlGbq0w4ndNz/4DzyEhJ6Oe9cd+WneQmGDcHkAtwDdL61QCjM/C/LeXvhctI2PM8F8gFXOLYRjIsnPObrcMzluA87uf0avsNPQ077FWe/+1uW1xRxw5wEHr16Gk7H4Gtuq9RgpwmWUmpI2r7Xqr3amjSJEZPOjHr5zQnDrXmdandARnHUy++NpuYgixa8QXjJY0xpmMfXxMcOZz4rxt3MqNO+w/is/ksSWricDgJJBeBnwPWPqahv5q3PltK0+AlOaniL7zh20iweKovPJuHE75BedEJM+ozlpXn4ckuatVC7HTJH9XsM7QmFDR9t2MsHn3xK1sZnOVc+5BLZiz8uidD4b8G0WSQVTOn3a9YyF1a9ZzjpA2yy4dU7anlh8SZqlr7E6YH3+J1zGS5nmMacYzDTbsE14QLwpnVd0PQfw64V/HTVf7h6Yx53vZXKT88c2+fxK6X2pwmWUmpI+vz5v3CuVLL3jL/1zY1eaoGdYG0fEAmWMYbla79kxwf/ZOzOlzhRdtCIh03DTid7xnfIm3ASeTEeWCIxLYfm8njiB0DzrUAozPzV29mw4CnG7HyJi2UZTjHszjyaxuN+RsLkixgenxzTGPPSvHzYnAZxWElpjBOsDXvqePmztTQvfZqvBd7jV471hB0O6vNnYI67krixX+/zZpOdKbDnwqp05ZJe/VHMB1PZW9/Mi19sZ/nCeRxd9Rrfd35MmjTgS8pBjvoRHHUZCdmje1aoCJz/V6RyEw/uvp9zPshmYl4qXy8Z3vWxSqmo0QQrmozBmDDhUIhQKEQ4HCRkPzfhEKFgkJAJYYJh62coiAkbAMQhgANEMIi9LIg47N//gjiciIj9cCAOQRDE4dh/nQiO1n3tbQ4HIg4cgrWM9XtYBuFIXSo2jDFtliOed7ZfB8dY20yH2zo+V+/jqKqsYtq2R9iUdCSHTfpaxyfuBVf6CCiDcIyHHd9ZWcsX7z5F2tonmRZcwpESZlNCCRsm38hhJ13GRE9sk4RIeekJ7CrPYmQME6wvd9Xy4fx3SVozl9PDH3Ka1FMbn0PVpBvIOuFqcgdILRFYg6nsMLGdbLiqwc8rS7ey+bOXObrqDb7vWEK8BKhLPZzg1Nm4Jl9CSsrAuLlvqcHaKdmMCjTEZDCV5mCI99bs4e2Fy8ne/CIXOj7gO45thOLiCI3+Oky5HM9hp/RukI+4BLjkP8Q/dAqPyd1c9Ew6h+ecxZhhA+e73u+MgaCPUHMjzU31+Bob8Pt9+PwBwsGAdY8WCmBCIcKhIOFw0LpHCwUIGaz7MhFEnCDY92Mt91fOiPss+6fDZd+TOcHhxOF04HC4cDidOMSJw2k/d1gPcTpxOpyIy4XTfu5wOnE6rWVxuAblyKpDmSZYnVj23lOw8CGc4QBO48cZDuI0ftwmgMsEcBHETYA4E7B+SggBnPZjoAobIYyVyBmsXxyw/7r9l60vdVgcrdvMAQ8wWNvF3ifyBwCd3EB3sbFbJPJmvZfH91wHd/ndOu9Bn8k+/uDj7t1rht68b739U9Gb2NMJkiJN7Drr3332RyspZwQAjeWlJPXJGTrmC4T45NMPaVr4GNNq3+JsqaXSkcH6w69mxGnf47C86A6xHi356V62hjIZUb2t15+PnqhpDPDWohXULnyCr9S9yXccZQTETcWIrxGccQ0ph5/aJ6Pa9VbLwCBGHEhVab+dNxAK88G6cj7+eD55W57nPMdH5Eg1Pk8a4QlXwtTLSc47asDdECbEuUhPcLMlmMl06LfBVIwxLN9WwwuLN1G3/GXOCr7Pnc5luFxhmnKPhqk/wTnhQpzdaQLYXakFyCX/YdijX+dRx++49d9u/vZfZzEsdeD10+tSOIRprKChahf1lbtoqq3EX19FoLGaUGM1pqkGaa7B4a8jLlCHJ1SHO+zDbZqJDzcTRzMe/IB1b5ZgPwajoHEQxkEYISwOQjgwtKyzH2L9NMh+6/fdn9F618YB64D97gT3bTMQcUcYsb9pZ91+d4sHlkHrOiKe738sbfb9kKPZ+7V7mXVC7FuEdIcmWJ0I+RtJDlYTEjdBRxwBZyJhRxxhZxxhRxzG6cY44jBOax3ixjic0PpfCweIE4n86XAireusWiWLARO2/x1vf7iNaV3GGOuj2boPmJbnxl4fuW6/48PW59XeZlrSqjb7GmN9HY0xSMt//014X1ktx9Cy74ExCmEremO/pgPs+zp19LfXIJ3eXHX2N9t0o/z9o9h/yXR5XHcL7Xi/Drf04GbkwFO1f2xHr7PzQPbfeMBusv9T051zd3JqI52cq7M4urmyo5dpCo9lwsQTO9jaezkZ6VSYZExFWb8kWMYYVmwopXTevxi1/UVOYRNBnGzOnEH4K1eTc9Q5ZDgH9q/8vDQvZeFMTNXyPk+wQmHDR+t2sHb+Mxy2/UW+IUtxS4g9aZOon/ZDko65mGHe9D6Oonfy0jwEcNHgGU5S5cY+P9+qHTW8/ulKWPE0Z4be5w5HKSGnk4aRp8FxV+I54gxwxfV5HL2Rl+bly+Y0a6GmrE8HU9lV4+P5z7exYvE8jq15gxvtJoDNSbk47CaA3p42AeyJwqnIt5/k8P9cyp8afsGND/i469rzB8bw7cZAcy3U7sDUbKdh71Ya9m7DX7ObUP1epLGcuOZKEgKVJIdrcWBIgnZ/l9YaLw0k0OBIosmRSI0zk6DbS8jlIez0YFxejNsLLi8S50XcXpxxXpxuDy63265Nclk1UU63XaPkwuF02zVOYrdCCBEOWy2VjAljwvbDGAiHCBvAhOx1YSsxbFkOhzDhYMTzEBjrORHPW9Zb66xjMfvWGROCcNi+f7PXmzDScpwJ2dvsNMy0pmPA/n+z90uhpGVd5P2Qdcez7290O/vst032O46IbQZpk03tn1oduP7AdWHvKI7IHTy1sAP7r22MHX3mLDhzVqzDUEoNQnlpHnaYTHKr+ra52+7qepa89yyJq+dyXOAzSiTItvjD2TTplxSdNIsjkrP79PzRlJ/m4WOTh6PpfWis7JPahU3l9cyf/y7eVXP5WugDTpR66uKzqB73PbKmX01OzuAZECA3xYNDoDy+kKSKDX1yjj11Pl75vJTtnz3PcXVvc6PDSkRrMycQmva/OEu+RUpiVp+cuy/kp3lZXm4nzhXRT0p9gRBvrtrFO4tWMHzLi1zkmM/1dhPAllEA43vbBLAnRp2K44pnGfmfS/mH72buvncp0y78EWdMzOu7LgLGWN/f2u2EarZTv2crTRVbCVZvR+p2EN+4i6TmPXhME2DdSrckTzUmgb0mlUpSaHDl0hw/jpA3C0nKIi45F3dKNvHJGSSkZJKYkk5yaiapiR5SXLFsiK3UgTTBUkqpPpCX6uUTk8OIutKol93kD/HZwo9pXPhvjql5i7OlmhpJYUvxJeSf8h0KRh4d9XP2h/y0BDaYfGuhfB2MPD4q5VY2+Hl30QrqFj/JcbVvMsuxhQBuygu/SmD6LJKP+CrJA7x2rz1up4O8NC9bGU5xxTtRG7TBFwjx1qpdLPv0bQ7b/hIXOj4lTRpo9GYROvI63FMuJyV3fBReQf/LT/eyYIMTk5qHlK+NSpnGGBZvqeKFRZtoWvkqXw+/z912E0Bf7jF90wSwJ4qm47p+Aa6nvscdOx9k09Mv8O83z+HwUy5nypElxLt6mOz5G6F2O4HKMup2b7aSp6qtOGu342ncSYp/N3GmGbCa5KUCicbBbtLZbdLZzTDq4kpo9g4jnDwcR1oBnowCUnIKGZaewvBUD0VJ8Tq8vBrUBt9fFKWUGgTSEtxslBGc1bgI/A0Ql9ir8vzBMJ99sYyKhU9y+J63OFk2EcRBacZ0OP4qco8+j9QB3jyrK0VZCWyiwFooX9urBKvJH2Le8o3s/PRpDt/zBhfISlwSZnfqROqm/R/Jx1xM3gCfzLg7Rucms2J3Lif566w+RekjD6qcUNiwqLSS+Z8tInHts5xtPuA8x24C7nh8o86GYy8nofhkGISJaKSC9AQa/SECmWOI273qoMsxxrBmZx0vL93Kzi/e4oSm9/mpczEp0khzUi7Oo2+Eyd/G05dNAHsifSTea98ksOJ5kt77C1dV/wNe/gfbX8pmr7eIUEoh7oRUXJ4ka7CsoB9HuBmHvw5prMDtqyDeX0VioIpEUw+AG8jA6te9hzR2mkx2Sx51cUfhSxhOKCUfd1oB3qxCUrPyGZaeSFGql6MS3DrAljrkDe7flEopNUCJCLWpY5E6A3vWQMGUHpcRDIVZsupLdn4yhxE7X2cG6wAoSxhH6fhfUHjSVRyekhvt0GMm3uUkMXskjbUJJOxc1uPjfYEQH67eyvaFL5K/7VVO5QviJUC1ZzjV468n8/jLyR2kNS8dGTMsmbfXj+AGN7B9cY8SrJak6tPFi3CtfYkTgx9zm2MzYRHqhh1L+Ng7cI8/D7cnpe9eQD8bP9x6LbviD2NE2ccQ9Peo39jG8npeX7aNDZ+/z+Ta9/iO81OypJaAJxHGnQdHfqt/mwD2hAjukgvJKbkQ/67VlC58Fd/Gj0ms30Lm7jUk4CNegoCVNDXjph4PlSaFPZJKg2skvvjJ+DzZBJLycKaPICFrBCk5I8jNSGFUqofJ8S5NnpRCEyyllOoz7vxJsBbM9s+RbiZYDb4AS5d8RN2yV8jb8wFTzXocYtgZX8ymMTdTOOMKCrMHzlDh0TahIJ1Fq8Zx4uYPujXQxd76ZhYtX0nV0pfJ2/0BM1iBRwLUujOo+P/t3Xd4XNW18OHfmirNqBfLVreNbXCnuNANCSWXFgIBEjo34Uu7SUghPSHk5l5SuUkgEAgEkhB6DS30GmywsXHvli3Zsq1idU3f3x/njCzbarZGGmm83ufRozl9zxwd+6xZe68z8bMUnXgFOWVzRlxFu0SZPyGfu94oI5qWhrP6fZh+UZ/rtwcjvLthN+uXvYtr8yucHHmPrzu2ArAnfyaho3+KZ+ZFZOcM/8Omh8OssmycDmEJR1EeDcK292DCqb2uH40ZPqpp4vXlVTSv/BfT2/7Npc6lFEoLEY+X6BFnwuxLcE86E9yjp0KfZ+xUJp+/98uGaMywpyNEdWsHxhgcLjdOhwOXUyjze5ji0dtFpQ7GoK4YEXkYmGJP5gBNxpjZIlIJrAH761ZYaIz5wmCOpZRSo83EI6axefVYCpc/Q+a863tcJxyNsXrDRnYufwXX1nc5sm0hJ0o9AFu9U9g08cuUn3gZ40pmDGfTk2bBlEJeXzaNUxv/CrtWw34Zp2AkyorNO6ha+ipmyzsc2fEBn3BUAdDoHUfD+MspmvspssafRNZIzCIk2NzKPJxON5syjmXyqifhzP8Gp7treTRmWFPbwvLVa9iz5nVK6t/lRPmIM6WFGEJTwSyCR38e74xPkpuiQVV3Po+LGSXZ3Ffr5JNOD7Lmn/sEWMYYtjZ08O6GXVSvXoi35l1mR1bwFcdqvBImlJZJZOLHYfq5uCadiStFsntOh1CQ4aUgw5vspiiVEgYVYBljLo2/FpHfAM3dFm8yxswezP6VUmo0O/2oIh56eh7Xb38WU7MEKT2W+uZWtq5ZQtPmxbB9KZVtS5kl25kFdJJGde4cNh35H5TPv4CKnJJkv4Vht2DKGH7hPoUb5VEcz3yT3SfeRE1DKw1blmN2rqCsfQWz2cRxEiOCk90509k55TuMOfaT5BUdlbKZqt6ke5x8fOoY/m/9yfxR3qXpme+yruhcdtTW0lazkpzG5cw2a/msow6ADk827aULiMz6D1yTzyBvFFUATJTPzC3jO4+vYOOEszliyf1s8M1mZWc+9TUbcexeyfjgOs5zrCVLrCp3rdnjYcp1MO0cPBUn4OkWwCqlVE/EmJ6eVXSQO7E63G4DTjfGbLAzWM8aY6YfzH6OO+44s3jx4kG3RymlRorf/3MRlyy+lAJppokssk0rbokC0E4627NmESs/iXGzPkb2hDn7ZB8OV48vqWHhE7/nFtddOGXv/1Eh3Oz2TyFYeiJjZ30c/8QTwDvcj3EeebY2tHPRH//NN4O38xnX6/ssa3Xl0TLmOPyTTiZn8kkwbtbIHB80jEKRGNf85X02bNrEQ56fMdFR27UshtDqr0QqTiDzqNORypMhM3XGOSqlEktElhhjDhgDkKgA6xTgt/ED2AHWKmA90AL80Bjzdn/70QBLKZVqYjHDc+8uIW3ZX8g2zXiyxpBeNpPiKfPJLJ5sPZBcHWDdzlbWr/mIse1rGZOdwdiJM/AWTRn1VeyGSmsgzNsb6kmrW0GFq4GxYwrxF0+FzHGHXVZvICLRGG9vrGdPcwuTOj6iLEvIKSyzuqQOsuKnUurwccgBloi8AoztYdEPjDFP2+vcAWw0xvzGnvYCGcaYBhE5FngKmGaMaelh/9cD1wOUl5cfu3Xr1oN6Y0oppZRSSik13HoLsPr9KtAY8/F+duwCPgUc222bIBC0Xy8RkU3AZOCA9JQx5i7gLrAyWP21RymllFJKKaVGqkT0Tfk4sNYYUxOfISKFIuK0X08AJgGbE3AspZRSSimllBqxEtGZ/TLgwf3mnQLcLCJhIAZ8wRjTmIBjKaWUUkoppdSIlZAiF4kiInXASBuEVQDUJ7sRatjo+T586Lk+vOj5PnzouT586Lk+vIzE811hjCncf+aICrBGIhFZ3NPgNZWa9HwfPvRcH170fB8+9FwfPvRcH15G0/nW+sBKKaWUUkoplSAaYCmllFJKKaVUgmiA1b+7kt0ANaz0fB8+9FwfXvR8Hz70XB8+9FwfXkbN+dYxWEoppZRSSimVIJrBUkoppZRSSqkE0QBLKaWUUkoppRJEA6w+iMjZIrJORDaKyHeT3R6VOCJSJiKvi8hqEVklIl+z5+eJyMsissH+nZvstqrEEBGniCwVkWft6fEissi+vh8WEU+y26gSQ0RyROQxEVkrImtE5Hi9tlOTiNxg/xu+UkQeFJE0vbZTh4jcKyK7RWRlt3k9Xsti+b193peLyDHJa7k6WL2c61/Z/44vF5EnRSSn27Lv2ed6nYiclZRG90EDrF6IiBO4HfgEMBX4jIhMTW6rVAJFgG8aY6YC84Ev2+f3u8CrxphJwKv2tEoNXwPWdJv+BXCrMeYIYA/wn0lplRoKvwNeNMYcCczCOu96bacYESkBvgocZ4yZDjiBy9BrO5XcB5y937zeruVPAJPsn+uBO4apjSox7uPAc/0yMN0YMxNYD3wPwL5fuwyYZm/zR/u+fcTQAKt3c4GNxpjNxpgQ8BBwQZLbpBLEGFNrjPnQft2KdQNWgnWO77dXux/4ZFIaqBJKREqBc4A/29MCnA48Zq+i5zpFiEg2cApwD4AxJmSMaUKv7VTlAtJFxAX4gFr02k4Zxpi3gMb9Zvd2LV8A/NVYFgI5IjJuWBqqBq2nc22MeckYE7EnFwKl9usLgIeMMUFjzBZgI9Z9+4ihAVbvSoDqbtM19jyVYkSkEjgaWAQUGWNq7UU7gaJktUsl1P8BNwIxezofaOr2D7de36ljPFAH/MXuEvpnEfGj13bKMcZsB34NbMMKrJqBJei1nep6u5b1vi21XQe8YL8e8edaAyx1WBORDOBx4OvGmJbuy4z1DAN9jsEoJyLnAruNMUuS3RY1LFzAMcAdxpijgXb26w6o13ZqsMfeXIAVVBcDfg7sYqRSmF7LhwcR+QHW0I4Hkt2WgdIAq3fbgbJu06X2PJUiRMSNFVw9YIx5wp69K96lwP69O1ntUwlzInC+iFRhdfU9HWuMTo7drQj0+k4lNUCNMWaRPf0YVsCl13bq+TiwxRhTZ4wJA09gXe96bae23q5lvW9LQSJyDXAucLnZ+/DeEX+uNcDq3QfAJLsakQdrMN0zSW6TShB7DM49wBpjzG+7LXoGuNp+fTXw9HC3TSWWMeZ7xphSY0wl1nX8mjHmcuB14GJ7NT3XKcIYsxOoFpEp9qyPAavRazsVbQPmi4jP/jc9fq712k5tvV3LzwBX2dUE5wPN3boSqlFIRM7G6t5/vjGmo9uiZ4DLRMQrIuOxCpu8n4w29kb2BoNqfyLyH1hjN5zAvcaYnye3RSpRROQk4G1gBXvH5XwfaxzWI0A5sBW4xBiz/wBbNUqJyALgW8aYc0VkAlZGKw9YClxhjAkmsXkqQURkNlZBEw+wGbgW6wtFvbZTjIj8FLgUq/vQUuBzWGMx9NpOASLyILAAKAB2AT8BnqKHa9kOsm/D6ibaAVxrjFmchGarQ9DLuf4e4AUa7NUWGmO+YK//A6xxWRGsYR4v7L/PZNIASymllFJKKaUSRLsIKqWUUkoppVSCaICllFJKKaWUUgmiAZZSSimllFJKJYgGWEoppZRSSimVIBpgKaWUUkoppVSCaICllFJKKaWUUgmiAZZSSimllFJKJYgGWEoppZRSSimVIBpgKaWUUkoppVSCaICllFJKKaWUUgmiAZZSSimllFJKJYgGWEoppZRSSimVIBpgKaXUCCEilSJiRMSV7LakOhG5RkTeSXY7RhoROVlE1iW7HUopNZppgKWUUmpUE5GbRCQsIm3dfm5MdrtGI2PM28aYKYner4jcJSLrRCQmItckev9KKTWS6LekSimVICLiMsZEkt2Ow9TDxpgrkt2IoZICf1sfAQ8Dv0h2Q5RSaqhpBksppQZBRKpE5DsishxoFxGXiMwXkX+LSJOIfCQiC7qt/4aI/K+IvC8iLSLytIjk9bLva0VkjYi0ishmEfl/+y2/QESW2fvZJCJn2/OzReQeEakVke0i8t8i4uznfUwUkddEpEFE6kXkARHJ6basUUSOsaeLRaQu/r5E5HwRWWW/3zdE5Kj9Pp9vichyEWkWkYdFJO3gP+mDJyLftT+XVhFZLSIX9rKeiMitIrLb/ixXiMh0e5lXRH4tIttEZJeI3Cki6QM8/n32+i/bbXhTRCq6Lf+diFTbx1wiIid3W3aTiDwmIn8XkRbgGhGZKyLv2Z9zrYjcJiKebtsYEfmSiGywj/cz+9z92z7GI93X76XNC0SkZiDv72AYY243xrwKBBK9b6WUGmk0wFJKqcH7DHAOkAMUAc8B/w3kAd8CHheRwm7rXwVcB4wDIsDve9nvbuBcIAu4Fri1W5AzF/gr8G37uKcAVfZ299n7PQI4GjgT+Fw/70GA/wWKgaOAMuAmAGPMJuA7wN9FxAf8BbjfGPOGiEwGHgS+DhQCzwP/3O9G/hLgbGA8MBO4pscGiJxkBw+9/ZzUz3vY3ybgZCAb+Knd/nE9rHcm1uc32V73EqDBXnaLPX821udZAvz4INpwOfAzoABYBjzQbdkH9n7zgH8Aj+4XfF4APIZ1fh8AosAN9r6OBz4GfGm/450FHAvMB24E7gKuwDqf07H+Vg+ZHSj3dn7+OJh9K6VUqtAASymlBu/3xphqY0wn1s3s88aY540xMWPMy8Bi4D+6rf83Y8xKY0w78CPgkp4yTMaY54wxm4zlTeAlrIAB4D+Be40xL9vH2W6MWSsiRfaxvm6MaTfG7AZuBS7r6w0YYzba+woaY+qA3wKndlt+N7ARWIQVGP7AXnQp8Jy9bRj4NZAOnLDf57PDGNMI/BMrqOipDe8YY3L6+OmrKMUl+93sFxtjHrWPGzPGPAxsAOb2sG0YyASOBMQYs8YYUysiAlwP3GCMaTTGtAL/099nuZ/njDFvGWOCWJ/Z8SJSZr/fvxtjGowxEWPMbwAv0H3803vGmKfs9ncaY5YYYxba61cBf6LbObL90hjTYoxZBawEXjLGbDbGNAMvYAXch8wYM7OP87N/sKeUUoclHYOllFKDV93tdQXwaRE5r9s8N/B6L+tvtZcX7L9TEfkE8BOsDIoD8AEr7MVlWNmi/VXY+6u14gOwt63uYd3uxyoCfocVwGXa2+zZb7W7gWeA6+2AAayM19b4CsaYmIhUY2V64nZ2e91hb5Noj+w/BktErgK+AVTaszLo4XM2xrwmIrcBtwMVIvIEVuYxDeszX9LtsxSgz+6W++n63I0xbSLSiPX+q0XkW1iBcjFgsDKVBT1ta7+fyViB73F2u1zAkv2Ot6vb684epsceRNuVUkodAs1gKaXU4Jlur6uxMlTdv9n3G2Nu6bZOWbfX5VgZlPruOxQRL/A4VkaoyBiTgxVQxe/0q4GJPbSlGggCBd2On2WMmdbPe/gf+33MMMZkYWXi9kYVIhnA/wH3ADfJ3nFjO7CCuvh6Yr+/7f0c7wBilQhv6+Pn5P730rWvCqyA8CtAvv35rez+nrozxvzeGHMsMBUroP021jnpBKZ1+yyzjTEZB/G2us61/RnmATvs93IjVnfEXLt9zfu1r/vfFcAdwFpgkn2Ovt/b+xkqYo216+383DmcbVFKqZFKAyyllEqsvwPnichZIuIUkTS7cEBpt3WuEJGp9nimm4HHjDHR/fbjweoyVgdE7GzWmd2W3wNcKyIfExGHiJSIyJHGmFqsroS/EZEse9lEEdm/K9n+MoE2oFlESrACjO5+Byw2xnwOa4xZ/Gb6EeAcux1u4JtYAd6/+/ug9meXCM/o4+ftg9idHytAqQOrYAjWGKQDiMgcEZlnt78dqxBDzBgTwwrSbhWRMfa6JSJyVrdtjXQrYtKD/7DHlnmwxmItNMZUY33eEbt9LhH5MVYGqy+ZQAvQJiJHAl/sZ/2EM8ZM6+P8fKG37UTEY48vE8BtXxd6D6KUSkn6j5tSSiWQffN8AVZ2oQ4ro/Rt9v339m9YhSh2YnVD+2oP+2m15z+C1VXvs1jd8+LL38cufIGV+XiTvZmkq7ACtNX2to9hjZvqy0+BY+x9PQc8EV8gIhdgFamI39B/AzhGRC43xqzDynb9ASvjcx5wnjEm1M/xhpQxZjXwG+A9rG5yM4B3e1k9CyuQ2oPV3bEB+JW97DtYY88WilXN7xXscVL2WKpW9nbb7Mk/sLp5NmIVn4h3Y/wX8CKw3j5mgH66cWJ1W/ysfcy7scqejxYvYWUDT8AqvNGJVVhEKaVSjhizfw8EpZRSQ0VE3gD+boz5c7LbogZHRK7A6j74vV6W3wfUGGN+OKwNU0oplVRa5EIppZQ6BMaYvye7DUoppUYe7SKolFKHCbEeeqvFCQ5zIvL9Xv4OXkh225RSKhVoF0GllFJKKaWUShDNYCmllFJKKaVUgoyoMVgFBQWmsrIy2c1QSimllFJKqT4tWbKk3hhTuP/8ERVgVVZWsnjx4mQ3QymllFJKKaX6JCJbe5qvXQSVUkoppZRSKkE0wFJKKaWUUkqpBNEASyml9hOOxpLdBKWUUkqNUiNqDFZPwuEwNTU1BAKBZDdFjTJpaWmUlpbidruT3RQ1ijS2h/jOr//AFeVNnHrtz5LdHKWUUkqNMiM+wKqpqSEzM5PKykpEJNnNUaOEMYaGhgZqamoYP358spujRpH3tzRyW+x/8G6NEN75Wdxjj0p2k5RSSik1ioz4LoKBQID8/HwNrtRBERHy8/M186kOWl1bsOt1/Tv3Ja8hSimllBqVRnyABWhwpQ6J/t2oQ9GxZydeiQBgti1McmuUUkopNdqMigBLKaWGi2PPFgC2SimFrasgEkpyi5RSSik1mmiANQAiwje/+c2u6V//+tfcdNNNyWtQNwsXLmTevHnMnj2bo446qqtdb7zxBv/+978Peb9bt27lmGOOYfbs2UybNo0777wzQS1WamSLBTsAqMqeg9uEoW5NkluklFJKqdFEA6wB8Hq9PPHEE9TX1yd0v8YYYrHBlYO++uqrueuuu1i2bBkrV67kkksuAQYfYI0bN4733nuPZcuWsWjRIm655RZ27NgxqLYqNRpItBMAM+5oAFqrVySzOUoppZQaZTTAGgCXy8X111/PrbfeesCyuro6LrroIubMmcOcOXN49913Abjpppv49a9/3bXe9OnTqaqqoqqqiilTpnDVVVcxffp0qqur+fa3v8306dOZMWMGDz/8MGAFSAsWLODiiy/myCOP5PLLL8cYc8Dxd+/ezbhx4wBwOp1MnTqVqqoq7rzzTm699VZmz57N22+/3Wc7r7zySo4//ngmTZrE3XffDYDH48Hr9QIQDAZ7DQR///vfM3XqVGbOnMlll10GQGNjI5/85CeZOXMm8+fPZ/ny5V3Huvrqqzn55JOpqKjgiSee4MYbb2TGjBmcffbZhMNhAG6++WbmzJnD9OnTuf766w9437FYjMrKSpqamrrmTZo0iV27dvV1GpUaEEfEKnKRVTmLkHHSvFUDLKWUUkoN3Igv097dT/+5itU7WhK6z6nFWfzkvGn9rvflL3+ZmTNncuONN+4z/2tf+xo33HADJ510Etu2beOss85izZq+uxRt2LCB+++/n/nz5/P444+zbNkyPvroI+rr65kzZw6nnHIKAEuXLmXVqlUUFxdz4okn8u6773LSSSfts68bbriBKVOmsGDBAs4++2yuvvpqKisr+cIXvkBGRgbf+ta3APjsZz/bazuXL1/OwoULaW9v5+ijj+acc86huLiY6upqzjnnHDZu3MivfvUriouLD3gvt9xyC1u2bMHr9XYFPD/5yU84+uijeeqpp3jttde46qqrWLZsGQCbNm3i9ddfZ/Xq1Rx//PE8/vjj/PKXv+TCCy/kueee45Of/CRf+cpX+PGPfwzAlVdeybPPPst5553XdUyHw8EFF1zAk08+ybXXXsuiRYuoqKigqKio3/OoVL/sAKt0bBFbzDh8u7WLoFJKKaUGTjNYA5SVlcVVV13F73//+33mv/LKK3zlK19h9uzZnH/++bS0tNDW1tbnvioqKpg/fz4A77zzDp/5zGdwOp0UFRVx6qmn8sEHHwAwd+5cSktLcTgczJ49m6qqqgP29eMf/5jFixdz5pln8o9//IOzzz67x2P21c4LLriA9PR0CgoKOO2003j//fcBKCsrY/ny5WzcuJH777+/xwzRzJkzufzyy/n73/+Oy+Xqek9XXnklAKeffjoNDQ20tFiB8Sc+8QncbjczZswgGo12tXfGjBld7+/1119n3rx5zJgxg9dee41Vq1YdcNxLL720K9v30EMPcemll/b5mSs1UM6YVdq/MCeLzVKGv3lDkluklFJKqdFkVGWwBpJpGkpf//rXOeaYY7j22mu75sViMRYuXEhaWto+67pcrn261XV/HpPf7x/Q8eJd9MDq/heJRHpcb+LEiXzxi1/k85//PIWFhTQ0NBywTm/thAPLme8/XVxczPTp03n77be5+OKL91n23HPP8dZbb/HPf/6Tn//856xY0Xd3qvh7cjgcuN3urmM5HA4ikQiBQIAvfelLLF68mLKyMm666aYen2V1/PHHs3HjRurq6njqqaf44Q9/2OdxlRooZ9T6exN3Oo3+CeR0LIRQB3h8SW6ZUkoppUYDzWAdhLy8PC655BLuueeernlnnnkmf/jDH7qm413hKisr+fDDDwH48MMP2bJlS4/7PPnkk3n44YeJRqPU1dXx1ltvMXfu3AG36bnnnusao7RhwwacTic5OTlkZmbS2trabzsBnn76aQKBAA0NDbzxxhvMmTOHmpoaOjutwf579uzhnXfeYcqUKfscOxaLUV1dzWmnncYvfvELmpubaWtr4+STT+aBBx4ArLFkBQUFZGVlDej9xIOpgoIC2traeOyxx3pcT0S48MIL+cY3vsFRRx1Ffn7+gPavVH8cUftBw+50wrlTcGCgfl1yG6WUUkqpUUMDrIP0zW9+c59qgr///e9ZvHgxM2fOZOrUqV3lzC+66CIaGxuZNm0at912G5MnT+5xfxdeeCEzZ85k1qxZnH766fzyl79k7NixA27P3/72N6ZMmcLs2bO58soreeCBB3A6nZx33nk8+eSTXUUuemsnWN38TjvtNObPn8+PfvQjiouLWbNmDfPmzWPWrFmceuqpfOtb32LGjBkAfO5zn2Px4sVEo1GuuOIKZsyYwdFHH81Xv/pVcnJyuOmmm1iyZAkzZ87ku9/9Lvfff/+A309OTg6f//znmT59OmeddRZz5szpWnbnnXfu0+5LL72Uv//979o9UCWUy85g4UrDXTwVgM4dq5PYIqWUUkqNJtJTZbpkOe6448zixYv3mbdmzRqOOuqoJLUo9d100037FMNINfr3ow7Wo/97LReEnsXzkzpeWrGNjz02k7pjvsrYC25OdtOUUkopNYKIyBJjzHH7zx90BktEykTkdRFZLSKrRORr9vybRGS7iCyzf/5jsMdSSqmh5ooFCYs1VnD8mFx2mALCdRuT3CqllFJKjRaJKHIRAb5pjPlQRDKBJSLysr3sVmPMr/vYViXZTTfdlOwmKDWiuGNBIg4PAGV5PhZTxMTmrUlulVJKKaVGi0FnsIwxtcaYD+3XrcAaoGSw+1VKqWRwmRARO4OV5nZS5yoms6M6ya1SSiml1GiR0CIXIlIJHA0ssmd9RUSWi8i9IpLbyzbXi8hiEVlcV1eXyOYopdRBc8eCRJx7H5HQ5i8nI9oMnU3Ja5RSSimlRo2EBVgikgE8DnzdGNMC3AFMBGYDtcBvetrOGHOXMeY4Y8xxhYWFiWqOUkodEg8hIo69AZbJHW+92NPzoxZSUXswwuvrdjOSiiAppZRSo0VCAiwRcWMFVw8YY54AMMbsMsZEjTEx4G5g4A93UkqpJPGYIFHn3gdyuwsnAhDYdfgUurjlhbW89debWf3cbcluyrCJxYwGlEoppRIiEVUEBbgHWGOM+W23+eO6rXYhsHKwx0qmp556ChFh7dq1va5TVVXF9OnTE3bMdevWsWDBAmbPns1RRx3F9ddfD1gPCX7++ecPeb+BQIC5c+cya9Yspk2bxk9+8pNENVmpUc9jQkS7ZbBySiYB0LL98HnY8OKte/iJ+29MW/xDqP0o2c0ZcsYYLr3rPW668++wbWGymzMs/vnRDq748yLag5FkN2VYrN3ZwiV/eo8NtU2wc0Wym6OUSnGJyGCdCFwJnL5fSfZfisgKEVkOnAbckIBjJc2DDz7ISSedxIMPPtjj8khk8P9JRaPRfaa/+tWvcsMNN7Bs2TLWrFnDf/3XfwGDD7C8Xi+vvfYaH330EcuWLePFF19k4cLD46ZCqb5EY4Y0QsS6ZbDKigrZZXII1W9KYsuGV0vj7r0Tm99MXkOGybbGDj6o2sNPd30F7j0LAs3JbtKQ+5/n17Bl4xpCt58Iz34j2c0Zco8vqeH9LY2seOo3cOdJsPmNZDdJKZXCElFF8B1jjBhjZhpjZts/zxtjrjTGzLDnn2+MqU1Eg5Ohra2Nd955h3vuuYeHHnqoa/4bb7zBySefzPnnn8/UqVMBK9C6/PLLOeqoo7j44ovp6OgA4NVXX+Xoo49mxowZXHfddQSDQQAqKyv5zne+wzHHHMOjjz66z3Fra2spLS3tmp4xYwahUIgf//jHPPzww8yePZuHH36Y9vZ2rrvuOubOncvRRx/N008/DcB9993HBRdcwIIFC5g0aRI//elPARARMjIyAAiHw4TDYaxE5L4effRRpk+fzqxZszjllFMAK/t17bXXMmPGDI4++mhef/31rmN98pOf5IwzzqCyspLbbruN3/72txx99NHMnz+fxsZGAO6++27mzJnDrFmzuOiii7o+n+7mz5/PqlWruqYXLFjA/g+gVmoohKMxPIQxTk/XvPJ8H1tNEc7DZAxWLGYYG9pblj66/cMktmZ4bG3owEto74xVTyavMcMgFjM0toc4zrGO3Ja1sPgeCHcmu1lDak1tKwB59e9bM5bcn8TWKKVSXSKegzV8Xvhu4lP7Y2fAJ27pc5Wnn36as88+m8mTJ5Ofn8+SJUs49thjAfjwww9ZuXIl48ePp6qqinXr1nHPPfdw4oknct111/HHP/6Rr3zlK1xzzTW8+uqrTJ48mauuuoo77riDr3/96wDk5+fz4YcH3sTccMMNnH766ZxwwgmceeaZXHvtteTk5HDzzTezePFibrvNGh/x/e9/n9NPP517772XpqYm5s6dy8c//nEA3n//fVauXInP52POnDmcc845HHfccUSjUY499lg2btzIl7/8ZebNm3fA8W+++Wb+9a9/UVJSQlNTEwC33347IsKKFStYu3YtZ555JuvXrwdg5cqVLF26lEAgwBFHHMEvfvELli5dyg033MBf//pXvv71r/OpT32Kz3/+8wD88Ic/5J577unKzMVdeumlPPLII/z0pz+ltraW2tpajjvugIdkK5VwwUgMNxGC3QKsrDQ3tY5xTGkf1b2cB6wjHGWiYwcAK2OVTK75EGeS2zTUtjZ2ME2q9s5I8W6RtS0BgpEYpc76vTN3LIWKE5LXqCFW22wFkJMiG0A4bLqCdoaibGvsYMrYzGQ3RanDSkLLtKeqBx98kMsuuwyAyy67bJ9ugnPnzmX8+PFd02VlZZx44okAXHHFFbzzzjusW7eO8ePHM3nyZACuvvpq3nrrra5tLr300h6Pe+2117JmzRo+/elP88YbbzB//vyuzFd3L730ErfccguzZ89mwYIFBAIBtm3bBsAZZ5xBfn4+6enpfOpTn+Kdd94BwOl0smzZMmpqarqCsP2deOKJXHPNNdx9991d3RffeecdrrjiCgCOPPJIKioqugKs0047jczMTAoLC8nOzua8884DrMxbVVUVYAVhJ598MjNmzOCBBx7YJ1MVd8kll/DYY48B8Mgjj3DxxRf3+PkolWjhaAy3RKFbgAXQ5isjO1IPofYktWz4dAQjFNACwDuxGbhbqiFy4L87qaS2qZMjnFYni3rnGKhdnuQWDa36Vut8TknbQ8zYvRdqUruXQGN7iAl5XkqkgYg7A1p3QEdjsps15L7/5ArO+r+3WLezNdlNUeqwMroyWP1kmoZCY2Mjr732GitWrEBEiEajiAi/+tWvAPD7/fusv39Xu5663u1v/310V1xczHXXXcd1113H9OnTewyEjDE8/vjjTJkyZZ/5ixYt6rc9OTk5nHbaabz44osHFOi48847WbRoEc899xzHHnssS5Ys6fN9eL17CwM4HI6uaYfD0TVG7ZprruGpp55i1qxZ3HfffbzxxhsH7KekpIT8/HyWL1/Oww8/zJ133tnncZVKlHDUymDtH2CFcyqhA9hTBUXTktG0YdMWjOCXTmLiZG2sDCEGe7ZC4eRkN23ItAcjFLmsDMd7Zgbn7fo3xGLgSM3vIOOFLSanNbG8dTwzfM04GzYkuVVDJxozNHWGuWCSH9ZBbe4cyna/DrtWwvhTkt28IWOM4cml2wF4bkWtZrGUGkap+b9HAj322GNceeWVbN26laqqKqqrqxk/fjxvv/12j+tv27aN9957D4B//OMfnHTSSUyZMoWqqio2brTKPP/tb3/j1FNP7ffYL774IuFwGICdO3fS0NBASUkJmZmZtLbu/TbqrLPO4g9/+ENXieGlS5d2LXv55ZdpbGyks7OTp556ihNPPJG6urquLn+dnZ28/PLLHHnkkQccf9OmTcybN4+bb76ZwsJCqqurOfnkk3nggQcAWL9+Pdu2bTsgsOtLa2sr48aNIxwOd+2nJ5deeim//OUvaW5uZubMmQPev1KDEYrE8BABp3uf+e58q1R7uH5zMpo1rNqDUfwEiLr8tGdUWDMbU/t9twWj5Ds7iOFkYbACIp1WhiNFtdkB1jizm+2mgBZfBTSk7jne0xHCGJiZZ/XEWO2ZYS3YvSaJrRp6je17xxV+VN2UvIYodRjSAKsfDz74IBdeeOE+8y666KJeqwlOmTKF22+/naOOOoo9e/bwxS9+kbS0NP7yl7/w6U9/mhkzZuBwOPjCF77Q77FfeumlriITZ511Fr/61a8YO3Ysp512GqtXr+4qcvGjH/2IcDjMzJkzmTZtGj/60Y+69jF37lwuuugiZs6cyUUXXcRxxx1HbW0tp512GjNnzmTOnDmcccYZnHvuuQD8+Mc/5plnngHg29/+NjNmzGD69OmccMIJzJo1iy996UvEYjFmzJjBpZdeyn333bdP5qo/P/vZz5g3bx4nnnjiPkHdM888w49//OOu6YsvvpiHHnqISy65ZMD7Vmqw4hksce2bwcostrI3h0Op9rZgBD8BYm4/TjuwpDG1Kyi2ByPkOdqJeLLYYsZaM1M4qGwPWQGWP9pCvclmt7sEGlL3OW/xQGOMyyqqtDw4Dtx+aEztwjXbm6ysbL7fw/KaJn3Om1LDaHR1EUyCeJW87r761a92vV6wYEHX68rKyl6fk/Wxj31sn8xSXHxsUk9++9vf8tvf/vaA+Xl5eXzwwQf7zPvTn/7U4z5KS0t56qmn9pk3c+bMHtsCVmGLuCeeeOKA5fFgcX/XXHMN11xzTdd09/fVfdkXv/hFvvjFLx6w/fnnn8/555/fNV1UVJSQ0vdKHYxQxFgB1n5dBIvHjaPJ+AnsTt2b0LiOUAS/BDCeDHILimip9ZOVwsEGWAFHjqMD481hW2uRNbNxS8p2H2sPWpkcZ7iNiMvPVsYwpW0nBNvAm5Hk1iXeHjvAypM2ANa2uiFvPKR4ZdDWgPV/6JzKPF5ctZOG9hAFGQP/QlQpdeg0g6WUUrZQOIxLYohr3y6CFfl+qkwRkuKBBlgZrAw6wZtBeb6fzbEiInWpHVi2ByPk0IYzI48dJp+ouFI7gxWM4CGMxMJ4fFmsDY+xFqToe45n7DKMVbxlfbObWO74lH2/ca0Ba4jBrLIcADbXpX6RHqVGCg2wUtg111zTVcpdKdW/SNj6pnv/DFZBhocdMpb0tupkNGtYtQej+CWAeDMpz/Ox1YwllsLjcwA6QlGyaMPlyyPb56XBU5zSN9/twQgZYnUfS/Nns6w931qQol1B4xm79LD1AOk9xk9LeqlVtCYWTWLLhlY8gzWrNBuAzXVtyWyOUoeVURFgab9hdSj070YdrGgoAIDDtW83GhGhOb2M7NBOiIR62jRldISsMViOtEwq8n1UmbG4W2tS+n23BSNkxNogPYfyfD/bZVxKdx9rC0Yp9NjjsDJz+KAlx1qQouOwOuwMVlqkhZi4aCOdXa5iiIagJXWLmcQDrCljM/G4HGyu1wyWUsNlxAdYaWlpNDQ06M2yOijGGBoaGkhLS0t2U9QoEraf9+Rwew5cll2Bgxg0p3YWq83ObjjTMinL81EVK7JKtTdtTXbThkx7MIIv1gLpuZTn+dgYKbDGYKXo/zvtwQgFbutvPTsnl9aYl4h/XMpWEoxnsDzhZkjLBoSqmD3WLqUDaSvAykp3Mz7frxkspYbRiC9yUVpaSk1NDXV1dcluihpl0tLSKC0tTXYz1CgSDdkBluvAAMuRPxF2QbR+097qeimoPRghgwAObybZ6W4aPCXWgj1VUDApqW0bKu2hCGmudvBmUZHnY/WqAnC1QXsdZIxJdvMSri0UIc8dhgjk5lrdA9v95WSnaLfIeAbLFelA0rJIdztZGyzgLLC6gqZoMZPWQJh0txO308GEQr8+bFipYTTiAyy328348eOT3Qyl1GEgao/BcroPrLSVMXYSrIaWHevJnXLmcDdt2LSHrDFY8WpyJrcC9pCyJa3D0RiOSACHK2YV9sjy8Xw8u9G4OSUDrPZghEp3EDqhMD8faKHePY7sPQuT3bQh0R6K4nYKznA7eDKoyPexss0DDnfK/l2D1UUwI826zavI9/PKml1EYwanQ5LcMqVS34jvIqiUUsMlGu8i6DowwCoqrqDDeOnYuWG4mzWsAp0duImAxwqwsvJL6MSbsl2p2u3nfgHgyaA838c2YwdVe1KzW2R7MEK20/pbz8vLw+N0UCNF0LYTQh1Jbl3idQQj+DwuCFll6MvzfGxpDEJuZUoXM2kNRsi0A6zKfB/hqGGH/WwspdTQ0gBLKaVsezNYB3YRrCz0s9WMwaTwDRlALGB3I7IDrLJ8P9vMGEyKftPflbGDruxGjSnEICkbVLYFo+TYAZYzLZPSvHQ2hAqshSk41q49FMXvcUKoHTx+Kgv8bGvswORWpuT7jWsNRMhMsx45UZHvB2BrQ+oF0EqNREMeYInI2SKyTkQ2ish3h/p4Sil1qGJh+6azhwCrKDONasaS1pq6N2QA0XiAZXcRLM/zsTU2hkjKFkDolsHyZlCUmQYuLy2eMda4sxTUHoyQ7bD+1vFYGZ1VgTxrOgUD6Y5QBL/XzmDZ7zcUidHhL4XGqpQtZtIWCJPptTNYBT4Aqhq0kqBSw2FIAywRcQK3A58ApgKfEZGpQ3lMpZQ6VNGI9WBOVw9jsBwOoTmtlOzgDojFhrtpw0ZCdqUxz94Aa5sZg6Npa0reiLYHI/i6ugj6cTiEstx0djnGpnSAlemIB5WZVOT5WNxsPSspFd9zezCKz+uyM1hWlhKgzjUOgs3QuSfJLRwaVgbLCrCKMtPwuhxs1QBLqWEx1BmsucBGY8xmY0wIeAi4YIiPqZRShyQWiWewDgywAAJZFbhNGFpT99k5JmgHWN0zWKYIZzQAbbuS2LKh0R6MktGtiyBY77kqVpiSwQbES/EHwOkFp5uyPB/VwXSMJzMlu0V2hCJWF8GgNQar0u4uV028VHtV8ho3hFoDETLsDJbDIdZz7bSLoFLDYqgDrBKg+0Njaux5XUTkehFZLCKLtRS7UiqZjP0wXben5wDLkT8BgFj9pmFr03CTcDyDlQnAuJw0alL4RrRtnwyWFWBV5PtZG8yH1loIp1ZRgEg0RjASw286u4Joa3yO0JlRlpLnuD0Yxed22l0E/YzLTsPlEDaE7XFnKRhUgvW3HR+DBdZ51gyWUsMj6UUujDF3GWOOM8YcV1hYmOzmKKUOYzE7wHL2UEUQwFdkPQeqtTZ1Kwm6wvY33PbNt9vpIJhZbs1L0fE5GWIHUR4rs1GW52Nj2P7/KMUqCcYfuuujc5+MHUBTWmnKnuMcTxRMFDwZuJwOSnPTWdmea62QgkFlNGbsAGvv03gq831sbeggFku9rr5KjTRDHWBtB8q6TZfa85RSasSJZ7CkhwcNAxSUTCBknLTVrh/OZg0bYwyuyL5jsAA8BZXEUrSqnjUGyy744LWydhV53Uu1VyWnYUOkzX7oblqso+v9xgOsnY4iq6peio0xbA9FyXFZ13b3LOX6phj4U7OYSbt9nrsHWBX5foKRGLtaA8lqllKHjaEOsD4AJonIeBHxAJcBzwzxMZVS6pDEovZNmLPnAKuyMItqM4ZYilbU6wxH93aXs2++AUoLstlJfkreiLYFo/jZN4O177OwqpLTsCHSHowHWHszWOkeJ4WZXrbExkA0lHJjDDu6Pfdrb7dIK5tjcitTMmvXGjgwwIqPPauq13FYSg21IQ2wjDER4CvAv4A1wCPGmFVDeUyllDpkkb4DrHHZaVRThKcltbqNxbUHo/s8dDeuIs9PVXQMkfrUCyw7QhH8EsA43GB3DS3L9dFIJiGnL+Wydm12gOWJdXQFG2Bl7dYE8q2JFAoqYzFDRzhKtjOewbKD6DwfrYEIoczylOsGCtAasCqiZni7j8GyMpU6DkupoTfkY7CMMc8bYyYbYyYaY34+1MdTSqlDFesKsNw9Lnc5HTR6S8gK1KRsyfIM6STqcEO3bpLxjI5JoRvvuLZghBxnCLFvvMHK6IzJTKPeXZxSwQbszWC5I+37BNHleT4+asuxJlIoo9MZjmIMZDv2/eIgns1p9BZDS83eL1dSRFsPGazinHTcTtFKgkoNg6QXuVBKqRGjny6CAJ0ZFaTHOqC9fpgaNXza7IfuRl3+feZX5vvZZopwd9ZZpa5TSHu8+1i3LpFgfdtfbVJvfE48wHJF2vfJYJXn+1jWmoERZ0q95/hYpAzZ+2Bl2JvNqXWMBROD5uoetx+teuoi6HQIZXk+zWApNQw0wFJKKZsZQIBF3nhr3cZU7C4XxS+dxNwZ+8yPPwsLSKmbb7AKIGQ6gl1dx+LK8nxsihRY7zeFspXxKoLOcHtXKX6wznHYuIhklqRUt8j4+81w2OPs7KCyzC7ssamrWmTqvGeA1uCBARZYX5ZoBkupoacBllJK2SQeYDlcva6TXjQZgNbta4ajScOqPRghgwDGs2+Ale5x0pZuP8Iw1QKs+EN39wuwKvL81pikSABadyapdYlnZXQMEt43gxXP6LSml6bUOY5n7PzxSpH2eU5zOxmXncbqQGqWao+Pwer+HCyIF/dox6TQlwZKjUQaYCmllM0RtcdpuNN7XaegfLJVqj0FAyyri2DnPjfecfGHLKfaN/0dwSh+CewzHgmgPD89JSsJttll6QWzz3uOZ3Tq3ONSagxWR8h+7peJV4rcN2u3sjkdnN6Ues/QcxdBsDJYHaEodW3BZDRLqcOGBlhKKWVzRoNEcfRa5AJgQlEO20wR0brUe9hwPJsjngMDrPzCIlrwp1SwAXZQaXoIsPL8bE3BAKs9GCFT9u0uB1CY4SXd7aTajIXORgg0J6mFidVVlt7sW4ofrGBjS2MAcitT6hyDVeTC6RDS3c595u+tJKjdBJUaShpgKaWUzRkNEBJvn+sUZ6ezRUpIa940TK0aPu0hq0y7My3zgGUVeT6qYmOIptgzwNpDEdIJHJC1K8/zsd0UYpCUuvluD0YZ47W6j3XP5ogI5Xk+NoRTq1R7vMhFmglYXX9de6/v8nwf9W1BItkVKVeqvTUQJsPrQkT2mV/R9SwsLXSh1FDSAEsppWyuWJBwPwGWwyHsSa8gN1AD0fAwtWx4tAcj+KUTZ3oPAVaBn21mDNGG1OpK1R6MkhbrOGAMVkGGB7fHS7NnTEp1i2wLRih0293D0rL2WVaW52NFR541kSIBVodd5MITP8fdAo54Nqc5rSTlipm0BiNkeA8cS1qSk47TIWxr1AyWUkNJAyyllLK5YkHCjr4DLIBgzhG4iKTct97twQh+gji8PWewtpkiXC01EIsmoXVDoz0YwWs6D+giKCJU5PvZ4RgHKVQxsj0YId9tF3Px7htgVeT7+KA525pIkTFJ8Qcru6Md+2TsYO+zsHa7xkKoNaUevdAaiBww/grA43JQkpOulQSVGmIaYCmllM0VCxIZQIDlHmNVEgztWjvUTRpW7cEwfum5yEVFvlWq3WHC0FyThNYlXiQaIxQO4Y4FDwiwACYU+tkQGQv1G1Imu9EWjJDnsjNY+wXSlQV+6sJeYml5qZPBCsUfrHxglrLczmBtMeOsGY2p0+23NRAmK63nsaTxSoJKqaGjAZZSStncJkjEmdbvetllUwFoql491E0aVqFAJy5iPQYbOT4PDe5iayJFMjrxinrAATffABMK/CwPFEKgCToah7dxQ6QtGCHPaVfL3C/AmlhgfQbt/tKU6RbZHoricTpw7FeWHiArzU2uz83qoF3MpD51Cte0BiJk9JDBAru4R72WaldqKGmApZRSNo8JER1ABqu8pJg6k02wNrUyWKEOu3JcD10EAUz+EdaLho3D1KKh1RqI4CMebPScwdoUG2tNNKTGzXdzZ5g8l/2e07L3WTa+0Aqw6j2l0JAa2Zz2YASf1wnBth6D6Ip8Px+1ZYHDnTJ/1wAtgTDZ6b1nsFoDEZo6UmsMqVIjiQZYSill85ggUWf/AdaEggw2mWKce1Ljpjsu0tliveghgwWQW1ROG+lQv34YWzV0WgMRMuIly3t4z+MLMvZ2H0uRm++WzgjZDjvA2u89j81Kw+dxUiUl0FwNodHfjaw9GMXvcUGo7YAxWGAFG1sag5A3IWXOMUBzR+8BVnzsWZV2E1RqyGiApZRSgDEGjwkRG0AXwXSPk53uMrLbtqTM2ByAWKDNetFDNgdg4phMNsXGEdmdKgFWGD89BxsA4wv81JhCouJKme5jLYEwWY5OcKWBy7PPMhFhfIGf1cEia0YKZLHagxH8Xqf1XK/9MnZgFW/Z0dRJLG9iygRYsZihNRghq7cAq0CfhaXUUNMASymlgHDUkMbAAiyA9swJ+GOt0NEwxC0bPibYar3oJYM1sdDPJlNMrC41Aqy2YIRssb/FT885YHl2upvcjHQaPCUpcfMdCEcJRWJkEOi1G+iEwgw+aLefhZUCmcr2UASfxwWde3o8xxX5fmIGWvyV1tjCFKiQ2RqMYAxk9TIGqzTXh4hmsJQaSoMKsETkVyKyVkSWi8iTIpJjz68UkU4RWWb/3JmQ1iql1BAJRqKkSQjjGliARcEkgJQJNgAkFM9g9X7zvSlWjKd9hzWmZZRrDUTIwX4f6bk9rjOhIIOtFKdENqel0xpz46fjgBLtceML/CxszrUesJwCQWVLZ5i8NLG6CKblHLA8/iysWncpREPQtG2YW5h48fPcWxfBNLeT4ux0zWApNYQGm8F6GZhujJkJrAe+123ZJmPMbPvnC4M8jlJKDalAOEYaIavr1AD4io8CoKUmNSoJRmMGb9guctFLsFGR76MKu5JgCtx8twbCezNYPdx8gxVwrAmNSYnsRkvAuvFOj7X3GkRPLPQTMB4imaUpkcHa0xFmnNeuFNlDBqurVHssdcbaNfcTYIF9LWsGS6khM6gAyxjzkjEmYk8uBEoH3ySllBp+HaEIaYQQd/qA1h9bNomAcdO2PTUCrLZAhBzpO5vjdjrozJpgTaTAjWhrMEI2vXcRBKuS4KrQGIgGrcIPo1hzp/XfdXq0DdJ6zmBNKLC6hzb5KlMiwGrqCDHWY4+z6+HvujDDi8/jZGW8VHsK/F3HM1i9jcECq2ukZrCUGjqJHIN1HfBCt+nxIrJURN4UkZN720hErheRxSKyuK6uLoHNUUqpgWsPRkkjhMMzsABr4tgstpixmLp1Q9yy4dESCJMjbVbXsB6KAcR5xkwiiiMlbr5bAxHyHG0Ytx9cPVePHF/gZ3M8u1E/um++4xksb2gP+Ap6XCdeAGG7q8zqFhmLDVv7Ei0aM7QEIhS47ECihyxlvLDHqia39XefAsVMBpLBqsz30dge6lpXKZVY/QZYIvKKiKzs4eeCbuv8AIgAD9izaoFyY8zRwDeAf4hIj1+XGWPuMsYcZ4w5rrCwcPDvSCmlDkFnoBOXxHB6fANavzDDyzZHCb6W1Hgga3NnmBzaCHuyweHsdb2KolxqTGFKjD1r7gxT6OpEeslegTXuLFVKtcczG+7gHvD3HGBlprkZk+llY3QchDugZftwNjGh4sFDgdMOsHrNUmawqb4d8ieN+nMMewPpvrsIWqXat2kWS6kh0W+AZYz5uDFmeg8/TwOIyDXAucDlxn4suDEmaIxpsF8vATYBk4fsXSil1CAFOq2uYi7vwDJYIsIe3wRyQ7UQDgxl04ZFayBCrrQR9faevQKYWJhhl2of/Zm7hragdfPdS5dIgPI8H42SRcCZMeqzdi2dYVxEcAabwJff63oTCv18FLC/8BzFD1hu6ggBkOvoPYMFMKHAz/amTqJ5R6REgLXHfoBwjq+PDJadqdRxWEoNjcFWETwbuBE43xjT0W1+oYg47dcTgEnA5sEcSymlhlKow3rIrjO957EpPYnkHoGDmFUAYZRrCVgZLJPWe7AB1s239ZDl0d19DKCxPUSuo73XG28Aj8tBWZ6fWnfZqA42AFoCEXLiY876DLAyeK85z5oYxV3m4oFG1gDG2RkDjenlVsZulFfIrGsN4vM4rfL0vSjPiz8LSwMspYbCYMdg3QZkAi/vV479FGC5iCwDHgO+YIxpHOSxlFJqyETa9gDg9ucNeBvP2CkAdNaO/kIXLZ3WGCzx9f3+JxZmWAFWChR9aGgLkUNrrzfecRMK/GyMFY/qYAOsLnNjXXbw0FeAVeBnY6efmCdzVGftmjutDFZWpBHE0et7nlhoFfbY5rDrdI3yLFZda5DCzJ7HFMb5PC6KsrxUaRdBpYbEYKsIHmGMKdu/HLsx5nFjzDR73jHGmH8mprlKKTU0Yp1WgOXy953B6S63fBoATdtWDUmbhlNDe4gc2nBn9B1g5fo91HvLrYlRHnA0tIfIjjZC5rg+15tYmMHywBhorYVAyzC1LvHqW4NUptvdWXsZgwXxgEPoyJowqs9xk53B8ofrwV/Y69jCCYXWeKS14bHWjFH8ngHq24IUZvQdYEG8kqBmsJQaComsIqiUUqNWpN0KsNKzev9mf3/jxxVSYwoI7xr945HqWwIUSAuuzKJ+143lWw9ZHs1d5sLRGIHOdnzRVsgc2+e6EwozWBex1xnF73l3a5CKdDtj0c8YLMAKpEdxsFHXaj3/Kj1Y1+c59nlcjMtOY1lbLohzVGftYGAZLLAqCWoGS6mhoQGWUkqxN8DyZg68i2BFvo/Nphhv0+juUgTQ1tKAT4KQVdzvuoVjSmhmdBd92NMeokisc95fBis+7gwY9QFHudt+mHQf77k014fH6aBKSqB1BwRbh6mFibWrxRqL5GzfBRn9BdF+1jeGIbdyVP9dgxVIFwwwg1XXGqQ9GOl3XaXUwdEASymlANPZZL3oo+DB/txOB7u9FeR0bB31BR+6ynEPIMCaMCaDTbGxo7qS4K6WIEXYAVZW/wHWVlNETFyj+ua7ri1IiTSA29dn5USnQ6gs8LE6ZGczR+mYpF2tAYqy0pDWXf1nKQsy2FzXhik4YlQH0a2BMM2dYYpz+q+GWmmXatcHDiuVeBpgKaUU4Ag2WS/6eMhuTzqzJ+I1gVH9vCCAWFM8wCrpd90JhRlsNsWYUXwjWrOnY8AZrMIML+neNBo8xaM2wOoMRWlsDzGWOsguA5E+159YmMHiVnuc1ih9wPKu5gBjM1zQ3ncXQbCC6NZAhM6siVZAGYsOUysTq7qxE9hbJbAvFflaSVCpoaIBllJKAY5QCx3i6/Mhuz1uV2hVEoyO4mxONGZwt9daEwPIYI0v8LM5Ng53x+5RW/ShZk8n46TBmujn5ltErCyWlIza7Mb2JuvGOz+yG7JL+11/QqGfhc1ZGGTUjjvb3tTJtIwWwPT7nifYlQR3ussgGoSmbcPQwsTb1mhlow4mwNqiAZZSCacBllJKAe5QC53OzIPeLrN0KgBN1aO3kmBtcydjaLBupvsJNsC6eduCHYg1bhri1g2Nmj0dTHbvhvS8PrvLxU0ozGBNeCw0bILo6BuzUrPHuvHOCNQOLMAqyKAj5iaSVTYqg8pAOMrOlgDTvPXWjPwj+lx/QoHVXW6TsTO4o/A9A1QfRICVmeYm3+/p2kYplTgaYCmlFOCLNBN0H1z3QIDS0nKajJ/OHWuGoFXDY1tjBxOllmBGGTjd/a7vcTnozBpvTYzS7mM1ezqZ4toJBZMGtP6EAj8fBcZALAxNW4e4dYlXVd9OJh24Aw1WIYd+TBxjZXSafRWjcgxWzZ5OjIEJDjszmzexz/VLctLxuhxWOX4YtVm79btaKcjwkO3r/zoGKM/36RgspYaABlhKqcNeNGbIjzXQkdZ/ifL9TSzMZJMpxjFKb8jA+tZ7omzHFEwe8DaewiOIjeLuYxt2t1FhdkD+AAOswgw2xUZvJcGNdW3MSrODjaJp/a4fL9W+w1VqZe2MGcrmJdzG3Vblw+LoDvBkQMaYPtd3OITxBX5WNbmsEvajdKzdyh0tTCse+BdF5XkaYCk1FDTAUkod9na3BhgrDUQz+i520JNsn5saZxmZbZuHoGXDY0tdCxNkJ95xRw54m7IxuWw3haOy0EVbMEJTY531kOH8vjMbcVapdvvvYxTefK/f1caJmbusiTFH9bt+VpqbggwvG6PjINwOLTuGuIWJtaa2FYdAXttGK0vZT1EPsM7x5ro2KJg8KoPoQDjKhl2tTC/JGvA2FXk+aps7CUVGeRVUpUYYDbCUUoe92vom8qQNd07/Y1N60pIxnsxII3TuSXDLhsfuqjV4JYxjADfecRMK/WyKjSOye/QFG+t2tjLTYQfExbMHtM34Aj+tkkG7e/RlNyLRGCtqmjnWuwM8mVYVwQGYWOhneaddSXCUZSrX7mxhfH46zp0fQcmxA9pmQkEG1Xs6ieYdMerOMcCHW/cQiRmOLut/TGFceb6fmNlbBEUplRgaYCmlDntNu6oASCsY2I3n/kI59gD6UTgeKRozpO/60JooOW7A240v8LPZjMPRuGnUPQPso+omZstGq6jHAG++09xOirPTrS5zoyy7sXZnK53hKFPCq6H02AFlc8DqFvles/3g7VH0no0xLN3WxOkFLRBqheJjBrTdxDF+ojHDnvQKq7R7R+MQtzSxXl27G7dTOH5i/oC3iRfD2KaFLpRKKA2wlFKHvY46qyRzVlHlIW3vKrS6mYUbRl83wc11bUyPriHkzrK6Rg3QxMIMNptxOKOd0Fo7hC1MvIWbGzjZuxEpnHJQzz2bUOhnY2z0PQtrydY9ZNFOVvM6qDhxwNtNLPSzrjMT4/ZZ47BGiaqGDna3BjnDbweFZXMHtN2EAquwxzaHnckeRcU9ltc08cjiaj5+VBF+r2vA28VLtW/TUu1KJZQGWEqpw17Ezjz5iyYc0vbZ46wAq7V29HzLH/fmut2c5FhJpHQeOAb+X8KYTC87nPEb0dHzvsPRGMs37+AYswomfuygtp1YmMHyzkLobBxV2Y231tdxfuY6BAOVJw14u4mFGYDQkTl+VJ3jtzfUATCtfRHkVPRboj0uXthjTdh+VMEoCaTX7mzh/NvepTUQ4UsLBvZe48ZkevG6HJrBUirBNMBSSh32XI0bCOBFsssPafuSwjx2mRyCu0dfBmvNsvcoc9Thm37eQW0nIkTipa9HUfexhZsbmB1agtuEYPKZB7XthEI/6yLxMt6jI6PT2B7izfV1fDZzKfgLoWzegLctt7Mbjenlo+ocv7BiJzMLwF/zDkw+a8BdIjPT3BRmelnelgXihMbRcT0/t9zKIP/jc/OYUXpwj5oQEa0kqNQQGFSAJSI3ich2EVlm//xHt2XfE5GNIrJORM4afFOVUirxjDHktm+hIa38oDI43ZXn+ag2Y5BR9nyk3S0Bpux+nhhOmPKJg94+s6CcTtJGVVeqRxfX8Fn3m5jMcVB58kFtO6EggypjZzdGyQOWn1tRS2asmSOb34GpF4DDOeBtS3LSAdjhKIWmbRAODFUzE6aqvp2FWxr46tiVEOmEmZcd1PYTCvxsbAhCTjk0bhmiViZOJBrjsSU1nDypgBOOKDikfVTk+zSDpVSCJSKDdasxZrb98zyAiEwFLgOmAWcDfxSRgf+rrpRSw6S+LUSlqSaQc3Bda7orzPCynTGkt9cksGVD7+F/r+Ni55t0TDyr3+cE9aS8wE+VKSI2Sr7pr23uZP2KDzhZliHHXHVQwQZYN6LVZgwxHKMigxWNGf767ypuyHkLRzQIcz53UNunuZ2MzUpjY2wsYGBP1ZC0M5H+8u4WPA7DgsZHoWgGlAyswEVcZb6frQ3tkDce9oz8AOvFVTupbQ5w+bxDy74DlOf52dbYgRllzzpTaiQbqi6CFwAPGWOCxpgtwEZgYKNMlVJqGFVt2UiJNCADrDTWE4dDaE4rITO0GyKhBLZu6DR1hIgtvIM8aSPj1K8f0j4q8nxUxcYQrR8dAdavXlzL91wPWEUb5v6/g95+XHYaxuGm2TtuVGSwnviwhpbd2/hM5Bk48twBPf9qf2V56awM2JmRER5IV9W38+D71fys4iNcjRvglG8OuHtgXHm+j/q2EOGsihGfwQpGovz25fVMGpPBGRP9h7yf0tx0OkJRmjrCCWydUoe3RARYXxGR5SJyr4jEH75QAlR3W6fGnncAEbleRBaLyOK6uroENEcppQauYe1bABROO2VQ+wllluEgBs3V/a88Atz55Ct83jxBa+UZUD7wcTndVeT72WrG4mzeBrFogluYWG9vqMN89DCnOpbh+PhPwD/wUtZxLqeDktx0ap3FIz6DtbM5wP88t5o7Mv+CiyiccfMh7acs18eHrTnWxAgOsKIxw/efXMFE124urr8Dyk+AqZ886P3Eq+o1eksg0DSii5n8/tUNbK5r5w+TP8L5q/Gw9vlD2k9JrtUVtGaPPgtLqUTpN8ASkVdEZGUPPxcAdwATgdlALfCbg22AMeYuY8xxxpjjCgsLD3ZzpZQaFGf1QgJ4yKwc2POQeiN5460Xo2Ac1rOLN3DBuhsRl5fMT956yPupyPex1YzBEQtBy44EtjCxttS386cHH+N/PPcSLZ130F3luivP87E5WmQFGyO0S1VbMMKXHljC52MPc0x4CXLmzyB/4iHtqyzPx/pWNyYtZ8QGWMYYfvHiWlZsquYf2X/E4XDChXcedPYKoCLPygRtl3HWjBHaTfDFlbXc/vomvn/kLo5c/GOIReDZr0Ow9aD3VWoHWNubdByWUonSb4BljPm4MWZ6Dz9PG2N2GWOixpgYcDd7uwFuB7o/sbPUnqeUUiNGLGYoaf2I7f7p4HQPal/phVaJ987dIzuz8fbqbeQ8cy1THDW4LrkXcg7t4coAY7PS2OGIF30YmTff2xo6+Nmf/s4fYv+DK3MMzkv/dtBjr7qryPexKlgAwRZor09gSxOjNRDm6nsWceKO+/iSPA5HXzGogLIsz4cxEMqqHJHn2BjDrS+v56G3lvNc3q3ktG2Ei/4MuRWHtL945cRN0Xi3yJEXYL24cidffXAZVxZV8fkdP7K6fl7+OLTtgrd/e9D7K82x3rNmsJRKnMFWERzXbfJCYKX9+hngMhHxish4YBLw/mCOpZRSibZp+06mmCqCxYMfIpoztoKQcdK+c+TdhMY98/YH+B/6FCc4VhL4xO9wTzljUPtzOIRwtp25G4Hf9P97Uz133HYLt4V/hD8jC/c1T0Nm0aD2WZHnZ03I7m0xwsZhbalv58o7XuOztbfwTdcjMOPTcO7vDimTE1eeZ918N6eXjbj32xmK8s1HPuLF11/n1aybKQusRz59H0w69L/r7HQ32eluVnXkWTNG0N91LGa4/fWNfOHvi/lm7lvc3PoTJLsMrngcJn0cZl4K791+0EFhVrqLTK9LAyylEmjgj/vu2S9FZDZggCrg/wEYY1aJyCPAaiACfNkYM7I76CulDjs1y99kkhjyjhrc+CuA0jw/O0wB3saR10WwLRjh4X/8hfOrbibTGaLz/HvwH31RQvbtyy8j3ObCPYK+6e8IRbjtuQ8Y/+H/8L/OtwiMPQ7P5Q9A5thB77s838cD8VLtDZugfP6g9zlYxhgefL+aZ59/mt/J7ZQ7d8Kp34FTv3vIjx6IK8uzuo/tdBczpvk5iATB5U1EswdlydZGvvPIUk5reowX0h7F4c5Brng2IeejIt/HpmYDGWOhsWrwjU2AbQ0d3Pj4R2zevIlnCx5getu/4YgzrGxdeo610sd/CmuehX/9AD7zjwHvW0QoyU3XAEupBBpUgGWMubKPZT8Hfj6Y/Sul1FAKb3mPKA6Kpp406H2V5KSz1hQwqWXkFLkwxvD6klVEnv8e/xl7i3pfJa6rHyRt7NSEHaO8IIvqqjGMb9zMoedJEsMYwxvrdvHBE7/jc8G/kuPsIHTCN0n72PfBOdjvEy0V+T5qTCExceIYAV3mVtQ083/PvMuZO/7EP1xvEMkoRi76J4w/uGd89aYoMw2P08HW2Fhmmpj1PKyCSQnZ96Gobwtyywtr2fbhy/wx7W9MdlfBlHPh3P+DjMSM4y7P87G8phkKkl+qvSMU4e63tvDnN9dxleNF/uZ/HFdnFM6+BeZ9Yd/sZNY4OPXb8MpNsPlNmHDqgI9TmpvO9iYNsJRKlMT8j6OUUqNQfuMStnsmUJ6WPeh95fk91EohMztW9r/yMFi1dRdLH/sF57U8iE9C7Jj9NYrP/UHCsw8V+Vap9rL6zQxuFNvgLK/ew7NP/oNz6v/MjY7NtIydi+PCW/GMnZ7Q45Tn+YjgoiWtmJwkdpmrbe7k9hc+JH/lPfyf6wX87hDm+K/iOvVG8GYm7DgOh1Cam866UCHngTUOKwkBVksgzF/eqeL1d97k/8Ue4RPeRcQyS+Gs+6xqgYPoBrm/inwfL6zcSeyIShxb3kzYfg9GJBrj0SU1/O6lNZzQ8Rqv+v/JmPB2mHAWfOIWyJvQ84bzvwSL/gRv/eqgAqySnHQWbRm5FROVGm00wFJKHZZ272nlyOh6qoovTMj+RIS29GIyg29AOADutITs92DtaGzj7cdv56SaP3GFNLC98CT8F/+a4rEH/wykgSjP91Flijh1zztWVb0E3ugOxObdrTz7zEMcv+0uvu9YT5tvLJGz7yJr1iVD0hafx0VBhpedzmJyklCqvba5k3tfXY5/6d182/E82a52wpP+A8eZN0HhlCE5Zmmej2Vt9pikYc7atQTC3PduFa+9/Rb/GX2E/3IuAq8PTvgujhO/Bh5fwo9ZkecnGjO0pJeS07oDwp3gTk/4cXpijOHVNbv51QurOKrhZZ5If5piz3bImwGn/xamnN33DlxeOOGr8K/vwdb3oOL4AR23NNdHayBCc2eY7PRkflWiVGrQAEspdVhav/w9TpIg/kmJ6UoFEPKXQhBo2X7IZbEP1a7mDt548s8cveVPXCo1bPcfRdv5f6bkyNOH9LiV+X7eNEU4I+1WVb0EddPqz8bdrbz4z0eZu/VPfNWxlta0MQQW/JKMudcM+RihinwfW9rGcmTjq8MWVMYDK9/SP/Nlx3PkONvpmHAWnPED3ONmDemxy3LTea7aBd6sYQuwWu3A6pW33+G66CM84XwP403HMf8GOOG/wJc3ZMeOVxLc6RxHDsCeqkN6SPPBiAdWt726loraF7nb+xTlnh2Ygmmw4Bcw5ZyBj6c79hp4+9fw7u8GHGDFn4W1fU+nBlhKJYAGWEqpw1LbhncAKJm5IGH7lNwyaMR6FtYwBVh1LZ28+dSfmbnpTi6VGnalVdD4sT9RMufSYbnxL8lJpxq7Ml/j5iEPsDbsauX5Zx9j3tY/8RXHGlq9hbSd8r9kHv+fw1Z8oSLPx+qGQj4RaYO23YOuTNiX2uZO7nl1Ob6l9/Alx3PkOtvoHH8mnPEDfMWzh+y43ZXn+WjqjBAdU4lziAOs1kCY+/9dxUtvvcu10Ud40vkexpuGY97XrMzMITwg+mDFKyduiY3hSLCq8g1RgBWLGV5avYvbXlnLhN0v8zvvU1R4ajAFR8FptyBHnnfwhUo8Pqs0/5u/hPqNUHBEv5vsfRZWJ1OLsw7lrSilutEASyl1WMrY9QG7nWMZk1uasH16C8fDJgjWb8U7xPHV7uYO3n76HmZsupOL7cCqfsGdFM27ZFDPeTpYHpeDzswKCGAVBCifNyTHWbuzheeffZJ52/7E1xyraPPm037yz8k8/nPD3h2zPN/H0o/ywYNVunwIAqydzQHuefUj0pbey5cdz1qBVeUZcMb3SS85JuHH60tlgfXw3RZfBbkNQzPGsC0Y4f5/V/HiW+9yTeRRnnK+C14vjrlfgRO/Bv6CITluT8ZmpeFxOVgbzOcTMCSFLmIxwwsrd3Lbq+uYWPcKf/A+xXhPNabgSFhwH3LUBYOrADnnc/DOrbDoDjjnN/2uXpJjBVg1e/Rhw0olggZYSqnDTktniCmhVdSNOZExCdxvblEFEeOgbddmhiqXsrOpg7eevofZm+/kIqlhp7eCXQv+SNH8y4Y1sOrOk19JbLvgGIJS7at3tFgZq+p7+IZzJe3ePNpP+hkZJ3x+2MbF7K8i38cT3Uu1V5yQsH1bgdVyPEvv5YuOf5LnbKOz8mNwxg9ILzk2Ycc5GBPsAGu3u5jcpuchGh70g7nj4oHVy2+9zZWRx3ja+W/weHDM/ZIVWGUk8godGIdDKMtNZ22zE7zZCX3YcDRmeHb5Dm5/dT1HNLzGH9OeYrxnGyZ/Ciy4F5l64aBL6wPW5zbjElj2DzjtB/12qczze0h3O9mupdqVSggNsJRSh531y97lOGmm+YiBV9kaiOK8THaSh6uhKqH7Bdi+p523n76HY7b8iUvsjFXdgjsYO+/SpAVWccUFOezcXkBxAruPraxp4qXnHuGE7ffyLcca2tPy6Dzxp/hPuH5IChscjPI8P9tNATFx4UhQJcGaPR3c+9oKvMvu54uOZ8hzttJZcboVWJUel5BjHKryfB8iUBUrYoqJWqXaB9kFtiUQ5m/vbeX1t97g6sijPOFcZHUFnPMlqyvgEHa7HIiKfD9bGzshrzIhGaxINMYzH1mB1eQ9b3Bn2lNM8GzF5E2GU+9Bpl2Y+Ov4+C/Bsr/Dkvvg5G/0uao+C6sHxkAsYn2hEAtDNGJNx3V1wZbe54mAOKwfh3Pv631+BGMMkZghEjWEYzEiUUMkGiMcs39HDdYjZ8XaJdY5cwiIPS9+OIdY004RHA7B5bB+O0VwOqwfl0OQYS5IdLjRAKsP6z98g4YlT0IkBLEwEg0h0RCOWAiJhXHGQjhiYRyxCC5CuEwEp4kgGMTE9v2N9dthojgwXfMc9m8AgwPrEpL9Xh/4g1h7BLHXs/YEYGTv9nRbn/32bc3rvk9rP9jrG3vf3ad7fg3gwNj769p1P4w5cJ5g6GH2gLaPt6Tn7Q+c29P2/R27pzZ3P/ZA1t2/Rd23NT2t0O8e+lnaX0P6O0of28sBrehhXdPz0j7P1wA+u54+8z437zaz0NQTQyiee0HfBzpIpbnpbIqNYVJT4r7xrm5o462n72HO1ru4TGrYnVZJ/Wl3UjR3eLsC9qUy38eW6BjGNGwe9H8qy6v38Oqz/+CU2r/wDccG2tIK6Tzp5/jnX5f0wCquPM9HFCet6SVkD7KS4Jb6dv7yylLyVv6F/3K+aHUFLF8AZ/yQ9LI5iWnwIHldTus5b6ECzgIro3OIAdae9hB/eXcL7/37da6LPsaXnR8QTfPjmPd1OP4rw9oVsC/leT4Wbm7ATB+P1H50yPsJR2M8uXQ7d762jllNr/CXtH9S7qnB5B4Bp/4Zmf6pobuOi6bBhNOssu3zv9hvxndUPwsrFoVAM3TugUATdDbt+zrYAqEOCHdAqN3+3QHh9r3zwx12EBXeG1QNV/ONdW/mwIEbwYngxkGaffcYs+8YrZ+908ZYr6M9LDf7rLt3Otp15xm/G7WDPLGnxWHdJ9q/48uwXzsEa0sRHGLdDTrsoM+aFkTsu8n4/G7/AcfvWve+tuebvXe9lvhdLWAMVenT8JzxA04/MrlfvgyUBlh92LNpMXNq/koYF2FxW79xExUXEXETFTdRh9t+nUZQ3BhxWn+U9jcTe/8ou31TIft+i9H99rrrD8zYgZeJ/xHGX+9dh/g68dfx+V3L4vuga178D1ZMbL91rXUc3feJQcyB7ep+AXSflq5j9HbrLD28OnBxb7fN0sfU3k9w3+X7rHVIX9YcxEb9RJX97ckMqs19rLjfop6aafo7N33u++A+2P3XNvuf2YNvwMGdJgCyWFf0MY7KHXcwB+tXYYaXVyjlmLZ3B11dbuvuPSx6+k6Orfkrl8sOdqdX0njanYyZM3ICq7jyPD9bTRHzGpcd0vbGGD7Y0sh7L/yNBbvu5wbHZlrSx9J56i/JmHN10kre96Ygw4PP42SXu4TsQ8zabdjVyl9eXkzp2nu50fkyGa5OAhPOgtO/Q3ppcroC9mV8gZ/FrbnWxCG8592tAe55ewvLFr7K581jfMO5lGh6Fsy/Eef8Lw5pVcBDUZHvoyMUpSNnCv7VT0GgBdIGXvwhGInyxIfbueu1NcxrfYkHvM8yzrMTUzAVTrkXmfrJ4bmOT/kW3HcOLPwjnPzNPlctyUnno+qmoW/TQMVi0LYL2nZaxWTadtm/7dftdXt/B5r73pfTa31B4/bbv33gyQB/IeT4wOMHVxo4PRiHi0DMQXsE2kJCaxhaQtZPU9DQGojQGojQGYoQiFhfkO/9OnrvXYgDSHMLaU4hzQVep+BxgtcJHqfYv8HjAKcYXGJ9/e0Sg0MMTgxO+7UV6kTBxOz7vZj92pp2mBhOotY92T7LeviJxYC903v3FUFM1L6Xi3XdJ8aXx5MGxsRDJPu36fbano8xxNML8dfdP52uL+nj23RLAnRfL9ZtvYZwK46W4KH/PQ0zDbD6MPeibyCf/hYuIDk9/ZVSo4nDIdSnV5IWeglad0LWwQdw66t3serZPzB/5wNcIo3s9E2i6bQ/Mea4T4+4wCquIt/HB2YcrsBr1s3PAMfNxGKGV1fVsOrl+ziz6VG+5thKs6+EwGm3knXsFeDyDHHLD42IUJHvZ0tkLJMblx1UML2suomHXl3IpI338SPnq6S5wgQnnw+nf5u0sTOGtuGDMLkokweqGjDpmUjd2gFvt72pk7vf3MS2xc9yrTzL9xwriHpz4IQf4pz7eUjPGbI2D0aFXaq9Jn0yUwB2rRzQWLuWQJgHF23jgXfWclrHv3jU+xwF7nrM2GPglFuRyWcnZozVQFWeBEeeC2//FmZ9BrKKe121NNfHno4w7cEIfu8w3B4G26C5xv6p7vbanm7Z0XMWyZttVSvNKIKxM6wgKT3X+knLsV/ndJvO2afCaCxmqGsLUt3YQc2ezq7fNfUdVDd2srM5QCgaO+CwmWkuxmR6KcpKo7DES67PQ4HPTa7PQ47PTY7PQ066NZ3tc5PpdeFwaDe8RJmW7AYcJA2w+iDD+Y+gUiolxPInQS1Qt3bAAZYxhsUr11Lzyh85tekJLpQ2tmXOpunM2xg74z+G/eG9B6si38fS2CRronoRHHVen+uHIjGe+2AtdW/8iXMDz3CGNNKUOYHQ6X8ke/al4Bz5/zXNKMnig1X5nGU6rOck5Y3vdd1ozPDy6p28/tq/OL7uYX7mXITTBeFpFyMLvkVa4eRha/ehmlmazT3vGNrLZ5NRvajPdY0xfLitifvfWY9nzZN8zvEsRzqrifiK4ISbcM75HHgzh6nlh2ZGSQ4A7wdKrQBrx7I+A6xdLQHufXcLryxcxkXR53ne/RoZ7jZM2Qlwyt3IhNOSdx2fcTPceTI8ei1c82yvBUpKupVqn1yUoPMTbLMyno2brIIwjZvt35uszFN34oSsEsguhbJ51u/sEsgcZwVTGWOsYGoAxW1iMcOO5k4217azpb6WzXVtbGnooKaxg5qmTkKRfQOowkwvpbnpzC7LYdyMNIoy0xiTZQVTYzK9jMlMI90zMr/gUiPTyP9fTCmlRhF/xTHEdgjhqoV4J57W57otnSHefv1FvEv/zCmhd5gjUaryT8J99ncpn5y4ByAPNZ/HRaBgBqFWN55tC3sNsLY3dfKv198kbflfOT/2KhkSoK5wHtGPf4OcyWcO7zf7gzSnMo87lkzhh15g06uQ97kD1mnuCPPE4i1sfudRzg88xS8c6wl5/JhjPo/jhC/iza0c9nYfqqPLrO6B67wzOHb7HdDReEC3vnA0xvMrannqrSVM3/U0P3C/RpGrkXD+FDjpj7hmXDxszyobrMJMLxX5Pt7c4eLKvImw8WWraEQ3xhgWbWnkb+9VsXP1u1zleIEbnYtwuA1y5Llw/JeR8vlJegfd5E+E838Pj/8nPP45uPBPPXa7Le32sOGDCrDCnfsGTt0Dqbad+66bMdZqz+SzIG8i5JRDdpkVTGWOPegsfSAcZXNdOxt2t7JhVxub69vYXNfOlvp2gt2CKL/HyfhCP0eOy+SMqUWU5qZTmuejLNdHaW46aW4NnlRiaYCllFIJNGl8OWv+XU7J+jfwfux7Byw3xrBy01Y2v/43JtQ8wTmymQ5JZ+uEz1B+1n9ROfbIJLR68I6fUszC96dy0soncHz8p11ZqFAkxlurt1H19oPM3PUU1znWEsFJY+U5+M/6JoXD9LDcRDvhiAJuZBxNaSXkrHrKeu4Q1vlduLmRN955izGbHuV8eZtCaaEjo4TYST/Hc8xVBzWWZ6Qoz/cxuSiDR5qP5FgMrHgU5v0/ADbubuXRRVuoXfoC54Rf4s/OD3G6Y0QrF8CJ/4X7iI+N+CxsTxZMLuShD6oJnnA23sV3QVsdZBRS3xbknx/t4Ln3VjBrz4vc4H6LI9zVxNwZOI79Asy7HkZa8DzjYmithZd+aAU+Z/4Mxp+6z5capX09CyvUYVVTbNy89yceSLVs33ddf6EVPB3xMcibYAVUeROt196MQ2p+KBJjS30763e1smFXK+t3tbF+dytV9e3E7AE7TodQnudjfIGfk44oYEJhBuML/Ews9FOY6dWqeWpYSV8VwobbcccdZxYvXpzsZiil1CELhKM88N/XcI08h/Pry6xvaIGqHbtZ/taTZG94kvmRD/BKhJ3e8USOuY7SBdeO+C5T/Vm5vZk/3P5b/uT5P5rmfJ21+WeydfVCcre9zInmQ/wSpDGtFMdx15Iz/2prDMUod81f3mf6tr/xLfNXNs2+kfdaiwhs/YB5oYXMcFQRxUlb5RlkH38NTDpzxI6hG6i739rMz59fw/tFt5AT3M6/xn+P1dt2UdH8AWc6F5MnbYS8ebiPvRI59upBl3JPtpXbmzn3D+/whWkRvrP5OmryT+ARx9m07VjHAlnKCc7VuIkQKz4Wx7FXwbRPjfzgee1z8PyN0FIDWaVQehwUToG0HGIOF798dhknlPs4pdhY40hbd1oBVGvtvvvxFVgBU1cA1e13WvYhNy8cjVFV3876XW1dWal1u6xAKmJHUg6xyuhPLspgclEmk4oymVxkBVNe1+i+xtToIyJLjDEHPEtjUAGWiDwMVvdkIAdoMsbMFpFKYA2wzl620Bjzhf72pwGWUioV/O+DL/PNtZfRmHEEG31H421cw8zISrwSodmRw86Kcyk+9ToyK44Zld/s9+YHT3zE8Uu/zbnOvWN0Wp25tFSeRdEJl+OacHJKvd/NdW185o63+FX4fzjFuQKwql7tyZ1F1jGfwn30Z1MikIwLR2Nc/udFNFSt4CHPf1MoVuW2kNNHbNLZpM26CCadMWq6AQ7EL15cyx1vbOJa5wv8yPV3HFZpXULZ4/FMOxdmXw5jjkpyKw9SqAPW/BPW/hN2rrDGEO4vPXfv2KesYmuMYTygyh0/6OIkoUiMqoZ2Nuxqs7JSdjC1pVsgJWKVy580JrNbMJXBxMIM7dKnRowhCbD2O8BvgGZjzM12gPWsMWb6wexDAyylVCrY0x7ivnt+x+UNt5FNO3WeEprGnUzxnAvIm7qg10Hmo10sZnhnw27MlrcY52yhYspsvKWzR33mpi/NnWEWbapjbPtaJhWkkz52Mvjzk92sIRONGT6oaiQabGe62Uh2XiEUTBmxFR8TYe3OFrbv6WRKehOl0mCNF7Iz0ykhGoFQG0TD/Oq1Ku5dtIsPf/KJQRd1MMZQ1xpka2MHWxs62NbQzsa6NtbvatsnIyUCFXk+jrADqUlFGUwak8nEwgwtLKFGvCENsMTq2LoNON0Ys0EDLKWUgkAogtfl0IqkSqlRYdHmBi69ayE/++R0rpxf0ee6sZihvj3IruYgO1sC7GzuZGtDB1sbO9jW0MG2xg46w9Gu9eNd+44Yk2EFUmM0I6VGv94CrEQVuTgZ2GWM2dBt3ngRWQq0AD80xrzdS8OuB64HKC9PoW+ElFKHvTSP1hFSSo0ec8fnMXd8Hv/97Go27mplXE46MWNo7gjT1BGmqTNEXWuQnc0BdrcGu7JQcV6Xg/I8HxX5Pk48ooDKAp897ackJx2PS79sUoeHfjNYIvIKMLaHRT8wxjxtr3MHsNEY8xt72gtkGGMaRORY4ClgmjGmpa9jaQZLKaWUUip56tuC/Oiplby2dndXqXOPy0Guz012uptC+2G7Y7PSGJudts/rwgyvPlxXHVYOOYNljPl4Pzt2AZ8Cju22TRAI2q+XiMgmYDKg0ZNSSiml1AhVkOHljiuOJRozBCNRBNGxUEodpETkaj8OrDXG1MRniEihiDjt1xOAScDmBBxLKaWUUkoNMadD8HlcGlwpdQgSMUDgMuDB/eadAtwsImEgBnzBGNOYgGMppZRSSiml1Ig16ADLGHNND/MeBx4f7L6VUkoppZRSajTRci5KKaWUUkoplSAJe9BwIohIHbA12e3YTwFQn+xGqGGj5/vwoef68KLn+/Ch5/rwoef68DISz3eFMaZw/5kjKsAaiURkcU/lF1Vq0vN9+NBzfXjR83340HN9+NBzfXgZTedbuwgqpZRSSimlVIJogKWUUkoppZRSCaIBVv/uSnYD1LDS83340HN9eNHzffjQc3340HN9eBk151vHYCmllFJKKaVUgmgGSymllFJKKaUSRAMspZRSSimllEoQDbD6ICJni8g6EdkoIt9NdntU4ohImYi8LiKrRWSViHzNnp8nIi+LyAb7d26y26oSQ0ScIrJURJ61p8eLyCL7+n5YRDzJbqNKDBHJEZHHRGStiKwRkeP12k5NInKD/W/4ShF5UETS9NpOHSJyr4jsFpGV3eb1eC2L5ff2eV8uIsckr+XqYPVyrn9l/zu+XESeFJGcbsu+Z5/rdSJyVlIa3QcNsHohIk7gduATwFTgMyIyNbmtUgkUAb5pjJkKzAe+bJ/f7wKvGmMmAa/a0yo1fA1Y0236F8CtxpgjgD3AfyalVWoo/A540RhzJDAL67zrtZ1iRKQE+CpwnDFmOuAELkOv7VRyH3D2fvN6u5Y/AUyyf64H7himNqrEuI8Dz/XLwHRjzExgPfA9APt+7TJgmr3NH+379hFDA6zezQU2GmM2G2NCwEPABUluk0oQY0ytMeZD+3Ur1g1YCdY5vt9e7X7gk0lpoEooESkFzgH+bE8LcDrwmL2KnusUISLZwCnAPQDGmJAxpgm9tlOVC0gXERfgA2rRaztlGGPeAhr3m93btXwB8FdjWQjkiMi4YWmoGrSezrUx5iVjTMSeXAiU2q8vAB4yxgSNMVuAjVj37SOGBli9KwGqu03X2PNUihGRSuBoYBFQZIyptRftBIqS1S6VUP8H3AjE7Ol8oKnbP9x6faeO8UAd8Be7S+ifRcSPXtspxxizHfg1sA0rsGoGlqDXdqrr7VrW+7bUdh3wgv16xJ9rDbDUYU1EMoDHga8bY1q6LzPWMwz0OQajnIicC+w2xixJdlvUsHABxwB3GGOOBtrZrzugXtupwR57cwFWUF0M+Dmwi5FKYXotHx5E5AdYQzseSHZbBkoDrN5tB8q6TZfa81SKEBE3VnD1gDHmCXv2rniXAvv37mS1TyXMicD5IlKF1dX3dKwxOjl2tyLQ6zuV1AA1xphF9vRjWAGXXtup5+PAFmNMnTEmDDyBdb3rtZ3aeruW9b4tBYnINcC5wOVm78N7R/y51gCrdx8Ak+xqRB6swXTPJLlNKkHsMTj3AGuMMb/ttugZ4Gr79dXA08PdNpVYxpjvGWNKjTGVWNfxa8aYy4HXgYvt1fRcpwhjzE6gWkSm2LM+BqxGr+1UtA2YLyI++9/0+LnWazu19XYtPwNcZVcTnA80d+tKqEYhETkbq3v/+caYjm6LngEuExGviIzHKmzyfjLa2BvZGwyq/YnIf2CN3XAC9xpjfp7cFqlEEZGTgLeBFewdl/N9rHFYjwDlwFbgEmPM/gNs1SglIguAbxljzhWRCVgZrTxgKXCFMSaYxOapBBGR2VgFTTzAZuBarC8U9dpOMSLyU+BSrO5DS4HPYY3F0Gs7BYjIg8ACoADYBfwEeIoermU7yL4Nq5toB3CtMWZxEpqtDkEv5/p7gBdosFdbaIz5gr3+D7DGZUWwhnm8sP8+k0kDLKWUUkoppZRKEO0iqJRSSimllFIJogGWUkoppZRSSiWIBlhKKaWUUkoplSAaYCmllFJKKaVUgmiApZRSSimllFIJogGWUkoppZRSSiWIBlhKKaWUUkoplSD/HyA6HJ7eQYaEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
3False10.1210.0319bAP.soma.v0.007887.19e-08
4False10.1210.0319Step1.soma.v0.07792.23e-07
5False10.1210.0319Step3.soma.v0.162.49e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "3 False 1 0.121 0.0319 bAP.soma.v \n", + "4 False 1 0.121 0.0319 Step1.soma.v \n", + "5 False 1 0.121 0.0319 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "3 0.00788 7.19e-08 \n", + "4 0.0779 2.23e-07 \n", + "5 0.16 2.49e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADee0lEQVR4nOzdd5xcZdn/8c81M9t7y6bsJrskJKQSIAGU0JGiFBElIB0VwQoq9oL+5Hl8EEUFFVAUBQwgXXoNEKQlENITUja9bLb3affvj5ldNsnW7GxmJ/m+X6957Zx2n2vO2dmda+77XMecc4iIiIiIiMjAeeIdgIiIiIiIyP5CCZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkSHGzMrMzJmZL96xyIHBzJaa2QnxjkNEZH+gBEtERBKemd1uZo3Rh9/MAp2mn4l3fEOdc26yc25uLNs0s/PN7L9m1mxmMW1bRGQoM91oWEQktszM55wLDmD7MmAdkDSQdg5UZnYDMM45d3EXywZ0bvalRIq1K2Z2CpAPHAKc5Jw7Ib4RiYjsG+rBEhGJATOrMLPvmdkioMnMfGZ2dPQb/Foz+6DzECwzm2tm/2tm75hZvZk9bmb53bR9hZktN7MGM1trZl/ebfk5ZrYw2s4aMzs9Oj/HzO4ys61mttnMfmlm3l5ex1gze9nMqsxsp5ndZ2a5nZZVm9nh0emRZlbZ/rrM7OzoULPa6OubuNvx+Y6ZLTKzOjN7wMxS+3+k+6+bc+PMbFynde42s192mj4zekxro+dwWh/3dYKZbTKzH0aPX4WZXdRp+afM7P3oudoYTQbbl7UPDf2CmW0AXo7O/7eZbYset9fMbPJucf/JzJ6J9ta9YWbDzex3ZlZjZivM7LA+HqNT+vIa+8o596Jz7kFgSyzbFREZ6pRgiYjEzoXAp4BcoBh4CvglkW/xvwM8bGZFnda/FLgSGAEEgT900+4O4EwgG7gCuKVTknMk8E/g+uh+jwMqotvdHW13HHAYcCrwxV5egwH/C4wEJgKlwA0Azrk1wPeAe80sHfg78A/n3FwzGw/MAa4FioCngf+YWXKnts8HTgfKgWnA5V0GYDYrmth095jVy2voSse56a1XKJqQ/A34MlAA3AE8YWYpfdzXcKAQGAVcBtxpZhOiy5qInPfcaDzXmNmnd9v+eCLH/rTo9DPAwcAw4D3gvt3WPx/4cXSfbcCb0fUKgYeA3/Yx7i6Z2fd7Oh8DaVtEZH+kBEtEJHb+4Jzb6JxrAS4GnnbOPe2cCzvnXgDmA5/stP49zrklzrkm4CfA+V31MDnnnnLOrXERrwLPA8dGF38B+Jtz7oXofjY751aYWXF0X9c655qcczuAW4ALenoBzrnV0bbanHOVRD6cH99p+V+A1cDbRBLDH0UXzQaeim4bAG4G0oCP73Z8tjjnqoH/ANO7iWGecy63h8e8nl5DNzqfm95cBdzhnHvbORdyzv2DSOJydD/295PoMXyVSKJ9PoBzbq5zbnH0XC0ikpQev9u2N0TPWUt0m7855xqcc21Ekt1DzSyn0/qPOucWOOdagUeBVufcP51zIeABIsn1XnPO/aqn8zGQtkVE9kdKsEREYmdjp+djgM/t9k3/LCJJSVfrrweSiPQ67MLMzjCzt6LD82qJJE7t65UCa7qIZUy0va2d9n8HkV6QbplZsZndHx1SWA/c20VMfwGmALdGP/RDpMdrffsKzrlw9PWN6rTdtk7Pm4HMnmKJsY29r9JhDPDt3c5dKZHX2Bc10aS53fr2bc3sKDN7JTq0sg64mj2Pb0esZuY1s19ZZOhnPR/1TnbeZnun5y1dTO/L4ywicsBTgiUiEjudqwZtJNJD1fnb/gzn3K86rVPa6floIADs7NxgdFjaw0R6hIqjPQZPExnK176fsV3EspFIr0thp/1nO+cmd7FuZ/8TfR1TnXPZRHri2veFmWUCvwPuAm6wj64b20IkMWlfz6Kvb3Mv+9uDmR1rH1UA7OpxbO+t7GH3ik7NQHqn6eGdnm8Ebtzt3KU75+b0cV95ZpbRaXo0H12H9C/gCaDUOZcD3E6n49tFrJ8HzgFOAXKAsuj83bcZNNHrybo9H/sqDhGRRKEES0RkcNwLnGVmp0V7IVKjBRBKOq1zsZlNil7P9Avgoeiwrs6SgRSgEgia2RlErqVqdxdwhZmdbGYeMxtlZoc457YSGUr4GzPLji4ba2a7D0fbXRbQCNSZ2Sgi13Z19ntgvnPui0SGvt0enf8g8KloHEnAt4kkeP/t7UDtzjn3unMus4fH6/1tswsLgc9Hz83p7DpM7y/A1dHeJjOzDIsUp8iCjsISd/fS/s/NLDmaDJ4J/Ds6Pwuods61Rq+f+3wv7WQROY5VRBLC/+nHa4wJ59z/9HQ+utuu/fce8AGe6Hsgad9FLiISH0qwREQGgXNuI5Gehx8SSY42EklWOv/dvYdIIYptQCrwjS7aaYjOfxCoIfKB/IlOy98hWvgCqANe5aOepEuJJGjLots+xK5DFLvyc+DwaFtPAY+0LzCzc4gUqbgmOutbwOFmdpFzbiWR3q5bifTCnQWc5Zzz97K/ePkmkRhrgYuAx9oXOOfmA18CbiNy3Faza0GOUuCNHtreFt1uC5GCFFc751ZEl30F+IWZNQA/JXJee/JPIkMMNxM5j2/19sKGkEuIDFH8M5FrBluIJK8iIvs13QdLRCQOLHLj1Xudc3+NdyzSd9GqiB8A06LFPHZffgKR81qy+zIRETkw+OIdgIiISKKI9shN7HVFERE5YGmIoIjIAcbMbu+mYMHtvW8ticjMRvdQqGJ0vOMTEdmfaIigiIiIiIhIjKgHS0REREREJEaG1DVYhYWFrqysLN5hiIiIiIiI9GjBggU7nXNFu88fUglWWVkZ8+fPj3cYIiIiIiIiPTKz9V3N1xBBERERERGRGFGCJSIiIiIiEiNKsERERERERGJkSF2D1ZVAIMCmTZtobW2NdygyBKSmplJSUkJSUlK8Q5H91LsV1fzx6QX86LyjObg4K97hiIiISIIZ8gnWpk2byMrKoqysDDOLdzgSR845qqqq2LRpE+Xl5fEOR/ZTr7zyAnfvuIr3/3UKXPdwvMMRERGRBDPkhwi2trZSUFCg5EowMwoKCtSbKYMqvWoxAIfVvYhrqY1vMCIiIpJwhnyCBSi5kg76XZDBlt64seP5zkXPxzESERERSUQJkWCJiOwLobBjWGgrO33DaXHJ1K16Pd4hiYiISIJRgtUHZsa3v/3tjumbb76ZG264IX4BdXLCCSf0eHPmT3/60xx99NG7zLvhhhsYNWoU06dPZ8qUKTzxxBODHaZIQmhsCzLGttOSXc5KRuPbsSTeIYmIiEiCUYLVBykpKTzyyCPs3Lkzpu065wiHwzFts7Pa2loWLFhAXV0da9eu3WXZddddx8KFC/n3v//NlVdeOahxiCSKxrYghVZPIH04m1MPpqhxJTgX77BEREQkgSjB6gOfz8dVV13FLbfcsseyyspKzjvvPGbOnMnMmTN54403gEgv0c0339yx3pQpU6ioqKCiooIJEyZw6aWXMmXKFDZu3Mj111/PlClTmDp1Kg888AAAc+fO5YQTTuCzn/0shxxyCBdddBGumw9699xzT0dv1DvvvNMx/5FHHuGss87iggsu4P777+9y24kTJ+Lz+XZJHr///e8zadIkpk2bxne+8x0AKioqOOmkk5g2bRonn3wyGzZsAODyyy/nmmuu4eijj+aggw5i7ty5XHnllUycOJHLL7+8o81rrrmGGTNmMHnyZH72s5/tEUddXR1jxozpSPSampooLS0lEAh0GbfIYGhoDZBGG5aSQXPeJDJcE9Rt7H1DERERkaghX6a9s5//ZynLttTHtM1JI7P52VmTe13vq1/9KtOmTeO73/3uLvO/+c1vct111zFr1iw2bNjAaaedxvLly3ts68MPP+Qf//gHRx99NA8//DALFy7kgw8+YOfOncycOZPjjjsOgPfff5+lS5cycuRIjjnmGN544w1mzZq1R3vNzc0sXLiQ1157jSuvvJIlSyLDmubMmcNPf/pTiouLOe+88/jhD3+4x7Zvv/02Ho+HoqIiAKqqqnj00UdZsWIFZkZtbS0AX//617nsssu47LLL+Nvf/sY3vvENHnvsMQBqamp48803eeKJJzj77LN54403+Otf/8rMmTNZuHAh06dP58YbbyQ/P59QKMTJJ5/MokWLmDZtWkccOTk5TJ8+nVdffZUTTzyRJ598ktNOO033u5J9qrE1SBp+6lPSSc4+BLZB05YVZOSOjndoIiIikiDUg9VH2dnZXHrppfzhD3/YZf6LL77I1772NaZPn87ZZ59NfX09jY2NPbY1ZsyYjuui5s2bx4UXXojX66W4uJjjjz+ed999F4AjjzySkpISPB4P06dPp6Kiosv2LrzwQgCOO+446uvrqa2tZfv27Xz44YfMmjWL8ePHk5SU1JF4Adxyyy1Mnz6d73znOzzwwAMd1flycnJITU3lC1/4Ao888gjp6ekAvPnmm3z+858H4JJLLmHevHkdbZ111lmYGVOnTqW4uJipU6fi8XiYPHlyR8wPPvgghx9+OIcddhhLly5l2bJle7yO2bNnd/Tg3X///cyePbvH4ygSaw0tbaRYAF9KBvljIl+87KxYHOeoREREJJEkVA9WX3qaBtO1117L4YcfzhVXXNExLxwO89Zbb5GamrrLuj6fb5frmjrfuykjI6NP+0tJSel47vV6CQaDXa63e+lyM+PBBx+kpqam44a89fX1zJkzhxtvvBGIXIPVPvxv97jfeecdXnrpJR566CFuu+02Xn755T7F6fF4donZ4/EQDAZZt24dN998M++++y55eXlcfvnlXd7L6uyzz+aHP/wh1dXVLFiwgJNOOqnH/YrEWqC1CQBvSjpjSsqod+kEtq+Kc1QiIiKSSNSD1Q/5+fmcf/753HXXXR3zTj31VG699daO6YULFwJQVlbGe++9B8B7773HunXrumzz2GOP5YEHHiAUClFZWclrr73GkUce2a+42nt95s2bR05ODjk5OcyZM4dnn32247qvBQsWdHsdVmeNjY3U1dXxyU9+kltuuYUPPvgAgI9//OMd2993330ce+yxfY6vvr6ejIwMcnJy2L59O88880yX62VmZjJz5ky++c1vcuaZZ+L1evu8D5FYCPmbAfAkpzMyL411bgS+mjVxjkpEREQSSUL1YA0F3/72t7nttts6pv/whz90XJ8VDAY57rjjuP322znvvPP45z//yeTJkznqqKMYP358l+2de+65vPnmmxx66KGYGTfddBPDhw9nxYoVfY4pNTWVww47jEAgwN/+9jcqKipYv379LuXZy8vLycnJ4e233+6yjU9+8pP89a9/xcw455xzaG1txTnHb3/7WwBuvfVWrrjiCn79619TVFTE3//+9z7Hd+ihh3LYYYdxyCGHUFpayjHHHNOx7Kc//SkzZszg7LPPBiLDBD/3uc8xd+7cPrcvEiuhthYAvMnp+LwetieXMrpZpdpFRESk76y7ynR9bsCsFPgnUAw44E7n3O/N7AbgS0BldNUfOuee7qmtGTNmuN3v6bR8+XImTpw4oBhl/6LfCRksj7/4CufM+zR1n7qDnJkX8PDvruO82r/BDzZDSma8wxMREZEhxMwWOOdm7D4/Fj1YQeDbzrn3zCwLWGBmL0SX3eKcu7mHbUVEhgwXHSLoS4lcJxnKHwu14Ko+xEYeFsfIREREJFEM+Bos59xW59x70ecNwHJg1EDbFRHZ53ZLsFKHTwCgflPPt14QERERaRfTIhdmVgYcBrRf6PM1M1tkZn8zs7xY7ktEJNZcIJpgpUZuT5BXcggA9Vs+jFtMIiIiklhilmCZWSbwMHCtc64e+DMwFpgObAV+0812V5nZfDObX1lZ2dUqIiL7RuCjIhcAY4oL2OLyCe5UJUERERHpm5gkWGaWRCS5us859wiAc267cy7knAsDfwG6rD3unLvTOTfDOTejqKgoFuGIiOwViyZYJEUSrJG5qWxww0mq6/o2CyIiIiK7G3CCZZG73N4FLHfO/bbT/BGdVjsXUK1jERnSLNieYKUB4PN6qEoeRVbzxjhGJSIiIokkFj1YxwCXACeZ2cLo45PATWa22MwWAScC18VgX3Hz2GOPYWY93p+qoqKCKVOmxGyfl19+OQ899FC3y6+99lpGjRpFOBzumHf33XdTVFTE9OnTmTRpEn/5y19iFo/Ifi/YGvkZTbAAmjNHkxOqgbaGOAUlIiIiiSQWVQTnOefMOTfNOTc9+njaOXeJc25qdP7ZzrmtsQg4XubMmcOsWbOYM2dOl8uDweCA9xEKhfq8bjgc5tFHH6W0tJRXX311l2WzZ89m4cKFzJ07lx/+8Ids3759wLGJHAi8wV2HCAKE8w4CwFWvjUdIIiIikmBiWkVwf9XY2Mi8efO46667uP/++zvmz507l2OPPZazzz6bSZMmAZFE66KLLmLixIl89rOfpbk5UpXspZde4rDDDmPq1KlceeWVtLW1AVBWVsb3vvc9Dj/8cP7973/vse8XX3yRGTNmMH78eJ588sld9j158mSuueaabpO+YcOGMXbsWNavX98x7w9/+AOTJk1i2rRpXHDBBQBUV1fz6U9/mmnTpnH00UezaNEiAG644QYuu+wyjj32WMaMGcMjjzzCd7/7XaZOncrpp59OIBAA4Be/+AUzZ85kypQpXHXVVex+8+pwOExZWRm1tbUd8w4++GAlfjLkeELRHixfSse8lGHjAGhUJUERERHpg1jcaHjfeeb7sG1xbNscPhXO+FWPqzz++OOcfvrpjB8/noKCAhYsWMARRxwBwHvvvceSJUsoLy+noqKClStXctddd3HMMcdw5ZVX8qc//Ymvfe1rXH755bz00kuMHz+eSy+9lD//+c9ce+21ABQUFPDee+91ue+Kigreeecd1qxZw4knnsjq1atJTU1lzpw5XHjhhZxzzjn88Ic/JBAIkJSUtMu2a9euZe3atYwbN65j3q9+9SvWrVtHSkpKR8Lzs5/9jMMOO4zHHnuMl19+mUsvvZSFCxcCsGbNGl555RWWLVvGxz72MR5++GFuuukmzj33XJ566ik+/elP87WvfY2f/vSnAFxyySU8+eSTnHXWWR379Hg8nHPOOTz66KNcccUVvP3224wZM4bi4uI+nyaRfcFCbQTwkWTWMS+vZDy8DXVbVpJ1RByDExERkYSgHqw+mDNnTkdvzwUXXLBLj9GRRx5JeXl5x3RpaSnHHHMMABdffDHz5s1j5cqVlJeXM378eAAuu+wyXnvttY5tZs+e3e2+zz//fDweDwcffDAHHXQQK1aswO/38/TTT/PpT3+a7OxsjjrqKJ577rmObR544AGmT5/OhRdeyB133EF+fn7HsmnTpnHRRRdx77334vNF8ut58+ZxySWXAHDSSSdRVVVFfX09AGeccQZJSUlMnTqVUCjE6aefDsDUqVOpqKgA4JVXXuGoo45i6tSpvPzyyyxdunSP1zF79mweeOABAO6///4eX7NIvFjIT8B2/aJiVPEwdrhcgpUq1S4iIiK9S6werF56mgZDdXU1L7/8MosXL8bMCIVCmBm//vWvAcjIyNhlfev0zXdX013ZvY3e2nvuueeora1l6tSpADQ3N5OWlsaZZ54JRJKZ2267rcv2nnrqKV577TX+85//cOONN7J4cc89gikpkaFSHo+HpKSkjng8Hg/BYJDW1la+8pWvMH/+fEpLS7nhhhtobW3do52PfexjrF69msrKSh577DF+/OMf97hfkXiwcIAguyZYpflpLHLFjKhVqXYRERHpnXqwevHQQw9xySWXsH79eioqKti4cSPl5eW8/vrrXa6/YcMG3nzzTQD+9a9/MWvWLCZMmEBFRQWrV68G4J577uH444/v0/7//e9/Ew6HWbNmDWvXrmXChAnMmTOHv/71r1RUVFBRUcG6det44YUXOq736k44HGbjxo2ceOKJ/N///R91dXU0NjZy7LHHct999wGRa7sKCwvJzs7uU3ztyVRhYSGNjY3dVj00M84991y+9a1vMXHiRAoKCvrUvsi+5An7CXp2TbBSfF52+EaSqVLtIiIi0gdKsHoxZ84czj333F3mnXfeed0WlpgwYQJ//OMfmThxIjU1NVxzzTWkpqby97//nc997nNMnToVj8fD1Vdf3af9jx49miOPPJIzzjiD22+/nXA4zLPPPsunPvWpjnUyMjKYNWsW//nPf7ps44tf/CLz588nFApx8cUXM3XqVA477DC+8Y1vkJubyw033MCCBQuYNm0a3//+9/nHP/7Rx6MDubm5fOlLX2LKlCmcdtppzJw5s2PZ7bffzu23394xPXv2bO69914ND5QhyxsOELLkPeY3ZIwmN1gJ/p6/xBARERGx3Su+xdOMGTPc/Pnzd5m3fPlyJk6cGKeIZCjS74QMlrm//BSH2HqG/2jX+6L/665b+PzGG+CaN6F4UnyCExERkSHFzBY452bsPl89WCIiUV7nJ+TZswcrKVqqvWWHSrWLiIhIz5RgiYhE+cIBwl0kWNkjIhVA6zet3NchiYiISIJJiARrKA1jlPjS74IMJp8LENqtyAXAqBHDqXJZtO1YHYeoREREJJEM+QQrNTWVqqoqfbAWnHNUVVWRmpoa71BkP+V1AVwXCdbognTWu2I8KtUuIiIivRjy98EqKSlh06ZNVFZWxjsUGQJSU1MpKSmJdxiyn0qimyGCqUls9Y6kvHFVHKISERGRRDLkE6ykpCTKy8vjHYaI7Oecc/hcAOfdM8ECqE8rJaf5dQi2gS9lH0cnIiIiiWLIDxEUEdkXgmFHMsFuE6xAThkeHNSs38eRiYiISCJRgiUiAviD4R4TLF9RpFR7YKcKXYiIiEj3Bj3BMrPTzWylma02s+8P9v5ERPaGPxgm2bofIpgVLdVet1ml2kVERKR7g5pgmZkX+CNwBjAJuNDMJg3mPkVE9oY/FCaJINZNgjVi+AjqXDqt29WDJSIiIt0b7B6sI4HVzrm1zjk/cD9wziDvU0Sk39qHCOLtuoDF6MIMKtxwrHrtPo5MREREEslgJ1ijgI2dpjdF53Uws6vMbL6ZzVcpdhGJF38oTDIB8HXdg1WUmcImG05ao4pciIiISPfiXuTCOXenc26Gc25GUVFRvMMRkQOUPxAk2UJYNyXYzYy61FJy2rZCKLCPoxMREZFEMdgJ1magtNN0SXSeiMiQEvC3AWDd9GABtGWPwUsYajfsq7BEREQkwQx2gvUucLCZlZtZMnAB8MQg71NEpN+C/lYAPEnd30TYWzgWgHCVrsMSERGRrg1qguWcCwJfA54DlgMPOueWDuY+RUT2RnuCZb7UbtdJHx4p1V6/RaXaRUREpGu+wd6Bc+5p4OnB3o+IyEAEApEhgp4ehggOH1FKo0ulZduH5O6juERERCSxxL3IhYjIUBD2twDgTU7rdp0xhRmsd8UaIigiIiLdUoIlIsJHCZanhwRrZG4aGxlOSkPFPopKREREEo0SLBERIOxvBsCbnN7tOl6PUZdWSm7rFgiH9lVoIiIikkCUYImIAK59iGBK9wkWQCC3DB9BqNu0L8ISERGRBKMES0QEcIFIguVL6X6IIEBy0TgA/JWrBz0mERERSTxKsERE+CjB8qZk9LhezqgJAFRvVKl2ERER2ZMSLBERwAUjCVZyL0MER5WW0+KSad62al+EJSIiIglGCZaICB9dg5Wc2nOCddCwLNa7YqhWqXYRERHZkxIsEREg7G8FwJJ6TrDSk31s940gvWH9vghLREREEowSLBERgGCkTDtJqb2uWp9RToF/E4SCgxyUiIiIJBolWCIigAUiPVj4eq4iCBDMH08SQVz1mkGOSkRERBKNEiwREYBgK3584On9z2LyiEkA1K5fPNhRiYiISIJRgiUiAnhCrfgtpU/rFpRNJeyMhg1KsERERGRXvngHICIyFHiCfU+wykcWsdEVEd6xfJCjEhERkUQzoB4sM/u1ma0ws0Vm9qiZ5Ubnl5lZi5ktjD5uj0m0IiKDxBtuJejpW4I1LCuFtZ5S0ms/HOSoREREJNEMdIjgC8AU59w0YBXwg07L1jjnpkcfVw9wPyIig8obautzgmVmVKcfREHrBggFBjkyERERSSQDSrCcc88759rrFL8FlAw8JBGRfS+pHz1YEKkk6COoGw6LiIjILmJZ5OJK4JlO0+Vm9r6ZvWpmx3a3kZldZWbzzWx+ZWVlDMMREem7lHALQW/PNxneZf2RUwCoV6ELERER6aTXBMvMXjSzJV08zum0zo+AIHBfdNZWYLRz7jDgW8C/zCy7q/adc3c652Y452YUFRUN/BWJiOyFDNdEICmrz+sXlU8h7Iza9YsGMSoRERFJNL1WEXTOndLTcjO7HDgTONk556LbtAFt0ecLzGwNMB6YP9CARURiLRx2ZNBMTXKX3wN1aezIYWxww0CVBEVERKSTgVYRPB34LnC2c6650/wiM/NGnx8EHAzoQgURGZIa/UGyacal5PR5m+LsFNZ5SklTJUERERHpZKDXYN0GZAEv7FaO/ThgkZktBB4CrnbOVQ9wXyIig6K+qYUsa8FS+55gRSoJjqWgdaMqCYqIiEiHAd1o2Dk3rpv5DwMPD6RtEZF9pbGuBgBvet8TLIBgwcH4moO4qtXYsImDEZqIiIgkmFhWERQRSUgtDZEEy5ee26/tUkZEKgk2bFwS65BEREQkQSnBEpEDXltjJMFKzsjv13ZF5VMIOaNOlQRFREQkakBDBEVE9gdtjZFLRFMy8/q13bhRRWxww7DtqiQoIiIiEerBEpEDXnuClZXbvx6sYVkprPWMJl2VBEVERCRKCZaIHPAC9TsBSM/t383OzYyajLEUtG2AYNtghCYiIiIJRgmWiBzwrGl75Gfm8H5vG8yfgJcwbqd6sUREREQJlogIyc3bqbNs8CX3e9uUkZMBVRIUERGRCCVYInLAS/fvpCGpcK+2HVY+haDzqJKgiIiIAEqwRETIDlbRmrJ3Cda4kQWsd8WEd6iSoIiIiCjBEpEDXFswRL6rIZA2bK+2b68kmFG7KsaRiYiISCJSgiUiB7TtNU0MoxaXNWKvtm+vJJjv3wKB1hhHJyIiIolGCZaIHNC2b1yFz8IkDxu7120ECybgIYzbuTKGkYmIiEgiUoIlIge0+i2R8uq5o8bvdRupqiQoIiIiUUqwROSAFqhcA0B+yYS9bqO4bDIB56V+/eJYhSUiIiIJSgmWiBzQPLXraCMZT/bIvW7j4JH5rHPDCW9fFsPIREREJBENKMEysxvMbLOZLYw+Ptlp2Q/MbLWZrTSz0wYeqohI7OU0rqMyuQQ8e//nsCgrhXWe0WTUr45hZCIiIpKIfDFo4xbn3M2dZ5jZJOACYDIwEnjRzMY750Ix2J+ISEy0BkKUBNdTn3fEgNoxM+oyyslrejtSSTApNUYRioiISKIZrCGC5wD3O+fanHPrgNXAkYO0LxGRvbJ20zZG2U5s2MQBtxXOPzhSSbBKvVgiIiIHslgkWF8zs0Vm9jczy4vOGwVs7LTOpui8PZjZVWY238zmV1ZWxiAcEZG+2b72AwByxkwdcFtpoyJJWv2mpQNuS0RERBJXrwmWmb1oZku6eJwD/BkYC0wHtgK/6W8Azrk7nXMznHMzioqK+ru5iMhea90USbAKxw5siCDAsLIphJ1Rt0GFLkRERA5kvV6D5Zw7pS8NmdlfgCejk5uB0k6LS6LzRESGjOTKpTSRTkZB2YDbGjuyiM2ukOD2FQMPTERERBLWQKsIjug0eS7QfpfNJ4ALzCzFzMqBg4F3BrIvEZFYK2z6kO1pY8FswG0VZaVQ4SkhtU7XYImIiBzIBlpF8CYzmw44oAL4MoBzbqmZPQgsA4LAV1VBUESGkprGVg4Kr2d9/lkxac/MqE0vp7D5SQiHwOONSbsiIiKSWAaUYDnnLulh2Y3AjQNpX0RksKxdvYwjrIXkUdNi1mYgfxzJzX5c7QYsvzxm7YqIiEjiGKwy7SIiQ1rN2vcBKBo3I2ZtpgyPVBKs26BKgiIiIgcqJVgickAKb11EGCOvLHY9WIVlUwCo2bCklzVFRERkf6UES0QOSJm1K9nuGwXJGTFrs3zMaKpcFoFtqiQoIiJyoFKCJSIHnEAoTIl/DbXZE2LablFmCmtsNOk1y2ParoiIiCQOJVgicsBZv2Ubo20H4WGTY9qumbEt/RCKW1ZDKBDTtkVERCQxKMESkQPOzjWRAhcZo6fHvO3mwikkEcTtWBbztkVERGToG+h9sEREEo5/8yIACscdEfO2faUzYQM0rJpH9ohDY96+DIw/EKKlpYm26CPkbybsbyEU9BMKBnDhEKFggHAoGH2ECIcC4MJ4XBBz4WhLFrlBtRkOT2TaY5GfGGbRh8eLx+MB82JeDx6PLzLt8eLx+jCPFzMPHq8Pj9eLmRePNzIdee7tWOaJrmdeH16vB0+0Da/Xi9fjwzwezKPvTUVE4k0JVg/ef/5ekuffjjkwwoDDnMNwkeedHji3x/ZG5A7Mu877aE7nZdbF9nuutWcb8Ta4kdigtewGrW03iG0PZtw9nMuh8+sWM5PCVdRZJjlFY2Le9kETprDh9SKSlr9I9vFfjXn7B6pAMERtbS1Ntdtpqd2Ov6EKf2MNweZaQq310FqPtdXj8TeQFGwgNdREariJ1HAzyc5PimsjBT+pFiA53i9mEIWdEcJDGA8hPDiMkEWm3W7zw9H5Ybw4s+g6XsLRpDFs3sh/OPMStkgSGZnnwVlkm/79ne77H5Pd/yf2tGV/I+jf/9C9jzmmbfeybudd9/+/RP/i6M+r7M8x6eo1drf1YL/GblvZbVF/P499FHes/7H2N47+/F4PTrsRfV//9ZTjOPjcH3LswUX93Ed8KMHqUeTjrDPD4ev4ZxL5h+OJplmejnnWxTveYZE3lHUxbw/W1Y+uP1R3tTNi85YdvI/w/dnX4H2qH8wEdXCPXddJfGya7vmYdPPrlrC2U4x/9HEcNggv7NCSXB71Tues7a9DWwOkZMV8H/uLQDBE5c4d1GxbT9POjQRqt+Dqt2EtO/G1VJPiryYjWEtmuI48V0+RBejuX2vIGY2WQYul0+rNoNWbQXPSMOp8GYS9qThfKvhSsaQ0SErDk5SGJyUNfKmQlIZ5UzCfD683CfN48fp8eDw+vL6kSM+SNwnME000iLxnnMO59i/YIl/CuXA48n8j7HAuTNiFCIcdLhzChUK4cBDnwpHnLhhZLxydHw7jXAhCoY+eh0OR5S6MuejzcOQ50fmEQ+DC4EIQjv50kXnWabl1nhedjsxz0efR+YTwdDwP44kuM+fwOj+e6PyPevP6o5v3XDf/PwdL/9ru+7p7tNvrpoPzGvt77Fynv4W9bdnXtts/+/Q9lq7/O3f3Z7r/vx99W7/9K/S+tOLY9djF3gB+93ptenDa7v8nrL617U3LJsXn7Xfr8aIEqweHnXoJnHpJvMMQkQTi9RjbDzqPlDUv0Pj2P8k87qNerC07a3j3qb8zbOw0PjbrlDhGOfhCYcf2yh1UbVxF47a1BGvWY/WbSWreQUbbDrKDOyly1Yw0PyN327aRNBosm0ZfLq2pw2hMncCWtELIKMCTWURSZiFJ2YWkZ+WTkZ1PZk4+yWlZ5JiRE5dXKyIigynRBtwrwRIRibHTTzuTN2+bxKGv3Mh2Xy5b21LZueg5Dq9+inOskTUbymHWwniHOWA1tbVsqVhBw9bVtFWuw1O3gZSmzeS2baU4vJ2R1rRL8tRKEtWeQuqTCqnOmMyOjOF4skeQkl9CesEosoaNJreolMzUDDLj9qpEREQGRgmWiEiMjR2Wxfxjb6bo9S8y7vmvUAwE8fBh7rFUte7koNZlhJtr8aTnxjvUXrUFAmyp+JCq9Utp2bYCT/UaMhsrGObfwAiqyOu0bivJ7PAOpyF9JKszD8dyx5BaVE72iLEUjDqYtJxCRprt0WMlIiKyP1GCJSIyCGZ/4hhWTZ7Hy4tfoyjdx8HTZzExK49XX3iMg9+4jA3zn2T0cRfHO0wAnHPs2LGd7WsX07BlBeHKVaTWr6OgZT0jw1sptwDl0XUbSWdbUgnbco9gc944UoePI2fkOApLJpCWW8zo/e2CPRERkX4y1++qN4NnxowZbv78+fEOQ0Rk0FQ3tBC4+RDqcqcw/rqn9um+G5ub2bJ2OTUbl+Lftgpf7RqymioYEdhEgdV3rBd0HrZ5R1CdNgZ/TjneovFkl0xk2EFTyMofuf9VPREREdkLZrbAOTdj9/kD6sEysweACdHJXKDWOTfdzMqA5cDK6LK3nHNXD2RfIiL7g/ysNJ4v+BSnVP2LnavepnD8UTFtv9UfZOumNVSvX07rthW4qjWkN6yjqG0jI912xnequVtNDjtSRlORczwVBQeTPmIC+WMmU1Q6gZKkZEpiGpmIiMiBYUAJlnNudvtzM/sNUNdp8Rrn3PSBtC8isj+acN5P2HnnU7gHLqX+isfILpnYr+1bmpvZsvFDqjetoXnHGsI160ltWE9h6wZGhbdSbm0dQ/paSGabr4Sq7Ilsy/0UKcXjySmZRPFBU8jPyic/9i9PRETkgBaTa7DMzIDzgZNi0Z6IyP5szKgRvHbinUx95UrS/3oMS/JPIlj6cZJyhuOSMnChAC3NjYQaq3BNlVhTJd7mSjLaKikMbaPI1TDWHGOj7QXxUOktpiZ9DCtyPoan8GAyRk6gsGwKecNGU+7xxPX1ioiIHEhicg2WmR0H/LZ9DGJ0iOBSYBVQD/zYOfd6N9teBVwFMHr06CPWr18/4HhERBLByg9XsvGJGzm8/iXyrbHb9RpIp86TR2NyIU1powhll5JUUEbOiLEUlh5MdtFo8KpmkYiIyL7U3TVYvSZYZvYiMLyLRT9yzj0eXefPwGrn3G+i0ylApnOuysyOAB4DJjvn6rtop4OKXIjIgajVH2TrhtU01+3A428EXwoZGRlk5BSRXTiCpJT0eIcoIiIiu9nrIhfOuVN6adgHfAY4otM2bUBb9PkCM1sDjAeUPYmI7CY12Uf5uEOAQ+IdioiIiAxQLAbmnwKscM5tap9hZkVm5o0+Pwg4GFgbg32JiIiIiIgMWbEYtH8BMGe3eccBvzCzABAGrnbOVcdgXyIiIiIiIkPWgBMs59zlXcx7GHh4oG2LiIiIiIgkkphUEYwVM6sEhloZwUJgZ7yDkH1G5/vAoXN94NC5PrDofB84dK4PLEPxfI9xzhXtPnNIJVhDkZnN76o6iOyfdL4PHDrXBw6d6wOLzveBQ+f6wJJI51t3nxQREREREYkRJVgiIiIiIiIxogSrd3fGOwDZp3S+Dxw61wcOnesDi873gUPn+sCSMOdb12CJiIiIiIjEiHqwREREREREYkQJloiIiIiISIwoweqBmZ1uZivNbLWZfT/e8UjsmFmpmb1iZsvMbKmZfTM6P9/MXjCzD6M/8+Idq8SGmXnN7H0zezI6XW5mb0ff3w+YWXK8Y5TYMLNcM3vIzFaY2XIz+5je2/snM7su+jd8iZnNMbNUvbf3H2b2NzPbYWZLOs3r8r1sEX+InvdFZnZ4/CKX/urmXP86+nd8kZk9ama5nZb9IHquV5rZaXEJugdKsLphZl7gj8AZwCTgQjObFN+oJIaCwLedc5OAo4GvRs/v94GXnHMHAy9Fp2X/8E1geafp/wNucc6NA2qAL8QlKhkMvweedc4dAhxK5Lzrvb2fMbNRwDeAGc65KYAXuAC9t/cndwOn7zavu/fyGcDB0cdVwJ/3UYwSG3ez57l+AZjinJsGrAJ+ABD9vHYBMDm6zZ+in9uHDCVY3TsSWO2cW+uc8wP3A+fEOSaJEefcVufce9HnDUQ+gI0ico7/EV3tH8Cn4xKgxJSZlQCfAv4anTbgJOCh6Co61/sJM8sBjgPuAnDO+Z1ztei9vb/yAWlm5gPSga3ovb3fcM69BlTvNru79/I5wD9dxFtArpmN2CeByoB1da6dc88754LRybeAkujzc4D7nXNtzrl1wGoin9uHDCVY3RsFbOw0vSk6T/YzZlYGHAa8DRQ757ZGF20DiuMVl8TU74DvAuHodAFQ2+kPt97f+49yoBL4e3RI6F/NLAO9t/c7zrnNwM3ABiKJVR2wAL2393fdvZf1uW3/diXwTPT5kD/XSrDkgGZmmcDDwLXOufrOy1zkHga6j0GCM7MzgR3OuQXxjkX2CR9wOPBn59xhQBO7DQfUe3v/EL325hwiSfVIIIM9hxjJfkzv5QODmf2IyKUd98U7lr5SgtW9zUBpp+mS6DzZT5hZEpHk6j7n3CPR2dvbhxREf+6IV3wSM8cAZ5tZBZGhvicRuUYnNzqsCPT+3p9sAjY5596OTj9EJOHSe3v/cwqwzjlX6ZwLAI8Qeb/rvb1/6+69rM9t+yEzuxw4E7jIfXTz3iF/rpVgde9d4OBoNaJkIhfTPRHnmCRGotfg3AUsd879ttOiJ4DLos8vAx7f17FJbDnnfuCcK3HOlRF5H7/snLsIeAX4bHQ1nev9hHNuG7DRzCZEZ50MLEPv7f3RBuBoM0uP/k1vP9d6b+/funsvPwFcGq0meDRQ12kooSQgMzudyPD+s51zzZ0WPQFcYGYpZlZOpLDJO/GIsTv2UTIouzOzTxK5dsML/M05d2N8I5JYMbNZwOvAYj66LueHRK7DehAYDawHznfO7X6BrSQoMzsB+I5z7kwzO4hIj1Y+8D5wsXOuLY7hSYyY2XQiBU2SgbXAFUS+UNR7ez9jZj8HZhMZPvQ+8EUi12Lovb0fMLM5wAlAIbAd+BnwGF28l6NJ9m1Ehok2A1c45+bHIWzZC92c6x8AKUBVdLW3nHNXR9f/EZHrsoJELvN4Zvc240kJloiIiIiISIxoiKCIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYgMMWZWZmbOzHzxjkUODGa21MxOiHccIiL7AyVYIiKS8MzsdjNrjD78ZhboNP1MvOMb6pxzk51zc2PZppmdb2b/NbNmM4tp2yIiQ5k55+Idg4jIfsXMfM654AC2LwPWAUkDaedAZWY3AOOccxd3sWxA52ZfSqRYu2JmpwD5wCHASc65E+IbkYjIvqEeLBGRGDCzCjP7npktAprMzGdmR0e/wa81sw86D8Eys7lm9r9m9o6Z1ZvZ42aW303bV5jZcjNrMLO1Zvbl3ZafY2YLo+2sMbPTo/NzzOwuM9tqZpvN7Jdm5u3ldYw1s5fNrMrMdprZfWaW22lZtZkdHp0eaWaV7a/LzM6ODjWrjb6+ibsdn++Y2SIzqzOzB8wstf9Huv+6OTfOzMZ1WuduM/tlp+kzo8e0NnoOp/VxXyeY2SYz+2H0+FWY2UWdln/KzN6PnquN0WSwfVn70NAvmNkG4OXo/H+b2bbocXvNzCbvFvefzOyZaG/dG2Y23Mx+Z2Y1ZrbCzA7r4zE6pS+vsa+ccy865x4EtsSyXRGRoU4JlohI7FwIfArIBYqBp4BfEvkW/zvAw2ZW1Gn9S4ErgRFAEPhDN+3uAM4EsoErgFs6JTlHAv8Ero/u9zigIrrd3dF2xwGHAacCX+zlNRjwv8BIYCJQCtwA4JxbA3wPuNfM0oG/A/9wzs01s/HAHOBaoAh4GviPmSV3avt84HSgHJgGXN5lAGazoolNd49ZvbyGrnScm956haIJyd+ALwMFwB3AE2aW0sd9DQcKgVHAZcCdZjYhuqyJyHnPjcZzjZl9erftjydy7E+LTj8DHAwMA94D7ttt/fOBH0f32Qa8GV2vEHgI+G0f4+6SmX2/p/MxkLZFRPZHSrBERGLnD865jc65FuBi4Gnn3NPOubBz7gVgPvDJTuvf45xb4pxrAn4CnN9VD5Nz7inn3BoX8SrwPHBsdPEXgL85516I7mezc26FmRVH93Wtc67JObcDuAW4oKcX4JxbHW2rzTlXSeTD+fGdlv8FWA28TSQx/FF00Wzgqei2AeBmIA34+G7HZ4tzrhr4DzC9mxjmOedye3jM6+k1dKPzuenNVcAdzrm3nXMh59w/iCQuR/djfz+JHsNXiSTa5wM45+Y65xZHz9UiIknp8btte0P0nLVEt/mbc67BOddGJNk91MxyOq3/qHNugXOuFXgUaHXO/dM5FwIeIJJc7zXn3K96Oh8DaVtEZH+kBEtEJHY2dno+Bvjcbt/0zyKSlHS1/nogiUivwy7M7Awzeys6PK+WSOLUvl4psKaLWMZE29vaaf93EOkF6ZaZFZvZ/dEhhfXAvV3E9BdgCnBr9EM/RHq81rev4JwLR1/fqE7bbev0vBnI7CmWGNvY+yodxgDf3u3clRJ5jX1RE02a261v39bMjjKzV6JDK+uAq9nz+HbEamZeM/uVRYZ+1vNR72TnbbZ3et7SxfS+PM4iIgc8JVgiIrHTuWrQRiI9VJ2/7c9wzv2q0zqlnZ6PBgLAzs4NRoelPUykR6g42mPwNJGhfO37GdtFLBuJ9LoUdtp/tnNuchfrdvY/0dcx1TmXTaQnrn1fmFkm8DvgLuAG++i6sS1EEpP29Sz6+jb3sr89mNmx9lEFwK4ex/beyh52r+jUDKR3mh7e6flG4Mbdzl26c25OH/eVZ2YZnaZH89F1SP8CngBKnXM5wO10Or5dxPp54BzgFCAHKIvO332bQRO9nqzb87Gv4hARSRRKsEREBse9wFlmdlq0FyI1WgChpNM6F5vZpOj1TL8AHooO6+osGUgBKoGgmZ1B5FqqdncBV5jZyWbmMbNRZnaIc24rkaGEvzGz7OiysWa2+3C03WUBjUCdmY0icm1XZ78H5jvnvkhk6Nvt0fkPAp+KxpEEfJtIgvff3g7U7pxzrzvnMnt4vN7fNruwEPh89Nyczq7D9P4CXB3tbTIzy7BIcYos6CgscXcv7f/czJKjyeCZwL+j87OAaudca/T6uc/30k4WkeNYRSQh/J9+vMaYcM79T0/no7vt2n/vAR/gib4HkvZd5CIi8aEES0RkEDjnNhLpefghkeRoI5FkpfPf3XuIFKLYBqQC3+iinYbo/AeBGiIfyJ/otPwdooUvgDrgVT7qSbqUSIK2LLrtQ+w6RLErPwcOj7b1FPBI+wIzO4dIkYprorO+BRxuZhc551YS6e26lUgv3FnAWc45fy/7i5dvEomxFrgIeKx9gXNuPvAl4DYix201uxbkKAXe6KHtbdHtthApSHG1c25FdNlXgF+YWQPwUyLntSf/JDLEcDOR8/hWby9sCLmEyBDFPxO5ZrCFSPIqIrJf032wRETiwCI3Xr3XOffXeMcifRetivgBMC1azGP35ScQOa8luy8TEZEDgy/eAYiIiCSKaI/cxF5XFBGRA5aGCIqIHGDM7PZuChbc3vvWkojMbHQPhSpGxzs+EZH9iYYIioiIiIiIxIh6sERERERERGJkSF2DVVhY6MrKyuIdhoiIiIiISI8WLFiw0zlXtPv8IZVglZWVMX/+/HiHISIiIiIi0iMzW9/VfA0RFBERERERiRElWCIiIiIiIjGiBEtEpI+CoTAPLdhEXfMe95cVERERAYbYNVhdCQQCbNq0idbW1niHIgkmNTWVkpISkpKS4h2K7CeeXrINz2NfZu4b4znnG7fEOxwREREZgoZ8grVp0yaysrIoKyvDzOIdjiQI5xxVVVVs2rSJ8vLyeIcj+4lla9bzfe88qJ5HsPZ6fLkj4x2SiIiIDDFDfohga2srBQUFSq6kX8yMgoIC9XxKTGVufbvj+Y6Fz8QxEhERERmqhnyCBSi5kr2i3xuJtZyGVQC0uSSa1rwV52hERERkKEqIBEtEZCjwBRtps1QWcAiZOxfGOxwREREZgpRg9YGZ8e1vf7tj+uabb+aGG26IX0CdvPXWWxx11FFMnz6diRMndsQ1d+5c/vvf/w6o7dNPP53c3FzOPPPMGEQqkvhSgo20eTPYnj6OgpZ1EA7FOyQREREZYpRg9UFKSgqPPPIIO3fujGm7zjnC4fCA2rjsssu48847WbhwIUuWLOH8888HYpNgXX/99dxzzz0DakNkf+GcIyXURMCXSSD3YJIJQN3GeIclIiIiQ8yQryLY2c//s5RlW+pj2uakkdn87KzJPa7j8/m46qqruOWWW7jxxht3WVZZWcnVV1/Nhg0bAPjd737HMcccww033EBmZibf+c53AJgyZQpPPvkkAKeddhpHHXUUCxYs4Omnn+a2227jmWeewcz48Y9/zOzZs5k7dy433HADhYWFLFmyhCOOOIJ77713j+uKduzYwYgRIwDwer1MmjSJiooKbr/9drxeL/feey+33norhxxySLdxrlmzhtWrV7Nz506++93v8qUvfQmAk08+mblz5/Z4bP7973/z85//HK/XS05ODq+99hqtra1cc801zJ8/H5/Px29/+1tOPPFE7r77bh577DGampr48MMP+c53voPf7+eee+4hJSWFp59+mvz8fP7yl79w55134vf7GTduHPfccw/p6em77Pfoo4/mrrvuYvLkyLk74YQTuPnmm5kxY0aP8YrsrbZgmAxaCCZlkjx8PGyFps3Lycgri3doIiIiMoSoB6uPvvrVr3LfffdRV1e3y/xvfvObXHfddbz77rs8/PDDfPGLX+y1rQ8//JCvfOUrLF26lPnz57Nw4UI++OADXnzxRa6//nq2bt0KwPvvv8/vfvc7li1bxtq1a3njjTf2aOu6665jwoQJnHvuudxxxx20trZSVlbG1VdfzXXXXcfChQs59thje4xz0aJFvPzyy7z55pv84he/YMuWLX0+Lr/4xS947rnn+OCDD3jiiScA+OMf/4iZsXjxYubMmcNll13WUc1vyZIlPPLII7z77rv86Ec/Ij09nffff5+Pfexj/POf/wTgM5/5DO+++y4ffPABEydO5K677tpjv7Nnz+bBBx8EYOvWrWzdulXJlQyqhtYgmdZCODmL/NFTAKjesDTOUYmIiMhQk1A9WL31NA2m7OxsLr30Uv7whz+QlpbWMf/FF19k2bJlHdP19fU0Njb22NaYMWM4+uijAZg3bx4XXnghXq+X4uJijj/+eN59912ys7M58sgjKSkpAWD69OlUVFQwa9asXdr66U9/ykUXXcTzzz/Pv/71L+bMmdNlr1NPcZ5zzjmkpaWRlpbGiSeeyDvvvMOnP/3pPh2XY445hssvv5zzzz+fz3zmMx2v6etf/zoAhxxyCGPGjGHVqkj1tRNPPJGsrCyysrLIycnhrLPOAmDq1KksWrQIiCRhP/7xj6mtraWxsZHTTjttj/2ef/75nHrqqfz85z/nwQcf5LOf/Wyf4hXZWw2tATJpwSVnMbqklFqXQdv2lfEOS0RERIaYhEqw4u3aa6/l8MMP54orruiYFw6Heeutt0hNTd1lXZ/Pt8v1VZ3vx5SRkdGn/aWkpHQ893q9BIPBLtcbO3Ys11xzDV/60pcoKiqiqqpqj3W6ixP2LGfen/Lmt99+O2+//TZPPfUURxxxBAsWLOhx/c6vyePxdEx7PJ6O13f55Zfz2GOPceihh3L33Xd3mTCOGjWKgoICFi1axAMPPMDtt9/e55hF9kZLIESuNeNSshiVn85iN5LCmjXxDivhOeeoavJTmJnS+8oiIiIJYMBDBM2s1MxeMbNlZrbUzL4ZnX+DmW02s4XRxycHHm585efnc/755+8yZO3UU0/l1ltv7ZheuHAhAGVlZbz33nsAvPfee6xbt67LNo899lgeeOABQqEQlZWVvPbaaxx55JF9jumpp57COQdEhh56vV5yc3PJysqioaGh1zgBHn/8cVpbW6mqqmLu3LnMnDmzz/tfs2YNRx11FL/4xS8oKipi48aNHHvssdx3330ArFq1ig0bNjBhwoQ+t9nQ0MCIESMIBAId7XRl9uzZ3HTTTdTV1TFt2rQ+ty+yN/zBMFlEhggmeT1sSyolp6ki3mElvH/8t4Kv/8/vWTz3oXiHkvDueHUNj72/Od5hJLwV2+q56dkVtAZUJVRE9k4srsEKAt92zk0Cjga+amaTostucc5Njz6ejsG+4u7b3/72LtUE//CHPzB//nymTZvGpEmTOnpSzjvvPKqrq5k8eTK33XYb48eP77K9c889l2nTpnHooYdy0kkncdNNNzF8+PA+x3PPPfcwYcIEpk+fziWXXMJ9992H1+vlrLPO4tFHH2X69Om8/vrr3cYJMG3aNE488USOPvpofvKTnzBy5Eggkvx97nOf46WXXqKkpITnnnsOiAxLbL/e6vrrr2fq1KlMmTKFj3/84xx66KF85StfIRwOM3XqVGbPns3dd9+9S89Vb/7f//t/HHXUURxzzDEccsghHfOfeOIJfvrTn3ZMf/azn+X+++/vqJwoMpjaAiEyaYGULAAaMsrICVVBa2wL7xxo/rNoK3OSb2Tq3C9Ac3W8w0lYO+pb+b9nltHw8Ddoe+PP8Q4nod341HLumLuKhj+dDO/8Jd7hiEgCsvbej5g1aPY4cBtwDNDonLu5r9vOmDHDzZ8/f5d5y5cvZ+LEiTGNUT6ye7XD/Y1+fyRW5i2tYNa/D2XTjB9Qcub3ue/vt3LR+h/Dl1+DEYfGO7yE9cn/eZin/VdGJj71G5jZe6Eg2dNzS7fxv/c+ydyU6D0bv/E+5B8U36AS1IxfvsjRzXO5LTk66uNntdCPofMicuAwswXOuT2qrMW0iqCZlQGHAW9HZ33NzBaZ2d/MLK+bba4ys/lmNr+ysjKW4YiIxEyoNTLk1lIyAUguGgtA83Zdh7W3WgMhSpoWd0z7N74Xx2gS27a6Vsps20czNrzd/crSLX8wzM7GNj7u6VQhtGp1/AISkYQUswTLzDKBh4FrnXP1wJ+BscB0YCvwm662c87d6Zyb4ZybUVRUFKtwpI9uuOGG/bb3SiSWQv5IoRpvcuSebLkjxwFQv2VV3GJKdHUtAYZRC8DycCnBzQvjGk8i29nYxkGeTgnWxrfiF0wC214feZ+XpnSqBrz1gzhFIyKJKiYJlpklEUmu7nPOPQLgnNvunAs558LAX4C+V24QERligv4WALzJkUqcI4cXU+0y8VeujWdYCa3ZHyKXyAfZ/4ankFK9EkKBOEeVmCob2piQtJNmS2eRdzLsWBHvkBLStmiCVZbaxNvhQ3Dmgx3LetlKRGRXsagiaMBdwHLn3G87zR/RabVzgSUD3ZeISLyEA+09WJEEa3R+OhtcMVZbEceoEltTW5BcayToS2c1pXhdEOo2xjushLSzsY3RvmoaUkeyMjAMV62hq3ujoTWS4Oe7Ora6fOozy2C7EiwR6Z9Y9GAdA1wCnLRbSfabzGyxmS0CTgSui8G+RETion2IYFJK5EbjWalJbPMOJ71JCcHeitxbrIlgci4tWWMiM6u7vqWF9Kyy0U+OpxVLzWZNqBhrqlSFy73Q1BYpzZ7mr2Kny2FbchlUfRjfoEQk4Qz4RsPOuXlAV+V19ouy7CIi8FEPli/5o5t116eVkNv8JoSC4NV92/urqS1ILg2EU3Mh9SBoAWqUYO2NxtYA6bSRnFbMOhe91Uf1Ghh5WHwDSzAt/hDptOIJtuBPLWSjCzKh9lUIh8DjjXd4IpIgYlpFcH/22GOPYWasWNH9uPaKigqmTJkSs32uXLmSE044genTpzNx4kSuuuoqIHKT4KefHlj+euWVVzJs2LCYxiuyP3OBXXuwAALZY/AS1rC2vdTij/RgubR8coaV0EqSerD2Uos/RBotpGRkUdGeYFVpmGB/NfuDFFodAJ7MYaz0F0E4APVb4hyZiCQSJVh9NGfOHGbNmsWcOXO6XB4MBge8j1Bo17vGf+Mb3+C6665j4cKFLF++nK9//etAbBKsyy+/nGeffXZAbYgcSMLBNgC8SR/dNNuTXw5AqEpJwd7oKHKRlkdpQSYbwsPw71TRkL3RHAiREm4lJT2bLZ72Hiwdy/5q8ofIoQmA9JwiFjfnRhbUVMQtJhFJPIk1puWZ78O2xb2v1x/Dp8IZv+pxlcbGRubNm8crr7zCWWedxc9//nMA5s6dy09+8hPy8vJYsWIFzz//PMFgkIsuuoj33nuPyZMn889//pP09HReeuklvvOd7xAMBpk5cyZ//vOfSUlJoaysjNmzZ/PCCy/w3e9+lwsuuKBjv1u3bqWkpKRjeurUqfj9fn7605/S0tLCvHnz+MEPfsCZZ57J17/+dZYsWUIgEOCGG27gnHPO4e677+bRRx+lrq6OzZs3c/HFF/Ozn/0MgOOOO46KiooeX/err77KN7/5TQDMjNdee43MzEy++93v8swzz2Bm/PjHP2b27NnMnTuXn/3sZ+Tm5rJ48WLOP/98pk6dyu9//3taWlp47LHHGDt2LP/5z3/45S9/id/vp6CggPvuu4/i4uJd9nvBBRdwySWX8KlPfQqIJINnnnkmn/3sZ/t2TkUGQXsPlvk+6sHKKB4Hy6BuyyryDz4pXqElrGZ/pMiFJyOf0fnprHfDKd2pXpe90ewPkZLSgiclk/zcXGraishTD1a/tfhDZFjky5TcvFyWrEqFFCJDV8uPjW9wIpIw1IPVB48//jinn34648ePp6CggAULFnQse++99/j973/PqlWRe+GsXLmSr3zlKyxfvpzs7Gz+9Kc/0drayuWXX84DDzzA4sWLCQaD/PnPf+5oo6CggPfee2+X5Arguuuu46STTuKMM87glltuoba2luTkZH7xi18we/ZsFi5cyOzZs7nxxhs56aSTeOedd3jllVe4/vrraWqKfAP3zjvv8PDDD7No0SL+/e9/M3/+/D6/7ptvvpk//vGPLFy4kNdff520tDQeeeQRFi5cyAcffMCLL77I9ddfz9atWwH44IMPuP3221m+fDn33HMPq1at4p133uGLX/wit956KwCzZs3irbfe4v333+eCCy7gpptu2mO/s2fP5sEHHwTA7/fz0ksvdSRbInET7cHCl9wxq3DEGNqcjxbdbHivNPtDZNOENz2XMQUZrHfDSKrfAM7FO7SEEgo7/MEwSeEWSM6gNC+djTYicg2W9EuzP0ReUqSSYFFeHltdQaRUu3qwRKQfEqsHq5eepsEyZ86cjp6cCy64gDlz5nDEEUcAcOSRR1JeXt6xbmlpKccccwwAF198MX/4wx/4xCc+QXl5OePHjwfgsssu449//CPXXnstEEkounLFFVdw2mmn8eyzz/L4449zxx138MEHe97w8Pnnn+eJJ57g5ptvBqC1tZUNGzYA8IlPfIKCggIAPvOZzzBv3jxmzJjRp9d9zDHH8K1vfYuLLrqIz3zmM5SUlDBv3jwuvPBCvF4vxcXFHH/88bz77rtkZ2czc+ZMRoyIVOcfO3Ysp556KhDpeXvllVcA2LRpE7Nnz2br1q34/f5djl27M844g29+85u0tbXx7LPPctxxx5GWlrbHeiL7kutIsD4qclFamMUmV0SyrhvaKy2tbSRbiHBKJqX5aax3xfhCLdC4HbKGxzu8hNESCJFEEJ8LQHIGJXlprN48jGnV78c7tITT7A+S6wtACIoK8glRSXP6SDKUYIlIP6gHqxfV1dW8/PLLfPGLX6SsrIxf//rXPPjgg7joN6wZGRm7rB+5LVj3013ZvY3ORo4cyZVXXsnjjz+Oz+djyZI9byfmnOPhhx9m4cKFLFy4kA0bNjBx4sS9jqfd97//ff7617/S0tLCMccc02OBD4CUlE7Xpng8HdMej6fjGrWvf/3rfO1rX2Px4sXccccdtLa27tFOamoqJ5xwAs899xwPPPBAtwmoyL5koT0TrBE5qWykmOSGDXGKKrEFWyM3GfakZJCe7KM2ZVRkgRLWfmn2B0kj+rc0OZPS/HRW+wuguQraGuMbXIJp9ofI8foBKC7MB6AmeaR+J0WkX5Rg9eKhhx7ikksuYf369VRUVLBx40bKy8t5/fXXu1x/w4YNvPnmmwD861//YtasWUyYMIGKigpWr14NwD333MPxxx/f676fffZZAoHIUIVt27ZRVVXFqFGjyMrKoqGhoWO90047jVtvvbUj6Xv//Y++tXzhhReorq7uuA6qvXetL9asWcPUqVP53ve+x8yZM1mxYgXHHnssDzzwAKFQiMrKSl577TWOPPLIPrdZV1fHqFGRD1H/+Mc/ul1v9uzZ/P3vf+f111/n9NNP73P7IoOmvQfL+9EQQZ/XQ1XySLJbNmlY214ItEWGMpMU6aEO5UTvhVWrhLU/WvwhMoj+fkZ7sDa6osh07fr4BZaAmv0hsryR/7tZmTnkpCWxxVOsIYIi0i9KsHoxZ84czj333F3mnXfeed1WE5wwYQJ//OMfmThxIjU1NVxzzTWkpqby97//nc997nNMnToVj8fD1Vdf3eu+n3/+eaZMmcKhhx7Kaaedxq9//WuGDx/OiSeeyLJly5g+fToPPPAAP/nJTwgEAkybNo3Jkyfzk5/8pKONI488kvPOO49p06Zx3nnndQwPvPDCC/nYxz7GypUrKSkp4a677gLg9ttv5/bbbwfgd7/7HVOmTGHatGkkJSVxxhlncO655zJt2jQOPfRQTjrpJG666SaGD+/7UJ4bbriBz33ucxxxxBEUFhZ2zJ8/fz5f/OIXO6ZPPfVUXn31VU455RSSk5O7akpkn+qqBwugOaOUtHATtNTEIarEFu5IsCK9+CmF7QmWkoL+aPaHSLf2Hqz2BGtYZFrJar80+4NkR3uwSE6nND+NdaEiaKmG1rr4BiciCSOxrsGKg/Zrhzr7xje+0fH8hBNO6HheVlbW7TC6k08+eZeepXY9VfL77W9/y29/+9s95ufn5/Puu+/uMu+OO+7oso2SkhIee+yxPeZ3lyB2TvzaC1Ps7te//jW//vWvd5l3wgkn7HIs5s6d2+Wyc845h3POOWePNmfMmMFf//rXjumkpCSqq6u73L9IPHhCbYTw4N3thsIudwzUEakylp4fn+ASVEeClZwOwPCCXLavyqWoZr2+/euHlkCIjPYhgknRIhftPVg1Slb7o9kfItMTTbB8aZTmpbNiU/R9XbshUnlYRKQX+h8mItIHFvITsKQ95icVjQWgdYcqtvWX8+86RDCSGAwjsFPXu/RHpLT4Rz1YhZkpNPhy8XtS1RvYTx1l2pPSweOhJC+NxY05kYXqDRSRPlKCtR+7/PLLue222+Idhsh+wRtuI8iew1WzR4wDoGHrh/s6pITn/M2RJ9EhgqX5aWxyhTh9kO2XZn+IdD5KsDweoyQvnZ2+YiUF/dQcCJLZnmABpfnprAlGKvGqN1BE+iohEiyni8dlL+j3RmLJE/YT9OyZYI0aVsgOl4u/cm0cokpsLtCeYEV6sEqiPVjJTVsgFIxjZIml2R/sVOQiE4gcy81umJKCfmpuC5FmbR3DVkvz0qkhi5AvXcmqiPTZkE+wUlNTqaqq0odl6RfnHFVVVaSmpva+skgfeMN+grZngjU6P50NbhhWW7Hvg0pw3mA0wUqO9GCNzE1lsyvC40LQsCWOkSWWlt2KXACU5qWxOlAQGSKo/5991uwPkeZaOxLV0vw0wGhMG6XhliLSZ0O+yEVJSQmbNm2isrIy3qFIgklNTaWkpCTeYch+whv2E/TueQ1WXnoSm62YcU2r4hBVYvMEWyJPosOxUnxemtJHQYBIz0vu6PgFl0Ca/Z2KXEQTrJK8dNYECoB6aK2FtLy4xZcowmFHSyBEKh8NESzJi/ysThpOjnqwRKSPhnyClZSURHl5ebzDEJEDXJLzE/Kk7DHfzGhILSG7bV7kXlm+PdeRrnkCLZFxFNEhggAupxR2ouFY/dAS2PUaLIj0vCzsXElQCVavWgIhAFJcKyRnA5Ca5KUoK4XNDKO8ZmGkN9AsjlGKSCIY9CGCZna6ma00s9Vm9v3B3p+IyGDwOT8hz549WAD+7NF4cFC7cR9Hlbicc/jC0R6saFIAkFY4hhAeDcfqh/bKd86bAtFe1tK8dDZ13AtLx7Ivmv3RBCvc0lF4BSLDLdcFC8DfoPvdiUifDGqCZWZe4I/AGcAk4EIzmzSY+xQRGQw+FyDcRQ8WgOVHetldtQpd9FVrIEwabYTxgveja9tGFOSw3eURqlZS0FfN/hDZXj/WKVGN3GxY98Lqj5ZogpUUbu0ocgGRSoLLW6M9gEpWRaQPBrsH60hgtXNurXPOD9wP7HmXWRGRIS7J+Ql79yxyAZBeHLkXVuO21fsypITW7A+Shp+gN3WXIVel0cQgUKV7YfVVSyBItqetozADQH5GMsHkbFq9mRpu2UdN/kjlyqRQS8c1WBDpDVzUlBuZULIqIn0w2AnWKKDzmJlN0XkdzOwqM5tvZvNVyEJEhiLnHEk99GAVjRhNi0umebtuNtxXzf4QabQS8qXtMr8kL51NrkhJQT80+0Nketp26XUxM0ry0tjhHa5elz5qHyLoC7XsMmy1ND+NDaHCyIR+L0WkD+Jept05d6dzboZzbkZRUVG8wxER2UMg5EghgOumgMXoggw2uGGEqzREsK+a/SHSrY2wL32X+ZGbDReR0rwNgv44RZdYWvyhyM1xOyUFEOl52eiK1OvSR5Ehgi5y+4DderDqySCYnK1kVUT6ZLATrM1Aaafpkug8EZGE4Q+FSSGwy7VCnZXkpbPBFZNUr2+3+6p9iKDbrQdreHYqmxmG4aB+U5yiSywtgRAZ1rpngpWfzmp/Aa52g+6F1QfN/iDJBDEX2uMaLICG1JHqwRKRPhnsBOtd4GAzKzezZOAC4IlB3qeISEz5g2GSLYDzdn3j6tQkLzuTRpDVulkfZPsoMkSwDZe0aw+Wz+uhJSM6klw9L33S7I+Wae90DRZECl2sDRZgwRZo0hD83rT/TgK7VBEckZOK12Ps9A3X76SI9MmgJljOuSDwNeA5YDnwoHNu6WDuU0Qk1vzBaA+Wr+seLICmjJJIeWd9kO2T9iGClpy+xzLLHRN5ot6CPmn2h0hze/ZglbQPEQQlBn0QSVSjCVan30uf18OInFQ2t18bqC9RRKQXg34NlnPuaefceOfcWOfcjYO9PxGRWPMHwyQTBF/XPVgA4dzoDdGrVf2uLyJDBLtOsDIKSwnqXlh91uIPkupauhgimMZG3Qurz5r9QdItesPmpD2vZ1sdLAD1BopIH8S9yIWIyFDnDwZJwd9jD1ZSQSTBCqrQRZ+0D8fypGTssWxkfhZbwgW6F1YfNftDpLiuhgims8m1V7/TsezNLkMEk/csvrKsOTcyoZ5VEemFEiwRkV60Bfx4zWE99GBljxhL2BkNW3UvrL5oaguSbm14k/dMsErzI6Xa/TvVG9gXrYFAZHjqbscyJy2JpNRMGn25GiLYB5EbNgciE11UZFzSHL3ZcE3Fvg1MRBKOEiwRkV4E2iLDhiyp+wRrVFEe28jDX6l7YfVFS7S3wJvaVYIVGdrmqdvYxZayO+dviTzpIlktyUtnu0f3wuqLFn+QvKRogrX7EMFo0g/oWIpIr5RgiYj0ItgW+QDr6eY+WACj8yOl2q22Yh9FldiaA9EEq4shgu1D21Jad0CgJQ7RJQ5/MExKuP26oT2vZyvNT2NDWDdu7osmf4hcb/Tea10MEWwmFX9Kno6liPRKCZaISC+C/sgHWG9y9z1YxdmpbKKYtEb1uvRFa2sryRbqMikoykxhmydanKFO98LqSYs/9FFhht2uwYJocQZ/Pq52I4RD+zi6xNLiD5Hta+/B2i3ByotM16eM1HBLEemVEiwRkV6EogmWp4chgl6P0Zg2iqzATvA376vQElawtSnypIsEy+Mx2jKj96jXh9keNfqDZNCeYHXVG5jGulAhFg5Aw9Z9HF1iafYHyenowdr1WBZlpZDi81DpG64eLBHplRIsEZFehKLD1LxJaT2uF8wpizzRB7BehdqiCVYXZdoByCuL/KxRoYueNLcFIzcZhi4TrNEFne6Fpd/LHjX5Q2R7uu4NNDNK8qLDLes2QjgchwhFJFEowRIR6UXIHynd7E3u/hosgKSigyLrq1R7r8JtjZEnXfRgAWQVltBMClSpaEhPGtuCZPQwRLCsIEM3G+6jprYg2Z42MA908WVKSV46qwP5EPJDw5Y4RCgiiUIJlohIL8LRKm3e5J57sHJGjgegfsuHgx5Togu1V77rJsEqLcigIjycwE6Vve9Jsz9Eese9m7ouGLKNQhym6ne9aGoLkmWtkJwFZnssL81PY1FTfmSiWl+iiEj3lGCJiPQiFIj0ECT1UOQCYNTIUTS4NJq2K8HqVVtD5GfKnr0uAGPy06lwxYR3qgerJ41tPV+DlezzUJSXTa2vUPdv6kWTPxTpDezmd7I0L52lbdHeQCVYItIDJVgiIr1oryKYktZzD1ZZYSYb3TBcdcU+iCqxmb89wcrucnl5UQYVbjhJ9RshFNyHkSWWZn+wxyqCEB0maCM03LIXTW1BMmjp9jiW5qezxRUQ9iTrWIpIj5RgiYj0or0HK7mXIYKFmclstmJSG1RMoDe+QPQarJSsLpePyc+gwhXjcYFIUQHpUmNbqMceLIAxBemsDBRDlYZbdiccdjT7Q6S5lh57sMJ4aM4oVQ+WiPRICZaISC9ctOKdp5sPXu3MjIb0EnLatqjKWC+8vSRYacleGtNHRyaq1VvQnea2SA+Ww7oszACRHqwVgWHQUg3N1fs4wsTQ5I/0kqaFm7vtwRqdH7lecGdKiXqwRKRHSrBERHoTaC8p3nUPQWfB7DEkE4DGbYMcVOLyB8OkhqP3CusmwQKgYGzkZ7VKtXenqS1IJq2RpKCLwgwQSbDWuRGRCSUGXWpqi9yEOSXc3O3vZE56ErnpSZHhljXr9CWKiHRLCZaISC/M397b0nMPFoCvMFKqva1SH2S709QWJNNaor0u3SetecNKVaq9F03+EPneFiwtt9t1ygrTOyVYGibYlfYerORQ9z1YEElWVwWGQbAV6jfvq/BEJMEMKMEys1+b2QozW2Rmj5pZbnR+mZm1mNnC6OP2mEQrIhIHnkC0t6WHZKBd1sgJANRsXD6YISW0xrYgWbQQ9GWAp/t/Q+VFmVSEh+OvVFLQnaa2IHmeZkjN6Xadkrx0NlFEGK8SrG40tUUSLF+ouccvUsoK0lnYVBCZ0NBVEenGQHuwXgCmOOemAauAH3RatsY5Nz36uHqA+xERiRtfsIkWUntMBtoNLz2YNpdE85YV+yCyxNTYFiSTFoJJPfcIlhdmqFR7L5r8IXKspccEKzXJy7CcLHYmjVCC1Y3G9gQr2NRzD1ZhBgsao/fCUs+qiHRjQAmWc+5551x7/dy3gJKBhyQiMrR4g820eXquINiubFgWFa4Y04evbjVGhwiGe/ggC5EPsxVuOMkNG1SqvRtNbUGyranHBAsiwwTXq1R7t5raQiQTwBMO9NKDlcFWl0fYm6JKgiLSrVheg3Ul8Eyn6XIze9/MXjWzY7vbyMyuMrP5Zja/srIyhuGIiMRGcqiJ1j4mWFmpSWzxjiK9UR++utPYGunBIrmHAhdEymJvYDgeF1Sp9m7UtQTIouchghCtJOgvwlWvAef2UXSJo64lQA7Ray3T8rpdr6wwA4eHpswxSrBEpFu9Jlhm9qKZLenicU6ndX4EBIH7orO2AqOdc4cB3wL+ZWZd3k3SOXenc26Gc25GUVHRwF+RiEiMJYVa8HvS+7x+bfoYCtq2qNelG41tQbKsBUvt+ibD7ZJ90Q+yoJ6XbtQ0+clwjb0mWOWFGawMFGOBZmjYuo+iSxy1zX7yrD3Byu92vbKCyN+BqmSVaheR7vWaYDnnTnHOTeni8TiAmV0OnAlc5FzkazHnXJtzrir6fAGwBhg/aK9CRGQQJYeaCfr6nmAFcw/CRxBq1w9iVImroTVINk1YWs9JAYAVHhx5omuHulTb1Boped9LgnVQUQZrVUmwWzXNfgo80QQrvfsEKzc9mdz0JNbTXqo9tI8iFJFEMtAqgqcD3wXOds41d5pfZGbe6PODgIMB9aWLSEJKCUcr3vVR8vBIJcGmrSsHK6SEVtPsp8DqScoa1uu6+UWjqHfpOCUFewiFHcHWejy4Pg0RXBdWgtWdmuYAo1JaIhM99GABjCnIYGWwGEJ+DV0VkS4N9Bqs24As4IXdyrEfBywys4XAQ8DVzjndPl5EEk4o7Ehzzbg+lGhvl1MyEYBalWrvUk1DM7nWhC+r92HhBw3LZK0bjn/Hqn0QWWKpawmQTfS7zV4SrNL8dCo9+QQ8uq9YV2qb/YxMjiZYPfRgAZQXpPN+e6l2Jasi0gXfQDZ2zo3rZv7DwMMDaVtEZChobAuSbm3U9+Emw+1KR5VQ6zJo26YerK601e+IPEkv6HXd8sIM1rkRTNz54SBHlXiqm/wUUBeZ6OVYJnk9lORlsD0wihIlBXuoaQpQ7Ismq33owbrvg3xIIZKsjjtl8AMUkYQSyyqCIiL7nYbWAJm0YL2UFO+sND+DtW4k3lr1FHQl2LAz8iSjsNd1ywsjQ9tSmrZAoGWQI0ssNc1+iiyaYGUW97p+e7KqXpc91TT7KfQ2gS8Vknu+3rK8MIOdLptQcraOpYh0SQmWiEgPGpuayLIWXB96W9ol+zxUJpeQ3VQxeIElsuZogtWHYzoyJ40NnpGRCZXF3kV1k59hVhuZ6EOCVVaYwbK2IlxNBYQCgxpboqlp9pNvjb32XgGMKUgHjMbMMUqwRKRLSrBERHrQVBsZzubN7L23pbPGzHLygjuhrXEwwkpo3pboJbnpvR9Tj8fw5xwUmdAwwV3UNPkpojYykdGH69kKM/gwVIyFg1C7YXCDSyDhsKOmKUC+q4bM3guvlBdGrsesTC5VgiUiXVKCJSLSg+bq7QCk5vbeQ9CZyx8LQHinPoB15pwjua0qMtGHIYIASUUq1d6VqiY/RVaLSysAX3Kv65cVZrBWlQT3UNXkxx8Kkx/aCTklva6fm55MTlq0VHvtRgi07oMoRSSRKMESEelBa10kwcrMH96v7dJGRkq1125SJcHOqpr8DHM7CVlSn3qwAEYWF7LN5StZ3c22ulZG+uqxrL4l/5FrsKK/x0qwOmyti1zbl9m2HbJH9mmbssIMVgSGAS5yPywRkU6UYImI9CDQUAlAVj8TrMLSSQA0bF4R85gS2eaaFkpsJ60Zo8DTt39B5YUZrA0PJ6BS7bvYUttCibe2T9dfQeR6tiZfDi1eFWfobEttCxm0kBRogOxRfdqmrCCdBY0q1S4iXVOCJSLSg3BjJMHyZvZ+jUtnZSMK2OQKCVUqKehsc20LJVaJyynt8zYHRavfeapVlbGzzbUtjHLbIL+8T+t7PEZZQQZbfKOUFHSyubaVERYdttqHIYIQKdX+bn1eZELHUkR2owRLRKQHnuYqQnggNbdf2w3LSmE9I0mp0/ChzjbXtDDKKkkuGNPnbcoLM1jrRpDkr4Vm3bMeIteyNdRUkhFugPyD+rxdeWEGa0LDdbPhTrbWtlDu61+CVV6YToNLI5g+TAmWiOxBCZaISA9SWrdT58nr83C2dmZGTWopeS3rwblBii7xbN6xkyKrJ6mgrM/b5Gcksy0p+sFXlQQBqGxoo9C/KTIRLajSF2WFGSxpK4L6zeBvGqToEsuaykZmZkR6qikc36dtxhREKgk2ZIxRsioie1CCJSLSg9zWLdSl9u26jN215owl3TVDU2WMo0pcrVuWAmDDDunzNmZGKC+aRKi3AIDVlY2U2bbIRB+HCEJkuOXqUPR6Qt1XDIBV2xuZlrINMoZBeu/3wQIojyZY25NK9DspIntQgiUi0o1mf5DhbjttWX2/XqgzT+E4ANq2r4xlWAnLOUdKVbSqYvHkfm2bPqycIF59mI1ata2BSZ71OG9K/3qwCiLXswE6lkBDa4DNtS2UhTdC0YQ+b5ebnkR2qo8KRkS+QGmpHbwgRSThKMESEenGpspaRlCN5ZXt1faZoyYCULNhWQyjSlyba1soD60j4E2H3LJ+bTumKJf14WGENEQQgEWb6zgiqQKGT+nTPbDalRdlUOGiVQeVYLFyWwM+ghQ1r+5X0m9mlBdmsNwfvTGxCrCISCdKsEREurFj4yo85kgd1vciAp0VjjqINpdE23ZVEgT4YGMdh3lW01o0pd/XtJUXRQpdqFR7xKL1VUxmHTbysH5tV5SZgic5g7qkYbp2CHh7XTWTbD3eUAuUHtWvbccUZLCgMTqkUMdSRDpRgiUi0o36ig8AKDpo+l5tX1qQRYUrxtRTAMA7K9YxxbOOjINP6Pe27aXak2rXQTgc++ASyObaFjKrl5DmmmH0x/q1rZlRXpTBJs9I9WABb62t4lM5FZGJ0Uf3a9uywgzm1+XgzKNjKSK7UIIlItKdbR8QxEt6ydS92rwwM5n1NpL0BpVqd87h/3AuXhyeg47t9/ZjCtJZ60bgDfuhftMgRJg45n1YyXGeRTgMxp7U7+3LCjL4MKTy4q2BEPMraviE730oOgSyR/Zr+7KCdFpdEsGs0gP+WIrIrgaUYJnZDWa22cwWRh+f7LTsB2a22sxWmtlpAw9VRGTfyqtbwbaUMvCl7NX2ZkZVSim5rZshHIptcAlm2dZ6jm59ndak3H73ugBkpSaxMyVabOQAvw7ryQ+2cG7y25EhbX2setfZQYUZLGsthJaaA7o4w0vLd5AWqKG86QM45Mx+b19WGKkkWJc+WgmWiOwiFj1YtzjnpkcfTwOY2STgAmAycDrwJzPzxmBfIiL7xObqBqaEV9BQ2L9rXHbXmjUGH8HIfYcOYA/NW8InPAuwSWeDN2mv2nC50XLkNQduj+CW2hYa1r5NuduIHXrBXrVRXpTB+nC00MUBfCwfWrCRKzL+i7kQTP1cv7cv26VU+xrd705EOgzWEMFzgPudc23OuXXAauDIQdqXiEjMLXnnFbKshdwppwyonfYKhK76wP0gW9cSIGfJP0i3NlI+9uW9bierqIQ2kuAAPpZ3vraWq31PEk7Ohinn7VUbZQUZrG+vJHiAHssV2+r578rNXO59FsbMgn7cl61dXrRU+7rwcPA3QuOOQYhURBJRLBKsr5nZIjP7m5nlReeNAjZ2WmdTdJ6ISEIIrXiaIB6GTzt1QO20VyBs2XHgVhn753P/5Uv2GPVlp0XKiu+l0oJM1oeHET5Ak4LVOxqpeOdJTve8g+fjX4XU7L1qp6wggw0uWl78AOzBcs7xyyeX842Up8jy74Djv7tX7ZgZZYUZLG8riMyoqYhdkCKS0HpNsMzsRTNb0sXjHODPwFhgOrAV+E1/AzCzq8xsvpnNr6ys7O/mIiIxV9fkZ0rNS1RkzcAyCgbUVt7wcoLOQ+O2tTGKLrG8t76KQ977OckeR/Y5Nw2ordH56ax3xQR3HnjH0h8M87MH3+D/+e4imDcWjrl2r9vKTU/Cm5JJgy//gOzBuu/tDdSteYdrPI/C1PPhoOP3uq2yggzeb8yNTByAyaqIdM3X2wrOuT6NjzGzvwBPRic3A6WdFpdE53XV/p3AnQAzZszQAGYRibt3X3qQU2wHG4/44YDbKinMYrMrJKnqwEsKNtU08/4/rucLngW0nvRLkvbyhs3txhRksNgV462dG7nexSwmcQ514bDjRw/N52vbb2CUrxrPuf+EpNS9bs/MKM1PZ3vzcLIOsF6X1z+s5K9PvMIj6bdg6cPgkwNL+ssK0nl+URYuxbAD7FiKSPcGWkVwRKfJc4El0edPABeYWYqZlQMHA+8MZF8iIvtCIBQmf+Ht7PQUUDrrogG3V5qfzgY3DG/d+hhElzg+3FbHK7d9lS+EH6bukAtInfW1AbcZ6cEaFrkpbOP2GEQ59LUGQnznn3M5b9k3+Jh3GZ5z/9Tv+zV1ZXR+OutCww6oHqxnFm/l5n88xIMp/4+8pBB28cOQltf7hj0oK8yIlGrPHKEhgiLSodcerF7cZGbTAQdUAF8GcM4tNbMHgWVAEPiqc+7ArlEsIgnhtZee4uTwYlZN+x6FvuQBt5edmsR273AOa54fg+iGvnDY8fDcdxg191tc4llC9SEXkX/+rTHpbRqWlcJWz/DIRPU6yBo+4DaHsqVb6rj3vrv5TuPvKPY2wLl/hWn9r3bXldEF6az4sIBTgq9iwba9vhVBImjxh/jV00vwvvsXHkx6kKSMfOyiR6B40oDbHhOtJNiYVkLeAZSsikjPBpRgOecu6WHZjcCNA2lfRGRfamhuZeSbP6PKk8/Bnxx4j0tHu+klZDa/CG0NkJIVs3aHmiUV21n06E2cWfsvUrxh6k/5Nfkf/1LMhvJ5PEYguxyaiFzvMqb/99NKBJUNbdz7zKuMXXwL/+v9L005Y/HOfghGHRGzfZTmp/NecBiW7KBmPRSNj1nbQ0U47Hjigy28+PS/+WLbP5metIbQuFPxnHNrzJLzsoJ0ACp9I8ireTsmbYpI4htoD5aIyH7j1X/9ijPdGiqO+z0Fe1mhrSvB7NHQTOSD7ACq6A1VH6zbygf/+TMnVd3H520nm4tmkXXB70kpHBfzfSUXjiHU5MG7H/YWbKtr5amXXiT/gzv5KvPA56Pl6G+RcdJ3ISktpvsanZ/Oo67TvbD2owSrLRji8fc3s+CVRzi74UFu8y7FnzkCTrsT77TzY3rtXn5GMlmpPjZQzPjGbeBvhuT0mLUvIolJCZaICLDwndf4xMbb+DDnYxx8wmUxbdubXw7bIFy9Ds9+kmCFwo633l9I1au3c2zdkxxqjWzPnkzzmX9h1ISTBm2/owpz2FpRwKjqtewPJS6cc7y7eitLX3mAcZse4QueRbR5UmmZcgk5n/geZI8clP2Ozk9nw352L6zVOxp5+t2VtL33L84NPM35ni20phcQPuF/SZ5x5YAKg3THzCgryGBlWwGnANSuh2ETY74fEUksSrBE5IC3Y+dO8p6+igZPFqOuuDvm1ekyisfCMmjavoasgV/2EVcbt2xj+cv3ULjmUY5xSwnhYX3RCaSc/m2Kxx4z6JX9xuSnUxEeRvHOtSQN6p4G1466Zt545UmSlvyb4wLzONKaaUgppPaI75N73JdJSc8f1P2Pyk2j2rLxe9JITuDy4jsb23jy/fVsfOc/HFb7HF/2vEeKBagvnIY7/mekTj530K8vKyvMYPH6aLGMmgolWCKiBEtEDmzBYIhVf/0CH3Pb2PrphyjMi33hhGHFw6l36bRuX00iXoFV19jMwrmPkLTkAQ5veZNSC7DVN4pV479B+clf4KCCsn0Wy+iCSM/L0TXv77N9xkp9a4A33vovbQvmMKP+Bc61nbRaKttLTyV51qVkjT8JPN59Ekuyz8OInHQq3UhGVSfWLQRaAyGeX7qNRW+/xOhN/+Esz5sUWAMtqbmEJl8KMy8iO4bXq/WmrCCdOYtzIJn9pjdQRAZGCZaIHNBeuu8mTmudy9JJ32Ty9D7d9q/fSvMz2OCGUVhdMSjtDwZ/IMT7b79My/z7mFrzEsdbPbWWzaqSzzDyuMsYMf7jjIjDfahG52fwlivG11YDrXWQmrPPY+iP1kCI/36wnJ1v/YuJlc9whq0lhIeNeTPZMeOnDJt5HmNSMuMS2+j8dDZWFTMqAZKCcNjx1roq5r71LlmrHuGT7nXO9mwl4Euh9aBT4ciLSRt3Mnj3fb/m6Px0doYzCSdl4lGpdhFBCZaIHMDeees1jl/7G1ZlzWTy524YtP2U5KXxshvGyIaNg7aPWHDOsWTZYra9/k/Gbnuao9hMG0mszptF/cyLKTvqbKbFoHT9QJTkpbGBTtcOjZwe13i6Eg473vlwE2tff5CSTf/hOPcBPguzNX08m6b+mFGzLqYse0TvDQ2y0fnprNpayNG18yEc2me9Z/2xansDz7yzDP8HD3Gify4/9KwCg7rhRxE+8ockTT6HpDgn2WWFGYDRlFFKVgIPtxSR2FGCJSIHpG2VOyl69ss0ebIY/cV7wTOg+673KDXJS1XSCLJaF0I4PKj72hvrNm3hw1fuYdi6x5keXspUYHXaNFZMuZqxJ1zC5IyB3Yw1llKTvDSll0IAqF47pBKs5ZtreP+1/5D94SMcH3qLo62FGt8wtoz/EiOPvYwRIybHO8RdjC5IZ6W/EJL8UL8FckvjHRIAOxpaeWrBWra9+xgz6l/gK54PSLIQ9TnjCBzxU5Kmn0/OEIkVYEy0VHt18kiyEqA3UEQGnxIsETngBIMhVt31JY5xW9n26QcpyB38G9a2ZJSS1OCHxm2DVhmuPyprG1n4ykOkLf83M9veptwCbPGVsOTgb1B+0hWMKz4o3iF2y5NfDtuJlBePsy21Lbw+71Vs0YMc2/YKn7dqWiydyrIzSD7mMvLGHUfeEEuo25Xmp/Nm51LtcUxamv1BXli6hRVvPs3YrU/xWc+7ZFkLTelFBKZ+maQZnye7eMqgF1HZG0WZKaQne9noGcmYna9C0A9x7umVGHMOFw4RDocIBYOEw0HCoRChUDAyPxgk7BxhAPPgMcPj8WJm4PHgMQ8ez0fzPB4vHo9hHi8ejwfz+Ibk77bsPSVYPVj21rM0zH8Qh8NcODLThTEc4DDnwDmM8C7bOcCcw+3RotvlqYNoW52Wuj23oouWrI/rxV7s/gC4mLfXXVt7d1y6by++bUXai6WeY9sXv1X7WlKggePa3mTZxK8xafqp+2Sf4dwyaCBSZSxOCVZTa4B3//sCgffu5/CGl/mENVBn2awu/QwjjruCkQcfzcgE+CdfXFRI1fYcCuLUW1DXEuCVdz+g4d37OaLueWZ71hPEy7Zhx9B49MVkTjub0TG+b9VgGJ2fTkV7glW1BsqP26f7D4Udb67eydtvvkL+2sc5gzc4x2poS86g7eCz4ciLyCibNSSHLnZmZowpyGBZYCSzwkGoXqNKgvtYa2srdTU7aayvprWxDn9zLcHmekIt9YRb63GtDeBvxONvwBtoxBNsxRNuwxduwxf24wu3keT8HY9k/KQ4Pz6CeAnjtch/cW/0MViCzkMYI4wn8jAPDiOEBxed5zBCtut02LzRnx6IbhfGA9a+jgdnnR54cObFmUGnaTotxxN5jnmjP6Pr7LI/7y6fb2y3z7kffYLo7XNsN887rVOReRhTPnEpU0YN7etu2ynB6kHT5hUcsvPZyC8pRhij/dcn8gtL5JcS6OpDquvyg0oX63Wab3TzgbaLtrr60B7rD/K7hBDzj/Wxay/2rzqWsQ3mcRvYK491bInkg4JPMu1zP99n+0suKoeNENi5hqQxH99n+w2GwsxfuJCqN+9hUuUznGBbaSOJdYXH0XbkxYyccRY5cSgMMBBjCjJYEx5ObuWqQf2w01lbMMTrSyvY9MaDjNv2FGfZErzm2JYzmerDfkn+URdSklG4j6KJjbFFGWx2hfi9GSRvX7LP9rt8az0vvzUfW/IQpwTm8m3PZoIeH/WjTiB89MWkTDidlARIUDsbW5TBm+uHcRXAjuX7JMEKhMLM+7CS999+hZoNyzn6rCv51PQxg77fwRYIhamuraNu+waaqjbQWruDQMNOXHMVnpYafG01pAZqSQvWkRmqI9s1kG3NpEL71ZldCjoPTZZGi6XjtxQClkLQk0zQk0yrL48mTzIhbyrOk0LYl4LzpuC8SWDej5IMT+T5Lj89kcTE47Hof2QH4TDOOXDhyLRzOBfe5ScuvOsjHMI5h7lQdF4o8uV+OBz9cj/U8RwX7ljPCGOu/RGKfvEfwqJtWcc67dMhPO3Loz890TY6p3ft8zs/zDm8u8yLrNPdZ0+HdXxM6byOY895dLG88zrLdobYXPs5JVj7g5nnXQvnXRvvMERkEPT0j3hQ9jf6YNoW+Khfv5iiQa4g7Zxj6doNrHv1PkZteIKjWQ7A2szprDv0m4yZdQGHpA+d66r6q7wwg6XhMo7Y9tqgFmcIhx3z11WydN4TDFv3GCe6d0i3NmpSR7Jz8tcZ9vFLGF40flD2vS9kpSYxuiCT9aGDOHjb4kHd1/b6Vp55dzl18//N0U0v8VXPCgCqiw4nMPNbJE37DPmDfO+vwTR5ZA6/W1SAS/Ng25fClM8Myn7CYcc7FdW8/s580lc+wmmh1zjRswWA1x95ib9X38ZlJxyKxzP0eqL9wTA76luorNxB/Y71tFRtJFS7GWvYSkrLNrL8leQGKyly1RRbY5d/o5tIpcGyafLl0JKcy47kMWxNzSOclo83PQ9fei5J6dn40nNIycglNSOH1Iwc0rPzSE7NIMeMxPh4Lru7Mt4B9JMSLBGRfWBSSSHL3WhGbB68+zdt3FHDB3MfImvVIxwdeJcpFmBr0mhWTbiOMSdczkGFZYO2731pWkkOvwkfhDf4HOxcFfPegtXb6/nvvJdIXvYwJwVf50irpcmTRe1B55I86zLyxnxsv7leYuLwbD5YP4aDt70CoSB4Y/exoKktyAuL1rP+rcc4ZMczXOh5nxQLUptVTvNhPyD9iAvIzyuL2f7iacqobNpIpilvIpmb3olp2845Fm2q44X5ywgteYSTA69yvWcVADXFMwnOvJ5wOMTHn/0eI+dewM8Xf5NPnnU+Rx1UENM4etLYFmRbTSPV2zdTX7kef/UmQnVb8DVuIaVlB9mBHeSHqhhh1ZSYf5dtwxh1nlzqk4poTh/NhowjqcgcgTd3FCl5o8jMH0luYTHpOUVkJKWSsc9elcjeU4IlIrIPjMlP50EbxyE1b8S0kmB1QzPvv/o4tuRhZrS8wZnWTJ0nh4ry8xl13OWMKJ8Zl/tVDaZRuWlsTJ8IQWDDmzFJsHbUt/L6G68RWPQQRzXN5VLPdoL42DHyBFo/dgkZk84gw5cy8OCHmENLc3l5+UF8NvlJ2PIelB45oPZa/CFeWbGVlW8/x6iNT3K6vUW2NdOYWkDLpCtIOepickccut8kqO2mjIz0i6xJm8qhm56AUGBA9+RyzrF0Sz3PL1xH/aL/cEzzy3yzUzVF/xE/IXn6+eTljv5om+IJDH/wan5e833m3/03/i/zLAqmn8nRk8dyyPAsfN7+/80JhR01zX52VFVTu30jTVUb8VdvxtVvwde0jfTW7WQHKhlGFWXUMs52vSY9gI9abyFNaUW0pU9lfdYIfLklpBWUkF08hszCUjxZI8jzJZO4feoie1KCJSKyD3g8RmXuoaTWPQ9b3oeSvR8nuKO2kfffeBZb9hhHNL7KyVZPE+lsHH4S/o99nsKppybcdVX9YWYUjZnMljXDGLHqOWzG3g0e2VTTzJtvv0Vw8aMc3vAy53k2EcLDtsKZ1M/4HtnTz2VkAg9b64tZ4wq5/dkpOAxb/eJeJVitgRDzVm5l1dvPULDhWU7iHT5p9bT50mgoP4Pw0ReTedDxMe0dG2ryMpKZPDKb5xrHcWigGda/AQed0K822pOqF9//kPrFTzGjeR5Xez4g3dpozigmPO1qOPzCbqspWvlxZHxrAYF3/sb4eX9mRvNvCL3xW5bNG8NTlFCdVoYnswjScrCkdFJ80SuGgn58gQZ8gUasrQGPv44M/06yg1UUhGsoslomWese+2uxNGp9RTRnF9OQcQgN2SNJzhtFRtFocoaNISW/lKT0Aoo8Hor26qiKJK7996+diMgQkz3tkwRf+w3NCx8lu58J1vot2/nwzcfxffgs01re5jRrpJVkKgqPp+mI8ymdeRaHJFhhgIE4feoInl15OJevfhlrrITM3j/COedYtbWWpW+/ACuf4dDmN/mcZythjC25h7Fj+jUMO/J8RmUO2wevYGiYPDKbpMwCVvmmMuGD++H47/XpmraqxjZeW7KObQufZ/jWFzmBBZxijbR502goPZHQEZ8l5ZDTSUk+cAZ0nTKxmDtfHsd3sjLxfPBAnxIsfzDM/PXVvLtoKa3Ln2dGyxtc41lMigVpSS/EJn4epp1Lel+rKSalkXTMV0n62DWw6R2alzxLccXbjKlZRXbbPGjrvYkWS6PBl09zRiFtqVNYnzEMX/YIUvJGklVUQs6wMfhyR5GWms2B8xdHpH/MdVnuOz5mzJjh5s+fH+8wREQGxfqqJtb+7gyOSllP+vVLISWz23UbW9pYuuB1apa+SP72Nzk0tIQUC1JvWWwuPJbcw85mxBFn9djG/qyxLciF/3MPj9t12MwvYp+6ucv1qhpaWbxkIVWLXyRz21scGXqfPGskgI+t+TPJmHImBUecCzmj9vErGDpufm4la1+7jz8l/R7O/B3MuGKPdVoDId6rqGTN4rdgzSsc3PA2R9gqkixEiyeTutEnUzjzc/jGnwIHUKLfWcXOJk7+7av8a+RDHFX1GHz5NRg+ZZd1nHOs29nE/NWb2br4VbI3v8bRbiETPRsBaEwbiW/S2aQeei6UHBnbm5L7m6GlBlprIdAC7RXePEmQmg0p0cd+3NMoEmtmtsA5N2OP+QNJsMzsAWBCdDIXqHXOTTezMmA5sDK67C3n3NW9tacES0T2dzfddS/f2fA16kpPJu/COyCjkFAoxNbN69m0/B2aKhaQvnMRk/yLybEmADYnjaFu5LHkH3EuwyefoA9AUX95bS2+57/PFb7n2HnIxfjHnUZ1m5edldto2bKM9KplHBxcwUirBqDOm0/N8GPIOewc8qaeDilZcX4FQ0N1k5/TfjuXP7tfcLhbTvWhX6amaCbbm0LUbF1HqHIVxfVLmWarybBIF0hlxsEw7hQKp38SKz1aN9aN+vFji3n6rSW8lvUjUnzGzmlXsyV1HFuq6mnavhbPzhVMDK1gom3AZ2GC5qO+8AgyJ59G8oRPwPCp+931aSL7s0FJsHbbwW+AOufcL6IJ1pPOuSm9bLYLJVgisr/bVtfKA3/8EV9ruwuvORpJJ9W14ut0cfhW7yh2FhxByviTKJtxOsm5I+IY8dAVDjv+98lFjHrnRi7yvkiShXZZvt03iob8SSSNPY5R00/FN2yCPrx2Y/GmOr573+t8tfEPnOl9e5dlQbzs+P/t3Xd8HPWZ+PHPs0W9925JtrGNO+BCMS2EXgMBcnQu4UjCJeFSLqQA4Xe5S0jvBAIBEkLvPfQSMGBjY+PeZFu2LMnqK2n79/fHjGRZlizJWmml1fN+vYR32neendlZ5tlvmaSphIqPImf6cSQedhKkFkQp0rHNFwzx3cdXs3rlB/zcfQfzHFv3W+51JNKcOYf48oVkHHYcUn7chK2FVioWjGiCJSIC7ABONsZs0gRLKaX61+oN8OqbbxG35WXSgntxJqSSmFlIRsURlB2+EFeyjqc1FLubO1m3tYr4pk1kxENeXgG5ZdOQBH3izVCEwoaVO5tp3LuHnI6tZCfHUVhSjju7fFgj4k1E1U0drN3dSkLnHgpCNRRnp5GcVwEpBZFt9qeUiqqRTrCOB37ZtQM7wVoDbARagR8YY97pZ9vrwHr4eVlZ2ZHbt28fdjxKKaWUUkopNZL6S7AGbMgvIq8CfbUF+L4x5mn79ReAB3ssqwHKjDENInIk8JSIzDTGtPYuxBhzJ3AnWDVYA78VpZRSSimllBqbBkywjDGnHGy5iLiAzwHdYw4bY3zYg4EaY5aLyBbgMEDb/ymllFJKKaViViQaAp8CrDfGVHfNEJFcEXHaryuBqcDWfrZXSimllFJKqZgQibF+L2X/5oEAxwO3iUgACAPXG2MaBypo+fLle0VkrHXCygH2RjsINWr0fE8ceq4nDj3XE4ue74lDz/XEMhbP96S+Zo6pBw2PRSKyrK/Oayo26fmeOPRcTxx6ricWPd8Th57riWU8nW8dK1QppZRSSimlIkQTLKWUUkoppZSKEE2wBnZntANQo0rP98Sh53ri0HM9sej5njj0XE8s4+Z8ax8spZRSSimllIoQrcFSSimllFJKqQjRBEsppZRSSimlIkQTrIMQkdNFZIOIbBaR70Y7HhU5IlIqIm+IyFoRWSMiX7fnZ4nIKyKyyf43M9qxqsgQEaeIrBCR5+zpChH5wL6+HxaRuGjHqCJDRDJE5DERWS8i60TkaL22Y5OI3Gh/h38qIg+KSIJe27FDRO4RkToR+bTHvD6vZbH81j7vq0TkiOhFroaqn3P9M/t7fJWIPCkiGT2W3WSf6w0iclpUgj4ITbD6ISJO4A/AGcDhwBdE5PDoRqUiKAh80xhzOLAY+Kp9fr8LvGaMmQq8Zk+r2PB1YF2P6Z8CvzLGTAGagH+PSlRqJPwGeMkYMx2Yi3Xe9dqOMSJSDHwNOMoYMwtwApei13YsuRc4vde8/q7lM4Cp9t91wJ9GKUYVGfdy4Ll+BZhljJkDbARuArDv1y4FZtrb/NG+bx8zNMHq30JgszFmqzHGDzwEnBflmFSEGGNqjDEf26/bsG7AirHO8X32avcB50clQBVRIlICnAX8xZ4W4GTgMXsVPdcxQkTSgeOBuwGMMX5jTDN6bccqF5AoIi4gCahBr+2YYYx5G2jsNbu/a/k84H5jWQpkiEjhqASqhq2vc22M+acxJmhPLgVK7NfnAQ8ZY3zGmG3AZqz79jFDE6z+FQM7e0xX2/NUjBGRcmA+8AGQb4ypsRftAfKjFZeKqF8D3wHC9nQ20Nzji1uv79hRAdQDf7WbhP5FRJLRazvmGGN2AT8HdmAlVi3AcvTajnX9Xct63xbbrgVetF+P+XOtCZaa0EQkBXgc+IYxprXnMmM9w0CfYzDOicjZQJ0xZnm0Y1GjwgUcAfzJGDMfaKdXc0C9tmOD3ffmPKykughI5sAmRiqG6bU8MYjI97G6djwQ7VgGSxOs/u0CSntMl9jzVIwQETdWcvWAMeYJe3ZtV5MC+9+6aMWnIuZY4FwRqcJq6nsyVh+dDLtZEej1HUuqgWpjzAf29GNYCZde27HnFGCbMabeGBMAnsC63vXajm39Xct63xaDRORq4GzgMrPv4b1j/lxrgtW/j4Cp9mhEcVid6Z6JckwqQuw+OHcD64wxv+yx6BngKvv1VcDTox2biixjzE3GmBJjTDnWdfy6MeYy4A3gIns1PdcxwhizB9gpItPsWZ8B1qLXdizaASwWkST7O73rXOu1Hdv6u5afAa60RxNcDLT0aEqoxiEROR2ref+5xpiOHoueAS4VkXgRqcAa2OTDaMTYH9mXDKreRORMrL4bTuAeY8yPoxuRihQROQ54B1jNvn4538Pqh/UIUAZsBy42xvTuYKvGKRE5EfiWMeZsEanEqtHKAlYAlxtjfFEMT0WIiMzDGtAkDtgKXIP1g6Je2zFGRH4EXILVfGgF8EWsvhh6bccAEXkQOBHIAWqBW4Cn6ONatpPs32M1E+0ArjHGLItC2OoQ9HOubwLigQZ7taXGmOvt9b+P1S8riNXN48XeZUaTJlhKKaWUUkopFSHaRFAppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppcYYESkXESMirmjHoiYGEVkjIidGOw6llIoFmmAppZQa90TkDhHx2H9+EQn0mH4x2vGNdcaYmcaYNyNZpohcLCLviUiHiES0bKWUGsvEGBPtGJRSKqaIiMsYExzG9uXANsA9nHImKhG5FZhijLm8j2XDOjejaTzF2hcROQXIAqYDJxtjToxuREopNTq0BksppSJARKpE5L9FZBXQLiIuEVls/4LfLCKf9GyCJSJvisj/iciHItIqIk+LSFY/ZV8jIutEpE1EtorIf/Rafp6IrLTL2SIip9vz00XkbhGpEZFdIvI/IuIc4H1MFpHXRaRBRPaKyAMiktFjWaOIHGFPF4lIfdf7EpFz7aZmzfb7m9Hr+HxLRFaJSIuIPCwiCUM/0kPXz7kxIjKlxzr3isj/9Jg+2z6mzfY5nDPIfZ0oItUi8j37+FWJyGU9lp8lIivsc7XTTga7lnU1Df13EdkBvG7Pf1RE9tjH7W0Rmdkr7j+KyIt2bd2/RKRARH4tIk0isl5E5g/yGJ0ymPc4WMaYV40xjwC7I1muUkqNdZpgKaVU5HwBOAvIAPKB54H/wfoV/1vA4yKS22P9K4FrgUIgCPy2n3LrgLOBNOAa4Fc9kpyFwP3At+39Hg9U2dvda5c7BZgPnAp8cYD3IMD/AUXADKAUuBXAGLMF+G/g7yKSBPwVuM8Y86aIHAY8CHwDyAVeAJ4VkbgeZV8MnA5UAHOAq/sMQOQ4O7Hp7++4Ad5DX7rPzUC1QnZCcg/wH0A28GfgGRGJH+S+CoAcoBi4CrhTRKbZy9qxznuGHc+XReT8XtufgHXsT7OnXwSmAnnAx8ADvda/GPiBvU8f8L69Xg7wGPDLQcbdJxH57sHOx3DKVkqpWKQJllJKRc5vjTE7jTGdwOXAC8aYF4wxYWPMK8Ay4Mwe6//NGPOpMaYd+CFwcV81TMaY540xW4zlLeCfwBJ78b8D9xhjXrH3s8sYs15E8u19fcMY026MqQN+BVx6sDdgjNlsl+UzxtRj3Zyf0GP5XcBm4AOsxPD79qJLgOftbQPAz4FE4Jhex2e3MaYReBaY108M7xpjMg7y9+7B3kM/ep6bgVwH/NkY84ExJmSMuQ8rcVk8hP390D6Gb2El2hcDGGPeNMasts/VKqyk9IRe295qn7NOe5t7jDFtxhgfVrI7V0TSe6z/pDFmuTHGCzwJeI0x9xtjQsDDWMn1ITPG/ORg52M4ZSulVCzSBEsppSJnZ4/Xk4DP9/ql/zispKSv9bcDbqxah/2IyBkistRunteMlTh1rVcKbOkjlkl2eTU99v9nrFqQfolIvog8ZDcpbAX+3kdMdwGzgN/ZN/1g1Xht71rBGBO2319xj+329HjdAaQcLJYI2znwKt0mAd/sde5Ksd7jYDTZSXOX7V3bisgiEXnDblrZAlzPgce3O1YRcYrIT8Rq+tnKvtrJntvU9njd2cf0aB5npZSa8DTBUkqpyOk5atBOrBqqnr/2JxtjftJjndIer8uAALC3Z4F2s7THsWqE8u0agxewmvJ17WdyH7HsxKp1yemx/zRjzMw+1u3pf+33MdsYk4ZVE9e1L0QkBfg1cDdwq+zrN7YbKzHpWk/s97drgP0dQESWyL4RAPv6WzJwKQfoPaJTB5DUY7qgx+udwI97nbskY8yDg9xXpogk95guY18/pH8AzwClxph04A56HN8+Yv034DzgFCAdKLfn995mxNj9yfo9H6MVh1JKjReaYCml1Mj4O3COiJxm10Ik2AMglPRY53IROdzuz3Qb8JjdrKunOCAeqAeCInIGVl+qLncD14jIZ0TEISLFIjLdGFOD1ZTwFyKSZi+bLCK9m6P1lgp4gBYRKcbq29XTb4BlxpgvYjV9u8Oe/whwlh2HG/gmVoL33kAHqjdjzDvGmJSD/L0z1DL7sBL4N/vcnM7+zfTuAq63a5tERJLFGpwiFboHlrh3gPJ/JCJxdjJ4NvCoPT8VaDTGeO3+c/82QDmpWMexASsh/N8hvMeIMMb878HOR3/bdX3uARfgsK8B9+hFrpRS0aEJllJKjQBjzE6smofvYSVHO7GSlZ7fu3/DGohiD5AAfK2Pctrs+Y8ATVg35M/0WP4h9sAXQAvwFvtqkq7EStDW2ts+xv5NFPvyI+AIu6zngSe6FojIeViDVHzZnvVfwBEicpkxZgNWbdfvsGrhzgHOMcb4B9hftHwdK8Zm4DLgqa4FxphlwJeA32Mdt83sPyBHKfCvg5S9x95uN9aAFNcbY9bby74C3CYibcDNWOf1YO7HamK4C+s8Lh3ojY0hV2A1UfwTVp/BTqzkVSmlYpo+B0sppaJArAev/t0Y85dox6IGzx4V8RNgjj2YR+/lJ2Kd15Ley5RSSk0MrmgHoJRSSo0Xdo3cjAFXVEopNWFpE0GllJpgROSOfgYsuGPgrdV4JCJlBxmooiza8SmlVCzRJoJKKaWUUkopFSFag6WUUkoppZRSETKm+mDl5OSY8vLyaIehlFJKKaWUUge1fPnyvcaY3N7zx1SCVV5ezrJly6IdhlJKKaWUUkodlIhs72u+NhFUSimllFJKqQjRBEsppZRSSimlIkQTLKWU6ocxhlBYR1pVSiml1OCNqT5YfQkEAlRXV+P1eqMdihpnEhISKCkpwe12RzsUNU794MlPiF/3BP/51f8iMyMj2uEopZRSahwY8wlWdXU1qamplJeXIyLRDkeNE8YYGhoaqK6upqKiItrhqHHIGENw+d/5sfsuPn22g8wrfh7tkJRSSik1Doz5JoJer5fs7GxNrtSQiAjZ2dla86kOWXNHgIucbwGQufPVKEejlFJKqfFizCdYgCZX6pDo50YNx47GDvJoBqDYvw06GqMbkFJKKaXGhXGRYCml1Ghr6vCTIR52ucsBaN36UXQDUkoppdS4oAnWIIgI3/zmN7unf/7zn3PrrbdGL6Aeli5dyqJFi5g3bx4zZszojuvNN9/kvffeO+Ryt2/fzhFHHMG8efOYOXMmd9xxR4QiVmp88Hh9pEsHLYXHANC4aWmUI1JKKaXUeDDmB7kYC+Lj43niiSe46aabyMnJiVi5xhiMMTgch57nXnXVVTzyyCPMnTuXUCjEhg0bACvBSklJ4ZhjjjmkcgsLC3n//feJj4/H4/Ewa9Yszj33XIqKig45VqXGE19bEwDpRYexsyqXcO3aKEeklFJKqfFAa7AGweVycd111/GrX/3qgGX19fVceOGFLFiwgAULFvCvf/0LgFtvvZWf/3zfqGOzZs2iqqqKqqoqpk2bxpVXXsmsWbPYuXMn3/72t5k1axazZ8/m4YcfBqwE6cQTT+Siiy5i+vTpXHbZZRhz4PN46urqKCwsBMDpdHL44YdTVVXFHXfcwa9+9SvmzZvHO++8c9A4r7jiCo4++mimTp3KXXfdBUBcXBzx8fEA+Hw+wuFwn8fmt7/9LYcffjhz5szh0ksvBaCxsZHzzz+fOXPmsHjxYlatWtW9r6uuuoolS5YwadIknnjiCb7zne8we/ZsTj/9dAKBAAC33XYbCxYsYNasWVx33XUHvO9wOEx5eTnNzc3d86ZOnUptbe3BTqNSQxL0NACQlZPHdkcR8S3bohyRUkoppcaDcVWD9aNn17B2d2tEyzy8KI1bzpk54Hpf/epXmTNnDt/5znf2m//1r3+dG2+8keOOO44dO3Zw2mmnsW7duoOWtWnTJu677z4WL17M448/zsqVK/nkk0/Yu3cvCxYs4PjjjwdgxYoVrFmzhqKiIo499lj+9a9/cdxxx+1X1o033si0adM48cQTOf3007nqqqsoLy/n+uuvJyUlhW9961sA/Nu//Vu/ca5atYqlS5fS3t7O/PnzOeussygqKmLnzp2cddZZbN68mZ/97Gd91l795Cc/Ydu2bcTHx3cnPLfccgvz58/nqaee4vXXX+fKK69k5cqVAGzZsoU33niDtWvXcvTRR/P4449z++23c8EFF/D8889z/vnnc8MNN3DzzTcDcMUVV/Dcc89xzjnndO/T4XBw3nnn8eSTT3LNNdfwwQcfMGnSJPLz8wc8j0oNVqijGYD4lGyaEyeR5X0FjAEdPEUppZRSB6E1WIOUlpbGlVdeyW9/+9v95r/66qvccMMNzJs3j3PPPZfW1lY8Hs9By5o0aRKLFy8G4N133+ULX/gCTqeT/Px8TjjhBD76yOpMv3DhQkpKSnA4HMybN4+qqqoDyrr55ptZtmwZp556Kv/4xz84/fTT+9znweI877zzSExMJCcnh5NOOokPP/wQgNLSUlatWsXmzZu57777+qwhmjNnDpdddhl///vfcblc3e/piiuuAODkk0+moaGB1lYrMT7jjDNwu93Mnj2bUCjUHe/s2bO7398bb7zBokWLmD17Nq+//jpr1qw5YL+XXHJJd23fQw89xCWXXHLQY67UUBl71EBHchb+9EoSTSe07YlyVEoppZQa68ZVDdZgappG0je+8Q2OOOIIrrnmmu554XCYpUuXkpCQsN+6Lpdrv2Z1PZ/HlJycPKj9dTXRA6v5XzAY7HO9yZMn8+Uvf5kvfelL5Obm0tDQcMA6/cUJBw5n3nu6qKiIWbNm8c4773DRRRftt+z555/n7bff5tlnn+XHP/4xq1evHtR7cjgcuN3u7n05HA6CwSBer5evfOUrLFu2jNLSUm699dY+n2V19NFHs3nzZurr63nqqaf4wQ9+cND9KjVUTl+z9SIxE1feNNgD7TXrSE4rjGpcSimllBrbtAZrCLKysrj44ou5++67u+edeuqp/O53v+ue7moKV15ezscffwzAxx9/zLZtffffWLJkCQ8//DChUIj6+nrefvttFi5cOOiYnn/++e4+Sps2bcLpdJKRkUFqaiptbW0Dxgnw9NNP4/V6aWho4M0332TBggVUV1fT2dkJQFNTE++++y7Tpk3bb9/hcJidO3dy0kkn8dOf/pSWlhY8Hg9LlizhgQceAKy+ZDk5OaSlpQ3q/XQlUzk5OXg8Hh577LE+1xMRLrjgAv7rv/6LGTNmkJ2dPajylRosd8C+fhLSSSuZAUDzDh3oQimllFIHN+wES0RKReQNEVkrImtE5Ov2/FtFZJeIrLT/zhx+uNH3zW9+k71793ZP//a3v2XZsmXMmTOHww8/vHs48wsvvJDGxkZmzpzJ73//ew477LA+y7vggguYM2cOc+fO5eSTT+b222+noKBg0PH87W9/Y9q0acybN48rrriCBx54AKfTyTnnnMOTTz7ZPchFf3GC1czvpJNOYvHixfzwhz+kqKiIdevWsWjRIubOncsJJ5zAt771LWbPng3AF7/4RZYtW0YoFOLyyy9n9uzZzJ8/n6997WtkZGRw6623snz5cubMmcN3v/td7rvvvkG/n4yMDL70pS8xa9YsTjvtNBYsWNC97I477tgv7ksuuYS///3v2jxQjQgJ+awXrnjyiivoMPH4ajdGNyillFJKjXnS18h0QypApBAoNMZ8LCKpwHLgfOBiwGOM+fnBtu/pqKOOMsuWLdtv3rp165gxY8awYlT9u/XWW/cbDCPW6OdHHaqnfnsj5zfeA9+vxRN2sf3HR5CSU8Kkr70Q7dCUUkopNQaIyHJjzFG95w+7BssYU2OM+dh+3QasA4qHW65SSkWThPzWC1c8KfEudjuLSPZsj25QSimllBrzIjrIhYiUA/OBD4BjgRtE5EpgGfBNY0xTH9tcB1wHUFZWFslw1CDceuut0Q5BqTFJwn4CuHDbA7G0JJSQ0fkRhEPgcEY5OqWUUkqNVREb5EJEUoDHgW8YY1qBPwGTgXlADfCLvrYzxtxpjDnKGHNUbm5upMJRSqlhcYZ8BCSuezqQNgkXQWipjmJUSimllBrrIpJgiYgbK7l6wBjzBIAxptYYEzLGhIG7gMEPjaeUUlHmCAcI9kiwnDkVAAQb+h4RVCmllFIKIjOKoAB3A+uMMb/sMb/nw2IuAD4d7r6UUmq0OMJ+guLunk7KnwpAyy4dSVAppZRS/YtEH6xjgSuA1SKy0p73PeALIjIPMEAV8B8R2JdSSo0KV9hP0LGvBiunqAK/cdJRuxl96ppSSiml+hOJUQTfNcaIMWaOMWae/feCMeYKY8xse/65xpiaSAQcLU899RQiwvr16/tdp6qqilmzZkVsnxs2bODEE09k3rx5zJgxg+uuuw6wHhL8wguHPlS01+tl4cKFzJ07l5kzZ3LLLbdEKmSlYobT+An1SLAm5aZSbXIJN07cJoLVTR1c+5d3+HiT9kNTSiml+hOxQS5i3YMPPshxxx3Hgw8+2OfyYDA47H2EQqH9pr/2ta9x4403snLlStatW8d//ud/AsNPsOLj43n99df55JNPWLlyJS+99BJLly4dVuxKxRpXOECoRxPB/NQEqsknrnVHFKOKrseX7+KS7bcy54G54G2JdjhR0djuZ3X1xHzvXVo6Agz3GZrjmS8Ywh8MRzsMpdQYpgnWIHg8Ht59913uvvtuHnrooe75b775JkuWLOHcc8/l8MMPB6xE67LLLmPGjBlcdNFFdHR0APDaa68xf/58Zs+ezbXXXovP5wOgvLyc//7v/+aII47g0Ucf3W+/NTU1lJSUdE/Pnj0bv9/PzTffzMMPP8y8efN4+OGHaW9v59prr2XhwoXMnz+fp59+GoB7772X8847jxNPPJGpU6fyox/9CAARISUlBYBAIEAgEEDsoah7evTRR5k1axZz587l+OOPB6zar2uuuYbZs2czf/583njjje59nX/++Xz2s5+lvLyc3//+9/zyl79k/vz5LF68mMbGRgDuuusuFixYwNy5c7nwwgu7j09PixcvZs2aNd3TJ554Ir0fQK3USHMbPyFnfPe0wyE0xheR7p24tTerdjZymnMZLoIEl98f7XCi4saHV/LlPzzBjtfugvDEu8n+eEcTR/zPK9z3ykfgqYt2OKPOGMO5v/sXF93xHuG6DeBtjXZISqkxKKLPwRpxL34X9qyObJkFs+GMnxx0laeffprTTz+dww47jOzsbJYvX86RRx4JwMcff8ynn35KRUUFVVVVbNiwgbvvvptjjz2Wa6+9lj/+8Y/ccMMNXH311bz22mscdthhXHnllfzpT3/iG9/4BgDZ2dl8/PHHB+z3xhtv5OSTT+aYY47h1FNP5ZprriEjI4PbbruNZcuW8fvf/x6A733ve5x88sncc889NDc3s3DhQk455RQAPvzwQz799FOSkpJYsGABZ511FkcddRShUIgjjzySzZs389WvfpVFixYdsP/bbruNl19+meLiYpqbmwH4wx/+gIiwevVq1q9fz6mnnsrGjVan/08//ZQVK1bg9XqZMmUKP/3pT1mxYgU33ngj999/P9/4xjf43Oc+x5e+9CUAfvCDH3D33Xd318x1ueSSS3jkkUf40Y9+RE1NDTU1NRx11AEPyVZqRLlMgLAjeb95ncmlJDV7oLMJEjOjFFn0mLp9TaTbtywl/dj/PMjasScYCvPWxjo2xH+b+HcCUFYBU0+Jdlij6tW1teSF93L1e1+AZSnwnW3giht4wxixsdbDhto2znB8gOOPv4F5l8P5f4h2WEqpMUZrsAbhwQcf5NJLLwXg0ksv3a+Z4MKFC6moqOieLi0t5dhjjwXg8ssv591332XDhg1UVFRw2GGHAXDVVVfx9ttvd29zySWX9Lnfa665hnXr1vH5z3+eN998k8WLF3fXfPX0z3/+k5/85CfMmzePE088Ea/Xy44dVjOmz372s2RnZ5OYmMjnPvc53n33XQCcTicrV66kurq6Ownr7dhjj+Xqq6/mrrvu6m6++O6773L55ZcDMH36dCZNmtSdYJ100kmkpqaSm5tLeno655xzDmDVvFVVVQFWErZkyRJmz57NAw88sF9NVZeLL76Yxx57DIBHHnmEiy66qM/jo9RIcpkAxrH/jaPJsK/1CdoPK7tzCwAbwiW4ag78USjW7WjsIJM24iVgzdjyWnQDioLVu1qY5bA//34P7Foe3YBG2boaq8bqs077fa99akLWZCqlDm581WANUNM0EhobG3n99ddZvXo1IkIoFEJE+NnPfgZAcvL+v3D3bmrXV9O73nqX0VNRURHXXnst1157LbNmzeozETLG8PjjjzNt2rT95n/wwQcDxpORkcFJJ53ESy+9dMAAHXfccQcffPABzz//PEceeSTLlx/8f6Tx8T2bUzm6px0OR3cftauvvpqnnnqKuXPncu+99/Lmm28eUE5xcTHZ2dmsWrWKhx9+mDvuuOOg+1Uq0sJhQxx+wj2aCALE51VCFXTUbiGp+IjoBBcl3kCI5EATuOEt5nNd57MTriZvT6uXCtnTPW22vc3A3/Cxpa7Vx9kJtdCVU2x7CyYdHdWYRtOu5k4AprrqrDGS/R6oXQ2Fc6MbmFJqTNEarAE89thjXHHFFWzfvp2qqip27txJRUUF77zzTp/r79ixg/fffx+Af/zjHxx33HFMmzaNqqoqNm/eDMDf/vY3TjjhhAH3/dJLLxEIWL+U7tmzh4aGBoqLi0lNTaWtra17vdNOO43f/e533Z2OV6xY0b3slVdeobGxkc7OTp566imOPfZY6uvru5v8dXZ28sorrzB9+vQD9r9lyxYWLVrEbbfdRm5uLjt37mTJkiU88MADAGzcuJEdO3YckNgdTFtbG4WFhQQCge5y+nLJJZdw++2309LSwpw5cwZdvlKR4A+FiSOIce5fg5VWNAWA1pqJ9yyshnY/WdJKGAd7UmbbM7dGN6hRVt/mo9JhDYj7UmgB7N0IoeEPcDSe1LZ5OTp1LzUmi8bEcqhZFe2QRtXu5k6ykuOYJHWsclp9r6ldG92glFJjjiZYA3jwwQe54IIL9pt34YUX9jua4LRp0/jDH/7AjBkzaGpq4stf/jIJCQn89a9/5fOf/zyzZ8/G4XBw/fXXD7jvf/7zn92DTJx22mn87Gc/o6CggJNOOom1a9d2D3Lxwx/+kEAgwJw5c5g5cyY//OEPu8tYuHAhF154IXPmzOHCCy/kqKOOoqamhpNOOok5c+awYMECPvvZz3L22WcDcPPNN/PMM88A8O1vf5vZs2cza9YsjjnmGObOnctXvvIVwuEws2fP5pJLLuHee+/dr+ZqIP/v//0/Fi1axLHHHrtfUvfMM89w8803d09fdNFFPPTQQ1x88cWDLlupSPGHwsRL4IAEqygvl3qTjr9+4jUR3NvmI5s2AvGZhLImWzMbJ1aCVdfqo1z2EBYXr4fnISE/NE2cz4IvGKK5I0BxuIZdzmJ2uMqgvv9Hl8SiPS1eKlNDpIWbecU/2/qOqNMESym1PxlLQ60eddRRpvdocevWrWPGjBlRimh8u/fee/cbDGMi0s+POhR7PT7Mz6bSVHoKh33xnu75rd4Am/73aAqy0in+xsTqf/Paulr8/7iME7Nb+M3kO/nOspPgxP/GcdJN0Q5t1Pz4+bVM/uAHXJyyinObvs5z8T+Ai/8Gh58b7dBGxc7GDpbc/gars77Lp1Sy3RRwqfcR+F4NuBOiHd6ouOhP71ER3sHP6v+DG/z/yS+KXiM+oxgufyzaoSmlokBElhtjDhiJTWuwlFKqF38wTBwB6NUHKy3BTY2jgKT2nVGKLHpavQGypRWScyjOzWI32fhqN0U7rFHV1BEgx+VFEtOpiy+zZu6dOM1F69q8ACQEW3EkZbGsowBMGBo2Rzmy0ePxBcl1W/2wWkimKbFiQn0GlFKDowlWDLv66qsndO2VUofKSrCC4Dqw+WtbYgnpgToI+qMQWfR4vEGyaUWSc5iUlURVOJ/Q3i3RDmtUebxB0h2dSHwaedlZNDsyoXl7tMMaNa2dQRyEcflbiE/LYb0/x1owgZpJtnmDZDmt0XzbTBK7HQXQUg2hQJQjU0qNJeMiwRpLzRjV+KGfG3Wo/MEQ8QT6TLD86ZNwYKB5RxQiix6PL0SmtOFKyWFSdhJVpgB3y8S5sQar9iJVOiEhjbKsJHaRB00TJ8Fq8wVJox3BkJyRxw6TZy2YQMeg1Rsg09kBQDg+japwPpgQtEy8Wm2lVP/GfIKVkJBAQ0OD3iyrITHG0NDQQELCxOgXoCLLH/DjEIP0kWA5s6xnYYUm2LOw2r0BUunEmZRBUUYi2ykkPtACHY3RDm3UtPmCpJp2iE+jLCuZLcEcTFNVtMMaNR5vkEzxAJCelU8rKfjdaTBBjoExBo8vSLpYTQTTMrJZ78+2Fk6w7wOl1MGN+edglZSUUF1dTX19fbRDUeNMQkICJSUl0Q5DjUMBn9XXxOE+MMFKyp8Ka6GtZiMZh312tEOLGq+3A7eEID4Vt9OBJ6kM/FgjCSZlRTu8UeHxBkg2Hd01WFXhXGhZajUPc7qjHd6I8/gCZGI9IiQzJx+HBGmKKyR/giRY7f4QxkCqWDVYmZk5fFJnNxWeIMdAKTU4Yz7BcrvdVFRURDsMpdQEEvRZv1BLHyOj5RWW0Wni6KjdQsYoxxVNwc5W60V8KgDhrArYg3VjWXLAAEoxqc0bJNG0Q0IGZVlJrDB5iAlZfXCyYv//Ux5vkEyHVYPlTsmhML2FGkf+hEmwPF7rmWcpdIDDTUF2Oq9sasLExyMTqB+aUmpgY76JoFJKjbZgwKrBcvZRg1WancQOk4dpmFg3VOFeCVZ8jp1QTKAby06fj/hwJ8SnMSk7iR3hfGvBBEkwWr1B8u0R9Ei0ksxtoVyrP2I4HN3gRkGb1xrIIjncDgnplGQl4w1CKH2SNhFUSu1HEyyllOol5LebCLoOrMEqykhkp8kjrm1iDXIR9llNw4hLAaAwJ4s6k0GgoSp6QY2iUNjg9NvHICGNwvQEdsvESrA8viC5TuvaIDGTSdlJrPdmQcgHnj3RDW4UtNo1WIlhDySkUZqVCIAnuWRCDfShlBrYiCdYInK6iGwQkc0i8t2R3p9SSg1XV4LljEs8YJnb6aAhrpi0zmqYSIPvdCVYdg1WWVYSO00u/vqtUQxq9FgjCFp9b4hPw+V04EwvJCjuiZNgeYNkuuwEKz6Vsuwk1nrtQR4mwDHw+KwEKyFkDXRSmpkEQIO7yKrJnUjfB0qpgxrRBEtEnMAfgDOAw4EviMjhI7lPpZQarlCg/0EuADqTS4k3XmifOIPvOPxW3xvirRqs0qxEdpg8HBPkOVAeX5A07OZxCWkAFGenUOvImxDJBVjHIN3pBVciON3dSTYwIY5BVxPBuKBVg1ViJ1i7pAD8HmjfG83wlFJjyEjXYC0ENhtjthpj/MBDwHkjvE+llBqWsJ1gueL6TrDCmeXWiwnU70IC7daLuH01WDtMHvEdNRPiIaseb48arIR0wDoG28O5EyK5AGuY+nSHt7sWc1JWMrtMLgaZEE3kuga5cAXbICGdxDgnOSnxbAnYD1yeID82KKUGNtIJVjHQ8+l71fa8biJynYgsE5FlOhS7Umos2JdgJfW5PD5vMgD+vROjeRyAK9BVg2XdXKcnutnrKsBBeEI8ZNXjC5DKviaCACWZSWwJTJxnYXm8AasWr6uZaHYSAVx44vMnRJLZZidYTn8rxFtJdmlWImu9mdYKE+AYKKUGJ+qDXBhj7jTGHGWMOSo3Nzfa4SilFKGADwBXXN8Pqk4rmEzYCK27N45mWFFjjMEVtGuw7CaCIoIvpcyaNwFqL9q8QdK6Eiy7iWBXLZ54m6GzKXrBjRKPL0gyHfsl2emJburdhRMiuehqIii+tu7PQGlmEivarGRrIhwDpdTgjHSCtQso7TFdYs9TSqkxy9g1WO74vhOsktwMasgiMEFqsHzBMEl0WE3B3Mnd851Z5daLCXBjuf8gF121F1aCBUyIJNPjDZLcowYLYFJ2EjvNxOiH1uYLkhbvQPye7maipVmJbGsxmJSJUYunlBqckU6wPgKmikiFiMQBlwLPjPA+lVJqWEzQqsFy9zGKIHSNoJeHo7lqFKOKnnZfkBS8BJxJ4Nj3v420/DL8xolprIpecKPE4w3uayLYowZrZ3eCFdv98UJhQ7s/RGK4o7uJJFjHYKM/xxqmPdAZxQhHXps3SEG835qI31eDFQob/CmlmmAppbqNaIJljAkCNwAvA+uAR4wxa0Zyn0opNVxhu4lgf6MIZiXHsUsKSPLEft8jgHZfiGQ6CbpT9ptfkpVCtcnFNwFq8qwarE6MOwmcbgAyk9w0uAutFWK8Bqvdbw9RHm7vTjDBSrDWdHb1QYrtY+DxBimIt4ep72oimGX102xNLNZBLpRS3Ua8D5Yx5gVjzGHGmMnGmB+P9P6UUmrY7BosXH0nWCJCW2IxqcEG8HeMYmDR4fEFSZFOwj2aB4J1c1ltcglNgIcNW32w2vervRERMrNyaHOkxXztRdcIenGh9gOaCFaFumrxqqIQ2ehp8wXIcdnfDT1qsADqnIXQUj0hRtRUSg0s6oNcKKXUmBPqSrD67oMF4E+bZL2I8ZtKsBMsvJi4/WuwugZ5cLXG/i/3Hl+QTKcX6VF7A1aSuUtiv/+N9ZBdgzvo2S/BKstK7tEPrSoqsY2WNm+QHLf93WD3wSrMSMDpEOt5YGZijKiplBqYJlhKKdVbVw2WM67fVRxZFQCYGO97A3YfLOnsfgZWl+LMRKrJIz7QAt6WKEU3OjzeIBmOzv1qsMBKMrdOgKHa27xBEvDjMKH9E6zsJBpJtfrnxfgx8HiDZLn2byLodjooykhgoz/bmh/jzSSVUoOjCZZSSvUioYM3EQRIzp8CgGfPptEIKaqs4bk7kYT9a7DiXU5aE+xHG8b4jaXHFyRNOvfrfwRQmpnItnCuVXMRCkYpupHn8QVJxR7EokeCVZCWQJzTSWN8UcwnWK3eIFnOrmOw73MwKSuZT9r1WVhKqX00wVJKqV4kZI8UdpAarKKiYlpNIh17toxSVNHTNcCD024W1VMoY2I0lWzrGqa91zEoy05ih8lHwkFojd2nkHi8di0m7JdcOB1CSWYiNROimWSAjK5j0ONzUJqVxCfNCdb3RYwfA6XU4GiCpZRSvUjIhx83iPS7TmVuCjtMPqGGCTCCnjdIMl6ciakHLHNnV1ovYnwENY83QIppP6CJYGlm0oTog+TxBUjhwAQLrCRza8h+FpYxox/cKAiEwngD4R7PQutRg5WdxN6OEOG0kpi/DpRSg6MJllJK9eII+wmI+6DrFGXY/Y/aYr9Te5s3QDKduBMPrMHKzc2nxSQRbIjtvmgeX5Ak035AE8GSzJ7Pwqoa/cBGSdt+NVj7J9qTspJY25kFwU7w1EYhupHXZo+imEIHuBLBta92u8weqr09WZ+FpZSyaIKllFK9OEJ+gtJ/80CwmkY1J5SQ5t0N4dAoRRYdnZ0dxEnogD5YAGXZiew0efjrY7smr7Ozkzjjh/j9k8zEOCfB5EJCOGP65trjC5LW9aDlXglWaVYSmwI51kSMHoOuYeqTwwcm2V0JVmNc7PdDU0oNjiZYSinViyPsJzhADRZYQ7W7CUBbzShEFT3BzlbrRdyBTQS7msiZGB/kwnjtY9Dr5hqgODuVemdeTN9ct3YGye4aorx3DVZ27A/V3uq1nm+V2Ecz0bJsK8HaLXnQ2RTzI2oqpQamCZZSSvXiDPsJOg5egwXgzraGao/1flihTvuGMf7ABKvrWVgJnp0QDo9yZKMjGArjCnQlWAc2kyzNTLQSjBhNLsBKMLqfAdUrwZiUncQuk4NBYvYYWM8Bg4RQ+wGfgbQEN5lJbrYGc60ZMf5jg1JqYJpgKaVUL3HhTvyOxAHXSy6cCkDLrtgeqj3sbbNe9JFg5abGs0fycJoAePaMcmSjY/8hyg+swSrLSmJzjD8Lq7UzQJar7xqs0swk/LjxxMduktnVBysu6OmzFrMsO9nqhwYxewyUUoOnCZZSSvUSH/YSdA6cYOWVTCZgnDH/LCzx2TVYfdTeiAje1DJrIkZvLNu8wX2jx/Vxc12SlcT2cB7S2QhdTQljTKs3QKbTB66E/QZ4AKsfWl5qPHXOQmiMzcFOWjqtJoJxwbY+k+xJWUl83GbPj9HrQCk1eJpgKaVUL/HGS2AQNViVeensMjkx30TQ6bOThsSMvlfILLf+bYzN49DSGSCVA4fn7lKWlUSVybcmYvQYtHYGSXd09lmLCVYzQauZZGwnWE5/a981WFlJbGxxYhKzYvYzoJQaPE2wlFKql3jjJewaOMHKTY1nl+QT17pjFKKKHvdB+h8BJOVVEjBOTENsPnS5zRsk7SA1WJU5yWwzhdZEw+ZRjGz0tHoD1jHoJ8EqzUpinT/PGqbd1zbK0Y28VjvBEl9bn9dBWXYSobDBl14Rs58BpdTgaYKllFI9GGNIwEvYnTTguiJCc0Ix6d7qUYgseuIC9g1zPwlWSXYaO0we/tqNoxjV6Gn1Bkin3ZpIyDhgeW5qPHvdRdYgDzGaZLZ2Bkg3bZCY1efySVnJrPLaQ7XH4DFo6QyQGQ8S7DxgqH6A8uxkAJoTy2Ly/SulhkYTLKWU6sEbCJOID+MaOMEC8KWVkxJug47GEY4sOsJhQ3yozUoe+himHaAyN5ltpoDQ3tjsi9bmDZIhHow4++2HVpSbyV5nXkzWXoTDhjZfkORwGyT1k2BlJ7E1HLu1eK2dAUoT7IFOkjIPWF6RYyVYu5zF0LYbfJ7RDE8pNcYMK8ESkZ+JyHoRWSUiT4pIhj2/XEQ6RWSl/XdHRKJVSqkR1uEPkoQP4gaXYEm2NZJgoHbDSIYVNR2BEGm043OlgqPv/2VMzk1hqykirqUqJodqb+0MkIkHk5gJIn2uU5GTwjZTEJPJhccfxBhICrVB4oHJBVhNBLebfLsWL/aOQas3QFG8nWD1UYuXkxJHaoKLTcECa4b2w1JqQhtuDdYrwCxjzBxgI3BTj2VbjDHz7L/rh7kfpZQaFR2+IIn4IS55UOsnF08HoHHHmpEMK2qaO/ykSQdB94F9j7oUZSSyUwpxhX3QGnvNJa0arDakn+ZxYPXDWh/IwzRsBmNGMbqR19X/KCHY0m+CNSk7CR9xeBIKYzLBaukMUOi2++H1UYsnIlTmJPNJR1czydg7BkqpwRtWgmWM+acxJmhPLgVKhh+SUkpFT2dHOw4xOAaZYOWVTcNvnLTvXj/CkUVHU3uANNoJ9zF6XhenQ+hMsx66HIs3ls2dfrIdHUg/zePAaia5NVyI+Fqhfe8oRjfyWjuDuAhaz4DqJ8nMTo4jOc5JrbskJj8DLZ0B8l12gtXPMajMTeGDlgxrolH7YSk1kUWyD9a1wIs9pitEZIWIvCUiS/rbSESuE5FlIrKsvr4+guEopdTQeTusEfOc8YNLsCrz09lh8mPyphKgscNPurT3O8BFF2eO1VQyFjv4N7b7yXZ4+q29AasPTqyOJLjfIB/9HAMRsZoJUmh9BmKsFq+lM0CO0z4G/STaFTnJbG0JE04rjsnrQCk1eAMmWCLyqoh82sffeT3W+T4QBB6wZ9UAZcaY+cB/Af8QkT5//jTG3GmMOcoYc1Rubu7w35FSSg2Dv9PqnO5MGFyClZbgptpZTHJbbPa5aO7wk0UbjuTsg66XXVCGxyQQqo+9kQQb2/1kiqffG2uA8pxkthq7/02MJVh7PT4yxB604SBJ5qTsJNYF8sHXCu2x84OpMYamjgDZjq4ks78aLOs7oyNVh2pXaqJzDbSCMeaUgy0XkauBs4HPGGP9ZGWM8QE++/VyEdkCHAYsG27ASik1knwd1pDk7oSUQW/TklROVvsKCAXBOeDX6rjS2O4nW1pxpeUddL3KvFS2mQIm125kcMODjB8NHj+p5uA1WGkJbnxJxQTDLlwxdnNd1+ojg4ETrLKsJD7emA1OrAQj5eCfmfGitTOIPxi2ajFdCf0OgFOZY31nNMSVkrLnpdEMUSk1xgx3FMHTge8A5xpjOnrMzxURp/26EpgKxObPu0qpmBK0h1d2DSHBCmROxk0QWmLvgcMtbe1kSDtx6QUHXa+7iVyMJRcA7Z424o0Xkg5ei1eel8YeR+wdg7o2HwVO+2HTKf23NCnLTmZjMN+aiKFjUNfmBSCd/p8DBlCeYyVe26UQOpti9tENSqmBDbcP1u+BVOCVXsOxHw+sEpGVwGPA9cYY/aZRSo15gU6rGVB80uATrLi8aQC07Vo3IjFFk7+1FgDHQW6sASbnWglWYvsuCPpGI7RRYYzB1WEdA1IPnmRW5iSzORR7Q7XXtXmpTLAfNp1a2O96lTnJ7DY5hB1xMXUM6tusz3N6sAFS8/tdLynORVF6AhsCsZdkKqWGZrijCE4xxpT2Ho7dGPO4MWamPe8IY8yzkQlXKaVGVrDd+i0oKf3gtRU9ZZTNAKB559oRiSmawh67L03ywZt7ZSTFUesuRTAx9Qwgjy9IVtj+fXCABKsiJ5n1wXxM41YIh0YhutFR3+ajLK4NxAlJOf2uV5GTTBgHrUmlsDd2kos6O8FK9NVDatFB163ITWZZu/3dEaMP3lZKDSySowgqpdS4F+5oACAhtf8byd5KS8poMin498Tew4ZDbXbtzSD604QyK60XMXRjWdfmI1+arImD1N6APYqcKURCfmiOneaida0+ihzNkJLf78OmAQrSEkh0O6lxlUBDLH0GrCaC7vY9g6jFTOHDxmSMwx1Tx0ApNTSaYCmlVA+OTutmWgbob9NTaWYi20whrqYYHJq5rasGa+CE0513mPUihm4sdzV19kiwBri5zk1ha9hOwmIqyfSSK00HbR4H4HAI5TnJbAkXQuM2a9CXGFDX6iPdHcThbYK0gyfZlbnJNHkNoYyKmPoMKKWGRhMspZTqwelrxo8b3ImD3sbldFAXV0p6x/YRjGz0hcOGJO8ea2KA2huA4oJ8ak0G/trYGap9V3MnedKEcSZAQsZB1y3LSqJKiq2JGEky/cEwTR0BMkNNkHLwBBOsBGOVNw/CAWiOjeuh3uNjRrI9RPsgajEBWpPLNcFSagLTBEsppXpw+Zppc6SByJC2a0+rJCPUAN7WEYps9O31+Ciino64nEElnJW5yWwNFxGojZ2mkruaOimWRqvmYoDPRJzLQUpmPh5HWszcXNd7fIAh3V8D6SUDrl+Zk8wyT1cfpNhItGtbvUxNHHiQD4DJudbgOHvcJVZfxBipxVNKDY0mWEop1UNCoIUOZ5/PRT+47CkABOtj48YaYHeLl1Kpw59aOqj1J+dafZDczVvAeiziuLe7uZMprjokq3JQ61fmprBDimJmBLma5k6yaCMu6IHsyQOuX5mbzOYYaya5s7GTwxP2WhNZFQddtygjkTiXgy2mKKZq8ZRSQ6MJllJK9ZAYbMHnTh/ydsmF1kiCjTtiZyTBXU2dlEg9ZJQNav3SrCS2UkRcoBXswULGu+qmDsqoGVRyAVYTsXWBAkyM1N5s3dtOudjNRAeRZFbkpNBKCr747JiowfIGQuxu6WSKcw843JB+8GvB6RAqspNZ7bUHhYmRJFMpNTSaYCmllM0YQ0q4lWB85pC3zSufRsgI7TH0LKwttc0USiPJ+YOrvYl3OWlLLrcmYuTGsqm+hiTTMajkAqwanE2hAsRTGxPNRbftbafSWWdNDCrBsvogNSSUxUQt3s7GDoyB4lCNVXvldA24TWVuMh+02g8kjpG+eEqpodEESymlbE0dAbJpGdSIeb1V5Gez0+QRjpHEAqCleh1uCeHOnz7obUz2VOtFDNxYNnh8pHdUWRNZg6vBqsxJYauxm8jFwDHYWu9hflKd9QysQdRkpie6yUmJY6ejJCaS7M11HgAyvTsG/xnITWZNkxOTlBMTx0ApNXSaYCmllK2uoYFM8UDG4Poc9ZSZHMdORxGJrbHzkF1Hnd3cMX/moLdJK6jEZ9yYGOiLtmFPGzMddh+aQR6DybnJVv8biImH7a6raWOuawfkzQBX/KC2qcxJYX0wHzr2QkfjCEc4stbVtJIofhJatgz6M1CZk0IwbPCmV2qCpdQEpQmWUkrZWvdsAyAua3B9jnprTion27sTwuFIhhUVgVCYTM8mQuKEnMMGvV1FXhpVJh9f7foRjG50rN/TxmzHNsJJOZBWNKhtclPjaXAXEcI57vsgtXQE2NHYQWVgCxTMGfR2lbnJrGi3a4HHeTPBtTVtfCazHgkHoWjeoLapzLWaSTYmlMVELaZSaug0wVJKKZunrgqA1PyDjxTWH396JfH4oHVXBKOKjo21bcxiC57UKYOuuQBrmO6tpjAmarCW72hivmsbUjR/0MP2iwiluRnUuQrG/c316l0tFNBAUqABCucOeruKnGRWdI7/QR6MMazY0cTJadXWjKL5g9quMscaqn2noxja68F+eLlSauLQBEsppWyde63mYNlFg+tr0Zsrz6rpaa8Z/7U3y7fWc6RjI86KY4a0XWWu1Qcp3rMTQoERim7khcOG9Zu3MtnsRMoWD2nbytxktoQLx30TwaVbGzjOZTcTLT920NtV5qZQbXIJO9zjuhZv6952Gtr9LGAtpJVAWvGgtktPcpOdHMf6QNdw9eP7c6CUGjpNsJRSyiZN2wnixJF28IeJ9ie91BqqvWnHmkiGFRU717xPsvhImbpkSNvlp8VT7SjBYYLQVDUywY2CdXtaOdy7wpqYfNKQtq3ISWatPx/TsBnCoRGIbnS8u3kvZ6VshKRsyBt8P7yKnGRCOPEkj++RBN/ZWI+DMEVNH8HkE4f08PHK3GQ+7rAfuDzOazKVUkOnCZZSStky2zdT6y4b1FDMfSkprcBjEvDt2RDhyEZXuy9I1q5XCeOEyqElFyKCL8MeznscNw97Z9NeTnUuI5yYDYXzhrRtZW4KW0wREvJBy86RCXCE7WruZM3OvRwd/AimnAKOwd8ulGUl4XQIe9yl47oG65V1tZyfuQ2nr9k6BkNQmZPCB42p4HCN62OglDo0mmAppRTgD4YpCVTRkjblkMsoy05hmynE0bglgpGNvjfX13EqH9BWsBCSsoa8vStvmvViHP9y//LHmzjVuQLHzPPB4RzStpU5yWwNj+/mYc9+spsljlUkBFth5ueGtG2cy0FpZiLbTBE0boNQcISiHDm7mjt5b0sD16Qug7gUmHrakLavzE2mtiNMKKNiXP/QoJQ6NMNKsETkVhHZJSIr7b8zeyy7SUQ2i8gGERnaN5NSSo2yTTtqKJV6nEMYkry3OJeDPe5S0tqrIhdYFKx893kmO2pIXXj5IW1fkF/AXpNGqH58/nK/fHsTs/e+YA1YMu/fhrx9RU6PodrHYZIZDIX5xwc7uCHlTUgpgMknD7mMytwUVvvyIByA5u2RD3KEPfzRTtKMh5mNL8PM8yEuaUjbV+ZaA120pZSP62aSSqlDE4karF8ZY+bZfy8AiMjhwKXATOB04I8iMrSfAJVSahTtXv8+AFmTjxxWOa3J5WQG6yDQGYmwRt2q6maO33MvXlc6jllDq7noMjnXGknQv2d8Jlh/fn0t17tfIFR8FJQcNeTtk+NdxKXm0uFIHZfNw55fXUN606cc4V8GC74Irrghl1GRk8xHbXYfpHF2DFq9Ae791zb+p+BtHEEvLPrykMvoGqq91l0KDVvGZS2eUurQjVQTwfOAh4wxPmPMNmAzsHCE9qWUUsMWqloKQM6M44ZVTiBjMg6MdVM1Dr367IMscX4KJ3x7yL/ad6nISWZLuAhH0/j75f6dTfUctvmvFFGP8+TvH3I5lXkp7HAUj7vmYR3+IL94cS0/S7ofk5QNi/7jkMqpzE1mXSDfmhhnx+DXr2wiy1fNWZ7HYeYFUDBryGWUZSXhcohVkzlOa/GUUocuEgnWDSKySkTuEZFMe14x0LNnb7U9TymlxhxjDOl7l1PjLkMOoc9RT+78qQC014y/gS5e/ngT59X8htaEIhKOvu6Qy6mwn4UV72scV88AaukI8JdHnuYb7icIHf65Q2oa16UyN5n1wQJrJMFxwhjDj55Zy9meR5ke2oiccTskpB1SWRU5ybSSgj8he1zVYL2/pYH739vMfZl/xeGKg9P+95DKcTsdlGYlsdZvPw9sHH0OlFLDN2CCJSKvisinffydB/wJmAzMA2qAXww1ABG5TkSWiciy+vr6oW6ulFLDtn3PXuaHVtNSOLzaK4C0ImuAh9bd4+emEmBzbSuhZ75GuaOWpIvvHNLDhXtLTXCzN77Mmhgngzx4AyG+/7dX+F///2GSsnGePeT/ne2nMieFDYECpK0GfG0RinJk/f2DHTR8/BTfcj8Kh58Psy485LIm232QmhInjZvkYtvedr76wHJ+k3w/kzpWw5m/gLSiQy6vPDuJD9tyrIlxlGQqpYZvwATLGHOKMWZWH39PG2NqjTEhY0wYuIt9zQB3AaU9iimx5/VV/p3GmKOMMUfl5uYO9/0opdSQbf7gBRIkQNb8c4ZdVnF+HntNGv768dNEcGdDOyvu/A/O5D3ajv5vXJVDe/ZVX0KZ9sOax8HNdZs3wLfveo6v7/oWea4O3Jc/ekijJ/Zk1eIVWBPjoLnogx/u4N1n/8of43+HFM2D8/84pOc+9ZaXGk9ynJPqcdJMcl1NK5f9+V98J/wXzgq+Aku+CXM+P6wyK3JSWN3oxCRmjovPgFIqcoY7imDPp3FeAHxqv34GuFRE4kWkApgKfDicfSml1Ehxbn6ZThLIm/2ZYZdVlp3EDpOHs7lq+IGNgjXba1n7+8/z+dAL7J39JTJO/e+IlJuYV0kIB4zxIevrWr388I/388ParzEprhX3FY9C0bxhl1uRk0xVV4I1ho9BKGz4yQvr2PT07fzJ/WtchbORyx6DuORhlSsiVOQmszFUCB17x3RT0bc31nP1Ha/x0+BPuZSX4Zj/hJN/OOxyK3KS6AyECGRUjosfGpRSkXNoT9Pc53YRmQcYoAr4DwBjzBoReQRYCwSBrxpjxu/j7JVSMau53cuMtvfZnrmI6cNoFtclJd7FHmch5e1j+1f7cNjw6Muvcfj73+KzjirqF32X3NO/O6xai57K8jLYuSaXkvrNw/4fzUh59dPdrH38f7g9/BDh5Hzirn4C8mZEpOySzESqu36DHKO1F5vrPPz4kbe4rPZnnOJeQXjaWTgu/MshD27SW0VOCiu35fAFsJqKli6ISLmR4g2E+MU/N7DyXy/ydMId5Ju9cObPYeGXIlJ+RY7VTLIlsYzcvfobs1ITybD+v2eMueIgy34M/Hg45Sul1Ehb9s6LnCKNBOZdELEy2xJLyej4FwR9w+rLNFJ2NXp4675bubD5XgKuBDrOu5/cuedGdB/l2VYNTn7dpjGXYO1s7OBvjz3BmdW/4GuOrbRNPpPUi/4w7GaBPbmcDvKzMmj05pE1xhIsfzDMX9/dTM1rf+LXzodJcQfg1J/iWHgdOCI3uHBlTjLPrs6GOKzngY2hBOutjfX85pmlXNR8NzfFvQlpk5DPvQRliyK2j/IcK1Hd7Swmt3UX+Dsilrwqpca2sfb/PaWUGlVm1SN0Ek/J0RdFrMxg+iQcHWFo3gE5UyNW7nB1+kM89/TDzPr0J/ybbKe64CSKL78DSS2I+L7Kc5L40BRwXMs7YEzEasaGwxsI8bdXPiJz6f/xPcebtCfkEDjzTlLnXjwi8VXkJLO9upCsMdI8zBjDK2tref65x7mu/c/MdG7HX3YcznN+CbnTIr6/ytxkdoRzMQ4XMkb6YW2u8/CT51ZRtOUh7nM/RrLbi2PRV+CkmyA+NaL7KkpPJM7lYGs4n7kAjVsPach3pdT4owmWUmrCqmls4aj2t9mRdyLTInhz5ciZDDUQ2LsF9xhIsMJhw+vvvYf79Vv5fPhDGtz5NJx6JyULRiaxAKsG6xFTgCvYAZ46SM0fkf0Mhj8Y5tn3VuF961dcHnyBOEcIz5FfIeXU70X8prqnipxk1m/NZV7jcqKdXn64rZGnn3uS0+vu4TfOT/GmFGLOuo+4w88bsc/A5NwUgrhoTyohJcpJZl2rlz+9vp7OZQ9wq/MpStx1hMtPwHHm7ZA3fUT26XAI5dlJrOrM5QKw+mFpgqXUhKAJllJqwlr1xuOcJh58iy6LaLmphVNhNbTs2kjO9NMjWvZQhMOGdz78CN9rP+Ez/tfxSzw753+L0jO/Be7EEd13cryLpoRSCGEN8hCFBCsQCvPc0k9pe+PXXBh4jkTx01B5Hrln30xK9uQR339FbjKbQwVIZxN0NEa0CeJgLd/exNPPP8PJNXfzY+cneBMzCR3//0hY+MURb65WnmMNlFEfXxa1BKuu1csdb27A89FDfNXxOJNctQTy58Jnfo9j6qkjXrNakZPMsroMa2KM1GQqpUaeJlhKqQkrccMTtEgaBfPPjGi5+YWltJt4Omujc0NljOFfy1bgeeX/+IzvNcLipGrKlZSf931K00Yv0QlnTYZ6rEEeJh0zavsNhsI898FaWl7/NZ8LPEeyeKmfdCZJZ99M7gjVVvSlIjuZ17qHat8MSQsPvkEEfbKzmSeef47jd/2F25wr8CZkEFhyKwmLrxv2CIGDlRLvIj8tniqKqGj4AMIhcDhHZd91rV7+/OYmWj56iK86HqPCuQd/7iw45Te4Dzt91Jqsluck88b6ekxmATLG+uIppUaOJlhKqQlpS/VuFvqWsqX0c6Q73REte1J2MjtMPimN2yJa7kCMMSxduYqml3/CKZ0vgwjbKy+l4vwfMDn90B+YeqhS8irw17uIaxid/jfBUJjnP9pA42u/5kL/06RJJ7VlZ5By9s3k5x8+KjH0VJGbzBZjH/f6DVA68gnWp7taePz5Fzhm5138yLkcb3wa/uN+QMLR149oc8j+VOaksKY1j5NCPmjZCZnlI7q/ujYvd765iYYPH+GrjseY4tyNP/twOOUXxE0/a9T7AlbmJOMPhfFlTCZh74ZR3bdSKno0wVJKTUib3nyQyRKg8Lh+B0M9ZLmp8ayUfI7wbI942X0xxvDh6nXsffH/OKXjBRwC2yddSPn5P2RKVtmoxNCXSblpbAkXMXXP2hH9n00obHhx2SZqX/01F/meJF06qC35LKnn3EJ+wewR3PPB5acmsNdVSMARj7tu3Yjua3V1C4+9+BKLd9zFLc6P8Man4jv6JhKO/QokpI3ovg+mMjeZZbuzrYm9m0cswbISq83Uf/goX5VHOcy5C3/WNPjMfcTNODeioyMORXm2VVu4N2kyJVVPQDgctViUUqNHEyyl1IRjjCF769PUOgvJn3ZcxMsXEVriS0j3rRzxG6rla9ZT88JPOMXzHC4JUVV6AWXn38yUnPIR2+dgVeQkscGUMLl2ZJKLUNjw4sebqPnnb7nI9ySZ4qGu6CTMObeQXzR/RPY5FA6HUJqdQnVHGRX1I3MMVu5s5rEXX2Hxzrv4kfMDfHHJ+BZ/m4TjboDEjBHZ51BU5qbwkjcPErCGap96SkTLr2/z8ec3N1H74eN8VR5lunMn/syp8Jl7iDv8gqgnMxW5VoK1w1lGid9j1+JNilj5obDhuVW7eXH1Hm47byZ5aQkRK1spdeg0wVJKTTjrN23miNAq1k/9Evkj1GSoM3US7oYAtFZDRuRrkVau38yO537CKW3PME8CbCs+m9Lzb2FK3pSI7+tQTS9I45FwKed73gNva8RqUsJhw8srt7Dj5d9zkfcxsqWNusITCJ91C3mlR0ZkH5EyvSCVtRtLqKhdE9Hh6j/e0cSjL77K4up7uM35PsG4RHyLvkn8cTdEZTCN/kzJS6GBNALxWbj3fBqxcvd6rMRq9wdP8BV5zBpyPqMSTv4LcbM+N2p9vQaSmxJPTko8yzoLOAagdk1EEqxgKMxzq2q467VPWNL0NBc6NvH4e7/gy6dH/4cFpZQmWAe19dMPqFv9qvU/RRO2/sX+1xjA+lcId29jTPer7gnTs1DT9Y/pufIBK+y36CDrdRH6WifyTMQHGx5eeQe86wjfLEf+qEY6vrFd3liV0LAWpxiKllw1YvsI5UyHBgjvWYMjggnW8jUb2PXSLzi59WnmiI+thWdQev6tTCmI/HOMhqssK4ltrkprouYTqFgyrPJCYcNLyzdS++pvOd/7FGeIh7r8YwmffSt5ZaM3gMRQzCpO58PVZZwVfgNad0F6ybDKW769kSdeeIljdv+VHzs/IuROILjoa8Qt+caYSqy6zC5OB4Sa5BmU7f542OXt9fi4661N1H3wKP/B40x37iSQXg4n/5m4WReBc2zd1ogIc0vSebkhzNfECbuWw/RDH1QnEArz5Me7uP+NlZzU8hQPxr1MmrsNgC0f/RnvZ/5AgntsJJdjidfnw9PSREdbE52eZnyeFvztzQQ6Wwh1toKvFYe/DQl4kZD15wj6cIZ9OEPWv66wH7fx4TZ+XIRwmDAOQjgI7/szYZyEcNrTQtd9hBBGML3+wiL7Let6HcZhLcdJWLpeOwiL097OgcGBEWvPpse0Nc8JIhhx7rcMcXTP63rdtR7itOc5rB8oxNE9j97zHE6k5zyHExEnOKx9dZUTln01yGLMvnuq/W9ye73se1lT6lSmLzi1e3TSsW5sfRONMfVr3mDxhtujHcaghc3I3hw7ZHSSOKVGw7qE+cyYNHLPpEmZNA82QHPVCrKmnzGssowxfLhqDXtf/jkntz/PfAmwLf+zFJ13C1OKx+5zdRwOwVdwBNQC1R8ecoIVCIV5/oO1NL/xOy7wP0O6dLCn4HhCZ/6AvEmLIht0hM0uTueZsF2rWL3skBOsj6oaefaF51hScy8/di7HF5dCcNGNxB17AyRnRzDiyMpKjqMkM5HVTKGs7n7wtR3SYBu7mzv5y1sb8Sx/iOt4iimO3fgzp8CJd+KedeGYS6x6mlOSwesb6giVzcS5a9khleELhnh0WTUPvLGCM9uf5GH3P0l2d2Cmng7Hf4fGF/+HS6uf4YG3v8K/f2ZOhN/B2OL1B2lorKe9fhcdTTV4W+sItu0l3NGIo6MBl6+JeH8zicFmUsOtpJtWUsTLQI0nQ0bwEo9f4vARR1Di8DviCEo8IUccAXcqXmcOIUccRlzdSYlx7Es6jP0vsi8xsn6I7/pRPrxv2vT4kd70WI6BcBgxIcSEgTASDgPWtPU6bL02ISslM/YfYRzhMA4TtBI8E0IwOLqW2Umg2P862DdfMFZiaC939pxnp3xOwlG7F/xr8DSCxYs0wYoFc8+5gZZTrrYzc0HEgUMERBCHAxBEnIjD+tWhiwgI9nr2bMH6Jctesm896aN9eF+1MIOomZnw3Wb7rOkbQ+VFuj5srMc3xs1wjOzX38zyYraF84nfseKQyzDG8N7yj2l99eec3PlPnBKmqugsSs/9PpMLZ0Qw2pEzuayErXuKmLR9Kc4h5lfeQIhn3l+F763fcn7wRVKlk9riU0g98wcUlIyPplCzitPZJOXWQBfb/wUzzx/0tuGw4Y0Ndbz5yrOcUn8ftzlXWaMCHv1d4o/58pjoYzUYc0szeHnrJM7CwPb34LDTBr3t1noPd72xHlY9zPXOp5nkqMWXPQNO/l978IqxX1szpzQdY6AufQ6F256EgBfcg+sr1ekP8eCHO3j0reWc1/kkT7hfJdHlxUw/F47/NlJoJVOZZ/4Quesk3G/9mM2z72ZKXspIvqUREQobGlraaNy9hfa6KjqbdhNq3o3Dswd3Zz0p/nrSQg3kmiaKxd9nGR6SaJNU2l3p+BKyqYufzO74TMIJGTgS0nAkpOFOSsedlE58SgaJKRkkp2aSmJaJOyGFZBHGx+376DLGEAobAsZgwoZQKEQoHCQcChEKBgmHQ5hwmFDISuysRDIEJoz0vDuVfffAXfe1Pf/b/XK/e17r9TmuRFLSM0fsPUaaJlgHkZCUQkLS+PuSmrAi3ZdmlIfzVbHlsPwUnmcqp9R9NOSBLnzBEG+99Tqy9I+c6H8LI8L2sgsoO/d7TMmtHMGoI+/4w3J5+/1ZXLHtbfC3D+oZTI3tfl54/U2SVtzJuaE3iZMg9ZPOJOXMm6I6KuChSI53Mbc8l+V1c1m84SU44/YBv1v8wTDPfLydtW88yFntT/D/HJvoTMgkcNwtJCz6YlRHBTwUJ0zN5QerJhNKScK58eVBJVgrdjTxj7c+IW/DP7jR+U/yXE348+fCSb8i/rAzoj54xVAcUZaJyyG8I0dwceDvUPXugIN91LV5+dv723n//Xf4fOBZnnb9C7c7BLMuhCXfRPL2/4FFio+gY/4XuXLFX7jpnjv47699jYykuJF8W0NmjKHB46Nm13aad23EW78NGrcR59lJmnc3+aE9FNBIXq8aknYSaHZm0+bOoTl1Dg0p+ZBSgDO9kISMAhIz80nPKiA1K48UVzx61xZ5IoLLKT2SBhcQH72AxgFNsJRSagS4nA52Zi4mueVd2LMKiuYNuE1Dawfvv/QAhWv/yqmsoZMEtlV+gYpzv8vUzNKRD3oELKrI5h7HIq4O/RM2vAizL+p33U17Wnj75ceYsuV+LnesxI+bxikXkH/6t8jPHXt9zAbr5Ol5PL59HouDd1o1OOXH9rlefZuPp5auxbP0Pi4KPMdFjno8qaWEjvspiUdeMWoPCI60k6bnERA3m9KOZvqaJ+DU/4G4pAPWC4TCvPjpHv751tssqnuUHznfIcnlwz/pBFjyNeImf2Zc/vCVnujmmCk5/HmHg8/HpSKfPNhvgrV2dyt/fXczjate5irH83zTsZpQfALO+VfC0V+F7Mn97ifpzP+ho+pf3Nz4U275QwJf/9K/U5yROFJvq08eX5Bde2ppqN5ER+0WQg3bcLXuIKVzF9mBGkqoY7YE9tumwZFNc3whjckLqU8vw5lVQWLuJDLyJ5GRV0pyYprWKqlxR0zEmxkduqOOOsosW3Zo7ZOVUmqs+cdry7j47c/imf8lMs7vuz+nMYYVn65hz9t/ZVbdM5RJHXudebTNuZbyU69HEsdPk4j+fPuRj/nymssoy0nF9eV3wLXvl892X5A3PvyY9g/u5+jWlyhz1NPmysQ//1qyT/gypORGMfLIqG/zccpPX+Td+K+TWnw4XP1cd9O2QCjM+5vq+OTtZ5i080lOdXxEggRoyV1A2slfR6adOS6awQ3kuvuX4d/6LvdyC5z0fTjhO93LNtW28eyH6+lc+RinBV7nKMdGQuImPPti3Md+FfJnRjHyyHhu1W5u+McK/jnzFQ7beh986XWwHyXQ0hng2U92886HHzGz7lkucr5DkTQQTMrHdfR/wJHXDH4AE089HXedgbt5K3+Qi8n57H/x+UWTiXdF5jPkC4bY3dBKffVm2vZsIVC/FUfLDpLaq8n076bQ1JIlnv22aSeJhrgi2pOKCaVPwp1dTkrBZLJKDiMxtwLco5sEKhVJIrLcGHPUAfM1wVJKqZFR2+rlo5+dzynuT0j4z6X7Dc+8dft2trz3JOmbn+Ko4EocYtiaMp+kY66jYNHFY7rT/lBt29vO7b/5JX9y/pzmwuNomv4FdjX7aKlaSWnje8xiCw4xVGccRfrRV5N6xOcH3UdlvLj9pfXUvv1XfhF3Bw35x7A163hqGttw1X7CYrOSLPHQ6UzFP+NzpB9z7aBqPMeTdTWtnPeHd7kz6Q5O9L9F1aTPs4FJ1O2pprJjNQsc64mTEO1pk0lceBWOeV+AlLxohx0x4bDhgj+9R13tbl5J/D5xxseqos+zpjkO07CVo2U10xzVGIRgxUm4j7wcpp8DrkNo5tfZRMfjN5C0+Tl2mWxekBPonHwG5TMXML04h/zUBFITXDgc+2oDA6EwzR0Bmtp9tLQ00dm4C199FYHG7UhLNYkdu0jz7yE/XEcBjTh7NOML4KLBlUdrQgmB1FIc2eUk5k0mq/gwUgsnWz8SjcOaR6UGQxMspZSKgjueeo1/W3EZuBLYkXcyHm+Q1Jb1TA9txCmGvY5c6qdcSMVnriMhv//mP+Pdq2tr+dfDP+db3Eey+AAII1QnzcAx7XSKl1yJZFVEOcqREwyFueWZNciyu/kv16Pdv/K3OrPwFB9HzpHnEXf42TGXWPb02rpafvjoR3zFfw+fd75FvAQJIzSnTCFh+qkkzfscFB8Zszfjda1ebnhwBXVVa/ip+y4WOdYDEJA4vIULSJl5OjLrQkgvHv7OjMFseYPmV39O+p73cRDGb5zsMPk0k0KLScblEFwEcZoQKbSTJa1k00Z8ryZ8IRw0OXNojS/El1yMySgjPreS9KIpZBYfhjO9KCZqWZU6FCOSYInIw0BXw/gMoNkYM09EyoF1wAZ72VJjzPUDlacJllIq1gRCYe594llmf3o7h1GFQ6AufhKdJcdRvPACcqYuGlcd9ofD4wvy8eZq4lu2UZSRQEnlTGScDdgwXHs9PqobPOQ62ynKTEbG8BDrIyEQCrO5zoOLEKUJnSSkZu/XZHQiqG7qoLkjQEmKIcPph6Sckf0OaN9LcPPrtFStxFu7CbwtuHwthIwhLC6MuAi6UwklZkFyDq6UXFzpBaTkV5JeUIGkFcdUjbpSkTTiNVgi8gugxRhzm51gPWeMGdIDWjTBUkrFqlDY4A+GSXA77Ec2KKWUUmo86y/BishPEmLdLVwMnByJ8pRSKtY4HUJinDajUUoppWJdpOqklwC1xphNPeZViMgKEXlLRPp9vKSIXCciy0RkWX19fYTCUUoppZRSSqnRN2ANloi8ChT0sej7xpin7ddfAB7ssawGKDPGNIjIkcBTIjLTGNPauxBjzJ3AnWA1ERzqG1BKKaWUUkqpsWLABMsYc9DHjYuIC/gccGSPbXyAz369XES2AIcB2sFKKaWUUkopFbMi0QfrFGC9Maa6a4aI5AKNxpiQiFQCU4GtAxW0fPnyvSKyPQIxRVIOsDfaQahRo+d74tBzPXHouZ5Y9HxPHHquJ5axeL4n9TUzEgnWpezfPBDgeOA2EQkAYeB6Y0zjQAUZY3IjEE9EiciyvkYHUbFJz/fEoed64tBzPbHo+Z449FxPLOPpfA87wTLGXN3HvMeBx4dbtlJKKaWUUkqNJxPj6ZZKKaWUUkopNQo0wRrYndEOQI0qPd8Th57riUPP9cSi53vi0HM9sYyb8y3G6MjoSimllFJKKRUJWoOllFJKKaWUUhGiCZZSSimllFJKRYgmWAchIqeLyAYR2Swi3412PCpyRKRURN4QkbUiskZEvm7PzxKRV0Rkk/1vZrRjVZEhIk4RWSEiz9nTFSLygX19PywicdGOUUWGiGSIyGMisl5E1onI0XptxyYRudH+Dv9URB4UkQS9tmOHiNwjInUi8mmPeX1ey2L5rX3eV4nIEdGLXA1VP+f6Z/b3+CoReVJEMnosu8k+1xtE5LSoBH0QmmD1Q0ScwB+AM4DDgS+IyOHRjUpFUBD4pjHmcGAx8FX7/H4XeM0YMxV4zZ5WseHrwLoe0z8FfmWMmQI0Af8elajUSPgN8JIxZjowF+u867UdY0SkGPgacJQxZhbgxHo2p17bseNe4PRe8/q7ls8Aptp/1wF/GqUYVWTcy4Hn+hVgljFmDrARuAnAvl+7FJhpb/NH+759zNAEq38Lgc3GmK3GGD/wEHBelGNSEWKMqTHGfGy/bsO6ASvGOsf32avdB5wflQBVRIlICXAW8Bd7WoCTgcfsVfRcxwgRScd62P3dAMYYvzGmGb22Y5ULSBQRF5AE1KDXdswwxrwNNPaa3d+1fB5wv7EsBTJEpHBUAlXD1te5Nsb80xgTtCeXAiX26/OAh4wxPmPMNmAz1n37mKEJVv+KgZ09pqvteSrGiEg5MB/4AMg3xtTYi/YA+dGKS0XUr4HvAGF7Ohto7vHFrdd37KgA6oG/2k1C/yIiyei1HXOMMbuAnwM7sBKrFmA5em3Huv6uZb1vi23XAi/ar8f8udYES01oIpICPA58wxjT2nOZsZ5hoM8xGOdE5GygzhizPNqxqFHhAo4A/mSMmQ+006s5oF7bscHue3MeVlJdBCRzYBMjFcP0Wp4YROT7WF07Hoh2LIOlCVb/dgGlPaZL7HkqRoiIGyu5esAY84Q9u7arSYH9b1204lMRcyxwrohUYTX1PRmrj06G3awI9PqOJdVAtTHmA3v6MayES6/t2HMKsM0YU2+MCQBPYF3vem3Htv6uZb1vi0EicjVwNnCZ2ffw3jF/rjXB6t9HwFR7NKI4rM50z0Q5JhUhdh+cu4F1xphf9lj0DHCV/foq4OnRjk1FljHmJmNMiTGmHOs6ft0YcxnwBnCRvZqe6xhhjNkD7BSRafaszwBr0Ws7Fu0AFotIkv2d3nWu9dqObf1dy88AV9qjCS4GWno0JVTjkIicjtW8/1xjTEePRc8Al4pIvIhUYA1s8mE0YuyP7EsGVW8iciZW3w0ncI8x5sfRjUhFiogcB7wDrGZfv5zvYfXDegQoA7YDFxtjenewVeOUiJwIfMsYc7aIVGLVaGUBK4DLjTG+KIanIkRE5mENaBIHbAWuwfpBUa/tGCMiPwIuwWo+tAL4IlZfDL22Y4CIPAicCOQAtcAtwFP0cS3bSfbvsZqJdgDXGGOWRSFsdQj6Odc3AfFAg73aUmPM9fb638fqlxXE6ubxYu8yo0kTLKWUUkoppZSKEG0iqJRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSH/H55YiqN8LSrsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
33True10.1210.0319bAP.soma.v0.006182.79e-05
34True10.1210.0319Step1.soma.v0.06421.26e-06
35True10.1210.0319Step3.soma.v0.0842.76e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "33 True 1 0.121 0.0319 bAP.soma.v \n", + "34 True 1 0.121 0.0319 Step1.soma.v \n", + "35 True 1 0.121 0.0319 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "33 0.00618 2.79e-05 \n", + "34 0.0642 1.26e-06 \n", + "35 0.084 2.76e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACg/0lEQVR4nOzdeXwV5dn/8c91TvaNQBLCvoiCrKICYgVF7SNYF6Ra0bqhtT7a2qp1bZ9Wqa3Pr4/a2rpUuli1ahHr3mq1bqhYEUERF1xAw76EBBISspzl/v0xk3gIWc0JJyHf9+s1L87M3HPPNWdywrlyL2POOURERERERKT9AokOQEREREREZF+hBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaISCdhZkPMzJlZUqJj2deZ2RwzW5ToODobM5tqZp8kOg4Rka5MCZaIiHRpZjbXzEJmVhGzXJPouLoi59zrzrkR8azTzIab2VNmVmxmpWb2vJnF9RwiIp2JEiwRkThRy1NCLXDOZcUsNyc6oHjq4j9bucDTwAigEFgCPJXIgEREOpISLBGRdjCzIjO71sxWAJVmlmRmk83sP2a2w8zeM7NpMeUXmtn/M7MlZlbu/2W/VxN1n29mK81sp5l9bmb/3WD/TDNb7tez2sxm+Nt7mNk9ZrbJzDaY2S/NLNjCdQwzs5fNrMTMtpnZQ2aWG7Ov1MwO8df7+a0R0/z1k83sQ/96F5rZyAbvz1VmtsLMysxsgZmltf2dbjszu85/X3aa2UdmNquJcmZmt5nZVv+9fN/Mxvj7Us3sVjNba2ZbzGyemaW38vz3+eVf8GN41cwGx+z/nZmt88+5zMymxuyba2aPmtmDZlYOzDGzSWb2pv8+bzKzO80sJeYYZ2bfM7PP/PP9wr93//HP8Uhs+SZinmZm61tzfa3lnFvinLvHOVfqnAsBtwEjzCwvnucREekslGCJiLTfmcAJeH+pLwSeAX4J9AKuAh4zs4KY8ucCFwB9gTBwexP1bgVOBHKA84HbYpKcScBfgav98x4JFPnH3efXuz9wMHAccGEL12DA/wP6ASOBgcBcAOfcauBa4EEzywDuBe53zi00s+HAfOByoAB4FvhHgy/ypwMzgKHAOGBOowGYTfGTh6aWKS1cQ0OrgalAD+Dnfvx9Gyl3HN77N9wvezpQ4u/7lb99PN772R+4vg0xnAX8AsgHlgMPxex726+3F/A34O8Nks+ZwKN49/chIAJc4dd1OHAs8L0G55sOHApMBq4B/gicjXc/x+D9rH5lfqLc1P35fSurORLY7JwrabGkiEhX5JzTokWLFi1fccFLai6IWb8WeKBBmeeB8/zXC4FfxewbBdQCQWAI4ICkJs71JHCZ//oPwG2NlCkEaoD0mG1nAq+08bpOAd5tsO1p4H1gBZDqb/sZ8EhMmQCwAZgW8/6cHbP/ZmBenO/BXP893BGz9Guk3HJgpv96DrDIf30M8CleUhKIKW9AJTAsZtvhwBetjOs+4OGY9Sy8JGlgE+W3AwfFXNNrLdR/OfBEzLoDjohZXwZcG7P+a+C3LdQ5DVgfz/vToP4B/s/HmR11Di1atGhJ9NKV+3SLiHQW62JeDwa+ZWYnxWxLBl5povwaf39+w0rN7HjgBrwWlACQgZfggNci8WwjsQz269tkZnXbAg3OuQczKwR+h9fik+0fs71BsT/hJVkXOedq/G39/GsAwDkXNbN1eC09dTbHvN7lHxNvjzjnzo7dYGbnAj/CS1zBS3D2eJ+dcy+b2Z3AXcBgM3scr+UxDe89XxbzXhpeMtxa9e+7c67CzErxrn+dmV0FfMdfd3gtlfmNHetfz3DgN8AEP64kvCQq1paY11WNrPdpQ+xx5bfi/hv4vXNufqLiEBHpaOoiKCLSfi7m9Tq8FqzcmCXTOfermDIDY14PAkLAttgKzSwVeAy4FSh0zuXiJVR13/TXAcMaiWUdXgtWfsz5c5xzo1u4hv/1r2Oscy4Hr1vZl1mFWRbwW+AeYK59OW5sI15SV1fO/Ovb0ML59mDeFOEVzSxTW66lvq7BeAnhpUCe//59EHtNsZxztzvnDsVrURyO1/VyG15SMjrmvezhnMtqw2XV32v/PewFbPSv5Rq87og9/fjKGsQX+3MFcDfwMXCAf49+0tT1dBR/rF1T92deM8f1xEuunnbO3bT3IhYR2fuUYImIxNeDwElmNt3MgmaW5k8cMCCmzNlmNsofz3Qj8KhzLtKgnhQgFSgGwn5r1nEx++8BzjezY80sYGb9zexA59wmvC+yvzazHH/fMDM7qoW4s4EKoMzM+uMlGLF+Byx1zl2IN8as7sv0I8AJfhzJwJV4Cd5/WnqjGnLeFOFZzSyvt6G6TLwEpRi8CUPwxiDtwcwmmtlhfvyVQDUQdc5F8ZK028yst1+2v5lNjznWWcwkJo34hj+2LAVvLNZi59w6vPc77MeXZGbX47VgNScbKAcqzOxA4JIWysedc250M/fn4saOMbMcvG6ybzjnrtu7EYuI7H1KsERE4sj/8jwTr3WhGK9F6Wp2/337AN74nM143dB+2Eg9O/3tj+B11fs2Xve8uv1L8Ce+wGv5eJUvW5LOxUvQPvKPfRRvQo3m/Bw4xK/rGeDxuh1mNhNvkoq6L/Q/Ag4xs7Occ5/gtXbdgdficxJwknOutoXzdSjn3Ed4Y47exOsmNxZ4o4niOXiJ1Ha87o4lwC3+vmuBVcBifza/F/GmG8fMBgI7+bLbZmP+htfNsxRv8om6bozPA8/hjf1ag5fUNduNE6/b4rf9c/4JWNBC+c5iFjAR7w8CsS1egxIdmIhIRzDnGvZAEBGRjmJmC4EHnXN/TnQs0j5mdjZe98EfN7H/PrwJI366VwMTEZGE0iQXIiIiX4Fz7sFExyAiIp2PugiKiHQT5j30tk2TE8i+x8x+0sTPwb8SHZuIyL5AXQRFRERERETiRC1YIiIiIiIicdKpxmDl5+e7IUOGJDoMERERERGRZi1btmybc66g4fZOlWANGTKEpUuXJjoMERERERGRZpnZmsa2q4ugiIiIiIhInCjBEhERERERiRMlWCIiIiIiInHSqcZgNSYUCrF+/Xqqq6sTHYp0AmlpaQwYMIDk5OREhyL7oBsfWcSY1M18c+ZpiQ5FREREuqhOn2CtX7+e7OxshgwZgpklOhxJIOccJSUlrF+/nqFDhyY6HNnH7KwOcej7P+eE4BJCR04mueeARIckIiIiXVCn7yJYXV1NXl6ekivBzMjLy1NrpnSITWXV9LVSALYteSTB0YiIiEhX1ekTLEDJldTTz4J0lNpwlGqXAkB49WsJjkZERES6qi6RYImIdLSacJQ+fgtWRtmqBEcjIiIiXZUSrFYwM6688sr69VtvvZW5c+cmLqAY06ZNa/bhzKeccgqTJ0/ebdvcuXPp378/48ePZ8yYMTz99NMdHaZIpxcKR+hnJQD0rNkAIXVFFRERkbZTgtUKqampPP7442zbti2u9TrniEajca0z1o4dO1i2bBllZWV8/vnnu+274oorWL58OX//+9+54IILOjQOka4guquUNAvxfmAEAaJQ8lmiQxIREZEuSAlWKyQlJXHRRRdx22237bGvuLiYU089lYkTJzJx4kTeeOMNwGsluvXWW+vLjRkzhqKiIoqKihgxYgTnnnsuY8aMYd26dVx99dWMGTOGsWPHsmDBAgAWLlzItGnTOO200zjwwAM566yzcM41Gt8DDzxQ3xq1ZMmS+u2PP/44J510EmeccQYPP/xwo8eOHDmSpKSk3ZLH6667jlGjRjFu3DiuuuoqAIqKijjmmGMYN24cxx57LGvXrgVgzpw5XHLJJUyePJn99tuPhQsXcsEFFzBy5EjmzJlTX+cll1zChAkTGD16NDfccMMecZSVlTF48OD6RK+yspKBAwcSCoUajVsk3qJV5QBszhoNQE3x6kSGIyIiIl1Up5+mPdbP//EhH20sj2udo/rlcMNJo1ss9/3vf59x48ZxzTXX7Lb9sssu44orrmDKlCmsXbuW6dOns3Llymbr+uyzz7j//vuZPHkyjz32GMuXL+e9995j27ZtTJw4kSOPPBKAd999lw8//JB+/fpxxBFH8MYbbzBlypQ96tu1axfLly/ntdde44ILLuCDDz4AYP78+Vx//fUUFhZy6qmn8pOf/GSPY9966y0CgQAFBQUAlJSU8MQTT/Dxxx9jZuzYsQOAH/zgB5x33nmcd955/OUvf+GHP/whTz75JADbt2/nzTff5Omnn+bkk0/mjTfe4M9//jMTJ05k+fLljB8/nptuuolevXoRiUQ49thjWbFiBePGjauPo0ePHowfP55XX32Vo48+mn/+859Mnz5dz7uSvSYaqvFe5A2DcijbuJreYxMbk4iIiHQ9asFqpZycHM4991xuv/323ba/+OKLXHrppYwfP56TTz6Z8vJyKioqmq1r8ODB9eOiFi1axJlnnkkwGKSwsJCjjjqKt99+G4BJkyYxYMAAAoEA48ePp6ioqNH6zjzzTACOPPJIysvL2bFjB1u2bOGzzz5jypQpDB8+nOTk5PrEC+C2225j/PjxXHXVVSxYsKB+dr4ePXqQlpbGd77zHR5//HEyMjIAePPNN/n2t78NwDnnnMOiRYvq6zrppJMwM8aOHUthYSFjx44lEAgwevTo+pgfeeQRDjnkEA4++GA+/PBDPvrooz2uY/bs2fUteA8//DCzZ89u9n0UiadI2Euwsnr1o9ylU7PtiwRHJCIiIl1Rl2rBak1LU0e6/PLLOeSQQzj//PPrt0WjURYvXkxaWtpuZZOSknYb1xT77KbMzMxWnS81NbX+dTAYJBwON1qu4dTlZsYjjzzC9u3b6x/IW15ezvz587npppsAbwxWXfe/hnEvWbKEl156iUcffZQ777yTl19+uVVxBgKB3WIOBAKEw2G++OILbr31Vt5++2169uzJnDlzGn2W1cknn8xPfvITSktLWbZsGcccc0yz5xWJp7A/qUVBzxw2uAKydqxNcEQiIiLSFakFqw169erF6aefzj333FO/7bjjjuOOO+6oX1++fDkAQ4YM4Z133gHgnXfe4YsvGv9r+NSpU1mwYAGRSITi4mJee+01Jk2a1Ka46lp9Fi1aRI8ePejRowfz58/nueeeqx/3tWzZsibHYcWqqKigrKyMb3zjG9x222289957AHzta1+rP/6hhx5i6tSprY6vvLyczMxMevTowZYtW/jXv/7VaLmsrCwmTpzIZZddxoknnkgwGGz1OUTay4VrAeiVk81GCkitWJ/giERERKQr6lItWJ3BlVdeyZ133lm/fvvtt9ePzwqHwxx55JHMmzePU089lb/+9a+MHj2aww47jOHDhzda36xZs3jzzTc56KCDMDNuvvlm+vTpw8cff9zqmNLS0jj44IMJhUL85S9/oaioiDVr1uw2PfvQoUPp0aMHb731VqN1fOMb3+DPf/4zZsbMmTOprq7GOcdvfvMbAO644w7OP/98brnlFgoKCrj33ntbHd9BBx3EwQcfzIEHHsjAgQM54ogj6vddf/31TJgwgZNPPhnwugl+61vfYuHCha2uXyQe6sZgJaeksCO1L9k1K8E50MOtRUREpA2sqZnpWl2B2UDgr0Ah4IA/Oud+Z2Zzge8CxX7Rnzjnnm2urgkTJriGz3RauXIlI0eObFeMsm/Rz4R0hGcf/yvfWPEDdp37HE88/QRn7fgDXPMFZPRKdGgiIiLSCZnZMufchIbb49GCFQaudM69Y2bZwDIze8Hfd5tz7tZmjhUR6RScP8lFcnIa0R6DYAewY60SLBEREWmTdo/Bcs5tcs6947/eCawE+re3XhGRvSnqj8FKSkklJW8IgGYSFBERkTaL6yQXZjYEOBioG+hzqZmtMLO/mFnPJo65yMyWmtnS4uLixoqIiHQ4F/FasCwplew++wFQvkkPGxYREZG2iVuCZWZZwGPA5c65cuBuYBgwHtgE/Lqx45xzf3TOTXDOTah72K2IyF4XDnn/BlMoKCikwqVRU7ousTGJiIhIlxOXBMvMkvGSq4ecc48DOOe2OOcizrko8CegbXOPi4jsTX4LFsEU+vXMYKPLw+1QgiUiIiJt0+4Ey7yn3N4DrHTO/SZme9+YYrOAD9p7LhGRjlL3HCySUijMTmUTeSRXbExsUCIiItLlxKMF6wjgHOAYM1vuL98Abjaz981sBXA0cEUczpUwTz75JGbW7POpioqKGDNmTNzOOWfOHB599NEm919++eX079+faDRav+2+++6joKCA8ePHM2rUKP70pz/FLR6RfVkg6idYwRSSggF2JBWSUb0lsUGJiIhIlxOPWQQXOefMOTfOOTfeX551zp3jnBvrbz/ZObcpHgEnyvz585kyZQrz589vdH84HG73OSKRSKvLRqNRnnjiCQYOHMirr766277Zs2ezfPlyFi5cyE9+8hO2bNGXRJEWRerGYKUCUJXeh5xIKfjTt4uIiIi0RlxnEdxXVVRUsGjRIu655x4efvjh+u0LFy5k6tSpnHzyyYwaNQrwEq2zzjqLkSNHctppp7Fr1y4AXnrpJQ4++GDGjh3LBRdcQE2N96VtyJAhXHvttRxyyCH8/e9/3+PcL774IhMmTGD48OH885//3O3co0eP5pJLLmky6evduzfDhg1jzZo19dtuv/12Ro0axbhx4zjjjDMAKC0t5ZRTTmHcuHFMnjyZFStWADB37lzOO+88pk6dyuDBg3n88ce55pprGDt2LDNmzCAU8r6Q3njjjUycOJExY8Zw0UUX0fDh1dFolCFDhrBjx476bQcccIASP+lULFJLFINAEIBwdj9vR/mGBEYlIiIiXU08HjS89/zrOtj8fnzr7DMWjv9Vs0WeeuopZsyYwfDhw8nLy2PZsmUceuihALzzzjt88MEHDB06lKKiIj755BPuuecejjjiCC644AJ+//vfc+mllzJnzhxeeuklhg8fzrnnnsvdd9/N5ZdfDkBeXh7vvPNOo+cuKipiyZIlrF69mqOPPppVq1aRlpbG/PnzOfPMM5k5cyY/+clPCIVCJCcn73bs559/zueff87+++9fv+1Xv/oVX3zxBampqfUJzw033MDBBx/Mk08+ycsvv8y5557L8uXLAVi9ejWvvPIKH330EYcffjiPPfYYN998M7NmzeKZZ57hlFNO4dJLL+X6668H4JxzzuGf//wnJ510Uv05A4EAM2fO5IknnuD888/nrbfeYvDgwRQWFrb6Nol0NIvUEiKZVDMAgrmDYDNEd6wn0Gu/BEcnIiIiXYVasFph/vz59a09Z5xxxm4tRpMmTWLo0KH16wMHDuSII44A4Oyzz2bRokV88sknDB06lOHDhwNw3nnn8dprr9UfM3v27CbPffrppxMIBDjggAPYb7/9+Pjjj6mtreXZZ5/llFNOIScnh8MOO4znn3++/pgFCxYwfvx4zjzzTP7whz/Qq1ev+n3jxo3jrLPO4sEHHyQpycuvFy1axDnnnAPAMcccQ0lJCeXl5QAcf/zxJCcnM3bsWCKRCDNmzABg7NixFBUVAfDKK69w2GGHMXbsWF5++WU+/PDDPa5j9uzZLFiwAICHH3642WsWSYRAtJaIffk3p/T8gQBUbC1KUEQiIiLSFXWtFqwWWpo6QmlpKS+//DLvv/8+ZkYkEsHMuOWWWwDIzMzcrbz5f/1uar0xDetoqb7nn3+eHTt2MHbsWAB27dpFeno6J554IuAlM3feeWej9T3zzDO89tpr/OMf/+Cmm27i/febbxFMTfXGowQCAZKTk+vjCQQChMNhqqur+d73vsfSpUsZOHAgc+fOpbq6eo96Dj/8cFatWkVxcTFPPvkkP/3pT5s9r8jeZtEQIfuyFbhH4RAAKovXkJOgmERERKTrUQtWCx599FHOOecc1qxZQ1FREevWrWPo0KG8/vrrjZZfu3Ytb775JgB/+9vfmDJlCiNGjKCoqIhVq1YB8MADD3DUUUe16vx///vfiUajrF69ms8//5wRI0Ywf/58/vznP1NUVERRURFffPEFL7zwQv14r6ZEo1HWrVvH0Ucfzf/93/9RVlZGRUUFU6dO5aGHHgK8sV35+fnk5LTuK2VdMpWfn09FRUWTsx6aGbNmzeJHP/oRI0eOJC8vr1X1i+wtwWgtkZgEq09+T7a5HEKlaxMYlYiIiHQ1SrBaMH/+fGbNmrXbtlNPPbXJiSVGjBjBXXfdxciRI9m+fTuXXHIJaWlp3HvvvXzrW99i7NixBAIBLr744ladf9CgQUyaNInjjz+eefPmEY1Gee655zjhhBPqy2RmZjJlyhT+8Y9/NFrHhRdeyNKlS4lEIpx99tmMHTuWgw8+mB/+8Ifk5uYyd+5cli1bxrhx47juuuu4//77W/nuQG5uLt/97ncZM2YM06dPZ+LEifX75s2bx7x58+rXZ8+ezYMPPqjugdIpBaKh3RKsfrnpbHK9ME1yISIiIm1gDWd8S6QJEya4pUuX7rZt5cqVjBw5MkERSWeknwnpCAt/+Q0ODKyjz0+8brPOOV6e+3XGpJdSeN27CY5OREREOhszW+acm9Bwu1qwRESoa8FKqV83M8pT+5BTq8cJiIiISOspwRIRAZJciGhg90cd1GT0JT1aCdXlCYpKREREupoukWB1pm6Mklj6WZCOEnQhIg0SLJfT33uhcVgiIiLSSp0+wUpLS6OkpERfrAXnHCUlJaSlpSU6FNkHJbsQrkGCldzTexZWbcmaRIQkIiIiXVCnfw7WgAEDWL9+PcXFxYkORTqBtLQ0BgwYkOgwZB8UdGGiwZTdtmX2HgxA2ZYiCjSvioiIiLRCp0+wkpOTGTp0aKLDEJF9mHOOFEK4wO4JVs/CQUScUbVNz8ISERGR1un0XQRFRDpabSRKMmFcgxas/r2y2UwvojvWJSgyERER6Wo6PMEysxlm9omZrTKz6zr6fCIibVUbjpJCCBqMwSrMSWOTyyO4c2OCIhMREZGupkMTLDMLAncBxwOjgDPNbFRHnlNEpK1CEUeyRXDB1N22pyQFKE0qIL1qU4IiExERka6mo1uwJgGrnHOfO+dqgYeBmR18ThGRNqlvwUpK2WNfZVofcmq3gmYyFRERkVbo6ASrPxA7eGG9v01EpNOoDXtjsAjumWCFMvt5yVfltgREJiIiIl1Nwie5MLOLzGypmS3VVOwikgi1kSiphLFGWrAs13sWlivTRBciIiLSso5OsDYAA2PWB/jb6jnn/uicm+Ccm1BQUNDB4YiI7Kk2FCGZMJaUuse+1F7er7CKrUV7OSoRERHpijo6wXobOMDMhppZCnAG8HQHn1NEpE1C4VoC5rBGughmFQ4BYOeWNXs5KhEREemKOvRBw865sJldCjwPBIG/OOc+7Mhzioi0Vbi2BgBL3rMFq3fvflS7ZGpK9LBhERERaVmHJlgAzrlngWc7+jwiIl9VuLYagEAjY7D69cxgo8uD8vV7OywRERHpghI+yYWISKKFQ14LVqCRFqyeGclssTySK/SwYREREWmZEiwR6fa+bMHaM8EyM8qSC8mq2by3wxIREZEuSAmWiHR7Eb8FK6mRFiyAqoy+5IRLIRLam2GJiIhIF6QES0S6vWgzXQQBoln9CBKFnZv2ZlgiIiLSBSnBEpFur64FK5ic1uj+QM/BANSWFO2tkERERKSLUoIlIt1e3RislNTGW7BSe+8HwM6Nq/ZaTCIiItI1KcESkW4vEqoFICml8Rasnn33I+wCVG1dvTfDEhERkS6ow5+DJSLS2UXDXhfB5JTGW7D69srxnoVV+sXeDEtERES6ILVgiUi3FwnXzSLYeAtW39w01rreJJev2ZthiYiISBekBEtEuj3nT3JBMKXR/alJQbYl9yV71/q9GJWIiIh0RUqwRKTbi4a9SS5o5EHDdSoyBpIV2QE1O/dOUCIiItIlKcESkW7Paqu8F8kZTZaJ9BjkvdiuboIiIiLSNCVYItLtBcO7vBcpTSdYwTxvqvZwyed7IyQRERHpopRgiUi3F4jUtWBlNlkms8/+AJRv/GxvhCQiIiJdlBIsEen2ksK7CBOEpMYnuQDoU9iXMpdB9Va1YImIiEjT2pVgmdktZvaxma0wsyfMLNffPsTMqsxsub/Mi0u0IiIdIBjZRY01PkV7nYG90lnresMOPQtLREREmtbeFqwXgDHOuXHAp8CPY/atds6N95eL23keEZEOkxyppibQfILVt0c661whaTvX7qWoREREpCtqV4LlnPu3cy7sry4GBrQ/JBGRvSs5UkVtCy1YwYCxPbU/OdWbIBrZS5GJiIhIVxPPMVgXAP+KWR9qZu+a2atmNrWpg8zsIjNbamZLi4uL4xiOiEjrJEerCQXTWyxXlTWQJMJQvnEvRCUiIiJdUYsJlpm9aGYfNLLMjCnzP0AYeMjftAkY5Jw7GPgR8Dczy2msfufcH51zE5xzEwoKCtp/RSIibZQcrSLSigTL9RzivdiucVgiIiLSuKSWCjjnvt7cfjObA5wIHOucc/4xNUCN/3qZma0GhgNL2xuwiEi8pUariSTltVyuYBh8ATXFn5M69Mi9EJmIiIh0Ne2dRXAGcA1wsnNuV8z2AjML+q/3Aw4ANLexiHQ6kagj1VXjkltuwcrtM4SQC1KxSc/CEhERkca12ILVgjuBVOAFMwNY7M8YeCRwo5mFgChwsXOutJ3nEhGJu8raMBnUUN3MQ4brDMjPYYPLJ32b/l4kIiIijWtXguWc27+J7Y8Bj7WnbhGRvaGyJky61VCdnNFi2YE9M1jpejOqrKjjAxMREZEuKZ6zCIqIdDmVNWEyqSaQ2nILVn5WChutDxmV6/dCZCIiItIVKcESkW6tsrKSdKuF9J4tljUzytIHkBEph6odHR+ciIiIdDlKsESkW6vYsRWA5Oz8VpUP5QzyXmiqdhEREWmEEiwR6daq/QQrLad3q8oHeg0FwJUWdVRIIiIi0oUpwRKRbq26fBsAGT1b96DzzD7e3D7VW1d1WEwiIiLSdSnBEpFuLVLhJViZua1rwSosKGCby6Fqy+qODEtERES6KCVYItKtRXd5j+izjNaNwRrYK521rjfRUo3BEhERkT0pwRKRbi3gJ1itmUUQYGCvDNa63qTsXNuBUYmIiEhXpQRLRLq1pJpSdlkGJKW0qnxOWjJbgn3Jqt4M4doOjk5ERES6GiVYItKtZdZsoSy5dRNc1NmVOZAAUShb10FRiYiISFelBEtEuq1o1NErvJVd6X3bdlzuEO+FnoUlIiIiDSjBEpFuq6Syln4UE87u36bjkgv2AyCqZ2GJiIhIA0qwRKTb2rStlDzbSSB3UJuO69l7IDUuiaqtn3dQZCIiItJVKcESkW5rx0YvQUovGNKm4wbkZbHZ9aK6RGOwREREZHftSrDMbK6ZbTCz5f7yjZh9PzazVWb2iZlNb3+oIiLxVVnsjaHq0Wdom44b2DODTeThytZ3RFgiIiLShSXFoY7bnHO3xm4ws1HAGcBooB/wopkNd85F4nA+EZG4CJd6z7LKKmxbgjWgZzorXB6jKld3RFgiIiLShXVUF8GZwMPOuRrn3BfAKmBSB51LROQrCZavJ0IAy+7XpuPSkoOUJxeQWbMVovq7kYiIiHwpHgnWpWa2wsz+YmY9/W39gdjBCev9bXsws4vMbKmZLS0uLo5DOCIirZO+ayPbg/kQbHtjfm1GX4JEoGJrB0QmIiIiXVWLCZaZvWhmHzSyzATuBoYB44FNwK/bGoBz7o/OuQnOuQkFBW172KeISHvk1G5hZ1rbnoFVr8cA79/yjfELSERERLq8Fv9s65z7emsqMrM/Af/0VzcAA2N2D/C3iYh0CtWhCIVuKxUZE7/S8cm9BsIGiJatIzDg0DhHJyIiIl1Ve2cRjP3T7yzgA//108AZZpZqZkOBA4Al7TmXiEg8bSzdSR9KIXdgy4UbkZ7nPTursnhNPMMSERGRLq69swjebGbjAQcUAf8N4Jz70MweAT4CwsD3NYOgiHQm2zatZT+Lktxr8Fc6PjevkGqXTE3JOrLjHJuIiIh0Xe1KsJxz5zSz7ybgpvbULyLSUSq2eM/Ayikc8pWO75ObzkaXR+Z2PQtLREREvtRR07SLiHRqNduKAOjRb9hXOr5PThqbXB6BCk1yISIiIl9SgiUi3ZIr81qeUnoN+krH52elsIk80nZtimdYIiIi0sUpwRKRbim1cj3llgMpmV/p+KRggPLk3mTWboNIOM7RiYiISFelBEtEuqWs6s3sSClsVx1V6X0IEIWKzXGKSkRERLo6JVgi0u045+gV3kpVRr921RPO9o8v02P+RERExKMES0S6nZKKGvpRTCR7QLvqCfbwjy/XTIIiIiLiUYIlIt3Ols0byLQagl/xGVh1UvO9CTJCmqpdREREfEqwmrGjeBPLX5yPi0YTHYqIxFH5+o8BSOszvF319OyZT4VLo2rb2niEJSIiIvsAJVjN+PjZOxi/6GJW/+9E3n3+r4RqaxIdkojEQWjrJwD0HDiqXfX06ZHOZteL0PZ18QhLRERE9gFJiQ6gM5tw5g0s+Wcf+r1/F/u/+QNK3vwpq/ucQM+DT2LYIccSSE5NdIjNikaihMI1hGprCdfWEArVEA6HiNTWEA7VEgnVEAnVEgnX4CJhiIaJRiPgHM5FcFEHLopzDlf3b/3+6Jf7olEMB7hmorEmVq1hwea3W+vK1xVzTdYfe+TuZZo8xq+04V7XQkwtR9DoYR2iyVCbKt/W+jsy+DjKWPsqIRcku89+7aqnT49UNro88sr1sOGO5pwjFI4Sqq0iXLOLUM0uwjVVRGqqCIdDhMO1RMIhwqEQkXCISCRENByCaBiiEcyFsWjY+y3lnP8vOBw47/eXc1+eq34fX5aNFfuTbvbl7w2LLWG7l9nzE2V7fCbr66nfsednavdjrPHfTbZbJI3+nrKGZfY4954a/f3YaPk9r1W6L9fs9wORllVlDmC/0YfRp0daokNpFSVYzUhKSWXSN39I+KSLWf7qY0TeeZCDNy0gefPf2PWvVD5PG01Vz5G43iPJLtyP3MKBZOQNIDu7B4FgsNm6o5EoNdW7qKmqoLqqglBVBbXVFYSqKwlVVRCu2UW0ppJITSXR2l1QuwsX2oWFdhEIVxEIVxEMVxGMVpMcqSI5WkNKtIpUV0Ma1aS5WlItRCrQudNAkcT4LHl/Dggmt6uOvj3SWebyOLTy/VYfs6msiszUJHLS2nfurqa6NsT20mJ2lmyiavtmasqLiezagasuw6rLsdpygrU7SQ6VkxKuIDVSSUq0ipRoNSnUkupqSaOWFNMXNRGR7ube8HRKsw7gxHHtm/13b1GC1QpJySmM//qZ8PUz2bF9Gx+/+Sxu9cvk71jB/hsfIW1TaI9jql0y1ZZKiGQMR4Bo/RJ0EdKpJd0c6W2II+wCVJFKtaVRY6mELI3aQBqhYBo1yT2IBNOIBtOJJmdAUjouKRVLSoFAMhZMxpJSsGAKlpSEBVOxpGSCScn1rwkEsUASZgECZhAIgBmBQBAzwyyABQyzIIH6fQEcASzQ+t6mdX8l/vLFHiUaXbem/gLWoJ4vV1uuf48STRxSd+49Q24+pjb/1a4Nxdv6NbOtsTR5e/YRvQcc0O46MlOTKE0bSGZoIVSWQGZeo+Wcc7z32Ro+e34ek4sfZWne0Rxz2Z/aff7OoHxXNVs3rqFsyxqqS9YS3bGewM5NJFUVk1pTSmZ4Oz2iZfSknL4WoW8T9VS4dCosk6qAt+xM6kUoKQMXTIfkNCw5HZeUDklpRJPTISkdS07DktMIBJMJJCUTDHq/0wJJyST5/xIIQjAZsyT/d5zhtRx57a11LUtf/utvD5jXIlvXOhTTAtXU74G67Ybb7fPmNZC5mJLeK7dHRQ1+zzTyIYw9xtH47ybnoruV+bJpLvZMDeJr7PeD35JX1/jU+O/gJo5rqYyISBt8LS2PPgMLEh1GqynBaqPcnvlM/sa5wLkAhEIh1q/5mJJNX1BVsh6r2Eq0poJozS6C0WqSorU481IrZ4azIIFgkvdFITkTUtIJpGRiKRkEUjNJSsskJS2T5LRMUtKzSM3IJi09m7TMTFJS0sg2Izuxb4GIxNiZPx42PwDr34YRM3bbVx2K8Oqi14gs/gNHVb/MeKuh0lI5cMfChMT6VVRWVbNxzSq2r/+Yqi2rsR1FpFRuJKtmC73CxRSwnf0tstsxVaSwPdCLyqSeVGf2pyJtHOvS87CsApJyepPao5D03N5kZPciPSePjKweZAWTyErQNYqIiMSTEqx2Sk5OZsD+Yxmw/9hEhyIiCZAzbBLhTQFqPl1I5ogZOOf4YPVaVr/6EAPXPc10VlJDCusGnED/437A4pee4ti1vyNctomkHk215+xdZeUVbF77MTvWf0LN1tUEtn9BZuVaetVuoJ/bygExCVQNyZQE8tmZ0pviHhPYkt2PpJ4DSM8fRFbBEHL7DiU9O4/0tg74ExER2UcowRIRaYfjxu/HC68dyjHv3MurmyMEt7zHxNA7jLUQW1IGUjT6GgZ//WL297sP2qDNsBaKP3iFvkd8e6/E6JyjdHspW4pWUr7xU0LFqwnuKCJr11ryQxvp40roETO2qYIMipP7UpZzICW500nK35/sfgfQe/BIMvMG0q8NXYJFRES6m3YlWGa2ABjhr+YCO5xz481sCLAS+MTft9g5d3F7ziUi0hntV5DF84dcy6Z3v89RG/7I1mAha4Z8i37T5lA4ZNIeM6ztf9BUdryeSeUHz0IcE6xwJMqWLZsoWfcxlZs+I7xtNcllReRUraN3aCP5VkbsCLHt5LAtZQBbex7KptyhpBTsR4/+I+g9eCRZPXqTpRYoERGRr6RdCZZzbnbdazP7NVAWs3u1c258e+oXEekKLpn1X5TPeJ/q8C56Z/ekdzNlBxXk8ELyRA7f/DKuchuWmd+qc4TCEUq2bqBk4xfs3PIFNSVroWwdqZWb6FGzib7RTfS3SvrHHLPV8ihJGcDaHkeypudQUgv3J7f/CHoPPpCembn0bNdVi4iISGPi0kXQvIdmnA4cE4/6RES6mpz01j8UIfy1y0l99VTW3nEiOw/6Dpbdh1BtFTVVu4hUbsPt3AqVxSRXbyO9tpSccAmFbht9LESfmHqqSaEk2Jud6X0oyj4I12soab0PIHfACAoGDqd3WmazyZ6IiIjEn+05TexXqMTsSOA3zrkJ/voQ4EPgU6Ac+Klz7vUmjr0IuAhg0KBBh65Zs6bd8YiIdGbOOZ78290c9elN9LKKRsuUk0l5oCeVKb2oSc2nNqsf5AwgNX8wPfrsR+8B+5GWU9D2p0eLiIhIXJjZsrr8Z7ftLSVYZvYi7PZH0zr/45x7yi9zN7DKOfdrfz0VyHLOlZjZocCTwGjnXHlz55owYYJbunRpa65HRKTLq9i1i7WffUC0YivJqelkZmSSmdubnPx+BFO6xtPqRUREuqumEqwWuwg6577eQsVJwDeBQ2OOqQFq/NfLzGw1MBxQ9iQi4svKyGDUQZMSHYaIiIjEUTzm2v068LFzbn3dBjMrMLOg/3o/4ADg8zicS0REREREpNOKxyQXZwDzG2w7ErjRzEJAFLjYOVcah3OJiIiIiIh0Wu1OsJxzcxrZ9hjwWHvrFhERERER6UriMotgvJhZMdDZphHMB7YlOgjZa3S/uw/d6+5D97p70f3uPnSvu5fOeL8HO+cKGm7sVAlWZ2RmSxubHUT2Tbrf3Yfudfehe9296H53H7rX3UtXut/xmORCREREREREUIIlIiIiIiISN0qwWvbHRAcge5Xud/ehe9196F53L7rf3YfudffSZe63xmCJiIiIiIjEiVqwRERERERE4kQJloiIiIiISJwowWqGmc0ws0/MbJWZXZfoeCR+zGygmb1iZh+Z2Ydmdpm/vZeZvWBmn/n/9kx0rBIfZhY0s3fN7J/++lAze8v/fC8ws5RExyjxYWa5ZvaomX1sZivN7HB9tvdNZnaF/zv8AzObb2Zp+mzvO8zsL2a21cw+iNnW6GfZPLf7932FmR2SuMilrZq417f4v8dXmNkTZpYbs+/H/r3+xMymJyToZijBaoKZBYG7gOOBUcCZZjYqsVFJHIWBK51zo4DJwPf9+3sd8JJz7gDgJX9d9g2XAStj1v8PuM05tz+wHfhOQqKSjvA74Dnn3IHAQXj3XZ/tfYyZ9Qd+CExwzo0BgsAZ6LO9L7kPmNFgW1Of5eOBA/zlIuDuvRSjxMd97HmvXwDGOOfGAZ8CPwbwv6+dAYz2j/m9/72901CC1bRJwCrn3OfOuVrgYWBmgmOSOHHObXLOveO/3on3Baw/3j2+3y92P3BKQgKUuDKzAcAJwJ/9dQOOAR71i+he7yPMrAdwJHAPgHOu1jm3A32291VJQLqZJQEZwCb02d5nOOdeA0obbG7qszwT+KvzLAZyzazvXglU2q2xe+2c+7dzLuyvLgYG+K9nAg8752qcc18Aq/C+t3caSrCa1h9YF7O+3t8m+xgzGwIcDLwFFDrnNvm7NgOFiYpL4uq3wDVA1F/PA3bE/OLW53vfMRQoBu71u4T+2cwy0Wd7n+Oc2wDcCqzFS6zKgGXos72va+qzrO9t+7YLgH/5rzv9vVaCJd2amWUBjwGXO+fKY/c57xkGeo5BF2dmJwJbnXPLEh2L7BVJwCHA3c65g4FKGnQH1Gd73+CPvZmJl1T3AzLZs4uR7MP0We4ezOx/8IZ2PJToWFpLCVbTNgADY9YH+NtkH2FmyXjJ1UPOucf9zVvquhT4/25NVHwSN0cAJ5tZEV5X32Pwxujk+t2KQJ/vfcl6YL1z7i1//VG8hEuf7X3P14EvnHPFzrkQ8Dje512f7X1bU59lfW/bB5nZHOBE4Cz35cN7O/29VoLVtLeBA/zZiFLwBtM9neCYJE78MTj3ACudc7+J2fU0cJ7/+jzgqb0dm8SXc+7HzrkBzrkheJ/jl51zZwGvAKf5xXSv9xHOuc3AOjMb4W86FvgIfbb3RWuByWaW4f9Or7vX+mzv25r6LD8NnOvPJjgZKIvpSihdkJnNwOvef7JzblfMrqeBM8ws1cyG4k1ssiQRMTbFvkwGpSEz+wbe2I0g8Bfn3E2JjUjixcymAK8D7/PluJyf4I3DegQYBKwBTnfONRxgK12UmU0DrnLOnWhm++G1aPUC3gXOds7VJDA8iRMzG483oUkK8DlwPt4fFPXZ3seY2c+B2Xjdh94FLsQbi6HP9j7AzOYD04B8YAtwA/AkjXyW/ST7TrxuoruA851zSxMQtnwFTdzrHwOpQIlfbLFz7mK//P/gjcsK4w3z+FfDOhNJCZaIiIiIiEicqIugiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIdBJmNsTMnJklJTqWfZ2ZzTGzRYmOo7Mxs6lm9kmi4xAR6cqUYImISJdmZnPNLGRmFTHLNYmOqytyzr3unBsRzzrNbLiZPWVmxWZWambPm1lczyEi0pkowRIRiRO1PCXUAudcVsxyc6IDiqcu/rOVCzwNjAAKgSXAU4kMSESkIynBEhFpBzMrMrNrzWwFUGlmSWY22cz+Y2Y7zOw9M5sWU36hmf0/M1tiZuX+X/Z7NVH3+Wa20sx2mtnnZvbfDfbPNLPlfj2rzWyGv72Hmd1jZpvMbIOZ/dLMgi1cxzAze9nMSsxsm5k9ZGa5MftKzewQf72f3xoxzV8/2cw+9K93oZmNbPD+XGVmK8yszMwWmFla29/ptjOz6/z3ZaeZfWRms5ooZ2Z2m5lt9d/L981sjL8v1cxuNbO1ZrbFzOaZWXorz3+fX/4FP4ZXzWxwzP7fmdk6/5zLzGxqzL65ZvaomT1oZuXAHDObZGZv+u/zJjO708xSYo5xZvY9M/vMP98v/Hv3H/8cj8SWbyLmaWa2vjXX11rOuSXOuXucc6XOuRBwGzDCzPLieR4Rkc5CCZaISPudCZyA95f6QuAZ4JdAL+Aq4DEzK4gpfy5wAdAXCAO3N1HvVuBEIAc4H7gtJsmZBPwVuNo/75FAkX/cfX69+wMHA8cBF7ZwDQb8P6AfMBIYCMwFcM6tBq4FHjSzDOBe4H7n3EIzGw7MBy4HCoBngX80+CJ/OjADGAqMA+Y0GoDZFD95aGqZ0sI1NLQamAr0AH7ux9+3kXLH4b1/w/2ypwMl/r5f+dvH472f/YHr2xDDWcAvgHxgOfBQzL63/Xp7AX8D/t4g+ZwJPIp3fx8CIsAVfl2HA8cC32twvunAocBk4Brgj8DZePdzDN7P6lfmJ8pN3Z/ft7KaI4HNzrmSFkuKiHRFzjktWrRo0fIVF7yk5oKY9WuBBxqUeR44z3+9EPhVzL5RQC0QBIYADkhq4lxPApf5r/8A3NZImUKgBkiP2XYm8Eobr+sU4N0G254G3gdWAKn+tp8Bj8SUCQAbgGkx78/ZMftvBubF+R7M9d/DHTFLv0bKLQdm+q/nAIv818cAn+IlJYGY8gZUAsNith0OfNHKuO4DHo5Zz8JLkgY2UX47cFDMNb3WQv2XA0/ErDvgiJj1ZcC1Meu/Bn7bQp3TgPXxvD8N6h/g/3yc2VHn0KJFi5ZEL125T7eISGexLub1YOBbZnZSzLZk4JUmyq/x9+c3rNTMjgduwGtBCQAZeAkOeC0SzzYSy2C/vk1mVrct0OCcezCzQuB3eC0+2f4x2xsU+xNeknWRc67G39bPvwYAnHNRM1uH19JTZ3PM613+MfH2iHPu7NgNZnYu8CO8xBW8BGeP99k597KZ3QncBQw2s8fxWh7T8N7zZTHvpeElw61V/7475yrMrBTv+teZ2VXAd/x1h9dSmd/Ysf71DAd+A0zw40rCS6JibYl5XdXIep82xB5Xfivuv4HfO+fmJyoOEZGOpi6CIiLt52Jer8NrwcqNWTKdc7+KKTMw5vUgIARsi63QzFKBx4BbgULnXC5eQlX3TX8dMKyRWNbhtWDlx5w/xzk3uoVr+F//OsY653LwupV9mVWYZQG/Be4B5tqX48Y24iV1deXMv74NLZxvD+ZNEV7RzDK15Vrq6xqMlxBeCuT5798HsdcUyzl3u3PuULwWxeF4XS+34SUlo2Peyx7Ouaw2XFb9vfbfw17ARv9arsHrjtjTj6+sQXyxP1cAdwMfAwf49+gnTV1PR/HH2jV1f+Y1c1xPvOTqaefcTXsvYhGRvU8JlohIfD0InGRm080saGZp/sQBA2LKnG1mo/zxTDcCjzrnIg3qSQFSgWIg7LdmHRez/x7gfDM71swCZtbfzA50zm3C+yL7azPL8fcNM7OjWog7G6gAysysP16CEet3wFLn3IV4Y8zqvkw/Apzgx5EMXImX4P2npTeqIedNEZ7VzPJ6G6rLxEtQisGbMARvDNIezGyimR3mx18JVANR51wUL0m7zcx6+2X7m9n0mGOdxUxi0ohv+GPLUvDGYi12zq3De7/DfnxJZnY9XgtWc7KBcqDCzA4ELmmhfNw550Y3c38ubuwYM8vB6yb7hnPuur0bsYjI3qcES0QkjvwvzzPxWheK8VqUrmb337cP4I3P2YzXDe2HjdSz09/+CF5XvW/jdc+r278Ef+ILvJaPV/myJelcvATtI//YR/Em1GjOz4FD/LqeAR6v22FmM/Emqaj7Qv8j4BAzO8s59wlea9cdeC0+JwEnOedqWzhfh3LOfYQ35uhNvG5yY4E3miieg5dIbcfr7lgC3OLvuxZYBSz2Z/N7EW+6ccxsILCTL7ttNuZveN08S/Emn6jrxvg88Bze2K81eElds9048botfts/55+ABS2U7yxmARPx/iAQ2+I1KNGBiYh0BHOuYQ8EERHpKGa2EHjQOffnRMci7WNmZ+N1H/xxE/vvw5sw4qd7NTAREUkoTXIhIiLyFTjnHkx0DCIi0vmoi6CISDdh3kNv2zQ5gex7zOwnTfwc/CvRsYmI7AvURVBERERERCRO1IIlIiIiIiISJ51qDFZ+fr4bMmRIosMQERERERFp1rJly7Y55woabu9UCdaQIUNYunRposMQERERERFplpmtaWy7ugiKiIiIiIjEiRIsERERERGROFGCJSLSgnAkyiNvr6OyJpzoUERERKST61RjsBoTCoVYv3491dXViQ5Fupi0tDQGDBhAcnJyokORLu6p5RspevIXfPxukEMvujvR4YiIiEgn1ukTrPXr15Odnc2QIUMws0SHI12Ec46SkhLWr1/P0KFDEx2OdHGfbt3Jj5MXwEYg/FtISk10SCIiItJJdfougtXV1eTl5Sm5kjYxM/Ly8tTyKXFRsbOi/rVb/3YCIxEREZHOrtMnWICSK/lK9HMj8ZJR9mn968rVixMYiYiIiHR2XSLBEhFJpPTK9fWvd23+tJmSIiIi0t0pwWoFM+PKK6+sX7/11luZO3du4gKKsXjxYg477DDGjx/PyJEj6+NauHAh//nPf9pV94wZM8jNzeXEE0+MQ6QiXVioCoAtLhdKVic2FhEREenUlGC1QmpqKo8//jjbtm2La73OOaLRaLvqOO+88/jjH//I8uXL+eCDDzj99NOB+CRYV199NQ888EC76hDZFwQjNQB84gaRsbMoscGIiIhIp9bpZxGM9fN/fMhHG8vjWueofjnccNLoZsskJSVx0UUXcdttt3HTTTfttq+4uJiLL76YtWvXAvDb3/6WI444grlz55KVlcVVV10FwJgxY/jnP/8JwPTp0znssMNYtmwZzz77LHfeeSf/+te/MDN++tOfMnv2bBYuXMjcuXPJz8/ngw8+4NBDD+XBBx/cY1zR1q1b6du3LwDBYJBRo0ZRVFTEvHnzCAaDPPjgg9xxxx0ceOCBTca5evVqVq1axbZt27jmmmv47ne/C8Cxxx7LwoULm31v/v73v/Pzn/+cYDBIjx49eO2116iuruaSSy5h6dKlJCUl8Zvf/Iajjz6a++67jyeffJLKyko+++wzrrrqKmpra3nggQdITU3l2WefpVevXvzpT3/ij3/8I7W1tey///488MADZGRk7HbeyZMnc8899zB6tHfvpk2bxq233sqECROajVfkqwhGawHYkLIfR4ZWQG0lpGQmOCoRERHpjNSC1Urf//73eeihhygrK9tt+2WXXcYVV1zB22+/zWOPPcaFF17YYl2fffYZ3/ve9/jwww9ZunQpy5cv57333uPFF1/k6quvZtOmTQC8++67/Pa3v+Wjjz7i888/54033tijriuuuIIRI0Ywa9Ys/vCHP1BdXc2QIUO4+OKLueKKK1i+fDlTp05tNs4VK1bw8ssv8+abb3LjjTeycePGVr8vN954I88//zzvvfceTz/9NAB33XUXZsb777/P/PnzOe+88+pn8/vggw94/PHHefvtt/mf//kfMjIyePfddzn88MP561//CsA3v/lN3n77bd577z1GjhzJPffcs8d5Z8+ezSOPPALApk2b2LRpk5Ir6TDBqPfzW5ntT/lftiGB0YiIiEhn1u4WLDMbCPwVKAQc8Efn3O/MbC7wXaDYL/oT59yz7TlXSy1NHSknJ4dzzz2X22+/nfT09PrtL774Ih999FH9enl5ORUVFY1VUW/w4MFMnjwZgEWLFnHmmWcSDAYpLCzkqKOO4u233yYnJ4dJkyYxYMAAAMaPH09RURFTpkzZra7rr7+es846i3//+9/87W9/Y/78+Y22OjUX58yZM0lPTyc9PZ2jjz6aJUuWcMopp7TqfTniiCOYM2cOp59+Ot/85jfrr+kHP/gBAAceeCCDBw/m00+9iQGOPvposrOzyc7OpkePHpx00kkAjB07lhUrVgBeEvbTn/6UHTt2UFFRwfTp0/c47+mnn85xxx3Hz3/+cx555BFOO+20VsUr8lXUtWC5XvvBdqB8PRQMT2xQIiIi0inFo4tgGLjSOfeOmWUDy8zsBX/fbc65W+Nwjk7h8ssv55BDDuH888+v3xaNRlm8eDFpaWm7lU1KStptfFXs85gyM1vXtSg19cuHmQaDQcLhcKPlhg0bxiWXXMJ3v/tdCgoKKCkp2aNMU3HCntOZt2V683nz5vHWW2/xzDPPcOihh7Js2bJmy8deUyAQqF8PBAL11zdnzhyefPJJDjroIO67775GE8b+/fuTl5fHihUrWLBgAfPmzWt1zCJtlRytIWQppOYPgdVQW7KWlGGJjkpEREQ6o3Z3EXTObXLOveO/3gmsBPq3t97OqFevXpx++um7dVk77rjjuOOOO+rXly9fDsCQIUN45513AHjnnXf44osvGq1z6tSpLFiwgEgkQnFxMa+99hqTJk1qdUzPPPMMzjnA63oYDAbJzc0lOzubnTt3thgnwFNPPUV1dTUlJSUsXLiQiRMntvr8q1ev5rDDDuPGG2+koKCAdevWMXXqVB566CEAPv30U9auXcuIESNaXefOnTvp27cvoVCovp7GzJ49m5tvvpmysjLGjRvX6vpF2irJ1RIOpJJdMJCoMyq3FiU6JBEREemk4joGy8yGAAcDb/mbLjWzFWb2FzPrGc9zJcqVV16522yCt99+O0uXLmXcuHGMGjWqviXl1FNPpbS0lNGjR3PnnXcyfHjj3YlmzZrFuHHjOOiggzjmmGO4+eab6dOnT6vjeeCBBxgxYgTjx4/nnHPO4aGHHiIYDHLSSSfxxBNPMH78eF5//fUm4wQYN24cRx99NJMnT+ZnP/sZ/fr1A7zk71vf+hYvvfQSAwYM4Pnnnwe8bol1462uvvpqxo4dy5gxY/ja177GQQcdxPe+9z2i0Shjx45l9uzZ3Hfffbu1XLXkF7/4BYcddhhHHHEEBx54YP32p59+muuvv75+/bTTTuPhhx+unzlRpKMkuxoigRQKe2azlVxqt69LdEgiIiLSSVld60e7KzLLAl4FbnLOPW5mhcA2vHFZvwD6OucuaOS4i4CLAAYNGnTomjVrdtu/cuVKRo4cGZcYZU8NZzvc1+jnR9rLOcfj15/IsRmfs+O7Sym9/Uj6986n8NLnEx2aiIiIJJCZLXPO7THLWlxasMwsGXgMeMg59ziAc26Lcy7inIsCfwIa7ffmnPujc26Cc25CQUFBPMIREYmbUMSRRi3RYCp9eqSx0eWTUtn6mTZFRESke4nHLIIG3AOsdM79JmZ7X+fcJn91FvBBe88l8Td37txEhyDSqYUiUVIJEQmmkpYcpDSpgKzqd8A5aMOEMCIiItI9xGMWwSOAc4D3zWy5v+0nwJlmNh6vi2AR8N9xOJeIyF5VG456LVgBbxzhrvS+JO+qhV0lkJmf4OhERESks2l3guWcWwQ09mfcdj3zSkSkMwhFoqRaiGjQe7xCOKs/7ALK1inBEhERkT3EdRZBEZF9Ta3fRdAlec+QC+Z6D/+mXOOwREREZE9KsEREmlE3yYULeglWat5AAGpLNVW7iIiI7EkJVis9+eSTmBkff/xxk2WKiooYM2ZM3M75ySefMG3aNMaPH8/IkSO56KKLAO8hwc8+274emBdccAG9e/eOa7wi+6La8O4tWD0L+lLrglRuU4IlIiIie1KC1Urz589nypQpzJ8/v9H94XC43eeIRCK7rf/whz/kiiuuYPny5axcuZIf/OAHQHwSrDlz5vDcc8+1qw6R7iAUiZJmtZDkTXLRp0cmW1wvQqXrExyZiIiIdEbxmEVw7/nXdbD5/fjW2WcsHP+rZotUVFSwaNEiXnnlFU466SR+/vOfA7Bw4UJ+9rOf0bNnTz7++GP+/e9/Ew6HOeuss3jnnXcYPXo0f/3rX8nIyOCll17iqquuIhwOM3HiRO6++25SU1MZMmQIs2fP5oUXXuCaa67hjDPOqD/vpk2bGDBgQP362LFjqa2t5frrr6eqqopFixbx4x//mBNPPJEf/OAHfPDBB4RCIebOncvMmTO57777eOKJJygrK2PDhg2cffbZ3HDDDQAceeSRFBUVNXvdr776KpdddhkAZsZrr71GVlYW11xzDf/6178wM376058ye/ZsFi5cyA033EBubi7vv/8+p59+OmPHjuV3v/sdVVVVPPnkkwwbNox//OMf/PKXv6S2tpa8vDweeughCgsLdzvvGWecwTnnnMMJJ5wAeMngiSeeyGmnnda6eyoSR3VjsEJ+C1a/3DQ20YshOzckODIRERHpjNSC1QpPPfUUM2bMYPjw4eTl5bFs2bL6fe+88w6/+93v+PTTTwGvW9/3vvc9Vq5cSU5ODr///e+prq5mzpw5LFiwgPfff59wOMzdd99dX0deXh7vvPPObskVwBVXXMExxxzD8ccfz2233caOHTtISUnhxhtvZPbs2SxfvpzZs2dz0003ccwxx7BkyRJeeeUVrr76aiorKwFYsmQJjz32GCtWrODvf/87S5cubfV133rrrdx1110sX76c119/nfT0dB5//HGWL1/Oe++9x4svvsjVV1/Npk3e487ee+895s2bx8qVK3nggQf49NNPWbJkCRdeeCF33HEHAFOmTGHx4sW8++67nHHGGdx88817nHf27Nk88sgjANTW1vLSSy/VJ1sie1soHCWFMOa3YBXmpLHJ5ZFSuamFI0VERKQ76lotWC20NHWU+fPn17fknHHGGcyfP59DDz0UgEmTJjF06ND6sgMHDuSII44A4Oyzz+b222/nv/7rvxg6dCjDhw8H4LzzzuOuu+7i8ssvB7yEojHnn38+06dP57nnnuOpp57iD3/4A++9994e5f7973/z9NNPc+uttwJQXV3N2rVrAfiv//ov8vLyAPjmN7/JokWLmDBhQquu+4gjjuBHP/oRZ511Ft/85jcZMGAAixYt4swzzyQYDFJYWMhRRx3F22+/TU5ODhMnTqRv374ADBs2jOOOOw7wWt5eeeUVANavX8/s2bPZtGkTtbW1u713dY4//nguu+wyampqeO655zjyyCNJT09vVcwi8VYbiZJMGEtOASAtOciOpAIya5bqYcMiIiKyB7VgtaC0tJSXX36ZCy+8kCFDhnDLLbfwyCOP4JwDIDMzc7fy1uDLVsP1xjSsI1a/fv244IILeOqpp0hKSuKDDz7Yo4xzjscee4zly5ezfPly1q5dy8iRI79yPHWuu+46/vznP1NVVcURRxzR7AQfAKmpqfWvA4FA/XogEKgfo/aDH/yASy+9lPfff58//OEPVFdX71FPWloa06ZN4/nnn2fBggVNJqAie0MoHCbZIljwy5/vqvRCkl0t7CpNYGQiIiLSGSnBasGjjz7KOeecw5o1aygqKmLdunUMHTqU119/vdHya9eu5c033wTgb3/7G1OmTGHEiBEUFRWxatUqAB544AGOOuqoFs/93HPPEQqFANi8eTMlJSX079+f7Oxsdu7cWV9u+vTp3HHHHfVJ37vvvlu/74UXXqC0tLR+HFRd61prrF69mrFjx3LttdcyceJEPv74Y6ZOncqCBQuIRCIUFxfz2muvMWnSpFbXWVZWRv/+/QG4//77myw3e/Zs7r33Xl5//XVmzJjR6vpF4i1cWwtAICmlfls0y2uppVzjsERERGR3SrBaMH/+fGbNmrXbtlNPPbXJ2QRHjBjBXXfdxciRI9m+fTuXXHIJaWlp3HvvvXzrW99i7NixBAIBLr744hbP/e9//5sxY8Zw0EEHMX36dG655Rb69OnD0UcfzUcffcT48eNZsGABP/vZzwiFQowbN47Ro0fzs5/9rL6OSZMmceqppzJu3DhOPfXU+u6BZ555JocffjiffPIJAwYM4J577gFg3rx5zJs3D4Df/va3jBkzhnHjxpGcnMzxxx/PrFmzGDduHAcddBDHHHMMN998M3369Gn1+zl37ly+9a1vceihh5Kfn1+/fenSpVx44YX168cddxyvvvoqX//610lJSWmsKpG9IhKqASCY/OXPofXw/kighw2LiIhIQ1bX6tEZTJgwwTWchGHlypX13d2kbe677z6WLl3KnXfemehQEkY/P9Je//jP+5z07ymUHvkLeh3zQwDufe5Nzl88g9oZvyZl8oUt1CAiIiL7IjNb5pzbY3IDtWCJiDQjEvZasAJJX47B6lHQj7ALUFlclKCoREREpLPqWrMISpvMmTOHOXPmJDoMkS4t6idYwZS0+m19cjPZQk+St+thwyIiIrK7LtGC1Zm6MUrXoZ8biYeIP9FM7Bisfj3S2ex6aQyWiIiI7KHTJ1hpaWmUlJToy7K0iXOOkpIS0tLSWi4s0oxo3SQXMV0E+/TwHjacrIcNi4iISAOdvovggAEDWL9+PcXFxYkORbqYtLQ0BgwYkOgwpIuLRrxp2pNiWrDSkoNsD+aTWbNcDxsWERGR3XR4gmVmM4DfAUHgz865X7Xl+OTkZIYOHdohsYmItMTVjcFK3r01dFd6H1KqqqF6B6T3TEBkIiIi0hl1aBdBMwsCdwHHA6OAM81sVEeeU0QknqJhrwWLYPLu2+seNlymhw2LiIjIlzp6DNYkYJVz7nPnXC3wMDCzg88pIhI3dS1YBHd/4LUeNiwiIiKN6egEqz+wLmZ9vb+tnpldZGZLzWypxlmJSGfj6luwdk+w0np54/tqt69reIiIiIh0YwmfRdA590fn3ATn3ISCgoJEhyMisruIN017wy6COQUDiDijctvaBAQlIiIinVVHT3KxARgYsz7A3yYi0iW4SOMtWH16ZlNMLlaqhw2LiIjIlzq6Bett4AAzG2pmKcAZwNMdfE4Rkfip6yKY1CDB6pGmhw2LiIjIHjo0wXLOhYFLgeeBlcAjzrkPO/KcIiJx1UQLVt8e6WzUw4ZFRESkgQ5/DpZz7lng2Y4+j4hIh6gfg7V7gpWe4j9suPp9PWxYRERE6iV8kgsRkU4t0vhzsAB2pRWSGq2CmvK9HJSIiIh0VkqwRESaYdHGW7AAwnUPG9Y4LBEREfEpwRIRaYY1MQYLICnXexYW5ZocVURERDxKsEREmhGI+glWYM8hqxkFgwCo2la0FyMSERGRzkwJlohIMwLRECFLbnQSi9zCwYRckMrNnycgMhEREemMlGCJiDTDoiEi1viEq/3zctjkehEqXbOXoxIREZHOSgmWiEgzklwtYdtz/BXAgJ7prHcFBMvW7uWoREREpLNSgiUi0ozkaDXhQFqj+/IyU9hovUnfpUkuRERExKMES0SkGSnRWsLB1Eb3mRk70/uRHSqBUNVejkxEREQ6IyVYIiLNSKGGSCC9yf2hLH+q9rL1eykiERER6cyUYImINCESdaS6GiJNtGABWM/B3ovtmuhCRERElGCJiDQpFImSZiEiwcbHYAGkFewHQPU2TdUuIiIiSrBERJpUE46STg3RpKYTrJ59BlHrglRu+WIvRiYiIiKdlRIsEZEm1IajpFGLaybBGtAriw0un1CJEiwRERFRgiUi0qTqUIQ0q8UlZTRZpn9u3bOw1u3FyERERKSzaleCZWa3mNnHZrbCzJ4ws1x/+xAzqzKz5f4yLy7RiojsRVWhCGnUYslNt2DlZ+lZWCIiIvKl9rZgvQCMcc6NAz4Ffhyzb7Vzbry/XNzO84iI7HW7aiOkU0sgpelp2s2MirR+ZIW3Q23lXoxOREREOqN2JVjOuX8758L+6mJgQPtDEhHpHHbVhLwWrJSmuwgC1GYP9F7sUDdBERGR7i6eY7AuAP4Vsz7UzN41s1fNbGpTB5nZRWa21MyWFhcXxzEcEZH2qa6uJmCOYAsJVv2zsHas3QtRiYiISGfWYoJlZi+a2QeNLDNjyvwPEAYe8jdtAgY55w4GfgT8zcxyGqvfOfdH59wE59yEgoKC9l+RiEichKorAEhKzWy2XHrBUABq9CwsERGRbi+ppQLOua83t9/M5gAnAsc655x/TA1Q479eZmargeHA0vYGLCKyt9RU7wIgKbXpMVgAvQoHUu2SqdzyOal7IzARERHptNo7i+AM4BrgZOfcrpjtBWYW9F/vBxwA6E+7ItKlhKu9SSuS05rvIjigVwYbXD7hkjV7IywRERHpxNo7ButOIBt4ocF07EcCK8xsOfAocLFzrrSd5xIR2atCfoKVkpbVbLmBvTL8Z2FpDJaIiEh312IXweY45/ZvYvtjwGPtqVtEJOGqywBIzuzZbLG8TO9ZWBOr3t4bUYmIiEgnFs9ZBEVE9imuajsAgYzcZsuZGRXp/ckIl0HNzr0QmYiIiHRWSrBERJpS5bVgkZbbYtFQtv8YQD0LS0REpFtTgiUi0gSr3uG9SG++iyBAoOcg74WehSUiItKtKcESEWlCsLaMKAapjT7GbzdpvYcBUF2sCVNFRES6MyVYIiJNSKktoyqQBYGWf1Xm9+5HlUuhcqsSLBERke5MCZaISBNSw+VUB7NbVXZAr0zWuwI9C0tERKSbU4IlItII5xzpkZ3UJPdoVfkBPdNZ7/IJlmuSCxERke5MCZaISCMqayNkuQoiqa1LsPIyU9hkhWTs2tDBkYmIiEhnpgRLRKQRW8urKbTtuKzerSpvZlSm9yUjUq5nYYmIiHRjSrBERBqxtaySQrZDj4GtPiaU2dd7Ub6pg6ISERGRzk4JlohII8qL15NkUVJ6tT7BIqef9+/OjR0TlIiIiHR6SrBERBqxc0sRAD367NfqY5JzvRasaJkSLBERke5KCZaISCNqtnnTrafnD2r1MRn5XmvXrpL1HRKTiIiIdH5KsEREGhHc4T8wuA1jsPJye1LmMqgpVYIlIiLSXSnBEhFpRF7lKrYl94fUrFYf0zsnlc2uF9EyTdUuIiLSXbUrwTKzuWa2wcyW+8s3Yvb92MxWmdknZja9/aGKiOwdW8qrGRopoiJ3RJuOK8xJY4vrSaBicwdFJiIiIp1dPFqwbnPOjfeXZwHMbBRwBjAamAH83syCcTiXiEiH++CLDQyxzaT0H9Om4wqyvBas1KotHRSZiIiIdHYd1UVwJvCwc67GOfcFsAqY1EHnEhGJq+0fv07QHHkjj2rTcSlJAcqT88moLYFIuIOiExERkc4sHgnWpWa2wsz+YmY9/W39gXUxZdb72/ZgZheZ2VIzW1pcXByHcERE2qloEWGCpA49vM2HVqUXEiAKlVs7IDARERHp7FpMsMzsRTP7oJFlJnA3MAwYD2wCft3WAJxzf3TOTXDOTSgoKGjr4SIicbW1vJpxlf9hS4+DICWzzcdHMvt4L8o3xTkyERER6QqSWirgnPt6ayoysz8B//RXNwCxcxsP8LeJiHRqby35DycFNrB57MVf6XjL6QvFgCa6EBER6ZbaO4tg35jVWcAH/uungTPMLNXMhgIHAEvacy4RkY7mnCP89n2ECVJ42OyvVEdKj0IAojvVRVBERKQ7arEFqwU3m9l4wAFFwH8DOOc+NLNHgI+AMPB951yknecSEelQyz9ZzbHV/2ZD368zOLvwK9WR0dP7u1P19o1kxDM4ERER6RLalWA5585pZt9NwE3tqV9EZG8qeeYXjLUakk++4SvX0Ssnix0uE1e2RQmWiIhIN9RR07SLiHQpy955m6PK/8En/b5Jer/RX7meguxUtrkeRMr1LCwREZHuSAmWiHR7kaij6l8/I2TJDPvWL9tVV35WKsUuV9O0i4iIdFNKsESk21v4wlNMCb3J2lEXkdazb8sHNKMgK5Vt5JBctS1O0YmIiEhXogRLRLq1iuoQhYt/SUkgjxGnXNfu+nLSkygll9TakjhEJyIiIl1Ne2cRFBHp0hY+/gdOdJ9RNOUW8r7Cg4UbMjOqUnqRFqmEUDUkp8Uhys5t564qtm0somzz59QUf0GobBPRylKSa3eQGiojLVRGSnQXwWiIZEIkuTAphAAIEyRqQaJ1/1qQsCUTCaQSCSQTDaQQCabiAim4YAouKRWC3mLJqViStwSS0wgmp2HJqbhgqlc2mEK07thAEhDFXBRzDsPhXASiUXD+a+dw0YhXLhqzzTmc88qBt45zOBxEo7j6+qL+PrzyuPrj28Rsz02NFHP+1sb27X5gsyWaOG/Tx7SlytiCe17W7udr5LIbKdrENVvD1UCT+1sdel35PepuukDDfS3H2Xw01uTK7quR7P6MnHw8gUBbr05EOoISLBHptraWljH+k9+yPnU/hhz9nbjVW5uWD5V447ByB8Wt3kSKRh1Fmzaz6dN3qdrwIcFtK+lRsZo+ofX0ppShFt2tfC1JlFs2FYEcdgVzqEztjQukEAmkELEkIoEUzAxzEYiGIRrG/CUQDRGM1pAUDhGM7iLNhUh2tSS5ECnULWFSqSVobUxeRPZRL2+7g2NOPjfRYYgISrBEpBtb/NhtnGzFbDn+dxAIxq1el9nbS7AqirtsgrVx2w5WrfgPlZ+/Rda25Qyq+pj9bDP7+furSGVzymC29TqEzTkDsZ6Dyeg9hJzC/cjrO4SU9CzyzcjvgNgiUUdtOEp5KEJNbS011VXU1lQRqqkiVFtNIFKLRWr8pZZApAaiYZwFcRjOAjgzzIKYmXfvLYAFDAhCIEDAAmCGWQALBKhrYbFAwEsMCfiv8Y6tK1v/L2BGoO7YgDXbWuHwE8VGWrsabwBrObGsa2lr1dGtbGVrrphrUKvFFG542G7rDVr59ijrGu5pUGKP1d03xMbc3L7G1htq9vpbiqNh+d2Obf7Ee+52u+3Mfeo89n/3f6mZ/i1SU9ObrUtEOp4SrGZEIxFqqqtIz8xKdCgiEmdfbCrmsPX3UpQ9niHjvxHXui2rALYCFV1jqnbnHJ9vLObzd1+BL16lb+nbHBD9nH4WBqAkkMeW3NG83+d0cgYfROGwg0kvGMrQQGKG8QYDRnpKkPSUIGSmAPodLd3bh6VzGb3wO7z9yC+ZeI4eQSqSaEqwmvHu8/cyaMkv+WDUJYyf+UOS9VchkX3Giid/w0zbwY4Tft7omJf2SO7RB4BoxdZOO5NQaUU1H779CrtWvkB+8VuMiX7MMAsTJsjatAP5tPAsehxwOP1GTyGv50DyEh2wiDRp1FGnsnTJvYxd9Qe2FJ1F4ZBRiQ5JpFtTgtWMrN77UZzcn4kf/S9bP5rHmkGzGHjsf9Nn8IhEhyYi7bBh82ambH6Qz3Mmst/IaXGvP92f6r16xyYy4l77VxONOj4o2sTnb/2DzKIXGF+9hKlWRhRjfeowVvc7m7wxX6f36KPYLy0n0eGKSBuYGX3PuIPQPV9j50Pn0euqV0lO7Sy/fUS6HyVYzRgx4RjcIdNY/toT2OK7OXTNXwjcew+fB/ejpO+RpA+fxuDRh5Gd16/DY4mEw+yqLKemcifVu3ZSU1VBqLqCkP9vpKaCSE0lrqYKV1sJoV1YuBqiIQLRkPdvxHttzhtEHoiGCLgwQefN6hUkXD+7lrdEY9ajGHgzcPFlmQDewPa6fxtyDcYcNFz/KuX37Kne/DGN9Wzfs96Wj2mqbEJ1cCid6ErjKs1V05OdRE/8RYfU36tHNiUum2DpuoQmWNWhCEtXvM+2d56iYOMrTIh+wDgLUWmZbCj4GhWjT2DghJMYlN0RI6VEZG/qP2g/lky+mUlv/YDld5/DuEsfJpCUnOiwWhSNRNm5cwc7y0qp2rmd2sodhHeVEdpVhqsuJ1JTSaS2CheqJhCpxsLVBCPVBCI13mQ4kRqCrgaLRjAXIeDC4KIEXIQgEQIuShD/NVGCLrLbd5a6/++t+ZGCfpmvrvHvM63b1pr6Wvd9CRq7iq96bKvj/wpvXMNDng0ezdBTb+TYkYVtrywBlGC1wAIBxk87FaadyrovPmH9a38la92rjF/3AMnr74OXYRu5lCYXUpXam6q03rjUbIIpGbikdG+mLJw/NXAEXJRIOAShSixcTSC8i2BoF8FINUmRKpIiVSRHq0lx1aRGq0mjmnRXQ4qFyQayWxl32AWoJZmQJRMmibAlEan7t35JJmrJRIIZhPxtjgD4A8DxB4NDAIyY1wb4ZayuTMufnrpfXvW/zPYYtdtggHQjW1s+pjW/IF1zuxupo9ni8dWGE3R0LA0HaO9rwoOP4vARh3dI3flZKax3BQzavrZD6m9OcXkVy996heoPn2HY9kVMsSJve3I/1g08g8IJs8gecSTDg53/i5eItM2k489l4caPmbbuLlb8bhbD//sB0rJ67tUYQpEoxTt2UrplHRUlG6kq3YDbuYVA5RZSqraRXlNMZqiE7MgOMl0lmW4XPczRoxV117hkaiyFGlKotRRClkKtpRI2b3ZSZ6m4YAbOghBIwlmAqCURtaD3J2H/URDUfW+xL79rWH1X8dhHBjSWLFjbH73QSHlr5H/ZRr9/NHquPb8v7VHXbsc1He9XPWdjk800/jiJtmvs+0d65jB6ZaZ8hdoSw9r8Q9KBJkyY4JYuXZroMFqlvKyUovcWUb7mXVJLPyF11yaya4vJc6VkuCqSrPEWnTpRZ1STQpWlUWNp1FoqNYE0woE0QsF0IsF0IkkZuKQ0oskZkJyJpWRgKZkEUzMIpmYSTMsiOT2L5LQsUtOzSM3IJi0jm/TMbJJT0uI+rkREWmfV1p18esc3mdpjG9lXvduh53LO8en6raxa/E9SVj/PuKq3KLQdRAiwPnMMkQNmMGDyLFIKR+p3gkg34JzjtQd+wZTVv6E4UEDJYdcy8uvntbs1KxSOUFKyle1b11OxbQPV2zcSKd+MVWwhuaqY9JptZIdLyXPb6WkVjdaxnRx2BHuxMzmP6uReRFJ7YGnZWFoPkjJ6kJSRS1JGD5IzcknN7EFKVk8yM7JJy8gkJTUdEjSxjkhTzGyZc27CHtuVYMWfc47KqmoiNX43PQuABXEWwIIB0lNTvb7R+rIjsk8q2xXikf89l/NTXibpZ5vj/lmvDUd598MP2br0aXpteIlDIytIsxC7LJ0NeUeQPuYE+k88GctU1z+R7urdN54n58WrGObWUkYWX/ScQm3hQaT3HUFWbj7BtBySgkFqaqqorqoitGsH4Z3F1JZvJVpRDLtKSKkuIbN2Gz0ipeS5HaRaaI/z1JDMjoCXNNWk5RPOKMSyepOc25eMnv3I7j2A7Lz+JOcUglrOZR/TVIKlLoIdwMzIykiHDM06KNId5aQnsT25kKRoNVRug6yCdtXnnOOLzdtYvewlwp+9wuAdb3GYfQFAcVIf1gw6nd6HzqTnyKM5IKnrdKEQkY5z8BHTqZ10LItffJjIB08yqvQNem5/Dj5u+diIM8osm53BnlQm57E5ZwgbM3pj2X1Ize1LZl5/cgr6k9t7IKnpPSg0o2uMjBHZO9qVYJnZAqBuSr1cYIdzbryZDQFWAp/4+xY75y5uz7lERLoKM6MqdwRsBza9Bwd8vU3HO+dYt3U7n7//Brs+fY3exW8yNvox+1mIMEHWZY7ms2FXMnDyNynoN5oCtYaLSCNSkpOYfPzZcPzZuGiUrZvXs7XoQ6ortkNtBZFIlKTUdJJT0kjJyCGlR2965vejR88CeiUl0SvRFyDSRbUrwXLOza57bWa/Bspidq92zo1vT/0iIl1VtP+hhLcHCKz5D4EWEqzisl0UffYBOz5fSmDDEgrLPmC4+5xBFgFgXcowPu93Jnljj6P3mKMZmqoH64pI21ggQO9+g+jdb1CiQxHZ58Wli6B5U6+cDhwTj/pERLq6Qw8YwPsr9mPEiifJmHYtLphCcel2Nq/5lLKNn1G75RNSSj4mb9fnDHXrmGi1AFSRyoaMkXxaeJ73oN+x0xiY3TvBVyMiIiKtFa8xWFOBLc65z2K2DTWzd4Fy4KfOudfjdC4RkU7v6yN7c0PKadxS/isqfjmEGpdEbysnNlUqtZ4UZw5jVa/JpA8YR8EBh9Jj8MHsH9TwWBERka6qxf/FzexFoE8ju/7HOfeU//pMYH7Mvk3AIOdciZkdCjxpZqOdc+WN1H8RcBHAoEFqthaRfUNGShLfv/iHPPTPbPbbsZiUpABrcweS1nsYPfsfQP6gA+mVXaAxDiIiIvuYdk/TbmZJwAbgUOfc+ibKLASucs41Owf7vjJNu4iIiIiI7NuamqY9Hk9s+zrwcWxyZWYFZhb0X+8HHAB8HodziYiIiIiIdFrx6Oh/Brt3DwQ4ErjRzEJAFLjYOVcah3OJiIiIiIh0Wu1OsJxzcxrZ9hjwWHvrFhERERER6UraPQYrnsysGFiT6DgayAe2JToI2Wt0v7sP3evuQ/e6e9H97j50r7uXzni/BzvnChpu7FQJVmdkZksbG7wm+ybd7+5D97r70L3uXnS/uw/d6+6lK93veExyISIiIiIiIijBEhERERERiRslWC37Y6IDkL1K97v70L3uPnSvuxfd7+5D97p76TL3W2OwRERERERE4kQtWCIiIiIiInGiBEtERERERCROlGA1w8xmmNknZrbKzK5LdDwSP2Y20MxeMbOPzOxDM7vM397LzF4ws8/8f3smOlaJDzMLmtm7ZvZPf32omb3lf74XmFlKomOU+DCzXDN71Mw+NrOVZna4Ptv7JjO7wv8d/oGZzTezNH229x1m9hcz22pmH8Rsa/SzbJ7b/fu+wswOSVzk0lZN3Otb/N/jK8zsCTPLjdn3Y/9ef2Jm0xMSdDOUYDXBzILAXcDxwCjgTDMbldioJI7CwJXOuVHAZOD7/v29DnjJOXcA8JK/LvuGy4CVMev/B9zmnNsf2A58JyFRSUf4HfCcc+5A4CC8+67P9j7GzPoDPwQmOOfGAEHgDPTZ3pfcB8xosK2pz/LxwAH+chFw916KUeLjPva81y8AY5xz44BPgR8D+N/XzgBG+8f83v/e3mkowWraJGCVc+5z51wt8DAwM8ExSZw45zY5597xX+/E+wLWH+8e3+8Xux84JSEBSlyZ2QDgBODP/roBxwCP+kV0r/cRZtYDOBK4B8A5V+uc24E+2/uqJCDdzJKADGAT+mzvM5xzrwGlDTY39VmeCfzVeRYDuWbWd68EKu3W2L12zv3bORf2VxcDA/zXM4GHnXM1zrkvgFV439s7DSVYTesPrItZX+9vk32MmQ0BDgbeAgqdc5v8XZuBwkTFJXH1W+AaIOqv5wE7Yn5x6/O97xgKFAP3+l1C/2xmmeizvc9xzm0AbgXW4iVWZcAy9Nne1zX1Wdb3tn3bBcC//Ned/l4rwZJuzcyygMeAy51z5bH7nPcMAz3HoIszsxOBrc65ZYmORfaKJOAQ4G7n3MFAJQ26A+qzvW/wx97MxEuq+wGZ7NnFSPZh+ix3D2b2P3hDOx5KdCytpQSraRuAgTHrA/xtso8ws2S85Ooh59zj/uYtdV0K/H+3Jio+iZsjgJPNrAivq+8xeGN0cv1uRaDP975kPbDeOfeWv/4oXsKlz/a+5+vAF865YudcCHgc7/Ouz/a+ranPsr637YPMbA5wInCW+/LhvZ3+XivBatrbwAH+bEQpeIPpnk5wTBIn/hice4CVzrnfxOx6GjjPf30e8NTejk3iyzn3Y+fcAOfcELzP8cvOubOAV4DT/GK61/sI59xmYJ2ZjfA3HQt8hD7b+6K1wGQzy/B/p9fda322921NfZafBs71ZxOcDJTFdCWULsjMZuB17z/ZObcrZtfTwBlmlmpmQ/EmNlmSiBibYl8mg9KQmX0Db+xGEPiLc+6mxEYk8WJmU4DXgff5clzOT/DGYT0CDALWAKc75xoOsJUuysymAVc55040s/3wWrR6Ae8CZzvnahIYnsSJmY3Hm9AkBfgcOB/vD4r6bO9jzOznwGy87kPvAhfijcXQZ3sfYGbzgWlAPrAFuAF4kkY+y36SfSdeN9FdwPnOuaUJCFu+gibu9Y+BVKDEL7bYOXexX/5/8MZlhfGGefyrYZ2JpARLREREREQkTtRFUEREREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERDoJMxtiZs7MkhIdy77OzOaY2aJEx9HZmNlUM/sk0XGIiHRlSrBERKRLM7O5ZhYys4qY5ZpEx9UVOeded86NiGedZjbczJ4ys2IzKzWz580srucQEelMlGCJiMSJWp4SaoFzLitmuTnRAcVTF//ZygWeBkYAhcAS4KlEBiQi0pGUYImItIOZFZnZtWa2Aqg0syQzm2xm/zGzHWb2nplNiym/0Mz+n5ktMbNy/y/7vZqo+3wzW2lmO83sczP77wb7Z5rZcr+e1WY2w9/ew8zuMbNNZrbBzH5pZsEWrmOYmb1sZiVmts3MHjKz3Jh9pWZ2iL/ez2+NmOavn2xmH/rXu9DMRjZ4f64ysxVmVmZmC8wsre3vdNuZ2XX++7LTzD4ys1lNlDMzu83Mtvrv5ftmNsbfl2pmt5rZWjPbYmbzzCy9lee/zy//gh/Dq2Y2OGb/78xsnX/OZWY2NWbfXDN71MweNLNyYI6ZTTKzN/33eZOZ3WlmKTHHODP7npl95p/vF/69+49/jkdiyzcR8zQzW9+a62st59wS59w9zrlS51wIuA0YYWZ58TyPiEhnoQRLRKT9zgROwPtLfSHwDPBLoBdwFfCYmRXElD8XuADoC4SB25uodytwIpADnA/cFpPkTAL+Clztn/dIoMg/7j6/3v2Bg4HjgAtbuAYD/h/QDxgJDATmAjjnVgPXAg+aWQZwL3C/c26hmQ0H5gOXAwXAs8A/GnyRPx2YAQwFxgFzGg3AbIqfPDS1TGnhGhpaDUwFegA/9+Pv20i54/Dev+F+2dOBEn/fr/zt4/Hez/7A9W2I4SzgF0A+sBx4KGbf2369vYC/AX9vkHzOBB7Fu78PARHgCr+uw4Fjge81ON904FBgMnAN8EfgbLz7OQbvZ/Ur8xPlpu7P71tZzZHAZudcSYslRUS6IuecFi1atGj5igteUnNBzPq1wAMNyjwPnOe/Xgj8KmbfKKAWCAJDAAckNXGuJ4HL/Nd/AG5rpEwhUAOkx2w7E3iljdd1CvBug21PA+8DK4BUf9vPgEdiygSADcC0mPfn7Jj9NwPz4nwP5vrv4Y6YpV8j5ZYDM/3Xc4BF/utjgE/xkpJATHkDKoFhMdsOB75oZVz3AQ/HrGfhJUkDmyi/HTgo5ppea6H+y4EnYtYdcETM+jLg2pj1XwO/baHOacD6eN6fBvUP8H8+zuyoc2jRokVLopeu3KdbRKSzWBfzejDwLTM7KWZbMvBKE+XX+PvzG1ZqZscDN+C1oASADLwEB7wWiWcbiWWwX98mM6vbFmhwzj2YWSHwO7wWn2z/mO0Niv0JL8m6yDlX42/r518DAM65qJmtw2vpqbM55vUu/5h4e8Q5d3bsBjM7F/gRXuIKXoKzx/vsnHvZzO4E7gIGm9njeC2PaXjv+bKY99LwkuHWqn/fnXMVZlaKd/3rzOwq4Dv+usNrqcxv7Fj/eoYDvwEm+HEl4SVRsbbEvK5qZL1PG2KPK78V99/A751z8xMVh4hIR1MXQRGR9nMxr9fhtWDlxiyZzrlfxZQZGPN6EBACtsVWaGapwGPArUChcy4XL6Gq+6a/DhjWSCzr8Fqw8mPOn+OcG93CNfyvfx1jnXM5eN3KvswqzLKA3wL3AHPty3FjG/GSurpy5l/fhhbOtwfzpgivaGaZ2nIt9XUNxksILwXy/Pfvg9hriuWcu905dyhei+JwvK6X2/CSktEx72UP51xWGy6r/l7772EvYKN/LdfgdUfs6cdX1iC+2J8rgLuBj4ED/Hv0k6aup6P4Y+2auj/zmjmuJ15y9bRz7qa9F7GIyN6nBEtEJL4eBE4ys+lmFjSzNH/igAExZc42s1H+eKYbgUedc5EG9aQAqUAxEPZbs46L2X8PcL6ZHWtmATPrb2YHOuc24X2R/bWZ5fj7hpnZUS3EnQ1UAGVm1h8vwYj1O2Cpc+5CvDFmdV+mHwFO8ONIBq7ES/D+09Ib1ZDzpgjPamZ5vQ3VZeIlKMXgTRiCNwZpD2Y20cwO8+OvBKqBqHMuipek3WZmvf2y/c1sesyxzmImMWnEN/yxZSl4Y7EWO+fW4b3fYT++JDO7Hq8FqznZQDlQYWYHApe0UD7unHOjm7k/Fzd2jJnl4HWTfcM5d93ejVhEZO9TgiUiEkf+l+eZeK0LxXgtSlez++/bB/DG52zG64b2w0bq2elvfwSvq9638brn1e1fgj/xBV7Lx6t82ZJ0Ll6C9pF/7KN4E2o05+fAIX5dzwCP1+0ws5l4k1TUfaH/EXCImZ3lnPsEr7XrDrwWn5OAk5xztS2cr0M55z7CG3P0Jl43ubHAG00Uz8FLpLbjdXcsAW7x910LrAIW+7P5vYg33ThmNhDYyZfdNhvzN7xunqV4k0/UdWN8HngOb+zXGrykrtlunHjdFr/tn/NPwIIWyncWs4CJeH8QiG3xGpTowEREOoI517AHgoiIdBQzWwg86Jz7c6JjkfYxs7Pxug/+uIn99+FNGPHTvRqYiIgklCa5EBER+Qqccw8mOgYREel81EVQRKSbMO+ht22anED2PWb2kyZ+Dv6V6NhERPYF6iIoIiIiIiISJ2rBEhERERERiZNONQYrPz/fDRkyJNFhiIiIiIiINGvZsmXbnHMFDbd3qgRryJAhLF26NNFhiIiIiIiINMvM1jS2XV0ERURERERE4kQJloiIiIiISJwowRIRaUQ0qhlWRUREpO061RisxoRCIdavX091dXWiQ5EuJi0tjQEDBpCcnJzoUKSLeXDxGlY9dyff/853KRg4PNHhiIiISBfS6ROs9evXk52dzZAhQzCzRIcjXYRzjpKSEtavX8/QoUMTHY50Mf98830e5o9UPvgU/PjTRIcjIiIiXUin7yJYXV1NXl6ekitpEzMjLy9PLZ/ylQxkEwCZNVtAD2MXERGRNuj0CRag5Eq+Ev3cyFeVW7Xuy5XtRQmLQ0RERLqeLpFgiYjsTfm1G+pfR4o/S2AkIiIi0tUowWoFM+PKK6+sX7/11luZO3du4gKKsXjxYg477DDGjx/PyJEj6+NauHAh//nPf75yvWvWrOGQQw5h/PjxjB49mnnz5sUpYpHOzTlH78gWqkkBoHz9hwmOSERERLqSTj/JRWeQmprK448/zo9//GPy8/PjVq9zDuccgcBXz3PPO+88HnnkEQ466CAikQiffPIJ4CVYWVlZfO1rX/tK9fbt25c333yT1NRUKioqGDNmDCeffDL9+vX7yrGKdAU14ShpVLMtuR8Ztduo3vQJPRMdlIiIiHQZasFqhaSkJC666CJuu+22PfYVFxdz6qmnMnHiRCZOnMgbb7wBwNy5c7n11lvry40ZM4aioiKKiooYMWIE5557LmPGjGHdunVcffXVjBkzhrFjx7JgwQLAS5CmTZvGaaedxoEHHshZZ52Fa2Sw/datW+nbty8AwWCQUaNGUVRUxLx587jtttsYP348r7/+erNxnnPOORx++OEccMAB/OlPfwIgJSWF1NRUAGpqaohGo42+N7fffjujRo1i3LhxnHHGGQCUlpZyyimnMG7cOCZPnsyKFSvqz3XeeecxdepUBg8ezOOPP84111zD2LFjmTFjBqFQCIAbb7yRiRMnMmbMGC666KI9rjsajTJkyBB27NhRv+2AAw5gy5Ytzd1GkVapjURJIUwwOZUvXF8oXZ3okERERKQL6VItWD//x4d8tLE8rnWO6pfDDSeNbrHc97//fcaNG8c111yz2/bLLruMK664gilTprB27VqmT5/OypUrm63rs88+4/7772fy5Mk89thjLF++nPfee49t27YxceJEjjzySADeffddPvzwQ/r168cRRxzBG2+8wZQpU3ar64orrmDEiBFMmzaNGTNmcN555zFkyBAuvvhisrKyuOqqqwD49re/3WScK1asYPHixVRWVnLwwQdzwgkn0K9fP9atW8cJJ5zAqlWruOWWWxptvfrVr37FF198QWpqan3Cc8MNN3DwwQfz5JNP8vLLL3PuueeyfPlyAFavXs0rr7zCRx99xOGHH85jjz3GzTffzKxZs3jmmWc45ZRTuPTSS7n++usBOOecc/jnP//JSSedVH/OQCDAzJkzeeKJJzj//PN56623GDx4MIWFhS3eR5GW1IajpFJLMCWdzWQwtHJNokMSERGRLkQtWK2Uk5PDueeey+23377b9hdffJFLL72U8ePHc/LJJ1NeXk5FRUWzdQ0ePJjJkycDsGjRIs4880yCwSCFhYUcddRRvP322wBMmjSJAQMGEAgEGD9+PEVFRXvUdf3117N06VKOO+44/va3vzFjxoxGz9lcnDNnziQ9PZ38/HyOPvpolixZAsDAgQNZsWIFq1at4v7772+0hWjcuHGcddZZPPjggyQlJdVf0znnnAPAMcccQ0lJCeXlXmJ8/PHHk5yczNixY4lEIvXxjh07tv76XnnlFQ477DDGjh3Lyy+/zIcf7jkGZvbs2fWtfQ8//DCzZ89u9j0Xaa1QJEqKhXHBFHam9SG7Zis00YIrIiIi0lCXasFqTUtTR7r88ss55JBDOP/88+u3RaNRFi9eTFpa2m5lk5KSdutWF/s8pszMzFadr66LHnjd/8LhcKPlhg0bxiWXXMJ3v/tdCgoKKCkp2aNMU3HCntOZN1zv168fY8aM4fXXX+e0007bbd8zzzzDa6+9xj/+8Q9uuukm3n///VZdUyAQIDk5uf5cgUCAcDhMdXU13/ve91i6dCkDBw5k7ty5jT7L6vDDD2fVqlUUFxfz5JNP8tOf/rTZ84q0Vm04SgohXDCVmsz+JNeGoHIrZPdJdGgiIiLSBbS7BcvMBprZK2b2kZl9aGaX+dvnmtkGM1vuL99of7iJ1atXL04//XTuueee+m3HHXccd9xxR/16XVe4IUOG8M477wDwzjvv8MUXXzRa59SpU1mwYAGRSITi4mJee+01Jk2a1OqYnnnmmfoxSp999hnBYJDc3Fyys7PZuXNni3ECPPXUU1RXV1NSUsLChQuZOHEi69evp6qqCoDt27ezaNEiRowYsdu5o9Eo69at4+ijj+b//u//KCsro6KigqlTp/LQQw8B3liy/Px8cnJyWnU9dclUfn4+FRUVPProo42WMzNmzZrFj370I0aOHEleXl6r6hdpiddFMIQLpkCPAd7GsvWJDUpERES6jHh0EQwDVzrnRgGTge+b2Sh/323OufH+8mwczpVwV155Jdu2batfv/3221m6dCnjxo1j1KhR9dOZn3rqqZSWljJ69GjuvPNOhg8f3mh9s2bNYty4cRx00EEcc8wx3HzzzfTp0/q/lD/wwAOMGDGC8ePHc8455/DQQw8RDAY56aSTeOKJJ+onuWgqTvC6+R199NFMnjyZn/3sZ/Tr14+VK1dy2GGHcdBBB3HUUUdx1VVXMXbsWAAuvPBCli5dSiQS4eyzz2bs2LEcfPDB/PCHPyQ3N5e5c+eybNkyxo0bx3XXXcf999/f6uvJzc3lu9/9LmPGjGH69OlMnDixft+8efN2i3v27Nk8+OCD6h4ocVUT9ia5ICmVlLzB3rZtRYkNSkRERLoMa2xmunZVaPYUcCdwBFDhnLu1hUPqTZgwwS1dunS3bStXrmTkyJFxjVG+NHfu3N0mw9jX6OdH2uqdtdvpfc8EgvtNZdnI6zjx2cPYdvhPyZ9+daJDExGR/9/evcfXVdV5H//8zi33e5O0TXoJ0JZCr1BKpVBb5CogCEjxEbVUZXC8DMw8jpdRFBxfj8rozDMDwohIdR4sVwd4jVpBoEpRir0BhV6gEJq2aZs298s5OZf1/HFO07RN2qQ5yclJvu/X63D2XnvvtX/pzg7nd9Zea4kMI2a23jk37+jypA5yYWaTgbnA2kTRF83sdTP7uZlpKhkRGfbCiUcEzZtBeVkZzS6b4AGNJCgiIiJ9k7RBLswsF3gSuM0512xm9wHfBVzi/UfA8h6OuwW4BWDixInJCkf66Dvf+U6qQxAZVuLzYIUJ+jMZX5jFbldCXlNNqsMSERGRNJGUFiwz8xNPrh52zv0awDm3zzkXdc7FgAeAHkducM791Dk3zzk3r7S0NBnhiIictEODXJgvg/K8DPa4MQRad6c6LBEREUkTyRhF0IAHgS3OuR93Kx/XbbePApsHei4RkcHWGY4SIIL5M/F5PTT4y8kN1qY6LBEREUkTyXhEcCHwSeANM9uUKPsG8HEzm0P8EcFq4G+ScC4RkUEVjoTwmMPjj8/Z1pE1luy2Vgi1QkZuiqMTERGR4W7ACZZzbg1gPWwaEcOyi8joEu0MAeD1Z8XX88ZDG9BSCxlTUhiZiIiIpIOkjiI4kj311FOYGVu3bu11n+rqambMmJG0c27bto3FixczZ84cpk+fzi233ALEJwn+7W9PPn8NBoPMnz+f2bNnc+aZZ/Ltb387WSGLpL1oOD7Z9aEWLG9BBQCuSf2wRERE5MSUYPXRypUrOf/881m5cmWP2yORyIDPEY1Gj1j/8pe/zO23386mTZvYsmULX/rSl4CBJ1gZGRm88MILvPbaa2zatIlVq1bxyiuvDCh2kZEi2hlPsLyBTAAySyYA0FanodpFRETkxJRg9UFraytr1qzhwQcf5JFHHukqX716NRdccAEf+chHOOOMM4B4ovWJT3yC6dOnc/3119Pe3g7A888/z9y5c5k5cybLly8nFIo/hjR58mS++tWvctZZZ/H4448fcd7a2loqKyu71mfOnElnZyd33HEHjz76KHPmzOHRRx+lra2N5cuXM3/+fObOncvTTz8NwIoVK7j66qtZvHgxU6ZM4c477wTAzMjNjfclCYfDhMNh4mOVHOnxxx9nxowZzJ49m0WLFgHx1q+bb76ZmTNnMnfuXF588cWuc11zzTVcfPHFTJ48mXvuuYcf//jHzJ07lwULFlBfXw/AAw88wDnnnMPs2bO57rrruv59uluwYAFvvvlm1/rixYs5egJqkcESS7Rgef3xBKugfBIAbXU7UxaTiIiIpI+kzYM1JH73Ndj7RnLrHDsTLv/+cXd5+umnueyyy5g6dSolJSWsX7+es88+G4ANGzawefNmqqqqqK6uZtu2bTz44IMsXLiQ5cuX85Of/IQvfvGLLFu2jOeff56pU6fyqU99ivvuu4/bbrsNgJKSEjZs2HDMeW+//XYuvPBCzjvvPC655BJuvvlmCgsLueuuu1i3bh333HMPAN/4xje48MIL+fnPf05jYyPz58/noosuAuDVV19l8+bNZGdnc84553DFFVcwb948otEoZ599Nu+88w5f+MIXOPfcc485/1133cXvf/97KioqaGxsBODee+/FzHjjjTfYunUrl1xyCdu3bwdg8+bNbNy4kWAwyGmnncYPfvADNm7cyO23384vf/lLbrvtNq699lo+97nPAfDNb36TBx98sKtl7pClS5fy2GOPceedd1JbW0ttbS3z5h0zSbbI4Igk+mAlWrDGlhRy0OXR2aC5sEREROTE1ILVBytXruTGG28E4MYbbzziMcH58+dTVVXVtT5hwgQWLlwIwE033cSaNWvYtm0bVVVVTJ06FYBPf/rT/OlPf+o6ZunSpT2e9+abb2bLli187GMfY/Xq1SxYsKCr5au7Z599lu9///vMmTOHxYsXEwwG2bkz/m37xRdfTElJCVlZWVx77bWsWbMGAK/Xy6ZNm9i1a1dXEna0hQsXsmzZMh544IGuxxfXrFnDTTfdBMDpp5/OpEmTuhKsJUuWkJeXR2lpKQUFBVx11VVAvOWturoaiCdhF1xwATNnzuThhx8+oqXqkBtuuIEnnngCgMcee4zrr7++x38fkcEQO5RgJVqwxhVksdcVQ/OeVIYlIiIiaSK9WrBO0NI0GOrr63nhhRd44403MDOi0Shmxt133w1ATk7OEfsf/ahdT4/eHe3oOrobP348y5cvZ/ny5cyYMaPHRMg5x5NPPsm0adOOKF+7du0J4yksLGTJkiWsWrXqmAE67r//ftauXctvfvMbzj77bNavX3/cnyMjI6Nr2ePxdK17PJ6uPmrLli3jqaeeYvbs2axYsYLVq1cfU09FRQUlJSW8/vrrPProo9x///3HPa9IUiUSLE8iwSrJCfAGJYxp35vKqERERCRNqAXrBJ544gk++clP8v7771NdXU1NTQ1VVVW89NJLPe6/c+dO/vKXvwDwq1/9ivPPP59p06ZRXV3NO++8A8B//dd/8cEPfvCE5161ahXhcBiAvXv3cvDgQSoqKsjLy6OlpaVrv0svvZT/+I//wDkHwMaNG7u2Pffcc9TX19PR0cFTTz3FwoULqaur63rkr6Ojg+eee47TTz/9mPPv2LGDc889l7vuuovS0lJqamq44IILePjhhwHYvn07O3fuPCaxO56WlhbGjRtHOBzuqqcnS5cu5Yc//CFNTU3MmjWrz/WLDFgiwcJ36AsCoylQRk5oXwqDEhERkXShBOsEVq5cyUc/+tEjyq677rpeRxOcNm0a9957L9OnT6ehoYHPf/7zZGZm8tBDD/Gxj32MmTNn4vF4uPXWW0947meffbZrkIlLL72Uu+++m7Fjx7JkyRLeeuutrkEuvvWtbxEOh5k1axZnnnkm3/rWt7rqmD9/Ptdddx2zZs3iuuuuY968edTW1rJkyRJmzZrFOeecw8UXX8yVV14JwB133MEzzzwDwFe+8hVmzpzJjBkzOO+885g9ezZ/+7d/SywWY+bMmSxdupQVK1Yc0XJ1It/97nc599xzWbhw4RFJ3TPPPMMdd9zRtX799dfzyCOPcMMNN/S5bpGkiHTG372Hf6+DWWPJjTZD57GDsoiIiIh0Z4daPYaDefPmuaNHi9uyZQvTp09PUUTpbcWKFUcMhjEa6fdH+uv//eJ+bnrvq3DLH2H8HAAe/s/v84na/wNf2gAlp6Y2QBERERkWzGy9c+6YkdjUgiUi0l3sUAtWoKvIVxSfLiHauCsVEYmIiEgaUYI1gi1btmxUt16JnJRIvN9j9wTr0GTDLfs12bCIiIgcX1okWMPpMUZJH/q9kZPS1YLl7yrqmmz4gCYbFhERkeMb9glWZmYmBw8e1Idl6RfnHAcPHiQzMzPVoUiaseixjwiWlxTT4HIJ12uyYRERETm+YT8PVmVlJbt27aKuri7VoUiayczMpLKyMtVhSLqJHvuI4PiCLPa4YrJbNNmwiIiIHN+wT7D8fj9VVVWpDkNERgmLHUqwDj8imJ/lY5OVMLVNkw2LiIjI8Q37RwRFRIaSp4cWLDOjOVBOTmh/iqISERGRdDHoCZaZXWZm28zsHTP72mCfT0RkIKyHQS4AQlnl5McaIRwc+qBEREQkbQxqgmVmXuBe4HLgDODjZnbGYJ5TRGQgPLEwUTzg8R5RHssbH19oqU1BVCIiIpIuBrsFaz7wjnPuXedcJ/AIcPUgn1NE5KR5XJiI+Y8p9xZVANDZoJEERUREpHeDnWBVAN0/jexKlHUxs1vMbJ2ZrdNIgSKSahYLE7Vjx//JLonPhdW8T5MNi4iISO9SPsiFc+6nzrl5zrl5paWlqQ5HREY5byxCtIcWrK7Jhus02bCIiIj0brATrN3AhG7rlYkyEZFhyet6bsEqLy2hyWUTadyVgqhEREQkXQx2gvVXYIqZVZlZALgReGaQzykictK8sXCPLVjjC7KodSVYsyYbFhERkd4NaoLlnIsAXwR+D2wBHnPOvTmY5xQRGQivCxP1HJtgZQW8HPCUkNGuUQRFRESkd8c+B5NkzrnfAr8d7POIiCSD14WJ9dCCBdASKCc39OoQRyQiIiLpJOWDXIiIDCc+FyHWQwsWQCh7LAWxBoiEhjgqERERSRdKsEREuvG6cK8JVjS/Mr7QpIEuREREpGdKsEREuvERwfWSYHmL40O1d9S9N5QhiYiISBpRgiUikhCNOfz0/ohgVukpALTs3TGUYYmIiEgaUYIlIpIQjsbwH6cFq7B8ImHnJagWLBEREemFEiwRkYRIogXLeQM9bh9fnEetK8Y1vD/EkYmIiEi6UIIlIpIQCkcJEIFeEqzy/Ex2UYqvRYNciIiISM+UYImIJIQi8UcEzdvzI4IBn4cD3rHkduwZ4shEREQkXSjBEhFJCIajZFgY58vsdZ/WrPEURA5oLiwRERHpkRIsEZGEUCRGFp3gz+51n85czYUlIiIivVOCJSKSEAxHySSEBXpPsKxoIoAGuhAREZEeKcESEUno7AwRsCjmz+p1n6zSKgBa92kuLBERETmWEiwRkYTOYBsAnozeW7CKxk4m7Ly07Xt3qMISERGRNOJLdQAiIsNFJNQOgOc4jwhOGJPLHleCt16PCIqIiMix1IIlIpIQSbRg+TJyet2nsiibXa4UX3PNUIUlIiIiaWRACZaZ3W1mW83sdTP7bzMrTJRPNrMOM9uUeN2flGhFRAZRNNGC5T3OI4K5GT7qvGVkt+8eqrBEREQkjQy0Bes5YIZzbhawHfh6t207nHNzEq9bB3geEZFBFwvFW7D8mbnH3a81q4L8yEEIdwxFWCIiIpJGBpRgOeeedc5FEquvAJUDD0lEJDVcImHyZfbeggUQyZ8QX2jcOdghiYiISJpJZh+s5cDvuq1XmdlGM/ujmV3Q20FmdouZrTOzdXV1dUkMR0Skf1xn/BFBf2bvfbAAPMWTAYjVVw9yRCIiIpJuTphgmdkfzGxzD6+ru+3zT0AEeDhRVAtMdM7NBf4e+JWZ5fdUv3Pup865ec65eaWlpQP/iURETlLsUIJ1nEEuALLLTgE0F5aIiIgc64TDtDvnLjredjNbBlwJfMg55xLHhIBQYnm9me0ApgLrBhqwiMhgOTTIhR1nmHaAknETCTk/7ft20OM3RyIiIjJqDXQUwcuAfwQ+4pxr71ZeambexPIpwBRAs3KKyLB2qAUL//ETrAnFOexyY4hpLiwRERE5ykD7YN0D5AHPHTUc+yLgdTPbBDwB3Oqcqx/guUREBpXrSrCyjrtfZVE2Na4MX7MGuRAREZEjnfARweNxzp3WS/mTwJMDqVtEZMiF48O04zt+gpXp91LnG0tux8tDEJSIiIikk2SOIigiktb84RaClgneE3/31J5dQXasFToaBz8wERERSRtKsEREErIiTbR5+zZsRaRgYnyhUf2wRERE5DAlWCIiCdnRFoK+gj7t60vMhRXVXFgiIiLSjRIsEZGEnGgTnf6+tWDllMe7oLbu1VxYIiIicpgSLBERIBSJkudaiWQU9Wn/8vJyml0WHfs1A4WIiIgcpgRLRARobA9TaK2Q1bcEq7I4h12uDNegPlgiIiJymBIsERGgvjVEIa1YdnGf9h9fmEmNKyXQUjPIkYmIiEg6UYIlIgI0N9bjsxi+3JI+7Z/h81LvH0decA84N8jRiYiISLpQgiUiArTU7wEgq6C0z8e051QQcCFo3T9YYYmIiEiaUYIlIgK018X7UuWPrerzMbGCSfEFzYUlIiIiCUqwRESAaEO8L1XWmMl9PiaQ2DeiubBEREQkQQmWiAjgbd5FDIP8ij4fk182GYCW/TsHKSoRERFJN0qwRESAzPY9NHmLwRfo8zElJWNodxmEGvYMYmQiIiKSTpRgicioF4s5CkJ7aM0c16/jygoy2euKiDYrwRIREZE4JVgiMurtaergVHYRKprar+PK8jLZTxHe1r2DFJmIiIikmwElWGb2HTPbbWabEq8Pd9v2dTN7x8y2mdmlAw9VRGRwvL/zfcZYM/5xM/p1XGGWn32umIwODdMuIiIicb4k1PGvzrl/6V5gZmcANwJnAuOBP5jZVOdcNAnnExFJqvp3NwJQVDW7X8d5PEZrYAy5nX+NTzZsNhjhiYiISBoZrEcErwYecc6FnHPvAe8A8wfpXCIiA9KxcwMA+ZPm9P/YzDL8rhM6GpIclYiIiKSjZCRYXzSz183s52ZWlCirAGq67bMrUXYMM7vFzNaZ2bq6urokhCMi0nfRmKOo4TUOBiogZ0y/j49kj40vtNQmOTIRERFJRydMsMzsD2a2uYfX1cB9wKnAHKAW+FF/A3DO/dQ5N885N6+0tLS/h4uIDMi22mZmue20lc49uQoKEiMPKsESERER+tAHyzl3UV8qMrMHgP9JrO4GJnTbXJkoExEZVra+tYlrrZGGqeef1PGBwvEARJr2JKVTq4iIiKS3gY4i2H3SmI8CmxPLzwA3mlmGmVUBU4BXB3IuEZHBEHx7NQBFZ/bpu6RjZBfHv0vqOLgrWSGJiIhIGhvoF64/NLM5gAOqgb8BcM69aWaPAW8BEeALGkFQRIYb5xwldWtp8pVQUHLaSdVRUphHvcslVr+bvCTHJyIiIulnQAmWc+6Tx9n2PeB7A6lfRGQwVR9o46zYZurHnU/BSQ6xXpaXwX5XRHGz+mCJiIhIcubBEhFJS1veWMeHrYnY1CUnXUdZfgZvu0LGtI2cyYadc9QeOMiubRsJ7nkTGt7H17aHnI69FEQOkOXayXJBMgnh8BAxL1F8tHryafMXEgqUEM6rgOJTyCw7jcLKaZRWTsEXyEj1jyYiIjLolGCJyKjVvn01AGUzP3TSdYzJzeDPFBIIbk9SVEPvQFMrb218meCOP5N3YAMVHduodPsZbw6AmDPqPUU0+MtpyDmFOn8ezp9DxJuJizmIhXGREN5QI1md9eS1VHNK86tk7wl1nSPqjFobQ71/LG3ZFYTzJ+Itmkhe8VhyC4rx5hTjy8rD7/URdRCOQbgzRLSznWiwjXCwlXCwjXCwjWiwhWioDUIt0NmGhdvwhNvwhtvwRdvxRzsIRNvJiHWQ6TrIdEEMh+Hw4ACHAYbDYUTMSwQfYXxE8RExHxF8RM1HxPxELb4cMx/OPDi84DGceXHmBfMkXvFlZx6MGOZc4j0WP2fXeuIdh7n4O4n3w2Xx/eJP4MfFo6bbT0Dip+h9+9Hvw1VfohvIPN69H3p4y4Dq78Ox/a++77EF/UVMvvlnFObrQWWR4UAJloiMWkV1f6XBO4ai4qqTrsPv9dDsKyG78yA4N7BPaUOkqT3Elo1/pvXNVYzZ92emRbayyDoB2O8pZV/+GTSUXkvuxFkUV82hcPxpjPEF6M8sYaFwhJo9NTTs2kbH/reJHXwXf3MNuR27qWp6ldKmVUfOljgAbWTSQSZBTxYhy6bTm0UwUESrr4KYL5uYLxvzeMAM5wxndjjFcjE8LoLFIlg0jLkwnlgYbyyCuQjeWBivi+B3YbwuhMVimIti0Xji5OlKhmJ4OLwew0PMPIdSJg6nVPGyw9s8xBKxxA69um07lBgdqiW+HP+PHZVmGceWdX8/tDzck61D3Il36XWnPh3bW5W9Hty/Wo/e+4RHux4XTyhAJ3PcWla/+CSLr17WjyNFZLAowRKRUWlPQzszI5upH/cBigaYFAUzS/F1RKC9HnJKkhRh8jjneLtmD+++/Gsyql9gZnAdC6wZgGr/qWyfcD0FU8+nYuYiyoomUJaEc2b4fUyYVMWESVXAZcdsD4faObD7Xerq9tHRXI+FGiHURjQaxetx+Mxh3gCeQBYEcvBl5BDIyiEjO49Adj5Z2Xlk5RYSyMwhx+MhJwkxi6QjF+mk6Z+ryN7xG2BZqsMREZRgicgo9dabG7nIGgmftmjAdUWyy6ADaN07bBIs5xyb363h3TWPU7JzFedENjLVwjRZPntKP0DjtIuZcM4VTE7M4zXU/BnZjDtlBuNOmZGS84uMFOYL8FbBImY0rcaFg5g/M9UhiYx6SrBEZFRq2/ZHAMoH0P+qS245HARa9kL5mQOvbwB27GvkjRcfZ8zbj3FOZAMzLcJBbynvVS2l/NylFE07nwLPgKZAFJFhJnTaFeSt/y27Nqyi8txrUh2OyKinBEtERqX8fWtp9BRRWDZ1wHX5C8fB++Ba9qakd0tHZ5TVa/9K2ysPcX7r77nGGmj0FFF9ysepOO9/UXLqAkqUVImMWGcsvIrmdV+hacOTSrBEhgElWMexd+d2qv/0K+Zc+w9kZmtkHpGRojUYZlrodfaNOYvCJAxKkVVcCUCwYQ9ZA66t77buquP1P/yKCdWPczlvEMXDrpLzaDz/MxTOvopCr38IoxGRVCkrLmB15rmctf9FiIZB975ISinBOo7ql1ay4J1/5cAPH+K1KZ9h+odvJb8oGd2/RSSVtr+5kbOsnu1VFySlvqLCQlpcFpEhSLDaOyP8cc0aOv+6gvPb/8AN1kK9r5yaM2+jcslnmVQ4YZAjEJHhqHPqVeS/8SI1G55lwjlXpDockVFNCdZxLPjEt9n85/nYi//MuW//iNC//TvrCxbhnX4lU8+7iuyC0lSH2KNIOEx7ewudwQ4i4RDRcJhIOEg0HCIS7iQaiZfFEsuxSCcWC+NiEYg5cFGci8XntyEGsRjOxedpcc7hXHxIYudi8fFsE3O89Dq2ba8tBD2VH1vmsB6q6LlOZ8du7XlI4u7zi1i3ffsQp/VQdoK4+qUfVfT7bP08wNJkOOf+cu//BYCx865OSn1leRnsd4UUNO1NSn09efP9vWz5wy+p2vkkl9tWInipKV9CYNFnKT7jEoo93kE7t4gMf/M+dD2tr3+D+j8/NGoSLBeLEQq2E2pvpqOjg2Cwg0hnkFgkRDQcwoXjn3Fikfiyi4Zx0U5i0RjRWBQXi+FiUeKfYaLxuedcrOt1aI66+OecxDldfLKDIz9bHDXfnMVLnNkR249cThxz9D49fGZynHifo89yog2979v3uvtbR1/r7UlT3hSmnfMhJpWkx5ixSrBOYMZ5l8N5l7P9tZep++MDzKh/loK1zxN95e/Z4TuFpoJpdJZMJ6u0ivyyiWSWVJKbX0Rubh7WSxN9JBKho72FUEcbne2tdHa00BlsIxJsJdLRSiTUTjTUSizUhutsx4Xbsc42LNKBJ9KONxLEF+3AF+0gEOvA70JkxIJkEiTLhciwMPlD/O8kkm7e9k1lythTklJXaV4GdRRS0JrcBKs1FOGlPz5PbP0vuCD4ImdaO/szKqmZ+VUqF3+GqrzypJ5PRNJXcWEBL4y5hsUHHqX+vdcorpqd6pBOyMVitLY00nhwH831++hoqiPSepBY20GsowFPsAFfZxOecBv+SBv+aDuZsQ4yXAfZroNsgmRajEygINU/jAyqhyKX0jl+XtokWOZ6n1FvyM2bN8+tW7cu1WEcVzgc5q11q2l9cxV5dRuoCO2ghKYe9+10Xjrx40lMJekhhpcYXuv/v3m7yyBoGYTIIOTJpNOTRdiTScSbSdSbRdSXTcyXhfNngT8HAjmYLwOPL4AlXp5DL28Arz+A1+/H68vA48vA4/NjHh94vJjHg8c8mMeDebyYgXm8eMyDx+MBjwePWbzM48Hw4BKTeB6jp98v1/WfI1iPv4vx74lOWOfhio/c3Eudxy6deN/Du/TSztXD8f290v25HY/5dznxAYO5O46ktN8NmfyScjIys5NSV0swzLPf+yiXZW0l5xvvDKgu5xyvbX+PnatXMGXP00y3ajrxUzPuYso/+DfkTvtgWkxmLCJDr7pmJ2N+Np+a/DlM//vfpfRvRaStgQN73qN+705aD+yis3E3nta9ZHTsJ6fzIAWRA5S4BgIW6bWOZnJosVyCnmw6PdlEfNlEfDlEfdlE/bk4fzYukAuBXLz+DHyBTDz+DMwbwPyHPt8EMH9m/POPPwOfz4/X68Pn8+H1evB6vODxgHmwQy+PFzNPotwwPOCxwxN6J1qozOj2P27X9XbEZwXX/TPH0WWH1mN93jf+dFEP+lF8/E9RPZT348NJb7v2+JmlPzH7ssgvGkOmf3g9rWFm651z844uVwtWP/n9fmZ/4GL4wMVA/Jeu8UAte2t20HqgBtdSS7SjlUioDU80iC/WicNw5o2/e7x4vb5EEpSNJyMbTyAHb0Y23oxc/Fk5BLJyycjKJyM7Jz6ZZnYu2V4vyfkoKCLJlpvho8Y7kZzOlyDYBJn9/y615kALG178NQXbHuUD4bXMsQi7sqZSM+dOKhd9ilOziwchchEZSSZPmMhzEz/HxTX/ztZff4/Tr/vmoJ0rEmylruZtGmt30LH/XWL11QRaasjr2E1JZC/5tDEWGNvtmBayafCU0Owfw+7sOVRnl2E5Y/DljiGzoJTsglKyCkrJKSojp2AM+T6/nsiRtKQEa4DMjMLS8RSWpmayThFJPTMjVHgaNAIH3obKY77M6lFdUzubXv4tbvN/M7ftJa62Jpo9+bx/yo1ULP4slZPmDmrcIjLyLPrUt3n57g0sfONutobbmfaxO3vtsnA8kc4gdbvfpWH323Tsf5dI/fv4m2vI7dhFSXgvJTQyDhiX2D/o/Oz1lNHgH8fuwhlECybiL55AXulEisdOpHTcJPKyctGYzDIaKMESEUkCb/np0Ahu35tYLwmWc463a/by3l9/h2fHc8xpe5mLrYkgAWpKF+GZv5SSs64m35cxtMGLyIiR4fdx+ucf5sX/XM6Srfey93tPUDvpGnJOXUB2WRXZOXlEolE6gkE6m/fT1rCPjsZ9uKY9+FtqyO3YTXF4L2NiBxlnriuBijgP+6yU+sBYthecRyR/Ir7iSeSMPZXiiimUjZvIZL+Pyan84UWGiQH1wTKzR4FpidVCoNE5N8fMJgNbgG2Jba845249UX3p0AdLRKQnj6ytZtFvl5A36Szylj8JxBOq3QcaeO/1l2l7+yVK973MzNgWAhalg0xqSs4n56zrGT/vKiwjN8U/gYiMJOFIlFdWPUzBxvs4M7LlhP2/Y87YbyXU+8fSmlVBJH8C3uJJZJedQuH4KZRVTiYjoC9/RLrrrQ9W0ga5MLMfAU3OubsSCdb/OOdm9KcOJVgikq4OtIZ48gef4bPe37Bx/Mdpa2ulpPktpsbeJWBRAHYGTqO1chHlZ11ByemLwBdIcdQiMhrs3beH3ds3EWusIRxsx+Px4A8EsJxScovKKSobT3FZJV6/EiiR/hjUQS4sPpHQDcCFyahPRCTdjMnNoOCSr7L2ufc4b8/DtJDNvqzT2Fb+KfKnLKRi5iIm5mtYdREZemPLxzO2XH3FRYZKsvpgXQDsc8693a2sysw2As3AN51zL/V0oJndAtwCMHHixCSFIyIy9G68YCbh814iFOkkLyNTnblFRERGoRMmWGb2B44cZfOQf3LOPZ1Y/jiwstu2WmCic+6gmZ0NPGVmZzrnmo+uxDn3U+CnEH9EsL8/gIjIcOL3esCbmeowREREJEVOmGA55y463nYz8wHXAmd3OyYEhBLL681sBzAVUAcrEREREREZsTxJqOMiYKtzbtehAjMrNTNvYvkUYArwbhLOJSIiIiIiMmwlow/WjRz5eCDAIuAuMwsDMeBW51x9Es4lIiIiIiIybCVtmPZkMLM64P1Ux3GUMcCBVAchQ0bXe/TQtR49dK1HF13v0UPXenQZjtd7knOu9OjCYZVgDUdmtq6n8e1lZNL1Hj10rUcPXevRRdd79NC1Hl3S6Xonow+WiIiIiIiIoARLREREREQkaZRgndhPUx2ADCld79FD13r00LUeXXS9Rw9d69Elba63+mCJiIiIiIgkiVqwREREREREkkQJloiIiIiISJIowToOM7vMzLaZ2Ttm9rVUxyPJY2YTzOxFM3vLzN40s79LlBeb2XNm9nbivSjVsUpymJnXzDaa2f8k1qvMbG3i/n7UzAKpjlGSw8wKzewJM9tqZlvM7AO6t0cmM7s98Td8s5mtNLNM3dsjh5n93Mz2m9nmbmU93ssW9++J6/66mZ2Vusilv3q51ncn/o6/bmb/bWaF3bZ9PXGtt5nZpSkJ+jiUYPXCzLzAvcDlwBnAx83sjNRGJUkUAf7BOXcGsAD4QuL6fg143jk3BXg+sS4jw98BW7qt/wD4V+fcaUAD8JmURCWD4f8Cq5xzpwOziV933dsjjJlVAF8G5jnnZgBe4EZ0b48kK4DLjirr7V6+HJiSeN0C3DdEMUpyrODYa/0cMMM5NwvYDnwdIPF57UbgzMQxP0l8bh82lGD1bj7wjnPuXedcJ/AIcHWKY5Ikcc7VOuc2JJZbiH8AqyB+jX+R2O0XwDUpCVCSyswqgSuAnyXWDbgQeCKxi671CGFmBcAi4EEA51ync64R3dsjlQ/IMjMfkA3Uont7xHDO/QmoP6q4t3v5auCXLu4VoNDMxg1JoDJgPV1r59yzzrlIYvUVoDKxfDXwiHMu5Jx7D3iH+Of2YUMJVu8qgJpu67sSZTLCmNlkYC6wFih3ztUmNu0FylMVlyTVvwH/CMQS6yVAY7c/3Lq/R44qoA54KPFI6M/MLAfd2yOOc2438C/ATuKJVROwHt3bI11v97I+t41sy4HfJZaH/bVWgiWjmpnlAk8Ctznnmrtvc/E5DDSPQZozsyuB/c659amORYaEDzgLuM85Nxdo46jHAXVvjwyJvjdXE0+qxwM5HPuIkYxgupdHBzP7J+JdOx5OdSx9pQSrd7uBCd3WKxNlMkKYmZ94cvWwc+7XieJ9hx4pSLzvT1V8kjQLgY+YWTXxR30vJN5HpzDxWBHo/h5JdgG7nHNrE+tPEE+4dG+PPBcB7znn6pxzYeDXxO933dsjW2/3sj63jUBmtgy4EviEOzx577C/1kqwevdXYEpiNKIA8c50z6Q4JkmSRB+cB4Etzrkfd9v0DPDpxPKngaeHOjZJLufc151zlc65ycTv4xecc58AXgSuT+ymaz1COOf2AjVmNi1R9CHgLXRvj0Q7gQVmlp34m37oWuveHtl6u5efAT6VGE1wAdDU7VFCSUNmdhnxx/s/4pxr77bpGeBGM8swsyriA5u8mooYe2OHk0E5mpl9mHjfDS/wc+fc91IbkSSLmZ0PvAS8weF+Od8g3g/rMWAi8D5wg3Pu6A62kqbMbDHwv51zV5rZKcRbtIqBjcBNzrlQCsOTJDGzOcQHNAkA7wI3E/9CUff2CGNmdwJLiT8+tBH4LPG+GLq3RwAzWwksBsYA+4BvA0/Rw72cSLLvIf6YaDtws3NuXQrClpPQy7X+OpABHEzs9opz7tbE/v9EvF9WhHg3j98dXWcqKcESERERERFJEj0iKCIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCTJ/wdBt7z2Vf4McgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
6False20.120.0646bAP.soma.v0.009574.34e-05
7False20.120.0646Step1.soma.v0.01062.79e-05
8False20.120.0646Step3.soma.v0.009564.33e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "6 False 2 0.12 0.0646 bAP.soma.v \n", + "7 False 2 0.12 0.0646 Step1.soma.v \n", + "8 False 2 0.12 0.0646 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "6 0.00957 4.34e-05 \n", + "7 0.0106 2.79e-05 \n", + "8 0.00956 4.33e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkHklEQVR4nOzdeXxU1f3/8ddnZrIDCYR9DSooq6jgUsGtfhXrXlvRutvWajf169LWtor+ar/9tn5rq7ZFra1WLeK+27riVjdARAVU0LCvARISss3M5/fH3MQhZAMmTELez8djZO69557zuXNz43xyzj3X3B0RERERERHZeaF0ByAiIiIiIrK7UIIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLRKSdMbMiM3Mzi6Q7FukczOxjMzsi3XGIiOwOlGCJiEiHZ2bTzKw8eNWYWW3S8nPpjq+9c/dR7j4zlXWa2U1m9pmZbTazhWZ2birrFxFpr5RgiYikmHqedj13v9jdu7h7F+DXwIy6ZXc/rq5cRzo3HSnWJlQAJwL5wHnAH83sK+kNSUSk7SnBEhFJATMrNrOfmNk8oMLMImZ2sJn9x8w2mdkHyUOwzGymmf2Pmb1rZmVm9oSZ9Wii7gvMbEHQE/C5mX2vwfaTzWxuUM9iM5scrM83s7vMbJWZrTCzX5lZuIXj2NPMXjazEjNbb2b3m1lB0rYNZrZ/sNzfzNbVHZeZnRQMNdsUHN+IBp/PlWY2z8xKzWyGmWVv/ye9/Zo4N25meyWVudvMfpW0fELwmW4KzuHYVrZ1hJktN7Nrgs+v2MzOStp+vJm9H5yrZWY2NWlb3dDQb5vZUuDlYP1DZrY6+NxeM7NRDeL+s5k9F/TWvWlmfc3sD2a2Meg52q+Vn9HRrTnG1nL369x9obvH3f0d4HXgkFS2ISLSHinBEhFJnTOB44ECoA/wDPAroAdwJfCImfVKKn8ucCHQD4gCtzRR71rgBKAbcAFwc1KScyDwD+CqoN3DgOJgv7uDevcC9gOOAb7TwjEY8D9Af2AEMAiYCuDui4GfAPeZWS7wd+Aed59pZsOB6cBlQC/gWeApM8tMqvt0YDIwFBgLnN9oAGYTg8SmqdfEFo6hMfXnxt2jzX4AiYTkb8D3gELgduBJM8tqZVt9gZ7AABI9N3eY2d7BtgoS570giOcSMzulwf6Hk/jsjw2WnwOGAb2BOcD9DcqfDvwiaLMaeCso1xN4GPh9K+NulJn9tLnz0co6coAJwMc7E4uISEegBEtEJHVucfdl7l4JnA086+7PBn/BfwGYBXwtqfy97v6Ru1cAvwROb6yHyd2fcffFnvAq8DwwKdj8beBv7v5C0M4Kd19oZn2Cti5z9wp3XwvcDJzR3AG4+6Kgrmp3X0fiy/nhSdvvBBYB75BIDH8ebJoCPBPsWwvcBOQAyUPCbnH3le6+AXgKGNdEDG+4e0EzrzeaO4YmJJ+bllwE3O7u77h7zN3vIZG4HLwd7f0y+AxfJZFonw7g7jPd/cPgXM0jkZQe3mDfqcE5qwz2+Zu7b3b3ahLJ7r5mlp9U/jF3n+3uVcBjQJW7/8PdY8AMEsn1DnP33zR3PlpZzTTgA+DfOxOLiEhHoARLRCR1liW9HwJ8s8Ff+ieSSEoaK78EyCDR67AVMzvOzN4OhudtIpE41ZUbBCxuJJYhQX2rktq/nUQvSJPMrI+ZPRAMKSwD7mskpjuB0cCtwZd+SPR4Lakr4O7x4PgGJO23Oun9FqBLc7Gk2LKWi9QbAlzR4NwNInGMrbExSJrrLKnb18wOMrNXgqGVpcDFbPv51sdqZmEz+40lhn6W8WXvZPI+a5LeVzayvCs/522Y2e9I/Lyc7u6ezlhERHYFJVgiIqmT/OVxGYkequS/9ue5+2+SygxKej8YqAXWJ1cYDEt7hESPUJ+gx+BZEkP56trZs5FYlpHodemZ1H43dx/VSNlkvw6OY4y7dyPRE1fXFmbWBfgDcBcw1b68b2wlicSkrpwFx7eihfa2YWaT7MsZABt7TWq5lm00/GK/BchNWu6b9H4ZcGODc5fr7tNb2VZ3M8tLWh5M4vMB+CfwJDDI3fNJ9OxYg/2TY/0WcDJwNInJIoqC9Q33aTPB/WRNno8W9r0eOA44xt3Ldk3EIiLppQRLRKRt3AecaGbHBr0Q2cEECAOTypxtZiOD+5luAB4OhnUlywSygHVA1MyOI3EvVZ27gAvM7KtmFjKzAWa2j7uvIjGU8P/MrFuwbU8zazgcraGuQDlQamYDSNzbleyPwCx3/w6JoW/TgvUPAscHcWQAV5BI8P7T0gfVkLu/njQDYGOv17e3zkbMBb4VnJvJbD1M707g4qC3ycwszxKTU3SF+okl7m6h/uvNLDNIBk8AHgrWdwU2uHtVcP/ct1qopyuJz7GEREL46+04xpRw9183dz6a2s/Mfkbi+I5295JdF7GISHopwRIRaQPuvoxEz8M1JJKjZSSSleTfu/eSmIhiNZAN/LiRejYH6x8ENpL4wvpk0vZ3CSa+AEqBV/myJ+lcEgna/GDfh9l6iGJjrgf2D+p6Bni0boOZnUxikopLglX/DexvZme5+yckertuJdELdyJworvXtNBeulxKIsZNwFnA43Ub3H0W8F3gNhKf2yK2npBjEPBmM3WvDvZbSWJCiovdfWGw7fvADWa2GbiWxHltzj9IDDFcQeI8vt3SgbUjvybRe7coqcfrmnQHJSLS1kzDoUVEdj0zmwnc5+5/TXcs0nrBrIgfAGODyTwabj+CxHkd2HCbiIh0Dh39IYYiIiK7TNAjN6LFgiIi0mlpiKCISCdjZtOamLBgWst7S0dkZoObmahicLrjExHZnWiIoIiIiIiISIqoB0tERERERCRF2tU9WD179vSioqJ0hyEiIiIiItKs2bNnr3f3Xg3Xt6sEq6ioiFmzZqU7DBERERERkWaZ2ZLG1muIoIiIiIiISIoowRIREREREUkRJVgiIiIiIiIp0q7uwWpMbW0ty5cvp6qqKt2hSDuQnZ3NwIEDycjISHcospuqqI7y43ve4NwJfTh8Pz1PVkRERLZPu0+wli9fTteuXSkqKsLM0h2OpJG7U1JSwvLlyxk6dGi6w5Hd1H8Wl3DF8h8zcuUSGLcJ9HtHREREtkO7HyJYVVVFYWGhkivBzCgsLFRvprSplWvXMzKUmBSoYtXCNEcjIiIiHU27T7AAJVdSTz8L0tbCK2fXv1837/k0RiIiIiIdUYdIsEREdhWrKat/H131URojERERkY5ICVYrmBlXXHFF/fJNN93E1KlT0xdQkiOOOKLZhzOfcsopHHzwwVutmzp1KgMGDGDcuHGMHj2aJ598sq3DFOkwQrUVAKz3bmRsXJzmaERERKSjUYLVCllZWTz66KOsX78+pfW6O/F4PKV1Jtu0aROzZ8+mtLSUzz//fKttl19+OXPnzuWhhx7iwgsvbNM4RDqScO0WABZHhpFfUZzeYERERKTDUYLVCpFIhIsuuoibb755m23r1q3jtNNOY8KECUyYMIE333wTSPQS3XTTTfXlRo8eTXFxMcXFxey9996ce+65jB49mmXLlnHVVVcxevRoxowZw4wZMwCYOXMmRxxxBN/4xjfYZ599OOuss3D3RuO7995763uj3n333fr1jz76KCeeeCJnnHEGDzzwQKP7jhgxgkgkslXy+NOf/pSRI0cyduxYrrzySgCKi4s56qijGDt2LF/96ldZunQpAOeffz6XXHIJBx98MHvssQczZ87kwgsvZMSIEZx//vn1dV5yySWMHz+eUaNGcd11120TR2lpKUOGDKlP9CoqKhg0aBC1tbWNxi3SViLRcgDWdh1BQawEqjenOSIRERHpSNr9NO3Jrn/qY+avLGu54HYY2b8b1504qsVyP/jBDxg7dixXX331VusvvfRSLr/8ciZOnMjSpUs59thjWbBgQbN1ffbZZ9xzzz0cfPDBPPLII8ydO5cPPviA9evXM2HCBA477DAA3n//fT7++GP69+/PoYceyptvvsnEiRO3qW/Lli3MnTuX1157jQsvvJCPPkrcNzJ9+nSuvfZa+vTpw2mnncY111yzzb7vvPMOoVCIXr16AVBSUsJjjz3GwoULMTM2bdoEwI9+9CPOO+88zjvvPP72t7/x4x//mMcffxyAjRs38tZbb/Hkk09y0kkn8eabb/LXv/6VCRMmMHfuXMaNG8eNN95Ijx49iMVifPWrX2XevHmMHTu2Po78/HzGjRvHq6++ypFHHsnTTz/Nscceq+ddyS4XiW4hRoia7sNhE/impVifln9HiIiIiIB6sFqtW7dunHvuudxyyy1brX/xxRf54Q9/yLhx4zjppJMoKyujvLy82bqGDBlSf1/UG2+8wZlnnkk4HKZPnz4cfvjhvPfeewAceOCBDBw4kFAoxLhx4yguLm60vjPPPBOAww47jLKyMjZt2sSaNWv47LPPmDhxIsOHDycjI6M+8QK4+eabGTduHFdeeSUzZsyon50vPz+f7Oxsvv3tb/Poo4+Sm5sLwFtvvcW3vvUtAM455xzeeOON+rpOPPFEzIwxY8bQp08fxowZQygUYtSoUfUxP/jgg+y///7st99+fPzxx8yfP3+b45gyZUp9D94DDzzAlClTmv0cRdpCRmwLVZZDRuFgALasXZLmiERERKQj6VA9WK3paWpLl112Gfvvvz8XXHBB/bp4PM7bb79Ndnb2VmUjkchW9zUlP7spLy+vVe1lZWXVvw+Hw0Sj0UbLNZy63Mx48MEH2bhxY/0DecvKypg+fTo33ngjkLgHq274X8O43333XV566SUefvhhbrvtNl5++eVWxRkKhbaKORQKEY1G+eKLL7jpppt477336N69O+eff36jz7I66aSTuOaaa9iwYQOzZ8/mqKOOarZdkbaQGdtCdSiHLr2Da2fNF+SNSXNQIiIi0mHsdA+WmQ0ys1fMbL6ZfWxmlwbrp5rZCjObG7y+tvPhplePHj04/fTTueuuu+rXHXPMMdx66631y3PnzgWgqKiIOXPmADBnzhy++OKLRuucNGkSM2bMIBaLsW7dOl577TUOPPDA7YqrrtfnjTfeID8/n/z8fKZPn86//vWv+vu+Zs+e3eR9WMnKy8spLS3la1/7GjfffDMffPABAF/5ylfq97///vuZNGlSq+MrKysjLy+P/Px81qxZw3PPPddouS5dujBhwgQuvfRSTjjhBMLhcKvbEEmVzPgWqkK5FPYZRK2HqVqvHiwRERFpvVT0YEWBK9x9jpl1BWab2QvBtpvd/aZm9u1wrrjiCm677bb65VtuuaX+/qxoNMphhx3GtGnTOO200/jHP/7BqFGjOOiggxg+fHij9Z166qm89dZb7LvvvpgZv/3tb+nbty8LFy5sdUzZ2dnst99+1NbW8re//Y3i4mKWLFmy1fTsQ4cOJT8/n3feeafROr72ta/x17/+FTPj5JNPpqqqCnfn97//PQC33norF1xwAb/73e/o1asXf//731sd37777st+++3HPvvsw6BBgzj00EPrt1177bWMHz+ek046CUgME/zmN7/JzJkzW12/SCplxSupCefQv0cXVnsPvHRZukMSERGRDsSampluhys0ewK4DTgUKN+eBGv8+PHe8JlOCxYsYMSIESmNUTo2/UxIW5p3w8FkZ2ez15WvMOv6Q+jXLZNBV7yW7rBERESknTGz2e4+vuH6lE5yYWZFwH5AXTfJD81snpn9zcy6N7HPRWY2y8xmrVu3LpXhiIhst2yvpDacSyhkbIr0Jq9ydbpDEhERkQ4kZQmWmXUBHgEuc/cy4C/AnsA4YBXwf43t5+53uPt4dx9fN1W4iEi65HgV0Uhi9swtOf3Ij66DWOMTzIiIiIg0lJIEy8wySCRX97v7owDuvsbdY+4eB+4Etm/mBhGRNMj0amLhHACiXQcQJg7l6sUSERGR1knFLIIG3AUscPffJ63vl1TsVOCjhvuKiLQ3GdRCOBOAUMEgAKIbl6YzJBEREelAUjGL4KHAOcCHZjY3WHcNcKaZjQMcKAa+l4K2RETaTCzuZBCrT7Cyeg4BYPPqYroXfSWdoYmIiEgHsdMJlru/AVgjm57d2bpFRHalmmicTGohknhgdtc+iQSrYv0SGp2lR0RERKSBlM4iuDt7/PHHMbNmn09VXFzM6NGjU9bm+eefz8MPP9zk9ssuu4wBAwYQj8fr191999306tWLcePGMXLkSO68886UxSOyu6upjZFlUSzowerTszebPYeaDcvTHJmIiIh0FEqwWmn69OlMnDiR6dOnN7o9Gt35WcZisViry8bjcR577DEGDRrEq6++utW2KVOmMHfuXGbOnMk111zDmjVrdjo2kc6guroSAMtIJFj9CrJZ5T2wzSvTGZaIiIh0IEqwWqG8vJw33niDu+66iwceeKB+/cyZM5k0aRInnXQSI0eOBBKJ1llnncWIESP4xje+wZYtWwB46aWX2G+//RgzZgwXXngh1dXVABQVFfGTn/yE/fffn4ceemibtl988UXGjx/P8OHDefrpp7dqe9SoUVxyySVNJn29e/dmzz33ZMmSJfXrbrnlFkaOHMnYsWM544wzANiwYQOnnHIKY8eO5eCDD2bevHkATJ06lfPOO49JkyYxZMgQHn30Ua6++mrGjBnD5MmTqa2tBeCGG25gwoQJjB49mosuuoiGD6+Ox+MUFRWxadOm+nXDhg1T4iftTk1N4rq0cDBEMCvCOisks0IJloiIiLROKia52HWe+yms/jC1dfYdA8f9ptkiTzzxBJMnT2b48OEUFhYye/ZsDjjgAADmzJnDRx99xNChQykuLuaTTz7hrrvu4tBDD+XCCy/kz3/+Mz/84Q85//zzeemllxg+fDjnnnsuf/nLX7jssssAKCwsZM6cOY22XVxczLvvvsvixYs58sgjWbRoEdnZ2UyfPp0zzzyTk08+mWuuuYba2loyMjK22vfzzz/n888/Z6+99qpf95vf/IYvvviCrKys+oTnuuuuY7/99uPxxx/n5Zdf5txzz2Xu3LkALF68mFdeeYX58+dzyCGH8Mgjj/Db3/6WU089lWeeeYZTTjmFH/7wh1x77bUAnHPOOTz99NOceOKJ9W2GQiFOPvlkHnvsMS644ALeeecdhgwZQp8+fVp9mkR2hZrqKgAsIzvxrxmlmX3oUj07nWGJiIhIB6IerFaYPn16fW/PGWecsVWP0YEHHsjQoUPrlwcNGsShhx4KwNlnn80bb7zBJ598wtChQxk+fDgA5513Hq+99lr9PlOmTGmy7dNPP51QKMSwYcPYY489WLhwITU1NTz77LOccsopdOvWjYMOOoh///vf9fvMmDGDcePGceaZZ3L77bfTo0eP+m1jx47lrLPO4r777iMSSeTXb7zxBueccw4ARx11FCUlJZSVlQFw3HHHkZGRwZgxY4jFYkyePBmAMWPGUFxcDMArr7zCQQcdxJgxY3j55Zf5+OOPtzmOKVOmMGPGDAAeeOCBZo9ZJF1qaxJDBMPBEEGAqpw+dI1thGhNusISERGRDqRj9WC10NPUFjZs2MDLL7/Mhx9+iJkRi8UwM373u98BkJeXt1X5xGPBml5uTMM6Wqrv3//+N5s2bWLMmDEAbNmyhZycHE444QQgkczcdtttjdb3zDPP8Nprr/HUU09x44038uGHzfcIZmUlhkqFQiEyMjLq4wmFQkSjUaqqqvj+97/PrFmzGDRoEFOnTqWqqmqbeg455BAWLVrEunXrePzxx/nFL37RbLsi6VAbDBEMBbMIAsS7DCBU5rB5FXQfkq7QREREpINQD1YLHn74Yc455xyWLFlCcXExy5YtY+jQobz++uuNll+6dClvvfUWAP/85z+ZOHEie++9N8XFxSxatAiAe++9l8MPP7xV7T/00EPE43EWL17M559/zt5778306dP561//SnFxMcXFxXzxxRe88MIL9fd7NSUej7Ns2TKOPPJI/vd//5fS0lLKy8uZNGkS999/P5C4t6tnz55069atVfHVJVM9e/akvLy8yVkPzYxTTz2V//7v/2bEiBEUFha2qn6RXSlak/h5DmV8mWBZwUAAajcuS0tMIiIi0rEowWrB9OnTOfXUU7dad9pppzU5scTee+/Nn/70J0aMGMHGjRu55JJLyM7O5u9//zvf/OY3GTNmDKFQiIsvvrhV7Q8ePJgDDzyQ4447jmnTphGPx/nXv/7F8ccfX18mLy+PiRMn8tRTTzVax3e+8x1mzZpFLBbj7LPPZsyYMey33378+Mc/pqCggKlTpzJ79mzGjh3LT3/6U+65555WfjpQUFDAd7/7XUaPHs2xxx7LhAkT6rdNmzaNadOm1S9PmTKF++67T8MDpd2qS7AiwT1YALk9BwFQtmZJo/uIiIiIJLOGM76l0/jx433WrFlbrVuwYAEjRoxIU0TSHulnQtrK268/z8EvfZPiY/9O0SFfB+DNj7/g0IfGseyAnzDoxGvSHKGIiIi0F2Y2293HN1yvHiwRkUCsNnEPViTzyx6s3j17UuY51G7Uw4ZFRESkZUqwREQCsWCSi4yke7D6FeSwyguxMj0LS0RERFrWIRKs9jSMUdJLPwvSluLRbXuwumRFWBcqJHPLqnSFJSIiIh1Iu0+wsrOzKSkp0Rdrwd0pKSkhOzu75cIiOyBem5jkIiMza6v1ZRl96FK9Jh0hiYiISAfT7p+DNXDgQJYvX866devSHYq0A9nZ2QwcODDdYchuKh7cg5WRtXUSX53bl/zS4GHDkczGdhUREREBOkCClZGRwdChQ9Mdhoh0Ah4MEczIzNlqfaxrfygFNq+E7kW7PjARERHpMNp8iKCZTTazT8xskZn9tK3bExHZUfFoDQCRBkMEw8HDhms0k6CIiIi0oE0TLDMLA38CjgNGAmea2ci2bFNEZEfV9WAR3jrByi4MHja8ungXRyQiIiIdTVv3YB0ILHL3z929BngAOLmN2xQR2TGxRA9Ww/usCvoUAVCxfukuDkhEREQ6mrZOsAYAy5KWlwfr6pnZRWY2y8xmaSILEUknD4YIEt46werdqydlnkt047JG9hIRERH5UtqnaXf3O9x9vLuP79WrV7rDEZFOzGKNJ1j98rNZ6YVY2Yo0RCUiIiIdSVsnWCuAQUnLA4N1IiLtjsWqqSUCofBW63MzI6wPFZK1ZXWaIhMREZGOoq0TrPeAYWY21MwygTOAJ9u4TRGRHRKKVVFjjT/nqiyzD131sGERERFpQZsmWO4eBX4I/BtYADzo7h+3ZZsiIjsqFKuhlsYTrOrcvnSLb4K6mQZFREREGtHmDxp292eBZ9u6HRGRnRWKV1MbajzBinXtD5uAspXQQw8/FxERkcalfZILEZH2IhyvIdrEEMGMgsQEqNV62LCIiIg0QwmWiEggEq8m2kQPVk7hEABK9bBhERERaYYSLBGRQCReTayJBKtb38SwwMp1X+zKkERERKSDUYIlIhKIxGuIhbIa3davVw/WeTdiJcW7NigRERHpUJRgiYgEMrzpBKt/QQ7LvTfhsqW7OCoRERHpSJRgiYgEMrwGDzeeYGWEQ6zP6EfeFj0rXURERJqmBEtEJJBBbZMJFkB5zgC6166GWHQXRiUiIiIdiRIsEREgFneyqMEjTSdYsW6DCROHMvViiYiISOOUYImIAFW1MbKoxSPZTZaJFBYBUK2ZBEVERKQJSrBERIDKIMGimQQrr++eAGxa+dmuCktEREQ6GCVYIiJ82YNlGU0nWIUD9iDmxpa1n+/CyERERKQjUYIlIgJU1cTIslqsmXuwBvfMZxWFxDcU77rAREREpENRgiUiAlRXbQEglJnTZJnCvExW0JvMzct2VVgiIiLSwSjBEhEBaqsTCVa4mSGCZsamzP50rdIsgiIiItI4JVgiIkBNVSXQfA8WQGXeQApiG6C2cleEJSIiIh3MTiVYZvY7M1toZvPM7DEzKwjWF5lZpZnNDV7TUhKtiEgbiVaVAxDOym22XLxgCAC+cUmbxyQiIiIdz872YL0AjHb3scCnwM+Sti1293HB6+KdbEdEpE3FKssACOfkN1suq9dQADavWtTmMYmIiEjHs1MJlrs/7+7RYPFtYODOhyQisuvFKksByGghweradxgAZauVYImIiMi2UnkP1oXAc0nLQ83sfTN71cwmNbWTmV1kZrPMbNa6detSGI6ISOvV9WBldylotlzfAYPZ4llUr128C6ISERGRjibSUgEzexHo28imn7v7E0GZnwNR4P5g2ypgsLuXmNkBwONmNsrdyxpW4u53AHcAjB8/3nfsMEREdk6sajMA2V0Lmi03qEceS7w3WZt0D5aIiIhsq8UEy92Pbm67mZ0PnAB81d092KcaqA7ezzazxcBwYNbOBiwi0hbi1Ym//2TmdGu2XE5mmDXhvgwv17OwREREZFs7O4vgZOBq4CR335K0vpeZhYP3ewDDgM93pi0RkbZk1YkeLLK6tli2LGcA3WtWgKvTXURERLa2s/dg3QZ0BV5oMB37YcA8M5sLPAxc7O4bdrItEZE2YzXlRAlBRvPPwQKo6TqEbK+G8rW7IDIRERHpSFocItgcd9+rifWPAI/sTN0iIrtSuHYzlZZLV7MWy4Z6DIU1ULv+czK69tkF0YmIiEhHkcpZBEVEOqxIbQWV1vxDhuvk9dkTgI0rP2vLkERERKQDUoIlIgJEohXURPJaVbbHwGHE3diyWgmWiIiIbE0JlogIkBXdTG2kS6vKDurdndV0J1byRRtHJSIiIh2NEiwR6fTcnfz4JmqyerSqfK8uWSynD5llS9s4MhEREelolGCJSKe3pSZGIZuI5vRqVflQyNiQ2Z+ulcvbODIRERHpaJRgiUint6Gsgh5WDnmtS7AAtuQNoiBWAjVbWi4sIiIinYYSLBHp9DaVrAIg3K31U657QVHi301L2iIkERER6aCUYIlIp1e2bgUAuT36tXqfzF57AFC+alGbxCQiIiIdkxIsEen0KjYkerDye/Zv9T7d+g0DoFTPwhIREZEkSrBEpNOr3bQSgG69BrV6n379B1Lu2dSs/7ytwhIREZEOSAmWiHR6kbKlRAlh+QNbvc+gHnks896ENupZWCIiIvIlJVgi0unllC9jQ7gXhDNav09mmNXhvuRULGvDyERERKSjUYIlIp1eQfVKynIGbPd+ZTkD6V69CuLxNohKREREOiIlWCLSqZVW1tLP11DbdfB271vTdTCZ1ED5mjaITERERDoiJVgi0qktW76cXlZKqNew7d+5exEA0ZLFqQ1KREREOqydSrDMbKqZrTCzucHra0nbfmZmi8zsEzM7dudDFRFJvY1fzAGgy+Bx271vTu/Es7A261lYIiIiEoikoI6b3f2m5BVmNhI4AxgF9AdeNLPh7h5LQXsiIilTtfxDAHoPO2C79y3oGzxseO0Suqc0KhEREemo2mqI4MnAA+5e7e5fAIuAA9uoLRGRHZZZMp+NVkBGfr/t3rdfr+6s925ENy5tg8hERESkI0pFgvVDM5tnZn8zs7o/4g4AkucuXh6s24aZXWRms8xs1rp161IQjohI6/WqWMS63L12aN8BBTms9EJCZStTHJWIiIh0VC0mWGb2opl91MjrZOAvwJ7AOGAV8H/bG4C73+Hu4919fK9evbZ3dxGRHbautII9fCnVhfvs0P7ZGWHWh3uTvUUJloiIiCS0eA+Wux/dmorM7E7g6WBxBTAoafPAYJ2ISLtR/Ok8Jlgt2QP33eE6yrP70q1qHriDWQqjExERkY5oZ2cRTL5p4VTgo+D9k8AZZpZlZkOBYcC7O9OWiEiqlRa/D0CfvbZ/gos6tV36k+OVULUpRVGJiIhIR7azswj+1szGAQ4UA98DcPePzexBYD4QBX6gGQRFpL3x1R8RJUy3waN3uA7LHwTrIL5xGaEczSUoIiLS2e1UguXu5zSz7Ubgxp2pX0SkLXUr/YTVGYMYGMna4TqyCwfDIihb8wUF/cemMDoRERHpiNpqmnYRkXatOhpjUO0XlObv2AQXdbr1LQKgbM2SFEQlIiIiHZ0SLBHplL5Yupz+VoL1GbVT9fTqO5gaD1NdogRLRERElGCJSCe1+rM5ABQM3W+n6hnQI49VXgily1MRloiIiHRwSrBEpFOqXv4BAL13YgZBgC5ZEdaGepFRridRiIiIiBIsEemkMksWUGrdiOT3a7lwC0oz+9C1enUKohIREZGOTgmWiHQ67k7vLZ+xNndYSh4OXJ3Xn4JYCcSiKYhOREREOjIlWCLS6awt3cKevpSawhEpqS/edSBh4vjmVSmpT0RERDouJVjNWLJwDm/9/WesX7E43aGISAotX/wx2VZL5oDUPLcqUjgEgM2rPktJfSIiItJxKcFqxqr3/8UhS/5MjzsO4KNfT+Kd+67j84/fJR6Lpzs0EdkJFUvnAlCwx87NIFgnZ0BiqvfNyz5KSX0iIiLScUXSHUB7dvCZ17B00cmsfPXv9FnxAqMX/QEW/YH1FLAibyRVvfcjp2gCA/YaS49+RVgonO6Qd0wsikeriNZWU1tdSW1VJbW1VUSrq6itrSUaraU2Wks0GiUWvNxjeDwG8Rh4DOLRYDmOx6PB+jjucdzBcdwdd0j8J8EI3pvVr0/cEVNXxvnyDpm67Un3zDS4fWarxQb31myz1OytN1v/7WGbos3s681X3PzO0OI9Qc3X31LdzW9utsBOxdWqxlPKgbg7uAfvE+vcnexFzxH1EIVDUtOD1bPvEMo8l+jqBSmpT1onFouzpXILVRVlVG3ZTKy6gmhVBbFoNfHaGmLRGuK11cSitXi0hni0OvFvLLFMrAb3eOJ3j8cB//K9A9Rt82Bbokzd763Ez3zSy4ItlliuuybcQnz5OydYX18GIFS/LVFHXZ1BXcnrLBTs36B9q/9tWv87svFLduvffclFzLa9jpN/3xrgQaWNVf1le023UXfcDSJqomzTcTZSupn2tl6fgtsuZRf58qdaOrvNXYoYtt/hDOyem+5QWkUJVgsG7zWKwXvdBMCqZYtZ8d5T+JI36VP2EYO/+A98AbwCVZ7BqnB/SrP6EcvpSTy3kHhuT0J5PcnK6UJGdh6hzBxCGTmEMnOIhIyQOXGHuMeJx51Y3PFYFI/V4NEavLYq+KLw5cujX76I1UDwr8WqCcWqsVgN4XgNoXgNoVgNYa8hEq8h7LVE4jVkeA0Rasn0WjJIvCLEMSAjeIl0Bp9l7s2wzOyU1DWwRy6f+QD6b1iYkvo6i+raWjauX8PmklVUlZVQs7mEmoqNxLdsxCs3EareRLi6lIzaMrKj5WTFt5DpVWQHrxyq6Wpxuu6CWOOe+KrnSYmTJS2FTF8ERUTayt+jx1LRc18lWLujfoP2pN+gy4DLACjdsJZl89+hdPlCQhsXk7v5C7pWr6VL5Sf0KCkjw2JtHlONh6khgxoyqLUgZbJMopZB1DKoDWVRZV2IhTOJhTKJhzKJhzOJh7PwcCYeyoRINkQyIZwFkSwsIwuLZBGKZBGOZCRe4QiRSOIVjkQIhcJYKAKhMBauWw5DKIKFQoRCESwUJhQOYWaEgpeZBX89TO6XathHFUj8OXWrdZ78p8cG32c8aYXHG25rUDKpF823+V7UoHSD7bbtDk3uu93bm627hf1b3LdhTVuXT+9xpZY7wc8bWMgIGYSwus4AQmYMLRyQsvbyczJYEBrG2NIXobYSMnIaLRePO7M/+Zz+hfkM6N0zZe23J+7OpvIq1q/8gs1rFlO1fimxzWuxirVEKteTXV1CXnQD+fFN9PBS+lqcvk3UVU4u5daFLeEuVIW7Up7Zl1gkh3gkl3hGHmTkYpl5kJlLOCuv/n0oI5twJJNQJJNwRibhjCwiGVmEMzKJZGSSkZFNJDOxHA6HMAsnfjeFDLNw4mcnFMIsFKwPtX48/VY9Xo3/W99rhuPxL7d5/S88x+NxvvxdFWyvq9vjeF3vWvCZN7x+kxe/vNa9wfqtz1vD3wpbVelf/o7Y6netN6yrwe/XBvXZl6W2KeD1/7Um4m+sva0Dbeo3zZf7Nfe7X9ondTkKfDWrGz169053GK2mBGsn5PfoTf7EE4ETt9kWjcbYWFpCxcY1VJRvprqyAo9W4jWVieF4wf8b65IPCxlhs0SSEsmCcCahjCzCmVlEMrLJyMwikplNRlY2GZk5ZGRmkZmdQ2YkQqbGO4iklZmxoe9EMlY/ixe/iQ07eqvtmyurefPFJ8j44F4Oq32T9/MmMuDqJ9MU7c6pjsZYvqGCNSuKKVv9OdH1XxAqW0ZOxXK6Va2kd2wNfSmhe4M/MNUQYaMVsDnSg8qcvpRlj2JJbi+sSx8i3XqT2aWQnG49yM3vSZf8nuR2606XcAZd0nScO6wui2+uSBPvRURk96AEq41EImG6F/ame2HHybZFZMcN3O+/2PTsjfhLv6f7nkdRE3PmzX2H1e88wph1TzHZ1lBueSzxPozc8i7EaiHc/gblxuPOus1VrFq5lI0rFlG57gt84xIyNy+rT6AG2nr2tK2f+bUx1J2Nmf0pzd2XDd0GE+oxhJxee9C1TxHdew8kM6+APmb0SdNxiYiI7CpKsEREUuBr++/JtBe/xWWr72T9r4ZBrJbxVgrA5132Y8n4nzJk4pkUP3kfe314Jevmv0qvMUe3UGvbKK+qZeXKFZSs+IyKNZ8T31BMuGwZXapWUli7mgGso4/VbLVPaSif0qx+VHUZTXHBYLJ7DqVbv73I77cnoe6D6Z6RQ/e0HI2IiEj7Yr4Tg5DNbAawd7BYAGxy93FmVgQsAD4Jtr3t7he3VN/48eN91qxZOxyPiEg6LV1fwauP/pm9NrxGRm5XcooOZM9Dv0524eAvy6xaS8G0sazsfQT7/OCBNomjNhpj9ZrVrF++mM2rF1O7oZhw6RJyt6yge80q+vk6uljVVvtsti5szOjLlryBxLsNIqPnULr03YMeA4aRVVgEWR1usJ6IiEibMrPZ7j5+m/U7k2A1aOD/gFJ3vyFIsJ5299HbU4cSLBHpDJ7//bc5uvQRVh5/DwMPPHm79nV3yiqqWLd6KWWrP6d6XTGxTcsIly0ne8tK8mtW0zu+bQJVQQ4lGf0oz+lPtOsgwoVDyOuzJz0G7EXXPntgOQUpPEIREZHdX1MJVkqGCJqZAacDR6WiPhGR3dnos/+XRX9+jz2fOY8Fbx1BddFRZBb0IxrKwqPVRCvLqKkopbailPCWdWRUrSO7ej15tSUUxDbSnc3kN5gWfBNd2BDpQ3neEDZ1/Qqh7oPJ6VlE9wF7UThwOHm53cnThDgiIiJtLiU9WGZ2GPD7ugwu6MH6GPgUKAN+4e6vN7HvRcBFAIMHDz5gyZIlOx2PiEh7t3zVaj6ecR0HbXyKAqtoslw1GWy0AsoiPajM7Em0bua9/H7k9BpC1z5D6dF/TzJzu+3C6EVERGSHhwia2YvQ6GNKfu7uTwRl/gIscvf/C5azgC7uXmJmBwCPA6Pcvay5tjREUEQ6m4qqGtYu/YTyDWvJoBqLZJGZm0+3/O50K+hBRm5Bi9N+i4iIyK63w0ME3b3Zaa7MLAJ8HTggaZ9qoDp4P9vMFgPDAWVPIiJJ8rIzGTp8TLrDEBERkRRp9cPpm3E0sNDdl9etMLNeZhYO3u8BDAM+T0FbIiIiIiIi7VYqJrk4A5jeYN1hwA1mVgvEgYvdfUMK2hIREREREWm3djrBcvfzG1n3CPDIztYtIiIiIiLSkaTsOVipYGbrgPY2jWBPYH26g5BdRue789C57jx0rjsXne/OQ+e6c2mP53uIu/dquLJdJVjtkZnNamx2ENk96Xx3HjrXnYfOdeei89156Fx3Lh3pfKdikgsRERERERFBCZaIiIiIiEjKKMFq2R3pDkB2KZ3vzkPnuvPQue5cdL47D53rzqXDnG/dgyUiIiIiIpIi6sESERERERFJESVYIiIiIiIiKaIEqxlmNtnMPjGzRWb203THI6ljZoPM7BUzm29mH5vZpcH6Hmb2gpl9FvzbPd2xSmqYWdjM3jezp4PloWb2TnB9zzCzzHTHKKlhZgVm9rCZLTSzBWZ2iK7t3ZOZXR78Dv/IzKabWbau7d2Hmf3NzNaa2UdJ6xq9li3hluC8zzOz/dMXuWyvJs7174Lf4/PM7DEzK0ja9rPgXH9iZsemJehmKMFqgpmFgT8BxwEjgTPNbGR6o5IUigJXuPtI4GDgB8H5/SnwkrsPA14KlmX3cCmwIGn5f4Gb3X0vYCPw7bREJW3hj8C/3H0fYF8S513X9m7GzAYAPwbGu/toIAycga7t3cndwOQG65q6lo8DhgWvi4C/7KIYJTXuZttz/QIw2t3HAp8CPwMIvq+dAYwK9vlz8L293VCC1bQDgUXu/rm71wAPACenOSZJEXdf5e5zgvebSXwBG0DiHN8TFLsHOCUtAUpKmdlA4Hjgr8GyAUcBDwdFdK53E2aWDxwG3AXg7jXuvgld27urCJBjZhEgF1iFru3dhru/BmxosLqpa/lk4B+e8DZQYGb9dkmgstMaO9fu/ry7R4PFt4GBwfuTgQfcvdrdvwAWkfje3m4owWraAGBZ0vLyYJ3sZsysCNgPeAfo4+6rgk2rgT7piktS6g/A1UA8WC4ENiX94tb1vfsYCqwD/h4MCf2rmeWha3u34+4rgJuApSQSq1JgNrq2d3dNXcv63rZ7uxB4Lnjf7s+1Eizp1MysC/AIcJm7lyVv88QzDPQcgw7OzE4A1rr77HTHIrtEBNgf+Iu77wdU0GA4oK7t3UNw783JJJLq/kAe2w4xkt2YruXOwcx+TuLWjvvTHUtrKcFq2gpgUNLywGCd7CbMLINEcnW/uz8arF5TN6Qg+HdtuuKTlDkUOMnMikkM9T2KxD06BcGwItD1vTtZDix393eC5YdJJFy6tnc/RwNfuPs6d68FHiVxveva3r01dS3re9tuyMzOB04AzvIvH97b7s+1EqymvQcMC2YjyiRxM92TaY5JUiS4B+cuYIG7/z5p05PAecH784AndnVsklru/jN3H+juRSSu45fd/SzgFeAbQTGd692Eu68GlpnZ3sGqrwLz0bW9O1oKHGxmucHv9LpzrWt799bUtfwkcG4wm+DBQGnSUELpgMxsMonh/Se5+5akTU8CZ5hZlpkNJTGxybvpiLEp9mUyKA2Z2ddI3LsRBv7m7jemNyJJFTObCLwOfMiX9+VcQ+I+rAeBwcAS4HR3b3iDrXRQZnYEcKW7n2Bme5Do0eoBvA+c7e7VaQxPUsTMxpGY0CQT+By4gMQfFHVt72bM7HpgConhQ+8D3yFxL4au7d2AmU0HjgB6AmuA64DHaeRaDpLs20gME90CXODus9IQtuyAJs71z4AsoCQo9ra7XxyU/zmJ+7KiJG7zeK5hnemkBEtERERERCRFNERQREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERE2hkzKzIzN7NIumORzsHMPjazI9Idh4jI7kAJloiIdHhmNs3MyoNXjZnVJi0/l+742jt3H+XuM1NZp5ndZGafmdlmM1toZuemsn4RkfZKCZaISIqp52nXc/eL3b2Lu3cBfg3MqFt29+PqynWkc9ORYm1CBXAikA+cB/zRzL6S3pBERNqeEiwRkRQws2Iz+4mZzQMqzCxiZgeb2X/MbJOZfZA8BMvMZprZ/5jZu2ZWZmZPmFmPJuq+wMwWBD0Bn5vZ9xpsP9nM5gb1LDazycH6fDO7y8xWmdkKM/uVmYVbOI49zexlMysxs/Vmdr+ZFSRt22Bm+wfL/c1sXd1xmdlJwVCzTcHxjWjw+VxpZvPMrNTMZphZ9vZ/0tuviXPjZrZXUpm7zexXScsnBJ/ppuAcjm1lW0eY2XIzuyb4/IrN7Kyk7ceb2fvBuVpmZlOTttUNDf22mS0FXg7WP2Rmq4PP7TUzG9Ug7j+b2XNBb92bZtbXzP5gZhuDnqP9WvkZHd2aY2wtd7/O3Re6e9zd3wFeBw5JZRsiIu2REiwRkdQ5EzgeKAD6AM8AvwJ6AFcCj5hZr6Ty5wIXAv2AKHBLE/WuBU4AugEXADcnJTkHAv8ArgraPQwoDva7O6h3L2A/4BjgOy0cgwH/A/QHRgCDgKkA7r4Y+Alwn5nlAn8H7nH3mWY2HJgOXAb0Ap4FnjKzzKS6TwcmA0OBscD5jQZgNjFIbJp6TWzhGBpTf27cPdrsB5BISP4GfA8oBG4HnjSzrFa21RfoCQwg0XNzh5ntHWyrIHHeC4J4LjGzUxrsfziJz/7YYPk5YBjQG5gD3N+g/OnAL4I2q4G3gnI9gYeB37cy7kaZ2U+bOx+trCMHmAB8vDOxiIh0BEqwRERS5xZ3X+bulcDZwLPu/mzwF/wXgFnA15LK3+vuH7l7BfBL4PTGepjc/Rl3X+wJrwLPA5OCzd8G/ubuLwTtrHD3hWbWJ2jrMnevcPe1wM3AGc0dgLsvCuqqdvd1JL6cH560/U5gEfAOicTw58GmKcAzwb61wE1ADpA8JOwWd1/p7huAp4BxTcTwhrsXNPN6o7ljaELyuWnJRcDt7v6Ou8fc/R4SicvB29HeL4PP8FUSifbpAO4+090/DM7VPBJJ6eEN9p0anLPKYJ+/uftmd68mkezua2b5SeUfc/fZ7l4FPAZUufs/3D0GzCCRXO8wd/9Nc+ejldVMAz4A/r0zsYiIdARKsEREUmdZ0vshwDcb/KV/IomkpLHyS4AMEr0OWzGz48zs7WB43iYSiVNduUHA4kZiGRLUtyqp/dtJ9II0ycz6mNkDwZDCMuC+RmK6ExgN3Bp86YdEj9eSugLuHg+Ob0DSfquT3m8BujQXS4ota7lIvSHAFQ3O3SASx9gaG4Okuc6Sun3N7CAzeyUYWlkKXMy2n299rGYWNrPfWGLoZxlf9k4m77Mm6X1lI8u78nPehpn9jsTPy+nu7umMRURkV1CCJSKSOslfHpeR6KFK/mt/nrv/JqnMoKT3g4FaYH1yhcGwtEdI9Aj1CXoMniUxlK+unT0biWUZiV6Xnkntd3P3UY2UTfbr4DjGuHs3Ej1xdW1hZl2APwB3AVPty/vGVpJITOrKWXB8K1pobxtmNsm+nAGwsdeklmvZRsMv9luA3KTlvknvlwE3Njh3ue4+vZVtdTezvKTlwSQ+H4B/Ak8Cg9w9n0TPjjXYPznWbwEnA0eTmCyiKFjfcJ82E9xP1uT5aGHf64HjgGPcvWzXRCwikl5KsERE2sZ9wIlmdmzQC5EdTIAwMKnM2WY2Mrif6Qbg4WBYV7JMIAtYB0TN7DgS91LVuQu4wMy+amYhMxtgZvu4+yoSQwn/z8y6Bdv2NLOGw9Ea6gqUA6VmNoDEvV3J/gjMcvfvkBj6Ni1Y/yBwfBBHBnAFiQTvPy19UA25++tJMwA29np9e+tsxFzgW8G5mczWw/TuBC4OepvMzPIsMTlFV6ifWOLuFuq/3swyg2TwBOChYH1XYIO7VwX3z32rhXq6kvgcS0gkhL/ejmNMCXf/dXPno6n9zOxnJI7vaHcv2XURi4iklxIsEZE24O7LSPQ8XEMiOVpGIllJ/r17L4mJKFYD2cCPG6lnc7D+QWAjiS+sTyZtf5dg4gugFHiVL3uSziWRoM0P9n2YrYcoNuZ6YP+grmeAR+s2mNnJJCapuCRY9d/A/mZ2lrt/QqK361YSvXAnAie6e00L7aXLpSRi3AScBTxet8HdZwHfBW4j8bktYusJOQYBbzZT9+pgv5UkJqS42N0XBtu+D9xgZpuBa0mc1+b8g8QQwxUkzuPbLR1YO/JrEr13i5J6vK5Jd1AiIm3NNBxaRGTXM7OZwH3u/td0xyKtF8yK+AEwNpjMo+H2I0ic14ENt4mISOfQ0R9iKCIisssEPXIjWiwoIiKdloYIioh0MmY2rYkJC6a1vLd0RGY2uJmJKganOz4Rkd2JhgiKiIiIiIikiHqwREREREREUqRd3YPVs2dPLyoqSncYIiIiIiIizZo9e/Z6d+/VcH27SrCKioqYNWtWusMQERERERFplpktaWy9hgiKiIiIiIikiBIsERERERGRFFGCJSKyA0q31PL0vJVoJlYRERFJ1q7uwWpMbW0ty5cvp6qqKt2hSAeTnZ3NwIEDycjISHcoshu69eXPeOfNl8gp3ZevTjos3eGIiIhIO9HuE6zly5fTtWtXioqKMLN0hyMdhLtTUlLC8uXLGTp0aLrDkd1QbMnbPJX1C0pe6weTFqY7HBEREWkn2v0QwaqqKgoLC5VcyXYxMwoLC9XzKW2mz+aPASisXQXRmjRHIyIiIu1Fu0+wACVXskP0cyNtKVy9qf69r52fvkBERESkXekQCZaISHsSiztZ0dL65c1LP0hjNCIiItKeKMFqBTPjiiuuqF++6aabmDp1avoCSvL2229z0EEHMW7cOEaMGFEf18yZM/nPf/6zU3VPnjyZgoICTjjhhBREKrL72FITJZ8KSsI9Adi8+os0RyQiIiLtxU4nWGY2yMxeMbP5ZvaxmV0arJ9qZivMbG7w+trOh5seWVlZPProo6xfvz6l9bo78Xh8p+o477zzuOOOO5g7dy4fffQRp59+OpCaBOuqq67i3nvv3ak6RHZH1dE4BZRTmdWbtV5A7YZGH+QuIiIinVAqZhGMAle4+xwz6wrMNrMXgm03u/tNKWgDgOuf+pj5K8tSVR0AI/t347oTRzVbJhKJcNFFF3HzzTdz4403brVt3bp1XHzxxSxduhSAP/zhDxx66KFMnTqVLl26cOWVVwIwevRonn76aQCOPfZYDjroIGbPns2zzz7LbbfdxnPPPYeZ8Ytf/IIpU6Ywc+ZMpk6dSs+ePfnoo4844IADuO+++7a5r2jt2rX069cPgHA4zMiRIykuLmbatGmEw2Huu+8+br31VvbZZ58m41y8eDGLFi1i/fr1XH311Xz3u98F4Ktf/SozZ85s9rN56KGHuP766wmHw+Tn5/Paa69RVVXFJZdcwqxZs4hEIvz+97/nyCOP5O677+bxxx+noqKCzz77jCuvvJKamhruvfdesrKyePbZZ+nRowd33nknd9xxBzU1Ney1117ce++95ObmbtXuwQcfzF133cWoUYlzd8QRR3DTTTcxfvz4ZuMVSYXqaJx8K8dy+7GivIbC0mXpDklERETaiZ3uwXL3Ve4+J3i/GVgADNjZetubH/zgB9x///2UlpZutf7SSy/l8ssv57333uORRx7hO9/5Tot1ffbZZ3z/+9/n448/ZtasWcydO5cPPviAF198kauuuopVq1YB8P777/OHP/yB+fPn8/nnn/Pmm29uU9fll1/O3nvvzamnnsrtt99OVVUVRUVFXHzxxVx++eXMnTuXSZMmNRvnvHnzePnll3nrrbe44YYbWLlyZas/lxtuuIF///vffPDBBzz55JMA/OlPf8LM+PDDD5k+fTrnnXde/Wx+H330EY8++ijvvfceP//5z8nNzeX999/nkEMO4R//+AcAX//613nvvff44IMPGDFiBHfdddc27U6ZMoUHH3wQgFWrVrFq1SolV7LLVNfGKKCCeHYBJZHe5FS2/poRERGR3VtKn4NlZkXAfsA7wKHAD83sXGAWiV6ujY3scxFwEcDgwYObrb+lnqa21K1bN84991xuueUWcnJy6te/+OKLzJ//5QxiZWVllJeXN1vXkCFDOPjggwF44403OPPMMwmHw/Tp04fDDz+c9957j27dunHggQcycOBAAMaNG0dxcTETJ07cqq5rr72Ws846i+eff55//vOfTJ8+vdFep+biPPnkk8nJySEnJ4cjjzySd999l1NOOaVVn8uhhx7K+eefz+mnn87Xv/71+mP60Y9+BMA+++zDkCFD+PTTTwE48sgj6dq1K127diU/P58TTzwRgDFjxjBv3jwgkYT94he/YNOmTZSXl3Psscdu0+7pp5/OMcccw/XXX8+DDz7IN77xjVbFK5IKNbE4fa2cTVkFbM7OpmDLexCPQ0i3tYqIiHR2KUuwzKwL8AhwmbuXmdlfgP8HePDv/wEXNtzP3e8A7gAYP368pyqetnDZZZex//77c8EFF9Svi8fjvP3222RnZ29VNhKJbHV/VfLzmPLy8lrVXlZWVv37cDhMNBpttNyee+7JJZdcwne/+1169epFSUnJNmWaihO2nc58e6Y3nzZtGu+88w7PPPMMBxxwALNnz262fPIxhUKh+uVQKFR/fOeffz6PP/44++67L3fffXejCeOAAQMoLCxk3rx5zJgxg2nTprU6ZpGdVV0TpRtb2JhVQHVumIwttVCxFrr2TXdoIiIikmYp+XOrmWWQSK7ud/dHAdx9jbvH3D0O3AkcmIq20qlHjx6cfvrpWw1ZO+aYY7j11lvrl+fOnQtAUVERc+bMAWDOnDl88UXjs4xNmjSJGTNmEIvFWLduHa+99hoHHtj6j+qZZ57BPZGXfvbZZ4TDYQoKCujatSubN29uMU6AJ554gqqqKkpKSpg5cyYTJkxodfuLFy/moIMO4oYbbqBXr14sW7aMSZMmcf/99wPw6aefsnTpUvbee+9W17l582b69etHbW1tfT2NmTJlCr/97W8pLS1l7Nixra5fZGfVVFcRMscyc4nnD0qs3KT7sERERCQ1swgacBewwN1/n7S+X1KxU4GPdrat9uCKK67YajbBW265hVmzZjF27FhGjhxZ35Ny2mmnsWHDBkaNGsVtt93G8OHDG63v1FNPZezYsey7774cddRR/Pa3v6Vv39b/Ffzee+9l7733Zty4cZxzzjncf//9hMNhTjzxRB577DHGjRvH66+/3mScAGPHjuXII4/k4IMP5pe//CX9+/cHEsnfN7/5TV566SUGDhzIv//9byAxLLHufqurrrqKMWPGMHr0aL7yla+w77778v3vf594PM6YMWOYMmUKd99991Y9Vy35f//v/3HQQQdx6KGHss8++9Svf/LJJ7n22mvrl7/xjW/wwAMP1M+cKLKrRKu3ABDKyCajMDG0uXK9pmoXERERsLrejx2uwGwi8DrwIVA3Ju4a4ExgHIkhgsXA99x9VXN1jR8/3mfNmrXVugULFjBixIidilGa1nC2w92Nfn6kLbw+50MmPTmR5V+5kXk9juFrT09g/cHX0HPyT9IdmoiIiOwiZjbb3beZZW2n78Fy9zeAxm7aeXZn6xYRaY+iNYl7KsOZ2fTq2ZNSz6WmRM/CEhERkRTPIigdz9SpU9MdgkiHE62pBBIJVt9u2azyQrqWNdtBLyIiIp2E5hQWEdlOsaAHK5KZQ59u2az2HkQqlGCJiIiIEiwRke0Wr/0ywcqMhNgU6UlO1Zo0RyUiIiLtgRIsEZHt9GUPVmJ2zC3ZvekS3Qix2nSGJSIiIu2AEiwRke3kQQ9WRlYuALW5fQnhsHl1OsMSERGRdkAJVis9/vjjmBkLFy5sskxxcTGjR49OWZuffPIJRxxxBOPGjWPEiBFcdNFFQOIhwc8+u3OTNF544YX07t07pfGKdBbxaNCDlZWdWNEt8ew4ylamKSIRERFpL5RgtdL06dOZOHEi06dPb3R7NBrd6TZisdhWyz/+8Y+5/PLLmTt3LgsWLOBHP/oRkJoE6/zzz+df//rXTtUh0ll5bTUAFskBIKP7QABqNi1PW0wiIiLSPnSsadqf+yms/jC1dfYdA8f9ptki5eXlvPHGG7zyyiuceOKJXH/99QDMnDmTX/7yl3Tv3p2FCxfy/PPPE41GOeuss5gzZw6jRo3iH//4B7m5ubz00ktceeWVRKNRJkyYwF/+8heysrIoKipiypQpvPDCC1x99dWcccYZ9e2uWrWKgQMH1i+PGTOGmpoarr32WiorK3njjTf42c9+xgknnMCPfvQjPvroI2pra5k6dSonn3wyd999N4899hilpaWsWLGCs88+m+uuuw6Aww47jOLi4maP+9VXX+XSSy8FwMx47bXX6NKlC1dffTXPPfccZsYvfvELpkyZwsyZM7nuuusoKCjgww8/5PTTT2fMmDH88Y9/pLKykscff5w999yTp556il/96lfU1NRQWFjI/fffT58+fbZq94wzzuCcc87h+OOPBxLJ4AknnMA3vvGN1p1TkbYWTSRYRDIByO05GIDytUvpka6YREREpF1QD1YrPPHEE0yePJnhw4dTWFjI7Nmz67fNmTOHP/7xj3z66adAYljf97//fRYsWEC3bt3485//TFVVFeeffz4zZszgww8/JBqN8pe//KW+jsLCQubMmbNVcgVw+eWXc9RRR3Hcccdx8803s2nTJjIzM7nhhhuYMmUKc+fOZcqUKdx4440cddRRvPvuu7zyyitcddVVVFRUAPDuu+/yyCOPMG/ePB566CFmzZrV6uO+6aab+NOf/sTcuXN5/fXXycnJ4dFHH2Xu3Ll88MEHvPjii1x11VWsWpWYnvqDDz5g2rRpLFiwgHvvvZdPP/2Ud999l+985zvceuutAEycOJG3336b999/nzPOOIPf/va327Q7ZcoUHnzwQQBqamp46aWX6pMtkfbAgyGCRBJDBAt79qbKM6jeoB4sERGRzq5j9WC10NPUVqZPn17fk3PGGWcwffp0DjjgAAAOPPBAhg4dWl920KBBHHrooQCcffbZ3HLLLfzXf/0XQ4cOZfjw4QCcd955/OlPf+Kyyy4DEglFYy644AKOPfZY/vWvf/HEE09w++2388EHH2xT7vnnn+fJJ5/kpptuAqCqqoqlS5cC8F//9V8UFhYC8PWvf5033niD8ePHt+q4Dz30UP77v/+bs846i69//esMHDiQN954gzPPPJNwOEyfPn04/PDDee+99+jWrRsTJkygX79+AOy5554cc8wxQKLn7ZVXXgFg+fLlTJkyhVWrVlFTU7PVZ1fnuOOO49JLL6W6upp//etfHHbYYeTk5LQqZpFdor4HK5Fg9c3PYZX3IKN0RRqDEhERkfZAPVgt2LBhAy+//DLf+c53KCoq4ne/+x0PPvgg7g5AXl7eVuXNrNnlxjSsI1n//v258MILeeKJJ4hEInz00UfblHF3HnnkEebOncvcuXNZunQpI0aM2OF46vz0pz/lr3/9K5WVlRx66KHNTvABkJWVVf8+FArVL4dCofp71H70ox/xwx/+kA8//JDbb7+dqqqqberJzs7miCOO4N///jczZsxoMgEVSReL1SVYiZ/xPvnZrKEH4XI9bFhERKSzU4LVgocffphzzjmHJUuWUFxczLJlyxg6dCivv/56o+WXLl3KW2+9BcA///lPJk6cyN57701xcTGLFi0C4N577+Xwww9vse1//etf1NYmnquzevVqSkpKGDBgAF27dmXz5s315Y499lhuvfXW+qTv/fffr9/2wgsvsGHDhvr7oOp611pj8eLFjBkzhp/85CdMmDCBhQsXMmnSJGbMmEEsFmPdunW89tprHHjgga2us7S0lAEDBgBwzz33NFluypQp/P3vf+f1119n8uTJra5fZFewuh6scCLB6poVYZ0Vkl2phw2LiIh0dkqwWjB9+nROPfXUrdaddtppTc4muPfee/OnP/2JESNGsHHjRi655BKys7P5+9//zje/+U3GjBlDKBTi4osvbrHt559/ntGjR7Pvvvty7LHH8rvf/Y6+ffty5JFHMn/+fMaNG8eMGTP45S9/SW1tLWPHjmXUqFH88pe/rK/jwAMP5LTTTmPs2LGcdtpp9cMDzzzzTA455BA++eQTBg4cyF133QXAtGnTmDZtGgB/+MMfGD16NGPHjiUjI4PjjjuOU089lbFjx7Lvvvty1FFH8dvf/pa+ffu2+vOcOnUq3/zmNznggAPo2bNn/fpZs2bxne98p375mGOO4dVXX+Xoo48mMzOz1fWL7AoWryZGCMKJUdZmRnlWb7rUrod4PM3RiYiISDpZXa9HezB+/HhvOAnDggUL6oe7yfa5++67mTVrFrfddlu6Q0kb/fxIW3jqdxfyX1ueIfu6L3us7r75Z5xf+me4chF06ZXG6ERERGRXMLPZ7r7N5AbqwRIR2U6hWDVRy9hqnXdJTPDCZj1sWEREpDNTgrUbO//88zt175VIWwnHa6i1rYeuhrsn7i2Mb9JMgiIiIp1ZmydYZjbZzD4xs0Vm9tMdqaM9DWOUjkM/N9JWwvEaoqGsrdblFCYeCl5esiwdIYmIiEg70aYJlpmFgT8BxwEjgTPNbOT21JGdnU1JSYm+LMt2cXdKSkrIzs5OdyiyGwrHq4mFtu7B6tZrIFEPUbVeCZaIiEhn1tYPGj4QWOTunwOY2QPAycD81lYwcOBAli9fzrp169ooRNldZWdnM3DgwHSHIbuhDK8h1mCIYN/8PNZRoCGCIiIinVxbJ1gDgOQ/5y4HDkouYGYXARcBDB48eJsKMjIyGDp0aBuGKCKyfcJeSzzcMMHKZqX3oI8muRAREenU0j7Jhbvf4e7j3X18r16a2lhE2r8MryHW4B6snl2yWEMPMresTlNUIiIi0h60dYK1AhiUtDwwWCci0iG5Oxleg4e3TrDCIaM0oxd51RrOLCIi0pm1dYL1HjDMzIaaWSZwBvBkG7cpItJmamNOFlG8wRBBgKrs3uTEK6B6cxoiExERkfagTRMsd48CPwT+DSwAHnT3j9uyTRGRtlQdjZFJLfEGPVgA0bz+iTdlq3ZxVCIiItJetPUkF7j7s8Czbd2OiMiuUB2Nk2W1VEW2TbBC+f1hLVC2AnoN3/XBiYiISNqlfZILEZGOpDoaJ4saaCTBygoeNly1YfmuDktERETaCSVYIiLboSYaJ4soFtn2IdZdeiYeNVGxbumuDktERETaCSVYIiLboao2Rha10EiC1at7Phu8CzV62LCIiEinpQRLRGQ7VNfGyLJaQhnbDhHsm5/Nai/ES5VgiYiIdFZKsEREtkN1dSUAoYxte7D65Wez2rsTqdDDhkVERDorJVgiItuhpipIsDK3TbCyM8JsivQip2rNrg5LRERE2gklWCIi26E26MEKZ+Y0ur0qpzddoxshWrMrwxIREZF2QgmWiMh2iNYECVZG4wlWrEvwsOHNetiwiIhIZ6QES0RkO9T1YEUyt53kAiBSkEiw4proQkREpFNSgiUish1itVUAZGQ13oOVXZh4FtbmtcW7KiQRERFpR5RgiYhsh1gwRDAjK7fR7d367QlAxZovdllMIiIi0n4owRIR2Q6xmkQPVmbWtrMIAvTrWZh42PCGJbsyLBEREWknlGCJiGwHr64AIJzdtdHtA7rnsNJ7EipdvivDEhERkXZCCZaIyPao3ZL4N6PxIYL5ORmsCfUia8vKXRiUiIiItBdKsEREtoPVJnqwyMxrskxZZj/yq1eD+y6KSkRERNoLJVgiItshVJ9gdWmyTE2X/mR7JVRu3EVRiYiISHuxUwmWmf3OzBaa2Twze8zMCoL1RWZWaWZzg9e0lEQrIpJmoWhiFkEyGx8iCOD5gxJvSpftgohERESkPdnZHqwXgNHuPhb4FPhZ0rbF7j4ueF28k+2IiLQL4WgFMUIQaXwWQYDMwiEAVOhZWCIiIp3OTiVY7v68u0eDxbeBgTsfkohI+xWJbqHassCsyTJd++wBwObVn++qsERERKSdSOU9WBcCzyUtDzWz983sVTOb1NROZnaRmc0ys1nr1q1LYTgiIqkXjlZSbTnNlunVpz+Vnkl1iZ6FJSIi0tlEWipgZi8CfRvZ9HN3fyIo83MgCtwfbFsFDHb3EjM7AHjczEa5e1nDStz9DuAOgPHjx2vKLRFp1yLRLdSEm77/CmBA91xWeE8im3QPloiISGfTYoLl7kc3t93MzgdOAL7qnpiT2N2rgerg/WwzWwwMB2btbMAiIumUEd9CNLP5HqyeXTJZSC/2LF+xi6ISERGR9mJnZxGcDFwNnOTuW5LW9zKzcPB+D2AYoJsRRKTDy4hVEY0034NlZpRm9qFr9apdFJWIiIi0Fy32YLXgNiALeMESN3y/HcwYeBhwg5nVAnHgYnffsJNtiYiklbuT7ZXEI71bLFuZ15+upZugZkuzU7qLiIjI7mWnEix336uJ9Y8Aj+xM3SIi7c2Wmhi5VOEZLSdM8W4DoRQoXQ69hrd9cCIiItIupHIWQRGR3Vp5dZSuVolndm2xbKRH4llYmklQRESkc1GCJSLSSpsra+nOZuI5PVosm9e7CIBSPQtLRESkU1GCJSLSSuXlZWRbLaG8whbLFvYrIuohKtd9sQsiExERkfZCCZaISCuVb1gDQGbXni2WHdCjK6vpQXyjnoUlIiLSmSjBEhFppS1l6wDIzm95FsE+3bJZ6T2JbF7e1mGJiIhIO6IES0SklWqDBCuve8sJVjhkbMjoQ26lnoUlIiLSmSjBEhFppWj5egBy8nu1qvyWnH4URNdBLNqWYYmIiEg7ogRLRKSVvKIEAMtt+R4sgFjXgYSJw2b1YomIiHQWSrBERFopVLGWKGHIKWhd+e6DAajdoGdhiYiIdBZKsEREWqlL5Uo2RnpDKNyq8rm9igAoXaVnYYmIiHQWSrBERFrB3eleu5rynH6t3qd7vz0AqNCzsERERDoNJVgiIq1QVhmlH+uo6TKo1fv069WD9d6N6AY9C0tERKSzUIIlItIKn68poTebiPQY0up9+uXnsNILCZcpwRIREekslGCJiLTC6i/mEzInf8DwVu+TGQmxPtybnMqVbRiZiIiItCdKsEREWqF62QcAdN9j/+3aryyrHwU1a8C9LcISERGRdkYJlohIK2Ssn08tEcK9Wt+DBVCZ258sr4YtJW0UmYiIiLQnO5VgmdlUM1thZnOD19eStv3MzBaZ2SdmduzOhyoikh7xuNNz83zWZO8B4Yzt2jfadWDiTanuwxIREekMUtGDdbO7jwtezwKY2UjgDGAUMBn4s5m17sExIiLtzOLVJezrn7Cl30HbvW+oIDHrYHTD0lSHJSIiIu1QWw0RPBl4wN2r3f0LYBFwYBu1JSLSpha+9xLZVkuP0Udv975ZPYsA2KJnYYmIiHQKqUiwfmhm88zsb2bWPVg3AEgeD7M8WCci0uGEFj5NNZn0HP3V7d63oEdvKjyL6vVL2iAyERERaW9aTLDM7EUz+6iR18nAX4A9gXHAKuD/tjcAM7vIzGaZ2ax169Zt7+4iIm1q+fpNHLjlVZYVHgpZXbd7/z75Oaz2HsRKV7RBdCIiItLeRFoq4O6tGhNjZncCTweLK4BBSZsHBusaq/8O4A6A8ePHax5jEWlX5j57JydYKaFJ392h/Xt3y2KR92B4+eoURyYiIiLt0c7OItgvafFU4KPg/ZPAGWaWZWZDgWHAuzvTlojIrraxvIp9Pr+b5Zl7ULjv11reoRGFeZmspTuZlWtTHJ2IiIi0Ry32YLXgt2Y2DnCgGPgegLt/bGYPAvOBKPADd4/tZFsiIrvUzIdu41SWs3LSrWC2Q3VEwiHKMnqSV/N24mHDO1iPiIiIdAw7lWC5+znNbLsRuHFn6hcRSZdPv1jC4cV/YEneaIYcevZO1VWZ3ZvIlmjiYcN5PVMUoYiIiLRHbTVNu4hIh1VVXU3p/efTzbaQ/81bIbRzvypjeX0TbzavSkF0IiIi0p4pwRIRSeLuvHv7D5gQncPiCddTMHT/na7Tuga3q5YpwRIREdndKcESEUny2gM3cdiGh5jd7wz2Pv5HKakzo6A/AHElWCIiIrs9JVgiIoF3X36Cryz8H+bnTmC/b9+Wsnpzew4EYEvJ8pTVKSIiIu3Tzs4iKCKyW/hk/gcMf/X7rI70Z49LHiIUyUhZ3T3zu7DeuxHaqAQLIBZ3NmwqpWLDKqrKN1KzpYyailJi1eVEYlsIuYPHMfPEzIuAh7MIZeYQycohIyuPzOwcsrPzyMrrSnZuV7LzumGZeRDO1EyNIiKSVkqwRKTTW7N2LZkPfgszyD3/YbK7dk9p/b26ZrHWu9O7kwwRrI3FWblqJeuXzKd81af4+sVkbV5KbvVaukVLKPSN9LIt9GqDtqOEqCSbasumJpRDTSib2nAOsXAu0UgO8Uge8UgOsUgusUgu8Ywc4uEcQuEwoVCIkIVwDDcjjuFuuAUz7Hsc8xjmUYjHwWMQj2Eex+MxzGPgMSwew4N/E+viSesdCBJHj2+zDOAeB3cMCKIAqP+3eS0kly0kn560f8OSjjVeu9VtT161bUlvKjrbut3GW2+aAW4NW7RG3zYWW13cX340tlXpbdrbatU2lTcSXRNLzZwLI+kz2fqfRsoatbm92Oe0X5KXl9dknSKy6yjBEpFOrbKqmuV3TmGsr2LlSdMZMmiflLfRu2sWn3p3+pavTnnd6ba+tJwvFs6lrHgOtuZDupd+wpDoYoZYOUOCMnE31oV6UZrZi7LcYWzM7Q1d+2BdehPJLSAjpxuZed3IyOkGmXm4hUmkHQYWwt2xWDXR6i1UV26hpqqC2qot1FZvIVZdQby6Aq+uwGsrsJothKKJVzhaSUZsCxm1VWRWbyTHV5LtVWRTTS7V5FhNm30uMTdihIgT2urfupQJs0QiF3xtjgcj9r3BNt8qvbJGEpEvJSdgjaViLSVoLSZwzWxuTd1NlWh535Y0vX/LSak3udhSu3V178hxtS5Zbr2eVsZbd63mkB/fndJ6RWTHKMESkU4rHnfemPZD/qt2DvPH/z9GHnBsm7TTq2sWr3t3sirntUn9u0ptLM7CRZ+z5uNXYdk79C19n2GxL5hgtQBUk8mKzKEsK/wqy3ruTW6/YfQcPJKC/nvRJyObPmmOP1ks7lTV1hKtriBWXUE0GicajxKLJoYmhurSGXfMgh6FUAizCIQjmIUIhSNYOJLo+QpHCAfL4VCiNywzpKGKknpeN2w2KUd7584fcMiq+3nviQOZcPL30xSZiNRRgtWMyvIyNpdupPeAIS0XFpEO59lH7uKETQ/y8YBvMurEH7dZO1mRMKWRnuTUboBYLYRTd39XW6qNxfl48VJWz32OnCWvMKR8HmNsFWOAGiIszd6Hhb3OIHfwfvTZ+0C6DRjBHuGO8b+VcMgIZ2VCViaQ2iGhIm3JgqGFySMMD7jwD3z8uw8ZO+daPu7ej1GHnZqm6EQElGA164Nnp3HAx79hTtdDYfQ3GDnpVLLzuqU7LBFJgffnfcCkj37JsuzhjDw/dTMGNqUqpxehSofyNZA/sM3b21FL11cwd+47VM9/jiElb7AfnzDOYmwmjxX541g4+Cx6jTycwmEHsldGdrrDFREgkpHJwO89xPI/TWbPl77LPIyxh52S7rBEOi0lWM0YPOFEZpV8zog1T1Hw9mtUvXUF7+ccQPXAr9B79JEMGX0I4RTONCYiu0ZpeQUZj32bsEGPC/6J7YJEIZrbFyqBzavbVYJVG4sz+7OVfD7rX+QseYnx1e9xUmgdAKty9mTpkAvpud+J5A87lH06SO+USGeUX9iXmu89w6rbv8Y+L13InLWfsf9pV2pWTZE00P8tm9F/6Aj6XzKNaO0tfPTOvyn/4EkGrX+NAYvehkW/p+KxLJZnDqW8215Ee+xNRt99KOhXRJ/+Q8nL77nLfqm5O9FYjJrqKqqrq6mtriRaU0VtTSW11dVEa6uI1VQTq60iWltNvKaaeLSKWG018WgNHq2ufxGthVg1FquGaA0WryUUr8FiNYTjNYSC5QxqiXgtEY+S4bWEiULd/Qr1t6cHt2Z78q3aX96m3fA27rp1rT7u7bz1uanSrasnNWVao1VtteJnq3WfZKqOvWWN1rPN/eW2zcpt627lbetNFHIgi1pG2waKv/oXivoOa6G21IgU9IcSoGzlLmmvOaVbanln7lw2zn2Gvmtf5UD/iIOthmrLZk3vg1g36jh67ncC/QoGpTtUEdkOvfoMIOvHL/HRX85k/49+xfvFr1N09i1071uU7tB2mLtTWROloryUqtISqjevp6a8hNotZdRWbyFaVUGsZgteU4lFK7FoFaFoJeFoFaF4FeFYFeF4DcSjhOJRzKOEPEbYo0RI/BsmRpgYEY8SIkY4mL2z/nuLJ/+fp+F3mG23bRV/8K812Fr33o1t1rFVOWj4/72tW7Gt2tmq7ib+/93c9sZi3CqeVsXbVD3bH2/dun9nHMUeX5/Kkfv03vaA2iElWK0Qychk9MQTYeKJAKxe/gVL3n8Jlr5FXumnFK1/ncKSp+GzL/ep9gw2Wj5VoVxqwrnURPKoDeXioQhYGEIh3MLECRF3J+R1F36s/n3Ig18E8SCZidcS9loi1JLhtWRQS4ZHyaCWTIuRAaRqgtaaRCvUkkHUIkQtg6hlErUMYqEMYpZB1LKpskwqQhHiFsEJBUllYhYsC6Y6rvu3bl3dDFkE65NnxmpplqwveXOTP22z1PQ38talBi0xT1E9rYmnFUVal6imKuaWqvAm/9aw1a/c5qYiNhr5Nd5geatZmRMTQjdWlxlsBtYPOZTRk77VXOQp1a33YFgMNRuXkbnLWv3SknWlfPjW88Q+fZ59yt7imNAyAEoy+rN2yBT6HHAi2XsdzmAN+xPp0LoV9GTMVc/x1r2/ZL/iO4lPO5D3+n+TYSdcTkH/vdIWV12itHHTRso3rqN80zqqy9ZRs7mEaMVGqNyAVW0ko7qUjNpScqOldIlvphvl5FNOL4u1qp1qz6DKMqkmixrLosYyiVoWHgoTtwjxcDa1FqHGEssxi+DB95i4RYiHImAhsBCGJe55q/sOU/89BrZKsczqJx3xpPdJR7/1rCT1b+P1i9bYOoJHROD183DWrUuuaKv/5/uX67zBuq32qZsshW3TI6/7JpaUWHpdnUFVdfU39n3DGmlvmzgbrGv8GL6UmTeY/NyOM2rMvFVfDHeN8ePH+6xZs9IdxnZzdzatX836JR9RunYZlSXLCZevJqO6hFBNBZFoBVmxCrK9kpDHMOKEPDFxbzi4kKIWIUaEmAV/R6m70C1MPEho4qFM4qEMPJxFPJyZeKBmKAOPZCXeR7IIhTOxjCwskoVlZBGOZBHKyCKckUUkMzvxb0Y2kaxsMjKziWRmkZGVQ0ZmNpmZ2YQyshM34GtIgUhKPf3BCg57dDyxUafR/fS2v+crFnc+/HQRy959ii5LX2b/2tnk2xaihFnRbRzhvSfTf8LJhHoN1/Uuspta/Ol8Njx5DfttfhXDWZw9is2Dv0qP4YcwYJ+DyOzaY4fqjcdibN5cSvnGdVSUrqOybD3VZeuJlm8gvmUDVrmRUPUmMmo2kVNbRm6sjC6+mXzKyWwmUaoki4pQVyoj3aiK5FObmU9tZgHx7ALiOd2xnO6EcnsQyetBZm43snK7kpPbhdy8PLJzuhDJyoNQaEc/LpHtZmaz3X38NuuVYImItL2PVpRSefvR7NmrKz1+9HKbtLGurJKP3pvJlvnPM6jkdUb7IkLmbAp1Z23fw+gx7gR6jp0M2ZqsR6Qz+XzRQpa9dAf917zMsPgX9etLyGdTuJDKzB7EwjlEQ1l4OJOQxyBWg8WjEK8lM7aFnHg5ObFycr2CLr6FsDX9/bGSLDZbF7aEu1EZJEqxrALI6Y7l9iCjSw8yu/YkJ78XXQt60aV7L8K5PUA96NLBNJVgaYigiMguMLRnHo/7IMZseicY87HzvUbRWJx5n3zG6jnPkLt0JmOq53CkbSaOsTx7bz4r+gEDDjqZgiHjKdBfdUU6rT322oc99vo9AMuXLWXFwrepWT6XzLJlZFauJadmA7nxtWRSQ4bXECUxgiZqGcQtQnUol9JIL9bn7kk8sxtkd8OyCwjnFpDRpZCsbj3JK+hF1+696dq9FzmZOeSk+ZhF0kkJlojILpCXFWFt11Fkb3kJ1nwMfUdvdx21sTifLFrE6g9fIbT0Pwwoe5/9WQLAplABq/sexpaRkxlwwNcY3KVnqg9BRHYDAwcNZuCgwcDp6Q5FZLe1UwmWmc0A9g4WC4BN7j7OzIqABcAnwba33f3inWlLRKSjq93jv4h9eCvReY+S1UKC5e6s2VDK0gXvUfbFbCKr3qeo4gNG2ypGA1vIZnneGD4p+joDJpxIweD91EslIiLSDuxUguXuU+rem9n/AaVJmxe7+7idqV9EZHdyzEFjmfnBOCa+Mw0fcwrWbyyQeC7X8i8WsHHJfGrWfELGhs/oXfEJe/gy+gY3hG+2LqzI35f5g8+m75ij6LHXBIaHO86MSiIiIp1FSoYImpmR6Gs+KhX1iYjsjsYNKuBXw69m7KLv0ev2SZTRBXcn3yrITyq3wQpYmzecBb2OIrdoPANGHkzXXnuwj2b7ExERafdSdQ/WJGCNuyc9CYqhZvY+UAb8wt1fb2xHM7sIuAhg8ODBKQpHRKR9+tlZx/HMW09h82aQX72S7IwIoS49yek1lO6DR9F76Gh65HVnxyZPFhERkXRrcZp2M3sR6NvIpp+7+xNBmb8Ai9z9/4LlLKCLu5eY2QHA48Aody9rri1N0y4iIiIiIh3BDk/T7u5Ht1BxBPg6cEDSPtVAdfB+tpktBoYDyp5ERERERGS3lYopp44GFrr78roVZtbLzMLB+z2AYcDnKWhLRERERESk3UrFPVhnANMbrDsMuMHMaoE4cLG7b0hBWyIiIiIiIu1Wi/dg7Upmtg6Cp2a2Hz2B9ekOQnYZne/OQ+e689C57lx0vjsPnevOpT2e7yHu3qvhynaVYLVHZjarsZvXZPek89156Fx3HjrXnYvOd+ehc925dKTznYp7sERERERERAQlWCIiIiIiIimjBKtld6Q7ANmldL47D53rzkPnunPR+e48dK47lw5zvnUPloiIiIiISIqoB0tERERERCRFlGCJiIiIiIikiBKsZpjZZDP7xMwWmdlP0x2PpI6ZDTKzV8xsvpl9bGaXBut7mNkLZvZZ8G/3dMcqqWFmYTN738yeDpaHmtk7wfU9w8wy0x2jpIaZFZjZw2a20MwWmNkhurZ3T2Z2efA7/CMzm25m2bq2dx9m9jczW2tmHyWta/RatoRbgvM+z8z2T1/ksr2aONe/C36PzzOzx8ysIGnbz4Jz/YmZHZuWoJuhBKsJZhYG/gQcB4wEzjSzkemNSlIoClzh7iOBg4EfBOf3p8BL7j4MeClYlt3DpcCCpOX/BW52972AjcC30xKVtIU/Av9y932AfUmcd13buxkzGwD8GBjv7qOBMHAGurZ3J3cDkxusa+paPg4YFrwuAv6yi2KU1Libbc/1C8Bodx8LfAr8DCD4vnYGMCrY58/B9/Z2QwlW0w4EFrn75+5eAzwAnJzmmCRF3H2Vu88J3m8m8QVsAIlzfE9Q7B7glLQEKCllZgOB44G/BssGHAU8HBTRud5NmFk+cBhwF4C717j7JnRt764iQI6ZRYBcYBW6tncb7v4asKHB6qau5ZOBf3jC20CBmfXbJYHKTmvsXLv78+4eDRbfBgYG708GHnD3anf/AlhE4nt7u6EEq2kDgGVJy8uDdbKbMbMiYD/gHaCPu68KNq0G+qQrLkmpPwBXA/FguRDYlPSLW9f37mMosA74ezAk9K9mloeu7d2Ou68AbgKWkkisSoHZ6Nre3TV1Let72+7tQuC54H27P9dKsKRTM7MuwCPAZe5elrzNE88w0HMMOjgzOwFY6+6z0x2L7BIRYH/gL+6+H1BBg+GAurZ3D8G9NyeTSKr7A3lsO8RIdmO6ljsHM/s5iVs77k93LK2lBKtpK4BBScsDg3WymzCzDBLJ1f3u/miwek3dkILg37Xpik9S5lDgJDMrJjHU9ygS9+gUBMOKQNf37mQ5sNzd3wmWHyaRcOna3v0cDXzh7uvcvRZ4lMT1rmt799bUtazvbbshMzsfOAE4y798eG+7P9dKsJr2HjAsmI0ok8TNdE+mOSZJkeAenLuABe7++6RNTwLnBe/PA57Y1bFJarn7z9x9oLsXkbiOX3b3s4BXgG8ExXSudxPuvhpYZmZ7B6u+CsxH1/buaClwsJnlBr/T6861ru3dW1PX8pPAucFsggcDpUlDCaUDMrPJJIb3n+TuW5I2PQmcYWZZZjaUxMQm76YjxqbYl8mgNGRmXyNx70YY+Ju735jeiCRVzGwi8DrwIV/el3MNifuwHgQGA0uA09294Q220kGZ2RHAle5+gpntQaJHqwfwPnC2u1enMTxJETMbR2JCk0zgc+ACEn9Q1LW9mzGz64EpJIYPvQ98h8S9GLq2dwNmNh04AugJrAGuAx6nkWs5SLJvIzFMdAtwgbvPSkPYsgOaONc/A7KAkqDY2+5+cVD+5yTuy4qSuM3juYZ1ppMSLBERERERkRTREEEREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhFpZ8ysyMzczCLpjkU6BzP72MyOSHccIiK7AyVYIiLS4ZnZNDMrD141ZlabtPxcuuNr79x9lLvPTGWdZnaTmX1mZpvNbKGZnZvK+kVE2islWCIiKaaep13P3S929y7u3gX4NTCjbtndj6sr15HOTUeKtQkVwIlAPnAe8Ecz+0p6QxIRaXtKsEREUsDMis3sJ2Y2D6gws4iZHWxm/zGzTWb2QfIQLDObaWb/Y2bvmlmZmT1hZj2aqPsCM1sQ9AR8bmbfa7D9ZDObG9Sz2MwmB+vzzewuM1tlZivM7FdmFm7hOPY0s5fNrMTM1pvZ/WZWkLRtg5ntHyz3N7N1dcdlZicFQ802Bcc3osHnc6WZzTOzUjObYWbZ2/9Jb78mzo2b2V5JZe42s18lLZ8QfKabgnM4tpVtHWFmy83smuDzKzazs5K2H29m7wfnapmZTU3aVjc09NtmthR4OVj/kJmtDj6318xsVIO4/2xmzwW9dW+aWV8z+4OZbQx6jvZr5Wd0dGuOsbXc/Tp3X+jucXd/B3gdOCSVbYiItEdKsEREUudM4HigAOgDPAP8CugBXAk8Yma9ksqfC1wI9AOiwC1N1LsWOAHoBlwA3JyU5BwI/AO4Kmj3MKA42O/uoN69gP2AY4DvtHAMBvwP0B8YAQwCpgK4+2LgJ8B9ZpYL/B24x91nmtlwYDpwGdALeBZ4yswyk+o+HZgMDAXGAuc3GoDZxCCxaeo1sYVjaEz9uXH3aLMfQCIh+RvwPaAQuB140syyWtlWX6AnMIBEz80dZrZ3sK2CxHkvCOK5xMxOabD/4SQ++2OD5eeAYUBvYA5wf4PypwO/CNqsBt4KyvUEHgZ+38q4G2VmP23ufLSyjhxgAvDxzsQiItIRKMESEUmdW9x9mbtXAmcDz7r7s8Ff8F8AZgFfSyp/r7t/5O4VwC+B0xvrYXL3Z9x9sSe8CjwPTAo2fxv4m7u/ELSzwt0XmlmfoK3L3L3C3dcCNwNnNHcA7r4oqKva3deR+HJ+eNL2O4FFwDskEsOfB5umAM8E+9YCNwE5QPKQsFvcfaW7bwCeAsY1EcMb7l7QzOuN5o6hCcnnpiUXAbe7+zvuHnP3e0gkLgdvR3u/DD7DV0kk2qcDuPtMd/8wOFfzSCSlhzfYd2pwziqDff7m7pvdvZpEsruvmeUnlX/M3We7exXwGFDl7v9w9xgwg0RyvcPc/TfNnY9WVjMN+AD4987EIiLSESjBEhFJnWVJ74cA32zwl/6JJJKSxsovATJI9DpsxcyOM7O3g+F5m0gkTnXlBgGLG4llSFDfqqT2byfRC9IkM+tjZg8EQwrLgPsaielOYDRwa/ClHxI9XkvqCrh7PDi+AUn7rU56vwXo0lwsKbas5SL1hgBXNDh3g0gcY2tsDJLmOkvq9jWzg8zslWBoZSlwMdt+vvWxmlnYzH5jiaGfZXzZO5m8z5qk95WNLO/Kz3kbZvY7Ej8vp7u7pzMWEZFdQQmWiEjqJH95XEaihyr5r/157v6bpDKDkt4PBmqB9ckVBsPSHiHRI9Qn6DF4lsRQvrp29mwklmUkel16JrXfzd1HNVI22a+D4xjj7t1I9MTVtYWZdQH+ANwFTLUv7xtbSSIxqStnwfGtaKG9bZjZJPtyBsDGXpNarmUbDb/YbwFyk5b7Jr1fBtzY4Nzluvv0VrbV3czykpYHk/h8AP4JPAkMcvd8Ej071mD/5Fi/BZwMHE1isoiiYH3DfdpMcD9Zk+ejhX2vB44DjnH3sl0TsYhIeinBEhFpG/cBJ5rZsUEvRHYwAcLApDJnm9nI4H6mG4CHg2FdyTKBLGAdEDWz40jcS1XnLuACM/uqmYXMbICZ7ePuq0gMJfw/M+sWbNvTzBoOR2uoK1AOlJrZABL3diX7IzDL3b9DYujbtGD9g8DxQRwZwBUkErz/tPRBNeTuryfNANjY6/XtrbMRc4FvBedmMlsP07sTuDjobTIzy7PE5BRdoX5iibtbqP96M8sMksETgIeC9V2BDe5eFdw/960W6ulK4nMsIZEQ/no7jjEl3P3XzZ2PpvYzs5+ROL6j3b1k10UsIpJeSrBERNqAuy8j0fNwDYnkaBmJZCX59+69JCaiWA1kAz9upJ7NwfoHgY0kvrA+mbT9XYKJL4BS4FW+7Ek6l0SCNj/Y92G2HqLYmOuB/YO6ngEerdtgZieTmKTikmDVfwP7m9lZ7v4Jid6uW0n0wp0InOjuNS20ly6XkohxE3AW8HjdBnefBXwXuI3E57aIrSfkGAS82Uzdq4P9VpKYkOJid18YbPs+cIOZbQauJXFem/MPEkMMV5A4j2+3dGDtyK9J9N4tSurxuibdQYmItDXTcGgRkV3PzGYC97n7X9Mdi7ReMCviB8DYYDKPhtuPIHFeBzbcJiIinUNHf4ihiIjILhP0yI1osaCIiHRaGiIoItLJmNm0JiYsmNby3tIRmdngZiaqGJzu+EREdicaIigiIiIiIpIi6sESERERERFJkXZ1D1bPnj29qKgo3WGIiIiIiIg0a/bs2evdvVfD9e0qwSoqKmLWrFnpDkNERERERKRZZraksfUaIigiIiIiIpIiSrBERERERERSRAmWiEgz3J14XLOtioiISOu0q3uwGlNbW8vy5cupqqpKdyjSwWRnZzNw4EAyMjLSHYp0YFfdO5PqkuX88dKzCYUs3eGIiIhIO9fuE6zly5fTtWtXioqKMNOXG2kdd6ekpITly5czdOjQdIcjHVQ87hz22f9yUvgtPpu/D8NGT0h3SCIiItLOtfshglVVVRQWFiq5ku1iZhQWFqrnU3bKik2VDLD1iYV370xvMCIiItIhtPsEC1ByJTtEPzeys9ZuriaLWgAyShamORoRERHpCDpEgiUikg6bq2rpZyUA9NyyGFyTXYiIiEjzlGC1gplxxRVX1C/fdNNNTJ06NX0BJXn77bc56KCDGDduHCNGjKiPa+bMmfznP//Z4XqXLFnC/vvvz7hx4xg1ahTTpk1LUcQiHUdFRTmFtpkN1p0uXg6bV6U7JBEREWnn2v0kF+1BVlYWjz76KD/72c/o2bNnyup1d9ydUGjH89zzzjuPBx98kH333ZdYLMYnn3wCJBKsLl268JWvfGWH6u3Xrx9vvfUWWVlZlJeXM3r0aE466ST69++/w7GKdDTRTSsAKO42nh6lLxBdv5hIN10DIiIi0jT1YLVCJBLhoosu4uabb95m27p16zjttNOYMGECEyZM4M033wRg6tSp3HTTTfXlRo8eTXFxMcXFxey9996ce+65jB49mmXLlnHVVVcxevRoxowZw4wZM4BEgnTEEUfwjW98g3322YezzjoLb2R40tq1a+nXrx8A4XCYkSNHUlxczLRp07j55psZN24cr7/+erNxnnPOORxyyCEMGzaMO+9M3MifmZlJVlYWANXV1cTj8UY/m1tuuYWRI0cyduxYzjjjDAA2bNjAKaecwtixYzn44IOZN29efVvnnXcekyZNYsiQITz66KNcffXVjBkzhsmTJ1Nbm7jX5YYbbmDChAmMHj2aiy66aJvjjsfjFBUVsWnTpvp1w4YNY82aNc2dRpHtFq3YBECs92gANq36Io3RiIiISEfQoXqwrn/qY+avLEtpnSP7d+O6E0e1WO4HP/gBY8eO5eqrr95q/aWXXsrll1/OxIkTWbp0KcceeywLFixotq7PPvuMe+65h4MPPphHHnmEuXPn8sEHH7B+/XomTJjAYYcdBsD777/Pxx9/TP/+/Tn00EN58803mThx4lZ1XX755ey9994cccQRTJ48mfPOO4+ioiIuvvhiunTpwpVXXgnAt771rSbjnDdvHm+//TYVFRXst99+HH/88fTv359ly5Zx/PHHs2jRIn73u9812nv1m9/8hi+++IKsrKz6hOe6665jv/324/HHH+fll1/m3HPPZe7cuQAsXryYV155hfnz53PIIYfwyCOP8Nvf/pZTTz2VZ555hlNOOYUf/vCHXHvttQCcc845PP3005x44on1bYZCIU4++WQee+wxLrjgAt555x2GDBlCnz59WjyPItujtroCgC7994HPoGJdManrwxYREZHd0U73YJnZIDN7xczmm9nHZnZpsH6qma0ws7nB62s7H276dOvWjXPPPZdbbrllq/UvvvgiP/zhDxk3bhwnnXQSZWVllJeXN1vXkCFDOPjggwF44403OPPMMwmHw/Tp04fDDz+c9957D4ADDzyQgQMHEgqFGDduHMXFxdvUde211zJr1iyOOeYY/vnPfzJ58uRG22wuzpNPPpmcnBx69uzJkUceybvvvgvAoEGDmDdvHosWLeKee+5ptIdo7NixnHXWWdx3331EIpH6YzrnnHMAOOqooygpKaGsLJEYH3fccWRkZDBmzBhisVh9vGPGjKk/vldeeYWDDjqIMWPG8PLLL/Pxxx9v0+6UKVPqe/seeOABpkyZ0uxnLrIj4rWJaf579OrDeu9GTcnSNEckIiIi7V0qerCiwBXuPsfMugKzzeyFYNvN7n5TM/tul9b0NLWlyy67jP33358LLrigfl08Huftt98mOzt7q7KRSGSrYXXJz2PKy8trVXt1Q/QgMfwvGo02Wm7PPffkkksu4bvf/S69evWipKRkmzJNxQnbTmfecLl///6MHj2a119/nW984xtbbXvmmWd47bXXeOqpp7jxxhv58MMPW3VMoVCIjIyM+rZCoRDRaJSqqiq+//3vM2vWLAYNGsTUqVMbfZbVIYccwqJFi1i3bh2PP/44v/jFL5ptV2RHWJBgFRbks8AL6bJ5eZojEhERkfZup3uw3H2Vu88J3m8GFgADdrbe9qhHjx6cfvrp3HXXXfXrjjnmGG699db65bqhcEVFRcyZMwf4/+3de3xV1Z338c/v3HK/kBAISbhEBAQhgEagIgq0Xjq1tV6qdqot8kwdO7WdOu0808torTN9nrbOdGY6trV1tPZCvVRb9Wmt1WqtMh1tQaygiILEEAgQArmRnPt6/jgnIVcC5iQnl+/79Tqevdfee+1f3Ozk/M5aey146aWX2L27/2c3Vq1axQMPPEAsFqOhoYHnnnuOZcuWnXBMv/rVr7qeUXrzzTfxer0UFhaSl5dHa2vroHECPProowSDQRobG3n22Wc566yzqKuro6OjA4AjR46wceNG5s2b1+Pc8XicPXv2sGbNGr7+9a/T3NxMW1sbq1atYsOGDUDiWbLJkyeTn59/Qj9PZzI1efJk2traeOihh/rdz8y49NJL+bu/+zvmz59PcXHxCdUvcjJcNPHv0RfI4pB3ClkdGkVQREREji+lg1yY2SxgKfBisuhGM3vFzO4xs0kDHHO9mW0ys00NDQ2pDGdYfPazn+XQoUNd69/61rfYtGkTVVVVLFiwoGs488svv5zDhw9z+umnc8cddzB37tx+67v00kupqqpi8eLFrF27lm984xuUlpaecDw//vGPmTdvHkuWLOHaa69lw4YNeL1e3v/+9/OLX/yia5CLgeKERDe/NWvWsGLFCm6++WbKysrYvn07y5cvZ/HixZx33nl87nOfY9GiRQD81V/9FZs2bSIWi3HNNdewaNEili5dyqc//WkKCwu59dZb2bx5M1VVVXz+85/nhz/84Qn/PIWFhXz84x9n4cKFXHjhhZx11lld2+68884ecV911VX85Cc/UfdAGTaeZIKFL5PWzGkUhA9oLiwRERE5LutvZLp3VJFZLvB74KvOuZ+b2VTgEOCAfwKmOefWH6+O6upqt2nTph5l27dvZ/78+SmJUfq69dZbewyGMd7o348MxQPfuZWrDv4bfHYHD97771zZ+F34hxrI6vf7IhEREZlAzGyzc666d3lKWrDMzA88DGxwzv0cwDl3wDkXc87FgbuAE+/3JiIyCljsWAuWy69ILDfrOSwREREZ2JAHubDEKAV3A9udc9/sVj7NOdf5wMKlwLahnktS79Zbb013CCKjlqczwfJn4Z00A3ZD8FANmaWL0huYiIiIjFqpGEVwJXAtsNXMXk6WfRH4sJktIdFFsAb46xScS0RkxHhjIeIYHm+AnJKZALQeqCFzYZoDExERkVFryAmWc24jYP1senyodYuIpJM3FiRiATLMKCwpI+y8hA6ri6CIiIgMLKWjCIqIjCe+eIiIBQCYVpjNQSYRa9qb5qhERERkNFOCJSIyAG88TMQSk2OXFmRS74rwHtVcWCIiIjIwJVgn6JFHHsHMeP311wfcp6amhoULU/dwxo4dO1i9ejVLlixh/vz5XH/99UBikuDHH3/nPTCDwSDLli1j8eLFnH766Xz5y19OVcgi44ovHiLiSSRYmX4vhz3FZHYcSHNUIiIiMpopwTpB9913H+eccw733Xdfv9uj0eiQzxGLxXqsf/rTn+amm27i5ZdfZvv27XzqU58Chp5gZWRk8Mwzz/DnP/+Zl19+mSeeeIIXXnhhSLGLjEf+eIhoMsECaMuYSl64QZMNi4iIyICUYJ2AtrY2Nm7cyN13383999/fVf7ss8+yatUqPvCBD7BgwQIgkWh95CMfYf78+VxxxRW0t7cD8PTTT7N06VIWLVrE+vXrCYVCAMyaNYt/+Id/4IwzzuBnP/tZj/PW19dTUVHRtb5o0SLC4TC33HILDzzwAEuWLOGBBx7g6NGjrF+/nmXLlrF06VIeffRRAO69914uueQSVq9ezZw5c/jKV74CgJmRm5sLQCQSIRKJkBhtv6ef/exnLFy4kMWLF3PuuecCidav6667jkWLFrF06VJ+97vfdZ3rgx/8IOeffz6zZs3ijjvu4Jvf/CZLly5lxYoVHD58GIC77rqLs846i8WLF3P55Zd3/f/pbsWKFbz66qtd66tXr6b3BNQiI8HvQsS6JVjh7KlkuCAEm9MYlYiIiIxmqRimfeT8+vOwf2tq6yxdBO/92nF3efTRR7nooouYO3cuxcXFbN68mTPPPBOAl156iW3btlFZWUlNTQ07duzg7rvvZuXKlaxfv57vfOc73Hjjjaxbt46nn36auXPn8tGPfpTvfve7fOYznwGguLiYl156qc95b7rpJtauXcvZZ5/NBRdcwHXXXUdhYSG33XYbmzZt4o477gDgi1/8ImvXruWee+6hqamJZcuW8Z73vAeAP/7xj2zbto3s7GzOOuss3ve+91FdXU0sFuPMM89k586dfPKTn2T58uV9zn/bbbfxm9/8hvLycpqamgD49re/jZmxdetWXn/9dS644ALeeOMNALZt28aWLVsIBoOceuqpfP3rX2fLli3cdNNN/OhHP+Izn/kMl112GR//+McB+Md//Efuvvvurpa5TldddRUPPvggX/nKV6ivr6e+vp7q6j6TZIsMO78LE/MeS7BcXhkcAVr2QVZh2uISERGR0UstWCfgvvvu4+qrrwbg6quv7tFNcNmyZVRWVnatT58+nZUrVwJwzTXXsHHjRnbs2EFlZSVz584F4GMf+xjPPfdc1zFXXXVVv+e97rrr2L59Ox/60Id49tlnWbFiRVfLV3dPPvkkX/va11iyZAmrV68mGAxSW1sLwPnnn09xcTFZWVlcdtllbNy4EQCv18vLL79MXV1dVxLW28qVK1m3bh133XVXV/fFjRs3cs011wBw2mmnMXPmzK4Ea82aNeTl5VFSUkJBQQHvf//7gUTLW01NDZBIwlatWsWiRYvYsGFDj5aqTldeeSUPPfQQAA8++CBXXHFFv/9/RIZbwIV7tGD5CssBiGgkQRERERnA2GrBGqSlaTgcPnyYZ555hq1bt2JmxGIxzIzbb78dgJycnB779+5q11/Xu95619FdWVkZ69evZ/369SxcuLDfRMg5x8MPP8y8efN6lL/44ouDxlNYWMiaNWt44okn+gzQceedd/Liiy/yq1/9ijPPPJPNmzcf9+fIyDj2QdTj8XStezyermfU1q1bxyOPPMLixYu59957efbZZ/vUU15eTnFxMa+88goPPPAAd95553HPKzJc/C5MvFsLVlZxostu68G3KZo30FEiIiIykakFaxAPPfQQ1157LW+//TY1NTXs2bOHyspKnn/++X73r62t5X/+538A+OlPf8o555zDvHnzqKmpYefOnQD8+Mc/5rzzzhv03E888QSRSASA/fv309jYSHl5OXl5ebS2tnbtd+GFF/Kf//mfuOSD91u2bOna9tRTT3H48GE6Ojp45JFHWLlyJQ0NDV1d/jo6Onjqqac47bTT+px/165dLF++nNtuu42SkhL27NnDqlWr2LBhAwBvvPEGtbW1fRK742ltbWXatGlEIpGuevpz1VVX8Y1vfIPm5maqqqpOuH6RVInHHX6iOG+gq6xgygwAOho12bCIiIj0TwnWIO677z4uvfTSHmWXX375gKMJzps3j29/+9vMnz+fI0eO8IlPfILMzEx+8IMf8KEPfYhFixbh8Xi44YYbBj33k08+2TXIxIUXXsjtt99OaWkpa9as4bXXXusa5OLmm28mEolQVVXF6aefzs0339xVx7Jly7j88supqqri8ssvp7q6mvr6etasWUNVVRVnnXUW559/PhdffDEAt9xyC4899hgAf//3f8+iRYtYuHAhZ599NosXL+Zv/uZviMfjLFq0iKuuuop77723R8vVYP7pn/6J5cuXs3Llyh5J3WOPPcYtt9zStX7FFVdw//33c+WVV55w3SKpFI7FCRDpkWCVFuXT4PKJNinBEhERkf6ZG0XDDVdXV7veo8Vt376d+fPnpymise3ee+/tMRjGRKR/P/JONXdE6PjaHJrLz2Pe9T/sKqv9v9UUlFQw41O/SnOEIiIikk5mttk512ckNrVgiYj0IxxNtGDR7Rms/EwfDVZMRvv+NEYmIiIio9nYGuRCTsq6detYt25dusMQGZPCsTgFRMF3rIugmdEamEJO6M00RiYiIiKj2ZhowRpN3Rhl7NC/GxmKcDSOnyjW7RksgFDWFHLjLRDpSFNkIiIiMpqN+gQrMzOTxsZGfViWk+Kco7GxkczMzHSHImNUOBIjw6Lg6zmISzS3LLHQWp+GqERERGS0G/VdBCsqKqirq6OhoSHdocgYk5mZSUVFRbrDkDEqEg4CYL0SLF9BGeyDWNNevEWnpCM0ERERGcWGPcEys4uA/wC8wH85505qtmC/309lZeWwxCYiMpBIONEF0OPvmWBlFE8HoK2hlgLlVyIiItLLsHYRNDMv8G3gvcAC4MNmtmA4zykikgqdLVgeX89upnklicmG2w/tGfGYREREZPQb7mewlgE7nXNvOefCwP3AJcN8ThGRIYuGQwB4/D0HuZgyeTKtLovwEU02LCIiIn0Nd4JVDnT/mrcuWdbFzK43s01mtknPWYnIaBFLJljeXl0ESwsy2e+KoGVfOsISERGRUS7towg6577vnKt2zlWXlJSkOxwREQBikUQXQa+/ZxfBouwABynCd1STDYuIiEhfw51g7QWmd1uvSJaJiIxq0XD/CZbHYzT5S8gJHUxHWCIiIjLKDXeC9SdgjplVmlkAuBp4bJjPKSIyZPFooougLyOjz7Zg5hTyoo0Qi450WCIiIjLKDWuC5ZyLAjcCvwG2Aw86514dznOKiKRCLBIGwOfvm2BFcqfhJQ5H1YolIiIiPQ37PFjOuceBx4f7PCIiqRRPPoPlC2T22ebJnwYHwLXsw/LLRjo0ERERGcXSPsiFiMhoFI8kugj6A1l9tgUmJR4tbT9UO6IxiYiIyOinBEtEpB+u8xmsQN8ugrnJyYZbDmqyYREREelJCZaISD86Eyzz9U2wSqaWEXI+Qo1vj3RYIiIiMsopwRIR6Uc8mhjkAm+gz7aKohz2usm4JnURFBERkZ6UYImI9CeWaMGinxasopwA9VZCoE3T+omIiEhPSrBERPph0c4Eq+8ogmZGU6CUvGD9CEclIiIio50SLBGRfniiHYkFf99RBAE6ssvJjx2BSMcIRiUiIiKjnRIsEZF+eGLJxKmfFiyAeEFiqHaaNJKgiIiIHKMES0SkH95YiCAZYNbvdt+kmQAEG2tGMCoREREZ7ZRgiYj0wxcLEra+A1x0yplaCUDzvl0jFZKIiIiMAUqwRET64Y0FCXsGTrAmT5tJxHkJHqoZuaBERERk1FOCJSLSD188RMT6f/4KoLwoj/2uiPgRTTYsIiIixyjBEhHphz8eJHKcFqwpeRnspQR/q+bCEhERkWOUYImI9MMXDxL19j9EO4DHYxwJTCU3uG8EoxIREZHRTgmWiEg/AvEgce/ALVgA7Vnl5EcboXNSYhEREZnwhpRgmdntZva6mb1iZr8ws8Jk+Swz6zCzl5OvO1MSrYjICPG7MHHfwC1YANG8Cjw4aK4boahERERktBtqC9ZTwELnXBXwBvCFbtt2OeeWJF83DPE8IiIjJh53ZLjQoAmWr2gWAOHDGuhCREREEoaUYDnnnnTORZOrLwAVQw9JRCS9OiIxsiwE/uMnWNldc2HtHImwREREZAxI5TNY64Ffd1uvNLMtZvZ7M1uVwvOIiAyr9nCMLMLgG3iYdoDiabOIOaPj4O4RikxERERGO99gO5jZb4HSfjZ9yTn3aHKfLwFRYENyWz0wwznXaGZnAo+Y2enOuZZ+6r8euB5gxowZ7+ynEBFJoY5wjBLCWCD7uPuVTy6gnmLih2tGJjAREREZ9QZNsJxz7znedjNbB1wMvNs555LHhIBQcnmzme0C5gKb+qn/+8D3Aaqrq91Jxi8iknLt4TBZFsYzSIJVmp/Jn9wUKlo1yIWIiIgkDHUUwYuA/w18wDnX3q28xMy8yeVTgDnAW0M5l4jISAm2twFgGTnH3c/rMRr908jr0GTDIiIikjDUZ7DuAPKAp3oNx34u8IqZvQw8BNzgnDs8xHOJiIyISFvi15Una9Kg+7Znl1EQa4RIx3CHJSIiImPAoF0Ej8c5d+oA5Q8DDw+lbhGRdAm1JhIsf07RoPvG8mdAK9C0B0rmDnNkIiIiMtqlchRBEZFxIdzWCEBW/uAJlq84MVR7uFEjCYqIiIgSLBGRPiJHjwCQXVA86L45pacA0KS5sERERAQlWCIifcTbEwlWVt7gLVgl02YScj6CBzWOj4iIiCjBEhHpw3U0A2AnMMhFRVEue91k4k21wx2WiIiIjAFKsEREerFQM3EMMvIH3XdKXgZ7mUJG654RiExERERGOyVYIiK9+ELNtFsOeAb/FenxGEcCmgtLREREEpRgiYj04gs30eHNPeH923MqyI23QKh1GKMSERGRsUAJlohIL3mRQ7QFSk54/3jBjMSCnsMSERGZ8JRgiYh0E4s7imONhLOmnvAx/uJZAAQbNJKgiIjIRKcES0Skm8bWIKV2mFjutBM+Jrd0NgAt9ZoLS0REZKJTgiUi0s2hhoNkWRgrqDjhY6aWlnPUZRBsqBm+wERERGRMUIIlItLNofrdAOSWnHiCVVGUzR43BY68PVxhiYiIyBihBEtEpJvW/YnnqIrLZp/wMSW5GeyjhEBb3XCFJSIiImOEEiwRke4O7QAgu+y0Ez7EzGgNTCU3dGC4ohIREZExQgmWiEg32S27OOKZBFmTTuq4jqwpibmwIh3DFJmIiIiMBUqwRESSnHMUddRwOKvypI+Ndo462Fqf4qhERERkLBlSgmVmt5rZXjN7Ofn6i27bvmBmO81sh5ldOPRQRUSG19sNLZzqaomWzD/pYz355QC45r2pDktERETGEF8K6vg359y/dC8wswXA1cDpQBnwWzOb65yLpeB8IiLDoub1zcyyENmnrDjpYwNFiVEHjx6qI/fkG8BERERknBiuLoKXAPc750LOud3ATmDZMJ1LRCQlju78AwClC8456WNzJ09P1HGoNqUxiYiIyNiSigTrRjN7xczuMbPOp8LLgT3d9qlLlvVhZteb2SYz29TQ0JCCcERE3pmCfc/T6J2Mv/jkm6AmFxfT4rKJHNkz+M4iIiIybg2aYJnZb81sWz+vS4DvArOBJUA98K8nG4Bz7vvOuWrnXHVJScnJHi4ikhL1jU0sjWzhQOlqMDvp46fmZ7LfTcK1aJALERGRiWzQZ7Ccc+85kYrM7C7gl8nVvcD0bpsrkmUiIqPSjhd+zWoLkV/1/nd0/JT8DF50Rcw9qgRLRERkIhvqKILTuq1eCmxLLj8GXG1mGWZWCcwB/jiUc4mIDKfQa48TJED50gve0fEZPi+HfSVkBQ+mODIREREZS4Y6iuA3zGwJ4IAa4K8BnHOvmtmDwGtAFPikRhAUkdGqrrGFpW3PsXfy2cwOZL/jetozppAXbIRYFLypGKRVRERExpohfQJwzl17nG1fBb46lPpFREbCS8/8nA9YE54VA/5KOyGh7FI8wTi0HYCCfsf1ERERkXFOX7GKyITmnCNnx0O0Wh6Tl76z56+65E2Dw0Br/bhPsCLRKI31NTQfqKGt8QDB1kP4Qk144mHMOXAO82cSyJ1Edn4R2UVlFEybTXZxBXi86Q5fRERk2CjBEpEJ7eWdtayMvEDdrMvJ82UMqS5fYTm8DdGmOnwV1SmKML2C4ShvvPEah3f+Cbfvz+Q2vU5xeC/l7gClFqH0JOuL4OOQt4TmzOmE8mfhmTybnLLTKJmxgLzSU9LStTIUjXE0GCUSaiPW0Uo83EEsFiEajROPRcHF8ZjDi8PjMcwbwOPzY14/Pn8GXr8fny8Dn9+PLxDA78vA4x2uaSZFRGS0U4IlIhPa7t9vYKlFKFu9fsh1ZU+eAcDRQ3soGHJt6dF8NMirm5+n9fXfUdTwR2aHt1NlbQBE8bDPN53m/Eq25q4mNqmSjOIZ5BWVUlA8BX9uCfgyMI9hGMFgO0caD9F6pIGOw3uJHa7BNdWS0bqHSe11nNK2lbz6DtiaOHcELwe9pTRlTieUX4mn5FQyJ8/CnzsJf3YhgZxCsrKyEvvGHLG4IxqNEg21ETzaSqi9lVB7G+GOVqLBVuIdLbhQK4Tb8ITb8EWP4o+04Y+1E4gfJSveTpbrIJcOCujAay5l/x8jzkuU5Mt8xPASwUfMki98xM2bXPfjzIORPL9zyeXEKxFWchnXtd1wmItjgBEHwEM8ub2zzOFxiWM9DPR+rI5jExQcW+rv/4qjv6kM+pa5QbZ31WX9lPU6YrA4bIC4+q2ra+X4UzKc/IQNx6krlZXRM7Y2byGZ6x9jWunJfuUhIsNBCZaITFjBSIyZdY9xIDCDqbOWDbm+wuKphJyfYOPYSbAisTivvbaNxpceJW/vc5wW2srZ1gHAPl8FdVPXcqDiDErmLqP4lKXMOIlBQPJysikpngyc1u/2YDjKrr1v0/j2djr2vwGHd5HVWsOk9joq27aQXR9KxY9IFA8dZNHhySbkySbszSaSUUCHr4yj/hwaMvIgkEvcn0s8kIvzZeLx+vB4vHg8XpwZcTzEnAfn4hCLJF7xCC527NVZlniPdq1bPIrFI3i6LZuL4olH8STfzcXAkimWeZJJh3W9J1i3ck+37Z5u+xnODLq2e8ASaZTZsW0uuS/m6TqmM23r5HCJ7p5d6wMu0P9OPY81wPU61uiv/uMnus71PfZYBa5HXda1yfXZZ+D6Byg/gZgGPKa/UAesrPPN9Vfch89FWBV6jt8/eRfTPnrz8WoWkRGiBEtEJqw/bNrEWrZTM/9zKfl6eWpBFvvdJPxNo3vav6PBMC/94SnaXvkls488z2LbA8A+bxlvlV5Ezrw1zDzjfMoKyygbxjgyAz5mV85mduXsPttCkSi79+ym+cBuou3NuGAzrqOFaCQMgNcDXjPM4wF/Dv6sXAJZuWTk5JGZnU92bgFZuYUEsvPx+bPIMyNvGH8WkXTa8c/LqKx5ABf/UuKeEJG0UoIlIhNWyws/IY4xffW6lNQ3NT+TtyhiZtvom2y4PRRh0wvPEtryAAuPPM0qO0wUD7W5i9k++yNULL+MsvJ5w5pQnYwMv4/KU+bAKXPSHYrIqHfotI+wctstvLnpKeYsuzDd4YhMeEqwRGRCamgJsrTpCWoLqpk1aXpK6izOCfCCm8Tc9j0pqW+oorE4L276E0de3MCCxqc41/YRwceuguW0L76CyhWXckrOpHSHKSJDVHXhOpq3fp3Wjd8DJVgiaacES0QmpD8+9zjvs4Psr/5iyur0eIyWwBRyw5sTD3Kk+qn2E1R74BBbn/ox03Y9yEr3GnGMmrylvLXwRmau+jCn5RSlJS4RGR55eQW8MPVizjzwEHW7XqNi9oJ0hyQyoSnBOo69u7ay54VfMP8vPkHBpJJ0hyMiKeTfdj8dZFK6/EMprTeYNRV/Wxg6jkD2yCUywUiMP/zhOcJ//AEr2n7L++woB3zlvDH/s1SuXc8pkypGLBYRGXmnfvCLRL/3Cw4+ejMVf/dwusMRmdCUYB3Hnhd+wYo3/5Xgv3+LLTnVxOb8BTPfdSklpanpTiQi6bHnQCMrOp6jdtr5zMvITWndsZxp0Aa07B2RBGvHnv28/tQPmVX7M9byJmF81Ex5N/HzrmfqgrVM1QPvIhPC5LJZ/Pe0q1m5/0e8sem3zK1+T7pDEpmwlGAdx4qP3MLOV86nceM9zDj4DNP+fDP8+WZ2e2bSWLQUZqxgytyzKJ+9CK9/aBOUjkbxuCMcixMKxwiFO4iEgkTCQaLhIC4ahmgIYmFcLAyxCHHnIB4jHnc453AunnxPLscT67hj87t0n8+lcx369qyy3rORWNd/+mWDzHHSs37rW38v/c/5ctxK+z/7CVRzIueyE+p6Nvg+fc7V7yHv7GfvdaKut+5DDTt3bN051ysed2yf7vv1Or7Hfl37WLftyfN2G0b56K7/4ULroH3FtYP9ZCfNM6kCDoBrqsVKF6W8foD2cJSNzz1NbNO9nNPxO+ZZB/WBmexe9CVmrlnP3NzJw3JeERndqj78Fer/7dfkPH4j4QV/IpCtsTM7uXicYChER/tRwsF2YuEOouEO4pEO4pEw0ViEeCxKLBpNvkeIx2K4WBTXOZWCi2HxGLjEHHM9/4b1nJig98j9vT939L/N06Og6299j888Pffp2paceqFr1reuzcemdzDAWd99uur0WNcxPQOzfmLqu6/rXDPDrPscdN2mm7Bjn7kG+ujQvbhzn0j2VKbPPp3i3LHxeVsJ1iBOrXoXp1a9i3gszs5XX+Dwll+SUf8i8xp+Q96hR+AliDoPtd4yDmXOJJJdiqdgGp78Mnx5U8jMLSA7r5DM3AJ8mXn4/H78Ph9+nx+P10scL9F4nHg0QiwWSbxHO99DRCIRouFQMrEJEYuEiEWCyfcQ8UgQFwkRjyUSHhcNE4+GsVgIomGIh7FoGE88jMXDeGJhPMn5WLwujDcewesi+F0En4vgI4LfRfETwU+UABEKLJbuyyCScvU2hWlV56e83tyy0+B1aKvbTt5p70tp3a/X7GXHb3/AqXse5gJ7ixABassuwK3+a6bNXZW2Z75EZHTIKyhix+pvUv3stbzyvY9S9bcPwxhvxY7FYrQeaaDtyAE6mg8SajlEqK2JaEczsY4WXLAFC7UmJhKPthGIHSUjdpQs144/HiZAmIALk0GYLHNkpfsHknfkB9ELqbvy37m4arSMdXt8SrBOkMfr4dSqs6HqbAAikQi733iJgzu3ENm/nezmnRQHa5l0dAv5h9pPuF5v8jUcQs5PxHxE8BMxPzF8RM1P1BMgZj5ingAxbxZRTz5hjx/nDRD3BsATwHkTL/MFwJuB+TIwXwDzZeDxZ+A8AUjug8+P8/gxjxePWeLbDTM85sHj6Vz3di1br0kuExNrJlscek102R/neraD9J580fVp6jjOlI6u91SO/e406B59JrzsHseABe/sXMNVzyDTZA7IBpsUFHpe1eQ3W5D4lqq/b6oS2461K5p1lrgeB3Q/vuufFJZoGTX6HN95kAEF5fOG5YPH9LIyDrhCbN9rKZl3qT0U4Q+/fxL30r2c3fF7TrMQezNnU7P4VmauXsecbI0CKCLHVK/+AL9760bW1N7Bn+9cR9X1/5X4Wz6KuFiU1sZ9NB14m7aGPYQO1xFrqYejh/AGG8kINZEdayLftVDg2ig0R+EAdUWclzbLocOyk5OJ59DqL+GIL4u4NwvnywBfJvizMH8mHn8m5s9KlmVivkzMF8DrTXzx7fH68fq8iXWfH6/Xh3m9mMeLMx94vJh5MI+n298g695A0/X3p/vftO49KnqsH1vo8e6IJ97j3T/zuG5lycmoexyXeHX27ujs5GE9yrp3C3Fd5+8TB93We8fU64dxyRa9zv1dr3qsW1nnZ4JjPU16Tg7e8yPFsfMsziljemUxY4UNNPt4OlRXV7tNmzalO4whcc7R3NJMc0Mdwab9dLQ1Ez7aQrSjFU/kKC4eJR6P4mIxnIvhI46Z4Tx+8Ph6vMznx+P14/EF8Poz8Poz8fgD+AKZ+PyZ+DIy8Pkz8Qcy8WckXoGMTAKBTMwb0LfZImlQ39zBW//ybuYVGZNv+u93VEc0FudPW7fR8IcNzDvwOPOslg4yqS17L2XvvoG8U5br/haRAcVicX7/vb9l7cEfsSOzipIPf4+imSMwsqBzBNuaaNz/Nq0Ha+lorCPavBdr3Ye//SA5oYMURA9RFD+C13p+/ow6D0csnzZPAR3+QsKBQiIZRcSzJkF2MZ6cyfjzSsjIn0xWfjG5+ZPILygikKk2KUkfM9vsnKvuXa4WrBQzMwoLCiksKAQWpjscERlhpfmZPOmpZFnLkxDpAP+J/fF3zvHaW7W89fufUlb7/1juXsNjjtqcBexe/FVmnXct8zILhjl6ERkPvF4Paz7xLZ792RzOfPX/kHnPObxcdD6Fy/+SGWdcgCdw8klJqKONpoN1tDTs4eihOsJN+3At+/Ed3U9W8AB5kUMUxw+RTYjyXsc2uxwOe4pp9k+mIW82sZypWP40/JMqyJ48nYIpMyiZWk5JRgCN2SzjgRIsEZEUMjMapp6N/+Avoea/Yc7AI3lFYnH+vPUVDm56hJJ9z7Akto3TLcZ+fwW75tzIjPM+xoypc0YwehEZL8yM1Vd+mt01F1P32D9zRuMvyXniCYJP+Kn3z6QlewbRjElEMwrwen24eIxYLIZF2vFHWvCGW/CHW8mONVEUP0w+R5kKTO12jrDz0mhFNPkmcyDrVPZkr4S8aXgLysgqriB/ygwmlc4kPy+fArW6ywQypC6CZvYAMC+5Wgg0OeeWmNksYDuwI7ntBefcDYPVNx66CIqI/Pj5HVz623OJzTqPguse7Cp3zrG7bi9vb3ma+FvPM73pReZSC8A+/wyap7+bipV/Sd4pZ6kLoIik1KEjTbzx4q+Jvvksua1vUhzeR75rI582vOaIOyOO0UEGbZbDUU8eIV8ukUAhocwS4jmlWH4pGZPKyS2ZTuGUCoomT8PrHduDaIgMxUBdBFP2DJaZ/SvQ7Jy7LZlg/dI5d1J95JRgich40Nwe4Se3f4pPuvvYNXkNh/zluJZ9FB3dxamuFo85QvjZk72Q2KkXMONdl5E17bR0hy0iE1AsFicYieH1esjweU5wGhARgWF+BssSd+OVwNpU1CciMpYVZPtZ8dHb+MlPo1zY8BvK2UiTZxJHcmbxavn7KFn4bqbOX8mpJ/h8lojIcPF6PeSoFUokpVLSgmVm5wLf7Mzgki1YrwJvAC3APzrnnh/g2OuB6wFmzJhx5ttvvz3keERERov2cJSA14NPH2BERETGlXfcgmVmvwVK+9n0Jefco8nlDwP3ddtWD8xwzjWa2ZnAI2Z2unOupXclzrnvA9+HRBfBwX8UEZGxIzugsYREREQmkkH/8jvnBh4CCzAzH3AZcGa3Y0JAKLm82cx2AXMBPWAlIiIiIiLjVir6rLwHeN05V9dZYGYlZuZNLp8CzAHeSsG5RERERERERq1U9F25mp7dAwHOBW4zswgQB25wzh1OwblERERERERGrZQN054KZtYAjLZRLiYDh9IdhIwYXe+JQ9d64tC1nlh0vScOXeuJZTRe75nOuZLehaMqwRqNzGxTf6ODyPik6z1x6FpPHLrWE4uu98Shaz2xjKXrrXGDRUREREREUkQJloiIiIiISIoowRrc99MdgIwoXe+JQ9d64tC1nlh0vScOXeuJZcxcbz2DJSIiIiIikiJqwRIREREREUkRJVgiIiIiIiIpogTrOMzsIjPbYWY7zezz6Y5HUsfMppvZ78zsNTN71cz+NlleZGZPmdmbyfdJ6Y5VUsPMvGa2xcx+mVyvNLMXk/f3A2YWSHeMkhpmVmhmD5nZ62a23czepXt7fDKzm5K/w7eZ2X1mlql7e/wws3vM7KCZbetW1u+9bAnfSl73V8zsjPRFLidrgGt9e/L3+Ctm9gszK+y27QvJa73DzC5MS9DHoQRrAGbmBb4NvBdYAHzYzBakNypJoSjwWefcAmAF8Mnk9f088LRzbg7wdHJdxoe/BbZ3W/868G/OuVOBI8D/SktUMhz+A3jCOXcasJjEdde9Pc6YWTnwaaDaObcQ8AJXo3t7PLkXuKhX2UD38nuBOcnX9cB3RyhGSY176XutnwIWOueqgDeALwAkP69dDZyePOY7yc/to4YSrIEtA3Y6595yzoWB+4FL0hyTpIhzrt4591JyuZXEB7ByEtf4h8ndfgh8MC0BSkqZWQXwPuC/kusGrAUeSu6iaz1OmFkBcC5wN4BzLuyca0L39njlA7LMzAdkA/Xo3h43nHPPAYd7FQ90L18C/MglvAAUmtm0EQlUhqy/a+2ce9I5F02uvgBUJJcvAe53zoWcc7uBnSQ+t48aSrAGVg7s6bZelyyTccbMZgFLgReBqc65+uSm/cDUdMUlKfXvwP8G4sn1YqCp2y9u3d/jRyXQAPwg2SX0v8wsB93b445zbi/wL0AticSqGdiM7u3xbqB7WZ/bxrf1wK+Ty6P+WivBkgnNzHKBh4HPOOdaum9ziTkMNI/BGGdmFwMHnXOb0x2LjAgfcAbwXefcUuAovboD6t4eH5LP3lxCIqkuA3Lo28VIxjHdyxODmX2JxKMdG9Idy4lSgjWwvcD0busVyTIZJ8zMTyK52uCc+3my+EBnl4Lk+8F0xScpsxL4gJnVkOjqu5bEMzqFyW5FoPt7PKkD6pxzLybXHyKRcOneHn/eA+x2zjU45yLAz0nc77q3x7eB7mV9bhuHzGwdcDHwEXds8t5Rf62VYA3sT8Cc5GhEARIP0z2W5pgkRZLP4NwNbHfOfbPbpseAjyWXPwY8OtKxSWo5577gnKtwzs0icR8/45z7CPA74IrkbrrW44Rzbj+wx8zmJYveDbyG7u3xqBZYYWbZyd/pndda9/b4NtC9/Bjw0eRogiuA5m5dCWUMMrOLSHTv/4Bzrr3bpseAq80sw8wqSQxs8sd0xDgQO5YMSm9m9hcknt3wAvc4576a3ogkVczsHOB5YCvHnsv5IonnsB4EZgBvA1c653o/YCtjlJmtBj7nnLvYzE4h0aJVBGwBrnHOhdIYnqSImS0hMaBJAHgLuI7EF4q6t8cZM/sKcBWJ7kNbgL8i8SyG7u1xwMzuA1YDk4EDwJeBR+jnXk4m2XeQ6CbaDlznnNuUhrDlHRjgWn8ByAAak7u94Jy7Ibn/l0g8lxUl8ZjHr3vXmU5KsERERERERFJEXQRFRERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFPn/aGSxL8JpAXEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
36True20.120.0646bAP.soma.v0.007612.08e-07
37True20.120.0646Step1.soma.v0.008468.74e-07
38True20.120.0646Step3.soma.v0.007872.61e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "36 True 2 0.12 0.0646 bAP.soma.v \n", + "37 True 2 0.12 0.0646 Step1.soma.v \n", + "38 True 2 0.12 0.0646 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "36 0.00761 2.08e-07 \n", + "37 0.00846 8.74e-07 \n", + "38 0.00787 2.61e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgBElEQVR4nOzdd5xU9b3/8ddnZnuHXViqLBaQtqICYgRFzVWMBYlGNDb0Gn9qTNRYYoxRYq73JsbE2BKjMdFYEKNGjRq7qBhRQQELFtSFpS9L2V5m5vv74xzWYdnKzjJb3s+H82DOOd/zPZ8zZ2ecz3zLMeccIiIiIiIi0nGBeAcgIiIiIiLSUyjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSLSRZhZgZk5M0uIdyw9nZnNNrMF8Y6jqzGzqWb2WbzjEBHpzpRgiYhIt2Zmc8ys3swqoh5XxTuu7sg596ZzbmQs6zSzPDN7y8xKzWyrmb1tZofE8hgiIl2JfiUVEYkRM0twzoXiHUcvNc85d0a8g+gs3fxvqwI4F/gCcMAM4F9m1r8bn5OISLPUgiUi0gFmVmRmPzWzZUClmSWY2WQz+4//a/1SM5sWVX6+mf2fmb1rZmVm9pSZ9W2m7nPMbLmZlZvZV2b2/xptn2FmS/x6vjSz6f76bDO718zWmdkaM/sfMwu2ch57mdmrfivDJjN7yMxyorZtNrMD/OVBZlay/bzM7AQz+9g/3/lmNqrR63OFmS0zs21mNs/MUtr/SrefmV3tvy7lZvaJmc1sppyZ2S1mttF/LT80s7H+tmQzu9nMVpnZBjO7y8xS23j8+/zyL/kxvG5mw6K232pmxf4xF5vZ1Khtc8zsMTN70MzKgNlmNslv/dnqX9s7zCwpah9nZheZ2Rf+8X7lX7v/+Md4NLp8MzFPM7PVbTm/tnLO1TjnPnPORQADwkAfoMm/exGR7k4JlohIx50GHAvkAPnAs8D/4H2BvAJ43Mz6RZU/C+8X/YFACLitmXo3AscBWcA5wC1RSc4k4O/Alf5xDwWK/P3u8+vdG9gfOAo4r5VzMOD/gEHAKGAoMAfAOfcl8FPgQTNLA/4G3O+cm29mI4C5wKVAP+A5vNaJ6C/ypwDTgeFAITC7yQDMpvjJQ3OPKa2cQ2NfAlOBbOCXfvwDmyh3FN7rN8IvewpQ6m/7tb9+PN7rORi4rh0xnA78CsgDlgAPRW17z6+3L/Aw8I9GyecM4DG86/sQXmJymV/XwcCRwEWNjnc0cCAwGbgKuBs4A+96jsX7W91lfqLc3PX5Y2v7AjXA08BfnHMbOxKLiEhXZc65eMcgItJtmVkRcINz7q/+8k+Bsc65M6PKvAA87Jy738zmAwudc1f720bjffFOxfsS/DWQ2FTXKTN7EnjNOXermf0ZqHLOXdaoTD6wCshxzlX7604DznfOHd6O8zoRuN45t3/UuqfxkiQHTHTO1ZrZL4BxzrlT/DIBoBg43U/AioBrnXMP+ttvArKccxe0NZY2xDoHuAaoilo92jm3tlG5Jf45PWVms4HznHNTzOwI4C68xPddv6UFMzO87m2FfpKJmR2Mdy2HtyGu+4AU59yp/nIGsA0ocM4VN1F+CzDNObfUP6cjnHOHtlD/pcBhzrmZ/rIDpjjn3vKXFwOPOud+4y//Dgg65y5toc5pwIPOuSGtnd+u8BPImUCSc+7+zjiGiEi8aQyWiEjHRX9ZHgZ8z8yOj1qXCLzWTPmV/va8xpWa2THA9XgtKAEgDfjQ3zwUr7WosWF+feu8/AD8fXf6Qt/oWPnArXgtPpn+PlsaFbsHr/XhfOdcrb9ukH8OADjnImZWjNfSs936qOdV/j6x9mjjMVhmdhbwE6DAX5VBE6+zc+5VM7sDuBMYZmZP4LU8puC95oujXksDWuxu2UjD6+6cqzCzzXjnX2xmVwD/7S87vJbKvKb29c9nBPB7YIIfVwKwuNHxNkQ9r25ieUA7Yo8551wNMNe8rq9LnHNL4xmPiEhnUBdBEZGOi+4KUAw84JzLiXqkO+d+HVVmaNTzPYB6YFN0hWaWDDwO3AzkO+dy8BKq7d/0i4G9moilGKgF8qKOn+WcG9PKOfyvfx7jnHNZeN3KvskqvNaXPwD3AnPsm3Fja/GSuu3lzD+/Na0cbyfmTRFe0cJjauu1NNQ1DC8hvBjI9V+/j6LPKZpz7jbn3IHAaLyE9kq8a1INjIl6LbOdcxntOK2Ga+2/hn2Btf65XIXXHbGPH9+2RvE17mLyJ+BTYB//Gl3T3Pl0FvPG2jV3fe5qR1WJwJ6dFaeISDwpwRIRia0HgePN7GgzC5pZij9xQHSXqzPMbLQ/nukG4DHnXLhRPUlAMlAChPzWrKOitt8LnGNmR5pZwMwGm9m+zrl1wIvA78wsy9+2l5kd1krcmXjd4baZ2WC8BCParcAi59x5eGPMtn+ZfhQ41o8jEbgcL8H7T2svVGP+FOEZLTzebEd16XgJSgl4E4bgjUHaiZlNNLOD/Pgr8cYJRfyugvfgjX3r75cdbGZHR+3rLGoSkyZ8xx9bloQ3Fmuh3z0wE2+cXAmQYGbX4bVgtSQTKAMqzGxf4MJWysecc25MC9enyW6f5k36MsXMksws1e9Gmw+8s3ujFxHZPZRgiYjEkP/leQZe60IJXovSlez4efsA3kQU6/G6of24iXrK/fWP4nXV+z5e97zt29/Fn/gCr+Xjdb5pSToLL0H7xN/3MbwJNVryS+AAv65ngSe2bzCzGXiTVGz/Qv8T4AAzO9059xlea9fteC0+xwPHO+fqWjlep3LOfQL8Dngbr5vcOOCtZopn4SVSW/C6O5YCv/W3/RRYASw0bza/l4GRAGY2FCjnm26bTXkYr5vnZrzJJ7Z3Y3wBeB743D9mDa1048Trtvh9/5j3APNaKd9VJON1vyzFa9n8DnBs4zFyIiI9hSa5EBHZjfxJLh50zv0l3rFIx5jZGXjdB3/WzPb7gNXOuWt3a2AiIhJXmuRCRERkF2yfGVFERCSaugiKiPQS5t30tqOTE0g3Z2bXNPN38O94xyYi0hOoi6CIiIiIiEiMqAVLREREREQkRrrUGKy8vDxXUFAQ7zBERERERERatHjx4k3OuX6N13epBKugoIBFixbFOwwREREREZEWmdnKptari6CIiIiIiEiMKMESERERERGJESVYIiIiIiIiMdKlxmA1pb6+ntWrV1NTUxPvUKQLSElJYciQISQmJsY7FOmB3lqxiTtfW8EfTz+AnLSkeIcjIiIi3VCXT7BWr15NZmYmBQUFmFm8w5E4cs5RWlrK6tWrGT58eLzDkR7orte/5MfFl7Lm2e+Q873r4h2OiIiIdENdvotgTU0Nubm5Sq4EMyM3N1etmdJp+lavYnJgOWM+/l28QxEREZFuqssnWICSK2mgvwXpTIXV73yz4Fz8AhEREZFuq1skWCIiu0NGeMs3C2Vr4heIiIiIdFtKsNrAzLj88ssblm+++WbmzJkTv4CiTJs2rcWbM5944olMnjx5h3Vz5sxh8ODBjB8/nrFjx/L00093dpgi3UJC+Jvup5GSL+IYiYiIiHRXSrDaIDk5mSeeeIJNmzbFtF7nHJFIJKZ1Rtu6dSuLFy9m27ZtfPXVVztsu+yyy1iyZAn/+Mc/OPfcczs1DpHuIjHyTYJVvrHJm7OLiIiItEgJVhskJCRw/vnnc8stt+y0raSkhJNOOomJEycyceJE3nrrLcBrJbr55psbyo0dO5aioiKKiooYOXIkZ511FmPHjqW4uJgrr7ySsWPHMm7cOObNmwfA/PnzmTZtGieffDL77rsvp59+Oq6ZMSEPPPBAQ2vUu+++27D+iSee4Pjjj+fUU0/lkUceaXLfUaNGkZCQsEPyePXVVzN69GgKCwu54oorACgqKuKII46gsLCQI488klWrVgEwe/ZsLrzwQiZPnsyee+7J/PnzOffccxk1ahSzZ89uqPPCCy9kwoQJjBkzhuuvv36nOLZt28awYcMaEr3KykqGDh1KfX19k3GLdIakSC0b6QtA5abiOEcjIiIi3VGXn6Y92i//9TGfrC2LaZ2jB2Vx/fFjWi33wx/+kMLCQq666qod1l9yySVcdtllTJkyhVWrVnH00UezfPnyFuv64osvuP/++5k8eTKPP/44S5YsYenSpWzatImJEydy6KGHAvDBBx/w8ccfM2jQIA455BDeeustpkyZslN9VVVVLFmyhDfeeINzzz2Xjz76CIC5c+dy3XXXkZ+fz0knncQ111yz077vvPMOgUCAfv36AVBaWso///lPPv30U8yMrVu3AvCjH/2Is88+m7PPPpu//vWv/PjHP+bJJ58EYMuWLbz99ts8/fTTnHDCCbz11lv85S9/YeLEiSxZsoTx48dz44030rdvX8LhMEceeSTLli2jsLCwIY7s7GzGjx/P66+/zuGHH84zzzzD0UcfrftdyW6V5GqoSshmS30doa0agyUiIiLt1+EWLDMbamavmdknZvaxmV3ir59jZmvMbIn/+E7Hw42frKwszjrrLG677bYd1r/88stcfPHFjB8/nhNOOIGysjIqKiparGvYsGEN46IWLFjAaaedRjAYJD8/n8MOO4z33nsPgEmTJjFkyBACgQDjx4+nqKioyfpOO+00AA499FDKysrYunUrGzZs4IsvvmDKlCmMGDGCxMTEhsQL4JZbbmH8+PFcccUVzJs3r2F2vuzsbFJSUvjv//5vnnjiCdLS0gB4++23+f73vw/AmWeeyYIFCxrqOv744zEzxo0bR35+PuPGjSMQCDBmzJiGmB999FEOOOAA9t9/fz7++GM++eSTnc5j1qxZDS14jzzyCLNmzWrxdRSJtSRXC4lprHd9oWxtvMMRERGRbigWLVgh4HLn3PtmlgksNrOX/G23OOdubmHfdmlLS1NnuvTSSznggAM455xzGtZFIhEWLlxISkrKDmUTEhJ2GNcUfe+m9PT0Nh0vOTm54XkwGCQUCjVZrvHU5WbGo48+ypYtWxpuyFtWVsbcuXO58cYbAW8M1vbuf43jfvfdd3nllVd47LHHuOOOO3j11VfbFGcgENgh5kAgQCgU4uuvv+bmm2/mvffeo0+fPsyePbvJe1mdcMIJXHPNNWzevJnFixdzxBFHtHhckVhLdrVYYiYbSGTfqvXxDkdERES6oQ63YDnn1jnn3veflwPLgcEdrbcr6tu3L6eccgr33ntvw7qjjjqK22+/vWF5yZIlABQUFPD+++8D8P777/P11183WefUqVOZN28e4XCYkpIS3njjDSZNmtSuuLa3+ixYsIDs7Gyys7OZO3cuzz//fMO4r8WLFzc7DitaRUUF27Zt4zvf+Q633HILS5cuBeBb3/pWw/4PPfQQU6dObXN8ZWVlpKenk52dzYYNG/j3v//dZLmMjAwmTpzIJZdcwnHHHUcwGGzzMUQ6KhSOkEItkYRUyhLzSK/dGO+QREREpBuK6SQXZlYA7A9sv1vnxWa2zMz+amZ9mtnnfDNbZGaLSkpKYhlOp7j88st3mBDitttuY9GiRRQWFjJ69GjuuusuAE466SQ2b97MmDFjuOOOOxgxYkST9c2cOZPCwkL2228/jjjiCG666SYGDBjQrphSUlLYf//9ueCCC7j33nspKipi5cqVO0zPPnz4cLKzs3nnnXearOM73/kOa9eupby8nOOOO47CwkKmTJnC73//ewBuv/12/va3v1FYWMgDDzzArbfe2ub49ttvP/bff3/23Xdfvv/973PIIYc0bLvuuut2mCZ+1qxZPPjgg+oeKLtdXThCKnVEElKoSsknM7wFQnXxDktERES6GWtuZrp2V2SWAbwO3Oice8LM8oFNgAN+BQx0zp3bUh0TJkxwje/ptHz5ckaNGhWTGKVn0N+EdIYtlXVU3jSK6sHf4p3QPpyx8Xdw6YeQs0e8QxMREZEuyMwWO+cmNF4fkxYsM0sEHgcecs49AeCc2+CcCzvnIsA9QPv6vYmI7EZeC1YtLiEVsvxezproQkRERNopFrMIGnAvsNw59/uo9QOjis0EPmq8r4hIV1FbHyGNWlxiGsl9vASrulT3whIREZH2icUsgocAZwIfmtkSf901wGlmNh6vi2AR8P9icCwRkU5RF6on1eogMZX0fl63wMqSVaTGOS4RERHpXjqcYDnnFgDWxKbnOlq3iMjuUldbDYAlppLTtx+1LpHaLeoiKCIiIu0TixYsEZFur76m0nuSlEZ+diobXQ6U615YIiIi0j4xnaZdRKS7CtdWARBITKV/ZjIbySFQuSHOUYmIiEh3owSrjZ588knMjE8//bTZMkVFRYwdOzZmx5w9ezaPPfZYs9svvfRSBg8eTCQSaVh333330a9fP8aPH8/o0aO55557YhaPSE8WqqsBIJiYTEZyAqXWh6Tqrn9vPhEREelalGC10dy5c5kyZQpz585tcnsoFOrwMcLhcJvLRiIR/vnPfzJ06FBef/31HbbNmjWLJUuWMH/+fK655ho2bNCv8CKtCdV5NxUOJqZgZlQm5pFet6mVvURERER2pASrDSoqKliwYAH33nsvjzzySMP6+fPnM3XqVE444QRGjx4NeInW6aefzqhRozj55JOpqvK6Hb3yyivsv//+jBs3jnPPPZfa2loACgoK+OlPf8oBBxzAP/7xj52O/fLLLzNhwgRGjBjBM888s8Oxx4wZw4UXXths0te/f3/22msvVq5c2bDutttuY/To0RQWFnLqqacCsHnzZk488UQKCwuZPHkyy5YtA2DOnDmcffbZTJ06lWHDhvHEE09w1VVXMW7cOKZPn059fT0AN9xwAxMnTmTs2LGcf/75NL55dSQSoaCggK1btzas22effZT4SZcSrvdbsJKSAahJ6UdapALqq+MZloiIiHQz3WuSi39fDes/jG2dA8bBMb9uschTTz3F9OnTGTFiBLm5uSxevJgDDzwQgPfff5+PPvqI4cOHU1RUxGeffca9997LIYccwrnnnssf//hHLr74YmbPns0rr7zCiBEjOOuss/jTn/7EpZdeCkBubi7vv/9+k8cuKiri3Xff5csvv+Twww9nxYoVpKSkMHfuXE477TRmzJjBNddcQ319PYmJiTvs+9VXX/HVV1+x9957N6z79a9/zddff01ycnJDwnP99dez//778+STT/Lqq69y1llnsWTJEgC+/PJLXnvtNT755BMOPvhgHn/8cW666SZmzpzJs88+y4knnsjFF1/MddddB8CZZ57JM888w/HHH99wzEAgwIwZM/jnP//JOeecwzvvvMOwYcPIz89v82US6Wyheu9Hj4TEFADC6f2hAqjYAH0K4heYiIiIdCtqwWqDuXPnNrT2nHrqqTu0GE2aNInhw4c3LA8dOpRDDjkEgDPOOIMFCxbw2WefMXz4cEaMGAHA2WefzRtvvNGwz6xZs5o99imnnEIgEGCfffZhzz335NNPP6Wuro7nnnuOE088kaysLA466CBeeOGFhn3mzZvH+PHjOe200/jzn/9M3759G7YVFhZy+umn8+CDD5KQ4OXXCxYs4MwzzwTgiCOOoLS0lLKyMgCOOeYYEhMTGTduHOFwmOnTpwMwbtw4ioqKAHjttdc46KCDGDduHK+++ioff/zxTucxa9Ys5s2bB8AjjzzS4jmLxEOk/psxWACBTP9e6eVqaRUREZG2614tWK20NHWGzZs38+qrr/Lhhx9iZoTDYcyM3/72twCkp6fvUN7MWlxuSuM6WqvvhRdeYOvWrYwbNw6AqqoqUlNTOe644wAvmbnjjjuarO/ZZ5/ljTfe4F//+hc33ngjH37YcotgcrL/ZTMQIDExsSGeQCBAKBSipqaGiy66iEWLFjF06FDmzJlDTU3NTvUcfPDBrFixgpKSEp588kmuvfbaFo8rsrtFQt4YrES/i2BijpdgVW9ZQ+oecQtLREREuhm1YLXiscce48wzz2TlypUUFRVRXFzM8OHDefPNN5ssv2rVKt5++20AHn74YaZMmcLIkSMpKipixYoVADzwwAMcdthhbTr+P/7xDyKRCF9++SVfffUVI0eOZO7cufzlL3+hqKiIoqIivv76a1566aWG8V7NiUQiFBcXc/jhh/Ob3/yGbdu2UVFRwdSpU3nooYcAb2xXXl4eWVlZbYpvezKVl5dHRUVFs7MemhkzZ87kJz/5CaNGjSI3N7dN9YvsLuE6v4tgktdFMD13EACVm9bELSYRERHpfpRgtWLu3LnMnDlzh3UnnXRSsxNLjBw5kjvvvJNRo0axZcsWLrzwQlJSUvjb3/7G9773PcaNG0cgEOCCCy5o0/H32GMPJk2axDHHHMNdd91FJBLh+eef59hjj20ok56ezpQpU/jXv/7VZB3nnXceixYtIhwOc8YZZzBu3Dj2339/fvzjH5OTk8OcOXNYvHgxhYWFXH311dx///1tfHUgJyeHH/zgB4wdO5ajjz6aiRMnNmy76667uOuuuxqWZ82axYMPPqjugdIlRcJegrW9BSs7bxAhF6Bmy9p4hiUiIiLdjDWe8S2eJkyY4BYtWrTDuuXLlzNq1Kg4RSRdkf4mpDM8+/AdHPv5z3EXvYP135cVG8vJuHMctcOmMezc++IdnoiIiHQxZrbYOTeh8Xq1YImIAJGQ14JlCUkA9MtMYaPLIVChSS5ERESk7ZRgiYgA+AkWQa+LYFZKAqXWh6TqkjgGJSIiIt1Nt0iwulI3Rokv/S1IZ3FhbxZBgl4LlplRnpBLat2mOEYlIiIi3U2XT7BSUlIoLS3VF2vBOUdpaSkpKSnxDkV6In+advwuggA1Kf3ICG+FcCg+MYmIiEi30+XvgzVkyBBWr15NSYm66YiXcA8ZMiTeYUhP1KgFCyCclk+g0kHlRsgaFKfAREREpDvp9ATLzKYDtwJB4C/OuXbdLTgxMZHhw4d3SmwiIg2aSLDIzIcSoHy9EiwRERFpk07tImhmQeBO4BhgNHCamY3uzGOKiOwKC9cRJgCBYMO6pBwvqdK9sERERKStOnsM1iRghXPuK+dcHfAIMKOTjyki0m4WqaeexB3Wpfb1EqyKTWviEZKIiIh0Q52dYA0GiqOWV/vrGpjZ+Wa2yMwWaZyViMRLIFxH2HZMsLLzvI+rmi1KsERERKRt4j6LoHPubufcBOfchH79+sU7HBHppczVE2qUYPXrk0mpyyS0bX2cohIREZHuprMTrDXA0KjlIf46EZEuJRiuIxzYMcHqn5nMRpeDVSjBEhERkbbp7ATrPWAfMxtuZknAqcDTnXxMEZF2C7h6wrbjxKrZqYlsog+J1eq+LCIiIm3TqQmWcy4EXAy8ACwHHnXOfdyZxxQR2RXBSD3hQNIO68yM8sRcUmuVYImIiEjbdPp9sJxzzwHPdfZxREQ6IujqiTQagwVQndKfrMpSiIR3mMJdREREpClxn+RCRKQrCLp6IoGdE6zatIEEiUDFhjhEJSIiIt2NEiwRESDR1REOJu+03mX5d5bYpvl5REREpHVKsESk13POkeRqiQRTdtoWzPEmQq3dvGp3hyUiIiLdkBIsEen16sIRUqgnkrBzgpXRfw8Ayjd8vbvDEhERkW5ICZaI9Ho19RFSqMM10YLVLy+fSpdMbWlxHCITERGR7kYJloj0erX1YVKsDpe4c4I1qE8a61wukW2r4xCZiIiIdDdKsESk16sNeS1YJKTutG1AdgprySWxYm0cIhMREZHuRgmWiPR6NfVhUqjDmmjBSgwG2JrQn7Sa9XGITERERLobJVgi0uvV1IVJsXoscecWLICq1AFkhLZAqG43RyYiIiLdjRIsEen1amurAAg0k2CFMgYRwEG5ugmKiIhIy5RgiUivF6rxE6yktCa3B3OGABDZqokuREREpGVKsESk16uvqQQgmNx0C1ZK3jAAKkpW7raYREREpHtSgiUivV59ndeCFUxqOsHKyi8AoHJj0W6KSERERLorJVgi0uuF/TFYCclNdxEckNeXLS6Dus262bCIiIi0TAmWiPR64bqWE6zBOamsc7lY2ZrdGZaIiIh0Qx1KsMzst2b2qZktM7N/mlmOv77AzKrNbIn/uCsm0YqIdIJwbTUAic0kWNmpiWywXJIrNYugiIiItKyjLVgvAWOdc4XA58DPorZ96Zwb7z8u6OBxREQ6TaTOT7BSmk6wzIxtSQPIrNXNhkVERKRlHUqwnHMvOudC/uJCYEjHQxIR2b22dxFMaibBAqhJH0xapAJqynZXWCIiItINxXIM1rnAv6OWh5vZB2b2uplNbW4nMzvfzBaZ2aKSkpIYhiMi0jbbJ7mwxPRmy0Sy/N+PtmmiCxEREWleqwmWmb1sZh818ZgRVebnQAh4yF+1DtjDObc/8BPgYTPLaqp+59zdzrkJzrkJ/fr16/gZiYi0k9X6rVIp2c2WScr17oVVu0n3whIREZHmJbRWwDn37Za2m9ls4DjgSOec8/epBWr954vN7EtgBLCoowGLiMRaoG57gtXk70AApPcfDkDZ+q/oN2Z3RCUiIiLdUUdnEZwOXAWc4Jyrilrfz8yC/vM9gX2ArzpyLBGRzpJQV04tSZCQ3GyZvAFDqHUJ1Gwq2n2BiYiISLfTagtWK+4AkoGXzAxgoT9j4KHADWZWD0SAC5xzmzt4LBGRTpEYKqc6kEHz6RUM7pPOWpdLYMuq3RaXiIiIdD8dSrCcc3s3s/5x4PGO1C0isrskhcqpCTY/wQVAflYKC+nH8IrVuykqERER6Y5iOYugiEi3lBqupC4hs8UywYCxJTGf9Op1uykqERER6Y6UYIlIr5caqaQuseUEC6AqdRDZ4c0Qqt0NUYmIiEh3pARLRHq12lCYDFeBS2p+BsHtQg33wlI3QREREWmaEiwR6dW2VNaTadWQ2vw9sLZL6LMHACFNdCEiIiLNUIIlIr3a5opasqkgmJrTatm0/gUAlK3TXSdERESkaUqwRKRXK9+8jmQLEcge3GrZPgOGE3ZGZcnXuyEyERER6Y6UYIlIr1Zd6nX3S84d2mrZQblZbKAP4c3qIigiIiJNU4IlIr1aZEsx8E33v5YMyklhjcsjWK5JLkRERKRpSrBEpHcrWwNARr+CVosmJwQpDeaTVrW2k4MSERGR7koJloj0ala2hlqSCGbktal8RepAsus3QiTcyZGJiIhId6QES0R6teTKdZQG+4FZm8qHMgaTQBjK13dyZCIiItIdKcESkV4ts24D5cn5bS5vfbzJMCK6F5aIiIg0QQmWiPRakYgjL7yRurSBbd4nJa8AgPKNmqpdREREdqYES0R6rZKySvqzBdeGe2Btl9ZvOADVJUWdFJWIiIh0Z0qwRKTX2rBmJUFzJPVt/R5Y2+X17cNml0FIXQRFRESkCR1KsMxsjpmtMbMl/uM7Udt+ZmYrzOwzMzu646GKiMRW2Qavm196G6Zo365/lncvrMC24k6KSkRERLqzhBjUcYtz7uboFWY2GjgVGAMMAl42sxHOOc1rLCJdRs0mrxWq78Dhbd6nX0YyH7p+DKrUvbBERERkZ53VRXAG8IhzrtY59zWwApjUSccSEdkl4a1eK1R6v2Ft3icpIcDmhH6k12zorLBERESkG4tFgnWxmS0zs7+aWR9/3WAguv/Man+diEiXkVCxhgrSISWrXftVJfcnJVIJtRWdFJmIiIh0V60mWGb2spl91MRjBvAnYC9gPLAO+F17AzCz881skZktKikpae/uIiK7LLVqPVsT+7V7v/r0Ad6T8nUxjkhERES6u1bHYDnnvt2WiszsHuAZf3ENED0t1xB/XVP13w3cDTBhwgTXlmOJiMRCTmgjVVkD2r9j5gAoBcrWQt4+MY9LREREuq+OziIYfXfOmcBH/vOngVPNLNnMhgP7AO925FgiIrFUXlNPvttEfUb7ey8n5nj7RMo00YWIiIjsqKOzCN5kZuMBBxQB/w/AOfexmT0KfAKEgB9qBkER6UrWbdrCCCtnY86Qdu+b2tfbp2rTajJiHZiIiIh0ax1KsJxzZ7aw7Ubgxo7ULyLSWTavKwIgJbftNxneLrdvH8pcGvWblWCJiIjIjjprmnYRkS6tYqN3k+Gs/LbfA2u7fpkprHd9iJQ1ObRUREREejElWCLSK9Vt9u4kkTNgz3bvm5+VzHrXl0CF7oUlIiIiO1KCJSK9km3zWp+COe2f5KJfZjIbXB+SqpRgiYiIyI6UYIlIr5RUtZatgRxISG73vskJQbYl9iOtbhNENH+PiIiIfEMJloj0Shm1G9iWmL/L+9em5hMkDJW6QbqIiIh8QwmWiPQ6zjn6hkqoSduFmwxvryPDT850LywRERGJogRLRHqd0opaBrKJcMagXa4jkO2P3SpfF6OoREREpCdQgiUivc6GjRvIsBoCffbY5TpS/JsN12/RVO0iIiLyDSVYLSj+Yinv3HYmFWWb4x2KiMRQ+drPAEjJ32eX68jqN4iQC1BVWhyrsERERKQHUILVgvXLXmVC6b+ouGUSHy94Kt7hiEiM1G34HICswfvuch0Dc9LZSA51asESERGRKAnxDqArm3jSZSwfWkj6vy9mzMtn8eGCCSQdfhUjJv4XFui5ualzjkjEEQ6HCYfqcS6EC4dwbvv2CN5Th3NgzoEDR8Tf7tWxvez2Oh3ssM523ylFaf9RbZcCbXmnmJ57VIC2a8G2XH0TzzpcZ0tVdcI5NBYo+YSwM3IG7XoL1oDsFNa5XPbYtrpd+9XUhwkGjMRgz/0M6RKcw0VChEP1hEL1RMIhwpEIkXCEcMQBDR9o23fYYTnqE2uHf2z7p9/2zTHRhr/5tr4tYlZV66Xa9nnThnraUIt/wI5s3pUjtlJNLD+r4vN/RJHuwgWTSM3IIjkhGO9Q2kQJVitGTTqSmrHv8fbjNzHqy3vJ+fcpFL8wmLWDjiJzzNHsNX4KyamZMT+uc47aUISq2hBVVRVUVZRTU1VGbXUFdVUV1FWXE6qpIFJbSbiuCquvIhiqJlBfRSBcRUKomoRwNQmRapLCNSRGakiK1JDsakh0dQQJEyBCgDAJRAi4CEHCBIkQIEKCRegef8Ii7TcFWBMYwOCklF2uY1B2KovcYEZtXeJ9227ly9bGsmrmP/MQg5b/lW1DpnHs//vfXT52dxUJR6io2EpV2WaqyjZTXb6Fusqt1FduJVy1DVezDerKsfpqAqEaLFxDMFxDMFxLMFJLYqSWBFdLUqR2h88x77MrTILzPsOChEmwCIb3Pzn9j05EpHv7W+ho+p3yB44r3PXJqXYn/X+nDVLSMjj4zBuoKL+cd166n4zl8ziw+H4SVv+NyPPG6sAANiXvQTgtl1ByLuGUHBISkyDg/W8f5wiEa7FwLZH6WiL1NRCqJRCqwrYnQuFqkiLVDUlQiqshlVpyqKOvte+n0mqSqbWUhkddIIX6hFSqA5mUB1MJB5PBgrhAgv9vECwIgSDOguCvt6C33vkP7wuk/yWy4cukYQYO87Y01ZoSVfabH+ms0b8d19qrZK2W2IVKY7/jLh8ntr+oN6p/d53O7jsQffaZ1KH9U5OCbEjdm7S6+VCxATKbnvL9i7WlvP/cvRQWP8gpthKC8PWGcqBnJFg1dfWUblxL2caV1JSupnbbBsLlJVBVQmJ1Kcl1m0kLbSE7so0+rowsC5PVQn0hF6DGkqkjiVpLot6SqbNkQoFkQsEUaoI5RIIphANJEEggEkjwP58SvM+yQELUZ1sCFvDWWyCIWRAz77PJ+1jyPn9cE59r0f+65j63YtGC0aY3blvfFzF6/8TqbdiGc3NtPFhrn99tDbm1/5062vp/pVh+Vu2+zz2R7io/YwSjBmXHO4w2U4LVDhmZ2Rz03R8DP2bb1lK+fu95KlZ+QNrWz8muLiZj8xf0cWUkWajFempcIvWWSI2lULc9AQqmEkrMojKYT0VCGi4xDZLSsMQ0LDmdhOR0gikZJKZkkJiWQXJKJsnpmaSmZ5CUkglJ6ZCYBgkppAYCpO6el0SkV6vPGwVrgXXLdkiwIhHHOx99xtpX/sjUrU8xy7ayMaWAkil/4NOPl3DIuvtxNWVYSkupRvxFIo6SLVspXf05FetXULdpJa5sDYkV60iv3UBOqIT+rpTBFmJwo30rSWGb5VCR0IeatMGUJY/j65RcSO1DIDWLhLQcktJzSM7oQ2pGH9Ky+5KR3ZfE5HQydkM3URERkc6iBGsXZefkMv6/TgdO32G9i0Soqa6gqqYWIiECkRCBQBCSUkhISiElKYWUYIAUIPYdC0Vkd8ob+S0q1qQQ+eBxskYcxbot5Sx66R9kfPooh4Tf5WALU9T3W5QdeSn9xxwFZizb8gCB9fdRuuIdcsf+V7xPgVA4wtoNGyhZ9SkV6z4nvOlLEretJKt6NfmhtQywzeRHla8nSGkgl7LEfLZkFFKSOQgyB5HYdyipfYeQ1W8gOXmDSE/NID1uZyUiIhI/SrBizAIBUtKzSNE3C5Ee7+jxe/LsK9/iu8sf44MbP2ePui843srZFshm1d5nMPTbF1AwcPQO+/QdOZXwYmPLx6/utgSrtj7E2jXFlBZ/SuW6L3CbvyKpbCU5NasZEF7LHlZB9B3BNlsfNicPZmOfyazPKSCx396kD9ib3MF7kdl3EAMCAZruECkiIiIdSrDMbB4w0l/MAbY658abWQGwHPjM37bQOXdBR44lItLVDMhOIfv4/+WtF69gr8gqSgYcSnjCSfQ/4ASyg4lN7jNmrz34kL3JXTk/prFU1dSytvgrNhd/SvWGFbD5K1IrVtKnZg0DI+sZbjUM98uGnbEp2J8tKYNZlflfFPcdTlr+CPoOHUHfISPom5xJ35hGJyIi0nt0KMFyzs3a/tzMfgdsi9r8pXNufEfqFxHp6qZPHAUTn21z+aSEAF/3O4Lxm/5MxYr/kLH3t9q0X01dPRvWrmTLuiIqS76mfvNqgmXFpFUW07d2DYPcBvaOGv9ZRwIbgwPZlj6EzzMnE8zbk7QB+9Bvj1FkD9yT/ITkHbr+iYiISGzEpIugedPFnQIcEYv6RER6spHHXcr6vz1K0sPf58MxFxDovy8hB/XVlYTKNxIu34irLCWxZhPpNevp408mMczCDIuqp4oUNiYMojxzLz7KPpKEvL3IHDSCvD32Jav/MIYEggyJ21mKiIj0TrEagzUV2OCc+yJq3XAz+wAoA651zr3Z1I5mdj5wPsAee+zRVBERkR5ldMEg3jjq7wx46WLGffh/TZapJpltls22pHxKMvZjfeZggn2GkJo3jOz84eQO3ou09D4UaMY9ERGRLsVcK/epMLOXocnxzD93zj3ll/kTsMI59zt/ORnIcM6VmtmBwJPAGOdcWUvHmjBhglu0aFH7z0JEpBuqD4X5+qsV1G36ksRggOTUdNL65NOn3yASUzLiHZ6IiIi0wMwWO+cmNF7faguWc+7brVScAHwXODBqn1qg1n++2My+BEYAyp5ERHyJCUFGjBgJI0a2XlhERES6hUAM6vg28KlzbvX2FWbWz8yC/vM9gX2Ar2JwLBERERERkS4rFmOwTgXmNlp3KHCDmdUDEeAC59zmGBxLRERERESky+pwguWcm93EuseBxztat4iIiIiISHfS6iQXu5OZlQAr4x1HI3nApngHIbuNrnfvoWvde+ha9y663r2HrnXv0hWv9zDnXL/GK7tUgtUVmdmipmYHkZ5J17v30LXuPXStexdd795D17p36U7XOxaTXIiIiIiIiAhKsERERERERGJGCVbr7o53ALJb6Xr3HrrWvYeude+i69176Fr3Lt3memsMloiIiIiISIyoBUtERERERCRGlGCJiIiIiIjEiBKsFpjZdDP7zMxWmNnV8Y5HYsfMhprZa2b2iZl9bGaX+Ov7mtlLZvaF/2+feMcqsWFmQTP7wMye8ZeHm9k7/vt7npklxTtGiQ0zyzGzx8zsUzNbbmYH673dM5nZZf5n+EdmNtfMUvTe7jnM7K9mttHMPopa1+R72Ty3+dd9mZkdEL/Ipb2auda/9T/Hl5nZP80sJ2rbz/xr/ZmZHR2XoFugBKsZZhYE7gSOAUYDp5nZ6PhGJTEUAi53zo0GJgM/9K/v1cArzrl9gFf8ZekZLgGWRy3/BrjFObc3sAX477hEJZ3hVuB559y+wH54113v7R7GzAYDPwYmOOfGAkHgVPTe7knuA6Y3Wtfce/kYYB//cT7wp90Uo8TGfex8rV8CxjrnCoHPgZ8B+N/XTgXG+Pv80f/e3mUowWreJGCFc+4r51wd8AgwI84xSYw459Y55973n5fjfQEbjHeN7/eL3Q+cGJcAJabMbAhwLPAXf9mAI4DH/CK61j2EmWUDhwL3Ajjn6pxzW9F7u6dKAFLNLAFIA9ah93aP4Zx7A9jcaHVz7+UZwN+dZyGQY2YDd0ug0mFNXWvn3IvOuZC/uBAY4j+fATzinKt1zn0NrMD73t5lKMFq3mCgOGp5tb9OehgzKwD2B94B8p1z6/xN64H8eMUlMfUH4Cog4i/nAlujPrj1/u45hgMlwN/8LqF/MbN09N7ucZxza4CbgVV4idU2YDF6b/d0zb2X9b2tZzsX+Lf/vMtfayVY0quZWQbwOHCpc64sepvz7mGg+xh0c2Z2HLDRObc43rHIbpEAHAD8yTm3P1BJo+6Aem/3DP7Ymxl4SfUgIJ2duxhJD6b3cu9gZj/HG9rxULxjaSslWM1bAwyNWh7ir5MewswS8ZKrh5xzT/irN2zvUuD/uzFe8UnMHAKcYGZFeF19j8Abo5PjdysCvb97ktXAaufcO/7yY3gJl97bPc+3ga+dcyXOuXrgCbz3u97bPVtz72V9b+uBzGw2cBxwuvvm5r1d/lorwWree8A+/mxESXiD6Z6Oc0wSI/4YnHuB5c6530dteho4239+NvDU7o5NYss59zPn3BDnXAHe+/hV59zpwGvAyX4xXesewjm3Hig2s5H+qiOBT9B7uydaBUw2szT/M337tdZ7u2dr7r38NHCWP5vgZGBbVFdC6YbMbDpe9/4TnHNVUZueBk41s2QzG443scm78YixOfZNMiiNmdl38MZuBIG/OudujG9EEitmNgV4E/iQb8blXIM3DutRYA9gJXCKc67xAFvppsxsGnCFc+44M9sTr0WrL/ABcIZzrjaO4UmMmNl4vAlNkoCvgHPwflDUe7uHMbNfArPwug99AJyHNxZD7+0ewMzmAtOAPGADcD3wJE28l/0k+w68bqJVwDnOuUVxCFt2QTPX+mdAMlDqF1vonLvAL/9zvHFZIbxhHv9uXGc8KcESERERERGJEXURFBERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkS7CzArMzJlZQrxj6enMbLaZLYh3HF2NmU01s8/iHYeISHemBEtERLo1M5tjZvVmVhH1uCrecXVHzrk3nXMjY1mnmeWZ2VtmVmpmW83sbTM7JJbHEBHpSvQrqYhIjJhZgnMuFO84eql5zrkz4h1EZ+nmf1sVwLnAF4ADZgD/MrP+3ficRESapRYsEZEOMLMiM/upmS0DKs0swcwmm9l//F/rl5rZtKjy883s/8zsXTMrM7OnzKxvM3WfY2bLzazczL4ys//XaPsMM1vi1/OlmU3312eb2b1mts7M1pjZ/5hZsJXz2MvMXvVbGTaZ2UNmlhO1bbOZHeAvDzKzku3nZWYnmNnH/vnON7NRjV6fK8xsmZltM7N5ZpbS/le6/czsav91KTezT8xsZjPlzMxuMbON/mv5oZmN9bclm9nNZrbKzDaY2V1mltrG49/nl3/Jj+F1MxsWtf1WMyv2j7nYzKZGbZtjZo+Z2YNmVgbMNrNJfuvPVv/a3mFmSVH7ODO7yMy+8I/3K//a/cc/xqPR5ZuJeZqZrW7L+bWVc67GOfeZcy4CGBAG+gBN/t2LiHR3SrBERDruNOBYIAfIB54F/gfvC+QVwONm1i+q/Fl4v+gPBELAbc3UuxE4DsgCzgFuiUpyJgF/B670j3soUOTvd59f797A/sBRwHmtnIMB/wcMAkYBQ4E5AM65L4GfAg+aWRrwN+B+59x8MxsBzAUuBfoBz+G1TkR/kT8FmA4MBwqB2U0GYDbFTx6ae0xp5Rwa+xKYCmQDv/TjH9hEuaPwXr8RftlTgFJ/26/99ePxXs/BwHXtiOF04FdAHrAEeChq23t+vX2Bh4F/NEo+ZwCP4V3fh/ASk8v8ug4GjgQuanS8o4EDgcnAVcDdwBl413Ms3t/qLvMT5eauzx9b2xeoAZ4G/uKc29iRWEREuipzzsU7BhGRbsvMioAbnHN/9Zd/Cox1zp0ZVeYF4GHn3P1mNh9Y6Jy72t82Gu+Ldyrel+CvgcSmuk6Z2ZPAa865W83sz0CVc+6yRmXygVVAjnOu2l93GnC+c+7wdpzXicD1zrn9o9Y9jZckOWCic67WzH4BjHPOneKXCQDFwOl+AlYEXOuce9DffhOQ5Zy7oK2xtCHWOcA1QFXU6tHOubWNyi3xz+kpM5sNnOecm2JmRwB34SW+7/otLZiZ4XVvK/STTMzsYLxrObwNcd0HpDjnTvWXM4BtQIFzrriJ8luAac65pf45HeGcO7SF+i8FDnPOzfSXHTDFOfeWv7wYeNQ59xt/+XdA0Dl3aQt1TgMedM4Nae38doWfQM4Ekpxz93fGMURE4k1jsEREOi76y/Iw4HtmdnzUukTgtWbKr/S35zWu1MyOAa7Ha0EJAGnAh/7moXitRY0N8+tb5+UH4O+70xf6RsfKB27Fa/HJ9PfZ0qjYPXitD+c752r9dYP8cwDAORcxs2K8lp7t1kc9r/L3ibVHG4/BMrOzgJ8ABf6qDJp4nZ1zr5rZHcCdwDAzewKv5TEF7zVfHPVaGtBid8tGGl5351yFmW3GO/9iM7sC+G9/2eG1VOY1ta9/PiOA3wMT/LgSgMWNjrch6nl1E8sD2hF7zDnnaoC55nV9XeKcWxrPeEREOoO6CIqIdFx0V4Bi4AHnXE7UI9059+uoMkOjnu8B1AObois0s2TgceBmIN85l4OXUG3/pl8M7NVELMVALZAXdfws59yYVs7hf/3zGOecy8LrVvZNVuG1vvwBuBeYY9+MG1uLl9RtL2f++a1p5Xg7MW+K8IoWHlNbr6WhrmF4CeHFQK7/+n0UfU7RnHO3OecOBEbjJbRX4l2TamBM1GuZ7ZzLaMdpNVxr/zXsC6z1z+UqvO6Iffz4tjWKr3EXkz8BnwL7+NfomubOp7OYN9auuetzVzuqSgT27Kw4RUTiSQmWiEhsPQgcb2ZHm1nQzFL8iQOiu1ydYWaj/fFMNwCPOefCjepJApKBEiDkt2YdFbX9XuAcMzvSzAJmNtjM9nXOrQNeBH5nZln+tr3M7LBW4s7E6w63zcwG4yUY0W4FFjnnzsMbY7b9y/SjwLF+HInA5XgJ3n9ae6Ea86cIz2jh8WY7qkvHS1BKwJswBG8M0k7MbKKZHeTHX4k3TijidxW8B2/sW3+/7GAzOzpqX2dRk5g04Tv+2LIkvLFYC/3ugZl44+RKgAQzuw6vBaslmUAZUGFm+wIXtlI+5pxzY1q4Pk12+zRv0pcpZpZkZql+N9p84J3dG72IyO6hBEtEJIb8L88z8FoXSvBalK5kx8/bB/AmoliP1w3tx03UU+6vfxSvq9738brnbd/+Lv7EF3gtH6/zTUvSWXgJ2if+vo/hTajRkl8CB/h1PQs8sX2Dmc3Am6Ri+xf6nwAHmNnpzrnP8Fq7bsdr8TkeON45V9fK8TqVc+4T4HfA23jd5MYBbzVTPAsvkdqC192xFPitv+2nwApgoXmz+b0MjAQws6FAOd9022zKw3jdPDfjTT6xvRvjC8DzwOf+MWtopRsnXrfF7/vHvAeY10r5riIZr/tlKV7L5neAYxuPkRMR6Sk0yYWIyG7kT3LxoHPuL/GORTrGzM7A6z74s2a23wesds5du1sDExGRuNIkFyIiIrtg+8yIIiIi0dRFUESklzDvprcdnZxAujkzu6aZv4N/xzs2EZGeQF0ERUREREREYkQtWCIiIiIiIjHSpcZg5eXluYKCgniHISIiIiIi0qLFixdvcs71a7y+SyVYBQUFLFq0KN5hiIiIiIiItMjMVja1Xl0ERUREREREYkQJloiIiIiISIwowRIRaaNwxPHY4tVU14XjHYqIiIh0UV1qDFZT6uvrWb16NTU1NfEORbqZlJQUhgwZQmJiYrxDkR7i9c838sbjf6L801Gcc/oZ8Q5HREREuqAun2CtXr2azMxMCgoKMLN4hyPdhHOO0tJSVq9ezfDhw+MdjvQQH64u47akO+ALwJ0O+kwSERGRRrp8F8Gamhpyc3OVXEm7mBm5ublq+ZSY2loZ9fe0bmn8AhEREZEuq8snWICSK9kl+ruRWKur3NLwPLRheRwjERERka6qWyRYIiJdQsXGhqeVG7+KYyAiIiLSVSnBagMz4/LLL29Yvvnmm5kzZ078AoqycOFCDjroIMaPH8+oUaMa4po/fz7/+c9/OlT39OnTycnJ4bjjjotBpCLdn1Vtanhet6kofoGIiIhIl6UEqw2Sk5N54okn2LRpU+uF28E5RyQS6VAdZ599NnfffTdLlizho48+4pRTTgFik2BdeeWVPPDAAx2qQ6QnSa0rBaDCpcDWVXGORkRERLqiLj+LYLRf/utjPllbFtM6Rw/K4vrjx7RYJiEhgfPPP59bbrmFG2+8cYdtJSUlXHDBBaxa5X3Z+sMf/sAhhxzCnDlzyMjI4IorrgBg7NixPPPMMwAcffTRHHTQQSxevJjnnnuOO+64g3//+9+YGddeey2zZs1i/vz5zJkzh7y8PD766CMOPPBAHnzwwZ3GFW3cuJGBAwcCEAwGGT16NEVFRdx1110Eg0EefPBBbr/9dvbdd99m4/zyyy9ZsWIFmzZt4qqrruIHP/gBAEceeSTz589v8bX5xz/+wS9/+UuCwSDZ2dm88cYb1NTUcOGFF7Jo0SISEhL4/e9/z+GHH859993Hk08+SWVlJV988QVXXHEFdXV1PPDAAyQnJ/Pcc8/Rt29f7rnnHu6++27q6urYe++9eeCBB0hLS9vhuJMnT+bee+9lzBjv2k2bNo2bb76ZCRMmtBivSEdkhrYCsCSyF+MqVsc3GBEREemSOtyCZWZDzew1M/vEzD42s0v89X3N7CUz+8L/t0/Hw42fH/7whzz00ENs27Zth/WXXHIJl112Ge+99x6PP/445513Xqt1ffHFF1x00UV8/PHHLFq0iCVLlrB06VJefvllrrzyStatWwfABx98wB/+8Ac++eQTvvrqK956662d6rrssssYOXIkM2fO5M9//jM1NTUUFBRwwQUXcNlll7FkyRKmTp3aYpzLli3j1Vdf5e233+aGG25g7dq1bX5dbrjhBl544QWWLl3K008/DcCdd96JmfHhhx8yd+5czj777IbZ/D766COeeOIJ3nvvPX7+85+TlpbGBx98wMEHH8zf//53AL773e/y3nvvsXTpUkaNGsW9996703FnzZrFo48+CsC6detYt26dkivpdKmRcgCKgnuQWrsJnItzRCIiItLVxKIFKwRc7px738wygcVm9hIwG3jFOfdrM7sauBr4aUcO1FpLU2fKysrirLPO4rbbbiM1NbVh/csvv8wnn3zSsFxWVkZFRUWLdQ0bNozJkycDsGDBAk477TSCwSD5+fkcdthhvPfee2RlZTFp0iSGDBkCwPjx4ykqKmLKlCk71HXddddx+umn8+KLL/Lwww8zd+7cJludWopzxowZpKamkpqayuGHH867777LiSee2KbX5ZBDDmH27NmccsopfPe73204px/96EcA7LvvvgwbNozPP/8cgMMPP5zMzEwyMzPJzs7m+OOPB2DcuHEsW7YM8JKwa6+9lq1bt1JRUcHRRx+903FPOeUUjjrqKH75y1/y6KOPcvLJJ7cpXpGOCIZrCROkOiWfpJoaqKuA5Mx4hyUiIiJdSIcTLOfcOmCd/7zczJYDg4EZwDS/2P3AfDqYYMXbpZdeygEHHMA555zTsC4SibBw4UJSUlJ2KJuQkLDD+Kro+zGlp6e36XjJyckNz4PBIKFQqMlye+21FxdeeCE/+MEP6NevH6WlpTuVaS5O2Hk68/ZMb37XXXfxzjvv8Oyzz3LggQeyePHiFstHn1MgEGhYDgQCDec3e/ZsnnzySfbbbz/uu+++JhPGwYMHk5uby7Jly5g3bx533XVXm2MW2VUBV0c4kEQotT/U4M0qqARLREREosR0kgszKwD2B94B8v3kC2A9kB/LY8VD3759OeWUU3bosnbUUUdx++23NywvWbIEgIKCAt5//30A3n//fb7++usm65w6dSrz5s0jHA5TUlLCG2+8waRJk9oc07PPPovzuyl98cUXBINBcnJyyMzMpLy8vNU4AZ566ilqamooLS1l/vz5TJw4sc3H//LLLznooIO44YYb6NevH8XFxUydOpWHHnoIgM8//5xVq1YxcuTINtdZXl7OwIEDqa+vb6inKbNmzeKmm25i27ZtFBYWtrl+kV2VEKkjFEiCjP7eiooN8Q1IREREupyYJVhmlgE8DlzqnNthJgrnZQBNDlYws/PNbJGZLSopKYlVOJ3m8ssv32E2wdtuu41FixZRWFjI6NGjG1pSTjrpJDZv3syYMWO44447GDFiRJP1zZw5k8LCQvbbbz+OOOIIbrrpJgYMGNDmeB544AFGjhzJ+PHjOfPMM3nooYcIBoMcf/zx/POf/2T8+PG8+eabzcYJUFhYyOGHH87kyZP5xS9+waBBgwAv+fve977HK6+8wpAhQ3jhhRcAr1vi9vFWV155JePGjWPs2LF861vfYr/99uOiiy4iEokwbtw4Zs2axX333bdDy1VrfvWrX3HQQQdxyCGHsO+++zasf/rpp7nuuusalk8++WQeeeSRhpkTRTqTc46ESB3hQDLBLO/3IleuBEtERER2ZC4Gg7TNLBF4BnjBOfd7f91nwDTn3DozGwjMd8612IwxYcIEt2jRoh3WLV++nFGjRnU4Rmla49kOexr9/Uis1NSH+fcNx3NEehFPTvg7Zy84kppv/x8pUy6Kd2giIiISB2a22Dm30yxrsZhF0IB7geXbkyvf08DZ/vOzgac6eiwRkXipDUVIop5IMJmsvv2pd0Gqt7R9xk0RERHpHWIxi+AhwJnAh2a2xF93DfBr4FEz+29gJaB+XF3QnDlz4h2CSLdQGwqT7CdY/TLT2EQ2wa3rWt9RREREepVYzCK4AGhu2rkjO1q/iEhXUFsfIZl6XDCZfpnJlLhsBmiSCxEREWkkprMIioj0VHXhCMkWnWDlEKzq+hPziIiIyO6lBEtEpA1q670xWCQkk5OaSCk5JNdsan1HERER6VWUYImItMH2MVgkJBMIGJWJuaTWb4FION6hiYiISBeiBKuNnnzyScyMTz/9tNkyRUVFjB07NmbH/Oyzz5g2bRrjx49n1KhRnH/++YB3k+DnnnuuQ3Wfe+659O/fP6bxivRktaGIn2CleMspeQQJQ9XmOEcmIiIiXYkSrDaaO3cuU6ZMYe7cuU1uD4VCHT5GOLzjL+E//vGPueyyy1iyZAnLly/nRz/6ERCbBGv27Nk8//zzHapDpDepDXljsCzBu2l2OL2/t0ETXYiIiEiUWEzTvvv8+2pY/2Fs6xwwDo75dYtFKioqWLBgAa+99hrHH388v/zlLwGYP38+v/jFL+jTpw+ffvopL774IqFQiNNPP53333+fMWPG8Pe//520tDReeeUVrrjiCkKhEBMnTuRPf/oTycnJFBQUMGvWLF566SWuuuoqTj311Ibjrlu3jiFDhjQsjxs3jrq6Oq677jqqq6tZsGABP/vZzzjuuOP40Y9+xEcffUR9fT1z5sxhxowZ3Hffffzzn/9k27ZtrFmzhjPOOIPrr78egEMPPZSioqIWz/v111/nkksuAcDMeOONN8jIyOCqq67i3//+N2bGtddey6xZs5g/fz7XX389OTk5fPjhh5xyyimMGzeOW2+9lerqap588kn22msv/vWvf/E///M/1NXVkZuby0MPPUR+fv4Oxz311FM588wzOfbYYwEvGTzuuOM4+eST23ZNRTpBbX2YJOqxRK8FK5CRDyX4CZZagkVERMSjFqw2eOqpp5g+fTojRowgNzeXxYsXN2x7//33ufXWW/n8888Br1vfRRddxPLly8nKyuKPf/wjNTU1zJ49m3nz5vHhhx8SCoX405/+1FBHbm4u77///g7JFcBll13GEUccwTHHHMMtt9zC1q1bSUpK4oYbbmDWrFksWbKEWbNmceONN3LEEUfw7rvv8tprr3HllVdSWVkJwLvvvsvjjz/OsmXL+Mc//sGiRYvafN4333wzd955J0uWLOHNN98kNTWVJ554giVLlrB06VJefvllrrzyStat8+4FtHTpUu666y6WL1/OAw88wOeff867777Leeedx+233w7AlClTWLhwIR988AGnnnoqN910007HnTVrFo8++igAdXV1vPLKKw3Jlki8bO8iGPATrIScgQBEytWCJSIiIt/oXi1YrbQ0dZa5c+c2tOSceuqpzJ07lwMPPBCASZMmMXz48IayQ4cO5ZBDDgHgjDPO4LbbbuO//uu/GD58OCNGjADg7LPP5s477+TSSy8FvISiKeeccw5HH300zz//PE899RR//vOfWbp06U7lXnzxRZ5++mluvvlmAGpqali1ahUA//Vf/0Vubi4A3/3ud1mwYAETJkxo03kfcsgh/OQnP+H000/nu9/9LkOGDGHBggWcdtppBINB8vPzOeyww3jvvffIyspi4sSJDBzofenca6+9OOqoowCv5e21114DYPXq1cyaNYt169ZRV1e3w2u33THHHMMll1xCbW0tzz//PIceeiipqaltilmks2xPsGr8BCutj/e3XrV5LRnxDExERES6FLVgtWLz5s28+uqrnHfeeRQUFPDb3/6WRx99FOccAOnp6TuUN7MWl5vSuI5ogwYN4txzz+Wpp54iISGBjz76aKcyzjkef/xxlixZwpIlS1i1ahWjRo3a5Xi2u/rqq/nLX/5CdXU1hxxySIsTfAAkJyc3PA8EAg3LgUCgYYzaj370Iy6++GI+/PBD/vznP1NTU7NTPSkpKUybNo0XXniBefPmNZuAiuxOdfUhki1E0E+w+vTpQ4VLoXbrujhHJiIiIl2JEqxWPPbYY5x55pmsXLmSoqIiiouLGT58OG+++WaT5VetWsXbb78NwMMPP8yUKVMYOXIkRUVFrFixAoAHHniAww47rNVjP//889TX1wOwfv16SktLGTx4MJmZmZSXlzeUO/roo7n99tsbkr4PPvigYdtLL73E5s2bG8ZBbW9da4svv/yScePG8dOf/pSJEyfy6aefMnXqVObNm0c4HKakpIQ33niDSZMmtbnObdu2MXjwYADuv//+ZsvNmjWLv/3tb7z55ptMnz69zfWLdJZwnfdjwPYxWN7NhrMJla2PZ1giIiLSxSjBasXcuXOZOXPmDutOOumkZmcTHDlyJHfeeSejRo1iy5YtXHjhhaSkpPC3v/2N733ve4wbN45AIMAFF1zQ6rFffPFFxo4dy3777cfRRx/Nb3/7WwYMGMDhhx/OJ598wvjx45k3bx6/+MUvqK+vp7CwkDFjxvCLX/yioY5JkyZx0kknUVhYyEknndTQPfC0007j4IMP5rPPPmPIkCHce++9ANx1113cddddAPzhD39g7NixFBYWkpiYyDHHHMPMmTMpLCxkv/3244gjjuCmm25iwIABbX4958yZw/e+9z0OPPBA8vLyGtYvWrSI8847r2H5qKOO4vXXX+fb3/42SUlJba5fpLOE670EK5jkJVj9M5MpIQfTLIIiIiISxba3enQFEyZMcI0nYVi+fHlDdzdpn/vuu49FixZxxx13xDuUuNHfj8TKX59/m3MXTqf+mJtJPOgHVNeFefVX0/lWxgb6/HRZvMMTERGR3czMFjvndprcoNNbsMxsupl9ZmYrzOzqzj6eiEhniNTXApDgdxFMTQqyNdCX1NpN8QxLREREuphOTbDMLAjcCRwDjAZOM7PRnXlM+cbs2bN7deuVSCxtT7As8ZsZLauS+5ESqYS6qniFJSIiIl1MZ7dgTQJWOOe+cs7VAY8AM9pbSVfqxijdh/5uJJacPwaLhG9my6xP7ec9qdBEFyIiIuLp7ARrMFActbzaX9fAzM43s0VmtqikpGSnClJSUigtLdWXZWkX5xylpaWkpKTEOxTpIVyo2nsS/CbBcpn+BC+62bCIiIj44n6jYefc3cDd4E1y0Xj7kCFDWL16NU0lXyItSUlJYciQIfEOQ3qKkNdFMLoFKyHLu9mwq9hA2+8wJyIiIj1ZZydYa4ChUctD/HVtlpiYyPDhw2MalIhIe7mGBOubVtGUPoMAqNu6luSmdhIREZFep7O7CL4H7GNmw80sCTgVeLqTjykiEnuhncdgZfbtT70LUlXart+NREREpAfr1BYs51zIzC4GXgCCwF+dcx935jFFRDqDNdFFsH9WGiVkk7BtXZyiEhERka6m08dgOeeeA57r7OOIiHSqcFMJVjIbXQ6DNMmFiIiI+Dr9RsMiIj2Bheu8J1FjsPpnJlPicghWbYxTVCIiItLVKMESEWmDQHjnSS6yUxMppQ8pNZrlVERERDxKsERE2qAhwQomNawzMyqT8kgPbYFwfZwiExERka5ECZaISBsEIzu3YAHUpvbznlSom6CIiIgowRIRaZNApJ4wAQjuODeQS8/3nlSsj0NUIiIi0tUowRIRaYOESC1hS9ppvWUN8J5oJkERERFBCZaISJsEI3WEAjsnWMk5gwAIlakFS0RERJRgiYi0SYJrOsFKzx1IxBmVpWviEJWIiIh0NZ1+o2ERkZ4gIVJHOJC80/r8PplsJhO3RQmWiIiIqAVLRKRVzjkSXR2RJlqwBmansMH1IVK2Ng6RiYiISFejBEtEpBWhiCOJeiKBxJ22DcxOZb3rS1CzCIqIiAhKsEREWlVTHyaVOsIJaTtty0pJoDTQl9Qa3QdLREREOphgmdlvzexTM1tmZv80s5yobT8zsxVm9pmZHd3hSEVE4qS6Lkya1RJJ3DnBMjMqk/uTHtoCodo4RCciIiJdSUdbsF4CxjrnCoHPgZ8BmNlo4FRgDDAd+KOZBTt4LBGRuKiuD5NKLa6JFiyA+vTt98JSN0EREZHerkMJlnPuRedcyF9cCAzxn88AHnHO1TrnvgZWAJM6ciwRkXipqguTRg0kNZ1gkendC4vydbsvKBEREemSYjkG61zg3/7zwUBx1LbV/rqdmNn5ZrbIzBaVlJTEMBwRkdio8rsIWjMJVnIf7+MtvFVTtYuIiPR2rSZYZvaymX3UxGNGVJmfAyHgofYG4Jy72zk3wTk3oV+/fu3dXUSk09XUh0mjFkvKaHJ7Wt5QACpLi5vcLiIiIr1Hqzcads59u6XtZjYbOA440jnn/NVrgKFRxYb460REup2q2nrSrJaKlPQmt+fm9afGJVJdupqs3RybiIiIdC0dnUVwOnAVcIJzripq09PAqWaWbGbDgX2AdztyLBGReKmrqQQgkNx0C9aA7DTWu77qIigiIiKtt2C14g4gGXjJzAAWOucucM59bGaPAp/gdR38oXMu3MFjiYjERX11OQAJzbRgDcxO4XP6MEw3GxYREen1OpRgOef2bmHbjcCNHalfRKQrqPdbsBJTmm7ByklLZCN9GVG9cneGJSIiIl1QLGcRFBHpkcI1XgtWYmpmk9u332w4o24jNAxFFRERkd5ICZaISCsitS23YAHUpeaT6OqhesvuCktERES6ICVYIiKt2J5gWVLTY7AAXOZA70nZ2t0RkoiIiHRRSrBERFoRqfUnSW3mRsMAwRz/ZsPblGCJiIj0ZkqwRERaEakp854kN3+Xq7TcIQBUblq1O0ISERGRLkoJlohIK4K1/riq1D7Nlsnq591bvWrT6t0RkoiIiHRRSrBERFqRWLuFCAYp2c2Wye+TRYnLol43GxYREenVlGCJiLQiub6M6kAmBILNlhmQncIG1xcrX7cbIxMREZGuRgmWiEgrUsPbqE5sfvwVQG56EhvpS2LV+t0UlYiIiHRFSrBERFrgnCMjXEZdYvPdAwECAaMsMY/02o27KTIRERHpipRgiYi0YFt1PVlUEEpufoKL7WpS8skIb4NQ7W6ITERERLqimCVYZna5mTkzy/OXzcxuM7MVZrbMzA6I1bFERHaXTRW19KECS+vbatlQxgDvicZhiYiI9FoxSbDMbChwFBB9A5hjgH38x/nAn2JxLBGR3amkrJY+Vk4wPbfVsoGsQQC4Mt1sWEREpLeKVQvWLcBVgItaNwP4u/MsBHLMbGCMjicislts2bKJDKshsc+QVssm9/XKVOteWCIiIr1WhxMsM5sBrHHOLW20aTBQHLW82l/XeP/zzWyRmS0qKSnpaDgiIjFVU1IEQGq/Ya2WzfBvNlyxqbiVkiIiItJTJbSlkJm9DAxoYtPPgWvwugfuEufc3cDdABMmTHCtFBcR2a1qSr2ez+n9Clotm5vbn2qXRO1mtWCJiIj0Vm1KsJxz325qvZmNA4YDS80MYAjwvplNAtYAQ6OKD/HXiYh0G5EtXoJlOXu0WnZATirrXR+CGoMlIiLSa3Woi6Bz7kPnXH/nXIFzrgCvG+ABzrn1wNPAWf5sgpOBbc45Ta0lIt1KYsUa6kmE9H6tlu2fmcIG+hKs1M2GRUREeqvOvA/Wc8BXwArgHuCiTjyWiEjMRSKO/rVFbEkZCoHWPy6TEgJsDuSSWrNhN0QnIiIiXVGbugi2ld+Ktf25A34Yy/pFRHanlZur2IdVVPed2OZ9ypP6kVn/DjgHXtdpERER6UU6swVLRKRb+2zlGobYJlIGjWvzPjUp+SS6eqja3ImRiYiISFelBEtEpBmbV7wHQN+9DmjzPqEMf8LVck10ISIi0hspwRIRaUbC6reJYCQWHNz2nTL9+6mXaU4fERGR3kgJlohIE6rqQgzdtpiNaftAak6b90vI8e6nXr9V98ISERHpjZRgiYg04b3lXzHBPqO+YFq79kvrO5iIM6o2KcESERHpjWI6i6CISE9R/PZjJFqYAQed0q79crPTKSUL26r7qouIiPRGasESEWmkrKaekeueojR5CIl7TGjXvnkZyax3faBMk1yIiIj0RkqwREQaefXVF5lon1JbeGa772XlJVh9CVau76ToREREpCtTgiUiEqWmPkzf935PhWUw6MiL2r1/bkYSG10fkmtKOiE6ERER6eqUYImIRHnhxWc51C2idNx5kJLV7v2TE4KUJfQhtX4rRMKxD1BERES6NCVYIiK+jdsq2efd69gS7Mse3/nJLtdTl9QXw0HV5hhGJyIiIt2BEiwREd+Ch3/NaPuauiP/B0vJ3uV6Qql53pNKdRMUERHpbTqcYJnZj8zsUzP72Mxuilr/MzNbYWafmdnRHT2OiEhn+uDj5fzX+nsoyp5E/sHf71BdLl0JloiISG/VoftgmdnhwAxgP+dcrZn199ePBk4FxgCDgJfNbIRzTgMSRKTLCYUjbHvySpIsRP5pd7R75sDGEjL7e0+UYImIiPQ6HW3BuhD4tXOuFsA5t9FfPwN4xDlX65z7GlgBTOrgsUREOsWLzzzCtPo3WTX6AlIHjOxwfUnZ+QBEKpRgiYiI9DYdTbBGAFPN7B0ze93MJvrrBwPFUeVW++t2Ymbnm9kiM1tUUqIvIyKye63fXM6I929kY8JA9p7585jUmZGTR8gFqNm2ISb1iYiISPfRahdBM3sZGNDEpp/7+/cFJgMTgUfNbM/2BOCcuxu4G2DChAmuPfuKiHTU2/N+w0xbzcaj/4olpsakztyMVDaTRdK2DaTFpMauLxyOUL61lPKtJVRs20Rt2SZqy0uJ1JTjQrVQXwPhWixUB+EaiITY3hHTzMAMw/D+s4Z1WCDqwTfPCTRsNwvsVNailwMBv+4Azgzn7+tovitoe3qJWgv1xJrRxP8m2xFsZ0Xa1nrb97rGyzevcefEG/uS4YyBjJ46k2BQc5eJdAWtJljOuW83t83MLgSecM454F0ziwB5wBpgaFTRIf46EZEuY8XKVRyx/l6+zp7I8AnfjVm9uRlJlLos+pdvbL1wN1EXirBmw0a2rPqY6rWfQOmXBMrXkla9jpxQCf1dKTlWR04r9UScUUcCIUvAAeaikwbvX8Nbtz0FMiIEcN7D9DucSFNe37KZw2b+IN5hiAgdnOQCeBI4HHjNzEYAScAm4GngYTP7Pd4kF/sA73bwWCIiMfXpk79hb6uC797c4YktouVlJLHOZZFftSlmde5OVXUhPv38czZ99jaBtYvJ2bacQfUrGW6lDPfLhJ1RGujLtqR8yjJGUZI2kEjGAILpfUnMyCUlM5f07DxSMnJITEklMSmVpJRUgglJpLTxtXbO4RxEnCPiILR9ORIhEgnjXAQXcUQiYX/Z+esi3yxHwg1lDAcu4j8c5iK4pmJpRw7X1qLe75CxqvObmNuXbrYjhjYWbVsxa1edXr2xj9WrN7bl2l+4HdW2uV5H0mOnM2rp/xGaPouE1PbfIF1EYqujCdZfgb+a2UdAHXC235r1sZk9CnwChIAfdscZBEvWFrHi+T8y8YxfkZCUHO9wRCSGPvpqFYdufoIVeYezd8H4mNadm57MR2SRUF3ceuEuYGNZFZ8seYfKT18lp+Q99qz7jAPMu0lyiCBrEgvYnDeRzf1GkjxgFDnDxpE7ZAT9E5Po34lxmRlmENipo1QQSOzEI4t0L+8e+n/s+eosPv3Hdex71h/iHY5Ir9ehBMs5Vwec0cy2G4EbO1J/vH05/0EOXvVnPv/tfLLO+DsDhu0b75BEJEa+evYPjLUqgsf/IuZ1Z6cmsplskuuWxLzuWKgPR1i27H3WffA8GWv/w7j6ZUyzcgA2BAeyud8kyveYQP6+3yJ7+AEMi9HYNBHpHBOmHM3L/zmKaV/9nYrV55ExZGy8QxLp1TragtWjTf7+tbz37ABGvvsLEv56KO/scRbjTvk5aZl94h2aiHTAmvUbmLJpHl/kHMI+BQfGvP5AwKhO7EtyuArqq6ELJCjbKqr5cOGL1Hz8LHtteZMDWQtAabAfmwYeRuWIwxk0/r/I7zuM/DjHKiLtEwgYA0/6NRUPTmXjQz9knytfwwKa8EIkXpRgtWLiseexbuxU1v7jKg4qvoeK3z3Iu/2+Q85B32ev8dMIJuz+l7A2FKayNkxFdT0VVRXUVZUTqqkgVFNBuLYCV1tBpLYSV1sB9VVYXSVWX0UgVEWgvopAuAZzYQIuBC6MRcKYC/vrvAcuQsCFMBchSJggYW/MQkMU2wejez3ltw9S/2b8+Tfbd1z+5vnut/vmpNp9Z7h7zqml2dZir/OPlRKppK9VEPrOdZ12jLqUXKgCKjZCn2GddpyWrFqzlhX/eZKkr15kbNW7TLFK6kng6/TxLN/nXAoOOp7cASPJjeH4MxGJjzH77MX8EZcw7Yv/5YMHrmL/s2+Od0htUldXR3XFVqory6itLKOuupy6yjJCNeWEayqI1JQRrq0iEqqB+loI10GknkC4FovUY+E6ApF6ApE6gpE6zP8OY85hhP1/IxiOgPPGYprzJs7x1kcIOEf0/7mb+394e8YcNqdt/z/tOp/J7fn/f2dG/WrSYez93V9w2Ih+nXiU2FGC1QYDh41k4BVP8en7r1M2/w722/g0yc88ztZnMihOHU1ln32xfiPJzhtMSp+BpGTnkZqcjCUkESboDbKuryVcX0VNTQ211VXU1lRSX11OqNpLikI1lURqK6CuEucnRMH6SoKhahLCVSRGqkmOVJPsakijhjRqGUwNwXbMqFXnEqiyFOpIImxBIgSIECRi/oMgEQs0PHcWJBJIJOSX9aZG3jFV8p42TLbsb/fGTXzzprSof6JTtDhPbdwGu7JXa8dqz4Dslo/T+dzOVzsWle7qxpj6auh5HDJycqfVX5c+0EuwthXvtgQrHHF8tPxjNrz7BLmrX6Iw9DF7WJitlkVxv2lsLjyOgonHMUKD4EV6pENPvZIFf/iAKV/fwwf31jJ+9u+x4O4brxgOR9hcup5tG1dTuamY2i3rqK/YBFWbCdRuJbF2K8n120gNl5EeLiPLlZNutSQB2W08Rp0LEiKBOkuknkRCJFBviYQtkZAlEjHv+4vDcBbwvstYgjcPqQUa5iTF7JtlCxB9w4WmfnPa1e8R7a4jVl8SOmB7BLE452aP0c6qE9LySE8Kdk4wnUAJVjvse8BhcMBhbC0t4cOFT+O+eJk+ZcsZuWYxSWtjN4dHDUnUkEJtIIW6QCr1wVRCSWmEE/pSlZhOVWIaJKUTSM4gkJxBMNl/nuI9T0jJJCE1ncTULJL9fxNSMkgKJpIUsyhFpCX1mUOhBNiyEgqmdNpxKmrq+WDRf6hY+hTDSl5jP74CYE3CHiwffjb5E08kf9QUcgLd539MIrJrAsEAk370AG/ceS6HFv+dL3+9EPv29ew56dgOzZRaHwpTWrKOLRuKqdxUTM2WdUTK1hGo3EBy9UbS6zaREy4l122hn4Vo3MYQcgHKLIOKQBZVwSwqk/PZmjSCVSl9cMnZkJxBMDmDQEomwZQMElOzSErLJCk1k+T0bFLTs0hNTSMxKYmkQJAk6DX3GBTPAfEOoJ2sPVPHdrYJEya4RYsWxTuMdgvV1bCh+As2rV9DqHwDkcrN1NXXE4iECBLCLEA4mAIJyQSTUklKTiUxOcVPgDJISs8iLSOLtPRMElIyQV+ERLq9G59eytWLDyNw2BXYEdfGtO7VpeV89M5LRJY/y5iyNxlmGwD4OnUM1XtOZ49vnUzG4NExPaaIdB/OORY8+WdGLP0N+WxmneWzts9EGLQ/ybl7kJKdB5YAgSCR2kpqKrdRW7WNUOUWrHwDVrWRpKqNpNWXkh3aTF+3hSTb+YfkMtLZGsylIjGXmpT+hNLzscwBJOQMIrXvILLyhpKTN8Abu66uyNIDmdli59yEndYrwRIRib2/v13EEc8fSe7oaaTOurdDddWFIixdvpwN7z9HRvF8xtd/QI5VUkcCq7ImEhh9HHtM/i4JOYNiE7yI9Ahl5WUsfeF+Mr58huFVH5FjFW3abzNZbAv2pSIxl7qUfkTS+2NZg0juM5D03CHk5A8lp99QAslqR5LerbkES10ERUQ6wV79MlgZySdnw/J271sfjvDJVytZvfQ1bOV/2KvsHSbaKgC2BPqyYdC3qRk3nfwDjmXvlLaOXBCR3iYrM4upJ/8I+BH1oRBrVn/N1o2rqCsv9Sa5cmFcYhqp6dmkZeaQnpVLZu5A+iYn0zfewYt0Y0qwREQ6wcgBmTwQ2ZdvbX4CqjZDWvNfV0q2VfHlpx+w9cv3SFz7HnuUL2E/W81+QD0JFGfux+d7zmLIxOPpM6SQPupqIyLtlJiQwOCCfRhcsE+8QxHp8ZRgiYh0gryMZIr7TMIqHsd9/CQ28VwqauooXvklm1Z+TM36z0nctJy88uXsFVnJZKsDoJJU1mYV8vkeJ5M/9nCy9z6IPbvAfbRERESkbTQGS0Skkzy88Cv2eW4WEwOfs4G+ZLpK0qy2YXsFaaxP3YeavDGkDjuAgSMPIm3QaAjqty8REZGuTmOwRER2s9MOGs4TdfewZek99IlsITEth8T+e5MzdBT9ho0mo89Q9g4E4h2miIiIxJASLBGRTmJmnHToeDj0zniHIiIiIrtJh386NbPxZrbQzJaY2SIzm+SvNzO7zcxWmNkyM+tu9wgTERERERFpl1j0TbkJ+KVzbjxwnb8McAywj/84H/hTDI4lIiIiIiLSZcUiwXJAlv88G1jrP58B/N15FgI5ZjYwBscTERERERHpkmIxButS4AUzuxkvYfuWv34wUBxVbrW/bl30zmZ2Pl4LF0CFmX0Wg5hiKQ/YFO8gZLfR9e49dK17D13r3kXXu/fQte5duuL1HtbUyjYlWGb2MjCgiU0/B44ELnPOPW5mpwD3At9ua1TOubuBu9tafnczs0VNTb8oPZOud++ha9176Fr3LrrevYeude/Sna53mxIs51yzCZOZ/R24xF/8B/AX//kaYGhU0SH+OhERERERkR4pFmOw1gKH+c+PAL7wnz8NnOXPJjgZ2OacW9dUBSIiIiIiIj1BLMZg/QC41cwSgBq+GU/1HPAdYAVQBZwTg2PFQ5ftviidQte799C17j10rXsXXe/eQ9e6d+k219ucc/GOQUREREREpEeIRRdBERERERERQQmWiIiIiIhIzCjBaoGZTTezz8xshZldHe94JHbMbKiZvWZmn5jZx2Z2ib++r5m9ZGZf+P/2iXesEhtmFjSzD8zsGX95uJm947+/55lZUrxjlNgwsxwze8zMPjWz5WZ2sN7bPZOZXeZ/hn9kZnPNLEXv7Z7DzP5qZhvN7KOodU2+l/1J1W7zr/syMzsgfpFLezVzrX/rf44vM7N/mllO1Laf+df6MzM7Oi5Bt0AJVjPMLAjcCRwDjAZOM7PR8Y1KYigEXO6cGw1MBn7oX9+rgVecc/sAr/jL0jNcAiyPWv4NcItzbm9gC/DfcYlKOsOtwPPOuX2B/fCuu97bPYyZDQZ+DExwzo0FgsCp6L3dk9wHTG+0rrn38jHAPv7jfOBPuylGiY372PlavwSMdc4VAp8DPwPwv6+dCozx9/mj/729y1CC1bxJwArn3FfOuTrgEWBGnGOSGHHOrXPOve8/L8f7AjYY7xrf7xe7HzgxLgFKTJnZEOBY/Pv0mZnh3VbiMb+IrnUPYWbZwKF4N73HOVfnnNuK3ts9VQKQ6s9knAasQ+/tHsM59wawudHq5t7LM4C/O89CIMfMBu6WQKXDmrrWzrkXnXMhf3Eh3j11wbvWjzjnap1zX+PNWD5ptwXbBkqwmjcYKI5aXu2vkx7GzAqA/YF3gPyo+7WtB/LjFZfE1B+Aq4CIv5wLbI364Nb7u+cYDpQAf/O7hP7FzNLRe7vHcc6tAW4GVuElVtuAxei93dM1917W97ae7Vzg3/7zLn+tlWBJr2ZmGcDjwKXOubLobc67h4HuY9DNmdlxwEbn3OJ4xyK7RQJwAPAn59z+QCWNugPqvd0z+GNvZuAl1YOAdHbuYiQ9mN7LvYOZ/RxvaMdD8Y6lrZRgNW8NMDRqeYi/TnoIM0vES64ecs494a/esL1Lgf/vxnjFJzFzCHCCmRXhdfU9Am+MTo7frQj0/u5JVgOrnXPv+MuP4SVcem/3PN8GvnbOlTjn6oEn8N7vem/3bM29l/W9rQcys9nAccDp7pub93b5a60Eq3nvAfv4sxEl4Q2mezrOMUmM+GNw7gWWO+d+H7XpaeBs//nZwFO7OzaJLefcz5xzQ5xzBXjv41edc6cDrwEn+8V0rXsI59x6oNjMRvqrjgQ+Qe/tnmgVMNnM0vzP9O3XWu/tnq259/LTwFn+bIKTgW1RXQmlGzKz6Xjd+09wzlVFbXoaONXMks1sON7EJu/GI8bm2DfJoDRmZt/BG7sRBP7qnLsxvhFJrJjZFOBN4EO+GZdzDd44rEeBPYCVwCnOucYDbKWbMrNpwBXOuePMbE+8Fq2+wAfAGc652jiGJzFiZuPxJjRJAr4CzsH7QVHv7R7GzH4JzMLrPvQBcB7eWAy9t3sAM5sLTAPygA3A9cCTNPFe9pPsO/C6iVYB5zjnFsUhbNkFzVzrnwHJQKlfbKFz7gK//M/xxmWF8IZ5/LtxnfGkBEtERERERCRG1EVQREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsEREuggzKzAzZ2YJ8Y6lpzOz2Wa2IN5xdDVmNtXMPot3HCIi3ZkSLBER6dbMbI6Z1ZtZRdTjqnjH1R055950zo2MZZ1mlmdmb5lZqZltNbO3zeyQWB5DRKQr0a+kIiIxYmYJzrlQvOPopeY5586IdxCdpZv/bVUA5wJfAA6YAfzLzPp343MSEWmWWrBERDrAzIrM7KdmtgyoNLMEM5tsZv/xf61fambTosrPN7P/M7N3zazMzJ4ys77N1H2OmS03s3Iz+8rM/l+j7TPMbIlfz5dmNt1fn21m95rZOjNbY2b/Y2bBVs5jLzN71W9l2GRmD5lZTtS2zWZ2gL88yMxKtp+XmZ1gZh/75zvfzEY1en2uMLNlZrbNzOaZWUr7X+n2M7Or/del3Mw+MbOZzZQzM7vFzDb6r+WHZjbW35ZsZjeb2Soz22Bmd5lZahuPf59f/iU/htfNbFjU9lvNrNg/5mIzmxq1bY6ZPWZmD5pZGTDbzCb5rT9b/Wt7h5klRe3jzOwiM/vCP96v/Gv3H/8Yj0aXbybmaWa2ui3n11bOuRrn3GfOuQhgQBjoAzT5dy8i0t0pwRIR6bjTgGOBHCAfeBb4H7wvkFcAj5tZv6jyZ+H9oj8QCAG3NVPvRuA4IAs4B7glKsmZBPwduNI/7qFAkb/ffX69ewP7A0cB57VyDgb8HzAIGAUMBeYAOOe+BH4KPGhmacDfgPudc/PNbAQwF7gU6Ac8h9c6Ef1F/hRgOjAcKARmNxmA2RQ/eWjuMaWVc2jsS2AqkA380o9/YBPljsJ7/Ub4ZU8BSv1tv/bXj8d7PQcD17UjhtOBXwF5wBLgoaht7/n19gUeBv7RKPmcATyGd30fwktMLvPrOhg4Erio0fGOBg4EJgNXAXcDZ+Bdz7F4f6u7zE+Um7s+f2xtX6AGeBr4i3NuY0diERHpqsw5F+8YRES6LTMrAm5wzv3VX/4pMNY5d2ZUmReAh51z95vZfGChc+5qf9tovC/eqXhfgr8GEpvqOmVmTwKvOeduNbM/A1XOucsalckHVgE5zrlqf91pwPnOucPbcV4nAtc75/aPWvc0XpLkgInOuVoz+wUwzjl3il8mABQDp/sJWBFwrXPuQX/7TUCWc+6CtsbShljnANcAVVGrRzvn1jYqt8Q/p6fMbDZwnnNuipkdAdyFl/i+67e0YGaG172t0E8yMbOD8a7l8DbEdR+Q4pw71V/OALYBBc654ibKbwGmOeeW+ud0hHPu0BbqvxQ4zDk30192wBTn3Fv+8mLgUefcb/zl3wFB59ylLdQ5DXjQOTektfPbFX4CORNIcs7d3xnHEBGJN43BEhHpuOgvy8OA75nZ8VHrEoHXmim/0t+e17hSMzsGuB6vBSUApAEf+puH4rUWNTbMr2+dlx+Av+9OX+gbHSsfuBWvxSfT32dLo2L34LU+nO+cq/XXDfLPAQDnXMTMivFaerZbH/W8yt8n1h5tPAbLzM4CfgIU+KsyaOJ1ds69amZ3AHcCw8zsCbyWxxS813xx1GtpQIvdLRtpeN2dcxVmthnv/IvN7Argv/1lh9dSmdfUvv75jAB+D0zw40oAFjc63oao59VNLA9oR+wx55yrAeaa1/V1iXNuaTzjERHpDOoiKCLScdFdAYqBB5xzOVGPdOfcr6PKDI16vgdQD2yKrtDMkoHHgZuBfOdcDl5Ctf2bfjGwVxOxFAO1QF7U8bOcc2NaOYf/9c9jnHMuC69b2TdZhdf68gfgXmCOfTNubC1eUre9nPnnt6aV4+3EvCnCK1p4TG29loa6huElhBcDuf7r91H0OUVzzt3mnDsQGI2X0F6Jd02qgTFRr2W2cy6jHafVcK3917AvsNY/l6vwuiP28ePb1ii+xl1M/gR8CuzjX6NrmjufzmLeWLvmrs9d7agqEdizs+IUEYknJVgiIrH1IHC8mR1tZkEzS/EnDojucnWGmY32xzPdADzmnAs3qicJSAZKgJDfmnVU1PZ7gXPM7EgzC5jZYDPb1zm3DngR+J2ZZfnb9jKzw1qJOxOvO9w2MxuMl2BEuxVY5Jw7D2+M2fYv048Cx/pxJAKX4yV4/2nthWrMnyI8o4XHm+2oLh0vQSkBb8IQvDFIOzGziWZ2kB9/Jd44oYjfVfAevLFv/f2yg83s6Kh9nUVNYtKE7/hjy5LwxmIt9LsHZuKNkysBEszsOrwWrJZkAmVAhZntC1zYSvmYc86NaeH6NNnt07xJX6aYWZKZpfrdaPOBd3Zv9CIiu4cSLBGRGPK/PM/Aa10owWtRupIdP28fwJuIYj1eN7QfN1FPub/+Ubyuet/H6563ffu7+BNf4LV8vM43LUln4SVon/j7PoY3oUZLfgkc4Nf1LPDE9g1mNgNvkortX+h/AhxgZqc75z7Da+26Ha/F53jgeOdcXSvH61TOuU+A3wFv43WTGwe81UzxLLxEagted8dS4Lf+tp8CK4CF5s3m9zIwEsDMhgLlfNNtsykP43Xz3Iw3+cT2bowvAM8Dn/vHrKGVbpx43Ra/7x/zHmBeK+W7imS87peleC2b3wGObTxGTkSkp9AkFyIiu5E/ycWDzrm/xDsW6RgzOwOv++DPmtl+H7DaOXftbg1MRETiSpNciIiI7ILtMyOKiIhEUxdBEZFewryb3nZ0cgLp5szsmmb+Dv4d79hERHoCdREUERERERGJEbVgiYiIiIiIxEiXGoOVl5fnCgoK4h2GiIiIiIhIixYvXrzJOdev8foulWAVFBSwaNGieIchIiIiIiLSIjNb2dR6dREUERERERGJESVYIiIiIiIiMaIES0SkGZGIZlkVERGR9ulSY7CaUl9fz+rVq6mpqYl3KNLNpKSkMGTIEBITE+MdinRDv3zqQz5eUcTDlx5LQlC/RYmIiEjbdPkEa/Xq1WRmZlJQUICZxTsc6Sacc5SWlrJ69WqGDx8e73CkG6p+9z4eTfwLXy9/geFjJ8c7HBEREekmuvzPsjU1NeTm5iq5knYxM3Jzc9XyKbskEnGMtGIAAu/8Mc7RiIiISHfS5RMsQMmV7BL93ciuqg1FiPgfj8mbP4tzNCIiItKddIsES0Rkd6oLRcixcgAyq9fEORoRERHpTpRgtYGZcfnllzcs33zzzcyZMyd+AUVZuHAhBx10EOPHj2fUqFENcc2fP5///Oc/u1zvypUrOeCAAxg/fjxjxozhrrvuilHEIl1fbShMHyoASI+UQ/WWOEckIiIi3UWXn+SiK0hOTuaJJ57gZz/7GXl5eTGr1zmHc45AYNfz3LPPPptHH32U/fbbj3A4zGefed2Z5s+fT0ZGBt/61rd2qd6BAwfy9ttvk5ycTEVFBWPHjuWEE05g0KBBuxyrSHdRG4rQxyq+WbFlJaT2iV9AIiIi0m2oBasNEhISOP/887nlllt22lZSUsJJJ53ExIkTmThxIm+99RYAc+bM4eabb24oN3bsWIqKiigqKmLkyJGcddZZjB07luLiYq688krGjh3LuHHjmDdvHuAlSNOmTePkk09m33335fTTT8e5ne/Js3HjRgYOHAhAMBhk9OjRFBUVcdddd3HLLbcwfvx43nzzzRbjPPPMMzn44IPZZ599uOeeewBISkoiOTkZgNraWiKRSJOvzW233cbo0aMpLCzk1FNPBWDz5s2ceOKJFBYWMnnyZJYtW9ZwrLPPPpupU6cybNgwnnjiCa666irGjRvH9OnTqa+vB+CGG25g4sSJjB07lvPPP3+n845EIhQUFLB169aGdfvssw8bNmxo6TKKtFltKEIO5RTZYADCm4viG5CIiIh0G92qBeuX//qYT9aWxbTO0YOyuP74Ma2W++EPf0hhYSFXXXXVDusvueQSLrvsMqZMmcKqVas4+uijWb58eYt1ffHFF9x///1MnjyZxx9/nCVLlrB06VI2bdrExIkTOfTQQwH44IMP+Pjjjxk0aBCHHHIIb731FlOmTNmhrssuu4yRI0cybdo0pk+fztlnn01BQQEXXHABGRkZXHHFFQB8//vfbzbOZcuWsXDhQiorK9l///059thjGTRoEMXFxRx77LGsWLGC3/72t022Xv3617/m66+/Jjk5uSHhuf7669l///158sknefXVVznrrLNYsmQJAF9++SWvvfYan3zyCQcffDCPP/44N910EzNnzuTZZ5/lxBNP5OKLL+a6664D4Mwzz+SZZ57h+OOPbzhmIBBgxowZ/POf/+Scc87hnXfeYdiwYeTn57d6HUXaoi4UYZBV8FnqBAqq1lC+qZiceAclIiIi3YJasNooKyuLs846i9tuu22H9S+//DIXX3wx48eP54QTTqCsrIyKiopmavEMGzaMyZO9++osWLCA0047jWAwSH5+PocddhjvvfceAJMmTWLIkCEEAgHGjx9PUVHRTnVdd911LFq0iKOOOoqHH36Y6dOnN3nMluKcMWMGqamp5OXlcfjhh/Puu+8CMHToUJYtW8aKFSu4//77m2whKiws5PTTT+fBBx8kISGh4ZzOPPNMAI444ghKS0spK/MS42OOOYbExETGjRtHOBxuiHfcuHEN5/faa69x0EEHMW7cOF599VU+/vjjnY47a9ashta+Rx55hFmzZrX4mou0R119PVlUUZVZQL0LUrN5bbxDEhERkW6iW7VgtaWlqTNdeumlHHDAAZxzzjkN6yKRCAsXLiQlJWWHsgkJCTt0q4u+H1N6enqbjre9ix543f9CoVCT5fbaay8uvPBCfvCDH9CvXz9KS0t3KtNcnLDzdOaNlwcNGsTYsWN58803Ofnkk3fY9uyzz/LGG2/wr3/9ixtvvJEPP/ywTecUCARITExsOFYgECAUClFTU8NFF13EokWLGDp0KHPmzGnyXlYHH3wwK1asoKSkhCeffJJrr722xeOKtEd9TSUBc6Rk5LCJbCJl6+MdkoiIiHQTasFqh759+3LKKadw7733Nqw76qijuP322xuWt3eFKygo4P333wfg/fff5+uvv26yzqlTpzJv3jzC4TAlJSW88cYbTJo0qc0xPfvssw1jlL744guCwSA5OTlkZmZSXl7eapwATz31FDU1NZSWljJ//nwmTpzI6tWrqa6uBmDLli0sWLCAkSNH7nDsSCRCcXExhx9+OL/5zW/Ytm0bFRUVTJ06lYceegjwxpLl5eWRlZXVpvPZnkzl5eVRUVHBY4891mQ5M2PmzJn85Cc/YdSoUeTm5rapfpG2CNV5f/uZ6elsdDlYhRIsERERaZsOJ1hmNtTMXjOzT8zsYzO7xF/f18xeMrMv/H97xBRcl19+OZs2bWpYvu2221i0aBGFhYWMHj26YTrzk046ic2bNzNmzBjuuOMORowY0WR9M2fOpLCwkP32248jjjiCm266if/f3p3HV1Xf+R9/fe6efQfCjhUQJSwSlopWcG9rpVUrdtSK2Ppra9vRmc7ULlq1j/4ebf392vnNaOvDjpbWoYjVqszUutRlKk4VQVxQQKmyGkhIIGS7yV2+vz/uJYSQkEBucrnJ+/l45JGzfM85n3Bywvnc7zZixIhex/Pggw8yefJkZsyYwTXXXMPy5cvxer185jOf4bHHHmsf5KK7OCHRzG/hwoXMmzePW2+9lZEjR7Jx40bmzp3L9OnTOfvss/nWt75FRUUFAF/60pdYu3YtsViMq6++moqKCmbOnMk3v/lNCgsLuf3221m3bh3Tpk3jlltu4Te/+U2vf57CwkK+/OUvM3XqVC688EJmz57dvu/ee+89LO7FixfzH//xH2oeKCkXbU0k+nm5udS4QvzNNWmOSERERDKFdTUy3TGdwKwcKHfOvW5mecA64LPAEqDOOfdjM7sFKHLOffto56qsrHRr1649bNvGjRuZMmVKn2KU7t1+++2HDYYx2Oj3R47HC39dw8Knz+ejhT/jlRf/xAWe18i9dVu6wxIREZETiJmtc85Vdt7e5xos51yVc+715HIDsBEYBSwCDlZd/IZE0iUicsKLRRJNBH3+EM3BUnJj+yEWSW9QIiIikhFSOsiFmY0HZgKvAsOdc1XJXbuBLsfQNrMbgBsAxo4dm8pwpBduv/32dIcgcsKJtSWaCHoDISJZwyAMNFZDwaj0BiYiIiInvJQNcmFmucCjwE3OucMmq3KJdohdtkV0zt3nnKt0zlWWlZWlKhwRkeMWi7QC4Atk4fKSfSI10IWIiIj0QkoSLDPzk0iuljvn/pDcvCfZP+tgP63qVFxLRKS/xSOJGixfIIg3vzyxTUO1i4iISC+kYhRBA+4HNjrnftZh1yrg2uTytcATfb2WiMhAiLfXYIUIFSUSrOa6XekMSURERDJEKvpgzQeuAd42szeS274L/Bh42MyuB7YBV6TgWiIi/S4eTSRYgWAWeSVlxJ3RUvcRuWmOS0RERE58qRhFcLVzzpxz05xzM5JfTzrnap1z5zrnJjrnznPO1aUi4HR5/PHHMTM2bdrUbZmtW7cyderUlF1z8+bNLFiwgBkzZjBlyhRuuOEGIDFJ8JNPPnnc5w2Hw8yZM4fp06dz2mmn8YMf/CBVIYsMCi5Zg2W+EKUFOdSSR3T/R2mOSkRERDJByga5GOxWrFjBmWeeyYoVK7rcH41G+3yNWCx22Po3v/lNbr75Zt544w02btzIN77xDaDvCVYwGOT555/nzTff5I033uCpp57ilVde6VPsIoOJiyb6YOELMiwvSI0rwjXuSW9QIiIikhGUYPVCY2Mjq1ev5v777+ehhx5q3/7iiy9y1llncckll3DqqacCiUTrqquuYsqUKVx++eU0NzcD8NxzzzFz5kwqKipYunQpra2JT8jHjx/Pt7/9bU4//XR+//vfH3bdqqoqRo8e3b5eUVFBW1sbt912GytXrmTGjBmsXLmSpqYmli5dypw5c5g5cyZPPJHo7rZs2TIWLVrEggULmDhxInfccQcAZkZubqKxUyQSIRKJkOhKd7jf//73TJ06lenTp/OJT3wCSNR+XXfddVRUVDBz5kxeeOGF9mt99rOf5fzzz2f8+PHcfffd/OxnP2PmzJnMmzePurpEBeavfvUrZs+ezfTp07nsssva/306mjdvHu+88077+oIFC+g8AbVIv4q2Jb57A5TlBalxBXiba9Ibk4iIiGSElM6D1e/+dAvsfju15xxRAZ/88VGLPPHEE1x00UVMmjSJkpIS1q1bx6xZswB4/fXX2bBhAxMmTGDr1q1s3ryZ+++/n/nz57N06VJ+8Ytf8PWvf50lS5bw3HPPMWnSJL74xS/yy1/+kptuugmAkpISXn/99SOue/PNN3POOedwxhlncMEFF3DddddRWFjInXfeydq1a7n77rsB+O53v8s555zDAw88wP79+5kzZw7nnXceAGvWrGHDhg1kZ2cze/ZsPv3pT1NZWUksFmPWrFls2bKFG2+8kblz5x5x/TvvvJOnn36aUaNGsX//fgDuuecezIy3336bTZs2ccEFF/Dee+8BsGHDBtavX084HObkk0/mJz/5CevXr+fmm2/mt7/9LTfddBOXXnopX/7ylwH4/ve/z/33399eM3fQ4sWLefjhh7njjjuoqqqiqqqKysojJskW6T+xxAcg+ILkBH3UeYoIhTemNyYRERHJCKrB6oUVK1Zw5ZVXAnDllVce1kxwzpw5TJgwoX19zJgxzJ8/H4Crr76a1atXs3nzZiZMmMCkSZMAuPbaa/nLX/7SfszixYu7vO51113Hxo0b+fznP8+LL77IvHnz2mu+OnrmmWf48Y9/zIwZM1iwYAHhcJjt27cDcP7551NSUkJWVhaXXnopq1evBsDr9fLGG2+wc+fO9iSss/nz57NkyRJ+9atftTdfXL16NVdffTUAp5xyCuPGjWtPsBYuXEheXh5lZWUUFBTwmc98BkjUvG3duhVIJGFnnXUWFRUVLF++/LCaqoOuuOIKHnnkEQAefvhhLr/88i7/fUT6i0UPJVgAzYFSciJ1EI+nMSoRERHJBJlVg9VDTVN/qKur4/nnn+ftt9/GzIjFYpgZd911FwA5OTmHle/c1K6rpneddT5HRyNHjmTp0qUsXbqUqVOndpkIOed49NFHmTx58mHbX3311R7jKSwsZOHChTz11FNHDNBx77338uqrr/LHP/6RWbNmsW7duqP+HMFgsH3Z4/G0r3s8nvY+akuWLOHxxx9n+vTpLFu2jBdffPGI84waNYqSkhLeeustVq5cyb333nvU64qk3MEaLG/id7gtqwxfJAot+yCnJI2BiYiIyIlONVg9eOSRR7jmmmvYtm0bW7duZceOHUyYMIGXXnqpy/Lbt2/nr3/9KwC/+93vOPPMM5k8eTJbt25ly5YtADz44IOcffbZPV77qaeeIhKJALB7925qa2sZNWoUeXl5NDQ0tJe78MIL+bd/+zeccwCsX7++fd+zzz5LXV0dLS0tPP7448yfP5+ampr2Jn8tLS08++yznHLKKUdc/29/+xtz587lzjvvpKysjB07dnDWWWexfPlyAN577z22b99+RGJ3NA0NDZSXlxOJRNrP05XFixfz05/+lPr6eqZNm9br84ukgsUO9cECiOcMS6w3arJhEREROTolWD1YsWIFn/vc5w7bdtlll3U7muDkyZO55557mDJlCvv27eOrX/0qoVCIX//613z+85+noqICj8fDV77ylR6v/cwzz7QPMnHhhRdy1113MWLECBYuXMi7777bPsjFrbfeSiQSYdq0aZx22mnceuut7eeYM2cOl112GdOmTeOyyy6jsrKSqqoqFi5cyLRp05g9ezbnn38+F198MQC33XYbq1atAuCf/umfqKioYOrUqZxxxhlMnz6dr33ta8TjcSoqKli8eDHLli07rOaqJz/84Q+ZO3cu8+fPPyypW7VqFbfddlv7+uWXX85DDz3EFVdo+jQZeBZrI4IPPIk/kZ68EYkdGklQREREemAHaz1OBJWVla7zaHEbN25kypQpaYoosy1btuywwTCGIv3+yPH4z58u4dyWp8n+QRUAy598gavWfJbWi+8hWHl1mqMTERGRE4GZrXPOHTESm2qwREQ68cZbiZq/fT2nZCQATXWabFhERESOLrMGuZBjsmTJEpYsWZLuMEQyjicWIdYhwSouKqbRhWjbV5XGqERERCQTZEQN1onUjFEyh35v5Hh5XRtRT6B9fVh+YrLhWIMSLBERETm6fk+wzOwiM9tsZlvM7JZjPT4UClFbW6uXZTkmzjlqa2sJhULpDkUykDfeRqxjgpUXopoiPI3VaYxKREREMkG/NhE0My9wD3A+sBN4zcxWOefe7e05Ro8ezc6dO6mpqemvMGWQCoVCjB49Ot1hSAbyucMTrMIsP7UUcHJYNVgiIiJydP3dB2sOsMU59wGAmT0ELAJ6nWD5/X4mTJjQT+GJiBzJF48Q9xzqg+XxGA3+UrLbjpzoW0RERKSj/m4iOArY0WF9Z3JbOzO7wczWmtla1VKJyInAR4R4hxosgNZgKVnxJmhrTlNUIiIikgnSPsiFc+4+51ylc66yrKws3eGIyBDnnMPvIjjv4RNoR7OHJRY02bCIiIgcRX8nWLuAMR3WRye3iYickNpicQIcmWCRNyLxXQmWiIiIHEV/J1ivARPNbIKZBYArgVX9fE0RkePWGo0TJILzHt5E0F+QSLCi9RroQkRERLrXr4NcOOeiZvZ14GnACzzgnHunP68pItIXbdFEDVakU4KVVTwSgKa6XRSkIzARERHJCP09iiDOuSeBJ/v7OiIiqdAWjROwKBHf4XOoFZSUE3UewnUfKcESERGRbqV9kAsRkRNJa7IGC9/hNVhl+VnspYDoAfXBEhERke4pwRIR6aAt2QfLOg1yMSwvSLUrxBp3pykyERERyQRKsEREOmiNxggQxXyHJ1iluUFqXCG+Zs3XJyIiIt1TgiUi0kFbJIrfYpj/8D5YAZ+Hem8xWa170xSZiIiIZAIlWCIiHURawwB4/MEj9oWDpeRE90EsOtBhiYiISIZQgiUi0kG0rfsEK5IzHA9xaKoe6LBEREQkQyjBEhHpINLWDICnUxNBAApGJ77X7xrAiERERCSTKMESEengYBNBXyDriH3+ojEAtO3bPqAxiYiISOZQgiUi0kE0mWD5A0fWYOWUjQWgsVoJloiIiHRNCZaISAeRtoM1WEcmWKWlw2l2QcK1SrBERESka0qwREQ6iEWSNVjBIxOs8sIsqlwxcfXBEhERkW70KcEys7vMbJOZvWVmj5lZYYd93zGzLWa22cwu7HOkIiID4OAogoFg9hH7ygsSCZav4aOBDktEREQyRF9rsJ4FpjrnpgHvAd8BMLNTgSuB04CLgF+YmbeP1xIR6XfxSAvQ9TDtWQEvtd4yssK7BzosERERyRB9SrCcc8845w7OuPkKkBzDmEXAQ865Vufch8AWYE5friUiMiCSw7QTyOlyd1NoBHmRWk02LCIiIl1KZR+spcCfksujgB0d9u1MbhMRObFFkgmWv+sEK5IzIjHZcKNqsURERORIvp4KmNmfgRFd7Pqec+6JZJnvAVFg+bEGYGY3ADcAjB079lgPFxFJKU+kKbHQTQ0W+aOglsRkwwcnHhYRERFJ6jHBcs6dd7T9ZrYEuBg41znnkpt3AWM6FBud3NbV+e8D7gOorKx0XZURERkohxKsIwe5APAXj4EPoa1uB4GxcwcwMhEREckEfR1F8CLgn4FLnHPNHXatAq40s6CZTQAmAmv6ci0RkYHgiSYGueiuiWBu2TgAGmq2DVRIIiIikkF6rMHqwd1AEHjWzABecc59xTn3jpk9DLxLoungjc65WB+vJSLS73zRZtoIEPB2/eextKSMRheiVZMNi4iISBf6lGA5504+yr4fAT/qy/lFRAaaP9ZMqydEoJv95UXZVLkSsjTZsIiIiHQhlaMIiohkPH+shVZPVrf7ywtCicmGGzXZsIiIiBxJCZaISAe+WAsRb9cDXACE/F7qvKVkt2iYdhERETmSEiwRkQ4C8WZi3u5rsAAaQ+XkRusg2jZAUYmIiEimUIIlIpLknCMQDxPzdV+DBRDJLceDgwY1ExQREZHDKcESEUkKR+JkEybezRDt7Q5OMKyBLkRERKQTJVgiIkkN4QjZhLudZPigQPFYAFrrNFS7iIiIHE4JlohIUkNrlDxrgWDeUcvlDUtMNtxYvXUAohIREZFMogRLRCSpsaWNIhogu/So5cqKi6lzubTV7higyERERCRTKMESEUlqOVCH1xyWU3LUciMLQ1S5Ely9EiwRERE5nBIsEZGkxv17AAgVlB213IiCEB+5EvxNVQMRloiIiGQQJVgiIknh/dUA5BYNP2q5oM/LPt8wcsNKsERERORwSrBERJJaG/YCkF0wrMeyTVkjyIo1QmtDf4clIiIiGSRlCZaZ/aOZOTMrTa6bmf2rmW0xs7fM7PRUXUtEpD/EGxMJlqeHPlgA0dxRiQXNhSUiIiIdpCTBMrMxwAVAx0lhPglMTH7dAPwyFdcSEekvrrk2sZDdc4LlKUgmWAd29mNEIiIikmlSVYP1c+CfAddh2yLgty7hFaDQzMpTdD0RkZQLhasJWwgCOT2WDZYmJhsOa6h2ERER6aDPCZaZLQJ2Oefe7LRrFNDxzWNnclvn428ws7Vmtrampqav4YiIHLeC1ir2BcrBrMey+WVjiDmjuebDAYhMREREMoWvN4XM7M/AiC52fQ/4LonmgcfFOXcfcB9AZWWl66G4iEi/aIvGKYlW01JwxOdAXRpRlE81RVidmgiKiIjIIb1KsJxz53W13cwqgAnAm5b4xHc08LqZzQF2AWM6FB+d3CYicsLZua+Z0VZDbf7cXpUvLwhR5YoZWa8ES0RERA7pUxNB59zbzrlhzrnxzrnxJJoBnu6c2w2sAr6YHE1wHlDvnNOkMSJyQtq1p5pCayJQOr5X5Yfnh6h2Rfibq/s3MBEREckovarBOk5PAp8CtgDNwHX9eC0RkT6p37kJgLzySb0qH/B5aPCXEGrb3J9hiYiISIZJaYKVrMU6uOyAG1N5fhGR/hKpegeAgvHTe31MOFBCTvgARFvBF+yv0ERERCSDpGyiYRGRTObdu5E2/FjxSb0+pi17WGKhUc0ERUREJEEJlogMec45ShvfZ2/WBPB4e31cPGd4YqFxTz9FJiIiIplGCZaIDHk7ag4wnc00lJ1+TMf58hOzV7iG3f0RloiIiGQgJVgiMuT97e2XybFWciadfUzHBQrLAQjv+6g/whIREZEMpARLRIa88Pv/DcDI6V1O+detnOIRxJ3Rsk8zUIiIiEiCEiwRGfKKa9bwkX8snrxhx3RcSX4OteQR2a8ES0RERBKUYInIkFa9v5HTou+yb9jcYz62LC/IXleI0yAXIiIikqQES0SGtPfeWE2uhY+5/xVAaW6QaleIr0kJloiIiCQowRKRIa3xvUT/q9Ezjq3/FUBRdoAaCgmE96Y6LBEREclQSrBEZEgrql7DR74x+ArKj/lYr8do8JWQHamFeLwfohMREZFMowRLRIasmvompkTeYV/ZnOM+RzhUis9FIbw/dYGJiIhIxupzgmVm3zCzTWb2jpn9tMP275jZFjPbbGYX9vU6IiKptnH9y+RbCzmTj73/1UHR7OTIgxroQkRERABfXw42s4XAImC6c67VzIYlt58KXAmcBowE/mxmk5xzsb4GLCKSKo2bXwCOr/9Vu9zhUAs07IZhU1ITWBo459i7bz+1uz7gQM12wrU7scYqPM21WFsj/lgTgVgz/ngYXBxzcQyHxxyGETMfMfMT8/iJmZ+459CXa/8eAI8X83jB48M8HszjxTy+xDbzEDcvzjw4rGNwiW+d1jsUaN97xC7A6LSxU6HD93cu28O5jlgXGXixrBJmL/oaQX+fXutEJEX6+iR+Ffixc64VwDlXndy+CHgouf1DM9sCzAH+2sfriYikTFH1a+z2jWJE4ajjPocvfzgArnFPx5TghHagpY0tmzdQ//7/QNXb5DVsYUTbNkZbDWWdyrYQpJkswp4sWiybVk8IZ4mkKO4MhxF3Dl88itc1EiCKz0Xxugi+5LKfKD4iBFwULzF8pv5qIqn2UslEzlr4yXSHISL0PcGaBJxlZj8CwsC3nHOvAaOAVzqU25ncdgQzuwG4AWDs2LF9DEdEpHf21DdzavQdqkZewIg+nCdYOBKA1v0fEUpNaClX29DChtdfpnXTs+TXrGNiZBOnWwMArfjZ7R9DXdF0qosn4i+dQG7ZWAqGjyO/bAxZWXlk9UNMLh4jFo0SjUWJRCJEozHMxSAeAxfDktmqHUxbkxvat1uHdNasY8lkmU7prnVOf4+2v/O+ztH3dG6RgRNrrif7nunENz8NSrBETgg9Jlhm9mfo8v3je8nji4F5wGzgYTM76VgCcM7dB9wHUFlZqbYWIjIg3nlzDedYMwcmntmn8xQUFNHsgkT27T5hEiznHJu27eSDlx8ja/uLVITXcrbVA/CRbwx7Rixg79g5DDv1TIrGTWecxzvgMZrHiy/gxUeQUH9kcCJDRW4hG4OnMbrmv9MdiYgk9ZhgOee67ZxgZl8F/uCcc8AaM4sDpcAuYEyHoqOT20RETghNW14GoHzqgj6dpzQ/RI0rIPfA7hRE1Tfvb/+I9196mMIP/otZ0fVMsSgHLJ+qYR+nZcqFjJz1KUYWlDMy3YGKSErVlC/gE9vu5sCebeQPH5fucESGvL42EXwcWAi8YGaTgACwF1gF/M7MfkZikIuJwJo+XistXDyOeTSavchgk7NnHfWeAgrKTu7TeUpzA1RTSG5DehKsHbWNrH3+MYo3r2BeZA0TLUKtt5QPJ3yBkWd8gfyT55GfhhoqERk4pacvgm1388H/PMqMz/1DusMRGfL6mmA9ADxgZhuANuDaZG3WO2b2MPAuEAVuzMQRBDe9+gzxP99B0VX3Uz7+lHSHIyIpEo7E+Fh4A7uLZ1LQx/4zZblB1rpCJjbXpCi6nkVicVa//hZ7V/+aufv/yOeshgOWzwfjPs+I+VdRMvEMSvTBkMiQccrUSnY+NhzflmcAJVgi6danBMs51wZc3c2+HwE/6sv50y18YC8ntX2AZ9kC1k7/Hqdf8jU8Xn0SLJLp3nv/PabZHjaNva7P5yrOCbCXAkKtm1IQ2dHt2NvAq8+upPS9hzgrvg6fxdlRWEndGT+keNal5PuC/R6DiJx4PF4PH5acxey9T9Cyv4asws7jgYrIQNKECUcx4/y/Y9fJs9j/u+uofPP7/G3Dr2n6+D9w2oLFeH3+dIeXMs454vE40WiEWCxKNBrBJUf3ikcjuHgcF48k5o5xLjHjzMF5aQ7OJ9O+Hk8uJsrh4u3lDk0947qerCYleqiNOI7aiv4YICxlp+xpZLRUXKLba/XhnEc9Vf+PyLZvzUoAyqb1fQ50n9dDg6+UUPQARMLgT+1QF5FYnNVr17P/5QeYW/8kl1sdBzyF7JxyPWPO/Qpj+tjEUUQGh/wzrif0n4+w4am7mXrlHekO54Ti4jFikTai0TaikTZi0SiRWCz5fpOYR8+5WOKdxsUT253DXDz5/hJLvP8c/IL2d52upsJzvfr/0nrx32ovztOLa1kvynSce7Db0kc5T2+uccQxx1A2HsijZNhIcoKZkbpkRpRpNGrCZMpveYnX/us+Rq//v3xs9Y1Ur76NrcPPJTjlIiaevpDs/OKUXzcedzRHYjQ1t9DUeICWpgZamw4Qbmkg0tJItKWBSLiReGsTrq0JT7QZb6QFb6wZb7QZX6wFf6yFQLyFQDxM0IUJuRZCLkzARfASw0sMD3F8xPGaQ3VzMlSMAqopYdhJM1NyvtZQKbQATdVQmJrpJrZV72fdnx9i+PsPcXb8DTDYXjSPfWdeT9GMReT7Aim5jogMDtNO/zjrnpzOuM2/JR75Lh5/5tRoO+c40NhIQ101zQdqaW2opa2hjlhTHbGW/bi2Jog044k04Yk044214I0m3nP8yfccr4viS77fHJx7z+eSyxbHh156M9mvoxdSdsW/cPG0zBimSb9rveDxepm96KtEPnU9655bieeNB5m2+zFCex6GF6HKyqgJjiOaVUokVEo8VIjXF8B5fMTNi3MOb6wVoq24aJh4JIxFw3iizXiiLfgPJkTxFoLxFkKulRBhsmhluEWPKdYWgrRaiLBl0eYJ0eYJEQlk0+wt5oA3i5g3i7g3iPP4weMFjw/Mk/juSUwemtjecdmHMy8HP21xGIa1f0JzcM6ZjvPVHCoHHSauSR538FOL1NZU9Fwndhy1ZsdV0TaAsw30W01g8vQHf5aB+pH6+efpqORjpzMsVbVy+SMTCdb+HX1KsMKRGC+/8ldaXl3G3IZnuNTq2ectYdupX2PsuTcwvnh8auIVkUHHzGib8zVK//q/ePex/82pV6S5Fss5Gg/so3b3dg7U7KS57iMi9VXQsAd/SzVZbbXkRerIiR8g3zVQYBEKjnK6iPPSYiHCyfecVk8WEU+IsC+fRu9wnDeAMx9xrx9nfpzHj/MmvuP1w8Hv3gDm8eLxGGaexDtQci69Q8senOfgNm/ibcVzqFznefoO/6+k5//HzLmeS/Xqv8NeFHK9mdi9N+fpab87ppYuvfgXOMz43AmcPLrwmI5JJyVYx8DvDzDromvgomtoaWrgrdeeof7DdWTv20R+83Zy922l2NUTtEi354g7I0yAiPkJW4hWC9HmySLizSISKCXsy2afPwv8ORDIwRPMwRPMxRfMwZeVSyArn0B2LqHsPLJyCghm52KBRFl8WWR5PP0yKaiIdM837BTYA/HqTXjGzz+mY51zvLN1N5tfeJAJ2x/lXDYRxcO2krPwnnk9xdM/TZFXf6pFpGdzzruCl9f9ltnv3k3N+5+mbOKcfrtWJBZnT3U1e3e+R9PuvxGp3Yr3wA6ym3dR1FbF8Ngeci1MbqfjWvGzz4qo9xWzPzSSvcHTiIeK8GQX4skuwZ9bhD+nmFB+CVkFpWTnF5OTW4DfH8QP5PfbTySSOuYG8BPjnlRWVrq1a9emO4y+cY7WcBONLa1YLILHRfF4vZgviDeQRSgQxOPV6F4ig8nyV7ay6E9zYcbfkfu5n/fqmK176tjwlz+Q/d4TzG17lRxrpdo/mpapf8eYhdfjye9qfncRkaP7YNs2ch5YQJa10XTpg5RPO+e4zuOcY9/+fVRvf5/6qi207v0Q27+dYONOClqrGBHfQ4E1HXZME1lUe0dQHxxJOGcU8fxRBArLySoaSeGwMRQPH0NWfnH/dG4WSQMzW+ecq+y8XR+LppoZwaxcglmdP7MRkcFqQlkuW9woxle9020Z5xwbt+5i65o/EvjgGeaE/4eLrZkGy2PXmM8w8hNfZNjET+jFQ0T65KRx43jr8scoevQKxvzhc7z7/AK8FZdTNnEWBSMmJLowYLQ21VO3dw/1dXto2bud6L7tuH3b8TfuIjdcRWl0D8XWQMde5mEC1HhH0JA9kg/yZuEpHEtw2EkUlH+M0jGTyMkpZoL+hokowRIR6auKUQWsdKdQUfM0NNVCTgkAew80s+nNV6h/588M2/MXpsff5VSL0Wg5fFR+LpF5X6Ck4gLyvINnVFIRSb9pFTOoGv4yzz58O5U1j1P00ovw0qH9BoSAkcmvg1pcgBrvMOoDI/ig6DQ+KBxHsHQ8BSNPpnTMJLILRzBGCZRIj5RgiYj0UV7Iz9bRi/BW/ZEP//0atnrHkr1vM1OiGznTWgDYFTiJD8YsYUTlJRROms8kJVUi0o/Kh5VR/vV7aGi6i3VvvERL1WZc/S5cPIbfHPFALv7cYkIFw8guGU1B+UmUlJYzVt0YRPpMfbBERFJgS3Ujz/3q2yxpW4mZo9o/mvqySrJPPpPRM87FX5ya4dtFRETkxNBdHywlWCIiKeKcI9zaRlbAnxjSV0RERAYtDXIhItLPzIysUOZM7ikiIiKpp49YRUREREREUkQJloiIiIiISIoowRIREREREUmRE2qQCzOrAbalO45OSoG96Q5CBozu99Chez106F4PLbrfQ4fu9dByIt7vcc65ss4bT6gE60RkZmu7Gh1EBifd76FD93ro0L0eWnS/hw7d66Elk+63mgiKiIiIiIikiBIsERERERGRFFGC1bP70h2ADCjd76FD93ro0L0eWnS/hw7d66ElY+63+mCJiIiIiIikiGqwREREREREUkQJloiIiIiISIoowToKM7vIzDab2RYzuyXd8UjqmNkYM3vBzN41s3fM7O+T24vN7Fkzez/5vSjdsUpqmJnXzNab2X8l1yeY2avJ53ulmQXSHaOkhpkVmtkjZrbJzDaa2cf1bA9OZnZz8m/4BjNbYWYhPduDh5k9YGbVZrahw7Yun2VL+NfkfX/LzE5PX+RyrLq513cl/46/ZWaPmVlhh33fSd7rzWZ2YVqCPgolWN0wMy9wD/BJ4FTgC2Z2anqjkhSKAv/onDsVmAfcmLy/twDPOecmAs8l12Vw+HtgY4f1nwA/d86dDOwDrk9LVNIf/h/wlHPuFGA6ifuuZ3uQMbNRwDeBSufcVMALXIme7cFkGXBRp23dPcufBCYmv24AfjlAMUpqLOPIe/0sMNU5Nw14D/gOQPJ97UrgtOQxv0i+t58wlGB1bw6wxTn3gXOuDXgIWJTmmCRFnHNVzrnXk8sNJF7ARpG4x79JFvsN8Nm0BCgpZWajgU8D/55cN+Ac4JFkEd3rQcLMCoBPAPcDOOfanHP70bM9WPmALDPzAdlAFXq2Bw3n3F+Auk6bu3uWFwG/dQmvAIVmVj4ggUqfdXWvnXPPOOeiydVXgNHJ5UXAQ865Vufch8AWEu/tJwwlWN0bBezosL4zuU0GGTMbD8wEXgWGO+eqkrt2A8PTFZek1L8A/wzEk+slwP4Of7j1fA8eE4Aa4NfJJqH/bmY56NkedJxzu4D/A2wnkVjVA+vQsz3Ydfcs671tcFsK/Cm5fMLfayVYMqSZWS7wKHCTc+5Ax30uMYeB5jHIcGZ2MVDtnFuX7lhkQPiA04FfOudmAk10ag6oZ3twSPa9WUQiqR4J5HBkEyMZxPQsDw1m9j0SXTuWpzuW3lKC1b1dwJgO66OT22SQMDM/ieRquXPuD8nNew42KUh+r05XfJIy84FLzGwriaa+55Doo1OYbFYEer4Hk53ATufcq8n1R0gkXHq2B5/zgA+dczXOuQjwBxLPu57twa27Z1nvbYOQmS0BLgaucocm7z3h77USrO69BkxMjkYUINGZblWaY5IUSfbBuR/Y6Jz7WYddq4Brk8vXAk8MdGySWs657zjnRjvnxpN4jp93zl0FvABcniymez1IOOd2AzvMbHJy07nAu+jZHoy2A/PMLDv5N/3gvdazPbh19yyvAr6YHE1wHlDfoSmhZCAzu4hE8/5LnHPNHXatAq40s6CZTSAxsMmadMTYHTuUDEpnZvYpEn03vMADzrkfpTciSRUzOxN4CXibQ/1yvkuiH9bDwFhgG3CFc65zB1vJUGa2APiWc+5iMzuJRI1WMbAeuNo515rG8CRFzGwGiQFNAsAHwHUkPlDUsz3ImNkdwGISzYfWA18i0RdDz/YgYGYrgAVAKbAH+AHwOF08y8kk+24SzUSbgeucc2vTELYch27u9XeAIFCbLPaKc+4ryfLfI9EvK0qim8efOp8znZRgiYiIiIiIpIiaCIqIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIp8v8B4Pb6t3wvxiMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
9False30.08850.0728bAP.soma.v0.009998.88e-06
10False30.08850.0728Step1.soma.v0.01124.13e-06
11False30.08850.0728Step3.soma.v0.009645.45e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "9 False 3 0.0885 0.0728 bAP.soma.v \n", + "10 False 3 0.0885 0.0728 Step1.soma.v \n", + "11 False 3 0.0885 0.0728 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "9 0.00999 8.88e-06 \n", + "10 0.0112 4.13e-06 \n", + "11 0.00964 5.45e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj90lEQVR4nOzdd5xcVf3/8ddnZnu2pXeyoSSkEiAJQRJpCkGpogSkIyKICnwpKioGv/L9+kV+ooAaURQphl6igEoLEKQlEEIJJcCml03ZZPvuzHx+f8zNZrLZluzszpb38/HYx95y7jmfuTezmc+cc881d0dERERERETaLpTqAERERERERLoLJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERDoZMysyMzeztFTHIj2Dmb1nZkekOg4Rke5ACZaIiHR5ZjbHzMqDn1ozq0tYfyrV8XV27j7O3ecns04zu9HMVprZNjNbbmbXJrN+EZHOyvSgYRGR5DKzNHePtOH4IuAzIL0t9fRUZjYb2Nfdz2pkX5uuTUfqSrE2xsxGA6vcvcLMhgL/Bn7i7o+kODQRkXalHiwRkSQws2Iz+76ZLQEqzCzNzKaZ2X/MrNTM3k4cgmVm883sf83s9eAb/sfNrE8TdZ9vZkvNrMzMPjWzbzXYf5KZLQ7q+cTMZgbbC8zsDjNba2arzeznZhZu4XXsY2bPmdkmM9toZveaWWHCvs1mdlCwPsTMSra/LjM7MRhqVhq8vjENzs9VZrbEzLaa2f1mlrX7Z3r3NXFt3Mz2TShzp5n9PGH9+OCclgbXcGIr2zrCzFaZ2bXB+Ss2szMT9n/ZzN4KrtXKIBncvm/70NBvmNkK4Llg+4Nmti44by+a2bgGcf/OzJ4KeuteNrNBZvZrM9tiZh+Y2YGtPEdfaM1rbC13/9DdKxI2xYB9myovItJdKMESEUmeM4AvA4XAQOAJ4OdAH+Aq4GEz659Q/hzgAmAwEAFuaaLeDcDxQD5wPnBzQpIzFbgLuDpo9/NAcXDcnUG9+wIHAscAF7bwGgz4X2AIMAYYDswGcPdPgO8D95hZDvAX4K/uPt/MRgFzgcuB/sCTwN/NLCOh7tOAmcBIYCJwXqMBmE0PEpumfqa38BoaU39tWuoVChKSPwPfAvoCfwDmmVlmK9saBPQDhgLnArcHvTkAFcSve2EQzyVmdnKD4w8nfu6PDdafAvYDBgBvAvc2KH8a8OOgzRrglaBcP+Ah4FetjLtRZvaD5q5HK44tB1YBvYC/tSUWEZGuQAmWiEjy3OLuK929CjgLeNLdn3T3mLs/DSwEvpRQ/m53fzf4lv8nwGmN9TC5+xPu/onHvUB8qNWMYPc3gD+7+9NBO6vd/QMzGxi0dbm7V7j7BuBm4PTmXoC7LwvqqnH3EuIfzg9P2P9HYBnwGvHE8EfBrlnAE8GxdcBNQDbwuQbnZ427bwb+DkxqIoYF7l7YzM+C5l5DExKvTUsuAv7g7q+5e9Td/0o8cZm2G+39JDiHLxBPtE8DcPf57v5OcK2WEE9KD29w7OzgmlUFx/zZ3cvcvYZ4snuAmRUklH/U3Re5ezXwKFDt7ne5exS4n3hyvcfc/RfNXY+WjgXygIOAu4GtbYlFRKQrUIIlIpI8KxOWRwBfa/BN/3TiSUlj5ZcD6cR7HXZiZseZ2avB8LxS4onT9nLDgU8aiWVEUN/ahPb/QLwXpElmNtDM7guGFG4D7mkkpj8C44Fbgw/9EO/xWr69gLvHgtc3NOG4dQnLlUBuc7Ek2cqWi9QbAVzZ4NoNJ/4aW2NLg6Fxy7cfa2aHmNnzwdDKrcDF7Hp+62M1s7CZ/cLiQz+3saN3MvGY9QnLVY2sd+R53kXwxcBbQSzXpzIWEZGOoARLRCR5EmcNWkm8hyrx2/5ewTf62w1PWN4LqAM2JlYYDEt7mHiP0MCgx+BJ4kP5trezTyOxrCTe69Ivof18dx/XSNlE/xO8jgnunk+8J257W5hZLvBr4A5gtu24b2wN8cRkezkLXt/qFtrbhZnNsB0zADb2M6PlWnbRcEanSiAnYX1QwvJK4IYG1y7H3ee2sq3eZtYrYX0v4ucH4kPk5gHD3b0AmEPC+W0k1q8DJwFfAAqAomB7w2PaTXA/WZPXYzeqSqPxf6siIt2KEiwRkfZxD3CCmR0b9EJkBRMgDEsoc5aZjQ3uZ/oZ8FAwrCtRBpAJlAARMzuO+L1U290BnG9mR5tZyMyGmtn+7r6W+FDC/2dm+cG+fcys4XC0hvKAcmCrxWd+u7rB/t8AC939QuJD3+YE2x8AvhzEkQ5cSTzB+09LJ6ohd3/J3XOb+Xlpd+tsxGLg68G1mcnOw/T+CFwc9DaZmfWy+OQUeVA/scSdLdR/vZllBMng8cCDwfY8YLO7Vwf3z329hXryiJ/HTcQTwv/ZjdeYFO7+P81dj8aOCf69fcvMegfncCpwKfBsx0YvItLxlGCJiLQDd19JvOfhWuLJ0UriyUri3927iU9EsQ7IAr7XSD1lwfYHgC3EP5DPS9j/OsHEF8Tvb3mBHT1J5xBP0N4Pjn2InYcoNuZ64vfLbCWeQNVPqW1mJxGfpOKSYNN/AQeZ2Znu/iHx3q5biffCnQCc4O61LbSXKpcRj7EUOBN4bPsOd18IfBO4jfh5W8bOE3IMB15upu51wXFriE9IcbG7fxDs+zbwMzMrA64jfl2bcxfxIYariV/HV1t6YZ3IKcSHr5YR/8Lh1uBHRKRb03OwRERSwMzmA/e4+59SHYu0XjAr4tvAxGAyj4b7jyB+XYc13CciIj1DWqoDEBER6SqCHrkxLRYUEZEeS0MERUR6GDOb08SEBXNaPlq6IjPbq5mJKvZKdXwiIt2JhgiKiIiIiIgkiXqwREREREREkqRT3YPVr18/LyoqSnUYIiIiIiIiTVq0aNFGd+/f2L5OlWAVFRWxcOHCVIchIiIiIiLSJDNb3tQ+DREUERERERFJEiVYIiIiIiIiSaIES0REREREJEk61T1Yjamrq2PVqlVUV1enOhTpBLKyshg2bBjp6empDkW6sQcXruSFj0r4zekHEg5ZqsMRERGRLqTTJ1irVq0iLy+PoqIizPRBpydzdzZt2sSqVasYOXJkqsORbuyWh5/miYwf8fHCv7L/1GNSHY6IiIh0IZ1+iGB1dTV9+/ZVciWYGX379lVvprQrd+f88L/It0rCi+9OdTgiIiLSxXT6BAtQciX19G9B2lt5TYQDQ8sAiJVtSHE0IiIi0tV0iQRLRKSjbK6oJZ8KAAZVfJjiaERERKSrUYLVCmbGlVdeWb9+0003MXv27NQFlOCII45o9uHMJ598MtOmTdtp2+zZsxk6dCiTJk1i/PjxzJs3r73DFOkyNlXUkmtVABTEtkBNeYojEhERka5ECVYrZGZm8sgjj7Bx48ak1uvuxGKxpNaZqLS0lEWLFrF161Y+/fTTnfZdccUVLF68mAcffJALLrigXeMQ6Uq2VdWRRxWbQ30A8K2rUhyRiIiIdCVKsFohLS2Niy66iJtvvnmXfSUlJZx66qlMmTKFKVOm8PLLLwPxXqKbbrqpvtz48eMpLi6muLiY0aNHc8455zB+/HhWrlzJ1Vdfzfjx45kwYQL3338/APPnz+eII47gq1/9Kvvvvz9nnnkm7t5ofHfffXd9b9Trr79ev/2RRx7hhBNO4PTTT+e+++5r9NgxY8aQlpa2U/L4gx/8gLFjxzJx4kSuuuoqAIqLiznqqKOYOHEiRx99NCtWrADgvPPO45JLLmHatGnsvffezJ8/nwsuuIAxY8Zw3nnn1dd5ySWXMHnyZMaNG8dPf/rTXeLYunUrI0aMqE/0KioqGD58OHV1dY3GLdJeampqyLEaSnL2AWDr+s9SHJGIiIh0JZ1+mvZE1//9Pd5fsy2pdY4dks9PTxjXYrlLL72UiRMncs011+y0/bLLLuOKK65g+vTprFixgmOPPZalS5c2W9fHH3/MX//6V6ZNm8bDDz/M4sWLefvtt9m4cSNTpkzh85//PABvvfUW7733HkOGDOGwww7j5ZdfZvr06bvUV1lZyeLFi3nxxRe54IILePfddwGYO3cu1113HQMHDuTUU0/l2muv3eXY1157jVAoRP/+/QHYtGkTjz76KB988AFmRmlpKQDf/e53Offcczn33HP585//zPe+9z0ee+wxALZs2cIrr7zCvHnzOPHEE3n55Zf505/+xJQpU1i8eDGTJk3ihhtuoE+fPkSjUY4++miWLFnCxIkT6+MoKChg0qRJvPDCCxx55JH84x//4Nhjj9XzrqTDRarif2MqC0dD+RtUbiimMLUhiYiISBeiHqxWys/P55xzzuGWW27ZafszzzzDd77zHSZNmsSJJ57Itm3bKC9v/p6NESNG1N8XtWDBAs444wzC4TADBw7k8MMP54033gBg6tSpDBs2jFAoxKRJkyguLm60vjPOOAOAz3/+82zbto3S0lLWr1/Pxx9/zPTp0xk1ahTp6en1iRfAzTffzKRJk7jqqqu4//7762fnKygoICsri2984xs88sgj5OTkAPDKK6/w9a9/HYCzzz6bBQsW1Nd1wgknYGZMmDCBgQMHMmHCBEKhEOPGjauP+YEHHuCggw7iwAMP5L333uP999/f5XXMmjWrvgfvvvvuY9asWc2eR5H2EKvaCoD1H03EQ9RuXp7iiERERKQr6VI9WK3paWpPl19+OQcddBDnn39+/bZYLMarr75KVlbWTmXT0tJ2uq8p8dlNvXr1alV7mZmZ9cvhcJhIJNJouYZTl5sZDzzwAFu2bKl/IO+2bduYO3cuN9xwAxC/B2v78L+Gcb/++us8++yzPPTQQ9x2220899xzrYozFArtFHMoFCISifDZZ59x00038cYbb9C7d2/OO++8Rp9ldeKJJ3LttdeyefNmFi1axFFHHdVsuyLtIVYd78Eq7DuADRTiW9ekOCIRERHpStrcg2Vmw83seTN738zeM7PLgu19zOxpM/s4+N277eGmVp8+fTjttNO444476rcdc8wx3HrrrfXrixcvBqCoqIg333wTgDfffJPPPmv8Po4ZM2Zw//33E41GKSkp4cUXX2Tq1Km7Fdf2Xp8FCxZQUFBAQUEBc+fO5Z///Gf9fV+LFi1q8j6sROXl5WzdupUvfelL3Hzzzbz99tsAfO5zn6s//t5772XGjBmtjm/btm306tWLgoIC1q9fz1NPPdVoudzcXKZMmcJll13G8ccfTzgcbnUbIsniQYLVr28/NnhvQuXrUxyRiIiIdCXJGCIYAa5097HANOBSMxsL/AB41t33A54N1ru8K6+8cqcJIW655RYWLlzIxIkTGTt2LHPmzAHg1FNPZfPmzYwbN47bbruNUaNGNVrfKaecwsSJEznggAM46qijuPHGGxk0aNBuxZSVlcWBBx7IxRdfzB133EFxcTHLly/faXr2kSNHUlBQwGuvvdZoHV/60pdYs2YNZWVlHH/88UycOJHp06fzq1/9CoBbb72Vv/zlL0ycOJG7776b3/zmN62O74ADDuDAAw9k//335+tf/zqHHXZY/b7rrrtup2niZ82axT333KPhgZI6NWUA5OT1YXOoD1nVetiwiIiItJ41NTPdHldo9jhwW/BzhLuvNbPBwHx3H93csZMnT/aGz3RaunQpY8aMSWqM0rXp34S0p3l33cyJn86G7yxi3h9+zFHRl8m9bmWqwxIREZFOxMwWufvkxvYldZILMysCDgReAwa6+9pg1zpgYBPHXGRmC81sYUlJSTLDERHZfXWV8d8ZvajJ7k9ubBtEalIbk4iIiHQZSUuwzCwXeBi43N13mkvd491kjXaVufvt7j7Z3SdvnypcRCRVvK4qvpCeRaxXMFxX92GJiIhIKyUlwTKzdOLJ1b3u/kiweX0wNJDgt25kEJFOz7b3VqVlYfnxBMu3rW3mCBEREZEdkjGLoAF3AEvd/VcJu+YB5wbL5wKPt7UtEZF2Fw0SrHAm6YVDAKjYtDqFAYmIiEhXkoznYB0GnA28Y2aLg23XAr8AHjCzbwDLgdOS0JaISLuySDV1pJEeCpHTZygAFZtWkZviuERERKRraHOC5e4LAGti99FtrV9EpCOForXUWQbpQGG/wUQ8RO0WPWxYREREWiepswh2Z4899hhmxgcffNBkmeLiYsaPH5+0Ns877zweeuihJvdffvnlDB06lFgsVr/tzjvvpH///kyaNImxY8fyxz/+MWnxiPQEFq2hzjIBGFCQQwmFxHQPloiIiLSSEqxWmjt3LtOnT2fu3LmN7o9EIm1uIxqNtrpsLBbj0UcfZfjw4bzwwgs77Zs1axaLFy9m/vz5XHvttaxfrxnQRForHKshEsoAoH9eJuu9EKvQe0hERERaRwlWK5SXl7NgwQLuuOMO7rvvvvrt8+fPZ8aMGZx44omMHTsWiCdaZ555JmPGjOGrX/0qlZXxZ+o8++yzHHjggUyYMIELLriAmpr4jfRFRUV8//vf56CDDuLBBx/cpe1nnnmGyZMnM2rUKP7xj3/s1Pa4ceO45JJLmkz6BgwYwD777MPy5cvrt91yyy2MHTuWiRMncvrppwOwefNmTj75ZCZOnMi0adNYsmQJALNnz+bcc89lxowZjBgxgkceeYRrrrmGCRMmMHPmTOrq6gD42c9+xpQpUxg/fjwXXXQRDR9eHYvFKCoqorS0tH7bfvvtp8RPOqX0hAQrNzONzdaHzCo9o09ERERaJxmTXHScp34A695Jbp2DJsBxv2i2yOOPP87MmTMZNWoUffv2ZdGiRRx88MEAvPnmm7z77ruMHDmS4uJiPvzwQ+644w4OO+wwLrjgAn73u9/xne98h/POO49nn32WUaNGcc455/D73/+eyy+/HIC+ffvy5ptvNtp2cXExr7/+Op988glHHnkky5YtIysri7lz53LGGWdw0kknce2111JXV0d6evpOx3766ad8+umn7LvvvvXbfvGLX/DZZ5+RmZlZn/D89Kc/5cADD+Sxxx7jueee45xzzmHx4sUAfPLJJzz//PO8//77HHrooTz88MPceOONnHLKKTzxxBOcfPLJfOc73+G6664D4Oyzz+Yf//gHJ5xwQn2boVCIk046iUcffZTzzz+f1157jREjRjBwYKPPnhZJqbDXEg1l1q+Xpfcjp/bjFEYkIiIiXYl6sFph7ty59b09p59++k49RlOnTmXkyJH168OHD+ewww4D4KyzzmLBggV8+OGHjBw5klGjRgFw7rnn8uKLL9YfM2vWrCbbPu200wiFQuy3337svffefPDBB9TW1vLkk09y8sknk5+fzyGHHMK//vWv+mPuv/9+Jk2axBlnnMEf/vAH+vTpU79v4sSJnHnmmdxzzz2kpcXz6wULFnD22WcDcNRRR7Fp0ya2bYs/K/q4444jPT2dCRMmEI1GmTlzJgATJkyguLgYgOeff55DDjmECRMm8Nxzz/Hee+/t8jpmzZrF/fffD8B9993X7GsWSaX0WG19DxZAdVY/8qJbIVKbwqhERESkq+haPVgt9DS1h82bN/Pcc8/xzjvvYGZEo1HMjF/+8pcA9OrVa6fy8ceCNb3emIZ1tFTfv/71L0pLS5kwYQIAlZWVZGdnc/zxxwPxZOa2225rtL4nnniCF198kb///e/ccMMNvPNO8z2CmZnxb/JDoRDp6en18YRCISKRCNXV1Xz7299m4cKFDB8+nNmzZ1NdXb1LPYceeijLli2jpKSExx57jB//+MfNtiuSKuleSyyhByuSMwjKgfL1UDg8dYGJiIhIl6AerBY89NBDnH322Sxfvpzi4mJWrlzJyJEjeemllxotv2LFCl555RUA/va3vzF9+nRGjx5NcXExy5YtA+Duu+/m8MMPb1X7Dz74ILFYjE8++YRPP/2U0aNHM3fuXP70pz9RXFxMcXExn332GU8//XT9/V5NicVirFy5kiOPPJL/+7//Y+vWrZSXlzNjxgzuvfdeIH5vV79+/cjPz29VfNuTqX79+lFeXt7krIdmximnnMJ//dd/MWbMGPr27duq+kU6WrrXEgvvSLDIC4ayluueQREREWmZEqwWzJ07l1NOOWWnbaeeemqTE0uMHj2a3/72t4wZM4YtW7ZwySWXkJWVxV/+8he+9rWvMWHCBEKhEBdffHGr2t9rr72YOnUqxx13HHPmzCEWi/HPf/6TL3/5y/VlevXqxfTp0/n73//eaB0XXnghCxcuJBqNctZZZzFhwgQOPPBAvve971FYWMjs2bNZtGgREydO5Ac/+AF//etfW3l2oLCwkG9+85uMHz+eY489lilTptTvmzNnDnPmzKlfnzVrFvfcc4+GB0qnFYs5GdQRC2fVb0srGAJAzZbVqQpLREREuhBrOONbKk2ePNkXLly407alS5cyZsyYFEUknZH+TUh7qa6Lsvq/xxEdOJFRlz4AwLwFb3HiM0ew+fD/pc+R305xhCIiItIZmNkid5/c2D71YImIBGoiMTKtDtJ2DBEs6DeYiIeo3rIqhZGJiIhIV6EES0QkUBuJkUktnpBg9c/PYSMFRLetS2FkIiIi0lW0e4JlZjPN7EMzW2ZmP9iTOjrTMEZJLf1bkPZUE4mSSR2WtuMerAH5maz33liZEiwRERFpWbsmWGYWBn4LHAeMBc4ws7G7U0dWVhabNm3SB2vB3dm0aRNZWVktFxbZA/EerJ2HCPbJyaCEQjKqNqQwMhEREekq2vs5WFOBZe7+KYCZ3QecBLzf2gqGDRvGqlWrKCkpaacQpSvJyspi2LBhqQ5DuqnaSIRMi+zUgxUKGdvS+pFT82kKIxMREZGuor0TrKHAyoT1VcAhiQXM7CLgIohPSd5Qeno6I0eObMcQRUTiarc/JDs9e6ftVZn9ya0qhWgdhNM7PjARERHpMlI+yYW73+7uk919cv/+/VMdjoj0YJHaKgBC6TsPQ43kDIgv6GHDIiIi0oL2TrBWA8MT1ocF20REOp1IdSUAoYydEyzPHRhfKFOCJSIiIs1r7wTrDWA/MxtpZhnA6cC8dm5TRGSPROqCBKvBEMG0giEARLeu6fCYREREpGtp13uw3D1iZt8B/gWEgT+7+3vt2aaIyJ6K1sTvwQo36MHK6jMUgMrNq8nr8KhERESkK2nvSS5w9yeBJ9u7HRGRtorWbU+wdu7Byu07mKgbVUqwREREpAXtnmCJiHQV0Zr4JBdpDXqwBhTksJECDREUERGRFqV8FkERkc4iFon3YKVl5uy0fUBeJuu9N5StS0VYIiIi0oUowRIRCUSDadrTM3ceItgvN5MNXkh65YZUhCUiIiJdiBIsEZHtgh6s9AY9WFnpYUrDfcmuKUlFVCIiItKFKMESEQl4bZBgNZjkAqAqsz85kVKI1nVwVCIiItKVKMESEdkuWgPs+qBhgEivgYRwKNcwQREREWmaEiwRkYAH07STtmuCFcofFF8o10QXIiIi0jQlWCIiAYtuT7Ayd9mXWRh/2HBt6dqODElERES6GCVYIiLbReJDBEnb9R6s3P7DACgrWdmREYmIiEgXowRLRGS7SA1RQhDe9RnsffoPIepG5ebVKQhMREREugolWCIiAYtUU0tGo/sG98ljEwXUla7p4KhERESkK2lTgmVmvzSzD8xsiZk9amaFCft+aGbLzOxDMzu2zZGKiLQzi1RTZ00kWAVZrPdCrHx9B0clIiIiXUlbe7CeBsa7+0TgI+CHAGY2FjgdGAfMBH5nZuE2tiUi0q5C0RqiofRG92WlhykN9SGjUtO0i4iISNPalGC5+7/dPRKsvgoMC5ZPAu5z9xp3/wxYBkxtS1siIu0tLVpFTWjXCS62q8jsT26tEiwRERFpWjLvwboAeCpYHgokTrW1Kti2CzO7yMwWmtnCkpKSJIYjIrJ7MmOV1IV7Nbm/KnsIBbFS2P68LBEREZEGWkywzOwZM3u3kZ+TEsr8CIgA9+5uAO5+u7tPdvfJ/fv3393DRUSSJitWSV04p8n9sfzge6JtmklQREREGrfrXMQNuPsXmttvZucBxwNHu7sHm1cDwxOKDQu2iYh0WlleRSS9b5P703rvBSugauNysvvu04GRiYiISFfR1lkEZwLXACe6e2XCrnnA6WaWaWYjgf2A19vSlohIe4rFnByvIprW9BDBnAEjANi27tOOCktERES6mBZ7sFpwG5AJPG1mAK+6+8Xu/p6ZPQC8T3zo4KXuHm1jWyIi7aY6EqWXVVGRkdtkmcKBRcTcqNq4vAMjExERka6kTQmWu+/bzL4bgBvaUr+ISEeprI2SSzUbmkmwBvfNZwOFRLesbLKMiIiI9GzJnEVQRKTLqqquIdtq8WYSrIH5WazxvqSV6ZZSERERaZwSLBERoKJsKwBpWU0nWOnhEJvTBpBdtaajwhIREZEuRgmWiAhQWV4KQFp2frPlKrIGU1i7HuonTRURERHZQQmWiAhQVR7vwcrsVdBsudrcoWRQBxUbOyIsERER6WKUYImIADUV2wDIzGk+wbLC+CP+YqWa6EJERER2pQRLRASoq9gCQHZ+72bLZfULnoW1/rN2j0lERES6HiVYIiJArLwEgJzeg5otlz+wCIDy9XrYsIiIiOxKCZaICBCq2gRAOLdfs+UGDBhEhWdSu3lFR4QlIiIiXYwSLBERwKo2EyEEWYXNlhvSO4fV3g+2ruqYwERERKRLUYIlIgKkV2+izArArNly+VnpbAj1J7NCz8ISERGRXSnBEhEBMmq3UJFW2Kqy2zIGkle9rn0DEhERkS4pKQmWmV1pZm5m/YJ1M7NbzGyZmS0xs4OS0Y6ISHvJqdtKTUbzMwhuV50zhPxYKdRVtW9QIiIi0uW0OcEys+HAMUDiHd/HAfsFPxcBv29rOyIi7SUWcwpipUSyWpdgxfKHxRe2rm7HqERERKQrSkYP1s3ANYAnbDsJuMvjXgUKzWxwEtoSEUm6jWXVDLLNRHNb92cqrc9eAFRtLG7HqERERKQralOCZWYnAavd/e0Gu4YCKxPWVwXbREQ6nTXr1pBjNaT1GdGq8jn9iwDYtk7PwhIREZGdpbVUwMyeARp78uaPgGuJDw/cY2Z2EfFhhOy1115tqUpEZI9sDRKl3AFFrSrfd8gIYm5UblzejlGJiIhIV9RiguXuX2hsu5lNAEYCb1t8WuNhwJtmNhVYDQxPKD4s2NZY/bcDtwNMnjzZGysjItKeKjcUA9B78N6tKj+kTz7r6U1sy8qWC4uIiEiPssdDBN39HXcf4O5F7l5EfBjgQe6+DpgHnBPMJjgN2Orua5MTsohIckW3xOfoyQ6G/rVkQF4Wa70vaWWa5EJERER21mIP1h56EvgSsAyoBM5vp3ZERNosZ9snlFsvcnP6tqp8OGRsTh/I8KrP2jkyERER6WqSlmAFvVjblx24NFl1i4i0p34Vy1iftQ+58eHOrVKRNZjCitcgFoOQntkuIiIicfpUICI92taKWopiK6jqM3q3jqvLHUo6dVBR0k6RiYiISFekBEtEerRPP/mAfKsiffD43TouVBifxydaqokuREREZAclWCLSo20uXgxA370n7dZxWf3iz8zaqmdhiYiISAIlWCLSo9WteReAviMP2K3j8geNBKB8vSa6EBERkR2UYIlIj5az5UM2hvpj2b1367iB/QdQ5tlE9CwsERERSaAES0R6LHdnUPWnbM7dd7ePHVSYzRrvi21d1Q6RiYiISFelBEtEeqxVG7dRxGrq+o3Z7WPzstJZb/3JrFzTDpGJiIhIV6UES0R6rFXL3iHDouQMm7BHx2/NGEh+9dokRyUiIiJdmRIsEemxti1fDMDAfQ/ao+OrcgaTG9sGtRVJjEpERES6MiVYItJzbXifCCFyhuz+EEGASO7Q+MLW1UkMSkRERLoyJVgi0mPlb/uY9enDIS1zj44P9w4eNrxlRTLDEhERkS5MCZaI9Eg1kShD64opyx+1x3Vk9S8CoGxDcXKCEhERkS6vzQmWmX3XzD4ws/fM7MaE7T80s2Vm9qGZHdvWdkREkunTVevYyzbAgD0bHghQMGAvom5UlRQnLzARERHp0tLacrCZHQmcBBzg7jVmNiDYPhY4HRgHDAGeMbNR7h5ta8AiIsmw/pPFjAHyRxywx3UM6p3LOvrgGiIoIiIigbb2YF0C/MLdawDcfUOw/STgPnevcffPgGXA1Da2JSKSNJWrlgDQfw9nEAQYnB9/2HBomya5EBERkbi2JlijgBlm9pqZvWBmU4LtQ4GVCeVWBdt2YWYXmdlCM1tYUlLSxnBERFonfeMHVJFFep+iPa4jPzuN9fQnu0rPwhIREZG4FocImtkzwKBGdv0oOL4PMA2YAjxgZnvvTgDufjtwO8DkyZN9d44VEdlTfcqXsSFrJCNCe/49k5lRljmQvJrXIBaDNtQlIiIi3UOLCZa7f6GpfWZ2CfCIuzvwupnFgH7AamB4QtFhwTYRkZTbVlXLyFgx6wqPbnNdVTlDSNsagfL1kD84CdGJiIhIV9bWr1sfA44EMLNRQAawEZgHnG5mmWY2EtgPeL2NbXW4SG0Nkbq6VIchIkn26Wef0cfKSRs8vs11RfOHxRe2rmpzXSIiItL1tTXB+jOwt5m9C9wHnOtx7wEPAO8D/wQu7YozCC588P9Y+b+TWfL8Q3gslupwRCRJSovfAqBgxKQ215UWPGw4VrqyhZIiIiLSE7QpwXL3Wnc/y93Hu/tB7v5cwr4b3H0fdx/t7k+1PdSOlzVgXzK8iokvfIPin0/itfv/j9KN61Mdloi0ka9/H4C+e09qc10Fg/cBoHT1R22uS0RERLq+Nj0Hq7ub9MWvUzvjFBY9dTv5797FIUv/h8j7v+Dd7EmUj/giQyd9gWGjD8ZC4VSH2i48FiUSqSMaidT/jkbqiEXj67FohGg0Ev8drBOLgkfBwXHcHTz+29m+DAT76vcD7o759nlO4tvrl/eI7UZR241WdqPeoO7m+E4Nt77u3T4rjcSRlFllWnh9jRwQb7tVje/G+diNOHLXv8FmCuiTP6DVxzRln2GDWRnrT9qqxW2uS/acu1NTF6GmuopoXU39TyxSS6yuhlgkvhyNxojFosRi8d/RaAyPRYlGo7hHMY+BxzBi4B5fT3inOMaOf5fBv+Wd/u0Fy8E2xzCzXfc13IZhoUa21Ve9o93t22yXtkloK+Hdk7jNrEG9O0rvvM12+hWU2LmNFtrapQIRkT1U12swRUUjycnoGqlL14gyhTKysjn4lMvwk7/HJ++8zLpX7mf4umcY/+H/wYf/xzZ6sSJzP6oL9iXWbxSZ/fehcMAw+g4aTq/CgVi4bafYY1Fqa6uprqqirqqCmupK6mriP5GaSiI1VURqq4jWVBKrqyJWW43XVUGkGuqq8Ug1FqkmFKnGYjWEo9WEozWEY7Wkx6pJi9WS7rWkew2Z1JLhtWRSRxpRQuakA+nJOZUinco72VPok4R69huYywtexKEb321V+Q3bqsnPTicrvXt+MbM7IpEoW7aWsm1zCdXbSqgt20ikYjOxii14VSmx2nKoKSdUV0koUkFapJKMWBWZsUoyY1VkezWZ1JDmETKoI8tiZKX6RYmISNL9d91ZnHDxDUwaXpjqUFpFCVYrmRn7TJzOPhOngzurP/uAFYufJbzqVQq2fUTR+ifI3fDQTsdE3ai0LGrIoiaUSa1lEQlO+U5f8rkT9rog0akjg7r63xkWIRPI3MO4azydGsughgzqLPgJZRKxDCJpOdSEehMLZxILZwW/48uE0vFQON47F06DUBoWCmOhNAh+WzjYFk6PL1s4foyFwEL1rzP+bWcIgmXDguUQWPCd6E6/d3w76jT8Rre1dqc/yndaS1a9u9advLK7HUsL3UU7v+rdjGO3iu9auNmOp9Z1c+12IIZTtP+hu1F303Iy0liTPZrC6jegvARy++8amTuvv/8pK5++lWlb/s5/9j6Po879SVLa72zqIhE2bljLlvUrKNu4htrSNXjZesKVG8io3kivmo3kRLeQGysj38vpb1F2PWNx8b+h2VRZNjWWTW0om9pwNlXp/dgWziESzsHTsiCcAWmZhNIyIS0DS8uAcCaE0/FwJhbOgLQMQqE0CKcRCoWCn/hyOBwmFA5hFg7+aIXx+r9jVt9LFO9h913+ftf/22vQ6244HvNgSwvbvJE6PLE2b7DbG+xhp/dLU9vMfad3yvaRBYkbfeeGm9iW0H7CNvfm39Pmvlu9zSIiAEfl78PIvr1SHUarKcHaE2YM3XsMQ/ceA3wHgGg0xoa1xWxe8ynlG1dRXbqGcEUJ1FVAbSXhSCXpsSpCwVwfwSg5HAgZREOZxMIZxEIZeDgDD2fi4Uyo/8CQhaVnY+nZhDOyCGfkEM7MJi0zm/SMHNKzckjPzCEjK4f07F5kZWWTkZlNZii8x8mZiLROZN9j4f17qFnyCJmf+1b99uq6KC8veI7Iq7fz+er5HGK1VJHBsNVPAl0vwXJ3NmyrYu2qYrat/Zi6jZ9hpSvIKl9JfvUa+kXW0de3MNiiNJywvpxsSkO9KUvrw5bskZRk9cazehPu1Ye03D6k9epHel4fsvL6kVPQj14FfcnK7kVeKEReSl6tiIjInlGClSThcIgBw/ZmwLDdes6yiHQDkw+ZwbvvFjF8/v+jbuhUPlm/jbWL/8XQNf/kaD6hikzW7HUCw469nP88OofDN92H15RhmZ0vdaiqjbJ63Ro2rfyYinXLiGwuJn3bCnpVrqZ/ZC1D2MhA2/H4ihjGJuvL5ozBrM6dzPLcwaTlDySz9xDy+g0lv/8w8vsNJTcrj9wUvi4REZGOogRLRKSNDh7Rm1/t/UO+9dn36PWXIzgAOABYkTWKz8b/mBFHXcg+Ob0BCO13NGmb7mXFa4+x1+fP7vBYYzFnw5atbFj5MdvWfEzNxk8Jla4gu2IVvWvWMNjXs69Vsm/CMdssjy0Zg6nIH8PHBXuR0W8kuYP3pfeQfcnuP5L+aZlNDvMTERHpacx36x6H9jV58mRfuHBhqsMQEdltsZjz3BuLSfvsOfr06c9+k6aTPWDXHu3N5dVU/3IsVb2Gs8/V8/dgFsaWVVZXs2blp2xZ9TGVGz7FtxSTUbaS/KrV9I+uZ6Bt2al8NRlsTBtEWfZQ6vL2ItSniF4D96bPsFHkD94HyypIeowiIiJdmZktcvfJje1TD5aISBKEQsYXDjkQDjmw2XJ9crN4cq9z+dLKX7Hs8V+w78k/3K123J3Ssgo2rvmMsvWfUl1STGzLctLKVpFbtYY+desY4JvY13Y8HD3qxsZwf7ZkDGFt7nTW9h5BZr+RFA7Zj77DR5FVMIhhmnhAREQkKdSDJSLSwaqqa3nz/53IYXWvsCx7IuV7H0d6v70hPZtoNEakaiu15VuJVJViFRtJr1xPZnUJuXWb6BPbTG8r26m+mBslob6Upg+iInsI0YLhpPctIm/g3vQbPor8gUXxmfVEREQkKZrrwVKCJSKSAtsqq3h17v+y34oHGGlrmyxX52E2hwopS+tLZWZ/IjkDIHcQab2HkdV/JL0H70PfISMJpWu+UBERkY6iBEtEpJOKRKKsWrWcig3FeLSWtBCk5/Qmr7AP+QV9yMrtDaFQqsMUERGRBO12D5aZTQLmAFlABPi2u79u8SfL/gb4ElAJnOfub7alLRGR7igtLUxR0d5QpEc8iIiIdAdt/Vr0RuB6d58EXBesAxwH7Bf8XAT8vo3tiIiIiIiIdHptTbAcyA+WC4A1wfJJwF0e9ypQaGaD29iWiIiIiIhIp9bWadovB/5lZjcRT9Y+F2wfCqxMKLcq2LbLndxmdhHxXi722muvNoYjIiIiIiKSOi0mWGb2DDCokV0/Ao4GrnD3h83sNOAO4Au7E4C73w7cHrRVYmbLd+f4DtAP2JjqIKTD6Hr3HLrWPYeudc+i691z6Fr3HJ3xWo9oakebZhE0s61Aobt7MLHFVnfPN7M/APPdfW5Q7kPgCHdvei7iTsrMFjY1Q4h0P7rePYeudc+ha92z6Hr3HLrWPUdXu9ZtvQdrDXB4sHwU8HGwPA84x+KmEU+8ulxyJSIiIiIisjvaeg/WN4HfmFkaUE1wLxXwJPEp2pcRn6b9/Da2IyIiIiIi0um1KcFy9wXAwY1sd+DSttTdidye6gCkQ+l69xy61j2HrnXPouvdc+ha9xxd6lq36R4sERERERER2aGt92CJiIiIiIhIQAmWiIiIiIhIkijBaoaZzTSzD81smZn9INXxSPKY2XAze97M3jez98zssmB7HzN72sw+Dn73TnWskhxmFjazt8zsH8H6SDN7LXh/329mGamOUZLDzArN7CEz+8DMlprZoXpvd09mdkXwN/xdM5trZll6b3cfZvZnM9tgZu8mbGv0vRzMXH1LcN2XmNlBqYtcdlcT1/qXwd/xJWb2qJkVJuz7YXCtPzSzY1MSdDOUYDXBzMLAb4HjgLHAGWY2NrVRSRJFgCvdfSwwDbg0uL4/AJ519/2AZ4N16R4uA5YmrP8fcLO77wtsAb6RkqikPfwG+Ke77w8cQPy6673dzZjZUOB7wGR3Hw+EgdPRe7s7uROY2WBbU+/l44D9gp+LgN93UIySHHey67V+Ghjv7hOBj4AfAgSf104HxgXH/C743N5pKMFq2lRgmbt/6u61wH3ASSmOSZLE3de6+5vBchnxD2BDiV/jvwbF/gqcnJIAJanMbBjwZeBPwboRf3bfQ0ERXetuwswKgM8DdwC4e627l6L3dneVBmQHj4vJAdai93a34e4vApsbbG7qvXwScJfHvQoUmtngDglU2qyxa+3u/3b3SLD6KjAsWD4JuM/da9z9M+KPhZraYcG2ghKspg0FViasrwq2STdjZkXAgcBrwMCEh2KvAwamKi5Jql8D1wCxYL0vUJrwh1vv7+5jJFAC/CUYEvonM+uF3tvdjruvBm4CVhBPrLYCi9B7u7tr6r2sz23d2wXAU8Fyp7/WSrCkRzOzXOBh4HJ335a4L3iem55j0MWZ2fHABndflOpYpEOkAQcBv3f3A4EKGgwH1Hu7ewjuvTmJeFI9BOjFrkOMpBvTe7lnMLMfEb+1495Ux9JaSrCathoYnrA+LNgm3YSZpRNPru5190eCzeu3DykIfm9IVXySNIcBJ5pZMfGhvkcRv0enMBhWBHp/dyergFXu/lqw/hDxhEvv7e7nC8Bn7l7i7nXAI8Tf73pvd29NvZf1ua0bMrPzgOOBM33Hw3s7/bVWgtW0N4D9gtmIMojfTDcvxTFJkgT34NwBLHX3XyXsmgecGyyfCzze0bFJcrn7D919mLsXEX8fP+fuZwLPA18NiuladxPuvg5YaWajg01HA++j93Z3tAKYZmY5wd/07dda7+3uran38jzgnGA2wWnA1oShhNIFmdlM4sP7T3T3yoRd84DTzSzTzEYSn9jk9VTE2BTbkQxKQ2b2JeL3boSBP7v7DamNSJLFzKYDLwHvsOO+nGuJ34f1ALAXsBw4zd0b3mArXZSZHQFc5e7Hm9nexHu0+gBvAWe5e00Kw5MkMbNJxCc0yQA+Bc4n/oWi3tvdjJldD8wiPnzoLeBC4vdi6L3dDZjZXOAIoB+wHvgp8BiNvJeDJPs24sNEK4Hz3X1hCsKWPdDEtf4hkAlsCoq96u4XB+V/RPy+rAjx2zyealhnKinBEhERERERSRINERQREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsEZFOxsyKzMzNLC3VsUjPYGbvmdkRqY5DRKQ7UIIlIiJdnpnNMbPy4KfWzOoS1p9KdXydnbuPc/f5yazTzG40s5Vmts3MlpvZtcmsX0SkszJ3T3UMIiLdipmluXukDccXAZ8B6W2pp6cys9nAvu5+ViP72nRtOlJXirUxZjYaWOXuFWY2FPg38BN3fyTFoYmItCv1YImIJIGZFZvZ981sCVBhZmlmNs3M/mNmpWb2duIQLDObb2b/a2avB9/wP25mfZqo+3wzW2pmZWb2qZl9q8H+k8xscVDPJ2Y2M9heYGZ3mNlaM1ttZj83s3ALr2MfM3vOzDaZ2UYzu9fMChP2bTazg4L1IWZWsv11mdmJwVCz0uD1jWlwfq4ysyVmttXM7jezrN0/07uviWvjZrZvQpk7zeznCevHB+e0NLiGE1vZ1hFmtsrMrg3OX7GZnZmw/8tm9lZwrVYGyeD2fduHhn7DzFYAzwXbHzSzdcF5e9HMxjWI+3dm9lTQW/eymQ0ys1+b2RYz+8DMDmzlOfpCa15ja7n7h+5ekbApBuzbVHkRke5CCZaISPKcAXwZKAQGAk8APwf6AFcBD5tZ/4Ty5wAXAIOBCHBLE/VuAI4H8oHzgZsTkpypwF3A1UG7nweKg+PuDOrdFzgQOAa4sIXXYMD/AkOAMcBwYDaAu38CfB+4x8xygL8Af3X3+WY2CpgLXA70B54E/m5mGQl1nwbMBEYCE4HzGg3AbHqQ2DT1M72F19CY+mvTUq9QkJD8GfgW0Bf4AzDPzDJb2dYgoB8wFDgXuD3ozQGoIH7dC4N4LjGzkxscfzjxc39ssP4UsB8wAHgTuLdB+dOAHwdt1gCvBOX6AQ8Bv2pl3I0ysx80dz1acWw5sAroBfytLbGIiHQFSrBERJLnFndf6e5VwFnAk+7+pLvH3P1pYCHwpYTyd7v7u8G3/D8BTmush8ndn3D3TzzuBeJDrWYEu78B/Nndnw7aWe3uH5jZwKCty929wt03ADcDpzf3Atx9WVBXjbuXEP9wfnjC/j8Cy4DXiCeGPwp2zQKeCI6tA24CsoHPNTg/a9x9M/B3YFITMSxw98JmfhY09xqakHhtWnIR8Ad3f83do+7+V+KJy7TdaO8nwTl8gXiifRqAu89393eCa7WEeFJ6eINjZwfXrCo45s/uXubuNcST3QPMrCCh/KPuvsjdq4FHgWp3v8vdo8D9xJPrPebuv2juerR0LJAHHATcDWxtSywiIl2BEiwRkeRZmbA8Avhag2/6pxNPShorvxxIJ97rsBMzO87MXg2G55UST5y2lxsOfNJILCOC+tYmtP8H4r0gTTKzgWZ2XzCkcBtwTyMx/REYD9wafOiHeI/X8u0F3D0WvL6hCcetS1iuBHKbiyXJVrZcpN4I4MoG12448dfYGlsaDI1bvv1YMzvEzJ4PhlZuBS5m1/NbH6uZhc3sFxYf+rmNHb2TicesT1iuamS9I8/zLoIvBt4KYrk+lbGIiHQEJVgiIsmTOGvQSuI9VInf9vcKvtHfbnjC8l5AHbAxscJgWNrDxHuEBgY9Bk8SH8q3vZ19GollJfFel34J7ee7+7hGyib6n+B1THD3fOI9cdvbwsxygV8DdwCzbcd9Y2uIJybby1nw+la30N4uzGyG7ZgBsLGfGS3XsouGMzpVAjkJ64MSllcCNzS4djnuPreVbfU2s14J63sRPz8QHyI3Dxju7gXAHBLObyOxfh04CfgCUAAUBdsbHtNugvvJmrweu1FVGo3/WxUR6VaUYImItI97gBPM7NigFyIrmABhWEKZs8xsbHA/08+Ah4JhXYkygEygBIiY2XHE76Xa7g7gfDM72sxCZjbUzPZ397XEhxL+PzPLD/btY2YNh6M1lAeUA1stPvPb1Q32/wZY6O4XEh/6NifY/gDw5SCOdOBK4gnef1o6UQ25+0vuntvMz0u7W2cjFgNfD67NTHYepvdH4OKgt8nMrJfFJ6fIg/qJJe5sof7rzSwjSAaPBx4MtucBm929Orh/7ust1JNH/DxuIp4Q/s9uvMakcPf/ae56NHZM8O/tW2bWOziHU4FLgWc7NnoRkY6nBEtEpB24+0riPQ/XEk+OVhJPVhL/7t5NfCKKdUAW8L1G6ikLtj8AbCH+gXxewv7XCSa+IH5/ywvs6Ek6h3iC9n5w7EPsPESxMdcTv19mK/EEqn5KbTM7ifgkFZcEm/4LOMjMznT3D4n3dt1KvBfuBOAEd69tob1UuYx4jKXAmcBj23e4+0Lgm8BtxM/bMnaekGM48HIzda8LjltDfEKKi939g2Dft4GfmVkZcB3x69qcu4gPMVxN/Dq+2tIL60ROIT58tYz4Fw63Bj8iIt2anoMlIpICZjYfuMfd/5TqWKT1glkR3wYmBpN5NNx/BPHrOqzhPhER6RnSUh2AiIhIVxH0yI1psaCIiPRYGiIoItLDmNmcJiYsmNPy0dIVmdlezUxUsVeq4xMR6U40RFBERERERCRJ1IMlIiIiIiKSJJ3qHqx+/fp5UVFRqsMQERERERFp0qJFiza6e//G9nWqBKuoqIiFCxemOgwREREREZEmmdnypvZpiKCIiIiIiEiSKMESERERERFJEiVYIiJJ8MSStXxSUp7qMERERCTFOtU9WI2pq6tj1apVVFdXpzoU6WKysrIYNmwY6enpqQ5FurmVmyv51dy/M7Bvb/521ddSHY6IiIikUKdPsFatWkVeXh5FRUWYWarDkS7C3dm0aROrVq1i5MiRqQ5HurkP15XxeMZPyC2vJlp2OOG8AakOSURERFKkzUMEzWy4mT1vZu+b2XtmdlmwvY+ZPW1mHwe/e+9J/dXV1fTt21fJlewWM6Nv377q+ZQOsWZrFbkW/7e2+e0nUxyNiIiIpFIy7sGKAFe6+1hgGnCpmY0FfgA86+77Ac8G63tEyZXsCf27kY5Ssrm0frly/cepC0RERERSrs0Jlruvdfc3g+UyYCkwFDgJ+GtQ7K/AyW1tS0SkM0qrWLdjZeMnqQtEREREUi6pswiaWRFwIPAaMNDd1wa71gEDmzjmIjNbaGYLS0pKkhlO0pgZV155Zf36TTfdxOzZs1MXUIJXX32VQw45hEmTJjFmzJj6uObPn89//vOfNtU9c+ZMCgsLOf7445MQqUj3lVG1HoCYGxnbmnzuoIiIiPQASUuwzCwXeBi43N23Je5zdwe8sePc/XZ3n+zuk/v375+scJIqMzOTRx55hI0bNya1XncnFou1qY5zzz2X22+/ncWLF/Puu+9y2mmnAclJsK6++mruvvvuNtUh0hNkVce/HHo7NIb86lUpjkZERERSKSmzCJpZOvHk6l53fyTYvN7MBrv7WjMbDGxoazvX//093l+zreWCu2HskHx+esK4ZsukpaVx0UUXcfPNN3PDDTfstK+kpISLL76YFStWAPDrX/+aww47jNmzZ5Obm8tVV10FwPjx4/nHP/4BwLHHHsshhxzCokWLePLJJ7ntttt46qmnMDN+/OMfM2vWLObPn8/s2bPp168f7777LgcffDD33HPPLvcVbdiwgcGDBwMQDocZO3YsxcXFzJkzh3A4zD333MOtt97K/vvv32Scn3zyCcuWLWPjxo1cc801fPOb3wTg6KOPZv78+c2emwcffJDrr7+ecDhMQUEBL774ItXV1VxyySUsXLiQtLQ0fvWrX3HkkUdy55138thjj1FRUcHHH3/MVVddRW1tLXfffTeZmZk8+eST9OnThz/+8Y/cfvvt1NbWsu+++3L33XeTk5OzU7vTpk3jjjvuYNy4+LU74ogjuOmmm5g8eXKz8Yq0h+zaTQCszBrFgVXvQ6QG0jJTHJWIiIikQjJmETTgDmCpu/8qYdc84Nxg+Vzg8ba2lUqXXnop9957L1u3bt1p+2WXXcYVV1zBG2+8wcMPP8yFF17YYl0ff/wx3/72t3nvvfdYuHAhixcv5u233+aZZ57h6quvZu3a+MjKt956i1//+te8//77fPrpp7z88su71HXFFVcwevRoTjnlFP7whz9QXV1NUVERF198MVdccQWLFy9mxowZzca5ZMkSnnvuOV555RV+9rOfsWbNmlafl5/97Gf861//4u2332bevHkA/Pa3v8XMeOedd5g7dy7nnntu/Wx+7777Lo888ghvvPEGP/rRj8jJyeGtt97i0EMP5a677gLgK1/5Cm+88QZvv/02Y8aM4Y477til3VmzZvHAAw8AsHbtWtauXavkSlImHKkEoCxnr/iG8jZ/nyQiIiJdVDJ6sA4DzgbeMbPFwbZrgV8AD5jZN4DlwGltbailnqb2lJ+fzznnnMMtt9xCdnZ2/fZnnnmG999/v35927ZtlJeXN1vXiBEjmDZtGgALFizgjDPOIBwOM3DgQA4//HDeeOMN8vPzmTp1KsOGDQNg0qRJFBcXM3369J3quu666zjzzDP597//zd/+9jfmzp3baK9Tc3GedNJJZGdnk52dzZFHHsnrr7/OySef3Krzcthhh3Heeedx2mmn8ZWvfKX+NX33u98FYP/992fEiBF89NFHABx55JHk5eWRl5dHQUEBJ5xwAgATJkxgyZIlQDwJ+/GPf0xpaSnl5eUce+yxu7R72mmnccwxx3D99dfzwAMP8NWvfrVV8Yq0h3BdFRHCRPOHwibiCVbh8FSHJSIiIinQ5gTL3RcATc2HfXRb6+9MLr/8cg466CDOP//8+m2xWIxXX32VrKysncqmpaXtdH9V4vOYevXq1ar2MjN3DDEKh8NEIpFGy+2zzz5ccsklfPOb36R///5s2rRplzJNxQm7Tme+O9Obz5kzh9dee40nnniCgw8+mEWLFjVbPvE1hUKh+vVQKFT/+s477zwee+wxDjjgAO68885GE8ahQ4fSt29flixZwv3338+cOXNaHbNIsoWjldRaFmkF8eG6kW1rO/9T3EVERKRdJHUWwe6uT58+nHbaaTsNWTvmmGO49dZb69cXL14MQFFREW+++SYAb775Jp999lmjdc6YMYP777+faDRKSUkJL774IlOnTm11TE888QTxOUTiQw/D4TCFhYXk5eVRVlbWYpwAjz/+ONXV1WzatIn58+czZcqUVrf/ySefcMghh/Czn/2M/v37s3LlSmbMmMG9994LwEcffcSKFSsYPXp0q+ssKytj8ODB1NXV1dfTmFmzZnHjjTeydetWJk6c2Or6RZItPVZFbSibrN7xBKti4+oURyQiIiKpogRrN1155ZU7zSZ4yy23sHDhQiZOnMjYsWPre1JOPfVUNm/ezLhx47jtttsYNWpUo/WdcsopTJw4kQMOOICjjjqKG2+8kUGDBrU6nrvvvpvRo0czadIkzj77bO69917C4TAnnHACjz76KJMmTeKll15qMk6AiRMncuSRRzJt2jR+8pOfMGTIECCe/H3ta1/j2WefZdiwYfzrX/8C4sMSt99vdfXVVzNhwgTGjx/P5z73OQ444AC+/e1vE4vFmDBhArNmzeLOO+/cqeeqJf/93//NIYccwmGHHcb+++9fv33evHlcd9119etf/epXue++++pnThRJlbRoDXXhTPL7DiHmRvWW1t/HKCIiIt2Lbe/96AwmT57sCxcu3Gnb0qVLGTNmTIoi6v4aznbY3ejfj3SE+bOPZnRWKevPfJZhf5pAzT7HMfSc21MdloiIiLQTM1vk7o3OsKYeLBGRNsr0aiJp2fTPy6TEC/Hy9akOSURERFJE92H3cLNnz051CCJdmruT6dXEwn0YmJvJJ15A70pN0y4iItJTqQdLRKQNaiIxsqklmpZNRlqILeE+ZNXsOpOniIiI9AxKsERE2qC6Lko2NXh6DgBVGf3IrdsEnej+VhEREek4SrBERNqgui5Gju1IsGqy+pFGBKq2pDgyERERSQUlWCIibVAV9GBZkGDFeg2M7yhbl8KoREREJFWUYLXSY489hpnxwQcfNFmmuLiY8ePHJ63NDz/8kCOOOIJJkyYxZswYLrroIiD+kOAnn3yyTXVfcMEFDBgwIKnxivREVTURsqmBjF4AWF6QYFVoogsREZGeSAlWK82dO5fp06czd+7cRvdHIpE2txGNRnda/973vscVV1zB4sWLWbp0Kd/97neB5CRY5513Hv/85z/bVIeIQHVNFWkWwzLiPVgZBfEEq7ZUPVgiIiI9Udeapv2pH8C6d5Jb56AJcNwvmi1SXl7OggULeP755znhhBO4/vrrAZg/fz4/+clP6N27Nx988AH//ve/iUQinHnmmbz55puMGzeOu+66i5ycHJ599lmuuuoqIpEIU6ZM4fe//z2ZmZkUFRUxa9Ysnn76aa655hpOP/30+nbXrl3LsGHD6tcnTJhAbW0t1113HVVVVSxYsIAf/vCHHH/88Xz3u9/l3Xffpa6ujtmzZ3PSSSdx55138uijj7J161ZWr17NWWedxU9/+lMAPv/5z1NcXNzs637hhRe47LLLADAzXnzxRXJzc7nmmmt46qmnMDN+/OMfM2vWLObPn89Pf/pTCgsLeeeddzjttNOYMGECv/nNb6iqquKxxx5jn3324e9//zs///nPqa2tpW/fvtx7770MHDhwp3ZPP/10zj77bL785S8D8WTw+OOP56tf/WrrrqlIB6qrqgAgnJENQHafIQBUbF5DRsqiEhERkVRRD1YrPP7448ycOZNRo0bRt29fFi1aVL/vzTff5De/+Q0fffQREB/W9+1vf5ulS5eSn5/P7373O6qrqznvvPO4//77eeedd4hEIvz+97+vr6Nv3768+eabOyVXAFdccQVHHXUUxx13HDfffDOlpaVkZGTws5/9jFmzZrF48WJmzZrFDTfcwFFHHcXrr7/O888/z9VXX01FRfxD3+uvv87DDz/MkiVLePDBB1m4cGGrX/dNN93Eb3/7WxYvXsxLL71EdnY2jzzyCIsXL+btt9/mmWee4eqrr2bt2rUAvP3228yZM4elS5dy991389FHH/H6669z4YUXcuuttwIwffp0Xn31Vd566y1OP/10brzxxl3anTVrFg888AAAtbW1PPvss/XJlkhnU1sTJFiZ8R6swt79qPE0atSDJSIi0iO1ew+Wmc0EfgOEgT+5e/PdRc1poaepvcydO7e+J+f0009n7ty5HHzwwQBMnTqVkSNH1pcdPnw4hx12GABnnXUWt9xyC1/84hcZOXIko0aNAuDcc8/lt7/9LZdffjkQTygac/7553Psscfyz3/+k8cff5w//OEPvP3227uU+/e//828efO46aabAKiurmbFihUAfPGLX6Rv374AfOUrX2HBggVMnjy5Va/7sMMO47/+678488wz+cpXvsKwYcNYsGABZ5xxBuFwmIEDB3L44YfzxhtvkJ+fz5QpUxg8eDAA++yzD8cccwwQ73l7/vnnAVi1ahWzZs1i7dq11NbW7nTutjvuuOO47LLLqKmp4Z///Cef//znyc7OblXMIh2trqYKgLRgiGD/vCxKKMQ0yYWIiEiP1K49WGYWBn4LHAeMBc4ws7Ht2Waybd68meeee44LL7yQoqIifvnLX/LAAw/gwTNuevXqtVN5M2t2vTEN60g0ZMgQLrjgAh5//HHS0tJ49913dynj7jz88MMsXryYxYsXs2LFCsaMGbPH8Wz3gx/8gD/96U9UVVVx2GGHNTvBB0BmZmb9cigUql8PhUL196h997vf5Tvf+Q7vvPMOf/jDH6iurt6lnqysLI444gj+9a9/cf/99zeZgIp0BnXVlQCkBT1Y/XIz2egFWHlJKsMSERGRFGnvIYJTgWXu/qm71wL3ASe1c5tJ9dBDD3H22WezfPlyiouLWblyJSNHjuSll15qtPyKFSt45ZVXAPjb3/7G9OnTGT16NMXFxSxbtgyAu+++m8MPP7zFtv/5z39SV1cHwLp169i0aRNDhw4lLy+PsrKy+nLHHnsst956a33S99Zbb9Xve/rpp9m8eXP9fVDbe9da45NPPmHChAl8//vfZ8qUKXzwwQfMmDGD+++/n2g0SklJCS+++CJTp05tdZ1bt25l6NChAPz1r39tstysWbP4y1/+wksvvcTMmTNbXb9IR4vUxnuw0rPiCVbf3AxKvID0KiVYIiIiPVF7J1hDgZUJ66uCbfXM7CIzW2hmC0tKOt8Hkrlz53LKKafstO3UU09tcjbB0aNH89vf/pYxY8awZcsWLrnkErKysvjLX/7C1772NSZMmEAoFOLiiy9use1///vfjB8/ngMOOIBjjz2WX/7ylwwaNIgjjzyS999/n0mTJnH//ffzk5/8hLq6OiZOnMi4ceP4yU9+Ul/H1KlTOfXUU5k4cSKnnnpq/fDAM844g0MPPZQPP/yQYcOGcccddwAwZ84c5syZA8Cvf/1rxo8fz8SJE0lPT+e4447jlFNOYeLEiRxwwAEcddRR3HjjjQwaNKjV53P27Nl87Wtf4+CDD6Zfv3712xcuXMiFF15Yv37MMcfwwgsv8IUvfIGMDE0VIJ1XrCbeg5WRFR/Gmh4OsS3cm6zaTakMS0RERFLEtvd6tEvlZl8FZrr7hcH62cAh7v6dxspPnjzZG07CsHTp0vrhbrJ77rzzThYuXMhtt92W6lBSRv9+pL09+tDdnPLud4ic+yRpI+M9xPf870V8veZBQtdthFA4xRGKiIhIspnZIndvdGKD9u7BWg0MT1gfFmwTEekWYsEQwe33YAHUZfUjRAwqNqYqLBEREUmR9k6w3gD2M7ORZpYBnA7Ma+c2JXDeeef16N4rkY7gdfEEi7QdM116rwHxhYoNKYhIREREUqldEyx3jwDfAf4FLAUecPf39qCeZIcmPYD+3UhH2JFgJcyimRc8PLt8fQoiEhERkVRq9+dgufuTwJN7enxWVhabNm2ib9++uzXFuPRs7s6mTZvIyspKdSjSzXld8KiB9B09WBmF8YlfakrXkdnYQSIiItJttXuC1VbDhg1j1apVdMYZBqVzy8rKYtiwYakOQ7o5iwQJVtqOZD67zxAAKjevUYIlIiLSw3T6BCs9PZ2RI0emOgwRkcZFdu3B6l3Ym0rPpKZ0XYqCEhERkVRp70kuRES6tVC0mhgG4R3Pa+ufl0mJFxAr0z1YIiIiPY0SLBGRNrBoDXWWAQn3iPbPzaSEQkyzCIqIiPQ4SrBERNogHK2mzna+06pPrww2egHp1XoOloiISE+jBEtEpA3C0RoioZ0TrLRwiLK0PmTXbEpRVCIiIpIqSrBERNogLVZDNJSxy/bqzL70im6FaF0KohIREZFUUYIlItIG6bEaIuFdn7dWl9UvvlChR0yIiIj0JEqwRETaINOriYazd9nuuQPjC+WaSVBERKQnUYIlIrKH6qIxsqghmpazy75Q3gAAvFwzCYqIiPQkSrBERPZQZW2UHGqIpe3ag5VRMBiA6i1rOzosERERSSElWCIie6iqNko21Xj6rj1YvfrGE6wqJVgiIiI9ihIsEZE9VFEbIcdqsIxdE6w+BQVs82xqS9elIDIRERFJlTYlWGb2SzP7wMyWmNmjZlaYsO+HZrbMzD40s2PbHKmISCdTWRMlmxoso9cu+wbkZ1LihcTK1IMlIiLSk7S1B+tpYLy7TwQ+An4IYGZjgdOBccBM4HdmFm5jWyIinUpFTR051BDKbCTBystivfcmrFkERUREepQ2JVju/m93jwSrrwLDguWTgPvcvcbdPwOWAVPb0paISGdTVV1FmsUIN5Jg9c5Jp8R6k1GtWQRFRER6kmTeg3UB8FSwPBRYmbBvVbBtF2Z2kZktNLOFJSV6IKeIdB01lWUApGXl7rLPzChP709u7UZw7+jQREREJEVaTLDM7Bkze7eRn5MSyvwIiAD37m4A7n67u09298n9+/ff3cNFRFKmrqocaDzBAqjOGkC610LVlo4MS0RERFIoraUC7v6F5vab2XnA8cDR7vVf064GhicUGxZsExHpNuqq4wlWRnbjCVY0dyBUAGXrIKdPB0YmIiIiqdLWWQRnAtcAJ7p7ZcKuecDpZpZpZiOB/YDX29KWiEhnE6muACAjO6/R/ZYXfxYW5ZqqXUREpKdosQerBbcBmcDTZgbwqrtf7O7vmdkDwPvEhw5e6u7RNrYlItKpRIIerPSsXSe5AMjsPQSA2tI1ZHRYVCIiIpJKbUqw3H3fZvbdANzQlvpFRDqzWE28B4tGnoMF0KtvfGLVyo2rlGCJiIj0EMmcRVBEpGep2Rb/nVXQ6O6+vQvY6jnUbNEtqCIiIj2FEiwRkT2UVrM1vtBEgrX9YcO+bW0HRiUiIiKppARLRGQPpdVt78EqbHT/gPxM1ntvQhXrOy4oERERSSklWCIieyi9roxa0iE9q9H9fXIyKKE3mVUbOjgyERERSRUlWCIieyitbhtV4cafgQUQChnlGf3pVbsRYrEOjExERERSRQmWiMgeyqjbRk1afrNlqrMHkEYEqjZ3UFQiIiKSSkqwRET2gLuTFS0nkt74Q4a3i+YMjC+UaaILERGRnkAJlojIHthWHSGPCqKZjc8guF2oYHB8oWxdB0QlIiIiqaYES0RkD5RW1lJABd7EFO3bZRQOBaCuVM/CEhER6QmUYImI7IHNFbX0tnJCOX2aLderzxAAKjet6oiwREREJMWUYImI7IGtZWUUWgXh/EHNluvfO59NnkftljUdFJmIiIikkhIsEZE9ULU5PmlFeuHgZsv1z8tkg/cmtk2TXIiIiPQESrBERPZA3dZ4j1ROn6HNlhuYn8V67024Yn1HhCUiIiIplpQEy8yuNDM3s37BupnZLWa2zMyWmNlByWhHRKSzqCuN90hlB/dYNaVvrww20JvMqg0dEZaIiIikWJsTLDMbDhwDrEjYfBywX/BzEfD7trYjItKZbE+wLK/5IYKhkFGe3o9edZsgFu2I0ERERCSFktGDdTNwDeAJ204C7vK4V4FCM2v+U4iISBcSqlhHhDDk9G2xbE32AELEoKKkAyITERGRVGpTgmVmJwGr3f3tBruGAisT1lcF2xqr4yIzW2hmC0tK9OFDRLqGwqqVlGYMhlC4xbLRXsFMg2Wa6EJERKS7S2upgJk9AzQ2D/GPgGuJDw/cY+5+O3A7wOTJk72F4iIiKVdeE2FobA0VuUX0a0V5KxgMG4Cyde0dmoiIiKRYiwmWu3+hse1mNgEYCbxtZgDDgDfNbCqwGhieUHxYsE1EpMtbuamCIlvH+t6fb1X5jML4RBiR0jUt/9EVERGRLm2Phwi6+zvuPsDdi9y9iPgwwIPcfR0wDzgnmE1wGrDV3TU2RkS6hRXLP6GX1ZA9aFSryuf1HULMjarNq9o5MhEREUm19voy9UngS8AyoBI4v53aERHpcKWfvQlA/30PblX5/gW92EgBoS1ryGvPwERERCTlkpZgBb1Y25cduDRZdYuIdCZp6xYTJUTakANaVT7+sOFCBm1TR76IiEh3l5QHDYuI9BSxmNN/23tszNwLMnNbdcyAvEzWe2/CFZrkQkREpLtTgiUishuWrNzIgb6UysFTW31M39xMSigks1qPohAREenulGCJiOyGDxc+T55V0X/izFYfEw4Z5en96VW3GaJ17RidiIiIpJoSLBGR3ZC57EnqSCN3zNG7dVx19oD4Qvn6dohKREREOgslWCIirbS8ZCvTKuezqu9hkF24W8fGegXPa9fDhkVERLo1JVgiIq208N9/Y5BtofBz5+32saH87QmWZhIUERHpzpRgiYi0wtbKGvb/6HY2pg2i96QTd/v4jN5DAYhuXZPs0ERERKQTUYIlItIK/3rg94yzT6mZ/gMI7/4jBPP6DiLiIao2r26H6ERERKSzUIIlItKCJZ+s4LDPbmFd9n4M/fy5e1THgPxelFBI7Rb1YImIiHRnSrBERJpRE4my/v7LGWRbyPvqrRDasz+bA/IzWe+FxLbpHiwREZHuTAmWiEgznvnLbL5Y+yzFYy6m1z6H7nE9A/Ky2OC9CVdoFkEREZHuTAmWiEgT5j/yR45bdSsf9j6cfb728zbV1S83g/X0Jrt6Q5KiExERkc5ICZaISCNeeW4eh779Qz7JGsc+35oLoXCb6ksLhyhP70dWZBtEapIUpYiIiHQ2bU6wzOy7ZvaBmb1nZjcmbP+hmS0zsw/N7Ni2tiMi0lEWL3qFsS9cTEnaIIZf+jhpWb2SUm9tVv/4Qvn6pNQnIiIinc/uzzWcwMyOBE4CDnD3GjMbEGwfC5wOjAOGAM+Y2Sh3j7Y1YBGR9vTxsg8ZOO9MIqEM8i98jKz8fkmr23sNgEqgbD0U7pW0ekVERKTzaGsP1iXAL9y9BsDdt99ccBJwn7vXuPtnwDJgahvbEhFpV6vWroN7vka+VRA940HyB++b1Potf1B8QT1YIiIi3VZbE6xRwAwze83MXjCzKcH2ocDKhHKrgm27MLOLzGyhmS0sKSlpYzgiInumtKycDX/6GkWsYsvxf2bAqCktH7Sb0gsHAxAr00yCIiIi3VWLQwTN7BlgUCO7fhQc3weYBkwBHjCzvXcnAHe/HbgdYPLkyb47x4qIJENdJMqbv/8GR0WX8Mlh/499Jn+5XdrpVTiImBvVm1eT0y4tdA3RmFNeVkbl1g1UbdtEdWU5NVWVxCJVWF01HqnBo7XE3HGHkIUIhQwzC36HsFAYC4exUBrhUJhQOEwonEYonEY4WA6npRMOpxEKh0kLpxFOi+9PSwsTDqeRFk4nFA5DKC0+iYmFg9+hBuvbf1uqT52IiHQBLSZY7v6FpvaZ2SXAI+7uwOtmFgP6AauB4QlFhwXbREQ6FXfnX3f8lOMr/8kHo77F/l+8sN3a6leQyybySd+6rtsmWO7O+k1bWPvJEsrWfkysdCXhbavIrlpLfs168mOlFHgZBVZLQaqD3U1RN6KEiBGq/92UplIxo6nvEZv+fnH362p6X/MpYlPHdExsSZXUXLjzJ9arw8NIu+AJhgzVvZ0inUGbJrkAHgOOBJ43s1FABrARmAf8zcx+RXySi/2A19vYlohI0j33j79x3Jrb+KjvEex/+i/ata3+eZmUeCEDt61t13Y6Snl1HR8tfZstH7+KrX+P3LJlDK5ZzlA2MMh2fIiuIIuN4YFsyxrI2qzRrM7uTSyrD5bTh3BOb9Kz88jIziacnoOlZxHOyCKUlkE4FAJ3HCcajRFzJxpzYrEoHo0Si0WJRSNEoxFi0R3L0ej2/RFikUj8dzSK1//eeTkWixLy+I8RxTyGEYuve4yQxzCPJmwLthPFt3/4dhr5HN7EB/Mme8Ka+SC/G8dYfUjWaKnt2xurMvGYxDzIzWiYgHn9auMpkzdotbm4d9rr3vS+xtpppkCLqdxutLXLPm9hf+ubbaSt5itPXA0RZUbJ/bx/70UMvupJLKQn8IikWlsTrD8Dfzazd4Fa4NygN+s9M3sAeB+IAJd2xRkEI7XVRKIxsrK763fNIj3bBx9/zIELv8/qjJHse9G90M4fTPrnZbLcCxlc3vUeNuzufLZ2I8vfepbI8tco2Pw2+9Z9yEFWDkAdaaxNG0Zp7/Fs7Dea7CHj6LvX/vQetDe9evWml4bXibSbV+4dzKEf38RrD/6SQ2Z9P9XhiPR4bUqw3L0WOKuJfTcAN7Sl/lR7Y+5/M6z4EUoP/znjD/8Kpg8IIt1GZU0dW+67mJFWQ/jsuwll5bZ7m/3zMnnDC8moer/d20qGjVvLWLrweSo/eJ7+G19jXOxD9rYIMYzV6SNYPfBoNoyYwuCx0ynYawJ7hdv6nZ2I7IlDTr+WJb98gQPf/z+WvDiaiZ8/OdUhifRo+t+wGXl7T4Hih5kw/wI+XHAjZQd9i4lfOIuMjIxUhyYibfT0Pb/kpOhCiqdcR9Fe4zukzV4ZYTaH+pBduxlisXbvMdtdtZEYiz5YRsmbf6fvyqeZVPsmM6yGGMaqzH35ZMiZ9Bl/DAPHzWB4VsFON9qKSOqEwmFGXnwfq285mn2e/RbvhdMZd1j7TNYjIi1TgtWM8TNOpmbKMbw+71YGL/0Lo1+/gs2v/5Rl/b9IzoFfY//JR5KWkZXqMDs1dycWc6KxWPy+iZgDHgxAb/y32Z7cAG0tTvBl28f8N1Kw6WNb2WvZWJ3NRNJqDeptvhd19+tt3RG7V2/rOnp3r073+D0H7h783nGPwvZ7GXaU2blsfZngGHdY9tE7fGHFr/k0fzJ7H3dF62NpIzOjOqsfodooVG6C3P4d1nZTymsivP7WYra8+RjDNjzHFF9KmsXYHOrLZ0OOJ3fsFxl+4DHslds31aGKSDPyCvtR9Y3HKbnjePb997ks3nw9k47/tma/bIXtn1XqIhE8GsE9ArFI/P8T31Fmx/878d8W23mbxxfq9yfeLZf4/3fi/8BmJPyfbDtKJF62UOKxCcvxgxNqCw61xNIJ5UMN/y00H8P2eoyE/Zawf0cgO/0zM2v45eFOO5ve13B/F/63a97SnZYdaPLkyb5w4cJUh9GoWCTCey8+SPWi+5hQ/jJZVkclmSzLmkjFgAPJ2+sA+ux9EAOG70daenqHxeXu1NTWUlVZQU1VOTVVFdRWVVBbXUFddSWRmgqitZVEayqJ1lThdZV4XRUEP+FoNWmx6uB3DWnRasJeR8jr6m/mDnuk/gbwsEcJs+MnjcRtMQwPfiC0R4mSSMcoI4f077xKVr8RHdruTb/+JVeV/hwuegGGTOrQtrcr2VbNotdfovrdeYza8iJjrRiAdZlFVO49kyGHnErWXpM7XQ+biLRs68a1rPzDaYyvW8JbBV9knzN/Tf6AYakOa7dEI3VUbN1CedkWqstLqS4vpa6ylLrKbUSqtuHV26C2HCLVWKQGi1QTitYQilYTjtXGP9N4LWmxGtK9lnSvJezb5/6MxT+zJHx2CRMj3brcVAE9yn/XncUJF9/ApOGFqQ6lnpktcvfJje1TD1YrhdLSmHDUGXDUGVRs28Kb/5lH9UfzGVr6BuOX/5HQCocFEPEQG6w329L7UZ7Rj7r0fEjPgcxeRMM5xELpmFmQgMTrjsaiEKmN/6GI1mDRGkKRGkKxGsLRGkKx+B+JtFgN6bFqMryGTK8hw2vJooYsi7In/Wg1pFNNJrWWQQ2Z1FomtaFMopZOrWXgoTAeSsctjIfScIs/L8ZDafF9Ft8WC8pg4eBbjPjXJxZ8jRJfDwXfRIQwC2aXsu2pWPxEuBnuidsbamZ641bnco0UbPLY3ZoTKul1NjwDzR25W9Me79aXKp2j3viXWAnfqzX6hZfVJ/fxL/8a9v4Fv4mfr34Hn8ywDk6uAKzvPlAKbFrWoQnW8pKtvPOff8GHT3BAxcvMtJL40L+8CSwf/UOGTfsqg/rv22HxiEj7KOg3mOyrn+Olu65l2so7qPvdQbwxdBZ7H3spfffav0Nj8ViMyooytm5aR/mWDVSVbqBmWwmR8o1QuRGr2kJ6zRYya0vpFS0lL7aNXK8g22rJB/JbqL/G06mxDGpJp84yqLVMIpZBXSiTaCiDyrQ8YuFMoqFMPHimnYfS4p9ltj/fLlgnlBY8Ay++zy2M1/fi7Ojp2TELZ2O9TTuX337Qzv89NvzMsvNoDGs4h+ROBzf8rLFrT1nb6kncvyMuS9haX3cr2nEafj7ZuR1r5nNDw881+xZOY2B+ZpPlOxv1YCVB2bZSipe+SfWqt4luLiZUtpas6g3kRzaSFasi26vIooZMizRbT62nUWPp1JJBHRnUWfwPRiSUQSSUSSSURTScRTQtCw9nEUvLxtKz8fRsQunZWEYO4YxsQpm9SMvMJi2zF2lZvcjM6kVGdi8ys3uRmZ1LZlYOlp6jb6dFUmDOs+9x0YuHEZlxNRlf+FG7tePuvL98HctemUfOp/9kcu3r9LZyaklnVe9DyJpwIoOnnIzlDWy3GEQktT5e+jalT/yUg8vmEzLno/TRbBs8nayRhzB43wPoM2RfrJWT07g7VZXlbN28gYot66kqLaG2bAPRso145SasajPh6s1k1paSHSklL7qVfC8jy+oarS/qxjbLoyyUT2VaAdXphdRmFBLNKIDMfCwrj1B2PmnZ+WTkFJLZq4DM3EJy8uI/2b3ysVA4iWdLZPc014OlBKuDRGNOLFJLLFqHO8TciXn8D1ZGWoiMzGz9oRDpAZ5YspYJD82gYL9DKTj77qTWHY05i99fyprXH6XPqmeZHF1CptVRbrmsG3g4hQedTL8DvgSZ7T9jooh0Hp99+hFrX7yT3iufYb/Ix6RZDIA6D1NmuVSE86i0XLx+tAlYLEJmrIosj//keDUZzXxRXEouZZZPRbiA6oxCajN6E8vuDdl9Cef2IyO/P1kFA8jtPYC8voPIK+irzz3SpWmIYCcQDhnhjEyg63Rvikjy7TOgFx/5MA5Z/05S6ttUVsXbixZQ9e6TjNj4IgezjIOBkrRBLN9rFgOnnEzB/kewb7jj7g0Vkc5l5N6jGLn3/wD/w5bNm1j50SK2rniP0JbPsKotpNWWkh0tB4/tGJiVlkV5eADRcA7R9F54Ri7h7HxCvfqSltefzPz+5BQOoFfvART0HkBhRgaFqXuJIp2KEiwRkQ6034A8/h6ewBfK74Ktq6Bg924+r66L8t7777Jpyb/IWvkSY2sWc5RtA2B51lg+3Odyhh/6VfoPHU//LjwDk4i0j959+tJ72jEw7ZhUhyLSbSnBEhHpQOGQUTZ0Bqy+i+h78wh/7tvNlt9SVsUnSxex6YOXSV/7BntXvsPBti6+L9Sb9QMPo2r/oxl68PGMKBjcES9BREREmqEES0Skg31u2gxee3B/Js7/Jdn7HgUD9icac9Zu2Mj6T99m6/IlxNa/T+G2Dxkd/ZjJVgXANstnfe8JfDTyGww+8Dh6Dx9Pb/VSiYiIdCpKsEREOtgx4wbxowVXsN+6K8n+3SGU0YuwRxhmNWwfMFhDBusyi1g++HgyRhzC0AmHkz9oP/KVUImIiHRqSrBERDpYKGT89MKv8Y+X9yFj6SP0qV1LemYWmQUDyRm8P4P2nUT+kFGM0AxbIiIiXY4SLBGRFMhKD/PVI6bAEVNSHYqIiIgkUZueNGtmk8zsVTNbbGYLzWxqsN3M7BYzW2ZmS8zsoOSEKyIiIiIi0nm1KcECbgSud/dJwHXBOsBxwH7Bz0XA79vYjoiIiIiISKfX1gTLgfxguQBYEyyfBNzlca8ChWam+YNFRERERKRba+s9WJcD/zKzm4gna58Ltg8FViaUWxVsW9uwAjO7iHgvF0C5mX3YxpiSrR+wMdVBSIfR9e45dK17Dl3rnkXXu+fQte45OuO1HtHUjhYTLDN7BhjUyK4fAUcDV7j7w2Z2GnAH8IXdiczdbwdu351jOpKZLXT3yamOQzqGrnfPoWvdc+ha9yy63j2HrnXP0dWudYsJlrs3mTCZ2V3AZcHqg8CfguXVwPCEosOCbSIiIiIiIt1WW+/BWgMcHiwfBXwcLM8DzglmE5wGbHX3XYYHioiIiIiIdCdtvQfrm8BvzCwNqGbHvVRPAl8ClgGVwPltbCeVOu3wRWkXut49h651z6Fr3bPoevccutY9R5e61ubuqY5BRERERESkW2jrEEEREREREREJKMESERERERFJEiVYzTCzmWb2oZktM7MfpDoeSR4zG25mz5vZ+2b2npldFmzvY2ZPm9nHwe/eqY5VksPMwmb2lpn9I1gfaWavBe/v+80sI9UxSnKYWaGZPWRmH5jZUjM7VO/t7snMrgj+hr9rZnPNLEvv7e7DzP5sZhvM7N2EbY2+l4OJ1W4JrvsSMzsodZHL7mriWv8y+Du+xMweNbPChH0/DK71h2Z2bEqCboYSrCaYWRj4LXAcMBY4w8zGpjYqSaIIcKW7jwWmAZcG1/cHwLPuvh/wbLAu3cNlwNKE9f8Dbnb3fYEtwDdSEpW0h98A/3T3/YEDiF93vbe7GTMbCnwPmOzu44EwcDp6b3cndwIzG2xr6r18HLBf8HMR8PsOilGS4052vdZPA+PdfSLwEfBDgODz2unAuOCY3wWf2zsNJVhNmwosc/dP3b0WuA84KcUxSZK4+1p3fzNYLiP+AWwo8Wv816DYX4GTUxKgJJWZDQO+TPCsPjMz4o+WeCgoomvdTZhZAfB54g++x91r3b0Uvbe7qzQgO5jNOAdYi97b3Ya7vwhsbrC5qffyScBdHvcqUGhmgzskUGmzxq61u//b3SPB6qvEn6sL8Wt9n7vXuPtnxGctn9phwbaCEqymDQVWJqyvCrZJN2NmRcCBwGvAwIRntq0DBqYqLkmqXwPXALFgvS9QmvCHW+/v7mMkUAL8JRgS+icz64Xe292Ou68GbgJWEE+stgKL0Hu7u2vqvazPbd3bBcBTwXKnv9ZKsKRHM7Nc4GHgcnfflrjP488w0HMMujgzOx7Y4O6LUh2LdIg04CDg9+5+IFBBg+GAem93D8G9NycRT6qHAL3YdYiRdGN6L/cMZvYj4rd23JvqWFpLCVbTVgPDE9aHBdukmzCzdOLJ1b3u/kiwef32IQXB7w2pik+S5jDgRDMrJj7U9yji9+gUBsOKQO/v7mQVsMrdXwvWHyKecOm93f18AfjM3UvcvQ54hPj7Xe/t7q2p97I+t3VDZnYecDxwpu94eG+nv9ZKsJr2BrBfMBtRBvGb6ealOCZJkuAenDuApe7+q4Rd84Bzg+Vzgcc7OjZJLnf/obsPc/ci4u/j59z9TOB54KtBMV3rbsLd1wErzWx0sOlo4H303u6OVgDTzCwn+Ju+/Vrrvd29NfVengecE8wmOA3YmjCUULogM5tJfHj/ie5embBrHnC6mWWa2UjiE5u8nooYm2I7kkFpyMy+RPzejTDwZ3e/IbURSbKY2XTgJeAddtyXcy3x+7AeAPYClgOnuXvDG2ylizKzI4Cr3P14M9ubeI9WH+At4Cx3r0lheJIkZjaJ+IQmGcCnwPnEv1DUe7ubMbPrgVnEhw+9BVxI/F4Mvbe7ATObCxwB9APWAz8FHqOR93KQZN9GfJhoJXC+uy9MQdiyB5q41j8EMoFNQbFX3f3ioPyPiN+XFSF+m8dTDetMJSVYIiIiIiIiSaIhgiIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlItLJmFmRmbmZpaU6FukZzOw9Mzsi1XGIiHQHSrBERKTLM7M5ZlYe/NSaWV3C+lOpjq+zc/dx7j4/mXWa2Y1mttLMtpnZcjO7Npn1i4h0VubuqY5BRKRbMbM0d4+04fgi4DMgvS319FRmNhvY193PamRfm65NR+pKsTbGzEYDq9y9wsyGAv8GfuLuj6Q4NBGRdqUeLBGRJDCzYjP7vpktASrMLM3MppnZf8ys1MzeThyCZWbzzex/zez14Bv+x82sTxN1n29mS82szMw+NbNvNdh/kpktDur5xMxmBtsLzOwOM1trZqvN7OdmFm7hdexjZs+Z2SYz22hm95pZYcK+zWZ2ULA+xMxKtr8uMzsxGGpWGry+MQ3Oz1VmtsTMtprZ/WaWtftnevc1cW3czPZNKHOnmf08Yf344JyWBtdwYivbOsLMVpnZtcH5KzazMxP2f9nM3gqu1cogGdy+b/vQ0G+Y2QrguWD7g2a2LjhvL5rZuAZx/87Mngp66142s0Fm9msz22JmH5jZga08R19ozWtsLXf/0N0rEjbFgH2bKi8i0l0owRIRSZ4zgC8DhcBA4Ang50Af4CrgYTPrn1D+HOACYDAQAW5pot4NwPFAPnA+cHNCkjMVuAu4Omj380BxcNydQb37AgcCxwAXtvAaDPhfYAgwBhgOzAZw90+A7wP3mFkO8Bfgr+4+38xGAXOBy4H+wJPA380sI6Hu04CZwEhgInBeowGYTQ8Sm6Z+prfwGhpTf21a6hUKEpI/A98C+gJ/AOaZWWYr2xoE9AOGAucCtwe9OQAVxK97YRDPJWZ2coPjDyd+7o8N1p8C9gMGAG8C9zYofxrw46DNGuCVoFw/4CHgV62Mu1Fm9oPmrkcrji0HVgG9gL+1JRYRka5ACZaISPLc4u4r3b0KOAt40t2fdPeYuz8NLAS+lFD+bnd/N/iW/yfAaY31MLn7E+7+ice9QHyo1Yxg9zeAP7v700E7q939AzMbGLR1ubtXuPsG4Gbg9OZegLsvC+qqcfcS4h/OD0/Y/0dgGfAa8cTwR8GuWcATwbF1wE1ANvC5BudnjbtvBv4OTGoihgXuXtjMz4LmXkMTEq9NSy4C/uDur7l71N3/SjxxmbYb7f0kOIcvEE+0TwNw9/nu/k5wrZYQT0oPb3Ds7OCaVQXH/Nndy9y9hniye4CZFSSUf9TdF7l7NfAoUO3ud7l7FLifeHK9x9z9F81dj5aOBfKAg4C7ga1tiUVEpCtQgiUikjwrE5ZHAF9r8E3/dOJJSWPllwPpxHsddmJmx5nZq8HwvFLiidP2csOBTxqJZURQ39qE9v9AvBekSWY20MzuC4YUbgPuaSSmPwLjgVuDD/0Q7/Favr2Au8eC1zc04bh1CcuVQG5zsSTZypaL1BsBXNng2g0n/hpbY0uDoXHLtx9rZoeY2fPB0MqtwMXsen7rYzWzsJn9wuJDP7exo3cy8Zj1CctVjax35HneRfDFwFtBLNenMhYRkY6gBEtEJHkSZw1aSbyHKvHb/l7BN/rbDU9Y3guoAzYmVhgMS3uYeI/QwKDH4EniQ/m2t7NPI7GsJN7r0i+h/Xx3H9dI2UT/E7yOCe6eT7wnbntbmFku8GvgDmC27bhvbA3xxGR7OQte3+oW2tuFmc2wHTMANvYzo+VadtFwRqdKICdhfVDC8krghgbXLsfd57ayrd5m1ithfS/i5wfiQ+TmAcPdvQCYQ8L5bSTWrwMnAV8ACoCiYHvDY9pNcD9Zk9djN6pKo/F/qyIi3YoSLBGR9nEPcIKZHRv0QmQFEyAMSyhzlpmNDe5n+hnwUDCsK1EGkAmUABEzO474vVTb3QGcb2ZHm1nIzIaa2f7uvpb4UML/Z2b5wb59zKzhcLSG8oByYKvFZ367usH+3wAL3f1C4kPf5gTbHwC+HMSRDlxJPMH7T0snqiF3f8ndc5v5eWl362zEYuDrwbWZyc7D9P4IXBz0NpmZ9bL45BR5UD+xxJ0t1H+9mWUEyeDxwIPB9jxgs7tXB/fPfb2FevKIn8dNxBPC/9mN15gU7v4/zV2Pxo4J/r19y8x6B+dwKnAp8GzHRi8i0vGUYImItAN3X0m85+Fa4snRSuLJSuLf3buJT0SxDsgCvtdIPWXB9geALcQ/kM9L2P86wcQXxO9veYEdPUnnEE/Q3g+OfYidhyg25nri98tsJZ5A1U+pbWYnEZ+k4pJg038BB5nZme7+IfHerluJ98KdAJzg7rUttJcqlxGPsRQ4E3hs+w53Xwh8E7iN+Hlbxs4TcgwHXm6m7nXBcWuIT0hxsbt/EOz7NvAzMysDriN+XZtzF/EhhquJX8dXW3phncgpxIevlhH/wuHW4EdEpFvTc7BERFLAzOYD97j7n1Idi7ReMCvi28DEYDKPhvuPIH5dhzXcJyIiPUNaqgMQERHpKoIeuTEtFhQRkR5LQwRFRHoYM5vTxIQFc1o+WroiM9urmYkq9kp1fCIi3YmGCIqIiIiIiCSJerBERERERESSpFPdg9WvXz8vKipKdRgiIiIiIiJNWrRo0UZ379/Yvk6VYBUVFbFw4cJUhyEiIiIiItIkM1ve1D4NERQREREREUkSJVgiIiIiIiJJogRLRKQFsZgTjWnGVREREWlZp7oHqzF1dXWsWrWK6urqVIciXUxWVhbDhg0jPT091aFIF3fD429S/NE7zLnqHNLD+l5KREREmtbpE6xVq1aRl5dHUVERZpbqcKSLcHc2bdrEqlWrGDlyZKrDkS7M3Rm86Jf8JO0pPvhgEvuPm5TqkERERKQT6/RfxVZXV9O3b18lV7JbzIy+ffuq51ParKI2yr62BoDat+amOBoRERHp7Dp9ggUouZI9on83kgxbKmoJEwUgb8ObKY5GREREOrsukWCJiKRKaWUdw60EgF5Vq1McjYiIiHR2SrBawcy48sor69dvuukmZs+enbqAErz66qsccsghTJo0iTFjxtTHNX/+fP7zn//scb3Lly/noIMOYtKkSYwbN445c+YkKWKRrqW0ooqhthGA3nXrIRZNcUQiIiLSmXX6SS46g8zMTB555BF++MMf0q9fv6TV6+64O6HQnue55557Lg888AAHHHAA0WiUDz/8EIgnWLm5uXzuc5/bo3oHDx7MK6+8QmZmJuXl5YwfP54TTzyRIUOG7HGsIl1RxdYS0i1KcdpIiiKfwbY1UDg81WGJiIhIJ6UerFZIS0vjoosu4uabb95lX0lJCaeeeipTpkxhypQpvPzyywDMnj2bm266qb7c+PHjKS4upri4mNGjR3POOecwfvx4Vq5cydVXX8348eOZMGEC999/PxBPkI444gi++tWvsv/++3PmmWfivutzeDZs2MDgwYMBCIfDjB07luLiYubMmcPNN9/MpEmTeOmll5qN8+yzz+bQQw9lv/32449//CMAGRkZZGZmAlBTU0MsFmv03Nxyyy2MHTuWiRMncvrppwOwefNmTj75ZCZOnMi0adNYsmRJfVvnnnsuM2bMYMSIETzyyCNcc801TJgwgZkzZ1JXVwfAz372M6ZMmcL48eO56KKLdnndsViMoqIiSktL67ftt99+rF+/vrnLKLJHqsq2ArAlbxQAkU2fpTIcERER6eTa3INlZsOBu4CBgAO3u/tvzKwPcD9QBBQDp7n7lra0df3f3+P9NdvaFnADY4fk89MTxrVY7tJLL2XixIlcc801O22/7LLLuOKKK5g+fTorVqzg2GOPZenSpc3W9fHHH/PXv/6VadOm8fDDD7N48WLefvttNm7cyJQpU/j85z8PwFtvvcV7773HkCFDOOyww3j55ZeZPn36TnVdccUVjB49miOOOIKZM2dy7rnnUlRUxMUXX0xubi5XXXUVAF//+tebjHPJkiW8+uqrVFRUcOCBB/LlL3+ZIUOGsHLlSr785S+zbNkyfvnLXzbae/WLX/yCzz77jMzMzPqE56c//SkHHnggjz32GM899xznnHMOixcvBuCTTz7h+eef5/333+fQQw/l4Ycf5sYbb+SUU07hiSee4OSTT+Y73/kO1113HQBnn302//jHPzjhhBPq2wyFQpx00kk8+uijnH/++bz22muMGDGCgQMHtngdRXZXpKYSgGjh3rAFyjaupPc+KQ5KREREOq1k9GBFgCvdfSwwDbjUzMYCPwCedff9gGeD9S4rPz+fc845h1tuuWWn7c888wzf+c53mDRpEieeeCLbtm2jvLy82bpGjBjBtGnTAFiwYAFnnHEG4XCYgQMHcvjhh/PGG28AMHXqVIYNG0YoFGLSpEkUFxfvUtd1113HwoULOeaYY/jb3/7GzJkzG22zuThP+v/t3Xt8VdW99/vPb91zJeTCNShYFRHCRcOlIhVovbVWqlhxH7UKu/q02nbrbrt3bdVt7fF5rD2v9jytth77WLVKvbZVu7XepUpbURQEFFFUrgYJCQnksu7j/LEWIYEkJGQlKyTf9+sVsuacY475W5nMZP7WGHOMBQvIycmhtLSUefPm8frrrwMwZswY1qxZw8aNG7nvvvvabSGaPHkyF198MQ888AA+n6/lPV166aUAzJ8/n5qaGvbsSSXGZ599Nn6/n4qKChKJREu8FRUVLe/v5ZdfZubMmVRUVPDSSy/xzjvvHHTcRYsWtbT2PfTQQyxatKjTn7nI4XLRRgD8ZccA0FSjgS5ERESkYz1uwXLOVQFV6dd7zWw9MBpYAMxNF7sPWAb8Z0+O1ZWWpt50zTXXcNJJJ7F48eKWdclkktdee41QKNSmrM/na9OtrvV8THl5eV063r4uepDq/hePx9st95nPfIZvfvObXHHFFZSVlVFTU3NQmY7ihIOHMz9wedSoUUyaNIlXX32VCy64oM22p556ildeeYW//OUv3HLLLaxdu7ZL78nj8eD3+1uO5fF4iMfjhMNhrrrqKlauXMmYMWO46aab2p3L6rOf/SwbN26kurqaxx9/nOuvv77T44ocLhdNtWDll5YTdn6idVVZjkhERET6s4w+g2VmY4FpwApgeDr5AthBqgthe/tcaWYrzWxldXV1JsPJuOLiYi688ELuvvvulnVnnHEGv/rVr1qW93WFGzt2LG+9lZoz56233uLjj9t/bmPOnDk8/PDDJBIJqqureeWVV5gxY0aXY3rqqadanlH64IMP8Hq9FBUVUVBQwN69ew8ZJ8ATTzxBOBympqaGZcuWMX36dLZt20ZzczMAu3fvZvny5YwfP77NsZPJJFu3bmXevHn89Kc/pb6+noaGBubMmcPSpUuB1LNkpaWlFBYWdun97EumSktLaWho4LHHHmu3nJlx3nnn8e///u9MmDCBkpKSLtUv0l37EqyhQ4rY6Ypwe/Wsn4iIiHQsYwmWmeUDfwSucc61eVDKpTKAg0doSG27yzlX6ZyrLCsry1Q4vea73/0uu3btaln+5S9/ycqVK5k8eTInnnhiy3DmCxcupLa2lokTJ3L77bdz/PHHt1vfeeedx+TJk5kyZQrz58/ntttuY8SIEV2O5/7772f8+PFMnTqVSy+9lKVLl+L1evnyl7/Mn//855ZBLjqKE1Ld/ObNm8esWbO44YYbGDVqFOvXr2fmzJlMmTKF0047je9973tUVFQA8PWvf52VK1eSSCS45JJLqKioYNq0aXznO9+hqKiIm266iTfffJPJkyfzgx/8gPvuu6/L76eoqIgrrriCSZMmceaZZzJ9+vSWbXfeeWebuBctWsQDDzyg7oHSqyyWSrCGDCmimiK8TTuzHJGIiIj0Z9beyHTdrsTMD/w38Kxz7ufpdRuAuc65KjMbCSxzzo3vrJ7Kykq3cuXKNuvWr1/PhAkTehyjtO+mm25qMxjGQKP/P9JTD9/1v1j0ya3wb2/z8i+vZEJgJyOuW53tsERERCSLzOxN51xle9t63IJlqYdo7gbW70uu0p4ELku/vgx4oqfHEhHpa554qqss/jwaA6Xkx3Z1voOIiIgMapmYaHg2cCmw1sxWp9f9ELgVeMTM/hXYDFyYgWNJht10003ZDkGkX/PEU10ECeQSDZWSH9kL8Qj4gp3vKCIiIoNSJkYRXA5YB5s/39P6RUSyybuvBcuXQzJvONQDDTuhaExW4xIREZH+KaOjCIqIDDTeRDMRguDxYIWpwVCTGklQREREOqAES0SkE75kmIgnNX9coDA1wmdDzbZshiQiIiL9mBIsEZFO+BJhYpZ63iq3tByAptpPshmSiIiI9GNKsLro8ccfx8x47733OiyzadMmJk2alLFjbtiwgblz5zJ16lQmTJjAlVdeCaQmCX766acPu95wOMyMGTOYMmUKEydO5L/+678yFbLIgBNINhP15gAwpHQkAJHdSrBERESkfUqwuujBBx/k1FNP5cEHH2x3ezwe7/ExEolEm+XvfOc7XHvttaxevZr169fz7W9/G+h5ghUMBnnppZd4++23Wb16Nc888wyvvfZaj2IXGah8yQhxT6oFq7QwnxpXQGKPJhsWERGR9inB6oKGhgaWL1/O3XffzUMPPdSyftmyZcyZM4dzzz2XE088EUglWhdffDETJkzgggsuoKkpNcTziy++yLRp06ioqGDJkiVEIhEAxo4dy3/+539y0kkn8eijj7Y5blVVFeXl5S3LFRUVRKNRbrzxRh5++GGmTp3Kww8/TGNjI0uWLGHGjBlMmzaNJ55ITTl27733smDBAubOnctxxx3Hj3/8YwDMjPz8fABisRixWIzUdGZtPfroo0yaNIkpU6bwuc99Dki1fi1evJiKigqmTZvGyy+/3HKsr3zlK5x++umMHTuW22+/nZ///OdMmzaNWbNmUVtbC8Bvf/tbpk+fzpQpU1i4cGHLz6e1WbNm8c4777Qsz507lwMnoBbpKz4XJZlOsMoKguxyQ7BGJVgiIiLSvkzMg9V3/voD2LE2s3WOqICzb+20yBNPPMFZZ53F8ccfT0lJCW+++SYnn3wyAG+99Rbr1q1j3LhxbNq0iQ0bNnD33Xcze/ZslixZwq9//Wu+9a1vcfnll/Piiy9y/PHH87WvfY3f/OY3XHPNNQCUlJTw1ltvHXTca6+9lvnz53PKKadwxhlnsHjxYoqKirj55ptZuXIlt99+OwA//OEPmT9/Pr/73e+oq6tjxowZfOELXwDg9ddfZ926deTm5jJ9+nS+9KUvUVlZSSKR4OSTT2bjxo1cffXVzJw586Dj33zzzTz77LOMHj2auro6AO644w7MjLVr1/Lee+9xxhln8P777wOwbt06Vq1aRTgc5thjj+WnP/0pq1at4tprr+X3v/8911xzDeeffz5XXHEFANdffz133313S8vcPosWLeKRRx7hxz/+MVVVVVRVVVFZ2e5E2SK9zp+MkvCmPpDIC/qotSLKm6uzHJWIiIj0V2rB6oIHH3yQiy66CICLLrqoTTfBGTNmMG7cuJblMWPGMHv2bAAuueQSli9fzoYNGxg3bhzHH388AJdddhmvvPJKyz6LFi1q97iLFy9m/fr1fPWrX2XZsmXMmjWrpeWrteeee45bb72VqVOnMnfuXMLhMFu2bAHg9NNPp6SkhJycHM4//3yWL18OgNfrZfXq1Wzbtq0lCTvQ7Nmzufzyy/ntb3/b0n1x+fLlXHLJJQCccMIJHH300S0J1rx58ygoKKCsrIwhQ4bw5S9/GUi1vG3atAlIJWFz5syhoqKCpUuXtmmp2ufCCy/kscceA+CRRx7hggsuaPfnI9IXfC6G8+6fVLjBV0xOtCaLEYmIiEh/dmS1YB2ipak31NbW8tJLL7F27VrMjEQigZnxs5/9DIC8vLw25Q/satde17sDHVhHa6NGjWLJkiUsWbKESZMmtZsIOef44x//yPjx49usX7FixSHjKSoqYt68eTzzzDMHDdBx5513smLFCp566ilOPvlk3nzzzU7fRzC4/ybU4/G0LHs8npZn1C6//HIef/xxpkyZwr333suyZcsOqmf06NGUlJSwZs0aHn74Ye68885OjyvSWxJJR4AYyVYJVnOwlILmFeAcdOH6FhERkcFFLViH8Nhjj3HppZeyefNmNm3axNatWxk3bhyvvvpqu+W3bNnCP//5TwD+8Ic/cOqppzJ+/Hg2bdrExo0bAbj//vs57bTTDnnsZ555hlgsBsCOHTuoqalh9OjRFBQUsHfv3pZyZ555Jr/61a9wzgGwatWqlm3PP/88tbW1NDc38/jjjzN79myqq6tbuvw1Nzfz/PPPc8IJJxx0/A8//JCZM2dy8803U1ZWxtatW5kzZw5Lly4F4P3332fLli0HJXad2bt3LyNHjiQWi7XU055FixZx2223UV9fz+TJk7tcv0gmReNJgkTBF2pZF88pJegiEG3IYmQiIiLSXynBOoQHH3yQ8847r826hQsXdjia4Pjx47njjjuYMGECu3fv5pvf/CahUIh77rmHr371q1RUVODxePjGN75xyGM/99xzLYNMnHnmmfzsZz9jxIgRzJs3j3fffbdlkIsbbriBWCzG5MmTmThxIjfccENLHTNmzGDhwoVMnjyZhQsXUllZSVVVFfPmzWPy5MlMnz6d008/nXPOOQeAG2+8kSeffBKA73//+1RUVDBp0iROOeUUpkyZwlVXXUUymaSiooJFixZx7733tmm5OpSf/OQnzJw5k9mzZ7dJ6p588kluvPHGluULLriAhx56iAsvvLDLdYtkWjiWIGgxnDfQss7lDUu9aNBAFyIiInIw29fq0R9UVla6A0eLW79+PRMmTMhSREe2e++9t81gGIOR/v9IT+yoD+P/+bHUHP1Fjl9yFwCPP3Y/X1n3LaJfe5rAMbOzHKGIiIhkg5m96ZxrdxS2Xm/BMrOzzGyDmW00sx/09vFERDIlHEsQJIb59rfShopGANBQsz1bYYmIiEg/1qsJlpl5gTuAs4ETgX8xsxN785iy3+WXXz6oW69EeioST6YTrP3PYOWVjAKgqbYqW2GJiIhIP9bbLVgzgI3OuY+cc1HgIWBBdyvpT90Y5cih/zfSU5FoFL8l8AT2J1hDSkaQcEa0bkcWIxMREZH+qrcTrNHA1lbL29LrWpjZlWa20sxWVlcfPHlnKBSipqZGN8vSLc45ampqCIVChy4s0oFoJAzQpgWrbEgutRSSbPg0W2GJiIhIP5b1ebCcc3cBd0FqkIsDt5eXl7Nt2zbaS75EOhMKhSgvL892GHIEi0WaAPC2asEqyQuy0RURatQogiIiInKw3k6wtgNjWi2Xp9d1md/vZ9y4cRkNSkSkK2KRZgC8/v0JVsDnoc5TxJhwTbbCEhERkX6st7sIvgEcZ2bjzCwAXAQ82cvHFBHJiHg01UXQG8hps77RX0xudFc2QhIREZF+rldbsJxzcTP7FvAs4AV+55x7pzePKSKSKfF2uggCRIKlFDTsBufALBuhiYiISD/V689gOeeeBp7u7eOIiGRaIhoBwBds24IVzy0j0BCDcD3kFGUhMhEREemven2iYRGRI1UilnoGy3dAF0HyhwHgGjTQhYiIiLSlBEtEpAPJWOoZrMABLVi+wuEANO/+pM9jEhERkf5NCZaISAeS0XQL1gEJVmjoKAD27urWoKgiIiIyCCjBEhHpgIunRxH0tx3kIr8kNb9auFYJloiIiLSlBEtEpAMuPUw7gbw264eWDCPs/MTr1UVQRERE2lKCJSLSAYunhmnH17YFq6wwxA5XjO2pykJUIiIi0p8pwRIR6YClRxHE3/YZrKIcPzsZir9pRxaiEhERkf5MCZaISAc8iX0JVm7b9R5jt6+M3LCGaRcREZG2lGCJiHTAEw+TxMAXPGhbY6CMwlg1OJeFyERERKS/UoIlItIBTyJMhCCYHbQtkjMcPzFo3p2FyERERKS/UoIlItIBbyJMzHNw6xVAIn9k6sUejSQoIiIi+ynBEhHpgC8RJmrtJ1jeIanJhhP1mgtLRERE9utRgmVmPzOz98xsjZn92cyKWm27zsw2mtkGMzuzx5GKiPQxf7KZmCfU7rac0jEA7K3e2pchiYiISD/X0xas54FJzrnJwPvAdQBmdiJwETAROAv4tZl5e3gsEZE+5U9GOkywioaVA9C0SwmWiIiI7NejBMs595xzLp5efA0oT79eADzknIs45z4GNgIzenIsEZG+5ktGSHjbT7BGFBdS7QqJ1amLoIiIiOyXyWewlgB/Tb8eDbT+WHdbet1BzOxKM1tpZiurq6szGI6ISM/4k2GSvvYTrJFDcvjUFWN7q/o4KhEREenPDplgmdkLZrauna8Frcr8CIgDS7sbgHPuLudcpXOusqysrLu7i4j0imTSEXQRXAcJVmHIxy4rJtD0aR9HJiIiIv2Z71AFnHNf6Gy7mV0OnAN83rmWGTe3A2NaFStPrxMROSI0xxKEiBD35ba73czYGygjL/JhH0cmIiIi/VlPRxE8C/gP4FznXFOrTU8CF5lZ0MzGAccBr/fkWCIifakxGifHohDI6bBMJGc4Bcl6iEf6MDIRERHpz3r6DNbtQAHwvJmtNrM7AZxz7wCPAO8CzwBXO+cSPTyWiEifaYokyCWCx99+CxZAct9kw3oOS0RERNIO2UWwM865YzvZdgtwS0/qFxHJloZwlKNopjo0pMMy3qLR8AnE67bhGzq274ITERGRfiuTowiKiAwYkcZ6PObw5HScYIVKUo+a7vl0S1+FJSIiIv2cEiwRkXZEGusA8HaSYBUOPxqAxl2b+yIkEREROQIowRIRaUcsnWD58oo6LDO8bBh7XA6x2m19E5SIiIj0e0qwRETakWiqByDQSYI1YkiIKleC7dEsFCIiIpKiBEtEpB3x5joAAnlDOyxTGPJTbSUEmzSKoIiIiKQowRIRaUci3UUwt6DjBAtgT2A4eZFP+yAiERERORIowRIRaUcynOoi6Mst6rRcc84IhiR2a7JhERERAZRgiYi0Kxnek3oRKuy0XKIgPdnwnk96OSIRERE5EijBEhFph4XrieEDX6jTct6i1FxYsd0aSVBERESUYImItCsUrWWPdyiYdVoup3TfZMOb+iAqERER6e+UYImItCM/Vkujv/iQ5QqGjQWgadeWXo5IREREjgRKsEREDuCcozBRSzhYesiyw0pKqHe5xOvURVBEREQylGCZ2XfNzJlZaXrZzOyXZrbRzNaY2UmZOI6ISF/Y0xynlDqSecMPWXZEYYhPXAkeTTYsIiIiZCDBMrMxwBlA6/4xZwPHpb+uBH7T0+OIiPSVqroGSqjHU3joBKswx8enVkpAkw2LiIgImWnB+gXwH4BrtW4B8HuX8hpQZGYjM3AsEZFeV7OzCq85QkWH/rVlZuzxl5GvyYZFRESEHiZYZrYA2O6ce/uATaOBra2Wt6XXtVfHlWa20sxWVldX9yQcEZGMaNi5GYDc0vIulW8OjaAgUQ+xcG+GJSIiIkcA36EKmNkLwIh2Nv0I+CGp7oGHzTl3F3AXQGVlpTtEcRGRXhff9SEAQ0Yd36XysYJR0ADs2Q4ln+nFyERERKS/O2SC5Zz7QnvrzawCGAe8bal5YsqBt8xsBrAdGNOqeHl6nYhIv2e7PwbAX3pMl8p7CkdDFbj6bZgSLBERkUHtsLsIOufWOueGOefGOufGkuoGeJJzbgfwJPC19GiCs4B655yeABeRI0Jgz2Z2e4ohkNel8v7iowBo3LX1ECVFRERkoDtkC9Zhehr4IrARaAIW99JxREQyyjlHcXgLewrGMLSL++SXpRKspurN5PdeaCIiInIEyFiClW7F2vfaAVdnqm4Rkb5SVdfEcWzhk+Jzu7zPsJIial0+sd1qwRIRERnsMjLRsIjIQLFl47sUWDP+0VO7vM/wwhA7XAns+aT3AhMREZEjghIsEZFWdn7wOgAjT5jR5X2GFYTY4Ybia9zRW2GJiIjIEUIJlohIK77trxMhSM7oyV3eJ+DzUO8rITeiufxEREQGOyVYIiJpsUSSsQ2r2V4wCXyBbu3bFBxGXnw3JGK9FJ2IiIgcCZRgiYikrXt/IyewmfiY2d3eN543HA8OGj7thchERETkSKEES0Qk7ZMVf8JjjtEzz+/2vsn8kakXezTln4iIyGCmBEtEhNT8VyVbn6PaO4K8o6Z2e39f0WgAEvUaSVBERGQwU4IlIgJ8uG0H0+JvU11+Oph1e/9QcSrBaqzRXFgiIiKDmRIsERHg/b89RNDijJz11cPav7BkBFHnJVy7PcORiYiIyJFECZaIDHrJpGP4h4/xqW8UQ0/43GHVMawwh50MJVGnBEtERGQwU4IlIoPeW2tWc7Jbx+7jLjis7oEAZQVBPnVDsQZNNiwiIjKYKcESkUGvZvm9JDHGfuHrh13HvgQr0KRh2kVERAazHidYZvZtM3vPzN4xs9tarb/OzDaa2QYzO7OnxxER6Q0N4SiTqp9iY/50QiVHH3Y9QZ+XOm8JuZHqDEYnIiIiRxpfT3Y2s3nAAmCKcy5iZsPS608ELgImAqOAF8zseOdcoqcBi4hk0splTzDXqvno5Bt6XFdTaBihcCNEGiCYn4Ho+pd4PEFt3W6adu8gUr+TSHMDLtaMJaN44lFwSZx5cR4fzrx4fH58Pj++QBBvIIQvkIs/EMQfzCEQzCUQyiEQzMHjD4G3R3+ORERE+o2e/kX7JnCrcy4C4JzbmV6/AHgovf5jM9sIzAD+2cPjiYhklOftP7CXPMademGP64rlDIcwsHcHBI/teXBZ0BSJ8eEH66n/aCXx6g/w1X1MQfM2yuI7KHZ1DLNYrxw37jzEzE8UPzHzEyNA3OMnZgESFiDuCRCzAHHzYc4BYCTTrx2pJ+ccOIeR+gKHuX2v09uh1bZ21rWsal0PLfu3rS8z9kV/kG49Dnh4zw52KY7e1OqZx32vDv3TtU6WOqjDOl3s0pbul+p6wcP/yaf2rAuVc8LVD5MT9B92TSKSOT1NsI4H5pjZLaRuK77nnHsDGA281qrctvQ6EZF+Y+uOXZzc9Hc2jfoiE/05Pa7PFYyE3cDeT6C0/ydYzjk+/mQnm1e/RPKjVympW8O4+IdUWFNLmRobSm1gFDvyT2J73jA8+aV48srw5pfizynAF8gh6Q3gvEHweLBkAnNJSMZIxGPEY1HisSiJaDPJWIRErBkXC+NiEVw89UU8DIkoFg9jiSiWiOBJRPEmI3iSUbzJKL5ElCB7ySfWkvrQkgJZ+j7TWqVFlrp5N8PhSd1w2759WqVk6XUptj/JsH0pW3of219m/37d+WG3v7qjZK07KZx1s3x7pTt9N12uvJtRtFPccN2opW3JffUd+F66U2OHR+piFV3/Ue0veTjRtY4n3+1l2p4XWfGPZ5k575zDqE1EMu2QCZaZvQCMaGfTj9L7FwOzgOnAI2Z2THcCMLMrgSsBjjrqqO7sKiLSI2tefpgvWYThp1yckfq8RaNgC7g9n2SjLaBLahvCrF3xItF3n2J4zRuc6DZyjCWJ42Vr4Fg2lZ2Nf/QUij8znbJjKigJFVCS7aBFpEOx5r003foZWPMQKMES6RcOmWA5577Q0TYz+ybwJ+ecA143syRQCmwHxrQqWp5e1179dwF3AVRWVma234WISAeSSUfBxifY7SmmdOL8jNQZGppqqA/Xbqfn7WGZs21XHe++8mfsg2eY2vRPTrN64njZkjOBDaP/leKJn2fEiXMYNwCfGxMZ6Pw5BbxdNJcJtS/S1NRAbq6uY5Fs62kXwceBecDLZnY8EAB2AU8CfzCzn5Ma5OI44PUeHktEJGPe/mAzM+NvsvUz/8JQjzcjdQ4tLmGvyyFeuy3rCVZNQ4S//eMf2Kr7mdP0PGfYHhrJZVvZbJomncOY6Qs4Jm9olqMUkUzIm3EJhc8/y+vP3sOM876d7XBEBr2eJli/A35nZuuAKHBZujXrHTN7BHgXiANXH4kjCCbiqb7+Pp9GtxIZaDb/4xGmWZxRcy7NWJ3DCoLsdEUMqa/KWJ3dEU8k+ds7W/n4laVM3vkE53veS7VUlX2O5KzFDJt6NuN9gazEJiK954TPnsNHL45l+Nr/j+S5V+HxZuZDIxE5PD3KHJxzUeCSDrbdAtzSk/qz7Y1Hb6Nk459InPk/OWGGpvISGSiSSceILf9NtW8kZWNnZKzeYQVBqlwxRXv7NsHaUR/mhZdfILjmAc5M/I3PWxO1OeVUT72OslMXc0zB8D6NR0T6lnk81Ey7mulvfp/VLyxl6plfy3ZIIoOammY6ERxaTmGiluFPX8j6FybRNO3rTJr/LwSDoWyHJiI9sGbDB1Qm1/LRcV+nrLujwXViWGGIVQxlcvOHGauzI8mk4+/vfsTHy+5n6s4nuMTzEVH81Bx9Jnmn/Q+Kj5nTZghsERnYpp11OZve+t8Me+3/Jvq5hQRy8rIdksigpQSrE9POuoymU7/Cisd/wZiNS5mw4hrqVlzP2uJ5+CsWMH7GGYTyhmQ7zKxzySQumSCZiJFMJkkmkzjnUq+dI5l0JJ3DpZdJz1uzf5zZfYMm71ufWtuVuWasgxvIjm4rDy5u6X+7cCPa7ZvVTsq3t6lb9XcvFvN0vXy358I5IO7O987gzzDNkfqvlHSpYcdbf0+69P89B0n2r9vx9weYaklGnpq57oEA+UEfuz0l5EZeg2QSPJ6M1g9QvSfM3156mtDaB5gXX84ci1Cd9xlqp/+E4lmXMDK3OOPHFJH+z+cPsHvu/2Lay5ey8sHrqVzyi2yHdGRJJkkm4sQSqSkmYvEEyXiceDxGIhGHZAJzidSE6q12c6796QLa09m2/X9Kre0623+H0uaex1rdv5i17N/mfqaDMm2PYfvXtKmn1d+v9D2E2QFHsP1l2t6PHRzDQesPWuxonzRvgFAoB2837meySQnWIeTmD2HmJTeRiF/P2lceo3nVo0yseZ68v/2F2DIvG/zHsXtoBcFRE8kbM5niMSdQUjYCy9BD8x1JJJKEmxuJNDcSDjcSCzcSaW4mFm4kFmkiEW0iEUl/RZtx6blniDdDLIzFm/HEw/iSEXzJfd8j+F0En4vhSSbwkMDjUt+9LoGX1Gtf+rWPZOq7JTEg87eSIr3jGGCz92iOPmpyxuuO543A2xSH5lrIK81Inc453nh3I5uX3cOUnU9wgW0jbCF2jj2HwPxvUHbUdLVWiQjTTjuXf648i5mb7+GD5ady3KkLsx1SRiQSSRr27KaxrprmhjrCDXVEm+qJNdWTaN5LMrwHF9mLN9aAL9aAJ96MJ7FvHr0IvmQ0dZ/jogRcjABRAsQIuCheknhJ4jGHBwhm+81Ku34Su4Qvf+MWpo4pynYoXaIEq4u8Ph8V8y+C+RcRbmpgzRvPsWf9Mkpr3qBi55PkVT8Kb6fKRp2X3Z5i6rzFRH15JLy5JH05xL05JD2+1LSVrW6GXDKBJWOpXwaJaJtfCF4Xw5+M4ncRAi5CgChBFyVIjDxzHE4HgCg+wgSJWoCoBYm1fA8S9uST8PhJmh/n8YL5Ut89Pmj57sOl17t9r82b2m5eUh+UWOoLA/Ok5/tMT+i5b7LPVhN8pj7U2bce9n+S0XE71oHrLf3RUHcneuxq+a60qB1Ydzd26Gb57lSd7Fbx7r3PbsbSjR26Eodz6blkaZlTFsMOWGf7X7faVlJxRneD71rcQ4+GJqDmwx4nWLv2NvPPl54gd+1STo39kxkWY3v+ieycfhvDPvt/cVSwIDNBi8iAMfHKu/jwF6cx6oWr+DiYx7jpZ2U7pIMkk47aut3UVm2mqWYrsd3bSTTsxDXW4GmuxRepIxTbTW5iDwXJeoa4BoZYgkP1GWokRCO5Lfc0MU+AhCdAzJdHxFtM0hMk4QmQ8AZJeoIkvQHweFMfint8YF7M68XS9zye9D1ParsHZ16ceei8Jaa9vhfWybb9fxkN13L74NLL+/8U7v9b3vYWw7VabvX3vtU9jrVZdgeVSa1qtaXNAVzLKmtv3wPqbPu3u9X6Tu+LOtp/v4lFlYwacuQ8oqME6zCEcvOZfNr5cNr5AMTjcT76eAN7Nq8hsutjEvVVeBp3kBfZhT/eRG60hmAyTIgIPhIccF2AQQw/UQsQswAJ8xP3BIhbkIg3j6QnQNIbJOkL4Xw5OF8IfCHMn4MFcvD4c/AGcvAGcvGFcvEGc/EHcwmEcgnk5BEM5RHMySMYysX8OQQ8XjSOmEjvsJFTYTvEtr2F/6iZ3d4/nkjy+qpV1Pz9PqbU/pUv204aLJ+tx1zImM9/g9HlmW91E5GBo7BgCHsv/xM77zmXUf99Cas3fY8pC7/f6z1r9mkKR6jesY26nZtp3rWNWN12XP0n+Js+JTf8KYXxXZQkaym1Jg78CCruPNRbIQ2eApp8RdTnHk1NsJhkzlCSOcV4cobiyx1CIHcIwbwhhPKLyC0oIq+wiFDuEPI8nsP64Fkk0+zAvqPZVFlZ6VauXJntMEREDtsz66o46dFZeI6dT+ml93RpH+cc6z7axkevPszozX+m0q0jibG5sJKcGZcyYuaF4M/2zFoiciSpqtrOJ/dcxsnRN9jsG0vj1Cs59rSLCBSUHF6FzrG3vpaaHZvZs3MrTTXbiNdtx9NQRaDpU/Kj1QxN7KLE1eGztj0n4s7Dbs9Q6n2lNIWGEcsdAYUj8ReNJlRcTm5pOQWl5RQOKcZ64dlVkd5gZm865yrb3aYES0Qkc2obo6y49Yt8Ludj8n7wfqrrbDucc6z/eCub/vEYQz5+msr4KoIWZ6dvFHXjv8rY+f9KoOToPo5eRAaSRCLJ8j/fydHv3M5Yt52Y87ItMI7aghOwwpGQV4oF8/EAsYQjGQ9jkT0Qrsc11+ON1JEb3UVhbBdDk7vJtchBx9hLLru9pTQEyojkDCOZPxLvkFEEi8spGHYUQ0ccTd7QkR3+LhQ5UnWWYKmLoIhIBhXnBVhddDpn7/2fJNf/Bc/Er7RsawhHefuN5dSve5aynX9nSvJdTrQEu7zD2HTMxYw+ZRHDjj2FYRqwQkQywOv1cNoFVxH7yv9gxWsvE177BIW1azi69lWKa/bgsfY/ZI86Lw2WR6Pls8dXwid5E9icOxwrGElg6GjySkYzZNgYSkaOpSC3AD0NKtKWWrBERDLsqdWbOOZP5zDWW8P7o86lIZokVLeRcdH3KbYGALYFjqGh/DRGfHYRRcfO0iiAItJnnHPUN4ZprKsmFm4g4Yygz0MwGCSQV0xeXh4+n1qcRDqjFiwRkT70xSlHc+/2O6h+/Uamb/sTzoyd/nI+GT6PmuPmMXbGFykfMjLbYYrIIGVmFOXnUJR/VLZDERmQlGCJiGSYmbH4S6eRPHsZ4XiC3ICPsdkOSkRERPqEhmoREeklHo+RG9DnWCIiIoOJEiwREREREZEMUYIlIiIiIiKSIUqwREREREREMqRfDdNuZtXA5mzHcYBSYFe2g5A+o/M9eOhcDx4614OLzvfgoXM9ePTHc320c66svQ39KsHqj8xsZUdj3MvAo/M9eOhcDx4614OLzvfgoXM9eBxp51pdBEVERERERDJECZaIiIiIiEiGKME6tLuyHYD0KZ3vwUPnevDQuR5cdL4HD53rweOIOtd6BktERERERCRD1IIlIiIiIiKSIUqwREREREREMkQJVifM7Cwz22BmG83sB9mORzLHzMaY2ctm9q6ZvWNm/5ZeX2xmz5vZB+nvQ7Mdq2SGmXnNbJWZ/Xd6eZyZrUhf3w+bWSDbMUpmmFmRmT1mZu+Z2Xoz+6yu7YHJzK5N/w5fZ2YPmllI1/bAYWa/M7OdZrau1bp2r2VL+WX6vK8xs5OyF7l0Vwfn+mfp3+NrzOzPZlbUatt16XO9wczOzErQnVCC1QEz8wJ3AGcDJwL/YmYnZjcqyaA48F3n3InALODq9Pn9AfCic+444MX0sgwM/wasb7X8U+AXzrljgd3Av2YlKukN/xt4xjl3AjCF1HnXtT3AmNlo4DtApXNuEuAFLkLX9kByL3DWAes6upbPBo5Lf10J/KaPYpTMuJeDz/XzwCTn3GTgfeA6gPT92kXAxPQ+v07ft/cbSrA6NgPY6Jz7yDkXBR4CFmQ5JskQ51yVc+6t9Ou9pG7ARpM6x/eli90HfCUrAUpGmVk58CXg/6SXDZgPPJYuonM9QJjZEOBzwN0Azrmoc64OXdsDlQ/IMTMfkAtUoWt7wHDOvQLUHrC6o2t5AfB7l/IaUGRmI/skUOmx9s61c+4551w8vfgaUJ5+vQB4yDkXcc59DGwkdd/ebyjB6thoYGur5W3pdTLAmNlYYBqwAhjunKtKb9oBDM9WXJJR/y/wH0AyvVwC1LX6xa3re+AYB1QD96S7hP4fM8tD1/aA45zbDvw/wBZSiVU98Ca6tge6jq5l3bcNbEuAv6Zf9/tzrQRLBjUzywf+CFzjnNvTeptLzWGgeQyOcGZ2DrDTOfdmtmORPuEDTgJ+45ybBjRyQHdAXdsDQ/rZmwWkkupRQB4HdzGSAUzX8uBgZj8i9WjH0mzH0lVKsDq2HRjTark8vU4GCDPzk0quljrn/pRe/em+LgXp7zuzFZ9kzGzgXDPbRKqr73xSz+gUpbsVga7vgWQbsM05tyK9/BiphEvX9sDzBeBj51y1cy4G/InU9a5re2Dr6FrWfdsAZGaXA+cAF7v9k/f2+3OtBKtjbwDHpUcjCpB6mO7JLMckGZJ+BuduYL1z7uetNj0JXJZ+fRnwRF/HJpnlnLvOOVfunBtL6jp+yTl3MfAycEG6mM71AOGc2wFsNbPx6VWfB95F1/ZAtAWYZWa56d/p+861ru2BraNr+Unga+nRBGcB9a26EsoRyMzOItW9/1znXFOrTU8CF5lZ0MzGkRrY5PVsxNgR258MyoHM7Iuknt3wAr9zzt2S3YgkU8zsVOBVYC37n8v5IannsB4BjgI2Axc65w58wFaOUGY2F/iec+4cMzuGVItWMbAKuMQ5F8lieJIhZjaV1IAmAeAjYDGpDxR1bQ8wZvZjYBGp7kOrgK+TehZD1/YAYGYPAnOBUuBT4L+Ax2nnWk4n2beT6ibaBCx2zq3MQthyGDo419cBQaAmXew159w30uV/ROq5rDipxzz+emCd2aQES0REREREJEPURVBERERERCRDlGCJiIiIiIhkiBIsERERERGRDFGCJSIiIiIikiFKsERERERERDJECZaIiIiIiEiGKMESERERERHJkP8fcV2zou7VW40AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
39True30.08850.0728bAP.soma.v0.007834.32e-06
40True30.08850.0728Step1.soma.v0.009361.29e-07
41True30.08850.0728Step3.soma.v0.00792.12e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "39 True 3 0.0885 0.0728 bAP.soma.v \n", + "40 True 3 0.0885 0.0728 Step1.soma.v \n", + "41 True 3 0.0885 0.0728 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "39 0.00783 4.32e-06 \n", + "40 0.00936 1.29e-07 \n", + "41 0.0079 2.12e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADtcklEQVR4nOzdd3yV9dn48c91Rk52QiaEQBL2FhUQC7jaOlpnbUXrQh/rT1tbtY5uS/s8Pu1jbW0drbW12joQB+69UHEyBGTPAIEQsnfO/P7+uO/EELIgJzlJzvX2dV6ee32/17nPOeG+znfcYoxBKaWUUkoppVTPOSIdgFJKKaWUUkoNFppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFL9hIjki4gREVekYxnsRGSBiCyLdBz9jYjME5HNkY5DKaUGMk2wlFJKDWgislBE/CJS1+pxa6TjGoiMMR8YY8b3Vvkicpn9I8JVvVWHUkpFmv5KqpRSYSIiLmNMINJxRKnFxphLIh1EbxkMny0RGQL8HFgf6ViUUqo3aQuWUkr1gIgUishPRGQtUC8iLhGZLSIfiUiViKwRkZNa7b9URH4nIp+JSI2IPC8iaR2UfYWIbBSRWhHZISL/r832c0RktV3OdhE53V6fIiIPikixiOwVkf8REWcXr2O0iLwjIuUiUiYij4lIaqttFSJyjL2cIyKlza9LRM4WkfX2610qIhPbnJ+bRWStiFSLyGIRiT38M334ROSn9nmpFZENInJeB/uJiNwlIgfsc/mFiEyxt3lE5E4R2S0iJSJyv4jEdbP+h+3937RjeE9E8lpt/4uI7LHrXCki81ptWygiT4vIoyJSAywQkVki8rF9notF5F4RiWl1jBGR74vIVru+/7bfu4/sOp5svX8HMZ8kIkXdeX1H4HfA3UBZL5WvlFL9giZYSinVcxcB3wRSgWzgZeB/gDTgZuAZEclstf9lwJXAMCCAddHZngPAmUAycAVwV6skZxbwH+AWu94TgEL7uIftcscARwOnAl11yRKsC+AcYCIwAlgIYIzZDvwEeFRE4oGHgH8bY5aKyDhgEXADkAm8ArzY5kL+AuB0oACYBixoNwCRuXby0NFjbhevoa3twDwgBfiNHf+wdvY7Fev8jbP3vQAot7f93l4/Het8DgduO4wYLgb+G8gAVgOPtdq23C43DXgceKpN8nkO8DTW+/sYEARutMs6Hvgq8P029Z0GHAvMBm4FHgAuwXo/p2B9Vo+YnSh39P78tZPjZgEzgPt7Ur9SSg0EmmAppVTP3W2M2WOMacS6mH3FGPOKMSZkjHkTWAF8o9X+jxhj1hlj6oFfARe018JkjHnZGLPdWN4D3sBKGAD+C/iXMeZNu569xphNIpJt13WDMabeGHMAuAu4sLMXYIzZZpflNcaUAn8CTmy1/R/ANuBTrMTwF/am+cDL9rF+4E4gDvhKm/OzzxhTAbyIlVS0F8MyY0xqJ4/OJqW4oM3Ffo4x5im73pAxZjGwFZjVzrF+IAmYAIgxZqMxplhEBLgauNEYU2GMqQX+t6tz2cbLxpj3jTFerHN2vIiMsF/vo8aYcmNMwBjzR8ADtB7/9LEx5jk7/kZjzEpjzCf2/oXA32n1HtnuMMbUGGPWA+uAN4wxO4wx1cCrWAn3ETPGTOvk/Wmb7AFgf7b/ClxnjAn1pH6llBoIdAyWUkr13J5Wz/OA74jIWa3WuYF3O9h/l709o22hInIG8GusFhQHEA98YW8egdVa1FaeXV6xlR+AfeyedvZtXVc28BesBC7JPqayzW7/AF4ArrYTBrBavHY172CMCYnIHqyWnmb7Wz1vsI8JtyfbjsESkcuAHwP59qpE2jnPxph3RORe4D4gT0SWYLU8xmKd85WtzqUAnXa3bKPlvBtj6kSkAuv17xGRm7ES5RzAYLVUZrR3rP16xmElvjPsuFzAyjb1lbR63tjO8tDDiD1cvg+sNcZ8EoG6lVKqz2kLllJK9Zxp9XwPVgtV61/2E4wxv2+1z4hWz0ditaAcNC5FRDzAM1gtQtnGmFSshKr5Sn8PMLqdWPYAXiCjVf3JxpjJXbyG/7Vfx1RjTDJWS9yXWYVIIvBn4EFgoXw5bmwfVlLXvJ/Yr29vF/UdQqwpwus6eczrupSWsvKwEsLrgHT7/K1r/ZpaM8bcbYw5FpiEldDegvWeNAKTW53LFGNM4mG8rJb32j6HacA++7XcitUdcYgdX3Wb+Fp/rgD+BmwCxtrv0c87ej29Rayxdh29Px11//sqcJ6I7BeR/Vitm3+0k1qllBp0NMFSSqnwehQ4S0ROExGniMTaEwfkttrnEhGZZI9n+i3wtDEm2KacGKwuY6VAwG7NOrXV9geBK0TkqyLiEJHhIjLBGFOM1ZXwjyKSbG8bLSJtu5K1lQTUAdUiMhwrwWjtL8AKY8xVWGPMmi+mnwS+acfhBm7CSvA+6upEtWVPEZ7YyeODwyguAStBKQVrwhCsMUiHEJGZInKcHX890ASE7O5s/8Aa+5Zl7ztcRE5rdayRVpOYtOMb9tiyGKyxWJ8YY/Zgne+AHZ9LRG7DasHqTBJQA9SJyATg2i72DztjzORO3p9rOjhsAda4vun2YwXWmLhfdLC/UkoNaJpgKaVUGNkXz+dgtS6UYrUo3cLBf28fwZqIYj9WN7QftVNOrb3+Sayuet/F6p7XvP0z7IkvsFo+3uPLlqTLsBK0DfaxT2ONm+rMb4Bj7LJeBpY0bxCRc7AmqWi+oP8xcIyIXGyM2YzV2nUPVovPWcBZxhhfF/X1KmPMBuCPwMdY3eSmAh92sHsyViJVidXdsRz4g73tJ1hjzz4Raza/t7DHSdljqWr5sttmex7H6uZZgTX5RHM3xteB14Atdp1NdNGNE6vb4nftOv8BLO5i/37BGFNljNnf/AB8QI09LkwppQYdMaZtDwSllFK9RUSWAo8aY/4Z6VhUz4jIJVjdB3/WwfaHgSJjzC/7NDCllFIRpZNcKKWUUkfAGPNopGNQSinV/2gXQaWUihJi3fT2cCYnUIOQiPy8g8/Bq5GOTSmlBgPtIqiUUkoppZRSYaItWEoppZRSSikVJv1qDFZGRobJz8+PdBhKKaWUUkop1amVK1eWGWMy267vVwlWfn4+K1asiHQYSimllFJKKdUpEdnV3nrtIqiUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUm/WoMVnv8fj9FRUU0NTVFOhTVD8TGxpKbm4vb7Y50KGoQavAF+N6/PuScY/O5YGZepMNRSiml1ADU7xOsoqIikpKSyM/PR0QiHY6KIGMM5eXlFBUVUVBQEOlw1CD06c4KfrLvekYUl2Imr0Pih0Q6JKWUUkoNMP2+i2BTUxPp6emaXClEhPT0dG3NVL1m275ypjl2MkTq2L/i+UiHo5RSSqkBqN8nWIAmV6qFfhZUb2oo2fHl8+0fRTASpZRSSg1UAyLBUkqpvhBTuxuAeuMhofTzCEejlFJKqYFIE6xuEBFuuummluU777yThQsXRi6gVk466aROb8587rnnMnv27IPWLVy4kOHDhzN9+nSmTJnCCy+80NthKjUgJNZb9wv8xPMV0hoLIRSKbEBKKaWUGnA0weoGj8fDkiVLKCsrC2u5xhhCvXgBV1VVxcqVK6murmbHjh0HbbvxxhtZvXo1Tz31FFdeeWWvxqHUQBHjrSSEg7K0Y4kxPqgpinRISimllBpgNMHqBpfLxdVXX81dd911yLbS0lLOP/98Zs6cycyZM/nwww8Bq5XozjvvbNlvypQpFBYWUlhYyPjx47nsssuYMmUKe/bs4ZZbbmHKlClMnTqVxYsXA7B06VJOOukkvv3tbzNhwgQuvvhijDHtxvfII4+0tEZ99tlnLeuXLFnCWWedxYUXXsgTTzzR7rETJ07E5XIdlDz+9Kc/ZdKkSUybNo2bb74ZgMLCQk455RSmTZvGV7/6VXbvtrpSLViwgGuvvZbZs2czatQoli5dypVXXsnEiRNZsGBBS5nXXnstM2bMYPLkyfz6178+JI7q6mry8vJaEr36+npGjBiB3+9vN26leoW/AZ/Dgzt7PABNxZsjHJBSSimlBpp+P017a795cT0b9tWEtcxJOcn8+qzJXe73gx/8gGnTpnHrrbcetP7666/nxhtvZO7cuezevZvTTjuNjRs3dlrW1q1b+fe//83s2bN55plnWL16NWvWrKGsrIyZM2dywgknAPD555+zfv16cnJymDNnDh9++CFz5849pLyGhgZWr17N+++/z5VXXsm6desAWLRoEbfddhvZ2dmcf/75/PznPz/k2E8//RSHw0FmZiYA5eXlPPvss2zatAkRoaqqCoAf/vCHXH755Vx++eX861//4kc/+hHPPfccAJWVlXz88ce88MILnH322Xz44Yf885//ZObMmaxevZrp06dz++23k5aWRjAY5Ktf/Spr165l2rRpLXGkpKQwffp03nvvPU4++WReeuklTjvtNL3flepTEmgk4Iolafh4WAOVezYybOLXIx2WUkoppQYQbcHqpuTkZC677DLuvvvug9a/9dZbXHfddUyfPp2zzz6bmpoa6urqOi0rLy+vZVzUsmXLuOiii3A6nWRnZ3PiiSeyfPlyAGbNmkVubi4Oh4Pp06dTWFjYbnkXXXQRACeccAI1NTVUVVVRUlLC1q1bmTt3LuPGjcPtdrckXgB33XUX06dP5+abb2bx4sUts/OlpKQQGxvLf/3Xf7FkyRLi4+MB+Pjjj/nud78LwKWXXsqyZctayjrrrLMQEaZOnUp2djZTp07F4XAwefLklpiffPJJjjnmGI4++mjWr1/Phg0bDnkd8+fPb2nBe+KJJ5g/f36n51GpcDLG4Aw2EXTGMiwnj1oTh69kU6TDUkoppdQAM6BasLrT0tSbbrjhBo455hiuuOKKlnWhUIhPPvmE2NjYg/Z1uVwHjWtqfe+mhISEbtXn8XhanjudTgKBQLv7tZ26XER48sknqaysbLkhb01NDYsWLeL2228HrDFYzd3/2sb92Wef8fbbb/P0009z77338s4773QrTofDcVDMDoeDQCDAzp07ufPOO1m+fDlDhgxhwYIF7d7L6uyzz+bnP/85FRUVrFy5klNOOaXTepUKJ18wRCxeAs44RmYksMMMI61ie6TDUkoppdQAoy1YhyEtLY0LLriABx98sGXdqaeeyj333NOyvHr1agDy8/NZtWoVAKtWrWLnzp3tljlv3jwWL15MMBiktLSU999/n1mzZh1WXM2tPsuWLSMlJYWUlBQWLVrEa6+91jLua+XKlR2Ow2qtrq6O6upqvvGNb3DXXXexZs0aAL7yla+0HP/YY48xb968bsdXU1NDQkICKSkplJSU8Oqrr7a7X2JiIjNnzuT666/nzDPPxOl0drsOpXqqyR8iDh8hZyzJsW72OnNIqNsV6bCUUkopNcD0OMESkREi8q6IbBCR9SJyvb1+oYjsFZHV9uMbPQ838m666aaDJoS4++67WbFiBdOmTWPSpEncf//9AJx//vlUVFQwefJk7r33XsaNG9dueeeddx7Tpk3jqKOO4pRTTuGOO+5g6NChhxVTbGwsRx99NNdccw0PPvgghYWF7Nq166Dp2QsKCkhJSeHTTz9tt4xvfOMb7Nu3j9raWs4880ymTZvG3Llz+dOf/gTAPffcw0MPPcS0adN45JFH+Mtf/tLt+I466iiOPvpoJkyYwHe/+13mzJnTsu222247aJr4+fPn8+ijj2r3QNXnvP6glWC54gCojssj1b8f/I0RjkwppZRSA4l0NDNdtwsQGQYMM8asEpEkYCVwLnABUGeMubOz41ubMWOGaXtPp40bNzJx4sQexagGF/1MqN6wu7yBir/MJTt7GMN+8DL/+fsfuKz4f+AHn0Hm+EiHp5RSSql+RkRWGmNmtF3f4xYsY0yxMWaV/bwW2AgM72m5SinVl5oCQWLxgdtqwXJnjgLAX7ajs8OUUkoppQ4S1jFYIpIPHA0090O7TkTWisi/RGRIB8dcLSIrRGRFaWlpOMNRSqlu8/pDxOHF2AlW8rAxAFTt2xrJsJRSSik1wIQtwRKRROAZ4AZjTA3wN2A0MB0oBv7Y3nHGmAeMMTOMMTOa78WklFJ9rSkQJE58iNu6NUH20FwajIemAzqToFJKKaW6LywJloi4sZKrx4wxSwCMMSXGmKAxJgT8Azi8qfGUUqoPNfmDxOJFYqwEa2R6ArtNFlQURjYwpZRSSg0o4ZhFUIAHgY3GmD+1Wj+s1W7nAevaHquUUv1F8zTtDrsFKzPJw16yiKnbE+HIlFJKKTWQhONGw3OAS4EvRGS1ve7nwEUiMh0wQCHw/8JQl1JK9Qqvtwm3BHF4rARLRKiKHU5K03owBtrc0FsppZRSqj3hmEVwmTFGjDHTjDHT7ccrxphLjTFT7fVnG2OKwxFwpDz33HOICJs2bepwn8LCQqZMmRK2OhcsWMDTTz/d4fYbbriB4cOHEwqFWtY9/PDDZGZmMn36dCZNmsQ//vGPsMWj1GDmb6oHwBkT17KuKXEEsaYJ6ss6OkwppZRS6iBhnUVwMFu0aBFz585l0aJF7W4PBAI9riMYDHZ731AoxLPPPsuIESN47733Dto2f/58Vq9ezdKlS/n5z39OSUlJj2NTarALehsAcMYmtKyTIfkAmMqdkQhJKaWUUgOQJljdUFdXx7Jly3jwwQd54oknWtYvXbqUefPmcfbZZzNp0iTASrQuvvhiJk6cyLe//W0aGqyLtrfffpujjz6aqVOncuWVV+L1egHIz8/nJz/5CccccwxPPfXUIXW/9dZbzJgxg3HjxvHSSy8dVPfkyZO59tprO0z6srKyGD16NLt27WpZd/fddzNp0iSmTZvGhRdeCEBFRQXnnnsu06ZNY/bs2axduxaAhQsXcvnllzNv3jzy8vJYsmQJt956K1OnTuX000/H7/cD8Nvf/paZM2cyZcoUrr76atrevDoUCpGfn09VVVXLurFjx2rip/qVoNdqwXJ7vkywPPa9sOr360yCSimllOqecIzB6juv/hT2fxHeModOhTN+3+kuzz//PKeffjrjxo0jPT2dlStXcuyxxwKwatUq1q1bR0FBAYWFhWzevJkHH3yQOXPmcOWVV/LXv/6V6667jgULFvD2228zbtw4LrvsMv72t79xww03AJCens6qVavarbuwsJDPPvuM7du3c/LJJ7Nt2zZiY2NZtGgRF110Eeeccw4///nP8fv9uN3ug47dsWMHO3bsYMyYMS3rfv/737Nz5048Hk9LwvPrX/+ao48+mueee4533nmHyy67jNWrVwOwfft23n33XTZs2MDxxx/PM888wx133MF5553Hyy+/zLnnnst1113HbbfdBsCll17KSy+9xFlnndVSp8Ph4JxzzuHZZ5/liiuu4NNPPyUvL4/s7Oxuv01K9baQz/oxxNWqBStl2GgAavdvIzEiUSmllFJqoNEWrG5YtGhRS2vPhRdeeFCL0axZsygoKGhZHjFiBHPmzAHgkksuYdmyZWzevJmCggLGjRsHwOWXX87777/fcsz8+fM7rPuCCy7A4XAwduxYRo0axaZNm/D5fLzyyiuce+65JCcnc9xxx/H666+3HLN48WKmT5/ORRddxN///nfS0tJatk2bNo2LL76YRx99FJfLyq+XLVvGpZdeCsApp5xCeXk5NTU1AJxxxhm43W6mTp1KMBjk9NNPB2Dq1KkUFhYC8O6773LccccxdepU3nnnHdavX3/I65g/fz6LFy8G4Iknnuj0NSsVCS0Jlj3JBUBudjolJhV/2Y5IhaWUUkqpAWZgtWB10dLUGyoqKnjnnXf44osvEBGCwSAiwh/+8AcAEhISDtpf2sw01na5PW3L6Kq8119/naqqKqZOnQpAQ0MDcXFxnHnmmYCVzNx7773tlvfyyy/z/vvv8+KLL3L77bfzxRedtwh6PB7AaoVyu90t8TgcDgKBAE1NTXz/+99nxYoVjBgxgoULF9LU1HRIOccffzzbtm2jtLSU5557jl/+8ped1qtUXwv5GgFabjQMMGJIPBtMFjnVuzo6TCmllFLqINqC1YWnn36aSy+9lF27dlFYWMiePXsoKCjggw8+aHf/3bt38/HHHwPw+OOPM3fuXMaPH09hYSHbtm0D4JFHHuHEE0/sVv1PPfUUoVCI7du3s2PHDsaPH8+iRYv45z//SWFhIYWFhezcuZM333yzZbxXR0KhEHv27OHkk0/m//7v/6iurqauro558+bx2GOPAdbYroyMDJKTk7sVX3MylZGRQV1dXYezHooI5513Hj/+8Y+ZOHEi6enp3Spfqb5i/Pb3p1WCleBxUeocSnx9UYSiUkoppdRAowlWFxYtWsR555130Lrzzz+/w4klxo8fz3333cfEiROprKzk2muvJTY2loceeojvfOc7TJ06FYfDwTXXXNOt+keOHMmsWbM444wzuP/++wmFQrz22mt885vfbNknISGBuXPn8uKLL7ZbxlVXXcWKFSsIBoNccsklTJ06laOPPpof/ehHpKamsnDhQlauXMm0adP46U9/yr///e9unh1ITU3le9/7HlOmTOG0005j5syZLdvuv/9+7r///pbl+fPn8+ijj2r3QNU/2S1YuOMOWl0Tl0uK/wAEfBEISimllFIDjbSd8S2SZsyYYVasWHHQuo0bNzJx4sQIRaT6I/1MqN7wyP2/59L9v4MfrYa0L8dVPnr/77hk/+/hh6sgfXTkAlRKKaVUvyIiK40xM9qu1xYspZQCJNDcghV/0HpnupVsBcv1XlhKKaWU6pomWEopBUigeQzWwV0EE4datzmoLt7a1yEppZRSagAaEAlWf+rGqCJLPwuqtzgD9uyXbRKs9GEj8Ro3jSV6s2GllFJKda3fJ1ixsbGUl5frhbXCGEN5eTmxsbGRDkUNQs5gEwFc4Dz4ht0j0xMpMhmEKgojE5hSSimlBpR+fx+s3NxcioqKKC0tjXQoqh+IjY0lNzc30mGoQcgVbMLn8BzyR3FYShwfkM2E2t0RiUsppZRSA0u/T7DcbjcFBQVd76iUUj3gCjXidxzaOup0CBUxOSQ3vh+BqJRSSik10PT7LoJKKdUXXCFvuwkWQGNiLvGhOmis7OOolFJKKTXQ9HqCJSKni8hmEdkmIj/t7fqUUupIxISaCHaQYJnUPOtJZWHfBaSUUkqpAalXEywRcQL3AWcAk4CLRGRSb9aplFJHIibkJej0tLvNk2ndYLjxgM4kqJRSSqnO9XYL1ixgmzFmhzHGBzwBnNPLdSql1GExxhCDl6Azrt3tyfa9sGr2aYKllFJKqc71doI1HNjTarnIXtdCRK4WkRUiskJnClRKRYI3ECIOLyFX+wlWTnYW5SYJX5kmWEoppZTqXMQnuTDGPGCMmWGMmZGZmRnpcJRSUajJHyQOHyFX+2OwRqbFs8dkIVW7+jgypZRSSg00vZ1g7QVGtFrOtdcppVS/0eQPESdecMe3uz0l3k2xI5u4uj3tbldKKaWUatbbCdZyYKyIFIhIDHAh8EIv16mUUoelyR8kFh+mgy6CADWxw0nx7YdQsA8jU0oppdRA06sJljEmAFwHvA5sBJ40xqzvzTqVUupwNQWCxOGFmI4TLH/SSFwEoUYb4ZVSSinVMVdvV2CMeQV4pbfrUUqpI9Xks8ZgSQddBAEc6QVQCsHynThTR/ZhdEoppZQaSCI+yYVSSkWa19uIQwyOmI4TrORhYwGo2rulr8JSSiml1ACkCZZSKur5G+sAOk2wskeMxmvc1O/b2FdhKaWUUmoA0gRLKRX1/E0NADg9HSdYo7KS2WGGQtnWvgpLKaWUUgOQJlhKqagX9NUD4PQkdLhPWkIMux25xNfs6KuwlFJKKTUAaYKllIp6Qa/VguWK7TjBEhGq4vNJ8+2DgLevQlNKKaXUAKMJllIq6gV9VoLl7qSLIIB/yGgchKBCW7GUUkop1T5NsJRSUS/ktboIuuMSO93PnT0RgKZinehCKaWUUu3TBEspFfWauwjGxHaeYKWOsBKs6t16v3SllFJKta/XbzSslFL9XXMLljMmrtP9RuVkUWQyCJVs6ouwlFJKKTUAaQuWUirqGa91Hyw8nbdg5WcksNPk4K7c1gdRKaWUUmog0gRLKRX1xNecYCV1up/b6aAsNo8hDYVgTO8HppRSSqkBRxMspVTUc/hqrScxnbdgAXhTRxNrmqBmby9HpZRSSqmBSBMspVTUcwbqaJJYcDi73NeVNQGApuINvR2WUkoppQYgTbCUUlHPHainydHxTYZbG1JwFACVO1b1ZkhKKaWUGqA0wVJKRb2YYD1eZ+c3GW6WP3IkxSYN394vejkqpZRSSg1EPUqwROQPIrJJRNaKyLMikmqvzxeRRhFZbT/uD0u0SinVCzzBBvzO7rVg5aXFs9nkEVehNxtWSiml1KF62oL1JjDFGDMN2AL8rNW27caY6fbjmh7Wo5RSvcYTasDv6l6C5XI6KIkfQ1pjIQS8vRuYUkoppQacHiVYxpg3jDEBe/ETILfnISmlVN8JhgzxpoGgu+sZBJv5MybhIogp1RsOK6WUUupg4RyDdSXwaqvlAhH5XETeE5F5HR0kIleLyAoRWVFaWhrGcJRSqmv1vgBJ0ojpxhTtzRJHTgegeufq3glKKaWUUgNWlwmWiLwlIuvaeZzTap9fAAHgMXtVMTDSGHM08GPgcRFJbq98Y8wDxpgZxpgZmZmZPX9FSil1GOq9ARJowsR0fpPh1nLHTKHJuKku1JkElVJKKXUwV1c7GGO+1tl2EVkAnAl81Rhj7GO8gNd+vlJEtgPjgBU9DVgppcKpusFLJg2Ux6V0+5iJw9PYbEYwpGR9L0amlFJKqYGop7MIng7cCpxtjGlotT5TRJz281HAWGBHT+pSSqneUFNZgUtCOBMzun1MgsfFXs8ohtRuAet3JaWUUkopoOdjsO4FkoA320zHfgKwVkRWA08D1xhjKnpYl1JKhV1D9QEAPCmH10W5YcgkkkLVUFvcG2EppZRSaoDqsotgZ4wxYzpY/wzwTE/KVkqpvtBkJ1hxKVmHdZxrxNFwAGp3LCdp+jldH6CUUkqpqBDOWQSVUmrACdSWAZCQengtWEPHzsJvnFRu/bg3wlJKKaXUAKUJllIqqgXrywGISTq8BGviyGw2mxHIvs97IyyllFJKDVCaYCmloluDPTw0Pv2wDkuJd7PdPY706nU60YVSSimlWmiCpZSKaq6mCvy4wNP9+2A1q0mfRnyoDip0klSllFJKWTTBUkpFNY+3nFpnCogc9rFx+TMAqNn+SbjDUkoppdQApQmWUiqqJfkOUBuTfUTH5k84lgbjoXLrp2GOSimllFIDlSZYSqmoFQiGSAuW4Y0bekTHTxmRznqTj6t4VZgjU0oppdRApQmWUipqldX5GCoVBJOGHdHxsW4ne+MnkVm3GQK+MEenlFJKqYFIEyylVNQqLSslSRpxpuQecRneYTOIwUdgr07XrpRSSilNsJRSUaz6wC4A4jJGHHEZKePnAlC28f2wxKSUUkqpgU0TLKVU1Gos2w1AYubIIy5j8rhx7Apl4dv5cbjCUkoppdQApgmWUipqBSqLAEjJzjviMnKHxLHOOYEhZav0hsNKKaWU0gRLKRW9pLYYAEdyzpGXIUJ52jEkBSv1hsNKKaWU0gRLKRW9YhqKqZQh4IrpUTmeUV8BoGbrsnCEpZRSSqkBTBMspVTUSmwqoSYms8fljJsyg2oTT+WmD8IQlVJKKaUGMk2wlFJRKzVQSmNsdo/LmZI7hNWMJ774szBEpZRSSqmBrEcJlogsFJG9IrLafnyj1baficg2EdksIqf1PFSllAqfmiY/2ZQTSDyymwy35nY62Jd6LJneXVC7PwzRKaWUUmqgCkcL1l3GmOn24xUAEZkEXAhMBk4H/ioizjDUpZRSYVFSVk6KNODowU2GW3OOPgmAuk3vhqU8pZRSSg1MvdVF8BzgCWOM1xizE9gGzOqlupRS6rBV7rduMhybfuQ3GW5t9NTZ1jis9W+FpTyllFJKDUzhSLCuE5G1IvIvERlirxsO7Gm1T5G97hAicrWIrBCRFaWlpWEIRymlulZ/wEqwErOO/CbDrU0dkc5nTCZx30dhKU8ppZRSA1OXCZaIvCUi69p5nAP8DRgNTAeKgT8ebgDGmAeMMTOMMTMyM3s+m5dSSnWHz77J8JChBWEpL8blYF/acQzx7YPSLWEpUymllFIDT5cJljHma8aYKe08njfGlBhjgsaYEPAPvuwGuBdo3e8m116nlFL9gqm2/iS5U9ttXD8iidPOBqB85TNhK1MppZRSA0tPZxFsPf3WecA6+/kLwIUi4hGRAmAsoPMXK6X6DXf9fqolGdyxYStz9tHT+Dw0htD658NWplJKKaUGlp6OwbpDRL4QkbXAycCNAMaY9cCTwAbgNeAHxphgD+tSSqmwifeWUO3OCmuZw1Pj+DxxHpm1GzGVhWEtWymllFIDQ48SLGPMpcaYqcaYacaYs40xxa223W6MGW2MGW+MebXnoSqlVPik+ktpjOv5TYYPKXfGBYSMsH/pP8NetlJKKaX6v96apl0ppfqtmiY/WZQTDMNNhts6dc4slnIsyV/8GxorD9q2v6qBR/5+B6+9/lLY61VKKaVU/6AJllIq6pSUV5IutTiSc8JedqLHxe6jric2WEvx4z+AUBB/MMQrb7zKnru+yqXFtzP009+FvV6llFJK9Q+uSAeglFJ9rWrvVgBiMkf3Svnzz/wmj267jMv3/Jt9t0+lKSh8gyJqHUkUOkdRECgEY0CkV+pXSimlVORoghUBJhSktrKcqor91FUeoLHqAP7aUgL1FYivHgk0Iv5GHMFGXMFGnEEvoVAIYwwiIIBDwIiTgMND0BFDwOnBODxITBwSk4AjLgVH/BDcCWnEJKUTl5xGfFI6KWmZxMXFRfoUKBVRTfut+1QlDh/fK+XHxTj51o/+yLNPjSF/z3N4Yp1sGXsJY0+7lpXP/JX8bf9HU/luYjPyeqV+pZRSSkWOJli9oK6+jgM711NTvI2msl2Eqopw1+0loamE9OAB0k0lyRIiuYPjm4ybJvHgxYNXPAQkBuNwIoBBMFg/fjtMEDc+YowPj/Hixo/H+HBL5xM21ptYaiSRBmcyja5kfO4Ugp5UQnFDcMQNwZWYRkxiBnEpGcSnZpKclklcUgYSxumslYokU74DgCG5E3qtjqRYN+dd+iPgRwetd+VMg21Qtn0VuZpg9ZpQMIQ/4CPo9+IPBAj6fYQCfvwBP8GA31oOBggE/BAMACAOu0VRBBDrP/sXLcFeJ/bD4UAcThwOFw6nA4c4cDidiMOBw+Gw1ztxOJz2sgOHw4nT5cLhcCDiBHFYdWlLplJKDSqaYPVAXV0tuzZ8Rt2uzzEHNhNXs4MM726GmVJGiWnZz2dclDozqHEPpShpJjvisyEhE3dSBjHJmcSnZpGclk1yWhax8cnEOpz0JJXxexupqy6nobqMxppyvHWV+OsqCNRXEmyohMZKHN4q3L5qPP5q0uu3k1hXS7Kp6zQ5a8RDrSRS60jG54gn6Iwl6IzFuOIIumIJOuMIOWMJueIwLg/icONwuhCnC5fTibhciDgJiQsjDow4AayU0YSaU0fENP/farUzxmBCIcAQMiEIhSAUxJgQxoSsY0PNz4MQCoIxGBOyywiCvR/2OkIhwNpfjDl4W+v/03rZ4DBBIIQYg/DlsULbbSEc9nqh+bW1p+2WLy+0DG0vuqxlI4euO3T/Vus72L/TYzqI9nAd2WXjERx1mIdM8O2lgmTSEoYcfl09lJp/FLwPDbtXw3Hn9Xn9/Z3X56W2ooT6qjIaasrx1lbgq68k2FBFqLEKaarG4a3G7a/DGWzEFWrCHWzCbbzEhJrw4CXWeInDi0dCkX453RIyQhCH9ddCBIPD/qvhaFlvbWt+7iCEA2PvaxCM2Otar5cvt7Vexv5/yF4XaimjVXmdfqk6/wvR9dex4+Otv/9HdqxVd9exdfev8aFV96xuu5AOjj2y47pddyebu447XP8i9AM9fCkD/0z07BVE8vV/GjuXCefczFdGZ0Qwiu7TBKubfD4fO9d/SvXm95HiNWTUbmJEcA+T7X/AG4yHYlcuB5Knsm/IaJxZ40gcNo6M4aMYkpnDcIeT4X0Uq9sTx5CsXIZk5R7WccFgiIqaKmoqDtBQdYCG6jJ8tWUE6isxDeU4WyVlrkADrkAdcb5y3KEmYvHiMT5i8eERfy+9ssMXMlZ6E7IvWJovJIKtLjBaLi6a92m+GGle12pfRAjhbLkQad4XsS9ixGWvt+po3pdWFyzN/5iZ5uctf7G+/NPV0T94gmn5N/7gfdp/3tnFSkfHCx39Y3/4f1q7vFaKkNKYXGpz5jE7AnWPGZHDbpOF2f9FBGqPjFDIUF5ZQdm+HdQfKMRftY9gTQlSX4qrsYw4XzmJgQpSQtUMoZYMMXT0T2ijiaFOEml0xON1xBFwxOKLSaHBGUvIGWf9wOOOx7jiMK5YjNONOFyI0404XfZza9nRss7Z0jMAzJcfXPuHlS+/ogaDsX/MMRAKEgpZP8KY5v+b5h+AgvY6AybYsp7mH4xafvgxSPO+9g86zT8AHfRjUMt2a//WP/w07ystPwqZVs+b15tW+1hlOO00znlQSmf9ONQV02WrW+fbO0vguv6zceRlN5ff0R5dva6uyu46tp4c29PY2q/GHGbZ0d7eOuBff4RfwJFWP9DOuyZYndi9ZTV7P36K+OJPGd24jvHSCEApQ9gXN44VGV8jPu8YMsfOJDt3LKOdA3tSRqfTQdqQNNKGpAFH3nXKBAMEfI34fH4CAT++gI9AIEjA5yMYDFotP6GAdSEBVjcZQOykxeoy46D5Ur+5+404HThEcDiciMOJ02l3tXE6W7rfND+cLpe9r0OnylT9SqzbyR73KEZXb4p0KGETChlKSks5sGsD9cVbCJYX4qjdS2xDMcn+EjKDpWRKPZltjmsglipHKnWuNOoS8qiKy2BHfCah+EyciWnEJAwhNimd+OQ0ElIySEpJI84Th44iVUqp6DIp0gEcJk2wOlG85i2O33kvuxwj2Jh5Oq5Rcxk67RSGDi8gU/vMd0icLtxxSbj1KkipdlUNmcrQ0k8wdQeQxKxIh9NtldU17Nm6ltqiDQTKtuGu3klywx6GBvYxTKppfVexahKpcGVRF5fD9oRjISWXmLSRJGTlkZQ1ktSMHOLjkoiP2KtRSimleocmWJ2Y+PUrKD/xIvKyhqND0ZVS4eIefQKU/oP9X7zNsOMvinQ4h2hobGT3tnVU7FyDv3gDcVWbyWrcQa7Zz7RW45pKJZ0Kz3D2DDmR3WmjiMsex5ARE0gfMZaUuGRSIvgalFJKqUjRBKsTyanpkQ5BKTUITZpxIrUfx1HzxWsRT7BKK2so3PgZNduX4z6wlmH1GxkZ3MMEsWbWCxphv3MYFUmjWZv+TTw5k0nPn0rmyAlkxiYe0u1PKaWUinaaYCmlVB/LzUjhzZjZHF/8FgS84PL0Sb0VNXXs3LCcmu2f4dy/hqy6jYwK7WKmPXtotSSxN248X6TNwz1sCpmjjiJ71DSGe+L7bJIepZRSaqDTBEsppSLAP/kCEle/y74P/kPOyd8Le/nVtQ3s3Licqm3Lce5fTUbtRkaFCjnWbpmqIZHi+PFsyDyRhIKZDJ94PClZBaTo+FKllFKqR8T0o3mUZ8yYYVasWBHpMJRSqtdV1nkpvvM4spx1pN+yEok98hFL1XX1FG5cSfX2z5D9a8mo2cCoYGHLLRNqiWdv/ASaMqYSlz+DnEnHk5Q9Rm9wq5RSSvWAiKw0xsxou15bsJRSKgKGJHr4aNZvGf/pZez86/mM/N4iXEldj2gqrahg96bPqdm5ElfJGjLrNlIQ3MVRdstULfHsjR3H+oyLiMs7luGTjic5ZxwTNJlSSiml+kSPWrBEZDEw3l5MBaqMMdNFJB/YCGy2t31ijLmmq/K0BUspFU2MMSz51x2ctfv/aHAksiv3LJwjjsURl4Y3EMRfV46vaj+hyt0k1e1gqG8XwyhrOb6WBPbGjachfQqekccwbOJs0oaPB4fe/U0ppZTqbR21YIWti6CI/BGoNsb81k6wXjLGTDmcMjTBUkpFo6Xvv0vcB7dztG8VMfaEE601EUOxawTViaMIpI0lKXcywyYeR/JQ7eanlFJKRUqvdhEUEQEuAE4JR3lKKRVNTjrhZDjhZMoqKijdvYlAYw2xbidxyRmkZA4nKTWTAk2klFJKqQEhXGOw5gElxpitrdYViMjnQA3wS2PMB+0dKCJXA1cDjBw5MkzhKKXUwJORlkZG2lciHYZSSimleqDLBEtE3gKGtrPpF8aY5+3nFwGLWm0rBkYaY8pF5FjgORGZbIypaVuIMeYB4AGwugge7gtQSimllFJKqf6iywTLGPO1zraLiAv4FnBsq2O8gNd+vlJEtgPjAB1gpZRSSimllBq0wjHV1NeATcaYouYVIpIpIk77+ShgLLAjDHUppZRSSimlVL8VjjFYF3Jw90CAE4DfiogfCAHXGGMquipo5cqVZSKyKwwxhVMGtJoXWQ12+n5HD32vo4e+19FF3+/ooe91dOmP73deeyvDNk37YCUiK9qbflENTvp+Rw99r6OHvtfRRd/v6KHvdXQZSO+33o1SKaWUUkoppcJEEyyllFJKKaWUChNNsLr2QKQDUH1K3+/ooe919ND3Orro+x099L2OLgPm/dYxWEoppZRSSikVJtqCpZRSSimllFJhogmWUkoppZRSSoWJJlidEJHTRWSziGwTkZ9GOh4VPiIyQkTeFZENIrJeRK6316eJyJsistX+/5BIx6rCQ0ScIvK5iLxkLxeIyKf293uxiMREOkYVHiKSKiJPi8gmEdkoIsfrd3twEpEb7b/h60RkkYjE6nd78BCRf4nIARFZ12pdu99lsdxtv+9rReSYyEWuDlcH7/Uf7L/ja0XkWRFJbbXtZ/Z7vVlETotI0J3QBKsDIuIE7gPOACYBF4nIpMhGpcIoANxkjJkEzAZ+YL+/PwXeNsaMBd62l9XgcD2wsdXy/wF3GWPGAJXAf0UkKtUb/gK8ZoyZAByF9b7rd3uQEZHhwI+AGcaYKYATuBD9bg8mDwOnt1nX0Xf5DGCs/bga+FsfxajC42EOfa/fBKYYY6YBW4CfAdjXaxcCk+1j/mpft/cbmmB1bBawzRizwxjjA54AzolwTCpMjDHFxphV9vNarAuw4Vjv8b/t3f4NnBuRAFVYiUgu8E3gn/ayAKcAT9u76Hs9SIhICnAC8CCAMcZnjKlCv9uDlQuIExEXEA8Uo9/tQcMY8z5Q0WZ1R9/lc4D/GMsnQKqIDOuTQFWPtfdeG2PeMMYE7MVPgFz7+TnAE8YYrzFmJ7AN67q939AEq2PDgT2tlovsdWqQEZF84GjgUyDbGFNsb9oPZEcqLhVWfwZuBUL2cjpQ1eoPt36/B48CoBR4yO4S+k8RSUC/24OOMWYvcCewGyuxqgZWot/twa6j77Jetw1uVwKv2s/7/XutCZaKaiKSCDwD3GCMqWm9zVj3MND7GAxwInImcMAYszLSsag+4QKOAf5mjDkaqKdNd0D9bg8O9tibc7CS6hwggUO7GKlBTL/L0UFEfoE1tOOxSMfSXZpgdWwvMKLVcq69Tg0SIuLGSq4eM8YssVeXNHcpsP9/IFLxqbCZA5wtIoVYXX1PwRqjk2p3KwL9fg8mRUCRMeZTe/lprIRLv9uDz9eAncaYUmOMH1iC9X3X7/bg1tF3Wa/bBiERWQCcCVxsvrx5b79/rzXB6thyYKw9G1EM1mC6FyIckwoTewzOg8BGY8yfWm16Abjcfn458Hxfx6bCyxjzM2NMrjEmH+t7/I4x5mLgXeDb9m76Xg8Sxpj9wB4RGW+v+iqwAf1uD0a7gdkiEm//TW9+r/W7Pbh19F1+AbjMnk1wNlDdqiuhGoBE5HSs7v1nG2MaWm16AbhQRDwiUoA1sclnkYixI/JlMqjaEpFvYI3dcAL/MsbcHtmIVLiIyFzgA+ALvhyX83OscVhPAiOBXcAFxpi2A2zVACUiJwE3G2POFJFRWC1aacDnwCXGGG8Ew1NhIiLTsSY0iQF2AFdg/aCo3+1BRkR+A8zH6j70OXAV1lgM/W4PAiKyCDgJyABKgF8Dz9HOd9lOsu/F6ibaAFxhjFkRgbDVEejgvf4Z4AHK7d0+McZcY+//C6xxWQGsYR6vti0zkjTBUkoppZRSSqkw0S6CSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSinVT4hIvogYEXFFOpbBTkQWiMiySMfR34jIPBHZHOk4lFJqINMESyml1IAmIgtFxC8ida0et0Y6roHIGPOBMWZ8b5UvIpfZPyJc1Vt1KKVUpOmvpEopFSYi4jLGBCIdR5RabIy5JNJB9JbB8NkSkSHAz4H1kY5FKaV6k7ZgKaVUD4hIoYj8RETWAvUi4hKR2SLykYhUicgaETmp1f5LReR3IvKZiNSIyPMiktZB2VeIyEYRqRWRHSLy/9psP0dEVtvlbBeR0+31KSLyoIgUi8heEfkfEXF28TpGi8g7IlIuImUi8piIpLbaViEix9jLOSJS2vy6RORsEVlvv96lIjKxzfm5WUTWiki1iCwWkdjDP9OHT0R+ap+XWhHZICLndbCfiMhdInLAPpdfiMgUe5tHRO4Ukd0iUiIi94tIXDfrf9je/007hvdEJK/V9r+IyB67zpUiMq/VtoUi8rSIPCoiNcACEZklIh/b57lYRO4VkZhWxxgR+b6IbLXr+2/7vfvIruPJ1vt3EPNJIlLUndd3BH4H3A2U9VL5SinVL2iCpZRSPXcR8E0gFcgGXgb+B0gDbgaeEZHMVvtfBlwJDAMCWBed7TkAnAkkA1cAd7VKcmYB/wFuses9ASi0j3vYLncMcDRwKtBVlyzBugDOASYCI4CFAMaY7cBPgEdFJB54CPi3MWapiIwDFgE3AJnAK8CLbS7kLwBOBwqAacCCdgMQmWsnDx095nbxGtraDswDUoDf2PEPa2e/U7HO3zh73wuAcnvb7+3107HO53DgtsOI4WLgv4EMYDXwWKtty+1y04DHgafaJJ/nAE9jvb+PAUHgRrus44GvAt9vU99pwLHAbOBW4AHgEqz3cwrWZ/WI2YlyR+/PXzs5bhYwA7i/J/UrpdRAoAmWUkr13N3GmD3GmEasi9lXjDGvGGNCxpg3gRXAN1rt/4gxZp0xph74FXBBey1MxpiXjTHbjeU94A2shAHgv4B/GWPetOvZa4zZJCLZdl03GGPqjTEHgLuACzt7AcaYbXZZXmNMKfAn4MRW2/8BbAM+xUoMf2Fvmg+8bB/rB+4E4oCvtDk/+4wxFcCLWElFezEsM8akdvLobFKKC9pc7OcYY56y6w0ZYxYDW4FZ7RzrB5KACYAYYzYaY4pFRICrgRuNMRXGmFrgf7s6l228bIx53xjjxTpnx4vICPv1PmqMKTfGBIwxfwQ8QOvxTx8bY56z4280xqw0xnxi718I/J1W75HtDmNMjTFmPbAOeMMYs8MYUw28ipVwHzFjzLRO3p+2yR4A9mf7r8B1xphQT+pXSqmBQMdgKaVUz+1p9TwP+I6InNVqnRt4t4P9d9nbM9oWKiJnAL/GakFxAPHAF/bmEVitRW3l2eUVW/kB2MfuaWff1nVlA3/BSuCS7GMq2+z2D+AF4Go7YQCrxWtX8w7GmJCI7MFq6Wm2v9XzBvuYcHuy7RgsEbkM+DGQb69KpJ3zbIx5R0TuBe4D8kRkCVbLYyzWOV/Z6lwK0Gl3yzZazrsxpk5EKrBe/x4RuRkrUc4BDFZLZUZ7x9qvZxxW4jvDjssFrGxTX0mr543tLA89jNjD5fvAWmPMJxGoWyml+py2YCmlVM+ZVs/3YLVQtf5lP8EY8/tW+4xo9XwkVgvKQeNSRMQDPIPVIpRtjEnFSqiar/T3AKPbiWUP4AUyWtWfbIyZ3MVr+F/7dUw1xiRjtcR9mVWIJAJ/Bh4EFsqX48b2YSV1zfuJ/fr2dlHfIcSaIryuk8e8rktpKSsPKyG8Dki3z9+61q+pNWPM3caYY4FJWAntLVjvSSMwudW5TDHGJB7Gy2p5r+1zmAbss1/LrVjdEYfY8VW3ia/15wrgb8AmYKz9Hv28o9fTW8Qaa9fR+9NR97+vAueJyH4R2Y/VuvlHO6lVSqlBRxMspZQKr0eBs0TkNBFxikisPXFAbqt9LhGRSfZ4pt8CTxtjgm3KicHqMlYKBOzWrFNbbX8QuEJEvioiDhEZLiITjDHFWF0J/ygiyfa20SLStitZW0lAHVAtIsOxEozW/gKsMMZchTXGrPli+kngm3YcbuAmrATvo65OVFv2FOGJnTw+OIziErASlFKwJgzBGoN0CBGZKSLH2fHXA01AyO7O9g+ssW9Z9r7DReS0VscaaTWJSTu+YY8ti8Eai/WJMWYP1vkO2PG5ROQ2rBasziQBNUCdiEwAru1i/7Azxkzu5P25poPDFmCN65tuP1ZgjYn7RQf7K6XUgKYJllJKhZF98XwOVutCKVaL0i0c/Pf2EayJKPZjdUP7UTvl1Nrrn8TqqvddrO55zds/w574Aqvl4z2+bEm6DCtB22Af+zTWuKnO/AY4xi7rZWBJ8wYROQdrkormC/ofA8eIyMXGmM1YrV33YLX4nAWcZYzxdVFfrzLGbAD+CHyM1U1uKvBhB7snYyVSlVjdHcuBP9jbfoI19uwTsWbzewt7nJQ9lqqWL7tttudxrG6eFViTTzR3Y3wdeA3YYtfZRBfdOLG6LX7XrvMfwOIu9u8XjDFVxpj9zQ/AB9TY48KUUmrQEWPa9kBQSinVW0RkKfCoMeafkY5F9YyIXILVffBnHWx/GCgyxvyyTwNTSikVUTrJhVJKKXUEjDGPRjoGpZRS/Y92EVRKqSgh1k1vD2dyAjUIicjPO/gcvBrp2JRSajDQLoJKKaWUUkopFSbagqWUUkoppZRSYdKvxmBlZGSY/Pz8SIehlFJKKaWUUp1auXJlmTEms+36fpVg5efns2LFikiHoZRSSimllFKdEpFd7a3XLoJKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRS3fDy2mL2VDREOgyllFJK9XP9agxWe/x+P0VFRTQ1NUU6FDXAxMbGkpubi9vtjnQoaoBbv6+azxf/N96kBkb89OFIh6OUUkqpfqzfJ1hFRUUkJSWRn5+PiEQ6HDVAGGMoLy+nqKiIgoKCSIejBrjPdlbwS/dj0AT1O64hYdTsSIeklFJKqX6q33cRbGpqIj09XZMrdVhEhPT0dG35VGFRemB/y/PKz1+MYCRKKaWU6u/6fYIFaHKljoh+blS4xJWtbXke2rcmgpEopZRSqr8bEAmWUkpFkqPWasH6nAmkVG+McDRKKaWU6s80weoGEeGmm25qWb7zzjtZuHBh5AJq5ZNPPuG4445j+vTpTJw4sSWupUuX8tFHH/Wo7NNPP53U1FTOPPPMMESq1MDl9FUDsCPhKFICZdBYGeGIlFJKKdVfaYLVDR6PhyVLllBWVhbWco0xhEKhHpVx+eWX88ADD7B69WrWrVvHBRdcAIQnwbrlllt45JFHelSGUoNBbKCWEELtkMnWisrCiMajlFJKqf6r388i2NpvXlzPhn01YS1zUk4yvz5rcqf7uFwurr76au666y5uv/32g7aVlpZyzTXXsHv3bgD+/Oc/M2fOHBYuXEhiYiI333wzAFOmTOGll14C4LTTTuO4445j5cqVvPLKK9x77728+uqriAi//OUvmT9/PkuXLmXhwoVkZGSwbt06jj32WB599NFDxhUdOHCAYcOGAeB0Opk0aRKFhYXcf//9OJ1OHn30Ue655x4mTJjQYZzbt29n27ZtlJWVceutt/K9730PgK9+9assXbq003Pz1FNP8Zvf/Aan00lKSgrvv/8+TU1NXHvttaxYsQKXy8Wf/vQnTj75ZB5++GGee+456uvr2bp1KzfffDM+n49HHnkEj8fDK6+8QlpaGv/4xz944IEH8Pl8jBkzhkceeYT4+PiD6p09ezYPPvggkydb791JJ53EnXfeyYwZMzqNV6kjERuqw+tMwJM1BorAW7oDT87RkQ5LKaWUUv2QtmB10w9+8AMee+wxqqurD1p//fXXc+ONN7J8+XKeeeYZrrrqqi7L2rp1K9///vdZv349K1asYPXq1axZs4a33nqLW265heLiYgA+//xz/vznP7NhwwZ27NjBhx9+eEhZN954I+PHj+e8887j73//O01NTeTn53PNNddw4403snr1aubNm9dpnGvXruWdd97h448/5re//S379u3r9nn57W9/y+uvv86aNWt44YUXALjvvvsQEb744gsWLVrE5Zdf3jKb37p161iyZAnLly/nF7/4BfHx8Xz++eccf/zx/Oc//wHgW9/6FsuXL2fNmjVMnDiRBx988JB658+fz5NPPglAcXExxcXFmlypXpMQrKXJmUTq8HEAVO3dEuGIlFJKKdVfDagWrK5amnpTcnIyl112GXfffTdxcXEt69966y02bNjQslxTU0NdXV2nZeXl5TF7tnUfnWXLlnHRRRfhdDrJzs7mxBNPZPny5SQnJzNr1ixyc3MBmD59OoWFhcydO/egsm677TYuvvhi3njjDR5//HEWLVrUbqtTZ3Gec845xMXFERcXx8knn8xnn33Gueee263zMmfOHBYsWMAFF1zAt771rZbX9MMf/hCACRMmkJeXx5Yt1gXpySefTFJSEklJSaSkpHDWWWcBMHXqVNautWZqW7duHb/85S+pqqqirq6O00477ZB6L7jgAk499VR+85vf8OSTT/Ltb3+7W/EqdbiMMSSYOnzuZEYMzaLMJOM9sD3SYSmllFKqnxpQCVak3XDDDRxzzDFcccUVLetCoRCffPIJsbGxB+3rcrkOGl/V+n5MCQkJ3arP4/G0PHc6nQQCgXb3Gz16NNdeey3f+973yMzMpLy8/JB9OooTDp3O/HCmN7///vv59NNPefnllzn22GNZuXJlp/u3fk0Oh6Nl2eFwtLy+BQsW8Nxzz3HUUUfx8MMPt5swDh8+nPT0dNauXcvixYu5//77ux2zUofDHzQkUY/fncKItHi2myyyqwsjHZZSSiml+qkedxEUkREi8q6IbBCR9SJyvb0+TUTeFJGt9v+H9DzcyEpLS+OCCy44qMvaqaeeyj333NOyvHr1agDy8/NZtWoVAKtWrWLnzp3tljlv3jwWL15MMBiktLSU999/n1mzZnU7ppdffhljDGB1PXQ6naSmppKUlERtbW2XcQI8//zzNDU1UV5eztKlS5k5c2a369++fTvHHXccv/3tb8nMzGTPnj3MmzePxx57DIAtW7awe/duxo8f3+0ya2trGTZsGH6/v6Wc9syfP5877riD6upqpk2b1u3ylTocjf4gKdTjdyeTEuemWIYSX18U6bCUUkop1U+FYwxWALjJGDMJmA38QEQmAT8F3jbGjAXetpcHvJtuuumg2QTvvvtuVqxYwbRp05g0aVJLS8r5559PRUUFkydP5t5772XcuHHtlnfeeecxbdo0jjrqKE455RTuuOMOhg4d2u14HnnkEcaPH8/06dO59NJLeeyxx3A6nZx11lk8++yzTJ8+nQ8++KDDOAGmTZvGySefzOzZs/nVr35FTk4OYCV/3/nOd3j77bfJzc3l9ddfB6xuic3jrW655RamTp3KlClT+MpXvsJRRx3F97//fUKhEFOnTmX+/Pk8/PDDB7VcdeW///u/Oe6445gzZw4TJkxoWf/CCy9w2223tSx/+9vf5oknnmiZOVGp3tDkD5Ii9QQ9KQBUxQ4nxVcCAV+EI1NKKaVUfyTNrR9hK1DkeeBe+3GSMaZYRIYBS40xnTZjzJgxw6xYseKgdRs3bmTixIlhjVF9qe1sh4ONfn5UT+0sqyfrngKKx8xnzKX38K97/ocry/8AP1wF6aMjHZ5SSimlIkREVhpjDpllLayzCIpIPnA08CmQbYwptjftB7I7OOZqEVkhIitKS0vDGY5SSvVYozdAHD5wW2MnTVq+taGy/W6/SimllIpuYZvkQkQSgWeAG4wxNa0nSjDGGBFpt6nMGPMA8ABYLVjhikd1z8KFCyMdglL9WlNTAw4xODzWvdhiM/JhKzSWFRI3JrKxKaWUUqr/CUsLloi4sZKrx4wxS+zVJXbXQOz/HwhHXUop1Zd8jfUAOGOsFqyUrJEEjIP6Em3BUkoppdShwjGLoAAPAhuNMX9qtekF4HL7+eXA8z2tSyml+pqvyUqwXB7r/nc56UnsJw1/+e5IhqWUUkqpfiocLVhzgEuBU0Rktf34BvB74OsishX4mr2slFIDit9rt2B5rBas3NQ4ikwmjpo9kQxLKaWUUv1Uj8dgGWOWAR3dmfarPS1fKaUiKWC3YLnjrAQrI9HDh2QyqWFTJMNSSimlVD8V1lkEB7PnnnsOEWHTpo4vqgoLC5kyZUrY6ty8eTMnnXQS06dPZ+LEiVx99dWAdZPgV155pUdlX3nllWRlZYU1XqUGo+YEKybWSrAcDqHGM5REXxkE/ZEMTSmllFL9kCZY3bRo0SLmzp3LokWL2t0eCAR6XEcwGDxo+Uc/+hE33ngjq1evZuPGjfzwhz8EwpNgLViwgNdee61HZSgVDYK+RuDLBAvAmzgcByGo2RupsJRSSinVT4VtmvY+8epPYf8X4S1z6FQ4o/PhYXV1dSxbtox3332Xs846i9/85jcALF26lF/96lcMGTKETZs28cYbbxAIBLj44otZtWoVkydP5j//+Q/x8fG8/fbb3HzzzQQCAWbOnMnf/vY3PB4P+fn5zJ8/nzfffJNbb72VCy+8sKXe4uJicnNzW5anTp2Kz+fjtttuo7GxkWXLlvGzn/2MM888kx/+8IesW7cOv9/PwoULOeecc3j44Yd59tlnqa6uZu/evVxyySX8+te/BuCEE06gsLCw09f93nvvcf311wMgIrz//vskJiZy66238uqrryIi/PKXv2T+/PksXbqUX//616SmpvLFF19wwQUXMHXqVP7yl7/Q2NjIc889x+jRo3nxxRf5n//5H3w+H+np6Tz22GNkZx98i7QLL7yQSy+9lG9+85uAlQyeeeaZfPvb3+7ee6pUGAV9DcDBCRYpI6ESqNoDQ/IjEpdSSiml+idtweqG559/ntNPP51x48aRnp7OypUrW7atWrWKv/zlL2zZsgWwuvV9//vfZ+PGjSQnJ/PXv/6VpqYmFixYwOLFi/niiy8IBAL87W9/aykjPT2dVatWHZRcAdx4442ccsopnHHGGdx1111UVVURExPDb3/7W+bPn8/q1auZP38+t99+O6eccgqfffYZ7777Lrfccgv19Va3ps8++4xnnnmGtWvX8tRTT7FixYpuv+4777yT++67j9WrV/PBBx8QFxfHkiVLWL16NWvWrOGtt97illtuobjYup/0mjVruP/++9m4cSOPPPIIW7Zs4bPPPuOqq67innvuAWDu3Ll88sknfP7551x44YXccccdh9Q7f/58nnzySQB8Ph9vv/12S7KlVJ+zEyyJiW9ZFZOeb22q2BWJiJRSSinVjw2sFqwuWpp6y6JFi1paci688EIWLVrEscceC8CsWbMoKCho2XfEiBHMmTMHgEsuuYS7776br3/96xQUFDBu3DgALr/8cu677z5uuOEGwEoo2nPFFVdw2mmn8dprr/H888/z97//nTVr1hyy3xtvvMELL7zAnXfeCUBTUxO7d1tTSH/9618nPT0dgG9961ssW7aMGTNmdOt1z5kzhx//+MdcfPHFfOtb3yI3N5dly5Zx0UUX4XQ6yc7O5sQTT2T58uUkJyczc+ZMhg0bBsDo0aM59dRTAavl7d133wWgqKiI+fPnU1xcjM/nO+jcNTvjjDO4/vrr8Xq9vPbaa5xwwgnExcV1K2alwi1kJ1i4v/wMJmfnA1BfsoOYCMTU3xhjuPedbeRlJHD2UTmRDkcppZSKKG3B6kJFRQXvvPMOV111Ffn5+fzhD3/gySefxBgDQEJCwkH7W7cF63i5PW3LaC0nJ4crr7yS559/HpfLxbp16w7ZxxjDM888w+rVq1m9ejW7d+9m4sSJRxxPs5/+9Kf885//pLGxkTlz5nQ6wQeAx+Npee5wOFqWHQ5Hyxi1H/7wh1x33XV88cUX/P3vf6epqemQcmJjYznppJN4/fXXWbx4cYcJqFJ9wm+NwcL9ZQvWsPQUSkwqvjJtwQJYW1TNS2+9xchnvknDh3+PdDhKKaVURGmC1YWnn36aSy+9lF27dlFYWMiePXsoKCjggw8+aHf/3bt38/HHHwPw+OOPM3fuXMaPH09hYSHbtm0D4JFHHuHEE0/ssu7XXnsNv9+apWz//v2Ul5czfPhwkpKSqK2tbdnvtNNO45577mlJ+j7//POWbW+++SYVFRUt46CaW9e6Y/v27UydOpWf/OQnzJw5k02bNjFv3jwWL15MMBiktLSU999/n1mzZnW7zOrqaoYPHw7Av//97w73mz9/Pg899BAffPABp59+erfLVyrcJGD/COCKbVmXO8S6FxbVei8sgI93lPM91ytMd+xAPvwz2H+Lot3KXRV8uK0s0mH0K5X1Php8PZ8UajBp8gdb/v1WSg0OmmB1YdGiRZx33nkHrTv//PM7nE1w/Pjx3HfffUycOJHKykquvfZaYmNjeeihh/jOd77D1KlTcTgcXHPNNV3W/cYbbzBlyhSOOuooTjvtNP7whz8wdOhQTj75ZDZs2MD06dNZvHgxv/rVr/D7/UybNo3Jkyfzq1/9qqWMWbNmcf755zNt2jTOP//8lu6BF110EccffzybN28mNzeXBx98EID777+f+++/H4A///nPTJkyhWnTpuF2uznjjDM477zzmDZtGkcddRSnnHIKd9xxB0OHDu32+Vy4cCHf+c53OPbYY8nIyGhZv2LFCq666qqW5VNPPZX33nuPr33ta8TEaCcsFTkSaG7B+rKL4NCUWPaZDGLqdRZBgNW7qzjGtROAuIZ94Z+MaACqqPdx/t8+5pOHfkLt87dCwBfpkCKuot7HyX9cyqX3vkHoo/vAVx/pkCKuqLKBGf/zFj98fCWsfQoaKyMdklIqDKQ//WoyY8YM03YSho0bN7Z0d1OH5+GHH2bFihXce++9kQ4lYvTzo3rquTu/x5l1S3AtLD9o/SP/vYCLgi/iuq0UHNH9W9X5f3mDpyrnsyz2RE5oehfOuhuOvTzSYUXUS2v38bPHP+SLWPuHo3P+CkdfHNmgImzJqiJ+/OQa/uT+K99yLoN5N8FXb4t0WBH19/e287tXN3Ga4zP+HvNna1bSH62Gw+jOr5SKHBFZaYw5ZHKD6L4qUEqpLjiDTXjFc8j6poThuAhA3f4IRNW/uKp24iBEUfbJ1BKHKV4b6ZAibktJHSc6W52HbW9GLph+YsWuSlwOw+mO5daKVY9EfXfSNUVVAJzr/NBaUVkIFTsiFo9SKjw0wRrEFixYENWtV0qFgzPgxe+IPWS9SRlhPamK7nFYtU1+YrwVAAzJGsH6UD7+vasjG1Q/sLWkluPj9xLEyauOE2HHe1GfTGwrqeOMHC/x4mW7exzUH7ASiii2tqiab04dxtHOHeyKm2St3PFuZINSSvVYrydYInK6iGwWkW0i8tMjKaM/dWNUA4d+blQ4uEKNBByHtmDFpOcBEIjye2EVVzeRTg0AQ3NGsDU0HCnfGuGoIm/rgTrGxZRTF5fDR94CaKyAmn2RDiuiCsvrmRFnnYNHA6dYK/d8GsGIIssfDLGvqpHx6S6GUs77HAOJ2VDU/ftVKqX6p15NsETECdwHnAFMAi4SkUmHU0ZsbCzl5eV6sawOizGG8vJyYmMPbXlQ6nC4Ql4CzkM/R0nZowCoK9nZ1yH1K+V1PtKlGoDc3JEUmqG4fdXQUBHhyCJrf3UTw81+Ain5bAyNtFaWHHqbjWjR6AtyoNbLeEcRAE82zsS4YqP6nOyvbiJkYJy7BICVdWmY7ClRfU6UGix6+0bDs4BtxpgdACLyBHAOsKG7BeTm5lJUVERpaWkvhagGq9jYWHJzcyMdhhrgYkJNBNtJsIZlplNhEvGVRXeCVVHvI0NqMA43GemZ7HPaNxou3w7xaZENLkKa/EHqvAHS3HvxZ85mU6GdYO3/AsadFtngIqSkxrrdQbYpxRebQX1THA1J+SSURW9r574qa4bSPIoB2BoYSnWyn9TCDyDoB6c7kuEppXqgtxOs4UDrAQpFwHGtdxCRq4GrAUaOHHlIAW63m4KCgl4MUSml2meMIcZ4CToPvRl47pB4ikwmmVE+BquiwUc6NYTiM3A6HPhTCqAWqNgOI2ZGOryIKKvzkkw9sYFaYoaOxu9KpMadRXIUJxOldV4AUgJlkJwDVVDqySOhbEtkA4ugfdVWgpUVPADAHpPJbreT1KDP+oEia0Ikw1NK9UDEJ7kwxjxgjJlhjJmRmZkZ6XCUUqqFLxjCg8/qytRGy72w6qL7XlgVdT7SpQZHovX3251RQBAHlG+LcGSRU17nI8PuNulIGsaozET2OnKspDNKldZaCVZ8UwnuIcNJiHFSyHBrkouAN7LBRcj+aut1JwcrMa5Yaohne2iYtTGKvz9KDQa9nWDtBUa0Ws611ymlVL/X5AsRh5eQK+6QbTEuB1UxQ0lsKo7q2eEq6r1kOWuQxCwAcjNS2GsyMOXRm0yU13vJwEqwSMhgdGYCW4JZVqtElGpOsGIaSpCkHEZnJbLelw0mFLXTkpfXeYmPceJuLEMSskiNj2FdY4a1MYqTcaUGg95OsJYDY0WkQERigAuBF3q5TqWUCotGf5A4fOA+NMECaIwfjsc0RfWEDhUNfjKlFhKsFqyR6QnsDA0lUBq9v8CXtWrBIjGLURkJrG/KsGYSbKyMbHARUlbnJd7hx9FUCck5jMpIYHmdnUxEaTfB8nofaQkxUFcCiZnkpSewudoFcWlRnYwrNRj0aoJljAkA1wGvAxuBJ40x63uzTqWUCpdGf5BY8XaYYIVa7oUVvVO1V9Q1McRUQYJ1sZyXFs8OMwyp3BG1LXtldV7SxZq6noQs8uykE4Dy6GytKa31Mj6+zlpIGkZ+RgKf1Q6xlqM0wSqr85Ke6IH6UkjIIj89nsLyekgfHbWtekoNFr0+BssY84oxZpwxZrQx5vberk8ppcKlwRcgFj/ijm93u7v5XliVu/syrH6lsb4GD76WFqy89Hh2mWxc/jrrwjEKldf5yHHVgjggPo38jAR2GjvBitKuX6W1XkbFNVgLidnkpyfQYGLxJw6HKJ38o6LeR0ZCDNQdgEQrEd9X1UhwyChtwVJqgIv4JBdKKdVfNfkCxOHFEdN+C1Zidj4Atfuj+Nfm5iTKTrByUuPYQ7a1riI6p7Avr/My3F0L8engcJKfHs8ek4VBovbCubTOy8hYO8FKyCA/w5qZsyY+L2rPSXmdj/R4JzSUQaLVghUyUB03Amr3ga8h0iEqpY6QJlhKKdWBpiYvLgnhiGm/BSs7cyi1Jo7GssK+DayfMMbgbCyzFuwEy+104E2yWvaoLIxMYBFWVucjy/HluLS0hBhiYuOpismO6hasHJfdRTAhk4J0K8EqcedEZXc4Ywzl9V5yYxutiT4SsshLt/7OtNxLLgrPi1KDhSZYSinVAV9TPQBOz6H3wQLITYunyGRgKqPzXlh13gCpoS9ny2vmzsgnhEBldLZgldV5rUku7ARLRMhPT2CvDIvK1hpjDOV1PrKctdaKhAxS4t0MiXdTGMqOysk/ar0B/EFDrss+J3YXQYDtwejuTqrUYKAJllJKdcDXaP3i7vK034I1LCWOfSYDd110JlgV9b6DJnNolpOeSglp0dtFsN5nT/zx5b0d89Lj2RbMjsqks9YbwBcMkU41eFLA5QEgPyOBTd7macmj67yU1/kAyHLa35/ELNITYkj0uKwZJ0FbsJQawDTBUkqpDvi91hiIjhKsGJeDSvdQkhqL+zKsfqOi3kc6zQnWly1YeenxFAazCUThjHmhkKGi3kdSoAoSv0w6CzISWN+UbrXURNm0/hV2MpESqjroc1KQnsCq2lR7p+j6rJTXWfcFS6fKWpGQhYiQlx7P5iqB+IyoOydKDSaaYCmlVAf8dhfBmLjEDvepTxhBXKgu6i6aASobrPs9BWOSW1olAEamJbDLZGGirFUCoKrRjzvUREyooU0LVoLVHQ6irhWrvN5KsBIDlYeckxUtCVZ0npPUUJW1wk7G89MT2FVeD2mjou6cKDWYaIKllFIdCDZZ4yNi4pM63CeUmm89icKLoYp6P+lSQyg+46D1eenx7DZZuBtLwVsXoegio7x5/BUclEwUZMRT2DJVe3R9Vppba+J85ZD45TnJz4inCQ/+hKFR11rT3EUwOVAJrljwWH9j8tLjKapsJDSkIOrOiVKDiSZYSinVgeYEyx3bcYLlyR4LQNOBbX0SU39SWe8jg2qk1UUzwMi0eHab5taawr4PLILK6nxk8OW4mmZ56QnsNvZylCVYFXZrjbup/KCxegX2VO21cSOjLploTjpjffY5EQGsFqxAyFATPwJq9oK/MZJhKqWOkCZYSinVEa/VRRBPx10EhwwfR8gINfs291FQ/UdFg48MRw3ONglWgsdFdVyutRB1CVbrFqwvW/bSE2KI8cRT7c6MvmSi3oeLAM6mioOSzuZ7YUXjVO3l9T6SYl046w+0ScSt8Z7FzVO1R9n3R6nBQhMspZTqgPHZ3dti2p+mHWBE1hCKScMXrS1YUoMkZB6yTdIK7J2iq7WmvM5LplRZC4nZLetFhLyMePY5hkVfMlHnIzfG/rGi1WclOdZNekIMu0w21B8Ab22EIux7ZXVeMhI9UHfgoM9Jc9K5I9jc2hldnxWlBgtNsJRSqgPSkmB13IKVn5HArlA2zqrCvgmqH6msaySV2oMumptlZGRTQ2LUdYcrr/eR1c4YLLC6CW4PZkXdRXN5vZfR8XZXt1atNWB9fzZG4VTtVoIVA3UlB52TrCQPcW5nq6nao+ecKDWYaIKllFIdEL/9q3snCVaix0WJK4fE+t19FFX/Eagrx4E55KIZYERaPDtDWYSiLJkoq/OS666FuCEHzawI1rTkG5vS7daa6Jn8o6Lex0iP/XoT2iRY6Qmsqk2zd4yez0pZnY+sBBc0lB/a0pkez+ZqF8SmRtU5UWow6VGCJSJ/EJFNIrJWRJ4VkdRW234mIttEZLOInNbjSJVSqo85/Q2EEHDHdbpffcIIkoKV0FTTR5H1E/Wl1v8TMg7Z1DyTYKAsun6BL6vzkeOqOeiiuVleejw7o3Cq9rI6H7luO8FqM14vPz2eVXWp1kIUJRNldV5GxjZAOz9Q5KcnUNgyVXv0nBOlBpOetmC9CUwxxkwDtgA/AxCRScCFwGTgdOCvIuLsYV1KKdWnnIEGvBLXMsNXRwKp0TneyNVUbj1pp4tgc4Llqi2CYKCPI4scawxWdbutegUZCexqmao9ei6cK+q9DHU235D60C6C9cQRiIueyT/8wRBVDX5GuO0xZ20+K3kZ8eypaCSkCZZSA1aPEixjzBvGmOZ/OT8B7GmjOAd4whjjNcbsBLYBs3pSl1JK9TV3sB6fo/PWKwBP1hgAvFE00UUwZPB4O06wrJsNZ+MwAaje08fRRU5ZnY80U9VBC5Z1A2Ygai6cjTFU1PvIlBpwxx8yI2fzVO018SOiZrxR8z2whrnssXptPiv56Qn4giHq4kdY352Ar69DVEr1UDjHYF0JvGo/Hw60/he1yF53CBG5WkRWiMiK0tLSMIajlFI9ExNqxOeM73K/lOHjAKjZt6W3Q+o3qhv9pDXf76m9SS4SYyhxDrMWoqRlzxhDWV0TycGKdhOsjMQYTEwS9a7UqEkmapoC+IOGNKra/Zw0z5p3wBU9U7WX2ffAyqA5wWrTgmVP1b7flQMmBFXRN75TqYGuywRLRN4SkXXtPM5ptc8vgADw2OEGYIx5wBgzwxgzIzPz0D++SikVKTHBRvyurhOsEdlZlJoUmkqipwWrot5HhlQTEqc1GL8NESGYmm8tRMm9fOq8AcRXT0yoqd0ugiJCfkYC+5zRk0w031A3KVDZ7jlJ9LjISPRQaLKhdh/4Gvo6xD5Xap+TNFNprWhn4g/gy/F6UfJZUWowcXW1gzHma51tF5EFwJnAV40xxl69FxjRardce51SSg0IxhhiTQPBbrRg5WXEs9lkM7wyei6ESmu9pFNDwJNGjKP93+oSM0bgq3ETU769j6OLjAO17d8Dq7X89AR21GQxtiI6kvH9NU0AJAYqIGFMu/sUZMSzqSmT08FKxrMn9Vl8kVBW25x0VoAnGWIO/hszNDmWGJeDjd4MTgNNsJQagHo6i+DpwK3A2caY1j87vQBcKCIeESkAxgKf9aQupZTqS43+IAk0EXR3fJPhZsmxbvY5h5NYv6sPIusfDtQ2kS2VhDpIJADyMpLYaYZiyqMjmSipaSKzg25fzfIz4tnUlI6p2Qv+pj6MLjJK7ATL4y0/ZAbBZnnpCXxeO8RaiIJkoswegxXvq2j3c+JwCHlp8WyoirFuEREF50SpwaanY7DuBZKAN0VktYjcD2CMWQ88CWwAXgN+YIwJ9rAupZTqM1UNflKox8QN6db+1fH5JAfKobGqdwPrJ0pqrATLlZLT4T4FGQlsDw0jcCA6xqYdqOm6BSsvPYEdoWwEExVdJ/dXe3ERwNlUcUhXuGYFGQl8Xh9NCZaXOLcTV0Nph+ckPyOBXRWNkFYQNWMYlRpMejqL4BhjzAhjzHT7cU2rbbcbY0YbY8YbY17trByllOpvqhr8pEgd0s0Ey5821noSNa01XoZKJc5OEqzRWYlsNzk4q3dFxUxoJTVN1hTt0GkXwZ3GnvwjCj4rJTVNjPLUIiYEKbnt7pOfnkANiQQ8Q6IiwdpX1ciw1FioK+m4pTM9nl0V9ZghoyBKutgqNZiEcxZBpZQaNKrr60mWRpwJad3a3zN0AgBNxRt7M6x+o6y6lnSpQZI7TrBGZSSwIzQMhwlGRWvNgVovw13VIE6Ia/9zk58Rz47mBKts8Lfs7a9uYlKCfb+nlHYnEyY/wxqDVBs/EioGfzKxt6qR4SmxULMXOvj+5KUn0OQPUZ9UYH13ouAHCqUGE02wlFKqHfXVFQC4E9O7tX/miHH4jJOaog29GVa/4a8qtp4kDe1wn7SEGEo99nxH5Vv7IKrI2l/TRIG70kokOpj4IzPRg4lJosadAWXRcU7GxlZZC8kdt2ABlMTkQtngb9XbW9nIuGQf+BsgZUS7+zSfk33ukWCCUdGyp9RgogmWUkq1o7G6DABPUvdasEZlp7LLDCV4YHNvhtVvSG1zgjWs431EIN3uOhkFycSu8nrynGWQmtfhPiJCXnoCRc7cqGnBynfZ05F30IKV4HGRleRhhxluTdXeVNOHEfatRl+Q8nof4zxV1orU9hOs0VlWgrU1ZLdwlUXH3xWlBgtNsJRSqh2+unIA4lMyurX/yPR4dpBDTNXg/6XZGENcQ5G1kDqy032HZWdTTuqgb8EyxlBY1kB26ECX5yQ/I54twWFW0tlyd5PBxxcIcaC2ieGOcohNAU9Sh/vmpyfwhdduDR3EyfjeqkYA8l3WDzgdfVaGJseS6HGxpsH++xMFybhSg4kmWEop1Y5gvdVF0JPUvQTL43JS6hlJSuMeCPp7M7SIO1DrZWiwxFroIpkYnZXIttDQQT+TYFmdD5+3kWR/WZfnJC89gTWN2eCttiY6GKT2VDYQMjAsuA+GFHS6b35GPJ/W2d+10k19EF1kNCdYw4ydYHXQRVBEGJ2ZwPryoNW1chAnnUoNRppgKaVUO0J2gkU3ZxEEaEoZjYsAVA7u+2EVltUzQkrxxWYecpPUtkZlJLA9lDPoLxALy+vJkTJr+vUuEqyC9AS2hAb/RBeFZfUApDbugfTRne6bn5HAmvohGGfMoO4Ot7fSSrDSfEXgSen078uYrCS2HaiDzHFQOnjPiVKDkSZYSinVDkej1UXwcBIsZ9Z4AEKD/GKosLyekXIAMyS/y32tqdqH4fJWQkNF7wcXIYVl9YyWfdZC87izDuSlx1tJJwzuBKu8ATcBYur3QlrnCVZBegJBnHiT86F08J6TXRX1uJ1CfM0OyBgLIh3uOyYrkZIaL97UMYO+O6lSg40mWEop1Y7YpgP4iDmsBCt5+ESAQT+TYGF5A/mO/bgzOu/2BTAyLZ5dNCcTg7cVq7C8nnEOO8HK6DzBGp2VyH7S8DvjBvc5KatnYmy5dQ+sbrRgAVTEjxrUXQS3H6hjVEYijrKtkDGu033HZCUCcCBmBPjrrWndlVIDgiZYSinVjjhvKdXujE5/YW5r5PBhlJhUGvcN7nthlRwoYZhU4Mia0OW+bqeDplT74nowt9aUNTA19oB1g+G41E73TU+IYUh8DCUxIwf1OdlRVsdXkg5YC10kE83Tkhc5R0DVLvA39XZ4EbH1QB1TMgTq9neZiDcnWNuNPfviIP6sKDXYaIKllFJthEKGFH8pTbFZh3Xc6MxEtodycFQM3lYJANM8FX3mxG7tH581Ci8xg7plYmdZPeMde7tMJMCawGBsVpJ14TxIW7CMMWzYV8PM2H0gDsjq/LMSF+NkaHIsmwLDwISgfPDdD6vJH2R3RQPHxdu3OOjinIwYEkeMy8HapmxrxSDuOqnUYKMJllJKtVFW5yWTSgIJHd9Etz1pCTEUOXNJqts5aMdL+AIh4qrsC71utGABjMpKYbsZRujA4GzZ8waCFJZWkeffAcOO6tYxY7MTWduUBdV7wFvXyxH2veLqJiob/Iyj0BqT5o7r8pgxWYmsaMi0FgbhRBcbi2swBqY6dlorhk3vdH+X08GojATWVMZY09xrC5ZSA0bYEiwRuUlEjIhk2MsiIneLyDYRWSsix4SrLqWU6k37qhoZKpU4kju+iW5HapNGER+shfqyXogs8rYdqGMiO/G7EiA1v1vHjM1KZHMol2DJ4GzB2rCvhvzgblzGBzlHd+uYsVmJrPM1zyQ4+JKJdXurAUN2/SYYNq1bx4zJSuT98lSMOAblrHlri6oByPNtg4QsSOr6B5zRWYlsK6u3WkYH4TlRarAKS4IlIiOAU4HdrVafAYy1H1cDfwtHXUop1dvKS/cRJz5i0tq/R01nQmljrCeD8KIZYE1RFdMd2/APPRoc3fsnZGx2IltDw3HX7QVvbS9H2PdW7a7iKMd2a6G7CVZ2EltMrrVwYPAlnmuLqhkppcQ0lMCI47p1zLjsJKr8TgLJIwdlMrFmTxUZiR7iDqyC4cd0a3znmMxE9lQ0EMiYAAc2DNqWcaUGm3C1YN0F3Aq0/uafA/zHWD4BUkXk8H8OVkqpPtZYbHXFSRzevS5wrcXlTLTLGJzd4VZs3ctEx27i8rt30QxWy8S25oH6g3AcyardlZzi2QyJQyFtVLeOGZudyC6TTcARY104DzIfbS/jvIwia2Hk7G4dMy7bmtShKqFg0HWHM8bw6c4KThkeQsq3Qf7cbh03JiuRkIGy+NHQWAH1pb0cqVIqHHqcYInIOcBeY8yaNpuGA3taLRfZ69oef7WIrBCRFaWl+odDKRV53hI7wRo2/rCPzc4dTb3xUFs0+BIsYwy+HctwEULyvtLt4+JjXNQk2S17g2yii1DI8NmOco6T9VAwr9uzTmYmekiK83AgJm/QnZM6b4A1RdWcFrMW4jMga1K3jhubnQTYMwmWb4NgoDfD7FO7yhvYW9XI2cn2pCZ5c7p13Fg76dwhdmv6IB3HqNRg060ES0TeEpF17TzOAX4O3HakARhjHjDGzDDGzMjMzDzSYpRSKmwcFdsJ4ESG5B32saOykthhhmEGYbev7aX1HOVdSdARA4eRYAEkDB2DDzeUDq4LxNVFVQyr30hysBJGn9Lt46yZBBPZTu6g6yL44bYyHCE/42o+gvFngMPZreNS4txkJ3vYFMyBoA8qC3s30D707mZruvrpjR9b46+6mOCiWUFGAg6BtT77XnKaYCk1IHQrwTLGfM0YM6XtA9gBFABrRKQQyAVWichQYC/QegBDrr1OKaX6LWMMKfU7qIzJAaf7sI8fmRbPDjOc2JodvRBdZC3dVMLXHSvx5R4PMfGHdeyY7BS2mxxCgyyZeH39fr7hWo4RJ4w7/bCOHZudxCrvMKgpgqbqXoqw7728tpivxW3B5a+DCWce1rHjspNYXmffHmEQJeOvrtvPtCw3ibuXwvjTuz1+0eNyMjItni8qPRCXNii7kyo1GPWoi6Ax5gtjTJYxJt8Yk4/VDfAYY8x+4AXgMns2wdlAtTGmuOchK6VU7ymr8zHe7KB2yOQjOt7tdFAel0+Ktxh89WGOLrI2rHyPPMcB4qZ/+7CPHZudxJbQcIIlg+eiORgyvLqmiO/EfISMPhni0w7r+LFZiaz12kOTB8mkDnXeAG9tLOHqlOUQkwijTjys48dkJfJeZbq1MEiS8T0VDXy2s4IfDNsEvlqYesFhHT8mK4ktB+qs+2YNsu6kSg1WvXkfrFewWri2Af8Avt+LdSmlVFhs3rGD4VKOY/j0Iy7DmzraejKIbpa6aX8NcyqW4HfGwcSzD/v4sVmJbAnl4q4tGjT3fXp7Ywnjaz4iPVgGR1962MePzU5sNZPg4Eg8Fy/fQ7LvANOr37bOSTfuf9XauOwkyv1uaybBA+t7Kcq+9einu3AInFzzPAwp6Pb4q2bjhyays6yeYMYE63OiMwkq1e+FNcGyW7LK7OfGGPMDY8xoY8xUY8yKcNallFK9Yf+GjwAYNuH4Iy7DnW3NJDiY7vv05DvLOcvxEaHpl0Bc6mEff9BMgoNgCntjDP98fwc3eF7EpIw47K5wYCUTRSYTvyN2UCRYvkCIfy3byU/T30MIwexrDruM5pkEKxPHDopzUtXg49GPd3Hj6P3EFK+A2dd2u3tgs3HZSQRCxppJ0FsDNTraQqn+rjdbsJRSasBx7fkIPy48+bOOuIzU3PEEjVC7d3CMl9hRWseIjQ/gEoNn7nVHVEaCx0V1ot2yNwi6w725oYThe15gstmKnPgTcLoOu4ysJA+JsTGUePIHxXijf324E2d1IWc1vQiTz4Mh+YddxpgsaybB3a48qwU44A1zlH3rnne24fX7uLrh75A6Eo65/LDLGGfPrriNwXvfNKUGG02wlFLK1uQPMqpuFcVJUw97EofWCoamsctk49s/8C+EjDE8vOQFLnO8jnfaJUd00dwsfugY/LgGfMtEdaOfu174hF96niCUcyxMv/iIymmeSXAbIwb8OSmqbOAvb23hr6mP43S64ev/fUTlpMS5GZocy4bAcAgFBnQ32zV7qnjow53ck/8xnorNcOrt4I497HJGZSbgdAirm4ZaK3SiC6X6PU2wlFLK9sma9Uxz7CBYcHKPyhmdmcB2k4OrYuBeHDZ74sNNXLj393g9acSdcWQXzc3GDE1lu8nBDOAWLGMMP3v6c37W+EeGSD2OM/902F2+WhuXncTnTUOhrgQaKsIYad9p8ge59tFVXOt4limNy+FrCyHlkNtedtvY7EQ+qc+2FkoGZjJRWe/jukWrODVxJ6fv/7vVhXTiWUdUlsflpCAjgTXlTutm1gM8GVcqGmiCpZRSttIVzwKQe/z5PSonNT6Gva4RJDfsGtA3S/1keykpb9zABMduYs+//4jGXrU2JiuRLaHhBPYPzItmYwy/e2Ujczb/nhMca3F84w7Imd6jMsdkJbKmZSbBgdfi6QuE+NGizxlT/BI/lCdh2nyYeVWPyhyblcT7FakYh2tAttbUewMseHg5KTVbudfxB+t+euf+tds3oW7P+OwktpTUQtaEQdGdVKnBThMspZQCvIEgY4pfpsSTh3vokU3R3lpD0mhcxg9Vu8IQXd9bubOU/Y9cxTccn+A98TYc40/tcZnjspPsmQT3DLgp7IMhw+0vrGXMxz/lYtfbmDk3wrELelzu2OwkNofsW0YOsGSi0Rfk//1nOVmbH+VPMfcjo06Es/7So0QCrIkuav0O/KmjB1xrTXmdl4v/+Slx+z5hSfz/4oqJg0uWQGxKj8odl53ErooGAukTrDFYoVCYIlZK9QZNsJRSClj28UccLZupm3hhjy8QAUzmOOtJ2ZYel9XXXv50Aw0Pn8+5LKVm9s3EnfzjsJQ7JiuRrc0zCQ6gboLVDX5u+tcbfH3l1Vzgeg8z7xbka78Oy+dkXHYixaThcyUOqMkLth2o4zv3vstpO3/H/7gfQsadBhcuOuxp2dsz1p7UoSJh9ICaqn1tURXn3reMafuX8HjM74hJyoAFL0NaQY/LHj80EWNgf+woCDRCVWHPA1ZK9ZrDn/ZIKaUGGWMMlR8+RBAHBaf8V1jKTMyZBNuhcd9G4safEZYye1uTP8h/nljEqVt/S66jnNqv/5HkOT3r7tVaosdFTcIo8GMlWMOPCVvZvWXpphLeeOp+bgs8QLLLD+c9iEw9/Bstd2RociyJHjclMXmMGACtNaGQYdHy3bz48vPc47ifAudemHcznPyLHo1Fa22sPVV7oTOfoVWvgLcWPElhKbs3eANB7nt3O88s/Yw7PP9ijnMljDoFvv0viBsSljqaZxLcYnKtuQQPbIK0UWEpWykVfppgKaWi3oote/ha42vsHXoyI5Ozw1Jmbs5QDphUHPs20PPf9Hvf++t2cOC5X3KV/xVqYofCd18iKf/I7wXWkdih4/DvceHu5+NI9lQ08NCSVzhp15/5X+cXNGQdheuCf0Dm+LDWIyJWy179CEaULg9r2eH2RVE1f1ryHmcc+CePu97HJA2Hc5+F0aeEtZ7kWDfDUmJZ589hNljJeO6MsNYRLu9vKeX3L37OyRVP8U7Mi8Q4DJz6e5j1/8KWcALkpScQ43KwqjGTU8DqTjrhG2ErXykVXppgKaWi3rbX72em1BN32i1hK3N0ZiLbQzmM7eddBAv3lbD66Ts4ofwJUqWekgmXMuxbvwNPYq/UNzo7hR27hzHuwCZ63sEu/CrrfTz21qcMWfkXfiFv4fck4j/5duJnX3NE97rqjnHZiXy+YRinhMqhrhQSM3ulniP1+e5KHnx7DaO3/Ye/ul8iJiaEHPcDHCf+BGKTe6XOsdlJfFydzVVgJRP9LMH6fHcld7+5idTtz/Mvz9MMdZfChLPg67/tlZYlp8Oa0v+L0hCkjBxwY9OUijaaYCmlotqOkirmlS+mKPkockeFr8Umd0gcH5HD0TWfgjFhGa8TTtuLitn0/J185cATnCt17EqfQ9I5v2FY3sxerdea6GI4o0o24u7Vmg5PdYOfp9/+gKQV9/E9luJyGJqmX0HCqb+C+LRerXtsVhJLVw2FGKxkIvHEXq2vuz7dUc7Db61kwu7H+V/XGyS76/FPOAfnqb8Jy7iizozNSuSxHQmYuHikn0zVbozho+3lPPDOBnJ3Pct/u18iN+YAoaypcPpDUDCvV+sfn53ExzvKYeQETbCU6uc0wVJKRbXlL/+L+VJG9Sl/Cmu5LqeDyvgCYr1vQX0pJGaFtfwjtW33XjY9fydzyxbzTalnW+oc+OavyBsX/u6A7RmTncjSUC5n1XxizSQYk9An9XakpKaJ5994m6Ff/I3L+RAjTuonXUjq124moZeTiGZjshN5IJRrLZRuglGRS7CMMXywtYzH3vyUGcWP8UfXO8S7mgiMPxNOuAl3H42bG5edSFMAfEPG4Ynw7IqhkOHNjSU89PZappUs4Y/uV8lwVxHMmQEn3o1j7Glh7Q7YkXFDk1jy+V68aePx7FgKQT84+9PPFEqpZppgKaWiVkWdl6m7/s2B2Dyyjjqym4B2JpA2BoqxxpBEOMHaXLiHrS/8gXnlTzFGGtiWNg+++SvGjDmuT+MYm5XI38xIa6FkPYyY1af1N9tZVs8rr73E2C3/4GrHcryOWKqn/BfpX7+J1ORhfRrL+OwkSknF60rGE6GWiVDI8PamAzz55gecWPo497jew+U2mMnnwwk34cqa0KfxNM8kWBY/iuEHlvVp3c38wRAvrtnHY+98zglVz/AP1xskuesJFpwEJ9yMM39un7ZMj7fPyd6YfEYFfVCxI+xjApVS4dHjBEtEfgj8AAgCLxtjbrXX/wz4L3v9j4wxr/e0LqWUCqf3XnuS86SQkuPv7JVfoD3DJkIxBEs34+zl7kMd2bBjF9tfuJMTK59mvDSwLf0E5MzbGDOqd7sCdiQp1k1J4gTwAftW93mCta6oirdeW8Kxu//FDxxf0OhOpPqYH5Ny8g/x9HJXwI4MS4klNT6GfTEFFJT07bTkwZDh1XXFPP/mu5xe9Th/c36ExDhh+iU45t7Q610BOzI2yxoDuNOZz/D6JVBfBgkZfVJ3kz/Ikyv28MzS5ZxV/wyPud4h1uUlNP5MOOHHOIcf2ydxtDVuqJVgbQoOZxRY3Uk1wVKqX+pRgiUiJwPnAEcZY7wikmWvnwRcCEwGcoC3RGScMSbY04CVUiocvIEgOesfoNKZRvbcy3qljsycUdSv9OAv2kBqHzfUrNtWyM6X/sCJlc8wSRrZlnEScuavGVMQ+anRU7PzqSxKZUjx6j6r89PtZXzw2hOcWPJvbnBsoc6TRt3sX5E452riemmihu4SEabkpLC6rICC/a9BwAeumF6t0x8M8cLqfbz+9hucW7uIvzuXE4qJxTHjGhxzfgjJOb1af1eSYt2MSItjZeNQ5oKVTBSc0Kt11jb5efST3bz2wcfM9z7D0673cboNMvU7MPdGHH3citdWTkosiR4Xqxoy+YbDbf1AMfm8iMaklGpfT1uwrgV+b4zxAhhjDtjrzwGesNfvFJFtwCzg4x7WN+iFQoYmbyPeump8DdX4vE34fH58fh9+vx8nQZwCTncMDpcHpysGZ4z1f1dcEonJqcTFuJF+NqBeqf7m/ffe4utmLTun3soQl6dX6hidncR2k0NOSd/dVHfNlh3seukPnFz9LFOkkW2Zp+A46zbG5B3dZzF0ZVJOCmt35TFv3+pevdu9MYYPthzg01cf4fSKR7jZUUht3FAaT/g/EmddHpab4obL5Jxk3i3M5zxXE5Ss67V7hHkDQZ5ZuZdl77zIdxoW84BzDX5PIsy+Cdfx1/ZZK1F3HJWbyhu7srgerGSilxKsynof//pwJ+99tIzLg0tY4vwIiXEhx1yOzLkehuT1Sr2HS0QYm53IugNeGHYU7Pks0iEppTrQ0wRrHDBPRG4HmoCbjTHLgeHAJ632K7LXHUJErgauBhg5cmQPw+mfAoEAB/YWUr53G02Ve/FX74e6A7gaDhDrLSPeV05sqJ64UAOJNBIvfuJ7UF+diaNO4ml0JOB1JOBzJeJzpxDwpEBsKs6ENFyJacQmZRCfmkFiaibJaVm4E9J0wKyKCsYYYj65h3riyT/tB71Wz/jsJF43OeRXbu21Opp9vmkbe17+A6fUPMdU8bIj66s4z/41Y0ZM6/W6D9f0ESms/bCAE0pfBH9j2BMdYwxvry9m9esPcVb149ziKKImcST+k+8m6eiLer116EhMHp7CC4HR1r/KRcvDnmA1+oI88dkuPl/6LN/1PcV3HRvxxQ/BzPkV7lnfg9iUsNYXDkflpvLS2mKC2SNxFoX/HmGltV7++cEOln/yHv9lnuFG53LwxOKY+X04/jro47F43TElJ4Ulq4oIHT8Lx8p/9Ulrp1Lq8HWZYInIW8DQdjb9wj4+DZgNzASeFJHDugGEMeYB4AGAGTNmmMM5tj8xoRDF+3ZRsu1zGou+wFG5k7j6PQzx7mNo6AA5EqB1hwu/cVIpKVQ706hzp1PtGQWeJIw7kVBMIqGYJMSTiMMdi8vtxuWyHiGcBI0hFPBjgl5Mq/+Lrx7TVI3x1iDeWly+WlyBOuIClaR7d5NUW0eiacAhHZ/mBmKpdyTR6ErB504m4EnFxKbiiB+CxA3BkZCGOyGdmKR0PElpxKdm4ElMR2IS+t001F0yBkzIeoSCYEKYUIBgMEgoZAiFAoRCQULBgLUctJZNKEgoGGrZhjEEQ0FCoRDGQMgYQsa6yGt+3lrrsyT2eyGt1nZ0GqWDpeb9vzxODiqv5am0qburCtu9S5F0uL9pZ39r145eUPvrO/0UdXhyOmoHaX//vbu3Mde3jC2jFzAxLrWzGnskLsZJefxokr0fQmMlxA0Jex3L129h36t/4Gu1z3OU+NiZ/XWGnf1rxuROCXtd4TJ9xBCeDRUgJmhNdBGmexyFQobX1u5m8xv/5Jy6J/maYz9VyWMIfO0Bkqee32v3sQqH6bmpFJNOvSeLhKLlcNz/C0u5dd4Aj368k63vP8mlgWe4wrEdb0I25oT/JebYBRGfxbEzR41IBaA0ZRpDi1aE7XYH+6ubuP+97Wz47G3+nyzhZ87PCcYk4TjuJpj9fUhI73EdveXYvCE88sku9iZNZUSgCUq+gAiNCRsMQiFDgz9IQ2MTjfU1NNbV4GusxddQg7+xlmBTLfjqMUE/BLyEgj4k6IegD4I+xF52GD9C87/nxvqsAi3/MppW2wAjDkI4MOLAiAscThAHxuGy/j1zOEGc4LC3NS+L9VycLhAn4nAgDms/h8M6ThxOxGFtdzgd9rITh8NlPXc6cThd9rrmMlw47PWO5ucOFw6H4HQIDgGHQ3CI9Rzky5cImDb/P+S5aX71h15/mlbnCvPluTL2eWzebtzx/P/27ju+qvp+/PjrfVf2ToAsCHslYQiICiruVdE6W7et/trar9Xa2lqr1U6rrbZqq9W66t57K6KigrL3JpCQQPZe997z+f1xbmKABEJyk5uE9/PxCPee/b735ITzPp8Vn5BMhMfZlVPd6w74v40x5oSOlonIj4FXjP3pvxYRC0gGdgKZbVbNCMwbEPw+Hzs2LqNk3RdYhcuIqd5ERnMeaVLXmkRVEUWJK5XSqNEUxp6AM3EYUYNGEJ0ylPiUDGISUxjkcNLb/Yr5vF7KK8qoqSymtqKUhqpSmmrL8NWWYxrKoaESV3MlnuYqwutriK7dTRy1xFGLRzpuQtdsXDRKGF7ceHHhFxc+ceMTN35x4Rc3lsMNCKbNf5AtN+UG2eMGXTA4sHAYP2IsJPDegWVPGwsHfpzGby/DwhGY9+17+8eJ9e3+Wtc17SaagnateSjIBGokkuFzf9Pjx2oePAl2AIXLYORxQdmnMYZv1myg6N27OKH2TQ6TZrYOOZmMM29lZPrEoByjJw2JC6cgagJ4ge1fdjvB8vkt3l62je0fPcR3G17iNCmlImEC/pPuIn78Gb3ShXZ3ZSZGkB4fwQbnOKYGobSmqt7LE19sYecXz3CF9Qo/cuTTGDsUjv0HYZO/Dz1ULTaYstNjcTmEFY4JDKl5y+41L2lkl/eXX17PA/M3s2PpB/zY8Sq3uVbjD0+AI3+Lc/pV0IMPW4LlsGH2Q5qvvSPtm6z8rzXBCmjy+SmpbqS0vIzakny8lUX4a4rx11cgDeU4GivxNFcS5qsi0ldNlFVDLLXE0MAg8XbpmJYRmsWFD9ce9zGGPe9vvk2t7GkHBmfL/QoWrsD9jUus7n8RA9RjvpNJOf8fnJEb2vahndXde8nXgDnAJyIyBnuYxFLgDeAZEbkbu5OL0UC/rSzc2FDHxsUfU7d+HrGlS8lq3MBwaWQ4UEMEO93D2Zh8AgyeQOzQXFJHTyEuKZW+V+ECXG43yYOGkDyovULJfRljqGnyUVjTRH1dNQ3VpXhry/HVluOvL8fUVyCNFbibq3D6G8HvxWHZT3TEasZhvDgsL07Li9NqbvMUB2jztEfaPNWwn3FIIDVy4BcHRtxYEhZ42uO0X3FgifPb6XZe2eO9I3Cj5WjzhKjlVQJPhwJPgMSx5/vAutLy2vLe4UDEiTgEEScOsevJS+Apj8P+u9paorTH0xvT8iJ7zwp89x2dkz2m9pi39/OhPeebduZ3pJ2nTB3MB5AOgjUdzJcO9tPR/gM763Bf7S/qaH1b3JgjGRXX8484orKmww6o3bqI6G4mWMYYvlq5npL37+TEurc5TLzkpZ5CxtxbGZU6PkgR944RI0azbUM6WVs/RY66tkv7aPZZvP71RnZ/8iDnN7/KXKmkPGky/pMfIGHMif2qVF1EmDkiiXnrhjO17jOo2N6ltj9ltU089tlGqhc9xRXmVYY7dtOYOBrmPER4dt8uxdtbpMfF9KxEni8byckAW+Z1KcHaVlrHv+dtomzFO1zjfJXDXBvxRw6CWX/EedgVEBYd9Nh7SkaCnYi/n+/knLihkLcAZv441GH1uPpmHwXl9RTtKqS6aAu+8u04qvMJqysioqmEGG8piVYFg6SSDGlqfx9EUOeIod4VS3NkHA2eDGrD4rE80RAWgyMsCkdYDK7waFwRMXgiY/FExuAKi8LlCcfpDsPtsX+c7nBwenA4nIQH84O21KwJ1JDxWz78Ph/G78eyfPh9Xiy/H8vvxVgWfsuH5fdh/JZd68bvx7TWvrFr3JjW9z57OrAvY1lg7Gmz1yvGXm4CtXAsY5cuWYESpfb+tLZWlmlvWQelz0LL/L2r2rSZJ/ZOM6NHMyY9vptfcO/p7l/aR4FHRWQ1dqe7lwVKs9aIyAvAWsAHXNMfexBcOf8lHF/dx6jGNeSKF59xsM01gtUpp+HMnMaQCbNIH5nNOEf/KK7sChEhNtxNbLgbUqKB/vHkQKm+YmxWBpvmp5Ow5QuiT+zaPowxfLF8DWUf3MVJ9e/gER956aeRceYtjBwS2p7Nuuq4cSnMX5PNZXmfIk21B3WT2+j188qXa6j57AHO871BotRSNngm1sm/IXHE0f0qsWrryJFJ3Lcsl1+EARvehZk/6vS2u6sbeXT+WvyLn+AKeZN0KaMhJQeO+xvh4/pHKV575oxL4c/vlOIbPAzXhndgxlWd3nbDrhr+PW8j3jVv8BPX62S7t+GLSYfZf8M55RJwB/XWuFeICHPGpfDK0p34pp2Aa9Vz0FwPnu603A49YwwltU1s3l1NWcEWGnetx1G+mfCa7cQ0FjLIX0yGlDBGGvfYrl4iqHYl0RCVTFPkJPKjh+CMSyUsIY2IxHSiEoYQHpuMRCYS6QrrVvv2XtHysNfhxOHy4AC0ZXz/1K0EyxjTDFzcwbI/AX/qzv5DzddQQ4K3kuWDv0vkuOMYOe0kRseGZpwUpVT/NCkznhfJ4YLdn4C38aBu6owxfL5kBRUf3c3JDe/gEj87Ms4gY+6tjBw0ugej7nnHjBnEj60ZXOF/Hza+BznnHnCb2iYfL3+2DP+X/+Zc611ipYGy9GMxp9xE0tCZvRB1zzphwmB+40xnV/gIhqx8rlMJ1vayOv43bznRKx/nasd7JDmqaUidAcc9RMSo4/ttstniuHGD+PM761kVfzxTtj4BNbshZvB+t1mRX8kD89YTteFVrnW/wUh3Ib6EETD7fly5F/T7TiFOGD+YpxbuYEnUbA73Pgrr34bc80IdVqdYlqGwqoHNReWU562iqWgtzvLNxNVtY6i1k6lSRHib6noNEkllWCqNUSPYHX8slclZxAweScyQETgShhEZEd/3kyZ1SOo/dQVCYMrJlyGnXkFohllUSg0E4W4npYNn4Sl5D7P1E2TsqQfcxuu3mP/FF1gL/sGcpk9wCORnfoeMubcwImVUL0Td8xKjPESPns3O7YNIXfgAjuxzOkwGSmqaeGP+l0Qs+Q8XmI/wiI+KrFPhlJtISu17vSR2VVyEm1Oyh/DY+mO4qfAx2P4VDDui3XWX51fywscLGbH5CX7u/JgoZxMNw46DOb8gIuuoXo6854waFMPhwxP5c+FUXjCPIQv/DSfevs96lmX4bFMJz3y2mrS8V7nV/Q5pnlL8gybC0X/CNWGuXdV7AJg9OoX0+Aj+vjGO5xNHIl/dD9nn9LlSSr9l2FJSy7rNWynfugRTtJqk2o2MYTtHys7Wdt0WDio8qdTHDqc0+QQi08YTmzEe16BxREQlE9HPHxKoQ5N01EYiFKZNm2YWL14c6jCUUiqoXvlmK8e8dTRW5hGk/PDFDterb/bx8UfvEL343xzjX0izuCkYfh5ZZ9yIKymr9wLuJYu2lvHGI3/kT+5H4eyHYNIFrcuMMazMr2DRhy8wevtzHCPLscRB1ejvknTyryC5f5fgdWRVQRXf+9dHLIj6FXGJKciV70NgIOS6Jh/vrMhn/ZdvMqPsdY53LsWB0DzuLMKP/TkM6bs9R3bH/A3FXP7YN7yT8T8mVMyDK96DDLtjh5KaJt5asZOFX37C0dVvc7brCyJpxJ8+A+cxv4DRJ/X7Urz2/O+rPG59fQ3PH76Nw1fcDCf+AbrYljEYjDHklzewdut2yjctxFm4hME1axjHNoZIRet61e5kauPHIUNyiBk2hejMHEgc0S+rayoFICJLjDH79NSkCZZSSvWwZp/F03/+AVdYr2Bd+RGOodP3WL65oJi1Hz7KyO3PM5Gt1EkUxeMuYdhpN+CI6e2+RnuPMYZfPL+EC9f+hKnOLRRM+H+Ux02gcNcurB1fM9O7kBSpotaViHfypSTMvhri2h1ScUC58731rPrsVR733EldZAabkk9ke5Wf8IoNHCkriZc6GtwJOA+7GM/hV/WZgXB7ijGGX728kg8Xr+XD6NuIsypZm3IaG+ujMJX5HOlYTYaU4neEQc65OGf8sMcGau4r/Jbh4v8uYtG2Ul5P/g85NZ9hXf05jrTeKdEtrmlkVV4Juzd+g79gMQkVKxlvbWakowgAC6E0PIuG5Byihk4mccRhOFJz+nQX+Ep1hSZYSikVQs8vWMOsD79DrMuieNoN1EekUlKwmbAdnzG5aTFR0kShJwvf1CsYeuyVraUWA12j188fXvqKWWtv41Tnt92TN0gExYOPZtDM84nIPrPft5s5GJZleOjzrSz79HWu8f2PiZKHUwxV7hS8Q48m6bC5yJhTD6nvxOu3uO/jTbz15VKu8z/BCY6lREoT9a4ErPRpRE86E8adAZGHTjvp+mYfd7y7nncXr2ee46eUpB7LiB89F/TjVDd6WZVfSd6mVTTlfU102QrGeDcwXrYTJj57HVcSVUmTcA+dTtKYI3FnTj1k/oapQ5smWEopFULGGB557X1mLfsF4xz5rfPLHQkUDTme9KMvJX5s/+0Br7sKKxsoLtpBRGMJQ4ckETF4zIBpM9NVfstQVttEmNMQ5wHcEaEOKeQsy1DZ4CXS4yTcYYFT+1jz+i3eufsqzqh7hdoffkVcRtd7Fm30+llTWM2GrXnUbFlE+O5lDGtcx2THZuKlDoAmCac8biJkTCNxzEzChh0OsWmH7N8udWjTBEsppfqA4uoGdm5cjsdXTfrQkcSnjtQbE6VUt2zYvJH0J2eTHz6GjGvfIyYq6oDb1Df7WFdUw/r8Yiq2LcdRuIS02jVMkk0Md+wG7A4oyqNG4B0ylbhRM4kcMRNSxh3yDz+UaqEJllJKKaXUALXotX9z+PKbWCOjWZt9I4MmHk1CdDhev6G2ycfusgoqi7biLd2Cp3Qdgxs2M152MFyKcIkFQK07mbpBU4gcfjgxI2dC2pR+NRCzUr1NEyyllFJKqQFsyyf/I+nzW4i3KqkzYZSYeBxYREoTyVK9x7pVYak0JY0nPHMSMUMnIxnTIDZdS9SVOggdJVg6DpZSSiml1AAwcs6lcMRZ1K15l5rNCwmrK0YcTixPFFVJmcQMtgfoZdB44iLiQx2uUgOWJlhKKaWUUgNFeCxRh11A1GEXHHhdpVSP6FvDfiullFJKKaVUP6YJllJKKaWUUkoFiSZYSimllFJKKRUkfaoXQREpAbaHOo69JAOloQ5C9Ro934cOPdeHDj3XhxY934cOPdeHlr54vocZY1L2ntmnEqy+SEQWt9f9ohqY9HwfOvRcHzr0XB9a9HwfOvRcH1r60/nWKoJKKaWUUkopFSSaYCmllFJKKaVUkGiCdWAPhToA1av0fB869FwfOvRcH1r0fB869FwfWvrN+dY2WEoppZRSSikVJFqCpZRSSimllFJBogmWUkoppZRSSgWJJlj7ISKniMgGEdksIr8OdTwqeEQkU0Q+EZG1IrJGRH4WmJ8oIh+KyKbAa0KoY1XBISJOEVkmIm8FpoeLyKLA9f28iHhCHaMKDhGJF5GXRGS9iKwTkSP02h6YROT6wN/w1SLyrIiE67U9cIjIoyJSLCKr28xr91oW272B875SRKaGLnJ1sDo413cF/o6vFJFXRSS+zbKbAud6g4icHJKg90MTrA6IiBP4F3AqMAH4nohMCG1UKoh8wA3GmAnATOCawPn9NfCxMWY08HFgWg0MPwPWtZn+K3CPMWYUUAH8ICRRqZ7wT+A9Y8w4YBL2eddre4ARkXTgWmCaMSYbcAIXotf2QPI4cMpe8zq6lk8FRgd+rgYe6KUYVXA8zr7n+kMg2xiTC2wEbgII3K9dCEwMbPPvwH17n6EJVsdmAJuNMVuNMc3Ac8DcEMekgsQYU2SMWRp4X4N9A5aOfY6fCKz2BHBWSAJUQSUiGcDpwH8D0wIcB7wUWEXP9QAhInHA0cAjAMaYZmNMJXptD1QuIEJEXEAkUIRe2wOGMeYzoHyv2R1dy3OB/xnbQiBeRFJ7JVDVbe2da2PMB8YYX2ByIZAReD8XeM4Y02SM2QZsxr5v7zM0wepYOpDfZrogME8NMCKSBUwBFgGDjTFFgUW7gMGhiksF1T+AGwErMJ0EVLb5w63X98AxHCgBHgtUCf2viESh1/aAY4zZCfwN2IGdWFUBS9Bre6Dr6FrW+7aB7Urg3cD7Pn+uNcFShzQRiQZeBq4zxlS3XWbsMQx0HIN+TkTOAIqNMUtCHYvqFS5gKvCAMWYKUMde1QH12h4YAm1v5mIn1WlAFPtWMVIDmF7LhwYRuRm7acfToY6lszTB6thOILPNdEZgnhogRMSNnVw9bYx5JTB7d0uVgsBrcajiU0FzFHCmiORhV/U9DruNTnygWhHo9T2QFAAFxphFgemXsBMuvbYHnhOAbcaYEmOMF3gF+3rXa3tg6+ha1vu2AUhELgfOAC4y3w7e2+fPtSZYHfsGGB3ojciD3ZjujRDHpIIk0AbnEWCdMebuNoveAC4LvL8MeL23Y1PBZYy5yRiTYYzJwr6O5xljLgI+Ac4NrKbneoAwxuwC8kVkbGDW8cBa9NoeiHYAM0UkMvA3veVc67U9sHV0Lb8BXBroTXAmUNWmKqHqh0TkFOzq/WcaY+rbLHoDuFBEwkRkOHbHJl+HIsaOyLfJoNqbiJyG3XbDCTxqjPlTaCNSwSIis4DPgVV82y7nN9jtsF4AhgLbgfONMXs3sFX9lIgcC/zCGHOGiIzALtFKBJYBFxtjmkIYngoSEZmM3aGJB9gKXIH9QFGv7QFGRG4HLsCuPrQM+CF2Wwy9tgcAEXkWOBZIBnYDvwNeo51rOZBk349dTbQeuMIYszgEYasu6OBc3wSEAWWB1RYaY34UWP9m7HZZPuxmHu/uvc9Q0gRLKaWUUkoppYJEqwgqpZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppVQfISJZImJExBXqWAY6EblcRBaEOo6+RkRmi8iGUMehlFL9mSZYSiml+jURuU1EvCJS2+bnxlDH1R8ZYz43xoztqf2LyKWBhwg/7KljKKVUqOlTUqWUChIRcRljfKGO4xD1vDHm4lAH0VMGwu+WiCQAvwHWhDoWpZTqSVqCpZRS3SAieSLyKxFZCdSJiEtEZorIlyJSKSIrROTYNuvPF5G/iMjXIlItIq+LSGIH+75CRNaJSI2IbBWR/7fX8rkisjywny0ickpgfpyIPCIiRSKyU0T+KCLOA3yOkSIyT0TKRKRURJ4Wkfg2y8pFZGpgOk1ESlo+l4icKSJrAp93voiM3+v7+YWIrBSRKhF5XkTCD/6bPngi8uvA91IjImtF5OwO1hMRuUdEigPf5SoRyQ4sCxORv4nIDhHZLSIPikhEJ4//eGD9DwMxfCoiw9os/6eI5AeOuUREZrdZdpuIvCQiT4lINXC5iMwQka8C33ORiNwvIp422xgR+YmIbAoc7w+Bc/dl4BgvtF2/g5iPFZGCzny+LvgLcC9Q2kP7V0qpPkETLKWU6r7vAacD8cBg4G3gj0Ai8AvgZRFJabP+pcCVQCrgw77pbE8xcAYQC1wB3NMmyZkB/A/4ZeC4RwN5ge0eD+x3FDAFOAk4UJUswb4BTgPGA5nAbQDGmC3Ar4CnRCQSeAx4whgzX0TGAM8C1wEpwDvAm3vdyJ8PnAIMB3KBy9sNQGRWIHno6GfWAT7D3rYAs4E44PZA/KntrHcS9vc3JrDu+UBZYNkdgfmTsb/PdODWg4jhIuAPQDKwHHi6zbJvAvtNBJ4BXtwr+ZwLvIR9fp8G/MD1gX0dARwP/GSv450MHAbMBG4EHgIuxj6f2di/q10WSJQ7Oj//3s92M4BpwIPdOb5SSvUHmmAppVT33WuMyTfGNGDfzL5jjHnHGGMZYz4EFgOntVn/SWPMamNMHXALcH57JUzGmLeNMVuM7VPgA+yEAeAHwKPGmA8Dx9lpjFkvIoMDx7rOGFNnjCkG7gEu3N8HMMZsDuyryRhTAtwNHNNm+cPAZmARdmJ4c2DRBcDbgW29wN+ACODIvb6fQmNMOfAmdlLRXgwLjDHx+/nZX6cU5+91s59mjHkxcFzLGPM8sAmY0c62XiAGGAeIMWadMaZIRAS4GrjeGFNujKkB/nyg73IvbxtjPjPGNGF/Z0eISGbg8z5ljCkzxviMMX8HwoC27Z++Msa8Foi/wRizxBizMLB+HvAf2pyjgDuNMdXGmDXAauADY8xWY0wV8C52wt1lxpjc/ZyfvZM9AAK/2/8GfmqMsbpzfKWU6g+0DZZSSnVffpv3w4DzROQ7bea5gU86WH97YHny3jsVkVOB32GXoDiASGBVYHEmdmnR3oYF9ldk5wcQ2Da/nXXbHmsw8E/sBC4msE3FXqs9DLwBXB1IGMAu8dresoIxxhKRfOySnha72ryvD2wTbC/s3QZLRC4Ffg5kBWZF0873bIyZJyL3A/8ChonIK9glj+HY3/mSNt+lAPutbrmX1u/dGFMrIuXYnz9fRH6BnSinAQa7pDK5vW0Dn2cMduI7LRCXC1iy1/F2t3nf0M70kIOIPVh+Aqw0xiwMwbGVUqrXaQmWUkp1n2nzPh+7hKrtk/0oY8wdbdbJbPN+KHYJyh7tUkQkDHgZu0RosDEmHjuharnTzwdGthNLPtAEJLc5fqwxZuIBPsOfA58jxxgTi10S921WIRIN/AN4BLhNvm03Void1LWsJ4HPt/MAx9uH2F2E1+7nZ/aB99K6r2HYCeFPgaTA97e67WdqyxhzrzHmMGACdkL7S+xz0gBMbPNdxhljog/iY7We68B3mAgUBj7LjdjVERMC8VXtFV/b3yuAB4D1wOjAOfpNR5+np4jd1q6j89NR9b/jgbNFZJeI7MIu3fx7IKlVSqkBRxMspZQKrqeA74jIySLiFJHwQMcBGW3WuVhEJgTaM/0eeMkY499rPx7sKmMlgC9QmnVSm+WPAFeIyPEi4hCRdBEZZ4wpwq5K+HcRiQ0sGykie1cl21sMUAtUiUg6doLR1j+BxcaYH2K3MWu5mX4BOD0Qhxu4ATvB+/JAX9TeAl2ER+/n5/OD2F0UdoJSAnaHIdhtkPYhItNF5PBA/HVAI2AFqrM9jN32bVBg3XQRObnNtkbadGLSjtMCbcs82G2xFhpj8rG/b18gPpeI3IpdgrU/MUA1UCsi44AfH2D9oDPGTNzP+flRB5tdjt2ub3LgZzF2m7ibO1hfKaX6NU2wlFIqiAI3z3OxSxdKsEuUfsmef2+fxO6IYhd2NbRr29lPTWD+C9hV9b6PXT2vZfnXBDq+wC75+JRvS5IuxU7Q1ga2fQm73dT+3A5MDezrbeCVlgUiMhe7k4qWG/qfA1NF5CJjzAbs0q77sEt8vgN8xxjTfIDj9ShjzFrg78BX2NXkcoAvOlg9FjuRqsCu7lgG3BVY9ivstmcLxe7N7yMC7aQCbalq+LbaZnuewa7mWY7d+URLNcb3gfeAjYFjNnKAapzY1Ra/Hzjmw8DzB1i/TzDGVBpjdrX8AM1AdaBdmFJKDThizN41EJRSSvUUEZkPPGWM+W+oY1HdIyIXY1cfvKmD5Y8DBcaY3/ZqYEoppUJKO7lQSimlusAY81SoY1BKKdX3aBVBpZQ6RIg96O3BdE6gBiAR+U0Hvwfvhjo2pZQaCIJWRTAwzsViYKcx5gwRGQ48ByRhdyN7Sajr5CullFJKKaVUTwpmCdbPgHVtpv8K3GOMGYXdcPgHQTyWUkoppZRSSvU5QSnBCnQ//ATwJ+zepb6D3XvWEGOMT0SOAG4zxpy8n92QnJxssrKyuh2PUkoppZRSSvWkJUuWlBpjUvaeH6xOLv6BPWBiTGA6Cag0xvgC0wVA+oF2kpWVxeLFi4MUklJKKaWUUkr1DBHZ3t78blcRFJEzgGJjzJIubn+1iCwWkcUlJSXdDUcppZRSSimlQiYYbbCOAs4UkTzsTi2OA/4JxItISwlZBrCzvY2NMQ8ZY6YZY6alpOxTwqaUUkoppZRS/Ua3EyxjzE3GmAxjTBZwITDPGHMR8AlwbmC1y4DXu3sspZTqLcYYfH4r1GEopZRSqp/pyYGGfwU8JyJ/BJYBj3RlJ16vl4KCAhobG4ManBr4wsPDycjIwO12hzoU1Q/d+vyX+Ld+zm9vuIHIMP0dUkoppVTnBDXBMsbMB+YH3m8FZnR3nwUFBcTExJCVlYWIdHd36hBhjKGsrIyCggKGDx8e6nBUP2NZhpTVD3Gt6zXWfRzH+NN+HOqQlFJKKdVPBHMcrB7R2NhIUlKSJlfqoIgISUlJWvKpumR3TSPDpBiAmLVPhzgapZRSSvUnfT7BAjS5Ul2ivzeqq/LLGxgjBQAk120Eyx/iiJRSSinVX/SLBEsppXpTSXU9I2Un5Y5Ewk0TlG4MdUhKKaWU6ic0weoEEeGGG25onf7b3/7GbbfdFrqA2li4cCGHH344kydPZvz48a1xzZ8/ny+//LLL+92+fTtTp05l8uTJTJw4kQcffDBIESvV9/nqK/GIny0JswCo27E8tAEppZRSqt/QBKsTwsLCeOWVVygtLQ3qfo0xWFb3uoG+7LLLeOihh1i+fDmrV6/m/PPPB7qfYKWmpvLVV1+xfPlyFi1axB133EFhYWG3YlWqv7AaqgBwpE4CoHLnhlCGo5RSSql+RBOsTnC5XFx99dXcc889+ywrKSnhnHPOYfr06UyfPp0vvvgCgNtuu42//e1vretlZ2eTl5dHXl4eY8eO5dJLLyU7O5v8/Hx++ctfkp2dTU5ODs8//zxgJ0jHHnss5557LuPGjeOiiy7CGLPP8YuLi0lNTQXA6XQyYcIE8vLyePDBB7nnnnuYPHkyn3/++X7jvOSSSzjiiCMYPXo0Dz/8MAAej4ewsDAAmpqaOkwE7733XiZMmEBubi4XXnghAOXl5Zx11lnk5uYyc+ZMVq5c2Xqsyy67jNmzZzNs2DBeeeUVbrzxRnJycjjllFPwer0A/P73v2f69OlkZ2dz9dVX7/O5LcsiKyuLysrK1nmjR49m9+7d+zuNSnWa1VANQPKQTApNIs0lW0MckVJKKaX6i54cByvobn9zDWsLq4O6zwlpsfzuOxMPuN4111xDbm4uN9544x7zf/azn3H99dcza9YsduzYwcknn8y6dev2u69NmzbxxBNPMHPmTF5++WWWL1/OihUrKC0tZfr06Rx99NEALFu2jDVr1pCWlsZRRx3FF198waxZs/bY1/XXX8/YsWM59thjOeWUU7jsssvIysriRz/6EdHR0fziF78A4Pvf/36Hca5cuZKFCxdSV1fHlClTOP3000lLSyM/P5/TTz+dzZs3c9ddd5GWlrbPZ7njjjvYtm0bYWFhrQnP7373O6ZMmcJrr73GvHnzuPTSS1m+fDkAW7Zs4ZNPPmHt2rUcccQRvPzyy9x5552cffbZvP3225x11ln89Kc/5dZbbwXgkksu4a233uI73/lO6zEdDgdz587l1Vdf5YorrmDRokUMGzaMwYMHH/A8KtUZpsn+OzMkJYVlZjAZVXmhDUgppZRS/YaWYHVSbGwsl156Kffee+8e8z/66CN++tOfMnnyZM4880yqq6upra3d776GDRvGzJkzAViwYAHf+973cDqdDB48mGOOOYZvvvkGgBkzZpCRkYHD4WDy5Mnk5eXts69bb72VxYsXc9JJJ/HMM89wyimntHvM/cU5d+5cIiIiSE5OZs6cOXz99dcAZGZmsnLlSjZv3swTTzzRbglRbm4uF110EU899RQul6v1M11yySUAHHfccZSVlVFdbd+wnnrqqbjdbnJycvD7/a3x5uTktH6+Tz75hMMPP5ycnBzmzZvHmjVr9jnuBRdc0Fra99xzz3HBBRfs9ztX6qAEEqyw6HhKXGnE1ueHOCCllFJK9Rf9qgSrMyVNPem6665j6tSpXHHFFa3zLMti4cKFhIeH77Guy+Xao1pd2/GYoqKiOnW8lip6YFf/8/l87a43cuRIfvzjH3PVVVeRkpJCWVnZPut0FCfs25353tNpaWlkZ2fz+eefc+655+6x7O233+azzz7jzTff5E9/+hOrVq3q1GdyOBy43e7WYzkcDnw+H42NjfzkJz9h8eLFZGZmctttt7U7ltURRxzB5s2bKSkp4bXXXuO3v/3tfo+r1MGQphr7TXgctVGZxNZ8DM114OnctauUUkqpQ5eWYB2ExMREzj//fB555JHWeSeddBL33Xdf63RLVbisrCyWLl0KwNKlS9m2bVu7+5w9ezbPP/88fr+fkpISPvvsM2bMmNHpmN5+++3WNkqbNm3C6XQSHx9PTEwMNTU1B4wT4PXXX6exsZGysjLmz5/P9OnTKSgooKGhAYCKigoWLFjA2LFj9zi2ZVnk5+czZ84c/vrXv1JVVUVtbS2zZ8/m6aftwVnnz59PcnIysbGxnfo8LclUcnIytbW1vPTSS+2uJyKcffbZ/PznP2f8+PEkJSV1av9KdYarOXDthMXgjc2y31fkhSocpZRSSvUjmmAdpBtuuGGP3gTvvfdeFi9eTG5uLhMmTGjtzvycc86hvLyciRMncv/99zNmzJh293f22WeTm5vLpEmTOO6447jzzjsZMmRIp+N58sknGTt2LJMnT+aSSy7h6aefxul08p3vfIdXX321tZOLjuIEu5rfnDlzmDlzJrfccgtpaWmsW7eOww8/nEmTJnHMMcfwi1/8gpycHAB++MMfsnjxYvx+PxdffDE5OTlMmTKFa6+9lvj4eG677TaWLFlCbm4uv/71r3niiSc6/Xni4+O56qqryM7O5uSTT2b69Omtyx588ME94r7gggt46qmntHqgCjqntyXBisWVMgIAb+mWEEaklFJKqf5C2uuZLlSmTZtmFi9evMe8devWMX78+BBFNPDddttte3SGMdDo74/qinf/8SOOr3wRz21lvLFwLWe+dwRlR95C0kkD8zpRSiml1METkSXGmGl7z+92CZaIZIrIJyKyVkTWiMjPAvMTReRDEdkUeE3o7rGUUqo3eHy1NEgkAEMGD6HCRNNYoiVYSimllDqwYHRy4QNuMMYsFZEYYImIfAhcDnxsjLlDRH4N/Br4VRCOp4LotttuC3UISvU5Hl8tjY4o4oDMxAgKTDKJldqToFJKKaUOrNslWMaYImPM0sD7GmAdkA7MBVoa3zwBnNXdYymlVG9wWo14HXaPl4NjwilkEJ7aghBHpZRSSqn+IKidXIhIFjAFWAQMNsYUBRbtAtodBVZErhaRxSKyuKSkJJjhKKVUl7j8TXgd9pAGDodQFZZKbGMR9KE2q0oppZTqm4KWYIlINPAycJ0xprrtMmP3pNHunYkx5iFjzDRjzLSUlJRghaOUUl3msprwO78dM64pKo0w0wj1+44xp5RSSinVVlASLBFxYydXTxtjXgnM3i0iqYHlqUBxMI6llFI9zWOasJzfDvRtxQ2131RuD1FESimllOovgtGLoACPAOuMMXe3WfQGcFng/WXA6909Vii99tpriAjr16/vcJ28vDyys7ODdswNGzZw7LHHMnnyZMaPH8/VV18N2IMEv/POO13eb2NjIzNmzGDSpElMnDiR3/3ud8EKWakBwW2asdqUYLmTsgBoLssLTUBKKaWU6jeCUYJ1FHAJcJyILA/8nAbcAZwoIpuAEwLT/dazzz7LrFmzePbZZ9td7vP5un0Mv9+/x/S1117L9ddfz/Lly1m3bh3/93//B3Q/wQoLC2PevHmsWLGC5cuX895777Fw4cJuxa7UQGGMIYwmjOvbBCtmyHAAqndtC1VYSimllOongtGL4AJjjBhjco0xkwM/7xhjyowxxxtjRhtjTjDGlAcj4FCora1lwYIFPPLIIzz33HOt8+fPn8/s2bM588wzmTBhAmAnWhdddBHjx4/n3HPPpb6+HoCPP/6YKVOmkJOTw5VXXklTUxMAWVlZ/OpXv2Lq1Km8+OKLexy3qKiIjIyM1umcnByam5u59dZbef7555k8eTLPP/88dXV1XHnllcyYMYMpU6bw+ut2YeHjjz/O3LlzOfbYYxk9ejS33347ACJCdHQ0AF6vF6/Xi10QuacXX3yR7OxsJk2axNFHHw3YpV9XXHEFOTk5TJkyhU8++aT1WGeddRYnnngiWVlZ3H///dx9991MmTKFmTNnUl5un/6HH36Y6dOnM2nSJM4555zW76etmTNnsmbNmtbpY489lr0HoFaqpzT7LcJp3iPBGpwymCoTSVOJJlhKKaWU2r9gjIPVe979NexaFdx9DsmBU/dfuPb6669zyimnMGbMGJKSkliyZAmHHXYYAEuXLmX16tUMHz6cvLw8NmzYwCOPPMJRRx3FlVdeyb///W9++tOfcvnll/Pxxx8zZswYLr30Uh544AGuu+46AJKSkli6dOk+x73++us57rjjOPLIIznppJO44ooriI+P5/e//z2LFy/m/vvvB+A3v/kNxx13HI8++iiVlZXMmDGDE044AYCvv/6a1atXExkZyfTp0zn99NOZNm0afr+fww47jM2bN3PNNddw+OGH73P83//+97z//vukp6dTWVkJwL/+9S9EhFWrVrF+/XpOOukkNm7cCMDq1atZtmwZjY2NjBo1ir/+9a8sW7aM66+/nv/9739cd911fPe73+Wqq64C4Le//S2PPPJIa8lciwsuuIAXXniB22+/naKiIoqKipg2bZ9BspXqEY3NdoKFK6J1XkZCBAUmhfjKHSGMTCmllFL9QVC7aR+onn32WS688EIALrzwwj2qCc6YMYPhw4e3TmdmZnLUUUcBcPHFF7NgwQI2bNjA8OHDGTNmDACXXXYZn332Wes2F1xwQbvHveKKK1i3bh3nnXce8+fPZ+bMma0lX2198MEH3HHHHUyePJljjz2WxsZGduywbwRPPPFEkpKSiIiI4Lvf/S4LFiwAwOl0snz5cgoKClqTsL0dddRRXH755Tz88MOt1RcXLFjAxRdfDMC4ceMYNmxYa4I1Z84cYmJiSElJIS4uju985zuAXfKWl5cH2EnY7NmzycnJ4emnn96jpKrF+eefz0svvQTACy+8wLnnntvu96NUT2jw+u0Ey/NtgjU4NpydpOhYWEoppZQ6oP5VgnWAkqaeUF5ezrx581i1ahUigt/vR0S46667AIiKitpj/b2r2rVX9W5ve++jrbS0NK688kquvPJKsrOz202EjDG8/PLLjB07do/5ixYtOmA88fHxzJkzh/fee2+fDjoefPBBFi1axNtvv81hhx3GkiVL9vs5wsK+7XXN4XC0TjscjtY2apdffjmvvfYakyZN4vHHH2f+/Pn77Cc9PZ2kpCRWrlzJ888/z4MPPrjf4yoVTA3NPoaIF4f72wTL6RAq3KnENq62x8LqxHWtlFJKqUOTlmAdwEsvvcQll1zC9u3bycvLIz8/n+HDh/P555+3u/6OHTv46quvAHjmmWeYNWsWY8eOJS8vj82bNwPw5JNPcswxxxzw2O+99x5erxeAXbt2UVZWRnp6OjExMdTU1LSud/LJJ3PfffdhAoOgLlu2rHXZhx9+SHl5OQ0NDbz22mscddRRlJSUtFb5a2ho4MMPP2TcuHH7HH/Lli0cfvjh/P73vyclJYX8/Hxmz57N008/DcDGjRvZsWPHPond/tTU1JCamorX623dT3suuOAC7rzzTqqqqsjNze30/pXqrsaGOgCkTYIF0BiVbo+F1VARirCUUkop1U9ognUAzz77LGefffYe884555wOexMcO3Ys//rXvxg/fjwVFRX8+Mc/Jjw8nMcee4zzzjuPnJwcHA4HP/rRjw547A8++KC1k4mTTz6Zu+66iyFDhjBnzhzWrl3b2snFLbfcgtfrJTc3l4kTJ3LLLbe07mPGjBmcc8455Obmcs455zBt2jSKioqYM2cOubm5TJ8+nRNPPJEzzjgDgFtvvZU33ngDgF/+8pfk5OSQnZ3NkUceyaRJk/jJT36CZVnk5ORwwQUX8Pjjj+9RcnUgf/jDHzj88MM56qij9kjq3njjDW699dbW6XPPPZfnnnuO888/v9P7VioYmhrtjlccnj0TLCs2036jY2EppZRSaj+kpdSjL5g2bZrZu7e4devWMX78+BBF1L89/vjje3SGcSjS3x91sL5ZsYrpr85i68w/M+KUa1rnP/Xqm1y84mK85zyBO+es0AWolFJKqT5BRJYYY/bpiU1LsJRSqo3mQAmWK2zPEqyoISMAqN21tddjUkoppVT/0b86uVAH5fLLL+fyyy8PdRhK9SveJjvBcodF7jF/cMpgqk0kjaWaYCmllFKqY/2iBKsvVWNU/Yf+3qiu8AUSLFf4nr17ZiREUmBSMBU6FpZSSimlOtbnE6zw8HDKysr0ZlkdFGMMZWVlhIeHhzoU1c9YzXaC5dkrwRoSF85Ok4y7dmcowlJKKaVUP9HnqwhmZGRQUFBASUlJqENR/Ux4eDgZGRmhDkP1M/7mBgA84XtWEfS4HJR7hhDTuE7HwlJKKaVUh3o8wRKRU4B/Ak7gv8aYgxot2O12M3z48B6JTSml9uZvCiRYEfsOAN4QkU54bb09FlZkYm+HppRSSql+oEerCIqIE/gXcCowAfieiEzoyWMqpVR3GK9dRdDpidxnmT+uZSwsbYellFJKqfb1dBusGcBmY8xWY0wz8Bwwt4ePqZRSXWa8dgkWrn3b77kShwLgL9fBhpVSSinVvp5OsNKB/DbTBYF5SinVJxlvo/3GHbHPsqhBIwGoKd7WmyEppZRSqh8JeS+CInK1iCwWkcXakYVSKtRkPyVYgwYNpsZE0FiiCZZSSiml2tfTCdZOILPNdEZgXitjzEPGmGnGmGkpKSk9HI5SSh2AL1CC1U6ClZ4YSYFJxqrQKoJKKaWUal9PJ1jfAKNFZLiIeIALgTd6+JhKKdVlDn8jTXjAse+fx/T4CApMCp6aghBEppRSSqn+oEe7aTfG+ETkp8D72N20P2qMWdOTx1RKqe5w+BrxioewdpaFu52UuwYT3bBBx8JSSimlVLt6fBwsY8w7wDs9fRyllAoGp9WI19FeemWri0wnvK4OGishIqH3Aush+eX1/OeDZcwdH8P0SbmhDkcppZTq90LeyYVSSvUlTn8jvv0kWP7YDPtNZX6H6/Qnd7yzhovX/j+mvzob3xqtwa2UUkp1lyZYSinVhttq2m+C5UnKAgbGWFgNzX7q133EOIedLDZ++KcQR6SUUkr1f5pgKaVUGy6rCb9z3x4EW8SmjgCgeteW3gqpxyzbUcEsWYHfGc7d5iKiK9dDRV6ow1JKKaX6NU2wlFKqDbdp3m+ClToknToTRv0AGGx4WX4lUx2bMKmTKUmfY8/c8klog1JKKaX6OU2wlFIqwLIMHtOEtZ8Ea1hyFAUmZUCMhbW5qJyJjjxcQ2eQNmISxSae5ryvQh1WUBhj2Li7Bp/fCnUoSimlDjGaYCmlVECjz08YzZh2BhluMTgmnEIGxlhYNUWb8OCDwROZmpXIKms43vyloQ4rKO54bz03/uNR1t51EmblC6EORyml1CFEEyyllAqoa/ITTjPijuhwHYdDqApPI7Zxpz0WVj9lWQZXZaCaY+JIxqfGstpkEVG1BZrrQhtcN1XVe/nfF1v4u/sBchu/wXrjWqjaGeqwus2yDL94cQXfveddSt/7K1TuCHVIQVHd6OUfH21k/oZiKNsC1sAodVy6o4JHFmyjvskL9eWhDkcp1Ys0wVJKqYCGZj+R0oTZT4IFUB89nAhTD7XFvRRZ8BXXNJFuFdoTSSNJjPJQED4GBxbs7t/jwX+8fjeTrHWMdBRxj/98nL4GWNX/S7HeW7OLl5YUcH35H0le+Gd45GTwNoQ6rG67/Y21/OOjTeQ/9RO4byq8/pNQh9RtRVUNfP/hhfzhrbWsevAKuHMEfHpnqMNSSvUSTbCUUiqgrtlHJE2IJ3r/KybZPQmask29EFXPyCurY7jswuuJg8hEAHyDJ9kLC5eHLrAg+GJzGad4VmIcbtYNu4g1jrGw+pVQh9VtrywtYFbMbmY7V/OpPxdqCmH506EOq1vK65p5bflOrh7v4yLHR/bMFc9CwZLQBtZNLy8poNFrccWIKg6veBMwdoI1ANpuKqUOTBMspZQKqG/yEUUjErb/BCtiyFgAqndu6I2wesSOsnqyZBdWwojWeYPTR1BmYvHvXBbCyLpvTWEVx3jWI5mHc+T4YbzflIPZtQoaKkMdWpf5/BYLNpdydeIyjDi5zvsTKqJHwepXQx1at3y8bjd+y/CDhGUgcJ77fownGpY8FurQuuXTjSVkp8dybdI3NBk3b896GSwvrHw+1KEppXqBJlhKKRXQ1FCLQwyO8Jj9rpeUPopm46SuqP8mWHlldQx37MadMrJ13vi0WFZbWXh3Lg9dYN3U5POzrbiKTG8epE1m5sgkvjFjEQzkLwp1eF22paSORq9FdvMKJP0wEpJT+dRxOOz4sl+371mcV0FCpJtBuz+jIiGXb2oSqUyfAxvf77dtsaoavCzdUcmxYwYRX7yI5c6JvLozHjJnwtrXQx2eUqoXaIKllFIBTfXVALgOkGBlpcSywwzGKt3cG2H1iJ2llaRKGY6kUa3zxqfGss4MxV2xCfzeEEbXdVuK6xhqCnGZZhiSy+hBMWx0jcUnLtj+ZajD67LVO6uIpJGEytUwfDZHj0nhhfLRYCzY0X+71l9dWMVhqR6kcBnhY44HYHn4dKgrhl0rQxxd13y1pRS/ZZgzIgopXkd9ymS+2FyKf/RJsHs11JWGOkSlVA/rVoIlIneJyHoRWSkir4pIfJtlN4nIZhHZICIndztSpZTqYb6WBCti/1UE0+LDySOVsKr+O9hwc8kWHBhI+rYEa0RyFFsYitPy2r259UPriqoZL4F2LkNycDqE0RmD2Owc1e8TkanuHYjxQ+bhTM9KZIkvC8vhgR0LQx1elzT5/GzcXcOxcbvAWESNOJzhyVG8UzvaXqGffq4VBVW4HEKOc3vgc82gwesnLzLQxrEf/x4qpTqnuyVYHwLZxphcYCNwE4CITAAuBCYCpwD/FhFnN4+llFI9yttYA4AnMna/67mcDsrDMolvzO+X1ZiMMbirvu2ivYXL6aAuYZw9sXt1CCLrvvW7qslx7cA4PZBs36hPzkzg86ZRmJ1L+22ve6t3VnFcfJE9kTqJyUPjacJDaeyEfpuIbNhVg9dvmOoKJMRpk5mRlcgHBS5MXAbk98/PtaawmjGDY/DsstsyZmbPAuCrpqHgDIPtmmApNdB1K8EyxnxgjPEFJhcCGYH3c4HnjDFNxphtwGZgRneOpZRSPc3fWAuA+wAJFkBT3HDcxgvV/W/A4cp6L4O9gXGhkkbssSwidRw+HFC8NgSRdd+6ohqmhRUgg8aD0w3A5Mx4FvtHI5a3X3ZBb1mGNYXVTHHvgOjBEDOEtLhwUmLCWOUcD4XL+mXiuGpnFQDDmjZATCrEDOGwYQlUNXipG3QY5H8d4ggPnjGGNTurmJgWC4VLITaDIWlDSYkJY2lBPWRMs9vNKaUGtGC2wboSeDfwPh3Ib7OsIDBvHyJytYgsFpHFJSUlQQxHKaUOjhUowQqL2H8bLAB3it12yVfS/7pq315ez3DZRbMnHiIS9lg2Ki2ZrVYq3qJ+WoJVVMVoaxsMyWmdNykzjpVWIJHcuTREkXXdtrI66pv9DPduhlS7mpmIMDkzno/rRti90/XDz7V6ZzVxEW4iy1ZD6mQAcjLiANgaPhGqd0JV/3qAsbu6ibK6ZjvB2rkE0qe2nqvl+ZUw9AgoWgFNNaEOVSnVgw6YYInIRyKyup2fuW3WuRnwAQc9IIcx5iFjzDRjzLSUlJSD3VwppYLGarJLsFwRBy7BikkfD0BF/roejaknbC+rI0t24U8Ysc+ysUOiWW+GYvXDBKu4phGpKybaXwlDclvnD4kNxxs1hBpXol3a08+s3llFGM3E1W7d43NNGRrPu5WZ9kTBNyGKrutW76xiWqoLKd0IaVMAGD0omjCXg0W+QDusftbz45pCu1RuUpIFFXmQPhWwz9XW0jpqB0+zOybph7+HSqnOO2CCZYw5wRiT3c7P6wAicjlwBnCRMcYENtsJZLbZTUZgnlJK9V3NdoKFJ+qAq6YPHUG9CaO+H3bVvr2snizHLjyDRu+zbOyQWNZbmYTV7YTG6hBE13Xri2qY6Ai05xmc3TpfRJiYHs9aRtjVtvqZ1TuryHEV2B1cBEqwwK76WEEsDVEZ/e5zNfssNuyq4di43YCBtMmA3Q5wYlos88pTwBUBBYtDGufBWlNYjQiMtwI9jKYfBtjnCmB5a0lq/x5IWSm1f93tRfAU4EbgTGNMfZtFbwAXikiYiAwHRgP9rzK1UurQ0lRnv3r234sgwMhB0eSZIf2yt73CknLSpBxn8qh9lqXFhbPdlWVPFPev0rn1u6qZ0NqDYPYey3LS4/iqcRimZAMESir7i9U7qzkufpc90SbByk63q9MVRIyDfjY49MbdNTT7Laa6Ap2tBKoIAuRmxLOiqA4zJLffVX1cU1jF8KQowktWANL6uXIz4nEILC4WSBiuCZZSA1x322DdD8QAH4rIchF5EMAYswZ4AVgLvAdcY4zxd/NYSinVsw6iBCsm3E2BK4OYmv6XYHlLAk/XE/etIigi+JLt6o/9rSfBdUU1TAkrgPhhEB63x7Ls9FhWWCPsAYeLVoQowoNnjGF1YRXTPDsgPB7ih7Yuiw13Mzw5ym5fVrWjX42vtLq1g4tNEJMGMYNbl+Wkx1Hf7KcyIds+V35fR7vpc1bvrGZCS/ur5NEQblc3jg5zMWpQNKsKquxSrX6WECulDk53exEcZYzJNMZMDvz8qM2yPxljRhpjxhpj3t3ffpRSqi9wNlfRRBi4wjq1fmXUKBK9u/pdiYizsqWL9n0TLIDEtFHUEIHZ3b96ElxXVE22Y8ceHVy0yE6PY1VL9ax+1P5lR3k9NY0+Rvq32KVXInssz0mPY15NoAPfflTas2pnFTHhLqLKVrW2v2qRG+joYpNrDPgaoGR9KEI8aJX1zeysbGBiaqx9LgLVA1vkpMezcmcVJm2K3ftoza4QRaqU6mnB7EVQKaX6tTBvNfXOA/cg2MKfPBbArnbWTzQ0+0lsDHTy2maQ4bbGDolhvZXZr3oSbPZZFJaUMsRXsEdHEC3S4yPwRSZT6R7Ur9orrd5ZjRsfCTWb9qge2CInPY75NekYpJ99riqmD3EhZZtb21+1GJESTaTHycLGQGldP/lcKwvsUrlpifVQVwxpU/dYnpsRR0lNE+Xxgd/PfpQQK6UOjiZYSikVEOGrosEVd+AVA8LTJgJQk7+qp0IKuryyOkY7CmgMT9mnGl2LMUNi2GBl4iheA619F/VtW0pqGWVtt6sA7tX+Cuyqj9lpcayRUf2qBGvVziqyXTtwWM37lIiA3a15HRHUx47oNzfsXr/Ful01zIkrwu7gYs8SLKfDPleflsZAWFy/+VwrCyoBmGD27OCiRUsX9Mu8mSBObYel1ACmCZZSSgVE+atp9nQ+wUoZOo4m46Imv/+U9GzcXcM4yceXMqHDdcYOjmG9GYrLW2OPRdQPrC2sJtex1Z7Yq+SgRXZ6HF81ZEL5Vmio6MXoum5lQSUnxQXOQfq+n2timt3GZ0f4OLukpx8kxBt319Dss5jSTgcXLXIy4lhdVIuVNrnflGCtKKhiRHIUUSUrwOHeJ9GfkBqL0yGs2N0MgydogqXUAKYJllJKYT9VjzE1eD3xnd5m1JB4tpo0THH/aCMCsLmogtGyk4iMfavRtUiKDqMoPFB9sJ+0w1pRUMk011ZMTBrEpra7TnZ6LMv8Le2wlvdecF3k81ssz6/kiLDtEJUCcZn7rBMT7mZESpT9uepK+sXAvEt3VAIwomGN3aNe9L5jYOZmxNHksyiPy4bda8Db2MtRHryVBZV2+7GdS2DwxH3acoa7nYweFM2qnYGOLgqXgmWFKFqlVE/SBEsppYDqBi8JUosVHt/pbQbHhrFVMomu3tRzgQVZZcF6POLD2U5HEG05BwdKuIrX9EJU3bdsRyWHubch7ZTytMhJj2OVNdye6AfVBNcV1VDf7Gekd4N9Q75XBxctctLj+Lgq3Z7oB6U9y7ZXkBzlJmL3Ysg8vN11cgJd0G9wjALL1+d7tNxd3cju6iYmp0XZY3cNPaLd9XIz4lhVUIVJmwqNVXZpqlJqwNEESymlgIq6JuKoxRGZ2OltRISKqBHEN/efngSdJYGEaXDHVQQBMlJTKTRJmF19P8FqaPZTWFRIqm9nu+2UWgxNjMSEx1Pq6R8D8y7eXk4M9UTXbN3v58pJj2NB7RCMw9Uv2isty6/kpLRGpK4EhrafYGUlRRET5uLLlo4u+vjnWpFfCcDMiB12z4fD2k+wcjLiKatrpjgu8ICjH/weKqUOniZYSikFlFdW4BE/7uikg9rOl2T3JEhp3+9JsK7JR3L9FvzihOQx+1137JBo1llD+0VPgqt2VjGBwHhk+0lEWjq6WMuIflFFcHFeBSfF5Nkdd2RM63C9nPQ4mvBQEze2z5fMldc1s620juOjAu2vOijBcjiE7PQ4FuwOg6i+3/Pjku0VuJ3CyPpAhzdDj2x3vdxAydzy+hRwR2o7LKUGKE2wlFIKqCnfDUBY3L7tQfYnMt1uyF5b0PcTkZUFVYyXHTTEjjjgWF9jh8SywWTiKt8MvuZeirBrlu2o4DDHRow49unye2/Z6bF80TAMqvKhtqR3AuwCYwyLt5dzevRGcIZ1WOUMYGJ6HCKwPWysnTj24XY93+SVA5DtXwdhsZAyrsN1czPiWLerFittSp8vwfpqaxmTM+NxF3wFSaPbbVcGMC41BrdTWFFYZ3fuoQmWUgOSJlhKKQU0ldudA0QlZRzUdoOzxtFk3FRv7/tdtS/dXs5kx2bcmR2X8rQYOziGjSYTh/FCWd9uY7Z0RwUnetYgaVM77Hq+RXZ6HMt8WfZEHy7tKahoYHd1E1O8y2DoTHBHdLhudJiLEclRLPENh6a+3a7ns40lRHocDNr9OWTNAoezw3VzMuJo9luUxE6E0o3QVNOLkXZedaOX1TurOHJEPOQv7LB6IECYy8mYwTGBji6mQtHKPv8AQyl18DTBUkopwF9ZCEBU8r49te3P2NQEtppUrH7Qk+DOLatJkhrChnd8A9giwuOkLj5QutCHexL0+S1Wb9nOeGsTjDr+gOtnp8ex2gzv8wPzLtxaRgqVJNRughHHHnD93Ix4PqxMsyf66OcyxvDpxhLOy6xGqgtgzMn7XT83PR6AtTIKMH22WueCTaVYBk6O3mZ3XDHqhP2un5sRx6qdVZj0w8Df1G86klFKdZ4mWEopBVBTBIAzLu2gNhscG8Y2RyZRVX27lMcYQ3jhQnsic2antonJGE8zLti1sgcj654VBZVMal6OAwtGHjjBGp4UhXiiKAkf1qdLsD5Yu5szogNJ+8g5B1w/Oz2OhbWDMK6IPludbltpHQUVDcyNDFSnHX3SftfPTIwgLsLNgvrAQ48+mji+t3oXiVEexlV+ZlfnPMDvYU56PJX1Xoqi7YHKtZqgUgNP0BIsEblBRIyIJAemRUTuFZHNIrJSRDruO1cppULMUVtEEx6ISDio7USEquiRJHj7dk+CKwuqmOpbTkNYCqSM7dQ2EzKSWG9l0lzQdxORj9cVc6xzJSYsdr8dXLRwOISJaXGsYaSdiPTBgXnrm318trGECyMXQ2w6DJl0wG1yM+Lw46QqfnyfTUTeX2O3c5xY+xWkToLY/T/MEBFyM+JYuEsgfmifTBybfH7mrS/mpPGDcGx4B0YeB2HR+90mN8OuxrqsKgYik2Fn372+lFJdE5QES0QygZOAHW1mnwqMDvxcDTwQjGMppVRPCG8optqd3OFYQ/vjT7ar0pmSvltN8KPVBRzlWI1z1JxOf8YJabGsskYgRSv6ZCJijOHDlds53fUNMvZUcLo6tV12epxdKlJXDNWFPRzlwftsYwmRvkpG13wNOeeC48D/VU9IjUUEtrrH2u16/L5eiLTzjDG8vLSA09IbCCv6BsZ/p1Pb5aTHsWFXDf7UKX0ycVywqZTaJh/npZVC1Q4Yd9oBtxkzOAaP08HKwsCAw1qCpdSAE6wSrHuAG4G2/wPPBf5nbAuBeBFJDdLxlFIqaCzLEOctpiF8SJe2j8zMBaB6+4pghhVUpas+IEFq8eSc1eltJqbGscoMx+2thoptPRdcF60sqGJs5edEmTqY/P1Ob5edHstSb8uAw33vpv2FxQVcELkEh/FBzvmd2iYqzMWolGgWe7PscZhK1vVskAdpZUEVm4tr+Un8QhAHTL6oU9vlZsThswy7oidA5Q6oK+3hSA/OK0t3EhfhZnLxa3a36+PPPOA2HpeDcakxrCoIJFgl6/tsBx5Kqa7pdoIlInOBncaYve8s0oH8NtMFgXl7b3+1iCwWkcUlJX23y1yl1MBVXNPEMCmiOW5Yl7ZPyxpHnQmjpo8mWFtLaplW8zFNrpgDNsBvKy7STUlMoKOLPtjBwDOLdnC++3OsmHTIOrrT2+Wkx7HWDMMSV59rh5VfXs8nG3bzg/BPYHA2DMnu9LY56XG819LRRR+rTvfiknwiXYYJu9+w214doHpgi5yMeAC7Sif0qfNVWNnAe2t2cemUeJyrX4Sc8yAivlPb5qQHOrpIm0Jf7sBDKdU1nUqwROQjEVndzs9c4DfArV0NwBjzkDFmmjFmWkrKwY0/o5RSwVC4ezcpUo0kjezS9mOGxLHBZOLoo72BfbB8Gyc7FuMb+50Djn+1t/C0HLuji6LlPRNcF1XWN7Nq+SJmyQocUy/uVDW6FiNSonG4I9gdPrzPJSJPLdzOHMdyUuo3wxE/PahtczLiWFqbiBUW16dK5oprGnlxcQG/G7oKR+1umHZlp7dNiwsnKcrDZzUZgPSp8/W/r7ZjjOEHEZ/apYbTf9DpbXMz4qhp9JEfEXiAodUElRpQOlVh3RjT7iNPEckBhgMrxK7TnwEsFZEZwE6gbX/HGYF5SinVp5TlbwAgOnVMl7ZPjPLwqTOLsTXf2G2VutCOq6d4/RaVi54iWhpheueqZbU1Lj2J9ZszmVCwrHP/YfSSRxZs42p5BVwRMOP/HdS2TocwIS2WNdUjSS1c2GfOWXFNI098tY13Yt8Fd4bd/uog5KTHAUJF/ESS+lAi8t/Pt2H8zXy35mlIm3LA3gPbEhGy0+P4pqgRksf0mcSxtLaJpxdu56xx0cQvud/uOTD1wJ2RtMgJdEG/rMzJ0IQsTbCUGmC6VUXQGLPKGDPIGJNljMnCrgY41RizC3gDuDTQm+BMoMoYU9T9kJVSKrjqCu3OKZKHTejyPqrjxhLlr4KaXcEKKyjeXZHP95pfoSoxF4YdddDbZ6fHsdoaDn2oo4vS2iY+W/ApZzoX4pjxQ4hKOuh9ZKfF8nldJjRW9pn2Zf/4aBMnmy8Z0bAajr4BnO6D2n5CWiwOgc2uMVC8FryNPRRp5+WV1vH4l3ncOfRr3DX5cOxvDjqZnZQZz6biGrxDJveZnh/v/nAjDV4/t8S/b/8OnXDbQW0/ZnA0EW4ny/Mr7XZYfajqo1Kq+3pyHKx3gK3AZuBh4Cc9eCyllOqysJKVNOPG2cnuy9tjBtlj2li7VgcrrG5r8vlZ/d5/GeYoJubEX3WplGZiWiyrzHBczVVQkRf8ILvgL2+t4VYexoTHwVHXdWkf2elxLG7t6CL0N7dfbinlrUXr+EPEs3ZJyNTLDnofkR4XYwbH8FXjULB8sGtVD0TaecYYbn1jDVnOUuaWPQKjToTRJx70fqYOjccy2NXp6oqhOrSVYZbtqOC5r3fwy9xGEpY/CJO+D6m5B7UPl9NBbkYcS7dX2AlWVT7U7O6hiJVSvS2oCVagJKs08N4YY64xxow0xuQYYxYH81hKKRUsQ2rWUBg+ClyeLu8jNsu+waravjxIUXXf0/NXclXT49Qk5eIYe+Duo9szKDacgohA4tkH2mG9vbKI+FWPcJhjI85T/tKl0iuA3Ix4NpgM/A5PyBOs2iYfN764gn9GPUaMvxLOuAcczi7ta+qwBN4qDXTYG+LqdE98mceXG4t4MuERRBz25+pCkj8l0x6bbqkvkBCHsPpjbZOPnz23nBGx8MPSv0JUCpzy5y7ta+qwBNYUVtM0eLI9o49Uf1RKdV9PlmAppVSfV13fyBhrC9VJB/cEem/DMzIoNIk05K8MUmTds7WkltjPbydJaok59/6D6gRib1EZ2Xhxhbyns7WF1Tz14gvc5H4W/5jTYNKFXd7XqEHRhIeF24l1CAd69VuGnz27jNNrX2SO/0vkuN92asDkjkwdmsDmplh8kYNCmogszivnz++s4z8pLzO4chmceS/EZx54w3bERboZmRLFh2WDwOmBgq+DHG3n+PwWP3t2GTsranlhyJM4yzbC2Q8c9ODkLQ4bmoDPMqy2skCc2g5LqQFEEyyl1CFty9olREkTYUOndWs/owfHsN4aiqcs9OMPNXr9vPTY3Zwrn1A//ZqDanzfngmZg1hvZeALYSJSXtfMH554nX87/4bEZeA8+4FudUzhdAiTMuNY7h9ul8xZVvCC7SRjDL9/cw1xG1/iJtezMPFsOPJn3drnlKHxgLA7ekLIbtg37a7hh/9bzK+j3uT4mtft3hAPssOOvU0ZmsA3O+sxaVNhx6IgRdp5xhhuemUVH6/fzTujXidx+7twwu0w8rgu79M+V/DNzkYYFLrzpZQKPk2wlFKHtPJN9s1a2oRZ3dpPdJiLwrDhxNdtA783GKF1id8yPPDE/7i27l4qU6YRfcpt3d5nbkYcq6zhmMLlIelgoKy2iV/95xX+3vg7osPdOC99tdPjDe3PlMwEPqvLhOZaKNvU/UAPgmUZbn9zLZWLnuZvnodh+DFw9n+6VdIIMCI5ivhINytljP2Z6sqCFHHnrCuq5sL/fMVVvMqVzc/Y7ZNO/EO39zt1aALldc1UpwQ6hPA2BCHazvFbht++tpqXluzg1eGvMzb/Rbvt35H/1639JkWHkZUUGWiHNbXPdOChlOo+TbCUUoc0R9EyaokkJn1ct/dVHz8OFz4o7d2b9RaWZXjw2Zf4Yf5NNERlEH/5C+DsfufqkzLiWWZG426ugrLNQYi084qqGrj5gae5o+qXJIcb3Je9Bl0cr2xvU4bGs9w/wp7oxXZYjV4/N7ywHNeif/FPz7+RrCPgwqcPeoyy9ogIUzLjeb8m8Ll2fNXtfXbWJ+uLufDBBdzEf7nGegZyzocz7+t20ggwdVg8AGvd48Hy9lr1x0avn588vYSXF23i3dRHmFL0gl0id8JtQenaf+qwBJbuqMCkH2b3Rli+tdv7VEqFniZYSqlDljGGwTVrKIwcF5SbQGdaDgC+ot7vvc3rt3jwiSe4ZOO1+MPjSfjRO13uAGJvCVEeimICbdTye6961pLtFdx371+5u/bXREdF4bnqw4PurW1/pgxNYItJw+uM6LUb9t3VjVz6n/nMXvNbfut+GjNhLnLRyxAWE7RjTBmawDvlqRhnGGz/Mmj77Ygxhv9+vpVfP/EBT7r/zLnW+zDrertELggJPsDoQTFEh7n4pK73EsfNxbWc9a8vWLd2JQtS7mJcxXw4+c9w0h+DNm7a1KEJlNY2sys6256RH5r2ZUqp4NIESyl1yNpVXsUoK+/bXry6KXnYRJqNk+rtK4Kyv84qr2vmwfvu4Ad5N+CNHEzcj96H2LSgHiMhczxVRPdKgmWM4akvNrHiv9fwZ/89kJpL2I/nQ/KooB4nMcrD0KRo8tyjeqUHt083lvCTfz7HH0t+xtnOL2DOzci5j4M7PKjHmTo0gWbcVCVNgh09m2CV1zVz1f8W88m7L/Bh5M3kyBY460G7hCcIDy1atLSZ+3ynBSnjYMfCoO27Pa8sLeDM+xeQXf0p86JvIdm7E773LBxxTVAHpT5smN1BxsK6FAiPh+0LgrZvpVToBOfRklJK9UN5axaRKn6iR8wIyv5GpyayxaSTWNh7JVhr80tZ8/i1/J//bUqSDiPlhy9BZGLQjzNpaCJL1o/i6O2LevQ/jrLaJu597k3O3fEHcpx5NE75AZGn39GtLvT3Z+rQBL5YP5JRhW8jzfXgiQz6MRq9fv723lpY+ADPul/AGRGNnPsyjDo+6McCmDw0HqdDWOvO5sjCx6GpJqglZC0WbCrlNy8s4tLGZ/iB521IHIuc9wQM6n512/bMHJ7E3z/cSOOM6YRveMPumCSISRxAXZOP372xhg+WbOBfCS8yp+EDSD0Mzn0MEoYF9VgAYwbbJXNLd1Rz9rCjIO+LoB9DKdX7tARLKXXIqtliV8dJm3BkUPY3IiWK9WYokRXrg7K//THG8Oq8L2j876mc53+b4ok/IOWa93skuQKYlBnPEmsMrrIN0FAR9P0bY3hrRQGP//2X/Cb/R4wKq8Q6/0nC597dY8kVwOEjEpnXNBaxvJAf/FKRb/LK+eE9L3DyN1fyW/fTOEefgPOaRT2WXIHd4UpOehwf1o0AYwW92llVvZcbX1rBfY8+zjO+G/ih8y3ksMuRq+b1WHIFMGt0MgDr3BOhqQqK1wZ1//M3FHPSPZ9RvvxNvoz9Dcc2fgyzb4Ar3uuR5ArskrkpQ+P5Jq8csmZBxTaoCu1Aykqp7tMSLKXUISu8eDnlkkBi4tDg7M/tpCRiJDHNC+wkpIvj4xxISXUjbz5xJ+eX/guHw0HVaf9h0PSujwnVGTnpcdwrgQGHCxbD6BODtu+SmibuefEjztj2R25wrqUm6wRiznsAogcF7RgdOWJEMrdbY7HEhWPb593qdrutuiYfd727FvPNf3nY/RzuMA+c8R+cuRcEtYpZR44YmcTTn6Vza5gT2f5l0BK691bv4o7Xvuaqpie4M+wjrLgsmPsmDD86KPvfn9yMeGLCXbxbM4opAFvnw5Dsbu+3vK6ZP7y1lnnLNvC3mGc50f0JxE+As16EtCnd3v+BzByRxF3vb6Bi0AwSALZ/Abnn9/hxlVI9RxMspdQhyW8Z0uvXUhw3gcQg3vA2J4+HQmD3Wsg6Kmj7bTF/6Vp441qu5BuKEqcz+JJHiEzsmafrbYW7nZA2FX+xA2f+oqAkWMYYXl9WwPo37+Zm62ncHif+U+8l5rBLeyUJAchMjCAhPoFtjGVk3udB2efnm0r494vvcn3jv5jhXo9vxAm4zrov6O3i9ueIEUk8MD+MmsSJxG77rNv7K65p5LY31lC/5j1eCHuMFFcZzPwpjjk390i1yvY4HcKRI5N4e0c1N6WMQzZ/CEf+tMv7M8bwxopCbn9jDUc2f8EXMU8S5a+CY34Fs3/RoyWnbR01Kpm73t/A5zWDOTM8HrZ8ogmWUv2cJlhKqUPStp1FjKCIdWnnBHW/4emToBCadq4kLIgJVm2Tj1ee+Q+n5d1BrDRQfOTvSD3huqC3QdmfyaPSWbdrKOO2f9Xt/zx2Vzdy//NvMTf/r5zl2EjdsGPxfPc+iA9OaWJniQgzRyQxb+1YRux8HWmsgvC4Lu2rqsHLHW+uIGXFAzzhfg1HeBSccj+uKRf3WsLYYlpWAm6nsDx8BkcXPAK1xV0qETTG8NKSAu5762t+bj3GWZ7PMUnjkLOeg4zuDc7dFbNGp/D+mt1UjTuG+FWPQVMthEUf9H4KKxv47WurWbd+HQ/EPs3h1kJIyoG5r3Z7YO6DlZMeR0y4iwWbyzlz9Emw8T3w+4LWA6NSqvdpGyyl1CEpf81XOMSQMHpmUPc7YsQIKkw0VUHsSfDrdXl8eud5XLr9N/iihsD/m8+gk37eq8kVwIzhiXxhTcSRvwgaq7u0D2MML329lRfuvpZbCv4f2Z7dWGf9h6grXuv15KrFUaOSeLcpFzF+2PDeQW9vjOGdVUVc/7eHuGL1Zfzc/RLOCd/Bde1imHpJrydXAJEeFzNHJPF42UTA2DftBym/vJ5LH1nEp6/8hzccP2eu6ys4+kbkR5+FJLkCmD3Kbof1tesw8DdD3sH1umdZhie/yuOUe+YzfOvTfBr1K2ZYK+zBkK+a3+vJFdglc7NHJzN/QwnW2NOgobxXh0NQSgVft/93FpH/E5H1IrJGRO5sM/8mEdksIhtE5OTuHkcppYKpabvd8H/I2COCut/sjHjWW0Mxu1Z3e18NzX4ef/pJ0p47nlP88ynMvYYhP/8CT2r32510xWHDEviUaTgsL2z5+KC3L6xs4Pb/PMXEt+byfzxP85jTCL9uCY7JF4YkCWlx3LhBrJLRVHsGwdrXDmrbwsoG/u/xzyh5/v/4r/9msmIs+P4LOM9/vFfakO3P6TmpzKscRHN0Jqx/u9Pb+S3DY19s44p/vMRV+b/ifs99xA3OQq6eD8fdHJQBkbtqWFIkGQkRvFySAZ4YWPdmp7fdXFzL+f/5iqffeJdXwm7jFsdjeLKOQK5ZCEddG9ISoxMnDKa4ponlYYeB0wMb3unUdi3n6qR7PmVrSW0PR6mU6qxu/TURkTnAXGCSMaZJRAYF5k8ALgQmAmnARyIyxhjj727ASikVDNGlK9ntTGNwdHAG420xKCacjz0jOazmffA1d7kdx7LNBWx7/kYu975NWXgG3gveIW1EcJPBgxXpcREz+igqt8UQt/4dZOLZndrOsgwvLNxA/ft/4hbepDEiGeusp4kef0YPR9w58ZEeZo0exDsFh3PB5vc7VU3QbxmeWridb957it/KIwx2VWBmXI3n+Ft6pEv0rjh54hBufm01K6KPYvqWV6G+/IC9TK7eWcUtryxn2q7neNvzCm6XA477CzLj6j5RZU1EOC0nlUcXbKNhyulErH0dTrtrv+3Amnx+/vPpVh6et5afuV/lyvA3EVc8nPFfyDk3pMl9ixMnDCHcvYqXVlcxdcSxsOZVOOH2/X7nawuruemVlWwpKGK07OTd1elcMye4Y8Uppbqmu38tfwzcYYxpAjDGFAfmzwWeC8zfJiKbgRlAzw+9PgD4fD4a62torq+mqamR5uZmmr1evF4vTuPH6QCnKwyn2x149eB0e3BHxBAdFY3LqTU/ldqfRq+f4c0bKU+eyuAe2H9V0hQ8xW/CrpUHXZWq0evnpZefZ/a63zFJSigcdzlp3/1Lr3UkcCAn56Tz8ebJzN3wPq5OJJCbdtfw1HNPc0XZ3WQ5dlM78SKiz/gzRMT3TsCddEZuGk9tnMaFYW/C6pdh2pUdrrt+VzV/e3EeZxf/i/udX9OcNA456wUkc3ovRnxgCVEeZo1K5p9Fh/OU/zlY9iQc9bN2161r8nH3hxtZ8uVH/NXzCGPdeZjRpyCn/Q3iM3s58v27cHomD322lXddJ/Dd5udgxbMw/Qftrvv5phJufX0Nw8oXMC/qaVK8hTDpIjjpjz02pEFXRIe5ODU7lTeXF3Lzdy8iatNlsOFtmDB3n3WrG73848NNPPHVNs4LW8zz8U8S3ljCzWsSQRMspfqE7iZYY4DZIvInoBH4hTHmGyAdaDugSEFg3j5E5GrgaoChQ0NT/76nGcuitLiQkoJNNJQV4q0qwqrZjbO+GE9jKRHN5YT7awi36oky9UTRSLSYLh2rybioIpIGRyQNjiianNF4XdF4PXH4w+KRiAScUYm4YxKJiE0mKj6F2PhkouNTcETE9YkneUr1tI2b1pMrpdRm9kw7kpgxs6AYqjZ8StxBJFir8orY9Mwv+X7TW1SEpdJ47uukjTmmR2LsquPHD+b6V47knObPYd0bdglAO5p8fh59/xsGLfoztzs+pTY6E3PuG0SP6Fufp8WpOUP4w1vj2eYew/Av/gmTL9qnKlxlfTP3f7iaiG8e4D7X63jcBnPMzXiOuq7Xepw7WJcflcUVj5VQlD6T1C/uhcMu36N0zrLsnvQeefdLLq3/Hzd7PofowXDak8j47/TJ/xNGpERz1Kgk7ljjYW7qVJyf/x0mXQieqNZ1Cisb+PM761i7agl/iXyGmZ6lEDMSzngdRhwbuuD344ezh/Pqsp08tHsM1yeNgk/+AmNObf3dajlXf3pnHYPr1vNhwouMqFsO8bn4dlcxdvfbNDRfRITHGdoPopQ6cIIlIh8BQ9pZdHNg+0RgJjAdeEFERhxMAMaYh4CHAKZNm9a1rKIPMMZQWlxE4aZl1OWvQiq2El6TT1zTTgb7d5MijaTstU0FMVQ6EqhzJVIRORzjicHyRON32694onG4w3C53LhcbpxuNxYO/AaMz4vxN2H5fOBvwvi9SHMdNFUhjTU4mmtweWtw+2qJaiwgqn4d0aaOSGnq8DP4cFAr0dQ7Ymhyx9LsjsMKj8eE20mZIzLeTs6ikwiLSSIiJpmIuCRcUYngdPfsF9zTjLEH5LT8YCyM8WP8fvyWH7/fj7EsLMuHZfmxAtP2fL89z/JjLINljH1+jMGywDIGC/PtMQDBvmFpe9/S8l6Qb9dru3yfN3tO7LF96zz5dq127pEE6eDmqYMbKpEO7rX2nWn2s48OFuy7ykHc2Il0UGrbwT4qvnkJgOSc4I3l1Na07Als/CyduLUfEHf8DQdcv9ln8cprLzJz1a18V3ZRMPYSMs796x43jH1FXISbxJxT2bb2f2TOvxPXhLP2qMZkjGHemkLWvPkPLm98ikhHM/Uz/o/oE37TZ0rh2hPpcfGjY0dx6/vf5cnmO+Dj38PJfwLs0p0XF21l2yePcqX1MsNcxTSPPh3naX+GhKzQBn4Ax45JYcbwRK4rOovn5GbktZ/AeY9jiYv5G4t57N0vmFX2Ei+6PsLjMThm/h8c/Ysu96TYW35x0ljOeeBL7ku9nOuqr4U3/g/O/g87a3z859MtfPP1Qq50vsk/wz/H4YqE4/8IM/5fn02EASamxXFGbir//jSP0066kbGfXA3v/Rr/KXfy3toS7pu3ibDdy7g75iNmeT5HTCKc/neYejkVT1zM6dsX8PmGQk7K6Vsljn2NMYYmr4+G2iqaG2ppbqynuaEOb3M93sZ6/E2Bn+Z6jLcRLB9YPiy/HzE+jOUHq+XVj1h+BD+CgZb/V0UAR+DVnjbiAATZ473D7qxIHIjDAeIEcSIOAYcTaXkvLsThQMSBOJzQ5r0934k4nSAOHA4njsA6DocLcUhgP04cTicOcSDOwLTDEXi1f8TZsr0Lh8OBw2nHZMSO0X61/1811l637ObbNyYwIYH7Gfvl23sh02YjY/a8R9rjX9PmGK4IomPj7SFD+gHZI/iD3VjkPeCvxphPAtNbsJOtHwIYY/4SmP8+cJsxZr9VBKdNm2YWL17c5Xh6i7EsCrauYdeaBfh2LiOqciOpzdtIobJ1nXoTxm7nEKrC02mKzkQShxGeMoLo5AxiU9KJT07D5Qnv9dgbG+qoKC+htryYuqpSGqpL8daW468rxzRU4GisxNVcRZi3ikh/DdFWDXFSRyz1OPZTqlZLBI2E4cONT1z4xIVf3PjEjd/hxhI3lsNN6420fHsTvvervdjgMBYO/IixkD3e+3HQMu/baUdg2tEyjYVg4TT2qz1tcAZeW9ZxGLPfz6YGplISSP7dth55Qm+M4ck/XM5F1ps4f7V1v9Xhlm3OZ+sLv+Hspjep8Awm7NwHiR47J+gxBVNeaR13/vPv/Nv5d3zTrsZ12l8xIizaUMCSdx7htMpnGO7YTcWQo0g45x+QMibUIXdKs8/i4kcWcWbB37nY+SH5g+awxjmW6sLNHMtiBkkljcnZhJ/6h6ANSNwbdpTV890HvuBc75v8Wp6g2JPJCt8w4n3FTHFsxiGCTDgLOf63kHhQz0hD6l+fbOau9zdwS9x7/KDpfxQ60ljtTWWoFDPOkY/lisAx5WI45saQdzjSWZX1zXz331+SX1HP/SmvcnLlC+SRxhb/YMa6dpNhCjFhscj0H8Cs61sTYd+6d3A9/z0eSPsTP76662OD9TcNjU2UlxRRVVpIbflumqp2YWpLcDSU4WyqxOmtwe2txeOrJcKqJdKqI8rUESMNQY3Da5wt6RWCse819L4iqB7znUzK+f/gjNzeG0+wM0RkiTFmn6oq3U2wfgSkGWNuFZExwMfAUGAC8Ax2u6u0wPzRB+rkoq8mWM1NTWxa+gk16+YRVbyEoY3riKMOgAbjocA9jKqYUVjJ44kemsPgkVNJHDLUfhrRz/n8FpUNXsprGqivqaCpphRfbTm+ugqs+nKor8DRVIGnuQqHvwnxN+OwvIjVjNPy4jBeHJYXl2nGYfloeSohra/sMU3gD1Ob9AdLHFjYT1DMft4bcdo/tLx3YBxOCEzjsNOrlqdFtD6RcSIt64r9JMiIY48nS/aTpMDTJUfLsjZPjgLrOgT7ZkXsEiL7V+DbciXT5l2L9i7BtsmmwXS4XtvltLsf0+6GezxNakP28/egvSXS7kH3eDa1/3Xb2bHZ37oHE3OHn8U+QsKoaYyaNKuDdbrvgWde4Mcbr6L2+DuInv3jfZbXNDTz1gsPc8zWv5Em5ewc9X3Sz7urS2P6hMJzX++g9o0b+aHrXXa70ijxRzHc2kGUNFEeO47YU27BNf70PlnFbH+qGrz86c1VDFr5AD9wvkOC1NLoiKAh42jiZ1+FjDqh330msLtc/8u76wjb/B6X8hapzio8MUnETTgR5/TLQ9ZFfne9saKQRxdsY1zV51xo3iXDU0t0Yhrh40+CSd+DqORQh3jQKuubuefDjczfUMwc7+d8z/0pQzwNxA4aav/+Tbpw345U/F5q/zKKBd6xzPzVW8RH9t2Sus6ob/Kya/cuyovyqC/dgVVZgKNmJ566XUQ17SbWW0qsVUWC1LS7vc84qJUo6iSKRme03VzCHYPfE4PlicGExWHCYhB3JA5PBE5PBI6wCFyeSNzhkbjCo/CEReL0ROByh+FwOnG63DicLlwuNw6nM/DqskuU2jDG2JVisB/IGwzGMhgsjGWBMVjGCtSM8WNZBuP3Y1k+/JYf9qghY2Esf2C+H8tvYRn7lZYaNMYCvw/LGIzfhzH2NpbfrpFjWZZd4hY4prH89nvjB7+FFXhwbS+zwPjs98aA5W99WN3ysLvl/1Bgr7+Fe/1d3KvqjQDm2yoqbdbb9x5pj3UDr5XRoxk742SykvtWzY6eSrA8wKPAZKAZuw3WvMCym4ErAR9wnTHm3QPtr68lWKs+exXry38xqmElUdKEZYQ85zBK47IhYxop445i6NipOF2h71lJKdW3bNpVTcO/j2ZoZDPxNywBdwRgP7T4YN7HxH75Z2aZpewOH0nMef8icmRoewjsik83FLP+w8eZWvUB0W6DZ9BoMo+6EM+oY/plEtJWbZOP2oZmksN8uMJj+v3nUQNfxUvXE7nqSR474n1+dMphoQ5nvyzLUFxVx64dG6kq3Ehz8WYclXlE1eWT3LyTVFNM1F5NGvwIZZJIhWsQ9WEpeMOTISoFZ0wKYXGDiExIJS5pCDFJaXiiE3t9nEB1aOqRBCvY+lqCteTt/5Ky5G52JR6OZ/QcRkw/hdjE/lHNQCkVenf/52F+XvQLdg6eQ/Ph15C3bQuuda9ylHcRDY4IKqdfR/rJP+//bRiVUqG3cyk8PIc/ylX87Fd/ISY89H9Xmnx+thVXU7RtLXU7VuAsWUN89UbSvNtJoxS3fFuxqREPpa5UqiOH4o3NxBmfQXjyUGJShhE3JIvw+LQ+MVSAUm1pgtUFxrIGRDU/pVRolNU28coDv+Xy2kdabyQqJY6ysd9jxJm/QvpQN9FKqX7OGOrvn0VVaSEPZj/L7efN7LVDW5Zhe3k9m7cXUL51Kf5da4itWk9G81bGSEFrB1s+HOx2Z1IVPQp/wnA8KaOISx9DUuZY3HFpWuqk+h1NsJRSKgQsy7Bs9RqsopWkpg8lY/zhWmKllOoZBYsx/z2BJ30nEHvOPzlrSrsj5HRLTaOX9YWVFG5dQ+2OFbhL15Bct5kxbCdDSlvXq3XEUh4zBm/yBMIzJpE8ciphqRPA3fsdfCnVUzTBUkoppZQa4Hzv/hrXogf4q+9Chpz6ay49Mqt12I6DYYyhoKKBjYFSKV/RaqIr1pPp3bNUyo+DsvBhNCSOw5M+iaQRU/CkT4KYIdp2UQ14HSVYWplVKaWUUmqAcJ38J3w1u/nV2ud4+72t/HjxVZww60hmj05mUEzYPslWo9dPQUUDO3aVUVWwBu+utbjKNpJQu5nRbOf4vUqlKhLHUjpoNjHDJhM/fDLOlPEM0lIppfagJVhKKaWUUgOJ34f58l6sT/6M0/Ky0hrOams4ZY4kXGERuIyPcNNInK+UJKuMDCkhU0pax4T04aQsPJOGhPG403NJGjmVcC2VUmofWkVQKaWUUupQUrMba+n/aFj3IY6yjUR4K1oX+XFS40mmIXww/ug0nIPGEjM0h+iMHEgaqW1FleoETbCUUkoppQ5lviawfOD0gMOlpVFKdZO2wVJKKaWUOpS5woCwUEeh1ICnAw4opZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFSZ/q5EJESoDtoY5jL8lA6QHXUgOFnu9Dh57rQ4ee60OLnu9Dh57rQ0tfPN/DjDEpe8/sUwlWXyQii9vrHUQNTHq+Dx16rg8deq4PLXq+Dx16rg8t/el8axVBpZRSSimllAoSTbCUUkoppZRSKkg0wTqwh0IdgOpVer4PHXquDx16rg8ter4PHXquDy395nxrGyyllFJKKaWUChItwVJKKaWUUkqpINEESymllFJKKaWCRBOs/RCRU0Rkg4hsFpFfhzoeFTwikikin4jIWhFZIyI/C8xPFJEPRWRT4DUh1LGq4BARp4gsE5G3AtPDRWRR4Pp+XkQ8oY5RBYeIxIvISyKyXkTWicgRem0PTCJyfeBv+GoReVZEwvXaHjhE5FERKRaR1W3mtXsti+3ewHlfKSJTQxe5OlgdnOu7An/HV4rIqyIS32bZTYFzvUFETg5J0PuhCVYHRMQJ/As4FZgAfE9EJoQ2KhVEPuAGY8wEYCZwTeD8/hr42BgzGvg4MK0Ghp8B69pM/xW4xxgzCqgAfhCSqFRP+CfwnjFmHDAJ+7zrtT3AiEg6cC0wzRiTDTiBC9FreyB5HDhlr3kdXcunAqMDP1cDD/RSjCo4Hmffc/0hkG2MyQU2AjcBBO7XLgQmBrb5d+C+vc/QBKtjM4DNxpitxphm4DlgbohjUkFijCkyxiwNvK/BvgFLxz7HTwRWewI4KyQBqqASkQzgdOC/gWkBjgNeCqyi53qAEJE44GjgEQBjTLMxphK9tgcqFxAhIi4gEihCr+0BwxjzGVC+1+yOruW5wP+MbSEQLyKpvRKo6rb2zrUx5gNjjC8wuRDICLyfCzxnjGkyxmwDNmPft/cZmmB1LB3IbzNdEJinBhgRyQKmAIuAwcaYosCiXcDgUMWlguofwI2AFZhOAirb/OHW63vgGA6UAI8FqoT+V0Si0Gt7wDHG7AT+BuzATqyqgCXotT3QdXQt633bwHYl8G7gfZ8/15pgqUOaiEQDLwPXGWOq2y4z9hgGOo5BPyciZwDFxpgloY5F9QoXMBV4wBgzBahjr+qAem0PDIG2N3Oxk+o0IIp9qxipAUyv5UODiNyM3bTj6VDH0lmaYHVsJ5DZZjojME8NECLixk6unjbGvBKYvbulSkHgtThU8amgOQo4U0TysKv6HofdRic+UK0I9PoeSAqAAmPMosD0S9gJl17bA88JwDZjTIkxxgu8gn2967U9sHV0Let92wAkIpcDZwAXmW8H7+3z51oTrI59A4wO9EbkwW5M90aIY1JBEmiD8wiwzhhzd5tFbwCXBd5fBrze27Gp4DLG3GSMyTDGZGFfx/OMMRcBnwDnBlbTcz1AGGN2AfkiMjYw63hgLXptD0Q7gJkiEhn4m95yrvXaHtg6upbfAC4N9CY4E6hqU5VQ9UMicgp29f4zjTH1bRa9AVwoImEiMhy7Y5OvQxFjR+TbZFDtTUROw2674QQeNcb8KbQRqWARkVnA58Aqvm2X8xvsdlgvAEOB7cD5xpi9G9iqfkpEjgV+YYw5Q0RGYJdoJQLLgIuNMU0hDE8FiYhMxu7QxANsBa7AfqCo1/YAIyK3AxdgVx9aBvwQuy2GXtsDgIg8CxwLJAO7gd8Br9HOtRxIsu/HriZaD1xhjFkcgrBVF3Rwrm8CwoCywGoLjTE/Cqx/M3a7LB92M493995nKGmCpZRSSimllFJBolUElVJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlguT/Aycy+zmZv5JjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
12False40.05080.0136bAP.soma.v0.006771.95e-07
13False40.05080.0136Step1.soma.v0.07114.35e-07
14False40.05080.0136Step3.soma.v0.07145.95e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "12 False 4 0.0508 0.0136 bAP.soma.v \n", + "13 False 4 0.0508 0.0136 Step1.soma.v \n", + "14 False 4 0.0508 0.0136 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "12 0.00677 1.95e-07 \n", + "13 0.0711 4.35e-07 \n", + "14 0.0714 5.95e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADh80lEQVR4nOzdd3gc1dX48e/Zot5sNcuSbMm9ygZsY4LphBKKIRAMoRlCCJAQIJSQRntD3ryEH4SWOBASEooxHdO7AdPcu7FxkS3bkq3eV9vu748ZCVlWM1ppVc7nefbRzsyde8/OeNd79t65I8YYlFJKKaWUUkp1nSPcASillFJKKaVUf6EJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSinVy4hIjogYEXGFOxY1MIjIehE5NtxxKKVUf6AJllJKqT5PROaJSI398IqIr9nyW+GOr7czxkw0xizqjrpFZLCIFIvI4u6oXymlehvRGw0rpVRoiYjLGOPvwv45wHbA3ZV6BioRuQMYZYy5qJVtXTo3PakvxdoeEXkMGAs4jDGzwh2PUkp1N+3BUkqpEBCRfBH5tYisAWpFxCUiM0XkcxGpEJHVzYdgicgiEflfEVkiIlUi8qqIDG6j7stEZKOIVIvINhH5WYvts0VklV3PVhE5xV6fKCKPi0ihiOwWkT+KiLOD1zFSRD4UkVIRKRGRp0Ukqdm2MhE51F4eavdMHGsvn2kPNauwX9/4FsfnJhFZIyKVIrJARKIO/kgfvDbOjRGRUc3KPCEif2y2fLp9TCvsc5jXybaOFZFdIvJb+/jli8iFzbafJiIr7XNVYCeDjdsah4b+RER2Ah/a658XkSL7uH0iIhNbxP03EXnL7q37TESGiMhfRaRcRL4WkUM6eYxO7MxrPBgi8j1gEvDvUNetlFK9lSZYSikVOhcApwFJQDrwBvBHYDBwE/CiiKQ2K38JcDmQAfiBB9uodx9wOpAAXAbc3yzJmQH8F7jZbvdoIN/e7wm73lHAIcBJwBUdvAYB/hcYCowHsoE7AIwxW4FfA0+JSAzWl+b/GGMWicgYYD5wPZAKvAm8JiIRzeo+DzgFyAXygLmtBiAyy05s2np8l16QpnPTUa+QnZD8C/gZkAz8A1goIpGdbGsIkAJkApcCj4rIWHtbLdZ5T7LjuVpEzmqx/zFYx/5ke/ktYDSQBqwAnm5R/jzg93abDcAXdrkU4AXgvk7G3SoRubW989HOfk7gYeAXgA6XUUoNGJpgKaVU6DxojCkwxtQDFwFvGmPeNMYEjTHvAcuAHzQr/6QxZp0xphb4A3Beaz1Mxpg3jDFbjeVj4F3gKHvzT4B/GWPes9vZbYz5WkTS7bauN8bUGmP2AfcD57f3AowxW+y6GowxxVhfzo9ptv0xYAvwFVZi+Dt70xzgDXtfH3AvEA18r8Xx2WOMKQNeA6a2EcNiY0xSO4/vci1P83PTkSuBfxhjvjLGBIwx/8FKXGYeRHt/sI/hx1iJ9nkAxphFxpi19rlag5WUHtNi3zvsc1Zv7/MvY0y1MaYBK9mdIiKJzcq/bIxZbozxAC8DHmPMf40xAWABVnL9nRlj/tze+Whn118CXxljlnelfaWU6mt0hiqllAqdgmbPhwM/EpEzmq1zAx+1UX6HvT2lZaUicipwOzAG64exGGCtvTkbq7eopeF2fYUi0rjO0aLNA9iJ2QNYCVy8vU95i2KPAQuBK+0v/WD1eO1oLGCMCYpIAVYvTqOiZs/r7H16Sruvu4XhwKUicm2zdRF0Pt5yO2lutKNxXxE5HPgz1rC5CCASeL6tWO2E+27gR1g9g0F7UwpQaT/f22zf+laW4zoZd8iIyFCsBOuwnm5bKaXCTXuwlFIqdJoPgyrA6qFq/mt/rDHmz83KZDd7PgzwASXNK7SHpb2I1SOUbvcYvIk1lK+xnZGtxFKA1euS0qz9BGPMxFbKNvcn+3VMNsYkYPXENWVoIhIH/BV4HLhDvr1ubA9WYtJYTuzXt7uD9g4gIkfJtzMAtvY4quNaDtByiFodVqLaaEiz5wXA3S3OXYwxZn4n2xokIrHNlodhHR+AZ7CS02xjTCIwj2bHt5VYfwzMBk4EEoEce33LfbqNfT1Zm+ejjd1mYPVwbhCRIqykfYZ9LVm71wEqpVRfpwmWUkp1j6eAM0TkZBFxikiUPQFCVrMyF4nIBPt6pruAF+xhXc019nIUA367N+ukZtsfBy4TkRNExCEimSIyzhhTiDWU8P+JSIK9baSItByO1lI8UANUikgm1rVdzT0ALDPGXIE19G2evf454DQ7DjdwI1aC93lHB6olY8ynxpi4dh6fHmydrVgF/Ng+N6ew/zC9x4CrRORwscTak1PEQ9PEEk90UP+dIhJhJ4On820vVTxQZozx2NfP/biDeuKxjmMpVkL4p4N4jSFhjPlTe+ejjd3ewkoGp9qP24CVwNRW/o0rpVS/ogmWUkp1A2NMAVbPw2+xkqMCrGSl+efuk1gTURQBUVhDqlrWU22vfw5rqN6PsXpAGrcvwZ74AmvI2Md825N0CVaCtsHe9wWsXoX23Akcatf1BvBS4wYRmY01ScXV9qpfAYeKyIXGmE1YvV0PYfXCnQGcYYzxdtBeuFyHFWMFcCHwSuMGY8wy4KdYEzSUY11zNrfZvtnAZ+3UXWTvtwdrQoqrjDFf29uuAe4SkWqspOO5DuL8L9YQw91Y5/HLjl5Yb2Bff1bU+MD69+SznyulVL+m98FSSqkwEJFFwFPGmH+GOxbVefasiKuBPHsyj5bbj8U6r1kttymllBoYdJILpZRSqpPsHrnxHRZUSik1YOkQQaWUGmBEZF4bExbM63hv1ReJyLB2JqoYFu74lFKqPwnZEEF7VqBlwG5jzOkikgs8i3WTxuXAxb14LL5SSimllFJKdVkoe7CuAzY2W/4/4H5jzCisi31/EsK2lFJKKaWUUqrXCUkPlj3t8H+wbob4K6yZmYqBIcYYv4gcgXVn+pPbqyclJcXk5OR0OR6llFJKKaWU6i7Lly8vMcaktrYtVJNc/BW4Bet+HWANC6wwxvjt5V1AZms7isiVwJUAw4YNY9myZSEKSSmllFJKKaVCT0R2tLWty0MEReR0YJ8xZvl32d8Y86gxZpoxZlpqaqtJoFJKKaWUUkr1CaHowToSOFNEfoB1o8wE4AEgSURcdi9WFtZNEpVSSimllFKq3+pyD5Yx5jfGmCxjTA5wPvChMeZC4CPgXLvYpcCrXW1LKaWUUkoppXqz7rzR8K+BZ0Xkj8BK4PHvUonP52PXrl14PJ6QBqf6pqioKLKysnC73eEORfVjNQ1+rn92FbNGDmburBHhDkcppZRSfUhIEyxjzCJgkf18GzCjq3Xu2rWL+Ph4cnJyEJGuVqf6MGMMpaWl7Nq1i9zc3HCHo/qxd9bs4vwtN5G7tQjPtFVERUWFOySllFJK9RGhvA9Wt/B4PCQnJ2typRARkpOTtTdTdbuKLUs40bmSkY5Ctnz5WrjDUUoppVQf0usTLECTK9VE/y2onhAo3tT0XDa9GcZIlFJKKdXXdOc1WEop1SfF12zDj4u1jrEMLlsX7nCUUkop1Yf0iR6scBMRbrzxxqble++9lzvuuCN8ATVz7LHHtntz5rPOOouZM2fut+6OO+4gMzOTqVOnMmnSJBYuXNjdYSrVp6R7d1IWlUVx4mQyGraB3xvukJRSSinVR2iC1QmRkZG89NJLlJSUhLReYwzBYDCkdTZXUVHB8uXLqaysZNu2bfttu+GGG1i1ahXPP/88l19+ebfGoVRf4vUHSQ2WUBudiT9tMhH4aSjaGO6wlFJKKdVHaILVCS6XiyuvvJL777//gG3FxcWcc845TJ8+nenTp/PZZ58BVi/Rvffe21Ru0qRJ5Ofnk5+fz9ixY7nkkkuYNGkSBQUF3HzzzUyaNInJkyezYMECABYtWsSxxx7Lueeey7hx47jwwgsxxrQa35NPPtnUG7VkyZKm9S+99BJnnHEG559/Ps8++2yr+44fPx6Xy7Vf8njrrbcyYcIE8vLyuOmmmwDIz8/n+OOPJy8vjxNOOIGdO3cCMHfuXK6++mpmzpzJiBEjWLRoEZdffjnjx49n7ty5TXVeffXVTJs2jYkTJ3L77bcfEEdlZSXDhw9vSvRqa2vJzs7G5/O1GrdS3aWs1ksitRA9iOih4wEo2bEhzFEppZRSqq/oU9dg3fnaejbsqQppnROGJnD7GRM7LPfzn/+cvLw8brnllv3WX3fdddxwww3MmjWLnTt3cvLJJ7NxY/u/dn/zzTf85z//YebMmbz44ousWrWK1atXU1JSwvTp0zn66KMBWLlyJevXr2fo0KEceeSRfPbZZ8yaNeuA+urq6li1ahWffPIJl19+OevWWdeMzJ8/n9tuu4309HTOOeccfvvb3x6w71dffYXD4SA1NRWA0tJSXn75Zb7++mtEhIqKCgCuvfZaLr30Ui699FL+9a9/8ctf/pJXXnkFgPLycr744gsWLlzImWeeyWeffcY///lPpk+fzqpVq5g6dSp33303gwcPJhAIcMIJJ7BmzRry8vKa4khMTGTq1Kl8/PHHHHfccbz++uucfPLJer8r1eNKahoYJrWUxySRNnwCALV7vg5zVEoppZTqK7QHq5MSEhK45JJLePDBB/db//777/OLX/yCqVOncuaZZ1JVVUVNTU27dQ0fPrzpuqjFixdzwQUX4HQ6SU9P55hjjmHp0qUAzJgxg6ysLBwOB1OnTiU/P7/V+i644AIAjj76aKqqqqioqGDv3r188803zJo1izFjxuB2u5sSL4D777+fqVOnctNNN7FgwYKm2fkSExOJioriJz/5CS+99BIxMTEAfPHFF/z4xz8G4OKLL2bx4sVNdZ1xxhmICJMnTyY9PZ3JkyfjcDiYOHFiU8zPPfcchx56KIcccgjr169nw4YDewTmzJnT1IP37LPPMmfOnHaPo1Ldoba+gQSpQ6IHMTwjlSIziGDJlnCHpZRSSqk+ok/1YHWmp6k7XX/99Rx66KFcdtllTeuCwSBffvnlATcidblc+13X1PzeTbGxsZ1qLzIysum50+nE7/e3Wq7l1OUiwnPPPUd5eXnTDXmrqqqYP38+d999N2Bdg9U4/K9l3EuWLOGDDz7ghRde4OGHH+bDDz/sVJwOh2O/mB0OB36/n+3bt3PvvfeydOlSBg0axNy5c1u9l9WZZ57Jb3/7W8rKyli+fDnHH398u+0q1R28dRUASPQg4iJdbHIMZXBVflhjUkoppVTfoT1YB2Hw4MGcd955PP74403rTjrpJB566KGm5VWrVgGQk5PDihUrAFixYgXbt29vtc6jjjqKBQsWEAgEKC4u5pNPPmHGjBkHFVdjr8/ixYtJTEwkMTGR+fPn8/bbbzdd97V8+fI2r8NqrqamhsrKSn7wgx9w//33s3r1agC+973vNe3/9NNPc9RRR3U6vqqqKmJjY0lMTGTv3r289dZbrZaLi4tj+vTpXHfddZx++uk4nc5Ot6FUqARqywFwxg4CoDwqm8ENBeEMSSmllFJ9iCZYB+nGG2/cb0KIBx98kGXLlpGXl8eECROYN28eAOeccw5lZWVMnDiRhx9+mDFjxrRa39lnn01eXh5Tpkzh+OOP55577mHIkCEHFVNUVBSHHHIIV111FY8//jj5+fns2LFjv+nZc3NzSUxM5Kuvvmq1jh/84Afs2bOH6upqTj/9dPLy8pg1axb33XcfAA899BD//ve/ycvL48knn+SBBx7odHxTpkzhkEMOYdy4cfz4xz/myCOPbNp222237TdN/Jw5c3jqqad0eKAKm0BdGQAuO8Gqjx9OYrASPJXhDEsppZRSfYS0NTNdpysQyQb+C6QDBnjUGPOAiAwGFgA5QD5wnjGmvL26pk2bZlre02njxo2MHz++SzGq/kX/Taju9P5rz3Di8qspn7OQQeOPYeGz/+DMr2/B/5MPcWUfFu7wlFJKKdULiMhyY8y01raFogfLD9xojJkAzAR+LiITgFuBD4wxo4EP7GWllOrd6isAiEhItv6mW73P5bv0XlhKKaWU6liXEyxjTKExZoX9vBrYCGQCs4H/2MX+A5zV1baUUqrbNVi3goiyhwgOGmolWHWF34QtJKWUUkr1HSG9BktEcoBDgK+AdGNMob2pCGsIYWv7XCkiy0RkWXFxcSjDUUqpg2Z8dQA4I63ZPjPTBrHXJBEoyw9jVEoppZTqK0KWYIlIHPAicL0xZr+7ARvrQq9WL/YyxjxqjJlmjJnWeLNbpZQKG2+t9TfCSrCGJESxy6ThqtKZBJVSSinVsZAkWCLixkqunjbGvGSv3isiGfb2DGBfKNpSSqnuJL56fLjA6QbA5XRQ4s4gtm5XmCNTSimlVF/Q5QRLrLvcPg5sNMbc12zTQuBS+/mlwKtdbUsppbqbw1+Ph8j91tVEZ5LkL4aAL0xRKaWUUqqvCEUP1pHAxcDxIrLKfvwA+DPwfRH5BjjRXu6zXnnlFUSEr7/+us0y+fn5TJo0KWRtzp07lxdeeKHN7ddffz2ZmZkEg8GmdU888QSpqalMnTqVCRMm8Nhjj4UsHqUGAoe/Dq8jar91gcRhOAlCpQ4TVEoppVT7QjGL4GJjjBhj8owxU+3Hm8aYUmPMCcaY0caYE40xZaEIOFzmz5/PrFmzmD9/fqvb/X5/l9sIBAKdLhsMBnn55ZfJzs7m448/3m/bnDlzWLVqFYsWLeK3v/0te/fu7XJsSg0UrkA9Xtk/wXINzgHAW7I9DBEppZRSqi8J6SyC/VVNTQ2LFy/m8ccf59lnn21av2jRIo466ijOPPNMJkyYAFiJ1oUXXsj48eM599xzqauzZiT74IMPOOSQQ5g8eTKXX345DQ0NAOTk5PDrX/+aQw89lOeff/6Att9//32mTZvGmDFjeP311/dre+LEiVx99dVtJn1paWmMHDmSHTt2NK178MEHmTBhAnl5eZx//vkAlJWVcdZZZ5GXl8fMmTNZs2YNAHfccQeXXnopRx11FMOHD+ell17illtuYfLkyZxyyin4fNZwqbvuuovp06czadIkrrzySlrevDoYDJKTk0NFRUXTutGjR2vip3old6Aer3P/BCtmyEgAKvZsCUdISimllOpDXOEO4KC8dSsUrQ1tnUMmw6ntj1589dVXOeWUUxgzZgzJycksX76cww47DIAVK1awbt06cnNzyc/PZ9OmTTz++OMceeSRXH755fztb3/jF7/4BXPnzuWDDz5gzJgxXHLJJfz973/n+uuvByA5OZkVK1a02nZ+fj5Llixh69atHHfccWzZsoWoqCjmz5/PBRdcwOzZs/ntb3+Lz+fD7Xbvt++2bdvYtm0bo0aNalr35z//me3btxMZGdmU8Nx+++0ccsghvPLKK3z44YdccsklrFq1CoCtW7fy0UcfsWHDBo444ghefPFF7rnnHs4++2zeeOMNzjrrLH7xi19w2223AXDxxRfz+uuvc8YZZzS16XA4mD17Ni+//DKXXXYZX331FcOHDyc9vdWZ+5UKK1fQg98dvd+6lIxcvMZJ/d6tYYpKKaWUUn2F9mB1wvz585t6e84///z9eoxmzJhBbm5u03J2djZHHnkkABdddBGLFy9m06ZN5ObmMmaMdcPSSy+9lE8++aRpnzlz5rTZ9nnnnYfD4WD06NGMGDGCr7/+Gq/Xy5tvvslZZ51FQkIChx9+OO+8807TPgsWLGDq1KlccMEF/OMf/2Dw4MFN2/Ly8rjwwgt56qmncLms/Hrx4sVcfPHFABx//PGUlpZSVWXNtH/qqafidruZPHkygUCAU045BYDJkyeTn58PwEcffcThhx/O5MmT+fDDD1m/fv0Br2POnDksWLAAgGeffbbd16xUOEUEPQRa9GBlp8Szx6Rgyne0sZdSSimllKVv9WB10NPUHcrKyvjwww9Zu3YtIkIgEEBE+Mtf/gJAbGzsfuWtSRXbXm5Nyzo6qu+dd96hoqKCyZMnA1BXV0d0dDSnn346YCUzDz/8cKv1vfHGG3zyySe89tpr3H333axd236PYGSkNZuaw+HA7XY3xeNwOPD7/Xg8Hq655hqWLVtGdnY2d9xxBx6P54B6jjjiCLZs2UJxcTGvvPIKv//979ttV6lwiTQeAq4h+61LjYvkc9IYUb0zTFEppZRSqq/QHqwOvPDCC1x88cXs2LGD/Px8CgoKyM3N5dNPP221/M6dO/niiy8AeOaZZ5g1axZjx44lPz+fLVus6zeefPJJjjnmmE61//zzzxMMBtm6dSvbtm1j7NixzJ8/n3/+85/k5+eTn5/P9u3bee+995qu92pLMBikoKCA4447jv/7v/+jsrKSmpoajjrqKJ5++mnAurYrJSWFhISETsXXmEylpKRQU1PT5qyHIsLZZ5/Nr371K8aPH09ycnKn6leqp0UZD0F3zH7rHA6hPGIo8Z7dYYpKKaWUUn2FJlgdmD9/PmefffZ+684555w2J5YYO3YsjzzyCOPHj6e8vJyrr76aqKgo/v3vf/OjH/2IyZMn43A4uOqqqzrV/rBhw5gxYwannnoq8+bNIxgM8vbbb3Paaac1lYmNjWXWrFm89tprrdZxxRVXsGzZMgKBABdddBGTJ0/mkEMO4Ze//CVJSUnccccdLF++nLy8PG699Vb+85//dPLoQFJSEj/96U+ZNGkSJ598MtOnT2/aNm/ePObNm9e0PGfOHJ566ikdHqh6La8/SBRejCv6gG31sVnEByqhoSYMkSmllFKqr5CWM76F07Rp08yyZcv2W7dx40bGjx8fpohUb6T/JlR3qazz4fi/bPKH/ZDJP/nbftsW/PuvzNlxO1z9OaRPDFOESimllOoNRGS5MWZaa9u0B0sppWx1Xh8xeJCImAO2RaSOAKB2r07VrpRSSqm2aYKllFK2+vo6nGJwRB448UxChnW7gyq9F5ZSSiml2tEnEqzeNIxRhZf+W1DdyVNbC4Aj4sAEa8iQodSYKBqKt/d0WEoppZTqQ3p9ghUVFUVpaal+sVYYYygtLSUqKqrjwkp9Bw311v3fnJFxB2zLTo6lwKQiFfk9HJVSSiml+pJuvw+WiJwCPAA4gX8aYw7qZlZZWVns2rWL4uLibolP9S1RUVFkZWWFOwzVT3k91gyBzqgDr8FKiHKz3DGECbW7ejospZRSSvUh3ZpgiYgTeAT4PrALWCoiC40xGzpbh9vtJjc3t7tCVEqpJr56K8FyRx3YgwVQFTWUpIa1YAx04ibiSimllBp4unuI4AxgizFmmzHGCzwLzO7mNpVS6jvxe6ybdUdEt55geeOziTQeqNUedaWUUkq1rrsTrEygoNnyLntdExG5UkSWicgyHQaolAqngD1EMCI6vvUCg6ze9EBZfg9FpJRSSqm+JuyTXBhjHjXGTDPGTEtNTQ13OEqpASzQYM0iGBnTeg9WTJp1Lyydql0ppZRSbenuBGs3kN1sOctep5RSvU7QayVYUW30YA3KtO6FVV2kCZZSSimlWtfdCdZSYLSI5IpIBHA+sLCb21RKqe/E2AlWazcaBshKS6HYJOAv1XthKaWUUqp13ZpgGWP8wC+Ad4CNwHPGmPXd2aZSSn1XxmtNckHEgdO0A2QkRVFg0nBW7ezBqJRSSinVl3T7fbCMMW8Cb3Z3O0op1VUOn51guVtPsNxOB6XuDIbXfdODUSmllFKqLwn7JBdKKdVbiL8eL25wONssUxudSZJvHwT8PRiZUkoppfoKTbCUUsrm8Nfhkah2y/gTh+MkCJUF7ZZTSiml1MCkCZZSStmcgXq8jvYTLHeaNZNgXeHXPRGSUkoppfoYTbCUUsrm9tfhdUS3WyYxayIA5Ts39ERISimllOpjNMFSSilbRLAer7P1KdobZWVlU2liaCja1ENRKaWUUqov0QRLKaVskYE6/K7WZxBsNCw5jm1mKK5yvdmwUkoppQ6kCZZSStmiTB0BV/s9WBEuB3sjskmoze+ZoJRSSinVp2iCpZRSQDBoiDYegu72EyyA2rhckgKl0FDdA5EppZRSqi/RBEsppYA6X4BY8WAiOk6wgsmjrb/FOkxQKaWUUvvTBEsppYDaBj9x1ENEXIdlYzLGAVBesL67w1JKKaVUH6MJllJKAbX1HqLEh0TGd1g2Zfg4Akao2b2xByJTSimlVF/SpQRLRP4iIl+LyBoReVlEkppt+42IbBGRTSJycpcjVUqpblRfUwWAI7LjHqzcIYPZZVIJFm/u7rCUUkop1cd0tQfrPWCSMSYP2Az8BkBEJgDnAxOBU4C/iYizi20ppVS3aairBMAZ3XEPVmpcJDslk6jKbd0dllJKKaX6mC4lWMaYd40xfnvxSyDLfj4beNYY02CM2Q5sAWZ0pS2llOpODXVWD5Y7quMES0QojxnOYE8BBIPdHZpSSiml+pBQXoN1OfCW/TwTKGi2bZe9TimleiVfnTXlujsmoVPlvcnjiKQBU769O8NSSimlVB/TYYIlIu+LyLpWHrOblfkd4AeePtgARORKEVkmIsuKi4sPdnellAoJX10FAFFxSZ0qH5WZB0Bl/qruCUgppZRSfZKrowLGmBPb2y4ic4HTgROMMcZevRvIblYsy17XWv2PAo8CTJs2zbRWRimlupu/pgyA2KSUTpVPGzmFwJdCxfaVJB12TneGppRSSqk+pKuzCJ4C3AKcaYypa7ZpIXC+iESKSC4wGljSlbaUUqo7mfpyACLjkjtVfkxWGvlmCKZoXXeGpZRSSqk+psMerA48DEQC74kIwJfGmKuMMetF5DlgA9bQwZ8bYwJdbEsppbqNqa+wnkQndap8UkwEy1w5TK3UqdqVUkop9a0uJVjGmFHtbLsbuLsr9SulVE9xeipoIIJId3Sn96mMH0tK5RfQUAOduH+WUkoppfq/UM4iqJRSfZbLV0mto+Mp2psLpk0AwF+0vjtCUkoppVQfpAmWUkoBkb4q6p0Hl2DFD58KQOm2Fd0QkVJKKaX6Ik2wlFIKiPJX0+Du3D2wGg3LHUe1iaauYE03RaWUUkqpvkYTLKWUAmKDVfgjEg9qn9FD4tnMMJz7dIigUkoppSyaYCmlBrwGf4AkqvFHJh3Ufm6ng6LoMaTVboKgTpSqlFJKKU2wlFKK0moPKVRi4oYc9L6e9KlEGQ+BfV93Q2RKKaWU6ms0wVJKDXilxUW4JIgrIf2g940dMROAkk2fhzospZRSSvVBmmAppQa8qpJdAEQPHnrQ+44cO5lKE0Pt1q9CHZZSSiml+iBNsJRSA1592R4A4lOyDnrfEWkJrGMU0cWrQhyVUkoppfoiTbCUUgOer6IQgITUg0+wnA6hKH4CafVbwVsX6tCUUkop1cdogqWUGvBM9V4AnPEHfw0WgH/IoTgJ4t+zKoRRKaWUUqov0gRLKTXgRdbuplriIDLuO+2fPOYIAPZu+CyUYSmllFKqDwpJgiUiN4qIEZEUe1lE5EER2SIia0Tk0FC0o5RS3SHOU0i5++CnaG80edwYdpkUGvKXhDAqpZRSSvVFXU6wRCQbOAnY2Wz1qcBo+3El8PeutqOUUt3BGMNgXxF1MZnfuY70hCg2usYzuHQ5GBPC6JRSSinV14SiB+t+4Bag+beK2cB/jeVLIElEMkLQllJKhVRxtYehFBNMyO5SPRWp00kKlGLKtoUoMqWUUkr1RV1KsERkNrDbGLO6xaZMoKDZ8i57XWt1XCkiy0RkWXFxcVfCUUqpg1ZYuItYacCdPLxL9cSMOQaAkvUfhSIspZRSSvVRHSZYIvK+iKxr5TEb+C1wW1cCMMY8aoyZZoyZlpqa2pWqlFLqoFXu2gRA7NAxXapnzIRDKTEJ1G7+OBRhKaWUUqqPcnVUwBhzYmvrRWQykAusFhGALGCFiMwAdgPNx9tk2euUUqpXqSu0EqzkYRO7VM/ItHg+kPEctndpKMJSSimlVB/1nYcIGmPWGmPSjDE5xpgcrGGAhxpjioCFwCX2bIIzgUpjTGFoQlZKqdCR0m/w4yQyJbdL9TgcQknyNAb7CqGioOMdlFJKKdUvddd9sN4EtgFbgMeAa7qpHaWU6pKY6nxK3Bng7LBDv0Oxo48GoHTDoi7XpZRSSqm+KWQJlt2TVWI/N8aYnxtjRhpjJhtjloWqHaWUChV/IMhQ3w6q4kaEpL4JU4+gwsRSsf79kNSnlFJKqb6nu3qwlFKq19tRXM5wigikjAtJfSPTE1junEJy0WK9H5ZSSik1QGmCpZQasAq3rMUlQWIyJ4WkPhGhdMgskgIlBPZuCEmdSimllOpbNMFSSg1YdbvXAZA6cmrI6kycfAoA+1a8EbI6lVJKKdV3aIKllBq49m3Ej4OYjNAMEQQ4dNIkNgWz8G9+N2R1KqWUUqrv0ARLKTVgxVdtYZ9rKLgiQ1Znanwka+KOZGjFcqgtCVm9SimllOobNMFSSg1IwaAhw5tPZdyokNctE8/GSZCyZS+EvG6llFJK9W6aYCmlBqSC4jKy2UswZWzI6z585tFsDWZQt+rFkNetlFJKqd5NEyyl1IC0Z8sanGKIyQrNDILNZSfHsizuWDLKl2HKtoe8fqWUUkr1XppgKaUGpJqCtQCkhXAGwebij/wpASMUvnN/t9SvlFJKqd5JEyyl1MBU/DV+nMSGcAbB5o6fMZV3HEeRvPlZTG1pt7ShlFJKqd5HEyyl1IAUV7WFve5McEV0S/1Rbie+w6/FGfRRsOCmbmlDKaWUUr1PlxMsEblWRL4WkfUick+z9b8RkS0isklETu5qO0opFSqBoGGoN5+qbphBsLnZJ53ASzHnMmznSxQuvBOCgW5tTymllFLh16UES0SOA2YDU4wxE4F77fUTgPOBicApwN9ExNnFWJVSKiR2FpWQzb5umUGwOadDOOIn9/GO42gyVtxH+f+MYOcfp7L2/Se7tV2llFJKhU9Xe7CuBv5sjGkAMMbss9fPBp41xjQYY7YDW4AZXWxLKaVConDbGhxiiM2e3O1tZafEc/iNL7Bw3D1siJ5GnK8YWfl0t7erlFJKqfDoaoI1BjhKRL4SkY9FZLq9PhMoaFZul73uACJypYgsE5FlxcXFXQxHKaU61rB7PQDJuVN7pL2k2EjOPP9nHHnLi6yNO5LsuvVgTI+0rZRSSqme5eqogIi8DwxpZdPv7P0HAzOB6cBzIjLiYAIwxjwKPAowbdq0AfWNw+v1UVVeTENtOQ111XjrqvDVV+OvryHYUE3AUwveGoLeWozfS9Dvg4AXh/HjMD4cQT9O48dh/GCCYAxBBIBg45EUQRBEBBEIihMjLoION8bhtv6KC+NwY5xucLoRpxucEYgrAofThTgjEHckDlckDncETlckDlcETnckTncELnckzogoXO5IXBGRuNyRuCOjiHBHEhEZhdPlBpHwHWilWnCWfo0PJ/FDx/R421XJU0isfYdA6XacKQf1cal6kDGGgN+H3+vB6/Ph9/vx+f0EgwFMMADBIJgAJhAEAtb1dSaIMQZjwIhgEBAHBkAcOMSBw2n9FacTZ7Nlp9OBw+nEIU6cTicOh7XsdDoRcYLDCeLQz1KllOoDOkywjDEntrVNRK4GXjLGGGCJiASBFGA3kN2saJa9rl8zwSAVZfsoLdpB9b4CvOW7oaYIqSvB4akgoqGcKH8lMYEqEoLVJEgtKZ2s22tc+MSFn8aHE7+4CODCLy4MDgQDAgJ2mmVnWU2/lBscJmjtbRprCuDGh8sEiBB/qA8JAEEj+Pg2fp8dcwA3fnHhFyvRC4ibgMNNUNwEHS4C4saIE0Qw4gAcGHEgIgSl8ctGswcCjsbn1l/rS47DfvWGb7+amGZ/rOeCwTQdu8ZiZv/yzZ6LOXDdfuVNi21N6/f/HUEwGGPFZlppU5rVbZov2200xr1/+83rbv7aWrwe07KN5jG3jLv5/s1fY+d+F2lsqfU9vl1jTMdfIA0HlmlZZ3tRjapbz25nFjlOd4dthVp07kzYCUXrPyHzGE2wuioQCFJdVUFNxT7qK0vwVJfira3CW1+Fv74KPNXgq8Xhq8Xlq8Xlr8UVqMMdqMcZ9OI0PtzGi9v4cOMjwnhx4ycCHy4J4gKiwv0imwkaIYhgRAjgwOAgiBBs+VwcmObr7c/CoFjLBuvzMYiz6XPS2Nto/IzF+uw14vw2WRTHfvUgDru9b+sINtaB/VncSBr/tP7ulP0+Jb7dR9p8M7e1oY31rfQaN2+ro08yOeBz8SBCCtVOnez53u//hY7KtlNnyy1tnbv29MQv5zogoP9bmvB9Tj37EnJSYsMdSqd0mGB14BXgOOAjERkDRAAlwELgGRG5DxgKjAaWdLGtsAv4fezbvY3Sgs3U7t1GoGw7EdUFxNfvIcFfwuBgOYPEx6AW+1WbaKocCdQ6EvC4E6iOyWZ35CCIHoTEDIaoRFxRcTij4oiIScAVnUBUbAKRMfFExyYQExNHhNNB90wm3YwxEAwQ8DfgbfDi83nwNTTg99kPbwN+v/U36PMS8DcQ9DUQ8HsJ+hoI+r2YxkfAi/E3QMALfh8EvRDwIgEfEvQhAS+OoPXcEfThNPZffz0Rpgqn8ePGh5hvvyKICdpfH8yBf5uX22+7wUmwRVog+/21njdqe9v+61pLFKTNbd/ua2XALetsvo+0un7/hKKt9a1vaxaPtLG+1fhbtCnfrm/c0lr77emo9H7/ebdRWA7IgjuopzVON2WjfkhOB/F0hzGTZlCzKIrqrV/AMXPDEEHvVt/go6ykiOqSPdSV7sZbWUiwei9SsxeHpxyXt5IoXxUxQfuHKmpIkgBJ7dQZMEK9RFNHNA2OKDyOGHyOKLzuBIwzgoAzEuOIIOiMIGg/N84IjCvK6s13unA4XVbPk8Nl/+hjJSY4nIATHFZy0TRqAGtUgdV/FUQMmGCAoDFWz5cxmGDQWg4GMcbqEQsGDcYEERPA2L1kmOB+zwmab583lrVHMYgJIHZPWuNzMQFrG0HEBO147Oem8fM1AI2fs8HGMoGmz9Kmz98Wn8OO5p+7zbY5m6V9nflB5Nv1rb+5215/cPW09uFxMN/ND+4zr/NlD6bepgEqnamzk9Ue7Gf5wdOeV9U11d4J1Pv6zky8XU2w/gX8S0TWAV7gUrs3a72IPAdsAPzAz40xfeeo2DZ8/gaVa98kpuIbUj07SA0WkyEBMuztfuNgnyOFMvcQdsVPIT82HUdCBhGDMolLySI+NZvE1GziY2KJD+sr6SQRcLpwOl1ER8YSHe54lOpGQ8PUbnZKHMscYxha9FWYIgifmvoGivfkU1m0HU9xPv7ynTirdxNVV0SMr4SkQBmDTSWZcuB/F/UmgipHAnXOBDzuRCrdIymLTCIQ1fhjVTLuuMFExA0mOj6RmLgk4hKSiI5NxBkRQ5wIcWF4zUoppbrulnAHcJC6lGAZY7zARW1suxu4uyv1h1vVhvc4bM98djuz2BMzju2JJ+ManEts+giSs8eSljmCoe6IsH1RU0r1PSJCccYxTN/zEA17vyEyfXS4QwoZvz/A3r17KN25kdqibwiWbMFdVUBMfSGD/HtJN6XkSnC/fSqIo8yZSm1ECnuix7ArNh1HfDquxCFEDRpKfEomialZRMclEq3XHymllOoDxPSigavTpk0zy5YtC3cYTWqqK4iMjMYdERnuUJRS/chXK1dx+KvHsGn8tYyd88dwh3NQjDGUlpdRuGU11bs24CveSkTldpI8BQwNFJIotU1lA0YodqRSEZGOJ2YogYQsnIOyiU7JIWFILslDRxARkxDGV6OUUkp9NyKy3BgzrbVtXR0i2K/FxSeFOwSlVD80bcoUvnptKqM2zQf/H8DV+37EMcZQVFHDzs1rqdq5Gtm3gfjKzQz1biebvU0T9ASNsM+ZRnlUNtvip0LySKLSRzM4exwp2WMY4o5sdRpapZRSqr/SBEsppXqY0yGU5F3J4auuYdfb95F1+m/CGk+tx8e2/K2UbF2Jd/daoso3kVa/lRFmFxniAyCAgyLnUMoSx1Oc/EMiMyeTkjuZ1KwxDImI0iRKKaWUsmmCpZRSYXDMqXNYvOZfHLLsAXxHXoR7UHbHO3VRMGjYWbSPws3LqSlYg6t4I0k135AT2MFkqWkqV+YYTEncKLakHEV0Zh6pIw8hPnsime7o1u8Yr5RSSqkmmmAppVQYxEW6MCfdTfCtsyiZdwbpv/wIR2zLmzx8d5U1tezcvJay7SsJ7l1PbMVmhjZsI0eKm6anryOKoqgR7E76PkVDJpI84hBSRhzC4LhkBocsEqWUUmpg0QRLKaXC5KiZM3lp1//j9LXXUnrfTMzp95M29VTrlgmdVFlTx57tG6nauRpf4QYiyjaTWr+NrOAeJtvTnftxUOTKomJwHuWpE4gbNoWMMYcRk5LDCIejgxaUUkopdTB0FkGllAojYwxvvb2QSV/exDDZx25XNiXpRyIpo3EmDsU4XBgjeOsq8FaXEKgpxVVTSGxdAYO9hQwxxTjF+hwPGqHImU5p9Ah8yWOJypxI2shDSR4+EXFHhfmVKqWUUv1He7MIaoKllFK9QGFpOStff4whO19ngn8DUfbkEq0pJYkSdwZ1MVkEk4YTmTaKxOGTSRuRR6ROe66UUkp1O02wlFKqD6nxeCnavYOG8j0IQcQEiY5LIjE5ncRBaTjcEeEOUSmllBrQ9D5YSinVh8RFRTBq5GhgdLhDUUoppdRB0qublVJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQqRXTXIhIsXAjnDH0UIKUBLuIFSP0fM9cOi5Hjj0XA8ser4HDj3XA0dvPNfDjTGprW3oVQlWbyQiy9qaIUT1P3q+Bw491wOHnuuBRc/3wKHneuDoa+dahwgqpZRSSimlVIhogqWUUkoppZRSIaIJVsceDXcAqkfp+R449FwPHHquBxY93wOHnuuBo0+da70GSymllFJKKaVCRHuwlFJKKaWUUipENMFSSimllFJKqRDRBKsdInKKiGwSkS0icmu441GhIyLZIvKRiGwQkfUicp29frCIvCci39h/B4U7VhUaIuIUkZUi8rq9nCsiX9nv7wUiEhHuGFVoiEiSiLwgIl+LyEYROULf2/2TiNxgf4avE5H5IhKl7+3+Q0T+JSL7RGRds3WtvpfF8qB93teIyKHhi1wdrDbO9V/sz/E1IvKyiCQ12/Yb+1xvEpGTwxJ0OzTBaoOIOIFHgFOBCcAFIjIhvFGpEPIDNxpjJgAzgZ/b5/dW4ANjzGjgA3tZ9Q/XARubLf8fcL8xZhRQDvwkLFGp7vAA8LYxZhwwBeu863u7nxGRTOCXwDRjzCTACZyPvrf7kyeAU1qsa+u9fCow2n5cCfy9h2JUofEEB57r94BJxpg8YDPwGwD7+9r5wER7n7/Z39t7DU2w2jYD2GKM2WaM8QLPArPDHJMKEWNMoTFmhf28GusLWCbWOf6PXew/wFlhCVCFlIhkAacB/7SXBTgeeMEuoue6nxCRROBo4HEAY4zXGFOBvrf7KxcQLSIuIAYoRN/b/YYx5hOgrMXqtt7Ls4H/GsuXQJKIZPRIoKrLWjvXxph3jTF+e/FLIMt+Pht41hjTYIzZDmzB+t7ea2iC1bZMoKDZ8i57nepnRCQHOAT4Ckg3xhTam4qA9HDFpULqr8AtQNBeTgYqmn1w6/u7/8gFioF/20NC/ykiseh7u98xxuwG7gV2YiVWlcBy9L3d37X1Xtbvbf3b5cBb9vNef641wVIDmojEAS8C1xtjqppvM9Y9DPQ+Bn2ciJwO7DPGLA93LKpHuIBDgb8bYw4BamkxHFDf2/2Dfe3NbKykeigQy4FDjFQ/pu/lgUFEfod1acfT4Y6lszTBattuILvZcpa9TvUTIuLGSq6eNsa8ZK/e2zikwP67L1zxqZA5EjhTRPKxhvoej3WNTpI9rAj0/d2f7AJ2GWO+spdfwEq49L3d/5wIbDfGFBtjfMBLWO93fW/3b229l/V7Wz8kInOB04ELzbc37+3151oTrLYtBUbbsxFFYF1MtzDMMakQsa/BeRzYaIy5r9mmhcCl9vNLgVd7OjYVWsaY3xhjsowxOVjv4w+NMRcCHwHn2sX0XPcTxpgioEBExtqrTgA2oO/t/mgnMFNEYuzP9MZzre/t/q2t9/JC4BJ7NsGZQGWzoYSqDxKRU7CG959pjKlrtmkhcL6IRIpILtbEJkvCEWNb5NtkULUkIj/AunbDCfzLGHN3eCNSoSIis4BPgbV8e13Ob7Guw3oOGAbsAM4zxrS8wFb1USJyLHCTMeZ0ERmB1aM1GFgJXGSMaQhjeCpERGQq1oQmEcA24DKsHxT1vd3PiMidwBys4UMrgSuwrsXQ93Y/ICLzgWOBFGAvcDvwCq28l+0k+2GsYaJ1wGXGmGVhCFt9B22c698AkUCpXexLY8xVdvnfYV2X5ce6zOOtlnWGkyZYSimllFJKKRUiOkRQKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaV6GRHJEREjIq5wx6IGBhFZLyLHhjsOpZTqDzTBUkop1eeJyDwRqbEfXhHxNVt+K9zx9XbGmInGmEXdUbeIDBaRYhFZ3B31K6VUbyPGmHDHoJRS/YqIuIwx/i7snwNsB9xdqWegEpE7gFHGmIta2dalc9OT+lKs7RGRx4CxgMMYMyvc8SilVHfTHiyllAoBEckXkV+LyBqgVkRcIjJTRD4XkQoRWd18CJaILBKR/xWRJSJSJSKvisjgNuq+TEQ2iki1iGwTkZ+12D5bRFbZ9WwVkVPs9Yki8riIFIrIbhH5o4g4O3gdI0XkQxEpFZESEXlaRJKabSsTkUPt5aF2z8Sx9vKZ9lCzCvv1jW9xfG4SkTUiUikiC0Qk6uCP9MFr49wYERnVrMwTIvLHZsun28e0wj6HeZ1s61gR2SUiv7WPX76IXNhs+2kistI+VwV2Mti4rXFo6E9EZCfwob3+eREpso/bJyIysUXcfxORt+zeus9EZIiI/FVEykXkaxE5pJPH6MTOvMaDISLfAyYB/w513Uop1VtpgqWUUqFzAXAakASkA28AfwQGAzcBL4pIarPylwCXAxmAH3iwjXr3AacDCcBlwP3NkpwZwH+Bm+12jwby7f2esOsdBRwCnARc0cFrEOB/gaHAeCAbuAPAGLMV+DXwlIjEYH1p/o8xZpGIjAHmA9cDqcCbwGsiEtGs7vOAU4BcIA+Y22oAIrPsxKatx3fpBWk6Nx31CtkJyb+AnwHJwD+AhSIS2cm2hgApQCZwKfCoiIy1t9VinfckO56rReSsFvsfg3XsT7aX3wJGA2nACuDpFuXPA35vt9kAfGGXSwFeAO7rZNytEpFb2zsf7eznBB4GfgHocBml1IChCZZSSoXOg8aYAmNMPXAR8KYx5k1jTNAY8x6wDPhBs/JPGmPWGWNqgT8A57XWw2SMecMYs9VYPgbeBY6yN/8E+Jcx5j27nd3GmK9FJN1u63pjTK0xZh9wP3B+ey/AGLPFrqvBGFOM9eX8mGbbHwO2AF9hJYa/szfNAd6w9/UB9wLRwPdaHJ89xpgy4DVgahsxLDbGJLXz+C7X8jQ/Nx25EviHMeYrY0zAGPMfrMRl5kG09wf7GH6MlWifB2CMWWSMWWufqzVYSekxLfa9wz5n9fY+/zLGVBtjGrCS3Skiktis/MvGmOXGGA/wMuAxxvzXGBMAFmAl19+ZMebP7Z2Pdnb9JfCVMWZ5V9pXSqm+RmeoUkqp0Clo9nw48CMROaPZOjfwURvld9jbU1pWKiKnArcDY7B+GIsB1tqbs7F6i1oabtdXKCKN6xwt2jyAnZg9gJXAxdv7lLco9hiwELjS/tIPVo/XjsYCxpigiBRg9eI0Kmr2vM7ep6e0+7pbGA5cKiLXNlsXQefjLbeT5kY7GvcVkcOBP2MNm4sAIoHn24rVTrjvBn6E1TMYtDelAJX2873N9q1vZTmuk3GHjIgMxUqwDuvptpVSKty0B0sppUKn+TCoAqwequa/9scaY/7crEx2s+fDAB9Q0rxCe1jai1g9Qul2j8GbWEP5GtsZ2UosBVi9LinN2k8wxkxspWxzf7Jfx2RjTAJWT1xThiYiccBfgceBO+Tb68b2YCUmjeXEfn27O2jvACJylHw7A2Brj6M6ruUALYeo1WElqo2GNHteANzd4tzFGGPmd7KtQSIS22x5GNbxAXgGKznNNsYkAvNodnxbifXHwGzgRCARyLHXt9yn29jXk7V5PtrYbQZWD+cGESnCStpn2NeStXsdoFJK9XWaYCmlVPd4CjhDRE4WEaeIRNkTIGQ1K3ORiEywr2e6C3jBHtbVXGMvRzHgt3uzTmq2/XHgMhE5QUQcIpIpIuOMMYVYQwn/n4gk2NtGikjL4WgtxQM1QKWIZGJd29XcA8AyY8wVWEPf5tnrnwNOs+NwAzdiJXifd3SgWjLGfGqMiWvn8enB1tmKVcCP7XNzCvsP03sMuEpEDhdLrD05RTw0TSzxRAf13ykiEXYyeDrf9lLFA2XGGI99/dyPO6gnHus4lmIlhH86iNcYEsaYP7V3PtrY7S2sZHCq/bgNWAlMbeXfuFJK9SuaYCmlVDcwxhRg9Tz8Fis5KsBKVpp/7j6JNRFFERCFNaSqZT3V9vrnsIbq/RirB6Rx+xLsiS+whox9zLc9SZdgJWgb7H1fwOpVaM+dwKF2XW8ALzVuEJHZWJNUXG2v+hVwqIhcaIzZhNXb9RBWL9wZwBnGGG8H7YXLdVgxVgAXAq80bjDGLAN+ijVBQznWNWdzm+2bDXzWTt1F9n57sCakuMoY87W97RrgLhGpxko6nusgzv9iDTHcjXUev+zohfUG9vVnRY0PrH9PPvu5Ukr1a3ofLKWUCgMRWQQ8ZYz5Z7hjUZ1nz4q4GsizJ/Nouf1YrPOa1XKbUkqpgUEnuVBKKaU6ye6RG99hQaWUUgOWDhFUSqkBRkTmtTFhwbyO91Z9kYgMa2eiimHhjk8ppfoTHSKolFJKKaWUUiGiPVhKKaWUUkopFSK96hqslJQUk5OTE+4wlFJKKaWUUqpNy5cvLzHGpLa2rVclWDk5OSxbtizcYSillFJKKaVUm0RkR1vbdIigUkoppZRSSoWIJlhKKaWUUkopFSKaYCml1Hewt8rDwtV70JlYlVJKKdVcr7oGqzU+n49du3bh8XjCHYrqY6KiosjKysLtdoc7FNUP/f6pD0jd/QEx9Rdy4szDwh2OUkoppXqJXp9g7dq1i/j4eHJychCRcIej+ghjDKWlpezatYvc3Nxwh6P6GX8gyPcKn+Qy91usXLwFZi4Md0hKKaWU6iV6/RBBj8dDcnKyJlfqoIgIycnJ2vOpukVhpYfxkg/AyJplEPCHNyCllFJK9Rq9PsECNLlS34n+u1HdZUdJLRNkB7USRwK11O5cEe6QlFJKKdVL9IkESymlepPSwu0kSB35w84GoHjryjBHpJRSSqneQhOsThARbrzxxqble++9lzvuuCN8ATXz5ZdfcvjhhzN16lTGjx/fFNeiRYv4/PPPu1T3KaecQlJSEqeffnoIIlWq//BWFAIwePwxeIyb+t3rwxyRUkoppXqLLidYIpItIh+JyAYRWS8i19nrB4vIeyLyjf13UNfDDY/IyEheeuklSkpKQlqvMYZgMNilOi699FIeffRRVq1axbp16zjvvPOA0CRYN998M08++WSX6lCqPwrUWJ8F6UOHs41M3KVfhzkipZRSSvUWoZhF0A/caIxZISLxwHIReQ+YC3xgjPmziNwK3Ar8uisN3fnaejbsqepywM1NGJrA7WdMbLeMy+Xiyiuv5P777+fuu+/eb1txcTFXXXUVO3fuBOCvf/0rRx55JHfccQdxcXHcdNNNAEyaNInXX38dgJNPPpnDDz+c5cuX8+abb/Lwww/z1ltvISL8/ve/Z86cOSxatIg77riDlJQU1q1bx2GHHcZTTz11wHVF+/btIyMjAwCn08mECRPIz89n3rx5OJ1OnnrqKR566CHGjRvXZpxbt25ly5YtlJSUcMstt/DTn/4UgBNOOIFFixa1e2yef/557rzzTpxOJ4mJiXzyySd4PB6uvvpqli1bhsvl4r777uO4447jiSee4JVXXqG2tpZvvvmGm266Ca/Xy5NPPklkZCRvvvkmgwcP5rHHHuPRRx/F6/UyatQonnzySWJiYvZrd+bMmTz++ONMnGidu2OPPZZ7772XadOmtRuvUqFg6koBcMQmU+QeRl7d5jBHpJRSSqneoss9WMaYQmPMCvt5NbARyARmA/+xi/0HOKurbYXTz3/+c55++mkqKyv3W3/ddddxww03sHTpUl588UWuuOKKDuv65ptvuOaaa1i/fj3Lli1j1apVrF69mvfff5+bb76ZwkJr+NHKlSv561//yoYNG9i2bRufffbZAXXdcMMNjB07lrPPPpt//OMfeDwecnJyuOqqq7jhhhtYtWoVRx11VLtxrlmzhg8//JAvvviCu+66iz179nT6uNx111288847rF69moULramqH3nkEUSEtWvXMn/+fC699NKm2fzWrVvHSy+9xNKlS/nd735HTEwMK1eu5IgjjuC///0vAD/84Q9ZunQpq1evZvz48Tz++OMHtDtnzhyee+45AAoLCyksLNTkSvUYR72VYBGTTG1sFoP8+3QmQaWUUkoBIb4PlojkAIcAXwHpxphCe1MRkN7GPlcCVwIMGzas3fo76mnqTgkJCVxyySU8+OCDREdHN61///332bBhQ9NyVVUVNTU17dY1fPhwZs6cCcDixYu54IILcDqdpKenc8wxx7B06VISEhKYMWMGWVlZAEydOpX8/HxmzZq1X1233XYbF154Ie+++y7PPPMM8+fPb7XXqb04Z8+eTXR0NNHR0Rx33HEsWbKEs846q1PH5cgjj2Tu3Lmcd955/PCHP2x6Tddeey0A48aNY/jw4WzebP3Cf9xxxxEfH098fDyJiYmcccYZAEyePJk1a9YAVhL2+9//noqKCmpqajj55JMPaPe8887jpJNO4s477+S5557j3HPP7VS8SoWCu6EcP05cUYkEE7JxVgYxVbuQQTnhDk0ppZRSYRayBEtE4oAXgeuNMVXNh7IZY4yImNb2M8Y8CjwKMG3atFbL9BbXX389hx56KJdddlnTumAwyJdffklUVNR+ZV0u137XVzW/H1NsbGyn2ouMjGx67nQ68ftb/4V85MiRXH311fz0pz8lNTWV0tLSA8q0FSccOJ35wUxvPm/ePL766iveeOMNDjvsMJYvX95u+eavyeFwNC07HI6m1zd37lxeeeUVpkyZwhNPPNFqwpiZmUlycjJr1qxhwYIFzJs3r9MxK9VVkd5yap2JJIrgTsmFAqgt2kacJlhKKaXUgBeSWQRFxI2VXD1tjHnJXr1XRDLs7RnAvlC0FU6DBw/mvPPO22/I2kknncRDDz3UtLxq1SoAcnJyWLHCujfOihUr2L59e6t1HnXUUSxYsIBAIEBxcTGffPIJM2bM6HRMb7zxBsZYeek333yD0+kkKSmJ+Ph4qqurO4wT4NVXX8Xj8VBaWsqiRYuYPn16p9vfunUrhx9+OHfddRepqakUFBRw1FFH8fTTTwOwefNmdu7cydixYztdZ3V1NRkZGfh8vqZ6WjNnzhzuueceKisrycvL63T9SnVVjL+CencSALHpowCoKNwaxoiUUkop1VuEYhZBAR4HNhpj7mu2aSFwqf38UuDVrrbVG9x44437zSb44IMPsmzZMvLy8pgwYUJTT8o555xDWVkZEydO5OGHH2bMmDGt1nf22WeTl5fHlClTOP7447nnnnsYMmRIp+N58sknGTt2LFOnTuXiiy/m6aefxul0csYZZ/Dyyy8zdepUPv300zbjBMjLy+O4445j5syZ/OEPf2Do0KGAlfz96Ec/4oMPPiArK4t33nkHsIYlNl5vdfPNNzN58mQmTZrE9773PaZMmcI111xDMBhk8uTJzJkzhyeeeGK/nquO/M///A+HH344Rx55JOPGjWtav3DhQm677bam5XPPPZdnn322aeZEpXqCMYbYQDVeO8FKycolYIT6fdvCG5hSSimlegVp7P34zhWIzAI+BdYCjWPifot1HdZzwDBgB3CeMaasvbqmTZtmli1btt+6jRs3Mn78+C7FqNrWcrbD/kb//ahQa/AH+OauQ4lNySb3l69T5fFR9b/jqBtyOGOufibc4SmllFKqB4jIcmNMqzOsdfkaLGPMYqCti3ZO6Gr9SinVm9Q1BIjBg3Fb11ImRLnZLKmk1hSEOTKllFJK9QYhnUVQ9T133HFHuENQqk+p8wWIFQ+1Ed9OVlPuzmCEZ00Yo1JKKaVUbxGSSS6UUmqgqGvwE0MDRMZ9uy42i6RAKfgbwhiZUkoppXoDTbCUUuog1Db4icWDNEuwAglZODBQtTuMkSmllFKqN9AESymlDoKnvgaHGBzNEiz3YOsm6XXF+WGKSimllFK9hSZYSil1EBpqrfvLuaK+TbBiUnMAqCzKD0NESimllOpNNMHqpFdeeQUR4euvv26zTH5+PpMmTQpZm5s2beLYY49l6tSpjB8/niuvvBKwbhL85ptvdqnuyy+/nLS0tJDGq9RA4K2vAsAVFd+0bnBGDgD12oOllFJKDXiaYHXS/PnzmTVrFvPnz291u9/v73IbgUBgv+Vf/vKX3HDDDaxatYqNGzdy7bXXAqFJsObOncvbb7/dpTqUGoj89VYPVkTMtwnW0JRBFJtEAuU6VbtSSik10PWtadrfuhWK1oa2ziGT4dQ/t1ukpqaGxYsX89FHH3HGGWdw5513ArBo0SL+8Ic/MGjQIL7++mveffdd/H4/F154IStWrGDixIn897//JSYmhg8++ICbbroJv9/P9OnT+fvf/05kZCQ5OTnMmTOH9957j1tuuYXzzz+/qd3CwkKysrKalidPnozX6+W2226jvr6exYsX85vf/IbTTz+da6+9lnXr1uHz+bjjjjuYPXs2TzzxBC+//DKVlZXs3r2biy66iNtvvx2Ao48+mvz8/HZf98cff8x1110HgIjwySefEBcXxy233MJbb72FiPD73/+eOXPmsGjRIm6//XaSkpJYu3Yt5513HpMnT+aBBx6gvr6eV155hZEjR/Laa6/xxz/+Ea/XS3JyMk8//TTp6en7tXv++edz8cUXc9pppwFWMnj66adz7rnndu6cKtWN/J4aACKiE5rWpcZFstakEF+jk1wopZRSA532YHXCq6++yimnnMKYMWNITk5m+fLlTdtWrFjBAw88wObNmwFrWN8111zDxo0bSUhI4G9/+xsej4e5c+eyYMEC1q5di9/v5+9//3tTHcnJyaxYsWK/5Arghhtu4Pjjj+fUU0/l/vvvp6KigoiICO666y7mzJnDqlWrmDNnDnfffTfHH388S5Ys4aOPPuLmm2+mtrYWgCVLlvDiiy+yZs0ann/+eZYtW9bp133vvffyyCOPsGrVKj799FOio6N56aWXWLVqFatXr+b999/n5ptvprCwEIDVq1czb948Nm7cyJNPPsnmzZtZsmQJV1xxBQ899BAAs2bN4ssvv2TlypWcf/753HPPPQe0O2fOHJ577jkAvF4vH3zwQVOypVS4BRoTrGY9WA6HUO5OI6a+MFxhKaWUUqqX6Fs9WB30NHWX+fPnN/XknH/++cyfP5/DDjsMgBkzZpCbm9tUNjs7myOPPBKAiy66iAcffJDvf//75ObmMmbMGAAuvfRSHnnkEa6//nrASihac9lll3HyySfz9ttv8+qrr/KPf/yD1atXH1Du3XffZeHChdx7770AeDwedu7cCcD3v/99kpOTAfjhD3/I4sWLmTZtWqde95FHHsmvfvUrLrzwQn74wx+SlZXF4sWLueCCC3A6naSnp3PMMcewdOlSEhISmD59OhkZGQCMHDmSk046CbB63j766CMAdu3axZw5cygsLMTr9e537BqdeuqpXHfddTQ0NPD2229z9NFHEx0d3amYlepuxmslWO7o+P3W10ZlkFS7AowBkXCEppRSSqleQHuwOlBWVsaHH37IFVdcQU5ODn/5y1947rnnMMYAEBsbu195afHFquVya1rW0dzQoUO5/PLLefXVV3G5XKxbt+6AMsYYXnzxRVatWsWqVavYuXMn48eP/87xNLr11lv55z//SX19PUceeWS7E3wAREZGNj13OBxNyw6Ho+katWuvvZZf/OIXrF27ln/84x94PJ4D6omKiuLYY4/lnXfeYcGCBW0moEqFg7F7sIjY/33rjx9KFA1QXx6GqJRSSinVW2iC1YEXXniBiy++mB07dpCfn09BQQG5ubl8+umnrZbfuXMnX3zxBQDPPPMMs2bNYuzYseTn57NlyxYAnnzySY455pgO23777bfx+XwAFBUVUVpaSmZmJvHx8VRXVzeVO/nkk3nooYeakr6VK1c2bXvvvfcoKytrug6qsXetM7Zu3crkyZP59a9/zfTp0/n666856qijWLBgAYFAgOLiYj755BNmzJjR6TorKyvJzMwE4D//+U+b5ebMmcO///1vPv30U0455ZRO169Ut/NZw2+JiNtvtSRlW5vLdvZ0REoppZTqRTTB6sD8+fM5++yz91t3zjnntDmb4NixY3nkkUcYP3485eXlXH311URFRfHvf/+bH/3oR0yePBmHw8FVV13VYdvvvvsukyZNYsqUKZx88sn85S9/YciQIRx33HFs2LCBqVOnsmDBAv7whz/g8/nIy8tj4sSJ/OEPf2iqY8aMGZxzzjnk5eVxzjnnNA0PvOCCCzjiiCPYtGkTWVlZPP744wDMmzePefPmAfDXv/6VSZMmkZeXh9vt5tRTT+Xss88mLy+PKVOmcPzxx3PPPfcwZMiQTh/PO+64gx/96EccdthhpKSkNK1ftmwZV1xxRdPySSedxMcff8yJJ55IREREp+tXqruJtzHB2r8HKzp5OAAVRdt7OqQ+aV+1h/99cwNb9lV3XFgppZTqQ6Sx16PbGhA5BXgAcAL/NMa0eSHVtGnTTMtJGDZu3Ng03E0dnCeeeIJly5bx8MMPhzuUsNF/PyrUXr3/Gs6ofAbH7eX7XWv11dqvOfzFw9k+/Q5yT7shjBH2DTcsWMWsdb9nUuRexl7/JsSlhjskpZRSqtNEZLkxptWJDbq1B0tEnMAjwKnABOACEZnQnW0qpVR3cvrq8Ej0ARNZpA3JosG48ZbtCFNkfUcwaCja+AXnOD9lrH8z5R/+NdwhKaWUUiHT3UMEZwBbjDHbjDFe4Flgdje3qWxz584d0L1XSnUHV6AOr+PAWS0zkqLZbZKRyl1hiKpv2VJcwyE+61rRtcEcHF+/Zs2+qDr01tpCDv3DK3z40mMQ8IU7nD5j3e5K7nxtPfsq68MdilJqAOjuBCsTKGi2vMte10RErhSRZSKyrLi4uNVKunsYo+qf9N+N6g4RgToaWkmwotxOip2pRNbqvbA6sn5PJXmObXgTc3jTeTyJdTtAE9MOGWO4773NXGee4vg1NxF46WfhDqlPMMZw7fyVfPr5YmIfGA1v3hLukJRS/VzYJ7kwxjxqjJlmjJmWmnrgGPyoqChKS0v1y7I6KMYYSktLiYqKCncoqp9xB+rwO1u/L1t15BDivUU9HFHfs72kjjzHNpxZh+FJP9RauWdFeIPqAworPRTsK+VCl3VfQdnwKtSWhjmq3m/z3hq2l9Tyq4hXiA1Ww5J/wL72bzuilFJd0d03Gt4NZDdbzrLXdVpWVha7du2ird4tpdoSFRVFVlZWuMNQ/Uyk8eBztX7vuoaYDJLK3reGbjndPRxZ37FrXylDpRTSx5OUcAgNhS4cO5finqAjyNuzuqCCPNmGCz/3B37EDc7nYdObcOjF4Q6tV1tdUIEQ5AT3Wt5rOIwTXKtxrH0OTrgt3KEppfqp7k6wlgKjRSQXK7E6H/jxwVTgdrvJzc3tjtiUUuqgGGOICtYTcCW2vj0hC0eZwVTtRgbl9GxwfUhDsT2VfVIOYwensNlkkbNrDZqStm/t7kqmOa37KS5NOYvqyneIL/hSE6wOrNpVweSoEiL91XxoDmN8rJes/MXhDksp1Y916xBBY4wf+AXwDrAReM4Ys74721RKqe7S4A8Sg4egu/UeLPfgYQBUFuX3YFR9T2S1fTPmQTmMTI1li8nEWbo5vEH1AdtLapkWtQuShjE8exgrgqMxBUvCHVavt7mompMSrWv8KgZPYbWMhT0rwecJc2RKqf6q26/BMsa8aYwZY4wZaYy5u7vbU0qp7lLvDRAjHkwbCVZsWg4AlUXbejCqviUQNCQ22CPFB+UwLDmGbSaTmPpCaKgJb3C93PaSWkY49kLyKCYOTWSpbwRSshka9GbN7dlTUc84915wuIjPGs9HtbkQ8ELR2nCHppTqp8I+yYVSSvUVtV4/sXggovUEa/DQEQB4SvReWG0prWkgk2L8ziiITSHS5aQyzjpulGgvVluMMeworWWIfzcMHsnkzEQ2G/sa02I9bm3xB4IUVXnINnsgaTjjhg5mSf1Qa2PxxvAGp5TqtzTBUkqpTqpv8BNDAxIR1+r2oSmDKDEJBCsKWt2uYG9VA0OknIboIU03aw4OHm1t1ASrTSU1XmJ85UQFayF5JKPS4r5NsPZtCG9wvdi+6gaCBlJ9e2DwCMZnJFBgUgk4o2CfJlhKqe6hCZZSSnVSnacetwRwRLXeg5UY7aaIFFzVe3o4sr5jb5WHVKnAxA1pWhc3dCw+4yS4b1MYI+vd9lZ5GC57rYXBI4iNdOGPH4ZPIqBYpxxvS2FlPWBIqNsJg0cwISMBg4PSmBGamCqluo0mWEop1UkNdVUAOCLjW90uIlS406zriVSr9lZ7SKccZ+K3CVZOWiI7TDqeQv3C25bCSg9DpMxaSLR6rnLSEtnpyNaemHbsqfCQRA0ufy0MyiExxk1KXCQ7nMP1uCmluo0mWEop1UneWmsyAVd060MEAeqiMxjk2wt6c/RW7av0kC7lRA7KbFo3Mi2OLSYTo9cStamosp6MxgQrwbqGaGRqLBv8QzHag9WmPRXNjlui9W9uREosGwKZULNXb9SslOoWmmAppVQneeutHixXVOs9WAD+uKHEUA+eyp4Kq0+prCwlWrw4EjKa1uUkx7LNZBBdsxMC/jBG13sVVXkY6ijDuGMgKgmwEtP1/kykajfUV4Q1vt6qsNLDiIgKayHBTrBSY1laa/eg6kQXSqluoAmWUkp1kt9jTSMeEd12guUYlA1AfanOJNgaX7l9fVqza7BS4iIodA7FYfxQuTNMkfVuhZUehrsrkIShTZODjEhpNtFFsV6/1po9FfWMibZ+GGlMsHJTYllWl26t02GCSqluoAmWUkp1UlOCFdN2ghWTMhyA8j16L6zWmGr7+rT4bxMsEcGbmGMtlOpxa01RpYcsZ3nT8ECAkWlWzx8Apd+EKbLerakHS5wQlwZYCVYRgwm4Y6FEj5tSKvQ0wVJKqU4yHusarKjYxDbLJAyx7ulUsy+/J0Lqc5y1+6wn8Rn7rXek2FO1l27p4Yj6hqIqD2mmtKkXBmBIQhSl7gwC4tJEoQ17KurJdJZb/94cTgBGpMYBQlVMjiamSqluoQmWUkp1UtBbC4C7nSGCaRnZeI0TX5kOdWvJHwgS6y22FuLT99uWkp5FtYkmUKIJVkvGGPZV1pHkL92vB0tEGJaSwF5nhiamrfD4ApTWekkNljZNcAEwbHAMTodQ5M4C/femlOoGmmAppVRnNVgJFhGt3wcLID0xhkKSkcpdPRRU31FS4yWNcnzOGGgx1X1OShz5Jp2Gfdqj0FKVx0+MtwwHgf0SLLCGu20zmmC1pqjSA0CSf99+xy3C5SB7UDRbgxlQWQC++nCFqJTqpzTBUkqpzvJa12C1l2A5HUKpM42oOr3ZcEt7qzykSQXemPQDtuWkxJJvhkDp1jBE1rvtrfKQIfZ04s2GCIKVYK33pmPKtkEwEIboeq899k2GYzx7Wz1uaxvSAKP/5pRSIacJllJKdZLDX2c9cbedYAFURA5lUMPuHoiob7ESrHJM7IEJVmNPTFTtbvB7wxBd77XfTYZb6cHaEsxAAl6o0Jkrm2u8ybAz4DkgwRqRGsdXVYOtBb0OSykVYppgKaVUJzl9NdQTBY72Pzrr44YxKFgO9jVbyrK3uoF0ynEmZhywbVCMmyJXJg6CUJ7f88H1YnsrPc1uMnxgT8y2oH089Xqi/RS2cpPhRrkpsWzyWbMK6nFTSoValxIsEfmLiHwtImtE5GURSWq27TciskVENonIyV2OVCmlwszpq6PBEdVhuWBSLgD+Ep1yvLl9lfWkSQWRgzIP2CYi+BOt40aZDtlqbk9lPUOkDOOMgJjk/bY1XYMF2hPTwp5KD2Oj7Rt+t+zBSomlnigaYjL0uCmlQq6rPVjvAZOMMXnAZuA3ACIyATgfmAicAvxNRJxdbEsppcLK7a+hwdn+8ECAiFRrqvbKPfrFrbmK8hKixYsjYUir252pOlV7aworPOS0uMlwo6QYK+mqcyboVO0tFFbWM7rpJsP7D63MSbHex2XRw/W4KaVCrksJljHmXWOM3178ErBvKc9s4FljTIMxZjuwBZjRlbaUUircIv3VNDjbnqK9UVyGlSjUFmmi0Jy3wp74I/7AIYIAaekZlJs4naq9hT2V9WQ7yw/ohWmUmxLLLkemJqYt7KmoJ8ddad9keP/r/oYkRBHldljHreQbMCZMUSql+qNQXoN1OfCW/TwTKGi2bZe97gAicqWILBORZcXFxSEMRymlQismWIPP3XGClZ6eQaWJ0SGCLVXvtf7Gt96DlZsSQ74ZQsNe7VForqjSQxplB/TCNMpNiWNzYIj2xLRQWOEh01G2302GGzkcQk5yrHXcvNVQszdMUSql+qMOEywReV9E1rXymN2szO8AP/D0wQZgjHnUGDPNGDMtNTX1YHdXSqkeEQgaYk0tgYjEDssOTYpih0nHWZnf/YH1Ia7aIutJXOsJVk5yLNvMEKRcE9PmiirrGBQoaSfBimF9QzrUFIGnqoej652qPT6qG/ykBksOmOCi0YjUWFbX2d87NDlVSoVQhwmWMeZEY8ykVh6vAojIXOB04EJjmvrYdwPZzarJstcppVSfVOPxkyB1BCMTOiwbE+GiyJlBbG1Bh2UHCo8vQKJvn7WQ0PoQwdyUWPKDQ4iuKwRvXQ9G13tVeXxENZThMr52hgjGNZvoQocJgjW1PWD9m2szMY3liyp70hCd6EIpFUJdnUXwFOAW4ExjTPP/DRcC54tIpIjkAqOBJV1pSymlwqnK4yOeOojquAcLoDIykyRvIQT8HRceAPZWeciSEjwRg9u8UXNSTAT7IuxLecu392B0vVdhhYdssRPTQTmtlslNiWWrJlj72VVehxAkpr4Qkoa1WiY3JY5dwUEEXVE6VbtSKqS6eg3Ww0A88J6IrBKReQDGmPXAc8AG4G3g58YYvcW8UqrPqq6tsWbAi07qVHlv4nBcBKBKO+8B9lY1kCXF+OJa74Vp5Eu0ZmCkVKdqB3uCi8YEK2l4q2VyUmLYadIJ4tChbrZd5fWkU44j6G03MTU4qI3L0R4spVRIubqyszFmVDvb7gbu7kr9SinVW9RWlgPgiulcD5Y7ZQTsBV/JNtyDWv9iPJAUVXmYKCWQdEi75dypo6ACvReWzerBsieAaqMnJibCxeCEeMrMEFI0UQCsBGukq8RaaCPBGmFP1V4cMYx4TUyVUiEUylkElVKq32qoKQPAHTeoU+Xj7anay3dt6raY+pK9FfUMlVIiBrefbGakp1JsEvEX6xdesO7lNMxRjIlNg4iYNsvlpsSyQ4bqUDfbrvI68uKsH0XaSrAGxUaQFOMmX4ZCxQ7wN/RcgEqpfk0TLKWU6gRvjfVlLTJ2cKfKp2eNoMG4qNN7YQFQum8P0eIlIqX9BCs3JZbtZgjefXrcAHZX1DPCVYJ00AuamxrLRm+6dQ1WMNhD0fVeBWX1jI0oBXFAYnab5XJT7ONmglCm1/0ppUJDEyyllOoEX7U1TCtmUHoHJS0j0hLYZVIxOtQNgPqSfACkjeuIGuUkx7I9mIFTp2oHYEdpHcMcxW32wjTKTY5loy8d/PV63R9WD9ZwZwkkZIHT3Wa53ORYltfoTIJKqdDSBEsppTohUG1NNBA7KK1T5ZNiItjpyCKmShMFACp2Wn+T2u5NAMhJiSXfDCHSU6z3dAJ2FleRHChpc4KLRrkpsc2mah/YiUJNg5/yOh9DAkXQUc9fSixLqu1eab0OSykVIppgKaVUZ9RaPVgS17kEC6A8ZjiDG3YP+Kna/YEgUbV2r0o7w7UAEqPdFEfaU7WXDezktKLOS2R9IU4CHScKqbFsDdr3exrg12FtL64FYJB3T8c9f6mx1BCDLyZNEyylVMhogqWUUp3grC/DQ2Sb93BqTUPSSNz4rAvoB7DCSg8ZFON1xUEnprn3J+VaTwb48MrtJbUM62CK9kbZg2IodQzC64gZ8PfC2ry3migaiPJ0YmilPZNgVWzOgO/5U0qFjiZYSinVCRENpVQ7kw5qH1fqWAAa9m7uhoj6jh2ldeTIXnzxrU8z3lJkmn0HkNKB3YOVX1rLSNljLaSMbrdshMtB1qAYCt1ZAz5R2Ly3mjEuOzEdPKLdso0J1h5nltWDZUx3h6eUGgA0wVJKqU6I8ZVT5+7cFO2NErLHA1Cxc113hNRn7CirZZRjN5I2rlPls1KT2WVS8O8b2FPcby+uZaxjFyYyHuIzOizfdB3WAB8iuGlvNbMS7AQrbUK7ZWMiXGQmRfNNMAM8FVBX2v0BKqX6PU2wlFKqA8YY4gPleCM7N0V7o8yMTEpMAg1FAztR2L23hCwpISpjfKfKD0+JZUswE3/Rhm6OrHfbUlzDJHchkjoeRDosPzI1jrX1aZjKAvDV90CEvdPmomoOjS4ChxuSR3ZYfnR6HCvrUq0FvQ5LKRUCmmAppVQHKut9pFJGIHbIQe3X2KPgKh/YPQpVuzcC4Egb26nyI1Nj2WyycJdvgWCgO0Pr1TbuqWIUBdDJnr8x6XFsDgxBMFA6MK9fq/L42FPpYZTZYQ2rbGeK9kZj0uP5vMLunR7gwyuVUqGhCZZSSnWgqLScVKlCOphivKXYSBeFrmzia/K7J7A+IqLYHiLZwXCtRiNT49hiMnEGG6A8v/sC68VqGvz4ynYQF6yCjCmd2md0evyAn6r9m73VgCGjbhMMyevUPqPS4tjuTybojNQeLKVUSGiCpZRSHSgvygcgIrn9mdxaUxefS3ygHOrLQxxV37Cv2sNw7xa8zlgY3PFwLYAot5PqBHtSh30buzG63mtjYRWTZLu1MPSQTu0zOi2O7cbuZR2g12F9XVTNEMqs+6hlHtqpfcakxxPEQV3sME2wlFIhoQmWUkp1oHZfPgAJQ3IOel+TMsb6O0C/uK3fXcUkRz6e5Ing6Px/Oa50+3qt4oGZYK3YUc5Ux1aMww1pEzu1T3yUm6TEJMpc6QP4uFUwK8a+LUInE9NRaXEAFEUOH7DHTSkVWiFJsETkRhExIpJiL4uIPCgiW0RkjYh07mckpZTqhTwlOwFIGtL+lM+tiR1qXT9TsXN9SGPqK1ZuL2KS5BOdO/2g9huWkcouk0Jg78D8wrtsRzmzIjYjQw8Bd1Sn9xudHs83Mgz2DswJQpbkl3Jq/DZwRXV6aGVcpDWT4CYzzBqS2lDTvUEqpfq9LidYIpINnATsbLb6VGC0/bgS+HtX21FKqbAp204AB87EzIPeNX34WLzGSfXugZkolG/5ikjx4c498qD2G5Mez+ZgFr4BOJNgIGhYt30P44NbIOcgj1taHCsbhmJKvwG/t5si7J32VNRTUFbP1MB6yJ4BrshO7zsqLY4VnqHWQvHX3RShUmqgCEUP1v3ALUDzu/PNBv5rLF8CSSLS8U08lFKqF0qo3UaxOxNcEQe976ghSewwQzDFA+9mwx5fgOR9S6yFYUcc1L6j0+K/nUkw4O+G6HqvdbsrGdewBicByDnqoPYdkx7PBn82EvRDycD6N/f51lJSqGRwzWbIOfqg9h2THseiCnuq9r0D+751Sqmu61KCJSKzgd3GmNUtNmUCBc2Wd9nrlFKqT/EFgmR4d1Idl/ud9k+OjWCnI5Poqu0hjqz3+2JbKbNkFVWDJ0PMwd1DbERqLFtMFs6gD8oH1rFbtKmY4x0rMe4YyJl1UPuOSo/ja2PPdrlvYPX+vbu+iLPi1lnT1I85+aD2HZ0WzzZ/MkF3zIAdXqmUCp0OEywReV9E1rXymA38FritKwGIyJUiskxElhUXF3elKqWUCrmCkiqGSxGB5DHfaX8RoTImh8ENuwZcT8xX6zZziHxDzIRTDnpfaybBUdbCAJtJ8O01OzkjYhky6oSDGuYG1kyC20wGAXHB3oFz3V+9N8An3xQzJ3o5JGbDkMkHtf/o9DgMDqriRw+4xFQpFXodJljGmBONMZNaPoBtQC6wWkTygSxghYgMAXYDzW8Yk2Wva63+R40x04wx01JTU7v6epRSKqR2f7OKCAkQnTnpO9fhHzwaF/4B1RPjDwQx61/FKQbXxDO/Ux0R6fYNdgfQNTGbiqrJLPmMpGAFTPnxQe8fH+UmLTGOoojhAypReHdDEYN8xYyq/gqmXAAiB7V/40yCuyNyrcTUmA72UEqptn3nIYLGmLXGmDRjTI4xJgdrGOChxpgiYCFwiT2b4Eyg0hhTGJqQlVKq51Ru+QqAjAkHN9lAcxEZ1pTj1QUD59qOz7aWcrL/Q2riRx50b0Kj4RlpFJhUAgNoyNazS3dynusTgjEpMPr736mO0enxbDLZA2qo2zNf7eTy+C+t4YFTv1timpkUzcZgNtSXQc3ebohSKTVQdNd9sN7E6uHaAjwGXNNN7SilVLeK2LuKWokhInXUd65j8HCr96ti59pQhdXrffbRWxzq2ELkEVcedG9Co9HpcWwOZuEfIDMJVnt8fL5sBSc4VuCYegE43d+pnnEZ8Syvz4CqXVBfEdoge6ENe6pYuX0v5zs+sCYFGfzdrpccnxHPV7Xp1sIAGl6plAq9kCVYdk9Wif3cGGN+bowZaYyZbIxZFqp2lFKqp/gCQXLq1lAYP+mgbpLbUu7QdOueTgMkUdhaXEPerqfxOONxH3bRd65ndFo835gs3OXbIOALYYS90xOf5fOTwPOI0wUzv/vvkhMyElgfyLIWBsD1aw98sJnLohYR31AER934nesZNySBj8rtSxUG0PBKpVTodVcPllJK9Xlrvt7MGNlFYNjBTZXdUmZSNFvJJqpiS4gi692ef+11fuD4CnPYXIiM+871jEyLZTPZOIwPSr4JXYC9UHF1A+9/8jHnuj7FMf0nkDD0O9c1bkgCm4LDrIV9/bsn5sttpXyxfhu/dC+0eq9GHPud6xqfkUBJMB5fTNqAGl6plAo9TbCUUqoNe5a/AUDWYQc/C15zDodQEp3L4Pp8CAZCEFnvtXhzMSfm/z88EUlEH3dTl+qKdDmpSbKuX6Oofw+vvOvVNdxl/oaJSoRZv+pSXSNSYyl1puBxxvXrRMHjC/D7V9bxp9j5xPjL4ft3fefhqGANrQQojR3V7xNTpVT30gRLKaXaMGjnu5Q5kokdPq3LdTUkjSYCH5Tndz2wXqqy3seq5+9mmmMz7pPuhOikLtcZmzkeLy7Y238TrOeWFjDq60eY4tiK87R7Ia5rM+q6nQ5GpcWzw5XTb4e6GWO487X1jCt5j9MDHyKzboDMQ7tUZ05yLFFuB9sdw6F4U7//MUQp1X00wVJKqVZsyi9gmm85+zJP7NL1V41cQ6yeGM+e/vnLeDBomPfkU/zM+1/Kh52Ee9olIal3TMZgNgez8O3pnwnW51tK+OLVR7nO9TLBKT+GSeeEpN5xGfGs9WVaPVj9cMrxf366nY1LP+L+yEcheyYc8+su1+l0CGPT41ntzQS/B0q3hiBSpdRApAmWUkq1YseH/yJKfGQcd2VI6hvUOJPgjv6XKBhj+Ptzr3HV7t9SFzOUQRc82qWhWs2Nz4hnY3CYNUSwnyUKy3eU8+x//8ZfXI/gzzocxxl/Ddlxm5CRwIqGLGiohIodIamzt3jyi3xef+s1non+P1xJGXD+0wd9Q+a2jBuSwEeVQ6yFojUhqVMpNfBogqWUUi3UeHzk7nye/MixJI7o+vBAgNzMIew2yXj72UyCgaBh3lPP8OONV+OIiCHhytchelDI6h+fkcAGMxy3p7Rf3ZvovfVFvP34bdzvuJ9gxlRcF70QsiQBrERhbdCernzPqpDVG07BoOG+9zbz2Wv/5rmoPxGVkIJc+jrEpoSsjfEZ8SyvS8M4I2HPypDVq5QaWDTBUkqpFj5+50VGU4Bj2tyQ1Tk8OZYtJovI8v4zG15lnY/H/vZ/XLblOkz0IOKufh8ZlBPSNtLiI9kVOdJaKOr7N2r2B4I8+NZKKp79Kb9z/Bf/qJOJmLsQohJC2s64DOtmwwFxQeGqkNYdDvuqPPzsP18Q+fH/MC/ir7iHTsbxk/cgKTuk7YzLSMCPi+qkcVC4OqR1K6UGDle4A1BKqd7E6wuQueqvlDpSGHbs5SGr1+10sC8yhyPq3rIunnc4Q1Z3OHy5MZ/yF67jqsAi9g06hLSfvhDSnoRGIgLpk6AQa6KL0SeGvI2esrqggqefm8/PK+8j21mMf9ZNRB7/u5Bc49dSSlwkifFxFDpzyerDPVjGGF5YvosFr7/JneZvTHTlYw65GMcP7gV3VMjbGz/ESnQLIscwsfAdCAa75fwopfo3TbCUUqqZj9+cz/fNRjYfejvJIf4CV580iohir3VNzOARIa27p5TWNPDSgn9z8o57me4opXDqL8k443Zwdt9/J9lDM9m9J4WMonV9cthFlcfH31//glGr7+Ee56fUxWXimPMmjuHf69Z2xw2JZ+3eXLIKl1rXr4Xo+q6ekl9Sy59f+YqZ+X/nOdf7mJhBMPsZZNxp3dZmYoybzKRoVgWGM7GhCsq3Q/LIbmtPKdU/aYKllFK2isoKxq28i0JXJqNPuSbk9TvSx0Mx+Io24u5jCVYwaHj7k8+IXnQHP2UppbE5+M99goyRs7q97fEZ8WwIDiN192oiur210PEHgiz8fDWVHz3INYG3iHb5aTjiV8QcezNExHR7+3lZiXy2PYtTXe9CZQEkDev2NkOhtKaBf763gqgV/+TPjrdJcNUh03+C4/jfhfT6vrZMyU7kg4KhXAjWdViaYCmlDpImWEopZVvz9G84mr3sPPU5pBuGHw3OyYN1UJa/hvQJ3fcrfCgZY1i67Ctq3vszJzcswueIoGTGraR8/0Zw9Uy6MykzkXdMDieWvwwN1RAZ3yPtflf+QJAPlqyk5sP7+IH3XSLFR9WI03CddieulFE9FkdeVhKPBHKt/+n3rOr1Cdaeinqe+WApSasf5efyHnFODw0jT8Fx4u8gI6/H4piSlcS9a1MwsRFI4SqYfG6Ptf1d1HsDrN1dyfScQdaQWqVU2GmCpZRSwJqln/C9vc+yIvVMDj3s5G5pY8ywoewyKZjdvX/6Z2MMq5Z/Qd37f+aI+k9okAi2jbqUkbN/Q0rCkB6NZXRaHPfJWARj9SjkHt2j7XdWgz/AO598iXx2Pyf7P8QhsDd3NkNP+w1JqWN6PJ68rEQ2mWyC4sJRuAomnNnjMXTGtuIann3vM4ZtfIxrHYtwOwLUjj4TTryFyPSJPR7PlOwkfLioThxLQi++fq24uoEnP9/K7i+eJ9W3h6XH38DPTxgX7rCUUmiCpZRS1HsaiHzrOiolgfEX/7Xb2slJjuUjk8shpb13NjxjDMu++hTfR/cw07MYj0SyPncuY8/+DaMT08MSk8vpwJ9xKOwDdi3rdQlWbYOftz78iLilD3BaYDEBcVE0ag5Zp91K5uDhYYtrSEIUCfHxFDpyyOyFicL6PZW8+O5HTNj6ODc7PkNcgmfCeUQefxPxYRyWNzkzEYdAvns0eYUf9LqJLjbvrebfH3+NY81zXOFYSK6jCNzw0qJdPBH5AHNn9VwvqVKqdZpgKaUGvM+euosTg9vYdPTDjE1M7rZ2XE4He2PHMrh+Wa8b6maM4cvPF8HH/8cR3i+oJZr1I3/C6Nm/ZnJiWrjDY+SwLLbvHcLwgqW9ZqKLijovb737NmmrHuJcluCRKIom/IShp97EsISMcIeHiDAlK5GVu0aQufurXpMoLMsv47V33mbGrn/ze8dSAu4IfFN/Qswx1xOXmBnu8IiNdDEmPZ4l/lzyGiqhZBOkjQ9rTMYYPt9ayn8XrSN7+3Nc73qTdFc5DamT4dj/I1C8mR8uupsX37mOv/vu46pjx+hwQaXCqMsJlohcC/wcCABvGGNusdf/BviJvf6Xxph3utqWUkqF2vp1qzmy4FE2JM5iwnEXdXt73rTJOHYYTNFapJtnkeuMYNDwxeL3cHx6L0f4vqKaGNaOuoqxs29hcnz3JZsHa0p2Eiu+GkVWwVIcYZ4Rb1+Vh3feepncDX/nAllNrSOOwrxfknHSDWTGDA5bXK2Zmp3Ee5tGcXrEu9Y09xlTwhKHMYZPvinh/Xde5bh9T3KncxUNEbF4Z1xP1Kxf4O6GKf67YkpWEi+vz+UKgPzFYUuwAkHDu+uLePqjFUzf9zz3uN4j0V2Db9hRcMyviBxxHIjgxPqydc6iu3nxwxv5U82f+M1pk3E4NMlSKhy6lGCJyHHAbGCKMaZBRNLs9ROA84GJwFDgfREZY4wJdDVgpZQKlQafH8/L1xIUJ8Mu+luPfGmPGX4o7ICa7cuJD2OCFQgaPlv0FpGf/z+O9C+jmljWj/05Y868mcmx3T9T28Gamp3Eo8FRnFO/GCp2wqCeH3pXUFrL+6/PZ9K2x7hYvqbalcS+abeSdtzPiQ3xjYJDZeaIZJ4MTrAWtn/a4wlWMGh4Z10hn7/3PKdVzud/HBupjxqE93u/I/KIn0FUYo/G01lTspNYsGwQvpRM3Pmfwoyf9mj7Xn+QV1bu5qVFX3Jy5fP80/URUS4vgbGnw1G/wp112AH7OI+9haAJcs7H/8uHS67lt7X/y13nziTCFf5eS6UGmq72YF0N/NkY0wBgjNlnr58NPGuv3y4iW4AZwBddbE8ppULmw+ce4tTAajZNu4OxaT3zhX3kiFHs+zgJ3/blxB/bI03uxxcIsvjDN4j98v9xdGAlVRLPhvHXMfbMG5kY3Tu/7AJkDYpma9xh0PAEbP0Qpl3WY21vLqpk8Wv/YXrBv7jMsZ2KiDTKjriLwbN+SnwPTLfeFXlZSVS5UymNzCY5/1P43i96pF1fIMjClbtY/f7TnFP3HP/j2EZdTBr+o/+X6Glze2Sa+q743shkQNiZcCgj8xf32H3Eahv8zF+ykw8+/phzG17kKefnONwCU+bAkdfhTB3b7v6O427FxKVx7Bs3kb7hKq79x9386dKTSI6L7PbYlVLf6mqCNQY4SkTuBjzATcaYpUAm8GWzcrvsdQcQkSuBKwGGDevdU8gqpfqPLdu3M3PzvWyPmcTYH1zXY+1OzkzkczOCKXuX91ibYP0i/sn7r5K05D6OC66hUhLYNOlGRp92PROie2fvS3MiwvAxU9m9JpWMb97D0QMJ1uodJSx9/Z8ctfdJLnfsoiw6k6qj/x9Jh1/SY1PUd1WEy8G0nEF8uXcCp+34HAL+br0ptMcX4IUl29m66L9c0PAC5zh2Uxs/jOBxDxIz9Xxw9Y0v+sOTY8geHM0nvnGMrHsN9m2E9And1l5ZrZcnPs9nxWfvckngJeY7lxOIiMYx7Urke7+AxKxO1yXTL0eShjF2wcX8ad81/M+DN3Dl3CuYMLT3v8+V6i86/JQVkfeB1ubk/Z29/2BgJjAdeE5EDurumcaYR4FHAaZNm2YOZt/+yuP1UVddSUNtBd76arweDw0N9fga6gj6vOBvQAIeCHgh4MMYQzAYxGANxzAmiDEGYwxOsb6YOJwucLgRlxtxusHpxuG0lp1Oa53T5cbpjsAVEYnLHUVEZBSuiCjckVFERkQSERlt1aMXzqo+LhA07H72eoaLBzl/Xo9e+B/ldlKQeBjHVz8GlbsO6ovTd+Hx+vn43ZdIWf4AJ5p1VEgSm6f8mtE/+CWJkXHd2naoHT0mlUUr8zh/28fg93ZLkmOM4ctv9rD+zUf5ftkzXOHYR0ncCGqOm8fgQ3/UrclJdzlyVAqvbx3HaRHvwI7FMOLYkLdR7fEx/4stlHz6by7yv8RFjmJqBo3BnPBPYiee3eeOm4hw1OhUnlw1krkiyMbXuiXB2l1Rzz8/2UrB0tf5Ca/yK+cG/DFJMPNWnDOuhNjveB3k6BNx/WwRMc9czH3ldzFv3hqWfv83XHzkGL0uS6ke0OEnnjHmxLa2icjVwEvGGAMsEZEgkALsBrKbFc2y1w04dTUVlBQWUFVWhKd8L77qfQRrinHUleD0lBHlrcAdqCEqWEd0sJZYU0csHqKkd+aaQSP4cOEVF37c+MWFDzcBcRMQF36Hm6C4CTrcBBwRBB1ujMONcUZgHBEYpxuckeB0gzMCcUUizgjEFYHDHYm4InC6rPU4I+wyEdYXKae1XVwRiDMCh8OBQ8T66xBEHDgdDsRedojDTgYFRDBGMALw7d/GbRhjPWj8a7PXmRbbDca6J0/TduykNvjtfubb/UxjWWMwYJdrVgYDQatds197wW9Da9y6X3h23djVNe5rLe73Wqynpll4QZpV26IekGZtmZbHxW67adu3VTd7bg7YdkCRZvV8W68cUMrstyT7HwNa7A8YhBar7bqtvzV7NnBqwyI2jr2G8cMnH1iwmwVyj4U1j9Gw+QMip1/aLW3UN/j56O3nyFj1ICebjZQ7BrHlkN8x8pSfkxQR2y1tdrfvjUzhFpPHhb4PoODLkE7XHgwaFq3bwfZ3H+EH1S9whJSxL3EC9SfdS8rEM3rF7Hvf1Q8mZXD/W4fgdcYSseb5kCZYZbVenvpkAw1fPc7F5jWGSDk1aVMwJz5A3JhT+/RxO3ZMKs98lUDFsBkMWvs8HHNLyH5g3LKvhn8s2kzDmpf5mWMhE535+GOHwKw/4Tr0UgjFjx+pY4m+ehGehTdyzbpn2Prel9yx/Fp+dO5FTM7qvcOBe6OAz0tdbTUN9bV4PbUEGmoJeusJeOvx+30EfV4Cfh/BgJeA34uxnxu/3/ob8GECPgj4wAT3+85h9nve8juEtSz2dw7rq4sDI4KIYHAg9jLioOk7TeP3H3EA3z5v3KfxOeIAR+N3IauciNOKwfFtfWLXLQ5pVp+9XgTBigeHA2M/b9om+9eB/d2tsU1pis16bQ67XRHBSON3OQf+uAxyc3KJiegbP9Z0NcpXgOOAj0RkDBABlAALgWdE5D6sSS5GA0u62FavEwwEKN6zjbKCTVTvzcdXXoCzejfR9UUkePeRHCwmgTpaG/hYSxQVkkSdM4EGVxyVrjTK3HEEI+MhIh6iEpDIBByRsTgjonBHROOKjMLpjgJ3JA5XJOKKsnqgxE4omhIOsRINcRA0hkDQEAj4CDT7AAj6Gj8I/JiAj6DfR9DvJeBrIBDwEfQ1EPQ1YPxegn4vJtBg/WIcaP7w4Qh4kaAXCfpwBH04gl6cQR9Ovw+nqSfC+HAaPy7jw2182GkZEfZft+i8Jyo8ClzDGHfu7WFpO3f8dPatTkLWvUtqiBOsGo+PRW/MJ3vtQ/yAzZQ6Utg27XZyv38Vg3r5dS8dSYxx4xt+DPV7/kbk2hdwhCDB8geCvLNiM/s+eIQz6l/heKli7+DD8J7yKGljTuwXPfbDkmMYnZnCpzVHcMLGhXDa/wN3VJfqLKr08ORHq4hc8TgXyZsMlhpqhh4B37+VuNxj+sVxO3ZsGoNi3LzJLC4s/X9QuBqGTu1SnWt3VfLoRxuI+/oFfu56nRxXEb5Bo+DoR3BNPi/0vbIRMUSd+3fMlHNIf/l67qr4LR/+4zn+PuqnnPyDsxiR2rd6sTst4MNfW0ZtVTl11eXUV1fQUFuBr64Sf10lAU8VxlOFNFTj9FXj9tcS4a/FFazHHfTgDjYQaRqIwEuUacAlQeKB7r6xRtBI04+E9s+40Oy5QbBSpG9LODA4eumP8qH0P76LOOOqu5manRTuUDpFWv56fFA7i0QA/wKmAl6sa7A+tLf9Drgc8APXG2Pe6qi+adOmmWXLln3neLpLZdk+Cjcvo2rX1wRKthBZlc8gTwEZgUKixLdf2XIS/n979x1fVX0+cPzz3JW9E1YCSdh7yRRQcFsHWgfuWa1VW7Va22prrf3ZOutWqnXViRMHbgEBkS17yE6AMLL3zR3f3x/nJgZIIJCb3Izn/XrllXvW9zz3Hk44z/0u8u0plIR1xB3ZCX9sKs64zkQkdCIyoSMxiZ2IS+qMM7x1foMcDMYYqnx+qrx+qjxeqqoq8VS58bjdeAKvjdcNPivBMz5PoFmkB+OrgkCyV1MLE2gi6TcGjB/jNxis9WJ+/rNE9bc/gSqamj9Z1Z2XA9+oVP9Bs775CcRc69uUmpqvaiI1263aMQmUIPuVW/1NjvUHkv3WV38D9PNDSfW3OdY+UlPjRmDfmpe1tlev+znun89T/frn7bW31bWviBxyO/Dze5Wf9/o5tlrvdf9T/bz2gGew6k+/9j5y0K619jlgW805av1ZO/A5TwI1lsl9xuCMjCcUytxevrl/Mie5VhN11xaw2RtdZlF5Fd99+jrd1z7NQDaTa+9A6cjfkXHS9a2m30tDfLpyF5Xv/ppzwpbiuGPdUY9C5/b6mDF/BWVznmay53NipZzdHcaTfPpdODLHBTnq0Pvv3C3M+vwd3nD9C8593ho04Shs3lfKu9/+QMqal7jQNosYqaA0/SSiT/ojdB0V5KhD796P1/DpwrUsDr8RGXopnPX4EZdhjGHh1nxe/vZHemx7h6udX5JCId6OQ3Ecfzv0PSMofwMOy1NJ5dwn8c1/hihvIUv9vViT/AvSJ1zC6IG9CHc2QwxHyhhMVRkVRbkU5++hvGgfFUX78JTsw1eWD+X52CoLcFUVEuYpJMpbRIwpIZrywxbtNg5KJZIKIqmwRVJpi8Rjj8BnD8dvD8fniABHOMYRgTgjEFckNlcE4oxEXIF1jnCre0Wgi4Xd4bK6WjjDcDirXztxOcMCr12IzY7NZkOwvhgXESQINb3G77e6i5jq3z7reSjw2m+s135jEL8fv99nPT8ZH9R0L7GOxe+32qD4/TUtbYzxg/FbXVFqWuVY5eLHeu7yG+u8xnre8vutY0xNGQYJbK/+qd5e09on8B6sy++vqckrje3JwIFDiYtwNvqzChYRWWqMGVHntsYkWMHW0hKsBW/cR/rG/9GZfTXrqoyDHHtnCiO6UhmTAYk9iOjUi8Qu3emY1r1dJ05KqYab+uyj3LD3PvyXfoit1wlHXU5haQVzPnmVHhv+wwC2sM/RiYrRt9Jt0rWtZiCGI1Hl9XP1P1/gDf+dMOkvcPwfjuj4wvIqPv9uLhGLn+V032yc4mNf6smknH4XtrRhTRR16JVUehj/wDd85vwTqXEu+M18q6l2A1QnCF988zWDs1/jLNsP2AQq+5xN1KTboVPzN7NtLj/tKeHUx+fwfuo0hhd8DjcvhoSMBh3r8xtmrt/L+zPnM3L3NC52zCKSSryZk3CMv8VqqhmKmr6qMkp/eBn3gv+SVLEVj7Gzkl7sThyFM3MMXXqPoFePHoQ5g9wUyxioKqOyOJfi/N2UF+ylsngvnpJc/GV5UJ6HvbIAp7uAcG8hUd5iYkwxYXjqLbLERFAkMZTZYil3xON2xeENi8cXloA/PAF7RByOyDhcUfGERcURERNPVGwiUbEJREdGaX801SiaYB2lxdOfwbb5GzwpAwnvOpiUjMF06toDu6N1tP9USrVcn/24jbHTx+FJG0uH69474uNz8gpZ+slUBmx9hUzJYa+zC55jf0/qcVc1+MG5tXry2430nf1rTnStxX7TD5CYedhjNu0pZs6X79Ft8xucwFK84iCv1wV0OvV2JLlnM0Qdeo99/ROrZ73Ni65H4fg/wqS7Drl/ldfPl6uyWDPzbcYVfsIE+2qqbBH4hl1BxISbIb59jPx753sr+OHHVcyOvBN72jFw2YeHHLSjqMLDu4u3s/r7Tzmp/DNOsy/GJjbMwPOwj/tty0lIjcGzcyU589/AtnUOnSs2YMeqOSgyUeywdaHclYQ3IgV/ZBLijMDmisDmjMDhcCDGB36vNTKl8UJVBVSVIlUl2DxlODylOL1lhPnKiPQdOlnyG6GAaIokljJbLBWOOKpccXjDEjERCUhUEs7oJFyxKUTGJROd0JG4xA7ERkVqkqRCRhMspZRqYTw+P6/983qu8b2LuX420qVhtScbt2ezfsYzjNzzNp2kgOywXtgn/J4ux05pnmZGLUBFlY+rH3+f58tvJSy+M2FXvl9nrUKlx8f8JcvIXfAmows+Jd22lzJ7HBVDryJ50m8hOqX5gw8ht9fHOc/M58aChzmL76wawAm37zcQhTGGNTsLWTTvKxwbPuV0/2xSpJiy8E64xlyHc/S1ENHyJqJuSntLKjnzyXlMNjO52/sM9PkFnPsfqDW5tNfnZ97GfSxcMJeILV8ymdmk2/ZS5YzDcczl2Mb+pslHDG20ikLyNi9m98bleHavI6J0O2HuPGK9+cSZYuwN6OdTZsIoJZJyiaCyptldFG5nHN6wBPwRiUhUEo7oZFwxKUTGpxCd2JG4+GTiosJx2FvvoCiq/dEESymlWqD3v1/FcV+dgSOmAwk3z9zvga02t8fLwnnf4F/0IqPLZxMhVWyJOYboE/9AhyGntYkBBY7UT3tKePT5l3jY9yAuh43i/pdhuo4h3+Mgf9dWynesIL1gIb0lC4AdcccQO/46Yoee2+gBHlqzrLxyrn1xLjeVPME59u8pjspgT+cTyCeO4sI8nHnrGeBfT4oU48NGfuoJJB13PbZeJ7WbBL4uq3cWcfmLC/mldwZ32V7D64hkV+cTyZFOFJSU4izYRH+ziTTJBaCs8xiixl4L/c5uG//ejMHrcVNRXkZlRRkVbg9id2CzO7DZndgcdlyuSKIiwnA5NElS7YMmWEop1QL5/YZHpz7HbXvupjC6B1Fn3E9E70ngcFFSsJdNK76nZPUXZObOoit7KCecrZ1/QdeTbyK2e51/09uV7Pxynnn/SyZlPc1JtqX7fcPuxsnOqAGYPr8gY9yF2JMO34ywvcgvq+KJrzdQ8eM7XGC+YLBsIUy8+BD2OdNwpwwmafjZRA84td3VVh3KnuJKHvx8PTvXzOMy8wnH2taQJCX4EfJdqXhTBpA09HScfU+HmLqmD1VKtSWaYCmlVAtVXuXlpZef55e7HqaL5OPFhgcnEbgB8Bg7G6OG4xg4mZ6TrsAWofPXHCg7v5wN27Jw5G8izmXoktaNDun9rUnVVb28Pj85RZW4qzwkuTwkxMa2yYFRgs3j81NY7qGiykeHSAgPC2vXtXtKtVeaYCmlVAtmjGHZlt1s/+EDogrWEoYXR2wH4jOH02v4RMKitRZBKaWUakkOlWDpcHhKKRViIsIxPTpzTI+bQh2KUkoppRpJeyIqpZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFSYsa5EJE9gHbQx3HAZKB3FAHoZqNXu/2Q691+6HXun3R691+6LVuP1ritU43xtQ5Y32LSrBaIhFZUt8IIart0evdfui1bj/0Wrcver3bD73W7Udru9baRFAppZRSSimlgkQTLKWUUkoppZQKEk2wDu/5UAegmpVe7/ZDr3X7ode6fdHr3X7otW4/WtW11j5YSimllFJKKRUkWoOllFJKKaWUUkGiCZZSSimllFJKBYkmWIcgIqeJyAYR2SQifwp1PCp4RKSriMwSkbUiskZEbgmsTxSRr0VkY+B3QqhjVcEhInYR+VFEPg0sZ4rIwsD9PU1EXKGOUQWHiMSLyHsisl5E1onIWL232yYRuS3wN3y1iLwlIuF6b7cdIvKSiOwVkdW11tV5L4vlycB1Xykiw0MXuTpS9VzrhwN/x1eKyIciEl9r258D13qDiJwakqAPQROseoiIHXgGOB3oD1wsIv1DG5UKIi9wuzGmPzAGuClwff8EfGuM6QV8G1hWbcMtwLpayw8CjxljegIFwLUhiUo1hSeAL4wxfYEhWNdd7+02RkRSgd8BI4wxAwE7cBF6b7clrwCnHbCuvnv5dKBX4Od64LlmilEFxyscfK2/BgYaYwYDPwF/Bgg8r10EDAgc82zgub3F0ASrfqOATcaYLcaYKuBtYHKIY1JBYozJMcYsC7wuwXoAS8W6xq8GdnsVOCckAaqgEpE04Azgv4FlAU4A3gvsote6jRCROOA44EUAY0yVMaYQvbfbKgcQISIOIBLIQe/tNsMYMwfIP2B1fffyZOB/xrIAiBeRzs0SqGq0uq61MeYrY4w3sLgASAu8ngy8bYxxG2O2ApuwnttbDE2w6pcKZNda3hFYp9oYEckAhgELgY7GmJzApt1Ax1DFpYLqceBOwB9YTgIKa/3h1vu77cgE9gEvB5qE/ldEotB7u80xxuwEHgGysBKrImApem+3dfXdy/rc1rZdA3weeN3ir7UmWKpdE5Fo4H3gVmNMce1txprDQOcxaOVE5ExgrzFmaahjUc3CAQwHnjPGDAPKOKA5oN7bbUOg781krKS6CxDFwU2MVBum93L7ICJ3Y3XteCPUsTSUJlj12wl0rbWcFlin2ggRcWIlV28YYz4IrN5T3aQg8HtvqOJTQTMOOFtEtmE19T0Bq49OfKBZEej93ZbsAHYYYxYGlt/DSrj03m57TgK2GmP2GWM8wAdY97ve221bffeyPre1QSJyFXAmcKn5efLeFn+tNcGq32KgV2A0IhdWZ7qPQxyTCpJAH5wXgXXGmH/X2vQxcGXg9ZXAR80dmwouY8yfjTFpxpgMrPt4pjHmUmAWcH5gN73WbYQxZjeQLSJ9AqtOBNai93ZblAWMEZHIwN/06mut93bbVt+9/DFwRWA0wTFAUa2mhKoVEpHTsJr3n22MKa+16WPgIhEJE5FMrIFNFoUixvrIz8mgOpCI/AKr74YdeMkYc39oI1LBIiLjgbnAKn7ul3MXVj+sd4BuwHbgQmPMgR1sVSslIhOBO4wxZ4pId6warUTgR+AyY4w7hOGpIBGRoVgDmriALcDVWF8o6r3dxojI34EpWM2HfgR+hdUXQ+/tNkBE3gImAsnAHuBvwHTquJcDSfbTWM1Ey4GrjTFLQhC2Ogr1XOs/A2FAXmC3BcaYGwL7343VL8uL1c3j8wPLDCVNsJRSSimllFIqSLSJoFJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKtTAikiEiRkQcoY5FtQ8iskZEJoY6DqWUags0wVJKKdXqichUESkN/FSJiKfW8uehjq+lM8YMMMbMboqyRSRRRPaJyLymKF8ppVoaMcaEOgallGpTRMRhjPE24vgMYCvgbEw57ZWI3Av0NMZcVse2Rl2b5tSaYj0UEXkB6APYjDHjQx2PUko1Na3BUkqpIBCRbSLyRxFZCZSJiENExojIfBEpFJEVtZtgichsEfmXiCwSkWIR+UhEEusp+2oRWSciJSKyRUR+fcD2ySKyPFDOZhE5LbA+TkReFJEcEdkpIv8nIvbDvI8eIjJTRPJEJFdE3hCR+Frb8kVkeGC5S6BmYmJg+exAU7PCwPvrd8Dnc4eIrBSRIhGZJiLhR/5JH7l6ro0RkZ619nlFRP6v1vKZgc+0MHANBzfwXBNFZIeI3BX4/LaJyKW1tp8hIj8GrlV2IBms3lbdNPRaEckCZgbWvysiuwOf2xwRGXBA3M+KyOeB2rrvRaSTiDwuIgUisl5EhjXwMzqpIe/xSIjIscBA4OVgl62UUi2VJlhKKRU8FwNnAPFAR2AG8H9AInAH8L6IpNTa/wrgGqAz4AWerKfcvcCZQCxwNfBYrSRnFPA/4A+B8x4HbAsc90qg3J7AMOAU4FeHeQ8C/AvoAvQDugL3AhhjNgN/BF4XkUish+ZXjTGzRaQ38BZwK5ACfAZ8IiKuWmVfCJwGZAKDgavqDEBkfCCxqe/naGpBaq7N4WqFAgnJS8CvgSTgP8DHIhLWwHN1ApKBVOBK4HkR6RPYVoZ13eMD8fxGRM454PjjsT77UwPLnwO9gA7AMuCNA/a/EPhL4Jxu4IfAfsnAe8C/Gxh3nUTkT4e6Hoc4zg48DdwMaHMZpVS7oQmWUkoFz5PGmGxjTAVwGfCZMeYzY4zfGPM1sAT4Ra39XzPGrDbGlAF/BS6sq4bJGDPDGLPZWL4DvgImBDZfC7xkjPk6cJ6dxpj1ItIxcK5bjTFlxpi9wGPARYd6A8aYTYGy3MaYfVgP58fX2v4CsAlYiJUY3h3YNAWYETjWAzwCRADHHvD57DLG5AOfAEPriWGeMSb+ED9H05en9rU5nOuB/xhjFhpjfMaYV7ESlzFHcL6/Bj7D77AS7QsBjDGzjTGrAtdqJVZSevwBx94buGYVgWNeMsaUGGPcWMnuEBGJq7X/h8aYpcaYSuBDoNIY8z9jjA+YhpVcHzVjzAOHuh6HOPR3wEJjzNLGnF8ppVobHaFKKaWCJ7vW63TgAhE5q9Y6JzCrnv23B7YnH1ioiJwO/A3ojfXFWCSwKrC5K1Zt0YHSA+XliEj1OtsB5zxIIDF7AiuBiwkcU3DAbi8AHwPXBx76warx2l69gzHGLyLZWLU41XbXel0eOKa5HPJ9HyAduFJEfltrnYuGx1sQSJqrba8+VkRGAw9gNZtzAWHAu/XFGki47wcuwKoZ9Ac2JQNFgdd7ah1bUcdydAPjDhoR6YKVYB3T3OdWSqlQ0xospZQKntrNoLKxaqhqf9sfZYx5oNY+XWu97gZ4gNzaBQaapb2PVSPUMVBj8BlWU77q8/SoI5ZsrFqX5FrnjzXGDKhj39r+GXgfg4wxsVg1cTUZmohEA48DLwL3ys/9xnZhJSbV+0ng/e08zPkOIiIT5OcRAOv6mXD4Ug5yYBO1cqxEtVqnWq+zgfsPuHaRxpi3GniuBBGJqrXcDevzAXgTKzntaoyJA6ZS6/OtI9ZLgMnASUAckBFYf+AxTSbQn6ze61HPYaOwajjXishurKR9VKAv2SH7ASqlVGunCZZSSjWN14GzRORUEbGLSHhgAIS0WvtcJiL9A/2Z7gPeCzTrqq26lmMf4A3UZp1Sa/uLwNUicqKI2EQkVUT6GmNysJoSPioisYFtPUTkwOZoB4oBSoEiEUnF6ttV2xPAEmPMr7Cavk0NrH8HOCMQhxO4HSvBm3+4D+pAxpi5xpjoQ/zMPdIy67AcuCRwbU5j/2Z6LwA3iMhosUQFBqeIgZqBJV45TPl/FxFXIBk8k59rqWKAfGNMZaD/3CWHKScG63PMw0oI/3kE7zEojDH/PNT1qOewz7GSwaGBn3uAH4GhdfwbV0qpNkUTLKWUagLGmGysmoe7sJKjbKxkpfbf3dewBqLYDYRjNak6sJySwPp3sJrqXYJVA1K9fRGBgS+wmox9x881SVdgJWhrA8e+h1WrcCh/B4YHypoBfFC9QUQmYw1S8ZvAqt8Dw0XkUmPMBqzarqewauHOAs4yxlQd5nyhcgtWjIXApcD06g3GmCXAdVgDNBRg9Tm7qtaxXYHvD1H27sBxu7AGpLjBGLM+sO1G4D4RKcFKOt45TJz/w2piuBPrOi443BtrCQL9z3ZX/2D9e/IEXiulVJum82AppVQIiMhs4HVjzH9DHYtquMCoiCuAwYHBPA7cPhHruqYduE0ppVT7oINcKKWUUg0UqJHrd9gdlVJKtVvaRFAppdoZEZlaz4AFUw9/tGqNRKTbIQaq6Bbq+JRSqi3RJoJKKaWUUkopFSRag6WUUkoppZRSQdKi+mAlJyebjIyMUIehlFJKKaWUUvVaunRprjEmpa5tLSrBysjIYMmSJaEOQymllFJKKaXqJSLb69umTQSVUkoppZRSKkg0wVJKKaWUUkqpINEESymlDkNHW1VKKaVUQ7WoPlh18Xg87Nixg8rKylCHolqZ8PBw0tLScDqdoQ5FtWLGGK54bjadKjfyr1t+hcOu30sppZRSqn4tPsHasWMHMTExZGRkICKhDke1EsYY8vLy2LFjB5mZmaEOR7ViG/aUcHnOPzjFvpTFSwcwctS4UIeklFJKqRasxX8VW1lZSVJSkiZX6oiICElJSVrzqRptY1YOp9iXAmBf8t8QR6OUUkqplq7FJ1iAJlfqqOi/GxUM+Ts31rxOyV8WwkiUUkop1Rq0igRLKaVCxRRmA7AhehRdvFlQVRbiiJRSSinVkmmC1QAiwu23316z/Mgjj3DvvfeGLqBaFixYwOjRoxk6dCj9+vWriWv27NnMnz//qMvdvn07w4cPZ+jQoQwYMICpU6cGKWKlWhdH6U4A9qWdgh0/BVuWhjgipZRSSrVkmmA1QFhYGB988AG5ublBLdcYg9/vb1QZV155Jc8//zzLly9n9erVXHjhhUDjE6zOnTvzww8/sHz5chYuXMgDDzzArl27GhWrUq1RZHkOHpw4ek4EoDB7bWgDUkoppVSLpglWAzgcDq6//noee+yxg7bt27eP8847j5EjRzJy5Ei+//57AO69914eeeSRmv0GDhzItm3b2LZtG3369OGKK65g4MCBZGdn84c//IGBAwcyaNAgpk2bBlgJ0sSJEzn//PPp27cvl156aZ1z8ezdu5fOnTsDYLfb6d+/P9u2bWPq1Kk89thjDB06lLlz5x4yzssvv5yxY8fSq1cvXnjhBQBcLhdhYWEAuN3uehPBJ598kv79+zN48GAuuugiAPLz8znnnHMYPHgwY8aMYeXKlTXnuvLKK5kwYQLp6el88MEH3HnnnQwaNIjTTjsNj8cDwH333cfIkSMZOHAg119//UHv2+/3k5GRQWFhYc26Xr16sWfPnkNdRqWOSmzVbgqdHUjp2guPsePesynUISmllFKqBWvxw7TX9vdP1rB2V3FQy+zfJZa/nTXgsPvddNNNDB48mDvvvHO/9bfccgu33XYb48ePJysri1NPPZV169YdsqyNGzfy6quvMmbMGN5//32WL1/OihUryM3NZeTIkRx33HEA/Pjjj6xZs4YuXbowbtw4vv/+e8aPH79fWbfddht9+vRh4sSJnHbaaVx55ZVkZGRwww03EB0dzR133AHAJZdcUm+cK1euZMGCBZSVlTFs2DDOOOMMunTpQnZ2NmeccQabNm3i4YcfpkuXLge9lwceeICtW7cSFhZWk/D87W9/Y9iwYUyfPp2ZM2dyxRVXsHz5cgA2b97MrFmzWLt2LWPHjuX999/noYce4txzz2XGjBmcc8453Hzzzdxzzz0AXH755Xz66aecddZZNee02WxMnjyZDz/8kKuvvpqFCxeSnp5Ox44dD3sdlTpSEd4i3NEJpCXFsMMkIwVbQx2SUkoppVowrcFqoNjYWK644gqefPLJ/dZ/88033HzzzQwdOpSzzz6b4uJiSktLD1lWeno6Y8aMAWDevHlcfPHF2O12OnbsyPHHH8/ixYsBGDVqFGlpadhsNoYOHcq2bdsOKuuee+5hyZIlnHLKKbz55pucdtppdZ7zUHFOnjyZiIgIkpOTmTRpEosWLQKga9eurFy5kk2bNvHqq6/WWUM0ePBgLr30Ul5//XUcDkfNe7r88ssBOOGEE8jLy6O42EqMTz/9dJxOJ4MGDcLn89XEO2jQoJr3N2vWLEaPHs2gQYOYOXMma9asOei8U6ZMqante/vtt5kyZcohP3OljobH5yfKlOFzxRLmsLPb0YXIsqxQh6WUUkqpFqzRNVgi0hX4H9ARMMDzxpgnRCQRmAZkANuAC40xBY05V0NqmprSrbfeyvDhw7n66qtr1vn9fhYsWEB4ePh++zocjv2a1dWejykqKqpB56tuogdW8z+v11vnfj169OA3v/kN1113HSkpKeTl5R20T31xwsHDmR+43KVLFwYOHMjcuXM5//zz99s2Y8YM5syZwyeffML999/PqlWrGvSebDYbTqez5lw2mw2v10tlZSU33ngjS5YsoWvXrtx77711zmU1duxYNm3axL59+5g+fTp/+ctfDnlepY5GeZWPGCrwuWIAKA5PI7HiWzAGdBoApZRSStUhGDVYXuB2Y0x/YAxwk4j0B/4EfGuM6QV8G1hu1RITE7nwwgt58cUXa9adcsopPPXUUzXL1U3hMjIyWLbMmjNn2bJlbN1ad7OiCRMmMG3aNHw+H/v27WPOnDmMGjWqwTHNmDGjpo/Sxo0bsdvtxMfHExMTQ0lJyWHjBPjoo4+orKwkLy+P2bNnM3LkSHbs2EFFRQUABQUFzJs3jz59+ux3br/fT3Z2NpMmTeLBBx+kqKiI0tJSJkyYwBtvvAFYfcmSk5OJjY1t0PupTqaSk5MpLS3lvffeq3M/EeHcc8/l97//Pf369SMpKalB5St1JMqrvMRKOf5AglUVm0GUKYfy/BBHppRSSqmWqtEJljEmxxizLPC6BFgHpAKTgVcDu70KnNPYc7UEt99++36jCT755JMsWbKEwYMH079//5rhzM877zzy8/MZMGAATz/9NL17966zvHPPPZfBgwczZMgQTjjhBB566CE6derU4Hhee+01+vTpw9ChQ7n88st54403sNvtnHXWWXz44Yc1g1zUFydYzfwmTZrEmDFj+Otf/0qXLl1Yt24do0ePZsiQIRx//PHccccdDBo0CIBf/epXLFmyBJ/Px2WXXcagQYMYNmwYv/vd74iPj+fee+9l6dKlDB48mD/96U+8+uqr9YV/kPj4eK677joGDhzIqaeeysiRI2u2TZ06db+4p0yZwuuvv67NA1WTKa/yEUs5Jsz6gkCSuwNQseenUIallFJKqRZM6hqZ7qgLE8kA5gADgSxjTHxgvQAF1csHHHM9cD1At27djtm+fft+29etW0e/fv2CFqPa37333rvfYBhtjf77UY2xevteBr7ci40Db6PX+fcya+5cJn17JjsnPUHq8VeFOjyllFJKhYiILDXGjKhrW9AGuRCRaOB94FZjzH5D/Rkri6szkzPGPG+MGWGMGZGSkhKscJRSqtHcpVa3UVtEHAAJqT3xG6Fyrw7VrpRSSqm6BWWYdhFxYiVXbxhjPgis3iMinY0xOSLSGdgbjHOp4Lr33ntDHYJSLZanvBAAeyDB6pKSwF7iMQXbD3GUUkoppdqzRtdgBZr/vQisM8b8u9amj4ErA6+vBD5q7LmUUqo5ecuKAHBExgOQEh3GLpJxlOwMYVRKKaWUasmC0URwHHA5cIKILA/8/AJ4ADhZRDYCJwWWlVKq1fBVWE0EnVHxgDV6ZYGzM9EVu0IYlVJKKaVaskY3ETTGzAPqmxDmxMaWr5RSoWLc1lQHrqifpxkoj+hMfMn34PeBzR6q0JRSSinVQgVtkAullGprfJVlAERE/pxgeWPTcOCDkt2hCksppZRSLZgmWA00ffp0RIT169fXu8+2bdsYOHBg0M65YcMGJk6cyNChQ+nXrx/XX389YE0S/Nlnnx11uZWVlYwaNYohQ4YwYMAA/va3vwUrZKXaFFNlJVhhkdE16+wJ6QC4c7eFIiSllFJKtXCaYDXQW2+9xfjx43nrrbfq3O71eht9Dp/Pt9/y7373O2677TaWL1/OunXr+O1vfws0PsEKCwtj5syZrFixguXLl/PFF1+wYMGCRsWuVFtkqsoBEFdUzbrIDhkAFORsCUVISimllGrhNMFqgNLSUubNm8eLL77I22+/XbN+9uzZTJgwgbPPPpv+/fsDVqJ16aWX0q9fP84//3zKy60HtG+//ZZhw4YxaNAgrrnmGtxuNwAZGRn88Y9/ZPjw4bz77rv7nTcnJ4e0tLSa5UGDBlFVVcU999zDtGnTGDp0KNOmTaOsrIxrrrmGUaNGMWzYMD76yBqw8ZVXXmHy5MlMnDiRXr168fe//x2wOupHR1vfyHs8HjweD9ZgkPt79913GThwIEOGDOG4444DrNqvq6++mkGDBjFs2DBmzZpVc65zzjmHk08+mYyMDJ5++mn+/e9/M2zYMMaMGUN+fj4AL7zwAiNHjmTIkCGcd955NZ9PbWPGjGHNmjU1yxMnTmTJkiUNvl5KBY0n8O/T+XOCldC5BwAV+zTBUkoppdTBgjIPVrP5/E+we1Vwy+w0CE4/9ACHH330Eaeddhq9e/cmKSmJpUuXcswxxwCwbNkyVq9eTWZmJtu2bWPDhg28+OKLjBs3jmuuuYZnn32Wm2++mauuuopvv/2W3r17c8UVV/Dcc89x6623ApCUlMSyZcsOOu9tt93GCSecwLHHHsspp5zC1VdfTXx8PPfddx9Llizh6aefBuCuu+7ihBNO4KWXXqKwsJBRo0Zx0kknAbBo0SJWr15NZGQkI0eO5IwzzmDEiBH4fD6OOeYYNm3axE033cTo0aMPOv99993Hl19+SWpqKoWFhQA888wziAirVq1i/fr1nHLKKfz0008ArF69mh9//JHKykp69uzJgw8+yI8//shtt93G//73P2699VZ++ctfct111wHwl7/8hRdffLGmZq7alClTeOedd/j73/9OTk4OOTk5jBhR50TZSjUpm6ecKhy47D//qeyckkSeicGbnxXCyJRSSinVUmkNVgO89dZbXHTRRQBcdNFF+zUTHDVqFJmZmTXLXbt2Zdy4cQBcdtllzJs3jw0bNpCZmUnv3r0BuPLKK5kzZ07NMVOmTKnzvFdffTXr1q3jggsuYPbs2YwZM6am5qu2r776igceeIChQ4cyceJEKisrycqyHv5OPvlkkpKSiIiI4Je//CXz5s0DwG63s3z5cnbs2FGThB1o3LhxXHXVVbzwwgs1zRfnzZvHZZddBkDfvn1JT0+vSbAmTZpETEwMKSkpxMXFcdZZZwFWzdu2bdsAKwmbMGECgwYN4o033tivpqrahRdeyHvvvQfAO++8w/nnn1/n56NUU7N5y3FL+H7rOsaGs9OkYC/eEaKolFJKKdWSta4arMPUNDWF/Px8Zs6cyapVqxARfD4fIsLDDz8MQFRU1H77H9jUrq6mdwc6sIzaunTpwjXXXMM111zDwIED60yEjDG8//779OnTZ7/1CxcuPGw88fHxTJo0iS+++OKgATqmTp3KwoULmTFjBscccwxLly495PsICwureW2z2WqWbTZbTR+1q666iunTpzNkyBBeeeUVZs+efVA5qampJCUlsXLlSqZNm8bUqVMPeV6lmorNW4lbwomptc5uE/KdHelQoZMNK6WUUupgWoN1GO+99x6XX34527dvZ9u2bWRnZ5OZmcncuXPr3D8rK4sffvgBgDfffJPx48fTp08ftm3bxqZNmwB47bXXOP744w977i+++AKPxwPA7t27ycvLIzU1lZiYGEpKSmr2O/XUU3nqqacwxgDw448/1mz7+uuvyc/Pp6KigunTpzNu3Dj27dtX0+SvoqKCr7/+mr59+x50/s2bNzN69Gjuu+8+UlJSyM7OZsKECbzxxhsA/PTTT2RlZR2U2B1KSUkJnTt3xuPx1JRTlylTpvDQQw9RVFTE4MGDG1y+UsHk8JVTZQs/aH1peGcSqvZA4J5TSimllKqmCdZhvPXWW5x77rn7rTvvvPPqHU2wT58+PPPMM/Tr14+CggJ+85vfEB4ezssvv8wFF1zAoEGDsNls3HDDDYc991dffVUzyMSpp57Kww8/TKdOnZg0aRJr166tGeTir3/9Kx6Ph8GDBzNgwAD++te/1pQxatQozjvvPAYPHsx5553HiBEjyMnJYdKkSQwePJiRI0dy8sknc+aZZwJwzz338PHHHwPwhz/8gUGDBjFw4ECOPfZYhgwZwo033ojf72fQoEFMmTKFV155Zb+aq8P5xz/+wejRoxk3btx+Sd3HH3/MPffcU7N8/vnn8/bbb3PhhRc2uGylgs3hq8BjizhovSc6jTDcUJYbgqiUUkop1ZKJaUHfwI4YMcIcOFrcunXr6NevX4giat1eeeWV/QbDaI/0349qjGX3jSMuTOjxx3n7rf/o7ReYvP4OPNd8i7ObDsCilFJKtTcistQYU+dDgNZgKaVUPcL8lfjsB9dghQfmwirM2dzMESmllFKqpWtdg1yoI3LVVVdx1VVXhToMpVqtMFOJxxF50Pr4wFxYZXu2kNLcQSmllFKqRWvyGiwROU1ENojIJhH509GU0ZKaMarWQ//dqMYwxhBOJX7nwTVYnTt0othE4MnTubCUUkoptb8mTbBExA48A5wO9AcuFpH+R1JGeHg4eXl5+rCsjogxhry8PMLDDx4BTqmGqPT4icANzoOnUegUZ82FZSvODkFkSimllGrJmrqJ4ChgkzFmC4CIvA1MBtY2tIC0tDR27NjBvn37mihE1VaFh4eTlpYW6jBUK1Ve5SUSNzgPbiLoctjIdXSgR/muEESmlFJKqZasqROsVKD2V7w7gNFHUoDT6SQzMzOoQSml1OGUuz0kSRW4Dk6wAErCOhNf2eDvipRSSinVToR8FEERuV5ElojIEq2lUkq1FBXlZQDYwqLr3F4VnUqkKYeKwmaMSimllFItXVMnWDuBrrWW0wLrahhjnjfGjDDGjEhJ0fG4lFItg7u8GAB72MF9sAAkoRsA3vztzRaTUkoppVq+pk6wFgO9RCRTRFzARcDHTXxOpZRqNHdFKQD2sLqbCIYlWU2Xi3ZvbbaYlFJKKdXyNWkfLGOMV0RuBr4E7MBLxpg1TXlOpZQKhqpAguUMr7uJYGzn7gCU7tlMUrNFpZRSSqmWrsknGjbGfAZ81tTnUUqpYPJWlADgqCfB6tgplQrjoipXmwgqpZRS6mchH+RCKaVaIm+lNciFK6LuBCs1IZKdJhkp0rmwlFJKKfUzTbCUUqoOXreVYIVHxtS5PdxpZ6+9A2E6F5ZSSimlatEESyml6mDcVh8sVz0JFkBxWGdi3TnNFZJSSimlWgFNsJRSqg6+qnKg/iaCAO6oVOL8RVBV1lxhKaWUUqqF0wRLKaXqEkiwcNY9DxaAibOm+fMXtN1+WB6fnye/2cB7n32F8ftDHY5SSinV4mmCpZRSdamulXLVPQ8WQFhyOgDFu7c0R0Qh8fL3W0n/7lbOX3QBW165LtThKKWUUi2eJlhKKVUXbzl+BBzh9e4S09GaC6t4T9tNsH5cOJvJ9vkA9Mh6D3JWhjgipZRSqmXTBEsppepg95TjlnAQqXef5M7dqDJ23Lnbmi+wZrRxTwmjir7EawvnrXGfUWFcFP3wcqjDUkoppVo0TbCUUqoOdk8ZlRJxyH1SE6PJMUlQ2Db7YC3Yksd422q8Xcdy3MjhzPUPwr5hBhgT6tCUUkqpFksTLKWUqoPTV0alvf4BLgBiwp3ssaXgKtvZTFE1r+ysrfSy7SSs9wmkxkewPGIM0e49kPtTqENTSimlWixNsJRSqg5hvnI89voHuKhW4OpCfMWOZoio+fl2LgdA0kYCYLodC4B/+w+hCqlZTP1uM9c9+gbLPpn682iSSimlVANpgqWUUnUI95fjcRy6BgugLDqdOH8BVBY3Q1TNx+83RBeutxY69gcgs/dg9plYSn+aE8LImtbCLXm8+8W3PF58G8OX/pGK16a0+SaRReUenpm1iVlrssHrDnU4zWJvSSXbcnX+OqVU09AESyml6hBuyvE56p9kuJon3hpJ0ORvbuqQmtX2/HJ6mW2URqRCeBwAIzITWeLvg2QvCHF0Tef1hVncETadiDAX//OdQkT2HPjpy1CH1WSMMfzmjaV89dUMhrwzBs+DPWH7/FCH1aRWZBdy/EOzufXR/5Lz9Okw65/g94U6LKVUG9KoBEtEHhaR9SKyUkQ+FJH4Wtv+LCKbRGSDiJza6EiVUqqZeH1+Ik0FvkNMMlwtrEMvAIp3bmjqsJrVupxi+koWvg4DatZlJkex1tGfmIqdULwrhNE1jVK3l8Vrf+IUFmAbfgXze97OHpLwL/5vqENrMvM35/HD5n28nPgqNpuNYq8D88H14K0KdWhNwhjDPz5dSydXBa+GP0rn3Pnw3YOw6IVQh6aUakMaW4P1NTDQGDMY+An4M4CI9AcuAgYApwHPioi9kedSSqlmUVblI0oqMa7D12AldesLtL0Ea+OOvWRKDlFdh9SsExGKUkZYC9mLQhRZ05m1fi/j/Uux44PBF3LOMem87x2HbJ4JZbmhDq9JvL90B6eEryWxbDPrh97N7e5fIUXZsObDUIfWJFbsKGLJ9gIe7b6MOFPEGe77yU4YbSVZnspQh6eUaiMalWAZY74yxngDiwuAtMDrycDbxhi3MWYrsAkY1ZhzKaVUcylze4mmAgk7fIKV0SmZXSYR776NzRBZ8ynOXoVdDI4ug/ZbH5cxlCpjx7tjaYgiazqLt+VzimM5JrYLdB7C8b078C2jEeODzbNCHV7QVXp8fLFmN7+JWwQRiQw66XIW2YeR50qFlW+HOrwm8fmqHBw2YUjB15A+johuw3m26gyoyIf1n4Y6PKVUGxHMPljXAJ8HXqcCtSeG2RFYdxARuV5ElojIkn379gUxHKWUOjpl5eWEiRcJjz3svqnxEWw3nXEWbm2GyJqPY+9a60XHgfut79c1hXUmncpti0MQVdNavCWXsfZ1SPdJIEKEy05Y12EUSwxsnhnq8IJuWVYBnio3A8oXQt8ziIqKYnyvDnzpG4HZOhcqi0IdYlAZY/h89W5OzxTsueug18mcMbgzb+d1xxvVCdZOD3WISqk24rAJloh8IyKr6/iZXGufuwEv8MaRBmCMed4YM8IYMyIlJeVID1dKqaCrLLNGBLSFxxx2X5tNyA/vSlxFVlOH1WyKKjx0qtyExxYBCZn7bRvYJY6V/u649q0Cvz9EEQZfUYUH/771xPiLIf3YmvXjenfkO+8AfJu+bXOjCS7Yks9I2wacnhLoczoAx/VO4f3yoYjfA5u+CXGEwbVpbylZ+eVckhQYkKbHCZw6oBMGGxvjx1m1lO1kFEWlVNM6bIJljDnJGDOwjp+PAETkKuBM4FJjav732Ql0rVVMWmCdUkq1eBWlhQA4GlCDBVARk2E9mFcUNGFUzWd9TjH9bFmUJ/QB2/7/TXRNjOAnRy9c3lJoQyMnLssqYKQEhqVPH1ez/tgeSczxD8Zetgeqa/XaiAWb85gctxnEDhkTADi+dwo/ml5UOBNg/YwQRxhc8zfnATDYvQwik6HjILrER9AjJYovqoZBVSls/z7EUSql2oLGjiJ4GnAncLYxpvZsjB8DF4lImIhkAr2AttcjWinVJlWW5AMQHhPfoP1tyT0A8O7b1FQhNat1u4roJ9txHtD/CqyBLqo6BAa+2LmsmSNrOku25TPWtg5/TBdIyKhZP6BLHItksLWwte3M/1VR5WN5diHj7GugyzAIfJnQNTGS9OQYlrpGWDU6baiW8ofNeaTFhRG1Yy50n1jz5cG4nsm8ujsd44iADV+ENkilVJvQ2D5YTwMxwNcislxEpgIYY9YA7wBrgS+Am4wxOsmEUqpVcJdY33RHxDas2XJU5z4A5GW1jRqOXVmbiZNyImqNIFhbQvpAyk0Yvp1tZ6CLxVvzGevcgC1jHIjUrHc5bHRM68leWwpkLwxhhMG1LKsAp6+MLmXrIPO4/baN75nM5yU9rIEfctvG6Jh+v2HB1jzOTSuCsr3Q44SabeN6JlPosVPYcTRsmR26IJVSbUZjRxHsaYzpaowZGvi5oda2+40xPYwxfYwxnx+qHKWUakl8ZVYNVmR8wxKsDul98BmhbFfbeBj17V4FgBwwwEW1/mlJrDYZuLcvac6wmozb66Ngx3oS/QX79b+qNjw9gUXenpistpNgLdiSx2j7T9iM96AEa0RGAnM81pcGbJsXguiCb/3uEgrLPZwcFvgSpMekmm1juidhE1jlGGQllKU64JZSqnGCOYqgUkq1CabcSrDCYpIatH9mx0R2mmT8ua2/iaDPb4guDPRF6ti/zn0Gdollpb87YftWg89b5z6tyeqdRQw166yFbgcnWCPSE1jk642U7ILC7IO2t0Y/bM7jrNhNYHNC19H7bRuRkUi26UBZWMc20yfphy1WrXTv0sWQ0hdiu9Rsi4tw0rdTLN+WW019yZofihCVUm2IJlhKKXWg6sEqIhIatHt8pIssWxqRxVuaMKjmsTW3jN5mK6WRaRAeV+c+GUlR/GTrid3vhn3rmjnC4Fu8rYCRsgF/eAIk9z5o+/D0BJb6A+vbQDPB8iovK3YUMsa2BrqOAlfkfttT4yPoHBfBWtdA2PZ9mxg98YfNufROtBO+cwF0n3TQ9hEZCUzfk4JxRsJ2TbCUUo2jCZZSSh3AXllIJS5wRjT4mLzI7iRXbgd/6+5uui6nmEGyFV/HwfXuY7MJFW1ooIsl2/I51vkTtvSxB42aCJAY5cKd2I9KCW8TCdbS7QVE+EroVLbhoOaB1Y5JT+Cb8l5Wf6W81j1apM9vWLg1nykdd4LPvV//q2ojMhIpqhLKUoZZSaVSSjWCJlhKKXUAZ1UhZbaGDdFezZ3QCxdVULCtaYJqJpuysuhm20dUxohD7pfUtR9FJgr/rh+bKbKm4fcbtmzdQprJgW5j691vaEYyK01PTBtIsH7YnMex9g0Ipt4Ea2RGIl+X97QWtrfuflhrdhVRUunlOPsqq0lkxriD9hmRbtVW/xQxBPasbjNTLiilQkMTLKWUOkCYp4gKx+EnGa7N0cnqr1S2c3VThNRsyrdZNVKOtOGH3G9gWjwr/ZlUZbXugS427CmhT9Uaa6GOAS6qjUhP4AdvL9i9GtylzRRd0/i+uv+VIwJS606kj0lPYIvpTGVYUquv0fkhMP9VRtEi6DYGXFEH7dMlPoIuceF85+4FGGhDA5oopZqfJlhKKXWACF8xVc66+x/VJzHdGnGvcNvKpgipWfj9hshcawRBOtc9RHu1gamxrDLdceWuA09lM0TXNOZvzmOUbT1+RwR0qr9Z5PD0BJb5eyPGB614ePqicg+rdhQyWlZD+lhwuOrcr2+nGKJcDjaFD4asH5o5yuD6YUseI5M9OPet2W/0wAONyEjkwz0dMXZXq6+1U0qFliZYSilVi9fnJ96XT1VEw4Zor9YjrTM7TDKenNY7F9aW3DJ6+TdbA1xEJh5y354p0ayVntYw33tab63d/E25THD9hC1tRL3JBljvd6OrL36kVffD+mFLLgmmiOTyzZAxod79HHYbw7olMK+qJxRlt9rREz0+P4u35jMlMTDCZx0DXFQbkZFAVglUdRwK21t3UqmUCi1NsJRSqpa8UjcdpBAT1emIjkuNj2AraYQVbmyiyJreyh2FDLVtxt9p6GH3ddhtVKQEarlaaT8sr8/Plq2b6OnfCj1PPOS+NpvQq1sa223dIGtBM0UYfPM25XKCKzDyY+bxh9x3REYCnxZlWAuttBZr2fYCyqp8jPMvgagU6Dy03n2PCfTD2hY1FHKWt/qmoEqp0NEESymlatmXl0uUuLHHdTn8zrXYbEJeZHeSKlrvSIJbflpDmuQS1bvugQ8O1CmtO7nEYVppk7lVO4sY4Q2Mgtjz5MPuP7xbAvM9PTE7FrXKa2yM4buf9nFB9EqI6gBdhh1y/xHpiaz1p+N1RLXaBOvLNXuIcvjptG8e9D6tzlEiq/XtFEt0mIMFvt7g98KOxc0YqVKqLdEESymlainauwOAsITOR3ysJ7F3qx5J0L/lOwDs3Q9ds1FtYFo8K3zd8WS3zgRr1vq9TLItxx/dGToOOOz+x6QnsMTXG3GXwN7WN//Xml3F7MkvZljVYuhz+iGTDYBh3eIRm53s6EGtssmcMYYv1+zm6tSd1jXr84tD7m+3CcO6xfNRXlcQW6tNKpVSoacJllJK1VKRbyVYMSldj/jYsC7WQ3px9qqgxtQcdhSU06tiOeWuJEjp06BjBnaJY6W/O878jeAuaeIIg8sYw5crszjesQZbr5NA5LDHDOkax1IT+GyyW18zwU9X5jDOvg6ntwz6nnHY/aPCHAzoEstCbx9rQuny/GaIMnjW7CpmZ2EFkyNWgCMcuk887DEjMxL5ca8Pb8dBOuGwUuqoaYKllFK1VBXmABCbknbEx3bIHARAQSscSXD+xlyOta3B2218g5INgN6dollND2s+pZzW9Z437CkhNX8BUaYM+p7ZoGNiwp1EduhOgS2x1fXDMsYwY9UuropfDs6ow/a/qjYiPZFPCjOshVb2nr9asxuXeOmx5yvodQq4Ig97zMiMRIyBXbHDrCaC3qpmiFQp1dZogqWUUrXYCrcD4EjodsTH9ujahR0mGV9O6xtVb8uaBXSUQmL6HXqwh9rCHHbKkwNDm+9a1kSRNY0ZK3M41/49/ojEww5wUdsxGYks9vXGtLJkY9XOInLzCzi2cg4MOBec4Q06blRmAku8mfhtLshqPTU6xhg+XZnDrzpvwVaRC0MvadBxw7rF47QLS0w/8Fa22gFclFKhFZQES0RuFxEjIsmBZRGRJ0Vkk4isFJFDz1iplFIthKskiwJbQoO+7T5QcrSLTZJBdOH6Jois6VR6fCRtm4EPO9LA2pxqGekZ7CIZs7P1JFjGGL5dsYVTHMuwDTgX7M4GH3tMYMJhKcqGop1NGGVwfbR8F2c6FuH0lcOwyxp83IiMRNy42BPTv1X1w1q4NZ8tuWVcEvY9RCZDz5MadFy4086g1Dg+KQx8wbK9dU+yrJQKjUYnWCLSFTgFyKq1+nSgV+DneuC5xp5HKaWaQ1zlTgrDjrx5IICIkBfdmyR3NngqghxZ05n70z5OMfMp6jQWopKO6NhhXeNZ7uuOJ7v1JFhLtxcwtPBrwowbBk85omOHd0tgib919cMqr/Ly7pJsboieC4k9oNuYBh+bHB1G9+QoltPHGrq8qqzpAg2iNxdm0Tu8kNQ9s2DIRUeURI/MTGTeLvAn99aBLpRSRyUYNViPAXcCpta6ycD/jGUBEC8iRz4kl1JKNaPyKi+d/Tm4Y468eWA1T0p/7Pgxe1rPhMPLFs4i3baX2BEXHvGxw7rFs9LfHVfxtlYzCMIr87bwK+cX+DoNga6jjujY9KRI9kb0xC3hkNU6Jhx+f9lOertX06NyDYy6vsF97KqNzEhkRlFmYOjyJU0UZfBk55czY1UO93WcgxgDo284ouNHpifi8Rn2JR5j9TtrhUPyK6VCq1EJlohMBnYaY1YcsCkVqD3t+47AurrKuF5ElojIkn379jUmHKWUapTtu/PoRAGSlHnUZUR0HQpAwZbWUaOzr8RN961vUWULxzHg7CM+vkdKNJscvayFVtBfJTu/nIp1X9CdndiP/e0RJxsiwuCMFNbYereKGiy318fU2Zv5U8znmMgkGH7FEZcxMjOROZU9MEirGOji+TlbSJJiRuV/DIPOh/gjGxF0RIY14fBy6Q/uYtizpinCDJofswq4cOoP5JfpgBxKtRSHTbBE5BsRWV3Hz2TgLuCexgRgjHneGDPCGDMiJSWlMUUppVSj5G1ZgU0MEamDjrqMtO79KTXhlGYtD15gTWj6vOWcbfue8v5TICLhiI+32QRbamDC2lYw0MXjX6/ndse7+GK7woBzjqqM4d0SmOvugdm9qsUPTz9tcTapRcsYUbUYGXPjUfUtHJmRQDFRFMb0avEDXWzNLePtxVk80elLbF43jP/9EZcRH+miT8cYPisOfNHSgodr9/sN1/1vKYu25fO7t35kV2HraZqsVFt22ATLGHOSMWbggT/AFiATWCEi24A0YJmIdAJ2ArW/MkoLrFNKqRarJHs5AB17Hf24PH07x7HBdMW+t2V/6w1Q5vbCwqmEiZf4ib876nL6ZKSxxXTGu6NlJ1hrdhXBymn0l23YT773iPrl1HZMegJL/b0R47eG8m6h8suqeOKrdTwU9QYmNg3G3HhU5XRLjKRDTBir7P0hezH4vEGONDiMMdw/Yx397DsZk/8RjLgaOvQ9qrJGZibwzU4nJq5rix7o4r1lO8gtdTMqM5HF2/KZ9Mhs/u/TteSWukMdmlLt2lE3ETTGrDLGdDDGZBhjMrCaAQ43xuwGPgauCIwmOAYoMsbkBCdkpZRqGra966jERVhKj6MuIyrMwU5XDxJKfwJjDn9ACL31zUIuM59SkHkGJPc86nKGdo1nhb87/hacYPn8hgff/567nW/i7TQMBvzyqMsanBbHKumLHztsmxfEKIPr/hnruNDzERneLcgp/ziq2iuwmkWOzEzk69Lu4CmD3Qf2CmgZPl2Zw+x1O/lv3EtIeBxMvOuoyxqZkUhZlY/ClJHWQBct8F7eW1zJ/326lhO6Cm+f5Oab3x/PWUO68NL3WznuoVl8tFy/11YqVJpqHqzPsGq4NgEvAEf3tZlSSjWjDiXr2B3RC2z2RpVTltiPSH8ZFGYdfucQ2VFQTvLCB3DYDAln/7NRZQ3tGs8qf3dc5buhZHeQIgyu/3y3iQv3Pk68lOM49xmwHf1/f+FOO727deYnR0/YOjeIUQbPJyt2sf7HudzhfBf6nW3NfdUII9MT+KI08MVDC0wqt+eVcfeHq/hnwgw6lKyFsx4/4hExaxudaR272jEAyvZB3qYgRRocPr/h9ndXYLyVPGfux/baZLrmzuWRC4bw9e+PZ2CXOG55ezn/+W5zqENVql0KWoIVqMnKDbw2xpibjDE9jDGDjDEtf9ghpVS7lpNfTD+zibKUoY0uy9nFmny3PNDksKXx+w1vvv4C59jmUDHiN5CQ0ajykqLD2B3d31pogQNd/LA5j9xvn+JM+0LkhLuh44BGlzm2RxLfVvbB7FrW4vphrd1VzEPvz+XliCewRXeAs5444sE8DjQyM5F9JFAc0wO2zA5OoEFSUeXj168t5UQWcWHFNGuer/6TG1Vmp7hwuidHMaMkkFRu/S4IkQbPo19tYO7GfXyc/h5huashritMvxFK9tAjJZrXfzWaMwd35l+fr+eTFbtCHa5S7U5T1WAppVSrsn7FAsLFQ2zPsY0uq0OPYfiNkL+l5SUbAG/PXMjVuY9SENOb2FP/EpQyozOG48WOaWFDl2/ZV8rrr73AXY7X8fQ8DRl3a1DKHds9iR/8AxC/t0WNrJdTVMHNL3/Hc/aHSZFi5KI3IDKx0eX26xRLQqST5c6h1oTDnsrGBxsEVV4/N725jPi9C3nE/hSkjoBfPBqUso/tmcQn2eFWP6zNs4JSZjC88v1Wnp29mVe7ziBz58cw8c9w6XtQVQrTbwC/H5fDxqMXDmFEegJ3fbCKnTr4hVLNShMspZQCKjbMBKDLkBMbXVaf9M5sNx3w7lrZ6LKC7fv1O+k75yZibG7iL3sFHGFBKXdYjy4s9/fAvanlfNO/o6Ccx154iUd5FF+HATjPf6FRTQNrG9otnlW2vvjEAVvnBKXMxsopquDa52fzSNU/GCBbkQtegtSjH7ClNptNOLZnMh8X9wZvBexYFJRyG8Pj83PbtOUUbpjHaxGPYk/MhEumgTM8KOWP75lMWZWf3I7jrGvcAgb3eGdxNn//dA1PdP6K4/e9CSOuheP/aA3mcdoDsHkmfPcAAGEOO49NGYrPGP46fXWII1eqfdEESymlgJS989npzMAe16XRZXWICWOTLZPowvVBiCx4Vm/fh/etyxhu24Q55zkkCE3lqo3MSGSBvx+uvSvAXRq0co/WttwyHn/2GR6s+j+ITyfsyukQHhu08sMcdgZmdGKtrQ9sC30/rO15Zdww9TMeKP0Lw2ybkPNehL5nBPUc43sm80VpD4zYQ95MsLzKy3X/W4Jnzce8E/EAzrjOcMVHEJUctHOM6Z6ECCyyDbXmwwrxNAQvzNnCH99fztSkd5lc8AoMvgh+8fDPzT+PuQqGXgrfPQgbvgCga2Ikt57Ui5nr9/L9ptyQxa5Ue6MJllKq3cvJK2CQby35ncYFpTwRoSC2L8lVO6GyKChlNtaKbXvZ/fKlHC/LKDrxISKGHP0oenXpkRLFGtcQbMYX8iZz8zfl8trT9/KA559IUi/Cr/20UQMe1Gds9yRmuvtgclZARWHQy2+ohVvyuOPpN3mu4k4GOHciU1476jm+DmV8z2RKiWRv7MCQJljb88o4/9n59Nz8Kv9xPY6j8wC45kuI6RTU88RHuhiUGsd7+T0AsWqHQqDK6+euD1fx1GdL+CjpWU4tnQ5jboJzntt/QB4ROONR6DQIProJyvMBuGJsBmkJETzw+XpMCxwNUam2SBMspVS7t2bBV4SLh4SBpwStTH+nIQB4d4Z+SOs5qzZT9vIvOYmF5E+4j7gJvw76OUQEZ/poPDhCVqNjjOH173/ip1dv4q88T1X6JCKuD/6Dd7WxPZKY5xtozYcVgkEQ/H7D1O82M+2lR3nV/IUOUQ7s13wR9Jqral0TI0lPimShDLYGM6koaJLzHMrXa/cw5amv+F3hv/iL43Wk35lw5acQ3aFJzndsj2Tm7fTi6zw0JP2wdhSUc/ELC1i6aB6z4//OoIpFcNqDcOr9dTd3dUbAOVOhshC+tIapD3fauXlST1btLGLuRq3FUqo5aIKllGr3qtZ/RRUOUoc2vv9VtdjuIwHI3xi62hxjDB/N+p6Ud89hlKyl+NQnSDzxliY739AeqSz3d6cqBP2wSt1eHnjjM4Z8eQFX2b+gasSvibziHQiLbrJzDk6LZ4OzLxW2aNj4VZOdpy57Syr59YuzSfnmFv7teAZX2lAc18+ELkOb9LzjeibzbkEvMP5mrdFxe3386/N1PPnaO3xg+zOnykI48R644H9HPb9XQ4zvmYzHZ8hOGGNNKt2MNdKfrtzFL574jpG7p/FZxN9IdHiQKz+FMTccelTITgPh2N/Birdg51IAzh2eSsfYMJ6d3bKGm1eqrdIESynVrhVXVDGweA5ZcSORsJigldu7ewY7TDKVWaHpt1Hq9vLCf59l0uzz6eoowDNlGrFjr2rSc47vlcwP/v449q6EyuImPVdtS7fl8/ij93Hzxmvp5czDd+HruM58COyOJj2v027j2F6d+J7BmI1fN9tktN+s3cPdj/+Hu3fcwLn27zHH/xHH1TMgLrXJzz2hZzLfu7vjCU+C9Z81+fkAVu8s4rwnZxH7/T+ZHvY3OkcJctUMmHB70AYtqc/IzASiXHY+dw8G44ONXzfp+QCKyj3c/s4K/vnm17zu/Bd/klew95gIv54L6Q0c5XTC7yEyGb66B4whzGHn2vGZLNiSz+qdLaPZslJtmSZYSql2bdnieXSTvTgGnB3UcrsnR7NWehCZuyqo5TbE6uxcpj9yPdfvvIvKmHQibp5HRL+Tm/y8vTpEszFiqNUPa/v8Jj+f2+vjP5/MpfDFX/KXqieQjv0J/+187P3PavJzVzuxXwc+rxyMlO6B3U07auS+Eje3vzaH3W/+hhd899Al1ontqk+RSXc1eTJZbULvFBwOB6ujxljJhs/TZOdye338++ufuOfZV3my+BZucnyMfdjFyI0/NDzRaKQwh53j+6Tw8vZkTHRHWPdJk53LGMNnq3I4+dGZRK98mVlRf2aQbIaznrRGR4zpeASBx8DEP8H2eTW1q1NGdCPSZefl77c1zRtQStXQBEsp1a6VL5+ODxtdx54f1HJtNqEgdgDJVTuara+KMYaPvp6JeeFkLvO8z95eF9HhltnYEzOa5fwiQkyvCZQSgX9D09ZuLNmax1MP38PFSy5ggmMtlSf+H9E3fA3x3Zr0vAc6oW8HvjND8GNrsodvYwzvL93B//37Ef6w6UoucczCN/pGXL9dCBnBGZiloaLDHEzomczbxYPAXQTbv2+S88zfnMv5j39Bwnd/4T3n38iI8cOl78PkZyAivknOWZ+T+3dkb6mH3LSTrKTSE/w5pfYUV/Lr15by9Jsf8Dp383fHy4Slj0JumAfHXHl0E0UfcxUkdodv/g5+P3GRTs4/Jo1PVuxib0nLmMdMqbZKEyylVLvl9vrokTebrKhB2GOC30leAnMQubcvCXrZB8otqWDa03dz6rwLyXDkUjL5ZTpc+p+gzQnUUOP7pTLbNxjvus/A7w96+SWVHh6d9jXlL03mDvfT+DsOwnXzD4RP+O3+I6o1k6ToMNK7ZbDCORhWvRf0ZoLZ+eX87oXPCZt+LU+Yh0hISsH2q2+wn/4vcEUF9VwNdeqATnxU0gefI9J6z0GUW+rm99N+5O0XH+OV0pu4yvEVthFXY7tpAfQ6KajnaqgT+nTEbhO+NaPAUwabvgla2T6/4bUftnHWv79k9KZ/82n4X+kVXgi//C9c/iEkZh594XYnTLwL9q6BtdMBuHpcJlU+P28syApK/EqpummCpZRqt35cvow+sh1v76YZdS2l7zi8xkbe2qYdfezbBcvY/OjJXJT3DHuTxxB162JihgV3GPaGGtcjmZnmGFwV+4I+b9A3q7L538O3cuPaSxjt3Iz71IeJv+FLSOoR1PMcqVMHdOTN8lFQsDVo77nS4+Ppr9fx+mN38sDOqznduQz/xLsIu3EepB0TlHMcrZP6d8RnD2dV3CRY8yFUlTW6TL/f8NaiLK555E3OW3MzT7qeJqFzBnLdTDjz3xAeF4TIj05cpJNJfVJ4fHMnq5ngj68Hpdyl2ws4+6m5zPnkVT6z38G1thnYhl2G3LQIBl9wdLVWBxr4S0jpC7MfAL+PzOQoTuzbgdcXbKfS42t8+UqpOmmCpZRqt/KXfgBAt2MvbJLyB/VIZbXJxNZE/ZHyS928/tz/MfLzMxjMRvYc/yDdbv4EW2zTDEveEHGRTtwZJ+HFhlnzUVDK3FtcyWP/fZlu757KTb7XcWecQNgtiwkbe32TD3LQEOcOS+MbMwqvOGHFtEaXN3vDXu589DlOmnsBf7a/hj3zWOw3LcA28Y/gcAUh4sZJjHJxSv9OPJE/GqpKYW3jrvP63cVcOnUWuR//lQ+4gzHhWXDGo9iu+xYCtcChduGIruwu9bGt67lWn6aiHUddVl6pmzvfW8GdU9/lr4V/5QXXv0lKTISrv4Czn4TIxOAFbrNbfbFyN8Dq9wG4ZnwmeWVVfLxiV/DOo5TaT+j/Z1JKqRDw+w2pu78lK6wXYSmNaIZzCMnRYax1DSKpaHXQ+23MWbyMDY+ezGV7HqYkvh/Om+bTcdJhhm9uJqeO7Me3vuF4l70O3qqjLsfr8/PGzKV8/+gUbttxK50i/HimvEX81dMgLi2IETdOSkwYxw7owRdmDObH12smeD1SOwsr+MPLX5H/+tU8WXm31e/oojcJv/KDkNfSHejiUd2YVdGD0qh0WPifo2oaWVBWxT3TV/HUU4/wyN5f81vHdOyDz8P+u6Uw8lchafJZn0l9O5AcHcZzxeOs97rk5SMuo7o54JmPfEbvFQ/yVfifGO3aAqc9YPW1aqqBO/pNho4DrVosn5djeyTRt1MML83bqhMPK9VEGp1gichvRWS9iKwRkYdqrf+ziGwSkQ0icmpjz6OUUsG0asMGhpgNlHU/vUnP404dixMPvqxFQSkvr6SCac/dy/BPT2eo2cDu8f9H6i3f4EhpOQ/gp/TvyAe2U3C682H90Q38sHRbLk89cg+/+O5szpK5FA6/mdjbl+Ls94sgRxscl4zuxlPuMxBPGSx58YiOrfT4mPrtGt789++5Z9sVTHYsxDvudsJvWWJNGtwCkuYDHdsjie7J0TznPwdylsP6Txt8rNfn59X527jx4Rc5c9mveMb5BB2Tk+HKT5FfPt9kkwY3htNu44qx6byz2U5Bxumw4Dko2dPg4xduyeOcp+ew/JPn+Nx2G9faP8M+9BLkt8tgzG+s/lJNxWaDSXdB/mZYOQ0R4ZpxmazfXcIPW/Ka7rxKtWONSrBEZBIwGRhijBkAPBJY3x+4CBgAnAY8KyIt56sopVS7t2uh1VymaxM1D6yWOngSPiPsXfFlo8oxxvDN/IVsefQkpux5jPyEwdhvXkink37bIprJ1RbutJM0+FSyTQc83z9zRLUbeaVunnn1dRwvncxtFU9hUvpi/8084s++P2SDOjTE2O5J2DsN5HvbMZj5T0HRzsMe4/cbpi/L5oGH/sGZc87mD7Y3cXYfh/2mBThOvqdJJ9BtLJtNuPO0PkwtGEFRVAZ8ex9UlR/yGGMMszbs5crHPyDq89/yFn9ieFQunPk4jhvnQeaE5gn+KF07PpPkaBf3lJ2P8blh5n2HPWbT3hJ+9coi/vPfZ3ms4Lc86ppKXJeeyHXfwuSnITqlGSIH+vwCOg+F7x4En4ezh3YhMcrFS/O2Nc/5lWpnGvu/8m+AB4wxbgBjzN7A+snA28YYtzFmK7AJGNXIcymlVFAYY0jK+ordjlSi0wY26blG9ctksemLc9MXR13GnqJy3n7qbo798iz6yxZ2H/8Q3W75CldyRvACDbLrju/F095zcOYshRVvH3b/So+P17+cy6JHzuGmrTfRPawE95nPkHjj10jH/s0QcePYbMLdZ/TjropL8VS54aObwOetc19jDLPX7+Zf/36IHtPP5F7PY8QndoArPiL8yvchuWczR390Th3QiWMyU/hD6WWY3I3w6a11JtPGGOb8tI8bnv6AnNeu55WSX/NL5w+YcbfiuOVHGHF1i2oOWJ+oMAe/P7kPn2SHs7LrZdZgF0tfqXPfTXtLufOdZTz0xGPctPVmXnI9Qvd4O5z/EnLNV5DazAOViMCku6FwOyx7lXCnnctGd+Pb9XvYltv4QUqUUvtr7MyEvYEJInI/UAncYYxZDKQCC2rttyOw7iAicj1wPUC3bs07f4lSqn3amLWDYb5VbEy/gk5N3PwqPtLFhvjjGVM8FbN3HdKhX4OPNcbw5azZpMz5ExeznqzkcaRe9h+iEro2YcTBkZkcRfjIy1m2bCaDPr8LZ8Z4iD847iqvn6/mL8Iz+1Eu8M0Em528Y24j6ZQ/tOgaq7qM65nMxDGj+duiS/nXlhcxb1+CTH6mppaiqMLDd8tWs2veG5xY9hl323ZSGtMV/0nPEj3k4hZXE3k4IsJjU4Zy7jNl/Md/ETesfAvcJXDq/ZDYnX0lbmb/uI7NC2cwsvhrnrMvxzgdMPxKbMf9vkX1o2uoi0d1Ze7Gffxy9Yl81XE93T+5FcnbDGNvpsSZyMx1u/lxyXyit3/DTfbvSHfuwReTCsc/hm3Y5U3bFPBwep0MGRPg239Av8lcNiad577bzCvzt3Hv2QNCF5dSbZAcroOjiHwD1DUk1d3A/cAs4HfASGAa0B14ClhgjHk9UMaLwOfGmENOmDFixAizZEnTzxcTau6qKooK9lGav4fygj14ygrwlBfjrSzBX1mCcZdi85Tg9Jbh8JZj97ux+T3Y/B7s/ipsxovd78FhPDjwYDcNG2rVJ3Z82PHiwC92fOLEJw78Ngd+mxMjDozNgbE5MTantc4eZv2HYHfV/IgjDHG4Aj9h2J0ubM4w7I4w67czHIfThd0ZhtMVjsNl/Xa6wnGGheFwhiOOQHk2R4vsX6DattnvPMXEtX8h96LPSO7b9BO1fjp/Bad+OYm8AVfR6cJ/N+iYLbv2subNuzmt5H0qbZFUnvAPUsZf1arul5JKD7c8NY3HS/+AMyqe8LMfQXqfjhFhy87drJ//KZHr3mW8fwmIkNf7QjqdcXerfPCu5vX5uf3dFcSsepW/O1/FLw6yowZS4HURWb6LPpKNTQz5cf2JPeH3OAaeC/bGftcZWutyirnx9aUcX/gBdzvfxImXPEmgyi90pACbGCrCknGOvBLHyGshrs7vW1uNSo+Pv3+yho8WbeRvrteZYpsJQIGJJhI3YeIBwJM6Guexv4G+Z7Wca7xvAzw3DgacA+f9l99PW84Xa3Yz+46JdIht3jnz2jVjwO8DvxeMD6+niiqPB5/Pi9/rxe/z4PN68Pt9+H0e/H6D34DP78dvBJ/fYIzBbwyIIAgIgCACgiDWC+u1zQZis35jA5sNERvY7IjYsNnsiN2GTeyB14LNZsdus9dss9vs2MQq324TbCLYxPqipb0SkaXGmBF1bmvMCDIi8gXwoDFmVmB5MzAG+BWAMeZfgfVfAvcaY344VHmtOcEyxlBUWEBezlZK927Hnb8DX9FO7KU5OCtycVUVEuUrJM5fTByl2KT+z91vhHIJp4IIKiSCKnHhszkDCVEg8QkkQP7qJAWpFUutuGqtFHw4jBeb34sYK2ETvxeb8VrJm7Fe240Pu/HgwIsTL07jwYkXFx7sh4j7aPgRrDTRiQcHXrFe+8SBV5xWBOLAKy6M2BARjNis9ys262FTbBis9QbBUGtdzbJgsGECfwik5o+SqfmUrHXWJyn73RfWZKk1n7CxSjW1PuHa+1dvs9aZmnVU729+Pq56ndSsqrVfzTnNQc1u5ID9qrfX+lfw835m/2Wz3/GB85s6jtvv/dW9vUH/Gkz1OzQHrj6AHGZ7TbQNOeUhpfj2gNhI+evmZqk1KK/yMuv+sznRtozwO9ZAVFK9+5ZVevjq/RcY9dOjpEoum1LPpfvFj2CLTm7yOJvCrsIK/vXi29xW9ADdbbupJIwyIog3RdjFUGSLp7j3eaSd/nukFSdWtRljmLEqh2/mzmNs3gf09W8ixu7BRHcisvtYOo6Zgq1jw2syW4NKj493l2Szct06BuR/Q3fZRYcoBwlpfekw5GSky/CWk2QEydLt+cxYuRtvzmqGViwgw1VIl5QkOnQfgq3XSRATuukSDmn2gzD7n3Duf9iaehanPj6Hk/t35JlLWsaQ+C2G3wfuYqtWNvBTVVZIeUkh7rJCqsqL8VUUWV+MV5ZgPBUYTwXirUR8buy+Shx+N3Z/FU7jxul34zJVuKjCTvAnYW8OPiP4seEPPFsd8nXgOcxaZ6tZb+TA5erntVrbavb5+fWXUWdx9sW/oVfHmFB/DDWaMsG6AehijLlHRHoD3wLdgP7Am1j9rroE1vcy5tBVLS09wfJ6qti1/Sdys9ZTuWcTUrCFiNIsEip3kOjLJUYOHoa5gBgKbYlUOONxuxLwhidgwpOQ6GQcMcm4YlIIi0kkIjqOyJgEoqLjcEXEtLimIsYYvH5DVZWHKnclnqpKPFVuqqoq8VZV4vW48VW58Va58Xkr8VW58Xnd+D1V+L1u/N4qjMeN8VZhfFXgc1vDNwdq5cRXXTtXXVPnwWY8VqLn92A3VYGExV+T4IjxBxILP7ZAomQLrBeodatX37r+QIJRk7YEfgvUsW7//aTWvtby/scTSOL2L4da5XDg/tX7St3bjfWdVK3y6zn+wNhqijs45ppy5eBU6uDtByYyB8Zbf6JT+y1VJ7N17rff0uH/FtUd0YEOfEcHHyAY3P3OY+hZNx32nMHy+idfcdGSKeRnnkmHK/930Gfi9nj57qvpdFnyAAPNRnLCMok49wni+x7fbDE2lSqvn4+Wbadi+Qd0KF5FjN1LdEoaqYMnkTzgxDb34K1Ui+bzwqtnWaM/XjWDJ9fH8O+vf+Llq0YyqW/LG8ExaNwl1siPpXugPA9TnkdVSS4VhXvxlObhL8tFKgpwuAsI9xQS7isNPFscWomJoIxwKowLNy484sJjC8MrLry2MLy2MHz2MHy2MPz2cIzDBTYXdocDmz3w43BiszsQmwPEDnYHYrODzfotNjs2oabW6OfXBlPzPaqp9X2q/+fvZY3B4Ad/4BnK70fwg/GD8Vm//QZj/OD3WUP3B9abwDZr2WeVZfxIzbZAOTXl+QPPZtWvf96/Zh0msM1nPR+Yn+Opfs4T44ea5zmDGB9fRp3NmRffSM8O7SPBcgEvAUOBKqw+WDMD2+4GrgG8wK3GmM8PV15LS7DWL/qGgpWfE5a/ng4VW+jo34NTfs4RK4yLHHtnisJSqYrugsSl4kxIIyKpK7Ed0knsnE54ROvqQ6CUahqVHh9vPXwTV1e9RU6vS+h89t8wUR3YtWMbG+a9T+eNb9HPbCbPlkTJ2DvJOOFXmngopZpGyR548STwVFB16Yf84u18Css9fHjjsXRNbLmjV9bJU2FN/Fy803pfJTn4S3bjLtiFtygHKd1NWOU+nL665yIsN2EUEE2BiaHARFNIDOWOOCqd8fhcsUh4LLaIWJwRcbii4giPTiA8Oo6wqDgio2OJDg8jJtxBdLiDKJcDu639Nplrb5oswQq2lpZg/fDCLYze8So77F3YF9GdqrgeOFJ6Epfai+Ru/Ujo0DXQnlUppQ5vR34Zc5+7kYs90wHwYMeJ9aVNtqMb7mHX0uPk65EWPDy3UqqNyN1o1WR5ytl58nOc/omDjrHhvHfDscRFhnAwjgN5KqAwGwqzrFEQC7PwF2bhzdsORVm4KvYddEiZCWOviWcvCewz8ewxCRTaE/FEdMAflYIzJoWwuA5ExaeQGB9HSnQ4HWLDSIkOIy7CiU2TJNUAmmAdpaL8XFxhYUREtZzqSKVU61bp8fH17Fn4N88iwZ9PeEIaXYedTOc+I1vVABZKqTagMAveuAD2rSen92Wcs2Y8ccldeP7yEWQkN1MLnKpyKNo/gaIwC1/+dkxhNo4DEigPDnaZJLL9yewwKew0yeySDniiOuOM60xYQhpJSYl0jougc3w4XQK/Y8NbUNKo2gRNsJRSSiml1MGqyuGbe2Hxf/HZw5nmPY6POY4zTjmdi0en47A3oqWOMVBZaNVAFe0I/GTV1Ej5C7Owlefud4gHJ7tIJsuXxA6TEvhJptDVGYnvRnRyKmlJMaQnRdIt0frpHBfeuDiVOgqaYCmllFJKqfrlboTZD2DWfoz4q8g1saxz9CMqtT9p3fuT0ikNcUWBM9IaiMvrBm+l9bs8H8pzoWwflAV+F+3EFGUjVaX7ncYjLvbZUtjuT2arJ6kmgdphUqiMSiUmKZVuydFkJEeRnhRJemIU3RIjW1azRaXQBEsppZRSSjVERQFm3afkrPgGs2MxHby79xvg61A84qLYHk8BsezwJbLVk8gOk8ROk8Iuk8ROk4wzpgPpyVFkJkeRnhRFRlIk6UlWMhUVpgP7qNbjUAmW/ktWSimllFKWiARk+OV0GX45ADvzS1i0fCVZO7LZnZtHeWkJpW4PlcaJ2zhx46KQKModiTjDo4mLdJEU7aJzXARd4sPpERfB+EBfqG6JkUS47CF+g0o1PU2wlFJKKaVUnVITYzj3hHH7rfP7DX5jrCmSArM2uhzaB0qpappgKaWUUkqpBrPZBNshJptXqr3TrxuUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCpEUN0y4i+4DtoY7jAMlA7mH3Um2FXu/2Q691+6HXun3R691+6LVuP1ritU43xqTUtaFFJVgtkYgsqW+Me9X26PVuP/Ratx96rdsXvd7th17r9qO1XWttIqiUUkoppZRSQaIJllJKKaWUUkoFiSZYh/d8qANQzUqvd/uh17r90Gvdvuj1bj/0Wrcfrepaax8spZRSSimllAoSrcFSSimllFJKqSDRBEsppZRSSimlgkQTrEMQkdNEZIOIbBKRP4U6HhU8ItJVRGaJyFoRWSMitwTWJ4rI1yKyMfA7IdSxquAQEbuI/CginwaWM0VkYeD+niYirlDHqIJDROJF5D0RWS8i60RkrN7bbZOI3Bb4G75aRN4SkXC9t9sOEXlJRPaKyOpa6+q8l8XyZOC6rxSR4aGLXB2peq71w4G/4ytF5EMRia+17c+Ba71BRE4NSdCHoAlWPUTEDjwDnA70By4Wkf6hjUoFkRe43RjTHxgD3BS4vn8CvjXG9AK+DSyrtuEWYF2t5QeBx4wxPYEC4NqQRKWawhPAF8aYvsAQrOuu93YbIyKpwO+AEcaYgYAduAi9t9uSV4DTDlhX3718OtAr8HM98FwzxaiC4xUOvtZfAwONMYOBn4A/AwSe1y4CBgSOeTbw3N5iaIJVv1HAJmPMFmNMFfA2MDnEMakgMcbkGGOWBV6XYD2ApWJd41cDu70KnBOSAFVQiUgacAbw38CyACcA7wV20WvdRohIHHAc8CKAMabKGFOI3tttlQOIEBEHEAnkoPd2m2GMmQPkH7C6vnt5MvA/Y1kAxItI52YJVDVaXdfaGPOVMcYbWFwApAVeTwbeNsa4jTFbgU1Yz+0thiZY9UsFsmst7wisU22MiGQAw4CFQEdjTE5g026gY6jiUkH1OHAn4A8sJwGFtf5w6/3ddmQC+4CXA01C/ysiUei93eYYY3YCjwBZWIlVEbAUvbfbuvruZX1ua9uuAT4PvG7x11oTLNWuiUg08D5wqzGmuPY2Y81hoPMYtHIiciaw1xizNNSxqGbhAIYDzxljhgFlHNAcUO/ttiHQ92YyVlLdBYji4CZGqg3Te7l9EJG7sbp2vBHqWBpKE6z67QS61lpOC6xTbYSIOLGSqzeMMR8EVu+pblIQ+L03VPGpoBkHnC0i27Ca+p6A1UcnPtCsCPT+bkt2ADuMMQsDy+9hJVx6b7c9JwFbjTH7jDEe4AOs+13v7batvntZn9vaIBG5CjgTuNT8PHlvi7/WmmDVbzHQKzAakQurM93HIY5JBUmgD86LwDpjzL9rbfoYuDLw+krgo+aOTQWXMebPxpg0Y0wG1n080xhzKTALOD+wm17rNsIYsxvIFpE+gVUnAmvRe7stygLGiEhk4G969bXWe7ttq+9e/hi4IjCa4BigqFZTQtUKichpWM37zzbGlNfa9DFwkYiEiUgm1sAmi0IRY33k52RQHUhEfoHVd8MOvGSMuT+0EalgEZHxwFxgFT/3y7kLqx/WO0A3YDtwoTHmwA62qpUSkYnAHcaYM0WkO1aNViLwI3CZMcYdwvBUkIjIUKwBTVzAFuBqrC8U9d5uY0Tk78AUrOZDPwK/wuqLofd2GyAibwETgWRgD/A3YDp13MuBJPtprGai5cDVxpglIQhbHYV6rvWfgTAgL7DbAmPMDYH978bql+XF6ubx+YFlhpImWEoppZRSSikVJNpEUCmllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkj+H91Xp9ug6diJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
42True40.05080.0136bAP.soma.v0.005316.02e-07
43True40.05080.0136Step1.soma.v0.05452.2e-07
44True40.05080.0136Step3.soma.v0.06168.56e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "42 True 4 0.0508 0.0136 bAP.soma.v \n", + "43 True 4 0.0508 0.0136 Step1.soma.v \n", + "44 True 4 0.0508 0.0136 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "42 0.00531 6.02e-07 \n", + "43 0.0545 2.2e-07 \n", + "44 0.0616 8.56e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgy0lEQVR4nOzdeXxU9b3/8ddnJiskYUnCjoBWkFVUQKzg1talda1WtO5e69XWVq1Laxelvdf767W2ti63ttbWVi1i3fddVFo3QEQFF9CwLyFAQkK2mfn8/jiHGEI2zITJ8n76yIMz53zP93zOOZlxPvkux9wdERERERERabtIqgMQERERERHpKpRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhHpIMxsuJm5maWlOpauzszONbO5qY6jozGz6Wb2UarjEBHpzJRgiYhIp2ZmM82s1szK6/1cneq4OiN3f83dRyW73vAPBxX17s+fk30MEZGOQn8lFRFJEjNLc/dYquPopma7+5mpDqK9dJHfrX3dfWmqgxARaW9qwRIRaQMzKzKzH5nZIqDCzNLMbKqZ/dvMtpjZu2Z2WL3yc8zs/5nZW2ZWZmaPmlnfJuo+z8yWmNlWM/vUzP6zwfYTzGxhWM8yMzs6XN/LzO40s7VmttrM/tvMoi2cx15m9pKZlZjZRjO718x619u2ycz2D18PMrPi7edlZseb2Qfh+c4xs9ENrs+VZrbIzErNbLaZZe36ld51Zvbj8LpsNbPFZnZSE+XMzG4ysw3htXzPzMaF2zLN7EYzW2Fm683sdjPLbuXx7wrLPx/G8IqZDau3/fdmtjI85nwzm15v20wze8DM7jGzMuBcM5tiZq+H13mtmd1qZhn19nEz+66ZfRIe77/Ce/fv8Bj31y/fRMyHmdmq1pyfiIg0TgmWiEjbnQ58A+gN9AeeBP4b6AtcCTxoZoX1yp8NnA8MBGLAzU3UuwE4FsgDzgNuqpfkTAH+DlwVHvcQoCjc766w3i8B+wFHAhe0cA4G/D9gEDAaGArMBHD3ZcCPgHvMrAfwV+Bv7j7HzEYCs4DLgELgKeDxBl/kTwWOBkYAE4BzGw3AbFqYPDT1M62Fc2hoGTAd6AX8Iox/YCPljiS4fiPDsqcCJeG2X4XrJxJcz8HAtbsQwxnAfwEFwELg3nrb3g7r7Qv8A/hng+TzBOABgvt7LxAHLg/rOgj4CvDdBsc7CjgAmApcDfwJOJPgfo4j+F39wsJEuan7838t7P6qma0zs4fMbHhb4hAR6ciUYImItN3N7r7S3SsJvsw+5e5PuXvC3Z8H5gFfr1f+bnd/390rgJ8DpzbWwuTuT7r7Mg+8AjxHkDAA/AfwF3d/PjzOanf/0Mz6h8e6zN0r3H0DcBNwWnMn4O5Lw7qq3b0Y+C1waL3tdwBLgTcJEsOfhptmAE+G+9YCNwLZwJcbXJ817r4JeJwgqWgshrnu3ruZn+YmpTi1wZf9Qe7+z/C4CXefDXwCTGlk31ogF9gHMHdf4u5rzcyAC4HL3X2Tu28F/qela9nAk+7+qrtXE1yzg8xsaHi+97h7ibvH3P03QCZQf/zT6+7+SBh/pbvPd/c3wvJFwB+pd49CN7h7mbt/ALwPPOfun7p7KfA0QcL9hbn7hGbuT8Nkr75DgeEE13gN8IRpMhcR6aL04SYi0nYr6y0PA75lZsfVW5cOvNxE+eXh9oKGlZrZMcB1BC0oEaAH8F64eShBa1FDw8L61gb5AYT7rmykbP1j9Qd+T5DA5Yb7bG5Q7A7gMeDCMGGAoMVr+fYC7p4ws5UELT3brau3vC3cJ9nubzgGy8zOBn5I8MUeIIdGrrO7v2RmtwK3AcPM7CGClscsgms+v961NKDZ7pYN1F13dy83s00E57/SzK4kSJQHAU7QUlnQ2L7h+YwkSHwnhXGlAfMbHG99veXKRl4P2IXYk8bdXw0Xa8zsUqCMoKX0vab3EhHpnNSCJSLSdl5veSVBC1X9v+z3dPdf1SsztN7yHgQtKBvrV2hmmcCDBC1C/d29N0FCtf2b/kpgr0ZiWQlUAwX1jp/n7mNbOIf/Cc9jvLvnEbTEfZ5VmOUAvwPuBGba5+PG1hAkddvLWXh+q1s43k4smCK8vJmf6S3XUlfXMIKE8BIgP7x+79c/p/rc/WZ3PwAYQ5DQXkVwTyqBsfWuZS93z9mF06q71+E17AusCc/laoLuiH3C+EobxFf/9wrgD8CHwN7hPfpJU+fTXiwYa9fU/bl9F6pydnPsIiK7ixIsEZHkugc4zsyOMrOomWWFEwcMqVfmTDMbE45n+iXwgLvHG9STQdBlrBiIha1ZR9bbfidwnpl9xcwiZjbYzPZx97UEXQl/Y2Z54ba9zKxhV7KGcoFyoNTMBhMkGPX9Hpjn7hcQjDHb/mX6fuAbYRzpwBUECd6/W7pQDYVThOc08/PaLlTXk+BLfDEEE4YQjEHaiZlNNrMDw/grgCog4e4JgiTtJjPrF5YdbGZH1dvXrd4kJo34eji2LINgLNYb7r6S4HrHwvjSzOxaghas5uQStPyUm9k+wMUtlE86dx/bzP25qLF9zGysmU0M3w85wG8IEvAluzV4EZHdRAmWiEgShV+eTyBoXSgmaFG6ih0/b+8mmIhiHUE3tB80Us/WcP39BF31vk3QPW/79rcIJ74gaPl4hc9bks4mSNAWh/s+QDBuqjm/APYP63oSeGj7BjM7gWCSiu1f6H8I7G9mZ7j7RwStXbcQtPgcBxzn7jUtHK9duftigi/yrxN0kxsP/KuJ4nkEidRmgu6OJcCvw20/Ihh79oYFs/m9QDhOKhxLtZXmu7n9g6Cb5yaCySe2d2N8FngG+Dg8ZhUtdOMk6Lb47fCYdwCzWyjfUfQniLUM+JSgy+ax4Zg9EZEux9wb9kAQEZH2YmZzgHvcXQ9a7eTM7EyC7oPXNLH9LmCVu/9stwYmIiIppUkuREREvgB3vyfVMYiISMejLoIiIt2EBQ+9bevkBNLJmdlPmvg9eDrVsYmIdAXqIigiIiIiIpIkasESERERERFJkg41BqugoMCHDx+e6jBERERERESaNX/+/I3uXthwfYdKsIYPH868efNSHYaIiIiIiEizzGx5Y+vVRVBERERERCRJlGCJiIiIiIgkiRIsERERERGRJOlQY7AaU1tby6pVq6iqqkp1KNIBZGVlMWTIENLT01MdinRBNz6+gLzadVz4za+nOhQRERHppDp8grVq1Spyc3MZPnw4ZpbqcCSF3J2SkhJWrVrFiBEjUh2OdDHxhNP/zes5K+0FKqYvomfhsFSHJCIiIp1Qh+8iWFVVRX5+vpIrwczIz89Xa6a0i5KKaoZacbD86h0pjkZEREQ6qw6fYAFKrqSOfhekvdTEElSSAUBk1VspjkZEREQ6q06RYImItLeaWIJ8KwMgb+vSFEcjIiIinZUSrFYwM6644oq61zfeeCMzZ85MXUD1HHbYYc0+nPnEE09k6tSpO6ybOXMmgwcPZuLEiYwbN47HHnusvcMU6fBq4gnyCROsWAlUbk5xRCIiItIZKcFqhczMTB566CE2btyY1HrdnUQikdQ669uyZQvz58+ntLSUTz/9dIdtl19+OQsXLuSf//wn559/frvGIdIZ1MacAitlNf2CFcUfpzYgERER6ZSUYLVCWloaF154ITfddNNO24qLizn55JOZPHkykydP5l//+hcQtBLdeOONdeXGjRtHUVERRUVFjBo1irPPPptx48axcuVKrrrqKsaNG8f48eOZPXs2AHPmzOGwww7jlFNOYZ999uGMM87A3RuN7+67765rjXrrrc/Hjjz00EMcd9xxnHbaadx3332N7jt69GjS0tJ2SB5//OMfM2bMGCZMmMCVV14JQFFREUcccQQTJkzgK1/5CitWrADg3HPP5eKLL2bq1KnsueeezJkzh/PPP5/Ro0dz7rnn1tV58cUXM2nSJMaOHct11123UxylpaUMGzasLtGrqKhg6NCh1NbWNhq3SLLV1lTSy7axosdYACrWL0txRCIiItIZdfhp2uv7xeMfsHhNWVLrHDMoj+uOG9tiue9973tMmDCBq6++eof1l156KZdffjnTpk1jxYoVHHXUUSxZsqTZuj755BP+9re/MXXqVB588EEWLlzIu+++y8aNG5k8eTKHHHIIAO+88w4ffPABgwYN4uCDD+Zf//oX06ZN26m+bdu2sXDhQl599VXOP/983n//fQBmzZrFtddeS//+/Tn55JP5yU9+stO+b775JpFIhMLCQgBKSkp4+OGH+fDDDzEztmzZAsD3v/99zjnnHM455xz+8pe/8IMf/IBHHnkEgM2bN/P666/z2GOPcfzxx/Ovf/2LP//5z0yePJmFCxcyceJErr/+evr27Us8HucrX/kKixYtYsKECXVx9OrVi4kTJ/LKK69w+OGH88QTT3DUUUfpeVey28QrSgDY2nc8bHuZres/o2eKYxIREZHORy1YrZSXl8fZZ5/NzTffvMP6F154gUsuuYSJEydy/PHHU1ZWRnl5ebN1DRs2rG5c1Ny5czn99NOJRqP079+fQw89lLfffhuAKVOmMGTIECKRCBMnTqSoqKjR+k4//XQADjnkEMrKytiyZQvr16/nk08+Ydq0aYwcOZL09PS6xAvgpptuYuLEiVx55ZXMnj27bna+Xr16kZWVxX/8x3/w0EMP0aNHDwBef/11vv3tbwNw1llnMXfu3Lq6jjvuOMyM8ePH079/f8aPH08kEmHs2LF1Md9///3sv//+7LfffnzwwQcsXrx4p/OYMWNGXQvefffdx4wZM5q9jiLJFK/eBkCPPv0o8VxqS4pSG5CIiIh0Sp2qBas1LU3t6bLLLmP//ffnvPPOq1uXSCR44403yMrK2qFsWlraDuOa6j+7qWfP1v1dPDMzs245Go0Si8UaLddw6nIz4/7772fz5s11D+QtKytj1qxZXH/99UAwBmt797+Gcb/11lu8+OKLPPDAA9x666289NJLrYozEonsEHMkEiEWi/HZZ59x44038vbbb9OnTx/OPffcRp9ldfzxx/OTn/yETZs2MX/+fI444ohmjyuSTPHaGgAK8nJZ5YX0LV2V4ohERESkM1IL1i7o27cvp556KnfeeWfduiOPPJJbbrml7vXChQsBGD58OAsWLABgwYIFfPbZZ43WOX36dGbPnk08Hqe4uJhXX32VKVOm7FJc21t95s6dS69evejVqxezZs3imWeeqRv3NX/+/CbHYdVXXl5OaWkpX//617npppt49913Afjyl79ct/+9997L9OnTWx1fWVkZPXv2pFevXqxfv56nn3660XI5OTlMnjyZSy+9lGOPPZZoNNrqY4i0Vbw2SPpzc3qy3grJrlCCJSIiIruuzQmWmQ01s5fNbLGZfWBml4brZ5rZajNbGP58ve3hpt4VV1yxw4QQN998M/PmzWPChAmMGTOG22+/HYCTTz6ZTZs2MXbsWG699VZGjhzZaH0nnXQSEyZMYN999+WII47ghhtuYMCAAbsUU1ZWFvvttx8XXXQRd955J0VFRSxfvnyH6dlHjBhBr169ePPNNxut4+tf/zpr1qxh69atHHvssUyYMIFp06bx29/+FoBbbrmFv/71r0yYMIG7776b3//+962Ob99992W//fZjn3324dvf/jYHH3xw3bZrr712h2niZ8yYwT333KPugbLbJWqrAYimZ7I1cyC5NeuhiYllRERERJpiTc1M1+oKzAYCA919gZnlAvOBE4FTgXJ3v7G5/eubNGmSN3ym05IlSxg9enSbYpSuRb8T0h5efPZhvvL6uWz85j95ds4czth0G1y5FHIKUx2aiIiIdEBmNt/dJzVc3+YWLHdf6+4LwuWtwBJgcFvrFRHZneq3YNFraLByy4oURiQiIiKdUVLHYJnZcGA/YHs/tEvMbJGZ/cXM+iTzWCIiyRQPE6z0jCzSC4YDsG1j42MnRURERJqStATLzHKAB4HL3L0M+AOwFzARWAv8pon9LjSzeWY2r7i4OFnhiIjsEo8FCVZaRhY5/fcEoHydEiwRERHZNUlJsMwsnSC5utfdHwJw9/XuHnf3BHAH0OjUeO7+J3ef5O6Ttj/sVkRkd/NYME17ekYm/QsL2erZVG9SF0ERERHZNcmYRdCAO4El7v7beusH1it2EvB+w31FRDqMeJBgRdMzGdgrm7XeFy9dneKgREREpLNJxoOGDwbOAt4zs4Xhup8Ap5vZRMCBIuA/k3AsEZF2sb2LINEM+uVkspS+7F2+NrVBiYiISKeTjFkE57q7ufsEd58Y/jzl7me5+/hw/fHu3qm/qTzyyCOYGR9++GGTZYqKihg3blzSjnnuuefywAMPNLn9sssuY/DgwSQSibp1d911F4WFhUycOJExY8Zwxx13JC0ekS4t7CJIWiZp0Qhb0vrRo3p9amMSERGRTiepswh2ZbNmzWLatGnMmjWr0e2xWKzNx4jH460um0gkePjhhxk6dCivvPLKDttmzJjBwoULmTNnDj/5yU9Yv15fEkVaFP+8BQugMnsAubFNnydeIiIiIq2gBKsVysvLmTt3LnfeeSf33Xdf3fo5c+Ywffp0jj/+eMaMGQMEidYZZ5zB6NGjOeWUU9i2bRsAL774Ivvttx/jx4/n/PPPp7o6+DI3fPhwfvSjH7H//vvzz3/+c6djv/DCC0yaNImRI0fyxBNP7HDssWPHcvHFFzeZ9PXr14+99tqL5cuX1627+eabGTNmDBMmTOC0004DYNOmTZx44olMmDCBqVOnsmjRIgBmzpzJOeecw/Tp0xk2bBgPPfQQV199NePHj+foo4+mtrYWgF/+8pdMnjyZcePGceGFF9Lw4dWJRILhw4ezZcuWunV77723Ej/pWMIxWNsTrFjOICI4lK9LYVAiIiLS2SRjDNbu8/SPYd17ya1zwHg45lfNFnn00Uc5+uijGTlyJPn5+cyfP58DDjgAgAULFvD+++8zYsQIioqK+Oijj7jzzjs5+OCDOf/88/m///s/LrnkEs4991xefPFFRo4cydlnn80f/vAHLrvsMgDy8/NZsGBBo8cuKirirbfeYtmyZRx++OEsXbqUrKwsZs2axemnn84JJ5zAT37yE2pra0lPT99h308//ZRPP/2UL33pS3XrfvWrX/HZZ5+RmZlZl/Bcd9117LfffjzyyCO89NJLnH322SxcuBCAZcuW8fLLL7N48WIOOuggHnzwQW644QZOOukknnzySU488UQuueQSrr32WgDOOussnnjiCY477ri6Y0YiEU444QQefvhhzjvvPN58802GDRtG//79W32bRNpdPPiDwfYEK9prMKyHxJZVRHrvkcLAREREpDNRC1YrzJo1q66157TTTtuhxWjKlCmMGDGi7vXQoUM5+OCDATjzzDOZO3cuH330ESNGjGDkyJEAnHPOObz66qt1+8yYMaPJY5966qlEIhH23ntv9txzTz788ENqamp46qmnOPHEE8nLy+PAAw/k2Wefrdtn9uzZTJw4kdNPP50//vGP9O3bt27bhAkTOOOMM7jnnntISwvy67lz53LWWWcBcMQRR1BSUkJZWRkAxxxzDOnp6YwfP554PM7RRx8NwPjx4ykqKgLg5Zdf5sADD2T8+PG89NJLfPDBBzudx4wZM5g9ezYA9913X7PnLJIKkXg1MaIQCT4Ws/KHAFBerKnaRUREpPU6VwtWCy1N7WHTpk289NJLvPfee5gZ8XgcM+PXv/41AD179tyhfDBrfdOvG9Owjpbqe/bZZ9myZQvjx48HYNu2bWRnZ3PssccCQTJz6623Nlrfk08+yauvvsrjjz/O9ddfz3vvNd8imJmZCQStUOnp6XXxRCIRYrEYVVVVfPe732XevHkMHTqUmTNnUlVVtVM9Bx10EEuXLqW4uJhHHnmEn/3sZ80eV2R3s0QttaTXfSjm9g/+cFJRXERe6sISERGRTkYtWC144IEHOOuss1i+fDlFRUWsXLmSESNG8NprrzVafsWKFbz++usA/OMf/2DatGmMGjWKoqIili5dCsDdd9/NoYce2qrj//Of/ySRSLBs2TI+/fRTRo0axaxZs/jzn/9MUVERRUVFfPbZZzz//PN1472akkgkWLlyJYcffjj/+7//S2lpKeXl5UyfPp17770XCMZ2FRQUkJfXuq+U25OpgoICysvLm5z10Mw46aST+OEPf8jo0aPJz89vVf0iu4vFa4jZ591sP3/Y8KoURiUiIiKdjRKsFsyaNYuTTjpph3Unn3xykxNLjBo1ittuu43Ro0ezefNmLr74YrKysvjrX//Kt771LcaPH08kEuGiiy5q1fH32GMPpkyZwjHHHMPtt99OIpHgmWee4Rvf+EZdmZ49ezJt2jQef/zxRuu44IILmDdvHvF4nDPPPJPx48ez33778YMf/IDevXszc+ZM5s+fz4QJE/jxj3/M3/72t1ZeHejduzff+c53GDduHEcddRSTJ0+u23b77bdz++23172eMWMG99xzj7oHSocUTeyYYA3qHTxsGD1sWERERHaBNZzxLZUmTZrk8+bN22HdkiVLGD16dIoiko5IvxPSHl78f99kQux9Cn/+MQDuztzrDmGv3FoGXfVGiqMTERGRjsbM5rv7pIbr1YIlIgJEE7XE7fNhqWZGWUY/elbpcQIiIiLSekqwRESAiNcSj2TssK4qewC58c162LCIiIi0WqdIsDpSN0ZJLf0uSHtJS9SQiOz4LLl4rh42LCIiIrumwydYWVlZlJSU6Iu14O6UlJSQlZWV6lCkC4p6LQnbsQUr2jt4FlZs88pUhCQiIiKdUId/DtaQIUNYtWoVxcXFqQ5FOoCsrCyGDBmS6jCkC0rzWuLRHZP37PyhAJSuX07+iINTEZaIiIh0Mh0+wUpPT2fEiBGpDkNEurg0r8UjOz7/LW/AcAAqipejJ7eJiIhIa3T4LoIiIrtDGjESDSa5GBA+bLh2sx42LCIiIq3T7gmWmR1tZh+Z2VIz+3F7H09EZFe5O+lei0d3nORiYK/gYcNWpocNi4iISOu0a4JlZlHgNuAYYAxwupmNac9jiojsqpp4gnRiEN2xBatnZhobIwVkbNMsgiIiItI67d2CNQVY6u6funsNcB9wQjsfU0Rkl9TEEmRYDG/QRRBga0Y/cqr1sGERERFpnfZOsAYD9ec3XhWuq2NmF5rZPDObp5kCRSQVamIJMqiFtJ0TrKrsAeTpYcMiIiLSSimf5MLd/+Tuk9x9UmFhYarDEZFuqCaeIIMYRDN32pbICx82vHVtCiITERGRzqa9E6zVwNB6r4eE60REOozamAcJViMtWNsfNly1SQ8bFhERkZa1d4L1NrC3mY0wswzgNOCxdj6miMguqYnHSSeGNZJg9SjYA4At64p2c1QiIiLSGbXrg4bdPWZmlwDPAlHgL+7+QXseU0RkV1XX1JJmCSy6c4LVu/9wALZtXLGboxIREZHOqF0TLAB3fwp4qr2PIyLyRdXWVAEQSd95DFb/fv3Y6tnE1UVQREREWiHlk1yIiKRarKYagEhaIwlWXharvYBomVqwREREpGVKsESk24uFLVjWSIKVkRZhfXQA2ds0P4+IiIi0TAmWiHR78dqwBauRLoIApVmD6FOzFtx3Z1giIiLSCSnBEpFub3sLVrSJBKu652CyvAq2lezOsERERKQTUoIlIt3e9kku0jOyGt2e6DUMAN+8fLfFJCIiIp2TEiwR6fZqq4MugmkZjbdgpReMAKBi/bLdFpOIiIh0TkqwRKTbi9U234KV239PQAmWiIiItEwJloh0e7FwkouMzOxGtxcWFrLZc6gpURdBERERaZ4SLBHp9rbPIpjeRBfBwb2zWemFRLYowRIREZHmKcESkW7Pw0kumpqmvSAng7XWj8yKVbszLBEREemElGCJSLcXjwUtWEQzGt1uZpRmDqJX9VpIJHZjZCIiItLZKMESkW4vUVsTLEQbb8ECqM4ZQrrXQvn63RSViIiIdEZKsESk27NYRbCQ0aPpMr33AMA1DktERESaoQRLRLq9aO22YCGjZ5NlsvoFU7VvW//p7ghJREREOiklWCLS7UVjYYKV3nSClTfwSwBsXadnYYmIiEjT2pRgmdmvzexDM1tkZg+bWe9w/XAzqzSzheHP7UmJVkSkHURj26glHdIan+QCYHBhH9Z5H2IblWCJiIhI09ragvU8MM7dJwAfA9fU27bM3SeGPxe18TgiIu0mLV5JdSSr2TJD+/ZghffTs7BERESkWW1KsNz9OXePhS/fAIa0PSQRkd0rI76NGstutkxeVjrrIgPouU3PwhIREZGmJXMM1vnA0/VejzCzd8zsFTOb3tROZnahmc0zs3nFxcVJDEdEpHUyEpXURJtPsAC2Zg8mt7YYaqt2Q1QiIiLSGbWYYJnZC2b2fiM/J9Qr81MgBtwbrloL7OHu+wE/BP5hZnmN1e/uf3L3Se4+qbCwsO1nJCKyi1qbYNXmDSOCQ+nK3RCViIiIdEZpLRVw9682t93MzgWOBb7i7h7uUw1Uh8vzzWwZMBKY19aARUSSLcsribciwYr0HQHrIVHyKZGCvXdDZCIiItLZtHUWwaOBq4Hj3X1bvfWFZhYNl/cE9gb08BgR6ZAyvYpYWtMPGd4ue0AwVXv5uqXtHZKIiIh0Ui22YLXgViATeN7MAN4IZww8BPilmdUCCeAid9/UxmOJiCRdTSxBtlcRa+YZWNsV9h9CpWewbf0yGu3zLCIiIt1emxIsd/9SE+sfBB5sS90iIrvD1qpaeloVpRk5LZYdmt+TFd6P3E2f7YbIREREpDNK5iyCIiKdTllVjB5UE8lsuYvg4N7ZrPD+ZJSt2A2RiYiISGekBEtEurWt27aRa5VEsnq3WDYrPcrG9IHkVq2GYE4fERERkR0owRKRbq1ySwkAkZyCVpXf1nMImYlKqNBz+0RERGRnSrBEpFurKtsAQHpe657Dl+g1PFjYXNQ+AYmIiEinpgRLRLq1qtIgwerZZ0CryqcXjAAgVqInT4iIiMjOlGCJSLdWUxZ09cvp069V5XMGhs/CWqtnYYmIiMjO2vocLBGRTi1RsRGAtJzWdREcXNCHtd6XSPGy9gxLREREOim1YIlIt2bbgkku6JHfqvJD+2azwvthGoMlIiIijVCCJSLdWlrVJrZZD0jLaFX5gb2yWeX9yK5Y2c6RiYiISGekBEtEurWc6vWUpreueyBANGJszhpMbk0x1Fa1Y2QiIiLSGSnBEpFuy93pE9vAtuyBu7Rfde4ewcKWFe0QlYiIiHRmSrBEpNvaWF7DIIqJ5Q7Zpf2s9/BgYfNnyQ9KREREOjUlWCLSba0rLiHfthLps8cu7ZfVfy8Aaoo1VbuIiIjsSAmWiHRbm9YGDwvOLhi+S/sV9B9CpWdQvqEo+UGJiIhIp9amBMvMZprZajNbGP58vd62a8xsqZl9ZGZHtT1UEZHk2lZcBEDvgXvu0n5D+/ZgjedTu0kzCYqIiMiOkvGg4Zvc/cb6K8xsDHAaMBYYBLxgZiPdPZ6E44mIJEVs03IAevYbvkv7De3bgw+9LyPLVrdDVCIiItKZtVcXwROA+9y92t0/A5YCU9rpWCIiX0i0bBVxIljurs0imN8zg/VWSNa2Ne0UmYiIiHRWyUiwLjGzRWb2FzPrE64bDNTvO7MqXLcTM7vQzOaZ2bzi4uIkhCMi0jpZ29ayOVoI0V1rzDcztmUNIKe2BOK17RSdiIiIdEYtJlhm9oKZvd/IzwnAH4C9gInAWuA3uxqAu//J3Se5+6TCwtY/7FNEpK1616xja9autV5tV91zIBEctq5NclQiIiLSmbX4Z1t3/2prKjKzO4AnwpergaH1Ng8J14mIdAjbamL082Iqen6x3sueNxg2A6WroPeuTfMuIiIiXVdbZxGs/6ffk4D3w+XHgNPMLNPMRgB7A2+15VgiIsm0ZtNWBrAJeg9tuXAj0vsE+8U3ayZBERER+VxbZxG8wcwmAg4UAf8J4O4fmNn9wGIgBnxPMwiKSEeyce0KvmQJMgqGfaH9exQOB6CieDl5SYxLREREOrc2JVjuflYz264Hrm9L/SIi7aV8ffCQ4dx+I77Q/oX5fdniPaktWZHMsERERKSTa69p2kVEOrSakuAZWLv6kOHtBvTKYq3nkyhdlcywREREpJNTgiUi3dOWIDFK6/PFJqgY2CuL1Z5P2lbN3yMiIiKfU4IlIt1SRsVqSi0PMnp8of17ZaezwQrIrlyX5MhERESkM1OCJSLdUm71WkozBnzh/c2M8sz+9IiXQU1FEiMTERGRzkwJloh0O4mEkx/bQGWPQW2qp7pnuH+pugmKiIhIQAmWiHQ7G8urGMRGEnlD2lZRr3D/Mk10ISIiIgElWCLS7WxYt5oeVk207xd7BtZ22x82nNiiBEtEREQCSrCasaV4LQtfmIUnEqkORUSSaOvqDwHI6j+qTfXkFA4l4UblxuXJCEtERES6ACVYzVjy1C1MnHsRn14/iQVP/YWa6qpUhyQiSVC74SMAeu8xpk319OudSzG9qC5ZmYywREREpAtIS3UAHdnk06/jzScHMWjRrez/1uVseetaFvY7itzxx/KlyV8jPSsn1SE2zR0SMYjXQLwWEjHisRqqq6upqamiprqamppqamtrqK0O/k3EasFj4I57AhIJ3D38SQAOiTi4k3CAOO4eHivcju9ioNZ+5a2dyu5izN5M+Z0P2/q6vcHOze+5i9d5l65HC1UlrabkhdVj+cvUeBq5/Ue0qZ6BvbJZ6/kM3aIEq70lEk5lVRVVlRXUVG0jXl1BvKaSWG0NiXgtsVgN8dpaEvFa4rFaPFaLJ+KYx4LPwkS9zzYIPtcS4OF/eLDOtn+G+Y6fZdbCZ5tjrfr9bPTzwIzWvVN2LuNYI6ubOsbO+7bmqA0/a7Yfwxqsb+6zruG+bdGWz4E27ZvUT7Pdo+E92qV923TglOyazP91SQezrece7DXhIAb2yk51KK2iBKsZaRmZHHjSJcSPu4h3X3uEmnl3s+/6R8nc8AA1L6TxYcZItvbeh0TBPvToN5xehUPJKRhCj9xeZGb1xKI7X153J5FwYjXbqK6soKaynNqqCmorK6itqiBeXU6sehvx6m14zTYSNdvw2m1Y7Tao3YbFqojEKonEKonGKklLVJEWryQtUU16oorMRBUZXk0m1UTZsWtjFOgR/oh0d5+k783ejbxHd0X/Xpm87fmMqFjTqvJVtXFe/te/GDZ4CGP23rNNx+5M4glnc1kZ5SXrqNyyjurS9dRWbCJWsYVEZSleVUqkeitpNWVkxLeSFa8gK1FBhleT4TVkeTWZ1NDT4vRM9cmIiMhu99fYUWzptQ/HTlCC1WVE09LY9/BT4PBT2Fq2hUVvPkft0pfoVbKIURueIa/4IViy8341nkYN6RhOhASR8N90ixMFMnchhoQblWRQSSZVZFBlWdRYJuWWRY31pDZaQCw9i1g0i3g0i3haNh7NxNIyiETTiYT/RtMziKRlEE3LIC19+08m0fSgjEWimEUgEsEwzCJYJBL8FSwSwYgQiQAWJWIGZuH24GeX/nzkTf9FuPEtu9A6tkPdLezXTBxtiKDFunfe1Prad/5rejP77sL5BcV3+SybritpNYX1JbHC/oP3anMdBT0zWW/96LFtYdBSHE1vtNzGrVXMeeZBBn/wR47hXd7OnArXPNvm46daLJ5gw6ZNbFrzGduKl1O7aQVWtppIxXrSqzaRXbuJnNhm+ngpBVZJQRP11Hga5daTbZEcqqI9qUzLYVu0MPwcy8LTsyE9G0vPJpKRjaVl4+nZWHpW+NmWQSQtnUg0jbS07Z93aRCNYtEMLJIGkTQikaClyCz4iUQsaJWoW97+ERZ+joWfZ97g9U7cG/llb+SXtdFfYG/d+6SpfRu2tDVRrvF9W3eM1sWys0Zb/byR4+K0tt2ilVer8X3b8PnRlo+etsTcFm37vOyE1zlF5yu7x/SsPhQOKkx1GK2mBGsX5eb1ZvLXToWvnQqAJxJsXLucdas+Zdum1cRL1+I1FVBbCbWVRBI1WCQCFgGLBv9G0kikZYVfGHpARk8iGT2IZvYkmtmDtMyepGdlk5aVS0ZWDzJ65JKZmU1WRhp9o5HwS4KIpFokYpT02Zf00idgzTswdMoO2z9ZtY73n76D0avu5xRbQWmkD8t8D0ZVvx98G+jg/VniCWfthmI2LF/CtnWf4CWfEilbSVblOvJqNlCYKGaQVVD/aWIJN7ZYLmXRPmxL70NJz3EU9yjAehZiOYWk5fYjo1chPXsV0jOvL7m988nI7EFfoG+qTlRERCSJlGC1kUUiFAweQcHgto3lEJHOKW3P6fAOVC15jqyhUyivquXfrz5L7YL7mF75AntbJWuy92bD1F/T7+CzmXf/Lez1yX9Tte5jsga2bRbDZIjFE6xdv54Ny5dQsfYjYhuXkVG6nF5VKxkQW8MQK6X+08JKyWFzWj/Kew7is54HYL2GkJE/lOyCYeT1H07v/sPom56pZElERLotJVgiIm1w5OQxzJm3Lwe9fjNvvDuPQeUfcKRtoIZ0Vgz4KnzlEgbtfXBda1X68IPgE9jw3vPssZsSrNpYnLVrV7NxxRLK135CYuMyMrcup1flSgbE1zDUyhlar3yx5bM5cwhr+h7Kmr4jyOq/N70GjyJ/6Ch69ehFr90StYiISOdkbRlvYWazge3fEHoDW9x9opkNJxiV9FG47Q13v6il+iZNmuTz5s37wvGIiKTC3595jQlv/JBBVkJp7ijSJ5zEsINPxbJ771S2ZGsVlTeOpaZgLHt+/7GkxVBVU8ualZ9RsupjKtd9jJd8SubWFfSpXsnA+DrybFtd2YQbxdFCNmcOoTJ3GJG+e5I9YG/y99iHvkNGYhmaSkJERKQlZjbf3Sc1XN+mFix3n1HvAL8BSuttXubuE9tSv4hIZ3D20dPh6LcB6NdC2fzcLJ7MPoivlTxDrKSItPzhrTpGVU0t69esYMu6z6jYsJz45hVQtpqsilX0rV7NoMQ69rQats9NWEuU4kh/NmcNYWneAVjfPem5PYkavDf907Po/4XPWERERJqSlC6CFjxo4VTgiGTUJyLSleV+9Upijz/HltuPo2TCfxLpswe18Ti1lVuJlW0gXl6MVWwkraqEHtXF9IltoJ+XMMziDKtXzzayKIn2o7TnUJbkTSdauBc5A/amYI99yBswgkHR9B0moBAREZH216YugnWVmB0C/HZ7E1nYRfAD4GOgDPiZu7/WxL4XAhcC7LHHHgcsX768zfGIiHR0Tz56H/svuIaBtqnR7VvpQVmkF+Xp+VRmDySeO5hI7yFkFQyjV//h9B20F1m5fTv8TIQiIiJdVVNdBFtMsMzsBWBAI5t+6u6PhmX+ACx199+ErzOBHHcvMbMDgEeAse5e1tyxNAZLRLqTbVXVrFj2AbHStaSnZ5CVnUPPvgPonT+AtMzO8TBFERGR7uoLj8Fy96+2UHEa8E3ggHr7VAPV4fJ8M1sGjASUPYmIhHpkZbLP2P1THYaIiIgkUSQJdXwV+NDdV21fYWaFZhYNl/cE9gY+TcKxREREREREOqxkTHJxGjCrwbpDgF+aWS2QAC5y98YHGoiIiIiIiHQRbU6w3P3cRtY9CDzY1rpFREREREQ6k6TMIpgsZlYMdLRpBAuAjakOQnYb3e/uQ/e6+9C97l50v7sP3evupSPe72HuXthwZYdKsDoiM5vX2Owg0jXpfncfutfdh+5196L73X3oXncvnel+J2OSCxEREREREUEJloiIiIiISNIowWrZn1IdgOxWut/dh+5196F73b3ofncfutfdS6e53xqDJSIiIiIikiRqwRIREREREUkSJVgiIiIiIiJJogSrGWZ2tJl9ZGZLzezHqY5HksfMhprZy2a22Mw+MLNLw/V9zex5M/sk/LdPqmOV5DCzqJm9Y2ZPhK9HmNmb4ft7tpllpDpGSQ4z621mD5jZh2a2xMwO0nu7azKzy8PP8PfNbJaZZem93XWY2V/MbIOZvV9vXaPvZQvcHN73RWa2f+oil13VxL3+dfg5vsjMHjaz3vW2XRPe64/M7KiUBN0MJVhNMLMocBtwDDAGON3MxqQ2KkmiGHCFu48BpgLfC+/vj4EX3X1v4MXwtXQNlwJL6r3+X+Amd/8SsBn4j5REJe3h98Az7r4PsC/Bfdd7u4sxs8HAD4BJ7j4OiAKnofd2V3IXcHSDdU29l48B9g5/LgT+sJtilOS4i53v9fPAOHefAHwMXAMQfl87DRgb7vN/4ff2DkMJVtOmAEvd/VN3rwHuA05IcUySJO6+1t0XhMtbCb6ADSa4x38Li/0NODElAUpSmdkQ4BvAn8PXBhwBPBAW0b3uIsysF3AIcCeAu9e4+xb03u6q0oBsM0sDegBr0Xu7y3D3V4FNDVY39V4+Afi7B94AepvZwN0SqLRZY/fa3Z9z91j48g1gSLh8AnCfu1e7+2fAUoLv7R2GEqymDQZW1nu9KlwnXYyZDQf2A94E+rv72nDTOqB/quKSpPodcDWQCF/nA1vqfXDr/d11jACKgb+GXUL/bGY90Xu7y3H31cCNwAqCxKoUmI/e211dU+9lfW/r2s4Hng6XO/y9VoIl3ZqZ5QAPApe5e1n9bR48w0DPMejkzOxYYIO7z091LLJbpAH7A39w9/2AChp0B9R7u2sIx96cQJBUDwJ6snMXI+nC9F7uHszspwRDO+5NdSytpQSraauBofVeDwnXSRdhZukEydW97v5QuHr99i4F4b8bUhWfJM3BwPFmVkTQ1fcIgjE6vcNuRaD3d1eyCljl7m+Grx8gSLj03u56vgp85u7F7l4LPETwftd7u2tr6r2s721dkJmdCxwLnOGfP7y3w99rJVhNexvYO5yNKINgMN1jKY5JkiQcg3MnsMTdf1tv02PAOeHyOcCjuzs2SS53v8bdh7j7cIL38UvufgbwMnBKWEz3uotw93XASjMbFa76CrAYvbe7ohXAVDPrEX6mb7/Xem93bU29lx8Dzg5nE5wKlNbrSiidkJkdTdC9/3h331Zv02PAaWaWaWYjCCY2eSsVMTbFPk8GpSEz+zrB2I0o8Bd3vz61EUmymNk04DXgPT4fl/MTgnFY9wN7AMuBU9294QBb6aTM7DDgSnc/1sz2JGjR6gu8A5zp7tUpDE+SxMwmEkxokgF8CpxH8AdFvbe7GDP7BTCDoPvQO8AFBGMx9N7uAsxsFnAYUACsB64DHqGR93KYZN9K0E10G3Ceu89LQdjyBTRxr68BMoGSsNgb7n5RWP6nBOOyYgTDPJ5uWGcqKcESERERERFJEnURFBERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwRkQ7CzIabmZtZWqpj6erM7Fwzm5vqODoaM5tuZh+lOg4Rkc5MCZaIiHRqZjbTzGrNrLzez9WpjqszcvfX3H1UsusN/3BQUe/+/DnZxxAR6Sj0V1IRkSQxszR3j6U6jm5qtrufmeog2ksX+d3a192XpjoIEZH2phYsEZE2MLMiM/uRmS0CKswszcymmtm/zWyLmb1rZofVKz/HzP6fmb1lZmVm9qiZ9W2i7vPMbImZbTWzT83sPxtsP8HMFob1LDOzo8P1vczsTjNba2arzey/zSzawnnsZWYvmVmJmW00s3vNrHe9bZvMbP/w9SAzK95+XmZ2vJl9EJ7vHDMb3eD6XGlmi8ys1Mxmm1nWrl/pXWdmPw6vy1YzW2xmJzVRzszsJjPbEF7L98xsXLgt08xuNLMVZrbezG43s+xWHv+usPzzYQyvmNmwett/b2Yrw2PON7Pp9bbNNLMHzOweMysDzjWzKWb2enid15rZrWaWUW8fN7Pvmtkn4fH+K7x3/w6PcX/98k3EfJiZrWrN+YmISOOUYImItN3pwDeA3kB/4Engv4G+wJXAg2ZWWK/82cD5wEAgBtzcRL0bgGOBPOA84KZ6Sc4U4O/AVeFxDwGKwv3uCuv9ErAfcCRwQQvnYMD/AwYBo4GhwEwAd18G/Ai4x8x6AH8F/ubuc8xsJDALuAwoBJ4CHm/wRf5U4GhgBDABOLfRAMymhclDUz/TWjiHhpYB04FewC/C+Ac2Uu5Igus3Mix7KlASbvtVuH4iwfUcDFy7CzGcAfwXUAAsBO6tt+3tsN6+wD+AfzZIPk8AHiC4v/cCceDysK6DgK8A321wvKOAA4CpwNXAn4AzCe7nOILf1S8sTJSbuj//18Lur5rZOjN7yMyGtyUOEZGOTAmWiEjb3ezuK929kuDL7FPu/pS7J9z9eWAe8PV65e929/fdvQL4OXBqYy1M7v6kuy/zwCvAcwQJA8B/AH9x9+fD46x29w/NrH94rMvcvcLdNwA3Aac1dwLuvjSsq9rdi4HfAofW234HsBR4kyAx/Gm4aQbwZLhvLXAjkA18ucH1WePum4DHCZKKxmKY6+69m/lpblKKUxt82R/k7v8Mj5tw99nAJ8CURvatBXKBfQBz9yXuvtbMDLgQuNzdN7n7VuB/WrqWDTzp7q+6ezXBNTvIzIaG53uPu5e4e8zdfwNkAvXHP73u7o+E8Ve6+3x3fyMsXwT8kXr3KHSDu5e5+wfA+8Bz7v6pu5cCTxMk3F+Yu09o5v40TPbqOxQYTnCN1wBPmCZzEZEuSh9uIiJtt7Le8jDgW2Z2XL116cDLTZRfHm4vaFipmR0DXEfQghIBegDvhZuHErQWNTQsrG9tkB9AuO/KRsrWP1Z/4PcECVxuuM/mBsXuAB4DLgwTBghavJZvL+DuCTNbSdDSs926esvbwn2S7f6GY7DM7GzghwRf7AFyaOQ6u/tLZnYrcBswzMweImh5zCK45vPrXUsDmu1u2UDddXf3cjPbRHD+K83sSoJEeRDgBC2VBY3tG57PSILEd1IYVxowv8Hx1tdbrmzk9YBdiD1p3P3VcLHGzC4FyghaSt9rei8Rkc5JLVgiIm3n9ZZXErRQ1f/Lfk93/1W9MkPrLe9B0IKysX6FZpYJPEjQItTf3XsTJFTbv+mvBPZqJJaVQDVQUO/4ee4+toVz+J/wPMa7ex5BS9znWYVZDvA74E5gpn0+bmwNQVK3vZyF57e6hePtxIIpwsub+Zneci11dQ0jSAgvAfLD6/d+/XOqz91vdvcDgDEECe1VBPekEhhb71r2cvecXTitunsdXsO+wJrwXK4m6I7YJ4yvtEF89X+vAP4AfAjsHd6jnzR1Pu3FgrF2Td2f23ehKmc3xy4isrsowRIRSa57gOPM7Cgzi5pZVjhxwJB6Zc40szHheKZfAg+4e7xBPRkEXcaKgVjYmnVkve13AueZ2VfMLGJmg81sH3dfS9CV8Ddmlhdu28vMGnYlaygXKAdKzWwwQYJR3++Bee5+AcEYs+1fpu8HvhHGkQ5cQZDg/bulC9VQOEV4TjM/r+1CdT0JvsQXQzBhCMEYpJ2Y2WQzOzCMvwKoAhLuniBI0m4ys35h2cFmdlS9fd3qTWLSiK+HY8syCMZiveHuKwmudyyML83MriVowWpOLkHLT7mZ7QNc3EL5pHP3sc3cn4sa28fMxprZxPD9kAP8hiABX7JbgxcR2U2UYImIJFH45fkEgtaFYoIWpavY8fP2boKJKNYRdEP7QSP1bA3X30/QVe/bBN3ztm9/i3DiC4KWj1f4vCXpbIIEbXG47wME46aa8wtg/7CuJ4GHtm8wsxMIJqnY/oX+h8D+ZnaGu39E0Np1C0GLz3HAce5e08Lx2pW7Lyb4Iv86QTe58cC/miieR5BIbSbo7lgC/Drc9iOCsWdvWDCb3wuE46TCsVRbab6b2z8IunluIph8Yns3xmeBZ4CPw2NW0UI3ToJui98Oj3kHMLuF8h1Ff4JYy4BPCbpsHhuO2RMR6XLMvWEPBBERaS9mNge4x931oNVOzszOJOg+eE0T2+8CVrn7z3ZrYCIiklKa5EJEROQLcPd7Uh2DiIh0POoiKCLSTVjw0Nu2Tk4gnZyZ/aSJ34OnUx2biEhXoC6CIiIiIiIiSaIWLBERERERkSTpUGOwCgoKfPjw4akOQ0REREREpFnz58/f6O6FDdd3qARr+PDhzJs3L9VhiIiIiIiINMvMlje2Xl0ERUREREREkkQJloiIiIiISJIowRIRaYWXPlzPmi2VqQ5DREREOrgONQarMbW1taxatYqqqqpUhyKdTFZWFkOGDCE9PT3VoUgnt660ir///c+Myq3mmmt+mepwREREpAPr8AnWqlWryM3NZfjw4ZhZqsORTsLdKSkpYdWqVYwYMSLV4Ugn99H6rfwx/bdkVseIrTiOtD0mpzokERER6aA6fBfBqqoq8vPzlVzJLjEz8vPz1fIpSbFlWw3rvQ8AZYueSnE0IiIi0pF1+AQLUHIlX4h+byRZSitrSbM4AFVrF6c4GhEREenIOkWCJSKSSlu21dKbCgAyN3+S4mhERESkI1OC1QpmxhVXXFH3+sYbb2TmzJmpC6ieN954gwMPPJCJEycyevTourjmzJnDv//97zbVffTRR9O7d2+OPfbYJEQq0nmVV5TTw6oB6FW5HOKxFEckIiIiHZUSrFbIzMzkoYceYuPGjUmt191JJBJtquOcc87hT3/6EwsXLuT999/n1FNPBZKTYF111VXcfffdbapDpCuIVm8BYFnal0jzGGxdm9qAREREpMPq8LMI1veLxz9g8ZqypNY5ZlAe1x03ttkyaWlpXHjhhdx0001cf/31O2wrLi7moosuYsWKFQD87ne/4+CDD2bmzJnk5ORw5ZVXAjBu3DieeOIJAI466igOPPBA5s+fz1NPPcWtt97K008/jZnxs5/9jBkzZjBnzhxmzpxJQUEB77//PgcccAD33HPPTuOKNmzYwMCBAwGIRqOMGTOGoqIibr/9dqLRKPfccw+33HIL++yzT5NxLlu2jKVLl7Jx40auvvpqvvOd7wDwla98hTlz5jR7bf75z3/yi1/8gmg0Sq9evXj11Vepqqri4osvZt68eaSlpfHb3/6Www8/nLvuuotHHnmEiooKPvnkE6688kpqamq4++67yczM5KmnnqJv377ccccd/OlPf6KmpoYvfelL3H333fTo0WOH406dOpU777yTsWODe3fYYYdx4403MmnSpGbjFfki0qtLAdjQcyR7lS6F0lXQe2iKoxIREZGOSC1YrfS9732Pe++9l9LS0h3WX3rppVx++eW8/fbbPPjgg1xwwQUt1vXJJ5/w3e9+lw8++IB58+axcOFC3n33XV544QWuuuoq1q4N/jr+zjvv8Lvf/Y7Fixfz6aef8q9//Wunui6//HJGjRrFSSedxB//+EeqqqoYPnw4F110EZdffjkLFy5k+vTpzca5aNEiXnrpJV5//XV++ctfsmbNmlZfl1/+8pc8++yzvPvuuzz22GMA3HbbbZgZ7733HrNmzeKcc86pm83v/fff56GHHuLtt9/mpz/9KT169OCdd97hoIMO4u9//zsA3/zmN3n77bd59913GT16NHfeeedOx50xYwb3338/AGvXrmXt2rVKrqTdZNRsAWBbnzEAxDevSGE0IiIi0pG1uQXLzIYCfwf6Aw78yd1/b2Yzge8AxWHRn7h7m+Y3bqmlqT3l5eVx9tlnc/PNN5OdnV23/oUXXmDx4s9nFSsrK6O8vLzZuoYNG8bUqVMBmDt3LqeffjrRaJT+/ftz6KGH8vbbb5OXl8eUKVMYMmQIABMnTqSoqIhp06btUNe1117LGWecwXPPPcc//vEPZs2a1WirU3NxnnDCCWRnZ5Odnc3hhx/OW2+9xYknntiq63LwwQdz7rnncuqpp/LNb36z7py+//3vA7DPPvswbNgwPv74YwAOP/xwcnNzyc3NpVevXhx33HEAjB8/nkWLFgFBEvazn/2MLVu2UF5ezlFHHbXTcU899VSOPPJIfvGLX3D//fdzyimntCpekS8iozb8w8rAcVAEWzcU0TuVAYmIiEiHlYwugjHgCndfYGa5wHwzez7cdpO735iEY3QIl112Gfvvvz/nnXde3bpEIsEbb7xBVlbWDmXT0tJ2GF9V/3lMPXv2bNXxMjMz65aj0SixWOMD6/faay8uvvhivvOd71BYWEhJSclOZZqKE3aeznxXpje//fbbefPNN3nyySc54IADmD9/frPl659TJBKpex2JROrO79xzz+WRRx5h33335a677mo0YRw8eDD5+fksWrSI2bNnc/vtt7c6ZpFdFYkH79/e+YPY7DlUl6gFS0RERBrX5i6C7r7W3ReEy1uBJcDgttbbEfXt25dTTz11hy5rRx55JLfcckvd64ULFwIwfPhwFixYAMCCBQv47LPPGq1z+vTpzJ49m3g8TnFxMa+++ipTpkxpdUxPPvkk7g4EXQ+j0Si9e/cmNzeXrVu3thgnwKOPPkpVVRUlJSXMmTOHyZMnt/r4y5Yt48ADD+SXv/wlhYWFrFy5kunTp3PvvfcC8PHHH7NixQpGjRrV6jq3bt3KwIEDqa2traunMTNmzOCGG26gtLSUCRMmtLp+kV0WD2YQzO+dyxrPhy2rUhyQiIiIdFRJHYNlZsOB/YA3w1WXmNkiM/uLmfVpYp8LzWyemc0rLi5urEiHcsUVV+wwm+DNN9/MvHnzmDBhAmPGjKlrSTn55JPZtGkTY8eO5dZbb2XkyJGN1nfSSScxYcIE9t13X4444ghuuOEGBgwY0Op47r77bkaNGsXEiRM566yzuPfee4lGoxx33HE8/PDDTJw4kddee63JOAEmTJjA4YcfztSpU/n5z3/OoEGDgCD5+9a3vsWLL77IkCFDePbZZ4GgW+L28VZXXXUV48ePZ9y4cXz5y19m33335bvf/S6JRILx48czY8YM7rrrrh1arlryX//1Xxx44IEcfPDB7LPPPnXrH3vsMa699tq616eccgr33Xdf3cyJIu0lEq8BoLB3Lmu8gLTy1SmOSERERDoq29760eaKzHKAV4Dr3f0hM+sPbCQYl/VfwEB3P7+5OiZNmuTz5s3bYd2SJUsYPXp0UmKUnTWc7bCr0e+PJMNffvMjzt96O1z9Gf/434s5Ke1fZP9crVgiIiLdmZnNd/edZllLSguWmaUDDwL3uvtDAO6+3t3j7p4A7gBa3+9NRKQDiSSCFiyiGZRnDSA7vhWqkvvICBEREekakjGLoAF3Akvc/bf11g909+1P4zwJeL+tx5LkmzlzZqpDEOnwtncRJC2TmpxBUA2UrYasvJTGJSIiIh1PMmYRPBg4C3jPzBaG634CnG5mEwm6CBYB/5mEY4mI7HaRRA0JjEgkDfIGQwnBw4b7qfupiIiI7KjNCZa7zwUam9e7Tc+8EhHpKKJeQ8zSyTAjo88Q+AzipauJpjowERER6XCSOougiEhXFE3UErd0AHILh5BwY9vGlSmOSkRERDoiJVgiIi2IJmqIR4IEq3+fXErIo3qTZhEUERGRnSnBaqVHHnkEM+PDDz9sskxRURHjxo1L2jE/+ugjDjvsMCZOnMjo0aO58MILgeAhwU891bYemOeffz79+vVLarwiXVXEa4lbBgD987JY631JlK5JcVQiIiLSESnBaqVZs2Yxbdo0Zs2a1ej2WCzW5mPE4/EdXv/gBz/g8ssvZ+HChSxZsoTvf//7QHISrHPPPZdnnnmmTXWIdBdpiVrikSDBGtgrm/Xel7SKtS3sJSIiIt1RMmYR3H2e/jGsey+5dQ4YD8f8qtki5eXlzJ07l5dffpnjjjuOX/ziFwDMmTOHn//85/Tp04cPP/yQ5557jlgsxhlnnMGCBQsYO3Ysf//73+nRowcvvvgiV155JbFYjMmTJ/OHP/yBzMxMhg8fzowZM3j++ee5+uqrOe200+qOu3btWoYMGVL3evz48dTU1HDttddSWVnJ3Llzueaaazj22GP5/ve/z/vvv09tbS0zZ87khBNO4K677uLhhx+mtLSU1atXc+aZZ3LdddcBcMghh1BUVNTseb/yyitceumlAJgZr776Kjk5OVx99dU8/fTTmBk/+9nPmDFjBnPmzOG6666jd+/evPfee5x66qmMHz+e3//+91RWVvLII4+w11578fjjj/Pf//3f1NTUkJ+fz7333kv//v13OO5pp53GWWedxTe+8Q0gSAaPPfZYTjnllNbdU5EkS6OWRNhFsE+PdDZYPtmVn6Q4KhEREemI1ILVCo8++ihHH300I0eOJD8/n/nz59dtW7BgAb///e/5+OOPgaBb33e/+12WLFlCXl4e//d//0dVVRXnnnsus2fP5r333iMWi/GHP/yhro78/HwWLFiwQ3IFcPnll3PEEUdwzDHHcNNNN7FlyxYyMjL45S9/yYwZM1i4cCEzZszg+uuv54gjjuCtt97i5Zdf5qqrrqKiogKAt956iwcffJBFixbxz3/+k3nz5rX6vG+88UZuu+02Fi5cyGuvvUZ2djYPPfQQCxcu5N133+WFF17gqquuYu3a4C/57777LrfffjtLlizh7rvv5uOPP+att97iggsu4JZbbgFg2rRpvPHGG7zzzjucdtpp3HDDDTsdd8aMGdx///0A1NTU8OKLL9YlWyK7WzzhpHstibAFy8yoyCwkO14GtZUpjk5EREQ6ms7VgtVCS1N7mTVrVl1LzmmnncasWbM44IADAJgyZQojRoyoKzt06FAOPvhgAM4880xuvvlmvva1rzFixAhGjhwJwDnnnMNtt93GZZddBgQJRWPOO+88jjrqKJ555hkeffRR/vjHP/Luu+/uVO65557jscce48YbbwSgqqqKFStWAPC1r32N/Px8AL75zW8yd+5cJk2a1KrzPvjgg/nhD3/IGWecwTe/+U2GDBnC3LlzOf3004lGo/Tv359DDz2Ut99+m7y8PCZPnszAgQMB2GuvvTjyyCOBoOXt5ZdfBmDVqlXMmDGDtWvXUlNTs8O12+6YY47h0ksvpbq6mmeeeYZDDjmE7OzsVsUskmy18QQZxEhEM+rW1fQYCKVA2RrI3yt1wYmIiEiHoxasFmzatImXXnqJCy64gOHDh/PrX/+a+++/H3cHoGfPnjuUN7NmXzemYR31DRo0iPPPP59HH32UtLQ03n///Z3KuDsPPvggCxcuZOHChaxYsYLRo0d/4Xi2+/GPf8yf//xnKisrOfjgg5ud4AMgMzOzbjkSidS9jkQidWPUvv/973PJJZfw3nvv8cc//pGqqqqd6snKyuKwww7j2WefZfbs2U0moCK7Q008QabV4mEXQQDLC/6QQJkmuhAREZEdKcFqwQMPPMBZZ53F8uXLKSoqYuXKlYwYMYLXXnut0fIrVqzg9ddfB+Af//gH06ZNY9SoURQVFbF06VIA7r77bg499NAWj/3MM89QW1sLwLp16ygpKWHw4MHk5uaydevWunJHHXUUt9xyS13S984779Rte/7559m0aVPdOKjtrWutsWzZMsaPH8+PfvQjJk+ezIcffsj06dOZPXs28Xic4uJiXn31VaZMmdLqOktLSxk8eDAAf/vb35osN2PGDP7617/y2muvcfTRR7e6fpFkq40FLVherwUrrXfwO+xKsERERKQBJVgtmDVrFieddNIO604++eQmZxMcNWoUt912G6NHj2bz5s1cfPHFZGVl8de//pVvfetbjB8/nkgkwkUXXdTisZ977jnGjRvHvvvuy1FHHcWvf/1rBgwYwOGHH87ixYuZOHEis2fP5uc//zm1tbVMmDCBsWPH8vOf/7yujilTpnDyySczYcIETj755LrugaeffjoHHXQQH330EUOGDOHOO+8E4Pbbb+f2228H4He/+x3jxo1jwoQJpKenc8wxx3DSSScxYcIE9t13X4444ghuuOEGBgwY0OrrOXPmTL71rW9xwAEHUFBQULd+3rx5XHDBBXWvjzzySF555RW++tWvkpGR0VhVIrtFTTxBBrV49PMW2h4FQwHYVqKHDYuIiMiObHurR0cwadIkbzgJw5IlS+q6u8muueuuu5g3bx633nprqkNJGf3+SFutKNlG1e8n0WPwGIb85wMAPPP+Wr78z/2oHTeD/G/9PsURioiISCqY2Xx332lyA7VgiYg0oyYeJ4MY1GvBGtArm3Xel/gWdREUERGRHSnB6sLOPffcbt16JZIMNTEnw2oh7fOuqgN7ZbHO+xIpV4IlIiIiO+oUCVZH6sYonYd+byQZtk/TTtrnLVgFOZmspy+ZlRtSGJmIiIh0RB0+wcrKyqKkpERflmWXuDslJSVkZWWlOhTp5LZPcmH1ughGI0Z5RiE9azZCPJbC6ERERKSjafcHDZvZ0cDvgSjwZ3ffpacFDxkyhFWrVlFcXNwu8UnXlZWVxZAhQ1IdhnRytbEEmcQoT9txNsuqHgOIbE1AxQbIG5Si6ERERKSjadcEy8yiwG3A14BVwNtm9pi7L25tHenp6YwYMaK9QhQRaVZNLE6m1RKp10UQwHMGwlaChw0rwRIREZFQe3cRnAIsdfdP3b0GuA84oZ2PKSKSNLW1NQBYgwTr84cNr97tMYmIiEjH1d4J1mCg/pM4V4Xr6pjZhWY2z8zmqRugiHQ08dpqACLpOyZY2fnBw4arSlbt9phERESk40r5JBfu/id3n+TukwoLC1MdjojIDuK1VcDOCVbvgoFUexrbSlY2tpuIiIh0U+2dYK0GhtZ7PSRcJyLSKcRrtrdg7Tgj5cDe2az3PsQ2qwVLREREPtfeCdbbwN5mNsLMMoDTgMfa+ZgiIkmzvQUr2qAFa0CvLNbRF9u6NhVhiYiISAfVrgmWu8eAS4BngSXA/e7+QXseU0QkmbaPwUprkGD1y81infclY9u6VIQlIiIiHVS7PwfL3Z8Cnmrv44iItIfE9gQrc8cughlpEUrTCulZPR/cwSwV4YmIiEgHk/JJLkREOrK6BKvBGCyAquz+pHsNVG7e3WGJiIhIB6UES0SkGYlY47MIAsRzBgYLZWt2Z0giIiLSgSnBEhFphseCFiyiOydY0V6DggUlWCIiIhJSgiUi0gwPuwiStnOClVWwBwCVJct3Z0giIiLSgSnBEhFphsdqgoVoxk7b+gzYg1qPUrH+s90clYiIiHRUSrBERJpR10WwkRaswX1yWOP5xEqKdm9QIiIi0mEpwRIRaU58+xis9J02De6TzSovJFK2ajcHJSIiIh2VEiwRkebEt3cR3LkFqzAnk3VWSPa21bs5KBEREemolGCJiDTDtidYjXQRNDPKsgaSW7sRaqt2c2QiIiLSESnBEhFpRl2C1cgkFwDVOUOChTK1YomIiIgSLBGRZlmi6RYsgEjvocHCFk3VLiIiIkqwRESa1VILVmbBCABqNhbtpohERESkI1OCJSLSjEiihlrSwazR7b37DyPmEco36FlYIiIiogRLRKRZ0XgNcUtrcvug/FzWej61asESERERlGCJiDQrPVFFTTS7ye1D+mSzmgKsbOVujEpEREQ6KiVYIiLNyEhUUhtpOsHql5vFai8kq0KzCIqIiEgbEywz+7WZfWhmi8zsYTPrHa4fbmaVZrYw/Lk9KdGKiOxmGYlKYmk9mtwejRilmQPJqSmGWM1ujExEREQ6ora2YD0PjHP3CcDHwDX1ti1z94nhz0VtPI6IyG4XTzjZXkW8mQQLoCZnMBEcylbtpshERESko2pTguXuz7l7LHz5BjCk7SGJiHQM22pi9LQq4mk9my3nvfcIFrZoHJaIiEh3l8wxWOcDT9d7PcLM3jGzV8xselM7mdmFZjbPzOYVFxcnMRwRkbaprInTgyoS6c23YGXkDwcgtkkPGxYREenump57OGRmLwADGtn0U3d/NCzzUyAG3BtuWwvs4e4lZnYA8IiZjXX3soaVuPufgD8BTJo0yb/YaYiIJN+2mjg9rJp4RvMtWHn9hxF3o3z9MnrvntBERESkg2oxwXL3rza33czOBY4FvuLuHu5TDVSHy/PNbBkwEpjX1oBFRHaXbTVxBlJFWQsJ1uD8PNbRl/QStWCJiIh0d22dRfBo4GrgeHffVm99oZlFw+U9gb2BT9tyLBGR3a2yNkYPqrDMnGbLDendg1VeiG1ZsZsiExERkY6qrWOwbgVygecbTMd+CLDIzBYCDwAXufumNh5LRGS3qqysJNNiRFtIsAb0ymKNF5BRsWY3RSYiIiIdVYtdBJvj7l9qYv2DwINtqVtEJNWqK8sBiGQ1n2BlpEXYkj6AnOrXIR6DaJs+WkVERKQTS+YsgiIiXUpleSkAmdm5LZat7jmQKHHYura9wxIREZEOTAmWiEgTqiqCiU+zeua1WDbRa2iwUKqHDYuIiHRnSrBERJpQW74ZgKycvi2WTc8fBkBCE12IiIh0a0qwRESa4BUbAYjkFrZYNqffcADKN3zWniGJiIhIB6eR2CIiTYhUBgkWPQpaLDuwoC8bPQ8vLmrfoERERKRDUwuWiEgT0qpKgoWeLSdYQ/pks8bzSWxZ2c5RiYiISEemBEtEpAkZVZuosixIz26x7KDe2az2AtLLV++GyERERKSjUoIlItKEjJrNVKT1aVXZHhlplKT1J6dyLbi3c2QiIiLSUSnBEhFpRCLh9IhtoTqz5RkEt9uWPYgMr4LKze0YmYiIiHRkSrBERBpRUlFDIVuIZ+W3ep9E7uBgQVO1i4iIdFtKsEREGrG+tJKhtoF472Gt3ifaNyjrSrBERES6LSVYIiKNWLt2NTlWRWbhnq3eJ6swSLAqNVW7iIhIt6UES0SkEaVrPgagz+BRrd6nV9/+VHgm1SVqwRIREemulGCJiDSiesNSALL67dXqfQpzs1jjBcT1LCwREZFuSwmWiEgjsjZ9RIw06Dui1fv0y8tkg/fGyje0Y2QiIiLSkbUpwTKzmWa22swWhj9fr7ftGjNbamYfmdlRbQ9VRGT3qIklGFixhOIeX4K0zFbvV5ibSTG9SKssbsfoREREpCNLS0IdN7n7jfVXmNkY4DRgLDAIeMHMRrp7PAnHExFpV0vWlDLWPqW0/7G7tF9uZhqbrQ/Z1e+0U2QiIiLS0bVXF8ETgPvcvdrdPwOWAlPa6VgiIklVtPhNetk2cr/05V3az8yozMwnI1EJ1eXtFJ2IiIh0ZMlIsC4xs0Vm9hcz6xOuGwzUH+W9Kly3EzO70Mzmmdm84mJ1qxGR1Kv88HkAeo/f9d7NtVmFwUL5+mSGJCIiIp1EiwmWmb1gZu838nMC8AdgL2AisBb4za4G4O5/cvdJ7j6psLBwV3cXEUmq0spaRm56hfXZX8LyBu16BTn9g3+VYImIiHRLLY7BcvevtqYiM7sDeCJ8uRoYWm/zkHCdiEiH9vq8eRwd+YTVY67+QvtH8gYGf25SgiUiItIttXUWwYH1Xp4EvB8uPwacZmaZZjYC2Bt4qy3HEhHZHSpf/zNxIgycdvYX2j+rT/CxWFu2LplhiYiISCfR1lkEbzCziYADRcB/Arj7B2Z2P7AYiAHf0wyCItLRvfvxp3yl4ilW9j+C4X2GtrxDI3L7FFLrUao2rSU9yfGJiIhIx9emBMvdz2pm2/XA9W2pX0Rkd3F3Vj8yk3FWRdrxv/jC9RTmZbORXmRsWZvE6ERERKSzaK9p2kVEOpXX3niDr1U8wbKhJ9NjyLgvXE9hbibF3gvfqi6CIiIi3ZESLBHp9mpiCSIvXEuNZbDnKf/dproKcjIp9t5EtumxEyIiIt2REiwR6fZeeOoBpsXfYt2E75LWa0Cb6srPyaDYe5FRpQRLRESkO1KCJSLdWmlFNcMX/A8bo/3Y89gr21xfZlqUrWl9yK7ZDIlEEiIUERGRzqStswiKiHRqrzxwC8fzGasOvRnL6JGUOqszC4hWx6FyE/QsSEqdHdXWympWryxi69ql1JYUEd+6Hq8oIVq1iayazfSMl5KRqCTda0j3GjK8hnRqwMEtgmMkiOAWIUGEuKURI424pROPpJOwNBKRNBKRDDySjkfSgn+jGRBNh0g6Fs3A0oLXHkknsf3H0nZ6nYikYRYB9/AMHNxxCNbVW/Zwe/A6EezScLtvLxWWaWRbuBUL/93+T93rBv9a3X6NlzNvuF+Dct7geLvKvthuLVfbThW3k3aLth0qruk5kAO/8R9kZehrnUhHoHeiiHRbqzdsZMqnt7Gixz7sMa3JSVF3WaxHIVQD5Ru6RILl7hRvLmP5xwspXb4I27CY3ls/Ib9mNQO9mH2sdofytUQptV5sjfSmPJpHRUZvEtEMEpFMEmlZEM3ALIInEuBxEuG/JOJYopZIopaIx4J/E7VEamNEvIqobyXNa4l4nDRqSSdGepCOkU6MjPB11L5gYiHSib1YG+Mrp34v1WGICEqwRKQbW/DgjRxnm9h47F8gkrwe05bTDzYDFRuAMUmrd3cp3VbNRx8sYNNH/yZ97XyGVrzPCF9FPwseZ1hLGmvThlLaaySb875Kev4IevTfk5z+e9Kr/1Aye/SmwIz2Ti3dnZp4gupYguraBFvjCdwdEnFI1EKsFkvUQqIWi9cEy/F6yaAZ7mBmmBG0bAEWMQwL1oflgu311htABML1kbDs9n3DAsF+9V7XNV+08bXXtYI0Vb7B9lbyTpabtle8/kVb/1qqt12qdTbc8jXGLv4tVdvOIatHTnscRER2gRKsZiRiMSorK+iZ2yvVoYhIkn2yah1fXncPn/Y6kD3HHp7UuqN5/YKF8s4x0UVpRQ2L3vk3ZYtfpO+G1xldu5gpVgFAufVkdc4YFhd8hR5DJzDgSweQO2Q0e0RT/xhlMyMzLUpmWhSyUh2NSOpUHfFfjHj2dN6cdS0H/sdvUx2OSLenBKsZC56+kxHzr+eDkRcw4cQf6q9CIl3Ikkdu5HjbSsbxM5Ned3bvgQDUlK0jI+m1t11NLMF7H35I8YIn6LF6LmOq3mG6lQGwLm0wqwd+jY3DpzJo/CHkDBzNqCS27olI8o0+6Ou89e+vsd+Ku1jz8ZkMGrl/qkMS6daUYDWj15DRrHlvBFM+/g2bbriDhQOPY+gRFzJ474mpDk1E2mDVmjVML57Fst4HsdeXvpz0+nN7F1Dt6VRvWt1hEqyNW6uY/9Zctr33BHttfpUDbBkAmyN9WNfvy5SN/ApDDziKAX2H0baJ6kUkFYZ9+3dU3D6VmvvPp+aHr5HRIzfVIYl0W0qwmrH3fofgE+fw/r+fovbf/8cBa+4j/d57WRUZxLqCL5O216EM3mcKBUP3xiLRdokhkXAqq2uorNhKdWU5NZVbqamsIFZVTm1VOfHqCuLVFXjNNhLV26C2AmorsdptEK+qG4Oww6BxjxENB4pHE7VEiRH1GBGPYyQwD+b1MrzeMkQIppyObN+GEwn/3f6zXcO5rRrTWFd0b7Lszuub7sreWNm2xVB/XeeaB0sak0sNOWwjfmzbHirclMK8LFZ7Pn02r2iX+lvr03WbWPz6M0Q+fpoJ2/7NUbYRgBU9x/Lxnj9k0JQT6TN0An1Mv9UinV3/gUN44+DfMvlfF/LB/81g3KUPE0nPTHVYzXJ3qmtqqCjbRGXZZqrKN1NdvoXabaXEKrcQrywjXr0NaishVkUkVoXFq4nEq4jEq4jGa4gmqkhL1BDxOBHiwb+e+HyZONHtr0kQJU6Uxh6h0dTsnfXW7cIYurqi1nB9U5+3rf+esyvfU3bl+1PjsbXPd7hd9XjkCIad8j98dUz/Nte1OyjBaoGZMe7gb8DB32D9mhUsm3M3WctfZsz6x+mx4QF4HSo8i43RQioyCtmWVUgiPRdPz4b07GBq4e2Drj2YKcsTMaKxKiKxbURilURjlUTjVaQlqkiPV5Lh1WR6FVleRTY19LRaeu5CzAk3qsig2jLC6Y7TiFka8brlYLriuKVRE+1RNxWyWxSPRMOB3oaH/2JBKhWs+3y9N1gPRv3vacGQb6fR726NjPTd8QOh/vpG3sZNjBTepWmJfecP2NZ/jGxf3/KHxhcb07yLe32Bg3TksezBxAPte4zE8EOZuvekdqm7MCeTNZ5P39LV7VJ/UxIJZ9HS5ax481Fylz/HAbXzOdYqqSKT1fkHsnrssQyacgJ75KqNSqQrmnrkqcwt/oRpn9zAB787jj0v/AfZvXbfTKbuTnl1jA0lm9iyYRVVm9ZQW7YOL1tHZNsGMio3kF1dQk6shLz4FnK8gh5W3aohlDUepcYyqCaDGsug1jKptQxqI5nELYPaaFbwPSb8SVgUwn/d0iASwS2t7ntOs8lEs5PEtOZ/Ts18b2h0U+PpSuNV7ELZBo+GgM+/JzXcwxqpuunvVO30vawZ2TljKczt2H8wqM+8A00ZNGnSJJ83b16qw2iVqsptfPr+G5QWLcSKl5BWvoae1cX0jpeQ7VVkUU1Wg6mLt4t5hEoyqbZMqiyL2kgWNZEsYpEsYtFs4mnZJNKy8bRsPL0Hlt4Dy+yBZfQkktGDaGYOaZk9iGblkJ6VQ0Z28JOZ3ZPMHrlkZvXANGZCJGXWl1Xxyg2ncmzPJfS45pN2PVZlTZz5CxewecGjDFj/MvslFpNmCbZE+rBh4GH03f9ECsYfCUl6xpeIdHwv33sD0z7+FVsivVi3/w8Zc9R3iGa0bSaYqppaNm5Yy+YNq6jYuJrqLauJl60nUrGejMqN9KzZSF58EwVsIdcqd9o/RoTN1oeyaF/KM/KpycwnkdkLy8rFsnoRyc4jmt2b9B69yczpTVZOb3rk9qFHTvi9pgNMrCPSkJnNd/ed/lqrBKsd1dTGSNRWEY1GiUaiRKJp4Zy96o4j0pXVxhPcdt1/cGnaw9jPNkBackdibdhSwcI3XyS2+Em+tGUuI20VAGsyRlA+/KsMOvAUckZMSerU8yLSuSx8cw5Zz17BPomllJPNJ7lTSQzaj/T+I8npXUgkMzfokRKvpqaqiuqKLcS2FlNbVkyivBjbVkJG9UZ61pTQO7GJvl5KeviohvoqyKY02peKjHxqsgpJ9OxPNK8/Gb0Hkd1nID0KBpObP4S0nAJ9JkmX01SCpS6C7SgjPQ3SNfOgSHeTHo1QkT0Yq3XYshwK9m5TfdWxOIs+/Jj1C58le+WrTKh6myOtjBhRVuRN5NNR5zLkwJMZVLhnks5ARDq7iQceRuyAt3jz5YeJvf8we5f+m34fvQwftbxvrUcptTy2pvWhIrOA1dmjWNWzH5G8AWT2GUROwWD6FA4lp2AQPTNzdmkYg0h30KYEy8xmA6PCl72BLe4+0cyGA0v4/G38hrtf1JZjiYh0JlUF42AtsHrBLidY8YTzUdEKlr/zEvbZK+y5dR6TbSUAZZbHun5Tqdn3eAYdcCx7Zvdph+hFpCtIS4ty4NdOga+dgruzZu1qStd8RPmWTURrywEnbplkZGWR2aMXWb0K6V0wiF598imIRNr9YeEiXVWbEix3n7F92cx+A5TW27zM3Se2pX4Rkc6q59BxVKzJJHPFW6TtO6PJcu7O+s3lLP9oAWWfvE7muvkMqfiAMbaaMUA1GazK25dPRpzGoP2PJm+P/clTNxsR2UVmxqBBQxg0aEiqQxHp8pLSRdDMDDgVOCIZ9YmIdHZT9+rHvNdHMeWDx0g7ciaekcOGzaWsKfqY0tUfkli3mKzNH1K4bRnDfDUDwrENpZbH2l7jWDzoZAaOO4Q+o6azV3rbBqeLiIjI7pOsMVjTgfXuXn+6rBFm9g5QBvzM3V9L0rFERDq86XsXclXetzm04sds+39fYptn0t9Kqf8Ejw2RQkpy9uKjgiPoMXRfBo6ZRq8Be9NLE+GIiIh0Wi0mWGb2AtDYQ1N+6u6PhsunA7PqbVsL7OHuJWZ2APCImY1197JG6r8QuBBgjz322NX4RUQ6pGjEuOrCc7nniSyGF79Mdhqs7D2Y7H57kj9kFPnDx9OvRx/6pTpQERERSao2T9NuZmnAauAAd1/VRJk5wJXu3uwc7F1tmnYREREREemampqmPRkjpb8KfFg/uTKzQjOLhst7AnsDnybhWCIiIiIiIh1WMsZgncaO3QMBDgF+aWa1QAK4yN03JeFYIiIiIiIiHVabEyx3P7eRdQ8CD7a1bhERERERkc6kzWOwksnMioHlqY6jgQJgY6qDkN1G97v70L3uPnSvuxfd7+5D97p76Yj3e5i7FzZc2aESrI7IzOY1NnhNuibd7+5D97r70L3uXnS/uw/d6+6lM93vZExyISIiIiIiIijBEhERERERSRolWC37U6oDkN1K97v70L3uPnSvuxfd7+5D97p76TT3W2OwREREREREkkQtWCIiIiIiIkmiBEtERERERCRJlGA1w8yONrOPzGypmf041fFI8pjZUDN72cwWm9kHZnZpuL6vmT1vZp+E//ZJdaySHGYWNbN3zOyJ8PUIM3szfH/PNrOMVMcoyWFmvc3sATP70MyWmNlBem93TWZ2efgZ/r6ZzTKzLL23uw4z+4uZbTCz9+uta/S9bIGbw/u+yMz2T13ksquauNe/Dj/HF5nZw2bWu962a8J7/ZGZHZWSoJuhBKsJZhYFbgOOAcYAp5vZmNRGJUkUA65w9zHAVOB74f39MfCiu+8NvBi+lq7hUmBJvdf/C9zk7l8CNgP/kZKopD38HnjG3fcB9iW473pvdzFmNhj4ATDJ3ccBUeA09N7uSu4Cjm6wrqn38jHA3uHPhcAfdlOMkhx3sfO9fh4Y5+4TgI+BawDC72unAWPDff4v/N7eYSjBatoUYKm7f+ruNcB9wAkpjkmSxN3XuvuCcHkrwRewwQT3+G9hsb8BJ6YkQEkqMxsCfAP4c/jagCOAB8IiutddhJn1Ag4B7gRw9xp334Le211VGpBtZmlAD2Atem93Ge7+KrCpweqm3ssnAH/3wBtAbzMbuFsClTZr7F67+3PuHgtfvgEMCZdPAO5z92p3/wxYSvC9vcNQgtW0wcDKeq9XheukizGz4cB+wJtAf3dfG25aB/RPVVySVL8DrgYS4et8YEu9D269v7uOEUAx8NewS+ifzawnem93Oe6+GrgRWEGQWJUC89F7u6tr6r2s721d2/nA0+Fyh7/XSrCkWzOzHOBB4DJ3L6u/zYNnGOg5Bp2cmR0LbHD3+amORXaLNGB/4A/uvh9QQYPugHpvdw3h2JsTCJLqQUBPdu5iJF2Y3svdg5n9lGBox72pjqW1lGA1bTUwtN7rIeE66SLMLJ0gubrX3R8KV6/f3qUg/HdDquKTpDkYON7Migi6+h5BMEand9itCPT+7kpWAavc/c3w9QMECZfe213PV4HP3L3Y3WuBhwje73pvd21NvZf1va0LMrNzgWOBM/zzh/d2+HutBKtpbwN7h7MRZRAMpnssxTFJkoRjcO4Elrj7b+ttegw4J1w+B3h0d8cmyeXu17j7EHcfTvA+fsndzwBeBk4Ji+ledxHuvg5YaWajwlVfARaj93ZXtAKYamY9ws/07fda7+2uran38mPA2eFsglOB0npdCaUTMrOjCbr3H+/u2+ptegw4zcwyzWwEwcQmb6UixqbY58mgNGRmXycYuxEF/uLu16c2IkkWM5sGvAa8x+fjcn5CMA7rfmAPYDlwqrs3HGArnZSZHQZc6e7HmtmeBC1afYF3gDPdvTqF4UmSmNlEgglNMoBPgfMI/qCo93YXY2a/AGYQdB96B7iAYCyG3ttdgJnNAg4DCoD1wHXAIzTyXg6T7FsJuoluA85z93kpCFu+gCbu9TVAJlASFnvD3S8Ky/+UYFxWjGCYx9MN60wlJVgiIiIiIiJJoi6CIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUi0kGY2XAzczNLS3UsXZ2ZnWtmc1MdR0djZtPN7KNUxyEi0pkpwRIRkU7NzGaaWa2Zldf7uTrVcXVG7v6au49Kdr3hHw4q6t2fPyf7GCIiHYX+SioikiRmlubusVTH0U3NdvczUx1Ee+kiv1v7uvvSVAchItLe1IIlItIGZlZkZj8ys0VAhZmlmdlUM/u3mW0xs3fN7LB65eeY2f8zs7fMrMzMHjWzvk3UfZ6ZLTGzrWb2qZn9Z4PtJ5jZwrCeZWZ2dLi+l5ndaWZrzWy1mf23mUVbOI+9zOwlMysxs41mdq+Z9a63bZOZ7R++HmRmxdvPy8yON7MPwvOdY2ajG1yfK81skZmVmtlsM8va9Su968zsx+F12Wpmi83spCbKmZndZGYbwmv5npmNC7dlmtmNZrbCzNab2e1mlt3K498Vln8+jOEVMxtWb/vvzWxleMz5Zja93raZZvaAmd1jZmXAuWY2xcxeD6/zWjO71cwy6u3jZvZdM/skPN5/hffu3+Ex7q9fvomYDzOzVa05PxERaZwSLBGRtjsd+AbQG+gPPAn8N9AXuBJ40MwK65U/GzgfGAjEgJubqHcDcCyQB5wH3FQvyZkC/B24KjzuIUBRuN9dYb1fAvYDjgQuaOEcDPh/wCBgNDAUmAng7suAHwH3mFkP4K/A39x9jpmNBGYBlwGFwFPA4w2+yJ8KHA2MACYA5zYagNm0MHlo6mdaC+fQ0DJgOtAL+EUY/8BGyh1JcP1GhmVPBUrCbb8K108kuJ6DgWt3IYYzgP8CCoCFwL31tr0d1tsX+AfwzwbJ5wnAAwT3914gDlwe1nUQ8BXguw2OdxRwADAVuBr4E3Amwf0cR/C7+oWFiXJT9+f/Wtj9VTNbZ2YPmdnwtsQhItKRKcESEWm7m919pbtXEnyZfcrdn3L3hLs/D8wDvl6v/N3u/r67VwA/B05trIXJ3Z9092UeeAV4jiBhAPgP4C/u/nx4nNXu/qGZ9Q+PdZm7V7j7BuAm4LTmTsDdl4Z1Vbt7MfBb4NB62+8AlgJvEiSGPw03zQCeDPetBW4EsoEvN7g+a9x9E/A4QVLRWAxz3b13Mz/NTUpxaoMv+4Pc/Z/hcRPuPhv4BJjSyL61QC6wD2DuvsTd15qZARcCl7v7JnffCvxPS9eygSfd/VV3rya4ZgeZ2dDwfO9x9xJ3j7n7b4BMoP74p9fd/ZEw/kp3n+/ub4Tli4A/Uu8ehW5w9zJ3/wB4H3jO3T9191LgaYKE+wtz9wnN3J+GyV59hwLDCa7xGuAJ02QuItJF6cNNRKTtVtZbHgZ8y8yOq7cuHXi5ifLLw+0FDSs1s2OA6whaUCJAD+C9cPNQgtaihoaF9a0N8gMI913ZSNn6x+oP/J4ggcsN99ncoNgdwGPAhWHCAEGL1/LtBdw9YWYrCVp6tltXb3lbuE+y3d9wDJaZnQ38kOCLPUAOjVxnd3/JzG4FbgOGmdlDBC2PWQTXfH69a2lAs90tG6i77u5ebmabCM5/pZldSZAoDwKcoKWyoLF9w/MZSZD4TgrjSgPmNzje+nrLlY28HrALsSeNu78aLtaY2aVAGUFL6XtN7yUi0jmpBUtEpO283vJKghaq+n/Z7+nuv6pXZmi95T0IWlA21q/QzDKBBwlahPq7e2+ChGr7N/2VwF6NxLISqAYK6h0/z93HtnAO/xOex3h3zyNoifs8qzDLAX4H3AnMtM/Hja0hSOq2l7Pw/Fa3cLydWDBFeHkzP9NbrqWurmEECeElQH54/d6vf071ufvN7n4AMIYgob2K4J5UAmPrXcte7p6zC6dVd6/Da9gXWBOey9UE3RH7hPGVNoiv/u8VwB+AD4G9w3v0k6bOp71YMNauqftz+y5U5ezm2EVEdhclWCIiyXUPcJyZHWVmUTPLCicOGFKvzJlmNiYcz/RL4AF3jzeoJ4Ogy1gxEAtbs46st/1O4Dwz+4qZRcxssJnt4+5rCboS/sbM8sJte5lZw65kDeUC5UCpmQ0mSDDq+z0wz90vIBhjtv3L9P3AN8I40oErCBK8f7d0oRoKpwjPaebntV2orifBl/hiCCYMIRiDtBMzm2xmB4bxVwBVQMLdEwRJ2k1m1i8sO9jMjqq3r1u9SUwa8fVwbFkGwVisN9x9JcH1joXxpZnZtQQtWM3JJWj5KTezfYCLWyifdO4+tpn7c1Fj+5jZWDObGL4fcoDfECTgS3Zr8CIiu4kSLBGRJAq/PJ9A0LpQTNCidBU7ft7eTTARxTqCbmg/aKSereH6+wm66n2boHve9u1vEU58QdDy8QqftySdTZCgLQ73fYBg3FRzfgHsH9b1JPDQ9g1mdgLBJBXbv9D/ENjfzM5w948IWrtuIWjxOQ44zt1rWjheu3L3xQRf5F8n6CY3HvhXE8XzCBKpzQTdHUuAX4fbfkQw9uwNC2bze4FwnFQ4lmorzXdz+wdBN89NBJNPbO/G+CzwDPBxeMwqWujGSdBt8dvhMe8AZrdQvqPoTxBrGfApQZfNY8MxeyIiXY65N+yBICIi7cXM5gD3uLsetNrJmdmZBN0Hr2li+13AKnf/2W4NTEREUkqTXIiIiHwB7n5PqmMQEZGOR10ERUS6CQseetvWyQmkkzOznzTxe/B0qmMTEekK1EVQREREREQkSdSCJSIiIiIikiQdagxWQUGBDx8+PNVhiIiIiIiINGv+/Pkb3b2w4foOlWANHz6cefPmpToMERERERGRZpnZ8sbWq4ugiIiIiIhIkijBEhERERERSRIlWCIijdAMqyIiIvJFdKgxWI2pra1l1apVVFVVpToU6WSysrIYMmQI6enpqQ5FOpl/L93IfX+7jf8869uMHbl3qsMRERGRTqTDJ1irVq0iNzeX4cOHY2apDkc6CXenpKSEVatWMWLEiFSHI53Ms+8s5ebob6m4/6/ws6JUhyMiIiKdSIfvIlhVVUV+fr6SK9klZkZ+fr5aPuWLKd8AQM/YZqgqS3EwIiIi0pl0+AQLUHIlX4h+b+SLsm3Fn78o/jB1gYiIiEin0ykSLBGR3SmtcmPdcvmqD1IYiYiIiHQ2SrBawcy44oor6l7feOONzJw5M3UB1fPGG29w4IEHMnHiREaPHl0X15w5c/j3v//9hetdvnw5+++/PxMnTmTs2LHcfvvtSYpYpOPLqt5ct1y2anEKIxEREZHOpsNPctERZGZm8tBDD3HNNddQUFCQtHrdHXcnEvniee4555zD/fffz7777ks8Huejjz4CggQrJyeHL3/5y1+o3oEDB/L666+TmZlJeXk548aN4/jjj2fQoEFfOFaRziIvESRYSxOD6LHx4xRHIyIiIp2JWrBaIS0tjQsvvJCbbrppp23FxcWcfPLJTJ48mcmTJ/Ovf/0LgJkzZ3LjjTfWlRs3bhxFRUUUFRUxatQozj77bMaNG8fKlSu56qqrGDduHOPHj2f27NlAkCAddthhnHLKKeyzzz6cccYZjT6XZ8OGDQwcOBCAaDTKmDFjKCoq4vbbb+emm25i4sSJvPbaa83GedZZZ3HQQQex9957c8cddwCQkZFBZmYmANXV1SQSiUavzc0338yYMWOYMGECp512GgCbNm3ixBNPZMKECUydOpVFixbVHeucc85h+vTpDBs2jIceeoirr76a8ePHc/TRR1NbWwvAL3/5SyZPnsy4ceO48MILdzrvRCLB8OHD2bJlS926vffem/Xr1zd3G0VarVdiCxXRPD7zgaRvXZ3qcERERKQT6VQtWL94/AMWr0nujF5jBuVx3XFjWyz3ve99jwkTJnD11VfvsP7SSy/l8ssvZ9q0aaxYsYKjjjqKJUuWNFvXJ598wt/+9jemTp3Kgw8+yMKFC3n33XfZuHEjkydP5pBDDgHgnXfe4YMPPmDQoEEcfPDB/Otf/2LatGk71HX55ZczatQoDjvsMI4++mjOOecchg8fzkUXXUROTg5XXnklAN/+9rebjHPRokW88cYbVFRUsN9++/GNb3yDQYMGsXLlSr7xjW+wdOlSfv3rXzfaevWrX/2Kzz77jMzMzLqE57rrrmO//fbjkUce4aWXXuLss89m4cKFACxbtoyXX36ZxYsXc9BBB/Hggw9yww03cNJJJ/Hkk09y4okncskll3DttdcCcNZZZ/HEE09w3HHH1R0zEolwwgkn8PDDD3Peeefx5ptvMmzYMPr379/ifRRpjVzfSlVaHlu8Hz2rPkp1OCIiItKJqAWrlfLy8jj77LO5+eabd1j/wgsvcMkllzBx4kSOP/54ysrKKC8vb7auYcOGMXXqVADmzp3L6aefTjQapX///hx66KG8/fbbAEyZMoUhQ4YQiUSYOHEiRUVFO9V17bXXMm/ePI488kj+8Y9/cPTRRzd6zObiPOGEE8jOzqagoIDDDz+ct956C4ChQ4eyaNEili5dyt/+9rdGW4gmTJjAGWecwT333ENaWlrdOZ111lkAHHHEEZSUlFBWFiTGxxxzDOnp6YwfP554PF4X7/jx4+vO7+WXX+bAAw9k/PjxvPTSS3zwwc6TDMyYMaOute++++5jxowZzV5zkV2R5rXEI5lU9hhEj0S5pmoXERGRVutULVitaWlqT5dddhn7778/5513Xt26RCLBG2+8QVZW1g5l09LSduhWV/95TD179mzV8bZ30YOg+18sFmu03F577cXFF1/Md77zHQoLCykpKdmpTFNxws7TmTd8PWjQIMaNG8drr73GKaecssO2J598kldffZXHH3+c66+/nvfee69V5xSJREhPT687ViQSIRaLUVVVxXe/+13mzZvH0KFDmTlzZqPPsjrooINYunQpxcXFPPLII/zsZz9r9rgiuyItUUsiko73GgLlQNlqyMpLdVgiIiLSCbS5BcvMhprZy2a22Mw+MLNLw/UzzWy1mS0Mf77e9nBTq2/fvpx66qnceeeddeuOPPJIbrnllrrX27vCDR8+nAULFgCwYMECPvvss0brnD59OrNnzyYej1NcXMyrr77KlClTWh3Tk08+WTdG6ZNPPiEajdK7d29yc3PZunVri3ECPProo1RVVVFSUsKcOXOYPHkyq1atorKyEoDNmzczd+5cRo0atcOxE4kEK1eu5PDDD+d///d/KS0tpby8nOnTp3PvvfcCwViygoIC8vJa9+V0ezJVUFBAeXk5DzzwQKPlzIyTTjqJH/7wh4wePZr8/PxW1S/SknjCSSOGRzJI7zsUgNim5SmOSkRERDqLZHQRjAFXuPsYYCrwPTMbE267yd0nhj9PJeFYKXfFFVewcePnz8i5+eabmTdvHhMmTGDMmDF105mffPLJbNq0ibFjx3LrrbcycuTIRus76aSTmDBhAvvuuy9HHHEEN9xwAwMGDGh1PHfffTejRo1i4sSJnHXWWdx7771Eo1GOO+44Hn744bpJLpqKE4JufocffjhTp07l5z//OYMGDWLJkiUceOCB7Lvvvhx66KFceeWVjB8/HoALLriAefPmEY/H/397dx5fVX3nf/z1uUvuzUY2EpaEJSgoSlg0ohVRoG4drdYV+6u2yFTHbk79/WZ+3a3aXx/T1rYz8xtt/emotFMH16n66GKlLlU6biCoKIugAQIBQgJkv+v398e9CSEkYckNl5u8n4/HfeSc7znn+/2EkxPOJ99zvl+uv/56qqqqmDVrFrfeeiuFhYXccccdrFy5kunTp/PNb36TX/3qV4f9/RQWFnLTTTcxbdo0LrroIs4444yubffdd98BcS9cuJDf/OY3ejxQUioSixOwCHFvFjmlEwFo3lWT1phEREQkc1hvI9MNqEKzZ4B7gDlAi3Pup4c4pEt1dbVbsWLFAWVr165l6tSpKY1R9rvjjjsOGAxjqNHPjxypfe0RPvqnsygtLePD8x/inEdPZfeMv2PMlf+U7tBERETkOGJmK51z1T3LUzrIhZlNBGYBbySLvmpm75rZQ2ZW1McxN5vZCjNbUV9fn8pwRESOWCQWx08U5/EzujCXHa6Y+J6t6Q5LREREMkTKEiwzywOeAr7unGsCfgmcAMwE6oCf9Xacc+5+51y1c666tLQ0VeHIYbrjjjuGbO+VyNGIxOJkEcF5sxhTEGQ7JXiaa9MdloiIiGSIlCRYZuYnkVw94pz7LwDn3E7nXMw5FwceAA5/5AYRkTQJR+NkEQVvgIJsPzsYSXZbXbrDEhERkQyRilEEDXgQWOuc+3m38jHddrsCWDPQtkREBlskFsdvUfBmYWY0B0aRH94F8Vi6QxMREZEMkIp5sOYANwDvmdnqZNm3gc+a2UzAATXA36WgLRGRQRWOOgqI0O7LAiCUPRpvJA6t9ZB/+CN8ioiIyPA04ATLObccsF42DYlh2UVkeInE4gSI0pFMsOL5Y6GJxGTDSrBERETkEFI6iuBQ9vTTT2NmrFu3rs99ampqmDZtWsraXL9+PfPmzWPmzJlMnTqVm2++GUhMEvyHPxx9/trR0cHs2bOZMWMGp556Kt///vdTFbJIxgsnRxE0bwAAX1E5APF929MZloiIiGQIJViHaenSpZxzzjksXbq01+3RaHTAbcRiB77jceutt3LbbbexevVq1q5dy9e+9jVg4AlWIBDgxRdf5J133mH16tU899xzvP766wOKXWSoiEQTowiaL5FgZRePA6Btt4ZqFxERkUNTgnUYWlpaWL58OQ8++CCPPvpoV/nLL7/M3LlzueyyyzjllFOARKL1uc99jqlTp3L11VfT1tYGwAsvvMCsWbOoqqpi8eLFhEIhACZOnMg3vvENTjvtNJ544okD2q2rq6OioqJrvaqqinA4zO23385jjz3GzJkzeeyxx2htbWXx4sXMnj2bWbNm8cwzzwCwZMkSLr/8cubNm8fkyZO58847ATAz8vLyAIhEIkQiERJjlRzoiSeeYNq0acyYMYNzzz0XSPR+3XjjjVRVVTFr1ixeeumlrrY+85nPcMEFFzBx4kTuuecefv7znzNr1izOOussGhsbAXjggQc444wzmDFjBldddVXXv093Z511Fu+//37X+rx58+g5AbXIYIlEwnjNYf7EI4KFpWMIOy/tDVvSHJmIiIhkglQMcnHs/PGbsOO91NY5ugo+9aN+d3nmmWe4+OKLmTJlCiUlJaxcuZLTTz8dgLfffps1a9ZQWVlJTU0N69ev58EHH2TOnDksXryYX/ziF3z1q19l0aJFvPDCC0yZMoXPf/7z/PKXv+TrX/86ACUlJbz99tsHtXvbbbexYMECzj77bC688EJuvPFGCgsLueuuu1ixYgX33HMPAN/+9rdZsGABDz30EHv37mX27Nmcf/75ALz55pusWbOGnJwczjjjDC655BKqq6uJxWKcfvrpbNy4ka985SuceeaZB7V/11138ac//Yny8nL27t0LwL333ouZ8d5777Fu3TouvPBCNmzYAMCaNWtYtWoVHR0dnHjiifz4xz9m1apV3Hbbbfz617/m61//OldeeSU33XQTAN/97nd58MEHu3rmOi1cuJDHH3+cO++8k7q6Ourq6qiuPmiSbJFBEQkn/vjhSfZgjS7MZRdFePduS2dYIiIikiHUg3UYli5dynXXXQfAddddd8BjgrNnz6aysrJrfdy4ccyZMweA66+/nuXLl7N+/XoqKyuZMmUKAF/4whd45ZVXuo5ZuHBhr+3eeOONrF27lmuuuYaXX36Zs846q6vnq7vnn3+eH/3oR8ycOZN58+bR0dHBli2Jv7ZfcMEFlJSUkJ2dzZVXXsny5csB8Hq9rF69mtra2q4krKc5c+awaNEiHnjgga7HF5cvX871118PwMknn8yECRO6Eqz58+eTn59PaWkpBQUFfPrTnwYSPW81NTVAIgmbO3cuVVVVPPLIIwf0VHW69tprefLJJwF4/PHHufrqq3v99xEZDLFIMsHyJxKsMQVB6lwx1qy5sEREROTQMqsH6xA9TYOhsbGRF198kffeew8zIxaLYWbcfffdAOTm5h6wf89H7Xp79K6nnnV0N3bsWBYvXszixYuZNm1ar4mQc46nnnqKk0466YDyN95445DxFBYWMn/+fJ577rmDBui47777eOONN/j973/P6aefzsqVK/v9PgKBQNeyx+PpWvd4PF3vqC1atIinn36aGTNmsGTJEl5++eWD6ikvL6ekpIR3332Xxx57jPvuu6/fdkVSKR7pAPb3YI3MC/CWK+GEttp0hiUiIiIZQj1Yh/Dkk09yww03sHnzZmpqati6dSuVlZW8+uqrve6/ZcsWXnvtNQD+8z//k3POOYeTTjqJmpoaNm7cCMB//Md/cN555x2y7eeee45IJALAjh07aGhooLy8nPz8fJqbm7v2u+iii/i3f/s3nHMArFq1qmvbsmXLaGxspL29naeffpo5c+ZQX1/f9chfe3s7y5Yt4+STTz6o/U2bNnHmmWdy1113UVpaytatW5k7dy6PPPIIABs2bGDLli0HJXb9aW5uZsyYMUQika56erNw4UJ+8pOfsG/fPqZPn37Y9YsMVCwaBvb3YHk9RlPWSPJCuyB5jYmIiIj0RQnWISxdupQrrrjigLKrrrqqz9EETzrpJO69916mTp3Knj17+NKXvkQwGOThhx/mmmuuoaqqCo/Hwy233HLItp9//vmuQSYuuugi7r77bkaPHs38+fP54IMPuga5+N73vkckEmH69OmceuqpfO973+uqY/bs2Vx11VVMnz6dq666iurqaurq6pg/fz7Tp0/njDPO4IILLuDSSy8F4Pbbb+fZZ58F4B//8R+pqqpi2rRpnH322cyYMYMvf/nLxONxqqqqWLhwIUuWLDmg5+pQfvCDH3DmmWcyZ86cA5K6Z599lttvv71r/eqrr+bRRx/l2muvPey6RVIhFk70YHn9+3+u24OjyXIhaN+TrrBEREQkQ5g7jv4iW11d7XqOFrd27VqmTp2apogy25IlSw4YDGM40s+PHKnf/mkZV7x2Na2X/Tu5p10DwAP3/YybdtwFX/pvGHVqmiMUERGR44GZrXTOHTQSm3qwRES6iUcTg1x4s4JdZZ6CxGTDbp9GEhQREZH+ZdYgF3JEFi1axKJFi9IdhkhGcclRBL3+/QlWsCQxH11H41ay0xKViIiIZIqM6ME6nh5jlMyhnxs5GvHkIBe+5ETDAAWl44g7o7V+a7rCEhERkQxx3CdYwWCQhoYG3SzLEXHO0dDQQDAYPPTOIt245COC5tv/szO6KJ/dFBDZo6HaRUREpH/H/SOCFRUV1NbWUl9fn+5QJMMEg0EqKirSHYZkmmSChW9/D9aYwmzqXDFlTdvTFJSIiIhkiuM+wfL7/VRWVqY7DBEZJlws8Ygg3v0JVll+gDWumPK2HWmKSkRERDLFoD8iaGYXm9l6M9toZt8c7PZERAYk2plg7Z8Hy+/10OQfSU7HzjQFJSIiIpliUBMsM/MC9wKfAk4BPmtmpwxmmyIiA9LZg9XtEUGA9uzR5MRbINyahqBEREQkUwx2D9ZsYKNz7iPnXBh4FLh8kNsUETl6vTwiCBDLG5NYaKo7xgGJiIhIJhnsBKsc6D6ucW2yrIuZ3WxmK8xshQayEJF0s2jvCZa3c7LhJo0kKCIiIn1L+zDtzrn7nXPVzrnq0tLSdIcjIsOcxZOjCPZIsALFiREp2xu2HeuQREREJIMMdoK1DRjXbb0iWSYicnyKRRJffYEDivPLxgPQWr/lWEckIiIiGWSwE6y3gMlmVmlmWcB1wLOD3KaIyFHzxMPEMfAcOIvFqJIi9rpcQnu29nGkiIiIyCDPg+Wci5rZV4E/AV7gIefc+4PZpojIQFgsQhQfWWYHlI8pSEw2nK/JhkVERKQfgz7RsHPuD8AfBrsdEZFU8MTDRM1PVo/ysvwAG1wxRS0aRVBERET6lvZBLkREjifeeJiYp2d6BT6vh33+UnJDu9IQlYiIiGQKJVgiIt14XISY9d653xYcRW50D3QO5S4iIiLSgxIsEZFuvPEIMTu4Bwsgkl+OBweaC0tERET6oARLRKQbn+v9EUEAChJDtbu9GqpdREREeqcES0SkG6+LEPf4e92WXVYJQOvOj49lSCIiIpJBlGCJiHTji/edYBWNnkjMGS07PzrGUYmIiEimGPRh2kVEMoVzDh8R4t7eHxEsLxnBDopxjZuPcWQiIiKSKdSDJSKSFIs7/ESJ9/EOVnlRNrWuFM++rcc4MhEREckUSrBERJLCsThZRHF9JFgjgn52ecrIadt2jCMTERGRTKEES0QkKRyNk0UE18cjggAtwTHkR+ohFj2GkYmIiEimUIIlIpLU2YNFPwlWJH8cXuLQpF4sEREROZgSLBGRpEQPVv8JlrdoHABurwa6EBERkYMpwRIRSQpH4wQthPMH+9wnWJqYC6tFc2GJiIhIL5RgiYgkRWKOHEI4f26f+xSOnkTcmRIsERER6ZUSLBGRpPZwlGzCWFZOn/uUlxawi0KiDTXHLjARERHJGANKsMzsbjNbZ2bvmtlvzawwWT7RzNrNbHXyc19KohURGUSh9lY85rBA3z1Y5YXJubCaNBeWiIiIHGygPVjLgGnOuenABuBb3bZtcs7NTH5uGWA7IiKDLtzeBIAvkNfnPvmaC0tERET6MaAEyzn3vHOuczKY14GKgYckIpIekfZWALz9JFgALdljyQ/v0lxYIiIicpBUvoO1GPhjt/VKM1tlZn8xs7kpbEdEZFBE2psB8Gfn97tfOK8CHzFo3n4swhIREZEM4jvUDmb2Z2B0L5u+45x7JrnPd4Ao8EhyWx0w3jnXYGanA0+b2anOuaZe6r8ZuBlg/PjxR/ddiIikQDzUAoA/u/8eLCuaAPXg9mzGCvV7S0RERPY7ZILlnDu/v+1mtgi4FPikc84ljwkBoeTySjPbBEwBVvRS//3A/QDV1dXuCOMXEUmZWEciwco6RIKVXTYJNkDzjk2MqFQHvYiIiOw30FEELwb+N3CZc66tW3mpmXmTy5OAycBHA2lLRGSwxcOJd7ACh3hEsHB0JXFntO7UrzURERE50CF7sA7hHiAALDMzgNeTIwaeC9xlZhEgDtzinGscYFsiIoPKhRN/J/L0M0w7QPnIQnZQRExzYYmIiEgPA0qwnHMn9lH+FPDUQOoWETnW4qFEDxb9TDQMUFGUzRpXRoXmwhIREZEeUjmKoIhIRouFOxOs/nuwcgM+6r1l5LbVHoOoREREJJMowRIRSXLJUQTx959gATQHyxkR2Q3R8CBHJSIiIplECZaISJIv3EzIAuDLOuS+kfwKPMShSb1YIiIisp8SLBGRpOzIHlq9BYe1r7d4IgDxxi2DGJGIiIhkGiVYIiJJObF9tPsLD2vf7LJKAFp2bhzEiERERCTTKMESEQGcc+THmggfZoJVPLqSqPPQuvPjwQ1MREREMooSLBERoCMSp5AmosHiw9q/vCSfOldCtFEJloiIiOynBEtEBNjdEqLYmnE5h5dgVRTlUOtK8WmQCxEREelGCZaICLBrbzMF1oY/f+Rh7Z+d5aXeN0pzYYmIiMgBlGCJiAB76ncAkF1QdtjHtGSXMyLaAJGOwQpLREREMowSLBERoG33ZgDySicc9jHh/IrEwr6tgxGSiIiIZCAlWCIiQKwxkWDljpp02MfEC8YnFvZsHoyQREREJAMpwRIRAbxNiQmDrejwe7CyShIJVkejerBEREQkQQmWiAjgb66l2TMCAvmHfUzeyHIA2ho00IWIiIgkKMESkWHPOceI9m00BcYc0XFlhSPY7UYQ3rNtkCITERGRTKMES0SGvV3NIU5gCx1Fk4/ouFEjguxyRbjmukGKTERERDLNgBIsM7vDzLaZ2erk52+6bfuWmW00s/VmdtHAQxURGRw1W7cy2vbgGTXtiI4bNSLITleIt2XnIEUmIiIimcaXgjr+2Tn30+4FZnYKcB1wKjAW+LOZTXHOxVLQnohISm1btwKAshNPP6Lj8gI+Gj0lZIfeHYywREREJAMN1iOClwOPOudCzrmPgY3A7EFqS0RkQEJbVgKQO2HWER/bFhhJbqQRYtFUhyUiIiIZKBUJ1lfN7F0ze8jMipJl5UD3cYtrk2UHMbObzWyFma2or69PQTgiIocvGoszcu87NGaNhbzSIz4+nDMKD3Fo1e8vEREROYwEy8z+bGZrevlcDvwSOAGYCdQBPzvSAJxz9zvnqp1z1aWlR35zIyIyEB9s38cMNtA26sgeD+zk8pIjD2qgCxEREeEw3sFyzp1/OBWZ2QPA75Kr24Bx3TZXJMtERI4r6z5YzXTby74p5x7V8d4RiQTLNW3Hyk9LZWgiIiKSgQY6imD3SWOuANYkl58FrjOzgJlVApOBNwfSlojIYIh8+DIABad88qiODxSPBaCjUX9DEhERkYGPIvgTM5sJOKAG+DsA59z7ZvY48AEQBb6iEQRF5HjjnKO04U32+kopLJ50VHXklowl5oz2xm1kpzg+ERERyTwDSrCcczf0s+2HwA8HUr+IyGDatKuF0+Jr2Dv2PArNjqqO0hE57KYA9m5PcXQiIiKSiVIxD5aISEZav+YtLrEm4ifNP+o6yvID7HRFjGrZkcLI0isSi1O7dTO7P36H9voa2FeLv2UbwVAD/lgbWfF2suNteMwRxUfcfES82XRkFRHJKsJyS/DmjyJYPJa80nEUlY0jp7gcAnnp/tZEREQGnRIsERm22jf8BYDSaQuOuo7SvCBvuULKW3emKqxjqiMSY92HH9Kw9hU8tW9R0LSOCdEaKq2Jym77NVDEPl8RIU8uoawSmr0VxPHgcVGIR/FHW8lp20Z+y1oKG5oI2MHzgrWSTZOvhLaskURyRhHJKSOaU4bLGYk3KwgeH1G8xM0H8SgWC0MsTCzcQTwSIh4N4SLtWLQDoh1YNIQn1o4nFsIT68AXC+GNh/DHQ/hcmCwXIiv51UccLPE8u6Ozt9JwWFdZHA8OD84Mhyex3rlsyW0YrnPZOte9xJN1xS15XFd9ifoBzHUuuf3/KG7/snUv76Wst+3dyw/c3v243uuToaPVW0jFFx9h9MjidIciIijBEpFhrKj+LRp9ZRQXTTzqOkZk+9hNMcGOmpTFNZgisThr1n/Ijrd/T+62V6lsW8NM2wVAB1lsD0xiW8k8astOIa+iipEVkxkxagIl/iAlh9lGeyjK5vqd7Nm5hZbdtXTs2Y5rqsNadhLs2EVeewOFrauZwB6yLXxU30cIPyGyCFsWYQJEPFlELEDUEyDmzyPsDdDsDRL3Bon7AomkzTlwLpliuGRyk0w4nAMX7/qYiyWXHeZiWOcyseT2RAplLvnpTMlcHC8xPMS7UqzOhM44MLnDkoXdUqADU6Ru+3aWHfAkq/XY17odc6DO8gMTTBkKsuIdVHf8Ny+/+hSjr7gp3eGICEqwRGSY2r6njemxNTSWzaH4KN+/AjAzWgKl5Eb3QCwCXn8Ko0yNfW0h3v7rMjre/z0T9rzGLPsYgL1WSF3xLNaPX0zpqedSPOkMJvmyBtxedsDHhIpyJlT0Or88kJjgubUjyr7WPYT27SIc6sDiUTwuhoco5vFhvgDmCxAIBPAHsgkEswkEc/H6gwQ8HgIDjlQk87lYhL0/qCTvoz8ASrBEjgdKsERkWFr7/io+afsInXh08191FwqWQgvQshMKKgYeXArsaw2x8q9/Irrmt1Tte5n51kgUL1vyprGh8jbGVH+awvGzKPQMaLaOo+bzeijIzaIgdxSUjUpLDCJDgXn9rC2Yy/R9LyYeofVrPFORdFOCJSLDUuv6xPtXo6uO/v2rTvHcUYkEqzm9CVZHJMYrr79O5K1fcfq+ZSywRsL4qCn6BKHpVzDhE1cyKbsobfGJyOAITb6U3BV/oPbt56g484p0hyMy7CnBEpFhKW/nm+z1FFFYNmXAddmI0bATaK4beGBHYeP23axe9gjjPn6cC1lDFA8fFZ1NaMbVjP/ElUwJFqQlLhE5Nk6Z82ma3voHmt5+CpRgiaSdEqx+1G/7mI/++iSzLv8aWYFgusMRkRRp7Yhwcuhddo487ajnv+ouqzDxrlGsqQ7vgGs7PB2RGK+89hrtrz/EOa3Pc7U10+AbxeZp/5PxC25iyoixxygSEUm3sqIR/CX7LE7b9dJx+y6oyHCiBKsfm158mLM2/St1a/8fW6bezKkXf5G8ERoCVSTTrf9gNadZA+sr56akvtzi0cSc0d64jcGe6enDbfW8u+w3jK95nAv5IPFeVdk8/OfdTMkpF1KSpneqRCS9wlMuJf/dF6ld9TwV1ZekOxyRYU0JVj/O/NwdvPOX6QT/+mPO/OCHtL3/U1YWzSdr2qVMPvNSgvnH77sMkXAH7e1thDraiUTCxCNhYtEw8WiEWCREPBohHk1+jYVx0QjxWIR4PE48FiPeNVxxYuhiI/HVdQ1l3Fke7xr6GFz3KV26hkLue0jgg8ud9dzj4GGK99ffd729dUr0OvtLjx0713qvu++ejhR0ghyZo2xvYGEe3dHH44DQ0Y+XAzDmtE+npL6RI3LYTQH+PYPziGBHJMYrf32V8JsPM6f1z1xlLdT7x7J52j8yfsEXmZQ/elDaFZHMcfqCq2l559vs/uuSYZVgxWMxwh0thEMdhEPthDs6iEY6iIRCRCMhouF2YpEQLhrGRcMQj+BcHBfv/MRw8XjivicewzmHS07NkJi7LjEVw4H/0fe4Nzlo+gQ7cH/bv9DzPsN6q7dbWe/TNRz7/807mzzcaR5S/X9/c/4kJs86j3HFOSmueXAoweqHeTzMmH817rwrWff2S+xd/iDT9rxI3vLniL56Kx/6T2DfiJOIjpxKTlklI8rGkTdyHHkjighk52K9dNE754jFYkTD7bS3ttDR1kSovZVQeyuR9mYi7a1EQ63EQq3EQ63Ew20QaYVIO55IGxZtxxtrxx9rxxvrICvegT/eQcB1EHAhgq6DIGH8FkMPCIj0bZP3BE4Ye2JK6irLD7DLFTKmeXtK6uu0oXYXa5b9mombn+BC1hHBx5ZRC/CcdzOlUz8J6q0SkaTiwgJeHvkZ5u5+jD2b36NoQlW6QzosHR3tNDXsomXvTtr21hNq2k24ZTeutRHaG/GF9+GNtOKNtpEVayMr3kYg3k7QtZPj2sm1EEFAL3IMbQ9HL6KtdEbGJFjm3PEzq3t1dbVbsWJFusPoV0dHBx+89QLta5eRv3sVFaFNFFtzr/uGnY8w/q7JJj3E8RLHZ/EjbjeCl3aChCxAyIKELUjEEyTiDRL1ZhPzZhP3ZRPzZYM/G+fPweMLYv4AXq8ffFng8ePxZYE38dW8fjw+P+bNwuPPwuv14/V68Xq9eDwG5gXzJP66Yh4ww8yDmSdR7jEgUY4nUW4kVjv/RtPftJcHF7k+9ujtZ7SPn1vnelbT5/52UHuuz337aq7/Hrr+He2Vd7TXbDou9aNv0zHYfV/FoyrIzs1PSV21e9pY+/NLOKOgicJ/WDmgulo6Iry2/AViK3/N2W0vMcLa2OWvoK3qBiYsWIzllaUkZhEZej7avIWyh85gS0E1p9z2uzQ8XrFfe1sr9ds/pmnXVtr3bCOydzs07cDXtpOcUD35kd0UxxvJt/Y+6+hwfposnw5PNiFPNmFPDlFfDlFfLnF/4uOSXzvnzfP4A3h8WXj9geQniDcrgPmy8PgCiXshrxePx4vH48E8HrxeL2ZevF4P1lXuTd7QeHCuW4+Uc8n7hW6TlHfq5T89F99/b9HzPmP/tv1lB9bRT1nvzR3SwO4FDu/go2uj///3XVYeRaVjyA0cX31DZrbSOVfds/z4ijIDBINBTpt7CcxNdL+7eJzG+u3srN1Ey+5aovu2Ew+1QKQdi7TjjYUSf2VOJit4vODxEfcFMX8u3kBO4hPMwxfIJZCdS1Z2HoGcfILZeQRz88kK5uL3ZalHSuQ4NXpEkD9QzvzW947qBfN43LFi3Ua2/eVXTN3xDBfYFkJksWX0BTDvi5SdPD+tN0oikhkmTRjPsnFf5ILae/jw2Z8w+fJvDFpb0UiEXds+orH2Q9p2bSLaUIO/eSt57dsoieygjEbG9zgm5Pw0eIpp9pXQmHsiO7LLcDkleHKL8eWXEsgfSW5hGXlFpYwoHpW4Dxq070Bk8CjBGiDzeCgeVUHxqONjclEROfZ8Xg97ck/E1xGBxo+g9KRDHuOcY23NNj5a/gSFH/+eM2KrmG1RanNOZvPM/8P4c69nsuasEpEjdM4Nd/LXn67kE2//E+siHZx05XcTvTFHKPEH5G3Ub91Ay45NRHfX4Nm3mZy2WorCdZTFdzPWYnSOVxpzRr1nJI3+MWwpPJOPC8bjKxpHsLiC/NJxFI0eT17BSMbq0WYZBpRgiYikQLR0KmwFdr7fZ4IVjcV5f/0Gtq74PSM2/4kzo29zikVo8I5k64mfY9z8L1JRMf3YBi4iQ0p2wMfJX17K8vu+wLlrfk7t2ieon3wNxSedTdGYEwnk5uMctLS20bpnB+37dtHSUEeocSuefVvJbq2lKLydstguSixMSbe6Gyhgt280O/JOZeuIcXiLJ5JTdgJF5ZMpq5jE6KwgGnJHZIDvYJnZY0DnnUQhsNc5N9PMJgJrgfXJba875245VH2Z8A6WiEhvlryynitemIfv5IvJ/ezDQKKXqqauno9X/4XIhy8wfs9rTKUGgD3eEurHfYrRZ/8PRpz4CQ1YISIpFY7EeP13D1L23n2cHN90WMc0kUu9dxRNwbF05I3DCscTLJtE4dgTKRs3mZw8TVou0l1f72ClbJALM/sZsM85d1cywfqdc27akdShBEtEMtWWhjZe/pcv8FnvS6wq/yytzXsZ1bSGKa4Gn8WJ4mVzThWRSQsor76M/Akz9V6ViAw65xxbajay/cNVxPZswYXbwSCQlYXlleLPL6No5BhGjplAbuHIdIcrklEGdZALSwzify2wIBX1iYhkmvElOdh53+CdVzYze9uvaSaXHTlTWDfmbyk+eS5jquZxQlB//RWRY8vMmFA5mQmVk9Mdisiwkap3sOYCO51zH3YrqzSzVUAT8F3n3Ku9HWhmNwM3A4wf33O8GRGRzHHD+dVE5r9OKBoiP5BNagaBFxERkUxyyATLzP4Mvb6z+B3n3DPJ5c8CS7ttqwPGO+cazOx04GkzO9U519SzEufc/cD9kHhE8Ei/ARGR44nf6wFvdrrDEBERkTQ5ZILlnDu/v+1m5gOuBE7vdkwICCWXV5rZJmAKoBesRERERERkyErFsFXnA+ucc7WdBWZWambe5PIkYDLwUQraEhEREREROW6l4h2s6zjw8UCAc4G7zCwCxIFbnHONKWhLRERERETkuJWyYdpTwczqgc3pjqOHkcDudAchx4zO9/Chcz186FwPLzrfw4fO9fByPJ7vCc650p6Fx1WCdTwysxW9jW8vQ5PO9/Chcz186FwPLzrfw4fO9fCSSec7Fe9giYiIiIiICEqwREREREREUkYJ1qHdn+4A5JjS+R4+dK6HD53r4UXne/jQuR5eMuZ86x0sERERERGRFFEPloiIiIiISIoowRIREREREUkRJVj9MLOLzWy9mW00s2+mOx5JHTMbZ2YvmdkHZva+mf19srzYzJaZ2YfJr0XpjlVSw8y8ZrbKzH6XXK80szeS1/djZpaV7hglNcys0MyeNLN1ZrbWzD6ha3toMrPbkr/D15jZUjML6toeOszsITPbZWZrupX1ei1bwv9Nnvd3zey09EUuR6qPc3138vf4u2b2WzMr7LbtW8lzvd7MLkpL0P1QgtUHM/MC9wKfAk4BPmtmp6Q3KkmhKPC/nHOnAGcBX0me328CLzjnJgMvJNdlaPh7YG239R8D/+ycOxHYA/xtWqKSwfCvwHPOuZOBGSTOu67tIcbMyoFbgWrn3DTAC1yHru2hZAlwcY+yvq7lTwGTk5+bgV8eoxglNZZw8LleBkxzzk0HNgDfAkjer10HnJo85hfJ+/bjhhKsvs0GNjrnPnLOhYFHgcvTHJOkiHOuzjn3dnK5mcQNWDmJc/yr5G6/Aj6TlgAlpcysArgE+PfkugELgCeTu+hcDxFmVgCcCzwI4JwLO+f2omt7qPIB2WbmA3KAOnRtDxnOuVeAxh7FfV3LlwO/dgmvA4VmNuaYBCoD1tu5ds4975yLJldfByqSy5cDjzrnQs65j4GNJO7bjxtKsPpWDmzttl6bLJMhxswmArOAN4BRzrm65KYdwKh0xSUp9S/A/wbiyfUSYG+3X9y6voeOSqAeeDj5SOi/m1kuuraHHOfcNuCnwBYSidU+YCW6toe6vq5l3bcNbYuBPyaXj/tzrQRLhjUzywOeAr7unGvqvs0l5jDQPAYZzswuBXY551amOxY5JnzAacAvnXOzgFZ6PA6oa3toSL57czmJpHoskMvBjxjJEKZreXgws++QeLXjkXTHcriUYPVtGzCu23pFskyGCDPzk0iuHnHO/VeyeGfnIwXJr7vSFZ+kzBzgMjOrIfGo7wIS7+gUJh8rAl3fQ0ktUOuceyO5/iSJhEvX9tBzPvCxc67eORcB/ovE9a5re2jr61rWfdsQZGaLgEuBz7n9k/ce9+daCVbf3gImJ0cjyiLxMt2zaY5JUiT5Ds6DwFrn3M+7bXoW+EJy+QvAM8c6Nkkt59y3nHMVzrmJJK7jF51znwNeAq5O7qZzPUQ453YAW83spGTRJ4EP0LU9FG0BzjKznOTv9M5zrWt7aOvrWn4W+HxyNMGzgH3dHiWUDGRmF5N4vP8y51xbt03PAteZWcDMKkkMbPJmOmLsi+1PBqUnM/sbEu9ueIGHnHM/TG9Ekipmdg7wKvAe+9/L+TaJ97AeB8YDm4FrnXM9X7CVDGVm84B/cM5damaTSPRoFQOrgOudc6E0hicpYmYzSQxokgV8BNxI4g+KuraHGDO7E1hI4vGhVcAXSbyLoWt7CDCzpcA8YCSwE/g+8DS9XMvJJPseEo+JtgE3OudWpCFsOQp9nOtvAQGgIbnb6865W5L7f4fEe1lREq95/LFnnemkBEtERERERCRF9IigiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiL/H9CBnX/auXzyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
15False50.1120.0634bAP.soma.v0.009526.92e-07
16False50.1120.0634Step1.soma.v0.01061.49e-05
17False50.1120.0634Step3.soma.v0.009490.000122
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "15 False 5 0.112 0.0634 bAP.soma.v \n", + "16 False 5 0.112 0.0634 Step1.soma.v \n", + "17 False 5 0.112 0.0634 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "15 0.00952 6.92e-07 \n", + "16 0.0106 1.49e-05 \n", + "17 0.00949 0.000122 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj5ElEQVR4nOzdeXxU9b3/8ddnZrIRCCEh7EtwAVlFBcTrbq1iXdBqRetuW692U6/Lba21tLf29me9tVXbUltb16LW3aq1brhVVFDEBReEsC9hSwjZZjKf3x9ziJOQDTNhEvJ+Ph5jzvI93+9nzmHifPL9nu8xd0dERERERETaL5TuAERERERERHYXSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiHQyZlZsZm5mkXTHIt2DmX1gZkekOw4Rkd2BEiwREenyzGyWmVUEr1oziyatP53u+Do7dx/r7nNSWaeZ3RFci4qkVziVbYiIdEamBw2LiKSWmUXcPdaO44uBpUBGe+rprsxsJrCXu5/dxL52XZtdqSvF2hQzuwNY6e7XpjsWEZFdST1YIiIpYGYlZvbfZrYQ2GZmETObamb/NrMtZvZu8hAsM5tjZv9rZm+aWbmZPWZmBc3UfYGZLTKzrWa2xMz+s9H+6Wa2IKjnMzObFmzvbWa3m9kaM1tlZj9vrQfBzPY0sxfMbKOZbTCze80sP2nfJjPbP1gfZGal29+XmZ0UDDXbEry/0Y3Oz5VmttDMyszsfjPL3vkzvfOauTZuZnsllbnDzH6etH5CcE63BNdwQhvbOsLMVprZNcH5KzGzs5L2H29m7wTXakWQDG7ft31o6DfMbDnwQrD972a2NjhvL5vZ2EZx/97Mng56iF4zswFm9hsz22xmH5nZfm08R0e35T2KiEjLlGCJiKTOmcDxQD7QH3gS+DlQAFwJPGRmRUnlzwUuBAYCMeDmZupdD5wA5AEXADclJTlTgLuAq4J2DwNKguPuCOrdC9gPOAb4ZivvwYD/BQYBo4GhwEwAd/8M+G/gHjPrAfwVuNPd55jZSGA2cBlQBDwFPGFmmUl1nw5MA0YAE4DzmwzA7JAgsWnudUgr76Ep9demtV6hICH5C/CfQCHwR+BxM8tqY1sDgL7AYOA84DYzGxXs20biuucH8VxiZic3Ov5wEuf+2GD9aWBvoB/wNnBvo/KnA9cGbdYArwfl+gIPAr9uY9xNMrMftHQ9Wjn820FSPt/MTm1PHCIiXYUSLBGR1LnZ3Ve4exVwNvCUuz/l7nF3fxaYB3wlqfzd7v6+u28Dfgyc3lQPk7s/6e6fecJLwL+AQ4Pd3wD+4u7PBu2scvePzKx/0NZl7r7N3dcDNwFntPQG3H1xUFeNu5eS+HJ+eNL+PwGLgTdIJIY/CnbNAJ4Mjo0CNwI5wH80Oj+r3X0T8AQwsZkYXnX3/BZer7b0HpqRfG1acxHwR3d/w93r3P1OEonL1J1o78fBOXyJRKJ9OoC7z3H394JrtZBEUnp4o2NnBtesKjjmL+6+1d1rSCS7+5pZ76Tyj7j7fHevBh4Bqt39LnevA+4nkVx/Ye7+y5auRwuH3sznieGPgTvM7OD2xCIi0hUowRIRSZ0VScvDga81+kv/ISSSkqbKLwMySPQ6NGBmx5nZ3KAnYAuJxGl7uaHAZ03EMjyob01S+38k8WW3WWbW38zuC4YUlgP3NBHTn4BxwC3Bl35I9Hgt217A3ePB+xucdNzapOVKoGdLsaTYitaL1BsOXNHo2g0l8R7bYnOQNG+3bPuxZnagmb0YDK0sAy5mx/NbH6uZhc3sl5YY+lnO572TycesS1quamJ9V57neu7+trtvdPeYuz9Fouftq+mIRURkV1KCJSKSOsmzBq0g0UOV/Nf+XHf/ZVKZoUnLw4AosCG5wmBY2kMkeoT6Bz0GT5EYyre9nT2biGUFiV6Xvknt57n72CbKJvtF8D7Gu3seiZ647W1hZj2B3wC3AzPt8/vGVpNITLaXs+D9rWqlvR2Y2aHWcOa5xq9DW69lB41ndKoEeiStD0haXgFc3+ja9XD32W1sq4+Z5SatDyNxfgD+BjwODHX33sAsks5vE7F+HZgOHA30BoqD7Y2P6TDB/WTNXo+dqMrZhXGLiKSLEiwRkY5xD3CimR0b9EJkBxMgDEkqc7aZjQnuZ/oZ8GAwrCtZJpAFlAIxMzuOxL1U290OXGBmXzKzkJkNNrN93H0NiaGE/2dmecG+Pc2s8XC0xnoBFUCZmQ0mcW9Xst8C89z9mySGvs0Ktj8AHB/EkQFcQSLB+3drJ6oxd3/F3Xu28HplZ+tswgLg68G1mUbDYXp/Ai4OepvMzHItMTlFL6ifWOKOVur/qZllBsngCcDfg+29gE3uXh3cP/f1VurpReI8biSREP5iJ95jSrj7L1q6Hs0dZ2anmVnP4N/eMSSS9cd3XeQiIumhBEtEpAO4+woSPQ/XkEiOVpBIVpJ/795NYiKKtUA28P0m6tkabH8A2EziC/njSfvfJJj4AigDXuLznqRzSSRoHwbHPkjDIYpN+Smwf1DXk8DD23eY2XQSk1RcEmz6L2B/MzvL3T8m8QX6FhK9cCcCJ7p7bSvtpculJGLcApwFPLp9h7vPA74F3ErivC2m4YQcQ4HXWqh7bXDcahLD4i5294+Cfd8GfmZmW4HrSFzXltxFYojhKhLXcW5rb6wTuZRE3FuAXwHf8hQ/a0tEpDPSc7BERNLAzOYA97j7n9Mdi7RdMCviu8CEYDKPxvuPIHFdhzTeJyIi3UMk3QGIiIh0FUGP3OhWC4qISLelIYIiIt2Mmc1qZsKCWa0fLV2RmQ1rYaKKYemOT0Rkd6IhgiIiIiIiIimiHiwREREREZEU6VT3YPXt29eLi4vTHYaIiIiIiEiL5s+fv8Hdixpv71QJVnFxMfPmzUt3GCIiIiIiIi0ys2VNbdcQQRERERERkRRRgiUiIiIiIpIiSrBERERERERSpFPdg9WUaDTKypUrqa6uTnco0glkZ2czZMgQMjIy0h2K7Kbq4s6Vd73I1MFZzPjywekOR0RERLqYTp9grVy5kl69elFcXIyZpTscSSN3Z+PGjaxcuZIRI0akOxzZTX24upxLlnyXkSWriB+5kVCk0/+aFBERkU6k0w8RrK6uprCwUMmVYGYUFhaqN1M61IrNlYwMrQJg3YcvpzkaERER6Wo6fYIFKLmSevq3IB1tY+ma+uXKRc+mMRIRERHpirpEgiUisqvkbP6kftk3fNJCSREREZEdKcFqAzPjiiuuqF+/8cYbmTlzZvoCSnLEEUe0+HDmk08+malTpzbYNnPmTAYPHszEiRMZN24cjz/+eEeHKdJlhGrKASilDznlS9McjYiIiHQ1SrDaICsri4cffpgNGzaktF53Jx6Pp7TOZFu2bGH+/PmUlZWxZMmSBvsuv/xyFixYwN///ncuvPDCDo1DpEuJVgKwPGskRTUrIF6X5oBERESkK1GC1QaRSISLLrqIm266aYd9paWlnHrqqUyePJnJkyfz2muvAYleohtvvLG+3Lhx4ygpKaGkpIRRo0Zx7rnnMm7cOFasWMFVV13FuHHjGD9+PPfffz8Ac+bM4YgjjuC0005jn3324ayzzsLdm4zv7rvvru+NevPNN+u3P/zww5x44omcccYZ3HfffU0eO3r0aCKRSIPk8Qc/+AFjxoxhwoQJXHnllQCUlJRw1FFHMWHCBL70pS+xfPlyAM4//3wuueQSpk6dyh577MGcOXO48MILGT16NOeff359nZdccgmTJk1i7Nix/OQnP9khjrKyMoYPH16f6G3bto2hQ4cSjUabjFuko1gskWBt7DWKTGqhfHWaIxIREZGupEvNP/zTJz7gw9XlKa1zzKA8fnLi2FbLfec732HChAlcffXVDbZfeumlXH755RxyyCEsX76cY489lkWLFrVY16effsqdd97J1KlTeeihh1iwYAHvvvsuGzZsYPLkyRx22GEAvPPOO3zwwQcMGjSIgw8+mNdee41DDjlkh/oqKytZsGABL7/8MhdeeCHvv/8+ALNnz+a6666jf//+nHrqqVxzzTU7HPvGG28QCoUoKioCYOPGjTzyyCN89NFHmBlbtmwB4Hvf+x7nnXce5513Hn/5y1/4/ve/z6OPPgrA5s2bef3113n88cc56aSTeO211/jzn//M5MmTWbBgARMnTuT666+noKCAuro6vvSlL7Fw4UImTJhQH0fv3r2ZOHEiL730EkceeST/+Mc/OPbYY/W8K9nlQkEPVrRgFGyA6KblZOQPTXNUIiIi0lWoB6uN8vLyOPfcc7n55psbbH/uuef47ne/y8SJEznppJMoLy+noqKixbqGDx9ef1/Uq6++yplnnkk4HKZ///4cfvjhvPXWWwBMmTKFIUOGEAqFmDhxIiUlJU3Wd+aZZwJw2GGHUV5ezpYtW1i3bh2ffvophxxyCCNHjiQjI6M+8QK46aabmDhxIldeeSX3339//ex8vXv3Jjs7m2984xs8/PDD9OjRA4DXX3+dr3/96wCcc845vPrqq/V1nXjiiZgZ48ePp3///owfP55QKMTYsWPrY37ggQfYf//92W+//fjggw/48MMPd3gfM2bMqO/Bu++++5gxY0aL51GkI4RjVQBk9B8FQNm6kjRGIyIiIl1Nu3uwzGwocBfQH3DgNnf/rZnNBL4FlAZFr3H3p9rTVlt6mjrSZZddxv77788FF1xQvy0ejzN37lyys7MblI1EIg3ua0p+dlNubm6b2svKyqpfDofDxGKxJss1nrrczHjggQfYvHlz/QN5y8vLmT17Ntdffz2QuAdr+/C/xnG/+eabPP/88zz44IPceuutvPDCC22KMxQKNYg5FAoRi8VYunQpN954I2+99RZ9+vTh/PPPb/JZVieddBLXXHMNmzZtYv78+Rx11FEttivSEcKxKuoI0XtwIsHatr6EvmmOSURERLqOVPRgxYAr3H0MMBX4jpmNCfbd5O4Tg1e7kqvOoKCggNNPP53bb7+9ftsxxxzDLbfcUr++YMECAIqLi3n77bcBePvtt1m6tOnZyA499FDuv/9+6urqKC0t5eWXX2bKlCk7Fdf2Xp9XX32V3r1707t3b2bPns0///nP+vu+5s+f3+x9WMkqKiooKyvjK1/5CjfddBPvvvsuAP/xH/9Rf/y9997LoYce2ub4ysvLyc3NpXfv3qxbt46nn366yXI9e/Zk8uTJXHrppZxwwgmEw+E2tyGSKqG6Kqotm0H9+rLFc6ndtCzdIYmIiEgX0u4eLHdfA6wJlrea2SJgcHvr7ayuuOIKbr311vr1m2++uf7+rFgsxmGHHcasWbM49dRTueuuuxg7diwHHnggI0eObLK+U045hddff519990XM+OGG25gwIABfPTRR22OKTs7m/32249oNMpf/vIXSkpKWLZsWYPp2UeMGEHv3r154403mqzjK1/5Cn/+858xM6ZPn051dTXuzq9//WsAbrnlFi644AJ+9atfUVRUxF//+tc2x7fvvvuy3377sc8++zB06FAOPvjg+n3XXXcdkyZN4qSTTgISwwS/9rWvMWfOnDbXL5JKGXVV1Fg2A3pn86n3JUuTXIiIiMhOsOZmpvtClZkVAy8D44D/As4HyoF5JHq5NjdxzEXARQDDhg07YNmyhn8tXrRoEaNHj05ZjNL16d+EdKSXfzmdkbFPGHDtIl756VHsmVXGoB/MT3dYIiIi0smY2Xx3n9R4e8omuTCznsBDwGXuXg78AdgTmEiih+v/mjrO3W9z90nuPmn7THYiIumSUVdNreUAsDVrAHk169IckYiIiHQlKUmwzCyDRHJ1r7s/DODu69y9zt3jwJ+AnbuxSEQkDbK8img4MWlNbe5AevpWqGl5ZlARERGR7dqdYFliCrvbgUXu/uuk7QOTip0CvN/4WBGRziYzXk00lOjB8rwhiZ9lK9MZkoiIiHQhqXjQ8MHAOcB7ZrYg2HYNcKaZTSQxdXsJ8J8paEtEpENleTU14X4ARAqGwVLYVlpCz377pDkyERER6QpSMYvgq4A1savLT8suIt1PlldTGUn0YOUWDQegfN1yeqb3MXwiIiLSRaRskgsRkd1BltcSD+7BKug/lLgb1RuXpzkqERER6SqUYLXRo48+ipm1+HyqkpISxo0bl7I2zz//fB588MFm91922WUMHjyYeDxev+2OO+6gqKiIiRMnMmbMGP70pz+lLB6R7iBCDMIZAAws7M0GelNXtirNUYmIiEhXoQSrjWbPns0hhxzC7Nmzm9wfi8Xa3UZdXV2by8bjcR555BGGDh3KSy+91GDfjBkzWLBgAXPmzOGaa65h3TpNMy3SFrG6OJnEIJIFQN+eWaz1AsJb16Q5MhEREekqlGC1QUVFBa+++iq333479913X/32OXPmcOihh3LSSScxZswYIJFonXXWWYwePZrTTjuNyspKAJ5//nn2228/xo8fz4UXXkhNTQ0AxcXF/Pd//zf7778/f//733do+7nnnmPSpEmMHDmSf/zjHw3aHjt2LJdcckmzSV+/fv3Yc889SX54880338yYMWOYMGECZ5xxBgCbNm3i5JNPZsKECUydOpWFCxcCMHPmTM477zwOPfRQhg8fzsMPP8zVV1/N+PHjmTZtGtFoFICf/exnTJ48mXHjxnHRRRfR+OHV8Xic4uJitmzZUr9t7733VuInnU5tXZxMohBOJFjhkLE5UkR29do0RyYiIiJdRSpmEdx1nv4BrH0vtXUOGA/H/bLFIo899hjTpk1j5MiRFBYWMn/+fA444AAA3n77bd5//31GjBhBSUkJH3/8MbfffjsHH3wwF154Ib///e/57ne/y/nnn8/zzz/PyJEjOffcc/nDH/7AZZddBkBhYSFvv/12k22XlJTw5ptv8tlnn3HkkUeyePFisrOzmT17NmeeeSbTp0/nmmuuIRqNkpGR0eDYJUuWsGTJEvbaa6/6bb/85S9ZunQpWVlZ9QnPT37yE/bbbz8effRRXnjhBc4991wWLFgAwGeffcaLL77Ihx9+yEEHHcRDDz3EDTfcwCmnnMKTTz7JySefzHe/+12uu+46AM455xz+8Y9/cOKJJ9a3GQqFmD59Oo888ggXXHABb7zxBsOHD6d///5tvkwiu0JNbR19LAaRzPptldn9yKv6II1RiYiISFeiHqw2mD17dn1vzxlnnNGgx2jKlCmMGDGifn3o0KEcfPDBAJx99tm8+uqrfPzxx4wYMYKRI0cCcN555/Hyyy/XHzNjxoxm2z799NMJhULsvffe7LHHHnz00UfU1tby1FNPcfLJJ5OXl8eBBx7IM888U3/M/fffz8SJEznzzDP54x//SEFBQf2+CRMmcNZZZ3HPPfcQiSTy61dffZVzzjkHgKOOOoqNGzdSXl4OwHHHHUdGRgbjx4+nrq6OadOmATB+/HhKSkoAePHFFznwwAMZP348L7zwAh98sOOX0RkzZnD//fcDcN9997X4nkXSpaamGgALhggCRHsMpKdX6GHDIiIi0iZdqwerlZ6mjrBp0yZeeOEF3nvvPcyMuro6zIxf/epXAOTm5jYon3jucvPrTWlcR2v1PfPMM2zZsoXx48cDUFlZSU5ODieccAKQSGZuvfXWJut78sknefnll3niiSe4/vrree+9lnsEs7ISXzRDoRAZGRn18YRCIWKxGNXV1Xz7299m3rx5DB06lJkzZ1JdXb1DPQcddBCLFy+mtLSURx99lGuvvbbFdkXSobY28W83lJRg0XsQbIB42WpC/UamKTIRERHpKtSD1YoHH3yQc845h2XLllFSUsKKFSsYMWIEr7zySpPlly9fzuuvvw7A3/72Nw455BBGjRpFSUkJixcvBuDuu+/m8MMPb1P7f//734nH43z22WcsWbKEUaNGMXv2bP785z9TUlJCSUkJS5cu5dlnn62/36s58XicFStWcOSRR/L//t//o6ysjIqKCg499FDuvfdeIHFvV9++fcnLy2tTfNuTqb59+1JRUdHsrIdmximnnMJ//dd/MXr0aAoLC9tUv8iuVBv0YIUyPk+wMvsMBaB8/bImjxERERFJpgSrFbNnz+aUU05psO3UU09tdmKJUaNG8bvf/Y7Ro0ezefNmLrnkErKzs/nrX//K1772NcaPH08oFOLiiy9uU/vDhg1jypQpHHfcccyaNYt4PM4///lPjj/++Poyubm5HHLIITzxxBNN1vHNb36TefPmUVdXx9lnn8348ePZb7/9+P73v09+fj4zZ85k/vz5TJgwgR/84AfceeedbTw7kJ+fz7e+9S3GjRvHsccey+TJk+v3zZo1i1mzZtWvz5gxg3vuuUfDA6XTijXRg5VbNAyArUqwREREpA2s8Yxv6TRp0iSfN29eg22LFi1i9OjRaYpIOiP9m5CO8t77Cxj/4OF8PPUGRk37TwA+WLaOsX8dySdjL2Pk136a5ghFRESkszCz+e4+qfF29WCJiARiTQwRHFCYz0bvRd0WPWxYREREWqcES0QkEK1NPJ8unJRgFeRmso5CIhWr0xWWiIiIdCFdIsHqTMMYJb30b0E6Ul000YMVycyp32ZmbIkUkV2tB2OLiIhI6zp9gpWdnc3GjRv1xVpwdzZu3Eh2dna6Q5Hd1PZJLiKZmQ22V2b3I692fTpCEhERkS6m0z8Ha8iQIaxcuZLS0tJ0hyKdQHZ2NkOGDEl3GLKbqosmhghGMhsm8bU9BtJ7WzlEqyFDCb6IiIg0r8MTLDObBvwWCAN/dvedelpwRkYGI0aM6JDYRESSxYMEKyNpiCCA9R4EpRDbsopI0Z7pCE1ERES6iA4dImhmYeB3wHHAGOBMMxvTkW2KiHxR9T1YWQ17qbY/bHjLupJdHZKIiIh0MR19D9YUYLG7L3H3WuA+YHoHtyki8oXEY4kEKzMzq8H23H562LCIiIi0TUcnWIOBFUnrK4Nt9czsIjObZ2bzdJ+ViKSTb0+wshoOESwYUAxA1cYVjQ8RERERaSDtswi6+23uPsndJxUVFaU7HBHpxrYnWBZp2IM1oKiQMu9BvEwPGxYREZGWdXSCtQoYmrQ+JNgmItL5BAkW4YYJVl52BusoJLx1TRqCEhERka6koxOst4C9zWyEmWUCZwCPd3CbIiJfiMdqEwvhjB32bYkUkaOHDYuIiEgrOjTBcvcY8F3gGWAR8IC7f9CRbYqIfGHbE6xGQwQBKrP762HDIiIi0qoOfw6Wuz8FPNXR7YiItJfVVScWwpk77IvmDiR/25ZEEhbZcb+IiIgIdIJJLkREOgurq6GGTDDbcV/eIEI4NVtWpyEyERER6SqUYImIBMJ1NdRa071TGQWJ+Xo2rynZhRGJiIhIV6MES0QkEI5XE7Ud778C6FWUeNhwuR42LCIiIi1QgiUiEgjX1RANNZ1g5Q8aAUDNhpJdGJGIiIh0NUqwREQCkXhNsz1YA4v6sdl7YlvUgyUiIiLNU4IlIhKIxGupCzV9D1ZOZpjV1o/MipW7OCoRERHpSpRgiYgEMryGWLjpHiyAzRkD6FWlWQRFRESkeUqwREQCGfEa4qHsZvdX9BhMYWwtxOO7MCoRERHpSpRgiYgEMryGeKT5BCvaaxiZRGHb+l0YlYiIiHQlSrBERAB3J8triYebT7CsT2Kq9urSJbsqLBEREelilGCJiAC1dXEyLQoZzSdY2UV7ALBl9eJdFZaIiIh0MUqwRESA6micbGrxFia5yBuwZ6LsevVgiYiISNOUYImIANXROrKphYycZssM7NuHUu9NfLOehSUiIiJNU4IlIgJU18bIphZrYYhg/7xsVngRkfLluzAyERER6UqUYImIANU1NYTNCWX0aLZMZiREaWQguZWrdmFkIiIi0pW0K8Eys1+Z2UdmttDMHjGz/GB7sZlVmdmC4DUrJdGKiHSQmupKAEKZzfdgAVTmDKJ3dD3UxXZFWCIiItLFtLcH61lgnLtPAD4Bfpi07zN3nxi8Lm5nOyIiHSpavQ2AUGbzPVgA0byhRKiDrat3RVgiIiLSxbQrwXL3f7n79j/jzgWGtD8kEZFdr7a6Amg9wQoXFCfKb1ja0SGJiIhIF5TKe7AuBJ5OWh9hZu+Y2UtmdmgK2xERSbl4ZRkAkR69WyyX238vQM/CEhERkaZFWitgZs8BA5rY9SN3fywo8yMgBtwb7FsDDHP3jWZ2APComY119/Im6r8IuAhg2LBhX+xdiIi0U+22LQBk5fZpsVzh4D2IeYiqdZ/tgqhERESkq2k1wXL3o1vab2bnAycAX3J3D46pAWqC5flm9hkwEpjXRP23AbcBTJo0yXcyfhGRlIgFPVg5vVpOsIb27c0aLyS+SUMERUREZEftnUVwGnA1cJK7VyZtLzKzcLC8B7A3sKQ9bYmIdKR4VdsSrH69slhJPzL1LCwRERFpQnvvwboV6AU822g69sOAhWa2AHgQuNjdN7WzLRGRjlOTGMHc2j1YoZCxKXMQvar1LCwRERHZUatDBFvi7ns1s/0h4KH21C0isitZkGCRlddq2crcoeSVPQs1FZDVs4MjExERka4klbMIioh0WVa7lRoyIZLZatm6/OGJhS3LOjgqERER6WqUYImIAJFoBZXW8jOwtssq2gOAbes0VbuIiIg0pARLRASI1G6lOty24X69BiRGR5frWVgiIiLSiBIsEREgI7aV2kjbEqwBAwax1XOo3aDJUUVERKQhJVgiIkCvui3UZha0qezQwlxWeD/YXNKxQYmIiEiXowRLRLq9mlgdhWwhmtO3TeV752SwOtSfnIqVHRyZiIiIdDVKsESk29tcUUNfyoj37NfmY8qzB5Nfuxri8Q6MTERERLoaJVgi0u1tKl1LxOKEeg1o8zE1vYaR6bVQsa4DIxMREZGuRgmWiHR7W0pXAJBbMKjNx1ifYgDim5Z2REgiIiLSRSnBEpFub9vG1QDkFQ1u8zE5/RLPwtq6VlO1i4iIyOeUYIlIt1e7eRUAvYuGtvmYPoP2JO5GxRolWCIiIvI5JVgi0u1FykqoI0Qov+0J1pCiPqylD7GNGiIoIiIin1OCJSLdXk7FcjaGiyCS2eZjBvfJYYX3I1K+vAMjExERka5GCZaIdHv5NaspzxmyU8dkRcKURgbSs1LPwhIREZHPKcESkW5tS2Utg30t0bzhO33sth5D6B3bANGqDohMREREuiIlWCLSra1YsYxC20qoaOROHxvtHSRlWzRMUERERBLalWCZ2UwzW2VmC4LXV5L2/dDMFpvZx2Z2bPtDFRFJvc1LFwDQc/jEnT42o7AYgOiGz1IXkIiIiHRpkRTUcZO735i8wczGAGcAY4FBwHNmNtLd61LQnohIylSvXAhA/70O2Olje/bfC4CyNUvoOzqlYYmIiEgX1VFDBKcD97l7jbsvBRYDUzqoLRGRLyxr0yI2WR8ief12+tjCAUOo9TDVG5Z1QGQiIiLSFaUiwfqumS00s7+YWZ9g22BgRVKZlcG2HZjZRWY2z8zmlZaWpiAcEZG2cXf6V35Kae7eX+j4wX1yWeOFxLesaL2wiIiIdAutJlhm9pyZvd/EazrwB2BPYCKwBvi/nQ3A3W9z90nuPqmoqGhnDxcR+cLWba5ghK+ktvCLje/rn5fNKvoS2boqxZGJiIhIV9XqPVjufnRbKjKzPwH/CFZXAUOTdg8JtomIdBrLPl3IAIuRM3TfL3R8ZiTEpkg/xlR9kOLIREREpKtq7yyCA5NWTwHeD5YfB84wsywzGwHsDbzZnrZERFKtbOnbAPQfOekL11GZPZC82Aaoi6YqLBEREenC2juL4A1mNhFwoAT4TwB3/8DMHgA+BGLAdzSDoIh0Ous+IEqEXoO++BSAtb0GE6p0KF8NfXb+YcUiIiKye2lXguXu57Sw73rg+vbULyLSkXqXf8LazGEMjWR+4TpC+UNhHXjZCkwJloiISLfXUdO0i4h0atXROobHlrC196h21ZNdmEiqKtYtTUVYIiIi0sUpwRKRbumzZcsYYJsJDRjXrnp6D9gDgG3rS1IQlYiIiHR1SrBEpFta/+k7AOSP2K9d9Qzom88GzyO6aXkqwhIREZEuTgmWiHRLNaveBaDfXl98BkGAwfk5rPZCKNeTKEREREQJloh0U1kbF7HF8gnl9W9XPb1zMlhrRWRvU4IlIiIiSrBEpBtyd/pVLaY0d+9212VmbM0aQK+ateCeguhERESkK1OCJSLdztotFezpK6jt+8Wff5Wsuscgsr0aqjanpD4RERHpupRgtWDZh2/x+u1Xsm7ZR+kORURSaNVn75NtUTIHTUhJfd57SGJhy7KU1CciIiJdV7seNLy7W/ve8xy4/M+E/vonPoqMpmzIERTsexx7TDiEcDic7vBE5AuqXLEQgD577J+aCvvuA8ugds2HZA5q36yEIiIi0rUpwWrBgTN+wKqSr7Jizh30XfkMB5b8AUr+QPljuSzPHsXWwn3JGHoA/UeMY9CI0YQzs9Md8k6ri0Wpra6itqaKaE0VtTXVxKLVRGuqqYtWUxeLUheL4fE6PF5HPB6DeB3xujrwOryujrjXQV1iv3sssex1EI9j1CUa8vr/fK7B/Sre6PYVb7bczrOmt9r2Gnfcn7ylyf3WVMkWGmlrbDsUb/vxTTW1Pfbmaqnf32wzLbdvLby/xuetwVX0hlubvKrecF9Ttze1vK/5A3qUPEvUwxQMG9tUyzstf8goauZlsHXZAvoecFZK6pSWeTxOTXUl1ZXbqKyqoKaqkpqqSupqK/HaKuqiVXi0Go9WEY9FidfFiMdjeF2UeF0dXpf4vWYeIxSvA+LBzzrM4zv8ytr+r3H7v7WWfhNZ47X6z0mjZQAzHMO219nEfmtc1pI/Xy3XbwYe1LH92ET82+sM1Zf24Pj63xrWQv1NbEt+3/V7G/+ubO1XmuwU032fu14T51xXoeOV99qDkQcczbDCHukOpU2UYLVicPFIBp//C+AXlK5dyfK3/kFs6b8p2PIe+6y8k8iqv8JcqHNjTaiITRkDqM0uJJZdSF12Id6jgMycXDKye2IZ2RDpgWVkEQ4ZITPCBnXu1MUTr3hdFGJR4rFqiNUSr6uFWC0eqyEeq8GDZWI1UFeL1dVidTVYXS2huhpC8VrC8VpC8SjheC0RryXiUSLxWiJEyfAoGUTJ9CiZRAmbkwPkpPtEi+xin2SNZmSK/igyZkgBn/pg+q5+PyX1dQfuTsW2bWzdtI6KzWupKislWr6e2NYNeOVmvLoMq91KJLqVjNg2suPbyK7bRg+vJJdKcqkmG8gG8lMYV8xDxFOUBRhgwVcvS0qJQqavYyIiO+OvsWOpHjBJCdbuqGjAEIpOvBi4GIDqyq0s+/htSpd9SKz0U3LKl5JTvY6CrR+TX1ZGb9vWofFUewa1ZBC1DKJkELMMopZJzDKIhTKos0xqwz2oC2USD2fioUzioUw8nIlHsiAcvCKZWCQLi2RjGVmEMrIIBz9D4QxC4QihUBgLhbFgORSOYKEwoVCEUDiEhSKEwmEsFCEcDhOKJPZj4YZ/3dzhL532eS9I/V9Ot68mrVkoeUfbTlBTvWYNdzb9l6jmetIab2ny2JZ72xpW7c3va7S/qd6YBmehqbfZqAeoiQJNhdFgf5O9QNv3xlv6kthwX/0lbqLHramraUl/fW9cpqlesx3qt6b2NTx+z979Woh/5xQX5vKg7cX0Ta8l/vgRyWqy3NrN23jjub8zeI+xTDpgcsra70xisTo2bFjLlnXLqShdQe3mlcTLVhOuWEtW9Xp6RDfTs24L+b6VXlZFr2bq2UY2ldaDqlAuNaFcaiI92Zw9gPUZPanL6Iln9sIycwhlZBPO7EEkqweRrBxCGTmEMnOwjBzCmYl9oYxMMiIZhCMRIpEMMjIyiEQihCMRLJSR+N0WCn6nBX/4aql3NqX8899F7vFg0et/NtwW9KD59s+mJ30OPagjsew4iUODT3FSXfWf/bgHx22vM55Uf3BsUnxNtU9yrPWfsoa/Wz7vaf58+646vd1D8ydzl/077m50Xne5aRm55Bek7v/bHU0JVjtk9+jFnvsdzp77Hd7k/tqaaiq2rGdbRQWVlRV4tCrxqq2mzo24x6mLO6FQiHDIglc4keREsghlZhGOZBGKZBPJyiIzM5uMrCwyM3PIzMgkOxyi6w1KFNn9hELG2gFHkLXuOXzpK9jeR9fvc3cWfvwJy5//E/uuf4zptp73PxkHB7yWxoi/uIrKStYs+5QtqxdTXbqU+OZlZFespGfNOvJjpfT1zQywKAMaHbeZPDZH+lKVWUhpVjFrsgugRwGWW0RGr75k9+5HTn5/ehUMIK9PX3IjGeSm5R3uYg3+wPT5cD0REem6lGB1oMysbAr6D6Ogfc8xFZEuYNik49j4j/+HPf1z+gybyvL1m/j09X+Q8ckTHBR9g32tjpK8/VkQLWZs9Xy8uhzLzkt32Duoi8VYv+ozNq78hMp1S4htLCGydSW5lasojK2ln29i76QhblEPUxouoiyjH+tzJ7A6dwDWexCZ+YPJLRpKfv/h9Ok3lD4ZWfRJ4/sSERHZVZRgiYikwPH778Fv51zElZv+D/53MMOB4cCWUD5L9zibIV++hOJBo5nz9N/JeOObrJj/NEMPnpGWWMvKtrB++ceUr/qEmtIlhLYspce2FRTUrKJ/fD0DrY6BQdk6NzaECtmUMZBVfaawIm8oGX1HkDdgTwqH7k1e0VAGhTMYlJZ3IiIi0vmYN38DRusHm90PjApW84Et7j7RzIqBRcDHwb657n5xa/VNmjTJ582b94XjERFJp7KqKM889QhF61+jV34BQ8YfzoAxh0Lo88c6bCjfRuz/xlKRtzd7XfFsh8QRjdWxbs0qNq74iG1rP6Vu41Iyy0voVbWKothqitjSoPxWerAuPJDynCHU5A0nXDCCHv33pGDw3vQbsgeRLjhDqoiISEczs/nuPqnx9nb1YLl7/Z9fzez/gLKk3Z+5+8T21C8i0pX0zsng9FNPB05vtkzfvFyeHnA6x637I0ue+QN7HHvJTrezrbKK9auWsnntEqpKl1G3eTmRravIqVxDfnQd/eLrGWI1BI8/Ju7GhlABGzMHszzvYJbmF5NZtAe9Bo6kaPg+5PXp1+xkEyIiIrJz2tWDVV9JYpqa5cBR7v5p0IP1D3cftzP1qAdLRLqDsq2VfPabY9m/biGf9JxM5R7HEskfCpk9iMdqqa2qIFpVQXzbRqxiHeGqUrJqNpIb3UR+3WYKKdthqu/N5LEpoz/bsgcQzR1MqLCYnP57UTBkFIVD9iacqYcxiIiIpFJzPVipSrAOA369vYEgwfoA+AQoB65191eaOfYi4CKAYcOGHbBs2bJ2xyMi0tlt2FLGm/f9ggPW3E9/29xsuVqPsCnUh4pIH6oyC4lm96WuZ38ifYaT2284+YP2pHDgCMJZ3WLOPRERkU7jCydYZvYc7DDjLsCP3P2xoMwfgMXu/n/BehbQ0903mtkBwKPAWHcvb6kt9WCJSHcTjdWxYtliqjevwWsrCUUyyenZix65eeTm9yM3r0DPXBEREemEvvA9WO5+dEv7zSwCfBU4IOmYGqAmWJ5vZp8BIwFlTyIiSTIiYfbYcxSfzxckIiIiXVkoBXUcDXzk7iu3bzCzIjMLB8t7AHsDS1LQloiIiIiISKeViudgnQHMbrTtMOBnZhYF4sDF7r4pBW2JiIiIiIh0Wu1OsNz9/Ca2PQQ81N66RUREREREupKUzCKYKmZWCnS2aQT7AhvSHYTsMrre3Yeudfeha9296Hp3H7rW3UtnvN7D3b2o8cZOlWB1RmY2r6nZQWT3pOvdfehadx+61t2Lrnf3oWvdvXSl652KSS5EREREREQEJVgiIiIiIiIpowSrdbelOwDZpXS9uw9d6+5D17p70fXuPnStu5cuc711D5aIiIiIiEiKqAdLREREREQkRZRgiYiIiIiIpIgSrBaY2TQz+9jMFpvZD9Idj6SOmQ01sxfN7EMz+8DMLg22F5jZs2b2afCzT7pjldQws7CZvWNm/wjWR5jZG8Hn+34zy0x3jJIaZpZvZg+a2UdmtsjMDtJne/dkZpcHv8PfN7PZZpatz/buw8z+Ymbrzez9pG1NfpYt4ebgui80s/3TF7nsrGau9a+C3+MLzewRM8tP2vfD4Fp/bGbHpiXoFijBaoaZhYHfAccBY4AzzWxMeqOSFIoBV7j7GGAq8J3g+v4AeN7d9waeD9Zl93ApsChp/f8BN7n7XsBm4BtpiUo6wm+Bf7r7PsC+JK67Ptu7GTMbDHwfmOTu44AwcAb6bO9O7gCmNdrW3Gf5OGDv4HUR8IddFKOkxh3seK2fBca5+wTgE+CHAMH3tTOAscExvw++t3caSrCaNwVY7O5L3L0WuA+YnuaYJEXcfY27vx0sbyXxBWwwiWt8Z1DsTuDktAQoKWVmQ4DjgT8H6wYcBTwYFNG13k2YWW/gMOB2AHevdfct6LO9u4oAOWYWAXoAa9Bne7fh7i8Dmxptbu6zPB24yxPmAvlmNnCXBCrt1tS1dvd/uXssWJ0LDAmWpwP3uXuNuy8FFpP43t5pKMFq3mBgRdL6ymCb7GbMrBjYD3gD6O/ua4Jda4H+6YpLUuo3wNVAPFgvBLYk/eLW53v3MQIoBf4aDAn9s5nlos/2bsfdVwE3AstJJFZlwHz02d7dNfdZ1ve23duFwNPBcqe/1kqwpFszs57AQ8Bl7l6evM8TzzDQcwy6ODM7AVjv7vPTHYvsEhFgf+AP7r4fsI1GwwH12d49BPfeTCeRVA8CctlxiJHsxvRZ7h7M7Eckbu24N92xtJUSrOatAoYmrQ8JtsluwswySCRX97r7w8HmdduHFAQ/16crPkmZg4GTzKyExFDfo0jco5MfDCsCfb53JyuBle7+RrD+IImES5/t3c/RwFJ3L3X3KPAwic+7Ptu7t+Y+y/rethsys/OBE4Cz/POH93b6a60Eq3lvAXsHsxFlkriZ7vE0xyQpEtyDczuwyN1/nbTrceC8YPk84LFdHZuklrv/0N2HuHsxic/xC+5+FvAicFpQTNd6N+Hua4EVZjYq2PQl4EP02d4dLQemmlmP4Hf69mutz/burbnP8uPAucFsglOBsqShhNIFmdk0EsP7T3L3yqRdjwNnmFmWmY0gMbHJm+mIsTn2eTIojZnZV0jcuxEG/uLu16c3IkkVMzsEeAV4j8/vy7mGxH1YDwDDgGXA6e7e+AZb6aLM7AjgSnc/wcz2INGjVQC8A5zt7jVpDE9SxMwmkpjQJBNYAlxA4g+K+mzvZszsp8AMEsOH3gG+SeJeDH22dwNmNhs4AugLrAN+AjxKE5/lIMm+lcQw0UrgAnefl4aw5Qto5lr/EMgCNgbF5rr7xUH5H5G4LytG4jaPpxvXmU5KsERERERERFJEQwRFRERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0SkkzGzYjNzM4ukOxbpHszsAzM7It1xiIjsDpRgiYhIl2dms8ysInjVmlk0af3pdMfX2bn7WHefk8o6zeyO4FpUJL3CqWxDRKQzMndPdwwiIrsVM4u4e6wdxxcDS4GM9tTTXZnZTGAvdz+7iX3tuja7UleKtSlmdgew0t2vTXcsIiK7knqwRERSwMxKzOy/zWwhsM3MImY21cz+bWZbzOzd5CFYZjbHzP7XzN40s3Ize8zMCpqp+wIzW2RmW81siZn9Z6P9081sQVDPZ2Y2Ldje28xuN7M1ZrbKzH7eWg+Cme1pZi+Y2UYz22Bm95pZftK+TWa2f7A+yMxKt78vMzspGGq2JXh/oxudnyvNbKGZlZnZ/WaWvfNneuc1c23czPZKKnOHmf08af2E4JxuCa7hhDa2dYSZrTSza4LzV2JmZyXtP97M3gmu1YogGdy+b/vQ0G+Y2XLghWD7381sbXDeXjazsY3i/r2ZPR30EL1mZgPM7DdmttnMPjKz/dp4jo5uy3sUEZGWKcESEUmdM4HjgXygP/Ak8HOgALgSeMjMipLKnwtcCAwEYsDNzdS7HjgByAMuAG5KSnKmAHcBVwXtHgaUBMfdEdS7F7AfcAzwzVbegwH/CwwCRgNDgZkA7v4Z8N/APWbWA/grcKe7zzGzkcBs4DKgCHgKeMLMMpPqPh2YBowAJgDnNxmA2SFBYtPc65BW3kNT6q9Na71CQULyF+A/gULgj8DjZpbVxrYGAH2BwcB5wG1mNirYt43Edc8P4rnEzE5udPzhJM79scH608DeQD/gbeDeRuVPB64N2qwBXg/K9QUeBH7dxribZGY/aOl6tHL4t4OkfL6ZndqeOEREugolWCIiqXOzu69w9yrgbOApd3/K3ePu/iwwD/hKUvm73f19d98G/Bg4vakeJnd/0t0/84SXgH8Bhwa7vwH8xd2fDdpZ5e4fmVn/oK3L3H2bu68HbgLOaOkNuPvioK4ady8l8eX88KT9fwIWA2+QSAx/FOyaATwZHBsFbgRygP9odH5Wu/sm4AlgYjMxvOru+S28Xm3pPTQj+dq05iLgj+7+hrvXufudJBKXqTvR3o+Dc/gSiUT7dAB3n+Pu7wXXaiGJpPTwRsfODK5ZVXDMX9x9q7vXkEh29zWz3knlH3H3+e5eDTwCVLv7Xe5eB9xPIrn+wtz9ly1djxYOvZnPE8MfA3eY2cHtiUVEpCtQgiUikjorkpaHA19r9Jf+Q0gkJU2VXwZkkOh1aMDMjjOzuUFPwBYSidP2ckOBz5qIZXhQ35qk9v9I4stus8ysv5ndFwwpLAfuaSKmPwHjgFuCL/2Q6PFatr2Au8eD9zc46bi1ScuVQM+WYkmxFa0XqTccuKLRtRtK4j22xeYgad5u2fZjzexAM3sxGFpZBlzMjue3PlYzC5vZLy0x9LOcz3snk49Zl7Rc1cT6rjzP9dz9bXff6O4xd3+KRM/bV9MRi4jIrqQES0QkdZJnDVpBoocq+a/9ue7+y6QyQ5OWhwFRYENyhcGwtIdI9Aj1D3oMniIxlG97O3s2EcsKEr0ufZPaz3P3sU2UTfaL4H2Md/c8Ej1x29vCzHoCvwFuB2ba5/eNrSaRmGwvZ8H7W9VKezsws0Ot4cxzjV+Htl7LDhrP6FQJ9EhaH5C0vAK4vtG16+Hus9vYVh8zy01aH0bi/AD8DXgcGOruvYFZJJ3fJmL9OjAdOBroDRQH2xsf02GC+8mavR47UZWzC+MWEUkXJVgiIh3jHuBEMzs26IXIDiZAGJJU5mwzGxPcz/Qz4MFgWFeyTCALKAViZnYciXuptrsduMDMvmRmITMbbGb7uPsaEkMJ/8/M8oJ9e5pZ4+FojfUCKoAyMxtM4t6uZL8F5rn7N0kMfZsVbH8AOD6IIwO4gkSC9+/WTlRj7v6Ku/ds4fXKztbZhAXA14NrM42Gw/T+BFwc9DaZmeVaYnKKXlA/scQdrdT/UzPLDJLBE4C/B9t7AZvcvTq4f+7rrdTTi8R53EgiIfzFTrzHlHD3X7R0PZo7zsxOM7Oewb+9Y0gk64/vushFRNJDCZaISAdw9xUkeh6uIZEcrSCRrCT/3r2bxEQUa4Fs4PtN1LM12P4AsJnEF/LHk/a/STDxBVAGvMTnPUnnkkjQPgyOfZCGQxSb8lNg/6CuJ4GHt+8ws+kkJqm4JNj0X8D+ZnaWu39M4gv0LSR64U4ETnT32lbaS5dLScS4BTgLeHT7DnefB3wLuJXEeVtMwwk5hgKvtVD32uC41SSGxV3s7h8F+74N/MzMtgLXkbiuLbmLxBDDVSSu49zW3lgncimJuLcAvwK+5Sl+1paISGek52CJiKSBmc0B7nH3P6c7Fmm7YFbEd4EJwWQejfcfQeK6Dmm8T0REuodIugMQERHpKoIeudGtFhQRkW5LQwRFRLoZM5vVzIQFs1o/WroiMxvWwkQVw9Idn4jI7kRDBEVERERERFJEPVgiIiIiIiIp0qnuwerbt68XFxenOwwREREREZEWzZ8/f4O7FzXe3qkSrOLiYubNm5fuMERERERERFpkZsua2q4hgiIiIiIiIimiBEtERERERCRFlGCJiHxBL368nuUbK9MdhoiIiHQineoerKZEo1FWrlxJdXV1ukORLiY7O5shQ4aQkZGR7lBkN7RiUyWP3Plb+vbK5Lof/iTd4YiIiEgn0ekTrJUrV9KrVy+Ki4sxs3SHI12Eu7Nx40ZWrlzJiBEj0h2O7IY+WruVmzNvhRqoLT2XzCL9OxMREZEuMESwurqawsJCJVeyU8yMwsJC9XxKh1m2oaJ+eeOCJ9IYiYiIiHQmnT7BApRcyReifzfSkaorNtcvV67+MI2RiIiISGfSJRIsEZHOJlS+sn45c9PiNEYiIiIinYkSrDYwM6644or69RtvvJGZM2emL6Akc+fO5cADD2TixImMHj26Pq45c+bw73//u111T5s2jfz8fE444YQURCqye8moWA3AEoaQt21JmqMRERGRzkIJVhtkZWXx8MMPs2HDhpTW6+7E4/F21XHeeedx2223sWDBAt5//31OP/10IDUJ1lVXXcXdd9/drjpEdleZVesB+DRnAr1jGyGq+/1ERESkC8wimOynT3zAh6vLU1rnmEF5/OTEsS2WiUQiXHTRRdx0001cf/31DfaVlpZy8cUXs3z5cgB+85vfcPDBBzNz5kx69uzJlVdeCcC4ceP4xz/+AcCxxx7LgQceyPz583nqqae49dZbefrppzEzrr32WmbMmMGcOXOYOXMmffv25f333+eAAw7gnnvu2eG+ovXr1zNw4EAAwuEwY8aMoaSkhFmzZhEOh7nnnnu45ZZb2GeffZqN87PPPmPx4sVs2LCBq6++mm9961sAfOlLX2LOnDktnpu///3v/PSnPyUcDtO7d29efvllqqurueSSS5g3bx6RSIRf//rXHHnkkdxxxx08+uijbNu2jU8//ZQrr7yS2tpa7r77brKysnjqqacoKCjgT3/6E7fddhu1tbXstdde3H333fTo0aNBu1OnTuX2229n7NjEtTviiCO48cYbmTRpUovxiqRKvLYKgMpeI6AK2LoaCvZIb1AiIiKSdurBaqPvfOc73HvvvZSVlTXYfumll3L55Zfz1ltv8dBDD/HNb36z1bo+/fRTvv3tb/PBBx8wb948FixYwLvvvstzzz3HVVddxZo1awB45513+M1vfsOHH37IkiVLeO2113ao6/LLL2fUqFGccsop/PGPf6S6upri4mIuvvhiLr/8chYsWMChhx7aYpwLFy7khRde4PXXX+dnP/sZq1evbvN5+dnPfsYzzzzDu+++y+OPPw7A7373O8yM9957j9mzZ3PeeefVz+b3/vvv8/DDD/PWW2/xox/9iB49evDOO+9w0EEHcddddwHw1a9+lbfeeot3332X0aNHc/vtt+/Q7owZM3jggQcAWLNmDWvWrFFyJbtWNPGA4XjBXgDUbVnZUmkRERHpJrpUD1ZrPU0dKS8vj3PPPZebb76ZnJyc+u3PPfccH374+Qxi5eXlVFRUNFVFveHDhzN16lQAXn31Vc4880zC4TD9+/fn8MMP56233iIvL48pU6YwZMgQACZOnEhJSQmHHHJIg7quu+46zjrrLP71r3/xt7/9jdmzZzfZ69RSnNOnTycnJ4ecnByOPPJI3nzzTU4++eQ2nZeDDz6Y888/n9NPP52vfvWr9e/pe9/7HgD77LMPw4cP55NPPgHgyCOPpFevXvTq1YvevXtz4oknAjB+/HgWLlwIJJKwa6+9li1btlBRUcGxxx67Q7unn346xxxzDD/96U954IEHOO2009oUr0iqROLVxAkR6ZvotapYv5ze6sASERHp9tqdYJnZUOAuoD/gwG3u/lszKwDuB4qBEuB0d9/cXD1dwWWXXcb+++/PBRdcUL8tHo8zd+5csrOzG5SNRCIN7q9Kfh5Tbm5um9rLysqqXw6Hw8RisSbL7bnnnlxyySV861vfoqioiI0bN+5Qprk4YcfpzHdmevNZs2bxxhtv8OSTT3LAAQcwf/78Fssnv6dQKFS/HgqF6t/f+eefz6OPPsq+++7LHXfc0WTCOHjwYAoLC1m4cCH3338/s2bNanPMIqmQEa8maln07FcMQOWGZfROb0giIiLSCaRiiGAMuMLdxwBTge+Y2RjgB8Dz7r438Hyw3qUVFBRw+umnNxiydswxx3DLLbfUry9YsACA4uJi3n77bQDefvttli5d2mSdhx56KPfffz91dXWUlpby8ssvM2XKlDbH9OSTT+LuQGLoYTgcJj8/n169erF169ZW4wR47LHHqK6uZuPGjcyZM4fJkye3uf3PPvuMAw88kJ/97GcUFRWxYsUKDj30UO69914APvnkE5YvX86oUaPaXOfWrVsZOHAg0Wi0vp6mzJgxgxtuuIGysjImTJjQ5vpFUiESryYayqJfQR82e0+im1ekOyQRERHpBNqdYLn7Gnd/O1jeCiwCBgPTgTuDYncCJ7e3rc7giiuuaDCb4M0338y8efOYMGECY8aMqe9JOfXUU9m0aRNjx47l1ltvZeTIkU3Wd8oppzBhwgT23XdfjjrqKG644QYGDBjQ5njuvvtuRo0axcSJEznnnHO49957CYfDnHjiiTzyyCNMnDiRV155pdk4ASZMmMCRRx7J1KlT+fGPf8ygQYOARPL3ta99jeeff54hQ4bwzDPPAIlhidvvt7rqqqsYP34848aN4z/+4z/Yd999+fa3v008Hmf8+PHMmDGDO+64o0HPVWv+53/+hwMPPJCDDz6YffbZp377448/znXXXVe/ftppp3HffffVz5wositlxquJhbPp3zuLtV6Albf93kURERHZfdn23o+UVGZWDLwMjAOWu3t+sN2AzdvXGx1zEXARwLBhww5YtmxZg/2LFi1i9OjRKYtRGmo82+HuRv9+pKM8fd2xTO6xloKrFzBn5pGM7bmN/le/le6wREREZBcxs/nuvsMsaymbRdDMegIPAZe5e4O51D2RxTWZybn7be4+yd0nFRUVpSocEZEO4+5keg2xcDahkFEWKSK3Zl26wxIREZFOICWzCJpZBonk6l53fzjYvM7MBrr7GjMbCKxPRVuSWjNnzkx3CCJdTrTOyaGGeDgxaUxlzgB6biuDaBVk5LRytIiIiOzO2t2DFQz/ux1Y5O6/Ttr1OHBesHwe8Fh72xIR6QxqYnXkWC3xSCKZiuYm7ltE92GJiIh0e6kYIngwcA5wlJktCF5fAX4JfNnMPgWODtZFRLq8mlicbGqIRxI9WJanBEtEREQS2j1E0N1fBZp7cNKX2lu/iEhnk0iwavGgByuzz2AAqjetJHtEOiMTERGRdEvZJBciIt1FbSxOjtXiGT0A6Fk0FIBtG/QsLBERke5OCVYbPfroo5gZH330UbNlSkpKGDduXMra/PjjjzniiCOYOHEio0eP5qKLLgISDwl+6qmn2lX3hRdeSL9+/VIar0h3UROrI4caCIYIFhYWstVzqNm0Ms2RiYiISLopwWqj2bNnc8ghhzB79uwm98disXa3UVdX12D9+9//PpdffjkLFixg0aJFfO973wNSk2Cdf/75/POf/2xXHSLdVU00MUTQMhNDBAfkZbPe84mXr0lzZCIiIpJuKZmmfZd5+gew9r3U1jlgPBzX8vwbFRUVvPrqq7z44ouceOKJ/PSnPwVgzpw5/PjHP6ZPnz589NFH/Otf/yIWi3HWWWfx9ttvM3bsWO666y569OjB888/z5VXXkksFmPy5Mn84Q9/ICsri+LiYmbMmMGzzz7L1VdfzRlnnFHf7po1axgyZEj9+vjx46mtreW6666jqqqKV199lR/+8IeccMIJfO973+P9998nGo0yc+ZMpk+fzh133MEjjzxCWVkZq1at4uyzz+YnP/kJAIcddhglJSUtvu+XXnqJSy+9FAAz4+WXX6Znz55cffXVPP3005gZ1157LTNmzGDOnDn85Cc/IT8/n/fee4/TTz+d8ePH89vf/paqqioeffRR9txzT5544gl+/vOfU1tbS2FhIffeey/9+/dv0O4ZZ5zBOeecw/HHHw8kksETTjiB0047rW3XVKSD1dRGybIYRBJDBPvnZbPAC9hz29o0RyYiIiLpph6sNnjssceYNm0aI0eOpLCwkPnz59fve/vtt/ntb3/LJ598AiSG9X37299m0aJF5OXl8fvf/57q6mrOP/987r//ft577z1isRh/+MMf6usoLCzk7bffbpBcAVx++eUcddRRHHfccdx0001s2bKFzMxMfvaznzFjxgwWLFjAjBkzuP766znqqKN48803efHFF7nqqqvYtm0bAG+++SYPPfQQCxcu5O9//zvz5s1r8/u+8cYb+d3vfseCBQt45ZVXyMnJ4eGHH2bBggW8++67PPfcc1x11VWsWZP4q/27777LrFmzWLRoEXfffTeffPIJb775Jt/85je55ZZbADjkkEOYO3cu77zzDmeccQY33HDDDu3OmDGDBx54AIDa2lqef/75+mRLpDOI1VYDEMpMDBHMzYqwMVRIdrUeNiwiItLdda0erFZ6mjrK7Nmz63tyzjjjDGbPns0BBxwAwJQpUxgx4vNpw4YOHcrBBx8MwNlnn83NN9/Ml7/8ZUaMGMHIkSMBOO+88/jd737HZZddBiQSiqZccMEFHHvssfzzn//kscce449//CPvvvvuDuX+9a9/8fjjj3PjjTcCUF1dzfLlywH48pe/TGFhIQBf/epXefXVV5k0aVKb3vfBBx/Mf/3Xf3HWWWfx1a9+lSFDhvDqq69y5plnEg6H6d+/P4cffjhvvfUWeXl5TJ48mYEDBwKw5557cswxxwCJnrcXX3wRgJUrVzJjxgzWrFlDbW1tg3O33XHHHcell15KTU0N//znPznssMPIydHDW6XziNZUAhDKyK7fti2riF61r0E8DiH97UpERKS70reAVmzatIkXXniBb37zmxQXF/OrX/2KBx54AHcHIDc3t0H5xHOXm19vSuM6kg0aNIgLL7yQxx57jEgkwvvvv79DGXfnoYceYsGCBSxYsIDly5czevToLxzPdj/4wQ/485//TFVVFQcffHCLE3wAZGVl1S+HQqH69VAoVH+P2ve+9z2++93v8t577/HHP/6R6urqHerJzs7miCOO4JlnnuH+++9vNgEVSZftPVjhpASrtkd/wtRB5cZ0hSUiIiKdgBKsVjz44IOcc845LFu2jJKSElasWMGIESN45ZVXmiy/fPlyXn/9dQD+9re/ccghhzBq1ChKSkpYvHgxAHfffTeHH354q23/85//JBqNArB27Vo2btzI4MGD6dWrF1u3bq0vd+yxx3LLLbfUJ33vvPNO/b5nn32WTZs21d8Htb13rS0+++wzxo8fz3//938zefJkPvroIw499FDuv/9+6urqKC0t5eWXX2bKlCltrrOsrIzBgxPPDLrzzjubLTdjxgz++te/8sorrzBt2rQ21y+yK8RqqwAIZ36eYHnPRO8tW/WwYRERke5MCVYrZs+ezSmnnNJg26mnntrsbIKjRo3id7/7HaNHj2bz5s1ccsklZGdn89e//pWvfe1rjB8/nlAoxMUXX9xq2//6178YN24c++67L8ceeyy/+tWvGDBgAEceeSQffvghEydO5P777+fHP/4x0WiUCRMmMHbsWH784x/X1zFlyhROPfVUJkyYwKmnnlo/PPDMM8/koIMO4uOPP2bIkCHcfvvtAMyaNYtZs2YB8Jvf/IZx48YxYcIEMjIyOO644zjllFOYMGEC++67L0cddRQ33HADAwYMaPP5nDlzJl/72tc44IAD6Nu3b/32efPm8c1vfrN+/ZhjjuGll17i6KOPJjMzs831i+wK23uwIkk9WOHegwCIlynBEhER6c5se69HZzBp0iRvPAnDokWL6oe7yc654447mDdvHrfeemu6Q0kb/fuRjvDEM89w4uuns/Wkv9Br/1MBePDFNzjtpWMoP/pX5B1yUZojFBERkY5mZvPdfYfJDdSDJSKyk+q292Bl9ajfltd3MHE3qjbqYcMiIiLdWYcnWGY2zcw+NrPFZvaDjm5PPnf++ed3694rkY4SjwYJVtI9WP3ze7KB3sS2rEpXWCIiItIJdGiCZWZh4HfAccAY4EwzG7Oz9XSmYYzSdejfjXSUeKyJBCsvm7XeB7auSVdYIiIi0gl0dA/WFGCxuy9x91rgPmD6zlSQnZ3Nxo0b9WVZdoq7s3HjRrKzs1svLLKTPFoDgEU+fzRB356ZrPMCMiv1sGEREZHurKMfNDwYWJG0vhI4cGcqGDJkCCtXrqS0tDSlgcnuLzs7myFDhqQ7DNkNeSyRYJGUYEXCIcoy+tKjZnGaohIREZHOoKMTrFaZ2UXARQDDhg3bYX9GRgYjRozY1WGJiDTLgyGCRBr2kFZn9yO3sgyi1ZCh3lMREZHuqKOHCK4ChiatDwm21XP329x9krtPKioq6uBwRERSIFab+Blu+Iy2aG7wTDjdhyUiItJtdXSC9Rawt5mNMLNM4Azg8Q5uU0SkQ3nd9iGCDXuprNfAxIISLBERkW6rQxMsd48B3wWeARYBD7j7Bx3ZpohIR7P6e7Aa9mBlFSTu+avVVO0iIiLdVoffg+XuTwFPdXQ7IiK7im3vwQpnNdjeo29iRHTF+hUU7OqgREREpFPo8AcNi4jsbkJ1wT1YkYYJVkFBX6o8k+rNK9MQlYiIiHQGSrBERHaS1dUSJQPMGmwf0DuHtd6HeNnqNEUmIiIi6aYES0RkJ4XitcQsY4ft/Xtns44CwhVr0xCViIiIdAZKsEREdlI4XkMslLnD9l5ZETZYAVlV69MQlYiIiHQGSrBERHZSuJkeLDOjIrMfvaLrwT0NkYmIiEi6KcESEdlJkXgNdaGsJvfV5PQjw6NQtXkXRyUiIiKdgRIsEZGdlOk1xMI5Te/M08OGRUREujMlWCIiOymRYGU3vS8/8bDh2BZN1S4iItIdKcESEdkJ7k6m11DXTILVo18xAOVrl+zCqERERKSzUIIlIrITonVODrXEI00PESwYMIxaD1NVWrJrAxMREZFOQQmWiMhOqK2Lk0MN8WZ6sAb3yWWNFxLfvHwXRyYiIiKdgRIsEZGdUBOtI9tq8Yyme7AG5eewyvsS3qp7sERERLqjdiVYZvYrM/vIzBaa2SNmlp+074dmttjMPjazY9sdqYhIJ1ATS/RgeTM9WNkZYTZE+pNbqVkERUREuqP29mA9C4xz9wnAJ8APAcxsDHAGMBaYBvzezMLtbEtEJO2qonXkUAuZPZotsy17IL1iGyBWuwsjExERkc6gXQmWu//L3WPB6lxgSLA8HbjP3WvcfSmwGJjSnrZERDqDqpoYOVZLqIUEK9prMCEcyjVMUEREpLtJ5T1YFwJPB8uDgRVJ+1YG23ZgZheZ2Twzm1daWprCcEREUq+ychsAkazcZsuE8ocB4Fs00YWIiEh302qCZWbPmdn7TbymJ5X5ERAD7t3ZANz9Nnef5O6TioqKdvZwEZFdqqaqAoBQVvM9WNlFxQBsW1eyCyISERGRziTSWgF3P7ql/WZ2PnAC8CV392DzKmBoUrEhwTYRkS6ttirRg5XRQg9W7wHFxN3Ytn4pPXdVYCIiItIptHcWwWnA1cBJ7l6ZtOtx4AwzyzKzEcDewJvtaUtEpDOorU70YGVkN59gDSzozTr6EN20bFeFJSIiIp1Eqz1YrbgVyAKeNTOAue5+sbt/YGYPAB+SGDr4HXeva2dbIiJpF61O/C0pI7v5IYJD+uSw2PsyqGxFs2VERERk99SuBMvd92ph3/XA9e2pX0Sks4nVJIYIZue0MEQwJ4N1VsSelUt3VVgiIiLSSaRyFkERkd2eV28FICM3v9kyZsbW7AHk1a6DuDrvRUREuhMlWCIiO6N6CwCWnd9isZrcwYSpg61rOz4mERER6TSUYImI7IRwbVliIbt3ywV7BxOp6j4sERGRbkUJlojITrCa8sRCKwlWZt9iAGo2lnRsQCIiItKpKMESEdkJ4ZpyasmAjOwWy/XqPwKArWuW7IqwREREpJNQgiUishMiteVUhVp/fPCAvoVs8p7UqgdLRESkW1GCJSKyEzJj5VRHerVabnCfHFZ5X92DJSIi0s0owRIR2QnZdRXUtiHB6tcrm9UUkVWxehdEJSIiIp2FEiwRkTaqizs94hXEMvNaLRsOGVsyBtCzZi2474LoREREpDNQgiUi0kZbq6P0Zhue1coU7YHq3EFkeTVUburgyERERKSzUIIlItJGmypq6GdbqMstalP5eN6QxELZ8g6MSkRERDqTlCVYZnaFmbmZ9Q3WzcxuNrPFZrbQzPZPVVsiIulQunEDuVZDRu9BbSofKRgGQGyTEiwREZHuIiUJlpkNBY4Bkr9FHAfsHbwuAv6QirZERNKlvDQxI2BO36FtKp/bL/EsrIr1SzssJhEREelcUtWDdRNwNZB8J/d04C5PmAvkm9nAFLUnIrLLVW1cCUBeUdsSrKJ+A6n0LKpKSzowKhEREelM2p1gmdl0YJW7v9to12Ag+QEwK4NtjY+/yMzmmdm80tLS9oYjItJholsSU67nFAxpU/lBfXqwyvsS36xnYYmIiHQXkbYUMrPngAFN7PoRcA2J4YFfiLvfBtwGMGnSJM1lLCKdVmhr8EyrXk39OtzR4Pwc5npfRles6sCoREREpDNpU4Ll7kc3td3MxgMjgHfNDGAI8LaZTQFWAcnjaIYE20REuqTcihI2hwvok9WzTeWzM8JsivQjt+rNDo5MREREOot2DRF09/fcvZ+7F7t7MYlhgPu7+1rgceDcYDbBqUCZu69pf8giIrteXdwpqllOWY8RO3XctuwB9Kwrg2hVB0UmIiIinUlHPgfrKWAJsBj4E/DtDmxLRKRDrdy0jT1YRazPXjt1XCy3f2Jh69oOiEpEREQ6mzYNEWyroBdr+7ID30ll/SIi6bJs2RKGWyVlA/fZqeM8bxBsALaugYKd6/0SERGRrqcje7BERHYbGz9+DYB++xy0U8dl9E48nSIWzEAoIiIiuzclWCIibRBe+RZRImQP3X+njtv+UOJtGzVVu4iISHegBEtEpBU1sTpGbHuHtbmjIZK1U8cWFBRR7RlUb9IkqiIiIt2BEiwRkVa89d4HjLclRPf48k4f2y8vh7VeQLxMQwRFRES6AyVYIiKtKH3jQQCGHPTVnT62f1426+iDVWgWQRERke5ACZaISAvKttUyas1jrMrem8xB43f6+MLcTNZ7H7Iq13VAdCIiItLZKMESEWnBy889xhgrwSad/4WOD4WMrZl9ya0tBffUBiciIiKdjhIsEZFmbK2qZeg7N7Il1IdBh3/jC9dTld2fTK+B6rIURiciIiKdkRIsEZFmvPDg75nIR2w9+AeQkfOF66nL7Z9Y2LomRZGJiIhIZ6UES0SkCR98upj/WPxrVmSPYuiRF7Wvsl6DEj+VYImIiOz2lGCJiDSytaqGivsuIs8qyT/zzxBq36/KzPzBAMS2KMESERHZ3bU7wTKz75nZR2b2gZndkLT9h2a22Mw+NrNj29uOiMiuUBd35vzhMg6sm8+qKT+m1/AJ7a6zR99ED9a2jSvbXZeIiIh0bpH2HGxmRwLTgX3dvcbM+gXbxwBnAGOBQcBzZjbS3evaG7CISEd67O7f8NXyv/HpkFPZ+7jvp6TOwvx8yrwHtZtXpaQ+ERER6bza24N1CfBLd68BcPf1wfbpwH3uXuPuS4HFwJR2tiUi0qH+9c9HOX7J9ZT0nMje588Cs5TU269XNuu8D/FyDREUERHZ3bWrBwsYCRxqZtcD1cCV7v4WMBiYm1RuZbBNRKRTmvf2PCa9/h02Z/Rj6MUPQyQzZXX3y8viE+9Dn4q1Kauzq6qri7NxwzrKNq0num0TtRWbqassI161hVi0Gq+LEvI6QvEYIY8TtzDxUAYWySAcySKcmUVGRhaRrBwiWT3IyOpBRnYuWTk9yMrJJTsnl0hWbmLWx0h2ypJkERGRtmo1wTKz54ABTez6UXB8ATAVmAw8YGZ77EwAZnYRcBHAsGHDduZQEZGUKFmxnL6Pn004ZPT8xiOEexamtP7C3EzW04d9qz5Nab2dkbuztnQDa5e8R/nKD6H0EzK3rSa3Zh350VKKfCP9rJZ+uyieGjKpsSyilkk0lEXMsoiGs6kLZRMLZRELZxELZVMXyiIWTvw0AzPDcHDHcdwTy4mHRTtxJ1iPY8QhHge84TaP19eRWHfME+Wsfl/DMla/Lw5OYps7oe372ImHVbeSXFoiklYPaVwm+fgdylnT+xrX1WJkbYi7cXvNxdVqe7bDQhta3nG1QUwt1dhqe5/H6zs013yMVVl9GXLmbykoSO3vLhH5YlpNsNz96Ob2mdklwMPu7sCbZhYH+gKrgKFJRYcE25qq/zbgNoBJkybtxP85RETar6y8gvK/zmAfStl86oP0Hzgq5W1EwiHKI33pEX098UW8nbMSdhbVtTE+/eRDSj+Zi69aQJ/yRQyqLWGgbWJgUCbmITaGCinLKGJj3mjW5Q7Eeg8is1dfwj3yieT2IbNnAdm5vcnJySUjMwtCYTycAaEIxGN4rJZYbQ1V1VXU1tZQXV1FbXUl0epKYtXbiNVWEaupxGuriNdWEo9WQbQKotUQqyZUV0UoVk04XkO4rpqMaDWReA1ZlJPjtWRRQxa1ZHkt2dQCn39R9mDZkzKH5PU4IRKpUejzdTO2p0RsT5ssVH+cB8c02GbNbf+8PsyIe6JsfXCNbN/UWiLmvmMZb6JOC85Ag11NVJ1cV3MtW4rq2V6uyf3esExr9TTbUpPnocUjWm/Pm66rqWNaun5N7Rnjb/Du7Vvoc8Xj2G7y+0WkK2vvEMFHgSOBF81sJJAJbAAeB/5mZr8mMcnF3sCb7WxLRCSlYnVx3vnjNzgi/iGLD7uZvcYd2WFtVWf3I1IVg6pNkNu3w9rpSCvWb+LTd14mtvRVCjfOZ4/aTxhvFQDECLMyo5i1hQeypnBvegwaTd8R4ygYMor+kSz6p6D9PimoQ2R3NPeenzB18W94/W//w0Fn/yTd4Yh0e+1NsP4C/MXM3gdqgfOC3qwPzOwB4EMgBnynK84guK18M1s2rGXwHqPTHYqIdICn/vYbTtr2Tz7c81uMOeq8Dm2rLrc/VJF42HAXSbBWb9rKJ/NeIPbJs/TdOJ/R8U8ZalEAVkSKWd7/S6wesh/9R02l7x77UZyRneaIRbqnA7/+E975v/lM+fQm3n5qCPt/5RvpDkmkW2tXguXutcDZzey7Hri+PfWn23tP/oEpH93Auz0mUzPqZPY57DTyClLxd1gRSbe5b83lS4t/ydKe+zLm67/s+AbzBiT697euhQHjO769LyBWF2fBp8tY8ebj9Fz+PJOi8znCKogRYkXWSBYPOJPeo49g0LgjGNqzsME4cBFJHwuFGHXJvXz8268w4Y0reScUZr9p56c7LJFuq709WLu1PQ87g7nbNrLXykfot+AaYu9cyweZY9k68CD67HMYw/c9nOzcvHSHKSI7afOWMgqevIhYKJOBF94D4Y7/VZiZn5hINV6+uv1PeE+h8uoo8+a9SfnCfzB4/Uvs54uYZHHKQ71ZN+gIKsaewOD9j2NEj/x0hyoiLejRszdDv/sEn97yFfZ9/TLmr/+E/c/+HywUTndou6+kiW8Sq3E83uj+QEue+MQ+32Tbl0NNlpWuzRIj+jqHSZMm+bx589Idxg48Xscn77zCxrcfpf/alxgRW0rInJiHWBUewqYeI6jtM5KMAaPo1a+YXv2GUtBvKJk5uR0XkzuxuFMbraOmppra2mpqgxvAo7VVxGpqiNbWEKutoi5aSyya+BmP1hCPVhOPJZapq8VjNXhdLcRqCcVrCcWjhOK1hD1KOB4lHK8l5FEi8ShhjxHx2uBnlAyiiZ8erZ/lCmgw29X25R3XCWbL2rH8Tp2LNsz+1NYa21JX22abalubbWtv17/H1NaVuvPV9nPfcrkMYvSxClYcdydDDzy5TXW219/+vZjTn5lM1dRL6XXczF3SZnOWry/j/bnPwCdPM3rrvxlhienjV2ftQVXx0Qyc8lV6jJgC+mIm0uVUbitn4R/OZ2rF87yXtT/9zriF/iPGpTusL8zdqaiqpnxTKRVb1lO7dSN1lZuJV2+lrqaSeG0lHq3Ca6sgVonFqrFoFaG6KsJ1NWTEqwnHo4Q8RshjhL0u8ZPEctjrCBMjQh1h6oh4jHD99xlv4jsKhGzXfXeO++cT7tSfk6T/xyVPyPM5a6Lcjsc39f/K1upuOHtn87E1/f/hz7/hNdVOU3Fs//l46CiGn/YLvjymc40kM7P57j6p8Xb1YLWBhcKMOuAIOOAIADZv2sCSd16gdsnrZG76iH7bPmHQ1pcJr2j4z7uCHCrJoSrUg+pQD2pDPRJfWEKRYKapEHXB37K3f8jNo1i8rv4XgXkd4SCBCXuMDKJkbP9JjFyLkco0Lo4RDWqPWgZ1Fgl+ZhALXvFQBrFQDlHLozqUSTyU2B+3xJcxs+2zXAUvq0+nPv/rTDBLFpa8Pfln+95Hg8Pb+EeEtszWa22uq23pVerqal/a90VOd5viasv52pnL7U39L2SHQm2qau0eBzN6FyVXAMP75bPCi+i19mN67bJWE+riznufLmHFW0/Qa9lz7F87n69YJbVEWJE/mWX7XMKQA09mUEHxLo5MRFKtR24eUy5/kDcevJExH/6arDsOY17RiQyZdhkD9tovrbHV1NZQtnkDWzeXUrmllNqtGxIJ07ZNULWZUPUmIjVlZEbLyImVkxsvp7dvpZdVten3Zo1nUGOZ1JCVeDxDKHhEQ/DycA/iFiFuETwUwS1CPBSBULAeygiWw+zwHaZBT1Soft2t0febpOUG/5/07T+SHrfQ4H9Xn6ceyTNOeqNtjdOZHaf/bFy3N9jf5PcYj++4rb6eJureHlsTs5Em9+jtWGXSe0yqp6V2ti/3zB1L/7yspuvthNSDlSLVVdtYteRDytcvp2bzKuJla7DKUkLRbWTEgle8EovXYV5HyOOEiBMmMfdHjAh1Fv78g2/hxIfeIsTDGcRDmXgoAw9n4uEsCGdAOAuLZGCRbCySSSgji1Aki3BGFqGMxM9wRjaRzEwyMnOIZGaTkZlFZlYOGZlZRDKzsEh2fV2EM3fJUCmR7mj1lioW/d9x7J+/jT5XvNXh7W2rjvL223Mpe/cfDF43hwn+MWFztoT6sG7A4fSZeCL99p0GWT07PBYRSY9VK5ex/MEfsf/mf5JlUZZG9mTj4CPouedBFI08kIL+Q7EvMCwtVltDRdkmyrckEqWarRuo2bqJuoqNeNVmrHozkZrNZNYGiVJdOT29gt62rdk6425stVwqQr2oDPemJiOPaGZv6rL7QE4fQj0KifQsICO3kHDPAjJ75JGZnUtWj55k5+SSk9OTUETfYWTXaq4HSwmWiMguEI87d878OmdHnifj2rUd8iys5es28MncfxL/9Fn22fpvhtl6AFZk7U1l8dEMPvAUehZP3m2ewyUibbNmzUo+eeaPFK54jtGxRYSDIW4V5LA5VMjWSAF14Wzi4WyioUwsHqsfSROKx8ioqyS7bis94tvo6dvoYTXNtlWfKFlPtoXzqMnoTW1mPnVZ+ZCdj+UWEsktJLNXATm9i8jNLyKvTz9yehXod5N0ORoiKCKSRqGQsSl3bzKqnoINH0O/9j/+oTpax7vvLWDj2/+gYM1LTIwtZJhFqSaT5fmT+Gyf7zNs6skM7aP5/kS6s4EDhzDw/P8B/ofSDaWs+ugtqle8Q3zjUiKV6+gZ3URW7SYy4jVkUkudRagjQswiiVsFwj2ozOzL+sxe1GXmQXZvLLs3kdx8Mnr1JSeviB69+5LXpx89exfSOxKhd7rftEgaKcESEdlFYsMOho9/S3zJS4S+QIJVG4vz0UcfsHbh82Su/Dcjti3gQFsHwNrIYJYMO42CiScyYMKXGKlnUolIE4r6FlF0yFeAr6Q7FJHdlhIsEZFdZJ/R41i2qB99FjxC3tSLWy2/dmMZSz54g61L3iJ7/TvsuW0BE6yUCcBW68mq/P34ZM9vMfzA6QzoP5IBHf8WREREpBVKsEREdpGjR/fn9zaNq9beRXTe3WQccDaYUVldw4qln7Ch5H2q135EZNMn9K/4iD3iyxhgiYlwyiyP1fn7saj4YAZP/DJ5wyeyj+5XEBER6XQ0yYWIyC70wOufUPz02UwJfUw1mVSTSZ5va/BclXLrxZqckdT025eee0xm0Jj/ILtwuB5CKSIi0olokgsRkU7g9ING8nrhIzz46t8o2PoJueEYoR4FZPUdTsHwsfTfYwJ5vYrIS3egIiIi8oUowRIR2cUOGjkYRl6V7jBERESkA7R7AL+ZTTSzuWa2wMzmmdmUYLuZ2c1mttjMFprZ/u0PV0REREREpPNKxR3SNwA/dfeJwHXBOsBxwN7B6yLgDyloS0REREREpNNKRYLlUH+7QG9gdbA8HbjLE+YC+WY2MAXtiYiIiIiIdEqpuAfrMuAZM7uRRML2H8H2wcCKpHIrg21rkg82s4tI9HABVJjZxymIKZX6AhvSHYTsMrre3Yeudfeha9296Hp3H7rW3UtnvN7Dm9rYpgTLzJ6DJp9h+SPgS8Dl7v6QmZ0O3A4c3dao3P024La2lt/VzGxeU9Mvyu5J17v70LXuPnStuxdd7+5D17p76UrXu00Jlrs3mzCZ2V3ApcHq34E/B8urgKFJRYcE20RERERERHZLqbgHazVweLB8FPBpsPw4cG4wm+BUoMzd1zRVgYiIiIiIyO4gFfdgfQv4rZlFgGo+v5/qKeArwGKgErggBW2lQ6cdvigdQte7+9C17j50rbsXXe/uQ9e6e+ky19vcPd0xiIiIiIiI7BZSMURQREREREREUIIlIiIiIiKSMkqwWmBm08zsYzNbbGY/SHc8kjpmNtTMXjSzD83sAzO7NNheYGbPmtmnwc8+6Y5VUsPMwmb2jpn9I1gfYWZvBJ/v+80sM90xSmqYWb6ZPWhmH5nZIjM7SJ/t3ZOZXR78Dn/fzGabWbY+27sPM/uLma03s/eTtjX5WQ4mVbs5uO4LzWz/9EUuO6uZa/2r4Pf4QjN7xMzyk/b9MLjWH5vZsWkJugVKsJphZmHgd8BxwBjgTDMbk96oJIViwBXuPgaYCnwnuL4/AJ53972B54N12T1cCixKWv9/wE3uvhewGfhGWqKSjvBb4J/uvg+wL4nrrs/2bsbMBgPfBya5+zggDJyBPtu7kzuAaY22NfdZPg7YO3hdBPxhF8UoqXEHO17rZ4Fx7j4B+AT4IUDwfe0MYGxwzO+D7+2dhhKs5k0BFrv7EnevBe4Dpqc5JkkRd1/j7m8Hy1tJfAEbTOIa3xkUuxM4OS0BSkqZ2RDgeILn9JmZkXisxINBEV3r3YSZ9QYOI/HQe9y91t23oM/27ioC5AQzGfcA1qDP9m7D3V8GNjXa3NxneTpwlyfMBfLNbOAuCVTaralr7e7/cvdYsDqXxDN1IXGt73P3GndfSmLG8im7LNg2UILVvMHAiqT1lcE22c2YWTGwH/AG0D/peW1rgf7piktS6jfA1UA8WC8EtiT94tbne/cxAigF/hoMCf2zmeWiz/Zux91XATcCy0kkVmXAfPTZ3t0191nW97bd24XA08Fyp7/WSrCkWzOznsBDwGXuXp68zxPPMNBzDLo4MzsBWO/u89Mdi+wSEWB/4A/uvh+wjUbDAfXZ3j0E995MJ5FUDwJy2XGIkezG9FnuHszsRyRu7bg33bG0lRKs5q0ChiatDwm2yW7CzDJIJFf3uvvDweZ124cUBD/Xpys+SZmDgZPMrITEUN+jSNyjkx8MKwJ9vncnK4GV7v5GsP4giYRLn+3dz9HAUncvdfco8DCJz7s+27u35j7L+t62GzKz84ETgLP884f3dvprrQSreW8BewezEWWSuJnu8TTHJCkS3INzO7DI3X+dtOtx4Lxg+TzgsV0dm6SWu//Q3Ye4ezGJz/EL7n4W8CJwWlBM13o34e5rgRVmNirY9CXgQ/TZ3h0tB6aaWY/gd/r2a63P9u6tuc/y48C5wWyCU4GypKGE0gWZ2TQSw/tPcvfKpF2PA2eYWZaZjSAxscmb6YixOfZ5MiiNmdlXSNy7EQb+4u7XpzciSRUzOwR4BXiPz+/LuYbEfVgPAMOAZcDp7t74BlvposzsCOBKdz/BzPYg0aNVALwDnO3uNWkMT1LEzCaSmNAkE1gCXEDiD4r6bO9mzOynwAwSw4feAb5J4l4MfbZ3A2Y2GzgC6AusA34CPEoTn+Ugyb6VxDDRSuACd5+XhrDlC2jmWv8QyAI2BsXmuvvFQfkfkbgvK0biNo+nG9eZTkqwREREREREUkRDBEVERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLRKSTMbNiM3Mzi6Q7FukezOwDMzsi3XGIiOwOlGCJiEiXZ2azzKwieNWaWTRp/el0x9fZuftYd5+TyjrN7I7gWlQkvcKpbENEpDMyd093DCIiuxUzi7h7rB3HFwNLgYz21NNdmdlMYC93P7uJfe26NrtSV4q1KWZ2B7DS3a9NdywiIruSerBERFLAzErM7L/NbCGwzcwiZjbVzP5tZlvM7N3kIVhmNsfM/tfM3jSzcjN7zMwKmqn7AjNbZGZbzWyJmf1no/3TzWxBUM9nZjYt2N7bzG43szVmtsrMft5aD4KZ7WlmL5jZRjPbYGb3mll+0r5NZrZ/sD7IzEq3vy8zOykYarYleH+jG52fK81soZmVmdn9Zpa982d65zVzbdzM9koqc4eZ/Txp/YTgnG4JruGENrZ1hJmtNLNrgvNXYmZnJe0/3szeCa7ViiAZ3L5v+9DQb5jZcuCFYPvfzWxtcN5eNrOxjeL+vZk9HfQQvWZmA8zsN2a22cw+MrP92niOjm7LexQRkZYpwRIRSZ0zgeOBfKA/8CTwc6AAuBJ4yMyKksqfC1wIDARiwM3N1LseOAHIAy4AbkpKcqYAdwFXBe0eBpQEx90R1LsXsB9wDPDNVt6DAf8LDAJGA0OBmQDu/hnw38A9ZtYD+Ctwp7vPMbORwGzgMqAIeAp4wswyk+o+HZgGjAAmAOc3GYDZIUFi09zrkFbeQ1Pqr01rvUJBQvIX4D+BQuCPwONmltXGtgYAfYHBwHnAbWY2Kti3jcR1zw/iucTMTm50/OEkzv2xwfrTwN5AP+Bt4N5G5U8Hrg3arAFeD8r1BR4Eft3GuJtkZj9o6Xq0cvi3g6R8vpmd2p44RES6CiVYIiKpc7O7r3D3KuBs4Cl3f8rd4+7+LDAP+EpS+bvd/X133wb8GDi9qR4md3/S3T/zhJeAfwGHBru/AfzF3Z8N2lnl7h+ZWf+grcvcfZu7rwduAs5o6Q24++Kgrhp3LyXx5fzwpP1/AhYDb5BIDH8U7JoBPBkcGwVuBHKA/2h0fla7+ybgCWBiMzG86u75Lbxebek9NCP52rTmIuCP7v6Gu9e5+50kEpepO9Hej4Nz+BKJRPt0AHef4+7vBddqIYmk9PBGx84MrllVcMxf3H2ru9eQSHb3NbPeSeUfcff57l4NPAJUu/td7l4H3E8iuf7C3P2XLV2PFg69mc8Twx8Dd5jZwe2JRUSkK1CCJSKSOiuSlocDX2v0l/5DSCQlTZVfBmSQ6HVowMyOM7O5QU/AFhKJ0/ZyQ4HPmohleFDfmqT2/0jiy26zzKy/md0XDCksB+5pIqY/AeOAW4Iv/ZDo8Vq2vYC7x4P3NzjpuLVJy5VAz5ZiSbEVrRepNxy4otG1G0riPbbF5iBp3m7Z9mPN7EAzezEYWlkGXMyO57c+VjMLm9kvLTH0s5zPeyeTj1mXtFzVxPquPM/13P1td9/o7jF3f4pEz9tX0xGLiMiupARLRCR1kmcNWkGihyr5r/257v7LpDJDk5aHAVFgQ3KFwbC0h0j0CPUPegyeIjGUb3s7ezYRywoSvS59k9rPc/exTZRN9ovgfYx39zwSPXHb28LMegK/AW4HZtrn942tJpGYbC9nwftb1Up7OzCzQ63hzHONX4e2XssOGs/oVAn0SFofkLS8Ari+0bXr4e6z29hWHzPLTVofRuL8APwNeBwY6u69gVkknd8mYv06MB04GugNFAfbGx/TYYL7yZq9HjtRlbML4xYRSRclWCIiHeMe4EQzOzbohcgOJkAYklTmbDMbE9zP9DPgwWBYV7JMIAsoBWJmdhyJe6m2ux24wMy+ZGYhMxtsZvu4+xoSQwn/z8zygn17mlnj4WiN9QIqgDIzG0zi3q5kvwXmufs3SQx9mxVsfwA4PogjA7iCRIL379ZOVGPu/oq792zh9crO1tmEBcDXg2szjYbD9P4EXBz0NpmZ5VpicopeUD+xxB2t1P9TM8sMksETgL8H23sBm9y9Orh/7uut1NOLxHncSCIh/MVOvMeUcPdftHQ9mjvOzE4zs57Bv71jSCTrj++6yEVE0kMJlohIB3D3FSR6Hq4hkRytIJGsJP/evZvERBRrgWzg+03UszXY/gCwmcQX8seT9r9JMPEFUAa8xOc9SeeSSNA+DI59kIZDFJvyU2D/oK4ngYe37zCz6SQmqbgk2PRfwP5mdpa7f0ziC/QtJHrhTgROdPfaVtpLl0tJxLgFOAt4dPsOd58HfAu4lcR5W0zDCTmGAq+1UPfa4LjVJIbFXezuHwX7vg38zMy2AteRuK4tuYvEEMNVJK7j3NbeWCdyKYm4twC/Ar7lKX7WlohIZ6TnYImIpIGZzQHucfc/pzsWabtgVsR3gQnBZB6N9x9B4roOabxPRES6h0i6AxAREekqgh650a0WFBGRbktDBEVEuhkzm9XMhAWzWj9auiIzG9bCRBXD0h2fiMjuREMERUREREREUkQ9WCIiIiIiIinSqe7B6tu3rxcXF6c7DBERERERkRbNnz9/g7sXNd7eqRKs4uJi5s2bl+4wREREREREWmRmy5rariGCIiIiIiIiKaIES0REREREJEWUYImItMDd0WyrIiIi0lad6h6spkSjUVauXEl1dXW6Q5EuJjs7myFDhpCRkZHuUKQL+81zn3LvG8t55rJDKeyZle5wREREpJPr9AnWypUr6dWrF8XFxZhZusORLsLd2bhxIytXrmTEiBHpDke6sLf//SwP1f2GZc9cTOGpV6Q7HBEREenkOv0QwerqagoLC5VcyU4xMwoLC9XzKe12fN0LDA+tp3fJU+kORURERLqATp9gAUqu5AvRvxtpr+poHb28HICibZ+C7sUSERGRVnSJBEtEJB3Kq6P0oQKAvHgZlK9Kc0QiIiLS2SnBagMz44orPr/34sYbb2TmzJnpCyjJ3LlzOfDAA5k4cSKjR4+uj2vOnDn8+9///sL1Llu2jP3335+JEycyduxYZs2alaKIRbqO8qoY+baNKrIBqFm3OM0RiYiISGenBKsNsrKyePjhh9mwYUNK63V34vF4u+o477zzuO2221iwYAHvv/8+p59+OtD+BGvgwIG8/vrrLFiwgDfeeINf/vKXrF69ul2xinQ15dVR8m0ra3L2BmDT6s/SHJGIiIh0dkqw2iASiXDRRRdx00037bCvtLSUU089lcmTJzN58mRee+01AGbOnMmNN95YX27cuHGUlJRQUlLCqFGjOPfccxk3bhwrVqzgqquuYty4cYwfP577778fSCRIRxxxBKeddhr77LMPZ511VpPP4lm/fj0DBw4EIBwOM2bMGEpKSpg1axY33XQTEydO5JVXXmkxznPOOYeDDjqIvffemz/96U8AZGZmkpWVmJK6pqam2UTw5ptvZsyYMUyYMIEzzjgDgE2bNnHyySczYcIEpk6dysKFC+vbOu+88zj00EMZPnw4Dz/8MFdffTXjx49n2rRpRKNRAH72s58xefJkxo0bx0UXXbTD+47H4xQXF7Nly5b6bXvvvTfr1q1r6TKK7LTyqij5bKOm7xgAKktL0huQiIiIdHrtnqbdzIYCdwH9AQduc/ffmtlM4FtAaVD0Gndv1zRcP33iAz5cXd6eKnYwZlAePzlxbKvlvvOd7zBhwgSuvvrqBtsvvfRSLr/8cg455BCWL1/Osccey6JFi1qs69NPP+XOO+9k6tSpPPTQQyxYsIB3332XDRs2MHnyZA477DAA3nnnHT744AMGDRrEwQcfzGuvvcYhhxzSoK7LL7+cUaNGccQRRzBt2jTOO+88iouLufjii+nZsydXXnklAF//+tebjXPhwoXMnTuXbdu2sd9++3H88cczaNAgVqxYwfHHH8/ixYv51a9+xaBBg3Z4L7/85S9ZunQpWVlZ9QnPT37yE/bbbz8effRRXnjhBc4991wWLFgAwGeffcaLL77Ihx9+yEEHHcRDDz3EDTfcwCmnnMKTTz7JySefzHe/+12uu+46AM455xz+8Y9/cOKJJ9a3GQqFmD59Oo888ggXXHABb7zxBsOHD6d///6tXkeRnVFVWUkPqyGnYDDrl+cT37I83SGJiIhIJ5eKHqwYcIW7jwGmAt8xszHBvpvcfWLw6tJzHOfl5XHuuedy8803N9j+3HPP8d3vfpeJEydy0kknUV5eTkVFRYt1DR8+nKlTpwLw6quvcuaZZxIOh+nfvz+HH344b731FgBTpkxhyJAhhEIhJk6cSElJyQ51XXfddcybN49jjjmGv/3tb0ybNq3JNluKc/r06eTk5NC3b1+OPPJI3nzzTQCGDh3KwoULWbx4MXfeeWeTPUQTJkzgrLPO4p577iESidS/p3POOQeAo446io0bN1JenkiMjzvuODIyMhg/fjx1dXX18Y4fP77+/b344osceOCBjB8/nhdeeIEPPvhgh3ZnzJhR39t33333MWPGjBbPucgX4VWbAMjNL2K19yWjQsNkRUREpGXt7sFy9zXAmmB5q5ktAga3t96mtKWnqSNddtll7L///lxwwQX12+LxOHPnziU7O7tB2Ugk0mBYXfLzmHJzc9vU3vYhepAY/heLxZost+eee3LJJZfwrW99i6KiIjZu3LhDmebihB2nM2+8PmjQIMaNG8crr7zCaaed1mDfk08+ycsvv8wTTzzB9ddfz3vvvdem9xQKhcjIyKhvKxQKEYvFqK6u5tvf/jbz5s1j6NChzJw5s8lnWR100EEsXryY0tJSHn30Ua699toW2xX5IqxqMwDhHn3YGOnPoKplaY5IREREOruU3oNlZsXAfsAbwabvmtlCM/uLmfVp5piLzGyemc0rLS1tqkinUVBQwOmnn87tt99ev+2YY/5/e3ceX2V553388zt79pAFAoTNBWQHWaQiClSrtlZrteo8LkXHOp1pp6OdznTVqvOa5zW2M52lOnVqbbWto6htxcdWq9VapXUpIK6IoiwJBgiB7Dn79fxxTmI2SCAnnCzf94vzyr1c93X/Tm7u5PxyXfd1fYzvf//7HevtXeGmTp3Kpk2bANi0aRPbt2/vtc4VK1awdu1aEokEtbW1PPfccyxdurTfMf3617/ueEbp3Xffxev1UlxcTEFBAU1NTX3GCbBu3TrC4TB1dXU8++yzLFmyhOrqatra2gA4ePAg69evZ8aMGV3OnUwmqaqqYtWqVdx22200NDTQ3NzMihUruO+++4DUs2RlZWUUFhb26/20J1NlZWU0Nzfz8MMP91rOzLjwwgv58pe/zMyZMyktLe1X/SJHIhlL3QPeUD4toQqKo3s1F5aIiIgcVsYSLDPLB34BXO+cawR+ABwPLCDVwvVvvR3nnPuhc26xc25xeXl5psIZNH//93/fZTTB//qv/2LDhg3MmzePWbNmdQxnftFFF3HgwAFmz57N7bffzvTp03ut78ILL2TevHnMnz+f1atX853vfIeKiop+x/Ozn/2MGTNmsGDBAq688kruu+8+vF4vn/zkJ/nVr37VMcjFoeKEVDe/VatWsWzZMm688UYmTJjAli1bOOWUU5g/fz5nnHEGX/nKV5g7dy4A1157LRs2bCCRSHDFFVcwd+5cFi5cyJe+9CWKi4u5+eab2bhxI/PmzeNrX/sa9957b7/fT3FxMZ/73OeYM2cOZ599NkuWLOnYd+edd3aJ+9JLL+XnP/+5ugfKoEnGIgD4AiEi+RMJEIOWof2HIBEREcku621kuiOuxMwPPAb81jn3vV72TwUec87NOVw9ixcvdhs2bOiybcuWLcycOXPAMUrvbr755i6DYYw0+v8jA7Hul/dxwWt/Q/SqX/PIC29xybv/gLv2GaxyUbZDExERkSwzs43OucXdtw+4BctSD9HcDWzpnFyZ2fhOxS4E3hjouUREjqX2Fix/IESgZDIAzft67+4rIiIiAhkY5AJYDlwJvG5mm9PbvgH8hZktIDV0+w7grzJwLsmwm2++OdshiAxd8dQzgeYLkTd2KgAt+3ZSkMWQREREZGjLxCiC6wHrZdewHpZdRMTF0iNY+kKUl5fS5gJEDlZnNygREREZ0jLRgiUiMjLFU10E8QWoKMphjxsDDZoLS0RERA4to8O0i4iMKIn2BCtEeUGQfYzB17InuzGJiIjIkKYES0TkECwRTS14A3g9Rr2vnJzwvuwGJSIiIkOaEqx+euSRRzAz3n777UOW2bFjB3PmHHYk+iOydetWVq5cyYIFC5g5cybXXXcdkJok+De/OfpH3MLhMEuXLmX+/PnMnj2bb3/725kKWWRkiX/YggXQGhxLYaxWkw2LiIjIISnB6qf777+f0047jfvvv7/X/fF4fMDnSCQSXda/9KUvccMNN7B582a2bNnC3/7t3wIDT7CCwSDPPPMMr776Kps3b+aJJ57gxRdfHFDsIiORp72LoDcAQCx3XGqy4baDWYxKREREhjIlWP3Q3NzM+vXrufvuu3nggQc6tj/77LOsWLGC888/n1mzZgGpROvyyy9n5syZXHzxxbS2tgLw9NNPs3DhQubOncs111xDJJL64DZ16lS++tWvcvLJJ/PQQw91OW9NTQ2VlZUd63PnziUajXLTTTexdu1aFixYwNq1a2lpaeGaa65h6dKlLFy4kHXr1gFwzz33cMEFF7By5UpOPPFEbrnlFgDMjPz8fABisRixWIzUdGZdPfTQQ8yZM4f58+dz+umnA6nWr6uvvpq5c+eycOFCfv/733ec61Of+hRnnXUWU6dO5fbbb+d73/seCxcuZNmyZRw4cACAu+66iyVLljB//nwuuuiiju9PZ8uWLePNN9/sWF+5ciXdJ6AWORY8ySgxfOBJ/ah0Benp/ZpqshiViIiIDGXDaxTBx78Ge17PbJ0Vc+HcfzlskXXr1nHOOecwffp0SktL2bhxI4sWLQJg06ZNvPHGG0ybNo0dO3awdetW7r77bpYvX84111zDf//3f/PFL36RNWvW8PTTTzN9+nSuuuoqfvCDH3D99dcDUFpayqZNm3qc94YbbmD16tWceuqpfOxjH+Pqq6+muLiYW2+9lQ0bNnD77bcD8I1vfIPVq1fz4x//mPr6epYuXcqZZ54JwMsvv8wbb7xBbm4uS5Ys4ROf+ASLFy8mkUiwaNEitm3bxhe+8AVOOeWUHue/9dZb+e1vf8vEiROpr68H4I477sDMeP3113n77bf52Mc+xjvvvAPAG2+8wSuvvEI4HOaEE07gtttu45VXXuGGG27gpz/9Kddffz2f/vSn+dznPgfAt771Le6+++6Olrl2l156KQ8++CC33HILNTU11NTUsHhxj0myRQadJxEmZgH86XX/mImwA8J11YTGzc5maCIiIjJEqQWrH+6//34uu+wyAC677LIu3QSXLl3KtGnTOtYnTZrE8uXLAbjiiitYv349W7duZdq0aUyfPh2Az372szz33HMdx1x66aW9nvfqq69my5YtfOYzn+HZZ59l2bJlHS1fnT355JP8y7/8CwsWLGDlypWEw2F27doFwFlnnUVpaSk5OTl8+tOfZv369QB4vV42b95MdXV1RxLW3fLly1mzZg133XVXR/fF9evXc8UVVwBw0kknMWXKlI4Ea9WqVRQUFFBeXk5RURGf/OQngVTL244dO4BUErZixQrmzp3Lfffd16Wlqt0ll1zCww8/DMCDDz7IxRdf3Ov3R2SweZIx4hboWM8rS7UoN9buylZIIiIiMsQNrxasPlqaBsOBAwd45plneP311zEzEokEZsZ3v/tdAPLy8rqU797Vrreud911r6OzCRMmcM0113DNNdcwZ86cXhMh5xy/+MUvmDFjRpftL730Up/xFBcXs2rVKp544okeA3TceeedvPTSS/z6179m0aJFbNy48bDvIxgMdix7PJ6OdY/H0/GM2po1a3jkkUeYP38+99xzD88++2yPeiZOnEhpaSmvvfYaa9eu5c477zzseUUGizcZIdYpwSosnwSkWrBEREREeqMWrD48/PDDXHnllezcuZMdO3ZQVVXFtGnTeP7553stv2vXLl544QUA/vd//5fTTjuNGTNmsGPHDrZt2wbAz372M84444w+z/3EE08Qi8UA2LNnD3V1dUycOJGCggKampo6yp199tl8//vfx6VHNnvllVc69j311FMcOHCAtrY2HnnkEZYvX05tbW1Hl7+2tjaeeuopTjrppB7nf++99zjllFO49dZbKS8vp6qqihUrVnDfffcB8M4777Br164eid3hNDU1MX78eGKxWEc9vbn00kv5zne+Q0NDA/Pmzet3/SKZ5E3GSHj8HevjxhSy3xWSaNidxahERERkKFOC1Yf777+fCy+8sMu2iy666JCjCc6YMYM77riDmTNncvDgQf76r/+aUCjET37yEz7zmc8wd+5cPB4Pn//85/s895NPPtkxyMTZZ5/Nd7/7XSoqKli1ahVvvfVWxyAXN954I7FYjHnz5jF79mxuvPHGjjqWLl3KRRddxLx587joootYvHgxNTU1rFq1innz5rFkyRLOOusszjvvPABuuukmHn30UQD+4R/+gblz5zJnzhxOPfVU5s+fz9/8zd+QTCaZO3cul156Kffcc0+Xlqu+/NM//ROnnHIKy5cv75LUPfroo9x0000d6xdffDEPPPAAl1xySb/rFsk0XzJCwvNhC1ZFUYi9bgymQS5ERETkEMwNoflcFi9e7LqPFrdlyxZmzpyZpYiGt3vuuafLYBijkf7/yECsv2UVU0MtVH715Y5tf7h5FdNzmhj/VY1sKSIiMpqZ2UbnXI+R2NSCJSJyCH4XJeHp2kLbHCgnL1qbpYhERERkqBteg1zIEVmzZg1r1qzJdhgiw5bfRUl6C7tsi4TGUthYD/Eo+AK9HygiIiKj1rBowRpK3Rhl+ND/Gxkov4vhurVgJfLTkw0378lCRCIiIjLUDfkEKxQKUVdXpw/LckScc9TV1REKhbIdigxT8USSADGS3q6tVJ6iCan99RpJUERERHoa9C6CZnYO8J+AF/iRc+6IJrOqrKykurqa2lo98yBHJhQKUVlZme0wZJiKphOsuLdrC1awJPV/qqm2ijFTP5KN0ERERGQIG9QEy8y8wB3AWUA18Gcze9Q591Z/6/D7/UybNm2wQhQR6VUkliRoMWK+rglWQXqy4db9VYzJRmAiIiIypA12F8GlwDbn3PvOuSjwAHDBIJ9TRGTAUi1YcejWRbC0rIKI8xM9WJ2lyERERGQoG+wEayJQ1Wm9Or2tg5ldZ2YbzGyDugGKyFARjScJEgNf1+f4Kopz2OPG4Bo/yFJkIiIiMpRlfZAL59wPnXOLnXOLy8vLsx2OiAgAkXjqGSzzd02wSnID7GMMvpZ9WYpMREREhrLBTrB2A5M6rVemt4mIDGmRWIygxbFug1x4PEaDr5yc8N4sRSYiIiJD2WAnWH8GTjSzaWYWAC4DHh3kc4qIDFgsEgbAAj2H+m8NjaUwvh80fYSIiIh0M6gJlnMuDnwR+C2wBXjQOffmYJ5TRCQTYtFUguXpNoogQCxvHEEXgXD9MY5KREREhrpBnwfLOfcb4DeDfR4RkUyKRdoA8PTSgkXBBKgF1/gBlqPB2kVERORDWR/kQkRkKEqkW7C8vp4Jlr84NRhq634N1S4iIiJdKcESEelFPJpqwfL20oKVW1YJQFPtrmMak4iIiAx9SrBERHrR0YIVyOmxr2jsZADCdVU99omIiMjopgRLRKQXiVgqwfIFeg5yUVFSRK0rJFmvLoIiIiLSlRIsEZFeuHQLli+Y22Pf2MIgu10ZviYlWCIiItKVEiwRkV4k4u0tWD2fwQr6vNR6xpLT+sGxDktERESGOCVYIiK9cOkugoFgz2ewAJpD4ymK7dVkwyIiItKFEiwRkV4kYxEAvP6ez2ABRPInEnBRaKk9lmGJiIjIEKcES0SkN+kugubvvQXLUzQJAFevodpFRETkQ0qwRER64eLR1IKv9xasYPkUAJr3bj9WIYmIiMgwoARLRKQXlm7Bwtt7glVYcTwATUqwREREpBMlWCIivfDEW1MLgbxe948rH0eTyyFat/MYRiUiIiJDnRIsEZFeeOOtJDE4xDNYE0ty2e3KoKHqGEcmIiIiQ5kSLBGRXnjjrUQIglmv+4ty/Oz1lBNs2X2MIxMREZGhTAmWiEgvPPFWIp7eW6/aNQUrKIzsOUYRiYiIyHCgBEtEpBe+RBtRT+iwZcK5E8hLNkO48RhFJSIiIkPdgBIsM/uumb1tZq+Z2a/MrDi9faqZtZnZ5vTrzoxEKyJyjPgSYWJ9tGChubBERESkm4G2YD0FzHHOzQPeAb7ead97zrkF6dfnB3geEZFjKphsI+Y9fIIVKEvNhdWyb8cxiEhERESGgwElWM65J51z8fTqi0DlwEMSEcm+QLKNeB8JVsG44wBo3PP+sQhJREREhoFMPoN1DfB4p/VpZvaKmf3BzFYc6iAzu87MNpjZhtra2gyGIyJy9IIuTNKXe9gy5eMnE3F+Ivs12bCIiIik+PoqYGa/Ayp62fVN59y6dJlvAnHgvvS+GmCyc67OzBYBj5jZbOdcjyfBnXM/BH4IsHjxYnd0b0NEJHMSSUfIRQj7D59gTRyTR7Urw6NnsERERCStzwTLOXfm4fab2RrgPOCjzjmXPiYCRNLLG83sPWA6sGGgAYuIDLbWaJw8C9PmzztsueJcP2/aWI5rrj5GkYmIiMhQN9BRBM8B/hE43znX2ml7uZl508vHAScCekhBRIaF1miCHCLQRwuWmVEfHE9h+INjFJmIiIgMdQN9But2oAB4qttw7KcDr5nZZuBh4PPOuQMDPJeIyDHREo6RSwQLHj7BAgjnTiQ/2QiRpmMQmYiIiAx1fXYRPBzn3AmH2P4L4BcDqVtEJFuam5vwmMMXKuizbLJ4MtQD9VUwbtagxyYiIiJDWyZHERQRGRFa6vcB4Cso7bOsv2QqAK373hvMkERERGSYUIIlItJNpDE1ZUSwoKzPsvkVxwOaC0tERERSlGCJiHQTa64DIKdobJ9lx1ZU0uYCRGo1F5aIiIgowRIR6SHRtB+A3OK+E6zKklyqXTlOc2GJiIgISrBERHpwbalBTwP96CJYkhfgAysn2Fw12GGJiIjIMKAES0SkG0/bwdRCzpg+y5oZDYHxFIZrBjkqERERGQ6UYImIdGNtB2ixXPD6+1W+La+SvGQThBsGOTIREREZ6pRgiYh044scpNVb2O/yyaJJqYV6dRMUEREZ7ZRgiYh0UxzbR3NwXL/L+0unAdBWq6HaRURERjslWCIinUTjSca6WsK5E/p9TEH7XFg1mmxYRERktFOCJSLSyd76Zio4QLKwst/HjB03nhYXJLJ/x+AFJiIiIsOCEiwRkU5qqnfgsyShsin9PmZiei4s6ncOYmQiIiIyHCjBEhHp5EC6m9+YCcf1+5jy/CAfUE6wuXqwwhIREZFhQgmWiEgn8T1vA1BcOavfx5gZDcEK8sJ7ByssERERGSaUYImIdBI8sJU2QnjG9L+LIEBrqIL8ZCNEWwYpMhERERkOlGCJiHQypvld9oWmgefIfjzG8yemFhp2D0JUIiIiMlwMKMEys5vNbLeZbU6/Pt5p39fNbJuZbTWzswceqojI4NpT38rxyR1ESk464mOtODXqoGvQZMMiIiKjmS8Ddfy7c+5fO28ws1nAZcBsYALwOzOb7pxLZOB8IiKDYtuWVzjNmmmY9pEjPtY/ZhIAbbU7yT0h05GJiIjIcDFYXQQvAB5wzkWcc9uBbcDSQTqXiEhGNG59HoDxc8844mMLxk4i4YzW/RqqXUREZDTLRIL1RTN7zcx+bGZj0tsmAp37yVSnt/VgZteZ2QYz21BbW5uBcEREjk7+7uc46CkhOG7GER87triAfYwhflBdBEVEREazPhMsM/udmb3Ry+sC4AfA8cACoAb4tyMNwDn3Q+fcYufc4vLy8iM9XEQkI/bUNbAwuomaipVgdsTHjysI8YErxRo1yIWIiMho1uczWM65M/tTkZndBTyWXt0NTOq0uzK9TURkSHr7xcdZaW0UzD//qI4fWxjkNVfK8S0fZDgyERERGU4GOorg+E6rFwJvpJcfBS4zs6CZTQNOBF4eyLlERAZT5M3/RxtBKhce3aCnIb+XOm85eeE94FyGoxMREZHhYqCjCH7HzBYADtgB/BWAc+5NM3sQeAuIA1/QCIIiMlRV1TawqOU5dpcv54RA7lHX0xwajz8chdY6yCvLYIQiIiIyXAwowXLOXXmYff8M/PNA6hcRORY2P/Mgn7RG+MiaAdUTyxsPYaChSgmWiIjIKJWJebBERIYt5xzF7zxEvWcMZQs+MbDKiiqhDmjYDRMWZiS+oSocDrNvz24a6vYQb64l3lxHIhbF4xIYDvOHCOQWEswvJr+wlLKJUwnmlx7VACIiIiLDiRIsERnVNm/dxrL4Bt4/4SqKvQP7kegvmQLvQ6K+Cm+G4ssm5xz7DtRT9fYGmndswLNvCwWtVZTHdlPhaplsySOqr40gdd5ymoIVRPIm4IonEyybRuH44ymrPJFQ8QTwDNb0jL1zzhGNJwi3ttLW1kSktRni4fS+1P72Z+ocqffrMcPMg8frxevxYh4PXq8Hj8eLmReP14PX48XjTb883o79Ho8HMy+Yp9PLlHiKiIwgSrBEZFSr/sO9LLQEk1ZdO+C6ikrHEXZ+Evt3kpeB2I61eCLJ1nffYe9rT+Hb9Ucqmt/iOFfFuHQi1UQe+wKV7C+aQ03hFLzFkwgVl+MvKCdYUIo/EMJ5fDg8xCMttDY3EGmpp62hjtjBamjcTbC1hsLwHia2vEt5bQO8++H5I/ip846lPjie1lAFLmcMnpwiCBaRDBbi9QXw+nyYx0PceUgk4rhYOJUQxcIkY2FctA0Xb4NYGxZvwxtvwxNvw5cM40+04U+G8ScjBF2YoIsQIkIOUYLmKMrS9x0giZHEcHjSX40knvTXntuTGEYq8TNILx9+vb08uE5lun11dCrXt1RNmSuXiXr6LGP08x1aL0tDU6OniNjVTzJl0uRshyIiKMESkVEsHEtw/AePUZUzg0mVcwZcX0VRDrtdGSUHqoZNglW1Zz9vv/D/8L33FNOaNjHbapgNNJNHdf5s3iw/k9wpi6mYuYyCsdMoyFBLSzLp2HPgILXV22iseY/o/u1Qv4tQSzVjwjVMad1GgWshZLEjr9sZYQsQJkjEQkQtRNQTIu4JEQmU0OLLwflySHpzcP4c8OdCIBcL5OIN5OG8gXSLkqX/dW5hMpxLknQOl0ymXi6JSyZwLgnpddLrqX1JzCVwSZfa5z4sg0umm8qSHftI14NLAkk8zmGWxJz7MNVyyW6tXp504mCYfZhCtacGrlP8XfZ32o6l0jCDfrWo9T8R67ucZWjkzfaYetTm2r+k3nmvZ3O9H+u6LfQeqTtsme5vrz/v1nU76FB1+lyU0xse5fmn72LKmn/qR80iMtiUYInIqPWnF55ntW1n+5xvZaS+iqIQNa6E0oaqjNQ3GBJJx5tb3+aDl39FcdXTLIi9yiSL0UIOVUUn8+bkqxg//0xKjl/ESZ7B6+jo8RgVZSVUlC2FBUt7LRNPJKlraiLa0kCi9SCxWIx4LE4yGcfnSeLzBfAGQngDOfgCOQRy8sjNycUfCJFrxtGPBykyvLz1z6dy3K6HcMmbsUG8b0Wkf5Rgicio1bLhfuJ4mHLGZzNS3/iiEG+5Mha2bMlIfZninGPLe7t4//n7GL/rMRYm32KeOfZ5K9g2+TOUL7qAcXNWc5IvkO1Qu/B5PZQWF0FxEaCuTyKH0jDrcma9+g3efflxTlx2XrbDERn1lGCJyKi0r7GVRQ1PsXPMMo4vGJuROkvyAuy1MnIjtZCIgdefkXqPVvW+Ot74/VoK3v0VS2IbmWUJ9vgnsfX4L1B56mWMnTSHsRpcQWTYm/uxz1K/+f/S/Me7QAmWSNYpwRKRUWnjHx7jXKtjz5LLM1anmdGSU4FFHTR+AGOmZKzu/grHEvzxT88TfeluTm35HedYKwc8Jbw37XIqT7+KimmLqVBSJTKi5Ofl82LFJ1m050E+eO9NJhw/O9shiYxqSrAO44PtW6j682PMPfdacgvGZDscEckg/5sP0UoOFUs+ndF6Y3kTIAo07j6mCdb7NbW8/tt7mbzjQT7KVmL42D72o0RP+0vK555JiZ7LEBnRTrjg68T+55fsXXcjE778y2yHIzKqKcE6jF1/fIBl2/6Dljf/lY0Fy7CTPs5xyz5Fcdm4bIcmIgNQva+OpW3Ps2v8mZwUyOxQCFZUCQeBhuqM1tubSDzBH1/4E+EXf8SpzU9xgbWw11/J9jlfY8rqa5leUD7oMYjI0FA2YQp/nHAZy2vuZdvG33HCojOzHZLIqKUE6zBO+T/f5u2Np9P04k+YVvc8ZRueJfHnr/Ke7zgOlJ2Md8pHGD9jKeOmnITHl91nLTItmXTEE0kS8SjxaBvJWIR4NEIimSCRiJNMJIgnEiQSqXWXSIJLdAxX3D7ksHVaTg07nEjNzuKA9JwrH87WktqePORwvf2db6W3Qw93bKd9vR3cx2n7mnOlz+F4zXoM4dvvk6ff19Ee7w7zfenXvDUDHFp5IEcP5NSN7zzH2dZG8ylXDCCC3gVLJ8MOcA3VgzZ3zs49dbz65E+pfH8tq9lCDB87xq7GrbyOcbPO1KS1IqPUvMtuZve/P07Or79I+KSXCeUVZjukISWRdMRiUaLhFuKRNmKRVhKRMPFYhFg8TiIeS33uicdJJuJYMoFLxsElsGQcl0yktqU/y3T+DOOc6/i95HA9fkd1/7Fs3X9DmGGdp03ocpClpxew9AwS6d/96XLWbboF63Zs57oOeQ7rfA5PlyLt0zt8OPVD1zg+rKu9vCf9fjpv7Hp+8/T8PdV95rnO37N4TikTp8xgTN7QGozpUJRgHYZ5PJy05KOw5KMkEgm2vPIHGl/7Dbl7/szsPY+Su/cheBmizscH3gkczJ1KPG88rqACb+F4QsXj8OcUEsgtwJ9TRCCvgJzcPEJ+X3oY1dScI5gHcLhEjGg0QiwSIRaLEIumX7EoifYEJxYhEWsjEQ2TjEVIxiOpr7EwxCO4eATiEUhEIBHFElE8iUjqazL18iajeJMxfC6KLxnF52L4iOF3MQLECRJNfT2K+WdEhou9Vsb4eZn/C29ZyRgOuHxy9u8kJ4P1RuNJ/vjSn2h74W4+0vQk51sz+3wTeH/OPzL1o5/jxAwN1CEiw1dBUQnvrPo3Fv3+Sl67aw1zv/TQiBi2PdzaTMOBPbQc2EdbQy3h5oNEWhpIhhuxSBMWbcIba8Yba8YfbyYQbyGUbMWXjOB3UQIuQoAYIaKELEko229IjthP4mez45L/4Lx5E7IdSr8oweonr9fLzMWrYfFqACKRMO9u+TP739uMq32bnIb3KG15j5KmP5O/t+2oz5OpdrC48xC1ADF8xMxP3PzELUDcAiQ8fhLeAAlPHnHvGKKeAM6beiU9QZLeAElvALxBkp4AeAM4bzA1IprHj8frwePxYB4vHo8XS7+wVLKYWvakXp2XzZv6y0X7Xy9IHwIdf+nwtO/p8Zeeo2+uOPwElj33Wec/mfTZTNJ1f8+/x/Rx/OH+wnXE5+5+9r7O/eH+ng0emZn0sz8G0tbS8z33X/HkWZg38z8Cp48roMaVMj5DCdaOvQdSrVXvrWUVbxHHy/byVbDyrxg760zGejwZOIuIjBSLzjifZ7Z9gdVVd/Dq//wl8667C8vyiKbduWSSpsaDHKzZQWPtLtrqqkk0fIBrrsUXOUgwepDceAP5iQYKXSN5FjlsUtTqgrRaDm2WS5snj4g3j4OB8SR8IfCGwB8CXwjnDeJ8qeX2bfhCePwBvF4fXq8fr8+Hx+vH4/NhHg/O/ODxYB4/eLyYx9fxWcY6PrtYj88zqc847b1Muk5i3fXXe2oCcZdsL+O6FnLt21yX3j/ttTmX7DhHx29E16ksAOky3c5h7XW69i2uU3DJjvO3n6/jaNd+bOfy7fF0Osh1ey9dypDq4dT+AaTbJN3dJ9qelV/JtKklDBfW/Q1k0+LFi92GDRuyHcaAOOdobDhI/b4qmg7sJdHWRCLSRCLchIs0k4y2EU8kU21XLomR7LghkuYDbwCPz4/5Anh8qWWvL4jH78frC+H1B1MTa/pD+AIh/MHUKxDMJRDMIRAM4fGHUomNiBxzdc0RNt12LicXNVL6laP7edYSjvHyn54mvOkBTml6ihJrptY3nsbZlzP1o9fhLdRzoCJyaMlEkmd/8Les3v9z3s45mbGX/w8lldOPybnjsSgH9lZTv3cnLfuriB6sxjXW4GuuISe8j8JYLaXJOnIt0uPYJnJosiKavYWE/cVEAmNIhEpwuSVYXin+/LEECsvIKywhv6iE/MIx5OQXDbkEUkYPM9vonFvcfbtasDLMzCgqLqGoePhk2SKSOaX5QWr8lRS1/AaiLRDI69dxsUSSV17dzP4Xfs5J+x5nlX1AFB87y8/AzvgrymefRblaq0SkHzxeD6u+cDu/X3s8S7bchv+uU3l13Mcp/cgVVM5bDUfReu+SSVoa9nNgz06aaqtoO7CbeH0N1lxDsHUPedFaiuP7KXH1jDVH507LUeelzkpo8JexL+9EdueuwBWMxz9mIjmlkygaO5nSiikU5OVTkLlvg0jWKMESEcmwfeWn4tu7Drf9OWzGuYcsF47GeWXjCxzc9AiTap9lKdsAeD9/PtvnfZEpp/0fTszTFBEicuTMjFWXfZnt759H1SO3sHTvbwitW0fzulxqQsfRmDcVcktxwWLw+jGSxOMJXLQFb7QBb6QRT7SRULSeosR+SpMHybc4+d3O00AeBzxlNAXKOZh/Itvyx+MpnECwpJL88kkUV0yhpGw8471exmfh+yCSDQPqImhma4EZ6dVioN45t8DMpgJbgK3pfS865z7fV30joYugiMgDf9rGx3+7guSkZRRf+6uO7c45tldVs33jUyTff44ZjX9isu0FYGdoJpETP87kM64iVDY1S5GLyEhVu38/b65/BN/2P1DUvI2KxAcUumaCFu9RttHl0mT5tHnzifgKaQ2WE8sdh8uvwF88gdzSielWp0nk5qnNSUavQ3URzNgzWGb2b0CDc+7WdIL1mHNuzpHUoQRLREaClkicH912PX+X/BnbS1awLzgF11hDacu7HO+q8JgjQoCdhYtwM85l2qkXExgzMdthi8go0xaJ09baRCIRBzyEAl5yc/Px+tTBSaQ/BvUZLEsNk3IJsDoT9YmIDGd5QR+nf/YW7v3fOOfWPc58XqTBU8yBvGm8Mf48xs0/i3EzlzPdF8x2qCIyiuUEfeQE1Q1ZJNMy0oJlZqcD32vP4NItWG8C7wCNwLecc88f4tjrgOsAJk+evGjnzp0DjkdEZKhojcYJ+rx4e5lUUURERIavo27BMrPfARW97Pqmc25devkvgPs77asBJjvn6sxsEfCImc12zjV2r8Q590Pgh5DqItj3WxERGT5yA+pqIyIiMpr0+ZvfOXfm4fabmQ/4NLCo0zERIJJe3mhm7wHTAT1gJSIiIiIiI1YmJlU5E3jbOVfdvsHMys3Mm14+DjgReD8D5xIRERERERmyMtF35TK6dg8EOB241cxiQBL4vHPuQAbOJSIiIiIiMmRlbJj2TDCzWmCojXJRBuzPdhByzOh6jx661qOHrvXoous9euhajy5D8XpPcc6Vd984pBKsocjMNvQ2OoiMTLreo4eu9eihaz266HqPHrrWo8twut6ZeAZLREREREREUIIlIiIiIiKSMUqw+vbDbAcgx5Su9+ihaz166FqPLrreo4eu9egybK63nsESERERERHJELVgiYiIiIiIZIgSLBERERERkQxRgnUYZnaOmW01s21m9rVsxyOZY2aTzOz3ZvaWmb1pZn+X3l5iZk+Z2bvpr2OyHatkhpl5zewVM3ssvT7NzF5K399rzSyQ7RglM8ys2MweNrO3zWyLmX1E9/bIZGY3pH+Gv2Fm95tZSPf2yGFmPzazfWb2Rqdtvd7LlvJf6ev+mpmdnL3I5Ugd4lp/N/1z/DUz+5WZFXfa9/X0td5qZmdnJejDUIJ1CGbmBe4AzgVmAX9hZrOyG5VkUBz4e+fcLGAZ8IX09f0a8LRz7kTg6fS6jAx/B2zptH4b8O/OuROAg8BfZiUqGQz/CTzhnDsJmE/quuveHmHMbCLwJWCxc24O4AUuQ/f2SHIPcE63bYe6l88FTky/rgN+cIxilMy4h57X+ilgjnNuHvAO8HWA9Oe1y4DZ6WP+O/25fchQgnVoS4Ftzrn3nXNR4AHggizHJBninKtxzm1KLzeR+gA2kdQ1vjdd7F7gU1kJUDLKzCqBTwA/Sq8bsBp4OF1E13qEMLMi4HTgbgDnXNQ5V4/u7ZHKB+SYmQ/IBWrQvT1iOOeeAw5023yoe/kC4Kcu5UWg2MzGH5NAZcB6u9bOuSedc/H06otAZXr5AuAB51zEObcd2Ebqc/uQoQTr0CYCVZ3Wq9PbZIQxs6nAQuAlYJxzria9aw8wLltxSUb9B/CPQDK9XgrUd/rBrft75JgG1AI/SXcJ/ZGZ5aF7e8Rxzu0G/hXYRSqxagA2ont7pDvUvazPbSPbNcDj6eUhf62VYMmoZmb5wC+A651zjZ33udQcBprHYJgzs/OAfc65jdmORY4JH3Ay8APn3EKghW7dAXVvjwzpZ28uIJVUTwDy6NnFSEYw3cujg5l9k9SjHfdlO5b+UoJ1aLuBSZ3WK9PbZIQwMz+p5Oo+59wv05v3tncpSH/dl634JGOWA+eb2Q5SXX1Xk3pGpzjdrQh0f48k1UC1c+6l9PrDpBIu3dsjz5nAdudcrXMuBvyS1P2ue3tkO9S9rM9tI5CZrQHOAy53H07eO+SvtRKsQ/szcGJ6NKIAqYfpHs1yTJIh6Wdw7ga2OOe+12nXo8Bn08ufBdYd69gks5xzX3fOVTrnppK6j59xzl0O/B64OF1M13qEcM7tAarMbEZ600eBt9C9PRLtApaZWW76Z3r7tda9PbId6l5+FLgqPZrgMqChU1dCGYbM7BxS3fvPd861dtr1KHCZmQXNbBqpgU1ezkaMh2IfJoPSnZl9nNSzG17gx865f85uRJIpZnYa8DzwOh8+l/MNUs9hPQhMBnYClzjnuj9gK8OUma0EvuKcO8/MjiPVolUCvAJc4ZyLZDE8yRAzW0BqQJMA8D5wNak/KOreHmHM7BbgUlLdh14BriX1LIbu7RHAzO4HVgJlwF7g28Aj9HIvp5Ps20l1E20FrnbObchC2HIUDnGtvw4Egbp0sRedc59Pl/8mqeey4qQe83i8e53ZpARLREREREQkQ9RFUEREREREJEOUYImIiIiIiGSIEiwREREREZEMUYIlIiIiIiKSIUqwREREREREMkQJloiIiIiISIYowRIREREREcmQ/w+Ev41UxI+A+AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
45True50.1120.0634bAP.soma.v0.007544.58e-07
46True50.1120.0634Step1.soma.v0.008588.81e-07
47True50.1120.0634Step3.soma.v0.007655.82e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "45 True 5 0.112 0.0634 bAP.soma.v \n", + "46 True 5 0.112 0.0634 Step1.soma.v \n", + "47 True 5 0.112 0.0634 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "45 0.00754 4.58e-07 \n", + "46 0.00858 8.81e-07 \n", + "47 0.00765 5.82e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD0nUlEQVR4nOzdd3gc5bX48e/Zpt57s+XejQHbQGwTSkJJqIFgCDVcwg/SgBsCCUmIw03uzSXckFACISFAKMaE3jsGTAA35N5t2bIt2+pd2vb+/piRWNuSJVsrrbQ6n+fZRzsz77xzdnbXnrNvGTHGoJRSSimllFKq9xyRDkAppZRSSimlooUmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaXUACEixSJiRMQV6ViinYhcJSKLIh3HQCMic0RkQ6TjUEqpwUwTLKWUUoOaiMwTEZ+INIY8bol0XIORMeZjY8y4cNcrIk4R+a2I7BaRBhH5QkRSw30cpZQaCPRXUqWUChMRcRlj/JGOY4haYIy5LNJB9JUo+Gz9BvgKcAKwA5gEtEY0IqWU6iPagqWUUr0gIqUicquIrASaRMQlIseLyL9FpFZEVojISSHlF4rI/4jIYhGpF5GXRCS9i7q/KyLr7F/8t4rI/ztg+7kiUmLXs0VEzrDXp4jIwyJSLiK77JYDZzevY5SIvC8iVSJSKSJPtrcw2NuqReQYezlfRCraX5eInCMia+zXu1BEJhxwfm4WkZUiUiciC0Qk9vDP9OETkZ/Z56VBRNaKyPldlBMRuVtE9tnncpWITLa3xYjIXSKyQ0T2isiDIhLXw+M/apd/x47hQxEZHrL9zyJSZh9zmYjMCdk2T0SeFZEnRKQeuEpEZorIp/Z5LheR+0TEE7KPEZHvi8gm+3j/Zb93/7aP8Uxo+S5iPklEdvbk9fWUiKQBNwLfM8ZsN5bVxhhNsJRSUUkTLKWU6r1LgG8CqUAO8BrwWyAduBl4TkSyQspfAVwN5AF+4J4u6t0HnAUkA98F7g5JcmYC/wR+ah/3RKDU3u9Ru97RwNHAacA13bwGAf4HyAcmAEXAPABjzBbgVuAJEYkHHgEeM8YsFJGxwHysC+gs4HXglQMu5C8CzgBGAFOBqzoNQGS2nTx09ZjdzWs40BZgDpCC1YLyhIjkdVLuNKzzN9YuexFQZW/7vb1+Gtb5LABuP4wYLgX+C8gESoAnQ7YtsetNB54C/nVA8nku8CzW+/skEABusus6ATgV+P4BxzsdOBY4HrgFeAi4DOv9nIz1WT1idqLc1fvzly52m4L1ebxQRPaIyEYR+UFv4lBKqQHNGKMPfehDH/o4wgdWUnN1yPKtwOMHlHkLuNJ+vhD4fci2iYAXcALFgAFcXRzrReAG+/lfgbs7KZMDtAFxIesuAT44zNd1HvDFAeteBlYBK4EYe92vgGdCyjiAXcBJIefnspDtdwIPhvk9mGefw9qQR34n5UqAc+3nVwGL7OenABuxkhJHSHkBmoBRIetOALb1MK5HgadDlhOxkqSiLsrXAEeFvKaPuqn/RuCFkGUDzApZXgbcGrL8f8CfuqnzJGBnmN+f79ixPQzEYSXZFcDXw3kcfehDH/oYKA9twVJKqd4rC3k+HPh26C/7wGys1qrOym8H3FitEvsRkTNF5DO7e14t8I2QckVYLTQHGm7XVx5y/L8C2Yd6ASKSIyJP210K64EnOonpb1itIPcaY9rsdfn2awDAGBO0X19ByH57Qp43YyUa4faMMSY15LFbRK4Qqwtl+3mYTCfn2RjzPnAfcD+wT0QeEpFkrBa5eGBZSB1v2ut7quO9NsY0AtVY5wy76+Q6u+tkLVbrWWZn+9rlx4rIq3YrUD3w3528nr0hz1s6We6Lc9+dFvvvHcaYFmPMSuBprM+zUkpFHU2wlFKq90zI8zKsFqzQi/0EY8zvQ8oUhTwfBviAytAKRSQGeA64C8gxxqRidb+TkOOM6iSWMqwWrMyQ4ycbYyZ18xr+234dU4wxyVjdytqPhYgkAn/CaoWYJ1+OG9uNldS1lxP79e3q5ngHEWuK8MZDPOZ0X0tHXcOxEsIfAhn2+Vsd+ppCGWPuMcYci9WiOBar62UlVnIwKeRcphhjDidJ6Xiv7XOYDuy2X8stWN0R0+z46g6IL/RzBfAAsB4YY79Ht3X1evqKWGPtunp/Huxit5X239DXc+BrU0qpqKEJllJKhdcTwNkicrpYU1PH2hMHFIaUuUxEJtrjme4AnjXGBA6oxwPEYHWl8ovImVhjhdo9DHxXRE4VEYeIFIjIeGNMOfA28H8ikmxvGyUiX+0m7iSgEagTkQKsBCPUn4GlxphrsMaYtV9MPwN8047DDfwEK8H7d3cn6kDGmiI88RCPjw+jugSsi/gKsCYMwWrBOoiIzBCR4+z4m7BmtwvarXF/wxr7lm2XLRCR00P2NRIyiUknvmGPLfNgjcX6zBhThnW+/XZ8LhG5HWus3aEkAfVAo4iMB67vpnzYGWMmHeL9ua6LfbYAHwO/EGvSkAnAxcCr/Rm7Ukr1F02wlFIqjOyL53OxWhcqsFqUfsr+/94+jjU+Zw8QC/y4k3oa7PXPYI3N+Q7WGKj27YuxJ77Aavn4kC9bkq7AStDW2vs+y/5dFDvzG+AYu67XgOfbN4jIuViTVLRf0P8ncIyIXGqM2YDV2nUvVovP2cDZxhhvN8frU8aYtVhjjj7F6iY3Bfiki+LJWIlUDVZ3xyrgD/a2W4HNwGd2t7x3gXEAIlIENGCNS+vKU8CvsboGHot1rsAal/cm1tiv7VhJXVlnFYS4Getz0GDHu6Cb8gPJJVifzyqsz9evjDHvRTYkpZTqG2KMttIrpVR/EZGFwBPGmL9HOhbVOyJyGVb3wZ93sf1RrAkjftmvgSmllIoovdGwUkopdQSMMU9EOgallFIDj3YRVEqpIUKsm94ezuQEKgqJyG1dfA7eiHRsSikVDbSLoFJKKaWUUkqFibZgKaWUUkoppVSYDKgxWJmZmaa4uDjSYSillFJKKaXUIS1btqzSGHPQzecHVIJVXFzM0qVLIx2GUkoppZRSSh2SiGzvbL12EVRKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAqTATUGqzM+n4+dO3fS2toa6VDUABAbG0thYSFutzvSoagoVN/q47aHX+UbMyfwjRnjIx2OUkoppQahAZ9g7dy5k6SkJIqLixGRSIejIsgYQ1VVFTt37mTEiBGRDkdFoTdX7eHuff+B+7UATNsD7rhIh6SUUkqpQWbAdxFsbW0lIyNDkyuFiJCRkaGtmarP7Ny9E7cEAKgqeTXC0SillFJqMBrwCRagyZXqoJ8F1Zdk37qO5/UbP4lgJEoppZQarAZFgqWUUv0htXEzADtMNjHlSyIcjVJKKaUGI02wekBE+MlPftKxfNdddzFv3rzIBRTipJNOOuTNmc877zyOP/74/dbNmzePgoICpk2bxuTJk3n55Zf7OkylBoX4tn34cbI85jgymjZDMBjpkJRSSik1yGiC1QMxMTE8//zzVFZWhrVeYwzBPryAq62tZdmyZdTV1bF169b9tt10002UlJTwr3/9i6uvvrpP41BqsHD5GmlzJuBNG02MaYX6XZEOSSmllFKDjCZYPeByubj22mu5++67D9pWUVHBBRdcwIwZM5gxYwaffGKN25g3bx533XVXR7nJkydTWlpKaWkp48aN44orrmDy5MmUlZXx05/+lMmTJzNlyhQWLFgAwMKFCznppJO48MILGT9+PJdeeinGmE7je/zxxztaoxYvXtyx/vnnn+fss8/m4osv5umnn+503wkTJuByufZLHn/2s58xceJEpk6dys033wxAaWkpp5xyClOnTuXUU09lx44dAFx11VVcf/31HH/88YwcOZKFCxdy9dVXM2HCBK666qqOOq+//nqmT5/OpEmT+PWvf31QHHV1dQwfPrwj0WtqaqKoqAifz9dp3Er1BZe/Ea8zAUe2NUV72571EY5IKaWUUoPNgJ+mPdRvXlnD2t31Ya1zYn4yvz57UrflfvCDHzB16lRuueWW/dbfcMMN3HTTTcyePZsdO3Zw+umns27dui5qsWzatInHHnuM448/nueee46SkhJWrFhBZWUlM2bM4MQTTwTgiy++YM2aNeTn5zNr1iw++eQTZs+efVB9zc3NlJSU8NFHH3H11VezevVqAObPn8/tt99OTk4OF1xwAbfddttB+37++ec4HA6ysrIAqKqq4oUXXmD9+vWICLW1tQD86Ec/4sorr+TKK6/kH//4Bz/+8Y958cUXAaipqeHTTz/l5Zdf5pxzzuGTTz7h73//OzNmzKCkpIRp06bxu9/9jvT0dAKBAKeeeiorV65k6tSpHXGkpKQwbdo0PvzwQ04++WReffVVTj/9dL3fleo3Xn+Q2GALfnciSUWTYBXUbF9N7vivRzo0pZRSSg0i2oLVQ8nJyVxxxRXcc889+61/9913+eEPf8i0adM455xzqK+vp7Gx8ZB1DR8+vGNc1KJFi7jkkktwOp3k5OTw1a9+lSVLrMH1M2fOpLCwEIfDwbRp0ygtLe20vksuuQSAE088kfr6empra9m7dy+bNm1i9uzZjB07Frfb3ZF4Adx9991MmzaNm2++mQULFnTMzpeSkkJsbCz/8R//wfPPP098fDwAn376Kd/5zncAuPzyy1m0aFFHXWeffTYiwpQpU8jJyWHKlCk4HA4mTZrUEfMzzzzDMcccw9FHH82aNWtYu3btQa9j7ty5HS14Tz/9NHPnzj3keVQqnBrb/CTSQtCdQGFBEbUmgdY9h/6xRCmllFLqQIOqBasnLU196cYbb+SYY47hu9/9bse6YDDIZ599Rmxs7H5lXS7XfuOaQu/dlJCQ0KPjxcTEdDx3Op34/f5Oyx04dbmI8Mwzz1BTU9NxQ976+nrmz5/P7373O8Aag9Xe/e/AuBcvXsx7773Hs88+y3333cf777/fozgdDsd+MTscDvx+P9u2beOuu+5iyZIlpKWlcdVVV3V6L6tzzjmH2267jerqapYtW8Ypp5xyyOMqFU6tvgCJ0kLAncaIrETWmgJyqzdFOiyllFJKDTLagnUY0tPTueiii3j44Yc71p122mnce++9HcslJSUAFBcXs3z5cgCWL1/Otm3bOq1zzpw5LFiwgEAgQEVFBR999BEzZ848rLjaW30WLVpESkoKKSkpzJ8/nzfffLNj3NeyZcu6HIcVqrGxkbq6Or7xjW9w9913s2LFCgC+8pWvdOz/5JNPMmfOnB7HV19fT0JCAikpKezdu5c33nij03KJiYnMmDGDG264gbPOOgun09njYyjVWy2+gNWC5Uki3uOi3FVEcmNppMNSSiml1CDT6wRLRIpE5AMRWSsia0TkBnv9PBHZJSIl9uMbvQ838n7yk5/sNyHEPffcw9KlS5k6dSoTJ07kwQcfBOCCCy6gurqaSZMmcd999zF27NhO6zv//POZOnUqRx11FKeccgp33nknubm5hxVTbGwsRx99NNdddx0PP/wwpaWlbN++fb/p2UeMGEFKSgqff/55p3V84xvfYPfu3TQ0NHDWWWcxdepUZs+ezR//+EcA7r33Xh555BGmTp3K448/zp///Ocex3fUUUdx9NFHM378eL7zne8wa9asjm233377ftPEz507lyeeeEK7B6p+1+oLkCQtGE8SAA1JI0kOVENLTYQjU0oppdRgIl3NTNfjCkTygDxjzHIRSQKWAecBFwGNxpi7DrV/qOnTp5sD7+m0bt06JkyY0KsYVXTRz4TqC8u2VzPhH+OpmnAZRRf/kScfe4BLt/0Mc837SOGxkQ5PKaWUUgOMiCwzxkw/cH2vW7CMMeXGmOX28wZgHVDQ23qVUqo/tbZ5iZc2JMZqwYrNGQ1AY/nGSIallFJKqUEmrGOwRKQYOBpo74f2QxFZKSL/EJG0cB5LKaXCydfcAIAj1kqwMgqtbr31u3WiC6WUUkr1XNgSLBFJBJ4DbjTG1AMPAKOAaUA58H9d7HetiCwVkaUVFRXhCkcppQ6Lv9W6x157glWUk0G5ScdXsTmSYSmllFJqkAlLgiUibqzk6kljzPMAxpi9xpiAMSYI/A3odGo8Y8xDxpjpxpjp7Te7VUqp/uZrbQLAHWPd+60oLZ7tJgd3XWkEo1JKKaXUYBOOWQQFeBhYZ4z5Y8j6vJBi5wOrD9xXKaUGioC3BQBXrJVgeVwOKt0FJDXviGRYSimllBpkwnGj4VnA5cAqESmx190GXCIi0wADlAL/LwzHUkqpPhFoawa+bMECaE4sIrnuXWhrhJjESIWmlFJKqUEkHLMILjLGiDFmqjFmmv143RhzuTFmir3+HGNMeTgCjpQXX3wREWH9+vVdliktLWXy5MlhO+ZVV13Fs88+2+X2G2+8kYKCAoLBYMe6Rx99lKysLKZNm8bEiRP529/+FrZ4lIpmAW8rAJ7YhI51wbSRAJjqrRGJSSmllFKDT1hnEYxm8+fPZ/bs2cyfP7/T7X6/v9fHCAQCPS4bDAZ54YUXKCoq4sMPP9xv29y5cykpKWHhwoXcdttt7N27t9exKRXtgl6rBcsV0oIVmz0GgMZynUlQKaWUUj2jCVYPNDY2smjRIh5++GGefvrpjvULFy5kzpw5nHPOOUycOBGwEq1LL72UCRMmcOGFF9LcbF20vffeexx99NFMmTKFq6++mra2NgCKi4u59dZbOeaYY/jXv/510LHfffddpk+fztixY3n11Vf3O/akSZO4/vrru0z6srOzGTVqFNu3b+9Yd8899zBx4kSmTp3KxRdfDEB1dTXnnXceU6dO5fjjj2flypUAzJs3jyuvvJI5c+YwfPhwnn/+eW655RamTJnCGWecgc/nA+COO+5gxowZTJ48mWuvvZYDb14dDAYpLi6mtra2Y92YMWM08VMDStBnjcHCFduxLtWeqr1ut94LSymllFI9E44xWP3njZ/BnlXhrTN3Cpz5+0MWeemllzjjjDMYO3YsGRkZLFu2jGOPPRaA5cuXs3r1akaMGEFpaSkbNmzg4YcfZtasWVx99dX85S9/4Yc//CFXXXUV7733HmPHjuWKK67ggQce4MYbbwQgIyOD5cuXd3rs0tJSFi9ezJYtWzj55JPZvHkzsbGxzJ8/n0suuYRzzz2X2267DZ/Ph9vt3m/frVu3snXrVkaPHt2x7ve//z3btm0jJiamI+H59a9/zdFHH82LL77I+++/zxVXXEFJSQkAW7Zs4YMPPmDt2rWccMIJPPfcc9x5552cf/75vPbaa5x33nn88Ic/5Pbbbwfg8ssv59VXX+Xss8/uOKbD4eDcc8/lhRde4Lvf/S6ff/45w4cPJycnp8dvk1J9zfisLoK44zrWFeXlUGmSdap2pZRSSvWYtmD1wPz58ztaey6++OL9WoxmzpzJiBEjOpaLioqYNWsWAJdddhmLFi1iw4YNjBgxgrFjrV/Dr7zySj766KOOfebOndvlsS+66CIcDgdjxoxh5MiRrF+/Hq/Xy+uvv855551HcnIyxx13HG+99VbHPgsWLGDatGlccskl/PWvfyU9Pb1j29SpU7n00kt54okncLms/HrRokVcfvnlAJxyyilUVVVRX2/dE+jMM8/E7XYzZcoUAoEAZ5xxBgBTpkyhtLQUgA8++IDjjjuOKVOm8P7777NmzZqDXsfcuXNZsGABAE8//fQhX7NSkSAdLVgxHevap2p31myLUFRKKaWUGmwGVwtWNy1NfaG6upr333+fVatWISIEAgFEhD/84Q8AJCQk7FfemrW+6+XOHFhHd/W99dZb1NbWMmXKFACam5uJi4vjrLPOAqxk5r777uu0vtdee42PPvqIV155hd/97nesWnXoFsGYGOti0+Fw4Ha7O+JxOBz4/X5aW1v5/ve/z9KlSykqKmLevHm0trYeVM8JJ5zA5s2bqaio4MUXX+SXv/zlIY+rVH+TgP25dX3ZguVxOahwFzCieV2EolJKKaXUYKMtWN149tlnufzyy9m+fTulpaWUlZUxYsQIPv74407L79ixg08//RSAp556itmzZzNu3DhKS0vZvNnqZvT444/z1a9+tUfH/9e//kUwGGTLli1s3bqVcePGMX/+fP7+979TWlpKaWkp27Zt45133ukY79WVYDBIWVkZJ598Mv/7v/9LXV0djY2NzJkzhyeffBKwxnZlZmaSnJzco/jak6nMzEwaGxu7nPVQRDj//PP5z//8TyZMmEBGRkaP6leq3/itcZG4Y/db3ZxQRKp/H/gO/uFAKaWUUupAmmB1Y/78+Zx//vn7rbvgggu6nFhi3Lhx3H///UyYMIGamhquv/56YmNjeeSRR/j2t7/NlClTcDgcXHfddT06/rBhw5g5cyZnnnkmDz74IMFgkDfffJNvfvObHWUSEhKYPXs2r7zySqd1XHPNNSxdupRAIMBll13GlClTOProo/nxj39Mamoq8+bNY9myZUydOpWf/exnPPbYYz08O5Camsr3vvc9Jk+ezOmnn86MGTM6tj344IM8+OCDHctz587liSee0O6BakBydNKCBRBIHYEDg6kp7f+glFJKKTXoyIEzvkXS9OnTzdKlS/dbt27dOiZMmBChiNRApJ8J1Rde/MM1fLPpRdzzKvdb/9KrL3Hu0itoOP8Jko46u4u9lVJKKTXUiMgyY8z0A9drC5ZSSgGOQBs+8Ry0Ps2eqr1294b+DkkppZRSg5AmWEopBbgCrfgcBydY+XmF1Jt4vHt1qnallFJKdW9QJFgDqRujiiz9LKi+4gq24XfEHLS+KMOeqr1Wp2pXSimlVPcGfIIVGxtLVVWVXlgrjDFUVVURGxvbfWGlDlNXCVaMy8ledwHxTWURiEoppZRSg82Avw9WYWEhO3fupKKiItKhqAEgNjaWwsLCSIehopDLeAk4Ok/em+KLSG/4FAI+cLr7OTKllFJKDSYDPsFyu92MGDEi0mEopaKc23gJOA9uwQIIpBbjaghgasuQjJH9HJlSSimlBpMB30VQKaX6mjEGj2kj4Oy8BcudNRqAxvJN/RmWUkoppQYhTbCUUkOeP2iIxYvpogUrpWAcADW7dKp2pZRSSh1anydYInKGiGwQkc0i8rO+Pp5SSh2uNn/QSrBcnbdg5RcW02xi8O7TFiyllFJKHVqfJlgi4gTuB84EJgKXiMjEvjymUkodrlZfgBjxdZlgFWXEs8NkI9U6VbtSSimlDq2vW7BmApuNMVuNMV7gaeDcPj6mUkodljZ/kJhDtGDFuJzsdeXrVO1KKaWU6lZfJ1gFQOgVyU57XQcRuVZElorIUp2KXSkVCW2+ALH4wBXXZZnG+CIyvLsgGOzHyJRSSik12ER8kgtjzEPGmOnGmOlZWVmRDkcpNQS1j8ESd9c3sfanFuPBBw27+zEypZRSSg02fZ1g7QKKQpYL7XVKKTVgtLa14ZYA4u66Bat9qvaG3TrRhVJKKaW61tcJ1hJgjIiMEBEPcDHwch8fUymlDouvrRkAxyFasJLz7anad67vl5iUUkopNTi5+rJyY4xfRH4IvAU4gX8YY9b05TGVUupw+dtaAHB44rssk1s0Eq9x0rpXW7CUUkop1bU+TbAAjDGvA6/39XGUUupItbdgOT1ddxEsykyizGQjNTpVu1JKKaW6FvFJLpRSKtLaW7CcMV0nWDEuJ3tc+cQ17uivsJRSSik1CGmCpZQa8gJ2C5YrpusuggAN8cOsqdqN6Y+wlFJKKTUIaYKllBrygl6rBau7BMuXUkycaYGG8v4ISymllFKDkCZYSqkhL+Btb8HquosggCNnIgCNZav6PCallFJKDU6aYCmlhrz2FqzYuIRDlkssnAJA7faVfR6TUkoppQYnTbCUUkOev30M1iGmaQcoKCyk0iTj37OuP8JSSiml1CCkCZZSasgL2l0EcR+6i2BRejybTCGemo39EJVSSimlBiNNsJRSQ554G60nMUmHLBfjclLuKSataavOJKiUUkqpTmmCpZQa8hw+O8HyJHZbtiV1DHHBJqjf1cdRKaWUUmow0gRLKTXkOXxNBHB020UQwJVrzSToLV/T12EppZRSahDSBEspNeS5/M20ShyIdFs2o3gqAFVbdSZBpZRSSh1MEyyl1JDn8jfR5ui+9QpgVPFwKkwKreWr+zgqpZRSSg1GmmAppYY8T6AZr/PQU7S3G5Yez2aKcFfpTIJKKaWUOpgmWEqpIS8m2IzPeeibDLdzOoSK+FFktmyBYKCPI1NKKaXUYKMJllJqyIsNtuB39awFC6A1czKxpg1Tqa1YSimllNpfrxIsEfmDiKwXkZUi8oKIpNrri0WkRURK7MeDYYlWKaXCzBhDnGkm4O5ZCxZATOHRANRvXdZXYSmllFJqkOptC9Y7wGRjzFRgI/DzkG1bjDHT7Md1vTyOUkr1iVZfkARaCbi7vwdWu9xRU2k1buq3Le3DyJRSSik1GPUqwTLGvG2M8duLnwGFvQ9JKaX6T32rjwRpQTw9b8Ean5/OOjMcxx6dql0ppZRS+wvnGKyrgTdClkeIyBci8qGIzOlqJxG5VkSWisjSioqKMIajlFLdq2v2kkArjrjkHu+TEu+m1DOa9Ib1EAz2YXRKKaWUGmy6TbBE5F0RWd3J49yQMr8A/MCT9qpyYJgx5mjgP4GnRKTTqxdjzEPGmOnGmOlZWVm9f0VKKXUYGhvqiBE/jvj0w9qvKWMyccEmqNnWR5EppZRSajBydVfAGPO1Q20XkauAs4BTjTHG3qcNaLOfLxORLcBYQAcsKKUGlJY6q+XcnZhxWPvFDzsW9kL9tmUkZ4zqi9CUUkopNQj1dhbBM4BbgHOMMc0h67NExGk/HwmMAbb25lhKKdUX2uorAYhJOrwW9MKxR+M1Tmq2LO6LsJRSSik1SHXbgtWN+4AY4B0RAfjMnjHwROAOEfEBQeA6Y0x1L4+llFJh52usAiA2JfOw9ps0LIsNpojk3SV9EJVSSimlBqteJVjGmNFdrH8OeK43dSulVH/w2wlWfMrhtWAlxLjYFjuRr9d/AMEAOJx9EZ5SSimlBplwziKolFKDTnsLlivx8FqwAJqyjiHOtGD2rgl3WEoppZQapDTBUkoNacEmK8EiLu2w940b9RUAajZ+Es6QlFJKKTWIaYKllBrSpKWGFokHl+ew9x09dhIVJoWmzf/ug8iUUkopNRhpgqWUGtLivRU0eg5vivZ2E/JTWMlY4vYuD3NUSimllBqsNMFSSg1Zrb4AGcEqWmNzj2h/p0OoSJtGpncnNFaEOTqllFJKDUaaYCmlhqyKhjZypZpAUt4R1+EafhwAjVu0m6BSSimlNMFSSg1he2qbyKEGR0rBEddRNHkWXuOkct3HYYxMKaWUUoOVJlhKqSGrpmIXbgkQk150xHUcVZzDSjMad5m2YCmllFJKEyyl1BDWXFkGQGLmkSdYsW4n2xKnkdu0DtoawhWaUkoppQYpTbCUUkOWt3onAPFZR55gAfiHzcJJEO82bcVSSimlhjpNsJRSQ1f9bgAkubBX1eROOhGvcVKx6r1wRKWUUkqpQUwTLKXUkOVp3oMPN8Qf2X2w2h0zqpAVZhSOHZ+EKTKllFJKDVaaYCmlhqz41r3UuTPB0bt/ClPi3WxNOIbshrU6DksppZQa4jTBUkoNScYYUvz7aInJDk99xbNxEqRl86Kw1KeUUkqpwUkTLKXUkFTb7CPHVONNOPKbDIcqnnYSbcbNvhVvhaU+pZRSSg1OvUqwRGSeiOwSkRL78Y2QbT8Xkc0iskFETu99qEopFT576lrIlWpIzg9LfUePymcp44nf8UFY6lNKKaXU4BSOFqy7jTHT7MfrACIyEbgYmAScAfxFRJxhOJZSSoVFZeUeYsWHJ613Mwi2i3E5KU2bRVZrKdTuCEudSimllBp8+qqL4LnA08aYNmPMNmAzMLOPjqWUUoetucJKguJ7cZPhA7nHfQ2AulVvhq1OpZRSSg0u4UiwfigiK0XkHyKSZq8rAMpCyuy01x1ERK4VkaUisrSioiIM4SilVPdaq6ybDCfnFIetzqOmHcdOk0njylfDVqdSSimlBpduEywReVdEVnfyOBd4ABgFTAPKgf873ACMMQ8ZY6YbY6ZnZWUd7u5KKXVEgnVWguVO7fS3nyMyNjeJf3tmkVPxCbTUhK1epZRSSg0eru4KGGO+1pOKRORvQPvPtruA0H43hfY6pZQaEFyN5QRw4EzMCVudIkLLuPNxrX6JppIXSDjh6rDVrZRSSqnBobezCIbOb3w+sNp+/jJwsYjEiMgIYAywuDfHUkqpcIpp2UudMx2c3f7OdFiOPf5kSoM51C95Oqz1KqWUUmpw6O0YrDtFZJWIrAROBm4CMMasAZ4B1gJvAj8wxgR6eSyllAqbZO8+GsN0k+FQkwpSWJTwNfKqP8dUbAh7/UoppZQa2HqVYBljLjfGTDHGTDXGnGOMKQ/Z9jtjzChjzDhjzBu9D1UppcKjzR8gI1hFW1xu2OsWEZJnX0urcVP+8h1hr18ppZRSA1tfTdOulFIDVkVDG7lSTTApPDcZPtA3jp/KszHnk1/2KnVLnwHAGMPCTxfz0rxzeOmR/+2T4yqllFIq8sI7+ED1KWMMza1eautqaWpqwNvSiL/VegS8bQQNIIKIAIK4PMQkpBCTkEJcUioJiSmkJ8bidEikX4pSEVVZsY9CacEZxhkEQ7mcDo6+9LeU/OMLprz6/1ix8J/4W+qZ41+JUwzry3YBt/bJsZVSSikVWZpgDQCBQJDKinKqy7fStHc73qrtBBr2IC1VxLTVEO+rITFQR7KpJ00aSTjS4xihihSqHek0ujNpi8vCmzQM0keSlD+W3OJJ5GVnagKmol5j+UYAYrJH99kxJg3PYe13X+a9Z3/OpKZPCTjj2Dj2e7RWbGdC7fsQ8Id9gg2llFJKRZ7+795Pmpsa2L1tLbVl62jbuwlnzVbiW8pJ8e0jO1hBjngJnSzabxzUO5JpcKbS7E6lNmEclbEZmPg0XHEpuGIScMQm4PQk4IpLxOWOwSGCMUHAYAwEfa14m+sJtNQTaG3AtNRC415czfvIaKskpW4D6XV11m2gV1rH3WdS2esqoD5hOL7UkXhyxpFaNIGCkRNJSTzS1E6pgcVXsQmA5ILxfXqcicX5TLz5sf3WLVzwJ2Jr36Jh90aSiib26fGVUkop1f80wQqzuppqdmxYRsP2EpwVa0lo2Epm205yqST0t/IqUqly51KTOJp9iV+FlEJiMoeRlF1MRv4oktJzSHc4Se/jeE1bA7W7NlC1Yz3N5RsxVVuJa9jGhIZPSK9/HXYAS6yEb4dkUxEzjJakYkzGGOLzx5M1fBL5hcW4XM4+jnTgMMYQCAQJ+NsIBPwE/H6CQUMw4CcQ8GOCAQIBP8FAgGAwQPCAdSYQxBh/R32C1WIo+7UcSsgf+bJM+2oBYy9Y2wSHtBdw4HCEdBV1CA5xYBBEwOFwIAKCA+xyggNxCCIOe9marEHat7evt/8igkPat1kPhxWAHUPI347AO9l2UJnOzvcRv1EHruh45qreQtAIyfljjrDyI+cpPArWQfXWZZpg9VKbz0dTXQ2tTXW0tTTitR/+1kYCrU0E2hoJtjVhvE3gb4Og33oEfIjxI0EfEgxYf40fgvYPVPZn0/r6fflZDV024iQoTozDjXG4wOEGp/1wuBCnG7GXHfZzcXlwuL5cdtrLTpcLp8vT8dcVUs7hsh5O+7mz4+GxvssOHUrdztjfeWO+/LZ3rOPLfxKM/SPkl/t1vn6g6uKfyohr/3+qVzp9AzpZd5jlBuo5G6gG5PkSBy6Xe9D0stIEqxeqK/ZQuvIjWkuXEFu1lpyWTRSYvUyxtzcQx27XMHYmH01p2ig82WNILZpA3oiJZCSlkRHR6C0Sk0TayOmkjZx+0DZfUw17t62mdsdavHs34KzZSkZzKTmVJcRVesGegbrNuKlwpNHgzqQ5Jgt/fDYmMQdnfDqu+BQ8CanEJKYRl5SGOy4JtzsGV0wMbk8MLncM4oyB9osEY8AE7Yf13JggAb+PtrY2fN5WfN4W/N42fG0t+LxtBLyt+H1tBHxtBH2tBPxegr5WjK+NoL8N42/D+L3g90KgDQJeJNCGBHxIwIsjaD2cQS+OoA9n0IfTeHEZHy7jw218uPDhNn7c+PDgwyMB/fL0kaAR62Io5D9rOeA/ztB/Xh1y+FdEc4ByRxZ57rgjC7IXskdMwWectOxc2e/HHsha27xUVZRTV7GTpqrd+Bv2YRr2QWsNjtZanN56Ynx1xPrriQ80kmgaSaKJ9MN8/33GSQAHfnHhx0kAV8eysed9EqxLNcHQ/mm0PoLG/jnD4CCIiwBO/LhMABd+PNL/dyPxGicBnASxfkQx9o8yJiT6/V+JdHy3uipzoC5++uikXDcXvabr+gRz0N6d1XfgOnOI+nq2Lrz7dn5eBnp8fX/cI/l3WqlQj/hPJ+uiP3HW1L6ZnCrc9Bqxh0wwyI7Nq9i74m3YuZTc+lUMM7tIxxrbtNNZwN7EiezKvID4oqPIHXcsGXmjGDeIf110J6RROHkOhZPn7L8hGKRuXyl7t62hcdc6fFXbMQ17iG+rILVxMxn1i0mSlsM6VtBIl/8AC9YHNRwfVp9x4sOFV9z4ceETN37x4Bc3fnETFDcBpxuvI55Wh4egw0PQ6bF+pXZ6wBmDcXqsh8P6pRqHE8T6JVnECQ4n4rD/ivVcnF+uc9jlrWYoK672SwtjvvwPy7SvaGeCHesl5FfZL4sFrV9rjXUZZUzQui601xlCt9nrTPvF45dlTMfPv+0JrlW3Vb79OV/Ww5d1HXjp1h7cl/8JGzv2/S/l2teFrhdjQlrp9k+46Fjb2fMDLiFCfooLrSNx9CxC75TeX4pz0tlCPo59q7svHAWMMVTUVFOxcysNe0vxV++A+p14GncT17qPeF81KcEa0kw9BWI4cNoRn3HSIAk0OZJocSbR5kmjyVPMnphUTGwKxKYiMUk4YhNwxSTgik3EFZuIJz4RT2wSsQmJxMUnERObgMPlxi2Cu+9eLIGAH5+3DZ/PS8Dnxe/z4vd78Xu9BPzWw+/zEvD7CPp91t+Aj4Dfiwn47WW/NUYv6MPYLW5W65sPAgHE2H+DPjB+JOiHYABjrO99e6uNmJAEMeS7Gfqd3P/7aOxE54Dvmj2B0kFCvp+0PwspJl8eMaS4fFl2/2q+XLffoUKOcWC5jvVyUKIlHS3knce8f3UH1ndQEPbr6OEv550ct/N9e1hO9itwiHJHftzOmE6bMXp2jG5fx2HW12m5HsenDsdAbcXNSJrI+NykSIfRY5pgHUJtRTmbF79KcNP7DKtdzHAqGQ5UkUJZ/CTKc79FypivMHzKLIYnpjA80gH3F4eDlNyRpOSOBM4+aLMxhtr6Oppqq2luqKaloQZvUw3epjrwNRH0+zCB9hYlHwS81kUCDusfzPbkQxxY/2HbyYsrJuThwemOxeGKwWm3hDndsdZzTwxuTxzumFhcnljcnlhiYmLxxMThdjpxA/H9fc6UsrmcDvbEjmJKwyo7ox4c3R0OpamljZ3bN1Fdtg7fvi04arYS11RGctseMgMVZEsDobd0DhihUtKpc2XQEJtPTdxUtiZk40rKwZOWS0J6HgkZBSSl5xGbkEK6w9Hn3aXDQqSjC19spGNRSikVMZpgHcL6d/7O8Rvvop4EtiQcQ1nxSeQfcwb5IyaSMYhbpvqaiJCakkpqSiowMtLhKDXg1GUeTfquhQSqS3FmjIh0OD0SDBp27dnLvq0lNO9cjVRuJK6hlIy2neSZvYyTL8cVtuBhnzOPhthctiUexbaUImIyhpGYU0xqzkiSs4vIcXn2m9hHKaWUihaaYB3C6FOuZOP4OYyaOpujXXqqlFLhkTjuJNh1N7tK3mXYqd+LdDgHqa6tY+eGZdTtWInZu46Euk3ke0spkiqK7DIteNjrzKc+aSTVqV/DnTWK5ILxZA6fQEJ6IcP1RyillFJDlGYNh5CZO4zM3GGRDkMpFWWmHXM8+95Lxbv2dYhwgrWvuo7StYup37oEz94V5DatZ6TZwVSxxvy14Wa3axgV6ceyL3sC8YWTyRo5jZS8URQ7hs7soUoppVRPaYKllFL9LD0xltfjZ3Nq1duY1jokNqVfjltd38jWNUuo37IE594SchrXMTK4nZn27Hd1kkR5wgRWZX4Nz7CjyR19NOmFYxnh7LNpIZRSSqmoowmWUkpFgOvoS4n596tsf+dBhp99a9jrr2tqYevaZdRu/hznnhIy69cyKljKdHusVAMJ7E4Yz7qsk0gonk7BxBNIyRpBShRMuqGUUkpFkiZYSikVAbNPOo3PP53CxOX34vvqVbiTj3zKh4bmFrauXU7NliVIuZ1MBbZytPgAaCSeXXHjWJ91CXHDZ5A/8QSScscwTpMppZRSKuw0wVJKqQiI97hoOvl3eN67gPIHziXv2n/hTivqdr+augbKNi6nbssS2LOSjPp1jAxs4yg7mWomll2xY1ifcRGxw48lf+JXSM4fN6jvyaeUUkoNJmJ6cUcxEVkAjLMXU4FaY8w0ESkG1gEb7G2fGWOu666+6dOnm6VLlx5xPEopNdi8+PTf+Pq6XxAUJ9vyvglFM5GEDEBoqq/GX7cH6nYSV7+VrLbtFJi9OO2bcjcSz67YMTRnTCZm2NHkjzuO1GGTrJtfK6WUUqpPicgyY8z0A9f3qgXLGDM35AD/B9SFbN5ijJnWm/qVUiranXfx9/hsyTQC797BMbtfIq78XweVacNNubOAmuQJVKWfhSd/MnkTjie9QFumlFJKqYEmLF0ERUSAi4BTwlGfUkoNJcfPmAEzXqG+sZEd29YSbKkDY0hKzSAtu5CElCyKNZFSSimlBoVwjcGaA+w1xmwKWTdCRL4A6oFfGmM+7mxHEbkWuBZg2DC955RSauhKTkwkecrMSIehlFJKqV7oNsESkXeB3E42/cIY85L9/BJgfsi2cmCYMaZKRI4FXhSRScaY+gMrMcY8BDwE1hisw30BSimllFJKKTVQdJtgGWO+dqjtIuICvgUcG7JPG9BmP18mIluAsYDOYKGUUkoppZSKWuHo1P81YL0xZmf7ChHJEhGn/XwkMAbYGoZjKaWUUkoppdSAFY4xWBezf/dAgBOBO0TEBwSB64wx1d1VtGzZskoR2R6GmMIpE6iMdBCq3+j7PXToez106Hs9tOj7PXToez20DMT3e3hnK3t1H6yhQESWdja/vYpO+n4PHfpeDx36Xg8t+n4PHfpeDy2D6f3WeX+VUkoppZRSKkw0wVJKKaWUUkqpMNEEq3sPRToA1a/0/R469L0eOvS9Hlr0/R469L0eWgbN+61jsJRSSimllFIqTLQFSymllFJKKaXCRBMspZRSSimllAoTTbAOQUTOEJENIrJZRH4W6XhU+IhIkYh8ICJrRWSNiNxgr08XkXdEZJP9Ny3SsarwEBGniHwhIq/ayyNE5HP7+71ARDyRjlGFh4ikisizIrJeRNaJyAn63Y5OInKT/W/4ahGZLyKx+t2OHiLyDxHZJyKrQ9Z1+l0Wyz32+75SRI6JXOTqcHXxXv/B/nd8pYi8ICKpIdt+br/XG0Tk9IgEfQiaYHVBRJzA/cCZwETgEhGZGNmoVBj5gZ8YYyYCxwM/sN/fnwHvGWPGAO/Zyyo63ACsC1n+X+BuY8xooAb4j4hEpfrCn4E3jTHjgaOw3nf9bkcZESkAfgxMN8ZMBpzAxeh3O5o8CpxxwLquvstnAmPsx7XAA/0UowqPRzn4vX4HmGyMmQpsBH4OYF+vXQxMsvf5i33dPmBogtW1mcBmY8xWY4wXeBo4N8IxqTAxxpQbY5bbzxuwLsAKsN7jx+xijwHnRSRAFVYiUgh8E/i7vSzAKcCzdhF9r6OEiKQAJwIPAxhjvMaYWvS7Ha1cQJyIuIB4oBz9bkcNY8xHQPUBq7v6Lp8L/NNYPgNSRSSvXwJVvdbZe22MedsY47cXPwMK7efnAk8bY9qMMduAzVjX7QOGJlhdKwDKQpZ32utUlBGRYuBo4HMgxxhTbm/aA+REKi4VVn8CbgGC9nIGUBvyD7d+v6PHCKACeMTuEvp3EUlAv9tRxxizC7gL2IGVWNUBy9DvdrTr6rus123R7WrgDfv5gH+vNcFSQ5qIJALPATcaY+pDtxnrHgZ6H4NBTkTOAvYZY5ZFOhbVL1zAMcADxpijgSYO6A6o3+3oYI+9ORcrqc4HEji4i5GKYvpdHhpE5BdYQzuejHQsPaUJVtd2AUUhy4X2OhUlRMSNlVw9aYx53l69t71Lgf13X6TiU2EzCzhHREqxuvqegjVGJ9XuVgT6/Y4mO4GdxpjP7eVnsRIu/W5Hn68B24wxFcYYH/A81vddv9vRravvsl63RSERuQo4C7jUfHnz3gH/XmuC1bUlwBh7NiIP1mC6lyMckwoTewzOw8A6Y8wfQza9DFxpP78SeKm/Y1PhZYz5uTGm0BhTjPU9ft8YcynwAXChXUzf6yhhjNkDlInIOHvVqcBa9LsdjXYAx4tIvP1vevt7rd/t6NbVd/ll4Ap7NsHjgbqQroRqEBKRM7C6959jjGkO2fQycLGIxIjICKyJTRZHIsauyJfJoDqQiHwDa+yGE/iHMeZ3kY1IhYuIzAY+Blbx5bic27DGYT0DDAO2AxcZYw4cYKsGKRE5CbjZGHOWiIzEatFKB74ALjPGtEUwPBUmIjINa0ITD7AV+C7WD4r63Y4yIvIbYC5W96EvgGuwxmLodzsKiMh84CQgE9gL/Bp4kU6+y3aSfR9WN9Fm4LvGmKURCFsdgS7e658DMUCVXewzY8x1dvlfYI3L8mMN83jjwDojSRMspZRSSimllAoT7SKolFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFIDhIgUi4gREVekY4l2InKViCyKdBwDjYjMEZENkY5DKaUGM02wlFJKDWoiMk9EfCLSGPK4JdJxDUbGmI+NMePCXa+IOEXktyKyW0QaROQLEUkN93GUUmog0F9JlVIqTETEZYzxRzqOIWqBMeaySAfRV6Lgs/Ub4CvACcAOYBLQGtGIlFKqj2gLllJK9YKIlIrIrSKyEmgSEZeIHC8i/xaRWhFZISInhZRfKCL/IyKLRaReRF4SkfQu6v6uiKyzf/HfKiL/74Dt54pIiV3PFhE5w16fIiIPi0i5iOyyWw6c3byOUSLyvohUiUiliDzZ3sJgb6sWkWPs5XwRqWh/XSJyjoissV/vQhGZcMD5uVlEVopInYgsEJHYwz/Th09EfmaflwYRWSsi53dRTkTkbhHZZ5/LVSIy2d4WIyJ3icgOEdkrIg+KSFwPj/+oXf4dO4YPRWR4yPY/i0iZfcxlIjInZNs8EXlWRJ4QkXrgKhGZKSKf2ue5XETuExFPyD5GRL4vIpvs4/2X/d792z7GM6Hlu4j5JBHZ2ZPX11MikgbcCHzPGLPdWFYbYzTBUkpFJU2wlFKq9y4BvgmkAjnAa8BvgXTgZuA5EckKKX8FcDWQB/iBe7qodx9wFpAMfBe4OyTJmQn8E/ipfdwTgVJ7v0ftekcDRwOnAdd08xoE+B8gH5gAFAHzAIwxW4BbgSdEJB54BHjMGLNQRMYC87EuoLOA14FXDriQvwg4AxgBTAWu6jQAkdl28tDVY3Y3r+FAW4A5QApWC8oTIpLXSbnTsM7fWLvsRUCVve339vppWOezALj9MGK4FPgvIBMoAZ4M2bbErjcdeAr41wHJ57nAs1jv75NAALjJrusE4FTg+wcc73TgWOB44BbgIeAyrPdzMtZn9YjZiXJX789futhtCtbn8UIR2SMiG0XkB72JQymlBjRjjD70oQ996OMIH1hJzdUhy7cCjx9Q5i3gSvv5QuD3IdsmAl7ACRQDBnB1cawXgRvs538F7u6kTA7QBsSFrLsE+OAwX9d5wBcHrHsZWAWsBGLsdb8Cngkp4wB2ASeFnJ/LQrbfCTwY5vdgnn0Oa0Me+Z2UKwHOtZ9fBSyyn58CbMRKShwh5QVoAkaFrDsB2NbDuB4Fng5ZTsRKkoq6KF8DHBXymj7qpv4bgRdClg0wK2R5GXBryPL/AX/qps6TgJ1hfn++Y8f2MBCHlWRXAF8P53H0oQ996GOgPLQFSymleq8s5Plw4Nuhv+wDs7Faqzorvx1wY7VK7EdEzhSRz+zuebXAN0LKFWG10BxouF1fecjx/wpkH+oFiEiOiDxtdymsB57oJKa/YbWC3GuMabPX5duvAQBjTNB+fQUh++0Jed6MlWiE2zPGmNSQx24RuUKsLpTt52EynZxnY8z7wH3A/cA+EXlIRJKxWuTigWUhdbxpr++pjvfaGNMIVGOdM+yuk+vsrpO1WK1nmZ3ta5cfKyKv2q1A9cB/d/J69oY8b+lkuS/OfXda7L93GGNajDErgaexPs9KKRV1NMFSSqneMyHPy7BasEIv9hOMMb8PKVMU8nwY4AMqQysUkRjgOeAuIMcYk4rV/U5CjjOqk1jKsFqwMkOOn2yMmdTNa/hv+3VMMcYkY3Uraz8WIpII/AmrFWKefDlubDdWUtdeTuzXt6ub4x1ErCnCGw/xmNN9LR11DcdKCH8IZNjnb3XoawpljLnHGHMsVoviWKyul5VYycGkkHOZYow5nCSl4722z2E6sNt+LbdgdUdMs+OrOyC+0M8VwAPAemCM/R7d1tXr6StijbXr6v15sIvdVtp/Q1/Pga9NKaWihiZYSikVXk8AZ4vI6WJNTR1rTxxQGFLmMhGZaI9nugN41hgTOKAeDxCD1ZXKLyJnYo0Vavcw8F0ROVVEHCJSICLjjTHlwNvA/4lIsr1tlIh8tZu4k4BGoE5ECrASjFB/BpYaY67BGmPWfjH9DPBNOw438BOsBO/f3Z2oAxlrivDEQzw+PozqErAu4ivAmjAEqwXrICIyQ0SOs+NvwprdLmi3xv0Na+xbtl22QEROD9nXSMgkJp34hj22zIM1FuszY0wZ1vn22/G5ROR2rLF2h5IE1AONIjIeuL6b8mFnjJl0iPfnui722QJ8DPxCrElDJgAXA6/2Z+xKKdVfNMFSSqkwsi+ez8VqXajAalH6Kfv/e/s41vicPUAs8ONO6mmw1z+DNTbnO1hjoNq3L8ae+AKr5eNDvmxJugIrQVtr7/ss+3dR7MxvgGPsul4Dnm/fICLnYk1S0X5B/5/AMSJyqTFmA1Zr171YLT5nA2cbY7zdHK9PGWPWYo05+hSrm9wU4JMuiidjJVI1WN0dq4A/2NtuBTYDn9nd8t4FxgGISBHQgDUurStPAb/G6hp4LNa5Amtc3ptYY7+2YyV1ZZ1VEOJmrM9Bgx3vgm7KDySXYH0+q7A+X78yxrwX2ZCUUqpviDHaSq+UUv1FRBYCTxhj/h7pWFTviMhlWN0Hf97F9kexJoz4Zb8GppRSKqL0RsNKKaXUETDGPBHpGJRSSg082kVQKaWGCLFuens4kxOoKCQit3XxOXgj0rEppVQ00C6CSimllFJKKRUm2oKllFJKKaWUUmEyoMZgZWZmmuLi4kiHoZRSSimllFKHtGzZskpjzEE3nx9QCVZxcTFLly6NdBhKKaWUUkopdUgisr2z9dpFUCmllFJKKaXCRBMspZRSSimllAoTTbCUUqobdS0+/rW0DH8gGOlQlFJKKTXADagxWJ3x+Xzs3LmT1tbWSIeiBpnY2FgKCwtxu92RDkUNcn94YzWty+aTXjGTU8+8MNLhKKWUUmoAG/AJ1s6dO0lKSqK4uBgRiXQ4apAwxlBVVcXOnTsZMWJEpMNRg1zitrf5rfuv+Bb/A864APTfIqWUUkp1YcB3EWxtbSUjI0OTK3VYRISMjAxt+VS9ZozB07ADALfxQc22CEeklFJKqYFswCdYgCZX6ojo50aFQ6svSLp/X8dyw4aPIhiNUkoppQa6QZFgKaVUpNS2eCmQKso9w2kxHhp2rIx0SEoppZQawDTB6gER4Sc/+UnH8l133cW8efMiF1CIzz77jOOOO45p06YxYcKEjrgWLlzIv//9717VfcYZZ5CamspZZ50VhkiVGpxqm33kSyX+5GFsMfkE962PdEhKKaWUGsA0weqBmJgYnn/+eSorK8NarzGGYLB30z5feeWVPPTQQ5SUlLB69WouuugiIDwJ1k9/+lMef/zxXtWh1GBX2+wjT6pwpxWx3VFIYv3mSIeklFJKqQFswM8iGOo3r6xh7e76sNY5MT+ZX5896ZBlXC4X1157LXfffTe/+93v9ttWUVHBddddx44d1iD4P/3pT8yaNYt58+aRmJjIzTffDMDkyZN59dVXATj99NM57rjjWLZsGa+//jr33Xcfb7zxBiLCL3/5S+bOncvChQuZN28emZmZrF69mmOPPZYnnnjioHFF+/btIy8vDwCn08nEiRMpLS3lwQcfxOl08sQTT3Dvvfcyfvz4LuPcsmULmzdvprKykltuuYXvfe97AJx66qksXLjwkOfmX//6F7/5zW9wOp2kpKTw0Ucf0drayvXXX8/SpUtxuVz88Y9/5OSTT+bRRx/lxRdfpKmpiU2bNnHzzTfj9Xp5/PHHiYmJ4fXXXyc9PZ2//e1vPPTQQ3i9XkaPHs3jjz9OfHz8fsc9/vjjefjhh5k0yXrvTjrpJO666y6mT59+yHiVOlx1LV4SaaE+IY3qOCepLYvA2wSehEiHppRSSqkBSFuweugHP/gBTz75JHV1dfutv+GGG7jppptYsmQJzz33HNdcc023dW3atInvf//7rFmzhqVLl1JSUsKKFSt49913+elPf0p5eTkAX3zxBX/6059Yu3YtW7du5ZNPPjmorptuuolx48Zx/vnn89e//pXW1laKi4u57rrruOmmmygpKWHOnDmHjHPlypW8//77fPrpp9xxxx3s3r27x+fljjvu4K233mLFihW8/PLLANx///2ICKtWrWL+/PlceeWVHbP5rV69mueff54lS5bwi1/8gvj4eL744gtOOOEE/vnPfwLwrW99iyVLlrBixQomTJjAww8/fNBx586dyzPPPANAeXk55eXlmlypPlHX2IxHAnjiEvGlDLdW1u6IbFBKKaWUGrAGVQtWdy1NfSk5OZkrrriCe+65h7i4uI717777LmvXru1Yrq+vp7Gx8ZB1DR8+nOOPPx6ARYsWcckll+B0OsnJyeGrX/0qS5YsITk5mZkzZ1JYWAjAtGnTKC0tZfbs2fvVdfvtt3PppZfy9ttv89RTTzF//vxOW50OFee5555LXFwccXFxnHzyySxevJjzzjuvR+dl1qxZXHXVVVx00UV861vf6nhNP/rRjwAYP348w4cPZ+PGjQCcfPLJJCUlkZSUREpKCmeffTYAU6ZMYeVKa/KA1atX88tf/pLa2loaGxs5/fTTDzruRRddxGmnncZvfvMbnnnmGS68UG/+qvpGW2sTAO7YBFwZBbAHAlVbcWZPiHBkSimllBqIBlWCFWk33ngjxxxzDN/97nc71gWDQT777DNiY2P3K+tyufYbXxV6P6aEhJ51LYqJiel47nQ68fv9nZYbNWoU119/Pd/73vfIysqiqqrqoDJdxQkHT2d+ONObP/jgg3z++ee89tprHHvssSxbtuyQ5UNfk8Ph6Fh2OBwdr++qq67ixRdf5KijjuLRRx/tNGEsKCggIyODlStXsmDBAh588MEex6zU4QjYCZYrNoGk3NGwBurLt5Cm+ZVSSimlOqFdBA9Deno6F1100X5d1k477TTuvffejuWSkhIAiouLWb58OQDLly9n27bOb046Z84cFixYQCAQoKKigo8++oiZM2f2OKbXXnsNYwxgdT10Op2kpqaSlJREQ0NDt3ECvPTSS7S2tlJVVcXChQuZMWNGj4+/ZcsWjjvuOO644w6ysrIoKytjzpw5PPnkkwBs3LiRHTt2MG7cuB7X2dDQQF5eHj6fr6OezsydO5c777yTuro6pk6d2uP6lToc/rZmAFwxCeTkFtBkYmjZtyXCUSmllFJqoOp1giUiRSLygYisFZE1InKDvT5dRN4RkU3237Tehxt5P/nJT/abTfCee+5h6dKlTJ06lYkTJ3a0pFxwwQVUV1czadIk7rvvPsaOHdtpfeeffz5Tp07lqKOO4pRTTuHOO+8kNze3x/E8/vjjjBs3jmnTpnH55Zfz5JNP4nQ6Ofvss3nhhReYNm0aH3/8cZdxAkydOpWTTz6Z448/nl/96lfk5+cDVvL37W9/m/fee4/CwkLeeustwOqW2D7e6qc//SlTpkxh8uTJfOUrX+Goo47i+9//PsFgkClTpjB37lweffTR/VquuvNf//VfHHfcccyaNYvx48d3rH/55Ze5/fbbO5YvvPBCnn766Y6ZE5XqC8E2qwVLPPEMy0xgh8kmWF0a2aCUUkopNWBJe+vHEVcgkgfkGWOWi0gSsAw4D7gKqDbG/F5EfgakGWNuPVRd06dPN0uXLt1v3bp165gwQfvi9JUDZzuMNvr5Ub314BPzuW7zdXDpswRGfY0P5p3K1IRasm9dHunQlFJKKRVBIrLMGHPQLGu9bsEyxpQbY5bbzxuAdUABcC7wmF3sMaykSymlBhXja7GeuONwOoQaTz4prbuglz9OKaWUUio6hXWSCxEpBo4GPgdyjDHl9qY9QE4X+1wLXAswbNiwcIajemDevHmRDkGpgc37ZYIF0JJYRExtKzRVQGJ2BANTSiml1EAUtkkuRCQReA640Riz392AjdUPsdOfe40xDxljphtjpmdlZYUrHKWUCg+/NckFbmv2T5Nq/xBUUxqZeJRSSik1oIUlwRIRN1Zy9aQx5nl79V57fFb7OK194TiWUkr1J/Ht34LlyRwJQGtlaYQiUkoppdRAFo5ZBAV4GFhnjPljyKaXgSvt51cCL/X2WEop1d8cHS1Y8QAk5Y4AoGGPTtWulFJKqYOFYwzWLOByYJWIlNjrbgN+DzwjIv8BbAd0Lm2l1KDjCNg3CbdbsPKzs6gySbRpC5ZSSimlOhGOWQQXGWPEGDPVGDPNfrxujKkyxpxqjBljjPmaMaY6HAFHyosvvoiIsH79+i7LlJaWMnny5LAdc8OGDZx00klMmzaNCRMmcO211wLWTYJff/31XtV99dVXk52dHdZ4lYpGzgMSrKK0eHaaLKR2RwSjUkoppdRAFbZJLqLd/PnzmT17NvPnz+90u9/v7/UxAoHAfss//vGPuemmmygpKWHdunX86Ec/AsKTYF111VW8+eabvapDqaHA5W/BJx5wOAHITPRQLlnENO2McGRKKaWUGojCOk17n3vjZ7BnVXjrzJ0CZ/7+kEUaGxtZtGgRH3zwAWeffTa/+c1vAFi4cCG/+tWvSEtLY/369bz99tv4/X4uvfRSli9fzqRJk/jnP/9JfHw87733HjfffDN+v58ZM2bwwAMPEBMTQ3FxMXPnzuWdd97hlltu4eKLL+44bnl5OYWFhR3LU6ZMwev1cvvtt9PS0sKiRYv4+c9/zllnncWPfvQjVq9ejc/nY968eZx77rk8+uijvPDCC9TV1bFr1y4uu+wyfv3rXwNw4oknUlpaesjX/eGHH3LDDTcAICJ89NFHJCYmcsstt/DGG28gIvzyl79k7ty5LFy4kF//+tekpqayatUqLrroIqZMmcKf//xnWlpaePHFFxk1ahSvvPIKv/3tb/F6vWRkZPDkk0+Sk7P/DP4XX3wxl19+Od/85jcBKxk866yzuPDCC3v2nioVRq5gKz5nLG57WUSoj8knue0L615YIhGNL1KMMdz/wWYm5idzyvhO78KhlFJKDUnagtUDL730EmeccQZjx44lIyODZcuWdWxbvnw5f/7zn9m4cSNgdev7/ve/z7p160hOTuYvf/kLra2tXHXVVSxYsIBVq1bh9/t54IEHOurIyMhg+fLl+yVXADfddBOnnHIKZ555JnfffTe1tbV4PB7uuOMO5s6dS0lJCXPnzuV3v/sdp5xyCosXL+aDDz7gpz/9KU1NTQAsXryY5557jpUrV/Kvf/2LpUuX9vh133XXXdx///2UlJTw8ccfExcXx/PPP09JSQkrVqzg3Xff5ac//Snl5dbtzlasWMGDDz7IunXrePzxx9m4cSOLFy/mmmuu4d577wVg9uzZfPbZZ3zxxRdcfPHF3HnnnQcdd+7cuTzzzDMAeL1e3nvvvY5kS6n+5gm24nfG7reuLSEfj/FC49CdHPXTLVW88c5bpD91Jm0rX4x0OEoppdSAMbhasLppaeor8+fP72jJufjii5k/fz7HHnssADNnzmTEiBEdZYuKipg1axYAl112Gffccw9f//rXGTFiBGPHjgXgyiuv5P777+fGG28ErISiM9/97nc5/fTTefPNN3nppZf461//yooVKw4q9/bbb/Pyyy9z1113AdDa2sqOHdb4kK9//etkZGQA8K1vfYtFixYxffr0Hr3uWbNm8Z//+Z9ceumlfOtb36KwsJBFixZxySWX4HQ6ycnJ4atf/SpLliwhOTmZGTNmkJeXB8CoUaM47bTTAKvl7YMPPgBg586dzJ07l/Lycrxe737nrt2ZZ57JDTfcQFtbG2+++SYnnngicXFxPYpZqXAKBg0e04rfsX+CRepwqAHqyiBpaLbeLN1ew49dLzDNsYX6j/9MzNTzIh1SxDz44RZWldXyx3OLiUnKiHQ4EbOirJYlpdVcPWsEDsfQbNkF2LCngX9vqeSKE4pxDuHzoNRQpi1Y3aiurub999/nmmuuobi4mD/84Q8888wzWPdOhoSEhP3KywHdhQ5c7syBdYTKz8/n6quv5qWXXsLlcrF69eqDyhhjeO655ygpKaGkpIQdO3YwYcKEI46n3c9+9jP+/ve/09LSwqxZsw45wQdATExMx3OHw9Gx7HA4Osao/ehHP+KHP/whq1at4q9//Sutra0H1RMbG8tJJ53EW2+9xYIFC7pMQJXqa23+ILF4Cbj2T/Bjs4oBaN63NQJRDQyb9jUy2bkdgKSKL6CpMsIRRUabP8Dv31jP1zb8Cvcfx0DV0J2+/z8eW8r819+l8qFzoeSpSIcTMTcuKOE3r6xly5M3wRu3gt8b6ZCUUv1ME6xuPPvss1x++eVs376d0tJSysrKGDFiBB9//HGn5Xfs2MGnn34KwFNPPcXs2bMZN24cpaWlbN68GYDHH3+cr371q90e+80338Tn8wGwZ88eqqqqKCgoICkpiYaGho5yp59+Ovfee29H0vfFF190bHvnnXeorq7uGAfV3rrWE1u2bGHKlCnceuutzJgxg/Xr1zNnzhwWLFhAIBCgoqKCjz76iJkzZ/a4zrq6OgoKCgB47LHHuiw3d+5cHnnkET7++GPOOOOMHtevVDi1+ALE0UbwgAQrOde62fBQvhfW7vJyCqhgifNoBAPlJZEOKSJW76onlQbOd36CwwRg+T8jHVJElNe1UNnYxnnOT8je8yG8/UsIBiMdVr+rbfayfk89adQzdssj8PmDsKF3k1IppQYfTbC6MX/+fM4///z91l1wwQVdziY4btw47r//fiZMmEBNTQ3XX389sbGxPPLII3z7299mypQpOBwOrrvuum6P/fbbbzN58mSOOuooTj/9dP7whz+Qm5vLySefzNq1a5k2bRoLFizgV7/6FT6fj6lTpzJp0iR+9atfddQxc+ZMLrjgAqZOncoFF1zQ0T3wkksu4YQTTmDDhg0UFhby8MMPA/Dggw/y4IMPAvCnP/2JyZMnM3XqVNxuN2eeeSbnn38+U6dO5aijjuKUU07hzjvvJDc3t8fnc968eXz729/m2GOPJTMzs2P90qVLueaaazqWTzvtND788EO+9rWv4fF4ely/UuHU6gsQJ17MAQlWfnY21SZxSN8LK6HeSi5XZZ5prQj3BESDxIqyWsY7yr5csfndyAUTQSvKagGY49lkrWiuGpJJ96pddRgD30gK+fFliH4mlBrKpL3VYyCYPn26OXAShnXr1nV0d1OH59FHH2Xp0qXcd999kQ4lYvTzo3pjS0Uj3ntPIDV/NHnXvdCxvrbZy47fzyQtK4+iH70RwQgjIxA0/PhXt3O/+x4eO+opTi35MXmTTsR50SORDq3f3fHKWpxL/sovHI/ytP8k5ro/Rm7bDe7Y7neOIn/7aCv//foaNsb9B2/4j+Ec56dw+v/ACd+PdGj96qnPd3DbC6t4esRrHL37Gcyok4mt2Qg3HDx+Wik1+InIMmPMQZMbaAuWUkp1odUXIJY2jDt+v/UpcW72SDaxjbsiFFlk1bf4yKIWgOz84WwMFuLbuyGyQUVIeV0LR8XsxutJ5YPgNMQEYO+aSIfV73bVtjDM04jbtLE4OB5fXCbsPXjMcLTbUd2M2ymM9tSwy2RQnjARakqhrTHSoSml+pEmWFHsqquuGtKtV0r1VnsXQXHv30VQRKiPzSPZu8e6F9YQU9PsJUtqCYqLYYUFbDc5uGq3DclzsbuulSJnDSaliDWm2Fq5d+h1lyyva2FKkpVElJt0KhPGDsluo2U1zRSkxpHq3cduk8FGhlsb9q2LbGBKqX41KBKsgdSNUQ0e+rlRvdXqCxJHG+I5eKbPtsQiYkzbkJw9r6bZRza1eGMzKc5MYpvJxRVoHpL3BSuvbSGTWtypeVQ4svCLe0jOJLi7tpWxcfUA1Lpz2OoYDhUbIBiIcGT9q7KhjezkWFyNu6h25bC0xbp1yVBszVNqKBvwCVZsbCxVVVV6sawOizGGqqoqYmOH1jgIFV6t9iyC4ok/aJsjtQgAU7u9v8OKuNpmL1lSRyAhh4QYFzUxhdaG6qE1bX0waKhsbCM1UIUjKZfhmUnsdeUPufMAUF7Xygh3DQDxmcNY582GQBvU7YxwZP2rptlLZhzQsIe2hDy+qE8CVyxUbY50aEqpftTnNxoWkTOAPwNO4O/GmMO6W3BhYSE7d+6koqKiT+JT0Ss2NpbCwsJIh6EGsba2NjwSwBlzcIIVmzUCtkDT3q0kFvbs5t3RorbZxwSpRRKtm6f7U0dANVZiMfyEyAbXjxpa/YgJEO+rgaQ8hmcksL0pl4Ih1oJljKG22UsuVeCKJT0zhxWl9iyx1VsgbXhkA+xHNc0+hue1AgaSCyjd1wppI6B6W6RDU0r1oz5NsETECdwPfB3YCSwRkZeNMWt7Wofb7WbEiBF9FaJSSnXJ19oMgKOTFqz2e2HV79lKYr9GFXk1zV7SpR5XUjZg3XjZX+3ANcRabmqavWRSZ90HLDGHYenxrNuczQnVJUgwCI4B30kkLBra/PiDhrRgjXUeMhJ4blU6eLCS7lGnRDrEfmGMoabJS56rBYC49Dwqt7bhH1E85L4bSg11ff2v/0xgszFmqzHGCzwNnNvHx1RKqbDwe5sAcMUePAYrPyebGpOIt3Lo/TJd2+wjlUbciRkAFGYks8tkERxiLTc1zV6ypdZaSMplWHo8mwPZSKAN6odO17jaJh8AicE6SMhkWHo85cEUgq5YqBo6iUWjnWhmO6zJPlIzrXtE1sUVQc22IXnjZaWGqr5OsAqAkDswstNe10FErhWRpSKyVLsBKqUGkoDdguWKObiNqjAtjp0mE0dd2UHbol1jYz2x4kPi0wAoSo+nNJiDv2JojTOpbfaRIdbEDiRkMSw9nlJj33h9CCWbNc1eAOL9dRCfwfCMBAwOmhOHD6nxaDV2oplmJ1hZWfkA7HHmg78VGsojFptSqn9FvP+CMeYhY8x0Y8z0rKysSIejlFIdAva9a1yxB3cRTIp1s9eRQ2zT0LsXlq+h2noSnw5gJxY5OIbYVO01zV5Sse9vFJdOUXo8W4P2rHHVQy/BivHVQlw6wzOs70u1p2BInoc0GgDIzbd+T94WzLEKDKFkU6mhrq8TrF1AUchyob1OKaUGPOO1WrDcnXQRBGiIzSdlCN4LK9hsT00fZ7VgDUuPZ4fJweVrhJaaCEbWv2qafaSLdTFNfDqFaXHskzR8jtgh1YJV22y13LhbayA+g6zEGGJcDnY68q2b7A6RqdrbE6ykYD2Ik5SUDNLi3az12j8ea4Kl1JDR1wnWEmCMiIwQEQ9wMfByHx9TKaXCwvisweriPrgFC8CbWECMaYXmqv4MK+JMc631xE6wcpJj2S1217iaoTMmra7ZS5o0YMQBsanEup3kJsdR4c4fUrPG1TR7icGLw98M8ek4HGKNR/NnQcA7ZKZqb0+wEvy1Vuuuw8GwjARW1SeA06MJllJDSJ8mWMYYP/BD4C1gHfCMMWZNXx5TKaXCpb0Fiy4SLLGnnw5WD617YTlb7S6CcVYXQadD8CbZnRVqSiMTVATUNPvIdTUhcWkdMwYWpcezi5whlWjWNPtIE7urZLw18cnwjHjWtGTYBYbGuWgfgxXrr/3yPKTHU1rTCmnFQ6q7pFJDXZ+PwTLGvG6MGWuMGWWM+V1fH08ppcLF+OwEq5Np2gHisooBaNg7tC6cnN4664ndggXgzLBvpzGkEiwvWa7mjkQTrO6Sm3yZdte4oTFrXG2zl6IYq7X3y3F5CSytT7HWDZHWvJpmLw4Bd1ttx2dieEY8u2tbCaYVD6nvhlJDXcQnuVBKqYFK2hMsd1yn21NyRwHQsGfoJFitvgCJAXvmvJAEKyczgypShtRFZG2zj3Rp7EgqwEqw1rZlWrPGNe6JYHT9p6bZR1Gs/V0JacHa5kvDONxDpwWr2UtqvAdpru74TBSlxxMIGhrjCqG6dMiN11RqqNIESymluiD2GKyuugjm52ZTaxLwVQ2dLoJ1LT5SpBG/I2a/lr1h6fFsD2bhH0L3Batp9lozxtlJBbRP+GHdgHmotNzUNnvJc7e3YFnnYlh6PEEctCUWDJnzUNPsIzXebY3JDOkiCFjj8rwNQ268plJDlSZYSinVBUeg1XrSRQtWQWo8O00WUrejH6OKLGtq8ib8npT91helx7Pd5BCsLo1MYBFQ2+wjyTTs10Ww/TwAQ6Y1r6bZS47buil3R4JlT9VeG1s4dFqwmrykx7mhpfqg87Cj/TMxRJJNpYY6TbCUUqoLDv+hW7DiPE72OXOIbdrdj1FFVk2TjzRpIBCbtt/64RlWy427cRcEfBGKrn/VNLeRGKjbr4vg8Ix4dplMguIcQomFj2xH+/3ArM9FYVocIlDuzB8yXeNqmn3kxfkg6O9IsHKSYvG4HNa4PBgySbdSQ50mWEop1QVXoAUvbnA4uyzTGJtHqnf3kLiABKs7WIo07Tf+CqyWmzKTjRCEurIIRdd/2vwBjLcZl/Hu10UwI8GDxxNDnTtnyLRW1DZ7SXM0QUwKON0AxLic5CXHsj2YPWS6xtU0eSnwtI9Fs5Juh0MoSotjdVOqXWhofCaUGuo0wVJKqS64Aq3WTWMPoTVpOLGmDRr39lNUkVXT7CONBhwJGfutT4xxURtTYBcq7f/A+llds4902m8y/OW5ELHuAVXuyB0SF9Nef5Amb4BUU79fSx5YSfe6NvvcRHmyaYyhptlL3gFdJcEaj7a5JgBJQ+v+aEoNZZpgKaVUF1zBFnyOmEMXSh8JQKBycz9EFHm1LV5SpQl3YvpB20xqsfVkCCRY1r2f2hOsgxOLbcHsIXExXWvfXDcpeHCCNTwjni8a7ZbOKE82W3wB2vxBspwHJ1jDMxIoq27GpBcPie+GUkoTLKWU6pI72H0LVmzuGADqd2/oj5AirrbJSyoNuA5owQJIzCzEi2tIXETWNHtJl4NbsMCeqr01w5rsoLUuAtH1n5pma7xdfKCu0/OwojHVWojyZLP9PGQ4Dk66i9LjaWjz400aFvWJplLKogmWUkp1wR1sw+88dIKVljcSn3HSXL6pn6KKrKaGOjwSOGgMFkBRRiJlJntIzCRY2+wllfaJHfZvuRmWHs9mf5a1EPWJhdWCFeurPTjBykigDQ++hOjvLlnTZJ2HlPbPxAFdBAGqPQXQUA7tt39QSkUtTbCUUqoLnmAbAWfnMwi2K8pIZofJxlQNjZsN+xqrrSfxB3cRHJYRz45gFv7Krf0cVf+rafZ13YKVYU34YRWM7sSi2k4sPG01nbZgATTEFQ2ZRDM5WA8OF8Qkd2wbbk/VvtuRZxcu7e/wlFL9TBMspZTqhNcfJJZWgq5Dt2Dlpcay3eTgqS/tn8AizLTYs8F10oLVfpNdR13033i5ptlLmjRgEIhL3W9bcUbCl/fCivLEorrJSwxeHP7mgz4T+91kN8oTzfYuggmBWqtFU6RjW1GadR62+nWqdqWGCk2wlFKqE81eP/G0Ybq4B1a7GJeTCk8BKc1lQ2KqdmmpsZ4cIsFyeeuhvVyUqm70kuVoQuJSD5rGvyA1jlZHPM2utKhPLKqbQrpKHtCClRrvJinWRRk51iyb3qYIRNg/qhvbAIjzHTwWLc7jJDsphjWtdqtvlCfdSqleJlgi8gcRWS8iK0XkBRFJDdn2cxHZLCIbROT0XkeqlFL9qMkbIJEWjCep27LNicOJMS3QuK8fIossR2ut9STu4C6COcmxlEuutRDlv9JXN3nJcTUddDEN4HE5KEiNY68rL+ovpqubvBTGtN/7af9z0T5l/VC4yW5VkxenQ3B30lUSrB8f1tW6ra6DUZ50K6V634L1DjDZGDMV2Aj8HEBEJgIXA5OAM4C/iEjXd+pUSqkBpqnNT6K0QExi94Xtqdqpju5xWMGgweWttRY6acFyOsSaKQ2i+mIarAvqTGdjpxfTAMWZCZQGs6P+PNQ0exkWZ0/a0Mm5GJ4Rz8qm6G+5qWz0khbvQVqqOx+fmB5PWU0LpA2P6vOglLL0KsEyxrxtjPHbi58Bhfbzc4GnjTFtxphtwGZgZm+OpZRS/amp1UcCLUjIYPWuxOeOtfYp39jXYUVUXYuPFNM+c97BCRaAI2OE9STKJ/2obvKSRkOnLXkAxRnxrPdmYup2gt/bz9H1n+omL/nu9gTr4HNRlB7P0vpUayGKW26qGtvITPRAc1WXE8CU17cSSC2O+qRbKRXeMVhXA2/YzwuAspBtO+11BxGRa0VkqYgsraioCGM4Sil15JpbWvBIAEdc9wlWdtFofMYZ9ffCqm72kiqN+J1x4O588o/crAz2mjRMVXTfeLm6yUuyaeiyBWt4RgKbvJkIBmp39HN0/ae6yUue++Cb67Ybnp5ARSCeYExKVLfcVDd5yYh3QXN1l10EjYH6uCKo3Q7BQASiVEr1l24TLBF5V0RWd/I4N6TMLwA/8OThBmCMecgYM90YMz0rK+twd1dKqT7R1mzdINYZ2/0YrBHZqZSZLPwVQ6DVRhrxx6R2WWZEZgJbg3n490X3fcGqmlpJDNR12loBVgtWx0yCUdxyU93kJdvZAEinrZrtU5Q3JxRF9XmoavJSFNcGJgAJ2QdtL85MAGCPIxcCXqjf3d8hKqX6kau7AsaYrx1qu4hcBZwFnGpMxxRau4CikGKF9jqllBoUfE21ALjjU7otW5gWxyJymVAX3fd/qmr0kkoDJrbz7oEAI7MS2WrymF61rB8j61/NXj/ia8Hl9HadYGUmsCPKp2o3xlDd5CUz2Z45z+k+qMyoLGsMY6Unn8Tq6E26KxvbGFZkzSRI4sEJ1qhM6zxsDuYwAaBqM6QWHVROKRUdejuL4BnALcA5xpjmkE0vAxeLSIyIjADGAIt7cyyllOpPPrsFyx3ffRdBl9NBZcww0lp2QDDY16FFTHWTl0ypQ5JyuiwzMjOBrSYPt7fW6i4VhaoarfMAQELnPS8K0+KokhR8jtiobblp8QVo8wdJMzWQlNtpmZzkGBI8TspMLtSVQcDfabnBrM0foKHVT76z3lqRePD3IyXeTUaCh5UtdvJVGb3JplKq92Ow7gOSgHdEpEREHgQwxqwBngHWAm8CPzDGaIdjpdSgEWhtACA2ofsWLIDmlNF4TJt1ERmlqpvayJI63CmdX0wD5KfGUebItxai9CKyuslLDvZ9vrpILGJcTvJT49nnyo/aCT+qGq3JO5L91Z222oA1VfuIrAQ2+DIh6Ie66BuPVtNk3WQ422En3Z0kWAAjsxJYURMLniSois7vhlLK0ttZBEcbY4qMMdPsx3Uh235njBlljBlnjHnjUPUopdRAE2yxfo32xKf2qLxkWTMJBvZF70QXVY1tZFOL8xAtWE6H4EsZZe8QnRNdVDW1kS211kJSXpflRmQmsI18qIzO2SX31LcCkOCt7DKpAKub4LJGe+KHyuj7TFTaNxlOpz3B6rxVc2RmIlurmiBzTNR+JpRSlnDOIqiUUlHD32K1YPVkFkGAxMKJANSXre6zmCKtub4StwS6bLVpF5c9Eh+uqP2VfndtKzlit2Aldn0uRmUlsrItB1O7HXyt/RRd/ymvawUMntbKLluwwEosPmuwbzYchYlFVZPVkpcaqAZXrHUz4U6MzEqgstGLN21UVCaaSqkvaYKllFKdCLTa4yk8PbjRMFBYUESVSaKlfF0fRhVZ3hp75rNDXEwDFGcns91kE4zSi8jyuhZyHHUYh7vLSS4ARmcnst6Xh5hgVN6Eek9dCyk04Qh6D9mCNTIrgRqThD82Ayqjr4W3vNa6D1iS327JE+m03Mj2CT9ihkP9TvA29VuMSqn+pQmWUkp1wtlqT9DQxQ11DzQyM4HNpgBHlLbaAATr91pPDtFqA9aF5LZgHv590ddaAVBe28owdz2SlNflxTRYCdZm0z4eLfrORXldK6M8dktecqe3ugS+nEmwLqE4Ksfl7aptwSEQ11wOKV3PDDjCnqp9h9ifiSjtQquU0gRLKaU65WmroUW6vqHugdITPJQ5CkhqiM6p2oNBQ0zLHmuhmy6CIzIT2GLycNZui8obqu6ua6HI2fXMee1GZ1tT1hsEKqIvwdpb38rEBHvc0SGmHG9PLHa7h0FF9LVg7appITc5Fkf9Lkgp7LLcsPR4nA5hnd/+3ERhsqmUsmiCpZRSnYj11dLkSu1xeRGhMXEUCYE6aKrsu8AipLKpjTxTYSULh7iIBBiVlcA2k4cz6I3KWRXL61rJYx+kDT9kuYwED7HxidS4c6O2BWtMjJ1gHaLlJs7jpCA1js3BfGiphqaqfoqwf+ysbWFYaox18+BDJJoel4Nh6fEsb0gHRBMspaKYJlhKKdWJxEAtbe7Uw9onmGnNJBiNF9N76loplAra4rLAFXPIsqnxHipj7AvNKLuINMawr66JdN8+SD10giUijM5KZLsUROXYoz11rQx3VlkTO3RxP7B2I7MSKOm4B1R0nYtdNS1MSGoGE+j2x4eRmQlsrPJB6rConQRGKaUJllJKHSQQNCQF62mL6XoCg87E508AoHHnmr4IK6LK61opkEoCyV3/Qr+frPHW34r1fRdUBFQ1eckIVOIgYF0kd2N0diJrfLnWrHFRdBNqXyDIvoY28qiwxl8dYiwaWOOwPqlrn6o9en6A8AeC7KlvZWyMPWazuwQrK4FtVU2YzLFRdR6UUvvTBEsppQ5Q1+IjXRoIxvZsgot2ecPH0GxiaIjCBKusupkCqcSVfuhWm3Z5eflUkoLZF12zKu6saaFQKqyFbroIgp1geXPA3xJV3SXLqpsJBA05vl2QMarb8qOyEtjiTSXoiouq8Wh76lsJBA0jHfb4xIzRhyw/OjsRrz9IfUKxdQPqKEq6lVJf0gRLKaUOsK+hlXQacHRxw9CujMlJtiY1iMKB/KV7ayhwVBKTObJH5cdkJ7ExUIBvT3QlWJv2NjBCyq2FtBHdlh+VncjmoD3DXhR1l9xW2YQQJLmpFDLGdFt+ZFYiBgfNSSOjqovgzhprivZ8/05wxhxyLBrA2Jwkaz/XMPA1Q92OPo9RKdX/NMFSSqkDVFRWES9teJIPfb+nA+WlxFIqBcTXR99Mgk17NuIiCFnjelR+TE4iG00hjsqNYEwfR9d/Nu9rZLxzF8ad0O3FNMDorES2dEzVHj2JxdaKJvKoxhFohczuE6wx2dZU7ftiiqKqa9ymfY0AZLbtgPSR4HAesvwYO8FaF7CT7ihr4VVKWTTBUkqpAzTs2w5AXGb3Y2xCiQi1CSNJ9e6JqpuIGmO+vL9X+0Qe3RiTncQmU4jL3wh1O/swuv61aV8jUzx7kKxx4Oj+v9CC1Dha3GnWjJRRNB5t875Gjo7fZy30IMHKSoohNd7NFgqhdkfUfD827W0gKcZFbO1myDx090CAxBgXBalxLG60b8ysCZZSUUkTLKWUOoC32uq2k5TTfRewAwXS7YvNKOoOVtXkJc9rd2XqwcU0QGaih3JPsbUQRYnFxr0NjDJlX07i0Q2HQxiZlcB25/CoupheW17PnES7q2T2xG7Liwhjs5NY3pJnrYiSz8TGvQ1MyXIg1Vsg96ge7TMmJ5GVlUFILoyqz4RS6kthS7BE5CciYkQk014WEblHRDaLyEoROSZcx1JKqb4UrLUmI/Ck93DGvBAxedbFZnP52rDGFEmb9jYyyVFKS+Jw8CT0aB8RwWRZsypGy0VkY5sfX80uUgJVkNezi2mwJjZY6y+wzkMUdJf0BYJs2NvAUa5Sa6r6+J7Ntjk2N5EP6+xxjVHwmQgGDWt213NSyl5rRd7UHu03LieJrRVNBLPHR8V5UEodLCwJlogUAacBoaM1zwTG2I9rgQfCcSyllOprjvpdBHBAUt5h75s1bDw+46R++6o+iCwy1pbXM9WxFQoO73ey/Lw8KkjFVETHReSy7TVMc2yxFgqO7fF+o7MSWd6aB97GqJhJcOPeBrz+IMNaNx5WojkuJ4n1rekYV1xUJBZbK5toaPUzI8a+9OnhuRiTk4Q3EKQucbQ1Hi3g78MolVKREK4WrLuBW4DQn+bOBf5pLJ8BqSJy+FcrSinVz2KbdlPvSgen+7D3HZ2fTqnJJbA3OrpAAWzaspkCqSKueMZh7TcmO5ENgQL8UdKa99nWKo5xbsY4XJA7pcf7jclJYkPQvj/SvsH/uViyrZocqkloLoOimT3eb0xOEkEcNCaPgn2D/zPxxY4aAMa0rLBa8pJye7Tf2Bxrwo8y13AItEHNtj6LUSkVGb1OsETkXGCXMWbFAZsKgNCf6nba6w7c/1oRWSoiSysqKnobjlJK9UqbP0CubwcNCcVHtH9hWjxbKCS2NjrGYBljcO74t7VQdPxh7Tsmx5rowlG1MSru9/P51ipOjVmPFM4Ad2yP9xuXa50HICoSi8Wl1ZyZaH++i+f0eL/2KcrLPSOiogXr0y1VZMa7SNjz+WGdh9H2jIpr/O2ficF/LpRS++tRgiUi74rI6k4e5wK3AbcfaQDGmIeMMdONMdOzsg7vnjNKKRVuZVVNjJLd+NJ7NlvegZwOoSp+JGltu8DXGubo+t/mfY1MaVuO15UE+dMOa9/2qdqd/uZB3zWuqc1P2c4yRvk3w8iTD2vfYenxtLmSqHdnD/qLaV8gyMebKjk7YT3EpR1WS156goespBg2mkJoKIfm6j6MtG8ZY1i0uZKLC6uQlhoYcWKP9433uBiWHs/nDZmADPrPhFLqYD1KsIwxXzPGTD7wAWwFRgArRKQUKASWi0gusAsIHSFeaK9TSqkBa+eOrSRJC57cCUdchzdtDA6CUDX4W7HeX7eHk5wrCBSf2O09fg6UlRjDbnextTDIZ41btLmSk2QZgoExXz+sfZ0OYUxOItucwwZ9C9aS0mpaWluZ0vwZjD3jsD8TY3MSWdpid6UbxJ+JL8pq2dfQxlkxX4A4D/szMTYnkTUVPkgrHvSfCaXUwXrVRdAYs8oYk22MKTbGFGN1AzzGGLMHeBm4wp5N8HigzhhT3vuQlVKq71Rv+wKAzJE9H7x/oPaZBNuiYOzRti/eJ1dqiJt6/mHvKyKQbU9nPsh/pX95xW6+5f4Mkzoc8o8+7P3H5iSxypsPFRsgGOiDCPvHKyt28zXPGjy+Ophw9mHvPzYniYU17TMJDt7vx6sryvE4DWP3vQUj5vR4JsV2Y3KS2FbZRDBr/KBONJVSnevL+2C9jtXCtRn4G/D9PjyWUkqFhWP3coIIccOO/M4SGcMn4jcO6ravDmNk/W/t7nqmVb2OzxELY08/ojryc/PYR9qgnkmwusnL1rXLOYGVyLRLQeSw6xiXk0RJW541qUH14JzUoKHVxysryvlB8ieQkAVjTjvsOsblJFHqSyHoSR60SXerL8ALX+zkh8XlOOq2w7TLDruOsTmJ+IOGmsTRULUZ/N4+iFQpFSlhTbDslqxK+7kxxvzAGDPKGDPFGLM0nMdSSqlwM8aQVbeSvTHFEJN0xPWMyktnu8nBt3fw/kIP8PK/V3CO81OCky6A2OQjqmNsTiLrA4X49wzOi2mAJz/bzmW8TtAZAzP+44jqGJubxIag3Wt+kLbcPLN0J1neMiY3fgLHXHFEs2yOyUkChPrk0YM2wXp22U5qmn1cbl6GhOwjbskD2O4YBkG/lWQppaJGX7ZgKaXUoLKxvJYpwY00Z/fuvujDMxLYTCGxNYN3DNbu2hayVz5ArPiIOfGGI65nTLY9k2Dl4JxJsK7Fx2sfL+bb7o9xHDUXEjKPqJ5xOUlsNvmYQTqpQVObnwcWbuF/k59D3HFw3HVHVE/7FOU73SOsRHOQ3Xi51RfggYVbuCK3lLTdH8EJ3z+sGSXbjcpKxCGw2pdvrRikSbdSqnOaYCmllG3DFx+RLM2kTTn8rk+h3E4HlbEjSG0tA39bmKLrX4+89hGXyts0T7wIssYdcT1jchLZZApwBlqgbkf3Owwwf3hrPT8JPIzL6YQTbznievJSYnHFJFLtyR+UF9P3vL+J8c1Lmdn2b5jzE0jMPqJ6kmLdFKTGsT5YAC010Lg3zJH2rb8s3MLe2gZu5VHr3lfHXX9E9cS6nQzPSGBxQ4Y1ScYgTLqVUl3TBEsppWxm49sEEdIn9y7BAmhLH4OTIFRtCUNk/eujDXs5Zf08cLpJPO2XvaorOymGXe7h1sIgu8nuok2VNC9+gq87l+E4+eeQWtT9Tl0QEcbmJrFVhg26i+nPt1bx7Ecl3JfwMKSPhBN+2Kv6xuQksrjJnklwECWbX+yo4S8fbOav+a+RULsRzvifI2q9ajc2J5G1FW2QMUonulAqymiCpZRSQH2Llym177M98ejDnhGsM64ca5p3757BcwEJUF7XwroFv+IE51oc3/jfXiUVYM8kmGXPJDiIJrrYXtXEA089w/94/kFg2Gw4vvfzNI21J7owVZsHTctmWXUzP37icx6K/wspwTq48JFeJRVgdZf8sMbuajlIks2dNc1c98QyLk1YwqnVC2DGNTD+m72qc2xOEturmglkjh9UiaZSqnuaYCmlFLD40w8ZKbtxTL0wLPWlD59EwAj1O1aFpb7+UNXYxoIHf8v/Cy6gbuyFuI+9PCz1Fublspd0zCC6mL79r09zv/kdzqRsnBc9ekQTOhxoXE4iK735iAkMikkNdtW2cNXfFvHfwT9ybGAlcvafDvtm050Zm5PE3kAi/risQZFY7K1v5Yp/LOZ476fMC9wDw74Cp/93r+sdk5NEIGiojh9lzSzpbQ5DtEqpgUATLKWUAtq+WIAfJ8NmXRyW+kblZbLDZOMtHxxJxea9DSz48y3c2HIfNXlzSLnogSOajrwzo7OT2BAoILB34J+LkrJa/nDffdzn/QUJCUm4vvsqJGaFpe6xuUlsMO0zCQ7sc7Fmdx3X/OVN7mz5FaeyBM68E6Z9Jyx1t8+gV5s48GcS3LS3gW/d/wlfr3ueP8kfkbyj4DsLwBXT67rbJ/zY5hwGGKjc2Os6lVIDgyvSASilVKRt2V3JzPq32J4xi1EJGWGpc0RmAh+ZQo6pGfgXTZ9tKGPn/Bv4Pu9RPeIs0i/9B7g8Yat/bE4iG0whsyo/sG6y63CGre5wMcbw7JLtlL3y3/zR+S98GRNwX/EMpBSG7RjjcpLYZvIIigvHAG25McYwf3EZr7z6Ag877yPXWQfnPwKTvxW2Y4zOTkQEytzDydz3ijW7pGNg/d5rjOHFkl389wuL+bXzMc5yLIRxZ8G3HgJPQliOMTIzEZdDWOXLZyZYyWYYWgiVUpGnCZZSasgreeNhLpB6PKf+KGx1xrqd7IstJq2lBAK+sHQxCzevP8jTr7zGV0puYaaUUz/9R6R/446wX+yOyU7iJTMMZ6DV6gqVOTqs9ffWvvpW7nnmDc7b8d9827mRtvHnE/ut+8N2Id0uIzGGlMR49jmLyB2ALTf76lv59bNLmLz1IZ50vYpJKcTx7aeh8NiwHifO42R4ejxr/YUc7WuyZpdMKw7rMXpjX0Mrv3pxNU3r3uXVuEfIDu6Dr/4MvnprWL8bHpeD4swEFtfF8h9Oz6Aao6iUOjRNsJRSQ1ptUxsTdjzFntgR5E78eljrbk0dg7MiYM0kmD0+rHX31ootO9n4zK+4pPUlmt1ptFz4HMnjT+2TY+Ukx1DmHmkt7F09YBIsXyDIM5+so+2933M7r2E8cQTPfoiYqReFrXvkgcbmJLGpsojcAdSC5QsEeeyTbax69wl+Kf+kwFWJmXYpjjN+f8Q3mO7OmJwkPtuTzaUAe9cOiASr2evnkU9KeenDz/nP4KOc4VmMSRmJnPcmDDuuT445NieRNbvrIXMs7F3TJ8dQSvU/TbCUUkPawnde4jwppfy4/w37RbUrdwJUgH/vOlwDJMHaV9fCW888wNd23stRUs2ukRdScOGdEKaukZ0REdy5EwjsceDcuxomnddnx+qJQNDwyhfb2fDW37iy7UlypYaGCXNJ+uZvj/j+Tj01NieJ5WW5zGn7CLxNYW8lOxyBoOHVlbt5863X+E7jY1zjXI03YwKc8zgy/Ct9euxxOUk8vj4DPFgTXYz/Rp8e71BafQGe/HwHT3xQwrfaXuQV95u4PcCJv0S+8uOwjLfqypjsJN5YvQf/yMm4tn3QZ8dRSvUvTbCUUkOWLxAkbeXfaJAk8mZfEfb6UwsnEVwp1O1YTcaU88Ne/+GoaWzj7VeeYtL6e7hctrInYRzNFzxFwagT+uX4o/Mz2Vaez6g9q+mbtqHuBYOGN1fvouSNh7m46SnOc+yhLmMq5vxnSCqa2S8xjMtN4gN/gZ1YrIPC6f1y3FDBoOGtNXt46c03uLD+nzzg/AJvfBrm5N/jmfE9cPb9pcHY3CTqgnH4EgtxR6g1zxcI8q+lO3n4vRV8s+lFXvW8QYKrCSaeD1+/A1KH9XkM43KTMAYqEsaS1/g0NOyBpNw+P65Sqm9pgqWUGrI+/uwzTgosoXTi9SR54sNe/8iCLMpMFp7yyHUHa2j18eZrzzNy5R+ZK+up8uRSceKfyJ11Rb9ONjE+N4m1wSKK96zu9/94jDG8v24Pn7/2KBc2PM43HLuoTxtP8Iw/kjL+G33WHbAzY3OSuC9YbC3s/qJfEyxjDO+v38dzb7zN2TWP8aBzCd7YFIKzf4Xn+P8HMUn9Fkv7DHqVSePI213Sb8cFq+Xu5RW7+Os7Kzm57iVe9LxGkrvBmsTipJ9D7uR+i2V8rnXO1zGSPIDylZpgKRUFev3/nIj8CPgBEABeM8bcYq//OfAf9vofG2Pe6u2xFLT5A9Q2ttBUX4OvqRZvSwNerxevz4sE/UgwCAJBpwenO57Y+ATiEhKJS8kiOTGBpBiXdeNPpRRti+7DL06Kz7yhT+oflZXIp6aAadUb+qT+Q2n1BXjjrdfIWXoX32YFNa4M9n7lv8n56vfCOkNgT43LTeKd4DDOqf8UWusgNqXPj2mM4d+bK/no1cc4t+af3ObYTn3ySAJnPEbyxHMiMnPd2JxEdpFJszuN+N1f9MsxjTEs2lzJ/Nff54zKR7jP+RmBmASCX7kVz1d+0C/vxYHaZ9Db5BpLXvl70FILcal9ekxjrJa7+95exXFVL/K051VS3XWY0afBybdB/tF9evzOFGckkBjj4pOmDE4B2LMCxp7W73EopcKrVwmWiJwMnAscZYxpE5Fse/1E4GJgEpAPvCsiY40xgd4GHK1avT727S6lrnwrTVU78daWY+r34GreS1xbJcn+KhKDDSTSTI60HtEx6k0820mh0ZVKY0wOLYnDCKaNICZrJJlF4ykeMYpYz8Cb6UypvrBy4xZObn6b0oKzGZvcN78YJ8S42OMpJrX5FQj4+6Xrldcf5K333yPp0zs53yym3pHC7um/IP/rPwJ3XJ8fvyvjcpP4M8OthfKVMGJOnx5v6bYq3n3lSc6sfISfO7bSkDgM/2l/JXnqtyM6TXxSrJui9Hi2MJYpu5b3+fE+31rFE28s5KQ9j3Cv8xOCnhjM8TfinvVjiE/v8+N3xeNyMDYniX+3DudEsFrzRp3cJ8cyxvDhxgr+/NYapux9gUc9L5PprsEUnwSn/ALpp+6hnXE4hMkFySzdE4C0EdZ3Qyk16PX2f/vrgd8bY9oAjDH77PXnAk/b67eJyGZgJvBpL483qDW3NFO+bS11O9bQum8L1O4grqmM9Lbd5Jp9DBP/fuV9OKmVNOrdmTQnFNIQkwqxKTjiUnDEpiBxqThjE3G73bjcHsThwjicYAzibyPoa6GttRl/axOmqRJproSmStwtFQxvXU9W80e49gXB/nG92cSwyZlPdVwxvtRReHLGkjZsEgWjJxOfmNrv50upvlT29n1MFR8F37y5T4/TnDIaV7UfarZB5pg+O44/EOSdj/+N6+Pf803/IlodcZRNu4miM39Ccj92/epKvMdFY/o0aADKPu+zBGvlzlpef3kBX9vzd37m2EhjfB6+r91L0tHf6ZcEtyeOHZbGZxuHM7nlWaStEWISw36ML3bU8NgbH3Nc2T+42/UhuN2YmdfjnvOfkJAZ9uMdiaOKUnhlZQ4/A9i1rE8SrM+3VnH3W2sYsfNFHvS8RI67ElP0FTjll0jxrLAf70hMLUzl0X+XEpwyFUd5SaTDUUqFQW//txkLzBGR3wGtwM3GmCVAAfBZSLmd9rqDiMi1wLUAw4b1/YDS/uD1etm+oYTq0hX4ytcRU7uRzJb/3959x0dd3w8cf71vZu8QMiAJm7CnKA60zjrQatXWbau11bbaoZ3W2l9bW9vaWq3WaqtV6164FyI4EFmyR4BAAiF7j5uf3x/fSwgjEMiFu8D7+Xgcue/6fN+XL3f5vu+ztpAXLGeo7KrEayCBakc29UkjqU46FVtaIe6MfJIy80gbmE9c8gAybTYy+yrQgI/WqhJqStdTv30DvsoNuOs3M7h1DVnN87BtNxD6grVC0qlxD6YtaSi2zOEk5RWRPXQ8cRmDo26CSKUOpKKmlmOqnmdj8nEMz+3b/hb2rNFQC4HKtdj7IMEKBg1zFy3B8/7vOcM7F784KR3zLQafcxuDIlhDsS/DCwezccUghm1bGPaBLtbtbGTOnBc4ofQhfmJfQ3PsALwn/5mEqVdGpEnk/kzJT2XuinyucwWh/AsI443+qu0N/OfNT5hQ8gh3Oz7A5hTMlG/iOOmHUde3Z0JeCk8tcuMdOARXmJtLflFaz1/eXkPmlpf5s/Mlcp2VBHOmwSkPI0NmHdZ+dwcyLjcZrz9IZeIYBq59BZoqIDEr0mEdNfz+AO2eNjytTXg9bXjb2/B62vB52vF72wj42jE+LwQ8SMCLMQZjgtYj2PEcjAkiBLEBdpuAzYHNZkfsDuu53Y7YnIjdgc1uLdvsDsTmxGZ3YHc4sTtd2O0OHB3PHQ7sTjcOhxOn04Xd4QSbU++7+oEDJlgi8h6wr0/ln4eOTwNmANOAZ0VkyMEEYIx5CHgIYOrUqeZgjo0GPp+XknXLqN34GcHty0htWEO+bzPDxQtAwAjl9mxq4wv5IvU0bFmjScorIqtgFMkpmRz+lu9d2J3EDRxO3MDhDJq2+yafp5WyzWuo2bqS9vL12Os2kdyyhREVr5NY2Qah6TracVHpzKMpoRBvylAkYzix6bkkpw8kKS2L2ORMpA+HuN0XYwwenx+Ppz30YdmOz9OGz9uO39tu/fR5CHo9+H3tBL3tBP0egr52gn4vQb8H/F6M32N9oPq9EPAiQS/i92ILerEbL46gD7vxYjd+HMaHw/hwGq/1Ex82EwRM6EbSYMMgmNA6a7lj++7LpvPm0wDGWFuCHXuIdO7Vo0eX/UEIdvyUjjN3/AQ6og1to8sr6Lgh2bV/x3o6l6XLsbteRWi77L1dQq9xr5sdY7oc2WV1l0h3relyFrOfbV2WY30NDJVG/KfdSl9LGTwG1kLTtpWkFJ0XtnKNMXy0bDW1b9/Fme1vIgJlwy8nf/YvyI/Sm7Mp+aksWjqCIds+wx4MhKWp3uaqZl58dQ7TS/7BrbaVtMSk037S70g45hvgjAlD1OE3OT+VvwZDfyrLPg9LgrWhoomH31zIyOJH+J3jPRzOIMGJV2Cf9WNIzut1+X1h4uAUAMrjR5Nftth63/cy8Vm/s4m/vL2GmPUvc6frJfKd5QQHToRT7sc2/LSoSqw6TMhLAWCpjObLANs+jfhUBv1JMGhoaPVQV1tJU20FrfWVeBqrCLbUIG21ONprsXkacfiacfqbcQZaiQm2EBtsJY42EmgjQQKEvx657wSN4Bc7AayHP/QzIHaC2AmIg6CEfmInaLOWg+LAdN0WKsOII/S3mc6/0xL66yudf+MNGDr3Cy12PKXzr2zon477Hcyu+yDrb7tBCIJhj326lNKxn9lVztLYYyk69/vMGNJ3U4qE0wETLGPMqd1tE5FvAy8aYwywSESCQAawHRjUZde80Lp+r72thU3L59Owbj4JOxcxtH0Vw0N9olqIYZtrOCuyL8SVN4n0IZPIGTqWPHcc0fnnrXtOdxyDR09l8OjdR7jy+wNs276NnZtX0LpjHVRvJL55M1m1K8mtnYt9y945cjNxNEsCPpsbny2m8+G3ucFmR8SGiOyeRCDYjB+78WML+rEZHxK0novxYzc+bEFruwMfzlBS4zQ+XPiJkQDhurUKYMOHAz9OfOLEv8cjIE78NicBWyKtNicBcRG0OTFitwYUERuIbVcCE0p4On8iGLG+jdq1LOxKZ0wocdjjQ6kjgTPBzoTE2r5rv87tof07y+w8dldSZ3b7sLP2s8o07Ep4du1vxcFuy4Su4u7lsfv2Lh+ku5W/x43P7gka+9m2n+P2KtPitcfyUe63OH5c3/T56KogZwAlwSziSsP3Df2iNRspe+0PnNXyCk7xU1rwFQaffwcFqYMOfHAETc1P5a/BkVzmfd8aorwXo7WV1rby/GuvM37j/fzIvoxWVzJtx99B/HHfgj4YETKcRmYl0u5KozKmgAFbPoTjbz7ksjZXNfPw258zeN0j3GF/hxiHH//4S7GffBv21PzwBd0HRgxIJD3exaeB0eQ3vw5V6w95Qu6S6hb++u46fKte5seOFxnmKiOQWQSn/AnbqLOjMrHqMCgtlkFpscypjOXLzjgoWaAJFtZoj9WNrVRVbKexchttNWX4G3YgTeU4WytI8FaR4q8mzdSTQhOpsu/v6D04aZYE2iQOjz0enzMOjzONVmcCVc54As5Egq4EcMVhc8Rgc8Vgc8bgcLqxu2Kxu2KwO9wYhwuxu7HZbdhCf9dtNrEeYgObDWOsv26BoCEY8BMM+gn4AwQDPkzQb63z+0PPA5iAj2AgtOz37foZ8EPQ2kbQWu5YR9CPBHyYYAAJ+iAYQIwfCfqtbaH7JOt+KYDN+LGZQOheKoDNeLCbAK6O9MwEcOBn19/8Ll9PGvb+e935fNeTPffp+kXs7l8lgxFbl6+e9/iSt+t9UZcviQHE24I/0H/qYXrbRPBl4GTgAxEZgTWzRzUwB/ifiPwFa5CL4cCiXp4rIkwwyLaNKyj//GUSt81lmGcNY8QHwBZbPqszv4wj/xiyRs0ge8g4Rtsj13n6cHA47AzOL2RwfiFWVzuLMYa6xiZqyzbQVL2D1voKAi01SGsN9vZa7J4G8LfjDIYe/kbiTDs2E+jyjcaumhwRgx8HAez4xEEABwGbA784CNjiMeLE2BzWw+7G2F0Yuwvsbqs5kMON2F3YHG7E6UYcbuxONzZXDA6HC7srBoczBrsrBqcrBqc7BqcrFqfLjcsdg8MVY00uaXdjtzs4sq+q6ksjBybxthnJWRWf9/ob+uXF29g054+c1vA8U6WdrblfJu+COynMHBbGiPtOfnocm2LHWmPLlnx0SAnWzoZ2nn3jbUasvY9bbItocyXScuxPiT/hxsM6zHhvOOw2JuenMn/nOC7c+i7ibT3opHBrTQuPvLuMAasf5ue2N4lzePAWXYTtSz/FlT60jyIPL5tNmDksgyeKh3IpQPF7B51glda2cv/cjdQte4WbHc8z2rmVQPoIOPk/2IvO7xdNqUSEE4ZnMmf5DoIjT8K24R34cu9r86JdMGiobGynfOd26rdvpK1yM6auBFdzKclt28kKVpBNNVmy+/hoQYR6WyqNjgxakwZTFjOF0rh07AkZuJIGEJOcSUJaFvGpWbgTM3C74nEf4b/Lo0H/+Cu3S28TrH8D/xaRVYAXuCpUm7VaRJ4F1gB+4Mb+OILg0jf/w4BFd5FvdpIPbLEVsDz7ImKGnUjhpC9RmJ5FYaSDjBIiQlpyEmnJh3/STKWiWYLbQWXqZOIa50PVOhgw+qDLWF1SzppX/syXap9iojSzZcCXcF9wJ4U5h2++nnAQEcYWjWXTilwK1szBPuOGHh9b3tDG82++R8Gaf3CTfIrXEUvTtB+QOOv7fT68d184e1w2L2waz0WuV2HDmzD2wh4dV1LdwiPvLSN91b/5kf1NkuyttI+YjZz2c9yZI/s46vA7cUQmc77YQVvOaGLXvAzH3dSj47bVhBKr5XP4rv1Fxjk3408phJMfwj7uooiOFHkoThyewf8+28am1JkM3/AmlC/v0bDxlU3tPP7pVt5atZO7LhzPlPzUvg/2IDW0+diys4aqkrW07liDVG8koWkTWb5tDKaCSdK22/6NkkSdO5e2+PFsSBqEIyWP2IxBJGUOInnAYGyJWaTZHURXD1OldterBMsY4wUu72bbb4Hf9qb8SHPGJVMTk8/2wm+QP+MCCgcP14RKKXXQnCNPhc//Suuq14g7pecJ1uotO1gz5y+cXPsMY6SRrWnHETv7NxQW9N8vMs6dmMucpTO4eduLULsF0vb/qbqjvo0X33iToese5EZZhN/upnnyjSR96YfERNkgHgfjrLHZ/OqVIhqdGSQte+KACVZJdQv/fmcx2Wsf5jbbuyQ42vAMOwtO/QUxh3Fi3HA7rSgLt8PGe45ZnFv2gNV0dD9fQpRUt/CPuRto/eIlbnS8zGjnVvxJg2HWfTgmfC1qRoo8WLNGDiAlzsmDleP4syMGljy23wSrtLaVf87fxKeLF/MNmcM/bBu46/lf8ODNl+C0R6bWrsXjZ315HeXFK2gvXY6rejUprSUMCpQxTiqxd2nCV+0YSENKAduTj8ORXkDCwGGkDRqBK72AJHciSRF5BUqFjxgTPe0Zp06dahYvXhzpMJRSKqyWbatDHj6F/BQXqbcsPGDTn1Wby1g35y+cXPcs6dLE1tRjyTj7l8QPi45hpXsjEDRccNdzvOD9No7JlyPn/W2f+60vb+SDd19hePG/+ZJtKe22eDxTvknyrO9DfP/o5HwgNz65lGHr/8kttqfh2rdh8Iy99lm2rY45cxcweNOTXGqbS4z48Iw8j5hTboOsMRGIOvz+77U1vPjxChbH34Jt+Jfgkif22ueL0nqeWLAWx5oX+Ib9DYbJdvypw3Cc9CMYdxHY+/8cjr9/Yy0Pf7SFpRPmkLzhBbhx0V5fQKzb2cg/522iZOUCrrW/ydm2hYjNQcDmpMSbzAuTH+O28/t2Xq9A0LC1poWNZRXUbl5KsHwliXVrGOzbxCgpJSbUjcKHg2r3IFqThkHGcBLyxpCWPxbngBFR309SqZ4SkSXGmL2+9dQESyml+pgxhvvu/jnfbb0fc+UcZMhJe+0TDBo+XfYFNfP+wYmNr5EiLZSkzSTz7F8SP/TYCETdd15YUkbDSz/kWsdbcPHjEBpdsc0b4OMv1rDt46c5tvYVRttKabUn4Z/+bZJO/E6/bAq4P1uqW7jgnrd4L+YnpCW4sV3xMmQMo7rZw3vLNlC+6GUm1b/LLPsXBMSOd/SFxJ5ya5/OpxYJ1c0eTvzjB/w04XWuaP0vfOl2mHkLtW1+3lm1nRWfvsvw6vf4iv0jkqUFX+YYnCf9CIpm97umgPtT1eThjL/OZ3R8M4+334QtrRC+/ix19gzeXVPBvEVLSN/xAV9zzKNISgg647FN+wYceyNUbyTw2GzmBcazbtaDfOeUkdYgS73U4vGzbmcTm7eW0FSyFHvFSjKa1jOSEoZIObZQrVSLLZHaxFEEs8aSUDCZtKFTkIyR/bZGUame0gRLKaUi6JXFxUx99XTi4hJIvfF9SLBmuNtRXc+q+S/hXv0sM/0LEYGSjJMZePZtxBceE+Go+0YwaPjhk59w5cbvMclWzOa48VSbJBJayxjFVmxiqEoYSdzMbxE/5WtH9LfdLywp47EXXuJx1+9JoI1SWy7G72OwVGAXQ4t7AI7p1+Kefk3UzWMVTu+uqeDGJz7nb477OMv2KXUkUR1MJEeqiRcPAXESHPllnMfeAIOPPWIHgJi3vpJvPb6EE2Q599vvwYGPrcEsYsVDttQC4M8ownHMN2DcxRCzqzFd4LOHsL/5Y14IHM/7Q27jpjMmUpTTs8Z2/kCQ0ro2NlU0Ul6yBk/pF7hr1pDTXkyRbWvnuQHqXQNpSS3CkTuB1CFTcOVNtKYCOEKviVL7owmWUkpFkDGGvz7yKDeU3krA5mJb7GiC3hYKfZuIFw+NkkjFsIspOPN7ONMLIh1un/MFgjz24Rqcix5gsmcRKbZWPHHZuIbMJHfGV7EPHHPU3LAtLqnltY+XMaH8WQYHt5MU6yS1YDzpE89Gcqf2i5HwwmHNjkb+91kJGaVvM8O/mEyXh5SBBaSNPAEZftpuycSRrLiyiScWbqNxxwZO87zLMFs5GWlppBRORIafYdVg7uu9YQxm3l3w4R/YadL4j/90ilNPIHfoGHLTEkmLc4FYNcX1Tc0Ea7dir9+MvX4LKa1bGSVbGSXbiBcPYE1RUhdXiDdzDPH5k0kqmIQMHA/9uO+jUuGmCZZSSkWY1x/klXfeIX35A+T4yxBnDJ700QyYcj4DJ55xRPQjUUpFWMnH+N/7DY6yTwHwYafCpOIzdhwESZFmEvcYua/dnkhT8kiCWWNJKpxMbN4EyBwVtZN1KxUtNMFSSimllDpa1G6GLQugdjO+hh34fD6M2LDFpeNOysCWmg9pQyFtiFUrdZTUGCsVTt0lWNr7UCmllFLqSJM2xHoAztBDKXV4HB0Nu5VSSimllFLqMNAESymllFJKKaXCRBMspZRSSimllAqTqBrkQkSqgK2RjmMPGUB1pINQh41e76OHXuujh17ro4te76OHXuujSzRe73xjTOaeK6MqwYpGIrJ4X6ODqCOTXu+jh17ro4de66OLXu+jh17ro0t/ut7aRFAppZRSSimlwkQTLKWUUkoppZQKE02wDuyhSAegDiu93kcPvdZHD73WRxe93kcPvdZHl35zvbUPllJKKaWUUkqFidZgKaWUUkoppVSYaIKllFJKKaWUUmGiCdZ+iMiZIrJeRIpF5CeRjkeFj4gMEpEPRGSNiKwWke+H1qeJyLsisjH0MzXSsarwEBG7iCwTkddCy4Ui8lno/f2MiLgiHaMKDxFJEZHnRWSdiKwVkWP1vX1kEpFbQp/hq0TkKRGJ0ff2kUNE/i0ilSKyqsu6fb6XxXJv6LqvEJHJkYtcHaxurvXdoc/xFSLykoikdNn209C1Xi8iZ0Qk6P3QBKsbImIH7gfOAoqAr4lIUWSjUmHkB35ojCkCZgA3hq7vT4D3jTHDgfdDy+rI8H1gbZflPwD3GGOGAXXANyISleoLfwPeMsaMAiZgXXd9bx9hRCQX+B4w1RgzFrADl6Lv7SPJo8CZe6zr7r18FjA89LgeeOAwxajC41H2vtbvAmONMeOBDcBPAUL3a5cCY0LH/CN03x41NMHq3nSg2Biz2RjjBZ4GZkc4JhUmxphyY8zS0PMmrBuwXKxr/Fhot8eA8yMSoAorEckDzgYeDi0LcArwfGgXvdZHCBFJBk4EHgEwxniNMfXoe/tI5QBiRcQBxAHl6Hv7iGGMmQ/U7rG6u/fybOC/xrIQSBGR7MMSqOq1fV1rY8w7xhh/aHEhkBd6Pht42hjjMcZsAYqx7tujhiZY3csFSrssl4XWqSOMiBQAk4DPgCxjTHlo004gK1JxqbD6K3ArEAwtpwP1XT649f195CgEqoD/hJqEPiwi8eh7+4hjjNkO/AnYhpVYNQBL0Pf2ka6797Letx3ZrgXeDD2P+mutCZY6qolIAvACcLMxprHrNmPNYaDzGPRzInIOUGmMWRLpWNRh4QAmAw8YYyYBLezRHFDf20eGUN+b2VhJdQ4Qz95NjNQRTN/LRwcR+TlW144nIx1LT2mC1b3twKAuy3mhdeoIISJOrOTqSWPMi6HVFR1NCkI/KyMVnwqbmcB5IlKC1dT3FKw+OimhZkWg7+8jSRlQZoz5LLT8PFbCpe/tI8+pwBZjTJUxxge8iPV+1/f2ka2797Letx2BRORq4BzgMrNr8t6ov9aaYHXvc2B4aDQiF1ZnujkRjkmFSagPziPAWmPMX7psmgNcFXp+FfDK4Y5NhZcx5qfGmDxjTAHW+3iuMeYy4APgotBueq2PEMaYnUCpiIwMrfoSsAZ9bx+JtgEzRCQu9Jneca31vX1k6+69PAe4MjSa4AygoUtTQtUPiciZWM37zzPGtHbZNAe4VETcIlKINbDJokjE2B3ZlQyqPYnIl7H6btiBfxtjfhvZiFS4iMjxwAJgJbv65fwMqx/Ws8BgYCtwsTFmzw62qp8SkVnAj4wx54jIEKwarTRgGXC5McYTwfBUmIjIRKwBTVzAZuAarC8U9b19hBGRXwOXYDUfWgZ8E6svhr63jwAi8hQwC8gAKoBfAS+zj/dyKMm+D6uZaCtwjTFmcQTCVoegm2v9U8AN1IR2W2iMuSG0/8+x+mX5sbp5vLlnmZGkCZZSSimllFJKhYk2EVRKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKqSghIgUiYkTEEelYjnQicrWIfBTpOKKNiJwgIusjHYdSSvVnmmAppZTq10TkDhHxiUhzl8etkY6rPzLGLDDGjAx3uSJiF5H/E5EdItIkIstEJCXc51FKqWig35IqpVSYiIjDGOOPdBxHqWeMMZdHOoi+cgT83/o1cBxwLLANGAO0RzQipZTqI1qDpZRSvSAiJSJym4isAFpExCEiM0TkExGpF5EvRGRWl/3nicjvRWSRiDSKyCsiktZN2deIyNrQN/6bReRbe2yfLSLLQ+VsEpEzQ+uTReQRESkXke2hmgP7AV7HUBGZKyI1IlItIk921DCEttWKyOTQco6IVHW8LhE5T0RWh17vPBEZvcfv50ciskJEGkTkGRGJOfjf9METkZ+Efi9NIrJGRC7oZj8RkXtEpDL0u1wpImND29wi8icR2SYiFSLyoIjE9vD8j4b2fzcUw4cikt9l+99EpDR0ziUickKXbXeIyPMi8oSINAJXi8h0Efk09HsuF5H7RMTV5RgjIt8RkY2h8/0mdO0+CZ3j2a77dxPzLBEp68nr6ykRSQVuBq4zxmw1llXGGE2wlFJHJE2wlFKq974GnA2kAFnA68D/AWnAj4AXRCSzy/5XAtcC2YAfuLebciuBc4Ak4Brgni5JznTgv8CPQ+c9ESgJHfdoqNxhwCTgdOCbB3gNAvweyAFGA4OAOwCMMZuA24AnRCQO+A/wmDFmnoiMAJ7CuoHOBN4AXt3jRv5i4EygEBgPXL3PAESODyUP3T2OP8Br2NMm4AQgGasG5QkRyd7Hfqdj/f5GhPa9GKgJbbsrtH4i1u8zF7j9IGK4DPgNkAEsB57ssu3zULlpwP+A5/ZIPmcDz2Nd3yeBAHBLqKxjgS8B39njfGcAU4AZwK3AQ8DlWNdzLNb/1UMWSpS7uz7/6OawcVj/Hy8SkZ0iskFEbuxNHEopFdWMMfrQhz70oY9DfGAlNdd2Wb4NeHyPfd4Grgo9nwfc1WVbEeAF7EABYABHN+d6Gfh+6Pk/gXv2sU8W4AFiu6z7GvDBQb6u84Fle6ybA6wEVgDu0LpfAs922ccGbAdmdfn9XN5l+x+BB8N8De4I/Q7ruzxy9rHfcmB26PnVwEeh56cAG7CSEluX/QVoAYZ2WXcssKWHcT0KPN1lOQErSRrUzf51wIQur2n+Acq/GXipy7IBZnZZXgLc1mX5z8BfD1DmLKAszNfn66HYHgFisZLsKuC0cJ5HH/rQhz6i5aE1WEop1XulXZ7nA1/t+s0+cDxWbdW+9t8KOLFqJXYjImeJyMJQ87x64Mtd9huEVUOzp/xQeeVdzv9PYMD+XoCIZInI06EmhY3AE/uI6V9YtSB/N8Z4QutyQq8BAGNMMPT6crsct7PL81asRCPcnjXGpHR57BCRK8VqQtnxexjLPn7Pxpi5wH3A/UCliDwkIklYNXJxwJIuZbwVWt9TndfaGNMM1GL9zgg1nVwbajpZj1V7lrGvY0P7jxCR10K1QI3A7/bxeiq6PG/bx3Jf/O4PpC30805jTJsxZgXwNNb/Z6WUOuJogqWUUr1nujwvxarB6nqzH2+MuavLPoO6PB8M+IDqrgWKiBt4AfgTkGWMScFqfiddzjN0H7GUYtVgZXQ5f5IxZswBXsPvQq9jnDEmCatZWce5EJEE4K9YtRB3yK5+YzuwkrqO/ST0+rYf4Hx7EWuI8Ob9PE44cCmdZeVjJYQ3Aemh39+qrq+pK2PMvcaYKVg1iiOwml5WYyUHY7r8LpONMQeTpHRe69DvMA3YEXott2I1R0wNxdewR3xd/18BPACsA4aHrtHPuns9fUWsvnbdXZ8HuzlsRehn19ez52tTSqkjhiZYSikVXk8A54rIGWINTR0TGjggr8s+l4tIUag/053A88aYwB7luAA3VlMqv4ichdVXqMMjwDUi8iURsYlIroiMMsaUA+8AfxaRpNC2oSJy0gHiTgSagQYRycVKMLr6G7DYGPNNrD5mHTfTzwJnh+JwAj/ESvA+OdAvak/GGiI8YT+PBQdRXDzWTXwVWAOGYNVg7UVEponIMaH4W7BGtwuGauP+hdX3bUBo31wROaPLsUa6DGKyD18O9S1zYfXFWmiMKcX6fftD8TlE5Hasvnb7kwg0As0iMgr49gH2DztjzJj9XJ8bujlmE7AA+LlYg4aMBi4FXjucsSul1OGiCZZSSoVR6OZ5NlbtQhVWjdKP2f3z9nGs/jk7gRjge/sopym0/lmsvjlfx+oD1bF9EaGBL7BqPj5kV03SlVgJ2prQsc+zexPFffk1MDlU1uvAix0bRGQ21iAVHTf0PwAmi8hlxpj1WLVdf8eq8TkXONcY4z3A+fqUMWYNVp+jT7GayY0DPu5m9ySsRKoOq7ljDXB3aNttQDGwMNQs7z1gJICIDAKasPqlded/wK+wmgZOwfpdgdUv7y2svl9bsZK60n0V0MWPsP4fNIXifeYA+0eTr2H9/6zB+v/1S2PM+5ENSSml+oYYo7X0Sil1uIjIPOAJY8zDkY5F9Y6IXI7VfPCn3Wx/FGvAiF8c1sCUUkpFlE40rJRSSh0CY8wTkY5BKaVU9NEmgkopdZQQa9LbgxmcQB2BRORn3fw/eDPSsSml1JFAmwgqpZRSSimlVJiErQYrNFrWMhF5LbRcKCKfiUixiDwTGkFJKaWUUkoppY5YYavBEpEfAFOBJGPMOSLyLPCiMebpUPOTL4wxD+yvjIyMDFNQUBCWeJRSSimllFKqryxZsqTaGLPX5PNhGeQiNL/L2cBvgR+EJpo8BWs4WYDHgDuwJknsVkFBAYsXLw5HSEoppZRSSinVZ0Rk677Wh6uJ4F+xZqQPhpbTgXpjjD+0XAbkhulcSimllFJKKRWVep1gicg5QKUxZskhHn+9iCwWkcVVVVW9DUcppZRSSimlIiYcNVgzgfNEpAR4Gqtp4N+AFBHpaIKYB2zf18HGmIeMMVONMVMzM/dqwqiUUhERCBp0lFWllFJKHaxe98EKzWD/UwARmQX8yBhzmYg8B1yElXRdBbxyKOX7fD7Kyspob2/vbajqKBMTE0NeXh5OpzPSoah+xhjDNf94k+MDi7n+e78EkUiHpJRSSql+IiyDXHTjNuBpEfk/YBnwyKEUUlZWRmJiIgUFBYje5KgeMsZQU1NDWVkZhYWFkQ5H9TNldW1cXPFXzrF/xvblx5A76YxIh6SUUkqpfiJs82ABGGPmGWPOCT3fbIyZbowZZoz5qjHGcyhltre3k56ersmVOigiQnp6utZ8qkOyoaKJSbZiANo/fyLC0SillFKqPwlrgtVXNLlSh0L/36hDVVldTa7UAJBcvTTC0SillFKqP+kXCZZSSh1OnkYrudppG0iadzt4miIckVJKKaX6C02wekBE+OEPf9i5/Kc//Yk77rgjcgF1sXDhQo455hgmTpzI6NGjO+OaN28en3zyySGXu3XrViZPnszEiRMZM2YMDz74YJgiVir6+ZutBGtH6jRsGILlqyIckVJKKaX6C02wesDtdvPiiy9SXV0d1nKNMQSDwQPvuB9XXXUVDz30EMuXL2fVqlVcfPHFQO8TrOzsbD799FOWL1/OZ599xl133cWOHTt6FatS/UWgtRaAtpwZADSWrY5kOEoppZTqRzTB6gGHw8H111/PPffcs9e2qqoqLrzwQqZNm8a0adP4+OOPAbjjjjv405/+1Lnf2LFjKSkpoaSkhJEjR3LllVcyduxYSktL+fGPf8zYsWMZN24czzzzDGAlSLNmzeKiiy5i1KhRXHbZZfuck6eyspLs7GwA7HY7RUVFlJSU8OCDD3LPPfcwceJEFixYsN84r7jiCo499liGDx/Ov/71LwBcLhdutxsAj8fTbSJ47733UlRUxPjx47n00ksBqK2t5fzzz2f8+PHMmDGDFStWdJ7rqquu4oQTTiA/P58XX3yRW2+9lXHjxnHmmWfi8/kAuPPOO5k2bRpjx47l+uuv3+t1B4NBCgoKqK+v71w3fPhwKioq9ncZleq5tjoAYgdNwmvstJRviHBASimllOov+nKY9rD79aurWbOjMaxlFuUk8atzxxxwvxtvvJHx48dz66237rb++9//PrfccgvHH38827Zt44wzzmDt2rX7LWvjxo089thjzJgxgxdeeIHly5fzxRdfUF1dzbRp0zjxxBMBWLZsGatXryYnJ4eZM2fy8ccfc/zxx+9W1i233MLIkSOZNWsWZ555JldddRUFBQXccMMNJCQk8KMf/QiAr3/9693GuWLFChYuXEhLSwuTJk3i7LPPJicnh9LSUs4++2yKi4u5++67ycnJ2eu13HXXXWzZsgW3292Z8PzqV79i0qRJvPzyy8ydO5crr7yS5cuXA7Bp0yY++OAD1qxZw7HHHssLL7zAH//4Ry644AJef/11zj//fG666SZuv/12AK644gpee+01zj333M5z2mw2Zs+ezUsvvcQ111zDZ599Rn5+PllZWQe8jkr1hK3dSrAG5uRSagbgrNkc4YiUUkop1V9oDVYPJSUlceWVV3Lvvffutv69997jpptuYuLEiZx33nk0NjbS3Ny837Ly8/OZMcNqevTRRx/xta99DbvdTlZWFieddBKff/45ANOnTycvLw+bzcbEiRMpKSnZq6zbb7+dxYsXc/rpp/O///2PM888c5/n3F+cs2fPJjY2loyMDE4++WQWLVoEwKBBg1ixYgXFxcU89thj+6whGj9+PJdddhlPPPEEDoej8zVdccUVAJxyyinU1NTQ2GglxmeddRZOp5Nx48YRCAQ64x03blzn6/vggw845phjGDduHHPnzmX16r2bZ11yySWdtX1PP/00l1xyyX5/50odDKenHoCsrGy2MRB3Y0lE41FKKaVU/9GvarB6UtPUl26++WYmT57MNddc07kuGAyycOFCYmJidtvX4XDs1qyu63xM8fHxPTpfRxM9sJr/+f3+fe43dOhQvv3tb3PdddeRmZlJTU3NXvt0FyfsPZz5nss5OTmMHTuWBQsWcNFFF+227fXXX2f+/Pm8+uqr/Pa3v2XlypU9ek02mw2n09l5LpvNht/vp729ne985zssXryYQYMGcccdd+xzLqtjjz2W4uJiqqqqePnll/nFL36x3/MqdTBiAo2022KJcbqpdeeR3PYuGAM69L9SSimlDkBrsA5CWloaF198MY888kjnutNPP52///3vncsdTeEKCgpYutSaP2fp0qVs2bJln2WecMIJPPPMMwQCAaqqqpg/fz7Tp0/vcUyvv/56Zx+ljRs3YrfbSUlJITExkaamXUNLdxcnwCuvvEJ7ezs1NTXMmzePadOmUVZWRltbGwB1dXV89NFHjBw5crdzB4NBSktLOfnkk/nDH/5AQ0MDzc3NnHDCCTz55JOA1ZcsIyODpKSkHr2ejmQqIyOD5uZmnn/++X3uJyJccMEF/OAHP2D06NGkp6f3qHyleiI+0ES7PRGA9sR8Ykw7tFRFOCqllFJK9QeaYB2kH/7wh7uNJnjvvfeyePFixo8fT1FRUedw5hdeeCG1tbWMGTOG++67jxEjRuyzvAsuuIDx48czYcIETjnlFP74xz8ycODAHsfz+OOPM3LkSCZOnMgVV1zBk08+id1u59xzz+Wll17qHOSiuzjBauZ38sknM2PGDH75y1+Sk5PD2rVrOeaYY5gwYQInnXQSP/rRjxg3bhwA3/zmN1m8eDGBQIDLL7+ccePGMWnSJL73ve+RkpLCHXfcwZIlSxg/fjw/+clPeOyxx3r8elJSUrjuuusYO3YsZ5xxBtOmTevc9uCDD+4W9yWXXMITTzyhzQNV2MWYVrz2UE1z2hAATM2mCEaklFJKqf5C9jUyXaRMnTrVLF68eLd1a9euZfTo0RGK6Mh3xx137DYYxpFG//+oQzHv9lmMTGwj+8ef8dJ787ngo3NpOONeko+9KtKhKaWUUipKiMgSY8zUPddrDZZSSnURDBpcxkPQbvVXTM0dit/YaClfH+HIlFJKKdUf9HqQCxEZBPwXyAIM8JAx5m8ikgY8AxQAJcDFxpi63p5Phdcdd9wR6RCUiireQJAY8RK0W/0G89KT2WHSkdqSyAamlFJKqX4hHDVYfuCHxpgiYAZwo4gUAT8B3jfGDAfeDy0rpVRUa/cFiMGHcVg1WHmpsZSZTOwNpRGOTCmllFL9Qa8TLGNMuTFmaeh5E7AWyAVmAx2jGzwGnN/bcymlVF9r9wVx4+1MsGKcdqqdA0loK4twZEoppZTqD8LaB0tECoBJwGdAljGmPLRpJ1YTwn0dc72ILBaRxVVVOgyyUiqy2n0BYsQLjl1zxrXE5pHkrwVfWwQjU0oppVR/ELYES0QSgBeAm40xjV23GWuown0OV2iMecgYM9UYMzUzMzNc4Sil1CHx+IPE4AVnbOe6QPJg60m9NhNUSiml1P6FJcESESdWcvWkMebF0OoKEckObc8GKsNxrkh5+eWXERHWrVvX7T4lJSWMHTs2bOdcv349s2bNYuLEiYwePZrrr78esCYJfuONNw653Pb2dqZPn86ECRMYM2YMv/rVr8IVslL9ntUHy4s4d9VgOdILAPDVbI5QVEoppZTqL3qdYImIAI8Aa40xf+myaQ7QMWnMVcArvT1XJD311FMcf/zxPPXUU/vc7vf7e32OQCCw2/L3vvc9brnlFpYvX87atWv57ne/C/Q+wXK73cydO5cvvviC5cuX89Zbb7Fw4cJexa7UkaLd6w8lWLtqsBIGDgWgoVwnG1ZKKaXU/oWjBmsmcAVwiogsDz2+DNwFnCYiG4FTQ8v9UnNzMx999BGPPPIITz/9dOf6efPmccIJJ3DeeedRVFQEWInWZZddxujRo7noootobW0F4P3332fSpEmMGzeOa6+9Fo/HA0BBQQG33XYbkydP5rnnntvtvOXl5eTl5XUujxs3Dq/Xy+23384zzzzDxIkTeeaZZ2hpaeHaa69l+vTpTJo0iVdesXLZRx99lNmzZzNr1iyGDx/Or3/9awBEhISEBAB8Ph8+nw8rT97dc889x9ixY5kwYQInnngiYNV+XXPNNYwbN45JkybxwQcfdJ7r/PPP57TTTqOgoID77ruPv/zlL0yaNIkZM2ZQW1sLwL/+9S+mTZvGhAkTuPDCCzt/P13NmDGD1atXdy7PmjWLPSegVqqveLwe7GKwuXYlWJkDB+ExTtoqt0QwMqWUUkr1B72eB8sY8xGw99255Uu9LX83b/4Edq4Ma5EMHAdn7T/3e+WVVzjzzDMZMWIE6enpLFmyhClTpgCwdOlSVq1aRWFhISUlJaxfv55HHnmEmTNncu211/KPf/yDm266iauvvpr333+fESNGcOWVV/LAAw9w8803A5Cens7SpUv3Ou8tt9zCKaecwnHHHcfpp5/ONddcQ0pKCnfeeSeLFy/mvvvuA+BnP/sZp5xyCv/+97+pr69n+vTpnHrqqQAsWrSIVatWERcXx7Rp0zj77LOZOnUqgUCAKVOmUFxczI033sgxxxyz1/nvvPNO3n77bXJzc6mvrwfg/vvvR0RYuXIl69at4/TTT2fDhg0ArFq1imXLltHe3s6wYcP4wx/+wLJly7jlllv473//y80338xXvvIVrrvuOgB+8Ytf8Mgjj3TWzHW45JJLePbZZ/n1r39NeXk55eXlTJ261yTZSvUJv8dK+m3OuM51gzMSKDMZOHQuLKWUUkodQFhHETxSPfXUU1x66aUAXHrppbs1E5w+fTqFhYWdy4MGDWLmzJkAXH755Xz00UesX7+ewsJCRowYAcBVV13F/PnzO4+55JJL9nnea665hrVr1/LVr36VefPmMWPGjM6ar67eeecd7rrrLiZOnMisWbNob29n27ZtAJx22mmkp6cTGxvLV77yFT766CMA7HY7y5cvp6ysrDMJ29PMmTO5+uqr+de//tXZfPGjjz7i8ssvB2DUqFHk5+d3Jlgnn3wyiYmJZGZmkpyczLnnngtYNW8lJSWAlYSdcMIJjBs3jieffHK3mqoOF198Mc8//zwAzz77LBdddNE+fz9K9QVfKMGyu3clWFmJMWxnAK5mHeRCKaWUUvvX6xqsw+oANU19oba2lrlz57Jy5UpEhEAggIhw9913AxAfH7/b/ns2tdtX07s97VlGVzk5OVx77bVce+21jB07dp+JkDGGF154gZEjR+62/rPPPjtgPCkpKZx88sm89dZbew3Q8eCDD/LZZ5/x+uuvM2XKFJYsWbLf1+F2uzuf22y2zmWbzdbZR+3qq6/m5ZdfZsKECTz66KPMmzdvr3Jyc3NJT09nxYoVPPPMMzz44IP7Pa9S4dRRg+XokmDZbEK9K5vEtk8iFZZSSiml+gmtwTqA559/niuuuIKtW7dSUlJCaWkphYWFLFiwYJ/7b9u2jU8//RSA//3vfxx//PGMHDmSkpISiouLAXj88cc56aSTDnjut956C5/PB8DOnTupqakhNzeXxMREmpqaOvc744wz+Pvf/441Gj4sW7asc9u7775LbW0tbW1tvPzyy8ycOZOqqqrOJn9tbW28++67jBo1aq/zb9q0iWOOOYY777yTzMxMSktLOeGEE3jyyScB2LBhA9u2bdsrsdufpqYmsrOz8fl8neXsyyWXXMIf//hHGhoaGD9+fI/LV6q3AvtIsABaE/JICDaCp2lfhymllFJKAZpgHdBTTz3FBRdcsNu6Cy+8sNvRBEeOHMn999/P6NGjqaur49vf/jYxMTH85z//4atf/Srjxo3DZrNxww03HPDc77zzTucgE2eccQZ33303AwcO5OSTT2bNmjWdg1z88pe/xOfzMX78eMaMGcMvf/nLzjKmT5/OhRdeyPjx47nwwguZOnUq5eXlnHzyyYwfP55p06Zx2mmncc455wBw++23M2fOHAB+/OMfM27cOMaOHctxxx3HhAkT+M53vkMwGGTcuHFccsklPProo7vVXB3Ib37zG4455hhmzpy5W1I3Z84cbr/99s7liy66iKeffpqLL764x2UrFQ4BrzWZsMMdu9t6kzzIelK39XCHpJRSSql+RDpqPaLB1KlTzZ6jxa1du5bRo0dHKKL+7dFHH91tMIyjkf7/UQfrhZee48Ivvon/spdwDD+lc/2Lr87hK0uuoOUr/yV+/OwIRqiUUkqpaCAiS4wxe43EpjVYSinVRbCzBmv3JoKJ2cMAaNS5sJRSSim1H/1rkAt1UK6++mquvvrqSIehVL8S9FkJFo6Y3dZnD8yhxbjxVOlcWEoppZTqXr+owYqmZoyq/9D/N+qQdCRYzt37YA1Ki6fUDIB67YOllFJKqe5FfYIVExNDTU2N3iyrg2KMoaamhpiYmAPvrFRX3dRgJcc52WkbQExzWQSCUkoppVR/EfVNBPPy8igrK6OqqirSoah+JiYmhry8vEiHofoZ8bdbT/aowQJodOeQ7FkLxkAP5rhTSiml1NEn6hMsp9NJYWFhpMNQSh0t/PuuwQLwJOYRW90KbXUQl3aYA1NKKaVUfxD1TQSVUupwsgU81pN91GBJagEAwdqSwxeQUkoppfqVPk+wRORMEVkvIsUi8pO+Pp9SSvWGzd9OABvYnXtti8kcAkBDefHhDksppZRS/USfJlgiYgfuB84CioCviUhRX55TKaV6wx5oxyvufW5Lzh4KQHOFzoWllFJKqX3r6xqs6UCxMWazMcYLPA3M7uNzKqXUIbMHPfi6SbByB2ZRb+Lx6lxYSimllOpGXydYuUBpl+Wy0LpOInK9iCwWkcU6UqBSKtIcwXb8tm4SrNRYSk0m9sZthzkqpZRSSvUXER/kwhjzkDFmqjFmamZmZqTDUUod5RxBT7cJltthp9o+kLiW7Yc5qvCrbGznmw+8xcvP/ge8rZEORymllDpi9PUw7duBQV2W80LrlFIqKjmCHgL2fSdYAM2xuaS0Lu33c2E9/NEWrtjxW06qWEG9czUpF/wp0iEppZRSR4S+rsH6HBguIoUi4gIuBeb08TmVUuqQOYNeAva958Dq4E0ahAsvNFccxqjCb+Wa1ZxgXwlA3KonwdMc4YiUUkqpI0OfJljGGD9wE/A2sBZ41hizui/PqZRShyoYNLjwENxPgmVPKwDAW735MEUVfm3eADl1n2PD8GDMN3EFWmHbwkiHpZRSSh0R+rwPljHmDWPMCGPMUGPMb/v6fEopdag8/iAxeAk6uk+w4gYUAlC/vf/OhbWhookxUkLAHkPtyEvwGjuBzfMiHVavBYMm0iEopZRSkR/kQimlokW7L0AMPsx+Eqz0vOEANFf23xqsteWNFNm24s8oYvzQPFaYobRv/jTSYfXKxoomZv7fGzz7l5sJbHg30uEopZQ6immCpZRSIW2+ADF4wRHb7T65melUmWQCtSWHL7Aw21DRzEgpw5U7jqLsJFYFC3DVrIVgMNKhHbL7PyjmHM9rXNz4H+z/uwhq+vdk0C8v284pd89l+WsPwhFQu/jAvE38/s21+Hes7Pf9/Soa27nz1TUsLqmFxnLweyMdklIqymiCpZRSIe2+ALHiAWf3CdaARDfbycTZWNrtPtGuqqaaVGlCUgvIT4+n2FaI098C9SWRDu2QBIOGeRuquCHuAzbLIHzihEX/inRYh6zdF+CXr6ziuPo5TFx8G/x3NlSui3RYh+zTTTX84a11rF/wAo6Hjoe/TwFPU6TDOmR3vrqGf3+8hacf+zv8ZRQ8choE/JEOSykVRTTBUkqpkHZfkDg84Izvdh+bTah1ZpPQWnYYIwuvQO1W60nKYOw2oTWtyFreuTJyQfXC5upmEtp2kO4rZ9XAr/CpGYvZ8KY1lH4/9HFxNU3tPr6XNJ8dJo2gzQmL/x3psA7ZU4u2kRbv4mexL1krmnfCkkcjGtOhqm3x8vbqnUzITeJbgWesleXLYcUzEY1LKRVdNMFSSqmQNq+POPEg7rj97tcUP5hUfyX4PYcpsvCyN4WSw9QCAOLzxuDHhilfEbmgeuHzkjqOkbUAxI6YxTu+iUhdCdT2z35yq3c0kks1A9o28Zg5l9WJM2H1i/2yCacxhkVbajmrQBgRKOaPvkvwZE2GVS9EOrRDsnBzDf6g4bcnJzLctp0n079rvY9WvxTp0JRSUUQTLKWUCvG1twBgc3VfgwXgSx6KnSDUlRyGqMKrxeMn1VtuLaQMBmB4bibFwVw8ZV9EMLJDt668kfHOUowjllHjp/N5cKS1YfuSyAZ2iDZUNHFaklXL6M2bwatt46GlCirXRDiyg1da28bOxnbOirOaOM4LTmBDyvGwYxk09b+55D4vqSXGaWN0q/V/65maYZiR51j95LwtkQ1OKRU1NMFSSqkQb5vV+d7m3n+C5RhgjSTYsqP/9YvZUd9GnlQTsLkhPhOAUQOTWGPyYWf/rMHaXN3CGFcFkjGMvLR4mhOH4pEYKFsc6dAOycaKZk5wbwJXAoNHTeO1xmHWhi3zIxvYIVi6rQ6AIlOMccZTETOEub6x1satH0cwskOzvLSe8Xkp2Hcspd2Vzor2DLalTIWgD7YvjXR4SqkooQmWUkqF+EM1WI6YhP3ul5Bj1ZA0be9/CVZZfRt5UoU3MQ9EABiRlcD64CBi2iqgrS7CER68zVUtFLAdMkYgIowblM5aGdova7B8gSCbq5sZzjbIGsPEggx2kEFbXA6ULYp0eAdtY2UTdpuQUr8ayR7PlMJM5uxMBUdMv7s+xhiKK5oZNTARqtYiWaMBYUGbNTdef7w+Sqm+oQmWUkqF+D1WgmV37z/BGpg1kCqThK9yw+EIK6y211kJlqQO7lyXEueiIiZ0k9jPRqtr9wWoaWgg3bcTMkYAUJSTxCJvAWbnin43hPbWmhZ8AUOWpwQyRzI6OwmHTdgaM8pqVtfPFFc2U5AWg61iFWRPYFpBGptqffgGjOt3NYwVjR6aPH6GZ8ZD1Xrc2WPISnKzpBJIHw6ln0c6RKVUlNAESymlQgLtVhNBZ8z+mwgOTo9ji8nGXtf/5lraEarBcqUX7rY+mBkaSbBydQSiOnQlNS0UsBPBQIbVdHN0dhLLgsOQgBcq+tfIiBsqmkmjEbe3DjJHEeO0W6/HX2D1+WutjXSIB2VTVQvTU1vA1woDihiTmwRAReJYa/S9gC+yAR6EjZXW0PJF8U3gbYYBoxiXm8zK7Q2QN82qweqnI1cqpcJLEyyllAoJhmqwnHH7r8FKinFSbs8lsWXr4QgrrKprakiTZmxdarAAMnKG0GRiMRVrIxTZodlS1cJQ2WEtdKnBWhEcYq3rZ/1iNlQ0Mdy23VrItJqijstL5v3GXGtd+fLIBHYIfIEgJdUtTImrtFZkjmRMdjIAa+wjwN8OFasiGOHB2VhhfQEzTEKjcGaOYmxuMpuqmvFkT4HWmn47cqVSKrx6lWCJyN0isk5EVojISyKS0mXbT0WkWETWi8gZvY5UKaX6WEeC5Y7df4IF0JxQQKK/Ftob+jqssPJ1mQOrqxEDE1lvBuHZ0X9ueMEa4GKo7MAgkDYUgJzkGJpiBtJqT+x3c3ttrGhmWkK1tZBhJVhjc5JZ1D7IWtePmglurWnFHzSMsO9KgJPjnOSlxrKgrcBa14+aCW6sbCY1zklSU7G1InMUY3OSMQY2ukZZ6/pZQq+U6hu9rcF6FxhrjBkPbAB+CiAiRcClwBjgTOAfImLv5bmUUqpPBTzWN9SOA/TBAiDdupk3Nf2rmaC9odR6kpK/2/rhWYlsCOZhq17Xr5o5ba5qYYx7J5IyCFzW/GUiQlFOMsW2wn6XYG2oaGJizE5wJUByHgBjcpJoJIGW+Px+lWAVV1rvp1z/NmvEyrg0wHo9H1XGQlw6lPefqQGKK5sYPiARqVoHCVkQl8a4PKtG7vPmAWB3wc7+83qUUn2nVwmWMeYdY4w/tLgQyAs9nw08bYzxGGO2AMXA9N6cSyml+logVIPVcaO+P3HZ/W8kQV8gSEJbqPnZnjVYWQmsN4Nweeuhuf/MT7S5upmRtvLO2p4Oo7OTWOIZhKlcAwF/N0dHF68/yJbqFobJdqs/WWiUx5EDE7HbhG0xw2FH/7mB31RlJVgpLVt2uz5jcpLZUtOKP2t8v0mwjDFsqGhmWFYCVK6FTKvGKisphowEN6t2tkHWmH7zepRSfSucfbCuBd4MPc8FSrtsKwut24uIXC8ii0VkcVVVVRjDUUqpg2O8rdYT5/4HuQDIGDyaoBEayvpPn6WdDe3kShX+LnNgdUiMcVITF+q31I8mtC2paiInUNbZ/6pDUXYSX/jzEX871GyMUHQHp6SmBX/QkOXZ2nkDDxDjtDN8QAKrAvnQsK3fDKW/qbKZ7CQ39poNkLnr+ozJsQa6qEoYZSUrfk+kQuyx6mYvDW0+hmVYIwh2vT5jcpJYvaMBsidA+Yp+VQOslOobB0ywROQ9EVm1j8fsLvv8HPADTx5sAMaYh4wxU40xUzMzMw98gFJK9RVvz2uwhmans91kEOhHQ7Vv75gDK2HXHFi7GRAaSbCifyRYtS1e4tp24jKezhEEO4zODk2eDNZNbz+woaKJRFqJba/oHOCiw5icZD5szLYW+kmzx+KqZqZk+Kx+invUYAGsk0Jrgt7K6P+SoqM2bkxCI/haYMDuCVZxZTO+AeOhvR7qt0UoSqVUtDhggmWMOdUYM3Yfj1cARORq4BzgMmM6v7bZDgzqUkxeaJ1SSkUt8bcQwGZNgnoA2ckxlEgu7ob+0wertLaVwVIJqfn73J6TO4gqk0ywn9RgbaluZqht9xEEOwzPSmCr5OIXF+zsLwlW864RBDP2TLCS+LS1YyTB6H89xhg2VTYzNT7UMqVLDVZWkpv0eBeftYVuE/pBs7qO/mRDOxrnZI7u3DYmJxl/0LDNHUry+8HrUUr1rd6OIngmcCtwnjGmtcumOcClIuIWkUJgOKBTnCuloprb10SrLWHftTt7EBGq4wpJb98KwcBhiK73ttW0MFgqcQ8Yts/twwcksD6Yh3dH/5gLa9M+hmjv4HbYKRyQTKmzoN8kWBsrmjgmMTSC4B41WGNzk6khGU/sgH7xenY2ttPiDVDkCF2fLgmJNQhJEguqE8Cd3C8Skk1VzcS57KS3hIZh73J9ikJNHpe2Z4PY+8XrUUr1rd72wboPSATeFZHlIvIggDFmNfAssAZ4C7jRGNM/7kCUUkctt7+JdnsPRhAMaU8Zgct4rQlg+4Gayh0kShv20AiIexqRlcgGMwhHzXoIBg9zdAdvS3ULw23lmJgUiM/Ya/voUD+s/tIvxhpBsALsbkgt2G3b6OxEAMpjhveLJoIdNT6DA1shJhkSB+62vSgniY2VLQQHjusXCUlxZTNDMxOQ6vWdIwh2yE+LI8HtYGWFx+qb1Q9ej1Kqb/V2FMFhxphBxpiJoccNXbb91hgz1Bgz0hjz5v7KUUqpaBAbaMbrSOzx/o6BVp+l9n4yd1SgY0j5tCH73D48NJKgI9AG9dE/ifLmqmaKXDuRjBH7rHUcnZ3IYk+e1S+moezwB3gQPP4AJTWtu0YQtO0+s0lijJPCjHjWmAJrkAVfW2QC7aGOBCutZbNVe7XH9SnKTsIbCFKXNMqabDjKR3rcXNXC0Mz43UYQ7GCzCaOzE1m9ozE00MXyfpHQK6X6TjhHEVRKqX4t1jTjdSb1eP+U/HEA1JdEf5MtAFdDifWkmwQrzuWgPiFUu9UPBh7YWNFMIdv3GuCiw+jsJNYEQ/3NorxZ3ZbqFgJBw0Dv1r2aB3Yoykni49ZcMIGoH+lxY2UzyTEOnLXrdxsQokPHQBebHMPA3w7V0TtYTIvHz/b6NoZlxlnJ7YDRe+0zJieZteWNBAeOh5YqaNoZgUiVUtFCEyyllMKagyjJtBBw9TzBKszJosxk4NsZ3Te7AE3tPjJ82wli22sOrK4cWaGbx8ro7ofV7gvQVLOD5EDdrtEP9zA6O4m1ZjAGifpmdRsqmonBQ1zr9r0GuOgwJieJ+U2hkQSjfKCL9TubmD4ggLTV7VXjA1CYEU+M08ZiT+j/YhQ3q9tSbY0uOi6uLjSC4N7/34qyk2j1BiiPC127KE/olVJ9SxMspZTC+pY6SVoIuHueYOWnx7HR5OGui95v3ztsq20lXypoj8sBh6vb/QbnDKTMZBCM8qHaN1e1MFJCw2EPHLvPfTIS3CQmJlPpGhT1CcmGnU0U2csQzD5rSADG5iRTagbgdyZE9Q28MYb1O5s4LqljBMG9Eyy7TRg1MIn5tcngiI3q17OhogmAEWaLtSJ7/F77dAx08YVvECBRnTAqpfqeJlhKKQXUt/lIohWJSenxMU67jcqYQlJbt0Z9H5JtNa0USAXBPQZP2NOIrATWBQfhK4/uGqyNlU2M6kiwssZ1u59Vi1UQ9TVYq3Y0cHJSaMS9nIn73MeaoFeoih8R1a+nrK6NZo+fcc7Q6+kmYRyTk8TqnS2YKB/oYtX2RmKcNrJa1oPNsc8arBFZiTjtwoqqAKQPjerXo5Tqe5pgKaUUUNfYSKx4ccSnHNRx3tQROPFB3Za+CSxMtlQ3ky8VuLoZor1Dx0iCzrpN4PcepugO3oaKJsbYtmESsyE+vdv9Rmcn8Xl7LjRsg9bawxhhzxljWFnWwHT3NohNg+RB+9wvPcFNdnIM66UQKlZH7fQA63ZaNT6F3g3WiHsJWfvcrygniaZ2P81pY6waxigduXLV9gaKspOwVay0auMc7r32cTlsDB+QyJryjoEuNMFS6mimCZZSSgGNdTUAuBPSDrDn7ty5VvO0tigfSXB72VZSpRlX1t7NtboampnARpOHzfihNnonUV5X3sR4ZymSte/mgR1GZyeyIhAa6KIiOq9ReUM7NS1ehgU2WTfn+5mHbUxOEp+15YGvFWqKD2OUPbe2vBERSK1fCblTun09RdlWs7oS5zDwNkXllxTBoGH1jgbG5iZbSeDAvZsHdijKSWLNjgbMwAnQUAotNYcxUqVUNNEESymlgLb6CgBiUwYc1HEZBVbztNot0duHBMBfHkouDpCQxDjtNCWFJu2N0pHqjDGs3FZFvinrtv9Vh6KuIwlGaT+sFWUNuPCR2rKp2+aBHcbkJDOvMboHulheWs/4DMFWsxFyJne736iBSdgElvs7rs/ywxPgQSipaaHFG2BquhdaKvfZ/6rDmJwkqpu91KeEmkTu1FospY5WmmAppRTgbbCGVY5Pzz2o40YMymJrcMCuBCYKtXkDJDeutxayxhxw/7icUfixQZQOdFFS00pm22Ycxg8Du+9/BdZodc2OVBqdGVE7kMKq7Q0U2UuxBX2QPXG/+47JSWJjMIegzRWVN/DGGL4oreestNAw5bndJ1ixLjtDMhP4qCEd7K6obFa3cnsDABNtodrc/VyfjqHnVwaiO6FXSvU9TbCUUgoINlo1WO7k7IM6Ljcllo1SQHxd9M4btb6iiSIpoT02C+IO3ARyZF4mm4PZ+HZE5w3ikq11zLCFft+Dj93vvg67jaKcJDbahkTtwBArtjdwelJowI79JCQAY3OT8eOgLmFoVL6e0to2alq8HOMKNffLmbTf/Yuyk1hR3mYNhBGFCdaybfXEOG3k1i8GR8x+r8/obGuS8hU1oakQovD1KKUOD02wlFIKsLVYCRYJB9dEUESoSRhBmqcMvC19EFnvrdnRyETZRDBnSo/2H5OTxEpTiNmxvG8DO0RLt9VxvHMdJm0IJOUccP/xucl83p6LqVoPvrbDEGHP+QNBlm2tY5ZjNaQW7neOMoDs5BhS45xssg+FHcvBmMMTaA99VFwNwMi2pdZoewdI6MfnJVPe0E5bxlgrIYmy17Nwcw1T89OwlyyAwTP2OcBFh8QYJwXpcazeoQNdKHW00wRLKaUAZ3s1HtzgTjzoY32ZRdgwmChtUrd5awkFtgpiC4/p0f5jcpJZGRyCq60SGsv7OLqDt6ykhmm29UjB8T3af3xeCst9+YgJQGV01TR+UVZPm6ed4W3LYcisA+4vIozNTeYzbwG010Pt5j6O8ODM31DFkCSILV8EQ0854P4TB6UAUOIcDm111uAQUaK+1cv6iiZOyhVr4u2CEw54TFFOkpVgDZxgDRLT3ngYIlVKRRtNsJRSCnC1V9HoSNvvCG7diR88EYCGkmVhjio8vJs/AUAG9SzBykx0sz12pLWwI7peU32rF6laTUKwqUc3vGDVkqw2oX4xUdYPa8HGaibaNuH0t8DQk3t0TFFOEm/X51kLZYv7MLqD4wsE+bi4miuyS5GAF4adesBjxuQkY7cJS7yhmrsoqvWZv7EaY+CUuI3WisITD3jM2NxkttW20pwWmisrCptxKqX6XtgSLBH5oYgYEckILYuI3CsixSKyQkT237BcKaUixBhDgreadnf38yntT17hKBpNLM1boysZAahq8jCkeQk+W4w1ZHYPOXLGE8AWdSO7zV1XyUkSSpJ6WIM1JDOBWudA2m3xUTfwwPwNVVyUvAGQHieMY3KSWRPII+CIg+3Rk2AtL62nyePnZMdKcMQesH8cWANdjMxKZG5dJog9qq7P3LUVpMe7KKyeBzHJB+xPBrtq5FYECqwVUZQwKqUOn7AkWCIyCDgd2NZl9VnA8NDjeuCBcJxLKaXCraHNR66pxJOw7wleD2RkdhLrzGBsVdHXRHDBhkpOtK2gPecYcLh6fNzwQQMpDuYSKFvah9EdvHfXVHC+8zNM3vQe9b8CsNuEMbmpbLQPjaoaue31bSzdVscZfAz5x/VoABKAsTlJBLFRk1QUVTVY76+txGkzDK6cC0NOAmdMj46bODiFz7e3YTJHRk1C7/EHmLuuktOGJ2Fb/wYUzQa784DHjc9LQQQWVTshYWBU/X9TSh0+4arBuge4FejaO3U28F9jWQikiMjBDc+llFKHQVlNIzlSDakFh3R8UoyTUmchqU0bo66T/vovPmWIbSfxEy44qOM6BroIbl8WNa+p2eNn6/rljGQLMvbCgzp2fG4yn3gKMTtXRM1AF69+sYOJsonUtm0w4dIeH1eQHk+8y84Gx0irCZqvvQ+j7JlA0PDysu3cMGgbtqYdB/V6Jual0NTupyltHGxfEhX/3z5YV0Vju58r09eCtxnGXtSj4xLcDkYMSGTZtnoYNA3KFvVtoEqpqNTrBEtEZgPbjTF71oPnAl17q5aF1u15/PUislhEFldVVfU2HKWUOmi1O7ZgF0NM5pBDLqM5ZRSxwRao3xrGyHqnqd1HeslrBLBjKzrvoI4dn5fMimAhzvZqaNzRRxEenDdWlHOGWYBBYMz5B3XsuLxkPvcPQ4L+qGi2ZYzhhSVlXJ/8mTX8d9HsHh9rswlFOUl84imEoC8q+vl8XFzNzsZ2vuZcALGpMPLLPT52QqhZXbF7NLTWRMXAHc8tLiUz0c2oytchIavHzVEBJg1O4YuyequWta4Emiv7LlClVFTqUYIlIu+JyKp9PGYDPwNuP9QAjDEPGWOmGmOmZmZmHmoxSil1yJrKrU7syTnDD7kMW2jCW9+OyN/sdnjtix2cwae05B4H8QfXv2xgUgylMaOshSho5mSM4bnPNnKlc641eELiwIM6fkJeCsuDw6yFss/7IMKDM299FZWVOznN9wGMPtfq43MQxuel8GpNqIlkFPTD+s/HWxgR10x2+Xsw7uL9Dme+p2EDEoh32fnEM9RaUfpZH0XZMyXVLcxdX8lNY33YNr4DU64Bm73Hx08clEJ9q4/ypNAk2KVai6XU0aZHCZYx5lRjzNg9H8BmoBD4QkRKgDxgqYgMBLYDXTs05IXWKaVUVPFUWAlWYi8SrLQhEwkaoX5z9PRZ2vDJy+TbKkmc9vWDPlZEiMmbEDUDXXy2pZbh5a+RahqQmd8/6OPz0+PwxWZQ48yOihveBz7cxPfi38MZaIXjbzno46fkp1LqT8EbNzDi/bDW7Gjkg/VV3D3wfcQE4djvHNTxdpswLi+Z96pSwJ0c8evz97nFuOw2Lva8BM44OOZbB3X8xMEpACxqHww2pzYTVOoo1KsmgsaYlcaYAcaYAmNMAVYzwMnGmJ3AHODK0GiCM4AGY0z0TaiilDrqxdRvoFXiIGmvVsw9Njwviy1mIL4d0TEK2vLSek6vfZoW9wCkh/1H9jQmfwAbgnn4SiObNBpjuO+dVXzH+SrB7MkH1Vyrg4hYTbcYHvGE5JPiajZuKeFyeRNGnQNZYw66jCn5qQBsTxgb8RqsP769jmHuesZXvAwTv35IfRknDEph9c5mgrlTIppgFVc289KyMn4w3kfs2udhytU9Hnykw/ABicS77Czd0WZNOFwa+RpTpdTh1ZfzYL2BVcNVDPwLOLivtJRS6jAwxpDRuoWa2MJDmgOrQ2FGPOvJJ7Y2Oiayfe21FznWvgbHzJsOavTAriYMSmFFcIjVRDCCAw+8vXonk0v/Sx6V2E771SFfp8mDU5nfWghNO6AhMg0qvP4gv3xlFf8X/yyuYBuc/PNDKicrKYbclFiWB4da/XxaqsMbaA/NXVfBvPWVPJL5NGKzw4k/PqRyJual4AsYKlImQuUaaG8Ib6A9YIzhly+vIt5t59rGf1jNNg/h9dhtYk1uXVoPg6bDjqXg94Y/YKVU1AprghWqyaoOPTfGmBuNMUONMeOMMZFvJK6UUnuoaGhnCKW0p47oVTlOu42quOGkerZDe2OYojs0H6wt5/zyv9HsHoD7mG8ccjnjc1NYaQpxemqhftuBD+gDtS1eHn7pbW50ziE4+nwYMuuQy5o8OJWlEe6Hdf8HxeTUfMrZgbnIsTdBVtEhlzUlP5V3GiI34XBDq4+fvriS61OXkl89H07+GaQMPqSyOprVfWGGA8YaTfAwe2pRKZ9uruHfo5fhLPsUTr3joGuvOkwcnMKaHY14c6aCvx0qoqdvplKq7/VlDZZSSkW9LZs3kCGNOHLG97osX0boZrkycrVYzR4/q178A2NtJbjPvgvcCYdcVnKck8qk0O8lAglJMGj45XOf83/+P2OPScT25T/0qrwJg5JZRz5+mzsir2f+hiqemfsZD8Q+AAOK4KTbelXelPxUPmjKw9icULowTFH2jD8Q5KanlpLavJnbfA/AoGPgmG8fcnnZybHkpsTybsMgQA57M8HVOxr49auruXJwDVM3/AVGnAmTrzzk8iYNSsEfNKxzhAaK0WaCSh1VNMFSSh3V6jZ8AsCA0TN7XVbsYCsZadm2vNdlHQpjDA899TzXex+nbtCXcI77Sq/LTMwfTysxmAiM7Pa399Zx7qZfMUq24bjwoYMeOXBPiTFOhmSlsskx7LAnWBsrmvj5Uwv4X+yfiLf74eL/giuuV2VOyU+lHTd1KWNg6ydhivTAjDHc8epqNmzcwPPJf8XujoevPgp2R6/KnVaQyoJSDyar6LAmWKW1rVz9n88ZH1vNHU2/RhIHwvkP9KrJ8KTBVh+5T6tirL6dER4ZUSl1eGmCpZQ6qtnKl+LFQfzgib0ua3DBCBpMHE1bIzOs+X/f+phLt/wUb0w6qV97uFc3iB3GDUpneWAIvpLDW0Py+CdbyJr/M860f4458y4YfmpYyp2cn8qn3kLMjuWHrV/MtppWrnt4PvdxF4XsQC55EjIOfcTKDqMGJhLrtLPGOQa2Lz0sEygbY/jzOxt4Y+EqXk+5m4RAI3z9GUjK6XXZUwrSqGzy0Jw52WryGAyGIeL9q2xs56p/LyLFV8H/Yv6ATQxc/tIhNw3skJnoZkhmPIu21Fr9sKJgagCl1OGjCZZS6qhljCGzYTXlMcMPat6e7ozOSWatyUcqVoUhuoPz2sJVzPz0OlLtHhKufq7XN4gdJgxKYakZjqNqDXhbw1LmgTy6YCOON27h6465BGbegsw49KZne5o8OJWF3mFIwHNYhp9fs6ORax94i7/7bmc8G5GLHoahJ4elbIfdxsRBKcxtG2ZNONzH/bACQcMvXl7Fy/M+5a3k35Hur7CSq9wpYSl/WoFV67POMRo8DVC1LizldmdrTQsXPvgJcY3FvB73G5zeBrjsOcgYFpbyjylMZ1FJLcG86dBQCg1lYSlXKRX9NMFSSh21yutaGGWKaRswISzlZSS42eooJKWp+LB8+95hzkfLGPLG1xlsq8J+2TNIdnheD8Do7CRWMAKb8ff5hMPBoOGPc5Yw8J1v8zXHB/iP/yH2U38V1nNMyU/l8+BIa6Hko7CWvadPiqu59Z8v8Ejg54yxlyKXPAFFs8N6jin5qbxYPQiDwLZPw1p2V+2+AN9/ehkrF33AWwl3kikNyOUvQkHvm9Z2GDEgkcQYBx+0hyYc3vpx2Mre06ebarjwgU8Y07aUl2N/g0sCcM0bYUsWAY4pTKOp3c+W+InWij76/+YPBFmytQ4TwZE+lVK70wRLKXXU2rRmCfHiIbbgmLCV2ZI6Grdpg7otYSuzO8Gg4bFX32fCOxczxF6B+drTuIaeENZzxDjttAyYZC30YT+S+lYvP//3HM5dfBWn2xcTPOP3OE69PSzNHLsqSI9DEjLZ6Srosxt4YwwPL9jMY//5B8/Iz8iLacd25Ssw6uywn2tKfir1wThaU0f12evZWtPCV+7/mJTV/+WlmDtJiItHrn07rMkVgM0mTM1P5Z0dsZA8GLbMD2v5YF2bf83fzBWPfMoNtld4gN/iSM6Bb7wDA8eF9VzTC61a5PmNWRCTAlsWhLV8gJpmDxc+8AkXPvAJ766pCHv5SqlDowmWUuqo1bTJShiyxxwXtjIdOdZNmnf7F2Erc1+a2n3c+9ADnL/4ctKdHuSqV3GPDE8/pT2NGlLIZpNNYFvfDDywbFsdv7vnHm4r/TZDXA3IZc9jO7Zvpk4UEWYMSecj/0jMtoUQ8Ie1/IY2H99/chH+t2/nn84/EzNwBPZvzYf8Y8N6ng6T81OxCWyIGWeNVBfwhbX8t1fv5Kt/f48b6//I/zn/g33oLPjWhzBgdFjP02FqQRrFlc20D5oJJQvCWhPc7PFz0/+Wcd8bn/N86j/4pvdxZMxX4JvvQVph2M7TIScllrzUWD7bUm9Njl0S3gRrwcYqzvzbAnZs38aptiV8sK4yrOUrpQ6dJlhKqaOWq2IZzRKPK7N3c2B1lTlkEn5jo35L3zWn21zZyNN/uYXvlv8Mf2Ie8Td+iLtgep+d75jCNJYGhxPc9llYb3iNMTz64RrW/Oub/NH3O1zp+bi/Mx8J04AW3TluaAbz2kcg3mYoD18ivLiklm/f8z+u33A9NzhexUy5Bvs33oaUQWE7x56SY52Mz0vhvZah4GuxBrsIg2aPn9ueX8E/n3iKl2238WU+gpN/AV9/Nmz9+/blhOEZAKx0joe2OghTf8bFJbWc9bf5tKx+i0+SfsaEts/gzD/AhQ+DKz4s59iXjn5YpuB4qN8alvnkvP4gv39jLVc8sogzHUv53P1tHnb9mcYN4a/xU0odGk2wlFJHpWDQkNOylp0JRWAL30fhqEGZbDbZ+LavCFuZXc1fsory+8/hOu/j1BWcTfr35iF98O17V9ML0/g0WGRNOFy5OixlVja1c+e/nuL49y/kMvt7eKbdSNx35vVJTcKeZg5LZ2EwNGfZ5rm9Lq/dF+D3b6zh1X/9mv94f8TIuEa49H/IuX8FZ0yvyz+QE4Zn8FT1EIzYYeM7vS7v85Jazvvr++Qvv5vn3XeSnehErn4NTvpxWN8r+zI2J5mMBDev1If6YW35sFfl+QJB/vT2eq7+5wf80Psgj7r+QHxyJnLdBzDjhrA3Qd3TMYVp1LZ42ZI01VpR/H6vyttU1cxFD37CU/NX8mL24/ym7beQZv2uZra8T0l1S29DVkqFgSZYSqmj0padVYxgK76Bk8Jabn5aHBukgIS68E423O4L8Ph/H6JozllMkXXUnfIHMq5+ok+/fe+QEudiZ0aoidum3ickb6zYzpN/+SE/3X4T2bE+zBUv4z77d2EZybEnBqfF4U4ZSIl7JKx/q1dlrSxr4Jp7X2HGpzfwa+ej2IeciPPGhX3S36o7M4dlUBuMpy59Mmx8+5DL8fgD/P7Ntdz+0DM81H4r33HMwTbpMuTbH1tN3A4Dm004eWQmc7aAGTAG1r1xyGWt29nIBf/4mE/mvcG8xF8y2/8OHPdduH4eZPd+YvGeOGlkJgBv7kyBlHxYf2ivJxA0PDR/E2f9bQHZNQv5LPWXTK5/B068Fb6zkJYR53O6fTHvrNoexuiVUodKEyyl1FFp2+qFOCRI8rAZYS3XZhMqk8aS7KuAxh1hKXNdWRVv3H01V2z+MYG4TOT6D0g9se+/fe9qxLDhbDCDCPbiG/iGVh+/+e9rpD//FW4xT+Adejrx31+EhGnY8p4SEWYOS+dVz0TYvhiaDn5wAF8gyD3vrOeJB3/LQ003cqJrPXz5TziueB4Ss8If9H5MHpxKnMvOQsdU2LkSGg7+JnvNjkYu+Pt85KO/8qr7lwyJa4WvPQ2z74OYpD6IununjBpAY7uf7dmnWiMjNh9c3yJfIMi972/kwr9/wIW1j/CC+04y4uzI1a/D6f93WGoVO2QlxTAhL5l311bCqHNg84fgaTqoMoorrVqre95Yzj/TnuKf5jfExifBN96FU34ODhfx42eTIY0UL+39FyBKqd7rdYIlIt8VkXUislpE/thl/U9FpFhE1ovIGb09j1JKhVPbFmvAhoGjwjfARQdvzjQAAiW9GzY7GDS88PZcgv86la9451A24kqyfvAJ7pwx4QjzoBw/LIMPA+MwWz89pPmwPlxfwb/+/BN+uOlaJjrL8J93PwlXPNWn/Xn254wxA3nDM9FaOMhan/U7m7ju7y8zacF1/MHxT2LzJmD/zicw/brDmvR2cDlsnF6Uxb92hiYvPohaEo8/wJ/eXs+P7v8fdzf8kJ84n8Yx6ixs31kII8/qo4j37/jhGTjtwlvBaYCBda/3+Ng1Oxo5//6P+eC913kv/nauMS8hky6DGz4O+6iHPXVaURbLS+upG3wqBDw9biYYCBr++eEmvnzvAtKqFvF5+h3MapwDM26Eb82HvC5Dyg87lYA4GVY7n81VzX30SpRSPeXozcEicjIwG5hgjPGIyIDQ+iLgUmAMkAO8JyIjjDGB3gZ8tDHG0NzupaGmgqb6aloaa2hvqiPQ2gCeRoynmUDAR9DvR0wAuwmAgF9cGEcMdlccdncctvh0HIkDSEofyICBuWSkJGOzHf4bAaWiRUL1F1TbM8lIzg572Tkjp9G6zk3r+gVkjL/wkMqobGjjzUd/y8W1/8Rvj6Vx9hPkTTg3zJH23PHDM3jGPpnrgm/ApvdhdM9iafH4eeCl95m5+g5+ZF9D06BZxH31H5Cc28cR79/xwzO42TWEWudA0la9CJOvPOAxXn+Qf84rpnzev7jP8QQxLgOn341j2jf7vG/SgZw/KZerl2+nacAIElc8YyV7B7B0Wx0/f24JZ9Q9yRznHGxxKfDl/8CYCyKSKHZIjHEyrSCNJza18o20IcjqF2HqNfs9xusPcv8Hxfz7g1X8xP0CX3e/jsTkwEXPwYjTD1Pk+3bGmIH86Z0NvFiVxzfiM2HlczDm/P0eU1zZzI+e+4JNpTt4OPMlTmx6HVwF8NXX9t1cMyYJf/6JnLHlc15ctp1bTh/ZJ69FKdUzvUqwgG8DdxljPADGmI56/NnA06H1W0SkGJgO9N0siP1Uu8dLeekmass24qnahGnYjrRU4GqrJMFbTUqglnQaSJTw5qY1JokK+0Dq3Lm0JQzCnj6EpNyRDCwcS3Z2Hja7th5VRy6PP0CBZx3V6ePI6IPypwzJ4ovgUIZvW3hIx7/32XJi3/weV/EF2zOOI+eqR5CknDBHeXDcDjtJo0+mdt29pKx4DlsPEqwP11ew6Lk/8x3fozicdnxn/Y3EqVdF9Oa9g9th58yx2fxv5fHctPl5qN0MaUO63X/ptjruffYdrm34O991rMSXdxyOr/zjsAzK0RPHD8sgIyGGNx2ncHHZg9ak0Dn77l/Y5g3w53fW8/kn7/F398MMc2yFcRfDmXdBfPphjnzfvjo1j1ue+YKtx5xPwRd/gcp1MGDUPvf9orSe215YQVrlp8yL/w/pvnKY9k340q8Oe/PGfRmelcikwSn8b/EOrp3wdeTT+6C+dJ+jS3r8AR76cDN//6CYLzuX8lTKo8Q0V1t9x2b9DFxx3Z7HPfEi8kveZ/2it/F/aTgO/TuuVMT0NsEaAZwgIr8F2oEfGWM+B3KBrncWZaF1exGR64HrAQYPHtzLcKKTzx+grGQjNSUr8JavxV63idiWUtI8OxhgqiiUAF3/RNeRRIMjndaYDHbGjqQ8fgAkZuFMyCAmMYXYxDRiE9OISUjFHZ+E3eEEm8N6iN0qxN8O/nZ8nlZam5tob6ykvb6S1rpy2ut3QkMZsS2lDGtfQ0bbh9irgrDOOrTexFPuyKMpvoBA+jBiskaSUTCG7MIiHO7uP9yV6i82btrEWKlkXe6UA+98CHJTYnnXVcT0phfB0wzuhB4d19Dm4+XH72X29j8TI34qT/wduSd/JyoSEoCzJgzipVUzuWbd61b/sm6SvvpWLw89/wYnFf+eH9vW0ZB7PPEXP9inw5Ufim+cUMiVS07mhtg5OBb8GWbfv9c+zR4/f31zBQmL/84/Ha9id7vg9D/hnPqNiNdadeWw27hkWh6/mTeVCxOTsM+7C77+zG77GGN4e/VO7n99IV9r+i8/c30ACQPh3GdhRHS15P/yuGx++/o6flM+nYed8ci838HF/91tn5pmD3e/vZ4Fi5dxe8wznOH6GBKHwnlvRKw5YHeuPq6A7z+9nPcSz+M02wPw4V17/X/7aGM1t7+yimBNMc+nvcD4lk8geSyc9zT05LOq6Hx8r9/Kme1v8t7ar3Lm2PDXziuleuaACZaIvAcM3Memn4eOTwNmANOAZ0Wk+68A98EY8xDwEMDUqVPNwRwbjaordrB9zae0bF2KvWY9Ka1byPOXUiieziSqnkSqHNlUJRVRnpSPM6OAhOxhpGQPIzV7CKlOF6m9DcQVB644nHFpJKdCMvuZFDLgo2nnZnZuWUXT9rWY6mJiG7dQ2Pg5mY1vwxZgIQSNUG4bQG1sPt7kQhwDRpAyaAwDhozBnTooam4C+5IxBl/AEAga/H4vAW87AZ+HoK+dgN9HMBAgEAwQDPgJBIME/AECwSAmGEBMEGOCCEFMMIiYIBgDdGwj9DsUDAJi/TR0/F6tddavWRARDDbEBoKA2BCx1oMtVJRVHjZBsLYT2qfrc/axTcQ6Bpt0nk9sYp2rS3m7jttVBhBatoWOscrZVbatyzk6XhOImM7lUOTs+l9l6PoBYbrMx2S6/tuxkzFdjjC71gO1X1h9VDLG9V3Tofa8mdi3Po9v41ycY8874P4LV2+i8YXvc1VwAeVJY4m/4lEGDBjeZ/EdipNGZPJQwmyubn+b4Id3Yzv3nt22B4KGlxdtoOnt33FL8FX8znh8Z/yV5GlXR+Xnw6iBSYwfPYonNp/GVcueRMZeBKEBN7z+IE8v3MyG9x/juuDT5Dsq8Y0+H8dZv+82sYy0604YwhMLt/G440Ku3vAfWPo4TL4CCNXAvb6YorJn+Z/zdeKdHmzHfAdm3QYxyRGOfG9uh50fnDaCn720kuVFVzJpzQOw/CmY+DWaPX6eXLiVZz74nIsDr/Ob2Ldx2ASOuxVO+AE4YyMd/l7OGZ/Dgx9u5qfv13PsxGtJWPIgjDgTRp/LyrIG7nlvA+vXreaWhHf5Suzb2HxuqwbuuO+C3dmzk7jisE+8lC9//h++M3+5JlgHEgzi8zTT2tyIt7UZb1szvrYm/O3N+D0tBNqbCXrbrL/1Pi9Bv5eA34sJ+JCgDwn6kaAPW9CPMdbfI2MMQSMYQn+7ZNffM8TW+TNos2PEgRE7xuYgaHOAOBC7A2NzIB1fmtudiM1abz23I3YXNrsDsdsRmxOxO7Db7Yjdgc3uxGa3Y7M7sYee2x0d+ziwORw47C7EYcNhd2F3OHHY7djtNuw2wWHruCdQvSXGHHpOIyJvAX8wxnwQWt6ElWx9E8AY8/vQ+reBO4wx+20iOHXqVLN48eJDjudwa2qoZfOyD2jZvIiY6lVkt64jm+rO7ZWSTpW7gLaUodizRpOUN5YBQ8eRmNZ/PvRaGuvYsXkVtdvW4KvYgLN+E6ltW8kNbCdePJ37teGmwplHXWw+/rgB2OPTsSVk4EhIx5WUSWxSOvHxibhj43G643HGxCKO2J59AxwMQtBH0OfB6/PibW/H62vH5/Hg9Xrwe9vxhRKdgLcdv7edYCjpCfo9BH0ejN96WDV7XiToBb8HW9CLBLzYAl5sxost4MNuvDiCXhzGi8P4cBgfTnw4jQ8XPlz4ceHDLv3++4CjWh1JpN6+tc9qId5fVcaU56bjKTyVrKv/2+1+zR4/rzzzMKds+gOZ0kDV5JvJPvtnYO9tA4O+8cry7dQ8/wOucbwNF/0HGXsBXn+QD1dupuSd+zm/9QUypYG6EReTOvv3EN8XjTDDZ2dDOxf+7V0eD/6EwfYathV9i5WtadRs+YIv+ReQb6ukLXUUsef+AYbMinS4B/TWqp1898nPeCb+L0z2L2dN5pdZ3pJKQtNmTrEvJ4E2gsNOw3b6/3Xb5C5aBIKG6/+7mPnrd/Bm6j0MbV3O8qSTWdKYREFgK7PsK7ETQMZ+BU69A1KiuxXMhoomLrj/Y9JcAZ6N+S1ZzWuZ7zqRda0JjHeUMoOV1pdOE78Gp9x+aKNRVm3A3D+dB/3nMOUb9zK9MDKDyBxWxuBra6S+cjtN1WW01ZXT3lSDr7kW2uqwexpwehtw+RqJDTQSF2giwTQRT3uvTus1DnzY8eMgiM36DrTL14BdvxwU6wcGsBPETgA7AVxh7v5xqPzGRgA7wVDUhr2TLLPHNtPN+j337/iddP3KuOP53ts7lnffT4BHA2cw4OJ7OGd8dH3BJSJLjDFT91rfywTrBiDHGHO7iIwA3gcGA0XA/7D6XeWE1g8/0CAX0Z5g1VfvZNPid/FuXkB6zVKG+DfhEOtbi1JbLlUJI/FlTSCpcCqDimaQkBLdNxa90e71s23rJqq3rqZ1x1pstZtIaS1hgG87KcF6EqRnH1xe48DInm/KXU/sBHGG+QMoYASvuPDixI8Tnzjxhx4Bm5OAzUVAXARtLgJ2F8bmwtjdGIcLbC6Mw42xu7o83GB3gc2J2O3YxG79tNkQW8dPGwYbVnWTDSO7P5fODyaz68PFhJaNQcR0fjhjgljvW9P5E2NC6+msuZGO7R0PgqEyrGVjgh0FggnScQJDsPMY6+OhY3nXc8Puy4Ti6gyyy/l2rTf7/Nn5MdtRDF2KDD2k6wf3bv9d9lzf8YEe+sDf62/ErhVJw45lzMxz9vM/pXfafQFe+b+LucA2H9eP1+9ztLyPlq3E8+qtfCn4CRUxQ0j+2sPE5PdNs8VwMcbwk2cWcfGaG5li28hm92iaPAFGmS24xUdV5rFknHsHMji8w9/3pTU7GvnNU3O5vv4vnGz/AoAgNhqyppMy6yZk5NlR1RzwQN5ZvZM/vb6cSxof5WL7PBKljVZXBs7RZ+Kc8a3DNgdUOLT7Atz15jpe+byYG81TfMXxEUm0EUjKwz36LDjm+v32nYs2a3Y0cvsrq1i/bTs/cjzLbMdnJNIC6cOwjzrL6juWnNerc/if+wa+1a9yQ/q/+feNZ2PvxwNaBX0easu3UFe+mdaqEny126BxJ862KmK9NST6a0kxdcTi3efxXuOgURJotiXSYkvC40jE40zG70oCdyI2VzzijkdcCYg7Drs7Abs7HntMAs7YBJzueGLcblzuGNxuNzFuN26326phCkdNT8ff7oCPYMBHwO8n4PcR8Hs6n5uAL9RCxh/66cP4fQQCfmtbMAABP8GOR9APgUDop49gMIAJ+CHox4Sem6A/9OW1H4I+q1VN0IcxJlQLZ0K3AaGWIqG/ybsSyN1/7mpns8d6Y0L3eLta43S00Ok8SmzsKsRGlyYt0GXf8sTxFJ10ESMHJvb+9x5GfZVguYB/AxMBL1YfrLmhbT8HrgX8wM3GmDcPVF60JVjBQIDNqz6laumrpG7/kBG+ddjE0G6cbHaPpnHAVBJHnEjBhJOITz4KviXqoWDQUNvYRHN9JW31lbQ3VOFrrsXT3oLxtiP+NvC3I/52JOAhGLTezJ3NwkLvLRsQFEeo+tyFOJyIw4XN4cbmcFkPpwu7IwaH04ndFYPdFYvTFYPD5cbpisXpjsHpisHpjsXtjsHhio3amgF15PnX869x3arLqBt/Half+VPn+s3lVSx9/m5Or36cGPFRNflmcr98KzhcEYy254JBw5MfrcP+2T8Y3/45TlcMsYMmkHPCFTgG7fV3pl8IBg3FVc2015ZRGB8gMSsf3NH1h/xg1TR7iHEI8U7peTOzKOUPBPEGgsQ67UdEEyaPP4DTZuub0XyriwneP50X/TNpO/s+rpiRH/5zhIkxhrqqcqq2rKR1x2qC1cXYG7cT176TNF8FaaYe2x6tRepMInX2NJodqbS5MvDFZmLiM7ElZuFKySY+LYuktIGkpg8gLi4B6Udfjqj+p08SrHCLtgRr4eO3M2PT3wDY4BhBbfZJpIw7nSHjT8AVE31tvJVS0aWm2cMHf7qMi3iXTSO/RW3yKOo2fs7E2jcYIPVsTT2O7K/diyvK+loppfo38/5vkAV/4iZu5dbv3sLg9MgOUNXu9bOtZAPVW1bSXr4GZ20xqa1byPFtI012TbzsMU4qbBnUOwfSGpuNPzEXW0oeMRn5JGYNITO3kOTExCMiyVZHBk2wDkFZ8SrKV82jcMZsMgZG1+hXSqn+4YuSCsof+wZnmgUA+LGxJXkGmWfeRsroWZENTil1ZPJ78D54Mp7qzfwg7nf84cbLSYvv+xrytrZ2SotXUbt1Jd6KdbhqN5LSVsKgQNlu/bYbSKTCPZimhCH400bgzh5FyuCxDBw8nBhX/65tVUcXTbCUUipCPP4Aa9asJllayC0ciTtBmxQrpfpYQxmef55Ka0sTv4v9MddedS2js8MzL1hLUwPbi1dQv20Vvoq1xNRvIr1tC7nBnbv1m66UDGpiC2hPHoojazQp+WPIGjIBV9KAqBxZVKmDpQmWUkoppdTRpHYzrf+9lLj69bwcOJ6SEd/ghBNnMXlw6gGb2ZlggJodW6goWU3Tjg2Y6o3EN25iQPtWBlLVuZ/f2Ci3Z1MbW4A3dTiugaNIyx/LwKHjccZF3xQASoWTJlhKKaWUUkcbTzNt79+F4/N/4jReykwGa2UY7fGDkPg03A47YvzYfM3EemuJ8dSQ7K0gJ1hOjPg6i2kzLnY4BlEXX4gvdRgx2aNJLxxPTmERDldMBF+gUpGjCZZSSiml1NGqtZb2L56nauVc4qq/INFbhYtdCZQPB/WSTJM9lRb3AFoT8wmmDiEhZyQDCscwIKcQsdkj+AKUij6aYCmllFJKKYsx4GsFBGx2az5H7Rel1EHpLsHSCYGUUkoppY42IuCKj3QUSh2RdPY1pZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMImqQS5EpArYGuk49pABVEc6CHXY6PU+eui1PnrotT666PU+eui1PrpE4/XON8Zk7rkyqhKsaCQii/c1Oog6Mun1PnrotT566LU+uuj1PnrotT669KfrrU0ElVJKKaWUUipMNMFSSimllFJKqTDRBOvAHop0AOqw0ut99NBrffTQa3100et99NBrfXTpN9db+2AppZRSSimlVJhoDZZSSimllFJKhYkmWEoppZRSSikVJppg7YeInCki60WkWER+Eul4VPiIyCAR+UBE1ojIahH5fmh9moi8KyIbQz9TIx2rCg8RsYvIMhF5LbRcKCKfhd7fz4iIK9IxqvAQkRQReV5E1onIWhE5Vt/bRyYRuSX0Gb5KRJ4SkRh9bx85ROTfIlIpIqu6rNvne1ks94au+woRmRy5yNXB6uZa3x36HF8hIi+JSEqXbT8NXev1InJGRILeD02wuiEiduB+4CygCPiaiBRFNioVRn7gh8aYImAGcGPo+v4EeN8YMxx4P7SsjgzfB9Z2Wf4DcI8xZhhQB3wjIlGpvvA34C1jzChgAtZ11/f2EUZEcoHvAVONMWMBO3Ap+t4+kjwKnLnHuu7ey2cBw0OP64EHDlOMKjweZe9r/S4w1hgzHtgA/BQgdL92KTAmdMw/QvftUUMTrO5NB4qNMZuNMV7gaWB2hGNSYWKMKTfGLA09b8K6AcvFusaPhXZ7DDg/IgGqsBKRPOBs4OHQsgCnAM+HdtFrfYQQkWTgROARAGOM1xhTj763j1QOIFZEHEAcUI6+t48Yxpj5QO0eq7t7L88G/mssC4EUEck+LIGqXtvXtTbGvGOM8YcWFwJ5oeezgaeNMR5jzBagGOu+PWpogtW9XKC0y3JZaJ06wohIATAJ+AzIMsaUhzbtBLIiFZcKq78CtwLB0HI6UN/lg1vf30eOQqAK+E+oSejDIhKPvrePOMaY7cCfgG1YiVUDsAR9bx/punsv633bke1a4M3Q86i/1ppgqaOaiCQALwA3G2Mau24z1hwGOo9BPyci5wCVxpglkY5FHRYOYDLwgDFmEtDCHs0B9b19ZAj1vZmNlVTnAPHs3cRIHcH0vXx0EJGfY3XteDLSsfSUJljd2w4M6rKcF1qnjhAi4sRKrp40xrwYWl3R0aQg9LMyUvGpsJkJnCciJVhNfU/B6qOTEmpWBPr+PpKUAWXGmM9Cy89jJVz63j7ynApsMcZUGWN8wItY73d9bx/Zunsv633bEUhErgbOAS4zuybvjfprrQlW9z4HhodGI3JhdaabE+GYVJiE+uA8Aqw1xvyly6Y5wFWh51cBrxzu2FR4GWN+aozJM8YUYL2P5xpjLgM+AC4K7abX+ghhjNkJlIrIyNCqLwFr0Pf2kWgbMENE4kKf6R3XWt/bR7bu3stzgCtDownOABq6NCVU/ZCInInVvP88Y0xrl01zgEtFxC0ihVgDmyyKRIzdkV3JoNqTiHwZq++GHfi3Mea3kY1IhYuIHA8sAFayq1/Oz7D6YT0LDAa2AhcbY/bsYKv6KRGZBfzIGHOOiAzBqtFKA5YBlxtjPBEMT4WJiEzEGtDEBWwGrsH6QlHf20cYEfk1cAlW86FlwDex+mLoe/sIICJPAbOADKAC+BXwMvt4L4eS7Puwmom2AtcYYxZHIGx1CLq51j8F3EBNaLeFxpgbQvv/HKtflh+rm8ebe5YZSZpgKaWUUkoppVSYaBNBpZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMPl//nf3YE6uGp8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
18False60.05370.0124bAP.soma.v0.006791.79e-07
19False60.05370.0124Step1.soma.v0.08472.21e-07
20False60.05370.0124Step3.soma.v0.07875.89e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "18 False 6 0.0537 0.0124 bAP.soma.v \n", + "19 False 6 0.0537 0.0124 Step1.soma.v \n", + "20 False 6 0.0537 0.0124 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "18 0.00679 1.79e-07 \n", + "19 0.0847 2.21e-07 \n", + "20 0.0787 5.89e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADwAUlEQVR4nOzdd3gc1dX48e/ZXUmr3rtkS+5V2GCDiW16KAngEIohQCghvJCEAIEQkhDi8IaEH+ENCZDEISFAKMb03osB020jN9xt2ZItW71rV9rd+/tjVkJdsrXSqpzP8+jx7sydO2dntPKevXfOiDEGpZRSSimllFL9Zwt2AEoppZRSSik1UmiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoNMSKSIyJGRBzBjkWNDiKyUUSOC3YcSik1EmiCpZRSatgTkaUiUuf/aRKR5jbPXwt2fEOdMWa6MWZFoPsVkZNEZI2I1ItIkYicF+h9KKXUUCN6o2GllAosEXEYYzz92D4H2AWE9Kef0UpElgATjDEXdbGuX+dmMA2nWLsiItOAFcAlwFtALBBnjNkRzLiUUmqg6QiWUkoFgIgUiMgvRGQdUC8iDhGZJyIfi0iViKxtOwVLRFaIyB9F5HMRqRGRF0QkoZu+LxORTSJSKyI7ReR/OqxfJCL5/n52iMip/uWxIvKAiBSLyF4R+b2I2Ht5HeNF5F0RKReRMhF5TETi2qyrEJHD/c8zRKS05XWJyJn+qWZV/tc3tcPxuVFE1olItYgsFxHnwR/pg9fNuTEiMqFNm4dE5Pdtnp/uP6ZV/nOY18d9HecfqfmV//gViMiFbdZ/W0S+9J+rQn8y2LKuZWroD0RkD/Cuf/lTIrLff9w+EJHpHeL+u4i85h+t+0hE0kTkLyJSKSKbRWR2H4/RSX15jQfhFuCfxpjXjDEeY0y5JldKqdFAEyyllAqcC4BvA3FAKvAK8HsgAbgReEZEktu0/z5wOZAOeIB7uum3BDgdiAEuA+5uk+QcCfwX+Ll/v8cABf7tHvL3OwGYDZwMXNHLaxDgj0AGMBXIBpYA+D8c/wJ4VEQigAeBh40xK0RkErAMuA5IBl4FXhKR0DZ9nwecCuQCecClXQYgssCf2HT3s6CX19CV1nPT26iQPyH5D/A/QCLwT+BFEQnr477SgCQgE2v05n4RmexfV4913uP88VwtIt/psP2xWMf+FP/z14CJQAqwBnisQ/vzsJKZJMANfOJvlwQ8Dfy5j3F3SURu7ul89LDpPP/26/1J/qPdfYmglFIjiSZYSikVOPcYYwqNMY3ARcCrxphXjTE+Y8xbwCrgW23aP2KM2WCMqQd+A5zX1QiTMeYVY8wOY3kfeBNY6F/9A+A/xpi3/PvZa4zZLCKp/n1dZ4ypN8aUAHcD5/f0Aowx2/19uY0xpVgfzo9ts/5fwHbgM6zE8Nf+VYuBV/zbNgN3AeHANzocn33GmArgJWBWNzGsNMbE9fCzsqfX0I2256Y3V2KNvHxmjPEaYx7GSlzmHcT+fuM/hu9jJdrnARhjVhhj1vvP1TqspPTYDtsu8Z+zRv82/zHG1Bpj3FjJ7mEiEtum/XPGmNXGGBfwHOAyxvzXGOMFlmMl14fMGHNHT+ejh02zgIuBs7ESxHDg3v7EopRSw4EmWEopFTiFbR6PBc7t8E3/AqykpKv2u4EQrFGHdkTkNBH51D89rworcWpplw10Ne1qrL+/4jb7/yfWKEi3RCRVRJ7wTymsAR7tIqZ/ATOAe/0f+sEa8drd0sAY4/O/vsw22+1v87gBiOoplgAr7L1Jq7HADR3OXTbWa+yLSn/S3GJ3y7YicpSIvOefWlkNXEXn49saq4jYReQOsaZ+1vD16GTbbQ60edzYxfPBPM5tNQIPGmO2GmPqgD/Q/gsGpZQakTTBUkqpwGlbNagQa4Sq7bf9kcaYO9q0yW7zeAzQDJS17dA/Le0ZrBGhVP+IwatYU/la9jO+i1gKsUZdktrsP8YYM72Ltm39wf86ZhpjYrBG4lr2hYhEAX8BHgCWtJnytQ8rMWlpJ/7Xt7eX/XUiIgvl6wqAXf0s7L2XTjpWdGoAIto8T2vzuBC4vcO5izDGLOvjvuJFJLLN8zFYxwfgceBFINsYEwsspc3x7SLW7wGLgJOwikTk+Jd33GbA+K8n6/Z89LDpOtq/Fq2qpZQaFTTBUkqpgfEocIaInOIfhXD6CyBktWlzkYhM81/PdBvwtH9aV1uhQBhQCnhE5DSsa6laPABcJiIniohNRDJFZIoxphhrKuH/iUiMf914Eek4Ha2jaKAOqBaRTKxru9r6K7DKGHMF1tS3pf7lTwLf9scRAtyAleB93NuB6sgY86ExJqqHnw8Pts8u5APf85+bU2k/Te9fwFX+0SYRkUixilNEQ2thiYd66f93IhLqTwZPB57yL48GKowxLv/1c9/rpZ9orONYjpUQ/uEgXmNAGGP+0NP56GHTB7F+N8f5f8dvBl4enKiVUip4NMFSSqkBYIwpxBp5+BVWclSIlay0/bv7CFYhiv2AE/hpF/3U+pc/CVRifSB/sc36z/EXvgCqgff5eiTp+1gJ2lf+bZ+m/RTFrvwOONzf1yvAsy0rRGQRVpGKq/2LfgYcLiIXGmO2YI123Ys1CncGcIYxpqmX/QXLtVgxVgEXAs+3rDDGrAJ+CNyHddy2074gRzbwUQ997/dvtw+rIMVVxpjN/nU/Am4TkVrgVqzz2pP/Yk0x3It1Hj/t7YUNFcaY/2DF/xnWa3DTxe+4UkqNNHofLKWUCgIRWQE8aoz5d7BjUX3nr4q4FsjzF/PouP44rPOa1XGdUkqp0cER7ACUUkqp4cI/Ije114ZKKaVGLZ0iqJRSo4yILO2mYMHS3rdWw5GIjOmhUMWYYMenlFIjiU4RVEoppZRSSqkA0REspZRSSimllAqQIXUNVlJSksnJyQl2GEoppZRSSinVo9WrV5cZY5I7Lh9SCVZOTg6rVq0KdhhKKaWUUkop1SMR2d3Vcp0iqJRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSBD6hqsrjQ3N1NUVITL5Qp2KGoIcDqdZGVlERISEuxQ1AjmavZy9aOrmT8hiSsWjgt2OEoppZQaRoZ8glVUVER0dDQ5OTmISLDDUUFkjKG8vJyioiJyc3ODHY4awd7asJdrd11F5C4X1TNXEhuXEOyQlFJKKTVMDPkpgi6Xi8TERE2uFCJCYmKijmaqAVe0bS2zbDuYaNvL7k+eCXY4SimllBpGhnyCBWhypVrp74IaDPYD61ofO7a+GsRIlFJKKTXcDIsESymlBlNizSbc4mRl6AJSajYEOxyllFJKDSOaYPWBiHDDDTe0Pr/rrrtYsmRJ8AJq47jjjuvx5szf+c53mDdvXrtlS5YsITMzk1mzZjFjxgxefPHFgQ5TqWEloXk/VWEZVCfkkeQtwdSXBTskpZRSSg0TmmD1QVhYGM8++yxlZYH9kGWMwefzBbTPtqqqqli9ejXV1dXs3Lmz3brrr7+e/Px8nnrqKS6//PIBjUOp4cTrM0T5anCHJWDLnA1A9c4vghyVUkoppYYLTbD6wOFwcOWVV3L33Xd3WldaWsrZZ5/N3LlzmTt3Lh999BFgjRLdddddre1mzJhBQUEBBQUFTJ48me9///vMmDGDwsJCfv7znzNjxgxmzpzJ8uXLAVixYgXHHXcc55xzDlOmTOHCCy/EGNNlfI888kjraNTnn3/euvzZZ5/ljDPO4Pzzz+eJJ57octupU6ficDjaJY8333wz06ZNIy8vjxtvvBGAgoICTjjhBPLy8jjxxBPZs2cPAJdeeilXX3018+bNY9y4caxYsYLLL7+cqVOncumll7b2efXVVzNnzhymT5/Ob3/7205xVFdXM3bs2NZEr76+nuzsbJqbm7uMW6mBUt3YTDy1eJ3xJI47DIDygvVBjkoppZRSw8WQL9Pe1u9e2shX+2oC2ue0jBh+e8b0Xtv9+Mc/Ji8vj5tuuqnd8muvvZbrr7+eBQsWsGfPHk455RQ2bdrUY1/btm3j4YcfZt68eTzzzDPk5+ezdu1aysrKmDt3LscccwwAX375JRs3biQjI4P58+fz0UcfsWDBgk79NTQ0kJ+fzwcffMDll1/Ohg3WNSPLli3j1ltvJTU1lbPPPptf/epXnbb97LPPsNlsJCcnA1BeXs5zzz3H5s2bERGqqqoAuOaaa7jkkku45JJL+M9//sNPf/pTnn/+eQAqKyv55JNPePHFFznzzDP56KOP+Pe//83cuXPJz89n1qxZ3H777SQkJOD1ejnxxBNZt24deXl5rXHExsYya9Ys3n//fY4//nhefvllTjnlFL3flRp0FfVNxEstNeEJjB8zlioTSdP+rcEOSymllFLDRL9HsEQkW0TeE5GvRGSjiFzrX75ERPaKSL7/51v9Dzd4YmJi+P73v88999zTbvnbb7/NT37yE2bNmsWZZ55JTU0NdXV1PfY1duzY1uuiVq5cyQUXXIDdbic1NZVjjz2WL76wpiMdeeSRZGVlYbPZmDVrFgUFBV32d8EFFwBwzDHHUFNTQ1VVFQcOHGDbtm0sWLCASZMmERIS0pp4Adx9993MmjWLG2+8keXLl7dW54uNjcXpdPKDH/yAZ599loiICAA++eQTvve97wFw8cUXs3Llyta+zjjjDESEmTNnkpqaysyZM7HZbEyfPr015ieffJLDDz+c2bNns3HjRr766qtOr2Px4sWtI3hPPPEEixcv7vE4KjUQKutdxFGHPSqJhKgwdksGYdU7e99QKaWUUorAjGB5gBuMMWtEJBpYLSJv+dfdbYy5q4dtD0pfRpoG0nXXXcfhhx/OZZdd1rrM5/Px6aef4nQ627V1OBztrmtqe++myMjIPu0vLCys9bHdbsfj8XTZrmPpchHhySefpLKysvWGvDU1NSxbtozbb78dsK7Bapn+1zHuzz//nHfeeYenn36a++67j3fffbdPcdpstnYx22w2PB4Pu3bt4q677uKLL74gPj6eSy+9tMt7WZ155pn86le/oqKigtWrV3PCCSf0uF+lBkJtVRl2MYREJyEilIVlk924rvcNlVJKKaUIwAiWMabYGLPG/7gW2ARk9rffoSghIYHzzjuPBx54oHXZySefzL333tv6PD8/H4CcnBzWrFkDwJo1a9i1a1eXfS5cuJDly5fj9XopLS3lgw8+4MgjjzyouFpGfVauXElsbCyxsbEsW7aM119/vfW6r9WrV3d7HVZbdXV1VFdX861vfYu7776btWvXAvCNb3yjdfvHHnuMhQsX9jm+mpoaIiMjiY2N5cCBA7z22mtdtouKimLu3Llce+21nH766djt9j7vQ6lA8dZZ1yM6oqxps/VRuSR4y8Dd88i0UkoppRQEuMiFiOQAs4HP/It+IiLrROQ/IhLfzTZXisgqEVlVWloayHAGxA033NCuIMQ999zDqlWryMvLY9q0aSxduhSAs88+m4qKCqZPn859993HpEmTuuzvrLPOIi8vj8MOO4wTTjiBO++8k7S0tIOKyel0Mnv2bK666ioeeOABCgoK2L17d7vy7Lm5ucTGxvLZZ5912ce3vvUt9u3bR21tLaeffjp5eXksWLCAP//5zwDce++9PPjgg+Tl5fHII4/w17/+tc/xHXbYYcyePZspU6bwve99j/nz57euu/XWW9uViV+8eDGPPvqoTg9UQeOrrwDAEZUIgEmcAEBz6bagxaSUUkqp4UO6q0x30B2JRAHvA7cbY54VkVSgDDDA/wLpxpjLe+pjzpw5puM9nTZt2sTUqVMDEqMaGfR3Qg2k15/7L6euvYb6i18ncvzRvPHuO5zywXcpPeXvJB99YbDDU0oppdQQISKrjTFzOi4PyAiWiIQAzwCPGWOeBTDGHDDGeI0xPuBfwMHNe1NKqSDwuesBCAuPAiAheyo+I9Tv2xzMsJRSSik1TASiiqAADwCbjDF/brM8vU2zs4ANHbdVSqmhxjQ3AOBwWgnW2NQE9pGIr2x7MMNSSiml1DARiCqC84GLgfUiku9f9ivgAhGZhTVFsAD4nwDsSymlBlaTNYJFqFXtMzk6jE9JI7tmTxCDUkoppdRw0e8EyxizEpAuVr3a376VUmrQNVkjWC0JlohQGZbJ9MauC8QopZRSSrUV0CqCSik13EmzfwTLEd66zBWVTYyvCty1wQlKKaWUUsOGJlhKKdWG3dOIizCwtfnzmDAOAF/5ziBFpZRSSqnhQhOsPnr++ecRETZv7r6SWEFBATNmzAjYPi+99FKefvrpbtdfd911ZGZm4vP5Wpc99NBDJCcnM2vWLKZNm8a//vWvgMWj1Ghg9zbgFme7ZaEp4wGo3rs1GCEppZRSahjRBKuPli1bxoIFC1i2bFmX6z0eT7/34fV6+9zW5/Px3HPPkZ2dzfvvv99u3eLFi8nPz2fFihX86le/4sCBA/2OTanRwu5ppMnWPsGKz7RuFF5brAmWUkoppXqmCVYf1NXVsXLlSh544AGeeOKJ1uUrVqxg4cKFnHnmmUybNg2wEq0LL7yQqVOncs4559DQYF0w/8477zB79mxmzpzJ5ZdfjtvtBiAnJ4df/OIXHH744Tz11FOd9v32228zZ84cJk2axMsvv9xu39OnT+fqq6/uNulLSUlh/Pjx7N69u3XZPffcw7Rp08jLy+P8888HoKKigu985zvk5eUxb9481q1bB8CSJUu45JJLWLhwIWPHjuXZZ5/lpptuYubMmZx66qk0NzcDcNtttzF37lxmzJjBlVdeScebV/t8PnJycqiqqmpdNnHiRE381JAU4m2kyRbebllWWiplJgZPmU4RVEoppVTPAlGmffC8djPsXx/YPtNmwml39NjkhRde4NRTT2XSpEkkJiayevVqjjjiCADWrFnDhg0byM3NpaCggC1btvDAAw8wf/58Lr/8cv7+97/zk5/8hEsvvZR33nmHSZMm8f3vf59//OMfXHfddQAkJiayZs2aLvddUFDA559/zo4dOzj++OPZvn07TqeTZcuWccEFF7Bo0SJ+9atf0dzcTEhISLttd+7cyc6dO5kwYULrsjvuuINdu3YRFhbWmvD89re/Zfbs2Tz//PO8++67fP/73yc/Px+AHTt28N577/HVV19x9NFH88wzz3DnnXdy1lln8corr/Cd73yHn/zkJ9x6660AXHzxxbz88succcYZrfu02WwsWrSI5557jssuu4zPPvuMsWPHkpqa2ufTpNRgCfG5aA6NaLcsIy6c9SaVxOqC4ASllFJKqWFDR7D6YNmyZa2jPeeff367EaMjjzyS3Nzc1ufZ2dnMnz8fgIsuuoiVK1eyZcsWcnNzmTTJmmZ0ySWX8MEHH7Rus3jx4m73fd5552Gz2Zg4cSLjxo1j8+bNNDU18eqrr/Kd73yHmJgYjjrqKN54443WbZYvX86sWbO44IIL+Oc//0lCQkLrury8PC688EIeffRRHA4rv165ciUXX3wxACeccALl5eXU1NQAcNpppxESEsLMmTPxer2ceuqpAMycOZOCggIA3nvvPY466ihmzpzJu+++y8aNGzu9jsWLF7N8+XIAnnjiiR5fs1LBFOZrxONoP4IVYrdRFpJOVH1hkKJSSiml1HAxvEawehlpGggVFRW8++67rF+/HhHB6/UiIvzpT38CIDIysl17EenxeVc69tFbf2+88QZVVVXMnDkTgIaGBsLDwzn99NMBK5m57777uuzvlVde4YMPPuCll17i9ttvZ/36nkcEw8LCAGsUKiQkpDUem82Gx+PB5XLxox/9iFWrVpGdnc2SJUtwuVyd+jn66KPZvn07paWlPP/889xyyy097lepYAkzLnz2pE7L6yKyia/9EDxucIQFITKllFJKDQc6gtWLp59+mosvvpjdu3dTUFBAYWEhubm5fPjhh12237NnD5988gkAjz/+OAsWLGDy5MkUFBSwfft2AB555BGOPfbYPu3/qaeewufzsWPHDnbu3MnkyZNZtmwZ//73vykoKKCgoIBdu3bx1ltvtV7v1R2fz0dhYSHHH388/+///T+qq6upq6tj4cKFPPbYY4B1bVdSUhIxMTF9iq8lmUpKSqKurq7bqociwllnncXPfvYzpk6dSmJiYp/6V2owGWNwGhe+kIhO6zxxOdgwULUnCJEppZRSarjQBKsXy5Yt46yzzmq37Oyzz+62sMTkyZP529/+xtSpU6msrOTqq6/G6XTy4IMPcu655zJz5kxsNhtXXXVVn/Y/ZswYjjzySE477TSWLl2Kz+fj9ddf59vf/nZrm8jISBYsWMBLL73UZR9XXHEFq1atwuv1ctFFFzFz5kxmz57NT3/6U+Li4liyZAmrV68mLy+Pm2++mYcffriPRwfi4uL44Q9/yIwZMzjllFOYO3du67qlS5eydOnS1ueLFy/m0Ucf1emBashye3yEixtfhymCACFJVqn2xgPbBzsspZRSSg0j0rHiWzDNmTPHrFq1qt2yTZs2MXXq1CBFpIYi/Z1QA6Wyvgn7nWMpGrOIaT9Y2m7d21+s56RXFlD8jdtIP/naIEWolFJKqaFCRFYbY+Z0XK4jWEop5dfQ7CUcN4RGdVqXlp5NvQnDXaIjWEoppZTqniZYSinl19jYQIh4kbDOhWfGJEWyx6QilbuCEJlSSimlhothkWANpWmMKrj0d0ENJHd9LQC20M4JVowzhH22NMLrtMiFUkoppbo35BMsp9NJeXm5frBWGGMoLy/H6XQGOxQ1QrkbrQTL3sUIFkBNeBZx7n3g8w1mWEoppZQaRob8fbCysrIoKiqitLQ02KGoIcDpdJKVlRXsMNQI1eyqA8Du7DrBckePJbSxGWr3Qaz+HiqllFKqswFPsETkVOCvgB34tzHmoO4WHBISQm5u7oDEppRSbTU3WglWSHjnIhcAtsRxUALesp3YNcFSSimlVBcGdIqgiNiBvwGnAdOAC0Rk2kDuUymlDpXHVQ9AiDO6y/URaRMAqN63ddBiUkoppdTwMtDXYB0JbDfG7DTGNAFPAIsGeJ9KKXVIvP4pgiERXY9gJWaMp9nYqS/eNphhKaWUUmoYGegEKxMobPO8yL+slYhcKSKrRGSVXmellAomX5OVYDkjYrpcPyY5hiKThK9i52CGpZRSSqlhJOhVBI0x9xtj5hhj5iQnJwc7HKXUKGbc1hTBsG6uwUqLcVJIGqE1uwczLKWUUkoNIwOdYO0Fsts8z/IvU0qpIcc0NQBgD+s6wbLbhIqwTGJdRaC3jlBKKaVUFwY6wfoCmCgiuSISCpwPvDjA+1RKqUPjT7AIjei2SUPUGCJ89dBYOUhBKaWUUmo4GdAEyxjjAX4CvAFsAp40xmwcyH0qpdShkmZ/guUI77aNic+x/i3fMQgRKaWUUmq4GfBrsIwxrxpjJhljxhtjbh/o/Sml1KESTz2NOMHW/Z/GyFSrVHtNsZZqV0oppVRnQS9yoZRSQ4XN04hbnD22SR4zBYDqvVqqXSmllFKdaYKllFJ+IZ4G3LaeE6zc9CT2m3iaS3WKoFJKKaU60wRLKaX87N5GmntJsFpKtTu0VLtSSimluqAJllJK+YX6Gmm2d1/gAsBmEyqdWcQ1aIKllFJKqc40wVJKKb8QnwtvLwkWQEPMeGJ9VdBQMfBBKaWUUmpY0QRLKaX8wnwuvI7IXtvZUqYC4Cr+aqBDUkoppdQwowmWUkoBxhicxoWvh3tgtYjKngFA+a51Ax2WUkoppYYZTbCUUgpwe3xEiAsTGtFr28yxE6k3Ybj26X3TlVJKKdWeJlhKKQU0NHkJxw0hvSdYY5Oi2GEycZTrzYaVUkop1Z4mWEopBdS7monADaG9X4PlDLGzL3QssXU7ByEypZRSSg0nmmAppRTgcjfiEB+2PiRYADXRE4jzlkFj1cAGppRSSqlhRRMspZQCGutrAbCH9S3BMkmTAPCUbB6wmJRSSik1/GiCpZRSQFODP8FyRvWpfUz2TADKd60fsJiUUkopNfxogqWUUkBTnXXTYHtEfJ/aZ+dOptGEUl+kCZZSSimlvqYJllJKAU31VQA4oxP61H5ieiw7TAa20k0DGJVSSimlhhtNsJRSCmiurwQgIqZvCVaYw05R2HgSareCMQMZmlJKKaWGkX4lWCLyJxHZLCLrROQ5EYnzL88RkUYRyff/LA1ItEopNUA8DVUARMQm9Xmb2vjpxPiqoGbfwASllFJKqWGnvyNYbwEzjDF5wFbgl23W7TDGzPL/XNXP/Sil1MBqtEaw7OGxfd7EnjkbgPo9awYkJKWUUkoNP/1KsIwxbxpjPP6nnwJZ/Q9JKaUGn7hqrAdhMX3eJnHC4fiMULn9iwGKSimllFLDTSCvwboceK3N81wR+VJE3heRhd1tJCJXisgqEVlVWloawHCUUqrvbE3VNBAOdkeft5mancZOk45379oBjEwppZRSw0mvCZaIvC0iG7r4WdSmza8BD/CYf1ExMMYYMxv4GfC4iHT5tbAx5n5jzBxjzJzk5OT+vyKllDoEjqZaGux9uwdWi5QYJzsc44mp2jhAUSmllFJquOn1q1pjzEk9rReRS4HTgRONsUppGWPcgNv/eLWI7AAmAav6G7BSSg2EME8NLnv0QW9XHTeN+IoPob4MIvteIEMppZRSI1N/qwieCtwEnGmMaWizPFlE7P7H44CJwM7+7EsppQZSuLeGppC+X3/VIiRLC10opZRS6mv9vQbrPiAaeKtDOfZjgHUikg88DVxljKno576UUmpAGGOI81XhCks86G1TJs0FoGzLZ4EOSymllFLDUN+v5u6CMWZCN8ufAZ7pT99KKTVYat0ekqimMOLgp/hNyx1DgS8VX9HqAYhMKaWUUsNNIKsIKqXUsFRaUU2MNCBRqQe9bXxkKJtDppJUmQ/WZahKKaWUGsU0wVJKjXpVZcUAhMYefIIFUJN0ODHeSkyFXmqqlFJKjXaaYCmlRr268n0ARMSnH9L24RPmA1C+6cOAxaSUUkqp4UkTLKXUqOeq2g9ATFLGIW0/eeZcakwE1VtXBjIspZRSSg1DmmAppUY9b401ghWZeGgJ1oSUGNbJJCIOaKELpZRSarTTBEspNeo5avbhxYbEZB7S9jabUBY3i1T3LmisCmxwSimllBpWNMFSSo16YfX7qLQlgv3Q71xhy5mHDUP1to8DGJlSSimlhhtNsJRSo160u5iasLR+9ZE94xiajZ3yje8GKCqllFJKDUeaYCmlRrUmj48kXwnuyEO7/qrF9Jx08pmIs1ALXSillFKjmSZYSqlRrbiihnQqMHFj+tVPqMPGrpi5pDVshoaKAEWnlFJKqeFGEyyl1KhWVrSNEPESkjKx333Zxx9vXYe1SacJKqWUUqOVJlhKqVGtpnAjAPFjZvS7r0mHH0utCad83Zv97ksppZRSw5MmWEqpUa35wBYAEsdO63df07MSWSPTid6n12EppZRSo5UmWEqpUS2kaidVEoeEx/e7L5tNKEs5muTmvfgqCvofnFJKKaWGHU2wlFKjWnzjbsrD+1fgoq3oaScDsH/1ywHrUymllFLDhyZYSqlRq8bVTLavCFfs+ID1Oevwuez0pdH81SsB61MppZRSw0e/EiwRWSIie0Uk3//zrTbrfiki20Vki4ic0v9QlVIqsAoKi0iUWhzJkwLWZ0pMOF+GH01G5efgrg1Yv0oppZQaHgIxgnW3MWaW/+dVABGZBpwPTAdOBf4uIvYA7EsppQKmbNd6AGKzpwa0X9+kUwnBQ9X61wPar1JKKaWGvoGaIrgIeMIY4zbG7AK2A0cO0L6UUuqQuIutEu1J42YHtN9Z3ziFMhND5RfLA9qvUkoppYa+QCRYPxGRdSLyHxFpKcOVCRS2aVPkX9aJiFwpIqtEZFVpaWkAwlFKqb4JKd9CI04c8YErcgEwMT2elWHHkHlgBTRWBbRvpZRSSg1tvSZYIvK2iGzo4mcR8A9gPDALKAb+72ADMMbcb4yZY4yZk5ycfLCbK6XUIYuv284BZw7YAj+Y75p2HqE0U/HFkwHvWymllFJDl6O3BsaYk/rSkYj8C2ipS7wXyG6zOsu/TCmlhoSGJg9jvHsoiT1mQPpfeOw32fZlJpGfPQgLfwgiA7IfpZRSSg0t/a0imN7m6VnABv/jF4HzRSRMRHKBicDn/dmXUkoF0q49e0iWauyp0wak/8z4CFalnkdG/Vc0bn13QPahlFJKqaGnv/Ni7hSR9SKyDjgeuB7AGLMReBL4Cngd+LExxtvPfSmlVMCU7MgHIHZs3oDtY/Ip/8MBE0fVa7eDMQO2H6WUUkoNHf1KsIwxFxtjZhpj8owxZxpjitusu90YM94YM9kY81r/Q1VKqcBp2mdVEEwZH9gKgm3NHpfG6/EXkl61msrPHhuw/SillFJq6BioMu1KKTWkhZRvpk4iscdmDNg+RISFF/yCL80kwl//GTVfvT1g+1JKKaXU0KAJllJqVEqo30mJM3fAi0+MS42lbtGDFJpkYp48mx13HsuOlU8P6D6VUkopFTyaYCmlRp3axiZyfLtpjJs0KPtbePgMvD94m5cSLmV8Qz6+D+4alP0qpZRSavBpgqWUGnV279lFnNRjG6AKgl2ZMiadM376V95NWMyYpu3gaRq0fSullFJq8PR6Hyw19Hiam2lsrMPVWE9TYwNuVwNNrgaM1wPGizE+8Bl8xgs+HxgvGB/GGIzY8YkDm92BwxGCzRGCIyQEhyMUhyMEu8OBIywcR1gkIc4IQkJCCLXbEL2HjxpBanavAyA6e+ag77shZTZhFctx711H2Ng5g75/pZRSSg0sTbCCwOvxUFG2j5rSYuoqi3FX7sfTUImvsRpxVWFz1+BoriHUU0e4t44IXx0RpoFQmggzTYSIl2ggehBibTZ26gjFTShNEkoToTTZwmiWMDy2UDw2Jx5bGF57GD67E5/diXFYP4Q4wRGOhIQjoeHYQsKxhYZjD43wJ3EROMIiCHVGEhoeSUhYBE5nOM5QO2EOO3abJnXq0Bl/WfSW6uimzbLmYquCYNL4WYMeV/T4o2AzHNj0EWM0wQoqYwxuVyONDXU0NtbjbrS+rPI0ufA2NeJrduFrdmGaXRiPC1+zG5/Xi8/n8X+h5UP8X2QJXjAGMV7/j7F+5xD/vzbrX7EBgs1mA7FhEwGbDZtYX2SJzYbY7P4fB9js2PzLbHY72BzYWpc5sNmttnabHbE7sDus7ez+9na7HZvd4X8cgs1uw2F3IDYHDocdm80ONjtIy79WXO2X+ZfbdNKLUkr1hSZYgWQM1VXllBZtp+ZAAa6y3VBdRFh9MWHuMiKbK4jxVRFnakgWQ3IXXTQSSr1E0mCLwmWPwh0aT41jDF5HpJW4hDiRNkmLvfXHCfYQxP8fofj/80bE+k9abAhgw4cYDz6vB6+nCZ+nGa/Hg8/nwedpxniaMR434mlEPC7wuPyP3Yi3EZvHjd3rwu5zE+F14fDW4fA0EepzE4KbMNNEGG4c+A7pEPqM4CKUakJoIgQvDnxix+sfefOJo3UUzlpu/etrWYb1WET8xQusfwX8xwME8X/I8Z+21g9AVnvrMYhps8ZYr0fwWR+iWrYybT5CGYPgQwyAr/361m18rZ/4O/Yl/na07asllnb7ozXajnG2Xff1fr5+dS1tWvdjHaE2j1v2Q4dtO7ftTldrW/bedmXrsh62//qxdFrW5X5M730CzJJaKiWG+Li0LtsPpGmTp1H6ciyuAr33en+5mpqprCiltqKEhupSmmrL8daXYxrKkYYqTFMttqY67M11ODwNhHrrcfoacJpGIk0DETTiFC9OID7YL2aY8GLDiw0fNoz/X6+0f+7zP29d1ua5T6xlpm2b1u0FwbT+zcPQ+rfna+3/Vll/Azuva/m3u/Vf74cObdv30bKdtHvcof9DPJadX1u7MA9umx4caoyHsi918Lr7v1C196bjOMad/TuOn5IS7FD6RBOsg+T1NLN/z3bKdm+koXgrUrmDyLo9xLiLSfSWESuNxLZp32zslNoSqbEnUuXMpMR5GCYiGYlOITQmFWd8GtGJ6cTEpRAZm0B4qJPwoL26API2Q3Mjze4G3I31NLsbaHLV0+xqxOOux+NuxNvUgK+p0f9NcQM0uTDNjRiPC/H/+Lwe8HnA1wxeL/g8iK8ZMV7sxoPduAk1HmzGix0vdmP99/91wgOmTXIhrQmRpWNq1TaR+DolspI0n/85ralPu9QII+2f08XytsusfmwYaUnHrG+2ESsBbI1Gvo62NWlsE3VrwC3Ppe06+Xpdaxv/en9fAq3x0Lo/ab/f1jZ0WNe2RctRo8M607Eh4v8g1ZF0+NefKXb534+0+djQEo4Y0+mTxNf7+XrFfkDGLQzKh+rkGCcrHZOYUJ4fhL0PfY0uN6X7i6guLaS+fB/uqn1QewBHQwlOVykRzRVEequJ9tUSQx3pYkjvoh+fERrESYNE4LaF02SLoCk0igZ7IjUhkXgdkfhCozGhUUiI9UWVLTQcR6jTehzixBbqxB5ijbrbQ8OwhzgJCbGmV1sjQ9aIkogdsdsQcVhfbtns1kgU4v/SxSACYqx3us/nw+vz4fX68Hi9+HwGr9eD1/jweb14vV7rSzCvt3XEzOvxYnwevD4vxt/G+Dz+f334vB58/nU+nwdjvPg8XozPay3v9OMBn6/dMozVV8tja73H/+WP14rfP2pnvS4ftpbl+FrX22i/zPpiz+v/9+tlrc9bHtPhr4gA/pE/63lXf7ktpou/ce37av+Hoe3fTyOd/vK0Lm//V+3rvjr+VTrkD8mHNP3+0PZ1aDH2sI3mBf2mSWzfhUWOITYiJNhh9JkmWD0oK97N7vx3cRetJbJyCwmu3aR695MpXjL9beqNk2JHBuXOsRRHzoPYLEITxxKdmkNixjjikzPJsDsYuDvtDFH2ELCHEOKMISS29+ZKjSbVqfNI23cv7tKdhCWPC3Y4g8bd3EzJvkLK922nrqQAb/ke7LV7iWjcR0zTAeJ9FcSbGsZI5w8d1URRaU+g3pFAWfhkDjjjITwee2QijuhEwqKTccYkER6XTGRsChEx8UTZ7EQF4XX2xu7/UUop1TdHBDuAg6QJVg+2r3iceVvuwGNsFNkzKXHmUhh7Ao6kCURlTiEtdxrxyVlM0HnpSqmDED97Eey7l6KPn2T8opuDHU7AGGMoraykeNcm6vZuwVu+g5DqXUTVFxHfvJ8UU0a2eMlus00tEZTbU6hxplIVPpOdUanYY9JxxqcTnZxJXMoYohLSiQ1xot/VKKWUGg7EmKEzPDlnzhyzatWqYIfRqmzfbipL9jBmyuGEOSODHY5SaoRwNXvZefsRxIbZyLx59YDf7DjQXE3N7CvYSuWufNz7N2Or3EFk/R5SmveSSkW7tpXEUBKSSUN4Bp6YTOzxY4hMziEuYzxJGeOwR8QF50UopZRS/SQiq40xnSpW6QhWD5IyxpKUMTbYYSilRhhniJ2d2edweuGfqN70DrHTTgp2SF1qbPKyY/duSrZ/SdO+DTgrN5PUsIMc727Giau1XQWxlIZmsjf+KPYmjMOZNon4rMkkjZlCfGS8FpBQSik1qmiCpZRSQTD1tCvZ988H4OVbiJ16YlBHsYwx7C2toHDrl9TtWYeUfEVc7TbGeAqYIVWt7aolhgPOcWyLW4SkTiU6+zBSJ8wiITaBhKBFr5RSSg0tmmAppVQQjM9I4ans/+Hcoj9S/O4/SD/xR4Oy37pGNwXbNlK+80s8+zcQUbmFNNdOxrCfLH9xCTeh7A8dS1nifCrSZhCfexjJ4w4nNiaN2GE2nVEppZQabJpgKaVUkJxw3k/55O5XmfvhLVQmjyM+79SA9e3z+thbVMD+7WtoKFyPo2wTiQ3bGestZIY0WW2McMCRTmXcRDYmn0lU9mGkTTyciLRJjLVpnTullFLqUGiRC6WUCqINO3YT+t9vM072snvajxh35i8QZ0yft/d5fezbV8iB7V/SsHcD9rItxNRtJ6t5N3FS39quQuI44ByPK34SoRkzSRo/m5RxeUjYUCxkrpRSSg193RW56FeCJSLLgcn+p3FAlTFmlojkAJuALf51nxpjruqtP02wlFKj0Zbde9n7yP9wgudD6gmnIG4evtSZ2BJysIVGYGwOmt2NNNWV462rwNQUE1ZfRJx7HyneEqKksbWvGiIpDs2hLmYCpEwlbmweGZPmEB6fGsRXqJRSSo08A1JF0BizuM0O/g+obrN6hzFmVn/6V0qp0WDy2EzG//JF3l3xBrLmYSZXfk5G1Xvdtm8gjBJ7GtXODMqijsKRmEtU9gzSJswiJjmbGL1OSimllAqagFyDJSICnAecEIj+lFJqtHHYbZxw4mlw4mk0e30UlZZTfWAXvqZGxOch1BlOVFwSMQkpREXFkqNJlFJKKTUkBarIxULggDFmW5tluSLyJVAD3GKM+TBA+1JKqREtxG4jKy2ZrLTkYIeilFJKqYPUa4IlIm8DaV2s+rUx5gX/4wuAZW3WFQNjjDHlInIE8LyITDfG1HTR/5XAlQBjxow52PiVUkoppZRSasjoNcEyxpzU03oRcQDfBY5os40bcPsfrxaRHcAkoFMFC2PM/cD9YBW5OJjglVJKKaWUUmoosQWgj5OAzcaYopYFIpIsInb/43HARGBnAPallFJKKaWUUkNWIK7BOp/20wMBjgFuE5FmwAdcZYyp6K2j1atXl4nI7gDEFEhJQFmwg1CDRs/36KHnevTQcz266PkePfRcjy5D8XyP7WrhkLrR8FAkIqu6qm+vRiY936OHnuvRQ8/16KLne/TQcz26DKfzHYgpgkoppZRSSiml0ARLKaWUUkoppQJGE6ze3R/sANSg0vM9eui5Hj30XI8uer5HDz3Xo8uwOd96DZZSSimllFJKBYiOYCmllFJKKaVUgGiCpZRSSimllFIBoglWD0TkVBHZIiLbReTmYMejAkdEskXkPRH5SkQ2isi1/uUJIvKWiGzz/xsf7FhVYIiIXUS+FJGX/c9zReQz//t7uYiEBjtGFRgiEiciT4vIZhHZJCJH63t7ZBKR6/1/wzeIyDIRcep7e+QQkf+ISImIbGizrMv3slju8Z/3dSJyePAiVwerm3P9J//f8XUi8pyIxLVZ90v/ud4iIqcEJegeaILVDRGxA38DTgOmAReIyLTgRqUCyAPcYIyZBswDfuw/vzcD7xhjJgLv+J+rkeFaYFOb5/8PuNsYMwGoBH4QlKjUQPgr8LoxZgpwGNZ51/f2CCMimcBPgTnGmBmAHTgffW+PJA8Bp3ZY1t17+TRgov/nSuAfgxSjCoyH6Hyu3wJmGGPygK3ALwH8n9fOB6b7t/m7/3P7kKEJVveOBLYbY3YaY5qAJ4BFQY5JBYgxptgYs8b/uBbrA1gm1jl+2N/sYeA7QQlQBZSIZAHfBv7tfy7ACcDT/iZ6rkcIEYkFjgEeADDGNBljqtD39kjlAMJFxAFEAMXoe3vEMMZ8AFR0WNzde3kR8F9j+RSIE5H0QQlU9VtX59oY86YxxuN/+imQ5X+8CHjCGOM2xuwCtmN9bh8yNMHqXiZQ2OZ5kX+ZGmFEJAeYDXwGpBpjiv2r9gOpwYpLBdRfgJsAn/95IlDV5g+3vr9HjlygFHjQPyX03yISib63RxxjzF7gLmAPVmJVDaxG39sjXXfvZf3cNrJdDrzmfzzkz7UmWGpUE5Eo4BngOmNMTdt1xrqHgd7HYJgTkdOBEmPM6mDHogaFAzgc+IcxZjZQT4fpgPreHhn8194swkqqM4BIOk8xUiOYvpdHBxH5NdalHY8FO5a+0gSre3uB7DbPs/zL1AghIiFYydVjxphn/YsPtEwp8P9bEqz4VMDMB84UkQKsqb4nYF2jE+efVgT6/h5JioAiY8xn/udPYyVc+t4eeU4CdhljSo0xzcCzWO93fW+PbN29l/Vz2wgkIpcCpwMXmq9v3jvkz7UmWN37Apjor0YUinUx3YtBjkkFiP8anAeATcaYP7dZ9SJwif/xJcALgx2bCixjzC+NMVnGmBys9/G7xpgLgfeAc/zN9FyPEMaY/UChiEz2LzoR+Ap9b49Ee4B5IhLh/5vecq71vT2ydfdefhH4vr+a4Dygus1UQjUMicipWNP7zzTGNLRZ9SJwvoiEiUguVmGTz4MRY3fk62RQdSQi38K6dsMO/McYc3twI1KBIiILgA+B9Xx9Xc6vsK7DehIYA+wGzjPGdLzAVg1TInIccKMx5nQRGYc1opUAfAlcZIxxBzE8FSAiMguroEkosBO4DOsLRX1vjzAi8jtgMdb0oS+BK7CuxdD39gggIsuA44Ak4ADwW+B5ungv+5Ps+7CmiTYAlxljVgUhbHUIujnXvwTCgHJ/s0+NMVf52/8a67osD9ZlHq917DOYNMFSSimllFJKqQDRKYJKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKTXEiEiOiBgRcQQ7FjU6iMhGETku2HEopdRIoAmWUkqpYU9ElopInf+nSUSa2zx/LdjxDXXGmOnGmBWB7ldEThKRNSJSLyJFInJeoPehlFJDjRhjgh2DUkqNKCLiMMZ4+rF9DrALCOlPP6OViCwBJhhjLupiXb/OzWAaTrF2RUSmASuAS4C3gFggzhizI5hxKaXUQNMRLKWUCgARKRCRX4jIOqBeRBwiMk9EPhaRKhFZ23YKloisEJE/isjnIlIjIi+ISEI3fV8mIptEpFZEdorI/3RYv0hE8v397BCRU/3LY0XkAREpFpG9IvJ7EbH38jrGi8i7IlIuImUi8piIxLVZVyEih/ufZ4hIacvrEpEz/VPNqvyvb2qH43OjiKwTkWoRWS4izoM/0gevm3NjRGRCmzYPicjv2zw/3X9Mq/znMK+P+zrOP1LzK//xKxCRC9us/7aIfOk/V4X+ZLBlXcvU0B+IyB7gXf/yp0Rkv/+4fSAi0zvE/XcRec0/WveRiKSJyF9EpFJENovI7D4eo5P68hoPwi3AP40xrxljPMaYck2ulFKjgSZYSikVOBcA3wbigFTgFeD3QAJwI/CMiCS3af994HIgHfAA93TTbwlwOhADXAbc3SbJORL4L/Bz/36PAQr82z3k73cCMBs4Gbiil9cgwB+BDGAqkA0sAfB/OP4F8KiIRAAPAg8bY1aIyCRgGXAdkAy8CrwkIqFt+j4POBXIBfKAS7sMQGSBP7Hp7mdBL6+hK63nprdRIX9C8h/gf4BE4J/AiyIS1sd9pQFJQCbW6M39IjLZv64e67zH+eO5WkS+02H7Y7GO/Sn+568BE4EUYA3wWIf252ElM0mAG/jE3y4JeBr4cx/j7pKI3NzT+ehh03n+7df7k/xHu/sSQSmlRhJNsJRSKnDuMcYUGmMagYuAV40xrxpjfMaYt4BVwLfatH/EGLPBGFMP/AY4r6sRJmPMK8aYHcbyPvAmsNC/+gfAf4wxb/n3s9cYs1lEUv37us4YU2+MKQHuBs7v6QUYY7b7+3IbY0qxPpwf22b9v4DtwGdYieGv/asWA6/4t20G7gLCgW90OD77jDEVwEvArG5iWGmMievhZ2VPr6Ebbc9Nb67EGnn5zBjjNcY8jJW4zDuI/f3Gfwzfx0q0zwMwxqwwxqz3n6t1WEnpsR22XeI/Z43+bf5jjKk1xrixkt3DRCS2TfvnjDGrjTEu4DnAZYz5rzHGCyzHSq4PmTHmjp7ORw+bZgEXA2djJYjhwL39iUUppYYDTbCUUipwCts8Hguc2+Gb/gVYSUlX7XcDIVijDu2IyGki8ql/el4VVuLU0i4b6Gra1Vh/f8Vt9v9PrFGQbolIqog84Z9SWAM82kVM/wJmAPf6P/SDNeK1u6WBMcbnf32Zbbbb3+ZxAxDVUywBVth7k1ZjgRs6nLtsrNfYF5X+pLnF7pZtReQoEXnPP7WyGriKzse3NVYRsYvIHWJN/azh69HJttscaPO4sYvng3mc22oEHjTGbDXG1AF/oP0XDEopNSJpgqWUUoHTtmpQIdYIVdtv+yONMXe0aZPd5vEYoBkoa9uhf1raM1gjQqn+EYNXsabytexnfBexFGKNuiS12X+MMWZ6F23b+oP/dcw0xsRgjcS17AsRiQL+AjwALGkz5WsfVmLS0k78r29vL/vrREQWytcVALv6Wdh7L510rOjUAES0eZ7W5nEhcHuHcxdhjFnWx33Fi0hkm+djsI4PwOPAi0C2MSYWWEqb49tFrN8DFgEnYRWJyPEv77jNgPFfT9bt+ehh03W0fy1aVUspNSpogqWUUgPjUeAMETnFPwrh9BdAyGrT5iIRmea/nuk24Gn/tK62QoEwoBTwiMhpWNdStXgAuExEThQRm4hkisgUY0wx1lTC/xORGP+68SLScTpaR9FAHVAtIplY13a19VdglTHmCqypb0v9y58Evu2PIwS4ASvB+7i3A9WRMeZDY0xUDz8fHmyfXcgHvuc/N6fSfprev4Cr/KNNIiKRYhWniIbWwhIP9dL/70Qk1J8Mng485V8eDVQYY1z+6+e+10s/0VjHsRwrIfzDQbzGgDDG/KGn89HDpg9i/W6O8/+O3wy8PDhRK6VU8GiCpZRSA8AYU4g18vArrOSoECtZaft39xGsQhT7ASfw0y76qfUvfxKoxPpA/mKb9Z/jL3wBVAPv8/VI0vexErSv/Ns+Tfspil35HXC4v69XgGdbVojIIqwiFVf7F/0MOFxELjTGbMEa7boXaxTuDOAMY0xTL/sLlmuxYqwCLgSeb1lhjFkF/BC4D+u4bad9QY5s4KMe+t7v324fVkGKq4wxm/3rfgTcJiK1wK1Y57Un/8WaYrgX6zx+2tsLGyqMMf/Biv8zrNfgpovfcaWUGmn0PlhKKRUEIrICeNQY8+9gx6L6zl8VcS2Q5y/m0XH9cVjnNavjOqWUUqODI9gBKKWUUsOFf0Ruaq8NlVJKjVo6RVAppUYZEVnaTcGCpb1vrYYjERnTQ6GKMcGOTymlRhKdIqiUUkoppZRSAaIjWEoppZRSSikVIEPqGqykpCSTk5MT7DCUUkoppZRSqkerV68uM8Ykd1w+pBKsnJwcVq1aFewwlFJKKaWUUqpHIrK7q+U6RVAppZRSSimlAkQTLKWUUkoppZQKEE2wlFLqELy3pYTtJbXBDkMppZRSQ8yQugarK83NzRQVFeFyuYIdihpmnE4nWVlZhISEBDsUNcJs3l/D/Q8/xOH2XVx36z36O6aUUkqpVkM+wSoqKiI6OpqcnBxEJNjhqGHCGEN5eTlFRUXk5uYGOxw1wny2aTfLQm8HYMPn32LG/DOCHJFSSimlhoohP0XQ5XKRmJioyZU6KCJCYmKijnyqAVGze23rY++GF4IYiVJKKaWGmiGfYAGaXKlDor83aqBEVG4CYJdtDIllemsJpZRSSn1tWCRYSik1lCTWb6fBFsnWuGNIa94NzTpSqpRSSimLJlh9ICLccMMNrc/vuusulixZEryA2vj000856qijmDVrFlOnTm2Na8WKFXz88cf96vvUU08lLi6O008/PQCRKjVyRDWXURuWhjd1Jg58NO7bEOyQlFJKKTVEaILVB2FhYTz77LOUlZUFtF9jDD6fr199XHLJJdx///3k5+ezYcMGzjvvPCAwCdbPf/5zHnnkkX71odRI0+z1EWtqaAqNJzz7MADKd+YHNyillFJKDRn9riIoItnAf4FUwAD3G2P+KiIJwHIgBygAzjPGVPZnX797aSNf7avpX8AdTMuI4bdnTO+xjcPh4Morr+Tuu+/m9ttvb7eutLSUq666ij179gDwl7/8hfnz57NkyRKioqK48cYbAZgxYwYvv/wyAKeccgpHHXUUq1ev5tVXX+W+++7jtddeQ0S45ZZbWLx4MStWrGDJkiUkJSWxYcMGjjjiCB599NFO1xWVlJSQnp4OgN1uZ9q0aRQUFLB06VLsdjuPPvoo9957L1OmTOk2zh07drB9+3bKysq46aab+OEPfwjAiSeeyIoVK3o8Nk899RS/+93vsNvtxMbG8sEHH+Byubj66qtZtWoVDoeDP//5zxx//PE89NBDPP/889TX17Nt2zZuvPFGmpqaeOSRRwgLC+PVV18lISGBf/3rX9x///00NTUxYcIEHnnkESIiItrtd968eTzwwANMn26du+OOO4677rqLOXPm9BivUv1V7/aQQC3NzhzSxk6m2dhp2L812GEppZRSaogIxAiWB7jBGDMNmAf8WESmATcD7xhjJgLv+J8PWz/+8Y957LHHqK6ubrf82muv5frrr+eLL77gmWee4Yorrui1r23btvGjH/2IjRs3smrVKvLz81m7di1vv/02P//5zykuLgbgyy+/5C9/+QtfffUVO3fu5KOPPurU1/XXX8/kyZM566yz+Oc//4nL5SInJ4errrqK66+/nvz8fBYuXNhjnOvWrePdd9/lk08+4bbbbmPfvn19Pi633XYbb7zxBmvXruXFF18E4G9/+xsiwvr161m2bBmXXHJJazW/DRs28Oyzz/LFF1/w61//moiICL788kuOPvpo/vvf/wLw3e9+ly+++IK1a9cydepUHnjggU77Xbx4MU8++SQAxcXFFBcXa3KlBkV9k5d4qcXrjCc3JZYik4Qp3xnssJRSSik1RPR7BMsYUwwU+x/XisgmIBNYBBznb/YwsAL4RX/21dtI00CKiYnh+9//Pvfccw/h4eGty99++22++uqr1uc1NTXU1dX12NfYsWOZN28eACtXruSCCy7AbreTmprKscceyxdffEFMTAxHHnkkWVlZAMyaNYuCggIWLFjQrq9bb72VCy+8kDfffJPHH3+cZcuWdTnq1FOcixYtIjw8nPDwcI4//ng+//xzvvOd7/TpuMyfP59LL72U8847j+9+97utr+maa64BYMqUKYwdO5atW61v+I8//niio6OJjo4mNjaWM86w7h80c+ZM1q1bB1hJ2C233EJVVRV1dXWccsopnfZ73nnncfLJJ/O73/2OJ598knPOOadP8SrVX/WNbtKppyw8EWeInf2ODDLrdgc7LKWUUkoNEQG90bCI5ACzgc+AVH/yBbAfawphV9tcCVwJMGbMmECGE3DXXXcdhx9+OJdddlnrMp/Px6efforT6WzX1uFwtLu+qu39mCIjI/u0v7CwsNbHdrsdj8fTZbvx48dz9dVX88Mf/pDk5GTKy8s7tekuTuhczvxgypsvXbqUzz77jFdeeYUjjjiC1atX99i+7Wuy2Wytz202W+vru/TSS3n++ec57LDDeOihh7pMGDMzM0lMTGTdunUsX76cpUuX9jlmpfrDVVOGTQxEJgFQ7cwmr/FtMAb01gBKKaXUqBewIhciEgU8A1xnjGl3oZQxxmBdn9WJMeZ+Y8wcY8yc5OTkQIUzIBISEjjvvPPaTVk7+eSTuffee1uf5+fnA5CTk8OaNWsAWLNmDbt27eqyz4ULF7J8+XK8Xi+lpaV88MEHHHnkkX2O6ZVXXsE6vNbUQ7vdTlxcHNHR0dTW1vYaJ8ALL7yAy+WivLycFStWMHfu3D7vf8eOHRx11FHcdtttJCcnU1hYyMKFC3nssccA2Lp1K3v27GHy5Ml97rO2tpb09HSam5tb++nK4sWLufPOO6muriYvL6/P/SvVH021pQDY/AmWKyaHSNMADZ2/2FBKKaXU6BOQBEtEQrCSq8eMMc/6Fx8QkXT/+nSgJBD7CrYbbrihXTXBe+65h1WrVpGXl8e0adNaR1LOPvtsKioqmD59Ovfddx+TJk3qsr+zzjqLvLw8DjvsME444QTuvPNO0tLS+hzPI488wuTJk5k1axYXX3wxjz32GHa7nTPOOIPnnnuOWbNm8eGHH3YbJ0BeXh7HH3888+bN4ze/+Q0ZGRmAlfyde+65vPPOO2RlZfHGG28A1rTEluutfv7znzNz5kxmzJjBN77xDQ477DB+9KMf4fP5mDlzJosXL+ahhx5qN3LVm//93//lqKOOYv78+UyZMqV1+Ysvvsitt97a+vycc87hiSeeaK2cqNRg8NRZiZQjKsFakDAOgKbSbcEKSSmllFJDiLSMfhxyB9Z8soeBCmPMdW2W/wkoN8bcISI3AwnGmJt66mvOnDlm1apV7ZZt2rSJqVOn9itG1b2O1Q5HGv39UYH20auPM//zqyk+92XSpy/kjfdXcsp736bkpL+SsuDSYIenlFJKqUEiIquNMZ2qrAXiGqz5wMXAehHJ9y/7FXAH8KSI/ADYDegwg1Jq2PO4ram3YRExAMRnjMdrhMb9OoKllFJKqcBUEVwJdHdl94n97V8NrCVLlgQ7BKWGFZ/Lqr4ZERUHQFZyHPtMEr6Krq+zVEoppdToErAiF0opNRr43PUAhEVGA5Aa42QvyYTUFAYzLKWUUkoNEZpgKaXUwWiyRrAkNAoAu02oCE0nytX3G3QrpZRSauTSBEsppQ6CNNXRjAMcoa3L6iMyifOUQbOrhy2VUkopNRpogqWUUgfB1txAI+Htlvlisq0H1UVBiEgppZRSQ4kmWH30/PPPIyJs3ry52zYFBQXMmDEjYPvcsmULxx13HLNmzWLq1KlceeWVgHWT4FdffbVffV9++eWkpKQENF6lRgO7px6XzdlumSMxFwB32c5ghKSUUkqpIUQTrD5atmwZCxYsYNmyZV2u93g8/d6H1+tt9/ynP/0p119/Pfn5+WzatIlrrrkGCEyCdemll/L666/3qw+lRiOHp4EmW/sRrMhU62bD1fu2ByMkpZRSSg0hgbgP1uB57WbYvz6wfabNhNPu6LFJXV0dK1eu5L333uOMM87gd7/7HQArVqzgN7/5DfHx8WzevJk333wTj8fDhRdeyJo1a5g+fTr//e9/iYiI4J133uHGG2/E4/Ewd+5c/vGPfxAWFkZOTg6LFy/mrbfe4qabbuL8889v3W9xcTFZWVmtz2fOnElTUxO33norjY2NrFy5kl/+8pecfvrpXHPNNWzYsIHm5maWLFnCokWLeOihh3juueeorq5m7969XHTRRfz2t78F4JhjjqGgoKDH1/3+++9z7bXXAiAifPDBB0RFRXHTTTfx2muvISLccsstLF68mBUrVvDb3/6WuLg41q9fz3nnncfMmTP561//SmNjI88//zzjx4/npZde4ve//z1NTU0kJiby2GOPkZqa2m6/559/PhdffDHf/va3ASsZPP300znnnHP6dk6VGkAObyNN9oh2y5IzxuI2DhpLtVS7UkopNdrpCFYfvPDCC5x66qlMmjSJxMREVq9e3bpuzZo1/PWvf2Xr1q2ANa3vRz/6EZs2bSImJoa///3vuFwuLr30UpYvX8769evxeDz84x//aO0jMTGRNWvWtEuuAK6//npOOOEETjvtNO6++26qqqoIDQ3ltttuY/HixeTn57N48WJuv/12TjjhBD7//HPee+89fv7zn1Nfb5WS/vzzz3nmmWdYt24dTz31FKtWrerz677rrrv429/+Rn5+Ph9++CHh4eE8++yz5Ofns3btWt5++21+/vOfU1xcDMDatWtZunQpmzZt4pFHHmHr1q18/vnnXHHFFdx7770ALFiwgE8//ZQvv/yS888/nzvvvLPTfhcvXsyTTz4JQFNTE++8805rsqVUsIX5GvB0SLCyEqLYa5IwlbuDFNXw8NLafdz5+mY8Xl+wQ1FKKaUGzPAaweplpGmgLFu2rHUk5/zzz2fZsmUcccQRABx55JHk5ua2ts3Ozmb+/PkAXHTRRdxzzz1885vfJDc3l0mTJgFwySWX8Le//Y3rrrsOsBKKrlx22WWccsopvP7667zwwgv885//ZO3atZ3avfnmm7z44ovcddddALhcLvbs2QPAN7/5TRITEwH47ne/y8qVK5kzZ06fXvf8+fP52c9+xoUXXsh3v/tdsrKyWLlyJRdccAF2u53U1FSOPfZYvvjiC2JiYpg7dy7p6ekAjB8/npNPPhmwRt7ee+89AIqKili8eDHFxcU0NTW1O3YtTjvtNK699lrcbjevv/46xxxzDOHh4Z3aKRUMYb5GPI6kdsuSo8LYRjLjavVeWN3ZX+3igSee4r+hf2Rb+cVMvfBPwQ5JKaWUGhA6gtWLiooK3n33Xa644gpycnL405/+xJNPPokxBoDIyMh27UWkx+dd6dhHWxkZGVx++eW88MILOBwONmzY0KmNMYZnnnmG/Px88vPz2bNnD1OnTj3keFrcfPPN/Pvf/6axsZH58+f3WOADICwsrPWxzWZrfW6z2VqvUbvmmmv4yU9+wvr16/nnP/+Jy9W5rLXT6eS4447jjTfeYPny5d0moEoFg9M04gtpP4JlswmVoRlE672wuvXBtlIuc7xOjDQyddv9UFcS7JCGrGavj9+9tJHHPtgI/v9rVNeqG5t5alUh1Q3NwQ5FKaVaaYLVi6effpqLL76Y3bt3U1BQQGFhIbm5uXz44Yddtt+zZw+ffPIJAI8//jgLFixg8uTJFBQUsH27dQH8I488wrHHHtvrvl9//XWam63/NPbv3095eTmZmZlER0dTW1vb2u6UU07h3nvvbU36vvzyy9Z1b731FhUVFa3XQbWMrvXFjh07mDlzJr/4xS+YO3cumzdvZuHChSxfvhyv10tpaSkffPABRx55ZJ/7rK6uJjMzE4CHH36423aLFy/mwQcf5MMPP+TUU0/tc/9KDSSP10cELkxI5y9FGiMziPZWgbtu8AMbBtbsKudE+5cUROYB4Nv4fHADGsJeWVfMGx+t4ox3TqT2wXPA5+19o1Hqdy9uZMnTn1F437fg4/uCHY5SSgGaYPVq2bJlnHXWWe2WnX322d1WE5w8eTJ/+9vfmDp1KpWVlVx99dU4nU4efPBBzj33XGbOnInNZuOqq67qdd9vvvkmM2bM4LDDDuOUU07hT3/6E2lpaRx//PF89dVXzJo1i+XLl/Ob3/yG5uZm8vLymD59Or/5zW9a+zjyyCM5++yzycvL4+yzz26dHnjBBRdw9NFHs2XLFrKysnjggQcAWLp0KUuXLgXgL3/5CzNmzCAvL4+QkBBOO+00zjrrLPLy8jjssMM44YQTuPPOO0lLS+vz8VyyZAnnnnsuRxxxBElJX0+zWrVqFVdccUXr85NPPpn333+fk046idDQ0K66UmrQNTR7icSFCe2cYHljx1gPqnWaYFdqDuwiikYqJ5zFXpNI3dYPgh3SkPXBtlKuDnmRGGkkes/bsPvjYIc0JHm8Pt766gBXOV5iRsPn8OavoaTnmRZKKTUYxAyh6Qdz5swxHYswbNq0qXW6mzo4Dz30EKtWreK++0bvt3r6+6MCqbiyjvS/ZrJ+wtXMvKj9NaFPv/Ac53x5Ka5zH8c5XYuydHT9bX/kbt8dFJ/zIquX/4HjI3cTebN+GO7K/Dve5Snf9ZSbGCY1byFszkVw+p+DHdaQ8+WeSs76+8d8lHg7TbVl5NoOwAm/gWNuDHZoSqlRQkRWG2M6FTcY8BEsETlVRLaIyHYRuXmg96eUUgOlod6ammtzRndaF+W/F1ZN8Y5BjWk4qHU1k+62StinTZjFV/ZJRLqK9TqsLtS4mqmqqiC9aTfVqUfxkW8avl062teVbQfqiMBFRsNm3uAb7I2YCtveDHZYSik1sAmWiNiBvwGnAdOAC0Rk2kDuU33t0ksvHdWjV0oFmqu+BgB7WFSndclp2TSaUFx6L6xOdpc3kCUluMMSEWcsDXGTrRUlm4Ib2BBUUFbPdClAMISOmcNq70Rs5dugsTLYoQ05u8rrme4oQoyX2qQ8PjNTYV8+eJqCHZpSapQb6BGsI4Htxpidxpgm4Alg0cF2MpSmMarhQ39vVKC5WxKs8M4JVnZCBEUmGSoLBjmqoW9vVSMZUoE3OgMAR6r/e7bSLUGMamjaVVbPWNsBADLG57HGTLRW7F3dw1aj067Seg6PqgAgJnMq79dmg9cNJRuDHJlSarQb6AQrE2h7xXeRf1krEblSRFaJyKrS0tJOHTidTsrLy/XDsjooxhjKy8txOp3BDkWNIO4GK8EKDY/ptC4pKoy9pBBaVzTYYQ15ZXVuMqQMW1w2AGmZY6k2Ebj26QfhjnaXNzBGSjBiJ2PMBHaHjLdWHPgquIENQbvK6pnuLAexkZQ1idVe/30V964JbmBKqVEv6DcaNsbcD9wPVpGLjuuzsrIoKiqiq+RLqZ44nU6ysrKCHYYaQTyNVgn20IjO12DZbEJVWDoxLr1epqPSWjfpUkFIgpVgTUiNZqvJYnLxRvQrkPb2VjZyfEg5EpuFhISSmZ5OZUk88aVaEKQtn89QUF7PuJT9EJvFhIxEikwyHkckDj1WPfL5DFc9upqdZfU8fPmRZMaFBzskpUacgU6w9gLZbZ5n+Zf1WUhICLm5uQENSimlDkWzyypyERbReQQLoDEik4jqOmisgvC4wQtsiKutLidaGiHW+sJjYmo07/syyatcY91I9yBugD7SHah1kWMvgfgcwDpWW/ZnMU+vV2unsqEJt8dHinc/JOQyISUKEMrCc0nTBKtH728t5c2vrGmo//pgJ0vOnB7kiJQaeQZ6iuAXwEQRyRWRUOB84MUB3qdSSg0Irz/BckZ1nWB548ZaD6r2DFZIw4K3yv+9Wox1DVZGrJPdtjGENVdDvc5OaKukxk2aKQP/dMpxSZFs8mRgSjeDzxfk6IaOklo3ANFNZRCTSWSYg6z4cHZJll7b14v3tpQQHmLn5GmpPPflXpq9+nulVKANaIJljPEAPwHeADYBTxpjdNK9UmpY8rnrAXB2M4IVmpgDgKt052CFNCyYlnLsUSkAiAh1sf7iDToy005ZTQMx3kqITgdgXHIk20wW0tygN7Fuo6TWjeAjzFUK0dbN7ielRrOhKR3qDkBDRZAjHLpWbi/j6PGJnDkrg+rGZjbsrQ52SEqNOAN+HyxjzKvGmEnGmPHGmNsHen9KKTVg3P77YHVRph0gKs1/L6z9mmC1ZWsZpYpK/XpZ8iTrQfm2IEQ0NHm8PmgoxYavNWkYlxTFVp+/NpROfWtVUuMinjpsxtN6rCamRvFZXbLVoGxrEKMbuurdHnaV1TMrO4554xIB+GRneZCjUmrkGfAESymlRowmawSL0K4TrNSUdGpMOG4dwWon1FVmPYhMbl2WkJZDvQnDU6ofhFuU1zeRTJX1JMpKGrLiw9ll81/KrKN9rUpq3aSK/95g/gRrQnIUm72ajPZk64FajIHJadEkRYUxLjmSL/dUBTsspUYcTbCUUqqPpKmeJhzgCO1yfXZCBHtNMlTtHuTIhq56t4c4XyVecUB4fOvycSlR7DLpuIv1epkWJTWdkwaH3UZcQgrV9gQdlWmjtNZNTph124Svp1NGsdck4nFEQIkmWF3Zst8ahZ+SZlVCnZERy0adIqhUwGmCpZRSfWTz1OOS7ksat9wLK6zuoIqljmiltW6SqMYdltiuWmBuUiS7TBpSsSOI0Q0tJbUuUqTKeuJPsMBKHArIgDKdTtmipNbFOKd124SWqafjkyMx2KgMHwtlmrh3ZWdZPaEOG9nxEQDMyIxhX7WLivqmIEem1MiiCZZSSvWR3dOA29Z9gvX1vbD2WuXHFWV1bpKkGm94UrvluUmR7DQZOOv3gscdpOiGlgM1blJapghGprQuH5ccyaamVIxer9bqQI2bsSEtI1hWMhoXEUpiZChFtiwo2x7E6IauwooGsuLDsdmsLzumZ8QCsHGfjmIpFUiaYCmlVB+FeOpp6iHBAnBFZuE0Lq1i5ldaayVYbQtcAEQ7QygNG2MVdKjQa9agZQSrEhOR2G4a6vikKLb50pDGSqjXggRgHasMexWEJ4AjrHX5uORItnjToHoPNDUEL8Ahak9FA2MSIlqfT8+wKqJu3FcTrJCUGpE0wVJKqT4K9TXSZI/osY2v9V5YBQMf0DBQWucmWapxxKR2WtccP956oFPfAKtwQ5ajGvFfU9RiXLI12gdo1UXAGENJjZtkKttNpQSr6mJ+vb+Yik4/7aSwoqF1eiBYo35pMU62HqgNYlRKjTyaYCmlVB+F+hrxOnpOsMKScgBoLNFRGYCymkYSqSEsLq3TOmdqS6l2nc4FVpGLdHvn0b7cpEh2tCRYWuiCGpcHt8dHvK+ic4KVHMlaV0updk1G26puaKbG5Wk3ggVWefvtJXVBikqpkUkTLKWU6iOnrxGvI7LHNgmZEwCo2qffngPUV5cRIl5sUSmd1mWmJnPAxNF0QJMGgNJaF0lUdUoaEiJDqQ1LxyMhmjRgHSeA6Oay1gqCLcYlR7HLpGEQPVYdFFZaUyazE9pPc56QYiVYPl8314163LDnM/D5BjpEpUYMTbCUUqoPvD5DuGnEhPScYGWlpVJhonCX6QgWQFP1AetBFwlWblIUO30ZNJVoxTeA0ppG4rwVnUawRISxyTHst6fraB/WSJ/gI8xV1ulYjUuOxEUYDeHpOp2ygz0VLQlWhxGslGgamrzsq27svJGnCR74JvznZHj6Ui3eo1QfaYKllFJ9UOfyECEuTGjPCVZOYiRFJhmpKhykyIY2U9dTghXJTpNOSKWO9vl8Bk9dGXa8nUawAMYlRbLdl66jMljXqiVQi814Oo1gjUmIwGETDoSO0emUHRR2l2ClWjdO39bVNMEv/wvFayEtD756AXa8M+BxKjUSaIKllFJ9UOtuJhI3EhbVY7vwUDul9jSc9UWDFNnQZm8osx5Edk6wxiREsIsMwpqrR311vIqGJpKNv/Jkh6QBrGT0q6ZUTOUu8DYPcnRDS0mtq9MNmVuE2G2MSYxgF+lQvkNHXNrYU9FAbHgIMc6QdssnJFt/07Yf6CLBWvMIpB8GP3zXeg+venAwQlVq2NMESyml+qC2wU2EuLH3kmAB1EVmk9C0D7yeQYhs6DLG4HSVWk+iO1cRDHXYqIv0V10c5VPfSmrcpLQkDTEZndbnJlujfeLzQOXuQY5uaDlQ4ybb0XIPrM7J6LikKDa6U6GpDmqLBzm6oauwsrFTgQuA+MhQkqLCOlcSrCyA4nyYcQ7YQyDvPNj6Ori0pLtSvelXgiUifxKRzSKyTkSeE5G4Nut+KSLbRWSLiJzS70iVUiqIGhqsDx/28N4TrObYcYTgse7FM4pVNzaTaCrw2MLAGddlG5NoFQUZ7dfLHKh1kSYtI1hdTRGMYodPS7UD7K9xMSHCnwx0kbiPT45kVZ3/xtY6TbBVkf8mw12ZmBLF9tIOI1gFH/lXftP6d9Ip4PPA7o8GMEqlRob+jmC9BcwwxuQBW4FfAojINOB8YDpwKvB3EbH3c19KKRU0jXVVAISEx/Ta1pFilR9vKB7dxRtKat2kSiXu8BQQ6bJNdPp4mowdUzq6k4aSGhdpUmlVv4vqnDTkJEWww/hHa0b5dVglNS7GhPhHUbo4VuOSI9ni8Sepo/xYtfD5DEVVjZ2uv2oxISWK7QfqMG2nVBZ+Cs5YSJpsPc86EhzhsHPFwAes1DDXrwTLGPOmMaZlDsynQJb/8SLgCWOM2xizC9gOHNmffSmlVDA11VqjCyGR8b22jc6aCkBV4VcDGtNQV+pPsLyRnUdkWuQkx7LbpOE+MLqT0QM1blKpsIqB2EM6rY8IdRAZm0StPW7Uj8rsr3GR6aiG8ARwhHVaPy45igPE43FEaoLlV1rnpsnjI7ubEawJKVHUuj2U1Lq/XrjnM8g+Cmz+j4ohThh7NOx8fxAiVmp4C+Q1WJcDr/kfZwJtS2gV+Zd1IiJXisgqEVlVWloawHCUUipwmuut62PCohN7bZuZkUm1icA9yu/vVFLrIoVKbDGdr5NpMS4pkl0mDV/Z6L4G60CNiyxHNdLF9MAWuUmRFErmqL5ezRhjJaOmHGK7/FjB+OQoQKgMHzPqp1O2aKkgmNXNCNbEFH8lwZZCFw0VULbFSrDaGnc8lG6C2v0DFqtSI0GvCZaIvC0iG7r4WdSmza8BD/DYwQZgjLnfGDPHGDMnOTn5YDdXSqlB4W2oAiA8uvcRrLGJUew0GTgqRnf58dIaq9pbaHznog0txiVbxyqspgB83sELbogpqXWTYauE6O6PVW5SJJs9qZhRPCpT1dBMk8dHorcEYrO7bJMQGUpcRAh77VkwyhP3Fq03GY7vfoogwPYS/7VthZ9b/46Z175h7kLrX70OS6ke9ZpgGWNOMsbM6OLnBQARuRQ4HbjQfD15dy/Q9i9fln+ZUkoNS6ax7yNY4aF29jsyiaovGOCohraqqkoixU1IXNcjDQCpMWEU2jKxm2aoGr3V8UpqXCRTAT2N9iVHsbk5FWkoA//v42hzoNYFQLR7P8RmddtuXJL/OqzqPdDUMFjhDVmFFdZNhLsrcpEcHUaM0/F1oYvCT8HmgIzD2zdMnQH2MNi7ZiDDVWrY628VwVOBm4AzjTFt/4K9CJwvImEikgtMBD7vz76UUiqYxFVt/dtNNbyOaiLHEu8phab6AYxqaGuusr5Xky5KabcQEdyx46wno3i0obK6lmhfTZdlx1uMS4pkp/GPcI3SY7W/2kU0DYQ01/acYCVHkd/onxUzykeSwZoimBIdhjOk63pjIsKElKivpwju+cy6/1VohxEve4i1XBMspXrU32uw7gOigbdEJF9ElgIYYzYCTwJfAa8DPzbGjN65H0qpYc/mT7BwxvapvSe+pfz46P1wZ2r812n0cF0RgCN5ovVglF4v4/UZpP6A9aSHBCs3KZIdZnSXai+pcZMu/ptS95hgRZLf4E+wRnlREICiysZuR69aTEiJYkdpHXjcsHc1ZM/rumHmEdb9sUb5ff6U6kl/qwhOMMZkG2Nm+X+uarPudmPMeGPMZGPMaz31o5RSQ52tqYYGwsHu6FP78DSrVHvdvs0DGdaQZqtrSbC6TxoAUlIzqDKReEdpqfb9NS6SjT9p6GGKYFZ8OMWSglfso7Y63v4aFxlSZj3p5hossO4btsukWWXvR+loX1uFlQ3dlmhvMTElmrK6Jmp2rgKvG8Yc1XXDzCOgucEqdqGU6lIgqwgqpdSI5WiqpsHe+02GWyTnTANGb6l2n8/gaGgZlel8r6K2clOi2GnSR22p9t3l9aSJ/5qqHpJRh91GRmIMpY6MUTuCVVTZwGSnfzS5hxGs8cmRuAijITx91B6rFk0eH8XVrm4LXLRoKXRRvfVDa0G3I1j+67L2rg5UiEqNOJpgKaVUH4Q21+K2R/e5/fiMFPaZBJpLRueHu7I6N8mmnCZ7JIT1fNxyk6xKgrZRWn58T3kD2eK/TUncmB7bTkiOsm44PEpHsAorGpnkrLIKMHRxk+EWYxIjsNuEkrAxo36K4O7yerw+w/iUyB7btSRYFH4G8bndfzGSMA6ccZpgKdUDTbCUUqoPIr1VuEPj+tw+PdZJAZmEVo3OpKGoqpFMKaMpqvsKgi1ykyLZ6UvH6SoBd+0gRDe07K5oYKy9BBOR1GsyOik1mo3uFEzFzlFZ1r6wsoGxjgqIyQRb1wUbAMIcdrLjwykgw5oi2FrkePTZXmIVrpiQ3PPvVmZcOM4QIaH8y87l2dsSsaYJaqELpbqlCZZSSvXC4/UR56ui2ZnU521EhLLwcSQ27gKfbwCjG5qKKhvJlhKIz+m1bWx4CGVh/utpRmFRkN3l9UwMKUP6cKwmpkax3ZeOeJtGXVn7Zq+PfVWNpFHW4/VXLcYlR7HRnQLN9VCzbxAiHJpaEqzeRrBsNmFhQg2RnsrONxjuKPMIKPlqVFdJVaonmmAppVQvKhuaSZIavBEHdzN0V/wknMY96j4IAxRV1DNGSghLHten9p748daDUThNcHfLFME+JFiT06LZ4fNXEiwdXVPfiqtc+AwkNBX3eP1Vi3FJkXxR5/9SZBRfh7WtpI7MuHAiQnsv0HNiuP84jf1Gzw0zDwfjg+J1AYhQqZFHEyyllOpFVU010dKIRB1cghWSbhW6qN+7YSDCGtKqSoutmwwn9S3BCk+diA8ZddcWGWPYV15Doqdvo325SZFsF/91WiUbBza4IWZ3RT0RuIhwHYCkib22H5ccxaZmf9GQ0tFZQAWsEayJqX0r0HOEJ59ik0B9dC/v2/RZ1r/F+f2KTamRShMspZTqRXWpNb0oNKbnangdxY/NA6CqYG3AYxrqXC3FPfqQNABkpyZQ6Eum+cDoKv1c2dBMUlMRdryQPLnX9mEOO0mJSZQ7UuDA6KpQuWV/LblSbD3pU4IVSQlxNIfFw4HRlYy2aPb62FFax8SUPiRYPh9ja77gI98MdpT1MvUvJh2i0mBffkDiVGqk0QRLKaV6UVNmJViRiRkHtd24rAz2mkSai0fXB2EAR8uUrKRJfWo/LimSLSYbz/7R9UF4d3k9E2Sv9aSPx2pSajRbzRjrGphRZFNxLbMj/NUW+3CsxidHAUJZxPhRm2Bt2V+L2+PjsOy43hvvX0doUzUfeme0XrfVo4zZsO/Lfseo1EikCZZSSvWisdL61jwu+eASrMz4cHaQhbNydF0rU1bnJr15Nx6bs9ey4y2mpMWw2WQTVrUTml0DHOHQUeBPsAxyUAnWGncGpmwreJoGOMKhY/P+GuZGloDYrVLhvUiKCiU+IoSdthwo2TQqi83kF1YBcFhWXO+Nd7wDwGfMZFufEqxZVgl8dx/aKjXKaIKllFK9qS4CwJk49qA2s9uE0vDxJDQWgNczAIENTVv31zJJinDFju+xlHZbWfHh7LLlYMMHpZsHOMKhY8PeGqY7CiF+LIT2fCPYFpNSo9niG4P4PKOmeEOz18e2A3VMlwJrKqUjrNdtRIQpaTGscWdalQSrCgY8zqFmbWEViZGhZMWH99544/OQOYeopMy+jWClzwIM7NdCF0p1pAmWUkr1IqS2CDehEJVy0Nu64yYSSjNU7hqAyIamLQdqmWLbgyNtap+3sdmE5iSrKMhomvq2fm81s+y7kZaiAX0wKTWKzcZfpnyUTH3bVVZPk9dHpmsbpOX1ebsp6dF8WO1/346SY9XWl4VV5GXFIiI9NyzbZiVKM85mYkoU2w704X50GbOsf/U6LKU60QRLKaV6EdGwl3JHqnWDzYPkyJgBQOO+0VNJsLhoF6lSRdjYOQe1XWzWZFyEYPaPjmPl8xmK9u0jzbf/6w+rfZCTFEmhLQOvOEZN0rCpuIZkqgh3l0J63xOsqekxrG9Ot6ZgjpJj1WJfVSPbS+o4enxi7403PAsITP8Ok9Oi2V3RQENTL6Pu0WkQna7XYSnVhYAlWCJyg4gYEUnyPxcRuUdEtovIOhE5PFD7UkqpwWKMIa5pP/XhB3f9VYuEsVaCVVUweqbRNO1ZBYBkHNyf/SnpcWz1ZdG0b/1AhDXk7CqvZ2Kzv3x4xuw+bxditzE2OY69jtFT6GLD3mqOcvinQ2Yd2eftpqbF0IiThsgxoy7B+mCrVRDk2Em9jLx7PfDlo5CzAGIymJIWjTGw7UAfC11oqXalOglIgiUi2cDJwJ42i08DJvp/rgT+EYh9KaXUYKpsaCaDA3hjer+xaVcmZKay25dCc/Ho+HBXWd9EavU6a3QlbeZBbTslPYbNvjHIKPkg/NnOCo6ybcLYHJA196C2nZYew0Zv1qgp1f7xjnK+FVsADiekH9bn7SamRmET2Bs2btQlWCu2lJIW42RSb/fA2vQCVO+BeVcDMDktBrAqEPYqfZY1vdDdh7ZKjSKBGsG6G7gJMG2WLQL+ayyfAnEikh6g/Sml1KAoKtpDgtRh68N9d7oyJiGCHZI9aioJflFQwdG2r2hIntXnog0tJqdFs9mMIdRdDnUlAxPgEPLR9jIWhmy2RgFCIw9q22kZMeS7M6GmCBorByjCoaGivomN+2o4kg1WIuoI7fO2zhC7dcNh3xio2AlNvdzfaYSocTWzYmsJJ01L6fn6K2Pgo3sgYTxMOg2w/maFh9jZtL+m9x1lzAYMFI+eEXql+qLfCZaILAL2GmM63kkzEyhs87zIv0wppYaN0p3Wn7a4sX2/7qMtm02oiBhPgmvPqCipnb9tNzNkF+GTjj3obWOcIZRFTLCejPDRBq/PsHH7Tqab7cj4Ew96+2kZMXxl/FUtR/g1ax/vKCOVCpLqt8GEkw56+ylp0XzWkAYYq1z7KPDKumJczT7OOSK754Zrn7Cm+C28AWzWR0K7TZiUGtW3EayWawd1mqBS7fQpwRKRt0VkQxc/i4BfAbceagAicqWIrBKRVaWlpYfajVJKDYiGIuvDa9K4vk9L6sibNBkHXswIL6ltjKFp0xs4xIdj0imH1Ictfbr14MDIThpW767kCPcXVln6QzhW09Nj2ejLsZ6M8A+372wq4XRnvvVk4skHvf3U9Bg+qPVfQ1nc8bvgkccYw6Of7mZCShSHZcV237ChAt76jTUqeNgF7VZNTovuW4IVlQLRGVroQqkO+pRgGWNOMsbM6PgD7ARygbUiUgBkAWtEJA3YC7T96iTLv6xj3/cbY+YYY+YkJyf39/UopVRAhVVsol4iscUe+gC8M8tKzmp2j+wPd1sO1DKrYSWNoQmQdXAVBFtkZY6h2CTg3Teyj9WLa/dybsiH+OLG+u8ndHBiI0IIj0ulwpEyopOGereH1zfs58LIVZA0GVL6Xvq/xdT0aIpMEp7Q2BGfjIKVkG7cV8OVx4zrfnqgzwvPXAGuavj2n1tHr1pMTouhvL6J0lp37zvMmK2l2pXqoF9TBI0x640xKcaYHGNMDtY0wMONMfuBF4Hv+6sJzgOqjTHF/Q9ZKaUGh89nGNPwFcVR0w+pRHuLtHEzaDJ2qneN7G9531i1mW/a1sC0s/p8g+GOpqRHs8GXQ3PRyD1Wbo+XtevWMk82Ypt9cacPt301PSOGr8gd0QnWm1/tJ8Ozh3H1+ZB37iG9D6ekxQBCSdTUEX2swPrd+uNrmxiTEMFZs7v5UsgYePXnsOMdOO3OLsveT02LBmBzn67DmmXd8NrVh7ZKjRIDeR+sV7FGuLYD/wJ+NID7UkqpgNu8p5iJ7KE544h+9TM5M5HtJmtEX1fk9njxrXmUMGkm/MiLD7mfaekxbDQ5hFXtAHcfykQPQy/k7+PkprcwYoNZ3zvkfqZlxPC5KxtTtm1EHitjDA99VMC1kW9h7GFwxGWH1E96rJOEyFC2SK5VddHTh1GZYeqPr25mR2k9v1s0nRB7Fx/xml3wwo9h1QMw/1o44tIu+5nsT7D6dh2W/xYD+7XQhVItAppg+UeyyvyPjTHmx8aY8caYmcaYVYHcl1JKDbRda97BLob06cf1q5+4iFB2O3KIqdkSmMCGoJdXF3CB90WqUo46qHs6dZSTGMk22wQEMyKvw/L6DE+syOdyx5sw+VvQj6mn0zNi2eDLGbHH6uMd5RQV7eFbvveRwxZDZNIh9SMizMiM5RPXGPA1j8h7h3l9hj+/uYWHPi7g8vm5HD+5i3tf7cuHB74J+Y/BsTfDSb/rdkQwMSqMpKgwNve1VDvodVhKtTGQI1hKKTWs2Xa+SxMhxE09+Ip4HVXHTibOUwb15QGIbGhp8vjY+fb9pEklsSff3K++bDbBk+q/f9YInM719OpCTqlaRgQu5IRb+tXXtIwYNvhyrScj7Fh5fYY7XtvMrRFPY8cL3/hpv/qbkRHD25X+O8WMsGNVWNHAMXe+xz3vbufcI7L41bemtG9QtQdevh7+dTzU7ofzH4fjf9nrdMspfS50kQwxWXodllJtaIKllFJdaHR7mFr7MYXRsyAkvN/9SeoMAJr3re93X0PNo++u5oqmR6lKnoOMP77f/aVnjaPMxOIbYd+Il9S4ePbV17jc8QbMOv+QCja0lRHrpCk8mVpHwoj7cPv4Z7sJ2fcFi3zvIPOuhkO8D12LmZmx7PQl4w2NGVHHqtnr45plX1LZ0MQ9F8zmznPycNht4PXA1jfgyUvgntmw5hGY8wP4yRcw5dt96ntyWjRbD9Ti9ZneG2fM0hEspdpwBDsApZQair74+C2Okf1sn3FdQPqLyZ0Nm6Fi52pSJx4XkD6Hgq/2VpO28haibS4c5/6tX8VAWszIimP9qhy+UZhPWABiHAp8PsMtT33O//ruRSITkZNv73efIsK0jFi2lIxjzggaldl6oJZ7XvmCVyP+gYnKQo65qd99zsiMBYTSqMmkjaBjdefrm9lRuI9l3zjAYfYG+LwMCj+FnSugoRzCE+DI/4Gjf3zQ01GnpEXj9vgoKK9nfHJUz43TZ8Hml62qhM4eSsMrNUpogqWUUl1oXrMMF6GMO+bQixC0NW5sLiUmDlfRyLkQvLqhmfceXsKPbZ9Sv/DXOFKm9L5RH0zPiOEtk8uxlS9Bc2NARhCD7c7XNvLdgtuYaC9Cvvs0RCQEpN/pGTF8XpjNEaUvIiPgWJXUuLjyPx9zb8i9JJkK5NzXwRnT736z4sOJDQ9hq208aQeeA28z2EMCEHHwPPlFIY98uJnXE+8lZ81aWONfEZVm3ZB56pnWfcMcoYfUv1V90Sp00WuC1XLdZfE6yF14SPtTaiTRKYJKKdVBYUkFs2veYWfCMdjCA/Nt7LjkSLaYMYSVbwpIf8HW0OTh4aV/5Gr3g1SOOYXI428MWN8TUqLYIuOwGe+IqLy49N1NTPz0F5xq/wJO+YP14TdAZmTGstaTgxivVSFvGCutdfODB1Zyi+tPzDNrkTP+esj3U+vIKnQRw2eubPC6oXRzQPoNlqdWFbLk2c95NvYvjK1fB4v+Dld9BDdsgRs2w3fvh6mnH3JyBTAxNQqb0LdCFxmzrH91mqBSgCZYSinVydqX/kaC1JF2wtUB6zPEbmN/+AQSG3Za354PY1UNTTx03//yk+o/U5F6NPEXPXTI93LqSojdhiuppdBFfsD6HWwer487XljN+Pd+zNn2lfiO+zVydGDvWDIrO44NvhzryTA+VrvK6rn8H2/w26pfc5J8Yd2fafaFAd3HjMxY3mopdDFMr8MyxvDvD3fyp2fe54Xou5jatB757r+sY5U2A6LTAjJNF8AZYicnMZLNxX24v1VkEsRmD+vfQaUCSRMspZRqo7Kmntl7HqYgfDoJ008MaN9NiVMJoRnKtwe038G0saiMN/98OT+q+QsVad8g6YfPQmhEwPeTmj2BSqIx+4bn9TIlNS5u+seTfHf1xZxkX4PvtLuwHdf/a4k6GpMQQX14OvX2WNi3pvcNhqDX1hfz23v/zdKGn3G4fSec8x846n8Cvp8ZGbFs86bgDYkalolAndvDT5/I541Xn+PNiFuZYAqQcx+ybsA8QKakR7PlQB9GsADSD9MRLKX8NMFSSqk2Pnrqz2RKKSHH3xSwb4JbhGbmAVC/Jz+g/Q4Gn8/w/Fvv4f7XqZzneYkD0y4j6coXBuyan8Oy41jvzaGpcHglDcYYXv5yD4/ffSO3l17DGKcLufg5bEf9cED2JyLMzIpjo0yEouF1u8mqhiZufPxTti+/mQdlCamxEdguexVmnD0g+8vLisVgozR6KuxdPSD7GCgfbC1l0Z/f5PCNf+TJsP8lNiYG+cFbMG3RgO53cmoMeyoaqHd7em+cMRsqdkJj1YDGpNRwoEUulFLKb+eeQr6xZyk7o2Yzbm7gP7ikjptJ0+d2qnZ9SeScCwLe/0DZXlzOZ4//nnNqHqHZ7qTmW/8kdc75A7rP2WPiecvksqD8VWhqGJBRskDbUVrHsmee4ax9/8fptt3U5Z5M1Nn3WtO2BtCs7DhW7srlyNKnrA+34XEDur/+8vkMT36xh8/feJTrvA8xxlGCb9ZF2E+7A8KiB2y/YxIiSIwMZYNtCmn7lw2L36u9VY386bVNuNa/wKNhj5PuKIG5P4STfjugx6rF9IwYjIGvimuYm9NLYZaW67CK18K4/t87UKnhTBMspZTC+tC364mbOI56bGf/X8BHrwCmZCayzWQRN0zKRJfWuHjzmX8zv+BeLpT9FKafRNaFf0MGOGEAmJAcxV/tU7GZF61pRznzB3yfh6qk1sWjr7zLlK/+wi22z6h3JuE982Gipi8akN+jjvKy4njIN8F6snc1TAjs1NZAMcbw3pYSnn3lVc6reoA/29fjSpgEp9+PLQD3T+uNiDB7TDzvFo/lJJ9nSP9e1bia+ft7O1j10Zv80v4oR4RuwZc0Bb790KDGPDPLKvKzYW917wlWekslwXxNsNSopwmWUkoB776yjJMaXmXT+MuYOu6IAdlHcnQYH9knckrVp2DMoHz4PhSNTV5eeuVFxuXfwYWymZLwXGq+9TjZM781aDHbbIIncy7sw7qvzxD8IFzjauaptz4iatW9XMN7+Byh1M+7ichjr4WwXspaB9Bh2bGs9Y3HIEjRF0Mywfp0ZzlPvvwap5Q+yH32VTQ5YzAn3oFz7hWDWi798LFx/GtTFn9wAoWfDbnfq1pXM499tofP33+Fi5qf4WZHPt6IZDjxr9hmXQT2wf3YlhIdRlJUGOv3VvfeODIRYsfodVhKoQmWUkpRuG8/01fdwt6QbKZc8McB24+IUJ2QR0T529a1ConjB2xfh8LV7OXdN18kftVfOM/kU+OIp3TBHaQc88NB/2AHMClnDNv2ZjJu92fYh9CtdUpr3Tz39vuk5P+NS/gAY7PTOP0iYk75NWHRqYMeT0q0k4SEJPZ6csgq/HzQ998dYwwfbCvjlTff5LgDD/Fn++c0hUXjnf9LQo++Oig3pD18TDyVxFAfnUvkEDpW5XVuHly5i52fPselvue4yrYFT2QCfOMW7EddPagJe1siwszMGDb0JcECyDhs2FZoVCqQNMFSSo1qPp9h2yPXcCwVVJzzCDLAN2p1jJkD5eDa/QXOIZJg1bmaee/1p0lfey/fMhuptsVSePgvyD75mkG5zqM7s8fEsfqDieTs+Qy7zxfQUvCHorCigRfeeIucTUv5gXyC1xZK1fTLSDr5RkJiMoIa25G5CXy8cSLnFn6MeJr6df+j/vL6DK+u28eHb7/AadVPcKd9LU2hUXiO/jmh838S1GvE8rJisduEnc7pzCz8CHxesNmDFs/eqkb+/f42qlY/xQ95gWm23TRFZ8Axd+KYffGQuEZsZmYs728tpbHJS3hoL8cqYzZsegkaKyE8fnACVGoI6neCJSLXAD8GvMArxpib/Mt/CfzAv/ynxpg3+rsvpZQKtHdefIRvNr7JpolXMHXKwE8Xypw4i4Y1YVRv+4T0wwe2UERvqhuaWPHK44zd+HfOYAuVtgR2H/Frxp78Y2JDI4MaG8Ds7Hj+YCZxftMKKNsCKVODEsfWA7W8+tqLTNv5H35iW4XbEU7trB8Rd8J1JEWlBCWmjo7MTeCdL6dzHm9C0RdBmfrm9nh5ZlUhG99bxtmNT3OnbTuu8AQ837iF0KOuGBIfuCNCHeRlxfJW41RmNr5sXS+UOTBTgnuyvaSOf723Cfv65Vxpf4kc236a4ibAsX8ndOa5QU2QO5qRGYvPX+jiiLG9nMP0Wda/+76E8ScMeGxKDVX9SrBE5HhgEXCYMcYtIin+5dOA84HpQAbwtohMMsZ4+xuwUkoFyu6iveR9eStFoTlMWXz7oOxz5pgk1ptcxu4NXvnx8loX77/0MJO2/JNFsoNyewqFR/4v2SdcSXyIM2hxdRQfGUpZ8jeg6n7Y9tagJ1hrdlfwwavLmFf8CNfZNtEYEk3dnBuIOvYnhEX0csH/IDsqN4Hf+6bhEzu2ne8NaoJV62rmiU92ULzyv3yv+Tm+Z9tHQ3Q2vmP/D+fsCweslP+hOnZSMo+8M57rwwTZ/s6gJljriqp44J0NJG97nJ/ZXyXVUUlT6mFw7J8InXJ60EdpuzIj8+tCF70mWFlzQexQ8JEmWGpU6+8I1tXAHcYYN4AxpsS/fBHwhH/5LhHZDhwJfNLP/SmlVEB4fYadj17DQqmm+rzlyCAlFklRYbzlnMYRNS+Cu25Qr63YX1nPyhcfYMbOf/Fd2UNpaAb7jr6TjGMuI3EIfWPe1tQpU9n08Rgmbnkdx/yfDvj+jDF8uGU/a19/kJMqlnGdbQ+1zhQa5v8vEfMuD9q1ML0ZmxhJYlIKO5onM3HHu3DCLQO+z7I6N499sJHmz//DheYV0qWCusRpmBP+l4hp3wnKdXt9ceykZP7ydgxVcdOJ3/4OHBv4G0C3ZYzhkx3lPPzul0zZvYzfhbxBnKOO5uwFcNwNhI47fsgWvAFIj3WSGBnKuqI+XIfljLGmCRZ8OPCBKTWE9fev3yRgoYjcDriAG40xXwCZwKdt2hX5l3UiIlcCVwKMGTOmn+GMPE1uN666ahoba3A31OFuqKW5sY5mVx1eVx1edz2eJjceTzP4vIjxYDNexOcB48Xm82Iw+LBhEHxiw2BDbHZsdjs2mwOb3Q6OMHCEISHh2EKcSIgTW4gTW2g4oWERhISFE+qMJDQ8HKczEmd4JGEhdmQI/6egVE/efu5BTnG9w+ZJVzFl4lGDuu+GrGNw7HwW784PsE/91oDvr7C0ii9e+AezCx/iHNlPSdgYDiz4C6nzLx6yH4JbHDMpmfdWzmJy4avgqh6wwghen+GttbsoeOuffLvuGY6xlVIZPQ73cfcRPXvxkJqy1Z3jJ6fw+hdTmbD3WaT2AAxQwY3CigYef3c1Mese4FJ5g1hpoDbjaDjxRqLGnzikkwWwytrHRYSwynE43yx6FBoqYABGJH0+w1ubDvDEO5/xjZInuNvxLhEhLponnArH3khI9tyA73MgiAiHj41n1e6Kvm2QuxA+vnfQv0BSaijp9X9WEXkb6OqmJ7/2b58AzAPmAk+KyLiDCcAYcz9wP8CcOXPMwWw73Bifj+rqCioPFFJbWkhjxT68NfuhoRybqxJHUzX/v737jq+qvh8//nrfmb1DyIAkbELCEhAVFDete1Rt3Vb91tZW/dplh7X229ZWv7W/1rZ+tVr33ltxIKCAIiB7BAgkEMjeuTd3fH5/nJsQIMzc5Cbh/Xx4vfesz3nfe3Iu530/47h99UT7G4gNNhJvmogTDy4gIdLBd6HVuPDiwisuvLhps7nxiRufzY3f5iZgjyJgjyJojybocGMc0RhHNDiiEVc0Nlc0Nmc0Nncsdlc0DncsDncMrqgYnFGxuKJicMXEERUdS5TLidPe95pO9HfGGIwBE3odNGCw5gEEQy/a12nfBtq3aZ/Z/rR7287r735trbPnNnTaJlR20HR6HbSWdPp22F2O7LG/vcLBGOmYMkjHsqaaCiavuItS93BGX3L3IX1W4TS48GRaNrlpWfEuaT2YYG3eUcnXr/+N6Tuf4kKpYXvMKKpO/h2DplwU0Y79h2Py0GT+YZ/C980bVjPBoovDWn6bP8g7i9dQ8+k/OM/7JrOlkcrUifhO/yvJY77ZJ5ts7c+pYwdx5+fT+aH7ZVj5Ahz/w7CWv35nIy/MWUDehke4xTYXl81Py7BvwCk/Jj6n9/sxHSm7TThxZDqPbRzH6SYIq16GaTeErXxfIMgby3fw5sfzOKP+Bf7PMR+H02DGXQQzb8OZURC2ffWW6cNSmbNmFzvqWslKOkiTz7yZsOB+6/YKI07rnQAHuGDQ0Nzmp8nrp8njp9UXwOML4vEFrIffeu31BWjzegh4msDfit3fivg92AKt2P0ebAHrtSPgwR7wYA94O36ct5sANgLYTQA7fuwEsJkAjtCzjSCA9S+pCIKVfFsPsAkgNmwCIjYk9IzNDuJAbHbrBz2bA2x2xGbNE7sTsTnA7sBmb5/nQGxObA5rns3mwJ8ynJThU4hz9+0fBdsdNEpjzH7PDhG5CXjFWFdcX4hIEEgDtgNDOq2aE5o3oHlamthVWkzdjmJaKzcTqNmGu6mMOO8uEvzVJAdrSZI2kvbars3YaZR4mmzxtDriaYnKoME9mjJ3EkF3IsYdj80VayUi7lgcUfE4o2NxRcfjjonDHRVDlNuF3e6y/ijtdmyhP1ix2bHZBDEGTBBMAEyQQMCPz+fHF/Dj9/nwt3nwe1vxt7USaGsh0OYJPVo7HkFfK8E2D8bXivG1Ir5W8Huw+VtDJ611wroDXuICtTj8XpxBL27jxUUbUcaLQ4JH9Nl6jYNGnASxERQ7oa8BgmIjiJ0AdgJi71gebF8mdgw2QNr/C/24KpjOO9jjmn+vZe1LQjMldCkvuy/xwXTeyux+bfYq0ZiO7a35u9c3ncrY89lYxw/2LCu0XXsKIcbsEbmw7766mpZ9lreXvWccB57ef1nt63KQsmzSu7+v+LBTd8kriMPdq/sFmDYyk4XBAo7Z8nGPlL++pIx1b93PCZUvcIE0sDV+IjWn/5Ps8bP7fO3C3lwOGzlFJ1K+MpX0JY/hCFOC1dLm5415X8LCBzjHP4dY8bIr8yQCs39Oet7xYdlHbzs2P4XGuGFskjEMX/4MHHdzWI73V1trePP9D5hU+jh32BYhDhvecZdgm/XfxKWNDEPkve+cCVnc8HUOjYPHEr/0cZh6fbc/q5Y2Py98WcrCT9/lwtaXedT+FcblRCZdhW3GLZCcF57gI2D6MKuGb/GWai6YlHPglYdOB7sLij/WBKuTYNDQ4PFR2+KjprmNupY2alt8oec2app91Le20ejx09rait1Tg9NTQ5SvlhhfHSnSQCLNxEsL8bQSLy0k0EyGtBJPS2i6Fbf4jjhG69rKur7anWbZ8YeupazrFNj9E+feP5ru+e+4zboqwxG6UrOeQ68P83rwUf9sBl1yP2ePj+yIrYequ2nga8DJwCciMgpwAVXAG8AzIvIXrEEuRgJ954YT3eBr87Bj8xqqt67GU74OR20xSS0lpPp2kkoduUBuaN02Y6fCNoh65yB2xBdRGpMOcYNxJmUSnZJNQnoOSYOGEBOfTKrNRmpPBi4C2Gg/5HYn2KOg17uzB3z4vc14W61Hm6cZn6cZn6cFv7cZvzeU0HmbCba1Ynwt4POArwUT8BHw+zFBPwT9iLF+VZHQw2oaGUDaf20JzbcT3F2LYtprYNov7vf8B9W215fDHv/eSsf/rJRAbB2pQ0e6IJ2Wty+T3SmFSKc0Q9r3br1uj6b99e592vYKRrp4LZ3WOdByq7zdSWZ74tlpG7GFimova/cHsEecB9337rL2WI5gQvuXTnG2l9f+mSDWetKxzZ5Hq3MyZ/3P7HE8dyeLHZ/yHtvHj5pB5ogpREJ6vJuS5OM4teGfmIp1yKAxYSn36/UbKX3nL5xY9yqjpZVNycfhmH0HuWNOCkv5kXLx1DyeXHYaP936PFSsg258XlVNXt7+6BOSl/2Ti8wCbGKozD+HmNk/JWNwYRij7n0Ou41vTcnh0Xkn8Pu2R6BsCRxhM7RA0PDhmp188dHLzKx6gbvsX9PmisE/+SaiZt5MTISHpe+uWaPTSYuL4lXbaVy18++wY+kRD3ZR0ejhic+2ULboZa4Ivs41tg34ohORY2/Hdux/QR8ZabI7xg5OIDHaycJNh5BguWJh+Kmw5jU443/6VS3wkWjzB9nV4KGi0Utlo/Vc0eClotFDZaPXmm70Ut3kIcE0MVhqGSw1ZEgtg6khQ2rItTUwyNZIqjSSTAOxpnn3DgTr6jrEb4/B74oj4ErEuOIx7nSISkSiEghEJ+KNTsQRHY/NFWPddqT94Wh/HQPOKOvZ4QabM1Sr5MBusxGOtg3BoCFgDIGgwR80+ANB2oKG1tB0IGDwBwL4A34C/tAj0EbQ7ycY8BHwB/AHfJiAj2DAjwn4yXbEUzg08iORHqruJliPAo+KyCqgDbg6VJu1WkReANYAfuAH/XEEwbrKcrZ8/SmtW78itmY1Ka0lZAbKyZVgRxJVSQq7XEMoTjqB9QlDcKblE58xjLSckaQMHkqO3c5BvoqOLnYnjpgkHDFJRH4QaKUiJ3HyRfg/eZC6zx4j7YJ7jrgcYwwLl66g9qO/cErzOxSJj+L0U5GzfsHw/P7TbOtAJg9N4p6Us2lrfBnH5w9gO/+Bwy5jw8565r/7AiO3PMnVtq/xipuasVeScebtDE4aOP1/L5s6lHPnHc8v7S8SM/cPcMUrh1Uz09Lm59Uvitkx7wnO9bzOmbYyWqJTaTvul7im39AnhloPB6fdxtXH5XLvnAlcnpCAfe6f4PIXDquMjbsaefzTNciKF7jG9jbDbeV4E7Jhxp9wTrpiQPU/stmEE0ak8sn6SgJBg912kL+pwgthw7tQuhhyj+udIHtIg8fHjrpWtte2sr0u9KhttebVtVLR6MUYcOAnS6oZIhUMlUrGumv4pqOaLKkmlWoSo6pxmLZ9yg/GpCFxg5DYwRBTCLFpEJMGsamh57Tdz1GJOOzOPn8TW5tNsCE4+0dL9B4hxvRus5wDmTJlilmyZEmkw+iw6NnfM339nwkaocyWRUX0MNqSR+AcNJrkoePIGlFITHzfGqpXKdU/VDd5WfrnszjeuZ7Yn6457Bv6+gNBFsz/kOBn/2Bm23xEYEvWWeSc8wuiMyNzv6ie9OGaXWx75kdc63gf+e4HMGTaQbcJBg2fr91C8Yf/YUb1S4yw7aDBkYrvmOtIPfEm6wJmAPrtm6uxLf4Xv3Y8Cec/CBO/fdBtNlc28f78RThWPM2FZg6p0kh94hjiTvoR9vEXW790DzCNHh8n3zeXm13vcE3Lo3DBQzDh0gNu4w8E+XBtBXM/m8/o0he5yD6fBGnBm16I+8TboA+Pnthdb63Ywc3PLOPZG6Zz3PCDnDveRrh3BEy6Es66r3cC7IYGj4+Sqma2VDVTUtVCSbX1emt1M7Utu5vcReNhlH0Xk+OqKHBVkGevJDO4i+S2cmK8FYjp1OzN5oDEHEjIgYRMiM+EhCyIHwzxWda8uMH9YgAdtX8i8pUxZp/mMAPzWyBMhs38NmuHTSF33LEMjUti4PzGqZSKtNQ4NyVj/4vT119P3Qd/Iumc/zmk7WoaW1j03jMMXvMos8xqmolmy/AryPvmfzMyLa9ng46gU8cO4gf53+P0bUvJePoyXFe9bA0H3YXSqga+nPsmMWuf5yT/QmZIGxUJY2k+6dckTLp4wF/Q3HrqKM5dcx5neb5i4pu3YLM5YPy39lmvvtXH/GVr2Lb4NY6pfYebbOsIItQPPRVzyi0k5s3sd332Dkd8lJPfnVfIzU+3MiN5CcNf/77VEb/woj3etzGG1TsamPvVKlqXv8xJ/gXcY1tPwOnAP+ZcmH4D7qHHDejPCuCUMYOIdtp5a8WOgydY7ngYczZ8/Syc/IseGaXxcBlj2NXgZcOuxo7HpspmSqqaqW7uXLNkmJTQxLS4aq4bXMEw2UGGr5TE5q24mndYq3gBr1hJU3IuJM0KPeeGnodaSdQATbbVwWkNllJKRUhFg4eF/3sJZ8t8/Jc8g7vgG12uFwwaln+9hNoF/6Gw6h0ypJZK+yBqCq9j5Jk3YYtJ6t3AI6SupY0f/+tF7mq4kwxbA7Vjv4OMOI02dyoVlTupKlmNe/tCJrQtI1FaaJZYKnLPIvvk63ENnTbgL4A7W7ezgR88/BH3+P/EVFlLddpUGnNPp96eTFV1NW0715HZuJLxshmbGOqih+CYfAVx066wfnU/ivxzbjH/fG8Zz8Tcx/jgOurSp1CdNYtdgUQqK8vxV29hTNsaxso2bGJoShhJ9JRvY598FcSlRzr8XnXLc8v4eG0FC35+ConRzgOvvGs1/Ot4OOlnVpLVi6qbvKzb2Z5INXUkVI0ef8c6aXEuClIdHBu3k0JHKXn+LaQ3FxNduxbxNu4uzJ0AqSMgbaT1SA09pwzrczfRVr1vfzVYmmAppVQEzV2xidSXLqTAto1doy4ncfoVuFOGUl1TTenGFbQWzye7agHDTCkBI2xMPI6E464la9qFR+Wvo7XNbfz9jQUUrLmf82yf4ZQ9u/fW2FKpyJhB2sSzSZt8zlF9AbSz3sMf3lpB5trH+I5tDrm2io5lrURRHTcKGXkqmceciy170lGVgO5t4aZq7ntnBUU7X+FK+xyG28o7lrVKDPUpRSSMPZmY8efDoIHXBPdQrdpez9l/X8CPzxjFzaccwgiSz18Bmz+Fmz6HpCEHX/8wGWMoq21l9Y56Vu9oCD3q2dXg7VgnKcbJqPQ4pqU2M9m9nRHBrWS0bsRdtQZqNtMx8p07ATLGWY9BBZA+2kqm4gYd1eeGOjBNsJRSqo+at2oTFS//nPOCH+2TMPiMnY3REwiOPJ3hs64iOvXoql3Yn6omL8s3bsVesRqXv4m0tDSyhxcSl5qjF0N7aWnzs6WqmeaaXSRJIzmD0ohJHTLgR3c7EhWNHspqW5HWWga7vQwelIFEJ+vfVCfXPfYlS0pqeP+2E8lMPMgPGDWb4cETYXARXP1mt34U8geCbKps7pRM1bNmRwMNoVopm8CIQXFMHBzF8QkVjLNtI7ttE9E1a5Fdq60blbdLzofBhZBRZCVUgwut5n16nNVh0gRLKaX6sNa2AItXrsG3ZRHSWk1sbBxJQwsYOW4Kjui+eKtxpdTRaEtVM2f9bT7jcxJ5/LppuB0HGSpuxQvwyg0w+ptw8aOHVKvc0uZn3c5G1oRqpdbsqGfdzka8fmsQCbfDxpjB8ZyQ3sq0mHJGsY2Mlo3YK9dAdbF1308AZ+zuBCqj0Er0Bo097EGFlNofTbCUUkoppVS3vfxVGbe/+DUzR6bx10snkhp3kFEmv3gY3vkxpAyH0++G0d8Am5WYVTR6WLOjgTXlDR3PW6qaab88TYxycMJgP9OT6pjgKifXX0Ji4wakYi14G3bvIyk3lEQV7n5OytOaWtWjNMFSSimllFJh8cKXpfzytZXEuh1ccWwuJ49Jpyg7CZdjz4QmGDTUtfpoXvshKXN/TmzTVprsSax2jGV5Ww6lbXF4cWLDkBEDI+O8DI1qZbCtjhTvdhz1JYivZXeBUYkwaBxkFFh9pTIKrVqpKK3pV71PEyyllFJKKRU263c2cu/76/hoXQXGgN0mJMe4SIhyEDSG5rYANc1tBILWtaYDP6fZlnK2ezlTbOsZHCjvuuDoFGtwieR8a7S+lHzrkT4GErK1r5TqM/Q+WEoppZRSKmxGD47n31dPparJy5KSGlZtb6C62Uujx49NhGinnbR4F2lxblLj3OSmxJCf/k0SokJDvAd80FwFQR+IDewuK7k6CkdIVQOL/gUrpZRSSqkjlhbnZnZhJrMLMw9vQ7sTEg5zG6X6Ae35p5RSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSZ9ahRBEakEtkY6jr2kAVWRDkL1Gj3eRw891kcPPdZHFz3eRw891keXvni8c40x6XvP7FMJVl8kIku6Gn5RDUx6vI8eeqyPHnqsjy56vI8eeqyPLv3peGsTQaWUUkoppZQKE02wlFJKKaWUUipMNME6uIciHYDqVXq8jx56rI8eeqyPLnq8jx56rI8u/eZ4ax8spZRSSimllAoTrcFSSimllFJKqTDRBEsppZRSSimlwkQTrAMQkdkisl5EikXk55GOR4WPiAwRkU9EZI2IrBaRW0LzU0RkjohsDD0nRzpWFR4iYheRZSLyVmg6X0QWh87v50XEFekYVXiISJKIvCQi60RkrYgcp+f2wCQit4W+w1eJyLMiEqXn9sAhIo+KSIWIrOo0r8tzWSx/Cx33FSIyOXKRq8O1n2N9b+h7fIWIvCoiSZ2W3RE61utF5MyIBH0AmmDth4jYgX8A3wAKgG+LSEFko1Jh5AduN8YUANOBH4SO78+Bj4wxI4GPQtNqYLgFWNtp+k/A/caYEUAt8N2IRKV6wv8D3jPGjAEmYB13PbcHGBHJBn4ETDHGFAJ24DL03B5IHgNm7zVvf+fyN4CRoceNwL96KUYVHo+x77GeAxQaY8YDG4A7AELXa5cB40Lb/DN03d5naIK1f9OAYmPMZmNMG/AccF6EY1JhYowpN8YsDb1uxLoAy8Y6xo+HVnscOD8iAaqwEpEc4Czg36FpAU4BXgqtosd6gBCRROBE4BEAY0ybMaYOPbcHKgcQLSIOIAYoR8/tAcMYMw+o2Wv2/s7l84AnjGURkCQimb0SqOq2ro61MeYDY4w/NLkIyAm9Pg94zhjjNcZsAYqxrtv7DE2w9i8bKO00XRaapwYYEckDJgGLgQxjTHlo0U4gI1JxqbD6K/BTIBiaTgXqOn1x6/k9cOQDlcB/Qk1C/y0isei5PeAYY7YD9wHbsBKreuAr9Nwe6PZ3Lut128B2HfBu6HWfP9aaYKmjmojEAS8DtxpjGjovM9Y9DPQ+Bv2ciJwNVBhjvop0LKpXOIDJwL+MMZOAZvZqDqjn9sAQ6ntzHlZSnQXEsm8TIzWA6bl8dBCRX2J17Xg60rEcKk2w9m87MKTTdE5onhogRMSJlVw9bYx5JTR7V3uTgtBzRaTiU2FzAnCuiJRgNfU9BauPTlKoWRHo+T2QlAFlxpjFoemXsBIuPbcHntOALcaYSmOMD3gF63zXc3tg29+5rNdtA5CIXAOcDVxudt+8t88fa02w9u9LYGRoNCIXVme6NyIckwqTUB+cR4C1xpi/dFr0BnB16PXVwOu9HZsKL2PMHcaYHGNMHtZ5/LEx5nLgE+Di0Gp6rAcIY8xOoFRERodmnQqsQc/tgWgbMF1EYkLf6e3HWs/tgW1/5/IbwFWh0QSnA/WdmhKqfkhEZmM17z/XGNPSadEbwGUi4haRfKyBTb6IRIz7I7uTQbU3EfkmVt8NO/CoMeb3kY1IhYuIzADmAyvZ3S/nF1j9sF4AhgJbgUuMMXt3sFX9lIjMAn5sjDlbRIZh1WilAMuAK4wx3giGp8JERCZiDWjiAjYD12L9oKjn9gAjIr8FLsVqPrQMuB6rL4ae2wOAiDwLzALSgF3Ab4DX6OJcDiXZD2A1E20BrjXGLIlA2OoI7OdY3wG4gerQaouMMd8Lrf9LrH5ZfqxuHu/uXWYkaYKllFJKKaWUUmGiTQSVUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUqqPEZE8ETEi4oh0LOroICKrRWRWpONQSqmBQBMspZRS/Z6IPCgiTaFHm4j4Ok2/G+n4+jpjzDhjzNxwlysip4nIUhFpFpEyEbkk3PtQSqm+RowxkY5BKaUGFBFxGGP83dg+D9gCOLtTztFKRO4CRhhjruhiWbeOTW/qT7F2RUQKgLnA1cAcIBFIMsZsimRcSinV07QGSymlwkBESkTkZyKyAmgWEYeITBeRz0WkTkS+7twES0TmisgfReQLEWkQkddFJGU/ZV8rImtFpFFENovIf+21/DwRWR4qZ5OIzA7NTxSRR0SkXES2i8j/iIj9IO9juIh8LCLVIlIlIk+LSFKnZTUiMjk0nSUile3vS0TODTU1qwu9v7F7fT4/FpEVIlIvIs+LSNThf9KHbz/HxojIiE7rPCYi/9Np+uzQZ1oXOobjD3Ffs0I1Nb8IfX4lInJ5p+Vniciy0LEqDSWD7cvam4Z+V0S2AR+H5r8oIjtDn9s8ERm3V9z/FJF3Q7V1n4nIYBH5q4jUisg6EZl0iJ/RaYfyHg/Dr4D/M8a8a4zxG2OqNblSSh0NNMFSSqnw+TZwFpAEZABvA/8DpAA/Bl4WkfRO618FXAdkAn7gb/sptwI4G0gArgXu75TkTAOeAH4S2u+JQElou8dC5Y4AJgFnANcf5D0I8EcgCxgLDAHuAghdHP8MeEpEYoD/AI8bY+aKyCjgWeBWIB14B3hTRFydyr4EmA3kA+OBa7oMQGRGKLHZ32PGQd5DVzqOzcFqhUIJyaPAfwGpwP8Bb4iI+xD3NRhIA7Kxam8eEpHRoWXNWMc9KRTPTSJy/l7bn4T12Z8Zmn4XGAkMApYCT++1/iVYyUwa4AUWhtZLA14C/nKIcXdJRH5+oONxgE2nh7ZfGUryn9rfjwhKKTWQaIKllFLh8zdjTKkxphW4AnjHGPOOMSZojJkDLAG+2Wn9J40xq4wxzcCvgUu6qmEyxrxtjNlkLJ8CHwAzQ4u/CzxqjJkT2s92Y8w6EckI7etWY0yzMaYCuB+47EBvwBhTHCrLa4ypxLo4P6nT8oeBYmAxVmL4y9CiS4G3Q9v6gPuAaOD4vT6fHcaYGuBNYOJ+YlhgjEk6wGPBgd7DfnQ+NgdzI1bNy2JjTMAY8zhW4jL9MPb369Bn+ClWon0JgDFmrjFmZehYrcBKSk/aa9u7QsesNbTNo8aYRmOMFyvZnSAiiZ3Wf9UY85UxxgO8CniMMU8YYwLA81jJ9REzxtxzoONxgE1zgCuBi7ASxGjg792JRSml+gNNsJRSKnxKO73OBb611y/9M7CSkq7W3wo4sWod9iAi3xCRRaHmeXVYiVP7ekOArppd5YbKK++0///DqgXZLxHJEJHnQk0KG4CnuojpYaAQ+Hvooh+sGq+t7SsYY4Kh95fdabudnV63AHEHiiXMSg++Sodc4Pa9jt0QrPd4KGpDSXO7re3bisixIvJJqGllPfA99v18O2IVEbuI3CNW088GdtdOdt5mV6fXrV1M9+bn3Fkr8B9jzAZjTBPwB/b8gUEppQYkTbCUUip8Oo8aVIpVQ9X51/5YY8w9ndYZ0un1UMAHVHUuMNQs7WWsGqGMUI3BO1hN+dr3M7yLWEqxal3SOu0/wRgzrot1O/tD6H0UGWMSsGri2veFiMQBfwUeAe7q1ORrB1Zi0r6ehN7f9oPsbx8iMlN2jwDY1WPmwUvZx94jOrUAMZ2mB3d6XQr8fq9jF2OMefYQ95UsIrGdpodifT4AzwBvAEOMMYnAg3T6fLuI9TvAecBpWINE5IXm771Njwn1J9vv8TjApivY873oqFpKqaOCJlhKKdUzngLOEZEzQ7UQUaEBEHI6rXOFiBSE+jPdDbwUatbVmQtwA5WAX0S+gdWXqt0jwLUicqqI2EQkW0TGGGPKsZoS/q+IJISWDReRvZuj7S0eaALqRSQbq29XZ/8PWGKMuR6r6duDofkvAGeF4nACt2MleJ8f7IPamzFmvjEm7gCP+YdbZheWA98JHZvZ7NlM72Hge6HaJhGRWLEGp4iHjoElHjtI+b8VEVcoGTwbeDE0Px6oMcZ4Qv3nvnOQcuKxPsdqrITwD4fxHsPCGPOHAx2PA2z6H6y/zWGhv/GfA2/1TtRKKRU5mmAppVQPMMaUYtU8/AIrOSrFSlY6f+8+iTUQxU4gCvhRF+U0hua/ANRiXZC/0Wn5F4QGvgDqgU/ZXZN0FVaCtia07Uvs2USxK78FJofKeht4pX2BiJyHNUjFTaFZ/w1MFpHLjTHrsWq7/o5VC3cOcI4xpu0g+4uUW7BirAMuB15rX2CMWQLcADyA9bkVs+eAHEOAzw5Q9s7QdjuwBqT4njFmXWjZ94G7RaQRuBPruB7IE1hNDLdjHcdFB3tjfYUx5lGs+BdjvQcvXfyNK6XUQKP3wVJKqQgQkbnAU8aYf0c6FnXoQqMifg2MDw3msffyWVjHNWfvZUoppY4OjkgHoJRSSvUXoRq5sQddUSml1FFLmwgqpdRRRkQe3M+ABQ8efGvVH4nI0AMMVDE00vEppdRAok0ElVJKKaWUUipMtAZLKaWUUkoppcKkT/XBSktLM3l5eZEOQymllFJKKaUO6KuvvqoyxqTvPb9PJVh5eXksWbIk0mEopZRSSiml1AGJyNau5msTQaWUUkoppZQKE02wlFJKKaWUUipMNMFSSqmD8AeCBIM64qpSSimlDq5P9cHqis/no6ysDI/HE+lQVD8TFRVFTk4OTqcz0qGofszjC3DOXz9hRGKQf95wOiIS6ZCUUkop1Yf1+QSrrKyM+Ph48vLy9MJGHTJjDNXV1ZSVlZGfnx/pcFQ/trC4iocav09+8y42rv6QkYVTIx2SUkoppfqwPt9E0OPxkJqaqsmVOiwiQmpqqtZ8qm7bunUT+bZdANQveTHC0SillFKqr+vzCRagyZU6Ivp3o8LBW7a843Va+dyIxaGUUkqp/qFfJFhKKRUpifXrAJifeC5Z3k3gb4twREoppZTqyzTBOgQiwu23394xfd9993HXXXdFLqBOFi1axLHHHsvEiRMZO3ZsR1xz587l888/P+Jyt27dyuTJk5k4cSLjxo3jwQcfDFPESvUvcZ5yGuzJNA8+Fhd+WnesjnRISimllOrD+vwgF32B2+3mlVde4Y477iAtLS1s5RpjMMZgsx15nnv11VfzwgsvMGHCBAKBAOvXrwesBCsuLo7jjz/+iMrNzMxk4cKFuN1umpqaKCws5NxzzyUrK+uIY1WqP4ry1dEalURs3iRYD1XFXzJk6KRIh6WUUkqpPkprsA6Bw+Hgxhtv5P77799nWWVlJRdddBFTp05l6tSpfPbZZwDcdddd3HfffR3rFRYWUlJSQklJCaNHj+aqq66isLCQ0tJSfvKTn1BYWEhRURHPP/88YCVIs2bN4uKLL2bMmDFcfvnlGLPvfXgqKirIzMwEwG63U1BQQElJCQ8++CD3338/EydOZP78+QeM88orr+S4445j5MiRPPzwwwC4XC7cbjcAXq+XYDDY5Wfzt7/9jYKCAsaPH89ll10GQE1NDeeffz7jx49n+vTprFixomNfV199NTNnziQ3N5dXXnmFn/70pxQVFTF79mx8Ph8Ad999N1OnTqWwsJAbb7xxn/cdDAbJy8ujrq6uY97IkSPZtWvXgQ6jUofN6w8QH2zA504ma9g4fMZO8451kQ5LKaWUUn1Yv6rB+u2bq1mzoyGsZRZkJfCbc8YddL0f/OAHjB8/np/+9Kd7zL/lllu47bbbmDFjBtu2bePMM89k7dq1Byxr48aNPP7440yfPp2XX36Z5cuX8/XXX1NVVcXUqVM58cQTAVi2bBmrV68mKyuLE044gc8++4wZM2bsUdZtt93G6NGjmTVrFrNnz+bqq68mLy+P733ve8TFxfHjH/8YgO985zv7jXPFihUsWrSI5uZmJk2axFlnnUVWVhalpaWcddZZFBcXc++993ZZe3XPPfewZcsW3G53R8Lzm9/8hkmTJvHaa6/x8ccfc9VVV7F8+XIANm3axCeffMKaNWs47rjjePnll/nzn//MBRdcwNtvv83555/PzTffzJ133gnAlVdeyVtvvcU555zTsU+bzcZ5553Hq6++yrXXXsvixYvJzc0lIyPjoMdRqcNR1+IjhUYCUTnkpiWwjUHYajZFOiyllFJK9WFag3WIEhISuOqqq/jb3/62x/wPP/yQm2++mYkTJ3LuuefS0NBAU1PTAcvKzc1l+vTpACxYsIBvf/vb2O12MjIyOOmkk/jyyy8BmDZtGjk5OdhsNiZOnEhJSck+Zd15550sWbKEM844g2eeeYbZs2d3uc8DxXneeecRHR1NWloaJ598Ml988QUAQ4YMYcWKFRQXF/P44493WUM0fvx4Lr/8cp566ikcDkfHe7ryyisBOOWUU6iurqahwUqMv/GNb+B0OikqKiIQCHTEW1RU1PH+PvnkE4499liKior4+OOPWb163z4vl156aUdt33PPPcell156wM9cqSPR7PWTLI0Eo1Nw2G2U27OJbdoW6bCUUkop1Yf1qxqsQ6lp6km33norkydP5tprr+2YFwwGWbRoEVFRUXus63A49mhW1/l+TLGxsYe0v/YmemA1//P7/V2uN3z4cG666SZuuOEG0tPTqa6u3med/cUJ+w5nvvd0VlYWhYWFzJ8/n4svvniPZW+//Tbz5s3jzTff5Pe//z0rV648pPdks9lwOp0d+7LZbPj9fjweD9///vdZsmQJQ4YM4a677uryXlbHHXccxcXFVFZW8tprr/GrX/3qgPtV6ki0eH3k0kh9dAoADTFDSWtaCcEgdKPvpFJKKaUGrm5fIYjIEBH5RETWiMhqEbklND9FROaIyMbQc3L3w42slJQULrnkEh555JGOeWeccQZ///vfO6bbm8Ll5eWxdOlSAJYuXcqWLVu6LHPmzJk8//zzBAIBKisrmTdvHtOmTTvkmN5+++2OPkobN27EbreTlJREfHw8jY2NB40T4PXXX8fj8VBdXc3cuXOZOnUqZWVltLa2AlBbW8uCBQsYPXr0HvsOBoOUlpZy8skn86c//Yn6+nqampqYOXMmTz/9NGD1JUtLSyMhIeGQ3k97MpWWlkZTUxMvvfRSl+uJCBdccAH//d//zdixY0lNTT2k8pU6HN6mWuxiIMb6+2pLzMeNFxrLIxyZUkoppfqqcPwE6wduN8YUANOBH4hIAfBz4CNjzEjgo9B0v3f77bdTVVXVMf23v/2NJUuWMH78eAoKCjqGM7/ooouoqalh3LhxPPDAA4waNarL8i644ALGjx/PhAkTOOWUU/jzn//M4MGDDzmeJ598ktGjRzNx4kSuvPJKnn76aex2O+eccw6vvvpqxyAX+4sTrGZ+J598MtOnT+fXv/41WVlZrF27lmOPPZYJEyZw0kkn8eMf/5iioiIArr/+epYsWUIgEOCKK66gqKiISZMm8aMf/YikpCTuuusuvvrqK8aPH8/Pf/5zHn/88UN+P0lJSdxwww0UFhZy5plnMnXq1I5lDz744B5xX3rppTz11FPaPFD1GH9jJQC2UIJlTxsBQFP5+ojFpJRSSqm+Tboama5bBYq8DjwQeswyxpSLSCYw1xgz+kDbTpkyxSxZsmSPeWvXrmXs2LFhjVHtdtddd+0xGMZAo38/qjs++/QDTvjkW5Se+ShDjruIuYuXMOvdUymb8UdyTvt+pMNTSimlVASJyFfGmCl7zw9rJwIRyQMmAYuBDGNMezuanUCXQ7yJyI0iskREllRWVoYzHKWU6ha/xxoIxhVjNXEdlDMCr3HStmtDJMNSSimlVB8WtkEuRCQOeBm41RjT0HmgBGOMEZEuq8qMMQ8BD4FVgxWueNShueuuuyIdglJ9lt9j9WN0x8QDMDQtjq1mEI6azZEMSymllFJ9WFhqsETEiZVcPW2MeSU0e1eoaSCh54pw7EsppXpL0NMMgDsmDoA4t4Ndtgyim8siGZZSSiml+rBwjCIowCPAWmPMXzotegO4OvT6auD17u5LKaV6k2mzmgi6Y3aPglkfnUOitxzC3H9VKaWUUgNDOGqwTgCuBE4RkeWhxzeBe4DTRWQjcFpoWiml+g3TZtVg2dxxHfPa4oYQY1qgpSZSYSmllFKqD+t2HyxjzAJA9rP41O6Wr5RSEeNrsZ5du28OLim5UAn+mi04YvX+a0oppZTaU1hHERzIXnvtNUSEdevW7XedkpISCgsLw7bP9evXM2vWLCZOnMjYsWO58cYbAesmwe+8884Rl+vxeJg2bRoTJkxg3Lhx/OY3vwlXyEoNKDZfM37sYHd1zItKHw5A3faNkQpLKaWUUn2YJliH6Nlnn2XGjBk8++yzXS73+/3d3kcgENhj+kc/+hG33XYby5cvZ+3atfzwhz8Eup9gud1uPv74Y77++muWL1/Oe++9x6JFi7oVu1IDkc3Xgoco6DQqalL2SACad26KVFhKKaWU6sM0wToETU1NLFiwgEceeYTnnnuuY/7cuXOZOXMm5557LgUFBYCVaF1++eWMHTuWiy++mJYWq4nRRx99xKRJkygqKuK6667D6/UCkJeXx89+9jMmT57Miy++uMd+y8vLycnJ6ZguKiqira2NO++8k+eff56JEyfy/PPP09zczHXXXce0adOYNGkSr79ujSfy2GOPcd555zFr1ixGjhzJb3/7WwBEhLg4q0+Jz+fD5/PReVj9di+++CKFhYVMmDCBE088EbBqv6699lqKioqYNGkSn3zySce+zj//fE4//XTy8vJ44IEH+Mtf/sKkSZOYPn06NTVWf5WHH36YqVOnMmHCBC666KKOz6ez6dOns3r16o7pWbNmsfcNqJXqDXZ/C15b1B7zsgelU2US8FfrUO1KKaWU2lfY7oPVK979OexcGd4yBxfBNw48/sbrr7/O7NmzGTVqFKmpqXz11Vccc8wxACxdupRVq1aRn59PSUkJ69ev55FHHuGEE07guuuu45///Cc333wz11xzDR999BGjRo3iqquu4l//+he33norAKmpqSxdunSf/d52222ccsopHH/88Zxxxhlce+21JCUlcffdd7NkyRIeeOABAH7xi19wyimn8Oijj1JXV8e0adM47bTTAPjiiy9YtWoVMTExTJ06lbPOOospU6YQCAQ45phjKC4u5gc/+AHHHnvsPvu/++67ef/998nOzqaurg6Af/zjH4gIK1euZN26dZxxxhls2GDddHXVqlUsW7YMj8fDiBEj+NOf/sSyZcu47bbbeOKJJ7j11lu58MILueGGGwD41a9+xSOPPNJRM9fu0ksv5YUXXuC3v/0t5eXllJeXM2XKPjfJVqrHOQIteG3Re8zLTIpitUknuWFbhKJSSimlVF+mNViH4Nlnn+Wyyy4D4LLLLtujmeC0adPIz8/vmB4yZAgnnHACAFdccQULFixg/fr15OfnM2rUKACuvvpq5s2b17HNpZde2uV+r732WtauXcu3vvUt5s6dy/Tp0ztqvjr74IMPuOeee5g4cSKzZs3C4/GwbZt18Xf66aeTmppKdHQ0F154IQsWLADAbrezfPlyysrKOpKwvZ1wwglcc801PPzwwx3NFxcsWMAVV1wBwJgxY8jNze1IsE4++WTi4+NJT08nMTGRc845B7Bq3kpKSgArCZs5cyZFRUU8/fTTe9RUtbvkkkt46aWXAHjhhRe4+OKLu/x8lOppzkArvr0SLKfdRpUzk9iW7RGKSimllFJ9Wf+qwTpITVNPqKmp4eOPP2blypWICIFAABHh3nvvBSA2NnaP9fduatdV07u97V1GZ1lZWVx33XVcd911FBYWdpkIGWN4+eWXGT169B7zFy9efNB4kpKSOPnkk3nvvff2GaDjwQcfZPHixbz99tscc8wxfPXVVwd8H263u+O1zWbrmLbZbB191K655hpee+01JkyYwGOPPcbcuXP3KSc7O5vU1FRWrFjB888/z4MPPnjA/SrVU1zBVnyumH3mN0bnkNz0OQT8YO9fX6NKKaWU6llag3UQL730EldeeSVbt26lpKSE0tJS8vPzmT9/fpfrb9u2jYULFwLwzDPPMGPGDEaPHk1JSQnFxcUAPPnkk5x00kkH3fd7772Hz+cDYOfOnVRXV5OdnU18fDyNjY0d65155pn8/e9/x4RufLps2bKOZXPmzKGmpobW1lZee+01TjjhBCorKzua/LW2tjJnzhzGjBmzz/43bdrEsccey9133016ejqlpaXMnDmTp59+GoANGzawbdu2fRK7A2lsbCQzMxOfz9dRTlcuvfRS/vznP1NfX8/48eMPuXylwskdbCVg3zfBCiQMxU4QGrQWSymllFJ70gTrIJ599lkuuOCCPeZddNFF+x1NcPTo0fzjH/9g7Nix1NbWctNNNxEVFcV//vMfvvWtb1FUVITNZuN73/veQff9wQcfdAwyceaZZ3LvvfcyePBgTj75ZNasWdMxyMWvf/1rfD4f48ePZ9y4cfz617/uKGPatGlcdNFFjB8/nosuuogpU6ZQXl7OySefzPjx45k6dSqnn346Z599NgB33nknb7zxBgA/+clPKCoqorCwkOOPP54JEybw/e9/n2AwSFFREZdeeimPPfbYHjVXB/O73/2OY489lhNOOGGPpO6NN97gzjvv7Ji++OKLee6557jkkksOuWylws1tPASd+yZY9lSrWbC3Uge6UEoppdSepL3Woy+YMmWK2Xu0uLVr1zJ27NgIRdS/PfbYY3sMhnE00r8fdaQCQcOu3w6jJuMECr//1B7L5ny2mNPnnMGuWfeSMevGCEWolFJKqUgSka+MMfuMxKY1WEop1YVWX4AYvNBFH6yUrGH4jY3WCr0XllJKKaX2pL2zB7BrrrmGa665JtJhKNUvtbT5ScIDzrh9lg1Ji2eHSSVYszUCkSmllFKqL+vxGiwRmS0i60WkWER+fiRl9KVmjKr/0L8b1R0tLa24JIC49x3lMz3OTZlk4GrUe2EppZRSak89mmCJiB34B/ANoAD4togUHE4ZUVFRVFdX68WyOizGGKqrq4mKiop0KKqf8rRYI3XaukiwRIRaVxYJHh1FUCmllFJ76ukmgtOAYmPMZgAReQ44D1hzqAXk5ORQVlZGZWVlD4WoBqqoqChycnIiHYbqp7wtDQDY3fs2EQRojc0hoe4D8DbBftZRSiml1NGnpxOsbKC003QZcOzhFOB0OsnPzw9rUEopdTBtLU0AOKLju1weTMqFOjC1Jcjgwi7XUUoppdTRJ+KjCIrIjSKyRESWaC2VUqqv8LVaNViOqK5rp9xpwwBo3qX3wlJKKaXUbj2dYG0HhnSazgnN62CMecgYM8UYMyU9Pb2Hw1FKqUPja7VqsFwxXddgxWWOAKChfGOvxaSUUkqpvq+nE6wvgZEiki8iLuAy4I0e3qdSSnVbwNsM7D/BGjw4iyYThbdyS2+GpZRSSqk+rkf7YBlj/CJyM/A+YAceNcas7sl9KqVUOAQ91iiCUftJsIakxlJqBhFdV9KLUSmllFKqr+vxGw0bY94B3unp/SilVDgF26warKiYhC6XJ0Q5WWLLYFxzWW+GpZRSSqk+LuKDXCilVF9kQgmW7QBDsDdEZZPkLYcBeJ8+Ywz3f7CeBx79D/V11ZEORymllOo3NMFSSqkuSCjBwrXvjYbbeeOH4DYeaB54I6Au3FRN3Ly7uHnbrbQ89A3weyMdklJKKdUvaIKllFJdEF8Lfuxgd+1/neQ8AILVA2+gi5cXrOBKx4cEETJb1uNZ8WqkQ1JKKaX6BU2wlFKqCzZ/Mx6iQGS/67gHDQegfoAN1R4IGqJL5hBFG6u++SolwQyaFj4W6bCUUkqpfkETLKWU6oLD34LXFnXAdZIzrQSreeem3gip16wtb2BiYBVeVxIFk2fyse1Ykqq+BE9DpENTSiml+jxNsJRSqgt2fyteW/QB18kZlMIuk4R/gDURXF5ax1RZR2DI8TgcDqoyTsRh/LBlXqRD6xEvf1XGpX96ns+f/SO01kU6HKWUUv2cJlhKKdUFZ6AF30ESrOzkaErNIOz123opqt6xtbySXFsF0UMnAZA46njajJ3WzQsjHFn41Ta38efXF/NAy485fv09eB67AILBSIfVI1bvqOdbD37Ok089SnDzwEyWAXyBIP/36Sb+PW8TgdptA/Z4Ary9opwHPt5IS5s/0qEopTrRBEsppbrgDHrwO2IOuI7bYafamUlsy8C6F5Zn51oAJH0MAJOGZbLa5OPZMvASrOeXlHJh4APSpYHng6cStWsprH0j0mGFnTGG255fTm7pa1xZfBu2J86Br5+PdFg94u8fF/PHd9eSNudm7P+vCJ6+CIKBSIcVdnPXV/CDZ5by3JwFLPy/H4KvNdIhKaVCNMFSSqkuuIOtBBwHrsECaIkdSpK/AnyeXoiqd9irNlgvQgnW+JxElpuRxFWvAn9bBCMLv4/XVXBJ1CIYejxfFPySnaQSXPpEpMMKu+WldWzeVcfd8a+xxZ7PBttwzAe/GnDHs7UtwH8WbOGW4RWcb/+czWTDpo/h6+ciHVrYPTRvM9lJ0TyV+jinVj9D/Uf/G+mQlFIhmmAppVQXokwrQcf+74HVLpA6AhsGU13cC1H1vEaPj0HeEgLigJR8AKKcdiqTJuA0Xti1MsIRhk+jx8fOrRvID5TAmG8ye3wOr/qPRzbPHXADerzx9Q5mONcT49lF6fgf8QfPhUhzBWx4N9KhhdXc9RU0ev1c6fgQnzuFb3h+T2PCSPji/yIdWljtrPfw+aZqrp8QRV7TMgCivnpoQP3Qo1R/pgmWUkrtxesPEIUXc4CbDLeLGjwagLrStT0dVq/YVNnMSCmjJT4f7M6O+YHsaQCY0i8iFVrYfVlSwxTWWBPDT+GEEaksMBMRE4CSBZENLsw+XLuLq5JWgjOGcSdewGdMpNmZAmtej3RoYbWguIokV5DU8nnYC84mJiaWOVFnQvnXUD1wRvv8amstAKfblgDwu8A1uH31sO6tSIallArRBEsppfbS5PETiwecB+6DBZCaOw6AxrLVPR1WryiuaGKkbEcGjdlj/tD8EZSbFFq2LI5QZOG3oqye8bYtGGcspI8hxuUgkD0FD26rWdkAUdHoobSmlcmBryFvJqnJyRyTl8rnMgk2fTKg+id9vqmab2fuRNoasY3+BmcUDObfu0ZZCzfOiWxwYbR0Wy1uh42sqgWQMoxFqRdSY0+DVa9EOjSlFN1MsETkXhFZJyIrRORVEUnqtOwOESkWkfUicma3I1VKqV7S5PUTjRdxxx103dzB6ZSZNPwVG3ohsp63ZWclQ6WC6Kxxe8wfl5XIqmA+ZsfyyATWA1Ztr2eaqwTJnAA2OwDTRmSyKDiW4ABKsJZurSOdWpJatkL+TACOG5bGG81jobUGBsgx3VHXypaqZk6JK7FmDJ3OyWPSWeNNw5OQDxs/iGh84bR0Wy0Ts+OwbVsI+ScyKjORD8yxUPwhtLVEOjyljnrdrcGaAxQaY8YDG4A7AESkALgMGAfMBv4pIvZu7ksppXpFU2srbvFjcx+8ieDghCi2koW7fnMvRNbzWravwyYGe8aeNVhjBsezygwjtrFkwPRPWlNWzQizBbInd8ybPjyVeYEibDWboK40gtGFz9JttRzn2GhN5B4PwPRhKcwPFGEQ66J8APiypAaA0f4NkDoCYlKYmpcCwLqE461mn23NkQwxLLz+AKu3N3BGWhV4GyB3BgWZCbzrKYSAF0oXRTpEpY563UqwjDEfGGPab76wCMgJvT4PeM4Y4zXGbAGKgWnd2ZdSSvUWT4N1oWaPSTroujabUBWVS0prCRjTs4H1Alv1eutF+p4JVpTTTnVCAYKBnSsiEFl4VTR6SGrahMu0QdakjvkThyTxpQm999KB0Rxy6dZaTk0oBbsLMooAmDAkiRZHIjtixw6Y5pAryupxO4T4quWQMxWA1Dg3IwfFMactlHxs7f+3Gli9o4G2QJDprtCPOkOPpSArgS+CownanLB5bkTjU0qFtw/WdUD7cETZQOef/spC8/YhIjeKyBIRWVJZWRnGcJRS6sh4m6wO5I5DSLAAWhOHEW1aobG8B6PqeR5fgJTmzQTEDinD91luy55ovRgATcpWba9nvC10gdopwYpxOQgOKsQrbij7MkLRhU+bP8iK7fVMtG+GwePB4QKshHny0CQWBcbAjqUDYvS5FWV1zMrwWKMj5kzpmD8tP4UXd2VhxD4ganeWhga4GOZdD7HpkDiEsZkJtBLFroQiTbCU6gMOmmCJyIcisqqLx3md1vkl4AeePtwAjDEPGWOmGGOmpKenH+7mSikVdr5m6wLGGZt8SOvb00YC0LZrfY/F1BtKqpsZIdtpicvtuBDvLDc3nx0mBc+2JRGILrxWbW9ggm0TJioJUobtsWxCbiorzbABMWLimvIG/H4/2S3r92gKCXBsfirvN+ZCoM0aZa8f8weCrNrewOnx26wZoRossBKsCq+T1tQC2Nb/E6xl2+rIToomumI5ZE8BEVJiXWQmRrHMMRHKV0BLTaTDVOqodtAEyxhzmjGmsIvH6wAicg1wNnC5MR3tY7YDQzoVkxOap5RSfZ6/pQ4Ad1zqIa2fMMQaEKJ2a/8eSXDjriZGyHZM2pgul4/LSmBlcBjB7ct7N7AesHJ7PVOcW5GsSSCyx7KJQ5L40j/Cagrpa41QhOGxoqyOEbIdR6AFso/ZY9nUvBS+CoRG2OvnNTvFlU20+gJMtG0ERzQM2j1Iy7H51nm8OaoQypZAwBepMMNi6bZajs9xQtWGPY7p2MwEPmwdBZgB07xVqf6qu6MIzgZ+CpxrjOk8bM0bwGUi4haRfGAk0P9/ClRKHRWCLVYNVnRCyiGtP2TocJpMFM07+ve9sLbsrCFPdhKTXdDl8oKsBFYG84lp3AKe+l6OLrw2lFUyLLh1n1odgMlDk1gaHIkE/f2+ZmdFWT0nRG+1JrL2fK8ThiRSK4nURg2Fbf37gnxFqfX3mNO82jqmdkfHssGJUQxJiWahfyT4W60ann6qvL6V8noPpyZsB8wef78FmQm8V5uJsTkGRPNWpfqz7vbBegCIB+aIyHIReRDAGLMaeAFYA7wH/MAYM3ButKGUGtCCrXUARMUdWhPBYYPi2GIysVVv7MGoel7jjrXYxeDIGNvl8oQoJ7viQsv68UVqVZOXlMb12Ans0f+q3bC0ODa62ge66N+/Da4oq+PE2G3gTrBG1uskPsrJ6MEJrLSNtmo8+vEgLV+X1ZHiNrirVu/R/6rdMUOTea061LCmH9fWLd1aB8AEW+imyZ3+fguyEmgJOmlNKdAES6kI6+4ogiOMMUOMMRNDj+91WvZ7Y8xwY8xoY8y7BypHKaX6kmCL9Wu47RAHuYhy2tnpyiWxaVMPRtXz7JXrrBfpXTcRBLC1X9CVL+/5gHrIyrJ6ijoGuNi3BstmE4YMyaPcltGvL1SbvX6KK5ooCBZD1kSw7ftP/pTcZD5qyoeWKqjuv3+/y0vrOHtQJRJo26P/VbvJucmsbozFnzAUtvXfkQTbbzCc0bjaGogmZncte0FmAgDbY8fB9qUD6gbSSvU34RxFUCmlBgTx1OHDAc6YQ96mMXEUyYGqftu53B8Ikty4kYA4IG3UftfLy82lzKTRtu2rXowuvL4uq2OCbTPB2AxIyOpynYlDkvjCN5xg6Rf9tmZn9Y4GnKaN9JbiffpftTsmN5nPfKGarX7ab6e1LcC6nY3Mii2xZmTvW4M1eahVG12eONFqDtlPj+nSbbUUZSdi27F0n2M6NCWGWJedrxkJbU3Q/oOJUqrXaYKllFJ7sbU10GKL3WfwgwMxGYUAeHes6qmwetSWqmZGUUJT/LAuRxBsV5SdyKpgPoHty3oxuvD6urSOqc7N2LIn7/cYTwr1w7I17YT6sl6OMDxWlNUxTkqwGf8BE6xNJguvM6HfNp1bub2eQNBQENgACTmQkLnPOmMGxxPjsrOc0dBcATX978bg7TcYPmlwm3VLiL2aQtpswtjMBOY251oz+nHtq1L9nSZYSim1F1dbPR57/GFtk5g7AYDqTUt7IqQet3ZnI2NspRBKFPenMDuBFcF8ohtL+uVAF8YYSkrLGBrcDkP2bUrWbuKQZJYGreH3Keuf/bBWlNVzckwokRhybJfr5CRHkxYfTbF7XL8d6GJ5aS1gSK9dBkO7fp8Ou42JQ5J4ryHPmtEPa+vabzA8M6rYmjFk2j7rFGQlMLcyDhOTqgmWUhGkCZZSSu0l3l9Di/PQRhBsl5s7jBoTh3fHyh6KqmeVbCslU2qIHTrxgOslxbjYFRfqo9UPR9jbXtfKUE+o6VQXfXXapcS6aEkeQ5u4oLR/XqiuKKtjRtRmSM6HuEFdriMiHDM0mc+8w6Bqfb9s4rpsWx1TkpqwN5XD0OP2u97kocm8X5mEiUrsl/fDar/B8CjvanDGQkbRPusUZCbQ5A3QOmiSNSS9UioiNMFSSqlOjDEkmjraog7tHljt8tLj2GCG4qrqn0O1t5ZZyZIja9+Ltr3ZskMDXezof80EV5TVM8m2ESO2LkcQ7Gx8bjqrGI7ph7UdFY0eSqqbGd22Zr+1V+2OyU3mo6bQzZb74aiJy0vrODc5dIPhA7zXY3KT8QeFupSJ/fJ9Lt5SQ25qDDE7l0DOMXsMRd+uIMsa6KIsZpzVBys0IqpSqndpgqWUUp00ePykUU8gOv2wtnPabZRHDSe1ZRMEgz0UXc9xVa2xXhykiSBA/tCh1kAXpf2vOeTXpXUcYyvGpI8F94GbgU4amsQi30jrhsNtLQdct69ZtLmGoVJBjK9mv83m2k3OTeZrM4ygOPpd07n2+0JNtW8AVzxkjNvvupOGJgGw3jUOKtdCa20vRdl9waDhiy01nDg0CnatgiHTu1xvVEY8dpuwguHWjH482qdS/ZkmWEop1UltQxNJ0oyJO7wEC8CbMpoo44G6kvAH1oPK61vJa9tAiyttv03JOivKTmRFcBiBsv6XYH25uZLJ9k3YDtD/qt2kIcksCY6ybji8vX+NmrhwUzUz3aH7sh2kBqswO4GgPZrymFH9LsFasLEKgPyWlVafOpt9v+smxbgYMSiOT1vba+v6T9PPdTsbqW/1cWbiNjDB/SbNUU47w9NjmdeYY83Y3v/OUaUGAk2wlFKqk4bqHQA4EjIOe9voHGugi4at/atv0pKSWqba1tOWvW+n+a4UZlkjCUY3betXtQD1LT6CO5YRa5ohb+ZB1x+TGc8qW/sNh/tXn52Fm6o4N3YtxA6C9K5vHN3O7bBTlJPIUjPKSiT9bb0UZffN31jF6NgWomrWQd6Mg65/zNBkXq3IwIi9Xx3TxVuqAZjQthTsrgP2NSvITODLCiBlWL/7YUCpgUITLKWU6qSuwkqw4lK6vj/SgWSMmEjQCDWb+1ffpI0b15EjVcSPOvGQ1k+OdbEjpv8NdLFwczUzZCUGgWEnH3R9p93G0OxsSu1D+lWfnfL6VrZVNzGhbRmMOLXLGwzv7ZjcZD5oyAO/x2oS2Q8Eg4YFxVVcMyhUUzfyjINuMzk3iZ2tdrzphf1q1MSFm6oZkhJNfOlcyD0eXLH7XbcgK4Hyeg/ejEn9sp+kUgOBJlhKKdVJc7V1z6OkjCGHve3YoZlsNYMIlPevkQT9Wz4DwJ53/CFv48iZaL3YsTz8AfWQBcWVzHKsxGROgNhDG8Rk0tAkFvpGWgNd9JO+dQs3VVMoW4jy1cGI0w5pm8lDk1nkDw1L309G2FtT3kBNcxszZTnEZx5S/8Fjcq0bDm+LLbJqdwK+Ho6y+7z+AJ8VV3F2bsAauGLE6QdcvyAzEYDtMWOhYTs07uyNMJVSnWiCpZRSnZhaazSy2PT8w942McbJZucIEuvWhDusHtPk9ZPdsAyvPfaQLlDbjc7PY1swHc+2/tMEadnGUibKRmzDTznkbSYNTeaLwEjEU28NY94PfLS2gm9GrzrkmjqwanYqSaYhKrvf9MP6dEMldgJkVS+0EslDuDH4sLQ4EqOdfBkYBf5WKO/7tXWLNtfQ3BbgvNjQ98rIAydYYzOtwVtWmdBAF9oPS6lepwmWUkp1Ym8sxYvrkAZ76EpdYgFp/p395n5Ci4qrOE5W0zzomAMOELC3ybnJrDT5BMv6R4JVXNHE8NrPcBA46AVqZ1PzUlgSHGVN9IOaHY8vwNz1uzjf+QUy5NhDrqkbFB/F0JQY1jjGWgmWMT0cafe9s7KcKwaVYPM2wKgzD2kbm02YPDSJN2tDNdT9oB/We6vKiXbaGVn1odWvKm3UAddPjXMzOCGKBc1ZIHbYoQmWUr0tbAmWiNwuIkZE0kLTIiJ/E5FiEVkhIpPDtS+llOopsa07qHFkHNKv4V2R0L2VWvtJzc7KrxczzLaThInnHtZ2hdkJfM1oYlq2Q0N5D0UXPm98vYPz7J8RiM/e7xDXXUmPd2NLHU6DLalf1OzMXV/BUN8WBnu3wPhvHda2x+Qm80nLMGjaBTWbeyjC8Niwq5HVOxq4KuZziEo6pP5X7Y7JTWZRpZtAUh6UfNZjMYaDxxfgrRXlfHu0DXvJfBh/6SF9NxVkJbBiVxsMKtCBLpSKgLAkWCIyBDgD2NZp9jeAkaHHjcC/wrEvpZTqScltO2mMyjzi7dNGWcN/V23o+4MiBIOG2E1vE0RwFBxeguV22KlLC/1u1sdrAYwxzFu+jpPsK7CPv/iQBn3o7NhhaXwZHInpBzVYL321ne9EL8TYHDDuwsPadnJuMh+2hvphlczvgejC57Vl20m0tTKsai4UXgQO9yFvOznUD2tXylTYugCCgR6KsvvmrNlFo8fPVXFfAAbGX3JI2xVkJlBc0YQ/MzTQRT+okVRqIAlXDdb9wE+BzmfwecATxrIISBKRI79qUUqpHlbT5CXHlBNIPPwBLtqNzhvK1uCgfnGPqEVbqpnpW0ht6mSIP/xh6ZOHTaHVuPBvXdgD0YXPlyW1TKybYzUPLDq0C9TOjs1PYZFvJFK7pU8PGFBe38pn68u40DYfGXkGxKQc1vbHDE1mk8nC406DLX03wWrzB3l5aRm3DV6B+FthwmWHtf3kocm47Da+ZBx46mFn3x2U5oUlpWQnOMnd9opV85oy7JC2K8hKwB807IovsG6lULulhyNVSnXW7QRLRM4Dthtj9h6rNxso7TRdFpq39/Y3isgSEVlSWVnZ3XCUUuqIbd26hURpwTG44IjLGBTvZqN9GPG1q8MYWc9Y/Nlcxtq2ET/54iPaflJ+OsuCI/Bu+jzMkYXXE58Vc73zPQLZU2HwoQ/k0W5afgqLgqG/iZIFYY4ufJ5YuJXzZT6x/lqYftNhbz96cDxxbifroydaNVh9tNbj9eXbqWxo5ZK21yBrEuQc/KbRnUU57UzOTeKVmjxrRh89pqt31DN/YxW/GrEFqdkE0793yNsWZCZYZZgR1gwd6EKpXnVICZaIfCgiq7p4nAf8ArjzSAMwxjxkjJlijJmSnp5+pMUopVS3VZdYvxMl544/4jJEhJqEcaT6yvv0QBd1LW0MKX6SNonCNfk7R1TG5KHJfGlGE129GryNYY4wPLZWNyPr3iSHCuwzbjmiMrKSomlIGkOLLRa2fBrmCMOjprmNpxdu4daY962k4xBupLw3u02YmpfMh62jrX5YVRt7INLuCQYND83bzHdTVhDTtBVm3HZE/SWPH57GvF0uAsnD+mxzyH/N3USc287ptc9aNVdjD70Z79CUGGJddhY1DwJHtCZYSvWyQ0qwjDGnGWMK934Am4F84GsRKQFygKUiMhjYDnRuZ5MTmqeUUn1SW/laAFLzjzzBAqz7LAFtZX33Jp8vzVvOOfIZzWO/BdFJR1TGoIQoSmLGYyMIZUvCG2CY/PWDNfzI/gr+5OEw+ptHXM6U/EEsDhZgtswLY3Th83+fbuJs/xwyfKUw47+PeJCWE0ak8UZDaHjvkr73Xl/6qoySijpukeet0fTGnH1E5Rw/PBVjYEfSVNj6OQT8YY60e1Ztr+ftleX8buQmHOXL4IRbD2uUT5tNGJuZwIodzZA5Xge6UKqXdauJoDFmpTFmkDEmzxiTh9UMcLIxZifwBnBVaDTB6UC9MabvDzWllDpqRVevpk4SkbjD74/UWfJwq8lS9ca+OdBFg8eHa9FfcUqA5JN/2K2ynLnTCGDDbOt7/bC+Lq0jYdWTjJQyHGfcfVgXqHs7Nj+FT31jkdoSqN0aviDDYFNlEy99tppfRL0EuSfA2HOOuKzjh6ex1WTQEjW4z/XDavT4+PP76/l16ifENW+FM/94xMd0fE4S0U47i0wBeBtg5969HCInGDTc+foqsqIN5+36BwwugklXHHY5hdmJrClvIJg1Gcq/7nNJpFIDWU/eB+sdrBquYuBh4Ps9uC+llOoWfyBITssaKuILjvjX/3YFI/IoDabjLe2bzXKeeW8el5n3qBt9CaSP7lZZE0cMZV1wCJ7ivnUx7gsEue+lj7nd+RL+3Jkw5qxulXfssBQ+D46zJvpQk7JA0PCLV1Zyl/NxYoNNMPuP3fr7HTM4ntRYN6vd4633GQyGMdru+d1ba0hu2cwVnmet2siRpx1xWS6Hjan5KbxQlWfN2Dw3LDGGw1OLt7J0Wx2PDXkLW+N2+MafjyiRLMxOpKUtQEVcgXVT5cp1PRCtUqorYU2wQjVZVaHXxhjzA2PMcGNMkTGmb7YfUUopoHj7LoaxnWDmpG6XlZ0UzQb7cOKqV4UhsvBaX95AwdK7MDYnKWfd1e3yjh+eyufBcbjKl4CvtfsBhslf3l/LTTX3EmM3OM77W7eT5qEpMTTGj6DRngR9qJngPz8pJmPrm5zDPOSkn0KoeeqRstmE44an8mbTGGiphvLl4Qm0m95eUc7rSzbzVNLD2NyxcPb93S7z+OGpfFnlxDeoCIo/CkOU3bduZwP/8/Za/nvIRkZufRaOuxlyjz+issbnJALwtQk1+dRmgkr1mp6swVJKqX5j+4q52MWQNGpGt8sSEeqSCkjz7bCGSO4jPL4Ac578IyfaVuA/5S5I6P6dM3JTY1gXNQl7sA36yH2i3ltVTuLnf+B4+xocZ/35kIe2PhARYeaodBYECjCbP+0TI+x9uGYXH370Hve5H8YMPQ5m/jgs5Z4wIo23m8daE8UfhqXM7li1vZ6fvriMxxIeYlDLRjjvnxA/uNvlHj88FYAtSdOtv11PfbfL7I7KRi/XP76E6VHb+GHtn6zBSk494jHEGJ4eZzWDrEu0bsa8o2/WqCs1EGmCpZRSgG/TPPzYyCg8MSzl2bKnANC8pW/0wzLG8OhzL3BD80NUZ8wg9oT/Cku5IoJrxEx82K3EI8K+2lrD4uf/zPccb+GffB1MvjJsZc8cmc7HvkKkaSfsimzt5KLN1fy/Z9/gcfe9OBIGI5c+BXZHWMo+YXga1SRSlTAu4gnWlqpmrv3PF9zlepLj2j5HZv8RRs8OS9njshJJiHLwYVsRmABE8O+3vtXHdY99SVTTNh5x3ovEpsG3nz+sGyjvzW4TCrISWLWjwUrWtAZLqV6jCZZS6qgXCBqya79ge/RYxB0fljIHjT2egBGq1/aNe+w8995cvlX8M1qjBpF69ZNgC9/X/5SRQ1gWHIFnQ2SbWX21tZa3//N7fmN/lLbhZ1q1V2E0Y0Qac4MTrYkN74e17MPxeXEVv/vPKzzh+B3xMVHYrnwVYtPCVv7Q1BiGpESz0DYJyr6M2O0GNu5q5PKHPucngYf5VuAdmP6DI7q/1/7YbcKJo9J5vDQD406A4jlhK/tw1DS3cdWjX+DfuYa3436PEz9c/uIR3fx7b0XZiaza3kAw6xjYtaZPNeNVaiDTBEspddRbV1zMOLOJltxTwlZmYX4OG8wQKIt8DdZzH8znpEXXEeWAhOtegZiUsJZ//AirH1ZU5cqINYmcv6GC+Y/8nDv5N635p+P69pNgd4Z1H8mxLrKycyl2jIxYgvX2inIefPwxnrP/hsQYN/Zr34a0EWHfz8mjB/F09SgwQdj8SdjLP5glJTVc8a+5/MZ3P5eY9+GEW+DM34d9P6eMGcSu5gD1mcdb/bB6uenntuoWLv7X58SWL+b12N/jtgtc8w4MGhOW8ouyE2n1BdgZN9aqpdu5MizlKqUOTBMspdRRb8eSN7GJYfDU88NWZmKMk42usaTVr4zYSGzGGJ5/611O/OwqEux+oq57E1vG2LDvJzMxms3xUxEMlPRujZ0xhqc/30jVk9dyq+05WsdcSPTlT3eradWBzByZztve8ZiyL6G5ukf20ZVg0PDXOetZ+PyfeNT+B6JTc7Bd/yGkjeyR/Z06NoMvfMPwuRJhY+81EzTG8MTCEn7y8Js8abuTM8zncNpv4fS7uz1QSVdmjR6ECHxpnwwN26FiTdj3sT9z11dw3gPzOb3pdZ5y/h5XfBpc+y5kFIRtH0WhgS6WB3WgC6V6kyZYSqmjXtSWD6m2pZI87JiwltuUPpmYYDMmAsMj+wJBHnvi35z15TXEOG24v/sWzuzujTB3IIkjj6PZRBHoxYvxJq+f3z3xFuPeu4QL7AvwzryD6Esf7bHkCuCUsYP40D/JSiZ7qX9SVZOX7z/6CaPm3cz/OP+DDD8Zx/UfQHJuj+1z+rAUolxO1sRMhY3v98o9lJq8fn747DLmvfkEb7h/xQhnFfKdF2DGrT22z5RYF5OGJPFkzVhAYO1bPbavdv5AkHvfX8eP/jOX/3X8kzt4FNvI0+CGjyF1eFj31T7QxZfVLojPgu060IVSvUETLKXUUW1rRQ0T25ZSOfiksP9CHj1sOgD1Gz8Pa7kHU1Hfwgv3386Vm39Kc+xQEm6e16PJFcCM0ZnMCxbhX/tur9TYrd5ex9//cjf/vfl6xrgqCV7yJO5Tf94jtRydTcxJoipuDPX2ZNjwXo/uC+Djdbv42f0P88vSG5ntWIo57W7sl78I0Uk9ul+3w87MkWk80zTZGq69h+/9taSkhkv+9gEz1t7Nv13/S1z6UGw3zoVRZ/TofsGqrZtXbqctaxqseb1H97WlqplvP7yIZZ++zrz4X3Kyfz7M+gVc9ixEJYZ9f+0DXawsq4fsyVqDpVQv0QRLKXVUWzP/NeKlldQpF4W97PzRE6gxcTQW916CtWjlejb+9Ztc3vQou7JPJ+OWT7AlZff4fmeOTONjpuJu3QXly3psP/5AkEfe/5It/3cZd3j/H8HB44n64SJsBef22D47s9mEM4uyeM83CbPxfWhr7pH91Lf4uOO5hWx96oc8HPgVGfFubNe9h8y4JawDlBzImeMG81pTAQFHLKx5rUf20dLm5643VnPfQ4/wcMutXGqfCzNuQ274JOy1OfvzjUJryPclsTOhYjVUbQz7PgJBw8PzNnP+X+dw7s6/84zrDyQlJCDfnQOzftajx7QoO5HVOxoIZk2Gmk196tYRSg1UmmAppY5q7g1v0ShxpE84M+xlj81K4GszEvfOnm+W4/EFePzpx8l9aTZTzSp2zfwD2Tc8D+64Ht83QIzLQUvuqfixYda90yP72Lizgf93/++54PPzmW37kpYZPyfhv96DxJwe2d/+zC4czCu+E5C2Zlj/btjL/2jtLn75v3/j+2uv5FrH+5gp38X1w0UwZGrY93UgZ44bjM0Zzaq46bD2TQj4wlr+58VVXHL/W4z74uc85/ofMhOjkWvfhdPuAocrrPs6kGHpcUwYksS/KgqtGateDmv5G3Y1cuG/Puez957hw6ifcSXvwLT/gv+aDznhbZbclfaBLnbEhvpf7ui5H0CUUhZNsJRSR60dVXVM8SykLOPksI84B1Yzq11JExnk2QJNFWEvv93arTt5/94ruHrjj3BGxWG+O4eMU3/Q483l9nZ80Ui+CIyhbcWrYR2NzeML8NCb89j+z3O4vek+JHU4ju8vIOa0O8BmD9t+DtXUvBQ2xxRR4xgEK54PW7k76z389PGPqHn6eh4I3M2gpHi49l3sZ/8vhOn2AYcj1u3gzHEZPFw31WomuC48/ZNqm9v4+Utf89Kj9/J0681c5PwcZvw3th8sgtzjwrKPw3XhpGzm73LRnDMTlj4Rlj5nHl+A++ds4Lq/vc7NlXfzmOte0pIS4Zq34Zt/BldMGCI/uPaBLpb68qwZ2g9LqR6nCZZS6qi1asEbJEgLyVMu6bF9yHBr6PemteEfEMEfCPLqay8R8+iJnNP2LmWjryHt9sW4h0wK+74OxVlFmbxhZuKu3wSli8NS5oL1O/m/e3/Gd5Z8i+Ps62g6+X9IvvkTGBT+0RAPld0mnDtpCM97j8MUfwR1pd0qzx8I8si8jfz7f+/gl5uv5ELnZwSOvxX3zZ9D7vFhivrInD8pm3c8hbTEZMOXj3SrrGDQ8MzibVx331Ocu+Im/uJ6kLicsdi+Nx9O+w04o8MU9eE7e3wmDpvwXtQ3rdEEu3lPrI/W7mL2Xz6mfu7fmeP+Cac5lsMpv0K+twDyZoQn6EPUPtDF0goDqSO0BkupXhCe274rpVQ/5Fz/Bk3EMnji7B7bx8iJJ1C1NAHPyveIm/qdsJW7rnQXa5/+Gee1vka1czBNF79GzphZYSv/SCTFuGgdeS5NW54g5qvHsQ2dfsRlVTZ6efrFFzi95F5usW2lNmsmcZc8gDs5L3wBd8O3pw3lygWncaPjLewL/wHfuOeIyvlqaw1Pv/QS361/gHG2rXhyZmI/738hfXSYIz4yM0akkZMSx4ucxtUlj8Ou1ZAx7rDL+bq0jj+9upDTKh7jJccHEBUHp/8F+zHX9lqfsgNJjXNzekEGvy82XBCXgW3RP2HU7MOuBS6taeG3b66mdf1HPBr1DMOcWyH/VDjrPkgZ1kPRH5jdJozLSmDl9nrIPga2zItIHEodTbr9rSYiPxSRdSKyWkT+3Gn+HSJSLCLrRST8nRuUUqobdtU2MLnlM0oHzerR/h7jc5JZxHgSd8wPy+h6bf4gz7/0PM5/z+ICz6uUDruMtJ98SUKEk6t25x07kjf8xxFc9Qo0Vx329v5AkBc/Xcpn/3sJt267maFRrbRd+B+Sb3wT+khyBTBiUByjR4/hHWZglj5+2O+1rLaFO594j5J/X8VfGn/C8FgP5uLHiPrum30muQJw2G3cfPII7q85Hp8zHub85rC239Xg4ecvLuOFB3/LP2tu4FrHB9iOuQb7Lctg6nf7RHLV7sYTh1Hjgc8HX2ElIZs+OuRtGz0+7n1/Hdf/5Vm+s/lnPO36I/kJwCVPwBUvRyy5ajc5N5mVZfX4Bk+ExnJo2BHReJQa6LpVgyUiJwPnAROMMV4RGRSaXwBcBowDsoAPRWSUMSbQ3YCVUiocVs5/k9OkheYpF/fofhx2G9WDZxC/awH+7UtxDJlyxGWtLN7Kthd+wqVt71PtGkzD+S+RO+70MEbbfbNGDeLGpIu5tGku5tM/Id+895C3/Xz9dla8+he+0/oMMdJG7aSbSZ59R68N1HG4fnTqSH7yr7P5ZtQC7O//Ai586KDbNHn9PPbRMqIX/ZVfyvvYHYJv+o+ImvWzPvs+L5iczf/7aBCPybe4ofhR2PA+jDrw76aNHh8PfVrMtgXP8UPbi4xwbsc/5Hjkm3+CzPG9FPnhmTQ0mVPHDOLmjcewJCkXx/u/gtwTDth00RcI8szibTzz4SK+3fYy7zg+QlzRcOJdyLE3gTOqF9/B/h2bn8JD8zaz1j6G8QDbFkJh+EdOVUpZuvvT0U3APcYYL4Axpr0X93nAc8YYrzFmC1AMTOvmvpRSKmzs616jmWiyJp/V4/vKPvYCPMZJxbxHj2h7jy/Ay0/9k0FPnsjstjlsG30dqT9ZSkIfS67AGsb83NNP5jn/yZgvH4Vdaw66TfGuev79j3sY8vRJfM/zb7wZk7D/YCHJ5/2+zyYdAJOHJjNh0jQe8J1vDXax4oX9rtvk9fPIB1/yxD03ceXic7nW9jb+ggtw3LIU55m/69Pv02m38euzx3Jv7UlURA+DV27c71Dm9a0+/vXRWn735z9y5meX8f/sfyU3JQYueQLHde/02eSq3a/PLsAbtPMn2w3WDcJfv7nLmmePL8DTi7fy7fteIvjOT3kzeDNXOz/GfsyV2H64FGbc1meSK4ApeSmIwCcNmdb9tjZ9EumQlBrQutsHaxQwU0R+D3iAHxtjvgSygUWd1isLzduHiNwI3AgwdOjQboYzMJlgEF+bl9aWJjwtDbS1NuFtbcbn2f3w+3yYoB8xAUwwgC0YABN6BIMYhKDYMGIjiB2xO7DZ7djtjo6HON3YndHYXFHYXDHYXdE43FG43LG4omOIio4lyuXEae87TTqUOhJV9U1MbP6cbYNOYqzD3eP7m1E0kjmvT+e0Ta9D232HNXrYgq+WE3znp1wUWMyO6JG0XvYSQ/N6d7juw3V2USY3fX49Z+xcQuJTl+D6r48hbtA+623YXsUXbzzI1PJnud5WRmXCaNrOeZD00adFIOoj85uzx3HR1u8wo3kNk1/9L6SxHI79HoT+rtbtqGXhJ28Tt/FVvmPmES1t1A89FdtZdxM7uDDC0R+62YWZXHbcCC5c9CPei72LmEfOwDb7Hig4D7/NxRebq1j+xVxkw/ucz8dkSg3exFw47f9wFn0rIqM9Hom8tFjuuaiIW54LkJd+DZev+g+0VMHpd2Myivh6ewOfLFlJzcoPONG3gOftyxGnDZn4HeTE2/tUM9bOEqOdFGQmsHBLHbfknwib51ojffbySKNKHS3EHGQoXRH5EBjcxaJfAr8HPgF+BEwFngeGAX8HFhljngqV8QjwrjHmpQPta8qUKWbJkiWH+x76FZ/PR03lDuoqymiu3oGvbgfB5mqMpw7x1OHw1uPyNRAVaCAm0ES8aSKOFhzS/b4b4eA1Dtpw4sWFV9y0iZs2ceGzufHZogjY3PjtUQRDj4AjGhxR1sMZgzijEFcMNmc0Nnc0dncsDlcMDncMzqhYnFExuKJjcUfFEuWOxu2y43bYEP1HoE9q//5o/xoxned1rAOGPdfbcxuzx/bt5Xbenk7r7i5zrxj2KrN9ZldxrJ7/Gqct+R4lpz9M3gk9N4JgZw8+/jjf2/Ijms68n7jjrjvo+mUV1Sx55m7OqH0Wuxh2Tr6N3LN+0iPDyfeEikYPd/ztMf7R9iuMOwFO+QWu4bPYVudh2/rleNa8y+TmeaRLAxUxI4g5+cfEHXNpn+qTc6hKa1q46T/zuaXuHk63L6XFFsd2Vx5t3jaGBEtJkFbaxE3jiHNJPf32iI6A2B2BoOGP76zlk88W8FfnPymybcGLi1riSTINRImPIEJz9kziT/wBjDy93yRWe3t9+XbueGUF5wQ+4rfOx4mijRbc+I2dBGkBoC0qHeeUq5Ap10BS3/+B+O431/D04q2sOqcM57s/hh8u7bWbOSvr3yqPL4jHF8DjbcXb0kSbp4U2Tws+bzN+bwt+bysBbwtBXyvi92Dze6z7z5kAJuiHgB8J+jHBAGL8EAyA8SPBABL0s/tfPBsICIDYQCT0WkLXU9Y1lYR+eDc2O0bsiM0BNgfY7IjNDjYHYnd0PIst9Ai9ttmtdWx2B2J3hp7t2GxObA4HNpv1Q77NYa3T/rCHnh12az273YHdsXu+9KN/B0TkK2PMPm3/D5pgHaTQ94A/GWM+CU1vAqYD1wMYY/4Ymv8+cJcxZuGByuvvCVbA76Ni+2aqt2+muWIz/pqtOBrKiPZUEOurJjFQQ7Kpxy77fuY+Y6dRYmm2xdNqj6fNEY/PlYjPmUDAlQCuWHDGYHPHYHfHWolJp6TE7XJhszs7nRB2ROxgt/7AxQTBBLBhPQd8fvx+H/6AH7/fegTavAR9LQR9HoyvFdPW2vE66PNA6DV+D+L3IAEPdr8He8CDI+jBEfTiCHpxBj24TBsu48VNG1G0HdHnGTSCBxd+7ASw4xc7QewExU5AHATaX2MnEFoWEAdBsROkU1IW+jLp+FKxvmUAMEjoYb0ObdDxFYUx1meGQYzZdwsT3D1tDLbQfMzu9YQgGHaX00VZ7fOEIFaU7fvsHOXu17S/Nuw53eld7H/aWr9z2e2fSPv76jzdefme++9a5z3utu+8/ZXS1fZdzzvUfe8734Ufv9iJumMLdnfv3IumeFcDzf84iTx3E4m3fwVRCV2uV9fUyvzX/o9JGx8gRyrZlH4qQy79C660vF6JM5x2NXi47/GXuKbyz4yzbd1jWStutqfNYPApNxE39rR+/0u6xxfg6UVb2bH0XSY0fEIu5bhcbmxpI8ieeBpxRWdZ3+MDwJodDbz19TbsWz5lbOtSMhwtJKcNJqdgOq5Rp0JsWqRDDIvKRi8vfVVGSek2Cus/JZ8dDI6zk50/muiRs2Dw+H71g8AHq3dy45Nf8cqlg5j8+mnwjXvh2BsjHVa/4g8EqWlpo6axlYbaClpqK/A2VBJsqoLWasRTj3gbsfsacfqacPqbiAo2ExVsJsa0EE8LcbTilu7fZ62dz9ixru5sBMXW6RrDsvvf8N3XEZ2nbQS7vC6NpKARAtg63ldA7LwkZ5J98T2cMa6rOp/I6akE63tAljHmThEZBXwEDAUKgGew+l1lheaPPNggF/0hwfK3eSnfuo6qktW0lq/DUbuJuOZtJPvKSQ9W71PTVE0SNfY0WlxpeKPTCcakY0sYjDspk9jULOLTckhIGUxUbEK/ytgPSzAIfg9+bwteT3NH88Y2Twt+TzP+thYCXusRbGsl2NaC8bdifB7wtWICfkzARzDgh0CoKWTQj834sZkAYgLYQ69tJoANv5VQQkeiYzq93l2tYRAhlNiYjtxrd5Ih7E6ZrGdECIa6LlrzBCPtKVFoa7G2AzBioyNN6Zhv7Wjv7TuvS0cy2ClF6jQvNKNjf7D716n2ebunCU23l9Pp76z9daflHeW1J6Kdfu3qXD6754ZeC3unMtZqe37HdI6+o9iOeaZjqnNiuPd6+y2n/fus08X6ngnibu5hx5F/4uX0poeeeY7r1t9ETeZMBn33+T06z1fUVLP83ccZufEh8ilnu3s47rP/RFpR3+tndTiMMSzfVsv6FYtIql9LepyLQbmjyRk3A+mlG60qpaDZ62fy7+bw7alDuKvseqsv1nffj3RYERcMGmpa2thZ10J1RTlNVaV4a7cTrC/H2bqLKE8lMW3VxAbqSQzWkyyNJNGMbT9JSQAbLRJDqy0Wrz2WNkccAUccAVc8AVccQVcCxhWHzWl1x7C6ZMRgd0fjjIrB6bZa9dhc0VZrH4cbu8OBzWHVEDkcTqtbh93ZUTt1JIyxWo8EjSEYDBIM+AkGrR/fgz4/gdB1VyDgJ+gPvfb7CAYC1rqh67Gg30cwGLCmA35MwE8wGLCu1wJ+giaACQSsZaFuLASsWjiCVi2cCdXEmUAATBCCPjBBq1Yu1OVlc8xExp9+ZceNs/uKnkqwXMCjwESgDasP1sehZb8ErgP8wK3GmHcPVl5fS7Cqd5WydfmneEuXEV27ltTWEgYHduKU3XliDQnscubQFJ2NLz4He0ousen5JGUOY9CQEbii9AJCKWVpbQvw2N9+zU1N/6DGkcHOrNNoNm6kaj0FLUuIES/bXMOxzfoZOdO/1a9+HVdK9X03PLGElWX1fD7ja2wf/xZ+tBxS8iMdVo+qb/VRWtPCzopdNJRvwle9FXv9NqJayojz7CLRX80gqWEQdXtc33Vsb0uk2ZGCx5WMPyoFE52KxKbijE/HnTiI6KR0YhIzcCekQ3QSOGP6fY28OnQ9kmCFW19LsBY9+wemr/8TASOU2rKpjsnHmzgcx6BRJA0ZS+bwIuKT0iMdplKqH2n2+nn5pacYvvFRpppVuCRAmWRSkTadwTOuIGv8qfqPs1KqR7y6rIzbnv+al78zhGNemQkn/xJO+mmkw+qWYNBQ3uBhc0UDlWWb8OzagK16E+6mbcR7djA4WEGOVJIkzXts55Eo6pwZtEZlEIjNwJaQiSs5i9i0ocSn5+BIzIK4jB69T6Lq/zTBOgKVO0qo3rGJvIJpRMXERzocpdQAEggaaprbiHII8dH6D7hSqud5fAGm//EjjhuWyr+Cd0PFWqsWqx80123y+tlS2cy27dtpKFuDr2IDrvotJLVuJdfsIF92EiW+jvW94qbenYknNgeTOBR3Wh7xmSOIGZSPJOVCTIr+mKW6bX8JVneHaR/Q0rPySM/Ki3QYSqkByG4T0uN7foh4pZRqF+W0c+nUIfx7/hZ2XHYLWa9cAF/+G074UaRD69DmD7KpsokN26uoKlmFv3wVsbXryfFtYYxtG0VS27GuHzv1Udm0JuRTk34msZmjic8eiy19JO64DAZpAqUiRBMspZRSSqmjxHdn5PP0om3cuSyefw8/BebfB+PO7/Wh5o0x7Kj3sL68ntKSjbSWrcRVtYa0lk2Mlm18U8o7+kT5xUlt4jDaUk6kMquQpNxCnOmjcCTnktpPbl2hji6aYCmllFJKHSUGxUfxw1NG8Md31/HmmbdzTull8OI1cPVbPdZUsKXNz7qdjRRvK6du69ewaxUJDRsYFtzKFCnllNC9xQDqozNpTRlNQ9YFJOZOwJFZhCN1OOmaSKl+RBMspZRSSqmjyPUzh/HZpmpum1NFxoz/YdoXt8IT58KlT0H8kd9nyBhDWW0r67ZXUbFlFd7tq3DVrGOwZwujpZTJtsqOdT22WOqTR+EZdCHOvAlEZ4+HQWNJjEqkbw3ErdTh00EulFJKKaWOMg0eH9c/voQvttTwq2HFXLfr99jsLph+E4y/FFKH73cQiEDQsL2mhbIdpdSWbaBl50aCNZtJbNzEMLONfNl9S5sAdmpj8vCljiE6ZzyJeROQjEJIzNFBJlS/p6MIKqWUUkqpDl5/gL9/VMyjn20h3bed38c8x/GBL7FhaHUmURszjBZnMp6gnTa/H+Nrxe2tJTZQRzp1xIlnj/JqXFk0J43GkTmO5LwJRGUVQuoIHepcDViaYCmllFJKqX3Ut/p4ZWkZCzdVU1m2kYKWJUxkA0NslaTSgFMC2Gw2gjYXHlcywehUHAkZuNKHkZQ9isSsUUhyHjijIv1WlOpVmmAppZRSSqmDCgYNHn8Amwgi4LLbEG3Op9Q+9D5YSimllFLqoGw2Icall4hKHSlbpANQSimllFJKqYFCEyyllFJKKaWUChNNsJRSSimllFIqTPrUIBciUglsjXQce0kDqiIdhOo1eryPHnqsjx56rI8ueryPHnqsjy598XjnGmPS957ZpxKsvkhElnQ1OogamPR4Hz30WB899FgfXfR4Hz30WB9d+tPx1iaCSimllFJKKRUmmmAppZRSSimlVJhognVwD0U6ANWr9HgfPfRYHz30WB9d9HgfPfRYH136zfHWPlhKKaWUUkopFSZag6WUUkoppZRSYaIJllJKKaWUUkqFiSZYByAis0VkvYgUi8jPIx2PCh8RGSIin4jIGhFZLSK3hOaniMgcEdkYek6OdKwqPETELiLLROSt0HS+iCwOnd/Pi4gr0jGq8BCRJBF5SUTWichaETlOz+2BSURuC32HrxKRZ0UkSs/tgUNEHhWRChFZ1Wlel+eyWP4WOu4rRGRy5CJXh2s/x/re0Pf4ChF5VUSSOi27I3Ss14vImREJ+gA0wdoPEbED/wC+ARQA3xaRgshGpcLID9xujCkApgM/CB3fnwMfGWNGAh+FptXAcAuwttP0n4D7jTEjgFrguxGJSvWE/we8Z4wZA0zAOu56bg8wIpIN/AiYYowpBOzAZei5PZA8Bszea97+zuVvACNDjxuBf/VSjCo8HmPfYz0HKDTGjAc2AHcAhK7XLgPGhbb5Z+i6vc/QBGv/pgHFxpjNxpg24DngvAjHpMLEGFNujFkaet2IdQGWjXWMHw+t9jhwfkQCVGElIjnAWcC/Q9MCnAK8FFpFj/UAISKJwInAIwDGmDZjTB16bg9UDiBaRBxADFCOntsDhjFmHlCz1+z9ncvnAU8YyyIgSUQyeyVQ1W1dHWtjzAfGGH9ochGQE3p9HvCcMcZrjNkCFGNdt/cZmmDtXzZQ2mm6LDRPDTAikgdMAhYDGcaY8tCinUBGpOJSYfVX4KdAMDSdCtR1+uLW83vgyAcqgf+EmoT+W0Ri0XN7wDHGbAfuA7ZhJVb1wFfouT3Q7e9c1uu2ge064N3Q6z5/rDXBUkc1EYkDXgZuNcY0dF5mrHsY6H0M+jkRORuoMMZ8FelYVK9wAJOBfxljJgHN7NUcUM/tgSHU9+Y8rKQ6C4hl3yZGagDTc/noICK/xOra8XSkYzlUmmDt33ZgSKfpnNA8NUCIiBMruXraGPNKaPau9iYFoeeKSMWnwuYE4FwRKcFq6nsKVh+dpFCzItDzeyApA8qMMYtD0y9hJVx6bg88pwFbjDGVxhgf8ArW+a7n9sC2v3NZr9sGIBG5BjgbuNzsvnlvnz/WmmDt35fAyNBoRC6sznRvRDgmFSahPjiPAGuNMX/ptOgN4OrQ66uB13s7NhVexpg7jDE5xpg8rPP4Y2PM5cAnwMWh1fRYDxDGmJ1AqYiMDs06FViDntsD0TZguojEhL7T24+1ntsD2/7O5TeAq0KjCU4H6js1JVT9kIjMxmref64xpqXTojeAy0TELSL5WAObfBGJGPdHdieDam8i8k2svht24FFjzO8jG5EKFxGZAcwHVrK7X84vsPphvQAMBbYClxhj9u5gq/opEZkF/NgYc7aIDMOq0UoBlgFXGGO8EQxPhYmITMQa0MQFbAauxfpBUc/tAUZEfgtcitV8aBlwPVZfDD23BwAReRaYBaQBu4DfAK/RxbkcSrIfwGom2gJca4xZEoGw1RHYz7G+A3AD1aHVFhljvhda/5dY/bL8WN083t27zEjSBEsppZRSSimlwkSbCCqllFJKKaVUmGiCpZRSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRSSimllFJhogmWUkoppZRSSoXJ/weIB6m0Pvl+cwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
48True60.05370.0124bAP.soma.v0.005492.86e-07
49True60.05370.0124Step1.soma.v0.1257.9e-07
50True60.05370.0124Step3.soma.v0.05332.78e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "48 True 6 0.0537 0.0124 bAP.soma.v \n", + "49 True 6 0.0537 0.0124 Step1.soma.v \n", + "50 True 6 0.0537 0.0124 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "48 0.00549 2.86e-07 \n", + "49 0.125 7.9e-07 \n", + "50 0.0533 2.78e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACh+UlEQVR4nOzdeXwV9b3/8dfnnOw7JGFHgijIkogKiAXc2utSF7Ra0bqh13rV2qp1rW0ttdff7bW21u1KbW21ahHrbrVaN1SsGyjiggtI2GQJCSQkZDnL9/fHTMIhZIOccBLyfj6cR2b5znc+M5MTz4fvd75jzjlERERERESk8wKJDkBERERERGRPoQRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiEg3YWZFZubMLCnRsezpzGymmc1PdBzdjZlNM7PPEx2HiEhPpgRLRER6NDObZWYhM6uOma5JdFw9kXPuDefcqHjW6Sdt1c0mZ2anxPM4IiLdhf6VVEQkTswsyTkXTnQcvdRc59xZiQ6iq/Tk3y3n3BtAVuOymR0OPAM8n6CQRES6lFqwREQ6wcxKzexaM1sM1JhZkplNNrN/m9lmM/vQ/0LZWH6emf2Pmb1rZlVm9pSZ9W2l7vPMbImZbTGzr8zsv5ptn25mi/x6lpnZMf76XDO718zWmtkaM/tvMwu2cx4jzOwVMys3s41m9pCZ5cVsqzCzA/3lQWZW1nheZnaimX3in+88Mxvd7PpcZWaLzazSzOaaWdrOX+mdZ2bX+ddli5l9amYnt1LOzOxWM9vgX8uPzGycvy3VzG4xs5Vmtt7MZptZegePf59f/kU/htfMbFjM9tvMbJV/zIVmNi1m2ywze9TMHjSzKmCmmU0ys7f867zWzO40s5SYfZyZXWJmX/rH+5V/7/7tH+OR2PKtxHy4ma3uyPl1wrnAo865mi4+johIQijBEhHpvDOA44A8oD/wLPDfQF/gKuAxMyuMKX8OcD4wEAgDt7dS7wbgeCAHOA+4NSbJmQT8FbjaP+6hQKm/331+vfsABwBHARe0cw4G/A8wCBgNDAVmATjnlgHXAg+aWQbwF+B+59w8MxsJzAEuBwqB54Bnmn2RPw04BhgOlAAzWwzAbKqfPLQ2TW3nHJpbBkwDcoFf+vEPbKHcUXjXb6Rf9jSg3N/2a3/9eLzrORi4YSdiOBP4FVAALAIeitn2nl9vX+BvwN+bJZ/TgUfx7u9DQAS4wq/rEOCbwCXNjnc0cBAwGbgGuAc4C+9+jsP7Xd1lfqLc2v35vw7snwmcCtzfmThERLo155wmTZo0adrFCS+pOT9m+VrggWZlXgDO9efnAb+O2TYGaACCQBHggKRWjvUkcJk//wfg1hbK9AfqgfSYdWcAr+7keZ0EfNBs3dPAR8BiINVf93PgkZgyAWANcHjM9TkrZvvNwOw434NZ/jXcHDMNaqHcImC6Pz8TmO/PHwl8gZeUBGLKG1ADjIhZdwiwvINx3Qc8HLOchZckDW2l/CZg/5hzer2d+i8HnohZdsCUmOWFwLUxy78Fft9OnYcDq+N5f5rVfzawHLCuOoYmTZo0JXrSM1giIp23KmZ+GPBdMzshZl0y8Gor5Vf42wuaV2pmxwK/wGtBCQAZeAkOeC0Sz7UQyzC/vrVm1rgu0OyYOzCz/sBteC0+2f4+m5oV+yNeknWhc67eXzfIPwcAnHNRM1uF19LTaF3M/FZ/n3h7xDV7BsvMzgF+jJe4gpfg7HCdnXOvmNmdwF3AMDN7HK/lMQ3vmi+MuZaGlwx3VNN1d85Vm1kF3vmvMrOrgP/0lx1eS2VBS/v65zMS+B0wwY8rCS+JirU+Zr62heUBOxF7VzgX+KtzziU4DhGRLqMugiIinRf7ZXEVXgtWXsyU6Zz7dUyZoTHzewEhYGNshWaWCjwG3AL0d87l4SVUjd/0VwEjWohlFV4LVkHM8XOcc2PbOYf/559HsXMuB69b2baswiwL+D1wLzDLtj039jVeUtdYzvzzW9PO8XZgLY82FztNa7+WprqG4SWElwL5/vX7OPacYjnnbnfOHYTXojgSr+vlRrykZGzMtcx1zmW1VEcrmu61fw37Al/753INXnfEPn58lc3ia56E3A18Buzr36PrWzufruI/a9fa/Zndzr5D8VrI/rpbghURSRAlWCIi8fUgcIKZHW1mQTNL8wcOGBJT5iwzG+M/z3Qj3gP/kWb1pACpQBkQ9luzjorZfi9wnpl908wCZjbYzPZzzq0F/gX81sxy/G0jzOywduLOBqqBSjMbjJdgxLoNWOCcuwDvGbPGL9OPAMf5cSQDV+IleP9u70I157whwrPamN7Yieoy8RKUMvAGDMF7BmkHZjbRzA72468B6oCocy6Kl6Tdamb9/LKDzezomH2dxQxi0oJv+8+WpeA9i/W2c24V3vUO+/ElmdkNeC1YbckGqoBqM9sPuLid8nHnnBvbxv25qJ3dzwb+7bxn+kRE9lhKsERE4sj/8jwdr3WhDK9F6Wq2/3v7AN7zOevwuqH9qIV6tvjrH8Hrqvc9vO55jdvfxR/4Aq/l4zW2tSSdg5egferv+yjegBpt+SVwoF/Xs8DjjRvMbDreIBWNX+h/DBxoZmc65z7Ha+26A6/F5wTgBOdcQzvH61LOuU/xnjl6C6+bXDHwZivFc/ASqU143R3Lgd/4264FlgJv+6P5vQSMgqYWmS1s67bZkr/hdfOswBt8orEb4wt4w5R/4R+zjna6ceJ1W/yef8w/AnPbKd/dnIMGtxCRXsDUDVpEZPcxs3nAg865PyU6FukcMzsLr/vgT1rZfh/egBE/262BiYhIQmmQCxERkV3gnHsw0TGIiEj3oy6CIiK9hHkvvd3pwQlkz2Jm17fye/DPRMcmIrInUBdBERERERGROFELloiIiIiISJx0q2ewCgoKXFFRUaLDEBERERERadPChQs3OucKm6/vVglWUVERCxYsSHQYIiIiIiIibTKzFS2tVxdBERERERGROFGCJSIiIiIiEidKsEREREREROKkWz2D1ZJQKMTq1aupq6tLdCjSDaSlpTFkyBCSk5MTHYrsgZ7/eB2Pv7+aO753AKlJwUSHIyIiIj1Qt0+wVq9eTXZ2NkVFRZhZosORBHLOUV5ezurVqxk+fHiiw5E90K8efZOLww/xxWunUvzN7yU6HBEREemBun0Xwbq6OvLz85VcCWZGfn6+WjOly8zgRc5Kepn8Rf+X6FBERESkh+r2CRag5Eqa6HdBulKuqwQgp2YFOJfgaERERKQn6hEJlohIV4tGHemRGgCyolVQtSbBEYmIiEhPpASrA8yMK6+8smn5lltuYdasWYkLKMbhhx/e5suZTzrpJCZPnrzdulmzZjF48GDGjx/PuHHjePrpp7s6TJFur6YhTJbVNi1H1y9JYDQiIiLSUynB6oDU1FQef/xxNm7cGNd6nXNEo9G41hlr8+bNLFy4kMrKSr766qvttl1xxRUsWrSIv//975x//vldGodIT1BTHyGLWsoChQBUrluW4IhERESkJ1KC1QFJSUlceOGF3HrrrTtsKysr45RTTmHixIlMnDiRN998E/BaiW655ZamcuPGjaO0tJTS0lJGjRrFOeecw7hx41i1ahVXX30148aNo7i4mLlz5wIwb948Dj/8cE499VT2228/zjzzTFwrz4Q88MADTa1R7777btP6xx9/nBNOOIHTTz+dhx9+uMV9R48eTVJS0nbJ43XXXceYMWMoKSnhqquuAqC0tJQjjzySkpISvvnNb7Jy5UoAZs6cycUXX8zkyZPZe++9mTdvHueffz6jR49m5syZTXVefPHFTJgwgbFjx/KLX/xihzgqKysZNmxYU6JXU1PD0KFDCYVCLcYtEm/V9WGyrZbNGUU0uCDVSrBERERkF3T7Ydpj/fKZT/j066q41jlmUA6/OGFsu+V+8IMfUFJSwjXXXLPd+ssuu4wrrriCqVOnsnLlSo4++miWLGm7a9GXX37J/fffz+TJk3nsscdYtGgRH374IRs3bmTixIkceuihAHzwwQd88sknDBo0iClTpvDmm28yderUHerbunUrixYt4vXXX+f888/n448/BmDOnDnccMMN9O/fn1NOOYXrr79+h33feecdAoEAhYXev9qXl5fzxBNP8Nlnn2FmbN68GYAf/vCHnHvuuZx77rn8+c9/5kc/+hFPPvkkAJs2beKtt97i6aef5sQTT+TNN9/kT3/6ExMnTmTRokWMHz+em266ib59+xKJRPjmN7/J4sWLKSkpaYojNzeX8ePH89prr3HEEUfwj3/8g6OPPlrvu5LdZmtDmGy2kpy1N2uqCrCKFYkOSURERHogtWB1UE5ODueccw633377dutfeuklLr30UsaPH8+JJ55IVVUV1dXVbdY1bNiwpuei5s+fzxlnnEEwGKR///4cdthhvPfeewBMmjSJIUOGEAgEGD9+PKWlpS3Wd8YZZwBw6KGHUlVVxebNm1m/fj1ffvklU6dOZeTIkSQnJzclXgC33nor48eP56qrrmLu3LlNo/Pl5uaSlpbGf/7nf/L444+TkZEBwFtvvcX3vue9F+jss89m/vz5TXWdcMIJmBnFxcX079+f4uJiAoEAY8eObYr5kUce4cADD+SAAw7gk08+4dNPP93hPGbMmNHUgvfwww8zY8aMNq+jSDxV13vPYKVl5vE1haRUr050SCIiItID9agWrI60NHWlyy+/nAMPPJDzzjuvaV00GuXtt98mLS1tu7JJSUnbPdcU++6mzMzMDh0vNTW1aT4YDBIOh1ss13zocjPjkUceYdOmTU0v5K2qqmLOnDncdNNNgPcMVmP3v+Zxv/vuu7z88ss8+uij3HnnnbzyyisdijMQCGwXcyAQIBwOs3z5cm655Rbee+89+vTpw8yZM1t8l9WJJ57I9ddfT0VFBQsXLuTII49s87gi8VTb4D2DtTUtm4rkARTXLkx0SCIiItIDqQVrJ/Tt25fTTjuNe++9t2ndUUcdxR133NG0vGjRIgCKiop4//33AXj//fdZvnx5i3VOmzaNuXPnEolEKCsr4/XXX2fSpEk7FVdjq8/8+fPJzc0lNzeXOXPm8Pzzzzc997Vw4cJWn8OKVV1dTWVlJd/+9re59dZb+fDDDwH4xje+0bT/Qw89xLRp0zocX1VVFZmZmeTm5rJ+/Xr++c9/tlguKyuLiRMnctlll3H88ccTDAY7fAyRzgqFQ2RZHZaaQ036YHIimyBU2/6OIiIiIjE6nWCZ2VAze9XMPjWzT8zsMn/9LDNbY2aL/OnbnQ838a688srtBoS4/fbbWbBgASUlJYwZM4bZs2cDcMopp1BRUcHYsWO58847GTlyZIv1nXzyyZSUlLD//vtz5JFHcvPNNzNgwICdiiktLY0DDjiAiy66iHvvvZfS0lJWrFix3fDsw4cPJzc3l3feeafFOr797W/z9ddfs2XLFo4//nhKSkqYOnUqv/vd7wC44447+Mtf/kJJSQkPPPAAt912W4fj23///TnggAPYb7/9+N73vseUKVOatt1www3bDRM/Y8YMHnzwQXUPlN0uUrvFm0nPIZwz1JvfvDJxAYmIiEiPZK2NTNfhCswGAgOdc++bWTawEDgJOA2ods7d0tb+sSZMmOCav9NpyZIljB49ulMxyp5FvxPSFf7xxrsc//J/UHHkb3h+Qx++9/EFRM54hOCooxMdmoiIiHRDZrbQOTeh+fpOt2A559Y6597357cAS4DBna1XRGR3cqF6AAIpGaQXes8ubtFQ7SIiIrKT4voMlpkVAQcAjf3QLjWzxWb2ZzPr08o+F5rZAjNbUFZWFs9wREQ6LBLyBl4JpqTSp/8QGlyQ2jIN1S4iIiI7J24JlpllAY8BlzvnqoC7gRHAeGAt8NuW9nPO3eOcm+Ccm9D4LiYRkd2tsQUrmJzK4D6ZrHd9iVSuSXBUIiIi0tPEJcEys2S85Ooh59zjAM659c65iHMuCvwR2Lmh8UREdqNo2GvBSkpJY1BeOl+TT6BKCZaIiIjsnHiMImjAvcAS59zvYtYPjCl2MvBx831FRLqLxhaspOR0MlOT2BgoIK12XYKjEhERkZ4mHi8angKcDXxkZov8ddcDZ5jZeMABpcB/xeFYIiJdwoX9QS6SvZeGV6f2J6f+bYhGIaBXBoqIiEjHxGMUwfnOOXPOlTjnxvvTc865s51zxf76E51za+MRcKI8+eSTmBmfffZZq2VKS0sZN25c3I45c+ZMHn300Va3X3755QwePJhoNNq07r777qOwsJDx48czZswY/vjHP8YtHpE9WWOCRVIKAA2ZA0kiDDUafEdEREQ6Tv8s20Fz5sxh6tSpzJkzp8Xt4XC408eIRCIdLhuNRnniiScYOnQor7322nbbZsyYwaJFi5g3bx7XX38969ev73RsInu8iJ9gBVO9nzn+2yb0HJaIiIjsBCVYHVBdXc38+fO59957efjhh5vWz5s3j2nTpnHiiScyZswYwEu0zjzzTEaPHs2pp57K1q1bAXj55Zc54IADKC4u5vzzz6e+3vsyV1RUxLXXXsuBBx7I3//+9x2O/dJLLzFhwgRGjhzJP/7xj+2OPXbsWC6++OJWk75+/foxYsQIVqzYNtT07bffzpgxYygpKeH0008HoKKigpNOOomSkhImT57M4sWLAZg1axbnnnsu06ZNY9iwYTz++ONcc801FBcXc8wxxxAKhQC48cYbmThxIuPGjePCCy+k+curo9EoRUVFbN68uWndvvvuq8RPupemFiwvwUrpMxSAhopViYpIREREeqB4PIO1+/zzOlj3UXzrHFAMx/66zSJPPfUUxxxzDCNHjiQ/P5+FCxdy0EEHAfD+++/z8ccfM3z4cEpLS/n888+59957mTJlCueffz7/93//x6WXXsrMmTN5+eWXGTlyJOeccw533303l19+OQD5+fm8//77LR67tLSUd999l2XLlnHEEUewdOlS0tLSmDNnDmeccQbTp0/n+uuvJxQKkZycvN2+X331FV999RX77LNP07pf//rXLF++nNTU1KaE5xe/+AUHHHAATz75JK+88grnnHMOixYtAmDZsmW8+uqrfPrppxxyyCE89thj3HzzzZx88sk8++yznHTSSVx66aXccMMNAJx99tn84x//4IQTTmg6ZiAQYPr06TzxxBOcd955vPPOOwwbNoz+/ft3+DaJdLnI9glWRuEwALZsKCU/UTGJiIhIj6MWrA6YM2dOU2vP6aefvl2L0aRJkxg+fHjT8tChQ5kyZQoAZ511FvPnz+fzzz9n+PDhjBw5EoBzzz2X119/vWmfGTNmtHrs0047jUAgwL777svee+/NZ599RkNDA8899xwnnXQSOTk5HHzwwbzwwgtN+8ydO5fx48dzxhln8Ic//IG+ffs2bSspKeHMM8/kwQcfJCnJy6/nz5/P2WefDcCRRx5JeXk5VVVVABx77LEkJydTXFxMJBLhmGOOAaC4uJjS0lIAXn31VQ4++GCKi4t55ZVX+OSTT3Y4jxkzZjB37lwAHn744TbPWSQRLNzgzfhdBPP7DaTOJVO3cWUCoxIREZGepme1YLXT0tQVKioqeOWVV/joo48wMyKRCGbGb37zGwAyMzO3K++NWt/6ckua19FefS+88AKbN2+muLgYgK1bt5Kens7xxx8PeMnMnXfe2WJ9zz77LK+//jrPPPMMN910Ex991HaLYGqq92UzEAiQnJzcFE8gECAcDlNXV8cll1zCggULGDp0KLNmzaKurm6Heg455BCWLl1KWVkZTz75JD/72c/aPK7I7mZRP8HyB7kYlJfBWteXJL1sWERERHaCWrDa8eijj3L22WezYsUKSktLWbVqFcOHD+eNN95osfzKlSt56623APjb3/7G1KlTGTVqFKWlpSxduhSABx54gMMOO6xDx//73/9ONBpl2bJlfPXVV4waNYo5c+bwpz/9idLSUkpLS1m+fDkvvvhi0/NerYlGo6xatYojjjiC//3f/6WyspLq6mqmTZvGQw89BHjPdhUUFJCTk9Oh+BqTqYKCAqqrq1sd9dDMOPnkk/nxj3/M6NGjyc9XpyvpXgLh7Qe5GJCbxjqXT7D66wRGJSIiIj2NEqx2zJkzh5NPPnm7daecckqrA0uMGjWKu+66i9GjR7Np0yYuvvhi0tLS+Mtf/sJ3v/tdiouLCQQCXHTRRR06/l577cWkSZM49thjmT17NtFolOeff57jjjuuqUxmZiZTp07lmWeeabGOCy64gAULFhCJRDjrrLMoLi7mgAMO4Ec/+hF5eXnMmjWLhQsXUlJSwnXXXcf999/fwasDeXl5fP/732fcuHEcffTRTJw4sWnb7NmzmT17dtPyjBkzePDBB9U9ULqlQLSBKAZB71nGtOQg5UkFpOtlwyIiIrITrPmIb4k0YcIEt2DBgu3WLVmyhNGjRycoIumO9DshXeGp3/wnx9Y8Tcqsbe+9mvu/3+fU2kcJ3rARAsEERiciIiLdjZktdM5NaL5eLVgiIngtWCHbfiTOhoxBBIlCtV4pICIiIh2jBEtEBAhGGog0S7As13/ZsAa6EBERkQ7qEQlWd+rGKIml3wXpKkHXQCiQst265L7ey4ZryzVUu4iIiHRMt0+w0tLSKC8v1xdrwTlHeXk5aWlpiQ5F9kDBaIiIbZ9gZffbC4DqshWJCElERER6oG7/HqwhQ4awevVqysrK2i8se7y0tDSGDBmS6DBkD5TkGogEtu8iWFAwgK0ulXq9bFhEREQ6qNsnWMnJyQwfPjzRYYjIHi4p2kC0WRfBgXnprHV9SalcnaCoREREpKfp8i6CZnaMmX1uZkvN7LquPp6IyK5IciEigdTt1g3ITWMt+SRVr01QVCIiItLTdGmCZWZB4C7gWGAMcIaZjenKY4qI7IpkQkSDzQa5CAaoCPYjo04vGxYREZGO6eoWrEnAUufcV865BuBhYHoXH1NEZKc450hyIVyzLoIAten9yQ6XQySUgMhERESkp+nqBGswsCpmebW/TkSk2whHHakttGABhDIHEsDBFrViiYiISPsSPky7mV1oZgvMbIFGChSRRGgIR0khhAum7rDNcr1RK50GuhAREZEO6OoEaw0wNGZ5iL+uiXPuHufcBOfchMLCwi4OR0RkR6FIlBQL41powUrN996FVauh2kVERKQDujrBeg/Y18yGm1kKcDrwdBcfU0RkpzSEo6QSgqQdW7Cy+xUBsGWDXjYsIiIi7evS92A558JmdinwAhAE/uyc+6QrjykisrPqw1FyCUELLViFhQVscek0VKgFS0RERNrX5S8ads49BzzX1ccREdlVDRHvGSyS0nbYNijXe9lwWtXXCYhMREREepqED3IhIpJooXCEFMJYC10EC7NTWUc+ydVKsERERKR9SrBEpNdrCDUQMNdighUMGJuT+5FZtz4BkYmIiEhPowRLRHq9cH0tAJa8Y4IFsDVtADmRCgjX786wREREpAdSgiUivV64vg4Aa+EZLIBo9iBvRs9hiYiISDuUYIlIrxcOeQlWoJUWrGDfYQBEKjRUu4iIiLRNCZaI9HqRBq/rX7CVBCuj/wgAKr/+crfFJCIiIj2TEiwR6fUifgtWMLnlLoL5g4YTckG2rl+2O8MSERGRHqjL34MlItLdNSVYKS0nWHsV5LDGFWAVy3dnWCIiItIDqQVLRHq9aEPbLVgDc9NZTT9SqlbuzrBERESkB1KCJSK9XshPsFJS01vcHgwYFSmDyK5dvTvDEhERkR5ICZaI9HrhxgQrreUWLICtmUPJilZBXeXuCktERER6ICVYItLrRdppwQKI5nlDtbNJQ7WLiIhI65RgiUiv1/gerNZeNAyQXOgN1V67QSMJioiISOuUYIlIr+catnozrQxyAZA7aF8AqvQuLBEREWmDEiwR6fWsodqbSclutcyg/v3Z5LKoL/tqN0UlIiIiPVGnEiwz+42ZfWZmi83sCTPL89cXmVmtmS3yp9lxiVZEpAsEQn6ClZrVapmhfTNY6foR2Fy6e4ISERGRHqmzLVgvAuOccyXAF8BPYrYtc86N96eLOnkcEZEukxSqIUIA2ngGKzc9mbWB/qRXr9qNkYmIiEhP06kEyzn3L+dc2F98GxjS+ZBERHavpPBW6iwDzNostyVtCLkNayEa2U2RiYiISE8Tz2ewzgf+GbM83Mw+MLPXzGxaHI8jIhJXyZEa6oMZ7ZZryNmLJCJQqRcOi4iISMuS2itgZi8BA1rY9FPn3FN+mZ8CYeAhf9taYC/nXLmZHQQ8aWZjnXNVLdR/IXAhwF577bVrZyEi0gkpka00JLWfYAUL9oYNECn/imCfYbshMhEREelp2k2wnHPfamu7mc0Ejge+6Zxz/j71QL0/v9DMlgEjgQUt1H8PcA/AhAkT3E7GLyLSaWnRjiVYWQNGwqdQueZz+u5zxG6ITERERHqazo4ieAxwDXCic25rzPpCMwv683sD+wIa21hEuqU0t5VwUusjCDYqGDycepdMzbqluyEqERER6YnabcFqx51AKvCieQ+Hv+2PGHgocKOZhYAocJFzrqKTxxIRibto1JHhaokkZ7Zbtqggm1WukJQK/XuRiIiItKxTCZZzbp9W1j8GPNaZukVEdoetoQiZVkd1cvstWP2yU/mUAYytWrEbIhMREZGeKJ6jCIqI9DiVtSGyqMXaeMlwo0DA2Jw2mNy61eD0yKiIiIjsSAmWiPRqlTX1ZFFLID23Q+Vrs4eR5uqgekMXRyYiIiI9kRIsEenVqjdvIGiOYFZBh8pb370BcBXLujIsERER6aGUYIlIr7Z103oAUnP7d6h8ev8RAGz5+ssui0lERER6LiVYItKr1W32uvpl9ulYgtV30D5EnLFlnRIsERER2VFnh2kXEenRQlu8BCur74AOlR/Wrw9fuwJcmboIioiIyI7UgiUivVqkeiMAwazCDpUf3CedFfQnWUO1i4iISAuUYIlIr2ZbvQSLjI4NcpEcDLAxZRA5W1d1YVQiIiLSUynBEpFeLbmughrLhKSUDu+zNXMYmdEqqN3UhZGJiIhIT6QES0R6tayGDVQmd6x7YCPXp8ibqVge/4BERESkR1OCJSK9lnOOvuH1bE0fuFP7pfTbB4Ct65Z2RVgiIiLSgynBEpFeq6KmgYFsJJw1eKf2yxs0EoCqrz/virBERESkB1OCJSK91tqNm8i3LQT6DN2p/YYOKGC9y6Oh7KsuikxERER6KiVYItJrbVrnJUjpBcN2ar+9+mawwvUnWFnaBVGJiIhIT6YES0R6ra0bSgHIHTB8p/bLSEliQ3AgWTUruyAqERER6ck6lWCZ2SwzW2Nmi/zp2zHbfmJmS83sczM7uvOhiojEV6jCS5Cy+xft9L6V6UPJDW+Ehq1xjkpERER6sqQ41HGrc+6W2BVmNgY4HRgLDAJeMrORzrlIHI4nIhIXgao1RDECOTs3yAVAKGcv2ApsXgH9Rsc/OBEREemRuqqL4HTgYedcvXNuObAUmNRFxxIR2SWpNV+zOZgPweSd3jfYtwiA6CZ1ExQREZFt4pFgXWpmi83sz2bWx183GFgVU2a1v24HZnahmS0wswVlZWVxCEdEpGNyGtazJWXALu2b3s97bmvLer1sWERERLZpN8Eys5fM7OMWpunA3cAIYDywFvjtzgbgnLvHOTfBOTehsLBwZ3cXEdkl9eEIBZEN1GUO2qX98wcMpd4lUbtBQ7WLiIjINu0+g+Wc+1ZHKjKzPwL/8BfXALEvlhnirxMR6RbWb65lkFWwPGfILu0/pE8mX7t8ktVFUERERGJ0dhTBgTGLJwMf+/NPA6ebWaqZDQf2Bd7tzLFEROKpbP1qUi1Ecv5eu7T/4D7prHaFJFWtar+wiIiI9BqdHUXwZjMbDzigFPgvAOfcJ2b2CPApEAZ+oBEERaQ7qfJfMpxZuHMvGW6UkZJEeVJ/xtd+EM+wREREpIfrVILlnDu7jW03ATd1pn4Rka5SX+517eszaMQu11GdPojsrS9DqBaS0+MVmoiIiPRgXTVMu4hItxbZ7HXtS93FLoIA4Wx/cNTK1fEISURERPYASrBEpFdK3rKGraRDWt4u19H4Liy3aUV8ghIREZEeTwmWiPRKGbXr2JzcD8x2uY60Qv9dWBqqXURERHxKsESkV+oTXk9N2sD2C7ahb/+9CLkgW/WyYREREfEpwRKRXmdLXYj+biOh7F17yXCjwflZrHV9CVeoi6CIiIh4lGCJSK+zbuMmCqwKyxvafuE2DM7z3oUVrNIgFyIiIuJRgiUivc6mNZ8DkFq4T6fqyU5LpizYj8zaNfEIS0RERPYASrDaUFdbQ319baLDEJE4q1/3BQBZg/frdF2V6UPJCW2EuqpO1yUiIiI9X6deNLynW/z8vey/6EY+S9mXyvzxBIdOIL+omMEjxpGSlpHo8ERkF7nyZQD0HTKq03VtyR0JtcCGJbDXwW0f1zneWrKSQX2zKBqQ3+lji4iISPejBKsNfYvG88G6U8krX8QBax8hZd3f4D2IOGNNoD/lKYNpSCsgmtkPy+4PmYWkpGeTkp5FcnoWlpJJMCWdYDBIMBAgKRgA8/aPRiESbsBFQkQjIaLhely4cT5EJNxANNS4vYFoOIQLN4BfnnADLhqCiD9FQ1jjz2gYizR4P12YQDSERUMEXIhANELAhQi6MOYimHPgooAjgMOIgmucb5yi2+adIxCzHMDhWrl+jp0b/rq18i2t3/ljtla39EYHuWo2Wh4FGbmdrssGFMM6CK39mOQ2EqwPl63h0yd+zYlb5vJ+xlSKrn2808fu6RoaGqjetIGazWXUVm+irrqShq2VhGqridRWQaiGQKiGYKiaQGgrgUg9Fm3AIiGC0QYC0QaC0QaSXJgkQiS7EEmEMRf1/z5Fm/6GBZvWecuBmPnGvw7b/h5Y098SBzHz2/6OuI6WsW1liCnjYsq0ru2/oTv7N7aj+7Zf764fV0RkVzwbPJKiU3/FN0f3T3QoHaIEqw37HHAo+xxwKAD1dVtZvnQR5aWfUL/uM1I3LyO3bg2FlSvou3kzqRZOWJxRZ4RIIkSQCEFClkSYJCIkEbYkIubNR/z5UCCJukAaWBBnQcwMzPvqgRnOAv7/YL15/C8J3vbYbQYEmv5fazHvE7JWUpfW1reW6pjbcevO17F706iuOVoPSQW7IMyuOnMbPo2CONSz94j9qPogg4al71Bw8H/usH35+k2899jvOWL9X9jfKtlMJmNqF4JznXoHV3cUiTo2bapg8/pVVJevoq5iDdHKr6F6PUm1G0lu2Ex6qJKsaBU5bgs5tpW+QN+26nTGVtKotXQaLIWIJRO2ZCKBZCKWQjQ5i9pAMhFLJhJIIRpIxlkAM+/vFYGYefPTKvNTLH85luG8ewPskAq57VMwR+Pfl5jfUue21dO43rnt/m4ZDue2pTEt/45HY+psq5xrYXbHktv/GWz9U9Xub2Qbf0+9a7Jn/U5L5+xhf+IkgdIy9yU/KzXRYXSYEqwOSk3LYPi4bzB83Dd22BYOR6jYXE7NpnXU1VRSW1NNpK4aQjW4UB3OOSLRCNGo9z/cABAwsGAyBJP8nylYIBlLSiYQTCGYnEwgKZVgUjLB5BRvSkohKSWVpKQUgsmpJCcnk5ySRlJSEikBI1V/yUR2uwOL+vBGdByHr3gZolEIeF/YV2zYzJtP/oEpa/7EabaB1bnj2Tr9f1gw/1W+tfxmQuWlJBcMT3D0O6c+FGL9mpVsWvMlNeu/IlJRStKWVWRuXUNuqIx8V0GB1e2QuNa6FDYH8tialEtdai5lKcNYm5pHNK0PZPQlkNmXlMw+pGbmkp6VR0ZWHhnZOaRm5JCUmkm2GdkJOWMREekOJiY6gJ2kBCsOkpKC9C3oR9+CfokORUR2s37ZaXyRdyjHbXmXhk+eYknyWJa9ch8Hr5/L92wj6zL2pfKY3zOk5NteC3FpNSyHis/n078bJlgNoQhrVn9F2fKPqf16CYGKL8mqXkHfhrUMcGXsZSH2iilfbnlUJA9kc84oNmb2h+wBJOUOIr3vYLIKhpDXfy8ysvuQrn8AEhGRXkIJlohIJ4076lyW/P0RRj82k/2B/YEV2ePZ/K3fM6DkuKZWLYChoydQ83oqW5a+Rf8pZycs5sotNaz56hM2r/yYhvWfk7J5GX23ljI4sprhVktj6reVNNYnD6YyZ182Zn+TQN9hZPTbmz6D9yF/8D7kp2ai4TpERES2UYIlItJJ/1G8F29EHuHV9+6jIDuNEVNOYdjQkhbLjhzQhwW2D4PWLejyuKJRx9p1X7P+q4+oXrMENn5BRtUyCutXMtitZ4xte86nzArYmDaML3OPJ1A4kpwhY+g/ooTM/KEMV+uTiIhIh3UqwTKzuUDjOMd5wGbn3HgzKwKWAJ/72952zl3UmWOJiHRn08aPhvH/2265QMBY2/dgJlX8mYYNS0np17mXHQPU1dez+qvPKF/xMfXrPiNp01JyakoZFFrFYNvCYL9cA0msTRpCZc4oyvseR0r//eg7bBz9isZQmJFLYacjERERkU4lWM65GY3zZvZboDJm8zLn3PjO1C8isicqmPafhJ68n9VP/Jy9L/xbh4baqquv5+uVSylf/QVb13+FK/+KjC3LKaxfweDoWvaxCI2p2iZy2ZC6FyvyjmBFwb5kDB5Dv+HjyBu4D8OC6rggIiLSleLyf1rzxuc+DTgyHvWJiOzJvjF+LE+8+j2+s/YBPrttOqFRJxDI6kcoEqGhuoJw1XoiWzYQqF5Pdt0a8kPr6O82srdF2duvI0SQ9cFBVGQW8WHekST334+8IWMYMKKYPjkF9EnoGYqIiPRe8fqnzGnAeufclzHrhpvZB0AV8DPn3Bst7WhmFwIXAuy1114tFRER2aOYGUdd8jue+VMKh5f9jex3XtuhTMQZmwN5bEoeQFleCWuy9yI5fzg5A0dQOHQUOf2LGBJMYkgC4hcREZHWmWvnJaxm9hIwoIVNP3XOPeWXuRtY6pz7rb+cCmQ558rN7CDgSWCsc66qrWNNmDDBLVjQ9Q9+i4h0F1U1W/l66UeEt24iORggMzef7PyB5PTtjwWCiQ5PREREWmFmC51zE5qvb7cFyzn3rXYqTgK+AxwUs089UO/PLzSzZcBIQNmTiEiMnMwMcvY/ONFhiIiISJwE2i/Srm8BnznnVjeuMLNCMwv683sD+wJfxeFYIiIiIiIi3VY8nsE6HZjTbN2hwI1mFgKiwEXOuYo4HEtERERERKTb6nSC5Zyb2cK6x4DHOlu3iIiIiIhIT9LuIBe7k5mVASsSHUczBcDGRAchu43ud++he9176F73LrrfvYfude/SHe/3MOdcYfOV3SrB6o7MbEFLo4PInkn3u/fQve49dK97F93v3kP3unfpSfc7HoNciIiIiIiICEqwRERERERE4kYJVvvuSXQAslvpfvceute9h+5176L73XvoXvcuPeZ+6xksERERERGROFELloiIiIiISJwowRIREREREYkTJVhtMLNjzOxzM1tqZtclOh6JHzMbamavmtmnZvaJmV3mr+9rZi+a2Zf+zz6JjlXiw8yCZvaBmf3DXx5uZu/4n++5ZpaS6BglPswsz8weNbPPzGyJmR2iz/aeycyu8P+Gf2xmc8wsTZ/tPYeZ/dnMNpjZxzHrWvwsm+d2/74vNrMDExe57KxW7vVv/L/ji83sCTPLi9n2E/9ef25mRyck6DYowWqFmQWBu4BjgTHAGWY2JrFRSRyFgSudc2OAycAP/Pt7HfCyc25f4GV/WfYMlwFLYpb/F7jVObcPsAn4z4REJV3hNuB559x+wP54912f7T2MmQ0GfgRMcM6NA4LA6eizvSe5Dzim2brWPsvHAvv604XA3bspRomP+9jxXr8IjHPOlQBfAD8B8L+vnQ6M9ff5P/97e7ehBKt1k4ClzrmvnHMNwMPA9ATHJHHinFvrnHvfn9+C9wVsMN49vt8vdj9wUkIClLgysyHAccCf/GUDjgQe9YvoXu8hzCwXOBS4F8A51+Cc24w+23uqJCDdzJKADGAt+mzvMZxzrwMVzVa39lmeDvzVed4G8sxs4G4JVDqtpXvtnPuXcy7sL74NDPHnpwMPO+fqnXPLgaV439u7DSVYrRsMrIpZXu2vkz2MmRUBBwDvAP2dc2v9TeuA/omKS+Lq98A1QNRfzgc2x/zh1ud7zzEcKAP+4ncJ/ZOZZaLP9h7HObcGuAVYiZdYVQIL0Wd7T9faZ1nf2/Zs5wP/9Oe7/b1WgiW9mpllAY8BlzvnqmK3Oe8dBnqPQQ9nZscDG5xzCxMdi+wWScCBwN3OuQOAGpp1B9Rne8/gP3szHS+pHgRksmMXI9mD6bPcO5jZT/Ee7Xgo0bF0lBKs1q0BhsYsD/HXyR7CzJLxkquHnHOP+6vXN3Yp8H9uSFR8EjdTgBPNrBSvq++ReM/o5PndikCf7z3JamC1c+4df/lRvIRLn+09z7eA5c65MudcCHgc7/Ouz/aerbXPsr637YHMbCZwPHCm2/by3m5/r5Vgte49YF9/NKIUvIfpnk5wTBIn/jM49wJLnHO/i9n0NHCuP38u8NTujk3iyzn3E+fcEOdcEd7n+BXn3JnAq8CpfjHd6z2Ec24dsMrMRvmrvgl8ij7be6KVwGQzy/D/pjfea32292ytfZafBs7xRxOcDFTGdCWUHsjMjsHr3n+ic25rzKangdPNLNXMhuMNbPJuImJsjW1LBqU5M/s23rMbQeDPzrmbEhuRxIuZTQXeAD5i23M51+M9h/UIsBewAjjNOdf8AVvpoczscOAq59zxZrY3XotWX+AD4CznXH0Cw5M4MbPxeAOapABfAefh/YOiPtt7GDP7JTADr/vQB8AFeM9i6LO9BzCzOcDhQAGwHvgF8CQtfJb9JPtOvG6iW4HznHMLEhC27IJW7vVPgFSg3C/2tnPuIr/8T/GeywrjPebxz+Z1JpISLBERERERkThRF0EREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhHpJsysyMycmSUlOpY9nZnNNLP5iY6juzGzaWb2eaLjEBHpyZRgiYhIj2Zms8wsZGbVMdM1iY6rJ3LOveGcGxXPOv2krbrZ5MzslHgeR0Sku9C/koqIxImZJTnnwomOo5ea65w7K9FBdJWe/LvlnHsDyGpcNrPDgWeA5xMUkohIl1ILlohIJ5hZqZlda2aLgRozSzKzyWb2bzPbbGYf+l8oG8vPM7P/MbN3zazKzJ4ys76t1H2emS0xsy1m9pWZ/Vez7dPNbJFfzzIzO8Zfn2tm95rZWjNbY2b/bWbBds5jhJm9YmblZrbRzB4ys7yYbRVmdqC/PMjMyhrPy8xONLNP/POdZ2ajm12fq8xssZlVmtlcM0vb+Su988zsOv+6bDGzT83s5FbKmZndamYb/Gv5kZmN87elmtktZrbSzNab2WwzS+/g8e/zy7/ox/CamQ2L2X6bma3yj7nQzKbFbJtlZo+a2YNmVgXMNLNJZvaWf53XmtmdZpYSs48zs0vM7Ev/eL/y792//WM8Elu+lZgPN7PVHTm/TjgXeNQ5V9PFxxERSQglWCIinXcGcByQB/QHngX+G+gLXAU8ZmaFMeXPAc4HBgJh4PZW6t0AHA/kAOcBt8YkOZOAvwJX+8c9FCj197vPr3cf4ADgKOCCds7BgP8BBgGjgaHALADn3DLgWuBBM8sA/gLc75ybZ2YjgTnA5UAh8BzwTLMv8qcBxwDDgRJgZosBmE31k4fWpqntnENzy4BpQC7wSz/+gS2UOwrv+o30y54GlPvbfu2vH493PQcDN+xEDGcCvwIKgEXAQzHb3vPr7Qv8Dfh7s+RzOvAo3v19CIgAV/h1HQJ8E7ik2fGOBg4CJgPXAPcAZ+Hdz3F4v6u7zE+UW7s//9eB/TOBU4H7OxOHiEi35pzTpEmTJk27OOElNefHLF8LPNCszAvAuf78PODXMdvGAA1AECgCHJDUyrGeBC7z5/8A3NpCmf5APZAes+4M4NWdPK+TgA+arXsa+AhYDKT6634OPBJTJgCsAQ6PuT5nxWy/GZgd53swy7+Gm2OmQS2UWwRM9+dnAvP9+SOBL/CSkkBMeQNqgBEx6w4BlncwrvuAh2OWs/CSpKGtlN8E7B9zTq+3U//lwBMxyw6YErO8ELg2Zvm3wO/bqfNwYHU870+z+s8GlgPWVcfQpEmTpkRPegZLRKTzVsXMDwO+a2YnxKxLBl5tpfwKf3tB80rN7FjgF3gtKAEgAy/BAa9F4rkWYhnm17fWzBrXBZodcwdm1h+4Da/FJ9vfZ1OzYn/ES7IudM7V++sG+ecAgHMuamar8Fp6Gq2Lmd/q7xNvj7hmz2CZ2TnAj/ESV/ASnB2us3PuFTO7E7gLGGZmj+O1PKbhXfOFMdfS8JLhjmq67s65ajOrwDv/VWZ2FfCf/rLDa6ksaGlf/3xGAr8DJvhxJeElUbHWx8zXtrA8YCdi7wrnAn91zrkExyEi0mXURVBEpPNivyyuwmvByouZMp1zv44pMzRmfi8gBGyMrdDMUoHHgFuA/s65PLyEqvGb/ipgRAuxrMJrwSqIOX6Oc25sO+fw//zzKHbO5eB1K9uWVZhlAb8H7gVm2bbnxr7GS+oay5l/fmvaOd4OrOXR5mKnae3X0lTXMLyE8FIg379+H8eeUyzn3O3OuYPwWhRH4nW93IiXlIyNuZa5zrmslupoRdO99q9hX+Br/1yuweuO2MePr7JZfM2TkLuBz4B9/Xt0fWvn01X8Z+1auz+z29l3KF4L2V93S7AiIgmiBEtEJL4eBE4ws6PNLGhmaf7AAUNiypxlZmP855luxHvgP9KsnhQgFSgDwn5r1lEx2+8FzjOzb5pZwMwGm9l+zrm1wL+A35pZjr9thJkd1k7c2UA1UGlmg/ESjFi3AQuccxfgPWPW+GX6EeA4P45k4Eq8BO/f7V2o5pw3RHhWG9MbO1FdJl6CUgbegCF4zyDtwMwmmtnBfvw1QB0Qdc5F8ZK0W82sn192sJkdHbOvs5hBTFrwbf/ZshS8Z7Heds6twrveYT++JDO7Aa8Fqy3ZQBVQbWb7ARe3Uz7unHNj27g/F7Wz+9nAv533TJ+IyB5LCZaISBz5X56n47UulOG1KF3N9n9vH8B7PmcdXje0H7VQzxZ//SN4XfW+h9c9r3H7u/gDX+C1fLzGtpakc/AStE/9fR/FG1CjLb8EDvTrehZ4vHGDmU3HG6Si8Qv9j4EDzexM59zneK1dd+C1+JwAnOCca2jneF3KOfcp3jNHb+F1kysG3myleA5eIrUJr7tjOfAbf9u1wFLgbX80v5eAUdDUIrOFbd02W/I3vG6eFXiDTzR2Y3wBb5jyL/xj1tFON068bovf84/5R2BuO+W7m3PQ4BYi0guYukGLiOw+ZjYPeNA596dExyKdY2Zn4XUf/Ekr2+/DGzDiZ7s1MBERSSgNciEiIrILnHMPJjoGERHpftRFUESklzDvpbc7PTiB7FnM7PpWfg/+mejYRET2BOoiKCIiIiIiEidqwRIREREREYmTbvUMVkFBgSsqKkp0GCIiIiIiIm1auHDhRudcYfP13SrBKioqYsGCBYkOQ0REREREpE1mtqKl9eoiKCIiIiIiEidKsEREREREROJECZaISAcsXLGJD1ZuSnQYIiIi0s11q2ewWhIKhVi9ejV1dXWJDkV6mLS0NIYMGUJycnKiQ5EezjnH2X96i+9Gn2fM1deRmjco0SGJiIhIN9XtE6zVq1eTnZ1NUVERZpbocKSHcM5RXl7O6tWrGT58eKLDkR5uS32YoyOv88uU+9n4fITU0+9KdEgiIiLSTXX7LoJ1dXXk5+cruZKdYmbk5+er5VPiYlNNA8cH3wagbtOaBEcjIiIi3Vm3T7AAJVeyS/R7I/FSUdNArtUAkLVpSYKjERERke6sRyRYIiKJtGlrA1nUApDXsA7qtyQ4IhEREemulGB1gJlx5ZVXNi3fcsstzJo1K3EBxXj77bc5+OCDGT9+PKNHj26Ka968efz73//uVN3HHHMMeXl5HH/88XGIVKTnqqwNkWW11JPir1id2IBERESk21KC1QGpqak8/vjjbNy4Ma71OueIRqOdquPcc8/lnnvuYdGiRXz88cecdtppQHwSrKuvvpoHHnigU3WI7AnqQ1GyqGVtqjdgitu8MsERiYiISHfV6VEEzWwo8FegP+CAe5xzt5nZLOD7QJlf9Hrn3HOdOdYvn/mET7+u6kwVOxgzKIdfnDC2zTJJSUlceOGF3Hrrrdx0003bbSsrK+Oiiy5i5UrvC9fvf/97pkyZwqxZs8jKyuKqq64CYNy4cfzjH/8A4Oijj+bggw9m4cKFPPfcc9x5553885//xMz42c9+xowZM5g3bx6zZs2ioKCAjz/+mIMOOogHH3xwh+eKNmzYwMCBAwEIBoOMGTOG0tJSZs+eTTAY5MEHH+SOO+5gv/32azXOZcuWsXTpUjZu3Mg111zD97//fQC++c1vMm/evDavzd///nd++ctfEgwGyc3N5fXXX6euro6LL76YBQsWkJSUxO9+9zuOOOII7rvvPp588klqamr48ssvueqqq2hoaOCBBx4gNTWV5557jr59+/LHP/6Re+65h4aGBvbZZx8eeOABMjIytjvu5MmTuffeexk71rt3hx9+OLfccgsTJkxoM16RXVEfipBJHatz9oGyz6nZsJyskYmOSkRERLqjeLRghYErnXNjgMnAD8xsjL/tVufceH/qVHKVaD/4wQ946KGHqKys3G79ZZddxhVXXMF7773HY489xgUXXNBuXV9++SWXXHIJn3zyCQsWLGDRokV8+OGHvPTSS1x99dWsXbsWgA8++IDf//73fPrpp3z11Ve8+eabO9R1xRVXMGrUKE4++WT+8Ic/UFdXR1FRERdddBFXXHEFixYtYtq0aW3GuXjxYl555RXeeustbrzxRr7++usOX5cbb7yRF154gQ8//JCnn34agLvuugsz46OPPmLOnDmce+65TaP5ffzxxzz++OO89957/PSnPyUjI4MPPviAQw45hL/+9a8AfOc73+G9997jww8/ZPTo0dx77707HHfGjBk88sgjAKxdu5a1a9cquZIuE2moJdkiBAr2ocEFqd5QmuiQREREpJvqdAuWc24tsNaf32JmS4DBna23Je21NHWlnJwczjnnHG6//XbS09Ob1r/00kt8+umnTctVVVVUV1e3WdewYcOYPHkyAPPnz+eMM84gGAzSv39/DjvsMN577z1ycnKYNGkSQ4YMAWD8+PGUlpYyderU7eq64YYbOPPMM/nXv/7F3/72N+bMmdNiq1NbcU6fPp309HTS09M54ogjePfddznppJM6dF2mTJnCzJkzOe200/jOd77TdE4//OEPAdhvv/0YNmwYX3zxBQBHHHEE2dnZZGdnk5ubywknnABAcXExixcvBrwk7Gc/+xmbN2+murqao48+eofjnnbaaRx11FH88pe/5JFHHuHUU0/tULwiu6TBG9QiJy+ftS6f5E3qIigiIiIti+uLhs2sCDgAeAeYAlxqZucAC/BauTa1sM+FwIUAe+21VzzDibvLL7+cAw88kPPOO69pXTQa5e233yYtLW27sklJSds9XxX7PqbMzMwOHS81NbVpPhgMEg6HWyw3YsQILr74Yr7//e9TWFhIeXn5DmVaixN2HM58Z4Y3nz17Nu+88w7PPvssBx10EAsXLmyzfOw5BQKBpuVAINB0fjNnzuTJJ59k//3357777msxYRw8eDD5+fksXryYuXPnMnv27A7HLLLT6rwEKzevLx+7Avau0ruwREREpGVxG+TCzLKAx4DLnXNVwN3ACGA8XgvXb1vazzl3j3NugnNuQmFhYbzC6RJ9+/bltNNO267L2lFHHcUdd9zRtLxo0SIAioqKeP/99wF4//33Wb58eYt1Tps2jblz5xKJRCgrK+P1119n0qRJHY7p2WefxTkHeF0Pg8EgeXl5ZGdns2XLtqGkW4sT4KmnnqKuro7y8nLmzZvHxIkTO3z8ZcuWcfDBB3PjjTdSWFjIqlWrmDZtGg899BAAX3zxBStXrmTUqFEdrnPLli0MHDiQUCjUVE9LZsyYwc0330xlZSUlJSUdrl9kp4W8z1JWTh5rrYD02o53oxUREZHeJS4Jlpkl4yVXDznnHgdwzq13zkWcc1Hgj0DHs4Zu7Morr9xuNMHbb7+dBQsWUFJSwpgxY5paUk455RQqKioYO3Ysd955JyNHtvxE/Mknn0xJSQn7778/Rx55JDfffDMDBgzocDwPPPAAo0aNYvz48Zx99tk89NBDBINBTjjhBJ544gnGjx/PG2+80WqcACUlJRxxxBFMnjyZn//85wwaNAjwkr/vfve7vPzyywwZMoQXXngB8LolNj5vdfXVV1NcXMy4ceP4xje+wf77788ll1xCNBqluLiYGTNmcN99923XctWeX/3qVxx88MFMmTKF/fbbr2n9008/zQ033NC0fOqpp/Lwww83jZwo0lWs3nvJsKXmUJU6kKyGjRAJJTgqERER6Y6ssfVjlyvw+pPdD1Q45y6PWT/Qfz4LM7sCONg5d3pbdU2YMMEtWLBgu3VLlixh9OjRnYpRWtd8tMM9jX5/JB7+et/dnFN6HXz/FWY/8jQXVf4eLlsMfYYlOjQRERFJEDNb6JzbYZS1eDyDNQU4G/jIzBb5664HzjCz8XhDt5cC/xWHY4mI7HYWrvVmkjOJ5gyBSqBylRIsERER2UE8RhGcD7Q0KkKPHpa9t5g1a1aiQxDp/sL13s+kVJL6DIVVEK38Wm9qFxERkR3o+4GISDss7I8CmpRGZsFQALaWr0pgRCIiItJdKcESEWlPpMH7mZRKQX4+W1w6dRWrExuTiIiIdEtKsERE2hGIbOsiODA3jfWuD+HNeheWiIiI7EgJlohIOwKNLVjBVAbkpLHO9SG4ZW1igxIREZFuSQlWBz355JOYGZ999lmrZUpLSxk3blzcjvn5559z+OGHM378eEaPHs2FF14IeC8Jfu65zo0hcv7559OvX7+4xiuypwpE64kQgGAS+VmpbKAvqbXrEx2WiIiIdENKsDpozpw5TJ06lTlz5rS4PRwOd/oYkUhku+Uf/ehHXHHFFSxatIglS5bwwx/+EIhPgjVz5kyef/75TtUh0lsEIw2ELMWbDxhbUgrJbNgI0WiCIxMREZHuJh7vwdp9/nkdrPsovnUOKIZjf91mkerqaubPn8+rr77KCSecwC9/+UsA5s2bx89//nP69OnDZ599xr/+9S/C4TBnnnkm77//PmPHjuWvf/0rGRkZvPzyy1x11VWEw2EmTpzI3XffTWpqKkVFRcyYMYMXX3yRa665htNP3/Yu5rVr1zJkyJCm5eLiYhoaGrjhhhuora1l/vz5/OQnP+H444/nhz/8IR9//DGhUIhZs2Yxffp07rvvPp544gkqKytZs2YNZ511Fr/4xS8AOPTQQyktLW3zvF977TUuu+wyAMyM119/naysLK655hr++c9/Ymb87Gc/Y8aMGcybN49f/OIX5OXl8dFHH3HaaadRXFzMbbfdRm1tLU8++SQjRozgmWee4b//+79paGggPz+fhx56iP79+2933NNPP52zzz6b4447DvCSweOPP55TTz21Y/dUJM4CroGIn2AB1Kf3J1gdgZoyyO7fxp4iIiLS26gFqwOeeuopjjnmGEaOHEl+fj4LFy5s2vb+++9z22238cUXXwBet75LLrmEJUuWkJOTw//93/9RV1fHzJkzmTt3Lh999BHhcJi77767qY78/Hzef//97ZIrgCuuuIIjjzySY489lltvvZXNmzeTkpLCjTfeyIwZM1i0aBEzZszgpptu4sgjj+Tdd9/l1Vdf5eqrr6ampgaAd999l8cee4zFixfz97//nQULFnT4vG+55RbuuusuFi1axBtvvEF6ejqPP/44ixYt4sMPP+Sll17i6quvZu1a71mUDz/8kNmzZ7NkyRIeeOABvvjiC959910uuOAC7rjjDgCmTp3K22+/zQcffMDpp5/OzTffvMNxZ8yYwSOPPAJAQ0MDL7/8clOyJZIIwUg94cC2BCuaNdCb2fJ1giISERGR7qpntWC109LUVebMmdPUknP66aczZ84cDjroIAAmTZrE8OHDm8oOHTqUKVOmAHDWWWdx++238x//8R8MHz6ckSNHAnDuuedy1113cfnllwNeQtGS8847j6OPPprnn3+ep556ij/84Q98+OGHO5T717/+xdNPP80tt9wCQF1dHStXrgTgP/7jP8jPzwfgO9/5DvPnz2fChAkdOu8pU6bw4x//mDPPPJPvfOc7DBkyhPnz53PGGWcQDAbp378/hx12GO+99x45OTlMnDiRgQO9L54jRozgqKOOAryWt1dffRWA1atXM2PGDNauXUtDQ8N2167Rsccey2WXXUZ9fT3PP/88hx56KOnp6R2KWaQrJLmG7RKsQN5gWAdUrYVBByQuMBEREel21ILVjoqKCl555RUuuOACioqK+M1vfsMjjzyCcw6AzMzM7cqbWZvLLWleR6xBgwZx/vnn89RTT5GUlMTHH3+8QxnnHI899hiLFi1i0aJFrFy5ktGjR+9yPI2uu+46/vSnP1FbW8uUKVPaHOADIDU1tWk+EAg0LQcCgaZn1H74wx9y6aWX8tFHH/GHP/yBurq6HepJS0vj8MMP54UXXmDu3LmtJqAiu0tSNEQ0JsFK7+t13a2r0MuGRUREZHtKsNrx6KOPcvbZZ7NixQpKS0tZtWoVw4cP54033mix/MqVK3nrrbcA+Nvf/sbUqVMZNWoUpaWlLF26FIAHHniAww47rN1jP//884RCIQDWrVtHeXk5gwcPJjs7my1btjSVO/roo7njjjuakr4PPvigaduLL75IRUVF03NQja1rHbFs2TKKi4u59tprmThxIp999hnTpk1j7ty5RCIRysrKeP3115k0aVKH66ysrGTw4MEA3H///a2WmzFjBn/5y1944403OOaYYzpcv0hXSHINRGISrJzCQYRdgK0blWCJiIjI9pRgtWPOnDmcfPLJ26075ZRTWh1NcNSoUdx1112MHj2aTZs2cfHFF5OWlsZf/vIXvvvd71JcXEwgEOCiiy5q99j/+te/GDduHPvvvz9HH300v/nNbxgwYABHHHEEn376KePHj2fu3Ln8/Oc/JxQKUVJSwtixY/n5z3/eVMekSZM45ZRTKCkp4ZRTTmnqHnjGGWdwyCGH8PnnnzNkyBDuvfdeAGbPns3s2bMB+P3vf8+4ceMoKSkhOTmZY489lpNPPpmSkhL2339/jjzySG6++WYGDBjQ4es5a9Ysvvvd73LQQQdRUFDQtH7BggVccMEFTctHHXUUr732Gt/61rdISUlpqSqR3cI5R5ILEQ1ua6EdkJvJBvII6WXDIiIi0ow1tnp0BxMmTHDNB2FYsmRJU3c32Tn33XcfCxYs4M4770x0KAmj3x/prPpwhEU3foPBfTIZcsUrAKwor6HitkMZ1K+A/pe+kOAIRUREJBHMbKFzbofBDdSCJSLShoZwlFQacDEtWP1z0ljn+pBco5cNi4iIyPZ61iiCslNmzpzJzJkzEx2GSI9WH46SShiXtC3BSksOsjlYQEb9pwmMTERERLqjHtGC1Z26MUrPod8biYeGcJQUQtu1YAFsTetHWrQG6re0sqeIiIj0Rl2eYJnZMWb2uZktNbPrdnb/tLQ0ysvL9WVZdopzjvLyctLS0hIdivRwDeEoqRaCpO0TrHCm/7LhqrUJiEpERES6qy7tImhmQeAu4D+A1cB7Zva0c67D/WqGDBnC6tWrKSsr66owZQ+VlpbGkCFDEh2G9HD14SiZhNjarAXLcgdBObDlaygcmZjgREREpNvp6mewJgFLnXNfAZjZw8B0oMMJVnJyMsOHD++i8ERE2uYNchGiNnn71tCUPt773MKbv9bDrCIiItKkq7sIDgZi38S52l/XxMwuNLMFZrZArVQi0t00RCKkEMKStk+wMguGAlBdtjIRYYmIiEg3lfBBLpxz9zjnJjjnJhQWFiY6HBGR7dQ3REizEJa8fRfBwr59qHQZNGxanaDIREREpDvq6gRrDTA0ZnmIv05EpEdoCNUBYM26CA7ITWOd60u08utEhCUiIiLdVFcnWO8B+5rZcDNLAU4Hnu7iY4qIxE2ovh6AYLMWrAE5aax3fQhWaxRBERER2aZLEyznXBi4FHgBWAI84pz7pCuPKSIST5FQLQDBZi1YuenJlFk+aXUbEhGWiIiIdFNdPviVc+454LmuPo6ISFcI1/sJVkr6duvNjOrUfmSGKiAShqDGEhQREZFuMMiFiEh3FmnwnsFq3oIF0JDRnwBRqF6/u8MSERGRbkoJlohIGyL+IBdJqek7bHPZA72ZLXoOS0RERDxKsERE2tDYgpXcQoKVlOe91i9aqaHaRURExKMES0SkDVG/BSs5ZccughkFRQDUlJXuxohERESkO1OCJSLShqg/imDz92ABFBQOoMalUruhdDdHJSIiIt2VEiwRkTZEQ957sAim7rBtSH4Ga1wBkU0rd3NUIiIi0l0pwRIRaYML+wlW0o4J1uC8dNa4ApK2rNnNUYmIiEh3pQRLRKQtYe8ZLJJ27CKYnZZMWbCQzNqvd3NQIiIi0l0pwRIRaUtTC1ZKi5tr0gaREamC+urdGJSIiIh0V0qwRETa0pRg7diCBRDOGeLNaKh2ERERQQmWiEibLNL6M1gAgby9AHCbNdCFiIiIKMESEWmThVsfRRAgvbAIgFq9C0tERERQgiUi0qZAOy1YffoPJeSC1GxYvhujEhERke5KCZaISBss2kCIZDBrcfuQvtmsdX0JV6iLoIiIiCjBEhFpU1K0nnCg5REEAQb3SWeNKyRQtWo3RiUiIiLdlRIsEZE2pERqqQ9ktLq9T0Yy66yQ9K16F5aIiIh0MsEys9+Y2WdmttjMnjCzPH99kZnVmtkif5odl2hFRHazlGgNoWDrCZaZUZ02kKzQRgg37MbIREREpDvqbAvWi8A451wJ8AXwk5hty5xz4/3pok4eR0Rkt3POkRatJZyU2Wa5huzBBHBQtWY3RSYiIiLdVacSLOfcv5xzYX/xbWBI50MSEeke6sNRMqklktx2gkWu9y4sKvUcloiISG8Xz2ewzgf+GbM83Mw+MLPXzGxaazuZ2YVmtsDMFpSVlcUxHBGRzqmuD5NJLdHkrDbLpfrvwqrfqKHaRUREeruk9gqY2UvAgBY2/dQ595Rf5qdAGHjI37YW2Ms5V25mBwFPmtlY51xV80qcc/cA9wBMmDDB7dppiIjEX019mCzqiKa0nWDlDigi4owt676i5bdliYiISG/RboLlnPtWW9vNbCZwPPBN55zz96kH6v35hWa2DBgJLOhswCIiu0tNfYQBVkt1atsJ1uD8XNbRl0B56e4JTERERLqtzo4ieAxwDXCic25rzPpCMwv683sD+wJfdeZYIiK7W01DmEzqsNTsNssNyUtntSskoGewREREer3OPoN1J5ANvNhsOPZDgcVmtgh4FLjIOVfRyWOJiOxWNVu3kmphAmltJ1gFWamspZC0Go0iKCIi0tu120WwLc65fVpZ/xjwWGfqFhFJtPqaSgCS0ttOsAIBoyp1INkNb0IkBMHk3RGeiIiIdEPxHEVQRGSPEtq6BYDkjJx2y9ZnDSFAVO/CEhER6eWUYImItKKhZjMAqZm57Rfu478La/PKrgtIREREuj0lWCIirWjYshGAjLx+7ZZNLdjb22djaVeGJCIiIt2cEiwRkVa4Gu/l55bZfoKV238YEWdUr9eAqSIiIr1Zpwa5EBHZkwW3ei1YZBa0W3Zwfg5rySdJLVgiIiK9mlqwRERaEawrJ0oA0vu0W3ZInwzWuAKsUs9giYiI9GZKsEREWpHWUEF1MAcCwXbL9stOZY3ehSUiItLrKcESEWlFWkMFtcl9O1TWexfWILIbNnjvwhIREZFeSQmWiEgLquvD5EYrCad1LMECqM8arHdhiYiI9HJKsEREWrB2cy2DbCOR7CEd3ylX78ISERHp7ZRgiYi0YG1FJQPYRDB/eIf3SS30yobKS7soKhEREenulGCJiLSgau1SAuZI7793h/dpehfWOr0LS0REpLdSgiUi0oKt65cBkDNw3w7vM6CP9y6sUMXyrgpLREREujklWCIiLQiXLQUgqWBEh/fpn5PKOtcXqtZ2VVgiIiLSzSnBEhFpQd7mJVQG+0JWvw7v0z8njXWuD8lb13dhZCIiItKdKcESEWmmqi7E8PBSNuXst1P7ZaYmsSmQT0bdhi6KTERERLq7TiVYZjbLzNaY2SJ/+nbMtp+Y2VIz+9zMju58qCIiu8f7S1ezr60hafD+O73v1rRCUqNboX5LF0QmIiIi3V1SHOq41Tl3S+wKMxsDnA6MBQYBL5nZSOdcJA7HExHpUmsXv0qSRek37sid3jecOQDqgS3rIDU7/sGJiIhIt9ZVXQSnAw875+qdc8uBpcCkLjqWiEhcpax8gzBJpOw9Zed3zhro/az6Or5BiYiISI8QjwTrUjNbbGZ/NrM+/rrBwKqYMqv9dTswswvNbIGZLSgrK4tDOCIiu25DZS0Hbv03X+ceCCmZO71/Up73py6qkQRFRER6pXYTLDN7ycw+bmGaDtwNjADGA2uB3+5sAM65e5xzE5xzEwoLC3d2dxGRuHrzzVcZHlhH2vhTdmn/zHwvwaotX9VOSREREdkTtfsMlnPuWx2pyMz+CPzDX1wDDI3ZPMRfJyLSbTnnSPrwQRpIpt/Bp+1SHfl9+1Ll0gltWsPOt3+JiIhIT9fZUQQHxiyeDHzszz8NnG5mqWY2HNgXeLczxxIR6WqLPl/KEXUvs3rgUZDRd5fq6JeTygbXh0ilnsESERHpjTo7iuDNZjYecEAp8F8AzrlPzOwR4FMgDPxAIwiKSHe38bn/ocTqGXjCz3a5jn7Zaaxwfcjbsi6OkYmIiEhP0akEyzl3dhvbbgJu6kz9IiK7y+JPPubQyqf4bMAJjB00ZpfrKcxO5V36UFK7NI7RiYiISE/RVcO0i4j0GM45Nv7jl5jB8FN+1am60pKDbA4WkNGwEaLROEUoIiIiPYUSLBHp9d59720O2/oiy4adTka/ok7XV5vWjyQXhtqKzgcnIiIiPUpnn8ESEenRIlFHw4u/ot5S2eeUX8SlznBGP6jDe9lwZkFc6uzuolFH5ZZqqjauYmvFOmq2bCZUs5lAwxYsvJVoJIKLRjCDpIARSEqD5HQCqZkkpWeRlpFNamYe6dl9SM/OIyMrD0tOS/RpiYiI7DQlWCLSq702718cGXqTz/e7hFE5/eJTac4gqAC2rIOBJfGpsxuIRh2r1q5jY+lHbP16CWz8koyqr8iuX0ffSBkFVkWf9qvpsHqS2Uo6tYFMagOZNAQzCSVlEk7OJpqSRTQlB0vLIZCWTTA9138xtAHgzJrmAZyLQiSEi4YgEoJIGBcJYVFvHheCSASL+uuiYX8+4u3rouAi/s+o3/3TYdEI4C87B0RxzuHwF31Nkdi2mGK3ucYS1qy8v81a2Na4z3Y12g4zjXs3K7gj12aBlre1uU8rm3blOG3v18Y+rW6Kw3FavvDb3eLGe7vjbfd/P237atr6PWlc31L52oyBjDv1p2Sm6x8lRLoDJVgi0muFIlGy5v8/Ki2HfadfF7d6k3MHAeC2rG3vO2235Zxj+dfrWPnRv6lfuZCs8o8YWvc5w2w9w/wyIRdkbXAQVWmDWJ01jpVZg7DcQSTn9Ccjuw9p2X1ISs8hkJpNcnISwWCQiDNC4SgN9VsJ19UQqq2mvnYLdVu3ENpaSaS2imhtFa6+CqvfQqBhC8FQNcnhalLD1WSE1pJes5RMt5UstpJk8X/OLeqMEEHCBIkQJEKAKIbDiBDAEcBhRAngzP/plyEmsdvhO3JsxhXD+xLe+raWqrBWyvulWqnLbVdi+7pbr6/1dKOtfTp2PttrP+6O1rcrsbWlQ/XtRLWt17fzcQdw5FkNL/49g/845ycdD0JEuowSLBHpteb96yn+I7qIL8dfS256btzqTe/rJVj1FavpKf+eHIk6Pi9dxcpFL2GlbzK0aiH7uVL2Nu9L3YZAP8r6jGVx/9PJGDKWvsOK6TNoH/ZKSklYzOFwhMqaamq2bKJ2yyZcQ01MEuP9NPxVBoGkFALBZCyYTDAphUBSMpaUTCDozQeCSf76JIJmBANGsv8zYGCttSqIdDHn/147ty0Fa2wpxTm+vOVQDvjqbrZU/hfZubv2Dj8RiR8lWCLSK9WFIuS8eyubLY99vn15XOsuyMumzOWQsmlNt06wNlXXseidV6j95DmGVbzJfm45Y8zRQDKrMsfx6aCL6LPvIQwc/Q36ZRcSpw6UcZOUFCQ3N5fc3FygKNHhiHSZxuTeWuuWeNRNFDw9nXf//ksmXXDb7g1ORHagBEtEeqVXX36OY92HLD/gWvJSMuJad7/sVDa4Pgys/Dqu9cbDV2vWs/Stp0he9iLFW9/mCKsiQoCVGWP5cujF9Cv5Fn1HTmGEBpgQ6TH2OfBw3p53FAeueoC1yy5g4IjiRIck0qspwWrDssX/puz9f5C73zT23n8aqelZiQ5JROIgEnXkvvd7qiyHomN+GPf6+2WnUur6MLh6Xdzr3lnOOT5dsY4v3niU/NJnmRRewN4WYotlsqZwClvHfZshE05keFZ+okMVkU4Yfvot1P/hYKoeuYgB18zDgsmJDkmk11KC1YaNn77G5NK7oPQuGv4Z5POkvdmcvS+ucDQZg8eQO2BvCgcPJyM7nuNmxUck6giFQoRC9YRDIcINdYRCDURCDYTDDURCISKheiL+vIuEINrgja4VDQPO/8/5nb4bR8Vyfl9wfz0upm94YzlvX++B3J1/mLh91t6T0h2vZ5e3bq/tUbFaqb/FXeL0jEfcnhVpvZ6dPcTOXqM2jrxzB25B5YZVHBFZwOdjLycnNbvT9TXXLyeNt10fUmoXx73ujlq+toyPX3uMrKVPc3BoAWOtns2BviwfdioFk75L4ejD2C+o/wWI7Cn6DxrGGyU/Z9pH17Pw/qs56PzfJzqkLuOcIxwOU19bTX1tNaG6GkJ1W/3vPQ2EQw1EIyEIeyOHukg4ZhTRMC4aJhr1vq9Eo9u+x5j/vWbbgCKu2SAmbodRIrct2HbrXWO3zqZSbY1C2WxFs1FQO7R/W8drcXTR7b+hmW2/HcBZ89flbj8i5o7f8JrH2PY57PC9oI3yWzOHMGLcZAbk9ozeFfq/axsOPv0nbN54Hl998Cp1X71JXsVi9tn8Jvmbn4Mvt5XbQjqbAn2pC2ZRH8wmnJxNKDkTF0jBBZIgdsLAhb33wUQj4CJYNAwuikXDmPOGCQ5EQ/5ymEA0TNCFCLgwARcmuN0UIYmwNzlvzKtkIiQTJs1ct37+QySR1tgA9jnxmi6pOys1iU3BfNIbKrx/tNhN/5K8tqKKD+c9QdpnjzOh/m1OsDoqA7ms2Ws6A77xPfJGHUpeILhbYhGR3W/qdy7hzRVvMmXlX/jwscHsf8rViQ6pRZFIlMrN5VSVraKm/GtqqypoqNmEq92M1W0m0FBFsKGKlIYqUiNbSI7UkhKtI8XVkerqSaeBVAuRDKhvUe/wl/DRbMoeyfElgxIdSocowWpHXsEADvyPM4AzmtaVb1jD+q8+ZuvGFTRUrMKqvia1bgPJoWpSwlXk1K8l09U0DfCb5CIk+fNBc4Rc47C/AcIEiVqACEGieD8jFiRsyURJImJBopZEJJBMNJBC2DKIBpKIWjIukIQLxPwMJvuJXDIumIIFvXkLJkNw24hZFkjxRtNKSo4ZRSsV/PIukOQ9UGuGYZg1/otFAGscScti5hvLABYIxPwLhLXwrxGd18pIx3GuZGcOsgsBtbhLnFr7XGsDPu9SZa0dYqfs7LDIrZaOy8339BkykmBqZtzqa642tRBrcLBlLeTt1WXH2VRdx3tv/BM+epQJNfM4xqrZYlmsHnws/SafQd+x3yRXLVUivYKZMeEHf+a9353ExI/+m/cr13DAub/Zbd0F68MR1ldUUbF2BVs2rqKuYjWRyrUkVa8jrX4D2Q1l5EXKKXAV9LV6WhrvMOqMasug2rLYGsiiLphFbUp/oknpRJMzICmdaFI6LikdUjKwZO9nICmNpORkgsmpBIPJWDAJS/K+C1nQGyWUoDeSaCAYJBAIEAgECJphAWsaSMTFtABtG4u08V1ytm17zP+OHNteF+Hcto0uZqVr6/9fMdtcs2X/quxQfrvWJ9fseLFzrvnMDtE1tc5tf4hmMTT2UGo8ZmMtzv+qt7Pfq3Yov/2yNdv+jbS+DBhS2M4xug/9X3cX5PcbTH6/wTu9n/N/C5MB9YwW2bPV5xTBRqB8adwTrJr6MO+8/QZ1C+ewf+XLHGUbqSOFFYWH0zDpDAYceDz7JXD4dBFJnNTUNMZd/gTzZ3+fqSv/wsr/eYWtU65l1KGndSrRqqtvoGzdGjatX0FN+SoaKtbgtqwlWL2e9PoN5IQ2UuDK2cuqaf4Xr4FkNgXzqUoupDJrNBsz+hPNGkAgdzCpef3JzCskOzefrLwCUjNzyQkEyencZRBJKCVYu5HeoSLSeyQP2A82giv7HBtxZKfrq6kP8977C6ha+Hf2K3uBI20VYQKsyDuYVQf+nCGTT2FUFzxPJiI9T3p6OlMuf4DXn7mPvd//f+z32iVUvnYNy7MnEBqwP2n9RhDM6AvJGVggSCBSR/3Wauq3VuK2bCBavQGrKSO5biMZDeV+q9MmhlqUoTHHiWBstj5UJRdQmzOU1RkTWJM7iLQ+g8ksGEpe/73IyB9CSnof+pvRP2FXRGT3UoIlItIFBgwaRtVHGSR9vYRdHQR+U3U97737BnWLn2Tkptc43FYCsCKzmNLi77PX1O8xIrvndJkQkd3HzDj0xPOoO/p7/PvFh+GzfzBiy0L6b5m33XPkLYk4Y7PlUBXsw9aUfL5O34fVWQMI5g4ire9gcgr3ou/AvUjPG0R+MAmNQSqyPSVYIiJdYJ9+2XzhhjDy6w93ar9V68v57J0XqP/8JYqr53OUrSeKsSq7hOX7ncPQQ77LsPyirglaRPY4aampfOP4c+H4cwEoKytj4+rPiWythHAtLhImEkwjLSOLjKwc0vsMILfvQPJTkpU4ieyiTiVYZjYXGOUv5gGbnXPjzawIWAJ87m972zl3UWeOJSLSk4wbksv9bhwHbnwSajZCZkGL5TZUVvP5orfZ8tnLFKx/k/0jnzLUQjSQxJq8CawuvoLBB3+HYdnqXCMinVdYWEhhoVq+RbpSpxIs59yMxnkz+y1QGbN5mXNufGfqFxHpqXLSklnb/0gCGx8n9PYfSf7mT6iurWf5siWULVtEZOW75G/6kP0iXzLN6gFYk1zEsqEz6FtyLAOKj2B4SteNcigiIiJdIy5dBM0bveE0oPNPcouI7CGOO/oYnv3rJI5749dUvnEnqa6eYgsBECbI6tR9WD7oZDJHHMKQ8d9icJ8h7Pz4pCIiItKdxOsZrGnAeudc7GOTw83sA6AK+Jlz7o2WdjSzC4ELAfbaq+veFSMisrtN2beQN874M8+8cQ/5dStJy8gibeBoCvfen4J9DqRILVQiIiJ7HGvzxWeAmb0EDGhh00+dc0/5Ze4GljrnfusvpwJZzrlyMzsIeBIY65yrautYEyZMcAsWLNj5sxAREREREdmNzGyhc25C8/XttmA5577VTsVJwHeAg2L2qQfq/fmFZrYMGAkoexIRERERkT1WIA51fAv4zDm3unGFmRWaWdCf3xvYF/gqDscSERERERHptuLxDNbpwJxm6w4FbjSzEBAFLnLOVcThWCIiIiIiIt1Wu89g7U5mVgasSHQczRQAGxMdhOw2ut+9h+5176F73bvofvceute9S3e838Occzu8WK5bJVjdkZktaOnhNdkz6X73HrrXvYfude+i+9176F73Lj3pfsfjGSwRERERERFBCZaIiIiIiEjcKMFq3z2JDkB2K93v3kP3uvfQve5ddL97D93r3qXH3G89gyUiIiIiIhInasESERERERGJEyVYIiIiIiIicaIEqw1mdoyZfW5mS83sukTHI/FjZkPN7FUz+9TMPjGzy/z1fc3sRTP70v/ZJ9GxSnyYWdDMPjCzf/jLw83sHf/zPdfMUhIdo8SHmeWZ2aNm9pmZLTGzQ/TZ3jOZ2RX+3/CPzWyOmaXps73nMLM/m9kGM/s4Zl2Ln2Xz3O7f98VmdmDiIped1cq9/o3/d3yxmT1hZnkx237i3+vPzezohATdBiVYrTCzIHAXcCwwBjjDzMYkNiqJozBwpXNuDDAZ+IF/f68DXnbO7Qu87C/LnuEyYEnM8v8Ctzrn9gE2Af+ZkKikK9wGPO+c2w/YH+++67O9hzGzwcCPgAnOuXFAEDgdfbb3JPcBxzRb19pn+VhgX3+6ELh7N8Uo8XEfO97rF4FxzrkS4AvgJwD+97XTgbH+Pv/nf2/vNpRgtW4SsNQ595VzrgF4GJie4JgkTpxza51z7/vzW/C+gA3Gu8f3+8XuB05KSIASV2Y2BDgO+JO/bMCRwKN+Ed3rPYSZ5QKHAvcCOOcanHOb0Wd7T5UEpJtZEpABrEWf7T2Gc+51oKLZ6tY+y9OBvzrP20CemQ3cLYFKp7V0r51z/3LOhf3Ft4Eh/vx04GHnXL1zbjmwFO97e7ehBKt1g4FVMcur/XWyhzGzIuAA4B2gv3Nurb9pHdA/UXFJXP0euAaI+sv5wOaYP9z6fO85hgNlwF/8LqF/MrNM9Nne4zjn1gC3ACvxEqtKYCH6bO/pWvss63vbnu184J/+fLe/10qwpFczsyzgMeBy51xV7DbnvcNA7zHo4czseGCDc25homOR3SIJOBC42zl3AFBDs+6A+mzvGfxnb6bjJdWDgEx27GIkezB9lnsHM/sp3qMdDyU6lo5SgtW6NcDQmOUh/jrZQ5hZMl5y9ZBz7nF/9frGLgX+zw2Jik/iZgpwopmV4nX1PRLvGZ08v1sR6PO9J1kNrHbOveMvP4qXcOmzvef5FrDcOVfmnAsBj+N93vXZ3rO19lnW97Y9kJnNBI4HznTbXt7b7e+1EqzWvQfs649GlIL3MN3TCY5J4sR/BudeYIlz7ncxm54GzvXnzwWe2t2xSXw5537inBvinCvC+xy/4pw7E3gVONUvpnu9h3DOrQNWmdkof9U3gU/RZ3tPtBKYbGYZ/t/0xnutz/aerbXP8tPAOf5ogpOBypiuhNIDmdkxeN37T3TObY3Z9DRwupmlmtlwvIFN3k1EjK2xbcmgNGdm38Z7diMI/Nk5d1NiI5J4MbOpwBvAR2x7Lud6vOewHgH2AlYApznnmj9gKz2UmR0OXOWcO97M9sZr0eoLfACc5ZyrT2B4EidmNh5vQJMU4CvgPLx/UNRnew9jZr8EZuB1H/oAuADvWQx9tvcAZjYHOBwoANYDvwCepIXPsp9k34nXTXQrcJ5zbkECwpZd0Mq9/gmQCpT7xd52zl3kl/8p3nNZYbzHPP7ZvM5EUoIlIiIiIiISJ+oiKCIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIt2EmRWZmTOzpETHsqczs5lmNj/RcXQ3ZjbNzD5PdBwiIj2ZEiwREenRzGyWmYXMrDpmuibRcfVEzrk3nHOj4lmnn7RVN5ucmZ0Sz+OIiHQX+ldSEZE4MbMk51w40XH0UnOdc2clOoiu0pN/t5xzbwBZjctmdjjwDPB8gkISEelSasESEekEMys1s2vNbDFQY2ZJZjbZzP5tZpvN7EP/C2Vj+Xlm9j9m9q6ZVZnZU2bWt5W6zzOzJWa2xcy+MrP/arZ9upkt8utZZmbH+OtzzexeM1trZmvM7L/NLNjOeYwws1fMrNzMNprZQ2aWF7OtwswO9JcHmVlZ43mZ2Ylm9ol/vvPMbHSz63OVmS02s0ozm2tmaTt/pXeemV3nX5ctZvapmZ3cSjkzs1vNbIN/LT8ys3H+tlQzu8XMVprZejObbWbpHTz+fX75F/0YXjOzYTHbbzOzVf4xF5rZtJhts8zsUTN70MyqgJlmNsnM3vKv81ozu9PMUmL2cWZ2iZl96R/vV/69+7d/jEdiy7cS8+Fmtroj59cJ5wKPOudquvg4IiIJoQRLRKTzzgCOA/KA/sCzwH8DfYGrgMfMrDCm/DnA+cBAIAzc3kq9G4DjgRzgPODWmCRnEvBX4Gr/uIcCpf5+9/n17gMcABwFXNDOORjwP8AgYDQwFJgF4JxbBlwLPGhmGcBfgPudc/PMbCQwB7gcKASeA55p9kX+NOAYYDhQAsxsMQCzqX7y0No0tZ1zaG4ZMA3IBX7pxz+whXJH4V2/kX7Z04Byf9uv/fXj8a7nYOCGnYjhTOBXQAGwCHgoZtt7fr19gb8Bf2+WfE4HHsW7vw8BEeAKv65DgG8ClzQ73tHAQcBk4BrgHuAsvPs5Du93dZf5iXJr9+f/OrB/JnAqcH9n4hAR6dacc5o0adKkaRcnvKTm/Jjla4EHmpV5ATjXn58H/Dpm2xigAQgCRYADklo51pPAZf78H4BbWyjTH6gH0mPWnQG8upPndRLwQbN1TwMfAYuBVH/dz4FHYsoEgDXA4THX56yY7TcDs+N8D2b513BzzDSohXKLgOn+/Exgvj9/JPAFXlISiClvQA0wImbdIcDyDsZ1H/BwzHIWXpI0tJXym4D9Y87p9Xbqvxx4ImbZAVNilhcC18Ys/xb4fTt1Hg6sjuf9aVb/2cBywLrqGJo0adKU6EnPYImIdN6qmPlhwHfN7ISYdcnAq62UX+FvL2heqZkdC/wCrwUlAGTgJTjgtUg810Isw/z61ppZ47pAs2PuwMz6A7fhtfhk+/tsalbsj3hJ1oXOuXp/3SD/HABwzkXNbBVeS0+jdTHzW/194u0R1+wZLDM7B/gxXuIKXoKzw3V2zr1iZncCdwHDzOxxvJbHNLxrvjDmWhpeMtxRTdfdOVdtZhV457/KzK4C/tNfdngtlQUt7eufz0jgd8AEP64kvCQq1vqY+doWlgfsROxd4Vzgr845l+A4RES6jLoIioh0XuyXxVV4LVh5MVOmc+7XMWWGxszvBYSAjbEVmlkq8BhwC9DfOZeHl1A1ftNfBYxoIZZVeC1YBTHHz3HOjW3nHP6ffx7FzrkcvG5l27IKsyzg98C9wCzb9tzY13hJXWM5889vTTvH24G1PNpc7DSt/Vqa6hqGlxBeCuT71+/j2HOK5Zy73Tl3EF6L4ki8rpcb8ZKSsTHXMtc5l9VSHa1outf+NewLfO2fyzV43RH7+PFVNouveRJyN/AZsK9/j65v7Xy6iv+sXWv3Z3Y7+w7FayH7624JVkQkQZRgiYjE14PACWZ2tJkFzSzNHzhgSEyZs8xsjP880414D/xHmtWTAqQCZUDYb806Kmb7vcB5ZvZNMwuY2WAz2885txb4F/BbM8vxt40ws8PaiTsbqAYqzWwwXoIR6zZggXPuArxnzBq/TD8CHOfHkQxciZfg/bu9C9Wc84YIz2pjemMnqsvES1DKwBswBO8ZpB2Y2UQzO9iPvwaoA6LOuSheknarmfXzyw42s6Nj9nUWM4hJC77tP1uWgvcs1tvOuVV41zvsx5dkZjfgtWC1JRuoAqrNbD/g4nbKx51zbmwb9+eidnY/G/i3857pExHZYynBEhGJI//L83S81oUyvBalq9n+7+0DeM/nrMPrhvajFurZ4q9/BK+r3vfwuuc1bn8Xf+ALvJaP19jWknQOXoL2qb/vo3gDarTll8CBfl3PAo83bjCz6XiDVDR+of8xcKCZnemc+xyvtesOvBafE4ATnHMN7RyvSznnPsV75ugtvG5yxcCbrRTPwUukNuF1dywHfuNvuxZYCrztj+b3EjAKmlpktrCt22ZL/obXzbMCb/CJxm6ML+ANU/6Ff8w62unGiddt8Xv+Mf8IzG2nfHdzDhrcQkR6AVM3aBGR3cfM5gEPOuf+lOhYpHPM7Cy87oM/aWX7fXgDRvxstwYmIiIJpUEuREREdoFz7sFExyAiIt2PugiKiPQS5r30dqcHJ5A9i5ld38rvwT8THZuIyJ5AXQRFRERERETiRC1YIiIiIiIicdKtnsEqKChwRUVFiQ5DRERERESkTQsXLtzonCtsvr5bJVhFRUUsWLAg0WGIiIiIiIi0ycxWtLReXQRFRERERETiRAmWiIiIiIhInCjBEhFpQSSqEVZFRERk53WrZ7BaEgqFWL16NXV1dYkORXqYtLQ0hgwZQnJycqJDkR6mvLqeY297g/+aNoz/PHTfRIcjIiIiPUi3T7BWr15NdnY2RUVFmFmiw5EewjlHeXk5q1evZvjw4YkOR3qYxasr+e7WuXz35Wdg4meQnpfokERERKSH6PZdBOvq6sjPz1dyJTvFzMjPz1fLp+ySNeWVXJ38CDlWS8Oq9xMdjoiIiPQg3T7BApRcyS7R743sqtqqTU3zm79amMBIREREpKfpEQmWiMhu1VDdNBtasyhxcYiIiEiPowSrA8yMK6+8smn5lltuYdasWYkLKMbbb7/NwQcfzPjx4xk9enRTXPPmzePf//73Lte7YsUKDjzwQMaPH8/YsWOZPXt2nCIW6f6sYUvTfHDz8gRGIiIiIj1Ntx/kojtITU3l8ccf5yc/+QkFBQVxq9c5h3OOQGDX89xzzz2XRx55hP33359IJMLnn38OeAlWVlYW3/jGN3ap3oEDB/LWW2+RmppKdXU148aN48QTT2TQoEG7HKtIT9GYYH1NP7Jr1yY4GhEREelJ1ILVAUlJSVx44YXceuutO2wrKyvjlFNOYeLEiUycOJE333wTgFmzZnHLLbc0lRs3bhylpaWUlpYyatQozjnnHMaNG8eqVau4+uqrGTduHMXFxcydOxfwEqTDDz+cU089lf32248zzzwT53Z8L8+GDRsYOHAgAMFgkDFjxlBaWsrs2bO59dZbGT9+PG+88UabcZ599tkccsgh7Lvvvvzxj38EICUlhdTUVADq6+uJRqMtXpvbb7+dMWPGUFJSwumnnw5ARUUFJ510EiUlJUyePJnFixc3Hevcc89l2rRpDBs2jMcff5xrrrmG4uJijjnmGEKhEAA33ngjEydOZNy4cVx44YU7nHc0GqWoqIjNmzc3rdt3331Zv359W7dRpMOCIa+L4JqU4WSHKyCkwVJERESkY3pUC9Yvn/mET7+uimudYwbl8IsTxrZb7gc/+AElJSVcc801262/7LLLuOKKK5g6dSorV67k6KOPZsmSJW3W9eWXX3L//fczefJkHnvsMRYtWsSHH37Ixo0bmThxIoceeigAH3zwAZ988gmDBg1iypQpvPnmm0ydOnW7uq644gpGjRrF4YcfzjHHHMO5555LUVERF110EVlZWVx11VUAfO9732s1zsWLF/P2229TU1PDAQccwHHHHcegQYNYtWoVxx13HEuXLuU3v/lNi61Xv/71r1m+fDmpqalNCc8vfvELDjjgAJ588kleeeUVzjnnHBYtWgTAsmXLePXVV/n000855JBDeOyxx7j55ps5+eSTefbZZznppJO49NJLueGGGwA4++yz+cc//sEJJ5zQdMxAIMD06dN54oknOO+883jnnXcYNmwY/fv3b/c+inREoKEGgIqsEVDxDlSuhoJ9EhyViIiI9ARqweqgnJwczjnnHG6//fbt1r/00ktceumljB8/nhNPPJGqqiqqq6tbqcUzbNgwJk+eDMD8+fM544wzCAaD9O/fn8MOO4z33nsPgEmTJjFkyBACgQDjx4+ntLR0h7puuOEGFixYwFFHHcXf/vY3jjnmmBaP2Vac06dPJz09nYKCAo444gjeffddAIYOHcrixYtZunQp999/f4stRCUlJZx55pk8+OCDJCUlNZ3T2WefDcCRRx5JeXk5VVVeYnzssceSnJxMcXExkUikKd7i4uKm83v11Vc5+OCDKS4u5pVXXuGTTz7Z4bgzZsxoau17+OGHmTFjRpvXXGRnJIW9z0Zdn1EARDetTGQ4IiIi0oN0ugXLzIYCfwX6Aw64xzl3m5nNAr4PlPlFr3fOPdeZY3WkpakrXX755Rx44IGcd955Teui0Shvv/02aWlp25VNSkrarltd7PuYMjMzO3S8xi564HX/C4fDLZYbMWIEF198Md///vcpLCykvLx8hzKtxQk7DmfefHnQoEGMGzeON954g1NPPXW7bc8++yyvv/46zzzzDDfddBMfffRRh84pEAiQnJzcdKxAIEA4HKauro5LLrmEBQsWMHToUGbNmtXiu6wOOeQQli5dSllZGU8++SQ/+9nP2jyuyM5ICnstWNZ/LCyD6rLl5Oyb4KBERESkR4hHC1YYuNI5NwaYDPzAzMb42251zo33p04lV91B3759Oe2007j33nub1h111FHccccdTcuNXeGKiop4/33vBaXvv/8+y5e3PBLZtGnTmDt3LpFIhLKyMl5//XUmTZrU4ZieffbZpmeUvvzyS4LBIHl5eWRnZ7Nly7aR0FqLE+Cpp56irq6O8vJy5s2bx8SJE1m9ejW1tbUAbNq0ifnz5zNq1Kjtjh2NRlm1ahVHHHEE//u//0tlZSXV1dVMmzaNhx56CPCeJSsoKCAnJ6dD59OYTBUUFFBdXc2jjz7aYjkz4+STT+bHP/4xo0ePJj8/v0P1i3REcriGKEbmwP2IOGPrhtJEhyQiIiI9RKcTLOfcWufc+/78FmAJMLiz9XZXV155JRs3bmxavv3221mwYAElJSWMGTOmaTjzU045hYqKCsaOHcudd97JyJEjW6zv5JNPpqSkhP33358jjzySm2++mQEDBnQ4ngceeIBRo0Yxfvx4zj77bB566CGCwSAnnHACTzzxRNMgF63FCV43vyOOOILJkyfz85//nEGDBrFkyRIOPvhg9t9/fw477DCuuuoqiouLAbjgggtYsGABkUiEs846i+LiYg444AB+9KMfkZeXx6xZs1i4cCElJSVcd9113H///R0+n7y8PL7//e8zbtw4jj76aCZOnNi0bfbs2dvFPWPGDB588EF1D5S4S4nUUGfpDCrIZT19CFesSHRIIiIi0kNYSyPT7XJlZkXA68A44MfATKAKWIDXyrWphX0uBC4E2GuvvQ5asWL7LzJLlixh9OjRcYtRtjdr1qztBsPY0+j3R3bFi7/+LgeF3id41Wd88T/fYHDfbAZd/kqiwxIREZFuxMwWOucmNF8ft0EuzCwLeAy43DlXBdwNjADGA2uB37a0n3PuHufcBOfchMLCwniFIyKyy1IitTQE0shNT2a99SN969eJDklERER6iLgM025myXjJ1UPOucf/f3t3HmZVdeZ7/PvuM9Q8UxRQxVBGJpkFkYgaNDi1RuMQNY8mQTptzNh6u9OZTWJuP08Su9O3E01sjcZOX+MQTdSbGINjEhJRQVBRBEEKKCygqHk+07p/nENxCmoA6tT8+zxPUXuvvfZeb9VmV+239tprATjn9idtvwf4XSraktT6zne+M9QhiAw7Phci4gUBaEorITf0EsRi0I9JwUVERGRs6PfdgsWHgbsX2OKc+1FS+cSkapcDm/vblojIYPDFwsQSCVYocyI+otBS3cdeIiIiIql5grUc+ATwppltSpR9Hfi4mS0kPnR7BfCZFLQlIjLgAi5ENJFgudyJUA807oUcTWYtIiIivet3guWcWwtYN5tG/LDsIjI2+V2YmC8HgEB+GeyGSMP7+EtPHeLIREREZLjTCwUiIkfwu8NdBDOLpwDQXK2h2kVERKRvSrCO0eOPP46Z8c477/RYp6Kigrlz56asza1bt7JixQoWLlzI7NmzufHGG4H4JMFPPXXiDwjb29tZunQpCxYsYM6cOXz7299OVcgio0LAhXG+NADyiycRdj7aDu4Z4qhERERkJFCCdYwefPBBzjzzTB588MFut0cikX63EY1Gu6x/6Utf4pZbbmHTpk1s2bKFL37xi0D/E6y0tDSef/55Xn/9dTZt2sTTTz/NunXr+hW7yGgRicYIEupMsCbmZ7KfAqINGqpdRERE+qYE6xg0Nzezdu1a7r33Xh566KHO8hdffJGzzjqLSy+9lFNOOQWIJ1rXXXcds2fP5qqrrqK1tRWA5557jkWLFjFv3jxWr15NR0cHANOmTeMrX/kKp556Kr/+9a+7tFtVVUVZWVnn+rx58wiFQtx66608/PDDLFy4kIcffpiWlhZWr17N0qVLWbRoEU888QQA999/P5dddhkrVqxg+vTpfPe73wXAzMjOzgYgHA4TDoeJDwbZ1a9//Wvmzp3LggULOPvss4H4068bbriBefPmsWjRIl544YXOtj760Y9y3nnnMW3aNO644w5+9KMfsWjRIpYtW0ZtbS0A99xzD6eddhoLFizgyiuv7Pz+JFu2bBlvvfVW5/qKFStYv379MZ8vkf4IRWMELYLzxbsITszNYJ8rxGtSgiUiIiJ9S8k8WIPmD1+FfW+m9pgT5sFF3++1yhNPPMGFF17IjBkzKCoqYsOGDSxevBiA1157jc2bN1NeXk5FRQVbt27l3nvvZfny5axevZqf/vSnfOELX2DVqlU899xzzJgxg09+8pP87Gc/4+abbwagqKiI11577ah2b7nlFs4991zOOOMMzj//fG644Qby8/O57bbbWL9+PXfccQcAX//61zn33HO57777qK+vZ+nSpaxcuRKAV155hc2bN5OZmclpp53GxRdfzJIlS4hGoyxevJjt27fz+c9/ntNPP/2o9m+77Tb++Mc/UlpaSn19PQB33nknZsabb77JO++8w/nnn8+2bdsA2Lx5Mxs3bqS9vZ2TTz6ZH/zgB2zcuJFbbrmFX/7yl9x8881cccUV/MM//AMA3/zmN7n33ns7n8wdcs011/DII4/w3e9+l6qqKqqqqliy5KhJskUGREc4RpAw+ONPsHIz/FRTRHlr5RBHJiIiIiOBnmAdgwcffJBrr70WgGuvvbZLN8GlS5dSXl7euT558mSWL18OwPXXX8/atWvZunUr5eXlzJgxA4BPfepT/PnPf+7c55prrum23RtuuIEtW7bwsY99jBdffJFly5Z1PvlKtmbNGr7//e+zcOFCVqxYQXt7O7t37wbgvPPOo6ioiIyMDK644grWrl0LgM/nY9OmTVRWVnYmYUdavnw5q1at4p577unsvrh27Vquv/56AGbNmsXUqVM7E6xzzjmHnJwciouLycvL4yMf+QgQf/JWUVEBxJOws846i3nz5vHAAw90eVJ1yNVXX82jjz4KwCOPPMJVV13V7fdHZCB0RGKkEYZEF0EzoyltPNmhanBuiKMTERGR4W5kPcHq40nTQKitreX555/nzTffxMyIRqOYGbfffjsAWVlZXeof2dWuu653RzryGMkmTZrE6tWrWb16NXPnzu02EXLO8dhjjzFz5swu5S+//HKf8eTn53POOefw9NNPHzVAx1133cXLL7/M73//exYvXsyGDRt6/TrS0tI6lz3P61z3PK/zHbVVq1bx+OOPs2DBAu6//35efPHFo45TWlpKUVERb7zxBg8//DB33XVXr+2KpFIoEqOACBY4/P85lFFCWmM7tNdDRsHQBSciIiLDnp5g9eHRRx/lE5/4BLt27aKiooI9e/ZQXl7OX/7yl27r7969m5deegmAX/3qV5x55pnMnDmTiooKtm/fDsD//M//8KEPfajPtp9++mnC4TAA+/bto6amhtLSUnJycmhqauqsd8EFF/CTn/wEl/jr+saNGzu3PfPMM9TW1tLW1sbjjz/O8uXLqa6u7uzy19bWxjPPPMOsWbOOan/Hjh2cfvrp3HbbbRQXF7Nnzx7OOussHnjgAQC2bdvG7t27j0rsetPU1MTEiRMJh8Odx+nONddcww9/+EMaGhqYP3/+MR9fpL86whHS7HAXQYBozsT4QqPewxIREZHeKcHqw4MPPsjll1/epezKK6/scTTBmTNncueddzJ79mzq6ur47Gc/S3p6Or/4xS/42Mc+xrx58/A8j5tuuqnPttesWdM5yMQFF1zA7bffzoQJEzjnnHN4++23Owe5+Na3vkU4HGb+/PnMmTOHb33rW53HWLp0KVdeeSXz58/nyiuvZMmSJVRVVXHOOecwf/58TjvtNM477zwuueQSAG699VaefPJJAL785S8zb9485s6dyxlnnMGCBQv43Oc+RywWY968eVxzzTXcf//9XZ5c9eV73/sep59+OsuXL++S1D355JPceuutnetXXXUVDz30EFdfffUxH1skFUKheDdcLynB8hfEB5vRSIIiIiLSF3PD6J2CJUuWuCNHi9uyZQuzZ88eoohGtvvvv7/LYBhjkf7/yPHa+O5uFj0wj+0Lv8rJH/0aAL954SWu+NOFNJ737+Qu//QQRygiIiLDgZltcM4dNRKbnmCJiCSJhNoB8ILpnWV548qIOaNVkw2LiIhIH0bWIBdyXFatWsWqVauGOgyRESUSagPACxxOsEoKczlIHuH6vUMVloiIiIwQI+IJ1nDqxigjh/7fyImIJN7B8ieNIjgxL50qV4hpkAsRERHpw7BPsNLT06mpqdHNshwX5xw1NTWkp6f3XVkkyaEnWL5gRmdZYVaQagoJtu4bqrBERERkhBj2XQTLysqorKykurp6qEORESY9PZ2ysrKhDkNGmFjnE6zDybmZ0RgcT3bHO0MVloiIiIwQA55gmdmFwH8CPuDnzrnjmi04EAhQXl4+ILGJiBwpGo4PcuELdn362Z5RQmZTM4RaINjz5OAiIiIytg1oF0Ez8wF3AhcBpwAfN7NTBrJNEZH+OJRgBY5IsGLZhyYbrhrskERERGQEGeh3sJYC251z7znnQsBDwGUD3KaIyAlzhxKsI97f8/JKAYg1VA56TCIiIjJyDHSCVQokTxxTmSgTERmWYpFD72BldClPL5oMQIvmwhIREZFeDPkogmZ2o5mtN7P1GshCRIaaCycSrCO6COaMnwJAy8Hdgx6TiIiIjBwDnWDtBSYnrZclyjo55+52zi1xzi0pLi4e4HBERHrnIvEugvjTupSXFBVQ77II16qLoIiIiPRsoBOsV4HpZlZuZkHgWuDJAW5TROTERULxz0ckWBMSkw3TpEEuREREpGcDmmA55yLAF4A/AluAR5xzbw1kmyIi/eES72Dh65pgjctKYz9F+FuUYImIiEjPBnweLOfcU8BTA92OiEgqWDSRYPmDXco9z2gMjCOr/bUhiEpERERGiiEf5EJEZFiJHuoimH7Uprb0CWRH6w53IxQRERE5ghIsEZEkFu0ghoF39AP+SPYEPBw07xuCyERERGQkUIIlIpLEoiHCBMDsqG1e3iQAXMPeo7aJiIiIgBIsEZEuvGgHYQt2uy2t8NBcWJpsWERERLqnBEtEJIkXCxGxQLfbsovjCVZztSYbFhERke4pwRIRSeLFwkR7SLDGjSumxaURqtMTLBEREemeEiwRkST+WAdRr/sughPzM9jnCvUOloiIiPRICZaISBIvFiLSQ4JVnJ1GJcWkNVUOclQiIiIyUijBEhFJ4ouFifWQYPl9HjX+CWS3vz/IUYmIiMhIoQRLRCSJ34Vwvu4TLICWjFKyow3Q0TyIUYmIiMhIoQRLRCTBOUfAhYj50nqsE8mdHF+o10iCIiIicjQlWCIiCeGoI0Ck1ydYXuFUAKK1FYMUlYiIiIwkSrBERBLaI1GChKGXJ1iZ408CoHn/jsEKS0REREYQJVgiIgnt4ShphHt9gjWupJQ2F6SteucgRiYiIiIjhRIsEZGEjnCMoEXAn95jnbKCTCpdMbHaXYMYmYiIiIwUSrBERBLaw1GyaYNgVo91Sgsy2OOKCTTtGcTIREREZKToV4JlZreb2Ttm9oaZ/dbM8hPl08yszcw2JT7uSkm0IiIDqD0UJYt2CGb3WCcz6Oegv4Tstr2DGJmIiIiMFP19gvUMMNc5Nx/YBnwtadsO59zCxMdN/WxHRGTAdYTaCFgU0npOsACaM0rJiDZDW/3gBCYiIiIjRr8SLOfcGudcJLG6Dijrf0giIkMj3NoIgJfee4IVyUnMhdWgboIiIiLSVSrfwVoN/CFpvdzMNprZn8zsrJ52MrMbzWy9ma2vrq5OYTgiIscnlEiw/Om5vdbzJebCcnUVAx2SiIiIjDB9Jlhm9qyZbe7m47KkOt8AIsADiaIqYIpzbhHwv4BfmVm3dyzOubudc0ucc0uKi4v7/xWJiJygQwlWMLP3BCsjMRdWy/73BjwmERERGVn8fVVwzq3sbbuZrQIuAT7snHOJfTqAjsTyBjPbAcwA1vc3YBGRgRJubQAgLSuv13rjiifQ7NJpO7CT3jsTioiIyFjT31EELwT+BbjUOdeaVF5sZr7E8knAdEB/6hWRYS3a3gxAenbvT7DKCrPic2HVaS4sERER6arPJ1h9uANIA54xM4B1iREDzwZuM7MwEANucs7V9rMtEZEBFWlrAiCY0fsTrNKCDF5xxRQ37h6MsERERGQE6VeC5Zw7uYfyx4DH+nNsEZHB5jriT7B6m2gYIC8jwAFvPFlt74BzEP8Dk4iIiEhKRxEUERnZQvEnWKTl9Fm1OaOU9FgrtNUNcFAiIiIykijBEhFJsFBLfCHY99AVkdzEXFj1eg9LREREDlOCJSKS4O+oo93SwR/ss65XEJ8LCw10ISIiIkmUYImIJKSH6mj2FRxT3UNzYbVV7xzIkERERGSEUYIlIpKQHamjLZh/THXHjy+hwWXSdkAzUIiIiMhhSrBERIBYzJETayCUVnRM9UvzM6h0xUTVRVBERESSKMESEQEa28MUWSOR9GNMsAoy2OPGE2jcM8CRiYiIyEiiBEtEBDjQ2E4hjXjZ446pflFWkH1WTFbb3vhcWCIiIiIowRIRAWB/dTVpFiE9r+SY6psZTRmlBGId0FI9wNGJiIjISKEES0QEaKqOd/XLLJp0zPuEcw7NhbV7IEISERGREUgJlogI0JEYbj13wsnHvI9XOC2+UFeR+oBERERkRFKCJSICWH18NMDAuPJj3idzfLxuqKZiIEISERGREUgJlogIEGjaQwdByD62d7AASsYVUeNyNBeWiIiIdFKCJSICZLZWUh+cAGbHvE/nXFi1FQMXmIiIiIwoSrBEZMxr7ohQFtlDa86xdw8EKCvIZI8rxt9YOUCRiYiIyEijBEtExryd+2ootypixbOPa7/xOWlUUUxm2/sQiw1QdCIiIjKS9CvBMrPvmNleM9uU+Pi7pG1fM7PtZrbVzC7of6giIgOj6t038FuMrCnzj2s/zzNa0ifgd2FoPThA0YmIiMhI4k/BMf7DOfdvyQVmdgpwLTAHmAQ8a2YznHPRFLQnIpJSdTs3ADD+A4uPe99o9iSoAxr3Qvb4FEcmIiIiI81AdRG8DHjIOdfhnNsJbAeWDlBbIiL9kn5gE22WiVc8/bj39ReUxRca9qY4KhERERmJUpFgfcHM3jCz+8ysIFFWCuxJqlOZKDuKmd1oZuvNbH11dXUKwhEROXY1zR2c1LGFmry54PmOe/+McVMAiNRroAsRERE5hgTLzJ41s83dfFwG/Az4ALAQqAL+/XgDcM7d7Zxb4pxbUlxcfLy7i4j0y6Yde5lle/CmLDmh/QuKJxFyPlqqd6U4MhERERmJ+nwHyzm38lgOZGb3AL9LrO4FJidtLkuUiYgMKwfe/jMBizLulHNOaP+ywmz2uUIyavf0XVlERERGvf6OIjgxafVyYHNi+UngWjNLM7NyYDrwSn/aEhEZCIHKl4jiESz/4AntX5qfQRVF0Ph+iiMbvmLRGM65oQ5DRERkWOrvKII/NLOFgAMqgM8AOOfeMrNHgLeBCPB5jSAoIsNNezjKtKaN7M+ZxaS0nBM6xvjcNF5zhcxuqUhtcEPEOUfFvoNUbXuNtt0b8dVuI7P1ffJD+yiM1ZJBO1nWQcj56LA0mr0c6tNKieVPI2PqYibN/RDpk+aAp2kWRURkbOpXguWc+0Qv2/4V+Nf+HF9EZCBt3rWfebaDqtJPnvAx0gM+6nzFZIZeiU82PMISi0g0xtYdO9j3xnP4dv+V0sZNlLtKyi0+cXIr6Rz0T6ApayK70ucTC2QR86fjohFioVa8thpy2/Yy6f01FFT9BtZBk2Wzr2AJaTPOpfTUC/EVzwCzAf06nHM0tkeora2h+eAeOprrCLc2Em1vgnAr/kgrRgwwHIZnRiCYhpeWjT8zl2BGLunZuWRm55GVU0B6dj740wY0ZhERGZ1SMQ+WiMiIVLl5LUssQuGcE3v/6pDWjIn42yLQUg05JSmKbuAcqG/irZeeJrrlKcobXmaO7WUO0EIGu7Pms3XihWRPW0LJjKVkFk9jyjEkR7XNHfzt7dep37aWYOVLzKp5jbJ1L8K6W6nzj6NxwhkUzFlJ7ikrIa/bQWV75JyjsS3Mgf3vU7dvJ83VlYTq9mCN7xNo3Ud2xwEKogcpoZZyazuxb0o3OgjQapm0WybtvixCvmwigSyigRyigWzC/ixinh8zDxIfDo+oi0EkDNEOLBbGomGIhfBiYSwWxouG8VwYLxbG58J4sQg+F8HnwvhcBD9h/C6Cnwh+FyFABIBYole/w4hhYPFk0QEOjxiGw8OZEcNLLHvx/cw61w/ViX/2HV7GiCXqOw6f83gL8a4qXf4nJHUTPVTnyOVk1qVb6dH13VHHOVzLemiLHto6Pv04hktVDMfbZlfN/jwmfvphJhYXDW4sItItJVgiMma5ir8CkDv9zH4dJ5I9EdqAxsphmWA559i2+312/u23ZFSsYVH7q5xjrXQQZFfuIt6eci0l81dSdPJSZvtO7NdCYXYaZyxdCkvjUx7WNXfw7Osbqd28hvx9L7F4zwvkVj4Jf4T3fWXUZ59Ee1YpkczxeMEMol4asXAHLtxGpKMFWg6S1l5NVuggedE6xlPHdAt3aTOKR4NXQFNwPO2Z09mTOQGXOwlfXinBnCKCGTmkZeXiS8+BQBbO4rfs5iASi9Le3k5HSxOhtgbCrU2EWhuJtMWfern2Buhowgs14w834480kxZuJr2jntxYK1m0kk0bfmJ41v0Ndtj5CJufEAEi+IlYgKj5ieIn4gWIWoCY+Yn6AkS8TEJegJjnx3lBnOfHeQHwBYl5/kMnElwskdi4w+uQKI+/G2cu2rluic9Hrhvx5UPrHg7PxTCi+IjhEeuSZCWnVl2+Wksu76FOotwdUefwMa2z3Iwj0idLqtp7W93+GeCowqNrJSdyvbHuWrCuMfS2d28lve3f/dd1uDQYa+PUjld5Ye1vmXj5p/uMREQGnhIsERmTnHOMr99IVVo5EzML+3ew3FKoJj7QRenilMSXCntrGtj0/KNkbn2MD4ZfYaaFqbc89kxYSc6CS5m8+CJmpGUPSNsF2WmsXL4Mli8jFnO8/X49f3pjHYHdf6Gkdj1F9TuYVv8ymdbR7f6NZNPgL6Q1rYj6jGnUZpfgzy8jY9xk8kumkl8yFV/OBAp9fvp59vrFOUckGiPmHLFYPLEJ+jw8f5CAGQEgcwjjk9HPRcM0fm8aGTvXAEqwRIYDJVgiMibt2N/IfLeN/SUf6fexgkVTYAdE6ys5/qmKU6upLcTLa5/Fbfy/LGn5ExdbM42Wy66pVzL+g9dRMHM5+ScwoXJ/eJ4xt6yAuWUXARd1lkciURpaGmlracaLhUhPyyCYmUVaeha5Pj+5gxrliTEz/P5D30/9SpXBZ74A7+R+kFmNf8NFw5gvMNQhiYx5+m0gImPSe5tf5mRro2VG/7oHAuQVTqDDBQgf3M3APA/q23t79/P6H+5hxp5fs9IqaCdIxfhzCS+7nvELLyR3GN50+f0+8vIKyMsrGOpQREa0tvLzyX/9Gao2/5mJCz481OGIjHlKsERkTGp/by0A4/s5wAXAhPx0qlwheYM82bBzjtc3vkLdCz9hSeOzXG5tVKWfxO5Tv8fkD32KWel5gxqPiAyNk5Z9lI5NX6N6w2+VYIkMA0qwRGRMyqveQI2vmKKCKf0+1vicdKpcEXmNe1MQWd/CkSjrXvwdwZfv4PTwK3QQYMf485l03ueYOH35gA+JLiLDy+SJ43k1MJ+yvc/FBz/RzwCRIaUES0TGnKa2ELNCm6kefzqpGNR4Ql462yhkXst7KThazxpb21n31C+Z9NbdnOXepcFyePPkzzL9kls4JX/4jV4oIoOntmwlp1X8kMbKt8idPHeowxEZ00bWjJiDbPvrf+WlX3yFt9b+P9pbGoc6HBFJkXff3kSJ1eObtjwlxyvMDLKfIjI69kMsmpJjJqs8UMPv7/vf1P1gAedv/jLFXjNbF99Kzle3Mu/675Ou5EpkzJv6wSsB2PHnh4Y4EhHRE6xe1LzzF06v+C+8XXcRecZju38adVknEx03i4xJs8kpKWdc6Unk5Bdj3vDJVaMxRzgcJhxqJxwOEw13EA6HiIZDRMMdRCLh+HIkRCwSTnwO4cUiuFgYi0VwLj7HSnwORQfE4tOuAC4xD4s7VJCYjyV5Hzs0T0tKJ2BMmvjyBHs/uO5nFOm+tWObVOWE2z/hI/W360dKuo6k7vvQYwt9VjnxGELvvghAyeJLTvgYyTzPaE6bgC8STUw2PCElx31j23vs+uOP+eDBx7jYGtmdMZPdy29lyvJrKRnkkQBFZHibNXMWb/rnUrrjIVzkVswfHOqQBp2LRmhra6G1pYX2tmYiHW1EQ224cCvRcAexSJhYNEo0GsZFI0SjUVw0TCwaIRaNYLEo5iLxueToMpd2fL2btUN1errbsaR/j5zPDUuaXa3LL73k+52kOd/s8NEclrSLdfkcn0+uu+1HHK9LedJ9bFK4zixpDrju9x0MrdlT+MD8M5iUnzGo7Z4oJVi9OP2ar9JQ+2l2bnqe1h1/I7fmDaY2rmd84xpI6gnU5oLUeQW0edl0+LMJ+7MJ+bNwXiA+UaTnx5kPfP74f/hYFFwUi0USEz9GIBb/bLEonosnOV4sjOcinR++WBSfC+Mjgs9F8bkIPiL4ieJ3EfyJ5QBR0s2RPnTfOpFh7z1fOSdN+EDKjhfJngD1QMPefiVY0Zhj7Suv0vKnH7OidQ3zrYPtBWdgK/+JKXM+rHcrRKRHNQs+w7wNX2Tb879kxvkjb06s1vZ26qr30VK3j7b6/YQb9xNpOki0rQHaG/BCzQQiTQQjzaRFm8mItpDhWshw7aS5DgIWJRPNPTca/SJyAQ35s5VgjRZ5heNYeO7VcO7VnWUNtQepeu8NWqp3E6rdg2vcS7CtGn+4mWCkiZy2SjJirfiI4iOKnwg+F8NHFA9HFI8IPmLmEcVHjMRn84jhI2p+ouYjagGi5idmfqJeOhG/n6gFcJ4fZ36cFyDm+cF3KJELgM8PXgDnC2C+AOYFwBfA8yfW/UE8XwDPH8T88XKfPy0+b4YvcQzPh5mHmXX+BcTMEh9efB2L3+h1rgPm4XmGHep5mti/v0874lwPyyd6jD5qdle128ITi+GEj3TMMfRSLwVfR7+P0EcMfYfY/69h/MRp/T5GMn/B5HiC1VgJHP9kw62hCC88+xRZG37GWZGXiJmPikkXUXrxVzi5bF5KYxWR0WnZBR9nx4YfkvXyj4ituA4vODxuRqPRKNX79lJTtZPmAxWE6yrxGvcSbK0io6OarHAdebEGCqypx+SojSAtZNHqZdLuZdHuy6YpMJ5wIJtYIAv86VggAwtm4Atk4AXjHxZIB38G5k/D5w/g+fzxex+fH8/vx59Y9vsDmM8Png9nvs4nOtb5NMe6rMfLjlzoRpdHXO7wby93eNm5WFJ1d9S+zh3uEXTU70fnEmWdR4u345K2d9NO8u9RFzv6HqvrMQ+3E//6j4hxEP7wd3ZaPsWTige8nVRRgnUC8grHkVd47lCHISLDSMHED8BO6DiwnbRTjn2/3dWNvLLmV5z07i+4mHdotmwqZn2aqRfdwvT80oELWERGnfRggMql3+RDr3yGt371Feas+vGgtOuco7aulv27ttBQuY1I9XYCjRXktO4hP7yf4lgNEyxC8rP9kPNT7RXR4C+mNusDVGcUQeY4vOzx+HOLCeaVkJlfQnZhCXn5RWQE0xke6aJI35RgiYikwNSyUnbHismpeJW0PurGYo6X39jMgRfvZmnd77jKaqnxl7Dn1FuZ/OEbyU7LGZSYRWT0Ofuia3jurSf5cMV/8+7vT2L6xTen7NgNdTXsq3ibxr1bCR3Yjr9hJ9ktexgf2Usx9V1GZa0hn+rAJPblzKUyaxJefikZ46aQVzKNwkknkVUwgVIz9GckGY2UYImIpMCsCTlscNM5r2p9j10mdlYd5I0XHqVg+2OcEV2PZ45dBcuoO/szFC34CEU+/UgWkf4xM5Z85r9Y9+MrWPbqt3lr16uUXv498ieedEz7N9TXsn/nWzTs3Ur4wLv4GyrIad1FSXgvhTSSPH15NYUcDJayu3A5FQXlpJfMIL9sJiVTZ1OUlZeSaTBERiL9NhcRSYHJhZk8mrWQrPa/QeWrMHkpAHsO1PHmX58iuPVxlrat5TJrpd4rYOfMv2fqeZ+jvPjYbnpERI5VXm4Op9zyOGvu/WfO2f8wvrt+z3vBk2nIm0U0awIukAnREC7UgmurJ61tP7mhAxRED1JAU5ck6gCFVAfL2F74IVxBOWklMygom0nJ1FkUZ+Uyct6KERk85vrxwruZPQzMTKzmA/XOuYVmNg3YAmxNbFvnnLupr+MtWbLErV+//oTjEREZSnf+cRPX/e3viGQUsyXvTAI125gXfp0s66CVDPZMWMn45Z+g4JQPxwekEREZYDu2vUXli/eRe+BVpoR3UmSH5/XscH5aLJNaXzHNwWI6Mkpw+VNJLzmZ/MmzmDB1NulZuUMYvcjwZmYbnHNLjirvT4J1RAP/DjQ4525LJFi/c84d11TiSrBEZCRrDUW48+d384n9P2QcDVQHJlJbcgbFiy5l/ILzIKBXtEVk6MRijo5whI72FoJp6aQH0/A8Tf0gcqJ6SrBS8idUi89adjWgofVEZMzKDPr58uc+R3voRjwPJvr9TBzqoEREEjzPyEgLkJGWP9ShiIxqXt9VjslZwH7n3LtJZeVmttHM/mRmZ/W0o5ndaGbrzWx9dXV1isIRERk66cH4/CoiIiIy9vR5B2Bmz0KXqQsO+YZz7onE8seBB5O2VQFTnHM1ZrYYeNzM5jjnGo88iHPubuBuiHcRPN4vQEREREREZLjoM8Fyzq3sbbuZ+YErgMVJ+3QAHYnlDWa2A5gB6AUrEREREREZtVLRRXAl8I5zrvJQgZkVm5kvsXwSMB14LwVtiYiIiIiIDFupeEngWrp2DwQ4G7jNzMJADLjJOVfb14E2bNhw0Mx2pSCmVBoHHBzqIGTQ6HyPHTrXY4fO9dii8z126FyPLcPxfE/trjBlw7SPVma2vrvhF2V00vkeO3Suxw6d67FF53vs0LkeW0bS+U7VKIIiIiIiIiJjnhIsERERERGRFFGC1be7hzoAGVQ632OHzvXYoXM9tuh8jx0612PLiDnfegdLREREREQkRfQES0REREREJEWUYImIiIiIiKSIEqxemNmFZrbVzLab2VeHOh5JHTObbGYvmNnbZvaWmf1jorzQzJ4xs3cTnwuGOlZJDTPzmdlGM/tdYr3czF5OXN8Pm1lwqGOU1DCzfDN71MzeMbMtZvZBXdujk5ndkvgZvtnMHjSzdF3bo4eZ3WdmB8xsc1JZt9eyxf04cd7fMLNThy5yOV49nOvbEz/H3zCz35pZftK2ryXO9VYzu2BIgu6FEqwemJkPuBO4CDgF+LiZnTK0UUkKRYB/cs6dAiwDPp84v18FnnPOTQeeS6zL6PCPwJak9R8A/+GcOxmoA/5+SKKSgfCfwNPOuVnAAuLnXdf2KGNmpcCXgCXOubmAD7gWXdujyf3AhUeU9XQtXwRMT3zcCPxskGKU1Lifo8/1M8Bc59x8YBvwNYDE/dq1wJzEPj9N3LcPG0qwerYU2O6ce885FwIeAi4b4pgkRZxzVc651xLLTcRvwEqJn+P/TlT7b+CjQxKgpJSZlQEXAz9PrBtwLvBooorO9ShhZnnA2cC9AM65kHOuHl3bo5UfyDAzP5AJVKFre9Rwzv0ZqD2iuKdr+TLgly5uHZBvZhMHJVDpt+7OtXNujXMuklhdB5Qlli8DHnLOdTjndgLbid+3DxtKsHpWCuxJWq9MlMkoY2bTgEXAy0CJc64qsWkfUDJUcUlK/R/gX4BYYr0IqE/6wa3re/QoB6qBXyS6hP7czLLQtT3qOOf2Av8G7CaeWDUAG9C1Pdr1dC3rvm10Ww38IbE87M+1EiwZ08wsG3gMuNk515i8zcXnMNA8BiOcmV0CHHDObRjqWGRQ+IFTgZ855xYBLRzRHVDX9uiQePfmMuJJ9SQgi6O7GMkopmt5bDCzbxB/teOBoY7lWCnB6tleYHLSelmiTEYJMwsQT64ecM79JlG8/1CXgsTnA0MVn6TMcuBSM6sg3tX3XOLv6OQnuhWBru/RpBKodM69nFh/lHjCpWt79FkJ7HTOVTvnwsBviF/vurZHt56uZd23jUJmtgq4BLjOHZ68d9ifayVYPXsVmJ4YjShI/GW6J4c4JkmRxDs49wJbnHM/Str0JPCpxPKngCcGOzZJLefc15xzZc65acSv4+edc9cBLwBXJarpXI8Szrl9wB4zm5ko+jDwNrq2R6PdwDIzy0z8TD90rnVtj249XctPAp9MjCa4DGhI6kooI5CZXUi8e/+lzrnWpE1PAteaWZqZlRMf2OSVoYixJ3Y4GZQjmdnfEX93wwfc55z716GNSFLFzM4E/gK8yeH3cr5O/D2sR4ApwC7gaufckS/YyghlZiuAf3bOXWJmJxF/olUIbASud851DGF4kiJmtpD4gCZB4D3gBuJ/UNS1PcqY2XeBa4h3H9oIfJr4uxi6tkcBM3sQWAGMA/YD3wYep5trOZFk30G8m2grcINzbv0QhC0noIdz/TUgDahJVFvnnLspUf8bxN/LihB/zeMPRx5zKCnBEhERERERSRF1ERQREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERS5P8DHEatK8VYVQEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
21False70.08470.0447bAP.soma.v0.008761.91e-07
22False70.08470.0447Step1.soma.v0.009795.28e-06
23False70.08470.0447Step3.soma.v0.009614.38e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "21 False 7 0.0847 0.0447 bAP.soma.v \n", + "22 False 7 0.0847 0.0447 Step1.soma.v \n", + "23 False 7 0.0847 0.0447 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "21 0.00876 1.91e-07 \n", + "22 0.00979 5.28e-06 \n", + "23 0.00961 4.38e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAClCElEQVR4nOzdeXyU1fn//9c1M1nJBgmEJUAQFdkiKiBWcGur2KpotaJ1t9aPdlPr0mpbpf5qP/1Yv7VV26KtrWsR913riop1AwREcWEJENawZCXbzJzfH3MnTEI2yCSTkPfz4Twy97nPfc41czNxrpxzn9ucc4iIiIiIiEjH+eIdgIiIiIiIyL5CCZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkW7GzPLNzJlZIN6xSO9gZp+a2THxjkNEZF+gBEtERHo8M5ttZhXeo9bM6qK2X4p3fN2dc26sc25eLNv0kraKqEfQzJ6LZR8iIt2R6UbDIiKxZWYB51ywA8fnA6uBhI6001uZ2Sxgf+fcuc3s69C56Uo9Kda2mJkBq4CbnHMPxDseEZHOpBEsEZEYMLNCM/u5mS0FKs0sYGZTzOy/ZlZiZkuip2CZ2Twz+18z+9DMyszsGTPr10LbF5nZcjMrN7NVZvY/TfbPMLPFXjsrzWy6V55pZvea2UYzW29mvzUzfxuvY6SZvWFm28xsq5k9bGZZUfu2m9mh3vZgMyuuf11mdoo3alHivb7RTd6fa8xsqZmVmtlcM0ve83d6z7VwbpyZ7R9V5z4z+23U9knee1rincOCdvZ1jJkVmdkN3vtXaGbnRO3/tpl97J2rdV4yWL+vfmro981sLfCGV/6YmW3y3re3zWxsk7j/amYveaNE75rZQDP7k5ntMLPPzeyQdr5H32jPa9xLRwE5wBOd2IeISLegBEtEJHbOBr4NZAG5wAvAb4F+wDXAE2bWP6r++cDFwCAgCNzRQrtbgJOADOAi4PaoJGcy8ABwrdfvUUChd9x9Xrv7A4cAxwOXtPEaDPhfYDAwGhgKzAJwzq0Efg48ZGapwL+A+51z88zsQGAOcCXQH3gReM7MEqPaPhOYDowACoALmw3AbKqX2LT0mNrGa2hOw7lpa1TIS0j+CfwPkA3cDTxrZknt7GsgkWRiCHABcI+ZjfL2VRI571lePJeb2alNjj+ayHt/grf9EnAAMABYBDzcpP6ZwK+8PmuA97x6OcDjwB/bGXezzOwXrZ2PdjZzAfCEc66yI7GIiPQESrBERGLnDufcOudcFXAu8KJz7kXnXNg59yqwAPhWVP0HnXPLvC+dvwbObG6EyTn3gnNupYt4C3gFmObt/j7wT+fcq14/651zn5tZrtfXlc65SufcFuB24KzWXoBzboXXVo1zrpjIl/Ojo/b/HVgBfEAkMfylt2sm8IJ3bB1wG5ACfK3J+7PBObcdeA6Y0EIM851zWa085rf2GloQfW7acilwt3PuA+dcyDl3P5HEZcoe9Pdr7z18i0iifSaAc26ec+4T71wtJZKUHt3k2FneOavyjvmnc67cOVdDJNk92Mwyo+o/5Zxb6JyrBp4Cqp1zDzjnQsBcIsn1XnPO/b6189HW8V4yfgaRhF9EZJ+nBEtEJHbWRT0fDny3yV/6pxJJSpqrvwZIIDLq0IiZnWhm73vT80qIJE719YYCK5uJZbjX3sao/u8mMgrSIjPLNbNHvCmFZcBDzcT0d2AccKf3pR8iI15r6is458Le6xsSddymqOc7gbTWYomxdW1XaTAcuLrJuRtK5DW2x44mIzVr6o81s8PN7E1vamUpcBm7v78NsZqZ38x+b5Gpn2XsGp2MPmZz1POqZra78n1uzneA7cBbcY5DRKRLKMESEYmd6FWD1hEZoYr+a38f59zvo+oMjXo+DKgDtkY36E1Le4LIiFCuN2LwIpGpfPX9jGwmlnVERl1yovrPcM6NbaZutN95r2O8cy6DyEhcfV+YWRrwJ+BeYJbtum5sA5HEpL6eea9vfRv97cbMplnj1eeaPqa13cpumq7otBNIjdoeGPV8HXBLk3OX6pyb086++ppZn6jtYUTeH4B/A88CQ51zmcBsot7fZmL9HjAD+AaQCeR75U2P6TTe9WQtno92NHEB8IDTqloi0ksowRIR6RwPASeb2QneKESytwBCXlSdc81sjDeF6mbgcW9aV7REIAkoBoJmdiKRa6nq3QtcZGZfNzOfmQ0xs4OccxuJTCX8f2aW4e0baWZNp6M1lQ5UAKVmNoTItV3R/gwscM5dQmTq22yv/FHg214cCcDVRBK8/7b1RjXlnHvHOZfWyuOdPW2zGYuB73nnZjqNp+n9HbjMG20yM+tjkcUp0qFhYYn72mj/N2aW6CWDJwGPeeXpwHbnXLV3/dz32mgnncj7uI1IQvi7PXiNMeGc+11r56O1Y71/78cC93dNtCIi8acES0SkEzjn1hEZebiBSHK0jkiyEv1790Ei16VsApKBnzbTTrlX/iiwg8gX8mej9n+It/AFUEpkGlb9SNL5RBK0z7xjH6fxFMXm/AY41GvrBeDJ+h1mNoPIIhWXe0U/Aw41s3Occ18QGe26k8go3MnAyc652jb6i5criMRYApwDPF2/wzm3APgBcBeR920FjRfkGAq820rbm7zjNhBZkOIy59zn3r4fAjebWTlwI5Hz2poHiEwxXE/kPL7f1gvrZs4D3vMWSBER6RV0HywRkTgws3nAQ865f8Q7Fmk/b1XEJUCBt5hH0/3HEDmveU33iYhI7xCIdwAiIiI9hTciN7rNiiIi0mtpiqCISC9jZrNbWLBgdttHS09kZsNaWahiWLzjExHZl2iKoIiIiIiISIxoBEtERERERCRGutU1WDk5OS4/Pz/eYYiIiIiIiLRq4cKFW51z/ZuWd6sEKz8/nwULFsQ7DBERERERkVaZ2ZrmyjVFUEREREREJEaUYImIiIiIiMSIEiwREREREZEY6VbXYDWnrq6OoqIiqqur4x2KdAPJycnk5eWRkJAQ71BkH/bwB2t4+8ti/vK9Qwn49XcoERERab9un2AVFRWRnp5Ofn4+ZhbvcCSOnHNs27aNoqIiRowYEe9wZB/26jMPcY7/dT5b8CsKDj8u3uGIiIhID9Lt/zRbXV1Ndna2kivBzMjOztZopnSq6roQ3/O/zjf9C2Hxv+MdjoiIiPQw3T7BApRcSQP9W5DOtq2ylv5WCkDmjk/iHI2IiIj0ND0iwRIR6SrbKmrobyUADK5eAcHa+AYkIiIiPYoSrHYwM66++uqG7dtuu41Zs2bFL6AoxxxzTKs3Zz711FOZMmVKo7JZs2YxZMgQJkyYwLhx43j22Wc7O0yRHmNbRQ05lLLD+pJAELejMN4hiYiISA+iBKsdkpKSePLJJ9m6dWtM23XOEQ6HY9pmtJKSEhYuXEhpaSmrVq1qtO+qq65i8eLFPPbYY1x88cWdGodIT1Jeup1kq2NL5ngAdmxc1cYRIiIiIrsowWqHQCDApZdeyu23377bvuLiYk4//XQmTZrEpEmTePfdd4HIKNFtt93WUG/cuHEUFhZSWFjIqFGjOP/88xk3bhzr1q3j2muvZdy4cYwfP565c+cCMG/ePI455hjOOOMMDjroIM455xycc83G9+CDDzaMRn344YcN5U8++SQnn3wyZ511Fo888kizx44ePZpAINAoefzFL37BmDFjKCgo4JprrgGgsLCQ4447joKCAr7+9a+zdu1aAC688EIuv/xypkyZwn777ce8efO4+OKLGT16NBdeeGFDm5dffjkTJ05k7Nix3HTTTbvFUVpayvDhwxsSvcrKSoYOHUpdXV2zcYt0lnDFFgBqBh4KQPmmFfEMR0RERHqYbr9Me7TfPPcpn20oi2mbYwZncNPJY9us96Mf/YiCggKuu+66RuVXXHEFV111FVOnTmXt2rWccMIJLF++vNW2vvrqK+6//36mTJnCE088weLFi1myZAlbt25l0qRJHHXUUQB8/PHHfPrppwwePJgjjzySd999l6lTp+7W3s6dO1m8eDFvv/02F198McuWLQNgzpw53HjjjeTm5nL66adzww037HbsBx98gM/no3///gBs27aNp556is8//xwzo6SkBICf/OQnXHDBBVxwwQX885//5Kc//SlPP/00ADt27OC9997j2Wef5ZRTTuHdd9/lH//4B5MmTWLx4sVMmDCBW265hX79+hEKhfj617/O0qVLKSgoaIgjMzOTCRMm8NZbb3Hsscfy/PPPc8IJJ+h+V9Ll/JXFACQPnUDdcj+1W9fEOSIRERHpSTo8gmVmQ83sTTP7zMw+NbMrvPJZZrbezBZ7j291PNz4ycjI4Pzzz+eOO+5oVP7aa6/x4x//mAkTJnDKKadQVlZGRUVFq20NHz684bqo+fPnc/bZZ+P3+8nNzeXoo4/mo48+AmDy5Mnk5eXh8/mYMGEChYWFzbZ39tlnA3DUUUdRVlZGSUkJmzdv5quvvmLq1KkceOCBJCQkNCReALfffjsTJkzgmmuuYe7cuQ2r82VmZpKcnMz3v/99nnzySVJTUwF47733+N73vgfAeeedx/z58xvaOvnkkzEzxo8fT25uLuPHj8fn8zF27NiGmB999FEOPfRQDjnkED799FM+++yz3V7HzJkzG0bwHnnkEWbOnNnq+yjSGaw28vnNHZDLRtcPStfFOSIRERHpSWIxghUErnbOLTKzdGChmb3q7bvdOXdbK8fukfaMNHWmK6+8kkMPPZSLLrqooSwcDvP++++TnJzcqG4gEGh0XVP0vZv69OnTrv6SkpIanvv9foLBYLP1mi5dbmY8+uij7Nixo+GGvGVlZcyZM4dbbrkFiFyDVT/9r2ncH374Ia+//jqPP/44d911F2+88Ua74vT5fI1i9vl8BINBVq9ezW233cZHH31E3759ufDCC5u9l9Upp5zCDTfcwPbt21m4cCHHHacbvErXC9dF/m1mpKfzhW8AAyuK4hyRiIiI9CQdHsFyzm10zi3ynpcDy4EhHW23O+rXrx9nnnkm9957b0PZ8ccfz5133tmwvXjxYgDy8/NZtGgRAIsWLWL16tXNtjlt2jTmzp1LKBSiuLiYt99+m8mTJ+9RXPWjPvPnzyczM5PMzEzmzJnDyy+/3HDd18KFC1u8DitaRUUFpaWlfOtb3+L2229nyZIlAHzta19rOP7hhx9m2rRp7Y6vrKyMPn36kJmZyebNm3nppZearZeWlsakSZO44oorOOmkk/D7/e3uQyRWXF0VABZIoSRxIOnVG+IckYiIiPQkMV3kwszygUOAD7yiH5vZUjP7p5n1beGYS81sgZktKC4ujmU4neLqq69utCDEHXfcwYIFCygoKGDMmDHMnj0bgNNPP53t27czduxY7rrrLg488MBm2zvttNMoKCjg4IMP5rjjjuPWW29l4MCBexRTcnIyhxxyCJdddhn33nsvhYWFrFmzptHy7CNGjCAzM5MPPvig2Ta+9a1vsWHDBsrLyznppJMoKChg6tSp/PGPfwTgzjvv5F//+hcFBQU8+OCD/PnPf253fAcffDCHHHIIBx10EN/73vc48sgjG/bdeOONjZaJnzlzJg899JCmB0r8BL3R1YRkdqYOITO0HYI18Y1JREREegxraWW6PW7ILA14C7jFOfekmeUCWwEH/H/AIOfcxa21MXHiRNf0nk7Lly9n9OjRMYlR9g36NyGd6Zm7b2LGxj/BtSt54pF7OX3d7+AniyB7ZLxDExERkW7EzBY65yY2LY/JCJaZJQBPAA87554EcM5tds6FnHNh4O/Ans17ExGJh/oRrEAy/n7DAaje2vwUXxEREZGmYrGKoAH3Asudc3+MKh8UVe00YFnTY0VEuhsLedMBA8mk9s8HoHSTlmoXERGR9onFKoJHAucBn5jZYq/sBuBsM5tAZIpgIfA/MehLRKRT+UI1BPET8AfIzB0GQPW2tXGOSkRERHqKDidYzrn5gDWz68WOti0i0tV8wWpqLZEAMLBfJltdBqGS9fEOS0RERHqImK4iKCLS0/nCNdRZIgC5Gclscv3wVWipdhEREWkfJVgiIlH84RrqLHLD7OQEP9t92STt3BznqERERKSnUILVTk8//TRmxueff95incLCQsaNGxezPi+88EIef/zxFvdfeeWVDBkyhHA43FB233330b9/fyZMmMCYMWP4+9//HrN4RHqDQKiGkC+xYbs8cQBptVviGJGIiIj0JEqw2mnOnDlMnTqVOXPmNLs/GAx2uI9QKNTuuuFwmKeeeoqhQ4fy1ltvNdo3c+ZMFi9ezLx587jhhhvYvFl/fRdpr4CrIehLbtiuSR1IergM6qriGJWIiIj0FEqw2qGiooL58+dz77338sgjjzSUz5s3j2nTpnHKKacwZswYIJJonXPOOYwePZozzjiDnTt3AvD6669zyCGHMH78eC6++GJqaiJLQefn5/Pzn/+cQw89lMcee2y3vl977TUmTpzIgQceyPPPP9+o77Fjx3L55Ze3mPQNGDCAkSNHsmbNriWm77jjDsaMGUNBQQFnnXUWANu3b+fUU0+loKCAKVOmsHTpUgBmzZrFBRdcwLRp0xg+fDhPPvkk1113HePHj2f69OnU1dUBcPPNNzNp0iTGjRvHpZdeStObV4fDYfLz8ykpKWkoO+CAA5T4SbeUEG48ghVOHxx5UqbrsERERKRtsVimveu89AvY9Els2xw4Hk78fatVnnnmGaZPn86BBx5IdnY2Cxcu5LDDDgNg0aJFLFu2jBEjRlBYWMgXX3zBvffey5FHHsnFF1/MX//6V3784x9z4YUX8vrrr3PggQdy/vnn87e//Y0rr7wSgOzsbBYtWtRs34WFhXz44YesXLmSY489lhUrVpCcnMycOXM4++yzmTFjBjfccAN1dXUkJCQ0OnbVqlWsWrWK/fffv6Hs97//PatXryYpKakh4bnppps45JBDePrpp3njjTc4//zzWbx4MQArV67kzTff5LPPPuOII47giSee4NZbb+W0007jhRde4NRTT+XHP/4xN954IwDnnXcezz//PCeffHJDnz6fjxkzZvDUU09x0UUX8cEHHzB8+HByc3PbfZpEukrA1RLyp+zazhoC66B2RxGJ2SPjGJmIiIj0BBrBaoc5c+Y0jPacddZZjUaMJk+ezIgRIxq2hw4dypFHHgnAueeey/z58/niiy8YMWIEBx54IAAXXHABb7/9dsMxM2fObLHvM888E5/PxwEHHMB+++3H559/Tm1tLS+++CKnnnoqGRkZHH744fznP/9pOGbu3LlMmDCBs88+m7vvvpt+/fo17CsoKOCcc87hoYceIhCI5Nfz58/nvPPOA+C4445j27ZtlJWVAXDiiSeSkJDA+PHjCYVCTJ8+HYDx48dTWFgIwJtvvsnhhx/O+PHjeeONN/j00093ex0zZ85k7ty5ADzyyCOtvmaReEp0tYT9u0awknMi98Iq26J7YYmIiEjbetYIVhsjTZ1h+/btvPHGG3zyySeYGaFQCDPjD3/4AwB9+vRpVN/MWt1uTtM22mrvP//5DyUlJYwfPx6AnTt3kpKSwkknnQREkpm77rqr2fZeeOEF3n77bZ577jluueUWPvmk9RHBpKTIamo+n4+EhISGeHw+H8FgkOrqan74wx+yYMEChg4dyqxZs6iurt6tnSOOOIIVK1ZQXFzM008/za9+9atW+xWJB+ccCa6WsH/XNViZAyIJVmXxWnLiFZiIiIj0GBrBasPjjz/Oeeedx5o1aygsLGTdunWMGDGCd955p9n6a9eu5b333gPg3//+N1OnTmXUqFEUFhayYsUKAB588EGOPvrodvX/2GOPEQ6HWblyJatWrWLUqFHMmTOHf/zjHxQWFlJYWMjq1at59dVXG673akk4HGbdunUce+yx/N///R+lpaVUVFQwbdo0Hn74YSBybVdOTg4ZGRntiq8+mcrJyaGioqLFVQ/NjNNOO42f/exnjB49muzs7Ha1L9KVaoJhkqnFBXYlWANysilzqQRLiuIYmYiIiPQUSrDaMGfOHE477bRGZaeffnqLC0uMGjWKv/zlL4wePZodO3Zw+eWXk5yczL/+9S+++93vMn78eHw+H5dddlm7+h82bBiTJ0/mxBNPZPbs2YTDYV5++WW+/e1vN9Tp06cPU6dO5bnnnmu2jUsuuYQFCxYQCoU499xzGT9+PIcccgg//elPycrKYtasWSxcuJCCggJ+8YtfcP/997fz3YGsrCx+8IMfMG7cOE444QQmTZrUsG/27NnMnj27YXvmzJk89NBDmh4o3VZNMEyS1eH8SQ1lAzOS2ej6YeVa5EJERETaZk1XfIuniRMnugULFjQqW758OaNHj45TRNId6d+EdJYt5dUEbhtJ8fCTGHXx3Q3l7846iuGpteRd934coxMREZHuxMwWOucmNi3XCJaIiKemLkwSdRBIalReljCAtBrdbFhERETapgRLRMRTUxckmVpISGlcnpJLRmg7hOriFJmIiIj0FD0iwepO0xglvvRvQTpTdW0tfnP4EpIblYfSB+HDQfmmOEUmIiIiPUW3T7CSk5PZtm2bvlgLzjm2bdtGcnJy25VF9kJddSUAviYjWP7MIZH9O7SSoIiIiLSu0++DZWbTgT8DfuAfzrk9uplVXl4eRUVFFBcXd0p80rMkJyeTl5cX7zBkHxWsqQLYbQQrOXsoAKVb1pIz4oguj0tERER6jk5NsMzMD/wF+CZQBHxkZs865z5rbxsJCQmMGDGis0IUEWlQVxO5l5w/KbVReXpuPgA7t67t6pBERESkh+nsKYKTgRXOuVXOuVrgEWBGJ/cpIrJXgtWRESx/YuMRrP45A9jpkjRFUERERNrU2QnWEGBd1HaRV9bAzC41swVmtkDTAEUknkJ19QlW4xGsgVkpbHJ9oWx9PMISERGRHiTui1w45+5xzk10zk3s379/vMMRkV4s6E0RTGg6RTApQLFlk1C5OR5hiYiISA/S2QnWemBo1HaeVyYi0u2E66oBCCQ1XkXQzChN6E+fGiVYIiIi0rrOTrA+Ag4wsxFmlgicBTzbyX2KiOyVcG1kimBCcupu+6pTBpIZ3ArhcFeHJSIiIj1IpyZYzrkg8GPgP8By4FHn3Ked2aeIyN6qH8FKbDKCBRBMG0SAEFTqWlERERFpWaffB8s59yLwYmf3IyLSUc5b5CKQ1Ge3fb7MwbARgiVFBNJzuzo0ERER6SHivsiFiEh3UT+CRSBpt31J/SKXk5YV615YIiIi0jIlWCIi9YL1CdbuUwTTBgwDoHJLYRcGJCIiIj2NEiwRkXqtjGBl98+jyiVSt21NFwclIiIiPYkSLBERjzWMYCXvtm9QVgpFrj9WogRLREREWqYES0TE4wtWUUcA/Luv/5OVmsBG609ShW7lJyIiIi1TgiUi4vGHqqix3UevwLvZcNIgMms2dHFUIiIi0pMowRIR8fhDVdT6mk+wAKr7DKVPuByqS7swKhEREelJlGCJiHgSQtWtJlj0jawk6Eq0VLuIiIg0TwmWiIgnIVxNXSsJVlJ2PgDlm1Z2UUQiIiLS0yjBEhHxJIarCfp3vwdWvYzB+wNQtlEJloiIiDRPCZaIiCfRVRPytzyCNWjgECpdEjVbV3dhVCIiItKTKMESEfEkuWpCgdQW9+f1S/XuhaVrsERERKR5SrBERADnHMmuhnArI1h9kgJs9uWSXKl7YYmIiEjzlGCJiAA1wTApVkM4oeURLICy5MFk1WwA57ooMhEREelJlGCJiABVtSFSqIFAy4tcANSm5ZHqdkJ1SdcEJiIiIj2KEiwREaA6GCKFWkjs02o96zccgND2wi6ISkRERHqaDiVYZvYHM/vczJaa2VNmluWV55tZlZkt9h6zYxKtiEgn2VlVRYKFsITWR7CSc/YDoGT9V10RloiIiPQwHR3BehUY55wrAL4Ero/at9I5N8F7XNbBfkREOtXOinIAAslprdbLzDsAgIqNSrBERERkdx1KsJxzrzjngt7m+0Bex0MSEel61TvrE6zWpwgOyc1lq8sgtFU3GxYREZHdxfIarIuBl6K2R5jZx2b2lplNa+kgM7vUzBaY2YLi4uIYhiMi0n415dsBSOiT2Wq9wVkprHW5BEoLuyAqERER6WkCbVUws9eAgc3s+qVz7hmvzi+BIPCwt28jMMw5t83MDgOeNrOxzrmypo045+4B7gGYOHGi1j0WkbiordwBQFJadqv1Evw+ihMGk79zeVeEJSIiIj1MmwmWc+4bre03swuBk4CvOxe5MYxzrgao8Z4vNLOVwIHAgo4GLCLSGUI7SwBISm89wQKo6DOMrLK3oa4aElq+MbGIiIj0Ph1dRXA6cB1winNuZ1R5fzPze8/3Aw4AVnWkLxGRzuR2RkawkjP6tVk3lJWPDwclazo7LBEREelhOnoN1l1AOvBqk+XYjwKWmtli4HHgMufc9g72JSLSacy7cXBSn7YTrISckQDs3KyVBEVERKSxNqcItsY5t38L5U8AT3SkbRGRLlVdGvmZ3PoiFwAZQw6ERVBa9AWp407q5MBERESkJ4nlKoIiIj2WVZdQSQr42/6708CBQyhzKdRs0VLtIiIi0pgSLBERIFBbxk5/ervqDs9JY63LxUpWd3JUIiIi0tMowRIRARKCZdT409pVNy0pwEb/IFIr1nZyVCIiItLTKMESEQHSgiXUJPZtd/2ylDz61m6EULAToxIREZGeRgmWiPR6obCjn9tBTXL/dh9Tm5FPgBCUFXViZCIiItLTKMESkV5va3k1A9iBSx/Y7mP83lLtdcVa6EJERER2UYIlIr3eluLNJFmQhIxB7T4mbeABAJSs/7yzwhIREZEeSAmWiPR6pZsji1UkZw9p9zEDhuRT7RKo2qwRLBEREdlFCZaI9HqV2yLXUWX0H9ruY4Zlp7HWDYBtqzorLBEREemBlGCJSK8X3FGfYA1r9zH905NYZ4NIKl/TWWGJiIhID6QES0R6vYSyNQTx4evb/hEsM6MkaQhZNevBuU6MTkRERHoSJVgi0uulVKxlmz8X/Al7dFx1+nCSXA2Ub+qkyERERKSnUYIlIr2ac46+NespT83b42Ot34hIG9u10IWIiIhEKMESkV5tR2UteW4TdRntv/6qXoq3VHvZhq9iHZaIiIj0UEqwRKRXW7eukCyrxD/goD0+NnvISILOR+XGLzshMhEREemJAvEOQEQknkpWfwxA+vCD9/jYYTmZFLn++LRUu4iIiHg6NIJlZrPMbL2ZLfYe34rad72ZrTCzL8zshI6HKiISezUblgEwYOShe3zs4KwU1jKAxNLCGEclIiIiPVUsRrBud87dFl1gZmOAs4CxwGDgNTM70DkXikF/IiIxk7T9c7b7+tIvvf8eH5sY8LE1YQgTq96JLNVu1gkRioiISE/SWddgzQAecc7VOOdWAyuAyZ3Ul4jIXnHOMWDnSram7L/XbexMG0ZquBKqdsQwMhEREempYpFg/djMlprZP82sr1c2BFgXVafIK9uNmV1qZgvMbEFxcXEMwhERaZ/iskpGuHXUZu/5Ahf1wln7RZ5sXx2jqERERKQnazPBMrPXzGxZM48ZwN+AkcAEYCPw//Y0AOfcPc65ic65if377/kUHRGRvbXmy2UkWx3JeeP3uo2k3JEAVG3WSoIiIiLSjmuwnHPfaE9DZvZ34Hlvcz0wNGp3nlcmItJtlKxZDMCA/fd8gYt6WYN33Qsr5bBYRCUiIiI9WUdXERwUtXkasMx7/ixwlpklmdkI4ADgw470JSISa27Tp4TwkTF03F63kTegHxtdP+qKV8QwMhEREempOrqK4K1mNgFwQCHwPwDOuU/N7FHgMyAI/EgrCIpId5NW+iWbA0MYnJCy120M65fKpy6X4aVrYhiZiIiI9FQdSrCcc+e1su8W4JaOtC8i0lnqQmGG1K6mtN9YBnegnfTkBDb6BzO28uOYxSYiIiI9V2ct0y4i0q2t2biF4bYZlzumw21VpOaRHtwONeUxiExERER6MiVYItIrbfgqMuKUPuzgDrcVzBwRebKjsMNtiYiISM+mBEtEeqWd65YCHVtBsF5CTuReWHXFKzvcloiIiPRsSrBEpFcKbF1OFckkeclRR6QNPhCA8o26F5aIiEhvpwRLRHqlvhVfsTl5BPg6/mtwcG4u21w61Zu1VLuIiEhvpwRLRHqdiuo6RoQKqcwaFZP28rNTWeNyse2rYtKeiIiI9FxKsESk11lduIp+VoF/4N7fYDha//QkivxDSS/7CpyLSZsiIiLSMynBakXxhkK+WPAGVeUl8Q5FRGKobM0SANKHj49Je2bGjsyxpIVKoGx9TNoUERGRnqlDNxre1616+98c/vn/wfOw0QawOSmfmrSh+PoOJ7H/CFIHjCBr0H5k5wzE5/fHO1wRaYdw2BHcuAyA7P06voJgPd+QCVACdesWkJCZF7N2JTacc4TCjlCojnBdLeFgLaFwCBcOEw6HCYW85y5EOBQiHArjnCMcDoELY7jIw8DwYT4fDgMzLOoR2fZ52z7AwGdAdD1fVH0/NBwHBpjPh2GYzzDv76BW34bPIvvqj6dx/xaDawpFRKRjlGC1YuQx57Ko3zCqipaRvONz+u4spH/xJ6RvrYKvdtULOWOHpVPmy6IykElVQl/qEjIgMRVfYiqWmEo4kIpLTMUCSQT8AXz1D5+PsPlx+HDm/Q87HALCEA5jLoS5MLgQzvsy4MIhwuEghCNlkZ+R7cgjiIWDOBfCvG3qn3s/zQWjnu96+FwQXBhfOIQRwuciD3PhyHMi9fwN+8KR50Q/DwORLwoOhzkwHI7Iz/p9NNpuvpxmynft6xjX0GpXHbe39q6/SJ9dG2tXv6ett9myrxFkq/UlJ3NAzPrrf8AkqpYlUr7sNQaMO7XFelvKq0lJ8JOenBCzvvclzjnKyisp3VFMddlWaiq2EarYRnBnCaHqSkI1FVBbATWVWF0lvuBOAqGdJIaqSAxXkeBq8LsgAVdHwNWRQJCE+p8ESbLeM4Uz7CK/Les/X67Rb9z6svryXZ9Bh+Gs8f7ersX/7/Sef069/l9BrL57yN6ZyzcZ/N0/MH3coHiH0i5KsFqRM3AYOQPPbVTmnGPr1i1sL/qKyuLV1G1fS7C8GKvcSlLtDlLqdjCgaiXJlTtJdtWkUEPAwnGJP+TMS3383sMXeZifcFS5s8jzsFe+62eAOvPjLDFS5vPjLFLP2a7nmB/n21WGzxf5Cy3s/pfd6F9Rtut/+l5Bk+2I+v/Rt7S/K+3pL1jXJEHcK3t5Tc/e/8+gA/8T2evrj/byNbbQn8P7twe7RgW8f0eRbSNl5NfI2btgm3XEgUOY7wqYvOoVCId3W51w/bYyPnjqLiasvZ9lOUdx3E//HsPeu7eqmjq2bF5P2ZYiqndsoLZ0E5Rvwr9zM4lVxSTVlpAcLKNPuJx0V06m1ZDZRps7SaKKFGp8KdRYCjW+ZGoCaVT6cnC+hMjDn4jzJ0LUw/kTCPsSwRfwRo8io1Fmvl2/u+rLfAb4cRZJOJwzcFF/LHIhnKv/dxj2/vk7r04Yc4ALN5Q17It6Di5yvIv8fyLSRLjxZ8lrv/5j4ojst4b6rkkf9S25Xe00rVPfW9NjHJG+PPV/1FKSBUoxYK/fg33krevsz8E+8jZ1irS0gxnaLzXeYbSbEqw9ZGbk9M8lp38uMLXN+sFQmIqaaoJVFQSrK6itqSYUqiMYDFFXF8SFg5HRI8KYNw0FiyQ95vM3fAHA58fv92N+P35/AJ/Pj6/+eSABnz8Bf8CP35+AP5CA3x/A7/OR6NPHVaQrZKYm8FX/4/nmtt9Ru/RxEiecCcDajVtY9MLdHLbufr5jxdRYAunbX418sbWe//l04TBbizexed0KSjeuJLh9Lf7ydSRXbiCjdjNZoW30c6UMb+YPTeWksMP6UhnIojx5ICWJowgn98VS++HvE3kE+vQjMT2bpLQsUtIySUvPJCkljVSfn57zv1oREemIKfEOYA+Z60YrXk2cONEtWLAg3mGIiOyV91dsIeOBb7CffzPLB86gdscGxlZ9RJpVU5RyECnH/5KPl33GN1b+L5WXvk+fwaPjHXK7uGAt29d/xdY1n1K18SvC21eSWL6O9OpN9A9tJtVqGtWvIoli/wBKEwdSm5KLSxtAIGMgSX2HkNJvEGnZQ8gckEdCclqcXpGIiEjHmdlC59zEpuUawRIRiZEp+w/g8WP/zvZ51zJxw5Ns92WzZuDxDDr2UvJGTQUz+lkerPxfit5/ilHf6T4JlgsF2bphJVvXLGfnxi9wW1eQXF5Iv+p1DAhtJtvCZHt1S10ftvhz2Zo0lI3pU/D3HUbqgBH0HTSSnLz9SUnPYdg+MDonIiKyNzSCJSISY+GwozYUJjlh99VFa4NhVvz2MPok+hl+/UddOk3QhcMUb1zD1jWfUbnhc8LbVpJUWkjf6rUMCm0k0YINdStdEhv8g9mRPIzqjHx8OfvTZ9Ao+g8fw8CBgwkEtHKqiIj0bp0ygmVmc4FR3mYWUOKcm2Bm+cBy4Atv3/vOucs60peISE/h8xnJvuYTkMSAj7UjzmT66t+zZv5chk87K6Z9h0NhthRvoLhwOZUbPie0dQVJpavpW7WWgaENDLAa6tdOrHEJbPAPYlvyMNanHwU5+9Nn4IHkDBtD7pDhHKAkSkREZI91KMFyzs2sf25m/w8ojdq90jk3oSPti4jsi444/Qq+vO0RBr5+NcXZg+k/5qg9Or6quoaNRavYXrSCnVtWEd6xhqSyNWRVr2VQcD0DrZKBXt2g87HJl8v25KEsS58E2fuTOuhAsoeNITdvJCMCAUbE/iWKiIj0WjG5Bssi6x+fCRwXi/ZERPZlmWmpFJ7+AKWPn8HQR09mefrXqBl2NIF+Q7GkdIJ1tYTqqqkt30awbDNUbiVQtZU+tVvoV7eZXLeV/SzMflFtFlsOxUnDWNHveMjen5TcA+g3bAwDho0iLyER3fpYRESka8RqkYtpwGbnXNTtdxlhZh8DZcCvnHPvNHegmV0KXAowbNiwGIUjItK9HTz+YNb0e5tXnvod44tfYNCn/22x7k6SKfFlUR7IZnPmwWzIGEogO5/03P3ol7c/fQeOoH9CMv27MH4RERFpXpuLXJjZa9Aw2yTaL51zz3h1/gascM79P287CUhzzm0zs8OAp4Gxzrmy1vrSIhci0hsFgyHWrVtN1Y5NhKtKSUhKIiExhT6Z2fTtP4TE1PR4hygiIiJN7PUiF865b7TRcAD4DnBY1DE1QI33fKGZrQQOBJQ9iYg0EQj4GTFifxixf7xDERERkQ7yxaCNbwCfO+eK6gvMrL+Z+b3n+wEHAKti0JeIiIiIiEi3FYtrsM4C5jQpOwq42czqgDBwmXNuewz6EhERERER6bY6nGA55y5spuwJ4ImOti0iIiIiItKTtLnIRVcys2JgTbzjaCIH2BrvIKTL6Hz3HjrXvYfOde+i89176Fz3Lt3xfA93zu22iG+3SrC6IzNb0NzqILJv0vnuPXSuew+d695F57v30LnuXXrS+Y7FIhciIiIiIiKCEiwREREREZGYUYLVtnviHYB0KZ3v3kPnuvfQue5ddL57D53r3qXHnG9dgyUiIiIiIhIjGsESERERERGJESVYIiIiIiIiMaIEqxVmNt3MvjCzFWb2i3jHI7FjZkPN7E0z+8zMPjWzK7zyfmb2qpl95f3sG+9YJTbMzG9mH5vZ8972CDP7wPt8zzWzxHjHKLFhZllm9riZfW5my83sCH22901mdpX3O3yZmc0xs2R9tvcdZvZPM9tiZsuiypr9LFvEHd55X2pmh8YvctlTLZzrP3i/x5ea2VNmlhW173rvXH9hZifEJehWKMFqgZn5gb8AJwJjgLPNbEx8o5IYCgJXO+fGAFOAH3nn9xfA6865A4DXvW3ZN1wBLI/a/j/gdufc/sAO4PtxiUo6w5+Bl51zBwEHEznv+mzvY8xsCPBTYKJzbhzgB85Cn+19yX3A9CZlLX2WTwQO8B6XAn/rohglNu5j93P9KjDOOVcAfAlcD+B9XzsLGOsd81fve3u3oQSrZZOBFc65Vc65WuARYEacY5IYcc5tdM4t8p6XE/kCNoTIOb7fq3Y/cGpcApSYMrM84NvAP7xtA44DHveq6FzvI8wsEzgKuBfAOVfrnCtBn+19VQBIMbMAkApsRJ/tfYZz7m1ge5Pilj7LM4AHXMT7QJaZDeqSQKXDmjvXzrlXnHNBb/N9IM97PgN4xDlX45xbDawg8r2921CC1bIhwLqo7SKvTPYxZpYPHAJ8AOQ65zZ6uzYBufGKS2LqT8B1QNjbzgZKon5x6/O97xgBFAP/8qaE/sPM+qDP9j7HObceuA1YSySxKgUWos/2vq6lz7K+t+3bLgZe8p53+3OtBEt6NTNLA54ArnTOlUXvc5F7GOg+Bj2cmZ0EbHHOLYx3LNIlAsChwN+cc4cAlTSZDqjP9r7Bu/ZmBpGkejDQh92nGMk+TJ/l3sHMfknk0o6H4x1LeynBatl6YGjUdp5XJvsIM0sgklw97Jx70iveXD+lwPu5JV7xScwcCZxiZoVEpvoeR+QanSxvWhHo870vKQKKnHMfeNuPE0m49Nne93wDWO2cK3bO1QFPEvm867O9b2vps6zvbfsgM7sQOAk4x+26eW+3P9dKsFr2EXCAtxpRIpGL6Z6Nc0wSI941OPcCy51zf4za9Sxwgff8AuCZro5NYss5d71zLs85l0/kc/yGc+4c4E3gDK+azvU+wjm3CVhnZqO8oq8Dn6HP9r5oLTDFzFK93+n151qf7X1bS5/lZ4HzvdUEpwClUVMJpQcys+lEpvef4pzbGbXrWeAsM0sysxFEFjb5MB4xtsR2JYPSlJl9i8i1G37gn865W+IbkcSKmU0F3gE+Ydd1OTcQuQ7rUWAYsAY40znX9AJb6aHM7BjgGufcSWa2H5ERrX7Ax8C5zrmaOIYnMWJmE4gsaJIIrAIuIvIHRX229zFm9htgJpHpQx8DlxC5FkOf7X2Amc0BjgFygM3ATcDTNPNZ9pLsu4hME90JXOScWxCHsGUvtHCurweSgG1etfedc5d59X9J5LqsIJHLPF5q2mY8KcESERERERGJEU0RFBERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkW7GzPLNzJlZIN6xSO9gZp+a2THxjkNEZF+gBEtERHo8M5ttZhXeo9bM6qK2X4p3fN2dc26sc25eLNv0kraKqEfQzJ6LZR8iIt2ROefiHYOIyD7FzALOuWAHjs8HVgMJHWmntzKzWcD+zrlzm9nXoXPTlXpSrG0xMwNWATc55x6IdzwiIp1JI1giIjFgZoVm9nMzWwpUmlnAzKaY2X/NrMTMlkRPwTKzeWb2v2b2oZmVmdkzZtavhbYvMrPlZlZuZqvM7H+a7J9hZou9dlaa2XSvPNPM7jWzjWa23sx+a2b+Nl7HSDN7w8y2mdlWM3vYzLKi9m03s0O97cFmVlz/uszsFG/UosR7faObvD/XmNlSMys1s7lmlrzn7/Sea+HcODPbP6rOfWb226jtk7z3tMQ7hwXt7OsYMysysxu896/QzM6J2v9tM/vYO1frvGSwfl/91NDvm9la4A2v/DEz2+S9b2+b2dgmcf/VzF7yRoneNbOBZvYnM9thZp+b2SHtfI++0Z7XuJeOAnKAJzqxDxGRbkEJlohI7JwNfBvIAnKBF4DfAv2Aa4AnzKx/VP3zgYuBQUAQuKOFdrcAJwEZwEXA7VFJzmTgAeBar9+jgELvuPu8dvcHDgGOBy5p4zUY8L/AYGA0MBSYBeCcWwn8HHjIzFKBfwH3O+fmmdmBwBzgSqA/8CLwnJklRrV9JjAdGAEUABc2G4DZVC+xaekxtY3X0JyGc9PWqJCXkPwT+B8gG7gbeNbMktrZ10AiycQQ4ALgHjMb5e2rJHLes7x4LjezU5scfzSR9/4Eb/sl4ABgALAIeLhJ/TOBX3l91gDvefVygMeBP7Yz7maZ2S9aOx/tbOYC4AnnXGVHYhER6QmUYImIxM4dzrl1zrkq4FzgRefci865sHPuVWAB8K2o+g8655Z5Xzp/DZzZ3AiTc+4F59xKF/EW8Aowzdv9feCfzrlXvX7WO+c+N7Ncr68rnXOVzrktwO3AWa29AOfcCq+tGudcMZEv50dH7f87sAL4gEhi+Etv10zgBe/YOuA2IAX4WpP3Z4NzbjvwHDChhRjmO+eyWnnMb+01tCD63LTlUuBu59wHzrmQc+5+IonLlD3o79fee/gWkUT7TADn3Dzn3CfeuVpKJCk9usmxs7xzVuUd80/nXLlzroZIsnuwmWVG1X/KObfQOVcNPAVUO+cecM6FgLlEkuu95pz7fWvno63jvWT8DCIJv4jIPk8JlohI7KyLej4c+G6Tv/RPJZKUNFd/DZBAZNShETM70cze96bnlRBJnOrrDQVWNhPLcK+9jVH9301kFKRFZpZrZo94UwrLgIeaienvwDjgTu9LP0RGvNbUV3DOhb3XNyTquE1Rz3cCaa3FEmPr2q7SYDhwdZNzN5TIa2yPHU1GatbUH2tmh5vZm97UylLgMnZ/fxtiNTO/mf3eIlM/y9g1Ohl9zOao51XNbHfl+9yc7wDbgbfiHIeISJdQgiUiEjvRqwatIzJCFf3X/j7Oud9H1Rka9XwYUAdsjW7Qm5b2BJERoVxvxOBFIlP56vsZ2Uws64iMuuRE9Z/hnBvbTN1ov/Nex3jnXAaRkbj6vjCzNOBPwL3ALNt13dgGIolJfT3zXt/6NvrbjZlNs8arzzV9TGu7ld00XdFpJ5AatT0w6vk64JYm5y7VOTennX31NbM+UdvDiLw/AP8GngWGOucygdlEvb/NxPo9YAbwDSATyPfKmx7TabzryVo8H+1o4gLgAadVtUSkl1CCJSLSOR4CTjazE7xRiGRvAYS8qDrnmtkYbwrVzcDj3rSuaIlAElAMBM3sRCLXUtW7F7jIzL5uZj4zG2JmBznnNhKZSvj/zCzD2zfSzJpOR2sqHagASs1sCJFru6L9GVjgnLuEyNS32V75o8C3vTgSgKuJJHj/beuNaso5945zLq2Vxzt72mYzFgPf887NdBpP0/s7cJk32mRm1scii1OkQ8PCEve10f5vzCzRSwZPAh7zytOB7c65au/6ue+10U46kfdxG5GE8Hd78Bpjwjn3u9bOR2vHev/ejwXu75poRUTiTwmWiEgncM6tIzLycAOR5GgdkWQl+vfug0SuS9kEJAM/baadcq/8UWAHkS/kz0bt/xBv4QuglMg0rPqRpPOJJGifecc+TuMpis35DXCo19YLwJP1O8xsBpFFKi73in4GHGpm5zjnviAy2nUnkVG4k4GTnXO1bfQXL1cQibEEOAd4un6Hc24B8APgLiLv2woaL8gxFHi3lbY3ecdtILIgxWXOuc+9fT8EbjazcuBGIue1NQ8QmWK4nsh5fL+tF9bNnAe85y2QIiLSK+g+WCIicWBm84CHnHP/iHcs0n7eqohLgAJvMY+m+48hcl7zmu4TEZHeIRDvAERERHoKb0RudJsVRUSk19IUQRGRXsbMZrewYMHsto+WnsjMhrWyUMWweMcnIrIv0RRBERERERGRGNEIloiIiIiISIx0q2uwcnJyXH5+frzDEBERERERadXChQu3Ouf6Ny3vVglWfn4+CxYsiHcYIiIiIiIirTKzNc2Va4qgiIiIiIhIjCjBEhERERERiRElWCIie2nZ+lLeW7kt3mGIiIhIN9KtrsFqTl1dHUVFRVRXV8c7FOlhkpOTycvLIyEhId6hyD7qkn++ywnVL3PQz35N3+zdrnEVERGRXqjbJ1hFRUWkp6eTn5+PmcU7HOkhnHNs27aNoqIiRowYEe9wZB+0szbIhTUPc1nC83z11gD6fudX8Q5JREREuoFuP0Wwurqa7OxsJVeyR8yM7OxsjXxKp9lYWs003ycABDd+EudoREREpLvo9gkWoORK9or+3Uhn2lRaTV8rByCnZGmcoxEREZHuokckWCIi3c3m0ir6EUmw+tdtgLqqOEckIiIi3YESrHYwM66++uqG7dtuu41Zs2bFL6Ao77//PocffjgTJkxg9OjRDXHNmzeP//73vx1qe/r06WRlZXHSSSfFIFKRfUtNVQXJVsfaxJGRgpJ18Q1IREREugUlWO2QlJTEk08+ydatW2ParnOOcDjcoTYuuOAC7rnnHhYvXsyyZcs488wzgdgkWNdeey0PPvhgh9oQ2VfZzsjy7DuyxgFQtWVlPMMRERGRbqLbryIY7TfPfcpnG8pi2uaYwRncdPLYVusEAgEuvfRSbr/9dm655ZZG+4qLi7nssstYu3YtAH/605848sgjmTVrFmlpaVxzzTUAjBs3jueffx6AE044gcMPP5yFCxfy4osvctddd/HSSy9hZvzqV79i5syZzJs3j1mzZpGTk8OyZcs47LDDeOihh3a7rmjLli0MGjQIAL/fz5gxYygsLGT27Nn4/X4eeugh7rzzTg466KAW41y5ciUrVqxg69atXHfddfzgBz8A4Otf/zrz5s1r9b157LHH+M1vfoPf7yczM5O3336b6upqLr/8chYsWEAgEOCPf/wjxx57LPfddx9PP/00lZWVfPXVV1xzzTXU1tby4IMPkpSUxIsvvki/fv34+9//zj333ENtbS37778/Dz74IKmpqY36nTJlCvfeey9jx0bO3THHHMNtt93GxIkTW41XJFZ8VZE/uIQHHQJbnqF041ekjD0xzlGJiIhIvHV4BMvMhprZm2b2mZl9amZXeOX9zOxVM/vK+9m34+HGz49+9CMefvhhSktLG5VfccUVXHXVVXz00Uc88cQTXHLJJW229dVXX/HDH/6QTz/9lAULFrB48WKWLFnCa6+9xrXXXsvGjRsB+Pjjj/nTn/7EZ599xqpVq3j33Xd3a+uqq65i1KhRnHbaadx9991UV1eTn5/PZZddxlVXXcXixYuZNm1aq3EuXbqUN954g/fee4+bb76ZDRs2tPt9ufnmm/nPf/7DkiVLePbZZwH4y1/+gpnxySefMGfOHC644IKG1fyWLVvGk08+yUcffcQvf/lLUlNT+fjjjzniiCN44IEHAPjOd77DRx99xJIlSxg9ejT33nvvbv3OnDmTRx99FICNGzeyceNGJVfSpXxV2wFIGTKOKpdIXfHqOEckIiIi3UEsRrCCwNXOuUVmlg4sNLNXgQuB151zvzezXwC/AH7ekY7aGmnqTBkZGZx//vnccccdpKSkNJS/9tprfPbZZw3bZWVlVFRUtNrW8OHDmTJlCgDz58/n7LPPxu/3k5uby9FHH81HH31ERkYGkydPJi8vD4AJEyZQWFjI1KlTG7V14403cs455/DKK6/w73//mzlz5jQ76tRanDNmzCAlJYWUlBSOPfZYPvzwQ0499dR2vS9HHnkkF154IWeeeSbf+c53Gl7TT37yEwAOOugghg8fzpdffgnAscceS3p6Ounp6WRmZnLyyScDMH78eJYujazEtmzZMn71q19RUlJCRUUFJ5xwwm79nnnmmRx//PH85je/4dFHH+WMM85oV7wisRKo2QFAVs4gNrp+BMrWxzkiERER6Q46nGA55zYCG73n5Wa2HBgCzACO8ardD8yjgwlWvF155ZUceuihXHTRRQ1l4XCY999/n+Tk5EZ1A4FAo+urou/H1KdPn3b1l5SU1PDc7/cTDAabrTdy5Eguv/xyfvCDH9C/f3+2bdu2W52W4oTdlzPfk+XNZ8+ezQcffMALL7zAYYcdxsKFC1utH/2afD5fw7bP52t4fRdeeCFPP/00Bx98MPfdd1+zCeOQIUPIzs5m6dKlzJ07l9mzZ7c7ZpFY8NVGVhDs1y+HQvoytHJznCMSERGR7iCmi1yYWT5wCPABkOslXwCbgNwWjrnUzBaY2YLi4uJYhhNz/fr148wzz2w0Ze3444/nzjvvbNhevHgxAPn5+SxatAiARYsWsXp189OHpk2bxty5cwmFQhQXF/P2228zefLkdsf0wgsv4JwDIlMP/X4/WVlZpKenU15e3macAM888wzV1dVs27aNefPmMWnSpHb3v3LlSg4//HBuvvlm+vfvz7p165g2bRoPP/wwAF9++SVr165l1KhR7W6zvLycQYMGUVdX19BOc2bOnMmtt95KaWkpBQUF7W5fJCbqIn80SUxOZYc/m5RqJVgiIiISwwTLzNKAJ4ArnXONVqJwkQzANXecc+4e59xE59zE/v37xyqcTnP11Vc3Wk3wjjvuYMGCBRQUFDBmzJiGkZTTTz+d7du3M3bsWO666y4OPPDAZts77bTTKCgo4OCDD+a4447j1ltvZeDAge2O58EHH2TUqFFMmDCB8847j4cffhi/38/JJ5/MU089xYQJE3jnnXdajBOgoKCAY489lilTpvDrX/+awYMHA5Hk77vf/S6vv/46eXl5/Oc//wEi0xLrr7e69tprGT9+POPGjeNrX/saBx98MD/84Q8Jh8OMHz+emTNnct999zUauWrL//f//X8cfvjhHHnkkRx00EEN5c8++yw33nhjw/YZZ5zBI4880rByokhXsqA3Kp2QQmXiANJrt4Jr9teciIiI9CLmYvCFwMwSgOeB/zjn/uiVfQEc45zbaGaDgHnOuVaHMSZOnOgWLFjQqGz58uWMHj26wzFK85qudriv0b8f6SzP334Z00sfJTBrO//+8y/43o6/wXWrIbVfvEMTERGRLmBmC51zu62yFotVBA24F1hen1x5ngUu8J5fADzT0b5ERLoLX7CaWkuMbKR7o87lG1s+QERERHqFWKwieCRwHvCJmS32ym4Afg88ambfB9YAmsfVDc2aNSveIYj0SP5QNXUWmfoayIxMqw2WbiCQG7/VTkVERCT+YrGK4HygpWXnvt7R9kVEuiN/uJo6XyTBSs6O3E6hvHgdfZu/3FJERER6iZiuIigi0lskhGoIeglWZv+hAOzcWhTPkERERKQbUIIlIrIXAm5XgtW/byY7XBrB0g1xjkpERETiTQmWiMheCIRrCPkjN+4emJnMJtcXyrTIhYiISG+nBKudnn76acyMzz//vMU6hYWFjBs3LmZ9fvHFFxxzzDFMmDCB0aNHc+mllwKRmwS/+OKLHWr74osvZsCAATGNV6Q3SXS1hP2REay+qQkU04/EKt1sWEREpLdTgtVOc+bMYerUqcyZM6fZ/cFgsMN9hEKhRts//elPueqqq1i8eDHLly/nJz/5CRCbBOvCCy/k5Zdf7lAbIr2Vc45EV0PYnwKAmVGWkENKTXGcIxMREZF4i8Uy7V3npV/Apk9i2+bA8XDi71utUlFRwfz583nzzTc5+eST+c1vfgPAvHnz+PWvf03fvn35/PPPeeWVVwgGg5xzzjksWrSIsWPH8sADD5Camsrrr7/ONddcQzAYZNKkSfztb38jKSmJ/Px8Zs6cyauvvsp1113HWWed1dDvxo0bycvLa9geP348tbW13HjjjVRVVTF//nyuv/56TjrpJH7yk5+wbNky6urqmDVrFjNmzOC+++7jqaeeorS0lPXr13Puuedy0003AXDUUUdRWFjY6ut+6623uOKKK4DIF8i3336btLQ0rrvuOl566SXMjF/96lfMnDmTefPmcdNNN5GVlcUnn3zCmWeeyfjx4/nzn/9MVVUVTz/9NCNHjuS5557jt7/9LbW1tWRnZ/Pwww+Tm5vbqN+zzjqL8847j29/+9tAJBk86aSTOOOMM9p3TkU6WU0wTDK1hAPJDWVVyQPIqNwOoSD4e9avVhEREYkdjWC1wzPPPMP06dM58MADyc7OZuHChQ37Fi1axJ///Ge+/PJLIDKt74c//CHLly8nIyODv/71r1RXV3PhhRcyd+5cPvnkE4LBIH/7298a2sjOzmbRokWNkiuAq666iuOOO44TTzyR22+/nZKSEhITE7n55puZOXMmixcvZubMmdxyyy0cd9xxfPjhh7z55ptce+21VFZWAvDhhx/yxBNPsHTpUh577DEWLFjQ7td922238Ze//IXFixfzzjvvkJKSwpNPPsnixYtZsmQJr732Gtdeey0bN0auO1myZAmzZ89m+fLlPPjgg3z55Zd8+OGHXHLJJdx5550ATJ06lffff5+PP/6Ys846i1tvvXW3fmfOnMmjjz4KQG1tLa+//npDsiXSHVTXhUiyOlxUghVMHYCPMFRqFEtERKQ361l/Zm1jpKmzzJkzp2Ek56yzzmLOnDkcdthhAEyePJkRI0Y01B06dChHHnkkAOeeey533HEH3/zmNxkxYgQHHhi5Qc4FF1zAX/7yF6688kogklA056KLLuKEE07g5Zdf5plnnuHuu+9myZIlu9V75ZVXePbZZ7ntttsAqK6uZu3atQB885vfJDs7G4DvfOc7zJ8/n4kTJ7brdR955JH87Gc/45xzzuE73/kOeXl5zJ8/n7PPPhu/309ubi5HH300H330ERkZGUyaNIlBgwYBMHLkSI4//nggMvL25ptvAlBUVMTMmTPZuHEjtbW1jd67eieeeCJXXHEFNTU1vPzyyxx11FGkpKS0K2aRrlBdFyaFGqoCUf8uMwZDMVC+ETIGxS02ERERiS+NYLVh+/btvPHGG1xyySXk5+fzhz/8gUcffRTnHAB9+vRpVN/MWt1uTtM2og0ePJiLL76YZ555hkAgwLJly3ar45zjiSeeYPHixSxevJi1a9cyevTovY6n3i9+8Qv+8Y9/UFVVxZFHHtnqAh8ASUlJDc99Pl/Dts/na7hG7Sc/+Qk//vGP+eSTT7j77ruprq7erZ3k5GSOOeYY/vOf/zB37twWE1CReKmuC5FMLSTsGsFKzBoCQNV23QtLRESkN1OC1YbHH3+c8847jzVr1lBYWMi6desYMWIE77zzTrP1165dy3vvvQfAv//9b6ZOncqoUaMoLCxkxYoVADz44IMcffTRbfb98ssvU1dXB8CmTZvYtm0bQ4YMIT09nfLy8oZ6J5xwAnfeeWdD0vfxxx837Hv11VfZvn17w3VQ9aNr7bFy5UrGjx/Pz3/+cyZNmsTnn3/OtGnTmDt3LqFQiOLiYt5++20mT57c7jZLS0sZMiTyRfT+++9vsd7MmTP517/+xTvvvMP06dPb3b5IV6iqDZJMLZawawQrJSdyvWRl8dp4hSUiIiLdgBKsNsyZM4fTTjutUdnpp5/e4mqCo0aN4i9/+QujR49mx44dXH755SQnJ/Ovf/2L7373u4wfPx6fz8dll13WZt+vvPIK48aN4+CDD+aEE07gD3/4AwMHDuTYY4/ls88+Y8KECcydO5df//rX1NXVUVBQwNixY/n1r3/d0MbkyZM5/fTTKSgo4PTTT2+YHnj22WdzxBFH8MUXX5CXl8e9994LwOzZs5k9ezYAf/rTnxg3bhwFBQUkJCRw4oknctppp1FQUMDBBx/Mcccdx6233srAgQPb/X7OmjWL7373uxx22GHk5OQ0lC9YsIBLLrmkYfv444/nrbfe4hvf+AaJiYntbl+kK9TUVOM3hy9xV4KVlTOYoPNRtX19HCMTERGReLP6UY/uYOLEia7pIgzLly9vmO4me+a+++5jwYIF3HXXXfEOJW7070c6wwfLV3P43AmsPuwGRpz8cwBWFleQetd4aocdxfDvtzw6KyIiIvsGM1vonNttcYNOH8Eys+lm9oWZrTCzX3R2fyIinS1YvROAQNQIVm5GMptdX3wVm+IVloiIiHQDnZpgmZkf+AtwIjAGONvMxnRmn7LLhRde2KtHr0Q6S11NJMHyJ6U2lKUlBdhq2SRVbY5XWCIiItINdPYI1mRghXNulXOuFngEmLGnjXSnaYzSc+jfjXSWuprIfeYCUQkWQEViDmm1ug+WiIhIb9bZCdYQYF3UdpFX1sDMLjWzBWa2oLh49y8mycnJbNu2TV+WZY8459i2bRvJycltVxbZQ6GaKgASmiRY1cm5pIYroHZnPMISERGRbiDuNxp2zt0D3AORRS6a7s/Ly6OoqIjmki+R1iQnJ5OXlxfvMGQfFPSmCCYkN06wQmkDoZzIzYazR8YhMhEREYm3zk6w1gNDo7bzvLJ2S0hIYMSIETENSkSkI8K19QlWkxuNZw6GjeDKNmBKsERERHqlzp4i+BFwgJmNMLNE4Czg2U7uU0SkU7m6yBTBxCYjWEl9vZsNby3q8phERESke+jUESznXNDMfgz8B/AD/3TOfdqZfYqIdLZwbSTBsoTGCVZ6/8iAfeXWdaR1eVQiIiLSHXT6NVjOuReBFzu7HxGRruLqqiNPAo0XUcnOzqbCJVO3QyNYIiIivVWn32hYRGSfE4yMYJGQ0qh4QHrkZsOuXDcbFhER6a2UYImI7CHzrsFqOoI1ICOJTa4f/sqNcYhKREREugMlWCIie8iC3hTBJiNYSQE/OwLZpFRtiUNUIiIi0h0owRIR2UO+UDUhfOBP2G1fZWJ/0uu2Qjgch8hEREQk3pRgiYjsIV+omlpLanZfXepAAgRh57YujkpERES6AyVYIiJ7qLUEi4xBkZ/lug5LRESkN1KCJSKyhwKhGoK+5hOsBO9mw3UlWqpdRESkN1KCJSKyhxLC1dT5U5rdl9o/H4CyTau7MCIRERHpLpRgiYjsoaRwFcEWEqzs3CHUuABVW9d0cVQiIiLSHSjBEhHZQ4muilALCdbgrD5sdNmES9Z1cVQiIiLSHSjBEhHZA6GwI9nVEAqkNrt/YGYyG1w2gXJdgyUiItIbKcESEdkDVXUhUqghnNB8gpWc4GdbYACpVZu6ODIRERHpDjqUYJnZH8zsczNbamZPmVlW1L7rzWyFmX1hZid0OFIRkW5gZ22QVKuBFhIsgIrkQWTUbYVQXRdGJiIiIt1BR0ewXgXGOecKgC+B6wHMbAxwFjAWmA781cz8HexLRCTuqmpD9KEaEvu0WKcubQg+wlC2oQsjExERke6gQwmWc+4V51zQ23wfyPOezwAecc7VOOdWAyuAyR3pS0SkO9hZG5kiaK0kWL6soQC4Ui10ISIi0tvE8hqsi4GXvOdDgOhvFkVe2W7M7FIzW2BmC4qLi2MYjohI7FVV7STBQlhSywlWUvYwAHYWa6l2ERGR3qbNBMvMXjOzZc08ZkTV+SUQBB7e0wCcc/c45yY65yb2799/Tw8XEelSNTsrAPAnpbVYJz03H4DKzbrZsIiISG8TaKuCc+4bre03swuBk4CvO+ecV7weGBpVLc8rExHp0WqqIglWILnlEayBOf3Y6jKo3b62q8ISERGRbqKjqwhOB64DTnHO7Yza9SxwlpklmdkI4ADgw470JSLSHQQbEqz0FusMzorcC4tS3QtLRESkt2lzBKsNdwFJwKtmBvC+c+4y59ynZvYo8BmRqYM/cs6FOtiXiEjc1VWXA5CQ0vIUwZw+SSwmh0E7tYqgiIhIb9OhBMs5t38r+24BbulI+yIi3U2oOjKClZjS8giWz2eUJeaSUf0JOAeRP0CJiIhILxDLVQRFRPZ5wZ07AEjN6NdqverUwSS5aqja0RVhiYiISDehBEtEZA+EvQTLl9q39XqZ3m0BdS8sERGRXkUJlojIHrCqksiT5KxW6wX6DgegbrvuhSUiItKbKMESEdkDvppSwhgkZbRar0/uCADKN63qirBERESkm1CCJSKyBwK1pVT60sDX+q/P/gMGs9MlUV1c2DWBiYiISLegBEtEZA8kBcuo9re8gmC9wX1TWe9yCJfoZsMiIiK9iRIsEZE9kBIsoybQ+vRAgEFZyRS5HBLLdbNhERGR3kQJlohIOznn6BOuoC6x7QQrKeBnW0Iufao3dkFkIiIi0l0owRIRaaedtSEyqCCUlNm++imD6RMqg5qKTo5MREREugslWCIi7VRcXkN/KyXcJ7dd9YPpQyNPdC8sERGRXkMJlohIO23ZtpV0qyIhc3C76vv7DgMgrHthiYiI9BpKsERE2ql8S2QkKiU7r131U/rnA1BZvLqzQhIREZFuJmYJlpldbWbOzHK8bTOzO8xshZktNbNDY9WXiEg87NwWSbDSBwxtV/2+uUOpcQF2binsxKhERESkO4lJgmVmQ4HjgegbvpwIHOA9LgX+Fou+RETipa5kAwCp2e1LsIb07cMGl01oh6YIioiI9BaxGsG6HbgOcFFlM4AHXMT7QJaZDYpRfyIiXc5XHlly3dLb96tsSN8U1rsc/GW6F5aIiEhv0eEEy8xmAOudc0ua7BoCRC+dVeSVNT3+UjNbYGYLiouLOxqOiEinSa0opMTXF5LS2lU/IznAZl8uqTs3dHJkIiIi0l0E2lPJzF4DBjaz65fADUSmB+4V59w9wD0AEydOdG1UFxGJC+cc2dVrKUkfTlY7jzEzKpIHkV7zBtRVQ0JyZ4YoIiIi3UC7Eizn3DeaKzez8cAIYImZAeQBi8xsMrAeiL5QIc8rExHpcTaWVpPPBrZn7dnfk2rThkANUFoEOft3TnAiIiLSbXRoiqBz7hPn3ADnXL5zLp/INMBDnXObgGeB873VBKcApc65jR0PWUSk660pWke2lZOQO2qPjjPvXliUrm29ooiIiOwTOvM+WC8Cq4AVwN+BH3ZiXyIinWrblx8A0HfkYXt0XFJOPgA1W7WSoIiISG/QrimC7eWNYtU/d8CPYtm+iEi8BNcuIIyRud/kPTouc8Awgs5H5eZVJHVSbCIiItJ9dOYIlojIPsE5R07JErYkDYfkjD06dkh2OpvoR+12TREUERHpDZRgiYi0YeWGrRzqPqNs4BF7fOzgrBQ2un5QpjV+REREegMlWCIibfjsg/+QajXkTPjWHh87ID2ZTS6bpEqt8SMiItIbKMESEWlDyhfPUGUp9Bvb7B0rWuX3GeVJuaTVbganW/2JiIjs65RgiYi04rPVRRxe/Q5FA78Oial71UZN6iASXB1Ubo1xdCIiItLdKMESEWnFqv/8lQyrYtA3f7rXbYTSB0eelBXFKCoRERHprpRgiYi0YF1xCRM3zmFln0NJ2+/wvW7H33coAK5UCZaIiMi+TgmWiEgLFj36vwy07WQd//MOtZOSPQyAncW62bCIiMi+TgmWiEgzPv5kGd/Y8i++6juN7IOnd6itrJxB1LgEqrbqXlgiIiL7OiVYIiJN7KyqwvfUD/AZDDnrzx1ub2BWKhtdP0I71sUgOhEREenOlGCJiERxzvHhPT/m4PBnFE37P1JzR3a4zUGZyWxw2Vj5hhhEKCIiIt2ZEiwRkShvPzmbY3Y8zuLBZ3PA1y+KSZs5aUlsIpvknbrZsIiIyL4u0NEGzOwnwI+AEPCCc+46r/x64Pte+U+dc//paF8iIp3pk0XvMWnpTXyZPI6Ci+6IWbt+n1GamEuf2v9COAQ+f8za7unCoTA7d5ZTtbMCwiEMh48wZoYvIYWUPukkJqWAWbxDFRERaZcOJVhmdiwwAzjYOVdjZgO88jHAWcBYYDDwmpkd6JwLdTRgEZHOsKV4CxnPXkSVL5VBP3gEX0JiTNuvTh2IvzwE5Zsgc0hM2+6OwmHH+s1b2LxqKTWbvyJcUoSVbyC5ahPptcX0CZfTx+0knUrSLExaa205o9qSqLZkyn0Z7PRnUZ2YRTCpL+GUflhqPwJpOSSk9yclsz99svqT3i+XPhl9MSWzIiLSxTo6gnU58HvnXA2Ac26LVz4DeMQrX21mK4DJwHsd7E9EJOZq64IU/uN8DnFb2DjjMbJzhsa8j1DaYCgHytbvcwlW2c5qvly2kNKVH5C4ZSnp5asYVLeWobaD6HeyjD7s8OdQkTyALQkjCCWmE07KgKQMfImpOPMRxo/DcDh8wRrCtTsJ1+3E1e7EV1tBUl0JKXUl9N25mvSKJWS6cgIWbjaukDPKLD2SlAUyqA1k4AIphPzJhP3JuED9IwmHD4iMkjkDMByG4SAcxEK1WDiIhSM/feG6yLYL4gvV4XN1+Fwwss/VP0L4XBC/9/C5EH5Cu7YJEXAh/ATxE4705XFNnjhaY957hvezvqXG5UT/tNbqNbdN1PHWqL1IWzS8f61H2j7Wxit27ajTnnZ21et4TO1px1rcaJ+WDikLZJNw1v0M32/UnjcqIjHX0QTrQGCamd0CVAPXOOc+AoYA70fVK/LKdmNmlwKXAgwbNqyD4YiI7Lm3/nkD36x5j08Pvp6xh3y9U/rw9x0KG4HSIhg6uVP66ArhsGN1UREblryOK/wvfUs+YWRwJROtBoBKktmUOJzNOVPYlHMgfYaMITNvDH0H5ZORkkFGjOMJhULsKNlG2bZN7CwppqqsmLryrYQqt+F2bsdXvYOEmpJIYla9hQRXQ6KrJcnVkEQtydS2mKA1et3OqCNAXSRFos4CBKl/+AlZgBABQuYnaAFvO4mwpRK2AGFfgJDPj7NAZNsCuPptXwKYH3x+fBaZDekzw4j89PloeI7ROOlykdjNOa/Egdv1M/KFPBwpAq8sen/0MZFWd28LjHDjrK/RsZE+okJrKG4uIXDtnu7ZvrSnLQ0xtVHVtVbB7aqze5rlmiTEzadiruG9ahJXVEEzKXaz9Zo+PazyHdbNuZDQdW/hj/Hou4jsuTYTLDN7DRjYzK5fesf3A6YAk4BHzWy/PQnAOXcPcA/AxIkT2/enJhGRGHnr1Wc4bsM9fJr9Tcae1rEbCrem/mbD1dvWktxpvXSOoo2b+eqj/1C38i2Gli5klCtkpDlqSGBd4v58mXsqKcMnMWTckaQNOoiRvq5bP8nv99M3ewB9swfs1fGhsKM2WNeQqEQnJxD5UhxISMbn95NkRlKM4haJpfeevYcjFl3Lgn9dycRL/xrvcER6vTYTLOfcN1raZ2aXA0865xzwoZmFgRxgPTSaGZLnlYmIdBufr17LAfOvojgwkFGX3NupCyn07ZdDhUumbmv3T7CqakMsWbyAkiXPM2DTPMYHPyXPQtSQQFGfcXw25IdkjTmOwWOmsn9id381rfP7DH+i/uIvPduUk3/A/NX/ZeqGh/noxUlM+lZsVkAVkb3T0SmCTwPHAm+a2YFAIrAVeBb4t5n9kcgiFwcAH3awLxGRmKmqCbLl4f9hfyuh/KwXCaRmdmp/g7JS2eiy6VtS1Kn97K3K6loWvfsyVUue5oDSd5limwBYl5DP8vzzyZ7wLQaPm8bIhJQ4RyoiTZkZEy/9K1/+cTkHf3ANn6WlM+aoM+Idlkiv1dEE65/AP81sGVALXOCNZn1qZo8CnwFB4Ec9cQXBz95/mfIPH8YGFpCefyiD9y8gs1//eIclIjHwykO3MiP4X1ZPuI4RB0zp9P4GZSaz2vWjX1n3Gcyvrq3j4/++QtXixxmzYx7TbDu1BFiTOZEVB/4PQw8/jaH9RxD7JT9EJNaSU1LJvfx51tx1PCNfv4xPgnWMP+7seIcl0it1KMFyztUC57aw7xbglo60H28VG7/ioO2vk7n92UiqCOwgg+KEwZSlDqcufSi+zEGk9BtCev880nKGkt5vIMnJPXTKTDgM4WDk4UIQDuLCIULBOoLBIC4cJBgKEq4LEg7VEQ4FCYWChENBwqEQoXCYcNgRDocJO0fYhSNlIW87XH8hefSF040vrm508XTTZbT2yl5O+dqLw5q7QNra09DeTEvb66lsrR8Xywly7b+QPTqAvXrjcRhh53DePydH5HlDGY5wwz6oLt/G8WtvZ1XGJPY75fo973MvDMhI4l2XzWE7P+mS/lpSWxdkyfuvUbnoMUZtf5MjbBs1JLAqawqVBacz4mvf4YCUzh3NE5HOkdmvP8HLX2TN7JMY+9blfLBuKZPP+22vv12BC4epqa2hurKC2uqdBOuqCQXrCNfVEAzWEQ7WEgrWEg7W4YK1hEJ1uGCd912njnD9/0Bw4CIrfjoXVVb/XSZq25zbtfyJi/qO4C1g4+q/IdiulT0byr2VTL0DMGu9fFe7hrP6Gub952vYH310w/9vrfH+hqNb2rb6dr3VRL2Yol9Lw3cfX/128zHUf08wL4aW+nRm1KXkkjdyDNlpPeNKWHOuI19eY2vixIluwYIF8Q6jERcOs2HNV2xfuZCdm77Atq8ktWIt/WuLyGVbs8dUuUQqLZVKXxo1vj5UB9II+RJxvgTC3k/n9376EiIrLXkfRIMmCUfkp89LenzhOsyF8HlLAZsLNjyPXhLY50L4GpYD9pYB9sp8LoyfEJEFkUP4CROgxw0winTIDjJI+sl7pGbndVmf9/72f/h+8BH41RYIdN3/JILBEEsW/peyj/7NqK2vMJit1BJgRfoUAgXfYb8jTyeQmtVl8YhI56qsKOOzuy9iUvlrfJE4lpTT/sSw0T1r9dJgMEh5yVYqS7dRVb6dqvId1FaUEKwqIbSzFFddiq+2nEBdOYG6ChJCOwmEqgmEq0kMV5PgaiKrhbpakqlp12qh0n39K3gC/c/8EycVDI53KI2Y2ULn3MSm5R2dIrjPM5+PISNGMWTE7veWCNbWsG1LEds3raNyaxGhso2wcytUl2E1ZfjrykmoqyApWEHA1eF3dQRcHQEXWdg3wdWRQLDx/Ums4W8f9RFE+vJSoV3LAe/6GTY/IQLUWYCwJRK2VEI+f8NSwGFfAGeRbcxP2BcA8+EsgPP5wBfwlgiO/HS+yHPz+XG+AGZ+8PsjfwHzBTBvH/4APq/M5/fjM1/k4TPM58Nv4PP5vIfh8/miRnSs4V4zkb9oRJfXbxtRf2rZi7O3l3882KvDmlu4t23tvUdLo3b39o8ibRzXXLt7E1+zbbe74p73Z7jIktZRy1sD+Kgvs6ilryNHmEHf4QWk9G1ugdTOU5c1InKV6tavYOC4Tu0rFHYs/WQJxe89zH6bXuIw1hF0Pr5Mm0zJuJ+z/7TvMiatb6fGICLx0Sctg4lXPca7T97JmGV/IOOR41mSdSxpR/+EkYcc26kL+rSkemc5JVs3Ub59MztLNlNTWkyoophw5Tb8VVtJqNlBct0O+gRLyQiXkkkFfc3R2m+pnSRRQR92Wio1vlTq/MnUBPpS5k8mHEgm7E/BJaRAQgoEUrDEFCwhFfMnYIEEzJ+Az5+A+RPxBRLwBRKxQCL+QAI+fyK+hAQCgYSG7y/m83kjSZHvKOYz8O6hZ76okSTzRUakzLfrG54B3qyKXev+eyNhuMb/+2tUL2q/qx8Tixxn9WNkLvp4t6te/WqoDauieklmuL6cxuXONfrpmvzB34W9WKDRKF50Xw11W2rLW7F1V7j1+5vEQOPjD04dxNAR2fQUSrA6IJCYRG7eSHLzRsY7FBHpAXyDCmArhDYuxd8JCZZzjk++XEHR/H+TV/QCh7gvAFiRMp5PD7qYkUefw5is3Jj3KyLdj/l8HHnGFWw/+kz++9hvOXjzk2Q8+wabnhtAUf+pJOdPod8BU8jNPwh/wh6OqDtH1c4KSrZtpmL7Rnbu2EJN6WZCFVugciv+qm0k1mwntW47aaESssKlpFoNA9n9vj8hZ5RaBmW+TKoCWezoM5Li5H6EU7IhtS/+1L4kpGaRlNaX5PS+9EnvS5/MfqSkZZEaSCQ1Vm+YSAxpiqCISBd57KNCTnp+EjUTLiTrtD/EpE3nHJ+tWsfqdx8lp/B5JoaWELAw6xL3o/yAU8k/+nxSB4yISV8i0nOVlmxn2WsPkrLiBQ6sWkKaVQORm2hv8/WlzNeXWn8qwUAqIQt4lxqEsXAIwnUkhSpJCVfSx1WS6naSaM1fWlDr/JRYJmX+vlQlZFGT2I9gSjYuNZtAWn8SMgaQnDmAtL65ZOQMJD0zu9dfIyY9l6YIiojE2ejBffnU5bPfmv92qJ1w2LH0iy8pev8Jcta9wmGhpYy1EMX+gaw44BLyjj6PoUMLYhS1iOwLMrP6ceQZVwBXUFVdy7LlC6ksXEht8SoSKtaTXFeCP7iTxOptJFDnXYIQuVrb+RKoSMxhRyCfYEI64cR0fCmZBPr0IyEzl+TMgaRn55KRPZi0jL4M8PnYu1t/i+wblGCJiHSRMYMy+Kv/UCaWPALlmyC9/deAVVbX8cniD9m+9EUGbnyDCeHlTDDH5sBgVo64gMFTzqT//lPoH4drK0SkZ0lJTmTcIUfAIUfEOxSRfZISLBGRLuLzGZX7nQgrH6Hmw3+R9PWWl4gPhR1fFa5l3aL/EFj9OqMqPmKKRVYuXZ84gi9HXMbQI88id+jB5CqpEhER6TaUYImIdKETjz2Gl7+cxHHzb6du8MEkjDoBfH62bd9G0VdL2LpqMYH1H5JXvpSDbD0HAZWksq7fZHYe+E2GTj6ZIdnD4/0yREREpAVKsEREulBBXhbvTP4N+390CfvPPZsqkqgjQDaV1C9AW0YaGzIK+DTvDHLHH0fOqCM5yJ8Q17hFRESkfZRgiYh0sR+e9DX+u/8rLHzvUQaULycl4PBlDCJ9yGgG7z+BzLzRZPh88Q5TRERE9oISLBGRLmZmHDl6KIy+Ot6hiIiISIzpT6QiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIg55+IdQwMzKwbWxDuOJnKArfEOQrqMznfvoXPde+hc9y46372HznXv0h3P93DnXP+mhd0qweqOzGyBc25ivOOQrqHz3XvoXPceOte9i85376Fz3bv0pPOtKYIiIiIiIiIxogRLREREREQkRpRgte2eeAcgXUrnu/fQue49dK57F53v3kPnunfpMedb12CJiIiIiIjEiEawREREREREYkQJloiIiIiISIwowWqFmU03sy/MbIWZ/SLe8UjsmNlQM3vTzD4zs0/N7AqvvJ+ZvWpmX3k/+8Y7VokNM/Ob2cdm9ry3PcLMPvA+33PNLDHeMUpsmFmWmT1uZp+b2XIzO0Kf7X2TmV3l/Q5fZmZzzCxZn+19h5n908y2mNmyqLJmP8sWcYd33pea2aHxi1z2VAvn+g/e7/GlZvaUmWVF7bveO9dfmNkJcQm6FUqwWmBmfuAvwInAGOBsMxsT36gkhoLA1c65McAU4Efe+f0F8Lpz7gDgdW9b9g1XAMujtv8PuN05tz+wA/h+XKKSzvBn4GXn3EHAwUTOuz7b+xgzGwL8FJjonBsH+IGz0Gd7X3IfML1JWUuf5ROBA7zHpcDfuihGiY372P1cvwqMc84VAF8C1wN439fOAsZ6x/zV+97ebSjBatlkYIVzbpVzrhZ4BJgR55gkRpxzG51zi7zn5US+gA0hco7v96rdD5walwAlpswsD/g28A9v24DjgMe9KjrX+wgzywSOAu4FcM7VOudK0Gd7XxUAUswsAKQCG9Fne5/hnHsb2N6kuKXP8gzgARfxPpBlZoO6JFDpsObOtXPuFedc0Nt8H8jzns8AHnHO1TjnVgMriHxv7zaUYLVsCLAuarvIK5N9jJnlA4cAHwC5zrmN3q5NQG684pKY+hNwHRD2trOBkqhf3Pp87ztGAMXAv7wpof8wsz7os73Pcc6tB24D1hJJrEqBheizva9r6bOs7237touBl7zn3f5cK8GSXs3M0oAngCudc2XR+1zkHga6j0EPZ2YnAVuccwvjHYt0iQBwKPA359whQCVNpgPqs71v8K69mUEkqR4M9GH3KUayD9NnuXcws18SubTj4XjH0l5KsFq2HhgatZ3nlck+wswSiCRXDzvnnvSKN9dPKfB+bolXfBIzRwKnmFkhkam+xxG5RifLm1YE+nzvS4qAIufcB97240QSLn229z3fAFY754qdc3XAk0Q+7/ps79ta+izre9s+yMwuBE4CznG7bt7b7c+1EqyWfQQc4K1GlEjkYrpn4xyTxIh3Dc69wHLn3B+jdj0LXOA9vwB4pqtjk9hyzl3vnMtzzuUT+Ry/4Zw7B3gTOMOrpnO9j3DObQLWmdkor+jrwGfos70vWgtMMbNU73d6/bnWZ3vf1tJn+VngfG81wSlAadRUQumBzGw6ken9pzjndkbtehY4y8ySzGwEkYVNPoxHjC2xXcmgNGVm3yJy7YYf+Kdz7pb4RiSxYmZTgXeAT9h1Xc4NRK7DehQYBqwBznTONb3AVnooMzsGuMY5d5KZ7UdkRKsf8DFwrnOuJo7hSYyY2QQiC5okAquAi4j8QVGf7X2Mmf0GmElk+tDHwCVErsXQZ3sfYGZzgGOAHGAzcBPwNM18lr0k+y4i00R3Ahc55xbEIWzZCy2c6+uBJGCbV+1959xlXv1fErkuK0jkMo+XmrYZT0qwREREREREYkRTBEVERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLRKSbMbN8M3NmFoh3LNI7mNmnZnZMvOMQEdkXKMESEZEez8xmm1mF96g1s7qo7ZfiHV9355wb65ybF8s2vaStIuoRNLPnYtmHiEh3ZM65eMcgIrJPMbOAcy7YgePzgdVAQkfa6a3MbBawv3Pu3Gb2dejcdKWeFGtbzMyAVcBNzrkH4h2PiEhn0giWiEgMmFmhmf3czJYClWYWMLMpZvZfMysxsyXRU7DMbJ6Z/a+ZfWhmZWb2jJn1a6Hti8xsuZmVm9kqM/ufJvtnmNlir52VZjbdK880s3vNbKOZrTez35qZv43XMdLM3jCzbWa21cweNrOsqH3bzexQb3uwmRXXvy4zO8UbtSjxXt/oJu/PNWa21MxKzWyumSXv+Tu951o4N87M9o+qc5+Z/TZq+yTvPS3xzmFBO/s6xsyKzOwG7/0rNLNzovZ/28w+9s7VOi8ZrN9XPzX0+2a2FnjDK3/MzDZ579vbZja2Sdx/NbOXvFGid81soJn9ycx2mNnnZnZIO9+jb7TnNe6lo4Ac4IlO7ENEpFtQgiUiEjtnA98GsoBc4AXgt0A/4BrgCTPrH1X/fOBiYBAQBO5ood0twElABnARcHtUkjMZeAC41uv3KKDQO+4+r939gUOA44FL2ngNBvwvMBgYDQwFZgE451YCPwceMrNU4F/A/c65eWZ2IDAHuBLoD7wIPGdmiVFtnwlMB0YABcCFzQZgNtVLbFp6TG3jNTSn4dy0NSrkJST/BP4HyAbuBp41s6R29jWQSDIxBLgAuMfMRnn7Komc9ywvnsvN7NQmxx9N5L0/wdt+CTgAGAAsAh5uUv9M4FdenzXAe169HOBx4I/tjLtZZvaL1s5HO5u5AHjCOVfZkVhERHoCJVgiIrFzh3NunXOuCjgXeNE596JzLuycexVYAHwrqv6Dzrll3pfOXwNnNjfC5Jx7wTm30kW8BbwCTPN2fx/4p3PuVa+f9c65z80s1+vrSudcpXNuC3A7cFZrL8A5t8Jrq8Y5V0zky/nRUfv/DqwAPiCSGP7S2zUTeME7tg64DUgBvtbk/dngnNsOPAdMaCGG+c65rFYe81t7DS2IPjdtuRS42zn3gXMu5Jy7n0jiMmUP+vu19x6+RSTRPhPAOTfPOfeJd66WEklKj25y7CzvnFV5x/zTOVfunKshkuwebGaZUfWfcs4tdM5VA08B1c65B5xzIWAukeR6rznnft/a+WjreC8ZP4NIwi8iss9TgiUiEjvrop4PB77b5C/9U4kkJc3VXwMkEBl1aMTMTjSz973peSVEEqf6ekOBlc3EMtxrb2NU/3cTGQVpkZnlmtkj3pTCMuChZmL6OzAOuNP70g+REa819RWcc2Hv9Q2JOm5T1POdQFprscTYurarNBgOXN3k3A0l8hrbY0eTkZo19cea2eFm9qY3tbIUuIzd39+GWM3Mb2a/t8jUzzJ2jU5GH7M56nlVM9td+T435zvAduCtOMchItIllGCJiMRO9KpB64iMUEX/tb+Pc+73UXWGRj0fBtQBW6Mb9KalPUFkRCjXGzF4kchUvvp+RjYTyzoioy45Uf1nOOfGNlM32u+81zHeOZdBZCSuvi/MLA34E3AvMMt2XTe2gUhiUl/PvNe3vo3+dmNm06zx6nNNH9PabmU3TVd02gmkRm0PjHq+DrilyblLdc7NaWdffc2sT9T2MCLvD8C/gWeBoc65TGA2Ue9vM7F+D5gBfAPIBPK98qbHdBrverIWz0c7mrgAeMBpVS0R6SWUYImIdI6HgJPN7ARvFCLZWwAhL6rOuWY2xptCdTPwuDetK1oikAQUA0EzO5HItVT17gUuMrOvm5nPzIaY2UHOuY1EphL+PzPL8PaNNLOm09GaSgcqgFIzG0Lk2q5ofwYWOOcuITL1bbZX/ijwbS+OBOBqIgnef9t6o5pyzr3jnEtr5fHOnrbZjMXA97xzM53G0/T+DlzmjTaZmfWxyOIU6dCwsMR9bbT/GzNL9JLBk4DHvPJ0YLtzrtq7fu57bbSTTuR93EYkIfzdHrzGmHDO/a6189Hasd6/92OB+7smWhGR+FOCJSLSCZxz64iMPNxAJDlaRyRZif69+yCR61I2AcnAT5tpp9wrfxTYQeQL+bNR+z/EW/gCKCUyDat+JOl8IgnaZ96xj9N4imJzfgMc6rX1AvBk/Q4zm0FkkYrLvaKfAYea2TnOuS+IjHbdSWQU7mTgZOdcbRv9xcsVRGIsAc4Bnq7f4ZxbAPwAuIvI+7aCxgtyDAXebaXtTd5xG4gsSHGZc+5zb98PgZvNrBy4kch5bc0DRKYYridyHt9v64V1M+cB73kLpIiI9Aq6D5aISByY2TzgIefcP+Idi7SftyriEqDAW8yj6f5jiJzXvKb7RESkdwjEOwAREZGewhuRG91mRRER6bU0RVBEpJcxs9ktLFgwu+2jpScys2GtLFQxLN7xiYjsSzRFUEREREREJEY0giUiIiIiIhIj3eoarJycHJefnx/vMERERERERFq1cOHCrc65/k3Lu1WClZ+fz4IFC+IdhoiIiIiISKvMbE1z5ZoiKCIiIiIiEiNKsERERERERGJECZaISBvqQuF4hyAiIiI9RLe6Bqs5dXV1FBUVUV1dHe9QpIdJTk4mLy+PhISEeIciPdiKLRVcf9cDnH38VL4ztSDe4YiIiEg31+0TrKKiItLT08nPz8fM4h2O9BDOObZt20ZRUREjRoyIdzjSg731+UYe813PjtczYeraeIcjIiIi3Vy3nyJYXV1Ndna2kivZI2ZGdna2Rj6lw8o3rQSgryslVFIU52hERESku+v2CRag5Er2iv7dSCz4tn7R8Hz7yoVxjERERER6gh6RYImIxEtO1eqG56Vrl8UxEhEREekJlGC1g5lx9dVXN2zfdtttzJo1K34BRXn//fc5/PDDmTBhAqNHj26Ia968efz3v//d63bXrFnDoYceyoQJExg7diyzZ8+OUcQiPUtm3VbKLY1il0mo+Mt4hyMiIiLdXLdf5KI7SEpK4sknn+T6668nJycnZu0653DO4fPtfZ57wQUX8Oijj3LwwQcTCoX44ovIdKZ58+aRlpbG1772tb1qd9CgQbz33nskJSVRUVHBuHHjOOWUUxg8ePBexyrSEwXC1QR9yawK92dw6cp4hyMiIiLdnEaw2iEQCHDppZdy++2377avuLiY008/nUmTJjFp0iTeffddAGbNmsVtt93WUG/cuHEUFhZSWFjIqFGjOP/88xk3bhzr1q3j2muvZdy4cYwfP565c+cCkQTpmGOO4YwzzuCggw7inHPOwTm3W/9btmxh0KBBAPj9fsaMGUNhYSGzZ8/m9ttvZ8KECbzzzjutxnneeedxxBFHcMABB/D3v/8dgMTERJKSkgCoqakhHG7+PkB33HEHY8aMoaCggLPOOguA7du3c+qpp1JQUMCUKVNYunRpQ18XXHAB06ZNY/jw4Tz55JNcd911jB8/nunTp1NXVwfAzTffzKRJkxg3bhyXXnrpbq87HA6Tn59PSUlJQ9kBBxzA5s2bWzuNInslEK6hzpfMjoRBpNVsinc4IiIi0s31qBGs3zz3KZ9tKItpm2MGZ3DTyWPbrPejH/2IgoICrrvuukblV1xxBVdddRVTp05l7dq1nHDCCSxfvrzVtr766ivuv/9+pkyZwhNPPMHixYtZsmQJW7duZdKkSRx11FEAfPzxx3z66acMHjyYI488knfffZepU6c2auuqq65i1KhRHHPMMUyfPp0LLriA/Px8LrvsMtLS0rjmmmsA+N73vtdinEuXLuX999+nsrKSQw45hG9/+9sMHjyYdevW8e1vf5sVK1bwhz/8odnRq9///vesXr2apKSkhoTnpptu4pBDDuHpp5/mjTfe4Pzzz2fx4sUArFy5kjfffJPPPvuMI444gieeeIJbb72V0047jRdeeIFTTz2VH//4x9x4440AnHfeeTz//POcfPLJDX36fD5mzJjBU089xUUXXcQHH3zA8OHDyc3NbfM8iuypQLiaYEIS1YkDySifB6Eg+HvUr04RERHpQhrBaqeMjAzOP/987rjjjkblr732Gj/+8Y+ZMGECp5xyCmVlZVRUVLTa1vDhw5kyZQoA8+fP5+yzz8bv95Obm8vRRx/NRx99BMDkyZPJy8vD5/MxYcIECgsLd2vrxhtvZMGCBRx//PH8+9//Zvr06c322VqcM2bMICUlhZycHI499lg+/PBDAIYOHcrSpUtZsWIF999/f7MjRAUFBZxzzjk89NBDBAKBhtd03nnnAXDcccexbds2ysoiifGJJ55IQkIC48ePJxQKNcQ7fvz4htf35ptvcvjhhzN+/HjeeOMNPv300936nTlzZsNo3yOPPMLMmTNbfc9F9lZCuIaQP5lQ2iD8hKFCI6UiIiLSsh71Z9j2jDR1piuvvJJDDz2Uiy66qKEsHA7z/vvvk5yc3KhuIBBoNK0u+n5Mffr0aVd/9VP0IDL9LxgMNltv5MiRXH755fzgBz+gf//+bNu2bbc6LcUJuy9n3nR78ODBjBs3jnfeeYczzjij0b4XXniBt99+m+eee45bbrmFTz75pF2vyefzkZCQ0NCXz+cjGAxSXV3ND3/4QxYsWMDQoUOZNWtWs/eyOuKII1ixYgXFxcU8/fTT/OpXv2q1X5G9leiqCfnT8GUNhY1Qt2MdCZlD4h2WiIiIdFMdHsEys6Fm9qaZfWZmn5rZFV55PzN71cy+8n727Xi48dWvXz/OPPNM7r333oay448/njvvvLNhu34qXH5+PosWLQJg0aJFrF69muZMmzaNuXPnEgqFKC4u5u2332by5MntjumFF15ouEbpq6++wu/3k5WVRXp6OuXl5W3GCfDMM89QXV3Ntm3bmDdvHpMmTaKoqIiqqioAduzYwfz58xk1alSjvsPhMOvWrePYY4/l//7v/ygtLaWiooJp06bx8MMPA5FryXJycsjIyGjX66lPpnJycqioqODxxx9vtp6Zcdppp/Gzn/2M0aNHk52d/f+3d+fxcVR3vvc/v17UWq3NkmVJ3sDYeJEX8BYMwWYAkwmJQ1jnBgJ4Eh4SMrlwk0zIAgPMzX2yzJO5k4GEBy4JSYawBBLwTIBA2EnYbDDYxpgYLK+SJVnWrt7P/aNbsqzFslFr/75f1qurTlWd+knlkvrX59Q5x1S/yPFwzpHmwsR96WROnApA44FdwxyViIiIjGSp6CIYBb7mnJsLrACuM7O5wI3AM865k4Bnkuuj3te+9jXq6uo613/yk5+wYcMGFixYwNy5czuHM7/wwgupr69n3rx53H777cyaNavX+i644AIWLFjAwoULOeuss/jhD39ISUnJMcfz61//mtmzZ7No0SKuuOIK7rvvPrxeL5/61Kf4/e9/3znIRV9xQqKb3+rVq1mxYgU33XQTpaWlbNu2jeXLl7Nw4ULOPPNMvv71r1NRUQHAF77wBTZs2EAsFuPyyy+noqKCxYsX89WvfpW8vDxuueUWNm7cyIIFC7jxxhv55S9/eczfT15eHl/84heZP38+a9asYenSpZ3b7rzzziPivvTSS/mP//gPdQ+UQROKxskgTNybzoRJ0wBoqa0c3qBERERkRLPeRqYbUIVmjwG3J79WOeeqzGwy8LxzbvbRjl2yZInbsGHDEWXbtm1jzpw5KY1RDrvllluOGAxjrNH/HxmIxrYITd+fQ7B0OXbBnUz+6YlUzbyMmVf8pP+DRUREZEwzs43OuSXdy1M6yIWZTQcWA68Bk5xzVclN1UCvQ7yZ2TVmtsHMNtTW1qYyHBGRAQlGY6RbCPwZlORlUO0KsKZ9wx2WiIiIjGApG+TCzLKBR4DrnXNNXQdKcM45M+u1qcw5dxdwFyRasFIVjxybW265ZbhDEBmxgpEYBUTAl052wMdmm0h5W1X/B4qIiMi4lZIWLDPzk0iu7nPO/S5ZfCDZNZDka00qziUiMlSCkTjphLG0TAAa/MVkBzVMu4iIiPQtFaMIGnAPsM059+Mum9YDVyaXrwQeG+i5RESGUnsoiN9ieNIyEusZk5gQq09MNiwiIiLSi1S0YK0ErgDOMrNNya+/Bb4PnGNmfwXOTq6LiIwakfZWAMyfaMGKarJhERER6ceAn8Fyzr0MWB+b/2ag9YuIDJdIMJFgeQKJFizvhFKoglhTFV5NNiwiIiK9SOkogmPZo48+ipnx3nvv9blPZWUl8+fPT9k5t2/fzqpVq1i0aBFz5szhmmuuARKTBD/++OMfud5gMMiyZctYuHAh8+bN45/+6Z9SFbLImBIJtQHgSz6DFShIJFXNNbuHLSYREREZ2ZRgHaP777+f008/nfvvv7/X7dHowJ/JiMViR6x/9atf5YYbbmDTpk1s27aNf/iHfwAGnmAFAgGeffZZ3n77bTZt2sSTTz7Jq6++OqDYRcaiWCjRguUNJBKs7IlTAWitU4IlIiIivVOCdQxaWlp4+eWXueeee3jggQc6y59//nnOOOMMPv3pTzN37lwgkWh97nOfY86cOVx00UW0tSU+AX/mmWdYvHgxFRUVrFu3jlAoBMD06dP55je/ySmnnMJvf/vbI85bVVVFeXl553pFRQXhcJibb76ZBx98kEWLFvHggw/S2trKunXrWLZsGYsXL+axxxLjidx7772sXbuWVatWcdJJJ3HrrbcCYGZkZ2cDEIlEiEQidB1Wv8Nvf/tb5s+fz8KFC/n4xz8OJFq/rr76aioqKli8eDHPPfdc57k+85nPcM455zB9+nRuv/12fvzjH7N48WJWrFhBfX09AHfffTdLly5l4cKFXHjhhZ0/n65WrFjB1q1bO9dXrVpF9wmoRYZCNNQOgD89C4CC4smEnZfQIc2FJSIiIr1L2TxYQ+KJG6F6c2rrLKmATxx9/I3HHnuM8847j1mzZlFYWMjGjRs59dRTAXjzzTfZsmULM2bMoLKyku3bt3PPPfewcuVK1q1bx09/+lO+8pWvcNVVV/HMM88wa9YsPv/5z/Ozn/2M66+/HoDCwkLefPPNHue94YYbOOusszjttNM499xzufrqq8nLy+O2225jw4YN3H777QB8+9vf5qyzzuLnP/85DQ0NLFu2jLPPPhuA119/nS1btpCZmcnSpUv55Cc/yZIlS4jFYpx66qns2LGD6667juXLl/c4/2233cYf//hHysrKaGhoAOCOO+7AzNi8eTPvvfce5557Lu+//z4AW7Zs4a233iIYDDJz5kx+8IMf8NZbb3HDDTfwq1/9iuuvv57PfvazfPGLXwTgu9/9Lvfcc09ny1yHSy+9lIceeohbb72VqqoqqqqqWLKkxyTZIoMu3tFFMNmCVZKbSQ35uKb9wxmWiIiIjGBqwToG999/P5dddhkAl1122RHdBJctW8aMGTM616dMmcLKlSsBuPzyy3n55ZfZvn07M2bMYNasWQBceeWVvPjii53HXHrppb2e9+qrr2bbtm1cfPHFPP/886xYsaKz5aurp556iu9///ssWrSIVatWEQwG2b070YXpnHPOobCwkIyMDD772c/y8ssvA+D1etm0aRN79+7tTMK6W7lyJVdddRV33313Z/fFl19+mcsvvxyAk08+mWnTpnUmWKtXryYnJ4eioiJyc3P51Kc+BSRa3iorK4FEEnbGGWdQUVHBfffdd0RLVYdLLrmEhx9+GICHHnqIiy66qNefj8hgi4YTCVYgI9GCVZgdoMbl42upHs6wREREZAQbXS1Y/bQ0DYb6+nqeffZZNm/ejJkRi8UwM370ox8BkJWVdcT+3bva9db1rrvudXRVWlrKunXrWLduHfPnz+81EXLO8cgjjzB79uwjyl977bV+48nLy2P16tU8+eSTPQbouPPOO3nttdf4wx/+wKmnnsrGjRuP+n0EAoHOZY/H07nu8Xg6n1G76qqrePTRR1m4cCH33nsvzz//fI96ysrKKCws5J133uHBBx/kzjvvPOp5RQaLiyS6CKYluwh6PUaDbyJlQXURFBERkd6pBasfDz/8MFdccQW7du2isrKSPXv2MGPGDF566aVe99+9ezevvPIKAL/5zW84/fTTmT17NpWVlezYsQOAX//615x55pn9nvvJJ58kEokAUF1dzcGDBykrKyMnJ4fm5ubO/dasWcO///u/45wD4K233urc9vTTT1NfX097ezuPPvooK1eupLa2trPLX3t7O08//TQnn3xyj/N/8MEHLF++nNtuu42ioiL27NnDGWecwX333QfA+++/z+7du3skdkfT3NzM5MmTiUQinfX05tJLL+WHP/whjY2NLFiw4JjrF0klF04kWJ7kKIIArYFiJkTqhiskERERGeGUYPXj/vvv54ILLjii7MILL+xzNMHZs2dzxx13MGfOHA4dOsSXvvQl0tPT+cUvfsHFF19MRUUFHo+Ha6+9tt9zP/XUU52DTKxZs4Yf/ehHlJSUsHr1at59993OQS5uuukmIpEICxYsYN68edx0002ddSxbtowLL7yQBQsWcOGFF7JkyRKqqqpYvXo1CxYsYOnSpZxzzjmcf/75ANx8882sX78egG984xtUVFQwf/58TjvtNBYuXMiXv/xl4vE4FRUVXHrppdx7771HtFz155//+Z9Zvnw5K1euPCKpW79+PTfffHPn+kUXXcQDDzzAJZdccsx1i6RaRwsW/ozOskjGJDJcG4Sa+zhKRERExjPraPUYCZYsWeK6jxa3bds25syZM0wRjW733nvvEYNhjEf6/yMDsf6um/n0/n+Db3wIWYUAPHLvj7mw8la47g0omjXMEYqIiMhwMbONzrkeI7GpBUtEpA8WDSYW/OmdZb7cxGTD7fV7hiMkERERGeGUYI1hV1111bhuvRIZKOvoIug73EUwY2JibrqmGiVYIiIi0tOoSLBGUjdGGT30/0YGymJBwvjBc/hX5YSiKQC0H9w7XGGJiIjICDboCZaZnWdm281sh5ndeLzHp6enc/DgQb1ZluPinOPgwYOkp6f3v7NIH7yxIGE7chCX4sICmlwm0QYN1S4iIiI9Deo8WGbmBe4AzgH2Am+Y2Xrn3LvHWkd5eTl79+6ltrZ2sMKUMSo9PZ3y8vLhDkNGMW8sSNhzZIJVkpvOXpePt6VqmKISERGRkWywJxpeBuxwzn0IYGYPAGuBY06w/H4/M2bMGKTwRET65osFidiRraCZaT7qPIVMbTswTFGJiIjISDbYXQTLgK5Pgu9NlnUys2vMbIOZbVArlYiMJL54iKin5zxvzf4iMkP6fSUiIiI9DfsgF865u5xzS5xzS4qKioY7HBGRTv54iKi353N8wfRicmMHIR4bhqhERERkJBvsBGsfMKXLenmyTERkxEtzIWLeni1YsewSvMShVa1YIiIicqTBTrDeAE4ysxlmlgZcBqwf5HOKiKSE34WI99KC5cktBdBIgiIiItLDoCZYzrko8BXgj8A24CHn3NbBPKeISCo45wi4EHFvRo9tafmJ0Smba3cPdVgiIiIywg32KII45x4HHh/s84iIpFIoGiedMO2+ni1Y2RMTCVZL3V7yhzowERERGdGGfZALEZGRKBSJk2FhnL9nC1ZBcTlR5yFcv3cYIhMREZGRTAmWiEgvgtEYAcLQSwvWpLwsaskj3rR/GCITERGRkUwJlohIL4KRGBmEwZ/ZY1thVho1Lh9fS/UwRCYiIiIjmRIsEZFeBIMh/BbDeuki6PEYDb6JZARrhiEyERERGcmUYImI9CIUbAXAk9YzwQJoDRSRE9E8WCIiInIkJVgiIr2IdCZYPbsIAkQyS8hyrRBuHcqwREREZIRTgiUi0otIsA0Ab6D3Fqx4zmQAXKMmGxYREZHDlGCJiPQiEkokWH21YHnzpwLQVlc5VCGJiIjIKKAES0SkF9FQoutfWnpWr9vTi6YD0FL94VCFJCIiIqOAEiwRkV5Ek10E+0qwcounEXUeQnW7hjIsERERGeGUYImI9CKa7CKYltF7gjU5P4dqCogfUoIlIiIihynBEhHpRTyZYAUysnvdPjkvnX1uIr7mvUMZloiIiIxwA0qwzOxHZvaemb1jZr83s7wu275lZjvMbLuZrRlwpCIiQygWSSRY/kDvg1z4vR7qfSVktVcNZVgiIiIywg20BetpYL5zbgHwPvAtADObC1wGzAPOA35qZt4BnktEZMi4cHtiwZ/e5z5tmZPJjdZBLDJEUYmIiMhIN6AEyzn3lHMumlx9FShPLq8FHnDOhZxzO4EdwLKBnEtEZEglW7Dw996CBRDNmYKHODTtH6KgREREZKRL5TNY64AnkstlwJ4u2/Ymy3ows2vMbIOZbaitrU1hOCIiH50n0pJYCOT0uY+vIDEXVuSgBroQERGRhH4TLDP7k5lt6eVrbZd9vgNEgfuONwDn3F3OuSXOuSVFRUXHe7iIyKDwRVqI4ANfoM99MotmANBQ9cFQhSUiIiIjnK+/HZxzZx9tu5ldBZwP/I1zziWL9wFTuuxWniwTERkVfNFW2i0T/1H2yS89AYC22sohiUlERERGvoGOInge8I/Ap51zbV02rQcuM7OAmc0ATgJeH8i5RESGkj/aStDT9/NXAOVFeRxwecTq1UVQREREEvptwerH7UAAeNrMAF51zl3rnNtqZg8B75LoOnidcy42wHOJiAyZQKyNkPfoCVbJhHTecUUUai4sERERSRpQguWcm3mUbd8DvjeQ+kVEhktavJWIP+uo+/i8Hur9k5jS9uEQRSUiIiIjXSpHERQRGTPS421E/dn97teaUUpepAbi8SGISkREREY6JVgiIt0458iItxM/hgQrmjMFP1FoqR6CyERERGSkU4IlItJNazhGtrXjAv0nWN6CaQCE6nYOdlgiIiIyCijBEhHppqk9Qhbt2FEmGe6QWZyYC6txv+bCEhERESVYIiI9NLeFyLIQ3vT+E6z80sRYP601asESERERJVgiIj20NdUB4Mks6HffsqJ8al0usfrKQY5KRERERgMlWCIi3QQPHQDAl1Pc776TJqSz1xXja9oz2GGJiIjIKKAES0Skm2BjIsHKyJ/U775ej1HvLyGrfd9ghyUiIiKjgBIsEZFuQk2JBCt3Yukx7d+a2TEXVmwwwxIREZFRQAmWiEg3seZaAAIT+u8iCBDJKU/MhdWsubBERETGOyVYIiLdWFtikAsyC49pf0/+dABCBysHJyAREREZNVKWYJnZ18zMmdnE5LqZ2U/MbIeZvWNmp6TqXCIig8nXXk+z5YDXd0z7Z3TMhVWlubBERETGu5QkWGY2BTgX2N2l+BPAScmva4CfpeJcIiKDLTNcS4uv/yHaO+SXnghA+wElWCIiIuNdqlqw/hX4R8B1KVsL/MolvArkmdnkFJ1PRGRQOOcoiBygOePYf12VFuZxwOURq981iJGJiIjIaDDgBMvM1gL7nHNvd9tUBnSdGGZvsqz78deY2QYz21BbWzvQcEREBuRQW4TJ1BKbMOWYjynJTWevK8LbrLmwRERExrtjesDAzP4ElPSy6TvAt0l0D/xInHN3AXcBLFmyxPWzu4jIoNpbfYAF1kJdwYxjPsbv9XDQV8K0NnURFBERGe+OKcFyzp3dW7mZVQAzgLfNDKAceNPMlgH7gK4fAZcny0RERqy6vTsAyCo54biOa80oJa/1L4m5sDzewQhNRERERoEBdRF0zm12zhU756Y756aT6AZ4inOuGlgPfD45muAKoNE5VzXwkEVEBk+oejsABWWzjuu4SE45PmLQrF9zIiIi49lgzoP1OPAhsAO4G/jyIJ5LRCQlrHYbcYz00rnHd1z+NACi9ZWDEJWIiIiMFilNsJItWXXJZeecu845d6JzrsI5tyGV5xIRGQxZDdup8ZWCP+O4jksvTnQpbNy/YzDCEhERkVFiMFuwRERGlWAkxpTITponHF/3QID8yYlBMdpqdqY6LBERERlFlGCJiCS9v7OS6VZNvPSU4z62tDCPapevubBERETGOSVYIiJJ+za/AEDxvI8f97GleRmJubCaNBeWiIjIeKYES0QkKV75Z8L4yJ+5/LiPTfd7qfVOIrNNs1GIiIiMZ0qwRERIPH81u+kV9uQsPu4BLjq0ZJSSFzkAsWiKoxMREZHRQgmWiAiwdevbzLR9RE9c85HrCGeX4SUOLdUpjExERERGEyVYIiLAgQ2PAVC2fO1HrsNyywFwjXtTEpOIiIiMPkqwRGTci8biFOx9lmr/FLInH/8Q7R3SC6cC0FqrkQRFRETGK99wByAiMtxe3/Iey91mdp547YDqySmeBkDLgUqyUxHYCBSOxtm3t5KDlZtpObATa96Hv60GT6QNfzxI3Lw4XwYEJmD5U8medCJT5y4jq3gGmA13+CIiIoNOCZaIjHsH/vIbvOaYuurzA6qnuKiYJpdBuH5sDNUejzve37WH6s3P4Xa/woSGbUyLfMgMa2JGl/0ayabdMglZAA9x0uJBclwLmQdC8B7wAtRbHtUTFuCZdS7TV6ztbO0TEREZa5Rgici41h6OcWL1E+zLOImykrkDqqs0L4MqV0hG0+h9Bmv3gTo+eP0J+OBZShveZJbbxcnmiOBlX9oMqorPZN+keWSVzad46knkFE8j159Bbrd64rE4NbX72fvhuzR88AZpVW9yYsNbTH7jRXjju+xJO4GWKauZvHQteSetBO/Q/TkKR+McqG/kYNUu2g7uJd60j3hLHbFgM95IC95IK75oK554GBePYzg85vAAzuMj6gkQ92Vg/gw8aZl4A5l403PwZeSQlplLIGsC6Vm5ZGTnkZmTizc9B9JyhvR7BCAeh3gEF4sQi0aIRsJEomFikcRy1EE05ojGwTwePGZ4PR7M68FrHjwew+MxvB4vHq8Xr9eLx+PF6/UkyjxeME+3L1NLpYiMe0qwRGRce2XD65xlO6ic880B11WYlcY2CjmppSoFkQ2NWNyxZdu77H/jMfL2PMui6NtMtTBB0tidVcG28vOZOG81xXNWMv04hq/3eD0Ul5RTXFIOp50LQDAc5fVNr1G/6b8ornqBih334v/gHlosiz0FH8M/62xK551BZukc8Hg/0vcTjcaoqavlUPVOmmv2EKrfQ6yxCl/rfjLaa5gQqaPQHWSKNTGll+MjeGkjg3bLIGp+HB4chgPiGB4XI+BCBAgTcCEyLXTMsYVIo90yCHoyCXkyCHkyCXsziXgzwQ5/vw5H8h/g8MYjeOIRPC6CLx7G66J4XRifi+JzkcQXkcQ6MXxE8RLDm6zBSPyx9wHpH+mnenzizohjODPieEimqMnXRFniNbHewZLxHl6nz210WT/acce8r+ttW/dz9r6tr/16SzP7rrNrfX3r6/gGm0DD559j5gknHOVoERkqA06wzOwfgOuAGPAH59w/Jsu/Bfx9svyrzrk/DvRcIiKp1vTGA8Qxppw5sO6BAB6P0ZhWTFZoQwoiGzzxuOPtbdvZ9+f7mLb/CRbyVxYCNd4Sdk67iPxFn6Kk4ixm+VP7djw9zceyZSth2Uqcc2yr3MvuN/5AYOczzK97jaKDf4JXoI109qfPpD2rnGhOOfFAHpaWifkzwMWIhduJhdoIt7fgaaslEKojM3yQCdF6ClwDpRaitNu5D1kujb6JtOeUUJW1iOoJZaQVlJFRWE5G4RRyCicTyMzD7wuQa9ajRa4vwXCU5pZmWpsbaW9pJNjSSKitkXBbI9H2ZmLBZlywGcIteMKtWKSFtFgbgXgb6bE20qP1TIjvSyRV9HxzbUDE/ETNT8z8RMxP0JNF3PKIefzELI24x0/c48d5/Tjz4zw+zOuDZJl5vOD1Yx4/5vVj3sR2r8eD1xxeA3C4eJx43OGI4+KOuHPgHC4ewzmHc3Hi8TjEYzgXBxdPvMYdEMOcg2T5EcvEk8uuc7kzxXLuiCSrZ3bRdVtvP51j2NZt3ZkdUeo6l+3YYrFeduiz1a63dO9oZa5rYe/7mh2xmzce4rSa+3n3xV8w84R/7iMOERlKA0qwzGw1sBZY6JwLmVlxsnwucBkwDygF/mRms5xzsYEGLCKSKo2tYSrqn2JPziKm5ZWnpM72jBImNB+CSBBSnKAM1F9372fH8/9BUeV6Fse2sNgcewMn8u6JNzD1tIsoLptH8RB17zIz5s6YwtwZ1wLX0hIM8+rbb9C043X8B96ioOWvTGzfwKS6p/BZvM96Gsmm0ZtPi7+QmqwKDmQWYbllBArKySmaSv7kaeRMnEK+L0D+IHwf6Wk+0gvyKSoYjNpFjs22721i2u7f4+K3Yh4NEC0y3AbagvUl4PvOuRCAc64mWb4WeCBZvtPMdgDLgFcGeD4RkZR55S/PcZ7tZ9/Cr6SszmhOOTQDTfug8MSU1ftRtQYj/Pn5J+DNX3J66CVOshDVvlL+OvNapp55BeVl84Y7RACy09NYsXwlLF/ZWeaco7k9RKi1mXCwlXCwBY/HS1p6FhmZ2eROyCHX6z/m1iaRsaph1iXM2XorH2x6gRNPWT3c4YiMewNNsGYBZ5jZ94Ag8HXn3BtAGfBql/32Jst6MLNrgGsApk7VqFIiMnQimx4kipfS0y5LWZ2+/HLYD7FDe/AOY4K1Y89+tj/5/zNr7yOca3toJ53d5Z9k0qprKJm5gpJRMBCBmTEhMx0y04Gi4Q5HZMSae/ZVtG35PvV/vkcJlsgI0G+CZWZ/Akp62fSd5PEFwApgKfCQmR3XE5bOubuAuwCWLFnS9xOlIiIpdKCxjVNbnmN3wcc4IaswZfUGJiYGMG868AH5M1elrN5jEY3Fee6NTbS/eDurWh9nprWzK+Nkdp3yv5j68SuYnT5hSOMRkaGRm1/AG3mrmVv3NA0Ha8grLB7ukETGtX4TLOfc2X1tM7MvAb9zzjngdTOLAxOBfXDEAE3lyTIRkRFh40uP87dWT/WSv0tpvXklM4g4L8EDO1Ja79G0haM8/dxzpL1+O2dHX8Jjjp2Tzsat+QbTTlw2ZHGIyPApOud/kPXwk7z22A9Zvu5fhjsckXFtoF0EHwVWA8+Z2SwgDagD1gO/MbMfkxjk4iTg9QGeS0QkZbxbHyFIgJKlF6S03skFOexzE/HVV6a03t4cbA7y7JMPU7r1btayiSAB9p/035jyia8xs3BG/xWIyJgxff5y3nx8JXN330fjoRvJzZ843CGJjFsDTbB+DvzczLYAYeDKZGvWVjN7CHgXiALXjcYRBHdt28iBrS9QcOISymadQkZW9nCHJCIpUF3fxLK2F9ldvIpZaVkprXtybjpvuWJObtyV0nq72l3bxKv/dQ9zK3/JxbaTRm8++xZ8jbJzvsK0zIJBO6+IjGwTzruJzEc+wcb7v8myL98z3OGIjFsDSrCcc2Hg8j62fQ/43kDqH25VG/+TFTv+FbZAzBn7PUXUp5URzJlGPG863oknkF00jfzicgonleNNG1lDMg+XeNwRc45YPPEVjTviyVc650aJQTwGLoa5eOcyLobF+x6SuVO/D+j3vd31+2z/UXbo57w2gLi6191zz48WV/8xHbtU1ZTK8RWcg7hzJP57JV7jLjGrUDzuEv/lnDu8D44dr/6BNdZCy5LUDW7RISfdT7WvlKWtf04El8JvduvO/Wx7/HZW1DzIJVZHTWAqNaf9kOKVV5I7woaEF5GhN3PBx/jLCxew/MAj7Np8FdMqzhjukEYVF4sSCbUTCQeJRsJEolGi0QjRSOI1Ho8SjyXfr8SiiTnh4jGci3X+rXFwxHLH3wAjMdda50pyrecUbgaW3NM8if066jCAxDD85knU2DFXmnmso0Y6KjYzLLn/EfUm93cddXVu6ziXHZ72rXObh8QUbJYMxJJVepK7Jw/wdHyndkS9Hdus85xdfhTJAju8SOdPqGPZ5ycjIwu/d3RMQzDgiYbHsuX/7Wb2VV5K9ftvEN3/Dt6GneS07aas9hny65qh2yMWjWTRYPm0ebOJ+LKJ+rKIp2UT82cT92WC1w/eNDxeP+bzY94AeH04vEBiEsbEzIIOl1w2Di+7WCIxcfFY503dNVHpKKdLwmIuBvF44tXFkhNAHk5qOpaN5GtyuydZ5nFxPC6G0eWVeKKcWJflxJe3l9dAl2WvaRwTGX4nkpg/qfzUTw5K/c25s8ho+CM07oG8gY2O6pzjlbffpfZP/8aq5v9knrWxZ8JCGs76/yhe+GnQnDci0sXsv/sBdbc/T9rv/p7gtFdIn5C6QXxGkkgkQkN9DS2HamhvPEi4rYFIexOuvYl4sAlCzVi4GU+4BV+kBV+0BV8siCcewhcP43ch0lyENMIEXJg0IvgtRhqJ511kZPlFdA1Fl/xvzl/QfRr5kUkJ1lGYx0PZCXMoO2HOEeXOORoP1XFwz3aa6/bQXr+faNMBfO21pAfr8EVbSI82kRauJqOljSzXTiZBPIOcXERdIs2JWUe6c/grhhfXtdwSKU9HmTMvcfPgksvOk3w1f/LVQzT5yhGv3sQbPPMm1j1eMA/mSWwzT6IcT2I5bp7O+jpf6bZuXo72k+q3PcAd7eijXwM76vZ+rt9Rzws2gLj63360wxypaHtyHzWGQdTRQGR2+JPAzs/wOj8ws859oOODPWPCCUvJ9QUGJS4rqYAGiFVtxvsRE6xwNM4LLz2He+UOzgy9gN9i7Cw+C99532DKiR9LbcAiMmYUTizmrXPuZN5Tf8eHP/0sM6//A7700fGIQyzYTMOB3Rw6sJvWuj2ED+0n2lKLtdWTFj5ERqSBrFgjOfFmcmmhyNxRJ3BodQHaLJM2yyTkySTiSSfim0C7Nx3nDRDzBognv5w3QNyXDt5A4sNwnw+Px4/H68Xj9eHx+hLvaZJfzpLr5sE8vkQrTsffm86/Q8m/m+7wX3HX+XfZdb5t6Pzr2vGBOsn3DM4d/tubXKdjjy7rdPkwnuSxXde719vbtsPBHN7mXNcP+umyX9eYAOI9zoMjeWyXXkldjz3i++75LqfrWyaHozj7ZE6ePHpGwlWC9RGYGbkFReQWHN+8LPFolHAkRDgcIpL8ctFwolXJ40ncjh1Nq+ZJ3qiexH86j+Hz+PD4fHi9XnzJm73jFY9HF1NkhMibvoj4NqPxgzcomHN8rWQNrUH+8seHmLj5bs5x7xAkwJ4ZFzP1b7/OicUzByliERlLFq9cwwtVt3H65u/y4b+uofSLD5A1cUr/Bw6WeJxYSw0NVR/SVL2T4ME9RBr3Y83VpLXXkB2uJS92kCzaKQS6trmFnY9Gm0CLN5c2Xy51GbOpDuTjMgqxrAJ82RNJyykgLTOPQFYu6dl5pGfnk5UzgSx/Gql9ylbk2Jjr51P3obRkyRK3YcOG4Q5DRGRAtlU1EfrZKqYUZFN4/YvHdMzWD3bx/tP3UFH1MDNtH/WeQhoqrmbGmuswDVwhIh/BC7+/i6WbvkvIAuxZeD0V51+HDcLzmrFQGwerPqSxaiftdbuI1u/C27SP9Lb9TAgfoCBWS4DIEceEnJ8a8mnwFtKSNpFIxiTiOSX4cieTXlDOhOIpTCyZSn5+Iaau0DJCmdlG59ySHuVKsEREUss5x93/8//hC7GH8PyPbTBhcq/7NbaGef3FP+Db9Cs+FnyJdIuwL2MWrPgyZSs/Bz49CSAiA7P17ddx/3k986NbaSKbDyetIX32WZTPP53siVMSXd764OJxWhpraTiwh+a6fQQPVRFprMY17SfQup+cUBUF0RoKaDriuLgzasinzltEc6CE9szJxHPK8RZMJXPiNHJLplNcPJn8rLSUDsQkMtT6SrDUq0xEJMXMjNCci4hv/i2tT/+/5Fz4k85trcEIb7/+PM1vPszJh57jHDtAKxnsmvIZys6+lrLpPX5Pi4h8ZPMWLiM2/2X+/KdHsE33cUr1etIPPAIvJp7drvfkE/JkEsNL3Lz4XIRAvI0M106mayfH4uR0q7PVBaj1FtHon0Rt9hyiOWV486eQPnEaOcUzKCqbzqTsLEqUPMk4pRYsEZFBUNXYzjM/vprL7Qk+mLiag74SrHE309q2UmwNRPFSOWEJgUWXUL7yMiwwOh5CF5HRrb6xmZ1b/kJz5Vt4mveT1laNRdrxEMPnokQ9acR8WcT92bi0LCy7CF/uZDLyS8mZWEZecTm5ufnqtieCugiKiAy5Nz6s4a8PfJuzQ0+TSZBGbz71+QvJmLWaaSsvxp89NodPFhERGQ+UYImIDJPWUJQ0n2fUTJAoIiIi/dMzWCIiwyQroF+1IiIi44U+ThUREREREUkRJVgiIiIiIiIpogRLREREREQkRUbUIBdmVgvsGu44upkI1A13EDJkdL3HD13r8UPXenzR9R4/dK3Hl5F4vac554q6F46oBGskMrMNvY0OImOTrvf4oWs9fuhajy+63uOHrvX4Mpqut7oIioiIiIiIpIgSLBERERERkRRRgtW/u4Y7ABlSut7jh671+KFrPb7oeo8futbjy6i53noGS0REREREJEXUgiUiIiIiIpIiSrBERERERERSRAnWUZjZeWa23cx2mNmNwx2PpI6ZTTGz58zsXTPbamb/PVleYGZPm9lfk6/5wx2rpIaZec3sLTP7r+T6DDN7LXl/P2hmacMdo6SGmeWZ2cNm9p6ZbTOzj+neHpvM7Ibk7/AtZna/maXr3h47zOznZlZjZlu6lPV6L1vCT5LX/R0zO2X4Ipfj1ce1/lHy9/g7ZvZ7M8vrsu1byWu93czWDEvQR6EEqw9m5gXuAD4BzAX+zszmDm9UkkJR4GvOubnACuC65PW9EXjGOXcS8ExyXcaG/w5s67L+A+BfnXMzgUPA3w9LVDIY/g140jl3MrCQxHXXvT3GmFkZ8FVgiXNuPuAFLkP39lhyL3Bet7K+7uVPACclv64BfjZEMUpq3EvPa/00MN85twB4H/gWQPL92mXAvOQxP02+bx8xlGD1bRmwwzn3oXMuDDwArB3mmCRFnHNVzrk3k8vNJN6AlZG4xr9M7vZL4DPDEqCklJmVA58E/k9y3YCzgIeTu+hajxFmlgt8HLgHwDkXds41oHt7rPIBGWbmAzKBKnRvjxnOuReB+m7Ffd3La4FfuYRXgTwzmzwkgcqA9XatnXNPOeeiydVXgfLk8lrgAedcyDm3E9hB4n37iKEEq29lwJ4u63uTZTLGmNl0YDHwGjDJOVeV3FQNTBquuCSl/jfwj0A8uV4INHT5xa37e+yYAdQCv0h2Cf0/ZpaF7u0xxzm3D/gXYDeJxKoR2Iju7bGur3tZ79vGtnXAE8nlEX+tlWDJuGZm2cAjwPXOuaau21xiDgPNYzDKmdn5QI1zbuNwxyJDwgecAvzMObcYaKVbd0Dd22ND8tmbtSSS6lIgi55djGQM0708PpjZd0g82nHfcMdyrJRg9W0fMKXLenmyTMYIM/OTSK7uc879Lll8oKNLQfK1Zrjik5RZCXzazCpJdPU9i8QzOnnJbkWg+3ss2Qvsdc69llx/mETCpXt77Dkb2Omcq3XORYDfkbjfdW+PbX3dy3rfNgaZ2VXA+cDn3OHJe0f8tVaC1bc3gJOSoxGlkXiYbv0wxyQpknwG5x5gm3Pux102rQeuTC5fCTw21LFJajnnvuWcK3fOTSdxHz/rnPsc8BxwUXI3XesxwjlXDewxs9nJor8B3kX39li0G1hhZpnJ3+kd11r39tjW1728Hvh8cjTBFUBjl66EMgqZ2Xkkuvd/2jnX1mXTeuAyMwuY2QwSA5u8Phwx9sUOJ4PSnZn9LYlnN7zAz51z3xveiCRVzOx04CVgM4efy/k2ieewHgKmAruAS5xz3R+wlVHKzFYBX3fOnW9mJ5Bo0SoA3gIud86FhjE8SREzW0RiQJM04EPgahIfKOreHmPM7FbgUhLdh94CvkDiWQzd22OAmd0PrAImAgeAfwIepZd7OZlk306im2gbcLVzbsMwhC0fQR/X+ltAADiY3O1V59y1yf2/Q+K5rCiJxzye6F7ncFKCJSIiIiIikiLqIigiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikyP8FOdZGk0wxA+QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
51True70.08470.0447bAP.soma.v0.006843.51e-06
52True70.08470.0447Step1.soma.v0.007836.1e-06
53True70.08470.0447Step3.soma.v0.007726.05e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "51 True 7 0.0847 0.0447 bAP.soma.v \n", + "52 True 7 0.0847 0.0447 Step1.soma.v \n", + "53 True 7 0.0847 0.0447 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "51 0.00684 3.51e-06 \n", + "52 0.00783 6.1e-06 \n", + "53 0.00772 6.05e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcdbn48c8zfXvP1iSb3kOAEEA6emkKiCiBS+cqP/XasKDXqxi913u9wBVFUCxcUcDQmyggLTRBUkgCqaRskk3d3qee7++Pc3aZJNvCzu7szD7vF/PKaXPOM3NmlvPM9/t9jhhjUEoppZRSSik1dK5kB6CUUkoppZRS6UITLKWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUUkoppZRKEE2wlFJqlBCRahExIuJJdizpTkSuEZHXkx3HaCMip4jIpmTHoZRSqUwTLKWUUilNRJaISERE2uMeNyY7rlRkjHnNGDMj0fsVkTNFZJWItIrINhG5PtHHUEqp0UITLKWUShBteUqqB40x2XGPm5MdUCKl8mdLRLzA48CvgTxgMfBTETkqqYEppdQw0QRLKaWGQERqROTbIrIW6BARj4icICJ/F5FmEVkjIqfHbb9MRP5bRN52fs1/UkQK+9j3tSKyQUTanF/9/98h6y8UkdXOfraKyDnO8jwRuVtE9orIbhH5TxFxD/A6pojISyLSICL1InK/iOTHrWsUkWOc+QoRqet+XSJygYisc17vMhGZdcj7800RWSsiLSLyoIgEjvydPnIi8h3nfWkTkfUiclEf24mI3CYiB5z38l0Rmeus84vIrSKyU0T2i8hdIpIxyOPf42z/vBPDKyIyMW79z0Vkl3PMlSJySty6JSLyiIjcJyKtwDUiskhE3nTe570icoeI+OKeY0TkiyLyvnO8/3DO3d+dYzwUv30fMZ8uIrWDeX1HoBDIBe41tuXABmB2go+jlFKjgiZYSik1dJcBHwfygVLgL8B/Yl9YfhN4VERK4ra/CrgOKAeiwO197PcA8Ansi9NrgdvikpxFwB+BbznHPRWocZ53j7PfqcDRwFnAZwd4DQL8N1ABzALGA0sAjDFbgW8D94lIJvB74A/GmGUiMh1YCnwNKAH+Cvz5kAv5S4BzgEnAfOCaXgMQOdlJHvp6nDzAazjUVuAU7FaTHzrxl/ey3VnY7990Z9tLgAZn3U+c5Quw389K4KYjiOFy4D+AYmA1cH/cuuXOfguBPwEPH5J8Xgg8gn1+7wdiwA3Ovk4EPgp88ZDjnQ0cC5wA3Aj8BrgC+3zOxf6sfmhOotzX+fllb88xxuzH/oxcKyJuETkRmAjoGDilVHoyxuhDH/rQhz4+5AM7qbkubv7b2L/Ux2/zHHC1M70M+EncutlAGHAD1YABPH0c6wngq870r4HbetmmFAgBGXHLLgNePsLX9UngnUOWPQW8C6wF/M6y7wMPxW3jAnYDp8e9P1fErb8ZuCvB52CJ8x42xz0qetluNXChM30N8LozfSawGTspccVtL0AHMCVu2YnA9kHGdQ/wQNx8NnaSNL6P7ZuAo+Je06sD7P9rwONx8wY4KW5+JfDtuPn/BX42wD5PB2oTeX6c/Z4P7MdO/KPA5xJ9DH3oQx/6GC0PbcFSSqmh2xU3PRH4TPwv+8DJ2K1VvW2/A/Bit0ocRETOFZG3nO55zcB5cduNx26hOdREZ397447/a2Bcfy9AREpF5AGnS2ErcF8vMf0WuxXkF8aYkLOswnkNABhjLOf1VcY9b1/cdCd2opFoDxlj8uMee0TkKrG7UHa/D3Pp5X02xrwE3AHcCRwQkd+ISC52i1wmsDJuH886ywer51wbY9qBRuz3DKfr5Aan62QzdutZcW/PdbafLiJPi8g+5xz9Vy+vZ3/cdFcv88Px3vdLRGYCD2C33PqAOcCNIvLxkY5FKaVGgiZYSik1dCZuehd2C1b8xX6WMeYncduMj5ueAESA+vgdiogfeBS4FSg1xuRjd7+TuONM6SWWXdgtWMVxx881xswZ4DX8l/M65hljcrG7lXUfCxHJBn4G3A0skQ/Gje3BTuq6txPn9e0e4HiHEbtEeHs/j1MG3kvPviZiJ4RfAoqc9++9+NcUzxhzuzHmWOwWxenYXS/rsZOSOXHvZZ4x5kiSlJ5z7byHhcAe57XciN0dscCJr+WQ+OI/VwC/AjYC05xz9N2+Xs9wEXusXV/n564+njYX2GyMec4YYxljNmF3oz135CJXSqmRowmWUkol1n3A+SJytjPeJOAUDqiK2+YKEZntjGf6EfCIMSZ2yH58gB+oA6Iici72WKFud2OPafmoiLhEpFJEZhpj9gJ/A/5XRHKddVNE5LQB4s4B2oEWEanETjDi/RxYYYz5LPbFcffF9EPAx504vMA3sBO8vw/0Rh3K2CXCs/t5vHYEu8vCTlDqwC4Ygn2hfxgROU5Ejnfi7wCCgOW0xv0We+zbOGfbShE5O+65RuKKmPTiPGdsmQ97LNZbxphd2O931InPIyI3YY+1608O0Aq0O61CXxhg+4Qzxszp5/x8vo+nvQNME7tUu4jIFOyxhWtHLnKllBo5mmAppVQCORfPF2K3LtRhtyh9i4P/3t6LPT5nHxAAvtLLftqc5Q9hj835Z+wxUN3r38YpfIHd8vEKH7QkdXfFWu889xEO7qLYmx8Cxzj7+gvwWPcKEbkQu0hF9wX914FjRORypzXiCuAX2C0+5wPnG2PCAxxvWBlj1mOPOXoTu5vcPOCNPjbPxU6kmrC7OzYAtzjrvg1sAd5yuuW9AMwAEJHxQBv2uLS+/An4AXbXwGOx3yuwx+U9iz32awd2Urertx3E+Sb256DNiffBAbYfFYxdJOU67GIurdif1UeB3yUzLqWUGi5izKE9EJRSSg0XEVkG3GeM0YvLFCciV2B3H/y3Ptbfg10w4nsjGphSSqmkStkbFyqllFLJZIy5L9kxKKWUGn20i6BSSo0RYt/09kiKE6g0JCLf7eNz8EyyY1NKqXSgXQSVUkoppZRSKkG0BUsppZRSSimlEmRUjcEqLi421dXVyQ5DKaWUUkoppfq1cuXKemPMYTefH1UJVnV1NStWrEh2GEoppZRSSinVLxHZ0dty7SKolFJKKaWUUgmiCZZSSimllFJKJYgmWEoppZRSSimVIKNqDFZvIpEItbW1BIPBZIeiRoFAIEBVVRVerzfZoag09Nr7dTz47DL+/dMnUl5elexwlFJKKZWCRn2CVVtbS05ODtXV1YhIssNRSWSMoaGhgdraWiZNmpTscFQaevjl5dzR8Fl23zcbvvVmssNRSimlVAoa9V0Eg8EgRUVFmlwpRISioiJtzVTD5qi6PwNQ2bEe2vYnORqllFJKpaJRn2ABmlypHvpZUMPFGENGuL5nvnX980mMRimllFKpKiUSLNW3rkiMUDSW7DCUSnntoSi5Viv7vZW0mQyaN72W7JCUUkoplYI0wRoEEeEb3/hGz/ytt97KkiVLkheQIxqzOO3UU3n7b49hRXrvNvfJT36SE0444aBlS5YsobKykgULFjB37lyeeuqpkQhXqVGtvj1MIa24ssexxkzFv1dveq6UUkqpI6cJ1iD4/X4ee+wx6uvrB974CBhjsCzrQz8/GLHwEiNDwljNtYetb25uZuXKlbS0tLBt27aD1t1www2sXr2ahx9+mOuuu25IcSiVDjrDUQqkDSujiL1Zsyjq2g7RcLLDUkoppVSK0QRrEDweD9dffz233XbbYevq6uq4+OKLOe644zjuuON44403ALuV6NZbb+3Zbu7cudTU1FBTU8OMGTO46qqrmDt3Lrt27eJb3/oWc+fOZd68eTz44IMALFu2jNNPP51Pf/rTzJw5k8svvxxjzEHHDsViuIlx76N/YeHpH2fu3Lm8/fbbPesfe+wxzj//fC699FIeeOCBXl/brFmz8Hg8ByWP3/nOd5g9ezbz58/nm9/8JgA1NTWceeaZzJ8/n49+9KPs3LkTgGuuuYYvfOELnHDCCUyePJlly5Zx3XXXMWvWLK655pqefX7hC19g4cKFzJkzhx/84AeHxdHS0sLEiRN7Er2Ojg7Gjx9PJBLp+8QolUChqEWhtBHLKCRSNBMPMajfnOywlFJKKZViRn2Z9ng//PM61u9pTeg+Z1fk8oPz5wy43b/+678yf/58brzxxoOWf/WrX+WGG27g5JNPZufOnZx99tls2LCh3329//77/OEPf+CEE07g0UcfZfXq1axZs4b6+nqOO+44Tj31VADeeecd1q1bR0VFBSeddBJvvPEGJ598cs9+wlELwdDRFWL18w/w6oYDXHfddbz33nsALF26lJtuuonS0lIuvvhivvvd7x4Wyz/+8Q9cLhclJSUANDQ08Pjjj7Nx40ZEhObmZgC+/OUvc/XVV3P11Vfzf//3f3zlK1/hiSeeAKCpqYk333yTp556igsuuIA33niD3/3udxx33HGsXr2aBQsW8OMf/5jCwkJisRgf/ehHWbt2LfPnz++JIy8vjwULFvDKK69wxhln8PTTT3P22Wfr/a7UiAmFYxTQxoFAIf6S+VALrTtWk1s2N9mhKaWUUiqFaAvWIOXm5nLVVVdx++23H7T8hRde4Etf+hILFizgggsuoLW1lfb29n73NXHixJ5xUa+//jqXXXYZbreb0tJSTjvtNJYvXw7AokWLqKqqwuVysWDBAmpqag7aT8wyiMBFn7oIgFOOP5rW1laam5vZv38/77//PieffDLTp0/H6/X2JF4At912GwsWLOCb3/wmDz74YE91vry8PAKBAP/yL//CY489RmZmJgBvvvkm//zP/wzAlVdeyeuvv96zr/PPPx8RYd68eZSWljJv3jxcLhdz5szpifmhhx7imGOO4eijj2bdunWsX7/+sPdl8eLFPS14DzzwAIsXL+73fVQqkSJdLfgkBlnFVEyeS8h4aK1ZneywlFJKKZViUqoFazAtTcPpa1/7GscccwzXXnttzzLLsnjrrbcIBAIHbevxeA4a1xR/76asrKxBHc/v9/dMu91uotHoQeuNZVcPdHkCRIwbV6gTsItyPPTQQzQ1NfXckLe1tZWlS5fy4x//GLDHYHV3/zs07rfffpsXX3yRRx55hDvuuIOXXnppUHG6XK6DYna5XESjUbZv386tt97K8uXLKSgo4Jprrun1XlYXXHAB3/3ud2lsbGTlypWceeaZA75HSiWK1dkMgATymF5RyBZTSe6BdckNSimllFIpR1uwjkBhYSGXXHIJd999d8+ys846i1/84hc986tXrwagurqaVatWAbBq1Sq2b9/e6z5POeUUHnzwQWKxGHV1dbz66qssWrRocAHF7ITrsaeeJoiP1954nby8PPLy8li6dCnPPvtsz7ivlStX9jkOK157ezstLS2cd9553HbbbaxZswaAj3zkIz3Pv//++znllFMGFyN2cpeVlUVeXh779+/nmWee6XW77OxsjjvuOL761a/yiU98ArfbPehjKDVUsbD9A4Xbn0VRtp8a9yRyW3QMllJKKaWOTEq1YI0G3/jGN7jjjjt65m+//fae8VnRaJRTTz2Vu+66i4svvpg//vGPzJkzh+OPP57p06f3ur+LLrqIN998k6OOOgoR4eabb6asrIyNGzcOHIyxE6zMjAw+cvbFmGiI//vD/dTU1LBjx46DyrNPmjSJvLw8/vGPf/S6q/POO4/f/e53iAgXXnghwWAQYww//elPAfjFL37Btddeyy233EJJSQm///3vB/uWcdRRR3H00Uczc+ZMxo8fz0knndSz7qabbmLhwoVccMEFgN1N8DOf+QzLli0b9P6VSoRYyG5V9fjt1ujW3GnktSyDzkbILExiZEoppZRKJXJoZbpkWrhwoVmx4uB7z2zYsIFZs2YlKaLRrXbvPqrMXiiezr6GZsrMASiZBd7AwE9OYfqZUMPhmWee4tx/XEnzpx4gf/653H/vb7h867cw1z2HTDhh4B0opZRSakwRkZXGmIWHLh9yF0ERGS8iL4vIehFZJyJfdZYvEZHdIrLaeZw31GOpg4mxx2DhcmM8TlIV7UpeQEqlsO6bdXudFqys8pkAtNb2XxVUKaWUUipeIroIRoFvGGNWiUgOsFJEnnfW3WaMubWf56ohcJsYCODy4PJlYMJApAvJKEh2aEqlnO4xWL6AXYSmZMJ0wsZN2+4N5CUzMKWUUkqllCEnWMaYvcBeZ7pNRDYAlUPdrxqY4FQpFDd+r4cQXrzhLrQ0hFJHzjgtWB6f3YI1uTSPHaYMf50WulBKKaXU4CW0iqCIVANHA92VFL4kImtF5P9ERJtVEsgYg2BhEBAh4HUTwgvRULJDUyolGee7I94MAMpyA+yQCjJae68AqpRSSinVm4QlWCKSDTwKfM0Y0wr8CpgCLMBu4frfPp53vYisEJEVdXV1iQon7VkGXBg7wQJ8HhdhvLisMIyiwiVKpQoTccYveux7uYkIzRkTKAjW9twSQSmllFJqIAlJsETEi51c3W+MeQzAGLPfGBMzxljAb4Feb+5kjPmNMWahMWZhSUlJIsIZEyxjEAyIfQpdIkRdfntZLJzk6JRKQRGn9deT0bMonD8FD1Fo3pGkoJRSSimVahJRRVCAu4ENxpifxi0vj9vsIuC9oR4rmZ544glEpN/7U9XU1DB37tyEHfOaa67hkUce6XWdMYZ//8F/Mv6Yj2FZzlgst597HnyKkvJKFixYwOzZs/ntb3+bsHiUSmcSs8dgdbdgAXjG2fevC+/XcVhKKaWUGpxEtGCdBFwJnHlISfabReRdEVkLnAHckIBjJc3SpUs5+eSTWbp0aa/ro9GhdyGKxWKD3jYas/jLs89TVVHGK6+8AoB47QvDSz51IatXr2bZsmV897vfZf/+/UOOTam01z1+0fPBfeTyxs8GoGnXumREpJRSSqkUNOQEyxjzujFGjDHzjTELnMdfjTFXGmPmOcsvcKoNpqT29nZef/117r77bh544IGe5cuWLeOUU07hggsuYPZs+0IsGo1y+eWXM2vWLD796U/T2WmXfn7xxRc5+uijmTdvHtdddx2hkH0xV11dzbe//W2OOeYYHn744cOO/cILL7Bw4UKmT5/O008/3bP8lWXLmDV9Kv/v6kt7kj6v14eFgGUnauPGjWPKlCns2PFB96bbb7+d2bNnM3/+fC699FIAGhsb+eQnP8n8+fM54YQTWLt2LQBLlizh6quv5pRTTmHixIk89thj3HjjjcybN49zzjmHSCQCwI9+9COOO+445s6dy/XXX8+hN6+2LIvq6mqam5t7lk2bNk0TPzWquGJBYrjA7e1ZNr5yPE0mm+DeTUmMTCmllFKpJBH3wRo5z3wH9r2b2H2WzYNzf9LvJk8++STnnHMO06dPp6ioiJUrV3LssccCsGrVKt577z0mTZpETU0NmzZt4u677+akk07iuuuu45e//CVf+tKXuOaaa3jxxReZPn06V111Fb/61a/42te+BkBRURGrVq3q9dg1NTW8/fbbbN26lTPOOIMtW7YQCAR46MEH+MyF5/HJj3+M7//PBUQiEXweFxHcGMtuTdu2bRvbtm1j6tSpPfv7yU9+wvbt2/H7/T0Jzw9+8AOOPvponnjiCV566SWuuuoqVq9eDcDWrVt5+eWXWb9+PSeeeCKPPvooN998MxdddBF/+ctf+OQnP8mXvvQlbrrpJgCuvPJKnn76ac4///yeY7pcLi688EIef/xxrr32Wv7xj38wceJESktLj/h0KTVcXLEQEfHiFulZNqk4i/WmnNKmLUmMTCmllFKpJKFl2tPV0qVLe1p7Lr300oO6CS5atIhJkyb1zI8fP56TTjoJgCuuuILXX3+dTZs2MWnSJKZPt8dzXH311bz66qs9z1m8eHGfx77kkktwuVxMmzaNyZMns3HjRsLhMM89+yznn3Mmubm5HH/88Tz33HP4PW6ieHj4ib+yYMECLrvsMn79619TWFjYs7/58+dz+eWXc9999+Hx2Pn166+/zpVXXgnAmWeeSUNDA62trQCce+65eL1e5s2bRywW45xzzgFg3rx51NTUAPDyyy9z/PHHM2/ePF566SXWrTu8O9XixYt58MEHAXjggQf6fc1KJYOdYPkOWpbhc7PPO56c9prkBKWUUkqplJNaLVgDtDQNh8bGRl566SXeffddRIRYLIaIcMsttwCQlZV10PYS9+t3b/O9OXQfA+3vueeeo6WlmeM/9klEhM5gmIyMDD7+8Y8Txc0lF/wTd969FFyH589/+ctfePXVV/nzn//Mj3/8Y959t/8WQb/fHtflcrnwer098bhcLqLRKMFgkC9+8YusWLGC8ePHs2TJEoLB4GH7OfHEE9myZQt1dXU88cQTfO973xvwfVFqJLmtENFDEiyA9uxq8lpegmArBHKTEJlSSimlUom2YA3gkUce4corr2THjh3U1NSwa9cuJk2axGuvvdbr9jt37uTNN98E4E9/+hMnn3wyM2bMoKamhi1b7G5G9957L6eddtqgjv/www9jWRZbt25l27ZtzJgxg6VLl/LzO+9i01vPsfWdV9m+fTvPP/88XV1dGJfbvjNW7PAbDluWxa5duzjjjDP4n//5H1paWmhvb+eUU07h/vvvB+xxZcXFxeTmDu5CsjuZKi4upr29vc+qhyLCRRddxNe//nVmzZpFUVHRoPav1Ehxx0JEXf7Dlpuiafa/9e+PdEhKKaWUSkGaYA1g6dKlXHTRRQctu/jii/usJjhjxgzuvPNOZs2aRVNTE1/4whcIBAL8/ve/5zOf+Qzz5s3D5XLx+c9/flDHnzBhAosWLeLcc8/lrrvuwrIsnn32WT529rm4nPtgZWVlcfLJJ/PnP/8ZXM4A/egHCdZnP/tZVqxYQSwW44orrmDevHkcffTRfOUrXyE/P58lS5awcuVK5s+fz3e+8x3+8Ic/DPr9yc/P53Of+xxz587l7LPP5rjjjutZd9ddd3HXXXf1zC9evJj77rtPuweqUclthXtNsDLLZwDQUrthpENSSimlVAqSQyu+JdPChQvNihUrDlq2YcMGZs2alaSIRq+G9hB5LRuRzALcBRN6lu9v7qC0czMmpxzJKUtihMNHPxNqOLz2wzOZFGin6ttvH7T8zU27WfSnOeyZ90XGf/q/khSdUkoppUYbEVlpjFl46HJtwUpRlgHBIHLwKfR6vUSMGyty+DgopVTfvCaE1UsL1qSyInaZccTqtIugUkoppQamCVaKMsbgwiCHFLLwe1yE8GKih4/BUkr1zWvCxNyHJ1iluX5qpJJA67YkRKWUUkqpVJMSCdZo6sY4WhhjEAGk9wTL1UuRi3SgnwU1HIwx+EwYq5cES0RoypxIYXBnz028lVJKKaX6MuoTrEAgQENDg15YH8IYC+CwLoJulxARHy4Tg1g0GaENG2MMDQ0NBAKBZIei0kwoahEggvEcnmABhPKm4DNhaNk1wpEppZRSKtWM+vtgVVVVUVtbS11dXbJDGVVaOoM0hQ9ARgT8DQeva22lyWqGhvegjwvGVBUIBKiqqkp2GCrNhCIWfsKE3b0n795xM2AfhPZtxF9QPbLBKaWUUiqljPoEy+v1MmnSpGSHMer8z9Jn+famxXDhL2HW5Qet++97n+Lftl4Jn7wL5l2WpAiVSh2haAy/RAh5ek+wcsfPgbXQuHMd5bPOGeHolFJKKZVKRn0XQdU7010l0Hv4BWFe+VSixkX4wOYRjkqp1BSMWPiJ9Pp9AhhfVUWTySa0d9MIR6aUUkqpVKMJVooy4S57wpNx2Lrq0gJ2mnF07d04wlEplZpC0RgBwkgfXWqri7PZairwNGqpdqWUUkr1TxOsVBV1EqxefnGfXJLFdlMODVtHOCilUlMoEiMgEcR7+A8WAAGvm/3eKnI6akY2MKWUUkqlnGFPsETkHBHZJCJbROQ7w328MSPaTwtWkZ1gZbbXgGWNbFxKpaBQyP4+ufroIgjQnjOZvFgjdDWPUFRKKaWUSkXDmmCJiBu4EzgXmA1cJiKzh/OYY4VEnPtc9XJBGPC6aQhMxGuFoHX3CEemVOqJDCLBMkXTAbDqtJugUkoppfo23C1Yi4Atxphtxpgw8ABw4TAfc0yQWN8tWADRgsn2RINeDCo1kGioEwC3r/fvE0BGxUwAWmrXjUhMSimllEpNw51gVQLxd+asdZb1EJHrRWSFiKzQe10NnivadwsWgL9sBgCmfstIhaRUyupuweovwSqdMIOIcdO2e8NIhaWUUkqpFJT0IhfGmN8YYxYaYxaWlJQkO5yU4Yo5Zdr7aMEqKZtAuwloJUGlBiEaHjjBmlyazw5TiqnT2x8opZRSqm/DnWDtBsbHzVc5y9QQua2+74MFMHlcNttMOSG9F5ZSA4o5LVgef98JVkmOnx1SSUbrtpEKSymllFIpaLgTrOXANBGZJCI+4FLgqWE+5pjgjjldBPtowZpcks12U463SUu1KzWQmNOC5e0nwRIRmjKrKQzWQiwyUqEppZRSKsUMa4JljIkCXwKeAzYADxljdIR4AnisEBYucHt7XV+eG2CnVJDVtRciwRGOTqnUYjnfEY8/s9/tIoXT8RDVe8wppZRSqk/DPgbLGPNXY8x0Y8wUY8yPh/t4Y4ExBq8VIuryg0iv27hcQkd2NYKBRu3SpFR/LKcFyzdAguWvnAdA2861wx6TUkoppVJT0otcqCMXiRn8hIm5/f1vWDTN/rdBKwkq1Z+Y04Ll9vV9HyyAcZPnETUummtWj0BUSimllEpFmmCloGA0RoAwMVf/F4OZFfaNUaNa9UypfplI933l+v9OTa8spsaUYe1fPwJRKaWUUioVaYKVgkIRi4AM3IJVVTqOfaaAzj1aql2pfoXtGw3j7b+LYEm2n23uiWS16I8WSimllOqdJlgpKBSNESCCNcCv7ZNLstlqVWAd2DRCkSmVmiTiJFi+/hMsEaEleyqF4T0Q7hiByJRSSimVajTBSkHBiEWAEKaPEu3dpo7LZrOpIrN1CxgzQtEplXpc0e4WrKwBt42VzMaFwdqvLcNKKaWUOpwmWCkoGImRJUEsT/8Xg9l+D/WBanyxTmipHaHolEo97mgnUdzg8Q24bfb4+QA0aaELpZRSSvVCE6wU1BWJkUkI/AP/2h4unGFP1Omv7Ur1xR0LEpL+u9x2q5g0ky7j01LtSimllOqVJlgpqCMUJYsg4ssecNtAxWwArAMbhjsspVKWO9ZFeICqnN2ml+ez2VThqtNKgkoppZQ6nCZYKagzHCNTgrgGuCkqwPjKKupMHh21741AZEqlJm+si7Cr/zGN3bL9Hmq91RS0bdaxjUoppZQ6jCZYKagzbHcRdAdyBtx2amk271uVxHRAvlJ98llBooNswQJoLZhDTqwZWvcMX1BKKaWUSkmaYKWgrlCIDAnjCQzcRbCnkmCLVhJUqi8+q4uoe3AtWADeqqMB6NyxYrhCUkoppVSK0gQrBYU62wHwZgzcgpUb8HLAX40v1gGtu4c7NKVSkt8EiQ1w24N4JdMWEjNC45blwxiVUkoppVKRJlgpKBpsA8AziC6CAOHC6fbEAe0mqNShjDH4TeiIEqw5E8t431Rh7X5nGCNTSimlVCrSBCsFxYIdAIhv4DLtAP6KOYBWElSqN8GIRQYhjGfgojHdirP9bPVMJb95nXa9VUoppdRBhpRgicgtIrJRRNaKyOMiku8srxaRLhFZ7TzuSki0CoBYyG7BYpAJVlVlFXUml87d64YxKqVSU1swQqaEBv196taSP4fcWBO07R2myJRSSimViobagvU8MNcYMx/YDPxb3LqtxpgFzuPzQzyOimM5LViDvSCcXprNFquK2D69b49Sh2oNRskghHsQtz2I56laAEDXzpXDEJVSSimlUtWQEixjzN+MMVFn9i2gaughqQGF7SIXDOJGwwDTSnPYbCrJ0EqCSh2mrTNItgRxBXKP6HnjptuFLho2/2OYIlNKKaVUKkrkGKzrgGfi5ieJyDsi8oqInNLXk0TkehFZISIr6urqEhhO+pKeBGtwLVi5AS8HAlpJUKnedLU1AuDOKjyi582fVMlWU0GsVgtdKKWUUuoDAyZYIvKCiLzXy+PCuG3+HYgC9zuL9gITjDFHA18H/iQivf48bIz5jTFmoTFmYUlJydBf0RjgDjXbExkFg35OpHCmPaGFLpQ6SMhJsDxZg/8+ARRm+djim0VR8xqwrOEITSmllFIpyDPQBsaYj/W3XkSuAT4BfNQYu/+ZMSYEhJzplSKyFZgO6F05E8AXbrYnMgf/i3ugai4cgNi+dbin/dPwBKZUCoq02wmWP6foiJ/bNu5Ysve8gKnfjIybmejQlFJKKZWChlpF8BzgRuACY0xn3PISEXE705OBacC2oRxLfcAfaSXsygCPf9DPmVBZxT5TQGftu8MYmVKpJ9rRBEAg58i6CAJkTf0IAPUbX0toTEoppZRKXUMdg3UHkAM8f0g59lOBtSKyGngE+LwxpnGIx1JANGaRZbUS8h7ZgPwZpTlstqqw9mslQaXiWV12gpXxIVqwps8+hkaTTfv7byQ6LKWUUkqlqAG7CPbHGDO1j+WPAo8OZd+qd63BKHm0E/blH9Hzpo7L5j4zgY+0PA9WDFzu4QlQqRRjuloAcGUe2RgsgKnjcnhFZjDngJZqV0oppZQtkVUE1Qho7gxTIO1Y/vwjel6Gz01D5mQ8JgyN2ltTqW7dLVhk5B/xc10uoS5vAeNCO6GjIbGBKaWUUiolaYKVYpo6I+TTjsk48vEikZLZ9sQB7SaoVDfT1UQYL3gzPtTzXRNPAKBj298TGZZSSimlUpQmWCmmri1EvrTjOcJ79gDkVM7BMkJ037phiEyp1OQJNtPpyfvQz6+c/RHCxk39+lcSGJVSSimlUpUmWCmmoaWNQtrwFVQc8XMnV5aww4yjc5dWElQKwBhDVqSBLt+RF7jodtTkMtaYqXh3aqELpZRSSmmClXI663fhEkNm8YQjfu6M0hw2mQlInd5sWCmwu9wW0Uw0o/hD7yPT56EmZyGlHRuhqzlxwSmllFIqJWmClWKizbsAcOVXHfFzJxVn8T7jyWrfAZFgokNTKuXsawlSIi2QXTqk/ZhJp+LGomOzdhNUSimlxjpNsFJNy27739wjT7B8Hhct2VNxYUH9pgQHplTq2d/SSTEtePLKhrSf6qNOpcv4qH/3+QRFppRSSqlUpQlWinG1OQlWXuWHer41rruSoHYTVKqxYT9eiZFRUD6k/SyYVMYqZpBR+3qCIlNKKaVUqtIEK4WEojFyg7vp9OSDL+tD7aOwaiYh4yGy973EBqdUCuqot3+wyC488qIx8XweF7vyFzEuuB3a9iciNKWUUkqlKE2wUsiuxk6mSy2dedM+9D6mlhewzVTQVauVBJWKNtsJlif/w7UIx/NMOR2A1g0vDXlfSimllEpdmmClkG0H2pkmtZhxsz70PmaU5bDRjMddvzGBkSmVmqS1u8vtkY9pPNT0BSfRajJpWqfjsJRSSqmxTBOsFLKz5n1ypYvcCfM/9D4mFGaylQlkBfdpSWk15vk69mDhgpyhjcECmFNVyAqZTfaevycgMqWUUkqlKk2wUkio5h8A+Ccc86H34XYJ7fnT7Zk6bcVSY1tOaB9t3iJwe4a8L7dL2Fd0IkWRvdCwNQHRKaWUUioVaYKVIiIxi8L65YRcGVB21JD25S7triS4PgGRKZWagpEYRbF6OgNDb73q5pt5NgBNq59O2D6VUkoplVqGlGCJyBIR2S0iq53HeXHr/k1EtojIJhE5e+ihjm2rahpZZK2ltWThkH9tL6maSpvJILRbKwmqsauuLUS5NBDJTlyCtfDoY9hiVdC1/q8J26dSSimlUksiWrBuM8YscB5/BRCR2cClwBzgHOCXIuJOwLHGrLXvvMkU115yFlw45H3NKMtls6kitEcrCaqxa19LFxXSgCSgwEW36uIsVvoWUtKwEkLtCduvUkoppVLHcHURvBB4wBgTMsZsB7YAi4bpWGkvFI2Rse5BorgJzBt6gjW9LIfNVhW+pvcTEJ1Sqamxbi8BieArmpDQ/QYnfQwvEcLvv5zQ/SqllFIqNSQiwfqSiKwVkf8TkQJnWSWwK26bWmeZ+hCeW76RC6wXaZx4LmSPG/L+KvIC7HJVEgg3QWdjAiJUKvV01u0AILukOqH7rT76o7SZDOrf+XNC96uUUkqp1DBggiUiL4jIe708LgR+BUwBFgB7gf890gBE5HoRWSEiK+rq6o706WmvKxyj84X/Jlu6KD772wnZp4jQmTfVnqnblJB9KpVqIo07AcgsSWwL1vHTynmT+WTteAGsWEL3rZRSSqnRb8AEyxjzMWPM3F4eTxpj9htjYsYYC/gtH3QD3A2Mj9tNlbOst/3/xhiz0BizsKSkZKivJ+3c96c/8Jno09RNvxRXxYe//9WhXCUz7Il6TbDU2NR9k2HJGz/Alkcm4HWzd/x55EUbCG9ZltB9K6WUUmr0G2oVwfjyWxcB3WXpngIuFRG/iEwCpgFvD+VYY9HDf/4Li7d/l8asKZRefEtC951fMYUu4yO6X++FpcYmf8cewnghqzjh+64+8VO0mgzq3/hjwvetlFJKqdFtqHfXvFlEFgAGqAH+H4AxZp2IPASsB6LAvxpjtK/MIIWjFo8v/TUf37KEsDeXwuufBH9OQo8xZVwu20w5E/ZuJLF7Vio1ZIX20+IdR4lIwvf9kZlVPC0nct7OZ+1qgv7shB9DKaWUUqPTkFqwjDFXGmPmGWPmG2MuMMbsjVv3Y2PMFGPMDGPMM0MPdWx4Z+0aXv+fT7J463dozaom/8uv4M5PXBnpblPGZbHFVOJq2JzwfSs12hljyI8eoCNQNiz797pdtM66DL8J0vzG3cNyDKWUUkqNTsNVpl0dgZhlePvNl3nplkuZ8+gZfCTyJttm/ysVX38NV17FsByzuiiLraaCzM49EO4clmMoNVo1dUYopz6hNxk+1MfOPp9/WLNwv/FT6GoatuMopZRSanTRBCtJLMuwYd1qlv3fv7PpPxay6LlP8pGOF9la9Un48komX/Jf4PEN2/EDXjfNmZMQDDTo/bDU2LKvqZ1SmiDBBS7iVeZnsHHBdwlE29jzu3/GdDXT3NbBX596iDXvrhm24yqllFIquYY6BksdgabGBra98yIdm16hsu4VZpldzAJqvFNZN/u7TPvY55iVUzhi8VhF0+zi+nWbofyoETuuGrxgJEZbZ5CO1ka6WpsItTcQ7mgm1NVONNiBFelCIl0QDSKRIBIL4ooGMcbCsixcAiL2LykuESyXG8sdIOYKIL4AXn8m3kA23pwiArnFZOSWkFVQQm5BCX7f8CX4ydaybxtuMXiLqof1OP984Sf4Q+3XuLb+p4T+ZxoZxnCeRFj93rEw76VhPbY6ctGYRVtXmM72FsJdrYQ72ogE24h2tRGNhIiGQ0TCIbCiiBVBrCguK4IRwcKNJW5wufF4vHi9Xrz+DNyBXDwZOfiy8vBl5pKTV0hedhYyDGP/lFJKjQ6aYA2j+rr9bF/5AuFtr1HcsJyp0a0cK4aIcbM9Yy5rpl5O9UmXUF0+JSnxZZXPILZHcNVtQv9XP7yMMbQFIzQ1NdPWtI+upn2EWvYTbavDdDTg6qzDG2rEG27FH20jw2ony3SQQycl0sVgb2AQQwjhx3Iapw1g4s6uhxh+Qrgx/e7HMkKD5NLkLqbdP45IZhkmtwJvQRVZxRMpKK+msLwatz/rQ74jyRXaZ9+eIKti5rAex+t2ce2Xvs+LLx2Pf8MjBLwe5ux7ksnhTWCMnf2qhAuHIzQ3HaCl4QAdzQfoamkg3FaP1dWIq6sJd6gZX7gZf6SVzGgLAdNJhtVJJkEKJETBMMfXZXw0SR5t7nw6vUWE/YVEM0sgqwRfXhmZRZXkllRSVDaezOwC/ZwopVSK0QQrgQ7s3UXNqheIbnudcU0rmRyroVgMIeNle2Amqyr/hdyZp1G94HSmZ+YmO1yqywrZYUop27uBzGQHk6KMMTS1ddJ4YBdtB3bR1bibaMseaN2Lt3M//lADmdEmcmItFNLKRAn3up8gPloll05PHmF/DhHvROp9uRzw5yGBPCQjD3dmPt7MAnzZBQSycsjIzCaQkYXHn4nbnwmeDNxuL5kDXYwZA7EIVqSL9o522ltb6GipI9RaR7itgVh7A1ZnI9K+H3/XPnKCeynqeJf8+vbDdtVCNk2ecXQESglnVSB5FfgKJ5AzbiKFFZPJKp4AHn8i3urEatgCQP74WcN+KLdLOOtjZ8PHzgbg5T+Uc8b2/yXcvBdfwfCMsUxH4UiUhrq9NB7YTUf9boLNe7HaDiCdB/B11ZMZric72kS+1US+aWWcGMb1sp8YQhvZdLhy6HDnEvQX0+bLwXizwJ+D+LNx+bMRfw6uQA5ufzbujGy8Pj9+nx+vz4/L40PcXozbg7h8iIBYUcRYGCtKMBQmHA4TDnYS6Wol1tWKFWrDCrYR7WrFdDbi7mrAH6wnL3KA3OAm8ptb8Ih1WLydxk+Tq4A2bxFBfzHRrFIkuxRffjmBwkrySqooKB2PN7sEXKnZ698YQygcJhTstN+zYBfhcBeRYBfRcJBo2P43Fu7CigSJhUOYaBcmEsSKhiEShGgQoiEkFkKsEB4rjMuKIiaGGAuMZU9jId3Txoqbt3ARQ5yfpAxi/1Al3UsEIy5M9xbOciMue133tuK2l4krbtr51+XGiBvi1kv3Mlf3cntaXPHT3evt6Z6HuMDtRsSDuF2Iy4PL5QKXB5ezD3F5cLndiNuNS5xpZ5nL7Xa2s1tfDWK3wmKwLIMxFsaynH8NxhgwMYxlYRkDxgIrhsHYyywDWGBZGGMwJgbG3s8Hy+xzYSz7+QZj78N0/+jn7Bdj/2cs+/9Zxtg/C/asMz3/2nFhH9sYDAbp/jd+P860/VyLg35nlO6jS89M93nu+ZwiSM/noft59rz0PNfZmXyw/qD9da84ZL/07PuDdR8s72Pf8bF2H0fiXswhR+h+e+NCP3gB9nsjPVsfvE7i5qWfdb3Nx0d80H7NweEedAxz8D7asquZccxpjC9MjStWTbCGYP+eHdSs/Bux7a9T0bSCalPLOOz/IW7PmMOK8nPJn3Uak446lZn+0feBmFKSzVZTSWmd3my4N8YYGppbqK/dSuv+7QTrazDNtbg69pERqic3Uk+h1UixtHBox86ocdkXRZ4CghlFNASmU59ZjCu7GE/OOPx5pWQVlJJdVE5m/jgCvmwCI/UrtQh4fLg8PnIz8sgtrhzU01rbWqjbU0Prvh101O/Eaq7F3babQNd+cjv2UtH2LgX7D0/Cmsml3Z1H0JNH2J9P1J9PzJ+PFSjA5c/G48/EG8jC7c9CfBm4vBm4vD7cLsHt8uByu8C5eLEQojFDLBq2H5Ew0WgUKxbGioaJRaJYsQgmZl90mWgQE7EfOBdkEgsyvvEdWskiN6e3S/Dh5SqfD9uhYesKyhdeMOLHH41aO7vYV7uD1gPbCTbsIta0G3f7bvyd+8gOHaAgVk+xaaJcLA4tSxLCS5MU0O4poCOjgqbAfKzMEiSrGF9OEYG4bq9Z+aW4M/LId7nIT8YL7YexYrQ319F4YDdtdbV0Nu4m2rIP2vfh6TxARqiegvYtFLa+TY50Hfb8KG6aJJ8WdwEhdw4RbzaWNwvLm23f5sOfjfFmIW4fLo8XcXsRjw+3x4PL7QWX174M674Adv7FuciOxWLEYlGsaAgTCWGiQYiGIRqCWAhiYSQWxhUL2f9a9rTLiuB2Eh63ieA1IbwmgteE8RLBZyL4CRMQQ2CI72EYD2F8RPAQFh9RPFi4epIHIy4s3BgRDG4scTmJjwsLL5b44y5F7Yt0+68OdpKGnaBhwOVcsPds0/Ov5aRmFi4T/2/MnsbCOXrPejdx/0r/vQuUGqt+Hz2b4LijNMFKR/X7d1Oz/C/Etr1GedMKJpg9lALtZLA9Yx7LKy+mcPYZVM87iTne0T9+ZUpJFg+bCs5sXQOxKLjH1schGrM40NhIw85NdOzfSrhhB7TUEujYTW5oH8WxAxRLC/G3obWM0OTKp9VTRGdWGbsyj2JndhmevHL8hVXkFFWSXzaBzPwySlzuQXftSwW5OXnkzjgKZvQ+Xi9mGfY2NtKwZzut+3cQatiJadmNr3Mf3lAzvkgLmaFaCsx68mkno4/WvOFiGSGIj5D4iOBlY/HZLEpC16vcSUfD36F9xzswRhKsto5O9u/aQsueLQTrtkLTDvxtO8kO7qMgdoBi08z0Qy4su/BT7yqh1TeO2tzJ7Mwqw5VbSiC/nKyiCvJLKskrrsSfkUdZGnShE5eb7MIysgvLYOaxfW5nWYaGlmYa9u+ivW43nY27ibTshfb9BIJ1ZIYb8EXbyY00ErA6yTSdZBHEK8N3K8qIcRPGQ0S8RLAfUXEeLh9R8RF2ZxJz+7FcPiy3D8sdwLj94PZhPAHE4wdvAJfHj3gCuHwBXF4/Hl8Gbl8Gbl8Ary8Djz+A15+Br/sRyMLrDyBuPz6Xi9H/f96+GWOIWcZOZK0Y0WjUno7FsGJR+2HF4pbFsKwoVszCikUxcesw9nJj2c8xzrYmFsNY9sMyFsRiGCuKS+yET4w9dtduPRNnrKDL/tflRkQQJzEVlwvBnheXncCK2NuKy223hLhcPevFaaGz1zv7FMHlctPdUoPTIohIz7Hs5YJg76dnvctlJ78i0H1cZ58Hb4u9H8SOAxfdA5RFxGnRgu6E2Z4yBy23W8o+mI47aQf/e9B6q+99dLfUmJ6jfdAq50wL3a1zcfvoddvu/ccd/6AWskOaiQ5r4Yrfll67JPeEIIds28t+zCHz3c87tI3L3m9vXeWl1+Od5culYNzI/yj6YY2tK+ojZMVibFnzBvXv/Jmiva8wLbKZYjG0kcG2jKPYW7mY4rlnMmnuiczzeJMd7hErzPKxxzset4lC8w4oSs5YsOEUiVns3l/PgR0baN+ziVj9VrytNeR37aQstpcKaSK+k1YQH/XuElr9ZezKmsXOvPF4iyaQXTqZooop5JSMp8jjoyhpr2j0cruE8uIiyouLgIX9bhuKxmjs6KCrvZWOjg6CXW1Egx2YSBcm3ImJRYlZMSzLLtbR3cXHJeBxCS6PF7fHi8vjw+3x4XZ7cHl9eDw+PF57ndufidsbwJeRTSAjA5/XT6bL1dMdNll/pqdPqGSHGYfZuzZJESSeMYam1jb2bnuP1l3ridRtwd2yg6zOWkqieykz9UyNS6DCxs1+dxmtvlJq8z5CbU4F3sIqMosnkFNaTUHZJDKy8hmfBolTorlcQlFBAUUFBTBz/qCeE47EaOrsINrVSjQaIRoOE4uGiETCWNEo0WgYYpGeC1xxLq4RNy5n2uP24PW68XgD+PwZeP0BvP4APl+GXdBjeF/2mCAiuN2C253KaaJSCjTB6tfbf/ohJ2z9OVON8L53Om9PvJ6ioz/O5HkncZQn9d86ESFUMB0agQPrUzrBCkZibN9ZS/321XTtXoe7YTMFHVupjO6kWpqpjtu2SfJpDFRRl/0R9udPxjtuKjllUymumkpGfilVelE37PweN/68XMhL/ljEkZbl97DKO4XpzRuSHcoRs2IWu/fsYt/WtbTvXo80vE9O+3ZKwzupMHUUxiVRjZJPo6+C+pyj2Zc7EU9RNVllUymqmk5+6QTGj7EW82Tyed34xuj3TSmlkkH/D9ePqhMvYXleBVNOOJ8Z4wY3TiXVZI2fT6TBjXvXClyzzk92OAOyLMPOAw3s2bic9p2rcddvJL99K+Nju5glzT3bdRFgv38iBwpO4kDRFDLLp1M4fhb5ldMoCOQNe5UwpfrTWLiA0gNvYlr3ILmjr9CFMYb9LV3UbFlH2/YVuPetpaB1A9XhLYyXNrrvHhbExz7veBrz53GgcBr+spnkT5hD6cRZFGbkHDY2USmllBoLNMHqR9XUuVRNnZvsMIbVgsnlrHtnIlO3/4PsZAdziGAkxsZdB9j3/grCO1eS1fAelV2bmEot1U61LTuRqqau+GQaxs0id8JcSiYvIKNwAtUpWlFLpb+MGR+FA79i9zvPUXXatUmNxRjDvuYOtm1cTeu2Fbj2raW4bQPTzHZOcIopRPCw21tNTclp1IybQ+74OZRPmU9m8UT9nimllFKH0ARrjDuuuoBnrOnM3b8MIl3gzUhKHOGoxfu769i18W2CO1aRWb+W8cHNzJVaFjjJVIsrjwN5s9g87hyyqhdSNmMRGUV6gadSz4LjTuLAq/mE1j4BI5hgGWPY19TK9g2raNu2AveBtZS0bWSa2cFJEgIghI99GVPZU3Q+DeOPpnjaInImzKPa4z+oq61SSimleqcJ1hhXnpfBe5mL8ISfhe2vwfSzhv2YMcuwdU89uza8TeeOlQTq36WqaxMz2MUcJ5lqdeXRUDibHWXnkTflOIqmLSIvbzx5Oj5KpYFxuZn8OetMzm14kljrPty5ZQk/hjGGvQ1N7NywgrbtK/AeeJdx7RuZYnZSLlEAOslgX+Y0aoo/TcbEYyifcTyB8llM1PFRSiml1Iem/xdV5M86nfbVt+Bb8zC+BCdYMcuwfW89uzYup3PHSjLq1lLeaXfzm+6UDW515VGfP4vtZeeQP2URxdMXkZs3nlxNplQayz75c/DcE+x4/IdMvvpXQ9qXMYY9Bz740cJ3YC2lHZuYZGqpcH60aJNs9mbN4P2SU8mceAwVM08gs3Qak7UFWCmllEooTbAUFyycwqMrT+aK9Y9DyxLI+3AFPWKWoWbPPnZvfJuOHasI1K+jvHMTU9jNVCeZapFc6vJmsa30bHKnLKJ0xvHk5msypcaeU084kWdeOZfzti9l75unU37i4kE9Lxaz2LlzG/s2vU2wdi0ZDeso7drCRLOXSqeKX5Pksy97ButLziar+lgqZ51ATkk1Ofo9U0oppYadGHP4rcIG/WSRB4EZzmw+0GyMWSAi1cAGYJOz7i1jzOcH2t/ChQvNihUrPnQ86sMxxnDDr5/kv/d9DsYfT8bVj4LH3+9zWtqD1GzdQMOOd4nuXU9m03oquzYzkX09d6JvchVQnz2T6Lh55E1ZSOnME3Hnj+/1JnZKjUU799XRfNd5zGczG4rPwnf0peRUTMcdyKOjvYXWpjq6GmoJHtiCq2kb2e07GB/ZTqG09exjn6uUhuzpRMfNJbt6IRWzTiCjsFK/Z0oppdQwE5GVxpjDbv45pATrkAP8L9BijPmRk2A9bYw5ohJ8mmAlz/b6Du658z/4ofkVDRnVNE75FLGiqYRiLoJdHYSa9mBaavF17KE4tJMJ1h78Eul5/gHXOOpzZmKVzid/ynGUzViEJ3/0lZ9WarSp3V/Pmj99nzObHyFDwn1u10wO9b5KWnOmIWVzKZhyLJUzFuLN0psOKKWUUskwrAmWiAiwEzjTGPO+Jlipqaa+g8cevJsz99/DAtfWw9YH8dHkLqYpYwLhgmkEymZRNGk+xdVzkUy9yFNqKPY1NLFr7atEmvfgDrfhzsgmM6eIzKJyxk2cTWZecbJDVEoppVSc4U6wTgV+2n0AJ8FaB2wGWoHvGWNe6+O51wPXA0yYMOHYHTt2DDkeNTRNHWH27NlFtGkXGR4XGZmZFJdNICOvRLsdKaWUUkopxRASLBF5AeithvC/G2OedLb5FbDFGPO/zrwfyDbGNIjIscATwBxjTGt/x9IWLKWUUkoppVQq6CvBGrCKoDHmYwPs2AN8Cjg27jkhIORMrxSRrcB0QLMnpZRSSimlVNpKxA1QPgZsNMbUdi8QkRIRcTvTk4FpwLYEHEsppZRSSimlRq1E3AfrUmDpIctOBX4kIhHAAj5vjGlMwLGUUkoppZRSatRKWJn2RBCROmC0VbkoBuqTHYQaMXq+xw4912OHnuuxRc/32KHnemwZjed7ojGm5NCFoyrBGo1EZEVvg9dUetLzPXbouR479FyPLXq+xw4912NLKp3vRIzBUkoppZRSSimFJlhKKaWUUkoplTCaYA3sN8kOQI0oPd9jh57rsUPP9dii53vs0HM9tqTM+dYxWEoppZRSSimVINqCpZRSSimllFIJogmWUkoppZRSSiWIJlj9EJFzRGSTiGwRke8kOx6VOCIyXkReFpH1IrJORL7qLC8UkedF5H3n34Jkx6oSQ0TcIvKOiDztzE8SkX843+8HRcSX7BhVYohIvog8IiIbRWSDiJyo3+30JCI3OH/D3xORpSIS0O92+hCR/xORAyLyXtyyXr/LYrvdOe9rReSY5EWujlQf5/oW5+/4WhF5XETy49b9m3OuN4nI2UkJuh+aYPVBRNzAncC5wGzgMhGZndyoVAJFgW8YY2YDJwD/6pzf7wAvGmOmAS868yo9fBXYEDf/P8BtxpipQBPwL0mJSg2HnwPPGmNmAkdhn3f9bqcZEakEvgIsNMbMBdzApeh3O53cA5xzyLK+vsvnAtOcx/XAr0YoRpUY93D4uX4emGuMmQ9sBv4NwLleuxSY4zznl851+6ihCVbfFgFbjDHbjDFh4AHgwiTHpBLEGLPXGLPKmW7DvgCrxD7Hf3A2+wPwyaQEqBJKRKqAjwO/c+YFOBN4xNlEz3WaEJE84FTgbgBjTNgY04x+t9OVB8gQEQ+QCexFv9tpwxjzKtB4yOK+vssXAn80treAfBEpH5FA1ZD1dq6NMX8zxkSd2beAKmf6QuABY0zIGLMd2IJ93T5qaILVt0pgV9x8rbNMpRkRqQaOBv4BlBpj9jqr9gGlyYpLJdTPgBsBy5kvAprj/nDr9zt9TALqgN87XUJ/JyJZ6Hc77RhjdgO3AjuxE6sWYCX63U53fX2X9botvV0HPONMj/pzrQmWGtNEJBt4FPiaMaY1fp2x72Gg9zFIcSLyCeCAMWZlsmNRI8IDHAP8yhhzNNDBId0B9budHpyxNxdiJ9UVQBaHdzFSaUy/y2ODiPw79tCO+5Mdy2BpgtW33cD4uPkqZ5lKEyLixU6u7jfGPOYs3t/dpcD590Cy4lMJcxJwgYjUYHf1PRN7jE6+060I9PudTmqBWmPMP5z5R7ATLv1up5+PAduNMXXGmAjwGPb3Xb/b6a2v77Jet6UhEbkG+ARwufng5r2j/lxrgtW35cA0pxqRD3sw3VNJjkkliDMG525ggzHmp3GrngKudqavBp4c6dhUYhlj/s0YU2WMqcb+Hr9kjLkceBn4tLOZnus0YYzZB+wSkRnOoo8C69HvdjraCZwgIpnO3/Tuc63f7fTW13f5KeAqp5rgCUBLXFdClYJE5Bzs7v0XGGM641Y9BVwqIn4RmYRd2OTtZMTYF/kgGVSHEpHzsMduuIH/M8b8OLkRqUQRkZOB14B3+WBcznexx2E9BEwAdgCXGGMOHWCrUpSInA580xjzCRGZjN2iVQi8A1xhjAklMTyVICKyALugiQ/YBlyL/YOifrfTjIj8EFiM3X3oHeCz2GMx9LudBkRkKXA6UAzsB34APEEv32Unyb4Du5toJ3CtMWZFEsJWH0If5/rfAD/Q4Gz2ljHm8872/449LiuKPczjmUP3mUyaYCmllFJKKaVUgmgXQaWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUGiVEpFpEjIh4kh1LuhORa0Tk9WTHMdqIyCkisinZcSilVCrTBEsppVRKE5ElIhIRkfa4x43JjisVGWNeM8bMSPR+ReRMEVklIq0isk1Erk/0MZRSarTQBEsppRJEW56S6kFjTHbc4+ZkB5RIqfzZEhEv8DjwayAPWAz8VESOSmpgSik1TDTBUkqpIRCRGhH5toisBTpExCMiJ4jI30WkWUTWiMjpcdsvE5H/FpG3nV/znxSRwj72fa2IbBCRNudX//93yPoLRWS1s5+tInKOszxPRO4Wkb0isltE/lNE3AO8jiki8pKINIhIvYjcLyL5cesaReQYZ75CROq6X5eIXCAi65zXu0xEZh3y/nxTRNaKSIuIPCgigSN/p4+ciHzHeV/aRGS9iFzUx3YiIreJyAHnvXxXROY66/wicquI7BSR/SJyl4hkDPL49zjbP+/E8IqITIxb/3MR2eUcc6WInBK3bomIPCIi94lIK3CNiCwSkTed93mviNwhIr645xgR+aKIvO8c7z+cc/d35xgPxW/fR8yni0jtYF7fESgEcoF7jW05sAGYneDjKKXUqKAJllJKDd1lwMeBfKAU+Avwn9gXlt8EHhWRkrjtrwKuA8qBKHB7H/s9AHwC++L0WuC2uCRnEfBH4FvOcU8Fapzn3ePsdypwNHAW8NkBXoMA/w1UALOA8cASAGPMVuDbwH0ikgn8HviDMWaZiEwHlgJfA0qAvwJ/PuRC/hLgHGASMB+4ptcARE52koe+HicP8BoOtRU4BbvV5IdO/OW9bHcW9vs33dn2EqDBWfcTZ/kC7PezErjpCGK4HPgPoBhYDdwft265s99C4E/Aw4cknxcCj2Cf3/uBGHCDs68TgY8CXzzkeGcDxwInADcCvwGuwD6fc7E/qx+akyj3dX5+2dtzjDH7sT8j14qIW0ROBCYCOgZOKZWejDH60Ic+9KGPD/nATmqui5v/NvYv9fHbPAdc7UwvA34St242EAbcQDVgAE8fx3oC+Koz/Wvgtl62KQVCQEbcssuAl4/wdX0SeOeQZU8B7wJrAb+z7PvAQ3HbuIDdwOlx788VcetvBu5K8DlY4ryHzXGPil62Ww1c6ExfA7zuTJ8JbMZOSlxx2wvQAUyJW3YisH2Qcd0DPBA3n42dJI3vY/sm4Ki41/TqAPv/GvB43LwBToqbXwl8O27+f4GfDbDP04HaRJ4fZ7/nA/uxE/8o8LlEH0Mf+tCHPkbLQ1uwlFJq6HbFTU8EPhP/yz5wMnZrVW/b7wC82K0SBxGRc0XkLad7XjNwXtx247FbaA410dnf3rjj/xoY198LEJFSEXnA6VLYCtzXS0y/xW4F+YUxJuQsq3BeAwDGGMt5fZVxz9sXN92JnWgk2kPGmPy4xx4RuUrsLpTd78NcenmfjTEvAXcAdwIHROQ3IpKL3SKXCayM28ezzvLB6jnXxph2oBH7PcPpOrnB6TrZjN16Vtzbc53tp4vI0yKyzzlH/9XL69kfN93Vy/xwvPf9EpGZwAPYLbc+YA5wo4h8fKRjUUqpkaAJllJKDZ2Jm96F3YIVf7GfZYz5Sdw24+OmJwARoD5+hyLiBx4FbgVKjTH52N3vJO44U3qJZRd2C1Zx3PFzjTFzBngN/+W8jnnGmFzsbmXdx0JEsoGfAXcDS+SDcWN7sJO67u3EeX27BzjeYcQuEd7ez+OUgffSs6+J2Anhl4Ai5/17L/41xTPG3G6MORa7RXE6dtfLeuykZE7ce5lnjDmSJKXnXDvvYSGwx3ktN2J3Ryxw4ms5JL74zxXAr4CNwDTnHH23r9czXMQea9fX+bmrj6fNBTYbY54zxljGmE3Y3WjPHbnIlVJq5GiCpZRSiXUfcL6InO2MNwk4hQOq4ra5QkRmO+OZfgQ8YoyJHbIfH+AH6oCoiJyLPVao293YY1o+KiIuEakUkZnGmL3A34D/FZFcZ90UETltgLhzgHagRUQqsROMeD8HVhhjPot9cdx9Mf0Q8HEnDi/wDewE7+8DvVGHMnaJ8Ox+Hq8dwe6ysBOUOrALhmBf6B9GRI4TkeOd+DuAIGA5rXG/xR77Ns7ZtlJEzo57rpG4Iia9OM8ZW+bDHov1ljFmF/b7HXXi84jITdhj7fqTA7QC7U6r0BcG2D7hjDFz+jk/n+/jae8A08Qu1S4iMgV7bOHakYtcKaVGjiZYSimVQM7F84XYrQt12C1K3+Lgv7f3Yo/P2QcEgK/0sp82Z/lD2GNz/hl7DFT3+rdxCl9gt3y8wgctSd1dsdY7z32Eg7so9uaHwDHOvv4CPNa9QkQuxC5S0X1B/3XgGBG53GmNuAL4BXaLz/nA+caY8ADHG1bGmPXYY47exO4mNw94o4/Nc7ETqSbs7o4NwC3Oum8DW4C3nG55LwAzAERkPNCGPS6tL38CfoDdNfBY7PcK7HF5z2KP/dqBndTt6m0Hcb6J/Tloc+J9cIDtRwVjF0m5DruYSyv2Z/VR4HfJjEsppYaLGHNoDwSllFLDRUSWAfcZY/TiMsWJyBXY3Qf/rY/192AXjPjeiAamlFIqqVL2xoVKKaVUMhlj7kt2DEoppUYf7SKolFJjhNg3vT2S4gQqDYnId/v4HDyT7NiUUiodaBdBpZRSSimllEoQbcFSSimllFJKqQQZVWOwiouLTXV1dbLDUEoppZRSSql+rVy5st4Yc9jN50dVglVdXc2KFSuSHYZSSimllFJK9UtEdvS2XLsIKqWUUkoppVSCaIKllFJKKaWUUgmiCZZSSvUjGInx2KpaOsPRZIeilFJKqRQwqsZg9SYSiVBbW0swGEx2KKNSU0cYHxGysrKSHcqoEwgEqKqqwuv1JjsUlcLueWM7c1+8iuXv/hOnXf3DZIejlFJKqVFu1CdYtbW15OTkUF1djYgkO5xRJRiJkbl/HxNdB4jlFOHOGZfskEYNYwwNDQ3U1tYyadKkZIejUtiWLRv5vHsdbF8Hrf8PciuSHZJSSimlRrFR30UwGAxSVFSkyVUvQlGLPOkAwHTUJzma0UVEKCoq0pZPNWSFjWt6pts2vJDESJRSSimVCkZ9ggVoctWHcDRGJiEAPFYIYjpGJJ5+blQilHVuJIKHdhOgddOryQ5HKaWUUqNcSiRYqneRmMFNjJD4nQUdyQ1IqTRjjCE72kKXt4DlZib+fauSHZJSSimlRjlNsAZBRPjGN77RM3/rrbeyZMmS5AXksCyL5avWcPInLmfBP13KrKMW9sS1bNky/v73vw9p/+eccw75+fl84hOfSEC0SqWeUNQiVzqJenM4kDGV/M4dEIskOyyllFJKjWKaYA2C3+/nscceo74+seOcjDFYlvXhn29FufprP+COn93KW397lNWv/oVLLrkESEyC9a1vfYt77713SPtQKpWFIhY5dBLx5hAsnIGHKDRsTXZYSimllBrFRn0VwXg//PM61u9pTeg+Z1fk8oPz5/S7jcfj4frrr+e2227jxz/+8UHr6urq+PznP8/OnTsB+NnPfsZJJ53EkiVLyM7O5pvf/CYAc+fO5emnnwbg7LPP5vjjj2flypX89a9/5Y477uCZZ55BRPje977H4sWLWbZsGUuWLKG4uJj33nuPY489lvvuu+/gcUVWjAMNjVRVVRJCyDYRZs+eQ01NDXfddRdut5v77ruPX/ziF8ycObPPOLdu3cqWLVuor6/nxhtv5HOf+xwAH/3oR1m2bFm/783DDz/MD3/4Q9xuN3l5ebz66qsEg0G+8IUvsGLFCjweDz/96U8544wzuOeee3jiiSfo6Ojg/fff55vf/CbhcJh7770Xv9/PX//6VwoLC/ntb3/Lb37zG8LhMFOnTuXee+8lMzPzoOOecMIJ3H333cyZY5+7008/nVtvvZWFCxf2G69SR6IrEiNHOon5KvGWzYa9ENrzHv5xM5MdmlJKKaVGKW3BGqR//dd/5f7776elpeWg5V/96le54YYbWL58OY8++iif/exnB9zX+++/zxe/+EXWrVvHihUrWL16NWvWrOGFF17gW9/6Fnv37gXgnXfe4Wc/+xnr169n27ZtvPHGGwfvyIpyw+cuZ+4xJ3DZv3yF3/7hTwQ7O6murubzn/88N9xwA6tXr+aUU07pN861a9fy0ksv8eabb/KjH/2IPXv2DPp9+dGPfsRzzz3HmjVreOqppwC48847ERHeffddli5dytVXX91Tze+9997jscceY/ny5fz7v/87mZmZvPPOO5x44on88Y9/BOBTn/oUy5cvZ82aNcyaNYu77777sOMuXryYhx56CIC9e/eyd+9eTa5UwgUjMXLoJObLoWjiXGJGaN6xNtlhKaWUUmoUS6kWrIFamoZTbm4uV111FbfffjsZGRk9y1944QXWr1/fM9/a2kp7e3u/+5o4cSInnHACAK+//jqXXXYZbreb0tJSTjvtNJYvX05ubi6LFi2iqqoKgAULFlBTU8PJJ5/csx8xMW664Xouv+5fefipp1n6xMM88NfXWPbK4ZXO+ovzwgsvJCMjg4yMDM444wzefvttPvnJTw7qfTnppJO45ppruOSSS/jUpz7V85q+/OUvAzBz5kwmTpzI5s2bATjjjDPIyckhJyeHvLw8zj//fADmzZvH2rX2het7773H9773PZqbm2lvb+fss88+7LiXXHIJZ511Fj/84Q956KGH+PSnPz2oeJU6EsFojGLpotOXy5SKYmpMGYF965IdllJKKaVGsSEnWCIyHvgjUAoY4DfGmJ+LyBLgc0Cds+l3jTF/HerxkulrX/saxxxzDNdee23PMsuyeOuttwgEAgdt6/F4DhpfFX8/pqysrEEdz+/390y73W6i0YPLsLtMDIAp06Zx9b/8P7552UcpOeqfaGhoOGxffcUJh5czP5Ly5nfddRf/+Mc/+Mtf/sKxxx7LypUrB/2aXC5Xz7zL5ep5fddccw1PPPEERx11FPfcc0+v3RQrKyspKipi7dq1PPjgg9x1112DjlmpwQo6Y7A6/LlMLMrkJcazsGlzssNSSiml1CiWiC6CUeAbxpjZwAnAv4rIbGfdbcaYBc4jpZMrgMLCQi655JKDuqydddZZ/OIXv+iZX716NQDV1dWsWmWXdF61ahXbt2/vdZ+nnHIKDz74ILFYjLq6Ol599VUWLVo0qHhcxuIvL7yGERduX4BN23bidrnIz88nJyeHtra2AeMEePLJJwkGgzQ0NLBs2TKOO+64QR0fYOvWrRx//PH86Ec/oqSkhF27dnHKKadw//33A7B582Z27tzJjBkzBr3PtrY2ysvLiUQiPfvpzeLFi7n55ptpaWlh/vz5g96/UoMVCnbilygEcvG6XdRnTKIgWAvRULJDU0oppdQoNeQEyxiz1xizypluAzYAlUPd72j1jW9846BqgrfffjsrVqxg/vz5zJ49u6cl5eKLL6axsZE5c+Zwxx13MH369F73d9FFFzF//nyOOuoozjzzTG6++WbKysoGFYtgce+jf2HGrDl89OQTuOqrN/HHX/0vbreb888/n8cff5wFCxbw2muv9RknwPz58znjjDM44YQT+P73v09FRQVgJ3+f+cxnePHFF6mqquK5554D4KabbuoZb/Wtb32LefPmMXfuXD7ykY9w1FFH8cUvfhHLspg3bx6LFy/mnnvuOajlaiD/8R//wfHHH89JJ53EzJkfFBN46qmnuOmmm3rmP/3pT/PAAw/0VE5UKtGiHU0ASEY+AKH8KbiwoKkmeUEppZRSalQTY0zidiZSDbwKzAW+DlwDtAIrsFu5mnp5zvXA9QATJkw4dseOHQet37BhA7NmzUpYjOnCGEPdnu2USCtSsYBgJEbowBay3THcZbMH3oHj0GqH6UY/P2ooXnvzDU557jxqz7idqtOu5g8PP8LV6/6F2OI/4Z718WSHp5RSSqkkEpGVxpjDqqwlrIqgiGQDjwJfM8a0Ar8CpgALgL3A//b2PGPMb4wxC40xC0tKShIVTtqzDLgwGOzxUj6PixBeXFYYEpg0KzWWRYOdAHgC2QDkVthdXVt3b0paTEoppZQa3RJSRVBEvNjJ1f3GmMcAjDH749b/Fng6EcdSNmMMggGxc2SXCDGXDzEGYmHwDK5L3pIlS4YxSqVSWyxkJ1jegH0ftoryCppNFl3736cgmYElyUMrdrGvJciXz5x6RMVwlFJKqbFkyC1YYv9f9m5ggzHmp3HLy+M2uwh4b6jHUh84tAULALeTVOkAfKUSIhruAsDnt2/NMKk4ixpTBo3bkhlWUoSjFv/5yJsctew6Gh78UrLDGXF1bSG+8dAaNm0Ze1UkjTH83+vbeWVz3ZjsIfHWtgbueWM7iRxSoZRKb4noIngScCVwpoisdh7nATeLyLsishY4A7ghAcdSDuuQFiwAcVqtTEwTLKUSwXISLG/AvrVCSY6fWikjo21Hf09LS+v2tHCO+21Oc6+leON9EGwZ+Elp5I9v1rDunb8z477j4PWfJTucEbVpfxs/eno9q//4LcwvT4DOxmSHNGIsy3Dpb97ix39eS8PSL8Bfb0x2SEqpFJCIKoKvG2PEGDM/viS7MeZKY8w8Z/kFxpi9iQhY2YwxdgtWXDcdt9dPzAgmogmWUolgRZwWLKeLoIjQnDGBvPD+MddSvLOxkymy54MFW19KXjBJsHpXM+e7/w6AeWEJxN3nMN29/r5dOfeL7qeQuo3w5p1JjmjkvH+gHYBTXWso3rwU3v41tO0f4FlKqbEuYUUu1MiyjF2mPb4Fy+9xEcaLFQn280yl1GAZ57vk8n5wg+5oXrVTqn1stWLtbLATrL2+iYTwwu7+byqebrYcaOc0zzoAu/dAw/tJjmjk1DR0UEojXrFvbs+ON5Ib0Aja0dABwDTX7g8Wbn42SdEopVKFJliD9MQTTyAibNy4sc9tampqmDt3bsKOuWnTJk4//XQWLFjArFmzuP766wH7JsHPPvNXXBiIG4PVnWDJILoIXnfddYwbNy6h8SqVdqJ2CxbejJ5F7uKpAMTqx84FNkBDR5hp7r0E86ez2aokvHttskMaMZZlqGsLMd7dxHLLuadh7fLkBjWCdjd18bFiu1vgdv9MO7keIz/k7Wm2/waclt/AAQowGYVj6twrpT4cTbAGaenSpZx88sksXbq01/XRaHTIx4jFYgfNf+UrX+GGG25g9erVbNiwgS9/+cuAnWA99+yzh43B8npchPDgsiIDDkS+5pprePZZ/RVOqf6YsHMR6fmgBSvHKdXesntsFTto7QpTTj2+4mo2WBNh/7pkhzRimrsiYEXIjTWxQubR5c6G3auSHdaI2d3cxYTMCACvmQV2pdr6sfH539sSxOdxMdW1h/djFURKZo+pz75S6sNJSJn2EfPMd2Dfu4ndZ9k8OPcn/W7S3t7O66+/zssvv8z555/PD3/4QwCWLVvG97//fQoKCti4cSN/+9vfiEajXH755axatYo5c+bwxz/+kczMTF588UW++c1vEo1GOe644/jVr36F3++nurqaxYsX8/zzz3PjjTdy6aWX9hx37969VFVV9czPmzePcDjMTTfdRGdXF/947SW+87UvcsE//wtf/vKXee+99+js7OTH3/gXLrxyFvfct5THH3+clpYWdu/ezRVXXMEPfvADAE499VRqamr6fd2vvPIKX/3qVwF77Mmrr75KdnY2N954I8888wwiwve+9z0WL17MsmXL+MEPfkB+fj7vvvsul1xyCfPmzePnP/85XV1dPPHEE0yZMoU///nP/Od//ifhcJiioiLuv/9+SktLDzrupZdeypVXXsnHP27fyPWaa67hE5/4BJ/+9KcHd06VSpTY4QlWRXkFLSaTrn1j4wKzW7irHR9RcgvL2GS68AVfgY4GyCpKdmjDrq4tRAktCAbJrWBXsIrpYyTBAGjsCFOaY7fkvNxRzVVe7ASrfH5yAxsBe1qClOcFyAsfYJeZw6TMyVRsWQpWDFzuZIenlBqltAVrEJ588knOOeccpk+fTlFREStXfjD2YNWqVfz85z9n82b7f7abNm3ii1/8Ihs2bCA3N5df/vKXBINBrrnmGh588EHeffddotEov/rVr3r2UVRUxKpVqw5KrgBuuOEGzjzzTM4991xuu+02mpub8fl8/OhHP+Kiiz/N8r89zCWfuoAf//jHnHnmmbz99ts88vgTfOs/fkZHi92d4+233+bRRx9l7dq1PPzww6xYsWLQr/vWW2/lzjvvZPXq1bz22mtkZGTw2GOPsXr1atasWcMLL7zAt771LfbuteuXrFmzhrvuuosNGzZw7733snnzZt5++20++9nP8otf/AKAk08+mbfeeot33nmHSy+9lJtvvvmw4y5evJiHHnoIgHA4zIsvvtiTbCk1kiR6eIJVXZLFdlOGNI2xUu2dTQBkF5Sw21VpL2vcmsSARk5dW4hSsV9/RvF4NkVKoWFLkqMaOa3BKHli3xNuVWyyfXuQMdJFtrkzTEGGF2+4mSZy2O6ZaHcdbqpJdmhKqVEstVqwBmhpGi5Lly7tacm59NJLWbp0KcceeywAixYtYtKkST3bjh8/npNOOgmAK664gttvv51/+qd/YtKkSUyfbvfdv/rqq7nzzjv52te+BtgJRW+uvfZazj77bJ599lmefPJJfv3rX7NmzRrA7gEoGHC5+Nvf/sZTTz3FrbfeSjRmEQyF2bHdvvj7p3/6J4qK7F+YP/WpT/H666+zcOHCQb3uk046ia9//etcfvnlfOpTn6KqqorXX3+dyy67DLfbTWlpKaeddhrLly8nNzeX4447jvJy+/ZnU6ZM4ayzzgLslreXX34ZgNraWhYvXszevXsJh8MHvXfdzj33XL761a8SCoV49tlnOfXUU8nIyDhsO6WGm8RCRPDgdX3wW1RJtp/lUs7EtrGVYLlC9o82kllIrMAPrUDDVhi/KLmBjYC69iClYr/+7OIJbNhcxvltr0CoDfw5SY5ueIWiMcJRi1w6sFw+WsiiK6uKzDFS5KM1GGWcP4xYETo8eawLlXIS2J/9oinJDk8pNUppC9YAGhsbeemll/jsZz9LdXU1t9xyCw899FDPDQezsrIO2l7iyqb3Nt+bQ/cRr6Kiguuuu44nn3wSj8fDe+/Z92s22DcaFhGMMTz66KOsXr2aZX9fzva3n2Hm1AkfOp5u3/nOd/jd735HV1cXJ510Ur8FPgD8fn/PtMvl6pl3uVw9Y9S+/OUv86UvfYl3332XX//61wSDhw+UDgQCnH766Tz33HM8+OCDfSagSg03VzRIWPwHLRurpdq9oWZ7IqOQQOlkYrjGTCtOQ3uYErHv+1VcNp6tptxZkf6vvy1o/+3OMe0QyAOEOv+EMTMGqz0Yodxrd4/05xSzvDXfXjEGzr1S6sPTBGsAjzzyCFdeeSU7duygpqaGXbt2MWnSJF577bVet9+5cydvvvkmAH/60584+eSTmTFjBjU1NWzZYv9BvvfeeznttNMGPPazzz5LJGIPLN63bx8NDQ1UVlaSk5NDe1tbT5GLs88+m1/84hcYY/B5XLz93hYs515Yzz//PI2NjT3joLpb1wZj69atzJs3j29/+9scd9xxbNy4kVNOOYUHH3yQWCxGXV0dr776KosWDf4X7JaWFior7e5Ff/jDH/rcbvHixfz+97/ntdde45xzzhn0/pVKJHcsSER8hy0fi6XavSHnxsKZhVSX5LHLjCPWMDa6CLaHouRid5GrKi9lm6mwV9Sn/0V2d4KVabXjysinLDfAdirt1z4G7gXWFoxS4rLvhZVVUMo79R7w542Z7rFKqQ9HE6wBLF26lIsuuuigZRdffHGf1QRnzJjBnXfeyaxZs2hqauILX/gCgUCA3//+93zmM59h3rx5uFwuPv/5zw947L/97W/MnTuXo446irPPPptbbrmFsrIyzjjjDDZt3MAxZy3mocf+zPe//30ikQjz58/nhGMXsOSWO3tKtS9atIiLL76Y+fPnc/HFF/d0D7zssss48cQT2bRpE1VVVdx9990A3HXXXdx1110A/OxnP2Pu3LnMnz8fr9fLueeey0UXXcT8+fM56qijOPPMM7n55pspKysb9Pu5ZMkSPvOZz3DsscdSXFzcs3zFihV89rOf7Zk/66yzeOWVV/jYxz6Gz3f4Ba5SI8FthYm6/IcvL7G7BkXHwAV2N3+02Z7IKGBScRbbrVKiB8ZGN7H2YJQCTxDcPipLCtlJKRauMdGK0xa0f+TLiLVDRj6TS7JYHymzxyG11iY5uuHXFoxS5LYTrNzCMuo7wsQKJ9tdBJVSqg+pNQYrCbrHDsX7yle+0jN9+umn90xXV1f32Y3uox/9KO+8885hy/ur5PfTn/6Un/70p4ctLyws5NmXXqOscxPkVEBGBr/+9a8BsIyhfk8NLqsZjKGqqoonnnjisH30lSDGJ37dhSkOdcstt3DLLbcctOz0008/6L1YtmxZr+suvPBCLrzwwsP2uXDhQn73u9/1zHu9XhobG3s9vlIjxWOFiLoPT7ByK2bCe9CyexNFs85LQmQjKxSNkWO1gRvIKKS6uIM1poxTml9zBoQOvutxKmoLRpnl7gJ/LgGvm+K8XBpjZRSPgXFI3S1Y/mgr5JQyMTOLlXudH8fqNkP+hCRGN7yiMYuuSIxCsROsknFlQBNtmRPJrx87ZfqVUkdOW7BSlXG6ZhxyYeMSIeby2bcftoZ+by6lxjK3FSLmOrwFtbLCLtUeHCOl2tuCUfKlnYg7Azw+qouy2GbK8UQ7oX1/ssMbdu2hKPmuIARyAZhUnEUNFWOki6DdguWLtEIgn0nFmazpLLFXpnk3ufaQ/f/QfNoAKCu3u7fv91ZBy64xc7NlpdSR0wQrRZmeBOvwU2icX9yvuXwxd9xxx0iGpVRa8ZowMXfgsOXVxdlsN2Vpf4HZrS0YJZsuol67Yl5Bppf9XqdU+xgY7N8ajJDnsluwAKqLM9kUKcE0bR/wpu6prtVpwXKHWyEjn4lFWdSTS8yblfbd5A4q8AFMcKrk1pgywGipdqVUn1IiwTJp/j+wD6WfBMvltRMsEx3bv67p50YNldeEsHrpIliY5WO3q4LMtrFR5KItGCFburC82YBdSdHKn2yvbEz/cvXtoSg5dDpV9KC6KIvNkXFIuB066pIc3fCykwyDK9QKgTwmFWcBQlvmhLQ/990JVpbpBF8OGQEfZbkB1oedLpJj4McFpdSHM+oTrEAgQENDg14sH6r7/ehl7IPH6yNmXD2VBMciYwwNDQ0EAoe3Pig1GJZl8JkwVi8tWCJCa8YE8iL7x0Q3ofZglGyCmLh7PmWWTCSCJ+0vssF+/Tl09HQRrC7KYocptVem+etvD0bJIoiYGATymVCYCUCdtzLtX3tPgQ/T2XO/s+riTFa1FdgbpPnrV0p9eKO+yEVVVRW1tbXU1aX3r4RHqqWtneZYI9Qb8O47aF0wEmN3Rz0edzOunPYkRZh8gUCAqqqqZIehUlQoahEggvH0nqRH8ifh6nK6CY2bObLBjbDWYJRi6QL/uJ5lE4pz2bW5hOqGbaP/l7ohagtGybQ67PLc2BfZNfEJ1oQTkhjd8GoLRijzOT8iZOQT8LqpyAuww5QyrXkZxKLgHvWXEh9KT4GPWPtB4++eW9cOGYWaYCml+jTq/yp6vV4mTZqU7DBGnf/61e/47v5vwFVPwuRjDlq3q7GT1bd9gzNyasm+cV2SIlQqtQUjMfyECXsO7yII4CmZBnshUvc+3jRPsNqCEarpwuVcZAJUF2ex3Sqjsm4Lvb9D6aM9FCXD/UELVlVBJnsowcKNK80vstuCUcp9QYjS00VyYlEWG9tK+JgVhZadUDg5uUEOk7aQU+Aj1vFBC1ZRFo0dYaKlk/GMkTGYSqkjN+w/PIrIOSKySUS2iMh3hvt4Y4V0d0vyZBy2riI/g52Uk9m5B6LhEY5MqfTQFYkRkAj00YKVWzkdgJba3m/NkE7aQ1GypQt3RlyCVZTJDlOKuzm9Cz3ELENnKIzf6uwpchHwuinJy6HRW5r2rRhtoQjjfE5380A+YCfX73QU2ssa0vf1tzstWN5oR1yBkywAWjPGQ+P2pMWmlBrdhjXBEhE3cCdwLjAbuExEZg/nMccKiXXZE97DL/7cLqEtawIuLGgeG4PwlUq0YCRGgDDSR4JVWV5Bo8kmuH9s3Asph048mXk9yyYWZVFjSp1S7QeSGN3w6gjbFRSBnhYsgIlFmeySsvRPsIJRSryd9kxGPmAn12s7nUIPafz6D6qg6LRgTXISrAPeCmipHRNjMJVSR264W7AWAVuMMduMMWHgAeDwu8yqIyZR5xfFPi7+rIKp9kSal9FVargEIxZ+Ioj38FZicO6FZMpwjYFuQm1dYbLpwh1X5KI428d+d4U9k8YX2e1Ocgn0tGKAnWC+HymxW3DSuAWvNRil2N2dYH7QRbCOPGKezLS+VUFbMIrXLXa1SOezP6EwExHYbpUCRn/EVEr1argTrEpgV9x8rbOsh4hcLyIrRGSFFrIYPFes/wQrUDYNAEvLyCr1oQQjEfwSQXy9J1j5mT52uyrJ6kj/C6xQsB23mJ6LTLArKUbGQKn2tmCUHDm8Bau6KJNN4RIItUBXU5KiG35twQgFPQlWPkBPqfb2rPQu1d4eipAT8CLB1p7k0i7ykcH6kHOzZf0RUynVi6QXfzLG/MYYs9AYs7CkpCTZ4aQMV8zpltDHr+ulZRU0myw6920ewaiUSh/hoH1R6eqlG2631qwJ5EXqINw5UmElRaSz1Z6IS7AAMsdVE8Wd1q0Y7aFIny1YNWOgVHtbMEqBdADS8/q7S7UfSPNS7W3BKHl+gUjHQZ/9ScVZWqpdKdWv4U6wdgPj4+arnGVqiNwDtGB1d1+KHNAWLKU+jHCwAwB3Hy1YALEx0IIDEOtqsyfiEgyA8cW51JoSrDQudNAajJIjToJ1UBXFTGpMmT2Txue/LRghr/seYC77kiHD56Y8L8BOU2bfpiAWTW6Qw6QtGGWc364kGP/Zry7O5N1GFyaQn9bnXin14Q13grUcmCYik0TEB1wKPDXMxxwT3NbACdZ2U4a3WascKfVhREJ2C5bbn9nnNt5xdlfccF16F7qwgi32xCEtWNVFmdRYpUTr0veHnIPHYH1Q5GNCYSa1pgSDpO1FdiRmEYxYZNPR0z2w28SiTDZGSsCKQsuu3neQ4tqDUUq8zv9r4z771UVZtAajxPInpe25V0oNzbAmWMaYKPAl4DlgA/CQMUZvzJQAHiuEhQvc3l7Xl+YEqJVysoJ7tcqRUh9CNGRfVHv6acHKrbTvf5Xupdol1N2CdXCC1d1NzpXGpdr7GoOV6fOQn5tDs7ckbct1d99oN8tq7xmD1G1ScRbvtDul2tO0i2hrMEKxz7nVySFdBAFaMiek7WtXSg3NsI/BMsb81Rgz3RgzxRjz4+E+3lhgjMFrhYi6/CDS6zYul9CRPRHBQFN6/s9fqeEUdVqwPP20YE0oG0edySOU5qXaJdxuTxzWgmV3RfZE2qGzIQmRDb/2UITcXsZggZ1g7pbytG3FaAva3eMyYm09Jdq7TSzKYm1nkT2Txglmoaf7HmAH32QbYL/HKdXeXdVXKaUcSS9yoY5cJGbwESHm8vW/YeEU+1+tcqTUEetuwfL6+27Bqi7OZLspw9WUnhfY3dzh7has7IOWj8vxs8dVbs+k6d+ZtmCUXOnEuH2H3XewuijTLtWetgmW3YIViLUf1kWwuiiLA+RjeTLS+PVHKHQ5rZdxyfX4gkxcAjVWKRgLmncmKUKl1GilCVYKCkXtG6DG3H1XNwMIlE0HIFafvuMjlBousbDdtdYX6LsFKyfgZZ+7gpw0LtUeswzemF3w49AWHJdLiOZNsmfS9iI7SqGnCznktYPdirMxXAKd9dA9Ti2NtDotWL5I62FdBKuLMwGhLXNCWibXxhjaQ1Hy3N1jsD44/z6Pi6qCTDaEnJstp+HrV0oNjSZYKSgUtQhIGMvt73e7irIy6k0unXu1VLtSR8pEuluw+k6wAFqzqsmJNqblBTZAeyhKNt2/4ucctt5fUk0MV1onWAWu4EFdxLpVH1SqPf26yXW3YHnCLYd3ESy0u8nVpWmp9s5wDMtAXncFyUO7xxZnsbJdS7UrpXqnCVYKCkUt/EQGTLC6KwnG6jaNUGRKpQ/LKQ4j/dwHCyBaaFcSpC49f8hoC0bIliAxlxc8h//NGV+Sz25TjEnTi8z2UIQ8V9dhLThgV9Lbkcal2tuCUfyE7RvbH9JFMMPnpiw3wE7Ss1R7d3KZI06RqEMSrElFmaxt9GD8uWl57pVSQ6MJVgoKRWJkELL7vvdjSkk2W6xK/M3aRVCpIxULO602A3zPAhWzAejck54FUrtbsKKe7F7XT3RKtUfStFS7PQar67DukdCdYI2zZ9LwIrs9GFfgo5cEs7o4k42RcWBFoLV2hKMbXu0hu3tkJp0gLvBlHbS+ujiL9lCMqJZqV0r1QhOsFBSKWmRKCMvTf9elwiwfe7wTyIg0Q0d6VvhSariYSHeC1X9LcdmEGYSMh9Zd6ZlgtQWjZEsXlq/3BGuSU0nQ1bQtLUu12wlmZ69dBHMCXrKyc2n1FKVtF8FcccbfZRQctr66KIvVHc7yNBuH1Npdot502K1Xh1Ts7S7V3poxXku1K6UOowlWCuoMx8gkdNgvar0J5juVBOu1m6BSR8J03z/OO0BLcVk+NaaM2IH0/I61BSPk0IXxHT7+CmBicRY7TCmecCt0NY1wdMOvLRh1LrIPb8EBp1S7Kz1LtbeFopR4uu8Bln/Y+uriLNZ0dJdqT6/X39LllKi3Ons995PiS7U374RoeETjU0qNbppgpaCucIwMgsggEixPqX0jVHQcllJHxBV1ukYN8D2rzM9gu1SS0ZK+XeSy6UJ6acEBKM8NsKu7VHuaXWSD/fozrI5eW7DA7ia4NToOGtLv/LcFI5T6nB8aeusiWJTJfgqw3IG0a8FrdRIsf6yj1+IulfkZeFzCdlNml2pv2TXSISqlRjFNsFJQRzhKloQQX/9dBAGKKqbQafx07d0wApEplT7cEadrlLf/75nLJTRlTiI/tBe6W73SSGtXhBzpxBXovQXL5RJi3aXa0zDJ6AyFCFidvY7BAnus67uhUug4AF3NIxvcMGvtijLO63ymD6kiCHbrHQjtWRPSrptcdxdBX7S11+Ta43YxoTCT9UGnVHsa/riglPrwNMFKQXYLVgh3oPcxEfGmluayzZQT0gRLqSPiiXYSkgC43ANuGymYhgsr7S4ywe4qlUcHnqzCPrfJLJtGFHfatZRHYhae7kS7jxasaeOy2WIq7Jn69Kok2dwV/iDB6qWL4MQi+8eHOl/6lWrvbsHyhFp7HX8GTqn2tnx7Jg1/XFBKfXiaYKWgzlCUTIK4/YNIsJz/+Xsb3x+ByJRKH55YJyFX/+OvuvnLZwEQTMMfMlq6IuRJB+7M3i8yASaV5rPNSr9xaO3BKDndVfT6aMGaVprD+6bKnkmzBLO5M0Kxu+8qgpk+D6W5fnYap1S7FRvZAIdRa1cEv8eFK9jca3IJdpGPNU0+TCA/7c69UmpoNMFKQaFgB24xeDIGTrAq8jLYIVVkBfdCqH0EolMqPfhiXYRdA3fDBSicOAfLCM073hvmqEZea2eQXOns8yITun/IqSS6P70SzLZglBzpLvLQe4I1viCDA65SouKDuo0jGN3wa+mKkO/qsrvJeny9blNdlMWGSCnEwnaSlSZagxFyM7wQbO6zBWtScSZdEYtI4QxNsJRSB9EEKwVFgnaXFW8fYyLiuVxCe65TSbBBW7GUGiyf1UnEPbgWrMnlxdSaYiL70+sCGyDc7lQG7GUMTrepJdm8byrxtdRANDQicY2EtlCEXJwugn20YHncLqpLctjrqUq7LoItnRHypaPX1qtuk0uyebPNuRdYGiWYrV1RCvxAuL3Pz361U0mwKWsy1G1Iy9sUKKU+HE2wUlA0aLdEuf0DVxEEkJIZ9kRdev3PX6nhFLC6iA5wr7luEwsz2UYl/qb0+47FOpvtiX5asCaXZLHVVCJYaTUWxU4wnJb/zL7HoE0dl81mqyKtWjEiMYu2UJQcOvo999NLs3mny0mwDqRPC2ZLV4TKgPNjQV9jsIrs/wfXeibYtyjoqB+p8JRSo5wmWCkoFmyzJwZRRRAgr2IGUeMikmbdd5QaLjHLkEGQ2CATLI/bxf6MKRR27YBYZJijG2FdA7dgBbxu2nOclvI0SjKaOiMU9CRYRX1uN21cDmtDpZjmndB9g+oU113kITvWd5EHgOmlObSTSSizPK3OfWswQpmv73uAAVTkZ+Bzu+zkGtKqBU8pNTRDSrBE5BYR2Sgia0XkcRHJd5ZXi0iXiKx2HnclJFoFgBVyuqz4Bh6DBTCprIAdppTOPZpgKTUYXZEYmQSJeQf3HQPoyp+BhyjUp1dXXFeoxZ7o5yIbwDduOjFcaXWR3dgZphDnB62MvluwppVms8WqRDBpc/67b7SbGW2CrH6Sy1L7O1KX4XSTSxOtXRFKPN0l6nv/7LtdwsSiTN7pKrUXaIKllHIMtQXreWCuMWY+sBn4t7h1W40xC5zH54d4HBUvPLj783Sb5gxAd6XZ+AClhktnKEqmhDCDuJl3N3fFPABCe9YOV1hJ4Qk12xP9dBMDmFhexC4zDutA+lxkNneEKZA2jDez3x4D08bZY9CAtBmH1ewkWIFIE2QW97ldSbaf/Ewv26XKTi7TpJJgc1eEku4Kiv203k4uyWJFY8Aeo5dGPy4opYZmSAmWMeZvxpioM/sWUDX0kNRATHeCNcgughOLsthGJZkdadh9Salh0BqMkk0XriNIsMZNmkPEuGnevmYYIxtZkZhFINbdgpPf77ZTS7J530qvSoJNnRHGuduRfroHgv03tlbKsdKoBa+lM4ILC2+oGbL6TrBEhOnjcng3XA7RYFpUEozELJo7I5R6nP/X9tN6O6Msl5qGTqzi6dqCpZTqkcgxWNcBz8TNTxKRd0TkFRE5pa8nicj1IrJCRFbU1dUlMJz05Qo7YwL6qGp1KJ/HRUvWZNwmBg3pdyNUpRKtNRix7zU3iEqd3aZXFLPFVBDb++4wRjayWrsiFEsLBum3FQPs+0FtMRV4mrZBLNrvtqmiqTNMibu93wIXYP+NrSjOp85bnjYX2S1dEfJpt7s9Dnjus3mjtcSeSYPX39AeBqBEmu0F2aV9bjuzLAfLQHPWlLRJrpVSQzdggiUiL4jIe708Lozb5t+BKHC/s2gvMMEYczTwdeBPItJrNmCM+Y0xZqExZmFJScnQX9EY4O7ustPPmIBDmZ5Kgqn/Pz+lhltbezs+ieHJGHyCNaEwky1MIKs5PbqIATR0hCmhhbAvH9yefredXup0RTYRaNw2MgEOs6bOMEWu9n4LXHSbNi6bzVZV2lTSq28PUSit9kw/LVhgF7pYHSyzZ9Lg9de329UDC0wzeLPA3/dYzJll9t+IXe7x0HEAOhtHIkSl1Cg3YIJljPmYMWZuL48nAUTkGuATwOXG2DeBMMaEjDENzvRKYCswfdhexRjjiziDzvu5N8mhsirtG6FG9q0fpqiUSh/BtgYAvNkDX1h3c7uEhuxp5EX2f1B5L8UdaA1RLC3EMgf+8SvT56Et1/kzf2DdMEc2Mg60hiikdVA/Zk0bl82qUCWmcSuEO0cguuF1oC1EmdvpLTFAgjWtNJsOMgimSSXBOifByok1Qfa4fredWJRFwOtiXVQrCSqlPjDUKoLnADcCFxhjOuOWl4iI25meDEwD0uMnzVHAH2kl6M4a8BfleJMritllSujcnR4XPkoNp2ib3V3Zl9v/heWhYsWz7Ik0+BUfYH9rkGJpQQa4yOwWqJhtVxLc994wRzYy9rd0URBrgJyyAbedWprDemsiYqy0qKa3ryXIpEynit4AXQSnl9qtOOlSSbC+zU6wMsMNAyZYbpcwvTSHt9qcboT79f+xSqmhj8G6A8gBnj+kHPupwFoRWQ08AnzeGKPt5gkQjlpkmzbCnsG3XoF9n5bNpgrRX9eUGlC0zf5zlZF7ZN2WMycsAKBtZ3oUujjQFqKEZry5AycYAFMritliVRBNg3FooWiMWGcjXhOG3MoBt59ems0GM8GeSYMEc39rkMn+Znsmt6LfbYuz/RRl+dgm4+0b2qf4GLx6ZwyWP1g/YIIFMKM0h7/X+exiGPtS/7OvlBq6oVYRnGqMGX9oOXZjzKPGmDnOsmOMMX9OTLiqpStCHh1E/EeWYFUXZ7KFKrLaa7SSoFIDMJ31wJG3YE2YOIUWk0n7jnRJsIIUSyue3L4H+cebWZbDBjMBKw0SrAOtIcrE6eqZWz7g9pOLs9nnGkfIlZkWrRgH2kJM8DSBJ2PAe6ABzCzPYWWwEmIhaEjte4HVt4fI8LpxdRyArEEkWGU51HdECBfPgf2pn1wrpYYukVUE1Qho6QqTL+3E/PlH9Dy/x01T1hTcJqqVBJUagNVht2ANVJ77UDPKc9loJuCqS4+xjq3NDWRKCHIGl2DNKs9lgzURX8eelB/sv7clSJnYY/EG04Ll87iYMi6PnZ7qlL/INsawryVIOQ1265XIgM+ZVZbLy83O5yTFW/D2tQSZmGOgqxHyBj73s8rtGl51WdNh//q0uReYUurD0wQrxXSXzh3ML4qHMsUz7Yk06COv1HAy3cnBEVTqBLur1A53NXlt74Nd8yelSfNOeyJ/4qC2ryrIYLtnkj2T4q04+1qDH7Rg5QzcggUwqzyHNdEqO8FK4fPfForSFYlRGKsfVIIBTnIdLcO4fLAvtW+2vbOxkwV5ToGPQXz2ZziVBLe4JkK0S3/EVEppgpVq6trC5EkHnswjT7CyK2dhGUmrG4EqNRw8wUZCEgBv4Iif25o3g4DVCd3JSQrztu2yJ/InDGp7EcEqmWPPpHgrzv6WIBVSjxHXoIpcAMwuz+WdUBUEW6CldpgjHD77WuziFnmRA5BbNajnzCrPJYqH1pwpKX/udzR0MCfgJNeDSLCKs/0UZ/tYFXTeq/2p30VWKTU0mmClmIaWNgppw1fQ/6Dj3lSXF7PTjKOzNrV/WVZquPnCTXS6B3cj70O5yuwEI5big91D0RiZnU6SUFA96OeVVU2kgTxMir/+3c1dTHXvty+w3d5BPcfuIukkoymcZGyv78BPmEDX/kEn11PHZeN1Czt9k1O6i2BzZ5jWYJTJXqd7aMHgWm9nluXyanMRuDwp/fqVUomhCVaK6WzYjUsMmcXjj/i500tzeN9UIdpFUKk+GWPIj9bT6R9cafJD5VcfBUBLzeoERjXydjZ0UkUdEXfmEXVJnlmWy7rYBCJ7Urub2Na6dmZ4DiBFUwb9nJllOWwyzt/mFE6wtta1Uy37EAwUTxvUc3weF1NKsnk3OsG+4W77gWGOcnjsbLTvOFPJfrvAR9bgKonOKMth/YEgpnh6Sp97pVRiaIKVYqLN9i/KrkH2i483qTiL900lme01EA0nODKl0kNrMMr/Z+++w+OozsWPf89slbS76r1blmTJvWIwPXQIJRAgoQS4CeEXchO4qaQScnNDAgkpJCEhJCSBUELvHQMGG/fei6rV66psnfP7Y1ZGtiVLslbaXft8nmcf7c7OnDmzo5XmnXPOezJpw5sw9lZigKl5WVTrGXjrY/sia19rL1NEA/7EolElORhQkW1kEjS17ojpdN27Gt3k6fshdeqot0l12EhwJtFqyY3pVoy9Lb3MizfmgiOtbNTbVWa7WDYwH1SMtmBWtxkBVlr/XiO4HOXv/rQsJ96AjjtpWkyfe0VRwkMFWLGme7/xcxRZrQ5ltwxkEgxCuxqEqyhDaerqJ1e0oY8w989wSjOcbJcFWNtiu6W4qq2XMq0Oc/aMMW1XnmVkEjTpvphN193t8YN7PzbZP6YAC4xugjsoiOlWjD0tPcwdCLDGcPwV2S4+7Al9b2L0+Pe19gIQ37kTMipHvV1ljtGluNY6Fdz7obdtQuqnKEpsUAFWjBHugQDr6C7+gmnlxhM14bCiDGn//jpswo89reioto+zmmi0l5DcXwP+/vBWbhJV1+8nW7RjzRlbgOWwmel0hVo9YvRO/u7mHmZoVcaLrJlj2rYi28VqTw6ybQ/4+sJfuQmm65I9zT1UajXG2Dtr/Ki3rch20YUDb3xWzJ77TfVdzEqTaO4GyKgY9XalGU4sJsHGwEAX0dhswVMUJTxUgBVDgrokvq/BmMjSdnQD8J25FQSlINgY23fXFWWidDTsBSApq/ioy/CmVqChx/SNjP7a0BiqjOlj3jYuuwIf5pi9yNzW0M1MbZ+RQXDMAZaTrcECY/xSc+zNh7anpYduT4Bi73bInT+mbSuyjXTlTXGlMdmCJaVkfW0n56c0GQuyRn9zwWrWKM1wsswdyjgZowGmoijhoQKsGLK/s59i6uhxThnTmIjBirPTjUyCMT4+RFEmir95NwAJmVOOugxrrnFR7q2PzUQPPd4A2d3rjRe588a8fXluCrv0XIINsRlgrdjbzkLLPmP8kTVhTNtWZrvYIkOZ52JwHNKqqg7S6CLB0wg5Yzv3qQ4bGU4bOyiElh3g90xQLSdGY7eHFreXxeZdgIC8hWPavjLHxcdNAunIiskAU1GU8FEBVgypbuujVKsnmFp+1GVMzXCwS+bF9J11RZlIlo6dBNEQYxjcf6isomn0SRvdVRvCWLPJs6G2kwViB72uqRA/tsmWwQgytslC9BgMsKSUrNzdxDyxHVG4ZMzbF6cl0GzKxGNKiMkAa3VVO2fH7zReFCwe8/YV2S5W9ueADMbc/5m11Z0AlHg2Q+Z0sCeOafvpOS5ae3z40ipVC5aiHOdUgBVDquvryRIdxOeOfuDtoUrSHSqToKIcQXLPHiML3FFMMjygPDuZnTIXPUYvsj7cXs9CbQfWkpOPavvKHGM+KEt/C/S0hLl2E2tPSw95fVux6/0w5bQxb282aZRnuthnmhJzAZaUkpVV7VyUsN0ILnLmjrmMimwX73WFMgnGWCvOW9uayIoL4mxaCUWnjHn7ymyj635jXKkRXKr/sYpy3FIBVgzp3LsWAEf+rKMuI85qol1lElSUIbX1eMkPVNOXOLbMcYcqSIlnF4U4unaAlGGq3eTp3PouDuHBUnHBUW2fmxRHtSXUxbIxtrpJvrezlXNNq5GaBYpPPaoyKrKdrPPnI5u2gK6HuYYTZ3ujm4aOHuZ5P4aSM0EzjbmMimwnu4OZ6Oa4mGrF8QV03trWxJfzahBBL5SfN+YyKkKZBLdTCLofWneEu5qKosQIFWDFkLjGVegIyB9bv/BD6QNdDJtVogtFGWzbvhpKtAa0vLHfuR/MpAk6nWUkBDpjbsLVHY1uZne/a0wwfJQBhhDikwQBMdaK8dK6Gi61rkSUnDmmCZYHq8h2sc6Xh/D3Qse+MNdw4ry0cT9LtK3E+dph+meOqozpOS50NDocsZXoYvneNtyeABfIDyA+FQpOGnMZLruFgpR4Pu4LZfmNoQBTUZTwUgFWjKjr6GNq/0Y6HVOP+p/+gPjcSoJSoDepAEtRBmvb/hEAadOOrmvcYMH0UFfeGLrIBHhh5XYuNK0gWHkZWOKOupyC3Hz2y9SYGoe1ub6L5Ib3ydBbYM7njrqcimwXW/Ui40WMtOD5AjpPrq7j60kfGP9jSs8+qnKKUhOwmTWqzcVGF8kYacF9cnUtJfZuMhregVlXgdl6VOVUZrt4r8UJZnvMffcVRQmfcQVYQog7hRD1Qoj1occFg967QwixWwixQwhx7virenz7aEsVJ2jbECVnjLuskuxUqmWmyiSoKIcIVn1EEI2E4hPGXZajYDYAPTWxk+iiq89P3Jq/4BAe7CfePK6yKnNcbNELCdTHzvE/+P4ebrW8hO7IhmkXHXU5FVkudslcgsIcM+Ownl1XR0rPLub1fwTzbzjq4Nps0ijPcrIhkA+eTuiuD2s9J0JNWx+vbmrgl5lvIaQOJ9xy1GVNz3Gxp91LML0iZoJrRVHCLxwtWPdJKeeEHq8ACCEqgauB6cB5wB+FEGPvzK0c0Lr2eWwiQNK8y8ZdVmmGk90y10ijqygKAF39fsrcK9jvnAU2x7jLKy7Ip0Gm0FcbOwHGw++s43pewl10LuTMGVdZldkutspCLB27Y2LC5c31XXg3P898sR3t1G+AyXLUZSXGW0hPctFoLYyJAKvHG+C+N3Zyt+MJY47Fk742rvIqsly83x0780H94vXtFJvbmNf6Asy9FpILj7qsytA4rHZHmXHsMdKCpyhKeE1UF8FLgMellF4p5T5gN7BogvZ1zKtu62V+63N02XIR+eO/s16SkcAemUNcTzUEA2GooaLEvlUbtzBDq0IcZdeoQ03LcrJDz8fUEhuTzW5v7Cbv45/iEB6c5/1o3OVNzXCwkyIEetRPuOsL6Pz0Px/xv5aHCWbONFpwxmlalpMtekFMBFj3vr6DhX3vMte/DnHad44qNf9gFdlOVvZlGy+ifLLpt7Y28crGeh5OeRhhssKp3xpXedNzjNTue0xToL8duveHo5qKosSYcARYXxVCbBRC/E0IMTA4KBeoHbROXWjZYYQQNwshVgshVre0xFY638ny2qvPc4K2HbHoi0eV1elQ8VYzrfZCTDIAndVhqKGixD73micByDrhs2EpL9Vho8ZchKu3KupvZPR6Azz7z99xuel9vCfe/kmCinGwmjX6U6YbL6I4yJBS8vOXNvLltrtJEW5Ml/5hXK1XA4z5oPLA3RDVqepf2dTAB8s/5F7b3yB/MSz60rjLrMh20Usc/Y78qD731W29fOM/G7gr6RXyu9bA+b+AxLxxlZnpspGSYGWdN1SOGoelKMelEQMsIcRbQojNQzwuAf4ElABzgAbgV2OtgJTyL1LKBVLKBenp6WPd/Ji3rb6dxTvvxW1OxXXKl8NWbiC5xHjSuitsZSpKrOru91HR9CL1cWWYM49+Iu9D9SWVYZE+aN8btjLDzeMP8vu/P8z/9P6GrrR5xJ11R9jKTs2bSg/xUXuRLaXknte2Ur76x5xpWo924b2QPTssZVdku4wWLIjaVpyPdrdy7xNv8ETcL7DGJcAVfwtLcDktNB9Ug31q1HYRbOr2cMPfV/FZ3uA6z79h9udhzjXjLlcIwfQcF+90hq5novR3X1GUiTVigCWlPEtKOWOIx/NSyiYpZVBKqQMP8kk3wHogf1AxeaFlyhj0egNsfvg2Zmt74LyfgzUhbGVbQxeRsnVn2MpUlFi16p1nmSZq0Bd8MazlmrKMFpxgU3R2kevzBfjjA7/n6w134HHkk3jT02G5wB5QkZPEFr0AXxQmupBS8n8vbGDGR7dxtXkp8pRvwoKbwlZ+RbaTrXpoLE8UXmS/trmBex5+gictd5JiDSCuexYSh+xoMmaJcRZyk+LYLguNmwu+3rCUGy57Wnq48oGPuLz7X/xAPgil58LFvwMhwlJ+ZbaLDc06MrkoKs+9oigTb7xZBLMHvbwMGLhV9QJwtRDCJoQoBkqBlePZ1/Gmxxvg2T98h8/6n6eh/HqcC64Ka/nZWTm0ShfeRpXoQjm+SSlJXPcA7SKJvFO/ENayU4pmEJSC7qr1YS03HPa1uPn3fd/i66130p9cRuL/e33cY28OVZnjYqteiKk5uibc7erz8/2/vchFa27kAtNK5Dk/Q3zqh2HdR2FqAj5LIp3WzKi6yPYFdO56YQtv/Ps3PG7+CcnOeLQbXoasmWHdT0W2ixW92YCEKLrB8OKG/Vx//+t8v/8evqo9ZbRaXf1oWG8sVOa48AV13InTVBdBRTlOmce5/S+FEHMACVQBXwaQUm4RQjwJbAUCwK1SyuA493XcqGpoYevDX+Na7yvU55xD7pX3hX0fxekJ7JXZVDTvwB720hUldqxd9SELAmvZVP7fpFjC+20oy82gSmaRsD96LrKklLy8bBXpb93GF8UWmvPPIeP6h8PaQj6gItvF07IQU+B1Y8Ld1JKw72Os3t7awKqn7+N7gX9isZqRn/kXovLisO/HpAnKs5zs7i5iQZQEWDub3Pz08aVc13of51jXoOefiHbVv8AR/u75ldlOnt2eBTaMLpL5C8O+j7Fo7fHyf69so3n9azxv/wupdMGn7oQlt4Wt5WrA9FAmwVpbCdOrXjda8Cbg+6UoSvQaV4AlpbzuCO/9DPjZeMo/3vR5/bz33F+p3HofF4gmqsv/i8Kr7glLYotDTUlL4CM9h1kd0dd1R1EmU+/S39KPjbILvx72skszHbwr8zmhPTpaivc0drDs3z/nsq5/YtGg41O/JmPJTWG/wByQGGehzVEGXow5gSIYYO3v7OefzzzPeVW/5LvaHnpyFmO76kFIKpiwfVZku1jTksf81lUIf/+4Jm4ej64+P799cyv6qr9xv/k/OCx+OOt/0RZ/ZUL+v4Bx7L+TaQStLkwRHIcVCOo8+nEN/35jGV8L/osLrSuQKeWIzzwz7qkIhlOc5sBu0dgUKGD6QAtehANMRVEm13hbsJQwaG7rYONrD5G/6xHOZx/11iLaL36KwpnhSRc9lLzkeKpFDnbfu9DfAXHJI2+kKMeY7Tt3sLj3bXbkXcFMV/jv4tstJprtU0jyrDbmgorQBXZ7r4/XnnuURTvv4Quinv3pS8i6+n7i0qZM+L7t2dMJVJkwN26C6eOfx2+suj1+Hn9zOUmr7uNb4l08tmT8F/wZx5yrJiywHFCZ7WTZ6nyENZSqPnf+hO7vUEFd8p9VNSx7/Qm+HniYUnM9/oJTMX36XkgPXzKXoVRkuwBBm6OMjIb1E7qv4Szf08Y9L67m1NbHedH8EmabBid/D7HkaxP6XTRpgmlZLpa5s7gajJsLKsBSlOOKCrAipKu7h83LnoOtLzDDvYyzRC81lmKqTvglRWf8F5gm9tSYNEGPoxj6gdbd6o+/clyqff23lKFTdOE3J2wf3tRytEbdmNh7gu6YD6fHG+CVl5+jYMN9fF5sptWWS+cF/yRn9sUTHlwMKMtLY/feHEr3b2QyZ5vv9wV54r11mD78NV+Qb6CZoG/2f+E894cQlzQpdajIdvEXOSjRxSQFWEFd8tLG/Sx97Rmu7nuEq7XteJOK4ILHsJSfPynnviAlngSriZ3mMjIan4KAD8zWCd8vwOqqdv7w+kbKax7jb5aXSTK7kdM/gzj7LkjKH7mAMKjMcfHSBjfSnohQ47AU5bijAqxJogd19u3cQOOGNzHXLKOydyVLRD9u4tmXdirpp36JglmfmrSLHgDSSo3Zytp2qQAryvgCOu5+H253J/1drXjd7Xh72gn0dhDo6yTo7UX39kGgHy3oQQt4MAU9mIMeTLoXZBApJRqgCRBIhBDowoxfs+LX7GC2o1ni0ewJiLgUzM40LM407K50EpIzSMvMwx4XH+mPYsLUN7WwqPU5dqScTkVO2YTtx5YzAxrBu38TtkkKsLyBIK+//gqpq+7lStbTbU6m5YQfk37mrWC2TUodBlRmu9gii5jSMDkBli+g88xHW+ha+nuuCT5PvPDRVX4FyRf8EMsEdgccyrRsF3UyHa8pAdskjMPSdclLmxp45/XnudL9T+4zbcUTn4E845fY5t84aQEOgBYag7bSV8TJQZ+R7CF33oTuc21NB394fSNFVU/wK8uLpFi6CZacBWd+DzHJrYfTc1z8++MavLmV2Bs2Tuq+FUWJPBVgTRCp61Tv3sL+DW9irl5GUc9aSuigBGgRqexNPwvH3M9QvOhCZlkm94JngCO7BF+NCXPLzrDMOK0Mz+MP0tLeSWdbA33tjfg6G/G7m6G3Ba2vFau3jThfB3GBLuL1Hpz0kkQvqUKOWLYPM15s+ITx8Gs2pNAwwiqQUiClkYnGJANYpTf08GHDiw3/sGW3kkSHOZ1eWyb+hGxIzMWWWoAzo5jU3Cm40vImvLV1omx86Y+cL3rxnf2NCd1PVlEl3jUWuqo2kLFg2GGrYeEP6ryz9G3iP/wFF+urcGtO9s/7LjnnfC1ig+wrc1z8XS/k8r4PjAl3JyChAhhB5XPLt+J+734+63+BRNFHe9F5OC66i+QJ7g43HIfNTH6Kgxp9CqUTGGDpuuTVzY288foLXN79L35j2oQ3Pg399J9jX3BjxLqmVmS7eG1DLv8DsH/thAVYG2o7uf/NzeTseZK7Lc+TbukkWHw6nPl9TPmLRtp8QlQOzAXmqKR41z8nrItwny/Avz+u4cUN+/nJJTOYk58U9n0cyzz9vbg7WujtbAndzGzF39OO7ulG+nrB14vm60Hz92IK9GEO9mEN9mHV+7HoPkwEMMuA8ZMgZmn8tApjcvmA1JAIgmjoQjN+YiKICZ+w4dXi8Gt2fKY4AqY4gqZ4pCUeaU+CuCS0hBTMCSnYnGnYE9OIT0zDmZyOLc41uTfklTGLzSujKCSlpHbvDurXv4FW/QGF3WspopUioI0kalzzqS06mdy555JVVEl6FHwxpqQnUSMzyWnYzrHbTjGx/EGd1rY2Opqq6Wmpxdteh961H1NPIzZPE/G+NpzBDpJlN/min6E6p/Rjo0tLotecjDc+jS5bCZ22RAj9gTXHJ2FOSMbmTMXuTCbOlUqCIxGTNQ4scVg1E+O5Lx3w++hub6ans5n+zha87mZ8Xa0EuhrQ3PXY+xtJ6q8mrWcNjuZ+GDQ3dUBqtGmpdFkz6Y/PRnfmYk7OJyGjmKTsYpKzixH2pKj7R9Dl7mNGzSPsi59BceUpE7qv8pxktsl8cvavn7B9+IM6b733HvYPf8m5wY/oEQlUz7qNwgu+gdPumrD9jkZuUhxVltBYr8aNMPVTYS3f4w/y3Eeb6Xv/91wReAmX6Kc1/2zkBd8nJWduWPd1NGbnJ7FmVwFTG95BhLmbnK5LXt/SyGuvv8SlXf/it6YNeONS0E/7KbaFXwRrZP+yT89J5NGPkwgmp2KqXwth7iixqa6L+9/cTNrup/ip5XmyLG0EC5YYgVXRkvDubIymZbnQBKzXplOs+6F+DRSdHLbyu/r9/Gt5Fa8v+5jP+57iPtMOfv7E9/jDbddgNR+ft0ylrtPV1U5XSz3u1v14OhsIdDUie5rR+lqxeDuxBbqIC3Tj0Ltxyh7ihA87MNxtH6+00CfseLDj0eLwavH4THH0WZIJanakZkbXLEjNAiYzMvRcamakFCCDCBlESB2kjpBBpB5EBv1oAQ/mYB8WvR9roJ94XxdW6SFO78dBH3HCN+yx+qSZbuGgV3PSb3bhMScSsCYStCdBXLLRK8WRgtWZit2ZSkJSOo6kdBKcSWimyeysPXq6LvEFAvi9/fh9Xvw+LwGfB7/PQ8DnwWtykJM/heSEyWuJHw8VYI1DY30VVatfg73vk9e1mgKaKAA6cFHtnEt9wclkzzmH7JJZpGrR9wevOD2BPTKH7NZdI698HJJS0tbZRXPdbrob9uJt3YfsrMXS20i8t5mkQCtpsp1s0U/2Idu6iafDlEavNY0Oez7t8emYnOlYnJnYkjKJT87ClZZNXFIWcdYEInN/2WC2WEnJzCMlM++I60kpaWtvpbVuL93NVXhaq5GdtZh7G3B4Gkjt2EBm+ztYag6ekaEPO24tkT5zIl5rEn5rMgFbMro9Cc3uxGxLwByXgMkaj7DGo1nj0UxWzCYNzWzGJDSjnyMaQQSBoE4g4CPo9xMM+ND9PoIBP8GgHz3gQw8YPwl4jLvGAQ/S148MeBGBfkTAg623njmimZpTfzGBn6yhICWej5hKRecy0INhzdrmC+i8+d57WD76NecGPsAj7Oyt+ArFn/42jvjoSFwjhEBmzUJvFGh1q8MWYHn8QZ7+YAO+Zb/ns8FXcAgPrQXnIS/4HmnZs8Oyj3BYWJTMe5umcrX1ZWjYEJbu2LoueXNbE2+++iwXdz3Kb02b8NkT0U+9E9uiL4HNEYaaj9+i4mRA0OScTk79mrCVu7m+iz++uZmMXY9zl+UlMi3tBPNOgE89jKn41LDtZzzirCampDt4t3cKlyGg+qOwBFhtPV4eWraP95cv5wb9GZ4zLUOzgJA6P+i+i1+9VM4dl0am1W6i6EGdtvYWOhqq6GmuCt3IrMfU14zN00K8vx1XoIMU2UmS8JN0yPZBKegUibg1F31mF932HNqslQTtyci4JLT4FMwJqVidKcQlphPvSiXBlUxcQiI2m41I9DEKBHXa3W56Olvo62rF092Kz91GsLcNva8d0d+B5u3C4uvE5u/G6WkgoW8nTukmQXiPWLZHWugXdrzY8Ao7Ps2GT7MT0OzomtUIDoWGFKaDHggTUtMwusQMBIz6gedIiZBBYzlGMGmWfky6H5MMPXQ/ZunHHGr5s+DHLANY8WMhgF3ow04d9LfAeWRceR8XzcoJ/wc+AVSANQZdHW3s+fhFfLuWkt2+ikJZRxbQTQJ7E+bSkH8DWXPOJq9sHskTlPo2nIrTElgtsznLvR6CgZjt6nW0pJS0d/fSXLuT7obdeFv2ITtrsPXU4fI2kBZoIkN0kjZoGz8mOkQK3dY0ehJK6YzPRLiysSTnEp+aT2JmIUkZBTjtDpwRO7KJIYQgNTWd1NR04IQh1+nu81C1v4aOhn30tVQT7KzB0tOA2duB1ddJXG87Se4qEnHjEv2TWn+fNOMRVnxY8QkbK9IuZ/Hiic9qp2mCtqQZ2LrfgNadkFEx7jJ9AZ03332LuOW/5vzgCrzCRm3FFyn49HeZkpA2cgGTrCg3l20NRVTs+wDt9O+Mq6x+X5CnP1hHcNnvuUJ/lTjho73oAhIu+D5pmdPDVOPwmV+YzO/0acaL6g/HFWAFdckrG/fz4ZvPcKn7Ue7VtuGJT0U/+SdYF/0X2KLrr05JuoOUBCtrmUZOy/vgbgJn5lGXt6a6gwff2kjB3se4y/IKaZYuAvknwunfwTTl9KhrKZ+e42LlvnZkZiWi+sNxldXY5eHP7+/h45XLuZln+KZpOVgtaAtvgZO+Bp3V5P/tfKav+RGPZf+Zz51QGKajmFhSSrp7+miq2Un3/p30t9Uguuow9zYS52kiyd9Mmt5KuvAe1MqkS0GncNFlSqbXkkJ9QjE18WmQkIE5MRNbUjYJKTkkpuWQlJpFqtlMasSOcuzMJo2UpERSkhKBqWPa1tPfR3dHq9ErpasVb08bAXc7wb42hLcHAn1o/n5EoB9TsB9ToB+L7iE+6EYL+NGkjkYQTQ50ZvzkuYaORKBjdH3UhXbQc0noEVoeEBYCwoKuWfCJOHTNeqDFTzdZjdY+k82Y6NtkRZqsCLMVYbIizDbjucWGZrYxI6mEoqKUifnAJ8DxdUV9FOr3bqFm+TM4q9+i3LuJeSJIr7SzJ34WH+d+loxZZ1NYeQJzzLH3UaYmWKk352OSAeisjopJQCdCR4+H2urddNRsxdu0E1PHXhy91WT568ilmVShH1jXj4kWLYMuWzb1yadQl1iANa0IZ9YUUnNLcaTlkaGZyIjg8UQzV7wd19QymHrkpBGBoE5Xv4feXjd9PW76+3oIeHqRvh6krx896Ceo6+h6EKkbd8ZAYkLHrIFmtmIyW9HMltBzC2azFZPFeFgsVkzWeEy2OOxxCdjjErCaDu5KOZn3wMzFJ8GGX+Pf8wGWcQRY3kCQt95+HdfHv+ZCfRV9Io6a6bdQeOE3KYzCwGrA4ikpfPRxBRW1bx31pKu93gBPv7cGbfnvuVx/HZsI0D7lIhLO/z5pGdMmoNbhMS3Lhc+eSoOtmOzdb8HJt425DH9Q54V19ax6+0k+2/sYd2u76I9LJ3ja/xljrCLcFXA4QggWFaXwVE0pFwHsfRdmXz2mMqSUrNjbzl/fWs+0msf5ueVVki1uAkWnw+nfxhzhroBHsqg4hefX76erdAFJO/5zVJkUq1p7eeC9PWxa+xFf0Z7lh6aPjQRFi26FE//7k4DVlY1++ve4eOn/8pcX7+BR+X9cs7go/Ad1FNweP/XNrbTX7qC/aTd62x6s3dW4+utI9+8nm1YSB403DkpBu5ZChzmDDsdUWhJOgcQcLMn5ONILScoqIjkjnxSLldi53J489rh47HEFZORMblIf5WCxFxVMohWP3sXiXb8iF6jW8lmbew2Jsy+iZO7pzLJGJjFFOAkh8CZNhU6MFNIxHmC1uvup3r2VzqoNBBu3EN+5k0zvPvJlI7PEJ4kc+rHRYs2jJ6WSLUkXYUqfiiO7jNS8UpypueRopkm9+D4emU0aiY54Eh3xkHn0d7RjRfm0mdStTyNu21uknnjzmLfv9QZ4+80XSVvzOy6Ua+kRDqpmfo3C8/+HoijpCngkJ5em8U8xny/pr8Dut6DyklFv29bj5bl3PiRh7QNcKd/BKoK0T72UuPO/R1pa6QTWOjxMmuCsikxe3jaH/6p+AdHXDvGjuyz0BoI8vbqWTe88xtWeJ7lc20t/Qjb66fcSN+86sAzXmSZ6nFmRwXe2ZONPTsey7cVRB1hSSt7f1crDb61lzv7H+I35dZyWPoJTz4HTvo05BjLfnl2RyQ+e28wH+hw+7f8H7F0KZeeMatvtjd388d09NGx6ly+bX+Juyxp0SwLaCbfDibfCEDdUzKd9k4C7kZvX/JWnXnZzR/UP+f6l83DYJvZST0pJq9tLfUMdHaEgSnTsw95TTbKnnlzZyDTRddA2XcJJqyWX9pQ5NCcWYU4vwZFVSmreVFxpuaSbLMOOi1KUWKACrCPInn8hH2sa+Ysvp7C4gthocB+buLwZBDo1TPVrEdMuiHR1RsUbCLKnpo7m7cvx1m/C1r6D9P69FMs65g/qe9xsyqTdWcKu5NOwpJeRmF9BemElcUm5FERZVxLl2LawOJWX5Swuq/sAfH2jbnFo7/Gy9JXHyN36IBezmW7NRdWs/6Hw/Ntw2BMnuNbhE281Yy1eQkeNi8T1j6ONIsCq6+jj5ddfJW/rg9wgViCFia6yz2A/77ukxdjNoPNnZnPf+oV80fYsbHwSFt9yxPW7+vw8sXwnbR/9kyv9z/N5rYE+Zz7yzN8RN/tzk5pufbzOnZ7F9581sdZ5Bifseg562yBh+M5a/qDOyxsbePm9ZZzc+h/+aH6fOLOXYPlFcNq3ME3yXHLjkeGyMzc/iT/X27nInoTY8NiIAdbamg7+9M5O5M7XudXyInOtO9HtyXDCd9BOuOXIwbkQmC+8Bz0hlSve/wXzt1zLj3d8gbJTr+TyBQWkOY7+xnBQl+xv76Gxfh+d9TvxN+9G66wivreWNF8deTQx55Bu322mNLoS8mh1nkFbajH2jKkk55fjyi4lMS6J2PkLpihjJ6QcOQ30ZFmwYIFcvXp1pKtxXPnP6lpmvHABBYXFJPzXC5GuzmF6vAF21DTStGMlgdo1uNo3UeTbQZFoPLBOu5ZMW1wJ3pRybDkzSC2ZTXLBTESEs6cpymD3PPAg32r8Jv5L/4JlzlVHXLemuYO1Lz9IZdU/KRO1dJhS6Z33ZfLOujVqEhiM1RtbGtn52Le51fwC4taPYYjU6VJK1uxrYd3bT1JZ+xhLtM30awl4Zl9P8hlfB9eh6WRig8cf5NRfvssjfI/ShH7ErauGbH2qbuvlP0tXE7fxn1zFG6SJbtzJ03GccRti+mdidpzs/3tkDQ271/Ms30CcfBucdedh63T2+XhiZQ3rPnyVyzzPcbZpjTGwfuaVmJb8N2RWTnq9w+HJ1bV8+6mNLJ31FkW7HoZbVxpzUA7iC+i8urmBxz/YQknjK9xoeYMS6tFd+WhL/hvmXjv2brV7l+J57nbs3Xup0dN5Qy6kPnkRCfmzyCuYQoojjpQEI5mQALz+ID3uTnxdjfi7mwh01KN11RDfW0uidz8ZwSZyaMEqPkliFMBEqzkLd3w+gcRCzGklOLJLSc0vx5o2JWLTAyjKZBJCrJFSLjhsuQqwjm/7WntZ/ptruMK+GusdVRH9B+4P6uysb6N622r6q1YR37qBYu8OSkUdplD/7DZTOq2J09Gz55E09QQySxegOaJ37ImiDFi2s5nsR04lzZVA4u0rjEG9gwR1yZr1a2l+768s7HyFTNHJftsUtCVfI+uka2Kq1WIoui65+r4X+av7FuxZZVhvfPFAUobm7n6Wf/wRPauf4FOeN8gSHXRb0uCEW3CdfDPEUGvdcP61oppXXniCx6w/My6YL/otmMx09fl5f/Medq94kRktr3CGth6z0HEXnIXzjNuMzHMx3uK+dX83n75/GY+k/I3Ffe8iPvcElJ6FNxBk+e5W3v94JQm7X+JS8R4lWgN+axLmRV9EnPAlcGZFuvrjEgjqnHPf+yT423ie29FSiuG6Z5FxyWzZ382La6uoW/8Wp3rf52LzcuLwEsycZQSV0y877O/EmAQDsPU5elY+gr1uGWZpdJXXpaCHOHqxYyaAlQB2fNhCczcN1i1cdNqy6YvPQyYVYE2fQmJuOcm5ZZiS8mM26FeUcFEBljIkKSXfvesufiF/DTe9AQVDZ4ebiP3Wtvawe/s6uvd8jK1pAzl9W5lG9YE/8m7NRVvidGT2PJJKF5M0dREixv/ZKscvKSV333cvd3T/L60lnyH10p/jtyazc9tGate8THrdmyyQmwmiUZ10Iklnfo2UmefG/MX1YNsauvnTn37Dr7X76DUnsy9+Fv0eD3ne3eSLFnQEjeknk3LqzdgrLzimLt4CQZ1b/72Wyh3383Xzs7SbM6gSeVi87UwTtVhEkF5LKsz5HAkn3AhpY8scFu0e/nAfv35xFc/E/S9TZTVV5ik0+uPJp4Fc0QZAb9YiEhZdDzMuj9rEHUdjY10n1zz4MSfL1fxOuw+fsLKVYrSgl3JRi0N4CJrj0WZegVhwI+TMDf/33uuGxs3oTVvpaavH19OOv99NcGAOJ3McZkc6lsQMbImZONJyEclFUZeZUlGijQqwlGF981/vcfeeS9FO/CrauT+dkH20uT3s3LGF9l0r0BrWkd69hWlyLw7hAaBfxNGcMA1/1lySpp5AatkJxh/3Y+jiUlFq2/t4/Y+388XA44e912jJo7P0corP+iK2lGM3+9POJjfPPPcUS5oeIV/fj9lsxpNYgmP6OWTOvwSRmBvpKk4YX0DnXyuqaV39LCf2vEGuaMOUkIItfy6Zcy9EKzzxmAoqD7V0RzP/+XAb85qeZL7cRorZgy2tkJTKT2EpPwuSiyJdxQmzu7mHB97bQ0/1Oj7rf5EirQlHnJ3EwpnYp50LxaceU0GlohwvVIClDOv1LY1oj3+e0+KrsH5rG5jHlyGxx+Nn564dNO/4GH3/OlI6N1Ma3E2qcAPgw0xj3FT60+eQULyQzIqTsGSUh3UCVkWJVm6Pn/feewdL7TJcoo+EjGKKF5yNM/vwMUmKoiiKokSv4QKscd0qE0I8AQxcFSQBnVLKOUKIImAbsCP03gop5ZHTJikRc0Z5Bt+wX8zZ3h8TeP8+zGd+d9Tbuvt97N27k/bdqwjUrSOxYzNT/LuYJ7oBCKLRaC2kNfMMugsWkFlxEvF5symI8fEkinK0nHYLF517LnBupKuiKIqiKMoEGFeAJaU8kApLCPErYPBEB3uklHPGU74yOaxmjQsuvornn3ydT79/N90+P66TbwGHMQuFlJKWjnaaavbQ2bCHQON2TG07Se7bQ2GwltmiDzCCqQZLAc2Zp9CeN4/M8hNILJ5H7lFMKqooiqIoiqIosSgsXQSFEAKoAc6UUu4KtWC9JKWcMZZyVBfByPrX+9tIfes2LtBWANCJiwAaVunDFQqiBnQKFy32YjzJpVizKkmZuoi0qfMQKphSFEVRFEVRjgMT0kVwkFOAJinlrkHLioUQ64Bu4AdSyg+GqdjNwM0ABQXH7sDuWHDdqRXUzniWJ5d/gKv2bRz9+7FooFntaK5s4tIKSM6aQmrRDJISM0mKdIUVRVEURVEUJcqM2IIlhHgLGCo39vellM+H1vkTsFtK+avQaxvgkFK2CSHmA88B06WU3Ufal2rBUhRFURRFURQlFhx1C5aU8qwRCjYDnwHmD9rGC3hDz9cIIfYAZYCKnhRFURRFURRFOWZpYSjjLGC7lLJuYIEQIl0IYQo9nwKUAnvDsC9FURRFURRFUZSoFY4xWFcDjx2y7FTgLiGEH9CBW6SU7WHYl6IoiqIoiqIoStSKqomGhRAtQHWk63GINKA10pVQJo0638cPda6PH+pcH1/U+T5+qHN9fInG810opUw/dGFUBVjRSAixeqjBa8qxSZ3v44c618cPda6PL+p8Hz/UuT6+xNL5DscYLEVRFEVRFEVRFAUVYCmKoiiKoiiKooSNCrBG9pdIV0CZVOp8Hz/UuT5+qHN9fFHn+/ihzvXxJWbOtxqDpSiKoiiKoiiKEiaqBUtRFEVRFEVRFCVMVIClKIqiKIqiKIoSJirAOgIhxHlCiB1CiN1CiO9Guj5K+Agh8oUQ7wohtgohtgghvh5aniKEeFMIsSv0MznSdVXCQwhhEkKsE0K8FHpdLIT4OPT9fkIIYY10HZXwEEIkCSGeEkJsF0JsE0KcqL7bxyYhxO2hv+GbhRCPCSHs6rt97BBC/E0I0SyE2Dxo2ZDfZWH4Xei8bxRCzItczZWxGuZc3xP6O75RCPGsECJp0Ht3hM71DiHEuRGp9BGoAGsYQggT8AfgfKAS+JwQojKytVLCKAB8Q0pZCSwGbg2d3+8Cb0spS4G3Q6+VY8PXgW2DXv8CuE9KORXoAP4rIrVSJsJvgdeklNOA2RjnXX23jzFCiFzga8ACKeUMwARcjfpuH0seBs47ZNlw3+XzgdLQ42bgT5NURyU8Hubwc/0mMENKOQvYCdwBELpeuxqYHtrmj6Hr9qihAqzhLQJ2Syn3Sil9wOPAJRGukxImUsoGKeXa0HM3xgVYLsY5/kdotX8Al0akgkpYCSHygAuBv4ZeC+BM4KnQKupcHyOEEInAqcBDAFJKn5SyE/XdPlaZgTghhBmIBxpQ3+1jhpTyfaD9kMXDfZcvAf4pDSuAJCFE9qRUVBm3oc61lPINKWUg9HIFkBd6fgnwuJTSK6XcB+zGuG6PGirAGl4uUDvodV1omXKMEUIUAXOBj4FMKWVD6K1GIDNS9VLC6jfAtwE99DoV6Bz0h1t9v48dxUAL8PdQl9C/CiESUN/tY46Ush64F6jBCKy6gDWo7/axbrjvsrpuO7bdBLwaeh7151oFWMpxTQjhAJ4GbpNSdg9+TxpzGKh5DGKcEOIioFlKuSbSdVEmhRmYB/xJSjkX6OWQ7oDqu31sCI29uQQjqM4BEji8i5FyDFPf5eODEOL7GEM7Ho10XUZLBVjDqwfyB73OCy1TjhFCCAtGcPWolPKZ0OKmgS4FoZ/NkaqfEjZLgIuFEFUYXX3PxBijkxTqVgTq+30sqQPqpJQfh14/hRFwqe/2secsYJ+UskVK6Qeewfi+q+/2sW2477K6bjsGCSFuAC4CrpGfTN4b9edaBVjDWwWUhrIRWTEG070Q4TopYRIag/MQsE1K+etBb70AfCH0/AvA85NdNyW8pJR3SCnzpJRFGN/jd6SU1wDvAleEVlPn+hghpWwEaoUQ5aFFnwK2or7bx6IaYLEQIj70N33gXKvv9rFtuO/yC8D1oWyCi4GuQV0JlRgkhDgPo3v/xVLKvkFvvQBcLYSwCSGKMRKbrIxEHYcjPgkGlUMJIS7AGLthAv4mpfxZZGukhIsQ4mTgA2ATn4zL+R7GOKwngQKgGrhSSnnoAFslRgkhTge+KaW8SAgxBaNFKwVYB1wrpfRGsHpKmAgh5mAkNLECe4EbMW4oqu/2MUYI8RPgKozuQ+uAL2KMxVDf7WOAEOIx4HQgDWgCfgw8xxDf5VCQfT9GN9E+4EYp5eoIVFs5CsOc6zsAG9AWWm2FlPKW0PrfxxiXFcAY5vHqoWVGkgqwFEVRFEVRFEVRwkR1EVQURVEURVEURQkTFWApiqIoiqIoiqKEiQqwFEVRFEVRFEVRwkQFWIqiKIqiKIqiKGGiAixFURRFURRFUZQwUQGWoiiKoiiKoihKmKgAS1EURVEURVEUJUxUgKUoiqIoiqIoihImKsBSFEVRFEVRFEUJExVgKYqiKIqiKIqihIkKsBRFURRFURRFUcJEBViKoiiKoiiKoihhogIsRVGUKCGEKBJCSCGEOdJ1OdYJIW4QQiyLdD2ijRDiFCHEjkjXQ1EUJZapAEtRFEWJaUKIO4UQfiFEz6DHtyNdr1gkpfxASlke7nKFEGcKIdYKIbqFEHuFEDeHex+KoijRQgVYiqIoYaJaniLqCSmlY9Djl5GuUDjF8u+WEMICPAv8GUgErgJ+LYSYHdGKKYqiTBAVYCmKooyDEKJKCPEdIcRGoFcIYRZCLBZCfCSE6BRCbBBCnD5o/aVCiJ8LIVaG7uY/L4RIGabsG4UQ24QQ7tBd/y8f8v4lQoj1oXL2CCHOCy1PFEI8JIRoEELUCyH+VwhhGuE4SoQQ7wgh2oQQrUKIR4UQSYPeaxdCzAu9zhFCtAwclxDiYiHEltDxLhVCVBzy+XxTCLFRCNElhHhCCGEf+yc9dkKI74Y+F7cQYqsQ4rJh1hNCiPuEEM2hz3KTEGJG6D2bEOJeIUSNEKJJCPGAECJulPt/OLT+m6E6vCeEKBz0/m+FELWhfa4RQpwy6L07hRBPCSEeEUJ0AzcIIRYJIZaHPucGIcT9QgjroG2kEOIrQohdof39NHTuPgrt48nB6w9T59OFEHWjOb4xSAFcwL+kYRWwDagM834URVGiggqwFEVRxu9zwIVAEpAJvAz8L8aF5TeBp4UQ6YPWvx64CcgGAsDvhim3GbgI4+L0RuC+QUHOIuCfwLdC+z0VqApt93Co3KnAXOAc4IsjHIMAfg7kABVAPnAngJRyD/Ad4BEhRDzwd+AfUsqlQogy4DHgNiAdeAV48ZAL+SuB84BiYBZww5AVEOLkUPAw3OPkEY7hUHuAUzBaTX4Sqn/2EOudg/H5lYXWvRJoC713d2j5HIzPMxf40RjqcA3wUyANWA88Oui9VaFyU4B/A/85JPi8BHgK4/w+CgSB20NlnQh8CvjKIfs7F5gPLAa+DfwFuBbjfM7A+F09aqFAebjz88ehtpFSNmH8jtwohDAJIU4ECgE1Bk5RlGOTlFI91EM91EM9jvKBEdTcNOj1dzDu1A9e53XgC6HnS4G7B71XCfgAE1AESMA8zL6eA74eev5n4L4h1skEvEDcoGWfA94d43FdCqw7ZNkLwCZgI2ALLfsh8OSgdTSgHjh90Odz7aD3fwk8EOZzcGfoM+wc9MgZYr31wCWh5zcAy0LPzwR2YgQl2qD1BdALlAxadiKwb5T1ehh4fNBrB0aQlD/M+h3A7EHH9P4I5d8GPDvotQSWDHq9BvjOoNe/An4zQpmnA3XhPD+hcj8NNGEE/gHgS+Heh3qoh3qoR7Q8VAuWoijK+NUOel4IfHbwnX3gZIzWqqHWrwYsGK0SBxFCnC+EWBHqntcJXDBovXyMFppDFYbKaxi0/z8DGUc6ACFEphDi8VCXwm7gkSHq9CBGK8jvpZTe0LKc0DEAIKXUQ8eXO2i7xkHP+zACjXB7UkqZNOixXwhxvTC6UA58DjMY4nOWUr4D3A/8AWgWQvxFCOHCaJGLB9YMKuO10PLROnCupZQ9QDvGZ0ao6+S2UNfJTozWs7Shtg2tXyaEeEkI0Rg6R/83xPE0DXreP8Trifjsj0gIMQ14HKPl1gpMB74thLhwsuuiKIoyGVSApSiKMn5y0PNajBaswRf7CVLKuwetkz/oeQHgB1oHFyiEsAFPA/cCmVLKJIzud2LQfkqGqEstRgtW2qD9u6SU00c4hv8LHcdMKaULo1vZwL4QQjiA3wAPAXeKT8aN7ccI6gbWE6Hjqx9hf4cRRorwniM8Thm5lANlFWIEhF8FUkOf3+bBxzSYlPJ3Usr5GC2KZRhdL1sxgpLpgz7LRCnlWIKUA+c69BmmAPtDx/JtjO6IyaH6dR1Sv8G/VwB/ArYDpaFz9L3hjmeiCGOs3XDn54FhNpsB7JRSvi6l1KWUOzC60Z4/eTVXFEWZPCrAUhRFCa9HgE8LIc4NjTexhxIH5A1a51ohRGVoPNNdwFNSyuAh5VgBG9ACBIQQ52OMFRrwEMaYlk8JITQhRK4QYpqUsgF4A/iVEMIVeq9ECHHaCPV2Aj1AlxAiFyPAGOy3wGop5RcxLo4HLqafBC4M1cMCfAMjwPtopA/qUNJIEe44wuODMRSXgBGgtICRMATjQv8wQoiFQogTQvXvBTyAHmqNexBj7FtGaN1cIcS5g7aVYlASkyFcEBpbZsUYi7VCSlmL8XkHQvUzCyF+hDHW7kicQDfQE2oV+n8jrB92UsrpRzg/twyz2TqgVBip2oUQogRjbOHGyau5oijK5FEBlqIoShiFLp4vwWhdaMFoUfoWB/+9/RfG+JxGwA58bYhy3KHlT2KMzfk8xhiogfdXEkp8gdHy8R6ftCQNdMXaGtr2KQ7uojiUnwDzQmW9DDwz8IYQ4hKMJBUDF/T/A8wTQlwTao24Fvg9RovPp4FPSyl9I+xvQkkpt2KMOVqO0U1uJvDhMKu7MAKpDozujm3APaH3vgPsBlaEuuW9BZQDCCHyATfGuLTh/Bv4MUbXwPkYnxUY4/Jewxj7VY0R1NUOVcAg38T4PXCH6vvECOtHBWkkSbkJI5lLN8bv6tPAXyNZL0VRlIkipDy0B4KiKIoyUYQQS4FHpJTq4jLGCSGuxeg+eMcw7z+MkTDiB5NaMUVRFCWiYnbiQkVRFEWJJCnlI5Gug6IoihJ9VBdBRVGU44QwJr0dS3IC5RgkhPjeML8Hr0a6boqiKMcC1UVQURRFURRFURQlTFQLlqIoiqIoiqIoSphE1RistLQ0WVRUFOlqKIqiKIqiKIqiHNGaNWtapZSHTT4fVQFWUVERq1evjnQ1FEVRFEVRFEVRjkgIUT3UctVFUFEURVEURVEUJUxUgKUoiqIoiqIoihImKsBSFEUZgi+gR7oKiqIoiqLEoKgagzUUv99PXV0dHo8n0lVRYozdbicvLw+LxRLpqigx5oX19Wx4+hdceOm1zJu/KNLVURRFURQlhkR9gFVXV4fT6aSoqAghRKSro8QIKSVtbW3U1dVRXFwc6eooMebj9Zv4mekf8OI/YE4rmFSQriiKoijK6ER9F0GPx0NqaqoKroYgpaS2vY+29jZQE0YfRAhBamqqavlUjoq1ed2B5/7aNRGsiaIoiqIosSbqAyxABVfD8AZ0ZF8HqZ4aAu7mSFcn6qjfG+Vo5ffvOPC8eeNbEayJoiiKoiixJiYCLGVo3oCOS/QaL/raIlsZRTlGBHVJZmA/zdYCtuv5yOqPIl0lRVEURVFiiAqwRkEIwTe+8Y0Dr++9917uvPPOyFUoxBcIsmnNSk646HoWfOoyKioqDtRr6dKlfPTR0V8YVldXM2/ePObMmcP06dN54IEHwlRrRYlu3f1+HPSDPZHdpmKcXTtG3khRFEVRFCUk6pNcRAObzcYzzzzDHXfcQVpaWtjKlVIipUTTji7O9QclX7z9Bzzy5/tYWFlE0FXIjppGwAiwHA4HJ5100lGVnZ2dzfLly7HZbPT09DBjxgwuvvhicnJyjqo8RYkV7X0+HKIfbOn0aNNI7Hwf+tohPiXSVVMURVEUJQaoFqxRMJvN3Hzzzdx3332HvdfS0sLll1/OwoULWbhwIR9++CEAd955J/fee++B9WbMmEFVVRVVVVWUl5dz/fXXM2PGDGpra/nWt77FjBkzmDlzJk888QRgBEinn346V1xxBdOmTeOaa65BHpLIQtd1mtvaScspQpcggh4qKyupqqrigQce4L777mPOnDl88MEHR6znddddx4knnkhpaSkPPvggAFarFZvNBoDX60XXh54T6He/+x2VlZXMmjWLq6++GoD29nYuvfRSZs2axeLFi9m4ceOBfX3hC1/glFNOobCwkGeeeYZvf/vbzJw5k/POOw+/3w/AXXfdxcKFC5kxYwY333zzkMddVFREZ2fngWWlpaU0NTWN4mwqypH1egNGC5bNiZY1HYBAw+YI10pRFEVRlFgRUy1YP3lxC1v3d4e1zMocFz/+9PQR17v11luZNWsW3/72tw9a/vWvf53bb7+dk08+mZqaGs4991y2bdt2xLJ27drFP/7xDxYvXszTTz/N+vXr2bBhA62trSxcuJBTTz0VgHXr1rFlyxZycnJYsmQJH374ISeffPKBcqQe4PYvXcO8k87glMXzOe+s07npq9+iqKiIW265BYfDwTe/+U0APv/5zw9bz40bN7JixQp6e3uZO3cuF154ITk5OdTW1nLhhReye/du7rnnniFbr+6++2727duHzWY7EPD8+Mc/Zu7cuTz33HO88847XH/99axfvx6APXv28O6777J161ZOPPFEnn76aX75y19y2WWX8fLLL3PppZfy1a9+lR/96EcAXHfddbz00kt8+tOfPrBPTdO45JJLePbZZ7nxxhv5+OOPKSwsJDMzc8TzqCgj8QZ0UkU/0uokIX82bIeOfetJLzk10lVTFEVRFCUGqBasUXK5XFx//fX87ne/O2j5W2+9xVe/+lXmzJnDxRdfTHd3Nz09PUcsq7CwkMWLFwOwbNkyPve5z2EymcjMzOS0005j1apVACxatIi8vDw0TWPOnDlUVVUdXJAe4Ee338yKD97mtNNO4fGnn+e8884bcp9Hqucll1xCXFwcaWlpnHHGGaxcuRKA/Px8Nm7cyO7du/nHP/4xZAvRrFmzuOaaa3jkkUcwm80Hjum6664D4Mwzz6StrY3ubiMwPv/887FYLMycOZNgMHigvjNnzjxwfO+++y4nnHACM2fO5J133mHLli2H7feqq6460Nr3+OOPc9VVVx3xM1eU0fL4gzjpR9qc5OUX0S4deOo3RrpaiqIoiqLEiJhqwRpNS9NEuu2225g3bx433njjgWW6rrNixQrsdvtB65rN5oO61Q2ejykhIWFU+xvoogdgMpkIBAIHvS/0IABlpWVce/0NfP2aC0mffQ5tbYdnFByunnB4OvNDX+fk5DBjxgw++OADrrjiioPee/nll3n//fd58cUX+dnPfsamTZtGdUyapmGxWA7sS9M0AoEAHo+Hr3zlK6xevZr8/HzuvPPOIeeyOvHEE9m9ezctLS0899xz/OAHPzjifhVltLw+o4tgv91FSaaTjXoBU1qP3CqtKIqiKIoyQLVgjUFKSgpXXnklDz300IFl55xzDr///e8PvB7oCldUVMTatWsBWLt2Lfv27RuyzFNOOYUnnniCYDBIS0sL77//PosWLRpdhWSQl9/6AISGbrKza18NJpNGUlISTqcTt9s9Yj0Bnn/+eTweD21tbSxdupSFCxdSV1dHf38/AB0dHSxbtozy8vKDdq/rOrW1tZxxxhn84he/oKuri56eHk455RQeffRRwBhLlpaWhsvlGtUhDQRTaWlp9PT08NRTTw25nhCCyy67jP/5n/+hoqKC1NTUUZWvKCMJeHrQhESzu3DYzNRZi0nu2a0m81YURVEUZVTGHWAJIfKFEO8KIbYKIbYIIb4eWn6nEKJeCLE+9Lhg/NWNvG984xu0trYeeP273/2O1atXM2vWLCorKw+kM7/88stpb29n+vTp3H///ZSVlQ1Z3mWXXcasWbOYPXs2Z555Jr/85S/JysoaVV00GeRfT79M+cw5nHX22Vz3tR/y6EMPYDKZ+PSnP82zzz57IMnFcPUEo5vfGWecweLFi/nhD39ITk4O27Zt44QTTmD27NmcdtppfPOb32TmzJkAfPGLX2T16tUEg0GuvfZaZs6cydy5c/na175GUlISd955J2vWrGHWrFl897vf5R//+MeoP9+kpCS+9KUvMWPGDM4991wWLlx44L0HHnjgoHpfddVVPPLII6p7oBJWwX6jO6tmN24K9DmLsUkPuBsjWS1FURRFUWKEODRD25gLECIbyJZSrhVCOIE1wKXAlUCPlPLeI20/2IIFC+Tq1asPWrZt2zYqKirGVcdjVWN9NVmiHbJm0dLrJ7V7OySkoSXljbqMO++886BkGMca9fujjNVLby/log8uofPCP5O08Gr+9ejDXLfr6+jXv4g2RSW6UBRFURTFIIRYI6VccOjycbdgSSkbpJRrQ8/dwDYgd7zlKiMThIJjoWEzm/BgQff3R7ZSihLjpMdowbLEJQLgzDUC9M46NQ5LURRFUZSRhTXJhRCiCJgLfAwsAb4qhLgeWA18Q0rZMcQ2NwM3AxQUFISzOsc0XUoEOhKBEAKbRaMfC7aAd0zl3HnnnRNTQUWJUdJrZNc0xzkByCkowSMt9OzfgZpqWFEURVGUkYQtyYUQwgE8DdwmpewG/gSUAHOABuBXQ20npfyLlHKBlHJBenp6uKpzzJNSoiGRGFn4rCYNH1Y06Qc59KTAiqKMTPr7ALDYjGyfUzKc7JNZ0LorktVSFEVRFCVGhCXAEkJYMIKrR6WUzwBIKZuklEEppQ48CIwyNZ4yGro0ughKYZxCIQRBzWqEWwFfROumKLFM9xutwJrVmNIgNcFKnZZDnHvoTKCKoiiKoiiDhSOLoAAeArZJKX89aHn2oNUuAzaPd1/KJwZasBg8Z5U5NG/WGLsJKooySCA0jtFsBFhCCLriCkn27oegP4IVUxRFURQlFoRjDNYS4DpgkxBifWjZ94DPCSHmABKoAr4chn0pIboEDZ3BMbKw2MAPMuBBkBi5yilKDJP+0MTW5k8m5fYnT8HcH4TOGkgtiVDNFEVRFEWJBeHIIrhMSimklLOklHNCj1eklNdJKWeGll8spWwIR4Uj5bnnnkMIwfbt24ddp6qqihkzZoRtnzt27OD0009nzpw5VFRUcPPNNwPGJMGvvvLKQV0EASxmCwGpoQ9cIA7D4/GwaNEiZs+ezfTp0/nxj38ctjorSqwTgYEAy3ZgmTXDmMfO07gjElVSFEVRFCWGhC3JxbHuscce4+STT+axxx4b8v1AIDDufQSDwYNef+1rX+P2229n/fr1bNu2jf/+7/8GjADrtddePayLoM2s4cWCHKGLoM1m45133mHDhg2hsl5jxYoV466/ohwLxMD3xxJ3YFlinpGqvaNWpWpXFEVRFOXIVIA1Cj09PSxbtoyHHnqIxx9//MDypUuXcsopp3DxxRdTWVkJGIHWNddcQ0VFBVdccQV9fUZGsrfffpu5c+cyc+ZMbrrpJrxe4yKuqKiI73znO8ybN4///Oc/B+23oaGBvLxPJg2eOXMmPp+PH/3oRzz91H846ZzLePL5V+nt7eWmm27ijFOWcOK5V/Diy68B8PDDD3PJJZdw+umnU1payk9+8hPAGFPicDgA8Pv9+P1+xOCxXCH/+c9/mDFjBrNnz+bUU40JVj0eDzfeeCMzZ85k7ty5vPvuuwf2demll3L22WdTVFTE/fffz69//Wvmzp3L4sWLaW9vB+DBBx9k4cKFzJ49m8svv/zA5zPY4sWL2bJly4HXp59+OodOQK0oE0UEQy1Ypk9asPLy8uiQDtWCpSiKoijKiMI6D9aEe/W70LgpvGVmzYTz7z7iKs8//zznnXceZWVlpKamsmbNGubPnw/A2rVr2bx5M8XFxVRVVbFjxw4eeughlixZwk033cQf//hHvvrVr3LDDTfw9ttvU1ZWxvXXX8+f/vQnbrvtNgBSU1NZu3btYfu9/fbbOfPMMznppJM455xzuPHGG0lKSuKuu+7ioxUr+e0Pb8Vis/Ojn/2MM888k4ceeohd2zZx0UWf5pwrbgBg5cqVbN68mfj4eBYuXMiFF17IggULCAaDzJ8/n927d3PrrbdywgknHLb/u+66i9dff53c3Fw6OzsB+MMf/oAQgk2bNrF9+3bOOeccdu7cCcDmzZtZt24dHo+HqVOn8otf/IJ169Zx++23889//pPbbruNz3zmM3zpS18C4Ac/+AEPPfTQgZa5AVdddRVPPvkkP/nJT2hoaKChoYEFCw6bJFtRJoQIevFhwap9cv+pKDWBrTKLtI49EayZoiiKoiixQLVgjcJjjz3G1VdfDcDVV199UDfBRYsWUVxcfOB1fn4+S5YsAeDaa69l2bJl7Nixg+LiYsrKjHEcX/jCF3j//fcPbHPVVVcNud8bb7yRbdu28dnPfpalS5eyePHiAy1fxgxYEiEEb7zxBnfffTdz587lsis/h8fro2afcSF49tlnk5qaSlxcHJ/5zGdYtmwZACaTifXr11NXV3cgCDvUkiVLuOGGG3jwwQcPdF9ctmwZ1157LQDTpk2jsLDwQIB1xhln4HQ6SU9PJzExkU9/+tOA0fJWVVUFGEHYKaecwsyZM3n00UcPaqkacOWVV/LUU08B8OSTT3LFFVcMc2YUJfxMQQ9+YT1omd1iotmSh7O3OkK1UhRFURQlVsRWC9YILU0Tob29nXfeeYdNmzYZc00FgwghuOeeewBISEg4aP1Du9oN1fXuUIeWMVhOTg433XQTN910EzNmzDgQCElJaAyWhpSSp59+mvLychpa2sn2V0NyMR+v3TBifZKSkjjjjDN47bXXDkvQ8cADD/Dxxx/z8ssvM3/+fNasWXPE47DZPulSpWnagdeaph0Yo3bDDTfw3HPPMXv2bB5++GGWLl16WDm5ubmkpqayceNGnnjiCR544IEj7ldRwknTfQQOCbAAehxFJHctBV8fWOMnv2KKoiiKosQE1YI1gqeeeorrrruO6upqqqqqqK2tpbi4mA8++GDI9Wtqali+fDkA//73vzn55JMpLy+nqqqK3bt3A/Cvf/2L0047bcR9v/baa/j9xrw7jY2NtLW1kZubi9PppMftRoQCrHPPPZff//73xtxYFhvrNm9HhjKhvfnmm7S3t9Pf389zzz3HkiVLaGlpOdDlr7+/nzfffJNp06Ydtv89e/ZwwgkncNddd5Genk5tbS2nnHIKjz76KAA7d+6kpqaG8vLyUX+ebreb7Oxs/H7/gXKGctVVV/HLX/6Srq4uZs2aNeryFWW8zEEPfs122HKZYqRnl+2qm6CiKIqiKMNTAdYIHnvsMS677LKDll1++eXDZhMsLy/nD3/4AxUVFXR0dPD//t//w2638/e//53PfvazzJw5E03TuOWWW0bc9xtvvHEgycS5557LPffcQ1ZWFmeccQY7tm9n4Tmf5clnX+KHP/whfr+fWbNmcdqJC/nBL/90IFX7okWLuPzyy5k1axaXX345CxYsoKGhgTPOOINZs2axcOFCzj77bC666CIAfvSjH/HCCy8A8K1vfYuZM2cyY8YMTjrpJGbPns1XvvIVdF1n5syZXHXVVTz88MMHtVyN5Kc//SknnHACS5YsOSioe+GFF/jRj3504PUVV1zB448/zpVXXjnqshUlHEy6j6B2eAtWXFYpAJ21w0/VoCiKoiiKIqSUka7DAQsWLJCHZovbtm0bFRUVEapR9Gru9pDu3gaOTERizoHlvd4AsnUXdovGI68sZ/Xq1dx///0RrGlkqd8fZaze/8lZlNg6yf3uwX+Llm+r5sQnZlE955sUXvrDCNVOURRFUZRoIYRYI6U8LBObasGKUVJKYwos7eBTaDVr+LAggr7IVExRYpxFegmaDm+VLcrJoFEm42/ZFYFaKYqiKIoSK1SAFaOk1IHDk1aYNYEfCyYZ4IbrrzuuW68U5WiYpQ99iDFYmU47NWRj7dwbgVqFz96WHi786WO88q97jWw5iqIoiqKEVUwEWNHUjTFqhAIsxMGnUAiBbgqNHwklujheqd8bZayklFilD91kP+w9TRO02fJJ6q+NQM3C54nVtdzh+z0X7PkpnqW/inR1FEVRFOWYE/UBlt1up62tTV0sH2KgBWvIU2gOXRwGvJNWn2gjpaStrQ27/fALZUUZjj8oseFHmodO3OJxFePSO6G/Y3IrFka7q6o5UdsKgH/tvyNcG0VRFEU59kT9PFh5eXnU1dXR0tIS6apEla6ePjoDrRCvg7X5oPe6+310eJuhyYuwJ0aohpFnt9vJy8uLdDWUGOIJBLHhG3IMFoCWNhVawdu0C1vRokmu3fhJKQk2bMakSZbqczndvQ46ayCpINJVGzOPP8jnH1zBJfb1XH/RmYiM2E1ms7Guk6kZDuKtUf8veViBoE57n48MZ2zf1OrzBRAI4qymSFdFUZQYFvV/zS0WC8XFxZGuRtT5+UNPcEftzXDVo1Bx0UHvPb++ntzXPoOr7BRc1zwcmQoqSgzy+nXswk+PZeiLREduOWyHtppt5MRggNXa4yM3WA8afJxyMad3roO6VTEZYL26uYHe2o18wfY9+CPwrT2QkBbpao3ZCxv287XH1vJo6sMsmV0BZ90JWuxd3N/xzCb+s6aO1+evpDw/GxbdfFgSpmjX6w1w9q/fI6BLlp7TRHz3XjjzB3DIWGdFUZSRxNZfP+UTgX7j5xAXgsVpCezTs9Db1ISoijIWHr/RgsUQY7AAMgumEZSCvobYnAurrqOPErGfoCkOWXIGfmlCb9gU6WodlZX72rna9O4nC7a/HLnKjMMTq2qYL3aypPdN+Oh3sPutSFdpzDz+IC9s2M9UUUf5lt/Aa9+BfUsjXa0xW7qjhf1dHlJ7dhL/8lfgg3thzzuRrpaiKDFowgMsIcR5QogdQojdQojvTvT+jhsDCSzMcYe9VZSWwD6ZTVz3PpUlTFHGwBvQseMf8sYFQFFWCvUyDb01Nm9e1HX0Uywa8CdNYWpOOntkDp66DZGu1lHZUNvFiQn72W6ppFlLh11vRLpKYyalZENtFzenbsAnTQSFBTY/Helqjdnamg68AZ2bkgf9Lq1/LHIVOkor9rbhsJm5yLnzk4Xr1ThFRVHGbkIDLCGECfgDcD5QCXxOCFE5kfs8Xgj/QIB1+IWgy26hxZqLLeCGvrZJrpmixC6PL4ANH9pwXQRtZupNucS5qya3YmHS2OUhU3RiSs6jNMPBNlmA1rwl0tU6Kg2dfRT599KXUsF7/kpkzYqYu6HU7PbS4w0wy1LHdm0qax2nwd73Yu449rT0AnCGo5ZtegFNhRfDvtg7jl3NbsoyHZxh20U1WcgZn4WqD2LuOBRFibyJbsFaBOyWUu6VUvqAx4FLJnifxwURDAVYw1wIehND49ZUN0FFGTWv34dJSMQw3yuAzvgCUr01MXnR1drrJV10YnZlMTXDwTa9AHt/E/S1R7pqY+INBEnwNGDXe7HmzmKzXoToawV3Y6SrNiZ7mnsASO3fR7ejhI+8U6CnEbpiayqAfS29xFlMZPqq2SNz2ahNg54m6KiKdNXGZHdzD6UZTgoC+9gQLKY5bZFxHK1qcnFFUcZmogOsXGDwf4q60LIDhBA3CyFWCyFWq0yBo6cFh2/BAjCllRpP2nZPUo0UJfYFPMadeM16eNfbA+skTiFe9iN7moddJ1p1uPtJEW6EI4MEm5mW+DLjjabNka3YGDV3e8mlFYDU/HK26oXGG42xNZ5sT2svyXRj9bQh08p4syd0HLUrI1uxMdrX2kN5qhmts4aOhGI+8Ewx3qhbFdmKjUFXn5/WHh+laVYSPA1UyUzW66EblY0bI1u5o+ANBOno9UW6Gopy3Ip4kgsp5V+klAuklAvS09MjXZ2YIQbGYFmGvhBMzJ6KX5rwNu8c8n1FUQ7n9xrfK9Mw3ysAc4Zx86K7PvYSXXjdrZjQISEDgGDmdOONxtgKsJq6PWQKo9UtI6eYveYi443G2BpPVt3aS7nFCNQduRXs0PORwhxzAe++1l4WJnYAEj21lHfaUkCzxNRxNHQbiaNKrJ0IqdOgZbHKnRFzxwHgD+pc/PsPOfHut9m6vzvS1VGU49JEB1j1QP6g13mhZco4mYKhSYSHacEqykikRmbgaVQBlqKMVsA7cgtWUp4x31J7zdZJqVM4SXeT8cRh3MzKzM6nXTrRW2IrWGzq9pIVCrBMiTnkZmbSaM6BhthqaWhyeymPN7oJ5hSU4MdMZ0IRNMXO75aUkv2dHsqsxuTbzqwS6roDBFPLYuo4mrqN/6m5sgEAmVzMtpZ+SC+PuRsQq6ra2dHkxuPX+efyqkhXR1GOSxMdYK0CSoUQxUIIK3A18MIE7/O4YNJDAdYwd9qnpCewT2apMViKMgZ+r3EX23yEACunsBSvNONpir1xGVpvqBu2IxOA0kwnu2QuvobYuRAGowUrS3QgLQlgd1Ge6WRzsDDmugg2d3soshotDBm5xbjsZmrMhdC8LcI1G72ufj++oE62qQuA7LwiADqcpdAcO79XTV1G63VawBjHl5A5lR2NPZA5I+ZasN7Z1ozVpHH+jCxe3tRAIKhHukqKctyZ0ABLShkAvgq8DmwDnpRSxmbKqihj1kNdBE22Id8vSImnSmYT31MFuvrjqiijEfAZ3yuLffgAKy/VSS2ZaO2xN77R4jXGLQ10ESzNcLBLz8XUujOmknY0dXvI1jrAlQNAeZaTdb586NgHntjpEtXs9pJr7gSTFRGfyrRsF5sDedBVEzPH0ew2bvZlyDZAMKW4BIAqUxF010N/R+QqNwZN3cZ33+VvAaGRk1dIa4+X3uRp4G6A3tjJyLupvosZuS7On5mN2xNgW4M70lVSlOPOhI/BklK+IqUsk1KWSCl/NtH7O16YdB8BYQVt6FNot5joiMvHonuNfw6Koowo6O0DwGKLH3YdkyZosuTh6KmerGqFRZ8vQFIwdLEb6iJYkuFgl8zD4u+CGEra0dTtIc/ciXBlAzAty8VOmWe82Ro73aKbuz1GV0dnFghBWaaD5T2ZoTdjoxWrOdS1LinYBo4MMhITSI63sMkfymcVI90Em9wekuMtmHubwJFJaVYSAFWWUMKOpthpHa1p76MoNYFFRSkAfLyvDQI+eP378PI31E1XRZkEEU9yoYxdIKhjlT4C2tCtVwfWSwr9Y1CZBBVlVIKhFizrEQIsALejmHR/HQQDk1GtsGjr8ZEmughqVrC5AGPOvNa4ImOFGBqH1dTtJYsOcBotWGVZjk8CrBgJTHq9AXp9QVL19gPHUZ7pZL03FJjEyPxkzW7jO+Pwt4IzGyEEZZlOPurJCq0QGwFWY5eXTJcd3EaANS3LCcAGf+j3KkbGYXn8QRq7PRSkxpOVaCc3KY71tZ2w+SlYfj+s+iusfzTS1VSUY54KsGKQL6hjx0dwmO6BAywZRgpmqQIsRRmVoN8Yg3WkFiyAQEo5VgIE2vZORrXCorXHS5rowmdPByE+eSO93PjZsiMyFTsKzd19pOhtEGrBSnfY6Lbl4BfWmAkUB7rWufwtB46jNNNJvUwlYE6InZafUAuWrb8JnMZxlGU6WdFiRdqToCl2AkUjwGoEZzbpThuJcRY2d1ohIR1aYiNwr+voQ0ooTDX+hk3PcbG1oRvW/hPSpxljytY8HNlKKspxQAVYMcjr17ELH0HT8JOhAqRmF9IvrfSrTIKKMirSZwRYmvXI3y1bjpFJsK0qdrLWtfX4SKcLPeHg6TDSMgvokgnIGAlMAPzdzZgIHmj5EUJQkplInSk/ZgIsY8yPJN7T/ElLXKYTiUZ7/JSYOY5mt4cEqwlTT+OBQLEs04HbG8SXOi1mjqOp20Omy2Z0qXdmhVriHOxqchuBSXNsHEd1m9HNuSAlAYDKHBf7WzuQdauh7FyYfinUr4ZuNXRAUSaSCrBikDdgtGDJEVqwitOdVMksvI2x8Y9BUSJN9x95Au8BaUUzAHDXxka3IYC2Xi/pogvNkXHQ8qkDmQQbY6PFpMcbwOkPJesIXdCD0fqzNZCDjJEL4Wa3Fyf9mIL9xhgsICXBSprDRpWWHzNdHZvdXnKdJuhrO9CCVZppdK9ri5tidBGM8gQqgaBOi9tLtsMMfa0HzsfUDCc7m3qQ6aFAMcqPAz4JsD5pwUpkFnsQuh8KToSpZ4dW/DBSVVSU44IKsGKQNxDEjg99hBasknQHu2QulvbYSyetKBERGF2AVZSdSZ1MQzbHTre6tl5jDJYlMfOg5SWhTIIiRroINnV7yA7NgTXQ8gNGRsQt/hxEd11MZOBrHjRZ8kA2RDBafzb5c4wL/d7WCNVu9Fq6vZSG5vIa3EUQYJ9WAJ4uo9tdFGvr9aFLKLQNHIcRYJVlOujq9+NOLANfD3TVRrCWo1PT3keC1URqghUwWrCma1XGm7nzjS6ClnioWxW5SirKcUAFWDHIG9CJF150y5HHieQmxVEl8kjo3w++vkmqnaLELjnKFqzkBCvVIo/4rtgZ39ju7ieFbszOgwOsqRkOdstcrN72mLigb+r2kClC2RAPasEalOgiBoLFFreXPHOn8cL5yXGUZTpZ4Q5144yBVqxmt4cSeyigDR2H0RJnZZMvdFxRnuhiIEV7rtmYywuHEWCVZhiBYrVWYCyPgdbR6rZeClITEKFxljmJdiosjfSZnMZYMpMZcuapAEtRJpgKsGJQny9IPB7kCAGWpgl6XCUIJLSpVixFGdFAC5blyAEWQFv8FNI9VaAHJ7ZOYeLpasYk5IG78wPSHTbqLaELyBgITJq6PWSIDiTiwHxeYFwM75KhDHwxkJCg2e2l1B6an8h1cIC1yRdq0YqB8UvNbi/5llCANTjgzXDykTt0fqL8OAYSdWQQCtwHtWABMRMoAlS391GY8sm1gRCC6dYmqrW8T5Lb5C2Aho0wcENJUZSwUwFWDOrzBYjHC1bHiOuK9GnGkxi4cFKUSBPB0bVgAXiSpmLFB501E1yr8JDuJuPJIUkuhBAEUgcyCUb3hTAYF8MZdCITMoy78SGZLhudBzIJRv/fu6ZuD0XWUIvJQS1YDhpJIWBxRH0LVo83QJ8vSK42EJgcfBxrWjRkQnrUByYDLVipcqDraSg7pdOGy25mS4dmLIvy70dQl9S19x8YfzWgQK9jqy8LXQ+NIctbCLofGjZEoJaKcnxQAVYM6vMGiRdetBFSSQMk5pYTkBq+xuj+R60o0cAc6CeACTTzyOtmGpkE+/bHRhpqOTCRsCPzsPeSM4voxR4zgUmuqRPNdXBLnBCCkgwXdebYSBDR7PaSa+oCexJY4g4sNxJECFrjoj+TYHMoMEmnHUw2iEs+8F5ZlpNeXxBvclnUd61r7vYgBDh8LSA0SEgDODCn167mnlAmwej+vWrs9uAL6hQMDrD6O3AG2tkRyKK+08iSSt5C46fqJqgoE0YFWDGoz290EdRsI7dgTclKpkpm0V8fGxeBihJJ5mAfHi3+4HmihuHKNzIJdlbHRiZBS39ofNUhWQQhlElQz8XfFN0XkADN3V6yTZ0HtZYMKM1wsi2QG/WBCQxKcjEowQVAYpyFLJfdyCQY5ccxMJdXUqDV6B446HszkOjiQKAYxRn4mt1e0hw2tN4mo9upZjrwXmkoVbvMqDBuQOh6BGt6ZNVtvQAUhlK0A9BqjBPdI3PY0RjqkurMNMaZNW6a7CoqynFDBVgxqM9rdBE02Z0jrjs1w8lumYvWpubCUpSRWIN9eLW4kVcECnOzaZTJ+GMgvXlQl8T5jhBghTIJxkKK88ZujzFWZoiWuNJMhzF+qbveyF4Xpfp9Qbo9AWOy5KECxUwHG305RurznpYI1HB0BrrWObzN4Mo96L2yUIKIvSI/6jPwNXV7yHDaoHv/YQFvaYaTjj4/PYmlEOiHzqrIVHIUag5J0Q5Aq/G/f4/MYUeT+5PlWTOhKTZuDilKLFIBVgzyeDxYRBCLfeQWrMLUePaQS0JPDQR8k1A7RYldNr0PnzZy11uAwtQEdss8bO3RH5S09/pIpQu/yT7k2M0DmQT7m6G/IwI1HL3Wrh6cetcwgcngRBfRe1NpIDBx+VoOSgwxoCzTyfKBTIJRnLCjscs4Dlt/02HnIzHeQobTxgZf6HxEcfe6ZreXTJcduuoh8eBAsTSU6GKfyA+tHL3HUd3eh1kTZCcOGkPauhNMVnRXIdsbBwdYM4yWxYB38iuqKMcBFWDFIH+/kbHJHDdyC5bFpNHlKEEjCO17JrpqihLTrHo/fvPoAiyrWaMxbiqpvXshGJjgmo1Pa4+XdNGJz54+ZPfHvOR49mkDKc6jNzCRUqK7m9E4PBsiGHNhfZKqPXovhBu7PZgIYve1HTSX14DyTCdb/AOBSfQG8I3dHhKsGpq7YdhA8aNuYzxTNAcmTd1eMl0DLViHtMSFujpu8Q9kEoze46hp6yM/JR6zadClXetOSCmhNDuJHY2D5ofLmgl6IOq7oSpKrFIBVgwKeIx+1mZbwghrGmRamfFE/SFVlCOy630EzKP7XgF4Uyuw4Ie26J4Pq8XtJY0u9PjDuwcCmDSBLyn6/0509vmNbnUwZICVnWinw5qNT9iiOjBp6vaQTidC6kMGJqWZDppJwm9xRXeg2OWh1OmHoPewwASM41jfAtKZE7WBSSCo09brJTcuAD73YceR4bThtJvZ0iYhMbrHxVW391KQcsgNotadkFZKWZaTvS29+AKhMWRZs4yfjaqboKJMBBVgxaCgJzTbvHV0F4KOnAp0KQg0Re8/BkWJtEBQJ072o48hwLLlGRcpPTXrJ6hW4WG0YHWhOYcOsACSc6bgIbpTnDd2e8gQncaLIQKsgUyC9eb8qA5MDposeYgWrIFMgi1xxVEdKDZ2e5iWMJA4YegWrH5/EE9yadSej9YeH1JCkSWUov2QLoIHMgk29UBGRdQGilJKqlv7Dh5/FfBB+z5IK2NalpOALtnbGrp+SJkC5jiV6EJRJsi4AiwhxD1CiO1CiI1CiGeFEEmh5UVCiH4hxPrQ44Gw1FYBQPeNLcAqyk6jTqbRpzIJKsqwer1BHHiQo5hfbkBm8Sx80kTnvrUTWLPxG+giaEk8PCgZUJGbzG49B18UJ+04ODA5/IIejG6C2wI5UR0oNnV7KbAMzIF1+Dlx2MzkJsWxTxQYgUmUZuBr6vJQYh2YZPjwQHGge12zfUooA1/0Tco9MB4uZ+D3ypV32DqlGQ52NrmR6dOMFqEo7BLc4vbi9gYoSR/096tjH8ggpJVRnmWciwOZBDUTZE5XiS4UZYKMtwXrTWCGlHIWsBO4Y9B7e6SUc0KPW8a5H2UQ3Wt0ERxtgDU1w8EumRfVFxyKEmk9vgDxwoMY5fcKYFpeGrtlXtR3s2nr6iVF9Bw5wMp2sUvmokfx34n9nR4yRAdSaIdNmDygPMsZ9ZkEm7o9TLWHLnSHCEzAmKh3oy/LSDrS0zSJtRsdXZc0u73kWzqNBUMcx0CCiD0iHwIe6KiavAqO0kCAlSFDWTaHOI6KbBcdfX66HFMh6IP2vZNZxVHZ3WLceD0owBqY4Dm9nClpDsyaODzRRePGqA3gFSWWjSvAklK+IaUcuJWzAjj81o8SdsIXCrAso7sQLEk3MoTFu6ui8s6bokSDHk8ABx7EKKY/GJDutLHXVISzK3q7cQF4u4wLdDFEivYBFdkudum52Hv3g9c97HqRVNfRR7boPGyuosEqs11sk6GMb03R2Wrf1O2h0NoJmgXi04ZcpyzTyQfu0MV+w8bJq9wotfZ6CeiSLNEBiCHT5rvsFrIT7Wzwho4jCrvXNYYCrORAaJLhIVpGK3NcAOwiehOo7GkOBVgZg64LmrcZx5RejtWsUZLu+KQFC4xEF54u6Kqb5NoqyrEvnGOwbgJeHfS6WAixTgjxnhDilOE2EkLcLIRYLYRY3dISvfN9RBVf6A/kKCYaBrBbTHQmFGOWvqi8g6go0aCnvw+b8KONIcAC6EosJzHQBr2tE1Sz8fN1NhpPhrgIHpDmsNFsLzZeROGFMEBdRz9TLG2IpPxh16nMcbFFDx1Hw4ZJqtnY7O/0kKt1Gt0DtaH/DZdlOtkYCB1nY/QdR1OXkd47TW815lYzWYZcrzTTyQedqcaLKPy9qm3vw2bWiPc0GpPvmsyHrTMt1L1uTW8GIKAp+rrR7mnpJcFqIss1KEV781ZjrJXFmNuvLMt5SIA1kOhCjcNSlHAbMcASQrwlhNg8xOOSQet8HwgAj4YWNQAFUsq5wP8A/xZCuIYqX0r5FynlAinlgvT0obt8KAczezuNJ3Epo94mmDrNeBKFd94UJRp4eo0LD/Mo5pc7SOYMAIL7o6+VYYDoDt2hTjxyJ4NgZuiCK0oDk7qOPvJEKyQVDLtOUrwVa1I2XabUqDwOX0CnoaufbNl0xOMoy3TSQzy9jsKoPI7aDmNS2yR/07DdHAEqspxsbgkiU6ZAw/pJqt3o1bT3UZASj+iuH/Y4nHYLhanxbGz2QVpZVJ6PjXWdTMt2IQZPw9C0FTIqD7ycluWkvrMft8dvLMioBIQKsBRlAowYYEkpz5JSzhji8TyAEOIG4CLgGimNjrxSSq+Usi30fA2wByibsKM4zlh9oXEFcUmj3iYhbzoAgSgewK4okeTt6QTAEjfkvaBhJRfPA6Bt75pwVyksgrokvq/eeJE4fMsPQGZeCW3SRbB+3STUbOwaOnpICzZDUuER16vMcbGNoqi8EK7v7EeXkOpvgOSiYdebmuFAE1BnK43K49jXanRVj++tNVpJhjE9NxFfUKc7aXpUHkdNe7+R2nyISYYHq8x2sa3BDTlzoi5Q9AaCbK7vZn5h8icL/f3GWLFBAVZ5KOnIzqZBvWBSpkCTCrAUJdzGm0XwPODbwMVSyr5By9OFEKbQ8ylAKRB9o0JjlC3QhVeLH7ZLxlCKcjKo1dPpq4/uwfiKEil+t9HFz+IaW0t62ZRiGmUy/VGaqr2p20MOzfhNCRCXfMR1K3MT2awX4a+LvgDLGwiiuRswEYTkEQKsbBervPnIlh3GhWYUqWnvw4aPOE8zJBcPu16c1URZppMNwULorDGSXUSRqtZesh0aWteRA6wZofFLVbZS6KqNqq60Ukpq2/soSLYZn/ERAt6KbBdVbb1402eBuwHc0ZN4ZG9LL76gzozcxE8WtuwApJFaPmQgk+D2Q8dhqRYsRQm78Y7Buh9wAm8eko79VGCjEGI98BRwi5SyfZz7UgB/UCdBd+OxJI1pu7JMJztkXlT2gVeUaOALBViOpOETQQxlSloC25hCXFt03ryo6+gnT7Tic+TC4O5DQ6jMdrJZFmFt3wl+zyTVcHT2d3oo0JqNFyO0YE3PcbFZL0bIYNSNl6lp66VAhI4jZfgAC2BGbiLvdUdnoot9rb0sTO4FqR8xUCxKTSDBamKtv8hYsH/9pNRvNDr6/PR4A1TEdxuTJadOHXbdymwXUkKVNbROFLViDbRIlWUOkUEwc/qBRXnJcSRYTYeMw5phjM32dE9CTRXl+DHeLIJTpZT5h6Zjl1I+LaWcHlo2T0r5Yniqq3T1+0mil4AtceSVB5mSnsBu8klw74Ogf4JqpyixK9hjBFi2xLEFWJomaHZWkuapjsrse8a4pWZIHn68z4Ci1AS2ixI0GYDm6MrAV9veR4nYb7xIKz3iupU5LjbrRcaLKLoQBqhu66PUHGr9GCHAmpWXyEd9oW5rUda9rqqtlznxofumRzgOTRNU5rh4p2sgUIye1tGadqPjzVRTKAnMEQKs6blGS9xKTz4gYH/0HMfOJjdmTTAlbVCAtX+dkWl4UPArhBg+0UWUZtxUlFgVziyCyiTo7POTJHoI2pLGtJ3NbKIjYQomGYC2PRNTOUWJZX1txs/41DFvqmfNRkMS2B9dF8EA9e09FItGbJkjD4M1mzS86TONF1F2Qb+ruYcSsR9pSQDX8GNlAHKT4uiNy6bX5Iq649jX2svC+FCAlVZ+xHVn5CbSgYv+uGxjvqIo4fb4ae3xMc08EPAe+Tim5ySyujGU6CKKWrCqQuPI8vTQGMUjBFhZLjsZThtrGnxGgB9Fx7GjsYfitASs5kGXdLUrIXfeYVkRp2U52dHkRg7MfRVK0qMmHFaU8FIBVozp6veRRM+IYymGEkxTmQQVZThafztBNLCPrXUYILFkAQDtu1aFu1rj1rF/L3bhx5wxbVTr5xSW0ykT0OvXT2zFxmhHYzcVlgZEetmIXR2FEMzOT2aHmBJ1Adb2RjczrQ2QWDDiVBuV2S5MmqDOHl0X9FWtRstPQaDaSP2fcOSbErPyEun3B3GnzIyq49je6MZiEqT27QF70rCTV4PxOzUnP4kNdV2QPSeqWka3N3ZTljVoeglfrxEw5S86bN3yTCedfX6a3UaafVw5RkbiKArgFeVYoAKsGNPi9pEkejAljD5F+wBnbiVBKQg0qK4AinIoi6+DXs057AS2R1JWMpUGmUJ/9eoJqNn4BJp3GE/SRpfIdU5BMpv1Iry1ayewVmO3o6mHclE3YmvJgDn5Saz05CObt0LAO8G1G52ufj/1nf0U6TUwioDXbjFRmuFgo14MbbuNSWGjwK5mo4tZWt+eg5IoDGdugXFDcI95KnTXRU2ii51NbkrSHZiaNhvJHkYI3GfnJ7GvtZf+9JlRk+iiq99PXUc/03MGZT+t/gj0ABSdfNj65VnGegcSXQihEl0oygRQAVaMaetyk0wPtqTDZ5sfSXFOOtUyk756FWApyqHsvg76zGNvvQIoTnOwjSnEt0bXRUpQlyR07TJepI8+MNksp2Bt2x41gYmuSzqaakjW2yF79qi2mVOQxDq9BBH0RU2CiB2Nbmz4SOnb90nXrBHMykvkTXchIKEuOgL4jXVdOC0SW8cOyJg+4vpFqfEkxVtY6QmNA4yS8UvbGrqpyIwzxh8NjEU6grn5SQDs0KIn0cW2BiM5RWX2oABrz7tgskHBiYetP5BJcEfjoKQWWTONBFjBwITWVVGOJyrAijF9bXVoQhKfNvKA9UOVZTrYJfMQLdsnoGaKEruklDgCHXitY28ZBjBpgmbHNFK9NVGV6GJfay/T2EdvXDbEj+7YClPj2WUpwyT9UXNXe19bL1MDu40XOXNGtc2cvCTW6qFkGHUrJ6ZiY7S5vovpospIIpI7f1TbzMlPZllfARIBddHRBXVTfRcXZLQhAh7IG/k4hBDMzU/i1fZMQEB95OeMa+jqp6HLw2nJHRDwQPbIAdbMvESEgA9780CYouJ8bNkfCrAGWrCkhO0vQvGpYIk7bP2UBCvpThs7Gns+WZg10/gM2nZPRpUV5bigAqwYE+ioA0A7woSIwylOS2AX+ST0VEfNnWlFiQadfX4yZSt+R85RlxHMmoOGJBhFiS421nUyU+xFz5oz6m2EEASyjTFl1EZHYLKmqoPZ2h6k0IyLwVFITrCSkJpLqzkzao5jdXU7pyXUGC9GGWDNL0ymh3i6naVRcRz+oM6W/V2cFh86jryFo9pubkEyG1p0gumVUPvxBNZwdNZWdwKwwLTTWJB/wojbOO0WpqY7WNPgNdKbR8FxrNrXTm5SHBlOu7Ggfo0xp9f0y4bdxkh0cUgLFqhEF4oSRirAijXdoWxHiXlj3tRmNtGZMAWNILTuCnPFFCV27e/oIUu0I47iezUgscS40GzfFfmL4AE799UwRWskvmh0F/MDioqnUi/T8NdEx7GsqmrnZPN2o3ugzTnyBiFz8pNYG5yKjIKWBiklq6o6OMO+E5IKwDW6bt6lGQ6cNjM7LNOMLoK6PsE1PbINtZ14/Dpz5FZwZkNi/qi2m1uQhJTQnDQ7dBzBCa7pka2p7sBu0cjpWmck6jjCJMODzclPYn1tJzJvEdStiWi3uqAuWb63jSVTByUZWfkgWB1QcdGw25VnOtnV1ENQD2USTCsDk1UlulCUMFIBVowRAwGW6+jutMv00IBkNeGwohzQ1lSHVQSxph55AtsjKSspibpEF3273gPAVHzKmLYzxi9NRa+J/B16gA37GpjFbsQQg/aPZE5+Est9U4y/m131E1S70dnb2ku7u49png0w5fRRb6dpgjkFSSzzFIO3C1p3TlwlR+HD3W1oQierbYVxHCMkhhgwOz8JIWCzVg7ebohwV/UPd7cyPz8Rbd97RjKIMRxHe6+P9pS54O/9ZELfCNiyv4uufj9LpqYZC5q3wab/wNxrj5gNtTzLiTegU9VmpKnHZIH0adCoWrAUJVxUgBVD/EEdh2c/HpNzTHdxB3PmVeKXJgKNkfunoCjRpqe5CgBnZtFRl1GS7mBLFCW6qO/sZ0rPWvyaHXLmjWnb2aHxS7be/dDdMEE1HJ3dzT0UdK7Egh9KzhzTtnMKkgeNw4psK9bb25qYJ3ZhDbhhyhlj2nZeQTKvdIZaVyM8nuy9nc1cmt6E1t8+pvPhCnWve7snNPFtBLvX1bb3saPJzWdz26C3BUrPHfW2c0KJLtbKUFbOCB7Hst1GNsaT8u3w9l3w6GfB7oJTv33E7T5JdDF4wmGVSVBRwkkFWDGkrqOfqaKeHlfJUZcxNTuZKplFX726U6UoA3xtVQC4MouPugyTJmhxVJDirQVP98gbTLAPdjRzlmkt3vwlYLaOaduUBCv7naFxGRG+oH9jayPnaKvRrU4oHFsLVkW2k93aFPzCFvEA682tTVzjWm9kdys9e0zbzitMZo+ejd+aGNFxWA1d/ayt6eRa53rQLFB6zpi2n1uQxBsNccj4tIgex1vbjPTqpwdXGMkqpp416m3Ls5zYLRoftsSBIyuyx7G1iYpsF+kb/gQf/Mro6njNUyPOS1aa4USIIQKs3uaoSD2vKMcCFWDFkKq2XkpFHTJ9dBOGDqUs08kOmYfWqroIKsoA0bobHYGWOmVc5ehZs6Mm0cXODR+SJ1pJmH3pUW0fXzAHH+aIBiZSSt5av4dPW1aiVV485kDRZjZRlpvCHnNJRC+Ea9r62FjVxLnB943gaow9EObkJ4HQqE+YHtFU7S9taMBMgFmdbxqtV3FJY9p+bkEy7X1++jPnR6zlR0rJk6vrmJGVQNKe543jGCEgGcxi0piTn8Samk5jIt8IHUdVay9razq5ZHYWbHzSaBX90tuQt2DEbeOsJopSE9jZdEiABdCkWrEUJRxUgBVDqqurSRVuHHkjzzsynKLUBPbIPBJ668DXF8baKUrscrr30G7OGjKt8ZjKmWJc3HTsjmyrT4vby9Tap/ALG2La8IPdj2RGQQab9GJ8VZHrArW+tpPKlleJk/2w4L+Oqoz5Bcks805BNqyPWPbUJ1bXcJFpBXGBTlj4xTFvnxhnoTTDYXR3bNkekQmHdV3y75U13JqxBXNv41Edx9yCJAD2xs2A9r0RmXB4fW0n2xq6+XbRLuiqhXnXjbmMhUUpbG3oxpuzEDqrI9Lq89jKGjQBV7o2G3UY43GUZToObsHKDF1XqG6CihIWKsCKIb37jIu2uPy5R12G1azR6SxFIKF1R7iqpigxy+MPku2vods5vtYrMBJd7Jcp9NdEdp6fF1Zs41JtGX3ll456/qtDzSkwxmGZGtdDwBfW+o3W35ft5XrzWwQzZ0Lu2MaRDVhQlMLqwFRjwuEIXDz2eAM8srya/3a8a2RrG0OCi8HmFSTzalc+kZpw+K1tTexr7eELplchpWRM3eoGlGY4cdjMLPeFvmsRaFX824dVxFs1ljT9G1KmwFHcgJhfmExQl+wwh3qTTHI32q4+P4+sqOaiWTmkrPsTJBVCxSVjKqM800lVWy8efyibY1yykRFSJbpQlLBQAVaMkFLiaFpJAPOougAcUUbon0KzmnBYUfY2djBFNCBTy8Zd1tR0B1soIb4lcneBPf4g7uUPES+8JJ76laMupzLbxUZKMem+iHQb2tXkRtvyFGWiFtNJXx11lrdDLSgalOgiAt25/r5sHyf5PqTIuwNOvPWoj2NeYTIfeYqNucAm+TiCuuS+t3bx+cTNpHRshBO/AtrYLx9MmmBuQRIvtmQaY7gm+Tg213fx4ob9/KSiAVPDWlj8FdBMYy5nXmEyQsB77hwjvfkkH8dDH+6j1xfkGyX1xr5P/CqYzGMqozzLhS6NJDIHZM1Uc2EpSpioACtG7GhyMyuwmc6k6ePuxpSYW45Xmgk0bglT7RQldjXvWoNN+LEXjW7C1CMxmzSaHdNI9dZELNHFE0vXcWPwKTpyToGcOUddjt1iMsbKANRO7jgsKSU/f34t37E8QSBzFsy88qjLSnPYSEjLo8WcDdUfhbGWI6vr6OOhpdv43/jHIXMGzB17d7QB8wqS6SWODmf5pB/Hv1fWsLehle+b/gXpFTDvC0dd1qKiFDY1+4zzOomBia5L/vflrWTG6Xym6beQWgrzrj+qslx2C+WZTlbW9kLOXJjE6QyqWnt54L09XDojlcIVPzJa4Y7iOMqzHMAhiS4yZxjTAPj7w1VdRTlujSvAEkLcKYSoF0KsDz0uGPTeHUKI3UKIHUKI0edAVYa0cuNW5mq7sVWeN+6ySrOS2Stz6K9XAZai9O1bAUBm5dgy1A1Hz5xt/IxAoov6zn7il/0fDuEh+bJfjbu8ouJSGmQKwUmeD+uJVbV8qua3ZNGO+YJfHFVryWALCpNZEShD1qwAKcNUyyML6pJvPLmBO7R/kBpogvPuPqrWkgFT0hJIirew1TLDSDwySd02dze7+b+Xt/GHtKdJ6KuD839hzJt0lBYUpSAl7HfNgvq14PeEsbbD+8fyKlbsbeefha9h6qyCC+8Fs+2oy1tYlMLa6g70vBNg/7pJGdMcCOp8++mNWE0aP0t8Dtr3wIW/Aot9zGUVpiZgNWmHJLqYAVJX82QqShiEowXrPinlnNDjFQAhRCVwNTAdOA/4oxDi6P+zHOeklPSvfRIA59zLx11eWaaDnTIPrVV1EVSUhOZ1tGspmJMLwlKeq8RoCWvfPblBSSCo89g//sBnxdv0zrsF0svHXeb8wmTW6lMJ1EzeGJMNtZ2sfunPXGN+G076GhSeNO4yFxal8IG/DNHXCq27wlDLkd3z+g6yql/gKvGWcRxjnOz5UJommJufxJu9JRDwQMP68FT0CHq8Ab7673Vcal7OWT0vGl3Rppw2rjLn5CdhMQlWykoIeqF+4seTrdjbxv+9so3v5m+hvOoRWPTlox4LN2BBUTK9viA1rnmg+ycl2+YvXtvOyn3t/HVhHQlr/mQkGhnj3HADLCaNkgwHO5oOacEC1U1QUcJgoroIXgI8LqX0Sin3AbuBRRO0r2Pemn2tnN33Mi3Jc8Jy0VSUlsA+mUN8f4PKJKgc13wBnSLPVpoTZx312JhDlU2ZQr1MxVOzNizljdaf//MSN7f/ivbE6bgu+ElYyjQCrFJsPXXgbgxLmUdS297HX/7+V36uPYA/70TEmT8IS7nzi5JZpYfGnlZ/GJYyj+Sfy6vY+MHz/Mr2F2ThSfCpH4Wl3EXFqbzUWWi8mOBugr6Azi3/WkN6ywp+Jv4ABSfCp3487nLjrCZm5CbyYkchIKBqYs/H7mY3tzyyhs+4tvPl9nsg/wQ453/HXe6CIiN5zIe+qSC0Cf+9evD9vTz4wT5+OKOdxeu/B3kL4dz/G1eZ5YdmEkwuBqtDJbpQlDAIR4D1VSHERiHE34QQyaFluUDtoHXqQssOI4S4WQixWgixuqWlJQzVObZIKVn14gNM0Rpxnva1sJRpMWl0JRQbmQTb94SlTEWJRbv27qVQNCFzxz/+asDUDAdb5RTiWjaGrcyR/POV9/jMtq8jrPGk3Pj4mOeLGk6Gy06tY5bxYoIv6Hc3u/n5nx7kHv2X6KllWK59ImzHMSUtga64AtymZKhZHpYyh/P3D/ex9KVHeNh2L6a0UsTV/x5Xl7rBFk9JoY1EehzFE3oc/b4gX/7Xasx73+Rh271oqVPhc4+F7XwsKkph+X4dPWM6VC8LS5lD2dbQzVV/XsGJbObnvl8g0svh8+H5vcpNiiMn0c5H9X7ImjWhgeLfP9zHz17Zxv+U7Oemmu8aWQM/98S4ujiCkeiioctDV7/fWKBpRrp2lapdUcZtxABLCPGWEGLzEI9LgD8BJcAcoAEYc6d/KeVfpJQLpJQL0tPTx7r5Me+1lZu4ov0vtLimY591WdjKlWmhrFqtO8NWpqLEmsatxsVdWsWSsJVpMWk0OipJ9dZCf2fYyh2KlJJ/PP8a53z8BVymAPE3PgtJ4enqOMBZvIA+7MgJDLA21Hby5z/9mt/470JLLsB2w7NgTwxb+UIIFhSlsJZpUD0xgYmuS3728lY2v/wAD1p+jTmzEnHDy0b66zCZkZtIgtXENttMI8DS9bCVPaDZ7eG6hz4mZffT/M12H6bMaXDDS2E9jgVFKfiCOs0pC4wEKhMwnuy9nS1c9eflXMJ7/JGfGZOIX/dcWI9jflEKq6vakYVLQuPiwjvPWlCX3P3qdn7y4lZ+ULCF/264A5FcBF94YUyTIw9nINHFrkO7CTZtmbSxiopyrBoxwJJSniWlnDHE43kpZZOUMiil1IEH+aQbYD2QP6iYvNAyZQx21DWT+cp/4RIekq5+YNwDvQeLzy5DlwK9RQVYyvFLr11FABNppeHtwRzInmOUX78urOUO5vEH+f1DD3Hx2v8izqJh+9KrmHJmhX0/c4rSWROcin/fxNyhf3lDHcv/ehv3yF+jZ8/D/qU3wJkV9v0sKErmXU8pdNVAZ+3IG4xBrzfA1/+9ipzld/Ir6wNoRUvQbngxLBfBg1lMGguKUnint8SYbLg5vImK1lS3c8lvl3Jpw2/4leUBtMIT4QsvQkJaWPezoNAIctZp0yHQD/vD151WSsmD7+/lS3//iB/Z/s2Pgr9HFC6Bm14L+3EsLEqmqdtLa+qC0Hiy8M1/197r44a/r+Sh93bwaN6zfLH5Z4j8RXDDy2H7fpRlOgEOHoeVNRO8XdBZE5Z9KMrxarxZBLMHvbwMGOi4+wJwtRDCJoQoBkqByZ9RMIZt3ltDx18/wzyxk74L/4glzBdOBRmp1Mk0+htUogvl+JXSsYE6awnCmhDWchNDiS46d68Ia7kDmrr6eeQ33+Ertd9CJqTj+n9vYc6eMSH7ml+QzEp9GpbWbdDfEbZyfQGd+55dRtJTV3KLeJb+GZ/HftMLRz0x8kgWFqWwcmAcVtUHYSt3e2M3X/zdM1y/86vcaH4dufhWxHXPgt0Vtn0MtnhKKs92hibq3bs0LGVKKfnn8ir+5y8v8mf9Tq7VXjcSWlz3XFhbEgckJ1gpzXDwYlexsaAqPN0Eu/r8fPWxdfztlWW8mng3V3ifMxJBXPPUhBzHiVOMAPoDbynhHE+2vraTi373AVV7d/FR1q9Y0vofOOH/hVrgksKyDzC6OTps5oPHYWXNNH6qboKKMi7jbRL5pRBikxBiI3AGcDuAlHIL8CSwFXgNuFVKGRznvo4Lui555eVncPzjbBawlZZP/YbkhZ8N+36mpDvYI3NUC5Zy3Grr7qM8uIue9DlhL7u8qIC9ehbe6vBnFvt46x42/OZyvtj7IO15Z5Ly9Q8QqVPCvp8B5VlOtlpnGGM2w9S9bleTm7t++3s+v/4aFpl3EbjofuKu+NO45/g7kpm5idTZpuA2p8Dut8Zdnq5L/r5sL3/7w895sPfrzPv/7d15fFTV3fjxz5l9kkz2PQFCCBBkX6RQAUGx4lKtllqrba3Wtv7q0z5dnsflsZu12tpNbattrbZ2UdxAtCoqihVEBFlkJ4Qt+55MJpPJrPf8/phBAUG2SSYk3/frlVdm7sy9c25OTnK/95zzPbZauPIR1IJ7TnrR15MxozSTRrLoSh0Zl/No7vJz42Pv8f6//8gy222Mt9TAZx+FC+/u1fM4pyybFdVhjJwxsP+t0z7eO3taWXD/W9h2LObNlDsoNaph4V+jaczjNHfsSGW5KeS67KyoDkVTnO9787SOFzE0D/1nD5/70zvMN1bzZsod5Pj2wsK/wUW/iPt5KKUYdWSii9wxgJJMgkKcptP666m1PuaqiVrru4G7T+f4g4nWmrXr3iH0+t1cHFpNqyWProWLyRkzr1c+rzQnmaW6kFmdb0bH8cdx+KEQZ4Ld295jpvLjHD4j7scelefiZco4rzV+a2GFIgZLFi9i9vYfMFV10jz9VnIX3NbrbddsUiSXzsC314Fzz+uo8ouPv9MxGIbmXyt3YFnxUKyzPgAAIHxJREFUI35meh1v6gis174UvTjtZRaziZkjcli1fyIX7V2BMiKnvC5VTbuPO59exWfqfsP15rWEij6BeeHDkFES30IfxcF5WJvtU5lVtQSC3XCKPbAvbWng18+t5tbIn1lgW4ceMhN1xZ8hY1icS/1R547O4bF3DlCbM5uhu/4ana94Cr0zgXCEX79aweJVm7kv5e+ca1kD+WfDFX+GrBFxL/ehlFLMKsvmP7tb0DMvRK2+D3ztp9QLe6C1m+8/s5l9VVU8mf0kU73/gaKp0fM4OGe6F4zOT+XlrQ1orVFKRX+XskZID5YQp0muqhOsw93JisUP8/7PZjNj2cVMDW1gV/nNZN2ygYxeCq4AspJt1FmGYDX84JHpcWLw6ayMJm0oHj8n7se2mk20po3DFWqFztrTPl5FXQvP/+qrfG77zVjsyYSvf5Xci/+vz26MzBhVxNuRsYR3vXLKk99rO3zc/cdHOHfFZ7ja9Aa+ad8k5dvv9ElwddDskTks849F9XREF7k9SVprnnqvml88cD93N3yDiywb0Of/GOtXl/VJcAXR362ZI7J52j0KIsFTGl7n9gX59qJNPPfkX1jM/3ChZRPMvzOalKMPgiuIDq+zW0wsj0wFI3xKvXEbqzu49HdvU7X6aVam3MYcvQHm/wRueLXXg6uDZo3Mpr07SGXGLNCRkz4Pw4gOz7zogVUUNb3JmrQ7mOJbHU3tf8NrvRpcAYwpcNHZE6LRc8iCz/njpQdLiNPUe/3/4piampupeHsx9t0vMb5nHeepAM2mXLaWf4fyi2+mPDW318uglCKQNgI6iWYSTB9y3H1E/xQxNMGwQTAUIRDsIej3EQqHCUc0ZgUWE5hVtCfCbLFhsjmxWB047RZslsF7j8XeuJFOlUpablnvfMCwT8K2PxHc8xa2qdee0iHCEYNnli1n4nu3sFAdoHrE1Qy9+ren3GNxqmaVZfOQMZlPeR+B5p2Qd9YJ72sYmidW7yL8+l3cwct0pxShrnqJpJL4ZW48UfPKc/nV0gkYmDDtfgWGnHh6/pp2H/cuXsWnqu/jQfMaglnlmBc+DwUTe7HER3fJhHxu21lKJCUJ866XYNSFJ7zvK9sauH/par4deJiLbWvROWehrnz4w7k3fcRhNfOJ0iwer7FyQ1I2qmIZjF94Qvv6gmF+89pulq7ezN3OJ1hgWwnZE+CKP0XTjPeh88vzsJoVixtzuT05FyqWwYSrTmjfPc1d3LZ4K3urqvhL5rPM8r0OGePhMy/02Y2H8vzoXMFdDV0UpMWG6OaNg+3Pgd/Ta3MJhRjoJMDqA+3tbezbsJxA5Uqy29ZRFt5DntK0qQwq8i8lY+qVlEy7iNxTHK5yqix5o2MBViWUnd+nny0+FAhH6Oj04Gmtp9vdhs/TSrC7A+1zY/jdmPydmIMerCEPtpAHR8SL1fBjNQI4CGAniIMgLoKkqRPrXTC0wo+NbmwElAOvOZUeSyoBazohewaGIwNzaj7OrCG48krIKRqOKyMvbovxJlooYjDUt43GtPGk9dI5DRszndatqbD9NbJPIcDa09DBun/+gIXdiwhYXHgu+ydDJ17WCyU9vqFZSVRnzoKuR2D3KyccYO1p7uLxJ/7OV9ofYJipGe/4L+O69OdgT+nlEh9dUbqT0SVD2dQyninbno0uZHyc+o/E5lpVvv4oP1N/x2XxY8y5Hdvs7/Xa3J7jOX9MHtrsYEfqLMbvfAEu/vVxy9Lk8fOjpVtxVTzDM7bHSbYGYe4PUOd8J27rdJ2sS8cXcMviFtrGzSO78tXowve2pI/d5509rdy2eAtnd77KqqQncOoeOPdWmP0/CamPtCQrs8qyeXFrE7eNWYDavgQC3o/9HQ+GDf701l7+sKKSz1lX87jrX9j8XphzC8z53z49j/KCaCbBHQ0e5pXHbu4eDLabtsOwmX1WlsHMH4rg8Yfo8ofx+sN4A2G8vh78XjdBXychnwfD70EFuzAHvZhD3VjDXsxhH8oIYooEMRlBLDqEVYewEsKiwyil0ZgwmRQmZcJkin4pkxltcWCyJ2O2J2N1JGF1pOBIcuFwZZKSkYs5OROcmdEhr7aUAfP/v69IgNULOtrb2LvhdQKVb30QUE1TmqA2s88xho1FX6Vg6sUUj59LVh8HVYfKyy/GXZFMctMuEvPvdeDqCYRoba7D3VyLt70Bv7uJSFczyteG1d+GI9hOcriD1EgnGXSSr/wcK/GugcJLMj5TMj1mFwFrCmFrBiGLk26zA8PiQFscaGsSWBwoixOzxYxSCkODQXSandYabYQxhf2oiB8d7CES9EGwG1uwE0e4kwxfBSleD6m6G9MRwZpfW2kzZ+Ox5eJ35hNxFWPJKCY5ZxjpBcPJLCjFnJTe2z/auNi9/wBjVT27iuOfQOagqSVZrDLGcn7NquiwuhP852QYmudfWUb52tu4RlVRW3wxRV/4HSolsesEzpw0jo1vlTF+0yKss777secTihg8tnwD2e/8lB+bVtLlKkEv/Dcpw+M/HPNkXT65kCeen8nUyJ+i2QQ/pkw76j3c/8yrXNP6e240byZQMA3zFQ9CbnkflvijUh1W5ozK5pGa6TwQfg12PA8Tjv67HDE0i9ZV8+SyFdyuH+Uc61aM4hmYLvs95Izq45If7pIJBfz0xR08FZrNzYFnYPsSmPzFo763pSvAL5btYsOm97jP+RhTbVuhcAZ8+oGE18elEwr5/jOb2ZJ9CROD/4Btz8LUrxz1vRuqOvi/JVvxN1fy74x/Mdq3EfKmR8/jJHqG4yXVYaUo3cmuo2USbNomAdYpMAxNhy9IqzdIe3eQDl+Qji4ffncTIU8Tke42tK8Ns78da8CNPegmVXvIoIsM1UWW8jKSLpLUia2rFsZMSFkJYyWsrIRiX2EsaFQ0QZHWaG1E/xdpA6UNbARxEsBJALsKH+czLPRY0gjYMgg7s9BJ2ZhTcrCl5eJMz8OWmoNKzo0uhZCUBY70QT+3XwKsOHB3tLFn/TECKvsYNhR9lfQx8yiZNJdyZ2Lu3B7NiNxoJsHRjRUSYJ2gQChMc0sr7uZqultrCLbXYXjqMXc34uhpJiXUQkakjSztZoiKcOTAyzBmOlUaXks6PY5MOhwltDqyUCk5WFw52FzZJKdl4kzNJjk1C7srE5PNRarJRF8O1DDCYVpb6mir34e3uZpAew26sw5rdz0pgSbyO9aT074cS/XhC516SaLDkoPXnkcwpQiVVoQprRhHei4p6bmkZubiTMtFOdIS8sdXGwaBgJ+W9c8BkDlhQa99VkayjZr06SR3rYGWXbHsXB+vsr6VzY/fwWe8T+O1pOO+5G8UT7my18p4Mi6fVMRDK+Yxpf0v0axvpXOP+r7Vu5tY+9zvuM73d9JNPrpnfA/X+beC1dG3BT6GS8YX8MsXz6HL/CSuVb+FktkfCRY7uoM8+Or7ZG36PX8wv4zJbkPPvxf79K+dcmKMeLv2E8O4YWc5d2UNJ/Xt+2DclR8p23sH2vnV8+uY3/IPllpewWRzwqd+g2nqDf3i4ifZbuHTEwv5/aYI38gbg+Xt+2DC1YdlLwxFDP6xpopHlr/PV4wl3Ot4BbPVARfcB1O+0i/O45IJBfzy1V3cszWJpwomwtv3wcRrDuuJauz0c+8ru1i+qZL/TX6ZLzpfxBxxwCW/hanXJ/Q8xhSksqvB8+EGV0G056JxS8LK1B8ZhqbdF6TJ46e5K0Czx097hxt/Rz0hdz3K24TF14Iz2EKWdpOrol9lyk0WXR+5aXmQ35pCwJpO0J5BxDEUw5FJZ1Im3qR0rEnp2JLTsCWnY01KBXtqtDfJ7op+2ZKxmMyndDGvtaY7GKHFF8Tt7cHr7cLr6cTnacXf2Uqwuw2jux162rH43dhDHbgCnWR6O8ikimzlIVX5jnrsCGZ6rOkE7ZlEnFmQlI3ZlYM1NReLKweLK/pdJWWBxQHWpOj/CIuzV7OX9qWBcRZ9zNvlZu/6N+iueJOslrWMCO9hmjIOC6jSxsxjeD8LqI5UmpPC+0YhYzt2JLoo/YY/GKKxvpqO+r34mvYTaq/C0lVDkq+ejGAjubqFISrwkcCpiyTc5iy8tlwanaXUJRdgSivAnl5ASlYh6dmFuLIKsDjTyVKK+C4/Gn8mi4XsgmFkFxx7wnt3j5+a+iraG/bT01pFuL0a1VWP09dAqq+JIu8usps8R903gsKDi4DJQUg5CJkdhE0OQiYHYbMDrSzRjFYmEygTGhMoFV0cW2uUEUYZoeh3HcZkhDHpECYjEn2uw9h0EJsOYNVBbASx6yB2QjiUZi7QTho5oz7ROz/AmNRxF8KaB/BsWkLqhXcc833+UIQXlj7JlG13s1DVcWDI5Qy75gFUUkavlu9kDM1KInjWQpp2P0vGqz/C9vUVh/0jrGr1snjxIj5V9we+ZzqAO3sK5qseJDkBd+U/TnqSjS/NGs19Kz/Nj/b9E7Y8BROvBqDLH+LpdypoWvkoX9NLyDO7CY69CsuCu3pl8ePTMXd0DhOGZHJ325Xc2/0bWPlrmHsrADsbPPxl+ftkVSziT9aXyLB4YPIXUef/CFJ6f47vybjp3FIWb6jlz5ZruLnxh7DiLrjgTiKG5qWtDTz6+vuc3f4ir9pfIlW5YcI1MP/H/ao+HFYzN507gjv/vYM18/4fM9fcBG/cCRfeTUtXgH+sOcCiVdu5khWsdb1IcqgDJnwe5t8JqQXH/4BeNqbAxZsVzfhDERxWc/SGQ/44aBw8iS601nh6wtS6fdS7/dS7e2jo6MLbWkukowart54UfyN5tFKo2ihUbUxSbWQo70eOFbFY6LFnE3LmoJNHoVz5+NLycWQUYEnNiw27y4oOvXNm4DBbScTtJ6UUKXYLKXYLxRlJcAJXJoFwhPbuIG3eIBu8Ado9XnwdTQQ6mwh7WtC+Vky+NuyBNpz+DjL8HrI8bWSynyzlwaV6jvsZYcwEsBNQNiLKQgQzEUy8YZ9PyRU/Zs6oxI7mOFESYJ0AI2KwZ+s7tGz8N1kNKxkRrGCiihDSZvbaR7Ox8HpSx8yjdPK8fh1QHWlYVhJLKMThfwv8nb2yEGN/EzE09a1uGqt20l2/G6NtD7bO/aT46sgINZKvWylRIUoO2aeTFNqt+Xhdw3G7ZmFKLcKWWURyVjGpeUNJyxmCy56CK1EnlSDJTgfDR4xm+IjRR309FDGo73DT1VSD191ET2crga4W8LVj9ndgDbhRYR/msB9TpAdrKIBDd+DUfswY0WEM6NiXgemDxxDBQkSZiSgLhrJ88F0rM4bJQdhkwWeyEzbZMcx2tCV2Z8xiB6sTZXGQMfocMnu5N2L21Emsfnss4zb+C+bf+pE7c1prVr+/lcBLd3BVeCVttnw8n15EyYRTT4Xem7514XjurbiO3zbdj/epGzFf8BO213vYvuZlJtQ/w/dMe+hy5hG86C+kT/xcvx2zf9PcEXx225W851nP1Oe+SeWmlVQEsgk2bOMKvZZM5aWn4Gy45OfYTiIRRl9SSnHvZ8fz2Yc8zLOcy4L/3EPl1nd531+AzbOfO02bcFl7iAybjbrwLiicnOgiH9WwrGRuWTCan71kUJ55Eeevvp9dW9fxjreAnFAdT5g3k2ztQQ+bAxf8tN+exxdnDOOlLQ186S3Fvwo+w4w1f2Db5vdY1VXAKBpZZd2C0/BB0ezoeRRNSXSRPzCmIJWIodnV2MWkIenRjXnjYf2jEAkPmB6FiKGpd/dQ1eZjf1s3B1q7aWluJNK2D0dXNfmRBoapJoaZmjhLtZBPO+ZDe50sELCkEkguwEgdgTl9HqHsoVjTi6I3LlLywZWP2ZFOSj/oWe0NdouZgjTnhwlRyAWOvg6j1prOnhCt3iDN3gA7vEE8Xi/42jD5WjH1tGLyu9GhHkxhP2YjgCXix2L4sRgBLEYAsw5jIoJJG4SdBdEbAGcIpU8x5W5vmDZtml6/fn2ii/GB3RvfouPtRyhpf5s82jG0Yo91JO15M0kpP4+yKefhSD6zM+zcfs+9/Dx4D9y4AoqnJro4cdPh9VO1rwJPzVaCTZWY3ftI7a4mL1xLIW2HddV34qLVWkC3s4iwqxhT5lCScoaTXjiCrKIyzM4zu45FYj3059/zzYYf0H3e3STP+a8Ptu/YV83upT9nfucSbCpC4/ibGHrZHb262G48vL6jie1P/pBvqacPa0cd9iIss76Na8Z1/f4cAOrdPfzwqXe4qPZ+Ljetxqoi+JWTnpL5ZMz9ZjQL5Blgc42bHz73Puc3P8aXzcvJUF66bVlYR1+IbcaN0bWU+jmtNY+vreZ3y3dxlf8ZvmJ5jQzVRciRjb38AtT0r/XbwOpQHn+Iu/69g5e31nFdZCk3WF8lgy50cg6WkfPh7K/2q8DqoCaPn0/c8wZ3XDyGr82JXSxveRqWfA2+sTIhmTJPldaahk4/+1q6Pwii6lo6iLRUkuLZSwm1DFcNDFVNlKgm0lX3Yfv7HTmE00qwZA3HnjUUlT4E0oohtRjSiqLD8oQ4hFJqg9Z62ke2S4B1bO8tfZAxm+5it+tsjLJPMeKTV5CRW5zoYsXVLQ8v5Zf118Gl98O06xNdnJPW6QtyYH8l7fu3EGzYhr1jNzk9+ygxakg+ZIKol2Ra7cV0pwxDZ5bizB9NenE5GcVjMCX3n2FYYuDZ3eih8aFLmWnazr7yr9NhzsG/fw3TuleSovzsz72AooW/wNZb6eJ7Qb27hzVr3yG7ZS25qUmUjP8kzmHT+sV8mJPV7PET8nvJdRhYU7LPyHMA6OwJ4bAo7CbO2B4HrTU9oQh2ixmzqX/2fp6IUMQgFDFwWqPJhs4Ec3/1JmW5Lh65Lnad2FkL942FC++BmTcntnBHcTCQ2t3URWWTl8rmLg40tmFq2UlRqJoyUx1lqo6RpnqGqOboqAjAwBSdH5xZii1nBCpzOGSWQubw6Fp2fbwEhjjzSYB1Cvw93ZhMZmz2/jE5uzc8sHw3X3p7HikTLsf22YcSXZxj0lpT7/axv2ILXfvWYWncTG7XDoYbVYdNsuxQ6bQmlRLIGIWlYCwZw8aTPWwc5pTsfjtcSQx8q7bsIfLcTczV7wHQjZOa/Asovuh7pAzr/3fmhRAD263PbuGV7Y1s+uEFmA4Gtw9Mii50fO0zCS1bMGywp9nLjgYPO+o97GjoZG99K8WBvYwz7We82s9ky35Kqf0wkDJZiWSUYskbg8oZDdmjIKccssr6TcIdMTAcK8A6M29z9RGHc+DfyZg2PJPNK0cwvXodiVnR5aO01tS0+di9ezude9dia9pMnncH5Xofs2ITJP3YqHeMpDrzYqz5Z5FRMpHs0klkpGQj/VGiv5k9oYzAWa9SUVWFS/kpKBlNeT/JRieEENOHZ/LU+hq213sYXxybjz1qAaz/KwS6+mxoXDBssKvRw+baTrbUuNle76G6uY2RxgHGmfYzyXyAL1sPMIQazPYIAEZSNqbCSVBwVXQ4Y+4YTBnDMZ2hPbliYJDfvkFu0pB0HtLlzOt8CroaE5KZqbXLT0VlBa2716LqN5Hl2c4YvZf5sew8ISw0OctoyP407UOnkTdmBs6CsZTKH09xBrFbzIwecfTJwEIIkUjzynOxmBQvbq3/MMA66zJY+0fY+SJM+kLcPzNiaPa2eNlc42ZLbSdbat3sa2ijzNjPONN+Ztmq+JblAMXWakxEgymdlI0qnAQFC6FwEhROxpRaJCNURL8jV6iDXLLdQnXWLOh8CiqXw5Qv9erneQNhdlbupWX3uxi1G0h3b2dUZA/nKDcAEUw0OUppz76AnpKzyS2fiTV/LMUWe6+WSwghhBisMpNtzB6ZzXMb6/ju/FHRbG1DZ0aH1q39Y3Qpg9MIYrTW1LT3sLnWzZZaN5trO9lT18Kw0D7GmfYz2XKAG60HGGKt+TCYch4Mpj77QTClJJgSZwgJsATlE2dS/Z8ccjc8gSOOAZY/FKHiQDWNO9cQrt1Iavs2SkO7OVu1AWCgaLINxZ07i56hU8kbMxNH8SQKz4AMZEIIIcRAcuPsUq59ZC1PrK3mhlnDo4HMJ78NL/wXbH7yhHuxtNbUd/rZWtvJ1jo3W+s8VNY0ke+PzpmaaD7AtdYDDDF9OMzvaD1TEkyJM5kEWILLJxfx+Ir53Fq3CGrWwZDpJ32MYNhg74EDNOx6l2DNRlLatzMsWMlE1cLBBK+NliLcudPYUzyF3PKZpJZMpcCeQuKXWRRCCCEGt0+OyGL2yGx+8couxhSkMnNEFky6Bjb9C176HiRnw8gLDtvHMDS1HT3sbPSwra6TLbWd1NbWkO+vZKw6wDhTFZ+3VlOs6zHZowkoJJgSg8FpZRFUSj0FHFxlNB1wa60nKaVKgJ1ARey1d7XWNx3veP0ti+Bg8pNn1/KNrVeT5koh6caXIX3IUd+ntaaprYPays10Vm/DaN5FiqeSYcE9FMZ6pgAaLYW408aiCieSPXI6mWXTUUmSfkIIIYTorzq6g3zuz2s40NrN5ZOKmFeeQ5Gli/LXvoTTXUFz5lT2us6mKpBCXVcEf1c7KUYXxaqZ4aqJMnMjqbrrg+Pp1GJUwQTInwD546MBlQRTYgDp9TTtSqnfAJ1a65/GAqwXtdbjTuYYEmAlTpc/xE8e/Bt3en6IzWRQlXEOXa5SAoaJSNCHxdtIkr+RzHAzhbR+sMBoGDNN1mLcqaOhcDLZZdPJHTUN5UxP7AkJIYQQ4qS5fUF+89punttUhzcQBsBOkC+Zl3O1+U3KTPWHvV+jCCXnY84eiTmnLJoKPW9sNKhKykzEKQjRZ3o1wFLRlfSqgfO01pUSYJ2Z/KEIjy97i4wtf2F6aB0FtGFWmoC20mHKwGPLJZhcQDijjOTiseSNmERqUTmYrYkuuhBCCCHiyB+KsLfFS0d3iLBhkOa0kuOyk20N4oh4IRwARzo400GWnRCDVG8HWHOA3x78gFiAtR3YDXiAH2itVx1j368DXwcYOnTo1KqqqtMujzh9EUPjCwRJslkxm02JLo4QQgghhBD9yikvNKyUeh042uJId2itn489/gKw6JDXGoChWus2pdRUYKlSaqzW2nPkQbTWDwMPQ7QH6/inIvqC2aRwOSU1uhBCCCGEECfjuAGW1nr+x72ulLIAVwJTD9knAARijzcopfYCowAZ/yeEEEIIIYQYsOIx9ms+sEtrXXtwg1IqRylljj0uBUYC++LwWUIIIYQQQgjRb8VjHayrOXx4IMAc4KdKqRBgADdprdvj8FlCCCGEEEII0W/FLU17PCilWoD+luUiG2hNdCFEn5H6HjykrgcPqevBRep78JC6Hlz6Y30P01rnHLmxXwVY/ZFSav3RsoOIgUnqe/CQuh48pK4HF6nvwUPqenA5k+pb8m8LIYQQQgghRJxIgCWEEEIIIYQQcSIB1vE9nOgCiD4l9T14SF0PHlLXg4vU9+AhdT24nDH1LXOwhBBCCCGEECJOpAdLCCGEEEIIIeJEAiwhhBBCCCGEiBMJsD6GUmqBUqpCKbVHKXVbossj4kcpNUQp9aZSaodSartS6r9j2zOVUsuVUpWx7xmJLquID6WUWSm1SSn1Yuz5cKXU2lj7fkopZUt0GUV8KKXSlVLPKqV2KaV2KqVmStsemJRS3439Dd+mlFqklHJI2x44lFJ/VUo1K6W2HbLtqG1ZRf0uVu9blFJTEldycbKOUde/iv0d36KUek4plX7Ia7fH6rpCKXVhQgr9MSTAOgallBl4ELgIOAv4glLqrMSWSsRRGPi+1vosYAZwc6x+bwPe0FqPBN6IPRcDw38DOw95fi9wn9a6DOgAvpqQUone8ADwita6HJhItN6lbQ8wSqki4NvANK31OMAMXI207YHkMWDBEduO1ZYvAkbGvr4O/LGPyiji4zE+WtfLgXFa6wnAbuB2gNj12tXA2Ng+D8Wu2/sNCbCObTqwR2u9T2sdBJ4ELk9wmUScaK0btNYbY4+7iF6AFRGt47/H3vZ34DMJKaCIK6VUMXAJ8EjsuQLOA56NvUXqeoBQSqUBc4BHAbTWQa21G2nbA5UFcCqlLEAS0IC07QFDa70SaD9i87Ha8uXAP3TUu0C6UqqgTwoqTtvR6lpr/ZrWOhx7+i5QHHt8OfCk1jqgtd4P7CF63d5vSIB1bEVAzSHPa2PbxACjlCoBJgNrgTytdUPspUYgL1HlEnF1P3ALYMSeZwHuQ/5wS/seOIYDLcDfYkNCH1FKJSNte8DRWtcBvwaqiQZWncAGpG0PdMdqy3LdNrDdACyLPe73dS0BlhjUlFIpwGLgO1prz6Gv6egaBrKOwRlOKXUp0Ky13pDosog+YQGmAH/UWk8GujliOKC07YEhNvfmcqJBdSGQzEeHGIkBTNry4KCUuoPo1I7HE12WEyUB1rHVAUMOeV4c2yYGCKWUlWhw9bjWeklsc9PBIQWx782JKp+Im3OAy5RSB4gO9T2P6Byd9NiwIpD2PZDUArVa67Wx588SDbikbQ8884H9WusWrXUIWEK0vUvbHtiO1Zblum0AUkp9BbgUuFZ/uHhvv69rCbCO7T1gZCwbkY3oZLoXElwmESexOTiPAju11r895KUXgOtij68Dnu/rson40lrfrrUu1lqXEG3HK7TW1wJvAgtjb5O6HiC01o1AjVJqdGzT+cAOpG0PRNXADKVUUuxv+sG6lrY9sB2rLb8AfDmWTXAG0HnIUEJxBlJKLSA6vP8yrbXvkJdeAK5WStmVUsOJJjZZl4gyHov6MBgUR1JKXUx07oYZ+KvW+u7ElkjEi1JqFrAK2MqH83L+j+g8rKeBoUAVcJXW+sgJtuIMpZSaC/yP1vpSpVQp0R6tTGAT8EWtdSCBxRNxopSaRDShiQ3YB1xP9IaitO0BRil1J/B5osOHNgE3Ep2LIW17AFBKLQLmAtlAE/BjYClHacuxIPsPRIeJ+oDrtdbrE1BscQqOUde3A3agLfa2d7XWN8XefwfReVlhotM8lh15zESSAEsIIYQQQggh4kSGCAohhBBCCCFEnEiAJYQQQgghhBBxIgGWEEIIIYQQQsSJBFhCCCGEEEIIEScSYAkhhBBCCCFEnEiAJYQQQgghhBBxIgGWEEIIIYQQQsTJ/wd0k/y1iGRDiQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
24False80.070.0122bAP.soma.v0.01582.04e-07
25False80.070.0122Step1.soma.v0.0726.72e-07
26False80.070.0122Step3.soma.v0.1036.99e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "24 False 8 0.07 0.0122 bAP.soma.v \n", + "25 False 8 0.07 0.0122 Step1.soma.v \n", + "26 False 8 0.07 0.0122 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "24 0.0158 2.04e-07 \n", + "25 0.072 6.72e-07 \n", + "26 0.103 6.99e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD9iElEQVR4nOzdd3wc5bXw8d/Zqt5ldVtyxRUDpoUOCSUBHEKCIYR6CRfSSSGdQG6SNzdwQ0IJDgmEUGJ6Cy2hGTAB3HAvuMlVttXb9t3n/WNW8lpWs73SStrz/XyEd9ozZ2e0Ys4+z5wRYwxKKaWUUkoppQ6fLdEBKKWUUkoppdRIoQmWUkoppZRSSsWJJlhKKaWUUkopFSeaYCmllFJKKaVUnGiCpZRSSimllFJxogmWUkoppZRSSsWJJlhKKTXEiEiliBgRcSQ6FpUcRGS1iJye6DiUUmok0ARLKaXUsCcic0WkLfoTEJFgzPSriY5vqDPGTDXGzI9nmyKSJyJPiEi9iNSJyGMikhXPfSil1FCkCZZSSsWZ9jwNPmPMDcaYDGNMBvAb4ImOaWPMeR3rDadzM5xi7cGvgFygChgHFAG3JjIgpZQaDJpgKaVUHIhItYj8UERWAO0i4hCRE0TkPyLSJCLLY4dgich8Efl/IrJQRFpE5AURyeuh7WtEZK2ItIrIZhH57y7LZ4vIsmg7m0Tk3Oj8bBF5QERqRGSniPxKROx9vI9xIvJWl16HnJhlDSJydHS6VERqO96XiFwYHWrWFH1/k7scn++LyAoRaY72bKQc/JE+eD2cGyMi42PWeUhEfhUzfX70mDZFz+GMfu7rdBHZISI/iR6/ahG5PGb550Tk4+i52i4it8Ys6xga+l8isg14Kzr/KRHZHT1u74rI1C5x/0lEXo321r0vIsUi8gcRaRSRdSJyVD+P0af78x4PQhXwvDGmxRjTDDwHTO1jG6WUGvY0wVJKqfi5DPgckIP1bf3LWN/i5wHfB54RkcKY9a8ErgVKgBBwVw/t7gXOB7KAa4A7Y5Kc44CHgR9E93sqUB3d7qFou+OBo4Czgev6eA8C/D+gFJgMVBDtdTDGbAJ+CDwqImnA34C/G2Pmi8hEYB7wHaAQeAX4p4i4Ytq+BDgX68J7BnB1twGInBxNbHr6ObmP99CdznNjjAn1egCshORB4L+BfODPwIsi4u7nvoqBAqAMuAq4X0QmRZe1Y533nGg8N4rI57tsfxrWsT8nOv0qMAEYBSwFHuuy/iXAz6L79AMfRNcrAJ4Gft/PuLslIj/q7Xz0sum9wPkikisiucDF0feilFIjmiZYSikVP3cZY7YbY7zAV4BXjDGvGGMixpjXgcXAZ2PWf8QYs8oY0w78HLikux4mY8zLxphNxvIO8G/glOji/wIeNMa8Ht3PTmPMOhEpiu7rO8aYdmPMXuBO4NLe3oAxZmO0Lb8xphbr4vy0mOV/ATYCH2Elhj+NLpoDvBzdNgjcAaQCn+pyfHYZYxqAfwIze4hhgTEmp5efBb29hx7Enpu+XA/82RjzkTEmbIz5O1bicsJB7O/n0WP4DlaifQmAMWa+MWZl9FytwEpKT+uy7a3Rc+aNbvOgMabVGOPHSnaPFJHsmPWfM8YsMcb4sHqJfMaYh40xYeAJrOT6kBljftvb+ehl06WAC6iP/oSBPx1OLEopNRxogqWUUvGzPeb1GOBLXb7pPxkrKelu/a2AE6vXYT8icp6IfBgdnteElTh1rFcBbOomljHR9mpi9v9nrF6QHolIkYg8Hh1S2AI82k1MfwGmAXdHL/rB6vHa2rGCMSYSfX9lMdvtjnntATJ6iyXOtve9SqcxwPe6nLsKrPfYH43RpLnD1o5tReR4EXk7OrSyGbiBA49vZ6wiYheR34o19LOFfb2TsdvsiXnt7WZ6MI9zrCeBT4BMrN7XTVi/T0opNaJpgqWUUvFjYl5vx+qhiv22P90Y89uYdSpiXo8GgkBdbIPRYWnPYPUIFUV7DF7BGsrXsZ9x3cSyHavXpSBm/1nGmL7ugflN9H1MN8ZkYfXEdewLEckA/gA8ANwq++4b24WVmHSsJ9H3t7OP/R1ARE6RfRUAu/s5pe9WDmC6THuAtJjp4pjX24Ffdzl3acaYef3cV66IpMdMj8Y6PgD/AF4EKowx2cBcYo5vN7F+GZgNfBrIBiqj87tuM2Ci95P1eD562XQmVk9guzGmDeu9fraX9ZVSakTQBEsppQbGo8AFInJOtBciJVoAoTxmna+IyJTo/Uy/BJ6ODuuK5QLcQC0QEpHzsO6l6vAAcI2InCUiNhEpE5EjjDE1WEMJ/09EsqLLxolI1+FoXWUCbUCziJRh3dsV64/AYmPMdVhD3+ZG5z8JfC4ahxP4HlaC95++DlRXxpj3YioAdvfz3sG22Y1lwJej5+Zc9h+m9xfghmhvk4hIuljFKTKhs7DEQ320f5uIuKLJ4PnAU9H5mUCDMcYXvX/uy320k4l1HOuxEsLfHMR7jAtjzG96Ox+9bLoIuE5EUkUkFWvo5YrBiVoppRJHEyyllBoAxpjtWD0PP8FKjrZjJSuxf3cfwSpEsRtIAb7VTTut0flPAo1YF+QvxixfSLTwBdAMvMO+nqQrsRK0NdFtn2b/IYrduQ04OtrWy8CzHQtEZDZWkYobo7O+CxwtIpcbY9Zj9XbdjdULdwFwgTEm0Mf+EuXbWDE2AZcDz3csMMYsBr4K3IN13Dayf0GOCuD9XtreHd1uF1ZBihuMMeuiy74G/FJEWoFbsM5rbx7GGmK4E+s8ftjXGxtCrsXqcduBFf9YrKIfSik1ookxXUdNKKWUGmgiMh941Bjz10THovovWhVxOTAjWsyj6/LTsc5reddlSimlksNwf4ihUkopNWiiPXKT+1xRKaVU0tIhgkoplWREZG4PBQvm9r21Go5EZHQvhSpGJzo+pZQaSXSIoFJKKaWUUkrFifZgKaWUUkoppVScDKl7sAoKCkxlZWWiw1BKKaWUUkqpXi1ZsqTOGFPYdf6QSrAqKytZvHhxosNQSimllFJKqV6JyNbu5usQQaWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTgZUvdgdScYDLJjxw58Pl+iQ1FDQEpKCuXl5TidzkSHokawp5fs4JWPVvPby09lVHZqosNRSiml1DAy5BOsHTt2kJmZSWVlJSKS6HBUAhljqK+vZ8eOHVRVVSU6HDWCLXz5QR6M/B/vPHU9o667PdHhKKWUUmoYGfJDBH0+H/n5+ZpcKUSE/Px87c1UA6qhPcD5wX8DcNTOf0AokOCIlFJKKTWcDPkEC9DkSnXS3wU10DbVtjHWVkMAJ1mmjabNCxMdklJKKaWGkWGRYCml1GCpqWuklHq2Vn4JgD0r305wREoppZQaTjTB6gcR4Xvf+17n9B133MGtt96auIBinH766b0+nPnzn/88J5xwwn7zbr31VsrKypg5cybTpk3jxRdfHOgwlRo2wrUbsYkhf/KpbIqU4NipPVhKKaWU6j9NsPrB7Xbz7LPPUldXF9d2jTFEIpG4thmrqamJJUuW0NzczObNm/dbdtNNN7Fs2TKeeuoprr322gGNQ6nhJNK8E4CcknFsdY0nu+WTBEeklFJKqeFEE6x+cDgcXH/99dx5550HLKutreXiiy/m2GOP5dhjj+X9998HrF6iO+64o3O9adOmUV1dTXV1NZMmTeLKK69k2rRpbN++nR/84AdMmzaN6dOn88QTTwAwf/58Tj/9dL74xS9yxBFHcPnll2OM6Ta+Rx55pLM3auHCfd+2P/vss1xwwQVceumlPP74491uO3nyZBwOx37J449+9COmTJnCjBkz+P73vw9AdXU1Z555JjNmzOCss85i27ZtAFx99dXceOONnHDCCYwdO5b58+dz7bXXMnnyZK6++urONm+88UZmzZrF1KlT+cUvfnFAHM3NzYwZM6Yz0Wtvb6eiooJgMNht3EoNlGB7IwC2tFzasydSENoN/tYER6WUUkqp4WLIl2mPdds/V7NmV0tc25xSmsUvLpja53pf//rXmTFjBjfffPN+87/97W9z0003cfLJJ7Nt2zbOOecc1q5d22tbGzZs4O9//zsnnHACzzzzDMuWLWP58uXU1dVx7LHHcuqppwLw8ccfs3r1akpLSznppJN4//33Ofnkkw9oz+PxsGzZMt59912uvfZaVq1aBcC8efO45ZZbKCoq4uKLL+YnP/nJAdt+9NFH2Gw2CgsLAaivr+e5555j3bp1iAhNTU0AfPOb3+Sqq67iqquu4sEHH+Rb3/oWzz//PACNjY188MEHvPjii1x44YW8//77/PWvf+XYY49l2bJlzJw5k1//+tfk5eURDoc566yzWLFiBTNmzOiMIzs7m5kzZ/LOO+9wxhln8NJLL3HOOefo867UoIt4m60X7ixsxVOhHtq2ryJj/ImJDUwppZRSw4L2YPVTVlYWV155JXfdddd+89944w2+8Y1vMHPmTC688EJaWlpoa2vrta0xY8Z03he1YMECLrvsMux2O0VFRZx22mksWrQIgOOOO47y8nJsNhszZ86kurq62/Yuu+wyAE499VRaWlpoampiz549bNiwgZNPPpmJEyfidDo7Ey+AO++8k5kzZ/L973+fJ554orM6X3Z2NikpKfzXf/0Xzz77LGlpaQB88MEHfPnLXwbgiiuuYMGCBZ1tXXDBBYgI06dPp6ioiOnTp2Oz2Zg6dWpnzE8++SRHH300Rx11FKtXr2bNmjUHvI85c+Z09uA9/vjjzJkzp9fjqNRAcASjX+KkZJM9xvoSoGHLxwmMSCmllFLDybDqwepPT9NA+s53vsPRRx/NNddc0zkvEonw4YcfkpKSst+6Dodjv/uaYp/dlJ6e3q/9ud3uztd2u51QKNTtel1Ll4sITz75JI2NjZ0P5G1paWHevHn8+te/Bqx7sDqG/3WNe+HChbz55ps8/fTT3HPPPbz11lv9itNms+0Xs81mIxQKsWXLFu644w4WLVpEbm4uV199dbfPsrrwwgv5yU9+QkNDA0uWLOHMM8/sdb9KDQRXsJUATlzOFEoqJ9Fu3AR2rep7Q6WUUkop4tCDJSIVIvK2iKwRkdUi8u3o/FtFZKeILIv+fPbww02svLw8LrnkEh544IHOeWeffTZ333135/SyZcsAqKysZOnSpQAsXbqULVu2dNvmKaecwhNPPEE4HKa2tpZ3332X44477qDi6uj1WbBgAdnZ2WRnZzNv3jxee+21zvu+lixZ0uN9WLHa2tpobm7ms5/9LHfeeSfLly8H4FOf+lTn9o899hinnHJKv+NraWkhPT2d7Oxs9uzZw6uvvtrtehkZGRx77LF8+9vf5vzzz8dut/d7H0rFizvchteeAcDo/Aw2mApc9b0P+1VKKaWU6hCPHqwQ8D1jzFIRyQSWiMjr0WV3GmPu6GXbYed73/se99xzT+f0XXfd1Xl/VigU4tRTT2Xu3LlcfPHFPPzww0ydOpXjjz+eiRMndtveRRddxAcffMCRRx6JiPC73/2O4uJi1q1b1++YUlJSOOqoowgGgzz44INUV1ezdevW/cqzV1VVkZ2dzUcffdRtG5/97Gf561//iogwe/ZsfD4fxhh+//vfA3D33XdzzTXXcPvtt1NYWMjf/va3fsd35JFHctRRR3HEEUdQUVHBSSed1LnslltuYdasWVx44YWANUzwS1/6EvPnz+93+0rFkzvchteWQTbgtNvY6a5kXNuiRIellFJKqWFCeqpMd8gNirwA3AOcBLQdTII1a9Ys0/WZTmvXrmXy5MlxjVENb/o7oQbSh7edRmmKn9E//BCAJ++6mUsa/gw3b4G0vARHp5RSSqmhQkSWGGNmdZ0f1yIXIlIJHAV0dJN8Q0RWiMiDIpIbz30ppdRASDPtBByZndNSMA6AcN2mRIWklFJKqWEkbgmWiGQAzwDfMca0APcB44CZQA3wfz1sd72ILBaRxbW1tfEKRymlDkmGaSfg3JdgZRRPAqBx+4GVL5VSSimluopLgiUiTqzk6jFjzLMAxpg9xpiwMSYC/AXotnKDMeZ+Y8wsY8ysjmcxKaVUIkQihjS8hB0ZnfNGjZlE2Aitu9YnMDKllFJKDRfxqCIowAPAWmPM72Pml8SsdhGgdY6VUkOaPxQhhQA4UzvnjS3OZ4cpJFK7IYGRKaWUUmq4iEcVwZOAK4CVIrIsOu8nwGUiMhMwQDXw33HYl1JKDRhfMExalwQrN93FGlsJla3ViQtMKaWUUsPGYSdYxpgFgHSz6JXDbVsppQaT1x8gV4JITIIF0JQ6hjzf62AMSHd/7pRSSimlLHGtIjiSPf/884hIr8+nqq6uZtq0aXHb59VXX83TTz/d4/LvfOc7lJWVEYlEOuc99NBDFBYWMnPmTKZMmcJf/vKXuMWj1Ejn83kAENf+CVYgu4pU44W2vYkISymllFLDiCZY/TRv3jxOPvlk5s2b1+3yUCh02PsIh8P9XjcSifDcc89RUVHBO++8s9+yOXPmsGzZMubPn89PfvIT9uzZc9ixKZUM/J42AGyu9P3m2wvHA+DdrYUulFJKKdU7TbD6oa2tjQULFvDAAw/w+OOPd86fP38+p5xyChdeeCFTpkwBrETr8ssvZ/LkyXzxi1/E47G+EX/zzTc56qijmD59Otdeey1+vx+AyspKfvjDH3L00Ufz1FNPHbDvN954g1mzZjFx4kReeuml/fY9depUbrzxxh6TvlGjRjFu3Di2bt3aOe+uu+5iypQpzJgxg0svvRSAhoYGPv/5zzNjxgxOOOEEVqxYAcCtt97KVVddxSmnnMKYMWN49tlnufnmm5k+fTrnnnsuwWAQgF/+8pcce+yxTJs2jeuvv56uD6+ORCJUVlbS1NTUOW/ChAma+KkhJ+hrB8Du3r8HK6vMerB1wzYt1a6UUkqp3sWjyMXgefVHsHtlfNssng7n/bbXVV544QXOPfdcJk6cSH5+PkuWLOGYY44BYOnSpaxatYqqqiqqq6tZv349DzzwACeddBLXXnstf/rTn/jGN77B1VdfzZtvvsnEiRO58sorue+++/jOd74DQH5+PkuXLu1239XV1SxcuJBNmzZxxhlnsHHjRlJSUpg3bx6XXXYZs2fP5ic/+QnBYBCn07nftps3b2bz5s2MHz++c95vf/tbtmzZgtvt7kx4fvGLX3DUUUfx/PPP89Zbb3HllVeybNkyADZt2sTbb7/NmjVrOPHEE3nmmWf43e9+x0UXXcTLL7/M5z//eb7xjW9wyy23AHDFFVfw0ksvccEFF3Tu02azMXv2bJ577jmuueYaPvroI8aMGUNRUVG/T5NSgyHQkWB16cEqqhiP3zjw7v4kEWEppZRSahjRHqx+mDdvXmdvz6WXXrpfj9Fxxx1HVVVV53RFRQUnnXQSAF/5yldYsGAB69evp6qqiokTJwJw1VVX8e6773ZuM2fOnB73fckll2Cz2ZgwYQJjx45l3bp1BAIBXnnlFT7/+c+TlZXF8ccfz7/+9a/ObZ544glmzpzJZZddxp///Gfy8vI6l82YMYPLL7+cRx99FIfDyq8XLFjAFVdcAcCZZ55JfX09LS0tAJx33nk4nU6mT59OOBzm3HPPBWD69OlUV1cD8Pbbb3P88cczffp03nrrLVavXn3A+5gzZw5PPPEEAI8//niv71mpROnowXK40/abX1mYxTZThDRsSkRYSimllBpGhlcPVh89TQOhoaGBt956i5UrVyIihMNhRITbb78dgPT0/b/pli4VxrpOd6drG321969//YumpiamT58OgMfjITU1lfPPPx+wkpl77rmn2/Zefvll3n33Xf75z3/y61//mpUre+8RdLvdgNUL5XQ6O+Ox2WyEQiF8Ph9f+9rXWLx4MRUVFdx66634fL4D2jnxxBPZuHEjtbW1PP/88/zsZz/rdb9KJULIbw3pdabu/5lMddmpcZQxoW1rd5sppZRSSnXSHqw+PP3001xxxRVs3bqV6upqtm/fTlVVFe+9916362/bto0PPvgAgH/84x+cfPLJTJo0ierqajZu3AjAI488wmmnndav/T/11FNEIhE2bdrE5s2bmTRpEvPmzeOvf/0r1dXVVFdXs2XLFl5//fXO+716EolE2L59O2eccQb/+7//S3NzM21tbZxyyik89thjgHVvV0FBAVlZWf2KryOZKigooK2trceqhyLCRRddxHe/+10mT55Mfn5+v9pXajCF/VYPlqtLDxZAS9po8v07INL/YjRKKaWUSj6aYPVh3rx5XHTRRfvNu/jii3ssLDFp0iTuvfdeJk+eTGNjIzfeeCMpKSn87W9/40tf+hLTp0/HZrNxww039Gv/o0eP5rjjjuO8885j7ty5RCIRXnvtNT73uc91rpOens7JJ5/MP//5z27buO6661i8eDHhcJivfOUrTJ8+naOOOopvfetb5OTkcOutt7JkyRJmzJjBj370I/7+97/38+hATk4OX/3qV5k2bRrnnHMOxx57bOeyuXPnMnfu3M7pOXPm8Oijj+rwQDVkhf1eAFypB/Yqh3LH4iKIad4+2GEppZRSahiRrhXfEmnWrFlm8eLF+81bu3YtkydPTlBEaijS3wk1UF5/4k98Zu2P8f/3h7hL9v8de/nFJ/nc0q/S8sUnyZp2ToIiVEoppdRQISJLjDGzus7XHiyllIqKBK1htq6UA4cI5lRYCVfjdi3VrpRSSqmeaYKllFIdgtYQQXEdOESwrLyKNpNCYI+WaldKKaVUz4ZFgjWUhjGqxNLfBTWgoj1YOFIOWFSel8YWU4KjUUu1K6WUUqpnQz7BSklJob6+Xi+sFcYY6uvrSUk58OJXqbgIRh8x4Ew9YJHDbmOPq4Ks9urBjUkppZRSw8qQfw5WeXk5O3bsoLa2NtGhqCEgJSWF8vLyRIehRigJeQngxGWzd7u8LaOK3Kb3rKGE3SRhSimllFJDPsFyOp1UVVUlOgylVBKwh70ExIWrh+WRvPHYmgyRuo3YSqYPamxKKaWUGh6G/BBBpZQaLLawD7/0PAQ1peQIQCsJKqWUUqpnA55gici5IrJeRDaKyI8Gen9KKXWo7CEfIZu7x+V5FVaC1bZj7WCFpJRSSqlhZkATLBGxA/cC5wFTgMtEZMpA7lMppQ6VI+Ij2EuCVVkyip0mn3CtlmpXSimlVPcGugfrOGCjMWazMSYAPA7MHuB9KqXUIXFE/IRsPQ8RLMpys5VS3M2bBzEqpZRSSg0nA51glQHbY6Z3ROd1EpHrRWSxiCzWSoFKqURyRvyE7T0nWCJCfcpocr1bQR8doZRSSqluJLzIhTHmfmPMLGPMrMLCwkSHo5RKYk7Te4IF4M0aS5rxQNveQYpKKaWUUsPJQCdYO4GKmOny6DyllBpy3MZPpI8Ey1Y4AYDgXr0PSymllFIHGugEaxEwQUSqRMQFXAq8OMD7VEqpgxaJGFKMH+Po/QHC6aWTAWjctnowwlJKKaXUMDOgDxo2xoRE5BvAvwA78KAxRq9KlFJDji8UJkUCtDl778EqrhiH17jw1KwbpMiUUkopNZwMaIIFYIx5BXhloPejlFKHwxsIk0IAnGm9rjeuKItqU0xq3YZBikwppZRSw0nCi1wopdRQ4A12JFi992BlpTjZ5SgnvVVLtSullFLqQJpgKaUU4PP5cEoY6aMHC6Alczz5wRoIeAYhMqWUUkoNJ5pgKaUU4PO2AWBz951ghQuOwIYhvHf9QIellFJKqWFGEyyllAJ8Hqs3yuHqO8FKr5gBQP3mpQMak1JKKaWGH02wlFIKCHpbAXCkZPS5bmnVFPzGSfv2VQMdllJKKaWGGU2wlFIKCHhaAHCmZfa57vjibDaYMmy1awY6LKWUUkoNM5pgKaUUEPZZ92A5U7P6XDfd7WC7s5Ls1o0DHZZSSimlhhlNsJRSCgj5rB4sd3rfCRZAa9YEcsJ14GkYyLCUUkopNcxogqWUUkDEb/VgufsxRBDAjJoKQGj36gGLSSmllFLDjyZYSikFGH/HEMH+JVg5lVYlwbpNHw9YTEoppZQafjTBUkopgICVYIm7f0MEx42dSLNJo32HVhJUSiml1D6aYCmlFCD+duuFK71f61cVZrCB0bjqdIigUkoppfbRBEsppQBbqJ0gDnC4+7W+3SbsSjuCUe0bIBwa4OiUUkopNVxogqWUUoA92I5PUg5qG3/hdNz4iexdN0BRKaWUUmq40QRLKaUAe8iDT9IOapvUylkANGxaOBAhKaWUUmoYOqwES0RuF5F1IrJCRJ4TkZzo/EoR8YrIsujP3LhEq5RSA8QeaidgTz2obUZPmEGbSaFt86IBikoppZRSw83h9mC9DkwzxswAPgF+HLNskzFmZvTnhsPcj1JKDShX2EPIfnA9WBOLs1ltKnHtXTFAUSmllFJquDmsBMsY829jTMfd3R8C5YcfklJKDb7UcBtBV/9KtHdIcdrZmXYEBW2faKELpZRSSgHxvQfrWuDVmOkqEflYRN4RkVN62khErheRxSKyuLa2No7hKKVU/4TCETJNKyF37kFvGxw1AxcBInvXDkBkSimllBpu+kywROQNEVnVzc/smHV+CoSAx6KzaoDRxpijgO8C/xCRbr8aNsbcb4yZZYyZVVhYePjvSCmlDlKLL0SutBFJyTnobbPHHQ9A7foP4xyVUkoppYYjR18rGGM+3dtyEbkaOB84yxhjotv4AX/09RIR2QRMBBYfbsBKKRVvLe0+RuOhJvXge7AmTJ5By1uptG5eSNHpXx2A6JRSSik1nBxuFcFzgZuBC40xnpj5hSJij74eC0wANh/OvpRSaqC0tTRgE4M9Pe+gt60qyGSlTCRjr35/pJRSSqnDvwfrHiATeL1LOfZTgRUisgx4GrjBGNNwmPtSSqkB4Wm27v90ZBx8gmWzCbuzj6LYtxm8jfEOTSmllFLDTJ9DBHtjjBnfw/xngGcOp22llBos/pZ6ANyZBYe0fWT0CbDyIbyb/kPqtM/FMzSllFJKDTPxrCKolFLDkr/VSrBSsw8twSqdchIBY6d2zfw4RqWUUkqp4UgTLKVU0vO3WEMEs/OKDmn7o8eVsdqMxbbtg3iGpZRSSqlhSBMspZRqrQHAnlV8SJunuuxsyzySora1EPTGMzKllFJKDTOaYCmlkp7TswePpII785DbMBUn4CREe/WiOEamlFJKqeFGEyylVNJL9dfSbD+0+686lM04g4gRdi9/I05RKaWUUmo40gRLKZX0MoN1tLsLD6uN6ROqWEMljup34hSVUkoppYYjTbCUUkktFI6QF6knkDrqsNpJcdrZlHkcZW0rwd8ap+iUUkopNdxogqWUSmrb6tsoohFbVslhtxWuOh0HYdrWzz/stpRSSik1PGmCpZRKaju2bcEtIdKKxx12W2NmnoHXuKhf8a84RKaUUkqp4UgTLKVUUmvY+QkA+eWTDrut6WOKWMwU0rbrfVhKKaVUstIESymV1Hx7NwGQXnT4PVguh42a/BMp9G/DNG077PaUUkopNfxogqWUSmrSuJUINsiuiEt7mdPOAWDPkn/GpT2llFJKDS+aYCmlkpYxhkxPNc2uInC44tLmMcecQHWkCP/ql+LSnlJKKaWGF02wlFJJq7bNz5jITtozx8atzVHZqXycdiKlDQu1XLtSSimVhDTBUkolrY17WhgrNVA4Ma7tBsZ/Fich2la/Ftd2lVJKKTX0aYKllEpau7dvIlUCZJRNiWu7Rxz7aepNJg1Lnotru0oppZQa+g4rwRKRW0Vkp4gsi/58NmbZj0Vko4isF5FzDj9UpZSKL++OVQBkV0yNa7szRufxoeNYCmrmQzgY17aVUkopNbTFowfrTmPMzOjPKwAiMgW4FJgKnAv8SUTscdiXUkrFjb1uHQBSFN8eLBGhfey5pEXaaV/777i2rZRSSqmhbaCGCM4GHjfG+I0xW4CNwHEDtC+llDokOa0baHQUQmpu3NuedNJFNJgMGt7/e9zbVkoppdTQFY8E6xsiskJEHhSRjquUMmB7zDo7ovMOICLXi8hiEVlcW1sbh3CUUqpv7f4QFaFqWjInDEj7M8YU8rbzVIpq3gJv04DsQymllFJDT58Jloi8ISKruvmZDdwHjANmAjXA/x1sAMaY+40xs4wxswoLCw92c6WUOiSb9zQzXnYRKTxiQNoXEcyMy3ARpPY/Dw/IPpRSSik19Dj6WsEY8+n+NCQifwE6nqy5E6iIWVwenaeUUkPC7urVTJcgaeUzBmwfp59xNh8vnkDlR3+C078G9j7/5CqllFJqmDvcKoIlMZMXAauir18ELhURt4hUAROAhYezL6WUiqeOCoJ5VTMHbB8FmSksHX01uYEaGhc/MWD7UUoppdTQcbj3YP1ORFaKyArgDOAmAGPMauBJYA3wGvB1Y0z4MPellFJxY69dSxgbzuKBGSLY4eyLrmadGY28/gu9F0sppZRKAoeVYBljrjDGTDfGzDDGXGiMqYlZ9mtjzDhjzCRjzKuHH6pSSsVPVusGap2l4Ewd0P1U5GfwwdRbyQjWs/sfX4NIZED3p5RSSqnE0hsCkpwnEKKxPUBLSwue1ga8rY342xoJtDcR9jYT9rYSCfoxYT+EAhD2I+EgJhIkFAF/xEZE7CB2ImInKG489kxCzkxIyUZScyB9FKm5oyjLTac8N43y3FQKM9zYbJLot6+SVCgcoSxYTXP+JIoHYX+XXfR5/rFlPlduf5ht915IyZfvwZlfOQh7VkoppdRg0wRrhAmGIzQ2NdFct5u2xt14m/YQaNlLpK0O8dTh8DXgDjSQHmwiI9JMFu2MwkuZ9H8EZwQbIewIYCeMjb6/kfcbB7tNHjXk854pZCulNKRVEs6fSH7FJCaX5TG5JIvK/HTsmnipAbZ9bz1j2M36gs8Pyv5SnHYu/MYdPPbXDC6v/xPr/34Dk7772qDsWymllFKDSxOsYSIcjtDQUEvj7u201m3H37iTUHMNtrY9uLx7SAvUkR2qJ880MUr8jOqmjSAOmiWLNkcu/rRcWt1jaE3JwZaajT01G0daDq70HFIyc0nNzCUtMxdbSiY4UsDuBLsbHG5sNjuu2IYjETBhiIQg6AVfE/iarR9vE7TtRRq3kVu3jeymHcxoXUea/13wA7sgsNNOtSlmrangJRmNJ3ci7tLplFdNZlp5LhOKMnDaB+qZ2CoZ1W5ZSZUY3GXTB22fOeluvvyt3zD/ji0c0/oeGAOiXyYopZRSI40mWENAJByhvm4X9Ts307ZnC4GGbdC0A6dnN2n+WrJC9RSYBgolQNcnhbWRSqMtn3ZXPvUZM9ibVohkFOLMKMSdPYq0vCKy80rIyCvCmZJNgQgF8X4DNhtgs5IwZyqk5R2wiiv608nXAvUboPYTbHvXU7xzFaW1aznf8yE0A83gWeNmgynjRUbTnDkee/FU8qpmMmHcOMaPysShSZc6RL6OCoKVRw7qfkWEtoKZZG59lUj9ZmwF4wZ1/6r/AsEQba3NeNua8bU3429vwe9pIehtsYZO+9sg6MWE/NAxhDrkh3AAiQSwhQPYTRB7JIjNhACDMQDGSq4xYMAmBhtgRIiInYg49v3YHGBzgN2J2JyIwwkONzjTwJmKONMQVxp2Vxp2dzo2dxqOlHSc7nTcqRmkpKWTkpZBWnomdrs9ocdTKaWSiSZYgyAQCLJ35yaadn6Cp3Yr4cZt2Fp2kuatITuwh8JI7QHJkxcX9bYCWp0F1KVPY3daEZJVhDOnjPT8crJHjSa3qJyM1CwyEvbODkNKFpQdA2XH4ACyOub726B2PZE9qwluW07JrtWMa1xBRvt82ARsgobXM1hKBXVp4wgXTCFj9HSKxs2korSEzBRnwt7SkBEJQ8hPOOjH72vH5/Pi93kJ+L2EAn5Cfi/hoI9IyE8k6MME/URCAUzQ13mxaEIBTDiEiYSIhEMQCWMiIUwkDOEQYsL7/dhi/rWZMEIEY11N0nlNCZ0XmCYmXIl9JfumBYiIDYONiFhJfMe0kehPzDJj61hmBxHr35h1iZlfWL8Iv3GSUz5pwE9HV87Rx8BWqF3/H4o0wRpQ/kCA5oa9tDXV4mmuw99SR6CtgXB7PcbThPiacASacAVaSA23kB5pJc20k2Z8pImfA78q6lnYCAFxEsRJqPNfB0Gc1n2qCEYk+vttvQYwRohEPxB2E8JuQjgIYzchbIRxmDB2QtgJ4TBh3ASxiekhip75jBOvpODHTcDmJiAphGxuQvYUQvZUwvZUjCMV47T+FVca4krF5srA7k7D7k7D5k7D7rQSObsrFbvDhcvlwu504XC6cbn2/WtzuMFmT2gvrTEGEzFEImEikQiRSBgTiRCOhK3XYWt+ONzx980QNmFMOEQkEsFEIkTCIUwkgjHW60gkgjHh6LIwdLyOhCESIRIJRfcbtv5emgiRcCS6Xji6LATGap9IGGOs9jteE4lgImHERACDcPDnu/MYcGjHXzr/0yH6hWbs+ZT9X4jYelxm/XHvuq3Q8YnYtyzm/widL612Oz4z+8dm65zX+fnq2FDotf2u86Sz4X3/I5L9fn8FkY5jKvstN51xxbynXpjOL1p6Wh671y7Lut3M9PB6f9L5RU/v0fW6tHNxP34vu+ysxy36Doq2jDFMOPIkynIGtjBVvGiCFSdBv4fd1etp3LEez54N0LCF1LZt5Pp3UhzZQ7mEKY9Zv44cGhyjqEsfT03GqUhOBe78MWQVV1FQNo7M3CLKk3H4kDsDyo/BVn4M2cfEzG+vI7J7NfVbltO2fTkldeuY5nmTtO0vwXbgfdhl8tgshbS5iwilF2PPLsWRW05KTjEZOQVk5xWSm1eAIzV7cP+nHwlbQydDPkzQQ8DbTsDnIej3EPS2EfR7Cfk9hAMewv52IgEv4YAXE/Ra20W3tYW82MI+bGE/jrAPe8SHI+LHGfHjMn7cJoCTAI7oPXF2IC36c6jCRghhJ4KNsNgJd7zGTkRsMa877sazXkewdR5jobv/r0ZnmM7/xL6MLrMuLGxEEBOx/iWCzUQOmG+lVmFrfue8fetFUzHsMfcLrs04nsn2wU/IKyfPwvuui5aNH1J00hWDvv/hzuP10Lh3Fy11O2lvqCHQvJtwy17EsxeHt57UQD0ZoUZyIk3k0sooMd0OmQZoIZ12WwYeexY+Vxb1jlL2uDIxzgxwpSPuDGwpmdhTMnGkZuJMyyIlPZuU9Czcadm4UtNxuVNwuFKx2+ykAgP9v/5wOILH78XvbcfvbSPgbSPobSfsbyfkbyfk9xDp+DfggYD1N4WQBwl6kZAPe8iDPezDHvbhDHlIDTRE/4b4SDF+UvDjOoj7cnsTMHZCOAjhICISky50vO64QJWYeVhfhiCdX8rYiPl7gLH+FmAQY7B3/G3oXG/f644eQqXU8Pa30Dm05U4ZNgmWmH5kjYNl1qxZZvHixYkOo1ctTbXs+mQZzdtXE9mzlrSWTYzyb6UoUrvft4ptJpU9jlKaU8sJZY/BljeW1FFjySkbT0FpFe6Uw7nsVQAYQ7hxG3s2LKV1+wqoXY+jrYY03x5ywnWk4u92sxA22kiPfoPrImRzEen4sVv/Ivu+gzLR4TydHxVjEBPCHglaQ4BMEIexhgHtmxfCYUJEv8c+pLcXNoIXNz5c+HHhw0VQ3ATETdDmImRLIWxPIWxzE3akErGngMONOKL3yjnciDMFu8uN3ZmCw5mCzenG7nRjc6XicLqxOVOwu1JwuKyLRIfbjdOZgtOdgsvpwumwj7yiI5EImEjCvl0PRwzLbjuBgnQnY25eMOj7H6qMMTQ3N1K7q5qWPVvx1m0n3LwDW9tuUr27yQrWkh+uI19aut3eQwrNthzaHHn4XHkEUvIJpxUi6QU4MvJxZeaTmpVPenYhWbmjSM3Ks34H1AEiEYPX58PracfnacPva8XvaSPs8xAJtmMCHiJBH5FQsPPHhP2YsPWaSBDCAau3OzpE0hYJIUQ6h0ea6BcoHf9iTOff2o5hlALYMNEe6GhPNALR6c55IiD2zvXomEfMtK1jfTs2IdqjbQOb3ep5scW8FhtisyNiB5sgNkfnOiJ2xGYtR2zYbNY0Nju2ju2i82w2G2JzgE2i6zmseWLDZrdjs9nBZsNut7axiR2x27FH2xd7NIZD/Tt1iNd3Hb0r+zoqoq8iJmaN6BdjEbNvG2L+f2nN7Fh93zbGxEwTsw3Rfe57Hbts378xDce+v85to/+v3i/+fV+sde6z871EusR44L47vwTsWGdfI/uOR5dvCI0xXXq/etLzOvtv3nW9braL2aD3XUs/fqV6X2Hf9geud8CcLjvrad/7elu7XyGSkkNBccWQG6kkIkuMMbO6ztcerF7U7apmy9I3CO1YQlbjGor81RTQ1DmczWec7HKUszNjGltyxmEvGE926QRGjTmC3IISxtn0e7MBJYI9bwylx4+B4y/af5kxeFsbadxdTWtDDZ7menyt9QTbGoh4GnEEWpCQDwn7sUUC2MJ+7MEAjkgbToL7/h9g7ShmOIM1GcJBSByEJIUwGdHXLozDScTuBJsLY3cidhfGkULEkYI4Uqz7JlxpiDMVmzO1c+iNw5WGK8W6f8Kdav2kulNIdTnIcNrId9j6+cda9anjnsEEsduEPdkzmNHyLMbXjKRkJyyWwRSJGPbW17Fn63radm8iXL8Fe/M20jw7yAnUkB+uI0c85HTZrolMmhyFtKeOojp1OpsyirFlFuPOKSY9r4SsghJyCspIS808rN5atY/NJqSnpZKelgrxv2tXKaVGPE2werHxnXmcsP63BIyDakcVm7JPZEP+RFLLpjBq7JEUV0xgrMPB2EQHqg4kQmpWnvUttVJDjP2I83AufJLdS1+m+FNfTnQ4cRMOR9izewf1W1fTvmstkfotOFu2keXbSWFoN8XSut9zx9pIpdZeTEtqObXpxyFZpbhyy0kvHE1ucSW5RWPIcacdkHQppZRSQ5kmWL0Yf8blbJxyKmMmH8NEV0qiw1FKjRAzTjyb2o+yaVv8OAzDBMvraWf7xtXUbV2Ff/c63M2byfVupTS0k1JppzS6XtDY2WsrpMldRnXeFKpzq0gbNZaskvHkV0wkI7OADO2ZVUopNcJogtWLguLRFBSPTnQYSqkRpiQ3g5ezz+GchqcJNmzDmTc0/86EQ0F2bl5N3aaPCexahbthHYWeTZREdjNRDBOj69VJHnXu0WzKPxvyJ5BScgT5Y6ZSWDaeMoeDsoS+C6WUUmpwaYKllFIJkHPqjZh/PsP2F/6Hsdf8JaGxmEiEut3bqPlkCZ4dK7DXriW3bSMVoW2MliCjsYqu7LKVsDdtAjvyPkdK8SQKKqdRMnYaBalZeqeOUkopFaUJllJKJcCJRx/FS298lvO3PkXb2svImHzmoOy3taWRneuX0ly9DPasIqNlA2WBLRTS1vksvlpyqUkZy8cFx2ErnkZu1UwqJs6kIi2DikGJUimllBq+tEy7UkolyMrNu8j4+xlkO0JkXP8KrqL4Pfg4EAiybfMaGjYtJbhrJamN6yjybqTM7Olcp82kssNZSXPWBBg1hYyKGZRNOoacguJeWlZKKaUU9FymXRMspZRKoNfeeJ1j37sGh03wnvUbij91ebSUfP94vT62b15Dw7Y1+Havx9GwkYL2DYwJbyVVAoA1vG+nvYy69AkE8o8gtXwGheOOpmTMROsZPkoppZQ6aAOSYInIE0DHV645QJMxZqaIVAJrgfXRZR8aY27oqz1NsJRSyeit9/9D0b+/xlTZQp29kN2FJ0PRFCSzGJsrg1DIT8DnIdTeSLi5BltbDW7vXgoCOyiJ7MEh+x6k2SjZ7HaPpT1nEvaSaeSOPZrS8TNxpaYn8B0qpZRSI8+APGjYGDMnZgf/BzTHLN5kjJl5OO0rpVQyOPOkT1E/4wNefulB8jc9x6Sa18nd/Vy360aM0CDZNDsKqEufSE3OubiKJpE3ejJFY6eRm1lA7iDHr5RSSql94lLkQkQEuAQYnLu0lVJqhMnPTOVzl30d+Doef5AN26sJtNYS9rXhdLlJTcsgNSuX/FHlFDhdWrVPKaWUGqLiVUXwFGCPMWZDzLwqEfkYaAF+Zox5r7sNReR64HqA0aOH5rNglFJqMKW5nUwYPwGYkOhQlFJKKXWQ+kywROQNoLuSUj81xrwQfX0ZMC9mWQ0w2hhTLyLHAM+LyFRjTEvXRowx9wP3g3UP1sG+AaWUUkoppZQaKvpMsIwxn+5tuYg4gC8Ax8Rs4wf80ddLRGQTMBHQChZKKaWUUkqpESse9Xk/DawzxuzomCEihSJij74eizXOZXMc9qWUUkoppZRSQ1Y87sG6lP2HBwKcCvxSRIJABLjBGNPQV0NLliypE5GtcYgpngqAukQHoQaNnu/koec6eei5Ti56vpOHnuvkMhTP95juZg6pBw0PRSKyuLv69mpk0vOdPPRcJw8918lFz3fy0HOdXIbT+Y7HEEGllFJKKaWUUmiCpZRSSimllFJxowlW3+5PdABqUOn5Th56rpOHnuvkouc7eei5Ti7D5nzrPVhKKaWUUkopFSfag6WUUkoppZRScaIJllJKKaWUUkrFiSZYvRCRc0VkvYhsFJEfJToeFT8iUiEib4vIGhFZLSLfjs7PE5HXRWRD9N/cRMeq4kNE7CLysYi8FJ2uEpGPop/vJ0TElegYVXyISI6IPC0i60RkrYicqJ/tkUlEbor+DV8lIvNEJEU/2yOHiDwoIntFZFXMvG4/y2K5K3reV4jI0YmLXB2sHs717dG/4ytE5DkRyYlZ9uPouV4vIuckJOheaILVAxGxA/cC5wFTgMtEZEpio1JxFAK+Z4yZApwAfD16fn8EvGmMmQC8GZ1WI8O3gbUx0/8L3GmMGQ80Av+VkKjUQPgj8Jox5gjgSKzzrp/tEUZEyoBvAbOMMdMAO3Ap+tkeSR4Czu0yr6fP8nnAhOjP9cB9gxSjio+HOPBcvw5MM8bMAD4BfgwQvV67FJga3eZP0ev2IUMTrJ4dB2w0xmw2xgSAx4HZCY5JxYkxpsYYszT6uhXrAqwM6xz/Pbra34HPJyRAFVciUg58DvhrdFqAM4Gno6vouR4hRCQbOBV4AMAYEzDGNKGf7ZHKAaSKiANIA2rQz/aIYYx5F2joMrunz/Js4GFj+RDIEZGSQQlUHbbuzrUx5t/GmFB08kOgPPp6NvC4McZvjNkCbMS6bh8yNMHqWRmwPWZ6R3SeGmFEpBI4CvgIKDLG1EQX7QaKEhWXiqs/ADcDkeh0PtAU84dbP98jRxVQC/wtOiT0ryKSjn62RxxjzE7gDmAbVmLVDCxBP9sjXU+fZb1uG9muBV6Nvh7y51oTLJXURCQDeAb4jjGmJXaZsZ5hoM8xGOZE5HxgrzFmSaJjUYPCARwN3GeMOQpop8twQP1sjwzRe29mYyXVpUA6Bw4xUiOYfpaTg4j8FOvWjscSHUt/aYLVs51ARcx0eXSeGiFExImVXD1mjHk2OntPx5CC6L97ExWfipuTgAtFpBprqO+ZWPfo5ESHFYF+vkeSHcAOY8xH0emnsRIu/WyPPJ8Gthhjao0xQeBZrM+7frZHtp4+y3rdNgKJyNXA+cDlZt/De4f8udYEq2eLgAnRakQurJvpXkxwTCpOovfgPACsNcb8PmbRi8BV0ddXAS8MdmwqvowxPzbGlBtjKrE+x28ZYy4H3ga+GF1Nz/UIYYzZDWwXkUnRWWcBa9DP9ki0DThBRNKif9M7zrV+tke2nj7LLwJXRqsJngA0xwwlVMOQiJyLNbz/QmOMJ2bRi8ClIuIWkSqswiYLExFjT2RfMqi6EpHPYt27YQceNMb8OrERqXgRkZOB94CV7Lsv5ydY92E9CYwGtgKXGGO63mCrhikROR34vjHmfBEZi9WjlQd8DHzFGONPYHgqTkRkJlZBExewGbgG6wtF/WyPMCJyGzAHa/jQx8B1WPdi6Gd7BBCRecDpQAGwB/gF8DzdfJajSfY9WMNEPcA1xpjFCQhbHYIezvWPATdQH13tQ2PMDdH1f4p1X1YI6zaPV7u2mUiaYCmllFJKKaVUnOgQQaWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUGmJEpFJEjIg4Eh2LSg4islpETk90HEopNRJogqWUUmrYE5G5ItIW/QmISDBm+tVExzfUGWOmGmPmx7NNEckTkSdEpF5E6kTkMRHJiuc+lFJqKNIESyml4kx7ngafMeYGY0yGMSYD+A3wRMe0Mea8jvWG07kZTrH24FdALlAFjAOKgFsTGZBSSg0GTbCUUioORKRaRH4oIiuAdhFxiMgJIvIfEWkSkeWxQ7BEZL6I/D8RWSgiLSLygojk9dD2NSKyVkRaRWSziPx3l+WzRWRZtJ1NInJudH62iDwgIjUislNEfiUi9j7exzgReatLr0NOzLIGETk6Ol0qIrUd70tELowONWuKvr/JXY7P90VkhYg0R3s2Ug7+SB+8Hs6NEZHxMes8JCK/ipk+P3pMm6LncEY/93W6iOwQkZ9Ej1+1iFwes/xzIvJx9FxtF5FbY5Z1DA39LxHZBrwVnf+UiOyOHrd3RWRql7j/JCKvRnvr3heRYhH5g4g0isg6ETmqn8fo0/15jwehCnjeGNNijGkGngOm9rGNUkoNe5pgKaVU/FwGfA7Iwfq2/mWsb/HzgO8Dz4hIYcz6VwLXAiVACLirh3b3AucDWcA1wJ0xSc5xwMPAD6L7PRWojm73ULTd8cBRwNnAdX28BwH+H1AKTAYqiPY6GGM2AT8EHhWRNOBvwN+NMfNFZCIwD/gOUAi8AvxTRFwxbV8CnIt14T0DuLrbAEROjiY2Pf2c3Md76E7nuTHGhHo9AFZC8iDw30A+8GfgRRFx93NfxUABUAZcBdwvIpOiy9qxzntONJ4bReTzXbY/DevYnxOdfhWYAIwClgKPdVn/EuBn0X36gQ+i6xUATwO/72fc3RKRH/V2PnrZ9F7gfBHJFZFc4OLoe1FKqRFNEyyllIqfu4wx240xXuArwCvGmFeMMRFjzOvAYuCzMes/YoxZZYxpB34OXNJdD5Mx5mVjzCZjeQf4N3BKdPF/AQ8aY16P7menMWadiBRF9/UdY0y7MWYvcCdwaW9vwBizMdqW3xhTi3VxflrM8r8AG4GPsBLDn0YXzQFejm4bBO4AUoFPdTk+u4wxDcA/gZk9xLDAGJPTy8+C3t5DD2LPTV+uB/5sjPnIGBM2xvwdK3E54SD29/PoMXwHK9G+BMAYM98YszJ6rlZgJaWnddn21ug580a3edAY02qM8WMlu0eKSHbM+s8ZY5YYY3xYvUQ+Y8zDxpgw8ARWcn3IjDG/7e189LLpUsAF1Ed/wsCfDicWpZQaDjTBUkqp+Nke83oM8KUu3/SfjJWUdLf+VsCJ1euwHxE5T0Q+jA7Pa8JKnDrWqwA2dRPLmGh7NTH7/zNWL0iPRKRIRB6PDilsAR7tJqa/ANOAu6MX/WD1eG3tWMEYE4m+v7KY7XbHvPYAGb3FEmfb+16l0xjge13OXQXWe+yPxmjS3GFrx7YicryIvB0dWtkM3MCBx7czVhGxi8hvxRr62cK+3snYbfbEvPZ2Mz2YxznWk8AnQCZW7+smrN8npZQa0TTBUkqp+DExr7dj9VDFftufboz5bcw6FTGvRwNBoC62weiwtGeweoSKoj0Gr2AN5evYz7huYtmO1etSELP/LGNMX/fA/Cb6PqYbY7KweuI69oWIZAB/AB4AbpV9943twkpMOtaT6Pvb2cf+DiAip8i+CoDd/ZzSdysHMF2mPUBazHRxzOvtwK+7nLs0Y8y8fu4rV0TSY6ZHYx0fgH8ALwIVxphsYC4xx7ebWL8MzAY+DWQDldH5XbcZMNH7yXo8H71sOhOrJ7DdGNOG9V4/28v6Sik1ImiCpZRSA+NR4AIROSfaC5ESLYBQHrPOV0RkSvR+pl8CT0eHdcVyAW6gFgiJyHlY91J1eAC4RkTOEhGbiJSJyBHGmBqsoYT/JyJZ0WXjRKTrcLSuMoE2oFlEyrDu7Yr1R2CxMeY6rKFvc6PznwQ+F43DCXwPK8H7T18HqitjzHsxFQC7+3nvYNvsxjLgy9Fzcy77D9P7C3BDtLdJRCRdrOIUmdBZWOKhPtq/TURc0WTwfOCp6PxMoMEY44veP/flPtrJxDqO9VgJ4W8O4j3GhTHmN72dj142XQRcJyKpIpKKNfRyxeBErZRSiaMJllJKDQBjzHasnoefYCVH27GSldi/u49gFaLYDaQA3+qmndbo/CeBRqwL8hdjli8kWvgCaAbeYV9P0pVYCdqa6LZPs/8Qxe7cBhwdbetl4NmOBSIyG6tIxY3RWd8FjhaRy40x67F6u+7G6oW7ALjAGBPoY3+J8m2sGJuAy4HnOxYYYxYDXwXuwTpuG9m/IEcF8H4vbe+ObrcLqyDFDcaYddFlXwN+KSKtwC1Y57U3D2MNMdyJdR4/7OuNDSHXYvW47cCKfyxW0Q+llBrRxJiuoyaUUkoNNBGZDzxqjPlromNR/RetirgcmBEt5tF1+elY57W86zKllFLJYbg/xFAppZQaNNEeucl9rqiUUipp6RBBpZRKMiIyt4eCBXP73loNRyIyupdCFaMTHZ9SSo0kOkRQKaWUUkoppeJEe7CUUkoppZRSKk6G1D1YBQUFprKyMtFhKKWUUkoppVSvlixZUmeMKew6f0glWJWVlSxevDjRYSillFJKKaVUr0Rka3fzdYigUkoppZRSSsWJJlhKKaWUUkopFSeaYCml1EHYWt/Oa6tq0AqsSimllOrOkLoHqzvBYJAdO3bg8/kSHYoaZlJSUigvL8fpdCY6FDWC/OivL3JT+50snX0PxxxzXKLDUUoppdQQM+QTrB07dpCZmUllZSUikuhw1DBhjKG+vp4dO3ZQVVWV6HDUCFHb6ufStoc5zr6edW/9BI55I9EhKaWUUmqIGfJDBH0+H/n5+ZpcqYMiIuTn52vPp4qr6vp2PmVbDcC49o8h4ElwREoppZQaaoZ8ggVocqUOif7eqHjbvreRQmmmOm06TkI0bfgg0SEppZRSaogZFgmWUkoNBS17rMddRKZeRMQI9WveSXBESimllBpqNMHqBxHhe9/7Xuf0HXfcwa233pq4gGJ8+OGHHH/88cycOZPJkyd3xjV//nz+85//HFbb5557Ljk5OZx//vlxiFSp4U+atwNQNP5otptCzN41CY5IKaWUUkONJlj94Ha7efbZZ6mrq4tru8YYIpHIYbVx1VVXcf/997Ns2TJWrVrFJZdcAsQnwfrBD37AI488clhtKDWSuNp3ApBeWMk2x2jSWjYmOCKllFJKDTVDvopgrNv+uZo1u1ri2uaU0ix+ccHUXtdxOBxcf/313Hnnnfz617/eb1ltbS033HAD27ZtA+APf/gDJ510ErfeeisZGRl8//vfB2DatGm89NJLAJxzzjkcf/zxLFmyhFdeeYV77rmHV199FRHhZz/7GXPmzGH+/PnceuutFBQUsGrVKo455hgeffTRA+4r2rt3LyUlJQDY7XamTJlCdXU1c+fOxW638+ijj3L33XdzxBFH9Bjnpk2b2LhxI3V1ddx888189atfBeCss85i/vz5vR6bp556ittuuw273U52djbvvvsuPp+PG2+8kcWLF+NwOPj973/PGWecwUMPPcTzzz9Pe3s7GzZs4Pvf/z6BQIBHHnkEt9vNK6+8Ql5eHn/5y1+4//77CQQCjB8/nkceeYS0tLT99nvCCSfwwAMPMHWqde5OP/107rjjDmbNmtVrvEodDrd3r/Uiq5TmjHEUtiyDcBDs+igApZRSSlm0B6ufvv71r/PYY4/R3Ny83/xvf/vb3HTTTSxatIhnnnmG6667rs+2NmzYwNe+9jVWr17N4sWLWbZsGcuXL+eNN97gBz/4ATU1NQB8/PHH/OEPf2DNmjVs3ryZ999//4C2brrpJiZNmsRFF13En//8Z3w+H5WVldxwww3cdNNNLFu2jFNOOaXXOFesWMFbb73FBx98wC9/+Ut27drV7+Pyy1/+kn/9618sX76cF198EYB7770XEWHlypXMmzePq666qrOa36pVq3j22WdZtGgRP/3pT0lLS+Pjjz/mxBNP5OGHHwbgC1/4AosWLWL58uVMnjyZBx544ID9zpkzhyeffBKAmpoaampqNLlSA84eaMEvbnC4CeVPwkmISN2mRIellFJKqSFkWPVg9dXTNJCysrK48sorueuuu0hNTe2c/8Ybb7Bmzb77MFpaWmhra+u1rTFjxnDCCScAsGDBAi677DLsdjtFRUWcdtppLFq0iKysLI477jjKy8sBmDlzJtXV1Zx88sn7tXXLLbdw+eWX8+9//5t//OMfzJs3r9tep97inD17NqmpqaSmpnLGGWewcOFCPv/5z/fruJx00klcffXVXHLJJXzhC1/ofE/f/OY3ATjiiCMYM2YMn3zyCQBnnHEGmZmZZGZmkp2dzQUXXADA9OnTWbFiBWAlYT/72c9oamqira2Nc84554D9XnLJJZx99tncdtttPPnkk3zxi1/sV7xKHQ57sA2fLQ03kFY2FbZAQ/UKCoqOSHRoSimllBoihlWClWjf+c53OProo7nmmms650UiET788ENSUlL2W9fhcOx3f1Xs85jS09P7tT+329352m63EwqFul1v3Lhx3HjjjXz1q1+lsLCQ+vr6A9bpKU44sJz5wZQ3nzt3Lh999BEvv/wyxxxzDEuWLOl1/dj3ZLPZOqdtNlvn+7v66qt5/vnnOfLII3nooYe6TRjLysrIz89nxYoVPPHEE8ydO7ffMSt1qFyhNgLODAByR08jYoT2HSspOP6SBEemlFJKqaHisIcIikiFiLwtImtEZLWIfDs6P09EXheRDdF/cw8/3MTKy8vjkksu2W/I2tlnn83dd9/dOb1s2TIAKisrWbp0KQBLly5ly5Yt3bZ5yimn8MQTTxAOh6mtreXdd9/luOOO63dML7/8MsYYwBp6aLfbycnJITMzk9bW1j7jBHjhhRfw+XzU19czf/58jj322H7vf9OmTRx//PH88pe/pLCwkO3bt3PKKafw2GOPAfDJJ5+wbds2Jk2a1O82W1tbKSkpIRgMdrbTnTlz5vC73/2O5uZmZsyY0e/2lToUxhjc4XZC0QRrdHGBVUmwdl2CI1NKKaXUUBKPe7BCwPeMMVOAE4Cvi8gU4EfAm8aYCcCb0elh73vf+95+1QTvuusuFi9ezIwZM5gyZUpnT8rFF19MQ0MDU6dO5Z577mHixIndtnfRRRcxY8YMjjzySM4880x+97vfUVxc3O94HnnkESZNmsTMmTO54ooreOyxx7Db7VxwwQU899xzzJw5k/fee6/HOAFmzJjBGWecwQknnMDPf/5zSktLASv5+9KXvsSbb75JeXk5//rXvwBrWGLH/VY/+MEPmD59OtOmTeNTn/oURx55JF/72teIRCJMnz6dOXPm8NBDD+3Xc9WX//mf/+H444/npJNO4ogj9g29evHFF7nllls6p7/4xS/y+OOPd1ZOVGog+YIR0vEQcmYCMCrTTbWUktLc/ZcnSimllEpO0tH7EbcGRV4A7on+nG6MqRGREmC+MabXboxZs2aZxYsX7zdv7dq1TJ48Oa4xqn26VjscafT3R8VLfZuf2t8dQ2rxBMZ87TkAXvjN5ZwdfIvUW3bBQQytVUoppdTwJyJLjDEHVFmLaxVBEakEjgI+AoqMMTXRRbuBonjuSymlBpMnECZTPERcWZ3zfJmjSTUeaI/vM/KUUkopNXzFrciFiGQAzwDfMca0xBZKMMYYEem2q0xErgeuBxg9enS8wlH9dOuttyY6BKWGBV8wTBFe6tyZnfNseWOhHsL1m7FnFCYwuqHFGMPqXS2MK8wg1WVPdDhKKaXUoIpLD5aIOLGSq8eMMc9GZ++JDg0k+u/e7rY1xtxvjJlljJlVWKgXKEqpockbCJKBF9z7erBSiycA0Lzrk0SFNSS9tmo3t9zzIM/f91MIehMdzpBijGHVzmYCoUjfKycZYwy1rf5EhzEk+YJhWnzBRIehlOqneFQRFOABYK0x5vcxi14Eroq+vgp44XD3pZRSieLztGITg6TsS7DyyycQMUJbzYYERjb0vLxiFw+47uCyxvto/eBviQ5nSHli0XauufslFt53PbR1+71j0vrta+s49dcv8fG/HoaW/j/wfqQzxvCluR9w0m/fpOGjeVCvDzdXaqiLRw/WScAVwJkisiz681ngt8BnRGQD8OnotFJKDUtBTwsAtpR9QwRHF+VRQx7hus2JCmtIatm1jlyxHmQe/PjxBEcztLy8soYfOh/n5PqnCL/47USHM2QYY3h84XZudLzIUR98E174eqJDGjLW1LSwcmczs4OvkffqDfD45RDnAmVKqfg67HuwjDELgJ7KZ511uO0rpdRQEPJaCYMjJaNzXklWCgtNEeUt1QmKaujxBcOUNn0MTng58inOa/wQ/G3gzuh74xEuEjEs297IXPtCAGTj6xBoB1f/Hj4/ku1o9NLsDXKqezUAZtPbSMsuyCpNcGSJt3qn9eXO2c7l1ozatbB7JZTo8x+VGqriWkVwJHv++ecREdat6/mhotXV1UybNi1u+1y/fj2nn346M2fOZPLkyVx//fWA9ZDgV1555bDavvbaaxk1alRc41VqJAv52wFwuvddDNtsQoO7lCzv9kSFNeTUNPuolN2EbU5W5J2DjQjULEt0WEPC7hYfGb69pOPjX5FjsUWCsPU/iQ5rSFi1s5k0fMyQzbwePhrBwJb3Eh3WkLCxtg2XQzjaUc1/IlOtmfp7o9SQpglWP82bN4+TTz6ZefPmdbs8FAod9j7C4fB+09/61re46aabWLZsGWvXruWb3/wmEJ8E6+qrr+a11147rDaUSiZBn5VguVL3723wpo8mK9wE/tYERDX07G3xUSL1BNKKcYw5DoDI9sV9bJUcapp9jLftBODdjM8SxgbbPkxwVEPDtgYPY2QPNsK8ED6JgD0NdixKdFhDwoY9rRyX7ycj1MC/wrMIZJTDNk2wlBrK4lamfVC8+iOrWzyeiqfDeb3fHtbW1saCBQt4++23ueCCC7jtttsAmD9/Pj//+c/Jzc1l3bp1/Pvf/yYUCnH55ZezdOlSpk6dysMPP0xaWhpvvvkm3//+9wmFQhx77LHcd999uN1uKisrmTNnDq+//jo333wzl156aed+a2pqKC8v75yePn06gUCAW265Ba/Xy4IFC/jxj3/M+eefzze/+U1WrVpFMBjk1ltvZfbs2Tz00EM899xzNDc3s3PnTr7yla/wi1/8AoBTTz2V6urqXt/3O++8w7e/bd0jICK8++67ZGRkcPPNN/Pqq68iIvzsZz9jzpw5zJ8/n1/84hfk5OSwcuVKLrnkEqZPn84f//hHvF4vzz//POPGjeOf//wnv/rVrwgEAuTn5/PYY49RVLT/I9IuvfRSrrjiCj73uc8BVjJ4/vnn88UvfrF/51SpARAJRHuwUvcf6hbJGwtNYBq2IDpkh72tfkqkHpNZRkVZOTXL8sjauRIdBAc1zV4miJVgRUpmsn1zCZW1PY+KSCY1zT7GuRoBaE0tZ6v7CCbs1MQcrGNzRlojNMNmU8LurGmM3vVxosNSSvVCe7D64YUXXuDcc89l4sSJ5Ofns2TJks5lS5cu5Y9//COffGKVaV6/fj1f+9rXWLt2LVlZWfzpT3/C5/Nx9dVX88QTT7By5UpCoRD33XdfZxv5+fksXbp0v+QK4KabbuLMM8/kvPPO484776SpqQmXy8Uvf/lL5syZw7Jly5gzZw6//vWvOfPMM1m4cCFvv/02P/jBD2hvty4GFy5cyDPPPMOKFSt46qmnWLy4///DuuOOO7j33ntZtmwZ7733HqmpqTz77LMsW7aM5cuX88Ybb/CDH/yAmhrredLLly9n7ty5rF27lkceeYRPPvmEhQsXct1113H33XcDcPLJJ/Phhx/y8ccfc+mll/K73/3ugP3OmTOHJ598EoBAIMCbb77ZmWwplSgRvwcAV5cEK2XUeABatJIgYCVYpVKPPbeC8aMy2BgpJbx3faLDGhJqmqzePeNIpbysglWhcsJ7Vic6rCFhd7OPSanNAGQUVbIqMhr2roOIlrNv9gYpszcB0GDLZzMV0LTNun9PKTUkDa8erD56mgbKvHnzOntyLr30UubNm8cxxxwDwHHHHUdVVVXnuhUVFZx00kkAfOUrX+Guu+7iM5/5DFVVVUycOBGAq666invvvZfvfOc7gJVQdOeaa67hnHPO4bXXXuOFF17gz3/+M8uXLz9gvX//+9+8+OKL3HHHHQD4fD62bdsGwGc+8xny8/MB+MIXvsCCBQuYNWtWv973SSedxHe/+10uv/xyvvCFL1BeXs6CBQu47LLLsNvtFBUVcdppp7Fo0SKysrI49thjKSkpAWDcuHGcffbZgNXz9vbbbwOwY8cO5syZQ01NDYFAYL9j1+G8887j29/+Nn6/n9dee41TTz2V1NTUfsWs1EDp7MFy798Xk11mfa5bdn1C9tGDHtaQU9vSThGNOPKsBOs5U8bxze9ZVc+kp3pIyWFXs5cZ9nZIy+OIkiyWRyr4XONCLXQB1LT4ON/ZCEE3paXlLN4+iovsXmjeBrmViQ4voRo9AYrF6t3LKKxgub+V0wFq10OZ/tFRaijSHqw+NDQ08NZbb3HddddRWVnJ7bffzpNPPomJlkhNT9//f4rS5QKi63R3urYRq7S0lGuvvZYXXngBh8PBqlWrDljHGMMzzzzDsmXLWLZsGdu2bWPy5MmHHE+HH/3oR/z1r3/F6/Vy0kkn9VrgA8Dtdne+ttlsndM2m63zHrVvfvObfOMb32DlypX8+c9/xufzHdBOSkoKp59+Ov/617944oknekxAlRpMJhB9YK4rbb/55cVFNJgMgnv12TQAnsZanBJGMkvISXOx2zUaV9ijzzXC6qUpcniQ1DwmFmWy3pRbxRxqtYdvT7OPMqmH7DImleSwLmR9WZfsx8YXDOMLRigw9eBIpby4hAXN1pemyX5slBrKNMHqw9NPP80VV1zB1q1bqa6uZvv27VRVVfHee91XN9q2bRsffPABAP/4xz84+eSTmTRpEtXV1WzcuBGARx55hNNOO63Pfb/22msEg9aT23fv3k19fT1lZWVkZmbS2rrvhvpzzjmHu+++uzPp+/jjfWOzX3/9dRoaGjrvg+roXeuPTZs2MX36dH74wx9y7LHHsm7dOk455RSeeOIJwuEwtbW1vPvuuxx33HH9brO5uZmysjIA/v73v/e43pw5c/jb3/7Ge++9x7nnntvv9pUaKBK0hgji7JJg5aax1RRjb64e/KCGIF9rnfUiLQ+AQI41hJI6vRhsaA+QZ2uHtFxKc1LZIqOtBXvXJjawIaDREyDPNEBGMWML09lorP9PJHsS0eSxrgFywg2QVcK4ogyWtuVhbE6rXLtSakjSBKsP8+bN46KLLtpv3sUXX9xjNcFJkyZx7733MnnyZBobG7nxxhtJSUnhb3/7G1/60peYPn06NpuNG264oc99//vf/2batGkceeSRnHPOOdx+++0UFxdzxhlnsGbNGmbOnMkTTzzBz3/+c4LBIDNmzGDq1Kn8/Oc/72zjuOOO4+KLL2bGjBlcfPHFncMDL7vsMk488UTWr19PeXk5DzzwAABz585l7ty5APzhD39g2rRpzJgxA6fTyXnnncdFF13EjBkzOPLIIznzzDP53e9+R3Fxcb+P56233sqXvvQljjnmGAoKCjrnL168mOuuu65z+uyzz+add97h05/+NC6Xq9/tKzVgOhOs/Yeruhw2ap2lZHi0VDtAxGMNZSIlBwBHkdWbTu0niQloCGn2BsmmFVLzsNsE8qoIiAv2rkl0aAnlC4bxhyJkRFohLY+q/HSaycDjyk/6xLzREwAgM1gLmSVU5qcTxo4/e2zSJ59KDWXD6x6sBOi4dyjWt771rc7Xp59+eufrysrKHofRnXXWWfv1LHXorZLf73//e37/+98fMD8vL49Fi/YvX/vnP/+52zbKy8t5/vnnD5jfU4IYm/h1FKbo6vbbb+f222/fb97pp5++37GYP39+t8tmz57N7NmzD2hz1qxZ/PWvf+2cdjqdNDQ0dLt/pRJBQl4iCDZHygHL2tMqyGldAKEAOJL7CwHxW4UKSM0BYFRxOU1r0kndvRZ3z5slhWZvkMxIS2fv3pjCLLa2lzMhySsJNnutXprUUAuk5pCT5iQrxcFu12jGJnli3pFgpQabIX0KlfnWLQUN6eMorU3uxFypoUx7sJRSqh/sYR9+cXdbqCGUU4mdiFXZK8k5OxOsXACqCjPYaMoI7NbhTM0eP2lhqwcLoKognfWhYkz9xgRHllgdw+DcoRZIzUNEqCpIZ7Mps3qwosPfk1Fz9Ni4gs2QmktlgTVEebu9Ahq3QsCTyPCUUj3QBGsEu/rqq7nnnnsSHYZSI4I95CEg3ffBOAvGAdC+O7lLtUciBlewxZqIDhGsLEin2hTjaNqSuMCGAF8wjCPYio1IZw9WVUE6myLFVmIe8ic4wsRp9gZxE8Ae9nUm5pUF6awMFIOvGdr2JDjCxGn0BAGD3d8EqbmkuRyMynTzSbgYMNCY3J8rpYaqYZFgmST+9kodOv29UfFkD/sI2g4cHgiQVXYEAE07k3uoV1sgRDZt1kRKNgCj89KoNsWk+vYm9XN7WrxBciV6bGJ6sDZHihETgcbqxAWXYE2eANlEfzc6Eqz8dJa1R6vl1Sdvhc4mb4BU/Eg4sF/yucITvYc5yXs/lRqqBjzBEpFzRWS9iGwUkR8d7PYpKSnU19frxbI6KMYY6uvrSUnp/oJYqYPl7CXBKiktp9Wk4t+T3Bc7zZ4g2dJOwJEBdusWX5fDRlt6tFpew+YERpdYTd4guR3JZ0wP1hYTLUdel7y9n03eIDmdyWdHEpHGpo5j05DECZYnSJEzOgywY9htfjofNluvNcFSamga0CIXImIH7gU+A+wAFonIi8aYft+ZWV5ezo4dO6itrR2oMNUIlZKSQnl5eaLDUCOE0/gI2bp/4PWYgnQ2myIyk3wYXIsvSLa0EXZl7zc/kjcOarB6IoqnJya4BGvyBMmR6OM1oj1YozLd7HZG/0Yl8YVyS2zyGdODtcsUELE5sSVxD1Zje4Bytx9C7Dfs9ol2G5GCoqQ+NkoNZQNdRfA4YKMxZjOAiDwOzAb6nWA5nU6qqqoGKDyllOofZ8RHuJsKggBpLgc19lKK2rYOclRDi1WGvJ1w9EKwQ0rRBKgBU7+J/j/qfGRp7qYHS0TIzy+kuTmX7CROsJo8Qev5YLCvl6YgnQg2WlLKyUnmY+MNUur2WQlWZ/JpFbrwZlaRrgmWUkPSQA8RLANiHw6zIzqvk4hcLyKLRWSx9lIppYYqt/ETtnffgwXQklZBbqAGwqFBjGpoafGGyJb2zvuvOpQXFbLH5ODbk7wlt5s8gZh7sHI751cVpLGVkqS+z6jZG6TYtf8wuJw0F9mpTmocZck9tNQToNjltSZi7sECqHNXJHXPp1JDWcKLXBhj7jfGzDLGzCosLEx0OEopdYBwxJBifEQcPSdYwewqHIShOXlLtbd4g+TQji3aQ9OhKlpJMFibvBeDzV5riKARW+dQL4Ax+emsCxYldan2Jm+QIuf+SQRYicTmSJGVYEUiCYousRo9QUY59k8+x0R7sHZICXjqwNuUoOiUUj0Z6ARrJ1ARM10enaeUUsOGNxgmlQDG2XOC5YiWag/sTd4LZeserHYc6bn7za8qSGdLpBhnEt+j1uQJkidtVnJl2/e/3qp8q1S7tO+1SpInoSZPgAK7B2xOcKV3zq/KT2O1rxBCPmhJzkuHJk+QfPv+CVaay0FRlpv1oSJrfhIXAVFqqBroBGsRMEFEqkTEBVwKvDjA+1RKqbjyBEKkiB/jTOtxnYzSiQA07lw/WGENOc2eANm04UzfvwerNDuV7VJCaqAefC0Jii6xmrwBCu3tSJfevcqCdLaYYmsiSYcJtnijSURq7n4P8q4sSOdjT7RUexImEcYYa2ipzQN2N8R8wVOZn86yzlLtyXdslBrqBjTBMsaEgG8A/wLWAk8aY1YP5D6VUirefIEIafiRXhKs4tIxtBs3vt3Je5+Rx9OGW0JI2v49WDab4M2stCaS8EIZrJ6IAnt7ZwXBDpX5aWzuKEeepMMEO8u0p+7/e1OZb/V8AkmZRLQHwoQihmxaD0g+qwrSWdiYBWJL2t8bpYayAb8HyxjzijFmojFmnDHm1wO9P6WUijdPIEgqAcTVc4I1Jj+draYYaUjeYXChtnrrRZcqggAmb6z1IgkvlCFaRVDaOisIdijMdFPnLCVC8l4oN3uDZJtuEqyCdPaQS9iekpS/N43tAQAyIt0fm90eQyRLC10oNRQlvMiFUkoNdV6vB5sYbDH3h3SVk+Zkh62E1CQu1R7xNFkvulwMAqQXW0Mow3XJd6EMHUlE6wE9WCJCaX4OdY6ipLxQjkQMzd4gGab1gN+bqvx0DDaaUiqSsuezyRMEID3cAqk5+y2rzLf+FrVnViZl8qnUUKcJllJK9SHotcpr290992CJCM0pFeT6dyVvqXZfk/Vvl4tBgNFF+ewyeXiTdAhlkydIRqT1gB4siBYBMSVJmWC1+kIYA6nhlgMSrOw0Jzlp0VLtSZhENHmtHqyU0IHHprLA+ltU66qwjo0xgx6fUqpnmmAppVQf/F7rIaiOXhIsgED2GByEoGXHYIQ15EhHgtXNEMGqwnSqI8WE65IviQDwetpxG1+3vXtj8tNYGxiFScIL5Wav1UuTEjwwiQCrp2ZTuAgatyTdFxeN0R4sZ7D5gGMzJs/qwdpGMQRaoW3voMenlOqZJlhKKdWHoM9KsOwpGb2uZysYD0AoSYfBOQLRMuPdXCh3PAvL3VI9uEENAZGIwe5vtCa66cGqLIiWag+0QdueQY4usZq8AZyEcIY9kNb9780qXwFEQkn3jLkmj9WD5fA3HfCZSnXZKclOYX1QS7UrNRRpgqWUUn0I+awhgs6Unu/BAsgsnQRA0/a1Ax7TUOTqTLByDliWn+5il72UlGATeBoGNa5Ea/WFyMH6Hep6DxbEDBEEqNswiJElXrM3GHNsuu/B+rg9Wqq9fvMgRpZ4TZ4gLoJI0NPtZ6oyP52lHWXsk3B4qVJDmSZYSinVh1C0B8vVR4JVVl6Jx7hpq0mui2QAXzBMumkjgh3cWQcsFxH8WZXWRENyXShbFQRbrYluerDG5KfFlCNPrgvlRk+QbOklwSpIozpJy9g3egKUuP3WRA/HZkljOthdSXdslBrqNMFSSqk+RAJWguVOy+x1vXFFmVSb4qS82GnyWD0RQWfmfs/riSXRIZTJVrCgyRvotQerMMNNs2sUQUm+C+VmT6DPHqw6sgg50pNuGFyzJ0hFis+a6OnYeMKEcyqT7jOl1FCnCZZSSvUh4rcSLGcfRS6yUpzssJeT0ZpcPTRgJRHZ0k7Ind3jOpklE4gYIVSbXD18zR0P0oVue7BEhDEFmexOwmp5TZ4gOWJ9vnpKIkBoTKlIumPT6AlQ6vZaE932YFk96m3plUl3bJQa6jTBUkqpvgSsi2NbSu89WAAtGWPJC9ZA0DvQUQ0pTZ4g2bQTcef0uM7oUbnsNAV4kqxUe7M3SG4vPVhgJRKbI8nX+9nkDVLk8FgT3SQR2WlOctOc7LKXJd2xafQEKXZFe7C6q8wZTbD2usqtYbeR8CBGp5TqjSZYSinVl2iC1d29RV2F88Zjw2CSrFhBU8e9NN3cjN/BKuZQbJUjTyJWL00bxpEKzpRu16ksSGN1YBQmycqRN3mCFLl67qUBq6dmY7gImrdDKDCI0SVWszdIoaPnYzM6Lw0R2EoxhP3QnJyPh1BqKNIESyml+mDvTLD67sFKKZkMQMv21QMZ0pDT7A2QTTv29O57aMC6UK42xaS0VCfV856sHqzuHzLcoaMHSyIhaNo6iNElVpMnwCiHF6T74igAVfnRUu0mAo3VgxtgAjV6AuTbeh4+meK0U5KVwrqAlmpXaqg5rARLRG4XkXUiskJEnhORnJhlPxaRjSKyXkTOOexIlVIqQWzBNoI4wOHuc92CymmEjdCyI7kSrI57aZzp3fdCgHWPWq2rHHe4DTz1gxhdYrV4g+TZ2pHeEqyCdDZHkq9aXpM3SIE92vPZQ3GUyoJ0Pm4vsCaS5NhEIobm6O8NYusx+awsSGdxW0epdk2wlBoqDrcH63VgmjFmBvAJ8GMAEZkCXApMBc4F/iQi9sPcl1JKJYQt0IZPUnu8AIw1tiSP7WYU4T3rByGyoaPZ4yWbdhyZhb2uF+go1Z5EF4NNno4kovcerC0m+Uq1N3kC5EsrpBX0uM64wox9xyZJemmavEGMgWzarPuvbN1fro0tTGdJgxPjykiq3xulhrrDSrCMMf82xnQMFv8QKI++ng08bozxG2O2ABuB4w5nX0oplSjOUDs+W+/PwOpQnJVCtZSR2pwcF4Idgm0N2MQgvVwoA9gLO0q1J8/FoPUcrLZehwgWZLgIuXPx2DOT7tjkmBZIy+9xnQlFGTSTQcCZnTTHpr7Nev5Vlmnt8d40gPGFGbT6woRyqpLm2Cg1HMTzHqxrgVejr8uA7THLdkTnHUBErheRxSKyuLa2No7hKKVUfLjCbQQc/UuwRISGtCpyfduSqqpXpLXOetFLEgGQXTKegLHj37NuEKIaGho8AXJM7z1YIsL4okx22MqT5kLZGEOTJ0hmpBnSe06wKvPTsduEOnfylGqva7OKeWSEGiG9517h8aOs+0KbU0cnzbFRajjoM8ESkTdEZFU3P7Nj1vkpEAIeO9gAjDH3G2NmGWNmFRb2PrREKaUSwRX2ELT3/gysWP6ccbgIJtUN+Xij91T10hMBMGZUDltMCf6dyXOPWkOrhwzTe5ELgAmjMvgkVJQ0F8qt/hChiCE91NTrEEGXw8aY/DSqpQzqkqPEf3271YOVEmiE9F6GT46yvvjZZS+ziqMkUZVFpYayPhMsY8ynjTHTuvl5AUBErgbOBy43prMs1E6gIqaZ8ug8pZQadlKNh7Azo9/rO4usSoLemrUDFdKQY/M2WC/6SLDGFqazwZRjr0+ee9RCbfXYiED6qF7XmzAqk7WBUdCyEwLtgxRd4tS3BRAipASb+/y9mTAqgxWBEmjbA+0jv0BKXauVYDl99b32YBVnpZDhdrAhXJR0VRaVGsoOt4rgucDNwIXGGE/MoheBS0XELSJVwARg4eHsSymlEsEfCpNmvIRd/U+wckZPBaBp68qBCmvIsfuiCVYv37aD9eyeT0w56Z4dSZFE+ENh3P5oQpDR+yiN8UUxxRySoBerttVPDm0IkT5/byaMyuSjtmg58tqR/8VFfXsAh0QQb+8JlogwrjCd5Z7o8UuSIiBKDXWHew/WPUAm8LqILBORuQDGmNXAk8Aa4DXg68aY5LkZQSk1YrT5QmSIF1x9P2S4Q1VFGTUmD/+u5BgGF4kYnB0JVi/3GYH17J661LHWRO3Ivw+roT1AoTRbExlFva47YVQGW0zylGqvbfWTJ63WRB/FUSYUZbA2HK2jtXfkJ1h1bQEq0/wIptcEC2DcqAw+bMqxJpLg90ap4eBwqwiON8ZUGGNmRn9uiFn2a2PMOGPMJGPMq721o5RSQ1WrL0QWHkjp+yHDHSrz09lgKkhpGPkJBFhFHPJoJmBPB2dKn+sH8ydZL/aO/ONT1xqggGiC1ccQwdLsVPY6S62JpOjB8sUkn30kEYUZ7CaPoCMjKRKs+jY/49K81kQfvXvjCjP4pNVJJDVPEyylhoh4VhFUSqkRp729jVQJIH30zMSy24Ta9PEUeLdAODiA0Q0Ne1v8jJJGAqm9JxAd0ovH48eJSYIL5bo2PwX9TCJsNqF8VAF19sKkKOZQ2+anxNZkTWSW9rruuMIMRITa1LFJ0fNZ3x5gtDs6hLaPHqzxo6zhy97MyqRIzJUaDjTBUkqpXnib9gJgy+j9W+SuAvmTcRDC1G0YiLCGlL2tPoqkiUhGcb/WryzMZlOklEDNmgGOLPFqowmWsbvB3fcw0/GjMlkfqYA9I394aW2rn7HuFmsis/ffnVSXnYrcNDbbRsPeNdBZU2tkqmvzM9oRTcyzek8+OxKsWlfylLFXaqjTBEsppXrhabYSrNTsg3uMRErZDABati6Ld0hDzt4WP0U0Ys8u6df6R5Rk8Ykpw+wd+QlWXZufImnEZBSBSJ/rTyjKYHmwHFO3fsSX3K5t9TPa2QzOdHD3PQR3wqgMVvhLwNtoVRMcwerbApTaovc1Zvb+uRqdl4bTLmyVUmjdBf62QYhQKdUbTbCUUqoX/hbrAehpOf0b/taheNx0gsZOc/WyAYhqaNnb4mWUNOLOK+/X+pOLs/gkUk6KpwZ8LQMcXWLtafYx2taALaei75WBI4ozWRsZjURCUDeyS9l3DhHMKulX8nlESSb/aY1+Dkfw8NIWX5A2f4hiqYfUXHD1/gw+p93GmPx01vqjXwI1bB6EKJVSvdEESymlehFsrQMgPffgEqwjygrYaEqTYqhXa1MdbgnhyO59KFOH7DRnTCXBkZ1EbG/0Um6vh+z+JZ9TSrJYY8ZYE7tXDWBkiVfT5KOQxj57aDpMKclOikqCOxqs4hYFkXrIKuvXNuMLM1jcFr1PVEu1K5VwmmAppVQvTPShps4+ChR0lZvuYpujkszmkV+sINS43XrRzwtlAIqsZ4WxZ2Q/K2xXQysFkbp+J1iFmW7a0kYTFBfsGbkJlicQor49QEF4T/+Tz9Is6snG58qFvSP3i4vtjdZjRTMDe/u8/6rD+FEZfNiUbU1oJUGlEk4TLKWU6o234/lOuQe9aXPWRHJDe617RkYwe/NW60VuZb+3KSifQLNJJ7xr+cAENQQYY/A31WAn0u8kQkSYWJpLtW30iE6wdjZ6cRMgw78Xcqv6tc2YvDTSXHZ2uceN6N69HY1WD1ZK+85+92CNG5VOW8RNML1YC10oNQRogqWUUr1weOtplQywOw5+46JpAAR3jdyLQWMMztZt1sRBJFhHlGazJjKGwPZlAxLXUNDoCZIf3G1NZPfvHiywhgkuD5ZjRvDw0h1NXsql1nqQbj9/b2w2YXJJFisjlVYlwRFaBGRHo4dSlxebrxHyx/Vrm/GFVpGQlrQx2oOl1BCgCZZSSvUi3b+HFufB3X/VIbtyJgANm5fGMaKhpckTpDhUg8+RBak5/d5uSkkmq0wlrvq1EA4NXIAJtL3Bw1hbjTWRP77f200uyWJ1uAJpr4XWkVktr7qunQqxKnSS178eLLCSzwVtZRAOjNjnYW1v8DIrM9rrnde/BGvcqHQAahxl2oOl1BCgCZZSSvUgEjHkhGrxpvbv+U5dVVaOp9Zk4dv+cZwjGzqq69sZLXvxZ44+qO0q89P5RKqwR/wj9qG61fXtjJUaInY35PT/+EwpzWJtR6GLETpMcFNtG5NcVoXOg+n5nFKaxeJA9FjuXhH/wIaAbQ3tTE+z7v3sbw9WmstBWU4qG8PF1rBmT8MARqiU6osmWEop1YP69gDF1BPO7N+N5l2NHZXBWlNFSt3IvEgGK4kYb9uJFEw4qO0cdhveAmsI5Ui9UF6/u5UJtl2QNxZs9n5vN7YgnU22Smti98gsArJpbzvHpOyG1DxI738BmSklWVSbIkKONKgZeffv+YJhNtW2M821F8QGOWP6ve3YwnRWeKPHMgkecK7UUKYJllJK9WB3fSMF0oItu383mnfltNvYnT6RfM9mCPnjHN3QsGX7LsqknvSKGQe9bd7oyfiME7NrWfwDGwLW7W5lsqMGW+HEg9rOYbdRXFRCrb1oRCYRxhg27G1lkmyzqkn24xlYHSYVZ2Kz2dmdOmFEHpsNe9oIRwxjI1ugYCI4U/q97fhRGbzbHE2wRnCVRaWGg7glWCLyPRExIlIQnRYRuUtENorIChE5Ol77UkqpwdC426qOl1pwcMPfYgUKp+MgjNmzJl5hDSntO6zeJ3vxtIPedkpZPmvNGPwjtNDFjl01lEZqoPjgk8/JJZksD1dhdo284aV7W/3Ut/koDWyBUVMOatsUp51xhemsY6zVuxcJD1CUibF6VzMA+W3roXj6QW07flQGGwO5RFyZSfH8PaWGsrgkWCJSAZwNbIuZfR4wIfpzPXBfPPallFKDxbPbujcoq/TgeiBipY+xvltq2rw4LjENJcYYUuqiiWPHc60OwrSybFZHxmCvXQXGxDm6xGryBMhvixZhKJ150NtPLc1mSbASadwy4sr8r9zRzFipwRn2QsnBJ59TSrL4wFsGQc+IK+iwelcL5W4vjtadnVVI+2tcYQYgtGZP0gRLqQSLVw/WncDNQOz/IWcDDxvLh0COiBzEUyiVUiqxQnusC+TM8oP7lj3WmPFTaTFptG4ZeQnWjkYvk4JraHeP6vcDUWNNLMpkPVU4g63QWB3/ABNoUXUjMyV68V9y1EFvP708m5UmWl1vhA2FW1jdwPH26D1CFccf9PZTSrN4vz36XLERdmxW72rmgtzod9UVxx3UtuNHZQCwyz3WSrBG2JcWSg0nh51gichsYKcxputfuTJge8z0jui8rttfLyKLRWRxbW3t4YajlFJx42rcRItkIekFh9zG5JJsVptKnHtHXqGLhVsaONq2gXDZcQd1H00Hl8NGW370W/oRdqH8n011fMq+hkjhEZCef9DbTynJYg1jrYkRNkzwP5vq+ExmtfXw7oMoX99hSkk2G00pEZsLapbFPb5E8QRCrNzZzGmpG8HugtKDu7MiP91FTpqTdWY0+FugeXvfGymlBkS/EiwReUNEVnXzMxv4CXDLoQZgjLnfGDPLGDOrsLD/lYSUUmogGWPI91bTmFZ5WO2kuuzsSplAfvsnI+55TxvXLqNc6siYeOoht5FRMZ0QNkzNyKokuGjjbo61r8dWdWjHJsVpp6iohD2OkhGVYDV5Aqze1cyx4Y+h6tRDSsynlWURwkFd+vgRVYFy4ZYGgmHDNN9SKD/2oApcAIgIk4oy+cgTHSykwwSVSph+JVjGmE8bY6Z1/QE2A1XAchGpBsqBpSJSDOwEYh9dXx6dp5RSQ96uxnYmsQVv/qEPD+zgK5iGywSgfuSUTo5EDLbNbwJgm3j2IbczuWIUGyJl+LaNnIcx723xkV/7ESnGD+POOuR2ZpRlszxUOaKqLC7YWMdktpIRqIUJh/Z7k5PmYnReGutlrNXzOUKGwr21bi+VzgYyGtfCxHMOqY3JJVm8WR/tMR2hz1BTajg4rCGCxpiVxphRxphKY0wl1jDAo40xu4EXgSuj1QRPAJqNMTWHH7JSSg28T1YvJkN8pFUd/D0iXaWMtob6tIyg+7CWbmvk1NB/aMkYC3lVh9zOtLIsVkWqsO1eNmIulF9cvovzbB8RcWbA2NMPuZ3p5dFCF01bR8yDY59ZsoNLUhdhxA4TDi2JAJhRns0HnnLwNY+I+/fCEcNrq3bz9aJo0ZhJnz2kdo4ozqQ24CKYNUZ7sJRKoIF8DtYrWD1cG4G/AF8bwH0ppVRcNX/yHwBKp5x02G2Vj5+B17hoHkGVBN/8cDHH29bhPnrOYbUzqTiTVTIOd6ARmrb1vcEw8NrHG7nQ+RG2KRcc9DCvWDPKs1lhRs59WLubfbz/SQ1fcLyPjDsDMg79toAZ5dm80x4dJLNr+Pd+vruhlr2tPs4Jvmnde3WQD+7uMKk4E4CGjAmaYCmVQHFNsKI9WXXR18YY83VjzDhjzHRjzMi5slBKjXjZuz+gyZaHY9Shl2jvMKU8l7VmNLYRcr9IsydI6doHCWPHfcxXDqstt8NOU260VPcIuFBeVN3AEXteIc144ZirD6utScWZrJeOSoLLDju2RHtm6Q4+Jx+QFdgLx11/WG3NKM9hvakgbHPBzuH/e/Pggi2cnb6RrOb1cPSVh9zOxKJMRKDaUQX1GyHojWOUSqn+GsgeLKWUGpZ2N7YzI/AxuwtPPKSb8LvKTHGyzTWevNb1EInEIcLEevKdj/kib9I68SLILj/s9tLLjySAAzMCLpTvf2sNX3O+RKRs1iGVII/ldtgpKy5ht6N02PdgtftD/O29TXw37RXr4cKHeP9Vh2ll2YTFwZ70I2DnkjhFmRj/2VjHextquS3zBUgrgCMvPeS20t0OxuSlsTxQBiYCteviGKlSqr80wVJKqS6Wvf8K+dJKzpHnx63N9vxppEbaoak6bm0mQm2rn5QP7yRVAuR85ua4tDl5dAFrIqPxbxveAx3e/aSWyZv+Rim12M76eVyS8+nl2XwcqsQM8wRr7jub+Iz/X1SEtsIp3zvsY5PhdjCuMIPVMt4qdDFMK3QaY/jff63nsoxllDQthTN+As7Uw2rziOIs3mspsiZ0mKBSCaEJllJKdWFb/Qxe3BTPmh23Nl3l1sNm26uH97ftf3/qaS7nVZqnXQWFk+LS5vSybFZExuHYvXzY9vA1eQLc9/SrfN35IuHJsw+ruEWsGWXZLA1WIs07oL0uLm0OttW7mnnunUXc4n7cKs0+7eK4tDujLJt32ysg6Bm2PTWPfriVbdu38XPHw1bP3tFXHXabk4oz+U9jJsaZpgmWUgmiCZZSSsVYu7WGEz3z2V78GXClx63dkgkzCRo7jZuGby/N0++t4IvVt9HuHkX2+b+KW7tHFGeyinE4Qu3DspR9JGL46eMf8D/+32JLycR+3v/Gre3p5dms7Cx0sSxu7Q6WxvYANz36IXNdfyDFbuD8P8SlZw+sQhfveUZbE8NwmODy7U38v5dX8fecB0gNNsJFc8HuOOx2J5dkEjY2vDkTYffKOESqlDpYmmAppVSMja/dS6Z4KTkrvoVPp1SM4hNTjqlZHtd2B8uCNVupeP16ymwNpF7+MKRkxa3tFKed5txp1sQwuw/LGMNvXvyYL2/5MWOlBuclf4Oskri1P7Eok09sw7OSoCcQ4qt/+w8/aLudaWYD8oX7IX9c3NqfXp5DtSkm6MwadgnWhj2tXPfQR/zO/SAzfIuQ8/4XSo6MS9tHFFufzd0p46werBHy+AOlhhNNsJRSKmpnXQPH73qETelHkTnh8Muzx8pLd7HZOZ6c5rXD7oLn3RWbSH3iS8yyrSd44T04xpwQ933kjJ5KOymYYXSh7A+F+Z+n3uesJV/nU/Y1yEX3wdjT4roPp91GRUkxOx0VsHP49H42tge4+v53+MbeW/iMbRGc9zuYfEFc9zG1NAu7zcaOtMnDqgLlyh3NXHX/u/wqchfnh9+E034Es66NW/uj89JIddpZz2jwNkDr7ri1rZTqH02wlFIqavFTtzNKmsg692cD0n5bzhQyw03QOjyeuR6JGB59+U1GPT2bGbIJ74V/Ie3oQ69w1pujxhSwMlI1bApd7Gry8r17n+Qrq/6LYx0b4Av3I4dR/a03M8qyWRgch9mxaFgk56t2NnPj3U9xW+1NnGZbARfeA8f/d9z3k+K0M7Eok+VmHOxZAwFP3PcRT8YYnl26g6//+SXui/wP55gFcNYv4PQfxXU/NpswsTiTRZ5Sa4beh6XUoNMESymlgLXr13HW7gfZlH0ChdM/PSD7sJfNBMC7beh/217f6uOB+/6X2Qsvp8LRTHjO42Qc/cUB29/RY3JZHhmLs3YVhAIDtp94eGf9Hh7940+4o+GblKUGcFzzEjLjkgHb3/TybBaGxiGeemjYPGD7OVyhcIQ/vb2Bx+/7H/7q+z4T3E3Il5+Eo68YsH0eWZ7NW60VYMIwhJ8zt7fFx1cfXsLrT9/Py44fMsO+Fb74IJzy3bjdkxZrcnEmbzQUWBN7VsW9faVU7zTBUkolvUAoQt3TN+GQCIWX3jNg+ymccAwRIzRsXDRg+zhckYjhxXc+ZO3/ncNXa/8fnpyJpH3rP6RM/syA7nd8YQYbHBOwR4JD9oKwrs3P//1tHpmPfZabzYOEx5yC+xsfwuj4D5mMdVRFDksjE6yJHUOzh2/J1ka+dfeTHPXWlfzK8RfcFUfhuPE9mHh4z7vqy/TybD7wjrEmhuDwUmMMz328g6t//xRf3vQD7nP9kYyS8cgN78WtmmJ3jijOZJvXTTizTHuwlEqAwy9Xo5RSw9y/n32A84P/YcP07zKhZMKA7WfKmBI2mVLcO4ZmD9ba6p2sfOpXnN/2DDabUHvSbRSd+U2w2Qd83zabECw9DnYB2z6EsqMHfJ/91eYP8Y83F5Hz0e3cxFt43bkEzr2X9KMvH5Deh67Gj8qgPrUKH2mk7FgIR84Z8H321/YGD/e89CGTP7mPuxxvYlLS4Ny7cB595aAcm2PG5FJLDu2ppaRv+xBO/PqA77O/Fm5p4I8vL+LE3Y/xnONVnG4nnPEr5PgbwO4c0H1Piha6aMqcSP4Q/cJCqZFMEyzVo2A4gscfpj0QwhMI0eYP4/EF8Hq9BIN+wkaIiI0wQtjYARtOpx2X3UaG20FWqoOsFCdZqU6yU53YbQP/P1ulDtb6jRv51Orb2J4ygQmzfzyg+xqV6eZD+yQ+3bjEupdmEC5A+2PT7kYWPvtHPr3nQS6RZraVnkPFJbeTkjtmUOMYO3YiW3eOonTzezhPjG8Vx0PhD4V5+t0VBN77A1+JvIpbgrQceR055/0cUrIHLQ4R4ZiqAlZtGc+sbR8N2n5709Ae4KE3lyOL7udntn+S7ggQPvpKnGf+BDJGDVocE0dlkp3qZJ17Bsdsfd96jpotsYNz1u9u5Q+vfEzlpse4z/lPshztRKZ9EdtnfgnZZYMSwxHFmQD/n737Do+juh4+/r2zXb1a1Wqusi13G4MxvYYeCJDQSSA9gfRKCG964xcCCQmhhU7oYEKxwWADNrj3btnqvWv73PePWQm5y9aq2efzPPt4p905o9HKc/Y2djuKSK16H4LePk9gLITovT4nWEqpbwJfB8LAfK31DyLrfwx8MbL+W1rrN/t6LnH0/KEwdS0dtDZU09FYjb+lhmBbLWZHE6a3GfytGP5W7ME2nKE2Ysx24nQnccqLhxCJBHESwqHCBz2HqRXtuGkjhnbtoY0YtugEqnQKdSqFgCcDM3EkKn0syWnZ5KbEMCo9jjEZcbjs/f8NuRD78gVCND/9ZfKVH+OaR8Du7NfzKaWoT5lGbMM7UL8N0sf26/kOp7y+hQ9f/Duzyx7m80YNZQlTab/09+SN6t8mbwczPT+JZYuKuWzPR4P6oBwMm8z/ZAuNC/7C54KvEqt8tIy+mJjz7yApbfSgxDS7MJV3No9nZs2z1oTDsWmDEkddm5/H312Nc8W/+CKvk2jrxDfqPIzz/h/GIPw+G4ZiVkEyCyrHMsP/hjXhcMaEAY8DYGtNGw8sXE/cxif5f/aXSXO0EB59Lpz1c4zMkgGNJTnWSWaCm1XhQqbrMFSthbwTBjQGIY5nfUqwlFKnA5cAU7TWfqXUiMj6CcDVwEQgG1iglBqrtT7407k4Ku1ePw015bTW7sHbUE6guQqzvQ7VWYfD14A70ER8uIlk3Uw2HeSqA49A5cdJpxGL3xZHwBNPyJFG2JFAszMO5XBhc7ixOVzYnG4cTjeG3YmBRmFi6DBKm2AG0b42YvyteHxtpPuaGeutw+XdjCvUDgGgzno161h26iw2mdm8pkbSkjQBV+40RuXlMDEnkQlZCbgdknSJ/rXwsd9wQWg522b+gjF5kwbknEbeHGgA384luAcpwSqrbWLlK/cyo+wRrlT1VMWOpfXcPzJyysWDWqs2dWQSL+vxXOl/b1AelH3BMK9+uAbf4r9xSfB/JCgv9XnnEnfhL0jOmDigsexrdkEKPzMnAc/CzkVQ0n8DjhxITauP/yxcRdyqf/Il9Qbxykt74Xlw9o9xZ08d0Fj2Nbswhf9sHsUPXUDpkgH/vVlf0cJDb68ie9vj/Nj+Bin2NoIj58LZv8A2iEnN+Kx4FjTm8EWwhrGXBEuIAdPXGqyvAr/TWvsBtNa1kfWXAE9H1u9SSm0HZgMf9fF8x5XWlkYaKnfTUrubzoYKws0VqLYqnN4a4gO1JIcbSKOZfGXufyxxtNqS8DqS8cWNpjwmjcq4dOzxI3AkZuBJziI+OZPYpDQMTyIuuwtXf15MoANaq6C5FOq3EVu7hfHVW5jQuAm3731oAzZB2YZ01usCFukCWpMn4M6bxuiiMUwdmURRWiyGNDMUUbLs4w85c889bEucw5gLbh+w846dMI2GlfEENi8m64TozX3TGzsqaln7yj2cWP04l6gm9sROpOHs/yNr6oVDorlivNtBY9osaPknlC4esAfldn+IV979EOfH93Jx+B0cKkRd3nnEn/8j0gY5eehSnBXPLudYvEYcngFMsMqbOnly4cckrf03X1Nv4TECdI6+EM76EXGZA/OlxOHMLkzlNzqdzpgcYkrfhxNuHZDzflLayGNvL2PC7se5y76QOIeXQNHZcNr3cPTzwCe9MXVkEn/dWoeZmoExzCbwFr2jtSZkaoJhk2BIEwwFCQX96KAfzABafzqzg9agsRYUCrsNbDaFw+bA5nBid7ixO53YbTbUEPj/YLjra4I1FpinlPo14AO+p7X+BMgBlvbYrzyybj9KqVuBWwHy8vL6GM7wYYZN6uqqqCvfTlvVDkKNu7G1luHurCTRX016uIYE1UnCPse1EkuzLZUO9wiqPWOpiMvESMjGlZxDbPpIkkbkkpCaRYLdtd+xg8oZC2mjrdfos3AA3V18Oxqgeg26cg2pZas4pXIN57d/YiVdG6BufQKbzHyW2ArwpkwgZuRU8sZNZkr+CFJi+7dJlzg8rTWmhnA4jBkOYYaDmGaYcDgM4RBh09puao0JhE0d+UOvUIrIy0ABhjL2XqesZnVKGSjDZr1sNgzDhsLaz4j8R2CoSHk93x/kP4mWtg4SXv86PsPDyJseHtDkYnp+Ch/oscyo/HjAzrlxVwWbX/s/Tql/mstUK6Xx02g891/kTTp7SCRWPRUXT2LnR1nkbXwNez/MndRTU0eAV99eQOrqv3Ol/gCUQcOYyxlx3g/IGKSmgAdjtxnMKEjlk/JJzNv5Lqqf+/BtqmrlxbfeZdT2h7nNWIzdMPGOvQTjrB8SN6K43857NEpyEkmKcbDGOY0TdyyCoA8c7n45l9aaRVvreHHBYk6oeoI/2t/HYQ8TnnApnPJdnEMk6QSYnpeM1tCUVELqMJqI+VgWDJu0eIO0tnfQ0VKPt7UBf1sjwfZGwp1NmP52CHRgBDowQh3YQp3YQ504wp04w524TC8u7cWhgzgIYieEixAOQsQRxHaQVkpHFKO2EcJmla7shJSDsLITVC6ChpugzUPI5iZsiyFs96DtMWiHB+2IwXDGolyx2Fwx2Fyx2N1xON1xODxxuGNicXkScMfE4fTEWX0Ch9j/P9F02ARLKbUAyDzApp9Gjk8B5gCzgGeVUkVHEoDW+l/AvwBmzpw59GdQPAIdHR3U7NlMS/kW/LXbMJp24W4vJyFQTXq4lgzlJ6PH/u14qLNl0OLOoj52Bjo+G0dKLnGpI0nMzCctM48ET/zQSpyiITYVRp2BGnUGMV3rfK1Qsx6zcjXO3auZVLmOE9vexNH4KjSCf7WdbTqXj+15eOPyUalFxGWNI72gmKKRucR7jvHES2vCoSA+bztebycBbwd+n5eAr4OAz0vI32m9Al7CAS9mwIsZ9KKDPlTIhwr7sYV9qLAPWziAzbT+tZt+7GYAu/bj0AGc2o9dBzF0GAMTG2EMbUbef/qvXZkMdIPOkDYIRxqqhjEIYGBirTOtxquR913Ltu5lFwGKVS27z3qApOTsAY3b47SxO/EEzmr7O9RtgfRx/XaulZu2s/uNv3Ja8wtMUO2UJp+A47yfUjD+1H47Z1+dNj6D/y2ZxVf3zIfORohJifo5qlq8vPm/l8nf9E+uVyvxKTeNk77IiHO+Q0bCwP4+HImzJ2Qyf3sJp4SXQuWqqI+0qLVm6c5G3n7rVWZXPs6PjOWE7Q4Ck6/FeeptxKYURvV80WIzFKePG8F/tkzjRPM12P42FF8U1XMEwyavrqnk7XcXcl7z09xtWwoOG+bUazDmfRsj5YgefQbElJFJAGy1jebEhgXgbQZP0mCGdEwJm5rmzgANbV5aG6rpbKrG31JNsLUW2muxeetx+BpxBlvxhNuIMdtIoJ0k2klT/sOW78WFV3nwGx4ChoegI4agLRmvPZtOmxttc6BtLjAcaJsTbE6IrNM2B9pwAAZEvnjs+lcBJtaUHGGt0eEwhAMQDqLCATCDkeUAOhRAR9YbYR+OsA9HyIszUI9T+3BpHx7tx4Mflwoe8c/Qiws/LvyGm6ByEbB5CBluwjYPYbsHs/sVQ23KDMacciWj0uOO+DyD4bAJltb6oDNuKqW+CrygtdbAx0opE0gDKoCRPXbNjaw75oTDYap3b6Zh1zo6q7dC405i2neT5i8nQ9dR1OPbhBYdS609kyZPPjVxczGS8/CMKCQps4i03DHExacQdwxn80fEnQD5J2Hkn0TiiZF14SDUb8NfsYaGHStJrFxLdvtWkloXY7Rq2AV8CK3awy6VQps9Ba8rnVDMCIz4DNyJ6bjiknDHJeOOSyI2IYW4hCRsDrc1ZK7NCYaj9x3rTRPCfgj5rT9GIR+EAoSDPgK+Tvx+L0G/l6DfRyjgs5Idv5dQj2RHR/61jrWSHyPkwwj7MUx/JOGxkh6H9uPQQevPkQ5gU5pYIPYofrxBbARwEMBJQDkJKBch5SSonAQNF15bAu2Gm7DhxLQ5QdnBZkMZdlA2a9huZYBhQytbZJ0Bhh2tbChlQxtWrROoSI2SxuhRawVgtVbQ6Eg7Bt29Snc3ZcDUoE3QptXXT4dROmxNLKo1KrKsDrBPz3Vdy0qH8WKyKf8Wiuf23+Swh2KOvwA++Tsda14i9qwfRrVsrTXLVq6iaeHdnNrxJtOVn11pp+C84KcUFA1+s6XDmTYyibudJ/N18xXYPD+qk9RurGhhyRtPMXX3w9xobKbdnkj99O+RdvrXcfdDIhdtZ0/I4HcvzebX6lHsq5+MWoIVNjVvra/ikwXPcG7z09xhbMbnSiAw6zu4534VR1x6VM7Tn84qzuBbq8YSSEzBuf6FqCVY7f4QTy/bzcrF87nc9wL/sK0i6IyB2V/HdtI3sMUf6PvnoSHR42DMiDje843mRIDdH8D4CwY7rCFPa01jR4Caplaaa/bQXl9OoLEMWiuxd1Tj9tURE2wk0WwhVbUwmjaMA9QcBbHTZiTgtSXg9yQQdObR4kqi2Z2I8qRgi03CEZeKO956xSam4oxJQLniwBGDx7AxXMZ9NE1NZyCAt7MdX0cbvs5WAt52gt52gr4Ogr4OTH8HIX8nBNoxA15UsBMV9KLCXoxgJ7awD7vpxRH04fQ34NE+3NqPGyuBW7G7EXPs+cdOgnUYLwGnA+8qpcYCTqAeeAV4Uin1F6xBLsYAA9ceph9oM0xt2TZqtq+mo2IDtvrNJHfsIDdURo4KdLd/bCWWGnsO1YmTKU8qwpE+mrjssYzIn0BCyggSJYE6ejYHZEzAlTGB7Omf/3R9yE+4sZT63ZtoKt9MoH4nqr0Gt6+ONO9GkjuW4KkL9Po0YQxC2AljQ6F7vMxIfYnGxv793rrDBDyR12HPpRU+nPhwEsCBX7msJEc58SsXnbY4QvZUTJsL0+ZC291gc6MdbpTdjXJ6MBxuDIcHm8uD3eXB7ozB4fLgcMficsXg9MTgcsfg9sRid3nA7sFhs+Pg6JIz0XenzpzCqmWjGRnFBCsYNnl/8TsYH97DPP9iUIpdORcw8oIfUpgzdJotHY7dZjB2ylzKVo4gc/UzOPqYYGmt+WBLBZvf/DfzGv7LrUY5La4RNJ14F8knf4k45/D5FKTHu5hYmMe71bM5a/1zqHN/Dfaj7z3rC4Z5aXkpOxf9h896n+d8o4yOmEyC836Ne+aN4BoeDzIAZxaPINbt4mPPyZy89Q3wtfRpKP26Nj+PLdlO7bKnuMZ8lS8ZpQRikjFP/CmOE24BT3IUo+8/0/OS+e/6bH7oiEVtXygJFtDqC1LW0E5t5W7aqnYQbizF1laBs7OaWH8tyeF6Mmhggmrd71gfLlrtqXhjUgm4R9HgSaMhfgSO+BG4kjKJTckiLiUTe0IGDncSKcfJM59hKGLcLmLcLkhJjXr5obDJNWET+yBPwXAk+ppgPQQ8pJRajzVG3A2R2qwNSqlngY1ACPj6cBxBcNvqxdQvfZKEhnUUBLeRga+7SV8tKdS6C1mXNgsyJhCXO5HMggkkp2WSMIx+AY4Jdhe2EePIGDGOjFkH2K417W1N1NdW09bShK+9iUBHC8HOZsLeVsIBHzocjFSLB63qcDMAZhirTt3Y52WtU8roruEJGy604ewecdGIjLhod3qwOV04nB4r6XHF4HRbL5c7BrfbjdthkOCw4bDJ783xYmxGPP+OOZlpbY9Aww5IHXXUZbV6A7z31oukrf4HZ+pVdOJhR9F1FF70fcakjDx8AUPQ52aN5MmPz+CHe562hpfOmnzEZQTDJm99so7GRfdzvvc1Tlat1CWMo/OU+0icfmW/D8nfX244KZ/HnpzL2eYSWPccTLvmiMuoafXx4uJVqBUPc1n4Ta5WzbQljcE8/R/ETv5cv0+C2x/cDhuXTsvhTx+fyMmOV+CTB2Hed464nE1VrTy7eB2edY9znfEGWaoRX/IomPd/OKdcPezmkppdmMIzy8toyzuRhB0LBzucAREImVQ2e6mqrqK5Ygu+up2opj242stI9FeSadYwWtUzUYX2Oq7VSKDNkY43IYvG2Gk0J+bgTMklLi2PhIw8HEm5uN2JuI+TpGkosdsM7MPsGalPCZbWOgBce5BtvwZ+3ZfyB1vTrlXMqHqWUkcR61I/g86cRFL+ZLLHTGNEchoDN5Wi6BOliEtIIS5h6DcBEscP1/TPE/jgMVoX3E3aVfce8fGV9Y2seO3fjNr1JBepXbQYSeyc9B0KzvsW42KHx7frBzMxO5H7Cq+kpfxVYt74GY4bX+51Z+iaFi+LFs4ndv3jnB1egksFqcw4lcA53yF91KnDvlP1WcUZ/DZpDlt8oxn7zq9QxRdZTaoPQ2vNyt2NLHznTcbsepKbjI9wqRBNOaeiT/8m8aPPGvY/m1vmFXH6sj1sjJvDhCV3w9RrID7jsMcFwyZvbajh/ffeZnLNS3zPtoRYmx9vzlw49Tbco88a9MmLj9ap46zmnSsd0zmtaUGfv9AZKkxTU93qY2d1A/V7ttBZtQWjYTtxHbvIDJZTqKooUG17HdNmJNDiycYfV0J5ch7utCISs0cRmzEKlTSSBIfn2OvjLgaN0nrojCsxc+ZMvXz58sEOo5uvsx3DZsfp6p/RiIQQx682X5C3fv95LtHvYPvqElQvhiQ3Tc3yNWtofO9+Zje9Sopqp9JZgJ51Kzmn3Tzsvl0/lPUVLfz3H7/gl/aHMc+8E2PewYfSD4RMlq3fQtWSx5lS+zLjjDK8ykND0aVkn/sdjBGDO6FztL27uZZ7Hn2S512/RI3/DOqKhw7aVLC2zcfCT9bT/smTnNzxFsVGGX4jBv+kq0k45evWyK7HkD+/tYX5777P256fYsudAdc+D86YA+67pbqNNz9ZT+fqF/hM8G0mG7usDvYTLsU19+tHVXM6FF1y3wek+it4qPUWOOdXcNI3BzukXtNaU9XiY1N5AzU71xGsXEts82ZGeHeSryvJVXV7jZzXakumNbaAQGIRthFjic8aS2LOGGzJ+b36IkKII6WUWqG1nrnfekmwhBBicDz97grOXnQJKjaVlK++ddBv23eVV7Lz/SdJ2f4C08wNhDHYnjyPlNO/SXrJ8K95OJgH3ttB5oKvcZFtKR3FnyP2zB91JwR1zW1sW7uUho2LyKx+h+l6EzalqYotxjn7ZlLnfB5c8YN8Bf3nrlc3opf+nV84HiMwYjLOs38B+ScRtrnZsruMnes/pnP7EoqaP2Sa2oZNaeoSS0iYcz2uaVcfsw+bwbDJFx5YSlbZfP7quI9wchH2s38BRafRqWLYsL2U7ZtW07HjAya0L+MEw/q9aUscR+xJX8KYfOUxN9LeYx+V8vOXN7Bh5B+JxQdf+2hI/s3wh8Jsq2lnx+49NO9aiapZT2LrFkabpYxWFbgiTfqCOGjwFOBPLMKWPpb43PEk5BSj0kb3qd+dEEdDEiwhhBhiTFNz7yOP8KXdP0TbnDSU3IJ71Fw6TActNaW07VlLcvWHjA9txq5MKm05tIy9nKIzv4grrWCwwx8QD763Be+C3/Fl42UcKky7iiWkDZL4tPlPtTMf7+gLyJ37eRw5x0atw+GYpuavC7exZdFT/Mr+b9IiHfJD2sDeY/L56thinMXnkXLC5/t1SoChpMMf4ofPr6V5/Vv8xv5v8ow6AEyt9hrtrSm2CGfJpcROuQwyS4Zk0hENrb4gs3+9gF/lreaKit9ZtXqjDzpA9ICob/ezqaKJyp3r8ZWvxVW/kQzvNsarPWSpxu792uwptCWOx8iaRFLhdNy5UyBtzLDsJyiOTZJgCSHEEBQImTw1/01Gr/g1c411e20ztWKXYzRtufPIOeFy0sfPPWYfAg+lvKmTBctWkVD6Fgmdu4mxaRyJmaTmTyRnymm4Uo6fSer3Vd7UyYJ1ZThLF5HUvp1kR4D4pDSyx84gZdRMiDt+ewtvrm5lyeZK1J6l5Hg3kWoPkJCazciiscQUnXhc/Wx+8uI6Xlq+izXJP8QRlwq3LAJbX8c5O7xQ2KS0oYMtuyto2rkKXb2O+OYtFIR3Mk6V41HWCL8hbDTFFOJPLcYzcipJhdOxZU06ru6RGJ4kwRJCiCGszRdk9eathCvXEWvXxKaNpGjsRNxxw3vACiHE4Ktv93PGnxZxQ9Iavtv8a5jzNTjvt1E9R6svyObKFsp3bqRj92oc9RtI79jGOLWbXFXfvV+7LZGWhHGojEkkFk4jNm+qVbvahykHhBgsB0uw+v/rCyGEEIcV73Ywb+pEmDpxsEMRQhxj0uJc3HnxRL7zbIipGZdz5tK/W83szvj5ETe366qV2rF7D62lqwlXbyC2eQu5wVImqjJmKz8AJgaNMSPxpsyiNncyyUXTcWRPJi4+i7jjsCZeHF8kwRJCCCGEOMZ9dnoujR0Bbn39Mv4c08alH/yV4IZXsc/+IqroNEgphMjE26GwSX1zG1VV5dTXlNNZswvduBNXaylJvnJGqQrOVc3dZbcbCTQnj6FpxImE8qeSUDANY0QxaQcZwVGIY500ERRCCCGEOE4s3dnAb1/fRHrlO3zD/iJTjZ3d2zpxAxqldXf/qJ5ajSRaY0YSTi7CmV1CatFUnNklEJdxXPYPFUL6YAkhhBBCCLTWbK9tZ+muRlqrtpNQt5LkYA1x4RbsNoXHaccWk4wnOZPktCySs0fjSCs6Zof3F+JoSR8sIYQQQgiBUooxGfGMyYgH8oEzBzskIY4pxmAHIIQQQgghhBDHCkmwhBBCCCGEECJKJMESQgghhBBCiCgZUoNcKKXqgN2DHcc+0oD6w+4ljhVyv48fcq+PH3Kvjy9yv48fcq+PL0PxfudrrdP3XTmkEqyhSCm1/ECjg4hjk9zv44fc6+OH3Ovji9zv44fc6+PLcLrf0kRQCCGEEEIIIaJEEiwhhBBCCCGEiBJJsA7vX4MdgBhQcr+PH3Kvjx9yr48vcr+PH3Kvjy/D5n5LHywhhBBCCCGEiBKpwRJCCCGEEEKIKJEESwghhBBCCCGiRBKsQ1BKnaeU2qKU2q6U+tFgxyOiRyk1Uin1rlJqo1Jqg1Lq25H1KUqpt5VS2yL/Jg92rCI6lFI2pdQqpdRrkeVCpdSyyOf7GaWUc7BjFNGhlEpSSj2nlNqslNqklDpRPtvHJqXU7ZG/4euVUk8ppdzy2T52KKUeUkrVKqXW91h3wM+ystwTue9rlVLTBy9ycaQOcq//GPk7vlYp9aJSKqnHth9H7vUWpdS5gxL0IUiCdRBKKRtwH3A+MAH4vFJqwuBGJaIoBHxXaz0BmAN8PXJ/fwQs1FqPARZGlsWx4dvAph7Lvwfu1lqPBpqALw5KVKI//BV4Q2s9HpiCdd/ls32MUUrlAN8CZmqtJwE24Grks30seQQ4b591B/ssnw+MibxuBf4xQDGK6HiE/e/128AkrfVkYCvwY4DI89rVwMTIMX+PPLcPGZJgHdxsYLvWeqfWOgA8DVwyyDGJKNFaV2mtV0bet2E9gOVg3eNHI7s9Clw6KAGKqFJK5QIXAP+OLCvgDOC5yC5yr48RSqlE4BTgQQCtdUBr3Yx8to9VdsCjlLIDMUAV8tk+Zmit3wca91l9sM/yJcB/tGUpkKSUyhqQQEWfHehea63f0lqHIotLgdzI+0uAp7XWfq31LmA71nP7kCEJ1sHlAGU9lssj68QxRilVAEwDlgEZWuuqyKZqIGOw4hJR9X/ADwAzspwKNPf4wy2f72NHIVAHPBxpEvpvpVQs8tk+5mitK4A/AXuwEqsWYAXy2T7WHeyzLM9tx7abgf9F3g/5ey0JljiuKaXigOeB27TWrT23aWsOA5nHYJhTSl0I1GqtVwx2LGJA2IHpwD+01tOADvZpDiif7WNDpO/NJVhJdTYQy/5NjMQxTD7Lxwel1E+xunY8Mdix9JYkWAdXAYzssZwbWSeOEUopB1Zy9YTW+oXI6pquJgWRf2sHKz4RNXOBi5VSpVhNfc/A6qOTFGlWBPL5PpaUA+Va62WR5eewEi75bB97zgJ2aa3rtNZB4AWsz7t8to9tB/ssy3PbMUgpdSNwIXCN/nTy3iF/ryXBOrhPgDGR0YicWJ3pXhnkmESURPrgPAhs0lr/pcemV4AbIu9vAF4e6NhEdGmtf6y1ztVaF2B9jt/RWl8DvAtcEdlN7vUxQmtdDZQppcZFVp0JbEQ+28eiPcAcpVRM5G96172Wz/ax7WCf5VeA6yOjCc4BWno0JRTDkFLqPKzm/RdrrTt7bHoFuFop5VJKFWINbPLxYMR4MOrTZFDsSyn1Gay+GzbgIa31rwc3IhEtSqmTgcXAOj7tl/MTrH5YzwJ5wG7gSq31vh1sxTCllDoN+J7W+kKlVBFWjVYKsAq4VmvtH8TwRJQopaZiDWjiBHYCN2F9oSif7WOMUuqXwFVYzYdWAV/C6oshn+1jgFLqKeA0IA2oAX4BvMQBPsuRJPterGaincBNWuvlgxC2OAoHudc/BlxAQ2S3pVrrr0T2/ylWv6wQVjeP/+1b5mCSBEsIIYQQQgghokSaCAohhBBCCCFElEiCJYQQQgghhBBRIgmWEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhhBBCCCFElEiCJYQQQgghhBBRIgmWEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhhBBCCCFElEiCJYQQQgghhBBRIgmWEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhxBCjlCpQSmmllH2wYxHHB6XUBqXUaYMdhxBCHAskwRJCCDHsKaXuV0q1R14BpVSwx/L/Bju+oU5rPVFrvSiaZSqlUpRSzyilGpRS9UqpJ5RSCdE8hxBCDEWSYAkhRJRJzdPA01p/RWsdp7WOA34DPNO1rLU+v2u/4XRvhlOsB/ErIBkoBEYBGcCdgxmQEEIMBEmwhBAiCpRSpUqpHyql1gIdSim7UmqOUupDpVSzUmpNzyZYSqlFSqnfKqU+Vkq1KqVeVkqlHKTsm5RSm5RSbUqpnUqpL++z/RKl1OpIOTuUUudF1icqpR5USlUppSqUUr9SStkOcx2jlFLv7FPrkNRjW6NSanpkOVspVdd1XUqpiyNNzZoj11e8z8/ne0qptUqplkjNhvvIf9JH7iD3RiulRvfY5xGl1K96LF8Y+Zk2R+7h5F6e6zSlVLlS6ieRn1+pUuqaHtsvUEqtityrMqXUnT22dTUN/aJSag/wTmT9f5VS1ZGf2/tKqYn7xP13pdT/IrV1HyilMpVS/6eUalJKbVZKTevlz+is3lzjESgEXtJat2qtW4AXgYmHOUYIIYY9SbCEECJ6Pg9cACRhfVs/H+tb/BTge8DzSqn0HvtfD9wMZAEh4J6DlFsLXAgkADcBd/dIcmYD/wG+HznvKUBp5LhHIuWOBqYB5wBfOsw1KOC3QDZQDIwkUuugtd4B/BB4XCkVAzwMPKq1XqSUGgs8BdwGpAOvA68qpZw9yr4SOA/rwXsycOMBA1Dq5Ehic7DXyYe5hgPpvjda69AhfwBWQvIQ8GUgFfgn8IpSytXLc2UCaUAOcAPwL6XUuMi2Dqz7nhSJ56tKqUv3Of5UrJ/9uZHl/wFjgBHASuCJffa/EvhZ5Jx+4KPIfmnAc8Bfehn3ASmlfnSo+3GIQ+8DLlRKJSulkoHLI9cihBDHNEmwhBAieu7RWpdprb3AtcDrWuvXtdam1vptYDnwmR77P6a1Xq+17gB+Dlx5oBomrfV8rfUObXkPeAuYF9n8ReAhrfXbkfNUaK03K6UyIue6TWvdobWuBe4Grj7UBWitt0fK8mut67Aezk/tsf0BYDuwDCsx/Glk01XA/MixQeBPgAc4aZ+fT6XWuhF4FZh6kBiWaK2TDvFacqhrOIie9+ZwbgX+qbVeprUOa60fxUpc5hzB+X4e+Rm+h5VoXwmgtV6ktV4XuVdrsZLSU/c59s7IPfNGjnlIa92mtfZjJbtTlFKJPfZ/UWu9Qmvtw6ol8mmt/6O1DgPPYCXXR01r/btD3Y9DHLoScAINkVcY+HtfYhFCiOFAEiwhhIiesh7v84HP7fNN/8lYScmB9t8NOLBqHfailDpfKbU00jyvGStx6tpvJLDjALHkR8qr6nH+f2LVghyUUipDKfV0pElhK/D4AWJ6AJgE/C3y0A9Wjdfurh201mbk+nJ6HFfd430nEHeoWKKs7PC7dMsHvrvPvRuJdY290RRJmrvs7jpWKXWCUurdSNPKFuAr7P/z7Y5VKWVTSv1OWU0/W/m0drLnMTU93nsPsDyQP+eengW2AvFYta87sH6fhBDimCYJlhBCRI/u8b4Mq4aq57f9sVrr3/XYZ2SP93lAEKjvWWCkWdrzWDVCGZEag9exmvJ1nWfUAWIpw6p1Setx/gSt9eH6wPwmch0lWusErJq4rnOhlIoD/g94ELhTfdpvrBIrMenaT0Wur+Iw59uPUmqe+nQEwAO95h2+lP3ofZY7gZgey5k93pcBv97n3sVorZ/q5bmSlVKxPZbzsH4+AE8CrwAjtdaJwP30+PkeINYvAJcAZwGJQEFk/b7H9JtIf7KD3o9DHDoVqyawQ2vdjnWtnznE/kIIcUyQBEsIIfrH48BFSqlzI7UQ7sgACLk99rlWKTUh0p/pLuC5SLOunpyAC6gDQkqp87H6UnV5ELhJKXWmUspQSuUopcZrrauwmhL+WSmVENk2Sim1b3O0fcUD7UCLUioHq29XT38Flmutv4TV9O3+yPpngQsicTiA72IleB8e7ge1L6314h4jAB7otfhIyzyA1cAXIvfmPPZupvcA8JVIbZNSSsUqa3CKeOgeWOKRw5T/S6WUM5IMXgj8N7I+HmjUWvsi/ee+cJhy4rF+jg1YCeFvjuAao0Jr/ZtD3Y9DHPoJ8CWllEcp5cFqerl2YKIWQojBIwmWEEL0A611GVbNw0+wkqMyrGSl59/dx7AGoqgG3MC3DlBOW2T9s0AT1gP5Kz22f0xk4AugBXiPT2uSrsdK0DZGjn2OvZsoHsgvgemRsuYDL3RtUEpdgjVIxVcjq74DTFdKXaO13oJV2/U3rFq4i4CLtNaBw5xvsHwbK8Zm4Brgpa4NWuvlwC3AvVg/t+3sPSDHSOCDQ5RdHTmuEmtAiq9orTdHtn0NuEsp1QbcgXVfD+U/WE0MK7Du49LDXdgQcjNWjVs5VvxFWIN+CCHEMU1pvW+rCSGEEP1NKbUIeFxr/e/BjkX0XmRUxDXA5MhgHvtuPw3rvubuu00IIcTxYbhPYiiEEEIMmEiNXPFhdxRCCHHckiaCQghxnFFK3X+QAQvuP/zRYjhSSuUdYqCKvMGOTwghjiXSRFAIIYQQQgghokRqsIQQQgghhBAiSoZUH6y0tDRdUFAw2GEIIYQQQgghxCGtWLGiXmudvu/6IZVgFRQUsHz58sEOQwghhBBCCCEOSSm1+0DrpYmgEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhxCGETU0obA52GEIIIYQYJoZUH6wDCQaDlJeX4/P5BjsUMcy43W5yc3NxOByDHYoYpkxT86X7XiPDV8qdt30Nt8M22CEJIYQQYogb8glWeXk58fHxFBQUoJQa7HDEMKG1pqGhgfLycgoLCwc7HDFMbaxq5ct1v2aOsYnl7yQz89xrBzskIYQQQgxxQ76JoM/nIzU1VZIrcUSUUqSmpkrNp+iTrWXVzFRbAIhf/9ggRyOEEEKI4WDIJ1iAJFfiqMjvjeirQOV67MqkzpZBfttKCPkHOyQhhBBCDHHDIsESQojB4G2qAmBXzsW4CdC+65NBjkgIIYQQQ50kWL2glOK73/1u9/Kf/vQn7rzzzsELqIelS5dywgknMHXqVIqLi7vjWrRoER9++OFRl7t7926mT5/O1KlTmThxIvfff3+UIhZi+NBtVoJlK/4MAPXbJMESQgghxKEN+UEuhgKXy8ULL7zAj3/8Y9LS0qJWrtYarTWGcfR57g033MCzzz7LlClTCIfDbNli9RdZtGgRcXFxnHTSSUdVblZWFh999BEul4v29nYmTZrExRdfTHZ29lHHKsRw4/HVY2KQPX429W8kEKpYNdghCSGEEGKIkxqsXrDb7dx6663cfffd+22rq6vj8ssvZ9asWcyaNYsPPvgAgDvvvJM//elP3ftNmjSJ0tJSSktLGTduHNdffz2TJk2irKyM73//+0yaNImSkhKeeeYZwEqQTjvtNK644grGjx/PNddcg9Z6v/PX1taSlZUFgM1mY8KECZSWlnL//fdz9913M3XqVBYvXnzIOK+77jpOPPFExowZwwMPPACA0+nE5XIB4Pf7Mc0DzwN0zz33MGHCBCZPnszVV18NQGNjI5deeimTJ09mzpw5rF27tvtcN9xwA/PmzSM/P58XXniBH/zgB5SUlHDeeecRDAYBuOuuu5g1axaTJk3i1ltv3e+6TdOkoKCA5ubm7nVjxoyhpqbmULdRiCMWG6yn3ZZEZlIsW1QhMY2bBjskIYQQQgxxw6oG65evbmBjZWtUy5yQncAvLpp42P2+/vWvM3nyZH7wgx/stf7b3/42t99+OyeffDJ79uzh3HPPZdOmQz+Ebdu2jUcffZQ5c+bw/PPPs3r1atasWUN9fT2zZs3ilFNOAWDVqlVs2LCB7Oxs5s6dywcffMDJJ5+8V1m3334748aN47TTTuO8887jhhtuoKCggK985SvExcXxve99D4AvfOELB41z7dq1LF26lI6ODqZNm8YFF1xAdnY2ZWVlXHDBBWzfvp0//vGPB6y9+t3vfseuXbtwuVzdCc8vfvELpk2bxksvvcQ777zD9ddfz+rVqwHYsWMH7777Lhs3buTEE0/k+eef5w9/+AOXXXYZ8+fP59JLL+Ub3/gGd9xxBwDXXXcdr732GhdddFH3OQ3D4JJLLuHFF1/kpptuYtmyZeTn55ORkXHY+yjEkUgMN9LhSSVBKRpjCpnh/R+YJvSh1lkIIYQQx7Y+PyUopUYqpd5VSm1USm1QSn07sv5OpVSFUmp15PWZvoc7eBISErj++uu555579lq/YMECvvGNbzB16lQuvvhiWltbaW9vP2RZ+fn5zJkzB4AlS5bw+c9/HpvNRkZGBqeeeiqffGL185g9eza5ubkYhsHUqVMpLS3dr6w77riD5cuXc8455/Dkk09y3nnnHfCch4rzkksuwePxkJaWxumnn87HH38MwMiRI1m7di3bt2/n0UcfPWAN0eTJk7nmmmt4/PHHsdvt3dd03XXXAXDGGWfQ0NBAa6uVGJ9//vk4HA5KSkoIh8Pd8ZaUlHRf37vvvssJJ5xASUkJ77zzDhs2bNjvvFdddVV3bd/TTz/NVVdddcifuRBHKmxqEs1m/K5UAELJo3FrP7q1YpAjE0IIIcRQFo0arBDwXa31SqVUPLBCKfV2ZNvdWus/HeLYI9Kbmqb+dNtttzF9+nRuuumm7nWmabJ06VLcbvde+9rt9r2a1fWcjyk2NrZX5+tqogdW879QKHTA/UaNGsVXv/pVbrnlFtLT02loaNhvn4PFCfsPZ77vcnZ2NpMmTWLx4sVcccUVe22bP38+77//Pq+++iq//vWvWbduXa+uyTAMHA5H97kMwyAUCuHz+fja177G8uXLGTlyJHfeeecB57I68cQT2b59O3V1dbz00kv87Gc/O+R5hThSrd4gsfgxnfEAODLGQQW0lW8kIWnkIEcnhBBCiKGqzzVYWusqrfXKyPs2YBOQ09dyh6KUlBSuvPJKHnzwwe5155xzDn/729+6l7uawhUUFLBy5UoAVq5cya5duw5Y5rx583jmmWcIh8PU1dXx/vvvM3v27F7HNH/+/O4+Stu2bcNms5GUlER8fDxtbW2HjRPg5Zdfxufz0dDQwKJFi5g1axbl5eV4vV4AmpqaWLJkCePGjdvr3KZpUlZWxumnn87vf/97WlpaaG9vZ968eTzxxBOA1ZcsLS2NhISEXl1PVzKVlpZGe3s7zz333AH3U0px2WWX8Z3vfIfi4mJSU1N7Vb4QvdXqC+JRfgxnDACJI60veJrL9q9RFUIIIYToEtWOBEqpAmAasCyy6htKqbVKqYeUUskHOeZWpdRypdTyurq6aIbTL7773e9SX1/fvXzPPfewfPlyJk+ezIQJE7qHM7/88stpbGxk4sSJ3HvvvYwdO/aA5V122WVMnjyZKVOmcMYZZ/CHP/yBzMzMXsfz2GOPMW7cOKZOncp1113HE088gc1m46KLLuLFF1/sHuTiYHGC1czv9NNPZ86cOfz85z8nOzubTZs2ccIJJzBlyhROPfVUvve971FSUgLAl770JZYvX044HObaa6+lpKSEadOm8a1vfYukpCTuvPNOVqxYweTJk/nRj37Eo48+2uvrSUpK4pZbbmHSpEmce+65zJo1q3vb/fffv1fcV111FY8//rg0DxT9whsME4MP5bRqnLNz8mjRMQRqtgxyZEIIIYQYytSBRqY7qoKUigPeA36ttX5BKZUB1AMa+H9Altb65kOVMXPmTL18+fK91m3atIni4uKoxCj2d+edd+41GMaxRn5/xNFataeJ4gfHUFt8A3lX/5lAyGT9XbNITUoi/zsLBzs8IYQQQgwypdQKrfXMfddHpQZLKeUAngee0Fq/AKC1rtFah7XWJvAA0Pt2b0IIMci8/gBuFeyuwXLaDaodeSR2lA5uYEIIIYQY0vo8yIWyRil4ENiktf5Lj/VZWuuqyOJlwPq+nktE35133jnYIQgxJAV9HQAYrpjude1xhSS1vAP+NnDFD1ZoQgghhBjCojGK4FzgOmCdUmp1ZN1PgM8rpaZiNREsBb4chXMJIcSACHitBMvuiuteZ6YUQgvohh2o7KmDFJkQQgghhrI+J1ha6yWAOsCm1/tathBCDJaQz5onzu7+NMFyZ4yFXdBauYVESbCEEEIIcQBRHUVQCCGOFSF/JMHyfDpvXfLI8QC0VchIgkIIIYQ4MEmwhBDiAMK+TgAcPWqw8jPSqNIpBOu2D1ZYQgghhBjiJMHqpZdeegmlFJs3bz7oPqWlpUyaNClq59yyZQunnXYaU6dOpbi4mFtvvRWwJgl+/fWjb4Hp8/mYPXs2U6ZMYeLEifziF7+IVshCHDPMgNUHy+n5NMHKTfawR2fgaD7wxOFCCCGEEJJg9dJTTz3FySefzFNPPXXA7aFQqM/nCIfDey1/61vf4vbbb2f16tVs2rSJb37zm0DfEyyXy8U777zDmjVrWL16NW+88QZLly7tU+xCHGu6Eiy769MmgnabQZ0zlwRv2WCFJYQQQoghThKsXmhvb2fJkiU8+OCDPP30093rFy1axLx587j44ouZMGECYCVa11xzDcXFxVxxxRV0dlrNjBYuXMi0adMoKSnh5ptvxu/3A1BQUMAPf/hDpk+fzn//+9+9zltVVUVubm73cklJCYFAgDvuuINnnnmGqVOn8swzz9DR0cHNN9/M7NmzmTZtGi+//DIAjzzyCJdccgmnnXYaY8aM4Ze//CUASini4qxv5YPBIMFgEGu0/b3997//ZdKkSUyZMoVTTjkFsGq/brrpJkpKSpg2bRrvvvtu97kuvfRSzj77bAoKCrj33nv5y1/+wrRp05gzZw6NjY0APPDAA8yaNYspU6Zw+eWXd/98epozZw4bNmzoXj7ttNPYdwJqIfqd30qwcMbutbojLp+EcBP4WgchKCGEEEIMddEYpn3g/O9HUL0uumVmlsD5vzvkLi+//DLnnXceY8eOJTU1lRUrVjBjxgwAVq5cyfr16yksLKS0tJQtW7bw4IMPMnfuXG6++Wb+/ve/841vfIMbb7yRhQsXMnbsWK6//nr+8Y9/cNtttwGQmprKypUr9zvv7bffzhlnnMFJJ53EOeecw0033URSUhJ33XUXy5cv59577wXgJz/5CWeccQYPPfQQzc3NzJ49m7POOguAjz/+mPXr1xMTE8OsWbO44IILmDlzJuFwmBkzZrB9+3a+/vWvc8IJJ+x3/rvuuos333yTnJwcmpubAbjvvvtQSrFu3To2b97MOeecw9atWwFYv349q1atwufzMXr0aH7/+9+zatUqbr/9dv7zn/9w22238dnPfpZbbrkFgJ/97Gc8+OCD3TVzXa666iqeffZZfvnLX1JVVUVVVRUzZ+43SbYQ/Svotf51xOy1WqeMgubIUO050wY+LiGEEEIMaVKD1QtPPfUUV199NQBXX331Xs0EZ8+eTWFhYffyyJEjmTt3LgDXXnstS5YsYcuWLRQWFjJ27FgAbrjhBt5///3uY6666qoDnvemm25i06ZNfO5zn2PRokXMmTOnu+arp7feeovf/e53TJ06ldNOOw2fz8eePXsAOPvss0lNTcXj8fDZz36WJUuWAGCz2Vi9ejXl5eXdSdi+5s6dy4033sgDDzzQ3XxxyZIlXHvttQCMHz+e/Pz87gTr9NNPJz4+nvT0dBITE7nooosAq+attLQUsJKwefPmUVJSwhNPPLFXTVWXK6+8kueeew6AZ599liuuuOKAPx8h+lUwUru6T4LlzhgDQFuljCQohBBCiP0Nrxqsw9Q09YfGxkbeeecd1q1bh1KKcDiMUoo//vGPAMTG7t18aN+mdgdqerevfcvoKTs7m5tvvpmbb76ZSZMmHTAR0lrz/PPPM27cuL3WL1u27LDxJCUlcfrpp/PGG2/sN0DH/fffz7Jly5g/fz4zZsxgxYoVh7wOl8vV/d4wjO5lwzC6+6jdeOONvPTSS0yZMoVHHnmERYsW7VdOTk4OqamprF27lmeeeYb777//kOcVoj8YoUiC5dw7wUrOtb4oaavcTMJAByWEEEKIIU9qsA7jueee47rrrmP37t2UlpZSVlZGYWEhixcvPuD+e/bs4aOPPgLgySef5OSTT2bcuHGUlpayfbs1tPNjjz3Gqaeeethzv/HGGwSDQQCqq6tpaGggJyeH+Ph42trauvc799xz+dvf/obWGoBVq1Z1b3v77bdpbGzE6/Xy0ksvMXfuXOrq6rqb/Hm9Xt5++23Gjx+/3/l37NjBCSecwF133UV6ejplZWXMmzePJ554AoCtW7eyZ8+e/RK7Q2lrayMrK4tgMNhdzoFcddVV/OEPf6ClpYXJkyf3unwhosUIdWKiwO7ea31eRhqVOoVQ3Y5BikwIIYQQQ5kkWIfx1FNPcdlll+217vLLLz/oaILjxo3jvvvuo7i4mKamJr761a/idrt5+OGH+dznPkdJSQmGYfCVr3zlsOd+6623ugeZOPfcc/njH/9IZmYmp59+Ohs3buwe5OLnP/85wWCQyZMnM3HiRH7+8593lzF79mwuv/xyJk+ezOWXX87MmTOpqqri9NNPZ/LkycyaNYuzzz6bCy+8EIA77riDV155BYDvf//7lJSUMGnSJE466SSmTJnC1772NUzTpKSkhKuuuopHHnlkr5qrw/l//+//ccIJJzB37ty9krpXXnmFO+64o3v5iiuu4Omnn+bKK6/sddlCRJM95MWv3LBPrW9OkofdOhNH885BikwIIYQQQ5nqqvUYCmbOnKn3HS1u06ZNFBcXD1JEw9sjjzyy12AYxyP5/RFH63+/vYqTgstIvKN0v22v/OpznK6XEf/zPQMfmBBCCCGGBKXUCq31fiOxSQ2WEEIcgD3sI2i4D7itIzaf+HALeJsHNighhBBCDHmSYB3DbrzxxuO69kqIvnCaXoK2AydYOrnI+rdB+mEJIYQQYm/DIsEaSs0YxfAhvzeiL5ymj5DNc+BtkaHaO6q2DmRI/U5rzS9eWsef/3Y3LY31gx2OEEIIMSwN+QTL7XbT0NAgD8viiGitaWhowO0+cA2EEIfj0P6DJlipI8dhakVr5eYBjqp/ba5uw/PJvXy34U46Hr4U5O+uEEIIccSG/DxYubm5lJeXU1dXN9ihiGHG7XaTm5s72GGIYUhrjVv7MO1pB9w+ckQKlaRi1m0f4Mj617tbavmCbSEA2W3roGo1ZE8b3KCEEEKIYabfEyyl1HnAXwEb8G+t9RHNFuxwOCgsLOyX2IQQ4kD8IRMPfkx7zAG3j0zx8InOYFRz6cAG1s+2bd1EnlHHysIvU7Lz33hXPkfCMZRghU3NH9/cQlqomi+eOxvlPPD9Hc5avEESPY7BDkMcBa01ap9pIYQQw1O/NhFUStmA+4DzgQnA55VSE/rznEII0VfeQJgY5Uc7DvwA7rLbqHfkkNB5bA3Tnli3AoCkGZ9lpR5DaPt7gxxRdL22tpIV78/n+uWfpe0fZ0PQN9ghRdU9C7cx75cv8uFDP4TdHw52OFHV0hnknLvf47q7X8D3wf3gbRrskKLqoSW7KLnzLd5YvBQ+eRDCwcEOSQjRB/3dB2s2sF1rvVNrHQCeBi7p53MKIUSf+EJhPPjhIAkWQEdcPrFmK3Q2DmBk/aczECLZuxsTg7wxU1jDOBKbN0Kgc7BDi5o31lfzLfd8nCpMQtN62PzaYIcUNf5QmH++t4Mf2Z/kpD33o5+9Efxtgx1W1Dz1yR621rRzS+NfcL/9Q3j+S4MdUtT4Q2H+8vZWgv5OTlr4WZj/HXj/j4MdlhCiD/o7wcoBynosl0fWdVNK3aqUWq6UWi79rIQQQ4E3YCVYh2pCFk4eZb1p3DlAUfWvnXUdFKoqvLE52F0e6lOmYSMMlasGO7SoWbWzhhPYwMdpl1GpUzHXPDPYIUXNuvIWwoFOrnB+xA4zC9VRAxteGuywouadTbWcm9nOKbZ1eHHD9gVQu2mww4qK5aVNtPtD/GxsBQl0YCo7LPsnhAKDHZoQ4igN+iiCWut/aa1naq1npqenD3Y4QgiB1+/HpUJwiATLnTEagM6qLQMVVr8qbeigSFWhU6zE0TlyOgDhqrWDGVbUNLT7yfFuxql92Meexdvh6ejSJcdMU6zlu5uYpHbhNH38zX49TfYRsOV/gx1WVIRNzfrKFi5IsL7MuNH/fWvDltcHMaro+XhXI0rB5xI30qxjeXHUr8DXDLveH+zQhBBHqb8TrApgZI/l3Mg6IYQYsgKdVtMqwxl70H2ScrqGaj82EqzqZi8FqhpHupU4FhUUUa8TaN99bNRgbattZ5xRDkDRpBP5yJyILdR5zNTQrSlr5rR46/pcebNYpKfBrvfADA9yZH23q76DzkCYyeZGgu5UlunxtCUVw/aFgx1aVGyrbSM/JQZ33Tp2u8bydPN4sLlg57uDHZoQ4ij1d4L1CTBGKVWolHICVwOv9PM5hRCiT/y+DgBs7riD7lOQkUwlqQSPkaHaW5obiVM+nKn5AIzLSmCTmYeuXj/IkUXHttp2xqhyTEcsSVlFVCVNtTbsWTqocUXLnsZOZtp3QUIu48eM5n1vEQTaoW74fwGwobIFgEzvDoycaThsBhvd06B8+THRjG5rTTvjR7ihdhO+1EmsqvQSzp5xzA1UIsTxpF8TLK11CPgG8CawCXhWa72hP88phBB9FfS2A2BzHbwGKy8lhl1mJo7mXQMVVr/yN1q1HyohG4BR6XFs1vnEtWyDcGgwQ4uKbTVtTLCVo0YUg1Lk5uRTo9Kgas1ghxYV5U1ecqmG9LFMzk1itbZqIqlYPriBRUFpfScKE1fLTmwjxlOSk8gSbx6E/VA3vPthBUImpfUdzI5vADNIXME0QqamMnGq9bt5DA0yI8TxpN/7YGmtX9daj9Vaj9Ja/7q/zyeEEH3VlWA53AdPsNwOG7VdQ7VrPVCh9RvdGmm9HUmw3A4b9bFjsOsANGwbxMiiY0ddO0W2WlSqlXhMyklkTSifcOXqwQ0sCtp8QVq8QVKD1ZCUx4SsBPaQgc8Wb9XyDHMVzZ1MjmtDhbyQNpYZ+cm8Xp8V2bhycIPro131HYRMzQS3NRppzqhJAGxSo0GHoUa+kxZiOBr0QS6EEGKoCUWaCDo8B28iCNARV0CM2X5MDNVua6+23sRnda8LpE+03hwDzQSrmzpINRsgyeoWXJKTyDqzEKNxx7Afzryi2YsHH55gEyTl4XHaGDUige2OsVCxYrDD67OKZi8zYiOjDKeNYUJ2AjvCaYRdSVA5vBOsPY1WDVWuqgcgKWs0GQkulnoj3derVg9SZEKIvpAESwgh9hH2WzVYLk/8IfdTqUUA6Ibh3Q9La43HV2Mt9EiwEnInEtA2QlXrBimy6NBaY7ZUYGBCovXgOikngfW6EIWG6uF9feWNXnIiD+gkWX3oJmUnsjRQCLUbIfL7PFyVN3kZ74p8iZFSRHFWAqBoSJwIFcN7kJKKJivBSglWgyMWYlIozkrgwzoXxKQeM01YhTjeSIIlhBD7MP1WDZYr5tAJVmzWOADahvlIgq2+EGlmA15HEjjc3etHZSWzQ2fjrRjeNViNHQHSwpEakMRcAJJinNTFWfdvuD/Eljd1MlJFrq8rwcpJ5CNfPmhzWDczM01NVbOPPFsD2JwQO4KitDgcNsU2+1grgRzG/ZQqW3w47QaejnJIygOlmJCVwPa6DszMycP+d1OI45UkWEIIsQ8z8sBmdx18HiyAjLxxhLWipXzzQITVb2pafWSoRgIxmXutH5sRx1Y9EtswH0igqsXXo4Ynr3v9iOwCGlTysH+ILW/yUmjf+/qKsxLYaBZY66qH71xmde1+AmGTTF1nJceGgdNuMHpEPCuCeVY/pWE84XBFs5ecJA+qZU/3vZuQnUDI1DQkFFvXFvIPcpRCiCMlCZYQQuxDB6waLHWIebAARmWlUKHTCNXvGIiw+k1Nq49M1YQZl7XX+qK0OLbrkcR4K8HXOkjR9V1Fc48mdAk53euLs+JZH87DHOZNIMubvIx3N4PdDXEjAJiQlUAVKfjsCcO6CWR5kxeA5GB1d/NOgOLMeN5ttq51OCeQFU1espPc0LRnr+QYYLsxCszgsE4ghTheSYIlhBD7UMFIkyPnYWqwElyUqWycLcN7qPbqFqsGy56Us9d6p92gOT4y3Pcwnk+pKpJgmZ60ve6pVcuTB/VbhvV8SuXNnVYNVuJIUAqAxBgH2Yke9jhHQc3wbeJZHumjFOut6h6gBKx7t7otEe2MG9bXV9nsZVR8CPwt3QlWQWosHoeNFf7I9Q7jBFmI45UkWEIIsa+g9a05jkPXYCmlaPaMJMVXNqyHaq9vaSNdteJOzd1/Y0ax9W/txoENKooqW3zkGg2opL2vb0JkMmXDDA7roejLm7xk6bq9mj+ClYSsC+VBzUYww4MUXd9UNHtxEsTeWQOJn17f+Kx4NAZtieOG7SiX/lCY2jY/41xN1orI/bMZinGZ8XzQGAuOmGHdh06I45UkWEIIsQ8j2EkIG9idh93XlzQaj+6E1soBiKx/dNZbc2A5kvZPsFJzxtChXQSrh+9DXmWzlzxbA6pHDQhAfmosu2yF1sIwfUhv8wVp7gySGqqG5Py9thVnJbC0MwtCXmgYns1YK5q8FHtarIUe9298ptWMrsw12kpATHMwwuuT6hYfAAX2BmtFj/tXnBXP5ppO9IgJw7qGTojjlSRYQgixDyPciV+5erWvLVLD0zGMR9oLtXRNMpy137ZxmYls07n4hvH1VTZ1kkndXjUgYNUUODLGEcABNcOzGVZFs5dYvHiCzQeswVofjjy0D9N+ShXNXkriIv3/evTBSo93kRbnYmM4DwJt0Lx7kCI8ehWR/mXZeu8RIMG6d02dQbwpxVYTwWFcQy7E8UgSLCGE2Ic95CWg3IffEUjMnwxAU+nwfIAFMNoitW8JOfttG5cZzxZzJI6G4TtSYkdLPW7t7x6ivadx2clsJxc9TGuw9p4Da98EK57tOoewsg/bfjzlTV7GuputhX1qIIuz4vmoI/KlwDCs5alothKs1FA1OOPAk9y97dMaulHga4bWisEIUQhxlCTBEkKIfdjDXgKGp1f75o3Mo04nEKwavk3oXJ3V1puE7P225afGskONxO1vgI76AY6s70JhE2d7ubWwzwM6wISseNaH8jCHaQJS0ewlV+1fAwLWvbM7XNS5C4dlAqK1pqLJazWhU8Z+XwCMz4xnYWMqWhnDsolnV4IV663sngOry7hMaw6+jeFI0jwMr0+I45kkWEIIsQ+X2UnAdugBLrrkp8SwXefiatzaz1H1j7CpiQvUEjBiwJWw33aboehIGmstDMPhomva/GQTSQwPUINVnJXAJp2HrbMe2msHOLq+K2/q7DEH1t4JVtdgCZvJH5Y1WE2dQbzBMFnUQXwW2Bx7bR+XmUBLyEEwcXgmkJXNXkbEu7C1lO1X+5jocZCT5OGjtgxrxTBtwirE8UoSLCGE2IfH7CBgj+vVvnabQbW7iJTOncOyo319u58RNOL1jNjrG/Se7JkTrTfDMMGqbPaS3dWEbp8+WADjsxLYrLtqCYbfQ6w1B1YT2D0Qm7bf9uKsBD72ZkN7zbBLILv6KKWGavfqf9VlfKSWpz52zLDsY1be5CUn2QPNe/ZLsMBqArm6LmwlzjKSoBDDiiRYQgixD4/ZQdDRuwQLwJc0Brf2QktZP0bVP6pafGSpRkKx+w9w0SU7J58mHYe/cnjWEuSoeky7G2JS9tse57LTmjjeWhiGtSDlTV4K7Q37NTHrMiErnlWB4TmfUtccWHG+qgM27xw9Ig6bodhuK7KSFF/LQIfYJ+VNXsYmhPeaA6un8ZkJ7KjrIJwxSZoICjHMSIIlhBA9hMImcXRiOuN7fYwjUsPjrRx+3zJXNXvJVI0YSfsPcNFlbFYCW3UugWGYYFVEEqyek/DuKzc7m1qVOiwfYsubOsnStQd8QIeuyZS7RhIcXglWRbMXAxNHR9UBa7DcDhtFabGs8kd+d4dRLU/Y1FQ2eyn2NFsr9mneCdZcX2FT0xA7Bhp3QKBzYIMUQhw1SbCEEKKHNl+IOLzoA/RHOpjUoikANOxa019h9Zuq5g4yaMKdsv8DbJfxkZEEXU1bh91w0eVNXgptdRgphQfdp2tC3uE20EW7P0RTZ5DUYM1BE6zxWQm0EEebK2PY1dCVN3kpcrWizNABa7DAur53miP9lIZRglzd6iNkakY5InNgHaQGC2C7UQDaHJZNdIU4XvUpwVJK/VEptVkptVYp9aJSKimyvkAp5VVKrY687o9KtEII0c/avEHi8KJcva/BGp2XS7VOJjgMa7Da6iuwKxN36sETrMwEN7vt+ThDbcNuQuWyhg7yVA0kHzzBmhAZ6ELVb4OQfwCj65uKJi9xdOIOtew3yXCXOJed/NQYdtmLhl0NVnmTl6lxzdbCAWp4wEr+17R4MD0pw2ogiLJGqzYqm0i/uAMkWIVpsbjsBqt8XTV0w+f6hDje9bUG621gktZ6MrAV+HGPbTu01lMjr6/08TxCCDEg2ttbsCsTW0xir4/JTfawgzxcTVv6MbL+4W+0hjBXBxiivYtSikDyOGuhduNAhBU1bU01xGgvJBccdJ/irAQ2mfkoHYK64XMPyxo7Gdk9RPuBa7AAijMTWB0YCfVbIegdoOj6bk9jB5M9kQFKUkcdcJ/irHhA0Z40fljVYHUlWOmhGnDG7zUHVpeuUSCXNsVb82QNoyaQQhzv+pRgaa3f0lqHIotLgf3HwBVCiGGko60JALun900ElVLUxY4h3bsLwsH+Cq1f6K4aqUMkWADObKufma4ZPgmWaWrsLbuthUM0EcxN9lDmjGwfRs3oShs6KFJV1kLq6IPuV5yVwEed2cOqmZlpanY3dDLGUQs25wH7YIE1VDtAuXOUdW1meCDDPGrlTV6UgtjOMqv28SD9A8dnxrOxuh2dMXFYJZBCHO+i2QfrZuB/PZYLlVKrlFLvKaXmHewgpdStSqnlSqnldXV1UQxHCCGOnL+9GQBn7P7fKB/yuLSJOAiih8kDbBdne+QBPeHgg1wA5OfmUKlT8JWv7v+goqS2zU+2GZlE+RBNBJVSeDLG4sc1rB5id9V3UOyKNDFLOXAND1i1PBuG2UAX1a0+/CGTHLPKqn00bAfcLzvRTbzbzgYzD0JeaNgxsIEepbKmTjIT3Ngat0PamIPuV5yVQENHAG9KsVWDNcz6QApxvDpsgqWUWqCUWn+A1yU99vkpEAKeiKyqAvK01tOA7wBPKqUO+HWw1vpfWuuZWuuZ6enpfb8iIYTog0CHNdSzKzbpiI5zj5wGQPPOFdEOqd/4Q2GS/OXWJMMxqYfcd2xGPOvNQsyK1QMTXBSUN3WSr2qshYP0UeoyPjuJrToXPUwSELASrImuWkjIBWfMQfcrzkqgTKcTtMUMmxq60voOAFL9ZYdMHpVSTMxOYElbprVimMyHVd7kpTDJDk2lkHrwBKtroIsKZ5E1nHvzngGKUAjRF4dNsLTWZ2mtJx3g9TKAUupG4ELgGq2tr1a01n6tdUPk/QpgBzC2365CCCGiJNjeCIA7LumIjssdXUKndtG6a/gkWFYfnlq8cbkHbaLUZWJ2AuvMQmLadoG/bYAi7JuddR3kqVpCsZng8Bxy3+KsBNaHIyMJDpNagtL6DoqoPmj/pC65yR7i3E4qXKOGTQ3WroYOFCYxbXsOe32Tc5NYUJ+MNhzDKoGcGttkNdtMO/jjUddkyhvCw3MuMyGOV30dRfA84AfAxVrrzh7r05VStsj7ImAMsLMv5xJCiIGgO61O9THJmUd03IScZDbpPGw1w+MbdIBd9Z3kq1r0IZrPdYl3O6hPKEahoWp4XOPWmjYKbLXYUg9/fcWRkQRtviZoqxqA6PrGGwhT2eIlI1R2yP5XYNXyFGcmsFHnW00gTXOAojx6uxs6GWlvRoV9kFJ0yH0n5STSETLwJY0eFk08WzqD1Lb5mRITad6ZdvD7lxzrJCvRzeK2LFA2qFw1QFEKIfqir32w7gXigbf3GY79FGCtUmo18BzwFa11Yx/PJYQQ/U63WwmWPf7Imix7nDYq3GNIbd86LB5gAXbVtTJS1eIZcegH9C62HKsZJFWr+y+oKNpW206RUYs6zAM6wLjMeLbo4dNPaXdjBym04Q61HTbBAqsf1tKObAi0QfPuAYiwb3bVdzA7odlaOMz9m5xjjfhZ5Rlj/W4O8RrIbbVWDfBoFRlg5hBNBAGm5CaxvNIHGROgYnl/hyeEiIK+jiI4Wms9ct/h2LXWz2utJ0bWTddavxqdcIUQon+pzjqC2MHd+2Hau3hTJ+LRXmja1Q+RRV9T1S7cKogro3cJVmFBEVU6Bd/u4fGQV1NTTapuhPRxh93X7bDRnjIBEwMqVg5AdH2zq66Dwq4RBA8xSEKX4qwEVgeHTzOzHXXtTI059BDtXfJTY4h321nDWOioG/IJ5NaadgAyg+XW4DKuuEPuP2VkErsbOvFnTIeKVcPmCxwhjmfRHEVQCCGGPYevkTYj8bB9kg7EPXI6AM07h0cC0j3iYXpxr/afnJvIerOQcMXQb6bU7g+R0LrVWhgxsVfHFOVkskPlQfkn/RhZdGyubmOM0VUDcugEBKwEa4seiansQ74G0hsIU1rfwSR7GbgSDjpEexelFJNzE1nUHpkLrHxof/621rQR47QR07qzV7WPU0ZaX/bsco2zBrpo2N7fIQoh+kgSLCGE6METbKTTkXRUx+aMm0ZQ24ZNghXbEnlQ60UND8CErATW60Ji2kqH/EAX22vbGWtYkygzoncJZHFWPJ8Ei9Dly4d8LcH6ihZOjKmwJqBNKjjs/uMy4wkZLmpixkDZx/0fYB9sq23D1JAf3AkZk3r1ZceknETerE9B2z1DPsHaXtvO2HQPqm4zpI8/7P4lOYkoBZ8EI4l0xfAZSEeI45UkWEII0UNsqBm/M+Woji3OTWerzkUN8RoCgKaOAFmBUjqcaRDTu+uNddmpjx8eA11srWljoiol7Eo+7CTKXYqzElilR6OGQS3B+soWJtt3Q+ZkMA7/X7nbYWNCVgKrGWM9oIdDAxDl0dlY2YrCJLF1C2RO6tUxk3OS8IUNOtImD+kaSK01m6pamZvcDMEOyJ562GPi3Q7GjIhjUWOSlVBLgiXEkCcJlhBCRHgDYZJ1C2HP0SVYsS47u1zjSWvdOPRrQCpbmKh2EUibcETH2SLNIPUQf8hbX9HCdNsOjNzpvW7uOSU3iZVmpD/TEH5Ir23zUd/aSa5/B2RN6fVxM/KTWdBWAMFOqN3QfwH20co9TUz31GAEOyF7Wq+OmZaXBMBO13hrLqyQvx8jPHrlTV4aOgKc5CmzVvTy+qbkJrGqvA2dPVUGuhBiGJAESwghIurbvGSoJsz4nKMuoy11MrFmOzTuiGJk0bdpTzVjVTme/FlHdFxRfiG7zRH4dn7UT5FFx8bd1YxR5aicGb0+JiXWCSmj6TRih3SCtb6ihWK1G4fpg9yZvT5uen4ySwORZmZDuJng8t1NXJwSad458oReHZOd5CEnycPSQBGEA0N2II9VZc0AjA9vsWqjDjEHVk9TRibR2BGgLXWqNRR90Nd/QQoh+kwSLCGEiGiqLcOlQqikvKMuw1VgPRA2b1sarbD6ReuuldiUxp3f+wd0gKl5yazQY1HlHw/Z4bA7AyE8NSsxMCH3yBLIaQWprDFHo4dwgrVsZyNz7JEBPPJO7PVxM/KTqSCNTlf6kE2wGtr97Kzr4AT7dohJPewQ7T3NyE/m5bosa2GI9sNaXtqIx2Ejpe5jK3k0bL06burIJAA228eCGYSqNf0YpRCiryTBEkKIiKZKq9YpPqPgqMsoGD+Ndu2mZfuHUYoq+rTWuCqXWQsjZx/RsROzE1ijxuH21w/Z4eiX7WxkttqAVjbI730CAtZD+sehUVC7Efzt/RRh3yzeVs85sdshKR8Se1/bmp3oJjPBw1ZHMZQPzQRr+e4mQFPU9gkUnHxEo3nOKkhmQ3scobjsIXt9H+5o4Mw8wxrgIv+kXh83PjOeWKeNhR2RhHPP0P37IoSQBEsIIbp11JYCkJrTu3mhDmRibjLrdRGO6tXRCaofbKttZ3JwHc3xYyA27YiOddgMOjMitV5DtBbk/W11nGJbh86eBq74Izp2Rn4yK80xKG0Oyb4uDe1+tlU1MjW4GkafeUTHKqWYkZ/MEl8RNJVCe22/xNgXi7bUUuKsxtlZDUWnH9GxM/KtvpNViVNg94dDroa1stnL9tp2PpsQmR5hVO+vz24zmFGQwqIyDWnjrOsTQgxZkmAJIUSE2bgHAFdq/lGX4bLbqIidwIiOrUO2n8TSLeXMNjZjKzrlqI7PHDWVNu0hWDr0+mFprVm3aQtT1A6Msecd8fGj0+PY4iy2Jhwu/aAfIuyb97fVcYKxCWe4E0affcTHT8tL4p2OAmthz9BqxmqamgWbark1bb21YsyRXd+4zHjiXXZWMBHaqqBxZz9EefReX2dNDD07+AnEjoCs3g1w0eWEwhS21LThy5lj3Tsz3B9hCiGiQBIsIYSIcLftotlIAndCn8oJZU7HTojQEB3KvHbNm3hUgPjJFx7V8dML01hpjiGwa+h9i762vIXilveshfGfOeLjDUMxoSCXrUYR7B56CdYrqyu5xv0h2pUAo8444uNn5CezThcRsnmgdEk/RHj0VpU1U9fm47TAe5A/FxJzj+h4m6GYlp/May2RZnRD7P69traKWZk24krfhuILezW8fk8nFFo1dFvdJeBvhZr1/RGmECIKJMESQoiIEb5SGjy971R/MIlj5gBQv3noJSAN7X4Kahfit8VC/slHVcb0yEAXMc3bwNsc3QD76MWV5XzevojwiBIYcWRD0HeZU5TC+4Fx1oTDQ6gWsqHdz/Jt5ZzJMtSkz4LDfcRlTMpJxOF0URozacglWM+vLGeKvYz49p0w6fKjKmNWfjIL6hMxY9KHVA1kWWMnq8ua+fqItRDywdRrj7iMktxEXHaDdzojTZilmaAQQ5YkWEIIAdS3+SjQZfiSx/S5rOJx46nWyXhLh14fpTdW7uA842M6R18EdudRlZHocVCTONWacHgI9cMKhEy2rVnCBFWKbeYNRzRAQk9zilJZahajwv4hNVz7cyvKOVctxWn6YPLVR1WGw2YwsyCF9wLjrbmwOuqjHOXRafeHeHlVBd9P/xgMO0y49KjKmVGQDCjqUmcOqRqsZz4pQyk4sfUNSB8POdOPuAyX3ca0vCQWVNqtAU6G0PUJIfYmCZYQQgDbt28hQXnxZB9drUdPeSkxbFRjiK9f3ffAokhrTfMHDxGnfCSf/MU+leUpmkNQ2zB3LY5SdH33wspyLgm8TtjmgpLPHXU5E7MT2eyYiIkaMg+xgZDJo0t2cLvndUgvhrw5R13WiUWpzG+NzIc1RGqxnvmkDE+gkZNa58OUqyE29ajKmZ6XjNNusEpNgJYyaNod5UiPnDcQ5vFlu/lqQQ2u6hUw/eiT/xMKU9lY2Uog98QhOZCHEMIiCZYQQgBN26xhy0eMO7JhvQ9EKUVDUglpgQrobOxzedHy7sZKLvG9SH3ytCMenn1f00Zls1KPwbdtUXSC66Ng2OSVhYu43L4YY+ZN4Ek66rJshqK4cCQ7jMIhlIDsYUbHe+SEyuDUHxz1AzrAiaNSWauLCNlihsT1eQNh/rFoB3ekvYMRDsDc24+6LLfDxoy8ZF5qLrRWDIEE+ZEPS2nuDPIV/QzEZcCMG4+6rBMKUzA17IiZAp0NULMheoEKIaJGEiwhhACMqhUEsROXPzUq5anIBLedu4bGSG2mqVn92v3kqnqSzv5en8s7sSiVpeYE3PXrh0Q/rCeW7ua6zv+g7W7UvL5f35yiVKsfVtkng94Pq6kjwH1vreNnnufQ6eOPuvlcl0nZCbhdbnbGlEDp4NdA3vPONuI6Srmw82Wr5jHt6KdJAJg7OpU3a5MwPamw870oRXl06tv9/P3d7XwnbwcJ1Uvh5NvBGXPU5U3LS8ZhUywMTLRW7Hw3SpEKIaJJEiwhxHFPa01q01qq3KPA7opKmZkT5hLSBg2bBv8BFuDlpRu4vvMRGlOmYj+K0fX2NSLBTWn8dAzMQe9sX97Uyao3/8P5tk+wzbsd4tL7XOacolSWmJNQYR+UDW6S/Lv/beaLoafJCFejLvjzEY8+ty+7zWBWQTLv+cdB3eZBnQ9rfUULD7y/nQdSnsRweOCcX/W5zLmj09AYVKbOgR3vDFozOq01d7y8Hmeoja913GcNujKzj01znTYm5ybxdoUd0sbCDkmwhBiK+vRXWil1p1KqQim1OvL6TI9tP1ZKbVdKbVFKndv3UIUQon9sq6ijRG/Fm330/Vr2VVKYxQZdgCpbFrUyj1Zlsxfe+inJqp2kK+7p8wN6l8QxJ+LXDsK73o9KeUcjGDb51VML+bl6kED6JNTJR9+8rKcJ2QlscJYQUnbYvjAqZR6NV9ZUUr3yNb5km2/13Sk4upEf93XiqFRebhtrLex4JyplHql2f4jvPLua293zGdOxAs7+JcRn9LnckpxE4l12PmIKdNQO2nDmz3xSxuvrqngm60nsnbVwyb1HPbBMTyePTmNdeTP+vFOsLzeG0EiXQghLNP6XvVtrPTXyeh1AKTUBuBqYCJwH/F0pZYvCuYQQIup2rHwHlwqROumsqJWZ6HGw3TWB9NYNEA5GrdwjFQiZPP/wn7iMRbTP/AZG9pSolT1rdA4rzDH4B7Ef1u9fXc1Xqu8g0R7E+bl/g80RlXJthmJyYTZrVfGg1RKsr2jhX8//j3tdf7dqP877bdTKnjs6jQ26AJ8zFba9HbVyeytsam57ehVF9Yv4mn4aJl3Rp75JPdltBnNGpfJkfaSp4SAkkB/uqOeOlzfw5xFvMrp+IZz1S8iZEZWyTxmbhqlhjWs6hLwwBL7EEULsrb+aCF4CPK219mutdwHbgb71qBZCiH5i2/4WAeykTTw9quV2jJiBS/vQ1YPzDbrWmoce/w+3Nv+V+tSZJJ7/i6iWP6cohQ/NicQ0boKOhqiW3Rv3L9zAKSu+xRRjF44rHoARxVEtf96YdN72T4SaddBWE9WyD2dHXTs/fegVHjZ+RYzHjbr6cXDGRq38CVkJpMd7WOOeATsWghmOWtmHY5qan764Dt+Whdzn/BsqZwZc9Nc+Ddyxr7mjUlnV7CaQOn7AE6z1FS3c+p8V3B73Npe3/scaUv+kb0at/Cm5ScS77bzaPMoa0l76YQkx5EQjwfqGUmqtUuohpVRyZF0OUNZjn/LIuv0opW5VSi1XSi2vq6uLQjhCCNF7Xn+IcS1L2BU/E1zxUS07fsxcABo3D3w/LNPU/OOp57hm149oi8kl7Yv/BZs9qudIjXNRlnyCtTCAD3laa+5/ex3jF32Vk23r0Rf/DYovjPp5ThuXzvvmZGthAB/S11e08IN//Jf7w3eS4tbYbngFUvo+AXZPSilOG5fO863F4G2CylVRLf9gAiGT7z+3ltoVL/Ow+y8YI8bCNf8FV1xUzzN3dBoAOxNmw+6PINAZ1fIP5uNdjXz+gY/4imM+X/U/CBMugUvui2ryaLcZnDw6jQU7O9C5swatiacQ4uAOm2AppRYopdYf4HUJ8A9gFDAVqAL+fKQBaK3/pbWeqbWemZ7e947JQghxJFasXEq+qsE2/oKol10yYQKVOoWOHQM7CETY1Dz4+KNcu+WbhN1JpH5lPsSk9Mu5MsbPoUnHE9zyZr+Uv69AyOT3/13EiYuv5xTbWswL/4ox/bp+OVd+aizelGJajaQBe4hdtKWWP//rIR42f0q6R2G74WXI6PvcbAdy+rgRvOWbgFbGgDQTbGj3c+2/l+JZ8zD/dv4Fe0Yx6rqXwJN82GOP1OgRceQkeXi9cyKE/QMyXPuLq8q58cEP+ZXjEb4RetQa7fHyB6P+xQZYtatVLT4as06FqjXQWhn1cwghjt5hEyyt9Vla60kHeL2sta7RWoe11ibwAJ82A6wARvYoJjeyTgghhpSWlS8BkH/SZVEve1R6HOuN8cTXroh62QfT6gvy7/t+y/U7vksgJovEry1AJR6wAUFUnFacxXtmCea2BWCa/XYegLo2P7/8+8Nct+GLFNsr4aonsM+8oV/Pecq4DN4NTUJvXwDhUL+dxzQ1972zjQ8f+wUPqP+HJyUb+60LISt6feb2NXdMGu1GApWxE2B7/yZYm6tbufLed7i68rf8yvEwxpizUDfOh7gR/XI+pRRnT8jg4YostCMWNr/WL+cBK+m/4+X1/PaZRTwX8zsuCf4P5n4brng4an0C93XqOOsL6YXMtFZseb1fziOEODp9HUUwq8fiZUBXR4NXgKuVUi6lVCEwBvi4L+cSQohoC4RMCusWsMdTjCN55OEPOEJKKRpTZ5AcqoXGXVEvf1/bKht458838OWG39OcOpW0b72DSszt13POKkhhmTEdl78Rqlb323k+3F7HU//3fe5s+D5JsR6ct7yFURz9Wsd9nTYunddDM1Hexn6rBalu8fHVB95m7Ltf5if2J1Hjzsdx60JIzu+X83VJcDuYkZ/MwtAUqFgJrVVRP4fWmseW7uZ79z3NP30/4DJjMZz6Q/j801FvFrivcyZk0BayU51xCmye3y/9zMqbOrn6Xx9RuuwV3o37GcV6J1z2Lzj7rqiN1nkgOUkeJmYn8MyuGKv56GZJsIQYSvr66f+DUmqdUmotcDpwO4DWegPwLLAReAP4utZ64HrQCiFEL6xavZwJ7MI79pJ+O4djzBkANG1Y0G/n0Frz8rsf0PHPc7k0OJ+KCV8k4+tv9EvTq305bAbhUWcRwkBvfDXq5QdCJn9/aRHh/1zGt8KP4i08h9hvftCvNTs9nTgqlZXOGfiVGza+HPXyX19XxW/v/jO/qvwSZ9jXoM/7HbarHwd3YtTPdSBnjB/Boy1TAQ0bXoxq2XVtfr708FKqXv01L9p+QpGnA3Xtc3D6T8Do/4GFZxWmkOhx8LY+ATrqYE/05jPTWvPEst1cdvebXFXzF/7j/D2xKVmoWxfBlKuidp5DOXdiJivLmuksPBd2vQ/+tgE5rxDi8PqUYGmtr9Nal2itJ2utL9ZaV/XY9mut9Sit9Tit9f/6HqoQQkRX48dPA1Bwyhf67RzjJk6nWifTsbl/5lJq7vDz2N9/xZmLPssYo5KWCx8g58q/9FvTpAM5YeIYPgxPJLD2v1Gd1HXNnib+/uefc92qq5lt307gvD+RcMNT4EmK2jkOx2W3ccakAhaZU9CbXo1aLUhTR4CfPrkY77Nf4q/8gYT0XGxfXoSa89WoDohwOBdMzmKHzqEudiysfz4qZWqteWFlOV/+yxN8e/fX+YHjGezF52N8fRmMjt5UCIfjsBmcMX4E/6wsQttcUUsgy5s6ufbBZcx/+Wled/yQK9VCa5TAW96B9LFROUdvnDcpE63hQ10CZhAqVw/YuYUQhxb9npfimKS1xhsM0+EP0xkI4Q+ZmFpjmmBq3f1M5bArnDaDWJedBLcDt8NADeDDghC95Q+FGV37Fjs9JRSl9l9TrOLsRF5TJZxZ/aHVRymKzYaWrd1M4KWvc725nIqUWWRd/zBGPzR1PJwzxo/g9/okTmn7J1Su7PN8P52BEP9+9T0mr/kltxlraMyYQ/zn/wnJBdEJ+AhdMjWbx1bO4dyOZbB9AYw996jL0lrz8qoKlr76b243HybN3kZ43g9xnfK9qExCe6Ryk2OYXZjCCw0n8uWKR6FxZ59GLNzT0MkvXlzBhF3/4WnHi9g8cXDhQ6iJnx3QxLHLBSVZvLiqguoxZ5O19lmr6Z4z5qjKMk3Nkx/v4e+vf8x31BNc4XwXnTQadcljkHdClCM/vDEj4ijOSuDhXXAWWCNBFs4b8DiEEPuTBOs4orWm3R+iqaWN9sYqOppr8Lc24G9vJtTZRNjbAr5WlL8Ve7ANd7gdt9mJzQxg00GcBHESwqWCJBBGowhjENYGYQxC2GjHQ42OoY0YWnUMbSqOFnsaXk8mRlIOntQ8ktJzyE2JITc5hoK0WOJc8msoBt6KT5ZyEmVsLb6pX89jMxTNGScRV/M+ZuUajNxpfS6zpTPAq0/dx3l7/kKC8lI55w5yzrm9X/t8HEpyrJOOos8Q3PMgttVPYfQhwVq8qYINz/+GW4LPYthteM/8PSkn3jpo1wZwQlEq3405iWb9OEkfP3DUCdaehk7ufe4NLiz/C7+zrcM7ogTbZfdC9tToBnyEPjsth7tfmMWtnidQy/4J5//+iMsIhU0e+mAXH739PHcYD1HoqEIXX4K64E/9NpBFb5w2Lp3MBDcPB87gJ/7XrFq6oxh1cl15C3e8tJYxVS/zpusZ4nQHnPhN1Ok/BYenHyI/PKUUV88ayS9e2UAgNRtnP/aBFEIcGXmyPQYEQ2EaGmpoqd5DR2Ml3uYaQq216I46DG8DLn8jscFGEsxmkmkjT3kPWV6nisFrxOK3xxOwxaJtcWB3gc2FsrsI252EbQ4MBYY2cegQLm2idIjkQBv2QBu2YBX2QDuuUAs2HYJOrFcltGs3O3Q2W3Q2r5vZtMYVYWSVkJE3jkm5SUzMTiAtzjUgPztx/Gpd/gxhVL82D+ySNv0igq//kcZlT5HRxwTrvU9Wo17/Ltfq5VTFjUdf8yDZ2ZOiFOnRu/CE8by6aw4Xr3wC4/SfHPGw8DWtPp597inOK/0j84wKGvPPJeXyv0A/D9LRGzZDcdnMAh5Zchrf3v4CqmEHpI7q9fEd/hD/Wrgex9J7+JV6GVxuzLP+gGf2lwakL9LhXDA5i9/+L4OPYk/npJX/sQahOIL79+H2eu59eTFfaL6fh21LCSUWwIXPo8YMXHPAg7HbDK6cNZK/vePle5ljcS77J0y9ptcJe0tnkD+9tYUVH7/Hb52PMsWxBZ17IuqCv/Tb8PlH4tKpOfzm9U1st41igjQRFGLIkARriGtvb6W+spSWmj10NpQTbK5AtVXj6KwhLlBHUriedN1EpgqSuc+xIQxaVSLt9mS8Mcm0uQto8aSh4tKxxaXjTByBJzGd+IQUYhOSMWKSwBlPjGFwdA0oDsA0obMBWiugtQLdXIajdjujajYxtnE7Hu8S8AOl0Lorhg1mAS/pfCrcYyBrCplFJUzOS2NybiKxUtMlosQXCDG2/m1K46YxKinr8Af00ckl41gyv4TpW14G83dHVRvT0OZl4WO/4fyaB3CoMFWzf0bWubf3yxw7R+Os4gxuirmCz/qXoD9+AHXaD3t1nD8U5pkFH5Ly0W/5pvqAFk8WgUueJmXC+f0b8BG68aQCLl18Nl9V83G9fQdc/cRhj9Fa88rqcta89k++FHqCbKMR7/jP4rngdxCfMQBR906828EXTy7klwvO5E3X27DkL3DOrw57XFljJ39+dTlF2x7kQfv/cDo0+pQfY597Gzjc/R94L11/Yj4PLt7J487PcXPNr2H1E4etxQqGTZ5dXsbjb37IF4NPcpdzMTomFc65HzXl6kFp7nggiTEOLp6SzVvrsplgLAZfy4ANkCKEOLih8T/zcSoYClFTWUZDxXY663YRbtyDra0cT0cliYFqUs16Euhg34FsvbhoNFJpd6bTED+Z6thMVHwWjuQcYpKzSEjPJiktB2dsMimGQf9ML9pLhgFx6dYreyoKcEVegDXqUf1WqF6Hq2w1k8pXMavxXeyh/0EZ+PY42KzzeEkX0BA7DnvWBNJHTWVCUR7jMuKx2wav2ZA4MlprTG312evqt6cUGEqhsJq7GIoB6bO3dsUHzFaVbJnwlX4/F1gPQZvTzuH0xj8Q2v0R9sK5vT42bGreXPgW2R/8nCvZwp7kE8i85n6y0o++n0x/sBmKz5x5JgtencapH/wNx4wbIH7fr30+ZZqaBau2Uv/Gb7kq8BrKUDTPvI2ks3941H1k+tOIBDcXnTyVvyy5jB9vfsoaFnv8Zw64r9aaxVtrWTz/CS5tfoRLjN10pE+BCx/HU9D7ez+QbpxbwINLRvG2+zzO+ug+1PiLDtqvqLrFxz8XrMVY/Tg/N14k1d5KeMJl2M76BaQUDnDkh5cW5+KWU4q4a0GIz+ZMJ2nhL2HMOQdMck1TM39dFQ+/sZRz2p7nZftb2J0KdcI3UfO+MyAjcx6p607M58+rCsCJNelw4SmDHdJxr6vfekt7J22tTXjbWgh6Wwl2thD2thL2taH91ssItKMCHRihTgj5MMJ+bGYAuxnArgPYzSB2HcChAzgIYtMhFCaG1ig0Bqb1fygmBhoDDWjC2AgrgzA2TGyElQ1TWe/NrvfKTshwEbK5CRtutN2NaXej7R6UwwMON4bDg+GMwebyYHPGYHfFYnfH4nTH4vTE4fTE4vbE4nTHYbhiwO4eMl9ADCalozjiU1/NnDlTL1++fLDDiBqtNfV11dTv2UxH1VZCdTswWsvwdFaSFKxhhFmHS+09cWUrsdTbRtDqysIfkwkJ2TiSsolJHUniiJGkZhXgjE06tn95wyFo2A5Va/CWrcK3ZxWehg24w58OQVulU9jOSOpjRhFKHo1nRCGpuWPJzR9DTmoChnEM/3y6aA3hIGbQi9/bid/Xgc/bTtDXScDbSdDfSSjyCge8mAEv4aAXFfKhgj6MsA8V9qFCfpQZBDOEMoMoM4QyQxg6GPk3jKFDGDqETYew6TA2Qth1CMP6s939B12hMfSn76278Ol71f2+53YiR1v/TZjd/02o7uWubZ/+22MfdZD1kf9cTPZ5KYNks5F8XUXoO1twJw5M/5B31+xg1gsn0TLydHK+9HSvjlm3ZTvlL/yMc3xv0GFLoOO0X5I178Yh+/kPm5qv3vMM9zR/A7Kn477xpf2SpVDY5P1V66l/+6+c75tPrPJRV3gpGZf+GvpxQuRoaPeHuOyed7m343uMdjZg+/yTez3M+oJhFq7ezq7FT3FW83OMN8po9+QQc/4vMSZdPqj9yHrj5dUV/OTpj3g//qekOE3UVY9B3pzu7RsrW5n//ofEbHyaL6i3SVbt+HNPwnX+r/o8sEl/8wXDXP6PD3E3bOJZ+8+xpY2BKx/tburZ7g/x8qpyPly8gLktr3GFfTEOwlDyOdSZP4ekvEG+goMzTc28u15gMV/EOPWHcPqPBzukY0oobNLY7qexsZ72xko6m+vwtdRhdjaCtwnD14Td34wr2Iw71EpcuJV43UYi7cQqf6/O4cOJDxdB5SKkHAQNJyHlJGQ4CSsnYcNJ2HARtjnBsIOygTLQyvqbojHQkf8Lu9YpHUaZIWvkUx3qfq90CGVG/l83gzi0H7vpx2H6ceoATvy4dAA3ARzq6EZN9Vml4FduAoaLoOHeK5Ez7W5MuwcdeeHwoJwetD0GHFZ3FMPmxLA7MOwuDIeLcEIuOaMmkxw78IMBHYpSaoXWeuZ+6yXB6rvWxlqqdq6ltWIrodrt2Ft2keAtIyNUSZLq2GvfOpJptGfQ4ckiFJ+LLTmfmBEFJGWNIiWnEFfs0Pt2bEjQ2mpiWLOR5t1raduzFnvDZtI6d+Ek0L1bSBvUkEqdPROfK5WwJw3i0nEmjMCTnElMYjoxcYnExiUSG5+I4YoFR2zfH3y0hnAAgl4I+SHkJRzwEvB1EvB1EPB5uxOecMBLyO/FDPgwg53ooA8z6I0c67O+wQpZCZAR9mML+7CbkT+AOoBTW38EXfixcfSfX6924sNJAAdhZY9822XvfpmRl1Y2TCPy3nCgu9/bMZUNrezWA7+yRozUKJQyQKlIbVTk38iraxs9Uyyt0ZgorUGboCPv2fu90tYLtPUz15EUTJugdff7rn8NHY4cE4584/fp+47sk5h03Z/6dt+PgGlqnvrtzXw++CLhL72DI3f6Qfctr21gxfN/4bTqh4hVPnYXXUPRFf8PFTP0/z7srGvnn3//I7/Vf6Ujvgjb6T8gnDGFstom9mz4iNgdr3OCuQqb0lTlnEvWBT/Blj15sMPute21bdz2r/n8LXgnhaqKyrS5VMdPpKm1A2fDRmbp9bhVkKa40cSf+X3sky8f0CHz++qehdt4ZcE7POb6I1nUUZ48mzJ7Po3NTRT6tzHB2I2Jwld0DjGnfQdGnjBkE/59lTd1cu2/l5HfvIz7XX/FqQOUJp3IjmAqgdZapqqt5Kp6woYTNe1ajJO+cUR97QbTtf9exk+rvklxZjzc0j9TQhxLtNY0dgSoaWyipWYP7fWVBFuq0O21GJ11OLz1xAQbSAg1kKRbSKd5vy/Eu4QxaFdxdNgS8NkT8TsSCbmSMN3JKE8SNk8C9sjLEZOAMyYRZ0wC7rgk3LGJGO74Ifk3Ihg28fr9+Ds78HZ24Pd1EPB2EPRZL+sL3A50wIsZ6EQHOiHUiYo8yxghL0bIhz3sxRb24dA+HGFf93OMS/tx48eDH7cKHjaeh0Pnkn7l/3Hh5OwBuPrekwQrCloba6jYtorW3evQdZuJbdlOVqCUNJq79wlrRY0xgkZXLt74fHRyIa6MMSTmjCMjbxyemNjBu4BjkRmG1graq7ZTX76VjpodhBt3E9NZQUzAGtgjjs7DFuPHaVWjR2o8tLLqZrpqPJTWGIQxdBgbYWw6HKkP6ap8N/t0GX5tx48z8q2PE79yElQugspJ0HARNtyEbS5MmwvTZlXja7vbqop3eDCcnkg1vlWFb3PF4HDF4HDH4HR5cHpicbljcbo/XWe3yRD6A+3tFVuY8so52DxJpH7r3f0GEiivqmbdq/cys+I/pKsWdiXMZsRVdxObM/iDWByJLdVtPPqfB7il/X4KjZq9tjXa0mgpupiRZ38N+4gxgxRh31S3+Pi/+SvJ3PQQl6j3KTRqCGFQ58xDF8wjc+51GHmzh03isa/F2+r419vrmFP1H85Qyxmp6gnbXHQkjSV58gV4plwGyf03tUF/avUFuWfBNhav2sAX/M8wz1jPCKOVkDMenTmZpGmXoMZfOKBzrUXD3xdtx//2b7jN8QLqBzuPeJCZY4nWmvr2AOV1jTRVl+Kt20OouRyjrRJXRyWx/lpSwnVk0kCyat/v+DAGbUYibfYUfK5Ugp50dGw6RlwGzsQMYpJGEJc8gtjEdIzYFHAlDPna6aFKa40/ZOIPhPD5Ogj7rcQtHAwQCvoJh4KEg37MoJ9OZyqFYyYxImHo9O8ESbCOyq4Ny6he+hye+rXkejfvlUh1aDcVjnxa44sIpYzFlTWBlJHjySoYj9M1tG7+8S7g89JQW0FTXSXe5lr83naC3jZC3nbC/nZUoB1b2Ic2Q2gzDGbY+leHMbSJTZmAgWlYtTVaGVatTqR2Rxs9/rW7UQ43RNovGw631W7Z4cHm8uBwxWB3eXC4YnG6Pbjcsbg8MbicdmKcdtx2Q/qVHeP++cij3Ljru7Q7UmgruZFQchG1VWXYdi9mSseHuFWQHXEzSDr/p6ROPHOwwz1qYVPz0bYq6rYsI8W3m4T4BAqKZ5CcV3LMPIwEQib17X5cKkxKfAzqGLmuLsGwiS8YJs5lPya/jGn3h3DYFC774I/k2Fdbqtv44V8f4iXXHXD5g1ByxWCH1K9aOoOUNbRRV7mL9urthBpKsbXsJrajnNRgJTnUkK5a9zuuVSXQ5kyn05NJKC4bIzEHd0oucem5JKTm4EjMhJjUITG6pxgeJME6Ch8/fzcz1/6SMlsutXHFBNMmEJM7kczR08jILULJB1AIcYTCpuaZF5+nZO2vKVE7u9c3kcDuzHPJOe1m0sefNIgRCiGGG601p/1hAa/6v0jCuFPgqscHO6Q+6/CH2FXXTsWe7bRXbMKs24q7ZQfJ/nKyzRpyVR3OHn2Ewhg02jNo9+QQTMjDlpyHJz2PhBEFxKbnoRJyhuQAOmJ4kwTrKHS0NaO1Ji5h6Pd7EEIML22+IOs3b8HeWUdeThYZeeOGbZMyIcTg+78FW3EvuosvO15H3bZ2SMwhdzhaayqaveysbqRx93r8VZuxN20nrr2UnFAZRaqKmB4DRXSqGJrcI/HF56OS83GlF5GYPZa4zFHW9Q7Bvkzi2HawBEuGaT+E2PikwQ5BCHGMinc7OHHq8OpbJYQYuq6elceV75zNrXo+avnDcObPBzukvbT7Q2ypaqWsdAvtu9dgq9tActs2RuvdzFVV2JT1hb+JosmRQXtiETWpp+LJGkdK/iScGeOJiRtBjHwRJYYBSbCEEEIIIYa5zEQ3c6ZPZcHaGZy19H6MmTcPytQHYVOzp7GTbXsqadi1mnDVemKbt5AT2Ml4tYcZytu9b6Mrm46kcVRlXk78yEkkjJyIkTqaVIeH1AGPXIjokQRLCCGEEOIY8L1zx3HDuus4Nfh9HK/dhvH5Z/p1UJnmzgCbK5up3LmRzvI1OOo3kdqxjbF6N+cYdd37eY1YmpLG0JJ+GeH8KSQVTENlTCDFFc/xO96hOJZJgiWEEEIIcQwYEe/mlkvO5HfPX8kvtj1G6NXbsF90d59HxfOHwuys66B0zx6aS1ejq9cT37KVvNAupqhy5ihrPkoTgwbPSLzJ06nOnkxK0TScOSV4EkfikaZ94jgiCZYQQgghxDHis9Nzaer4Dve92cLXVz1K0+7VxF34GxyFcw85kI7WmubOIKX17dRU7Ka1cjPB2q04mnaS6d/JOLWHYtXcvX+bLYmW1LE0jDiVhPwpxBdMxUgfT7rDMwBXKcTQ1qdRBJVSzwDjIotJQLPWeqpSqgDYBGyJbFuqtf7K4cobaqMICiGEEEIMR+9vqWXxC3/nK75/k6raaDBSKY+dRKsnF689EQ0EA35MfxseXz0xwQZSzEZGqjrilK+7nKBy0OgpJJBajCt3MsmF03Bkl0DciMG7OCGGiH4fpl0p9WegRWt9VyTBek1rfURDZEmCJYQQQggRHWFTs2TTbhqXPc2I2g8p8G8mXTfgJNS9TxA7rbYUOl1pmDHpkFyAJ3MMSbnFODPGQkLuMTM5uBDR1q/DtCtrivcrgTOiUZ4QQgghhOgbm6E4dWIBTPzRpyu1hmCn9d5w4LA5SFVKRu0TIoqi9ZXEPKBGa72tx7pCpdQqpdR7Sql5BztQKXWrUmq5Ump5XV3dwXYTQgghhBB9pRQ4Y62X3SkTnAvRDw5bg6WUWgBkHmDTT7XWL0fefx54qse2KiBPa92glJoBvKSUmqi1bt23EK31v4B/gdVE8EgvQAghhBBCCCGGisMmWFrrsw61XSllBz4LzOhxjB/wR96vUErtAMYC0sFKCCGEEEIIccyKRhPBs4DNWuvyrhVKqXSllC3yvggY8//bu7cQq+oojuPfH2NaGjSZIOVYGklhUikRRiFiQVri9BA1YWRWhBBkUYSTD1HQQxTdqIRQ00C0MKshMBIT6kXLSTDTLNG84TXTIsELrh72XzyNc7TLbvbM3r8PDOf8/3vPmQWLddhrzv+/D7A5h79lZmZmZmbWbeVxk4sW/ro8EGAM8LykY8AJYFpEHDjbC7W3t++XtDWHmPI0ANhfdBDWZZzv6nCuq8O5rhbnuzqc62rpjvm+rLPJ3G7TXlaSVnd2+0UrJ+e7Opzr6nCuq8X5rg7nulp6Ur79xQZmZmZmZmY5cYNlZmZmZmaWEzdYZ/dO0QFYl3K+q8O5rg7nulqc7+pwrqulx+Tbe7DMzMzMzMxy4k+wzMzMzMzMcuIGy8zMzMzMLCdusM5A0nhJGyVtkjSj6HgsP5IGS1ohab2k7yVNT/P9JS2T9FN6vLDoWC0fkhokrZH0aRoPlbQq1ff7knoXHaPlQ1KjpMWSfpC0QdKNru1ykvREeg9fJ2mhpHNd2+Uhaa6kvZLW1cx1WsvKvJHyvlbSqOIit3+qTq5fSu/jayV9JKmx5lhryvVGSbcVEvQZuMGqQ1ID8BYwARgO3CtpeLFRWY6OA09GxHBgNPBoyu8MYHlEDAOWp7GVw3RgQ834ReDViLgC+BV4qJCo7P/wOvBZRFwFXEuWd9d2yUgaBDwGXB8RI4AGoAXXdpnMA8Z3mKtXyxOAYennEWBWF8Vo+ZjH6bleBoyIiGuAH4FWgHS91gJcnX7n7XTd3m24warvBmBTRGyOiKPAIqC54JgsJxGxKyK+Tc9/J7sAG0SW4/nptPnAnYUEaLmS1ATcAcxOYwHjgMXpFOe6JCRdAIwB5gBExNGIOIhru6x6AedJ6gX0BXbh2i6NiPgSONBhul4tNwPvRWYl0Cjp4i4J1P6zznIdEZ9HxPE0XAk0pefNwKKIOBIRW4BNZNft3YYbrPoGAdtrxjvSnJWMpCHASGAVMDAidqVDu4GBRcVluXoNeBo4kcYXAQdr3rhd3+UxFNgHvJuWhM6W1A/XdulExE7gZWAbWWN1CGjHtV129WrZ123l9iCwND3v9rl2g2WVJul84EPg8Yj4rfZYZN9h4O8x6OEkTQT2RkR70bFYl+gFjAJmRcRI4A86LAd0bZdD2nvTTNZUXwL04/QlRlZiruVqkDSTbGvHgqJj+bvcYNW3ExhcM25Kc1YSks4ha64WRMSSNL3n5JKC9Li3qPgsNzcBkyT9TLbUdxzZHp3GtKwIXN9lsgPYERGr0ngxWcPl2i6fW4EtEbEvIo4BS8jq3bVdbvVq2ddtJSTpAWAiMDlOfXlvt8+1G6z6vgGGpbsR9SbbTNdWcEyWk7QHZw6wISJeqTnUBkxJz6cAn3R1bJaviGiNiKaIGEJWx19ExGRgBXBXOs25LomI2A1sl3RlmroFWI9ru4y2AaMl9U3v6Sdz7dout3q13Abcn+4mOBo4VLOU0HogSePJlvdPiojDNYfagBZJfSQNJbuxyddFxFiPTjWD1pGk28n2bjQAcyPihWIjsrxIuhn4CviOU/tyniHbh/UBcCmwFbg7IjpusLUeStJY4KmImCjpcrJPtPoDa4D7IuJIgeFZTiRdR3ZDk97AZmAq2T8UXdslI+k54B6y5UNrgIfJ9mK4tktA0kJgLDAA2AM8C3xMJ7Wcmuw3yZaJHgamRsTqAsK2f6FOrluBPsAv6bSVETEtnT+TbF/WcbJtHks7vmaR3GCZmZmZmZnlxEsEzczMzMzMcuIGy8zMzMzMLCdusMzMzMzMzHLiBsvMzMzMzCwnbrDMzMzMzMxy4gbLzMzMzMwsJ26wzMzMzMzMcvIn/06p1R3E2+UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
54True80.070.0122bAP.soma.v0.008569.17e-07
55True80.070.0122Step1.soma.v0.06171.65e-06
56True80.070.0122Step3.soma.v0.0619.18e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "54 True 8 0.07 0.0122 bAP.soma.v \n", + "55 True 8 0.07 0.0122 Step1.soma.v \n", + "56 True 8 0.07 0.0122 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "54 0.00856 9.17e-07 \n", + "55 0.0617 1.65e-06 \n", + "56 0.061 9.18e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACwcklEQVR4nOzdeXxU9b3/8ddnspOQBMK+Bq0gq6iAWsGtvS6ta21F6+7PerW1Va9LW9sqtdd7e62trcut1draqxZx37V1Q8W6gSIiiIKEfQlbFsg2M5/fH+cQJyEJwUyYhLyfj8c8OHPO93zP55yTCfPJdznm7oiIiIiIiEjbRVIdgIiIiIiIyJ5CCZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwRkQ7CzIrNzM0sPdWx7OnM7Dwzm5XqODoaM5tiZotSHYeISGemBEtERDo1M5tmZnVmVpnwuibVcXVG7v6Gu49Idr1mdoKZzQ/vzb/MbFSyjyEi0lEowRIRSRK1PKXUDHfPS3jdlOqAkqkz/2yZ2T7AA8DFQCHwNPBUZz4nEZGWKMESEWkDMysxsx+b2Txgq5mlm9nB4V/pt5jZh2Z2REL5mWb232b2rpmVm9mTZtazmbrPN7OFZlZhZp+b2b832n6Smc0N61liZseG6wvM7B4zW2Nmq8zsP80sbSfnsbeZvWJmG81sg5k9YGaFCds2mdkB4fsBZla6/bzM7EQz+zg835lmNrLR9bnKzOaZWZmZzTCz7F2/0rvOzH4SXpcKM1tgZqc0U87M7BYzWx9ey4/MbEy4LcvMbjaz5Wa2zszuNLOcVh7/3rD8i2EMr5nZ0ITtfzCzFeEx55jZlIRt08zsETO738zKgfPMbJKZvRVe5zVmdruZZSbs42b2fTP7LDzer8J796/wGA8llm8m5iPMbGVrzm8XHAO84e6z3D0K/A8wEDg8yccREekQlGCJiLTdGcA3Cf463xd4FvhPoCdwFfComfVOKH8OcAHQH4gCtzZT73rgeCAfOB+4JSHJmQT8H3B1eNzDgJJwv3vDer8C7A8cDVy4k3Mw4L+BAcBIYDAwDcDdlwA/Bu43s27AX4G/uftMMxsOTAcuB3oDzwFPN/oifxpwLDAMGAec12QAZpPD5KG51+SdnENjS4ApQAHwyzD+/k2UO5rg+g0Py54GbAy3/TpcP57geg4ErtuFGM4EfgX0AuYStORs915Yb0/g78DDjZLPk4BHCO7vA0AMuCKs6xDga8D3Gx3vGOBA4GDgGuAu4CyC+zmG4Gf1SwsT5ebuz/+2tGujZQvjERHZ4yjBEhFpu1vdfYW7VxF8mX3O3Z9z97i7vwjMBr6RUP4+d5/v7luBXwCnNdXC5O7PuvsSD7wG/JMgYQD4f8Bf3P3F8Dir3P0TM+sbHutyd9/q7uuBW4DTWzoBd18c1lXj7qXA70hoYXD3u4HFwDsEieHPwk1TgWfDfeuAm4Ec4KuNrs9qd99E0D1sfDMxzHL3whZeLU1KcVqjL/sD3P3h8Lhxd58BfAZMamLfOqA7sC9g7r7Q3deYmQEXAVe4+yZ3rwD+a2fXspFn3f11d68huGaHmNng8Hzvd/eN7h51998CWUDi+Ke33P2JMP4qd5/j7m+H5UuAP7FjK9BN7l7u7h8D84F/uvvn7l4GPE+QcH9p7j6uhfvTONnb7iXg8LB1LBO4FsgEurUlFhGRjkoJlohI261IWB4KfCfxyz4wmSApaar8MiCDoFWiATM7zszeDrvnbSFInLaXG0zQQtPY0LC+NQnH/xPQp6UTMLO+ZvagBV0Ky4H7m4jpboJWh9vChAGCFq9l2wu4ezw8v4EJ+61NWN4G5LUUy5f0UKMv+6vN7BwLulBuvw5jaOI6u/srwO3AHcB6M7vLzPIJWuS6AXMS6nghXN9a9ffa3SuBTQTXjLDr5MKw6+QWgtazXk3tG5YfbmbPmNna8B79VxPnsy5huaqJ9+1x7Vvk7p8A5xJc4zUEMS8Akt0VUUSkQ1CCJSLSdp6wvIKghSrxy36uu/86oczghOUhBC0oGxIrNLMs4FGCFqG+7l5I0P1ue1erFcDeTcSyAqgBeiUcP9/dR+/kHP4rPI+x7p5P0BJX363LzPKA3wP3ANPsi3FjqwmSuu3lLDy/VTs53g4smCK8soXXlJ3XUl/XUIKE8FKgKLx+82nYVa2eu9/q7gcCowi6BF5NcE+qgNEJ17LA3XclSam/1+E17AmsDs/lGoLuiD3C+MoaxZf4cwXwR+ATYJ/wHl3b3Pm0FwvG2jV3f+5sbj93f8Tdx7h7EXA9UEzQRVJEZI+jBEtEJLnuB04ws2PMLM3MssOuUYMSypxlZqPC8Uw3AI+4e6xRPZkEXcZKgaiZHUcwVmi7e4DzzexrZhYxs4Fmtq+7ryHoSvhbM8sPt+1tZjubUKA7UAmUmdlAggQj0R+A2e5+IcEYs+1fph8CvhnGkQFcSZDg/WtnF6qxcIrwvBZeb+xCdbkECUopBBOG0MyYHzObaGYHhfFvBaqBeNgadzfB2Lc+YdmBZnZMwr5uCZOYNOEb4diyTIKxWG+7+wqC6x0N40s3s+sIxtq1pDtQDlSa2b7AJTspn3TuPrqF+3Nxc/uZ2YHh56E3wbiwp8KWLRGRPY4SLBGRJAq/PJ9E0LpQStCidDUNf9/eRzARxVogG/hRE/VUhOsfAjYD3wWeStj+LuHEFwQtH6/xRUvSOQQJ2oJw30do2EWxKb8EDgjrehZ4bPsGMzuJYJKK7V/o/wM4wMzOdPdFBK1dtxG0+JwAnODutTs5Xrty9wXAb4G3CLrJjQXebKZ4PkEitZmgu+NG4Dfhth8TjD17O+yW9xLhOKlwLFUF8FELofydoMVmE8HkE2eF6/9B0N3w0/CY1TTqEtiEqwh+DirCeGfspHxH8gdgC7CI4Dp/L6XRiIi0I3Nv3ANBRETai5nNBO539z+nOhZpGzM7i6D74E+b2X4vsNLdf75bAxMRkZTSQ/5ERES+BHe/P9UxiIhIx6MugiIiXYQFD73dpckJZM9jZtc283PwfKpjExHZE6iLoIiIiIiISJKoBUtERERERCRJOtQYrF69enlxcXGqwxAREREREWnRnDlzNrj7Dg+f71AJVnFxMbNnz051GCIiIiIiIi0ys2VNrVcXQRERERERkSRRgiUiIiIiIpIkSrBERERERESSpEONwWpKXV0dK1eupLq6OtWhSAeQnZ3NoEGDyMjISHUosodxd6584E2+2XsDXzvm5FSHIyIiIp1Uh0+wVq5cSffu3SkuLsbMUh2OpJC7s3HjRlauXMmwYcNSHY7sYVZsqmLyov/ma4tnEZswl7Qi/YyJiIjIruvwXQSrq6spKipSciWYGUVFRWrNlHaxtrya0VYCwPo5T6Y2GBEREem0OnyCBSi5knr6WZD2Ul5VR64FyXt08aspjkZEREQ6q06RYImItLetFVsYZBsAyNuyKMXRiIiISGelBKsVzIwrr7yy/v3NN9/MtGnTUhdQgiOOOKLFhzOffPLJHHzwwQ3WTZs2jYEDBzJ+/HjGjBnDU0891d5hinR4VVvLAFhnvelRuwaqy1IckYiIiHRGSrBaISsri8cee4wNGzYktV53Jx6PJ7XORFu2bGHOnDmUlZXx+eefN9h2xRVXMHfuXB5++GEuuOCCdo1DpDOoqdoGwNruowHwdQtSGY6IiIh0UkqwWiE9PZ2LLrqIW265ZYdtpaWlnHrqqUycOJGJEyfy5ptvAkEr0c0331xfbsyYMZSUlFBSUsKIESM455xzGDNmDCtWrODqq69mzJgxjB07lhkzZgAwc+ZMjjjiCL797W+z7777cuaZZ+LuTcZ333331bdGvfvuu/XrH3vsMU444QROP/10HnzwwSb3HTlyJOnp6Q2Sx5/85CeMGjWKcePGcdVVVwFQUlLCUUcdxbhx4/ja177G8uXLATjvvPO45JJLOPjgg9lrr72YOXMmF1xwASNHjuS8886rr/OSSy5hwoQJjB49muuvv36HOMrKyhg6dGh9ord161YGDx5MXV1dk3GLJFu8Lhx/1TtIsCpWfZLKcERERKST6vDTtCf65dMfs2B1eVLrHDUgn+tPGL3Tcj/4wQ8YN24c11xzTYP1l112GVdccQWTJ09m+fLlHHPMMSxcuLDFuj777DP+9re/cfDBB/Poo48yd+5cPvzwQzZs2MDEiRM57LDDAPjggw/4+OOPGTBgAIceeihvvvkmkydP3qG+bdu2MXfuXF5//XUuuOAC5s+fD8D06dO57rrr6Nu3L6eeeirXXnvtDvu+8847RCIRevfuDcDGjRt5/PHH+eSTTzAztmzZAsAPf/hDzj33XM4991z+8pe/8KMf/YgnnngCgM2bN/PWW2/x1FNPceKJJ/Lmm2/y5z//mYkTJzJ37lzGjx/PjTfeSM+ePYnFYnzta19j3rx5jBs3rj6OgoICxo8fz2uvvcaRRx7JM888wzHHHKPnXclu49EgwcruN4LYYqNi7WLyUxyTiIiIdD5qwWql/Px8zjnnHG699dYG61966SUuvfRSxo8fz4knnkh5eTmVlZUt1jV06ND6cVGzZs3ijDPOIC0tjb59+3L44Yfz3nvvATBp0iQGDRpEJBJh/PjxlJSUNFnfGWecAcBhhx1GeXk5W7ZsYd26dXz22WdMnjyZ4cOHk5GRUZ94Adxyyy2MHz+eq666ihkzZtTPzldQUEB2djb/7//9Px577DG6desGwFtvvcV3v/tdAM4++2xmzZpVX9cJJ5yAmTF27Fj69u3L2LFjiUQijB49uj7mhx56iAMOOID999+fjz/+mAULdux+NXXq1PoWvAcffJCpU6e2eB1FksnragEo6lnEau9FbOPnO9lDREREZEedqgWrNS1N7enyyy/ngAMO4Pzzz69fF4/Hefvtt8nOzm5QNj09vcG4psRnN+Xm5rbqeFlZWfXLaWlpRKPRJss1nrrczHjooYfYvHlz/QN5y8vLmT59OjfeeCMQjMHa3v2vcdzvvvsuL7/8Mo888gi33347r7zySqvijEQiDWKORCJEo1GWLl3KzTffzHvvvUePHj0477zzmnyW1Yknnsi1117Lpk2bmDNnDkcddVSLxxVJqrAFq6ggn3fpw15ly1IckIiIiHRGasHaBT179uS0007jnnvuqV939NFHc9ttt9W/nzt3LgDFxcW8//77ALz//vssXbq0yTqnTJnCjBkziMVilJaW8vrrrzNp0qRdimt7q8+sWbMoKCigoKCA6dOn88ILL9SP+5ozZ06z47ASVVZWUlZWxje+8Q1uueUWPvzwQwC++tWv1u//wAMPMGXKlFbHV15eTm5uLgUFBaxbt47nn3++yXJ5eXlMnDiRyy67jOOPP560tLRWH0OkrSxWA0BGVg6lGQPpXrUixRGJiIhIZ6QEaxddeeWVDSaEuPXWW5k9ezbjxo1j1KhR3HnnnQCceuqpbNq0idGjR3P77bczfPjwJus75ZRTGDduHPvttx9HHXUUN910E/369dulmLKzs9l///25+OKLueeeeygpKWHZsmUNpmcfNmwYBQUFvPPOO03W8Y1vfIPVq1dTUVHB8ccfz7hx45g8eTK/+93vALjtttv461//yrhx47jvvvv4wx/+0Or49ttvP/bff3/23Xdfvvvd73LooYfWb7vuuusaTBM/depU7r//fnUPlN0vbMEiPYttuYPJi5VrqnYRERHZZdbczHSpMGHCBG/8TKeFCxcycuTIFEUkHZF+JqQ9/PVPN3P+ml/BD97j/mde4Kxlv4B/fx3675fq0ERERKQDMrM57j6h8fo2t2CZ2WAze9XMFpjZx2Z2Wbh+mpmtMrO54esbbT2WiEh7iUSDLoKkZ5LZay8AqtYvSWFEIiIi0hklY5KLKHClu79vZt2BOWb2YrjtFne/uYV9RUQ6hO1jsEjPpmDACJgD5as+JUcNWCIiIrIL2pxgufsaYE24XGFmC4GBba1XRGR3sngwTTvpWfTrk80mz6N2Q9OT04iIiIg0J6mTXJhZMbA/sH0mhUvNbJ6Z/cXMejSzz0VmNtvMZpeWliYzHBGRVktLaMEa1COHVd4LK9NMgiIiIrJrkpZgmVke8ChwubuXA38E9gbGE7Rw/bap/dz9Lnef4O4TevfunaxwRER2SWR7C1ZaFj1zM1ljfcjauiq1QYmIiEink5QEy8wyCJKrB9z9MQB3X+fuMXePA3cDu/ZwJxGR3Sg9XkMdGRCJYGZUZPUnv2YNdKCZVkVERKTjS8YsggbcAyx0998lrO+fUOwUYH5bj5VKTzzxBGbGJ5980myZkpISxowZk7RjnnfeeTzyyCPNbr/88ssZOHAg8Xi8ft29995L7969GT9+PKNGjeLuu+9OWjwie7JIvIaoZdS/r8kbSJbXwLaNKYxKREREOptktGAdCpwNHNVoSvabzOwjM5sHHAlckYRjpcz06dOZPHky06dPb3J7NBpt8zFisViry8bjcR5//HEGDx7Ma6+91mDb1KlTmTt3LjNnzuTaa69l3bp1bY5NZE+XHq8lGsn8YkXBkODfLctSE5CIiIh0Sm1OsNx9lrubu49z9/Hh6zl3P9vdx4brTwxnG+yUKisrmTVrFvfccw8PPvhg/fqZM2cyZcoUTjzxREaNGgUEidaZZ57JyJEj+fa3v822bdsAePnll9l///0ZO3YsF1xwATU1wYD64uJifvzjH3PAAQfw8MMP73Dsl156iQkTJjB8+HCeeeaZBscePXo0l1xySbNJX58+fdh7771ZtuyLL4i33noro0aNYty4cZx++ukAbNq0iZNPPplx48Zx8MEHM2/ePACmTZvGueeey5QpUxg6dCiPPfYY11xzDWPHjuXYY4+lrq4OgBtuuIGJEycyZswYLrroIho/vDoej1NcXMyWLVvq1+2zzz5K/KRDSYvXEbUvEqysXsUAbF1fkpqAREREpFNKxnOwdp/nfwJrP0punf3GwnG/brHIk08+ybHHHsvw4cMpKipizpw5HHjggQC8//77zJ8/n2HDhlFSUsKiRYu45557OPTQQ7ngggv43//9Xy699FLOO+88Xn75ZYYPH84555zDH//4Ry6//HIAioqKeP/995s8dklJCe+++y5LlizhyCOPZPHixWRnZzN9+nTOOOMMTjrpJK699lrq6urIyMhosO/nn3/O559/zle+8pX6db/+9a9ZunQpWVlZ9QnP9ddfz/77788TTzzBK6+8wjnnnMPcuXMBWLJkCa+++ioLFizgkEMO4dFHH+Wmm27ilFNO4dlnn+Xkk0/m0ksv5brrrgPg7LPP5plnnuGEE06oP2YkEuGkk07i8ccf5/zzz+edd95h6NCh9O3bt9W3SaS9ZXgt0bQvEqz8fsHDhsvXLiE3VUGJiIhIp5PUadr3VNOnT69v7Tn99NMbtBhNmjSJYcOG1b8fPHgwhx56KABnnXUWs2bNYtGiRQwbNozhw4cDcO655/L666/X7zN16tRmj33aaacRiUTYZ5992Guvvfjkk0+ora3lueee4+STTyY/P5+DDjqIf/zjH/X7zJgxg/Hjx3PGGWfwpz/9iZ49e9ZvGzduHGeeeSb3338/6elBfj1r1izOPvtsAI466ig2btxIeXk5AMcddxwZGRmMHTuWWCzGscceC8DYsWMpKSkB4NVXX+Wggw5i7NixvPLKK3z88cc7nMfUqVOZMWMGAA8++GCL5yySCuleQyyhi2D/fv0o9xxqN6iLoIiIiLRe52rB2klLU3vYtGkTr7zyCh999BFmRiwWw8z4zW9+A0BubsO/bQdzfjT/vimN69hZff/4xz/YsmULY8eOBWDbtm3k5ORw/PHHA0Eyc/vttzdZ37PPPsvrr7/O008/zY033shHH7XcIpiVlQUErVAZGRn18UQiEaLRKNXV1Xz/+99n9uzZDB48mGnTplFdXb1DPYcccgiLFy+mtLSUJ554gp///OctHldkd0vzKPGEBCt4FlZvcsuWpzAqERER6WzUgrUTjzzyCGeffTbLli2jpKSEFStWMGzYMN54440myy9fvpy33noLgL///e9MnjyZESNGUFJSwuLFiwG47777OPzww1t1/Icffph4PM6SJUv4/PPPGTFiBNOnT+fPf/4zJSUllJSUsHTpUl588cX68V7NicfjrFixgiOPPJL/+Z//oaysjMrKSqZMmcIDDzwABGO7evXqRX5+fqvi255M9erVi8rKymZnPTQzTjnlFP7jP/6DkSNHUlRU1Kr6RXaXdK8jHvmim21BTgZrrTdZlXoWloiIiLSeEqydmD59OqecckqDdaeeemqzE0uMGDGCO+64g5EjR7J582YuueQSsrOz+etf/8p3vvMdxo4dSyQS4eKLL27V8YcMGcKkSZM47rjjuPPOO4nH47zwwgt885vfrC+Tm5vL5MmTefrpp5us48ILL2T27NnEYjHOOussxo4dy/7778+PfvQjCgsLmTZtGnPmzGHcuHH85Cc/4W9/+1srrw4UFhbyve99jzFjxnDMMccwceLE+m133nknd955Z/37qVOncv/996t7oHRIaR4lnjBNu5lRntWf7noWloiIiOwCazzjWypNmDDBZ8+e3WDdwoULGTlyZIoiko5IPxOSbPG488G0ifTq2YOhl79Yv/6hW6/htE1/gh+XQE6P1AUoIiIiHY6ZzXH3CY3XqwVLRLq8unicDKJ4pOFMnB4+C8u3aByWiIiItI4SLBHp8upiTgYxPPFBw0B272IAtq5bmoKoREREpDPqFAlWR+rGKKmlnwVpD9FY2IKV1rAFq3v9s7A+T0VYIiIi0gl1+AQrOzubjRs36ou14O5s3LiR7OzsVIcie5igBSsKaQ1bsPr2HcA2z6JmQ0lqAhMREZFOp8M/B2vQoEGsXLmS0tLSVIciHUB2djaDBg1KdRiyh6mLxcmwKLFIw1+Jg3rmstJ7kaFnYYmIiEgrdfgEKyMjg2HDhqU6DBHZg0VjTg5Rqhu1YBXkZDAv0oe99SwsERERaaUO30VQRKS91cbiZBCDRmOwAMoz+5FfsyYFUYmIiEhnpARLRLq8aDhNe+MxWADVeQPJi1dATUUKIhMREZHOpt0TLDM71swWmdliM/tJex9PRGRX1UWDSS6siQTLCvUsLBEREWm9dk2wzCwNuAM4DhgFnGFmo9rzmCIiu6ouFiPTYlj6jl0EM4uKAajQVO0iIiLSCu3dgjUJWOzun7t7LfAgcFI7H1NEZJdEa2sAmmzB0rOwREREZFe0d4I1EFiR8H5luK6emV1kZrPNbLamYheRVIhFawGw9B0TrL4DBlPjGXoWloiIiLRKyie5cPe73H2Cu0/o3bt3qsMRkS4o2kKCNbBHLqu8CLas2GGbiIiISGPtnWCtAgYnvB8UrhMR6TDidUGClZaetcO27tkZrIv0IWvryt0dloiIiHRC7Z1gvQfsY2bDzCwTOB14qp2PKSKyS2J14RisJlqwAMqz+tO9Ws/CEhERkZ1r1wTL3aPApcA/gIXAQ+7+cXseU0RkV8WiQYIVaWIWQYDq3IEUxLdAXdVujEpEREQ6o/T2PoC7Pwc8197HERH5slrqIghAwWDYFDwLy3qP2I2RiYiISGeT8kkuRERSLR5OcpGW0XQXwazexQCUaap2ERER2QklWCLS5W1PsCLNtGB17xs+C2vNkt0Wk4iIiHROSrBEpMvzMMFKz2g6weo9oJg6T6N6w7LdGZaIiIh0QkqwRKTLq2/Bymh6kotBRXms8Z6wRQmWiIiItEwJlohIrOUWrG6Z6ayP9CGrUo/xExERkZYpwRKRLi8WrQMgvZlJLgA2Zw2goFoJloiIiLRMCZaIdHkePt/KMnKaLbMtbyiF8c1QU7G7whIREZFOSAmWiHR5tv0Bwi0kWLEewUyC8Q2aSVBERESapwRLRCS6PcHq1myRzD77AFC+etHuiEhEREQ6KSVYItLl1bdgpWc3W6b7wOEAbF2jBEtERESapwRLRLq8SGznLVgDe/dirfcgVqougiIiItI8JVgi0uVFotXEiEBa08/BAhjUI4dl3pf0sqW7MTIRERHpbJRgiUiXF4lVU2tZYNZsmeyMNNamDaT71uW7MTIRERHpbJRgiUiXl7Y9wdqJytyhdI9thury3RCViIiIdEZtSrDM7Ddm9omZzTOzx82sMFxfbGZVZjY3fN2ZlGhFRNpBRqyK2kjzE1xsF+0xLFjYpHFYIiIi0rS2tmC9CIxx93HAp8BPE7Ytcffx4eviNh5HRKTdpMdrqIvsvAVr+1Tt1es+a++QREREpJNqU4Ll7v9092j49m1gUNtDEhHZvTLiNcRa0YJVOHAEAOWrNFW7iIiINC2ZY7AuAJ5PeD/MzD4ws9fMbEpzO5nZRWY228xml5aWJjEcEZHWyfBqomk7T7CG9Ctijfekdr1asERERKRp6TsrYGYvAf2a2PQzd38yLPMzIAo8EG5bAwxx941mdiDwhJmNdvcdRoa7+13AXQATJkzwL3caIiJfXma8hlha3k7LDS3K5aN4P4Zt0VTtIiIi0rSdJlju/vWWtpvZecDxwNfc3cN9aoCacHmOmS0BhgOz2xqwiEgyxeNOhtfg6Tk7LZuXlc7a9AGM3frebohMREREOqO2ziJ4LHANcKK7b0tY39vM0sLlvYB9gM/bciwRkfawrS5GDrVYxs4TLIDKvKHkxcqgakv7BiYiIiKdUlvHYN0OdAdebDQd+2HAPDObCzwCXOzum9p4LBGRpKusjpJjNZDRrVXlo4V7BQub9DcjERER2dFOuwi2xN2/0sz6R4FH21K3iMjuUFkTpR/VVGbltqp8dt99YAXUrP+MrIEHtHN0IiIi0tkkcxZBEZFOZ+u2beRZNZbTo1XlCwYGz8IqW/1pe4YlIiIinVSbWrBERDq76vKg93Ikt2eryg/pU8Rq70l8/eL2DEtEREQ6KbVgiUiXVlu5EYC0ViZYxb1yWe59Sdtc0o5RiYiISGelBEtEurTtCVZ296JWlc/LSmdt2gDyti1vz7BERESkk1KCJSJdWk1FkGDlFfZu9T6VuUPoHt0ENRXtFZaIiIh0UkqwRKRLi20NxmBl5/dq9T7xwmHBwqal7RGSiIiIdGJKsESkS4tt2wyA5RS2ep/MPnsDUFOqiS5ERESkISVYItKlWdUW4hhkF7R6n/wBIwAoW6Wp2kVERKQhJVgi0qXl1JRSGcmHSFqr9xnSvw+lXkCNpmoXERGRRpRgiUiXVlC7ji2Z/XZpn6FF3SjxvkQ2awyWiIiINKQES0S6rHjcKYqtZ1tO/13ar3t2BmvTBpBbqanaRUREpCElWCLSZW2orKY/G4jnD9rlfctzBlMYXQ91Ve0QmYiIiHRWSrBEpMtat34duVZDeuHgXd63Jn9IsLB5WZKjEhERkc5MCZaIdFlb1nwOQHbvobu8rxUGCZaXrUhqTCIiItK5tSnBMrNpZrbKzOaGr28kbPupmS02s0VmdkzbQxURSa6q0hIAevTfa5f3zSoKkrJtpWrBEhERkS+kJ6GOW9z95sQVZjYKOB0YDQwAXjKz4e4eS8LxRESSIrY5aH3K6ztsl/ct7DuYOk9j2/ql5CY7MBEREem02quL4EnAg+5e4+5LgcXApHY6lojIl5JWsYpaMrDc3ru874Aeeaz1nkQ3ayZBERER+UIyEqxLzWyemf3FzHqE6wYCiQMTVobrREQ6jJxta9iY3gfMdnnfAQXZrKaISPmqdohMREREOqudJlhm9pKZzW/idRLwR2BvYDywBvjtrgZgZheZ2Wwzm11aWrqru4uIfGn5teuozNq1hwxv1ysvizX0Imvb6iRHJSIiIp3ZTsdgufvXW1ORmd0NPBO+XQUkzns8KFzXVP13AXcBTJgwwVtzLBGRtqqJxujjpWzKHf6l9o9EjLLMfnSveQviMYikJTlCERER6YzaOotg/4S3pwDzw+WngNPNLMvMhgH7AO+25VgiIsm0dlMFfdkMBbv+kOHtqrsNII0YVKxNYmQiIiLSmbV1FsGbzGw84EAJ8O8A7v6xmT0ELACiwA80g6CIdCQb1pQw1Lx+uvUvI54/EMqBspVQoGGmIiIi0sYEy93PbmHbjcCNbalfRKS9VKwrAaB73+IvXUd6jyGwEuJblhMZclByAhMREZFOrb2maRcR6dCqNwQPCO4xYNcfMrxdbp9iALaFDywWERERUYIlIl3TluBJEpk9h3zpKnr17Mlmz6tP1kRERESUYIlIl5S5dRVbrAAycr50HQMKc1jtRcS3rExiZCIiItKZKcESkS4pt3otZZl921RHv4JsVnsv0iuUYImIiEhACZaIdDnuTs/oeqpy+u+8cAuKcjNZQ2+6Va1JUmQiIiLS2SnBEpEuZ1NlDf3ZQCy/bVOrmxmV2f3IjlVCdVmSohMREZHOTAmWiHQ569auIs+qSetZ3Oa6anIHBAtl6iYoIiIiSrBaVLZ5A6tLFqU6DBFJsoqVCwDI7rdv2yvb/oBhJVgiIiJCGx80vKf75MW/cNCCG/ks7StsGHIMfcd/g+LRBxFJz0h1aCLSBrXrPwWgx+BRba4ro6gYlkF8ywr9xUpERESUYLVkyEEn8XZ1BT2W/4NDlt4BS++g8vEcluaMYWvP0WT1H03PYePoNXg4ud17gFm7xuPxODU11dTUVFFbvZW66irqasJXbRWx2ipitdX1/8brqvG6KryuBo9WY7EaiEchHsPiUfB4sOzB8vZ15lEsHv7rccxjgANg9UuE7794Zx4sexPbGu61o8Qr5zR3HW3Hwk2vaHq9Nay/8V7NHvdL3Nfm6mr+3Hatnvb+WdvTDdq6hBrPIL/fsDbX1bPPIGo9jer1S8lPQmxdXU1tDZVlm9lavomq8k3UbN1MrHpr+HttG15bhddVQV34b7SaSLQai9WGv7Ni4DEiHsPi4b/h77LI9vXEdxpHg89eE4sNP5sNfhOGhWyHz6/Xf24tYb/tv9calU1Y71j4u7fR/vW77FhP/T6NjukNdxRJiua+F4gky/KsEXQ/6j/4+qi2zf67uyjBakH/oSPof86vgF+xftUySt7/B7Glb9Jvywfsu/J9MlbFYHZQtoosNlkPytJ6UpeeSywtB0/PIZaeTczSw184Xp+E4I7FaojEa4nEakiL15AWryU9XkuG15Luwb+ZXksmdWR6LdlWRzaQ3YZzirsRI0KMCHEiRC2NOBFiJPxrEeL1/0Zw0ohbwy8TiVpKGhp/CWm6TGKJ5n4xN72+2fI7rG7+a4V/ieM2V1dLMe36ue1a/bJrPuz1DSaltf1X4D798lnhfei+dtFOE6xY3Hnjg/n07ZnPyGFD23zsjq62tpbNG9ZQXrqGrZvXUL1lHXUV62FrKelVG8iu3UROXRnZ8Upy4lvJ863kWg1ZQFErj1HlmdRYJnVkELP0hN9jaV/8Hqtf3v5qoReCN/yMNfVp+2K715dv8Ln0L94bHvyOqd/sCXWEy97wSIn1J6ZFQdmEY9M4jUusO4gjeE9CWf3+kPbn+iOgJNmK6mw2bq1JdRitpgSrlfoMHEqfgRcBFwFQXV3F0s8+onz5R9RtWka8fB2ZVevJrdtEt2gZ6bXryIpXk001kfq/ln7x35tj1IVfCuoimUQtk2gki7r0blRHehCPZBJLy8K3v9KzIC0bMrKx9GwsIwvLyCGSkUMkM5v0zBzSMrNJy8wmI7Mb6Vk5ZGTlkJndjczsHDKzcsjIyCaSnk4EUCdH6eqGJKme4X2686oP4+ulHzZbpiYa47WZr8Dbt3N0dCazMw6En72SpAhSo6a2hvWrSti8ZilbNyynbtMKKF9N9rY1dK8tpSheSi/fQl9zGv+9sc7TKIvkUx4pZFt6IZuze1Oa0R3P7A7ZBVh2PmndCsnIDV/Z3cnIziEjK5eM7G5k5uSSnZNHRmY2OZEIX/5R0SIi0hkk6//s3UUJ1peUnZ3D8LGTYOykVIciIilU0C2DzzNHklfzLyhb9cWkF8D68m3MeuEhBi68h6N9HlVh+/OEujkQi0ISWtDai7tTWr6N1SWfUrbqE2rWLSa9bCn525bTu3YlA3w9gy3G4IR9tpLNprTeVGT1YUXOcJbm9se69yGzoC85PfqRX9Sfwl4DycnvSS8zeqXs7ERERNpPx/3fXUSkk4jsNQU+u4e6uQ9hky/j3Q/nsenNv7Lfhmf5lpWyJa2IpWOvpvjoH/DKs3/nqI+vpWzZXAr2mpDq0NlcUcWq5Z+xZcUnVK/7jMjmz8nbuoxetasYxDr6WKy+bBXZrM8YQFn+CNbnH4v1GEq33kPo0W8YRQOGkZtbSK66BomISBenBEtEpI0OPfRw3vhkDIe8+itWvvonvsoaAJbkT6T0kF/Se9J3KEzPBKDbVybDx7Bx/su7LcGqqKph9fIlbFy+kOp1nxLZ9DndKpdRVLuSQb6OMRatL1tFFqUZA6nsMZxFhceQ2XcfCgfuS9GQkeQU9GeoEigREZEWmfuXH/BqZjOAEeHbQmCLu483s2JgIbD9IVJvu/vFO6tvwoQJPnv27C8dj4hIqjw16wO6/+u/6ZO2lfShBzHsiHPI7FW8Q7nKmihrbhxHRmF/iv/j5aQdv7KqmlUln7J55SKq1y/GNn1OTuUKimpWMMjXkWV19WVryGRd+gAqcocQLdyLjF57UzBoX3oPHUVmj4GapVJERKQVzGyOu+/w19I2tWC5+9SEA/wWKEvYvMTdx7elfhGRzuLEyfvD5Id2Wi4vK52FBVP4RvlD1Kz+mKwBo1tV/7aaWtatXsbmNSVsKy0hunkFaWXLydu6gqLalfT3UkYkdOerJpP16f2p6F7MwsIjSe/1FfIHjaDP0FFk9xzMkIie2iUiItIektJF0MwMOA04Khn1iYjsyfod+x9sfegpqu85ldJxF2NFw6iLxamrqiRaUUqsohS2bSC9aiN5NWvpEV1PH9/EMIuR+OSuSrqxPn0Am/JHUlpwHBl9vkL+gOH0Ld6XnB6DlESJiIikQLLGYE0B1rn7ZwnrhpnZB0A58HN3f6OpHc2sfu7zIUM62ySMIiK7btLoEfzzkD+x71tXMeaD65sss5VsyiKFlGf0pjRvf9bmDyS9x2Byeg2hoN8wivoPIy+3J3nqziciItKh7HQMlpm9BPRrYtPP3P3JsMwfgcXu/tvwfRaQ5+4bzexA4AlgtLuXt3QsjcESka6kuraOksULiW5ZQUZ6Blk5ueT17EthUX/Ss3NTHZ6IiIi04EuPwXL3r++k4nTgW8CBCfvUADXh8hwzWwIMB5Q9iYiEsjMz2HfUOGBcqkMRERGRJElGB/2vA5+4+8rtK8yst5mlhct7AfsAnyfhWCIiIiIiIh1WMsZgnQ5Mb7TuMOAGM6sD4sDF7r4pCccSERERERHpsNqcYLn7eU2sexR4tK11i4iIiIiIdCZtetBwsplZKbAs1XE00gvYkOogZLfR/e46dK+7Ft3vrkP3uuvQve5aOuL9HuruvRuv7FAJVkdkZrObmh1E9ky6312H7nXXovvddehedx26111LZ7rfegqliIiIiIhIkijBEhERERERSRIlWDt3V6oDkN1K97vr0L3uWnS/uw7d665D97pr6TT3W2OwREREREREkkQtWCIiIiIiIkmiBEtERERERCRJlGC1wMyONbNFZrbYzH6S6ngkecxssJm9amYLzOxjM7ssXN/TzF40s8/Cf3ukOlZJDjNLM7MPzOyZ8P0wM3sn/HzPMLPMVMcoyWFmhWb2iJl9YmYLzewQfbb3TGZ2Rfg7fL6ZTTezbH229xxm9hczW29m8xPWNflZtsCt4X2fZ2YHpC5y2VXN3OvfhL/H55nZ42ZWmLDtp+G9XmRmx6Qk6BYowWqGmaUBdwDHAaOAM8xsVGqjkiSKAle6+yjgYOAH4f39CfCyu+8DvBy+lz3DZcDChPf/A9zi7l8BNgP/LyVRSXv4A/CCu+8L7Edw3/XZ3sOY2UDgR8AEdx8DpAGno8/2nuRe4NhG65r7LB8H7BO+LgL+uJtilOS4lx3v9YvAGHcfB3wK/BQg/L52OjA63Od/w+/tHYYSrOZNAha7++fuXgs8CJyU4pgkSdx9jbu/Hy5XEHwBG0hwj/8WFvsbcHJKApSkMrNBwDeBP4fvDTgKeCQsonu9hzCzAuAw4B4Ad6919y3os72nSgdyzCwd6AasQZ/tPYa7vw5sarS6uc/yScD/eeBtoNDM+u+WQKXNmrrX7v5Pd4+Gb98GBoXLJwEPunuNuy8FFhN8b+8wlGA1byCwIuH9ynCd7GHMrBjYH3gH6Ovua8JNa4G+qYpLkur3wDVAPHxfBGxJ+MWtz/eeYxhQCvw17BL6ZzPLRZ/tPY67rwJuBpYTJFZlwBz02d7TNfdZ1ve2PdsFwPPhcoe/10qwpEszszzgUeBydy9P3ObBMwz0HINOzsyOB9a7+5xUxyK7RTpwAPBHd98f2Eqj7oD6bO8ZwrE3JxEk1QOAXHbsYiR7MH2WuwYz+xnB0I4HUh1LaynBat4qYHDC+0HhOtlDmFkGQXL1gLs/Fq5et71LQfjv+lTFJ0lzKHCimZUQdPU9imCMTmHYrQj0+d6TrARWuvs74ftHCBIufbb3PF8Hlrp7qbvXAY8RfN712d6zNfdZ1ve2PZCZnQccD5zpXzy8t8PfayVYzXsP2CecjSiTYDDdUymOSZIkHINzD7DQ3X+XsOkp4Nxw+Vzgyd0dmySXu//U3Qe5ezHB5/gVdz8TeBX4dlhM93oP4e5rgRVmNiJc9TVgAfps74mWAwebWbfwd/r2e63P9p6tuc/yU8A54WyCBwNlCV0JpRMys2MJuvef6O7bEjY9BZxuZllmNoxgYpN3UxFjc+yLZFAaM7NvEIzdSAP+4u43pjYiSRYzmwy8AXzEF+NyriUYh/UQMARYBpzm7o0H2EonZWZHAFe5+/FmthdBi1ZP4APgLHevSWF4kiRmNp5gQpNM4HPgfII/KOqzvYcxs18CUwm6D30AXEgwFkOf7T2AmU0HjgB6AeuA64EnaOKzHCbZtxN0E90GnO/us1MQtnwJzdzrnwJZwMaw2NvufnFY/mcE47KiBMM8nm9cZyopwRIREREREUkSdREUERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBGRDsLMis3MzSw91bHs6czsPDObleo4Ohozm2Jmi1Idh4hIZ6YES0REOjUzm2ZmdWZWmfC6JtVxdUbu/oa7j0h2vWZ2gpnND+/Nv8xsVLKPISLSUSjBEhFJErU8pdQMd89LeN2U6oCSqTP/bJnZPsADwMVAIfA08FRnPicRkZYowRIRaQMzKzGzH5vZPGCrmaWb2cHhX+m3mNmHZnZEQvmZZvbfZvaumZWb2ZNm1rOZus83s4VmVmFmn5vZvzfafpKZzQ3rWWJmx4brC8zsHjNbY2arzOw/zSxtJ+ext5m9YmYbzWyDmT1gZoUJ2zaZ2QHh+wFmVrr9vMzsRDP7ODzfmWY2stH1ucrM5plZmZnNMLPsXb/Su87MfhJelwozW2BmpzRTzszsFjNbH17Lj8xsTLgty8xuNrPlZrbOzO40s5xWHv/esPyLYQyvmdnQhO1/MLMV4THnmNmUhG3TzOwRM7vfzMqB88xskpm9FV7nNWZ2u5llJuzjZvZ9M/ssPN6vwnv3r/AYDyWWbybmI8xsZWvObxccA7zh7rPcPQr8DzAQODzJxxER6RCUYImItN0ZwDcJ/jrfF3gW+E+gJ3AV8KiZ9U4ofw5wAdAfiAK3NlPveuB4IB84H7glIcmZBPwfcHV43MOAknC/e8N6vwLsDxwNXLiTczDgv4EBwEhgMDANwN2XAD8G7jezbsBfgb+5+0wzGw5MBy4HegPPAU83+iJ/GnAsMAwYB5zXZABmk8PkobnX5J2cQ2NLgClAAfDLMP7+TZQ7muD6DQ/LngZsDLf9Olw/nuB6DgSu24UYzgR+BfQC5hK05Gz3XlhvT+DvwMONks+TgEcI7u8DQAy4IqzrEOBrwPcbHe8Y4EDgYOAa4C7gLIL7OYbgZ/VLCxPl5u7P/7a0a6NlC+MREdnjKMESEWm7W919hbtXEXyZfc7dn3P3uLu/CMwGvpFQ/j53n+/uW4FfAKc11cLk7s+6+xIPvAb8kyBhAPh/wF/c/cXwOKvc/RMz6xse63J33+ru64FbgNNbOgF3XxzWVePupcDvSGhhcPe7gcXAOwSJ4c/CTVOBZ8N964CbgRzgq42uz2p330TQPWx8MzHMcvfCFl4tTUpxWqMv+wPc/eHwuHF3nwF8BkxqYt86oDuwL2DuvtDd15iZARcBV7j7JnevAP5rZ9eykWfd/XV3ryG4ZoeY2eDwfO93943uHnX33wJZQOL4p7fc/Ykw/ip3n+Pub4flS4A/sWMr0E3uXu7uHwPzgX+6++fuXgY8T5Bwf2nuPq6F+9M42dvuJeDwsHUsE7gWyAS6tSUWEZGOSgmWiEjbrUhYHgp8J/HLPjCZIClpqvwyIIOgVaIBMzvOzN4Ou+dtIUictpcbTNBC09jQsL41Ccf/E9CnpRMws75m9qAFXQrLgfubiOluglaH28KEAYIWr2XbC7h7PDy/gQn7rU1Y3gbktRTLl/RQoy/7q83sHAu6UG6/DmNo4jq7+yvA7cAdwHozu8vM8gla5LoBcxLqeCFc31r199rdK4FNBNeMsOvkwrDr5BaC1rNeTe0blh9uZs+Y2drwHv1XE+ezLmG5qon37XHtW+TunwDnElzjNQQxLwCS3RVRRKRDUIIlItJ2nrC8gqCFKvHLfq67/zqhzOCE5SEELSgbEis0syzgUYIWob7uXkjQ/W57V6sVwN5NxLICqAF6JRw/391H7+Qc/is8j7Hunk/QElffrcvM8oDfA/cA0+yLcWOrCZK67eUsPL9VOzneDiyYIryyhdeUnddSX9dQgoTwUqAovH7zadhVrZ673+ruBwKjCLoEXk1wT6qA0QnXssDddyVJqb/X4TXsCawOz+Uagu6IPcL4yhrFl/hzBfBH4BNgn/AeXdvc+bQXC8baNXd/7mxuP3d/xN3HuHsRcD1QTNBFUkRkj6MES0Qkue4HTjCzY8wszcyyw65RgxLKnGVmo8LxTDcAj7h7rFE9mQRdxkqBqJkdRzBWaLt7gPPN7GtmFjGzgWa2r7uvIehK+Fszyw+37W1mO5tQoDtQCZSZ2UCCBCPRH4DZ7n4hwRiz7V+mHwK+GcaRAVxJkOD9a2cXqrFwivC8Fl5v7EJ1uQQJSikEE4bQzJgfM5toZgeF8W8FqoF42Bp3N8HYtz5h2YFmdkzCvm4Jk5g04Rvh2LJMgrFYb7v7CoLrHQ3jSzez6wjG2rWkO1AOVJrZvsAlOymfdO4+uoX7c3Fz+5nZgeHnoTfBuLCnwpYtEZE9jhIsEZEkCr88n0TQulBK0KJ0NQ1/395HMBHFWiAb+FET9VSE6x8CNgPfBZ5K2P4u4cQXBC0fr/FFS9I5BAnagnDfR2jYRbEpvwQOCOt6Fnhs+wYzO4lgkortX+j/AzjAzM5090UErV23EbT4nACc4O61Ozleu3L3BcBvgbcIusmNBd5spng+QSK1maC740bgN+G2HxOMPXs77Jb3EuE4qXAsVQXwUQuh/J2gxWYTweQTZ4Xr/0HQ3fDT8JjVNOoS2ISrCH4OKsJ4Z+ykfEfyB2ALsIjgOn8vpdGIiLQjc2/cA0FERNqLmc0E7nf3P6c6FmkbMzuLoPvgT5vZfi+w0t1/vlsDExGRlNJD/kRERL4Ed78/1TGIiEjHoy6CIiJdhAUPvd2lyQlkz2Nm1zbzc/B8qmMTEdkTqIugiIiIiIhIkqgFS0REREREJEk61BisXr16eXFxcarDEBERERERadGcOXM2uPsOD5/vUAlWcXExs2fPTnUYIiIiIiIiLTKzZU2tVxdBERERERGRJFGCJSIiIiIikiRKsEREduKtJRv5ZG15qsMQERGRTqBDjcFqSl1dHStXrqS6ujrVoUgnk52dzaBBg8jIyEh1KNKJRWNxfvrnx7k14w78yqexgkGpDklEREQ6sA6fYK1cuZLu3btTXFyMmaU6HOkk3J2NGzeycuVKhg0blupwpBNbtmkb30t7jnGRz9n4xp8pOn5aqkMSERGRDqzDdxGsrq6mqKhIyZXsEjOjqKhILZ/SZpu31jLY1gNQs2JuaoMRERGRDq/DJ1iAkiv5UvRzI8lQXl3HvpEVAORv/DDF0YiIiEhH1ykSLBGRVKmojpJNDQB50U1QtTnFEYmIiEhHpgSrFcyMK6+8sv79zTffzLRp01IXUIK3336bgw46iPHjxzNy5Mj6uGbOnMm//vWvNtV97LHHUlhYyPHHH5+ESEU6p/LqKDnUsiwjHMtX+mlqAxIREZEOTQlWK2RlZfHYY4+xYcOGpNbr7sTj8TbVce6553LXXXcxd+5c5s+fz2mnnQYkJ8G6+uqrue+++9pUh0hnt3VbNRkWo6xwNAA1axekOCIRERHpyDr8LIKJfvn0xyxYndxn0YwakM/1J4xusUx6ejoXXXQRt9xyCzfeeGODbaWlpVx88cUsX74cgN///vcceuihTJs2jby8PK666ioAxowZwzPPPAPAMcccw0EHHcScOXN47rnnuP3223n++ecxM37+858zdepUZs6cybRp0+jVqxfz58/nwAMP5P77799hXNH69evp378/AGlpaYwaNYqSkhLuvPNO0tLSuP/++7ntttvYd999m41zyZIlLF68mA0bNnDNNdfwve99D4Cvfe1rzJw5s8Vr8/DDD/PLX/6StLQ0CgoKeP3116muruaSSy5h9uzZpKen87vf/Y4jjzySe++9lyeeeIKtW7fy2WefcdVVV1FbW8t9991HVlYWzz33HD179uTuu+/mrrvuora2lq985Svcd999dOvWrcFxDz74YO655x5Gjw7u3RFHHMHNN9/MhAkTWoxXZFfFa6sASO8zgtr1z1O++lN6pzgmERER6bjUgtVKP/jBD3jggQcoKytrsP6yyy7jiiuu4L333uPRRx/lwgsv3Gldn332Gd///vf5+OOPmT17NnPnzuXDDz/kpZde4uqrr2bNmjUAfPDBB/z+979nwYIFfP7557z55ps71HXFFVcwYsQITjnlFP70pz9RXV1NcXExF198MVdccQVz585lypQpLcY5b948XnnlFd566y1uuOEGVq9e3errcsMNN/CPf/yDDz/8kKeeegqAO+64AzPjo48+Yvr06Zx77rn1s/nNnz+fxx57jPfee4+f/exndOvWjQ8++IBDDjmE//u//wPgW9/6Fu+99x4ffvghI0eO5J577tnhuFOnTuWhhx4CYM2aNaxZs0bJlbSPaJBgFRYUstp7Ed1Qktp4REREpEPrVC1YO2tpak/5+fmcc8453HrrreTk5NSvf+mll1iw4IsuQ+Xl5VRWVrZY19ChQzn44IMBmDVrFmeccQZpaWn07duXww8/nPfee4/8/HwmTZrEoEHBQ03Hjx9PSUkJkydPblDXddddx5lnnsk///lP/v73vzN9+vQmW51aivOkk04iJyeHnJwcjjzySN59911OPvnkVl2XQw89lPPOO4/TTjuNb33rW/Xn9MMf/hCAfffdl6FDh/Lpp8G4lSOPPJLu3bvTvXt3CgoKOOGEEwAYO3Ys8+bNA4Ik7Oc//zlbtmyhsrKSY445ZofjnnbaaRx99NH88pe/5KGHHuLb3/52q+IV2VVetz3BymeO92ZE+YoURyQiIiIdWadKsFLt8ssv54ADDuD888+vXxePx3n77bfJzs5uUDY9Pb3B+KrE5zHl5ua26nhZWVn1y2lpaUSj0SbL7b333lxyySV873vfo3fv3mzcuHGHMs3FCTtOZ74r05vfeeedvPPOOzz77LMceOCBzJkzp8XyiecUiUTq30cikfrzO++883jiiSfYb7/9uPfee5tMGAcOHEhRURHz5s1jxowZ3Hnnna2OWWSXhAlWTrc81kX6sP+2D1IckIiIiHRkbe4iaGaDzexVM1tgZh+b2WXh+mlmtsrM5oavb7Q93NTq2bMnp512WoMua0cffTS33XZb/fu5c+cCUFxczPvvvw/A+++/z9KlS5usc8qUKcyYMYNYLEZpaSmvv/46kyZNanVMzz77LO4OBF0P09LSKCwspHv37lRUVOw0ToAnn3yS6upqNm7cyMyZM5k4cWKrj79kyRIOOuggbrjhBnr37s2KFSuYMmUKDzzwAACffvopy5cvZ8SIEa2us6Kigv79+1NXV1dfT1OmTp3KTTfdRFlZGePGjWt1/SK7JOwiaBk5VOQMJC+6GWq3pTgoERER6aiSMQYrClzp7qOAg4EfmNmocNst7j4+fD2XhGOl3JVXXtlgNsFbb72V2bNnM27cOEaNGlXfknLqqaeyadMmRo8eze23387w4cObrO+UU05h3Lhx7Lfffhx11FHcdNNN9OvXr9Xx3HfffYwYMYLx48dz9tln88ADD5CWlsYJJ5zA448/zvjx43njjTeajRNg3LhxHHnkkRx88MH84he/YMCAAUCQ/H3nO9/h5ZdfZtCgQfzjH/8Agm6J28dbXX311YwdO5YxY8bw1a9+lf3224/vf//7xONxxo4dy9SpU7n33nsbtFztzK9+9SsOOuggDj30UPbdd9/69U899RTXXXdd/ftvf/vbPPjgg/UzJ4q0B6sLW58zcqjrPjhY3rI8dQGJiIhIh2bbWz+SVqHZk8DtwKFApbvf3Np9J0yY4LNnz26wbuHChYwcOTKpMcoXGs92uKfRz4+01R//8mcuWX4lnP8Cf35zGRd++u/4dx/Chu84NlBERES6DjOb4+47zLKW1FkEzawY2B94J1x1qZnNM7O/mFmPZva5yMxmm9ns0tLSZIYjItJmkbCLIBnZ5PQJHjZctf7zFEYkIiIiHVnSJrkwszzgUeBydy83sz8CvwI8/Pe3wAWN93P3u4C7IGjBSlY80jrTpk1LdQgiHVokFnYRTM+hV79+VHsGW9cvpVvLu4mIiEgXlZQWLDPLIEiuHnD3xwDcfZ27x9w9DtwNtH7mBhGRDiISrQkWMnIY1LMbq7wXsY1NT1ojIiIikoxZBA24B1jo7r9LWN8/odgpwPy2HktEZHdLi38xycWgwiDBilSsSm1QIiIi0mElo4vgocDZwEdmNjdcdy1whpmNJ+giWAL8exKOJSKyW6VFt3cRzCY/K531kd4csG1uSmMSERGRjqvNCZa7zwKaejLtHjEtu4h0bYktWGZGRXZ/8mpegbpqyNjxwd0iIiLStSV1FsE92RNPPIGZ8cknnzRbpqSkhDFjxiTtmIsWLeKII45g/PjxjBw5kosuuggIHhL83HNty18vuOAC+vTpk9R4RfZEafFaYkQgLQOAuryBwYZydRMUERGRHSnBaqXp06czefJkpk+f3uT2aDTa5mPEYrEG73/0ox9xxRVXMHfuXBYuXMgPf/hDIDkJ1nnnnccLL7zQpjpEuoJIvI6oZda/t8JBwULZyhRFJCIiIh1Z0qZp3y2e/wms/Si5dfYbC8f9usUilZWVzJo1i1dffZUTTjiBX/7ylwDMnDmTX/ziF/To0YNPPvmEf/7zn0SjUc4880zef/99Ro8ezf/93//RrVs3Xn75Za666iqi0SgTJ07kj3/8I1lZWRQXFzN16lRefPFFrrnmGk4//fT6465Zs4ZBgwbVvx87diy1tbVcd911VFVVMWvWLH76059y/PHH88Mf/pD58+dTV1fHtGnTOOmkk7j33nt5/PHHKSsrY9WqVZx11llcf/31ABx22GGUlJS0eN6vvfYal112GQBmxuuvv05eXh7XXHMNzz//PGbGz3/+c6ZOncrMmTO5/vrrKSws5KOPPuK0005j7Nix/OEPf6CqqoonnniCvffem6effpr//M//pLa2lqKiIh544AH69u3b4Linn346Z599Nt/85jeBIBk8/vjj+fa3v926eyqSRJF4HTH74ldldtFQWAK1m5aTuVcKAxMREZEOSS1YrfDkk09y7LHHMnz4cIqKipgzZ079tvfff58//OEPfPrpp0DQre/73/8+CxcuJD8/n//93/+lurqa8847jxkzZvDRRx8RjUb54x//WF9HUVER77//foPkCuCKK67gqKOO4rjjjuOWW25hy5YtZGZmcsMNNzB16lTmzp3L1KlTufHGGznqqKN49913efXVV7n66qvZunUrAO+++y6PPvoo8+bN4+GHH2b27NmtPu+bb76ZO+64g7lz5/LGG2+Qk5PDY489xty5c/nwww956aWXuPrqq1mzZg0AH374IXfeeScLFy7kvvvu49NPP+Xdd9/lwgsv5LbbbgNg8uTJvP3223zwwQecfvrp3HTTTTscd+rUqTz00EMA1NbW8vLLL9cnWyK7W8QbJlgFfYYSd6NiXUnqghIREZEOq3O1YO2kpam9TJ8+vb4l5/TTT2f69OkceOCBAEyaNIlhw4bVlx08eDCHHnooAGeddRa33nor//Zv/8awYcMYPnw4AOeeey533HEHl19+ORAkFE05//zzOeaYY3jhhRd48skn+dOf/sSHH364Q7l//vOfPPXUU9x8880AVFdXs3z5cgD+7d/+jaKiIgC+9a1vMWvWLCZMmNCq8z700EP5j//4D84880y+9a1vMWjQIGbNmsUZZ5xBWloaffv25fDDD+e9994jPz+fiRMn0r9/MDv/3nvvzdFHHw0ELW+vvvoqACtXrmTq1KmsWbOG2traBtduu+OOO47LLruMmpoaXnjhBQ477DBycnJaFbNIskXidcQjGfXv+xUVUEoB8U3LUhiViIiIdFRqwdqJTZs28corr3DhhRdSXFzMb37zGx566CHcHYDc3NwG5YPHgjX/vimN60g0YMAALrjgAp588knS09OZP3/Hx4m5O48++ihz585l7ty5LF++nJEjR37peLb7yU9+wp///Geqqqo49NBDW5zgAyArK6t+ORKJ1L+PRCL1Y9R++MMfcumll/LRRx/xpz/9ierq6h3qyc7O5ogjjuAf//gHM2bMaDYBFdkd0ryOWOSLv0UNKMxmtffCNAZLREREmqAEayceeeQRzj77bJYtW0ZJSQkrVqxg2LBhvPHGG02WX758OW+99RYAf//735k8eTIjRoygpKSExYsXA3Dfffdx+OGH7/TYL7zwAnV1dQCsXbuWjRs3MnDgQLp3705FRUV9uWOOOYbbbrutPun74IMP6re9+OKLbNq0qX4c1PbWtdZYsmQJY8eO5cc//jETJ07kk08+YcqUKcyYMYNYLEZpaSmvv/46kyZNanWdZWVlDBwYzML2t7/9rdlyU6dO5a9//StvvPEGxx57bKvrF0m2tHiUuCW0YOVns9qLyKzULIIiIiKyIyVYOzF9+nROOeWUButOPfXUZmcTHDFiBHfccQcjR45k8+bNXHLJJWRnZ/PXv/6V73znO4wdO5ZIJMLFF1+802P/85//ZMyYMey3334cc8wx/OY3v6Ffv34ceeSRLFiwgPHjxzNjxgx+8YtfUFdXx7hx4xg9ejS/+MUv6uuYNGkSp556KuPGjePUU0+t7x54xhlncMghh7Bo0SIGDRrEPffcA8Cdd97JnXfeCcDvf/97xowZw7hx48jIyOC4447jlFNOYdy4cey3334cddRR3HTTTfTr16/V13PatGl85zvf4cADD6RXr17162fPns2FF15Y//7oo4/mtdde4+tf/zqZmZlNVSWyW0Q82qCLYHpahLLMvnSvWQvhHzVEREREtjPvQF8QJkyY4I0nYVi4cGF9dzfZNffeey+zZ8/m9ttvT3UoKaOfH2mrl39xBKPzq+h39Tv16/7y2x9zQcWdcPUSyO3Vwt4iIiKypzKzOe6+w+QGasESEWlGLO5kECUeadiKGs8PHzZctiIFUYmIiEhHpgRrD3beeed16dYrkbaqi8XJIAaRhhOupvccAkBsixIsERERaahTJFgdqRujdB76uZG2qo3FybAonpbRYH233sUAbF1fsvuDEhERkQ6twydY2dnZbNy4UV+WZZe4Oxs3biQ7OzvVoUgnVheNk0EUb9RFsHfv/lR5JlWlehaWiIiINNThHzQ8aNAgVq5cSWlpaapDkU4mOzubQYMGpToM6cTqYk4mO7ZgDejRjdVeRM5mdREUERGRhjp8gpWRkcGwYcNSHYaIdEHBGKwopDVswRpQmM0H3osRFXoWloiIiDTU7l0EzexYM1tkZovN7CftfTwRkWSp3Z5gRRq2YHXPzqA0rTfdqtakKDIRERHpqNo1wTKzNOAO4DhgFHCGmY1qz2OKiCRLXSxOusWwRl0EAbZm96d7dCNEa1IQmYiIiHRU7d2CNQlY7O6fu3st8CBwUjsfU0QkKeqiwRisxl0EAerywmdhlauboIiIiHyhvROsgUDiKPCV4bp6ZnaRmc02s9mayEJEOpLaWCzoIpi+Y4IVKQwnUClbuZujEhERkY4s5dO0u/td7j7B3Sf07t071eGIiNSrjToZRLH0HbsIZvUaCkD1Bk3VLiIiIl9o7wRrFTA44f2gcJ2ISIe3fRbBSFrWDtvy+xQDUKmHDYuIiEiC9k6w3gP2MbNhZpYJnA481c7HFBFJirpojEyLYU10EexfVMB6L6R2o1qwRERE5Avt+hwsd4+a2aXAP4A04C/u/nF7HlNEJFmi4QyBkSYSrIGFOaz2IvpoDJaIiIgkaPcHDbv7c8Bz7X0cEZFki9bVAk0nWL27Z/EBvRi8dfXuDktEREQ6sJRPciEi0lHFaoMWrLQmEqy0iFGW2ZfuNWvBfXeHJiIiIh2UEiwRkWbEomELVsaOCRZAdbcBZHoNbNu0O8MSERGRDkwJlohIM+Lbuwhm7DiLIIB3Dx/rV7aiye0iIiLS9SjBEhFpRiy6vYtg0wlWetGQoNxmJVgiIiISUIIlItIMr60CIC0zp8nt3foMA6Bi3ZLdFpOIiIh0bEqwRESaEw0SrPSsphOs3r37U+E5VK//fHdGJSIiIh2YEiwRkebUVQMQaaYFa1DPbiz3PvimpbszKhEREenAlGCJiDQnbMGyjG5Nbh7YI4fl3oesiuW7MyoRERHpwJRgiYg0J5zkgmYmuchKT2NjxkC6V6+GeHw3BiYiIiIdlRIsEZFmWDToIkh6010EAbblDSLDa6FizW6KSkRERDoyJVgiIs0JuwiSkd1skXhBcbCwuaTdwxEREZGOTwmWiEgzrG7nLVgZvfcCILpRMwmKiIiIEiwRkeZt7yLYQgtWfr9hRD1C5drFuykoERER6ciUYImINKM1Y7AGFRWw2ouoK9XDhkVEREQJlohIsyKxGmJEIC292TKDwqnabcuy3RiZiIiIdFRtSrDM7Ddm9omZzTOzx82sMFxfbGZVZjY3fN2ZlGhFRHajSKyaWmt6ivbt+hdks5K+5FSu2E1RiYiISEfW1hasF4Ex7j4O+BT4acK2Je4+Pnxd3MbjiIjsdmmxaqKRlhOs9LQIm7MHkhvdDDUVuykyERER6ajalGC5+z/dPRq+fRsY1PaQREQ6hrR4LXU7acECqO0+JFjQVO0iIiJdXjLHYF0APJ/wfpiZfWBmr5nZlOZ2MrOLzGy2mc0uLS1NYjgiIm2THq8hmrbzBIsexcG/m5a2azwiIiLS8TU/cjtkZi8B/ZrY9DN3fzIs8zMgCjwQblsDDHH3jWZ2IPCEmY129/LGlbj7XcBdABMmTPAvdxoiIsmXEa8hvpMuggDZfb4CS6Bu4+dk7Ia4REREpOPaaYLl7l9vabuZnQccD3zN3T3cpwaoCZfnmNkSYDgwu60Bi4jsLhleQ6wVLVh9+/Rli+dia5dQsBviEhERkY6rrbMIHgtcA5zo7tsS1vc2s7RweS9gH+DzthxLRGR3qo3GyaaGeHq3nZYd3DOHZd6X2Eb9mhMREenq2joG63agO/Bio+nYDwPmmdlc4BHgYnff1MZjiYjsNhXVdeSzlVhm/k7LDurRjRXeh/QyPQtLRESkq9tpF8GWuPtXmln/KPBoW+oWEUmliuoo+baNquydd/rrnZfFKutLbvV7EI9BJG03RCgiIiIdUTJnERQR2WNUVEcpYCvWigQrEjEqcwaR5jEoX7UbohMREZGOSgmWiEgTKrdWkmO1RLr1aFX5aIGehSUiIiJKsEREmlRduQWA9G6FrSqf1nNYsKAES0REpEtTgiUi0oSaymBensy8nq0q371vMVGPULNBDxsWERHpypRgiYg0oW7rZgCyureui+CgonxWeS+q1y9pz7BERESkg1OCJSLShNrKIMHK6d66FqzBPXNY7n3wTSXtGJWIiIh0dEqwRESaUBd2EUxv5SQX25+FlVWxvD3DEhERkQ5OCZaISFO2rg/+zevTquI9umWwNtKPnLrNUFPRjoGJiIhIR6YES0SkCdnb1lJLJuS0rgXLzKjJGxi8KdOzsERERLoqJVgiIk3Iq11PWUZvMGv1PlYQJljlK9spKhEREenolGCJiDQSjzs9oqVsy+67S/tl9RwMgKsFS0REpMtSgiUi0si6imr6spFo9wG7tF9B3yHE3ajeuKKdIhMREZGOTgmWiEgjy0vL6MtmMnoM3qX9BhXlU0oBVRs0k6CIiEhXpQRLRKSRzcs/IcNidBswapf2G9SjG2u8J7EtGoMlIiLSVSnBEhFppGLFPAAKi/fbpf0G98xhjReRXrm6PcISERGRTqBNCZaZTTOzVWY2N3x9I2HbT81ssZktMrNj2h6qiMjuYesXECNCep8Ru7Rf9+wMNqf1Iqd6XTtFJiIiIh1dehLquMXdb05cYWajgNOB0cAA4CUzG+7usSQcT0Sk3cTiTv/Kj9mQM4y+Gdm7vP+2nP5kV22D6jLILmiHCEVERKQja68ugicBD7p7jbsvBRYDk9rpWCIiSfPp6k2MZxGV/Q/6UvvXdusXLJSrm6CIiEhXlIwE61Izm2dmfzGzHuG6gUDiPMUrw3U7MLOLzGy2mc0uLS1NQjgiIl/eojkzybUaeo468kvtH+se/qrTs7BERES6pJ0mWGb2kpnNb+J1EvBHYG9gPLAG+O2uBuDud7n7BHef0Lt3713dXUQkqSKLnqGOdHqM/XJDR9MLgmdnecWaZIYlIiIincROx2C5+9dbU5GZ3Q08E75dBSQ+QGZQuE5EpMNaur6MCVtnsqroIIq/5Pip7B5BF8GaLWvZ9RFcIiIi0tm1dRbB/glvTwHmh8tPAaebWZaZDQP2Ad5ty7FERNrbvJceYIBtouDQC790HT0LCyj3blRv1hgsERGRrqitswjeZGbjAQdKgH8HcPePzewhYAEQBX6gGQRFpCPbWhNl0Kf3sSGtL732P+lL19M7L4tSL6CwfG0SoxMREZHOok0Jlruf3cK2G4Eb21K/iMju8twzj/MdFrDygGshkval6+nVPYtSCims1LOwREREuqL2mqZdRKTT2FhRzT7z/ofNaUUM+rcftqmu7S1Y6VWaFVVERKQrSsaDhkVEOrVXHr+b79hnrDvsZsjs1qa6CnIy2EAh2TXzkhTdnqE2GmdrVQ1bt1YSrauGeBTidWRnZdMtN4/cbnmkpWeAWapDFRERaRMlWCLSpa3csIVJS25jTfYw+k+5oM31RSLG1sxeZMW2Qe1WyMxNQpQdWzzurC7dyOpliyhbvZj4xqVkVi4nb9tqsus2kxcro5AKCthKD/Nm66nzNDZbARXpPanO7Ek0pxee15eMwoHkFA2isM9gCvoOIS2/P6Rl7MYz/IK7UxuLE4vFqautIVZbRSwWIxqLEYvFwZ2IxYngpJljOJG0DCJp6Vh6JpG0NNLSM0hLzyA9LYNIxDAllSIiexQlWCLSpb338G85xdax8dgH2jT2KlFtdm/YClSug557JaXOjqK6NsqSRfMo/WwOtavnk1u2iEG1nzOY9QxKSJ62kc2G9L5UZRexLWsQFTk9KMnuQSSrO5aWiadl4JZGrK6GaE0VsdoqqK0kvXoTmdUbyK7eRI+tS+i9YQsZtuMcSVsihVRk9KImuw81OX2o69YPz+1NWlYumVk5kJFDLC0TAIvHwONEYzGidXXU1dUSr91KvGYb1G3F6rYFr2gVkboq0mLbSItVkxarIT1eQ0a8hgyvIdNryaKGbOrIppZuLSSLrVXnacSIECONKGnELUKchJel1f/rRIhbBN++jggxIjiGESRz5g5ByeDccczjGGDEw21hmbCshe+D8tttrytcDpcMx7fXm7Bueznq1zXNm92ys20t2fU6E+trXKKlOHZ2SNtJgcbnYa17s9NDl0UKiX7rz4waNa7Z/URk91GCJSJd1mfLVnH42r+wtGACw8Z/M2n1xnO3J1jrO3WCFYs7ny5bwar5s4iveI/CTR+yT90iRltlsJ0I69IHsqXnaOb3OpWcfiPoNXg4hQP2oVtuL4a0sWXG3dmytYZ161ZRtm45lRtXUbdpJVSsJX3bWrrVlFKwZTV9tnxMEeVE2pDwVHkm1ZZNtWVRa9nURbKIRrKJZXZnW1ovPC2beHo2lpGDp2cTD9+TloWlpRGxCBaJ4BYkPHG3IAlyB49hsSgej2Ieg3gUi9dBPAax4F+L1+HxWLDdY8E2j2PxaPDe41j99oT0yoPWMjcLUyfDLUinwIhbMNTaiYCFaVG43RO3AZhhEO4PkNi6Zl9030xcF37d9wbrmrkPvuP67WusiXXbJSZ6reI7LDRXYAfbk8UmS3gze3vz+3gT5Zpe5S2eXeNdG5c9YOvrfPzkNfjI59UiKtIBKMESkS5r4eO/5kSrJP3kXyd17I917wfrCVqwOpFY3FmwdCUr575E2rI3GFo+m5EsYyQQx1iVMZQVfb/GqsET6TtiEr2KxzIgsxsD2ikeM6NHXjY98vaGvfdusoy7UxONs3lbFVVl69m2rZLqbVshWk0kVhN83Y+kgaWRnp5OVmYGWZlZZObkkdUtj+xu3cnIyiUnEiGnnc5DpL3Nuf8XTFx8Kx+98ThjD/tWqsMR6fKUYIlIl7RwyTKO2Pwwi3sdyVf2mpjUurMK+gEQr1jX4adqXb+lko/feZGaRS/Rf9O7jPbFjLU4NWSyIm8sCwadSK+RU+g94mAGZxcwONUBN2JmZGekkV2QBwV5qQ5HJCVGn/oTVt70MD1evZbaiceQmbPnj/0U6ciUYLXgk3dfouLNu8na71uMnHwSGZnZqQ5JRJKk5OlfM8KqiZx8Q9LrLujVj6hHqNm0io72Ncfdmf/5Cpa+9SR5y17igNr3ONK2EiXCypx9WTL4e/TZ79/oMXwKX8nQ7zyRziA7J5fSw/+L/Weez+wHrmXChX9IdUgiXZoSrBZUrPmUEWWvk//6C5S/fjkfdTuA6JCv0nfc1xk0/EDS0jvv5fN4nHg8TiwWJRatIxqtIx6LEYvWEY8H62LRYMxALBZt0AF8h27kHm/0vmGBlnuWBxoMDG52oK816MVVv2hNr98+ULnhti/GDOzQI8waRPFF/IkFPXGxuUHMO45BcP+i/h0uX4M6W6q/+XvQYL8dtrV075ou12TZZra1tN+Oh2u60h2P9SXPtaVjJ6zYVlbKYZsf5dPe/8a+g5M/KLxPQS6lFJK9aWWHSLCisTgfzvuA9bOfoPfqV9kvvoCxFqM8ks+afkdSMfabDDzgGxR3K0x1qCLyJe1/xLf41/sP8dWV9/LZm4ezz6Fdq6uguxOLRqmrraG2tppobTXRuhqitbXEYrV4PA7xOHF3PB7D3XGPg8eD5Xi8fn2D7zVm9eMTwbDI9n4JwRhFSygTLH4xBtIiCdvD7zAWjmc02z7+MVxvDcc8BvuGdSWMf7T67zwJ6xss7yYtfUloj8OlZ5PXsx/ds1Mzg+yuMt/NF6glEyZM8NmzZ6c6jAZqaqr4+I2niH38JAO3zGaAB2MqajyDVRmD2ZK7N7X5xWQUDiCzR3/SCwaQk1dITl53cnPzycrJDaYT9i9macKdWDxOTXUVtTVbqauuoq4meEVrq4jVVhOrDZbjtVXEa6uJ11XjdVUQrYa6aohVY9EaLFZDJFpNJF5DJFZDWryW9HgN6fFaMryWDK8hw2vJpI4sr2X73FNNzcol0pVUeSa1F/2LgoH7JL3uD1dsoe7uf2Ovfj3p+f1/JL3+1qiujfL+7Dep+OBxiktfYQTLAFidMZTyoV9nwMRTyN/nq0mbOVFEUq+svIzSWw6jr69ny6kPM3js5FSH1Cx3p3JrJRWb1rO1bAPVZaXUVm4kWrmR+LbNxGsqsdqtRKLbSKvbSkZsG+mxbWTFqsj0KrLjVWRQR7pHySBKJnWkJWFmT+mY/hGbQMnX7+LfD296PG6qmNkcd5+ww3olWLtm1dJFrPrwZaJrPqLblk/pX7OUvmzc7XFUewa1lkktGdRZJrWWRdQyiUYyiUayiEUyiUWyiKcFL0/PJh7JDAZ7R9IxS8Mj6VgkPfiCFb6C9+lYJA3S0olE0rBIWv1sU/Ua/aXEGre27PCXlJZGonwxQ1TzP45Nb7NG67e3kNTPBNWoRWP7bFTNzQK1wzb3HebETWyHanzelrB3g0vg3uiS2A7lm6unQcuae7N/pWqhQW4n61s3HXBLM1O19tiNC+9YrPlJjpu6fk1ta+3f8HKLJ9B/xA6/E5NiXXk17/zmZI7ovpL8a+a3yzGaUra1hg/eeZmaeU+y7+aZDLW1xDGW5oyldp9vUHzod8jp+5XdFo+I7H4lny8i/f+Op4BK1n79dvaZfOpuPX48Wsfm9avYsm4ZWzeuoGbTKuLla0jfuoasqlK61W2kW6yCAq8gx2qbr8eNbZZNFdnUWA41kRxq03Koi+QQTe9GLL0bnpZFPC0z+EN2WiZEMiE9C9IysPRMLD0LSwueP+eRtPD/sbSgdcgiYJFgnUWwSPhvOOOmmYWtWdu/WXjCH8u9ftHDRxo4jnvYh8UB4uFXhYTyJNTnX6y3cN/wzL84VH15b/h9J3z0AoTfFxrMtLkbW7J2Y6vZ1pz+9Nv/WPbtl7/bjtkazSVYnbePW4oMHDaCgcNGNFhXXV3N+rUr2LphJdGytdRVlVNXvZVodfCXl4gHrUUNunxZBMvIxtKzsYxsIpk5RDKyScvMJi0jh/TsHNIycsjIyiEjqxuZOd3IzO5GdnY3MjKzyY5E0OgIkY6pV14Wq+lNt6rZEI9DpP2muli9qYKP3noBFj7NuIo3OMI2ESWNpfkH8tnIH1B86GnsHU66ISJ7vuK9RlBy9tOsuf90hr90AR9+8DCDTrqeoiEj21Svx+OUb9nI5rUlVGxYQfXGVcTKVhGpXEvmtnXk1pZSGN1AT99CkTlFCfvWeRobrQdb0oooy+zPpuxRLM/uATk9iOQWkZ7Xk6zuvcjO70VuYR+6F/Yiu1seeZEImrpGOiMlWEmQnZ3NkOJ9oDj5XY1EpPNJixgVmX1Jj9XB1vXQPXkJjruzaMVaPnvrGTI//ycTqt/iGKughkxKeh5CzdiTGHLQt9gnt0fSjikinUvx3vtSdsUbzLzvxxyy/iGy/vI8izP3ZUvviWQO2o/soiFk5xUSj2TgbnhtJTVby9hWUUZNxQaoWEvatvVkVJWSU7OB7tGNFMU3UWC1FDQ61ma6sznSk4rM3mzKG85nuX2xggFkFg4kt9dgCvsOpajvAPqlp6M/9UhXoQRLRKQd1BQUwyagdFGbE6yyqjrmfTiHyo+eo2jNTPaLfcy+FmWrdWNV38Op3f8U+h94PCMyO8KUGiLSERTkd+eIH/wvy0uuZOlLf6JozWuMW/l3Mlfd16r9y+nGZutJZUZP1uaNZmW3PpA/gIzCAeQUDaagzxB69htCj2656M85Ig21KcEysxnA9v5yhcAWdx9vZsXAQmBRuO1td7+4LccSEelMbMB42AS+6n1sr8N3ad+aaIyPFixg3byXyFz5L4ZXzWWKrQdgdcYQlg49k74TTqTHiMMYnp7ZDtGLyJ5iSPHeDLnwJgAqt1aydOknbCtdTl1VBWnUEcGJpeeS1S2f3O6FdO/Zm4Jeg8jPyaVjjXYR6TzalGC5+9Tty2b2W6AsYfMSdx/flvpFRDqroYMGs2xeH3otfYfcKc2Xc3dKN5ex9ON3KV/yDpnrPqR42zwmWDBjaaXlsbboQEr2voQBk05mQO+9GLCbzkFE9ix5uXmMGDMBaJ8JfkQkkJQughZMy3IacFQy6hMR6ewOH96bN54Zw2klr0DZSigYxOaKbawp+YTNy+dTvXoh6Zs/o++2xezty+kTPjphixWwrnAsnw67gIHj/428IeP5iqZSFxER6TSSNQZrCrDO3T9LWDfMzD4AyoGfu/sbSTqWiEiHN7hnN+YXn8upK16n9pYDqSKLQi+nR8JzWjZGerIxd28W9j6SbsMmMmjMoRT2HELh7n5gpIiIiCTNTp+DZWYvQZMTv/zM3Z8My/wRWOzuvw3fZwF57r7RzA4EngBGu3t5E/VfBFwEMGTIkAOXLVvWhtMREek4yqvrePK5Zxm27FGy0o307r3J7L03BUNG03/vcaR109BwERGRzqrdHjRsZunAKuBAd1/ZTJmZwFXu3uJThDvDg4ZFRERERESaS7CS8fTLrwOfJCZXZtbbzNLC5b2AfYDPk3AsERERERGRDisZY7BOB6Y3WncYcIOZ1QFx4GJ335SEY4mIiIiIiHRYbU6w3P28JtY9Cjza1rpFREREREQ6kzaPwUomMysFOtosF72ADakOQnYb3e+uQ/e6a9H97jp0r7sO3euupSPe76Hu3rvxyg6VYHVEZja7qcFrsmfS/e46dK+7Ft3vrkP3uuvQve5aOtP9TsYkFyIiIiIiIoISLBERERERkaRRgrVzd6U6ANmtdL+7Dt3rrkX3u+vQve46dK+7lk5zvzUGS0REREREJEnUgiUiIiIiIpIkSrBERERERESSRAlWC8zsWDNbZGaLzewnqY5HksfMBpvZq2a2wMw+NrPLwvU9zexFM/ss/LdHqmOV5DCzNDP7wMyeCd8PM7N3ws/3DDPLTHWMkhxmVmhmj5jZJ2a20MwO0Wd7z2RmV4S/w+eb2XQzy9Zne89hZn8xs/VmNj9hXZOfZQvcGt73eWZ2QOoil13VzL3+Tfh7fJ6ZPW5mhQnbfhre60VmdkxKgm6BEqxmmFkacAdwHDAKOMPMRqU2KkmiKHClu48CDgZ+EN7fnwAvu/s+wMvhe9kzXAYsTHj/P8At7v4VYDPw/1ISlbSHPwAvuPu+wH4E912f7T2MmQ0EfgRMcPcxQBpwOvps70nuBY5ttK65z/JxwD7h6yLgj7spRkmOe9nxXr8IjHH3ccCnwE8Bwu9rpwOjw33+N/ze3mEowWreJGCxu3/u7rXAg8BJKY5JksTd17j7++FyBcEXsIEE9/hvYbG/ASenJEBJKjMbBHwT+HP43oCjgEfCIrrXewgzKwAOA+4BcPdad9+CPtt7qnQgx8zSgW7AGvTZ3mO4++vApkarm/ssnwT8nwfeBgrNrP9uCVTarKl77e7/dPdo+PZtYFC4fBLwoLvXuPtSYDHB9/YOQwlW8wYCKxLerwzXyR7GzIqB/YF3gL7uvibctBbom6q4JKl+D1wDxMP3RcCWhF/c+nzvOYYBpcBfwy6hfzazXPTZ3uO4+yrgZmA5QWJVBsxBn+09XXOfZX1v27NdADwfLnf4e60ES7o0M8sDHgUud/fyxG0ePMNAzzHo5MzseGC9u89JdSyyW6QDBwB/dPf9ga006g6oz/aeIRx7cxJBUj0AyGXHLkayB9NnuWsws58RDO14INWxtJYSrOatAgYnvB8UrpM9hJllECRXD7j7Y+Hqddu7FIT/rk9VfJI0hwInmlkJQVffowjG6BSG3YpAn+89yUpgpbu/E75/hCDh0md7z/N1YKm7l7p7HfAYweddn+09W3OfZX1v2wOZ2XnA8cCZ/sXDezv8vVaC1bz3gH3C2YgyCQbTPZXimCRJwjE49wAL3f13CZueAs4Nl88FntzdsUlyuftP3X2QuxcTfI5fcfczgVeBb4fFdK/3EO6+FlhhZiPCVV8DFqDP9p5oOXCwmXULf6dvv9f6bO/ZmvssPwWcE84meDBQltCVUDohMzuWoHv/ie6+LWHTU8DpZpZlZsMIJjZ5NxUxNse+SAalMTP7BsHYjTTgL+5+Y2ojkmQxs8nAG8BHfDEu51qCcVgPAUOAZcBp7t54gK10UmZ2BHCVux9vZnsRtGj1BD4AznL3mhSGJ0liZuMJJjTJBD4Hzif4g6I+23sYM/slMJWg+9AHwIUEYzH02d4DmNl04AigF7AOuB54giY+y2GSfTtBN9FtwPnuPjsFYcuX0My9/imQBWwMi73t7heH5X9GMC4rSjDM4/nGdaaSEiwREREREZEkURdBERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIR6SDMrNjM3MzSUx3Lns7MzjOzWamOo6MxsylmtijVcYiIdGZKsEREpFMzs2lmVmdmlQmva1IdV2fk7m+4+4hk12tmJ5jZ/PDe/MvMRiX7GCIiHYUSLBGRJFHLU0rNcPe8hNdNqQ4omTrzz5aZ7QM8AFwMFAJPA0915nMSEWmJEiwRkTYwsxIz+7GZzQO2mlm6mR0c/pV+i5l9aGZHJJSfaWb/bWbvmlm5mT1pZj2bqft8M1toZhVm9rmZ/Xuj7SeZ2dywniVmdmy4vsDM7jGzNWa2ysz+08zSdnIee5vZK2a20cw2mNkDZlaYsG2TmR0Qvh9gZqXbz8vMTjSzj8PznWlmIxtdn6vMbJ6ZlZnZDDPL3vUrvevM7CfhdakwswVmdkoz5czMbjGz9eG1/MjMxoTbsszsZjNbbmbrzOxOM8tp5fHvDcu/GMbwmpkNTdj+BzNbER5zjplNSdg2zcweMbP7zawcOM/MJpnZW+F1XmNmt5tZZsI+bmbfN7PPwuP9Krx3/wqP8VBi+WZiPsLMVrbm/HbBMcAb7j7L3aPA/wADgcOTfBwRkQ5BCZaISNudAXyT4K/zfYFngf8EegJXAY+aWe+E8ucAFwD9gShwazP1rgeOB/KB84FbEpKcScD/AVeHxz0MKAn3uzes9yvA/sDRwIU7OQcD/hsYAIwEBgPTANx9CfBj4H4z6wb8Ffibu880s+HAdOByoDfwHPB0oy/ypwHHAsOAccB5TQZgNjlMHpp7Td7JOTS2BJgCFAC/DOPv30S5owmu3/Cw7GnAxnDbr8P14wmu50Dgul2I4UzgV0AvYC5BS85274X19gT+DjzcKPk8CXiE4P4+AMSAK8K6DgG+Bny/0fGOAQ4EDgauAe4CziK4n2MIfla/tDBRbu7+/G9LuzZatjAeEZE9jhIsEZG2u9XdV7h7FcGX2efc/Tl3j7v7i8Bs4BsJ5e9z9/nuvhX4BXBaUy1M7v6suy/xwGvAPwkSBoD/B/zF3V8Mj7PK3T8xs77hsS53963uvh64BTi9pRNw98VhXTXuXgr8joQWBne/G1gMvEOQGP4s3DQVeDbctw64GcgBvtro+qx2900E3cPGNxPDLHcvbOHV0qQUpzX6sj/A3R8Ojxt39xnAZ8CkJvatA7oD+wLm7gvdfY2ZGXARcIW7b3L3CuC/dnYtG3nW3V939xqCa3aImQ0Oz/d+d9/o7lF3/y2QBSSOf3rL3Z8I469y9znu/nZYvgT4Ezu2At3k7uXu/jEwH/inu3/u7mXA8wQJ95fm7uNauD+Nk73tXgIOD1vHMoFrgUygW1tiERHpqJRgiYi03YqE5aHAdxK/7AOTCZKSpsovAzIIWiUaMLPjzOztsHveFoLEaXu5wQQtNI0NDetbk3D8PwF9WjoBM+trZg9a0KWwHLi/iZjuJmh1uC1MGCBo8Vq2vYC7x8PzG5iw39qE5W1AXkuxfEkPNfqyv9rMzrGgC+X26zCGJq6zu78C3A7cAaw3s7vMLJ+gRa4bMCehjhfC9a1Vf6/dvRLYRHDNCLtOLgy7Tm4haD3r1dS+YfnhZvaMma0N79F/NXE+6xKWq5p43x7XvkXu/glwLsE1XkMQ8wIg2V0RRUQ6BCVYIiJt5wnLKwhaqBK/7Oe6+68TygxOWB5C0IKyIbFCM8sCHiVoEerr7oUE3e+2d7VaAezdRCwrgBqgV8Lx89199E7O4b/C8xjr7vkELXH13brMLA/4PXAPMM2+GDe2miCp217OwvNbtZPj7cCCKcIrW3hN2Xkt9XUNJUgILwWKwus3n4Zd1eq5+63ufiAwiqBL4NUE96QKGJ1wLQvcfVeSlPp7HV7DnsDq8FyuIeiO2COMr6xRfIk/VwB/BD4B9gnv0bXNnU97sWCsXXP3587m9nP3R9x9jLsXAdcDxQRdJEVE9jhKsEREkut+4AQzO8bM0swsO+waNSihzFlmNiocz3QD8Ii7xxrVk0nQZawUiJrZcQRjhba7BzjfzL5mZhEzG2hm+7r7GoKuhL81s/xw295mtrMJBboDlUCZmQ0kSDAS/QGY7e4XEowx2/5l+iHgm2EcGcCVBAnev3Z2oRoLpwjPa+H1xi5Ul0uQoJRCMGEIzYz5MbOJZnZQGP9WoBqIh61xdxOMfesTlh1oZsck7OuWMIlJE74Rji3LJBiL9ba7ryC43tEwvnQzu45grF1LugPlQKWZ7QtcspPySefuo1u4Pxc3t5+ZHRh+HnoTjAt7KmzZEhHZ4yjBEhFJovDL80kErQulBC1KV9Pw9+19BBNRrAWygR81UU9FuP4hYDPwXeCphO3vEk58QdDy8RpftCSdQ5CgLQj3fYSGXRSb8kvggLCuZ4HHtm8ws5MIJqnY/oX+P4ADzOxMd19E0Np1G0GLzwnACe5eu5PjtSt3XwD8FniLoJvcWODNZornEyRSmwm6O24EfhNu+zHB2LO3w255LxGOkwrHUlUAH7UQyt8JWmw2EUw+cVa4/h8E3Q0/DY9ZTaMugU24iuDnoCKMd8ZOynckfwC2AIsIrvP3UhqNiEg7MvfGPRBERKS9mNlM4H53/3OqY5G2MbOzCLoP/rSZ7fcCK93957s1MBERSSk95E9ERORLcPf7Ux2DiIh0POoiKCLSRVjw0NtdmpxA9jxmdm0zPwfPpzo2EZE9gboIioiIiIiIJIlasERERERERJKkQ43B6tWrlxcXF6c6DBERERERkRbNmTNng7vv8PD5DpVgFRcXM3v27FSHISIiIiIi0iIzW9bUenURFBERERERSRIlWCIiIiIiIkmiBEtEpBHNrioiIiJfVocag9WUuro6Vq5cSXV1dapDkU4mOzubQYMGkZGRkepQpJO59vH5fLpkCQ9edhwZmVmpDkdEREQ6kQ6fYK1cuZLu3btTXFyMmaU6HOkk3J2NGzeycuVKhg0blupwpJNZ9N5LPJY1jeXPXMaQb92Q6nBERESkE+nwXQSrq6spKipSciW7xMwoKipSy6fssnjcOS1tJgDdFj+b0lhERESk8+nwCRag5Eq+FP3cyJdRWRslz4LEvHvVCojVpTgiERER6Uw6RYIlIrK7lG2roxtBgpXlNVC6KMURiYiISGeiBKsVzIwrr7yy/v3NN9/MtGnTUhdQgrfffpuDDjqI8ePHM3LkyPq4Zs6cyb/+9a8vXe+yZcs44IADGD9+PKNHj+bOO+9MUsQiHVtZVR25Vk2F5QJQu+6TFEckIiIinYkSrFbIysriscceY8OGDUmt192Jx+NtquPcc8/lrrvuYu7cucyfP5/TTjsNaHuC1b9/f9566y3mzp3LO++8w69//WtWr17dplhFOoPKmig51LA+d1/ibmxZPj/VIYmIiEgnogSrFdLT07nooou45ZZbdthWWlrKqaeeysSJE5k4cSJvvvkmANOmTePmm2+uLzdmzBhKSkooKSlhxIgRnHPOOYwZM4YVK1Zw9dVXM2bMGMaOHcuMGTOAIEE64ogj+Pa3v82+++7LmWee2eSzedavX0///v0BSEtLY9SoUZSUlHDnnXdyyy23MH78eN54440W4zz77LM55JBD2Geffbj77rsByMzMJCsrmJ66pqam2UTw1ltvZdSoUYwbN47TTz8dgE2bNnHyySczbtw4Dj74YObNm1d/rHPPPZcpU6YwdOhQHnvsMa655hrGjh3LscceS11dMNblhhtuYOLEiYwZM4aLLrpoh/OOx+MUFxezZcuW+nX77LMP69ata+k2irRKXSxOLtWk5/Vipfeidp26CIqIiEjrdfhp2hP98umPWbC6PKl1jhqQz/UnjN5puR/84AeMGzeOa665psH6yy67jCuuuILJkyezfPlyjjnmGBYuXNhiXZ999hl/+9vfOPjgg3n00UeZO3cuH374IRs2bGDixIkcdthhAHzwwQd8/PHHDBgwgEMPPZQ333yTyZMnN6jriiuuYMSIERxxxBEce+yxnHvuuRQXF3PxxReTl5fHVVddBcB3v/vdZuOcN28eb7/9Nlu3bmX//ffnm9/8JgMGDGDFihV885vfZPHixfzmN79hwIABO5zLr3/9a5YuXUpWVlZ9wnP99dez//7788QTT/DKK69wzjnnMHfuXACWLFnCq6++yoIFCzjkkEN49NFHuemmmzjllFN49tlnOfnkk7n00ku57rrrADj77LN55plnOOGEE+qPGYlEOOmkk3j88cc5//zzeeeddxg6dCh9+/bd6X0U2Zm6WJxuVkNabj4LvT8jt3ye6pBERESkE1ELVivl5+dzzjnncOuttzZY/9JLL3HppZcyfvx4TjzxRMrLy6msrGyxrqFDh3LwwQcDMGvWLM444wzS0tLo27cvhx9+OO+99x4AkyZNYtCgQUQiEcaPH09JSckOdV133XXMnj2bo48+mr///e8ce+yxTR6zpThPOukkcnJy6NWrF0ceeSTvvvsuAIMHD2bevHksXryYv/3tb022EI0bN44zzzyT+++/n/T09PpzOvvsswE46qij2LhxI+XlQWJ83HHHkZGRwdixY4nFYvXxjh07tv78Xn31VQ466CDGjh3LK6+8wscff7zDcadOnVrf2vfggw8yderUFq+5SGvVRp1uVJOW053S9H7kVq1JdUgiIiLSiXSqFqzWtDS1p8svv5wDDjiA888/v35dPB7n7bffJjs7u0HZ9PT0Bt3qEp/HlJub26rjbe+iB0H3v2g02mS5vffem0suuYTvfe979O7dm40bN+5Qprk4YcfpzBu/HzBgAGPGjOGNN97g29/+doNtzz77LK+//jpPP/00N954Ix999FGrzikSiZCRkVF/rEgkQjQapbq6mu9///vMnj2bwYMHM23atCafZXXIIYewePFiSktLeeKJJ/j5z3/e4nFFWqsuGqMbNVRkdmNbt4Hkbi2DmgrI6p7q0ERERKQTUAvWLujZsyennXYa99xzT/26o48+mttuu63+/faucMXFxbz//vsAvP/++yxdurTJOqdMmcKMGf+/vfuOj7O8Ej3+O9NHvUtWsWXjbssFF4wLYAdCDT0YNrABdiE9N6TsJtklIezuvYFks3ezkHAhEFLAQCABQkIHA4ZgsDG44N7UextJ0+e5f8xYSLZky9ZIo3K+H+ujefuRX73SHD3Pc57HCYfDNDQ08Oabb7J06dIBx/SXv/yle4zS3r17sVqtZGRkkJqaisfjOWGcAM888ww+n4+mpibWr1/PkiVLqKysxOv1AtDS0sKGDRuYMWNGr2tHIhEqKipYvXo1d911F21tbXR0dLBq1SoeeeQRIDqWLCcnh7S0tAF9PUeSqZycHDo6OnjyySf73E9EuOKKK/jmN7/JrFmzyM7OHtD5lTqRcNCPXcJYHCmE0ydGV7aWJzYopZRSSo0ammCdpG9961u9qgn+/Oc/Z9OmTcybN4/Zs2d3lzO/6qqraG5uZs6cOdxzzz1Mnz69z/NdccUVzJs3j/nz57NmzRruvvtuCgoKBhzP7373O2bMmMGCBQu44YYbeOSRR7BarXzmM5/hT3/6U3eRi/7ihGg3v9WrV7Ns2TJuv/12CgsL2blzJ2eccQbz58/n7LPP5tvf/jZlZWUA/OM//iObNm0iHA5z/fXXU1ZWxsKFC/n6179ORkYGd9xxB5s3b2bevHl897vf5Te/+c2Av56MjAxuueUW5s6dy/nnn8+SJUu6t91333294l67di2///3vtXugiisTiHadFVcK9qxSAMLNhxIXkFJKKaVGFemrMt1JnUCkBPgtkA8Y4H5jzH+LyB3ALUBDbNfvG2P+erxzLV682GzatKnXup07dzJr1qxBxaj6d8cdd/QqhjHW6PePOllPvfY3rnrzAjzn/xevhU/nslfOpuXsfydz9dcSHZpSSimlRhAR2WyMWXz0+niMwQoB3zLGfCAiqcBmEXk5tu2/jDE/Pc6xSik1sgQ6AbA6U8hLK6bLOOmqO0BmgsNSSiml1Ogw6ATLGFMD1MRee0RkJ1A02POq4XHHHXckOgSlRpZgFxBNsIqzkqg0ObhbDic4KKWUUkqNFnEdgyUipcBCYGNs1VdFZKuIPCQiff4BWERuFZFNIrKpoaGhr12UUmrYmKAfAJvDRUG6iyqTi6OjMsFRKaWUUmq0iFuCJSIpwFPAN4wx7cAvgdOABURbuP6zr+OMMfcbYxYbYxbn5ubGKxyllDolJhxNsCw2O3arhWZ7AaneqgRHpZRSSqnRIi4JlojYiSZXjxhj/ghgjKkzxoSNMRHgAWDgtceVUipBIqEgAGKLztnWlVxEUqQDfO2JDEsppZRSo8SgEyyJzhT7ILDTGPOzHusn9NjtCmD7YK+llFJDzYQC0RdWOwCRtOLocpt2E1RKKaXUicWjBWsFcAOwRkQ+jH1cBNwtIttEZCuwGrgtDtdKmKeffhoRYdeuXf3uc+jQIebOnRu3a+7evZtzzjmHBQsWMGvWLG699VYgOknwX/963Ir3x+Xz+Vi6dCnz589nzpw5/PCHP4xXyEqNeiZ8JMFyAGDLLAEg3KKTDSullFLqxOJRRXADIH1sOvUMYARat24dK1euZN26dfzoRz86ZnsoFBr0NcLhMFartXv561//OrfddhuXXXYZANu2bQOiCdamTZu46KKLTuk6TqeT1157jZSUFILBICtXruTCCy9k2bJlg/4alBr1wtEugliiLVjJeaUAtNcdJHNmgmJSSiml1KgR1yqCY1VHRwcbNmzgwQcf5LHHHutev379elatWsWll17K7NmzgWii9bnPfY5Zs2Zx9dVX09UVLfn86quvsnDhQsrKyrj55pvx+6MD6UtLS/nnf/5nTj/9dP7whz/0um5NTQ3FxcXdy2VlZQQCAX7wgx/w+OOPs2DBAh5//HE6Ozu5+eabWbp0KQsXLuSZZ54B4OGHH+ayyy7jnHPOYdq0ad2JoYiQkpICQDAYJBgMEu3p2dsf/vAH5s6dy/z58znrrLOAaOvXTTfdRFlZGQsXLuT111/vvtbll1/OeeedR2lpKffccw8/+9nPWLhwIcuWLaO5uRmABx54gCVLljB//nyuuuqq7v+fnpYtW8aOHTu6l8855xyOnoBaqaHySQtWNMHKyp9IwFjxNhxKXFBKKaWUGjXiMdHw8Hn+u1C7Lb7nLCiDC3983F2eeeYZLrjgAqZPn052djabN29m0aJFAHzwwQds376dyZMnc+jQIXbv3s2DDz7IihUruPnmm/nFL37BV7/6VW688UZeffVVpk+fzt///d/zy1/+km984xsAZGdn88EHHxxz3dtuu401a9awfPlyPv3pT3PTTTeRkZHBnXfeyaZNm7jnnnsA+P73v8+aNWt46KGHaG1tZenSpZx77rkAvPfee2zfvp2kpCSWLFnCxRdfzOLFiwmHwyxatIh9+/bxla98hTPOOOOY69955528+OKLFBUV0draCsC9996LiLBt2zZ27drFpz/9afbs2QPA9u3b2bJlCz6fj6lTp3LXXXexZcsWbrvtNn7729/yjW98gyuvvJJbbrkFgH/913/lwQcf5Gtf+1qv665du5YnnniCH/3oR9TU1FBTU8PixcdMkq3U0DjSghXrIliclUytyYKWigQGpZRSSqnRQluwBmDdunVce+21AFx77bWsW7eue9vSpUuZPHly93JJSQkrVqwA4Prrr2fDhg3s3r2byZMnM336dAA+//nP8+abb3Yfs3bt2j6ve9NNN7Fz504++9nPsn79epYtW9bd8tXTSy+9xI9//GMWLFjAOeecg8/no7w8Ol7kvPPOIzs7G7fbzZVXXsmGDRsAsFqtfPjhh1RWVnYnYUdbsWIFN954Iw888ADhcBiADRs2cP311wMwc+ZMJk2a1J1grV69mtTUVHJzc0lPT+czn/kMEG15O3ToEBBNwlatWkVZWRmPPPJIr5aqI6655hqefPJJAJ544gmuvvrqPv9/lBoK0p1gRVuwCjPcVJODzaOl2pVSSil1YqOrBesELU1Dobm5mddee41t27YhIoTDYUSEn/zkJwAkJyf32v/ornZ9db072tHn6KmwsJCbb76Zm2++mblz5/aZCBljeOqpp5gxY0av9Rs3bjxhPBkZGaxevZoXXnjhmAId9913Hxs3buQvf/kLixYtYvPmzcf9OpxOZ/dri8XSvWyxWLrHqN144408/fTTzJ8/n4cffpj169cfc56ioiKys7PZunUrjz/+OPfdd99xr6tUXB3VRdBlt9JozWeGd2cCg1JKKaXUaKEtWCfw5JNPcsMNN3D48GEOHTpERUUFkydP5q233upz//Lycv72t78B8Oijj7Jy5UpmzJjBoUOH2LdvHwC/+93vOPvss0947RdeeIFgMPrX9NraWpqamigqKiI1NRWPx9O93/nnn8///M//YIwBYMuWLd3bXn75ZZqbm/F6vTz99NOsWLGChoaG7i5/Xq+Xl19+mZkzjx29v3//fs444wzuvPNOcnNzqaioYNWqVTzyyCMA7Nmzh/Ly8mMSu+PxeDxMmDCBYDDYfZ6+rF27lrvvvpu2tjbmzZs34PMrNWiR3l0EATrdBaQFGyA8+GI241UwHCESMYkOQymllBpymmCdwLp167jiiit6rbvqqqt6dRPsacaMGdx7773MmjWLlpYWvvSlL+Fyufj1r3/NZz/7WcrKyrBYLHzxi1884bVfeuml7iIT559/Pj/5yU8oKChg9erVfPzxx91FLm6//XaCwSDz5s1jzpw53H777d3nWLp0KVdddRXz5s3jqquuYvHixdTU1LB69WrmzZvHkiVLOO+887jkkksA+MEPfsCzzz4LwHe+8x3KysqYO3cuy5cvZ/78+Xz5y18mEolQVlbG2rVrefjhh3u1XJ3Iv/3bv3HGGWewYsWKXknds88+yw9+8IPu5auvvprHHnuMa665ZsDnVioe5KgqggChlCKsRMBTk6CoRreWzgBn/p/X+NFTGyF0bDdnpZRSaiyRI60eI8HixYvN0dXidu7cyaxZsxIU0ej28MMP9yqGMR7p9486WY/f/SXWdj0KP2yFWJfaxx79Ndfu+QaRG5/HUro8sQGOQs9trearj25hi/NW0otnYrnl1USHpJRSSg2aiGw2xhxTiU1bsJRSqgcxIULYupMrAFduKQCe+gMJimp021/fyQSayJQOLFWboK0y0SEppZRSQ0YTrDHsxhtvHNetV0qdCkskQEh61/9JLygFoKPu0PAHNAbUtvs409KjYuihtxMXjFJKKTXERkWCNZK6MarRQ79v1KmwRIJEjkqwJuRm02xSCDaXJyiq0a2+3cei1BYAIlih/tjpGZRSSqmxYsQnWC6Xi6amJn2zrE6KMYampiZcLleiQ1GjjMWECYu917qiDDfVJgdp07mwTkWdx8cEeyetkkaVYxLUa8l7pZRSY9eInweruLiYyspKGhoaEh2KGmVcLhfFxcWJDkONMtZIkLCl94/GVJedOksuuV2aYJ2Kls4g2XYPXlsmuyPFlGiCpZRSagwb8QmW3W5n8uTJiQ5DKTVOWE2QiOXYH40dzgLS/dvBmF4FMNSJdfhDpNvaCLgy2dWWy6dCbyGhANgcJz5YKaWUGmVGfBdBpZQaTlYTJHJUF0EAf3IhLuMFX1sCohq9jDF0+EOkhtsgKYdD4RwEA20ViQ5NKaWUGhJDnmCJyAUisltE9onId4f6ekopNRgWEyJsOTbBIr0EANOqhS5OhjcYJhwxJIVasKbmUhHJi25oOZTQuJRSSqmhMqQJlohYgXuBC4HZwHUiMnsor6mUUoNhMyFMH10EndmTAOhsODzcIY1qHl8ICxFcwTbc6XmUm1iC1ar/j0oppcamoW7BWgrsM8YcMMYEgMeAy4b4mkopdUqMMVhNiIjl2LFBKfmlALTXHhzmqEY3jy9EGp0IhtTMfOrIJCw2aNEESyml1Ng01AlWEdCzo31lbJ1SSo04oYjBThjTxxisvIIS/MaGv0kTg5Ph8QVJlS4AHCmZZCa7aLEXaAuWUkqpMSvhRS5E5FYR2SQim7QUu1IqkYLhCHYJYazHdhEsykqm2mRjWrU4w8mItmB5owvONIqzkqiWfB2DpZRSaswa6gSrCijpsVwcW9fNGHO/MWaxMWZxbm7uEIejlFL9C4YNdkKYPopcZCbZqZVc7B06F9bJ6PCHuluwcKZSnOnmUDhHuwgqpZQas4Y6wXofmCYik0XEAVwLPDvE11RKqVMSDEeiXQStx47BEhHaHPmk+GoTENno5fEFSTnSguVKoyQzid3+LPA2g9+T2OCUUkqpITCkCZYxJgR8FXgR2Ak8YYzZMZTXVEqpUxVNsELQRxVBAJ97AunhJggFhjmy0cvjC5HKkRastFgLVqy3grZiKaWUGoP6fhcRR8aYvwJ/HerrKKXUYIXCBicBjNXV5/ZIWjGWdgOeasgsHd7gRimPL0SK9BiDlWmoMLEEq/UwFMxNXHBKKaXUEEh4kQullBopAuEITglibM4+t9uyJgLgbdSWl4Hq8IfItvqiC640SrKSqOxOsHTSZqWUUmOPJlhKKRUTDEdwEIJ+EqykvFIAWmsODGNUo1uHL0SWzQ9WB9icFGW4aSaVgMWtXQSVUkqNSZpgKaVUTLSLYBCsfSdYWRMmA+BtODSMUY1uHf4QmVYvONMAcNmt5KW6aLYXaAuWUkqpMUkTLKWUigmEIzgJIPa+E6zCnCwaTBrhFp0La6A8/hDpFi84U7vXlWQlUUWeTjaslFJqTNIESymlYoKBAFYxYOu7yEVeqpNqk4utXROsgerwBUkVH7jSuteVZLo5GMqOtmAZk8DolFJKqfjTBEsppWIiwWgxBulnDJbFIjTaJ5DirRzOsEa1Dn+sTLvzkwSr+MhcWP528LYkMDqllFIq/jTBUkqpmHAwWk5c7H23YAF43MVkBWshHBqusEa1Dl+IJNM7wSrJclMeyYku6DgspZRSY4wmWEopFRMO+AGwHCfBCqRNwkoE2rSb4EB4/CGSTOdRXQSTqDR50QUdh6WUUmqM0QRLKaViTKyLoKWfMVgAkh2tJBho3D8sMY1mxhg6/CGcka5jilxU6FxYSimlxihNsJRSKiYciHYRtPRTRRAgKX8aAJ7qvcMS02jWFQhjjMEZ7uzVRXBCuotOSwo+a4rOhaWUUmrM0QRLKaViQoFoC5bNmdTvPlkFk/AbO966fcMV1qjV6Q/hxo/FhHu1YNmsFgrSXDTadC4spZRSY48mWEopFROKtWA5nP13ESzOSqbC5GJaDg1TVKOXxx8ilej/ac8xWBAtdFFFro7BUkopNeZogqWUUjHhWAuW4zgtWAXpLspNPs52TQxOpMMXIlW6ogvOoxKszCT2B3UuLKWUUmOPJlhKKRUTjhW5sDvd/e5jt1podBSS5qvUxOAEOnq2YB2dYGUlscefBcEu6GxMQHRKKaXU0NAESymlYiKxFqzjFbkA6EwuwRXxamJwAp6eLVhHdREsznT3qCSorYFKKaXGjkElWCLyExHZJSJbReRPIpIRW18qIl4R+TD2cV9colVKqSEUibVgcZwy7QCRjGipdloODnFEo1uHP0Qa/XQRzEqiUhMspZRSY9BgW7BeBuYaY+YBe4Dv9di23xizIPbxxUFeRymlhpwJHUmwjt+C5cqbAkCg4cBQhzSqdfiCZIonupCU3WtbdLLhWIKlpdqVUkqNIYNKsIwxLxljQrHFd4HiwYeklFKJYUL+6IsTJFhpE6YSMUJ7zZ5hiGr0avUGyeRIgpXVa1teqpOgLZkuW7q2YCmllBpT4jkG62bg+R7Lk0Vki4i8ISKr+jtIRG4VkU0isqmhoSGO4Sil1EkaYIJVnJtJLZkE6vcPQ1CjV0tngAJ7bJJhq73XNotFKM5wU2+doC1YSimlxpQTJlgi8oqIbO/j47Ie+/wLEAIeia2qASYaYxYC3wQeFZG0Y88Oxpj7jTGLjTGLc3NzB/8VKaXUKbKEYuOF7P2XaQeYmJVEucnH2npo6IMaxZq7guRZu8Cd2ef24qwkyk2ejmVTSik1pthOtIMx5tzjbReRG4FLgE8ZE61ZbIzxA/7Y680ish+YDmwabMBKKTVUHKFOAthxnKAFKyvZQbUUMKdr2zBFNjq1dAbItnYcM/7qiJJMN3vKszkr+DaEQ2A94a8kpZRSasQbbBXBC4B/Ai41xnT1WJ8rItbY6ynANEBHgyulRjRHqAOfJfmE+4kIHncxqcFGCHSdcP/xqqUrEB2DddT4qyMmZiWxJ5gDJgztlcMcnVJKKTU0BjsG6x4gFXj5qHLsZwFbReRD4Engi8aY5kFeSymlhpQz3InPeuIECyCQNjH6ouXQ0AU0yrV0Bkgz7f23YMW6WkZ3PjR8gSmllFJDaFD9MYwxU/tZ/xTw1GDOrZRSw80Z6cTvGFiCZcuZAvUQaT6EJX/2EEc2OjV3+Um1t0JSTp/bJ2YlUR7Ji+18EKacM2yxKaWUUkMlnlUElVJqVHOFOwnZUga0b3JB9O9LHbX7hjKkUavDH8IR9OCI+CCtsM99SjKTqCWLsNi0BUsppdSYoQmWUkoBkYghyXQRdqQOaP/8/EI8xk2XlmrvU02rlwkS6xneT4KVnmQnxeWgxTFBEyyllFJjhiZYSikFePwhUvBiHANrwZqUnUyFySPSpCXG+1Ld5uuRYBX1u19JVhLVUqCl2pVSSo0ZmmAppRTg8QVJES84B9aCVZjhpsLk4vCUD3Fko1N1q5eCE7RgQXQc1sFwjrZgKaWUGjM0wVJKKcDjDZJKF+JKH9D+DpuFZkchab5qiE4BqHqoafVSKM0YBFIL+t2vJCuJnb5s8LWBt2UYI1RKKaWGhiZYSikFeDo82CSCLWlgCRaAN6UEh/FDR/0QRjY6VbX6mOFoQNKLwWrvd7+SrCQOhHOjC9qKpZRSagzQBEsppYCOljoAnKl9lxTvU2Zp9LMmBseoaOlimqUacqYfd7+STPcnc2E16zgspZRSo58mWEopBfibqwBwZ/c/XuhoztwpAPgatJJgT8YY9ta2URyuhNwZx923JCuJCqMtWEoppcYOTbCUUgoIttUAkJJdPOBjMiacBoCnRufC6qne4yfZVxvtPnmCFqyiDDdd4qbTnqUJllJKqTFBEyyllALoqAXAlj5hwIeU5GVSY7IINGrXtp521XqYL7FWvQnzj7uvy24lP9VFg03nwlJKKTU2aIKllFKAeOoIY4Hk3AEfMzEriXKTh6X10NAFNgptPtzCYssejM0NBWUn3H9iVhIVJk/nwlJKKTUmaIKllFKA3VuPx5oJFuuAj0l326m15JPUWTmEkY0+7x5o4iznHqRo0XErCB5RnOVmXzAb2iohHByGCJVSSqmhowmWUmrcM8aQ5q+j0znw1isAEaHNWUhqsAFCgSGKbnRp9wWpK9/HaeEDMO28AR0zMSuJXb5MMBForx7iCJVSSqmhpQmWUmrca/eGmEg13tTJJ31sMLkAC6Z7DNd49/KOOs7jb9GFmZcM6JiSzCSqTXZ0oU1bA5VSSo1ummAppca98vomCmnCZE896WNNaqyse3tNnKManR7beJAbHa9hJp4JOQP7/yzMcH+SYLVXDWF0Siml1NAbVIIlIneISJWIfBj7uKjHtu+JyD4R2S0i5w8+VKWUGho1Bz/GIobU4lknfawjowiAUJsmBu/sb6S06lmKTQ2y7EsDPq4g3UWNtmAppZQaI2xxOMd/GWN+2nOFiMwGrgXmAIXAKyIy3RgTjsP1lFIqrjoqtgOQM2nuSR+blDMRgM6GctLjGtXo4guG+fmf3uQ++zoiRYuxzLp0wMcWpLnowoXPloZLW7CUUkqNckPVRfAy4DFjjN8YcxDYBywdomsppdSgOBu2EsSGLf/kW7CycnLxGTu+5vHb8hIKR/jeIxv4YfsPSLFFsFz+CxAZ8PFuh5U0l41WWx5oS6BSSqlRLh4J1ldFZKuIPCQimbF1RUBFj30qY+uOISK3isgmEdnU0NAQh3CUUmrgwhFDdvtO6txTweY46eML0pOoNVmEW8dnYtDuC3LHr5/hywe+xHRrDbbrHoHcGSd9noJ0F/WWbGgfv4mqUkqpseGECZaIvCIi2/v4uAz4JXAasACoAf7zZAMwxtxvjFlsjFmcm3tyJZKVUmqwdla1MJsDBPPnndLxBeku6sjEMs6qCBpjeOmjgzzx069ye8UtlDg7sd7wRzht9SmdLz/NRVUkW1uwlFJKjXonHINljDl3ICcSkQeA52KLVUBJj83FsXVKKTWi7N+xkbnSRWjGWad0fGaSnXqymO49HOfIRqZwxLDhw4+peO1+zvf8kU9LO81TPkPWFXdDWuEpn7cgzcXBqgyINEOgCxxJ8Qt6hDLGUNXqZVt5A9X7thGs30OS5xBJvlocoQ7sRAjaU4ikFZM5/UxOP+szpCaP/f8XpZQa7QZV5EJEJhhjjtQmvgLYHnv9LPCoiPyMaJGLacB7g7mWUkoNhcC+twDImn1qLS8igseeS0pgExhzUmOPRpMDhw+zd/0jZB/6Kysj27GKoSp3OaGLvk/WlFWDPn9Buot9/nSwE51seIAl3keTYDjC1spWtm/fSteBd0lv/oiZ4T2skcM4Jdi9X6c1jYA7jYhYsAc9pLW8DBt/TevGFLaedj1zrv4+Vvd4LqmilFIj22CrCN4tIgsAAxwCvgBgjNkhIk8AHwMh4CtaQVApNdIYY8hu2kSjfQI56cWnfB6vOx97RwC6miE5O44RJlZLYy07X38U955nKQt8xBSJUGsrYv/0LzDlnL+naMKcuF0rP83F+91zYVWOiQQrEjF8XNPO1h076Nj9OrmNG1nCDhZJIwABcdGSPZv24pvIOG0J9rzpkDWFZFcayT3OY3xt7H//RVo2PMSS/ffR9NOncF31S5Jnn5eYL6wP3kCYmuZWmuuq8DTXYu1qwoQDREwEiwiu1CzScgopKZ1KSmpGosNVSqkhNagEyxhzw3G2/QfwH4M5v1JKDaVDjZ3Mj3xMa95qcgZxnnDyBOgAPNWjPsGqrath35tPkLLvWeb4trBcwlRbCtheeiMTz7qegimnUzAErXQFaa5PJhsexeOwKpq7eGf7Ptp3vEx23ducHtnO31nqAOiypdFecAZdM9eQNG0VjtxZ5FtP/GtYXOlMXXUNZuVnef7FPzPtb99l8hPX0LbqX0lf881hbTUNhCLsKq+hbs8mgpVbcLTsIbWrnOJINVOkiSkDOEeVFNCSOh0pXUnxogtJn1iWsJZfXzBMY3sXrU31dLbWYbqaIeAlEg4QCQWQSAirw43dlYIrOZXMzCyy8ifiSs0as63VSqnBi8c8WEopNSrt3vY+F4iH0LRTG391hKQXQh3QXgMFZfEJbhgdrq5l31uPk7b/Oeb7N7NSwtRIHluK/o6cM65lyrwVFA7xm8mCdBd1JlaItr16SK8VT8FwhE0Hm9nx4TvI3pco877HVbIXm0TwWlJoLViCZ+ZXSJ25hqS8OSRZTr14r4hw4QWXsrF0IQfW/QOffutO2ut3kvbZX5xSBcyBqG/tZO+2d+ncuwFn/YcUeXczl2rmiQGgQ1Jock3Ek7aMjzNLcWYUk5RVgC0lB4vdidViJRgO09HagKexmq76A1gbPia/bRcTt74JW/83zZYs6nOXk152IQULL0Ti+EeKQChCdWML9RV7aK/ZT7DxIJa2cpI6K8kOVlNAI4V0Uhz7egbKj50WSyYd9lz8SQWQXoQjs4SUvFKyCifjzJoIybkwiPsdDAbxtDbS2daEt70Zf0cTwY4WQl3NmK5W8LZiCbRi87cTNpC19hdMmXjqLfFKqfjRBEspNW517nkDgLyyTw3qPI7M6CwUwdZK7IOOangcrq5j95tPkLL/ORYFNjNJgjRYctlRch05Z6ylZO4qJgzjX+jz01z4ceC1Z+Ie4aXa27qCvLa9gpotfyW/+lVWsIUzpQWAxvSZeKZ/lYz5F+MuWox7AC1UJ+uMmSXsuPVx7v/Vd7h19x/oeLCClBvWQVLWoM9d19zK7g/eoHPPW2Q2bmJ2eBcrxAtAkyWbpoxZ7C+8nIzTlpI9bSkpaRNIGcD3ydE1gkPhCNt376Dqgxdxl6+nrHY9mXXPEXlFqEqaTWjKarKnn0lq6emQOuG4rUWdnR3UHN5HS80+OusPE24px9lRQaq3ivxIHaXSQmmP/QPYabJPoCO9iOqURdQk52FLycaeloslORubMxmrzYHV7gSLFb/PS8DbgbfLQ0drE8G2Guiow9ZZh9tXT0bzDgqa38R1KNgrriA2Wmw5eBz5BOxpRKwuQlYXYYsDEwljwkFMOASRILaQF2fIgyvsISnSSYrpJEW8ZAH93VW/seGRZLySTImp5oXXf8uUz3//hPdCKTX0NMFSSo1bmQ3v0WLNITNr8qDOk5xdRMQIXY2VjOTSAxX1Lex4848k7fkTS/wbmSQBmizZ7Jl4DflnXkvezJXkDuIv7oORnezAbhXa7Hm4R2AXwbauIK9uO0j1+39mUv0rnCtbSBUvPmsyrYUr8c2/GNfM88lJLRiWeOYUZZL8lf/mzv9XyHer78X7y9W4r/sNFC44qfO0trWxZ/NrdO5+g6zG95gZ2sNZsYIb1fZJVE24iKapqyict4bs7EnEq23JZrUwd3YZc2eXAd+mtqWTF997Hf/OF5jY8jfmbbsXy/Z7APDhxGPLpNOaQUSshA1Ywn7cYQ8ppoM0Ouk5Yi+M0GzJodVVSGPKChozJ+HOO43MomlkFk3FkVLAhDh+nxtjaPD42FVTRUv1QToaDhNsrsDeWUOqv5YMbwOurnKSTQAnfpwEiGAlLFbCYiOCFb/Fjc+aQru7mCZ7GhFnGjjTEXcGlqQM7MlZOFKzcKVmk5SeRUp6DklJKeRYLGAM1f8+m/yqlwFNsJQaCTTBUkqNS3VtXspC22kqWE7mIFtqcjNSaSINWkZey0tTexcb1z+H7eMnOcP7FhdIF22SxsHiy8ld/jlyZ51FdoKSqp4sFiEv1UWDJZeCEdJFsK0ryMvbK6h6/1mm1/2VC2ULbgnQ5UjHO+VSzOKrcU05h4Ih6p53IqU5yXzha9/ne/9vAv/UfheOBz6FWXwzthVfh4ySPo9pb6xi30fv0LHvbbIa3mNacDdLJUTYCIed09hduJb0medQMn81hSk5nHrh/ZNTkJlMwfmXwPmX4A2E+duewzQf+IBQ9VacHRW4A80kh9qwEMEqILZkmt2lRFwZkJyDI3sS6QWnkVMylbTcieRa7ce0mg0VESEvzU1e2lSYkYDiLCKU532KRdWP0tXWSFL6YEaUKqXiQRMspdS4tHP7Fs6RNnxTBzf+CiA/zUmtySS/vebEOw+DUDjCOx9up2XDr1ja/Gcukma6cFNRsIbAGX9H7vzzSbeOvM6ME9JdVHsyKWvflrAYIhHDhr0NvPv2qxQcfJqLLW+TLR46HZl0TluLa8nVJE1aSdIQdP07FflpLm7/yj/ww8dnsGz/z7nm/V/B+/fTmjYDb9pp+MRBKODHeOrI9h4i2zRzOhA2wkHHNLaXXEfqzNWULljDlJTMRH85ALgdVlbMnQJzpwBXJzqcUcE573LsNb9jz9tPMueiLyY6HKXGvZHxG0IppYaZZ/d6AArmDW78FUBeqovNJouiztpBn2sw9tV5eO/1p8nb/QhnR97DLmH2p59B9Rmfp3DJFcwY4ZP3Fma4OdicCcE28HeAM2XYrl3R3MWf391B6IPfc2HgZf7JUkXI5sBT+mnMshtInvopkkdgUgqQkeTgv29aw4a98/jO629TXPEci1p2MbF1My4JEjJWWqxZ7Eo6nWBuGbnTlnDa/OVMHSEJlRq8OYtXU/tCNrLzz6AJllIJpwmWUmpcSq3bSKslk4y86YM+V2aSnUYycfn2xyGykxMKR1j/0V6q33iI5S3P8neWajosqVTN+DxF532F03JHz3xShRlu9nrTor+Z2qshd/D35ngCoQgv7KjlvbdfYV71k9xsfQeXBGnOWUhw2bexl11JpjtjSGOIp5XTclg57TJ8wUuobvXSFQxjc9lJc9spcY/M5FDFh8NuZWfm2Sxv/TNhnwerKzXRISk1rmmCdRwd7c14OzzkFk5KdChKqTjq8geZ4dtKbc4iMuJQKU9E6HDmkRRqg6AP7K44RHl89R4fr776EslbH+a88Fu4JUBtehntK75H2qLPkmJ3D3kM8VaY4eKDcGYswaocsgSrrt3H4+/sofm9x7g89DyXWg4QcLgJzrkOVtxK1igstd+Ty25lSu7wtf6pkcE17wqcb/6RXRv+yMxzP5/ocJQa1zTBOo6PX3yIxdv/nZ3OOXimXEzBoksoOW0uMgIGhCulTt3ubZtYKM20Txn8+Ksj/O588ACeGhhkVcL+GGPYvL+GXa88TFn1k1xn2Y9fnDRMuZwJ536FgqIFQ3Ld4VKY7qb6SJ26OBe6MMbw/qEW/vLG2xTvf4wbLOvJlA46M04jsvxuHAuuxeEayTUglTq+hSsuoOnNdAIfPg6aYCmVUJpgHUfxoovY6KmjoPIFZu26C3bdRQOZVKSdTjB/AakT51Iw9XQy8ycOe9IVCYfx+7z4fV0EYh9Bv5dQIPo5HPAS8nuJBL2EAz5M0AchHyYSgki4x0cIY6KfiUSQSBBMBImEwIQRE9svRjhqMkbTc/noiRo/WRYzsEkczVGtCcInywbos62h3xYI6fXpmPUne54Brjf9Noj0s/9JrleDl+w5CMCExZfF7ZzhlIIhS7C6AiFe3fAOwY2/Yo3vFRZLJw1JpTQu+TdyVnye4jGSGBRmuKk/MtlwW3wqMnYFQjy7pYKdbz7F6vZn+ZH1IyJWK97TLoSVXyC5dNVx51hSarRwOR1szL+cVbW/penQdrJL5yY6pCET8nvpam+ms7MdX1cHvi4P/q5OwoEuTKALE+jEBLwQ7MKEA5hQkEg4gAmHkEgIMdHPFhP9kEg4+tlEou9cjIm9gzGxf6bX+53e70yOXnf072/p3tjn3rGfP0eOkV7H97hS98ueV+9xjPRxTOxdVK93YP3sd8y1e4RoOOo9rvTc4ajzyFG79eNkfuwKUOOeSvbZX2TVtOGqDzo4mmAdR+GU2RRO+QnG3E3V/m1UbnkJy+G3mdS+hbz2V2Ev8Cr4jJ1mSxYeWzYeezZhewrGnoQ4kjA2NxGxEf22++Rb3EQiEA4gIS8S9mMJB7CEfVjCAawRP9ZIAFskgN34sZkAdhPAEftwEsQpQdxAvDoBhYyFMFbCWAhjISLR5QiW7o9P9H4qeqVYxzwxff0Y6tvRR5pe245O7PpZf4Kr9f8897f/yZ2n//0HlmDG+zyqfx+knMXp+aVxO581vQhqiGvLy4G6Vt5/8VEmHniUz7CNEFaqCs/FtebL5E49e8wlBkUZbgLY8bgKSG3aN6hz7avv4OkNW3Bs/T1Xmle4VhrpSsojuPSfsS+5ieS0CXGKWqmRY/LF3yLw4KNUPvdjsr/6+0SHc0KRcIT29mbaGqrobK7B31pDqL2eiKce8bUgvjZswXZcoXbc4Q6STSeppgOXBEkD0k7iWmEjhLESEmv0MzZCHHltJSLW3u91pK+k49ik5OjfytJrZc+UyvT63PuYY/9Y3StF607ujj1f731P/npHXvf8I7aYvq9zvHNLNA09NqGLkwZp4WDjDZpgjSUiQtHUeRRNnQd8G4CGuiqq9mzBW7Ud01KOtbOOpEAjeb5DOL1dOI0fl/HjkmC/5w0YKwFxEMBOAAdBcRC0OAiJg5DFScCWhM+SQdjiJGJzYazO6IfNBbEPsTsRuwuL3Y3F4cbmcGG1u7E63didSdgcLuzOZOyu6DaL1Y7VZsNqtWG12bFZbVisVmwi+s2gxpWsOJ/PmVkEQLC1ksGUEwhHDG9v2kzzhgdZ1vY8a6WFZlseVWXfpHDNF5g0TBPZJkKa20aq00a1YzIz6ned9PHBcISXd9Ty3ht/YWH9H/m6ZSMOCdM2YTlm1X+SNPNiGKGVAJWKh4kTJ/Fm1qWsaPgjldveoLjs7ITFEgxHqGtupaV6Px11Bwg1HsTSVo6ro4JUfy0poRayTCsZEiTjqGMjRmiXZDolGa81Fb8tlWZXPvWOVMKONIwzA1xpWF2p2F3J2F3JONwp2JzJ2JxJ2FypONxJ2JzJOF0uHA4nNpsNK5CYWevUYF2S6ABOkr6nPkW5+UXk5hdxvFtujCEcDoM50sVOYn/9EEQEh9WqD7pSY0Rubj4NJg1H1cecSoe9/bUtbH3tMQr2PsbKyEcgcDhrOa1n3ULWvM/ACJl3aSiJCDMKUtnVUcSMxmchHBrQ1723zsPz735E5KMnuCD0GhdZKvA7UgjN/wccZ95C+hBXI1RqJJn1ubuovedNLE9/Ed+kt3ClDd3Ew22dPmorD9BcuRdv/QFMy0GcHZWk+arIC9dRLC0U99g/YGzUWfNptefjSZlMpTsHk5KHLTUfR0Y+7swJpGUXkZ6TT4bDeUzipdRoMfZ/YyeQiGC12dD/ZqXGvukFaeyMTGJezdYBH9Pa6eP9N/5CZOsfWOJ9iyukg2ZrLvtnfpnS877A5KzxV8F01oQ03t1SwGUSgIad0E9FvwaPn5c+OkD1xj+xqPVFvmzZik0itOXMI7LiOzjLrgZH8jBHr1Ti5ebk8s5ZP2PRGzdR/z+fIuPGP5BadGp/ZAiHI9TXVdJYvhdP3T5CTQextpWT3FVFVrCGAtPIDPlknHYEodGSQ5uzkMaUFTRkTsSWPZnk/NPIKppGSnYxJRYLJfH6YpUaofSdv1JKxcFpecm8zSSWt78I4WC/XdHqW9v56O0XCO18ngWe9ZwnzfhwUlmwGsuZ15NVdiFZ46C1qj+LJmXyH+/O5n+7BNn9fK8Eq6K5i9c/3EPbR39mWvMbXGn5CLcE6EjKJzD/a9iWXK+tVUoBy9dcymu++1i68Ws4HjiTj/Iuxjn7Egqnn05qbhFic2FCPro8rbS2NOJprMLXWE6gqRzTXoWjo5r0QA354VomiJ+eIxZbSKfZUUBrxlya0iZizykltWAq2SXTSMmdTJ7NQV7CvnKlRoZB/RYXkceBGbHFDKDVGLNAREqBncDu2LZ3jTE6tbhSasxy2qzUZyzA5nkO9r0KMy4AwBcIsf3jbdRtfYWMyteY59/CeeIlgI3yzGWUL1xLybIrmerUeYsAVs/M4zvWTPa75lL63kN8ZJnDzopGTPm7TOvawnWyB7uE8bjz8E27Dveiq0gpXQU6fYZSvay56LPsnjaP+md+yOl1L5Bc/wys/2S7AMmxj57aSKbZmovHXURT6jIkczLuvMlkFU0nt2Qqme40Mofvy1BqVBIzwPLZJzyRyH8CbcaYO2MJ1nPGmJOqEbp48WKzadOmuMSjlFLD7YH1u7j09fOxudP4OGMNlpb9nObbQYE0A9BsyaYm7ywyFlxC4cLzEWdqgiMemf7vK3t45dUX+YPjTtwSAKJdj5pSZ+CYfi7pC6+EwoWaVCk1QG1tbezd+g7eqh2Yrkas4QDG6iTiTMWVnI4rcwLunInkFZ1GeoamT0oNlIhsNsYsPmZ9PBIsERGgHFhjjNmrCZZSajzyBcP81/0P8A/1/4ds2miy5dGQPg/b5OWULDiXpOKyMVdafSgYY3hnfxPNNYeYEdpFadEEHCWLwJ2R6NCUUkqpbkOdYJ0F/OzIBWIJ1g5gD9AO/Ksx5q1+jr0VuBVg4sSJiw4fPjzoeJRSKpG8/hBOq8Fi05LgSiml1FjVX4J1wjFYIvIK0NfEK/9ijHkm9vo6YF2PbTXARGNMk4gsAp4WkTnGmPajT2KMuR+4H6ItWCf+UpRSamRzO8dvkQqllFJqvDvhuwBjzLnH2y4iNuBKYFGPY/yAP/Z6s4jsB6YD2v9PKaWUUkopNWbFY4TwucAuY0zlkRUikisi1tjrKcA04EAcrqWUUkoppZRSI1Y8+rFcS+/ugQBnAXeKSBCIAF80xjTH4VpKKaWUUkopNWLFrUx7PIhIAzDSqlzkAI2JDkING73f44fe6/FF7/f4ofd6/NB7Pb6MxPs9yRiTe/TKEZVgjUQisqmv6iBqbNL7PX7ovR5f9H6PH3qvxw+91+PLaLrfOkujUkoppZRSSsWJJlhKKaWUUkopFSeaYJ3Y/YkOQA0rvd/jh97r8UXv9/ih93r80Hs9voya+61jsJRSSimllFIqTrQFSymllFJKKaXiRBMspZRSSimllIoTTbCOQ0QuEJHdIrJPRL6b6HhU/IhIiYi8LiIfi8gOEflfsfVZIvKyiOyNfc5MdKwqPkTEKiJbROS52PJkEdkYe74fFxFHomNU8SEiGSLypIjsEpGdInKmPttjk4jcFvsZvl1E1omIS5/tsUNEHhKRehHZ3mNdn8+yRP08dt+3isjpiYtcnax+7vVPYj/Ht4rIn0Qko8e278Xu9W4ROT8hQR+HJlj9EBErcC9wITAbuE5EZic2KhVHIeBbxpjZwDLgK7H7+13gVWPMNODV2LIaG/4XsLPH8l3AfxljpgItwD8kJCo1FP4beMEYMxOYT/S+67M9xohIEfB1YLExZi5gBa5Fn+2x5GHggqPW9fcsXwhMi33cCvxymGJU8fEwx97rl4G5xph5wB7gewCx92vXAnNix/wi9r59xNAEq39LgX3GmAPGmADwGHBZgmNScWKMqTHGfBB77SH6BqyI6D3+TWy33wCXJyRAFVciUgxcDPwqtizAGuDJ2C56r8cIEUkHzgIeBDDGBIwxreizPVbZALeI2IAkoAZ9tscMY8ybQPNRq/t7li8Dfmui3gUyRGTCsASqBq2ve22MeckYE4otvgsUx15fBjxmjPEbYw4C+4i+bx8xNMHqXxFQ0WO5MrZOjTEiUgosBDYC+caYmtimWiA/UXGpuPq/wD8BkdhyNtDa4we3Pt9jx2SgAfh1rEvor0QkGX22xxxjTBXwU6CcaGLVBmxGn+2xrr9nWd+3jW03A8/HXo/4e60JlhrXRCQFeAr4hjGmvec2E53DQOcxGOVE5BKg3hizOdGxqGFhA04HfmmMWQh0clR3QH22x4bY2JvLiCbVhUAyx3YxUmOYPsvjg4j8C9GhHY8kOpaB0gSrf1VASY/l4tg6NUaIiJ1ocvWIMeaPsdV1R7oUxD7XJyo+FTcrgEtF5BDRrr5riI7RyYh1KwJ9vseSSqDSGLMxtvwk0YRLn+2x51zgoDGmwRgTBP5I9HnXZ3ts6+9Z1vdtY5CI3AhcAnzOfDJ574i/15pg9e99YFqsGpGD6GC6ZxMck4qT2BicB4Gdxpif9dj0LPD52OvPA88Md2wqvowx3zPGFBtjSok+x68ZYz4HvA5cHdtN7/UYYYypBSpEZEZs1aeAj9FneywqB5aJSFLsZ/qRe63P9tjW37P8LPD3sWqCy4C2Hl0J1SgkIhcQ7d5/qTGmq8emZ4FrRcQpIpOJFjZ5LxEx9kc+SQbV0UTkIqJjN6zAQ8aY/0hsRCpeRGQl8BawjU/G5Xyf6DisJ4CJwGHgGmPM0QNs1SglIucA3zbGXCIiU4i2aGUBW4DrjTH+BIan4kREFhAtaOIADgA3Ef2Doj7bY4yI/AhYS7T70BbgH4mOxdBnewwQkXXAOUAOUAf8EHiaPp7lWJJ9D9Fuol3ATcaYTQkIW52Cfu719wAn0BTb7V1jzBdj+/8L0XFZIaLDPJ4/+pyJpAmWUkoppZRSSsWJdhFUSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKk/8P4iQFZm49kpAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
27False90.1250.0545bAP.soma.v0.009071.36e-07
28False90.1250.0545Step1.soma.v0.01019.56e-06
29False90.1250.0545Step3.soma.v0.03211.09e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "27 False 9 0.125 0.0545 bAP.soma.v \n", + "28 False 9 0.125 0.0545 Step1.soma.v \n", + "29 False 9 0.125 0.0545 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "27 0.00907 1.36e-07 \n", + "28 0.0101 9.56e-06 \n", + "29 0.0321 1.09e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACyXklEQVR4nOzdd3gc1dn38e+9u2qWbMmWe5UxYFwxYFOCqckTTOghwRA6IQQSEuAJ4UklDm943rwJCQmQxCkkJECMCT2UhGpaaDYYU0xxkXuVrGbV3b3fP3Ykr2U1o5VXsn6f69pLO2fOnLlnxivvrXPmjLk7IiIiIiIi0nmhdAcgIiIiIiKyt1CCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0SkmzGzIjNzM4ukOxbpHczsPTM7Nt1xiIjsDZRgiYhIj2dmc82sKnjVm1lD0vIT6Y6vu3P3Se6+IJVtmtkIM3vYzErNbK2ZXZ7K9kVEuivTg4ZFRFLLzCLuHu3E9kXASiCjM+30VmY2B9jX3c9rYV2nrs2e1JNibYmZPQe8DXwbmAg8B5zp7s+lNTARkS6mHiwRkRQws2Iz+x8zWwJsN7OImR1uZv8xszIzezt5CJaZLTCz/2tmr5tZRfCX/gGttH2xmS01s0ozW2FmX222/jQzWxy0s9zMZgXl+WZ2u5ltMLN1ZvYTMwu3cxzjzOxZMysxs61mdreZFSStKzWzg4Pl4Wa2pfG4zOzUYKhZWXB8E5qdn2vNbImZlZvZfDPL3v0zvftauTZuZvsm1bnDzH6StHxycE7Lgms4tYP7OjborflecP6KzezcpPUnmdlbwbVaEySDjesah4Z+2cxWA88G5f8ws43BeXvBzCY1i/u3ZvZE0Fv3spkNNbNfmdk2M/vAzA7q4Dn6TEeOsYPnIQ84FrjR3Rvc/W3gPuCSVO1DRKS7UoIlIpI65wAnAQXAEOAx4CfAAOBa4H4zG5RU/wISXziHAVHgllba3QycDPQDLgZuTkpyDgX+RqKXoAA4GigOtrsjaHdf4CDgs8Cl7RyDAf8XGA5MAEYBcwDcfTnwP8BdZtYH+AvwV3dfYGb7A/OAq4FBwOPAP80sM6nts4BZwFhgKnBRiwGYzQwSm9ZeM9s5hpY0XZv2eoWChOTPwFeBQuD3wCNmltXBfQ0FBgIjgAuBP5jZ+GDddhLXvSCI5wozO73Z9seQOPcnBMtPAPsBg4E3gbub1T8L+EGwzzrglaDeQBJJzS87GHeLzOw7bV2P1jZr9rPx/eTOxCIi0hMowRIRSZ1b3H2Nu9cA5wGPu/vj7h5396eAhcDnkurf6e7vuvt24IfAWS31MLn7Y+6+3BOeB54EjgpWfxn4s7s/Fexnnbt/YGZDgn1d7e7b3X0zcDNwdlsH4O7Lgrbq3H0LiS/nxySt/yOwDHiNRGL4/WDVbOCxYNsG4CYgB/hUs/Oz3t1LgX8C01qJ4SV3L2jj9VJbx9CK5GvTnsuA37v7a+4ec/e/kkhcDt+N/f0wOIfPk0i0zwJw9wXu/k5wrZaQSEqPabbtnOCa1QTb/NndK929jkSye6CZ5SfVf9DdF7l7LfAgUOvuf3P3GDCfRHL9ibn7T9u6Hq1sUwm8DPzQzLKDPwicCfTpTCwiIj2BEiwRkdRZk/R+DPDFZn/pn0kiKWmp/iogg0Svw07M7EQzezUYnldGInFqrDcKWN5CLGOC9jYk7f/3JHpBWmVmQ8zsnmBIYQVwVwsx/ZFET8StwZd+SPR4rWqs4O7x4PhGJG23Mel9NZDXViwptqb9Kk3GAN9qdu1GkTjGjtgWJM2NVjVua2aHmdlzwdDKcuBydj2/TbGaWdjMfmqJoZ8V7OidTN5mU9L7mhaW9+R5TnYuid7KNcDvSPxbWpumWERE9hglWCIiqZM8a9AaEj1UyX/tz3X3nybVGZX0fjTQAGxNbjAYlnY/iR6hIUGPwePsGHq1BhjXQixrSPS6DEzafz93n9RC3WT/GxzHFHfvR6InrmmYV3Bvza+A24E5tuO+sfUkEpPGehYc37p29rcLMzvKdswA2NLrqPZb2UXzGZ2q2bk3ZWjS+zUk7h1KvnZ93H1eB/fV38xyk5ZHkzg/AH8HHgFGuXs+MJedh9E1j/VLwGnAZ4B8oCgob75NlwnuJ2v1erS2nbuvcveT3X2Qux9GIil8fU/FLSKSLkqwRES6xl3AKWZ2QtALkR1MgDAyqc55ZjYxuJ/pBuC+YFhXskwgC9gCRM3sRBL3UjW6HbjYzD5tZiFLTI19gLtvIDGU8Bdm1i9YN87Mmg9Ha64vUAWUm9kIEvd2Jfs1sNDdLyUx9G1uUH4vcFIQRwbwLRIJ3n/aO1HNufuL7p7XxuvF3W2zBYuBLwXXZhY7D9P7I3B50NtkZpZrickp+kLTxBJ3tNP+j80sM0gGTwb+EZT3BUrdvTa4f+5L7bTTl8R5LCGREP7vbhxjSrj7/7Z1PVrbzswmmFnf4DycR+LfbafuBxMR6QmUYImIdAF3X0Oi5+F7JJKjNSSSleTfu3eSmIhiI5ANfLOFdiqD8nuBbSS+kD+StP51gokvgHLgeXb0JF1AIkF7P9j2PnYeotiSHwMHB209BjzQuMLMTiMxScUVQdF/Aweb2bnu/iGJ3q5bSfTCnQKc4u717ewvXa4iEWMZiaFsDzWucPeFwFeA20ict2XsPCHHKBL3F7VmY7DdehITUlzu7h8E674G3GBmlcD1JK5rW/5GYojhOhLX8dX2DqwbOQFYQeJcXA7MCu7rExHZq+k5WCIiaWBmC4C73P1P6Y5FOi6YFfFtYGowmUfz9ceSuK4jm68TEZHeIZLuAERERHqKoEduQrsVRUSk19IQQRGRXsbM5rYyYcHc9reWnsjMRrcxUcXodMcnIrI30RBBERERERGRFFEPloiIiIiISIp0q3uwBg4c6EVFRekOQ0REREREpE2LFi3a6u6Dmpd3qwSrqKiIhQsXpjsMERERERGRNpnZqpbKNURQREREREQkRZRgiYiIiIiIpIgSLBERERERkRTpVvdgtaShoYG1a9dSW1ub7lCkG8jOzmbkyJFkZGSkOxTZS60prebq+Yu57oTxHLZPYbrDERERkR6m2ydYa9eupW/fvhQVFWFm6Q5H0sjdKSkpYe3atYwdOzbd4che6ul31/D19d8lMj8LvvtkusMRERGRHqbbDxGsra2lsLBQyZVgZhQWFqo3U7pUdPkLHB9ezCF1rxGr2prucERERKSH6fYJFqDkSpro34J0tfj2kqb3Je89l8ZIREREpCfqEQmWiMieEq4ra3pfteK19AUiIiIiPZISrA4wM771rW81Ld90003MmTMnfQElOfbYY9t8OPPpp5/O4YcfvlPZnDlzGDFiBNOmTWPy5Mk88sgjXR2mSI8RqS8HYHl8GGz9MM3RiIiISE+jBKsDsrKyeOCBB9i6NbX3Y7g78Xg8pW0mKysrY9GiRZSXl7NixYqd1l1zzTUsXryYf/zjH1xyySVdGodIT5LVUE5NKI/VkSJyK1emOxwRERHpYZRgdUAkEuGyyy7j5ptv3mXdli1bOPPMM5kxYwYzZszg5ZdfBhK9RDfddFNTvcmTJ1NcXExxcTHjx4/nggsuYPLkyaxZs4Zvf/vbTJ48mSlTpjB//nwAFixYwLHHHssXvvAFDjjgAM4991zcvcX47rzzzqbeqNdff72p/IEHHuCUU07h7LPP5p577mlx2wkTJhCJRHZKHr/zne8wceJEpk6dyrXXXgtAcXExxx9/PFOnTuXTn/40q1evBuCiiy7iiiuu4PDDD2efffZhwYIFXHLJJUyYMIGLLrqoqc0rrriC6dOnM2nSJH70ox/tEkd5eTljxoxpSvS2b9/OqFGjaGhoaDFuka7SJ1pBbUY/ynLHMrB+HUTr0h2SiIiI9CDdfpr2ZD/+53u8v74ipW1OHN6PH50yqd16X//615k6dSrXXXfdTuVXXXUV11xzDTNnzmT16tWccMIJLF26tM22Pv74Y/76179y+OGHc//997N48WLefvtttm7dyowZMzj66KMBeOutt3jvvfcYPnw4Rx55JC+//DIzZ87cpb3q6moWL17MCy+8wCWXXMK7774LwLx587j++usZMmQIZ555Jt/73vd22fa1114jFAoxaNAgAEpKSnjwwQf54IMPMDPKysoA+MY3vsGFF17IhRdeyJ///Ge++c1v8tBDDwGwbds2XnnlFR555BFOPfVUXn75Zf70pz8xY8YMFi9ezLRp07jxxhsZMGAAsViMT3/60yxZsoSpU6c2xZGfn8+0adN4/vnnOe6443j00Uc54YQT9Lwr2aPcnb5eRV2kHw0FYwlXxqFsDQzcN92hiYiISA+hHqwO6tevHxdccAG33HLLTuVPP/00V155JdOmTePUU0+loqKCqqqqNtsaM2ZM031RL730Eueccw7hcJghQ4ZwzDHH8MYbbwBw6KGHMnLkSEKhENOmTaO4uLjF9s455xwAjj76aCoqKigrK2PTpk18/PHHzJw5k/3335+MjIymxAvg5ptvZtq0aVx77bXMnz+/aXa+/Px8srOz+fKXv8wDDzxAnz59AHjllVf40pe+BMD555/PSy+91NTWKaecgpkxZcoUhgwZwpQpUwiFQkyaNKkp5nvvvZeDDz6Ygw46iPfee4/3339/l+OYPXt2Uw/ePffcw+zZs9s8jyKpFo07+VZFfUY+GYWJZ63VblnRzlYiIiIiO/SoHqyO9DR1pauvvpqDDz6Yiy++uKksHo/z6quvkp2dvVPdSCSy031Nyc9uys3N7dD+srKymt6Hw2Gi0WiL9ZpPXW5m3HvvvWzbtq3pgbwVFRXMmzePG2+8EUjcg9U4/K953K+//jrPPPMM9913H7fddhvPPvtsh+IMhUI7xRwKhYhGo6xcuZKbbrqJN954g/79+3PRRRe1+CyrU089le9973uUlpayaNEijj/++Db3K5JqddE4BVTRkDmWvKHjACjbsIyhEz6b5shERESkp1AP1m4YMGAAZ511FrfffntT2Wc/+1luvfXWpuXFixcDUFRUxJtvvgnAm2++ycqVLd8sf9RRRzF//nxisRhbtmzhhRde4NBDD92tuBp7fV566SXy8/PJz89n3rx5/Otf/2q672vRokWt3oeVrKqqivLycj73uc9x88038/bbbwPwqU99qmn7u+++m6OOOqrD8VVUVJCbm0t+fj6bNm3iiSeeaLFeXl4eM2bM4KqrruLkk08mHA53eB8iqVDXECPXaoln5DJ42BjqPUz1Zk10ISIiIh3X6QTLzEaZ2XNm9r6ZvWdmVwXlc8xsnZktDl6f63y46fetb31rpwkhbrnlFhYuXMjUqVOZOHEic+fOBeDMM8+ktLSUSZMmcdttt7H//vu32N4ZZ5zB1KlTOfDAAzn++OP52c9+xtChQ3crpuzsbA466CAuv/xybr/9doqLi1m1atVO07OPHTuW/Px8Xnut5ef6fO5zn2P9+vVUVlZy8sknM3XqVGbOnMkvf/lLAG699Vb+8pe/MHXqVO68805+/etfdzi+Aw88kIMOOogDDjiAL33pSxx55JFN666//vqdpomfPXs2d911l4YHSlrUReNk0gCRLEYP7Mt6H4iXFqc7LBEREelBrLWZ6TrcgNkwYJi7v2lmfYFFwOnAWUCVu9/U1vbJpk+f7s2f6bR06VImTJjQqRhl76J/E9JVVm7dzqBb92HjvrMZd96veW3OUYzIjTHqulfSHZqIiIh0M2a2yN2nNy/vdA+Wu29w9zeD95XAUmBEZ9sVEdnT6qIxMmnAIlmYGduyhtGvdn26wxIREZEeJKX3YJlZEXAQ0DgO7UozW2Jmfzaz/q1sc5mZLTSzhVu2bEllOCIiu6WuPkqmxbCMxGQttbkjyY+XQX11egMTERGRHiNlCZaZ5QH3A1e7ewXwO2AcMA3YAPyipe3c/Q/uPt3dpzc+i0lEJB3q6xKzW4YiiVlB4/mjAPCy1WmLSURERHqWlCRYZpZBIrm6290fAHD3Te4ec/c48Edg96bGExHZwxrqawAIBz1YmYVFAFRv0rOwREREpGNSMYugAbcDS939l0nlw5KqnQG823xbEZHuJNrYg5WR6MHKHbIPAGUblWCJiIhIx6TiQcNHAucD75jZ4qDse8A5ZjYNcKAY+GoK9iUi0mUa6hMJVjgzkWANGjqaBg9TV7IqnWGJiIhID5KKWQRfcndz96nuPi14Pe7u57v7lKD8VHffkIqA0+Whhx7CzPjggw9arVNcXMzkyZNTts+LLrqI++67r9X1V199NSNGjCAejzeV3XHHHQwaNIhp06YxceJE/vjHP6YsHpG9XTRIsCJBgjWiMI+NPgAvW5POsERERKQHSeksgnuzefPmMXPmTObNm9fi+mg02ul9xGKxDteNx+M8+OCDjBo1iueff36ndbNnz2bx4sUsWLCA733ve2zatKnTsYn0BrGGoAcrGCLYv08GG20gGVWaql1EREQ6RglWB1RVVfHSSy9x++23c8899zSVL1iwgKOOOopTTz2ViRMnAolE69xzz2XChAl84QtfoLo6Mb3zM888w0EHHcSUKVO45JJLqKurA6CoqIj/+Z//4eCDD+Yf//jHLvt++umnmT59Ovvvvz+PPvroTvueNGkSV1xxRatJ3+DBgxk3bhyrVu0Y3nTLLbcwceJEpk6dytlnnw1AaWkpp59+OlOnTuXwww9nyZIlAMyZM4cLL7yQo446ijFjxvDAAw9w3XXXMWXKFGbNmkVDQwMAN9xwAzNmzGDy5MlcdtllNH94dTwep6ioiLKysqay/fbbT4mfdDvxZj1YZkZZ5lBya3t0B7yIiIjsQam4B2vPeeI7sPGd1LY5dAqc+NM2qzz88MPMmjWL/fffn8LCQhYtWsQhhxwCwJtvvsm7777L2LFjKS4u5sMPP+T222/nyCOP5JJLLuG3v/0tV155JRdddBHPPPMM+++/PxdccAG/+93vuPrqqwEoLCzkzTffbHHfxcXFvP766yxfvpzjjjuOZcuWkZ2dzbx58zjnnHM47bTT+N73vkdDQwMZGRk7bbtixQpWrFjBvvvu21T205/+lJUrV5KVldWU8PzoRz/ioIMO4qGHHuLZZ5/lggsuYPHixQAsX76c5557jvfff58jjjiC+++/n5/97GecccYZPPbYY5x++ulceeWVXH/99QCcf/75PProo5xyyilN+wyFQpx22mk8+OCDXHzxxbz22muMGTOGIUOGdPgyiewJHk384aMxwQKoyRlGQcXzEItCuGf9yhQREZE9Tz1YHTBv3rym3p6zzz57px6jQw89lLFjxzYtjxo1iiOPPBKA8847j5deeokPP/yQsWPHsv/++wNw4YUX8sILLzRtM3v27Fb3fdZZZxEKhdhvv/3YZ599+OCDD6ivr+fxxx/n9NNPp1+/fhx22GH8+9//btpm/vz5TJs2jXPOOYff//73DBgwoGnd1KlTOffcc7nrrruIRBJfFl966SXOP/98AI4//nhKSkqoqKgA4MQTTyQjI4MpU6YQi8WYNWsWAFOmTKG4uBiA5557jsMOO4wpU6bw7LPP8t577+1yHLNnz2b+/PkA3HPPPW0es0i6NA0RzMxqKov3G0GYOFSqF0tERETa17P+HNtOT1NXKC0t5dlnn+Wdd97BzIjFYpgZP//5zwHIzc3dqX5i1vrWl1vSvI322vv3v/9NWVkZU6ZMAaC6upqcnBxOPvlkIJHM3HbbbS2299hjj/HCCy/wz3/+kxtvvJF33mm7RzArK/FFMxQKkZGR0RRPKBQiGo1SW1vL1772NRYuXMioUaOYM2cOtbW1u7RzxBFHsGzZMrZs2cJDDz3ED37wgzb3K5IWjT1YGTt6sCL9R8NaqNm6ipyCUemKTERERHoI9WC147777uP8889n1apVFBcXs2bNGsaOHcuLL77YYv3Vq1fzyiuvAPD3v/+dmTNnMn78eIqLi1m2bBkAd955J8ccc0yH9v+Pf/yDeDzO8uXLWbFiBePHj2fevHn86U9/ori4mOLiYlauXMlTTz3VdL9Xa+LxOGvWrOG4447j//2//0d5eTlVVVUcddRR3H333UDi3q6BAwfSr1+/DsXXmEwNHDiQqqqqVmc9NDPOOOMM/vu//5sJEyZQWFjYofZF9iSP1QM7noMF0Gdwooe6bIOehSUiIiLtU4LVjnnz5nHGGWfsVHbmmWe2OrHE+PHj+c1vfsOECRPYtm0bV1xxBdnZ2fzlL3/hi1/8IlOmTCEUCnH55Zd3aP+jR4/m0EMP5cQTT2Tu3LnE43H+9a9/cdJJJzXVyc3NZebMmfzzn/9ssY1LL72UhQsXEovFOO+885gyZQoHHXQQ3/zmNykoKGDOnDksWrSIqVOn8p3vfIe//vWvHTw7UFBQwFe+8hUmT57MCSecwIwZM5rWzZ07l7lz5zYtz549m7vuukvDA6Xb8oZEDxaRHUMEBwxPJFjVW4rTEJGIiIj0NNZ8xrd0mj59ui9cuHCnsqVLlzJhwoQ0RSTdkf5NSFd58C8/54xVP4FvLoYBicRqc0UtGb8Yx+bRn2P8l/VcOREREUkws0XuPr15uXqwREQaxXbtwRqYl8UGBhKuWJumoERERKQnUYIlItIomrgHi/COBCsUMrZFBpNTo1kERUREpH09IsHqTsMYJb30b0G6kjX1YGXuVF6VM4yCBj0YW0RERNrX7ROs7OxsSkpK9MVacHdKSkrIzs5uv7LIJxCK79qDBRDNG0GuV0NteRqiEhERkZ6k2z8Ha+TIkaxdu5YtW7akOxTpBrKzsxk5cmS6w5C9lMUaE6yMncpDBaNgI9SVrCZrxJQ0RCYiIiI9RbdPsDIyMhg7dmy6wxCRXsBi9dSRSVazB3xnDxwDwLb1yxiqBEtERETa0O2HCIqI7CnheD1Ry9ilvGDYOAAqNxXv4YhERESkp+nyBMvMZpnZh2a2zMy+09X7ExH5pEKtJFiDh4+i3sM0lK5OQ1QiIiLSk3RpgmVmYeA3wInAROAcM5vYlfsUEfmkWuvBGtIvhw0UYuV6FpaIiIi0rat7sA4Flrn7CnevB+4BTuvifYqIfCKJBCtzl/JIOERJeDBZ1evTEJWIiIj0JF2dYI0A1iQtrw3KmpjZZWa20MwWaqZAEUmnsDcQC+3agwVQkTWUfnUb93BEIiIi0tOkfZILd/+Du0939+mDBg1Kdzgi0otF4vXEQrv2YAHU546gf7wUYg17OCoRERHpSbo6wVoHjEpaHhmUiYh0Oxne0GqCRf5IwsRpKNOvMBEREWldVydYbwD7mdlYM8sEzgYe6eJ9ioh8IhGvJ95KgpVVOBqA0vUr9mRIIiIi0sN0aYLl7lHgSuDfwFLgXnd/ryv3KSLySUW8odUEq++QfQAo36gES0RERFoX6eoduPvjwONdvR8Rkc7KoIF4uOUEa+DIRIJVv7V4D0YkIiIiPU3aJ7kQEekO3J0Mb8Bb6cEaWjiAjd4f27ZyD0cmIiIiPYkSLBERIBZ3MonirfRgZUZCbAwNJbtqTYvrRUREREAJlogIAA0xJ8sa8HBWq3W2ZY2goFazCIqIiEjrlGCJiAD10TiZNBBvI8GqyRtF/3gJNNTuwchERESkJ1GCJSIC1MfiZBKFSCvPwQLi+WMI4cS2rdqDkYmIiEhPogRLRASoi8bIpAFrowcrY9A4AMrXfbinwhIREZEeRgmWiAhQW1dPxOKEMltPsPoO2w+Aqo3L9lRYIiIi0sMowRIRAerqEvdVhSKtJ1iDh46k2rOo36Kp2kVERKRlSrBERIC62moAwpnZrdYZ0b8Pq30w4fLiPRSViIiI9DRKsEREgPraGgAiGa0nWDmZYTaGh5KjZ2GJiIhIK5RgiYgADY09WFl92qxXnj2C/vXrwX1PhCUiIiI9jBIsERGgobYKgHB2Xpv16vuOJsvroGrTnghLREREehglWCIiQLyuEoCMnL5t1gsV7gNAdOvyLo9JREREeh4lWCIiQLxuOwAZ7fRg9RmyLwDb1n7U5TGJiIhIz9OpBMvMfm5mH5jZEjN70MwKgvIiM6sxs8XBa25KohUR6SLxusQQwczcfm3WGzhyP6Ieonrjx3siLBEREelhOtuD9RQw2d2nAh8B301at9zdpwWvyzu5HxGRrhX0YGXltJ1gjR5cwDofiJfoYcMiIiKyq04lWO7+pLtHg8VXgZGdD0lEJA0aEglWKKvtIYKD+2ax2oaRWbFqT0QlIiIiPUwq78G6BHgiaXmsmb1lZs+b2VGtbWRml5nZQjNbuGXLlhSGIyLScVafSLDIzG27nhnbskZSULNGU7WLiIjILiLtVTCzp4GhLaz6vrs/HNT5PhAF7g7WbQBGu3uJmR0CPGRmk9y9onkj7v4H4A8A06dP17cVEUmLUNCDRUbbz8ECqO47hj4l26G6BHIHdnFkIiIi0pO0m2C5+2faWm9mFwEnA592T/w5193rgLrg/SIzWw7sDyzsbMAiIl0hFK2mhixyQh3o2O+/D5SAlyzHlGCJiIhIks7OIjgLuA441d2rk8oHmVk4eL8PsB+wojP7EhHpStawnTrL6VDdnKH7AVCx/sOuDElERER6oHZ7sNpxG5AFPGVmAK8GMwYeDdxgZg1AHLjc3Us7uS8RkS4TaqimLtSxBKv/iP2IuVG1/iPyuzguERER6Vk6lWC5+76tlN8P3N+ZtkVE9qRIrIaGcMcSrNGDElO1s1VTtYuIiMjOUjmLoIhIj5UZ20400v4EFwAj+udQzDAyy4u7NigRERHpcZRgiYgAfeOV1GcUdKhuRjhESeYI+tWs1lTtIiIishMlWCLS6zXE4hRQQUP2gA5vU503mj7x7VCt20tFRERkByVYItLrVVTXM4BK4jkdT7Bi/fdJvCnVBKkiIiKygxIsEen1SsrKyLIGwnkdf6ZV1uDEHD/Vmz7qqrBERESkB1KCJSK9XkXJRgCy+g3q8DYFw/cn5kblOj0LS0RERHbo7HOwRER6vKrSRILVp2Bwh7cZPbiA9T4Q27K8q8ISERGRHkg9WCLS69WWbwagX+GwDm8zprAPK30oGeUruyosERER6YGUYIlIrxet2ARAn4IhHd6mT2aEzRnD6Vu9uqvCEhERkR5ICZaI9HqRqnXEMSx/5G5tV9VnNH1ilZqqXURERJoowRKRXi97+zq2hQZAJHO3tov2H5t4o6naRUREJKAES0R6vbzaDVRkDd3t7TIH7QdA/ZZlqQ5JREREeiglWCLSqzXE4gyMbaauz/Dd3rZg+H7ENVW7iIiIJFGCJSK92rqSSoazFQpG7/a2IwcXsJ5C6jerB0tEREQSlGCJSK+2ac1HZFqMjCHjd3vbosJciuNDCJdpqnYRERFJ6FSCZWZzzGydmS0OXp9LWvddM1tmZh+a2QmdD1VEJPUqVr8HQP8xk3Z72/59MlgXGk7e9lWpDktERER6qEgK2rjZ3W9KLjCzicDZwCRgOPC0me3v7rEU7E9EJGXqN34AwIDRk3d7WzOjqs9I+tQ8BbUVkN0v1eGJiIhID9NVQwRPA+5x9zp3XwksAw7ton2JiHxi2WUfJaZozyn4RNt7/qjEm/I1qQtKREREeqxUJFhXmtkSM/uzmfUPykYAyd821gZluzCzy8xsoZkt3LJlSwrCERHpmFjcGVa7nJK8/T5xGxmFRYm2SjVMUERERDqQYJnZ02b2bguv04DfAeOAacAG4Be7G4C7/8Hdp7v79EGDBu3u5iIin1jx5jLGsZbooN2//6pR36H7AFCxcXmqwhIREZEerN17sNz9Mx1pyMz+CDwaLK4DRiWtHhmUiYh0G+uXvc04i5I7+qBP3MbQoSOp8UyqN6+kf/vVRUREZC/X2VkEhyUtngG8G7x/BDjbzLLMbCywH/B6Z/YlIpJqVasWAzB4v0M+cRujCnNZ64OIb1udoqhERESkJ+vsLII/M7NpgAPFwFcB3P09M7sXeB+IAl/XDIIi0t2ENr9LPRlkfYJnYDUalp/NywxkfKUmuRAREZFOJljufn4b624EbuxM+yIiXWlA5UdsyBrLmPAn/1UYCYcozRhKXu2rKYxMREREeqqumqZdRKRbq6ypZ2xsJdv7T+h0W9V9RpAXK4e6yhREJiIiIj2ZEiwR6ZWWr1zBQKsgMnxKp9uK9wvm9CnTMEEREZHeTgmWiPRKW5ctAqBw3Cef4KJRJHgWVkNpcafbEhERkZ5NCZaI9EoN65cAMGCfTz5Fe6PcwWMBqNy4stNtiYiISM+mBEtEeqXcbUvZEh6C5XT+6VUDh46k1jOo2bwiBZGJiIhIT6YES0R6nVjcGV67jNK8/VPS3qgBuazzgXoWloiIiCjBEpHeZ9WmrYxlPbHBk1LS3tD8bNYyiMxKJVgiIiK9nRKsNmxa/TFLnn+AmsqydIciIim0ZfnbhM3JGXVgStrLCIfYlDGagupiiMdT0qaIiIj0TJ160PDebsULd3PEspuJPhvio8g4thVMIjJsCvljD2Lo/oeQ17cg3SGKyCdQt/ZtIDUzCDYqzxtHVvmjUL4a+helrF0RERHpWZRgtWHa6dfw9sKpbP/4BfpvWciErU/Sr+QheDexfj2D2JY5jNrckdT3HYUVjCQ7fwh5/YdSMHAIuf2HkJ2bj4W6tqPQ4zFiDXU01NfT0FBHQ30d0YY64g31NDTUE2uoI9ZQTyyaeB+PNhCP1hGLNuDReuLReuKxejxaj0cbIF6Pxxog2gCxeog3YLGGxM94A3gcPI55HNwxGpc98ZMWykksh4JywzF812PBmi3vYC2tt52XaWP7lta3tM/WWWtNtLuP3a7brNhbW9HCJs2PubUt2jrundto75w233hHjXbrtrnf3VnZ3uqd146pW8V2suk3bL+OBdYBkWGToByiG98jogQrpdydqu3bqSwrobqilIbqUqI1VURrq4jVVROv206srhoatkN9DTRUY9FqwrFaLF5PKB4lFI9iHiXsDYlljxHyKBFvIEyUsMcSv7NI/ItP/H7ynZd952XDW/ysNH623HYtY6fffI31LKleS20ZWHI0O7eX+JG8/Y52LbmN4L21EJuR/Ps0KVZj1zaa1XN2jSf594tbB87BTu2za9kuv4dsR9ku/w+0Ynd/IXU7PfsAenb0km7v9DmMiSddyfSiAekOpUOUYLUhJy+fA4/9PBz7eQDisTirij9i6/JFRNe/Q2TbMnK2r2PUtlcYvO1xaOH2iwYPU0cm9ZZJvWU1/YxZOPFfQ9J/rASpB+7Bf/iNr1jTF4AIUcIkfkYal82JkLiYOSk+B3E3GoK9NliEGBHihBIpkoUa06bEf3bBcuIVwi355473TfWb/YfZPOHa5Wt9s9/Ou9Zv/uu7rfZartOalpLBlloxT/1/Ie3tu+VIWl5ss80WTtDupIqd2abdNlPdaDiDD4d+kYNT+MePweMOIrbUKPv4VQZOOCll7e5t3J3KqkpKN6+nYus6qrdtpL58M1a9mUj1VjLqSsloqCCzoZKcWCW5vp08305fq6dvB9qPu1FLJrWWRZ1lESWDmEWaXvHgFQ1lEAtl4BYhHsogbpGkf2jWlPTsmigkJwnWtI15ItlqTLoa/7AUbIn7jqRtx/rEukS1pM9k8rbJ9YKf1rwsad87mtm5/i6xNSWLjWU01Wkq2ym25NRtx7HsnCrtaDPprDWdn1bX4Un3K+xaz/Bm63bel8ie0xX/w+1ZPfUIGmLj2F4fS3cYHaYEazeEwiHGjDuAMeMO2GVdfW01pRuLqSjZSFXpJmrLt0BNKeHabXhDDURrsWgt4VgtkXgdIY9B8BfRxP9fO1IOC0GdRYiHEl8E3DKIhyJ4KNL0ZYBQBMIZeCgDC2dAOAPCmVg4A4tkYOHMxCuSSTiSgUWyCEUyCEcyCWcE7zOyiGRkNv2MZGQFr0wyMrPIyMwiHI6QZUbWHj7XIl1tTIrbGz9mOIt9X8asWNBqnfLqel5+4UlGj9mHyRMmpjiC9ItGo2zasJat61dQtXkVsbK1WOUGsqs3kFu3mX7RrfSPl9HPaunXwvbbyabc8tke7ktduC+l2YPZktkPz+qH5fQnlFNAJDefUE5/In36kpGVS2afvmTl5JLdpy/ZffLIzOpDn1CIPnv86EVEpKt8Od0B7CYlWCmSmd2HoUUTGVq0931pEpH2jRuUy58zDuagsn/AtuKd7sNauW4T7/zrj+y/+l4+Z6tY8uY0mPB8ukL9xDweo2LLOras+ZDKDR8T3bqScPkq+lSvpV/DFgbGSxhhMUYkbVNPhK02kPKMQWzqO4l1OQOx3EFE+g0hp2AoeYVD6Vc4nLzCYeRm5ZKbtqMTERFJDSVYIiIpYGZEp51Pw8IHqJx3BTWfupaVKz4m/tGTHFLzH061GtZl70t1fQ5T6xfj9duxzO6XTtTXVLFl9UdsW/cRNZuXw7ZisitXk1+7jsHxjeTTQH5QN+7GJiukNGMo6/oeyJq84UT6jyJ30GgKho6hYOhYsvMHM9yM4Wk9KhERkT3HvAvuGfmkpk+f7gsXLkx3GCIin0hlbQN/+tX1XFXzO0KW+N1aQR7rhhzL0OOvoP/+R/Lc4/M57o2vsvaEPzHyiC/u8Rg9Hmfb1g1sWf0BVRs+Jrp1OZHyVeRtX0NhwwYGsm2n+lWezcbwMMqzhlPbdzT0LyJ78D4UjBjP0FH7kpvb/ZJEERGRPcHMFrn79F3KO5Ngmdl8YHywWACUufs0MysClgIfButedffL22tPCZaI9HTV9VFeWfQmOeXLGDViFCMnHp64TzKwuawSv3kyFfkT2O+//9UlMdTWN7BxzQq2rfuQmk3L8JIVZFeuIr92LUOiG+hrNTvV30QhWzKGU9VnFNH8MWQMHEve0H0ZOPoABg0aRiisRyaKiIg011qC1akhgu4+O2kHvwDKk1Yvd/dpnWlfRKSn6ZMZ4dNHHAoc2uL6wQV9eWLoWZy46Q8sf3Iu4z7b7t+edlG1fTub166gbOMKarYUE9u2hkjlOvrUbKB/wyaG+haKrIGioH69h9kcHsK2rJEsHXAw3r+I7MH7kj9yPENGj2dIn1yGfOIjFhERkWQpGSJoZkZikvLj3f3joAfrUXefvDvtqAdLRHqD8spqlv/qBA6OLeHjvOlsH3sCkf6jIbMP8Wg99TVVNNRUEd9eAlWbCddsIauuhNyGUvrHShlkZbu0WWL92RYZzPac4TT0HUF44Dhyh+7LgFEHUDhsHyysW25FRERSqUuGCCY1fjTwy8YdBAnWe8BHQAXwA3d/sZVtLwMuAxg9evQhq1at6nQ8IiLd3dayCl6/5385eMN8hlppq/XqPcK2UAGV4f7UZBXSkD2IaN8RZAwYTe6gIgaMGMeAoUWEMrP3YPQiIiLyiRMsM3saGNrCqu+7+8NBnd8By9z9F8FyFpDn7iVmdgjwEDDJ3Sva2pd6sESkt4lGY6xZtYzaso3E67YTimSSk9eXPrn9yC0YTG6/AV3wpGURERHprE98D5a7f6adhiPA54FDkrapA+qC94vMbDmwP6DsSUQkSSQSZuy48eyYL0hERER6slRMDfUZ4AN3X9tYYGaDzCwcvN8H2A9YkYJ9iYiIiIiIdFupuOv5bGBes7KjgRvMrAGIA5e7e+s3GYiIiIiIiOwFOp1guftFLZTdD9zf2bZFRERERER6kpTMIpgqZrYF6G7TCA4EtqY7CNljdL17D13r3kPXunfR9e49dK17l+54vce4+6Dmhd0qweqOzGxhS7ODyN5J17v30LXuPXStexdd795D17p36UnXOxWTXIiIiIiIiAhKsERERERERFJGCVb7/pDuAGSP0vXuPXStew9d695F17v30LXuXXrM9dY9WCIiIiIiIimiHiwREREREZEUUYIlIiIiIiKSIkqw2mBms8zsQzNbZmbfSXc8kjpmNsrMnjOz983sPTO7KigfYGZPmdnHwc/+6Y5VUsPMwmb2lpk9GiyPNbPXgs/3fDPLTHeMkhpmVmBm95nZB2a21MyO0Gd772Rm1wS/w981s3lmlq3P9t7DzP5sZpvN7N2kshY/y5ZwS3Ddl5jZwemLXHZXK9f658Hv8SVm9qCZFSSt+25wrT80sxPSEnQblGC1wszCwG+AE4GJwDlmNjG9UUkKRYFvuftE4HDg68H1/Q7wjLvvBzwTLMve4SpgadLy/wNudvd9gW3Al9MSlXSFXwP/cvcDgANJXHd9tvcyZjYC+CYw3d0nA2HgbPTZ3pvcAcxqVtbaZ/lEYL/gdRnwuz0Uo6TGHex6rZ8CJrv7VOAj4LsAwfe1s4FJwTa/Db63dxtKsFp3KLDM3Ve4ez1wD3BammOSFHH3De7+ZvC+ksQXsBEkrvFfg2p/BU5PS4CSUmY2EjgJ+FOwbMDxwH1BFV3rvYSZ5QNHA7cDuHu9u5ehz/beKgLkmFkE6ANsQJ/tvYa7vwCUNitu7bN8GvA3T3gVKDCzYXskUOm0lq61uz/p7tFg8VVgZPD+NOAed69z95XAMhLf27sNJVitGwGsSVpeG5TJXsbMioCDgNeAIe6+IVi1ERiSrrgkpX4FXAfEg+VCoCzpF7c+33uPscAW4C/BkNA/mVku+mzvddx9HXATsJpEYlUOLEKf7b1da59lfW/bu10CPBG87/bXWgmW9GpmlgfcD1zt7hXJ6zzxDAM9x6CHM7OTgc3uvijdscgeEQEOBn7n7gcB22k2HFCf7b1DcO/NaSSS6uFALrsOMZK9mD7LvYOZfZ/ErR13pzuWjlKC1bp1wKik5ZFBmewlzCyDRHJ1t7s/EBRvahxSEPzcnK74JGWOBE41s2ISQ32PJ3GPTkEwrAj0+d6brAXWuvtrwfJ9JBIufbb3Pp8BVrr7FndvAB4g8XnXZ3vv1tpnWd/b9kJmdhFwMnCu73h4b7e/1kqwWvcGsF8wG1EmiZvpHklzTJIiwT04twNL3f2XSaseAS4M3l8IPLynY5PUcvfvuvtIdy8i8Tl+1t3PBZ4DvhBU07XeS7j7RmCNmY0Pij4NvI8+23uj1cDhZtYn+J3eeK312d67tfZZfgS4IJhN8HCgPGkoofRAZjaLxPD+U929OmnVI8DZZpZlZmNJTGzyejpibI3tSAalOTP7HIl7N8LAn939xvRGJKliZjOBF4F32HFfzvdI3Id1LzAaWAWc5e7Nb7CVHsrMjgWudfeTzWwfEj1aA4C3gPPcvS6N4UmKmNk0EhOaZAIrgItJ/EFRn+29jJn9GJhNYvjQW8ClJO7F0Gd7L2Bm84BjgYHAJuBHwEO08FkOkuzbSAwTrQYudveFaQhbPoFWrvV3gSygJKj2qrtfHtT/Pon7sqIkbvN4onmb6aQES0REREREJEU0RFBERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwRES6GTMrMjM3s0i6Y5HewczeM7Nj0x2HiMjeQAmWiIj0eGY218yqgle9mTUkLT+R7vi6O3ef5O4LUtmmmY0ws4fNrNTM1prZ5alsX0SkuzJ3T3cMIiJ7FTOLuHu0E9sXASuBjM6001uZ2RxgX3c/r4V1nbo2e1JPirUlZvYc8DbwbWAi8Bxwprs/l9bARES6mHqwRERSwMyKzex/zGwJsN3MImZ2uJn9x8zKzOzt5CFYZrbAzP6vmb1uZhXBX/oHtNL2xWa21MwqzWyFmX212frTzGxx0M5yM5sVlOeb2e1mtsHM1pnZT8ws3M5xjDOzZ82sxMy2mtndZlaQtK7UzA4Oloeb2ZbG4zKzU4OhZmXB8U1odn6uNbMlZlZuZvPNLHv3z/Tua+XauJntm1TnDjP7SdLyycE5LQuu4dQO7uvYoLfme8H5Kzazc5PWn2RmbwXXak2QDDauaxwa+mUzWw08G5T/w8w2BuftBTOb1Czu35rZE0Fv3ctmNtTMfmVm28zsAzM7qIPn6DMdOcYOnoc84FjgRndvcPe3gfuAS1K1DxGR7koJlohI6pwDnAQUAEOAx4CfAAOAa4H7zWxQUv0LSHzhHAZEgVtaaXczcDLQD7gYuDkpyTkU+BuJXoIC4GigONjujqDdfYGDgM8Cl7ZzDAb8X2A4MAEYBcwBcPflwP8Ad5lZH+AvwF/dfYGZ7Q/MA64GBgGPA/80s8ykts8CZgFjganARS0GYDYzSGxae81s5xha0nRt2usVChKSPwNfBQqB3wOPmFlWB/c1FBgIjAAuBP5gZuODddtJXPeCIJ4rzOz0ZtsfQ+LcnxAsPwHsBwwG3gTublb/LOAHwT7rgFeCegNJJDW/7GDcLTKz77R1PVrbrNnPxveTOxOLiEhPoARLRCR1bnH3Ne5eA5wHPO7uj7t73N2fAhYCn0uqf6e7v+vu24EfAme11MPk7o+5+3JPeB54EjgqWP1l4M/u/lSwn3Xu/oGZDQn2dbW7b3f3zcDNwNltHYC7LwvaqnP3LSS+nB+TtP6PwDLgNRKJ4feDVbOBx4JtG4CbgBzgU83Oz3p3LwX+CUxrJYaX3L2gjddLbR1DK5KvTXsuA37v7q+5e8zd/0oicTl8N/b3w+AcPk8i0T4LwN0XuPs7wbVaQiIpPabZtnOCa1YTbPNnd6909zoSye6BZpafVP9Bd1/k7rXAg0Ctu//N3WPAfBLJ9Sfm7j9t63q0sk0l8DLwQzPLDv4gcCbQpzOxiIj0BEqwRERSZ03S+zHAF5v9pX8miaSkpfqrgAwSvQ47MbMTzezVYHheGYnEqbHeKGB5C7GMCdrbkLT/35PoBWmVmQ0xs3uCIYUVwF0txPRHEj0RtwZf+iHR47WqsYK7x4PjG5G03cak99VAXluxpNia9qs0GQN8q9m1G0XiGDtiW5A0N1rVuK2ZHWZmzwVDK8uBy9n1/DbFamZhM/upJYZ+VrCjdzJ5m01J72taWN6T5znZuSR6K9cAvyPxb2ltmmIREdljlGCJiKRO8qxBa0j0UCX/tT/X3X+aVGdU0vvRQAOwNbnBYFja/SR6hIYEPQaPs2Po1RpgXAuxrCHR6zIwaf/93H1SC3WT/W9wHFPcvR+JnrimYV7BvTW/Am4H5tiO+8bWk0hMGutZcHzr2tnfLszsKNsxA2BLr6Pab2UXzWd0qmbn3pShSe/XkLh3KPna9XH3eR3cV38zy01aHk3i/AD8HXgEGOXu+cBcdh5G1zzWLwGnAZ8B8oGioLz5Nl0muJ+s1evR2nbuvsrdT3b3Qe5+GImk8PU9FbeISLoowRIR6Rp3AaeY2QlBL0R2MAHCyKQ655nZxOB+phuA+4JhXckygSxgCxA1sxNJ3EvV6HbgYjP7tJmFLDE19gHuvoHEUMJfmFm/YN04M2s+HK25vkAVUG5mI0jc25Xs18BCd7+UxNC3uUH5vcBJQRwZwLdIJHj/ae9ENefuL7p7XhuvF3e3zRYsBr4UXJtZ7DxM74/A5UFvk5lZriUmp+gLTRNL3NFO+z82s8wgGTwZ+EdQ3hcodffa4P65L7XTTl8S57GEREL4v7txjCnh7v/b1vVobTszm2BmfYPzcB6Jf7eduh9MRKQnUIIlItIF3H0NiZ6H75FIjtaQSFaSf+/eSWIiio1ANvDNFtqpDMrvBbaR+EL+SNL61wkmvgDKgefZ0ZN0AYkE7f1g2/vYeYhiS34MHBy09RjwQOMKMzuNxCQVVwRF/w0cbGbnuvuHJHq7biXRC3cKcIq717ezv3S5ikSMZSSGsj3UuMLdFwJfAW4jcd6WsfOEHKNI3F/Umo3BdutJTEhxubt/EKz7GnCDmVUC15O4rm35G4khhutIXMdX2zuwbuQEYAWJc3E5MCu4r09EZK+m52CJiKSBmS0A7nL3P6U7Fum4YFbEt4GpwWQezdcfS+K6jmy+TkREeodIugMQERHpKYIeuQntVhQRkV5LQwRFRHoZM5vbyoQFc9vfWnoiMxvdxkQVo9Mdn4jI3kRDBEVERERERFJEPVgiIiIiIiIp0q3uwRo4cKAXFRWlOwwREREREZE2LVq0aKu7D2pe3q0SrKKiIhYuXJjuMERERERERNpkZqtaKtcQQRERERERkRRRgiUiIiIiIpIiSrBERHZTSVUdj7+zAc3CKiIiIs11q3uwWtLQ0MDatWupra1NdyjSw2RnZzNy5EgyMjLSHYrsZX78yDt8eukPWVzyFQ469vPpDkdERES6kW6fYK1du5a+fftSVFSEmaU7HOkh3J2SkhLWrl3L2LFj0x2O7GUy1r7GaeH/UPfCW6AES0RERJJ0+yGCtbW1FBYWKrmS3WJmFBYWqudTusRB1S8DkBWvgWhdmqMRERGR7qTbJ1iAkiv5RPTvRrpCPO70j21tWvYtH6QxGhEREeluekSCJSLSXVTWRcmjhhqyAChf836aIxIREZHuRAlWB5gZ3/rWt5qWb7rpJubMmZO+gJK8+uqrHHbYYUybNo0JEyY0xbVgwQL+85//dKrtWbNmUVBQwMknn5yCSEX2DuXVDeRZDev7jCfmRoUSLBEREUmiBKsDsrKyeOCBB9i6dWv7lXeDuxOPxzvVxoUXXsgf/vAHFi9ezLvvvstZZ50FpCbB+va3v82dd97ZqTZE9jZlNfXkUUM4bzBrfDBs/TDdIYmIiEg30u1nEUz243++x/vrK1La5sTh/fjRKZParBOJRLjsssu4+eabufHGG3dat2XLFi6//HJWr14NwK9+9SuOPPJI5syZQ15eHtdeey0AkydP5tFHHwXghBNO4LDDDmPRokU8/vjj3HbbbTzxxBOYGT/4wQ+YPXs2CxYsYM6cOQwcOJB3332XQw45hLvuumuX+4o2b97MsGHDAAiHw0ycOJHi4mLmzp1LOBzmrrvu4tZbb+WAAw5oNc7ly5ezbNkytm7dynXXXcdXvvIVAD796U+zYMGCNs/NP/7xD3784x8TDofJz8/nhRdeoLa2liuuuIKFCxcSiUT45S9/yXHHHccdd9zBQw89xPbt2/n444+59tprqa+v58477yQrK4vHH3+cAQMG8Mc//pE//OEP1NfXs++++3LnnXfSp0+fnfZ7+OGHc/vttzNpUuLaHXvssdx0001Mnz69zXhFOquqLkqh1RDJK+BDhrBfxep0hyQiIiLdSKd7sMxslJk9Z2bvm9l7ZnZVUD7HzNaZ2eLg9bnOh5s+X//617n77rspLy/fqfyqq67immuu4Y033uD+++/n0ksvbbetjz/+mK997Wu89957LFy4kMWLF/P222/z9NNP8+1vf5sNGzYA8NZbb/GrX/2K999/nxUrVvDyyy/v0tY111zD+PHjOeOMM/j9739PbW0tRUVFXH755VxzzTUsXryYo446qs04lyxZwrPPPssrr7zCDTfcwPr16zt8Xm644Qb+/e9/8/bbb/PII48A8Jvf/AYz45133mHevHlceOGFTbP5vfvuuzzwwAO88cYbfP/736dPnz689dZbHHHEEfztb38D4POf/zxvvPEGb7/9NhMmTOD222/fZb+zZ8/m3nvvBWDDhg1s2LBByZXsEXXROH2pxrL7si1zKHm1G9IdkoiIiHQjqejBigLfcvc3zawvsMjMngrW3ezuN6VgHwDt9jR1pX79+nHBBRdwyy23kJOT01T+9NNP8/77O+7BqKiooKqqqs22xowZw+GHHw7ASy+9xDnnnEM4HGbIkCEcc8wxvPHGG/Tr149DDz2UkSNHAjBt2jSKi4uZOXPmTm1df/31nHvuuTz55JP8/e9/Z968eS32OrUV52mnnUZOTg45OTkcd9xxvP7665x++ukdOi9HHnkkF110EWeddRaf//znm47pG9/4BgAHHHAAY8aM4aOPPgLguOOOo2/fvvTt25f8/HxOOeUUAKZMmcKSJUuARBL2gx/8gLKyMqqqqjjhhBN22e9ZZ53FZz/7WX784x9z77338oUvfKFD8Yp0Vn1DlDxqqc3qR02O07eyDOqrIbNPu9uKiIjI3q/TCZa7bwA2BO8rzWwpMKKz7XZHV199NQcffDAXX3xxU1k8HufVV18lOzt7p7qRSGSn+6uSn8eUm5vbof1lZWU1vQ+Hw0Sj0RbrjRs3jiuuuIKvfOUrDBo0iJKSkl3qtBYn7Dqd+e5Mbz537lxee+01HnvsMQ455BAWLVrUZv3kYwqFQk3LoVCo6fguuugiHnroIQ488EDuuOOOFhPGESNGUFhYyJIlS5g/fz5z587tcMwinRGt3U7IHMvuS7xfX6gEytfCoP3THZqIiIh0Aymd5MLMioCDgNeCoivNbImZ/dnM+reyzWVmttDMFm7ZsiWV4aTcgAEDOOuss3YasvbZz36WW2+9tWl58eLFABQVFfHmm28C8Oabb7Jy5coW2zzqqKOYP38+sViMLVu28MILL3DooYd2OKbHHnsMdwcSQw/D4TAFBQX07duXysrKduMEePjhh6mtraWkpIQFCxYwY8aMDu9/+fLlHHbYYdxwww0MGjSINWvWcNRRR3H33XcD8NFHH7F69WrGjx/f4TYrKysZNmwYDQ0NTe20ZPbs2fzsZz+jvLycqVOndrh9kc7w2sR9oKHsfmQUFgFQX1KcvoBERESkW0lZgmVmecD9wNXuXgH8DhgHTCPRw/WLlrZz9z+4+3R3nz5o0KBUhdNlvvWtb+00m+Att9zCwoULmTp1KhMnTmzqSTnzzDMpLS1l0qRJ3Hbbbey/f8t/3T7jjDOYOnUqBx54IMcffzw/+9nPGDp0aIfjufPOOxk/fjzTpk3j/PPP5+677yYcDnPKKafw4IMPMm3aNF588cVW4wSYOnUqxx13HIcffjg//OEPGT58OJBI/r74xS/yzDPPMHLkSP79738DiWGJjfdbffvb32bKlClMnjyZT33qUxx44IF87WtfIx6PM2XKFGbPns0dd9yxU89Ve/7P//k/HHbYYRx55JEccMABTeWPPPII119/fdPyF77wBe65556mmRNF9oi6xB8uwjn55A0pAqBs44o0BiQiIiLdiTX2fnSqEbMM4FHg3+7+yxbWFwGPuvvkttqZPn26L1y4cKeypUuXMmHChE7HKC1rPtvh3kb/fiTV/vn4I5zy+vlUnjmP93MO4ZA7D2D95K8y+os/TXdoIiIisgeZ2SJ332WWtVTMImjA7cDS5OTKzIYlVTsDeLez+xIRSbv67QBEsnMZPqAvGxlAfJumahcREZGEVMwieCRwPvCOmS0Oyr4HnGNm0wAHioGvpmBfkmJz5sxJdwgiPYo31AGQkZXD0Pxs3vSBjKhal+aoREREpLtIxSyCLwEtTTv3eGfbFhHpbuINiRlBwxnZWDhEaWQI+1cvTXNUIiIi0l2kdBZBEZG9XqweAIskHnlQlTOc/OhWiLX8GAURERHpXZRgiYjsjmjwTLtIYmbMaN5wQsShamMagxIREZHuQgmWiMhu8GjiHqzGBCtcMBKAeNnadIUkIiIi3YgSrA566KGHMDM++OCDVusUFxczeXKbM9Hvlg8//JBjjz2WadOmMWHCBC677DIg8ZDgxx/v3C1ul1xyCYMHD05pvCK9QrMEK6dwFACVm4vTFJCIiIh0J0qwOmjevHnMnDmTefPmtbg+Gu38/RexWGyn5W9+85tcc801LF68mKVLl/KNb3wDSE2CddFFF/Gvf/2rU22I9EYWCxKscCLB6jtkLABVm1elKyQRERHpRlIxTfue88R3YOM7qW1z6BQ4se0HhFZVVfHSSy/x3HPPccopp/DjH/8YgAULFvDDH/6Q/v3788EHH/Dkk08SjUY599xzefPNN5k0aRJ/+9vf6NOnD8888wzXXnst0WiUGTNm8Lvf/Y6srCyKioqYPXs2Tz31FNdddx1nn3120343bNjAyJEjm5anTJlCfX09119/PTU1Nbz00kt897vf5eSTT+Yb3/gG7777Lg0NDcyZM4fTTjuNO+64gwcffJDy8nLWrVvHeeedx49+9CMAjj76aIqLi9s87ueff56rrroKADPjhRdeIC8vj+uuu44nnngCM+MHP/gBs2fPZsGCBfzoRz+ioKCAd955h7POOospU6bw61//mpqaGh566CHGjRvHP//5T37yk59QX19PYWEhd999N0OGDNlpv2effTbnn38+J510EpBIBk8++WS+8IUvdOyainShpgQr6MEaMmgQVZ5NfemaNEYlIiIi3YV6sDrg4YcfZtasWey///4UFhayaNGipnVvvvkmv/71r/noo4+AxLC+r33tayxdupR+/frx29/+ltraWi666CLmz5/PO++8QzQa5Xe/+11TG4WFhbz55ps7JVcA11xzDccffzwnnngiN998M2VlZWRmZnLDDTcwe/ZsFi9ezOzZs7nxxhs5/vjjef3113nuuef49re/zfbtiYehvv7669x///0sWbKEf/zjHyxcuLDDx33TTTfxm9/8hsWLF/Piiy+Sk5PDAw88wOLFi3n77bd5+umn+fa3v82GDRsAePvtt5k7dy5Lly7lzjvv5KOPPuL111/n0ksv5dZbbwVg5syZvPrqq7z11lucffbZ/OxnP9tlv7Nnz+bee+8FoL6+nmeeeaYp2RJJN4vVEyUMoTAAIwb0YYMXQoWehSUiIiI9rQernZ6mrjJv3rymnpyzzz6befPmccghhwBw6KGHMnbs2Ka6o0aN4sgjjwTgvPPO45ZbbuG//uu/GDt2LPvvvz8AF154Ib/5zW+4+uqrgURC0ZKLL76YE044gX/96188/PDD/P73v+ftt9/epd6TTz7JI488wk033QRAbW0tq1evBuC//uu/KCwsBODzn/88L730EtOnT+/QcR955JH893//N+eeey6f//znGTlyJC+99BLnnHMO4XCYIUOGcMwxx/DGG2/Qr18/ZsyYwbBhwwAYN24cn/3sZ4FEz9tzzz0HwNq1a5k9ezYbNmygvr5+p3PX6MQTT+Sqq66irq6Of/3rXxx99NHk5OR0KGaRrhaK1dFgmU2/PPtlZ/CODaRo+/q0xiUiIiLdg3qw2lFaWsqzzz7LpZdeSlFRET//+c+59957cXcAcnNzd6pvZm0ut6R5G8mGDx/OJZdcwsMPP0wkEuHdd9/dpY67c//997N48WIWL17M6tWrmTBhwieOp9F3vvMd/vSnP1FTU8ORRx7Z5gQfAFlZWU3vQ6FQ03IoFGq6R+0b3/gGV155Je+88w6///3vqa2t3aWd7Oxsjj32WP79738zf/78VhNQkXQIxeuJWsZOZRWZg8mr25SmiERERKQ7UYLVjvvuu4/zzz+fVatWUVxczJo1axg7diwvvvhii/VXr17NK6+8AsDf//53Zs6cyfjx4ykuLmbZsmUA3HnnnRxzzDHt7vtf//oXDQ0NAGzcuJGSkhJGjBhB3759qaysbKp3wgkncOuttzYlfW+99VbTuqeeeorS0tKm+6Aae9c6Yvny5UyZMoX/+Z//YcaMGXzwwQccddRRzJ8/n1gsxpYtW3jhhRc49NBDO9xmeXk5I0aMAOCvf/1rq/Vmz57NX/7yF1588UVmzZrV4fZFulo4Xk+DZe5UVtdnGPmxbTtmGBQREZFeSwlWO+bNm8cZZ5yxU9mZZ57Z6myC48eP5ze/+Q0TJkxg27ZtXHHFFWRnZ/OXv/yFL37xi0yZMoVQKMTll1/e7r6ffPJJJk+ezIEHHsgJJ5zAz3/+c4YOHcpxxx3H+++/z7Rp05g/fz4//OEPaWhoYOrUqUyaNIkf/vCHTW0ceuihnHnmmUydOpUzzzyzaXjgOeecwxFHHMGHH37IyJEjuf322wGYO3cuc+fOBeBXv/oVkydPZurUqWRkZHDiiSdyxhlnMHXqVA488ECOP/54fvaznzF06NAOn885c+bwxS9+kUMOOYSBAwc2lS9cuJBLL720afmzn/0szz//PJ/5zGfIzMxsqSmRtAjH64k168GK9xueeFOhYYIiIiK9nTX2enQH06dP9+aTMCxdurRpuJvsnjvuuIOFCxdy2223pTuUtNG/H0m1Bf/nRMaH1zPsezvuh3zkgbs4dcnXqTn3EXL2a793WkRERHo+M1vk7rtMbqAeLBGR3RD2emKhnXtVcweNAaB848p0hCQiIiLdSM+aRVB2y0UXXcRFF12U7jBE9iqReD3xZglWwdDEbJjVW1enIyQRERHpRnpED1Z3GsYoPYf+3UhXyPAGYuGsncqGDSqkzHOJblubpqhERESku+j2CVZ2djYlJSX6siy7xd0pKSkhOzs73aHIXibDd+3BGtw3iw1eSLhSDxsWERHp7bp8iKCZzQJ+DYSBP7n7bj0teOTIkaxdu5YtW7Z0SXyy98rOzmbkyJHpDkP2IvG4k0kD3qwHKxIOURoZRFH1xjRFJiIiIt1FlyZYZhYGfgP8F7AWeMPMHnH39zvaRkZGBmPHju2qEEVEOqw+FieTBuLhXR8dsD1rCP1qP0pDVCIiItKddPUQwUOBZe6+wt3rgXuA07p4nyIiXaI+FifLGvBI1q7rcofT1yuhvjoNkYmIiEh30dUJ1ghgTdLy2qCsiZldZmYLzWyhhgGKSHdW1xAnkyi00INFfuJXW6xME12IiIj0Zmmf5MLd/+Du0919+qBBg9IdjohIq+pjcbKoh8iuk6dkDRgN6FlYIiIivV1XJ1jrgFFJyyODMhGRHqeuIUYmUayFIYJ5gxMPG67YXLyHoxIREZHupKsTrDeA/cxsrJllAmcDj3TxPkVEukR9NEYWDVgLPVgDRyQm46kt0cOGRUREerMunUXQ3aNmdiXwbxLTtP/Z3d/ryn2KiHSVuvp6QuZYxq49WEMH5LPF+xEvUye9iIhIb9blz8Fy98eBx7t6PyIiXa2hrgaAUMauPVh9szNYbQPJrNqwp8MSERGRbiTtk1yIiPQU0bpaAEIt9GABlGcMpk+tHjYsIiLSmynBEhHpoGh96z1YADU5Qylo2LwnQxIREZFuRgmWiEgHxeoTPVjhzJYTrGjeCHKphtryPRmWiIiIdCNKsEREOqixByucmdPieuufmKp9+6bleywmERER6V6UYImIdFCsIdGDFWklwcoetA8AZRuUYImIiPRWSrBERDooXt+YYLU8yUW/YeMAqN60Yo/FJCIiIt2LEiwRkQ6KNdQBkNFKD9bQIcOo9BxiJcV7MCoRERHpTpRgiYh0UDwYIpiR1XKCNahfNmt9EJGK1XsyLBEREelGlGCJiHSQRxuHCLY8i2A4ZGzNGEqfmnV7MiwRERHpRpRgiYh0UDyaGCJokZYTLIDKrOEMqN8A7nsqLBEREelGlGCJiHRUMESQSMuTXADU9R1FttdCdckeCkpERES6EyVYIiIdFUv0YLWVYFGQeBZWtGTlHghIREREuhslWCIiHdXQfoKVNWgsABUblu2JiERERKSbUYIlItJRjT1Y4dYTrMZnYW3frB4sERGR3kgJlohIB4UaahJv2pjkYuiggZR6noYIioiI9FKdSrDM7Odm9oGZLTGzB82sICgvMrMaM1scvOamJFoRkTQKR7dTYzkQav1X5/CCHNb4YMLlehaWiIhIb9TZHqyngMnuPhX4CPhu0rrl7j4teF3eyf2IiKRdRnQ7taGWHzLcqE9mhE2hIfTZvnYPRSUiIiLdSacSLHd/0t2jweKrwMjOhyQi0j1lxKqpD/Vpt15F9nDy6zdBPLYHohIREZHuJJX3YF0CPJG0PNbM3jKz583sqBTuR0QkLTLj1dSH20+w6vqOJoMGqNywB6ISERGR7iTSXgUzexoY2sKq77v7w0Gd7wNR4O5g3QZgtLuXmNkhwENmNsndK1po/zLgMoDRo0d/sqMQEdkDsuLVRMO57dYLDSiCLRAvWUkoXx37IiIivUm7CZa7f6at9WZ2EXAy8Gl392CbOqAueL/IzJYD+wMLW2j/D8AfAKZPn+67Gb+IyB6T4zVEMwa0X2/IvvAhVG5cRv4+6sAXERHpTTo7i+As4DrgVHevTiofZGbh4P0+wH7Ais7sS0QknaKxOH28hnhGXrt1Bwzfh5gbVRuX74HIREREpDtptwerHbcBWcBTZgbwajBj4NHADWbWAMSBy929tJP7EhFJm+31MfKslq0dSLBGDcxnA4XE9SwsERGRXqdTCZa779tK+f3A/Z1pW0SkO6moaaCQWkqz2k+whhdks8gHU1Sxag9EJiIiIt1JKmcRFBHZa5Vvr6WP1RHO6ddu3axImK2RYeRVr9sDkYmIiEh3ogRLRKQDqirLAcjI6duh+ttzR9EvVgr127syLBEREelmlGCJiHTA9orEbaSZeQUdqh/LH5N4s03DBEVERHoTJVgiIh1QX7EZgKz8IR2qnzFwbGK7rZpAVUREpDdRgiUi0gHxyi0A9OnfsQSr79D9AChf/3GXxSQiIiLdjxIsEZEO8O2NPVhDO1R/yNBhVHoOdZv1LCwREZHeRAmWiEgH2PatiZ+5AztUf1RhLmt9EJQVd2FUIiIi0t0owRIR6QCr3kodmZDZ/nOwAAblZbHWhpBVuaaLIxMREZHuRAmWiEgHZNRupSpSAGYdqm9mlGcNJ79uPbh3bXAiIiLSbSjBEhHpgD4NpdRkFu7WNrV5o8n0eqja1EVRiYiISHejBEtEpB3b66IMj2+kNnfk7m3YvwgAL12Z+qBERESkW1KCJSLSjo1lVYy0rcQKinZru8zgWVg1m/UsLBERkd5CCZaISDs2rv6YDIuRNXjcbm2XN6QIgO1bVnVBVCIiItIdKcESEWlH6ZqPABg0+oDd2m5IYX+2eR71pZpJUEREpLdQgiUi0o7YxncByB0xabe2G5qfw0YfABXruiIsERER6YaUYImItCO/7D1KwoMgb/BubTe4bxYbvJCM7Ru6KDIRERHpbjqVYJnZHDNbZ2aLg9fnktZ918yWmdmHZnZC50MVEdnzquqijKn7iNJ+E3Z724xwiLKMQeTWapp2ERGR3iIVPVg3u/u04PU4gJlNBM4GJgGzgN+aWTgF+xIR2aPe+eBD9rENRMYc9om2r84eSm6sHOqrUxyZiIiIdEddNUTwNOAed69z95XAMuDQLtqXiEiX2fr2vwAYetDn2qnZsmje8MSbSg0TFBER6Q1SkWBdaWZLzOzPZtY/KBsBJE+btTYo24WZXWZmC81s4ZYtW1IQjohIarg7fVc9SVloADmjpn2iNiw/SLDK16YuMBEREem22k2wzOxpM3u3hddpwO+AccA0YAPwi90NwN3/4O7T3X36oEGDdndzEZEu886yVRwRXcjmMSdB6JP9PSq7cDQANSWaql1ERKQ3iLRXwd0/05GGzOyPwKPB4jpgVNLqkUGZiEiPUfzU75hqUYYf++VP3Ebe4DFA4mHDOakKTERERLqtzs4iOCxp8Qzg3eD9I8DZZpZlZmOB/YDXO7MvEZE9adX6zRy+6R5W5h1M3piDPnE7g/oXUOp5NOhhwyIiIr1Cuz1Y7fiZmU0DHCgGvgrg7u+Z2b3A+0AU+Lq7xzq5LxGRPWbJvTdwipVRevINnWpnaL9sNvkA8ivWpygyERER6c46lWC5+/ltrLsRuLEz7YuIpMNrC1/nM9vms2zwf7HvAUd1qq3B/bJ4xfszsHpjiqITERGR7qyrpmkXEemR1pVW0ufRrxG1DEaefXOn28vOCFMaHkhO7eYURCciIiLdnRIsEZFAbUOMhX/4OlP4mOrP/pzswlHtb9QB1dlDyItug2h9StoTERGR7quz92CJiOwV3J2H/vxTzq59mNX7XcDoT52bsrbr+wyBWqBqIxSMTlm7PZW7U1G1na0bVlOxZQ01JWuJVZdCXRXUV0H9djLitWCGWeLvgJaRTSg7n1CfAiJ98snMKyR/8BgKh48ls28hmKX5qERERBKUYImIAE88/hCfX/8LVvU/jDEpGBq4k77DoBSo2NCrEqyKqirWfrSYbaveo27zx2SUr2RA7RqGxdYzwCrJb2W7GrKoIxMHQsQxhyzqybKGFuvXkklpeCBVmYOpyx2O9xtBRv9R9BlcxIBh48gbPBrL7tdlx9kR8bhTH41RV1dLQ10N9bXVROtqiDbU0FBbQ6yhhlh9HbF4DHPHPY7h4PFEAx4nMZ+UYaEIoXCEUCQj8TOcQTgSIRyUNf6MBO8jkQxCkQiRcIRwJEw4FMHCYSwUAQt/4me8pZR70k9v9pP2yzqknSS83SS949u7e9L7HeuTI92pTrP2Q2aEDGynmNrYfyiceIlIt6AES0R6vcXvvMOhr3+T0oyhjPrKfAin9ldjRsEIWAWx8nXsjV+B3J3VGzax9r3/ULNmMdkl7zOk+iOK4muZaDsmkN0aGkhJ1ihW5h7Pir4jiBQMp0/hSPoNGkmf/kPIyetHRnZfckLhXZ4ZFo87FdXbqSwrZXt5CdUVW9i+dW1i+vuK9WRVbyCvbhOF1a8xZEspYdv5S3cFeWzLGERF5hAaMgvwrHwsJx/LKSCe2Y9QJBOLZBCOZGLhDGKEiceieLSeeDyKx+qJR6PEovXE66vx+u1YfTXWUE0oWk04WkM4VkNGrIaMeA2Z8Voy47VkU0umN5BFPdnWQPYeuB6fRIOHiRMiRog4IeK2473hGCQSvqT3jeUkvW8sp4X3u5ZBqMPJUc/SwbQoZbbRj/Wn/J1Jh3RuUh4RSQ0lWCLSq20oKSXn/vPItihcfB+h3P4p30fjvVzVJWvom/LW97yauijvL32Hze+/QOb6NxhZtYR9fTVjgqSmxAawqc9+LCk8nswRUxk09kAGjzmAgVm5DPyE+wyFjH55efTLy4ORrfcCxuPO1srtbFm/moqNK6nZWkysbC2RynXk1m6kf81mCrcvJ8+308+qP2E0CTE3aiybWrKpD2VRb9nUh3KIRnLYHh5ARaQP8UgOHsnBI9kQyYJIFhbJxjKyEz8zswlnZBPKyCGckUkoHAl6QgwslHjfuIzhOMRjxKJRPNZAPBYlHvz0WDRIBhtfMTzegMdjEIsSj8cgHgNPvCweA49jHsM9RsgT6y0oM4+Dx5pSouQUqrG3Zucymq3fkYLttC455bDQjjStqbfGknp7knrXLHn7xm121G/OWlloOfnxFhMhayr1Njq4DGshUUyuv1O+32IsnrSn4Kc78aDA3RPXIOj12rGcqDtp/f0UPnoxFaNfoN+g4a0FKiJ7iBIsEem16qIx3vvjZRzvq9h48h0MHzGxS/YzoHAIdZ5BTcnaHplg1TbEeOfdd9n6zr/pu+4l9qt9m0OsDIDt5LAudzLvDz+JfvsezogDDqMwfyiFaYo1FDIG5+cxOH8iTGj9esbjTnlNHVUVpcRrKog21BFrqCMWbSAWrSdMjEjQmxXJyCAUziAUySQ7K4vsPnlk9+lLOCObPDPy9uDxibTk/UWnsM8jZ1D8py+S/d/PkJnVXftKRXoHJVgi0ms9dsfP+HztUyyb+DX2nXF6l+1naEEOG70/mWU942HD7s7Hq9eyauG/sRXPMa5qITMs8Ryv0tAA1g88jLKiIxgx9VjyRk1l/x5470coZOTnZpOfOxzQX/ylZ5t4yFG8suZGjlh8Ha/fdi6HXHUP4UhGusMS6bWUYLXhnRceIPbK76kfdSQFE4+naOKhZGZmpjssEUmBBQue4qQ1v2Bl/qHs+8WfdOm+BvfLYiUDKKra0KX76YyGWJwlS95ky8KHGbThWQ6Mvc/+FqeaHNYUHMzH+3yZEdM/x4DhkxigGftEup0jTv8qr1Ws5rAVt7H4119g0jfuJSMzK91hifRKSrDa0FBVxqDa1Yz66FX46BfUPpjBRxn7sC1/AvHBk+g74gCGFE1k4PCxWA/8C26qeCxKLNpA3J14PE48Hkt674lx5PF4Yux48xmigve2S3lHdeCLnlkHZnDeuULL9a3lMfrW8kLLtVttvMV2Wh/yby2uba2krePfcZt6UlnjOP+k/SVP3NXsDe6714Yn1/TkH0E7LdRrKmu896OlWbqatLyvxrLKym2Me+5rVIbzGfWVv3f57FsDc7N4xQs5oHpFl+5nd1XV1LHklaeoefdRxpa+wCGsA2BtRhEfjb2EwQefzMADZjI+rL+Ei/QEh11wIy/9LcLMFb/iw5uOZ+BFd1M4vCjdYXVLHo8Rbainvr6e+oYo0Wg9Ho/tuJ8xFsPjiXscPR4L7nFMfJeJ+47/W6zZ/7M7fQtoLLMW6iXdc2ihHf+nW3DvpQWVm7YL6ljjfYehUOJuRGssT9wHaY33JBoYoab9JNaHdrS7U92k5WBWUQvabKxjyQfTdM9lEEuz+ydbfN/+FWl7tYWJZGQSCXeDWU87wHzXbyZpM336dF+4cGG6w9iJu7Nx7Qo2LnmGutVvklf6HqMbltGPHTdH13kGG8JDqMgYTH3WAGJ9BmF5g7E+hYRz+pKR3ZeMnFyy+vQjMycPC2cSCoexUKhputxwKIyFjFgsSiwaJCzRKNFYA/Fo4hWLNSRuZm5oIB6tD+rUE4/VJ35G6/FoAx5rwKP1eKweYollYvUQj2LBz1C88WcDFvwMeeJn2KOEPbEc8ShhjxIhSpjEcoQYGcTIICi37vNvSKSj6j3MtrMeZsikPTPr1u3/5ytcHLuP0A82JiY7SJNNJaUsfelhIh89xqSqV+lvlTQQZmXuQcT2O4GiT51JzuBxaYtPRDrvlYd/z9Q3f0idZbHu0B8wedalPfYPwdHa7ZSXbKKqopSqijLqq8uJ1lQSq63AayvwuiqsvpJQfRXhhipC0VpCsTrC8ToyvI5IvJ4MbyDT68iggUzqyfZ6Mi2a7kOT3fCX6AkMOutXnDy1ew3pNrNF7j69ebl6sNphZgwbNY5ho3Z84fB4nK3rl7OxeCkV6z/Ct64gd/tqcus2M7ByLf3Ly8ix+jRGvauoh2iwCDEiNBAhZmGiZBCzMDHLIGYRYhYhbhHioQjxUB4NoQj1loGHMoiHM/BQBEKZifWWWI6HEj/dIom/rlgo+KtHqOkvHo0vT54JK3mGqeSZocx26sloW/uJnUFL3RvNtvbWVuxc2EK5t7HU8k7bi6X1Om3tucUyb7F0J81nvmr6W1Py6fcWyprVs+SYW+l9M7zdmb5ai6e1GcB2WW7adwv/ipr9dTF/3yMYtYeSK4DteUWEyuOwrRgGjd9j+3V3lq9eQ/F/7idv5b85sG4Rx1o9leRSXDiTrZNPZuxhp7B/F8yeKCLpccRpX6V4/Azq//EVprx+HR+/+ScaDvs644/9EuGM9N3qEK2roWLbZqpKN7K9bAt15ZtpqNpKvGoroZpSwrXbyKzfRk60jNxYBfleQQ51FEKbE+fUeQbbLYcay6HecmgIZRELZRIN51EXyiIWTrzi4Sw8lIVHsvBwFhbOxILnxlkoDI3PhguHwSJYKAShSNM6C4UwCzV2EDVJntGRpvee9D6pXuNonaQZIXf8h+1J2+38zLemDpHk0UBJ2+zY5473FjxHz4N67jsek5Bcf+fn0AHEk+L2nfaR/KiFxD52GrsCBP8H+86PaNihre93ra8r7DuRA4am93mGu0MJ1idgoRADR+7HwJH7tbje43HKy8vYXr6F2uoK6qorqK/eTkNNJfG6SohHIe64xxLT53oMj8cTQ+XCiQ9xKJQB4cTDJC0cwUKJB0paJINQKJKYzjcjk0gkk3BGFpGMxM+MzEwiwXJGZhYZGVmEI5lEQiFdbJE0igzeF8rBS5ZhXZxgxeLOknffYdMbDzJ43VNMjb3HvhZna6iQj0ecRv+Dz2TktE8zJaJ7SkX2VkUHHEz9d17jP4/8lqJ3bmX4y1ex7eUfsmrAkdi44xh6wKEMHDP5E0+GEa2rprJ0M5Vlm6ku20ptxRYaKrcS216CVZfsSJYaysiNldPPK8ijhgHAgBbaK/dcKkL9qAr1oyJjIFv77EssewCeU0godwAZuQXk5OaTmZdPVp9+ZOcVkJ1XQJ+8fLIys9HdZtKd6Dt3F7BQiPz+A8jv39KvEBHpjfoNPwA+hup175N7wEkpb7+8up7Fb7zI9ncfo2jLcxxE4n6vdZHRLC26hGGHfYGB+x/OQE1QIdJrZGZE+NSZ36T25Mt5Y8H9xJfcy/iSFygofQLegHqPsDnUn+2RAWzPGEAsnI2FgpEsDuFYLeF4HZFYLeFYLZmxanLjlfTzSnKsnv5AS33f2z2bcutHVTif6kg+2/qMIZrVP0iWCon0HURWv0Hk5A+i74Ch5A8YTH5ONvl7+gSJdBElWCIie8CYkcNZHh9G/5WvkJuC9tydFWvWUvzaY4RWPMPE6tc5Jng2VXHORJbu89+M+tQXGTFiIiNSsD8R6bmyszKZccI5cMI51NXX8d77b1Kx8k1sywdY5QayarfSt3YjkeD+6zAxQjj1lkm9ZdEQyiIayqYuO5+SzAlEswrw7P7QZwCRvEKy+w6kT8FAcgcMpWDAEHL75Kbk95xIT6UES0RkD5g8PJ8nfTynbXwD4vGmmZp2x9pNW/n4zQXULnuBYaWvMTn+EeMsTqXlsq7wCGomnsCoGadQlD+sC45ARPYGWZlZTJp2BEw7It2hiOy1OpVgmdl8oPFmggKgzN2nmVkRsBT4MFj3qrtf3pl9iYj0ZP1zMynOP5zsqgWw7GnY/7Nt1q9viLFs+Uds+vBVYqvfYPC2RRwQ+5iRFiNGiHXZ+/LhyEsZdNBJDD5gJgeE9fcyERGR7qBT/yO7++zG92b2C6A8afVyd5/WmfZFRPYmQw87kw1P/4Hcf36XfpdOhPyRuDtbS0tZt+wdyta8T3zzB+SXvceYuo+ZaOVMBKKEWZ21Px+OvoABE49l+JRjGZ1TkO7DERERkRak5E+elnj62FnA8aloT0Rkb3T2EeO4ceG3+H7Zj+DmSZSTR4Y3MMjqGBTUiWGsi4xh/aAj2TTiIAaPP4KB+x7MPpm6o0FERKQnSNWYkqOATe7+cVLZWDN7C6gAfuDuL7a0oZldBlwGMHr06BSFIyLS/WRFwnzvyit4+Lmp5Cx7jAH1G4hk5xLJKyR3+AEMKprIgJEHMDqzD/ptKCIi0jOZt/NQUzN7Ghjawqrvu/vDQZ3fAcvc/RfBchaQ5+4lZnYI8BAwyd0r2trX9OnTfeHChbt/FCIiIiIiInuQmS1y9+nNy9vtwXL3z7TTcAT4PHBI0jZ1QF3wfpGZLQf2B5Q9iYiIiIjIXmv35wne1WeAD9x9bWOBmQ0ys3Dwfh9gPwieeikiIiIiIrKXSsU9WGcD85qVHQ3cYGYNQBy43N1LU7AvERERERGRbqvde7D2JDPbAqxKdxzNDAS2pjsI2WN0vXsPXeveQ9e6d9H17j10rXuX7ni9x7j7oOaF3SrB6o7MbGFLN6/J3knXu/fQte49dK17F13v3kPXunfpSdc7FfdgiYiIiIiICEqwREREREREUkYJVvv+kO4AZI/S9e49dK17D13r3kXXu/fQte5desz11j1YIiIiIiIiKaIeLBERERERkRRRgiUiIiIiIpIiSrDaYGazzOxDM1tmZt9JdzySOmY2ysyeM7P3zew9M7sqKB9gZk+Z2cfBz/7pjlVSw8zCZvaWmT0aLI81s9eCz/d8M8tMd4ySGmZWYGb3mdkHZrbUzI7QZ3vvZGbXBL/D3zWzeWaWrc/23sPM/mxmm83s3aSyFj/LlnBLcN2XmNnB6Ytcdlcr1/rnwe/xJWb2oJkVJK37bnCtPzSzE9ISdBuUYLXCzMLAb4ATgYnAOWY2Mb1RSQpFgW+5+0TgcODrwfX9DvCMu+8HPBMsy97hKmBp0vL/A252932BbcCX0xKVdIVfA/9y9wOAA0lcd3229zJmNgL4JjDd3ScDYeBs9Nnem9wBzGpW1tpn+URgv+B1GfC7PRSjpMYd7HqtnwImu/tU4CPguwDB97WzgUnBNr8Nvrd3G0qwWncosMzdV7h7PXAPcFqaY5IUcfcN7v5m8L6SxBewESSu8V+Dan8FTk9LgJJSZjYSOAn4U7BswPHAfUEVXeu9hJnlA0cDtwO4e727l6HP9t4qAuSYWQToA2xAn+29hru/AJQ2K27ts3wa8DdPeBUoMLNheyRQ6bSWrrW7P+nu0WDxVWBk8P404B53r3P3lcAyEt/buw0lWK0bAaxJWl4blMlexsyKgIOA14Ah7r4hWLURGJKuuCSlfgVcB8SD5UKgLOkXtz7fe4+xwBbgL8GQ0D+ZWS76bO913H0dcBOwmkRiVQ4sQp/tvV1rn2V9b9u7XQI8Ebzv9tdaCZb0amaWB9wPXO3uFcnrPPEMAz3HoIczs5OBze6+KN2xyB4RAQ4GfufuBwHbaTYcUJ/tvUNw781pJJLq4UAuuw4xkr2YPsu9g5l9n8StHXenO5aOUoLVunXAqKTlkUGZ7CXMLINEcnW3uz8QFG9qHFIQ/NycrvgkZY4ETjWzYhJDfY8ncY9OQTCsCPT53pusBda6+2vB8n0kEi59tvc+nwFWuvsWd28AHiDxeddne+/W2mdZ39v2QmZ2EXAycK7veHhvt7/WSrBa9wawXzAbUSaJm+keSXNMkiLBPTi3A0vd/ZdJqx4BLgzeXwg8vKdjk9Ry9++6+0h3LyLxOX7W3c8FngO+EFTTtd5LuPtGYI2ZjQ+KPg28jz7be6PVwOFm1if4nd54rfXZ3ru19ll+BLggmE3wcKA8aSih9EBmNovE8P5T3b06adUjwNlmlmVmY0lMbPJ6OmJsje1IBqU5M/sciXs3wsCf3f3G9EYkqWJmM4EXgXfYcV/O90jch3UvMBpYBZzl7s1vsJUeysyOBa5195PNbB8SPVoDgLeA89y9Lo3hSYqY2TQSE5pkAiuAi0n8QVGf7b2Mmf0YmE1i+NBbwKUk7sXQZ3svYGbzgGOBgcAm4EfAQ7TwWQ6S7NtIDBOtBi5294VpCFs+gVau9XeBLKAkqPaqu18e1P8+ifuyoiRu83iieZvppARLREREREQkRTREUEREREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERLoZMysyMzezSLpjkd7BzN4zs2PTHYeIyN5ACZaIiPR4ZjbXzKqCV72ZNSQtP5Hu+Lo7d5/k7gtS2aaZjTCzh82s1MzWmtnlqWxfRKS7MndPdwwiInsVM4u4e7QT2xcBK4GMzrTTW5nZHGBfdz+vhXWdujZ7Uk+KtSVm9hzwNvBtYCLwHHCmuz+X1sBERLqYerBERFLAzIrN7H/MbAmw3cwiZna4mf3HzMrM7O3kIVhmtsDM/q+ZvW5mFcFf+ge00vbFZrbUzCrNbIWZfbXZ+tPMbHHQznIzmxWU55vZ7Wa2wczWmdlPzCzcznGMM7NnzazEzLaa2d1mVpC0rtTMDg6Wh5vZlsbjMrNTg6FmZcHxTWh2fq41syVmVm5m880se/fP9O5r5dq4me2bVOcOM/tJ0vLJwTktC67h1A7u69igt+Z7wfkrNrNzk9afZGZvBddqTZAMNq5rHBr6ZTNbDTwblP/DzDYG5+0FM5vULO7fmtkTQW/dy2Y21Mx+ZWbbzOwDMzuog+foMx05xg6ehzzgWOBGd29w97eB+4BLUrUPEZHuSgmWiEjqnAOcBBQAQ4DHgJ8AA4BrgfvNbFBS/QtIfOEcBkSBW1ppdzNwMtAPuBi4OSnJORT4G4leggLgaKA42O6OoN19gYOAzwKXtnMMBvxfYDgwARgFzAFw9+XA/wB3mVkf4C/AX919gZntD8wDrgYGAY8D/zSzzKS2zwJmAWOBqcBFLQZgNjNIbFp7zWznGFrSdG3a6xUKEpI/A18FCoHfA4+YWVYH9zUUGAiMAC4E/mBm44N120lc94IgnivM7PRm2x9D4tyfECw/AewHDAbeBO5uVv8s4AfBPuuAV4J6A0kkNb/sYNwtMrPvtHU9Wtus2c/G95M7E4uISE+gBEtEJHVucfc17l4DnAc87u6Pu3vc3Z8CFgKfS6p/p7u/6+7bgR8CZ7XUw+Tuj7n7ck94HngSOCpY/WXgz+7+VLCfde7+gZkNCfZ1tbtvd/fNwM3A2W0dgLsvC9qqc/ctJL6cH5O0/o/AMuA1Eonh94NVs4HHgm0bgJuAHOBTzc7PencvBf4JTGslhpfcvaCN10ttHUMrkq9Ney4Dfu/ur7l7zN3/SiJxOXw39vfD4Bw+TyLRPgvA3Re4+zvBtVpCIik9ptm2c4JrVhNs82d3r3T3OhLJ7oFmlp9U/0F3X+TutcCDQK27/83dY8B8Esn1J+buP23rerSyTSXwMvBDM8sO/iBwJtCnM7GIiPQESrBERFJnTdL7McAXm/2lfyaJpKSl+quADBK9DjsxsxPN7NVgeF4ZicSpsd4oYHkLsYwJ2tuQtP/fk+gFaZWZDTGze4IhhRXAXS3E9EcSPRG3Bl/6IdHjtaqxgrvHg+MbkbTdxqT31UBeW7Gk2Jr2qzQZA3yr2bUbReIYO2JbkDQ3WtW4rZkdZmbPBUMry4HL2fX8NsVqZmEz+6klhn5WsKN3MnmbTUnva1pY3pPnOdm5JHor1wC/I/FvaW2aYhER2WOUYImIpE7yrEFrSPRQJf+1P9fdf5pUZ1TS+9FAA7A1ucFgWNr9JHqEhgQ9Bo+zY+jVGmBcC7GsIdHrMjBp//3cfVILdZP9b3AcU9y9H4meuKZhXsG9Nb8Cbgfm2I77xtaTSEwa61lwfOva2d8uzOwo2zEDYEuvo9pvZRfNZ3SqZufelKFJ79eQuHco+dr1cfd5HdxXfzPLTVoeTeL8APwdeAQY5e75wFx2HkbXPNYvAacBnwHygaKgvPk2XSa4n6zV69Hadu6+yt1PdvdB7n4YiaTw9T0Vt4hIuijBEhHpGncBp5jZCUEvRHYwAcLIpDrnmdnE4H6mG4D7gmFdyTKBLGALEDWzE0ncS9XoduBiM/u0mYUsMTX2Ae6+gcRQwl+YWb9g3Tgzaz4crbm+QBVQbmYjSNzblezXwEJ3v5TE0Le5Qfm9wElBHBnAt0gkeP9p70Q15+4vunteG68Xd7fNFiwGvhRcm1nsPEzvj8DlQW+TmVmuJSan6AtNE0vc0U77PzazzCAZPBn4R1DeFyh199rg/rkvtdNOXxLnsYREQvi/u3GMKeHu/9vW9WhtOzObYGZ9g/NwHol/t526H0xEpCdQgiUi0gXcfQ2JnofvkUiO1pBIVpJ/795JYiKKjUA28M0W2qkMyu8FtpH4Qv5I0vrXCSa+AMqB59nRk3QBiQTt/WDb+9h5iGJLfgwcHLT1GPBA4wozO43EJBVXBEX/DRxsZue6+4ckertuJdELdwpwirvXt7O/dLmKRIxlJIayPdS4wt0XAl8BbiNx3pax84Qco0jcX9SajcF260lMSHG5u38QrPsacIOZVQLXk7iubfkbiSGG60hcx1fbO7Bu5ARgBYlzcTkwK7ivT0Rkr6bnYImIpIGZLQDucvc/pTsW6bhgVsS3ganBZB7N1x9L4rqObL5ORER6h0i6AxAREekpgh65Ce1WFBGRXktDBEVEehkzm9vKhAVz299aeiIzG93GRBWj0x2fiMjeREMERUREREREUkQ9WCIiIiIiIinSre7BGjhwoBcVFaU7DBERERERkTYtWrRoq7sPal7erRKsoqIiFi5cmO4wRERERERE2mRmq1oq1xBBERERERGRFFGCJSIiIiIikiJKsERE2hCLa6ZVERER6bhudQ9WSxoaGli7di21tbXpDkV6mOzsbEaOHElGRka6Q5Eean1ZDWf86t98Y0Zfzjvp0+kOR0RERHqAbp9grV27lr59+1JUVISZpTsc6SHcnZKSEtauXcvYsWPTHY70UG+sLOEhv4Zhb5TCCVsgkpnukERERKSb6/ZDBGtrayksLFRyJbvFzCgsLFTPp3RKxeolDLNSAEo/fjXN0YiIiEhP0O0TLEDJlXwi+ncjnVVbvrnpffn7z6QxEhEREekpekSCJSKSDl5TvuP9pvfSGImIiIj0FEqwOsDM+Na3vtW0fNNNNzFnzpz0BZTk1Vdf5bDDDmPatGlMmDChKa4FCxbwn//85xO3u2rVKg4++GCmTZvGpEmTmDt3booiFuk5rC6RYC1jNNkVK9IcjYiIiPQE3X6Si+4gKyuLBx54gO9+97sMHDgwZe26O+5OKPTJ89wLL7yQe++9lwMPPJBYLMaHH34IJBKsvLw8PvWpT32idocNG8Yrr7xCVlYWVVVVTJ48mVNPPZXhw4d/4lhFeppwfQUAxdkTOLr2OYjHIBROc1QiIiLSnakHqwMikQiXXXYZN9988y7rtmzZwplnnsmMGTOYMWMGL7/8MgBz5szhpptuaqo3efJkiouLKS4uZvz48VxwwQVMnjyZNWvW8O1vf5vJkyczZcoU5s+fDyQSpGOPPZYvfOELHHDAAZx77rm47/o8ns2bNzNs2DAAwuEwEydOpLi4mLlz53LzzTczbdo0XnzxxTbjPP/88zniiCPYb7/9+OMf/whAZmYmWVlZANTV1RGPx1s8N7fccgsTJ05k6tSpnH322QCUlpZy+umnM3XqVA4//HCWLFnStK8LL7yQo446ijFjxvDAAw9w3XXXMWXKFGbNmkVDQwMAN9xwAzNmzGDy5Mlcdtlluxx3PB6nqKiIsrKyprL99tuPTZs2tXUZRXZbRn0FcYzSgslkUg/la9IdkoiIiHRzPaoH68f/fI/311ektM2Jw/vxo1MmtVvv61//OlOnTuW6667bqfyqq67immuuYebMmaxevZoTTjiBpUuXttnWxx9/zF//+lcOP/xw7r//fhYvXszbb7/N1q1bmTFjBkcffTQAb731Fu+99x7Dhw/nyCOP5OWXX2bmzJk7tXXNNdcwfvx4jj32WGbNmsWFF15IUVERl19+OXl5eVx77bUAfOlLX2o1ziVLlvDqq6+yfft2DjroIE466SSGDx/OmjVrOOmkk1i2bBk///nPW+y9+ulPf8rKlSvJyspqSnh+9KMfcdBBB/HQQw/x7LPPcsEFF7B48WIAli9fznPPPcf777/PEUccwf3338/PfvYzzjjjDB577DFOP/10rrzySq6//noAzj//fB599FFOOeWUpn2GQiFOO+00HnzwQS6++GJee+01xowZw5AhQ9q9jiK7IytaSW0oFyvcFzZC/daVZPYvSndYIiIi0o2pB6uD+vXrxwUXXMAtt9yyU/nTTz/NlVdeybRp0zj11FOpqKigqqqqzbbGjBnD4YcfDsBLL73EOeecQzgcZsiQIRxzzDG88cYbABx66KGMHDmSUCjEtGnTKC4u3qWt66+/noULF/LZz36Wv//978yaNavFfbYV52mnnUZOTg4DBw7kuOOO4/XXXwdg1KhRLFmyhGXLlvHXv/61xR6iqVOncu6553LXXXcRiUSajun8888H4Pjjj6ekpISKikRifOKJJ5KRkcGUKVOIxWJN8U6ZMqXp+J577jkOO+wwpkyZwrPPPst77+06ucDs2bObevvuueceZs+e3eY5F/kk+sSrqIv0JW9I4llq5Rt0H5aIiIi0rdM9WGY2CvgbMARw4A/u/mszmwN8BdgSVP2euz/emX11pKepK1199dUcfPDBXHzxxU1l8XicV/9/e/cdHld1J/7/fe4UjUZtNKPeLNnYxkUuuIIx2A51AyF02EAAb2BJQtiQbCGFhJAnv90ku8l3E9iwsBAIS8DgJIYNiekOmIBBbthG7pYlWb2X0dR7fn/MWEiy5KaRRpI/r+fRo1vP+YyurjSfOeee88EHOByOfsdardZ+3er6zseUlJR0UvUd7aIHke5/oVBo0OOmTJnCl7/8Ze68804yMzNpbm4+5pih4oRjhzMfuJ6Xl8fs2bN59913ue666/rte+WVV3jnnXf4v//7P370ox+xY8eOk3pNhmFgs9l66zIMg1AohM/n4ytf+QplZWUUFhby4IMPDjqX1bnnnsv+/ftpbGxk3bp1fPe73z1uvUKcjiTdjd+SjCe3GFMruhsOkhnvoIQQQggxpsWiBSsEfFNrPRNYCnxVKTUzuu/nWut50a9hJVdjgdvt5oYbbuCJJ57o3XbJJZfwy1/+snf9aFe44uJitmzZAsCWLVs4dOjQoGUuX76cNWvWEA6HaWxs5J133mHx4sUnHdMrr7zS+4zSvn37sFgsuFwuUlJS6OzsPGGcAC+99BI+n4/m5mY2bNjAokWLqK6upqenB4DW1lY2btzI9OnT+9VtmiZVVVWsXLmSH//4x7S3t9PV1cXy5ct59tlngcizZBkZGaSmpp7U6zmaTGVkZNDV1cXatWsHPU4pxdVXX803vvENZsyYgcfjOanyhTgVybqLgC2FwiwX9aQTbqmMd0hCCCGEGOOGnWBprWu11luiy51AOZA/3HLHqm9+85s0NTX1rv/iF7+grKyMOXPmMHPmzN7hzK+99lpaWlqYNWsWDz/8MNOmTRu0vKuvvpo5c+Ywd+5cVq1axU9+8hNycnJOOp5nnnmG6dOnM2/ePG699VaeffZZLBYLV155JX/4wx96B7kYKk6IdPNbuXIlS5cu5YEHHiAvL4/y8nKWLFnC3LlzufDCC/nHf/xHSktLAfjSl75EWVkZ4XCYW265hdLSUubPn8+9996Ly+XiwQcfZPPmzcyZM4f777+fp59++qRfj8vl4s4772T27NlceumlLFq0qHffo48+2i/uG2+8kf/93/+V7oFiRJimxomPoCWJ7BQHNToDa2d1vMMSQgghxBinBhuZ7rQLU6oYeAeYDXwDuB3oAMqItHK1DnLOXcBdAEVFRQsOHz7cb395eTkzZsyIWYyivwcffLDfYBgTjfz+iNPlC4ap+mEpKutszrrn97z2wys5x9hHxnd2xzs0IYQQQowBSqnNWuuFA7fHbJALpVQy8Dvg61rrDuBXwBRgHlAL/Mdg52mtH9NaL9RaL8zMlKcbhBBjQyBskkAArJHnBrsdubiCDZG5sIQQQgghhhCTYdqVUjYiydWzWuvfA2it6/vsfxz4YyzqErH14IMPxjsEIcakYMjErkL4LXYAAsn5WLvD0FkHaRO2F7QQQgghhmnYLVgqMgzcE0C51vpnfbbn9jnsamDncOsSQojREgib2AmCJTqap6sIALNVBroQQgghxNBi0UVwGXArsEoptS369TfAT5RSO5RSHwMrgftiUJcQQoyKQMjETqi3i6AjYxIAnfUH4hmWEEIIIca4YXcR1FpvBNQgu8b9sOxCiDNXJMEKoqIJ1tHJhrsbK0mLZ2BCCCGEGNNiNsiFEEJMJP5gCLsK97ZgZXvctOpkgjIXlhBCCCGOQxKsk7Ru3TqUUuzePfQQzRUVFcyePTtmde7Zs4cVK1Ywb948ZsyYwV133QVEJgn+059Ov4HQ5/OxePFi5s6dy6xZs/j+978fq5CFmDCCgcik10dbsPJcidRqD6rjSDzDEkIIIcQYJwnWSXruuec4//zzee655wbdHwqFhl1HONx/+Od7772X++67j23btlFeXs7XvvY1YPgJVkJCAm+99Rbbt29n27ZtrF+/ng8++GBYsQsx0YSiCZZhcwCQ7rRRhwd7d208wxJCCCHEGCcJ1kno6upi48aNPPHEEzz//PO92zds2MDy5cv53Oc+x8yZM4FIovWFL3yBGTNmcN111+H1egF48803mT9/PqWlpaxevRq/3w9AcXEx//Iv/8I555zDiy++2K/e2tpaCgoKetdLS0sJBAJ873vfY82aNcybN481a9bQ3d3N6tWrWbx4MfPnz+ell14C4KmnnuKqq65ixYoVTJ06lR/84AcAKKVITk4GIBgMEgwGiQwG2d+LL77I7NmzmTt3LhdccAEQaf264447KC0tZf78+bz99tu9dX3+85/n4osvpri4mIcffpif/exnzJ8/n6VLl9LS0gLA448/zqJFi5g7dy7XXntt78+nr6VLl7Jr167e9RUrVlBWVnbS10uIWAj5jyZYkRYspRSd9myS/fXHO00IIYQQZ7iYzIM1av58P9TtiG2ZOaVw+b8d95CXXnqJyy67jGnTpuHxeNi8eTMLFiwAYMuWLezcuZOSkhIqKirYs2cPTzzxBMuWLWP16tX813/9F/fccw+33347b775JtOmTeOLX/wiv/rVr/j6178OgMfjYcuWLcfUe99997Fq1SrOO+88LrnkEu644w5cLhcPPfQQZWVlPPzwwwB8+9vfZtWqVTz55JO0tbWxePFiLrroIgA+/PBDdu7cidPpZNGiRXz2s59l4cKFhMNhFixYwP79+/nqV7/KkiVLjqn/oYce4tVXXyU/P5+2tjYAHnnkEZRS7Nixg927d3PJJZewd+9eAHbu3MnWrVvx+XycddZZ/PjHP2br1q3cd999/OY3v+HrX/8611xzDXfeeScA3/3ud3niiSd6W+aOuvHGG3nhhRf4wQ9+QG1tLbW1tSxceMwk2UKMqHCwf4IF4HXmktzRAYFusCfFKzQhhBBCjGHSgnUSnnvuOW666SYAbrrppn7dBBcvXkxJSUnvemFhIcuWLQPglltuYePGjezZs4eSkhKmTZsGwG233cY777zTe86NN944aL133HEH5eXlXH/99WzYsIGlS5f2tnz19dprr/Fv//ZvzJs3jxUrVuDz+aisjDyIf/HFF+PxeEhMTOSaa65h48aNAFgsFrZt20Z1dXVvEjbQsmXLuP3223n88cd7uy9u3LiRW265BYCzzz6bSZMm9SZYK1euJCUlhczMTNLS0rjyyiuBSMtbRUUFEEnCli9fTmlpKc8++2y/lqqjbrjhBtauXQvACy+8wHXXXTfoz0eIkRQO9ABgiXYRBDBT8iIL7fIclhBCCCEGN75asE7Q0jQSWlpaeOutt9ixYwdKKcLhMEopfvrTnwKQlNT/U+yBXe0G63o30MAy+srLy2P16tWsXr2a2bNnD5oIaa353e9+x/Tp0/tt37Rp0wnjcblcrFy5kvXr1x8zQMejjz7Kpk2beOWVV1iwYAGbN28+7utISPj0k37DMHrXDcPofUbt9ttvZ926dcydO5ennnqKDRs2HFNOfn4+Ho+Hjz/+mDVr1vDoo48et14hRkI4GPkww+iTYFlcBXAEwm1VWDKnxSs0IYQQQoxh0oJ1AmvXruXWW2/l8OHDVFRUUFVVRUlJCe++++6gx1dWVvL+++8D8Nvf/pbzzz+f6dOnU1FRwf79+wF45plnuPDCC09Y9/r16wkGgwDU1dXR3NxMfn4+KSkpdHZ29h536aWX8stf/hKtNQBbt27t3ff666/T0tJCT08P69atY9myZTQ2NvZ2+evp6eH111/n7LPPPqb+AwcOsGTJEh566CEyMzOpqqpi+fLlPPvsswDs3buXysrKYxK74+ns7CQ3N5dgMNhbzmBuvPFGfvKTn9De3s6cOXNOunwhYuVoF8G+LViJ0cmGOxoq4hGSEEIIIcYBSbBO4LnnnuPqq6/ut+3aa68dcjTB6dOn88gjjzBjxgxaW1v58pe/jMPh4Ne//jXXX389paWlGIbB3XfffcK6X3vttd5BJi699FJ++tOfkpOTw8qVK/nkk096B7l44IEHCAaDzJkzh1mzZvHAAw/0lrF48WKuvfZa5syZw7XXXsvChQupra1l5cqVzJkzh0WLFnHxxRdzxRVXAPC9732Pl19+GYB/+qd/orS0lNmzZ3Peeecxd+5cvvKVr2CaJqWlpdx444089dRT/VquTuSHP/whS5YsYdmyZf2Supdffpnvfe97vevXXXcdzz//PDfccMNJly1ELJnRFiyb/dMEKy27CFMrehplLiwhhBBCDE4dbfUYCxYuXKgHjhZXXl7OjBkz4hTR+PbUU0/1GwzjTCS/P+J0/fnlNVy+5S46b1pHytkrAdhT14nrV7PxF6+i6I5fxzlCIYQQQsSTUmqz1vqYkdikBUsIIQahQ5EugraET1uwcl0OarUHo6MmXmEJIYQQYoyTBGsCu/3228/o1ishhuNoF0Gr3dm7LdVho0FlkOCVyYZjrarFy+66jniHIYQQQgzbuEiwxlI3RjF+yO+NGJZwJMGy2Po/Y9iVkE1KoB7k9ytmtNZc9+hfue4/X6etsyve4QghhBDDMuYTLIfDQXNzs7xZFqdEa01zczMOh+PEBwsxmGgLlrL2T7D8SXk4tA96WuMR1YS0q6aD+g4/a23fJ+k/p0FnXbxDEkIIIU7bmJ8Hq6CggOrqahobG+MdihhnHA4HBQUF8Q5DjFM62oLFgARLp+ZDK9BxBJzu0Q9sAtrX0EkWrZxtVEEI2PMnWLg63mEJIYQQp2XMJ1g2m42SkpJ4hyGEONOEogmWpX+CZfcUwmHwNVfiyCmNQ2ATT2VzD/Mt+z/dUPGeJFhCCCHGrRHvIqiUukwptUcptV8pdf9I1yeEELGgwoHIwoAWrJTMYgA66itGN6AJrLLFy+KEakwM3tIL0dUfxjskIYQQ4rSNaIKllLIAjwCXAzOBm5VSM0eyTiGEiIkhugi6swsIagu+JplsOFYau/wU2dvxJXj4OFwEbVUQ9MU7LCGEEOK0jHQL1mJgv9b6oNY6ADwPXDXCdQohxLCpcAATBUb/ntR57mTqtBuzrSpOkU08bd4AWbRiJmVx0MxFoaH1ULzDEkIIIU7LSCdY+UDfdyHV0W29lFJ3KaXKlFJlMpCFEGKsMMIBgthAqX7bs1MSqMWDtUsmG46VVm8Aj27FkprLIZ0b2di8//gnCSGEEGNU3Idp11o/prVeqLVemJmZGe9whBACAMP0E1K2Y7ZbLQat1kwSe2Qo8Vhp8wZxhVtIcOdTbUiCJYQQYnwb6QTrCFDYZ70guk0IIcY0IxwgqOyD7vM6ckgLNoJpjnJUE08obOL1+UkKtWKk5JCenkG7xS0JlhBCiHFrpBOsj4CpSqkSpZQduAl4eYTrFEKIYTPM4KAtWADB5HyshKC7YZSjmnjae4J46Ig8d5WcxSSPk0qVB80H4h2aEEIIcVpGNMHSWoeAe4BXgXLgBa31rpGsUwghYsFiBggbgydYhisygbXZVj2aIU1Ird4gbtUZWXFmMMmTxJ5gFlpasIQQQoxTI/4Mltb6T1rraVrrKVrrH410fUIIEQsWHSA0RBdBhyfS87lT5sIatjZvgPTeBMtNkdvJ3lA2qrsRetriGpsQQghxOuI+yIUQQoxFVjOAaQyeYKXmFAPQ2VgxegFNUG3eIC66IiuJ6RS5nRzW2dGdh+MXmBBCCHGaJMESQohBWHWQ8BAJVlZWLt06gWCTJADD1eoN4FJHEyw3RR4nVTorurMibnEJIYQQp0sSLCGEGIRVD92ClZceSQJUuyRYw9XmDZJ+tAXL6aYgPVESLCGEEOOaJFhCCDEIqw5iWoboIuiwUauycHTJIBfD1dYTwG10oa2JYEvEabeSkJxOtyVNEiwhhBDjkiRYQggxCJsOoodowQJod+Th8teA1qMY1cTT6g2SafWiEtN7txW6E6kzsiXBEkIIMS5JgiWEEAOEwiZ2gughWrAAAsmFOHQPeFtGMbKJp80bIMPSDU5377Yit5MKM0sSLCGEEOOSJFhCCDFAIGxiVyG01TH0Qa5JAGhJAoalzRvErbqgbwtWupM9AQ+6rRLMcByjE0IIIU6dJFhCCDFAIGSScIIWLEf2ZAA6amVC3OFo9QZJo3+CVeR2ctjMQpkh6DgSx+iEEEKIUycJlhBCDBAIRboIYkkY8hhX3lkAdNYdGK2wJqR2b4AUs7NfF8ECdyKVMpKgEEKIcUoSLCGEGMAfMrETQlmHbsHKy8qiRScTbD40ipFNPK3eAE6zAxL7P4MlQ7ULIYQYryTBEkKIAfzBMAkEwTp0C9bR+ZqMtspRjGxi8QXDWINdWHS4XwtWbloijcpDWFkkwRJCCDHuSIIlhBADBIIBDKUxjpNgOWwWGq05OL0yF9bpau8Jkqaikwz3eQbLYihy0pNpscpQ7UIIIcYfSbCEEGKAoK87smB3Hve4rsQ8XIF6MM1RiGriaekOkM7RBMvdb19hupNqJMESQggx/kiCJYQQAwS8nQAYCSnHPS6YUoSNIHTWjkZYE05Ld4B0FflZ9+0iCFDodnIglCEJlhBCiHFHEiwhhBgg2BN5029LTDrucRZ3MQABGejitLR0B3BxbBdBgEJ3IvsCGeBtBl9HHKITQgghTs+wEiyl1E+VUruVUh8rpf6glHJFtxcrpXqUUtuiX4/GJFohhBgFQd/RBOv4LVhJ2ZGh2tuO7B3xmCaiVm+ADBVNnpIy++2LjCQY3dZ2eJQjE0IIIU7fcFuwXgdma63nAHuBb/XZd0BrPS/6dfcw6xFCiFET6m3BSj3ucZ6CKZha4a0/OBphTTjNXQE8qh1tWMHh6revMN0pc2EJIYQYl4aVYGmtX9Nah6KrHwAFww9JCCHiK+yLdFuzn6AFqyDDRQ0ezGZJsE5HqzdArrUL5cwAo/+/oyK3JFhCCCHGp1g+g7Ua+HOf9RKl1Fal1F+UUstjWI8QQowoMxAZRdCRfPwEKyslgSqdja1T5sI6HS3dAXItnZCcecw+l9OGmeCix5IiCZYQQohxxXqiA5RSbwA5g+z6jtb6pegx3wFCwLPRfbVAkda6WSm1AFinlJqltT7mSWWl1F3AXQBFRUWn9yqEECKGtD/SgmVzHD/BMgxFa0IuM3u2jEZYE05LdwCP6oCk/GP2KaUodDup786hWBIsIYQQ48gJEyyt9UXH26+Uuh24AviM1lpHz/ED/ujyZqXUAWAaUDZI+Y8BjwEsXLhQn2L8QggRc9ofacFS9uQTHutNKiSt7Q0IdIP9+KMOiv5augO4aYek+YPuL3InUtmZKQmWEEKIcWW4owheBvwz8DmttbfP9kyllCW6PBmYCshDCkKIcUEFj040fOKEyXQVA6AlCThlde09pIZbISlj0P2F6U72BDzotkoww6McnRBCCHF6hvsM1sNACvD6gOHYLwA+VkptA9YCd2utW4ZZlxBCjAoj6CWMAdaEEx5rz5wCQHfdgZEOa0LxBkKonhbs2g9pg4+PVORxciichQoHZDJnIYQQ48YJuwgej9b6rCG2/w743XDKFkKIeDGCXnpUIslKnfDYtNzIn8GOmr0kzx3pyCaOmjYfeSr6uVvqsc9gQaQF67W+IwkOkYgJIYQQY0ksRxEUQogJQQW78avEkzo2JyePDu3E3yi9oE9FbXsPeaopsjJE4lQoQ7ULIYQYhyTBEkKIAWyhToIW50kdW+hJolJnYbRVjGxQE0xtm4881RxZSSsc9JiC9ERqtAcTA1oPj2J0QgghxOmTBEsIIQZICrfTY08/qWOTE6zUGTkkdleNcFQTS017D/mqCW1JGHKQC4fNgic1iTZblrRgCSGEGDckwRJCiD601qSa7QROMsEC6EzMJ91fC6Y5gpFNLLVtPqbaGlHpk+A4z7oVpjs5onKg9dAoRieEEEKcPkmwhBCij55gmHQ6CSe6T/ocf+okbARlpLtTUNHczVSjFjKmHfe4IreTQyGPdBEUQggxbkiCJYQQfbR7/aTTiU70nPQ5FncJAKFmGejiZFXUt5EbrjlhglXgjsyFRXdDZDJnIYQQYoyTBEsIIfpob2nCqkyM5MGfCxqMMzsyF1ZHzb6RCmtCaekOkNxThYXwCROswvREKs2jIwlKK5YQQoixTxIsIYToo62pDgCHK/ukz/HkTyGkDbrr9o9UWBPK7roOSlX0maqc0uMeW9R3qPY2SbCEEEKMfZJgCSFEH10tkQQrJf3kE6zCzDRqtIewdBE8Kduq2phrHEDbnJA147jHFrqdVMlcWEIIIcYRSbCEEKKPQGs1AGlZg8/NNJicVAdVZGPvrBypsCaUbZVtnGs/gMqbD4bluMdmpzrosqThN5ySYAkhhBgXJMESQog+jI5IkmTzFJ/0ORZD0WzPI6XnyAhFNXGEwiblBw8xzTwAJRec8HiLochPd9JozZEESwghxLggCZYQQvRh66iiQ6VCQsopnedNKiQl3Ab+zpEJbILYWtXGOYEtGGg466KTOqcgPZEqsmWQCyGEEOOCJFhCCNFHck8NrQm5p3yedk2KLEgry3H9cXsNV1vfx0zJhbz5J3VOkdvJ/oA78rPVemQDFEIIIYZJEiwhhIjyBcNkhurwJxWc8rn2zMhQ7d76A7EOa8Lo9AV5f+t2lhvbMebedMLnr44qdDvZF8yAUA90NYxwlEIIIcTwSIIlhBBR1Q3NTFJ1mJ7jz800mOScswDorJW5sIby7KZKvhj6HYYyYNGXTvq8wvQ+Q7VLC6EQQogxThIsIYSIOrJ3KxalcRbNO+VzMzIy6dIOAi1VsQ9sAmjs9PP+hj/xt9a3UIv+DtJOvpWwqO9Q7TIXlhBCiDFuWAmWUupBpdQRpdS26Nff9Nn3LaXUfqXUHqXUpcMPVQghRlZHxVYAcqcvOuVzc1xOarUH2qtjHda4FzY1D655l++bjxBOzoXPPHBK5xe6E6nWmZEVacESQggxxlljUMbPtdb/3neDUmomcBMwC8gD3lBKTdNah2NQnxBCjAhHwza6VRJJnpJTPjcrJYG/4mF6d80IRDZ+hU3ND194lzsr/5kiawvW69ed8giNaYk2bAlOOmwZpEqCJYQQYowbqS6CVwHPa639WutDwH5g8QjVJYQQwxYImUzxbqc6ZR4Yp/6n0WYxaLFkkeSrj31w41R1q5cHf/U0qz9ZzWxLJdYbn4ZJ551yOUopCtITaTCyoU0mcxZCCDG2xSLBukcp9bFS6kmlVHp0Wz7Q90GE6ui2Yyil7lJKlSmlyhobG2MQjhBCnLqPy3czWdWgJp172mV0O3JICbVAyB/DyMYffyjMi29v4r3/90UebPg6GU4D69+th+mXn3aZ+a5EqnSGJFhCCCHGvBN2EVRKvQHkDLLrO8CvgB8COvr9P4DVpxKA1vox4DGAhQsXygQnQoi46ChbA0D+0mtPu4xAUi70AB1HwD05RpGNH13+EK++9Rbqo8e5Mvw2VmXinbualMsfBEfqsMouSE9kX4WblaH3IBwCSyx6uI9fWms6/SH8QRONxu20Y7XIuFVCCDEWnPA/lNb6opMpSCn1OPDH6OoRoLDP7oLoNiGEGHO01uRX/R8HrWcxOX/m6ReUVghNRAa6OEMSrLCp2bzjE6r/+jxFda9xrdpNAButZ32erM9+hxT3qT/PNpj89EQOBd1gC0FnLbgKT3zSBKC15khbD9sP1VO/fyvWhh0kdR7E6asnQzfjoQMLJhVYabek05NajKV4GaUXXkOy+9QnzBZCCDF8w/oIUCmVq7Wuja5eDeyMLr8M/FYp9TMig1xMBT4cTl1CCDFS9uzcwtnmAbZM+8dhlWN3F8IBCLRUYY9NXjEmaa3Zt28PVe89R0blehbr3SwG6hwlHCn9F/JX3U220x3TOgvSnbx7dCTB9qoJm2D5gmG2V7ZyYN9OAgc24mkqY2p4P5eqI1iVCUBA2el0ZONPzCbgKCGkrJgBH+neeqa1v03K9lcIbnuA3ZmfYdLnvk1i0fw4vyohhDizDLePxU+UUvOIdBGsAP4eQGu9Syn1AvAJEAK+KiMICiHGqrr3/pdpWnHWqtuGVU5SZhEA3Q0V2GMR2BhimppPyndQ/8EL5Bx5lVnmXqYBlbbJ7D7rXkouuJmc3GG0/p1AviuRIzojstJWeVqDZYxFobDJjuo2du/4iJ5975DdupmFqpwlqg2ALksabRlzaCm4GveUBVjz5mB3FeMZYiAWHQ6x5+P3OfKXJ1nYuJ6EJ1fSOO0GMj//bxDjpDeWfMEwNa1emhuOEOioJ9DdQdjfhc30o5UVm91KkjMZpzuX7Nwi0tIzQKl4hy2EEIMaVoKltb71OPt+BPxoOOULIcRIC4bCTKn7E3ud8zg7q2hYZWW5XTTpVMITZLLhsKn5ePsWmj56kfza15itDzAbqLBNZdvUf6Do/JspKpwxKrEUpPdNsMb3z7ey2ct7O/fRset1surfZSkfM1+1ANCRkIU3dznd0y8kaepykjOnk3wKiYSyWJk+fznT5y+nbPch9r/4ANfuWUvXz98k8fpHsUy7eKRe1gmFwiaHm7uoPrSH9sqdhOvLSe48QLq/hkyziXzVwmQVOqmyekig1lpIV9pUEvJmkTVtMelTFo2pJDIYNunsCdLZ2UFXVzs93Z1ofxcq6EWHg5gmgMZms5Bgs2FLTMXuTCY5JR2Xy4XVnihJpBDj1Jn9lLAQ4oy37YM3WUQdu2bdO+yyslMd1GgP2e3jNwEIhU0+3r6Z5g/XUFT3OvOpAOBQwtnsnPJNipbfTHHu1FGPy51kR9kcdNo8pLQdHvX6hyMYNik71MyeLRsw9r9OqW8zN6gDWJSmx5pMa875dM2+lOSzP0Oqq4jUGL2pXnh2CdP/6df88oV1XLH/+0z77XV4563G+Tc/ArszJnUMRWtNVbOXfXu207F/E/a6reR7P2EalUxRn46y2Wa4aXUW4E+ez+HUPKzphVhTc3AkubA6U8GSgGmG8ft9dHV14Wuro6flCKHWapI6D5DX9AHZzX+GHZHyWmw5dLpn4Zy0AM9ZizHy50NSRkxfm2lqmrp6aK6roa2xCm/zEQJtNejOeqzeehz+JlKCzWToVjJVG24VPK16AljpUKl0WdLw2dIJOTyoJA/WlCwcrkxS3TmkenKxJGdCat6wB5IRQsSOJFhCiDNaV9lz+LExdcXfDrusnDQH72kPBd21Jz54DAmGTbZt30zzhy9SXPcq50STqgOOWXwy9X5KLriJksz4PlQWmQvLSaM/i5RxMFR7tz/EW58coeKjV8mseZ0V+iPOVa2YGDSlz6Zj2n2kz7mcxLxzSBzBERFTHDa+8cXr+cOH5/D+H7/LbduexLf/DRzX/BImr4hZPR2+ILv27Kdh93twZAuZHTuZqffzGdUNgI8E6lNmcCTzehLzZ5FRMhdH7gxcTjeuYdTrD4XZfqiS6l0f4KvcTErrLqbW7iSz/s3eJ7/bbdl0umdi5szFljODFHcezvQcDKcLDCsYVoKmic/bib+7i47OdjpaG/G11hHqqEd3NWB4G0nwNZEcbMZltpBBO1nRZ+L66lLJdNo89KRm0O2YQrszE5werI4UbInJkJAMNifKYscwQGkIhE0CwQAhXzfhng5CPZ0Eejowezqw+pqx+1tI9LeR4q0hvaWDVOU9pt4Adhpu20hByfRh/DSFELEiCZYQ4ozV4e2htPVN9qcvY1Zy+olPOIHkBCuNRiZJPZ/EILqRFQqbbN6+leZNL1Bc/yqLOATAQcdsyqd/m+LlNzMlY3hdJmMt35VIdV0mk8doC2GXP8TbOyup/vBl8mpfZ4XawpXKS0A5aMm/AN/8z+OYeTlZcejGdvXiKeyd9BjffPpp7un4BSW/uYrArBuwr7ofPFNOqSytNdV1DVTs2EjXoTKSm7YzObCHc1UTAGEM6h2Tacq8jO6SxWSdfR6O7JlMGoFEMsFqYe7UEuZOLQFuRmtNZYuXl/cdpmHfR6jabWR37WZG7W6m1L8N2wcvxxb9SgEGtneFtEG7kUaXxYXXmUlD4tk0pORgS8sl0Z1PalYhaZkFWFJzSLYlkhzzVxmhtaajJ0R5SzvNjTW0N9XR3VJPuL2aG4/8mOo3H6XgSz8fodqFEKdCEiwhxBlr64Z1XKja6TjnppiV6U3MIcHnBV87ONJiVm6s7D1czb63nyH/8DqW6N0AVDhmsHv6/RRf8LdM9kyKc4RDK0hP5EBlOhe0fwCmCUMM9DCafMEwb3xSw55N6ymqfoVL1SZSlRevLZXu4ssJL7wG+5RV5Ixwl7yTMS07hYf+4W7+c/15pH/0c1bv/APmrrV0Fa0kec5VGJPOBXcJWGy95+iAl4bqA9Qe2EF3TTmWxk/I7ipnkq6hUEWmrmy0ZNOSOZ+DRYvImXEezknnkGdPistrVEoxyZPEJM9MWDoTuA3TjAx1/0FdPT0NB/C1NYC3CWuwAzMcwqZM7IZC2RNRCUk4nCkkpXpIycgjLTOfpLQsPIaBJy6vqP9rS3PaSHNmQEEGMKd335Z/fZOzjqxDh36Msk60IXaEGH8kwRJCnLl2rKWLJErO/XzMigwl54GPyFxYYyTBamz3snnDH3DsXMPSwF+ZpoLU2IrYM/2bFF94K8Vx7v53svLTEzkQdAMB6KqH1PjM86S15uPqdv7y3ruk7V7DJfo9rlAt+K1OOksuw1x6C87JF+Icg5MhJyVY+fZV51C++BEeeuNDCvY+zZWH/0pq5ZtApPXJZzgJYcFh9pBAgGwgO3p+k0qnNnkmO3I+T/rUJeTPWkZmcgaZcXtFJ2YYikK3k0J3CcwcH7/rp8pb+kUyyr7Gvvd+z9QLY/eBkRDi9Iy9v/5CCDEKahqbWeDdyOGcS5llS4xZucp1dLLhI5A9K2blniqtNWUf76R+w3+zoOUVLlMtdKpkDhVeTd6KL5E3ZfG4G6GsIN3Jh0fnwmqrHPUEq6HTx8ubK2jY9CKf6f4j9xq7CWOhreBCzKW3kDD9chLGQEvVyZiRm8qPbr2Ixs7lvLu3gbW7y0ho2km6r4pE04tDhVCOVAxnOomeAtyTZlJ41lwyXBnHdKET8XfORTdQ/9H3CWx6AiTBEiLuJMESQpyRdr69hkuUj4zzhpxt4rQkZhTBfgi2VGI78eEx1+4N8Nc3fk/Sx09xXnAThtIcdC2lZslt5C2+hhnWhDhEFRv5rkSq+86FVbRkxOvUWvPBwRZeefcD8g6s4XrjbTJVB11J+fiWfA/HotvwxHiUutGUmZLANQsKYUEhcHW8wxGnyelwsLngGpYf+R+qyjdROGPk7w0hxNAkwToOb1c7WmuSUlzxDkUIEWMpe9fRbHjILl0V03LTsgoIaYOuxgqGP2zGySs/VMn+1x5nVs1aLlc1dKhUDky9g+JL7+GszMmjGMnIKew3F1bFiNbV6Quybkslu9/9A6u6/shDlm1gUXiLL4Jlf0/ylFVj4hkwIY6aefU/0/7L5+h45fswY328wxHijCYJ1nHsfPXXzP/4IfbYp9GcuQRH8SIKZ51LZt7kcde1RgjxqQOHK1kQLGNfyRfwGJaYlp3rSqYON/bmkR/pzh8K8967bxHe9DjLejYwQ/k57JxN1ZJ/pnDZzaTaHCMew2jKSE4gbHHSbs8mrXHviNSxt76T372zhcQdv+U69Qa3qiZ6nBmYC7+BddEdJLsKR6ReIYbLk5HN24VfZGX1rzj44Z+YvPhv4h2SEGcsSbCOI2P6Uj5q+gLuxg9ZfOQ3WGuegr9CKylU26fQnVyM8pTgzJlKUs5UXNmTcKVnYljGx6eaWmvCYZNgMEAg4CcU9BMK+AkFAwQDfsKhAOGgn3DQTygYxAxFljFDEA6gwkG0NiNfponWGkwTEzMywpfWmDqyrNEo0wQ0ChM0ke9olD52LpH+Isms7pfUfrqsGWR7n00aherdHi2LT1cHO1/1LbdvverYek811VZDnHEqOftQxw4n7T/6M9F6kH366DHH7tSDHTjIvoHl9l3Xgywde9yxRw3cpfv9XgwiWpilbhtTVJisZbHtHgiRbmw12kNxR3XMyz6qqqGF7a8+RdGB51jFXnzYOZz/WfIuuodJkxeOWL3xZhiK/PREqsxJpDWUx6zcYNjk1Z21lP3ljyxo/D3fND7CboTpzD0Pzv8PEs/+bL+R9YQYq8654dsc/tk6nOu/Tqh0OdbElHiHFHdmOIyvpwt/jxe/r5ugr5uAr4egv5uQ30vY30M44MUM9BAOBtBmCMwwOhyKvN/R0e9mGMwQ6uiyDqPNPv9pjn37EVk/zj9mhULT971I9EtFS1KDr/e++1Dq0wp6jx1iPwo1oLyj6/roOUfL71OmOs5+3TdGov93+60fu//T1znYT2tonSklTJ1/IYXu8fGcqyRYxzF59lImz14KgK+7gwPlH9K8rwxbw8e4OvdR2PIGrpYu2PfpOQFtoU2l0WlNx2t1EbAmY1oT0VYn2BLRNiemJQGlDDCMyG1iGCjDggJMrSEcQpthMIMQDqHMINoMo8wgmGGUjnw3wgGUjuw3zCCGGcLQke8WHcSiQ9GvIFYiyzZCWHQYG5FlmwpjBWL3iL8Q48Mh6xRKzloU83KzUx1s1R6mdx+KablhU/PB5jI63n2cJe2vcIXqos5WwME536X4M19iunM0OyTGz7TsZHZW5jO76RUIh2AYI/XVtfv4/V934f3oWT4XWs8VxhH8CSmYc78E595JSsbUGEYuxMhLS01l1wU/4bx3bmXX/6xm1j0vjPseN1prOrs66Wiuo6ulHl97Pf6OJsJdTeiedpS/AyPQiTXUiS3URUKom0SzG6fuxqm9JCk/TiBWb8uD2oKJQRhjwAe0p/i6IJpeHU2rdL91BqwP3G+oQT9GnLB+HboUb+ZcSbAmGkdSKtMXXgQLL+rdprWmubmB+opy/A37CbTVYHY2YvQ0YfM1kxxqJTXQgN3sIQE/idpPogqcct0hbRDCQhhL5Ls6umwlpGyRdWUjrKyYykpY2fBbHGhlxTRsaMOKadjRhhVtsaENe2T2eosdLDaUxQYWO8pqR1lskRnmrXYMqw1lTcCw2rBYE7DYbBjWhMgcGxYryrBhWKwow0AphWFYMKKJo8VQKMOCYRgYfRJIlEHk0xMj+slKZF2rvp9ofPpHQ+lj2ioGNIUMtr3/tmPaPaLHafTA5pfjltXvkyr6lDGYU9s8eKtRzMoevNWpX7udGtAa17fR7uhnYf229V/o2yrX+8HXgLL7UoOUP9inf4OV8em2gXXrYz4MG7ysyPfilKwReeNhtxo0JZaQ5v8r+DrAkTqs8hrautn0+gt4yp/h3PAWTKU46FmBueLL5JRePO7fPJ2q0vw03i/P5SZ7ABp2Qe7cUzo/FDb5y54GPnx3PVOrf8cdxgckqgDtGXMwz/8WCbOvhXEyEqAQgzlv1ed4de/fc2ndf7Prqa8x67ZfjMnnBbVp0tlST0tdBZ0NFfibqzHbj2DpqsXqa8YRbCM53I5Lt5Oq/Az1l9RLAl6ceI0kfJZkArZkWm05NNpSMO2pmLYksCWCLRHDnohhS8SSkIhhd2K1O7EmJGJzJGFzOLHbE7BYI+9trFY7ymLFarVhWCPrhmFgi9PPUmuNjr5tMbUmDNF1HX1/Evmu0dFjdbSXUeQ8+q4T+fkffR+k0XD03L5lEOmZFHkb0bdcUEqD/jTpi1YCA9f7dDVRvcdE2+4iBZ3U67/YnkJ6ZlZMfpajQRKsYVBK4cnIxpORDaw44fFaa4LhMOGAD22ahLVJOGximibaDGOaJlZDYdjsWK02rNbod4shF0qIcaTbPRvqgLodULzslM8PhU02b9tM08anmdvyZ65UTbQabg7M/ArFl3yFaekFsQ96nCgtcPGMOTOycvAvJ51gVbd6een9Xfg3P8dng6/yGaMav91JYMZNcN7fkZY3b+SCFmKUrfy7f+XtX9ax8vAz7H64lsl3PIY9ZfSmSjZDIVoba2itq6Cr8TCBlip0ew3W7lqcvnrSgo14zGZSVbBf4hTSBs3KRaclHZ/dTUNCCbUONzopAyMpA1tqJo60bJLSs0hx55CS5sZpscWsdWosU0r1yUXOrA/WxiN53z6KlFLYrFZs1uR4hyKEGEGOSedAHfQcLiPxJBMsrTXlFdUc3PC/FFSuY4nejYmiIm0xDef9f2QtuoZ0eQ6Ic4pctFozaHRMInPfa7Ds3iGPbfMGeG17BTUfrmNm03ruNLZhV2HaPKWElv0TCaXXkZAgf4/FxGO3WVj2tV/zpye+zcW1j9P9H/PYNfV2zr7sThI9RcMqO+jvobmukrb6Srqbqgi2VkNHDbbuWpL8DbiCjXh0Cx4Vpm9KF9BWGg0P7dZMjiTPpMKZi0rLw5ZeQFJmEWnZxWRkF5Jtt/VObC3EeKUG6z4ULwsXLtRlZWXxDkMIIYblo4oWXE+ejycrF/c9bw55nNaa8gMVVL6/Ftfh9cwPbidBBamxFdE5/XqKV91BgltGrRvo758po/TQk9xjPgt3bYC8+b37mrr8vLfzADVb/kRO3QYuVh+RrHx02TLQs68hZfEtp9ytUIjx7MP3N2B96wecE9wCwEHbWXSkz8J0T8WemgmJ6ZHHAjAJBEMEfZ1obztmTythbztGTzOJvgaSg42kh1tIp+OYOnq0nUYjgw5bFj2J2YSScjDS8rG7C0jOnIQrdxKejDwMS2xHbRUi3pRSm7XWx4wuNawESym1BpgeXXUBbVrreUqpYqAc2BPd94HW+u4TlScJlhBiIgiETJ740d18Wa+Bu9+DnNm9+9q6evhk87t0lr9BZsN7zA3vwqI0jZZsmgouJn/5F0mdsviMe7bqVHxU0cKXHn2dvyTdj8NuZ//U1VR2gr9uN3ndn7BA7cWqTHosKfRM+SzpS29GFS+HGA/JL8R4obVm5/Yy6j9aS2b9XykMHsStuk54XkBb6FAptFoy6LJn4kvMQifnYE3Lw+EuICWrEHfuZFJdHtQYfM5LiJE2IgnWgAr+A2jXWj8UTbD+qLWefYLT+pEESwgxUTzx2kd87r1rSbBZOJR9KV09fpI79lMc3E+a8gJQbSuho/gS8s+9gbSSBZJUnYInNx7ipT//iX+3PMJU4wgAQay0JE/DOGslnnlXYhQuGtYog0JMVKFQmMamBtpbGtDeZkKhMCYKh81CgjMFe7IbZ6qbtJRUSZyEOI4RTbBUZIivSmCV1nqfJFhCiDNdKGzy3y+8xJLd/8pMKjCVhXpbAV73LJLOXkHhOZdhS8uJd5jjWps3wIGGTlKCTRSnJ2BPz5f5qoQQQoyaoRKsWH20txyo11r3mRGKEqXUVqAD+K7W+t0Y1SWEEGOe1WLw1ZuvJhi+imDYJNluRYZTiC2X086CYg8weqOjCSGEECdywgRLKfUGMNjHrN/RWr8UXb4ZeK7PvlqgSGvdrJRaAKxTSs3SWh/zZKRS6i7gLoCiouGNbCOEEGONzWJgs0gXGyGEEOJMccIES2t90fH2K6WswDXAgj7n+AF/dHmzUuoAMA04pv+f1vox4DGIdBE8leCFEEIIIYQQYiyJxceqFwG7tdbVRzcopTKVUpbo8mRgKnAwBnUJIYQQQgghxJgVi2ewbqJ/90CAC4CHlFJBwATu1lq3xKAuIYQQQgghhBizxtREw0qpRuBwvOMYIANoincQYtTI9T5zyLU+c8i1PrPI9T5zyLU+s4zF6z1Ja505cOOYSrDGIqVU2WDDL4qJSa73mUOu9ZlDrvWZRa73mUOu9ZllPF1vGdpKCCGEEEIIIWJEEiwhhBBCCCGEiBFJsE7ssXgHIEaVXO8zh1zrM4dc6zOLXO8zh1zrM8u4ud7yDJYQQgghhBBCxIi0YAkhhBBCCCFEjEiCJYQQQgghhBAxIgnWcSilLlNK7VFK7VdK3R/veETsKKUKlVJvK6U+UUrtUkr9Q3S7Wyn1ulJqX/R7erxjFbGhlLIopbYqpf4YXS9RSm2K3t9rlFL2eMcoYkMp5VJKrVVK7VZKlSulzpV7e2JSSt0X/Ru+Uyn1nFLKIff2xKGUelIp1aCU2tln26D3sor4RfS6f6yUOid+kYtTNcS1/mn07/jHSqk/KKVcffZ9K3qt9yilLo1L0MchCdYQlFIW4BHgcmAmcLNSamZ8oxIxFAK+qbWeCSwFvhq9vvcDb2qtpwJvRtfFxPAPQHmf9R8DP9danwW0An8Xl6jESPhPYL3W+mxgLpHrLvf2BKOUygfuBRZqrWcDFuAm5N6eSJ4CLhuwbah7+XJgavTrLuBXoxSjiI2nOPZavw7M1lrPAfYC3wKIvl+7CZgVPee/ou/bxwxJsIa2GNivtT6otQ4AzwNXxTkmESNa61qt9ZbocieRN2D5RK7x09HDngY+H5cARUwppQqAzwL/E11XwCpgbfQQudYThFIqDbgAeAJAax3QWrch9/ZEZQUSlVJWwAnUIvf2hKG1fgdoGbB5qHv5KuA3OuIDwKWUyh2VQMWwDXattdavaa1D0dUPgILo8lXA81prv9b6ELCfyPv2MUMSrKHlA1V91quj28QEo5QqBuYDm4BsrXVtdFcdkB2vuERM/T/gnwEzuu4B2vr84Zb7e+IoARqBX0e7hP6PUioJubcnHK31EeDfgUoiiVU7sBm5tye6oe5led82sa0G/hxdHvPXWhIscUZTSiUDvwO+rrXu6LtPR+YwkHkMxjml1BVAg9Z6c7xjEaPCCpwD/EprPR/oZkB3QLm3J4boszdXEUmq84Akju1iJCYwuZfPDEqp7xB5tOPZeMdysiTBGtoRoLDPekF0m5gglFI2IsnVs1rr30c31x/tUhD93hCv+ETMLAM+p5SqINLVdxWRZ3Rc0W5FIPf3RFINVGutN0XX1xJJuOTennguAg5prRu11kHg90Tud7m3J7ah7mV53zYBKaVuB64AvqA/nbx3zF9rSbCG9hEwNToakZ3Iw3QvxzkmESPRZ3CeAMq11j/rs+tl4Lbo8m3AS6Mdm4gtrfW3tNYFWutiIvfxW1rrLwBvA9dFD5NrPUForeuAKqXU9OimzwCfIPf2RFQJLFVKOaN/049ea7m3J7ah7uWXgS9GRxNcCrT36UooxiGl1GVEuvd/Tmvt7bPrZeAmpVSCUqqEyMAmH8YjxqGoT5NBMZBS6m+IPLthAZ7UWv8ovhGJWFFKnQ+8C+zg0+dyvk3kOawXgCLgMHCD1nrgA7ZinFJKrQD+UWt9hVJqMpEWLTewFbhFa+2PY3giRpRS84gMaGIHDgJ3EPlAUe7tCUYp9QPgRiLdh7YCXyLyLIbc2xOAUuo5YAWQAdQD3wfWMci9HE2yHybSTdQL3KG1LotD2OI0DHGtvwUkAM3Rwz7QWt8dPf47RJ7LChF5zOPPA8uMJ0mwhBBCCCGEECJGpIugEEIIIYQQQsSIJFhCCCGEEEIIESOSYAkhhBBCCCFEjEiCJYQQQgghhBAxIgmWEEIIIYQQQsSIJFhCCCGEEEIIESOSYAkhhBBCCCFEjPz/s/1blVFmjEsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
57True90.1250.0545bAP.soma.v0.007253.27e-07
58True90.1250.0545Step1.soma.v0.008185.83e-07
59True90.1250.0545Step3.soma.v0.02864.25e-07
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "57 True 9 0.125 0.0545 bAP.soma.v \n", + "58 True 9 0.125 0.0545 Step1.soma.v \n", + "59 True 9 0.125 0.0545 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "57 0.00725 3.27e-07 \n", + "58 0.00818 5.83e-07 \n", + "59 0.0286 4.25e-07 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def compare_responses(arb_resp, nrn_resp, l1_results, *key):\n", " if key in arb_resp:\n", @@ -781,14 +2681,221 @@ "source": [ "### Spike time cross-validation\n", "\n", - "To compare Arbor and Neuron voltage traces further, we analyze the spike counts and times with the eFEL library and Arbor's built-in spike detector. Note that while eFEL measures the `peak_time`, Arbor's spike detector as configured above will measure the time when the voltage passes a threshold of -10 mV." + "To compare Arbor and Neuron voltage traces further, we analyze the spike counts and times with the eFEL library. Note that in contrast to eFEL that measures the `peak_time`, Arbor's built-in spike detector measures the time when the voltage surpasses a given voltage threshold." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
replace_axonprotocolgnabar_hh.somaticgkbar_hh.somaticefel
FalsebAP0.09690.0153Spikecount6600
time_to_first_spike-34.4-34.40-0
time_to_second_spike-12.4-12.20.2-1.61
time_to_last_spike67.868.20.40.59
Step10.09690.0153Spikecount8800
...........................
TrueStep10.1250.0545time_to_last_spike2.62.70.13.85
Step30.1250.0545Spikecount2200
time_to_first_spike1.71.80.15.88
time_to_second_spike16.416.50.10.61
time_to_last_spike16.416.50.10.61
\n", + "

205 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 6 \n", + " time_to_first_spike -34.4 \n", + " time_to_second_spike -12.4 \n", + " time_to_last_spike 67.8 \n", + " Step1 0.0969 0.0153 Spikecount 8 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 2.6 \n", + " Step3 0.125 0.0545 Spikecount 2 \n", + " time_to_first_spike 1.7 \n", + " time_to_second_spike 16.4 \n", + " time_to_last_spike 16.4 \n", + "\n", + " Arbor \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 6 \n", + " time_to_first_spike -34.4 \n", + " time_to_second_spike -12.2 \n", + " time_to_last_spike 68.2 \n", + " Step1 0.0969 0.0153 Spikecount 8 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 2.7 \n", + " Step3 0.125 0.0545 Spikecount 2 \n", + " time_to_first_spike 1.8 \n", + " time_to_second_spike 16.5 \n", + " time_to_last_spike 16.5 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_second_spike 0.2 \n", + " time_to_last_spike 0.4 \n", + " Step1 0.0969 0.0153 Spikecount 0 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 0.1 \n", + " Step3 0.125 0.0545 Spikecount 0 \n", + " time_to_first_spike 0.1 \n", + " time_to_second_spike 0.1 \n", + " time_to_last_spike 0.1 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 0 \n", + " time_to_first_spike -0 \n", + " time_to_second_spike -1.61 \n", + " time_to_last_spike 0.59 \n", + " Step1 0.0969 0.0153 Spikecount 0 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 3.85 \n", + " Step3 0.125 0.0545 Spikecount 0 \n", + " time_to_first_spike 5.88 \n", + " time_to_second_spike 0.61 \n", + " time_to_last_spike 0.61 \n", + "\n", + "[205 rows x 4 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis:\n", "\n", @@ -818,27 +2925,13 @@ " stim_start=stim_start,\n", " stim_end=stim_end)\n", "\n", - " # Calculate spike observables with Arbor\n", - " try:\n", - " if efel_feature_name == 'Spikecount':\n", - " arbor_int = len(arb_resp[recording_name]['spikes'])\n", - " elif efel_feature_name == 'time_to_first_spike':\n", - " arbor_int = arb_resp[recording_name]['spikes'][0]-stim_start\n", - " elif efel_feature_name == 'time_to_second_spike':\n", - " arbor_int = arb_resp[recording_name]['spikes'][1]-stim_start\n", - " elif efel_feature_name == 'time_to_last_spike':\n", - " arbor_int = arb_resp[recording_name]['spikes'][-1]-stim_start\n", - " except Exception:\n", - " arbor_int = numpy.nan\n", - "\n", " spike_res.append(dict(\n", " replace_axon=do_replace_axon,\n", " protocol=step['name'],\n", " **param_values,\n", " efel=efel_feature_name,\n", " Neuron=feature.calculate_feature(nrn_resp),\n", - " Arbor=feature.calculate_feature(arb_resp),\n", - " Arbor_int=arbor_int))\n", + " Arbor=feature.calculate_feature(arb_resp)))\n", " return spike_res\n", "\n", "\n", @@ -859,14 +2952,6 @@ " lambda r: 100.*abs(r['Arbor']-r['Neuron'])/r['Neuron']\n", " if r['Neuron'] != 0 else numpy.nan, axis=1)\n", "\n", - " # Cross-validation of eFEL's spike detection with Arbor's\n", - " spike_res_df['abs_diff eFEL to Arbor-internal'] = \\\n", - " spike_res_df.apply(\n", - " lambda r: abs(r['Arbor']-r['Arbor_int']), axis=1)\n", - " spike_res_df['rel_abs_diff eFEL to Arbor-internal [%]'] = \\\n", - " spike_res_df.apply(\n", - " lambda r: 100.*abs(r['Arbor']-r['Arbor_int'])/r['Arbor_int']\n", - " if r['Arbor_int'] != 0 else numpy.nan, axis=1)\n", " return spike_res_df\n", "\n", "\n", @@ -896,9 +2981,187 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount600.01670.12900001600.2782.15000016.7
time_to_first_spike600.05830.0497000.10.10.1603.263.77-0.334007.1411.1
time_to_last_spike600.3251.26000.10.29.7603.284.18000.6487.1419
time_to_second_spike250.1160.055400.10.10.10.2251.542.82-1.610.6210.8131.3310
\n", + "
" + ], + "text/plain": [ + " abs_diff Arbor to Neuron \\\n", + " count mean std min 25% 50% 75% \n", + "efel \n", + "Spikecount 60 0.0167 0.129 0 0 0 0 \n", + "time_to_first_spike 60 0.0583 0.0497 0 0 0.1 0.1 \n", + "time_to_last_spike 60 0.325 1.26 0 0 0.1 0.2 \n", + "time_to_second_spike 25 0.116 0.0554 0 0.1 0.1 0.1 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + " max count mean std min \n", + "efel \n", + "Spikecount 1 60 0.278 2.15 0 \n", + "time_to_first_spike 0.1 60 3.26 3.77 -0.334 \n", + "time_to_last_spike 9.7 60 3.28 4.18 0 \n", + "time_to_second_spike 0.2 25 1.54 2.82 -1.61 \n", + "\n", + " \n", + " 25% 50% 75% max \n", + "efel \n", + "Spikecount 0 0 0 16.7 \n", + "time_to_first_spike 0 0 7.14 11.1 \n", + "time_to_last_spike 0 0.648 7.14 19 \n", + "time_to_second_spike 0.621 0.813 1.33 10 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis:\n", " display(spike_results[['abs_diff Arbor to Neuron',\n", @@ -914,9 +3177,147 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
replace_axonprotocolgnabar_hh.somaticgkbar_hh.somaticefel
FalseStep30.1210.0319time_to_last_spike51.141.49.719
TrueStep10.05370.0124time_to_last_spike5253.91.93.65
FalseStep30.070.0122time_to_last_spike50.751.50.81.58
bAP0.09690.0153time_to_last_spike67.868.20.40.59
Step30.05080.0136time_to_last_spike45.746.10.40.875
\n", + "
" + ], + "text/plain": [ + " Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False Step3 0.121 0.0319 time_to_last_spike 51.1 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 52 \n", + "False Step3 0.07 0.0122 time_to_last_spike 50.7 \n", + " bAP 0.0969 0.0153 time_to_last_spike 67.8 \n", + " Step3 0.0508 0.0136 time_to_last_spike 45.7 \n", + "\n", + " Arbor \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False Step3 0.121 0.0319 time_to_last_spike 41.4 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 53.9 \n", + "False Step3 0.07 0.0122 time_to_last_spike 51.5 \n", + " bAP 0.0969 0.0153 time_to_last_spike 68.2 \n", + " Step3 0.0508 0.0136 time_to_last_spike 46.1 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False Step3 0.121 0.0319 time_to_last_spike 9.7 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 1.9 \n", + "False Step3 0.07 0.0122 time_to_last_spike 0.8 \n", + " bAP 0.0969 0.0153 time_to_last_spike 0.4 \n", + " Step3 0.0508 0.0136 time_to_last_spike 0.4 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False Step3 0.121 0.0319 time_to_last_spike 19 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 3.65 \n", + "False Step3 0.07 0.0122 time_to_last_spike 1.58 \n", + " bAP 0.0969 0.0153 time_to_last_spike 0.59 \n", + " Step3 0.0508 0.0136 time_to_last_spike 0.875 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis:\n", " display(spike_results[ [el[spike_results.index.names.index('efel')] == 'time_to_last_spike'\n", @@ -928,34 +3329,121 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For the spike times, we find the anticipated bias between eFEL and Arbor's internal spike detector." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if run_spike_time_analysis:\n", - " display(spike_results[['abs_diff eFEL to Arbor-internal',\n", - " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Running protocols with a finer time step\n", + "## Running protocols with a finer time step\n", "\n", "To rule out the discretization as a possible source of the above error in `time_to_last_spike`, we can re-run the simulations at a smaller `dt` of 0.001 ms (default is 0.025 ms)." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
0False00.09690.0153bAP.soma.v0.04073.2e-06
31True00.09690.0153Step1.soma.v0.03481.6e-06
1False00.09690.0153Step1.soma.v0.02042.42e-06
32True00.09690.0153Step3.soma.v0.01966.55e-06
2False00.09690.0153Step3.soma.v0.01665.35e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "0 False 0 0.0969 0.0153 bAP.soma.v \n", + "31 True 0 0.0969 0.0153 Step1.soma.v \n", + "1 False 0 0.0969 0.0153 Step1.soma.v \n", + "32 True 0 0.0969 0.0153 Step3.soma.v \n", + "2 False 0 0.0969 0.0153 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "0 0.0407 3.2e-06 \n", + "31 0.0348 1.6e-06 \n", + "1 0.0204 2.42e-06 \n", + "32 0.0196 6.55e-06 \n", + "2 0.0166 5.35e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_fine_dt:\n", " arb_responses_fine_dt, nrn_responses_fine_dt = simulation_runner.run_all(replace_axon, params, dt=fine_dt)\n", @@ -967,9 +3455,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fine dt (0.001): test_l5pc OK! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are 0.00523 (0.05), 0.000141 (0.0005).\n" + ] + } + ], "source": [ "if run_fine_dt:\n", " print_voltage_trace_l1_results('Fine dt ({:,.3g})'.format(fine_dt), l1_results_fine_dt)" @@ -977,9 +3473,1850 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5hkZZX48e+p0NU559zTMz05wQxBggQXUImrgq4K6Cor6hpWdF3Xn6K77romFFERZcUFJIgkASMwIhJnYHLs7umcc6z8/v641T09Mx1nqqequ87nefrpqls3nEq37rnv+54rxhiUUkoppZRSSp08W6QDUEoppZRSSqnFQhMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUipKiEi5iBgRcUQ6lsVORG4UkRcjHUe0EZHzRORApONQSqmFTBMspZRSC5qI3CoiPhEZmvD3hUjHtRAZY/5qjFke7vWKyAYR2SYiI6H/G8K9DaWUihaaYCmlVJhoy1NEPWSMSZ7w961IBxROC/mzJSJxwBPAfUAG8EvgidB0pZRadDTBUkqpkyAidSLyryKyExgWEYeInCUiL4lIn4jsEJELJsy/RUT+W0ReE5EBEXlCRDKnWPeHRGSfiAyKSK2I/NMxj18lIttD66kRkctC09NE5G4RaRWRZhH5TxGxz/A8KkXkORHpFpEuEblfRNInPNYjIqeF7heKSOfY8xKRK0VkT+j5bhGRlce8PreIyE4R6ReRh0Qkfu6v9NyJyBdDr8ugiOwVkWummE9E5DYR6Qi9lrtEZE3oMZeIfEdEGkSkXUTuFJGEWW7/ntD8fwrF8BcRKZvw+A9EpDG0zW0ict6Ex24VkUdE5D4RGQBuFJEzROTl0OvcKiJ3TExSQt1LPy4ih0Lb+4/Qe/dSaBsPz5TUiMgFItI0m+c3BxcADuD7xhiPMeZ2QICLwrwdpZSKCppgKaXUyXsf8E4gHcgDngb+E8gEbgF+IyI5E+a/HvgwUAD4gdunWG8HcDmQCnwIuG1CknMG8H/A50PbPR+oCy13T2i9S4GNwCXAR2Z4DgL8N1AIrARKgFsBjDE1wL8C94lIIvAL4JfGmC0iUgU8AHwGyAGeAX57zIH8tcBlQAWwDrhx0gBEzg0lD1P9nTvDczhWDXAekAZ8LRR/wSTzXYL1+lWF5r0W6A499s3Q9A1Yr2cR8JU5xPB+4D+AbGA7cP+Ex14PrTcT+BXw62OSz6uAR7De3/uBAPDZ0LrOBi4GPn7M9i4FTgfOAr4A3AV8AOv9XIP1WT1hoUR5qvfnx1MsthrYaYwxE6btDE1XSqlFRxMspZQ6ebcbYxqNMaNYB7PPGGOeMcYEjTF/ArYC75gw/73GmN3GmGHg/wHXTtbCZIx52hhTYyx/Af6IlTAA/CPwv8aYP4W202yM2S8ieaFtfcYYM2yM6QBuA9473RMwxlSH1uUxxnQC3wPeOuHxnwHVwKtYieG/hx66Dng6tKwP+A6QALzlmNenxRjTA/wWK6mYLIYXjTHp0/xNV5Ti2mMO9guNMb8ObTdojHkIOAScMcmyPiAFWAGIMWafMaZVRAS4CfisMabHGDMI/NdMr+UxnjbGvGCM8WC9ZmeLSEno+d5njOk2xviNMd8FXMDE8U8vG2MeD8U/aozZZox5JTR/HfBTJrxHId8yxgwYY/YAu4E/GmNqjTH9wO+wEu4TZoxZN837c2yyNyYZ6D9mWj/Wa66UUovOgu3TrZRSUaRxwu0y4D0icsWEaU7g+Snmrw89nn3sSkXk7cBXsVpQbEAisCv0cAlWa9GxykLra7XyAwgt2zjJvBO3lQf8ACuBSwkt03vMbD8DngRuCiUMYLV41Y/NYIwJikgjVkvPmLYJt0dCy4Tbw8aYD0ycICLXA/8ClIcmJTPJ62yMeU5E7gB+BJSJyKNYLY/xWK/5tgmvpQDTdrc8xvjrbowZEpEerOffKCK3YCXKhYDBaqnMnmzZ0POpwkp8N4XicgDbjtle+4Tbo5Pcz59D7OEyhPXcJkoFBiMQi1JKzTttwVJKqZM3setTI1YL1cQz+0nGmG9OmKdkwu1SrBaUrokrFBEX8BusFqE8Y0w6VkI1dqTfCFROEksj4AGyJ2w/1RgzU3es/wo9j7XGmFSslrgjWYVIMvB94G7gVjkybqwFK6kbm09Cz695hu0dR6wS4UPT/J0381rG11WGlRB+EsgKvX67Jz6niYwxtxtjTgdWYSW0n8d6T0aB1RNeyzRjTPIcntb4ex16DTOBltBz+QJWd8SMUHz9x8Q38XMF8BNgP7As9B59aarnM1/EGms31ftz5xSL7QHWyYQsFaur6J75j1gppU49TbCUUiq87gOuEJFLRcQuIvGhwgHFE+b5gIisCo1n+jrwiDEmcMx64rC6jHUC/lBr1iUTHr8b+JCIXCwiNhEpEpEVxphWrK6E3xWR1NBjlSJybFeyY6VgtTT0i0gRVoIx0Q+ArcaYj2CNMRs7mH4YeGcoDifwOawE76WZXqhjhUqEJ0/z99c5rC4JK0HpBKtgCNYYpOOIyGYROTMU/zDgBoLGmCBWknabiOSG5i0SkUsnLGtkQhGTSbwjNLYsDmss1ivGmEas19sfis8hIl/h+FaeY6UAA8CQiKwAbp5h/rAzxqye5v352BSLbcEaP/YpsYqGfDI0/blTErRSSp1immAppVQYhQ6er8JqXejEalH6PEfvb+/FKkTRhtUN7VOTrGcwNP1hrK56/4DVPW/s8dcIFb7Aavn4C0dakq7HStD2hpZ9BGvc1HS+BpwWWtfTwKNjD4jIVVhFKsYO6P8FOE1E3m+MOYDV2vVDrBafK4ArjDHeGbY3r4wxe4HvAi9jdZNbC/xtitlTsRKpXqzujt3At0OP/SvW2LNXxKrm92dC46RCY6kGOdJtczK/wurm2YNVfGKsG+MfgN8DB0PbdDNDN06sbov/ENrmz4CHZpg/KoQ+C1djfS77sAq8XB3pz4hSSs0XObqoj1JKqfkkIluA+4wxP490LOrkiMgHsLoP/tsUj98DNBljvnxKA1NKKRVRWuRCKaWUOgHGmPsiHYNSSqnoo10ElVIqRoh10du5FCdQi5CIfGmKz8HvIh2bUkotBmHrIigidVj9wgOA3xizKVRl6iGsErl1wLXGmGPL/iqllFJKKaXUohDuFqwLjTEbjDGbQve/CDxrjFkGPBu6r5RSSimllFKLUrhbsDYZY7omTDsAXGCMaRWRAmCLMWb5VOvIzs425eXlYYlHKaWUUkoppebLtm3buowxOcdOD2eRCwP8UUQM8FNjzF1YF8dsDT3eBuQdu5CI3ATcBFBaWsrWrVvDGJJSSimllFJKhZ+I1E82PZwJ1rnGmObQxRj/JCL7Jz5ojDGh5Itjpt8F3AWwadMmrRmvlFJKKaWUWrDCNgbLGNMc+t8BPAacAbSHugYS+t8Rru0ppZRSSimlVLQJS4IlIkkikjJ2G7gE2A08CdwQmu0G4IlwbE8ppZRSSimlolG4ugjmAY+JyNg6f2WM+b2IvA48LCL/CNQD1851xT6fj6amJtxud5hCVQtZfHw8xcXFOJ3OSIeiFqHHn3qS3IP3c/onfonLFR/pcJRSSim1AIUlwTLG1ALrJ5neDVx8MutuamoiJSWF8vJyQgmcilHGGLq7u2lqaqKioiLS4ahFaONrn6PM1sHrf/w/Nl9xU6TDUUoppdQCFO7rYIWd2+0mKytLkyuFiJCVlaWtmWpe9Pf3USKdACTseSDC0SillFJqoYr6BAuI+eQqEAzS1dePz+eNdCgRF+ufBTV/OjvbsYlhiESqRnfiGemPdEhKKaWUWoAWRIIV6wYH+skeqSXQVRPpUJRatEaHBwA4lHURceKn5rU/RjgipZRSSi1EmmDNgojwuc99bvz+d77zHW699dZTtn2bdxCAeOMm4PMc9dgFF1ww7cWZr776as4666yjpt16660UFRWxYcMG1qxZw5NPPhn+oNUp0zfi5aVDbZEOY8FzjwwBkLjiYvzGRv+hlyIckVooRr0B+kd8kQ5DRaEhj5+9h2rBPRDpUFSU8fqDvNHQG+kw1DzRBGsWXC4Xjz76KF1dXWFdrzGGYDA484xB//hN73DfrNff19fHtm3b6O/vp7a29qjHPvvZz7J9+3Z+/etf8+EPf3h2caio9O1H/8bG+9bSfdfVkQ5lQfOOWCcykjPzqXNUkNz1ZoQjUgvF3T/6L9q+tYmh5r2RDkVFmX9/dCfL7zsNz4/OiXQoKsr81zP7eOyntzL0vdOh7sVIh6PCTBOsWXA4HNx0003cdtttxz3W2dnJu971LjZv3szmzZv529/+BlitRN/5znfG51uzZg11dXXU1dWxfPlyrr/+etasWUNjYyOf//znWbNmDWvXruWhhx4CYMuWLVxwwQW8+93vZtO5b+N9n/wy3qAN4xk6LoZ77713vDXqtddeG5/+6KOPcsUVV/De976XBx98cNLntnLlShwOx1HJ4xe/+EVWrVrFunXruOWWWwCoq6vjoosuYt26dVx88cU0NDQAcOONN3LzzTdz1llnsWTJErZs2cKHP/xhVq5cyY033ji+zptvvplNmzaxevVqvvrVrx4XR39/P2VlZeOJ3vDwMCUlJfh8elZ4Jl11u0gQL1ktz0O3diM9Ub7RUEtxYgrd6WupcO8n6PfPsJSKdYNuH8t6trCcOnqeujXS4ago03LgNexicA02QOfBSIejoshfD3Vyhf1lkgeqYdsvIx2OCrNwXQfrlPjab/ewtyW8zeyrClP56hWrZ5zvE5/4BOvWreMLX/jCUdM//elP89nPfpZzzz2XhoYGLr30Uvbt2zftug4dOsQvf/lLzjrrLH7zm9+wfft2duzYQVdXF5s3b+b8888H4M0332TPnj2kMsglV7+PLVv3ceEZx8c6MjLC9u3beeGFF/jwhz/M7t27AXjggQf4yle+Ql5eHu9617v40pe+dNyyr776KjabjZycHAC6u7t57LHH2L9/PyJCX18fAP/8z//MDTfcwA033MD//u//8qlPfYrHH38cgN7eXl5++WWefPJJrrzySv72t7/x85//nM2bN7N9+3Y2bNjAN77xDTIzMwkEAlx88cXs3LmTdevWjceRlpbGhg0b+Mtf/sKFF17IU089xaWXXqrXu5pBMGhIdLePf5PNoT8iWTdHNqgFyu+2Tl7EJ6UgJWeQ3P049Ye2U7ZyU4QjU9Gstd9NhljJeVb7SxAMgM0e4ahUNPD4A6z17Yaxn7HqP0FOVURjUtHBGENrv5ssrGNac+gPiO47FhVtwZql1NRUrr/+em6//fajpv/5z3/mk5/8JBs2bODKK69kYGCAoaHjW5kmKisrGx8X9eKLL/K+970Pu91OXl4eb33rW3n99dcBOOOMMyguLsZhM6xbvZL61g6c+An6j64m+L73vQ+A888/n4GBAfr6+mhvb+fQoUOce+65VFVV4XQ6xxMvgNtuu40NGzZwyy238NBDD41X50tLSyM+Pp5//Md/5NFHHyUxMRGAl19+mX/4h38A4IMf/CAvvnikOfuKK65ARFi7di15eXmsXbsWm83G6tWrqaurA+Dhhx/mtNNOY+PGjezZs4e9e4/vSnPdddeNt+A9+OCDXHfdddO+jgq6hj3kG6v1sdOkMnLwhQhHtID5RgBwxqeQt+pcADr2abcNNb2WvlGKpRMvDpKCg5jWnZEOSUWJnmEvqTIMQJPJxl2j+xNlGfYGGPEGyLf102eSEHc/dGkL52KyoFqwZtPSNJ8+85nPcNppp/GhD31ofFowGOSVV14hPj7+qHkdDsdR45omXrspKSlpVttzuVwA2E0Qm91BIPR2+dzDuJLjxuc7tnS5iPDwww/T29s7fkHegYEBHnjgAb7xjW8A1hisse5/x8b92muv8eyzz/LII49wxx138Nxzz80qTpvNNn577L7f7+fw4cN85zvf4fXXXycjI4Mbb7xx0mtZXXnllXzpS1+ip6eHbdu2cdFFF834GsW63mEfBdKN257Cq95VXNi6I9IhLVgylmAlJFGcVcGASURatkc2KBX1egaGyaOXPZl/x7qeP9JXu5WMoo2RDktFge4hL8mM4rEl8opvFVc0vgLGgF5uJOYNuf248JLECI8Fz+Ea+9+g5U3IXRnp0FSYaAvWHGRmZnLttddy9913j0+75JJL+OEPfzh+f/v27QCUl5fzxhtvAPDGG29w+PDhSdd53nnn8dBDDxEIBOjs7OSFF17gjDPOOGoeG0EQwRFnJS8Bz8hRj4+1+rz44oukpaWRlpbGAw88wO9///vxcV/btm2bchzWRENDQ/T39/OOd7yD2267jR07rAP2t7zlLePL33///Zx33nkzrmvMwMAASUlJpKWl0d7ezu9+97tJ50tOTmbz5s18+tOf5vLLL8du16bymbh9AQqlC19yIYfsS0gabYaRnkiHtSDZ/Nb3SuKSsNttNMZVkDygZxTV9GSwFbsYHEvOZ8Ak0l/7eqRDUlGiZ9hKsHClsI8KXJ4eGNSKrwqGPD6ysa61uNuxGo8tAfSE3qKiCdYcfe5znzuqIMTtt9/O1q1bWbduHatWreLOO+8E4F3vehc9PT2sXr2aO+64g6qqyftdX3PNNaxbt47169dz0UUX8a1vfYv8/Pzxx40x2AlgEOw2Gx6c412ZxsTHx7Nx40Y+9rGPcffdd1NXV0d9ff1R5dkrKipIS0vj1VdfnTSOd7zjHbS0tDA4OMjll1/OunXrOPfcc/ne974HwA9/+EN+8YtfsG7dOu69915+8IMfzPo1W79+PRs3bmTFihX8wz/8A+ecc6Sa0le+8pWjysRfd9113Hfffdo9cJY8/iDpMkwgPpPhzDXWRG3FOiE236h1w2l1ix1IXU6xtxajFTbVNMRtHSQVFRaz15QT17F7hiVUrBjx+kkWK8Eaygi1TLTr50PBoNtPtlj7joTMIg7ZllgtWGrRWFBdBCNl4piqvLw8RkaOJDjZ2dnjLUgTJSQk8Mc/Tn6h0oljoUSEb3/723z7298+ap4LLriACy64gGAggE3gu//zXyRnFzHUVo0rODo+35YtWybdRnNz83HTxlrUzjzzzOMee+aZZ8ZvT6xEOKasrGzSroL33HPP+O3y8vKjntvExybenujrX//6Ufff/e53Y4yZdF51PLcvQCZecCbgzNsIPRBs2YGt8sJIh7bg2AMjjBJHwtgg47zVJHc/SkfTIXJLl0c2OBW1Al7r9yAhMYnmhCpOG3kGAn6w689rrPP4g6QziolLwZm5FgaAtl2w7O8iHZqKsGFPgCyxClxk5xXzekcpq9u2ILrvWDS0BSvKmbFrYIUO+oL2eJz4MQEtX66sH/D4UIJVXlJMYzCH0YZtkQ5rQbL7R3FzZCxlWrk1jqbt4NQX8lbKjBdHSWIkaw1xxquD1RUAHl+QJHFDfArlRYU0mWw8zVoERVldBJOwxqKXFOSxI1CB+Eeh60CEI1PhoglWlBsvlBEaFCtxVvcln2d0qkVUDHH7AsSLF3EmsLIglT2mHLSK2QlxBEZxy5EiLSUrTiNohNEmfT3V1IzX2heLMwFXyQYAhuv0JIeyyrQnM4q4UlhZkMreYBmB1l2RDktFgUG3H5dYJ8or8rPYa8qsB9r1YuWLxUknWCJSIiLPi8heEdkjIp8OTb9VRJpFZHvo7x0nH27sGe8uJ9Zb5YhLACDg1QRLHWnBssUlUJWXwiFTRMJQI/g9kQ5twXEERvHIkRaslNQMmm35uLr1B09NY8LYvfyKNXiMg74GTcoVuH1BkmUUW3wqK/JT2GfKiO+vPfKZUTFr2OPHhZVgFedk0CgFBLFpC9YiEo4WLD/wOWPMKuAs4BMisir02G3GmA2hv2emXoWaijFWC9ZYKfY4l4uAEYzuoBWhFiy82OMSiHfa6UuqwEYAemojHdqCYw968EncUdM64peQNayvpZqGfyzBimdZQTp1Jp9gp3YRVFYLVgoj2BJSyUp20Ry3xKoK3Lk/0qGpCBuakGDFuRIoyEqj01kInZpgLRYnnWAZY1qNMW+Ebg8C+4Cik12vsoxXMAu1YNltNrwShwS0hUJNbMGyuo4GM0PVKnUnPWe2oI+AOI+aNpK+jIJACwHv8ddtUwo4ugUrNZ46KSKxvyayMamo4PFZXQRtrhQAglmh/XNXdQSjUtHA7QsSH+oiiCOeZbnJVJsiHb+5iIR1DJaIlAMbgbFa4J8UkZ0i8r8ikjHFMjeJyFYR2drZ2RnOcBaHUBdBkSNvVcDmwhnUBEuB1+PGIUHsLivBSixcSdAIQU2w5swW9BOQo6s32fNX4ZAgHYe1tLKanPhDybcjHhGhL7GCdE+zdtNVBL0j2MUgoQQrqWApfmwY7QYW8zz+AIm2UBEzh4tluSns9ORhumtAi5gtCmFLsEQkGfgN8BljzADwE6AS2AC0At+dbDljzF3GmE3GmE05OTnhCifsHn/8cUSE/funbtqvq6tjzZo1YdvmjTfeyKOPPWbdmXDld+OIx0GAT3/6UxQVFR0phIFVDj0nJ4cNGzawatUqfvazn4UtHhV9xsbijY3NKyvIptlkM9Ks44bmym58BGxHdxFMK10HQPdhvbaYmpxtvIug9R30ZizFTlC76SqCoRL+Y9fWK8/LpCGYi7dNuwjGOq8/SKLNB3YXiLA0N5lDgUIk6IOew5EOT4VBWBIsEXFiJVf3G2MeBTDGtBtjAsYaRPQz4IxwbCtSHnjgAc4991weeOCBSR/3+/0nvY1AIHDcNDNJC5Y44wkGgzz22OOUlJTwl7/85ahlrrvuOrZv386WLVv40pe+RHt7+0nHpqJT0GP9gEvo4K4yJ5kaU4jRFqw5sxsfwWO6CBYvXYvf2PC07olQVCra2QNu/NjBbn124vKtC8q6W/dFMiwVBca7Fjus6qRj++dAh+6fY53HHyTB5geHVVhp6VgXQdBCF4tEOKoICnA3sM8Y870J0wsmzHYNsGD72AwNDfHiiy9y99138+CDD45P37JlC+eddx5XXnklq1ZZdT38fj/vf//7WblyJe9+97vHL0r87LPPsnHjRtauXcuHP/xhPB6r+0h5eTn/+q//ymmnncavf/3r47b9/Ja/sOnt72fdho089dRTgNVaseWlraxcvoybb755yqQvNzeXyspK6uvrx6fdfvvtrFq1inXr1vHe974XgJ6eHq6++mrWrVvHWWedxc6dVgWsW2+9lRtuuIHzzjuPsrIyHn30Ub7whS+wdu1aLrvsMnw+qxn761//Ops3b2bNmjXcdNNNx10oOBgMUl5eTl9f3/i0ZcuWaeIXBkHf0WfPrZ10IfEDh2FCy6aamd34CdqOTrDSUpJplALierRfvJqcPeDGO6G8f2aplWD1NWhSHuvG98+hg+jKXCvBcvUfhuDxJ1RV7PD6gySI76jku5ZC60E9QboohONy0ecAHwR2icj20LQvAe8TkQ2AAeqAfzrpLf3ui9ZV0MMpfy28/ZvTzvLEE09w2WWXUVVVRVZWFtu2beP0008H4I033mD37t1UVFRQV1fHgQMHuPvuuznnnHP48Ic/zI9//GM++clPcuONN/Lss89SVVXF9ddfz09+8hM+85nPAJCVlcUbb7wx6bbrGxp47el72dfn5NLL3kF1dTVxrnh+9fgfeM/Vl3PNNdfwpS99CZ/Ph9N59MFhbW0ttbW1LF26dHzaN7/5TQ4fPozL5RpPeL761a+yceNGHn/8cZ577jmuv/56tm/fDkBNTQ3PP/88e/fu5eyzz+Y3v/kN3/rWt7jmmmt4+umnufrqq/nkJz/JV77yFQA++MEP8tRTT3HFFVeMb9Nms3HVVVfx2GOP8aEPfYhXX32VsrIy8vLyZv02qckd6YJiJVhpCU7aXWU4A27ob4CM8sgFt8DYje+4BAugM6GComEtWqAmZ1WfPJJglRfk0mSyMe3aghXrjC80Di90EF2QGk+jrRi78UFfPWQuiWB0KpI8/iAJcqQFKyHOTmZGFr3eHDK00MWiEI4qgi8aY8QYs25iSXZjzAeNMWtD0680xrSGI+BIeOCBB8Zbe9773vce1WJ0xhlnUFFRMX6/pKSEc845B4APfOADvPjiixw4cICKigqqqqwKQjfccAMvvPDC+DLXXXfdlNv++6uuwGazsWxZFUuWLGH//v34/X6eef5vXHnp+aSmpnLmmWfyhz/8YXyZhx56iA0bNvC+972Pn/70p2RmZo4/tm7dOt7//vdz33334XBY+fWLL77IBz/4QQAuuugiuru7GRgYAODtb387TqeTtWvXEggEuOyyywBYu3YtdXV1ADz//POceeaZrF27lueee449e44/c3vdddfx0EMPAfDggw9O+5zV7BnfWBeUhPFpvvRl1g0tFT0nDuPH2I9PsEbSqigItGLGklmlJnAE3PhsR66fVpaVRI0pIq5XK8XFOjOhAAqAzSZ40iutabp/jmkef6iKoOPIyZmluckcplhbsBaJcLRgnToztDTNh56eHp577jl27dqFiBAIBBARvv3tbwOQlJR01PwyoRjFZPcnc+w6jlr+mPWICH/4wx/o7x/kjAuvBLuTkZEREhISuPzyywErmbnjjjsmXd/TTz/NCy+8wG9/+1u+8Y1vsGvX9C2CLpf15bfZbDidzvE4bDYbfr8ft9vNxz/+cbZu3UpJSQm33norbvfxJa3PPvtsqqur6ezs5PHHH+fLX/7ytNtVszN+PTTnkQO8uIKV0A2mcz9SdUmEIlt4HMaHmaQFy5a/CluboaNuN7lVC3ooqZoHjqAHv/PIQVKcw0anq5SzRv5kddO1hbVYr1pAjpwAO/L5cOYthwGsctzLL4tMYCriPP5AKME68ttdmZPErtp8Nna9gOi+Y8HTd28GjzzyCB/84Aepr6+nrq6OxsZGKioq+Otf/zrp/A0NDbz88ssA/OpXv+Lcc89l+fLl1NXVUV1tndG89957eetb3zqr7T/25FMEg0FqDx+mtraW5cuX88ADD/DD275F3atPcbimmsOHD/OnP/1pfLzXVILBII2NjVx44YX8z//8D/39/QwNDXHeeedx//33A9a4suzsbFJTU2cV31gylZ2dzdDQEI888sik84kI11xzDf/yL//CypUrycrKmtX61fRkrILZhBaswoJCukyqDrKfIwf+SROs9NK1gFYSVJOLM278E1qwAEZSl+IybhhoilBUKiqMleqfcBBdkF9Ip0nFr4UuYprXH8R1TAtWZU4yBwKFiG8YBpojGJ0KB02wZvDAAw9wzTXXHDXtXe9615SFJZYvX86PfvQjVq5cSW9vLzfffDPx8fH84he/4D3veQ9r167FZrPxsY99bFbbLy4q5Ix3fpArrriSO++8k2AwyO9//3sue/s7AfB53SQlJXHuuefy29/+dtJ1fOQjH2Hr1q0EAgE+8IEPsHbtWjZu3MinPvUp0tPTufXWW9m2bRvr1q3ji1/8Ir/85S9n/fqkp6fz0Y9+lDVr1nDppZeyefPm8cfuvPNO7rzzzvH71113Hffdd592DwynY4pcwJGB1L4O7YIyF1YXwbjjphcvXYvX2PG0aNECdTxn0EvA7jpqmuQuByDQruW4Y5kJHD0GC0LFDEwhHi3VHtM8/iAujmnByk2mJhgqdKHjsBa8hdVFMAKef/7546Z96lOfGr99wQUXjN8uLy+f8jpZF198MW+++eZx08fGMU3mnnvuYaizkWRfF6Zgw3j3vJ6eHkZHhqGvD79nhLiEZB599NHx5W688caj1vPzn/98/PaLL7543HYyMzN5/PHHj5t+6623HnV/aGho0sf+8z//k//8z/88bvljk8hNmzYdV2FQnaSxPv4TE6ycZLYEC1jfuz0yMS1QTvzjpbYnykxNoloKtZKgmpTLuAnYs4+allq8EvZBb+NespdrN91YJZO0YFXmJvFGsJCNPdsiFJWKBl5/kDiOb8GqMWMJ1iFYenGEolPhoC1YUc8QNMeP5YpzxRM0E/p4q5hkm+QMaX6oUlW8rxdGeiIU2cJijAklWMe3YAF0xFeQqZUE1TECQetzY45pwSouKqXPJDHaqt3AYtlk++fyrCRqKCTO1w/D3RGKTEWaxx/AZbxHJd+ZSXEEErIYtSdD96EIRqfCQROsaGcMhuMLZdjtdnziRMZ24Co2HVOlCqxKVaNpofK/XbqTng2/349DgsgUCdZo+jLyg20Yz9Ckj6vY5PUHceHFOI5OsCpzk6k1Bdi6tdUzlkng+P1zvNPOQFKo8rB2A4tZ3kAQ5zEtWACVuSk02or1s7EILIgEK7a7lQUxMvnb5BcXjmBsJVix/Vk4ni3otW4ckxjYcqxLAuhOena83tD3aIoEy5ZnXUi8t37BXi9dzQO3L0AcfjimBSs9MY4mewnJQ3WRCUxFBVsgtH92HF0ExWSFLqWh++eY5fEFiTumBQtChS78+XpydBGI+gQrPj6e7u7umD2wFmOY6pkH7S6rtHQweEpjihRjDN3d3cTHx888c4yY6gc8o3ApHuPQQhez5PVYCZY4Jk+w0krXAdCllQTVBG5/gDg5/iw0wGBSOWn+LnAPRCAyFQ3sweO7CAKkFyzBY5wYvRZWzPL4gziMd5IWrCT2evNhsFX3HQtc1Be5KC4upqmpic7OzkiHEhGegU7sQS+O/uNLbntGBnF5ewl078LunPzAcLGJj4+nuLg40mFEjfEWrGN20hW5qdSZfApa93F82QZ1LP/YWMYpWrCKl67CYxxaSVAdxeMLko6PoUkSrGDWUhjCGktRdPqpD05FlDEGe9BrncY+5vOxJDeNWpNPefsBEiZfXC1yXn8Qp23yFqyHTIF1R/cdC1rUJ1hOp5OKiopIhxEx2779BTJGD1P2leO7Ju3ZuoWVf7iWXef+iJVv+0AEolORZgt4Cdrt2Gz2o6aPVSMq7K6OUGQLy1gLlm2KFqyc1CQOShFOrSSoJnD7rS6CMkmClVCwAuphqHk/yXqQFHO8gSBxeAliw2Y7+lCrMieJGlNImbZgxSyPP4DDMUkL1rGVBHXfsWBFfRfBWGcLegnI5G0QhZVWtyV3i15QNhYFgwaH8eK3HZ8UVGQncdgUkDjcAAFfBKJbWPy+6RMsEdFKguo4Hp9V5MLmPL7bcnbJCvzGxkCTtnrGorHrHAVscXBMFeCxaxXGDzUeuRixihn+QJCgMaEugkfvO4ozEmi1FRAQu47DWuA0wYpytqBv0gNogIyMTNrIwtajX8JY5AldRyM4yecj3mmnN7EcuwlAb92pD26BmSnBAhhJW0ZusAOj/eJViNvjwS5m0hasivwMGkwuAR0HGZOs5NtH0H78ZyMrKY42Rwk2gtBTG4HoVCSNX2QYjmvBcthtFGen0uEo1CIoC5wmWFHOEfQQkKkP+jriSkkd0h10LPKEuidNlmABBDKXWjd0Jz2jgNcag2Wb5EB5jD1vJQD9jVpJUFm8oc+NPe74z01xRiKHKcLVr/vnWOTxB0ItWMd/NkQEb0aldUdbKWKO96gE6/jW7yXZ1mUe9LOxsGmCFeXsxkfANnWZguHUSgr9jTFTSVAd4fYFcYmPwBSFGRLyVwAQ1H7+M/KHyrTbpikWk1YWqiRYq5UElcXvHgHA5jy+VIHdJvTEl5LhboBg4FSHpiJsbP987EWox7jylls39ARYzJmuBQusSoK7PXmYnhoI+E9xdCpc5j3BEpHLROSAiFSLyBfne3uLjSPonbKFAkBylpOEm67WulMXlIoKVgvW1D/gxQX5dJh0Rlv3n+LIFp6xLoJ259QtWCVLVuE2TrxaSVCFjF0/zRE3+aUjPOmVOI0P+hpOZVgqClgtWF6CU7SKl+Tn0mIy8bYfOMWRqUjz+q3kG5i0BasyJ5nqYAES8EJf/SmOToXLvCZYImIHfgS8HVgFvE9EVs3nNhcbh/ERmOIAGiC5yOq21F6z81SFpKKE2xfEhR8zRQtWZU4SNcFC/B36Az6TgH/mBCsvPZFairWSoBrn944CYJ+kyAWAI9e64Ldejy72jLdSTPH7XZmTRG2wAJ8mWDFnLPkGJm/BykmmJjihkqBakOa7BesMoNoYU2uM8QIPAlfN8zYXFYfxYaZpwcpfuh6Aoea9pyokFSXGd9JT/YDnJlNjCojvq4EYvVD3bAV81o+dY5ouglYlwXKtJKjG+UNjsByuyROslGLrfGJfo7Z6xpqxIhdmkhYKOFJJME73zzHHM9MYrFAZf8C6FpZakOY7wSoCGifcbwpNGyciN4nIVhHZGqsXE55OHF7MNJXNsnKLGSAR6dKzYLHG7QsSJ/5Jz4CBVamqxVGCyz8AI92nOLqFJRjqIuiYpgULYCR9GVnBLnD3n4qwVJQbK47ijJv8crElxSX0mmTtphuDPP7AtPvn0sxE6ijC6R+CofZTHJ2KJLcvMG2ClRLvJD41i0F7ho7RW8AiXuTCGHOXMWaTMWZTTk5OpMOJOk4zdRcwALHZaHWWkjSolapizdgYLKa5dpMnbYl1R7sZTGsswbJPMZZmjD3PapEYaNg17zGp6Bf0hRIs1+QJ1pLQRUPtesHvmOMOXSNNpmjBctptDKZUWHf0IDqmeI4agzVVF9JkGmyF+tu9gM13gtUMlEy4XxyapmbJiQ/s0x/0DSYvIc+rg6hjjTvUBWWqH3AAe2gMiP6AT8/4xrp6JU47X2rZWgC6D2slQXWkBcsxSZl2gGSXg1ZHMSnDh09lWCoKjJVplynG5wHYcnT/HIvGPhvApC1YYCVY+3z5GP1sLFjznWC9DiwTkQoRiQPeCzw5z9tcNPwB60KyZppr8wAEs5aRQx89XR2nKDIVDcaugzXZRU7HZBZW4jZOPO3aRWk6xm8VK5iqJWJMScUKRowLj1YSVEAwVBxlupMcg8kVpPp7tFtpjBkbZ2ObpttxZn45w8ZFsFNbKWKJJ9S6CUzTgpXEPl8+MtINw9rFfyGa1wTLGOMHPgn8AdgHPGyM0SOTWfL4/MRJAJmmiyBAQqFVSbBVKwnGFLfPSsCn+wFfkpvKYZOPu1XH6E3HjI3BmmIszZjC9CRqKcLZo6+ngqDPSsynOkgCMFnLrP/a1SemjHUDm64FqzI3hVpTgLtNT4DFkpmKXMCRIiiAFrpYoOZ9DJYx5hljTJUxptIY84353t5i4nFbP97TtVAA5FRYF0Dt10pVMcXjD+ASH7Zpf8BDY0B6dAc9rYDV1SsufvoEy2YTOhOWkDGsYx4VmFD1yakqeQIkFFgX/B5s0kqvscTttbqB2ac5aTM2Rk80+Y4pY7/dwLRjsMYTLP18LEgRL3KhpubzWAd9050BA8grrcJrHAQ79ax6LDnSgjX158OqVFVI4nAzhLozqUmEXps4V9KMs3oyq8gM9mBGeuY7KhXljN/aR0/XgpVbthyfsTPQtO8URaWiwViluOkSLOtaWIUkjDSDd+QURqciaTYtWPmp8fQ68/FLnI7RW6A0wYpiXu/sWrDE7qTFUURiv16fJ5aMDZSdrvKd025jIKkcGwHo0YH2UxG/m4ARbA7njPO6ClYD0FGzfZ6jUlFv7KTFNN24K/IyaDC5egIsxoz6rOsU2qf5/U5PjKPDVWrd6dHf71gxdo00YMqTMzabUJ6TQqtDKwkuVJpgRbGxFqzpWijG9CWWk+Oum+eIVDSxWrD82Gf4fIyNAdGzYFMTvxsPcSAy47w5ldbFvbWSoJKxFizn1NUnC1LjOSxFxPfrCY5Y4vH6iJPAlC0UY/yZS60bun+OGbOpIghWN8FDgQL9bCxQmmBFMa/H6jIwXRGDMf7MKgpNOwNDQ/MdlooSPq8HpwSQaQ7u4EgRlECHDqSeii3gwSszt14BLKlcwZCJx9uqY2pinS1UfRLn1N3AbDahN6GcDHcjBPynKDIVaT7vzN1HARLylxNEtJUihnj8QeJl+iqCYCVYu715mN467eK/AGmCFcXGWrAcM1z8FMCVvwK7GJpqds93WCpKBN2hZHqagzuA0vxcGoM5jDbrZ2MqtoDHasGahUSXkwZ7KfG9elYx1tkDYy1Y038H3elV1jUNe7Q4SqwIescqTE7/+12Wl0lTMBuPVhKMGR5/kERbwCqOM02vicqcZGqChYjRLv4LkSZYUcwbSrCcrpkTrKxy6wKo/XVaqj1WBMYGRcdN34JVmZPEAVOM6dBB9lOxBTz4ZHYJFkBvUiW5bv3Bi3X2wAgeiZ+xa6kt32pF9rToSY5Y4ffOXMIfYGluModMMYE2bRGPFR5fgCSbd8bkuzI3aUIlQT2ht9BoghXFxnbQs2nByqtch9/YCLRpqfZYEfAMWzdm6CK4JCeZg6aExIFaCPhOQWQLjz04twQrmL2cTPoZ6m2bx6hUtLMH3PhsM3fhzipfS9AIfXU6bi9WBMe7CE7/+708P4WDphhXf43un2OExx+0EqwZTo6WZyVxmFCCpUVyFhxNsKKY3zvWgjV99xMAe1wCLfZCEvv0LEesMGMtWDMkWGkJTtpc5diNH7q1UtVkbAGPVQ53lpJKrBbj5gNvzFdIagFwBNz4bDPvn5cV5VBn8vBqK0XMCMziItRgleNucJTp/jmGePxBksQ74293vNNOVkYm3c586NB9x0KjCVYU83usHXTcNNfRmKgraSm5bu3jHyuMd3YtWACBbKuLku6kJ2cLevHPoiViTMHSDQD01e+ap4jUQhAXHMVvn7mHQXlWEtWUkNCrZ6FjhfGFihLM0IIlIvgyrYtR6/45Nrh9AZLEDXEzX3exMieJQ6YUtIv/gqMJVhQLhHbQrvjZJVjejOUUBtsZGeqfz7BUtBirYDZDNwOA5KKVBIwQbNcf8Mk4Ah4Cttm3YOUXL2GAJKRdx9TEKmMMcUEPAfssehjYhO7EJVYlQZ/7FESnIm02F6Eek1i0kgCC0QQrJox4AySJZ1YJVlVeCts9BZjuQ+D3noLoVLhoghXFxqoQxcXPfAANEFe4BpsYWg5un8eoVLQQ31gXwZkP8JYWZlNn8hlp1jF6k3EYDwH77FuwxGajLm4ZmQN6QBSrPP4g8XgJOGZ3AsyXtQI7QejWctyxwPhn14IFUFmQTV0wH49Weo0JI14/iXhm1fukKi+FvYESJOjXfccCowlWNPNaZbjjElNnNXvmkg0ADDRsn6eAVDQ5cg2emc+CrchP5aAp1i4oU3AEvQTnkGABDGSsodR3eLwrr4oto94ACeLGzDLBSihaA8Bwkx5ExwLxz65MO1gH0ftNCUZ7GMSEYU+ABGbXRbAqL4UDpti6o5+PBUUTrCgmoQTLFp8yq/kLK1YxYlwEdSB1TJjNRU7HLMtL5pApIXGoQbsoTcJpvJhZjKWZKK70dOIkQOOBrfMUlYpmI74ACXgxszgLDZBbvgqvsWslwRjh9Id6GLiSZ5y3Ki+Zg8ES4ocaYKx4kVq0Rn0B4s3sEqyluckcppCA2PUE6QKjCVYUs/nGihjM/CUEiHM6aLCXktivlQRjgX18DNbMn494p53e5KXYCOr1NCYRhxczxxas/BVnAdB98NX5CElFuVGvnwQ8szrBAbC8KJvDpkDHQcaIuEDo99s18wnSrGQXra4KBANdWghlsRv2+HEZ96y6CCbE2cnPSKXdWaIJ1gJzUgmWiHxbRPaLyE4ReUxE0kPTy0VkVES2h/7uDEu0McbmG2aEeLDN/m3qSaok362lXhc7YwyOwFgL1uzOoJM7VqlKqxEdK954MLM8UB5TXL6CPpIxzW/OU1Qqmo14AySIB5nl9y8v1UWtrZQkPQG26AWChvjgWAvW7HqgBHNC+2dNwBe9EW8AV3B0VidHwWrhPGA0wVpoTrYF60/AGmPMOuAg8G8THqsxxmwI/X3sJLcTk+z+Edwyt25LnqwVZJp+PP16AdTFzBsI4sKDQWZVpQogo3glXmPH16ZjQCby+f0k4SYYN7uxjmNsdhsN8cu10EWMGvFaXQRtrtkdJIkI/clLyfS2wtglFtSiNOTxkyKj1v55lj1QUouq8BinjsNa5IwxjHq9OI131gnWsrwU3hgtgL4G8AzOc4QqXE4qwTLG/NEY4w/dfQUoPvmQ1BiHf4RRmdtZdVehNZC6vVrPqi9mbm+QRDz47QkgMqtlqgozqTGFjDRpJcGJRocHsInBxM08VuJYI1lrKfXX4x4ZmofIVDQb6yJom8VlEsYEQ9ejMx375yssFQWGPH6SGcXnSJp1D5Sq/AyqTSHuFj0Btph5/EHiTajC5Cxbv5fnpbAvWGLd0X3HghHOMVgfBn434X6FiLwpIn8RkfOmWkhEbhKRrSKytbOzM4zhLHwO/xBe2+x/vAGylpwGQL8OpF7UhkJlXgNzKMywIj+Fg6YER5d2EZzIPdgLgImfWwsWQHzZJpwS4PBeHYcVazwjQ9jFYI+ffWKeWGKdAOur3z5PUaloMOj2kcwoAcfsWigAqvKtSoLSqfvnxWzYEyrRDnNowUpmvxlLsPQE6UIxY4IlIn8Wkd2T/F01YZ5/B/zA/aFJrUCpMWYj8C/Ar0Rk0qMXY8xdxphNxphNOTk5J/+MFhFnYBSffW4JVnlZGd0mBdOuX8LFrH/ER6qM4HelzXqZ0sxEaqWUpNEW7WYwwWgowXIkzP61HFO8+i0A9Gmhi5jjHuwGwJmSNetliipWMmriGGzYNV9hqSgw5PaTLCME59AqXpWXYlUSHG2H0d55jE5F0rAnQKKEKvnOMsGqzEmmlWy8tgQdQ72AOGaawRjztukeF5EbgcuBi40xJrSMB6wU3RizTURqgCpA6xnPQVxwBL9r9j/eAC6ng72OctJ0IPWi1j/qI40hgq70WS9jswkjactgEKubQcnmeYtvIRkd7APAmZQ+52WzC5fQQSbOVt21xRpPKMFKSJ39ProqP51DpogMPUha1AbdflIYnXWBC4Bkl4Oe5ErryKljH5S9Zf4CVBHTN+olmbEEa3YJeLzTTmlWCs2+cir05PmCcbJVBC8DvgBcaYwZmTA9R0TsodtLgGVA7clsKxa5gqMEZjlAdqK+lGXke+ogGAx/UCoqDLh9pMsQkpAxp+VsBautG9rNYJxnuA8AV9LcW7AQoTFpDcVDO8MblIp6/mGrlSEuOXPWy6QlOml0lJM6eGi+wlJRYNDjJ1lGEdccux3nhvbPehC9aPWO+MiQUA+SxNnvO5blJrMvWKSVBBeQkx2DdQeQAvzpmHLs5wM7RWQ78AjwMWNMz0luK6YYY0gwo5gTSLCCOatIxM1wh+a0i1X/qI90hrElzi3Byi2pYti4GGnSgdRjfCN9ACSkzO21HDOav4l800l/e0MYo1LRLjhi/aTN9STHYNoy0vzdMKI/iYvVoNtHEm5sCXNLsPKKljBgEgm0aYK1WPWNeMkglGAlzD7BqspLYdtoIYx0w1DHPEWnwulkqwguNcaUHFuO3RjzG2PM6tC004wxvw1PuLFj1BcgidFZNyFPlFyyFoC2Q9vCHZaKEgOjPtJkGEfy3LqQrihI46ApwduiY0DG+Ef6AUg8wQQrdanVladx15YwRaQWAhnts27MMcEiZxUAfj2IXrQG3X5SZARHwuy7CAIsL0hlvynB3az758Wqb8TqfQLMqQWrKj+FfcFQoW5txVoQwllFUIXR4PAIqTKKmcMZjjGFy6xKgsON2m1psRocGSVVRnDOoXsSwPL8FA4Ei3H1HJinyBae4OgAAMmpc/+uASxZ9xY8xom79uVwhqWinM3TZ92IT5/Tcqll6wDoPbw9rPGo6NEz5CGTQexJczsBtrIghQPBEpzdB8Aa0q4Wmb4RH5njLVizPzlTlZfMwfFS7TqGcyHQBCtKDfe2WzeS515ZsSgvh0aTi02/hIuWd8ga/2GbwxkwgOxkF01xFST4erWbQYjxDBA0QnzS3M42j0lOSqLasYzULr32XCxxePsJYJtTIQOA0rJK+kwSI03aSrFYDQ70Ei8+JDlvTsuVZyVRLaXE+Qehv2meolOR1DviJdcxDK40sDtnvVxFdhK9tnRGHBk6Rm+B0AQrSg12twHgSs2d87I2m9DiWkLakA6kXqzcA1YFszl3TwI8mSusG7qTtgx3MyhJiM1+wqvozVpPuecQfs/IzDOrRcHp7WfUnjLrC32PWZo3dj06vWDoYhUcHDtBOrcEy2G3MZy+3Lqj3cAWpf5RHzmOEZjj+GmXw055ViINjjJtwVogNMGKUiN9VoKVmJl/QssPp1VR4G/C+NzhDEtFCe9g6KLcJ5BguQqti50G2/UHHMDh7mbAfmLjr8bElZ9NnPhp2KPdBGOBMYZEXy9u59w/N/FOO61xFWQMV2s3sMVqrHfACfRAiSvQSoKLWe+Il2zb0JwKXIypykthT6DYSrC0SnTU0wQrSnn7rTNgqVmFJ7S8LX8VDoL0NuhOejFyDrdaN1Ln/vkoKi6l06RqF6WQBG8Po3FzGytxrOJ1bwWg58CL4QhJRbneER95dOFJKjih5YfSq0gMDsNAc5gjU9HAMRI6ATbHFiyAsqJCmk0W3hat9LoYdQx4yJIBSJz7b86yvBS2juSDbxj6tWpttNMEK0oFQi0UqVkn1oKVVr4egI7qN8IWk4oOxhgSRq0WTtKK57z82GBZLQVsvZapgV588dkntZ6CojKaycXZrBccjgXtA26KpJtgStEJLe/ItyoJ6kH04uMPBIlzd1l3kubexd8qRFSCT/fPi1Jz3yg5gQ5IL5nzssvzrCJVgHYTXAA0wYpSMtyJDwe2hPQTWr5s2Xq8xo6nWX/AF5tBj5/cYCdeexLEz/3iuEtzUzhgSkjsPxTz3QwG3H4y6cMknVyCJSI0p6yjaGiXdvuKAR29/eRIP/b0uZ/gAEgPnQDr0UqCi077oIcsegmKfU5luMesLEjloCkhvq8aAr55iFBFypDHj390gMTAAKSXznn5qrxkDprQPke7kEY9TbCiVNxwCz22rDkPoB6TmZpEnRQT16NnORabxp4RCqUbT9KJdR9NS3DS6qrAGRiFvvowR7ewtHf3kSqjOFLn3pXnWP7CzWTTS2ejFpdZ7HrarO45iTlzP0gCWFJSTKvJxNuiB0mLTWPPCGXSjiepCE6gcE5uiosGZzl244fu6nmIUEVKS98oRRJq3TyBBKs8OwmPPYn+uAJtwVoANMGKUhnuJnrj596EPFFnYiVZI7VhikhFi9rOYQqlC0k7se5JAN6xSoIxXqmqp7MFgPj0E+uKO1H2inMBaNq55aTXpaJbf5u1X03Lqzih5cuzkzhkionT69EtOk29o1RIGyaz8oSWFxH8WSutO9pKsag0905MsMrmvLzTbqMiO4k6e1nM/3YvBJpgRSGvP0hBsBV3yty/gBO5M1aQG+wkMNIbpshUNDjcOcgSaSU+v+qE1xFfZI0BifVKgkOdVgteUtaJdfWaqGLNGQybePz1WklwsZNOq8S65Cw/oeWddhsdCaETYAF/OENTEVbfNUS5tBGXt+yE15FUtBK/sWFifP+82BzuGqZcQuOnT6AFC6xCF7t8RdB1EPzeMEanwk0TrCjU2tZChgwhmSd2dnRMXKFV7rWjZnsYolLRYqC1miTx4ChYe8LrKCvIpyGYgzvGKwl6uhsBSC84ue8agNMZR41rJVk9esHhxS5t4CAjtuQTquI5xp2xHCc+6D0cxshUpLU0HiZZ3DiyTzzBKs/L5LApwNuqLViLyb7WATbGNWGSciBp7iX8AapyU9g6mgdBP/TUhDlCFU6aYEWhluodAKQUrzyp9aSXWK0UfU3aV3cx8bWEkqK81Se8jqq8ZA6YUoIx3s1ABpoAcGae2NnEYw3kbqLcX8fogLYaL1b9Iz6KfXX0Ji874TGyAM7Q9ehGm2P7JMei07bd+p+/5oRXsSQniVpTQKBLx2AtJntbB1jnaEDy153wvmN5fjL7g6HfK+1CGtU0wYpCw7WvAVC06uyTWk9h+XJ8xo63XQfdLxZ9I15yB/cQEDvknHgCviw3hUOmiISBwzHdRckx1MKwJJ5QNcbJJC19CzYx1O14PizrU9Fna00bq6UOW9H6k1pPVvlaAkbor9sRpshUpHUOeqhw7yMoDijYcMLrWZKTTK0pwDVQF9P758XE7QvQ0N5Dib8e8k+898myvBQOm3wMAt3aghXNTirBEpFbRaRZRLaH/t4x4bF/E5FqETkgIpeefKixI6FzO522HFwZJ17EACAzJZEmycPRq1/CxWJbfS9vse1lJHsDxCWe8HrSEp10u4qtSlX9jeELcIFJcrfR55j7tWqmUrH+AvzGxtAhveDwYtWy568kiJes1W87qfWU5WXRbLLxdxwMU2Qq0l6q6WKz7QDuzBUntX8uSI2n0VYY2j/rBWUXg611vaw3+6z3tPzcE15PWWYixh7PQFyeVpmMcuFowbrNGLMh9PcMgIisAt4LrAYuA34sInOvVxqD3F4/S0d20J564mc4xogIHXElpA7HdinuxeSl3dWskxoSll940usKZiyxbsRwP+50XwfD8SdfQXB8fRmZ1NiXkNyhFxxerJyHnyOIjbjKEz9IAijJTKSWQpx9Wul1sXh5dzWn2w6SsPLkzinbbIInLVSFULsJLgp/PdTJBfadGHsclL3lhNfjsNtYkpNEk60wpn+7F4L56iJ4FfCgMcZjjDkMVANnzNO2FpXtr79AnvTiXHFZWNY3nFxOrr855i8ouxh4/UHY8zh2MThWX3XS63PlLrVu9MTmIHu3L0Ce6cKXfOKFCibTmbGRcvc+gj6t8LTY7G7q45zRLbRlnQkJGSe1rninnQ5nMWmj9Xpx6kXA7QsQV/0MDoLIinee9PrsuaEqsd3axX+hCwQNT29v5Jq415AlF0Bc0kmtryovhf2+XKsFS/cdUSscCdYnRWSniPyviIz94hQBE/sdNYWmqRmMvvEQfmxUnH1NWNYXzFyKCx+ebm3FWuj+vLeNvw/+gaG0ZSfVh3tMdn4pQyYed3tsdlFq7+4lWwYwqSdfon0iW9lZJOClef8rYV2virw3n/s1JbZO0s/6YFjWN5JSTnxwFAbbwrI+FTm/2dbIu4J/ZCRtGRSddtLry88toM8kEejUBGuh+8vBDpYPvUJWoBPWv++k11eVl8xudw64+2GkOwwRqvkwY4IlIn8Wkd2T/F0F/ASoBDYArcB35xqAiNwkIltFZGtnZ+dcF19U2ru6Wd/1NPvTzicuLTzjQsauldRRp9VmFjJ/IMjrv7+X1bZ6Es7/9ElVLxuzJDeZepOHJ0aLoPS01gHgyjq5C3ofq3DdBQB07f1LWNerIquld5j1NT+hz5FD4sb3hGWdwcxQK7KOpVjQvP4gu59/iPW2WhLO+0SY9s8p1JoCPG16MeqFLBA0/PBP+/m863FMWimsvOKk11kVKnQB6L4jis2YYBlj3maMWTPJ3xPGmHZjTMAYEwR+xpFugM3AxKOW4tC0ydZ/lzFmkzFmU07OiV0XYLHY/ej/kCmD5PzdZ8O2zqxSq1T7YLOWal/Ifv7HN/jI8E8ZTFmKfcN7w7LOiuxk6kwethi9Ds9wZx0AibnlYV1vWVkljeThaHo1rOtVkRMMGp7/5X+wTmoIXPQVcMSFZb0JBdaFikda94dlfSoyfv77V/mM+8cMpy5BNn4gLOtckpPEYVOATYtULWg/+2stp7U9zApTg1z8/8DuPOl1WglWgXVHKwlGrZOtIlgw4e41wO7Q7SeB94qIS0QqgGXAayezrcVu7xt/5dzmu9md+lby1lwQtvUWl5QzZOLxd+qXcKH60/ZqTn/54+RJPynX3RWWHTRAcUYC9RSQONIYk6WAvaGLDGfkLwnrekWExuR1FA3t1P7xi4Axht/cdwfX9f6UxtwLyDo7PN0DAbILlzBq4hhq1gRroXpq60FOe+2zZNpGSPqH/wvb/rk8O4nDwXziR9vBOxKWdapT6/kDHez60718yfkAZvk7YG14Wr5LMhPpsOVZl2vRMXpR62THYH1LRHaJyE7gQuCzAMaYPcDDwF7g98AnjDGBk9zWotVSX03Kkx9hQFIpv/GusK47JSGOZinA2R+brRQLmTGGR/78IrmPXstptkP4rvoJFJ8etvU77TaGEkuxm0BslmoPPefE7PB2EQTwFp5Bpumnp0kPnBeywVEPT/7oX7mm5iu0pKyl+B/vC0v3rzEVOcnUmXwCXXqQtNAEgob/e/p5Sp68js22A5gr7wjL2NgxqfFOuuJC40N7tNLkQmKM4d6Xannpvq9zu+MHmMLTkGt+GrZ9h90mFGYm0+ko0M9GFHOczMLGmClP5RljvgF842TWHwv2vfk3Up74EBkM0HPNg+Rkhq9k9JgeVxFlo5pgLSRvHKyn5on/5h1DjyIOB96r7yFh3clXDjxWIGMJtGGVe82sCPv6o5lzuJVuySDL4Qr7ugvWXgAHv0Hdtj+TWXLiF4RWkeHx+XjpD78mb+t3uIoaqnMupvIj9yCulLBupyQzkWdNPmfrCbAFwxjDa3trqXvqW7xr5DFsDgf+v78X15rLw76tQMYS6MHaP+evCfv6VXgZY3ippps/P/0IV3T/jA/aq/EtvRTne+6GMO87yrOSaGjKJ18TrKh1UgmWOnFDg/3sePDrbGr6JYOSTPc1D1O2/vx52dZISjm5XS9b3cDs+pZHq+7+IV594XfIrl9zrucFTpNRGgovpeTabyEZ5fOyzfjcpdAGwe5abEvnZRNRK9ndRp8zl6x5WPeyVafT+5sUgof/AvzzPGxBhVsgaDiweyttr/yaJS2/5UJa6LJl03D+91n61hvD2nI1xuWw0+kqJdW9FQK+sHUvU+HX1NXP9r/9HueeX3OO56+cKW6aCy+h8LrvIenhbwUHiMtdZiVYOs4mqnUMuvnr69vpeuNxzhn4HV+11TGSkIu59Ic4N35wXvYd5dlJ7K/NYXPPi4gx87INdXL0aPsU62hvZf/TP2Rlw684h162p11I5Q0/JjsrvNfiOUpmBY6uAKNdh0nIWzZ/21FzMjA8wqFdr9Fz8CWSml5krecN3iGjuHHRVHQpjss+Q2lp+LoETia7oJShHfFI20FO7socC0+ar4Ph1Mp5WbfNbudQ6llU9b9C0O/H5tBdbbTx+HzUH9pDx56/YBpepnTwTVbRxiqgxrWKA6ffQtWF7yfbGT+vcYymVmDvCUJvPWTH2FmOKGWMobN3gMN7XqXv4Eskt73KWu+bXC6jjJBAW8llON9+C0VF4esSOJnCvBw696WR3lmNpt7Ro2fIw659e2nf/zKO5tdYPfI677I1WY+lr8B39rdJ3HQ9zOO+ozwrkepALuIdhOEuSI7tInHRSH/1T4HhoQH2/eXX2PY8yurhVzlffOyL30jf237Ghk1/N+/bj8+rgoPQVb+XEk2wTjnPUA8ttXvpatzPaHsN0nuYjOFalgZqOV18AHTbsqjLv4TM9e+k6PR3sDTM3QmmsiTHKtVe0FEdUwmWzx8gz3SyP+m8eduGLH876a//iX2vPsPKc66ct+2o6fn8fjqa6+hq2MtAwy7sHXvJGDpIqb+eKvFQBQyQTFPKenYu+Qhlb7mWyryyUxafLXsp9IDpOohognVqGYO7r5WOuv10Ne5npK0a6TtM+kgDS00dZ4pV/KfLnkNT4aXkbHgnORvfyZKTvFDsbJVnJXHY5LNaE6yIcHu8tDXV0FG/n/7mQ/i6a0kbOERV4BBvlX4A/DhoydhI56oPkbPxcjJzV5yS2MqyknjWhC7n01OrCVYU0gRrHvh9Xmp2vEjPnj+T3PIyS9272SReukhnR941lFz8MVYun9+WiYmySq0xIIMtsXlB2XlnDN6+FrobDzDQchBvZw22vjoShxrI9DSTxiAVwNgIp15Jo9tVyr6s95BQfibFa88lK6+SrAg08VdkJ/GGyackxkoBd3W1UyAeJD28FxmeaPUF1zLw2pcZffWXoAnWvDHG0D0wTHvjIQaaD1jfv97DJA41kultojDYTpH4xq90308yLfFL2ZdzNc7CNeSuPI+CyvWssp1szacTk1y4Ag7CcOsBkle8IyIxLGbG76WnpZbuxv0Mt1UT7KklbqCe1NEmcvxtJOKmFCgFAkbosucwkFTCwez3E19xFiVrzyM7q4TsCMRekZ3E7mA+63r3RmDri5/VUtlDZ8NBBlsOhX6760kabiTT20K+6aBc/JSH5vdjpzOumO6ccxkt30T+yrcQV7SeUmfCKY+9IjuJ+rFrYfXUQumZpzwGNT1NsMIgGAhQu+dVunb9iYSmv1E5spPlMgrAYVsZO3OvJHXj37P8jEvJjkBXocLiMoZMPIGu2DqIDifrR7qansYDjBz3I91KPF4KgAKsH+kWcmh3FNCQ8lbIqCAxfynZpSsorFhBRlI6GZF+QiH5qfHUSzHJI6+D3wPzUPAhGvW1HqYAiMsqnbdtJCal8FLelZzZ/hAN+16ndOVmAOoP7SIhMYXcovJ52/ZiM+L20NpUR0/zIUY6DhPsqcM52EjyaCtZ/jYK6CJbguPzj+Kiw1FAf1I5u1IvQLIqSMxbSuGy00jLLSEtisYrFBUW0W1SCLTsJznSwSxQo0P9tNfvp7/5AJ4O6wRXwlAjGZ5mcoMdZElwfKyl2zhpseXTGVdIfepmTEY5cbmV5JatpHTJCvLi4smL6LM5ojw7kadMPvHuv4BnCFz6CZkrt9dPa0sjPU0HGG49RLCnjrhB67c7z99KrvSRO2H+QRLpdBTSl1pFV+rfYc+uIKVgGUUVq4nPKqHA7qBgyq2dOgVp8bTbcgliw6aFLqKSJlgnwASD1B/cTvuOP+JseJElw2+ylCGWAo1SyJ7sS3BUvpXy0y+lIq+YSNdmS02IY7/ka6n2GQwP9oW6AhzE21k93gpl/Uh3kiVm/Ed61MTRInm0uoqpTj2TYHo5zuxKUguXkVuyjMKMFEps0XMQNxWbTRhMrsA2ErQGUuetinRIp8RwRx0ASTnz2xVs2bu+Qv9PniHu4ffxUvl7SWjbysbRl9nl2kjuv22Z120vJH6/n46WerqbDjHcUYuvuw7HQCOJIy1k+trIM51USoCJI+a6JZPeuAL609bTk1aOM6eSlMIqsktXkJBRSFkUJVHTWZJtXVC2tLs60qFErWAgSFd7E12NBxhqPUSguxZnfx3Jo03k+FrIon+8lQGgzyTT7iigKWkltSmXYcuqICFvKZnFy8kvLmeJ00l4r343PxLjHPQmlIAfq5WiYF2kQ4o6Vgv2EO0Nh+hvPoinsxZbn9WCneFtoSDYRoV4xo/DgkbosmXR6yqiKeNcGtMrcOUsIa2oiuyS5aSkZpOyAPYdDruN/MxUekbzyO7VY7topAnWLLU1VtOw9RlstVsoH9xGOX2UA23kcCj9PKg4n9LTL6WkuJL5qSd0cnpcxVSMxPaX0BhDT1c7HfX7GGo5gL+rBmff4aN+pCcmw70mhXZHAY1Ja6hOKcWWtYSE3KVklFRRUFRBZZyD+SmRcGoFsqpgBOg6EDMJlrfHugZWZsH8Hmbl5BWx/4p7SXrqZt5y+Id0kw5ApTv2uvyMDPXTVme1Mng7DmHrPUz8cDPp3jbygh0Uip+JpX66Sac3Lp+etNV0pJbgzConKa+SrOJlpOWXk+VMmJcKkKdaYXoCr1LI8sHdkQ4lonx+P62NtfQ07me07SCmu5b4wXrS3E3kB9rIFfd4S0PQCB2STXdcITUZ53EwvRxn9hJSCqvILV1BemY26QvgIHk2ghkV0IlVqj1GE6xg0NDe3UN7/X4GWw7i66wO/XY3kutrJZ8usuXIRd3dxNHhKGAwqYiDqW/BllVBYt4yskqWk1G4hFxnwlGtVgtVeVYS9U15ZGuVyaikCdY0Dm3/Kz0v/oKCnlcoDTaTD3SRTn3q6RwuO4/CjZdRWL6c/Aj13Z+LkeQycrpjo1T7QE8HzbV76G/aj6+zmrj+OtJGG8j3t5AlQ+MHZdaPdBZdcUXjP9JxOVYrVHbpStIzsshYJD/S00nIX06wQTAdB7GvjnQ08ycYNLR2dtFetwdH40t4jZ3U7Hms3hmy4vQLMBv3MDDQQ2ZqBi/f+xXOPnwHwwM9JKVmzvv2T6WRwR5aavfR02h99xx9h0kZaSTH10wOvUe1GvSQQpejgM7k5bSkXIw9s4zEnAoyipaRU1xJVnzyokigZmK3Cf0JpaR4toB7AOJTIx3SvPH6/DQ31NBZvxd3+yHoqSVxsJ5MTyOFwTZKxcdYp12PcdJmz6cvvog9KWdAZugEV3EVuSVV5McnEP6rRkaf+NylVoK1yA+ig0FDS2c37XV7GGo5iL+rhrj+w6SONpLvb6FAeo/qmtcraXTHFdKdspGOjHLiso+0QsVnFFEaA7/d5VlJ7KvN47SulxZ1qfZg0NDSN0xDcwuFBUWUZy+MklyL+0j7JPXV7WRd5285lLCelpLryNtwGeUrN5O9ABKq42QuwdEdwNNdhyt34VeqMsEgba0NdNbsYKR5D9J1gJTBGgq89WQwwNghStAInbZsul3FHMr4O0xGBfH5y0grWkFe2XLyE5Ji4kd6OiV5WTSbbDJa9i6KMSD+QJDGlhbaa3Yw3GR9NtKGaijwNVAk3ePFDqrjlrPUZj8lMYnNRmq6NUzelbccDkNr7R6Wbpi/KobzqaejmbbqHQw178F0HCB5oJpcTz059DBx79JFOl1xRdSln01NegXO3EpSC5eTW76SzPQsFld6eeK86ZXQjtVKUbgx0uGctKFRN401e+mr34WvbR9xvQfJGjlMcaCJCvGO9xTw4KTdXkBfUim7U89HsipJKqgiu3QlWYUVlNnsnLp6jtGpMDeH9t3pZHRUExfpYMIgEDQ0tzTTVrODoea92LoOkDxYS4G3nmLpYmLZoR7JoNtVRHvGW2jNrCQ+bykZxcvJLllBRmL0jGWOlIrsRPYFiqxS7f1NME/XYztVAkFDfWc/TbV7GWjYQ7BjH8kDNeR561hCC/2mgKcvfJRPXLgwjmE1wZrG2ktvRC77EOviEyMdyklLLKiCQ9Bas4vyBZZgDfa207jnFQbrd2A6D5A6VEORr4ECGR4/ozVAEs3OMg5kvBWTuZSE/CpyylaSV7acPFdi1AxajkYV2UnUmEJO7zwQ6VDmJBA0NLS20VG9jdHGXUjXkc9GhfSNH8SN4qI9royu7M10ZFWRWLCcrLJVVJZEpjtkZvkaeAV663ZClCdYw/3dNO57lYG6NzEdoZMYvnoyGRxPjoaNi2ZHKYdTN3Mocynx+VVklqwkv3wF2UlpEam+ttDE5VVBO/g7D+FYQAlWMBCgqXYvHYe2MtqyB2fPIbJHD1MSbGZlqMQ5QJvk0hVfxp70M7HnVpFatJycslWk5pRRarMxf6VmFr6K7CRqgoWsb9+3oBKsQNBQ39ZF+6GtuBu34+jaT8pQLUW+ekqlf/w9dxNHm7OUnqzT6c6uIqFgBVmlK8koriLTlaInYaaxoiCVJ4OhlLRj34JJsIJBQ3PvMI21+xioe4Ng+34S+6vJ99ZRQStLQpevAeiy59KXtoT6zPNwFa3j/WcunL2FJljTiE9YGM2Qs5G/bBO8AIN12+DsayIdzqRMMEhnczWt+1/D3bid+K7d5I8eJM90M3Yo3EMq7a5yDqZfgslZQVLRavKWricrt5iVC7FlMQpUZCfxmCnk3IHnIRiAU9SqMxdur5/qmoN0HtqKr3kHyb37KPJUUyHt44nUCPG0xpXTlnMObTkrSClZTf7SDSRkV1AeRZ+N0mXrGTCJmMZXgU9EOhyLMXS11tG6/1VGGt7E1bWH3OGDFJp2xq7qMkASLc4yDmVeQDCrioSi1eRWrCWveClV9uh5fRei3LIVBHcIPfV7yF0f6Wgm5x4ZovHANnprtmHadpHav59Sby2lYpU5Dxqh3Z5HT1IFezIuwJG3koyyteRXriU/MS3mewqcqOX5KfzBVHBm958g4AN79F0Ry+0LUF1XT/vB1/E2bSepZw+F7moqaGFJaGzUIIm0x5XRnHM+LTlVJJesIW/JOpJzl0TV/nkhWVmQysGxNr/23VB1SWQDmsSoN8CBpg6aD23H3fgmrq69FIweoop6SkLVtgE67Pn0p1dyOOtikopXk7NkPfEFK8l2pSzYk3SaYMWIsqIC6ijA1vJmpEMBIOD30XRoB13Vr+Nv3kFy716KPTXkMkQuVqnzRlsRDckbqM5ZQ1LZaRQt30ROfrGe0QqzrGQXLfHLcPh/Bx17IX9tROPpHxrl8P436Kt9A9O2i7T+/ZT7a1gjQ+PztNoL6ctcxa7ca0kq3Uj+stNJzCmjcgH0QbfZ7RxOWE1e7xsR2X7Q76fl8G46Dr6Or2kHSb17KHJXk83A+A9ZoxTQmriCuux3kVi2kYLlZ5BbUMoKPRCaF+vL86kzeTibdkQ6FAD6Olto3vcqQ/Vv4ujcQ9bQAUoCTSwLHSwPmQQaXJXszr0cW8FaMitPo7hqIwUJKVFRwnoxKc1MpC5uGfbg01YrRYQLXfSPeKk5tI/u6tcxrTtI6dtPua+aNdLDmtA8XbYcutNXcCDvShJLN5K3/AxSsssXRHW+hSTZ5SAzK492TxF5Ta9HOhz6R30crK2js3orvuadJPXupcRTwxppZkPoMhqjkkBHchWt2VfTXbye7KWnk1y0mty4pEVReGQiTbBihN0mtCWvYtnQNjjFgyFHhwdp2Pc6fbXbkLadpA/sp9R3mDLxUYZ1XZIGRzn7My4imL+W9CWnU7JyM+XJqUeV3lXzJ1j2Fqi5HVP/EnKKEixjDB29/TTse52Bw2/g6NhJzuB+lgTr2RDqIuDBSUtcBU1ZF9NWuJ6spaeTu3QjBfFpC/pAbrT4HNZXf5+m6t0UL10z8wInyOMepmn/NnpqXse07iKtfx8l3sMUi4diwGvsNDjKOZh+LsHctaRWnEbxyjMoSc+Mymqoi1VJZgJP2FdzSddrEAzCKUpkTTBIa2MNrQdew9v4JgnduykcOUAuPaF6l9BKNm0Jy2jNupT4knXkLjuDgrIqVtmjr6V7MRIRTNHp0Ag0vHLKEixjDB19Q9QdeJOB2m1I+24yB/dTGajlNBkBIICNNmcJvTmb6S9YR0blZnKXnU52UvaCbXVYaDaWpvPK3mVc2fjqKS100TngprrmAD3V2zCt20nv30eFv4bN0j0+T489h96s5dTnX056xWlkVm4iIaOcshg5UacJVgzxlL6VrL3P0nnwVXKWnzUv2+jtbKFp36sM17+Jo2MP2cPWmc/loTOfAyTRELeUN/Pejb3IOntRUrWBKudC6l2++CyrWkVTdTZpe/9Iypn/FPb1B4OG+tZ2Wva/zkjDG8R37iJv5CBLTCN5oTNbgyTRklDF/qxrcZWcRv7yzWSUrKZiEVa9rLjgeoKHfkDT8z+jeOkPwrLO/q5Wmve/xmD9duwdu8gePEBxoIlKCVIJDJoEGuMq2Zl7JbaC9WQu3UTJ8g0sdSWwsEZlLj4iQn/emSS2PYu/aRuO0s1h34bX56e+eg/d1a8TaNpOcu8eSryHKGSQQkK9BuzFNKSeRk3uOpLLNlK04gwKcvIX9MmMxWDJsjXU1BdQuPcZEs68KezrDwQNdS1ttB7YykjDduK69pA7fIBK08iZ4ye74mh1LaEx7+20F60jp+oMMso3UBSXOF44SJ16b63K4YXtK7iKLdD8BhSfHtb1B4OG+u4h6g7tYaBuG462nWQN7mNp8DBny4A1D0KHs4SBvM3UFK4na+lmK6FKiu1CRid15CIiDwHLQ3fTgT5jzAYRKQf2AWOj5l8xxnzsZLalTl7JmVcT2PNVWv52/0knWB6vl4aavfTUbMPfvIOk3n0UuqvJpWe8sk8b2bQljp353Ehe1WYKSpexJkbOXiwkl67O57GnzuLDDb+DoU5IzjnhdQ25vdRX76O3bgfu5l3E9xygyH2QMtqoCCXavZJOW/Jy9uS8jcSy0ylYcSYpeZUsj5EuJHnFlWxLPo91TQ/QXPsxipasnPWyfp+Xptp9dNZsw9e0g8TefRSOHiKXHtJC87STSVvCUlozL8ZVsoHcZZspLF+hrQ5RrOiMq/A88W26/voLit5/4gmWMYbOri6aDr7BYMNO6NhHxsB+Kvy1LJNRlmG1XDY6y6nNfCs1+etIW7KJkhXaayBavWNdAU//8TT+seEPMNAKqSee8g65fdTVHqCrehv+FqsbV5G7hkppH7+u44Ck0J5UxaHsc0ko3Uj+ijNIyl9B+SI82bXQnb8sh6/JJvzixLHzoZNKsEa9AWqaWmg9tJ3hpl04uveTO3yIFRymIjReyo+dNlcF3ZkXMliykdyqM0gqWU++K1nHWR5DjDEzzzWbFYl8F+g3xnw9lGA9ZYyZU9+XTZs2ma1bt4YlHjW5l755BevdrxO4+VVS82YugDs0PExr7W4GGnfjb9uPvfcQGcOHKQo0Ex86s+UzdpocJXQlVxHIWUNy+UaKV5xBerZ+3RaSr//icf697kZG17yP5Hf/eNquBsYYuvsHaWs4SG/jfjxt+3H1HCB7pJayYCOJ4hmft8OWS3fKCgJ560gpP438lWfiSi9atNfsmK2Ww/tJ+uVFDEsSXWd9iaXnXENicjoAoyPD9LTV09/RwGBrNYHOgyT015AxWk9hoIU4CQDgNzYa7aV0Jy/Dl7uGpNKNFC7fTHbe/F/fS4WX2xfg2f9+F28L/g3+6QVcBdMn3X5/gNbWpvELp0vnfpIHDlHgOUwBXePzjRV/GchYjRRuIGvpZgqXbcQeFz/fT0mF0S13PcH/tNyAd/V7SXjPndPOa4yhZ2CYptp99DXuxte+H1dvNZmj9ZQEm0idUFyg1V5Ib8pygnlrSS3fSP7yzcRlFMf8/nkh+cIjOzh755e5yvkqtptfguzp+yT0D3upa2qgs34vI60HsXcfIGOohrJAPUVyZN/hFhddCUtxZ68hoew0cqrOIK5gNThc8/2UFhQR2WaM2XTc9HAkWCIiQANwkTHmkCZY0Wvf7jco+fU7GLSl0rrieuIK1mBE8A334h7ogv4m4oaaSRppJsPXRq7pwRZqdQgaoc2WS1d8OZ70pTjzV5JZeToFyzbgdC38UvaxrrFnhD/d/k98mCepybqAkbK3EXClMur14x/shKF2GGwnebSJXF8LBXSNfzbAumZJR8IS3BlVOApWk1m+nvzK9dgS0qbZamw7+MZfSPrtRyky7QCMGBd2grgmlKkF6yRGi72AnvgyRtMqicurImvJaRRVbSRuEVxGQlmef3076596Jzabnfol78XkrMRvhIB7CH9/G2aoA9dIKxnuRvIDrSSLe3xZLw6aHaX0JVcSzFlJcslaCpadTmpexSkb06Xmz6H2Qbb8+BN8VJ6gLvNcBiveji8+A+/IEP6RPvz9bTiHmklyt5LlayefLpyhEzEA3ZJFd0I57vRKHHkryFq6idzKjcgivrB1rGjpG+XDtz/Bg8FbiHM6aap8L6MZyxnxC57hPvwD7QQHO0gYaSHL10KJaSNlQpLtw0GHq4zB1GVI7koyKtaTXbEBW0aZ7jtmYb4TrPOB741tIJRg7QEOAgPAl40xf51i2ZuAmwBKS0tPr6+vP+l41PS2/e0PpD37BZYG6457LGCEDsmmJy6f0cQiTFopzrwqUkvWkL9kDYlJKac+YHXK7G7qZdcDX+btQ4+RLsNHPRY0Qr8tle64QkYSSwhkVBCXu5S0oiryy9fgSNFhzSfC5/Ox52+/ZaRuK3Z3D0GxY4tPxZZWSHxGEVlFS8ktXY4jTs8axoItL75A2rP/yvrgvqNOYIB1TbduWza9rmI8qWXYsitJKVhGTtkq0gqXIlFYwluFzxt1Xez79df4u6EnyZW+ox4LGqHHlkFf6Lc7kFaCK38FmWVrySlfrSe6FrkDbYPc9chTXNvxfTbLgeP2HW7i6HXkMphYgje1DGfOUjKKqsgqXYk9awlo988TdsIJloj8GSbtWvnvxpgnQvP8BKg2xnw3dN8FJBtjukXkdOBxYLUxZmC6bWkL1qkTDBqa6w4y0H4YuxgcSRlkZuWQnlOCTQtOxLy+YTddjQcw3lES4+yk5xSQmJ6nB3BKnQLGGFo7OhnuOIzTDq74JDLySohP0oNkBZ39I/S1HEQ8AyQlp5KUmklKRi7i1G6fsa532Et3dzuBvhZSnIbk1HRSsgoRV4p2+5wn89aCJSIOoBk43RjTNMU8W4BbjDHTZk+aYCmllFJKKaUWgqkSrHB0rnwbsH9iciUiOSJiD91eAiwDasOwLaWUUkoppZSKWuHodPle4IFjpp0PfF1EfEAQ+JgxpicM21JKKaWUUkqpqHXSCZYx5sZJpv0G+M3JrlsppZRSSimlFpKwXQcrHESkE4i2MoLZMOGiImqx0/c7duh7HVv0/Y4d+l7HDn2vY0s0vt9lxpicYydGVYIVjURk62SD19TipO937ND3Orbo+x079L2OHfpex5aF9H7rFcSUUkoppZRSKkw0wVJKKaWUUkqpMNEEa2Z3RToAdUrp+x079L2OLfp+xw59r2OHvtexZcG83zoGSymllFJKKaXCRFuwlFJKKaWUUipMNMFSSimllFJKqTDRBGsaInKZiBwQkWoR+WKk41HhIyIlIvK8iOwVkT0i8unQ9EwR+ZOIHAr9z4h0rCo8RMQuIm+KyFOh+xUi8mro+/2QiMRFOkYVHiKSLiKPiMh+EdknImfrd3txEpHPhvbhu0XkARGJ1+/24iEi/ysiHSKye8K0Sb/LYrk99L7vFJHTIhe5mqsp3utvh/bjO0XkMRFJn/DYv4Xe6wMicmlEgp6GJlhTEBE78CPg7cAq4H0isiqyUakw8gOfM8asAs4CPhF6f78IPGuMWQY8G7qvFodPA/sm3P8f4DZjzFKgF/jHiESl5sMPgN8bY1YA67Hed/1uLzIiUgR8CthkjFkD2IH3ot/txeQe4LJjpk31XX47sCz0dxPwk1MUowqPezj+vf4TsMYYsw44CPwbQOh47b3A6tAyPw4dt0cNTbCmdgZQbYypNcZ4gQeBqyIckwoTY0yrMeaN0O1BrAOwIqz3+Jeh2X4JXB2RAFVYiUgx8E7g56H7AlwEPBKaRd/rRUJE0oDzgbsBjDFeY0wf+t1erBxAgog4gESgFf1uLxrGmBeAnmMmT/Vdvgr4P2N5BUgXkYJTEqg6aZO918aYPxpj/KG7rwDFodtXAQ8aYzzGmMNANdZxe9TQBGtqRUDjhPtNoWlqkRGRcmAj8CqQZ4xpDT3UBuRFKi4VVt8HvgAEQ/ezgL4JO279fi8eFUAn8ItQl9Cfi0gS+t1edIwxzcB3gAasxKof2IZ+txe7qb7Lety2uH0Y+F3odtS/15pgqZgmIsnAb4DPGGMGJj5mrGsY6HUMFjgRuRzoMMZsi3Qs6pRwAKcBPzHGbASGOaY7oH63F4fQ2JursJLqQiCJ47sYqUVMv8uxQUT+HWtox/2RjmW2NMGaWjNQMuF+cWiaWiRExImVXN1vjHk0NLl9rEtB6H9HpOJTYXMOcKWI1GF19b0Ia4xOeqhbEej3ezFpApqMMa+G7j+ClXDpd3vxeRtw2BjTaYzxAY9ifd/1u724TfVd1uO2RUhEbgQuB95vjly8N+rfa02wpvY6sCxUjSgOazDdkxGOSYVJaAzO3cA+Y8z3Jjz0JHBD6PYNwBOnOjYVXsaYfzPGFBtjyrG+x88ZY94PPA+8OzSbvteLhDGmDWgUkeWhSRcDe9Hv9mLUAJwlIomhffrYe63f7cVtqu/yk8D1oWqCZwH9E7oSqgVIRC7D6t5/pTFmZMJDTwLvFRGXiFRgFTZ5LRIxTkWOJIPqWCLyDqyxG3bgf40x34hsRCpcRORc4K/ALo6My/kS1jish4FSoB641hhz7ABbtUCJyAXALcaYy0VkCVaLVibwJvABY4wnguGpMBGRDVgFTeKAWuBDWCcU9bu9yIjI14DrsLoPvQl8BGsshn63FwEReQC4AMgG2oGvAo8zyXc5lGTfgdVNdAT4kDFmawTCVidgivf63wAX0B2a7RVjzMdC8/871rgsP9Ywj98du85I0gRLKaWUUkoppcJEuwgqpZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppVSUEJFyETEi4oh0LIudiNwoIi9GOo5oIyLniciBSMehlFILmSZYSimlFjQRuVVEfCIyNOHvC5GOayEyxvzVGLM83OsVkQ0isk1ERkL/N4R7G0opFS00wVJKqTDRlqeIesgYkzzh71uRDiicFvJnS0TigCeA+4AM4JfAE6HpSim16GiCpZRSJ0FE6kTkX0VkJzAsIg4ROUtEXhKRPhHZISIXTJh/i4j8t4i8JiIDIvKEiGROse4Picg+ERkUkVoR+adjHr9KRLaH1lMjIpeFpqeJyN0i0ioizSLynyJin+F5VIrIcyLSLSJdInK/iKRPeKxHRE4L3S8Ukc6x5yUiV4rIntDz3SIiK495fW4RkZ0i0i8iD4lI/Nxf6bkTkS+GXpdBEdkrItdMMZ+IyG0i0hF6LXeJyJrQYy4R+Y6INIhIu4jcKSIJs9z+PaH5/xSK4S8iUjbh8R+ISGNom9tE5LwJj90qIo+IyH0iMgDcKCJniMjLode5VUTumJikhLqXflxEDoW29x+h9+6l0DYenimpEZELRKRpNs9vDi4AHMD3jTEeY8ztgAAXhXk7SikVFTTBUkqpk/c+4J1AOpAHPA38J5AJ3AL8RkRyJsx/PfBhoADwA7dPsd4O4HIgFfgQcNuEJOcM4P+Az4e2ez5QF1runtB6lwIbgUuAj8zwHAT4b6AQWAmUALcCGGNqgH8F7hORROAXwC+NMVtEpAp4APgMkAM8A/z2mAP5a4HLgApgHXDjpAGInBtKHqb6O3eG53CsGuA8IA34Wij+gknmuwTr9asKzXst0B167Juh6RuwXs8i4CtziOH9wH8A2cB24P4Jj70eWm8m8Cvg18ckn1cBj2C9v/cDAeCzoXWdDVwMfPyY7V0KnA6cBXwBuAv4ANb7uQbrs3rCQonyVO/Pj6dYbDWw0xhjJkzbGZqulFKLjiZYSil18m43xjQaY0axDmafMcY8Y4wJGmP+BGwF3jFh/nuNMbuNMcPA/wOunayFyRjztDGmxlj+AvwRK2EA+Efgf40xfwptp9kYs19E8kLb+owxZtgY0wHcBrx3uidgjKkOrctjjOkEvge8dcLjPwOqgVexEsN/Dz10HfB0aFkf8B0gAXjLMa9PizGmB/gtVlIxWQwvGmPSp/mbrijFtccc7BcaY34d2m7QGPMQcAg4Y5JlfUAKsAIQY8w+Y0yriAhwE/BZY0yPMWYQ+K+ZXstjPG2MecEY48F6zc4WkZLQ873PGNNtjPEbY74LuICJ459eNsY8Hop/1BizzRjzSmj+OuCnTHiPQr5ljBkwxuwBdgN/NMbUGmP6gd9hJdwnzBizbpr359hkb0wy0H/MtH6s11wppRadBdunWymlokjjhNtlwHtE5IoJ05zA81PMXx96PPvYlYrI24GvYrWg2IBEYFfo4RKs1qJjlYXW12rlBxBatnGSeSduKw/4AVYClxJapveY2X4GPAncFEoYwGrxqh+bwRgTFJFGrJaeMW0Tbo+Elgm3h40xH5g4QUSuB/4FKA9NSmaS19kY85yI3AH8CCgTkUexWh7jsV7zbRNeSwGm7W55jPHX3RgzJCI9WM+/UURuwUqUCwGD1VKZPdmyoedThZX4bgrF5QC2HbO99gm3Rye5nz+H2MNlCOu5TZQKDEYgFqWUmnfagqWUUidvYtenRqwWqoln9pOMMd+cME/JhNulWC0oXRNXKCIu4DdYLUJ5xph0rIRq7Ei/EaicJJZGwANkT9h+qjFmpu5Y/xV6HmuNMalYLXFHsgqRZOD7wN3ArXJk3FgLVlI3Np+Enl/zDNs7jlglwoem+Ttv5rWMr6sMKyH8JJAVev12T3xOExljbjfGnA6swkpoP4/1nowCqye8lmnGmOQ5PK3x9zr0GmYCLaHn8gWs7ogZofj6j4lv4ucK4CfAfmBZ6D360lTPZ76INdZuqvfnzikW2wOskwlZKlZX0T3zH7FSSp16mmAppVR43QdcISKXiohdROJDhQOKJ8zzARFZFRrP9HXgEWNM4Jj1xGF1GesE/KHWrEsmPH438CERuVhEbCJSJCIrjDGtWF0JvysiqaHHKkXk2K5kx0rBamnoF5EirARjoh8AW40xH8EaYzZ2MP0w8M5QHE7gc1gJ3kszvVDHCpUIT57m769zWF0SVoLSCVbBEKwxSMcRkc0icmYo/mHADQSNMUGsJO02EckNzVskIpdOWNbIhCImk3hHaGxZHNZYrFeMMY1Yr7c/FJ9DRL7C8a08x0oBBoAhEVkB3DzD/GFnjFk9zfvzsSkW24I1fuxTYhUN+WRo+nOnJGillDrFNMFSSqkwCh08X4XVutCJ1aL0eY7e396LVYiiDasb2qcmWc9gaPrDWF31/gGre97Y468RKnyB1fLxF460JF2PlaDtDS37CNa4qel8DTgttK6ngUfHHhCRq7CKVIwd0P8LcJqIvN8YcwCrteuHWC0+VwBXGGO8M2xvXhlj9gLfBV7G6ia3FvjbFLOnYiVSvVjdHbuBb4ce+1essWeviFXN78+ExkmFxlINcqTb5mR+hdXNswer+MRYN8Y/AL8HDoa26WaGbpxY3Rb/IbTNnwEPzTB/VAh9Fq7G+lz2YRV4uTrSnxGllJovcnRRH6WUUvNJRLYA9xljfh7pWNTJEZEPYHUf/LcpHr8HaDLGfPmUBqaUUiqitMiFUkopdQKMMfdFOgallFLRR7sIKqVUjBDrordzKU6gFiER+dIUn4PfRTo2pZRaDLSLoFJKKaWUUkqFibZgKaWUUkoppVSYRNUYrOzsbFNeXh7pMJRSSimllFJqWtu2besyxuQcOz2qEqzy8nK2bt0a6TCUUkoppZRSaloiUj/ZdO0iqJRSSimllFJhogmWUkoppZRSSoWJJlhKKTWNtrZm/vrsk2jFVaWUUkrNRlSNwZqMz+ejqakJt9sd6VAiJmgMI6MeElxO7HZ7pMNZMOLj4ykuLsbpdEY6FLWA7b7vX3nb0G953XcHmy/7YKTDUUoppVSUi/oEq6mpiZSUFMrLyxGRSIcTEb19fWSMHMYtDuILVkQ6nAXBGEN3dzdNTU1UVFREOhy1gMUNtwCQ+uZdoAmWUkoppWYQ9V0E3W43WVlZMZtcAdi9AwDEm1ECPm+Eo1kYRISsrKyYaPkc9vjZ1dQf6TAWpWDQkBXoAqDSvRv3QFeEI1JKKaVUtIv6BAuI6eQKwAQD47e9I32RC2SBiZXPzbcfe4W8n62j476PRjqURWdg1EuJdFDvXIJDgtS/+WykQ1JKKbWAvXSghWd/8VUCejy3qC2IBCvWifHjw4nf2DCeoUiHo6JMS80OcqWP3OqHoa8h0uEsKr097aTKKF2lb8dvbAzWvBLpkJRSSi1grzz8bS6u/z4Nj38t0qGoeaQJ1iyICJ/73OfG73/nO9/h1ltvPWXbt5kgRuy4bYk4/SNHPfbKK69w5plnsmHDBlauXDke15YtW3jppZdOaruXXXYZ6enpXH755Se1HjV/jDEkjrYduV+tLSzhNNTTAUBCbgWH7eUkdGyPbEBKKaUWLLcvwAW+FwBIqH8uwtGo+aQJ1iy4XC4effRRurrCO/7CGEMwGJxxPhtBgmIj6EjAiQ8T8I8/dsMNN3DXXXexfft2du/ezbXXXguEJ8H6/Oc/z7333ntS61Dzq2fYS46xPpfDxsXoob9EOKLFxesZBSAuPomutDWUuvcf1WVXKaWUmq3uYS8ZDAKQ76mDoY7IBqTmTdRXEZzoa7/dw96WgbCuc1VhKl+9YvW08zgcDm666SZuu+02vvGNbxz1WGdnJx/72MdoaLC6Zn3/+9/nnHPO4dZbbyU5OZlbbrkFgDVr1vDUU08BcOmll3LmmWeybds2nnnmGe644w5+97vfISJ8+ctf5rrrrmPLli3ceuutZGdns2v7NjauX8vP7v4F+MDrHsaVlAZAR0cHBQUFANjtdlatWkVdXR133nkndrud++67jx/+8IesWLFiyjhramqorq6mq6uLL3zhC3z0o9ZYnosvvpgtW7ZM+9r8+te/5mtf+xp2u520tDReeOEF3G43N998M1u3bsXhcPC9732PCy+8kHvuuYfHH3+c4eFhDh06xC233ILX6+Xee+/F5XLxzDPPkJmZyc9+9jPuuusuvF4vS5cu5d577yUxMfGo7Z511lncfffdrF5tvXcXXHAB3/nOd9i0adO08S423cNeCqUbjy2Rl3wrOatlR6RDWlSCXivBsjkT8BecRkrvk3Q37COrfE2EI1NKKbXQ9Ax5KZQR6hxLKPfX0nfwb6Sfdk2kw1LzQFuwZukTn/gE999/P/39R1dr+/SnP81nP/tZXn/9dX7zm9/wkY98ZMZ1HTp0iI9//OPs2bOHrVu3sn37dnbs2MGf//xnPv/5z9Pa2grAm2++yfe//312Pv8Yh+ubeP0N6+A54BkeX9dnP/tZli9fzjXXXMNPf/pT3G435eXlfOxjH+Ozn/0s27dv57zzzps2zp07d/Lcc8/x8ssv8/Wvf52WlpZZvy5f//rX+cMf/sCOHTt48sknAfjRj36EiLBr1y4eeOABbrjhhvFqfrt37+bRRx/l9ddf59///d9JTEzkzTff5Oyzz+b//u//APj7v/97Xn/9dXbs2MHKlSu5++67j9vuddddx8MPPwxAa2srra2tMZdcAXh8QQqkB29SAfuoIHnwMOg4vbAZS7DscQmkLj0LgI79f4tkSEoppRaonmEPqYwwUPAWvMZOz8GT62mkoteCasGaqaVpPqWmpnL99ddz++23k5CQMD79z3/+M3v37h2/PzAwwNDQ9Ae4ZWVlnHWWdbD24osv8r73vQ+73U5eXh5vfetbef3110lNTeWMM86gqKgI09LF2jWraG5uxrs8B3yj4+v6yle+wvvf/37++Mc/8qtf/YoHHnhg0lan6eK86qqrSEhIICEhgQsvvJDXXnuNq6++elavyznnnMONN97Itddey9///d+PP6d//ud/BmDFihWUlZVx8OBBAC688EJSUlJISUkhLS2NK664AoC1a9eyc+dOwErCvvzlL9PX18fQ0BCXXnrpcdu99tprueSSS/ja177Gww8/zLvf/e5ZxbvYuP0BMmWAQEIWg6xEBg2074HSMyMd2qIQDH3X7K54yis2Mmri8DTtjHBUSimlFqKBgX6cEiC3oJSa+iIS2ndHOiQ1TxZUghVpn/nMZzjttNP40Ic+ND4tGAzyyiuvEB8ff9S8DofjqPFVE6/HlJSUNKvtuVwujAliE4Pd7iAQCOCzuXAGjr62U2VlJTfffDMf/ehHycnJobu7+7h1TRUnHF/OfC7lze+8805effVVnn76aU4//XS2bds243MaY7PZxu/bbDb8fmts2Y033sjjjz/O+vXrueeeeyZNGIuKisjKymLnzp089NBD3HnnnbOOeTHx+IKk4gVnIpK+HgbBtO5ANMEKi4DX+q454hJJS45nv60EV8+BCEellFJqIfIO9wCQmJrJLmcFpw/ui3BEar5oF8E5yMzM5Nprrz2qy9oll1zCD3/4w/H727dvB6C8vJw33ngDgDfeeIPDhw9Pus7zzjuPhx56iEAgQGdnJy+88AJnnHHG+OMmEBpQH0p6AvZ4nHjHB9o//fTTGGMAq+uh3W4nPT2dlJQUBgcHZ4wT4IknnsDtdtPd3c2WLVvYvHnzrF+TmpoazjzzTL7+9a+Tk5NDY2Mj5513Hvfffz8ABw8epKGhgeXLl896nYODgxQUFODz+cbXM5nrrruOb33rW/T397Nu3bpZr38x8fgDxOMFZzwFpZX0mGTcjW9GOqxFw/itBMvpslqtu5MqyRmtiWRIEffMz7/GX795FV6ff+aZF6ntb7zKQEdTpMOImI4BN9UdgzPPuEgFg4Yd+w4Q8IzMPLNSE41aw0wcyRkMpS8j098Bo32RjUnNC02w5uhzn/vcUdUEb7/9drZu3cq6detYtWrVeEvKu971Lnp6eli9ejV33HEHVVVVk67vmmuuYd26daxfv56LLrqIb33rW+Tn548/bsxYK1ioVcmZgACB0NiQe++9l+XLl7NhwwY++MEPcv/992O327niiit47LHH2LBhA3/961+njBNg3bp1XHjhhZx11ln8v//3/ygsLASs5O8973kPzz77LMXFxfzhD38ArG6JY+OtPv/5z7N27VrWrFnDW97yFtavX8/HP/5xgsEga9eu5brrruOee+45quVqJv/xH//BmWeeyTnnnMOKFSvGpz/55JN85StfGb//7ne/mwcffHC8cmIscvuCxONFnAmsKEhjT7Acf7MWuggXE+oiOJZg+bNWkG16cA+Et6LoQuEPBHlH0/c4z72FmmePHxsZC7Yd7mDDk5dgu/OsSIcSMS/9+Cbif7SB7rpdkQ4lIh57dT/rHzqDhp+/P9KhqAXGhBIsZ2IG9nyrWNJIs3YTXIxkrPXjhFcgUgL8H5AHGOAuY8wPRORW4KNAZ2jWLxljnpluXZs2bTJbt249atq+fftYuXLlScW4kPk8Izi7DzCUUERyRi4jw0Mk9h/CnVRMfFrOSa//2GqHi81i//w8+kYT5z5xDgmr34H/nT/g0f++nuvjnsf55Vaw6fmTk/XC/d/k/EP/zein9pOQWcCrf3yIM1+6icNX/JqK0y+JdHinXHX7AAU/XkqSeNiddQlr/vnXkQ7plHvy8Qe5cvs/ATD68TdIyK2McESnVv+Ij/5vrqTU1sm+ihtYecPtkQ7plHvgjv/H+7pCz/vLneCIi2xAasH4zYM/5137P4f5yHO80Cq89ekLaXrLNyi+5JORDk2dIBHZZow5rspaOI7A/MDnjDGrgLOAT4jIqtBjtxljNoT+pk2u1ORM0EqARay3yulKIGgg6HNPt5iKER6/1YJli0sgIymO9rhSnEE3DDRHOrTFwT92HSyrBStryQYABhpi88x9e/0BksQDQHZvbBb7cDa9Mn67dUfsXdi7pnOQTLG6Bya2vhrhaCIjdeDg+G1P3WsRjEQtNHaPdakhSUinqHQZAyYBT0ts/p4sdidd5MIY0wq0hm4Pisg+oOhk16ss410EQ2OwnA47HnEi/vAkWLfeemtY1qMiw+0L4MJLMM66Tpg3vRJ6gK6DkF4S2eAWA7+VTNhDr29JWSUDJhHTvne6pRatQLc1/uyNhLdw2uhLBIe6sCVnRziqU0vcvQyTgDGG0frpi/osRj2drSSLmxHiKXYfBO8IxCXOvOAiEu/tpZ9k0hii/dBrlC49N9IhqQVCvKEq064UStOS2GVKyO3eH9mg1LwIax8iESkHNgJjp7U+KSI7ReR/RSQjnNuKFWMJlkzo7uUTF/agJ1IhqSji9flwiR9HnNXCEpdvjVkzXQenW0zNkgTcBI2A3QmAy+mg3l5KUn9svr6eYavlwldoFeLpOhx74/3iPH2MONKptlWQ2B17Z54DXbUA7Eu/ADtBPO2x9V3wBYIkB/vpTqqk06Ti0aJCag7GCifhiCfOYaMtrpS0kfrIBqXmRdgSLBFJBn4DfMYYMwD8BKgENmC1cH13iuVuEpGtIrK1s7Nzslli2pExckfeKmN34TS+CQUwVKzye6ydtS2UYOUVlNBvEvG06hmxcBC/G484x1uQAfoSK8hxx+YPonfUSrDSl40lWLHXTdDl78fjTKUruYq80Vo4yXHMC40JdT8OVl4IQHtNbCXZXUMeMhnEkZzLQakgsVf3tWr2JNQrAod1yZyRlCWkBnq1kuAiFJYES0ScWMnV/caYRwGMMe3GmICxsoCfAWdMtqwx5i5jzCZjzKacnJMv2rDojLdgTbg2lTMeEfB7dRxWrAt6rTLBdpd1bbXK3GSqTRHedr1WUzjYAh48HD2A/f+zd99hclZl48e/Z/ps772XbJLNbhJSACEQOkgJSAm+Uv0pryh2xfKKIr6+KmCjKIoIFqQISBFBaihCgPReNsn23sv0mfP745ndbDbbd3ZnZ+Z8ritXdqc8z71Tn/s597mPK6mEBNmDpy/yOgl6HFp5S27pUgakGVdz5B1cRnv7cJsScCeWEIUdX29TsEOaU167NockfeHH8Egd/fWR1QGtz+EhUfThi0qiK6qQZEcN+NTJTmWSPE58HK2KECkl2sVtB4MZlTILZpxgCW1V2oeAvVLKXwy7PHPYzS4DIutTOECk/4N7sMkFgN7obxnttAclJmX+GGzXP3g2rDg1hkO+LAxdVUGMKnzoPE7cIxIsU7rWlbLlcOSN3nidWoIVFRNPnS4HS3dkvc5cHh9x9OM2xWNK19b266jdHeSo5pbHn2BlZ+VQSwa6jsgqEbQ53STSh7Qm40oowSKdqqmQMmnC68DN0aqI6Eztc6SrTi04HG4CMYJ1CnAtcKYQYpv/38eBO4UQO4UQO4AzgK8GYF9B8+yzzyKEYN++sc/YVldXs2TJkoDtc//+/Zx/4TqWnXM1y05YwU033QTA7n37+dfr7w6t0TMdn/70p0lLSwtovMrc87n9C136k+7sBCs1IpsoZxs4eoIYWXjQ+Zy4xbEJVlJBBQDdtRF4zsg1oP1vjKLdWkCKozqo4cw1u8tLoujHY04kMa8cgO4IS7BwamWiekssjcY84vsPBzmgueXq70AvJESlDCXZfQ3q4FiZHJ3XiWfYd0p6wUK8UtCvXkNhZ8YJlpTyXSmlkFJWDm/JLqW8VkpZ4b/8En+3wZD12GOPceqpp/LYY4+Ner3H45nxPrxe7zG/f+lLX+ILn7+Jba8+zo7t2/jiF78IwK6dO3nhjfeGOpxNxw033MDLL788o3iV4JPuoxNmAXQ6wUCcf12e9sgaXZgNep8T14gEK7eoDLs04W6JvPI4vceOU5hBp8ceX0yKrx3p6A12WHPG5nIRzwA+SwK5+SUMSDPuCCuTFK5+XBhBb6Q3ppg0dz14XMEOa854/aXBuugkEvO0FWk6Iy3JVqZN53Xh1h39TilMT6JOpuFT39dhZ8Zt2ufUS9+G5gB3bcqogAt+Ou5N+vv7effdd3nzzTe5+OKL+eEPfwjAhg0buO2220hMTGTfvn288soreDwePvWpT7FlyxbKy8v585//TFRUFK+//jrf+MY38Hg8rFq1it/+9reYzWYKCgpYv349r776KrfeeitXX3310H6bmprIzsgAtBLBiooKXC4XP/jBD7AN9PPeh1v57vd/yEUXXcQXv/hFdu3ahdvt5vbbb2fdunU88sgj/OMf/6Cnp4eGhgauueYafvCDHwBw2mmnUV1dPe7f/dZbb/HlL3/Zv3/B22+/TUxMDLfeeisvvfQSQgi+973vsX79ejZs2MAPfvADEhIS2LlzJ1dddRUVFRX8+te/xm638+yzz1JcXMwLL7zA//7v/+JyuUhOTubRRx8lPT39mP1effXVXHvttVx44YWAlgxedNFFXHHFFZN/XiOEHCwR9I9gAehSS2EArVV7zorgBBYm9F4nHt2xCVac1cx+XTbmrsirmTd47TiFFTOgS10ITdBTt4eE0pOCHdqccPR1oRMSaUkkJdbMXpGFsftQsMOaUwaPDacuChPgSS5F3+3D23EIfXr4Lug+nNuulckarXHk5hbSJ604m9WcV2Vy9L5jR7ASo03s1mVR1HskiFEpsyGgbdrD1XPPPcf555/PggULSE5OZvPmo2ufbNmyhV//+tccOKDVoe/fv5/Pf/7z7N27l7i4OH7zm9/gcDi44YYbeOKJJ9i5cycej4ff/va3Q9tITk5my5YtxyRXAF/96le58NIrueCaW/j1PffQ3d2NyWTijjvu4BPrLmLrq4+z/qqr+PGPf8yZZ57Jhx9+yJtvvsk3v/lNBga0Up4PP/yQp59+mh07dvD3v/+dTZs2Tfrvvvvuu7n//vvZtm0b77zzDlarlWeeeYZt27axfft2XnvtNb75zW/S1KQNTm7fvp0HHniAvXv38pe//IUDBw7w4Ycf8pnPfIZ7770XgFNPPZWNGzeydetWrr76au68887j9rt+/XqefPJJAFwuF6+//vpQsqWM4Dl2DhZAXGYpLqnH06q+9GfK4HMd82U4qN1SQLI98r4QjV4bLp32WovJ9Z+9r4mcVuWuAa3sVlhiEULQZs4nIcJaLJu8Azh12rpXlkwtqeqKoNeAx6l9txqtMWQnRVFNJkY151WZJL3PiXfESbvuqHySnLWqWUqYCa0RrAlGmmbLY489NjSSc/XVV/PYY4+xYoU2MrB69WoKCwuHbpubm8spp5wCwDXXXMM999zDOeecQ2FhIQsWLADg+uuv5/777+crX/kKoCUUo7nxxhs5dVUl77zyPM9ueIc//OEhtm/3t8TVGdAh8XqcvPLKKzz//PPcfffdADgcDmprawE455xzSE5OBuATn/gE7777LitXrpzU333KKafwta99jU996lN84hOfICcnh3fffZdPfvKT6PV60tPTOf300/noo4+Ii4tj1apVZGZqvU2Ki4s599xzAaioqODNN98EoL6+nvXr19PU1ITL5TrmsRt0wQUX8OUvfxmn08nLL7/MaaedhtVqPe52CjC4psawEazC9HhqZAYZjXuIDVJY4UIvXceNYAE4EkpIa3oT6exDmCPnUTb6HHj8r7WMfG3ugKM5ckbynP7RC4M5BgBbXDGpbRsiarFds8+Gy6j9rUn+Ernehv1EynLTXn8nTbM1Br1O0GLKI2sgMhceV6ZO73Pj05uPucydUITF5oS+JojPDlJkSqCpEawJdHZ28sYbb/CZz3yGgoIC7rrrLp588smh9amio6OPub0Ytl7OaL+PZuQ2hsvMSOfTV1/Ks88+i8FgYNcubWK90OkBcDvtSCl5+umn2bZtG9u2baO2tpZFixZNO55B3/72t/nDH/6A3W7nlFNOGbfBB4DZfPRDQ6fTDf2u0+mG5qh98Ytf5JZbbmHnzp387ne/w+E4vtW8xWJh7dq1/Pvf/+aJJ54YMwFVQIyYgwVQlBLDYZkJHZFVujQb9D43PmE87nJdmragc1dtZB1YmX123Hp/Q5XkeBpIhc7IeZ0NlocZrFqCpfO3WLa1RE6SafbZcBu076y8zDRaZQKetsgZwfH6l8YwR2knVgZiC0n2th5tAKMo4zBIF17dsQmWMa0UgP7GyJrPGe5UgjWBp556imuvvZaamhqqq6upq6ujsLCQd955Z9Tb19bW8v777wPwt7/9jVNPPZWysjKqq6upqtK+hP7yl79w+umnT7jvl19+GbfLhZTQ0tJCR0cH2dnZxMbGMmDTSsN8LgfnnXce995771DSt3Xr0ZXlX331VTo7O4fmQQ2Ork3GoUOHqKio4Fvf+harVq1i3759rFmzhieeeAKv10tbWxtvv/02q1ePusTZqHp6esjO1s7Q/OlPfxrzduvXr+fhhx/mnXfe4fzzz5/09iON8B6fYBWmRnNYZhLVXwM+7xj3VCZDL934dMcnWHG5Wge59urIKY0CMEsHXoM2emHQ62g25BDTXx3coObQ4DpgRouWYERnaV3k2qsjp8mBVdrx+F8DqTFmasjE3BM55bI+f4mgyeo/MZo8uI5R5CSZyvQZpQuffsS83hzt+6RLNUsJKyrBmsBjjz3GZZdddsxll19++ZjdBMvKyrj//vtZtGgRXV1d3HzzzVgsFh5++GGuvPJKKioq0Ol0fO5zn5tw36+88gqrTzuHZees5/zzz+euu+4iIyODM844g/3797P0nKv5+1NPcdttt+F2u6msrKS8vJzbbrttaBurV6/m8ssvp7Kykssvv3yoPPCTn/wkJ598Mvv37ycnJ4eHHnoIgAceeIAHHngAgF/96lcsWbKEyspKjEYjF1xwAZdddhmVlZUsXbqUM888kzvvvJMMfyOOybj99tu58sorWbFiBSkpR4tKNm3axGc+85mh388991zeeustzj77bEym40u0FI1usETQcPSMWIzZQIc5F710Q3dkzQ8JNIP0HFfOAZBVtBiP1OFsipzWul6fxDIswQLojc4n1VUP/pM74c7t0EYvjBZtBCslV6sUGGiOjLWgvD5JlLTjNWp/vxCCLksu8fbaIEc2d6R/aQxh0hIsa4ZW+t9Vr0YflPF5vD7MuJEjvlOy8wqxSTOOCPkciRShNQcrCAbnDg33pS99aejntWvXDv1cUFAwZhndWWeddczI0qDxOvn94he/4I5vfwmrpwd91tKhy5OSkvjoo4+wN+4FIbBarfzud78bdRs5OTk8++yzx10+VoI4PPEbbEwx0l133cVdd911zGVr16495rHYsGHDqNetW7eOdevWHbfNlStX8oc//GHod6PRSGdn56j7V44SXn975GEjWADuhBLoQGvVnlQ094GFCYN0I0cZwcpIjOMIGRg6Iqc0zO72EoUDr/FoguVNLMba68Db24Q+PiuI0c0Nr78MzOwfvcjL0krkZIS0WHa4vUQLB13+BAvAFltIQvsr4OgFS1wQo5sjrmPXHkzJ08qFexv2kxqsmJSQ4PInWCNP2uUmxVAlM7B0RdaacuFOjWDNd1IiGX3elFdnwiAjZ/0R5XhHE6xjR/lM/rOqMoISgNlgwI3UH59gCSFoMeUTPxA5X4g2l4co4UQOS7BM/rkDHTWRMRdN+svDzFFaghFlMlCvy8LSWx3EqOaOzaUl2RiPzhvWpWjr7rnaIuSzZmhxd+19kJ+ZTotMwBspf78ybS6PDzOu40awTAYdLaYcYgYip9Q2EqgEa54T+MZMsKTBghEvPu/oixzfcMMN3HfffbMZnhJkOp8/wRrxgZ2RkU23jMah1meZESNu5ChdBAH64opJ8zREzCKrDpcPK85jDq4T/CVyPQ2RUSrp849eWKOPjtR0W/NIctQFK6Q5ZXd5seIC09HXQFSmNg+tM0Iavug8dtwYwH/iJSnaRJ3IxKzWMVIm4PT4MAs30nB82Xl/dAHJ7uaI+T6JBCGRYMkIqe8f1TgjWDqjVhbmdtrnMqKQEQmvGzGUYB2bBBSlaZ0E3S2qpnsmjNJz3GM7JGUBBnw4IqSDnM3lJhoHwnz04DorrwSnNOKKkMdAurURLP2wluzOuAISZDc4eoIU1dyxOxwYhRed6eiyECm5ZfikYKAxMj5rdB47TnG0JHtwHlqCPTKSbGX6tBEs93El/QC+pGL0+PB1qkQ9XMz7BMtisdDR0RERB8ujGzvB0pu0N6nXpRKskaSUdHR0YLEc/0EWTgw+F15hAN2xb+XilBgOyywM3ZHTQjvQpJQY8SDHSLCisrU1gFqP7JjLsILGbrehF3Jocj9AWnwUtaSj74qQ15nb/1k7rEzSkKqVSfY1hP9oscPeBxybYBZkJNNIMr4ImYem99hxiWNHIBxxhcT7uiMiyVamz+nxYsJ9TFOqQeYMbSS4qy4yRoIjwbxvcpGTk0N9fT1tbW3BDiUoXD0tCHwYe47PhaWU0NOGS2/DHNsRhOjmN4vFQk5OTrDDmDUerw+DdOPRmdGPuC470UotmUQ53gZnP5hjRt2GMja3x4cJD8IweoKVVlgJwEBDZHwhum3awbVu2GtJCEGbKZd8W4R0kXPbcWHApD/61RmdVQY7oaN2D7HFk1+yIhS5bNoIns58NMFKiDKxT2SSHSElcnqvA7f+2BN3uuQSaAVHy0Es+SuDFJky3zn9I1hilBGsxLzF8D701u0hecVlo9xbCTXzPsEyGo0UFhYGO4yg2fF/N2OSThb+z/ujXl/zwytwRRex6Bv/nOPIlGBzenyYGH2dJr1O0B9bCDagowqyls15fKHO5XFjEvK4+W2D8jJSaJAp0Bb+IxcArsFFdi3HLow+EJNPWtdH2pprupGpfnjRu204MTM85U7P17rI2SKgHNftb/JhMB/7Guiy5rHE8ZbWrn8Ki9mHIqPPjnvEAXJ0dhns1ZLsbJVgKWNwur1YhBthPD7BKsjOok3G42kL/8+RSDHvSwQjnV66Rj2AHtRhySfBptY6ikRO/wiLb4wmDCRppUt0REbpTqC5HFo5mDCM/v6zGPXUG3KJ6YuMToJux2CCFXvM5b6kYox4cHWE/+eQzmvHqTv24Cg3LZlGmYxoD/8ySZddS7CMlqhjLnfGFRIj+8EW/pUURp8Dj956zGVpeQv989Ai42SLMj1ul7ZupW6UEsG0WDPVZGFWZf1hQyVY85zB58Y71gE04IgvIsvbiNfjnsOolPnA6fFiEu7jVoUfFJNVgk8K1T54mtwuJwBijBEsgO6oIlKdteDzzVVYQeP1J1hG67Hlphb/3IH2COgip82/OTbBMhl0NOqzsfaHf4LpcQwmWMe+BkRKCQDOCBjFM/sc+EYkWIPz0GSHOjhWxuZ2+hMs0/EjWEIIOix5JNrD/3MkUsx6giWEOF8IsV8IUSWE+PZs7y/cGKRr7BEKQJ+6AJPw0FIT/l9syrEcbq1EcKw24nnpWgmbrWn0xa+V8Q0lWMaxEyxPUikWnPi6wv9L0ev0J1gjDq6T8rRW7X314d+q3eBz4NYd/3roicojxVmrlciFscGFlo0jykRjsyKjVbuUEpN04jUcm2BFmQw0RtB6aMr0DDYk0xuto15vjysi1tcLts65DEuZJbOaYAkh9MD9wAXAYuCTQojFs7nPcGOQ7nETrLjccgDaanbOVUjKPOH0eDHjRo4yYRagODWawzITGSHdvQLN4/8y1I3R5ALAlKklFx01u+YkpmDy+kcvzMPWgALIzcmnT1rxRMBIqcF7fHkYgDu+kBg5gAzzEjmPf0mQwYWWB6XlLcAt9Qw0hfeJPqfHhxUHcpQD5J6oPJKddWGfZCvT5/GvozfaCBaASNHK+p0t6qRoOJjtEazVQJWU8rCU0gU8Dqyb5X2GFaN0j9kmGiCruAIAW6N6Q0Yap1ubgzXWOk1FqdpaWJbew+pLfxpcTv8I1ij18oOS87X3X09t+CdY0j96YRoxgpUQbaZOZGLsDv8uciafA4/++IOjwVbt3fXh/Tk8uNCyyXzsHKyCtATqZCp0hvfJHLvLi1W4kMao465zxQ/OQ1OjD8rovP45WPoxEqyYbK1hTleYjwRHitlOsLKB4avv1fsvGyKEuEkIsUkIsSlSW7GPx8D4CVZ8cjqdxKHvCP+zx8qxHG4vZuEes8tdvNVIqykHk9cGfc1zHF3o87gHvwzHTrDyc3Nol3F4WyNgcrt/kV2d5fiW/+3mXOLt4d+q3SSdx82/AYjN9pfI1YV3meRgkq0bkWDFmA006LOJ6gvvUlmb20sUTsQoCdZgkt3bEN5JtjJ9RxOs0UsE0/MW4pJ6dcI8TAS9yYWU8vdSypVSypWpqanBDmfeMU0wggXQbMojpr96bgJS5o3BLoKMU8Lmii/WflAJ+JR5/HOwDOM8vknRJqpFNpbu8D5zD4BLm4PFKAeX9thCUr0t4HHOcVBzyywd+AzH//2Z+QvxSoGzObxL5OQoCy0P6rXmkeSsC+uGL3aXBwtOMEUfd128f/ShQ40+KGPw+U/aGcdIsArS4qiRGer7OkzMdoLVAOQO+z3Hf5kyCVJKjIw9QjFoIKaQDHettvCwEjEG18Ear4TNkLZA+0G1ap8yr3v8cg7wd36yFpJsPxL2ZZjCPydttINLkVKCDom9JXwPDHw+qTU0MRx/cJSVHEc9aYjOMG/Z79ZKBBllDpIzvhCLdEJf0xwHNXdsDgcm4UVvOj7BzMgvwyN12MM8yVamb7DJhcE8eoIVazHSoM8mui/8y60jwWwnWB8BpUKIQiGECbgaeH6W9xk2PD7pH6EYP8GSyaUk0UtHmyoDiyQOt9e/Kvw4c4SyCrBLE87mCChhCzCP2wWAYZwuggCOhBJt7kV/61yEFTQ6jw0P+lHn/EUNtmqvCd+z93a3FytOGOXg2qDX0WLIJjrMKwmEZ+wRLEOq1qrdFsafNU6bNoqrMx9/kiEnRUuydeGeZCvTJt3aCL9xnJN23VEFJDkbwOuZq7CUWTKrCZaU0gPcAvwb2As8KaXcPZv7DCcutwej8I7ZxGBQVJbWyazpkOokGEkGR7B0o6wKP6goNY4jMhNHGB/0zJbBESzDOF+GAPo0rTSovyG8P9r0ngEcwgJCHHddSr72GdTfGL5n720uf4I1Rovlvug8Ul31YT2SKdx2f5J9/OLbsYMT9MN4HprLriVYenPkJtnK9EnPxFURnkRt4Xa6w3s+YySY9TlYUsp/SSkXSCmLpZQ/nu39hROnQztbON4IBUBq4RIA+hrC94tNOZ620LAH3TgjLEX+Vu26LrUA5lR5B+dgTTCCFZ+rvf+6wrxV+2iL7A7Ky86kTcbhaw/fEkG7XSsPG63BAYAnoQgrDny94VtJoPc4cInR3w+ZecU4pBFHc/i+Blz20RdaHtQbnU9KmCfZyvRJ/0k7MUqZ8SBjulbW36+O50Je0JtcKGNz+dccGW+hU4C03FJc0oCvTY1SRJLBhYbHG8HKTYqimkyiBxrA45rD6EKf118iOF45B0BOfjF90oqzKby/EA1eO07d6AcGUSYDDbpsLL3hO3fAYe8DRi8PAzCmaV3kwrmToMFrG/M1kJ8cS7XMQIRxq3a3Q3sNjFxoeZA3oTDsk2xlBgabAI1z0jwhV1sqtrsufMutI4VKsOYxt2vwbMf4CZbQG2kyZGPtUbXfkcTp8WLCg36cBNyo19EbXYAOL3SF78HvbPD5yzmM5vETrNykKA7LLAyd4XvmHsDks+PWjTN3wJJLkiN8W7U7/KMXo5WHwdEuct1hnGAZvXZcYyRYVpOeZkMW0f3hW9rkcWpNPozW0UewzP7Rh/ba8C4XVqZnsEQQwzgnRbNz6JQxuFrUCfNQpxKseczt1N6M441QDOqOyifFGb4HN8rxnG4fZtzoJ3h9+JK0yeeEcfnWbBickGwyj3+Cw6DX0WLOI34gvE9wGH123PrRkwsAR3whib4ucPbNYVRzx+0fwdKbRz+4zipYgEvqcbaG7/tMew2MXd7UG5VPkqsxbCfoex1akm0eI8FKyNXmIob7gtPKNHknHsHSTthlY1Rl/SFPJVjz2FQSLHdiCVm+Zvpt9tkOS5knXC4nRuFFjNLVbDhrpnZm3dcWvg0IZoP0d0wzjlESNtxAbDGJ3g5w9Mx2WEFj8TnwjDN3QJ+ilcj1helCq4PzbwyW0d9v6fHR1JGOvit8E22Lz45nnATLl1SEEQ+yp24Oo5o7Xqf2GjCNkWBl55XglAZcYbxcgTJ9YqhEcOxjOqNeR6splzhb9dwEpcwalWDNY+7BNRNM459BBzCll2EUXhoOq9KESOFzjd0yebicjDQaZRL2hvBuwhBwg10Ex5hvMZzwdxJ0NodvedhYi+wOivGXyLWH6UKr7glGL3Q6Qasxl9iB6jmMam6ZpAPvOK8Bq79df7h2EpT+BEs3ylpwAKnxUdSHeZKtTJ+YxAgWgC2ukHhvV1ifsIsEKsGax1zOybWJBkjMKwfCv5OZcpTXobUMHqtt9KCi1BgO+nLwtYbnQc9sEW5/AjvOqM2g+Dytk2Db4fBcKkFKiYXxD66zCrXyqIHG8Jw74PKXCJqssWPepje2iDR3A3jdcxXWnJFSYpUOvIaxTzgk52kT9LvCNMn2DS60PEbVgBDCXy6s5rsqx9N5ndoyBzr9+LfzVwO4W1TVSShTCdY85vZ3ETSaJj7AyyhZpt2nKTy/2JTj+Vz+L/sJRrCKUqI5IHOw9hwCn3cOIgsPOq8dD7pR1/wZKbdoIU5pwBama2E5PT6icCDHea3lpCXTIFOgIzzLo7z+BgeWqLETDF/KQox4wnIelsPtI0qMP4pZkF+gddQM1wNDp/+klmn0UUyAvphi0jwNRzvGKYqf8Dpxi/HXNQWIy9FOmLerE+YhTSVY85jHNfkRLKM1lkaRjqUrPM8eK8cbOps6wQhWUrSJBmMeBp9TLV44BTqPAyfmURfWHSk/NZ5qMhEd4XlgaXd5icIJY5RGAeh1gkZjPrG94Tk52+MvEbREjT2CFZ2tHRi1HtoxJzHNJbt78DUwdoKVHGOmWmRj7gq/BBNA7544wfKmLMSAD1dreH4WKNOn8zjxTCLByixapJ2wq1cJVihTCdY8NrjQqWmCNtGD2qxFpNhV7XekkM7BcpXx5wgJIXAnaXMjaA3PBgSzQee142TiL0PQJia3mPKI6w/P0iC704VFuCccLe2NLSbDXRuWI6XC2QuA3ho/5m0yipfik4L+MDwwsrk82ijmOMmFEII2axHJYfo9pHP34xBm0BvGvI01WyuT7DgSfkm2MjM6nxOPbuLvlOL0BA7LLESbKusPZSrBmse8/jUTTOaJSwQB7IkLyPE2DK2fpYQ5z+RGsACsWdqZdanmYU2a3uvAKSZuMDPIFldCiqcZ3OHXydNu0+YfiQmSeV/qIsy4sYdjF7XB9vPmsUewCjJTqCcVwnDR9wGbA7PwjNngYZA9YQEJvm7kQPscRTZ3jJ4BnGL8kwwp+eV4pWCgPjzLhZXp03snl2BZjHoajPnE94Xvot2RQCVY85jXPwfLZJlcgqVLX4xReGk6HH5nT5XjiaEughO/PvKzM2iQydgb1Ry9ydJ7nbh1k0+wdGll6PHR3xh+o4S2fm30xjBGB71B0Tlas4/WQ9tnPaa5pnP34UOMWx5mMuhoNOQRE4YHRvaByb0GDBnaCE5Pbfg1fDF5bTj14yeY+RnJ1Mh0RFv4fQ4oM2P22XBP8PoZ1BdXSrKnJWzXFYwEKsGaz1z+tsBRcZO6eUJ+JQCdR8Lv4EY5nm5oBGviD+yy9FiqfNl4W1SCNVkGnwOXmFx5LhztJNh6OPxKgxz93QAYo8YujwNIL14KQH99+B1cG9z92ETUhHPyemOLSXfVht1iu7YBrWW0YZwuigAJBRVAeH4Pmb0DuMZZbBsgzmKkVp8blkm2MjMWnx3POE1ihpOp2rIX7jBe+iPcqQRrPnNpE2r1lvG/0AZll1TikTrcTao0IRIIz+RHsBakx6hOglNk8DrwTGEEK6u4QisNagi/JNbV3wWAKTpx3NvlZaRSJ1PD8uy9wd2PY4LyMABfShkmPDjbwqvZh2NAO5M+1jpgg/LzS+mV1rDsaGvxDeAxjv/3A3RFF5PsrAePaw6iUkKB1yexYh93mYPhYnMHT1Rsm8WolNmkEqx5TOfWRrAmamIwKDo6hnpdJubO8Kv/V46n9/rn2k3QeAAgIcpEi7lAdRKcAoPPiVc/+RGsnNREGkhD1x5+3cPcA90AWGKTxr2dUa+jwZhPXG/4zcEyeQdwTKK8J2qwTPJweI3gDL4GzBMk2enxFg6TiznMOtr6fBKrnNwBsi+lDANefO1qFEvR2N1eonHgm0TFCUBW4ULs0sRAGDbMiRQzSrCEEHcJIfYJIXYIIf4hhEjwX14ghLALIbb5/z0QkGgjjM5jw4lxUuvwDGq1FJFsC88OTsqxjiZYk5uj50lWnQSnwuRzTCnB0hYZzSe2P/zefx6bNoIVFTv+wTVocwfS3fVht9iuyTsw4fwb0DoJAvTVhdeBkXegEwBLXPK4t9M6CRZq30NSzkVoc8Lu9hKDHd84c/AGxfiT7I7q8EqylemzuTxEi8knWMXp8VTJLHTt4XWiIpLMdATrVWCJlLISOAB8Z9h1h6SUy/z/PjfD/UQkvXsAO5M/wAMYSFhAprcJ32ALbyUsebw+zHKwRHByNd1R/jV6fKqT4KSYpBOfYXLJ6yBbXDEZnnpkmCUXPrs2/8Y6wQgWAKnaYrsDzeE1kmf1Tq48LD8zlXqZEnZlkj57NzDxKCaALaGUWF8vDLTNclRzp9+pHSCP16Z+UEZxJT4p6FELxSp+dpc2gjVek5zhLEY9DaZCEtRcvpA1owRLSvmKlHJwJu9GIGfmISmDDB4bDjG1Azx9+iJ0QtJeE36TzJWjHB4fFlzaHCHd5N7GBf5OgmrxwskxSScYpnaCQ6QtxISHzrrwOrjGvwaULiphwpvG5mnNdpoPbp3NiOaUlBKLtOEzTjwf1mzQU2/IJybMyiSFo1v73zrxKKYxQzuZ0xtGnQS7bC5isY+7Dtqg0uwUamQasjX85qEp02NzerQEa5xlHkbqjyshwdsO9q5ZjEyZLYGcg/Vp4KVhvxcKIbYKId4SQqwZ605CiJuEEJuEEJva2sLnbFcgGLw2nLqpJVhx+Vp5SmeY1f8rx7I5PViZ2hyhsvRYDvpy1AjWJPh8EgtO5CRHBwfFFywDoLVqyyxEFTzC2YMH3aRGS3NKtcV2wymR73d6iME26YOj3rgF/k6C4TOSKRzaKCbWhAlvm1SofQ+1h9EE/a7ePszCjWESXX2jTAbqjIXE9YbXKK4yffaBPnRCojNPrkQQgNRFAGHZMCYSTJhgCSFeE0LsGuXfumG3+R/AAzzqv6gJyJNSLge+BvxNCDHqp5KU8vdSypVSypWpqakz/4vCiMFjwz1BS9iRcovLcUoDTtVJMKz1OjzEiMl3JAIo9XcSjOo9rDoJTsDu9mLBhTBObQQrt+wEvFLgqA+vVu0GVy8DInrCFuUAWSlJ1JKBvj18Evlum5tY7Oisk1syQ6YtwoQHe3P4zJ/Qu3pwYALDxJ01iwqK6JIxuBvDJ8m2dWsngE2xaZO6fW9cKSnuxrBceFyZuoG+bgBMk1x2ByAu399JsDq8vk8ixYQJlpTybCnlklH+PQcghLgBuAj4lJTajFYppVNK2eH/eTNwCFgwa39FmDJ6p55gJcdFUy1yMHeEz8GNcrxeh5sEBvBaEiZ9nyiTgfaoIq2TYFf1rMUWDgZs/ZiFB2me/JchQFJ8HDUiG2NHeJUIGtx92HWTmzug0wmaLIUk9oVPiVx3TzdRwokuOmVSt4/N00ZwWqq2zWJUc8vo6sGmm9wIXmqchSqRjyWMOtrau1sBsCZMLsGSaYvR48PZpL6LFbD1ayPA5piESd8nt6CMfmnBFobrCkaCmXYRPB+4FbhESmkbdnmqEELv/7kIKAXCr7XWLDP77PimWKIE0G4tJEl1EgxrPXY38WIAOYUEC8CXoi1eiJobMC5Hr9YxjSk+vgCt1mJSBsInuQAwe/px6CeXYAEMxJeR7m1EOvtnMaq5M9DVAoAhbnIH19klFXikjoG68CnVNrp7sRsmd8JBCEF7VDFpjsPg881yZHPD06clWFGTTLDi/Ul2uJULK9PjGNDmsVqjJ3/SrigthoMyB317eJ2wixQznYN1HxALvDqiHftpwA4hxDbgKeBzUsrOGe4r4likHd8USsAG2RPLSPO1DXX+UsJPr91NPAPooiaecD5cTI42+dzTrBKs8dh62gEwxkzt8QVwJC8iw9eCx9Yd4KiCJ8rTjcs48eT+QbqMJeiQdIVJsx1nj5ZgmeMnd3Cdm5pEDRnowujAyOLpw22c/MGhO3kRVmnH1xUe6+75BjoAME0yyc4pKccpjdjCrFxYmR6XTTsei4qZ/Oeo2aCn2VxAQn94LVoeKWbaRbBESpk7sh27lPJpKWW5/7ITpJQvBCbcyOHx+rAyuZawIxkztYPoNtXoImz1OjwkiH70U0ywirLTqfWlqpKDCTj6tPNBpphJtCUfwZSprYETLl30pJQk+LpwWSc/RzaxcBkAbYfC4zFw+xOs6MSMSd1eK5MsCpsySa9PEuvrxWOe/OeNOVubP9JxODxeAwxoJ12IGn8dsEH5qfFUkY0hjJJsZfp8/nXk9NFT+07pjy8lztcN/aoJXKgJZBdBJYD6HW5isYF56glWkv/gpuPwtsAGpcwbvTYXcQxgjJncl/2gsvRY9stcCLM1egLN2aedrbbETu3xBUgpOQGAziPhcWDZa3OTSg/e6PRJ36egpBy7NOEKkyYH3n7t4HqyCRaALX4Bad7msCiT7La5SBddeKbwGkgrWQ5AT014nOjTOzrxIWASbeoB9DpBi6WYpP7wSLKVmRH2wQR9cvM4B+nSFgPgUo3LQo5KsOap/t5uzMKDb4pvRoCC4jIGpBm3KgMLW/aBPszCgyF6aiNYhSnRVJFLdN9h8LhmKbrQ5x7Q1h2JTpj6+y+/qIw+acUbJl+IHZ1tmIUbXezkD64TY60c0eVi7gyPRF7YtIMjwyQ7yAHoM/1lkrWhn2R2dPeSKPohdvIJZmluBjW+NGRz6P/9AEZnFwO6WNDpJ30fW8ICEn2dYFMzJCKd0eF/DUyyUc6ghAJtXcH2I+FxoiKSqARrnhrobAZAHzP11vWxVjPVujwsXeHTwUk5lqvf/2E9ybOpg0wGHT0xxeilFzpVXfdYfDYtwYpJmPr7z2w0UG0oJLo7PJKL3vYGAEzxkz+4BmiLKiHNVjUbIc0530AbTkxgmvyc2MTBA6MwKJPsbKkFwJKUPen7xJgN1BgKiA2TtaCinG0MGKc2om3I0soku6u3zUJESigxOTqxiahJLXMwXH5+ET0yCkdDeJywiyQqwZqn+ru0BMuaOPmzxsN1RheRaledBMOV3V/CNp0udzJNW7wQteDw2OzdAJinMQcLoCumlCznYdBWrghp/f4EKyo5a0r3cyYtJEH24O1tmY2w5pTV1kS3IXVS64ANKihZgl2acIZBmeRAez0AMSm5U7pfT1wpqa56cDtmI6w54/R4SfG2Yo+a2nsgeahcP/STbGVmrO4u+vUJU75ffkoMVTIXY5hUA0QSlWDNU/buqU2qHsmVtJAk2Y27tzWQYSnzhM/fMniq5QYAsdmL8UqBO0xK2GaFo5t+oqZUDjScL62cGGz0tx4JcGBzz9ahHVynZEzt4HqwyUFr1eaAxzTXEt3N9FmndnCd5C+TNIXBmmiOLi3Jjk+b2mvAl1aOHh+ultA+mdPU7SBbtOONy5nS/YoKi+mSMbga1WdtpLN6unBOoUnMIKNeR7OlkMSB8DhhF0lUgjVPefyJUUJK5rTub8nWOgm2hkF5inI8s61J+yFu8iU7g4oyk6mWGdhUycGYDI4O+nSTb6c7UnSuVh7WfDD0kws6tSTRmlo0pbulFmvNPrqrQ3vuQK/DTZZsxRUztYNrgA5rESlhsCahr0srETQmTu0xiPG/D9pDfC2oprZ2EkU/xqT8Kd0vOdbCYZGPtSv0k2xl+nodbhJ8PXitUz8hCmBPWECMrw/6mgMcmTKbVII1T/kGtJac1oTplQimFC0DoKtarcERbrw+SazTX3YVN7Wz6gAlaTEckDno2kL7rPJsinO20GOafEODkbIWaMlFf21oJxcAlr4a2nUpYLRO6X5FBQW0yXi8zaGdyDe1tZMiehGJBVO+ryNpIcmyE29/R+ADm0OWnsP06OKnPOczp3gJTmlkoC60v4d6mrQkOTq9cMr37Ygp0RZcVqMPEaux206q6EbETO94zpChdRK0NYR+uXEkUQnWPCVsbdiwTPmgZlB+fjHdMhqv6iQYdjoGnGTQgd2UPOUJswAFydEcJJfogdqQnxsxWxK9bTis0yvPBchKT6NepqFvDf33X4Kzni7L1EdvLEY9NYYCYnpCu8lBR53WZtuaWjDl+5qz/GuihfAIjpSSJEctXZa8Kd+3KF1bC0rfHtonc5wtWsOohKzSKd/Xk1xGlLTjDZMFl5Wpa2lrI0X0YkiZeoIOkFCwFIDOI9sCGJUy21SCNU9FDTTQYZj+AZ7FZKDWkE90iB/cKMer6bCRJTpwx0x99Aq0ToJd0cXo8EG7en2M5HS7SZWd0358AYQQNFqKQ36hWYfbS7a3EXtswbTu3x1TSqbzCPi8gQ1sDvX613EaXNdpKlKLtfuEcplk54CLPNmIM6F4yvc16nU0mopCfi0o2bIHH2JoJGEqrDlamWRrCCfZysz0NWrdVGMySqZ1/8L8fDpkLM7G0D9hF0lUgjVPpbga6I2a+lnj4bqji8lwHFGlCWHmSNsA2aIdQ8L0Xx8ydaH2g+okeJzmhjpMwoshYerz24brTygjw1uPdNsDFNncO3S4imTRizF90bTu70tbhBkXjpbQbdcuWnbhxkBU5tQfg8JCrZLAE8INZapra0gVPejTyqZ1/4GEMhK8nTAQumWScb0H6DBmTqlN/6D0wQWXQzjJVmbG1a6VmMZmTn0EFCA3MYoqcjF3qROioUQlWPPQgMNNlmzBHTe1CbUjeVIWEsMAjs66AEWmzAc1rV0UiGYsWVM/mzooLmsRLqnH26LOiI3U2qAlA7FpM3v/6TOXYMBH25GdgQgrKNoOfABA0oITp3X/wSYHzSHcSTChbz/NpnwwmKZ833CoJGjd+x4AqWUfm9b99Zlaw6WB+tBMMLptLgo8R+iPn16CWZSTSb1MgTAoF1amqUtLsHRJ0ysR1OkE7dYikm1qLl8oUQnWPNRYfwSrcKFLnlrXrpEsWf5OgodDe4KxcixH014MwocuffoJVlFGAodlFnY1afY49gbtQCiloGJG20nyr4HTfih0kwtP3Wa8CNJKV07r/lmly/FKwUBtaH4GtffaWOTZT2/S9F8LXTGlZIRwkwNv3Ud40RFfvGpa908s1EZwOkK0o+3uAwcp0jVD7upp3d9i1FNnLCQ2hJNsZWZiu/fTpU8Ba8K0t2FPKMMqbdBTH7jAlFmlEqx5qPmg9kWUlLdkRttJytMOwPsa9884JmX+8A6WG6WXT3sbqpPg2ETbPpwYiZ/GhPbh8ksrcEgjrobQHMGSUpLS/iH1phKEOXZa28hNT6GWjJB9ne3c9DZxwkbsorOmvQ1vyiJisGHvqA1gZHPD65Nkd2+i0VIyrfI4gMKCIjpkLK7G0HwfNG57DYCspWdPexu9caWku+vA4wpUWEqIGHB6KHIdoDN++t/XAEZ/iXJ/fWi+jyKRSrDmIVftJgAyF02vLGdQdm4hNmnG0xa68x+UYzV22yl07sGtt0Ly9CbMAhSnxnBIZmG1NapOgiNE9RykyZCL0BtmtJ24KAtHdPlYOkNzDZzaxmaWePfRm33atLeh1wkazUUk9ofm2XvbnlcAyFl2zrS3EZWrjX41HQi9kcwdB6uplPux5Z857W1kJVipIg9zZ2ie6Iut38CALgZz7gnT30jaYgx4sTWF5meBMn07quoo1jWhy556k5zh4nO0BKu7PjTfR5FoRgmWEOJ2IUSDEGKb/9/Hh133HSFElRBivxDivJmHGjliOnbQqM9GHzX1Vb+Hi7WaqBcZmLpDf6FLRbOppouTdXtwZK4GvXHa27Ga9PRF5SKQ0K3aBw9yub3kOqvojV8QkO11RBeTaj8SkG3NtYPvPIlB+Eg94ZIZbac/fgFpniZwDQQosrnh8vgobX+NI9Yl6OKnt+A7QJa/yUFfbeideW54/0n0QpJ94iemvQ0hBO1RJaTaD4HPF8DoZt+h5k5Odm+kMf0MmMEJl9j8ZQC0qE6CEadl+78BSK84Y0bbyc7Oo19acLaqE+ahIhAjWL+UUi7z//sXgBBiMXA1UA6cD/xGCKEPwL7CXs+AnTLnTtoTlwVkex3mXOLtqslFuPho+04W6BqIKpvZhzUASf45fp2hmQDMhsMHd5MmuiF3ZqPHg9xJpSTLTtwDXQHZ3lyRUpJ08Cla9BlklE9/BAtAl7EEHZKe2tCa7/fhf15jATW4F08/uQDIycqiWSaFXJMDh9tLdvUzNBlziSmc3vyjoW0lL8Iinciu0Pqs2fXqX4gXNlI/9qkZbSe3pBKX1GML8QWXlakzHXkdm4giqviUGW0nNzmaGpmOLsTeQ5FstkoE1wGPSymdUsojQBUws0/oCLHj/VdIEANEV3x84htPgi22gDRvM3g9AdmeEjwDTg+xVc8DoF88s1EFAHOaNsdIdh6a8bbCRcuuNwBIK18bkO2ZMrSyjpbDodVB7aONb3OCdwdtpetBN7OviYRCbZHMtkOhc/ZeSol8714GsFJ89mdmtC2dTtBgKiQ+xNZEe/eNF1nOPuyV14MQM9qWJVubTxxK64H12l2UHHqEVmM2CeUzK8LJSYmjmmwMIb7gsjI1B+pbOcX1Lk3pp8+o4gS0ZikthiyiB0JvLmekCkSCdYsQYocQ4o9CiMGatmxg+LBJvf+y4wghbhJCbBJCbGprawtAOKHNt+MpHJgoWHVRYDaYXIwBL/Y2VSYY6v61o54reI2+lGWQPPVFP0dKT8ugV0Zhb1YlB4OMR96kS8STUbwsINtLzNfm33TXhM7ojcfjRbz+Q/qIYsGFX5nx9vJLyrFJM84Qavbx5usvscb5NjXFn0JvjZ/x9vrjS8l014bMia4Bu5OsjbfTLRIoPPfmGW8vrWgZPinorg6dToL/fuxeyjmM65SvzfgkgxCCZkshSQPqszaS7Hz5IeKFjZTTZnaSZlBfVB6JrqaQ+RyJdBN+agghXhNC7Brl3zrgt0AxsAxoAn4+1QCklL+XUq6UUq5MTU2d6t3DSl1jMyf0vMqB5DPRRyUEZJvWDG3tjrbq0CpPUY7lcHs5+NrDFOmaiT79ywHZZkFqDNUyHZdqggJA34CNJbYPqU1ZM+MDqkG5hWU4pBF3c+icuX7nqXtZ5dlMfcUXMcUmzXh7qbFWDotczB2h8Ri0dnZS9O7XaNelsPDy2wKyTZFWjhk3nXWh0eTgjT/9iMXyEJ1rfogwx8x4ewtyM6iVacjm0FhweduevZxT83Pqo5eQc9qNAdnmQEIZqd5WcPQEZHvK/HawvpUT6/5AfdQi4mfQhXQ4T0IhRjzQq1q1h4IJjyKklGdLKZeM8u85KWWLlNIrpfQBD3K0DLAByB22mRz/Zco4Dj77Y2KFnezzvx6wbSblLQSgX7VqD2m/+9dGPut4mN6kCnTl6wKyzcIUraZb310dkO2Fuj0b/k6csGGpvCxg24yNslCry8bSFRrlYTs2v8fqvf/HfstSFl56a0C2KcTgIpnzf+6Aw+XmwO9vpIAmXBfdhy5AJ7ri87UFl1tCYC2oDS8/xflNv6Eq4VSKzrg+INuMjzJSrc8numf+vw+a2zvR/f16LMJN0qceAl1gpo/r/Mtq9NaoeVjhzunxUvXoV8gR7cRd8pMZl9gOMqZolSsDTfP/faTMvIvg8NZKlwGDdTDPA1cLIcxCiEKgFPhwJvsKd7s+fIPTWv7K9qTzSC4N3HS1nOw8+qQVT4eaZxOqXvxoH2s330KCzk7cVQ8E7As/O8FKLRlE2RvA6w7INkOZccdfaReJlJ4cmAR2ULulkCR7dUC3ORt2bNtE5vOfxK6LJuvTf5lxm/rhnEkLSJRd+Po7ArbNQLM5HGy853pOdWxgz+KvkXXCBQHbdvaCZXilwFE/vw+u3/z3P1jx/i00G3PI/+xfA3ZgCNAbW0KKqx48zoBtM9Dqm1up+e0nWOI7QNvZ9xCVtTBg244r0OYidhzZFrBtKvOP0+3hld9+nQvsL3Ko9EbiFgagIZVfXI5WkdRVHxoj4ZFupnUwdwohdgohdgBnAF8FkFLuBp4E9gAvA1+QUnpnuK+w1VB9kMR//TcduiRKb/htQLcdYzHSIDIw9lQHdLvK7JNS8sQrb5P3wnrKdTX4Ln8YMma2+PRwBr2O/qg89NILPZHdabKu+hBLHR9xJOdSdIaZTUYeyZ5QQrqvBensD+h2A+mjDS+Q+49LMegkvmufJTYtP6DbN2dqi563zdNmH40tLey5++Os7X+RnUWfYfGV3w/o9pMT4qkTGRg75mclgdvr49mH7+Tk9z5LrzGF5P9+AWP0zJYJGcmXUoYeH57W+bkm2s49u7H97hxWeLdTt+Zn5J76yYBuP7+wjD5pxdUYOvMxlalpbG3jPz9fz8UdD3Mg4yKKr747oNvPzC7ALk2qVXuImNEpSinlteNc92PgxzPZfiTYv30jMf+4ljj66P7E34mKSw74PjotORTYVZOLULL9UB37n/kJF/U/BQYjnsv/iqU8MJ0lh/MlFkIz0Hn4aNv2CHToX78kGyg6+78Dvm1D2kJogvaa3aQuCEz790BxOJ1sfPjbrGl6mCZ9FtE3Pk1a7qKA7ye5aClsgo7qHaRXTn/R2kCTUvLe689R8O43WSo72Lf6x1RceEvA9yOEoMVSRM48bHLQ2NxI1Z9u4VL76xyJW0HuZx/HEJcW8P1E5ZTDYf9rIKsi4NufLrfHy5tP/YYT9/4EvZA0fvzP5K++OOD7yUywsoMcYjvnZ4KpTF9rZwe7n/s1ldUPczp9HFx0Mwuu+r+AzeUdlJccQ41Mx6Q6/4aEwNWAKFPisA+w+fH/44Tq32MTUXRe9iT5FWtmZV+26HzSOt7TOs8EsOxHCaxeu5P/vP0a3m2Ps8b2GkuFjdrMc8hd/3NEYmBHFAaZ00qgGWTnEQJXDBRa2tvbOaHlaXYnnEZFfuCTi7j8JbBdO7CcTwnWlnf+Sdyb/8NaXzXbUj7Owht/gyUmsKMWgwqLyuiXFtzN86fZTl1dNYce/xZrB16mUZdFy7qnWbg0cOU8Iw3ELyCj5T2ky4YwRc3afibL5fby/j/upWL33XyMAfaUfZ7FV/9vwEqQR8oorMD7lqCvdifpH5uVXUzZls0f4n7pO5zr2cRh62JSr32YvOzAlQUOJ4SgzVpIvu2jWdm+Mrf6ervZ/d6LeHe/wNLeNzlDONgXvQLvJf9L6cLZeYFbTXqaDVks7Fet2kOBOtqeYz093ex48QGKDvyRU2hhR+wpFFz3e/LTcmZtnyKpAEOHF2dnLebUyB2lmG9cbi9VB3fTuOsdDNUbKB/4gAtEDy4M1Gacg/H8r5JXOLsH5KkZudi2m5HNB4me1T3NX7te+BVrhY2kcwLT1GGk7KJy3FKPs3F+JBfVh/bS+sy3WT2wgRaRyp4197PsrGtmdZ8xFiN79LmYu4M/Obuzq4ttT9/J6rqHOQUXuwquY9Enf4LeMvNueePRZZSjb5G0V+8kJYiJts/rY+Nrfyfxgzs53VfFQctiXJffy+IFK2d1v8VZKVTLDER78OePHKmu5sizP2JN1z9wCjMHln6bBetunbXkcpAjoYSE5lfA1glRM+/QqcwNn09SV3uI1r3v4a79iJj2bZS59nKScDOAhQMpZ5N2+mdYWDl7J2gG9VpzSR7YDD7vrL9elZlRCdYc8Ho87N34ErbNj1PW+SZrxABVxgXsOf0uKk8N7IT60ZjTS+EgtNXsJUclWHNO+rx0NNfQdHgP3Q0H8LRVEdN7kCLnPhaLXhYDfURTm3Qy9ooLyT1xHSXRgS8VHU1BqlZykN5aFZEJVl9/P4tr/so+6wksXHLqrOwjNT6GwyIDY5A7CTYc2U/tcz9iRde/yEDHR4X/zdL13yfdOruJxaCuqCIWDgSv11Fvbzdbn/45S6of4UzRy+7Yk0m74ucsKSifk/3HFSyD7dB5eEtQEiwpJVvefhHzO//Hxzy7adGlsu+kn1F27mcRc3CgFm02UG/IY2Fv8Mokq2trOPTs/3Fyxz/Iw8We9Eso/eTPWJCYOfGdA0Cfvgiaoa9uJ7Flp8/JPpXJ8fkkrT02WhoO09+wB0/LfkxdB4nvP0yGq4Z80Uc+4JJ6ao1F7My6ktiKCyhdeS7LTZY5i9OTUIhxwAO9DZCQN2f7VaZOJVizpKX+ELWbXoIjb1HY8yFL6GZAWtiXcBqJp/83JcvPCmiHpvEk5mglD72N+4EL52SfEcfrwdFRS0ftXnobD+BpP4yh5wgxA7WkehpJwU2K/6ZuDLQYsqhLWUNT3ioyy08luXA55UEo3yxIjmaXTCe7KzJrurf883ecThd9p987a/sQQtBqzie/PzjzIGsP7aH5nz9meedLpCLYmX4pRZd+j1VZc3uyxZ1cRnL/v3H2tWOOTZn4DgHS0dnBzud+TUXNI5xOD3ujV2A77zbKZ7EccDR5xdqCy66Gue0k6PF4+fCNZ7B+eC8rPNtpF4lsr7yNiotuIX0ODwwBemJLSOn5SOskaDDP2X5rao5Q9fydnNT+NLm42JtyLtnrfkBF3twk14MS8itgO7Qf2aESrDkmpaSzz05zYw3djVXYW48gu2sw9tUT62gk1dNMJh1kiKP92LqJocmYx+GUM6hJX0x86UnkLDqREkvwSnwNqaXQAANN+4lWCda8phKsAOnpbOXwRy/hPPgmWR0fkicbSAe6iONwzAnUla9j0elXsiIqds5jy87VOs942yPzIDpQpMdJZ0MVnXX7sDUfxNdxGHNvDfGOOtK8LVjwkA1kAw5ppJYMGs3ZHEk5GUNKMfHZZWQWLSYps4gcnZ7ZKwqdvKwEK/8km3NtW7RW7frAdtCbz1xuD/n7HuKIsYTiEy+a1X0NxJaQ3r5xTg8sD+zeSvu/f8aqnlfIQLAldR3Fl93GiuzgjGJbsxZDDTQe3EbhCWfP+v4aG2o5+PzdLG1+irVigL3WFfSc/V0WrZj9fY8mJS6KnSKPqM65WXDZ4XTx0UuPkLrjAT7mO0SHSGTH4m+y6JKvkDLL5ZBjkSll6Ht8eFr3Y8iqnPX97dm5hfZXf8GJPS+Ti4c9yeeQve4HLMkPXDfWqcgv1OYiOprmR7lwuOm1OWiqr6arsQpH6xF8XTUY+uqJtTeS7Gkmg3aSxbENrTtFIt3mTPrjl7IvPg9TSj4xWYtILqwkIT6dhDk6ET5ZsdmLYBv01O0hetE5wQ5HGYdKsKbJPtDHwU2vMbDvdVJaN1LsqWK5kNikmSprJY2560mtPI/CxatYoQ9unWxCtIUqkY6huyaocYQCh62f1tp9dNfvx9lSheg6QlR/DUnOelJ9bSQLyWDxXp+00qjLoNZcxP7EtcjEQszppSRkl5GZU0BpjAUxzz6cR9LrBL3RBegdXuiqgZSSYIc0Zza/8jdOpoE9q34566PJIq0MfbuPvob9xObP3oGllJJdH7yG861fcILtffIxsCPzcgou+R9OzCqYtf1ORlrxMngfumt2wCwmWIf376DppbtY0fUSa/CwO/5U+s/+Bosq187aPierxVrCibZ3QcpZe831D/Sz9fn7yd//R9bQTIMui10r/pfF532W5DkesRrJml0Oh6Cjeifps5RgSSnZ/N5reN75Favt/8EtDOxLv4jcC29lSf7iWdnnZGUmWNlFNtHztF3/fGd3OGmuP0xXYxW21mq8ndUY+hqItjeQ7GkhXbZTdlwClUC3KZPeuCV0x+VhSCkkJr2QpOwSYtIKSTJaCaXZcJk5+fRJK85m9Rqa71SCNUlej4dDO/5Dx46XiGv8D6XOPVQKDy6pp8q0iA/yP0ti+dkULz+dyiB/iY2m3ZRNjk11ngHo7+uhuXoPvfX7cLZWoe8+QvRALamuBtLoJA8YHHjvljE0G7Koia7gQGw+uuQirBmlJOcuJCMzhzJT6L+FPEkl0Ai0H4iYBEtKSdyW39As0lh01pirTQRMTE457IG2I9tnJcHyeb1sf+NxzB/cR4VnDz3EsKXg/1F2yddYkZwd8P1NR05BKQPSjKc58CM4Ukr2bNqAbcMvOKH/HXLQsyv142R//FYqiuZPS3B70iJiG15C9jYg4gM7ht3a2sLeF35Jed3fWEMPh4wL2HfybZSdfjXZ86R7bFZxJZ63dPTU7CD9Y58K6LbdHi8fvvokMZvuZ6V3J71Es6Pw05Re/HWWzpP3gBCCJmspHxuY3SQ7VPm8XtqajtBZu4++lsN4O2rQ99YRZW8kyd1MmuygUPgoHHafDpFIlzGD7oQltMflYkzKJzq9mOScEmLTC0gyRYdUAjWR/OQYDshMEjvn35IPyrHmx6fuPNXeXMuR9/6B7sibFPd9xAK0hUIP6YvYknElUQvPomTVOSyOSQhuoJMwEJ1HatcW8PkCvjbDfORw2Kk/vJeO2j24Wg5i6DpEzEAtae460ulkeBrRTgJtxiyq41dTFV+AMbWEmKwFpOYtJDklbd6VCASaKa0MGsHXdgDdwsCvtTXfdPYOsPudZ1jj3cvW8u+QMQdlkRlFFfikwNYQ2NIgm22A7S/+jqw9D7Fc1tMkUvlo4beouPgLrIyOD+i+ZspoMHDQUEhcd+AeA4/Hy6Y3niLqo/uodO+gjyi25F5H6cXf4IT0+Tc/wZKzFBqg9eBm0lcGJsE6cGAvDf/+Favan+N0YWd31Cq6T/8aJasvmHcH8AuyUzhMFqIpcAtOD9jsbHrxD2TveZBTZA1tIoUd5d9k0YVfZFnU/HoPAPQlVRDT+DKy8zAiuXjG25NSsmvrRno2P0nBubeQkz/zbc4mh9NJQ/V+uuv34/BXiVj7a0h01pPpbSFduEn339YnBW26JLqNGbQkLKMxLg9DUh5RaUUkZxeTlFVEstHK3LSEmh+sJj1NhhxyByJjBMvn9dHUUE1b9S5aO3vIWHkxlTkJwQ5rUlSCNY5DGx7lxH0/pY1EDsafiig5k6ITL6I4LZv5/RF2PF9CAeYuF+6eBoyJucEOJ2D6ertoPLiN3tqd+Fr2Yu2pIsVRQ7qvlRIhhxKpbmJpMeZQn7Ca6sQijGmlxGeXkV6wmJS4ROZuyv38k5mRTqtMIKZpL8FfnScwpJS0dvVSf3AHPbU7kK17iemtItVZS65sZo3w0kUciy/8/JzEk5OWTD2p6AJUGtTS0szef95Ded2jnEw3hw1FbFl+N5XnXk+m0RSQfcyG5vhKTun8B3hcYJh+nP0D/Wz554Nk7XuYk2QNbSKZTWVfp/yiL7IqdnbW8gqEgvLV+DYKOg9sJH3l9DvISinZ+t4ruN69n5W2dyhGsifpLFLOu5XyhfNnrbWRTAYdtVEVnNT3zoxP9jU0NrDvX/ezuP5xTqeDWkM+e1bcyaJzbiB1DhtoTFVs8WpohOY9/yFzzfSPJJxuDx+8+neit/yOFZ6tAOz86yYyv70BfZCnJQD0drbQWLWd/rpd+Fr3Y+09RKKjjgxfK8XCN3Q7uzTRbMii25pPc9zpiKQiotJLSMopIy2nkHSTZSjhUjQ9Ufkk9b8NrgEwhUf/X6fbTd2RA7Qf3o6raTemzgMk2Q6T5WkgW9jJBg77Mngp/mSVYIWD0jOv40jFmRQsWkVqiI/6mNNL4Qi01uwlOwQTLKe9n7r9W+g4sh1P016iew+S7jhCJm2UDd5GGqnT59IYU05twsWY0kpJzFtEZuESEuKSSQjmHzCPFaZEc8iXRXlraJ4R6+odoO7gdrprduBt2UtU90HSnEfIlc2k+7/IPeho0WfRFVfM7sTzMGeUkbX8PMxRcXMSo14naDYVkDHDFtUHd35I2+v3sqzr36wVTvZYV9B12lcoPfEiRAh8RvlyTsTc+SQt+zeSXn7alO/fWHuIIy/9mkVNz3AafdQaCti5/CcsPvf/kWqcvwfVg4pzMtlLIVEN/5nW/R0OB1v//WcSdjzICd4D9BHFzrxPUfzxr1GRGRpLcDgyVxJz+CWcjbsw50ytXFZKya5tH9D95r2s7HmFs4SLA1HLsZ1yN8Ufu2zejdiNZmHlSfS8HUX/vjdgzXVTvn9bZzfb//U7Cqv+zGnU0yGS2LHgS3gNVpbv+Rlv/uFWzvjvn89C5MeTPh9tjUdoPbxDG51v309s32HSXTUk0cvgp6tdmmgw5NAcs4iG+AswpRYTm1VGat5C4lJzKAyBz675RJe6APrB116FLmtpsMOZEo/HS31tFW2HtmFv2IWxYz+JA4fJ9dZSIpxDJ8XbRBKt5gL2Ji9DpJQSk72ItMIlfD5EPudAJVjjSkrLJiltftRuz1Rq4VLYCD2Ht5K97NxghzMuW18ndXs+oPfwZnQtO0ju3UuOt54S4aMEcEkDjYYcmuIqqE0qw5S1hJSipWTmL6TEGDld8AKlICWaN2UmJ/R8NK/nBfh8ktqWdur3fshAzRbM7btIHzhAkaylUngA8CJo1mfRHV/C7uQLsWYtIa14KQm5i8k2mAnmu9mWtoy8ht/j6G7GkpAx6fu53W62v/EE5s0PUuHaRq40sjflPDLO+TKLF66exYgDr3TVeXi2f5OWzc9NOsHyeX1sff9VPO//lhP63yYDHztjPkbnaV+gZPXH5+3rdTQ6naA+cTVndj+Fz9aNLiphUverqa3m0L8fYHHDk5xMBw26TLYt+S6LP34zy+foJEGgpFSeB4d/RM3GZ1hwxeQSLLvDxZY3niRq64Msd2/DgZH9aReQee5XWFC6YpYjDqzclFg26CtZ2jz5eVhSSvbv2UbLG7+hsv1fnC36qTGVcGDl3ZSeeR3JBjNIyc57t3NG0x9443eCNf/vpxgNgTnE87hdNNXsp+PIDhyNe9F3HiB+4AhZ7jrShJ00/+16iKbRmMfBhDV4kxdgzVpMamElmfmllMyDUbVwkZC7WDthfmQXGfM4wXK6XNTs30571Ud4G7cT172XPNchCkQ/Bf7bdIhEWi2F7E+4FH36YhLzK0kvWUpqbDKpwQw+AFSCFSEKi0pokYl4G7YGO5Rj9Ha0ULdnI/3VmzC27iStfz85snFoVKqNROotC2hIPhtzzlIyS5aRWVhOgcE49AZVZiYzzkKNIR+z+3XoqZsXixd6fZKa+joa936Ao24rlvbdZNkPUkAjBUIC0CPiaIlewL7kUzFmV5JavJyU/HKyjdagJlJjiSk/Hxp+z6H3nqX845+b8PZNNQc49NofKKz7BytppYVkPij6IosuvIXlyZNP0OaT/NxcthiWkFHzEvjuGrdErL21if2v/IGMQ39nhayhnyh2ZF1F7vlfYWn+wjmMOrDMleswvv04h95+lOLzvzDm7dweD9veeg656WGW294jX3jZb11O14k/YeFpV5A9B4sDz4aVFeXseHYBSQeeA/mDcROM/Xt30rjhDyxseYFT6KBNJLNtwRdZ8PEvsjQhNAvHhBD05p9H0pEf0r3nDRLKzxrztj39Nra++jfid/+Z5Z7tFEs9+xNPx772ZvKXnnPsYycE5Z//Kzt/cw1nNj3Izp/8h4GTb2X56RdhnsSJRyklnV2dNFfvo7d+N96W/Vh6qki2HSHb20Cu8DBY+9JKEi3mfHYlXggpZcRkLya9uJKU9Bzi1WjUrMstW4bjLSP9hz+AUwLbLGa67LYBavZtoqtqEzTvIKFnLwWeIywQLhagVRjVmwo4knoWRzIriM9fSlbpCSTHp4TtHDohpQx2DENWrlwpN23aFOwwwtbmn5xLmqeR3Nt2BWX/7Y01NO7biK1mC5b2nWTYDpAh24aubySNpqgyHKlLiMpbTtbCE0nLyp/3rc7Dwfd/9zfuaLoZPvEgVF41p/t2e30cqT5My76NuOu2ENO1hxzHAbJEx9Bt2nSptMeU4U2vILZgBZkLT8SUlBtSoxduj4fW/12IzZJB6bffHfU2/f297HrjCaJ2P8YSxxZ0QrLXshzPihtZfMZ/oTeE/gjtG3+/nzN3f5eDa35F6Vk3HnOd3TbAjrefRex4gqUD/8EsPFQZS7GV/xcLz/l/mOZZ447psDs91P3kBOL0LtJu3YLOfHTmo/T52L/9P7RtfJyillfIppVuYjmSfQl559xMcsH86Yg4Ey88cicXV/+Y2rMfIO/UTx5zXUtLMwfefoLYA0+zzL0dnxTsj1mJbsX1lK5Zj24ezzGcrMNNbSQ+sIzuuDIKv/b6MZ9jDpebHe//G9fWJynveoNE0UerLpWG4vWUnHczsSkTNEeRkl0v/oaszT8jSfbQJhM4YlmEI64QLPHojGY8Xh96Vy96ZzcGewcJriZSvS0k0je0GZ8UNOnSabcUYE8oRpe2iPjccjJLlhKXEK6HxKHB4/Wx9Y6TyYwxkPPN6ZUbz0R/Xw+1ez6g59Am9C3bSenbS563DoO/JL8PK/XmUvoTF2PMXkbaglVkFFWGxXt3NEKIzVLKlcddrhKsyPHWH/+H02vvY+ALO4hOzZ+1/Uifj6aaA7Qc+ABH7VaiOneTbT9ACt2A9sFdr8ukNWYh7tQKYgpXkLPoJBJTQvOMZDj4zRv7ufat0zEuvQLLJ+6btf043F4OH66ibf8HeBq2ENu1m3znQdJFF+D/Ujdk0xm3CDIqSSheSWbZagyx4dGG5M0//ZAzjvyCnSv/j4qLtNGLtsZqDn34MsaD/2RR/4dECSctIoXDOZdScNZnySwI3dGa0dgdLmp+diI5sol9ZV9Al5iLs+0whsbNLLJtIkY46CGGgxkfJ/W0z5C/eP42bZiu1198grM+uomDlgq6FqzH47Kja95OdvcmcmnGI3UcjD4BT+V/seiM/8JgtgY75IDq6bPR/POPkUMT+0o+gzcqA3d7FTFtW1ns2oVReGnRpdFUeDlF5/w3cRmFE280xDz3hx+xrv5u9safhq3wHGz9feibt1La9xGpohs7Jg4mrCHuxGsoOHEdTHHE0uO0cWDDo3j2vkxi3wEyvA0YObpGlEfq6BfR9Ovi6TZnYovKRiTmE5VWSGJeOWkF5Rgs4dFAIRw9e9dnuXDgGYzfPgyW2Tvx1NPdRe2ejfQd/ghD607S+veS661H768k6SCeBmsZ9qTFmPOWk1F2Iul5CxAhOsI+HSrBUti8aSMr/nkeu5f/gPJ1XwvINp0uJ3UHttNVtQlf03ZiuvaQ6zpEHAOA9iFep8+jPXYh3vRK4opWkrtoFbHx4bQyRejb29TLod9cydmWfVi+dXBGHd4G2ZwuDh3cR/uhzXjqtxHfvZsC10HSRDcAPgSNhly64hZD1jKSSleTsWAVemtozSmZCpvdzqGfn02FZxetJKPDO3TioY1EDqecQeKKT1C6+gLEPFm7aDZUHzmA7a/Xsti7b+iyJpFGQ/LHsC69lEUnfRxdCDStmC4pJa89/mtW7ruLRKEt/9FLNLXRS3AWX8CCtZ8kNik0y0An68CB/dif/H8s9ewE/N8VxgI6M9eQtvpKcstPCeslRRwuD28+9F1Ob36EKOEEoJs4quNXYV58ASVrrsIYyDbzUiI9TtwuB0a9DmGODakKAOVYz73wLOs2X0/bWb8idc2NE99hAj6fpLGxgcYDm7DVbsXStpMM2z7yfI3o/MlUO4k0RJXhSKnAmn8CWQtPJiWrIOJfR7OSYAkhnoCh6TIJQLeUcpkQogDYCwy2JdsopZxw0oFKsGaXx+Ol+sfLsegl2d/ZOqUDOJ/XS2vDIZqrtjHQsBtd+wES+w9S4KnGItwAOKSRWmMhXfGLIGMpicUryVu4AktUzGz9SUoAff+un3PHwB14Lr4Pw4rJL77r8viorauj9dAWHA07MbTvI3mginxvDTHCAYAXHU3GPLoTFqPLWkZy6Ymkla7QvuQjzMDAADue+zX6lu0IoceTupiM8jUUVJ4aUWf9fF4fzbX7sfV1kZZdRFyIziubCbfLSVvdQcyWKJIy8yPq+Qct0WxpqkM6+0nKyMNsjbzvit7+fnpb64mNiSY+NSfiD1aVyWnutuP45TJM1hiybv1wSiOcnd09NFdto692O96m3UT37CfTWU2av5IEoE0k0xS9EEfKEqLyV5C16GSSMoI/P3s+mvURLCHEz4EeKeUd/gTrn1LKJVPZhkqwZt+GZx5k7Y5vsC39Eyy85udYYo+OJDmcLjqbjtDTdIi+5kO4249g6K0h0VZNjqdu6CwbQAcJtFoKGEhcjD57Kcklq8gqrsAQpjW2keCVXY2kPHkxiwzNuNb9jvgl54HeiJSS3n4bnW0NdDTXMNB4EG/HYcy9R0iw15HpbSRJHK3d7xGxtFiKGUgow5JVTlrJCSQVLUeYI+/gSVEURVFmw98f+TVXVn+f/ZnryLv8R1hTtKkfXq+X9tYG2psbsLUcwt12CLoOE91fQ4qrngzZPlTi55BGGoz59MaWQHo5cflLySpbjTUpM5h/WkiZ1QRLaF0IaoEzpZQHVYI1f/m8Pjbc/9+c2fkkbqmnTZeMRBAtB4iVA0NvOhhcRT2ZNnM+A3HFyNSFJOQtIXvBMmIT1XypcPTgC29x5kf/TbGuCSdG7GjtfxPEwHG3bRWpdFmysccWYEgtJS5/KemlJ2BOyFJnYRVFURRlFjlcHl67/4tc1PM3AAaw4JV6orAPNZwY1E0MbcZsBqLz8CUWYcwqJ6lwGZkF5egC1M4/Us12gnUa8IvBHfgTrN3AAaAX+J6U8p0x7nsTcBNAXl7eipqamhnHo4xPSsnOD96kd8fzmPob0AuJyxiH3pqALiEXY2ohyVklZOSVYDBZgh2uMsf217dS8/4/iGrbisHrxKjXQXQKurgMYpKzSM5dSGJ2KcIUNfHGFEVRFEWZFVJKtm/5gN5dL6Hvb8aAB2mORR+XgTUhk5j0ApJyFxGXlDbxxpRpmXaCJYR4DRitOP5/pJTP+W/zW6BKSvlz/+9mIEZK2SGEWAE8C5RLKXvH25cawVIURVEURVEUJRSMlWBNOC4opTx7gg0bgE8AQ8upSymdgNP/82YhxCFgAaCyJ0VRFEVRFEVRwlYgeqCeDeyTUtYPXiCESBVC6P0/FwGlwOEA7EtRFEVRFEVRFGXeCsTMtquBx0ZcdhpwhxDCDfiAz0kpOwOwL0VRFEVRFEVRlHlrXi00LIRoA+Zbl4sUoD3YQShzRj3fkUM915FFPd+RQz3XkUM915FlPj7f+VLK1JEXzqsEaz4SQmwabfKaEp7U8x051HMdWdTzHTnUcx051HMdWULp+Q7EHCxFURRFURRFURQFlWApiqIoiqIoiqIEjEqwJvb7YAegzCn1fEcO9VxHFvV8Rw71XEcO9VxHlpB5vtUcLEVRFEVRFEVRlABRI1iKoiiKoiiKoigBohIsRVEURVEURVGUAFEJ1jiEEOcLIfYLIaqEEN8OdjxK4AghcoUQbwoh9gghdgshvuy/PEkI8aoQ4qD//8Rgx6oEhhBCL4TYKoT4p//3QiHEB/739xNCCFOwY1QCQwiRIIR4SgixTwixVwhxsnpvhychxFf9n+G7hBCPCSEs6r0dPoQQfxRCtAohdg27bNT3stDc43/edwghTghe5MpUjfFc3+X/HN8hhPiHECJh2HXf8T/X+4UQ5wUl6HGoBGsMQgg9cD9wAbAY+KQQYnFwo1ICyAN8XUq5GDgJ+IL/+f028LqUshR43f+7Eh6+DOwd9vvPgF9KKUuALuD/BSUqZTb8GnhZSrkQWIr2vKv3dpgRQmQDXwJWSimXAHrgatR7O5w8Apw/4rKx3ssXAKX+fzcBv52jGJXAeITjn+tXgSVSykrgAPAdAP/x2tVAuf8+v/Eft88bKsEa22qgSkp5WErpAh4H1gU5JiVApJRNUsot/p/70A7AstGe4z/5b/Yn4NKgBKgElBAiB7gQ+IP/dwGcCTzlv4l6rsOEECIeOA14CEBK6ZJSdqPe2+HKAFiFEAYgCmhCvbfDhpTybaBzxMVjvZfXAX+Wmo1AghAic04CVWZstOdaSvmKlNLj/3UjkOP/eR3wuJTSKaU8AlShHbfPGyrBGls2UDfs93r/ZUqYEUIUAMuBD4B0KWWT/6pmID1YcSkB9SvgVsDn/z0Z6B72wa3e3+GjEGgDHvaXhP5BCBGNem+HHSllA3A3UIuWWPUAm1Hv7XA31ntZHbeFt08DL/l/nvfPtUqwlIgmhIgBnga+IqXsHX6d1NYwUOsYhDghxEVAq5Ryc7BjUeaEATgB+K2UcjkwwIhyQPXeDg/+uTfr0JLqLCCa40uMlDCm3suRQQjxP2hTOx4NdiyTpRKssTUAucN+z/FfpoQJIYQRLbl6VEr5jP/ilsGSAv//rcGKTwmYU4BLhBDVaKW+Z6LN0UnwlxWBen+Hk3qgXkr5gf/3p9ASLvXeDj9nA0eklG1SSjfwDNr7Xb23w9tY72V13BaGhBA3ABcBn5JHF++d98+1SrDG9hFQ6u9GZEKbTPd8kGNSAsQ/B+chYK+U8hfDrnoeuN7/8/XAc3MdmxJYUsrvSClzpJQFaO/jN6SUnwLeBK7w30w912FCStkM1AkhyvwXnQXsQb23w1EtcJIQIsr/mT74XKv3dngb6738PHCdv5vgSUDPsFJCJQQJIc5HK++/REppG3bV88DVQgizEKIQrbHJh8GIcSziaDKojCSE+Dja3A098Ecp5Y+DG5ESKEKIU4F3gJ0cnZfzXbR5WE8CeUANcJWUcuQEWyVECSHWAt+QUl4khChCG9FKArYC10gpnUEMTwkQIcQytIYmJuAwcCPaCUX13g4zQogfAuvRyoe2Ap9Bm4uh3tthQAjxGLAWSAFagB8AzzLKe9mfZN+HViZqA26UUm4KQtjKNIzxXH8HMAMd/pttlFJ+zn/7/0Gbl+VBm+bx0shtBpNKsBRFURRFURRFUQJElQgqiqIoiqIoiqIEiEqwFEVRFEVRFEVRAkQlWIqiKIqiKIqiKAGiEixFURRFURRFUZQAUQmWoiiKoiiKoihKgKgES1EURVEURVEUJUBUgqUoiqIoiqIoihIgKsFSFEVRFEVRFEUJEJVgKYqiKIqiKIqiBIhKsBRFURRFURRFUQJEJViKoiiKoiiKoigBohIsRVEURVEURVGUAFEJlqIoyjwhhCgQQkghhCHYsYQ7IcQNQoh3gx3HfCOEWCOE2B/sOBRFUUKZSrAURVGUkCaEuF0I4RZC9A/7d2uw4wpFUsp3pJRlgd6uEGKZEGKzEMLm/39ZoPehKIoyX6gES1EUJUDUyFNQPSGljBn2785gBxRIofzaEkKYgOeAvwKJwJ+A5/yXK4qihB2VYCmKosyAEKJaCPEtIcQOYEAIYRBCnCSEeE8I0S2E2C6EWDvs9huEED8RQnwohOgVQjwnhEgaY9s3CiH2CiH6hBCHhRD/PeL6dUKIbf7tHBJCnO+/PF4I8ZAQokkI0SCE+F8hhH6Cv6NYCPGGEKJDCNEuhHhUCJEw7LpOIcQJ/t+zhBBtg3+XEOISIcRu/9+7QQixaMTj8w0hxA4hRI8Q4gkhhGXqj/TUCSG+7X9c+oQQe4QQl41xOyGE+KUQotX/WO4UQizxX2cWQtwthKgVQrQIIR4QQlgnuf9H/Ld/1R/DW0KI/GHX/1oIUeff52YhxJph190uhHhKCPFXIUQvcIMQYrUQ4n3/49wkhLhveJLiLy/9vBDioH9/P/I/d+/59/HkREmNEGKtEKJ+Mn/fFKwFDMCvpJROKeU9gADODPB+FEVR5gWVYCmKoszcJ4ELgQQgHXgR+F8gCfgG8LQQInXY7a8DPg1kAh7gnjG22wpcBMQBNwK/HJbkrAb+DHzTv9/TgGr//R7xb7cEWA6cC3xmgr9BAD8BsoBFQC5wO4CU8hDwLeCvQogo4GHgT1LKDUKIBcBjwFeAVOBfwAsjDuSvAs4HCoFK4IZRAxDiVH/yMNa/Uyf4G0Y6BKwB4oEf+uPPHOV256I9fgv8t70K6PBf91P/5cvQHs9s4PtTiOFTwI+AFGAb8Oiw6z7ybzcJ+Bvw9xHJ5zrgKbTn91HAC3zVv62TgbOAz4/Y33nACuAk4Fbg98A1aM/nErTX6rT5E+Wxnp/fjHG3cmCHlFIOu2yH/3JFUZSwoxIsRVGUmbtHSlknpbSjHcz+S0r5LymlT0r5KrAJ+Piw2/9FSrlLSjkA3AZcNdoIk5TyRSnlIal5C3gFLWEA+H/AH6WUr/r30yCl3CeESPfv6ytSygEpZSvwS+Dq8f4AKWWVf1tOKWUb8Avg9GHXPwhUAR+gJYb/479qPfCi/75u4G7ACnxsxOPTKKXsBF5ASypGi+FdKWXCOP/Ga0px1YiD/Swp5d/9+/VJKZ8ADgKrR7mvG4gFFgJCSrlXStkkhBDATcBXpZSdUso+4P8meixHeFFK+baU0on2mJ0shMj1/71/lVJ2SCk9UsqfA2Zg+Pyn96WUz/rjt0spN0spN/pvXw38jmHPkd+dUspeKeVuYBfwipTysJSyB3gJLeGeNill5TjPz8hkb1AM0DPish60x1xRFCXshGxNt6IoyjxSN+znfOBKIcTFwy4zAm+Ocfsa//UpIzcqhLgA+AHaCIoOiAJ2+q/ORRstGinfv70mLT8A/33rRrnt8H2lA79GS+Bi/ffpGnGzB4HngZv8CQNoI141gzeQUvqEEHVoIz2Dmof9bPPfJ9CelFJeM/wCIcR1wNeAAv9FMYzyOEsp3xBC3AfcD+QLIZ5BG3m0oD3mm4c9lgIYt9xyhKHHXUrZL4ToRPv764QQ30BLlLMAiTZSmTLaff1/zwK0xHelPy4DsHnE/lqG/Wwf5feMKcQeKP1of9twcUBfEGJRFEWZdWoES1EUZeaGlz7VoY1QDT+zHy2l/Omw2+QO+zkPbQSlffgGhRBm4Gm0EaF0KWUCWkI1eKRfBxSPEksd4ARShu0/Tko5UTnW//n/jgopZRzaSNzRrEKIGOBXwEPA7eLovLFGtKRu8HbC//c1TLC/4witRXj/OP/WTLyVoW3loyWEtwDJ/sdv1/C/aTgp5T1SyhXAYrSE9ptoz4kdKB/2WMZLKWOm8GcNPdf+xzAJaPT/LbeilSMm+uPrGRHf8NcVwG+BfUCp/zn67lh/z2wR2ly7sZ6fB8a4226gUgzLUtFKRXfPfsSKoihzTyVYiqIogfVX4GIhxHlCCL0QwuJvHJAz7DbXCCEW++cz3QE8JaX0jtiOCa1krA3w+Eezzh12/UPAjUKIs4QQOiFEthBioZSyCa2U8OdCiDj/dcVCiJGlZCPFoo009AghstESjOF+DWySUn4GbY7Z4MH0k8CF/jiMwNfRErz3JnqgRvK3CI8Z5987U9hcNFqC0gZawxC0OUjHEUKsEkKc6I9/AHAAPimlDy1J+6UQIs1/22whxHnD7ivFsCYmo/i4f26ZCW0u1kYpZR3a4+3xx2cQQnyf40d5RooFeoF+IcRC4OYJbh9wUsrycZ6fz41xtw1o88e+JLSmIbf4L39jToJWFEWZYyrBUhRFCSD/wfM6tNGFNrQRpW9y7OftX9AaUTSjlaF9aZTt9PkvfxKtVO+/0MrzBq//EH/jC7SRj7c4OpJ0HVqCtsd/36fQ5k2N54fACf5tvQg8M3iFEGIdWpOKwQP6rwEnCCE+JaXcjzbadS/aiM/FwMVSStcE+5tVUso9wM+B99HK5CqA/4xx8zi0RKoLrdyxA7jLf9230OaebRRaN7/X8M+T8s+l6uNo2eZo/oZW5tmJ1nxisIzx38DLwAH/Ph1MUMaJVrb4X/59Pgg8McHt5wX/a+FStNdlN1qDl0uD/RpRFEWZLeLYpj6KoijKbBJCbAD+KqX8Q7BjUWZGCHENWvngd8a4/hGgXkr5vTkNTFEURQkq1eRCURRFUaZBSvnXYMegKIqizD+qRFBRFCVCCG3R26k0J1DCkBDiu2O8Dl4KdmyKoijhQJUIKoqiKIqiKIqiBIgawVIURVEURVEURQmQeTUHKyUlRRYUFAQ7DEVRFEVRFEVRlHFt3ry5XUqZOvLyeZVgFRQUsGnTpmCHoSiKoiiKoiiKMi4hRM1ol6sSQUVRFEVRFEVRlABRCZaiKIqiKIqiKEqAqARLURRlBCklbq8v2GEoiqIoihKC5tUcrNG43W7q6+txOBzBDkUJMRaLhZycHIxGY7BDUULMK3/4HqUNzxJ18+tkpGcEOxxFURRFUULIvE+w6uvriY2NpaCgACFEsMMJGpfHi8mgD3YYIUNKSUdHB/X19RQWFgY7HCXElDU8TQFNbHr+f8n47H3BDkdRFEVRlBAy70sEHQ4HycnJEZ1c9dkcuFoO0N9eH+xQQoYQguTkZDXyqUyZw+3F7dM+GjMbXwW1GLuiKIqiKFMw7xMsIKKTKwA50E6McBDjakP61LyQyYr0140yPT02J7miFTsWsmUz7bV7gh2SoiiKoighJCQSrIjn8wz96LL1BDEQZT762/tV/P3H19C585VghxIW+tobsAg3e9IvAqBm24bgBqQoiqIoSkhRCdYkCCH4+te/PvT73Xffze233z5n+5c+Dx70+KTA6+g75rqNGzdy4oknsmzZMhYtWjQU14YNG3jvvfemvc+amhpOOOEEli1bRnl5OQ888MBM/gRlFr397ttc6X6BpKevBGffxHdQxuXoqAPAXHYOfVjx1H4Y5IgURVGUSNHaa+eeu7/Pf159OtihKDMw75tczAdms5lnnnmG73znO6SkpARsu1JKpJTodOPnuTrpwycMuBDo3f3HXHf99dfz5JNPsnTpUrxeL/v37we0BCsmJoaPfexj04otMzOT999/H7PZTH9/P0uWLOGSSy4hKytrWttTZo9xoOnoL0fehoUXBi+YMGAb0JLUqLhEqs0LSe3eEeSIFEVRlEjx0Yfv86X+X8N/gDVngyU+2CEp06BGsCbBYDBw00038ctf/vK469ra2rj88stZtWoVq1at4j//+Q8At99+O3fffffQ7ZYsWUJ1dTXV1dWUlZVx3XXXsWTJEurq6vjmN7/JkiVLqKio4IknngC0BGnt2rVcccUVrDjtfK77wrdw660YpfOYeVitra1kZmYCoNfrWbx4MdXV1TzwwAP88pe/ZNmyZbzzzjvjxnnttddy8sknU1payoMPPgiAyWTCbDYD4HQ68Y0x9+uee+5h8eLFVFZWcvXVVwPQ2dnJpZdeSmVlJSeddBI7duwY2tf111/PmjVryM/P55lnnuHWW2+loqKC888/H7fbDcAdd9zBqlWrWLJkCTfddBNyRJMBn89HQUEB3d3dQ5eVlpbS0tIymaczrPQ7PSS4W4d+dx14PYjRhAevyw6AyWylJ2U5+Z4jOG29QY5KURRFiQTdLdVDP7duV6X/oSqkRrB++MJu9jQG9kBncVYcP7i4fMLbfeELX6CyspJbb731mMu//OUv89WvfpVTTz2V2tpazjvvPPbu3Tvutg4ePMif/vQnTjrpJJ5++mm2bdvG9u3baW9vZ9WqVZx22mkAbN26ld27d5NEF2dceh0fbNnJuUtzcLtsGC0xAHz1q1+lrKyMtWvXcv7553P99ddTUFDA5z73OWJiYvjGN74BwH/913+NGeeOHTvYuHEjAwMDLF++nAsvvJCsrCzq6uq48MILqaqq4q677hp19OqnP/0pR44cwWw2DyU8P/jBD1i+fDnPPvssb7zxBtdddx3btm0D4NChQ7z55pvs2bOHk08+maeffpo777yTyy67jBdffJFLL72UW265he9///sAXHvttfzzn//k4osvHtqnTqdj3bp1/OMf/+DGG2/kgw8+ID8/n/T09Amfx3DT2usgS3TgwcBmXwmLajZhCnZQIc7nT7AMJium/BPRN/yRml3vUbT6/CBHpiiKooQ7Z1fj0M89u18l7cQrgxiNMl1qBGuS4uLiuO6667jnnnuOufy1117jlltuYdmyZVxyySX09vbS398/xlY0+fn5nHTSSQC8++67fPKTn0Sv15Oens7pp5/ORx99BMDq1avJycnBIKByyWLqm7SRCo9jYGhb3//+99m0aRPnnnsuf/vb3zj//NEPAseLc926dVitVlJSUjjjjDP48ENtzklubi47duygqqqKP/3pT6OOEFVWVvKpT32Kv/71rxgMhqG/6dprrwXgzDPPpKOjg95eLTG+4IILMBqNVFRU4PV6h+KtqKiguroagDfffJMTTzyRiooK3njjDXbv3n3cftevXz802vf444+zfv36cR/zcGVzeckUHTit6ez0FRLVtQ+8nonvqIxJurXW/kazlazFWolt1+GPghmSoiiKEiEsjjYAdlKCuX1XkKNRpiukRrAmM9I0m77yla9wwgkncOONNw5d5vP52LhxIxaL5ZjbGgyGY8rqhq/HFB0dPan9mc1mpJTo8aHTGwAdXqlD+s+wDyouLubmm2/ms5/9LKmpqXR0dBy3rbHihOPbmY/8PSsriyVLlvDOO+9wxRVXHHPdiy++yNtvv80LL7zAj3/8Y3bu3Dnh3wTaKJTRaBzal06nw+Px4HA4+PznP8+mTZvIzc3l9ttvH3Utq5NPPpmqqira2tp49tln+d73vjfufsOV0+MjnW480Rm0yoUYHC9Bx0FIWxTs0EKW9GivN4PJSnZmLm0kQIv6klMURVFmX5SrHZsumoaoCkr7/wU+L+j0wQ5LmSI1gjUFSUlJXHXVVTz00ENDl5177rnce++9Q78PlsIVFBSwZcsWALZs2cKRI0dG3eaaNWt44okn8Hq9tLW18fbbb7N69eqh66WU6IUPEOh0Aqcwo/MeTbBefPHFoTlKBw8eRK/Xk5CQQGxsLH19RzvKjRUnwHPPPYfD4aCjo4MNGzawatUq6uvrsdu1/XR1dfHuu+9SVlZ2TOw+n4+6ujrOOOMMfvazn9HT00N/fz9r1qzh0UcfBbS5ZCkpKcTFxU34+MLRRDQlJYX+/n6eeuqpUW8nhOCyyy7ja1/7GosWLSI5OXlS2w83TrcXq3AgTdF40yu1C5u2BzeoECc9TgAMFitCCJrMRST0VQU5KkVRFCUSxLnb6TMk40mrwIITV+uBYIekTINKsKbo61//Ou3t7UO/33PPPWzatInKykoWL1481M788ssvp7Ozk/Lycu677z4WLFgw6vYuu+wyKisrWbp0KWeeeSZ33nknGRkZQ9dLn1f7wT/S49VbMEkn+JOqv/zlL5SVlbFs2TKuvfZaHn30UfR6PRdffDH/+Mc/hppcjBUnaGV+Z5xxBieddBK33XYbWVlZ7N27lxNPPJGlS5dy+umn841vfIOKigoAPvOZz7Bp0ya8Xi/XXHMNFRUVLF++nC996UskJCRw++23s3nzZiorK/n2t7/Nn/70p0k/vgkJCXz2s59lyZIlnHfeeaxatWrougceeOCYuNevX89f//rXiC0PBG0Ey4IbDBaS8hZjlyZcdVuCHVZIE/4RLJPZCkB/3AKy3TVIrzuYYSmKoigRIN7Xjd2cQmzBcgBa9qsS9VAkRnZoC6aVK1fKTZs2HXPZ3r17WbQocsudPC4Hhva99FsyiUnKoLezhThHI96UhehN1hlv//bbbz+mGUa4CffXz8u7mlj45Okklp7EppV3kfjYxynNTCL25leDHVrIeueP32FN7W+Q/9OCMFp47+l7+NjO22i57h3SiyqDHZ6iKIoSpjxeH3t/uJzo5Fy8V/6JvN8toKb0ehZc84tgh6aMQQixWUq5cuTlagRrnhtKgIX2VA0mVW6nLVghKfOIw+3DIlwIk5WFmXHs8+Vh7FTlBDMh/CWCwqDNF4wvWAZAW9XWYIWkKIqiRACHx4cZNxjM5KclUiVzMLWNP7ddmZ9m3ORCCJEL/BlIByTweynlr4UQtwOfBdr8N/2ulPJfM91fpBla88pfImj0ly35XMc3fpiO22+/PSDbUYLD6fFiwYXOZCUr3kKtPheL+w0YaIfowC2KHVG8DhwYsfjfczkly/BKgbNBLTisKIqizB6nW/tOdxvMmAw66s1FrO5X86pDUSBGsDzA16WUi4GTgC8IIRb7r/ullHKZ/59KrqZBSi3BEv4RLKPBgEsawBOYBEsJbQ63T0uwjFpDBkd8kXZFuxrFmi6d14lr2Gpi8fFx1ItMNTKoKIqizCqnx4dZaPOqAeyxRSR6O8ChFrsPNTNOsKSUTVLKLf6f+4C9QPZMt6toRpYICiFw60zofc4gRqXMF063B4twYzBHAaBPW6hdoRKsadMSLOMxl7Vb84m3VQcnIEVRFCUiOIdKBLUES5daql3eor7TQ01A52AJIQqA5cAH/otuEULsEEL8UQiROMZ9bhJCbBJCbGpraxvtJhHt6AjW0bWpfDozRuka6iSoRC6PU2ulr/cnWElZRVonweZ9wQwrpOm8TtzCdMxljvgSMj0NeD2qk6CiKIoyO5wer5ZgGbUEKyZHKwhrr1ZrMYaagCVYQogY4GngK1LKXuC3QDGwDGgCfj7a/aSUv5dSrpRSrkxNTQ1UOOFjMMHSDXuqjBZ0SDxuNYoV6bwurdmJ3qQlWMVpcRyWmTia9gYzrJCm9zlxCfMxlxnSyzAJLy3VKnFVFEVRZofT5cUqXOj8CVZW4SI8Ukd/g/pODzUBSbCEEEa05OpRKeUzAFLKFimlV2pDMA8Cq8fbxnz37LPPIoRg376xD7Cqq6tZsmRJwPa5f/9+zvv4xSw752qWr1jFTTfdBMCuvQf51+vv4plmJ0GHw8Hq1atZunQp5eXl/OAHPwhYzMrc8rn8i077ywlK0mKoktnoOw8GMarQpve6jhvBisvVziK2VatuToqiKMrscPkbmAmj1tCsID2JOpmK6FDf6aFmxgmW0GrXHgL2Sil/MezyzGE3uwwI6fHNxx57jFNPPZXHHnts1Os9Hs+M9+H1eo/5/Utf+hK33PzfbHv1cbZt3cIXv/hFAHbv3c+/3ngXn3t6jS7MZjNvvPEG27dvZ9u2bbz88sts3LhxxvErc8/r9idY/g/j/OQojsgsomyN4FKt/KdD73PiGZFgZRUvA8DeqM4iKoqiKLPDPVj27x/Bshj1NBpyie47EsywlGkIxAjWKcC1wJlCiG3+fx8H7hRC7BRC7ADOAL4agH0FRX9/P++++y4PPfQQjz/++NDlGzZsYM2aNVxyySUsXqyd4fZ4PHzqU59i0aJFXHHFFdhs2kHu66+/zvLly6moqODTn/40TqdW3ldQUMC3vvUtTjjhBP7+978fs9+mpiaysrQ8VQgdFRUVuFwu7rjjDp54/lVOOu1snnjiCQYGBvj0pz/N6tWrWb58Oc899xwAjzzyCOvWrWPt2rWUlpbywx/+0L8tQUxMDAButxu3233MHK9Bf//731myZAlLly7ltNNOA7TRrxtvvJGKigqWL1/Om2++ObSvSy+9lHPOOYeCggLuu+8+fvGLX7B8+XJOOukkOjs7AXjwwQdZtWoVS5cu5fLLLx96fIY76aST2L1799Dva9euZeQC1IpGjhjBMup19MQUIZDQeSiIkYUuvXTh0R2bYMUnJtNGYtiMDEopeePu/+KN34fnAuOKoiihaDDB0vlPmgL0xhSQ6qoDn3esuynz0IzXwZJSvgscf3QOgW/L/tK3oTnAJToZFXDBT8e9yXPPPcf555/PggULSE5OZvPmzaxYsQKALVu2sGvXLgoLC6murmb//v089NBDnHLKKXz605/mN7/5Dbfccgs33HADr7/+OgsWLOC6667jt7/9LV/5ylcASE5OZsuWLcft96tf/SoXXnI5H1tZwZkXrOOzn72JhIQE7rjjDja+9Sq/+r/vYclcxHe/+13OPPNM/vjHP9Ld3c3q1as5++yzAfjwww/ZtWsXUVFRrFq1igsvvJCVK1fi9XpZsWIFVVVVfOELX+DEE088bv933HEH//73v8nOzqa7uxuA+++/HyEEO3fuZN++fZx77rkcOKB1t9m1axdbt27F4XBQUlLCz372M7Zu3cpXv/pV/vznP/OVr3yFT3ziE3z2s58F4Hvf+x4PPfTQ0MjcoPXr1/Pkk0/ywx/+kKamJpqamli58rhFshWAESNYAKSUQj3Qtl97fStTYvC5sBvij7u81ZRHbH94nEXcUVXNmf0vQj+0HLmB9MLAlTYriqIo0zM49UNvPvqd7kksxdTrxtdViy65MFihKVMU0C6C4eqxxx7j6quvBuDqq68+pkxw9erVFBYefcHn5uZyyimnAHDNNdfw7rvvsn//fgoLC1mwYAEA119/PW+//fbQfdavXz/qfm+88UY2v/8WV150Nm+//Q4nnXTS0MiXT+iHOgm+8sor/PSnP2XZsmWsXbsWh8NBbW0tAOeccw7JyclYrVY+8YlP8O677wKg1+vZtm0b9fX1Q0nYSKeccgo33HADDz744FD54rvvvss111wDwMKFC8nPzx9KsM444wxiY2NJTU0lPj6eiy++GICKigqqq6sBLQlbs2YNFRUVPProo8eMVA266qqreOqppwB48sknueKKK8Z4ZhTpPnYECyA6qwyvFHjbVFvX6TBKF94RI1gAA3HFZLlrjy7+HcI6d/x76Of6j14IYiSB8fr7H/LPH67jwOY3gh3KjLV2dPCXP/2Wptb2YIcyYy2dPbz9x+/S1tYc7FBmrLXXzkt/+ikddfuDHYoSxryDJYKmo9/plowyADprQ3qmTcSZ8QjWnJpgpGk2dHZ28sYbb7Bz506EEHi9XoQQ3HXXXQBER0cfc/uRpXajld6NNHIbw2VkpPPpqy/l+i/dxtJly44mQjo9enx4vW6klDz99NOUlZUdc98PPvhgwngSEhI444wzePnll49r0PHAAw/wwQcf8OKLL7JixQo2b9487t9hNh/tvKbT6YZ+1+l0Q3PUbrjhBp599lmWLl3KI488woYNG47bTnZ2NsnJyezYsYMnnniCBx54YNz9RjIxuOD0sBGs/LQk6mQaKY17iAlSXKHMIN2jJlikLiCu/RlamutIz8qf+8ACSLTtxycFHSIefWPol9+aN/wvZ8m32LHBCyvODHY4M/LRUz/n2qb72fmXF8n8+j+DHc6MbHjuYdbX3s/hR/5D6jffCnY4M/LSs3/l+iM/oeGxf8CtH0x8B0WZBo9/br3BdPQ7PTG/HD6A7rq9pCy/OFihKVOkRrAm8NRTT3HttddSU1NDdXU1dXV1FBYW8s4774x6+9raWt5//30A/va3v3HqqadSVlZGdXU1VVVVAPzlL3/h9NNPn3DfL7/8Mm6XNmLV0tpKR0cH2dnZxMbG0m/T3oQep53zzjuPe++9d2hR4q1btw5t49VXX6WzsxO73c6zzz7LKaecQltb21DJn91u59VXX2XhwoXH7f/QoUOceOKJ3HHHHaSmplJXV8eaNWt49NFHAThw4AC1tbXHJXbj6evrIzMzE7fbPbSd0axfv54777yTnp4eKisrJ739iDPKCFZRagyHZSayPTzmC801g3QhR0mwYrIWAdB8aPtchxR4/a306uI4bK0kvTe0OyNKKUl1VgNQ0vfR0VHdEGVt106ilfR9iJxmI6P5IrFJ+54sGtiGdA0EOZqZya/XRnqzbfuQtq4gR6OEK5+/OZVhWIlgfk4e3TIaT4saPQ0lKsGawGOPPcZll112zGWXX375mN0Ey8rKuP/++1m0aBFdXV3cfPPNWCwWHn74Ya688koqKirQ6XR87nOfm3Dfr7zyCqvXnM3Ss9dzwQUXcNddd5GRkcEZZ5zBgf0HWHbO1Tzx+OPcdtttuN1uKisrKS8v57bbbhvaxurVq7n88suprKzk8ssvZ+XKlTQ1NXHGGWdQWVnJqlWrOOecc7jooosA+P73v8/zzz8PwDe/+U0qKipYsmQJH/vYx1i6dCmf//zn8fl8VFRUsH79eh555JFjRq4m8qMf/YgTTzyRU0455Zik7vnnn+f73//+0O9XXHEFjz/+OFddddWktx2JhNe/FtqwEazi1GgOy0ysvdUQBuVsc80gPfj0xydYGSVLAcJiPRKLq4NeQxKO5IVk+lrw2PuCHdK0NXbbyJNNNIs0onDQfuj4+ayhwuP1kevSmtNYcdK2790gRzR9UkpKnHtwST0ALfveD3JE0+f2+oh3NOKTWgVI50HVdVeZHYPdoU3mo5VNKbFmakQWph7VuCqUhFaJYBAMdskb7ktf+tLQz2vXrh36uaCgYMx1ss4666xjRpYGDc5NGs0vfvEL7vjOl4lydaHLXjZ0eVJSEh9+tAnZtB2HMQGr1crvfve7UbeRk5PDs88+e8xllZWVo8YCWmOLv7a9iQAAV0ZJREFUQc8888xx1w8miyPdcMMN3HDDDaP+XcOvu/nmm7n55puPu/8ll1zCJZdcMvR7enp6QFrfh7uhBMtwNMlNiDLRYszF4HNAbwMk5AYputBkxAM643GXJ6bnY8MMYTC3Lc7byYApCWP6IqiH5iO7yFl8crDDmpb2hsNkCxe7ss8no/7PtB7cROrCU4Id1rQ0dfRQRAMfJa9jVcdztB74iLSKs4Md1rS09DpJpYsdCWezsuff9Ox/l4zK0Pxb2vqcZIk29sSfxpLet2g/sJHkpRcEOywlDPn862ANH8ESQtBhzifXNvpxmzI/qRGs+U5K5CjzuHQ6gUuY0A0eYCsR6WiCZTnmcldCsfaDWpxwyozSjdQfn2AJnY4mQx4xfaF/FjHe24XDnERinjbvsqt6R5Ajmj5Hq/Z8xJefS6+Mwt0QuiWc/V0t6IXEkncCHTIWX0vojpY2tbUTK+zE5i6hXqYgW45vaBQq2rp7SRfdmLMrOCwzEY3bgh2SEqakf1718CYXAPb4QpJ8HeAM3WqDSKMSrPlOSuSoXfDBqzNhkK4x73rDDTdw3333zVZkyjyg8/qf/xElbaZ0rWMl7VVzHFHoM+JB6kcve+2NKSLNVTs03zEkSUmi7MFpTiG7pByP1OFqHn3kPRTYe7VueylpWVQbCojuDt15Co7uFgAs8enUGfKJ7gndEySOrkYALEnZNBjyieo9HOSIpq+3WVuewZpWSL2xkNj+0D/JosxTo8yrBtCllAJgawrdz7dIExIJVkgfzMyQYOwES+otGPHgU4vPjSoSXjdiMMEyHJsQpGbm0SetOFtC98A5GKTPh0l4EKPMwQLwJZeQSQcdXZ1zHFnguB19RAknXmsKcdHR1ItMjF2heyDv7O8GIC4hma6oQlKcdcENaAZcva0AmOPT6IkpJt1ZDSH6OebuaQLAlJBJf1wR6a7akF0o1d6hvaaiU/Poiy0izd0AnrFPbirKdA01thmRYMVma3PW22tCdyQ40sz7BMtisdDR0RERB8ujkr4xEyxh1N6AHmdod82aDVJKOjo6sFgsE984hOl9/hLBESMuxWmxHJaZOJtDf77QXHK7B0cEjy8RBLBkLQagsSp0O+8NdHdoP1gTAWizFJBoC90FlD3+jm6G6EQ8iUUkyh68A6HZ5c3b1waANSEdT1IZMdhwdIZmwujzJ1jWxEy8yWWYceFsrw5uUNPk6tNOqMQkpkPyAvT4cLWrUSxlFoxR9p9RsBifFNga1UnTUDHvm1zk5ORQX19PW1tbsEMJCldPKzrpwdCjP+46t8uJ0daKq9mNyRobhOjmN4vFQk5OTrDDmFU6nwuvwYBed+y5kqLUGLbJTEq6VIngVLhcDkxw3IjgoLTCJfAO9NbvgdVr5zK0gLH1dZEA6KMSALDHF5PRvBHpcSLG+LvnM+HoxosOvSkWU1oZ1EJr9U4yy08LdmhTJge0cseYpAysOeVwBFqqtpGfnBfkyKZODGjf2dEpOVgy/3975x0e2VXe/8+ZrpmRNOq919X24l5wwbGpBlKA0CGUBAJJIISSkF9CCL13EnoMxsYBDDEETA+uu95epFXvXZre7/n9MaO1vFYZSSPNHel8nkfPSjP3nnvO3rlz7/ec9/2+u6AbpvpOUV3alOGerR0tNA+A2e7CXtUO3TDdd5rK8l2Z7Zhi23GptuVl38U1ZYUMUwwz6p6eLeheYJnNZhoaGjLdjYxx4kNvIyc2Q/M/Pr3IbyDgx/rhmzhW+zr2v+7jGeidIpPENXmpKO7l8rumIIcfUYkj+AeIBMBiz0gfs41YOHFzE6alQwSLa3cRkwbiWRx6GfQmVncsjnwARGkb5ok400OdFDdkX805U8RLQNjJNRhw1eyCozA3eDYrBZYIzhCTBmy5BRQ3HIDfg2/oDFz1/FX31R3BxOfM7CikqH5vYizDZ+GqF66yo/4QQXfilxwXpfV74bfJsSgUaUbEll7BspqMjJuqKfdmb7TBTkP3IYI7HYMWIS6WDley2x2MGsoxz6sZjZ1IOBbHQoz4EkVxTUYDXmdyYmJWhbKkykJhb8MyAkuYrEyYKrBlcT2SsH8eeFJg5VYlwh6n+89kqksbwhJ1EzQmVvCrG3YRlUYiWRoaawrNMC/yEAYjtTU1TMs8tKnsFPMi7MZPDhiM1FVXMSldyMnsHIsh4kZDgCWXhqpSRmQR2jYo16DQHyIeJo5hyTB1t72ekvBQ1uZl7jSUwNI5RhlZ8gF6gWlrHa5A/9Z1SKEbQlENK1G0ZT4fsrA58ct09hoYbDXRyMIK1vKhcnP2BkpC/VvUo/QT8Sdm43McLgDKGhJW7dnqTmWN+QgZnQAU5DkYFmWY5rJTAJvD8/gMCbFoMxsZMVaR48nOGWtjxItfJIqlOq0mBgw12D3ZeV6MEQ8B4QCDAbvFxIixmpwsdkVU6BdDPERUmGGJ8jzxwiZyCBF3j2agZ4q1ogSWzjFpUbQlip4uEMxvpDI2gqaK8u44wrE4FhFFW8bxzlHZBkB8SgmsVFkQWMutYAFEC1qokWO4vYGt6lZaiQWSAis3YXJRVlLClHQhsrRmWk7cR9Scd+nvaWst+Vk66WReJBYB5u11FIUGM9ij9WOOep8ylrmc5FiycPbdEvUSfMp5qackPJCVY1HoG6MWJiqWvv8slF+ZUU6CWcGmCywhxB1CiE4hRLcQ4l2bfbzthjGZY7MchpI2rCLK+FB2Phwp1k84qmEhilzm81FbVsSwLCY4lp1hOZkgthAiaF5+BctS0YFZxBnuzc6QunjIA4AjrxBIFC0fM1fj9GXnSolDPlVgBXLrKY2NZqUluDXmJWx60rAokt9EgZxHC2SfK6Il/lSxGHY14pQ+SBp5ZBPWmIew8cnzEnU1YZdBpHcsg71SbEeM8QixZQRWYe1uAOaHzm1llxTrZFMFlhDCCHweeBbQAbxUCNGxmcfcbphkBM2w/MNefk3iv3OqL3ttoxXrI5TMwVquKG5jiZNerYK4yhVImVg0IbCMKwiswvq9AMwNZKfAkiEPmhQ48/IvveZxJGP7s4xQNE4ufjTrkwJLFrVgJYpnIvtCuHI0PzHzkw/y5uSM9fRA9j1QXb6yaC5NjMU7koVj0XxELIvGUpaIDpgfOp+pLim2KQYtTGyZZ77quiYC0kpkQt3Ts4HNXsG6EuiWUvZKKSPA3cCdm3zMbYVZRpHLhIABVDQlXL+Co+qLfqcRTuZgLWcp3lTioFdWJHI4VChLSsRXMbkAKG1ICKzYeJZec2EPfmwYjU96T8YKmnDhJezJrnIYnlCUfPxIm+vSa/aKREHOqb7sE8B26SO+6EHeVZOYsZ4bzL6QILvmI255UizmViUszWcGs0tgaZrEqfmImxefl8RYZrNsLAr9Y15BYBU5bQyKCszz2ZnLuNPYbIFVBSyeFh1OvnYJIcQbhBBHhRBHd2qtq5Uws7LAchWXM0de1uZPKNZPKBrHKqJPKzK8gMtuYcJcgyXuB9/EFvcuO4knLXKNK5hcGG1Oxg1lWOez85ozRHwExFNt+63JGfnJLBMlXr+fHBHBkPPkalxJfcK0wzeSXQJYi2s4ZQAWrcZVNrQRkwZC49kV5huLazgJPGVlsbKulbA0E86ykGVvOEaeeOpYquqaCUoLkYnsNIZR6BfTCsZmQghmrDW4AgNb3CvFesi4yYWU8itSyiNSyiMlJSWZ7o7usKyyggUwbq4hN0vzJxTrJxzTsBCDFVZbIq7GxC/TKqQgFeILIYIW24rbzebUUxTs34IepR9j1EvI8FSBVVCbCDXOttj+gHsWAKO94NJrVVU1uKUDmWXumV6/F4uIg22RWMzPZViUYZzNrnBHbzBKHn6E7UlRUl3kpF+WY8wyh0dPMEoeAchxXXqtIt9OPxWYVAkMRZpJCKzl7z+BvEaK4xOwUC9LoVs2W2CNADWL/q5OvqZIASklZpZfoVjAl9tIeXQQqcLAdhQJgRVd0VLcVJpYmVBW7amxECK4Ug4WQLighVptGH8w+25ylpiPkNHxlNeqGtqJSCPRLJuRD3kTAsvkeFJgWS7Zm2eXKPFdEotPCiwhBFOWGvKyzBXR45nHKCSGRaLEbDQwbqnOuslAj8+PXYQRi8ZiMAimLLVZd14U+sesRdBWeOYTxS0Y0fCPq3u63tlsgfU40CKEaBBCWICXAPdv8jG3DTFNJlcoVn7Yk0UtFOJhZmp8i3qm0AOhaBwrUYR5+dmuosp6gtJCaDy7HpwzxUKIoMW68jVnKtuFTUQZ6suucCcAS9xPZJG7G0CuPYcRUY55PrtESdiXECVWZ8FTXr9kCZ5FBNwzAJjtTx2L39lAaXQENC0T3VoXfk9SLC4SJQA+RwPF0VGIRTLQq/UR8CTOy2IRD+DPrac4Np5VY1Hom7gmsRJZMWrJUZnIMc22cO6dyKYKLCllDHgL8L/AeeAeKWX2ZetmiEg0hlnEVwwBA7BXJcJ7xnpObUW3FDphYQXLsIIAbyrNo09WEFYCKyUWQgTNq4QIFtQl8nxm+7PPvdMWDxAzO5/2+rStlvwsi+2P+RP25dbcwqe8HnE1USxn0YKeTHRrXQS8ibFYnK6nvC6Lm7ERwT/Vv/WdWieBpMC6fCxaUWL2PTaTPUJ+YZXUcpnAoqgZIxqR6e4M9EqxHQnHEpOm0rT8/ac0WRjeP5p9k3s7jU3PwZJSPiClbJVSNkkpP7DZx9tOhEPBxC/GlR/2FlzNvMPZlT+h2BihaByLiK1Ys6mxxEmvrMA4px4CUkGLpSawypr2AxDOQidBu/QTX0JgBXIbKI9nV/2omH8eAHte0VNeNy2YdvRnzyxv2JcQWAsFoBewVyQc6yayqBRHOCl8bZcJ35ykw2M2FUoNJ4Wv1fnUsdiTKwlT/dkzFoW+CUW1xArWCgKrpryMSelCKmGvezJucqFYnkg4IbBWeoAGKKluJizNaKre0Y7i0grWCiGCNQU59FOJPTCqkmJTQIsmwn0s1pUFltlRwLQoxDKbXdeclBK7DCAX2WcvIIpbsBBjfjR7btwyOA9AzmUP8vnVCVEyl0U22tFLYvGpYyltSFi1+4azR8xHlhGLRfWJaAtPFo0lmizynHOZiC+uy77zotA3oWgcm1i+9AqAxWRg1FiN3Zs9q8A7FSWwdEwkHAJY0cQAQBhNjJmyL6lbsTEWwglWcrwzGQ14nA0Y0CDLnMgygRZLTWABTNkaKAxkV8J+KBzFIcKwyN1tAcelGfnsWfUhNA+AyHnqg3xFw27iUmRVaGws+SDvzH+qwKqqqsMj7WhZZFSzMBbHZaKkvrKSKZmfVZOBWnIslwvfuqoKpmQ+cbWSoEgT4VhiBUussIIF4HbUUhzOrhzTnYgSWDomFkkIrJVWKBaYd9RTGurf5B4p9EQomrBpN67y+dAKmxO/ZNEDWqaQCyYXlpXzHgFCrmZq4kOEIrHN7lba8HoSD4uGJQTWQv2obIrtF2EPYcxw2TVQ7MplRJRmVWisFkrki9kuC0VbcEW0ubNngmQh9+1y85ECh4VBUYU1i8Yig24ADJeZjzitJoYM2XVeFPomFeMqgJiriXzpJe6b2aKeKdaDElg6JhIOAKuHCAJEC5qplBN4fL7N7pZCJ0QjYcwijjDbV9xuIVcgPpk9D84ZI5ZcNTY7VtkQDGXtOEWIof7sEa4B74K729MFVmVlNXPSmVX1o0wRDwHx9HMlhGDSUkueP4tWGENuYhgQlqePZz6njsJsckUMJUSJWFTTa4G5nDoKg1lkppIcC8uMpSiURWNR6JpQJIZNrBz2D2DOwhzTnYgSWDommgwRNK2ScA9gLW/HKCTDPSrhdqegRRICHHPOitvVlJUwLIsJjqjPxmoYYkHiCDCaV902v3YfALN9Jza5V+nD75kHwGx/+sOiyWhg1FSNPYtCjS1RDwHj0/PJAHzOBsqyyN7cEPbgFw4Q4mnvRVyNlMpp4qHsmEAzhN1EllhZBAi7GsmTHgjMZqBna8cYdhPFBEuEbUVcjeRLDzJLxqLQN5FQ4p6+1CTLYi4Vhh9U93Q9owSWjlnIwTJbVl/BKkraRs8PZI/TlGJjXHrYsqy8gtVY4qRLq0ZOqmTs1TDEQoSwLvmQeznlLYcBiIxmT3mEcNJIwexwLfn+fE4dReGhrevQBrHGvIRNSwssWZSwNw/OZMcKgynqJbjEahyAqawVgMn+7DDtMEa8S64sAphKE2PxZInrrSnqwW/IXfI7wVSSGItbGV0o0kA05AXAYF1ZYFU1dBCWZqJZ6GK7k1ACS8fEIgkXQaNl5RUKgLLGfcSlID6eHTctxcaJX1rBWllgNZU46JLJlYl49uQLZQJDPEiY1Sc0AGy5BYyJUmwz2XOTiyQFVo7j6StYANGCRP2oWGB+6zq1AXI0LxHT08Md4UlL8Ime7Jh0skS9hJYRi67qxIz1bJbMWJujXkLGpR8S85NjyRardmvMQ8j49LIGAHlJt8rZAXXfVWychUnT1QRWYW4OfaIK61z2mPjsRJTA0jELJhcW2+oCy2RzMGqsxD6vLridgkwxRNBltzBmqccoo8pJcBWMsSBhkZrAAhjPaaYkkD1GCvEFy+n8oiXfNydXFyZ6syO23675iVuWFlhFSdMO70h2PPxa4z4ipqUf5Csb96BJQWgsO/IobTEPoWWEb2V9OxFpJDSeHWOxxnyElxtLwy7C0kR4LDvEokLfxEJ+AIyrCCyACVsDRX51P9czSmDpmAWBZU5hBQtgOqeRkqC64HYKMpL4MiYFQ4ZYUWI2n6nsWW3JBMZ4iIhYPedxgWBBG9XxEaJJQxq9E0+uTF1emHeBosZEAeXZ/pNb1aV1E47FycWPZl364be2po5Z6UROZIfAytF8xMxLr2AVuPIZF8WYZrPDgMSueYlaXEu+V1WUyxBlGGZ7trZT6yRH8xFd5rxUFubSSxXmGTWxqdg48XDinm7KWXqiZTGB/BaKtSlIuo8q9IcSWDomHk1YRltTqMkDECpso0obIxTIjkRoxQaJJkJIV1vBArBXd6BJgTahBNZKmLQwUUPqK1iG8r2YhMZ4t/4FCYAMLl00dYG6pj2EpJnIqP5XsLzBKPn4Ice15PtWs4lBUwMOt/5rLmmaxCEDaMusxgGMWRoo8OtflMQ1Sa7mJWZdOgzVaBCMW2rJzYJCqdG4Rq70EV9GxBsNInFefNkhfBX6RksKLHMKK1iUJsJTfcNq9VSvKIGlY7RkDlYqIYIApordGIVktDt7ku4V60dEk6smq5hcADRVlDAkS5ST4CqYtNCaBJar8SAA833HN6tLacUQchPEumzx8hybhUFjLTlZENvv8bgxCQ1DztIP8gDzuc1UhPt07yToDcVw4UO7rGDyYjx5LVTGhiBZDFuveIJRXMKPtC0/Fl9eC6WxEYiGtrBna8cbipEnAshlxCKAL7+FovjUk3buCsU60ZJRKZYUVrBya/YC2eViu9NQAkvPRBIrUdYlLJWXorA+Ed4zP5Ads+mKjWGILaxgrS6wWstz6ZLKSXA1LFqImCH1EMHapt0EpYVoljgJGsJufGLlm/eMo5mykP5XFwLuKQCM9sJlt4kX78JOiOB0/xb1an3MuuexizBGx9IriwBaaQcm4nhH9H0Nz/kC5IkAYoXzQtluTGh4dT7h4wlEyCOAWGaVFMBQnjDt8A/rf9VXoW9keEFgLR2SupjK+jaC0kJ4VN/X0E5GCSw9kxRYBtvqsxkAVY27CUuTchLcIYhY6iGCrWW5XJTV5Hj7IB7d5J5lL2YtTMyYusCy26z0G+vImc2OhH1zxENwmbpRC0SK2imScwTnJ7eoV+sj7EkILFNu8bLbOJK1ysYuPrElfVov3rnE/7XJufxY7NWJsUz36nu11OueAcDoXF5gueoPADDVrfPz4nVjFnEM9uVX4wqSE5tTPfo+Lwr9s7CClYrJRU2Rk25ZhWlW/9EGOxUlsHSM8VIIWGoCy2azMWiszorwHsXGMcUXBNbqX8ZOq4npnAaMMgYz+s/jyBQWGSK+BoEFMJfbSkWoG6TcpF6lj4S728oCy16dCD0Z7Tq2FV1aNxHPNADWvNJlt6loToRw+gb1vcLoTwosW17JsttUNO0lKo0Eh/VtOx9MCiyLc/nVuJrmRK5fcFjf5yXgTnzGTI7lBVZ9Uzs+aSOk89U4hf65ZFy1SqFhALPRwJilngKfup/rlQ0JLCHER4UQF4QQp4QQPxBCuJKv1wshgkKIE8mfL6WltzsMEfUTwgIGY8r7TOc0KSfBHYIpnsxfSGEFC0CWJJJilZPg8lhlGGlK7f9zAa10Ny68zE/qv0BvjuYlal455Lg0KUrcOg81jnomAHAWli27TXV5GSOyGKHzz3woGe5oL1heYNWWuOijEqPex5IUvjl5y6/GVRQ46RE1WKb1PZbA/DgANlf5sttUuuyJsWTJKrZCv8gUa1su4M9vwRWfgaR5kUJfbHQF6xfAHinlPqALePei93qklAeSP2/a4HF2JKaYnyBre9gLFbRRJqeI+dUFt52JxjUsMimwTKmtuDirO5LFqPX9UJNJLDKS8s1tgby6RIjQSOfjm9GltOLQfMRXSNgHqK5pZF46Qef25nFfYqUkr3D5h1+jQTBqaSDfq2+Xt6gvIUpyC5YXiwaDYCKnSfeOdRFvYiz2/OUFlhCCyZwminVeQy40nxDxuYUVy24jhGA6p5GigFpJUGwMEQ2gIVKeNBVlify/8Ji+v6t3KhsSWFLKn0spY8k/HwGqN94lxQKmWICgYW0Cy1SRuOAmek5sQo8UeiEYjZNDhKjBBobULuPmymIGZBn+EZWMvRSxuIaNMCLFm9sCNbuuBMA3cGITepU+guGkU51tBfMBwGg0MGRuINejb3tzGZghjgHjCvkxAJ78ViqiQ7rOPVwQiyuFCEJiAq1Um0QL6texTvMmwh3tK4gSgFBhOwXaHNI3tRXdWhdxT2IsjhVEPCTOS77mRvr0nbeo0DciGiAirCBEStvn1ybCuad7T2xirxTrJZ05WK8Ffrro7wYhxHEhxG+FEDcst5MQ4g1CiKNCiKNTU/r9os0ExliAyBoF1pNOgvqObVdsjEA4jp0QcWPqn4+28oTRhVBOgkviD4SwiDgiBdv7xRQUlTJOMaYpfedguD1z2EUY6Vz5IR7AnddCZUTf9ubG0AxekbvqBIOhrAMzMeaH9DvLKwIJgcUKNu0A1srEA9WkjifQpC+x6mPMXX41DsCSHIuezSGkP/FMIhwrXzOWyj0AzOjcgEShbxLPfKnnANc0tOGTNoLKwVKXrCqwhBAPCiHOLPFz56Jt3gvEgLuSL40BtVLKg8DfAd8RQixZqU9K+RUp5REp5ZGSktVv/DsJc9xPdA0P0AC1jYkLLj6u74c9xcbwhKLkiiBxy+p2rgs0Fju5SA0O3wDEwpvYu+zEnyzQbbSs7ZoDGLe3UOzTt7mMb2YUAINzeVOIBWTpbhyEmBvV7yqWNTyHz7h6CQtXfSKnbLxLvyGc5tA0HpEHJsuK25Uk8+NmevXrvmcMTOITjlXDnIqbDgEwp+MacsbgDGGsq5oOlDQfBmCu5+hWdEuxTbHE/UQMKRQZTlJf7KBHVmGa0fe9Z6eyqsCSUj5TSrlniZ8fAQghXg08F3iZlAkbLSllWEo5k/z9GNADtG7aKLYplniQmDH1iw0gN8dKv6EWm7Lu3Na4g1Hy8aPZXCnvYzEZcDubMRCHaX3ncWSCkC+Rt7hS4dpl9y3aTXV8hIDfk+5upQ3fzBgAVtfKoVsAuQ2JB8bxC49tap82giM6S8C88ooPQOOuQ4SkmdCgfkWJMzKJ27S8694CDU3tuKWd2Ih+DUhsoSm8ppXDUAGaGhqYknnEx/TrimgJz+A15q8astVYX8ewLEaO6ve8KPSPPe4ltIoJ0WJMRgPjtkYK/Sr/T49s1EXwDuCdwPOllIFFr5cIIYzJ3xuBFkBZ260RqxYknoIF9+XMOpooDfVtQo8UesETjOISPliDwAIgmRSLChN8GiFPsn6P3bXmfW01BzAKycB5/c5g+5MrWK6SqlW3rd91hIg0EhrUp1W7lJLC+DTBnJVzYwDynTn0GBuwz+g3jCY3Oo3PsnoEh81iotfUTN6cfiMUnNFZgpbVxaLTaqLP1EjuvH6/ixzRWYKW1cVins1Mr6mZ/Hn9nheFvpFS4tS8hC1rm+ALuFrJ0+ZBx7mMO5WN5mB9DsgFfnGZHfuNwCkhxAng+8CbpJSzGzzWjsMmg2hrdDSDRKFQl3QTSVrMKrYf7mCUPPyIVRL8L6egup2INBIZ0+/DZqaIJo0GTCvU71mO8raE0YW7V5+CBCDiTnwfFJat7kXkysulz1BHzrQ+VxfcgTClzCJzK1Pafjp3F1XBLl3mlEXjGkXaDHHHyjlLC8zmd1AV6YVYZJN7tnbCsTgubY5YTmrh/rN5u6kI90E0tMk9WzuaJinRpgikIOIB3K4OyqLDENKvAYlCv4RjGvn4iFtca9rPWL4bAL/Oa8rtRDbqItgspay53I5dSnmflHJ38rVDUsofp6e7O4dwLGFikErBucuxVSUSbie69RvbrtgYCytYJsfqs6uLaaksoldWElBJsU8jnixtYHau7f8UoKymBQ8OGNenIAHQvONoCCy5qT38TjnbqQh06bKA8vjoEGYRx1KQmnFtvGw/DoJ4dZhTNj7noxg3Ii81sSjL92MhhkeHxZMn3SHKxRxyFYOLS1QewEQc7+CJTe3XepjyhqhgGi03tc+YoSqRH+ft128oqkK/eEMxCoRvTWH/AAVJY7NZ5SSoO9LpIqhII95ghDz8YHWted/SpsQX/bzOC4Uq1o87ECEf/5rFQFtZLl2yGpPOC3xmgnggIbBsuWtfwRIGA8PWJlwe/RYbtfpHmTUUgtGU0vax8v3k48U7ob/o7tmxfgDsJXUpbZ/fdASA0QsPb1aX1s3k+BBGIbEUrB66CZDffEViv85HN7Nb62J2ahi7CGMobEhp+6KWqwGYuPDIZnZrXYyOj+EQYUyFtSltX9KSWMXW43lR6J9Zb4A8EUA41nb/qa9rYEbmEh5V4al6QwksneKfn8IoJNKxfLHG5airq2dG5iEn1AW3XQn73RiFxGhfm8CqLsihT9TiDI5A2LdJvctOYv5EFHN+4frcTH2uDuqifUSj+qy3lBcaZc6yusHFAgtGF6Pn9ffwG5geBKCgPDWB1bDrCGFpJjSgvxBO72ii2K6zvCml7Rtb9uKRdiJDOhzLeCLZ3lbSmNL2LS1tzMhcokP6W/WZG02MxVmamlhsa2piTBYSGzmxib1SbFfcc4kcqrVOmlYV2OmhBtusfif3dipKYOkU32yilogpb3VL5cuxmowMmupwuJVT3HYl4k2tbs7lGAwCnytp6DmlnCYXowXmiEkDdqdrXfubqvaTIyIMXtRf6BZASXwcf07qteDrOq4kKo0EdShK5Ezi4TevoiWl7QvzHPQY6sjRodFFbCrxPV1Ysyul7YtybVw0NuLQ4Vh8Y4nzUlLTltL2LoeVbmMzubP6C60NTPYDUFiZmljMt5vp0bkBiUK/+OcTAsuWu7ZJdYNBMGlvpijYq8sc052MElg6xT+XsFS2u1KMZb8Md25zInlYXXDbktAlgeVa877GS06C+i28mhFCc3iFE7FK4drlKE7Wwpm6qL96Sx6/nzI5SyyvJuV9il359BlqsE7pTzDmeHqZE/lrMnmZcrZTqcOcMjHbSwwj1qLUVuMAZvM6qAj36M7oIjaTcK+1laS26gMJ047ySD9Eg5vUq/UhZhLC11qWmogHmHd1UBYdgrB3s7ql2KYEPdMAOFxrj6AIF7SRI4PgHkp3txQbQAksnRKaT6xgOYtSD+lZjFa8CzshAlPKrn07InxJh0jn2gV4cU0rQWkhNKK/GfBMYgp78BtSL9x8OVUtB4lIE9qo/gTJYM8FDEJiL0stDG2BSUc75ToUJfmBAaYsqYtFSBhdOPHjHdfXyr7F08+UqSLl3DgAKg5iIYZ3SF+fNbunhxljCVjW4H5beQATGt4BfZky5bi7mTEUgy1122xD5QEMSDz9+hqLQv/E54YBcBSnHmWwgKUyYWzmGVR593pCCSydEvcmlovzi1Jzlroce+0+AMaVk+C2JCeYWOEkf+1fxs1leXTJasKjSmAtxh6ZwZ9C4drlMJotDJnrceqwrs9cf+JBvKh+35r2i5buo0C6L+U86YFAOEpFbJhIfmqhWwvkNiXMIcZ0lFMWjWtURvrwOlNf8QEobNHfWDRNUhXuZcaZ+ooPQGHLVQBMXtCPOURck5SE+ph3ru0zVrwwFmV0oVgj0j0CgKkgNVOVxRQ3JpwE5/qUwNITSmDpFOlPLBdb1hiPu0BFc8JJ0KdDK1/FxgjH4riik8SFCRxrz9FrKcvloqzGPKtysBZTEJ/Cb11fSO4Cs3ntVIcvInUWmhsfO40mBSXJG3GqOBsS7nsj5/Xjvtfb202x8GCs3Lum/RaKJ+spp6xvdJIGxoiXrU34NrfvwyNziOjIHGJkxk0jI0SLOta0X1tLO9Myj+iwjs7LpJsmRtCKWte0X1tzC5PSRWxETWwq1obFP0pA5KxpxXSBppoKhmUxsXE1aaonlMDSKUb/OPMif21hI4uoKS9jRBYjVJ7NtmPcHaJCzBC0lcE68oUq8230iVrs4SkIqPrfAPG4Rok2Q9SxvpDcBWTZXgrxMjasr9Bc+3wnY8YKDDbnmvar7biCmDTg7zu6ST1bOzMXE6s2hUmL71QpceXSa6jDpqOcsvGuoxiEJDcpZFMl326lx9SEY1Y/D1Q9Zx/HLOLk1R9Y034uh5WLxmZyZ/VjDjHceQy7CGNvuHJN++XbzXSbmsnT0XlRZAeO4Bjz5jIQYs37ljit9Ipa7PP6q/O3k1ECS6fkBYeZsawvPBASzjKjlnryfd1p7JVCD/RN+6kUM8gUC5NejhACvysZxjOlrF0BpidHsIoohvzUahEth6sxYXQx3vlYOrqVFmKxOHWBc8zkpeZSt5iyokL6RLWujC7ig0eJYaC0ZW2iBGAit4OqwAXdmP+E+hJisax9bWIRYDZvN1U6MrrwX/wdABV7nrHmfedcSaOLSCDNvVofvu7Eim3JrhvWvO+saw/l0UFldKFImVhcwxWdIJizvgk+IQSzjmaKQ4MQ12eZkJ2IElg6REpJSXSUgGNtSdyX48troSI6pC64bUbftJ9aMYm5qH7dbRjKdid+USucAEyP9gOQU7z2+PfF1LRfgSYFwaETG+9UmujsPEuZmMVQd9269h9zdFDhP68LowspJaUzjzJoa0esxUghSbz8IE4CeEf1ER7rGn+YEVMNZtfaJ0tEVcLoYiG/LtPkTR5lyliWcmHexYiKAxjR8A2cSH/H1kHO2CPMGwuxFK8tNw7AUHUYAxJ3j/7cRBX6ZHQuQL0YR3Ol7iR6ObHidszEkNP6MvHZySiBpUOm3T4qmCbuqt9QO6JsN2ZiuIf1l3SvWD/j42NUiFmsSeeg9VBa1YBH2lX19yS+iV4A8svWf4MDyMl1MWqowDatn//X8VMPAlB94JZ17R8p24dLeghN9aexV+uja2CIXVo3wZob17W/q/kaAEbO/SGd3VoXk3PzdETPMFu69tUrgKJkiOTEhcyPZWzWzf7IcaZK1jeWwtaEOcREZ+ZNO/onPRyOPsFU2fXrC9dqS3zGprr0k7eo0DcDvefJFUEsVWvLxVxMTlXieWBuQB8TLgolsHTJWP8FjEJiKWneUDuO6kRI0HS/igffTkSSokgsrEKtg+bSXDplNRHlJAhAbDIRu15ct37RusCks5XyoH5i4fMHfs6kKMa1xtyYBRzJPJTR8w+lsVfrY/iR+zAKScWR569r/6aOQwSklfBA5lcXzv7+hzhFiIKDd65r/+a2PbilnagOjC5O/O4n5IkgRYdfsK79W5vamJJ5uhjLhUd/hkv4yd/3nHXtv6u5gSFZgjac+bEosoPpnoQpStk6wp4XKG9M3Lvmh9SEul5QAkuHTCcLlZa3Ht5QO8W1CTenwLh+HvYUGyMW1zBNJUVR6drcuhbTUuakS6vBopwEATDOdjMtCsjJW79N+wKR4j1UyQnm56bT0LONMT09xZ7gUYbKblnXbDxA7a4riEgjgb7M5pVJKXF1/4gJQxmFrdeuq418Zw7dxkac05mf5bWe/T4ekUvVwdvXtb/DZqbb1ELeXOYnSXLO34NPOCg78Kx17V/gtNJtbCZv7nSae7Z2zGfvwU8OpYfWJ+KdVhO95lYK5jN/XhRZwtgJ4hiwVW5g0rSylBFZdGmyUJF5lMDSIWL0CcJYKKxfm6Xy5VRXlDMl82FaGV1sFy6MezkgzxHIqYB1mlwAVBfYGRSVWKNu5SQI5Pt7mbLWp6UtR12iRMLw+cwbXZz/+VexiSgl171y3W1UFuVzUdRn3H3v3JnjHI4dZ7zxResWiwDT+XupDndnNDf1fGcnV4Qeor/6ToTJsu525l17qIr0IaPBNPZubZzpusg1oT8wWPkcMOesu53Z/N2URQYh4k9j79bGhd4+rgv+hqGqZ62tWPJleAr3UhIbR/qm0tg7xXYkrknqPEcZzWkD69pcXheTbzczbKjC5tGXg+1OZkMCSwjx/4QQI0KIE8mfZy96791CiG4hRKcQYn1TdDuUYvdphq3NYDRvqB2z0cCYsZIc30CaeqbINI/2TnON4Ryy/oYNPWQaDYJIXn3ij9md/YUcjUapiQ0RyG9KS3uVuxIhdd6+zIYIhUJBGrq+Ro+5hdo916+7HSEE445dVPgz6743978fIoyZ5mf99cYaqjyIlQiz/Zkryjnw4w8ihKThOX+zoXYM1YcwEWemN3OftcEffxiziFH3nLdvqB1RmXmji4H7P4RNRKm6Y2NjMdckok/mulXBYcXKHL84yF7ZTbhm/d/RC8zn1FIUGtSFIZEiPStYn5RSHkj+PAAghOgAXgLsBu4AviCEMKbhWNue3sEhOuKd+KvW5/h1OfM5dRSGBtPSliLzdB/7JYXCh2PXH224LWNxY+KX2d4Nt5XNDHc9gVMEkVUbC8ldoKislmlcT4ZyZoiH7/0U1UwQuv5dGxLjAOGy/TgIEJnKjEPVycd+xTXen3O+6s9wFG3MSr84aUIwkSGji+OP/4FbvffTXXknueUtG2qruG3B6CIz5hAnnniU2zz/TVf5c3FUtm+orcKWxMTEZIaMLk6cOMZNc9/nbOlzya3ZWC5mecc1aFIw05V50w6Fvhl++B7MIk7lVS/acFsRVxMO6Qd/5sPTFZsXIngncLeUMiyl7AO6gbVV7Nuh9D70g0QS9xUvTEt74fwGCuU8MuROS3uKzDEw42fv9E+JGmzQtr5ch8U4K5rRpCA23ZOG3mUvU+f/D4DSddS8WY4RazNF3szlt40O97Ov+wtctO1l941/vOH2chsTX9/jGTC68Pr95P70bcwaCmh/yQc23F5z2x7mpJPY0LE09G5t+ANBbD99Gz7hoP7FH91wey3N7czIvIwYKgRCIcRP/oaQsFGbhrG0NSeNLoaPp6F3a8MXDKPd/zbiwkTjSzY+lvbaSnqpRIxu/VgU2UMwEqe2/z6mTBXYG6/ZcHvm0sSEjWdElV/RA+kQWG8RQpwSQnxNCLGQIV4FDC3aZjj52tMQQrxBCHFUCHF0ampnxytrmqT44j1MGMouWb1uFFPSiXBuSBWUzXbu/e1xXmT8PZFdL9pQrPYCNSWFjFJEcGJnJ8WK4ceZI5eapvUnGF+Or2AX1bEB4tGtLwIbi8WY/PbrcBAk708/t+HVK4C6tkMEpYVA/9E09DB1tLjGya+8nkY5yPwtH8aWu3ETErvVTI+5dcsNFTRNcvQrf8ku7SJTN/wbtvySDbdps5joNbeQP7+1ZQE0TfLQl97Cfu0ck9f9K/aC9RVIXcyC0YVzdmtXfjVN8oev/A2HtNOMX/d+cgrXn9u6gM1spM/aTonnjArXUizLr3/+Qw5xnsCB16Xlezq/OmF8NTOgBJYeWFVgCSEeFEKcWeLnTuCLQBNwABgDPr7WDkgpvyKlPCKlPFJSsvEbTjbz6EO/5ED8NNNtLwVDehYXc6sSVu2zg+qCy2a6JrxUn/gEZqHhuHlj+QEL1Bc7GNDKiE/v7BDBMs8p+nP2INJ0zQEYKvZiEXFGe7bWGEKLazz8xTdxIHyU8/veRVnTgbS0W1Ocy3nRgG1y6/KWpJT89qvv5Hr3//BE3etoueHP0tb2fMEeqqL9yC0yVJBS8qv/fBfPmP8BJ6pfTuutr0pb257CrR/LL772Tzxz/l7OVv0ZTbf9Rdrans3voDwyAJFA2tpcCSklP/vav3D73Hc4X/lCGm97Q9raDhTvI1+bR7qHVt9YseMYn5mn6ei/MGMopva2v0xLm1V1rYSlmdC4cgfWA6s+UUgpnyml3LPEz4+klBNSyriUUgP+gyfDAEeAmkXNVCdfUyxDOBIm99f/iJtc2p73t2lrt7y+HU2KHb9Kkc2EonHu/fYXeInhl4SPvAGKN1YfbYHGYgcDsgyrpz8t7WUjnpkJarURgmXpyb9aoKgh4SQ407N1oVvxuMavv/AWbpi5lycqXszBF6VHiEPC6GLCsYuKQBfEY2lrdzmisTi//NybuXn0PzhZeAcHX7XxsK3FGGuOYEJjsmvz62HF4xq/+dLf8szRL3G68Hb2v+bTaW3fVH0YI5KJrs1fXYzF4jz45Xdw+/BnOeu6mY7XfiGt7W+l0UU8rvHzL/8Dzx7+JBdcN9L+uv9Ia/u2+isAmNqC/Li4Jnn4sUeIROObfizFxvEHw5z/8itpY4DIsz6GSENECkBVkZMhSjHM7exJU72wURfBxXEBLwQW1vbvB14ihLAKIRqAFiDznsU65uFvvIc98fMMXfXPmOyutLVbUVzIOIUw25+2NhVbRyAS4/Nf/hzv8H4Ed+E+7Lf/v7S1XeCwMG6qJCc6Bzs0R6//5G8AyGtZX12l5aht3UdEGomMbk0YWigU4rHPvIxbZ+7idPmLOPT6L6Ul5GQxkbIDWAkTndjcQpY+n5dHP/FnPDM5ln1v+Q7CkF6PpPL2xPme3mQTAq9nnsc+/sfcPPF1ThY/lz1v/g7CaErrMcraE0YXmz0Wt8fLw596KbeN/ydnim6n4y33IDbodHs5RUmji4lNNrrw+Hz87pMv5/bxL3O26Hba3nxv2sdSk6wf5+7ZXCfBGbeXX33sZVzzwO08fN+nNvVYio0zNTXFyU+9iJsjv6Vn/zvSlm8PCXfgSXMVDuUcrQs2+k3/ESHEAUAC/cAbAaSUZ4UQ9wDngBjwZimlmlpZAiklv/vOB7lp9D85WXA7+5/1+rS2bzQIJkyV5Pn609quYvM51TvK2bv/ib8N34fbtYuC198PZltajxHOqwcPCav2ygNpbTsbCPQ+QkwaqN+3cYvcxdhsNnqMNeTMbX6oxvBAN55vvZxr4ud5vO4vuOLVH0u7uAJwNl4JvTB54WGqKvemvX2Angsnid/zGq6N93Km7c3sfekHNmUsTY1NjMlCGN48o4uucycw3vtKrtIGOdH6Fg689P1pC/1eTGNjCxOyAEY2b7X0zInHsP7o9dwg+znZ9Eb2v/zDm3Je2lt2MS3ziGyiAcmZ08cx//druVn2cqbxdex5+cc25by0VBbTSR2O8c0zujh95iTc93puk534pZWC3vuB9K1cK9JHJBLl0fu/TOOZT3GVnObC/nfS/sL3pv04AWcdxfMnEiU1NuFzrUidDQksKeUrVnjvA8DGLZ+2MT6flxNf/WueMfcDTjmvY89ffmtTjuPJqaHBnxlLYsXakFJyvGuAngf/g2dM/hf7xDwTzX9C2Ys/AxZH2o9nKGxMCqzeHSmwcqeeoM/UQEtuftrbnnY00+DbXBexo7+8l4bf/x0FRDhz7Se54o9eu2nHamjdi+cXOQT7jwLpy1WBRLjWw/d8jEMXPkZMmOi8+SvsuSl9OVeXYzEZ6LO20+BOv6FCLBbnD9/7CFd0fZKoMHPxtq9z4Pr0zVJfjsVkYMDaQpU7/UYX8bjGb+/+GNd0fZSwsNF729fYf93GXSmXI99h4VFTM9WzmzOWX33vU1zd+RGkMNJ9y5fZc+NL0n6cBcxGA8P2dm70/SbtD7uxWJzf3/Nxruz8GFIYGbzl84x1HePI0NeZGh+mpLw6bcdSbIzui+cY/M23aBr5ITcwRp+pifHn/wft+27elONpBY3Y5iNE3SOYC2pW30GxaaQ3VkGREpFIlCd++lXqj3+U65nmWOWfc/A1n8Jgtm7O8fLrcfkeQAbnETmuTTmGYv1omqSzt5fhx+7H1PsLro4+ziERYThvP4EXfIeypvTURFsKZ0UL9EN0uof0Bsjon3gsSkPoPCeLn8vGqhEtTaSog1LvgwTc09jzi9Patnt+lvPffCtXz/2YAWMdkZd+mz3N+9N6jMupL87lcRqpmkqv0UVfbxczd/8V10ce52zOYcpf+TV2Vdan9RhL4SvaR8XYQ2j+WQyOwrS02d/Tydzdb+QZ0eOcsx+h4lVfpa28Pi1tr4S3cC8VY4+jBd0YctIzWdDTdRb3vX/NLdFjXHAcpvq136SxePMf2OZduzkyc1fC6MJiT0ub3RfP4bnnLdwWPUa3fR9lr/4WzWUNaWl7JcIlB7APPkB8uhtjaWta2uzp7Wb2u2/i5ujjdNoPUvGqr1Nb3oAoacH4va9x7ld38Yw//4e0HEuxNrS4xuhAF+Pn/0Co72GqZx6mWQ7TDFy07eX8kXfRfssr0h7yvJicshbog8n+81QpgZVRlMDaQqbHhzj/86/R0HsXVzNBj6mJrts+x+GrNl7TaCVMxU0wAnMjXRQ2q3JkmWbWG2Cw6xTzFx/CMHqMMs8ZdtHPLmDOUMBo/QuovPmNVNcf2fS+VJcVMS4LyBm7SPrXcPTNwPmjNIowpvrNuSbsNXuhH0Y6j9Fy5e1pa/fkb39A6a/fwRVyhkerXsGBV34Yqy39q5uXYzAIJnI7OOT7AcTCYNrYhFA0GuXh732EQxc/S4WIcWrve9j7wnds6sPHYqx1R2AMxs4/RNWR526orXAkzKN3f4hDPV+gVEhOHfhn9j7/b9LqTLkS5tojGMa/ykjnY1QduG1DbYXCER7+7r9zVd8XqBCC03vfzZ4X/v2WnRdT9UGMM99mpucYRRusTReKRPm/736Eq3s/Q6WAU/v+kX0vePuWhU45Gq+AQZi88BAVGxRYoUiUP3zvY1zR/RmqRIyz+9/D7jv//tJYatqvZNhYQ2n3vUj5TsQmhHAqEkhNY3p8iIm+UwRGL6BNdWFz91ATvkg1HqqBsDTTY9/H0bqX0nz9n9JS3bYlfSuobYdHYH74AlUH/2hLjqlYGiWwNpnxoR4GHvsx9q4f0RE6zg1C0mXp4MwV76XjlpdjMG7+TctZ0QonYXboghJYW0U0iH+ih7G+c3hGu4hN9WD1DlAYHqFCTnJAaAB4sTPq6OBs9XOpOHInhU1HKNjCuOmGpJNgy3T3lh1TL0yd/z2NQOXumzal/bLmw/B78PQfhzQIrOmJUbq/83dc7f4pQ4Yqep99H1cduTUNPV0DlQcxd91LcPgUOUmXtPXQfeph4ve/lRtjXZx3HKH0pZ9nX017Gju6OlUd18IjMHfx0Q0JrFOP/oqc/307N2q9nHVcRdmff5Z9W/QwtUDFrqvhMZi9+OiGBNbpY3/A/D9v42btIudyr6byZV9kb0VjGnu6OiUdN8BJmD73mw0JrDPHH0L+5O08M36OTucRyl72ZfZVpseBNVXq2w8R+LUVX++jcOOr193Oicd/j/mnb+dWrZOL9gMUv/QL7K69rG6fEEzvegUHzvw7Tzz8IIeu3ZjQ3slocY2ZyWHmxnrxTfQRnRlAuIew+kfJDY9REhunRARZKCwUkFbGzNX0F15PX+UhXM1XU99xBR2W9OZMp0JNXQthaSI6eXHLj614KkpgpZm5qTF6j/6MWPdvqJx9jBo5SjkwIsp5vObVVF7/Clrb02sJvRqldYlaWKGJnfcQvZnEA/PMDHcyP9RJaKobMduLzTtIQXiYYm0GB7BwO3dLB5PmSmbyO5gueC455W2Utl9LYW0HbRlMRK0vdvATrYJ9nhMZ60OmMIw8zjQuKuvTE7pzOZXVDczJXJjYWD6JFo/z6A8+y64zH+WwDPJ41SvY+/IPYbOnx9p3LZS0XQNdMHruYZrWIbDc8/Oc/s67uXribjzCyYkrPsqBZ79+UwwTVqOhupJeWYlpnSYEMzPTnPuvd3Dd7A+ZEy7OXvcZdj/zlZkZS209o7IYw8j6rNpnZmc4c9e7uXb6+/iEg/PXfpKO216TkbG0NjbRJ8thcH1OgjMz05z5zru5LjmWzqs+RNsdb8rIWBpL83mCRkrXWT9uenaG0//1bm6YuRefcHLhmo/S/kfLXy+7nvVG/Gc+SeD3nwclsJbF5/MyNdLL/Hg/oelB4vNDmDzD2IOjFEQnKNWmKBHRSwIKwCtzmDKW4rGUM114CFnUgr2yg5KG3ZRWNtC0BZPlqZDvsNEryjHO92W6KzseJbA2iM8zR8/RnxPs/DUl04/SFO/lMOCXNrrt+xmpfgll+2+nvuNKqjL0IF1ZWsSEdCWMDBSpIyW+2TEmB87jG7tIdKobo3sAp3+Q4sgoLjyUAqXJzadkPmPGCsZsBwnn1iEKG8mvaqWycTcV5ZXkG/QXspFnMzNhqSUn+msIzII9Pbko2UCF5xRDjt0Ub9J1aTAaGLI0kO+5sO42es48RviHf8M1sbNcsOzG8aLPcEX75oeOLkdH+x5m73cSGlhb/SgtrvHIT79J/dEPcD1THCt+Li0v+yQHCktX33mTMBoEw/Z2dnvX9vCrxTUe+slXaT3+Aa6T85ws/xN2vfyj7M4t2KSero7JaOCi4yAH3Y+AFocUw/nicY2Hfvgl2k5/hGcwx4nS59H6sk+wy5W582IzGxlwHuQK928hHoUU7dNjsTh/+NFX2HX6w9wg5zlVdietf/5R2jI4lkRY7S72+X4MsQiYLCntF49r/P5/vkXrE+/nZqYTY3n5J2jPWzmX0+pw0VX7x1wzcBfnTh+lY2/mvisyRSwSZnp8gLmxPvyT/URmhzB4R7D6x8iNTFAYn6IQL5dPT03jYtZcxrSzlVHnzZBfg7W4ntyyBoqrmskrKCI3S8IuZ61VlARVgetMowTWGgkFA/Q88Ws85x+kYOIRmiKd7BdxwtJMt7WDR6rfhGvPbTTtv4H9ls0xrVgrZqOBcWMlDq+qjXA5WjzO1Egv00Od+Me60Gb7sHr6yQ8OUxYfxUno0hexJgXjopgpcyXjeTcSza/HWNxEbkULxTXtlJcWUWLMPlvUQF4jzAPTF6H2qkx3Z0uYmhiiWo4zUr55LmIA3qL97Br7DuGAB6s9L+X9fF43p+56L1eMfQe/sPPEgfdz8Plv3rI8mOXId1g4ZmmjdDr1VZ+ec0fx//DtXBs5Qb+xnt5nfYHDR/SRGxCtOEJR76+YHThHYV3HqtufP/EQsf/5B66PnqLP1ET4zm9xcO+NW9DT1YnX30zeuV8w1fkwJbtWLztw9sTDxH/yDm6InaHH3Er4+d/igE7GEm18Jo7TP2X63G8o3rv6SsyZk48T/fHbeUbsJH3mZiJ3fpsDezaWv5UuTA03YDn930ydeZCSA89edftTTzxC9IF3cVPsOEOmOoaf9xX27U89FLjxBf9I5DP3Mv/A+5F7frjtcrH87hlmhrpwj3cTmR5Auocx+UaxhyYoiE5SJOcoF5LyRft4sTNjKMFrLaPHvpfuvCpMhTU4iutwVTRQVFFPsdVOeq2IMkcwtz7xHa2s2jOKElirIDWN/gvHmDj+APah39ESPMVuESEuBd3mVo5Vvxxn+600H76V3RkI2UmV+ZwaqoNrm3XeLkRjMcaHepkZPE9wogtmerB5+ykMDVMeH6dMRClLbhuRRsYNZcxaqxkvOIQsaMBa0kReVRtlta1U5jqpzOho0o8oaUsKrK4dI7AGT/6OEiC/bfMcGgFymm/APP5tzp/4HbuuXT3PJx6P89j9X6Lx5Me4llkeL3wObS/7BIeKy1fdd6vw1dzE4d6PMzNwhqK6PctuNzMzRefd7+HKye8TEDk8sfs9HHjh32Ew6cevsuG6P4XejzD4f3dRWLd8VZGJ8RG6734XV8/9GK9wcnzf+zhw51vTXpx2I9Rf8wLCZ9/HxEN3rSiwxkeHuPj993HNzA/xCzunDv4Le5/7lrQXQN4ITVc/j9CpdzHx8N0rCqyR4UG6v/8+rp27n5Cwcmb/+9j9/Lfpaiyt1z4P/6l3MfvYPSsKrNHxMS7c/V5unPsBQWHj7L530/H8v0OkuOq1gKOwglONr+Da3v/kkd/+D1fftDEDl60mHPAwOXiRudGLBCd70WYHsfqGyA+PUhofJ5cAiy19gtLClKGYeXMpvflXcjG3GqOrGltxLa7yeoorG8nNKyA3YyPaegxFjeRMR5ibHKRgC1xMFUujn28hHXL0J1+h7ui/08AcDcCAoZpTpc/H2vZMGo/8EW2uokx3MWUieXUU+f8XIv5NqaekBzyzk4x2n8A7dI7odDcWdx+FwUEqtHFqRIQFw9KwNDNmrGDWVstY3o2Iwkbs5S0U1bZTWtVIrdlMbUZHsrW4KhoJd5kRExdY2608O4hrkpGJKSb7TuMbPoucvkjl9B+ISiMNe6/d1GM3Hr6V6O+N+M/+DFYRWKce+QWWX7yXa+KddJta8NzxFa44or88itobXorW8wn6H/wKRa/7zNPeD/i9PPH9j7G796tcjY9jxc+n9aUf4lCx/qYmGptaOWHcS2X33cSj78N4WakM9/wcJ//7I+wf+CZXEeRExZ/S/pJ/56CrZJkWM0djTRUP2a5m99CPiQc/hPEyu3a3x82Jez7I4aFvcC0hTpW9gNaXfoR9BZkLoVuOxqoyfmt/BkdG/4d4YA6j/anhl263hyfu/SBHhr7OdYQ5U/4CWl78AfYU6u8z1lBRwoO2G7lu9AGi3mnMuU9dJ5mdn+f4fR/j0OA3eAY+zlS8iNYXf5DdBWXLtLg6HX/6z4x/9H7Kf/NOZg/eSGF+6qvnW4Hf52W07xye4fNEJ7swzffi9A9SGhmmEDc1cOl+HZJmJo1lzFsqOFuwHy2vFlNRA86yRgqrmykpqaDWaNhR9+zVsFe0QidM9p1TAiuDKIG1AjkFVQzmHqC/4WZqrngOdTXN1GW6U+vEUNQEY+AZ6SKv4WCmu7NupJRMTY4z3nMS/9BpmLqA09NNRaSfYuZZuI1EpJEJYznz9lrO5l2HKGrCUdFGcd0uiiobqTcYqc/kQHREfUkevbKcqrHzWS2wpJSMTk4z1n0Sz9AZmDpPrqebisgAtWLq0g04hoFJYzln6l/JwZzNXXV2FRRz3HaQytGfIzVtSdvu/gvHmfzx/+NK/2+YpoDjhz/Igee8MePhgMvR0NDCI45nsHfoe8yMvJWiqoSVi3t+llMPfJnWrq9wPbOctR/B97x/44qOazLc45UJXvlmSh9+E8e/808cfNVHABgf6efi/36JjsHvcCNuzjivpvAFH+Jwi86/O697G/m/+lNOf/Nv2fvGr4IQjI0M0vXAZ9kz/D2eIdyczrue0hf+OwcbN7du2kYxX//X2H7+S85//S3s/stvIQxGRoYHufizz7N36LvcLNyczbuW0hd+iAM6H4v9prdh+dmDdH3rzez6y++CwcDgQC89v/gP9g7dxa3CzQXnFUTu/CD7W9fvzrmAKSeP4O2foOGnL+ehL7+KK/7u+5hNW/t9IuMxZke6mew9jW+sE2a6yfH2Uxweopzpp9QenKKASXMVnfnXEc+vw1JUT25FMyW1rRSVVlNrUAJqLZTUJRwmvSPngdXDUvWK1OJMj3Qz1nUc//Bpxj1hnLf+Pbd1rH/yYSsRUspM9+ESR44ckUePrs8FSbEyRx/5DUd+dicXb/g0Lbe+OtPdSYl4LMrIxZNMXXyc+MgJ7POdlIX7KGH+0jYBaWXYXIfb2USsqBVb5W5K6vdSUdeCUUehSHrm3KiH3i/+CTfnjeH4+9OZ7k5KzPpC9HaextN/DDF2ilxPF+XhfqrF1KVtIpgYN9fgzW1GK24lp2oPxQ37cFW2ppxsng4e+9GXuPL4P3D6us+y97ZXXnq978Jxpv/n3zjk+SVhLJytezl7X/zP2Bz6r0jW13Wa4rtuw29w0lN2B1bfMO3eR3CKIF3mXWi3vI/2a7Ljxq7FNR75xJ9wrf+XdJnbQIvTGOvFJDTO5hzBfvs/0XDgpkx3MyWklPzqM2/g1rl7GDJUE8VIfXwQg5CcdVyF/dZ30nDomZnuZsr84nN/zW3T32LYUEUEE3XxQYxCcs5+BfZb30n9YX3k8q2GlJIHPv93PGf6awwbKgljoS4+iElodOYcxH77P1FzIP0lF058530c6Po0v8t/Hlf+1VexWdOfFx4NBxnvO8NM/2ki4xcwz17E5e+jMjaMVUQvbeeWDibMVXjsdcQLm7CWtpBXvYvS+g6ceZkziNmOxOMa/n+torvsdg791Tcy3Z2UiIe8jHUdY7bnGPGxU+TNn6ciMoCd0KVtzhtaOPPsH/CnR/RVQFkIcUxK+TRHGSWwdggTcx5cn2qgs/7P2feaz2a6O08jHPIzfOEYsz2PI0dP4nKfpzbahy35BR2UFoZMdXhym5El7Tiqd1PSdIDiykbdzvRnC4FIjP/817/gLaYfYXjPCFjsme7SJaSUTM55GDh/FE/fExgmT1Pk7aRJ68cpEl+8UYyMmmrwOJuJl7TjrN5NWeMBcitbQQe5GKFwmPEPH8alzdHV8Ta0SJDcgZ+zO3qGgLRyqvLPaHvReygo0V9400qcfuSXWH/xTppjPUyKYoYLjlBwwxtpOnhTRiyxN0IkEuGx776fouEH0Yw2/MX7qb3ldZQ37s1019ZMLBbjofs+TV7vA2AwESvbS9V1L6NC76tvSxCLxXnkB58nt+d+NGFCK91D5fXZO5b/++GXcHX/AIPBQKRkH/W3vIbiut2r77xepOTkN/6G/QPf4KxxF/E7PszeIzeu2fhCSsnc7AwTvafwDp0lPnUBu7uHomA/Fdo4RpF4jtSkYEyUMGmtJ5DfBMWtOKs6KG/aS2lpxZYV3lbAifdfT54pSuO7H810V55GcHaE0QuP4e1/AsPEGYp8nVTERjEkP0fz0sGguRFPfiuitIOChgPUtB4kV6dpOUpgKTj3L4cxWJ20v+u3Ge2HzzPL0NlH8fQfwzh+iiJfJzWxxGwegEfaGbQ243F1YKzcT1HLldS27MNiyeYANn3zvo9+jH/1vx9e9RNoyIz7lpSSkfEJRs4/in/wCSxTZynzd1IvRzCLOAABbIzltBAs6sBafZDilisoqNsLJn04di7HwMVT8N0/p05LWOcOi0pGGv6Y1jv+koLSqgz3boNImXWCSqHYSZz73/+g4uF/pQAP541tTJVei63uCI7iGhx5BWiaJBaNogVm8c9NEHJPINxD2HyDOAPDFMfGKMR7qb2INDJirGImp56wqxlTWTuu2j1UNu0hN1f/K/A7gQc/+VpucP8Y6z+ObGnExlOQkrmRTsYvPEpo8Di2mTOUBS5SKOcvbTJMKaO2ZgIFHViq91PScgV1Da1YzNkzcb6cwMr89K5iy5gr2MvB2QfQIiEMW1RhfGZiOPHAPPAE1qnTlPq7qJZj7Eq+P42LEVsLj5XdhKXmIGWtV1JV386eLLQ7z2asDdeinRbI/ocwboHAimuSgeEhxjofIzTwBDnTZ6gKdVLHONXJbWaFi0lnG+eLn4m9/hAVbVfiKGuhKQtnQeta9hF/70mG+s5hzyuiuqSC6u0iSrbLOBSKbUrH7a8ndO0fc+wnn6Wg536uHf0mprGvr7hPTBqYMJQwa66ku+gWcNWRU7GLwvo9lNW102C20LBF/VesHX/F1Vjd9+Hr/gPO9ps3/XhaPM5Y31mmuh4lOnwC5+wZqkNdFBCggIQo7zfUcs5xNdGS3TjqDlLZdoSq8vLtcy+8DLWCtYP4vwfu4vrH/oqBZ/8XdVc+L61tS01jbKCTic7HCA8fJ2fmHBXBi5Qye2mbUVHKuL2NcPFucmoPUdl+NSWVtduuTkc28sDpMWruvYP6knxy//p3aW07EtPo6e9nsusxokPHcMyepTp0kRoxeWmbCUMp07ntxEr3kdd4mIr2q7EVZFfInEKhUGQDkYCH4a4nCMyOEva5MRiMGE1GsLlwFJZRUFyJq7RGVyUVFGvjRPcgu799gL6WV9L68k+lte1wJMJg10lmLj6OHDtB/tw5aiPdOEUw8b4002+qZzp3F1r5fvIaDlO36wiuvO1plr8pIYJCiO8Bbck/XcC8lPKAEKIeOA90Jt97REr5ptXaUwJrc5mcncPx6TZ6i25i71vvWXc7Hs88Q10nme8/CeOnEvlSkR5ykxdXXAoGjTXMOFuJle7FWX+I2l1Xk1ekPztgRYJQNM7n/u2tvEP8F/zVI1C6a/WdLkNKydSch+GLJ/AMnkZOnMXp7qI60kuFeFJojxsrmM7tQFbsI7/xCBXtV2HO1Z/ttUKhUCgU2YimSR76t2eyl4vkv7sLzGuPWpJSMjU+zGjXMfxDpzBOnafAd5Ga2CB2EQYS+fGDlibm83dBxQEKm6+kpu0gNtvWREnpgU0JEZRSvnjRAT4OuBe93SOlPLCR9hXppbSwgF8V3ckzZu5l6OSvqdm//LKxFtcYHxtgaqCTwNh5mOrE4emhJNhHBVMspOUGsDJsbuBc8R3I8r0UNB6mtv0IDQ6nCh/IImxmI8aDf47n+H3I77+N/Df8eNm8plAkxtjoENODFwiMXyQ+00OOu4eyUC+1cozSZC5dFBNj5lpmiq9ktmIfhc1XUtZ6hHJ7Afopm6tQKBQKxfbCYBB4D76R/GOvp/u7b6f5FZ9bNpw7HA4x2t/JzOAFQhNdiNle8nw9VEb6KcXNwtT4LPmM2Ro5V/ICTFUHKW69isqmvbSplc4lSUuIoEjEeA0Ct0gpLyZXsH4ipdyzlnbUCtbmMzExRviLN1EqZ7hQcBOhgnakABFyIwNzOEJjuCJjlMYnLzn4QaLY37CxhnlHI7GiFhxVHZQ1HaCkrgOhA6c2xcbxhqJ8/lPv512hTzNlqmCo6FqiplwisTjG4DS28DTOyDQV2vil1UqAOIJJYzmzjmZiRe3YqvdS2nSQgppdYFRfvAqFQqFQbDWRmMavPvEq7gjcT7+5iSnXfuIGK1o8ijU0RU5omvzYFGVy+pLJGIAPO+PmauacLVDagbN2H1WtR8jLMqfbrWJTXQSFEDcCn1g4QFJgnQW6AA/wj1LK3y+z7xuANwDU1tYeHhgY2HB/FCszNNjH0PffQ5v7/ygSHgCi0ohXOJg1leK2VhLJrcZUWI+jrJGi+r2UVDVjMCkhtd2Z9Uf46X9/k9a+b9Me78JGBAS4RT4eYyEhazGRvFoMRY3YK9ooqmnHVdmE0LmLn0KhUCgUO41gOMYf7v0k5X33JdyaiaEJI/PChc9cTMhWQiSvDnNpM3lVbZTVd5BbWKHMi9bAugWWEOJBWDKi571Syh8lt/ki0C2l/HjybyvglFLOCCEOAz8EdkspPSsdS61gbS1S0wgG/RiQWGxODMq5T6FQKBQKhUKhSIl152BJKVcs+y6EMAEvAg4v2icMhJO/HxNC9ACtgFJPOkIYDNgd29PVRaFQKBQKhUKhyATpWLJ4JnBBSjm88IIQokQIYUz+3gi0AL1pOJZCoVAoFAqFQqFQ6JZ0JNW8BPjuZa/dCPyrECIKaMCbpJSzT9tToVAoFAqFQqFQKLYRGxZYUspXL/HafcB9G21boVAoFAqFQqFQKLKJtLgIpgshxBSgNxvBYmA6051QbBnqfO8c1LneWajzvXNQ53rnoM71zkKP57tOSlly+Yu6Elh6RAhxdCl3EMX2RJ3vnYM61zsLdb53Dupc7xzUud5ZZNP5Vr7cCoVCoVAoFAqFQpEmlMBSKBQKhUKhUCgUijShBNbqfCXTHVBsKep87xzUud5ZqPO9c1DneuegzvXOImvOt8rBUigUCoVCoVAoFIo0oVawFAqFQqFQKBQKhSJNKIGlUCgUCoVCoVAoFGlCCawVEELcIYToFEJ0CyHelen+KNKHEKJGCPFrIcQ5IcRZIcTbkq8XCiF+IYS4mPy3INN9VaQHIYRRCHFcCPGT5N8NQohHk9f394QQlkz3UZEehBAuIcT3hRAXhBDnhRDXqGt7eyKE+Nvkd/gZIcR3hRA2dW1vH4QQXxNCTAohzix6bclrWST4TPK8nxJCHMpczxVrZZlz/dHk9/gpIcQPhBCuRe+9O3muO4UQt2ek0yugBNYyCCGMwOeBZwEdwEuFEB2Z7ZUijcSAt0spO4CrgTcnz++7gF9KKVuAXyb/VmwP3gacX/T3h4FPSimbgTngdRnplWIz+DTwMyllO7CfxHlX1/Y2QwhRBbwVOCKl3AMYgZegru3txDeAOy57bblr+VlAS/LnDcAXt6iPivTwDZ5+rn8B7JFS7gO6gHcDJJ/XXgLsTu7zheRzu25QAmt5rgS6pZS9UsoIcDdwZ4b7pEgTUsoxKeUTyd+9JB7Aqkic428mN/sm8IKMdFCRVoQQ1cBzgP9M/i2AW4DvJzdR53qbIITIB24EvgogpYxIKedR1/Z2xQTkCCFMgB0YQ13b2wYp5e+A2cteXu5avhP4lkzwCOASQlRsSUcVG2apcy2l/LmUMpb88xGgOvn7ncDdUsqwlLIP6Cbx3K4blMBanipgaNHfw8nXFNsMIUQ9cBB4FCiTUo4l3xoHyjLVL0Va+RTwTkBL/l0EzC/64lbX9/ahAZgCvp4MCf1PIYQDdW1vO6SUI8DHgEESwsoNHENd29ud5a5l9dy2vXkt8NPk77o/10pgKXY0QggncB/wN1JKz+L3ZKKGgapjkOUIIZ4LTEopj2W6L4otwQQcAr4opTwI+LksHFBd29uDZO7NnSREdSXg4OkhRoptjLqWdwZCiPeSSO24K9N9SRUlsJZnBKhZ9Hd18jXFNkEIYSYhru6SUv538uWJhZCC5L+TmeqfIm1cBzxfCNFPItT3FhI5Oq5kWBGo63s7MQwMSykfTf79fRKCS13b249nAn1SyikpZRT4bxLXu7q2tzfLXcvquW0bIoR4NfBc4GXyyeK9uj/XSmAtz+NAS9KNyEIime7+DPdJkSaSOThfBc5LKT+x6K37gVclf38V8KOt7psivUgp3y2lrJZS1pO4jn8lpXwZ8GvgT5KbqXO9TZBSjgNDQoi25Eu3AudQ1/Z2ZBC4WghhT36nL5xrdW1vb5a7lu8HXpl0E7wacC8KJVRkIUKIO0iE9z9fShlY9Nb9wEuEEFYhRAMJY5PHMtHH5RBPikHF5Qghnk0id8MIfE1K+YHM9kiRLoQQ1wO/B07zZF7Oe0jkYd0D1AIDwJ9JKS9PsFVkKUKIm4B3SCmfK4RoJLGiVQgcB14upQxnsHuKNCGEOEDC0MQC9AKvITGhqK7tbYYQ4l+AF5MIHzoO/AWJXAx1bW8DhBDfBW4CioEJ4J+BH7LEtZwU2Z8jESYaAF4jpTyagW4r1sEy5/rdgBWYSW72iJTyTcnt30siLytGIs3jp5e3mUmUwFIoFAqFQqFQKBSKNKFCBBUKhUKhUCgUCoUiTSiBpVAoFAqFQqFQKBRpQgkshUKhUCgUCoVCoUgTSmApFAqFQqFQKBQKRZpQAkuhUCgUCoVCoVAo0oQSWAqFQqFQKBQKhUKRJpTAUigUCoVCoVAoFIo08f8ByL6zYTmEtTsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
0False00.09690.0153bAP.soma.v0.04073.2e-06
1False00.09690.0153Step1.soma.v0.02042.42e-06
2False00.09690.0153Step3.soma.v0.01665.35e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "0 False 0 0.0969 0.0153 bAP.soma.v \n", + "1 False 0 0.0969 0.0153 Step1.soma.v \n", + "2 False 0 0.0969 0.0153 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "0 0.0407 3.2e-06 \n", + "1 0.0204 2.42e-06 \n", + "2 0.0166 5.35e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcdb34/9d7+vbeeyqpJBCKEqToFVCKiBIQFeSrXLBjuVe9FvRe7/WnXFHUK6goChhCkw4qKk2lJBAglbTdbJJNsr3M7tTz+f1xzm52k20hszu7O+/n47GPnTn1PWdmds/7fD6f9xFjDEoppZRSSimljp0r2QEopZRSSiml1EyhCZZSSimllFJKJYgmWEoppZRSSimVIJpgKaWUUkoppVSCaIKllFJKKaWUUgmiCZZSSimllFJKJYgmWEopNcWISK2IGBHxJDsWlRpEZKOInJnsOJRSaibQBEsppdS0JyK3iEiP8xMRkeig508kO76pzhizyBjzdCK3KSJ+Efm1iHSJyH4R+UIit6+UUlOV6I2GlVIqsUTEY4yJHcP6tcAuwHss20lVInIDMMcY8+Fh5h3TezOZplOswxGR/wFWAhcCpcDfgKuMMU8mNTCllJpg2oKllFIJICL1IvLvIvI6EBQRj4icKiL/EJEOEXltcBcsEXlaRP5HRF5yrvA/JCL5I2z7YyKyWUS6RWSniPzrYfMvEpH1znZ2iMi5zvQcEblNRJpEZK+I/JeIuMd4HbNF5K8i0ioiLSJyl4jkDprXJiInOM/LRaS5/3WJyIVOV7MO5/UtOOz4fElEXheRThFZIyKBoz/SR2+E98aIyJxBy9wuIv816Pn5zjHtcN7DpePc15kiskdEvuYcv3oRuWLQ/PeKyKvOe9XoJIP98/q7hv4/EdkN/NWZfq/TAtQpIs+KyKLD4v4/EXnCaa37u4iUisiPRKRdRLaIyPJxHqN3jec1HoUrgf80xrQbYzYDvwSuSvA+lFJqytEESymlEudy4L1ALlACPAb8F5APfAm4X0SKBi3/UeBqoAyIATePsN2DwPlANvAx4KZBSc7JwO+ALzv7fQdQ76x3u7PdOcBy4N3Ax8d4DQL8D1AOLACqgBsAjDE7gH8H7hSRdOA3wG+NMU+LyDxgNfB5oAh4HHhERHyDtn0pcC5QByxlhJNtEVnpJDYj/awc4zUMZ+C9GatVyElIfg38K1AA3Ao8LCL+ce6rFCgEKrCTjF+IyHxnXhD7fc914rlORN532PpnYB/7c5znTwBzgWLgFeCuw5a/FPi6s88w8E9nuULgPuCH44x7WCLyldHejxHWycP+XL82aPJrwKLhlldKqZlEEyyllEqcm40xjcaYPuDDwOPGmMeNMZYx5s/AWuA9g5a/wxizwRgTBL4BXDpcC5Mx5jFjzA5jewb4E3C6M/v/Ab82xvzZ2c9eY8wWESlx9vV5Y0zQGHMQuAm4bLQXYIzZ7mwrbIxpxj45P2PQ/F8C24EXsU+g/8OZtQp4zFk3CtwIpAFvP+z47DPGtAGPAMtGiOF5Y0zuKD/Pj/YaRjD4vRnLNcCtxpgXjTFxY8xvsROXU49if99wjuEz2In2pQDGmKeNMW8479Xr2EnpGYete4PznvU56/zaGNNtjAljJ7vHi0jOoOX/YIxZZ4wJAX8AQsaY3xlj4sAa7OT6LTPGfG+092OE1TKd352DpnUCWccSi1JKTQeaYCmlVOI0DnpcA3zwsCv9K7GTkuGWbwC82K0OQ4jIeSLygtM9rwM7cepfrgrYMUwsNc72mgbt/1bsVpARiUiJiNztdCnsAu4cJqZfAouBnzgn/WC3eDX0L2CMsZzXVzFovf2DHvdy6CR8MjSOvciAGuCLh713VdivcTzanaS5X0P/uiJyioj8zela2Qlcy5HHdyBWEXGLyPfE7vrZxaHWycHrHBj0uG+Y55N5nPv1OL+zB03LBrqTEItSSk0qTbCUUipxBlcNasRuoRp8tT/DGPO9QctUDXpcDUSBlsEbdLql3Y/dIlTitBg8jt2Vr38/s4eJpRG71aVw0P6zjTFjddH6b+d1LDHGZGO3xPXvCxHJBH4E3AbcIIfGje3DTkz6lxPn9e0dY39HEJHT5VAFwOF+Th97K0c4vKJTL5A+6HnpoMeNwHcPe+/SjTGrx7mvPBHJGPS8Gvv4APweeBioMsbkALcw6PgOE+uHgIuAdwE5QK0z/fB1JowznmzE92O4dYwx7UATcPygyccDGycjZqWUSiZNsJRSamLcCVwgIuc4rRABpwBC5aBlPiwiC53xTN8B7nO6dQ3mA/xAMxATkfOwx1L1uw34mIi8U0RcIlIhIscZY5qwuxL+r4hkO/Nmi8jh3dEOl4Xd+tApIhXYY7sG+zGw1hjzceyub7c40+8B3uvE4QW+iJ3g/WOsA3U4Y8xzxpjMUX6eO9ptDmM98CHnvTmXod30fglc67Q2iYhkiF2cIgsGCkvcPsb2vy0iPicZPB+415meBbQZY0LO+LkPjbGdLOzj2IqdEP73UbzGhDDG/Pdo78coq/4O+LqI5InIccAnsMcFKqXUjKYJllJKTQBjTCN2y8PXsJOjRuxkZfDf3TuwTzj3AwHgs8Nsp9uZfg/Qjn1C/vCg+S/hFL7AHuPyDIdakj6KnaBtcta9j6FdFIfzbeAEZ1uPAQ/0zxCRi7CLVFznTPoCcIKIXGGM2Yrd2vUT7Fa4C4ALjDGRMfaXLJ/DjrEDuAJ4sH+GMWYtdjLwU+zjtp2hBTmqgL+Psu39znr7sAtSXGuM2eLM+yTwHRHpBr6J/b6O5nfYXQz3Yr+PL4z1wqaQb2F3X23A/lz+QEu0K6VSgd4HSymlkkBEngbuNMb8KtmxqPFzqiK+Bix1inkcPv9M7Pe18vB5SimlUoMn2QEopZRS04XTIrdgzAWVUkqlLO0iqJRSKUZEbhmhYMEtY6+tpiMRqR6lUEV1suNTSqmZRLsIKqWUUkoppVSCaAuWUkoppZRSSiXIlBqDVVhYaGpra5MdhlJKKaWUUkqNat26dS3GmKLDp0+pBKu2tpa1a9cmOwyllFJKKaWUGpWINAw3XbsIKqWUUkoppVSCaIKllFJKKaWUUgmiCZZSSimllFJKJciUGoM1nGg0yp49ewiFQskORU0BgUCAyspKvF5vskNRM9TeXVsJ3X0Vnot+TM3Ck5MdjlJKKaWmmSmfYO3Zs4esrCxqa2sRkWSHo5LIGENrayt79uyhrq4u2eGoGWrjn27j3eFNND/wUVi4JdnhKKWUUmqamfJdBEOhEAUFBZpcTaLuvggd+7bTG+xOdihDiAgFBQXamqkmVEnrSwAUxZoIte9LcjRKKaWUmm6mfIIFaHI1yfq628ilm0DnDjAm2eEMoZ8FNdEqIrvYQi0A+179Y3KDUUoppdS0My0SLDW5AjG75cqFwYpqa5FKHcFQlGzTTVvJaQSNn+DOF5MdklJKKaWmGU2wxkFE+OIXvzjw/MYbb+SGG25IXkCDnHnmmaPenPl973sfp5566pBpN9xwAxUVFSxbtozFixfz8MMPD8yzjMFjokSwi0hE+romJnClpqD2jnZ8Eicjr4R6dw2+Vh2DpZRSSqmjownWOPj9fh544AFaWloSul1jDJZlJXSbg3V0dLBu3To6OzvZuXPnkHnXX38969ev59577+Xqq68eiCMat/AQx/KkEzVuCPdMWHxKTTXBjmYAXBkFtKbPoTS0fcp1k1VKKaXU1KYJ1jh4PB6uueYabrrppiPmNTc3c8kll3DSSSdx0kkn8fe//x2wW4luvPHGgeUWL15MfX099fX1zJ8/n49+9KMsXryYxsZGvvzlL7N48WKWLFnCmjVrAHj66ac588wz+cAHPsBxxx3HFVdcgRnhRO+OO+4YaI166aWXBqY/8MADXHDBBVx22WXcfffdw667YMECPB7PQPIYtwxf/+8fsvz0c1j+Lx/kq9/8TwDq6+s5++yzWbp0Ke985zvZvXs3AFdddRXXXXcdp556KrNmzeLpp5/m6quvZsGCBVx11VUD+7nuuutYsWIFixYt4lvf+tYRcXR2dlJTUzOQ6AWDQaqqqohGo8O/KUpNgFCX/T3wZhYQKVxAjukm0tGU5KiUUkopNZ1M+TLtg337kY1s2pfYLmsLy7P51gWLxlzuU5/6FEuXLuXf/u3fhkz/3Oc+x/XXX8/KlSvZvXs355xzDps3bx51W9u2beO3v/0tp556Kvfffz/r16/ntddeo6WlhZNOOol3vOMdALz66qts3LiR8vJyTjvtNP7+97+zcuXKI7bX29vL+vXrefbZZ7n66qvZsGEDAKtXr+ab3/wmJSUlXHLJJXzta187Yt0XX3wRl8tFUVERAAcPHuShJ//G62v/QSgSxWprAGPxmc98hiuvvJIrr7ySX//613z2s5/lwQcfBKC9vZ1//vOfPPzww1x44YX8/e9/51e/+hUnnXQS69evZ9myZXz3u98lPz+feDzOO9/5Tl5//XWWLl06EEdOTg7Lli3jmWee4ayzzuLRRx/lnHPO0ftdqUkVdhKsQHYB/oo0qIcD29dRdVJ5cgNTSiml1LShLVjjlJ2dzUc/+lFuvvnmIdOfeuopPv3pT7Ns2TIuvPBCurq66OkZvVtdTU3NwLio559/nssvvxy3201JSQlnnHEGL7/8MgAnn3wylZWVuFwuli1bRn19/bDbu/zyywF4xzveQVdXFx0dHRw4cIBt27axcuVK5s2bh9frHUi8AG666SaWLVvGl770JdasWTNQnS87M4OA38e/fvZLPPzkX8hIC2BFQ/zzn//kQx/6EAAf+chHeP755we2dcEFFyAiLFmyhJKSEpYsWYLL5WLRokUDMd9zzz2ccMIJLF++nI0bN7Jp06YjXseqVasGWvDuvvtuVq1aNepxVCrRosFWANJyiyiavRyA7vr1SYxIKaWUUtPNMbdgiUgV8DugBDDAL4wxPxaRG4BPAM3Ool8zxjx+LPsaT0vTRPr85z/PCSecwMc+9rGBaZZl8cILLxAIBIYs6/F4hoyvGnzvpoyMjHHtz+/3Dzx2u93EYrFhlzu8dLmIcM8999De3j5wQ96uri5Wr17Nd7/7XcAeg/WlL33piG25BV567A7+9GoD9/zhEX7zi5/zxBNPjCtOl8s1JGaXy0UsFmPXrl3ceOONvPzyy+Tl5XHVVVcNey+rCy+8kK997Wu0tbWxbt06zj777FH3q1SixYPtAGTmFpGTXUaTyYeDG5MclVJKKaWmk0S0YMWALxpjFgKnAp8SkYXOvJuMMcucn2NKrqaC/Px8Lr30Um677baBae9+97v5yU9+MvB8/fr1ANTW1vLKK68A8Morr7Br165ht3n66aezZs0a4vE4zc3NPPvss5x88slHFVd/q8/zzz9PTk4OOTk5rF69mieffHJg3Ne6detGHIc1WHdXO53dPbz3ve/hf2/6Ea9t2oYV7ePtb3/7wPp33XUXp59++rjj6+rqIiMjg5ycHA4cODBiwpaZmclJJ53E5z73Oc4//3zcbve496FUIrhCHQCkZRUS8LrZ66kmvWvn6CsppZRSSg1yzAmWMabJGPOK87gb2AxUHOt2p6ovfvGLQ6oJ3nzzzaxdu5alS5eycOFCbrnlFgAuueQS2traWLRoET/96U+ZN2/esNu7+OKLWbp0Kccffzxnn3023//+9yktLT2qmAKBAMuXL+faa6/ltttuo76+noaGhiHl2evq6sjJyeHFF4e/r8973vMe9u3bR09XF+df+TmWrXgb7zzrTL73rX9DYn385Cc/4Te/+Q1Lly7ljjvu4Mc//vG44zv++ONZvnw5xx13HB/60Ic47bTTBuZ985vfHFImftWqVdx5553aPVAlhSsaJGrcuHx2i3RXeg2F4T1aSVAppZRS4yYjVaZ7SxsTqQWeBRYDXwCuArqAtditXO3DrHMNcA1AdXX1iQ0NDUPmb968mQULFiQsRjW69uYm8qL7oXgReHx07dtGOiE85UuSHdoA/UyoifLPn32CJc2PkHnDfgD+9OsbePfum7C+uA1XVnGSo1NKKaXUVCIi64wxKw6fnrAiFyKSCdwPfN4Y0wX8HJgNLAOagP8dbj1jzC+MMSuMMSv6K9mpJDLOuDGxPxqW24+HGFjxJAal1CSJh4ngG3jqLZ4LQEuDjsNSSiml1PgkJMESES92cnWXMeYBAGPMAWNM3BhjAb8Ejm5gkUqOgQTLLpxhPHbRChMLJysipSaNKxYiLIcSrOzK4wDo2LMlWSEppZRSapo55gRL7BJ2twGbjTE/HDS9bNBiFwMbDl9XTT2C02XUacFyee2xKLHIkVX/lJpp3PEwsUEJVkXNfKLGTeTAm0mMSimllFLTSSJuNHwa8BHgDRFZ70z7GnC5iCzDLt1eD/xrAvalJpqxsBBcTguW1xnsH4+G0Fv+qpnOZYWIyqFbDZTkZrCLEtztWklQKaWUUuNzzAmWMeZ5QIaZNe3LsqckY2EGvZ0+r5eocUNMW7DUzOeJh4m6DiVYIsJBbyUVwYZR1lJKKaWUOiRhRS7UzCAYzKCPhcftIiJeJB5JYlRKTQ6PFSY2KMEC6MmsoTi6FwbdOFwppZRSaiSaYI3Tgw8+iIiwZcvIg93r6+tZvHhxwvZ51VVXcd999404//Of/zwVFRVYg078br/9doqKili2bBkLFy7kl7/85VHtU4yFkaENknHx4bY0wVIzn8dEiLuHJljxvFn4iRDr2JOkqJRSSik1nWiCNU6rV69m5cqVrF69etj5sVjsmPcRj4+/FLplWfzhD3+gqqqKZ555Zsi8VatWsX79ep5++mm+9rWvceDAgXFv127BGppg2aXa42Ad+2tUairzWmGswxIsf4l9k/CWhk3JCEkppZRS04wmWOPQ09PD888/z2233cbdd989MP3pp5/m9NNP58ILL2ThwoWAnWhdccUVLFiwgA984AP09vYC8Je//IXly5ezZMkSrr76asJhu+x5bW0t//7v/84JJ5zAvffee8S+n3rqKVasWMG8efN49NFHh+x70aJFXHfddSMmfcXFxcyePZvBN2+++eabWbhwIUuXLuWyyy4DoK2tjfe9730sXbqUs8//IG9s3gbADTfcwJVXXsl7LvoANSe/h/vuXcO//du/sWTJEs4991yi0SgA3/nOdzjppJNYvHgx11xzDYffvNqyLGpra+no6BiYNnfu3KNK/JSaDD4TxnIFhkzLrbJvat25d3MyQlJKKaXUNJOIKoKT54mvwP43ErvN0iVw3vdGXeShhx7i3HPPZd68eRQUFLBu3TpOPPFEAF555RU2bNhAXV0d9fX1bN26ldtuu43TTjuNq6++mv/7v//j05/+NFdddRV/+ctfmDdvHh/96Ef5+c9/zuc//3kACgoKeOWVV4bdd319PS+99BI7duzgrLPOYvv27QQCAVavXs3ll1/ORRddxNe+9jWi0She79A6fzt37mTnzp3MmTNnYNr3vvc9du3ahd/vH0h4vvWtb7F8+XIefPBBHrvnN1z92a/y2ob3AbBjxw4effxxGtf+mbdd9DHuv/9+vv/973PxxRfz2GOP8b73vY9Pf/rTfPOb3wTgIx/5CI8++igXXHDBwD5dLhcXXXQRf/jDH/jYxz7Giy++SE1NDSUlJeN+m5SaDD4iWJ6hCVZl9Sx6jZ/owe1JikoppZRS04m2YI3D6tWrB1p7LrvssiEtRieffDJ1dXUDz6uqqjjttNMA+PCHP8zzzz/P1q1bqaurY948u6vRlVdeybPPPjuwzqpVq0bc96WXXorL5WLu3LnMmjWLLVu2EIlEePzxx3nf+95HdnY2p5xyCn/84x8H1lmzZg3Lli3j8ssv59ZbbyU/P39g3tKlS7niiiu488478Xjs/Pr555/nIx/5CMYYzjrtFFrbO+jq6gLgvPPOIy0ji8XHzSEej3PuuecCsGTJEurr6wH429/+ximnnMKSJUv461//ysaNG494HatWrWLNmjUA3H333aO+ZqWSxW8imMMSrILMAI2U4u3QUu1KKaWUGtv0asEao6VpIrS1tfHXv/6VN954AxEhHo8jIvzgBz8AICMjY8jycliBiMOfD+fwbYy1vT/+8Y90dHSwZMkSAHp7e0lLS+P8888H7GTmpz/96bDbe+yxx3j22Wd55JFH+O53v8sbbxxqETRm0I2GHX6/H5/HQ8zlw+vxDMTjcrmIxWKEQiE++clPsnbtWqqqqrjhhhsIhY4s6f62t72N7du309zczIMPPsjXv/71MY+LUpPJsgx+onBYgiUiNPsrmd1bn5zAlFJKKTWtaAvWGO677z4+8pGP0NDQQH19PY2NjdTV1fHcc88Nu/zu3bv55z//CcDvf/97Vq5cyfz586mvr2f7druL0R133MEZZ5wxrv3fe++9WJbFjh072LlzJ/Pnz2f16tX86le/or6+nvr6enbt2sWf//zngfFeI7Esi8bGRs466yz+v//v/6Ozs5Oenh5OP/107rrrLixjeO4fL1KYn092dvbAem6XEBUvHJZ8AQPJVGFhIT09PSNWPRQRLr74Yr7whS+wYMECCgoKxvX6lZos4WgMvxyZYAEEM+soiu2HeDQJkSmllFJqOtEEawyrV6/m4osvHjLtkksuGbGwxPz58/nZz37GggULaG9v57rrriMQCPCb3/yGD37wgyxZsgSXy8W11147rv1XV1dz8sknc95553HLLbdgWRZPPvkk733veweWycjIYOXKlTzyyCPDbuPjH/84a9euJR6P8+EPf5glS5awfPlyPvvZz5Kbm8sNN9zAunXrWL5sGd/4nx/xy5/ceMQ24i6f/eCwAha5ubl84hOfYPHixZxzzjmcdNJJA/NuueUWbrnlloHnq1at4s4779TugWpK6usLAiDetCNn5s/CQ5xIi3YTVEoppdTo5PCKb8m0YsUKs3bt2iHTNm/ezIIFC5IUUWoJR+O4D24g7s/FX1gzZF5H815yowehZDG4vSNsYXLoZ0JNhKamvZTdupB1C7/CiZd+dci8Z//yKO947gr2vue3VJz8vuQEqJRSSqkpRUTWGWNWHD5dW7DUAMuACwNy5MdCnG5T8eiR46uUmgkiIbsFyzVMC1ZBzSIAurVUu1JKKaXGoAmWGmAZC5cYcB35sXD77AQrFtEES81M0VAfAC7fkQlWVWUl7SaTePO2yQ5LKaWUUtPMtEiwplI3xpnMWJb9YJgWLI/Pj2XAJLkFSz8LaqJEwnaRmP6LCYNlB7zslgoCnToGSymllFKjm/IJViAQoLW1VU+sJ4ExdoIlwyRYPo+bCF6IhSc7rAHGGFpbWwkEjjwBVupYxUL9CVb6sPPb0qrJ69s9mSEppZRSahqa8vfBqqysZM+ePTQ3Nyc7lBkvFI4Q6DtIPBDFHWg7Yn64owW3WHjakleqOhAIUFlZmbT9q5krFrETLI9/+AQrlF1H/oE/Q7gb/FmTGZpSSimlppEpn2B5vV7q6uqSHUZK+NOzz/Huv15K87t/StHyjxwx/8n//QFndT+C/5sHhh2npdR0FgvbY7C8geETLFfRXDgAPU1byKw9adhllFJKKaUm/CxZRM4Vka0isl1EvjLR+1NvXcwZg+L1Zww/P282fiKYrr2TGZZSk8JyWrB8I7RgZZYfB0Bbw6ZJi0kppZRS08+EJlgi4gZ+BpwHLAQuF5GFE7lP9dbF+6/gj3CC6SueA0DHHi1VrWaeeKS/BWv4CwwlNQuwjNC7b8tkhqWUUkqpaWaiW7BOBrYbY3YaYyLA3cBFE7xP9Rb1X8H3jNBFKqfKvrlve6OeYKqZJ+7cgsAXOLJMO0BVST57KYTWHZMZllJKKaWmmYlOsCqAxkHP9zjTBojINSKyVkTWaiGL5BroIjXCFfzyyln0GR+RA29OZlhKTQoTtVuw/GnDf/79Hjf73JVkdO+azLCUUkopNc0kvVKBMeYXxpgVxpgVRUVFyQ4npZmYfQVfvMNfwS/Py6CBUtwdei8gNQP1J1gjtOACdKZXUxBuBL1thFJKKaVGMNEJ1l6gatDzSmeamoKMMwYF7/D3mXK7hGZvJZlBvReQmoFi9udfvCMnWNHc2aTTh+lumqyolFJKKTXNTHSC9TIwV0TqRMQHXAY8PMH7VG+ROCeYeIZvwQLoyayhKLoP4rFJikqpSRINEcUN7pHvXuEpngdAe6MWelFKKaXU8CY0wTLGxIBPA38ENgP3GGM2TuQ+1TGI2l0EGaGLIEA8fzYe4sTbtRVLzSwSCxHBO+oy+TWLAGhr0D9jSimllBrehN9o2BjzOPD4RO9HHbuBFqxREqy0krmwE1obNlJcOGuSIlNq4kk8TET8DF/iwlZTO4c+4yO0Xwu9KKWUUmp4SS9yoaYOVzyMhYDbN+IyuZV2qfaufVsnKyylJoUrHiIiI3/2AYqy02iQMnztmmAppZRSaniaYKkBrniffYIpMuIyVVXVdJk0oge3TWJkSk08dzxMVPyjLiMiHAjMIj+olTSVUkopNTxNsNQAdzxERIavINivKCvAbsrxaql2NcN4rBAx1+gJFkBfzlwKrWYIdU1CVEoppZSabjTBUgO88RAR1+gJlojQ7K8it7d+coJSapK4rTAx1+hdBAFcJXY32c7db0x0SEoppZSahjTBUgO8Vh9R18gFLvr1ZM+mMH4Qwj2TEJVSk8NnhYi6Rr4HVr+c2uMBaN312kSHpJRSSqlpSBMsNcBnhYi5x06wTOF8ACIHtkx0SEpNGr8VIjbKPeD6VdUdR6/xE96npdqVUkopdSRNsNQAvwkRc4/eRRAgrXwhAO312kVKzRwB00fMPXYLVlluOjupwNemlTSVUkopdSRNsNSAgOkjPo4TzKKaBUSMm+C+TZMQlVKTI2BCWONowTpUSXDHJESllFJKqelGEywFgDGGgAkTH8cJ5qySHHaZMqRZr+CrmSONEMY79gUGgL7cueRZbdDbNsFRKaWUUmq60QRLAdAbiZMu4XGdYGYHvOzxVJPRpVfw1cwQjcVII4LlyRjX8r6yRQC0N7w+kWEppZRSahrSBEsBEAzHSCcEvvGdYHZlzqIgug+ioQmOTKmJ19vTg0sM4h/f579wll1JsHnH+gmMSimllFLTkSZYCoCecIw0wrh84+siZRXOx41FvGXbBEem1MTr7bVvGuz2Z45r+dmzj6PLpBPdp4VelFJKKTWUJlgKgGBfCJ/EcY3zCn5GhV1JsFUrCaoZoK+nGwB3YHyf/5wMH9vds0hv01LtSimllBpKEywFQF/QOcEc5xX8klmLiRuhu3HDRIal1KToC9otWJ7A+D7/AC2Z8ykP7YB4bKLCUkoppdQ0pAmWAiDcf4KZNs4uUmUFNJgSzEG92bCa/iJ99gUGb1rWuNeJlyzFT4Sw3nBbKaWUUoMcU4IlIj8QkS0i8rqI/EFEcp3ptSLSJyLrnZ9bEhKtmjDhUA8A3nFewc8OeGnUSoJqhoj02gmWP338LVhZtScAcGDLSxMSk1JKKaWmp2NtwfozsNgYsxR4E/jqoHk7jDHLnJ9rj3E/aoIdOsEc/xX8rsxZFEb2QDw6UWEpNSmizgUGf3r2uNepmnc8fcZH7+51ExWWUkoppaahY0qwjDF/Msb0D0B4Aag89pBUMsT7OgDwZ+SMf52CeXiJEW/dOUFRKTU54iH7AkPaUXz+qwqy2UoN/mYtdKGUUkqpQxI5Butq4IlBz+tE5FUReUZETh9pJRG5RkTWisja5ubmBIajjoZxEqxAduG410nvryS487WJCEmpSSN97QCkZReMex2XSziYMZ/i3q1gWRMVmlJKKaWmmTETLBF5SkQ2DPNz0aBl/gOIAXc5k5qAamPMcuALwO9FZNi+N8aYXxhjVhhjVhQVFR37K1JviTgJlis9b9zrFM06HssIXY2vT1BUSk0OCXUA4MvMP6r1YiVLyDC9hFu0FVcppZRSNs9YCxhj3jXafBG5CjgfeKcxxjjrhIGw83idiOwA5gFrjzVgNTFc4U77QSB33OvMKS9itymGg5snJiilJomEOukhnUz3mH8Sh8ipWwG7oGnzC9QWz5mg6JRSSik1nRxrFcFzgX8DLjTG9A6aXiQibufxLGAuoJd4p7JQB3Fc4B9/kYusgJfdnhoyOrdPYGBKTTx3uIMe1/grCParW3QSIeMluPOfExCVUkoppaajYx2D9VMgC/jzYeXY3wG8LiLrgfuAa40xbce4LzWB3OFOel2ZIHJU63VmzaEo0gix8ARFptTE80W76HOP/+JCv7L8bLa4ZpN+8NUJiEoppZRS09HR9Yc5jDFm2D4xxpj7gfuPZdtqcvWfYB7tKaZVtABPZ5zowTfxli+ZkNiUmmj+WCdh3/grCPYTEfZnL2Vh5wP2RQaPfwKiU0oppdR0ksgqgmoa88e6iHjHfw+gfplViwFo2bk+wREpNXky4t1E30KCBWDKT8RHjJ4GbcVSSimllCZYCohbhgyrh5jv6BOssllLiBo3PY1vTEBkSk08YwyZpgfL/9YSrPzjVgJwYNOziQxLKaWUUtOUJliKzr4ohdJJLG3898DqN6s0n12mFGnWSoJqeurqi5BLDybt6Eq091swfz57TSGxhpcSHJlSSimlpiNNsBRtPSGKacfKKDvqdQNeN/t8tWR3aSVBNT11tuzHK3HIKn1L62cHvGz3LaCgXW+4rZRSSilNsBTQ1rwPn8Tx5JW/pfW7s+dSGGuCSO/YCys1xXQc3A2AP7/yLW+jt3g5hfGDRDv2JiospZRSSk1TmmApOg7YJ5iZhdVvbQPFC3BhCO/XboJq+gm2NAKQVfTWE6zMOacBsPf1pxMRklJKKaWmMU2wFH2t9glmbknVW1o/u3opAM07tIqamn7CbfsAyC+pecvbmLfsNILGT/DNZxIVllJKKaWmKU2wFLF2u1uTL++tXcGvnL2IsPHSu2dDIsNSalJYXXaClZ7/1rrIApTkZbHJfRzZB19OVFhKKaWUmqY0wVL4uxuI4IWsoy9yAVBTmMUOKnC3aBdBNf14g/tplxzw+I5pO80FK6iI7ML0tiUoMqWUUkpNR5pgKfJ6d9HirwKX+y2t73G72O+vI7dnR4IjU2riZfY20uZ9axcXBvPPXokLw/4NTx97UEoppZSatjTBSnEdvREqYnvoy5l9TNsJ5syjIN4Moc4ERabUxIvFLYpi+whlvcUCL4PULn0HYeOhY7OOw1JKKaVSmSZYKW5rYzNVchB38fxj2o67ZAEAQR2HpaaRhuYOymhF8mcd87ZmlRWwUeaS0fRCAiJTSiml1HSlCVaKa9n2Im4x5M4++Zi2k1trVxJs2amVBNX0sXfXm7jFkFk655i3JSLszz+R8tCbmFBXAqJTSiml1HSkCVaKC+/6JwA58047pu1Uz5pPjwkQ2rspEWEpNSm699if18LaRQnZnm/W6XiwOLDpuYRsTymllFLTjyZYKcyyDMWtL3PQV4VkFB7TtiryMthJJd62LQmKTqmJZw7aCVZ6xeKEbG/W8rOIGRctG/+WkO0ppZRSavo5pgRLRG4Qkb0ist75ec+geV8Vke0islVEzjn2UFWivb5rLyeZDXRVnnXM2xIRDqbNoiColQTV9JHR+SbN7hIIZCdke3XlxWxxzSZ97z8Ssj2llFJKTT+JaMG6yRizzPl5HEBEFgKXAYuAc4H/E5G3VgNcTZg3n12DX6KUnXpJQrYXyptHjtUBwZaEbE+piWRZhrLwLtozj62C5mAiQlP+qVSHNmP1diRsu0oppZSaPiaqi+BFwN3GmLAxZhewHTi2KgoqoXrCMeY03EOzt5yMOe9IyDY9pfY4lo6G1xOyPaUm0t7WLurYR6zguIRu1zPvbDxY7HvtTwndrlJKKaWmh0QkWJ8WkddF5NcikudMqwAaBy2zx5mmpog/P3oPJ7CF8AkfB1di8uyCuuMBaN21PiHbU2oi7d25Ab/ESKtMzPirfnNPPJug8dO18c8J3a5SSimlpocxz6xF5CkR2TDMz0XAz4HZwDKgCfjfow1ARK4RkbUisra5ufloV1dvwe6mg5zw+rdp8ZRQ+a5PJWy7tbWz6TAZRPdtTNg2lZoo3bvfAKCwbnlCt1tZmMtrniXk7/97QrerlFJKqelhzATLGPMuY8ziYX4eMsYcMMbEjTEW8EsOdQPcC1QN2kylM2247f/CGLPCGLOiqKjoWF+PGkNXX5htv7mGKg5g3vdz8AYStu2i7AA7pZpA+9aEbVOpCXNwM3FcZFUuTPimW0veTmlsL9HW+oRvWymllFJT27FWESwb9PRiYIPz+GHgMhHxi0gdMBd46Vj2pY5dW1eQF2++kndG/kbD0s9QtPidCd9HS/osivp2gjEJ37ZSiZTZ+SYHPOUJvcjQL2+JXTi14aVHE75tpZRSSk1txzr45vsi8oaIvA6cBVwPYIzZCNwDbAKeBD5ljIkf477UMXh57Us03vRO/qXvCbbNu4a6939nQvYTzptHhgliuoZtsFRqSjDGUBreRXvmnAnZ/oknnMoeU4S1+ZEJ2b5SSimlpi7PsaxsjPnIKPO+C3z3WLavjo0xhjc2vEbrn27ktK7HiYifhjNvZu6ZV07YPr1li2AvdDa8Qe7Sygnbj1LH4kBbJ9XsZ0PBhROy/TS/hw25Z/OuzvswwZZjvpG3UkoppaaPiSrTrpJo3/79PHvPj3j1u2ex6L4zWdn9ONvKL8T7+XXUTGByBZBfuxSA9oY3JnQ/Sh2Lfbs24RZDWlliS7QP5l32QTzEqX/+7gnbh1JKKaWmnmNqwVJTQ0d7K9vXP0vvm89QdPAfzIu9SbkYmlylbJrzCea857MsKqgae0MJUFdTS4vJJtq0aVL2p6Y/YwyhqEVXKEpXT5BgdwfB3iDRUIhoNEQsEiYeDdu/YxEiFkQtwYgbS9wY8RB3+7C8WbjTcwmkZZAZ8JLh95Cf4aU0J42SLD8e96HrSV177UIs+VULJux1vf3tZ1H/TBnWq7+Hcz49YftRSiml1NSiCdY0Yqw4zXt3snfHG3Tt3ojv4OuUBTdRbe1lhRjiRtjpm8+rtf+P8pMuonzR6ZSJTGqMhZk+1koVJR1vTup+VfKFY3E6uoN0tR6gp6OZvq5mIl0txINt0NeOO9SOK9KNJ9qDN9aDN95LwAqSbnpJJ0QufZRI9NjjMB66yOCAyaPJFLDR5HOAfNoDVQSzZ+EunEPhxhc50zuxCVaa38P26lW8a/ePaN70LEULE3NDbzW9GGPoDYXp6mwn2N1Bb3cHfT2dhIKdxPq6MeFuCPcgkR5c0R6IhTCxCGJFMPEYbiuKy8TwmBhCnLhxEcNFHPsCAy43MZefiCuDsCcTy5uFBLIgvQCTWUIgv4K8ogrK8zMoy0kjw6//9pVSaqLpX9qpxhjCXQdprt9IR+Nmoge34e3YSXZvA8WxfRQTodhZtE1y2Zt+HC8XnU/unFOpXXYGczPzkxq+iNCaXseivr/alQQnOcFTiWGMobOnl/aWJnpamwh17CfadRAr2ILpbcPV144n0oE/2kl6rItMq4tseiiRECUjbDOChx7JJOxKJ+zOIOrPIOatoNuXRbcviwOBLNyBLDxp2XgDGXh9frxePx6fH48vgMfnx+f14RbAioGx7N9WDKIhrFAn0d4OYsF2/ME2qrv3U9u9D29wG/5oF8SANoi3uQh5vHS6cshJz53Q47jw/M9w8Ge30/fQlzDznkM8/gndn5pY4XCIztaDdLYfpLejhb6uFqI99kUE09uOO2x/J/zRTtLj3WRY3eSYbjKlj4xxbD+GmzA+YuIhLl4s8RAXDzHxYrk8WOLGhYUbC5eJIyaO24rhiUdIs4L4TXjY7caN0EIOW0wRTa5SOtKqsHLr8BXPJb9yPjVVVdQWpuP3uBN7wJRSKkVpgpUkVl8Xzbs30b57M30H3sTVtoPMngaKI41kEaQS++ZhEeNmr5RywF/FrtxT8RTNJb96IVVzl5BfUEn+FExgwrnzSO99FNO1F8nRQhdTRSwWp729mc7mJnramgh37ifaeRATbMbV24Iv1EpatI3MWAe5poNcCZI7zHbiRuiWTHrc2fS5c4hklNDsm8/BtDwkPR9PRgHe7ELScorIzCkiI68IX1YhPm/6hH5eXYDf+TlCuAfadkDLNtzNW/Ef3IK/PLE3GB5OeXEhTyz8Cudt/gqbf7aK4kt+QEzc5BaW4/cnvjy8OjrhaJS2lgN0NO+jt30/4c4DWN0HIdiCq68VX7iV9Eg7mfF2cqxOciRIMQxc5BosjtBNFkF3Fr3uHMJpRQR9c2jy52ECubjTsvGkZePLyCaQkUNaRg5pmTn4M3PwpWUj/iw8Hj+eY/mOxKMQ7oZwFwRbiXTspadlL32te4h17qOkq5HZwTfJ7nseV5+BJuA1aDeZbDRlHPBV0eu08mZVLKBs1kJmlRYQ8GriNRVZlsEyBsuAwWAMWJZlT7MsjGWwrPjANGMsXC4XLpcHl9tt/4jgEpzfgttlP5cpeG6h1HQiZgrdr2jFihVm7dq1yQ4jYaxomObGrbQ1bKJv/1akbQfp3fUUhhspMG1Dlt1nCjngq6Q7o5Z43iz8JfPIq1pIee08cjLSkvQK3prHH7mX96z7OJ2X3E3OkvOSHc6MF46Eadm/l67mPfS2NBLu2IfVfQB3z378oWYyoi3kxdvINZ34ZPi7JXSQRZc7l15PHmF/AbG0AkgvxJ1dgj+nhEBuKZn5pWTllxLIzAOX1scZL8syPPmrr3PO3p/hFvvv7cs553LS9WuSHNnMZMUtOjra6Di4m56WPYTb9xHrbEJ69uPta8YXaiUj1k621UGu6cYj1pHbMEKHHPpOhHz5RAMFkF6AK6MAb1YBgaxCMnILycorJiuvGHcge/p8L6Ih6GggfHA7bbs3Ez6wBVfbTrKD9eTGWwcWixthL4U0earozqjFyp9NevlxFNUupqZ2DgFfCl+jtSxMtJdIKEioL0jY+YmEgkRDvcRCQWLhXuKRPuLhXky0DyvaC9E+JBbCFQvhjts/YkVxWTFcZtBvE8NtorhNHLeJ4jExPMRwE8frPHZhIYBgcGFwydGfz8WMizguLIb+7n/c/xMXN3E8WOLCErs1tf+3cX4slxcjbnB5MC6P89t+jsuLuDzg9ji/vYjbg2vQY3F57GluL7g9uPuX8XhxOdNdHh9utxeXx4Pb48Hl9uHxekGcbbu94HIjbmd/A/u0t4WzD0EQMYgxiOD8tp8bcyhJtYxld5YwFpZlMCaOFR86n4HE1sLE4xhjMJZlJ7fGwliWvU3LYKw4xtmO6V/fsjDGOMvGwVnfjsOZ7yxjjAVWfOCxGbT+wPPDpuPEYE+3nw95jGW/fgxiLMB57EzHmS7OdPo/ZoLz6RNE7LWciRjpf+w8R4Ysj8ihJF5czixneXHmDzwGwUVvWimzT72I6oL0t/adnSAiss4Ys+KI6ZpgHRsrbrF/Xz1tDRsI7tuCtG4jraue/NBuSq0DAydUAG0miyZPBR1pNURy6vAUzyO78jjKahdQlJ83Y64Y/fONrbzt/pOpP+Er1F741WSHM21ZlqG1tZnWfTvpOVhPtK0R07UPV/Ag/lAzmZFmcq028k3nkM9ZvzZy6HQXEPQVEA4UEc8oRjKK8GYXk5ZXSkZeKTlF5WTmldj/lNSE2rJxPW2vP0Hm5jXkeiJUf1MLwRyt3mAXrXt30nlwN72te4l1NkF3E57eg6SHm8mJtVFg2kiXI7vK9Ro/ba48ejz5hHx5xAKFmIxC3JlF+HKKScstJSO/jKyCMtJziuyTsVQU6iJ6cBstDRvp3rsZ07KN9O5dFIYbSePQce01fva4ymn1VxJJL0Uyi/HmlpOeX0ZGYSWZeSVk5+SRlp6FJCPxjEch2ks8HCTU2024t4dIXzeRvh4ifUHioSCxcA9WxF6GSBAT6UVivbiifbhifbjjfXjifXjjIbymD58VJmBC+O2OnG8tLCOE8BMWH2F8RMRPTLzEne6gltM91Lg8dsLi8mC5fOA8x+UFt89JGtyIuAadsLoO/QYQt33O6nIhCEbEPmE2cftE3orbJ9QmDiaOWHHn5Lv/cdw5OY+DFUOsGDiPXcZ+LiaOmBguK25PM3Hc2I9dzmN3/2/ieOw0beDxcP+7lBrO0/Hj6fng3Zy/tDzZoQyhCdYxivQF2bdrA20NG4ns34qnfTs5wXrKY3vIkNDAcr3Gz153BR1p1YRzZuEqnENm+XyKahdSUlyGyzUzkqjRtAcjBL+/gL6SE5n7yXuSHc6U1RPsoWXvTjr219PX3EC8oxF3917S+vaTHTlIsdVMpvQNWccyQrvk0OEpIOgtJJJWjJVRgjunFF9eBRkFFeSVVJNTWIHL60vSK1Oj+fsvr+fUPb/B+to+vP6pdSUumWLRKAebdtOybwfBA/VE253vQ28TWZEDFMQPkk/3Eev14qfNVUCPt4BQoJhoeglkluDJLSeQV0FWUSV5JVVkZOXpmNBjYQyR9j0c2LXBHh98YCtpXTvJDe0hJ95GOqFhV4saN72SRp+kE3JnEnalDSQOxuXFuOxkwXJ57URh0JV0wW4dsK+kW/aJfDyCy4rgdn48JoLHRPGYCF4TtX+I4OHIlsnRxI3QS4A+/ITFT0j8RCSNqMtP1JVG3B0g5knDcqdhedPBk4Z4A4gvHfGm4fal4fan4/an4/Wn4w1k4Auk4wtkEEjPwp+WQVp6Bl6vLzkJ5xRgjCFmGaJxi0jMIhK3iMbixKIR4rEY8VjUfhyPYsWixJ0fKx4lHothxSLE4zFMPIYVi2Li9jwr7iR6VhSXsRNHl4k60/oTwMHJoJ0cO+0xA+015rDWlUMtKC6nccVJWHHZ53IDrTAue3mX22m0cSOu/oTXhQwkum57OWc+znyXy56GS3CJCxGX/RkZ9NjVnzy73M5zQVyugSRbXIJLnO07011Dlnc50124XG5nn84+BsViNxe5MLic1+I6Yp7dXGUfOYzdNbX/8eDfxvR/B/tbvfqXd34wGKt/mnVoujHO4k5LHs40t4/sgnLSfFOry/JICVaKXqIbnw1/f4TQC7+hMLiVqvheasVQ68xrooiWQDUb8pfjKppLevlxFNQspri8jrnu1Pzj2S8vw8frnjkc174h2aEkVTxucaBpN62NW+nZv51Yyy68XQ1k9e2hKNZEMe1kHrZOO9m0eUrozqimLeNUyKnEn19FenEteWV15BZVUuDxUpCUV6QSwV++CPdew/bN65m/7O3JDmfSWHGL5uYmWhu30NO0nXjrTtydu8nsbSQvup9Cq41yiTP42mQPabS4i+n2lbA9fTFWViXuvErSCqvILa6moLSG9KxcNE2dBCL48quoyq+i6sQju37HQ920Hmikbf9uQm37iPa0Ee/rJB7qRELduCJdeKLd+KwQrlgUl9WLx8Rwmxgeok6VROjviGThwgiYQR3h4tgFP6LiI+YKEHdlE3f5iLt8WG4flsuHcfux3H7w+MGbDr4MXL40XP5MPP4MPIEMPIFMfGmZ+NMy8aVnEkjPIj2QTprfQ5Yntf9/TyQRwesWvG4X6UOu/42nBIxS04smWKMItTZS2f06+9Pn0pR3Du6yheRVLaJ89iLKMrMpS3aAU1h3/lJKml/ABFuQjMJkhzNhYrE4ext30lK/gdD+rUjrdtKCjeSG91Ea30+5RAZOGC0jtLjyafOVsyf7bTRkV+POryajqIbcslkUlNWS508nL6mvSE20usVvg5fhwKZnZ1yCZcUtDu5vpGXnenqatmG17sTbvZvc0B5K4/spkb4hVSYPkk+rt5Q9WctoyKrAnVtFRrHzfSifRWZm3hEXIdTU5A5kUVyzkOKahckORSmlkk4TrFGceP61yIWfpDTZgUxDrrqV0PwL2jb9jYKTPpjscI5ZsKebfTs20N64kej+rXg7dpDb20B5fA81EqLGWa4XPwfcZXSmVdOctRJXfi3pJbPJr5pHUeVcin1pw1YgU6mjoHoh+6SUzIa/AF9JdjhvSU84xs6G3bTXv060aSO+ti3k9uygOtZAqfQM/M0MGy8H3CV0BSrYmrUC8mrxF88mp3wexdXzKE7P0u+DUkqpGUcTrFGkaj/pRKhdupLgi37a3/jztEqwevpC1L/5Bu271mPt30Bmx1ZKQzspMweZO2gw7n4ppjVQzZbsE3AVzyOrYiHFdYvJLqqiTj83ajQi7C87i0V772X//r2UllYkO6IRhaJxdu7Zx8Edr9G79w28LW+SG9xOTXw3S6VjYLkeMmjy17Iz753EixaQVrGI4trFFJXXUO2aWv3llVJKqYmmCZaaEAsq8nnGvYzj9z4FljXlyhdblmHPnt0c2LaWYOMb+Fo3kR/cTm18N4slCjglij2VHMxayJ789+EvPY78mkWU1i2iNC1TWzbVW1byjo/jv3s12574OaUf+69kh0MkZrGr6SD7d7xOb+MbuFq2kNuznapYAwullf5OX30EOBiopSXndNpLF5FVvYSiWcvIzK1grhaQUEoppQBNsNQEERFaqt9DXv236N7yV7IWvitpsXR2d9O49VU6dq3HHNhAVudWKiO7qJZOqp1l2iSXA2lz2Jx3Kr6KJRTOPoHiWUup9qYNLKNUolQct4JNaSewqOF22lo/R35B0aTs1xjDgbYuGretp3P3G5gDm8js3E5FdBdzaWa+00obwcsBfw2d+SfTVbKA7OqlFM1aRlp+DTVT7GKJUkopNdVomXY1YbbuOUDBL1cQzF9MzeeemPD9xWIxGndt5eCOV4nsfQN/62aK+nZQZe0buJloCC/7vLV0Zs9FiheTXXs8ZfNWkJan7VFqcu3e8Hcq7n0vr2SewYnX34/Lk9jrXb19fTRse4O2Xa8RbdpEWsebFId2UmX2D3wfYrjZ762iO2sOFC8gq3oJxbOX4SucDal6HyillFJqnLRMu5p08ytLuC//Uj7Q/itaXr6fwpMuSch2jTEcPNBE05vr6Gl8HXfzJnK7t1EVa6BOQtQ5yzVJCS0Zc1hfcC6ByqWUzj2BgqrjmKU31VVTQPXi03jp1c9w8o6befnHq1j4iV+RkX30NST7C7B0Nm4gemALvrZt5PXuotLaywKJA3Z31wOeMtqy57Cp8L2kVSyhdO4JZJXPp9Kj90tTSimlEumYWrBEZA0w33maC3QYY5aJSC2wGdjqzHvBGHPtWNvTFqyZp+FgO73/dxY17Kfn3B9TfOqqca8bjcVoathO6+5N9O5/E1q3k9m1g7LILoppH1iuk0ya/HUEc+fjKl1Ebs0yyucvx5+hBc/V1GaM4aXffpVT6n9OC7lsK7uQjLkrya1aQHp2AeL2EA52Egl20tXeQm9LA6Z9N67uPfh79lIYbqTcHMTldO2LG2G/q4S29FrCefPxlS+iaNYySuqW4NKbGiullFIJNVILVsK6CIrI/wKdxpjvOAnWo8aYxUezDU2wZqa1b2zCf/9HWMJ26gML6ag6G2/RHNyBLKJxQzzcQ7ing3jnPtzB/fh6D5IT3ke51UTAKTgBdgn0Jk8lnVlzsYoWklG1lPJ5J5JTXAU6wF5NY1vX/pXwU//Nwr51A933RtNOFm2eErrSq4nmzcFXehx5NYspnbUYf0Bv2qmUUkpNhglNsEREgN3A2caYbZpgqcPta+3ilft/wLx9DzKP3SMu10Y27e5CgoFSwtmzcBfNJqP8OErqFpOriZSa4bo7Wtnz5isE920lHu5BrBjiz0QC2WRk55NdUktB+SwCGdnJDlUppZRKeROdYL0D+GH/DpwEayPwJtAFfN0Y89wI614DXANQXV19YkNDwzHHo6YuYwz7Dhyk80AD0d5OfF4XHn8W2Tm55JdU4fWnJTtEpZRSSimlxvSWEywReQqGveXPfxhjHnKW+Tmw3Rjzv85zP5BpjGkVkROBB4FFxpiu0falLVhKKaWUUkqp6eAtVxE0xox6AyMR8QDvB04ctE4YCDuP14nIDmAeoNmTUkoppZRSasZKxB0j3wVsMcbs6Z8gIkUi4nYezwLmAjsTsC+llFJKKaWUmrIScR+sy4DVh017B/AdEYkCFnCtMaYtAftSSimllFJKqSkrYWXaE0FEmoGpVuWiEGhJdhBq0uj7nTr0vU4d+l6nFn2/U4e+16llKr7fNcaYosMnTqkEayoSkbXDDV5TM5O+36lD3+vUoe91atH3O3Xoe51aptP7nYgxWEoppZRSSiml0ARLKaWUUkoppRJGE6yx/SLZAahJpe936tD3OnXoe51a9P1OHfpep5Zp837rGCyllFJKKaWUShBtwVJKKaWUUkqpBNEESymllFJKKaUSRBOsUYjIuSKyVUS2i8hXkh2PShwRqRKRv4nIJhHZKCKfc6bni8ifRWSb8zsv2bGqxBARt4i8KiKPOs/rRORF5/u9RkR8yY5RJYaI5IrIfSKyRUQ2i8jb9Ls9M4nI9c7f8A0islpEAvrdnjlE5NciclBENgyaNux3WWw3O+/76yJyQvIiV0drhPf6B87f8ddF5A8ikjto3led93qriJyTlKBHoQnWCETEDfwMOA9YCFwuIguTG5VKoBjwRWPMQuBU4FPO+/sV4C/GmLnAX5znamb4HLB50PP/D7jJGDMHaAf+X1KiUhPhx8CTxpjjgOOx33f9bs8wIlIBfBZYYYxZDLiBy9Dv9kxyO3DuYdNG+i6fB8x1fq4Bfj5JMarEuJ0j3+s/A4uNMUuBN4GvAjjna5cBi5x1/s85b58yNMEa2cnAdmPMTmNMBLgbuCjJMakEMcY0GWNecR53Y5+AVWC/x791Fvst8L6kBKgSSkQqgfcCv3KeC3A2cJ+ziL7XM4SI5ADvAG4DMMZEjDEd6Hd7pvIAaSLiAdKBJvS7PWMYY54F2g6bPNJ3+SLgd8b2ApArImWTEqg6ZsO918aYPxljYs7TF4BK5/FFwN3GmLAxZhewHfu8fcrQBGtkFUDjoOd7nGlqhhGRWmA58CJQYoxpcmbtB0qSFZdKqB8B/wZYzvMCoGPQH279fs8cdUAz8BunS+ivRCQD/W7POMaYvcCNwG7sxKoTWId+t2e6kb7Let42s10NPOE8nvLvtSZYKqWJSCZwP/B5Y0zX4HnGvoeB3sdgmhOR84GDxph1yY5FTQoPcALwc2PMciDIYd0B9bs9Mzhjby7CTqrLgQyO7GKkZjD9LqcGEfkP7KEddyU7lvHSBGtke4GqQc8rnWlqhhARL3ZydZcx5gFn8oH+LgXO74PJik8lzGnAhSJSj93V92zsMTq5Trci0O/3TLIH2GOMedF5fh92wqXf7ZnnXcAuY0yzMSYKPID9fdfv9sw20ndZz9tmIBG5CjgfuMIcunnvlH+vNcEa2cvAXKcakQ97MN3DSY5JJYgzBuc2YLMx5oeDZj0MXOk8vhJ4aLJjU4lljPmqMabSGFOL/T3+qzHmCuBvwAecxfS9niGMMfuBRhGZ70x6J7AJ/W7PRLuBU0Uk3fmb3v9e63d7Zhvpu/ww8FGnmuCpQOegroRqGhKRc7G7919ojOkdNOth4DIR8YtIHXZhk5eSEeNI5FAyqA4nIu/BHrvhBn5tjPluciNSiSIiK4HngDc4NC7na9jjsO4BqoEG4FJjzOEDbNU0JSJnAl8yxpwvIrOwW7TygVeBDxtjwkkMTyWIiCzDLmjiA3YCH8O+oKjf7RlGRL4NrMLuPvQq8HHssRj63Z4BRGQ1cCZQCBwAvgU8yDDfZSfJ/il2N9Fe4GPGmLVJCFu9BSO8118F/ECrs9gLxphrneX/A3tcVgx7mMcTh28zmTTBUkoppZRSSqkE0S6CSimllFJKKZUgmmAppZRSSimlVIJogqWUUkoppZRSCaIJllJKKaWUUkoliCZYSimllFJKKZUgmmAppZRSSimlVIJogqWUUkoppZRSCaIJllJKKaWUUkoliCZYSimllFJKKZUgmmAppZRSSimlVIJogqWUUkoppZRSCaIJllJKKaWUUkoliCZYSik1xYhIrYgYEfEkOxaVGkRko4icmew4lFJqJtAESyml1LQnIreISI/zExGR6KDnTyQ7vqnOGLPIGPN0IrcpIn4R+bWIdInIfhH5QiK3r5RSU5UYY5Idg1JKzSgi4jHGxI5h/VpgF+A9lu2kKhG5AZhjjPnwMPOO6b2ZTNMp1uGIyP8AK4ELgVLgb8BVxpgnkxqYUkpNMG3BUkqpBBCRehH5dxF5HQiKiEdEThWRf4hIh4i8NrgLlog8LSL/IyIvOVf4HxKR/BG2/TER2Swi3SKyU0T+9bD5F4nIemc7O0TkXGd6jojcJiJNIrJXRP5LRNxjvI7ZIvJXEWkVkRYRuUtEcgfNaxORE5zn5SLS3P+6RORCp6tZh/P6Fhx2fL4kIq+LSKeIrBGRwNEf6aM3wntjRGTOoGVuF5H/GvT8fOeYdjjv4dJx7utMEdkjIl9zjl+9iFwxaP57ReRV571qdJLB/nn9XUP/n4jsBv7qTL/XaQHqFJFnRWTRYXH/n4g84bTW/V1ESkXkRyLSLiJbRGT5OI/Ru8bzGo/ClcB/GmPajTGbgV8CVyV4H0opNeVogqWUUolzOfBeIBcoAR4D/gvIB74E3C8iRYOW/yhwNVAGxICbR9juQeB8IBv4GHDToCTnZOB3wJed/b4DqHfWu93Z7hxgOfBu4ONjvAYB/gcoBxYAVcANAMaYHcC/A3eKSDrwG+C3xpinRWQesBr4PFAEPA48IiK+Qdu+FDgXqAOWMsLJtoisdBKbkX5WjvEahjPw3ozVKuQkJL8G/hUoAG4FHhYR/zj3VQoUAhXYScYvRGS+My+I/b7nOvFcJyLvO2z9M7CP/TnO8yeAuUAx8Apw12HLXwp83dlnGPins1whcB/ww3HGPSwR+cpo78cI6+Rhf65fGzT5NWDRcMsrpdRMogmWUkolzs3GmEZjTB/wYeBxY8zjxhjLGPNnYC3wnkHL32GM2WCMCQLfAC4droXJGPOYMWaHsT0D/Ak43Zn9/4BfG2P+7OxnrzFmi4iUOPv6vDEmaIw5CNwEXDbaCzDGbHe2FTbGNGOfnJ8xaP4vge3Ai9gn0P/hzFoFPOasGwVuBNKAtx92fPYZY9qAR4BlI8TwvDEmd5Sf50d7DSMY/N6M5RrgVmPMi8aYuDHmt9iJy6lHsb9vOMfwGexE+1IAY8zTxpg3nPfqdeyk9IzD1r3Bec/6nHV+bYzpNsaEsZPd40UkZ9DyfzDGrDPGhIA/ACFjzO+MMXFgDXZy/ZYZY7432vsxwmqZzu/OQdM6gaxjiUUppaYDTbCUUipxGgc9rgE+eNiV/pXYSclwyzcAXuxWhyFE5DwRecHpnteBnTj1L1cF7Bgmlhpne02D9n8rdivIiESkRETudroUdgF3DhPTL4HFwE+ck36wW7wa+hcwxljO66sYtN7+QY97OXQSPhkax15kQA3wxcPeuyrs1zge7U7S3K+hf10ROUVE/uZ0rewEruXI4zsQq4i4ReR7Ynf97OJQ6+TgdQ4Metw3zPPJPM79epzf2YOmZQPdSYhFKaUmlSZYSimVOIOrBjVit1ANvtqfYYz53qBlqgY9rgaiQMvgDTrd0u7HbhEqcVoMHsfuyte/n9nDxNKI3epSOGj/2caYsbpo/bfzOpYYY7KxW+L694WIZAI/Am4DbpBD48b2YScm/cuJ8/r2jrG/I4jI6XKoAuBwP6ePvZUjHF7RqRdIH/S8dNDjRuC7h7136caY1ePcV56IZAx6Xo19fAB+DzwMVBljcoBbGHR8h4n1Q8BFwLuAHKDWmX74OhPGGU824vsx3DrGmHagCTh+0OTjgY2TEbNSSiWTJlhKKTUx7gQuEJFznFaIgFMAoXLQMh8WkYXOeKbvAPc53boG8wF+oBmIich52GOp+t0GfExE3ikiLhGpEJHjjDFN2F0J/1dEsp15s0Xk8O5oh8vCbn3oFJEK7LFdg/0YWGuM+Th217dbnOn3AO914vACX8RO8P4x1oE6nDHmOWNM5ig/zx3tNoexHviQ896cy9Buer8ErnVam0REMsQuTpEFA4Ulbh9j+98WEZ+TDJ4P3OtMzwLajDEhZ/zch8bYThb2cWzFTgj/+yheY0IYY/57tPdjlFV/B3xdRPJE5DjgE9jjApVSakbTBEsppSaAMaYRu+Xha9jJUSN2sjL47+4d2Cec+4EA8NlhttPtTL8HaMc+IX940PyXcApfYI9xeYZDLUkfxU7QNjnr3sfQLorD+TZwgrOtx4AH+meIyEXYRSqucyZ9AThBRK4wxmzFbu36CXYr3AXABcaYyBj7S5bPYcfYAVwBPNg/wxizFjsZ+Cn2cdvO0IIcVcDfR9n2fme9fdgFKa41xmxx5n0S+I6IdAPfxH5fR/M77C6Ge7HfxxfGemFTyLewu682YH8uf6Al2pVSqUDvg6WUUkkgIk8DdxpjfpXsWNT4OVURXwOWOsU8Dp9/Jvb7Wnn4PKWUUqnBk+wAlFJKqenCaZFbMOaCSimlUpZ2EVRKqRQjIreMULDglrHXVtORiFSPUqiiOtnxKaXUTKJdBJVSSimllFIqQbQFSymllFJKKaUSZEqNwSosLDS1tbXJDkMppZRSSimlRrVu3boWY0zR4dOnVIJVW1vL2rVrkx2GUkoppZRSSo1KRBqGm65dBJVSSimllFIqQTTBUkoppZRSSqkE0QRLHaE7FOXRZ14kFIklOxSllFJKKaWmlSk1Bms40WiUPXv2EAqFkh1Kyuju7WO2r4Mt61/An1WQ7HDeskAgQGVlJV6vN9mhKKWUUkqpFDHlE6w9e/aQlZVFbW0tIpLscFJCS1MDhcY+1qZ0HuJyJzmio2eMobW1lT179lBXV5fscNQMYIyha/NfyZl9Cvgzkx2OUkoppaaoKd9FMBQKUVBQoMnVJDHGELD6Bp7HQj1JjOatExEKCgq05VMlzCN/e46ce95Pz09PB71Bu1JKKaVGMOUTLECTq0kUtwweYoRc6RgDsb6uZIf0lunnRiXS3leeBCCzeye07UxyNEoppZSaqqZFgqUmT8wyuLEQj58QPiTaN/ZKSs1wxhhqul8deB7d/nTyglFKKaXUlKYJ1jiICF/84hcHnt94443ccMMNyQtokBdeeIFTTjmFZcuWsWDBgoG4nn76af7xj38c9fbiloWHOLg8XPDh6yidv4Lzzz8/wVErNb2090YpNi1s8B3PAZNL15vPJTskpZRSSk1RmmCNg9/v54EHHqClpSWh2zXGYFnWMW3jyiuv5Be/+AXr169nw4YNXHrppcBbT7CseBwRELeHz3zqk9zx4+/oeBOV8po6+8ijm4zcIjZatXBgY7JDUkoppdQUNeWrCA727Uc2smlfYscELSzP5lsXLBp1GY/HwzXXXMNNN93Ed7/73SHzmpubufbaa9m9ezcAP/rRjzjttNO44YYbyMzM5Etf+hIAixcv5tFHHwXgnHPO4ZRTTmHdunU8/vjj/PSnP+WJJ55ARPj617/OqlWrePrpp7nhhhsoLCxkw4YNnHjiidx5551HjCs6ePAgZWVlALjdbhYuXEh9fT233HILbrebO++8k5/85Cccd9xxI8a5Y8cOtm/fTktLC5/57Gf57CUrEbeXs971L7zy1AMYKz7isbn33nv59re/jdvtJicnh2effZZQKMR1113H2rVr8Xg8/PCHP+Sss87i9ttv58EHHyQYDLJt2za+9KUvEYlEuOOOO/D7/Tz++OPk5+fzy1/+kl/84hdEIhHmzJnDHXfcQXp6+pD9nnrqqdx2220sWmS/d2eeeSY33ngjK1asGPW9VOqt6OyNUio9xHKLaGzO4PTgExCPgXta/QlVSiml1CQ45hYsEakSkb+JyCYR2Sgin3Om3yAie0VkvfPznmMPN3k+9alPcdddd9HZ2Tlk+uc+9zmuv/56Xn75Ze6//34+/vGPj7mtbdu28clPfpKNGzeydu1a1q9fz2uvvcZTTz3Fl7/8ZZqamgB49dVX+dGPfsSmTZvYuXMnf//734/Y1vXXX8/8+fO5+OKLufXWWwmFQtTW1nLttddy/fXXs379ek4//fRR43z99df561//yj//+U++/73vsW9/My63B7fPTmpGS7C+853v8Mc//pHXXnuNhx9+GICf/exniAhvvPEGq1ev5sorrxyo5rdhwwYeeOABXn75Zf7jP/6D9PR0Xn31Vd72trfxu9/9DoD3v//9vPzyy7z22mssWLCA22677Yj9rlq1invuuQeApqYmmpqaNLlSE6ajN0wuPbgzCujJnovXRKB9V7LDmnJ2NPcQio7890IppZRKBYm4/BoDvmiMeUVEsoB1IvJnZ95NxpgbE7APgDFbmiZSdnY2H/3oR7n55ptJS0sbmP7UU0+xadOmgeddXV309Ixe2rympoZTTz0VgOeff57LL78ct9tNSUkJZ5xxBi+//DLZ2dmcfPLJVFZWArBs2TLq6+tZuXLlkG1985vf5IorruBPf/oTv//971m9ejVPP/30EfscLc6LLrqItLQ00tLSWLnyNF5av4ELF6/E5/ITNwJm5G6Mp512GldddRWXXnop73//+wde02c+8xkAjjvuOGpqanjzzTcBOOuss8jKyiIrK4ucnBwuuOACAJYsWcLrr78O2EnY17/+dTo6Oujp6eGcc845Yr+XXnop7373u/n2t7/NPffcwwc+8IFRj7lSxyLY1YZbDP7sIlwlldAJ5sBGpHBuskObMtY1tLPul5/itOxmFn16DaTnJzukKWNXS5Cf/+pWLpnv45T3fQq0wumAl3a18dTqm7jorNNY9LZzkx3OlPLkG3vY9+j/cM7FV1Jx3MnJDkcpdRSOOcEyxjQBTc7jbhHZDFQc63anos9//vOccMIJfOxjHxuYZlkWL7zwAoFAYMiyHo9nyPiqwfdjysjIGNf+/H7/wGO3200sFht2udmzZ3PdddfxiU98gqKiIlpbW49YZqQ44fBy5gYRweVyI24hghfMyFekb7nlFl588UUee+wxTjzxRNatWzfu1+RyuQaeu1yugdd31VVX8eCDD3L88cdz++23D5swVlRUUFBQwOuvv86aNWu45ZZbRt2vUsci3GWPv/RnF5LtXYS1Vejds5HMRe9LbmBTyF/eqOffPI9BL/S+9iDpb7s62SFNGfe/uI3vh74Nr4E54QSk5u3JDmnKePDpF/jvyM3wx5th4SbImZGnD2/JH//4ODeF74S774T/OADeI/9/K6WmpoQWuRCRWmA58KIz6dMi8rqI/FpE8kZY5xoRWSsia5ubmxMZTsLl5+dz6aWXDumy9u53v5uf/OQnA8/Xr18PQG1tLa+88goAr7zyCrt2Dd+d6PTTT2fNmjXE43Gam5t59tlnOfnk8V+peuyxxzBOEYpt27bhdrvJzc0lKyuL7u7uMeMEeOihhwiFQrS2tvL83//BSccvAhFEhLjLg4zSgrVjxw5OOeUUvvOd71BUVERjYyOnn346d911FwBvvvkmu3fvZv78+eN+Td3d3ZSVlRGNRge2M5xVq1bx/e9/n87OTpYuXTru7St1tOI9doLlyyqirqyIBlNM394NSY5qagnvO9RCHtzwaBIjmXp6Gg99VtpefTiJkUxB+wbd/mDrn5IYyNQSjVuUdw66YLnn5eQFo5Q6aglLsEQkE7gf+Lwxpgv4OTAbWIbdwvW/w61njPmFMWaFMWZFUVFRosKZMF/84heHVBO8+eabWbt2LUuXLmXhwoUDLSmXXHIJbW1tLFq0iJ/+9KfMmzdv2O1dfPHFLF26lOOPP56zzz6b73//+5SWlo47njvuuIP58+ezbNkyPvKRj3DXXXfhdru54IIL+MMf/sCyZct47rnnRowTYOnSpZx11lmceuqpfOn6z1FeWgTi4vTTT+eqf/0sf/37S1RWVvLHP/4RsLsl9o+3+vKXv8ySJUtYvHgxb3/72zn++OP55Cc/iWVZLFmyhFWrVnH77bcPabkay3/+539yyimncNppp3HccccNTH/44Yf55je/OfD8Ax/4AHffffdA5USlJorpbbMfpOUzpziTbaYSb+uW5AY1xQTa7OPxsjWfzAPrtProIIH2rQDsN3m4dj2T5GimjmjcorJvCzHctJosujb+eeyVUkRDa5BlvEmLq4CYcdG9+S/JDkkpdRTEJOCfoIh4gUeBPxpjfjjM/FrgUWPM4tG2s2LFCrN27doh0zZv3syCBQuOOUY1vMOrHbYfaCQv3gKlx4PLRUdbM7mhPVgFc3H5M5Mc7dHTz49KhNt/cSNX7ftP+OSLmKL5/PqGj3Kl6wk83zgALneyw0s6Ywy//NZHudr9BLf6ruRT4V/B9drdCyAWt7j9hg9zpecp7rLexYddf8Lz9SZwe5MdWtLtae9l4w8vYEVWGy92F3JaZhM5/64twwD/2N5C1u/eSVZhBb0teyiuqKHwXx9JdlhKqcOIyDpjzBFV1hJRRVCA24DNg5MrESkbtNjFgP7VnAYECwMDg7BdTp/vWCQ08kpKzXAS6bMf+NIREXoyqvGYKHTtTW5gU0QoapFjdRHy5hErOd6euP+N5AY1RXT0RSminb5AMe05i+3PTfPWZIc1Jext7yNPunFnFVPvqSOrbw+ERy8SlSpaghEKpIvM/DLeNBX42rYlOySl1FFIRBXB04CPAG+IyHpn2teAy0VkGWCAeuBfE7AvlWA33HDD0AnGYJCBwhdeXwBjwIpqgqVSWMxJsDx2BVGTVwe9QNtOyK1OXlxTRHc4Sq70EPXlkFZ1POyGyL438M3XqnDBcIxceoj5c3GXHQ9dYPa/jpSO2qEjJbT3RphDN5Ixh+7cBbjaDRzcBFVaMa+tO0QBXVh5pez3+cgO/8NOPqdhTxKlUlEiqgg+DwxXc/bxY922SgJjYQY1bPq8HqJ4IBZOYlBKJZcr7lxg8NoJlq94LuyFeMsO3LPOTF5gU0QwHCdX7CSiqrSY/SYP/74t+JId2BTQHYqRKz3EA5XklM8luslNpGkrGcuSHVny9YTj5Ek3roxC3L6F0A7m4GZEEyy6u9rxSwwrt4RwXiG0AC1boeLEZIemlBqHhFYRVNOf3UXwUL7sdgkR8eKKR5IYlVLJ5epvwXISrMKyWsLGS3C/dtuBQ600ViCP2cWZ7LTKMK3bkx3WlBAMx8ijGxPIo7Ykj92mmPB+7SII0Bs6dAPv4qo5hI2HYNObyQ5rSgh3HgDAlVmMv2whAPEDWlhHqelCEyw1hBiDOewmmHGXD7eJaFUwlbJc8RBR8Q4UtKgpzKTBFBM5qEkE2K00edKDScujpiCdespI6xr+1hSppiccI1eCSHo+swoz2GVKcbXtSHZYU0Ik2I5bDN7sIuaU5NBgSjT5dFjdB+0HGYXkV861k8+9G5MblFJq3DTBUkPYLVhDPxbG7ceNBdbwNzpWaqbzxENE5dCtBmoLM2gwpbg7NIkACIai5NKNKz0fv8dNW1oNabFO6C9vn8KCfSGypRdXRgHluWk0UE5GsAGske8vmCpMsBUAT2YhtYUZ7DJluDt2JjmqqcHV59wOJr2Q6qIcdpoyYk2bRl9JKTVlaII1Tg8++CAiwpYtIzfR19fXs3hx4gYub926lTPPPJNly5axYMECrrnmGsC+SfDjjx/bELerr76a4uLiI+IVzEAFwYFpHvvEMq6FLlSK8sRDxNyBgefFWX72SCmZvY16ogyE+rrwSRx3RgEA0ZxZ9gztJkikx04ivJn5uF1CV0YNXiusFSgB6bWPjaQXUJodoEHKyAzuBiue5MiSzxPpth+k5VJbkMF2U4G3XbtPKjVdaII1TqtXr2blypWsXr162Pmx2LG37sTjQ/+pfPazn+X6669n/fr1bN68mc985jNAYhKsq666iieffPKI6WLMES1YWqpdpTqPFSbuOpRg9Zdq91ph6NmfxMimhmh3f0tEvv27eC4ApkVPCONBuxXPl1VoP8+bbc9o1fF7hDrs32m5uFxCd3qNXca+szGpYU0F7mjQfuDLojjLz24pJ6OvCWI6Hlqp6WB6JVhPfAV+897E/jzxlTF329PTw/PPP89tt93G3XffPTD96aef5vTTT+fCCy9k4UJ7EGosFuOKK65gwYIFfOADH6C3txeAv/zlLyxfvpwlS5Zw9dVXEw7bVflqa2v593//d0444QTuvffeIfttamqisrJy4PmSJUuIRCJ885vfZM2aNSxbtow1a9YQDAa5+uqrOfnkk1m+fDkPPfQQALfffjsXXXQRZ555JnPnzuXb3/72wLbe8Y53kJ+fP2R/xpghLVjPPPMMy5YtY+Vpp7H83ZfT1daCMYYvf/nLLF68mCVLlrBmzZqBY3HGGWdw0UUXMWvWLL7yla9w1113cfLJJ7NkyRJ27LDHHDzyyCOccsopLF++nHe9610cOHDgiON92WWX8dhjjw08v+qqq7jvvvvGfJ+UmgiWZfCZ8JAWLAArt85+0KZdmmK9nQD4MvMAyC2fQ9S46W3S8TRWbwcAPif59JceZ09v0dY903/PK18WALGB5FOPjTvuJFj+TFwuIZhRjQsLOhqSG5hSalymV4KVJA899BDnnnsu8+bNo6CggHXr1g3Me+WVV/jxj3/Mm2/aV2q3bt3KJz/5STZv3kx2djb/93//RygU4qqrrmLNmjW88cYbxGIxfv7znw9so6CggFdeeYXLLrtsyH6vv/56zj77bM477zxuuukmOjo68Pl8fOc732HVqlWsX7+eVatW8d3vfpezzz6bl156ib/97W98+ctfJhi0/zi/9NJL3H///bz++uvce++9rF27dsTXaQz2H3CxPxY33ngjP/vZz3j11fU89cDvSPMJDzzwAOvXr+e1117jqaee4stf/jJNTU0AvPbaa9xyyy1s3ryZO+64gzfffJOXXnqJj3/84/zkJz8BYOXKlbzwwgu8+uqrXHbZZXz/+98/Io5Vq1Zxzz33ABCJRPjLX/7Ce9/73qN+35RKhFAsThphLM/QBMtbPAcAq1ULFsRCdncmf1o2ADVFOew2xYS0YAHxkJ1EuAJ2ElFcVkWPCRDcqxXhJGpfgMSXYf8qngeA0eQTX6yXuHigv4t+Xn+3W/17o9R0kIgbDU+e876XlN2uXr2az33uc4DdurJ69WpOPNG+F8XJJ59MXV3dwLJVVVWcdtppAHz4wx/m5ptv5l/+5V+oq6tj3jz7n8eVV17Jz372Mz7/+c8DdkIxnI997GOcc845PPnkkzz00EPceuutvPbaa0cs96c//YmHH36YG2+8EYBQKMTu3bsB+Jd/+RcKCuxxEe9///t5/vnnWbFixbD7s5wWrP4ugqeddhpf+MIXuOKKKzjn7cdTl5XJ888/z+WXX47b7aakpIQzzjiDl19+mezsbE466STKysoAmD17Nu9+97sBu+Xtb3/7GwB79uxh1apVNDU1EYlEhhy7fueddx6f+9znCIfDPPnkk7zjHe8gLS1t2JiVmmh9kTh+iWK5h97gM7+sjsh6N6GmN8lOUmxTRWwgibCPUV1hBltNKSvatQiINdBKYycRtYWZ1JtSyps1iSDS3w3OPjaFpZV0rU/Ds38r6UkMK9mMMfitIBFvBv3/+fzFc2EfWK3b9cq4UtOAfk/H0NbWxl//+lc+/vGPU1tbyw9+8APuuecejFOyPCMjY8jycniBCBnuHsxDHb6NwcrLy7n66qt56KGH8Hg8bNiw4YhljDHcf//9rF+/nvXr17N7924WLFhw1PFYBlyYgRasr3zlK/zqV7+ir6+Pd73vQ2zftnXUUu1+/6Eqay6Xa+C5y+UaGKP2mc98hk9/+tO88cYb3HrrrYRCR47rCgQCnHnmmfzxj39kzZo1IyagSk2GvqjdgmW8Q5P86qJsGk0xkYN6RfnwJKI8N41GSkkP7k752zuYIxKsDOpNCZ5OTT7dsaEJVk1BBg2mJOW/U6GoRTp9RD2Hzg2KS8rpMun0HdCxe0pNB5pgjeG+++7jIx/5CA0NDdTX19PY2EhdXR3PPffcsMvv3r2bf/7znwD8/ve/Z+XKlcyfP5/6+nq2b7evWN5xxx2cccYZY+77ySefJBqNArB//35aW1upqKggKyuL7u7ugeXOOeccfvKTnwwkfa+++urAvD//+c+0tbXR19fHgw8+ONC6NhxjjJNg2UnYjh07WLJkiT1GbPky3ty+i9NXvp01a9YQj8dpbm7m2Wef5eSTTx7ztfTr7OykoqICgN/+9rcjLrdq1Sp+85vf8Nxzz3HuueeOe/tKJVooGieNCHiGJli1zsmgS1tpIDz0RNntErrSq/BZIeg5cpxlShlopbFb94qz/OyVMjJ690I8tW994Y71EhUfuL1A/3dKb3/QE46RSYj4oASrtjCTXaaUqN57T6lpQROsMaxevZqLL754yLRLLrlkxGqC8+fP52c/+xkLFiygvb2d6667jkAgwG9+8xs++MEPsmTJElwuF9dee+2Y+/7Tn/7E4sWLOf744znnnHP4wQ9+QGlpKWeddRabNm0aKHLxjW98g2g0ytKlS1m0aBHf+MY3BrZx8sknc8kll7B06VIuueSSge6Bl19+OW9729vYunUrlZWV3HbbbVgGbr3jHn51+10A/OhHP2Lx4sUsXboUr8/PeWedxoXvPZelS5dy/PHHc/bZZ/P973+f0tLScR/PG264gQ9+8IOceOKJFBYWDkxfu3YtH//4xweev/vd7+aZZ57hXe96Fz6fb9zbVyrR+iIWASLIYS1YpdkB9kgpGdpKg+lPIryHTgjjWgQEAIkOTT7tCpQ1uImnfLU8XzxI1HXoe1WeG2A3paT37YV4NImRJVdvJEYGfcQHfZ9qCtKpN6V4Ujz5VGq6mF5jsJKgf+zQYJ/97GcHHp955pkDj2tra0e8T9Y73/nOIS1L/err60fc9w9/+EN++MMfHjE9Pz+fl19+eci0W2+9ddhtVFZW8uCDDx4xfbgEMRiO8smPfoBwoBhgoDAFQE8wiL/zTcLRMD/4wQ/4wQ9+MGTdM888c8ixePrpp4edd9FFF3HRRRcdse8VK1bwq1/9auC51+ulrU1vUqqSrzcSo1TCxH1DR4XYZaWr8Yd6IdgMmcVJijD5Dk8iAHxFc+CAXQTEVfP2JEWWfK5oEAvBNagF1OTVQR/QtgPyjxyHmgqMMXjjfUT9h75XHreL7vQq3GEn+cyflcQIk6cnHCNTQhhf3sC08tw0HqSU9L4XIBYeKH6hlJqatAVLDTD9N0x1Hfmx8Pj8WAaM3mxYpZi+aJwA0SNasABiubX2gxRvpXH3V4PzHjpZzi2fbZdq35/aY0bcsV4irsCQv6u+kv4KlKn7uemLxkknRMwzdAxyLNdJqlL4O9UbiZNBCPyHCuu4XUJPulOqvV1LtSs11WmCNYNdddVV/PSnPx338sbYCZbIkR8Ln8dNFK995UypFBKKxEgjjMt3ZF0zb5FzopziZaVdsV7CkjYkiagtyqHRFBE6kNrHxhvvJeoa+tkpLq2m1/gJNqXujZh7wjEyCGF5hh4bv3P7A5PC5ciD4RgZ0of4s4ZMj+X1d7tN3WOj1HQxLRIsk+LjGyZLfwvWcAmWS4SoeHFZ0+cu8vq5UYkQioTwiIUncGS1z5yy2cSMi979qXuiDHYSEXEPbeGrKUh3ioCkbktEfze42GEFUmoKM+1qeSlcqj0YjpMuYYxv6PeqoKSSoPGndGIeDMfJJIT7sARr4D5heiNmpaa8KZ9gBQIBWltb9WR5EvS3YA3XRRAg7vLhMZFpMaDfGENrayuBQGDshZUaRbSvDwCP/8gWrJqiXKeVJnW7wRlj8Fm9xNxDj49dqr2MjJ6GafE3YyKEY9aw3eDq+ku1d9QnJ7ApIOi0YBnv0GNTW5hJgyklnMLV8oLhKBn04Uobeoe9kuJSOk16Sv+9UWq6mPAiFyJyLvBjwA38yhhzVHcLrqysZM+ePTQ3N09IfOqQvr4+0sLNWGkWLv/BI+b3dneQHu+C9o3gcichwqMTCASorKxMdhhqmos4N9H1DNNFsKYgne2mlGUp3EoTjlmkmRDxw7p69Zdq94d7IdgCmUVJijB5esIx0ofpBlec5bcrUPauBys+Lf6eJlpPOEYZIcQ/9AbeNQXpbDElVKXw7Q/CfUHcYvCmDW3Bqi2yS7XXHdzOkSNClVJTyYQmWCLiBn4G/AuwB3hZRB42xmwa7za8Xi91dalZZWmyPfLYQ1zw8kfp+cBqMhe854j5Tz50F+e++kk6Vj1I7oKzkhChUpMvHrYLOHiH6SJYnpvGXyjntJ6n7VaacdxYfKYJOklE3HtkAhrPrYMD2AULUjDBssfShDDevCHTXS4hmFGDpy8KXXshtzpJESZPTyhGuhyZYFXmpfNHU8o5va+kbPIZ7bPvc+lNPyzBKshgvSllrpZqV2rKm+gugicD240xO40xEeBu4Mga3WpKsJx72fiGOZEEyKk4DoCOxs2TFpNSyRaP2AmWe5gugoduqNuXsjfUDYbjZEgYM0yC5S3ur5aXmoPy+1uw8B/5NzWeV2s/SNFqecFIjAzCeAJDEyyfx0VnehVuE0vZ+4T1J1iewNAEqyIvjQbKSO9rAq3oq9SUNtEJVgUw+C/kHmfaABG5RkTWisha7QaYXCZi/8H2DnMiCVBaPZew8aT04GOVeiynBUuG6SIIg8pKp2gS0R2OkkZ4yD2w+uU6RUCCKVoExG6lCSO+zCPm+YvmAqlbqj0YCpMuYTyHdYMDiOek9k2q431dAEd8brzOfcIEAx1aql2pqSzpRS6MMb8wxqwwxqwoKkq9LiRTiRW1B/MPd78fgMqCTBopxtWemieSKjX1fy/wDF8wxeOcKKdqZa9g2L5nz3BJRE1xLntNIaEUvReW3UoTwh048tjkl9USMl6CTVuTEFnyhXv7u8FlHzHPUzTbfpCiCVZ/bxL8R35u4il+QUep6WKiE6y9QNWg55XONDUV9Z9IjpBged0uDngqyOjZPYlBKZVcJnLkTXQHyyuvI2w8KVuqPRi2x9K4hjkZrC3MsEu1p+iYke6Q3UXw8HLbYBcsaDAlRFK0Wl6k1y4e4w0ceWwKSqvpM77U7S0RtpNPhmv5LE7tCzpKTRcTnWC9DMwVkToR8QGXAQ9P8D7VWxVz+nSPkGABdKdXUxDZC849s5Sa8ca48FBdmE2jKSacoqWTu8Mjt9KUZQdolNQt1d7XF8IvMbzpwySfBXby6U7R5LN/nNFwiXlNYRb1piRlS7Wb/hasYRKs4pIyOkwG4YOp+fdGqeliQhMsY0wM+DTwR2AzcI8xZuNE7lMdgzG6QgHEcusIEMZ0N01SUEollxkjwaotSGeXKU3ZG+r29oUISHTYsTQul9CdXkUg3gN97UmILrlCvfZYGm/akd3gSrMDNEopGcHGlLxgFQ/1t9IcOXavtiCdBlOKpOh3yhWxW/eGPTaF6dSbUiIHtYugUlPZhI/BMsY8boyZZ4yZbYz57kTvT711Mo4WLJ/TPaFjz5bJCEmppJPY6AlWRW4auym1u86m4IlyuL+k9DAJFkA0hQsWRAaOzZEtES6X0JNejddEIAUvWFnhkZOIqvx0GkwJ6T2pmXxKtH8M1jBdSwsy2GVKcXek3vdJqekk6UUu1NQhcSfBGqUFK7vSLtXe3qgJlkoNrjESLI/bRWd6NV4Thu59kxjZ1BAO2kmEf5hiBQC+FC7VHnPGGQ3XDQ6c+4RBSiafZqCV5shjE/C66QhU4jER+z5hKcYT6+8ieGTyWZlnt+6l9+3XUu1KTWGaYKkBrliICL5Rb5ZaXjWHsPFq/2+VMlz9LbuekVt2B1ppUjGJCI08lgYgp2wulhF6mlKvCMihbnDDH5tDyWfqJViER04iILVbPj2xXmLiAY//iHk+j4uu/lLt7fWTH5xSalw0wVID3PEQEdeRf9AHK89Ld0q1p94/PZWaXPEQFjLsyU6/QOl8IDVbaeIhpyVihCqL1SW57KMgJUu1x0fpBgeQX15HxLhT8j5hA93gRjg2qVyq3RfvJeoa+YLOQKn2ttT7e6PUdKEJlhrgtUJEZPQEy+N2sd9bSVZP/eQEpVSSueNhYuIftWW3qLwuZe9pFAuNnkTUFWZQb5WkZMECM0aCVeNUoIykYAVKV9Q5NiO0fOaW1tq9JZpTq5Jg3DL4rT6inuE/M3BoLLRJwQs6Sk0XmmCpAV6rb9SrZv260mspiu6FeGwSolIquXxWH1H36N+L2cVZ1JvS1CzVPspYGoCSrAB7pIyMYAreP2+Ucttg3ydslylNyfuEeQbGNg6fSNQWZtJgigmnWMtnMBIjQ0LEPcO3CAOUlJTSbjJTMjFXarrQBEsN8Fkhou6RC1z0i+bPxUssNccNqJTjH1eClckuU4qnPQWvKIedGzGP0Erjcgld6dWkxzpTrlT7WN3gygZKte9OufuEeeNBYuIFj2/Y+TUFGTSYUkixls+gc1+5uHf4pBzsSoL1ppRIirXuKTWdaIKlBvisELExTiQBvKULAOjYvWGiQ1IqqaJxizRCxEa5mgxQkOFjj7uKrN5GiEUmKbopor+rl2/kYxTLrbUftKVWS81AN7hRks/u9Gp8Vgh6DkxiZMkVjVukWb1E3SN3g6spSKfelJCWYrc/6AnZLVhmhDGNYN8LS0u1KzW1aYKlBvhNmPg4Eqy86kUAdO/Re0arma0vGied0bvrAIgIwezZuImn3KB8z8BYmuHLtAN4i1KzVLsvNnoXQYB4ClagDIZjZEofUe/w904DSPd56AhU4bXC0LN/EqNLrm6nBWu4e2D1s+8T1l+qvW8So1NKjZcmWAoAYwx+M/aJJEBNeSlNJp/YQb0XlprZQpE46RLGGsf3Qorm2Q+aU+t74Y31J1gjnxDmlM8nbiSlLsoYY/DFewi708HlHnE5r1OwwGpJne5e3aEYmfSN2g0OwMp3quW1ps6x6QnFyKAP1witngB+j5uejCr7iZZqV2pK0gRLARCJW6QTxhrlXj/9ynIC7KKCQEfq/NNTqam/BcsaYSD+YJmVC7GMEGraPAmRTQ3GGLyxHsKu0ZOIquI8GkwJkf2pc2z6onEyTB9Rz+hJRE75bPqMj959qZN89oRjZEkfZpSWPQBfiX1je+tg6lTn7AnHSJcwrsDIFywApMApY59CLZ9KTSeaYCkAguE4aRIecazAYCJCW3od+X0NKTcwW6WW3kjc7q4zju9FbWkRe00hvfs2TUJkU0M4ZpFhekctKQ12qfYdpgJvW+pUPevqi5ElvcRG6QYHUFeYxQ5TTnR/6nxuuvqiZNI3ardSgOKKWrpMWkp9p3qc1j1P2uifm4wyu8U8nkItn0pNJ5pgKcDuE59OGBlloPpgoZw5pJk+6No7wZEplTxB52qyjHGlHWB2USbbTTnSkjpX27v6omRK35hJREm2n11SSVawIWVu79AVspOIsVppZhdnsM1U4G1LnRPlLieJcKWNnmDNKc5ih6kgmkItnz19IQISxTPGsaksK6fNZBJsSr2bVCs1HWiCpQAIhiN2t4RxXKkH8JXaXTeCe1LnyqJKPd0he8C5OzD296IyL42dVJLZXQ9WfOKDmwK6QjGy6cUaI4kQETozZ+E2MWhPjUqC3aEo2dKLGaOVpjQ7QKOrisxQE/TfmHiG6+qLkiW9uMdIImYXZ7LNqsDfnjotn+HebgB8Y7RgzS2x770Xa06dY6PUdKIJlgKgL2j/Y3f5x9eClVezGIC2hjcmLCalkq07FCZNIngDY7dgedwuOjNn4TVh6GiYhOiSrytkt2CN1dULIJafWkVAuvrsVhoJjH5sRITeXLvKIi2p0RrR37rnHSPBKsjwscdbTXqkJWXuoRbt6wLAPcYYrNlFGeywyvF36hgspaYiTbAUAH29doLlGceJJEBNVS0dJoNwCg3oV6kn5Fx4GKu7Tr94QX8SkRonyt2hGFn0IWOcDAJkVNj3z4sdSJEEK2S30rgCOWMu6y6ebz9oTo3upcFgL36J4c0Y/diICH05TvKZIt+pmJNgjTXuMyvgpclfR0akFYKtkxCZUupoaIKlgEPdEsZzpR6gIj+dnVTgTaGuGyr1hHs7AfClj51AAKRX2PeIix5IjQsP3U4LlmuMVhqAuvIS9phCgilSqr3LST696WMnWPmV84kYN30pUswhHOwAwD2u5NPujp4qLZ/x/gRrHMemL68/MU+NvzdKTSfHlGCJyA9EZIuIvC4ifxCRXGd6rYj0ich65+eWhESrJkykz75SP1a/735ul9AcqCWvt34Co1IquaID4yHGd+GhrrKcgyaXnsYNExnWlNHVFyOLXjzpuWMuO780ix1WOSZFWml6evtIl/CYrTQAs0vz2GXKUibBigWd7n7jSMwLKubQZ3yEUuTY0Ou0RqXlj7mot3QhAOagJlhKTTXH2oL1Z2CxMWYp8Cbw1UHzdhhjljk/1x7jftQEi/XaV83GeyIJ0Jc9m2yrA3rbJigqpZIrGrITLNcoN9EdbH5pFlusKszB1DgZ7OkLkSkhfONopaktyGAHlWR07wDLmoTokivcY7d+etLGPjbzSrLYbsrxpEgZe9Pn/M8YRxIxryyH7aY8Ze4vJ/1jzdJyx1y2uKKOLpNO7x4dC63UVHNMCZYx5k/GmP6auy8AlccekkoGK2SfDPizx/6H18/j3AQyle5RolJMb4f9Oy1vXIvXFmSwTarJ6tqeEuXIoz0tAHiyCsdc1udx0ZlZh9cKQ+fuiQ4t6aygfWwkY+xjU5YTYLermszeRoiGJjq0pHP1JxHpBWMue1xpFttNBZ621BiD5Ql32A/Sx/5fPKcki62mkliT/g9WaqpJ5Bisq4EnBj2vE5FXReQZETl9pJVE5BoRWSsia5ubmxMYjjoaxvmH58sYf4KVVW1XEmzd9fqExKRUsrnC/VeTx5dguV1CZ/Z8vCYCbTO/ule8x+7ONJ4kAsAqdMbTHJz542mk106wxpNEiAg92bNxYUHrzG/F8vR/r8aRRBRn+dnjqXbK2HdPcGTJZYzBF+3AwgX+8bV8brMq8be/CcZMQoRKqfEaM8ESkadEZMMwPxcNWuY/gBhwlzOpCag2xiwHvgD8XkSG7WxtjPmFMWaFMWZFUVHRsb8i9Za4nBYsGeeJJEBV7TyCxk/f3tQYb6JSjzvUYT8YR3edAcV2oQsOzPzvRazHuSg2jiQCIKNyKQCRva9NVEhThumv7DbOY0NJ/+dm5hcBOZoES0QI9xdzmOFjjXojcbKsbsLebHCNff07P8PHXl8tgVgn9ByYhAiVUuM15jfYGPMuY8ziYX4eAhCRq4DzgSuMsS+hGGPCxphW5/E6YAcwb8JehTpm0n8iOY7KRf1qCrPYQSXettQYtK5SjztiX3gYbwsWQG7NYmLGRW/jzG/ZNT1Hl0TUVZbSYBUTbJz5CRb9LVjjbN3Lr1pA2HjpbVw/cTFNAcYYfJF24uIe1/3TANxlSwCwmmb2WKO2YIQ86SHqyx33OuH8/uRTuwkqNZUcaxXBc4F/Ay40xvQOml4kIm7n8SxgLrDzWPalJpaEOwnjA29g3Ou4XcIBfx15PfrWqpnJE+kkIj7wpo17nbnlBeww5YT2zPwES/r6E6zxJRHzS7LYbGpwp8DJ4EArzTgKOQAcV5HPVlNJeIZ/bnrCMbKtLsLeXBAZ1zrlNXPpMukEd6+f0NiSrb03Qi7dWIHxX9Dxl9ktn1pJUKmp5VjHYP0UyAL+fFg59ncAr4vIeuA+4FpjjJaam8I8kS563eOvINivN2cOuVabVhJUM5I/2knIM76r7P3ml2axxVTja535Jzzeo+jqBVCVn852qSYz2ACR3rFXmKYiMYu0aAdRVwB86eNaZ0FZNputGvwz/HPT3B22W2n8408i5pflsNlUE0uBFqx86Rn39wmgvLKaFpNNb+PMPjZKTTfHWkVwjjGm6vBy7MaY+40xi5xpJxhjHklMuGqi+KJdhN1HdyIJ4Cqx78PRq+Ow1AwTisbJsHqI+sbfbRagKNNPg6fOHpTf1zExwU0B4Vic9FgnEXcGePzjWsftErpyjrOLOczgK+6twTD50kXYP/4T5fwMH3v9daRH26B75o6naemJUCBdmHG27AHMK8lki6kmo2PrjC7x394boVjacWWXjXudeSVZbLWqiO+f+WP3lJpOEllFUE1jafFuIt6jT7Bya+xB6807U2BMhUoprcEIuQSJH2WCJSL05S+wn8zgrnCtPRGKpOOokggAd6k9nsbM4CIgzd1hiugknjbOAheOSGF/oYuZ2xrR0hOmlDYku2Lc66T7PBxMm4sv3gsd9RMXXJK1d/VQKF34csd/bOYVZ7HZVJPW8SZY8QmMTil1NDTBUoRjcTJND/FxlIU9XE3dPLpNGuF9evVMzSxtPRHyj/JKez9vuTMof//MTSJaesKUSSvRjPFfbQcoqZlHjwnM6GIOzd1hKqQFk310t4ZMr7IvWM3krnDNXX2UShvevKM7NrEiJ/mcwd+pnpa9APjzx59g5aR72eufjdcKQZuOh1ZqqtAES9HRG6VYOoilH32Z/Mr8dHZSgTdFbgKpUkdrMEyptCFH0V2nX2X1LNpNJj0N6xMf2BRxoCtMmbRBTtVRrbewIo8tppro3plbzKG5K0SZtOHJO7pjU1dVxT6TT0/DzO0R0NnahE/iBAqO7thkVi0hboTovpn7uYm07wE4qtY9gGih02KeAiX+lZouNMFStHUFKaALk1l61Ou6XMKBQB35wZl/U1WVWlrbO8iRXnxHeaUdYGF5DlusauIz+Gp7Y2s3pbSRVlh9VOsdV5bFFquKtLYtM/bmqG2tB0mXMIGjPDb9hS5kBnefDDbvBsCVe3Tfq7mVRdSbUnpncIl/07nPfnCUF3UyyuwEy2qZ+TepVmq60ARL0X5gDy4x+POP/kQSoC93HjlWB/TfWFOpGaDbORHMLDq6k2SAuSWZbKWajI43Z+yg/I4DjXjEIlBwdMcnO+ClKW0O/ngPdDZOUHTJ1XNwFwCe3KNswSrMYJvUkNm9E2LhiQgt6eIdznueXX5U6y0oy3ZK/M/cVhpvsMl+cJTHZlZFEXtMIb37Zm7hGKWmG02wFJ3OiWR20dGdDPTzlNhXz3q0TKyaQcKt9ngIT+7RnewA+D1u2rPm4bP6oH1XokObEsIt9QDIUSYRAPEZPp4m2tpgPzjK7pNul9CdMx83cWiemTdwD3Tb/2/IrTmq9ary0tnhqiWzby+EOicgsuQKhmMURxrp8+Ye1Y3NAeaWZLHTKiN+cGZ+ZpSajjTBUoTa/n/27js8rupM/Pj3TNdoJI16b5ZkuRdwo5sOoQdCCZ002LDZkL77SyHZzW7appJACi1LDwTTezdgwIBx7+q9Tu9zfn/ckZBtyWojjUY+n+fxY82de899R6OR7nvPOe/Rxn2n543/Tj1AZqySYHf97B26oRx5ok4twSJt/AkWgMgfqAg3O++4m/r3al9kV437WFusmENwFs6nkVKS6ooVG8ipHvfx+sLZW2Wx3xukONyMz5g5rrWeQBuO7s0cmGs0+6pz1vd4qBTt+NIrx31sTZ6NfbKIFOf+WTvsVlGSjUqwFKL92rhvfcbELiTL59TgVJUElVnG6IoNZcoY34TzAfaKJUSlwDML54yEI1Hs3jpCwjzungiA6tJCGqJ5eBpn3/emxxOkNNKEx5wHlvFXZs2tWIBfGvE0bop/cAlW3+OlSteKL2P8STmAuWQpANH22TdaYn+Xh0pdG7rs8SflaRYj3ZYKrYy9q20KolMUZbxUgqVgddfjFVZIHX8VQYAiewr7KcGkKgkqs4Q/FCHH34DTXACm1Am1Ma80n7pZOil/b5ebObIZb1oF6PTjPn5hUTrbZTmGztnXS1PX7aFKtBCwj/9CGWBeUSY7ZSnB5tn3c7OrzUGVaMWQVzuh40vKq2LVOT+Oc2SJV9fcRoHoI7Vo3oSOjwwkZt3q77CizAQqwTrCSSnJ9NbRYykHISbUhhCCrpRKsr1qDQ5ldqjr9lAp2ghkzJlwG/ML09kpSzF1z76J51uaHczTNaGLzb8cr5LMFPbq5pDmbQS/M87RJdbmhm7mihYsRQsndPy8gjS2Ryuw9m6fdcO9Whr3kS1c2MqWTuj4hcUZbI+WE22dfcmnv2EjAMaS5RM6PiVWSTDSuTNuMSmKMnEqwTrCdbkClMpWAvaJDdkY4LfPJT3qAHdXnCJTlMTZ2+GiSrSin+CddoCMFCOt5ioy/M0QcMcxusRrqt9Loegldc7qCR0vhMCdOTvX7unc+zFWEcA6Z82Ejk+zGGlNmYsl7Jx1VRYD9e8DoCtdMaHja/LS2EEFNsceiITiGVpCSSlJ6Y4ljUUTS7CKistxSivu5tn1eVKUZKUSrCPcnqZWikUPxvyJX0gCGAoWAOBonH2T1pUjT3vDTmzCT1rp4km1M7gAaOfs6sUKNQ5cKE8swQIwFi8DINo2u3ojjG0faF+UrJxwG6G8RdoXbbPn96nDFyKnfzNhYYT8RRNqw2TQ0Zs2D4MMzqqhcHs73dSGduK2loy7+MeA2sJ09shiIu2zrwCIoiQjlWAd4fp2bwAgs3riF0oAmRVaVbDeutlzQaAcufx1WgJhLJv4RTJASmxSfqBl9nwuej1Bivo+IKSzQMHEE9CSsjl0y3S8jbNnPk1Dj4eFgU14zPlgn1hVVoD0smVEpCDUMnuSzw/qejlOtxVP3tFgME+4HVGofabkLErMN+xtZ41uO1SeNOE2qvNs7I6WkNK/Z9YNLVWUZKQSrCNcqOE9ogjSqyc2nGVAZWU1Tmkl2K6GJyjJLRSJktH7iVYhL2/BpNoqqazFJVNw1M+eJOL1nR2crPsYb8kJYDBNuJ35Rdp8msgsKtX+wuYmjtdtRdacPuE5rQBzS/PYL4vwNH4Ux+gS6+Pt21mga8C64MxJtZNXuRCfNM2qxLx5y1ukCx+pC86YcBtWk4GulEpSwg7wdMcxOkVRJkIlWEewcCRKYd+HdFoqJ1ROeKi8dAv7RClmVUlQSXKbmx2sYiuOnOWgN0yqrYXFdnbJUuQsmme0a9N6SkQ3aUvOm1Q7tQVp7JAVpDr2QDgYp+gSq+PjZ0kTPmyLJ/e9WVCUzjZZjnGWVFkMhqPIbesAMM7/zKTaWlCSxU5ZRrBp0+QDmwH6vUFKWp4jJMyI6lMn1VY4OzbUv2t2DUlWlGQ0qQRLCHGrEKJFCLEp9u8zQ577dyHEXiHELiHE5G5ZKVNi054GjmY77rJTJt2WEILugUqCaniCksTe27SZebomUheeNem2CjMs7NeVk+7YPSs+F51OP8X1/yQsTOgWXjCptixGPd1pczHIEHTvilOEiVPX7WFF37P4jHaY5IVyUYaFffoqUv3t4O2NT4AJ9OqODs6JvIYrcyHkTawM+YB5BWlsi5bPmiqLT3+4n3N07+CpOA3MaZNqyxyrXBmZhQsxK0qyiUcP1m+klMti/54FEEIsAC4HFgJnAX8SQox/sRRlStWtfxijiFCy5uK4tOfPnEuadCHdHXFpT1Gmm5SS6PYnAUhZOLk77RCrlpdRS0rUDY7mSbeXaI+++TGf072Ov/YCSLFPuj2Zr83dnA3FHB5/9W3O0G0kuvRK0Bsn1ZYQAn92bHhqks81klLy/mtPsFDXgPXYL026vTSLkXbrXMwRN/TVTz7ABApHonSsv5cs4cZ+4o2Tbq+opAKHtOJumh09n4qSzKZqiOAFwENSyoCUsg7YC6yaonMpE+DyBZnb9CidpjIslcfEpU1TrJJgf0PyXywpR6aPGno50fcKvenzIXdylTUH6Aq1QhCRti1xaS9RHL4QqRv/iFmEsZ32vbi0mV0+H680E0jyRXWber3M3fprojojqSfeHJc2zaVaue5okv/cvLaznQu778BrzkW/7PK4tBkZSMzbk/tvzT837OYq/wP0Zy2FihMm3V5Nfjq7ZQmRDjVEUFESLR4J1s1CiM1CiLuEEJmxbcXA0AU8mmPblBni5WceYanYQ/joL05qMvZQWRVadSdVSVBJVutfeZIlujpSj7khbm1mz1kGQF/dpri1mQj3rnuWy+XzOGsugpzquLQ5vyiTnbKUQHPyFiyIRCV333cv5+rexb/63yC9KC7tVpaW0iKz8TQkb6ELfyjCx0/cxhJdHaaz/guMKXFpN6NiKWGpI9C8KS7tJUK3O4Dn5Z+RL/rJuOhXcfk7XJVrY49UlQQVZSYYNcESQrwshNg6zL8LgNuBKmAZ0Ab873gDEEJ8WQixUQixsatLLVI7HZrauzlqy3/Sbcin6JSvxK3dioo59MtUQmodDiUJbW91srThbjyGTMwrro5bu3PLimmM5uJP4lLtr2xp5NQdPyBstGG/4Gdxa3dBYTrbo+VYepJ3Ps3dL7zHl3p+gdtaStqp34xbuwuK0tkerUjqXpq/PPo0N/r+Sn/uSgzLLotbu7UlueyVxXiTNPmMRCV3//0uro2uo7/2UkRpfAb4pJj0dFpilQTdnXFpU1GUiRk1wZJSnialXDTMvyeklB1SyoiUMgr8lU+HAbYApUOaKYltG679v0gpV0gpV+Tm5k729SijcPtD7Lj7RspFO/KCP4HREre2c9LM1IlSLH2qkqCSfNY98Q/W6j5Bf+xX43anHaAqN5XdlGPuSc5hO5sbe4g8+gUW6howXvRHsOXFre3cNDP1xmpM4eScT/PKpr0c9e7NZOs8pF59f5x/bmzspIJUVx0EvXFrd7o88PIGzt/xbaQpFfvVf4/bSAmAhbEqi+au5KvOKaXktoee4Isd/4UjrQr7xb+Na/uhLFVJUFFmgslWESwc8vAiYGBm5ZPA5UIIsxCiEqgB3p/MuZTJc/oCvPWHL3JG4CXqFtxE7uLT4tq+EIJu6xxyfHVJezdaOTI9+v5+Ptf2vzgtRViO/2pc2zbodXSnVpPtb4SQP65tT7WP9rXSftfnOUO8j2vtf2JaeE5c2xdCEMrVKp/RnlxzjV7auJ2Mf36epbp9RC68Y3AB3HgxGXT0Z8xDRxSSqMy/lJL7n3+D1W9eR4HeScrVD8dt2OSAvDQLDcZqrMGupOqpiUQldzzwCFfu+lf0phQyb/gHmFLjeo5PKwmqBEtREmmyc7B+IYTYIoTYDJwM3AIgpdwGPAJsB54HviqljEzyXMokbN2xg52/OpOzPevYU3kVlZ/7nyk5j98+F5t0I13tU9K+osTbjjYnjqe/T42uhdQLfw0ma9zPEc5dgI4osjM5LnqklDzw8ga493xO4z36T/gRaWu/NiXnSi1bQljqiLYmR6GLcCTK39c9zbwnz2epbh+BC/9KytLPTsm5dANJW5IME/QGw9x+19/4zLufp8DgRn/NP9GXTU19q0DOIu2LJKlA2eMO8Lfb/psbdn8VgyWVtK88B1lz4n6eouJy+qQNd1Ny3bBQlNlmUqtoSilHnKggpfwp8NPJtK9MXl1jI3uf+hXHdGol2fev+Sk1Z341rsM1hjIULIBWcDZtIWNh4egHKEoCufwh/nHPb/mh7hl8y24gZd7ZU3IeW9kyaARH3UfYi5dPyTnipdcT5KF7/sAVnb/Gqg/hO/9O7Mvjs5TDcGqKc9n3fhHFTZuwTdlZ4mNnSw/v3/9jLvM8gM9kJ3rVc1grpq5AbmFZDf27UzE3fUzKyik7TVx8vLeJuoe/y43BZ+lLnUPKDY+iy4l/AjHAWrYMOiHcuglDTXxHY8STlJJXN25FPvttviLfpSNnFfk3PASp2VNyvpr8NHbLEuaqHixFSahJJVjKzOTx+dm6/knCHz/Mcs9bVIoAO7PWUnrZ/zKnID7Vv0aSWbEYPoLe+q1kLDxjSs+lKJMhpeT3DzzBt/y34co7mrRzfz5l5yqtXoj7LQuu+o+wH/+FKTvPZIQjUZ58bT0563/Ev/ARXRkLMV1zL+acmik974LCDLbLcso6Zu4dd28wzBNPPc7Szf/JNaKB1pIzKbz8D4i0/Ck974LiDLZFK1jc/Anxm90VX+39Pl74512c0vAblopu2uddTdFn/wfMU5suV5eV0Ph+Lhn1H5Fx0pSeasKaup28+uCvOa/7r6QJPx0rvkP+2d+Z9Dpph1OVZ2NdtJiljve1ofpTdDNVUZTDUwnWLBCNRNm7ewvtn7xESuMb1Hg+ZLXw4CSVfQWfofisW5hXGd/5ASMpL6ugX6YSVJUElXGSUuILRXD6wjh9QbyBIKGAn0AwSCjoJzTwfzhCUOqQwoDUGZF6A1IY0BlTSLUYsZkNpJoN2MwGslJN5KaZ0esOvch48I3NXFn/H0hLGmnXPAAG05S9tnmFdrbLMoo6Z94CoFJKNmzZRfPT/8P5gaeJ6Ex0rPkB+af925ReCA6Yk5vK41Rykf9t8HRDas6Un3OswpEoz7/xJra3fsoV8n36jTm4zrmbouVTMyTwYPML03lYVrC6/2WIhEE/c/5kO/0hnnhqHfO3/pJrxS66Uirwf+5eiqqOm5bza4UuKjh+BibmXU4/Lz7xd1bu/R3Ximba7UsRV9xBfmytyKlkMxvotMzBEn4FXO2QrkaSKBMnpSQclUSih86r1wmBUS8QKokf1sz5ba2MSSQcpql+N217NxFq+pC07s2UB3YwFxdzgS6RTV3OWlIXnUPVcRez2BS/KoFjUZCRwseUkNW3Z1rPq8wMA0lST78TV18nnr5Ogq5uwu4eot5e8PVDwIkIutCHPBjCHkxhD+aoF4v0YsNHKn7y8KMT4yuUEpJ6+knFKVPpx0aTzOA9mU07ObhTiginlRDOriEnKwsZlaze8G+U6HvQXfkMpBVMzTckJtVsoNlcw2LXqxCNgm6q1ngfOyklb2/ZTefzv+JMzxOsEiHaKy6g6OL/wTqNF2VGvQ6nfR640OYaVZ0ybeceSSgS5ZW33oL1v+Ws0OsEdWZaln+D4rO/FfeiBIeTkWKkPaUaQ+gZ6N4N+VN/gT4afyjCSy8+TfoHv+NqPsRpyKTnxF+Qe/wXpjUBLMuy8qRuDmd7PwC/Eyzp03bukTg8QV566j4qd9zBlWIX3eYSes+4k4KjL57WnqRQVg10olUSVAnWEUdKidMfxuly43V24XP24fc4CHkcBH1OIj4nEb8LAi5E0I0u6EEf9qCPBtBFQ+hlKPZ/GL0MYSCCRBBBRxg9Ean9H8SAByt+fSoBvY2gwYbfaCdgzUekF2HKKiXDnkOh3UplbiplWVaM+sT/7ZsuKsGaoYLObjrrttDftJ1g5x5M/ftI9zSQH26lQoSoAKJS0GgoY1/miTSUraB0ySnkzllKbgLvJggh6EqppNr7bsJiUOInEpX0Opy4etrw9Lbh7+8g5Ook4u5BenvRB/owBByYQ/1YI07Sok7suCkVwRHbDKPDixW/zkpAn0rIlErYmE3YWE6fOY1+cxo6sw290YzeaNL+GcwYjEYMRjMGgx69DGt39KMhiIQgGiLqc2Ly9pHl7SPL38dcbxdmzw5MEQ+EgF7tX7PMoUNmcrR+D95T/wdr+Zpp+V56suZj6XgG+uogu2pazjmcaFTy+kfb6H7ld3zG+yRWEaC+8CxKLvwRxQXzExKTpWQZ7IBo62Z0CUyw/KEIL7/6Itb3fscZkQ0EhYnmmqsov/AHWONYnn48IvlLoBmtymICEyy3P8Rrz/2D/M1/4jy5BZcujY7l3yT/jG9M+XDA4eh0Ak/mAugHOrZC+bHTHsOAtj437zx9Nwv2/o1LRD29xjy6j/0pOSd9ZVp6gQ9mLloInRDt2JHQz5MyeVJKPP4gjp4OXL3teJ3dBJzdBF2xm5bePvSBfozBPiwhp/Z3WLrIwE2pCIzafhg9PqH9PQ7rzEQNRqQwENUZkXozUpcGOj06AUJGEDKCbuBf1Isx1Ik57MYccaOPRCAAuNESfMArzTTLHHbLIl6gmH5rBZGsajJKFlBTVsTCogxKs1JmZS+YSrASSIZ89DTtpKd+G772XYievaS668kNNJGBixK0BcSCUk+LKKDDXEpT9vGYCuaSW7GQ4nmrqLBmUJHg13Ewv72a9PbnZ9xwH0UTCofp6+nC0dWCu68Nf38nYWc7uLvQ+box+XuxhnpJi/SRKR3kCh/DrVAXRoeLNDz6NHyGDIIpRXSaF9KZkonOmoXeloM5PYeU9GxSMnKx2nMx23IwGFNIF4Jpud8sJfgd4GjS1lnq2kVx507yO7YTzL4Q6/E3TUcUABiLl0EHeBo3kZqABCscifLaO+8SfOt3nBZ4FaMI01J4Gubzb2VO0aJpj2eo+VUVtGzPJq3hI9JPmP7zuwNhXnlhHTkf38a58mM8wkrjwq9Q/plvUWFL7PqMWeUL8DcZ0bdswrg0fov1jlWnw8v6Z++jZtefOY+99OmyqD/qPyg/419IM6dNezxDmUqWQT9EWz9Bl4AEa09rLx8+/RdWttzLxaKVDlMpLcf+L8UnXDOlQ45HU1RURu/HNozNW0nsO6QMJxKJ0ufow9Hdiqu7FX9/B0FHJ9LTifB2Y/T3kBLsJS3ch106yMSFbYQRHWH0uIQNjy4dvzGDoLWYHoudnpRMSMlCZ83CkGrHnGrHkppBii0Da5odozUDTDYMBjNpQkz+50RKCPnA2w3ONnC2EHW0QE8Ted11FPTu5QzPR+gDEWgD2qDl/Wx2RUt5SV+O116LqWgx+VWLWFiSy5xc27BD+5OJSrCmWjRKf0c9XfVb8bTuRHbtweysI9vfSG6kkxwhGUhBOmQm7cYS2tLXEs6swlwwF3vZQooraqlMTaEyoS9k7PT586Ed3M1bsdWuTXQ4Rwyfz09PZxP9HU14e1oI9rciXW0YPB1Y/N2khbrIiPZjl07yRISD78dHpcAh0nDqM/Eas+izLaTbmgO2PPS2XEzp+aRkFZCWWUBaVj4mawaZOh2ZCXm1YyQEpNi1fwWLYf55CGD67ylDQfUyAh8acOzdQOoUVuU7mC8Y4Y2XnyL1wz9xavh9wsJAa+WFlJz9bUrza6ctjsNZUZHF9mgFq6a55HZbn5t3nv07lXvu4QJ24dBl0LD0W5Sd+a9UpNinNZaRLC7NZqcso7LhIzKm8bx7W7rY9MxfWNryAJ8VzXQZCmla/T+UnvwFMg3maYxkZKXlc+jako6l4SPSjpm+8368q549L/yR43oe43LRQ5u1hu61fyF/5SWg009fICOoLkhjjyyhVlUSnDZSShweH93tTbi6m/H3thB2tCFc7Rg8HZgD3bEbl/1kSgc5Ishwt59dWHHq7HiNmXitFTgtOdRbc9Cl5mBMz8WcnkNqRh62zFxs9lwMlnQyhUj832EhtCVOTGVgLwO0daCssX+ANtqkrx66dxNq34G1aTPLO7dzovsZDP1PQD+EtunZLwt5njL60mogbwEZ5UuprJ5PTUEaZkPiP19jpRKsOHE6eunYvwVn03YiXbsx9e8jw9tIQaQFO0Hssf3c0kKLroh9KQvYkX4Outy52ErmUVC5iIKcHPKTPGMHsJcthk+gt26TSrDiIBSO0N3VTn97Hd6uBkJ9LUSdbeg9HZj9XdiCXWRGe8mUTkqEpGTIsREp6NPZceiz8Vjy6LcsZL81F91AwpSZjy27iIycIlLteWTq9In/RT1LzS/NZYucQ2nze9Nyvk6Hl7efvY+KXX/jLHbhEjbqFtxI5dm3UJE+tdXvxqsi28qLxipO9XykzdOb4uRme10LO567nZUdD3Ox6KTbWEjz0bdScspXyJiCddAmY0VFFk/LCuZ1vwfRyJRewEsp2bhtN60v/YHj+p/gEuGkzVpD1/G3kbvmihlVZANgQVEG26MVLJuGNdQiUck7GzfieP0PrPW8wHLhp9G+Atdpf6Bw0WdmVLW+6jwbT0RLWNb/rqokGAehcITujhb62+vxdDcR6GtFOtvQeTow+ztJC3WTGekhGyf2g3qaIlLQJ+w4DFl4TVm0matoseYgUnMxpOdhseeTmlWIPbcYW2Y+aUbL7O111BshpwZyajDOO+fTa41wEHr2EmnfirP+E9Jbt3Bc3y7snnegDqgD12spPCHXYL3kT5y7JL4Ll0+VmfXbcoaT0SjdbXV07N+Cu3k7dO8m1VVHfrCRPHoHhzyFpY42XT5dplJaMlchs6uxFs4jq3wBRSUV1Bpn97d9zpwaeqWNQNPHiQ4lKbhcDrpa6nC078fX3Ui0rwm9uxWrrw17qJPcaDeFIsDQqcoRKegVdhyGbLyWfPpSliBt+egzCrFkFmPLLSEzr4y07AJy9MZh75Qp0ysvzcJzhgUscz6jDaUwTk3h7V3NnWx+5i8c3Xo/F4lWug0FNB79I0pP+TJpCZgrMxZCCFwFa9C1PgINb8O8c+J+jmhU8vZHn9D32h9Y636WBcJLY9oSuk/8b3JWfHZG9DwMJ91ipDnjKCzuV6BtExQfHfdzhCJR1r/zFqH1t3GS/zVWihD7s0/AdPo3KZy3dsZeoNcWpPEX3TxOcP4DPD1TsraUOxDm9ZefxvbRnzkh/C5S6KgvOpvis79JWdlRcT9fPKRbjPRa52AOvgzOVsgoTnRIM5aUku6+Prqa9+HsqMff3YDsb8LkacXm7yAz3EG+7KFQhA74GxwdTJyy8abk0WxdTJOtAENGIZasYqzZJdjzSkjNKlR/g0djMEH+AvT5C8heeumn2/1Ooh3b6a3bhLvxE/JCmZQUJE/6Obuv9CepZd9Wmjc+g2jfTJZrF0XhRnIJDM5HcZFCm6GMRvsq9mfWYCqoxV62gMKKBZSmpFCa0OgTp9CewgZdNWXdM68kdSIEgkHam/bT27wbb8deIj11WFyNZARayIu0k4nrgDtWUSno1dnpM+TTb6uhy3YSIqMEU3Yp1twKMgvKsecUk2swDDs3Spm5unNWYehcB/VvQxwXR5VSsmHzdtpf+SMnOJ7ic8JJi7WWzhNvJ2/VpTOu52E4WbXH4W0xE932ArY4Jli+YITXXnsB8we3c1JoPQhoyD8N/VnfpGzO9BQ4mSxj9VrY9Ev8O1/EEscEq9cdYP0Lj5C79U5Olh/jx0Rj2UWUnfNN5hTMi9t5popRr8NZchK6lkeQ+15BLLl09IPGqKnbyfvP3kv1vns5V+zBLWzU1X6RirO/TnVmyegNJJgoXAwNIFs/RhzBCZaUkh6nm/aG3Tjb9hLq2oeuv54UTzMZgVZyIl3kCvcBf0sjCHpFNv2mPHpTF9JhK0ZklGDOKiU1tzT2N7iQbL2RqVkuWgHAko6ufA055WvIgRlXb2A0M/+vbgI1f/gcq3f8Nw5sNJmq+STnfETeXGxFCyioWkJ2fglzZ0C55ZlGCEFvxgJW9T8EQa82LneWc/v8tNXvxNG4jWDnHnT9daS4m8gKtpIf7aRcRCiP7RuSerr0efSZithrX4DMKMWYVUZqXjmZhZVkF1SQYzSrO16zUN6iU/G9YiK4+Sky4pBgeQJh3nz9BUwb/8wJwfUYRJSGnBOwnHYLxfNOnrE9D8M5dVEpb7y8hJN2PQPR30y6R6mlx8kHz99H6Z6/8xl24BUpNNRcQ9nZt1CVXRGfoKfJicsX8NFH1VR98k8sp/77pNvb3dTBluf/xqLmBzlfNNGvy2L/oluoOPNmamzJ9ZuncslxdDVnYPron2RMMsGSUvLx7jr2v/hnVnc/xsWiiy5TEc0rfkLJ2i9QPUN7gIeTVb2KYL2ewN63SZt/bqLDmVJaL1Q/nfXbcDTvIty9D72jnlRvMznBVgrpJmfI0D0/Jjr1BTgthey3LYeMEszZ5aTnV5JdXEVqdjG5eqO6galMikqwDmPeqdfQseZC8kqqWKQSqXGRJavR9z+Ae9+72Oafmuhw4kJKSW93B237t+Bs2kG0axcWx35y/A0UyXZqRGRw335sdBkK6bbNoy39DAw5ldgK5pJTNpfMggqK9EaSYxSxEk+nLCnn9ZeWctLOJyHyqwmXcK7r6Oej5++lqu4+zmY3XlJomHMFZWd/ncq8mjhHPT3Ks1N5IP0Uzvb8HLnvVUTN6eNuIxqVfLBlGx2v/4VVvU9yoeij25BPw7L/R9lpX6HKMp1lIuJneWkmvzGexFHOO7Vy7QWLx91GKBJlwwcbcK//M8e5XmSu8NKWUkX7Mb+h4Lgrsc+QwhXjddbiYtY9fSxXNbw84WGCnkCY9W+8hO7Dv3GC/w2OEiGa0pfRu/YX5C6/YMYOHz2cJZUFbJFzqKx7J9GhxI2MRulsb6Z17yc4m7cju3Zjc9dREGykiG5yhyRR/aTTbSqiN2sZXfZKzLlzSCusIaeslpTMYsrUNZ0yxVSCdRgZ2flkZM+syeDJInfhSYS36Ojc/FLSJVhSStp6+mjb/TGepk3oO7eT4dpNUbCebJyDQwJCUk+boQiHrZItmadjyJuLrXgBeXMWYbfnDhY2UZQBxfYUHsw7l7N7fkRk6zr0Sz835mPDkSjvbdxI39t/Y7XjeS4WDjqNxTQe9SNKT/4CNUmaPAxVedyldL7wZ0yv/C/26tPG3APX5/bz7qtPkPrJPRwX3oBBRNlvP4buE28kZ/l55CThBfJQOp0gdeWVeN69j/DLvyTjqr+P+dimrn4+evkhCnbfzwlyMyEM1OWfCqfeTOHcE5Kql3M4dquJlqrLMNQ/h2/9baSc+aMxH7uzsZ1tL91LTeMjnCn24sNCY9mFlJ75r5SWLJ3CqKfewqIM7tIvYXnv4+DtBWtWokMaF3dvG627NuJq2ITo3I7NtZ+CUBP5eBi4KvNhpsNYSm/WcjqzqjEVzCOrZB655bXYrXb1N1hJKCHl8LX1E2HFihVy48aNiQ5DiYNgOMq2/1xNnhWKv/tBosMZkT8YpmH/Ljr3fUSoZTMpvTsp8O+lTLahj90N82GmyViBw1ZDNKcGa9F8cisWkVc6F50hEQW/lWT2yrZWSh4+nQKbjoyvvzfqENo9TW1se+0hiuoeY5XcQhgdDVnHk33il7EvOQdm0Z1YXzDCHT//FrdE7iJ4wZ8xLb98xH2D4Sjvvf8OrvfvY2nfSxSLblzCRvucSyg782bMSdqTNxKHN8QjP/8iXxLriHz+MfRzRx5i6vAG+XD980Q/eZij3a+TKdz06HPpnX8VlaffiCGjYBojn3p7Olzsuu0SzjR8hPGmNyFv5AWzuxxeNr2xDuO2R1jpf4dUEaDdVE5w+fWUrr0eMUPK88fDb+95gK/X30T0wj+jWzbyZymRQkE/LXs307P/YyKtm7H27aTAt48c+gb36ZYZtJkq8KZXosudS1rJQoqql5KeVz6rfv8pyUkI8aGUcsUh21WCpUyVf/zhe3yu53ZCX/0QY251QmORUtLV20vTzg9xNXyCrnMrdtduKsL1pAvv4H5tugJ6bTWEcxdgKVlKXvVRZBbXql/iStxIKfnF7X/mu53fpavkDHKvvhuGzO2IRiV79u9h3/vPk173HCuCH2ARIboNBfTPu5zyU7+EMQkm2U/Uq9taSH/4Qpbo6nCf+COyTvgiGFOQUtLR1cmej9/Cv+tlynvfZi6NhNFRn7Eay1FXUHLspVNWnXEmePKDPdQ+dSHl+h6Cp/4n6auvBqOFSCRKY+N+Gjavh70vU+18lxLRTQATdTlryTnuGnKWnJ0UxU4m6van3uaSjVdgMRnRnfMrUhefB3oDwVCE+v07aNr8Jsb9r7DA+z45wolLpNJceBYlJ11L2twTk74nbzjPbW5h8WMnYi2YS9ZNzyU0FiklXW1NtO3eiLfpEwzd28ly76E03IgpNrw+IA006Uvpsc0llLMAa9lSCmqOprCoFDEL3x9ldlAJljLt3tz4Ccc8dTLNc6+m8srfTdt5g6EIjft30LX3I4Itn5DSt5N83z5KZTu6WK+UBwut5io89nnoCheRNWc5hTVHoU9J/mFWyszX6wny8B/+g6/4/oZPZ6UuYzVuXRpGXyfZvnoqaAOgT5dJa/FZlBx3BRlzTzhiEv11b28h/4WvcIxuG0EMdOtyMEYD5Mbuaocw0JC6GFn7GSpPumbW9cgczgMvbWDeWzdzlG4PIQz0iQwsUd/gjSIvFprsq0hZfB6lx12GmAVDR8ciEpX8+R9Pcea271ClayOACYdIwxr1YBN+ABwijZbsY7Ef9VmKVl4IRktig55ioUiUu/77Jr4SeQhufBsKFk3Led1eL427Pqa/bhOyfQu2/l2UBPeRjWNwn06yaLNU4c2ch6FoEVmVR1NSsxizeXa/J8rsoxIsZdqFI1Fe/e8LOTGyAcO/vo8hzpW7pJR0d3XSsvtDXI2foOvcjt21h/JwPTbhA7SS5+36ArptcwnnLMBaupSi2hWkF1QdMReryszkDYZ57rmnyNj2d2qD20jFh1OfiddaSrh0DWVHnYF9zoqknGAfD239Xja89hS2xldID3ahM6Wgy6kia85yypedhi4lffRGZqmGbjeb3nwCa/N60sK9GCw2dLk15M9dQdHCExBJWrAiHna09LL7zX+Q2vkhtogDgzUdQ/58ShasIadm9RH3ebrr5Y+55K3PEMlfQuaNz8X17144HKG5YS+d+z7C37wFc88Ocrx7KYu2YBzslTLSbCynL20u0byFpJVpf4MzcgpHaV1RksOUJFhCiIeB2thDO9AvpVwmhKgAdgC7Ys9tkFLeOFp7KsGafV5//0NWPnM2valVlNz8DGKCE20dDietddoq3+H2bVj7d1Ho308B3YP7uLDSZp6Dyz4PfeFisuYsp6hmOYYj+EJMURRFOXIFw1Fu+98f8A3fbfTO+zxZl/wWxpmAh8IRmpvr6dy/FU/rDgzdO8h07aEsXE+G8Azu1yFy6bRWE8iah6l4MbnVR5NfsVDNVVZmtSnvwRJC/C/gkFL+JJZgPS2lHFd/tEqwZqdH7/sT5+/5Pk5DNo5Vt1C8+rNY7AcO6QmHw/R2ttLXXo+nuxFvZx263r2kuhvICzZROCSRCko9rYZS+tJqiOQswFa2hMK5R5ORXzErx9EriqIoykQ1dLt54083c030cbrM5bgWX4O99kSsOaXoLTa8Pj8+j4O+nk5cnQ34epqJOlpIcTWQ6WukKNJCWmxUCICHFFrNc3BlzEXkLySjYhlFc4/GkpZclQoVJR6mNMES2uzDRuAUKeUelWApQ0kpeeb5Z6jd8D1qRBOg/YL2CitSggU/VunDIKIHHOfCSruxFHdqOZHMKsz5c8msXErhnEXojUfuEBhFURRFGY9ud4B1j9zDsQ1/YoGoH3X/KIIukUu3pRR/+hwMeTVklCwgv3IhKbmV6mamosRMdYJ1IvDrgRPEEqxtwG7ACXxfSvnWCMd+GfgyQFlZ2dENDQ2TjkeZmTz+EJvffw3/vvUYXC0Ywm50Oh0RgxWd2YYuowhzZgmpuaXkl1aTllWofokriqIoSpw4fCF2bt+Ev2kTeLrQh7wYTGZ0ZhspaVmk5ZWRXVRJWnbxhBdCV5QjyYQTLCHEy8BwJZr+n5Tyidg+twN7pZT/G3tsBmxSyh4hxNHAOmChlNJ5uHOpHixFURRFURRFUZLBSAnWqItiSClHXs1Qa9gAfBY4esgxASAQ+/pDIcQ+YC6gsidFURRFURRFUWateNTrPA3YKaVsHtgghMgVQuhjX88BaoD9cTiXoiiKoiiKoijKjBWPZd0vBx48aNuJwE+EECEgCtwopeyNw7kURVEURVEURVFmrBm10LAQoguYaVUucmBIjXBltlPv95FDvddHDvVeH1nU+33kUO/1kWUmvt/lUsrcgzfOqARrJhJCbBxu8poyO6n3+8ih3usjh3qvjyzq/T5yqPf6yJJM73c85mApiqIoiqIoiqIoqARLURRFURRFURQlblSCNbq/JDoAZVqp9/vIod7rI4d6r48s6v0+cqj3+siSNO+3moOlKIqiKIqiKIoSJ6oHS1EURVEURVEUJU5UgqUoiqIoiqIoihInKsE6DCHEWUKIXUKIvUKI7yU6HiV+hBClQojXhBDbhRDbhBD/FtueJYR4SQixJ/Z/ZqJjVeJDCKEXQnwshHg69rhSCPFe7PP9sBDClOgYlfgQQtiFEI8KIXYKIXYIIY5Rn+3ZSQhxS+x3+FYhxINCCIv6bM8eQoi7hBCdQoitQ7YN+1kWmt/H3vfNQoijEhe5Ml4jvNe/jP0e3yyEeFwIYR/y3L/H3utdQogzExL0YagEawRCCD3wR+BsYAFwhRBiQWKjUuIoDHxTSrkAWAN8Nfb+fg94RUpZA7wSe6zMDv8G7Bjy+OfAb6SU1UAf8IWERKVMhd8Bz0sp5wFL0d539dmeZYQQxcDXgBVSykWAHrgc9dmeTe4Bzjpo20if5bOBmti/LwO3T1OMSnzcw6Hv9UvAIinlEmA38O8Aseu1y4GFsWP+FLtunzFUgjWyVcBeKeV+KWUQeAi4IMExKXEipWyTUn4U+9qFdgFWjPYe3xvb7V7gwoQEqMSVEKIEOAf4W+yxAE4BHo3tot7rWUIIkQGcCNwJIKUMSin7UZ/t2coApAghDIAVaEN9tmcNKeWbQO9Bm0f6LF8A/F1qNgB2IUThtASqTNpw77WU8kUpZTj2cANQEvv6AuAhKWVASlkH7EW7bp8xVII1smKgacjj5tg2ZZYRQlQAy4H3gHwpZVvsqXYgP1FxKXH1W+A7QDT2OBvoH/KLW32+Z49KoAu4OzYk9G9CiFTUZ3vWkVK2AL8CGtESKwfwIeqzPduN9FlW122z2w3Ac7GvZ/x7rRIs5YgmhLABjwFfl1I6hz4ntTUM1DoGSU4IcS7QKaX8MNGxKNPCABwF3C6lXA54OGg4oPpszw6xuTcXoCXVRUAqhw4xUmYx9Vk+Mggh/h/a1I77Ex3LWKkEa2QtQOmQxyWxbcosIYQwoiVX90sp/xnb3DEwpCD2f2ei4lPi5jjgfCFEPdpQ31PQ5ujYY8OKQH2+Z5NmoFlK+V7s8aNoCZf6bM8+pwF1UsouKWUI+Cfa5119tme3kT7L6rptFhJCXAecC1wpP128d8a/1yrBGtkHQE2sGpEJbTLdkwmOSYmT2BycO4EdUspfD3nqSeDa2NfXAk9Md2xKfEkp/11KWSKlrED7HL8qpbwSeA24JLabeq9nCSllO9AkhKiNbToV2I76bM9GjcAaIYQ19jt94L1Wn+3ZbaTP8pPANbFqgmsAx5ChhEoSEkKchTa8/3wppXfIU08ClwshzEKISrTCJu8nIsaRiE+TQeVgQojPoM3d0AN3SSl/mtiIlHgRQhwPvAVs4dN5Of+BNg/rEaAMaAAulVIePMFWSVJCiLXAt6SU5woh5qD1aGUBHwNXSSkDCQxPiRMhxDK0giYmYD9wPdoNRfXZnmWEED8GLkMbPvQx8EW0uRjqsz0LCCEeBNYCOUAH8CNgHcN8lmNJ9m1ow0S9wPVSyo0JCFuZgBHe638HzEBPbLcNUsobY/v/P7R5WWG0aR7PHdxmIqkES1EURVEURVEUJU7UEEFFURRFURRFUZQ4UQmWoiiKoiiKoihKnKgES1EURVEURVEUJU5UgqUoiqIoiqIoihInKsFSFEVRFEVRFEWJE5VgKYqiKIqiKIqixIlKsBRFURRFURRFUeJEJViKoiiKoiiKoihxohIsRVEURVEURVGUOFEJlqIoiqIoiqIoSpyoBEtRFEVRFEVRFCVOVIKlKIqiKIqiKIoSJyrBUhRFmWGEEBVCCCmEMCQ6FuXIIITYJoRYm+g4FEVRZgOVYCmKoihJTwhxhxDCHfsXFEKEhjx+LtHxzXRSyoVSytfj2aYQwiyEuEsI4RRCtAshvhHP9hVFUWYqIaVMdAyKoiizihDCIKUMT+L4CqAOME6mnSOVEOJWoFpKedUwz03qvZlOyRTrcIQQ/wMcD5wPFACvAddJKZ9PaGCKoihTTPVgKYqixIEQol4I8V0hxGbAI4QwCCHWCCHeEUL0CyE+GToESwjxuhDif4QQ78fu8D8hhMgaoe3rhRA7hBAuIcR+IcRXDnr+AiHEplg7+4QQZ8W2Zwgh7hRCtAkhWoQQ/yWE0I/yOqqEEK8KIXqEEN1CiPuFEPYhz/UKIY6KPS4SQnQNvC4hxPmxoWb9sdc3/6Dvz7eEEJuFEA4hxMNCCMv4v9PjN8J7I4UQ1UP2uUcI8V9DHp8b+572x97DJWM811ohRLMQ4j9i3796IcSVQ54/Rwjxcey9aoolgwPPDQwN/YIQohF4Nbb9H7EeIIcQ4k0hxMKD4v6TEOK5WG/d20KIAiHEb4UQfUKInUKI5WP8Hp02ltc4DtcC/yml7JNS7gD+ClwX53MoiqLMOCrBUhRFiZ8rgHMAO5APPAP8F5AFfAt4TAiRO2T/a4AbgEIgDPx+hHY7gXOBdOB64DdDkpxVwN+Bb8fOeyJQHzvunli71cBy4Azgi6O8BgH8D1AEzAdKgVsBpJT7gO8C9wkhrMDdwL1SyteFEHOBB4GvA7nAs8BTQgjTkLYvBc4CKoEljHCxLYQ4PpbYjPTv+FFew3AG35vReoViCcldwFeAbODPwJNCCPMYz1UA5ADFaEnGX4QQtbHnPGjvuz0Wz01CiAsPOv4ktO/9mbHHzwE1QB7wEXD/QftfCnw/ds4A8G5svxzgUeDXY4x7WEKI7x3u/RjhmEy0n+tPhmz+BFg43P6KoiiziUqwFEVR4uf3UsomKaUPuAp4Vkr5rJQyKqV8CdgIfGbI/v8npdwqpfQAPwAuHa6HSUr5jJRyn9S8AbwInBB7+gvAXVLKl2LnaZFS7hRC5MfO9XUppUdK2Qn8Brj8cC9ASrk31lZAStmFdnF+0pDn/wrsBd5Du4D+f7GnLgOeiR0bAn4FpADHHvT9aZVS9gJPActGiGG9lNJ+mH/rD/caRjD0vRnNl4E/Synfk1JGpJT3oiUua8Zxvh/EvodvoCXalwJIKV+XUm6JvVeb0ZLSkw469tbYe+aLHXOXlNIlpQygJbtLhRAZQ/Z/XEr5oZTSDzwO+KWUf5dSRoCH0ZLrCZNS/uxw78cIh9li/zuGbHMAaZOJRVEUJRmoBEtRFCV+moZ8XQ587qA7/cejJSXD7d8AGNF6HQ4ghDhbCLEhNjyvHy1xGtivFNg3TCzlsfbahpz/z2i9ICMSQuQLIR6KDSl0AvcNE9NfgUXAH2IX/aD1eDUM7CCljMZeX/GQ49qHfO3l04vw6dA0+i6DyoFvHvTelaK9xrHoiyXNAxoGjhVCrBZCvBYbWukAbuTQ7+9grEIIvRDiZ0Ib+unk097Jocd0DPnaN8zj6fw+D3DH/k8fsi0dcCUgFkVRlGmlEixFUZT4GVo1qAmth2ro3f5UKeXPhuxTOuTrMiAEdA9tMDYs7TG0HqH8WI/Bs2hD+QbOUzVMLE1ovS45Q86fLqUcbYjWf8dex2IpZTpaT9zAuRBC2IDfAncCt4pP5421oiUmA/uJ2OtrGeV8hxBCnCA+rQA43L8TRm/lEAdXdPIC1iGPC4Z83QT89KD3ziqlfHCM58oUQqQOeVyG9v0BeAB4EiiVUmYAdzDk+ztMrJ8HLgBOAzKAitj2g4+ZMrH5ZCO+H8MdI6XsA9qApUM2LwW2TUfMiqIoiaQSLEVRlKlxH3CeEOLMWC+EJVYAoWTIPlcJIRbE5jP9BHg0NqxrKBNgBrqAsBDibLS5VAPuBK4XQpwqhNAJIYqFEPOklG1oQwn/VwiRHnuuSghx8HC0g6Wh9T44hBDFaHO7hvodsFFK+UW0oW93xLY/ApwTi8MIfBMtwXtntG/UwaSUb0kpbYf599Z42xzGJuDzsffmLA4cpvdX4MZYb5MQQqQKrThFGgwWlrhnlPZ/LIQwxZLBc4F/xLanAb1SSn9s/tznR2knDe372IOWEP73OF5jXEgp//tw78dhDv078H0hRKYQYh7wJbR5gYqiKLOaSrAURVGmgJSyCa3n4T/QkqMmtGRl6O/d/0O74GwHLMDXhmnHFdv+CNCHdkH+5JDn3ydW+AJtjssbfNqTdA1agrY9duyjHDhEcTg/Bo6KtfUM8M+BJ4QQF6AVqbgptukbwFFCiCullLvQerv+gNYLdx5wnpQyOMr5EuXf0GLsB64E1g08IaXciJYM3Ib2fdvLgQU5SoG3D9N2e+y4VrSCFDdKKXfGnvsX4CdCCBfwQ7T39XD+jjbEsAXtfdww2gubQX6ENny1Ae3n8peqRLuiKEcCtQ6WoihKAgghXgfuk1L+LdGxKGMXq4r4CbAkVszj4OfXor2vJQc/pyiKohwZDIkOQFEURVGSRaxHbv6oOyqKoihHLDVEUFEU5QgjhLhjhIIFd4x+tJKMhBBlhylUUZbo+BRFUWYTNURQURRFURRFURQlTlQPlqIoiqIoiqIoSpzMqDlYOTk5sqKiItFhKIqiKIqiKIqiHNaHH37YLaXMPXj7jEqwKioq2LhxY6LDUBRFURRFURRFOSwhRMNw29UQQUVRFEVRFEVRlDhRCZaiKIqiKIqiKEqcqARLGVY4Ek10CIqiKIqiKIqSdGbUHKzhhEIhmpub8fv9iQ7liOELhhDeHoQlA7MlJdHhTJjFYqGkpASj0ZjoUJQkte3xn5OaaqPijK8mOhRFURRFUZLEjE+wmpubSUtLo6KiAiFEosM5InR2tJEXiWgPCudBEn7fpZT09PTQ3NxMZWVlosNRktD+ti4WfvLfAASXno4pf26CI1IURVEUJRnM+CGCfr+f7OxslVxNI0vENfh1JJScPYdCCLKzs1XPpzJhdR88N/h18zsPJzASRVEURVGSyYxPsACVXE2jqJQYZJgg2rC6kNeR4IgmTv3cKJMR7dwFQJvMQjS8neBoFEVRFEVJFkmRYCnTJxSJYiBC1GglKPUQ9CQ6JEVJiIiriyAGNllWke/4BKRMdEiKoiiKoiQBlWCNgRCCb37zm4OPf/WrX3HrrbcmLqAhNmzYwOrVq1m2bBnz588fjOv111/nnXfeGXd7kahET4TGlnZWnXUFq08+h4ULF3LHHXfEOXJFmdkMgT7cejvBnEVYpRfpaEp0SIqiKIqiJIEZX+RiJjCbzfzzn//k3//938nJyYlbu1JKpJTodBPPc6+99loeeeQRli5dSiQSYdcubVjT66+/js1m49hjjx1Xe5FIBL2QFBUV8+Izj5Nr8OBJq2LR4iWcf/75FBUVTThWRUkmKaF+vIYMTEULoQX66jeTtaws0WEpiqIoijLDqR6sMTAYDHz5y1/mN7/5zSHPdXV1cfHFF7Ny5UpWrlzJ229rczVuvfVWfvWrXw3ut2jRIurr66mvr6e2tpZrrrmGRYsW0dTUxLe//W0WLVrE4sWLefhhbTL966+/ztq1a7nkkkuYN28eV155JXKYIUqdnZ0UFhYCoNfrWbBgAfX19dxxxx385je/YdmyZbz11luHjfPqq6/mmGOOoaamhrv/9lcAzClWzKkZCMDndhCNDr8u1u9//3sWLFjAkiVLuPzyywHo7e3lwgsvZMmSJaxZs4bNmzcPnuvaa6/lhBNOoLy8nH/+85985zvfYfHixZx11lmEQiEAfvKTn7By5UoWLVrEl7/85UNedzQapaKigv7+/sFtNTU1dHR0HP6NVJRxSI048BvtZFcuA6C/fnNiA1IURVEUJSlMugdLCFEK/B3IByTwFynl74QQtwJfArpiu/6HlPLZyZzrx09tY3urczJNHGJBUTo/Om/hqPt99atfZcmSJXznO985YPu//du/ccstt3D88cfT2NjImWeeyY4dOw7b1p49e7j33ntZs2YNjz32GJs2beKTTz6hu7ublStXcuKJJwLw8ccfs23bNoqKijjuuON4++23Of744w9o65ZbbqG2tpa1a9dy1llnce2111JRUcGNN96IzWbjW9/6FgCf//znR4xz8+bNbNiwAY/Hw7Jly7jkuLvIy6igtbOdEy6+lL31Lfzyl78ctvfqZz/7GXV1dZjN5sGE50c/+hHLly9n3bp1vPrqq1xzzTVs2rQJgH379vHaa6+xfft2jjnmGB577DF+8YtfcNFFF/HMM89w4YUXcvPNN/PDH/4QgKuvvpqnn36a8847b/CcOp2OCy64gMcff5zrr7+e9957j/LycvLz80d9HxVlLKSUZEgHPnMZVWXFtMtMwu3bEh2WoiiKoihJIB49WGHgm1LKBcAa4KtCiAWx534jpVwW+zep5CrR0tPTueaaa/j9739/wPaXX36Zm2++mWXLlnH++efjdDpxu92Hbau8vJw1a9YAsH79eq644gr0ej35+fmcdNJJfPDBBwCsWrWKkpISdDody5Yto76+/pC2fvjDH7Jx40bOOOMMHnjgAc4666xhz3m4OC+44AJSUlLIycnh+OOP4/1NW9EZjFRW1bDppUfY+v4b3HvvvcP2EC1ZsoQrr7yS++67D4PBMPiarr76agBOOeUUenp6cDq1xPjss8/GaDSyePFiIpHIYLyLFy8efH2vvfYaq1evZvHixbz66qts23bohe1ll1022Nv30EMPcdlllx32e64o4+ENRsjERcSSRbbNTL0oxdq/O9FhKYqiKIqSBCbdgyWlbAPaYl+7hBA7gOLJtjucsfQ0TaWvf/3rHHXUUVx//fWD26LRKBs2bMBisRywr8FgOGBY3dD1mFJTU8d0PrPZPPi1Xq8nHA4Pu19VVRU33XQTX/rSl8jNzaWnp+eQfUaKEw4qZy6jCCEQOgMmg54gRopybSxatIi33nqLSy655IBjn3nmGd58802eeuopfvrTn7Jly5YxvSadTofRaBw8t06nIxwO4/f7+Zd/+Rc2btxIaWkpt95667BrWR1zzDHs3buXrq4u1q1bx/e///3DnldRxsPh8VEkPDSnZAHQk1rFcs+zEI2ATp/g6BRFURRFmcniOgdLCFEBLAfei226WQixWQhxlxAiM57nSoSsrCwuvfRS7rzzzsFtZ5xxBn/4wx8GHw8MhauoqOCjjz4C4KOPPqKurm7YNk844QQefvhhIpEIXV1dvPnmm6xatWrMMT3zzDODc5T27NmDXq/HbreTlpaGy/XpgsEjxQnwxBNP4Pf76enpYf3b77By6UJaWloJ+P0EhRlnTyfr16+ntrb2gHNHo1Gampo4+eST+fnPf47D4cDtdnPCCSdw//33A9pcspycHNLT08f0egaSqZycHNxuN48++uiw+wkhuOiii/jGN77B/Pnzyc7OHlP7ijIWHrf22dGlaD+3gcxazASgrz6BUSmKoiiKkgzilmAJIWzAY8DXpZRO4HagCliG1sP1vyMc92UhxEYhxMaurq7hdplRvvnNb9Ld3T34+Pe//z0bN25kyZIlLFiwYLCc+cUXX0xvby8LFy7ktttuY+7cucO2d9FFF7FkyRKWLl3KKaecwi9+8QsKCgrGHM///d//UVtby7Jly7j66qu5//770ev1nHfeeTz++OODRS5GihO0YX4nn3wya9as4Vu3/BtFBbns2Lmb1atXc+zp53PaJdfxrW9+g8WLFwPwxS9+kY0bNxKJRLjqqqtYvHgxy5cv52tf+xp2u51bb72VDz/8kCVLlvC9732Pe++9d8yvx26386UvfYlFixZx5plnsnLlysHn7rjjjgPivuyyy7jvvvvU8EAl7gJ+bf03vSkFAGO+9vl1te5KWEyKoiiKoiQHMVxlunE3IoQReBp4QUr562GerwCellIuOlw7K1askBs3bjxg244dO5g/f/6kY1SGd+uttx5QDKOvs5nMcBcULAGdnr7udjKDbcjc+QjjocMLZzr186NMxEebNnHUupPYe+wvqD7jK7z50TZOfPJYmlb/iNKzv5Ho8BRFURRFmQGEEB9KKVccvH3SPVhCm0RzJ7BjaHIlhCgcsttFwNbJnkuZekLG5o0J7UdDF0uqIkFfokJSlGkXCgz0YFkBKCouwy0tBDr3JjIsRVEURVGSQDwWGj4OuBrYIoTYFNv2H8AVQohlaKXb64GvxOFcSpzdeuutB26QUaIIdLHiEwaTBTwQCfnVqtTKESMc8AJgtGgJVmm2lb0yH2vf8HMpFUVRFEVRBsSjiuB6QAzzVFKXZT9iSYkc8naaTCbCUocMBRIYlKJMr8EEy6wlWGaDng5jMYs8DYkMS1EURVGUJBDXKoJK8hNED0iwDDpBECMiohIs5cjxaQ/Wp0squK1lZIXaIRJKVFiKoiiKoiQBlWApBxBSIsWnPxZCCMI6E/poMIFRKcr0isbmHBpTPk2wIvZKDESQ/U2JCktRFEVRlCSgEizlIFEOHvEZ1ZkwEIYhCycrymwmQ1oPlnlID5YxrwaYvaXaQ5Eo7sDwi5kriqIoijJ2KsEao3Xr1iGEYOfOnSPuU19fz6JFh61EPy67du1i7dq1LFu2jPnz5/PlL38Z0BYJfvbZiU9x8/v9rFq1iqVLl7Jw4UJ+9KMfDT4nkMiDfywMZgCiYTVMUDkyDPZgmVMGt9lLtLWw+ptH/h2QzO7562/Y9tPjadryZqJDURRFUZSkphKsMXrwwQc5/vjjefDBB4d9Phye/J3fSCRywOOvfe1r3HLLLWzatIkdO3bwr//6r8DkEyyz2cyrr77KJ598wqZNm3j++efZsGEDoJVpl+LAHixVql050siQ9rMuTJ/2YBUVV+CR5llZqr3XE2Rhy6Os1u0g8NJ/JTqcKbGrpZe//WMdLo830aFMiTaHj3c37yQea1vORI09Xna2OxMdxpTZ1dJLa3dfosNQFCVOVII1Bm63m/Xr13PnnXfy0EMPDW5//fXXOeGEEzj//PNZsGABoCVaV155JfPnz+eSSy7B69X+mL/yyissX76cxYsXc8MNNxAIaL1BFRUVfPe73+Woo47iH//4xwHnbWtro6SkZPDx4sWLCQaD/PCHP+Thhx9m2bJlPPzww3g8Hm644QZWrVrF8uXLeeKJJwC45557uOCCC1i7di01NTX8+Mc/BrR5VTabDYBQKEQoFEIIgZQSgRxcA+sf//gHixYt4rjjT+DEz36BSMiP3+/n+uuvZ/HixSxfvpzXXntt8FwXXnghp59+OhUVFdx22238+te/Zvny5axZs4be3l4A/vrXv7Jy5UqWLl3KxRdfPPj9GWrNmjVs27Zt8PHatWs5eAFqRZlSsQQLw6eLa5dkpdIgC9DPwlLtO5q6OEq3B4AK50bw9Sc2oCnw9oP/wxe3XUv93V9MdChT4sG//Ypj/rmabS/dk+hQ4i4QjvDkH79Fzu0Lad/6eqLDibvmPi+77riS1NsW4u9vT3Q4iqLEQXItbfTc96B9S3zbLFgMZ//ssLs88cQTnHXWWcydO5fs7Gw+/PBDjj76aAA++ugjtm7dSmVlJfX19ezatYs777yT4447jhtuuIE//elP3HzzzVx33XW88sorzJ07l2uuuYbbb7+dr3/96wBkZ2fz0UcfHXLeW265hVNOOYVjjz2WM844g+uvvx673c5PfvITNm7cyG233QbAf/zHf3DKKadw11130d/fz6pVqzjttNMAeP/999m6dStWq5WVK1dyzjnnsGLFCiKRCEcffTR79+7lq1/9KqtXryYqJTokA3OwfvKTn/DCCy+QX1BI3653IBzgj3/8I0IItmzZws6dOznjjDPYvXs3AFu3buXjjz/G7/dTXV3Nz3/+cz7++GNuueUW/v73v/P1r3+dz372s3zpS18C4Pvf/z533nnnYM/cgMsuu4xHHnmEH//4x7S1tdHW1saKFYcskq0oU0aEYwmW8dMhgiaDjk5jEfM9jQmKaup07vsYiwjxQe5nWdn1T1z7NpC26KxEhxU37kCYKucG0MHc7pcg4AazLdFhxU27w895jgdBB7kf/ArOuD7RIcXVxroero38kzThY8cbt1OwaG2iQ4qrjZ98woX6dwDY/dxvmHvFzxMckaIok6V6sMbgwQcf5PLLLwfg8ssvP2CY4KpVq6isrBx8XFpaynHHHQfAVVddxfr169m1axeVlZXMnavN4bj22mt5881P5zlcdtllw573+uuvZ8eOHXzuc5/j9ddfZ82aNYM9X0O9+OKL/OxnP2PZsmWsXbsWv99PY6N2EXj66aeTnZ1NSkoKn/3sZ1m/fj0Aer2eTZs20dzcPJiEDSRYA1UEjzvuOK677jruuvNv+KJ6RCTA+vXrueqqqwCYN28e5eXlgwnWySefTFpaGrm5uWRkZHDeeecBWs9bfX09oCVhJ5xwAosXL+b+++8/oKdqwKWXXsqjjz4KwCOPPMIll1wy8pujKFNAhP0EMYBOf8B2d2oZWaE2iMyuYhCBXu33RcrSiwDo2fN+IsOJux3NPawUu2gylGMmSP/2lxMdUlxtqW+jRteCi1TyQ82zrtJl4+7NpAkfIQxUdr8+6z5/zt1vA+CWKVia1BxIRZkNkqsHa5SepqnQ29vLq6++ypYtWxBCEIlEEELwy1/+EoDU1NQD9hcHzV86+PFwDm5jqKKiIm644QZuuOEGFi1axNatWw/ZR0rJY489Rm1t7QHb33vvvVHjsdvtnHzyyTz//PPUzl+grYMVS7DuuOMO3nvvPZ555hlOOPsnvP/c8PPPBpjN5sGvdTrd4GOdTjc4R+26665j3bp1LF26lHvuuYfXX3/9kHaKi4vJzs5m8+bNPPzww9xxxx2HPa+ixJsI+wkKM6aDtoftlRidYaSjCZFVOeyxyUg42wAoqllG3Yv50PpxgiOKr86W/awUAfYuuIrCT/6Hnl3vYl9+YaLDipueRq3wyr7yS1nWcDfdW18l9/hrExxV/IhWbYj4e0VXc3zr3YTatmEsWZrgqOLH6KgjiuCN9HM5y/UY+J1gSU90WIqiTILqwRrFo48+ytVXX01DQwP19fU0NTVRWVnJW2+9Nez+jY2NvPvuuwA88MADHH/88dTW1lJfX8/evdrk+P/7v//jpJNOGvXczz//PKGQtqhpe3s7PT09FBcXk5aWhsvlGtzvzDPP5A9/+MPg5OaPP/704uill16it7cXn8/HunXrOO644+jq6qK/vx8An8/HSy+9xLx58z4dIhhLsPbt28fq1av5yU9+QnZONm2tLZxw/HHcf//9AOzevZvGxsZDErvDcblcFBYWEgqFBtsZzmWXXcYvfvELHA4HS5YsGXP7ihIP+oifkDg4vQJTbjUw+0q1m7zthNGTlVvCPv0cbI7diQ4prrxdWg9dVe0ydstS9O2bEhtQnEW6tPlz9qMvxidNOOpm15xVo1PrkQvM/ywA3bveTmQ4cZfubcRpzCVUcgx6ogRaDx3ZoShKclEJ1igefPBBLrroogO2XXzxxSNWE6ytreWPf/wj8+fPp6+vj5tuugmLxcLdd9/N5z73ORYvXoxOp+PGG28c9dwvvvgiixYtYunSpZx55pn88pe/pKCggJNPPpnt27cPFrn4wQ9+QCgUYsmSJSxcuJAf/OAHg22sWrWKiy++mCVLlnDxxRezYsUK2traOPnkk1myZAkrV67k9NNP59xzz0VKuPWXf+SZ57XhM9/+9rdZvHgxixYt0sq6L5zLjV+6gWg0yuLFi7nsssu45557Dui5Gs1//ud/snr1ao477jjmzZs3uP3JJ5/khz/84eDjSy65hIceeohLL710zG0rSrxoCdahP9fpxQOl2mdXApLi78RpyAGdDlfaHLKCrTCLlmWI9GkX6Kl55dSbash27khwRPFlcuwHoLhmKfsoRtc9u24AmH0dOPWZlNUso1+m4m/8MNEhxY03GKYw0oo7tYyMcu1mYtf+2dWDrChHouQaIpgAA1Xyhvra1742+PXatWsHv66oqBhxnaxTTz31gJ6lAQNzk4bz61//ml//+teHbM/KyuKDDz44YNuf//znYdsoKSlh3bp1B2xbsmTJsLFEo5L//PZNBFNyAfjnP/85+JzT6US492HQSe6+++5Djr3uuuu47rrrBh8PfV1Dn7vpppu46aabDjn+/PPP5/zzzx98nJ+fH5fS94oyEfpogJDOcsj2opI5+KSJQOfsSbCklNjDXXjS8sgCyK5B74wS7d6HrmBBosOLC52rVfsivRiPvYa07pfB0wOp2YkNLE7M3nbcujRsKem0mSpZ4f4k0SHFjZSStGAXHlselbk2NlFCXs+eRIcVN92uICWiG3faEkor5+KWFvwth04FUBQluageLGWQlFGEYHCI4FAGk3axGQ3NnrvaijISQzRARH9oD5ZWqj0ffd/+BEQ1NVyBMFmyn3Dsxoq5UOtZ7muaPcOULL42PDobmG0Y87TX52/bnuCo4ic13IfHqCWL7owaMiM94O1NcFTx0esJkkcvIWsBBr2ObksFmd7Zs1RCn8dPFk6ELZ/ynDT2yhIMPbNzMXNFOZKoBGsWu+666wZLuY9FVEYBELpDfyxMRgMhqZ9Vw4YUZSSmqJ/IMD1YJoOOdmMJqe7ZU6q93xPCLjzIlEwAssoWAuBunj0JVlqwG7dJSyDtsdfX0zA7egmklKRH+giYswDQ5Wu9jv5ZMo+n2x2kQPQSTSsAwJdRTVrUCZ7uBEcWH67+LgwiiiEtF6NeR5t5DlnufYkOS1GUSUqKBGu2rkw/08iolmAN24Ol1xEURkQkeRIs9XOjTJRRBokYDk2wAFzWMrJDrbOmVLTDFyIDD7pYglVRmEezzCEyS4ZBSilJjToJGLXXV1Beg0+a8LfOjnlY7kCYLJyELFoP1sA8nu79mxIYVfw4XC4yhRuRVqhtyNV6IAPts+P98/d3AGDKyAfAY68hPdoP7s4ERqUoymTN+ATLYrHQ09OjLpanw0AP1jAJFkBEmNBHg9MZ0YRJKenp6cFiGf4iWVEOxyQDRPTD/+yE7FUYiCD7G6Y5qqnhdDkxixD6VC0ByU83U08RFsfsuIvuDoTJwE3EkgFARU4a+2Uh+t7ZMY+n3xsiRziIWrUeupLyapwyhWDr7Oih8zi0nipjmvb60kq0Hrre+s0Jiymegg4twUrJ1HrodPlaD6u/ZXa8PkU5Uk15kQshxFnA7wA98Dcp5bgWsyopKaG5uZmurq4piU/5lM/vJ8XfSTQlgs586Pfb5+ojJeKCfv2wvVwzjcVioaSkJNFhKEkmEpWYZYDACD1YpvwaaAJ36y7SsqumObr48zljF7A2rQdECEG3pZwVvpdAShjDWn4zWb83hF248Vi0BNJi1NNiKONo9yxJsFxuSoWXrlQtASnLtrFNFpM9SxLIgFP7W2ROzwGgoLQajzTPmh7IiFv7/KXGEqz00oWwFfoatlFYe1oiQ1MUZRKmNMESQuiBPwKnA83AB0KIJ6WUY55dbDQaqaycPQt6zmTPPP8052y4EsdF95Ex/7xDn3/ods7Z+T38X3gDS+my6Q9QUaZBIBzBIkL4DSnDPp9RXAsbob95B2mLPzPN0cWf39UDgCUt69Nt6XOwdPnB1QbpRYkKLS76PUHm4sFr/fT1OW2VZDrXQ9ALJmsCo5s8T5/WA2JIzwO0eYIdplIqPbOjByQY+/m0ZmgJVmWujb2ymMye2TGEFY+WQOptWoJcXFqJW1rwtc+S16coR6ip7oZYBeyVUu6XUgaBh4ALpvicygRFAl4ATJbhLzishdoaQD2Ns6f6lqIczBeMYCEII/RgFRWXaUOwOmdHD0HI3QeANf3TkuUitwaA8CyYh+V0OzCLEAbbp68vnFWDDomcBeW+fQ5tro45PXdwm8dWiT3SAwHXSIcljYGfT0usByvVbKDVUEqae3ZUEtT7YsU6rNrPZ2WuLTaEdW8Co1IUZbKmOsEqBpqGPG6ObRskhPiyEGKjEGKjGgaYWNGQHwCjefgEK7dMm1zsaZ1di1gqylD+cJQUAmAcvgerNCuVBlkwa0q1hz1aOW9T2qcJiK1I+6z3Nyf/MCxPv3YBa7J92oNlzq8FwN2S/OWwP+3h+TTBktnVAES7ZsFFuk97fWJID6QrtYLMcKfWA5nkDIF+PCIV9NqAIotRT7uxFNssSSAV5UiV8Ik0Usq/SClXSClX5Obmjn6AMmWiQR8AhhESrLLCPDqknUjP7LiwVJTh+INhLCKEMI4wBytWqj3NMzuKXODTegiw2Ac3FZRU4pMmvG2zIAGJzTEb6AEByC6bD4CzJfkTyJBbS5BTMz5NkK1Fs2ctMzHw8xmrcgkQyZoDgOxJ/gTSEHTi0acdsM1liyWQIV+ColIUZbKmOsFqAUqHPC6JbVNmIDnwy3yEuSfpFiPNogiLs376glKUaeb3aXfFhXHkuTnu1HIyQx0Q6/VNav5+7f8U++Cmytx06mQhdCf/BWwwloBYM/IGt1UU5NAsc2bFEMioV0tAhg6BzCmbT1QKXLMggdQH+gljAJNtcJulQEsgZ0MPpCXsJGBIP2BbNLM6NoQ1+T9/inKkmuoE6wOgRghRKYQwAZcDT07xOZWJGkiwRrhzD9BnKSXT3zTi84qS7EIBDwD6EXpyAcL2OeiQ0Fc/TVFNHX3AQRQB5ozBbZlWI026Qqyu+sQFFicRjzbEzDhkiGBxZgr1shBT/yzojR+mh6eyIJtmmTMrhggagw6th2dINcusUq0H0jELEsiUiIuQMePAbQNDdJvUfGdFSVZTmmBJKcPAzcALwA7gESll8o9ZmKVEOHY3foQeLAB/egX2aB/4ndMUlaJMr5BPS7B0I8zBAjDlaUUg3K3JfwfdGHTg1dlA9+mfAyEEDms5mcFWCCfH2ncjkT6tB2toAqLXCbrNZdh9jVop+iSmC/QTwgBDelxzbCYadcVYnMmfQFpCDnyGAxOQisIcWmR20vdABsNR0qWLiNl+wPacgSGss2AOpKIcqaZ8DpaU8lkp5VwpZZWU8qdTfT5l4kR49B4sfbY29t3XkfzVtxRlOEG/NkTwcD1YGSXaHWbHLBiiZA658B80BwS0BZX1RCHJF1TW+fq1L4YUSQDwpVeSEvWAu3P6g4ojQ9CBR3dgD48Qgt6UcrL8yZ9ApkadBA/q4SnJtM6KHsh+b5AM4UEOGZ4LUFGYNysSSEU5kiW8yIUyc4ylB8tapFXf6m5Ud9aU2Skcq0xmHGG5AoCSoiJ6ZNqsKNWeEnERNKYfst2Qqy3LEGhP7qqhhmA/QUyHVIUUOVovZKQruS9izSEnfsOh718wYw4W6QdnawKiig9/KEK6dB/Sw/NpD2RDUieQfZ4gGXgQQ3pXAfLTzTRQhMWR3AmkohzJVIKlDNJF/ITRD5aLHc7A0AVvW/JfWCrKcAbWgzMcZgHa0ixtDo8hyUu1R6KSVOkiZMo45Dl76eyYB2IKOfDqD01AbEXa77L+puS+WZQScQ6fIOdpCbKvPXl7Wfu9IezCTdSSechzvvRKrFHP4EK9ycjh7MMoIhhTD3x9Qgh6LeWzYgirohypVIKlDNJF/ASF+bD7lBfk0CaziKrqRsosFQ6M3oNlNujpMiV/qXanL0QGHiLmQxOskqIiumU6gY7k7uGxhJz4h0lA8suq8EsjniQuRR+OREmLuggPkyCnlywAoC+JF4bv9wWx40ZYD02wRI6WQIaTuAfS268lh8Yha9AN8GfMIVUmdwKpKEcylWApgwwRP6FREiyb2UCrrlCValdmLRnUilwYrbbD7udNq8Ae6YGAezrCmhL9vhAZwnPAGlgDKnNSqZMF6Hv3TX9gcSKl1ObwmOyHPDcnN406WQDdydsb7/CN3MNTXDoHt7TgS+IE0uFwkSKC6FMPTUBsxdpw9f4kTiD9sTXaUtIPXQNUn6sNYU32IbqKcqRSCZYyyBD1E9SPXOBiQK+lnBx/co99V5SRyFiZdpPl0MIPQw3M4UnmO+j9ngAZeNAN00NgNRnoMJSQ5qmf/sDixOkPY8dN9KA5PABZqSaadMVYXck7zLPPGyIT9yEFPADKBxPk5B1t4HXGenhsh76+gtJqAkneAxl0aQlWqj3vkOfSS7QhrD0NqvCyoiQjlWApg0wRPyHdyAUuBngzqkiTLvB0T0NUijK9ZCjWg2VJPex+qcULAeip3zzlMU0Vt6sfo4hgSD00wQJw2ypIj/Qm7bIMjtgcHpkyzBAzIXBay8kMtEIklIDoJs/hdGIVAfS2Q3t4LEY97cZSbO766Q8sTvwO7W+MJT3nkOcq8zJiPZDJm0BGPdoSAuZhXl9hWQ1+aUzqOXSKciRTCZYyyCT9hPWjJ1i6PG1ohrdV3VlTZh8R1JYrEKbDDxHMr1xASOrxNCfvECWfU1uE1zTMBTpAJKsKANmTnMME+zwB7MNUaRsQtM/RStEn6YLRnsE5PIcOMQNw2yrJCnd8uoh8kgm6tJ9Pq/3Q15eVaqJZV0SKq266w4obOXCT0nro568yNoRVJHECqShHMpVgKYPMY0ywbLE7930NW6c6JEWZdiLWg8VhqggCVBVkanfQu5L3DrPfpd1Bt6QfOgQLIKVAu5nibk3OSnsOlxOzCGEYIYE05Wuvz5+kvQR+p7aGlznt0B4QgGhWNTok0e7kTJDDHi3BMg9TBALAYS0nK9CStD2QOn+/9sUwNwBSTHraDCXY3MmbQCrKkUwlWMogi/QTGUOCVVhWhVta8Lcl50WXohyOLuwjgg4Mh5+PaDMbaDaUYXMl58UrQNitJVjWjOF7QLLL5hGVAmdzciYgPofWw2Ma4QI9IzbPpS9JS7WHnCP38ABYCmOFIJK0l1V6+wAQw/TwAIQyqzAQgf7G6QwrboyBPjwidcSlUVy2CrJDrRAOTnNkiqJMlkqwFEBbD8ci/UQPs8jwgIocG/tlEfre5K2+pSgj0YW9+DGDEKPu67BVkR1shZB/GiKLv7BHu4A1DFPkAqAyP5tmmZO0hTw+rdI2/AV6WXEx3TKdYJJWagvFenhGTpC1BNLZnJwJJD7tBsBwPTwAxthaX94kvdlnDvXjHWaR6AGRzGr0RJF9qhdLUZKNSrAUADzBMFYRQBoPPywKYpOnTWVkuJO3+paijEQX9hEQo1fTBAhnzdUugHqS82aD9GkJFin2YZ8vzkyhnkJM/cn5WQ8N9tAdWqUNoDzbSp0sRN+XnL2QMpZgjdTDU1mUT5vMIpKkCbI+0E8II4zwd8leGlssOklLtVvDDvxG+4jPm2NDdJN9MWxFORKpBEsBwBuIkEIAYTp85bQB7rQqMsNdEHBNcWSKMr30YS9B3dgSrJTi2GKuSTofUQT6tS9G6CHQ6wS9ljIyfY1JuSxDJFalTZ86/Bwzi1FPh7GE9GQtRT+QIA9Tph0gL81MA0WYkzRBNgX78erTR+xNLi0uoVfaCHYmXwIppcQWdRIaZo22AdnliwBwNCVnAqkoRzKVYCkAuP0hrAQQ5tF7sADI1e6shTuTc2iNoozEEPYSGsNcRIDcioVEpMDVlJwJlsHv0OabHaZiYsA+B4v0gattGiOLDznKEDMAd1ol6ZE+8DumKar4MQT68AsLGIZfIF6IgQQ5OdcttISd+I0jD6Erz7bGhqsnXw/kwBptEcvwyTFAeXEBXTKDUJL2QCrKkUwlWAoAXp8Pg4iiG6U09YC0Eu3OfU/dlqkMS1GmnTE6tmqaAFWF2dTLAqKdyVkEwhhy4NWlHXa+mT5P+6z7W5MvidT5+rUvDpNgiWxtwehIEvaCaD08GYfdx58xh1TpAU/XNEUVH+FIlNSo67A9PGaDng5jKRme5Juj1OMOkClc6EbofQQoSLdQTxGmvuTsgVSUI5lKsBQAfB5tqJ9+lMVVBxRWzico9bhb1FpYyuxiivrGVE0TIDvVRIOuBKsjOedgWcJO/Ia0w+5jr1gKQO/+TdMQUXwZg30EhemwJffTShcD0Ff/yXSFFTcpYQd+4+ETLH2uVggikGSFPBy+kNbDY7Yfdj93eo3WA5lkC9/3Ot3YhB+9bfgS+6D1QPYM9EAqipJUVIKlABDwuQEwjjHBqsrPpEEWQHfy3fVVlMMxSz/RMRR7Ae0CyGGrJifQBOHAFEcWX1JKbBEHftPId9ABKsrK6JR2gknYg5US7MWlH7n3CqBozny80oynKbkSrHAkOuocHgDbwGiD+uQabdDnDZIlXCPOLxuUr72+UJL9fDp7OgAwp4+cYAH40qtIj/ZDrKCJoijJYVIJlhDil0KInUKIzUKIx4UQ9tj2CiGETwixKfbvjrhEq0yZoFfrwTJaxjZEMMWkp8VQis2phi4os0coEsUiA0jDGOciApHcBeiJEulIrkpfnmCELByELMNXoBtQkW1ltyzF3JtcPSAAtnDfqAnk3IJ0dstidJ3J9f71x3p4oocZ/ghQWFaDS6YQbE2uBKvXHSALJ8KWf9j9MmI9rD11H09HWHHjia3RNlKJ/QHRWAKZbO+fohzpJtuD9RKwSEq5BNgN/PuQ5/ZJKZfF/t04yfMoUyzo0xIss3VsCRaAyzaHnFCLWgRRmTU8gTA24SNqOvywuaFSy5cB0LPvwymKamp0uwJkCyekHv4Cz6DX0ZFSRbZvP0Qj0xTd5HmDYTJlP6GUw/cQWE0GWoyV2N3JNcyzzxPr4Uk5fAJZmZvGTlmKsTu5EkhXXycGEcWQfvgEq7J8Dj0yjUBLciUggViClZo5/BICA1LLlgHQu/+jqQ5JUZQ4mlSCJaV8UUoZjj3cAJRMPiQlESKxyeBm2yjDMYaI5mhrAIW7kuvCRFFG4vaHyMADlsPPaxmqtGoRPmnC3ZhcQ8y6nV6ycKFPO/wFHoA/sxaTDEJf/dQHFifdriA5woG0Hj7BAnBl1JIW6Qd359QHFic9Li/peDHYDt8DmWLS02yaQ6Z7d1JVEvT3tQBgySw47H5z8mzslqUYu5Or0EzIrc0ZMxxmDhZAaUkZXTJD9WApSpKJ5xysG4DnhjyuFEJ8LIR4QwhxwkgHCSG+LITYKITY2NWVXFWOZhPp00oUm22HH24yVErxQgB6GtQvfmV28HicGEXksFXnDlZdkMFuWYq+M7kKvjh7O9AJiSl99ATLWKh91n0tm6c6rLjpcmkJpC7t8D0gAKIg+YZhObtb0QmJObN41H299nlYox5wNE9DZPHh62sHID3n8K/PqNfRYakiy7sPotHpCC0uhCeWzI/Sg1yVa2OnLMPUrdbCUpRkMmqCJYR4WQixdZh/FwzZ5/8BYeD+2KY2oExKuRz4BvCAEGLYxSyklH+RUq6QUq7IzT38Lxpl6gh/PwA669gvLPMqF2trADUmz0WJohyO36lNJNdbx96DZTHqaTFXkZVkPQSeXm1dK+soPQQAOZVLiUpB7/7k6aXr7+nCKCKYMkZPsDIqlgHQV7dpaoOKI093EwC23NEHjhiKtAVr/UmUIIcdWoJlSB/959OXVYtF+qG/foqjih+zt0Nbg26UBMti1McSyP0QCR92X0VRZo5REywp5WlSykXD/HsCQAhxHXAucKWU2tWFlDIgpeyJff0hsA+YO2WvQpk0EejXvrDYx3xMdXEujTIPkmxyuKKMxN2vDduxpB1+2NXBvFnzSIs6k2oxXr9Du4Nuyyocdd8F5QU0yDxCbclTqc3T2wqAdQyvr7Ksgi6Zjj+J5vEE+rTXl5JVOuq+2XOWA9CzP3kKQciB4Zq2MfSwxhJIb3PyvH8WfydOQzbo9KPuG8ierw3R7VVFpRQlWUy2iuBZwHeA86WU3iHbc4UQ+tjXc4AaQP1mmMGE36HdTTOPfXK/zWygyVCOzbl3CiNTlOkTcGk9WNaM0eftDGUoXAKAp2FTvEOaMtKpzXHR20cfYpafbqZeV05KX/JUEgz2aGsH2fIqR923MieV3bIMU08S3SxyagmWSB89gawtK6IxmksoiYZAmn3tBIQFzMMOfjlAbqVWSbAvSSoJhiNR0kJd+CyjJ48AlhLt94u7cdMURqUoSjxNdg7WbUAa8NJB5dhPBDYLITYBjwI3Sil7J3kuZQoZAg48OhsIMa7jHLYqcoLNqpKgMisEXH0ApNrH14OVXXUUAD37k6eSoIglWKQXjb6vEPSn12qf9aBniiOLj3C/Nt9Ibx99CJ3JoKMzpYpsb/JUStR72sc0xAygJDOFvbpyrL3JUwgiI9COw1Qwpr9JVSUFNETzCLclxzzIDleAfPqIpI6eHAMUVC0lLHVJk0AqijL5KoLVUsrSg8uxSykfk1IujG07Skr5VHzCVaaKIeTCrx97ifYB0Zx5GIgQ7lILDivJL+LVEizLOKppAtSWF9MUzSWcTD0E3jZc+gwwpoxp/2jBEvRECbYkxzwsvbNZS0Bso8/hAQjlLMAkg8ju5KiKavV34hrjEDMhBL2pc8kONELIPw3RTY4/FCEv2onPOnryD1BsT2GvroLU3uQoBNHc6yVf9KKzj+31zSvJYZ8sItqePEN0FeVIF88qgkoSs4SdBA2jD8U4mLVEG/veXZccF12KcjgylmCJcVQRBMhNM7NHV4mtLzmGmEkpSQ904jGPXgBiQEbVKgC693wwVWHFVaqvHacxB/SGMe2fUrECgL59709lWHERiUpyw224raMP7xwQzdMWxI52zPwkpKXfR5HoIZI2ttcnhKAnY6HWwxpbcmQm6+xsI134sOSMPnwVINtmpt5QQXp/8vRAKsqRTiVYCtGoxBp1EzaNvXLagMI5WiVBd6O6s6YkP52/LzYXcXw3G4QQ9KbPIyfYBAHXFEUXP13uAPl0E7SN/QK9ek61VgiiYeYPg/SHImRFOvGljG0IFkDp3GV4pRnnvpmfQLb2+ygTHQTTysd8jLXiaAB69878BLKhrYts4cKSWzH2gwqXARBsnvnD6Dzt2rzl9KKaMR/Tl7GAzHAnuNVyNoqSDFSCpeD0h8jCScQyvrv2AFVFOTTKfOhKjjv3inI4lkAXDl0m6Mb/q1EWLkWHJNi8Kf6BxVlLr5dS0YWwj16BbkBZdio7qcLaM/NvpjT3+agUbYQyKsZ8zLyiTLbLCgwdm6Ysrnhp7OihQPRhyKka8zEVVQvolTY8dTM/wepp1oqp2Aurx3xMVnWsh3X3e1MSUzxFu/cBYMwd++uTRdo8z0DjzL/BoSiKSrAUoM8TpED0EbGN/W7vgBSTniajqiSozA62UA8u4/gqCA7IHLjA2zPzL2C72xqwCT+m/NoxH6PTCTrTasn110HIN4XRTV5rZwf5oh997thXB7EY9TSn1JLr3jXj1xvqadbmvKYXjf0CvbYwnW2yCkvnzB/OHWzXEixr8YIxHzOvqoJmmUOwaeb3YBkcWoVLMivGfEze3FVEpaBn97tTE5SiKHGlEiyFnu4OzCKEPmP8CRaA01ZFbqgFwoE4R6Yo00dKSUa4m0DK2EonH6y2qpp2mUmg8aM4RxZ/zmatxzmjZP64jgvnLUVPlMgMXw+rt0GbZzTe1+fPXYJZBpDdM7scva91/O+fUa+j3TafHN9+CHpHPyCBDL17iCIge+wJZLE9hV2iClvvzP7ZBEjz1NFnyB1zgRmARZXF7JVFhJtVD5aiJAOVYCn0dzYCkJoz9uFCQ8nceeiJEuqY2RclinI4fd4QufQRHWPVuYOVZKawU8zB2jPzKwkG2rXJ8paCeeM6Lq1SKwTRs2dmD8PytGivL61k7D0gANaKlQD0zvBeSH3XdiLoEHnjTJALlqEnSrh1ZvdiZXjq6Dfmg8k65mOEEPRmLJjxhS56PUEqwnW4MsbeewyQn25hj2Eu9r6tIOUURacoSryoBEvB290EQGb+2CdMD5VashhQlQSV5NbW4yBbuNCPYeHW4Qgh6ElfQG6gEQLuOEcXXyn9u/HprGNaA2uoqup59Eob3oaZ3Utn7d1KUJgge+xFBADK5y7BLS2498/cBEtKSZZ7Nz3mknH1gADYq1cD0LN7w1SEFhedLj9VkTrcGWMf3jmoaDkwswtd7Grpplq0Qv6icR/rzFxEeqQPBtawUxRlxlIJlkKwvxUAc9bYK4oNVVC1iLDU4W6a+XfuFWUk3e3avIiU7NEXph1JtEArdBGawWtFeQJhKoJ76EmbN+6FxavybGxnDpauzVMU3eQFw1GKfLvostaMuUT7gNrCDLbJSowzeJ5SQ4+XubIOX+b4eh8B5tbMpV1m4mvYOAWRxceWfc1UiVYMpUeP+9jsGm0eZOcMLnTRuucTjCKCvXL5uI81lmnfE0/dzH3/FEXRqARLweRs1EpTp03szv2cgmwaZD6iS63RoSQvf7tWOCCtcHy9HkPZq7QhZt0zeAjdzpYeFogGwvnLxn2sQa+j3baQXN8+CHriH1wcbGnqZQH1hAuWjvtYi1FPi3UeOe7dEAlNQXSTt3nnTkpENylzjhn3sZXZqeygitTumZsgd+x6D52Q5MxdM+5j582p0Bb8bpy5CUiw7h0A0qvH//oKa1cRknp69qhCF4oy06kESyHdXUe3sQgM5gkdbzHqaTFWkObaF+fIFGX6hLtia9OUjL9nYMDc6ho6pR1/48wdorR387uYRYic2vFf4AGEC4/S5lw2zcxhgvu3vkua8JE178QJHe/PXYKJELJzZi7I69j5FgA5808a97E6naA7Y6E2jNXvjHdocWFoepcoAlP5qnEfW5hhYYe+hozemdkDKaUkq+dD+g25YB//kPxF5XnskqXQMnN/vyiKolEJ1hHOF4xQEGrCbRvbivIjcaZXkRNqhZA/TpEpyvTS9e7DhwUxwZ5cgLIsKztmeKGL8L43ALDVnjyh47NqjwWge9c7cYspnqKx15c275QJHZ9aOVDoYmb2Qma0v4NfpKArWjKh4wfWUwrOwATZ6Q9R4dxIh7UWrFnjPl4IQY99CZmhTnC1T0GEk7OzzcFR0a048laOe3guQEaKkTpTLdnO7arQhaLMcCrBOsLtae+nUrQjxrFezLBy56MnOlidTFGSTbq3gT5LyYQufAYIIei2zSfH3zAjh9B5AmEqHO/TlTIHbBMrR7+geg6N0VyCDTOvEIQ7EKaibz0dljmQlj+hNmpql+CQVlz7Zt7r293uZEXoAzpyjwW9cUJtDMxT6to184aZrd+8h+ViN1RNLPkH0JdpCbK3buYlyNs3vkGucGBfes6E2/DkLCE16oLe/XGMTFGUeFMJ1hGube8mzCJEWtn45ysMZSvVKiJ17Z+ZQzMU5XD6vUGqovW47eMrnTycaKG2VlSoZebNc3l/2x5Wi+34K8+YcBvF9hR26OeS3jPzPuvrP9nBCnYSrj13wm3MLUhjMzVYOmbeMKz3179Ikeglc/kFE25jflUljdFcQk0zbz2lrg/XYRQR8ld9bsJtFM9brc1T2jnzelij254ggo6MxZ+ZcBvWCq3QRf/emZdAKoryKZVgHeG8+7W7mFnzjp9UO4VzFhOSerwtM3dolKKMZPuevRSIPgzF46/sdbCMqlgPwQysZNa+4WEMIkrBsZdNuA0hBH2ZS8gMd4GzLY7RTZ7jnbvRC0nBMVdMuA2DXkdH2iJy/ftnVLl9KSXWHf8gKEykL79owu0UZljYrq8lY4YlyO5AmIXtT9BjKkJXctSE21lcWcB2WQ4tM6vQxfbmPo73v0ZrzvETGv44oGTeCrzSTP+emZdAKoryKZVgHeFS2j/EpctAnz1nUu1U5mfSQAGiSy02rCSfjp3aukAF81ZPuq2aqhq6ZDqBGdZD0O3ys7LjEVpTajFOMpE0xIZhefbPnCRya1MPx/eto9m+En3B+BYYPpgsXoGeKMEZ9B6+t20vZ4Vfo634LLCkT7gdIQS9mUvJDHeCszWOEU7Oa688zwqxE//yL0xqmG66xUi9eR65zm0QjcQxwsnZ8uLdFIpe7Md/YVLtLCjOYoucg6lt5s2hUxTlUyrBOoK19Hk4OrSRztw1k/qDBmAy6Gg1lpOuKgkqScjU9DYhDFjLx7/2zsHKs1PZSRUp3VvjEFn8vPbsQ1SLFgzH3jTpz3vhvDUEpZ7e3W/HKbrJ2/DMvRSLHjJP/tdJt5VTq5VA79wxc15fywu/wSoCFHzme5NuazBB3jczFhwOhCOYN96BV6RQfPKXJ92eL285FulDzpClQzocXpY13EWHuYK0JedPqi2LUU+jdSF5nl2qqJSizGCTSrCEELcKIVqEEJti/z4z5Ll/F0LsFULsEkKcOflQlXj74K0XyBVO0pacF5f2XOk15IZbIeSLS3uKMh2C4ShVrg9osi0BU+qk29PpBJ1p88j110PQO/kA46C510319ttw6LPIO+bzk25vUXkeO2Q5omVm9PDsbeni9Lbb6UqpJHXxxOdfDVhYU8n+aAHhGVLI4+1N2zjd+Tj1uSdjLlo46fZK5q8mII307Fofh+gm7/nnn+KM6Fv0zL96Ur1zA2xV2hIEPTtnRoL88iN/olY0oT/xm6Cb/H3tQMFRGAgTbZ1ZwzwVRflUPHqwfiOlXBb79yyAEGIBcDmwEDgL+JMQQh+HcylxIqXEvOUBfMJC3tETnzB9gLz56JD422bGXUNFGYv3t+5knmggWrk2bm1G8rVCF+G2mTEn8fWHf8tysYfoqbdOeL27oTJSjNSZ55Hj3J7wYViRqOSDB35EuejEdO4vQTf5PzV5aRZ2G2vJ7Psk4eWw+zxBAk9+E4sIUXTJL+LS5pKKPLbKCvStiU+Qm7ocVH9wK336bErO/0Fc2qyev5R+mYp7f+J76N7fupuzmn9La+pCco65Mi5tpldrPaw9M6gHWVGUA03VEMELgIeklAEpZR2wFxj/qoHKlHnnk+2sDb5Ba8k5cbljCJA+WElwU1zaU5TpUL/xOQDKVk68dPLBMqq0IVgzodDFG+99wHntf6QlfSmZx1wTt3a9uTNjGNbj6x7hc+4HaSo5h4yFp8etXWf2MjIiveBojlub4xWNSh6/6+ecEn2XvhW3YMqf5HIaMTazgfqUheS6tkM4GJc2JyIYjrLxrn9joagjeubPEHH6W1STn85WqrF0bIpLexPV5fThf+wmMoSXzCvuiEvyD7Bg7lyaZQ6+GZBAKooyvHgkWDcLITYLIe4SQmTGthUDTUP2aY5tO4QQ4stCiI1CiI1dXV1xCEcZTSgSxfvsDzGKMKXn/b+4tVs4ZxFBqcfTPLPmnijKSILhKPbmV/HoMzCVTL6C4IDq6lq6ZTr+hsT2EGyvbyX32S+h1wlyr75n0nOvhrJWaQVB+nYnbj2lNza8z4mffIdeUxElV90e17bNFdo9wb4EVmt7/IlHubL7t7RmrSH/7O/Gte1AwVGYZJBoe2J+X0ejkkfv/AUX+R6noerzZK+6NG5t63WCjvTF5PrrElYJ0hsM89YdX+NEuZGe428lpWRiC0MPpyo3lW1iLmndM28pAUVRNKMmWEKIl4UQW4f5dwFwO1AFLAPagP8dbwBSyr9IKVdIKVfk5uaO93BlAp75x984Pfgy9bVfwpRXFbd2K/IyqKcQfbcaIqgkh3d2NnCy/ID+irPjdncZoDLHxk4qE1roYk9LJ657PketaCBw3u2YcidXKfRgVXO1YViuBBVKePejTVQ8dxUWXYSM6x9BWDLi2n75/JX4pTFhCeTTzz3N6Zv+FYepgMIvPAB6Q1zbz6g5FoDundM/DysSlTz89z9waevPabKvovyK38b9HLL4aPRECTRO/00OfyjC03/8Np/1PkJj5aXknzr5witDCSHoy1pKZmhmVYJUFOVToyZYUsrTpJSLhvn3hJSyQ0oZkVJGgb/y6TDAFqB0SDMlsW1Kgr30wlOctuMHNFtqqP7cf8W1bYNeR5upggy3qiSoJIfmdx8lVQTIO/aquLar0wk6bfO1tZQSUPRlf0s73X/7HCvZRu/pvyP7qDjNsxxiXlE6W2R1QhbkfX39G1Q+cRHZOjfiyn/EpfDDweaX5rBNVmJsm94L9GhU8o8H7+LkDTcQMNrJvOk5RGp23M8zb+482mUm3mkeZhYIR3jk9h9xWd0PaU9bSMlN/4zLvMCD5dZqCeR0V4J0eAK8/JsvcKnjLhqKPkPZ1XfEted4gKlc60FO1A0ORVEOb7JVBAuHPLwIGLhd+yRwuRDCLISoBGqAmVGO6QgViUqefuh21rzzJdzGLPJvfAIMprifx5VeTU64fcZUT1OUkQTCEcqan6HPmIex8ri4tx8eLHQxvb1Y73z4MaG/nsFKuZmutb8g97j4zbsayqjX0Za2kBzf9C3IG4lKHn/4Tpa/dDkmPUSvfYa02IT/eDMb9DSnLiTfvXPa5in5g2Eevf2HXLTzmzhSyrDf/ArGrLIpOdecXBtbxVxs3ZumpP3hdPY5efnXN3BF1+9ozj2Bkq+9iDCnTcm5BipBRhqnLwHZWd/MJ78+n3O9j7N/zlWUf/G+uPaMD1W2aA0BaZgxlRIVRTnQZOdg/UIIsUUIsRk4GbgFQEq5DXgE2A48D3xVSjlzVvw7wmzdtpm3f3Y+5+78Hr3WSuw3vYjRPuyUuMnL1SoJBtp3TE37ihInGzbv5lg+wVV9QVxKJx8svWoFAN17pqfQhZSSdesepubJCygW3fRdeD/5aye/ptDhRAq1YVjhlqnvxep1+Xj6tzdx0Y5v4EopJvWmV0mviN+8ueH4i1ZjIki4eeOUngdgV30z7/3yfC7t+j3NOcdR+PVXp+73NNowsx77EnKCLeCe+vnP727aTNvvTuUc7zr2zbmaspseB5N1ys6XYzOz3biI3N6PIBqdsvMMePXVF0m5+xSOjbxP06ofMOfq26YsuQJYVJbHdlmJvkXdu1aUmWhSVxVSyqullIullEuklOdLKduGPPdTKWWVlLJWSvnc5ENVxiMcDvPeG0/z5s8/y7xHTmJ18F12zfsqZd98HUt26ajHT5StRBuq071/85SdQ1Hioeu9hzCIKIUnTE0PT3X1PHqlDW/91A8x6+p38+xv/4XzP/4KUVM6hi+9TO6yz4x+4CRlxRbk7dj25pSeZ8P779H065O4wPkg+0o+S/E33sScWzml5wTImHcSUSno2vzylJ0jGpU89eSjpNx9MseF3mX/su9Q8dUn41ZR73BEudZz69n92pSdIxSO8OT//Zb5j59FDU20n3E7VdfcFvc5ZcPpy1tFatSF7Ji65RL6XD7W/fG7HPfGFdj0EVyXP0HpZ741JcMCh7IY9dTZllLg3g5Bz5SeS1GU8Zv633DKtHG6Xez94CVc216guvsVVtOFFwvbSq+g+oLvUptbPuUxFFYuJCT1eFpUJUFlakSiknDsjrRAIAQItMphYowXNf5QhKr252izzKGwKH7VvYaak5vGO6Ka6s6p7d1Zv+Fd7M/fzDnsZVfxRcy99g9TNuzqYCvmV7PrqRJS9r0OxK8i6QC3L8Drf/8Jp7X+mZDOTPPJv6PqpOvifp6RHFU7h51PlZG+/60pab+1q5st936Tc1xP0G0swPO5J5hTe+KUnGs4c5Yeh3NTCv2bXyT1qPhV8RuwY/du+h+5mfPD79GQuoiCa+6ioKA27ucZSca8k6Htv+na8ip5hUvj3v76d98m/YWvcyG72Z9zEmXX3YkhbfqKdflLjse4+1GCdesx1Z45bedVFGV0KsFKUtGopLmpjvbtbxNq/ABb9yZqg9s5SoQIST17bUfRu/DbzD/5CpamTP2d0AEV+RnUyQJ03bun7ZzKzBeKRHF6A7gdvXicffjc/QQ8DoJeByGvg4jPRdTvhKAbXdCFCHkRkSAiGkIXDaOT2v96GQIZJYyBEHrCsX9BDHhIwadLw2fIIGhMx2fKIphahDG7nJysLAozUiiyp1Bkt1BXt5e1Yhf7a78xZa9ZpxO025dzfP/d4OmBOBcq6HV6ePf/fsRpnfcQ1JloPf0Oao+9Iq7nGE22zcybKUdzTv+zWjEPY0rc2t7wwQekPPuvnCt3sDfzeEqv/TMlmSVxa38s8tItvG1Zyjn9z0M4ELdiDOFIlOefeZQlH36fM0UHuyquYO7nf4Uw2+LS/lgtLc/hTRayvDW+lQT9wTAvPnwbJ+79BZUixO6l32XuBd+d0iFzwzlqySLqX8lH7Hkdzrglbu32uby89X8/5syOOwnqzLSc/HvmnHDNlPdaHSxv4VoCuwz0fPIiRSrBUkYRiUr8oQj+UIRAOIqE2ELqEmQUEKDTY9QLrCYDKUY9et30/kzPJirBmumiEVyddXTVbcXZvJNQ5y7MjjryAg2UiV7KgJDU02SsZHvRZ0mZfwZzVpzBfOv0JVVDmQ162ozlzFeVBGetcDhCv9OBs7cTd18nPmc3AWc3EXcP0tuDzt+HPtCPOeTAGnZgi7rIwEUmHrKFHLV9P2YCuhQiwkhEZyRqMBDVGZE6I1JnQAg9esLopB9dNIROhtFFw5gibsxhN7pIFCKAH3ACbdAvU2mWueyVRbwVLSFXOFhrgOLVn53S75WoOB423Y1r9xukLY/PuaSUvPbaCxS/+R3OoYFdOadQedUfScssikv74xWsOAnTrifw712PZf7kF/rt6HXw/n0/4vSe+wgJE3XH/4rqU7847RevA4Klx2Ha9yTBuncx1ayddHvb9+yj7dFvcW7gVTqNhXRe8Bi1i0+bfKATYNTraM85hqyeP0BvHWRNftjlxg/fRz77bc6PbKLeupDsK//G3JIFcYh2/EoyrTxtWsIp3W/HJUGORiWvvfQkpe/+gPNpYG/2SZRf+2fSMgpHP3gKrK4t4SM5lzn1UztEV0ksfzBMX38fbkcPPmcPQXcfIU8vYU8/UZ8D/P3oAk70QSf6sAdd2IcxGsAk/ZiiAUwEMMsgKQSwEMBCFAHohvl7HJY6/JjwY6IfE0FMeEUKLpGOz2gnZM4kmpIFtnyEvRRzTjlZhXMoz8/Cbo1/4bRkphKsGSLk6qajfiv9jTsIde7C2LefdG89+eFW0ggxMODHKa20G0toz1pJW+FS0quPoXT+auakpCY0/qGcaVVk92+I+x1tZWpIKXF6vPR1teLqbsXX10HA2UHU1QneLoy+bizBPmzhPtKj/WRKJzkiRM4I7Xmx4NKl4zekE7Da8ZjKcFoyabBkIqyZGKx2TNZ0zLYMUlLtpKZnkmJLR5jTwWTDojdgmeiLiUYh4ARfH7g7wdEEjiZsvY3M6d5Pdc9uLvRoC8d6rcVYixZN9ExjUr74eHwfm+jd/lpcEqym9m623P9dznQ+hkOfScvpf6P2mM/FIdKJK112+v9v787D26rOxI9/jxZr8SZbsi15j2PHSZyEBFKWQGnYt0CYFhi6TFuG+TH9TXnaztBpoQU6XShdgJa2TJ+nLS20ZQhryw4NIRCmkBBCErLacbzvlmzLm3ad+UMCQkjIgmx5eT/P4ye6V0dXr3J8ru+rexZCe030bX+O8o+QYMXimpeefYiazf/FpaqbhsLzqPzM3czJm7iJHo6GZ9kFBBpvYWDTQ5R8hARrLBjm5f/5CWe03kONCtNY+6/M/dR3UBnpPXfb558Df/8l/dueoeDs64/7OL2+Qd564BbO9j1IRGXQuPxWqi/+2qTftTrYQPkF2JvWEqx/EWvdJcd9nIamFtoe/gbnBl/Aa3DRed5vqT71yrQl/gDZVjMtuSdz2sh9ifWwctLzJYs4etFoDL9/gGFfD2ODvQT9fURG+omP9ENgAFPQR0ZoCFt0kKyYn6z4KNmM4TnCl5NjWBlTWYQNNiJGK1Gzlagxj6DRyrjRStxkQ5tsYLZiNJoxGA3JLvUKrQwkOtprDLEwRIMQDSSu4aJBLJExciJD2KLdZI76sY8EoO/979+vc9mhCvBayhjPnoN21mAvXkBR5ULmeJzYM2ZfujH7PnEaxcMBfO178bXtJthdj/I1kjnaTEGonVxGKCWxYFhYG+lUbnotZTQ5VoCzGrtnPgWVdZSXVTDPmPoZz1JJu2oxDsWJ9DVgLkl9v3dxdMYDAby9Hfj72gn4Oon6u9CjfahxLxlBH7bwAFmxQRxxP7lqjEMt0xrCzJByMGrKI2Bz0WWppcPmRNnzMWU5ych2YctxkZVfSHZeIZZsF3aThYmbG+wIDAawORI/dh10HgAAF9lJREFU+XOAxFoxJg442YVGoL8ee6Zrwi+OFpUXsJUaKjs+2mK14UiMdU/ez6K3b+di1Ud92RXUfOYO8u15KYr0+J1YXcIW5jOv+YVEd5Pj+D/dubeewb98nfNCG+gxF9Nz8f8w78TjvxhOpVPml7NencTpzc9CLHrMkzNorXn11XU419/IJXofTdknYrj6HqrTdFfnYKd97FQaXy3Gsu0xOI4EKxKLs/6pP7Fg6w+4SPWxp/Ai5nzmLqrTdEf1YLWnrWJo/3cY2biGsuNIsEaDYV5+8C5WtPySOSrA3qprmHfV9zFYJ2ec45FYFl0Gr99H/xuPUHDuV9MdzqwUCIbx9XUx7O1gzNdJ2N9NfLgXw1gf5qAXa2SQzKif7Lgfhx7GqWIcqsN4SJvxG3IYMToImHLps5fSY3WA1YHR7sBkd2DOzCMjKw9rVj72XCeZuU7M9lwyjWYm7auaaIj4cDejfc2M9jYz3tdCdKAV20g7iwM7cXnXgxeoh7hWdGoX202lDGdWEs2bi6WwBmfZfEor5+HKsR312OnpRhKsFNPxGL7uFrwtuxjrqkf7GrD6W3CGWimM9VGgNO8Mge3TeXSbS+nOWUk0r4qMolryyhZQMmcBc7JsTPwcWRPDXloHjeBrfhu3JFgpFwoFGejtYKivPXEyH+xED3djHOvDGuojM+wlPzZAHsOUH+JbryGyGTY4GDPnMWifR7/VBZkFGHMKseQWYc/zkO304CgoxmLNoUgpitLwOSeMJRtKl0/KW1nNRnqdp3DKwB+I+7sw5B77RecbWzYTf/abXBTbQldGBb7LH6e27pwJiPb4WM1GWt0XsqL3DsJtm8moOPnIL0rqGxjijTW384ne+6lRUfbMv575n7oZNYXufFtMRnwVq8hufZ1Aw3psx3CXbu++fXQ8fgtnjT+P35BL85k/o+qsa9J61+NgboeNxx3ncPnwn4n7mjE4j/4vz6bNrxN7/hbOj22my1xGz6pHWLD0/AmM9th9bK6bZ4yncm7HixAJgvno7o/H45pXXnySwte/xyrdSHPmEoxX/Yr5lVPrb9oZp53O7r9X4Nz6AJzzlSn1uzWdaa0ZGRvF19WMv7eNwEAn0eFe1GgvpkA/1pCXrMgAjuTf2tJD/K0dwY7f4GDc5GDUVsKQdREtVicqy4Upy0VGTiF2RyFZ+W5ynEVYbDkUKkVhGj7vMTFZMORXkpNfSc78sz74fHiMUG8DvtZdjHbuQXv3UTrcjGvkOWwjQWgD3kzcTGhRRXgzSglkVaCcVVgL55JTWI7TXUG+y41hit9Q+DCSYB2n4PgoHft3Mti2k3BPPZahRhzjrRRHO3Cp0Lvdp0a1lS5jCa22hTTkrMJQUENW8XwK59ThKSigcAYOIPRULSK83shI6zbcZ/xTusOZVsKRKP097Qx2NTHa30JkoB013IFlvIecUA/5sX6c2o9HaQ7s9R/TikHlwG9yMm4rosW6mKYsN6ZcD5a8EjJdJeQUlJHr9OAwZ+BI1wechbKWfhLDS7+n7bUHKb/ohqN+XXuPl7fX3Mq5gw8RVWb2Lb2Rmku/DkbzBEZ7fMo+/hnGHvklvrW/oPxf/nzE8sFwlFf/8hsW7L6LVaqfxrwz8Pzjz1jgmTcJ0R67+R//JEMtP2T4pV8dVTfIXt8g2x6+jdN7/sRcFWXfnM9Sc9UPpsQdx0Oxn3oN8RceoOdvP6f003cfsXxTczNNj93CypFnCCkLDYtvoGb1N1EpmgQklQwGxWjtp7DtWUffq7+n8Ox/O+Jr3tr2FuPPfJuzIq/hMzhpPuNO5px97ZRMXgpzrDzrXM0XB39BrHMrxtIT0x3SlKe1ZnjYj7e7heHeVkK+NqJDHRhHurEGesgK9+GMeclXIxw8mj2ijQwY8hgx5ROwefDbltCcWYghuwiLw4PdWUxuQSmOghKyLZlMjfuckywjE0vZMorLDlqnUGvi/i58HXsZbN9LsHcfxsEmCsfaKBzYjm0gBPveKx7WJnyGfPwmF+MWF305Syi95BssKjlUf5upR2l95EHnk2X58uX6zTcnfkHHYxEMjNG6ZwsjLVuI9+7FOtyEK9iKO9737gDBuFb0GArpt5Qn+p665mH31OKqqMNdUonJlN4+6JMtHI3T8P0TycxxMueGdekOZ0oJhsJ0te9nsKOBUP9+9GAL5pEuMoPdOCL9FGgvGer9a3KPY8VndOHPcBO0uYlleTDmFmPJ85DlKsNRVI7D5UFNwQtvAcPBCO23L8dlM1D0zbeOeJE2PB7ktcd+xQmN9+BRA9QXXUzl1XdgSfNYpA8Tj2v++uPPszr0NLHrNpBRvPiQ5UKRKP/7/Brcb/2cOr2Ptoy5ZFz0Q9zLLpzkiI+N1ppH7voKV438kdFPP0FW7cpDlvMODrLl8bs5oe1+3GqAPY5PUHrFT8gunT+5AR+jUDTG2h9ewQXxDaj//xqmokNPpd7U2sK+J3/KCu9j2FSI+tIrqbny+2TkTu173L6RIO13fJxKk5fcG95CHSbR3bFzO97nf8zpI88TUyZa5v8/ai+/CYN1cmd3PFbrN2/jrGc+QeOJN1N92X+mO5y001ozODhAX1s9I92NBL0tGIZasY11kBvuxhXzkqs+uHbYIDkMmlyMZhQStnvQOR5MjjLsrlJyCspwFJZhy3FOyUR72tOa4f52vO0NjHg7CA10EhvuwjjWiy3YT07Uy7b4XGxX/obz69zpjvZ9lFJbtNYf6BYjCdaH2PTwTzlp1w8xqcSaOwGdQaeplCF7JZG8aizuBeRX1OGpqsNim9on4Mn2tx9dzYrQq2Td2jHrTkb+oQH6Wvcy1NlA2NuEGmrFPtaOM9RFke57XwIV1Qa8BieD5iICNjexrGIMjnJsBeXkuufgLK7Cmi0n9OluzW9+xNVdtzN46R/IO+nQk10EQhE2PHU/1Tt/xlw6aLEuIPvSH+GsWzm5wR6nV9+up+6xswlbCyi8fi2GA9YDGhgaYvsL9+PZex/zdRP9hkL8p/wH1eddl/ZJEI7W7rYe7PeeSa4xguWfn8JempggRWtNw94ddK7/LYt7n6BA+dlvP4GsC79D0ZKp05XzSF56YxtLn7mEiCWf3OuewuqqBCAWi7N90zpGN/2Rjw09j4UI9fln4f6HH5BXXpfeoI/Bo08/zerNn6fbsYzS6x7FkJlIskLhMFs3PEl8y584eXwDcWVgX/HlzL3iu1jzJ3dZgOMVCMfw3zYXX8Ep1F3/ULrDmRTBUJjutkb8HXsI9jagB1vJGOkgJ9RFYbTnAwnUGFb6jW6GrR5C9mJ0TjHmvFLsrnIc7kry3RWYrVNnsjAxfUiCdRwa3noF35a/YC1bhqtmOZ6KWkwm6VV5NJ78w4+4rPV2Il/aiNm9IN3hpFw4HKGztR5vyy4C3XswDjSSM9aCO9JOAUPvKztEFl6Th1F7KdGcCkyuOWS6q8krrSHfXYXBJHeeZrq2Pj/Be1ZQYBzH/m8vYXG9N86l3+tj23O/pWb//VTSRbeplMjKmyk//eppl1g/+NCf+YfdXyNosNNeuJKAIQvjYBO1gW1kqQBdxhJGll/PvPOunZLdyY5k7csvs3T958lTI7Ta6hgzZJE73kaF7iSmFQ3Zp5Bz3n9SckJ6pl3/qB565EEu3vnv2FSYFttCgtpMUbCZAgYJYabedT5ll36LvIqJnX1zIsTjmjX33sGVHbcTVhl02OYTi8UoCe0nV40xTBatZaupvvxGbM7ydId7zDbedj7l8Q6Kb9md7lBSRsfjeHs76GnexWjXXmL9jViGm3EG2yiJ92BRkXfLBrWZPmMRfksxwcwStKMCS0EVuZ65FJTNI9NRMO3Op2J6kARLTKq1f3+d89ZeSOeK2yg5//in/k238UCAjsYd+Fu2EunZg2WokbxAGyWxrved3IfJojejPDFLTn41lsJqcktqKCqvxZ6T2gVmxfT0/LoXWbHhcyhloKngLAKGbDIG91EX2oZFRWnJqCF2ypeZu/JzU3Kc1dHQWrN23YtkbvwpdZGdWAnTbyykP385rhX/RPmyc6f9Rc72vQ30PH8nnuHtZBJg1OohWr6CmrO+QE5RRbrD+8g2b92O7+V7KB3ZhknBWFYF5upPUHvWZ7FkTc0xZEcrHte8smEd8c334gk0og1mgrlV2BacR+2ZV2HMmDqTqxyrv917K+e3383Iv24me4qOZTyccDROe0c7vqathDp3YPbtIX90H55IO9kq8G65iDbSbSrGbysn7KjC4Kohs7gWZ9kC8ovKUIbpOyGCmL4kwRKTqm84QOTOOoIFS5h7/V/THc4RRWNx2jra6GnYQrBjOxne3RSM76cy3oZFRRNltIEeoxuftYJw7lxMRbXkli3AU7UEm6Nw2l84ion3+hsbYd13qQnuJIsAfSYP/UVnUHzaVXgWrZxRv0OhaAyzwYBhBk7kI8RUs2PndhY/eia76m6g7spb0x3OIWmt6fL56dy3leGW7dC3m9yRBsojzRSpoXfLDZFNp6WK0ey5qGQSVVBRR0FpNeoYl0kQYqIdLsGS31QxIQpzbDxtPY3zvGshPAZpXkzzQP6RMVobtjLYvA3ds5Nsfz1l4Saq1BBVyTIDKo9eezW78k7H6FlM3pyleKpPoDTDyvTolS+motNOPhVOfo53vtgqV4rp1xnp6Fhm2eQ+QqRT3cIl7FC1uPaugfjNiTUB02g0GKG5cQ++pq1Eu3diG6ynKLifSt1FSXJcexgT3RmV9BeuoL9wIZllSymsWYYjvwTHDPqyScxOkmCJCRNbuBrL1qfp3biGojOvnfT3j8c17W3N9OzbQqDjbSze3bjGG6mIt7MkOdFEGBNd5kq6XSvoKaojd86JeOadRH5uEfmTHrGYLWbqwopCiPQwGBS9C77A4t3fomnDA1StnJwlUuJxTUd3N10NWxhrfxtj/x6cY/uoiLWy+IDufb2GIgZyqtnjugh72RKKak4iy1NLhdyREjOUdBEUE8Y7EsR7x3LyrAaKvvEWTOCJ1D8yQnv9NoZatqF7dpDtr6c03IxL+d8t06+c9NmrCTkXYi1ZTFHNSeSXL0SZMiYsLiGEEGIyjAZCdP3kZPIZJuurr2N1pHY665GxMdoatjPQvJ1Y906y/PWUhJrwKN97MZBJj20u445azMWLya9aSuHcpSjr9Fi7SIhjNSFjsJRSDwHvLJjhAIa01kuVUpXAHqA++dxGrfWXjnQ8SbBmnof/9N9ctf8m2pZ8jfJPfvcjHy8ajdLRXE///rcIde4gw7eXwkAjpfHud6fTD2Km01yJP6cWVVRHbuUyimuXY80tOMLRhRBCiOlr02vrOeGFK/FleMi+9gly3FVHftFBAsEwHU27GGrZTqR7F+aBBlzj+ymNd2FO9v6IYKTbVMZQ9jx04QJyKk7AM285Vmf5jBpLKsSRTPgkF0qpOwG/1vp7yQTraa31Mc3lKgnWzDMajLDpzk9xTuQVmmu+SOUVt6EsR14zzO8fortpF/7OvYR7GzAPNZE73kp5tJVMFXy3XJfBjdc+l7BzPtaSJRRVn4irYoEsuiuEEGJWevHZxzhl05cxqxh73KuxLLiAgoo6MvPdxDUEwxFCI16G+rsYHegm4mvF5G/BOtJGXqgTd7z33cmd4lrRYyjCa68ikl+LtWQRhdXLcFUumpZLLQiRahOaYKnEgII24Gyt9T5JsMSBOvoH2fa7L7Mq9Axj2GjOXk44p5K4JYtYXKPCY+jgMBmBXrLD/eTFvDjxv+8YfcqJ11LOWE41BncdeXOWUjJvGZZMR3o+lBBCCDFF1e/ZQf9T/8XHxl5535IihzOKjV6jhxF7KbHcSkzuBeSWL8E9dwnWzJxJiFiI6WmiE6wzgbveeYNkgrULaACGgZu11q8e6TiSYM1c4WicDeuexvz2A5SPvY1H92NNnvRD2kRA2RgwOhnNKCRoK4LcMizuWvLLF1BUsZAMe3aaP4EQQggxvfgGBujY/TqjvU2ocR9KKUxGI9rqwJbnxuFyk19STaajSLr2CXEcjjvBUkq9CBxqpOS3tdZPJMv8GmjUWt+Z3LYAWVprn1LqJOCvQJ3WevgQx78OuA6gvLz8pNbW1mP6YGJ6isTiBIJBrGYTZrNZZlUTQgghhBDTyoTdwVJKmYBO4CStdcdhyrwMfF1r/aG3p+QOlhBCCCGEEGI6OFyClYqV6M4F9h6YXCmlCpRSxuTjKqAGaErBewkhhBBCCCHElJWKhYmuBh48aN+ZwPeUUhEgDnxJaz2QgvcSQgghhBBCiCnrIydYWusvHmLfY8BjH/XYQgghhBBCCDGdpGwdrFRQSvUDU22WCxfgTXcQYtJIfc8eUtezh9T17CL1PXtIXc8uU7G+K7TWBQfvnFIJ1lSklHrzUIPXxMwk9T17SF3PHlLXs4vU9+whdT27TKf6TsUkF0IIIYQQQgghkARLCCGEEEIIIVJGEqwj+026AxCTSup79pC6nj2krmcXqe/ZQ+p6dpk29S1jsIQQQgghhBAiReQOlhBCCCGEEEKkiCRYQgghhBBCCJEikmB9CKXUhUqpeqVUo1LqxnTHI1JHKVWmlFqvlNqtlNqllPpqcn++UmqtUmpf8t+8dMcqUkMpZVRKbVVKPZ3cnqOU2pRs3w8ppTLSHaNIDaWUQyn1qFJqr1Jqj1LqNGnbM5NS6t+T5/CdSqkHlVJWadszh1Lq90qpPqXUzgP2HbItq4RfJOv9baXUiemLXByrw9T1T5Pn8beVUn9RSjkOeO6mZF3XK6UuSEvQH0ISrMNQShmBe4CLgIXAp5VSC9MblUihKHCD1nohcCrw5WT93gis01rXAOuS22Jm+Cqw54DtHwM/01pXA4PAtWmJSkyEu4HntdbzgRNI1Lu07RlGKVUCfAVYrrVeBBiBq5G2PZPcB1x40L7DteWLgJrkz3XArycpRpEa9/HBul4LLNJaLwEagJsAktdrVwN1ydf8d/K6fcqQBOvwTgYatdZNWuswsAZYneaYRIporbu11m8lH4+QuAArIVHH9yeL3Q9cnpYARUoppUqBS4DfJbcVcDbwaLKI1PUMoZTKBc4E7gXQWoe11kNI256pTIBNKWUC7EA30rZnDK31BmDgoN2Ha8urgT/qhI2AQynlmZRAxUd2qLrWWv9Nax1Nbm4ESpOPVwNrtNYhrXUz0Ejiun3KkATr8EqA9gO2O5L7xAyjlKoElgGbgCKtdXfyqR6gKF1xiZT6OfANIJ7cdgJDB5y4pX3PHHOAfuAPyS6hv1NKZSJte8bRWncCdwBtJBIrP7AFadsz3eHasly3zWz/DDyXfDzl61oSLDGrKaWygMeAr2mthw98TifWMJB1DKY5pdQqoE9rvSXdsYhJYQJOBH6ttV4GjHFQd0Bp2zNDcuzNahJJdTGQyQe7GIkZTNry7KCU+jaJoR0PpDuWoyUJ1uF1AmUHbJcm94kZQillJpFcPaC1fjy5u/edLgXJf/vSFZ9ImdOBy5RSLSS6+p5NYoyOI9mtCKR9zyQdQIfWelNy+1ESCZe07ZnnXKBZa92vtY4Aj5No79K2Z7bDtWW5bpuBlFJfBFYBn9XvLd475etaEqzD2wzUJGcjyiAxmO7JNMckUiQ5BudeYI/W+q4DnnoS+ELy8ReAJyY7NpFaWuubtNalWutKEu34Ja31Z4H1wBXJYlLXM4TWugdoV0rVJnedA+xG2vZM1AacqpSyJ8/p79S1tO2Z7XBt+Ung88nZBE8F/Ad0JRTTkFLqQhLd+y/TWo8f8NSTwNVKKYtSag6JiU3eSEeMh6PeSwbFwZRSF5MYu2EEfq+1vi29EYlUUUqdAbwK7OC9cTnfIjEO62GgHGgFrtJaHzzAVkxTSqmVwNe11quUUlUk7mjlA1uBz2mtQ2kMT6SIUmopiQlNMoAm4BoSXyhK255hlFLfBf6RRPehrcC/kBiLIW17BlBKPQisBFxAL/Ad4K8coi0nk+xfkegmOg5co7V+Mw1hi+NwmLq+CbAAvmSxjVrrLyXLf5vEuKwoiWEezx18zHSSBEsIIYQQQgghUkS6CAohhBBCCCFEikiCJYQQQgghhBApIgmWEEIIIYQQQqSIJFhCCCGEEEIIkSKSYAkhhBBCCCFEikiCJYQQQgghhBApIgmWEEIIIYQQQqTI/wFDGm6F7ENh4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
30True00.09690.0153bAP.soma.v0.009015.31e-07
31True00.09690.0153Step1.soma.v0.03481.6e-06
32True00.09690.0153Step3.soma.v0.01966.55e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "30 True 0 0.0969 0.0153 bAP.soma.v \n", + "31 True 0 0.0969 0.0153 Step1.soma.v \n", + "32 True 0 0.0969 0.0153 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "30 0.00901 5.31e-07 \n", + "31 0.0348 1.6e-06 \n", + "32 0.0196 6.55e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADgYklEQVR4nOzdeXxU5fX48c+ZJfu+kJAESNi3RFBALOBeQetStRWtG1rrT+2mrdrWtpba+v32a21tXVpra2urFnFf6r6hYt1A2fclQEII2fdktuf3x70JQ8gGmWQSct6v15CZuzz3zEwm3DPP85wrxhiUUkoppZRSSvWeI9wBKKWUUkoppdTRQhMspZRSSimllAoRTbCUUkoppZRSKkQ0wVJKKaWUUkqpENEESymllFJKKaVCRBMspZRSSimllAoRTbCUUmqAEJFcETEi4gp3LEc7EVkkIsvDHcdAIyLzRGRzuONQSqnBTBMspZRSg5qILBYRr4jUB91uDXdcg5Ex5gNjzIRQtysiD4nIZhEJiMiiULevlFIDiX5LqpRSISIiLmOML9xxDFFLjTGXhTuIvnIU/G6tBpYC/xfuQJRSqq9pD5ZSSvWCiBSKyI9EZA3QICIuEZktIv8VkWoRWS0iJwdtv0xE/ldEPhWRWhF5QURSOmn7KhHZKCJ1IrJDRP5fu/Xnicgqu53tIrLAXp4oIg+LSImIFIvIr0XE2c3zGCMi74hIhYiUi8jjIpIUtK5SRI61H2eJSFnr8xKRc0Vkvf18l4nIpHavz80iskZEakRkqYhEHf4rffhE5Mf261InIhtE5PxOthMRuUdE9tuv5VoRmWqvixSRu0Vkt4iUisiDIhLdw+M/Ym//ph3DeyIyKmj9H0Vkj33MlSIyL2jdYhF5WkQeE5FaYJGIzBKRj+zXuURE7heRiKB9jIjcICJb7eP9yn7v/msf48ng7TuJ+WQRKerJ8zscxpgHjDFvA82hblsppQYaTbCUUqr3LgG+AiQBGcDLwK+BFOBm4BkRSQ/a/grgamA44APu7aTd/cDZQAJwFXBPUJIzC/gXcIt93BOBQnu/R+x2xwLTgTOAa7p5DgL8L5AFTAJGAIsBjDHbgR8Bj4lIDPAP4J/GmGUiMh5YAtwIpAOvAC+1O5G/CFgA5AEFwKIOAxCZaycPnd3mdvMc2tsOzAMSgV/a8Q/vYLszsF6/8fa2FwEV9rrf2MunYb2e2cDthxHDpcCvgDRgFfB40LrP7HZTgH8DT7VLPs8DnsZ6fx8H/MBNdlsnAKcBN7Q73nzgOGA2cCvwEHAZ1vs5Fet39YjZiXJn78+fetO2UkodLTTBUkqp3rvXGLPHGNOEdTL7ijHmFWNMwBjzJrACOCto+0eNMeuMMQ3Az4GLOuphMsa8bIzZbizvAW9gJQwA3wT+box50z5OsTFmk4hk2Me60RjTYIzZD9wDXNzVEzDGbLPbajHGlAG/B04KWv9XYBvwCVZi+FN71ULgZXtfL3A3EA18qd3rs9cYUwm8hJVUdBTDcmNMUhe3ropSXNTuZD/LGPOUfdyAMWYpsBWY1cG+XiAemAiIMWajMaZERAS4FrjJGFNpjKkD/qe717Kdl40x7xtjWrBesxNEZIT9fB8zxlQYY3zGmN8BkUDw/KePjDHP2/E3GWNWGmM+trcvBP5C0Htku8sYU2uMWQ+sA94wxuwwxtQAr2Il3EfMGFPQxfvTPtlTSqkhSedgKaVU7+0Juj8K+LqInBO0zA2828n2u+z1ae0bFZEzgV9g9aA4gBhgrb16BFZvUXuj7PZKrPwA7H33dLBt8LEygD9iJXDx9j5V7Tb7K/AicK2dMIDV47WrdQNjTEBE9mD19LTaF3S/0d4n1J5sPwdLRK4AfgDk2ovi6OB1Nsa8IyL3Aw8Ao0TkWayexyis13xl0GspQJfDLdtpe92NMfUiUon1/PeIyM1YiXIWYLB6KtM62td+PuOxEt8ZdlwuYGW745UG3W/q4HHmYcSulFLqCGgPllJK9Z4Jur8Hq4cq+Jv9WGPMb4K2GRF0fyRWD0p5cIMiEgk8g9UjlGGMScJKqFrP9PcAYzqIZQ/QAqQFHT/BGDOlm+fwP/bzyDfGJGD1xB3IKkTigD8ADwOL5cC8sb1YSV3rdmI/v+JujncIsUqE13dxm9d9K21tjcJKCL8DpNqv37rg5xTMGHOvMeY4YDJWQnsL1nvSBEwJei0TjTFxh/G02t5r+zVMAfbaz+VWrOGIyXZ8Ne3iC/69AvgzsAkYZ79Ht3X2fPqKWHPtOnt/HuzPWJRSaqDSBEsppULrMeAcEZkvIk4RibILB+QEbXOZiEy25zPdATxtjPG3aycCa8hYGeCze7POCFr/MHCViJwmIg4RyRaRicaYEqyhhL8TkQR73RgRaT+UrL14oB6oEZFsrAQj2B+BFcaYa7DmmLWeTD8JfMWOww38ECvB+293L1R7donwuC5uHxxGc7FYCUoZWAVDsOYgHUJEZorI8Xb8DViFGALGmABWknaPiAyzt80WkflB+xoJKmLSgbPsuWURWHOxPjbG7MF6vX12fC4RuR2rB6sr8UAtUC8iE4Hru9k+5IwxU7p4f67rbD8RibDnlwngtj8Xeg6ilDoq6R83pZQKIfvk+Tys3oUyrB6lWzj47+2jWIUo9mENQ/teB+3U2cufxBqq9w2s4Xmt6z/FLnyB1fPxHgd6kq7AStA22Ps+jTVvqiu/BI6123oZeLZ1hYich1WkovWE/gfAsSJyqTFmM1Zv131YPT7nAOcYYzzdHK9PGWM2AL8DPsIaJpcPfNjJ5glYiVQV1nDHCuC39rofYc09+1isan5vYc+TsudS1XFg2GZH/o01zLMSq/hE6zDG14HXgC32MZvpZhgn1rDFb9jH/CtW2fPB4g2s3sAvYRXeaMIqLKKUUkcdMab9CASllFJ9RUSWAY8ZY/4W7lhU74jIZVjDB3/SyfpHgCJjzM/6NTCllFJhpUUulFJKqSNgjHks3DEopZQaeHSIoFJKDRFiXfRWixMMcSJyWye/B6+GOzallDoa6BBBpZRSSimllAoR7cFSSimllFJKqRAZUHOw0tLSTG5ubrjDUEoppZRSSqkurVy5stwYk95++YBKsHJzc1mxYkW4w1BKKaWUUkqpLonIro6W6xBBpZRSSimllAoRTbCUUkoppZRSKkQ0wVJKKaWUUkqpEBlQc7A64vV6KSoqorm5OdyhqAEgKiqKnJwc3G53uENRR5nG5mY2/eE8mmdcx5dOPz/c4SillFJqkBrwCVZRURHx8fHk5uYiIuEOR4WRMYaKigqKiorIy8sLdzjqKLNm/QZmN38Myz/GnHou4nCGOySllFJKDUIDfohgc3MzqampmlwpRITU1FTtzVR9or5ib9v93Rs/C2MkSimllBrMBnyCBWhypdro74LqK56afW33S1a9EcZIlFJKKTWYDYoESyml+pqpLwWgBTfRJZ+GORqllFJKDVaaYPWAiPDDH/6w7fHdd9/N4sWLwxdQkJNPPrnLizN/9atfZfbs2QctW7x4MdnZ2UybNo2pU6fy4osv9nWYSg14US3lAGyMmUlaw9YwR6OUUkqpwUoTrB6IjIzk2Wefpby8PKTtGmMIBAIhbTNYdXU1K1eupKamhh07dhy07qabbmLVqlU89dRTXH311X0ah1KDQYynkmriaR52DNlmHzXVleEOSSmllFKDkCZYPeByubj22mu55557DllXVlbGhRdeyMyZM5k5cyYffvghYPUS3X333W3bTZ06lcLCQgoLC5kwYQJXXHEFU6dOZc+ePdxyyy1MnTqV/Px8li5dCsCyZcs4+eST+drXvsbEiRO59NJLMcZ0GN+jjz7a1hv16acHhjY9++yznHPOOVx88cU88cQTHe47adIkXC7XQcnjj3/8YyZPnkxBQQE333wzAIWFhZx66qkUFBRw2mmnsXv3bgAWLVrE9ddfz+zZsxk9ejTLli3j6quvZtKkSSxatKitzeuvv54ZM2YwZcoUfvGLXxwSR01NDaNGjWpL9BoaGhgxYgRer7fDuJUKtRhvFVWSSNzIYwDYtanznmGllFJKqc4M+DLtwX750no27K0NaZuTsxL4xTlTut3u29/+NgUFBdx6660HLf/+97/PTTfdxNy5c9m9ezfz589n48aNXba1detW/vnPfzJ79myeeeYZVq1axerVqykvL2fmzJmceOKJAHzxxResX7+erKws5syZw4cffsjcuXMPaa+xsZFVq1bx/vvvc/XVV7Nu3ToAlixZwu23305GRgYXXnght9122yH7fvLJJzgcDtLT0wGoqKjgueeeY9OmTYgI1dXVAHz3u9/lyiuv5Morr+Tvf/873/ve93j++ecBqKqq4qOPPuLFF1/k3HPP5cMPP+Rvf/sbM2fOZNWqVUybNo0777yTlJQU/H4/p512GmvWrKGgoKAtjsTERKZNm8Z7773HKaecwn/+8x/mz5+v17tS/cYZaKZFosgYexy8Dw27V8PsM8IdllJKKaUGGe3B6qGEhASuuOIK7r333oOWv/XWW3znO99h2rRpnHvuudTW1lJfX99lW6NGjWqbF7V8+XIuueQSnE4nGRkZnHTSSXz2mVUietasWeTk5OBwOJg2bRqFhYUdtnfJJZcAcOKJJ1JbW0t1dTWlpaVs3bqVuXPnMn78eNxud1viBXDPPfcwbdo0br75ZpYuXdpWnS8xMZGoqCi++c1v8uyzzxITEwPARx99xDe+8Q0ALr/8cpYvX97W1jnnnIOIkJ+fT0ZGBvn5+TgcDqZMmdIW85NPPsmxxx7L9OnTWb9+PRs2bDjkeSxcuLCtB++JJ55g4cKFXb6OSoWSI+DFL27ScsZSZ6Jx7D/0d1QppZRSqjuDqgerJz1NfenGG2/k2GOP5aqrrmpbFggE+Pjjj4mKijpoW5fLddC8puBrN8XGxvboeJGRkW33nU4nPp+vw+3aly4XEZ588kmqqqraLshbW1vLkiVLuPPOOwFrDlbr8L/2cX/66ae8/fbbPP3009x///288847PYrT4XAcFLPD4cDn87Fz507uvvtuPvvsM5KTk1m0aFGH17I699xzue2226isrGTlypWceuqpXR5XqVByBry0iAtxONgTMZrE2s3hDkkppZRSg5D2YB2GlJQULrroIh5++OG2ZWeccQb33Xdf2+NVq1YBkJuby+effw7A559/zs6dOztsc968eSxduhS/309ZWRnvv/8+s2bNOqy4Wnt9li9fTmJiIomJiSxZsoTXXnutbd7XypUrO52HFay+vp6amhrOOuss7rnnHlavXg3Al770pbb9H3/8cebNm9fj+Gpra4mNjSUxMZHS0lJeffXVDreLi4tj5syZfP/73+fss8/G6XT2+BhK9ZbTePE7rCGp1fHjyPIUQifzHpVSSimlOqMJ1mH64Q9/eFBBiHvvvZcVK1ZQUFDA5MmTefDBBwG48MILqaysZMqUKdx///2MHz++w/bOP/98CgoKOOaYYzj11FO56667yMzMPKyYoqKimD59Otdddx0PP/wwhYWF7Nq166Dy7Hl5eSQmJvLJJ5902MZZZ53F3r17qaur4+yzz6agoIC5c+fy+9//HoD77ruPf/zjHxQUFPDoo4/yxz/+scfxHXPMMUyfPp2JEyfyjW98gzlz5rStu/322w8qE79w4UIee+wxHR6o+p0j4CUgVoIlKaNJoIHq8n3d7KWUUkopdTDprDJdOMyYMcO0v6bTxo0bmTRpUpgiUgOR/k6ovrD7VwWURoxg5o9eZs3bT1Dwwf9jw1nPMHnW6eEOTSmllFIDkIisNMbMaL9ce7CUUoqDhwimjLQS+Pq9m8IZklJKKaUGoV4nWCIyQkTeFZENIrJeRL5vL18sIsUissq+ndX7cJVSqm84jQ/jiAAgY9QE/Ebwl20Pc1RKKaWUGmxCUUXQB/zQGPO5iMQDK0XkTXvdPcaYu7vYVymlBgQ3XgJ2D5Y7IopixzAiajsuTqOUUkop1ZleJ1jGmBKgxL5fJyIbgezetquUUv3JZbwYx4ELW1dEjiCxcXcYI1JKKaXUYBTSOVgikgtMB1pL1X1HRNaIyN9FJLmTfa4VkRUisqKsrCyU4SilVI+58IHzQILVGDeKTP9eTND17JRSSimluhOyBEtE4oBngBuNMbXAn4ExwDSsHq7fdbSfMeYhY8wMY8yM9PT0UIWjlFKHxc2BOVgAJmUMcTRRVVYcxqiUUkopNdiEJMESETdWcvW4MeZZAGNMqTHGb4wJAH8FDu/quQPM888/j4iwaVPnVcUKCwuZOnVqyI65aNEinn766U7X33jjjWRnZxMI+ob9kUceIT09nWnTpjF58mT++te/hiwepY5axhCBD+M8kGBFZ44DYP+ujeGKSimllFKDUCiqCArwMLDRGPP7oOXDgzY7H1jX22OF05IlS5g7dy5LlizpcL3P5+v1Mfx+f4+3DQQCPPfcc4wYMYL33nvvoHULFy5k1apVLFu2jNtuu43S0tJex6bUUS1gf35dBxKs5BFWqfaGvZvDEZFSSimlBqlQ9GDNAS4HTm1Xkv0uEVkrImuAU4CbQnCssKivr2f58uU8/PDDPPHEE23Lly1bxrx58zj33HOZPHkyYCVal156KZMmTeJrX/sajY2NALz99ttMnz6d/Px8rr76alpaWgDIzc3lRz/6EcceeyxPPfXUIcd+6623mDFjBuPHj+c///nPQceeMmUK119/fadJ37BhwxgzZgy7du1qW3bvvfcyefJkCgoKuPjiiwGorKzkq1/9KgUFBcyePZs1a9YAsHjxYq688krmzZvHqFGjePbZZ7n11lvJz89nwYIFeL1eAO644w5mzpzJ1KlTufbaa2l/8epAIEBubi7V1dVty8aNG6eJnxowjK/ZuhM0RDBz1Hi8xomvfFuYolJKKaXUYBSKKoLLAelg1Su9bfsQr/4Y9q0NbZuZ+XDmb7rc5IUXXmDBggWMHz+e1NRUVq5cyXHHHQfA559/zrp168jLy6OwsJDNmzfz8MMPM2fOHK6++mr+9Kc/8Z3vfIdFixbx9ttvM378eK644gr+/Oc/c+ONNwKQmprK559/3uGxCwsL+fTTT9m+fTunnHIK27ZtIyoqiiVLlnDJJZdw3nnncdttt+H1enG73Qftu2PHDnbs2MHYsWPblv3mN79h586dREZGtiU8v/jFL5g+fTrPP/8877zzDldccQWrVq0CYPv27bz77rts2LCBE044gWeeeYa77rqL888/n5dffpmvfvWrfOc73+H2228H4PLLL+c///kP55xzTtsxHQ4H5513Hs899xxXXXUVn3zyCaNGjSIjI6PHb5NSfcnr8RAB4DrwGYqMiGSPYxgRNVqqXSmllFI9F9IqgkerJUuWtPX2XHzxxQf1GM2aNYu8vLy2xyNGjGDOnDkAXHbZZSxfvpzNmzeTl5fH+PHjAbjyyit5//332/ZZuHBhp8e+6KKLcDgcjBs3jtGjR7Np0yY8Hg+vvPIKX/3qV0lISOD444/n9ddfb9tn6dKlTJs2jUsuuYS//OUvpKSktK0rKCjg0ksv5bHHHsPlsvLr5cuXc/nllwNw6qmnUlFRQW1tLQBnnnkmbreb/Px8/H4/CxYsACA/P5/CwkIA3n33XY4//njy8/N55513WL9+/SHPY+HChSxduhSAJ554osvnrFR/83msHiwJmoMFraXa94QjJKWUUkoNUqG40HD/6aanqS9UVlbyzjvvsHbtWkQEv9+PiPDb3/4WgNjY2IO2t6akdf64I+3b6K69119/nerqavLz8wFobGwkOjqas88+G7CSmfvvv7/D9l5++WXef/99XnrpJe68807Wru26RzAyMhKweqHcbndbPA6HA5/PR3NzMzfccAMrVqxgxIgRLF68mObm5kPaOeGEE9i2bRtlZWU8//zz/OxnP+vyuEr1J6/XGrKLM/Kg5Y1xIxlXvgaMgR58lpVSSimltAerG08//TSXX345u3btorCwkD179pCXl8cHH3zQ4fa7d+/mo48+AuDf//43c+fOZcKECRQWFrJtmzWX49FHH+Wkk07q0fGfeuopAoEA27dvZ8eOHUyYMIElS5bwt7/9jcLCQgoLC9m5cydvvvlm23yvzgQCAfbs2cMpp5zC//3f/1FTU0N9fT3z5s3j8ccfB6y5XWlpaSQkJPQovtZkKi0tjfr6+k6rHooI559/Pj/4wQ+YNGkSqampPWpfqf7g81gJlsN9cA8WKaOJpZmaci3VrpRSSqme0QSrG0uWLOH8888/aNmFF17YaWGJCRMm8MADDzBp0iSqqqq4/vrriYqK4h//+Adf//rXyc/Px+FwcN111/Xo+CNHjmTWrFmceeaZPPjggwQCAV577TW+8pWvtG0TGxvL3Llzeemllzps45prrmHFihX4/X4uu+wy8vPzmT59Ot/73vdISkpi8eLFrFy5koKCAn784x/zz3/+s4evDiQlJfGtb32LqVOnMn/+fGbOnNm27sEHH+TBBx9se7xw4UIee+wxHR6oBhxvJ0MEozK0VLtSSimlDo+0r/gWTjNmzDArVqw4aNnGjRuZNGlSmCJSA5H+TqhQK974MdlL5/PxrHuZfdaVbcsLN68md8mJfH7s/3Dsud8OY4RKKaWUGmhEZKUxZkb75dqDpZQa8vz2HCyH6+AerMxR4/EZB96y7eEISymllFKDkCZYSqkhr20OluvgIhdRUdGUSjpuLdWulFJKqR4aFAnWQBrGqMJLfxdUX/D7PAA43JGHrKuIzCG+sai/Q1JKKaXUIDXgE6yoqCgqKir0xFphjKGiooKoqKhwh6KOMq1DBJ0dJFgNcSMZ5tvb3yEppZRSapAa8NfBysnJoaioiLKysnCHogaAqKgocnJywh2GOsoEWhMs16EJlknKI7GintrK/SSkDOvv0JRSSik1yAz4BMvtdpOXlxfuMJRSR7GAPUTQFXFoghWZMRa2w/7CjZpgKaWUUqpbA36IoFJK9bWAr3WIYMQh65JzJgBQu3dzv8aklFJKqcFJEyyl1JAX8No9WB3MwRqeO4mAEbxl2/o7LKWUUkoNQppgKaWGPONvTbAOLaASHRPLfknFWV3Yz1EppZRSajDq8wRLRBaIyGYR2SYiP+7r4yml1OEy9hwsZ+ShPVgA5RHZxDfu7s+QlFJKKTVI9WmCJSJO4AHgTGAycImITO7LYyql1OEyfmsOlruDIYIADbEjSfcW92dISimllBqk+roHaxawzRizwxjjAZ4AzuvjYyql1OGxe7AiIjq+xpo/OY8UaqmvrezPqJRSSik1CPV1gpUN7Al6XGQvayMi14rIChFZode6UkqFQ+scLHfEoVUEAaKGjQGgtHBjv8WklFJKqcEp7EUujDEPGWNmGGNmpKenhzscpdRQ5PPSYly4Xc4OVydkW6Xaa4q39GdUSimllBqE+jrBKgZGBD3OsZcppdTA4ffgxYXLIR2uzsydBEDL/q39GZVSSimlBqG+TrA+A8aJSJ6IRAAXAy/28TGVUurwBKwES6TjBCsuPolyknBW7eznwJRSSik12Lj6snFjjE9EvgO8DjiBvxtj1vflMZVS6nCJ34Ovmz+HZe5s4hr3dLmNUkoppVSfJlgAxphXgFf6+jhKKXWkxO/FJ13/OayLHcWY6v/2U0RKKaWUGqzCXuRCKaXCLuDFJ+4uN/EmjyGVahprK/opKKWUUkoNRppgKaWGPIffg4+uE6zITKvQRcm2Nf0RklJKKaUGKU2wlFJDngS6HyKYmjsVgJo9Oo1UKaWUUp3TBEspNeQ5Al78jq57sLLyJtJiXPj2b+6nqJRSSik1GGmCpZQa8pzGQ6CbOViREZHsdWYRWb2tn6JSSiml1GCkCZZSashzBHwEHN0XVa2IGkVK065+iEgppZRSg5UmWEqpIc9pvPi76cECaEkaw3B/CT5Pcz9EpZRSSqnBSBMspdSQ5wx4CTgiut3ONWwiLglQsnNDP0SllFJKqcFIEyyl1JDnND6Ms/sEK3HkFAAqd63r65CUUkopNUhpgqWUGvJceAl0U0UQIGtsPgDNJRv7OiSllFJKDVKaYCmlhjyX8WJ6kGAlJCSzjzSclVpJUCmllFId0wRLKTXkufBBD4YIAuyPHEliw84+jkgppZRSg5UmWEqpIS/KtBBwRfVo24b4MWR592ACgT6OSimllFKDkSZYSqkhzQT8xEoLAVdsj7aX9PHESjPlJYV9G5hSSimlBqVeJVgi8lsR2SQia0TkORFJspfnikiTiKyybw+GJFqllAqxlqZ6AExEzxKsuOxJAOzfsabPYlJKKaXU4NXbHqw3ganGmAJgC/CToHXbjTHT7Nt1vTyOUkr1iab6WgAckXE92j5jzDEANBSv77OYlFJKKTV49SrBMsa8YYzx2Q8/BnJ6H5JSSvWf5gYrwZLInvVgpWXkUG3ikLLNfRmWUkoppQapUM7Buhp4Nehxnoh8ISLvici8znYSkWtFZIWIrCgrKwthOEop1b3mRivBckXF92h7cTgojhhFfO3WvgxLKaWUUoNUtwmWiLwlIus6uJ0XtM1PAR/wuL2oBBhpjJkO/AD4t4gkdNS+MeYhY8wMY8yM9PT03j8jpZQ6DC2NdQC4ono2RBCgNn4sWd5dYExfhaWUUkqpQcrV3QbGmNO7Wi8ii4CzgdOMsc42jDEtQIt9f6WIbAfGAyt6G7BSSoWSr8nqwYqI6fA7oA6ZtAkkVL5AZekeUjJH9lVoSimllBqEeltFcAFwK3CuMaYxaHm6iDjt+6OBccCO3hxLKaX6gteuIhgR07MhggBxOfkA7Nv2RZ/EpJRSSqnBq7dzsO4H4oE325VjPxFYIyKrgKeB64wxlb08llJKhZy/2RoiGHUYPVgZY6cB0FC0ri9CUkoppdQg1u0Qwa4YY8Z2svwZ4JnetK2UUv0h0Gz1YEXG9jzBGpZpVRJEKwkqpZRSqp1QVhFUSqlBJ+BpACAmrucJVlslwTqtJKiUUkqpg2mCpZQa0gIt9fiNEB3ds+tgtaqNH0uWRysJKqWUUupgmmAppYY0aa6mTmIRx+H9OTRpE0iggcrS3X0UmVJKKaUGI02wlFJDmrulilpH4mHvF9tWSXBViCNSSiml1GCmCZZSakiL8lTR4Ew67P0yxkwDtJKgUkoppQ6mCZZSakiL9VXT7E467P0yhluVBKVsU+iDUkoppdSgpQmWUmpISwjU0BKZctj7tVYSjKvb1gdRKaWUUmqw0gRLKTVkmUCARFOLP+rwEyzQSoJKKaWUOpQmWEqpIau6qhyXBHDFpR3R/q2VBKv27wlxZEoppZQarDTBUkoNWRWlxQBEJmUc0f4x2VMB2Lf1i5DFpJRSSqnBTRMspdSQVb9/FwDRqSOOaP/MsdMAqCveEKqQlFJKKTXIaYKllBqyWiqtiwQnZOYd0f4Zw0fQYKIw5dtDGZZSSimlBjFNsJRSQ1ag2po7lZqZe0T7i8NBiSuL6PpdIYxKKaWUUoOZJlhKqSHLVVdMOUlEREUfcRs1USNIadYiF0oppZSy9CrBEpHFIlIsIqvs21lB634iIttEZLOIzO99qEopFVrRTfuocA7rVRvNiblkBkrxez0hikoppZRSg1koerDuMcZMs2+vAIjIZOBiYAqwAPiTiDhDcCyllAqZBE8pdZFHVkGwlTN1DC4JsL9oa4iiUkoppdRg1ldDBM8DnjDGtBhjdgLbgFl9dCyllDp8xpAeKKMlNqtXzcRmTQCgcvfGUESllFJKqUEuFAnWd0RkjYj8XUSS7WXZQPCkhCJ72SFE5FoRWSEiK8rKykIQjlJKda+hppxoWjAJOb1qJ33kZAAa92kPllJKKaV6kGCJyFsisq6D23nAn4ExwDSgBPjd4QZgjHnIGDPDGDMjPT39cHdXSqkjUrHXKq0ekTqyV+0My8yh3kRDpZZqV0oppRS4utvAGHN6TxoSkb8C/7EfFgPBV+7MsZcppdSAUFOyE4C4YaN61Y7D6WCfM5OoWi3VrpRSSqneVxEcHvTwfGCdff9F4GIRiRSRPGAc8GlvjqWUUqHUXGFdZDhl+Jhet1UdNYKkFv0OSSmllFI96MHqxl0iMg0wQCHw/wCMMetF5ElgA+ADvm2M8ffyWEopFTKmeg8txk1aRu+KXAC0JIwio+FDjN+HOHv7Z1UppZRSg1mvzgSMMZd3se5O4M7etK+UUn3FVV9MmSOVHFfvEyJHah4R+/yUlewkPWdcCKJTSiml1GDVV2XalVJqQItp2ke1u3fXwGoVm2klVeW7tFS7UkopNdRpgqWUGpKSfftpjMoMSVupIyYC0LBvW0jaU0oppdTgpQmWUmrI8fu8pAUq8MX3fv4VQEZ2Hh7jwl++IyTtKaWUUmrw0gRLKTXkVOzbjVMMjuQR3W/cAy63m32ODCLqtFS7UkopNdRpgqWUGnIq7YsMR6flhqzNqqhsEpv2hKw9pZRSSg1OmmAppYachv1WT1NiZl7o2owfQ5avCOP3hqxNpZRSSg0+esGWfmICAQLG4Pf7Cfh9+P1+/AEfJmAAEIeAOBAERBBxWD8Rax2Cw+EA+7FDBAFEBIdYP5VSPeOttC4ynJY9OmRtSuZUovYvoWTnBoaPPSZk7aqe8Xua8TQ30dLShKelGa/HvrW04PM2I34P+D2YgB9jDBhDwBhM6w3ABDAGHA7r76043TicbsTpxOF043C4cDhdiNOFw+nG6bJ+OlwunPZPl8uNOF24nE6cLjculxuHw4k49PtMpZQaKjTB6sLa91/A89k/EL8Xp/HgCHhxBrw4jXVztd18uPHixocQwGkCCAYHBgcBHARwisEJOEMUW8AIBjAIPlrvO9qWGaTdfeuGvSwgVtJ28HbW/sHLQQiIo20/2rVn5MD2BB2DXuR7IUkVjel1E62vQF+10dPWQ5M6h/n1MIfXRldbheL1mGxqqCWWhPikELRmSRk9HdZA6daVmmAdAU9TPVUV+6it2E9DVSme+nJMQyU0VeJorsLZUoPD24jLV4/b10hEoJGoQCMxpolomokQP9FAdLifSCf8RvDjxG//r+AXp/UT50GPAzgJiOOQZQahsz+vxvpq7oCg7UwnnxjTtqk56PN50PJ2gpe13jeAmODl7Y/Qvq0OtjUdb9tdDJ21JUFrD/xP1v3fnt7/lRxq9Ivd3ujss6k6VuzIZOf8f3LJrJHhDqVHNMHqQkttKcPqN+OTCPziwu+wfrY44wk43AQcERj7Z8DpJiBucDgBBzgcIK03p/3YafU0OZzW/dZtzIEUBxMI+g/C+jbVWm5tY4xBTKDtfuvytjZMwFre+l+FCYABIWi5vV/b8exjWZlWoC3loq19a/9DjkVwO0HHD1Fq0lsd/fE63FbNYe4gHRwhJP9pH2EPZUcnYr1lgmI58tb66P3tYbP7AV/28Rzf6ygOGDVhOi3GhXf3Z8DVHW6zbfWH1L+6mMZh0/nS1XeF8OgDV1NtFfv37qR6/26aKooJ1O7FUV9KRNN+YlrKSPBVkGyqiMZDBtDRlcnqTDT1EkuzI4YWRwweZwyNken43TEE3HEE3LEE3LHgisbhjsDhisThjsThisTpjkBckYgrApyRbX+XHQ6xRwBYvzSt940IAWMI+AMYv5eA30cg4AO/j4Dfh/H7MAHrPgHrMQFrmfXYiwT8mIAfAn6MsX4S8Fk/jfVTWpebABLwIebAMoexljuw7juMv8PXtjWBMO0XdvzAep7t9rbuSdCK9inSwR+q1s+dSPvPoByyzcEH7mz9gRjaEqOOssXW+0HHPTSBPJBZmqAlB7bp+A+EDgBR/S0UZ0lDTaMrjWHxkeEOo8c0werCjLOvhbOvDXcYSqlBICo6hjWRU0nf/+Eh64p376DomduYWf0aDjEU7i4Cjo4Eq6aqkv17tlC7bzue8kKkZjeR9UUkNO8l3V9KAg2MAkYF7VNnoqlypFDrTqModio7o9MhJg1nfAqR8enEJA0jJjGd6KR04pLSiY+KJj5cT1AppZQ6TJpgKaVUiNTlnETBjj+yZ9MKRkycQVnxTrY/fyfT9j9POgE+y/oGAU8TM8pfwO/14HRHhDvkHjEBP+V7d7B/xxoai9Yj5VuIr9tOhnc3SdSTGLRto4mk1JlBTcRw9idNwySOwJ08gri0HJIyRpCcMYL42ERNmJRSSh21NMFSSqkQmbDgemof+Cuy9DLWRI1gYuPnzCDAqpQF5J7/C44fOZGPn/sT7opnKS7cQPa4aeEO+SABn5d9hZsoL1xD094NuCq2ktiwnSzfHtJpId3eroIE9rlHsin5VEjJIzI9j4TMMaRmjyUxNZM8LeiglFJqCNMESymlQiRt2HBWnfIASe/fTlJzEV9kXkjO/BuZMXpy2zYpufmwGvZtXRm2BMvT3ETJjnVU7FqLp2QjEVVbSW7cSbaviCzxkWVvV0oqpZGjWJV0LpI+gbgRU8kcU0DasCxSdeKKUkop1SFNsJRSKoSmnXwBnHwBAB3VOho9ZRZ1z0djti8DvtmnsTTW11C8bQ01u9fiK91EVNVWUpsKGR7YxygJMAqrIuleRwblUbmUpM/FOWwCCSOnkjVmGhnJKR0WnVBKKaVU53qVYInIUmCC/TAJqDbGTBORXGAjsNle97Ex5rreHEsppY4GrohItsQex8iK5fi8Hly9nYdlDDXlxZRsX0Nd0Ub8ZVuIqdlOenMhwyljnL2Z1zgpdmaxP2YMe5IW4M6cRPKofLLGTCUnNp6cXj8zpZRSSkEvEyxjzMLW+yLyO6AmaPV2Y8y03rSvlFJHpWnfYNh/b2DFi/cz48If9GiXhtpKSnZtprpoK57SzbirtpHYuJNMbxGJNLQVmmgyEex15VAcfwyFKWOJHD6ZlNwCsvImkxsZSW6fPSmllFJKQYiGCIqIABcBp4aiPaWUOppNP+0S1n/2ZwrW3Mkn5duIGjMXV2QMPm8L3toy/PXlBGpLiKwvJqHFKneeSD1jg9rYTwr7I0awIfXL+FPGEZs1ifTcqWSOHMsYZ6guaa6UUkqpwyXGhOCSsCInAr83xsywH+cC64EtQC3wM2PMB53sey1wLcDIkSOP27VrV6/jUUqpga6msoxtD1/FMfUf4pLAIeubTAT7nRlUR2TSFJtNIHEUkWl5JGWNIXP0VGITUsIQtVJKKaVaicjK1vznoOXdJVgi8haQ2cGqnxpjXrC3+TOwzRjzO/txJBBnjKkQkeOA54Epxpjaro41Y8YMs2LFip48H6WUOirUVFWyb/sqvF4PEW43McmZxKcOJyEhCdFy50oppdSA1VmC1e0QQWPM6d007AIuAI4L2qcFaLHvrxSR7cB4QLMnpZQKkpicQuIMHV2tlFJKHS1C8fXo6cAmY0xR6wIRSRcRp31/NDAO2BGCYymllFJKKaXUgBWKIhcXA0vaLTsRuENEvEAAuM4YUxmCYymllFJKKaXUgNXrBMsYs6iDZc8Az/S2baWUUkoppZQaTEJSRTBURKQMGGhlBNOA8nAHofqNvt9Dh77XQ4u+30OHvtdDh77XQ8tAfL9HGWPS2y8cUAnWQCQiKzqqDqKOTvp+Dx36Xg8t+n4PHfpeDx36Xg8tg+n91hrASimllFJKKRUimmAppZRSSimlVIhogtW9h8IdgOpX+n4PHfpeDy36fg8d+l4PHfpeDy2D5v3WOVhKKaWUUkopFSLag6WUUkoppZRSIaIJllJKKaWUUkqFiCZYXRCRBSKyWUS2iciPwx2PCh0RGSEi74rIBhFZLyLft5eniMibIrLV/pkc7lhVaIiIU0S+EJH/2I/zROQT+/O9VEQiwh2jCg0RSRKRp0Vkk4hsFJET9LN9dBKRm+y/4etEZImIROln++ghIn8Xkf0isi5oWYefZbHca7/va0Tk2PBFrg5XJ+/1b+2/42tE5DkRSQpa9xP7vd4sIvPDEnQXNMHqhIg4gQeAM4HJwCUiMjm8UakQ8gE/NMZMBmYD37bf3x8DbxtjxgFv24/V0eH7wMagx/8H3GOMGQtUAd8MS1SqL/wReM0YMxE4But918/2UUZEsoHvATOMMVMBJ3Ax+tk+mjwCLGi3rLPP8pnAOPt2LfDnfopRhcYjHPpevwlMNcYUAFuAnwDY52sXA1Psff5kn7cPGJpgdW4WsM0Ys8MY4wGeAM4Lc0wqRIwxJcaYz+37dVgnYNlY7/E/7c3+CXw1LAGqkBKRHOArwN/sxwKcCjxtb6Lv9VFCRBKBE4GHAYwxHmNMNfrZPlq5gGgRcQExQAn62T5qGGPeByrbLe7ss3we8C9j+RhIEpHh/RKo6rWO3mtjzBvGGJ/98GMgx75/HvCEMabFGLMT2IZ13j5gaILVuWxgT9DjInuZOsqISC4wHfgEyDDGlNir9gEZ4YpLhdQfgFuBgP04FagO+sOtn++jRx5QBvzDHhL6NxGJRT/bRx1jTDFwN7AbK7GqAVain+2jXWefZT1vO7pdDbxq3x/w77UmWGpIE5E44BngRmNMbfA6Y13DQK9jMMiJyNnAfmPMynDHovqFCzgW+LMxZjrQQLvhgPrZPjrYc2/Ow0qqs4BYDh1ipI5i+lkeGkTkp1hTOx4Pdyw9pQlW54qBEUGPc+xl6ighIm6s5OpxY8yz9uLS1iEF9s/94YpPhcwc4FwRKcQa6nsq1hydJHtYEejn+2hSBBQZYz6xHz+NlXDpZ/voczqw0xhTZozxAs9ifd71s3106+yzrOdtRyERWQScDVxqDly8d8C/15pgde4zYJxdjSgCazLdi2GOSYWIPQfnYWCjMeb3QateBK60718JvNDfsanQMsb8xBiTY4zJxfocv2OMuRR4F/iavZm+10cJY8w+YI+ITLAXnQZsQD/bR6PdwGwRibH/pre+1/rZPrp19ll+EbjCriY4G6gJGkqoBiERWYA1vP9cY0xj0KoXgYtFJFJE8rAKm3wajhg7IweSQdWeiJyFNXfDCfzdGHNneCNSoSIic4EPgLUcmJdzG9Y8rCeBkcAu4CJjTPsJtmqQEpGTgZuNMWeLyGisHq0U4AvgMmNMSxjDUyEiItOwCppEADuAq7C+UNTP9lFGRH4JLMQaPvQFcA3WXAz9bB8FRGQJcDKQBpQCvwCep4PPsp1k3481TLQRuMoYsyIMYasj0Ml7/RMgEqiwN/vYGHOdvf1PseZl+bCmebzavs1w0gRLKaWUUkoppUJEhwgqpZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppdQAISK5ImJExBXuWI52IrJIRJaHO46BRkTmicjmcMehlFKDmSZYSimlBjURWSwiXhGpD7rdGu64BiNjzAfGmAmhbldEHhKRzSISEJFFoW5fKaUGEv2WVCmlQkREXMYYX7jjGKKWGmMuC3cQfeUo+N1aDSwF/i/cgSilVF/THiyllOoFESkUkR+JyBqgQURcIjJbRP4rItUislpETg7afpmI/K+IfCoitSLygoikdNL2VSKyUUTqRGSHiPy/duvPE5FVdjvbRWSBvTxRRB4WkRIRKRaRX4uIs5vnMUZE3hGRChEpF5HHRSQpaF2liBxrP84SkbLW5yUi54rIevv5LhORSe1en5tFZI2I1IjIUhGJOvxX+vCJyI/t16VORDaIyPmdbCcico+I7Ldfy7UiMtVeFykid4vIbhEpFZEHRSS6h8d/xN7+TTuG90RkVND6P4rIHvuYK0VkXtC6xSLytIg8JiK1wCIRmSUiH9mvc4mI3C8iEUH7GBG5QUS22sf7lf3e/dc+xpPB23cS88kiUtST53c4jDEPGGPeBppD3bZSSg00mmAppVTvXQJ8BUgCMoCXgV8DKcDNwDMikh60/RXA1cBwwAfc20m7+4GzgQTgKuCeoCRnFvAv4Bb7uCcChfZ+j9jtjgWmA2cA13TzHAT4XyALmASMABYDGGO2Az8CHhORGOAfwD+NMctEZDywBLgRSAdeAV5qdyJ/EbAAyAMKgEUdBiAy104eOrvN7eY5tLcdmAckAr+04x/ewXZnYL1+4+1tLwIq7HW/sZdPw3o9s4HbDyOGS4FfAWnAKuDxoHWf2e2mAP8GnmqXfJ4HPI31/j4O+IGb7LZOAE4Dbmh3vPnAccBs4FbgIeAyrPdzKtbv6hGzE+XO3p8/9aZtpZQ6WmiCpZRSvXevMWaPMaYJ62T2FWPMK8aYgDHmTWAFcFbQ9o8aY9YZYxqAnwMXddTDZIx52Riz3VjeA97AShgAvgn83Rjzpn2cYmPMJhHJsI91ozGmwRizH7gHuLirJ2CM2Wa31WKMKQN+D5wUtP6vwDbgE6zE8Kf2qoXAy/a+XuBuIBr4UrvXZ68xphJ4CSup6CiG5caYpC5uXRWluKjdyX6WMeYp+7gBY8xSYCswq4N9vUA8MBEQY8xGY0yJiAhwLXCTMabSGFMH/E93r2U7Lxtj3jfGtGC9ZieIyAj7+T5mjKkwxviMMb8DIoHg+U8fGWOet+NvMsasNMZ8bG9fCPyFoPfIdpcxptYYsx5YB7xhjNlhjKkBXsVKuI+YMaagi/enfbKnlFJDks7BUkqp3tsTdH8U8HUROSdomRt4t5Ptd9nr09o3KiJnAr/A6kFxADHAWnv1CKzeovZG2e2VWPkB2Pvu6WDb4GNlAH/ESuDi7X2q2m32V+BF4Fo7YQCrx2tX6wbGmICI7MHq6Wm1L+h+o71PqD3Zfg6WiFwB/ADItRfF0cHrbIx5R0TuBx4ARonIs1g9j1FYr/nKoNdSgC6HW7bT9robY+pFpBLr+e8RkZuxEuUswGD1VKZ1tK/9fMZjJb4z7LhcwMp2xysNut/UwePMw4hdKaXUEdAeLKWU6j0TdH8PVg9V8Df7scaY3wRtMyLo/kisHpTy4AZFJBJ4BqtHKMMYk4SVULWe6e8BxnQQyx6gBUgLOn6CMWZKN8/hf+znkW+MScDqiTuQVYjEAX8AHgYWy4F5Y3uxkrrW7cR+fsXdHO8QYpUIr+/iNq/7VtraGoWVEH4HSLVfv3XBzymYMeZeY8xxwGSshPYWrPekCZgS9FomGmPiDuNptb3X9muYAuy1n8utWMMRk+34atrFF/x7BfBnYBMwzn6Pbuvs+fQVsebadfb+PNifsSil1EClCZZSSoXWY8A5IjJfRJwiEmUXDsgJ2uYyEZlsz2e6A3jaGONv104E1pCxMsBn92adEbT+YeAqETlNRBwiki0iE40xJVhDCX8nIgn2ujEi0n4oWXvxQD1QIyLZWAlGsD8CK4wx12DNMWs9mX4S+Iodhxv4IVaC99/uXqj27BLhcV3cPjiM5mKxEpQysAqGYM1BOoSIzBSR4+34G7AKMQSMMQGsJO0eERlmb5stIvOD9jUSVMSkA2fZc8sisOZifWyM2YP1evvs+FwicjtWD1ZX4oFaoF5EJgLXd7N9yBljpnTx/lzX2X4iEmHPLxPAbX8u9BxEKXVU0j9uSikVQvbJ83lYvQtlWD1Kt3Dw39tHsQpR7MMahva9Dtqps5c/iTVU7xtYw/Na13+KXfgCq+fjPQ70JF2BlaBtsPd9GmveVFd+CRxrt/Uy8GzrChE5D6tIResJ/Q+AY0XkUmPMZqzervuwenzOAc4xxni6OV6fMsZsAH4HfIQ1TC4f+LCTzROwEqkqrOGOFcBv7XU/wpp79rFY1fzewp4nZc+lquPAsM2O/BtrmGclVvGJ1mGMrwOvAVvsYzbTzTBOrGGL37CP+VessueDxRtYvYFfwiq80YRVWEQppY46Ykz7EQhKKaX6iogsAx4zxvwt3LGo3hGRy7CGD/6kk/WPAEXGmJ/1a2BKKaXCSotcKKWUUkfAGPNYuGNQSik18OgQQaWUGiLEuuitFicY4kTktk5+D14Nd2xKKXU00CGCSimllFJKKRUi2oOllFJKKaWUUiEyoOZgpaWlmdzc3HCHoZRSSimllFJdWrlyZbkxJr398gGVYOXm5rJixYpwh6GUUkoppZRSXRKRXR0t1yGCSimllFJKKRUimmAppZRSSimlVIhogqWUUl347/ZytpfVhzsMpZRSSg0SA2oOVke8Xi9FRUU0NzeHOxQ1yERFRZGTk4Pb7Q53KGqQKi/bz9h/zWSrI4/RP38Hceh3UkoppZTq2oBPsIqKioiPjyc3NxcRCXc4apAwxlBRUUFRURF5eXnhDkcNUoU7NjNDqhlmvmD31tWMnDA93CEppZRSaoAb8F/HNjc3k5qaqsmVOiwiQmpqqvZ8ql5pqqtsu1/yxWthjEQppZRSg8WAT7AATa7UEdHfG9Vb3obqtvvuEr2EhFJKKaW6NygSLKWUCgd/Uw0Ae505JNdtDXM0SimllBoMNMHqARHhhz/8Ydvju+++m8WLF4cvoCAff/wxxx9/PNOmTWPSpEltcS1btoz//ve/vWp7wYIFJCUlcfbZZ4cgUqUGn4CdYFWmTifHX0RTU1OYI1JKKaXUQKcJVg9ERkby7LPPUl5eHtJ2jTEEAoFetXHllVfy0EMPsWrVKtatW8dFF10EhCbBuuWWW3j00Ud71YZSg5lpqQUgMGI2bvFTtG1NmCNSSiml1EA34KsIBvvlS+vZsLc2pG1OzkrgF+dM6XIbl8vFtddeyz333MOdd9550LqysjKuu+46du/eDcAf/vAH5syZw+LFi4mLi+Pmm28GYOrUqfznP/8BYP78+Rx//PGsXLmSV155hfvvv59XX30VEeFnP/sZCxcuZNmyZSxevJi0tDTWrVvHcccdx2OPPXbIvKL9+/czfPhwAJxOJ5MnT6awsJAHH3wQp9PJY489xn333cfEiRM7jXP79u1s27aN8vJybr31Vr71rW8BcNppp7Fs2bIuX5unnnqKX/7ylzidThITE3n//fdpbm7m+uuvZ8WKFbhcLn7/+99zyimn8Mgjj/D888/T0NDA1q1bufnmm/F4PDz66KNERkbyyiuvkJKSwl//+lceeughPB4PY8eO5dFHHyUmJuag486ePZuHH36YKVOs9+7kk0/m7rvvZsaMGV3Gq9ThcHnq8OIiYcwsWAk1u1ZD/vHhDksppZRSA5j2YPXQt7/9bR5//HFqamoOWv7973+fm266ic8++4xnnnmGa665ptu2tm7dyg033MD69etZsWIFq1atYvXq1bz11lvccsstlJSUAPDFF1/whz/8gQ0bNrBjxw4+/PDDQ9q66aabmDBhAueffz5/+ctfaG5uJjc3l+uuu46bbrqJVatWMW/evC7jXLNmDe+88w4fffQRd9xxB3v37u3x63LHHXfw+uuvs3r1al588UUAHnjgAUSEtWvXsmTJEq688sq2an7r1q3j2Wef5bPPPuOnP/0pMTExfPHFF5xwwgn861//AuCCCy7gs88+Y/Xq1UyaNImHH374kOMuXLiQJ598EoCSkhJKSko0uVIh5/Y10CAxZI0pwGuc+EvWhzskpZRSSg1wg6oHq7uepr6UkJDAFVdcwb333kt0dHTb8rfeeosNGza0Pa6traW+vr7LtkaNGsXs2bMBWL58OZdccglOp5OMjAxOOukkPvvsMxISEpg1axY5OTkATJs2jcLCQubOnXtQW7fffjuXXnopb7zxBv/+979ZsmRJh71OXcV53nnnER0dTXR0NKeccgqffvopX/3qV3v0usyZM4dFixZx0UUXccEFF7Q9p+9+97sATJw4kVGjRrFlyxYATjnlFOLj44mPjycxMZFzzjkHgPz8fNassYZfrVu3jp/97GdUV1dTX1/P/PnzDznuRRddxBlnnMEvf/lLnnzySb72ta/1KF6lDkekv55GiSUpMoodzhyiqzaFOySllFJKDXCDKsEKtxtvvJFjjz2Wq666qm1ZIBDg448/Jioq6qBtXS7XQfOrgq/HFBsb26PjRUZGtt13Op34fL4OtxszZgzXX3893/rWt0hPT6eiouKQbTqLEw4tZ3445c0ffPBBPvnkE15++WWOO+44Vq5c2eX2wc/J4XC0PXY4HG3Pb9GiRTz//PMcc8wxPPLIIx0mjNnZ2aSmprJmzRqWLl3Kgw8+2OOYleqpSH8DTQ7r81oenUdOoyZYPVVT38ibf7qRmJmXc9Yp88IdzqCweUchlZUVnDDjuHCHMihU1rew9YMnmXna13FEHPp/m1JKhYsOETwMKSkpXHTRRQcNWTvjjDO477772h6vWrUKgNzcXD7//HMAPv/8c3bu3Nlhm/PmzWPp0qX4/X7Kysp4//33mTVrVo9jevnllzHGANbQQ6fTSVJSEvHx8dTV1XUbJ8ALL7xAc3MzFRUVLFu2jJkzZ/b4+Nu3b+f444/njjvuID09nT179jBv3jwef/xxALZs2cLu3buZMGFCj9usq6tj+PDheL3etnY6snDhQu666y5qamooKCjocftK9VRkoJEWh9Vj7UvKY1hgPz5PS5ijGhzWff4hX2tcylnvnQ323yjVtcp/XcYJ/zmVsqJt4Q5lUHjiuWc5/pPvsOeJG8MdilJKHUQTrMP0wx/+8KBqgvfeey8rVqygoKCAyZMnt/WkXHjhhVRWVjJlyhTuv/9+xo8f32F7559/PgUFBRxzzDGceuqp3HXXXWRmZvY4nkcffZQJEyYwbdo0Lr/8ch5//HGcTifnnHMOzz33HNOmTeODDz7oNE6AgoICTjnlFGbPns3Pf/5zsrKyACv5+/rXv87bb79NTk4Or7/+OmANS2ydb3XLLbeQn5/P1KlT+dKXvsQxxxzDDTfcQCAQID8/n4ULF/LII48c1HPVnV/96lccf/zxzJkzh4kTJ7Ytf/HFF7n99tvbHn/ta1/jiSeeaKucqFSoOQJe/OIGwJU2BpcE2L9HT357onxfUdv92r2bwxjJ4ODxBRhrdgFQ+cHfwhzN4ODYb82JTN31apgjUUqpg4np5TeLIjIC+BeQARjgIWPMH0VkMfAtoMze9DZjzCtdtTVjxgyzYsWKg5Zt3LiRSZMm9SpG1bn21Q6PNvr7o3pj66+OozEilWN+9AYbPnqVya9fzNpT/k7+SReGO7QB78W//y/n7v4NABvn/JFJX14U3oAGuF0VDbjvnUqWVLIlcQ7jb+ryv0sFvPDrizjPZ33xx217IaJnw++VUipURGSlMeaQKmuh6MHyAT80xkwGZgPfFpHJ9rp7jDHT7Jv+b6GUGlScxotxWFNVU0daiXpTqfZg9YSjcX/bfV/xF2GMZHAorqxjGNUApNZpj193jDHkeAvbHvtKdX6kUmrg6HWRC2NMCVBi368TkY1Adm/bVf1j8eLF4Q5BqQHLaXwEHBEApGeOpNFEYip2hDmqwSGiqZw6iWO/ScJZuT3c4Qx4nppSXBKg2JFFdmAvNFZCTEq4wxqwapt9xJpGCl2jyPXvomz7FwwfocVBlFIDQ0jnYIlILjAd+MRe9B0RWSMifxeR5E72uVZEVojIirKyso42UUqpsHAaH8ZhzcFyOB2UOjOJrNsd5qgGhxhPOXWuFMojcohv1NesO47aYgD2JFojTRr2bQlnOANek8dPLM3UJIyn2bhpKl4X7pCUUqpNyBIsEYkDngFuNMbUAn8GxgDTsHq4ftfRfsaYh4wxM4wxM9LT00MVjlJK9ZoLH8bpbntcFZVDUnNRF3uoVgn+aupdKTTHjyLdVwJBl61QHWiqBMCXZfXClO/aGM5oBrxmr58YaSYqLpldJgMqtWdZKTVwhCTBEhE3VnL1uDHmWQBjTKkxxm+MCQB/BXpee1wppQYAt/GB40CC1Rw/kkx/CSbgD2NUg0OUacLrjIGUMUThob58T7hDGtD8HutaicmjCggYoaF0a5gjGtiafVYPljs6nlJnJtH12kuqlBo4ep1giXVV2oeBjcaY3wctHx602fmA9t8rpQYVFz4I6sEiOY8o8VK5T5OF7rhNC35nFJEZYwEo361FCLoS8DQAMDI7m32kgM7161JTs4co8SIRsdRG55Ds2avXW1NKDRih6MGaA1wOnCoiq+zbWcBdIrJWRNYApwA3heBYYfP8888jImza1PlJQmFhIVOnTg3ZMTdv3szJJ5/MtGnTmDRpEtdeey1gXST4lVd6V5Tx6quvZtiwYSGNV6mjiTHGTrAi2pbFtCYLezRZ6E6E8WJcUSRmW9cArC/ROUVdMd4mAGJj49jnHE50vSbxXfE21Vt3IuPwJowiyrRA/f6ud1JKqX7S6wTLGLPcGCPGmILgkuzGmMuNMfn28nPtaoOD1pIlS5g7dy5LlizpcL3P5+v1Mfz+g4cdfe973+Omm25i1apVbNy4ke9+97tAaBKsRYsW8dprr/WqDaWOZr6AwY0PCerBSsqxLnzdoMlCl4wxRNKCcUWRmTMWj3HiL9fy9l0xXmuIoCMimqrIHJJbdK5fV7zNdQA4IuNwpuYB0Fym1SqVUgNDr8u096tXfwz71oa2zcx8OPM3XW5SX1/P8uXLeffddznnnHP45S9/CcCyZcv4+c9/TnJyMps2beKNN97A5/Nx6aWX8vnnnzNlyhT+9a9/ERMTw9tvv83NN9+Mz+dj5syZ/PnPfyYyMpLc3FwWLlzIm2++ya233srFF1/cdtySkhJycnLaHufn5+PxeLj99ttpampi+fLl/OQnP+Hss8/mu9/9LuvWrcPr9bJ48WLOO+88HnnkEZ577jlqamooLi7msssu4xe/+AUAJ554IoWFhV0+7/fee4/vf//7AIgI77//PnFxcdx66628+uqriAg/+9nPWLhwIcuWLeMXv/gFSUlJrF27losuuoj8/Hz++Mc/0tTUxPPPP8+YMWN46aWX+PWvf43H4yE1NZXHH3+cjIyMg4578cUXc/nll/OVr3wFsJLBs88+m6997Ws9e0+VCgGvz0+M+A8aIpg5cixe48RXrsO3uuL1GyLxYpyRJMVFUUgG7uqd4Q5rQBO7Bwt3NM3xI0lqeg1a6iAyPryBDVC+JivBckXFERczBtZDZdFmskZ/KcyRKaVUiMu0H61eeOEFFixYwPjx40lNTWXlypVt6z7//HP++Mc/smWL9Y325s2bueGGG9i4cSMJCQn86U9/orm5mUWLFrF06VLWrl2Lz+fjz3/+c1sbqampfP755wclVwA33XQTp556KmeeeSb33HMP1dXVREREcMcdd7Bw4UJWrVrFwoULufPOOzn11FP59NNPeffdd7nllltoaLDG83/66ac888wzrFmzhqeeeooVK1b0+HnffffdPPDAA6xatYoPPviA6Ohonn32WVatWsXq1at56623uOWWWygpsTonV69ezYMPPsjGjRt59NFH2bJlC59++inXXHMN9913HwBz587l448/5osvvuDiiy/mrrvuOuS4Cxcu5MknnwTA4/Hw9ttvtyVbSvUXr8cLgAkaIhgVGUmppOOuKQxTVINDi89PFB5wRyMi7I/IJr5Rh7x1ye7BwhUFKaMB8GiPTKf8LdYQQVdUHKnZYwkYoalUXy+l1MAwuHqwuulp6itLlixp68m5+OKLWbJkCccdZ5XSnTVrFnl5eW3bjhgxgjlz5gBw2WWXce+99/LlL3+ZvLw8xo+35iJceeWVPPDAA9x4442AlVB05KqrrmL+/Pm89tprvPDCC/zlL39h9erVh2z3xhtv8OKLL3L33XcD0NzczO7dVkWlL3/5y6SmpgJwwQUXsHz5cmbMmNGj5z1nzhx+8IMfcOmll3LBBReQk5PD8uXLueSSS3A6nWRkZHDSSSfx2WefkZCQwMyZMxk+3KptMmbMGM444wzA6nl79913ASgqKmLhwoWUlJTg8XgOeu1anXnmmXz/+9+npaWF1157jRNPPJHo6OgexaxUqHjtE14JSrAAKiKyiG/S4VtdaW7xEC9+xB0FQENMDik166wiBCJhjm5gEn8zLUQQKULksLGwCar2bCIjZ1q4QxuQAq0JVnQ8OenJ7COZQKX2kiqlBgbtwepGZWUl77zzDtdccw25ubn89re/5cknn8TY1YpiY2MP2l7anTy0f9yR9m0Ey8rK4uqrr+aFF17A5XKxbt2hxRiNMTzzzDOsWrWKVatWsXv3biZNmnTE8bT68Y9/zN/+9jeampqYM2dOlwU+ACIjI9vuOxyOtscOh6Ntjtp3v/tdvvOd77B27Vr+8pe/0NzcfEg7UVFRnHzyybz++ussXbq00wRUqb7k87YAHDQHC6AhbiRpvkE9pbTPtTQ1AiBu64sRX/wIYmnCNFaGM6wBTXzNeMRK5pOzxwFQX6pDUTsTaLYSrIjoeFJiIygik8haLdWulBoYNMHqxtNPP83ll1/Orl27KCwsZM+ePeTl5fHBBx90uP3u3bv56KOPAPj3v//N3LlzmTBhAoWFhWzbZk3yfvTRRznppJO6PfZrr72G12sNU9q3bx8VFRVkZ2cTHx9PXV1d23bz58/nvvvua0v6vvjii7Z1b775JpWVlW3zoFp713pi+/bt5Ofn86Mf/YiZM2eyadMm5s2bx9KlS/H7/ZSVlfH+++8za1bPL3FWU1NDdnY2AP/85z873W7hwoX84x//4IMPPmDBggU9bl+pUPF5PNYd18E9WCZpFEnU01hbEYaoBgdPizVEuTXBcqVZPdVVe/XaTp1x+JvxiPWlVFZmBjUmBr/2yHTKeOwEKyYeEaE6cjgJzcVhjkoppSyaYHVjyZIlnH/++Qctu/DCCzutJjhhwgQeeOABJk2aRFVVFddffz1RUVH84x//4Otf/zr5+fk4HA6uu+66bo/9xhtvMHXqVI455hjmz5/Pb3/7WzIzMznllFPYsGED06ZNY+nSpfz85z/H6/VSUFDAlClT+PnPf97WxqxZs7jwwgspKCjgwgsvbBseeMkll3DCCSewefNmcnJyePjhhwF48MEHefDBBwH4wx/+wNSpUykoKMDtdnPmmWdy/vnnU1BQwDHHHMOpp57KXXfdRWZmZo9fz8WLF/P1r3+d4447jrS0tLblK1as4Jprrml7fMYZZ/Dee+9x+umnExER0VFTSvUpn6+1B+vg3z93+hgASndpqfbOeJutHixnhDVEMC7Des2qi7X6Ymec/ha8dg9WRnwUe8jAWaPz1jrlsX7HIqLjAGiKzSHJX3FgLptSSoWRmAF0Yb4ZM2aY9kUYNm7c2DbcTR2eRx55hBUrVnD//feHO5Sw0d8fdaS2b1nLmH/PZfWM/+WYs29oW7551X+Z8PyZrD7hjxwzf1H4AhzA1q7+jPznTmfjl37PpDO+yfaivYz52yTWT/4BUy76RbjDG5A++p8F5JgSRvzUmmf73q8WMMFRROZPDx0WruD1f/yK+bvuhpu3QVw6z//zd3x15x2Yb3+GpI8Pd3hKqSFCRFYaYw4pbqA9WEop1QG/PUTQ4Yo8aHnGKOtaWC37tWJZZ3wtVi+CKyIGgOyMDCpNHIHKwjBGNbC5Ai34HQd+1+pjsknx7oNAIIxRDVymreqi9ZpF2sNQa0r0emtKqfDTBOsotmjRoiHde6VUb/h8VoIlroOLXCQmJVNBAlK9KxxhDQreFnuIYKQ1ByvK7WSfI4OIOh3y1hlXoAWfM6rtsS9+JBF4ob40jFENYL6gsvZAwvCxgCZYSqmBYVAkWANpGKMaPPT3RvWG364i2L4HS0Qocw0npl4rlnXGb8+PcUceuLxCdUQWCc17wxXSgOc2HgJBPVjO1FwAmrSntGP+Fvw42i4EnpE9ihbjxlOmhUGUUuE34BOsqKgoKioq9GRZHRZjDBUVFURFRXW/sVIdCHitHiyn69AiK7XROSR7NFnojL+lCQB35IFLUDTF5ZDmL4WAP1xhDWgRgRb8rgN/r2IyrB6Zaq282CHxteDF3XZdtZyUOIpMGmjPslJqABjwFxrOycmhqKiIsrKycIeiBpmoqChycnLCHYYapAL+1h6sQxMsb/xIhtW+i9/rwenWKpft+T12ghV1oAcrkDgKd4UPb3Ux7pSR4QptwIrAQ2PQEMHUbKvyYqNeC6tDVln7CFpfsSi3k/3ODHLq9SLgSqnwG/AJltvtJi8vL9xhKKWGGL99DbqOEihnah6uvQFKirYxPG9yf4c24AW8VoIVEXWgBysiPQ92QEXRVjI1wTqIzx8gEg8NQT1YOenJ7DPJBKoKwxfYAObwt+CTgz+bdVFZJDV3fI1KpZTqTwN+iKBSSoVDwNf5EMHYzHEAVBbpdZ06YtoSrAM9WIlahKBTzb4AUXjAdeD1SomNYC/DcNdqYZCOOPwt+BwHfzY9cSOIN3XQXBumqJRSytLnCZaILBCRzSKyTUR+3NfHU0qpUDD2hYad7shD1qXmWNfZadynyUKHOujBSs8ZS8CIFiHoQJPHbyVY7gM9WCJCVcRw4puKwxjZwOUMeA5JsCRlFACeCv0dU0qFV58mWCLiBB4AzgQmA5eIiI6nUUoNeAFf6xDBQxOsjJw8WoybQKWeyHWk9RpF4j7QI5OZksg+UpDqwjBFNXA1e3xEiweCXi+AxtgRJPvLwO5NVQdY1w07uIhR9LDRAFQVa2EQpVR49XUP1ixgmzFmhzHGAzwBnNfHx1RKqV4zfuuk1tXRHCynfV2nWq1Y1qG2axQdSBicDmG/M5OoBi1C0F5Ls1XW3tEuwQokjsKBwdToMMH2nMaDv10PVlKWNXS3bp+WtldKhVdfJ1jZQPD/DEX2MqWUGtjsIYKuDnqwAKois0ho1uFbHRFfMx5c4Dj4v5i6qCySWrS8fXttCVbEwQlWRFouALU6b+0QEQEPAefBn82s4dnUmyh85YXhCUoppWxhL3IhIteKyAoRWaGl2JVSA0XbHKyIjq+l1hQ3kmH+EtBr9B3C4W/Gw6E9fy3xI0gJVLYlr8risRMsZ7sEK35467WwNMFqz82hCdawhCiKGIazVi8CrpQKr75OsIqBEUGPc+xlbYwxDxljZhhjZqSnp/dxOEop1UP2EEF3u5PeNsm5xNNEbUVpPwY1ODh81jWK2pPkXBwYGvbr3LVg3uYG4NAEKyM7D49x0lKm18IK5vMHiDAeaJdgORxChTuTmEbtWVZKhVdfJ1ifAeNEJE9EIoCLgRf7+JhKKdV7di+LO7LjIYKRw6wLwZbu3tRvIQ0WjoAHrxz6ukXbr1nFns39HdKA5m2xe7AiYw5anpMaT7FJg2qd6xes2RcgEi/GdWjvckN0Nike7VlWSoVXnyZYxhgf8B3gdWAj8KQxZn1fHlMppUJB7B4sp7vjIYJJ2daE+tq9WrGsPae/Ga/j0AQrKdsa8lZfqkUIgvnsBMvVLsGKjnBS6swkul4LgwRr9vqJFC90kGD5EkYSTTM0VoQhMqWUsvT5HCxjzCvGmPHGmDHGmDv7+nhKKRUSfg8+40Ccrg5XZ4ycAIC3XIdvtefs4CKwAFk5ubQYtxYhaMdvJ1jB1w1rVRuZRaIWBjlI23XDOkiwXKm5ANRrJUGlVBiFvciFUkoNRA5/Cx7cna6PjUugjGScOnzrENY1ig7twUqMiWQvaVqEoB2/x7owszvy0Pl+LfE5JARqoKW+v8MasFp8fiLxIh30LsdkWMNQK4u29HdYSinVRhMspZTqgPhb8ErHvVetyt3DiW3UZKE9l/EcchFYABGh3J1FrBYhOEhrghURfWgPliTnAuCt0MIgrZo9rQnWoUl8mj10t1ELgyilwkgTLKWU6oAj4MXbRQ8WQG3MSNI9miy05w604Hd2XBykISabFI8OeQtmvFaCFdnBEMHI9NEAVBXrXL9WzS1NOMQcct0wgOzMdCpNHIHKwv4PTCmlbJpgKaVUBxx+T4fXcgrmTRpNOpW0NNb0U1SDQwQtBJwdFwfxJYwggXpMU3X/BjWABewerI4ShqQsq0dG5xQd4G2yy9pHxh2yLj7KTYlk4K7d099hKaVUG02wlFKqA1ap8a57sNzDrJPf/Tu1OGqwCOPBuDruwXKl5gFQpRfPPcDXbP10HZpgDR+eRb2JwluuQwRbtV43zBER0+H6qojhxDdrz7JSKnw0wVJKqQ44Ah583SRYSTlTAKjcvbE/QhoU/AHT6TWKAGLtIgQ65C2IPUSQDoo2DE+Kocik49DCIG28zVbBD1dUxwlWY+xI0nyl4Pf1Z1hKKdVGEyyllOpATxKs4aMnETCCp1QrlrVq8VkltDtLsFJzxgPQqNfCamO8nfdgOR1CuXs4MQ16LaxWPjvBckfFd7w+eTQu/PirtMKnUio8NMFSSqkOOAIe/B1cyylYQnwC+yQNZ5UmC62aPH4i8SDuQ5MFgOys4VSbWAIVWuWtlcPXiBcXdHLNtfrobFI8JWBMP0c2MPlbrCGC7g6KgsCBobtVezb0W0xKKRVMEyyllOqAM+Al4Oi6BwugLGIE8Q36TXmrZq+PSPEhnfRgRbqcFDuziarVOUWtnL5GmqXj1wvAn5RLNM2Y+tJ+jGrg8tkXZo6MObTIBUBi9kQA6oq1Z1kpFR6aYCmlVAecPejBAmiMzyXTV6S9C7aWxjrrTkTHvQsA1VEjSG7WKm+tXP5GWhwd9/gBuOwemeoinesHYOwerIhOerCGZ42gzkTjK9N5fkqp8NAESymlOuAyXgI9SLBMyhjiaaSmXK/tBOBtLVkf2fH8GICWxNEMC5RhPI39FNXAFuFvwtNFgpWYPQmAai2mAkDA/r2RiI57sIYnRVNoMnFV6zBUpVR4aIKllFIdcBsPpgcJVnTmBAD2aal2ALxNVgECR2TnPViOtLEAVBVt7peYBjq3vwmvs+OKeADDR46lxbhoKdUeGQDjtRPzTub5uZwOSt3ZxDdq5UWlVHhogqWUUh1wGS8BZ/cJVuqoyQDUFW/q65AGBV+TNUTQ2UmFN4B4e45MxW4tQgAQYZrwdZFgZafEsZsMHFpMBQBpK2vfea9fbcxIkr2l4PP0U1RKKXWAJlhKKdUBN15wdnyx3GDDR43HY5z4db4HcKCEtiuq4+FbABm51vXDmkq0BwsgKtCMz9V5gmX1yOQQV1/Yf0ENZK0JVhfz/HxJeTgJQFVh/8SklFJBNMFSSqkOuI0X4+o+wXK73ex1DCeiRud7AHgbawGIjE3odJvhw9IoNcmYSu2RMcYQbZrwd5FgAdTF5JLmLYaAv58iG7icvkb8OKCLHmZXun29tX3as6yU6n+9SrBE5LcisklE1ojIcyKSZC/PFZEmEVll3x4MSbRKKdUPjDFE4O3yBC5YVfRIUpq0VDuAr9kaIhgdm9jpNk6HsM+VTWxtYT9FNXC1+ALESDPG3XWC5U8eTQQ+AlU6r8jha6JFokCk020Sc6xhqNV7NMFSSvW/3vZgvQlMNcYUAFuAnwSt226MmWbfruvlcZRSqt94fX4i8EEn13Jqrzkhj+H+EgI+Xx9HNvD57SGC0XGdJ1gANTGjSPNoqfZmr58YWjDuzoe7AbgzrB6Zqj1aSdDpb8IrXfcu52RlU2Xi8Ozf1k9RKaXUAb1KsIwxbxhjWs8oPgZyeh+SUkqFV3NjLQ4xBCI6L9QQzJE+jgjxsW+PnsyZltYerM6HCAJ4k0aTZGrwN1T1R1gDVn2zl1iakS6qLgKkjLCKqdTotbBw+RrxODsvcAEwKjWGQpOJs0qH7iql+l8o52BdDbwa9DhPRL4QkfdEZF5nO4nItSKyQkRWlJWVhTAcpZQ6Mp4Gax6R6eQ6O+3FZ1nDkcp3reuzmAYL02L1YElk16+de5hVqr1819CuJFhXX49DDK4uqi4CZOeMpM5E49mvxVSi/XW0uLpO4KPcTva5solrKOyfoJRSKki3CZaIvCUi6zq4nRe0zU8BH/C4vagEGGmMmQ78APi3iHT419AY85AxZoYxZkZ6enrvn5FSSvVSU301AM7oniVYw/KsqniNJVv6KqTBw9tAC25wurvcLMG+eO5QH/LWUG9dmNkd3XWClZkYzS6G4x7iF881xhAbqMcX0XWCBVAXO4pkXxnoBa2VUv3M1d0GxpjTu1ovIouAs4HTjDHG3qcFaLHvrxSR7cB4YEVvA1ZKqb7WYvdguaK6P4kDSB2WQz3RUKFDBB3eBpoliu7qL2blTsRvhJb9QzspbaqrBiAipusEy+EQyiJymNo4tF+vZm+AeBrwReR2u60/eTTUAVU7IWNKn8emlFKteltFcAFwK3CuMaYxaHm6iDjt+6OBccDQ/tpNKTVotDTYvQoxXRdqaCUOB/tc2cTUaSVBl7eBFul6fgxAenICxQzDMcRLtXvqygGIiO9+BEdDXC6pvlLwtfR1WANWbbOXRGnARHb/2Yy0h6E2aM+yUqqf9XYO1v1APPBmu3LsJwJrRGQV8DRwnTGmspfHUkqpfuFrsnqwImJ61oMFVlW8VK2KR5Svhnpn9ye/IsL+iBzi64d2UuqvrwAgKiGt220DqWNxYPCVD92ktK7JQwINEJ3U7baJOdYw1JoiLdWulOpf3Q4R7IoxZmwny58BnulN20opFS6tCVZkF9dyOmSfpNEMr3mHpsZGomO6vqbR0SzGV01LVFKPtq2PHcnk6lfBmC6vaXQ0CzRa3z3GJA3rdtvozPGwDSp3b2BY5uS+Dm1AqmuoJ1J8OGKSut125PAM9pskvEN8GKpSqv+FsoqgUkodFfzNVoIVHZfU430iho3DIYbinUO7Kl58oBZvZHKPtg0kjyaGZjw1+/o4qoFLmqwEyxWX2u22aSOtHpm64qHbI9NYYw2pdMV0/zs2IsUq1e4a4oVBlFL9TxMspZRqzy41Hh3f8x6shNbhSEO4Kp7XHyDR1OKP7j5ZACspBSgbwqXapbESPw7oQa/fyKzhlJuEIT1EsL7KSrBiE7sfUhnldlLqziG+YWgPQ1VK9T9NsJRSqp1ASx1+I8R2U9ktWKZdqr2ldOgOR6qqqydBmpCYlB5tn5hjXT+stnhzX4Y1oDmaK2mQOHB0/99xSmwEe2Q47pqd/RDZwNRUZ81Zi0vsWRJfHzuSBH8V2L3SSinVHzTBUkqpdgLNdTRKNA5nz/9ExiamUkEizqqh27tQW1EKgDOuZ9c0zBo1Hq9x0jKEL57r9lTT4OphtUoRqiJzSGwausVUAjUlAESlZPds+5Qx1p0hXq1SKdW/NMFSSql2nC01Vq/CYdo/xIcj1VdZCVZEDyriAaTEx1Asw3BVDd0emRhfNS3upB5v3xw/ilR/OXib+i6oAcxRbyVYJAzv0faRGRMAaNg7dHtJlVL9TxMspZRqJ9pTQa2rZ8PcgtXH5jLMW9QHEQ0O9eV7AUhIzerR9iJCmTub+MahmZT6/AHS/GU0x2T2eB9JHQ1Ay/6heVHriMZSWojs0Zw1gOScCQSMUDuEC4MopfqfJlhKKdVOnLeSRvfhJ1i+lNGkUU1dzdC87J+nohCA5OwOr+DRofq4UaR791ql2oeY8rpmsqQCf3xOj/eJyRxv7bt7aCYM0c37qHan97is/6iMZPaSirds6A5DVUr1P02wlFKqnaRAJS1RPRvmFixymHXyW7pzfahDGhQcNbvx4iQqpecJg0nKs0q1V5f0YWQDU0nxLiLFR0TqqB7vkzbSKgxSNwSHvAUChgRvOc1R3V8zrFVrqXZ39dAdhqqU6n+aYCmlVJCAz0uSqcMX3bNCDcGSRlgnvzVFQ7N3Iap+D+WOdHA4e7xPRIZdqn330CvVXrXXKryQkDm6x/uMzM6i0sThLx9613Yqr29hOGX443o2/wog0uVkvzuHxMZdQ7KXVCkVHppgKaVUkPLSvTjE4Ers+byYVsNzJxMwgm//0CzVHt9cQk1Uz+ZftUpsvX7YEExKm8usJCkla0yP94mPclMkWUTUDr0emd0lpWRJJaRPOKz9GuLziAnUQ2NFH0WmlFIH0wRLKaWClO+zCi7EJPf8W/JW0bFxlEoa7uqhVxK62eMj21+EJz73sPbLHjUOj3HiGYJFG5xlG/DhxG1fcLmnqqJySGoeesVUSnesASB5VP5h7WdSrB5CUzH0PpdKqfDQBEsppYI0lNrDtob3vFBDsPKILGKb9oYypEFh985NJEkDZvjhnfwmx0WzV4bhGoJzZBJrNrMvYhS4Ig9rv8a4kaT6y8Db3EeRDUyNResASBpVcFj7xaTnAdCwf+j9jimlwkMTLKWUCuK3L3qbOmrSEe3fGD2cFG9pKEMaFEo2fQpAxrhZh7WfVao9h4TG3X0R1oBV0+gl17+ThuTD/z0LJI3GgcFXMbTmYcVUrKNZopDk3MPaLzXH+rKkpmTo9ZIqpcJDEyyllArirNrGflKIi086ov198Tmkmip8nqHVu+Db/Rk+nGSMm37Y+zbEZJE8xJLSTZvWkClVOEccd9j7uoZZCUN18dCpJFjf4mN00xpK4gvA6TqsfUdmplNh4mkpK+yb4JRSqh1NsJRSKkh8fSHlkSOPeH9n0kgcYigvKQxdUAOcMYbsyo/ZHjUFiYg97P398TnE04BprumD6Aam0lWvA5Bz7FmHvW/icKsoRt2+oTPk7bP1W5nAHpx5XzrsfUckx1Bs0pHaPX0QmVJKHapXCZaILBaRYhFZZd/OClr3ExHZJiKbRWR+70NVSqm+5fO0MMq3k4ak8UfcRsywXACq9g6d4Vubt25hotmBZ+RJR7S/M9lKaKtLhkbCYIwhtehtKpzpRA2feNj7D8vIptm48Vbs6oPoBqbKz5/HIYbhM7562PtGuBxUuDOIbigOfWBKKdWBUPRg3WOMmWbfXgEQkcnAxcAUYAHwJxHp+YVRlFIqDHZuWEG0eJARhzePKFjS8KE3oX7vB/8CYMS8bxzR/tHp1oV2q/cNjaR07ZZtzPJ/QenIs0HksPfPSo6h2KQhtUOjkmCz18/Iopcoc2fhzpl2RG00Rmdbw1D1WlhKqX7QV0MEzwOeMMa0GGN2AtuAIz9jUUqpflC+8X0ARhbMO+I2huVYw7e8lUOjaENTcwvj9jzFtqgpJI2YfERtJA23ymg37B8aPTLFb9yHW/zknv6tI9o/yu2k3JlORMPQqFb53ntvM5P1NE697IgSUgBvfA6ReKB+f4ijU0qpQ4UiwfqOiKwRkb+LSLK9LBsIHuxcZC87hIhcKyIrRGRFWVlZCMJRSqkjE7V7GXslg2EjDu9Cpge1ER1LOUk4h0jvwidP/44RlMKXvnfEbWRkjcJjnPgqj/4Ea+PWbcwpf5LNyScRkz3liNupjcwkoWVfCCMbmBpbvCR+eCf1EsvIL19/xO04kq1e0paKwhBFppRSnes2wRKRt0RkXQe384A/A2OAaUAJ8LvDDcAY85AxZoYxZkZ6evrh7q6UUiFRW1fLhMYv2Js+94i/JW9V6RpGdFNJiCIbuLZsXsfMrX9kY/RxjJ238IjbSYyJpJRUHHVH9xyZ5hYP9Uu/RZR4yf76//WqLU9sNsmBSvC1hCi6gen1R37NbLOKihk/RGJSjrid6PRcAGpK9GLDSqm+122tU2PM6T1pSET+CvzHflgMjAhanWMvU0qpAWnrssc5TlqIP/bCXrdVF5lJWtPRPZ+osrwUeeJSEEi/7C+9SkpFhApXBrGNR++QN6/Pz/I/38Dpvs/ZPPMOJmQd2XXW2iTmQAUEqotxpI0OTZADzGsvLuGsvfezI/lLjD7zpl61lZhlDd1tKB06cyOVUuHT2yqCw4Meng+ss++/CFwsIpEikgeMAz7tzbGUUqovRa9bQhGZjJu5oNdteWKzSPeXYQKBEEQ28OzdvZ2yP53JqEARJfMfIi17XK/brI/KJNFzdF4Lq66hgQ//eCWnVz/FhpyLmHDWkQ+nbOVOtQuDHIU9Mv6A4ZUl93PKyu9SFjmCkd98FBy9m9EwPD2dWhODr+ronBvZ7PWHOwSlVJDezsG6S0TWisga4BTgJgBjzHrgSWAD8BrwbWOMfvqVUgPS7q1rmNyymj2jLsDhDEHB04RsYqSF2pqK3rc1gBhj+OTlfxDx91PICRSz6/QHGXvCeSFp2xubRWqgHPy+kLQ3UKz67AOKfncSJ9e9xLrcRUz+5kO9HoIKEG9fDqD2KKtWWVRSwge/vYizNv+UvTETyPjuW7ji03rdbmZiFCUmFak7unpJG5tbeP2RX1P+6/G8+sSfwx2OUsp2eJdDb8cYc3kX6+4E7uxN+0op1R9KXv4/Mo2LcQuuC0l7ESnWCOmK4h0kJh8dc0u3rPmE+ldu5/jmj9npGk3L1//GuAnHhax9kzQC535DU2VR23yZwaxwx2Z2v/g/zKl6gTqJZ8tJDzD1lMtC1n5qVh4BI7SUHx2FQWrq6vjk6XuYWfgQJ1LPhvH/j0kX34k43SFp3+10UOlMI6fx6CgM4vX5+eC1pWSuvJv5Zjv1EsPJG2/nww8nMWfOyeEOT6khr1cJllJKDXbFOzdzbNWrfDHsfGYNHxWSNuOGWQlW7f5dwPEhaTMcTCDAxhXv0PjefcxoWEYd0Xw29vscu/BnON0RIT1WVKp1seGKvTvIGaQJljGGjetWUvPW7ziu+nVyMKwdfiETv/F/jE/ofS9MsOGpiZSRiKne0/3GA9i+0n1s+M+95O9+nDOkmm2x0/GdfxeTx4X+yi71URkktHwU8nb7U2VNLStef4ysjf/gVLOFMkc6O+f9nuHTz6T+vrnkvvFN1qe9ypQJR36xdKVU72mCpZQa0ope/BXpCKO/+tOQtZmcaV1suLlicJ78NlYWs/3Nv5G05Ukm+4toIIqPc65i8oW3MTN5WJ8cMz7Des3qBmERgrLyCta99S9Stj7NMf51NBs3azLPZ/S5P2Fa9tg+OWZ8lJsdkk5c/eCrH+X1+Vn14Wt4P3uE6XXLOFU8bIo9joaTf8DYmV8JyRDKjnhis0hsqgFvM7ij+uQYfcIYtq3+gNL3HmZq5ZucIQ3sd2awcfodTFxwHemuSACavrGUlMe+QvWSSyi6/nVyMkKb1Culek4TLKXUkFW8czPHVr7CF8O+yqzs0FViS80YQcAI/urBM9/D+Dxs/fBZfCv+yfjaj8mXAGsdk9gz9ZdMm38ls+OTu2+kF1KzrNe/pWJwFCHweH188cHLeD9/nOl1yzhFWtjrzGb1+O8yev71zEjt8NKPIVXtziCjafAkpDt27WLHW39j9J5nmUkR9USzMeMrZJ16PRMn9kNPb0I2lIO/phhn2pi+P14v1ZQVsfWtv5O27WnG+neRY9xsTjmZ1LlXkzN9AcPaFf5IHjuTvWc+yKRXr+bDv15K/E0vkhgbGabolRraNMFSSg1Zrb1XeV/9WUjbdbojKJcknPUD/1pYpdu/oPidv5Fb/BLjqWG/Seb99EtIm3sV+cfMQPqoN6G9YakpVJk4qBnYF2jevGkde9/7O+NKXuJ49tNANNsyFpA29yqy808mq59eL4DG6OGk1H4CxvRZr09v1dbXs+adJ4lYt5TpLZ8xWvxsj5zEhvz/Ydxpl3NsdEK/xRKZOgJ2QPW+naQO0ATL62lhw3tPwarHmVz/CTPEz0bnBD6c+DOmzr+KY5K77pXKOv4CCsu2M2/Fr3n2Lz/gvBvvx+kYmL8bSh3NNMFSSg1J+3ZvZXrlK6xKPzekvVetqt3pRDUPzAn1TbVVbHr7EeI3PsFYzyZSjJPPo2fjK7iUaadcyKnR/T98yuV0UOZIxz0Ah7xVVFay/q3HSNjyFNN8axhnhC2x09lYcCvjT/kGx0TGhiUuX3wOEbVeaCiHuIFTTMXvD7D603ep/+Rf5Fe9xVypp1xS2DDqUkac8k3G5E0LS1xxduXFmtJCUqeGJYRObV/3CWUf/J3xpa9wDLWUkcSnmRczbN5VTJxyeF905H7lZnaWrOGC4sd45oljuPAb1/Zh5EqpjmiCpZQakgpf/F9SgVHn3tYn7TdEZpDQUNgnbR8JE/Cz5dPXafj4ESZVvct08bBDRvBe3k2MPe1qjs8ZGe4QqXEPY9gASUq9Pj+rP3yV5hWPMq12GSdKMyWOTL4YewOjT7uGicPD3wPiTB4BxdBUtpPoAZBg7dyxhcJ3HyF3zwscSxHNuNmSfCIVsy5nzPFnkxaiioBHKm24PTeyfGAMQ60o28fmt/5B+ranGeffxgjjZF3cl9g1/TKmnnQBc460kIwIeYseouj3mzlj8+0s+3AKJ8+ZE9rglVJd0gQrlIzBmAABvx+/308g4MNv3zcBP36fD7/xY3wB66ffhwkYAMQhgANEMIj9WBBx2CM/BHE47Mf2cocgbctBxGktE8EhjoO3t+87BOsx2Pvo0AHVM8aYdo+D7ne1XSf7WOtMp+s6P1bv46gpLWJ62YusSlnAzJF9U23LGzuctLqVBAIGRxiH6JTu2Urh239jxK7nmGBKqTPRfJFyJnGzFzF1xsmMdvb2coih0xQznJTqdd1v2Id2bNvInncfZkzxi8yglEai2JJ2Gslzr2LUtNMZPoD+Zkal5QJQvW8H0Xmhr7rXE1XV1ax7+9/EbXqKAs8X5Ilha+QU1k65lvGnXk5BXEpY4upI1jBrGGogjMNQWzwe1rz3PKx6jGPqP+RL4mOHM49PJ9zK+NOv5tj04aE5kDua9Gueovn+eYx84xq2jnibcSOzQtP2YGUMfk8jzY31NDfW09LSQounhYDPi/F78ft9mLb7XvD7CAR8BAKGAAfOrRDscyvrnApx4LDPvcQhIC7E4cDhcCAOF4jgcDpxOIJuTificOJ0OK1tnU4cDhcOpwNn8H2HE6e9LeIAaf3p6PXFt1Xf0gSrC6vfeRI+fQhnwIvTeHAGfDiNB7fx4jJeXPhw4yXCeK2f4kcAp30bqAJGCGAlcgbsn8E3MDgOXScHr8NeHrDStbZ9xV4X/AOALk6gu1nZIxJ8st6LfY9MJ2f5PTr2ER/J3v/IYw/p8z7sY/dOb2JPwocLH9lnh65yYHuSmEVCaSNlVRWkp/ZvNa/mxnrWvbuEyLVLmNL0ORliWBMxjd2Tb2Lq6Zfypbj+m/dyOPwJOcRXNxBoqsXRj3NzaqqrWfv2Y8RvepJjvKsZDWyMms66gh8w4ZRvMK0fYzkciZnW0NaGsv69FtaB3r3HmVb7LvOkiVLHMFbnXcOoU7/JuJGT+jWenoqJcLFL0nHX9e8wVGMMm9etoOyDR5iw/2VmUkUNcazJPJ9h877J6KknEPpByhCZOoqGr/2DkU99jZX/vJR9NzxPZmpiHxyp7xm/j/rq/dRVltJQU05LXRWe+kp8DZUEGquR5mocnhoiPLVE+OtxB5pxB5qJDDQTaZqJooVoWnACsfbtaOBHCOBsO6cL4CCA48B9Cbrf0Xr7fO7A/8fBZ3e03e9sXdsy08Gydj97ukw6aaOQLL748lMsmpN3BK9U/9MEqwt+TyPxvmr84sbniMDrjCXgiCDgjCDgiMA43RhHBMZpLUPcGPtbBnE4rW8XxPp2ou2nw2n3NFnfQIi0fgNhwATsr+PtVMWYtscYY31zb+ztANO6vTH2t/UHt3Fg/4D1u2qvM62p0yHbBgCrLQleHtRua4p1cLvWR7V1W4PYvQodnQAf+Ah29EVw60e0q5Pvrr5ANt20f2gUBx61Rtv1fj1ttPPtOlxzmN+KH3qojvfv6Hl2HcihKw/ZTA6+a3py7C4ObaSLY3UVRw8XdvY0JXs6k8ZM6WRt70UkW9fCKt+7s18SLBMIsOXzd6n56J9MrHiTGTSyj3Q+GfFNRp56DQWjB+ZJbzBX8gjYDZX7dpKWd0yfHsvvD7D2o1dp+vRf5NcsY640s9eRycrRNzD6tKuZlD2uT48fChnDhlFvovBX9s+Qty2b1rL3vUcYW/LSQb17iSdcQd6xZ5AxCL5RL4/IZlw/VV4sLd3Hprf+ybAdTzPJv4WxxsHGuNnsn/4NJs77GjMio/s8hpQpp7Fr7/9w/Ic/5uMHvorv2qXkZPbNpRaOiKcBU1NEXWkhteXFNFWW4KndB/X7cTWVE+WpIN5XRWKghngxxHfSTIOJok7iaHDE0eyMpd6RgM+dgd8Zhd8Vg3HHYFzREBED7hicEdE43JG4XBE4XC7E6UacLsThxuF0gTMCp8tl9TKJWP9FmwAB+3zLmID1M9D62L4FAhjjxwQCYP8MBAIQ8BMI+K39Avb6gK9tH4zP2jdoP0xwW1Yb1nlfAFqXGb/901rfdt+0plTWuV7rfYfxH7JMCNCaNln/p7eSoP+fD/5poON10rr+QFuCYILPU4K24ZA2Wh8GJ37Wv/URaYzL6Ow3YODRBKsLxy5YBAsWhTsMpdQgFJtpzdFp3LsF8mf22XHKiney/e2HySp8lgmBYppMBOuSTiZ65uVMPuErZDoHcn/6waLTrQs9V+/d3mcJ1u7tG9n97sPkFr3INEppIIrNaaeTdMKV5B17OlmDIElolZEYzQ6ThqO274a8lZXvZ+Pbj5K05RkK/OsZa4QtMdNZl/9Du3dv8JzwANTFjCCt+iPw+8AZ+lOg5hYPXyx7Flm9hOkNH3KSeNnlyuXziTcz7stXk98P5fvbG/Xl69ktMGP5bex58GQ+OvUPzJ735b6fIuD34q8pprqkkLr9hbRU7CJQXYSrfi/RTSUkevYTb+oQIMG+ATQbN+UkUuNIZr97GEXxkwnEpuOMG4YzPp2IuBSiElKISUglNjGNhKQ0YiMjj5peKXV00ARLKaX6QMqIyQD4yreFvO2mxgY2LFuCe80TTGlaQboYNrqn8OnU/8ek0y5nZuLAmfdyOBJzrB7F5r3rgQtC1m5lVSUb336chM1Pke9dTY4RNkZPozz/h0w65RKOjRmYQwC743Y6qHBlMLIhtBe0bm5pYdWyZ2H1E0xr+JATxUuxM5svxn2X0addzcTMvhjQ1j+8iXm4qv2Y6l1IamgKlRhjWLd6BRUf/oNJ+1/hBLGGAG4Yfj4ZJ17NqEmzGRXmuXsjT7+e4tQxJLz4/xj19kV8+OGJxMy5limzv0xkxBFcK8sYPDWlVJbsoH5/IU3luzHVe3DW7yW6aR+JnlKSA5U4MaQCqfZu1SaWfaSy2zWM+uhJeGKHE0jIwZ2cQ2xqDsnDsslIS2N4fBQ5Wl5eDWKaYCmlVB9ITB1GlYnHVbU9JO15PB7WLX8Jz+qnmFz9HsdJI/tI49Ocq8g55ZtMGjvA6k4fgZE52ewzyZjSjb1uq6mxkXXvPQ3rnmZq/UfMEQ/Fjkw+zbOGAE7JGfhDAHuiOm4sM2ufAZ8HXEdYdQ5ryOT6zz+g9uNHmVj+BrOlhmri2ZB5HulzFzFi6lyyB1CBjyPlSB8Hu6CuaAMJvUiwjDFs3bqZog8eJbvoFfLNDnzGweb42VQddxnj51zI9Ij+v9xBV7Knn4Fn/BdsePqXTN+5hNh33qPq7Xg2xkymKWkcroRMXDFJGFcU+L0Q8IKnkUBDBTRW4GyuItJTSZJ3P6mBciLxkhnUfpOJYB+pVLqGsSdqBi2xwzEJ2biSRxCTPpKkzDwy0tKYEOPWAlvqqKcJllJK9QERocSdQ0ztjiNuw+fzseGTN6lfuZSJlW9zLLXUE82W5BOJmnEpE044e1ANAexOpMtJsTuX1NotR7R/c3Mz6/77Mv7VTzGp+j1mSiNVJLAx42ySZ19K7rRTyR5EQwB7wptRgLt2Kc171xM1cvph7ev3B9jw+ftUrXiK3NK3KGAfXuNkY8Icyo79BhPmXsCx7iPo3RjAho2dge8zB5VbPiLhmHMOe//CXTspfH8JqYUvke/fwHhge8RE1oy7lTGnXcWUlIFdqS8iNompV95DS8MvWPvfF/BueIXkmo1M3ruCiBJ/h/sEjFBDHLWOBBqcieyJnsiWaCt5cqeMJDptJInDRzNsWCa5UW7yNHlSShMspZTqK9WJk5le8RLG24y4e/ZtdkNtFVs+/g++Da+QV/1fCqimyUSwKXEuxQUXMnHeBRwbGdPHkYdPddIUCsqX4G+sxhmT1O32FeWl7PjoOWTza4yv+4QZ0kg90WxKPpGYYxcy4YRzOPZIryc0CAyfcDxshV1r32dCDxKshsZGNnzyBk3rX2VM+Tvksx+fcbAl9ljWTLiesSdfSkFi+K+p1VfyR2exyYwivujTHm3v9wfYvPYTyla8QPred5jo30KuGHa7RvHFuO+Qe9LljMmZ2MdRh15kbBL5X74SvnwlAH6fj4rqSuqqK8DXjLjcOJxunBHRJKVmkBwVSXKYY1ZqMOlVgiUiS4EJ9sMkoNoYM01EcoGNwGZ73cfGmOt6cyyllBpsJO8koiueYceq9xg9c36H23i9Hrat+YjKDe8QX/wBE5tWM1181BLLlvjjKZr8FSae+HWmxw7O8sqHK2rKWbjfe4ytHz3PuNMWHbK+paWJ7V+8T+X6t0ks+S+TvOuZKQEqSWBL6inETD2bcV86jxlRQ2PKe37+dHa9lIF704vwle8fst7vD7B902r2r3mDqF3vMrHpC2ZKM17jZFPsDMomfp9x8y5icvIAqizXh2IiXOyMLWB+zSuYhnIk9uAKn8YY9uzZxa6Vr2MKP2BszcdMpgyA7e7xrM67nuwTvs7IsccS/ktzh47T5SI1bRipaUPj90CpvibtL8Z5xA2J/A6oMcbcYSdY/zHGHNakgBkzZpgVK1aEJB6llAq36ooyIu6dwraE48m/6QXE4aBifzHFGz6moXAlMfs+ZUzTOuKkCYDdjmz2pp9I/DHnMn7GabiPZPL5IFff1ELt/00m4IzGcfHjeAMBKgrX0rTrc+LKVzGuZQMx0gJAoWs05cNPInnaueQdcyIO19AclPGfe7/HWRX/Yvucu4jMnUVF8Q4a9qwmsmQFoxvXkio1AOyTYRSnzSFm8gLGzDqTiCGStLf36jvvcOb757M161xiTvkhVZXlVO/4HPatIbv2C/KMVZWxgSh2xR2LZ+x8Rp9wAQkZR1NKpZQKBRFZaYyZccjyUCRYYs1W3A2caozZqgmWUkpZlv/tZuYW/ZX9pODCRwq1bet2O3IoTT4O95h5jDz2DFIyR4Ux0oHjg1eXMuvjG4gUX9syvxF2u3MpT5mBc8xJjJ15BgkpGWGMcuDYva+Mpge/zAQOvr7TXslkX9I0ZOQJZB1zGhl5Uw/7mntHI48vwOt/uJZz6p86aHkdMeyKmUpLzpfILDidrEmzEac7TFEqpQaDvk6wTgR+33oAO8FaD2wBaoGfGWM+6K4dTbCUUkebgN/PyhfuRwo/wO+Kxvz/9u47Pq7ySvz/50zRqHdZsrp77wVTYwOhJJQQCJDQ2YQfJHwTSNuQQoBNdklI2XQ2LFmSQAiEngAJhBIgodlg3LtlSbYsq3dNfX5/3CtZltVszWg0o/N+vfTyzK1ndOfK99znec7NmU5q+VJK5qwiIzt+x7qM1p4dm6jb+Hecbg+ZxbMpnr2cxOTYeubSWGprb2fbv/4M3S2kTyqhcMYS0nLGd8GFaAoEgnzw9ksE6veQkpZBwcxl5BbN0ARUKXVMjjvBEpG/wxGVOHt8wxjztL3Mr4Bdxpgf2u89QKoxpkFElgFPAfOMMa39NyIiNwA3AJSWli7bt2/fMX0wpZRSSimllBprgyVYw3ZYN8acOcyGXVhPhFzWZx0v4LVfrxOR3cBM4KjmKWPMr4Ffg9WCNVw8SimllFJKKTVeheOBIGcC24yxR4UCIpInIk779VRgBnD8D4NRSimllFJKqRgQjpJLlwMP95t2GnCXiPiBEHCjMaYxDPtSSimllFJKqXErbGXaw0FE6oDxNggrF6iPdhBqzOjxnjj0WE8serwnDj3WE4ce64llPB7vMmPMURWrxlWCNR6JyNqBBq+p+KTHe+LQYz2x6PGeOPRYTxx6rCeWWDre4RiDpZRSSimllFIKTbCUUkoppZRSKmw0wRrer6MdgBpTerwnDj3WE4se74lDj/XEocd6YomZ461jsJRSSimllFIqTLQFSymllFJKKaXCRBMspZRSSimllAoTTbCGICLniMh2EdklIl+LdjwqfESkREReEZEtIrJZRL5gT88WkRdFZKf9b1a0Y1XhISJOEXlfRP5iv58iIm/b5/cjIpIQ7RhVeIhIpog8JiLbRGSriJyo53Z8EpFb7b/hm0TkYRFJ1HM7fojIb0TkkIhs6jNtwHNZLD+1j/sGEVkavcjVsRrkWN9j/x3fICJPikhmn3m32cd6u4icHZWgh6AJ1iBExAn8AjgXmAt8UkTmRjcqFUYB4EvGmLnAKuBz9vH9GvCSMWYG8JL9XsWHLwBb+7z/HvBjY8x0oAn4t6hEpSLhJ8BfjTGzgUVYx13P7TgjIkXA54Hlxpj5gBO4HD2348kDwDn9pg12Lp8LzLB/bgB+NUYxqvB4gKOP9YvAfGPMQmAHcBuAfb12OTDPXueX9nX7uKEJ1uBWAruMMXuMMT7gj8CFUY5JhYkxpsYY8579ug3rAqwI6xj/1l7st8DHohKgCisRKQY+Cvyv/V6A04HH7EX0WMcJEckATgPuBzDG+Iwxzei5Ha9cQJKIuIBkoAY9t+OGMeY1oLHf5MHO5QuB3xnLW0CmiEwek0DVqA10rI0xLxhjAvbbt4Bi+/WFwB+NMV5jzF5gF9Z1+7ihCdbgioCqPu+r7WkqzohIObAEeBvIN8bU2LMOAvnRikuF1X8DXwVC9vscoLnPH249v+PHFKAO+D+7S+j/ikgKem7HHWPMfuAHQCVWYtUCrEPP7Xg32Lms123x7Xrgefv1uD/WmmCpCU1EUoHHgVuMMa195xnrGQb6HIMYJyLnAYeMMeuiHYsaEy5gKfArY8wSoIN+3QH13I4P9tibC7GS6kIghaO7GKk4pufyxCAi38Aa2vFQtGMZKU2wBrcfKOnzvtiepuKEiLixkquHjDFP2JNre7oU2P8eilZ8KmxOBi4QkQqsrr6nY43RybS7FYGe3/GkGqg2xrxtv38MK+HSczv+nAnsNcbUGWP8wBNY57ue2/FtsHNZr9vikIhcC5wHXGEOP7x33B9rTbAG9y4ww65GlIA1mO6ZKMekwsQeg3M/sNUY86M+s54BrrFfXwM8PdaxqfAyxtxmjCk2xpRjnccvG2OuAF4BLrEX02MdJ4wxB4EqEZllTzoD2IKe2/GoElglIsn23/SeY63ndnwb7Fx+Brjaria4Cmjp05VQxSAROQere/8FxpjOPrOeAS4XEY+ITMEqbPJONGIcjBxOBlV/IvIRrLEbTuA3xpjvRjciFS4icgrwOrCRw+Nyvo41DutRoBTYB1xqjOk/wFbFKBFZDXzZGHOeiEzFatHKBt4HrjTGeKMYngoTEVmMVdAkAdgDXId1Q1HP7TgjIncCl2F1H3of+DTWWAw9t+OAiDwMrAZygVrg28BTDHAu20n2z7G6iXYC1xlj1kYhbHUcBjnWtwEeoMFe7C1jzI328t/AGpcVwBrm8Xz/bUaTJlhKKaWUUkopFSbaRVAppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppcYJESkXESMirmjHEu9E5FoReSPacYw3InKqiGyPdhxKKRXLNMFSSikV00TkDhHxi0h7n5+vRjuuWGSMed0YMyvc2xWRX4vIdhEJici14d6+UkqNJ3qXVCmlwkREXMaYQLTjmKAeMcZcGe0gIiUOvlsfAI8A34t2IEopFWnagqWUUqMgIhUi8u8isgHoEBGXiKwSkX+JSLOIfCAiq/ss/6qI/JeIvCMirSLytIhkD7Lt60Rkq4i0icgeEfn/+s2/UETW29vZLSLn2NMzROR+EakRkf0i8h0RcQ7zOaaJyMsi0iAi9SLykIhk9pnXKCJL7feFIlLX87lE5AIR2Wx/3ldFZE6/38+XRWSDiLSIyCMiknjsv+ljJyJfs38vbSKyRUQuGmQ5EZEfi8gh+3e5UUTm2/M8IvIDEakUkVoRuVdEkka4/wfs5V+0Y/iHiJT1mf8TEamy97lORE7tM+8OEXlMRB4UkVbgWhFZKSJv2r/nGhH5uYgk9FnHiMhnRWSnvb//sI/dv+x9PNp3+UFiXi0i1SP5fMfCGPMLY8xLQHe4t62UUuONJlhKKTV6nwQ+CmQC+cCzwHeAbODLwOMiktdn+auB64HJQAD46SDbPQScB6QD1wE/7pPkrAR+B3zF3u9pQIW93gP2dqcDS4CzgE8P8xkE+C+gEJgDlAB3ABhjdgP/DjwoIsnA/wG/Nca8KiIzgYeBW4A84Dngz/0u5C8FzgGmAAuBawcMQOQUO3kY7OeUYT5Df7uBU4EM4E47/skDLHcW1u9vpr3spUCDPe9ue/pirN9nEXD7McRwBfAfQC6wHnioz7x37e1mA38A/tQv+bwQeAzr+D4EBIFb7W2dCJwBfLbf/s4GlgGrgK8CvwauxDqe87G+q8fNTpQHOz6/HM22lVIqXmiCpZRSo/dTY0yVMaYL62L2OWPMc8aYkDHmRWAt8JE+y//eGLPJGNMBfAu4dKAWJmPMs8aY3cbyD+AFrIQB4N+A3xhjXrT3s98Ys01E8u193WKM6TDGHAJ+DFw+1Acwxuyyt+U1xtQBPwI+1Gf+fcAu4G2sxPAb9qzLgGftdf3AD4Ak4KR+v58DxphG4M9YScVAMbxhjMkc4meoohSX9rvYLzTG/Mneb8gY8wiwE1g5wLp+IA2YDYgxZqsxpkZEBLgBuNUY02iMaQP+c7jfZT/PGmNeM8Z4sX5nJ4pIif15HzTGNBhjAsaYHwIeoO/4pzeNMU/Z8XcZY9YZY96yl68A/oc+x8j2fWNMqzFmM7AJeMEYs8cY0wI8j5VwHzdjzMIhjk//ZE8ppSYkHYOllFKjV9XndRnwCRE5v880N/DKIMvvs+fn9t+oiJwLfBurBcUBJAMb7dklWK1F/ZXZ26ux8gOw160aYNm++8oHfoKVwKXZ6zT1W+w+4BngBjthAKvFa1/PAsaYkIhUYbX09DjY53WnvU64Pdp/DJaIXA18ESi3J6UywO/ZGPOyiPwc+AVQJiJPYLU8JmL9ztf1+V0KMGR3y356f+/GmHYRacT6/FUi8mWsRLkQMFgtlbkDrWt/nplYie9yOy4XsK7f/mr7vO4a4H3BMcSulFLqOGgLllJKjZ7p87oKq4Wq7539FGPM3X2WKenzuhSrBaW+7wZFxAM8jtUilG+MycRKqHqu9KuAaQPEUgV4gdw++083xswb5jP8p/05Fhhj0rFa4g5nFSKpwH8D9wN3yOFxYwewkrqe5cT+fPuH2d9RxCoR3j7Ez6nDb6V3W2VYCeHNQI79+9vU9zP1ZYz5qTFmGTAXK6H9CtYx6QLm9fldZhhjUo/hY/Uea/t3mA0csD/LV7G6I2bZ8bX0i6/v9wrgV8A2YIZ9jL4+2OeJFLHG2g12fO4dy1iUUmq80gRLKaXC60HgfBE5W0ScIpJoFw4o7rPMlSIy1x7PdBfwmDEm2G87CVhdxuqAgN2adVaf+fcD14nIGSLiEJEiEZltjKnB6kr4QxFJt+dNE5H+Xcn6SwPagRYRKcJKMPr6CbDWGPNprDFmPRfTjwIfteNwA1/CSvD+Ndwvqj+7RHjqED+vH8PmUrASlDqwCoZgjUE6ioisEJET7Pg7sAoxhIwxIawk7cciMsletkhEzu6zrpE+RUwG8BF7bFkC1list4wxVVi/74Adn0tEbsdqwRpKGtAKtIvIbOCmYZYPO2PMvCGOz42DrSciCfb4MgHc9nmh1yBKqbikf9yUUiqM7IvnC7FaF+qwWpS+wpF/b3+PVYjiIFY3tM8PsJ02e/qjWF31PoXVPa9n/jvYhS+wWj7+weGWpKuxErQt9rqPYY2bGsqdwFJ7W88CT/TMEJELsYpU9FzQfxFYKiJXGGO2Y7V2/Qyrxed84HxjjG+Y/UWUMWYL8EPgTaxucguAfw6yeDpWItWE1d2xAbjHnvfvWGPP3hKrmt/fscdJ2WOp2jjcbXMgf8Dq5tmIVXyipxvj34C/AjvsfXYzTDdOrG6Ln7L3eR9W2fNY8QJWa+BJWIU3urAKiyilVNwRY/r3QFBKKRUpIvIq8KAx5n+jHYsaHRG5Eqv74G2DzH8AqDbGfHNMA1NKKRVVWuRCKaWUOg7GmAejHYNSSqnxR7sIKqXUBCHWQ2+1OMEEJyJfH+R78Hy0Y1NKqXigXQSVUkoppZRSKky0BUsppZRSSimlwmRcjcHKzc015eXl0Q5DKaWUUkoppYa0bt26emNMXv/p4yrBKi8vZ+3atdEOQymllFJKKaWGJCL7BpquXQSVUkoppZRSKkw0wVJKKaWUUkqpMNEESyml+vEHQ9EOQSmllFIxalyNwRqI3++nurqa7u7uaIeiYkxiYiLFxcW43e5oh6JiSGNzCy/892dwzPsYl37iU9EORymllFIxZtwnWNXV1aSlpVFeXo6IRDscFSOMMTQ0NFBdXc2UKVOiHY6KITvf/weX8zfY/Df8F16MO8ET7ZCUUkopFUPGfRfB7u5ucnJyNLlSx0REyMnJ0ZZPdcw62xp7X+9+/9XoBaKUUkqpmDTuEyxAkyt1XPR7o46Ht72593XLlr9HLxCllFJKxaSYSLCUUmqsBDqbAWiUDJLqPohuMEoppZSKOZpgjYCI8KUvfan3/Q9+8APuuOOO6AXUx1tvvcUJJ5zA4sWLmTNnTm9cr776Kv/617+Oe7v79u1j6dKlLF68mHnz5nHvvfeGKWKlxjenrw2AvalLKezcHuVolFJKKRVrxn2Ri/HA4/HwxBNPcNttt5Gbmxu27RpjMMbgcBx/nnvNNdfw6KOPsmjRIoLBINu3WxeEr776KqmpqZx00knHtd3Jkyfz5ptv4vF4aG9vZ/78+VxwwQUUFhYed6xKxQJPoA0vCXgLlpPb9gqNB/eRXVAW7bCUUkopFSO0BWsEXC4XN9xwAz/+8Y+PmldXV8fFF1/MihUrWLFiBf/85z8BuOOOO/jBD37Qu9z8+fOpqKigoqKCWbNmcfXVVzN//nyqqqr4yle+wvz581mwYAGPPPIIYCVIq1ev5pJLLmH27NlcccUVGGOO2v+hQ4eYPHkyAE6nk7lz51JRUcG9997Lj3/8YxYvXszrr78+ZJxXXXUVJ554IjNmzOC+++4DICEhAY/Hqp7m9XoJhQZ+LtBPf/pT5s6dy8KFC7n88ssBaGxs5GMf+xgLFy5k1apVbNiwoXdf11xzDaeeeiplZWU88cQTfPWrX2XBggWcc845+P1+AO666y5WrFjB/PnzueGGG4763KFQiPLycpqbm3unzZgxg9ra2qEOo1IjkhBop0OSSS1dCEDNrvXRDUgppZRSMSWmWrDu/PNmthxoDes25xam8+3z5w273Oc+9zkWLlzIV7/61SOmf+ELX+DWW2/llFNOobKykrPPPputW7cOua2dO3fy29/+llWrVvH444+zfv16PvjgA+rr61mxYgWnnXYaAO+//z6bN2+msLCQk08+mX/+85+ccsopR2zr1ltvZdasWaxevZpzzjmHa665hvLycm688UZSU1P58pe/DMCnPvWpQePcsGEDb731Fh0dHSxZsoSPfvSjFBYWUlVVxUc/+lF27drFPffcM2Dr1d13383evXvxeDy9Cc+3v/1tlixZwlNPPcXLL7/M1Vdfzfr16wHYvXs3r7zyClu2bOHEE0/k8ccf5/vf/z4XXXQRzz77LB/72Me4+eabuf322wG46qqr+Mtf/sL555/fu0+Hw8GFF17Ik08+yXXXXcfbb79NWVkZ+fn5wx5HpYbjCXbQKSnkT10IL0HH/i3AhdEOSymllFIxQluwRig9PZ2rr76an/70p0dM//vf/87NN9/M4sWLueCCC2htbaW9vX3IbZWVlbFq1SoA3njjDT75yU/idDrJz8/nQx/6EO+++y4AK1eupLi4GIfDweLFi6moqDhqW7fffjtr167lrLPO4g9/+APnnHPOgPscKs4LL7yQpKQkcnNzWbNmDe+88w4AJSUlbNiwgV27dvHb3/52wBaihQsXcsUVV/Dggw/icrl6P9NVV10FwOmnn05DQwOtrVZifO655+J2u1mwYAHBYLA33gULFvR+vldeeYUTTjiBBQsW8PLLL7N58+aj9nvZZZf1tvb98Y9/5LLLLhvyd67USHmC7XQ6Upg0uZRWkwx1O6IdklJKKaViSEy1YI2kpSmSbrnlFpYuXcp1113XOy0UCvHWW2+RmJh4xLIul+uIbnV9n8eUkpIyov31dNEDq/tfIBAYcLlp06Zx00038ZnPfIa8vDwaGhqOWmawOOHocub93xcWFjJ//nxef/11LrnkkiPmPfvss7z22mv8+c9/5rvf/S4bN24c0WdyOBy43e7efTkcDgKBAN3d3Xz2s59l7dq1lJSUcMcddwz4LKsTTzyRXbt2UVdXx1NPPcU3v/nNIfer1EglBTvocqQgDgcH3KWktO2OdkhKKaWUiiHagnUMsrOzufTSS7n//vt7p5111ln87Gc/633f0xWuvLyc9957D4D33nuPvXv3DrjNU089lUceeYRgMEhdXR2vvfYaK1euHHFMzz77bO8YpZ07d+J0OsnMzCQtLY22trZh4wR4+umn6e7upqGhgVdffZUVK1ZQXV1NV1cXAE1NTbzxxhvMmjXriH2HQiGqqqpYs2YN3/ve92hpaaG9vZ1TTz2Vhx56CLDGkuXm5pKenj6iz9OTTOXm5tLe3s5jjz024HIiwkUXXcQXv/hF5syZQ05Ozoi2r9RwPKFOuh3JALSkTCHfuy/KESmllFIqlmiCdYy+9KUvUV9f3/v+pz/9KWvXrmXhwoXMnTu3t5z5xRdfTGNjI/PmzePnP/85M2fOHHB7F110EQsXLmTRokWcfvrpfP/736egoGDE8fz+979n1qxZLF68mKuuuoqHHnoIp9PJ+eefz5NPPtlb5GKwOMHq5rdmzRpWrVrFt771LQoLC9m6dSsnnHACixYt4kMf+hBf/vKXWbBgAQCf/vSnWbt2LcFgkCuvvJIFCxawZMkSPv/5z5OZmckdd9zBunXrWLhwIV/72tf47W9/O+LPk5mZyWc+8xnmz5/P2WefzYoVK3rn3XvvvUfEfdlll/Hggw9q90AVVi7jJ+CwWlqD2TPIpZm25vph1lJKKaWUsshAlemiZfny5Wbt2rVHTNu6dStz5syJUkTx74477jiiGEa80e+POla1d01nd/ISTvryn3jvxT+w9J83seP8J5m57PRoh6aUUkqpcURE1hljlvefPuoWLBEpEZFXRGSLiGwWkS/Y0+8Qkf0ist7++cho96WUUpHmMgFCDjcA2WXzAWiv3hLNkJRSSikVQ8JR5CIAfMkY856IpAHrRORFe96PjTE/GGJdFWV33HFHtENQalxxmgDGTrAKymbhN04CdbuiHJVSSimlYsWoEyxjTA1QY79uE5GtQNFot6uUUtHgJgBOK8FK9HiodEwioXXgIjVKKaWUUv2FtciFiJQDS4C37Uk3i8gGEfmNiGQNss4NIrJWRNbW1dWFMxyllDpmLg63YAE0JBST3lkVxYiUUkopFUvClmCJSCrwOHCLMaYV+BUwDViM1cL1w4HWM8b82hiz3BizPC8vL1zhKKXUcXERwDgTet93pJaRH9gP46ggUKR1dLTzztuvM56KICmllFKxIiwJloi4sZKrh4wxTwAYY2qNMUFjTAi4Dxj5w52UUioaQkGcGMR5uAUrlDWVFLrpbDwQxcDG1tu/+xYrnz+Pd15/IdqhjJlQyGhCqZRSKizCUUVQgPuBrcaYH/WZPrnPYhcBm0a7r2h66qmnEBG2bds26DIVFRXMnz8/bPvcvn07q1evZvHixcyZM4cbbrgBsB4S/Nxzzx33dru7u1m5ciWLFi1i3rx5fPvb3w5XyErFtqDP+rdPC5Zn0nQAavdtjUZEUZHQaP2dS1r7qyhHMjaMMdz733fwh5/cBqFQtMMZE6+/8lee/cG/0dHVHe1QxsS2A4388+4LqFr/crRDUUpNAOFowToZuAo4vV9J9u+LyEYR2QCsAW4Nw76i5uGHH+aUU07h4YcfHnB+IBAY9T6CweAR7z//+c9z6623sn79erZu3cr/+3//Dxh9guXxeHj55Zf54IMPWL9+PX/961956623RhW7UvEgGOhJsA63YGWVzAag/cDgN1fiTaavFoDctolRnr6yroXPtv43VzT/iv2b34h2OGMi9PoP+Wj7Y+x6+nvRDmVMvPn6S5zc/Q+Knro42qEopSaAUSdYxpg3jDFijFlojFls/zxnjLnKGLPAnn6BXW0wJrW3t/PGG29w//3388c//rF3+quvvsqpp57KBRdcwNy5cwEr0briiiuYM2cOl1xyCZ2dnQC89NJLLFmyhAULFnD99dfj9XoBKC8v59///d9ZunQpf/rTn47Yb01NDcXFxb3vFyxYgM/n4/bbb+eRRx5h8eLFPPLII3R0dHD99dezcuVKlixZwtNPPw3AAw88wIUXXsjq1auZMWMGd955JwAiQmpqKgB+vx+/34/VEHmkP/3pT8yfP59FixZx2mmnAVbr13XXXceCBQtYsmQJr7zySu++Pvaxj/HhD3+Y8vJyfv7zn/OjH/2IJUuWsGrVKhobGwG47777WLFiBYsWLeLiiy/u/f30tWrVKjZv3tz7fvXq1fR/ALVSkeD3Weel9GnBKiibaZVqPzQxSrWHgkGmUA1AoanF294Y5Ygi72D14SqRDdv/GcVIxkYoZHAHrL+9qVWvRDmaseE5YNXechCCrqYoR6OUinfheA7W2Hn+a3BwY3i3WbAAzr17yEWefvppzjnnHGbOnElOTg7r1q1j2bJlALz33nts2rSJKVOmUFFRwfbt27n//vs5+eSTuf766/nlL3/JzTffzLXXXstLL73EzJkzufrqq/nVr37FLbfcAkBOTg7vvffeUfu99dZbOf300znppJM466yzuO6668jMzOSuu+5i7dq1/PznPwfg61//Oqeffjq/+c1vaG5uZuXKlZx55pkAvPPOO2zatInk5GRWrFjBRz/6UZYvX04wGGTZsmXs2rWLz33uc5xwwglH7f+uu+7ib3/7G0VFRTQ3NwPwi1/8AhFh48aNbNu2jbPOOosdO3YAsGnTJt5//326u7uZPn063/ve93j//fe59dZb+d3vfsctt9zCxz/+cT7zmc8A8M1vfpP777+/t2Wux2WXXcajjz7KnXfeSU1NDTU1NSxfftRDspUKO5+3m0Q4YgxWenISFTIJV8vEKNXe2VpPqnhZ61rG8sA6Du1cS8mSs6IdVkQ11Vb0vnYdiP+bOTWt3ZSLNaawoHO71S3SEdaiwuPO5I7DrbHNFR+QOWd19IIZQ12+IJWNncwqSIt2KEpNKPH9FzVMHn74YS6//HIALr/88iO6Ca5cuZIpU6b0vi8pKeHkk08G4Morr+SNN95g+/btTJkyhZkzZwJwzTXX8Nprr/Wuc9lllw243+uuu46tW7fyiU98gldffZVVq1b1tnz19cILL3D33XezePFiVq9eTXd3N5WVlQB8+MMfJicnh6SkJD7+8Y/zxhtW9xen08n69euprq7uTcL6O/nkk7n22mu57777ersvvvHGG1x55ZUAzJ49m7Kyst4Ea82aNaSlpZGXl0dGRgbnn38+YLW8VVRUAFYSduqpp7JgwQIeeuihI1qqelx66aU89thjADz66KNccsklA/5+lAq3gN/qIijuhCOm1ycUkzZBSrV3t1l395tyFgPQXBX/Y8/8Ddbfy2pHIRltO6McTeQ1NjZRKI0ckEmkmE5CjfF/8yAx0MYhyQGgce/7UY5m7Hz9yY088bOvUP/sf0Q7FKUmlNhqwRqmpSkSGhsbefnll9m4cSMiQjAYRES45557AEhJSTli+f5d7Qbqetdf/230VVhYyPXXX8/111/P/PnzB0yEjDE8/vjjzJo164jpb7/99rDxZGZmsmbNGv76178eVaDj3nvv5e233+bZZ59l2bJlrFu3bsjP4fF4el87HI7e9w6Ho3eM2rXXXstTTz3FokWLeOCBB3j11VeP2k5RURE5OTls2LCBRx55hHvvvXfI/SoVLgG/dQPD0acFC6A9pZS5TRutUu0jOKdjWXd7MwBJhXPxHnThnQBdIz2dBwHYl76M5c1/jfsWHX/zfgB2Z55MYdOT1FdsYFLutChHFTnBkMET6qQ5bQoJ7d0ED8R0za0RM8bwl/f3sTPxYXgXOP1mSBrwkaRKqTCL3/9BwuSxxx7jqquuYt++fVRUVFBVVcWUKVN4/fXXB1y+srKSN998E4A//OEPnHLKKcyaNYuKigp27bIuVH7/+9/zoQ99aNh9//Wvf8Xv9wNw8OBBGhoaKCoqIi0tjba2tt7lzj77bH72s5/1lhh+//3Dd+defPFFGhsb6erq4qmnnuLkk0+mrq6ut8tfV1cXL774IrNnzz5q/7t37+aEE07grrvuIi8vj6qqKk499VQeeughAHbs2EFlZeVRid1Q2tramDx5Mn6/v3c7A7nsssv4/ve/T0tLCwsXLhzx9pUajd4WLJfniOnBzKkk042vOWaHko6Yt6MVgKT0HGoc+biaK6Ib0BhI6q6lnWT8kxbiwU9bXUW0Q4ooX0czAI7ipQA0Vm2PYjSR19TpI5UuElIy2EMR7ubd0Q5pTDR2+Fjh6FOcZ/vz0QtGqQlGE6xhPPzww1x00UVHTLv44osHrSY4a9YsfvGLXzBnzhyampq46aabSExM5P/+7//4xCc+wYIFC3A4HNx4443D7vuFF17oLTJx9tlnc88991BQUMCaNWvYsmVLb5GLb33rW/j9fhYuXMi8efP41re+1buNlStXcvHFF7Nw4UIuvvhili9fTk1NDWvWrGHhwoWsWLGCD3/4w5x33nkA3H777TzzzDMAfOUrX2HBggXMnz+fk046iUWLFvHZz36WUCjEggULuOyyy3jggQeOaLkazn/8x39wwgkncPLJJx+R1D3zzDPcfvvtve8vueQS/vjHP3LppZeOeNtKjVZvC5bryC6CPaXa6ysnQHc5++LblZxBo6eYjK747xrp8rXRLqkk5c8AoH5ffFdPDHS1ADCpZBbNJoVgfXy3UjZ2+EiRbhyJaTR5ikjrqo52SGNif3MXU+XwTSFT80EUo1FqYomtLoJR0FMlr6/Pf/7zva9Xr17d+7q8vHzQ52SdccYZR7Qs9egZmzSQH/3oR/zoRz86anp2djbvvvvuEdP+53/+Z8BtFBcX89RTTx0xbeHChQPGAlZhix5PPPHEUfN7ksX+rr32Wq699tre930/V995N910EzfddNNR619wwQVccMEFve/z8/PDUvpeqWMRsKsIOvslWOnFs+FtaNm/jcJFZ0QjtDHTc/GdkJJJQ2oZc+rXx33XSFewE68jiYziOQB0HNgR5YgiK9hltVLmZOdQLQV4WvZFOaLIaurwkU8XHYlpeNMyyWp4FQJecI385mAsausOkI3V22VjqJxZBzaRMMw6Sqnw0BYspZSy9TwHy9GvyMXk0hn4jBP/BBiPFOy2Lr4TUzMJZU0lCS/tDfF9x98V7MTnTKawdApdJiHuW3RCdhKdmJpJg6eY9Dhvpezw+kmhG0dSOmSV48Dgq4//wh5t3X6ypRWvK42NoSk4Dm2ybpYopSJOE6w4du211/aWcldKDS9oj8Hq34KVm57Mfibhat4TjbDGVKirJ8HKONw1cl98P2Q5IdiF35lEepKHKinA3VIR7ZAiy2u1aiSlZdGZUkpusBZ6HrIdh7o7O3BJCFdiGomTrGIejdXx3UoJVgtWjrQSSsphlynG5W2Gzvh/rp1S40FMJFhG77io46DfG3WsQv6BuwiKCHUJxaR2xPedfgDxthIwDlJS0sgstgrYtNXE98WoJ9RF0JkMWCX5M7oqoxxRhNkJlnjSCGVNxUmIQGNFdGOKIJ/dYudKTierZGJ8p+FwF0FXWh7VjgJrYmP83yRSajwY9wlWYmIiDQ0NerGsjokxhoaGBhITE6MdioohAfsuvjPh6LEZbSml5Pn3x38XG18bbSST4nFTUDoDv3ESqIvvLnMe00XQbT0uoyO1jEmBGggFoxxV5Dh8rXSTAK6E3lbKeK4k6O+0Ekp3cgZFhaV0GA/+uvjvItjuDZAtrThT8whl2M/r1ARLqTEx7otcFBcXU11dTV1dXbRDUTEmMTGR4uLiaIehYkjI7iLoch09FDyYOYWk5m6CrTU4MwrHOrQx4/C10UESWQ4hIyWJSsnFFedFEJJMNyG31YIVypyCuzGAv6kKd055dAOLEKe/nU5JJhHIKLJbdA5sZ9Ky86MbWIT0jCtMSM4gOT2RHeTjjPduoFhjsHKlDUdqLkn5Uwm1C46m+E8slRoPxn2C5Xa7mTJlSrTDUEpNACG7Bcs1QAtWQt4MqICGyq1MWhC/CZbT30GXJPW+r3cXkdkZv10j/cEQyXSDOxUAT95U2AMN1TsoiNMEy+1vp0ushLKwqIR2k4i/Pn5bNkLddgtWUhqI0OCeTFlnfBduAWjr8pMp7ZCcQ5E7iwO7cihs2D3+uy4pFQf0PFNKKVsoaHcRdB+dYKUXWc9ta6mO365UAM5AFz7H4QSrPbmYXN+BKEYUWR1dXpLFCx6ri2BG0UwAWuO4VLs70E630/q8BRlJVDMprlt0jJ1gkZAGQHtKCTn+A3Hf3beruws3AfCkUZ6TTEUoH3/dxHjIslLRpgmWUkrZTG8XQfdR8yaXTcdnnHgP7RzrsMaUK9iF33E4wQxklJFOO8GOpihGFTmdne0AODxWC1ZByTT8xomvLn5bdBJCnfjtoh5Oh1DnLiSlI35bdIzPOsZ4rAQrlFlOIj5CrQejGFXk9TzTDk86ZTkpVJp87SKo1BiJeIIlIueIyHYR2SUiX4v0/pRS6nj1tGC5PUcXR8nPSKGa/Lgv1e4MdhNwHm7BcuX0lLWOz5a7rnbrIrQnwcrPSGE/eTiaK6IYVWQlBLsI2AkWWK2UOf6auG3Rkd4EyzrG7typADTuj8/vdI9QV0/LXSrluclUmHzc3kboao5qXEpNBBFNsETECfwCOBeYC3xSROZGcp9KKXW8TMAPgHuALoIOh3DIXURKR3yX8E4IdR2RYKVOngFAU5w+N8jbYZfwTrQuvh0O4ZBrMslx3KLj6VPUAyCYXoYHH6YtPlt0nD0JVoJ1jNMLrW6gzXH6ne5h7HL8eNLIT0tkv2Oy9V5bsZSKuEi3YK0Edhlj9hhjfMAfgQsjvE+llDouxm7BcrmPriIIdql2X3yXaveYbkKuwwlWnv3coO5D8Vmq3WuX8HYlpfVOa08qJse3P1ohRVxivwTLlWsVkmqric9j7PQfmWAVlM4gaARvnH6ne/UmWKk4HEIgo8x636gJllKRFukEqwjoW36q2p7WS0RuEJG1IrJWS7ErpaJJAt0AJCQmDTg/mDmFRLyEWuK36EOC8RJyHb74LpiUQ71JxzRVRC+oCPJ19qkwZ/NnlJFm2jGd8TfuLBAMkYQX40rpnZbW00q5Pz7HF7oCHXRLEjisS57J2ekcIBea4/vxAw5/h/XCHnvmzrW6+xKn57JS40nUi1wYY35tjFlujFmel5cX7XCUUhNZ0EfIyIDPwQJw5fVciMbv2I0k0w3uwwmm2+ngoHMyiW3x2TUyYFeY86Rk9E5z5lhjdFrjsEWnoztAMt1IwuEkOq94OiEjcdtK6Q524u0z5szldHDIOZnk9vhNsIIhg6u35c5KsCbn5VBvMjDagqVUxEU6wdoPlPR5X2xPU0qp8Sfow4cLcQz8pzHdfihrc/W2sYxqzJiAD7cEISHliOnNicVkeeNzTFKwN8E63IKVWjAdgMaq+DvO7V2duCSEw3P4GJfkZXGAnLi98PYEO/A5ko+Y1ppcQrY3fi9HOnwBUqTLemO3YJXlpLDPTMJXr6XalYq0SCdY7wIzRGSKiCQAlwPPRHifSil1XCTow8fRJdp7TC6Zjte48NXG5+D4LrtkufRLsHxppeSG6sF+EHM8CXZbnzm5TwtWTolVBKHrUPxdiHZ1tAKHqyYCJCU4OejIx9Menw+U9oQ68btSj5jmTy8jw7Ri4rSiXlt3gFR6Eizrs5fnpLDP5OsYLKXGQEQTLGNMALgZ+BuwFXjUGLM5kvtUSqnjJUEvfhkiwcpKoZpJcfssma4OqzXH6TlyDJojewoODK0H4y/hMD5rnEpiSnrvtOL8SdSZ9Lhs0ek5xj1VE3u0eIrI6I6/Fp1QyJBkugi4j7xp4MixCnu01sTnuLO2bj+p0o1BwP7sZTnJVJlJJHTUxOXNEqXGk4iPwTLGPGeMmWmMmWaM+W6k96eUUsfLEfTiH6IFy+V0UOsqIjVOS7UfTrCOvPhOsrvM1VfGX5c54+1ptevfolNAQhyOO/N2Wi1Y/RMsb1op2aFG8HVGI6yI6fIHSaGbUL8EK3Wy1UrZWBWf4ynb7RasoCu5t7hHYWYS1eQjGGiOv++2UuNJ1ItcKKXUeCFBH34ZuMBFj7bkUquEdyg0RlGNne6ekuWeIy9Gc0pmA9B+MP6KIIivAz8u6FfYpMlTREZ3/I0766mamJB05DGW7HJrfkN8PUi7wxcglU5CCWlHTM+1Hz/QVRt/32mwugim0EWoz40Dp0PoTrNLtcdpK7xS44UmWEopZXOEfASG6CII4LdLtZu2+CvV7uuyusu5k45s3SgqKqPTeAjG2cU3gCPQQReJR03vTi0hJxh/48789jH2JKcfMT1xklXCu6EqvsYXdniDpEj3UYVbigusbqChOPxOA7R5A6RKV28FwR49FTK1VLtSkaUJllJK2UaSYLnzrO5yzXFYqt3X1dO60a+LoMfFAcnH3Rp/Za0d/k68jgGee5Y1FSchvA0VYx5TJAXsLpF9qyYCZBVbXebirZWywxsglW7Ec+TnTXQ7OeiYTGJb/H2nwR6DRTfSr7tv1qQiOo0H0xifiaVS44UmWEopZXOGfAQdQ3cRzCiZA0BTHI5H8tsJlic57ah5TZ4i0rvir8ucOzhwgpWYb93pj7cWnZ7nfiUmHXmMCycX0WaS8NfHV9exrq4uPOLHkTjAdzqxOC4Le4BdRVC6cCQd2VJZnptKpZmEry7+CtYoNZ5ogqWUUjZXyEdwmBas4tJpeI2L7tr4qz420EN3e3SmljApUAPGjHVYEeUKdOIbIMHKtJ951hZnVeZCg7Rg5aUlUs0kXC3x1aLT3dECgDMx/ah53rQyckL14O8e67AirqfIRf/EsiwnmUoziWCctcwqNd5ogqWUUjan8RMYpgWrMCuVKvJxNMXfHeCei+/klKMvRk1mOYn46GqKr7FnCaEuAq7ko6ZPLiqn27jxx9ud/p6qiZ4jj7GI0OAuJLUzvp6F5bOrJrqTj/5OYz9+oDMOn3fW1u0nzdF91HEuy0mh0kyyKmTG2c0SpcYTTbCUUsrmCvkJDZNgORxCXUIxKXFYqt3YLVhJaUe3YHnyrbFndfviq2tkYqiLgPPoBCs3zUM1+TjjbdyZz0qw8BzdZa49pYRcf01cVcgM9JSlHyDBSsq3CnvUV8bfeMo2r/2g4YR+BWsyk6iiAFewC9proxSdUvFPEyyllLI5jY+Qc+gEC6ArtYxJ/gNxdSEKgK+DkBHcA4xXySycAUDrgfgak5RoOgm6U4+aLiLUJxSS2hFfLTpOXzteEsB5dFfYQOZUEvBjWuLnM/u7rC6CnuSjbxrk2OMpOw7GVzdQgLYuPyl0HZVIJ7gcdKSUWG/i8EHaSo0XmmAppZTNbYZvwQIw2VPx4KO7KX4uRAHE306nJILIUfMml80kaARvXfxUHwsEQ6TSiUk4OqEE6Oxp0YmjrlROfwddMkDVRMCd3/Pw3a1jGVJEhYYYV1hUVEybSSJYH39dBLu7O3ERBM8ANw+yyq0XWqpdqYjRBEsppWxu/JgRtGAlFVgXoocq4udCFMDh76B7gGdCAWSmpXJQcnE2x89d73a7G5UZoAACAFnlJNGNr+Xg2AYWQa5AO15HyoDzsoutFp3meEqw7DFn7qSjj3F6UgL74/TxA8Euq2sknqM/d8qkqQQRLdWuVARpgqWUUrYE/BinZ9jlcktnA9BcHV/jkZy+DrodR49H6nEooYS0joqxCyjC2trb8UgAGaBLJICnwKokeGjvprEMK6LcgQ58AxT1ACguLafdJOKvjZ9uoMZrtWAN1JID0JhQRFocPn4g2G0nWAlHf+7ivAxqTA6+OGqNVmq80QRLKaVsbuPHuIZPsErKZ+I1bvyH4uuhrK5gB94BCj70aE+dwmR/Vdx0metsawbANUgLVmbJPABaqreMVUgR5wl24ncN3IJVkJFEBYW4muOny5z0JliDdANNLSUvcBCCgTGMKvJ6CtYMlFiW56SwL5RPoD6+/n4pNZ5ogqWUUoAxhgT8MJIugh43BxwFuFvi6w6wK9A5YEW9HiZnJsl001YXHxUUu9oaAXAmZw44v7h8Bl0mgWBt/FSZ85hOQgMU9QC7sIenhPSO+Oky5/B1WC8GGWcXypqKmwC+xvj4TgOEQganz27BSsw8an55bjIVpgB3HHX3VWq80QRLKaUAv9+PUwyMoIsgQFNiMRld8VXkwhPqJDhI6wZAcqHVZa5278axCimifPZDaBMGqDAHkJHsoVIKccdJi063P0iK6SQ0QLexHp1p5eQGayHgHcPIIscVaMOLB5yuAecn5Fvf6YZ9m8cyrIhq8wbIwE4sk7KOml+clUwFBST4W6CzcYyjU2piGFWCJSL3iMg2EdkgIk+KSKY9vVxEukRkvf1zb1iiVUqpCPF2WxckMoIuggDd6eXkB2oIBYORDGtMJYa6CLoHT7ByyhcA0B4nXeZ6EixPauagy9QnlpHVFR8tOq1dflKle9DWHABypuPA4I2T7q9uXwsdzsE/b2axNZ6y7UD8jKds7fKTKfbzzgZIsBLdTlqTSq03WuhCqYgYbQvWi8B8Y8xCYAdwW595u40xi+2fG0e5H6WUiihvVxcADvfIEixnznQSxU/d/vi4QAmGDMl0YYZo3SgumUK7SSRYFx/PDQp0NgOQOESC1ZU2hbxgLfi7xyaoCGrt9pNKF47EwY9xymSrRae+Mj6SaE+glW7XIFUigcLiUqtUe118JJQALV1+Mhk8wQIIZk21XjTER+usUuPNqBIsY8wLxpiekaFvAcWjD0kppcae127NkMFKdveTWmSVtD5UER8V5trtizIzyAUZgNvlpNpZTFJLfFyU9VRaS0kf/DNL3gychGg/GPuV9Vrb2kkSH47k7EGXyS2bC0D7/vho0UkOtuJzD9wFFCAvLZF9TMbdHB83SuBwC1bIkQDugZ95ljhpGkEc0Bgf57JS4004x2BdDzzf5/0UEXlfRP4hIqcOtpKI3CAia0VkbV1dXRjDUUqpkevusC62nYOU7O4vf5rVXa5zf3zc6W9rbcItwUHvePdoTiojpzs+CgKE7ARrsDFYAMmFViJdHwel2rtarf9jnam5gy5TWlhAncmIi1bKYMiQGmrHnzD48e0p7JHRGR/faTjcghVMzBzwoeEAJXmZHAjl4DsU+8dZqfFo2ARLRP4uIpsG+LmwzzLfAALAQ/akGqDUGLME+CLwBxEZ8LawMebXxpjlxpjleXl5o/9ESil1HPx2dzFn0uAXY33lTCqmlRSoj48LlI4W6+LbkZIz5HLezGnkmzqC3e1jEVZEObqsAf4yRFI5acp8ADoOxP7Dd312gpWQNniClZbopspRRGJL7FeYa+nykyEdmAEq6fXVmVZOTpx0AwWrK2imdEDS4C2VZTkp7DUFBOKoa6RS48mwCZYx5kxjzPwBfp4GEJFrgfOAK4yxHo5ijPEaYxrs1+uA3cDMiH0KpZQaJX+X9dyYhOSRdREUh4MDrhJS2+Kji423tR4AV+rgF2UAbrvqWm0cdI10djXQImmDVpgDKMnP44DJhobYT6QDbdYxTswY+mZmU1IZOd2xX9ijudNHJu1I8tCtsr2FPeIk2WjqtLoIDtUVtLdUe8veuHmunVLjyWirCJ4DfBW4wBjT2Wd6nog47ddTgRlA/HRwVkrFnWCXNQbLnTKyFiyA1tSp5Pvio2uRz7749gzRugGQUWKN0WnaF/tdIz3eRtqdmUMuk+BycMBZTEpr7LfohDoaAEjOnDTkct6MqWSY2C/h3dzaNuyYM4CUydb937o4+E4D1LV5yZZ2nCmDf+7SbDvB8rdBZ8MYRqfUxDDaMVg/B9KAF/uVYz8N2CAi64HHgBuNMbH9l1opFdeCXdZ4nMQhxuP0F8ieTi7NtDXXRyqsMRNoty6yEtOHbt0onDKPkBG8B2O/CEKSv5ku9zCtG0BLSjl53sqYv9Nv7AtpT9rQx9g5yWqlbInxcvyddpdId+rQxzivt7BHfDxQuq7NS740Q2r+oMskJ7hoTiqx3mglQaXCbrRVBKcbY0r6l2M3xjxujJlnT1tqjPlzeMJVSqnIMF6ri+BQz0TqL3GyVQDh4O4NkQhpTPnbrSQxI2fwizKArMwMDkgezsbY706VFmrC6xm6dQPAnzmdFDoJtR4cg6giyG7BYpgWnfRiK+FojPGH73qbawHwpA/9nS4vLqTOpBOMk/GULW1tZNAGaZOHXK63VLtWElQq7MJZRVAppWJWqNtKsFLTRt6ClVNmFUBoqYrtC1GAUIfVySAlY+guggB1CaWkd1REOKLI8gdDZJpWgolDF/UASCiwWnQaKmP7OEt3Ix2SDE73kMsVls/Ca1x018R2YQ9f434AUvNKhlwuOcHF/jgp7AEQaq2xXqQPnWAlTZpKAIe2YCkVAZpgKaUUVoLVYTwkehJGvE7hlNn4jIvgodjvWuTqrKWZtGEvvgHa06ZQEKiGUGgMIouMprYusmiHlOETykx73FlzjCdYyd11tLqG/7zFOWnsowBnjLdsBFsOAJCcM/wjOpuTSsnyVkU6pDHhbLdbWtMKhlyuJDeD6lAegfrYb41WarzRBEsppQC8bXRK8jGt4nYnsN9ZSGJzbF+IAiR319LoGtmjMkzODJLw0loXu5XmGmqrcYjBOUz3MYDi8ul0Gg++2thOpLMCh2jzDH3RDeB0CLXuUtI6YrtFR9oPEkKQYRINAF/GFLJDTZjuljGILHLauv2k+uxniqYVDrlseU4KFaYA/yFNsJQKN02wlFIKcPjb8TqOLcECaEwqI6e7IvwBjbF0by0dI7j4BkgunA3AoYrYbdFprrEuKlPzpw27bF5aEpUU4G6O3WK4Xb4g+aYOf+rQ3cZ6tKdNIc9/AIL+CEcWOZ6uWlodmSNqlXXlzQCguTq2k+iqxi4KxK4pNkwXwbKcZPaaAtwte2K+gItS440mWEopBXj8LXQ50455ve6M6RQEDxLwdkUgqrERDBlyQ/UjvvjOKe2puha7Y3S6DlUAkF00Y9hlRYR6TwnpnbHbYre/oZk8acGROfR4pB6hnOm4COKvj93W2WTvIdoSRtYqm1ZsFaxpiPHCHpWNnUyVAwQSs2GIB2iDlWBVmAJcgU5oPzRGESo1MWiCpZRSQFqgkY6E4cen9OeaNAuXhKitiN1k42BdPRnSgTNz+LEqAEUlU+k0HoIx/GBW01QBQFr+lBEt35k2ldzAQQj4IhhV5NTvt1rfEnPKRrR8kl0hsz5GWym7/UHyAzV4U4pGtPzk8tmEjNB5cEeEI4usqsZOpjlqIHfmsMumJbpp8NjnfIyPt1NqvNEESymlgKxQI97EY0+w0kutSoIN+zaFO6QxU1dlXVQm5ZaPaPkEt9MaexbDVdfcbVU0SSYkjLBbaM40XIToitHxKq37rWOcWTh9RMvnllvf67bq2EywqutbKZVDBLOHb6EEKMzN5gA5SIxX1NtR28Z0Rw2uScMnWADBTLtUe4x/bqXGG02wlFITXtDvJYs2AkmTjnndwqkLAPDGcEnrzv3WRXR6ybwRr9OUWEpWd2WkQoq4jM6Kw3fvRyDFHndWF6MtOsFaK+7M8oUjWr68qIBak0moLjZbdGr2bsEtwd6WuOE4HMIhdzEp7RWRDSzCqqoryaFlRC1YAIl5ZQRwaguWUmGmCZZSasKrr60GwJkxsiIPfWVkZnKQ3Jh+8G7o0DaCRnpbLUbCmzGF/OBBQn5vBCOLjPZuH1ODFXRmjeziGyC33Bp31nYgNosgJDbtoMmRhYygLD1AeqKbKkcRiS2xWdijsXILAJPsGyAj0ZZSxiRfVcwWfOj2B8msf896U7xiROuU5KRTGZpEKIbH2ik1HmmCpZSa8BoPWs+/Sc4euqzxYOoTCknurA5nSGPK3bCdWudkXIkpI17HkTcTpxjqq2Iv4di7aytp0oWrcOQX32VFRdSbdEIxOO4sEAyR17mbpuSpx7ReY1I5Od37YjLhcNauJ4iDxMK5I14nmDWNVDrxtcZmwYf39jWxRLYTcrhh8uIRrVOak8JeU4A/Br/XSo1nmmAppSa89norwUrPPb4EqyO5hFz/gXCGNGaCIUNp11Ya02cf03ppRdby9fu2RCKsiKrf/iYAeTOWj3idRLeT/Y5CEltjr0Vne1Uts9hHoHDZMa3nzZxGmmmHjvoIRRYZxhjymjdwwDMNEkZ+0yCxwOpWF6uPH3hpay1nONdjileCO3FE65RmJ7PP5ONq3huTibRS45UmWEqpCS9od4/JLjm2JKNHIKOMXJrxdrWFM6wxUblnG5OlAX/xqmNar2CKNV6rsyb2WrCk4g06SCJvxgnHtF5zchk5MTjurHrja7glSPbc1ce0ntsulNC6P7aS6IpDLcwN7aQrf8kxrZdVYrV2NVXF3njKDdXNfLDuDabLfpwLPj7i9XqeheUMdkFbTQQjVGpi0QRLKTXhOZr20EIKaVnHXuQCwJ1rlfo+tC/2ko3K9/4GQP781ce0Xl5ePg0mHWmIra5F/kCQKW3vsi91MThdx7ZuxhSyTROmuyUywUVIaOdLBHCSM/uUY1ovw26lbKjcFomwImbH2hdJky7S5511TOsVT5mJ3zjxH9oZocgiY1tNMw/+6jt8J/Qzgu40mDfyBGtSmof9Dvv5d1pJUKmw0QRLKTXhJbXto9ZVjIgc1/qpBVbp6+b9sXVhBpC0+6/USQ6FM0c2KL6HiHDQXUxyjFVd2/DevyjjIMw8totvAKfdohNLCUdju5e5La+yL2MFkphxTOtOKp2B3zjxxlhp+tCWv+DDRcHic49pvbTkJPZLPu6m2Eo0Nr32FN9338dsRxXOs+6A5OwRrysi+DPsZ8E1xl73V6XGq1ElWCJyh4jsF5H19s9H+sy7TUR2ich2ETl79KEqpVT4GWPI81XRkVp63NvILZ0FQPeh2Lowqzt0kIXda9lfcCY4jv2/g9bkUqvqWgxpfvN3BIyDqaddcczrZhRZVQebKmNnjM47rz9HmdSSuOjiY163KDuNapOLoyl2nndWUdvICe1/Z1/OaeBJPeb16z0lpHfFTjfQQDBE+vY/WW+u/xus+PQxbyM5t5QgDmiJ3UI9So034WjB+rExZrH98xyAiMwFLgfmAecAvxQRZxj2pZRSYdV4sIoCGvDnjbyiXH+5uZNpN0nQXBG+wMbAlud+SaL4yT3t345rfV/GFHJME4EYGXt28NAhVjT+he3Za0jMzD/m9fPKrC5z3THShSwYMqSuu5c2SaHw5E8d8/qJbicHnYUkt++LQHSR8cFf7iVb2sldfeNxrd+ZOoX8wAEIhcIcWWT84911rAm+ScX0a6D02MZR9ijKyeCQycK0xNbNEqXGs0h1EbwQ+KMxxmuM2QvsAlZGaF9KKXXc6ra+BoBn6knHvQ2H00GNswBPW+xcoDQ3NzK/4gG2Ji6heM6xFXvo4cqxyn7XV8XGw2g3Pnon6dJJztlfOa71J+dkctBkI40V4Q0sQv7x9z9zSuAtDs6+FjmO1hyA5qRisrz7Y6LC3L4DB1lZeR+VSbPJmn/sXUABgtnTSMRHZ/34b8XyBoIE//4djAglHz2+7zRAcVYSB0w2gSZtwVIqXMKRYN0sIhtE5DcikmVPKwL6XmlU29OOIiI3iMhaEVlbV1cXhnCUUmrkuvf8C69xUzbv+O7+9mhJLCKrO3YuULb+9gtkmVaSzr3zuLeRVjgDgMbq8V/cY/2bL7Cm7g9szP0IBbNPPK5tuJwODjonk9Q+/i++a+sbmP6vr3DIkcf0C7923NvxppWRYjqgszGM0YVfMGTY9eCtTKKJ1At/CMc5njKxwPpO1+0b/91An3/0Ps4KvMqBuZ/BmVVy3NspykrigMkh1Bw7N4iUGu+GTbBE5O8ismmAnwuBXwHTgMVADfDDYw3AGPNrY8xyY8zyvLy8Y11dKaVGJe3QOna4ZpCZnjaq7XhTiskNHYqJO/3vPPdbTmx6hrWFn6J80YeOezt59tizrtrxPfasct8e8v72OeoduUy7+uej2lZLT4vOONbe5WXXfVdTbGoJXPArJDH9+DeWbbVSjucH0Rpj+OvvvscZnc+xY9q1ZB9jtcS+MoutUu3tB8b3TYPX//UGp2+/k8qk2ZR//K5Rbas4K4n9JhdX+4GY+PulVCwYNsEyxpxpjJk/wM/TxphaY0zQGBMC7uNwN8D9QN/bKcX2NKWUGjdC3k5KfTtpyFo86m1JZglJ+GhtGN/Pkvng9WdY9PaX2OWeyeJrfjCqbeVPmkyLSYFxXAShunIvgQcuIItW/B//DcnpOaPani+tlGzTBL6OMEUYXm0dnbzzkys42fsGOxZ+mcLFHx7V9pLyrRadpv3jM+EwxvDXh/6bc/bezY60Vcz+1PdHtb3Ckil0Gg+h+vE7zu71f/2TWX+7gqDDQ/71D4MrYVTbK85M5oDJwRnyxdxDpZUar0ZbRXByn7cXAZvs188Al4uIR0SmADOAd0azL6WUCrf9W/6FmyCu8uPrMtZXgv0srPrq8Xun/+0nf8acv1/HQedk8m78MwmJyaPansMhHHROJrFtfHaZ2/D2y7h+cwYF5hC15z1AyYJTR71Nhz3urK1m/B3nfZUV7PjxuZze/SI759zM7Iu/OeptZhfPIGSErprxN86uq6ubl37+Oc7ddQd7Upcw/XOPIaNMNjKSE6iUySQ0j7+bBqGQ4dk//YZFf7sYt0NwXfcXPHlTR73d9CQXzS77GYBa6EKpsDi2pywe7fsishgwQAXw/wEYYzaLyKPAFiAAfM4YExzlvpRSKqwatr1OCVCyaPWot5VeYCVYbQd3A6eNenvh1N7axMYHbuHExqfYnLiYkhv+RHrO8T1Uub/WxEImd4+vZKOzq4u3f387p+y/nyZHFk2X/pkpx1nIo7/kgumwGRqqtpFWtigs2xwtYwyv/fn3zF/3TQqkk+0n/Bezzv1sWLZdnJfJAXIIjbNnJG364F0cT3+WM0M72FzwMeZ++teIyxOWbdcllDCja3x1e62qOcT233+ej3Y+T3XidHI/8wSJuWVh2baIEEwrgnasUu1FS8OyXaUmslElWMaYq4aY913gu6PZvlJKRZJ7/ztUUEhZ8fEPEO+RW2Q9bNjXMH5KWhtjWPfSnyh+4+ucYOp5p/BTLL3uv3ElhOdCFMCbXkZ+xz8xwQDiHO09u9ExxvDBa0+R8eq3WGOq2JD1YaZeey+pmblh20dOqVWqvePg+Egqt2/5gLanv8KHvG+zzz2FwCefZta0JWHbfn5aIm+ZAspax8f3uqGhno1/+AYn1/+JbvGw/dSfMu+Ma8K6j87UUnIb/wnBAET5O93p9fPa479kyfYfczrNbJ12HbM/eTfiTgzrflzZJVaC1aqjOZQKh+j+5VBKqWgxhqL2jWxOPYny46w41ldWTh6tJhmax0d3uZ0b36b9L99gufddKh3F7Dj3MVauODPs+3FkT8V9MEh9zR5yi2eGffsjtX3TWlr/8i1WdP+L/ZLP9tX/w8LVl4d9P8WTC2k2KVFv0andX8H2x/+DExqeJihO1s/+Iosu+VrYWnF6OBxCfUIRC7reCut2j1VrRwfvPvlzFu76Jatp5oNJ5zP9k/cwK3vy8Csfo1BWOa7GEP6mSty5o++CdzwCgSCvvfA4ue/ewzlmBxWJs2j42IPMmXP8BTyGkpmdT2elh2R92LBSYaEJllJqQmrYt5kc2ggVh+cRfSLCIWc+no7o3gE+WLWbqse/ybKm5+mQJN6bdSsLP/5VXJ7RjbcaTFLBdNgC9ZXbo5JgVe1YT82f/4NlrS/hFQ/rpn+eBZd8naLEpIjsLznBxV4pICFKLTq1B/ax+8nvsPTQk5xEkC155zLlsrtZnFcasX12pJaR1vw36GqGpMyI7WcgPYnVnF2/5gzq2e2Zg/f8B1k0f/Tj6QaTmDcddkNj1TbyxzjBMsbw3j+ewf363Zwe3EKDI4eKk75H+Rk3gCNSjy6F4uwUDoRyKGvYhztie1Fq4tAESyk1IVVveJUcIG9u+MZLtXoKyPYeCNv2jkVdTSU7n/guSw89TjaGtwsuZ95ld7I0Oz+i+80ttkq1j3WXuX3b36fu2e+wpOUlckhgXdGVzL3kGyyLQItGf02eIqZ3jW2VudoDlXZi9QQnEGB99tkUnn87C6fOi/i+Q5ll0IxVLTIpfN0Ph9LW0cG7T/6CWbt+zRnUscczh4o1P2LaCRcc9zOuRiqjyLpR0Fqzi/yx+bhWd95//AXPG99jWWAjdZLNlsXfZM5HbybHHZmbBX31PAurqKlSEyylwkATLKXUhBTc9xbNJoVpc8M3oLs7pYjcrvXWs2QifBHYo/5gJTuf/E8WH3ycE/DzQdZZFF50FyeWzR6T/ecXT8VnnAQbxqbLXMU2K7Fa2voSeSTwTuEVzLzo66ycNOCz7COiK7WU3IaxGaNTW1PJrif/k6W19vHNPpvJ53+LZVPnR3S/fSXkTYcK6Dy4k+TCyGYcbR0dvPvUL5i189ecTh27PXOoWPNDpo5BYtWjoHgKXuPGVxf5QhehkOGd154l8Y3vsTywgQayeG/u11hw4RfIi1Cr80CKs5LYbHI5oW3jmO1TqXimCZZSakLKbVrP3qR5LHGF78+gySghtb6LjpZ6UjIj++D0+ppKdj31XRYffJyVBHg/8ywKL7idpdPG7sIbICHBTaUjH3dLZLvM7dn6HvXPfZdlrS8xiQTeLbySmRfdxoljmFj1MFlTcDUE8Tbuw5M3LSL7OFRTxc4nv8uS2idYhY8Pss5i8vnfYum0BRHZ31CyimfCu9CyfzvJESow197ZxTtP/ZxZO/6H06ljj2c2e1f/kGmrxi6x6lGQkcxe8nA2V0RsH6GQ4a1/PEfiP7/PqsB6GiWT9fP+nXnnf4GliSkR2+9gijKTeMHk4umuB383hLmIhlITjSZYSqkJp7XpEKWhKqryzwvrdhNyymG39SysSCVYhw5Usvup77Ck9glWEGBd5tkUnPcNls9YGJH9jURTQiFp3ZEZe7Zry3s0PPddlre9RAEJrC26kpkXfZ1VeYUR2d9IJOZPg13WuLOiMCdYtTXV7HzyuyytfZxV+NiQ9WEKzv8WS6dF7/iWFeRx0GThrwt/N9CjEquE2exdcw9TV31szBOrHg6HUOcqpLAj/AUfgiHDmy8/TfKbP+Kk4Ac0SQYb532VOed/gcWJqWHf30hlpyRQ77T/ZrXuh5zI3DhQaqLQBEspNeFUvP8KC4GMGeGtyJWabw2Ibz24G+aP/uHFfdXsr2DvU99l6aEnWUGQ9VlnMfn8b7IyCi0a/XWmljK1YUtYu0bu2LyOxue/y4q2lym0x1jN+vjXOSE3eolVj8wia9xZW80O4CNh2eaB/ZXsevpultU+xkn4+CDrTArO+xZLpkf/WVulOcmsN/kUNYevlbK1o4O1T//yiMRqz+p7mHrix6KWWPXVllxCTtvmsH2nA4Egb770BBlv/4hTQltolEw2z/8Ks8+7hQVRTKx6iAi+1GLoxKqEqgnWmDLGEAgECPh9+AM+gv4AgYCPQCBAMOAj4A8gxg+hEIJBREAcOBwOEKf9XhARxOFEHIJTnIjTgcvpQlwunA4nTqcLp9OJy+VCHC4Qx7g43+KRJlhD2PHeqzSsexICPiTkQ4L2T8iHI+THEfTjMH5cIR8u48dp/AgGByHEWCeBwwSPnkao98d6RjOAYJ82YP9roM977Gl9lhGx15Yj50nPMhDCqjrUd3rf9TlqPXt74uidB/S+t+b17NNxxDrWa2t/IzlfjTl6mmAYYPKI1u+JZOD1j5460PrD7XugmPvueyTL9o+o77pmoAWG3cIwc4cLZLi9DLG+HBXFAMuagecOebxG8Lsb6Hc+5Op9JhaYQwRwMHVxeCuR5RRbz8Lqrq8I2zb3V+1l79P/yfK6J8kjyAfZ51B4/jdZPgbFDUYsq5y0hk5aGw+RnjO6oho7PniT5hfuZln7PyiWBN4rvopZF32dlbmRL14xUpPtMTr+MIzRqazYyb5n7mZ5wzOcgp+NWWcw6bzbx0Vi1cPjclLnLmJ25/pRb6upuYX3n/4Jc/c+wOk0sCdhFrtX38O0cZJY9QhklJLS1oXpqEdSj7812h8I8ubf/kjOup9wamg7dZLDlkXfYPZHbiZ7DMdYjYQj006wtFT7iAUCQVpam2lrOEhnSz1dbY142xoJdjYR7GzC4W3F5WvF7W/FFezEGewmIdSFO+QlIeQlgW4SjY9EvHgkgBuIfEmTIwWNEMJBUHquTJ0E+16p2tON/frwv84+750YcVg/9Ly2/kXs+X23Jc7ebfdeNx5xsdD3f3HrdYsrF8dZd3L67MgWbgoXTbCG0LR7LSuqf4cPNwFx4ceNHxcBcRMQN0FxE3RY//ocyQTF1fuF6vlSWYmJ00o+xNl7t8CI0y656qAndcIc/rfvNEuf93aiZgCxlz28Tsj+Lh7enpieRM6AwV7mcAoH9CZ/AmAMDgxCsHf/Yg5v+4h0r2+sve8Hu3SWAV4dPXuwy2YZ4l0P02/+EUsd1//dx7DSMBcHw23JjCrmIRbsN2ugMM1wx2bIbR/bL7b/0qb/kT32AI7tMAGQyc78s5iTmnEsOxtWbm4B7SYxLM/C2r9nC/v+8j2WNTxLPkE25JxL0QXfYln5nDBEGl4Jk6bDLqjdt/W4EixjDFvefRn/K99ncddbtJPE+yVXM/Oi21iRM34Sqx65aYnsYRKuUYw727tzEweevZsVTc9RiGFTzjkUnn8bi6ZEryvgUDpTS8loeQl8HZBw7GOE6hrq2fjUj1hY+SCnSws7ExfQveYnTF153rhKrHo482ZCNbRUbSZzzupjXt/r9/P28w8y6f2fcZrZTa1jEluW3sHsc24iL2F8jm9Kyi0ldEBwTPAEyxhDc3s3jbWVtNZW0N1Yjb+lBtoP4eisw9PdQEqgkYxgM9m0kCM+cgbZVgAHbaTSISl4Hcn4HR4CrlS6nXkYVyIhVxLGnUTImUTImQhON+J0Iw4nON04nFZLkzhd4HAR6rn5bV8LYgzGhKzXGCRk/dszzYRCmFAQEwpCKIgxQQiF7H/tn97XIeu1CSL2cmK/x1iNBNY8a/pg/zpMCDEBHHjt68kQLnM4ZXP2aWToSd36X7vBkdcGBjCOyexu9UbikEeEJlhDWHnxF5FPfFl/SUqpEXE4HdQ5J+FpqzrubVRsfpuGv32fxS0vkYeTjXkfofT8b7B0jKoCHo+sohkAtB7YCUtXj3i9UDDEe/94moQ3f8xC/wc0k8pbZTcy76IvszzCRUJGQ0SoTyiksOPYE6ytG9+l5YXvsbz1JYpwsCn/Asou+DqLo/iQ5pFw5kyFFgjU78ZVOPIk8MDBA2x/+gcsOfBHTpcOtqWuoOvMf2fGkg9HMNrRSypbAu9Dy+53jynBau3oYN2f76Nk+/2cZiqpcRSwdcV/Mvusz5DvSohcwGFQmJ1OrckitzG+n4UVChnqmluoq9xBW81OfPV7MS3VJHTUkOqtJSdYRz6NZEnoiPUCOGiRDNpcWXQl5VDvmUZNUi6kTMKRmktCajaJaTmkpOeQkplLakY2Lk8qWSJkRemzxpMiIDxPrRwbmjsMQSL4UD+lVHyqS55GacfmY1rHhEJs/tdzBP75UxZ3vU2eSeSdgk8y42P/zrLJ5ZEJNIwKpszDa9xIzfsjWt7n7eb9539D5ob7WR7aRT1ZvDvzi8y/4BZWhblVMVLaMucwuW4doa4WHElDxxwMhnjv1SdwvH0vy3zv0omH9YWXM+1jt7E0P3IPCA6nnNI5sAcO7vqA4mESLGMMmzeuo+mln7C8+a+sER+b0k+h45yvM3veyWMU8ejMnjadGpONr+q9ES1/6NBBNv/5J8ytfJg10kSVq5xtK+5h1pnXMdkZG+lKUVYS+00uGY2x/yysUMhQU9/Awb1baT2wHX/dblyt+8jsqiI/cIDJNJAvh9tNfLhocObR7smnMWUF9amFSGYxibllpOaVkjWplKSMPHIcjkFbq5TqSxMspZQKI1/eQgraX6G9sYbUYR5629raxJbn7yN/+++ZH6qkmTTeKruRORd8kRNHOZZpLCUnp7DBNZPMQ+8OuVzNgSp2P/8zZlc9wgk0U+ko5oNFtzPvIzexYpyNRxmOe+qpuOp+R/XGVyleeeGAy7Q0N7Pxb/dTuO0BVphKGsjkvak3MfP8W1ieVTC2AY/S1Hkn0PpKMh3bXoLTrhpwGX8gwLsvP4l77f+wwvcuXtxszTuHyed8kfnTI1TfPULy0jy85prJvPq1gxa6MMaw4b03aXr916xoeo414mVbyjI6T7uFKSecPy67Pg6lOCuJKpPLvDAWM4m0bn+QvQcOcWjPejqrt+Bq3E5G224K/fsoljr6PsShRdJp8BTTlLmc+swpuCdNI23yTPJKZpKYkc9kvamuwkgTLKWUCqOUKStgL1R88Brz11x21HwTCrFj/es0/vO3zK9/jlXSxW7nNN5d9B0WnH0dq5KjX1HseDRNWsW8A7+htXYf6fllvdN9Ph+b/vE45v2HWNDxLyZLkI1JK6g54Ubmn3YRpQ5nFKM+fjOWn0H3W26a1j1+RIJlQiE2vfMybW/+HwubX+IU6WKPayobFv8X8866npxxOv5mOKV56bzuXsy8g/+AgA/6dHer2L2NfS/dx/QDz3ASh2iUDNZPu4kZH/0Ci4e5yTCe1RedSU7ld+jY8xYp0w5XBa1vbGTrS78ne9sfWBTchg8X23LPJO/DX2b27BVRjHh0ijOT+HuomAs7/gXdrZCYHu2QevkCIfYdOMjB3R/QWb0JR/120tt3UxyoZI7U0zMy1YeLWncpLTmLacyZSWLBbHJLZ5NVPJOMpExio31cxQNNsJRSKozmrDidlpdS8K//E/RJsKp2bWLfaw9RWvU0s8x+vMbN5swPkXbqZ5mx7HSmxdjd7v4KPnQ95uH/Y+8fv0zu+XdyqGIz3ZufZ3rDSyylmUbSWV94GaVn3siCaeOnQt7xKszL4ZW0szip9jm2vvQgPmcSrVtfoeTQyyww++nEw7acM8g86TqmLvtwzLVmDKR93qfI/uBmNv3uVhyzP0L9znfIqvo78/ybKRfD1qSlNC/+GnPWfIrshLGuhRZ+s1dfRutvf0jjY1+kas2d1FVuJ3HP35jf8Tanio9qZzHr536F2WffwMKMSdEOd9RyUz3sdEyx3tRuhrLwPmpiJPzBEJVHJFLbSG/bTXFgHzOkkRn2cj7cHEwoozVrGa2TZpNWMp9JUxeRkDuNEqde2qrok6FKMA+7ssgjwCz7bSbQbIxZLCLlwFZguz3vLWPMjcNtb/ny5Wbt2rXHHY9SSo0H//zZv7Gq/nHem3w5wYCXooa3KDEHANiaMJ/2WRcz8/SrycjKjXKk4fXKL/8faw79rvd9l0lgZ9pKZPEVzD7tYtwJnihGF377KnYjD3yEUg4C4DdOdiUtoGv2Rcw54xqS0uJraLs/EOSfP7yU1V1/7522z1VOQ8nZlJ3xGXKKZwyxdmx65sGfcO7OO3FLEIAGsqjIP4O8Ey6ndMmZcZE493Xlj5/iwZZr4Jy7YdVNEduPLxBiX00th3Z/QIedSGW07aIoUEmhNPQu5yWBgwmltKdPhzwrkcqfthhP3lSI0dZvFV9EZJ0xZvlR00eTYPXbwQ+BFmPMXXaC9RdjzPxj2YYmWEqpeNDU1Mi+ez/BYu9aOkwie5Lm0156BtNPuYS80vFdLW40QsEQG//1F3x1e0jOK2fasjNJjNEujyPV0tLMrrUv4klKYcq8E0jJiO8h8MFgiC3rXoXuFoqmLyK7cGq0Q4q43Ts201a1kUklMymcviiuL+y/+5fNXPHuxymZMgvntc+MalvGGOpaOjhYuZOW/dvwH9qJNO4hpX0fRYFKiqS+d1kvCdQmlNJmJ1KpJfPJn7aExLwpcf37VrEvogmWiAhQCZxujNmpCZZSSkF3dxceTyISZ3e5lVLx6e09Dbz7m1v5rPsvOG5+F3KmDbpsKGSob22jsWYfbYf24a3fh6+xCmnbT3LnAfL9+yniUG/rH0AHSdQnFNORPtVOpBZoi5SKaYMlWOHqqHoqUGuM2dln2hQReR9oBb5pjHl9kMBuAG4AKC2NjXK1Sik1EomJsT8ORSk1caycks1vCi+lrfbvmHvPZe/kc+h2puH3+ZDuJhK8jSR6G0gKNJMZaiaXFibJkTfqWyWNZvck2rNmsy3rI7gnTSe9aDa5pXNJycgnRW84qQlg2BYsEfk7MFA92W8YY562l/kVsMsY80P7vQdINcY0iMgy4ClgnjGmdah9aQuWUkoppVT01Ld7+c3Dj/Dh6p8yjz0k2C1QHSTR7Mig05WFNyGbUFIOJr0QZ1YJSbllZBSUk10wBUdifHcLVqqviHURFBEXsB9YZoypHmSZV4EvG2OGzJ40wVJKKaWUir5gyOD1diOhIEmJiaDV+ZQ6SiS7CJ4JbOubXIlIHtBojAmKyFRgBrAnDPtSSimllFIR5nQIyUnazVmp4xGOBOty4OF+004D7hIRPxACbjTGNIZhX0oppZRSSik1bo06wTLGXDvAtMeBx0e7baWUUkoppZSKJY5oB6CUUkoppZRS8SJsDxoOBxGpA/ZFO45+coH6YZdS8UKP98Shx3pi0eM9ceixnjj0WE8s4/F4lxlj8vpPHFcJ1ngkImsHqg6i4pMe74lDj/XEosd74tBjPXHosZ5YYul4axdBpZRSSimllAoTTbCUUkoppZRSKkw0wRrer6MdgBpTerwnDj3WE4se74lDj/XEocd6YomZ461jsJRSSimllFIqTLQFSymllFJKKaXCRBMspZRSSimllAoTTbCGICLniMh2EdklIl+LdjwqfESkREReEZEtIrJZRL5gT88WkRdFZKf9b1a0Y1XhISJOEXlfRP5iv58iIm/b5/cjIpIQ7RhVeIhIpog8JiLbRGSriJyo53Z8EpFb7b/hm0TkYRFJ1HM7fojIb0TkkIhs6jNtwHNZLD+1j/sGEVkavcjVsRrkWN9j/x3fICJPikhmn3m32cd6u4icHZWgh6AJ1iBExAn8AjgXmAt8UkTmRjcqFUYB4EvGmLnAKuBz9vH9GvCSMWYG8JL9XsWHLwBb+7z/HvBjY8x0oAn4t6hEpSLhJ8BfjTGzgUVYx13P7TgjIkXA54Hlxpj5gBO4HD2348kDwDn9pg12Lp8LzLB/bgB+NUYxqvB4gKOP9YvAfGPMQmAHcBuAfb12OTDPXueX9nX7uKEJ1uBWAruMMXuMMT7gj8CFUY5JhYkxpsYY8579ug3rAqwI6xj/1l7st8DHohKgCisRKQY+Cvyv/V6A04HH7EX0WMcJEckATgPuBzDG+Iwxzei5Ha9cQJKIuIBkoAY9t+OGMeY1oLHf5MHO5QuB3xnLW0CmiEwek0DVqA10rI0xLxhjAvbbt4Bi+/WFwB+NMV5jzF5gF9Z1+7ihCdbgioCqPu+r7WkqzohIObAEeBvIN8bU2LMOAvnRikuF1X8DXwVC9vscoLnPH249v+PHFKAO+D+7S+j/ikgKem7HHWPMfuAHQCVWYtUCrEPP7Xg32Lms123x7Xrgefv1uD/WmmCpCU1EUoHHgVuMMa195xnrGQb6HIMYJyLnAYeMMeuiHYsaEy5gKfArY8wSoIN+3QH13I4P9tibC7GS6kIghaO7GKk4pufyxCAi38Aa2vFQtGMZKU2wBrcfKOnzvtiepuKEiLixkquHjDFP2JNre7oU2P8eilZ8KmxOBi4QkQqsrr6nY43RybS7FYGe3/GkGqg2xrxtv38MK+HSczv+nAnsNcbUGWP8wBNY57ue2/FtsHNZr9vikIhcC5wHXGEOP7x33B9rTbAG9y4ww65GlIA1mO6ZKMekwsQeg3M/sNUY86M+s54BrrFfXwM8PdaxqfAyxtxmjCk2xpRjnccvG2OuAF4BLrEX02MdJ4wxB4EqEZllTzoD2IKe2/GoElglIsn23/SeY63ndnwb7Fx+Brjaria4Cmjp05VQxSAROQere/8FxpjOPrOeAS4XEY+ITMEqbPJONGIcjBxOBlV/IvIRrLEbTuA3xpjvRjciFS4icgrwOrCRw+Nyvo41DutRoBTYB1xqjOk/wFbFKBFZDXzZGHOeiEzFatHKBt4HrjTGeKMYngoTEVmMVdAkAdgDXId1Q1HP7TgjIncCl2F1H3of+DTWWAw9t+OAiDwMrAZygVrg28BTDHAu20n2z7G6iXYC1xlj1kYhbHUcBjnWtwEeoMFe7C1jzI328t/AGpcVwBrm8Xz/bUaTJlhKKaWUUkopFSbaRVAppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipM/n/3YUYKcGgJMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
3False10.1210.0319bAP.soma.v0.0007833.19e-06
4False10.1210.0319Step1.soma.v0.01012.51e-06
5False10.1210.0319Step3.soma.v0.01656.39e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "3 False 1 0.121 0.0319 bAP.soma.v \n", + "4 False 1 0.121 0.0319 Step1.soma.v \n", + "5 False 1 0.121 0.0319 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "3 0.000783 3.19e-06 \n", + "4 0.0101 2.51e-06 \n", + "5 0.0165 6.39e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADWHklEQVR4nOzdd3zb1dn//9clyXvGI86wkzh7DwgBCmGVMtoCpbQESpml3NBFaUv3oP3evX+9W+7SXTpoaYGGsKFllb3KSkII2dOZjvfeks7vD8nGSTxj2bLi9/PxUCJ9xvlc0seydemcc33MOYeIiIiIiIgMnCfaAYiIiIiIiBwtlGCJiIiIiIhEiBIsERERERGRCFGCJSIiIiIiEiFKsERERERERCJECZaIiIiIiEiEKMESERlmzGySmTkz80U7FhkZzGy9mZ0W7ThERI4GSrBERCTmmdntZlYfvrWaWVunx09GO77hzjk3xzn3YiTbNLOLzew/ZtZoZhFtW0RkODNdaFhEJLLMzOec8w9g/0nATiBuIO2MVGZ2CzDVOffpLtYN6NwMpViKtStmdiaQBcwEznDOnRbdiEREhoZ6sEREIsDMiszsG2a2FmgwM5+ZnRD+Br/azN7tPATLzF40s//PzN4ys1oze9TMsrpp+2oz22hmdWa2w8z+65D1F5jZmnA7283snPDyDDO7w8yKzWyfmf23mXl7eR5TzOx5M6sws3Izu8fMMjutqzSzY8KPx5lZWfvzMrPzw0PNqsPPb9Yhr8/XzGytmdWY2QozS+z/K91/3ZwbZ2ZTO21zp5n9d6fHHw2/ptXhczi/j8c6zcz2mtm3w69fkZld1mn9R8zsnfC52hNOBtvXtQ8N/YyZ7QaeDy+/38wOhF+3l81sziFx/87Mngz31r1mZmPM7BdmVmVmm8xsUR9fozP78hz7yjn3rHPuPmB/JNsVERnulGCJiETOpcBHgEwgD3gc+G9C3+J/DXjQzHI7bX8FcA0wFvADv+qm3VLgo0A6cDVwW6ckZwnwd+Dm8HFPAYrC+90ZbncqsAg4C7i2l+dgwP8HjANmAQXALQDOue3AN4C7zSwZ+CvwN+fci2Y2HVgOfBnIBZ4A/mlm8Z3avhg4BygE5gNXdRmA2cnhxKa728m9PIeudJyb3nqFwgnJX4D/ArKBPwCPmVlCH481BsgBxgNXAn80sxnhdQ2EzntmOJ4bzOxjh+x/KqHX/uzw4yeBacBoYDVwzyHbXwx8N3zMFuD18HY5wAPAz/sYd5fM7Js9nY+BtC0icjRSgiUiEjm/cs7tcc41AZ8GnnDOPeGcCzrnngFWAh/utP1dzrl1zrkG4HvAxV31MDnnHnfObXchLwH/BpaGV38G+Itz7pnwcfY55zaZWV74WF92zjU450qB24BLenoCzrlt4bZanHNlhD6cn9pp/Z+AbcCbhBLD74RXLQMeD+/bBtwKJAEfOOT12e+cqwT+CSzsJoZXnXOZPdxe7ek5dKPzuenNdcAfnHNvOucCzrm/EUpcTujH8b4Xfg1fIpRoXwzgnHvROfde+FytJZSUnnrIvreEz1lTeJ+/OOfqnHMthJLdBWaW0Wn7h51zq5xzzcDDQLNz7u/OuQCwglByfcSccz/p6XwMpG0RkaOREiwRkcjZ0+n+ROCTh3zTfzKhpKSr7XcBcYR6HQ5iZuea2Rvh4XnVhBKn9u0KgO1dxDIx3F5xp+P/gVAvSLfMLM/M7g0PKawF7u4ipj8Bc4Ffhz/0Q6jHa1f7Bs65YPj5je+034FO9xuB1J5iibA9vW/SYSLw1UPOXQGh59gXVeGkud2u9n3N7HgzeyE8tLIGuJ7DX9+OWM3Ma2Y/sdDQz1re753svE9Jp/tNXTweytdZRGTEU4IlIhI5nasG7SHUQ9X52/4U59xPOm1T0On+BKANKO/cYHhY2oOEeoTywj0GTxAaytd+nCldxLKHUK9LTqfjpzvn5nSxbWf/E34e85xz6YR64tqPhZmlAr8A7gBusffnje0nlJi0b2fh57evl+MdxsyW2vsVALu6Le29lcMcWtGpEUju9HhMp/t7gB8fcu6SnXPL+3isUWaW0unxBN6fh/QP4DGgwDmXAdxOp9e3i1g/BVwAnAlkAJPCyw/dZ9CE55N1ez6GKg4RkVihBEtEZHDcDZxnZmeHeyESwwUQ8jtt82kzmx2ez/Qj4IHwsK7O4oEEoAzwm9m5hOZStbsDuNrMPmhmHjMbb2YznXPFhIYS/p+ZpYfXTTGzQ4ejHSoNqAdqzGw8obldnf0SWOmcu5bQ0Lfbw8vvAz4SjiMO+CqhBO8/vb1Qh3LOveKcS+3h9kp/2+zCGuBT4XNzDgcP0/sTcH24t8nMLMVCxSnSoKOwxJ29tP9DM4sPJ4MfBe4PL08DKp1zzeH5c5/qpZ00Qq9jBaGE8H/68Rwjwjn3Pz2dj+72a/+5B3yAJ/weiBu6yEVEokMJlojIIHDO7SHU8/BtQsnRHkLJSuffu3cRKkRxAEgEvtRFO3Xh5fcBVYQ+kD/Waf1bhAtfADXAS7zfk3QFoQRtQ3jfBzh4iGJXfggcE27rceCh9hVmdgGhIhU3hBd9BTjGzC5zzm0m1Nv1a0K9cOcB5znnWns5XrTcSCjGauAy4JH2Fc65lcBngd8Qet22cXBBjgLgtR7aPhDebz+hghTXO+c2hdd9DviRmdUB3yd0Xnvyd0JDDPcROo9v9PbEhpHLCQ1R/D2hOYNNhJJXEZGjmq6DJSISBRa68Ordzrk/RzsW6btwVcR3gfnhYh6Hrj+N0HnNP3SdiIiMDL5oByAiIhIrwj1ys3rdUERERiwNERQRGWHM7PZuChbc3vveEovMbEIPhSomRDs+EZGjiYYIioiIiIiIRIh6sERERERERCJkWM3BysnJcZMmTYp2GCIiIiIiIj1atWpVuXMu99DlwyrBmjRpEitXrox2GCIiIiIiIj0ys11dLdcQQRERERERkQhRgiUiIiIiIhIhSrBEREREREQiZFjNwepKW1sbe/fupbm5OdqhyDCQmJhIfn4+cXFx0Q5FjlKrtuxi56M/YeEl32dqwdhohyMiIiIxZtgnWHv37iUtLY1JkyZhZtEOR6LIOUdFRQV79+6lsLAw2uHIUars6Z/xiYZ/8O/HEpj6+V9EOxwRERGJMcN+iGBzczPZ2dlKrgQzIzs7W72ZMqhmVr8CwJSyZ9CF2EVERKS/hn2CBSi5kg76WZDBlhkoB2AKe9m7f1+UoxEREZFYExMJlojIUAgEgqS6RrYlzgVgz3svRzkiERERiTVKsPrAzPjqV7/a8fjWW2/llltuiV5AnZx22mk9Xpz5Yx/7GCeccMJBy2655RbGjx/PwoULmTt3Lo899thghykSE+ob6vBZkJoxJxJ0hn/3qmiHJCIiIjFGCVYfJCQk8NBDD1FeXh7Rdp1zBIPBiLbZWXV1NatWraKmpoYdO3YctO6mm25izZo13H///VxzzTWDGodIrGisqwLApY6hxJtHQvXWKEckIiIisUYJVh/4fD6uu+46brvttsPWlZWVcdFFF3Hcccdx3HHH8dprrwGhXqJbb721Y7u5c+dSVFREUVERM2bM4IorrmDu3Lns2bOHm2++mblz5zJv3jxWrFgBwIsvvshpp53GJz7xCWbOnMlll13W7YT7u+66q6M36q233upY/tBDD3HeeedxySWXcO+993a576xZs/D5fAclj9/85jeZPXs28+fP52tf+xoARUVFnHHGGcyfP58PfvCD7N69G4CrrrqKG264gRNOOIHJkyfz4osvcs011zBr1iyuuuqqjjZvuOEGFi9ezJw5c/jBD35wWBw1NTVMnDixI9FraGigoKCAtra2LuMWGQxN4QTLm5RBZXIh2U1F0Q1IREREYs6wL9Pe2Q//uZ4N+2sj2ubscen84Lw5vW73+c9/nvnz5/P1r3/9oOU33ngjN910EyeffDK7d+/m7LPPZuPGjT22tXXrVv72t79xwgkn8OCDD7JmzRreffddysvLOe644zjllFMAeOedd1i/fj3jxo3jpJNO4rXXXuPkk08+rL3GxkbWrFnDyy+/zDXXXMO6desAWL58Od///vfJy8vjoosu4tvf/vZh+7755pt4PB5yc3MBqKio4OGHH2bTpk2YGdXV1QB88Ytf5Morr+TKK6/kL3/5C1/60pd45JFHAKiqquL111/nscce4/zzz+e1117jz3/+M8cddxxr1qxh4cKF/PjHPyYrK4tAIMAHP/hB1q5dy/z58zviyMjIYOHChbz00kucfvrp/Otf/+Lss8/W9a5kSLWEE6y45Axas6Yzte5tahqayEhJinJkIiIiEivUg9VH6enpXHHFFfzqV786aPmzzz7LF77wBRYuXMj5559PbW0t9fX1PbY1ceLEjnlRr776Kpdeeiler5e8vDxOPfVU3n77bQCWLFlCfn4+Ho+HhQsXUlRU1GV7l156KQCnnHIKtbW1VFdXU1JSwtatWzn55JOZPn06cXFxHYkXwG233cbChQv52te+xooVKzqq82VkZJCYmMhnPvMZHnroIZKTkwF4/fXX+dSnPgXA5ZdfzquvvtrR1nnnnYeZMW/ePPLy8pg3bx4ej4c5c+Z0xHzfffdxzDHHsGjRItavX8+GDRsOex7Lli3r6MG79957WbZsWY+vo0iktTTWAOBLySRhzCwSzM+ubeujHJWIiIjEkpjqwepLT9Ng+vKXv8wxxxzD1Vdf3bEsGAzyxhtvkJiYeNC2Pp/voHlNna/dlJKS0qfjJSQkdNz3er34/f4utzu0dLmZcd9991FVVdVxQd7a2lqWL1/Oj3/8YyA0B6t9+N+hcb/11ls899xzPPDAA/zmN7/h+eef71OcHo/noJg9Hg9+v5+dO3dy66238vbbbzNq1CiuuuqqLq9ldf755/Ptb3+byspKVq1axRlnnNHjcUUiLdgUSrDikzNInjgf3oLa3ethweIoRyYiIiKxQj1Y/ZCVlcXFF1/MHXfc0bHsrLPO4te//nXH4zVr1gAwadIkVq9eDcDq1avZuXNnl20uXbqUFStWEAgEKCsr4+WXX2bJkiX9iqu91+fVV18lIyODjIwMli9fzlNPPdUx72vVqlXdzsPqrL6+npqaGj784Q9z22238e677wLwgQ98oGP/e+65h6VLl/Y5vtraWlJSUsjIyKCkpIQnn3yyy+1SU1M57rjjuPHGG/noRz+K1+vt8zFEIsFaQkOQvUkZ5BSGvtAJlPY85FdERESks5jqwRoOvvrVr/Kb3/ym4/GvfvWrjvlZfr+fU045hdtvv52LLrqIv//978yZM4fjjz+e6dOnd9nehRdeyOuvv86CBQswM376058yZswYNm3a1OeYEhMTWbRoEW1tbfzlL3+hqKiIXbt2HVSevbCwkIyMDN58880u2/jwhz/Mn//8Z8yMCy64gObmZpxz/PznPwfg17/+NVdffTU/+9nPyM3N5a9//Wuf41uwYAGLFi1i5syZFBQUcNJJJ3Ws+/73v8/ixYs5//zzgdAwwU9+8pO8+OKLfW5fJGJaQsN7vckZ+JIzKbVsElVJUERERPrBuqtM1+cGzAqAvwN5gAP+6Jz7pZndAnwWKAtv+m3n3BM9tbV48WJ36DWdNm7cyKxZswYUoxxd9DMhg2XN3d9i4bbfUXrTfkZnpLDhJ6fhaWtg5vfejnZoIiIiMsyY2Srn3GHzCCLRg+UHvuqcW21macAqM3smvO4259ytPewrIjJ8+JtpdV4S4uIBaEqdwOSy53HOHTbXUURERKQrA56D5Zwrds6tDt+vAzYC4wfarojIkPO30koc8b7wr8asQkZZHeXlZT3vJyIiIhIW0SIXZjYJWAS0T/T5gpmtNbO/mNmoSB5LRCTiAi204utIsBJHTwXgQFHf50SKiIjIyBaxBMvMUoEHgS8752qB3wNTgIVAMfB/3ex3nZmtNLOVZWX6llhEoscCoR4sryc0HDArfwYAdcUqdCEiIiJ9E5EEy8ziCCVX9zjnHgJwzpU45wLOuSDwJ6DL2uPOuT865xY75xbn5uZGIhwRkSNigRbaiOt4nDshlGC1lm2PVkgiIiISYwacYFlo5vcdwEbn3M87LR/babMLgXUDPZaIyGCyQCtt9n6C5UvOoMoy8NYURS8oERERiSmR6ME6CbgcOMPM1oRvHwZ+ambvmdla4HTgpggcK2oeeeQRzKzH61MVFRUxd+7ciB3zqquu4oEHHuh2/Ze//GXGjx9PMBjsWHbnnXeSm5vLwoULmT17Nn/6058iFo/I0c4TaMXfKcECqIgbR1rjnihFJCIiIrEmElUEX3XOmXNuvnNuYfj2hHPucufcvPDy851zxZEIOFqWL1/OySefzPLly7tc7/f7B3yMQCDQ522DwSAPP/wwBQUFvPTSSwetW7ZsGWvWrOHFF1/k29/+NiUlJQOOTWQk8AQPT7AaUwrIbStmoNcMFBERkZEholUEj1b19fW8+uqr3HHHHdx7770dy1988UWWLl3K+eefz+zZs4FQonXZZZcxa9YsPvGJT9DY2AjAc889x6JFi5g3bx7XXHMNLS0tAEyaNIlvfOMbHHPMMdx///2HHfvZZ59l8eLFTJ8+nX/9618HHXvOnDnccMMN3SZ9o0ePZsqUKezatatj2a9+9Stmz57N/PnzueSSSwCorKzkYx/7GPPnz+eEE05g7dq1ANxyyy1ceeWVLF26lIkTJ/LQQw/x9a9/nXnz5nHOOefQ1tYGwI9+9COOO+445s6dy3XXXXfYB9FgMMikSZOorq7uWDZt2jQlfjLseIJthyVYgcxJjKGcytr6KEUlIiIisSQSFxoeOk9+Ew68F9k2x8yDc3/S4yaPPvoo55xzDtOnTyc7O5tVq1Zx7LHHArB69WrWrVtHYWEhRUVFbN68mTvuuIOTTjqJa665ht/97nd84Qtf4KqrruK5555j+vTpXHHFFfz+97/ny1/+MgDZ2dmsXr26y2MXFRXx1ltvsX37dk4//XS2bdtGYmIiy5cv59JLL+WCCy7g29/+Nm1tbcTFHfzBcMeOHezYsYOpU6d2LPvJT37Czp07SUhI6Eh4fvCDH7Bo0SIeeeQRnn/+ea644grWrFkDwPbt23nhhRfYsGEDJ554Ig8++CA//elPufDCC3n88cf52Mc+xhe+8AW+//3vA3D55Zfzr3/9i/POO6/jmB6PhwsuuICHH36Yq6++mjfffJOJEyeSl5fX59MkMhS8wVYCFn/QsoTRU/DudBTv2kL2/GOjFJmIiIjECvVg9cHy5cs7ensuueSSg3qMlixZQmFhYcfjgoICTjrpJAA+/elP8+qrr7J582YKCwuZPn06AFdeeSUvv/xyxz7Lli3r9tgXX3wxHo+HadOmMXnyZDZt2kRraytPPPEEH/vYx0hPT+f444/n6aef7thnxYoVLFy4kEsvvZQ//OEPZGVldaybP38+l112GXfffTc+Xyi/fvXVV7n88ssBOOOMM6ioqKC2thaAc889l7i4OObNm0cgEOCcc84BYN68eRQVFQHwwgsvcPzxxzNv3jyef/551q9ff9jzWLZsGStWrADg3nvv7fE5i0SLJ9hKwHPwFxXp40KVBGv3b4lGSCIiIhJjYqsHq5eepsFQWVnJ888/z3vvvYeZEQgEMDN+9rOfAZCSknLQ9qGiit0/7sqhbfTW3tNPP011dTXz5s0DoLGxkaSkJD760Y8CoWTmN7/5TZftPf7447z88sv885//5Mc//jHvvddzj2BCQgIQ6oWKi4vriMfj8eD3+2lubuZzn/scK1eupKCggFtuuYXm5ubD2jnxxBPZtm0bZWVlPPLII3z3u9/t8bgi0eBzbQS8B/dg5U4MJVgtpSrVLiIiIr1TD1YvHnjgAS6//HJ27dpFUVERe/bsobCwkFdeeaXL7Xfv3s3rr78OwD/+8Q9OPvlkZsyYQVFREdu2bQPgrrvu4tRTT+3T8e+//36CwSDbt29nx44dzJgxg+XLl/PnP/+ZoqIiioqK2LlzJ88880zHfK/uBINB9uzZw+mnn87//u//UlNTQ319PUuXLuWee+4BQnO7cnJySE9P71N87clUTk4O9fX13VY9NDMuvPBCvvKVrzBr1iyys7P71L7IUPK6VoKeQ4YIZoylkUQ81UXRCUpERERiihKsXixfvpwLL7zwoGUXXXRRt4UlZsyYwW9/+1tmzZpFVVUVN9xwA4mJifz1r3/lk5/8JPPmzcPj8XD99df36fgTJkxgyZIlnHvuudx+++0Eg0GeeuopPvKRj3Rsk5KSwsknn8w///nPLtu49tprWblyJYFAgE9/+tPMmzePRYsW8aUvfYnMzExuueUWVq1axfz58/nmN7/J3/72tz6+OpCZmclnP/tZ5s6dy9lnn81xxx3Xse7222/n9ttv73i8bNky7r77bg0PlGErzrUdlmBhRplvDMn1u6MTlIiIiMQUG06lhxcvXuxWrlx50LKNGzcya9asKEUkw5F+JmSwVP5wIuvTlrL0K3cftHz9zz9KYu1Optxy+PxCERERGZnMbJVzbvGhy9WDJSISFudacYfMwQJoS5/IeFdCfXNrFKISERGRWKIES0QkLA4/wS4SLG/OFBKtjf17dkYhKhEREYklMZFgDadhjBJd+lmQQeMc8bR12YOVOnYaAJV7Ng91VCIiIhJjhn2ClZiYSEVFhT5YC845KioqSExMjHYocjQK+vHgwJtw2KqciaE5f02lW4c6KhEREYkxw/46WPn5+ezdu5eysrJohyLDQGJiIvn5+dEOQ45G/haALnuw0nIn0YYPq9gx1FGJiIhIjBn2CVZcXByFhYXRDkNEjnLO34IB5ju8Bwuvj1JvHkn1u4Y8LhEREYktw36IoIjIUPC3hS6aTRc9WADViQWMat47hBGJiIhILFKCJSICtLWEEiyL66IHC2hJn8i4YDGtbYGhDEtERERizKAnWGZ2jpltNrNtZvbNwT6eiMiRaE+wuipyAeDJnkKqNVO8f/cQRiUiIiKxZlATLDPzAr8FzgVmA5ea2ezBPKaIyJFoHyLo6aYHK3nMdAAq9mwasphEREQk9gx2D9YSYJtzbodzrhW4F7hgkI8pItJv/vYhgl0VuQCyJ8wEoKF4y5DFJCIiIrFnsBOs8cCeTo/3hpd1MLPrzGylma1UKXYRiZb2HixvNz1YWeOm4HcenEq1i4iISA+iXuTCOfdH59xi59zi3NzcaIcjIiOUv7V9iGDXF7I2Xzyl3jwSa4uGMCoRERGJNYOdYO0DCjo9zg8vExEZVgKtPfdgAVQl5JOhUu0iIiLSg8FOsN4GpplZoZnFA5cAjw3yMUVE+i3obwHAG991DxZAU9pExgb2EwwEhyosERERiTGDmmA55/zAF4CngY3Afc659YN5TBGRIxHsZYgggMuaTLo1Ulq6f6jCEhERkRjjG+wDOOeeAJ4Y7OOIiAxEINyD5euhByt5zHTYBGW7NjFmbP5QhSYiIiIxJOpFLkREhoNgWzjB6mEOVlbBDADqizcPSUwiIiISe5RgiYgArr0HKyGp221GF0wn4Iy2su1DFZaIiIjEGCVYIiK8n2DF9TAHyxufSJk3l/gaXQtLREREuqYES0SETglWQvcJFkBF4iRGNe0aipBEREQkBinBEhEB8LcQdEZ8fHyPmzVnTKEgsI/m1rYhCkxERERiiRIsEREAfyut+IjzeXvczJs3g2RrYd8uzcMSERGRwynBEhEBCLTQShwJvp5/LabnzwGgctd7QxGViIiIxBglWCIihOZgteLrNcEaM2UeAE3FG4ciLBEREYkxSrBERAD8LbQRh5n1uFly5hhqScVbsXWIAhMREZFYogRLRAQg0EKbxfW+nRkH4ieQ1rBz8GMSERGRmKMES0QEsEAr/r4kWEB92mTGte7GOTfIUYmIiEisUYIlIkJ7gtVzifZ2LnsaOVZDaWnJIEclIiIisUYJlogI4A22EPD0LcFKHjcbgJIdawczJBEREYlBSrBERIC4QBMt3uQ+bZtbGKokWLdvw2CGJCIiIjFoQAmWmf3MzDaZ2Voze9jMMsPLJ5lZk5mtCd9uj0i0IiKDJCHYSFsfE6zs/Gm0EIcr2TTIUYmIiEisGWgP1jPAXOfcfGAL8K1O67Y75xaGb9cP8DgiIoMqMdhEmy+lT9ua10exL5+k2u2DHJWIiIjEmgElWM65fzvn/OGHbwD5Aw9JRGToJblG/H1MsACqUyaT11I0eAGJiIhITIrkHKxrgCc7PS40s3fM7CUzW9rdTmZ2nZmtNLOVZWVlEQxHRKSPnCOZZgL9SLAC2TMY58oor6wcxMBEREQk1vSaYJnZs2a2rovbBZ22+Q7gB+4JLyoGJjjnFgFfAf5hZuldte+c+6NzbrFzbnFubu7An5GISH+1NeEliItP7fMuSeNn4zHHvm2qJCgiIiLv8/W2gXPuzJ7Wm9lVwEeBD7rwVTedcy1AS/j+KjPbDkwHVg40YBGRSAs21+GBfiVYuYUL4BWo3bMOlpw2aLGJiIhIbBloFcFzgK8D5zvnGjstzzUzb/j+ZGAasGMgxxIRGSwNDdUAeBPT+rxPzoSZtOElqEqCIiIi0kmvPVi9+A2QADxjZgBvhCsGngL8yMzagCBwvXNOExVEZFhqrK0mDfAldTmSuUvmi+eAdzzJNVsHLzARERGJOQNKsJxzU7tZ/iDw4EDaFhEZKk31NQDEJ/c9wQKoTp1MXs0mnHOEv2QSERGRES6SVQRFRGJSc0MowUpMyejXfm1ZMxjvSqiorhmMsERERCQGKcESkRGvrbEW6H+ClTR+Nl5z7N323mCEJSIiIjFICZaIjHj++nIAEjNH92u/3MkLAKjdvS7iMYmIiEhsUoIlIiOeqy8l4IxROXn92i+7YBZ+PARKNg5SZCIiIhJrlGCJiNSXUUk6qYnx/drN4hIp8Y4juXbbIAUmIiIisUYJloiMeL7mCmo9mUdUCbAqZTK5zUWEr7MuIiIiI5wSLBEZ8RJaK2mIG3VE+/qzpjPBFVNeXRfhqERERCQWKcESkREvxV9Fc3zWEe2bNG4OPguyb7sqCYqIiIgSLBERMoPVBJKyj2jfnCmhSoLVqiQoIiIiKMESkRGupb6SVJoIpI47ov2zCmYRwFRJUERERAAlWCIywlXuDVUA9IyaeET7W3wypd6xJNeokqCIiIgowRKREa5qfygxSh0z+cjbUCVBERERCVOCJSIjWmPpDgByC6YfcRttWdOZ4PZTXtMQqbBEREQkRinBEpERzVUVUe8SyRs99ojbSBw7m3gLsHf7+ghGJiIiIrFICZaIjGipNdvY6y3A4z3yX4e5k+cDUL1rbaTCEhERkRg1oATLzG4xs31mtiZ8+3Cndd8ys21mttnMzh54qCIikTemZQcVKVMH1MaoCXMA8JduikRIIiIiEsN8EWjjNufcrZ0XmNls4BJgDjAOeNbMpjvnAhE4nohIRDRXFTPK1dCaM3NA7VhCKiWePJKqt0YoMhEREYlVgzVE8ALgXudci3NuJ7ANWDJIxxIROSLFW1cBkDR+/oDbqkqZokqCIiIiEpEE6wtmttbM/mJmo8LLxgN7Om2zN7zsMGZ2nZmtNLOVZWVlEQhHRKRv6na9C0De1EUDbqstaxqT3H7KalVJUEREZCTrNcEys2fNbF0XtwuA3wNTgIVAMfB//Q3AOfdH59xi59zi3Nzc/u4uInLkSjdQ7jLILziyiwx3ljhuNgnWxp7tGyMQmIiIiMSqXudgOefO7EtDZvYn4F/hh/uAgk6r88PLRESGjbSaLeyJm0TOACoItsueNB9eh+pd78Exx0UgOhEREYlFA60i2PnCMRcC68L3HwMuMbMEMysEpgFvDeRYIiIRFQwwtrWI2vQjv8BwZ6MmzgXAX6IeLBERkZFsoFUEf2pmCwEHFAH/BeCcW29m9wEbAD/weVUQFJHhpGb/FjJoxY2eFZH2LDGdck8uSdXbItKeiIiIxKYBJVjOuct7WPdj4McDaV9EZLAUb11NBpA+cWHE2qxMKSSnbifOOcwsYu2KiIhI7BisMu0iIsNa4561BJ1RMOOYiLXZOmo6hW4fZbVNEWtTREREYosSLBEZkXzlG9lreeRmjep94z5KHDubJGtl987NEWtTREREYosSLBEZkbLqt1GSNCWybRaGLlhcVbQ2ou2KiIhI7FCCJSIjTltLI2MD+2keNTOi7Y6aEKok2HZgU0TbFRERkdihBEtERpx929fjNUfi2BkRbdeSR1HpySK5WkMERURERiolWCIy4lTuCV2rKrNgdsTbLk2ZSUHzJpxzEW9bREREhr+BXgdLRCTmtJRsBWBM4ZyIt904ehHH1P2H0tIDjM4b2/sOMqRaW9toaqqnpamBlqYGAi1NBP3NBPxtBPxtuICfQKCNYCBA0N+GC/oJ+v3gApgLYDggXILfDGcewBNaZBZaZx7MLHTzeDHzhP73evGYB/P6Qsu8PjweL+bx4PF48Xh9oe08Hrzh+x6vF4/Hh8cb3sbjxbw+vF4vHo8Hj9eH1+vDG97PPPreVEQk2pRg9eCdf99N/MrbMQdGEHCYc+E/sKH/22/tHGB9/ubaHXa3c1sd7XF4e10ti4bBj2LwriXkBqXtzj8Lg3sdpMFs33X74OgwPVhBhWWQnZEV8bZTp58E23/LztXPMPrcKyLe/kjV5vdTXVFCY1UJzTWltNRX0dZQjb+xmmBTDa65Fk9rLd62OuLa6kkMNJAYbCDetRDvWkhwLSTQSrwFiI/2kxlEAWcE8YRvofsB8+AwgngPWh40Dy68rcMIWmi9M8PhDa83XMfy8K3jvrefv4f698uk89/S3vbsaxTd/U3tfa++6fvf//61Cz3Hfehh+/fXYXi8Hl09v572Hqzn2J/XubftD9+2//H0XWSe42Hb9jPU/r2/+r7tprhZZF50G0un5fYvoChRgtWj0J+O0B8bHy787WToD44n/GNhuPaRlge92w9+67e3czg77F77dp237vKP2CHtRertOpSXR+35WIP3yX6wE9TBfw3bf/oGo+kuEvqj7Jq5B8ijdcIpZA9C21OOOZO6J5Nh479ACVaP2tpaKS/ZS/WBIhrL9xKo3kewvgxrqiCuuZLE1iqSA1WkB2vIcPXk9vCXvsXF0WDJNHpSaPak0OxNpSohG783CedLxPlC/1tcEhaXhCc+CU98MsQlgS8Rjzcu3DPke7+HyBuH1xeHx+vFPHE4T/vvfQfB8D3nMBfEEQTnQo8BFwziXJBgMIgLBnDBQKf7/tD6YCC8XQACfoIuCMFgx3pcAML74QLgQvsQDN0nGAjtGwyGHnfcD3Q8tnCb7T1wOBf+P7RP52Whm8MI7+fC6Vj78vA2HlrxuCAWXt+/JKubbbtZPFhfJPW/3b5vf1Dbve42PL5E7Pz5pC979aVtC//T9zi6/svc09+fiPzsHdZmz+0eusbR3ee7SOhvGtmP7fsRc3/fL/396qAvgvGZJPi8/Wo5mpRg9WDRWZfDWZdHOwwRiSHeuAS2ZJ7C3KoXqSjdT/bocR3rSnZtYvfjtxI3+QMsPOeaKEY5+AJ+P6XFu6jau4WGkp0EqvdAfTEJjSWktpSRGSgny1Uz1hydB1IGnVFjqdR6MmnwZVKVVEhZYhbB5Bw8Kdl4UkfjS88lITWL5LRRpKSPIi0jm4TEJBKAyPdJiohItC2IdgD9pARLRCTCcs/9Bon/eJrtd15F00d+QPW+rbh3VzC7/nXyzLGlYg3EeoLlHNVl+ziwazN1B7bTVlGEt2Y3yY17GdV6gNHBUsZa4KDkqZpUqjw51MXnUJ02ne2pY/BmjCMhazwpuQVkjJ5AZvZYRsXFEbnLP4uIiAwtJVgiIhE2YcYxvD7zGyzZ9L947/8w+UA5Gbw25nI8DSUcX/cswdZmPPGJ0Q61Vy0N1ZTs3EDlno20lmzGV7Wd9IZd5Pn3kkkTmZ22rSSdct8YSlNnsjftQ3hGTSQpt5DM8VPJGTeFzJTUg7YXERE5GinBEhEZBCde+i12bj2P4o1vkpw7iZmLPsApiUm8+c8/E7fqabatf4upi06JdpgAOH8r5Xu3Ul60nobizVjFVpLrishp3UOuq2QCMIHQ8L0DlkNZfAHvZZ8LWVNIHjOVrPFTyc2fRlZqhoboiYjIiKcES0RkkBROm0vhtLkHLZu+5Cz8Kz2UvbF8yBOs+qoSSra/R+3eDQTKtpBQvZ1RTbvICxwg1wK012aqcmkU+8azPe04NmVOISFvOpkFsxhTOJtxaemM6/EoIiIiI9uAEiwzWwHMCD/MBKqdcwvNbBKwEdgcXveGc+76gRxLRORoMCpvAu+kLWXugYcp3fdNRo+fGNH2m5ubKdm1kerdG2gp2YynYitp9UWMadtNBvWkhrdrcT72ecZSnFjIzvQP4smdRtr4meROmkNe3jhGeY6y0pEiIiJDZEAJlnNuWft9M/s/oKbT6u3OuYUDaV9E5GiUe8F/E3f3Gey78xISrn+YjOwx/dq/qa6KA7s2UbVvGy2l26G6iKT6PWS17mNssJSJFqA9bSsjk5K4AjZknk4gexqJY2aQNWEO4ybNYHJCPJMj//RERERGtIgMETQzAy4GzohEeyIiR7P8afN5+/hbWfDmV2j99SJW5Z6D5R9LQnoOzpcIbY20NNTS1liL1ZfgbThAfFMpKa1lZAXKGUUdhUBhuL0aUinzjaEydToHMs7BO3oGqeNnMrpwHrlZOcTGZRlFRESODpGag7UUKHHObe20rNDM3gFqge86517pakczuw64DmDChAkRCkdEZHg77sNXsa1gJuVP/YQFpf8iqeyhLrcLOKPCMqn2ZlMXP4aK5Pn40ycSnzuZjHHTGD1xBhmjcskY4vhFRESka+Zcz9dbNrNnga7Gr3zHOfdoeJvfA9ucc/8XfpwApDrnKszsWOARYI5zrranYy1evNitXLmy/89CRCSGNbe0cGDXZhpqKzF/C8QlkZKWQWraKNJzxhAXFx/tEEVEROQQZrbKObf40OW99mA5587spWEf8HHg2E77tAAt4furzGw7MB1Q9iQicojEhAQmTZ8f7TBEREQkAjwRaONMYJNzbm/7AjPLNTNv+P5kYBqwIwLHEhERERERGbYiMQfrEmD5IctOAX5kZm1AELjeOVcZgWOJiIiIiIgMWwNOsJxzV3Wx7EHgwYG2LSIiIiIiEkt6LXIxlMysDNgV7TgOkQOURzsIGTI63yOHzvXIoXM9suh8jxw61yPLcDzfE51zh10NZVglWMORma3sqjqIHJ10vkcOneuRQ+d6ZNH5Hjl0rkeWWDrfkShyISIiIiIiIijBEhERERERiRglWL37Y7QDkCGl8z1y6FyPHDrXI4vO98ihcz2yxMz51hwsERERERGRCFEPloiIiIiISIQowRIREREREYkQJVg9MLNzzGyzmW0zs29GOx6JHDMrMLMXzGyDma03sxvDy7PM7Bkz2xr+f1S0Y5XIMDOvmb1jZv8KPy40szfD7+8VZhYf7RglMsws08weMLNNZrbRzE7Ue/voZGY3hX+HrzOz5WaWqPf20cPM/mJmpWa2rtOyLt/LFvKr8Hlfa2bHRC9y6a9uzvXPwr/H15rZw2aW2Wndt8LnerOZnR2VoHugBKsbZuYFfgucC8wGLjWz2dGNSiLID3zVOTcbOAH4fPj8fhN4zjk3DXgu/FiODjcCGzs9/l/gNufcVKAK+ExUopLB8EvgKefcTGABofOu9/ZRxszGA18CFjvn5gJe4BL03j6a3Amcc8iy7t7L5wLTwrfrgN8PUYwSGXdy+Ll+BpjrnJsPbAG+BRD+vHYJMCe8z+/Cn9uHDSVY3VsCbHPO7XDOtQL3AhdEOSaJEOdcsXNudfh+HaEPYOMJneO/hTf7G/CxqAQoEWVm+cBHgD+HHxtwBvBAeBOd66OEmWUApwB3ADjnWp1z1ei9fbTyAUlm5gOSgWL03j5qOOdeBioPWdzde/kC4O8u5A0g08zGDkmgMmBdnWvn3L+dc/7wwzeA/PD9C4B7nXMtzrmdwDZCn9uHDSVY3RsP7On0eG94mRxlzGwSsAh4E8hzzhWHVx0A8qIVl0TUL4CvA8Hw42ygutMvbr2/jx6FQBnw1/CQ0D+bWQp6bx91nHP7gFuB3YQSqxpgFXpvH+26ey/rc9vR7RrgyfD9YX+ulWDJiGZmqcCDwJedc7Wd17nQNQx0HYMYZ2YfBUqdc6uiHYsMCR9wDPB759wioIFDhgPqvX10CM+9uYBQUj0OSOHwIUZyFNN7eWQws+8QmtpxT7Rj6SslWN3bBxR0epwfXiZHCTOLI5Rc3eOceyi8uKR9SEH4/9JoxScRcxJwvpkVERrqewahOTqZ4WFFoPf30WQvsNc592b48QOEEi69t48+ZwI7nXNlzrk24CFC73e9t49u3b2X9bntKGRmVwEfBS5z71+8d9ifayVY3XsbmBauRhRPaDLdY1GOSSIkPAfnDmCjc+7nnVY9BlwZvn8l8OhQxyaR5Zz7lnMu3zk3idD7+Hnn3GXAC8AnwpvpXB8lnHMHgD1mNiO86IPABvTePhrtBk4ws+Tw7/T2c6339tGtu/fyY8AV4WqCJwA1nYYSSgwys3MIDe8/3znX2GnVY8AlZpZgZoWECpu8FY0Yu2PvJ4NyKDP7MKG5G17gL865H0c3IokUMzsZeAV4j/fn5Xyb0Dys+4AJwC7gYufcoRNsJUaZ2WnA15xzHzWzyYR6tLKAd4BPO+daohieRIiZLSRU0CQe2AFcTegLRb23jzJm9kNgGaHhQ+8A1xKai6H39lHAzJYDpwE5QAnwA+ARungvh5Ps3xAaJtoIXO2cWxmFsOUIdHOuvwUkABXhzd5wzl0f3v47hOZl+QlN83jy0DajSQmWiIiIiIhIhGiIoIiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiAwzZjbJzJyZ+aIdi4wMZrbezE6LdhwiIkcDJVgiIhLzzOx2M6sP31rNrK3T4yejHd9w55yb45x7MZJtmtnFZvYfM2s0s4i2LSIynJlzLtoxiIgcVczM55zzD2D/ScBOIG4g7YxUZnYLMNU59+ku1g3o3AylWIq1K2Z2JpAFzATOcM6dFt2IRESGhnqwREQiwMyKzOwbZrYWaDAzn5mdEP4Gv9rM3u08BMvMXjSz/8/M3jKzWjN71Myyumn7ajPbaGZ1ZrbDzP7rkPUXmNmacDvbzeyc8PIMM7vDzIrNbJ+Z/beZeXt5HlPM7HkzqzCzcjO7x8wyO62rNLNjwo/HmVlZ+/Mys/PDQ82qw89v1iGvz9fMbK2Z1ZjZCjNL7P8r3X/dnBtnZlM7bXOnmf13p8cfDb+m1eFzOL+PxzrNzPaa2bfDr1+RmV3Waf1HzOyd8LnaE04G29e1Dw39jJntBp4PL7/fzA6EX7eXzWzOIXH/zsyeDPfWvWZmY8zsF2ZWZWabzGxRH1+jM/vyHPvKOfesc+4+YH8k2xURGe6UYImIRM6lwEeATCAPeBz4b0Lf4n8NeNDMcjttfwVwDTAW8AO/6qbdUuCjQDpwNXBbpyRnCfB34ObwcU8BisL73RludyqwCDgLuLaX52DA/weMA2YBBcAtAM657cA3gLvNLBn4K/A359yLZjYdWA58GcgFngD+aWbxndq+GDgHKATmA1d1GYDZyeHEprvbyb08h650nJveeoXCCclfgP8CsoE/AI+ZWUIfjzUGyAHGA1cCfzSzGeF1DYTOe2Y4nhvM7GOH7H8qodf+7PDjJ4FpwGhgNXDPIdtfDHw3fMwW4PXwdjnAA8DP+xh3l8zsmz2dj4G0LSJyNFKCJSISOb9yzu1xzjUBnwaecM494ZwLOueeAVYCH+60/V3OuXXOuQbge8DFXfUwOeced85tdyEvAf8GloZXfwb4i3PumfBx9jnnNplZXvhYX3bONTjnSoHbgEt6egLOuW3htlqcc2WEPpyf2mn9n4BtwJuEEsPvhFctAx4P79sG3AokAR845PXZ75yrBP4JLOwmhledc5k93F7t6Tl0o/O56c11wB+cc2865wLOub8RSlxO6Mfxvhd+DV8ilGhfDOCce9E59174XK0llJSeesi+t4TPWVN4n7845+qccy2Ekt0FZpbRafuHnXOrnHPNwMNAs3Pu7865ALCCUHJ9xJxzP+npfAykbRGRo5ESLBGRyNnT6f5E4JOHfNN/MqGkpKvtdwFxhHodDmJm55rZG+HhedWEEqf27QqA7V3EMjHcXnGn4/+BUC9It8wsz8zuDQ8prAXu7iKmPwFzgV+HP/RDqMdrV/sGzrlg+PmN77TfgU73G4HUnmKJsD29b9JhIvDVQ85dAaHn2BdV4aS53a72fc3seDN7ITy0sga4nsNf345YzcxrZj+x0NDPWt7vney8T0mn+01dPB7K11lEZMRTgiUiEjmdqwbtIdRD1fnb/hTn3E86bVPQ6f4EoA0o79xgeFjag4R6hPLCPQZPEBrK136cKV3EsodQr0tOp+OnO+fmdLFtZ/8Tfh7znHPphHri2o+FmaUCvwDuAG6x9+eN7SeUmLRvZ+Hnt6+X4x3GzJba+xUAu7ot7b2Vwxxa0akRSO70eEyn+3uAHx9y7pKdc8v7eKxRZpbS6fEE3p+H9A/gMaDAOZcB3E6n17eLWD8FXACcCWQAk8LLD91n0ITnk3V7PoYqDhGRWKEES0RkcNwNnGdmZ4d7IRLDBRDyO23zaTObHZ7P9CPggfCwrs7igQSgDPCb2bmE5lK1uwO42sw+aGYeMxtvZjOdc8WEhhL+n5mlh9dNMbNDh6MdKg2oB2rMbDyhuV2d/RJY6Zy7ltDQt9vDy+8DPhKOIw74KqEE7z+9vVCHcs694pxL7eH2Sn/b7MIa4FPhc3MOBw/T+xNwfbi3ycwsxULFKdKgo7DEnb20/0Mziw8ngx8F7g8vTwMqnXPN4flzn+qlnTRCr2MFoYTwf/rxHCPCOfc/PZ2P7vZr/7kHfIAn/B6IG7rIRUSiQwmWiMggcM7tIdTz8G1CydEeQslK59+7dxEqRHEASAS+1EU7deHl9wFVhD6QP9Zp/VuEC18ANcBLvN+TdAWhBG1DeN8HOHiIYld+CBwTbutx4KH2FWZ2AaEiFTeEF30FOMbMLnPObSbU2/VrQr1w5wHnOedaezletNxIKMZq4DLgkfYVzrmVwGeB3xB63bZxcEGOAuC1Hto+EN5vP6GCFNc75zaF130O+JGZ1QHfJ3Ree/J3QkMM9xE6j2/09sSGkcsJDVH8PaE5g02EklcRkaOaroMlIhIFFrrw6t3OuT9HOxbpu3BVxHeB+eFiHoeuP43Qec0/dJ2IiIwMvmgHICIiEivCPXKzet1QRERGLA0RFBEZYczs9m4KFtze+94Si8xsQg+FKiZEOz4RkaOJhgiKiIiIiIhEiHqwREREREREImRYzcHKyclxkyZNinYYIiIiIiIiPVq1alW5cy730OXDKsGaNGkSK1eujHYYIiIiIiIiPTKzXV0t1xBBERERERGRCFGCJSIiIiIiEiFKsERE+sgfCPLAqr3UNB52fVkRERERYJjNwepKW1sbe/fupbm5OdqhSIxJTEwkPz+fuLi4aIciR4m3n3uQ+a/+gEff/BRXfO670Q5HREREhqFhn2Dt3buXtLQ0Jk2ahJlFOxyJEc45Kioq2Lt3L4WFhdEOR44SbttzTPfsw5WswB/4Nj6vBgGIiIjIwYb9p4Pm5mays7OVXEm/mBnZ2dnq+ZSI8jYcAGCG7WbHrqLoBiMiIiLD0rBPsAAlV3JE9HMjkZbSUkoroSGnB9a9FOVoREREZDiKiQRLRGQ4yAqUsyn1eILOCBSvi3Y4IiIiMgwpweoDM+OrX/1qx+Nbb72VW265JXoBdfLGG29w/PHHs3DhQmbNmtUR14svvsh//vOfAbV9zjnnkJmZyUc/+tEIRCoS45wj21VSkzyBYu9YUqo3RTsiERERGYaUYPVBQkICDz30EOXl5RFt1zlHMBgcUBtXXnklf/zjH1mzZg3r1q3j4osvBiKTYN18883cddddA2pD5GjhGitJoI3WpNGUp0xjTNP2aIckIiIiw9CwryLY2Q//uZ4N+2sj2ubscen84Lw5PW7j8/m47rrruO222/jxj3980LqysjKuv/56du/eDcAvfvELTjrpJG655RZSU1P52te+BsDcuXP517/+BcDZZ5/N8ccfz6pVq3jiiSf4zW9+w5NPPomZ8d3vfpdly5bx4osvcsstt5CTk8O6des49thjufvuuw+bV1RaWsrYsWMB8Hq9zJ49m6KiIm6//Xa8Xi933303v/71r5k5c2a3cW7fvp1t27ZRXl7O17/+dT772c8C8MEPfpAXX3yxx9fm/vvv54c//CFer5eMjAxefvllmpubueGGG1i5ciU+n4+f//znnH766dx555088sgjNDQ0sHXrVr72ta/R2trKXXfdRUJCAk888QRZWVn86U9/4o9//COtra1MnTqVu+66i+Tk5IOOe8IJJ3DHHXcwZ07o3J122mnceuutLF68uMd4RY5US1MdiYAlZhDImsK42leoqW8kIzW5131FRERk5FAPVh99/vOf55577qGmpuag5TfeeCM33XQTb7/9Ng8++CDXXnttr21t3bqVz33uc6xfv56VK1eyZs0a3n33XZ599lluvvlmiouLAXjnnXf4xS9+wYYNG9ixYwevvfbaYW3ddNNNzJgxgwsvvJA//OEPNDc3M2nSJK6//npuuukm1qxZw9KlS3uMc+3atTz//PO8/vrr/OhHP2L//v19fl1+9KMf8fTTT/Puu+/y2GOPAfDb3/4WM+O9995j+fLlXHnllR3V/NatW8dDDz3E22+/zXe+8x2Sk5N55513OPHEE/n73/8OwMc//nHefvtt3n33XWbNmsUdd9xx2HGXLVvGfffdB0BxcTHFxcVKrmRQNdbXAxCXkERi3nR8FmTPDg0TFBERkYPFVA9Wbz1Ngyk9PZ0rrriCX/3qVyQlJXUsf/bZZ9mwYUPH49raWurDH8S6M3HiRE444QQAXn31VS699FK8Xi95eXmceuqpvP3226Snp7NkyRLy8/MBWLhwIUVFRZx88skHtfX973+fyy67jH//+9/84x//YPny5V32OvUU5wUXXEBSUhJJSUmcfvrpvPXWW3zsYx/r0+ty0kkncdVVV3HxxRfz8Y9/vOM5ffGLXwRg5syZTJw4kS1btgBw+umnk5aWRlpaGhkZGZx33nkAzJs3j7Vr1wKhJOy73/0u1dXV1NfXc/bZZx923IsvvpizzjqLH/7wh9x333184hOf6FO8IkeqsbGeLCA+MZlRBRPgLajcuwnmHxPt0ERERGQYiakEK9q+/OUvc8wxx3D11Vd3LAsGg7zxxhskJiYetK3P5ztoflXn6zGlpKT06XgJCQkd971eL36/v8vtpkyZwg033MBnP/tZcnNzqaioOGyb7uKEw8uZ96e8+e23386bb77J448/zrHHHsuqVat63L7zc/J4PB2PPR5Px/O76qqreOSRR1iwYAF33nlnlwnj+PHjyc7OZu3ataxYsYLbb7+9zzGLHInWlkYAfAlJ5EycDUBb6bZohnRUcM5R0dBKTmpC7xuLiIjEgAEPETSzAjN7wcw2mNl6M7sxvPwWM9tnZmvCtw8PPNzoysrK4uKLLz5oyNpZZ53Fr3/9647Ha9asAWDSpEmsXr0agNWrV7Nz584u21y6dCkrVqwgEAhQVlbGyy+/zJIlS/oc0+OPP45zDggNPfR6vWRmZpKWlkZdXV2vcQI8+uijNDc3U1FRwYsvvshxxx3X5+Nv376d448/nh/96Efk5uayZ88eli5dyj333APAli1b2L17NzNmzOhzm3V1dYwdO5a2traOdrqybNkyfvrTn1JTU8P8+fP73L7IkQi0NAHgiU8iLm00DSThq94R5ahi31OPP4j72TTefOfdaIcS8/7x1Ms899KL0Q4j5m3ec4Bf/etNmtsC0Q5FRGJUJOZg+YGvOudmAycAnzez2eF1tznnFoZvT0TgWFH31a9+9aBqgr/61a9YuXIl8+fPZ/bs2R09KRdddBGVlZXMmTOH3/zmN0yfPr3L9i688ELmz5/PggULOOOMM/jpT3/KmDFj+hzPXXfdxYwZM1i4cCGXX34599xzD16vl/POO4+HH36YhQsX8sorr3QbJ8D8+fM5/fTTOeGEE/je977HuHHjgFDy98lPfpLnnnuO/Px8nn76aSA0LLF9vtXNN9/MvHnzmDt3Lh/4wAdYsGABn/vc5wgGg8ybN49ly5Zx5513HtRz1Zv/9//+H8cffzwnnXQSM2fO7Fj+2GOP8f3vf7/j8Sc+8QnuvffejsqJIoMp0BpKsLzxyWBGadx40hp2RTmq2Ddu7W/ItRrqXvtTtEOJaaWV1XzqjfP44AsXUN/cFu1wYtq+e2/iSyvP4rXnH4t2KCISo6y99yNiDZo9CvwGOAmod87d2td9Fy9e7FauXHnQso0bNzJr1qyIxijvO7Ta4dFGPz8SKRuevYvZr36BDRc8wexFJ7H2Fx8ns3odE27ZEu3QYlr5LRPJoZotVsj0H6yJdjgxa/Uz/+CY124I3f/w4xyz5ORe9pDu7L1lOvmU8Er6R1j6lX9EOxwRGcbMbJVz7rAqaxGtImhmk4BFwJvhRV8ws7Vm9hczG9XNPteZ2UozW1lWVhbJcEREIibQFppH6UsIzaFsyyhknCujtqExmmHFtObmJnKoBmBicA91ei2PWEvl3o77DRufiWIksa21LUCGC10OZlzduihHIyKxKmIJlpmlAg8CX3bO1QK/B6YAC4Fi4P+62s8590fn3GLn3OLc3NxIhSN9dMsttxy1vVcikeTCQwR9CaEqonG5U/BZkAO71IN1pOqqQl+qbUmYQ4L52bNtbZQjil2uvhSAGlLxVejyAUeqrGQvadZENWkUBndTW1sV7ZBEJAZFJMEyszhCydU9zrmHAJxzJc65gHMuCPwJ6HvlBhGRYSbYFkqw4sIJVtrYqQBU71OCdaRa6kIVT6tHhy5bUbPjnWiGE9OsoYxq0tifOJVRDSq+cqRq94WS0+3Zp+Exx96t70U5IhGJRZGoImjAHcBG59zPOy0f22mzCwH1tYtI7PKHhgjGJSYDkDshVICluVQfZo9Ua22oB8tTsJigMwIV26McUexKaC6nxjOK+vRpFPh3EwwEe99JDtNaXwmAFYSq6dbu1xcoItJ/kejBOgm4HDjjkJLsPzWz98xsLXA6cFMEjiUiEhUu3IMVH56DlZqdTwtxUNX1JRikd4HG0IdZT8ZYyjzZ+GpUlfFIJbVW0BA3CnKnk2LNHNinn8sj4W+uByB90qLQ4zIl/SLSfwO+0LBz7lWgqyvTHhVl2UVEAMzfTKvzEh8fF1rg8VDqHUNiw96ed5RuBepDQwTjUrKpjB9HepNeyyOVHqiiOHE2aWOmwnoo3b2FcROmRDusmBMMJ1gpWWMpZxRxNUpURaT/IlpF8Gj2yCOPYGZs2tT95OGioiLmzp0bsWNu3ryZ0047jYULFzJr1iyuu+46IHSR4CeeGFj+es011zB69OiIxityVPM300I8Cb73f23WJo4ns3l/FIOKcU2hAgLxaTk0pkwg16/X8kiluTqa4zMZlR+65mJj6bYoRxSbgq0NACQmp1MWP57Uxt1RjkhEYpESrD5avnw5J598MsuXL+9yvd/vH/AxAoGDrxr/pS99iZtuuok1a9awceNGvvjFLwKRSbCuuuoqnnrqqQG1ITKSmL+ZFuLwed7vsG9OLWBssBi/P9DDntKtpipanZfElHRc5kRyqaa6pjraUcWkJJpxvmRyxk8l6IxgRVG0Q4pJriWUYCWlptOQMoHRbUr6RaT/YivBevKb8NePRPb25Dd7PWx9fT2vvvoqd9xxB/fee2/H8hdffJGlS5dy/vnnM3v2bCCUaF122WXMmjWLT3ziEzQ2hq7r8txzz7Fo0SLmzZvHNddcQ0tLCwCTJk3iG9/4Bscccwz333//QcctLi4mPz+/4/G8efNobW3l+9//PitWrGDhwoWsWLGChoYGrrnmGpYsWcKiRYt49NFHAbjzzju54IILOO2005g2bRo//OEPO9o65ZRTyMrK6vF5v/TSSyxcuJCFCxeyaNEi6urqcM5x8803M3fuXObNm8eKFSs6XotTTz2VCy64gMmTJ/PNb36Te+65hyVLljBv3jy2bw+NY//nP//J8ccfz6JFizjzzDMpKSk57LiXXHIJjz/+eMfjq666igceeKCXsyQyuCzQQgvxhOr6hJdlTSLNmigpPRDFyGKXtdRQSwrJCXHE54aGs5Xs2hzlqGJQoI04Arj4ZLzxiZR5somrU8/LEWlrpM15SUhIJJBZSC5V1KlUu4j0U2wlWFHy6KOPcs455zB9+nSys7NZtWpVx7rVq1fzy1/+ki1bQpWGNm/ezOc+9zk2btxIeno6v/vd72hubuaqq65ixYoVvPfee/j9fn7/+993tJGdnc3q1au55JJLDjruTTfdxBlnnMG5557LbbfdRnV1NfHx8fzoRz9i2bJlrFmzhmXLlvHjH/+YM844g7feeosXXniBm2++mYaG0Ldwb731Fg8++CBr167l/vvvZ+XKlX1+3rfeeiu//e1vWbNmDa+88gpJSUk89NBDrFmzhnfffZdnn32Wm2++meLiYgDeffddbr/9djZu3Mhdd93Fli1beOutt7j22mv59a9/DcDJJ5/MG2+8wTvvvMMll1zCT3/608OOu2zZMu677z4AWltbee655/jIRz7S57hFBoPH30KrxR+0LGl0KCko36Ok4Ii0NdHkEkiO95IxbhoANSp732+BcK8LvlCFy8q4saQ17otiRLHLWhtoJBEzI2F06FIMJUW6rpiI9M+Ai1wMqXN/EpXDLl++nBtvvBEI9a4sX76cY489FoAlS5ZQWFjYsW1BQQEnnXQSAJ/+9Kf51a9+xYc+9CEKCwuZPj00Nv7KK6/kt7/9LV/+8peBUELRlauvvpqzzz6bp556ikcffZQ//OEPvPvuu4dt9+9//5vHHnuMW2+9FYDm5mZ27w59e/mhD32I7OxsAD7+8Y/z6quvsnjx4j4975NOOomvfOUrXHbZZXz84x8nPz+fV199lUsvvRSv10teXh6nnnoqb7/9Nunp6Rx33HGMHRuqzj9lyhTOOussINTz9sILLwCwd+9eli1bRnFxMa2trQe9du3OPfdcbrzxRlpaWnjqqac45ZRTSEpK6lPMIoPFE2imlYSDlo0aH3pPNxzYBpwRhahim7U10kQ8SXFecieGyt63lqvsfX81N9aRAlhCKMFqSMlnQtWb0Q0qRnn8jTRbAhlAWvj9Xbt/M8w/MbqBiUhMUQ9WLyorK3n++ee59tprmTRpEj/72c+47777cM4BkJKSctD2nYcPdfW4K4e20dm4ceO45pprePTRR/H5fKxbd/jlxJxzPPjgg6xZs4Y1a9awe/duZs2adcTxtPvmN7/Jn//8Z5qamjjppJN6LPABkJDw/odPj8fT8djj8XTMUfviF7/IF77wBd577z3+8Ic/0NzcfFg7iYmJnHbaaTz99NOsWLGi2wRUZCh5g634Le6gZTkFoV6XtgpVGjsSHn8TzZaIx2MkZ+RSTzLe6qJohxVzmhtDle8sPvS3JJAxkdFU0tRQH82wYpLX30iLhb7Qy50wA4DWcr2/RaR/lGD14oEHHuDyyy9n165dFBUVsWfPHgoLC3nllVe63H737t28/vrrAPzjH//g5JNPZsaMGRQVFbFtW6iq01133cWpp57a67Gfeuop2traADhw4AAVFRWMHz+etLQ06urqOrY7++yz+fWvf92R9L3zzjsd65555hkqKytpamrikUce6ehd64vt27czb948vvGNb3DcccexadMmli5dyooVKwgEApSVlfHyyy+zZMmSPrdZU1PD+PHjAfjb3/7W7XbLli3jr3/9K6+88grnnHNOn9sXGSyeYCt+z8EJli8pnUoy8NVovsuR8PibaLPwFzNmlPrGkKSy9/3W0hj6e+CND/Vg+bJDIwNK9myNWkyxyutvpMWTCEB6Zi61JEO13t8i0j9KsHqxfPlyLrzwwoOWXXTRRd1WE5wxYwa//e1vmTVrFlVVVdxwww0kJiby17/+lU9+8pPMmzcPj8fD9ddf3+ux//3vfzN37lwWLFjA2Wefzc9+9jPGjBnD6aefzoYNGzqKXHzve9+jra2N+fPnM2fOHL73ve91tLFkyRIuuugi5s+fz0UXXdQxPPDSSy/lxBNPZPPmzeTn53PHHXcAcPvtt3P77bcD8Itf/IK5c+cyf/584uLiOPfcc7nwwguZP38+CxYs4IwzzuCnP/0pY8aM6fPrecstt/DJT36SY489lpycnI7lK1eu5Nprr+14fNZZZ/HSSy9x5plnEh8f31VTIkPK00UPFkBF/DhSG5UUHAlvoJnW8IdZgLrE8WS0FEcxotjU2hSag+VLTAUgJS80N7BmvxKs/ooLNNHqeX9IeplXSb+I9J+193oMB4sXL3aHFmHYuHFjx3A36Z8777yTlStX8pvf/CbaoUSNfn4kUop+fCxlNorjvv3sQcvfue0T5Na8S/4t+jDbX/t/PJ/tjGfpd54E4O3br2dO8UMkfP8AXq++/+urra//k2lPf5p3PngPi5Z+lPL9u8j543zenPUtjl/We6Vced/W/15Moy+TBd8Mvc/f+dlHyGoqYuL310c5MhEZjsxslXPusOIG+gsmItIHXtdG0A7vTfVnTGCMK6ehsSkKUcW2uGAzfu/7PVg2aiLJ1kJZiXoM+sPfHJprFZeUBkBWXgHNLg5XpaFt/RUfbMbvfb8HqzU1n9GBUlwwGMWoRCTWKME6il111VUjuvdKJJK8ro2A5/AEy5ddiM+CHNi7LQpRxbY410Kg04fZpNGhuUPlmjvUL/6W0PUW48NDBD1eD6Xe0cTX74lmWDEp0TURCJe7h1DSn2StlCvpF5F+iIkEazgNY5TYoZ8biSSfayPoPTzBShsbulZO9T4lBf0VH2wh6Hs/wWq/FlZ9iUq190d7D1Z8UmrHsqr4caQ36VpY/ZXgmgl2SrAScycDULFX728R6bthn2AlJiZSUVGhD8vSL845KioqSExM7H1jkT7wuTac5/AiFzkFoVLOTSXbhzqk2OYcCbTgOiVYuQWhZNWvsvf9EmwN9WAlJL+fYDWnjCcnUBKtkGJWsmsmGPf+pVMyx4d+JusO6P0tIn037C80nJ+fz969eykrK4t2KBJjEhMTyc/Pj3YYcpSI66YHK2P0BNqcF6qKhj6oWOZvwUsQF/d+b0FCcgZVpONV2ft+cS2hKoJJnRKsYMYEMivqqaupJC0jK1qhxZRgWyvx5of4938mR3dc664oSlGJSCwa9glWXFwchYWF0Q5DREa4ONpwXczBMq+PEm8eCXVKCvqlLdTrYnFJBy2u8OWR1Kihbf3S1kjQGUnJ7/e8xOcUwg4o27OVtIzjoxhc7GhqrCMFIP791zExJYNKJf0i0k+DPkTQzM4xs81mts3MVC9WRGJSHH5cFz1YANUJ48lo3j/EEcU2155gdeotAKhPGk9Wm66F1S9tjTSSQLzP27EobUzoWli1xSq+0lfNDaELNns6JVgA5b4xJOtaWCLSD4OaYJmZF/gtcC4wG7jUzGYP5jFFRCIuGMBLELpJsJpTCxgdKNZc0X5oaQwNazv0w2xb+gTygmW0tvmjEVZMsrZGWkjAzDqW5eSHhrY1l6lgSF+1NNYC4ElIPWh5fdJ4RinpF5F+GOwerCXANufcDudcK3AvcMEgH1NEJLL8LaH/fV0nWC5zIpnWQHm5igr0VXNTqLfAm3BwD5Zn1AQSzE/p/qIoRBWbPP4mmi3hoGWjcsbQ4BKhWkPb+qqlMfwzmXhwgtWWVsDoYBn+trZohCUiMWiwE6zxQOcLcewNL+tgZteZ2UozW6lCFiIyHLn2BMub0OX6xNGhUs5lu1XKua9aGkOlxQ9NsJJHh4a2Vei6Yn3m8TfRYgdXTDWPh1JvHon1GtrWV63hpN+XeHCvqjdrIvEWUNIvIn0W9TLtzrk/OucWO+cW5+bmRjscEZHDtLWGEixPNz1YGeOnA1B/QAlWX7U2hYYI+g4ZjjVqfCjBaixVWey+8gWaaPUcfkmKmoRxpGtuYJ/5m0JJvy8p/aDlSeGkv1LXwhKRPhrsBGsfUNDpcX54mYhIzGhrbQbAfF33YI0OXwurTfNd+qwtfHHcuKSDewtywtcd8lfuGvKYYpUv0ExbFwlWc2o+owMluGAwClHFHn9zqAer8wWbAbLC89kalPSLSB8NdoL1NjDNzArNLB64BHhskI8pIhJRba1NQPcJVmLaKKpJw6NSzn3W1hzqwYo/ZL6LLzGFCkbhq93T1W7ShbhgE35vFxdVz5xAqjVRW1U69EHFoED4emIJyWkHLc8dP4WgMwJK+kWkjwY1wXLO+YEvAE8DG4H7nHPrB/OYIiKR5m8J92DFdZ1gAZT5xpLcoKSgr9o/zCYmpx62riJ+DCm6FlafxQVb8HuTD1senxOeG7hHQ9v64v2fyYMTLF9CEuWWhU9foIhIHw36HCzn3BPOuenOuSnOuR8P9vFERCLt/TlY3SdYdcn5un5TP7R/mI1PTjlsXYOuhdUvCa6JgDfpsOUZY0MJVp2uhdUnriU0bDUxNf2wdZXxY0hpUtIvIn0T9SIXIiLDXaAt1IPl6aEHy59WwJhgKa2tKuXcF4HW0IWGkw7pLQDwpxeQ5ypobmkZ6rBiUoJrIeg7PMHKmRCaG9hSvnOoQ4pJrrWRoDOSkw7vVW1Izier7UAUohKRWKQES0SkF+1FLrw9JFierELiLEDJXhW66ItgS+jDbFLS4T1YvqxJxFmAA3ot+ySRFlxcFz1YmdnUkILVaOhqX1hbA40k4PN5D1sXSJ/AaFdBc3NzFCITkVijBEtEpBf+1vYerC4KCYQljwmXct63eUhiinltTTQRT3KC77BVKWNCQ9uq9mloW6+CARJog7jD52ABlHnHkFSvBKsvPG2Nh12wuZ0vayJecxzYo59JEemdEiwRkV4E2loB8MV1fR0sgOz80LWwmkpUyrkvrK2RZhKI8x7+ZygrfF2xxlL1YPWmNXztpu4SrNrEcWS0amhbX3j8DbTQ9ZcoKeEvUKr3q2CIiPROCZaISC+C4TlYvvjue7Byxk/B7zwEKjTfpS/M331vQdbYQoLOCKosdq+aG0LXbiLh8KGWAC26Flafef1NNHsOH2oJkB2+FlZTqd7fItI7JVgiIr1w4YIMvm4+xAJ4fXGUekfjq1Up574wfzOt3SRYnrgEyjzZxNVpaFtvGhtDCZYvoeseLMucSJK1UlG6dyjDikm+QCOtXVywGSB77CTanJdgZdHQBiUiMUkJlohIL4JtoQsNe3tIsACqE8aRrlLOfeL1N3WbYAFUxY8lrUlJQW9aGmsB8CYeXo0RICmvEIByXQurV3GBJlo93SSq3jjKPDnEK+kXkT5QgiUi0ptwguVL7DnBakmbQF6gmEDQDUVUMc0baKatm+FYAPUpE8nzK1ntTUtDKMHydZNgtc9nqy1WgtWb+GATgS7K3berih9LWrN+JkWkd0qwRER6Ex4iGJfY9bfb7bxZhWRZHfsPlAxFVDEtLthEm7f7OW3+zMnkUENtTeUQRhV72ppCCVZ88uEXxwXImzCDoDP8ZSq+0pv4YDMBX/fv8aaUfLL9em+LSO+UYImI9MbfhN95SIjvfkgbQPLYUG9Bya4NQxFVTIsLNhPsIcGKHx2q2lZatHGoQopJbeEhgnHdJFjxSSmUenKIq1Fxht4kuiaCPSRYwYwJ5FJNbV3NEEYlIrFICZaISC9cayNNJHR5zabOsibMBqB+36ahCCumJQUbaIvrelgbwKiCWQBU79Vr2ZNAc6hMe1JKRrfblMfnk9Goioy9SXQtBLspdw/gGx2qJKikX0R6owRLRKQX5m+imXgSfd4etxsVnu8SLNfFSHuT7JoIxKV2u37MxFCC1VqquUM9CTaHqggmpHbdgwXQkDqRMf594DQ3sDvBQIBka8Hiu59nmTZuJgB1+gJFRHqhBEtEpBfW1kQzCXg81vN28cmUenJJqNVwrB45R7JrgvjuE6yk1HTKyMJbrdeyJ64llGClpHbfg+WyppBOA9XluuBwdxrCxUJ6SrBGh5N+v5J+EemFEiwRkV5YoJmWHkqKd1aVWMCoJpVy7klrUx0ec7iE7ocIApTF55PWoOuK9ai1gVbnJSmp+6FtCXntcwPXD1VUMaepPpSoehK6T/ozMkdRQhaeqh1DFZaIxCglWCIivfD0cs2mzprTCxkf3Edzq3+Qo4pdjXXVAHgSux/WBtCYOkGl2nthrfU0koRZ972rWRNCPS/1+zYPVVgxp7mhGgBPN+Xu25XG5ZPWUDT4AYlITBtQgmVmPzOzTWa21sweNrPM8PJJZtZkZmvCt9sjEq2ISBSErtnUtwTLkzONDGtk335dJLc7TXVVQO8JVnDUZLKpoaqyYijCikmetgYarftrN0GoVLvfefBrbmC3WupDP5Pe5FE9bleXMpHcVr23RaRnA+3BegaY65ybD2wBvtVp3Xbn3MLw7foBHkdEJGp8gWbaPN2XFO8sbdwMAMqKVKq9O+29Bd2VFm+XOCZUta14p17L7vj8DbT0cMFmgMTERIo9ecRXa2hbd1rDCZYvJbPH7fyZkxlFLc215UMQlYjEqgElWM65fzvn2sfBvAHkDzwkEZHhJS7YjL+PCVbOpFCp9sZiDcfqTku4oIAvufvCDACj8lW1rTdef2OvCRZAeUIBGU2az9adQGMowYpPyepxu/jwfLYyzWcTkR5Ecg7WNcCTnR4Xmtk7ZvaSmS3tbiczu87MVprZyrKysgiGIyISGXHBFvw9XBS3s9S8Kfjx4Cq3D3JUsautMXSh1oReEqy8cLLaVqaqbd2JD9TT6u2+MEO7xnCpdhcMDkFUsaetIZRgJWf0nGBl5Ldfn01foIhI93pNsMzsWTNb18Xtgk7bfAfwA/eEFxUDE5xzi4CvAP8wsy7Hgjjn/uicW+ycW5ybmzvwZyQiEmHxrpmgr28JFt44Sr1jSVap9m75G0M9WIk9lBYHiE9KpdSy8dXotexOsr+WlvieX0cAsqaQTAvVZZo/1JVAYzUAaZk5PW43dtIMAs5oK9kyBFGJSKzy9baBc+7Mntab2VXAR4EPOhe6iqFzrgVoCd9fZWbbgenAyoEGLCIy1BJcC/i6L4N9qJrkCWTV6YNsdwJNoR6sxLTMXrctjy8gXaXau5Xuatmb0HNhBoDkcTNgC5QWrWdU3oQhiCy2BJuqaXVe0tN6nheYmZbKbhuNT/PZRKQHA60ieA7wdeB851xjp+W5ZuYN358MTAP020hEYk/ATwpNBBN6/uDVmT+zkAJXTE1jyyAGFrtcYwVBZ2SOGt3rto1pkxjr30f4+zvpJOBvI50GXFLPw9oAsgvaS7VrPluXmmuotxTM0/vHotL4AtIbdg1BUCISqwY6B+s3QBrwzCHl2E8B1prZGuAB4HrnXOUAjyUiMuQCTdUAuMTMPu/jy51OsrWwd7e+V+pSYwU1pJKYEN/rpi57CqOsjrLS4iEILLbUVoXmLVtydq/bjp0wlRYXR0Cl2rvkbamh0dP7XDaAhpSJjG7bC0r6RaQbvQ4R7Ilzbmo3yx8EHhxI2yIiw0FjTTlpgCVl9nmfjPwZsBoqdm+AmbMGLbZYFddcQY0nnd4HtkHymOmwGUqLNjA6b9ygxxZLaitKGAX40npPsOLi4tjpGUOC5rN1Ka6tjuY+FAsB8I+aQnJVMy3V+0kYNX6QIxORWBTJKoIiIkedxtrQRW49vVyAtLOciXMAaDmgifBdSWytpMGX2adtsyeGKgnW7VfVtkM11pQCkJDec2GGdpWJExilUu1dSvVX0hjXt/d4Ynup9iKVaheRrinBEhHpQUtdKMGK6+X6OJ3FjyqghXisUkMEu5LcVk1THz/Mji6Ygd95CKhU+2GaakJDBJMyep/LBtCcPokxgWJcwN/7xiPMqEAlTQl9q2ScURC6PlvtXs1nE5GuKcESEelBS11o+mhCWt8TLDweyuLGkdpQNDhBxbi0YA2tCX17PT1xCZR48zS0rQv+ulCCldqHYiEAnpypxJuf8n26RltnQX8bo1wNbcl9ex3zJ06j2cXhV9IvIt1QgiUi0oPmcIKVltW/6/TVpUwit3UvwaAmwnfmAn4yXB0uqfd5Q+2qEgvIbFLVtsPU7ifojIzcgj5tnjwu1PNStmvDYEYVc6rK9uMxhy99bJ+2z0xJZK+NwVetpF9EuqYES0SkB20NoQRrVFbfvt1uF8yaTAElFFfXD0ZYMasy/GHWm57X532a0wsZF9iP3x8YxMhij7duP+WWSVJSUp+2zw3PDWzcr6FtnVWWhOalJWb1vYhKWXwBGY1K+kWka0qwRER6EGyoosnFMyo9rV/7JeRNJ94CFBep0EVnlXtDw6oScif3eR/LmUaKtXBgX9EgRRWbEhv3U+nte8/qmLEF1LkkqFCp9s5qS/cAkJaT3+d9GlInkuvfD0El/SJyOCVYIiI98DWWUGGZeD3Wr/2yJoSq31VrIvxBGkpC83/SxvQ9wUodNwPQ0LZDpbeWUJ8wps/be7we9vvGk1hXNHhBxaCWilBPVPa4vv9MBrOmEI+/Y18Rkc6UYImI9CC5uaRfvQTtRuWH5ru0laoHq7O28AfS3Pzpfd5n9CQNbTuUCwbJDpTTmtK3eUPtqpMmkt2sUu2d+ap20OASyMjtew9WYt40AMp3bRyssEQkhinBEhHpQXprKXXx/Zt/BWCpo2mwZE2EP1T1LirIID09vc+7ZI6ZRDNxuApVv2tXUVxEsrXgye57rwtAa8Yk8oJlBFqbBimy2JNYu5Ni33jM0/ePRJkFoQuI1+9XgiUih1OCJSLSnWCQrGA5bf3sJQDAjIr4fE2EP0Rq3Q7K4sZj1vchl+bxcsA7jiQNbetQuv0dAFIK5vVrP1/uNDzmKC1Sb2C7US17qU2e2K99CvInUe8SaSvVfDYROZwSLBGRbjTWlBCPH09m34cOHbR/WiFjAvtobtNEeAgNa8tv3UFNxsx+71uTNJHsFg1ta9ewZx0AeVMX9mu/tHCp9oo9ms8GUFdXw7jgAQJZU/u1X2ZKPHtsLPG6PpuIdEEJlohIN8p2hyreJWZPOLIGsqcwnnL2lFVFMKrYdWD3FtKsCfLm9nvf1szJjAseoLmlZRAii0Gl66ggk9zRfS8tDpA3OTSfrbl482BEFXP2bXgDrzl8Bcf2az8zozy+gIwmJf0icjglWCIi3ajb8x4AqRP6NwyrXcKY6XjNUb5HH2YBijf8B4DMyf37MAvgy51KvAXYV6TXEmB87Vp2Jc/p11BLgJzsXMpdBp5KDW0DKN/8OgAT553U730b0iaS4z8A/tZIhyUiMU4JlohIN1qL19Ps4pgwedYR7Z+ZH9qvcb+SAoDWbS9STxJT5n+g3/tmhKsyVu7W3KHivTsZ5w7QOv74fu9rZpTEjSe5QT0vAEn73+CAjSYrr/+91C5rKl6CtFZomKCIHEwJlohIN+Irt7DHW0BqUsIR7Z+ZH7p+k9OFXXHBIOOr3mJH8gJ8cfH93r+9VHtLicre73nzUQDGLjjriPavS55ATuveSIYUk5qbGpnZtJrd2f3vvYL3S7VX7FofybBE5CgwoATLzG4xs31mtiZ8+3Cndd8ys21mttnMzh54qCIiQygYpKBpI+Vp/S/I0M6SRlFlGcTXFEUurhi1Y90bFLhimgo/dET7p2aNpY5kvFVKVhO2/ov9NpoJs/vfgwUQyJhIjquipbE2wpHFlvdefpgUayF17keOaP+sCaHfDXX7t0YyLBE5CkSiB+s259zC8O0JADObDVwCzAHOAX5nZt4IHEtEZEiU7HyXDOppO4JhWJ2Vx+eT2aRS7cUv/5U252Xm6ZcdWQNmlPjGkVw/soe2lezeytymlewdd26/rtvUWdzoUMW8kl0je7ilZ809VJLBjJMuOKL9C8blU+eSaNMQQRE5xGANEbwAuNc51+Kc2wlsA5YM0rFERCJu96qnAZiw6IMDaqc+ZSJ5bftwzkUirJhUU1XGwrJ/si7zdDJyjuCaYmG1SQVkte6PYGSxZ/u/bgUg/0OfP+I20seHhq5W7Bm5wy13bFzNosb/sC3/43iPYMgqwKiUePZaHr4afYEiIgeLRIL1BTNba2Z/MbNR4WXjgT2dttkbXiYiEhOSd/6bXTaeiVP7X1K8s0BmIXlWRU1tTYQiiz3bln+DJJpJP/PmAbXTlj6BMcFS2traIhRZbNm15V2OLXmQd0adzbhJM464nTETQ8VXWkfoRXJdMEjDI1+liQRmfOzrR9yOmVEVP47Uxj29bywiI0qvCZaZPWtm67q4XQD8HpgCLASKgf/rbwBmdp2ZrTSzlWVlZf3dXUQk4mrL9jG9cQ27c0/vdxnsQ8XlFAJQuntkfpjdvPJZFpU8xBvZH2fKvBMG1JY3u5A4C1CyZ3uEoosdrS0ttN53LU2WwKRl/zugtjKycql2qXiqR+bQtjce+iXzWlazbs5XyMjp33XEDtWUUhAq1R4MRig6ETka9JpgOefOdM7N7eL2qHOuxDkXcM4FgT/x/jDAfUBBp2byw8u6av+PzrnFzrnFubm5A30+IiIDtuOpXxNnAfJOvXbAbaWNmQxAzYGRlxQU79pMzr8+wwHPaOZd8bMBt5cyZjoAFXtHVtn7YCDAmt9dwTT/FrYt+X/kjJ00oPbMjBLf2BE5n23tK49x7Hv/zYaEhRx30dcG3J4bNYkE2mitHtlDV0XkYAOtIth5MP2FwLrw/ceAS8wswcwKgWnAWwM5lojIUGhrbaZgx72sjFvM9DmLBtxebkGolHNz2cjqLSjatBr760eIo5XWZfeSnpk94DazC0LD4poOjJyqbc1NDbx128UsqXmKNyZcx+IPXxORdmuSCshqGVml2lc9fTdTn72W/d5xFNzwAB7vwGtvJY6eAkDZnpFdMEREDjbQOVg/NbP3zGwtcDpwE4Bzbj1wH7ABeAr4vHMuMMBjiYgMurWP/ppsV4X3hOsj0l5adj4txEH1yJgIHwwEee3+28hdfi4+2ii98H4mzTwmIm3njJ1Eq/MSrCyKSHvD3bb3XmfvrSdzQv2zrJr8eU64+qcRa7s1fRKjg2UE21oi1uZw1VRfy+u/vZZjX/88e+MmkvlfT5CWGZkRM5njQ72qNftGTtIvIr3zDWRn59zlPaz7MfDjgbQvIjKU6qrLmLL+l7znm8fC0y+KTKMeD2We0STUH/29BVvffZ3GJ77DSS2r2Ji4gNwr/sLU8VMj1r7H56PEO4aEuqM7WS0v2ceWB37EcaX3U2uprF36e4794KciegzLLsS731G6byujJw2skMtwFQwEWP3Enxm76v84kRLeHv0J5l/9CxKS0iJ2jLETphFwRkvZjoi1KSKxb0AJlojI0WTr329koasn7iM/OeJrDHWlNmEs6c3FEWtvuNn07htU/funHF//PHWWzNszv87ii7+JeSJ/+cOqhPFkNB+dyWrpviK2P/5zFuy7l+NpZXXWh5l22W3Mz8mL+LGSx0yH96Byz+ajLsFqaWninaf+xuh3f8fi4C52eAvZdOZyjjvxwxE/VlZ6CvssZ8QWDBGRrinBEhEBtvz7TxxT+Tgvj72SUxadHNG2W1Lzmdi4mWDQ4fEMrCrhcBHw+1n30gP43rqdOS3v0EQ870y4gukXfZ/jMnMG7bjNqRMoLH0PFwxGNAmOFhcMsuHNf9Pyn9uZV/syxxNkdfrpjD7vBxw3feGgHTc7/+ibz7Zz5zaKn/s9M/Y+wAlUs8eTz8rFt3LMuddEZL5VV8yMCt84khuOzqRfRI6MEiwRGfHKi94j/z/fZa13Nouvitw8l3YucwJZZXWUVlYyOmfgxR6ixjmKN7/N/pf/ysT9T7KAKkrI5vXJX2Le+V/i2AjNa+nRqImklTVRXl5Czugjv2hxtJXv3sSO5//C2F3/ZI7bT61LZmXeJ5l4zo0snjx70I8/ZtwEGlwCrjK2e17Kq6pY9/y9pGx6gEWtq5mIY23SEvaf8F/MPeVjFAxCL+qh6lMKmFDzyqAfR0RihxIsERnR/M0NNNz9aTwujrTL/kZyYmLEj5GQWwhboXTP1phMsGpLdrHj+b+Stf1hJviLyHZe1iYfz+4FlzDvjEvIi08YslgS86bCFijbvTHmEqza6jK2PHcXaZsfZEbrOnKAdfHzKZl1A7M/dAUnpmYOWSzxcV52ecaSUFs0ZMeMlOaWVla//BjBNStYWP8yp1kzpZ5c1k26koIPXs/CCTOHNJ5gxkRG1fyLtsYa4pIzhvTYIjI8KcESkRFt3V8+x0J/Ef858XY+MHn6oBwjfUyolHPdgW3AwC62O1RaG2rY8tI/8K27j+kN77DQHOs9M3hp2jeZ8cErWDxmfFTiyhwfGtpWt38rcEZUYuiP5uYmNrz8ILy7grn1/2Gx+SmyfF6Z8DkmnHYVcyfPiFpslQnjGd8cG9fCCgaCrF39GtVv3M2s8qf5gFVRTzLbR59F1omfpmDhhxgdpSGjvpzJsBtKd29h/MzjohKDiAwvSrBEZMRa//RfWFj6CC/lfopTz7l00I6TWxBK3JrLigbtGJHgAm1se+OfNK78B9OrXmIurexhDC+NvZqxS69k9uwFmEV3DtnoCaHXsq1i+A5tCwYCrH/rGerf/gezKp/jGOqpJJ3Voz9O5omXM2PhyUwaBvPHmlInMrr8TQgGYAiG0h2JHds2sfulv1Gw918sdLtpc142p59A9cJLmHryJ1iQkBztEEkfNw1WQ9XezUqwRARQgiUiI1Tprg1Mev1brPfO4vjP3Daox0rMHEMz8VjNMOwtcI49G9+g9JU7mVT8FNOoptqlsCrzHBKP+xQLTjiLAt/w+fCdmJxGGaPwVRdFO5TDbN+wigOv/p3C/U8wj1IaXQKbMpYSd8ylzPrAeZwwhEMp+8KNKiS+3E9TxW6ScgujHU6HsrIDbHrubjK2Pcx8/zomA9sSZrN25neZdvqVzM0cHe0QDzJ6YrhgSOn2KEciIsOFEiwRGXH8fj/ld3+WBOcl9bK/kTgI864OYka5N4+kYVRprGLfDna+8FdG73yECYHd5Dkv7yafwJY5FzPv9E9yckpKtEPsVnncOFIb90Q7DAAO7Cti+/N/Y/TOR5kW3M4kZ2xIOpYDc77KrNMv5ZjU4TsnJyFvKmyF8t2bKYhygtXY2MC6F+/H3ruf+Y1vsNT87PWMZ9XkzzHp9CuZWjC086r6IycnjxqXAlVF0Q5FBotzuEAbwUAbgUCAYDBI0DkCQUfQOVwgSNAFCQSDGOAx8ABmYB4v5vHi8XrxeHxY+H+Px4N5PHiMqI8MkMhTgtWDDW88Rd3K+wAHLhj+32EEMeew8GNwB+/oQo8PXnroNt1s4Q5eZrhD98TcoUu6aH/QRO6XgItwe6E2u2rvyF+brts7cpFvL9IOj2+ofrKGUmJbNce2rWP1ov/HMUM0B6YucSyZjdG9FlZDbSWbnr+HpI0PMLP5XbLNsd43m1dnfIcZZ1zOcXmxUTSiIaWAguq3o3b8mupKNr6wnKSNDzC35R3GmGObbxpvT/86U0+/gnl5BVGLrT8yxoWGW9bu3wzHnjPkxw8EAqx//SkaVv6D2VUvsMQaqCSD98ZeRN7JV1Aw5yTyY+CDp5lR4htLYl0Ue6j9reCLj97xo6y5uZnaqjLqa8ppqaukrb4Kf2M1geY6Ai0NuJZ6XFsj1tqItTXiCTQSF2giLthMfKCJONeC1/nxuja8LoCPNuKcHy8B4vCTYH4M8IZvkRJ0hh8PQTwEOv3vsNBjCy0L4sG1r+u8rP2+eQjixVlou2D4f2ceguaFjvsenHk71tH+OPx/58dmFroRThTpnAiG/j/080HPnxes2/Xvf6495P/2z9pAaWIhhefeyNzxw/dLq86UYPWgYd8mZpQ/Tej0HnwLfUfx/uNDuS7/KPT04dU6/j3sBzb8A37wfl21Nbh/iLp/awyX9iJtuD9fRySfdaTjG+7eyTmPRed/YciO15g+hdn1a2hpayMhLm7Ijutva2XDq4/gX72cWbWvcqy1ssfG8p+Caxl/6lXMmRZ7F5kNZEwkt+ppGhvrSU5OHZJjtrQ0s+6VRwmuuZe5da9ygrWy3/JYOeEz5J96BVOnLhiSOCJpwqSptDgfzSXbhvS429e/Tcmrf2dy8RPMpzw0lDLzVJIWf4oZJ36Uxb6he39ESm3yBPLr3xvSY7Y1VLH9xbuJW38fExvX8e6SWzn2w58Z0hgGQ1sgSGVdI1Wl+2go30tz1T4CNcV46kuIbyohvqWSBH8tif46UoJ1pLgGUqyFRKCnwaN+56HJEmghkWZPEq2WSKsnkWZvKg2ebILeOJwnDueJB28ceONw3niC5gNPHAFPHHh80JF8eEKJh3nAwGOeUCYS/msaDH8HbwTBBUJzHV0Q63S//bEFA6FtwssIBrD2bV1o/86PzQVCSYkL4KF9XWhfjwviJYA5P55Oy4wAHhdKzUIdBeE0zYXSOsN1rPcS7LqToIePCd1+hrCeP1+0f+59/zPswclb++fsauayr/o6JVhHg+Mu+jJc9OVohyEigyBviI/nGzuHpOLlbNm6gemzB/fDuAsG2bb2NSr+83emlT7NfGqoJpV3cz5C+vGXM/PY0ynwRr/IwpGKGzMTzy7H3s3vMH3R0kE7TjAQZOOqF6h98x5mVDzDsdRSTSrrRn+EUSd8mimLzmDcMChWcaTSkhPZ5RmDp2rwC4aU7dvJ9hfuJHfHo0wJ7mSi87AheTH7536D2addwjEp6YMew2Bqy53HmLrnqSkvJiNn8HqCg20tbP3PI7Su/gfTa15jJm3sYDzbg+OZ9+bNvFpdygeWfQPPMHx/t/qDlNY0UFGyj5qyPTRV7iNQvR/qDxDfVEpKazkZ/nJyXBU51JBnB38oDzqj0jKo9WTS5EujOjGf8vgMXEI6LikTb/IofMmj8KWMwpeSRULqKBJT00lKTic5NZ34hETSzEiL0vOXgTk72gH0kxIsEZEhkDNlEayG0u2rBy3B2l+0maIX/8a43Y8yLbiXic7HutQPsGvBMuacehEnJCQNynGH2tjZJ8GbULnldRiEBGvX5nfY9/LfmLj/Cea4EppdHBvTT2bfomXMOvlCjosf5Dl7Q6gyeRKjG7cOStsNNZVseuFuEjc+yKzmd8k1xxbfdN6c9nWmnXEl8/PyB+W40ZBaeCzsgD0b3yRj6cci2rYLBtn2zotUv3E308r+zQzqqHDpvJF1PonHfopFx5+Ov6mazbdfyslbfsJ7P3kSzwe/y5zjPxTuURl89c2tlB3YS3XJHurL99JWvZ9gbTG+xhISm8tIaysn21Uylmry7fDejGpPJrW+HJrSx1CaNJ8DqWPwpo8lftQ4UrILyMjLJ3nUWHK8ceQMyTMSGRglWCIiQ2DslIX4nYfA3tXA1RFrt6pkN9teuIv07Y8xo20T44CNcXN4e/Y1TP/gFRwzKjdixxouxhRMo4IMPPtXRazN8n072f7C38je+RhTA9vJd8aGpEUcmPUlZp7+KRalZ0XsWMNJ45gljN/+KuX7d5IzbuCFLpoaG1n/ykN43lvBnLrXOdba2GNjeaPgM+SfeiXTp82PQNTDT8HsEwk+azRuew0ikGC5YJDt771OxRvLmXDgKaa5MppdHO+lnkRw/jLmnXIhpya9/4VJfFw2c7/2JKsf/gWT3/s5mU99ks3PTKNi4ofJXfQRCmcsxHcEVSwDba3UlO+nqmwvdeX7aarcT6BmP576EhKaS0huqWBUoIJsqim0wGH7V1sGtb5smtJyKU+eQ0XaGOIyx5GcPZ6M0RNIzcnHUvPI9MaROZAXTGSYUYIlIjIEPImpbI2fQV75mwNuq6x4N9tfuZf0bf9kZst7HGeObZ5CXp/8RQpP/TSzJg7fimuRYB4PRSkLmFzzBsFAAI/3yKadF+/aTNGr95Fe9BSzWteTY44t3um8Mf1roWIVYydGOPLhZ/S8M2D7z9m18ilyzr/hiNpobqhl82uP4F/3CDNq/sNia6KSdN4ZfQFpx32KWTE+JLUvMrNHs8k3nVH7XjriNlwwyLb1Kyl9414K9j/JVLefic7LhqRj2D3zy8w87VKOy8zudn/zeDnmoq/SfM5nefNfv2f01nv5wI5fwo5f0up8bPfmU5+QR0v8KPxxqXi94WIHwQDeQBM+fwPetka8/gZS/VVkumoyqScLOPTrhWrSqPZm05CQQ3HSVPanjcGXMY6EUeNIH13AqLyJJGaOJdMXr8RJRiQlWCIiQ6Rh/Eks2HkH+/buZnz+hL7v6Bz7trzD/rceJH33s0xr3UyuOXZ58nm94FpGf+BSps46hqkxUHEtUtys88hZ+TKb3n6amSd8uG/7BIMUbVpFyVsPkrvn30wJbGcssNMzkbcmXMvYpZczfXrsFasYiCnzPsD+R3JJ2Hg/9CPBqizdx9b/PErc1ieYVf8mC6yVKtLYmHUGyYsuYsYJHx121/0abBXjT+fEXX+gfPcmcib07UuO1pYWtrz9NI3v/ZPxpS8xzZUwxRkbExfw1rTPMu20T7EgZ0y/4khMSef4Zd8AvsGBPdvYv+ZZmve9R2rNVpJby8lr2kEyjeEiBw5nRhOJNFkirZ4k2rwpVKVMpiQxh0BSDqSOJiFjDKk5Yxk1uoCsvAIyE5KVOIn0wFyXJb+jY/HixW7lypXRDkNEZFDs3/oO4+45jdcmXM9J1/xvj9vWV5Wy/e2naNryPPkVr5PvDgCwxTuVivFnMu6EjzNx1pIhm2Mx3NTXVdN661wOJE1h1tefxzxd92JVluxl98on8G99ngnVbzKaSgA2+WZRNfEsCk68mPypsVdJMZJe+/PNnLT3j+w8/2EKjzmjy22amxrZuuZl6tc/Te6BV5jctg2POcoYxfbs00icfyFzPnAucXEjt1T4nqLt5P31ODZkf4iFX1rR5TYuGGTvtrUcePcZPEUvM61+JenWSIuLY0PSMbRNPZtpSz/JqLx+fAEjIlFjZqucc4sPWz6QBMvMVgDtF5HJBKqdcwvNbBKwEdgcXveGc+763tpTgiUiR7u1PzuHafWrKPrQn5h10gVgRsDfRsmOtRzY/Catu1eTU7mayf4deMzR6BLYlryAhsKzKDj+QvInTo32Uxg2Xl3+v5y8+X94N/ODpJ74GeJTMqmrKKaheDPe4nfIrV1PgdsPQA0pbE89lkDhaUw44ePkjY/uhXWHk8qqSlp+eRyJtLJnwY2kTzqWltYmGoq301q8nlGV71LYuoV48+N3HrbEzaR63CnkHfMRJs8/qdvkdiR68fdf4LSSu1gz+mOkLroIT3wSdRXFNO3fSELZe4xvWN+R5JeQzZ5Rx+Od9RGmn3geKWmxUX5aRN43KAnWIQf4P6DGOfejcIL1L+dcv74WVIIlIke70v27afrTOUx0+2ggiVbiyHB1eMKVtRpdAjsTZlCVdyIZs89kxjGnEp8wsoZa9VUwEOSlO77BSfvuIP6QCfaljGJf8kxaxxxL+uwzmbbgZHxDeP2xWLN5/Tt4HriKaa7ooOWtzsf2uGlUZy8iZdoHKFx8LmmZquPWnZbWFt64/fOcVPEgPgsetG63jaU8bRb+CSeTt+AsJkyZg8VwmX8RGeQEy0KXdt4NnOGc26oES0Ske7W11ax98g7cgXV4nZ9gcg6+3KlkTT2eyTMXKBHop+LifezZ+Ba01JGUmUduwXTyxk/CRujwySMVCATZuH4NTQe2EJ+QQNqYKRRMnjmih/0dqf3797Bvyzt4gm0kjxpN/uQ5pGUcnZUoRUaywU6wTgF+3n6AcIK1HtgC1ALfdc690s2+1wHXAUyYMOHYXbt2DTgeERERERGRwdRdgtVrFUEzexboqoTNd5xzj4bvXwos77SuGJjgnKsws2OBR8xsjnOu9tBGnHN/BP4IoR6s3p+KiIiIiIjI8NRrguWcO7On9WbmAz4OHNtpnxagJXx/lZltB6YDGv8nIiIiIiJHrUjMrjwT2OSc29u+wMxyzcwbvj8ZmAbsiMCxREREREREhq1IXGj4Eg4eHghwCvAjM2sDgsD1zrnK3hpatWpVuZkNt0lYOUB5tIOQIaPzPXLoXI8cOtcji873yKFzPbIMx/M9sauFw+pCw8ORma3savKaHJ10vkcOneuRQ+d6ZNH5Hjl0rkeWWDrfugCDiIiIiIhIhCjBEhERERERiRAlWL37Y7QDkCGl8z1y6FyPHDrXI4vO98ihcz2yxMz51hwsERERERGRCFEPloiIiIiISIQowRIREREREYkQJVg9MLNzzGyzmW0zs29GOx6JHDMrMLMXzGyDma03sxvDy7PM7Bkz2xr+f1S0Y5XIMDOvmb1jZv8KPy40szfD7+8VZhYf7RglMsws08weMLNNZrbRzE7Ue/voZGY3hX+HrzOz5WaWqPf20cPM/mJmpWa2rtOyLt/LFvKr8Hlfa2bHRC9y6a9uzvXPwr/H15rZw2aW2Wndt8LnerOZnR2VoHugBKsbZuYFfgucC8wGLjWz2dGNSiLID3zVOTcbOAH4fPj8fhN4zjk3DXgu/FiODjcCGzs9/l/gNufcVKAK+ExUopLB8EvgKefcTGABofOu9/ZRxszGA18CFjvn5gJe4BL03j6a3Amcc8iy7t7L5wLTwrfrgN8PUYwSGXdy+Ll+BpjrnJsPbAG+BRD+vHYJMCe8z+/Cn9uHDSVY3VsCbHPO7fj/27vv+DirK+HjvzMzkka9W725N7ngSjEYQihLMQQCJHQ24SUJSSBtUwlhN1nSs0AWNgRCQggldEJJIFQDNnHvNi6yJVu9txlNue8fz0iWZVVrpJFG5/v5CM889YyeGfGcufeea4zpAJ4AVoU4JhUkxphyY8yGwONmrBuwHKxr/MfAZn8ELglJgCqoRCQXuAD4feC5AGcBTwc20WsdJkQkETgdeAjAGNNhjGlAP9vhygFEi4gDiAHK0c922DDGvAvU9Vjc12d5FfAnY1kDJIlI1qgEqoatt2ttjPmHMcYbeLoGyA08XgU8YYxxG2MOAHux7tvHDE2w+pYDlHZ7XhZYpsKMiBQCC4G1QIYxpjywqgLICFVcKqh+A3wL8AeepwIN3f5w6+c7fBQB1cAfAl1Cfy8isehnO+wYYw4DvwAOYSVWjcB69LMd7vr6LOt9W3i7CXg18HjMX2tNsNSEJiJxwDPAbcaYpu7rjDWHgc5jMM6JyIVAlTFmfahjUaPCAZwE3G+MWQi00qM7oH62w0Ng7M0qrKQ6G4jl+C5GKozpZ3liEJHvYQ3teCzUsQyWJlh9OwzkdXueG1imwoSIRGAlV48ZY54NLK7s7FIQ+LcqVPGpoDkVuFhESrC6+p6FNUYnKdCtCPTzHU7KgDJjzNrA86exEi79bIefs4EDxphqY4wHeBbr866f7fDW12dZ79vCkIjcAFwIXG2OTt475q+1Jlh9+xcwLVCNKBJrMN2LIY5JBUlgDM5DwE5jzK+6rXoRuD7w+HrghdGOTQWXMeY7xphcY0wh1uf4TWPM1cBbwOWBzfRahwljTAVQKiIzAos+AexAP9vh6BCwXERiAn/TO6+1frbDW1+f5ReB6wLVBJcDjd26EqpxSETOw+ref7Expq3bqheBq0QkSkSKsAqbfBSKGPsiR5NB1ZOI/BvW2A078LAx5sehjUgFi4icBrwHbOXouJzvYo3DegrIBw4CVxhjeg6wVeOUiKwEvmGMuVBEJmO1aKUAG4FrjDHuEIangkREFmAVNIkE9gM3Yn2hqJ/tMCMiPwKuxOo+tBH4HNZYDP1shwEReRxYCaQBlcAPgefp5bMcSLLvw+om2gbcaIxZF4Kw1Qno41p/B4gCagObrTHG3BLY/ntY47K8WMM8Xu15zFDSBEsppZRSSimlgkS7CCqllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCml1BgjIoUiYkTEEepY1MQgIttFZGWo41BKqXCgCZZSSqlxT0QeEJGWwE+HiHi6PX811PGNdcaYOcaYt4N5TBG5QkQ+EJE2EQnqsZVSaiwTY0yoY1BKqbAiIg5jjHcY+xcCB4CI4RxnohKRO4Gpxphrelk3rGszmsZTrL0RkbOBFGAmcJYxZmVoI1JKqdGhLVhKKRUEIlIiIv8hIluAVhFxiMjywDf4DSKyuXsXLBF5W0T+W0Q+EpEmEXlBRFL6OPaNIrJTRJpFZL+I/L8e61eJyKbAcfaJyHmB5Yki8pCIlIvIYRH5LxGxD/A6pojImyJSKyI1IvKYiCR1W1cnIicFnmeLSHXn6xKRiwNdzRoCr29Wj9/PN0Rki4g0isiTIuIc+m966Pq4NkZEpnbb5hER+a9uzy8M/E4bAtdw3iDPtVJEykTku4HfX4mIXN1t/QUisjFwrUoDyWDnus6uof8uIoeANwPL/yoiFYHf27siMqdH3P8rIq8GWuveF5FMEfmNiNSLyC4RWTjI39HZg3mNg2WMecMY8xRwJJjHVUqpsU4TLKWUCp7PABcASUAG8DLwX1jf4n8DeEZE0rttfx1wE5AFeIF7+jhuFXAhkADcCPy6W5KzFPgT8M3AeU8HSgL7PRI47lRgIXAO8LkBXoMA/w1kA7OAPOBOAGPMPuA/gD+LSAzwB+CPxpi3RWQ68DhwG5AOvAK8JCKR3Y59BXAeUATMA27oNQCR0wKJTV8/pw3wGnrTdW0GahUKJCQPA/8PSAX+D3hRRKIGea5MIA3IAa4HficiMwLrWrGue1Igni+IyCU99j8D63d/buD5q8A0YBKwAXisx/ZXAN8PnNMNfBjYLg14GvjVIOPulYh8u7/rMZxjK6VUONIESymlguceY0ypMaYduAZ4xRjzijHGb4x5HVgH/Fu37R81xmwzxrQCPwCu6K2FyRjzsjFmn7G8A/wDWBFY/e/Aw8aY1wPnOWyM2SUiGYFz3WaMaTXGVAG/Bq7q7wUYY/YGjuU2xlRj3Zyf0W39g8BeYC1WYvi9wKorgZcD+3qAXwDRwCk9fj9HjDF1wEvAgj5iWG2MSernZ3V/r6EP3a/NQG4G/s8Ys9YY4zPG/BErcVk+hPP9IPA7fAcr0b4CwBjztjFma+BabcFKSs/ose+dgWvWHtjnYWNMszHGjZXszheRxG7bP2eMWW+McQHPAS5jzJ+MMT7gSazk+oQZY+7u73oM59hKKRWONMFSSqngKe32uAD4dI9v+k/DSkp62/4gEIHV6nAMETlfRNYEuuc1YCVOndvlAft6iaUgcLzybuf/P6xWkD6JSIaIPBHoUtgE/LmXmB4E5gL3Bm76wWrxOti5gTHGH3h9Od32q+j2uA2I6y+WICsdeJMuBcDXe1y7PKzXOBj1gaS508HOfUVkmYi8Feha2QjcwvG/365YRcQuIneL1fWziaOtk933qez2uL2X56P5e1ZKqQlPEyyllAqe7lWDSrFaqLp/2x9rjLm72zZ53R7nAx6gpvsBA93SnsFqEcoItBi8gtWVr/M8U3qJpRSr1SWt2/kTjDFzetm2u58EXkexMSYBqyWu81yISBzwG+Ah4E45Om7sCFZi0rmdBF7f4QHOdxwRWSFHKwD29rNi4KMcp2dFpzYgptvzzG6PS4Ef97h2McaYxwd5rmQRie32PJ+j45D+ArwI5BljEoEH6Pb77SXWzwKrgLOBRKAwsLznPiMmMJ6sz+sxWnEopdR4oQmWUkqNjD8DF4nIuYFWCGegAEJut22uEZHZgfFMdwFPB7p1dRcJRAHVgFdEzscaS9XpIeBGEfmEiNhEJEdEZhpjyrG6Ev5SRBIC66aISM/uaD3FAy1Ao4jkYI3t6u5/gHXGmM9hdX17ILD8KeCCQBwRwNexErwPBvpF9WSMec8YE9fPz3tDPWYvNgGfDVyb8zi2m96DwC2B1iYRkVixilPEQ1dhiUcGOP6PRCQykAxeCPw1sDweqDPGuALj5z47wHHisX6PtVgJ4U+G8BqDwhjzk/6uR1/7db7vAQdgC3wGIkYvcqWUCg1NsJRSagQYY0qxWh6+i5UclWIlK93/7j6KVYiiAnACX+nlOM2B5U8B9Vg35C92W/8RgcIXQCPwDkdbkq7DStB2BPZ9mmO7KPbmR8BJgWO9DDzbuUJEVmEVqfhCYNHXgJNE5GpjzG6s1q57sVrhLgIuMsZ0DHC+UPkqVowNwNXA850rjDHrgM8D92H93vZybEGOPOD9fo5dEdjvCFZBiluMMbsC674I3CUizcAdWNe1P3/C6mJ4GOs6rhnohY0h12J1Ubwfa8xgO1byqpRSYU3nwVJKqRAQa+LVPxtjfh/qWNTgBaoibgbmBYp59Fy/Euu65vZcp5RSamJwhDoApZRSarwItMjNGnBDpZRSE5Z2EVRKqQlGRB7oo2DBAwPvrcYjEcnvp1BFfqjjU0qpcKJdBJVSSimllFIqSLQFSymllFJKKaWCZEyNwUpLSzOFhYWhDkMppZRSSiml+rV+/foaY0x6z+VjKsEqLCxk3bp1oQ5DKaWUUkoppfolIgd7W65dBJVSSimllFIqSDTBUkoppZRSSqkg0QRLKaX6YIzB59dKq0oppZQavDE1Bqs3Ho+HsrIyXC5XqENR44zT6SQ3N5eIiIhQh6LGqb89eCf7qpq4/vafkhwbGepwlFJKKTUOjPkEq6ysjPj4eAoLCxGRUIejxgljDLW1tZSVlVFUVBTqcNQ4ZIzhoiO/AeCtt5dx5gVXhTYgpZRSSo0LY76LoMvlIjU1VZMrNSQiQmpqqrZ8qhPW0NTS9di35/UQRqKUUkqp8WTMJ1iAJlfqhOj7Rg1H5aFdXY/zmjaEMBKllFJKjSfjIsFSSqnR5qneC8DO6JOY4i+hrluLllJKKaVUXzTBGgQR4etf/3rX81/84hfceeedoQuomzVr1rBs2TIWLFjArFmzuuJ6++23+eCDD074uAcPHuSkk05iwYIFzJkzhwceeCBIESs1TjSWAdCcdyYO8XNg9+YQB6SUUkqp8WDMF7kYC6Kionj22Wf5zne+Q1paWtCOa4zBGIPNduJ57vXXX89TTz3F/Pnz8fl87N69G7ASrLi4OE455ZQTOm5WVhYffvghUVFRtLS0MHfuXC6++GKys7NPOFalxhOvuw2AlGnLYQ80lW6HJaeGOCqllFJKjXXagjUIDoeDm2++mV//+tfHrauuruayyy5jyZIlLFmyhPfffx+AO++8k1/84hdd282dO5eSkhJKSkqYMWMG1113HXPnzqW0tJRvfvObzJ07l+LiYp588knASpBWrlzJ5ZdfzsyZM7n66qsx5vj5eKqqqsjKygLAbrcze/ZsSkpKeOCBB/j1r3/NggULeO+99/qN89prr+Xkk09m2rRpPPjggwBERkYSFRUFgNvtxu/39/q7ueeee5g9ezbz5s3jqqusKmt1dXVccsklzJs3j+XLl7Nly5auc11//fWsWLGCgoICnn32Wb71rW9RXFzMeeedh8fjAeCuu+5iyZIlzJ07l5tvvvm41+33+yksLKShoaFr2bRp06isrOzvMio1JP5AgjVp+mL8CP6qXQPsoZRSSik1zlqwfvTSdnYcaQrqMWdnJ/DDi+YMuN2XvvQl5s2bx7e+9a1jln/1q1/l9ttv57TTTuPQoUOce+657Ny5s99jffzxx/zxj39k+fLlPPPMM2zatInNmzdTU1PDkiVLOP300wHYuHEj27dvJzs7m1NPPZX333+f00477Zhj3X777cyYMYOVK1dy3nnncf3111NYWMgtt9xCXFwc3/jGNwD47Gc/22ecW7ZsYc2aNbS2trJw4UIuuOACsrOzKS0t5YILLmDv3r38/Oc/77X16u677+bAgQNERUV1JTw//OEPWbhwIc8//zxvvvkm1113HZs2bQJg3759vPXWW+zYsYOTTz6ZZ555hp/97GdceumlvPzyy1xyySXceuut3HHHHQBce+21/O1vf+Oiiy7qOqfNZmPVqlU899xz3Hjjjaxdu5aCggIyMjIGvI5KDZavow23cRAXn0yVLYPohr2hDkkppZRS44C2YA1SQkIC1113Hffcc88xy9944w1uvfVWFixYwMUXX0xTUxMtLf0Phi8oKGD58uUArF69ms985jPY7XYyMjI444wz+Ne//gXA0qVLyc3NxWazsWDBAkpKSo471h133MG6des455xz+Mtf/sJ5553X6zn7i3PVqlVER0eTlpbGmWeeyUcffQRAXl4eW7ZsYe/evfzxj3/stYVo3rx5XH311fz5z3/G4XB0vaZrr70WgLPOOova2lqamqzE+PzzzyciIoLi4mJ8Pl9XvMXFxV2v76233mLZsmUUFxfz5ptvsn379uPOe+WVV3a19j3xxBNceeWV/f7OlRoq43HhJhKbTaiLKSLdVRLqkJRSSik1DoyrFqzBtDSNpNtuu42TTjqJG2+8sWuZ3+9nzZo1OJ3OY7Z1OBzHdKvrPh9TbGzsoM7X2UUPrO5/Xq+31+2mTJnCF77wBT7/+c+Tnp5ObW3tcdv0FSccX8685/Ps7Gzmzp3Le++9x+WXX37Mupdffpl3332Xl156iR//+Mds3bp1UK/JZrMRERHRdS6bzYbX68XlcvHFL36RdevWkZeXx5133tnrXFYnn3wye/fupbq6mueff57vf//7/Z5XqaESbztusd6vHclTmdK8jqY2Fwkxx3+GlFJKKaU6aQvWEKSkpHDFFVfw0EMPdS0755xzuPfee7ued3aFKywsZMMGa+6cDRs2cODAgV6PuWLFCp588kl8Ph/V1dW8++67LF26dNAxvfzyy11jlD7++GPsdjtJSUnEx8fT3Nw8YJwAL7zwAi6Xi9raWt5++22WLFlCWVkZ7e3tANTX17N69WpmzJhxzLn9fj+lpaWceeaZ/PSnP6WxsZGWlhZWrFjBY489BlhjydLS0khISBjU6+lMptLS0mhpaeHpp5/udTsR4dJLL+VrX/sas2bNIjU1dVDHV2qw7D4XHURajzNmESUeyg/sDnFUSimllBrrhp1giUieiLwlIjtEZLuIfDWw/E4ROSwimwI//zb8cEPv61//OjU1NV3P77nnHtatW8e8efOYPXt2Vznzyy67jLq6OubMmcN9993H9OnTez3epZdeyrx585g/fz5nnXUWP/vZz8jMzBx0PI8++igzZsxgwYIFXHvttTz22GPY7XYuuuginnvuua4iF33FCVY3vzPPPJPly5fzgx/8gOzsbHbu3MmyZcuYP38+Z5xxBt/4xjcoLi4G4HOf+xzr1q3D5/NxzTXXUFxczMKFC/nKV75CUlISd955J+vXr2fevHl8+9vf5o9//OOgX09SUhKf//znmTt3Lueeey5LlizpWvfAAw8cE/eVV17Jn//8Z+0eqEaEw+fqasGKy7a+XGg4ogmWUkoppfonvVWmG9IBRLKALGPMBhGJB9YDlwBXAC3GmF/0t393ixcvNuvWrTtm2c6dO5k1a9awYlR9u/POO48phhFu9P2jTtS2n56No6OBmT9YR2tNKbH3zeXdad/h9Ku/HerQlFJKKTUGiMh6Y8zinsuHPQbLGFMOlAceN4vITiBnuMdVSqlQcvhdeAItWLEpObiJgPreu/oqpZRSSnUKapELESkEFgJrgVOBW0XkOmAd8HVjTH0v+9wM3AyQn58fzHDUINx5552hDkGpMSnC76bNFm89sdmosmfibC0NbVBKKaWUGvOCVuRCROKAZ4DbjDFNwP3AFGABVgvXL3vbzxjzO2PMYmPM4vT09GCFo5RSwxJh3HhsRysGNjlzSHIdCWFESimllBoPgpJgiUgEVnL1mDHmWQBjTKUxxmeM8QMPAoMvjaeUUiEW4Xfj7ZZgdcTnkeWvwOP1hTAqpZRSSo11wagiKMBDwE5jzK+6Lc/qttmlwLbhnksppUZLlHHjtR9NsCSliHhpp6KyPIRRKaWUUmqsC8YYrFOBa4GtIrIpsOy7wGdEZAFggBLg/wXhXEopNSoiTQd++9HJvqMnTYYdUFO6h7yc3BBGppRSSqmxbNgtWMaY1cYYMcbMM8YsCPy8Yoy51hhTHFh+caDa4Lj1/PPPIyLs2rWrz21KSkqYO3du0M65e/duVq5cyYIFC5g1axY333wzYE0S/Morr5zwcV0uF0uXLmX+/PnMmTOHH/7wh8EKWamwEYUbnz2663lKrjWXXUvF3lCFFHJHDh/ipV/ezIaPtdiHUkop1ZegFbkId48//jinnXYajz/+eK/rvV7vsM/h8x07tuMrX/kKt99+O5s2bWLnzp18+ctfBoafYEVFRfHmm2+yefNmNm3axGuvvcaaNWuGFbtSYcXvIwLvMS1YqTnTAPDWTNxS7Qf+8QAXNT9J/XPfDHUoIVPX1MKOvRP3PQDQ2OZhuHNojmdur48Orz/UYSilxjBNsAahpaWF1atX89BDD/HEE090LX/77bdZsWIFF198MbNnzwasROvqq69m1qxZXH755bS1tQHwz3/+k4ULF1JcXMxNN92E2+0GoLCwkP/4j//gpJNO4q9//esx5y0vLyc392hXpOLiYjo6Orjjjjt48sknWbBgAU8++SStra3cdNNNLF26lIULF/LCCy8A8Mgjj7Bq1SpWrlzJtGnT+NGPfgSAiBAXFweAx+PB4/FgDaU71l//+lfmzp3L/PnzOf300wGr9evGG2+kuLiYhQsX8tZbb3Wd65JLLuGTn/wkhYWF3HffffzqV79i4cKFLF++nLq6OgAefPBBlixZwvz587nsssu6fj/dLV++nO3bt3c9X7lyJT0noFZqRHldAJhuY7Bs0QnUSyKOpkOhiirkIqu3AjCndS3uCVrsY9v/3cTsPy9gy76J2Yq3fcu/WP3fF/LUy6+FOpSQMMbw4C++y4u//Dx+/8RNMpVS/QvqPFgj7tVvQ8XW4B4zsxjOv7vfTV544QXOO+88pk+fTmpqKuvXr2fRokUAbNiwgW3btlFUVERJSQm7d+/moYce4tRTT+Wmm27if//3f7n11lu54YYb+Oc//8n06dO57rrruP/++7ntttsASE1NZcOGDced9/bbb+ess87ilFNO4ZxzzuHGG28kKSmJu+66i3Xr1nHfffcB8N3vfpezzjqLhx9+mIaGBpYuXcrZZ58NwEcffcS2bduIiYlhyZIlXHDBBSxevBifz8eiRYvYu3cvX/rSl1i2bNlx57/rrrv4+9//Tk5ODg0NDQD89re/RUTYunUru3bt4pxzzmHPnj0AbNu2jY0bN+JyuZg6dSo//elP2bhxI7fffjt/+tOfuO222/jUpz7F5z//eQC+//3v89BDD3W1zHW68soreeqpp/jRj35EeXk55eXlLF583CTZSo0cX4f1ryPymMW1EVnEtZeFIKCxobDd+uIjU+rYU7Kf6VOnhTii0eX1eDi99e8AVL77B5hyR4gjGn0Na5/gAvsadqz7Llx4fqjDGXUHd3zEra4HANi0+z9YMGt6iCNSSo1F2oI1CI8//jhXXXUVAFddddUx3QSXLl1KUVFR1/O8vDxOPfVUAK655hpWr17N7t27KSoqYvp06w/x9ddfz7vvvtu1z5VXXtnreW+88UZ27tzJpz/9ad5++22WL1/e1fLV3T/+8Q/uvvtuFixYwMqVK3G5XBw6ZH3L/slPfpLU1FSio6P51Kc+xerVqwGw2+1s2rSJsrKyriSsp1NPPZUbbriBBx98sKv74urVq7nmmmsAmDlzJgUFBV0J1plnnkl8fDzp6ekkJiZy0UUXAVbLW0lJCWAlYStWrKC4uJjHHnvsmJaqTldccQVPP/00AE899RSXX355r78fpUaMN5Bg2Y9NsNpicknzjOvhpCfO7yPV1LE9agEANXvWhjaeECjft7nrcUL5ByGMJHQi66xxyFPNQSpr60Mczeir2bex63HD5r+FMBKl1Fg2vlqwBmhpGgl1dXW8+eabbN26FRHB5/MhIvz85z8HIDY29pjte3a1663rXU89j9FddnY2N910EzfddBNz587tNREyxvDMM88wY8aMY5avXbt2wHiSkpI488wzee21144r0PHAAw+wdu1aXn75ZRYtWsT69ev7fR1RUUfHq9hstq7nNputa4zaDTfcwPPPP8/8+fN55JFHePvtt487Tk5ODqmpqWzZsoUnn3ySBx54oN/zKhVsfq8bGyA9WrB8iQVk1b9JY0s7iXHRve8cplzNtTgxNGSeAgc34T4c5N4E40BTtdUtsFrSyHXvxRgzqL/x4STbvQ83EUSJh0NbV5Ox8qJQhzSqvHXWl5duIpAjx/c8UUop0BasAT399NNce+21HDx4kJKSEkpLSykqKuK9997rdftDhw7x4YcfAvCXv/yF0047jRkzZlBSUsLevVb1sUcffZQzzjhjwHO/9tpreDweACoqKqitrSUnJ4f4+Hiam5u7tjv33HO59957uwYdb9x49Bu2119/nbq6Otrb23n++ec59dRTqa6u7ury197ezuuvv87MmTOPO/++fftYtmwZd911F+np6ZSWlrJixQoee+wxAPbs2cOhQ4eOS+z609zcTFZWFh6Pp+s4vbnyyiv52c9+RmNjI/PmzRv08ZUKBk+H1VIsjqhjljvSinCIn4rSiVdJsLG2AgBJLqBOknE0HgxxRKPPXW+1XpamnkKOVHOkYoK1Zvo8ZPkr2Jh8HgDNhzYPsEP4sTcdoo4EDjlnkNK6L9ThKKXGKE2wBvD4449z6aWXHrPssssu67Oa4IwZM/jtb3/LrFmzqK+v5wtf+AJOp5M//OEPfPrTn6a4uBibzcYtt9wy4Ln/8Y9/dBWZOPfcc/n5z39OZmYmZ555Jjt27OgqcvGDH/wAj8fDvHnzmDNnDj/4wQ+6jrF06VIuu+wy5s2bx2WXXcbixYspLy/nzDPPZN68eSxZsoRPfvKTXHjhhQDccccdvPjiiwB885vfpLi4mLlz53LKKacwf/58vvjFL+L3+ykuLubKK6/kkUceOablaiD/+Z//ybJlyzj11FOPSepefPFF7rjj6HiGyy+/nCeeeIIrrrhi0MdWKlg8HVaRC1uPFqy4rKkANBz5eNRjCrXm2koAnAmTqI3KIaF94hV58DRaSWbE9E8AULF3Y3+bhx13czU2DK6U2bThxF6/P9QhjbrotiPU2DNoTphOvvcg3gla7EUp1T8ZS6VWFy9ebHpWi9u5cyezZs0KUUTj2yOPPHJMMYyJSN8/6kTU71tH8qOf4K0Fv+bMS27qWt5cuZ/4+xfyzozvc8ZnJlap8s2v/5n573+JXav+hvv9+8mo/pBJP9yPzTZxusitvf9m5lY8j/fz75D4++W8PetHrLzytlCHNWrKP95I1mMr+XDhz8na9gA1JLP4e/8MdVijquw/53I4ooCIKadz0vafcOiGDeQXTgl1WEqpEBGR9caY4yqxaQuWUkr14A10EbT16CIYn16ABzumfuJ1j/O11gAQk5SBP7mITKmjqm5iFTmIbK+hXpJJyJyMD4H6iTUfVlOd1YoZnZhGc2wB6R1lE24+rFh/M66IJOJzrK7xVQd3hjgipdRYpAlWGLvhhhsmdOuVUifK29lFMKJH91ebnWpbBs7mCTgXVmstAM7EdJyTrPLsE+3mMqajlgZ7MuKIoto2iaimiZVodzRb74HoxHT8yZPJoYrqxpYQRzW6Ykwr/sh4MgusnhHNFRNvPKZSamDjIsGaaN+QqeDQ9406UT6v1YJlj4g8bl2DM5tE95HRDinkbO31tJko4uMSSMq1vr1vPrInxFGNLqeviXZ7AgD1UbkkuSbWnGjeVmvC+KiEdCInTbMKvhyaQO8Br5soPPgj44nPKLJaMesmViumUmpwxnyC5XQ6qa2t1ZtlNSTGGGpra3E6naEORY1DXV0EI45//7jj8sjwlePzT6y/SdLRTAvROCNspOVbBWo81RPr23unr5UORxwArvh8Mifa+6DNSrBiEtNJCHSRay7bFcqIRpVxNQEgznhwRFqtmC0Tr9iLUmpgY34erNzcXMrKyqiurg51KGqccTqd5ObmhjoMNQ75PFYXQUcvLVgkF5JS1cKR6iqyMzJGObLQsXlaaJNoRISI2GQaSCCicWJ9e+80bfgirHkLTfJkkqtaKK+qICszK8SRjQ5pr6PD2ImNSyCiYA4AHdUTp6JmW0sDsQDORAAaorJJap9YrZhKqcEZ8wlWREQERUVFoQ5DKTWB+DwdANh7jsECnJOmwG6oKd0zoRIsu6cVlxydXLkmMpvYtsMhjGiUGUOMaccfGQ9AdIb1Pqg+tGvCJFh2Vz0NxJMe5UCi0mkmBscEKvTR3lRPLOCItrqJtsflk9/21oSccFop1b8x30VQKaVGW+cYLEfk8V0Ek7KtubCayyfON/cADm8rbltM1/OWmFxSPRNool2vmwi8mEiri2ByrtVNsnUCvQ9sHc20SKyVTIhQHZFNTNvEacFxtVhVM+0xSQD4kwpIlSZqamtDGJVSaizSBEsppXowHivBiuhlDFbn+CNvzcT55h4g0tdGh/1oC5YvIZ8sU01LuyuEUY0en6vZehBltV6k5U0HwFMzcSbbtXtbaZejSXZrdA6pHROn4IurpQGAyFiri2BkujX/VXXpxBmHppQanBFPsETkPBHZLSJ7ReTbI30+pZQaLn+gi6Aj8vgughGxyTQRh61xYpVqj/S34bXHdj2PSJtsVZEr3RfCqEZPW7PVemFzWi1Yjuh46kjE0TRx3gcR3pZjWjG9iQVWku3qCGFUo8fT3ghAdFwSAInZ1nQFLeUTq9iLUmpgI5pgiYgd+C1wPjAb+IyIzB7Jcyql1HD5fZ1dBI9PsABqIrKIbZtY1cOi/O14HUcTrNjMyQDUH54YZbrbA60X9ujErmV1kVkTahxapLeVjm7vAXtqEVHiobxsYrTm+tqsBMsZlwxAep7Vmt0xwVqzlVIDG+kWrKXAXmPMfmNMB/AEsGqEz6mUUsNiAmOwIvpIsFqic0ntmEDjj4Bo095VQQ8gPc8q091eNTG6yLlarJtrR7cEyxqHNnG6yEX62/B0S7DiM63xiHWlE2Mcmr/dKtMeE28lWNGJqTQTg61h4rRiKqUGZ6QTrByg+9e8ZYFlXUTkZhFZJyLrtBS7UmosMF6ry1NkVHSv6z2J+WSaKtonSNco/H5icHUVeACIn1SAFxvUlYQurlHU0dYAQGRMQtcyb0I+maaGNtfEGIcW7W/D5zj6Hugch9ZWNTG6iRpXE27jIC7uaJJZ5cgipnVitWYrpQYW8iIXxpjfGWMWG2MWp6enhzocpZTCeDvwGSEyspd5sOjsGuWl/PDE6BpkOgIFHrolWGKPoNo2icjmifHtfUer1YLVWeAAICK1EIf4KT80AVrxjCGGdvzdk+yMIvwIpm5ifA5wN9FMDHGRR2e4aXbmkDSBCn0opQZnpBOsw0Bet+e5gWVKKTVmGW8HHhxEOXr/ExmXYVUPqy+bGOOP3K1W1yii4o9Z3hCVTYJrYtxcegPdw6Ljk7qWxQa6yDVMhHFoXhcOfMe0YuKIotaWRkTzxGjBsXU000Y0NtvROa864vPI8lfh9XpDGJlSaqwZ6QTrX8A0ESkSkUjgKuDFET6nUkoNj6+DDhxE2nv/E5na2TWqcmJUD2sPjD+yO+OOWe6KyyPDV4Hfb0IR1qjyB8q0xwQKHACk5XZ2kQv/Fixfe99JdqJrYnxv6vA002aLPWaZLcUq9FF15GCIolJKjUUjmmAZY7zArcDfgZ3AU8aY7SN5TqWUGjafBw8Rx3xT3V1S5mR8RjATZPxRZwuW3XnszbXpnGi1ri4UYY0q42rCb4S4+KNjsBIzC/EaG6a+JHSBjZK21gYA7M6EY5a74nKZ5KvA6/OHIKrR5fC24uqRYEVnWNU0aw9PjEIfSqnBGfExWMaYV4wx040xU4wxPx7p8yml1HCJz40HR9/rHZFU29OJnCBdo1xtVoIVEX3szXVUunVzWVW6e9RjGnXuZlpwEhsV0bVI7BET5n3gam4AwB59bJJNciGZUk95bcOoxzTaonwtuO3HJljJ2YFWzIqJ0ZqtlBqckBe5UEqpMcfvwSt9J1gA9ZE5JEyQrlGdBR4iYo5NsJICE602Hwn/m0vpaKGNmONaNRsisyfE+8AVmAfMEZN4zHJnujUesepQ+LfgRPla8TqO7SabnjcVvxG8tSWhCUopNSZpgqWUUj3YfG480nsFwU7tcXmke8sxJvzHH3UWeIiKPTbBSsu3vr3vqAn/MUh2TwvtcnzZfldcLuneirB/H3R2E43okWAl5QSS7PLwT7Bi/K14Io9twYuIiqbaloKjaWJU01RKDY4mWEop1YPd56JjgATLJBWQLo1U14f/+CNvoMBDdNyxN9dR8em0Eo2tMfwH+Du8rbjsMcct9wfeBzX1DaMf1CjytFmtmM4eSXZKoNCHuybMS7UHytQfU0UxoD4ii7j2shAEpZQaqzTBUkqpHhx+Nx6J6neb6AyrRHflgV2jEVJI+XqpoAeACNWOTGJaw7+LXIS3FXePAgcAzsA4tOrS8C7V7m233gPOHu8Be3wGLiKxh3uS3dGKHT8mKuG4Va2xeaR5ykMQlFJqrNIESymlenD43Xhs/SdYKfmzAWg6vGM0Qgopv6sFgNj4+OPWNUfnkjwBJlqN9LXS4Tg+wUrItMYgNZWH9zg0v8tqwYqJP7YVExFqI7KIaQ3vFhxPu/X6e5apB/An5pNu6mluaR7lqJRSY5UmWEop1YPD78Y3QBfB9AIrwfJWhf/YEzpaaDFOYiIjjlvlic8jy1+JqyO8J1qN9rfh7SXBSsufCUBHdXiPQ/O7mvEZITb2+BacluhcUjqOhPU4tNamegBszsTj1kWkTcYmhvKDE+BvgVJqUDTBUkqpHhz+Drz2/luw7M44qiSNiIbwvrGGzgp60b3OC2ZPLSRaOqg4Et6D/J2mDV/E8eNvopMyaCcKaQjzLnLuZlqIJs55fJLtTcgjhyoaWjtCENjoOFqm/vgEMyHL6i7cOAGqaSqlBkcTLKWU6iHCuPHanANuVxuVR3J7mN9YAzZPC+224yvoAcQExqLVloXxGCRjiDHtvXYPQ4RqeybOMO8i15lk23tJsh1pk4mXdsrKw7erqKvFasGKiE06bl16oJqmq3rfaIaklBrDNMFSSqkeIk0HvgFasADaEwrJ9h7G5/OPQlSh4/C04pbjK+gBpATKdLdVhu/Npbe9CbsY6KXAAUBTdA5J7vAucmAl2b2/B+IC49DqysJ3wumOtgYAonpJsOJTc3ERgakP/y9blFKDowmWUkr1EGnc+O0Dt2CROo1EaaWiIryr6Dl8rbh7KVEOkJJjtWD568K3THdrk1WKX6KPH38D0BGfT7a/HI/XN5phjSqHpwV3HwlWau4MANrDOMn2BCbbdsYlHb/SZrNaMVtKRzcopdSYpQmWUkr1EEXHoBKsmCzrxrK6JLwrCUb52vD0kWBJZAw1kkJEGE+02h5IsOzRSb2uN6lTiRU3lYdLRi+oURbhbcVtP77IB4AzvQgAf13JKEY0uryBecDiEpJ7Xd/kzCHJFd5ftCilBk8TLKWU6s7nxYEPv2PgBCu9YA4AreU7RzqqkIr2tdAR0Xv3OID6yCwSwnii1bZmK8GK6DkPWEBMptVNsvZQ+L4PIn1teB3HF/kAICqORlsikc3h24Lja+9MsFJ6Xe+KLyTHfySsWzGVUoOnCZZSSnXndVn/DiLBSsmdisfY8VeHd/WwWNOCN7KXAg8BLXGFZHrKwrZMtztQ4CAytvcEq7Nkf1t5+I5BivG39FpFsVNdVC7JrvBNsIy7mRbjJCG2j78LaeHfiqmUGjxNsJRSqhvjaQfAFjFwgiX2CCrsWTibwnf8EX4f8bThi0zqcxNv8lTSpJG6uprRi2sUeVqtBMsZ33vrRWr2ZNwmAn9N+I5BiqMFb1TvCSZAe/xkcvyHcXnCswVH3E209lFFESA20F245mB4dxdWSg2OJlhKKdWNu70NAFtk72OOeqqPzifVFb7jj/ztTda/zr67CEYHbi4r9m8blZhGmy9QQS6mj+5hYndQ4cjC2Ryeibbf3UY0HfidSX1uY1KnkCn1HK6sGr3ARpG9o5k2W+9j0ADSC61WzNbyXaMVklJqDBtWgiUiPxeRXSKyRUSeE5GkwPJCEWkXkU2BnweCEq1SSo2w9vYWAOyRvc/71FNH4mRy/OV0dHhGMqyQaW8JVNBz9l5BDyA137q5bCoLz2/v/YECB7F9JFgAjdF5pIRpF7nWJqtlUvoo8gHgzJwJQN2h8HwPRHiacPWTYKVkFeEmAlMbvq2YSqnBG24L1uvAXGPMPGAP8J1u6/YZYxYEfm4Z5nmUUmpUuNtbgcEnWLZJ04gSD0cOfTySYYVMS4N1c+2I6bt72KSCWfiM4KsOz98B7ibaTSTxsX23anYkTibbX4G7o2MUAxsdrYH3gC227wQzJTAOrfVIeI5Di/Y20uZI6nO92OyU27OJbioZtZiUUmPXsBIsY8w/jDHewNM1QO7wQ1JKqdBxu6wughFRfX9b3V189iwAag5uH7GYQqm1sRYAZ3xqn9vYI51U2DOIatw/WmGNKnE30EwsDnvf/8t0pE+1Eu2D4VfwxBVowXL0k2Al5UzHbwRqwjPJjvM14e5nHCJAY0wBqe7w7S6slBq8YI7Bugl4tdvzIhHZKCLviMiKvnYSkZtFZJ2IrKuurg5iOEopNXRul9WCFeEcXAtW5mSrVHt7+Z4RiymU2gMlymMS+27BAqh35pPcHp43lw5XPS22vqsoAsTnWF3kasKwVLs78B6I7CfJlohoKu2TiA7HcWjGEG+a8PRT5APAE2jFbHe5RykwpdRYNWCCJSJviMi2Xn5Wddvme4AXeCywqBzIN8YsBL4G/EVEeh0hbYz5nTFmsTFmcXp6+vBfkVJKDYOvzSrq4Ijue8xRd/GpObQQg60uPL+57wjcXMcm9H1zDeBKmEy27wger7ff7cYjZ0cdLY7+b64nBYoctFeEXxe59kALVlxy//+Pro0KzyTbdLTipAOfs+8WPICISVOJFB9lJeH3HlBKDc2ACZYx5mxjzNxefl4AEJEbgAuBq01gEhRjjNsYUxt4vB7YB0wfsVehlFJB0lkxLiI2aXA7iFARkUtcS8lIhRRSvharZ0FCSma/29nSpxMjbo4cCr9B/rHeetoj+7+5jk/Low0nUhd+r7+j2eommpKa0e92bfFFZPsO4/f5RyOsUdNcb30GHPFp/W6XkGt1F64Pw1ZMpdTQDLeK4HnAt4CLjTFt3Zani4g98HgyMA0Iz875SqmwYlxWxbjIuP5bLLprji1kUkf4fXMPIK1VtJooEhKT+t0uLtvqIlcbhmPREv2NdET1n2AhQqUjh9jmklGJaTT5W6pwmwiSk/r/TJi0qcSJi+qKktEJbJQ01JQDEJXQfwteRpHVXdgVhq2YSqmhGe4YrPuAeOD1HuXYTwe2iMgm4GngFmNM3TDPpZRSI860WwlWdHzSoPfxpkwji1rq6+tHKKrQcbTXUCdJfU6w2ilj8lwA2srD6+bSeNqJow1/TP+tFwBNsQVM6gi/Uu2OtkpqJRmx9X/LEJtlJdnVB8IryW6uqwQgNqn/FryYpEyaicFWH36tmEqpoXEMZ2djzNQ+lj8DPDOcYyulVCgYVyMtxkli7OCKXAA4M2fAfig/sI3k5D5r+oxLTnctTbakAbdLnJRvdZGrDa8qeq31lcQBEjvwGGFv0hSyGt6isamFxIS4kQ9ulDhdNTQ5UskeYLu0QqsFp/XILuCiEY9rtLgaKgBISOu/mywiVIVxd2Gl1OAFs4qgUkqNf+4mWoghOsI+6F2SC6zWm8bS8JtkNdpTR2tE/wUuAGssmiOH2JbwqiJXX30EgMjE/lsvACIypmMXQ3lJeL0P4j01tEYO3II3KbuINhOFCbNS7b6GMgCSMgsH3LYlrpAMTymBIelKqQlKEyyllOrG7m6iVWIR6b9LXHeZhbPwG8FXFV7d4wDivfV4oge+uQZojCkkzR1eXeQaK62xdfFpA0/zmJxvteA0HAqvLnLJ/jo80QO34NnsdsodOWFXqt3WfIQGE0d8XK/FkI/hS5lKFrXUhmF3YaXU4GmCpZRS3Tg8zbTbBzfJcNc+UTFU2DKIagivsRd+TweJphliJw1qe2/yFLJNNU0tzSMc2ehx1VjJQnL2lAG37Sxy4KkKnznROtpbSaAVf9zALXgADdH5pLrCq+BLVHsF1ba0QX3pEpU5A4DyA+HViqmUGhpNsJRSqptIbzNue/+Tyvam1plPcvvBEYgodOrK92MTgyQN3HoDEJU5HZsYyveFz82lqS/FZSKYlDnw7yAyNokaSSYijIoc1FdYCaYtMWdQ23ckTSHLX0mH2zWSYY2qOHclTRGD+5IhNdCK2VQWPp8BpdTQaYKllFLdRPla8EQMvUBBe+JkcnyH8YbRRLsNR6yCFVHpA7feACTnWZPtNoTRzWVkSxmVtkk4HIMbk1cdlU9iW8nIBjWKGg9brXGRk3qtaXUcx6TAOLQwasFJ8lTjjhmgwEVAemDCaW9VeI1DU0oNjSZYSinVTZK/YeA5j3phS5tOtHRQHkYT7bZVWglWfNbgEqxJgS5yHZXh00Uu1nWE+ojB3VyDNdlulrcsbCbbbSm3rmV6waxBbd852W7dofBIsFxNtSTThDepcFDb26NiqZK0sOsurJQaGk2wlFIqwLibiaUdX+zgb6g7xedZN5Y1B7cFO6yQcVcfwGPs5BVMG9T2UbFJVEsKEeFyc2kMGZ7DtMXmDX6X1GkkSSuVlYdHMLDR46/dR4txkpU1uN9B5uRiANxhMtlu9YGtAERkzBz0PrXOApLCrLuwUmpoNMFSSqmAxmqrHLM9IWvI+2YUWjeW7Ud2BjWmUHI07KfClkG0M3LQ+1RH5pPYWjJyQY2i+ooS4mnDTBpc6w1AbLa1bdWB8Ei0nY0HqLBnDbqLZGJSCjUkYa8Lj/nQ6g9Z1zEpMLZqMNoTisjxHcbj9Y1UWEqpMU4TLKWUCugsyR2VMrgB/d0lTcqlmRgkTG4sASa1fUxV9OC6B3Zqiy8Mmy5y5R9vACAur3jQ+6QHJtttORweiXZW+15qYgfXgtmpMiKP+DBJst3lO3EbB0VTB59k29KnEy/tHC7TViylJipNsJRSKqC1xmrBik0dXNW8Y4hQ7sgjLkzmAPK0NZLjL6ctZfA3lgCkWV3kqqvGfxe51kObAcievnDQ+6TmTMVtIsJist2mqlJSqcczad6Q9muJLyLTEx7zocXXbaXEXogzKmrQ+8TlWN0Ja0rCaz40pdTgaYKllFIB7fVWUpCSVXBC+zfFFjKpIzzmACrd9S8AInOGdnMdk2XNA1R5YPzfXEaWr6OUTNLSB99lVOwOKhzZRDeN/0S7bPsHAMQXLRrSfr7kqSTRTFNd5UiENWqMz0ueazfViYNvwQSYVDgXgLby8GjFVEoNnSZYSikVYOoO0GRiyExLP6H9fSlTyaCOpqb6IEc2+up3vANA/vyVQ9ovPTAWreXIrmCHNKr8Pj/5rVsoT1wwqAlmu2uILiDNPf4T7bY9b+M2EUyZf9qQ9osOJNkV+7eORFijpmz3OmJx4chfMqT9EjKKcBEJNeHTXVgpNTSaYCmlVEBs0wGOOHKx2U/sT6Mzw5or6MiB8V9BLerwB+yTfLKyB19BDyAtdyodxoGpHt+l2vfvWEsyzdiLTh3yvu6kyWT7K3C5xvdku6lVa9gdOZv4+IQh7ZeSb80F1VQ2vltwqja8DEDOwvOGtqPNRqUjm5iW8d+KqZQ6MZpgKaVUQJr7EPXRJ9Y9ECAlxyoGUF82vpOL1qZ6prVtpjpt+ZD3FbuD8jDoIle//jn8RshfdsmQ942YNIMI8XH4wPhtxas4uIsi335acs8Y8r5ZhTPpMHZ843yy3fhDb/CxrYi8wqEVegFojCkk3R0e49CUUkOnCZZSSgEdbU2km1o6koZ+M9UpIzAZq6tqfM8Dtee9p4kSD/EnXXZC+zdEF5DqGsdd5Iwh49DL7IqYTXpW/pB375xst/7Q+B2HdvCdRwEoOP2aIe8bGRlJuS2LqMb9wQ5r1FQc3MX0jh1U5p5/Qvt7k6eQYyppbG4NcmRKqfFgWAmWiNwpIodFZFPg59+6rfuOiOwVkd0icu7wQ1VKqZFTutMq6hCbO7QB7d1FxqfSQgzSOL7LM0du+TPlpDFz6SdPaH93YhFZ/nLcHe4gRzY6dq99lXx/GQ0zrzyh/cf7ZLtej4f8A0+yPWIuOUUzTugYtc58kttLghvYKDr0j9/iM8LkT9x0QvtHZszAIX7KDuwIcmRKqfEgGC1YvzbGLAj8vAIgIrOBq4A5wHnA/4rI4GYpVEqpEKj/+EMAsuYMfcxNFxFqIrKIbR2/XYP2bH6fOe5NHCy6Crv9xP5sR0yaRqT4OHJwHHYRMwbbW/9FNUksOP/GEzpEbFIadSRgrx+fRQ42v/Z7skw17sW3nPAxXImTyfKV4/d6gxjZ6GiuK2fW4b+yIe4MsguGNgdYp6Q8qxWzoXR8j0NTSp2YkeoiuAp4whjjNsYcAPYCS0foXEopNWz28k1UkkJ2buGwjtMSk0uqpzw4QY02Y/C8+gOaiGXOqttP+DDxgXmAag+Nv5vL7W8/wTT3drZP+wIxsUMr7tBdVeT4nGy3ramO3PU/Z699MgvO/uwJH8eWNoVI8VJ1ePwlmXsf+zpO00HS+d8/4WNkBFoxPZXjsxVTKTU8wUiwbhWRLSLysIgkB5blAN2/wi0LLFNKqTHH+P3kNG3gUGzxkEty9+RLzCfHVNHYOv66x23522+Z41rP5qlfIj4p7YSPk1lofXvfVjG+WrCaqo+Q8c63KbHlsvyy24Z1rJa4IjI8ZRhjghPcKDDGsOPhL5Bq6nGf9ytsJ9iCCRCXbXUtrDk4vpLsHe89z8Lal/lw0pVMmzu08uzdRcQmUyeJRDSM33FoSqkTN2CCJSJviMi2Xn5WAfcDU4AFQDnwy6EGICI3i8g6EVlXXV091N2VUmrYDu/byiRTi69w6BXTenKkTiZKPBwuG19V9A7tWMvk9f/FVkcxy6/6j2EdKy41lzacSN34ubl0tbdS9vuriDOtuFb9HqfTOazjmZQppNFIXV1tkCIceeue/DGLG17jX7k3MGfJmcM6VkbhHABay8dPC07Zx5vJ/ecX2WcrYNF1dw/7eNWR+SS2lQw/MKXUuDNggmWMOdsYM7eXnxeMMZXGGJ8xxg88yNFugIeB7pOn5AaW9Xb83xljFhtjFqenn9jknkopNRzlHz0PQN6if+t/w0GIy7Tmwmo4PH5KtZfv20r0U1fRSjSp1z5ChMMxvAOKBOYBGh/FPpqbm9jxm0uY7d7M5oV3MXP+ycM+pjNzOgCVB8ZHJcF1T/2URTt/wbqY01h648+Hfby0zHzaTBSmZnxU1Ny3Yz1Rj63Ci53Ia54iNj5x2Mdsiysgw3NkXLViKqWCY7hVBLO6Pb0U2BZ4/CJwlYhEiUgRMA34aDjnUkqpkZJ28G/stk0hZ/Ks4R8r3+oa1VY5Tm4sN7xJ9KPnY8dD82WPk10wNSjHbY7JI9VdFpRjjaSawwco+83ZLHD9i43z7mDZJV8MynFTAkUOGg+P7bmwfF4PHz1wC4t3/IRNMcuZe+uT2IebYANis1HhyMbZXDL8IEfYtreeJP3JC7FhqP/0s+RNnhmcA6dMJl0aqKoZP62YSqngGO4YrJ+JyFYR2QKcCdwOYIzZDjwF7ABeA75kjPEN81xKKRV0TYd3UdSxh9LsE5vvpqfY9CJ82KCuJCjHGyl+n5/3H/sxuS9cQQuxNHzmFaYWD31i4b54EgvJNpW0to/dsWibX38Mx4MrKPCWsH3FfSz81NeDduyMgpn4jeCrHrvj0A5+vJV9d5/K0orH+SDtcube/hLOmLigHb8xOp/UMTzZrqutmQ8f+AJz37mZKkcmvpv+wZQ5Jz7uqqfOVsyKEi3VrtREM6yvqYwx1/az7sfAj4dzfKWUGmkl7zzKPCBvxdAnVO2VI5JaWxpRLWP3xrLi4C6q/vJFTnWvZ0vsMvJvfISk9OygniMifRqRpT5KDu5h+swTn1tsJBw5uIeKJ7/GSW3v8bF9ChGffpjimQuCeg6HM5ZKWxoRjWNvLF6Hq41NT/4nxft/j0ciWLf4F5xy4eeDfh5PYiGZzatxud04o6KCfvzh2PzuC6S99S1ONhX8K/Vi5tz0v8TExgf1HCl5VktY0+HdsOT0oB5bKTW2Db8fgFJKjWPJ+19ii302xdOD1C0IaHDmkNje67DTkGpvbWHjk3dx0sGHicfOujnfZdHl30RswZ+xIz57OmyA+tLdMEYSLFdbCxue/DELS35PMrBm8pdYeNUPiIqKHpHz1UTlkdh2aESOfSKM38+mN/7CpA//k6WmgvVxp1Nw9f+wOHvyiJwvYtJUIg77KC3ZzeQZ80bkHEN1cNcG6l74Dgvb11AmWWw861GWnH7xiJwrPd/6m+KrGX+l6pVSw6MJllJqwqret4E870H2Tv7WsMuzd+eOyyer9W3cXh9RjtDPse73etj8t/vJ3vQbTqGW9Qlnkn3lr1icOzI31gAZhbMBaK8KfRe5DreLzS/8D0U77ucU6tkYfzrZV/6K5XknNonsYLXHFzKt6u/4fX5s9pGadnIQjGH3+89je+e/WejZTYktj01n/JGTzlgV1Pd9T4k5M2GjNR9aqBOsmsMHOPjs91lQ8zIpOPloyq3M//R3yI0OXpfInmzOeGolhYiGsdeKqZQaWZpgKaUmrLJ3HyXFCJNXBql7YKfUyaRXvcCByiqKcrIG3n6E+H1+Nr/xKKlrf8ZCfxk77TOoO/s+Fp08/GqJA4lJzcVFZEhLtXs8HWx86X7ytt7LElPN9og5VJx5PwtPCc54uwGlTiGxupWKqiNkZuWOzjm7M4Y9H74Eb/83Mzp2UE4aH86+g8WX3Eph5Mh32csoskq1uypCV1GzuqKUj5/7CQsrnqYYHx+mf5pZV/yIpZOC2yW2L7VRuSS2j51WTKXU6NAESyk1MRlDZukrbIlcwML8gqAe2pk5A3ZCzaGdIUmwjN/PxrefI/b9u1no20OJLZePlt3LonOuwT5aLSmdpdqbR79Uu9frZd3LD5G96TcsNUf42DGNTaf9lPmnXzoi3SH7Eps5A3ZBVcn2UU+w9q59Bd+bP2aGexsVpLJ6xvdYfOmXyXKOTHfI3sSmZNOKE+pGv6Jmdfkh9j7/ExZUPMMyPGxK+iSZq+7itCBUCh2K9vgCcqrexec32G0j11qolBpbNMFSSk1IpdtWk+ev4OMZ/y/ox+4c3N5+ZDdwVtCP3xfj97Pl3eeJXP0zTvLupFLSWL/gv1hw4RcoDELp7aFqiikgrWn0xp94PR7Wv/oIkzb+D8tNKQfshWw5+X8pPuszo5pYdUoNdJNsPrIbOHdUzrl/3d/xvPFfzHBtoYpk3pv+bRZd8hVOi4kdlfMfQ4SqiFxiW0avBae64hB7n7MSq6V42JR0DpkXfZ9FU0PURTF1KmnVL1FWUU5u9ui0mimlQk8TLKXUhFT1wWNkGDuzzrw66MdOyZ2B3wj+2tFJLozfz/bVL+J4727mewKJ1dwfMP+iL5ExQgUcBsOTNJncxtU0t7YSHztyN/g+r5cNrz5M+ob/YZkp46Atny3LfkXxOTcgttCNgUvLmYbX2DDVI/8+2LfudTre+DGzXBupJol3p3yDkz51OytiR26M0WA0xRaQ0bAFY8yIjveqCSRW8wOJ1cakc8i88PssmhbasV/O7DmwC6oPbNEES6kJRBMspdSEY/w+8ir+wdboJSyalBH040tkDJW2dJwjXaLbGHa8/yK2d+5mrmcHlaTy0ezvs+DiW8kYxa5gfbFnzibikI/9+7YxY96yoB/f5/Wy6dXfk7bxXpb4yyix5bNp6a+Zf+71IU2sOtkiIjlizySqaeTGoe1Z90863vgxc13rqSWR9ybfzvxLv8bp8Qkjds6h8KTOIqfhn9TV1ZCSmh7043dPrJbgYUPSOWRd9AMWTx0blStTJ8+DN6GtbCtwXtCP7/N62PTK77Hveoncq39LWk5R0M+hlBo6TbCUUhPO3i0fMM3Usn9G8CaW7akuKpck1wh1jTKG3R/+DfP2fzO7YzuVpLB21ndZsOrLZDhjRuacJyBt8kL4CGr3b4IgJlh+r4fNrz1E2oZ7WOQ/zAFbARuW/YYF51xHoT30iVV3NbFTyWwOfpGHXevepOONnzDP9S/qSOD9yV9l3iVfY0VCUtDPNRxRufNgHxzes56Uk4OXYNRWHmLvsz8OJFZeNiSdS+ZF32fJGEmsOqVmT6UNJ/7K4E427O1ws/nV3zNp030sMkcAWPPab0n7918E9TxKqROjCVY/9m9bS9XWN8AYMH7rXwL/GgNY/woG07mT6frP0aWmay3GgHRf13M9WMfrvhqQ7guOnqiL0HP9yDAEu4vH8I7X66segW4owf/tjkSMwT1m8K/12BFfswmA6aesGrFztMYXMqPqteCW6DaGnR/8DXnnbmZ2bKOSFD6Y8W1OuuSrLIseO4lVp6zJxXiMHc+RLUE5ns/rYfMrDzJp070s9B9hn62Qdcv+h5POuZaiMZZYdfJMmkde87vU1FSTljb8Fpzda1+l482fUezeQD3xfDj5yxRf+g1OjU8afrAjIG/mEngHGg5shCAkWN0Tq0X4Ai1WYy+x6iQ2O4ejppDauD0ox/N0uNj80v1kb7ufRaaSvbbJrF92H1EbHiS/9AVc7XfhHIN/C0LKGFxtzbQ2NdDWUk97cyPu1gY62prwtjXiczVh3C3YOpoRbzvicyNeN3afC5vPjd3fgd3vxuHvwGE6iDAdOPBhM34EP7buP+boY3vgXwCDDWtr6XpsEIz0XNZtHTb8YsMg1tHEOrLp9q+1jT1wLPvRfcQO3dYjge27r+u2HLFjbNZzxAY2e9d6Ebu1jc1u9QwIbI/NDmK3xrcG1nW/a5Bj73Sx7pmPuzjHXKfuq3vu3+rMYvIpl1GYFoLxpCdAE6x+VG9/i+W7fxbqMAbNb0b2htgmo5PEKTUatjsXMSdj5Cq72dKmkVD9LAcPH6Igv3BYxzJ+P9veew776l8z27OVKlJ4f/q3WHjJVzklJrRjbPpji3RyIHIyqfWbh3UcT4ebjS//juwtv+UkU84+WxEfLb2HRedew5Qxmlh1ii9cBPugdPuHpJ1xghPaGsPuD1/C//bPmNWxlVoSWTPlqxRf8jVOHqOJVaekzCJqSSKqfN2wjlN56GNKXrqb+VUvdCVWmRd+n6XTxmZi1V1z6gLmHH6KlrY24mJOLPlxu1rZ/MK9FOz8HYupZbd9GuuX3cnCT1yFzW5jR0ws2W/eyJq//jfLr/vPIL+CscXlclFfVUZr7RHa64/gbqrB11KDv60Om6ueCFc9UZ4GYnyNxPubSDDNOMWHE0jt57geY6cNJx6JoEMi8UgkXonEa4vEZ4ukw5FIe+CxEUcgAbGD7WiS0pl0YAskN9i6vjjH+BHjB4z1r/EHllspFCawHD/i90HXPr7A9ta/R398VsoWeG4zXis98wcSP+NHuhLBQDTG15UAiumRHHZtczQ5tOHHPkbu/d72zWdb4dmaYIWD+RfdSuPZN1iZuQgiNmwiIBKoSGUt61mdSgQEW9dj61/pGuDb+V/rUJ1JUY/kqLdWmAFaZkI4jeXYcVxL31g85gSNcYyZYxvZP3+pUxbBTijf8cEJJ1jG52XbP/9MzEf3UOzdRxUprJnxHyy45KucGj0+/idTm7yQ4srnaW93ER3tHNK+rtYmtr50L3m7HmYpNeyzT2bD0vtYcPZnx3xi1Slv3hn43hDa97wJQ0yw/D4/W95+ipg1v2aGZ5fVYjntmyy45Kssj40foYiDTISDcfPJa950QoUuSndvoPLVnzK//nVSgI3J55J5wXfHRWLVKbJoGVFHHmP3lveZt/yTQ9q3vaWJLS/8hikfP8RSGtgZMZuKU37OvDOOnXJg1opL2bTmQYr3/R8H91xOwfT5wX4ZI87n81NXU07DkX20VZfgrj+Cv6kcW2sVUa4q4jtqSPLXkWSayerlpt9j7DRJPM22BNodiTTGFFATmYQ3KhnjTMIWHY89OoGI6CQiYxJwxiXhjEsiLj6J6IQkIiKjSRzBQizjljEYvw+fz4vP78P4uj32evH5fPj9Pmsb0/NWVZAe7VrHrJdj1xprkx7rrQVzbZHEJfWXIo8tmmD1wxkTh3MMfzusejESfxz1D646AblzT8X7kg1PyRrgs0Pa1+1uZ8vLvyNr2/9R7D/MIclmzdy7WHjRzSwPYVXAExE34wyiq55i/dq/s2jl4Lpk1tdUsOfFXzLj0OMsoZntEXOoOvknFK/8dEjKrQ9HbGIqeyJnklLx/qD36XC1sfmVB0nb9hAL/AcpJ533Z36fky7+EqecYAtISBWcRtb2d/h4x3qmzVk8qF12r3uT9rd+yYLW1aSaKNZN+hRFF3+bpXlTRzjY4MtfdD7e1Taat7wEg0ywaspL2Pe3XzHz8NMso5WtkQsoP/2bzD3l33r9DIgIOZ+9h47fnwWPf5bGL79FYsqkYL+UYTHGUFdXQ/Wh3TSW78NTW4I0HMLZWkay+wiT/FWki4vuHWk9xk69JNLoSKXJmUVt9Hz8cRnY4jNxJGbhTM4kNimDxNRMEhKTSbXZ+m2lUidABLE7cNgdmjQMgf6ulFJqBDicceyNnEpq9dpB71NXcZCPX7mXKYf+yhIa+Ng2mQ9P+iWLz7+e/IiIEYx25Ew9eRXt795Ox5ZnYIAE69C2D6n8573MrXudZdLBhuiTsa+4nXknnzOiJb5HWn3e2Szbfy+lezaRN31Bn9vVVJSy/9V7mXrwCZbQyD57ERtO+gnF532OrMio0Qs4yPJXXIVv20+o/uDP/SZYHncbW//xCHGb/8AM7x4aTSyrc/+dmRd/g5Mzxm+J84SUSexwFpNf/g98Xi/2fuak2795NXVv3sO8hjdYjJ+NcSuIOf2rFC87e8DzpOdOY9d5/8fkV6/h8H1n037DM2TmTwvmSxlQS3MjlYf20HhkL66aEqgvIaqljATXESb5KkmV1mMSoBaiqXZk0hKbx664kzFJBUSkFhIzqZDkjHxS0rOZZLcztlJFpQYmZiS6VJ2gxYsXm3XrhtdPWymlxop1j36Pxfvu4+C1ayiYMqvXbYzfx441f6djzYPMbXwHO362xCzDcfItzDlt1bhrsenNul9fwZyGt2i9eS1pOZOPWdfaWMuONx8jYcdfmOHZSZuJYlvqOWR88jYKZg2utWOsq6koJeH++WxJPIvFX3v6mHWeDje7Vz+Lb/2jzG5ZQ4T42OBchuOUWyk+7cKwuP4Am352PpPbNuH74r9IntRt7KMxHNq+hiPvP8qM8pdIpolDksOR6dcw94IvEJeQHLqgg2j9Kw+z6KPbWbfgv1h8yZePWddUV8nu1x8m9eOnmOzdT6txsmXSReSd/3VyJ/f+d6M/2997gYI3/h9GYOfMLzN/1VeJig5Obxx3ewvVZfuoP7yX9ur9+OoOEdl8iHjXEdK8FaTQdMz27SaSKnsGjVHZuONyIKkAZ3oRCdlTSc+bTkxCmvYSUeOaiKw3xhz3PytNsJRSaoRUl31M0oPL2JB8Hstu+8vRFcZwcPcGqt7/M7llfyPLVNFkYtky6SJyz7mVwnE0vmQwSvftIO1PZ1DpyKb9tG8T4Yyl+eBm7IfeZ2brv4gUL6WSTcnkzzDn/FtISQu/76vff/BrnHr4ITalnEfE1JW0N9djP/wvJjetJZFWakhkT8aF5H7iZvL7aeUar/btWEfOk+dRbc+grvgma0h9+WbSaz4iz38Yj7GzLXYZLP0881dcErzKm2OE3+tl190rmOz5mB1FN+BILcRde4i48g+Z5tqGQ/x8bJtC1bQrmHvu50hMSRvW+Y7s30HtE1+guGMTDcSxP/EUmHImqZMXkJw1hbjEFGyOQKu4MXg8HTTWVdJSV0lbQxXupio89YcxDaVEthwmzl1BqrfyuASqw9ipsk2iPjKL9thc/In5RKYVEp85hfS86SSmZYfNlwRK9UYTLKWUCoE1/3cry8sfZWvcqXQkT4fmI+Q0biTTVOEzwlbnSXhmf5q5n7ia6LixMTnsSNjw5jMUvHMbqXL0Bu0wGRxIO4OUZZ9h1qKVYX0j5vV4+OB3X2FZ1VNEiReAapLYn7iciLmrmL3iUzidQysCMt5sePt5Mt7+JjlUAdBsojngnE1T0fnMPPNq0sZxN8DBqK4o49AfbmKR2+o27DfCAXsB5ZPOYNLJVzJt3ilB7Qpr/H62fvAqHR/9gamNH5IkLcesbzeR2PFbJcf7qBTXZqKosqXTFJlJe0w2voQcHMn5xGZMJjV3GunZhdjHScEZpUbCiCRYIvIkMCPwNAloMMYsEJFCYCewO7BujTHmloGOpwmWUirceDwe1vzhm8w8/BwpNFIjyZRFz8RTdBaTT72CSTkFoQ5x1LS0NLNn8wcYr4fUgtkUFBSN67FVJ6KmvoGqIyUkJqaQnZ0b1kllbzxeLyX7P8Zhg6y8KTijIkMd0qg7XH6EloZaMrJySUoanS6QHk8HpR9voebAFnyN5Zj2BuhoseZOsjmwO6KwxaZgj0vDmTgJZ9Ikkiblk5qWMeHeo0oNxYi3YInIL4FGY8xdgQTrb8aYuUM5hiZYSqlw5fMbOjw+nJH2CZdUKKWUUuGorwQrKFUExbpbuAI4KxjHU0qpcGO3CdFRWrhVKaWUCnfBavddAVQaYz7utqxIRDaKyDsisqKvHUXkZhFZJyLrqqurgxSOUkoppZRSSo2+Ab9OFZE3gMxeVn3PGPNC4PFngMe7rSsH8o0xtSKyCHheROYYY5p6HsQY8zvgd2B1ERzqC1BKKaWUUkqpsWLABMsY0+/sdiLiAD4FLOq2jxtwBx6vF5F9wHRAB1gppZRSSimlwlYwBgScDewyxpR1LhCRdKDOGOMTkcnANGD/QAdav359jYgcDEJMwZQG1IQ6CDVq9HpPHHqtJw691hOLXu+JQ6/1xDIWr3evpYCDkWBdxbHdAwFOB+4SEQ/gB24xxtQNdCBjTHoQ4gkqEVnXW3UQFZ70ek8ceq0nDr3WE4te74lDr/XEMp6u97ATLGPMDb0sewZ4ZrjHVkoppZRSSqnxRGePU0oppZRSSqkg0QRrYL8LdQBqVOn1njj0Wk8ceq0nFr3eE4de64ll3FxvMUYroyullFJKKaVUMGgLllJKKaWUUkoFiSZYSimllFJKKRUkmmD1Q0TOE5HdIrJXRL4d6nhU8IhInoi8JSI7RGS7iHw1sDxFRF4XkY8D/yaHOlYVHCJiF5GNIvK3wPMiEVkb+Hw/KSKRoY5RBYeIJInI0yKyS0R2isjJ+tkOTyJye+Bv+DYReVxEnPrZDh8i8rCIVInItm7Lev0si+WewHXfIiInhS5yNVR9XOufB/6ObxGR50Qkqdu67wSu9W4ROTckQfdDE6w+iIgd+C1wPjAb+IyIzA5tVCqIvMDXjTGzgeXAlwLX99vAP40x04B/Bp6r8PBVYGe35z8Ffm2MmQrUA/8ekqjUSPgf4DVjzExgPtZ11892mBGRHOArwGJjzFzAjjU3p362w8cjwHk9lvX1WT4fmBb4uRm4f5RiVMHxCMdf69eBucaYecAe4DsAgfu1q4A5gX3+N3DfPmZogtW3pcBeY8x+Y0wH8ASwKsQxqSAxxpQbYzYEHjdj3YDlYF3jPwY2+yNwSUgCVEElIrnABcDvA88FOAt4OrCJXuswISKJWJPdPwRgjOkwxjSgn+1w5QCiRcQBxADl6Gc7bBhj3gXqeizu67O8CviTsawBkkQka1QCVcPW27U2xvzDGOMNPF0D5AYerwKeMMa4jTEHgL1Y9+1jhiZYfcsBSrs9LwssU2FGRAqBhcBaIMMYUx5YVQFkhCouFVS/Ab4F+APPU4GGbn+49fMdPoqAauAPgS6hvxeRWPSzHXaMMYeBXwCHsBKrRmA9+tkOd319lvW+LbzdBLwaeDzmr7UmWGpCE5E44BngNmNMU/d1xprDQOcxGOdE5EKgyhizPtSxqFHhAE4C7jfGLARa6dEdUD/b4SEw9mYVVlKdDcRyfBcjFcb0szwxiMj3sIZ2PBbqWAZLE6y+HQbyuj3PDSxTYUJEIrCSq8eMMc8GFld2dikI/FsVqvhU0JwKXCwiJVhdfc/CGqOTFOhWBPr5DidlQJkxZm3g+dNYCZd+tsPP2cABY0y1McYDPIv1edfPdnjr67Os921hSERuAC4ErjZHJ+8d89daE6y+/QuYFqhGFIk1mO7FEMekgiQwBuchYKcx5lfdVr0IXB94fD3wwmjHpoLLGPMdY0yuMaYQ63P8pjHmauAt4PLAZnqtw4QxpgIoFZEZgUWfAHagn+1wdAhYLiIxgb/pnddaP9vhra/P8ovAdYFqgsuBxm5dCdU4JCLnYXXvv9gY09Zt1YvAVSISJSJFWIVNPgpFjH2Ro8mg6klE/g1r7IYdeNgY8+PQRqSCRUROA94DtnJ0XM53scZhPQXkAweBK4wxPQfYqnFKRFYC3zDGXCgik7FatFKAjcA1xhh3CMNTQSIiC7AKmkQC+4Ebsb5Q1M92mBGRHwFXYnUf2gh8Dmsshn62w4CIPA6sBNKASuCHwPP08lkOJNn3YXUTbQNuNMasC0HY6gT0ca2/A0QBtYHN1hhjbgls/z2scVlerGEer/Y8ZihpgqWUUkoppZRSQaJdBJVSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYJEEyyllFJKKaWUChJNsJRSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYLk/wMFuojG0WLTHgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
33True10.1210.0319bAP.soma.v0.001581.81e-05
34True10.1210.0319Step1.soma.v0.002617.14e-05
35True10.1210.0319Step3.soma.v0.004721.75e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "33 True 1 0.121 0.0319 bAP.soma.v \n", + "34 True 1 0.121 0.0319 Step1.soma.v \n", + "35 True 1 0.121 0.0319 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "33 0.00158 1.81e-05 \n", + "34 0.00261 7.14e-05 \n", + "35 0.00472 1.75e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACft0lEQVR4nOzdeXxU1f3/8ddnJpOdsCQh7ARRkCUICogV3NqvS12QakXrhtb6VWur1qXWtkrt19/Xr9raurTUaqtVi1j3VqutCypWRUDEBReWsC9ZCCSQbWbO7497CUPIBplkkvB+Ph73wdxzzz33c+dmwnxyzj3XnHOIiIiIiIhI6wUSHYCIiIiIiEhXoQRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiEgHYWb5ZubMLCnRsXR1ZjbDzOYlOo6OxsymmNkXiY5DRKQzU4IlIiKdmpnNNLNaM6uIWW5IdFydkXPubefc8Hi2aWbDzOx5Mysys1Ize8XM4noMEZGORAmWiEicqOcpoeY45zJjljsSHVA8dfKfrR7AC8BwIA+YDzyfyIBERNqSEiwRkVYws0Iz+7GZLQG2m1mSmU0ys/+YWZmZfWRmx8TUn2tm/2tm881sm/+X/V6NtH2RmS01s3IzW2Fm/11v+1QzW+y3s9zMTvTLu5vZQ2a2wczWmdn/mFmwmfMYamavm1mJmRWb2eNm1iNmW6mZHeqv9/N7I47x108zs0/9851rZiPqvT/XmdkSM9tqZnPMLHXv3+m9Z2Y3+u9LuZl9ZmbTGqlnZna3mW3238uPzWy0vy3FzO4ys9VmtsnMZplZWguP/7Bf/99+DG+a2eCY7b81szX+MRea2ZSYbTPN7Ckze8zMtgEzzGyimb3rv88bzOw+M0uO2ceZ2RVm9pV/vF/61+4//jGejK3fSMzHmNnalpxfSznn5jvnHnLOlTrnaoG7geFmlh3P44iIdBRKsEREWu8c4GS8v9TnAS8C/wP0Aq4Dnjaz3Jj6FwAXA32BMHBPI+1uBk4BsoCLgLtjkpyJwF+A6/3jHgUU+vs97Ld7IDAOOB64pJlzMOB/gX7ACGAgMBPAObcc+DHwmJmlA38GHnHOzTWzYcBs4GogF3gJ+Hu9L/JnAScCQ4AxwIwGAzCb7CcPjS2TmzmH+pYDU4DuwC/8+Ps2UO94vPdvmF/3LKDE33a7Xz4W7/3sD9y8FzGcC/wSyAEWA4/HbPvAb7cX8Ffgb/WSz6nAU3jX93EgAlzjt3UE8HXginrHOwE4DJgE3AA8AJyHdz1H4/2s7jM/UW7s+vyuhc0cBWx0zpU0W1NEpDNyzmnRokWLln1c8JKai2PWfww8Wq/OK8CF/uu5wO0x20YCNUAQyAcckNTIsZ4DrvJf/wG4u4E6eUA1kBZTdg7wxl6e1+nAh/XKXgA+BpYAKX7Zz4EnY+oEgHXAMTHvz3kx2+8AZsX5Gsz038OymKVfA/UWA1P91zOAef7r44Av8ZKSQEx9A7YDQ2PKjgBWtjCuh4EnYtYz8ZKkgY3U3wIcEnNObzXT/tXAszHrDjgyZn0h8OOY9V8Bv2mmzWOAtfG8PvXaH+D/fJzTVsfQokWLlkQvnXlMt4hIR7Em5vVg4NtmdmpMWQh4o5H6q/ztOfUbNbOTgFvwelACQDpeggNej8RLDcQy2G9vg5ntLAvUO+YezCwP+C1ej083f58t9ar9ES/JutQ5V+2X9fPPAQDnXNTM1uD19Oy0Meb1Dn+feHvSOXdebIGZXQD8CC9xBS/B2eN9ds69bmb3AfcDg83sGbyex1S893xhzHtpeMlwS9W97865CjMrxTv/NWZ2HfBdf93h9VTmNLSvfz7DgF8D4/24kvCSqFibYl5XNrDeZy9ijyu/F/dfwO+cc7MTFYeISFvTEEERkdZzMa/X4PVg9YhZMpxzt8fUGRjzehBQCxTHNmhmKcDTwF1AnnOuB15CtfOb/hpgaAOxrMHrwcqJOX6Wc25UM+fw//zzKHDOZeENK9uVVZhlAr8BHgJm2q77xtbjJXU765l/fuuaOd4ezJsivKKJZUrzrdS1NRgvIbwSyPbfv09izymWc+4e59xheD2Kw/CGXhbjJSWjYt7L7s65zL04rbpr7b+HvYD1/rncgDccsacf39Z68cX+XAH8HvgcOMi/Rjc1dj5txb/XrrHrM6uJ/XriJVcvOOdua7+IRUTanxIsEZH4egw41cxOMLOgmaX6EwcMiKlznpmN9O9nuhV4yjkXqddOMpACFAFhvzfr+JjtDwEXmdnXzSxgZv3N7GDn3Aa8L7K/MrMsf9tQMzu6mbi7ARXAVjPrj5dgxPotsMA5dwnePWY7v0w/CZzsxxECrsVL8P7T3BtVn/OmCM9sYnl7L5rLwEtQisCbMATvHqQ9mNkEMzvcj387UAVEnXNRvCTtbjPr7dftb2YnxOzrLGYSkwZ807+3LBnvXqz3nHNr8N7vsB9fkpndjNeD1ZRuwDagwswOBi5vpn7cOedGNXF9LmtoHzPLwhsm+45z7sb2jVhEpP0pwRIRiSP/y/NUvN6FIrwepevZ/ffto3j352zEG4b2wwbaKffLn8QbqvcdvOF5O7fPx5/4Aq/n40129SRdgJegfebv+xTehBpN+QVwqN/Wi8AzOzeY2VS8SSp2fqH/EXComZ3rnPsCr7frXrwen1OBU51zNc0cr0055z7Du+foXbxhcgXAO41Uz8JLpLbgDXcsAe70t/0YWAa858/m9yredOOY2UCgnF3DNhvyV7xhnqV4k0/sHMb4CvAy3r1fq/CSuiaHceINW/yOf8w/AnOaqd9RTAMm4P1BILbHa1CiAxMRaQvmXP0RCCIi0lbMbC7wmHPuwUTHIq1jZufhDR/8SSPbH8abMOJn7RqYiIgklCa5EBER2QfOuccSHYOIiHQ8GiIoIrKfMO+ht3s1OYF0PWZ2UyM/B/9MdGwiIl2BhgiKiIiIiIjEiXqwRERERERE4qRD3YOVk5Pj8vPzEx2GiIiIiIhIkxYuXFjsnMutX96hEqz8/HwWLFiQ6DBERERERESaZGarGirXEEEREREREZE4UYIlIiIiIiISJ0qwRERERERE4qRD3YPVkNraWtauXUtVVVWiQ5EOIDU1lQEDBhAKhRIdinRBNz39IYN7hPjvr49OdCgiIiLSSXX4BGvt2rV069aN/Px8zCzR4UgCOecoKSlh7dq1DBkyJNHhSBdTXr6NK5d8ixRqqZ38FaGUtESHJCIiIp1Qhx8iWFVVRXZ2tpIrwczIzs5Wb6a0ieINq+hnpWRbOauWajZTERER2TcdPsEClFxJHf0sSFsJV1fWvS7+an4CIxEREZHOrFMkWCIibS1cvaPuddKmJQmMRERERDozJVgtYGZce+21det33XUXM2fOTFxAMY455pgmH858+umnM2nSpN3KZs6cSf/+/Rk7diyjR4/mhRdeaOswRTq8aM2uBCutvDBxgYiIiEinpgSrBVJSUnjmmWcoLi6Oa7vOOaLRaFzbjFVWVsbChQvZunUrK1as2G3bNddcw+LFi/nb3/7GxRdf3KZxiHQGOxOsdZZHr+p1CY5GREREOislWC2QlJTEpZdeyt13373HtqKiIs444wwmTJjAhAkTeOeddwCvl+iuu+6qqzd69GgKCwspLCxk+PDhXHDBBYwePZo1a9Zw/fXXM3r0aAoKCpgzZw4Ac+fO5ZhjjuHMM8/k4IMP5txzz8U512B8jz76aF1v1Pz5u+4deeaZZzj11FM5++yzeeKJJxrcd8SIESQlJe2WPN54442MHDmSMWPGcN111wFQWFjIcccdx5gxY/j617/O6tWrAZgxYwaXX345kyZN4oADDmDu3LlcfPHFjBgxghkzZtS1efnllzN+/HhGjRrFLbfcskccW7duZfDgwXWJ3vbt2xk4cCC1tbUNxi0Sb9Ea7x6szWlD6e2K2VG5o5k9RERERPbU4adpj/WLv3/KZ+u3xbXNkf2yuOXUUc3W+/73v8+YMWO44YYbdiu/6qqruOaaa5g8eTKrV6/mhBNOYOnSpU229dVXX/HII48wadIknn76aRYvXsxHH31EcXExEyZM4KijjgLgww8/5NNPP6Vfv34ceeSRvPPOO0yePHmP9nbs2MHixYt56623uPjii/nkk08AmD17NjfffDN5eXmcccYZ3HTTTXvs+/777xMIBMjNzQWgpKSEZ599ls8//xwzo6ysDIAf/OAHXHjhhVx44YX86U9/4oc//CHPPfccAFu2bOHdd9/lhRde4LTTTuOdd97hwQcfZMKECSxevJixY8dy22230atXLyKRCF//+tdZsmQJY8aMqYuje/fujB07ljfffJNjjz2Wf/zjH5xwwgl63pW0n1ovwarqOYzgjv+wcdVXHHDwIQkOSkRERDob9WC1UFZWFhdccAH33HPPbuWvvvoqV155JWPHjuW0005j27ZtVFRUNNnW4MGD6+6LmjdvHueccw7BYJC8vDyOPvpoPvjgAwAmTpzIgAEDCAQCjB07lsLCwgbbO+eccwA46qij2LZtG2VlZWzatImvvvqKyZMnM2zYMEKhUF3iBXD33XczduxYrrvuOubMmVM3O1/37t1JTU3lu9/9Ls888wzp6ekAvPvuu3znO98B4Pzzz2fevHl1bZ166qmYGQUFBeTl5VFQUEAgEGDUqFF1MT/55JMceuihjBs3jk8//ZTPPvtsj/OYPn16XQ/eE088wfTp05t8H0XiKeonWIG8kQBsXf9lIsMRERGRTqpT9WC1pKepLV199dUceuihXHTRRXVl0WiU9957j9TU1N3qJiUl7XZfU+yzmzIyMlp0vJSUlLrXwWCQcDjcYL36U5ebGU8++SRbtmypeyDvtm3bmD17Nrfddhvg3YO1c/hf/bjnz5/Pa6+9xlNPPcV9993H66+/3qI4A4HAbjEHAgHC4TArV67krrvu4oMPPqBnz57MmDGjwWdZnXbaadx0002UlpaycOFCjjvuuCaPKxJPzk+wMgeOgUVQvXlFM3uIiIiI7Ek9WHuhV69enHXWWTz00EN1Zccffzz33ntv3frixYsByM/PZ9GiRQAsWrSIlStXNtjmlClTmDNnDpFIhKKiIt566y0mTpy4V3Ht7PWZN28e3bt3p3v37syePZuXX3657r6vhQsXNnofVqyKigq2bt3KN7/5Te6++24++ugjAL72ta/V7f/4448zZcqUFse3bds2MjIy6N69O5s2beKf//xng/UyMzOZMGECV111FaeccgrBYLDFxxBpLfMTrJyBw6hyIays4c+siIiISFM6VQ9WR3Dttddy33331a3fc889dfdnhcNhjjrqKGbNmsUZZ5zBX/7yF0aNGsXhhx/OsGHDGmxv2rRpvPvuuxxyyCGYGXfccQd9+vTh888/b3FMqampjBs3jtraWv70pz9RWFjIqlWrdpuefciQIXTv3p3333+/wTa++c1v8uCDD2JmTJ06laqqKpxz/PrXvwbg3nvv5aKLLuLOO+8kNzeXP//5zy2O75BDDmHcuHEcfPDBDBw4kCOPPLJu280338z48eM57bTTAG+Y4Le//W3mzp3b4vZF4iLsJVjJqRlsDPYhpXx1ggMSERGRzsgam5muxQ2YDQT+AuQBDnjAOfdbM5sJfA8o8qve5Jx7qam2xo8f7+o/02np0qWMGDGiVTFK16KfCWkLi//0Q0as+iu1N23ky7tPplftRvJ//lGiwxIREZEOyswWOufG1y+PRw9WGLjWObfIzLoBC83s3/62u51zdzWxr4hIhxAIV1JFiLRggKqMAeSULEl0SCIiItIJtfoeLOfcBufcIv91ObAU6N/adkVE2pOFq6gkhVDQcN37k8kOdmwrTXRYIiIi0snEdZILM8sHxgE7b/S50syWmNmfzKxnI/tcamYLzGxBUVFRQ1VERNpcIFJFNcmYGcm9BgFQtHZ5gqMSERGRziZuCZaZZQJPA1c757YBvweGAmOBDcCvGtrPOfeAc268c278zofdioi0t6CfYAFk9M4HYNumwsQFJCIiIp1SXBIsMwvhJVePO+eeAXDObXLORZxzUeCPwN7NPS4i0o4CkSpqzHuOW89+BwBQVbwqkSGJiIhIJ9TqBMu8p9w+BCx1zv06prxvTLVpwCetPZaISFsJRGuptRAAuXkDqXVBImVrEhyViIiIdDbx6ME6EjgfOM7MFvvLN4E7zOxjM1sCHAtcE4djJcxzzz2HmTX5fKrCwkJGjx4dt2POmDGDp556qtHtV199Nf379ycajdaVPfzww+Tm5jJ27FhGjhzJH//4x7jFI9KVBaJhouZNrJoUClFsvUiqWJfgqERERKSziccsgvOcc+acG+OcG+svLznnznfOFfjlpznnNsQj4ESZPXs2kydPZvbs2Q1uD4fDrT5GJBJpcd1oNMqzzz7LwIEDefPNN3fbNn36dBYvXszcuXO56aab2LRpU6tjE+nqAtFaIrbryRVbQnlkVG5MYEQiIiLSGcV1FsGuqqKignnz5vHQQw/xxBNP1JXPnTuXKVOmcNpppzFy5EjAS7TOPfdcRowYwZlnnsmOHTsAeO211xg3bhwFBQVcfPHFVFdXA5Cfn8+Pf/xjDj30UP72t7/tcexXX32V8ePHM2zYMP7xj3/sduxRo0Zx+eWXN5r09e7dm6FDh7Jq1a77SO655x5GjhzJmDFjOPvsswEoLS3l9NNPZ8yYMUyaNIklS7zn/8ycOZMLL7yQKVOmMHjwYJ555hluuOEGCgoKOPHEE6mtrQXg1ltvZcKECYwePZpLL72U+g+vjkaj5OfnU1ZWVld20EEHKfGTDiXgwkT9IYIA21P70L12cwIjEhERkc4oHg8abj//vBE2fhzfNvsUwEm3N1nl+eef58QTT2TYsGFkZ2ezcOFCDjvsMAAWLVrEJ598wpAhQygsLOSLL77goYce4sgjj+Tiiy/md7/7HVdeeSUzZszgtddeY9iwYVxwwQX8/ve/5+qrrwYgOzubRYsWNXjswsJC5s+fz/Llyzn22GNZtmwZqampzJ49m3POOYepU6dy0003UVtbSygU2m3fFStWsGLFCg488MC6sttvv52VK1eSkpJSl/DccsstjBs3jueee47XX3+dCy64gMWLFwOwfPly3njjDT777DOOOOIInn76ae644w6mTZvGiy++yOmnn86VV17JzTffDMD555/PP/7xD0499dS6YwYCAaZOncqzzz7LRRddxPvvv8/gwYPJy8tr8WUSaWsBFyYa2PUrMZzZj5xtbxANhwkkda5flSIiIpI46sFqgdmzZ9f19px99tm79RhNnDiRIUOG1K0PHDiQI488EoDzzjuPefPm8cUXXzBkyBCGDRsGwIUXXshbb71Vt8/06dMbPfZZZ51FIBDgoIMO4oADDuDzzz+npqaGl156idNPP52srCwOP/xwXnnllbp95syZw9ixYznnnHP4wx/+QK9eveq2jRkzhnPPPZfHHnuMJP9L47x58zj//PMBOO644ygpKWHbtm0AnHTSSYRCIQoKCohEIpx44okAFBQUUFhYCMAbb7zB4YcfTkFBAa+//jqffvrpHucxffp05syZA8ATTzzR5DmLJEIgGsbFJFiBHgNJtgilRWsTGJWIiIh0Np3rz7LN9DS1hdLSUl5//XU+/vhjzIxIJIKZceeddwKQkZGxW31vUsXG1xtSv43m2nvllVcoKyujoKAAgB07dpCWlsYpp5wCeMnMfffd12B7L774Im+99RZ///vfue222/j446Z7BFNSvGmrA4EAoVCoLp5AIEA4HKaqqoorrriCBQsWMHDgQGbOnElVVdUe7RxxxBEsW7aMoqIinnvuOX72s581eVyR9hZ0tbsNEUzJ8R42XLp+BTl98xMUlYiIiHQ26sFqxlNPPcX555/PqlWrKCwsZM2aNQwZMoS33367wfqrV6/m3XffBeCvf/0rkydPZvjw4RQWFrJs2TIAHn30UY4++ugWHf9vf/sb0WiU5cuXs2LFCoYPH87s2bN58MEHKSwspLCwkJUrV/Lvf/+77n6vxkSjUdasWcOxxx7L//3f/7F161YqKiqYMmUKjz/+OODd25WTk0NWVlaL4tuZTOXk5FBRUdHorIdmxrRp0/jRj37EiBEjyM7OblH7Iu0lSBgX2JVgZeV5PdMVm/UsLBEREWk5JVjNmD17NtOmTdut7Iwzzmh0Yonhw4dz//33M2LECLZs2cLll19Oamoqf/7zn/n2t79NQUEBgUCAyy67rEXHHzRoEBMnTuSkk05i1qxZRKNRXn75ZU4++eS6OhkZGUyePJm///3vDbZxySWXsGDBAiKRCOeddx4FBQWMGzeOH/7wh/To0YOZM2eycOFCxowZw4033sgjjzzSwncHevTowfe+9z1Gjx7NCSecwIQJE+q2zZo1i1mzZtWtT58+nccee0zDA6VDCroI0ZgEK7v/UABqS5RgiYiISMtZ/RnfEmn8+PFuwYIFu5UtXbqUESNGJCgi6Yj0MyFtoXxmPxb2OJ5jrn4YABeNsv0X/fg07xQOv+LBxAYnIiIiHY6ZLXTOja9frh4sEREgSARierAsEKAomEvy9k79CD8RERFpZ0qwRESAJMK44O6POihPziOzSg8bFhERkZbrFAlWRxrGKImlnwVpE86RTHi3HiyAyvS+ZEf0sGERERFpuQ6fYKWmplJSUqIv1oJzjpKSElJTUxMdinQ10QgAVq8HK5rVn15so2pHRSKiEhERkU6owz8Ha8CAAaxdu5aioqJEhyIdQGpqKgMGDEh0GNLVRGq8f4PJuxUn9RwEhbB53QoGHTSm/eMSERGRTqfDJ1ihUIghQ4YkOgwR6cJcpAYDqNeDlZE7GICtG1eCEiwRERFpgQ4/RFBEpK3V1Ho9WIGk3ROsHn0PAKCyWM/CEhERkZZp8wTLzE40sy/MbJmZ3djWxxMR2Vu11VXAnvdg5fTNJ+qMyJY1iQhLREREOqE2TbDMLAjcD5wEjATOMbORbXlMEZG9Fa6tBcDq3YOVnJpGqXUnWL4uEWGJiIhIJ9TWPVgTgWXOuRXOuRrgCWBqGx9TRGSv1NYNEUzeY1tpUm/SduhhwyIiItIybZ1g9Qdix9as9ctERDqM2hp/iGC9e7AAKlL70r1mU3uHJCIiIp1Uwie5MLNLzWyBmS3QVOwikghhvwcr2EAPVm1mP3KixbhotL3DEhERkU6orROsdcDAmPUBflkd59wDzrnxzrnxubm5bRyOiMiemkqwyOpPulWzpUS9WCIiItK8tk6wPgAOMrMhZpYMnA280MbHFBHZK5HaaqDhe7CSs71nYZWsW9GuMYmIiEjn1KYJlnMuDFwJvAIsBZ50zn3alscUEdlbkbDfgxXaM8HqlpcPwLbNhe0YkYiIiHRWSW19AOfcS8BLbX0cEZF91dQQwex+3sOGa0pWt2tMIiIi0jklfJILEZFEa6oHq0dOX6pdCFemhw2LiIhI85Rgich+L+L3YCU1kGBZIEhRIIfk7evbOywRERHphJRgich+L+r3YIVCKQ1u35qcR0bVxvYMSURERDopJVgist9zTQwRBKhM60Ov8Ob2DElEREQ6KSVYIrLfc7WVAIRS0hvcHuk2gBxXSnVNdXuGJSIiIp2QEiwR2e9Fa6oASE7LaHB7sOcAguYoXlfYjlGJiIhIZ6QES0Qk7PVgJac23IOVljsEgLINy9stJBEREemclGCJiNR6PVgpqQ33YHXvdxAAOzYrwRIREZGmKcESEQlXUuOCJIVCDW7OHTCUiDOiJYXtG5eIiIh0OkqwRGS/Z+Eqamh4BkGAlJRUNlkuSdtWtWNUIiIi0hkpwRKR/Z5Fqqm2xhMsgJJQXzJ3rG2niERERKSzUoIlIvu9QDM9WADb0weQU7uhnSISERGRzkoJlojs94LRamospck64e6DyKaM2qqKdopKREREOiMlWCKy3wtGqqgNNN2DFcz2pmovWv1le4QkIiIinZQSLBHZ7wWj1YSbuQcrs483VXvZuq/aIyQRERHppFqVYJnZnWb2uZktMbNnzayHX55vZpVmtthfZsUlWhGRNhCMVlMbSG2yTvZAL8Gq1LOwREREpAmt7cH6NzDaOTcG+BL4Scy25c65sf5yWSuPIyLSZkLRGsKBpu/BysvrT4VLxW1Z2U5RiYiISGfUqgTLOfcv51zYX30PGND6kERE2lcoWk2kmQQrGAywMdCHlHJN1S4iIiKNi+c9WBcD/4xZH2JmH5rZm2Y2pbGdzOxSM1tgZguKioriGI6ISMuEXDXRpKYTLIAtKf3IqlrXDhGJiIhIZ5XUXAUzexXo08Cmnzrnnvfr/BQIA4/72zYAg5xzJWZ2GPCcmY1yzm2r34hz7gHgAYDx48e7fTsNEZF9l+xqIKnpe7AAqjIHkle8AJwDs3aITERERDqbZhMs59w3mtpuZjOAU4CvO+ecv081UO2/Xmhmy4FhwILWBiwiEm8hVwNJac3Wi/bIJ7W4hh1b1pPeq387RCYiIiKdTWtnETwRuAE4zTm3I6Y818yC/usDgIOAFa05lohIW4hEoqRRjSU3n2Al5+QDULxGz8ISERGRhrX2Hqz7gG7Av+tNx34UsMTMFgNPAZc550pbeSwRkbjbvn0rIYvgUns0WzernzdVe/l6PQtLREREGtbsEMGmOOcObKT8aeDp1rQtItIeKreVkgXQggSr98BhAFQXa6p2ERERaVg8ZxEUEel0qstLALD0Hs3WzemRxUbXi0DZqjaOSkRERDorJVgisl+rrigDIKkFCZaZsTmpD+nb17RtUCIiItJpKcESkf1a5TavBys1K6dF9belDqBn9fq2DElEREQ6MSVYIrJfq/GHCHbrnt2i+rXdBpIdLcHVVrVlWCIiItJJKcESkf1a7fYyALJ65raovvXKJ2CO8k2a6EJERET2pARLRPZr0cotAHTr3qtF9VN7DwWgRM/CEhERkQYowRKR/VtlGRWkY8GWPbWi5wDvWVjbNy1ry6hERESkk1KCJSL7teTqEsoCPVpcv2//fKpciEiJhgiKiIjInpRgich+LaOmiK1JLZvgAiArLZl11pukbXoWloiIiOxJCZaI7NeyakuoTGnZBBc7lYT6kbljXRtFJCIiIp2ZEiwR2W9FI1F6RUuJZOTt1X7b0weQXbsBnGujyERERKSzUoIlIvut0i0lpFs1way+e7VfuPtgMtlBdHtpG0UmIiIinZUSLBHZbxVv8O6jSunZf6/2S8oeAsCW9ZqqXURERHanBEtE9ls7Hxac2XvQXu2X0edAAMrWfRX3mERERKRza1WCZWYzzWydmS32l2/GbPuJmS0zsy/M7ITWhyoiEl9VxV4PVq9+Q/dqv+wBw7z9Ny+Pe0wiIiLSubXsyZpNu9s5d1dsgZmNBM4GRgH9gFfNbJhzLhKH44mIxIUrW03YBcjayx6s/r2zKXMZhMs0k6CIiIjsrq2GCE4FnnDOVTvnVgLLgIltdCwRkX2SXLGOkkA2Fgzt1X6poSDFlk2wYmMbRSYiIiKdVTwSrCvNbImZ/cnMevpl/YE1MXXW+mV7MLNLzWyBmS0oKiqKQzgiIi2TWbWBLcl99mnf8uQcUqs2xTkiERER6eyaTbDM7FUz+6SBZSrwe2AoMBbYAPxqbwNwzj3gnBvvnBufm7t3D/sUEWmN7PAmKtP2bor2narT8siqLYlzRCIiItLZNXsPlnPuGy1pyMz+CPzDX10HDIzZPMAvExHpEKqqq8l1paztNmCf9o9m9qFX2Rai4TCBpHjczioiIiJdQWtnEYz90+804BP/9QvA2WaWYmZDgIOA+a05lohIPG1aV0iSRQn22rsJLnYKZPUjyaKUFulvRyIiIrJLa//seoeZjQUcUAj8N4Bz7lMzexL4DAgD39cMgiLSkWzdsAKA1Jwh+7R/yH84cdmmVeT0HRy3uERERKRza1WC5Zw7v4lttwG3taZ9EZG2smOz95Dhnn33LcHKzPV6vrYXrWmmpoiIiOxP2mqadhGRDi28xUuMsvvv3UOGd+rpPzuraouGCIqIiMguSrBEZL+UVL6GUrJITsvcp/179e5H2AVw29bHOTIRERHpzJRgich+KW3HekqTeu/z/kmhEKXWQw8bFhERkd0owRKR/VKPmk2Up+7bM7B22pKUQ0rV5jhFJCIiIl2BEiwR2e+4aJTcaBG1Gf1b1c725N5k1RTFKSoRERHpCpRgich+p7R4I+lWDT327RlYO9Wk96ZXtCROUYmIiEhXoARLRPY7peuXA5Cc3boEy3XrSxbbqdxeHo+wREREpAtQgtWEsqINLH51Ni4aTXQoIhJH5Ru9Z2B167Nvz8DaKdjdG2JYsmFVq2MSERGRrkEJVhM+f+lexs67jOX/bwKLXnmM2tqaRIckInFQXeIlRDn9D2xVO2m9BgCwdfPqVsckIiIiXUNSogPoyMafcwvz/9GH/h/fx4Hvfp/id3/Ksr6n0OvQaRw47mgCSaFEh9ikaCRKbbiG2ppqwjXV1NZWE66tIVJbQ7immki4moi/7qK1EA0TjUbBOZyLej13Lorz14lGibpdZfh1nHMYTfXyWQNFDZQ1UM/59ayZenuUNVSl0Vga+jtDA7H4ZQ2G3oS9rL4PO+xF020cu7Vl8HGUuv49drgUsnru+zTtAFl5gwGoKlYPVltzzlEbjlBbXUm4ege11TsI11QRqd5BpKaScLiWSCRMuDZMJFJLOBwmGglDNALRCObC/r8R73ccDuf8tnH+Maj718Uc1+0Zzm4/6dbI77Pdim23LY38PrF6L2231Yb32fX7y+rvjvc7dI/fn/XjrV+nRb+fO8dnXTqGhj9FIi1Xk5LN4EOOoU/31ESH0iJKsJqQlJzCxG/9kPAp/81Hbz5FdNGjjF//V5I2PEb5i2msSB1NVa8R0HsE3focQM/eA0nP7k+3zCwCwaY7B6ORKNXVlVTvKKeqsoLaygpqKssJV22ntqqC2qodRKu3E6nZjqvegavdATXbsXAVgdrtBCJVBMOVJEUqSYpWEYpWkRKtItlVk0o1qa6aZAuTAqS0z9sl0ql8FTqIgwKt68TPGTicWhfEFX3R4n02rVtJWkYWWT2yW3Xszqaqqoqyko1UlGygsmwT1ds2E92xBVdVDtXbCNSUE6wpJxQuJxTeTkpkO6mR7YRcDclUk+JqSbFakhN9IiIi0u7mRg5hQY8xnDKmX6JDaRElWC2QlJzCIf91LvzXuWwt2cgX774IK94gp+xjRqxbRPL6yG71o87YQTLVlkINSQRwBIgSIEqQKEEXIZVq0syRthdxVLskqkmh0lKosVSqA6nUBlKoDaRRGepJJJhONCmVaFI6hFIhmAJJyVggBEkhLBjCgslez1swhUBSiGAoGQsmY8EQBIJYIIiZEbAABAJgRiAQxCyAmWGBAGYBAoEAWIBAwHAEsUDL/5rpog39JWvPMtv1N+SYas3v61VpoF6Df0BrqF7jx9hzk6Opv+Tu9V/t9qL63v49cG9jafBt6EJ6Dzio1W1kpKexMtCP5NKmEyznHJ8vnMuON+5mbMVbLM46lsOufbbVx+8ItpVvpWjdSrZtXk11yRqiW9cRrNhAcuUmUmtKyQyXkRXdRnfbTp9G2qhxQSpIZ4elUxnIoDqYwfakPGpTM3BJaVgoFQulQVIKLsn7l1AalpQKoVQCSf7vs2ASQf/fpFCIQDCp7vcaAe81gST/95n3ybWYniJv3erKLbYXKvZj3shnY9dnxu32eYv9nef9xtj5+2T38t3a2e0D6HbViP11GHuMmN97O8vNud2aif3V6GJ/v+52Pnv+PrU9TriL/3IQkQ6nX6gbefm5iQ6jxZRg7aXu2X2YeMp3ge8CUFtTzbrCpZRsWEll6VqsYhPR6u1Ea3YQjFST5GpxGFEL4CyIswCBQBLRUDqE0iE5nUByBpacTiAlg6TUTEKpGYRSM0lOzyQ1LZPU9CxSMzJIDiWTYkZWYt8CEYlRnD6Efju+bHBbVeV2lrzyZ3p8/DAjIl+xjXQ2kE3viqXtHOW+q6jYxsbCzylb9yXVm78iWFZI2vZ1dKvZTHakmO62fY/fSWVksiWQzY5QT4q6jWBjai+iadkEMnMJZfUmpXtv0nvkkd49h/RuPUlPz6BXIECvhJyhiIhIfCnBaqVQcgr9h42l/7CxiQ5FRBKgpvc4+q98i6JVS8kdPAIXjfLlR+9Q+p9HGF70MhMpZ3VgAO+PuInRJ32Pwjm38bW1DxGu2k5Sakaiwwdga2kxm1YtZeu6L6gtWk5w60oyt68ht3Y9vSkldiqQMjIpDuaxLbU/xemHQVY/Qr0GkJ4ziKzeg+nZZzA90rvRI1EnIyIikmBKsEREWmHAUecTWXEPG+dcxfKsA+m7+U2GR9dS45L4tNvXWH/4JYw68lQG+fd7JfUZQWCdY83yjxk8alK7xOiiUUqL1lG06nPK139JuHgFoW2FZO1YTW54Az0pp3tM/SJ6UpLcj9U9Dmdlj3ySex9IVv9h5A0eSY8eOUqeREREmtCqBMvM5gDD/dUeQJlzbqyZ5QNLgZ03JrznnLusNccSEemIBg85iDcHfo8pa/5IePsCvkoZxQfDLmb4Ny5gXI89x4sPGvU1WAibl/w7rglWuLaGzWuXs2XtF1RuWkakZAXJ21bTvWoteeENZFsVO6fViDhjUyCX0uT+fNX9OFzPA0jpPZQeA4bTZ/DB5GZk0XlGuouIiHQs5uJ0J7uZ/QrY6py71U+w/uGcG703bYwfP94tWLAgLvGIiLSnbVtLSQ4lk5qe2WzdL289lCRzDPnpAm8Chhaora6kdEMhWzaupGLzKmpK18DWdWTsWEN2zTryokWEbNeEO9UuxMZAHltS+1OVOQh6HUBa3kH0GjiMvEHDSU7pHFPdioiIdFRmttA5N75+eVyGCJr3EJCzgOPi0Z6ISGeT1b3lUzRsKbiYwz/6KYt+cybBMWeSlNqN2poqwhUluO3FRCqKsR0lhKpK6FaziexIEb3YRh6QF9POVjIpSurL5swRrM06kUD2AaTnHUivAcPp3T+fwUlJDI77mYqIiEhT4nUP1hRgk3Puq5iyIWb2IbAN+Jlz7u2GdjSzS4FLAQYNGhSncEREOq6JU6/gP8XLGL/2LyTPe32P7WEXYKtlsS3Yg4rk3nyVNopIZl+s+wDScgbRs08+eQMOoHtG1m73TomIiEjiNTtE0MxehQYfX/JT59zzfp3fA8ucc7/y11OATOdciZkdBjwHjHLObWvqWBoiKCL7k4qKbaz9fAG1NdUkJ4dI755LRs8+dO+ZQzDYsqGDIiIikhj7PETQOfeNZhpOAr4FHBazTzVQ7b9eaGbLgWGAsicREV9mZhYHj9fIahERka4kEIc2vgF87pxbu7PAzHLNLOi/PgA4CFgRh2OJiIiIiIh0WPG4B+tsYHa9sqOAW82sFogClznnSuNwLBERERERkQ6r1QmWc25GA2VPA0+3tm0REREREZHOJG7PwYoHMysCViU6jnpygOJEByHtRtd7/6Frvf/Qtd6/6HrvP3St9y8d8XoPds7l1i/sUAlWR2RmCxqaHUS6Jl3v/Yeu9f5D13r/ouu9/9C13r90pusdj0kuREREREREBCVYIiIiIiIicaMEq3kPJDoAaVe63vsPXev9h671/kXXe/+ha71/6TTXW/dgiYiIiIiIxIl6sEREREREROJECZaIiIiIiEicKMFqgpmdaGZfmNkyM7sx0fFI/JjZQDN7w8w+M7NPzewqv7yXmf3bzL7y/+2Z6FglPswsaGYfmtk//PUhZva+//meY2bJiY5R4sPMepjZU2b2uZktNbMj9NnumszsGv93+CdmNtvMUvXZ7jrM7E9mttnMPokpa/CzbJ57/Ou+xMwOTVzksrcaudZ3+r/Hl5jZs2bWI2bbT/xr/YWZnZCQoJugBKsRZhYE7gdOAkYC55jZyMRGJXEUBq51zo0EJgHf96/vjcBrzrmDgNf8dekargKWxqz/H3C3c+5AYAvw3YREJW3ht8DLzrmDgUPwrrs+212MmfUHfgiMd86NBoLA2eiz3ZU8DJxYr6yxz/JJwEH+cinw+3aKUeLjYfa81v8GRjvnxgBfAj8B8L+vnQ2M8vf5nf+9vcNQgtW4icAy59wK51wN8AQwNcExSZw45zY45xb5r8vxvoD1x7vGj/jVHgFOT0iAEldmNgA4GXjQXzfgOOApv4qudRdhZt2Bo4CHAJxzNc65MvTZ7qqSgDQzSwLSgQ3os91lOOfeAkrrFTf2WZ4K/MV53gN6mFnfdglUWq2ha+2c+5dzLuyvvgcM8F9PBZ5wzlU751YCy/C+t3cYSrAa1x9YE7O+1i+TLsbM8oFxwPtAnnNug79pI5CXqLgkrn4D3ABE/fVsoCzmF7c+313HEKAI+LM/JPRBM8tAn+0uxzm3DrgLWI2XWG0FFqLPdlfX2GdZ39u6touBf/qvO/y1VoIl+zUzywSeBq52zm2L3ea8ZxjoOQadnJmdAmx2zi1MdCzSLpKAQ4HfO+fGAdupNxxQn+2uwb/3ZipeUt0PyGDPIUbShemzvH8ws5/i3drxeKJjaSklWI1bBwyMWR/gl0kXYWYhvOTqcefcM37xpp1DCvx/NycqPombI4HTzKwQb6jvcXj36PTwhxWBPt9dyVpgrXPufX/9KbyES5/trucbwErnXJFzrhZ4Bu/zrs9219bYZ1nf27ogM5sBnAKc63Y9vLfDX2slWI37ADjIn40oGe9muhcSHJPEiX8PzkPAUufcr2M2vQBc6L++EHi+vWOT+HLO/cQ5N8A5l4/3OX7dOXcu8AZwpl9N17qLcM5tBNaY2XC/6OvAZ+iz3RWtBiaZWbr/O33ntdZnu2tr7LP8AnCBP5vgJGBrzFBC6YTM7ES84f2nOed2xGx6ATjbzFLMbAjexCbzExFjY2xXMij1mdk38e7dCAJ/cs7dltiIJF7MbDLwNvAxu+7LuQnvPqwngUHAKuAs51z9G2ylkzKzY4DrnHOnmNkBeD1avYAPgfOcc9UJDE/ixMzG4k1okgysAC7C+4OiPttdjJn9ApiON3zoQ+ASvHsx9NnuAsxsNnAMkANsAm4BnqOBz7KfZN+HN0x0B3CRc25BAsKWfdDItf4JkAKU+NXec85d5tf/Kd59WWG82zz+Wb/NRFKCJSIiIiIiEicaIigiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIdhJnlm5kzs6REx9LVmdkMM5uX6Dg6GjObYmZfJDoOEZHOTAmWiIh0amY208xqzawiZrkh0XF1Rs65t51zw+PZppkNM7PnzazIzErN7BUzi+sxREQ6EiVYIiJxop6nhJrjnMuMWe5IdEDx1Ml/tnoALwDDgTxgPvB8IgMSEWlLSrBERFrBzArN7MdmtgTYbmZJZjbJzP5jZmVm9pGZHRNTf66Z/a+ZzTezbf5f9ns10vZFZrbUzMrNbIWZ/Xe97VPNbLHfznIzO9Ev725mD5nZBjNbZ2b/Y2bBZs5jqJm9bmYlZlZsZo+bWY+YbaVmdqi/3s/vjTjGXz/NzD71z3eumY2o9/5cZ2ZLzGyrmc0xs9S9f6f3npnd6L8v5Wb2mZlNa6SemdndZrbZfy8/NrPR/rYUM7vLzFab2SYzm2VmaS08/sN+/X/7MbxpZoNjtv/WzNb4x1xoZlNits00s6fM7DEz2wbMMLOJZvau/z5vMLP7zCw5Zh9nZleY2Vf+8X7pX7v/+Md4MrZ+IzEfY2ZrW3J+LeWcm++ce8g5V+qcqwXuBoabWXY8jyMi0lEowRIRab1zgJPx/lKfB7wI/A/QC7gOeNrMcmPqXwBcDPQFwsA9jbS7GTgFyAIuAu6OSXImAn8BrvePexRQ6O/3sN/ugcA44HjgkmbOwYD/BfoBI4CBwEwA59xy4MfAY2aWDvwZeMQ5N9fMhgGzgauBXOAl4O/1vsifBZwIDAHGADMaDMBssp88NLZMbuYc6lsOTAG6A7/w4+/bQL3j8d6/YX7ds4ASf9vtfvlYvPezP3DzXsRwLvBLIAdYDDwes+0Dv91ewF+Bv9VLPqcCT+Fd38eBCHCN39YRwNeBK+od7wTgMGAScAPwAHAe3vUcjfezus/8RLmx6/O7FjZzFLDROVfSbE0Rkc7IOadFixYtWvZxwUtqLo5Z/zHwaL06rwAX+q/nArfHbBsJ1ABBIB9wQFIjx3oOuMp//Qfg7gbq5AHVQFpM2TnAG3t5XqcDH9YrewH4GFgCpPhlPweejKkTANYBx8S8P+fFbL8DmBXnazDTfw/LYpZ+DdRbDEz1X88A5vmvjwO+xEtKAjH1DdgODI0pOwJY2cK4HgaeiFnPxEuSBjZSfwtwSMw5vdVM+1cDz8asO+DImPWFwI9j1n8F/KaZNo8B1sbz+tRrf4D/83FOWx1DixYtWhK9dOYx3SIiHcWamNeDgW+b2akxZSHgjUbqr/K359Rv1MxOAm7B60EJAOl4CQ54PRIvNRDLYL+9DWa2syxQ75h7MLM84Ld4PT7d/H221Kv2R7wk61LnXLVf1s8/BwCcc1EzW4PX07PTxpjXO/x94u1J59x5sQVmdgHwI7zEFbwEZ4/32Tn3upndB9wPDDazZ/B6HlPx3vOFMe+l4SXDLVX3vjvnKsysFO/815jZdcB3/XWH11OZ09C+/vkMA34NjPfjSsJLomJtinld2cB6n72IPa78Xtx/Ab9zzs1OVBwiIm1NQwRFRFrPxbxeg9eD1SNmyXDO3R5TZ2DM60FALVAc26CZpQBPA3cBec65HngJ1c5v+muAoQ3EsgavBysn5vhZzrlRzZzD//PPo8A5l4U3rGxXVmGWCfwGeAiYabvuG1uPl9TtrGf++a1r5nh7MG+K8IomlinNt1LX1mC8hPBKINt//z6JPadYzrl7nHOH4fUoDsMbelmMl5SMinkvuzvnMvfitOqutf8e9gLW++dyA95wxJ5+fFvrxRf7cwXwe+Bz4CD/Gt3U2Pm0Ff9eu8auz6wm9uuJl1y94Jy7rf0iFhFpf0qwRETi6zHgVDM7wcyCZpbqTxwwIKbOeWY20r+f6VbgKedcpF47yUAKUASE/d6s42O2PwRcZGZfN7OAmfU3s4Odcxvwvsj+ysyy/G1DzezoZuLuBlQAW82sP16CEeu3wALn3CV495jt/DL9JHCyH0cIuBYvwftPc29Ufc6bIjyzieXtvWguAy9BKQJvwhC8e5D2YGYTzOxwP/7tQBUQdc5F8ZK0u82st1+3v5mdELOvs5hJTBrwTf/esmS8e7Hec86twXu/w358SWZ2M14PVlO6AduACjM7GLi8mfpx55wb1cT1uayhfcwsC2+Y7DvOuRvbN2IRkfanBEtEJI78L89T8XoXivB6lK5n99+3j+Ldn7MRbxjaDxtop9wvfxJvqN538Ibn7dw+H3/iC7yejzfZ1ZN0AV6C9pm/71N4E2o05RfAoX5bLwLP7NxgZlPxJqnY+YX+R8ChZnauc+4LvN6ue/F6fE4FTnXO1TRzvDblnPsM756jd/GGyRUA7zRSPQsvkdqCN9yxBLjT3/ZjYBnwnj+b36t4041jZgOBcnYN22zIX/GGeZbiTT6xcxjjK8DLePd+rcJL6pocxok3bPE7/jH/CMxppn5HMQ2YgPcHgdger0GJDkxEpC2Yc/VHIIiISFsxs7nAY865BxMdi7SOmZ2HN3zwJ41sfxhvwoiftWtgIiKSUJrkQkREZB845x5LdAwiItLxaIigiMh+wryH3u7V5ATS9ZjZTY38HPwz0bGJiHQFGiIoIiIiIiISJ+rBEhERERERiZMOdQ9WTk6Oy8/PT3QYIiIiIiIiTVq4cGGxcy63fnmHSrDy8/NZsGBBosMQERERERFpkpmtaqhcQwRFRERERETiRAmWiIiIiIhInCjBEhFpRri2lpdff4Pt1eFEhyIiIiIdXIe6B6shtbW1rF27lqqqqkSHIp1MamoqAwYMIBQKJToU6eQWvPwIJy68lpc2/pJvfueHiQ5HREREOrAOn2CtXbuWbt26kZ+fj5klOhzpJJxzlJSUsHbtWoYMGZLocKST21q8AYBDVjwAKMESERGRxnX4IYJVVVVkZ2cruZK9YmZkZ2er51PiIlJVAUDv8HpcNJrgaERERKQj6/AJFqDkSvaJfm4kbqq3AhAiQsmGBmdkFREREQE6SYIlIpJISTXb6l4Xr/wogZGIiIhIR6cEqwXMjGuvvbZu/a677mLmzJmJCyjGe++9x+GHH87YsWMZMWJEXVxz587lP//5T6vaPvHEE+nRowennHJKHCIV6bxSwuVUkAFA5YalCY5GREREOjIlWC2QkpLCM888Q3FxcVzbdc4RbeX9HBdeeCEPPPAAixcv5pNPPuGss84C4pNgXX/99Tz66KOtakOkK0iPVlCU3J9Kl0ykdHWiwxEREZEOrMPPIhjrF3//lM/Wb2u+4l4Y2S+LW04d1WSdpKQkLr30Uu6++25uu+223bYVFRVx2WWXsXq196XrN7/5DUceeSQzZ84kMzOT6667DoDRo0fzj3/8A4ATTjiBww8/nIULF/LSSy9x33338c9//hMz42c/+xnTp09n7ty5zJw5k5ycHD755BMOO+wwHnvssT3uK9q8eTN9+/YFIBgMMnLkSAoLC5k1axbBYJDHHnuMe++9l4MPPrjROJcvX86yZcsoLi7mhhtu4Hvf+x4AX//615k7d26T783f/vY3fvGLXxAMBunevTtvvfUWVVVVXH755SxYsICkpCR+/etfc+yxx/Lwww/z3HPPsX37dr766iuuu+46ampqePTRR0lJSeGll16iV69e/PGPf+SBBx6gpqaGAw88kEcffZT09PTdjjtp0iQeeughRo3yrt0xxxzDXXfdxfjx45uMV2RfZEQrqE7OYnNtb4LlaxMdjoiIiHRg6sFqoe9///s8/vjjbN26dbfyq666imuuuYYPPviAp59+mksuuaTZtr766iuuuOIKPv30UxYsWMDixYv56KOPePXVV7n++uvZsMGbEvrDDz/kN7/5DZ999hkrVqzgnXfe2aOta665huHDhzNt2jT+8Ic/UFVVRX5+PpdddhnXXHMNixcvZsqUKU3GuWTJEl5//XXeffddbr31VtavX9/i9+XWW2/llVde4aOPPuKFF14A4P7778fM+Pjjj5k9ezYXXnhh3Wx+n3zyCc888wwffPABP/3pT0lPT+fDDz/kiCOO4C9/+QsA3/rWt/jggw/46KOPGDFiBA899NAex50+fTpPPvkkABs2bGDDhg1KrqTNZLjtVCV1Y2tKHzKrNiQ6HBEREenAWt2DZWYDgb8AeYADHnDO/dbMZgLfA4r8qjc5515qzbGa62lqS1lZWVxwwQXcc889pKWl1ZW/+uqrfPbZZ3Xr27Zto6Kiosm2Bg8ezKRJkwCYN28e55xzDsFgkLy8PI4++mg++OADsrKymDhxIgMGDABg7NixFBYWMnny5N3auvnmmzn33HP517/+xV//+ldmz57dYK9TU3FOnTqVtLQ00tLSOPbYY5k/fz6nn356i96XI488khkzZnDWWWfxrW99q+6cfvCDHwBw8MEHM3jwYL788ksAjj32WLp160a3bt3o3r07p556KgAFBQUsWbIE8JKwn/3sZ5SVlVFRUcEJJ5ywx3HPOussjj/+eH7xi1/w5JNPcuaZZ7YoXpF9kem2szGpG5bUjQGlXyQ6HBEREenA4jFEMAxc65xbZGbdgIVm9m9/293OubvicIwO4eqrr+bQQw/loosuqiuLRqO89957pKam7lY3KSlpt/urYp/HlJGR0aLjpaSk1L0OBoOEw+EG6w0dOpTLL7+c733ve+Tm5lJSUrJHncbihD2nM9+b6c1nzZrF+++/z4svvshhhx3GwoULm6wfe06BQKBuPRAI1J3fjBkzeO655zjkkEN4+OGHG0wY+/fvT3Z2NkuWLGHOnDnMmjWrxTGL7K00KgkH0wlmZNOrtJzKim2kZWYlOiwRERHpgFo9RNA5t8E5t8h/XQ4sBfq3tt2OqFevXpx11lm7DVk7/vjjuffee+vWFy9eDEB+fj6LFi0CYNGiRaxcubLBNqdMmcKcOXOIRCIUFRXx1ltvMXHixBbH9OKLL+KcA7yhh8FgkB49etCtWzfKy8ubjRPg+eefp6qqipKSEubOncuECRNafPzly5dz+OGHc+utt5Kbm8uaNWuYMmUKjz/+OABffvklq1evZvjw4S1us7y8nL59+1JbW1vXTkOmT5/OHXfcwdatWxkzZkyL2xfZWyEXhmCIYK9BABSvW57giERERKSjius9WGaWD4wD3veLrjSzJWb2JzPrGc9jJcq1116722yC99xzDwsWLGDMmDGMHDmyrifljDPOoLS0lFGjRnHfffcxbNiwBtubNm0aY8aM4ZBDDuG4447jjjvuoE+fPi2O59FHH2X48OGMHTuW888/n8cff5xgMMipp57Ks88+y9ixY3n77bcbjRNgzJgxHHvssUyaNImf//zn9OvXD/CSv29/+9u89tprDBgwgFdeeQXwhiXuvN/q+uuvp6CggNGjR/O1r32NQw45hCuuuIJoNEpBQQHTp0/n4Ycf3q3nqjm//OUvOfzwwznyyCM5+OCD68pfeOEFbr755rr1M888kyeeeKJu5kSRNuEcIYtAMJnU3HwAyjetSGxMIiIi0mHZzt6PVjdklgm8CdzmnHvGzPKAYrz7sn4J9HXOXdzAfpcClwIMGjTosFWrVu22fenSpYwYMSIuMcqe6s922NXo50day4VrsP/JZd6gyxl83HcZ+PB4FhbcwmFn/CjRoYmIiEgCmdlC59wes6zFpQfLzELA08DjzrlnAJxzm5xzEedcFPgj0OC4N+fcA8658c658bm5ufEIR0QkbmprqgGwYIjcvoOpdUFcmZ6FJSIiIg2LxyyCBjwELHXO/TqmvK9zbud8xtOAT1p7LIm/mTNnJjoEkQ6ttqaaZMCSQqSmJLPWsknSs7BERESkEfGYRfBI4HzgYzNb7JfdBJxjZmPxhggWAv8dh2OJiLSr2hpvBlALJgOwJak3qZUbExmSiIiIdGCtTrCcc/OAhub1btUzr0REOoJwbQ2wK8HantKbwZWfJjIkERER6cDiOougiEhXU1vr34OV5CVYNRn9yI6WQMxz7kRERER2UoIlItKEiJ9gBfwEi6x+JBNmR5mGCYqIiMielGC10HPPPYeZ8fnnnzdap7CwkNGjR8ftmF988QXHHHMMY8eOZcSIEVx66aWA95Dgl15q3QjMiy++mN69e8c1XpGuKFyze4KV3GsgACUbChMVkoiIiHRgSrBaaPbs2UyePJnZs2c3uD0cDrf6GJFIZLf1H/7wh1xzzTUsXryYpUuX8oMf/ACIT4I1Y8YMXn755Va1IbI/CNfrwUrPGQRA+abCRIUkIiIiHVg8ZhFsP/+8ETZ+HN82+xTASbc3WaWiooJ58+bxxhtvcOqpp/KLX/wCgLlz5/Lzn/+cnj178vnnn/Ovf/2LcDjMueeey6JFixg1ahR/+ctfSE9P57XXXuO6664jHA4zYcIEfv/735OSkkJ+fj7Tp0/n3//+NzfccANnn3123XE3bNjAgAED6tYLCgqoqanh5ptvprKyknnz5vGTn/yEU045hR/84Ad88skn1NbWMnPmTKZOncrDDz/Ms88+y9atW1m3bh3nnXcet9xyCwBHHXUUhYWFTZ73m2++yVVXXQWAmfHWW2+RmZnJDTfcwD//+U/MjJ/97GdMnz6duXPncsstt9CjRw8+/vhjzjrrLAoKCvjtb39LZWUlzz33HEOHDuXvf/87//M//0NNTQ3Z2dk8/vjj5OXl7Xbcs88+m/PPP5+TTz4Z8JLBU045hTPPPLNl11QkjiJhb5KLQCgFgJ59hwBQVbImYTGJiIhIx6UerBZ4/vnnOfHEExk2bBjZ2dksXLiwbtuiRYv47W9/y5dffgl4w/quuOIKli5dSlZWFr/73e+oqqpixowZzJkzh48//phwOMzvf//7ujays7NZtGjRbskVwDXXXMNxxx3HSSedxN13301ZWRnJycnceuutTJ8+ncWLFzN9+nRuu+02jjvuOObPn88bb7zB9ddfz/bt2wGYP38+Tz/9NEuWLOFvf/sbCxYsaPF533XXXdx///0sXryYt99+m7S0NJ555hkWL17MRx99xKuvvsr111/Phg3e484++ugjZs2axdKlS3n00Uf58ssvmT9/Ppdccgn33nsvAJMnT+a9997jww8/5Oyzz+aOO+7Y47jTp0/nySefBKCmpobXXnutLtkSaW+RGi/BCvo9WLl5/ah2SbitehaWiIiI7Klz9WA109PUVmbPnl3Xk3P22Wcze/ZsDjvsMAAmTpzIkCFD6uoOHDiQI488EoDzzjuPe+65h//6r/9iyJAhDBs2DIALL7yQ+++/n6uvvhrwEoqGXHTRRZxwwgm8/PLLPP/88/zhD3/go48+2qPev/71L1544QXuuusuAKqqqli9ejUA//Vf/0V2djYA3/rWt5g3bx7jx49v0XkfeeSR/OhHP+Lcc8/lW9/6FgMGDGDevHmcc845BINB8vLyOProo/nggw/IyspiwoQJ9O3bF4ChQ4dy/PHHA17P2xtvvAHA2rVrmT59Ohs2bKCmpma3926nk046iauuuorq6mpefvlljjrqKNLS0loUs0i8RcLeEMFgyEuwUpNDrLVsghUbmtpNRERE9lPqwWpGaWkpr7/+Opdccgn5+fnceeedPPnkkzjnAMjIyNitvpk1ud6Q+m3E6tevHxdffDHPP/88SUlJfPLJJ3vUcc7x9NNPs3jxYhYvXszq1asZMWLEPsez04033siDDz5IZWUlRx55ZJMTfACkpKTUvQ4EAnXrgUCg7h61H/zgB1x55ZV8/PHH/OEPf6CqqmqPdlJTUznmmGN45ZVXmDNnTqMJqEh7iNYlWLt+vrck5ZKmhw2LiIhIA5RgNeOpp57i/PPPZ9WqVRQWFrJmzRqGDBnC22+/3WD91atX8+677wLw17/+lcmTJzN8+HAKCwtZtmwZAI8++ihHH310s8d++eWXqa2tBWDjxo2UlJTQv39/unXrRnl5eV29E044gXvvvbcu6fvwww/rtv373/+mtLS07j6onb1rLbF8+XIKCgr48Y9/zIQJE/j888+ZMmUKc+bMIRKJUFRUxFtvvcXEiRNb3ObWrVvp378/AI888kij9aZPn86f//xn3n77bU488cQWty8Sb5Fa748DwaRdCdb2lN5k1W5OVEgiIiLSgSnBasbs2bOZNm3abmVnnHFGo7MJDh8+nPvvv58RI0awZcsWLr/8clJTU/nzn//Mt7/9bQoKCggEAlx22WXNHvtf//oXo0eP5pBDDuGEE07gzjvvpE+fPhx77LF89tlnjB07ljlz5vDzn/+c2tpaxowZw6hRo/j5z39e18bEiRM544wzGDNmDGeccUbd8MBzzjmHI444gi+++IIBAwbw0EMPATBr1ixmzZoFwG9+8xtGjx7NmDFjCIVCnHTSSUybNo0xY8ZwyCGHcNxxx3HHHXfQp0+fFr+fM2fO5Nvf/jaHHXYYOTk5deULFizgkksuqVs//vjjefPNN/nGN75BcnJyi9sXibedPVhJMT+HNRl9yYkW62HDIiIisgfb2evREYwfP97Vn4Rh6dKldcPdZO88/PDDLFiwgPvuuy/RoSSMfn6kteY//3smfngj686fR/+hBQC89dhtHLXsDip/+DlpvfomOEIRERFJBDNb6JzbY3ID9WCJiDTB+dO0J8XcgxXqufNhwysSEpOIiIh0XEqwurAZM2bs171XIvHgIjuHCKbWlaXneglWxeZVCYlJREREOq5OkWB1pGGM0nno50biwfkzYIaSd/Vg9exzAACVetiwiIiI1NPhE6zU1FRKSkr0ZVn2inOOkpISUlNTm68s0gQX8YYIhmKGCPbu4z1sOFqmhw2LiIjI7jr8g4YHDBjA2rVrKSoqSnQo0smkpqYyYMCARIchnd3OBCtmFsHU5BBrLJukivWJikpEREQ6qDZPsMzsROC3QBB40Dl3+97sHwqFGDJkSJvEJiLSrMiek1wAlCXlklq5KRERiYiISAfWpkMEzSwI3A+cBIwEzjGzkW15TBGReHKRWsIuAIHgbuUVKXl018OGRUREpJ62vgdrIrDMObfCOVcDPAFMbeNjiojET6SW2gY6+2vS+5Cthw2LiIhIPW2dYPUHYqfZWuuX1TGzS81sgZkt0H1WItLRWKSGsDUwmjqrHyEiVJZpmKCIiIjskvBZBJ1zDzjnxjvnxufm5iY6HBGR3Vi0psEerFCvQQCUbljZ3iGJiIhIB9bWCdY6YGDM+gC/TESkUwhEaqi10B7lGTner7byzYXtHJGIiIh0ZG2dYH0AHGRmQ8wsGTgbeKGNjykiEjeBSDVh9kywuvfxZjet0sOGRUREJEabTtPunAub2ZXAK3jTtP/JOfdpWx5TRCSeAtFawg30YOX16e89bHirOuVFRERklzZ/DpZz7iXgpbY+johIWwhGawhb8h7laSnew4aD5UqwREREZJeET3IhItKRBaM1hAN7JlgAW4I5pOlhwyIiIhJDCZaISBOCrpZIYM8hggDbU/uQpYcNi4iISAwlWCIiTQi6GiINDBEEqM3oq4cNi4iIyG6UYImINCEpWkukkSGCge7ew4bLS9e3c1QiIiLSUSnBEhFpQpKrJdrIEMGUbO9hw8Xr9bBhERER8SjBEhFpQhK1RIMN92Bl5eUDsHVjYfsFJCIiIh2aEiwRkSaEXC2ukSGCOf0PAKC6ZFV7hiQiIiIdmBIsEZEmhKjFBVMa3NYrpy+VLhlXtqadoxIREZGOSgmWiEgTkl0trpEhghYIsDnYm+QKPWxYREREPEqwRESa4PVgNZxgAWxL7kO3qg3tGJGIiIh0ZEqwREQaEYlESLYINDJEEKAqox/ZkU3tGJWIiIh0ZEqwREQaUVtd6b1IarwHK5o1kF6UU76trH2CEhERkQ5NCZaISCOqq6u8F0mN92Al+8/CKlq3oj1CEhERkQ5OCZaISCN29mBZEwlWZp43VXvZBiVYIiIiogRLRKRRNX6CFQilNlqnV7+hAFQVrWyXmERERKRja1WCZWZ3mtnnZrbEzJ41sx5+eb6ZVZrZYn+ZFZdoRUTaUXWVl2AlJTeRYPUZRNgFiG7Rs7BERESk9T1Y/wZGO+fGAF8CP4nZttw5N9ZfLmvlcURE2l11lXcPVlMJlgVDFAdyCOlZWCIiIkIrEyzn3L+cc2F/9T1gQOtDEhHpGGoqywEIpmY0Wa8sOY/MqvXtEZKIiIh0cPG8B+ti4J8x60PM7EMze9PMpjS2k5ldamYLzGxBUVFRHMMREWmdSOU2AEJp3ZusV5nej15hPQtLREREWpBgmdmrZvZJA8vUmDo/BcLA437RBmCQc24c8CPgr2aW1VD7zrkHnHPjnXPjc3NzW39GIiJxEqnyEqzk9AZ/fe2qlzWQ3q6Uih2V7RGWiIiIdGBJzVVwzn2jqe1mNgM4Bfi6c875+1QD1f7rhWa2HBgGLGhtwCIi7SVSVQFAKK3pBCvUcyDBVY6N61Zy4EEj2yM0ERER6aBaO4vgicANwGnOuR0x5blmFvRfHwAcBOghMSLSuVR792ClZDSdYGXkDQGgbL1+zYmIiOzvmu3BasZ9QArwbzMDeM+fMfAo4FYzqwWiwGXOudJWHktEpF25aq8HK61bjybrZfc/EIAdm/UsLBERkf1dqxIs59yBjZQ/DTzdmrZFRBLNaiuodUFSU9KbrNejj9eDFd2yuj3CEhERkQ4snrMIioh0KVZdwQ5SCQSb/lVpyelsse4kla9tp8hERESko1KCJSLSCKupoNKa7r3aaUuoD+lVG9o4IhEREenolGCJiDQiWFtBVSCtRXV3pPWlV+3GNo5IREREOjolWCIijUgKb6cm2LIerHDWQPq4Ysora9o4KhEREenIlGCJiDQiFNlBOCmjRXWTeg4k1WrZsEH3YYmIiOzPlGCJiDQiK1JGVXLPFtVN7+3NJLhl/fK2DElEREQ6OCVYIiINcM7R05VRk5rbovo9+x0AwHY9C0tERGS/pgRLRKQB2yu2km7VkNm7RfV79BkKQKRUz8ISERHZnynBEhFpQOnGNQAkde/TovqW1oPtpBHYpnuwRERE9mdKsEREGlBevA6A1B79WraDGaWhPDKr1rdhVCIiItLRKcESEWnAji3eQ4Mzs/u2eJ/ylL70rN3UViGJiIhIJ6AES0SkAVUl3hDBnH6DW7xPdUY/ekeLiEZdW4UlIiIiHZwSLBGRBiRtWc42MsjskdfifaJZA+hh2yndUtqGkYmIiEhHpgRLRKQBmRWFbAwNALMW7xPs5fV26VlYIiIi+y8lWCIiDehds5qt6S0fHgiQluvV31G0oi1CEhERkU6gVQmWmc00s3Vmtthfvhmz7SdmtszMvjCzE1ofqohI+9hctJk8SrGcYXu1X5b/LKyaEj0LS0REZH+VFIc27nbO3RVbYGYjgbOBUUA/4FUzG+aci8TheCIibWrNkrfoDWQdePhe7ZedN5Bql4SVrWmbwERERKTDa6shglOBJ5xz1c65lcAyYGIbHUtEJK6qVr5H1BkDR0/Zq/2SQ0lsthxCFevaKDIRERHp6OKRYF1pZkvM7E9m1tMv6w/E/gl3rV+2BzO71MwWmNmCoqKiOIQjItI63Te9R2HSENK69Wy+cj1bk3qRUl3cBlGJiIhIZ9BsgmVmr5rZJw0sU4HfA0OBscAG4Fd7G4Bz7gHn3Hjn3Pjc3Ny93V1EJK6KNm/k4JpPKe139D7tX5mcTXqtpmkXERHZXzV7D5Zz7hstacjM/gj8w19dBwyM2TzALxMR6dCWv/U4kyxKzvhp+7R/bWo23Xd8GOeoREREpLNo7SyCfWNWpwGf+K9fAM42sxQzGwIcBMxvzbFERNqai0bJWfo4KwL5DC7Yu/uvdopm9KY7FURrq+McnYiIiHQGrb0H6w4z+9jMlgDHAtcAOOc+BZ4EPgNeBr6vGQRFpKNbunAuB0aWU3zweVhg3349WmZvALYWr49naCIiItJJtGqadufc+U1suw24rTXti4i0p+rX76ScNEafdMk+txHK6gPA1qJ19Ow7JF6hiYiISCfRVtO0i4h0Kkv+8zLjKv/D0iEXkb4PswfulN6rHwDbSzfEKzQRERHpRJRgich+LxKJkvTaLRTTkzFn/qRVbWVmewlWTZkSLBERkf2REiwR2e+99+KfGRn5nPXjriY1I6tVbfXM9R75Fy7fFI/QREREpJNRgiUi+7WK7dvJX3Q7q4KDKTjl+61uLyurG+UuDSo2xyE6ERER6WxaNcmFiEhnt+jJ/8dRbOarbzyKBUOtbs/M2BLoQaiyKA7RdQ7lW0spXbeM8o0rqC5ZTU15EW5HKaHqMlLDW0kJlxOI1pAUrSGJMCFXS5AIUQJECBKxIFELEiVINJBE2JKJBJKJBEJEAylEAyFcUioukAxJyRBMgaQULCkZS0olEEohkJRKIDmFQCgFF/TqumAy0WAyLhDCcIDDXBRzDlwUiEI0itu57qI4FwF/3UWj3mu8Os55+3uvqSv3VhzORcHhb4/6x4OoV7llzBourrfuYkoa3qPxtlpWr4Eya+Z4zUS052ECzWzfdZ71t+1RtV4Fq1/DGnzZIntz7Prb9qxbf7XpaKzRld1XA8lpHDjlbAJJ+lon0hHokygi+62iDas5tPAhPs78GgVHnBa3drcFe5FSXRK39jqCaCTCmpWfs3n5YmrWf0qo9At67VhBbngT3W073erVLyedbdaN7YEsqpK6EQ31xAV2JU7OggSJYi4C0TBEI1i0loC/BKM1JIUrCLpSklwtIVdDyNWSTJgQtSRTS7Lp6R8iO71ftI7Dz/pxosMQEZRgich+bOXfbmIcNfSa9n9xbbcyOZs+VSvi2mZ727h2BauXvEXNqvn0LF3CkJovGWzVDPa3b7IcNqfk80XPsUS7DyTYaxAZvQ+ge58DyO3dl24pKXskXfESiTpqwlG21NRSXV1JTVUlNdVV1NZUUltTRSBSjYVrsGgNFq7GorU4C+AwHAGwAM4MswCYYRaEwM71na+DmBlYgICZ10thRsACWMCAAAEDC3htBsywQADDMDO/jl9m5u3eRG+FY2dPWAPb9ihuQY+Y3+PW+PEabby5Zpto03m9g00dr64d1+h6/VfNnn/9tvY41u4xNrFrs29Hk+dfv636x6pff7d9mz5wc+9B8IXvM+SzWVRXXUlKakaTbYlI21OC1YRoJEJ1VSVpGZmJDkVE4mz18s84tORFFvT+FpMOHBPXtmtSs+m+Y2Fc22xLLhpl1fJP2bj4XySvfpv+5UvoQwl9gBoXpDB0IB/nnkKwXwE988fS76Cx5HXrSV6C4g0GjLTkIGnJQchMBfZ9Wn2RruDjshvp/doFvPf0XUw695ZEhyOy31OC1YQPX3mYQfN/yccjL2fc6VcRSk5NdEgiEidr//G/9CHAQdN+Hve2o+m9ySrdTrSmikAH/b2xpWgDK99/gciyuQwom08+xeQDRfRkVeY4CvsfRs7wIxk86nCGpaQnOlwRacLoI09lyTsTGPPl/WxadTZ5g4cnOiSR/ZoSrCZk9h5CcagfEz/7f2z67A+sGvQtBn3jv+kz6KBEhyYirbBh9TLGl77EktxTGd8vP+7tW7feAGwrWU+PvgfEvf19EY1E+fLTBWxe8By5619neO3nHGqOrWSwIuNQ1g4+in7jjqff0DHkBjTBrEhnYoEAOWffj/vzFIof+y69rn+NUHJKosMS2W8pwWrC8PHH4Q6dx0dvPoO9/zvGr3oQHnqQL0MHsaXvUaQPO4bBow8nq2fvNo8lUlvDju3bqN5eTtWOcmoqK6ipKqe2soJw1XYi1d7iarbjanZAzQ6IePceWDSMRWqwaJhAtIZANEzA+TeSuzABFybJ1RIggjkwonUzbgVczOudM3D5dzJ4dx5EAfw6u3MtmKupfp091xuy9/vsGUtLjtOYvZ2Dqg21cSgd6EzjKtVVEiDKwFNb91DhxoS69wFga/G6hCZYVVWVfPbey1R+8iKDi9/iYDZxMLA86UA+GHwJ3Q85hQMPmcw4zTwm0un1yx/OovG/4NCFN/L+rEuY8P1HCAQ7/h9LopEI5eVbKS8rorK8jJqKLUR2lBGu3Eqkejvh6kqiNTugthILVxGIVBH0l0CkmqRoNebCWDRCwIUxF8FchICLECRC0P/Xm7M0SsA19L3FNVG2S0Pfdepr/LvPvnxXadl3qb3dP/bY1mS9pvfds5VG9rcGyppRv9aHgVGknjmLr49I1OD0vaP/VZthgQCHHHsmHHsma1d8zrq3/kzW2rmMX/0QwTUPwmuwiV6UhvpQldqbypRcSOlGMCUdl5RGJJDsTwscxYhg0QiRcC3UbicQriRQu4NAuJJgpJKkSCWhSCWhaDXJ0UpSXBWpVJPqqki2CN2gxTeN17ggtYSotSTCJBG2EBGC3r+WRMT/NxoIUWspVFsSUQvW3QCO+SmVBQDv5u5drwOAd5P4buWx71szNyH7hfX2aWS7a6CsseO0oE7scZxr2S/MhltuA3txgLaOpf4N2l2NGziJiW00jCatZ18AdpRsaJP2m1K8eQPL33mG4LJXGF4xn0OtkioX4quMwyg66DKGHHEGQ/sMZmi7RyYibe3QUy/n3Q2fccT6vzD/3nMZ898PkZrWvkN8ayNRiktK2LJpDRUl66gqXQcVmwhu30RyVTFp1cVkhLeQFqkg3W0n0+2guzm6t6DtKheiylKoIZlqS6HGkr3HOliIqAWJWDIumISzIAS87zVRC+J2PgbCkuq+u3jfBbzvOwYx0+1bzMz7OxOEXd8cHNbEbCct/H+zbv+m6zf4/WSfjr1rW2MT0exZvfnvV9DEd6i9nEBn96PsuW8kZSi9MpL3uc32pgRrLww44GAGHODNNratrIhVi9+ifPViUku/IHnHRnpVfEV2+fukuyoC1vQPVtQZlaRQaanUWArVlkpNIJWaQBqVyVlEgulEktJwoTSiSekQSseSM7CUDIL+kpSaSSgtk1BqBslpmaSmZ5GS0Y30jG4kh5LpPD+GIl1LVk4/AKrK2j7BctEoK7/4kI3zn6PH2tcYXvMZh5ujmB58kfMNUkedzEGTTqYgPavNYxGRxJt0yW95/+EUDl/9RwrvnMjWyTdTcPSZre7Nqg2HKSneSNmmtVQUr6W6bD3RrRux7RsJVRaTXlNM93AJ2W4Lfa2avvX3d0FKAr3YGuzJlqTebE4/kGhyFqR2J5CaRTCjJ6H07gTTexLK6EFKRg9S0jPJSO9GanoGySlppAYCdMy7WkV2Z81NDdqexo8f7xYsWJDoMFrNRaNsr9xBpNrrzsaf+tcFglgwSFpKCqGU9JY/BFJEOpWt28rp/usBLDjgCsZf8L9xb7+muoov5r/C9iX/YGDxm/R3mwBYHhxKcb9jyTlsKgeMORILBON+bBHpHJbMfYrcN2+krytio+WyutfXiPQZS0bfYWT2yCWYkk4oGKSqajvVlTuo3b6VcPkmarZtJlpRhG0vJqW6mIyaYrpHSunlyhp89tx20igL9KQiOYfq1Fwi6b2xbn1I7tGXtF79yOo9gKycgYQys/W9R7ocM1vonBtfv1w9WG3AAgEyMzJB07uL7JeyumWyiV4ES5fHpT0XjbJm+Ses//BlQqveYljFAgqskmoX4ov0caw/4FLyv/YthvY/QEP/RASAMcecSc0Rp7DglT8T+PzvjC5+mfSS5+HT5veNOKPMulMe7EFFcg7rUg9kdXpvglle4pSR3Z/uuQPpkTeAjNRu6MlbIrtrVYJlZnOAnTcx9ADKnHNjzSwfWAp84W97zzl3WWuOJSLSWZgZ61KGkl3xRfOVG+CiUdav+or1H7+BW/EmA8vmM4hiBuE94PfzXseRPPJkhh1xKmMyNfRPRBqWnJLK+NMuh9Mux0VqKVq7nKI1X1BVUYar2UE0GvF6slLSSE7rTqh7b3rm9qd7r95kB4NkJ/oERDqpViVYzrnpO1+b2a+ArTGblzvnxramfRGRzmpb94Mp2LyISE0VwWaehVVctIl1n39A5cr3Sdm0kIHbP6U/ZfQHtpLB8szDWDPoKAYcdhL9DhhFnobZiMhesmCI3MEHkzv44ESHItLlxWWIoJkZcBZwXDzaExHp7NIOOILQ5kf5/M3ZHPxfF+GiUUo2rmHT6s+p2PAVbtNnpJV9QZ+qFeRRSo6/3xrrx8ruE1nRfzw5B09m8MjDOVTTqIuIiHQacZnkwsyOAn698yYvf4jgp8CXwDbgZ865t5trp6tMciEisqOqmk23H8pAt55iy6a720qa1dRtr3Yh1iYNZEvmQURzDyZz4Bj6jjySnrn1594SERGRjmifJ7kws1eBPg1s+qlz7nn/9TnA7JhtG4BBzrkSMzsMeM7MRjnntjXQ/qXApQCDBg1q/kxERDqB9NQUki58hvkv3klSbTmR1J4Eeg0hPW8o2QOG03vwcIaG9DAFERGRrqbVPVhmlgSsAw5zzq1tpM5c4DrnXJPdU+rBEhERERGRzqCxHqzWPXXO8w3g89jkysxyzSzovz4AOAhYEYdjiYiIiIiIdFjxuHP6bHYfHghwFHCrmdUCUeAy51xpHI4lIiIiIiLSYbU6wXLOzWig7Gng6da2LSIiIiIi0pnEZRbBeDGzImBVouOoJwcoTnQQ0m50vfcfutb7D13r/Yuu9/5D13r/0hGv92DnXG79wg6VYHVEZragoZvXpGvS9d5/6FrvP3St9y+63vsPXev9S2e63vGY5EJERERERERQgiUiIiIiIhI3SrCa90CiA5B2peu9/9C13n/oWu9fdL33H7rW+5dOc711D5aIiIiIiEicqAdLREREREQkTpRgiYiIiIiIxIkSrCaY2Ylm9oWZLTOzGxMdj8SPmQ00szfM7DMz+9TMrvLLe5nZv83sK//fnomOVeLDzIJm9qGZ/cNfH2Jm7/uf7zlmlpzoGCU+zKyHmT1lZp+b2VIzO0Kf7a7JzK7xf4d/YmazzSxVn+2uw8z+ZGabzeyTmLIGP8vmuce/7kvM7NDERS57q5Frfaf/e3yJmT1rZj1itv3Ev9ZfmNkJCQm6CUqwGmFmQeB+4CRgJHCOmY1MbFQSR2HgWufcSGAS8H3/+t4IvOacOwh4zV+XruEqYGnM+v8BdzvnDgS2AN9NSFTSFn4LvOycOxg4BO+667PdxZhZf+CHwHjn3GggCJyNPttdycPAifXKGvssnwQc5C+XAr9vpxglPh5mz2v9b2C0c24M8CXwEwD/+9rZwCh/n9/539s7DCVYjZsILHPOrXDO1QBPAFMTHJPEiXNug3Nukf+6HO8LWH+8a/yIX+0R4PSEBChxZWYDgJOBB/11A44DnvKr6Fp3EWbWHTgKeAjAOVfjnCtDn+2uKglIM7MkIB3YgD7bXYZz7i2gtF5xY5/lqcBfnOc9oIeZ9W2XQKXVGrrWzrl/OefC/up7wAD/9VTgCedctXNuJbAM73t7h6EEq3H9gTUx62v9MulizCwfGAe8D+Q55zb4mzYCeYmKS+LqN8ANQNRfzwbKYn5x6/PddQwBioA/+0NCHzSzDPTZ7nKcc+uAu4DVeInVVmAh+mx3dY19lvW9rWu7GPin/7rDX2slWLJfM7NM4GngaufctthtznuGgZ5j0MmZ2SnAZufcwkTHIu0iCTgU+L1zbhywnXrDAfXZ7hr8e2+m4iXV/YAM9hxiJF2YPsv7BzP7Kd6tHY8nOpaWUoLVuHXAwJj1AX6ZdBFmFsJLrh53zj3jF2/aOaTA/3dzouKTuDkSOM3MCvGG+h6Hd49OD39YEejz3ZWsBdY6597315/CS7j02e56vgGsdM4VOedqgWfwPu/6bHdtjX2W9b2tCzKzGcApwLlu18N7O/y1VoLVuA+Ag/zZiJLxbqZ7IcExSZz49+A8BCx1zv06ZtMLwIX+6wuB59s7Nokv59xPnHMDnHP5eJ/j151z5wJvAGf61XStuwjn3EZgjZkN94u+DnyGPttd0Wpgkpml+7/Td15rfba7tsY+yy8AF/izCU4CtsYMJZROyMxOxBvef5pzbkfMpheAs80sxcyG4E1sMj8RMTbGdiWDUp+ZfRPv3o0g8Cfn3G2JjUjixcwmA28DH7Prvpyb8O7DehIYBKwCznLO1b/BVjopMzsGuM45d4qZHYDXo9UL+BA4zzlXncDwJE7MbCzehCbJwArgIrw/KOqz3cWY2S+A6XjDhz4ELsG7F0Of7S7AzGYDxwA5wCbgFuA5Gvgs+0n2fXjDRHcAFznnFiQgbNkHjVzrnwApQIlf7T3n3GV+/Z/i3ZcVxrvN45/120wkJVgiIiIiIiJxoiGCIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUi0kGYWb6ZOTNLSnQsXZ2ZzTCzeYmOo6Mxsylm9kWi4xAR6cyUYImISKdmZjPNrNbMKmKWGxIdV2fknHvbOTc8nm2a2TAze97Misys1MxeMbO4HkNEpCNRgiUiEifqeUqoOc65zJjljkQHFE+d/GerB/ACMBzIA+YDzycyIBGRtqQES0SkFcys0Mx+bGZLgO1mlmRmk8zsP2ZWZmYfmdkxMfXnmtn/mtl8M9vm/2W/VyNtX2RmS82s3MxWmNl/19s+1cwW++0sN7MT/fLuZvaQmW0ws3Vm9j9mFmzmPIaa2etmVmJmxWb2uJn1iNlWamaH+uv9/N6IY/z108zsU/9855rZiHrvz3VmtsTMtprZHDNL3ft3eu+Z2Y3++1JuZp+Z2bRG6pmZ3W1mm/338mMzG+1vSzGzu8xstZltMrNZZpbWwuM/7Nf/tx/Dm2Y2OGb7b81sjX/MhWY2JWbbTDN7ysweM7NtwAwzm2hm7/rv8wYzu8/MkmP2cWZ2hZl95R/vl/61+49/jCdj6zcS8zFmtrYl59dSzrn5zrmHnHOlzrla4G5guJllx/M4IiIdhRIsEZHWOwc4Ge8v9XnAi8D/AL2A64CnzSw3pv4FwMVAXyAM3NNIu5uBU4As4CLg7pgkZyLwF+B6/7hHAYX+fg/77R4IjAOOBy5p5hwM+F+gHzACGAjMBHDOLQd+DDxmZunAn4FHnHNzzWwYMBu4GsgFXgL+Xu+L/FnAicAQYAwwo8EAzCb7yUNjy+RmzqG+5cAUoDvwCz/+vg3UOx7v/Rvm1z0LKPG33e6Xj8V7P/sDN+9FDOcCvwRygMXA4zHbPvDb7QX8FfhbveRzKvAU3vV9HIgA1/htHQF8Hbii3vFOAA4DJgE3AA8A5+Fdz9F4P6v7zE+UG7s+v2thM0cBG51zJc3WFBHpjJxzWrRo0aJlHxe8pObimPUfA4/Wq/MKcKH/ei5we8y2kUANEATyAQckNXKs54Cr/Nd/AO5uoE4eUA2kxZSdA7yxl+d1OvBhvbIXgI+BJUCKX/Zz4MmYOgFgHXBMzPtzXsz2O4BZcb4GM/33sCxm6ddAvcXAVP/1DGCe//o44Eu8pCQQU9+A7cDQmLIjgJUtjOth4ImY9Uy8JGlgI/W3AIfEnNNbzbR/NfBszLoDjoxZXwj8OGb9V8BvmmnzGGBtPK9PvfYH+D8f57TVMbRo0aIl0UtnHtMtItJRrIl5PRj4tpmdGlMWAt5opP4qf3tO/UbN7CTgFrwelACQjpfggNcj8VIDsQz229tgZjvLAvWOuQczywN+i9fj083fZ0u9an/ES7Iudc5V+2X9/HMAwDkXNbM1eD09O22Meb3D3yfennTOnRdbYGYXAD/CS1zBS3D2eJ+dc6+b2X3A/cBgM3sGr+cxFe89XxjzXhpeMtxSde+7c67CzErxzn+NmV0HfNdfd3g9lTkN7eufzzDg18B4P64kvCQq1qaY15UNrPfZi9jjyu/F/RfwO+fc7ETFISLS1jREUESk9VzM6zV4PVg9YpYM59ztMXUGxrweBNQCxbENmlkK8DRwF5DnnOuBl1Dt/Ka/BhjaQCxr8HqwcmKOn+WcG9XMOfw//zwKnHNZeMPKdmUVZpnAb4CHgJm2676x9XhJ3c565p/fumaOtwfzpgivaGKZ0nwrdW0NxksIrwSy/ffvk9hziuWcu8c5dxhej+IwvKGXxXhJyaiY97K7cy5zL06r7lr772EvYL1/LjfgDUfs6ce3tV58sT9XAL8HPgcO8q/RTY2dT1vx77Vr7PrMamK/nnjJ1QvOudvaL2IRkfanBEtEJL4eA041sxPMLGhmqf7EAQNi6pxnZiP9+5luBZ5yzkXqtZMMpABFQNjvzTo+ZvtDwEVm9nUzC5hZfzM72Dm3Ae+L7K/MLMvfNtTMjm4m7m5ABbDVzPrjJRixfgsscM5dgneP2c4v008CJ/txhIBr8RK8/zT3RtXnvCnCM5tY3t6L5jLwEpQi8CYMwbsHaQ9mNsHMDvfj3w5UAVHnXBQvSbvbzHr7dfub2Qkx+zqLmcSkAd/07y1LxrsX6z3n3Bq89zvsx5dkZjfj9WA1pRuwDagws4OBy5upH3fOuVFNXJ/LGtrHzLLwhsm+45y7sX0jFhFpf0qwRETiyP/yPBWvd6EIr0fpenb/ffso3v05G/GGof2wgXbK/fIn8YbqfQdveN7O7fPxJ77A6/l4k109SRfgJWif+fs+hTehRlN+ARzqt/Ui8MzODWY2FW+Sip1f6H8EHGpm5zrnvsDr7boXr8fnVOBU51xNM8drU865z/DuOXoXb5hcAfBOI9Wz8BKpLXjDHUuAO/1tPwaWAe/5s/m9ijfdOGY2EChn17DNhvwVb5hnKd7kEzuHMb4CvIx379cqvKSuyWGceMMWv+Mf84/AnGbqdxTTgAl4fxCI7fEalOjARETagjlXfwSCiIi0FTObCzzmnHsw0bFI65jZeXjDB3/SyPaH8SaM+Fm7BiYiIgmlSS5ERET2gXPusUTHICIiHY+GCIqI7CfMe+jtXk1OIF2Pmd3UyM/BPxMdm4hIV6AhgiIiIiIiInGiHiwREREREZE46VD3YOXk5Lj8/PxEhyEiIiIiItKkhQsXFjvncuuXd6gEKz8/nwULFiQ6DBERERERkSaZ2aqGyjVEUEREREREJE6UYImIiIiIiMSJEiwRkQZEo5phVURERPZeh7oHqyG1tbWsXbuWqqqqRIcinUxqaioDBgwgFAolOhTpZF565SXefvcdrr7mZ+R1T0t0OCIiItKJdPgEa+3atXTr1o38/HzMLNHhSCfhnKOkpIS1a9cyZMiQRIcjnUyfD+7gf/mQd17JJu+sHyU6HBEREelEOvwQwaqqKrKzs5VcyV4xM7Kzs9XzKfskYkEAkte9m+BIREREpLPp8AkWoORK9ol+bmRfJUUqAehV/mWCIxEREZHOplMkWCIi7Skl6iVYAyNriNRWJzgaERER6UyUYLWAmXHttdfWrd91113MnDkzcQHFeO+99zj88MMZO3YsI0aMqItr7ty5/Oc//9nndletWsWhhx7K2LFjGTVqFLNmzYpTxCIdm3OOFOcNLU22CJtXf5HgiERERKQzUYLVAikpKTzzzDMUFxfHtV3nHNFotFVtXHjhhTzwwAMsXryYTz75hLPOOgtofYLVt29f3n33XRYvXsz777/P7bffzvr161sVq0hnUB2OkkYVG5IGAFC8RsMERUREpOWUYLVAUlISl156KXffffce24qKijjjjDOYMGECEyZM4J133gFg5syZ3HXXXXX1Ro8eTWFhIYWFhQwfPpwLLriA0aNHs2bNGq6//npGjx5NQUEBc+bMAbwE6ZhjjuHMM8/k4IMP5txzz8W5PZ/Ls3nzZvr27QtAMBhk5MiRFBYWMmvWLO6++27Gjh3L22+/3WSc559/PkcccQQHHXQQf/zjHwFITk4mJSUFgOrq6kYTwXvuuYeRI0cyZswYzj77bABKS0s5/fTTGTNmDJMmTWLJkiV1x7rwwguZMmUKgwcP5plnnuGGG26goKCAE088kdraWgBuvfVWJkyYwOjRo7n00kv3OO9oNEp+fj5lZWV1ZQcddBCbNm1q6jKKtEhNJEoGVWztdiAAFRtXJDgiERER6Uw6/DTtsX7x90/5bP22uLY5sl8Wt5w6qtl63//+9xkzZgw33HDDbuVXXXUV11xzDZMnT2b16tWccMIJLF26tMm2vvrqKx555BEmTZrE008/zeLFi/noo48oLi5mwoQJHHXUUQB8+OGHfPrpp/Tr148jjzySd955h8mTJ+/W1jXXXMPw4cM55phjOPHEE7nwwgvJz8/nsssuIzMzk+uuuw6A73znO43GuWTJEt577z22b9/OuHHjOPnkk+nXrx9r1qzh5JNPZtmyZdx5553069dvj3O5/fbbWblyJSkpKXUJzy233MK4ceN47rnneP3117ngggtYvHgxAMuXL+eNN97gs88+44gjjuDpp5/mjjvuYNq0abz44oucfvrpXHnlldx8880AnH/++fzjH//g1FNPrTtmIBBg6tSpPPvss1x00UW8//77DB48mLy8vGavo0hzamojdKea2h4HUFP6Nq5sVaJDEhERkU5EPVgtlJWVxQUXXMA999yzW/mrr77KlVdeydixYznttNPYtm0bFRUVTbY1ePBgJk2aBMC8efM455xzCAaD5OXlcfTRR/PBBx8AMHHiRAYMGEAgEGDs2LEUFhbu0dbNN9/MggULOP744/nrX//KiSee2OAxm4pz6tSppKWlkZOTw7HHHsv8+fMBGDhwIEuWLGHZsmU88sgjDfYQjRkzhnPPPZfHHnuMpKSkunM6//zzATjuuOMoKSlh2zYvMT7ppJMIhUIUFBQQiUTq4i0oKKg7vzfeeIPDDz+cgoICXn/9dT799NM9jjt9+vS63r4nnniC6dOnN/mei7RUbU0VIYsQDXVjc7A3yeVrEx2SiIiIdCKdqgerJT1Nbenqq6/m0EMP5aKLLqori0ajvPfee6Smpu5WNykpabdhdbHPY8rIyGjR8XYO0QNv+F84HG6w3tChQ7n88sv53ve+R25uLiUlJXvUaSxO2HM68/rr/fr1Y/To0bz99tuceeaZu2178cUXeeutt/j73//Obbfdxscff9yicwoEAoRCobpjBQIBwuEwVVVVXHHFFSxYsICBAwcyc+bMBp9ldcQRR7Bs2TKKiop47rnn+NnPftbkcUVaKlzl/eHBJWdQltyXrCrdeygiIiIt1+oeLDMbaGZvmNlnZvapmV3ll880s3Vmtthfvtn6cBOrV69enHXWWTz00EN1Zccffzz33ntv3frOoXD5+fksWrQIgEWLFrFy5coG25wyZQpz5swhEolQVFTEW2+9xcSJE1sc04svvlh3j9JXX31FMBikR48edOvWjfLy8mbjBHj++eepqqqipKSEuXPnMmHCBNauXUtlpTdV9ZYtW5g3bx7Dhw/f7djRaJQ1a9Zw7LHH8n//939s3bqViooKpkyZwuOPPw5495Ll5OSQlZXVovPZmUzl5ORQUVHBU0891WA9M2PatGn86Ec/YsSIEWRnZ7eofZHmhCv9HuhQOjvS+5Mb2ZjYgERERKRTiccQwTBwrXNuJDAJ+L6ZjfS33e2cG+svL8XhWAl37bXX7jab4D333MOCBQsYM2YMI0eOrJvO/IwzzqC0tJRRo0Zx3333MWzYsAbbmzZtGmPGjOGQQw7huOOO44477qBPnz4tjufRRx9l+PDhjB07lvPPP5/HH3+cYDDIqaeeyrPPPls3yUVjcYI3zO/YY49l0qRJ/PznP6dfv34sXbqUww8/nEMOOYSjjz6a6667joKCAgAuueQSFixYQCQS4bzzzqOgoIBx48bxwx/+kB49ejBz5kwWLlzImDFjuPHGG3nkkUdafD49evTge9/7HqNHj+aEE05gwoQJddtmzZq1W9zTp0/nscce0/BAiatwlf+HiZQMIt0H0ZNt7KgoS2hMIiIi0nlYQzPTtapBs+eB+4AjgQrn3F3N7FJn/PjxbsGCBbuVLV26lBEjRsQ1Rtll5syZu02G0dXo50f21ucL3+Dgv5/OR0f/kZqKrUxYeB2rp7/KoBETmt9ZRERE9htmttA5N75+eVwnuTCzfGAc8L5fdKWZLTGzP5lZz3geS0SkLbjq7QAEkzPIyDsAgK0bliUyJBEREelE4jbJhZllAk8DVzvntpnZ74FfAs7/91fAxQ3sdylwKcCgQYPiFY600MyZMxMdgkiHEqn17gMMhlLp0c9LsKqK1yQyJBEREelE4tKDZWYhvOTqcefcMwDOuU3OuYhzLgr8EWhw5gbn3APOufHOufG5ubnxCEdEZJ9F/AdeB0PJ5OYNoNYFiW7VVO0iIiLSMvGYRdCAh4Clzrlfx5T3jak2DfiktccSEfn/7d17fFXlne/xz2/fcichIdwSLhG5Ey6CSEUtWG+1VluxSk9tK5yOddpOp86cTmsvtjqnr1dbO505M9r21NEy7bGotTPK6cVKvVQ5rRcQBJSLIBECCYSEQO77sp7zx96JgVwIZCebnXzfr9c2az1rref5JYsV1y/PWs8z0GLRMACBYIhAMMhRKyTQqKHaRUREpG+S8YjgUuCTwDYz25Io+xrwcTObT/wRwQrgs0loS0RkQHntCVYoPmfbseBosls0VLuIiIj0Tb8TLOfcBsC62TQkhmUXkeGlowcrEAKgKXMMJY1vpjIkERERSSNJHUVwKHvyyScxM3bu3NnjPhUVFcyZMydpbe7atYtly5Yxf/58Zs6cye233w7EJwn+3e/OPn9tbW1l8eLFzJs3j9mzZ/Otb30rWSGLpD2XSLCCGfEerEjOeEZ5R3FeLJVhiYiISJpQgtVHa9eu5ZJLLmHt2rXdbo9Go/1uIxY7+Qbui1/8InfeeSdbtmxhx44d/M3f/A3Q/wQrIyOD5557jjfeeIMtW7bw9NNP8/LLL/crdpGhwovGB7kIJnqwLL+UkMU4VnMwlWGJiIhImlCC1QeNjY1s2LCBhx56iEcffbSj/IUXXuDSSy/l+uuvZ9asWUA80frEJz7BzJkzuemmm2hubgbg2WefZcGCBZSXl7N69Wra2toAmDx5Ml/5yle44IIL+NWvfnVSu1VVVZSWlnasl5eXEw6Hufvuu3nssceYP38+jz32GE1NTaxevZrFixezYMECnnrqKQDWrFnDDTfcwLJly5g6dSr33HMPAGZGbm4uAJFIhEgkQnyskpP96le/Ys6cOcybN4/LLrsMiPd+rVq1ivLychYsWMDzzz/f0dZHPvIRrrzySiZPnsz999/PD3/4QxYsWMCSJUuoq6sD4MEHH+TCCy9k3rx5rFixouPn09mSJUt48833HslatmwZp05ALTJQXCyeYLW/g5VRNAGAY1UVqQpJRERE0kjS5sEaFL//KlRvS26dY8vhg9/tdZennnqKa665hmnTplFUVMSmTZtYuHAhAK+//jrbt2+nrKyMiooKdu3axUMPPcTSpUtZvXo1P/rRj/jCF77AbbfdxrPPPsu0adP41Kc+xY9//GO+9KUvAVBUVMTrr7/epd0777yTyy+/nIsvvpirrrqKVatWUVBQwL333svGjRu5//77Afja177G5ZdfzsMPP0x9fT2LFy/miiuuAODVV19l+/btZGdnc+GFF/KhD32IRYsWEYvFWLhwIXv27OHzn/88F110UZf27733Xv7whz9QUlJCfX09AA888ABmxrZt29i5cydXXXUVu3fvBmD79u1s3ryZ1tZWzj//fL73ve+xefNm7rzzTn7+85/zpS99iRtvvJG/+qu/AuAb3/gGDz30UEfPXLtbbrmFxx9/nHvuuYeqqiqqqqpYtKjLJNkiAyOWeEQwFO/Byhs9CYAThyuAy1IUlIiIiKQL9WD1wdq1a1m5ciUAK1euPOkxwcWLF1NWVtaxPmHCBJYuXQrArbfeyoYNG9i1axdlZWVMmzYNgE9/+tO8+OKLHcfccsst3ba7atUqduzYwcc+9jFeeOEFlixZ0tHz1dkzzzzDd7/7XebPn8+yZctobW1l//79AFx55ZUUFRWRlZXFjTfeyIYNGwDw+/1s2bKFysrKjiTsVEuXLuW2227jwQcf7Hh8ccOGDdx6660AzJgxg0mTJnUkWMuXLycvL4/i4mLy8/P58Ic/DMR73ioqKoB4EnbppZdSXl7OI488clJPVbubb76ZJ554AoDHH3+cm266qdufj8hAaO/BCgbjPVgjx8UnGw7X7U9ZTCIiIpI+0qsH6zQ9TQOhrq6O5557jm3btmFmxGIxzIz77rsPgJycnJP2P/VRu+4evTvVqXV0Nn78eFavXs3q1auZM2dOt4mQc45f//rXTJ8+/aTyV1555bTxFBQUsHz5cp5++ukuA3T85Cc/4ZVXXuG3v/0tCxcuZNOmTb1+HxmJQQEAfD5fx7rP5+t4R+22227jySefZN68eaxZs4YXXnihSz0lJSUUFRWxdetWHnvsMX7yk5/02q5IUnnxBMuXeAercNQ4Wl0QjusdLBERETk99WCdxhNPPMEnP/lJ3n33XSoqKjhw4ABlZWW89NJL3e6/f/9+/vKXvwDwy1/+kksuuYTp06dTUVHBnj17APjFL37B+9///tO2/fTTTxOJxG/2qqurqa2tpaSkhLy8PBoaGjr2u/rqq/m3f/s3nHMAbN68uWPb+vXrqauro6WlhSeffJKlS5dSU1PT8chfS0sL69evZ8aMGV3a37t3LxdddBH33nsvxcXFHDhwgEsvvZRHHnkEgN27d7N///4uiV1vGhoaGDduHJFIpKOe7txyyy18//vf5/jx48ydO7fP9Yv0l8UixJyBzw+Az+/jqG8UwaaqFEcmIiIi6UAJ1mmsXbuWj370oyeVrVixosfRBKdPn84DDzzAzJkzOXbsGH/9139NZmYmP/vZz/jYxz5GeXk5Pp+PO+6447RtP/PMMx2DTFx99dXcd999jB07luXLl/PWW291DHLxzW9+k0gkwty5c5k9ezbf/OY3O+pYvHgxK1asYO7cuaxYsYJFixZRVVXF8uXLmTt3LhdeeCFXXnkl1113HQB3330369atA+DLX/4y5eXlzJkzh4svvph58+bxuc99Ds/zKC8v55ZbbmHNmjUn9Vydzj/+4z9y0UUXsXTp0pOSunXr1nH33Xd3rN900008+uij3HzzzX2uWyQpYlGip3Tu1wdHk9OqyYZFRETk9Ky91+NcsGjRInfqaHE7duxg5syZKYoova1Zs+akwTCGI/37kTP1/x64nXk168j99nsJ1Wv/fDMTj29kzLffSWFkIiIici4xs03OuS4jsakHS0SkE/MixPCfVBbNHU+RO0YsMUeWiIiISE+UYA1ht91227DuvRI5K17XRwR9+aUEzONotUYSFBERkd6lRYJ1Lj3GKOlD/27kbPi8CFE7OcHKHNU+2fC+VIQkIiIiaeScT7AyMzOpra3VzbKcEecctbW1ZGZmpjoUSTPxRwRPTrDyRk8GoKnm3RREJCIiIunknJ8Hq7S0lMrKSmpqalIdiqSZzMxMSktLUx2GpBnzosTs5HewisZPASBSdyAVIYmIiEgaOecTrGAwSFlZWarDEJFhwudFiFnwpLIRBYU0uUxNNiwiIiKndc4/IigiMph8LkrslHewzOfjqL+YULMmGxYREZHeDXiCZWbXmNkuM9tjZl8d6PZERPqjuwQL4ESwmNy2wymISERERNLJgCZYZuYHHgA+CMwCPm5mswayTRGR/vB7EbxuEqzWrHEURo+kICIRERFJJwPdg7UY2OOce8c5FwYeBW4Y4DZFRM6az8XwfF0TrFjeeArdcdraWlIQlYiIiKSLgU6wSoDOw25VJso6mNntZrbRzDZqpEARSTW/6zrIBYC/oBSfOY4e1FDtIiIi0rOUD3LhnPupc26Rc25RcXFxqsMRkWHO76I4X9cEK6t4EgDHqjXZsIiIiPRsoBOsg8CETuuliTIRkXOS30Vx3byDNWLMZABajqoHS0RERHo20AnWa8BUMyszsxCwElg3wG2KiJy1AFG8bnqwikvOAyB6TJMNi4iISM8GdKJh51zUzL4A/AHwAw87594cyDZFRPoj/ohg11+NWbn5nCAHO6FOeBEREenZgCZYAM653wG/G+h2RESSoaceLIBafzEZzdWDHJGIiIikk5QPciEici4JuQieP7PbbQ2h0eSFNdmwiIiI9EwJlohIJyHCOH+o222t2eMojGk6CREREemZEiwRkU4yiOD5M7rd5kaUUEgDTY0NgxyViIiIpAslWCIiCbFohIB5uB4SrEBBfNaJo4feGcywREREJI0owRIRSYi0tQDgAt0nWNnFEwE4Xq25sERERKR7SrBERBKi4db4Qg89WAVjywBoqVWCJSIiIt1TgiUikhBpbQbAgt2PIlg0Pp5gRY9VDlpMIiIikl6UYImIJIQTPVi+HhKsUGY2dYzA36DJhkVERKR7SrBERBLCiR6snhIsgNrAGLKbqwYrJBEREUkzSrBERBKiiUEu/L0kWCcyxlEQUYIlIiIi3VOCJSKS0D6KoD/Uc4LVllvK6NgRnOcNVlgiIiKSRpRgiYgkRCPxd7ACoawe97GRk8i0CHVHNNCFiIiIdKUES0QkoeMRwYyeE6zM4vhIgkcrdw9KTCIiIpJelGCJiCTEEj1YwV4eEcwfNwWAxup9gxKTiIiIpBclWCIiCbFwvAcr2EsP1ugJUwGI1CrBEhERka76lWCZ2X1mttPMtprZf5lZQaJ8spm1mNmWxOcnSYlWRGQAeZE2oPcEKzcvn1ry8R3fP1hhiYiISBrpbw/WemCOc24usBu4q9O2vc65+YnPHf1sR0RkwHmReA9WKDO71/2OBsaQ1aTJhkVERKSrfiVYzrlnnHPRxOrLQGn/QxIRSQ2X6MEKZfbcgwXQmDmegnD1YIQkIiIiaSaZ72CtBn7fab3MzDab2Z/M7NKeDjKz281so5ltrKmpSWI4IiJnKBof5CLjNAlWOK+UMd4RvFhsMKISERGRNHLaBMvM/mhm27v53NBpn68DUeCRRFEVMNE5twD4O+CXZjaiu/qdcz91zi1yzi0qLi7u/3ckInKWXGIUwVAvowhCfC6skEWprdZ7WCIiInKywOl2cM5d0dt2M7sNuA74gHPOJY5pA9oSy5vMbC8wDdjY34BFRAaKr+0EDWSR5/P3ul9W8XkA1Fa+TXFJ2WCEJiIiImmiv6MIXgP8A3C9c665U3mxmfkTy+cBU4F3+tOWiMhA80Uaaab3AS4ACsYn5sI6vHegQxIREZE0c9oerNO4H8gA1psZwMuJEQMvA+41swjgAXc45+r62ZaIyIAKRhpo9uWcdr8xHXNhVQxwRCIiIpJu+pVgOefO76H818Cv+1O3iMhgC0Ybae1DgpWZnctRCvCfODAIUYmIiEg6SeYogiIiaS0j1kg4kNunfWsDY8lu1lxYIiIicjIlWCIiCVleU58TrMas8YwMVw1wRCIiIpJulGCJiCRke01Egnl92jecN4HR3lFi0ejpdxYREZFhQwmWiEhCjmuGUN8SLN/ISQQtRk1VxcAGJSIiImlFCZaICNDW2kyGRbCsbudE7yJ7THz+q9rKtwcyLBEREUkzSrBERIDj9bUABLIL+rR/wbj4IKpNhzXFn4iIiLxHCZaICNBQdxiAYG5Rn/YfPSGeYEU1F5aIiIh0ogRLRARorY0PuR4oKO3T/hmZ2RyhkEBD5UCGJSIiImlGCZaICNB2LJ5g5RWX9PmYuuBYspuVYImIiMh7lGCJiADhY4cAGDV2Up+PacoaT2GkeqBCEhERkTSkBEtEBKCxihNkk5OX3+dDIiPic2FFIuEBDExERETSiRIsEREg2HyYY76+DXDRzj9yEgHzOFy5b4CiEhERkXSjBEtEBBjReogToTFndExGcXwurIbqvQMRkoiIiKQhJVgiMux5MY/x0UqaRpx3RsfljI4nWK1HKwYgKhEREUlHSrBEZNg7fPAdcqwN36hpZ3TcyDETAIie0EAXIiIiEtevBMvMvm1mB81sS+Jzbadtd5nZHjPbZWZX9z9UEZGBcWTfNgDySmed0XEF+SNpchnQcGQgwhIREZE0FEhCHf/snPtB5wIzmwWsBGYD44E/mtk051wsCe2JiCRV0/6tAIw9f94ZHefzGcdsJP7mmoEIS0RERNLQQD0ieAPwqHOuzTm3D9gDLB6gtkRE+sVXvZnDNoqRo0vP+NgTgUIy25RgiYiISFwyEqwvmNlWM3vYzEYmykqAA532qUyUdWFmt5vZRjPbWFOjmxQRGVwxzzG2aSc1ebPP6vjmUBE5kbokRyUiIiLp6rQJlpn90cy2d/O5AfgxMAWYD1QB/3SmATjnfuqcW+ScW1RcXHymh4uI9MueffuYTBWuZOFZHR/JKqbAO5bkqERERCRdnfYdLOfcFX2pyMweBH6TWD0ITOi0uTRRJiJyTql6Yz3TgdFz+/Srrgsvdwz5tY1E2loIZmQlNzgRERFJO/0dRXBcp9WPAtsTy+uAlWaWYWZlwFTg1f60JSIyEHzvbqCZTMZMu+isjvfnjQWg7khlMsMSERGRNNXfUQS/b2bzAQdUAJ8FcM69aWaPA28BUeDzGkFQRM41zjlKj79ORc48ZvnP7tdhRkE8wTpxpJIxE6YmMzwRERFJQ/1KsJxzn+xl23eA7/SnfhGRgXRgfwXnUcnm0pvPuo6covj4PU11h5IVloiIiKSxZMyDJSKSliq3rGciMGrOB866jvzR8QQrXF+VpKhSz3ke1VUHOLT7dSJVb8HxAwSaqslqPcKI2DEyXCsZro0MwkQIELYQEYI0+EfSGBpFa9ZoXO5YAoWTyR5dRmHJFEaPLyMQDKb6WxMRERlwSrBEZNhyFS/RSBals87u/SuAwuISPGfEGg4nMbLBVXvkIHtff55oxV8oqNvKuPA+xtFA+0u2LS5Era+IhlAxR7JmEAvmQCALzx+EWBSf14Yv0kKorZb8cBWTW95kZN0J2P9eGxHn55CviLrgWJqzxhPNK8VfOIns4jJyR44imJFFMJRFIJRFLBYhGgkTCbcRi7QRa2si2nKCaMsJYi0n8FobcK0NWPgEFm7EH2nCH23CF23F77USiLUR8NoIufgn6MJYL9+/Zz5i+PDw4TA8/HiWWDcfHv7EVx/O4svxjx8PHyTKsPe2e4njPOLLLhGBz3nEn6p34MA6lh1G/NO+TPtRrn35ve3t6+1cx3/oVNbzd+163NLLMdb9tp7r6r2+vujT0db9ypm23L7/qd/n2dbT+8FnGKd1u9gh5s+k5NYfk1985nP5iUjyKcESkWGrpH4T+7LnUu4/+56VYCiDY5aHvyl9Eqzj9bXse/V3RHevZ0zdRiZ4BykCws7PvuAUdo9chm/MTPInzWPUefMYWVxCqe/MxkRqa22ipvId6g/tpaXmHWLH9hM4UUluy0EmHX+N4vo/4Kvs/db8dFpciCYyabJs2iyLiC+DsC+DmD+HWCgTL5CFC2RCIANfe/zupC/xZMXFwHngJb66GHgxLLFsie3mYpjnYcTXfYl9zEUxvMSyhw+PYDy1ak+x8OHFk7GTUifDWXuaZHjtZYkPtN/sv1fmdVPervONt8Wzt25Zj5t6S7u639Z7ctC/89uXel0/mujuUOslLe1rW93t1qdD+7CT62YnHx6z3F5eff4RFt/8lb60JCIDTAmWiAxL1YcOMNkdZOP4Ff2uq943kmDL0SRENTCc51Gx4zWqX32SEYf+xPTwDuabR4PL4u2seRwYv4LRMy9j0tylTM/ITkqbGZk5lJ5fTun55d1uj4Rbqa58h7pDe2htPI4XacFFWnHRVswfxOcPYv4g/mAIC+XgzxpBKDufjJx8QrkFZOfkk52VxaiAj1FJiVgkPTnPo+reqYT2bwCUYImcC5Rgiciw9O4bzzMWKJz5/n7X1RQsJCtc1/+gksh5Hru3vkzNK48xoXo9Ze4gZcDewPlsKv0UuXOu4fwLlnNBRmZK4guGMhl/3izGnzcrJe2LDBXm81Ex4kJmnXgJF4tiZzkiqogkj65CERmWIvv+TJsLMnHO0n7X1ZY5ipEntiYhqv6r2LebQ889yITK3zDdHeJ8Z+zKmserU1Zz3iU3M2XcRKakOkgRSSo3+TLyt/6eirdeYXJ5/3+niUj/KMESkWFpVO3r7MuYxoyMrH7XFc0axcj6epznYWf4rlIytLS0suXZxwht/QXz2zYy2RzbM+ZTPe0zTH//f2PWqHGnr0RE0ta0JR+CrXdxaNNvlWCJnAOUYPWiev/bVLz4S+bf+PdkZuemOhwRSZLGxhNMie5h89hbk1Kf5Y4h29qoP15PwcjCpNTZF3t2bqXq+f/NjMO/4X3UU2OFvDF5NROu+CxzJkwftDhEJLVGjZ/ErsAMxh/4v+C+Az2M+Cgig0MJVi8qXlrLkj0/pOb7P2PLtM8w69o7GFGg16lF0t2+LS9SbjEypyTnL72B/DEA1NdUDniC1dzcyBvPPELOm48wN/IGZc54K+991C5axfRLP0pxP0ZEFJH0dWTKCi7d9R0qtv9ZvVgiKaYEqxdLPnE3b/55Eb7n/ydLdt9H665/YWP+MnyzP8KMi68lO2/w/lJ9JqKRMM3NjYRbW4hG2ohFIkQjrfH5ZCJtRKNhYuEwXjSMF20jFo1gsTB40cT0KjGc83CeAzzwPJxz4Lx4uXOY83CeF9+emJOlq65/QWsfANdOWX/vkJ7GFe653u4G1bVT9+ntr3kd2/r2F78B/7vgGTRwxrGc4QGn/hyHikDFn/CcMWnB5UmpL7MwPvdM45F3YdrcpNR5qre3vcqRPz3I7Jrf8T5rpMpGs3HK5zn/ys9SPnbSgLQpIuljzlWraNv5far/9OCwSbCc59HW0khbSyMtLS20trYQDbfiRVqJRcO4SBtetC0xQmkYFw3jeVG8mEfMi+E8D+fFiM9FF8MS9zrtn/i8c/H7nPa7nPg9h8O59/7/2HEfctJcCSffW5x8/9N5uoVTDuzmfuW9+xzrcZ9Tmz+pPBn3FdZ1a8/79r3Bvu7ZnDWW8973ESYV5fS57lRSgnUasy++Fi6+lre3vETNi/9Oed0fyPvLeqJ/9rEreD4n8mcQKZpJ9ugyRoyeSFZRCbl5BeTm5mE+f7d1RqNRWpobaGtuJNwS/0RaGom0NhJtbSTa1kystREXbsILN0O4CSIt+KLN+KLN+KMtBGItBGKtBL1WMrwWMlwrmbSR6VoJWYwRg/xzEkk3u4IzmD6yOCl15Yw5D4C2oxVJqa9dY8Nxtj+zhvwdv2RmdCeTnJ838y8je8kqpi25jnE9/I4RkeFnZFExrxZ8gPk1v6H24DsUlZyX6pBOy3kejSfqqK89TEPdYVqO1xBtPIrXVIe11OFvPYYv3IA/2kQg2kQo1kyG10KWayHbtZBNK5nmyATyU/3NyIB6ITaPbROXK8EaaqbOv5Sp8y8lEm5l22vP0fjWHxhR8zrTap8lv3Yd7O56TJsLEiaA4fAnJpz0EyNgjjwgr49te85oIUSrZdJqmYQtg4gvk7Avi7ZQMfWBLDx/VnxSzWA2BHOwUBYWyMAXCGGBUGI5iC8QwpcoDwRD+IPxdfMHMX8AMx/m8+FLfDWfHzMwnx+fz4/PDDq2+/H5DMzfzV8ruvZomesyw+cph3Q/PeNJEyt22afrMfGet9736bKlzzNIntmslmc6B+aZVN/dhJOnOWAgd8cxCL17STS5aEzS6iocV4bnDOrf7XddzvPYtfFZGv7yM2bWPccSa2G/r5TXpv0d06+6nQUasEJEejD2+nvw/fyP7HviaxT97aOpC8Q5oo1HOVr1Lseq99N49ADh+kP4G6vIaD1CbvgoBdFaCtxx8izW7f1QzBnHLZdmy6HNl03Yn01bqJCmQA7RQDaxYA4umIsL5WKhbPzBDAKhTHzBDMwfwoIZ8fubQAa+YLzcFwwR8Afw+/0EAkH8fh9+nx98PjBf/B7I2u99fIlyw/CBgVn7FOGJj0HX2cuJP/WT+Dl03ui6KYv3nnXdv+v9iTt5tcvPvKfibu6Tety3h3LX29a+1t3NhjOIY5Y/xIjC5P1/e6ApwTpDwVAm5UuvhaXXAvGbofqaSg5X7qWxphIaqjp6ofyxVvwujMOHMx8efjAfvkAQgjkQysaXkY0vlIM/I/4JZuUSysolIyuPjOw8snJyycrKJcfvIz1ydpHhJzc7m8NWiB0/cNZ1HNq/l4rnHqL03f9ihjtEk8vgrZEfYMTFq5i26AompmB0QhFJLxOnzODP41ZycfX/4Y3f/ZR5194+YG1Fm+s5euBt6g/tobXmHdyxdwk1HCCv9RCjotVk08pYYGynY+rJ45i/iIbgKOpyzieaXYxljyKYV0RmfjHZ+aPJLigme+QYckcUUuj3c26+jCHSOyVY/WQ+HwVjJlIwZmKqQxGRFDEz6oLjyGo8swTraPV+3nlxLTl7fsOMtm2MN8dboXJenfk5Zn7gVi4cMXKAIhaRoWrhqh+w/QdvMPOVu9gcbmX+9V84q+kjom3NHK2MJ1Ath/cSq3uXYMMB8loOMipazQgaT0qgGlwW1b7RVIfGsy9vEV7+BEKFpeQVT6Bw7CRGj5tEQWYWBcn8ZkXOUUqwRESS4PiIacyr/S0u2oYFMrrdx3keFTtfp/r135K/fz0z2rYzyhwVvlI2TfoME5avYlbZ7EGOXESGkoyMLMbf/gQ7H7yZBVu+ye5tP6duykcpmHIhOcUTyM7JJRoJ09LSQuT4YZqOVdF6rBp3/BChxv3kNh+kKFLFKI6dlEC1uSBVNppjoXEcKphNbMREAkWTyB07hcKSqYwZM56pQb0XKgL9TLDM7DGgfbKVAqDeOTffzCYDO4BdiW0vO+fu6E9bIiLnstikS8mu/U8qtm1g8oIPAPGEqvrAHg5u+xNu7/NMPPYyZdRSBlT4JvLKxM8w9n0rmTxzIZM1b42IJElh8Vjyvvwsr637V4rf/BlLdn+/23fFO4s544gVURscx578JewcMRF/4SSyR8cTqNElE5kcDDJ5UL4DkfRm7gxf2u+xIrN/Ao475+5NJFi/cc7NOZM6Fi1a5DZu3JiUeEREBlNtTTU598/hYGgyNWMuI1T/NqWN2xlNHQAnXDZ7chcRLVvOpIs+zJgJU1McsYgMF4cPvE3V25vxTlQTaWvB/EECoQwsZxQ5heMZObqUwtEl+IOhVIcqklbMbJNzbtGp5Ul5RNDMDLgZSM6kMiIiaaaoeCwb5t3Lgje+TdmBh6n2jWZ/3gL2lVxI0YxLmDz7Ii7QzYuIpMCYCVP1Rx2RQZSUHiwzuwz4YXsGl+jBepN4h/QJ4BvOuZd6OPZ24HaAiRMnLnz33f4PcywikiqRcBuec2RkZKY6FBERERlAZ92DZWZ/5ORRNtt93Tn3VGL548DaTtuqgInOuVozWwg8aWaznXMnTq3EOfdT4KcQf0Tw9N+KiMi5KxjqfoALERERGR5Om2A5567obbuZBYAbgYWdjmkD2hLLm8xsLzAN0AtWIiIiIiIyZCVj5sorgJ3Oucr2AjMrNjN/Yvk8YCrwThLaEhEREREROWclY5CLlZz8eCDAZcC9ZhYBPOAO51xdEtoSERERERE5ZyVtmPZkMLMa4Fwb5WIUcDTVQcig0fkePnSuhw+d6+FF53v40LkeXs7F8z3JOVd8auE5lWCdi8xsY3ejg8jQpPM9fOhcDx8618OLzvfwoXM9vKTT+U7GO1giIiIiIiKCEiwREREREZGkUYJ1ej9NdQAyqHS+hw+d6+FD53p40fkePnSuh5e0Od96B0tERERERCRJ1IMlIiIiIiKSJEqwREREREREkkQJVi/M7Boz22Vme8zsq6mOR5LHzCaY2fNm9paZvWlmf5soLzSz9Wb2duLryFTHKslhZn4z22xmv0msl5nZK4nr+zEzC6U6RkkOMyswsyfMbKeZ7TCz9+naHprM7M7E7/DtZrbWzDJ1bQ8dZvawmR0xs+2dyrq9li3uXxPnfauZXZC6yOVM9XCu70v8Ht9qZv9lZgWdtt2VONe7zOzqlATdCyVYPTAzP/AA8EFgFvBxM5uV2qgkiaLA3zvnZgFLgM8nzu9XgWedc1OBZxPrMjT8LbCj0/r3gH92zp0PHAP+e0qikoHwv4CnnXMzgHnEz7uu7SHGzEqALwKLnHNzAD+wEl3bQ8ka4JpTynq6lj8ITE18bgd+PEgxSnKsoeu5Xg/Mcc7NBXYDdwEk7tdWArMTx/wocd9+zlCC1bPFwB7n3DvOuTDwKHBDimOSJHHOVTnnXk8sNxC/ASshfo7/I7HbfwAfSUmAklRmVgp8CPj3xLoBlwNPJHbRuR4izCwfuAx4CMA5F3bO1aNre6gKAFlmFgCygSp0bQ8ZzrkXgbpTinu6lm8Afu7iXgYKzGzcoAQq/dbduXbOPeOciyZWXwZKE8s3AI8659qcc/uAPcTv288ZSrB6VgIc6LRemSiTIcbMJgMLgFeAMc65qsSmamBMquKSpPoX4B8AL7FeBNR3+sWt63voKANqgJ8lHgn9dzPLQdf2kOOcOwj8ANhPPLE6DmxC1/ZQ19O1rPu2oW018PvE8jl/rpVgybBmZrnAr4EvOedOdN7m4nMYaB6DNGdm1wFHnHObUh2LDIoAcAHwY+fcAqCJUx4H1LU9NCTevbmBeFI9Hsih6yNGMoTpWh4ezOzrxF/teCTVsfSVEqyeHQQmdFovTZTJEGFmQeLJ1SPOuf9MFB9uf6Qg8fVIquKTpFkKXG9mFcQf9b2c+Ds6BYnHikDX91BSCVQ6515JrD9BPOHStT30XAHsc87VOOciwH8Sv951bQ9tPV3Lum8bgszsNuA64BPuvcl7z/lzrQSrZ68BUxOjEYWIv0y3LsUxSZIk3sF5CNjhnPthp03rgE8nlj8NPDXYsUlyOefucs6VOucmE7+On3POfQJ4HrgpsZvO9RDhnKsGDpjZ9ETRB4C30LU9FO0HlphZduJ3evu51rU9tPV0La8DPpUYTXAJcLzTo4SShszsGuKP91/vnGvutGkdsNLMMsysjPjAJq+mIsae2HvJoJzKzK4l/u6GH3jYOfed1EYkyWJmlwAvAdt4772crxF/D+txYCLwLnCzc+7UF2wlTZnZMuB/OOeuM7PziPdoFQKbgVudc20pDE+SxMzmEx/QJAS8A6wi/gdFXdtDjJndA9xC/PGhzcBniL+LoWt7CDCztcAyYBRwGPgW8CTdXMuJJPt+4o+JNgOrnHMbUxC2nIUezvVdQAZQm9jtZefcHYn9v078vawo8dc8fn9qnamkBEtERERERCRJ9IigiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiT/H08YvdRWrVIdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
6False20.120.0646bAP.soma.v0.0008070.0043
7False20.120.0646Step1.soma.v0.001034e-05
8False20.120.0646Step3.soma.v0.0007940.00145
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "6 False 2 0.12 0.0646 bAP.soma.v \n", + "7 False 2 0.12 0.0646 Step1.soma.v \n", + "8 False 2 0.12 0.0646 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "6 0.000807 0.0043 \n", + "7 0.00103 4e-05 \n", + "8 0.000794 0.00145 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi8klEQVR4nOzdeXxU1f3/8ddnlqwkBELYwuoCsooKiBXc6lexLmi1orWuX+tXW1u1LrW2Veq39tev2tqqbVGrdS1i3de2bqhYUQEBRVBAw76EhCyQbZbz+2NuwhCyQSaZhLyfj8c8Mvfec8/53LnMMJ85555rzjlERERERESk9XzJDkBERERERGRfoQRLREREREQkQZRgiYiIiIiIJIgSLBERERERkQRRgiUiIiIiIpIgSrBEREREREQSRAmWiEgHY2ZDzMyZWSDZsUjXYGZLzeyYZMchIrIvUIIlIiKdnpnNNLPt3qPGzEJxy68lO76Ozjk3yjk3J5F1mtmdZrbCzMrNbLmZXZDI+kVEOiolWCIiCaaep/bnnLvcOdfNOdcN+A0wu3bZOXdSbbnOdG46U6yN2AGcCnQHLgT+aGbfSG5IIiJtTwmWiEgCmFmBmf3UzJYAO8wsYGaTzOw/ZlZiZovjh2CZ2Rwz+39m9pGZlZnZC2bWs5G6LzazZV5PwFdm9j/1tk8zs0VePavMbKq3vruZPWhmG81svZn92sz8zRzH/mb2lpkVmdlWM3vCzHLithWb2aHecn8zK6w9LjM7zRtqVuId34h6r891ZrbEzErNbLaZpe35K73nGjk3zswOiCvzsJn9Om75FO81LfHO4dgWtnWMma0zs5u816/AzM6L236ymX3inau1ZjYjblvt0ND/NrM1wFve+n+Y2SbvdXvXzEbVi/vPZvaa11v3vpn1NbM/mNk2r+fokBa+Rse35Bhbyjl3i3NuuXMu6pz7EHgPOCKRbYiIdERKsEREEudc4GQgB+gDvAL8GugJXAc8Y2Z5ceUvAC4B+gFh4O5G6t0CnAJkAxcDd8UlOROBR4HrvXaPAgq8/R726j0AOAQ4Abi0mWMw4P8B/YERwEBgBoBzbhXwU+BxM8sA/gY84pybY2bDgFnA1UAe8CrwkpmlxNV9NjAVGAqMBS5qMACzyV5i09hjcjPH0JC6c+OcCzf5AsQSkoeA/wFygfuAF80stYVt9QV6AfnEem7uN7Ph3rYdxM57jhfPFWZ2er39jyb22p/oLb8GHAj0BhYCT9QrfzbwC6/NauADr1wv4Gng9y2Mu0FmdmNT56OFdaQDE4ClrYlFRKQzUIIlIpI4dzvn1jrnKoHvAa865171fsF/HZgPfCuu/GPOuc+cczuAXwJnN9TD5Jx7xTm3ysW8A/wbmOJt/m/gIefc6147651zy82sj9fW1c65Hc65LcBdwDlNHYBzbqVXV7VzrpDYl/Oj47Y/AKwEPiSWGP7c2zQdeMXbNwTcCaQD8UPC7nbObXDOFQMvAeMaiWGucy6nicfcpo6hEfHnpjmXAfc55z50zkWcc48QS1wm7UF7v/Rew3eIJdpnAzjn5jjnPvXO1RJiSenR9fad4Z2zSm+fh5xz5c65amLJ7sFm1j2u/HPOuQXOuSrgOaDKOfeocy4CzCaWXO8159xvmzofLaxmJrAY+FdrYhER6QyUYImIJM7auOeDge/U+6V/MrGkpKHyq4EgsV6HXZjZSWY2zxueV0IscaotNxBY1UAsg736Nsa1fx+xXpBGmVkfM3vSG1JYBjzeQEwPAKOBe7wv/RDr8VpdW8A5F/WOLz9uv01xzyuAbk3FkmBrmy9SZzBwbb1zN5DYMbbENi9prrW6dl8zO9zM3vaGVpYCl7P761sXq5n5zey3Fhv6WcbO3sn4fTbHPa9sYLk9X+fdmNkdxP69nO2cc8mMRUSkPSjBEhFJnPgvj2uJ9VDF/9qf6Zz7bVyZgXHPBwEhYGt8hd6wtGeI9Qj18XoMXiU2lK+2nf0biGUtsV6XXnHtZzvnRjVQNt5vvOMY45zLJtYTV9sWZtYN+APwIDDDdl43toFYYlJbzrzjW99Me7sxsym2cwbAhh5Tmq9lN/W/2FcAGXHLfeOerwVuq3fuMpxzs1rYVg8zy4xbHkTs9QH4O/AiMNA5151Yz47V2z8+1u8C04DjiU0WMcRbX3+fNuNdT9bo+Whm318BJwEnOOfK2idiEZHkUoIlItI2HgdONbMTvV6ING8ChAFxZb5nZiO965luBZ72hnXFSwFSgUIgbGYnEbuWqtaDwMVm9k0z85lZvpkd5JzbSGwo4e/MLNvbtr+Z1R+OVl8WsB0oNbN8Ytd2xfsjMN85dymxoW8zvfVPASd7cQSBa4kleP9p7oWqzzn3XtwMgA093tvTOhuwCPiud26msuswvQeAy73eJjOzTItNTpEFdRNLPNxM/b8ysxQvGTwF+Ie3Pgsods5VedfPfbeZerKIvY5FxBLC3+zBMSaEc+43TZ2PxvYzs58RO77jnXNF7RexiEhyKcESEWkDzrm1xHoebiKWHK0llqzEf+4+Rmwiik1AGvDjBuop99Y/BWwj9oX1xbjtH+FNfAGUAu+wsyfpAmIJ2ufevk+z6xDFhvwKONSr6xXg2doNZjaN2CQVV3irfgIcambnOee+INbbdQ+xXrhTgVOdczXNtJcsVxGLsQQ4D3i+doNzbj7wfeBeYq/bSnadkGMg8H4TdW/y9ttAbEKKy51zy71tPwBuNbNy4GZi57UpjxIbYrie2Hmc19yBdSC/IdZ7tzKux+umZAclItLWTMOhRUTan5nNAR53zv012bFIy3mzIi4GxnqTedTffgyx8zqg/jYREekaOvtNDEVERNqN1yM3otmCIiLSZWmIoIhIF2NmMxuZsGBm83tLZ2Rmg5qYqGJQsuMTEdmXaIigiIiIiIhIgqgHS0REREREJEE61DVYvXr1ckOGDEl2GCIiIiIiIk1asGDBVudcXv31HSrBGjJkCPPnz092GCIiIiIiIk0ys9UNrdcQQRERERERkQRRgiUiIiIiIpIgSrBEREREREQSpENdg9WQUCjEunXrqKqqSnYo0gGkpaUxYMAAgsFgskORfdSOikoe+us9jDz2XL45ZmCywxEREZFOpsMnWOvWrSMrK4shQ4ZgZskOR5LIOUdRURHr1q1j6NChyQ5H9lFfzHuFHxXfxrtPvwJj3kl2OCIiItLJdPghglVVVeTm5iq5EsyM3Nxc9WZKm9q+dR0AR9kitlfVJDkaERER6Ww6fIIFKLmSOvq3IG0tVLq57vlXXy5NYiQiIiLSGXWKBEtEpL2kVhfVPS9f/UkSIxEREZHOSAlWC5gZ1157bd3ynXfeyYwZM5IXUJxjjjmmyZszn3766UyaNGmXdTNmzCA/P59x48YxevRoXnzxxbYOU6TTyAgVUUgPAKKblyU5GhEREelslGC1QGpqKs8++yxbt25NaL3OOaLRaELrjFdSUsKCBQsoLS3lq6++2mXbNddcw6JFi/jHP/7BJZdc0qZxiHQmmaFiNvt6s9V64Ctdm+xwREREpJNRgtUCgUCAyy67jLvuumu3bYWFhZx55plMmDCBCRMm8P777wOxXqI777yzrtzo0aMpKCigoKCA4cOHc8EFFzB69GjWrl3L9ddfz+jRoxkzZgyzZ88GYM6cORxzzDGcddZZHHTQQZx33nk45xqM77HHHqvrjfroo4/q1j/77LOceuqpnHPOOTz55JMN7jtixAgCgcAuyeONN97IyJEjGTt2LNdddx0ABQUFHHfccYwdO5ZvfvObrFmzBoCLLrqIK664gkmTJrHffvsxZ84cLrnkEkaMGMFFF11UV+cVV1zB+PHjGTVqFLfccstucZSWljJ48OC6RG/Hjh0MHDiQUCjUYNwibaVbeBulvh6UpPQjo2J9ssMRERGRTqbDT9Me71cvLeXzDWUJrXNk/2xuOXVUs+V++MMfMnbsWG644YZd1l911VVcc801TJ48mTVr1nDiiSeybFnTw4pWrFjBI488wqRJk3jmmWdYtGgRixcvZuvWrUyYMIGjjjoKgE8++YSlS5fSv39/jjzySN5//30mT568W30VFRUsWrSId999l0suuYTPPvsMgFmzZnHzzTfTp08fzjzzTG666abd9v3www/x+Xzk5eUBUFRUxHPPPcfy5csxM0pKSgD40Y9+xIUXXsiFF17IQw89xI9//GOef/55ALZt28YHH3zAiy++yGmnncb777/PX//6VyZMmMCiRYsYN24ct912Gz179iQSifDNb36TJUuWMHbs2Lo4unfvzrhx43jnnXc49thjefnllznxxBN1vytpd+mRcioCB1CZkUVu8RKcc5pcRURERFpMPVgtlJ2dzQUXXMDdd9+9y/o33niDK6+8knHjxnHaaadRVlbG9u3bm6xr8ODBdddFzZ07l3PPPRe/30+fPn04+uij+fjjjwGYOHEiAwYMwOfzMW7cOAoKChqs79xzzwXgqKOOoqysjJKSEjZv3syKFSuYPHkyw4YNIxgM1iVeAHfddRfjxo3juuuuY/bs2XVfILt3705aWhr//d//zbPPPktGRgYAH3zwAd/97ncBOP/885k7d25dXaeeeipmxpgxY+jTpw9jxozB5/MxatSoupifeuopDj30UA455BCWLl3K559/vttxTJ8+va4H78knn2T69OlNvo4ibSHgQkR9KUSyB9KPrZTtqE52SCIiItKJdKoerJb0NLWlq6++mkMPPZSLL764bl00GmXevHmkpaXtUjYQCOxyXVP8vZsyMzNb1F5qamrdc7/fTzgcbrBc/V/XzYynnnqKbdu21d2Qt6ysjFmzZnHbbbcBsWuwaof/1Y/7o48+4s033+Tpp5/m3nvv5a233mpRnD6fb5eYfT4f4XCYr7/+mjvvvJOPP/6YHj16cNFFFzV4L6vTTjuNm266ieLiYhYsWMBxxx3XZLsibSHgaoj6Uwj0HExwdYTNGwroPuygZIclIiIinUSre7DMbKCZvW1mn5vZUjO7yls/w8zWm9ki7/Gt1oebXD179uTss8/mwQcfrFt3wgkncM8999QtL1q0CIAhQ4awcOFCABYuXMjXX3/dYJ1Tpkxh9uzZRCIRCgsLeffdd5k4ceIexVXb6zN37ly6d+9O9+7dmTVrFv/85z/rrvtasGBBo9dhxdu+fTulpaV861vf4q677mLx4sUAfOMb36jb/4knnmDKlCktjq+srIzMzEy6d+/O5s2bee211xos161bNyZMmMBVV13FKaecgt/vb3EbIokSdCGcL4X03vsBULZxZZIjEhERkc4kET1YYeBa59xCM8sCFpjZ6962u5xzdzaxb6dz7bXXcu+999Yt33333XXXZ4XDYY466ihmzpzJmWeeyaOPPsqoUaM4/PDDGTZsWIP1nXHGGXzwwQccfPDBmBm33347ffv2Zfny5S2OKS0tjUMOOYRQKMRDDz1EQUEBq1ev3mV69qFDh9K9e3c+/PDDBuv41re+xV//+lfMjGnTplFVVYVzjt///vcA3HPPPVx88cXccccd5OXl8be//a3F8R188MEccsghHHTQQQwcOJAjjzyybtvNN9/M+PHjOe2004DYMMHvfOc7zJkzp8X1iySMcwQJ4/yp9Oh/AABVWxv+cURERESkIdbYzHR7XaHZC8C9wJHA9j1JsMaPH+/q39Np2bJljBgxIqExSuemfxPSZsLV8OvevNzrUr512a/x/aYv7w64jKMuvSPZkYmIiEgHY2YLnHPj669P6CQXZjYEOASo7Sa50syWmNlDZtajkX0uM7P5Zja/sLAwkeGIiOyZsDehRSAFX0o6W60HwfJ1yY1JREREOpWEJVhm1g14BrjaOVcG/AXYHxgHbAR+19B+zrn7nXPjnXPja6cKFxFJikhN7K8/NlnLtkBfMit1LywRERFpuYQkWGYWJJZcPeGcexbAObfZORdxzkWBB4A9m7lBRKS91fVgxRKsivS+dK9Rz7qIiIi0XCJmETTgQWCZc+73cev7xRU7A/is/r4iIh1KJJZgmZdghTP70tttJRyOJDMqERER6UQSMYvgkcD5wKdmtshbdxNwrpmNAxxQAPxPAtoSEWkzkVA1fnYmWJYzgPSNNWws3ES/fvnJDU5EREQ6hVYnWM65uYA1sOnV1tYtItKeQtVVuyRYKT0HArBt49dKsERERKRFEjqL4L7s+eefx8yavD9VQUEBo0ePTlibF110EU8//XSj26+++mry8/OJRqN16x5++GHy8vIYN24cI0eO5IEHHkhYPCL7unBNFQD+YCzByuo9BIDtW1YnKyQRERHpZJRgtdCsWbOYPHkys2bNanB7OBxudRuRSMuv84hGozz33HMMHDiQd955Z5dt06dPZ9GiRcyZM4ebbrqJzZs3tzo2ka4gVF0JgC8llmD17D8UgJritUmLSURERDoXJVgtsH37dubOncuDDz7Ik08+Wbd+zpw5TJkyhdNOO42RI0cCsUTrvPPOY8SIEZx11llUVFQA8Oabb3LIIYcwZswYLrnkEqqrYxfTDxkyhJ/+9Kcceuih/OMf/9it7TfeeIPx48czbNgwXn755V3aHjVqFFdccUWjSV/v3r3Zf//9Wb1656/vd999NyNHjmTs2LGcc845ABQXF3P66aczduxYJk2axJIlSwCYMWMGF154IVOmTGHw4ME8++yz3HDDDYwZM4apU6cSCoUAuPXWW5kwYQKjR4/msssuo/7Nq6PRKEOGDKGkpKRu3YEHHqjETzqcUCj2vvR5QwS79exPyPlxZZqqXURERFomEZNctJ/XboRNnya2zr5j4KTfNlnkhRdeYOrUqQwbNozc3FwWLFjAYYcdBsDChQv57LPPGDp0KAUFBXzxxRc8+OCDHHnkkVxyySX8+c9/5sorr+Siiy7izTffZNiwYVxwwQX85S9/4eqrrwYgNzeXhQsXNth2QUEBH330EatWreLYY49l5cqVpKWlMWvWLM4991ymTZvGTTfdRCgUIhgM7rLvV199xVdffcUBBxxQt+63v/0tX3/9NampqXUJzy233MIhhxzC888/z1tvvcUFF1zAokWLAFi1ahVvv/02n3/+OUcccQTPPPMMt99+O2eccQavvPIKp59+OldeeSU333wzAOeffz4vv/wyp556al2bPp+PadOm8dxzz3HxxRfz4YcfMnjwYPr06dPi0yTSHuqGCKakA2D+AMW+ngS3b0hmWCIiItKJqAerBWbNmlXX23POOefs0mM0ceJEhg4dWrc8cOBAjjzySAC+973vMXfuXL744guGDh3KsGHDALjwwgt599136/aZPn16o22fffbZ+Hw+DjzwQPbbbz+WL19OTU0Nr776KqeffjrZ2dkcfvjh/Otf/6rbZ/bs2YwbN45zzz2X++67j549e9ZtGzt2LOeddx6PP/44gUAsv547dy7nn38+AMcddxxFRUWUlZUBcNJJJxEMBhkzZgyRSISpU6cCMGbMGAoKCgB4++23OfzwwxkzZgxvvfUWS5cu3e04pk+fzuzZswF48sknmzxmkWSpTbAC3hBBgJJgbzKr1NsqIiIiLdO5erCa6WlqC8XFxbz11lt8+umnmBmRSAQz44477gAgMzNzl/Kx24I1vtyQ+nU0V9+//vUvSkpKGDNmDAAVFRWkp6dzyimnALFk5t57722wvldeeYV3332Xl156idtuu41PP226RzA1NfZF0+fzEQwG6+Lx+XyEw2Gqqqr4wQ9+wPz58xk4cCAzZsygqqpqt3qOOOIIVq5cSWFhIc8//zy/+MUvmmxXJBki3hBBfzCtbl1lel96leo2fiIiItIy6sFqxtNPP83555/P6tWrKSgoYO3atQwdOpT33nuvwfJr1qzhgw8+AODvf/87kydPZvjw4RQUFLBy5UoAHnvsMY4++ugWtf+Pf/yDaDTKqlWr+Oqrrxg+fDizZs3ir3/9KwUFBRQUFPD111/z+uuv113v1ZhoNMratWs59thj+b//+z9KS0vZvn07U6ZM4YknngBi13b16tWL7OzsFsVXm0z16tWL7du3NzrroZlxxhln8JOf/IQRI0aQm5vbovpF2lM0FPv3HIzrwQp360+eK6ImpJsNi4iISPOUYDVj1qxZnHHGGbusO/PMMxudWGL48OH86U9/YsSIEWzbto0rrriCtLQ0/va3v/Gd73yHMWPG4PP5uPzyy1vU/qBBg5g4cSInnXQSM2fOJBqN8s9//pOTTz65rkxmZiaTJ0/mpZdearCOSy+9lPnz5xOJRPje977HmDFjOOSQQ/jxj39MTk4OM2bMYMGCBYwdO5Ybb7yRRx55pIWvDuTk5PD973+f0aNHc+KJJzJhwoS6bTNnzmTmzJl1y9OnT+fxxx/X8EDpsGp7sALeNVgAvu75pFqYws2a6EJERESaZ/VnfEum8ePHu/nz5++ybtmyZYwYMSJJEUlHpH8T0laWP/9/HLToNyw7fwkj9h8MwNI3n2DUez9g6SkvMmp8y3qeRUREZN9nZgucc+Prr1cPloiIx4VjPVjB1J3XYGX1jiVa27cUJCMkERER6WSUYImIeKLeEMGU1J1DBHPz9wMgtG1dUmISERGRzqVTJFgdaRijJJf+LUhbcuFqIs5ISUmpW5eZ05caAlCqa7BERESkeR0+wUpLS6OoqEhfrAXnHEVFRaSlpTVfWGRvhKupIUhqIO6j0edjq68XwR0bkxeXiIiIdBod/j5YAwYMYN26dRQWFiY7FOkA0tLSGDBgQLLDkH2UC9dQQ4DU4K6/PZUGe9OtWjcbFhERkeZ1+AQrGAwydOjQZIchIl2ARWI9WJn+XROsqvQ+9ClZlJygREREpFNp8yGCZjbVzL4ws5VmdmNbtycistciNdQQJFAvwYp0yyfPFVNdU5OkwERERKSzaNMEy8z8wJ+Ak4CRwLlmNrIt2xQR2VsWqSFEcPf1OQMIWoTCTZroQkRERJrW1j1YE4GVzrmvnHM1wJPAtDZuU0Rkr1ikmpDtPnI6PXcQANs2fd3eIYmIiEgn09YJVj6wNm55nbeujpldZmbzzWy+JrIQkWTyRWsIW8pu67P6xG42XFFY0M4RiYiISGeT9GnanXP3O+fGO+fG5+XlJTscEenCfJEQYdt9iGBuf+9mw8W62bCIiIg0ra0TrPXAwLjlAd46EZEOJ9aDtXuCldE9jyqCWJk+vkRERKRpbZ1gfQwcaGZDzSwFOAd4sY3bFBHZK/5oDRHf7kMEMWOrL4+Uig3tH5SIiIh0Km16HyznXNjMrgT+BfiBh5xzS9uyTRGRveV3ISIN9GABlKX0oVv1lnaOSERERDqbNr/RsHPuVeDVtm5HRKS1/NEaosEGerCAyvS+5G/7qJ0jEhERkc4m6ZNciIh0FAEXItrQEEEgmtWfPFdMVXV1O0clIiIinYkSLBERT8CFiPobTrD8OQPwm2PLhtXtHJWIiIh0JkqwREQ8TfVgpeXGJkQt1c2GRUREpAlKsEREPEFCuEZ6sHL6DgWgvHBNe4YkIiIinYwSLBERTwohCKQ2uC1vwP4AhIsK2jEiERER6WyUYImIAESjBIhgjfRgBTN7UEo3/KXqwRIREZHGKcESEQGIeLMDBhpOsAC2BvuTUbG+nQISERGRzkgJlogIEAlVAeBrZIggwI70fHrWbGivkERERKQTUoIlIgJUVVUCYMHGE6xQ90H0c1uorKppr7BERESkk1GCJSICVHsJli+Y1mgZf+5QUizCpvWaql1EREQapgRLRASoqSwHwFIyGy2T2Sc2k2Dxui/bJSYRERHpfJRgiYgAocodQNMJVu7AYQBUbl7ZLjGJiIhI56MES0QECHs9WP60xhOsHn33I+KMaHFBO0UlIiIinY0SLBERIFy9HYBAalajZSyQQqEvj5Tta9srLBEREelklGCJiACR6tgQwUBatybLbUvtT3al7oUlIiIiDWtVgmVmd5jZcjNbYmbPmVmOt36ImVWa2SLvMTMh0YqItJFolZdgpTc+RBCgMnMgvcMbcc61R1giIiLSybS2B+t1YLRzbizwJfCzuG2rnHPjvMflrWxHRKRNuZrYEMFgenbT5XIG0ctKKS4paYeoREREpLNpVYLlnPu3cy7sLc4DBrQ+JBGR9lc7RDAto+khgil5sanaC9euaPOYREREpPNJ5DVYlwCvxS0PNbNPzOwdM5vS2E5mdpmZzTez+YWFhQkMR0Sk5Vz1DqLOyGwmwere/wAAStd/0R5hiYiISCcTaK6Amb0B9G1g08+dcy94ZX4OhIEnvG0bgUHOuSIzOwx43sxGOefK6lfinLsfuB9g/PjxuqhBRJLC1eygglQy04JNlssbeBAANVu/bo+wREREpJNpNsFyzh3f1HYzuwg4Bfim8676ds5VA9Xe8wVmtgoYBsxvbcAiIm0hlmCl0S3QdMd+ek5vdpCGlaxup8hERESkM2ntLIJTgRuA05xzFXHr88zM7z3fDzgQ+Ko1bYmItCVfuIJqS2u+oBlbAv3J2L6m7YMSERGRTqfZHqxm3AukAq+bGcA8b8bAo4BbzSwERIHLnXPFrWxLRKTN+EItTLCA8vR8emzXEEERERHZXasSLOfcAY2sfwZ4pjV1i4i0J3+4ghpfeovK1mQNol/ZPGpCYVKCrf2dSkRERPYliZxFUESk00oPl1ERaPoeWLX8uUNJsxCb1us6LBEREdmVEiwREaBbpJTqYE6Lymb0jXXeF6/TVO0iIiKyKyVYIiJAlisjnNajRWVzBwwHYMfmlW0ZkoiIiHRCSrBEpMtzNTtIo4Zoes8Wle/Zf3+izogWFbRtYCIiItLpKMESkS6vsnQrAL6M3BaV9wVTKfT1Ilima7BERERkV0qwRKTLKyvaBIC/W68W71Ocmk925bq2CklEREQ6KSVYItLlbd+2BYD07i1PsCozB9I7vBHnXFuFJSIiIp2QEiwR6fK2b4v1YGXn9m3xPtGcwfSyUraVlLRRVCIiItIZKcESkS4vtG0tAD37DW3xPql5+wOwZc2XbRKTiIiIdE5KsESky/OVrqPEZdKzR8tmEQTIzj8QgLINSrBERERkJyVYItLlpe7YQKEvDzNr8T69Bx4EQHXhqrYKS0RERDohJVgi0uV1q95EaUqfPdonvXsvtpOBr0RTtYuIiMhOSrBEpGtzjtzwZkLd8vdsPzO2BPqRsWNt28QlIiIinZISLBHp0soK15JFBZGeB+zxvtvT+tG9ZlMbRCUiIiKdlRIsEenStq5aCEBK/tg93jfUrT+9o4WEw5FEhyUiIiKdVKsSLDObYWbrzWyR9/hW3LafmdlKM/vCzE5sfagiIolXsXYxALn7jdvjfX05g+hmVWzZWpjgqERERKSzCiSgjrucc3fGrzCzkcA5wCigP/CGmQ1zzulnXhHpWDYvZaPryaD8PbwGC0jtNQiAretX0r9vy29SLCIiIvuuthoiOA140jlX7Zz7GlgJTGyjtkRE9lp22QrWpexH0L/nH4fZfWI3Jt6+uSDBUYmIiEhnlYgE60ozW2JmD5lZD29dPhA/tdY6b91uzOwyM5tvZvMLCzXMRkTaUbiGfqE1lGUP36vde+XvD0BN0ZpERiUiIiKdWLMJlpm9YWafNfCYBvwF2B8YB2wEfrenATjn7nfOjXfOjc/Ly9vT3UVE9lrxmqUECePrO2qv9k/L6UcNAVzpugRHJiIiIp1Vs9dgOeeOb0lFZvYA8LK3uB4YGLd5gLdORKTD2LxyIT2BHkPH7V0FPh9FvjxSd2xIZFgiIiLSibV2FsF+cYtnAJ95z18EzjGzVDMbChwIfNSatkREEq163RJqnJ/Bw8btdR1lqX3Jqta9sERERCSmtbMI3m5m4wAHFAD/A+CcW2pmTwGfA2Hgh5pBUEQ6mpSiZaz2DeDA7My9rqM6sx+9Kj4kGnX4fJbA6ERERKQzalWC5Zw7v4lttwG3taZ+EZG2lFexihUZB3NgayrJHkCfwtfYWraD3jndEhWaiIiIdFJtNU27iEiHVl2+lTy3lercEa2qJ5g7CL85Nq0vSExgIiIi0qkpwRKRLmnDFwsASBswtlX1dOsduxdW2aavWx2TiIiIdH5KsESkSyopWARA3wMPbVU9PfP3A6Bq6+rWhiQiIiL7ACVYItIluU1L2eayGDhwv1bVk9lrMACRbbrZsIiIiCjBEpEuKrvsC9amDCEQ8LeuopRMSi2b4Hbd6k9ERESUYIlIF+SiEfrXFFCWPTwh9ZUGe5NZpXthiYiIiBIsEemCtm74mgyq8PU+KCH1VaT3p0doM865hNQnIiIinZcSrCasXv4JH/ztRrZuKEh2KCKSQJu+XgpAdn5ierAi2fn0ZSvbKkIJqU9EREQ6LyVYTdj4yWscsfov5Nx3CEtvm8yHj89g1ecLiEaiyQ5NRFqhYuMKAPKGjExIff4eg8i2SjZs1jBBERGRri6Q7AA6sknn3sSaFaey8d2H6LX+bUatvAtW3sVWcliXOZrKvofRbdA4+h8wjp79hmC+TpqvOoeLhAiHqqipqiJUU0WoppJwdex5pKaKcE0V4XCIcDhCNBLGuQguGsW5CESjUG/Z1a5zUSwa+4uLEnUADQ2jsgaeecsGrrHt9QpbvefO4vfbrebGXxPbdZs1sS2ea6rOJttrfNNe19nEttrXpam9OzsHRJ2L/fsGoi62zjlHxldvUOWC5PUbmpC2MvJiMwmWrF8J+w1KSJ3SvEgkQsWOMqp2lFNdUU64egfhmmoi4WqioRoi4RqioSqioRqi4RpcuIZopBoXroFwDdFolKhzmIsCUXAOvM+q2MdUNLbNuZ3bcd570nCA4dv5OWNWtw1q32dW95e6/cwrEttmxO1nsXqJ38er3wFW9/mz893rMO9zsnZL7X67lqt9asR9rtjO/7dqq97l89bb7uI+QV1c2V0+u3f5vG3E7uHU+0htuI6GilhDlTXeHA2E3NTHecenEclJYXrhk6IyLY+hE77FgB4ZyQ6lRZRgNWPQgWMYdOBdAGxas4L1H79EdM0H9CtbwoBVc2EV8DZUuFTW+/PZkdqbUEZvIhl9cJm5BNOySMnIJpCehS81E18wnYDfh9/vx+czos6IANGoi/3nH66BSAgXCRENVRMJ135JqCEariYarsaFqiFcDd4XBYtUQ7gGX7Qai9Tgi9bgi9Tgj8ae+10NgWiIgKsh4EIEXIigCxEk9khxIfzmCALBZL7YIu3oy5SDGOZv5QyCnpyhsXtpRTd8AhyXkDq7gurK7ZQUbqS8ZCtVZVup2V5MaEcx0YptULkNf1UJgZpSgqEygpFKUqKVpLkqUl0V6a6KDKsmC8hq4zijzojWJUG1KVJsyWf6siUi0tbmRA5mUd9vKMHaF/UddCB9B/2kbrm0cD1rv/iE0nWfEyheQUZ5AVk1m8mpXEaPrWXt8h9vxBk1BKkhSMgCsZTJUghbkLD3N+RLoSqQSdSXQsSXQtSXQtSfgvOn4nwpEEgBfyoukIrVe/iCqfiCafiCqfgDKQT8foKBAOb34/P5wefDzI/P58N8fjA/Pn9snfm85z4/Pl8Anxn4bLdfDJucF8DtWiC+aP39HPXKNbJfbFPcMM/dN+4WQsuDbWzTXv5b2Mv2mvyFzavTNVgm9pt8Z+cc+Cz2b818hs/A5/3KH/tnaOzXa0DC2svqP5xSMknd9EmT5aKRCMvnvUqP/APpNyQxE2x0NM45Sou3Urx+BeVb11BZvIlo+SZ8FYUEKwtJry4mK1xEjttGFpX0Afo0UE/I+SmzbuywblT4swj706lMzaXYn0E0mEE0mAnBTCwlE1Iz8aV2w5eS4X1upeAPpOIP7nweSEklEEwlEEwhkJJKMJiK3+/HX/d5ZVjt55kZ5vNj5vP+/Vjz4+m93lJo/q9zcb1h0dpt3nuybn3UK1v7PnU7Pw6ci3v/eut3+ayIrav9HIj/PHRxowjiJ2Wp/Uzc5XMhurMNGmx7Z33xvV6usc9eF/9098+fxj7fd2+v3n6u6e3x65urq9Pp1F1wnZle9/a2fyCdHv16JzuMFlOC1Qrd8/LpnpcPnLLbtnBNNaUlW9lRXsqO7aXUVJThanbgQlVEolEikSjORfER+wXUZ2D+FPDHEh7zp+ALBPEHY18KgimpBIMpBFLTCKakEUxNIyUtg5RgCulmpLf70YtILfP5WJM+igElH+GikdiPDXHKt21h+at/Jn/lLEa6TXyaNp5+N76ZpGhbpzocYf3mrRStW8H2zauIFK8mULaGzIr15NRspE9kMzlWQU69/crIpMSXQ3mgJ1syh7E+PQ+XkYcvK4+UrF6kdOtJevdeZGbn0q1HHhmZ2eT6fOQm4yD3Rm323pKijTwXEZF9gxKsNhJISaVH73x69M5Pdigi0g4qhp/BmEU/47M5/2D0cedQU1XJiv88R9WipxlV+i4TLMTS4CjWVXfnoKplsZ/PO+Cvz9Goo7CklC1rV1C2cSVVhQVYyWrSd6wju3ojfaOb2c/K2S9un0pS2ervQ2l6f77IPAzXfRCB3CFk5g0iJ28APXrnk52WQXbSjkpERKT9WEe6b8v48ePd/Pnzkx2GiMgeq6rcwebbJ9Ivuon1wUH0C60lzUJsI4svc79JzlGXM/zgI3jvyTuZsvx/2XTB+/Tdb3RSYt1eUcmmNSvYtmEVVVtWEd22hpTytWRVb6B3eDO9bdsu5WsIsNXfh/K0/tRkDcR6DCK99/7k9D+AHv0PwNctr0MmiyIiIm3JzBY458bXX9+qHiwzmw3U3kgmByhxzo0zsyHAMuALb9s859zlrWlLRKQjS0vPJHDRS3z03AwyKjewPmcC6SOOZ9SRp3F4Wlpduf3G/xcs/1++eudx+u732zaJJRSqYfO6rylev4odm1cR2RYbxtetYj254U30dkUcEHeNaNj52OrPoySlHxt6HMmGnEGk9tqP7P4HkJt/AGk98unfWWdJFRERaWcJ68Eys98Bpc65W70E62Xn3B79PKseLBHpChb/3wnsX7GEwukvM3Tkbj98NclFo5SVllC0qYDyzV9Ts7WAaMlaguXryKjcQE7NZvJcEf64BCrqjK2+nmwL9mNHRj5RbwhfVt/9yRt4IFm9B2N+zSEqIiKyJ9qkByuucgPORvMTi4g0q8+5f6L6oePpM/tbLOx9Egw6grTueUTw48KVRCpKqdlRSqRiG/6KQlIqC8mo2Uq3UBE9otvobtV0j6sv7HxssVy2BfuwNvtQvs4eQKDnIDLzhtJzwIHk5e9P75Q0Os/8SyIiIp1XQnqwzOwo4Pe1GZzXg7UU+BIoA37hnHuvkX0vAy4DGDRo0GGrV69udTwiIh3dhtUrWP30zzmk7C3SLNRouTIy2GY9KQ/0pDKtF5GM3lhWX1Jy+pPeewjd+wwlt98QUlJS2jF6ERERaawHq9kEy8zeAPo2sOnnzrkXvDJ/AVY6537nLacC3ZxzRWZ2GPA8MMo5V9ZUWxoiKCJdzY4dOyhc+wXlJcUELIwF00nJyCE7pyfde+QSTO0cN1UUERHpavZ6iKBz7vhmKg4A3wYOi9unGqj2ni8ws1XAMEDZk4hInMzMTDIPOjTZYYiIiEiCJGJaqOOB5c65dbUrzCzPzPze8/2AA4GvEtCWiIiIiIhIh5WISS7OAWbVW3cUcKuZhYAocLlzrjgBbYmIiIiIiHRYrU6wnHMXNbDuGeCZ1tYtIiIiIiLSmSTsPliJYGaFQEebRrAXsDXZQUi70fnuOnSuuw6d665F57vr0LnuWjri+R7snMurv7JDJVgdkZnNb2h2ENk36Xx3HTrXXYfOddei89116Fx3LZ3pfCdikgsRERERERFBCZaIiIiIiEjCKMFq3v3JDkDalc5316Fz3XXoXHctOt9dh85119JpzreuwRIREREREUkQ9WCJiIiIiIgkiBIsERERERGRBFGC1QQzm2pmX5jZSjO7MdnxSOKY2UAze9vMPjezpWZ2lbe+p5m9bmYrvL89kh2rJIaZ+c3sEzN72VseamYfeu/v2WaWkuwYJTHMLMfMnjaz5Wa2zMyO0Ht732Rm13if4Z+Z2SwzS9N7e99hZg+Z2RYz+yxuXYPvZYu52zvvS8zs0ORFLnuqkXN9h/c5vsTMnjOznLhtP/PO9RdmdmJSgm6CEqxGmJkf+BNwEjASONfMRiY3KkmgMHCtc24kMAn4oXd+bwTedM4dCLzpLcu+4SpgWdzy/wF3OecOALYB/52UqKQt/BH4p3PuIOBgYudd7+19jJnlAz8GxjvnRgN+4Bz03t6XPAxMrbeusffyScCB3uMy4C/tFKMkxsPsfq5fB0Y758YCXwI/A/C+r50DjPL2+bP3vb3DUILVuInASufcV865GuBJYFqSY5IEcc5tdM4t9J6XE/sClk/sHD/iFXsEOD0pAUpCmdkA4GTgr96yAccBT3tFdK73EWbWHTgKeBDAOVfjnCtB7+19VQBIN7MAkAFsRO/tfYZz7l2guN7qxt7L04BHXcw8IMfM+rVLoNJqDZ1r59y/nXNhb3EeMMB7Pg140jlX7Zz7GlhJ7Ht7h6EEq3H5wNq45XXeOtnHmNkQ4BDgQ6CPc26jt2kT0CdZcUlC/QG4AYh6y7lASdwHt97f+46hQCHwN29I6F/NLBO9t/c5zrn1wJ3AGmKJVSmwAL2393WNvZf1vW3fdgnwmve8w59rJVjSpZlZN+AZ4GrnXFn8Nhe7h4HuY9DJmdkpwBbn3IJkxyLtIgAcCvzFOXcIsIN6wwH13t43eNfeTCOWVPcHMtl9iJHsw/Re7hrM7OfELu14ItmxtJQSrMatBwbGLQ/w1sk+wsyCxJKrJ5xzz3qrN9cOKfD+bklWfJIwRwKnmVkBsaG+xxG7RifHG1YEen/vS9YB65xzH3rLTxNLuPTe3vccD3ztnCt0zoWAZ4m93/Xe3rc19l7W97Z9kJldBJwCnOd23ry3w59rJViN+xg40JuNKIXYxXQvJjkmSRDvGpwHgWXOud/HbXoRuNB7fiHwQnvHJonlnPuZc26Ac24IsffxW86584C3gbO8YjrX+wjn3CZgrZkN91Z9E/gcvbf3RWuASWaW4X2m155rvbf3bY29l18ELvBmE5wElMYNJZROyMymEhvef5pzriJu04vAOWaWamZDiU1s8lEyYmyM7UwGpT4z+xaxazf8wEPOuduSG5EkiplNBt4DPmXndTk3EbsO6ylgELAaONs5V/8CW+mkzOwY4Drn3Clmth+xHq2ewCfA95xz1UkMTxLEzMYRm9AkBfgKuJjYD4p6b+9jzOxXwHRiw4c+AS4ldi2G3tv7ADObBRwD9AI2A7cAz9PAe9lLsu8lNky0ArjYOTc/CWHLXmjkXP8MSAWKvGLznHOXe+V/Tuy6rDCxyzxeq19nMinBEhERERERSRANERQREREREUkQJVgiIiIiIiIJogRLREREREQkQZRgiYiIiIiIJIgSLBERERERkQRRgiUiIiIiIpIgSrBEREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsEZEOxsyGmJkzs0CyY5GuwcyWmtkxyY5DRGRfoARLREQ6PTObaWbbvUeNmYXill9LdnwdnXNulHNuTiLrNLM7zWyFmZWb2XIzuyCR9YuIdFRKsEREEkw9T+3POXe5c66bc64b8Btgdu2yc+6k2nKd6dx0plgbsQM4FegOXAj80cy+kdyQRETanhIsEZEEMLMCM/upmS0BdphZwMwmmdl/zKzEzBbHD8Eyszlm9v/M7CMzKzOzF8ysZyN1X2xmy7yegK/M7H/qbZ9mZou8elaZ2VRvfXcze9DMNprZejP7tZn5mzmO/c3sLTMrMrOtZvaEmeXEbSs2s0O95f5mVlh7XGZ2mjfUrMQ7vhH1Xp/rzGyJmZWa2WwzS9vzV3rPNXJunJkdEFfmYTP7ddzyKd5rWuKdw7EtbOsYM1tnZjd5r1+BmZ0Xt/1kM/vEO1drzWxG3LbaoaH/bWZrgLe89f8ws03e6/aumY2qF/efzew1r7fufTPra2Z/MLNtXs/RIS18jY5vyTG2lHPuFufccudc1Dn3IfAecEQi2xAR6YiUYImIJM65wMlADtAHeAX4NdATuA54xszy4spfAFwC9APCwN2N1LsFOAXIBi4G7opLciYCjwLXe+0eBRR4+z3s1XsAcAhwAnBpM8dgwP8D+gMjgIHADADn3Crgp8DjZpYB/A14xDk3x8yGAbOAq4E84FXgJTNLiav7bGAqMBQYC1zUYABmk73EprHH5GaOoSF158Y5F27yBYglJA8B/wPkAvcBL5pZagvb6gv0AvKJ9dzcb2bDvW07iJ33HC+eK8zs9Hr7H03stT/RW34NOBDoDSwEnqhX/mzgF16b1cAHXrlewNPA71sYd4PM7MamzkcL60gHJgBLWxOLiEhnoARLRCRx7nbOrXXOVQLfA151zr3q/YL/OjAf+FZc+cecc58553YAvwTObqiHyTn3inNulYt5B/g3MMXb/N/AQ86517121jvnlptZH6+tq51zO5xzW4C7gHOaOgDn3EqvrmrnXCGxL+dHx21/AFgJfEgsMfy5t2k68Iq3bwi4E0gH4oeE3e2c2+CcKwZeAsY1EsNc51xOE4+5TR1DI+LPTXMuA+5zzn3onIs45x4hlrhM2oP2fum9hu8QS7TPBnDOzXHOfeqdqyXEktKj6+07wztnld4+Dznnyp1z1cSS3YPNrHtc+eeccwucc1XAc0CVc+5R51wEmE0sud5rzrnfNnU+WljNTGAx8K/WxCIi0hkowRIRSZy1cc8HA9+p90v/ZGJJSUPlVwNBYr0OuzCzk8xsnjc8r4RY4lRbbiCwqoFYBnv1bYxr/z5ivSCNMrM+ZvakN6SwDHi8gZgeAEYD93hf+iHW47W6toBzLuodX37cfpvinlcA3ZqKJcHWNl+kzmDg2nrnbiCxY2yJbV7SXGt17b5mdriZve0NrSwFLmf317cuVjPzm9lvLTb0s4ydvZPx+2yOe17ZwHJ7vs67MbM7iP17Ods555IZi4hIe1CCJSKSOPFfHtcS66GK/7U/0zn327gyA+OeDwJCwNb4Cr1hac8Q6xHq4/UYvEpsKF9tO/s3EMtaYr0uveLaz3bOjWqgbLzfeMcxxjmXTawnrrYtzKwb8AfgQWCG7bxubAOxxKS2nHnHt76Z9nZjZlNs5wyADT2mNF/Lbup/sa8AMuKW+8Y9XwvcVu/cZTjnZrWwrR5mlhm3PIjY6wPwd+BFYKBzrjuxnh2rt398rN8FpgHHE5ssYoi3vv4+bca7nqzR89HMvr8CTgJOcM6VtU/EIiLJpQRLRKRtPA6camYner0Qad4ECAPiynzPzEZ61zPdCjztDeuKlwKkAoVA2MxOInYtVa0HgYvN7Jtm5jOzfDM7yDm3kdhQwt+ZWba3bX8zqz8crb4sYDtQamb5xK7tivdHYL5z7lJiQ99meuufAk724ggC1xJL8P7T3AtVn3PuvbgZABt6vLendTZgEfBd79xMZddheg8Al3u9TWZmmRabnCIL6iaWeLiZ+n9lZileMngK8A9vfRZQ7Jyr8q6f+24z9WQRex2LiCWEv9mDY0wI59xvmjofje1nZj8jdnzHO+eK2i9iEZHkUoIlItIGnHNrifU83EQsOVpLLFmJ/9x9jNhEFJuANODHDdRT7q1/CthG7Avri3HbP8Kb+AIoBd5hZ0/SBcQStM+9fZ9m1yGKDfkVcKhX1yvAs7UbzGwasUkqrvBW/QQ41MzOc859Qay36x5ivXCnAqc652qaaS9ZriIWYwlwHvB87Qbn3Hzg+8C9xF63lew6IcdA4P0m6t7k7beB2IQUlzvnlnvbfgDcamblwM3EzmtTHiU2xHA9sfM4r7kD60B+Q6z3bmVcj9dNyQ5KRKStmYZDi4i0PzObAzzunPtrsmORlvNmRVwMjPUm86i//Rhi53VA/W0iItI1dPabGIqIiLQbr0duRLMFRUSky9IQQRGRLsbMZjYyYcHM5veWzsjMBjUxUcWgZMcnIrIv0RBBERERERGRBFEPloiIiIiISIJ0qGuwevXq5YYMGZLsMERERERERJq0YMGCrc65vPrrO1SCNWTIEObPn5/sMERERERERJpkZqsbWq8hgiIiIiIiIgmiBEtERERERCRBlGCJiOyF0u1VvP3++2gmVhEREYnXoa7BakgoFGLdunVUVVUlOxTpZNLS0hgwYADBYDDZocg+aOHfb+bYDffxVuRFjjvq6GSHIyIiIh1Eh0+w1q1bR1ZWFkOGDMHMkh2OdBLOOYqKili3bh1Dhw5NdjiyD+pV9BEAFZ//C5RgiYiIiKfDDxGsqqoiNzdXyZXsETMjNzdXPZ/SZtLDpQD0LZqX5EhERESkI+nwCRag5Er2iv7dSJuJRhkcWQNA35o1ug5LRERE6nSKBEtEpCOJ1OwgSJgKUunPVgpLypIdkoiIiHQQSrBawMy49tpr65bvvPNOZsyYkbyA4sybN4/DDz+ccePGMWLEiLq45syZw3/+859W1T116lRycnI45ZRTEhCpyL6jckcsoVqbcgA+c2xZvTzJEYmIiEhH0eoEy8wGmtnbZva5mS01s6u89TPMbL2ZLfIe32p9uMmRmprKs88+y9atWxNar3OOaDTaqjouvPBC7r//fhYtWsRnn33G2WefDSQmwbr++ut57LHHWlWHyL6opnIHAKXdDwKgfP0XyQxHREREOpBEzCIYBq51zi00syxggZm97m27yzl3ZwLaAOBXLy3l8w2JHYozsn82t5w6qskygUCAyy67jLvuuovbbrttl22FhYVcfvnlrFkTux7jD3/4A0ceeSQzZsygW7duXHfddQCMHj2al19+GYATTzyRww8/nAULFvDqq69y77338tprr2Fm/OIXv2D69OnMmTOHGTNm0KtXLz777DMOO+wwHn/88d2uK9qyZQv9+vUDwO/3M3LkSAoKCpg5cyZ+v5/HH3+ce+65h4MOOqjROFetWsXKlSvZunUrN9xwA9///vcB+OY3v8mcOXOafG3+8Y9/8Ktf/Qq/30/37t159913qaqq4oorrmD+/PkEAgF+//vfc+yxx/Lwww/z/PPPs2PHDlasWMF1111HTU0Njz32GKmpqbz66qv07NmTBx54gPvvv5+amhoOOOAAHnvsMTIyMnZpd9KkSTz44IOMGhU7d8cccwx33nkn48ePbzJekUQIVW0HwPU6CAqhqmh1kiMSERGRjqLVPVjOuY3OuYXe83JgGZDf2no7mh/+8Ic88cQTlJaW7rL+qquu4pprruHjjz/mmWee4dJLL222rhUrVvCDH/yApUuXMn/+fBYtWsTixYt54403uP7669m4cSMAn3zyCX/4wx/4/PPP+eqrr3j//fd3q+uaa65h+PDhnHHGGdx3331UVVUxZMgQLr/8cq655hoWLVrElClTmoxzyZIlvPXWW3zwwQfceuutbNiwocWvy6233sq//vUvFi9ezIsvvgjAn/70J8yMTz/9lFmzZnHhhRfWzeb32Wef8eyzz/Lxxx/z85//nIyMDD755BOOOOIIHn30UQC+/e1v8/HHH7N48WJGjBjBgw8+uFu706dP56mnngJg48aNbNy4UcmVtJtwVawHK5o9gGqCULo+yRGJiIhIR5HQ+2CZ2RDgEOBD4EjgSjO7AJhPrJdrWwP7XAZcBjBo0KAm62+up6ktZWdnc8EFF3D33XeTnp5et/6NN97g888/r1suKytj+/btTdY1ePBgJk2aBMDcuXM599xz8fv99OnTh6OPPpqPP/6Y7OxsJk6cyIABAwAYN24cBQUFTJ48eZe6br75Zs477zz+/e9/8/e//51Zs2Y12OvUVJzTpk0jPT2d9PR0jj32WD766CNOP/30Fr0uRx55JBdddBFnn3023/72t+uO6Uc/+hEABx10EIMHD+bLL78E4NhjjyUrK4usrCy6d+/OqaeeCsCYMWNYsmQJEEvCfvGLX1BSUsL27ds58cQTd2v37LPP5oQTTuBXv/oVTz31FGeddVaL4hVJhEh1LMGy1AyK/b1IrdiU5IhERESko0hYgmVm3YBngKudc2Vm9hfgfwHn/f0dcEn9/Zxz9wP3A4wfP75Dz3V89dVXc+ihh3LxxRfXrYtGo8ybN4+0tLRdygYCgV2ur4q/H1NmZmaL2ktNTa177vf7CYfDDZbbf//9ueKKK/j+979PXl4eRUVFu5VpLE7YfTrzPZnefObMmXz44Ye88sorHHbYYSxYsKDJ8vHH5PP56pZ9Pl/d8V100UU8//zzHHzwwTz88MMNJoz5+fnk5uayZMkSZs+ezcyZM1scs0hr1fZg+VMyKEvpQ1bN5iRHJCIiIh1FQmYRNLMgseTqCefcswDOuc3OuYhzLgo8AExMRFvJ1LNnT84+++xdhqydcMIJ3HPPPXXLixYtAmDIkCEsXLgQgIULF/L11183WOeUKVOYPXs2kUiEwsJC3n33XSZObPlL9corr9Tdg2fFihX4/X5ycnLIysqivLy82TgBXnjhBaqqqigqKmLOnDlMmDChxe2vWrWKww8/nFtvvZW8vDzWrl3LlClTeOKJJwD48ssvWbNmDcOHD29xneXl5fTr149QKFRXT0OmT5/O7bffTmlpKWPHjm1x/SKtFa3xEqzUblSl96FnuDDJEYmIiEhHkYhZBA14EFjmnPt93Pp+ccXOAD5rbVsdwbXXXrvLbIJ333038+fPZ+zYsYwcObKuJ+XMM8+kuLiYUaNGce+99zJs2LAG6zvjjDMYO3YsBx98MMcddxy33347ffv2bXE8jz32GMOHD2fcuHGcf/75PPHEE/j9fk499VSee+45xo0bx3vvvddonABjx47l2GOPZdKkSfzyl7+kf//+QCz5+853vsObb77JgAED+Ne//gXEhiXWXm91/fXXM2bMGEaPHs03vvENDj74YH7wgx8QjUYZM2YM06dP5+GHH96l56o5//u//8vhhx/OkUceyUEHHVS3/sUXX+Tmm2+uWz7rrLN48skn62ZOFGkvkeoKAPxpmUSz+tObYsorq5MclYiIiHQEVtv7sdcVmE0G3gM+BWrHxN0EnAuMIzZEsAD4H+fcxqbqGj9+vJs/f/4u65YtW8aIESNaFaM0rv5sh/sa/fuRtvDFi79j+MJbWfrdBUSWPs/Yxf/LVxcsYL/9Dkh2aCIiItJOzGyBc263WdZafQ2Wc24u0NBFO6+2tm4RkY4oWlMJQCA9k5TcgQCUbF4NSrBERES6vITOIiidz4wZM5IdgkjnE4pdg5WS1o303kMAqCzUvbBEREQkQZNciIh0KaFKqlyQ1GCAnv2GAhDeti7JQYmIiEhHoB4sEZE9ZKEKKkglNeAjJTOPKlKwct1sWERERNSDJSKyxyxUSRUppAR8YMY2X09SdLNhERERQQmWiMges0gV1S5IasAPQHkwj8xq3QtLRERElGC12PPPP4+ZsXz58kbLFBQUMHr06IS1+cUXX3DMMccwbtw4RowYwWWXXQbEbhL86qutm6TxkksuoXfv3gmNV6TLiISoIUjQH5tAtTK9NzmRrc3sJCIiIl2BEqwWmjVrFpMnT2bWrFkNbg+Hw61uIxKJ7LL84x//mGuuuYZFixaxbNkyfvSjHwGJSbAuuugi/vnPf7aqDpGuyhepIWxBYvdZh0hmf3q7YqpqWv85ICIiIp1b55rk4rUbYdOnia2z7xg46bdNFtm+fTtz587l7bff5tRTT+VXv/oVAHPmzOGXv/wlPXr0YPny5fz73/8mHA5z3nnnsXDhQkaNGsWjjz5KRkYGb775Jtdddx3hcJgJEybwl7/8hdTUVIYMGcL06dN5/fXXueGGGzjnnHPq2t24cSMDBgyoWx4zZgw1NTXcfPPNVFZWMnfuXH72s59xyimn8KMf/YjPPvuMUCjEjBkzmDZtGg8//DDPPfccpaWlrF+/nu9973vccsstABx11FEUFBQ0edzvvPMOV111FQBmxrvvvku3bt244YYbeO211zAzfvGLXzB9+nTmzJnDLbfcQk5ODp9++ilnn302Y8aM4Y9//COVlZU8//zz7L///rz00kv8+te/pqamhtzcXJ544gn69OmzS7vnnHMO559/PieffDIQSwZPOeUUzjrrrJadU5E2ZtEaQhasW/Z170/q+hBrt2xk4ICBSYxMREREkk09WC3wwgsvMHXqVIYNG0Zubi4LFiyo27Zw4UL++Mc/8uWXXwKxYX0/+MEPWLZsGdnZ2fz5z3+mqqqKiy66iNmzZ/Ppp58SDof5y1/+UldHbm4uCxcu3CW5Arjmmms47rjjOOmkk7jrrrsoKSkhJSWFW2+9lenTp7No0SKmT5/ObbfdxnHHHcdHH33E22+/zfXXX8+OHbH79Hz00Uc888wzLFmyhH/84x/Mnz+/xcd955138qc//YlFixbx3nvvkZ6ezrPPPsuiRYtYvHgxb7zxBtdffz0bN24EYPHixcycOZNly5bx2GOP8eWXX/LRRx9x6aWXcs899wAwefJk5s2bxyeffMI555zD7bffvlu706dP56mnngKgpqaGN998sy7ZEukILFpDJC7BSu2ZD8C2zboXloiISFfXuXqwmulpaiuzZs2q68k555xzmDVrFocddhgAEydOZOjQoXVlBw4cyJFHHgnA9773Pe6++27+67/+i6FDhzJs2DAALrzwQv70pz9x9dVXA7GEoiEXX3wxJ554Iv/85z954YUXuO+++1i8ePFu5f7973/z4osvcueddwJQVVXFmjVrAPiv//ovcnNzAfj2t7/N3LlzGT9+fIuO+8gjj+QnP/kJ5513Ht/+9rcZMGAAc+fO5dxzz8Xv99OnTx+OPvpoPv74Y7Kzs5kwYQL9+vUDYP/99+eEE04AYj1vb7/9NgDr1q1j+vTpbNy4kZqaml1eu1onnXQSV111FdXV1fzzn//kqKOOIj09vUUxi7QHfyRE2FLqlrvlDQJgx9a1yQpJREREOgj1YDWjuLiYt956i0svvZQhQ4Zwxx138NRTT+GcAyAzM3OX8rXXZDS23JD6dcTr378/l1xyCS+88AKBQIDPPvtstzLOOZ555hkWLVrEokWLWLNmDSNGjNjreGrdeOON/PWvf6WyspIjjzyyyQk+AFJTU+ue+3y+umWfz1d3jdqPfvQjrrzySj799FPuu+8+qqqqdqsnLS2NY445hn/961/Mnj270QRUJFl8btcerJy+gwGoKda9sERERLo6JVjNePrppzn//PNZvXo1BQUFrF27lqFDh/Lee+81WH7NmjV88MEHAPz9739n8uTJDB8+nIKCAlauXAnAY489xtFHH91s2//85z8JhUIAbNq0iaKiIvLz88nKyqK8vLyu3Iknnsg999xTl/R98sknddtef/11iouL666Dqu1da4lVq1YxZswYfvrTnzJhwgSWL1/OlClTmD17NpFIhMLCQt59910mTpzY4jpLS0vJz48Np3rkkUcaLTd9+nT+9re/8d577zF16tQW1y/SHnzREFHfzgSrW27s37Qr25CskERERKSDUILVjFmzZnHGGWfssu7MM89sdDbB4cOH86c//YkRI0awbds2rrjiCtLS0vjb3/7Gd77zHcaMGYPP5+Pyyy9vtu1///vfjB49moMPPpgTTzyRO+64g759+3Lsscfy+eefM27cOGbPns0vf/lLQqEQY8eOZdSoUfzyl7+sq2PixImceeaZjB07ljPPPLNueOC5557LEUccwRdffMGAAQN48MEHAZg5cyYzZ84E4A9/+AOjR49m7NixBINBTjrpJM444wzGjh3LwQcfzHHHHcftt99O3759W/x6zpgxg+985zscdthh9OrVq279/PnzufTSS+uWTzjhBN555x2OP/54UlJSGqpKJGkCLkTEt/PfpQVSKbbuBHboZsMiIiJdndX2enQE48ePd/UnYVi2bFndcDfZMw8//DDz58/n3nvvTXYoSaN/P9IWtt66P5+mHsqxP/1H3bqvbzuMYuvBYTe9kcTIREREpL2Y2QLn3G6TG6gHS0RkDwVcGOcP7rKuIjWP7FBhkiISERGRjkIJ1j7soosu6tK9VyJtJUCIqG/Xoas1GX3JjRYRjXacUQEiIiLS/to8wTKzqWb2hZmtNLMb96aOjjSMUToP/buRthJ0IZy/3rWB2f3oaeVsLS1LTlAiIiLSIbRpgmVmfuBPwEnASOBcMxu5J3WkpaVRVFSkL8uyR5xzFBUVkZaWluxQZF/jHEFCOH/qLquDObGZBIs3rUlGVCIiItJBtPWNhicCK51zXwGY2ZPANODzllYwYMAA1q1bR2Ghrm2QPZOWlsaAAQOSHYbsa6IRfDisXg9WRu5AAMq3rIERY5IRmYiIiHQAbZ1g5QNr45bXAYfHFzCzy4DLAAYNGrRbBcFgkKFDh7ZhiCIieyBSHftbL8HK7hP7/KosWlt/DxEREelCkj7JhXPufufceOfc+Ly8vGSHIyLStLCXYAV2HSLYo88QACKlutmwiIhIV9bWCdZ6YGDc8gBvnYhIp+QiNQBYYNdp2v0ZOVSRgpVvTEZYIiIi0kG0dYL1MXCgmQ01sxTgHODFNm5TRKTNhKqrAPAF6k2gYkaxvxeplZuTEJWIiIh0FG16DZZzLmxmVwL/AvzAQ865pW3ZpohIW6qpqSQFdhsiCFAe7E23Gk3IIyIi0pW19SQXOOdeBV5t63ZERNpDqDp2DZY/mLLbtur03vSoXNTOEYmIiEhHkvRJLkREOpNQjTdEMLh7D1Ykqx+92cb2qlB7hyUiIiIdhBIsEZE9EPYSLH9w95tY+7vnk2ohCjdpLh8REZGuSgmWiMgeqJvkooEerJTcwQCUbf6qXWMSERGRjkMJlojIHgjXVAAQSM3YbVtWn9hN0XcUrm7XmERERKTjUIIlIrIHItVegpWye4KVm78/AOHiNe0ak4iIiHQcSrBERPZApLoSaLgHKy0rlwrS8JWube+wREREpINQgiUisgciNbEEK5i2e4KFGVv9vUmt2NjOUYmIiEhHoQRLRGQPuFBsiGCDCRZQntqX7GolWCIiIl2VEiwRkT0QDcV6sFIbSbCqM/vRK1JINOraMywRERHpIJRgiYjsAReqBiA1PbPh7d0HkmtlbC3Z1p5hiYiISAehBEtEZE+EKql2AdJSgg1urr0X1tb1uheWiIhIV6QES0RkT4SrqCaFtEDDH59ZvWP3wirb9HV7RiUiIiIdhBIsEZE9YOFKqkgh4G/447Ondy+s6q262bCIiEhXpARLRGQPWLiaalIa3Z6dN5AIhtO9sERERLokJVgiInvAF6mixhpPsPAHKbJcguXr2y8oERER6TCUYImI7AFfpIqQpTZZpjSlD92qN7VTRCIiItKRtCrBMrM7zGy5mS0xs+fMLMdbP8TMKs1skfeYmZBoRUSSzB+ppsbXdIJVmdGf3NDmdopIREREOpLW9mC9Dox2zo0FvgR+FrdtlXNunPe4vJXtiIh0CP5oNeFmerAi2QPoQxGlO6raKSoRERHpKFqVYDnn/u2cC3uL84ABrQ9JRKTjCkSrCTfTgxXoMZigRdi8vqB9ghIREZEOI5HXYF0CvBa3PNTMPjGzd8xsSmM7mdllZjbfzOYXFhYmMBwRkcQLRKuJ+ptOsDL67AdA6cZV7RGSiIiIdCCB5gqY2RtA3wY2/dw594JX5udAGHjC27YRGOScKzKzw4DnzWyUc66sfiXOufuB+wHGjx/v9u4wRETaR1q0gkgws8kyPfofAEBloW42LCIi0tU0m2A5545varuZXQScAnzTOee8faqBau/5AjNbBQwD5rc2YBGRZMpwFYSD3Zos06PfUACi29a0R0giIiLSgbR2FsGpwA3Aac65irj1eWbm957vBxwIfNWatkREki4SIoMqoqndmyxmKRkUWw6Bct1sWEREpKtptgerGfcCqcDrZgYwz5sx8CjgVjMLAVHgcudccSvbEhFJKldVhgEuNbvZstuCfehWuaHtgxIREZEOpVUJlnPugEbWPwM805q6RUQ6msrybWQA1oIEa0d6Pj1Kl7V9UCIiItKhJHIWQRGRfVpleawj3pfR9BBBgHBWPn1dIZXVobYOS0RERDoQJVgiIi1UtX0bAP70nGbL+noOJtXCbNqgiS5ERES6EiVYIiItVJtgpXbLabZsRu/YvbC2bVjZliGJiIhIB6MES0SkharKYglWt+zcZsvm9IslWBVbNIGqiIhIV6IES0SkhWp2xBKs7JyezZbNzY/NARQp1hBBERGRrkQJlohIC0Uriok6o3vPXs2W9adlUUKW7oUlIiLSxSjBEhFpIf+OzWylO5lpqS0qXxTsS0aF7oUlIiLSlSjBEhFpodTKLWzz9cC7sXqztqf1p0doUxtHJSIiIh2JEiwRkRZKr95KWaD54YG1Qln59IkWUhOKtGFUIiIi0pEowRIRaaHs8Faq0nq3uLwvZzDpVsOWTevbMCoRERHpSJRgiYi0gAvXkBMtJdKtT4v3Sc8bAkDxhhVtFJWIiIh0NEqwRERaoLxwHT5z+LLzW7xP9/77A7Bjs+6FJSIi0lUowRIRaYHNBZ8CkNH/oBbv06t/7GbDNds0RFBERKSrUIIlItIC5WuXAtBnvzEt3ielW0+qCUL5xrYKS0RERDoYJVgiIi3gCr+kxGXSv//Alu9kxjZfT1IqtrRdYCIiItKhKMESEWmBrNIvWB8YjN+/Zx+bZcE8MmoK2ygqERER6WhalWCZ2QwzW29mi7zHt+K2/czMVprZF2Z2YutDFRFJjmhNFYNrVlDUY+we71uV1puccFEbRCUiIiIdUSABddzlnLszfoWZjQTOAUYB/YE3zGyYc0532xSRTmfdsnkMIkRg8OF7vG84ow+5Jf8hFIkS3MPeLxEREel82up/+2nAk865aufc18BKYGIbtSUi0qa2LHqNqDOGHHr8Hu9r2f3oZlUUFasXS0REpCtIRIJ1pZktMbOHzKyHty4fWBtXZp23TkSk08lZ+yZfBIbRP3/QHu8bzOkPQMmmNYkOS0RERDqgZhMsM3vDzD5r4DEN+AuwPzAO2Aj8bk8DMLPLzGy+mc0vLNSF4CLSsWxatZgDwisoGrR3l5Jm5A4AoHzr2mZKioiIyL6g2WuwnHMtGhNjZg8AL3uL64H4uYwHeOsaqv9+4H6A8ePHu5a0JSLSXta8/md6OR8HHH/pXu2f3Tv2UVi9bUMiwxIREZEOqrWzCPaLWzwD+Mx7/iJwjpmlmtlQ4EDgo9a0JSLS3koKNzJ603MszDqWvvmD96qOHC/BipYqwRIREekKWjuL4O1mNg5wQAHwPwDOuaVm9hTwORAGfqgZBEWks1k5+0bGuRB53/r5XtcRyOjODtLwbd+UwMhERESko2pVguWcO7+JbbcBt7WmfhGRZPl6yXscWvgC/8n7DpNHHtaqurb5ckmp3JKgyERERKQj001ZRETqqdpRSuD5/6HIchh5Tut/J9oezCWjZmsCIhMREZGOTgmWiEgcF42y9P5LyY9sYP2xf6Rnr96trrMqLY/ssO6DJSIi0hUowRIRifPR47/ksNJ/88Ggyxh39LSE1BnJ6E2u20YkqolSRURE9nVKsEREPJ/88xEO/+pePs46jiMu+m3iKs7uS6ZVU1ysXiwREZF9XWtnERQR2Ses/ORdDvrgOpYHRzDmB4/j8yfu96dg99gdLbZtXkter14Jq7ezikQibCveyvaSrVSXFxHaUUxNRTnhUDW+aAhfNIzPhQBwvgBRC+L8QfyBFFJSUgmkZ5GSkUVqRnfSunUnLTOb9MxszOdP8pGJiIgowRIRYcu6VXR/4QJKrDu5lz5FWnpmQutP75kPwPaidcAhCa27IwqFQmxavZxtqz+jcvMKoiXrCG7fQHb1ZnpGttDDldLLHIlMNaPOqCCVCkun0tKp9qUT8qUR9qcT8acR8acTDaTjghm4YDoRfwb4g5jfj1kAn98fe+7z4/DjzEcUg2gUXARzUXDR2F+iEI2Atw63c9m5aN0+u2yv97BGlmvrj/3dncO8Z7brstUus8v23cs1Uo/tXr52TV2ddWWat3PvFpRtedG4+hsYbmvxT3evtLlmmorDGliIteGaqNt2e9pQuWYPv4l9a+OIpmVz4Bm/JLN7z+ZqE5F2oARLRLq0yu2lbP/bmeS5Krac/RL79x2U8DayesUSrKrife9mw0WFG1m39D9UrV5Aytal5Oz4mvzIegZamIFemQqXSqG/N2UpvVmVNYxoZh8C3Xrgz+xJILMH/oyepGVmkZKaDv4g+FKI+vw4wCJhiIYgEiIUqqamuoqainIileWEq8px1WW46u1QvQMLbccX2kEgtB1/pJJApJLUcDkpNYWkuCpSXTVprpp0qvBb218PF3FGFB8OI0rseexhONu57LBd/9Ymd95X6p3JxK5f5vd4vXP1tu9avv7fxsq45lOCdtF8HK6BZy3eJYFxtEmzu+hJOR89UsSkHz/a6lhEpPWUYIlIlxUNh1n5l7MZEV7NkqMf4NBRE9qknR59YklbuGxjm9TfXkKhGr5a8j6ly98lsOkT+mz/nHy3mVxv+3r6UJg+lC05U/D1Pohu+SPpPXQUPXN7M9jXgS75dY5IqIpQTRXhcIRIOEQoHCYSCRMJh2Npjoti5jDzg89X9xfzYz4fZj58vgDm9+Pz+fD5/Pi9XjC/z4/PfPj9PjRoURLNeYmyi8vK5t9/BZM2zeLDlx7g8FO/n6TIRKSWEqwmVG4vo7x0G73zByc7FBFpA/MfvZGJO+Yxd/iNTD7urDZrJ7VbT6oJYts3t1kbbSFUU82qxe+x7fO3ydg4jwMqP2O4VQGxZGpTt4NY12c63YZOZMDISeT3zCM/yTG3iBn+lHT8KenJjkRkj5k3ljF+SOOhl/yB5XcuZuz8m/isZ39GH3lykqITEVCC1aQlr8zk0M9/y4KsKTD6LEYddTppGVnJDktEEuDzuS8wfvVf+bD7iRx5zk/btjEztlkPghVb2radBFi/+ivWfPQ8aV+/zvAdCzjIqgFY7RvI0rxvEdh/CgMOPp78/oM6RzIl0gUEUtLo9/2n2fKXE9nv3xezOPoQB085JdlhiXRZSrCaMHDiqcwv+ooRW14iZ94cqj64hk8yDqNywBT6jjmWwSMPxx/QSyjS2ZRuK6TvGz9ijX8Ao77/ANYOw9fKgr3IqC5s83b2VCgcZtn8d9m2+CX6bn6H4dFV5AObLI9Pe51E8IBjGHLofzG4zwDUly/ScXXPyyf0/VcpfOBbDH/jIj7eejMTzvhxssMS6ZLMuY5z48vx48e7+fPnJzuM3YRrqln+0b/YvvhFBm19l/4uNsxnu0tnbcpQdmQfQDh3OCl9DyKn7xD65A8lM7vn3k2NtBecc4QjEWqqKqmpriJUXRm7tqCmkprqasKhaiKhKiI1VURC1URqqomGq4iGqnDhaly4hmi4BsLVsUekBovE/voiNfiiNVg0hC9Sg9/V4I+GCLgQAVdDkBB+F/EugHaYczufe5ft+lyU2suAre7SbVfv0fCF1fUvHm7o0uuWlt39QuT65ePr2tN965Xf5dzvWVzJvIC8rVpu0aeM2/lkTz+VGizfRCXpVNGLUlZ++xWGHXzkHra2d5b8/jSyy1YwZMaydmmvKaXbivnig5eIfPFPDix9n16UEnHGqrSRlA88jt7jpzFg2GHtkniKSGKVF29k9X3nMLp6ER9mn8iw791Fj96dt7/ZRaNUVpRTsb2UyvISqneUUlNRSqiilHBlGZHKciI1lbhQFYQrsUg1Fq7GF6nCF6mOfXeJVuGP1hCI1mAujM9FvO8uUfwugp9dn/u9KWhizyPN/ifW4KyWzR3XbjN4NrCt/iygTZSJPd8Z0a5ldo12920Nfw9xWNzMo3jzZjYWU/z0OnsWd0ss8Y8k46y/cOxBvfdov7ZmZgucc+Prr1f3SwsEUlIZPfk0mHwaAJvWrmTNJ2/Cmnl0K/2SA7a+RU7Ri/Dlzn0qXQol1p0qXyY1/gxqApnU+NLBFwCfH6x2GmAfzjl8LoxFw/ic9/DuA2Mugq82oYnGkpqACxHEe7gwQcIELUIQSMTk0mHnI2ReCxYkTICwBWMPXwoRCxLxpVDjy6DCgkTND+YDDOf9xQyrWyaWbJrPSzq9dMqaTrGs3hft3T7A6v84sMtiw1McN7bvrnU39FHU0n3r79902ZbU3VFm7NpbtR/K8Wy3JzvnS6tbbuSw66+3+s8amNK4/hTL24HNQ49lTDslVwCh7kPoXzqXiqoqMtLS2q3dWuu/+pzV854jc/WbHFS1mIkWppwMVnWfxMbhU9n/G6czLKdPu8clIomV1bMfw697nY8f/SmHrnmEqj8fxn8Gfo8Rp/y4bsKdZHDRKJU7Sigt2kJFSexRU15IpHwr0YpifFXFBKq2kRoqISNcSnpkOxmukkwqyDBHRgvaiDqjihRqLEgNKdRYCmFLIWQphH2phH0pRC0T592OIerz42znIxr33PkCOPNjFpvZ0wCf4X2/if1fFP9f9s7EoYEfi3f7mrDrTJ+7VlRvm/fXsXMm0AYzvt1mCXVesd2/k5hz3v/NO6M1r4raH8njm6ktV3+G0t0PrJHZSOti2zWOnXU3/z0nkrof3TOCzZbrKNSDlQAuGqVk60a2rl5K2ZbVVBatx79jE8GqYvyh7fjDO0iN7CDNVeFzEXzE7qmyc4JeCJufCIG6vxELELUAUfMT9QWJWJCoL4WoP4WoLwXnT8H5U2NTGvtTwZ8CgVQskIIF0rBgKr5AKr5gCv5gGv5gKv6UNALBtNjflDSCKWkEU9MIpqQSTEknJTUNXzAtlgCKSEItevFexi38OSvPeY8DDhrb5u1FwiFWzH+DksUv02/zOwyOrgVgrS+fTX2Opvu4Uzng0OPxBVPaPBYRSY6vl31C2Us/4+CKDwg5P8vTD6Fy8HHkDv8GAw8aT8peXlceDYfZXlbE9uItVJQVUlm6lZqyrYR3bIUdRVjVNoLV20ipiSVLWdFSsl05KRZpsL6IM0oti3LLZkegO9XB7oSC3YmmdMOldMNSsyAtG39aFoH0bIIZ3UnJyCa1Ww7pmd1Jz+xGenoGgWBqu40eEgH1YLUp8/no0Tu/U3fBi0jbys4/CBZCydpl0EYJ1tZNayiY9wL+VW9wQPlHHEQFNc7PF2lj+XDwdAZNOoOB+42uuz+ViOzbho44BEb8k6+/WMzGt+4jf8scxnxxO3wB0ReMzdaTMn8PqlJ6Uh3IqrslQdT8EAnhj1QRiFQSiFYTiFaRESmnmysn2+0g2xzZDbQZdr5YsuTLosKfw7a0AWxJGUMkvSeW0RNfZi7BrDzSuueRmdOb7J59yO7Ri55+P7pNsuwrlGCJiLSDPvuNBqBi/WfA9ITUGa6p5stP3qVkyavkbXqXAyMr6QUU0oPPc47BP+wEhh05jTHd9bVFpCsbOvxghg7/MwDrC75kw/IPCa1fQkr5GgJVxWTUFJNTta5uhI2fCBELUm2phCyVkC+NykA25ekDWJeag0vrCek98HfLJdgtl7TsXDJyetO9Zx+ycnLJ9fvr7o8n0hUpwRIRaQeZPfqyzpdP9qZ5e11HKFTD10vep+Tzt8jY8AH7VS5hJNVEnLEiZQTzBv6QXoeewn6jJpHn1wQVIrK7/CHDyB8yLNlhiOzTWpVgmdlsYLi3mAOUOOfGmdkQYBnwhbdtnnPu8ta0JSLS2a3veThjCl+hvKyErOycJsu6aJTCDV+z8fP3qV49n4ytSxhatYxh3o1+v7JBLOp5MukHHsX+k07moB4da2YlERGRrqpVCZZzrm6ci5n9DiiN27zKOTeuNfWLiOxLekz6HhkvP8v8WT/lsO//GfP5wTnKijez8avPKFv7KW7LcjJKVtC3ahW9KaE3EHJ+CgJDWJr3Lfz7TWHQof/Ffn0Hsl+yD0hERER2k5AhgmZmwNnAcYmoT0RkXzRs/Df5YO6pHLHxSXbc+jwVlkFOtJRsi9RdLF7pUlgXGMjX3Q9nZd9D6H7ARAaPOpwDM7olNXYRERFpmURdgzUF2OycWxG3bqiZfQKUAb9wzr3X0I5mdhlwGcCgQcm7P4OISHuY+KNH+eCVBwkXfEAwUkEkrReW3YeMPgeSO3Qs/QYP48CALo8VERHprJq9D5aZvQH0bWDTz51zL3hl/gKsdM79zltOBbo554rM7DDgeWCUc66sqbY6632wRERERESka9nr+2A5545vpuIA8G3gsLh9qoFq7/kCM1sFDAOUPYmIiIiIyD4rEfP4Hg8sd86tq11hZnlm5vee7wccCHyVgLZEREREREQ6rEQM9D8HmFVv3VHArWYWAqLA5c654gS0JSIiIiIi0mE1ew1WezKzQmB1suOopxewNdlBSLvR+e46dK67Dp3rrkXnu+vQue5aOuL5Huycy6u/skMlWB2Rmc1v6OI12TfpfHcdOtddh85116Lz3XXoXHctnel8J+IaLBEREREREUEJloiIiIiISMIowWre/ckOQNqVznfXoXPddehcdy06312HznXX0mnOt67BEhERERERSRD1YImIiIiIiCSIEiwREREREZEEUYLVBDObamZfmNlKM7sx2fFI4pjZQDN728w+N7OlZnaVt76nmb1uZiu8vz2SHaskhpn5zewTM3vZWx5qZh967+/ZZpaS7BglMcwsx8yeNrPlZrbMzI7Qe3vfZGbXeJ/hn5nZLDNL03t732FmD5nZFjP7LG5dg+9li7nbO+9LzOzQ5EUue6qRc32H9zm+xMyeM7OcuG0/8871F2Z2YlKCboISrEaYmR/4E3ASMBI418xGJjcqSaAwcK1zbiQwCfihd35vBN50zh0IvOkty77hKmBZ3PL/AXc55w4AtgH/nZSopC38Efinc+4g4GBi513v7X2MmeUDPwbGO+dGA37gHPTe3pc8DEytt66x9/JJwIHe4zLgL+0UoyTGw+x+rl8HRjvnxgJfAj8D8L6vnQOM8vb5s/e9vcNQgtW4icBK59xXzrka4ElgWpJjkgRxzm10zi30npcT+wKWT+wcP+IVewQ4PSkBSkKZ2QDgZOCv3rIBxwFPe0V0rvcRZtYdOAp4EMA5V+OcK0Hv7X1VAEg3swCQAWxE7+19hnPuXaC43urG3svTgEddzDwgx8z6tUug0moNnWvn3L+dc2FvcR4wwHs+DXjSOVftnPsaWEnse3uHoQSrcfnA2rjldd462ceY2RDgEOBDoI9zbqO3aRPQJ1lxSUL9AbgBiHrLuUBJ3Ae33t/7jqFAIfA3b0joX80sE7239znOufXAncAaYolVKbAAvbf3dY29l/W9bd92CfCa97zDn2slWNKlmVk34BngaudcWfw2F7uHge5j0MmZ2SnAFufcgmTHIu0iABwK/MU5dwiwg3rDAfXe3jd4195MI5ZU9wcy2X2IkezD9F7uGszs58Qu7Xgi2bG0lBKsxq0HBsYtD/DWyT7CzILEkqsnnHPPeqs31w4p8P5uSVZ8kjBHAqeZWQGxob7HEbtGJ8cbVgR6f+9L1gHrnHMfestPE0u49N7e9xwPfO2cK3TOhYBnib3f9d7etzX2Xtb3tn2QmV0EnAKc53bevLfDn2slWI37GDjQm40ohdjFdC8mOSZJEO8anAeBZc6538dtehG40Ht+IfBCe8cmieWc+5lzboBzbgix9/FbzrnzgLeBs7xiOtf7COfcJmCtmQ33Vn0T+By9t/dFa4BJZpbhfabXnmu9t/dtjb2XXwQu8GYTnASUxg0llE7IzKYSG95/mnOuIm7Ti8A5ZpZqZkOJTWzyUTJibIztTAalPjP7FrFrN/zAQ86525IbkSSKmU0G3gM+Zed1OTcRuw7rKWAQsBo42zlX/wJb6aTM7BjgOufcKWa2H7EerZ7AJ8D3nHPVSQxPEsTMxhGb0CQF+Aq4mNgPinpv72PM7FfAdGLDhz4BLiV2LYbe2/sAM5sFHAP0AjYDtwDP08B72Uuy7yU2TLQCuNg5Nz8JYcteaORc/wxIBYq8YvOcc5d75X9O7LqsMLHLPF6rX2cyKcESERERERFJEA0RFBERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0REREREJEGUYImIiIiIiCSIEiwRkQ7GzIaYmTOzQLJjka7BzJaa2THJjkNEZF+gBEtERDo9M5tpZtu9R42ZheKWX0t2fB2dc26Uc25OIus0szvNbIWZlZvZcjO7IJH1i4h0VEqwREQSTD1P7c85d7lzrptzrhvwG2B27bJz7qTacp3p3HSmWBuxAzgV6A5cCPzRzL6R3JBERNqeEiwRkQQwswIz+6mZLQF2mFnAzCaZ2X/MrMTMFscPwTKzOWb2/8zsIzMrM7MXzKxnI3VfbGbLvJ6Ar8zsf+ptn2Zmi7x6VpnZVG99dzN70Mw2mtl6M/u1mfmbOY79zewtMysys61m9oSZ5cRtKzazQ73l/mZWWHtcZnaaN9SsxDu+EfVen+vMbImZlZrZbDNL2/NXes81cm6cmR0QV+ZhM/t13PIp3mta4p3DsS1s6xgzW2dmN3mvX4GZnRe3/WQz+8Q7V2vNbEbcttqhof9tZmuAt7z1/zCzTd7r9q6ZjaoX95/N7DWvt+59M+trZn8ws21ez9EhLXyNjm/JMbaUc+4W59xy51zUOfch8B5wRCLbEBHpiJRgiYgkzrnAyUAO0Ad4Bfg10BO4DnjGzPLiyl8AXAL0A8LA3Y3UuwU4BcgGLgbuiktyJgKPAtd77R4FFHj7PezVewBwCHACcGkzx2DA/wP6AyOAgcAMAOfcKuCnwONmlgH8DXjEOTfHzIYBs4CrgTzgVeAlM0uJq/tsYCowFBgLXNRgAGaTvcSmscfkZo6hIXXnxjkXbvIFiCUkDwH/A+QC9wEvmllqC9vqC/QC8on13NxvZsO9bTuInfccL54rzOz0evsfTey1P9Fbfg04EOgNLASeqFf+bOAXXpvVwAdeuV7A08DvWxh3g8zsxqbORwvrSAcmAEtbE4uISGegBEtEJHHuds6tdc5VAt8DXnXOver9gv86MB/4Vlz5x5xznznndgC/BM5uqIfJOfeKc26Vi3kH+Dcwxdv838BDzrnXvXbWO+eWm1kfr62rnXM7nHNbgLuAc5o6AOfcSq+uaudcIbEv50fHbX8AWAl8SCwx/Lm3aTrwirdvCLgTSAfih4Td7Zzb4JwrBl4CxjUSw1znXE4Tj7lNHUMj4s9Ncy4D7nPOfeicizjnHiGWuEzag/Z+6b2G7xBLtM8GcM7Ncc596p2rJcSS0qPr7TvDO2eV3j4POefKnXPVxJLdg82se1z555xzC5xzVcBzQJVz7lHnXASYTSy53mvOud82dT5aWM1MYDHwr9bEIiLSGSjBEhFJnLVxzwcD36n3S/9kYklJQ+VXA0FivQ67MLOTzGyeNzyvhFjiVFtuILCqgVgGe/VtjGv/PmK9II0ysz5m9qQ3pLAMeLyBmB4ARgP3eF/6Idbjtbq2gHMu6h1fftx+m+KeVwDdmoolwdY2X6TOYODaeuduILFjbIltXtJca3XtvmZ2uJm97Q2tLAUuZ/fXty5WM/Ob2W8tNvSzjJ29k/H7bI57XtnAcnu+zrsxszuI/Xs52znnkhmLiEh7UIIlIpI48V8e1xLroYr/tT/TOffbuDID454PAkLA1vgKvWFpzxDrEerj9Ri8SmwoX207+zcQy1pivS694trPds6NaqBsvN94xzHGOZdNrCeuti3MrBvwB+BBYIbtvG5sA7HEpLacece3vpn2dmNmU2znDIANPaY0X8tu6n+xrwAy4pb7xj1fC9xW79xlOOdmtbCtHmaWGbc8iNjrA/B34EVgoHOuO7GeHau3f3ys3wWmAccTmyxiiLe+/j5txruerNHz0cy+vwJOAk5wzpW1T8QiIsmlBEtEpG08DpxqZid6vRBp3gQIA+LKfM/MRnrXM90KPO0N64qXAqQChUDYzE4idi1VrQeBi83sm2bmM7N8MzvIObeR2FDC35lZtrdtfzOrPxytvixgO1BqZvnEru2K90dgvnPuUmJD32Z6658CTvbiCALXEkvw/tPcC1Wfc+69uBkAG3q8t6d1NmAR8F3v3Exl12F6DwCXe71NZmaZFpucIgvqJpZ4uJn6f2VmKV4yeArwD299FlDsnKvyrp/7bjP1ZBF7HYuIJYS/2YNjTAjn3G+aOh+N7WdmPyN2fMc754raL2IRkeRSgiUi0gacc2uJ9TzcRCw5WkssWYn/3H2M2EQUm4A04McN1FPurX8K2EbsC+uLcds/wpv4AigF3mFnT9IFxBK0z719n2bXIYoN+RVwqFfXK8CztRvMbBqxSSqu8Fb9BDjUzM5zzn1BrLfrHmK9cKcCpzrnapppL1muIhZjCXAe8HztBufcfOD7wL3EXreV7Dohx0Dg/Sbq3uTtt4HYhBSXO+eWe9t+ANxqZuXAzcTOa1MeJTbEcD2x8zivuQPrQH5DrPduZVyP103JDkpEpK2ZhkOLiLQ/M5sDPO6c+2uyY5GW82ZFXAyM9SbzqL/9GGLndUD9bSIi0jV09psYioiItBuvR25EswVFRKTL0hBBEZEuxsxmNjJhwczm95bOyMwGNTFRxaBkxycisi/REEEREREREZEEUQ+WiIiIiIhIgnSoa7B69erlhgwZkuwwREREREREmrRgwYKtzrm8+us7VII1ZMgQ5s+fn+wwREREREREmmRmqxtaryGCIiIiIiIiCaIES0REREREJEGUYImINME5RzSq2VZFRESkZTrUNVgNCYVCrFu3jqqqqmSHIp1MWloaAwYMIBgMJjsU6cTuePBxcoqXcOl1t+PzWbLDERERkQ6uwydY69atIysriyFDhmCmLzfSMs45ioqKWLduHUOHDk12ONJJRSMRblh3JQCfF/yIkfvpfqwiIiLStA4/RLCqqorc3FwlV7JHzIzc3Fz1fEqrbPlq8c7ny95PYiQiIiLSWXT4BAtQciV7Rf9upLVKiwt3Lqz9MHmBiIiISKfRKRIsEZFkqK4orXueWrIqiZGIiIhIZ6EEqwXMjGuvvbZu+c4772TGjBnJCyjOvHnzOPzwwxk3bhwjRoyoi2vOnDn85z//2et6V69ezaGHHsq4ceMYNWoUM2fOTFDEIp1HqKIMgC2+PHpWr0tyNCIiItIZdPhJLjqC1NRUnn32WX72s5/Rq1evhNXrnMM5h8+393nuhRdeyFNPPcXBBx9MJBLhiy++AGIJVrdu3fjGN76xV/X269ePDz74gNTUVLZv387o0aM57bTT6N+//17HKtLZhCpjCVZh5jAGlS0kFI4QDPiTHJWIiIh0ZOrBaoFAIMBll13GXXfdtdu2wsJCzjzzTCZMmMCECRN4//3YhfAzZszgzjvvrCs3evRoCgoKKCgoYPjw4VxwwQWMHj2atWvXcv311zN69GjGjBnD7NmzgViCdMwxx3DWWWdx0EEHcd555+Hc7vfi2bJlC/369QPA7/czcuRICgoKmDlzJnfddRfjxo3jvffeazLO888/nyOOOIIDDzyQBx54AICUlBRSU1MBqK6uJhqNNvja3H333YwcOZKxY8dyzjnnAFBcXMzpp5/O2LFjmTRpEkuWLKlr68ILL2TKlCkMHjyYZ599lhtuuIExY8YwdepUQqEQALfeeisTJkxg9OjRXHbZZbsddzQaZciQIZSUlNStO/DAA9m8eXNTp1Fkj0WrygGoyRtNllWyedOGJEckIiIiHV2n6sH61UtL+XxDWULrHNk/m1tOHdVsuR/+8IeMHTuWG264YZf1V111Fddccw2TJ09mzZo1nHjiiSxbtqzJulasWMEjjzzCpEmTeOaZZ1i0aBGLFy9m69atTJgwgaOOOgqATz75hKVLl9K/f3+OPPJI3n//fSZPnrxLXddccw3Dhw/nmGOOYerUqVx44YUMGTKEyy+/nG7dunHdddcB8N3vfrfROJcsWcK8efPYsWMHhxxyCCeffDL9+/dn7dq1nHzyyaxcuZI77rijwd6r3/72t3z99dekpqbWJTy33HILhxxyCM8//zxvvfUWF1xwAYsWLQJg1apVvP3223z++eccccQRPPPMM9x+++2cccYZvPLKK5x++ulceeWV3HzzzQCcf/75vPzyy5x66ql1bfp8PqZNm8Zzzz3HxRdfzIcffsjgwYPp06dPs+dRZE+46u0ApA84GL6ConVfMmDAwCRHJSIiIh1Zq3uwzGygmb1tZp+b2VIzu8pbP8PM1pvZIu/xrdaHmzzZ2dlccMEF3H333busf+ONN7jyyisZN24cp512GmVlZWzfvr3JugYPHsykSZMAmDt3Lueeey5+v58+ffpw9NFH8/HHHwMwceJEBgwYgM/nY9y4cRQUFOxW180338z8+fM54YQT+Pvf/87UqVMbbLOpOKdNm0Z6ejq9evXi2GOP5aOPPgJg4MCBLFmyhJUrV/LII4802EM0duxYzjvvPB5//HECgUDdMZ1//vkAHHfccRQVFVFWFkuMTzrpJILBIGPGjCESidTFO2bMmLrje/vttzn88MMZM2YMb731FkuXLt2t3enTp9f19j355JNMnz69yddcZG/4QzuockFy+h8AQNmW1UmOSERERDq6RPRghYFrnXMLzSwLWGBmr3vb7nLO3dnEvnukJT1Nbenqq6/m0EMP5eKLL65bF41GmTdvHmlpabuUDQQCuwyri78fU2ZmZovaqx2iB7Hhf+FwuMFy+++/P1dccQXf//73ycvLo6ioaLcyjcUJu09nXn+5f//+jB49mvfee4+zzjprl22vvPIK7777Li+99BK33XYbn376aYuOyefzEQwG69ry+XyEw2Gqqqr4wQ9+wPz58xk4cCAzZsxo8F5WRxxxBCtXrqSwsJDnn3+eX/ziF022K7I3AuEdVFg6vfL3AyBUvDbJEYmIiEhH1+oeLOfcRufcQu95ObAMyG9tvR1Rz549Ofvss3nwwQfr1p1wwgncc889dcu1Q+GGDBnCwoULAVi4cCFff/11g3VOmTKF2bNnE4lEKCws5N1332XixIktjumVV16pu0ZpxYoV+P1+cnJyyMrKory8vNk4AV544QWqqqooKipizpw5TJgwgXXr1lFZWQnAtm3bmDt3LsOHD9+l7Wg0ytq1azn22GP5v//7P0pLS9m+fTtTpkzhiSeeAGLXkvXq1Yvs7OwWHU9tMtWrVy+2b9/O008/3WA5M+OMM87gJz/5CSNGjCA3N7dF9YvsiUB4BxWkE+jWiypS8JevT3ZIIiIi0sEldJILMxsCHALU3pHzSjNbYmYPmVmPRva5zMzmm9n8wsLChop0KNdeey1bt26tW7777ruZP38+Y8eOZeTIkXXTmZ955pkUFxczatQo7r33XoYNG9ZgfWeccQZjx47l4IMP5rjjjuP222+nb9++LY7nscceY/jw4YwbN47zzz+fJ554Ar/f///bu+/ouqoz7+Pf51Z1q9qWJRcR924sl2CaCSUFQhL6giTGkzCkTliTTCqEkDfvSpnJZCYh4YUhIYUYCBAgCaGEksQT7MTGBgy2wQZX5IJkdenW/f5xr+Sr5oKudFV+n7W07jn77LPPIx0f6zza5+zNRRddxG9/+9vOQS76ihMSj/mtXLmS5cuXc+ONNzJhwgS2bt3KsmXLWLBgAWeddRaf//znmTdvHgAf+9jH2LBhA7FYjGuuuYZ58+axaNEiPvvZz1JYWMjNN9/Mxo0bmT9/Pl/60pf4+c9/fsLfT2FhIR//+MeZO3cuF1xwAUuWLOncdtttt3WJ+4orruBXv/qVHg+UAeOPttBm2WBGnbeUYOuBTIckIiIiQ5z1NjLd22rILA/4M/At59yDZjYOeAtwwDeBcufc6mO1UV1d7TZs2NClbOvWrcyaNSstMUpPN998c5fBMEYa/fuR/nj1O2fRHgoz/6bn2Pbts4hF2plz4/rj7ygiIiIjnpltdM5Vdy9PSw+WmfmBB4C7nXMPAjjnDjrnYs65OHAHcOLPvYmIDAGBeBshT+K9xVDOeIqjQ7+XXURERDKr34NcWGKUgjuBrc6576eUlzvnapKrHwS29PdYkn4333xzpkMQGbK88TBRKwYgmjeBstojtLSFyM0OHmdPERERGa3SMYrgCuDDwEtmtjlZ9hXgKjNbSOIRwV3AP6fhWCIig8brIsS8/sRyYSW+PXH2HdhDbtW0DEcmIiIiQ1W/Eyzn3FrAetn0aH/bFhHJJJ+LEPckEqxgSWKC4YYDu0AJloiIiPQhraMIioiMJIkEKwBAwbgpALS9tSeDEYmIiMhQpwRLRKQPXhfBJR8RLCmvAiBavy+TIYmIiMgQpwTrBD300EOYGdu2beuzzq5du5g7d27ajrl9+3bOPvtsFi5cyKxZs7juuuuAxCTBjz769p/AbG9vZ+nSpSxYsIA5c+bw9a9/PV0hi4wo/pQerKyCUtrxQ2PNcfYSERGR0UwJ1glas2YNp59+OmvWrOl1ezQa7fcxYrFYl/XPfvaz3HDDDWzevJmtW7fymc98Buh/ghUMBnn66ad54YUX2Lx5M4899hjr1q3rV+wiI5GPKHgTCRZm1HlK8WuyYRERETkGJVgnoLm5mbVr13LnnXdyzz33dJY/++yznHHGGbz//e9n9uzZQCLRuvrqq5k1axaXXnopra2tADz11FMsWrSIefPmsXr1akKhEABTpkzhi1/8Iqeeeiq/+c1vuhy3pqaGysrKzvV58+YRDoe56aabuPfee1m4cCH33nsvLS0trF69mqVLl7Jo0SIefvhhAO666y4uvvhizj77bKZNm8Y3vvENAMyMvLw8ACKRCJFIhMRo+1395je/Ye7cuSxYsIAzzzwTSPR+XXvttcybN49FixbxzDPPdB7rAx/4AOeddx5TpkzhRz/6Ed///vdZtGgRy5cvp66uDoA77riDJUuWsGDBAi655JLOn0+q5cuX8/LLL3eun3322XSfgFpkwDlHgCiuI8ECGv1l5IUOZTAoERERGerSMUz74Pnjl+DAS+ltc/w8eM+3j1nl4Ycf5t3vfjfTp0+npKSEjRs3snjxYgCef/55tmzZQlVVFbt27WL79u3ceeedrFixgtWrV/PjH/+YT3/606xatYqnnnqK6dOn85GPfISf/OQnfO5znwOgpKSE559/vsdxb7jhBs455xxOO+00zj//fK699loKCwu55ZZb2LBhAz/60Y8A+MpXvsI555zDT3/6U+rr61m6dCnnnnsuAH//+9/ZsmULOTk5LFmyhPe9731UV1cTi8VYvHgxO3bs4FOf+hTLli3rcfxbbrmFxx9/nIqKCurr6wG49dZbMTNeeukltm3bxvnnn8+rr74KwJYtW9i0aRPt7e1MnTqV73znO2zatIkbbriBX/ziF3zuc5/jQx/6EB//+McB+NrXvsadd97Z2TPX4YorruC+++7jG9/4BjU1NdTU1FBd3WOSbJGBFYskPlMSrPbscZTWv5ChgERERGQ4UA/WCVizZg1XXnklAFdeeWWXxwSXLl1KVVVV5/rEiRNZsWIFANdccw1r165l+/btVFVVMX36dAA++tGP8pe//KVznyuuuKLX41577bVs3bqVyy67jGeffZbly5d39nyleuKJJ/j2t7/NwoULOfvss2lvb2fPnsRIZ+eddx4lJSVkZ2fzoQ99iLVr1wLg9XrZvHkz+/bt60zCuluxYgWrVq3ijjvu6Hx8ce3atVxzzTUAzJw5k8mTJ3cmWCtXriQ/P5+ysjLGjBnDRRddBCR63nbt2gUkkrAzzjiDefPmcffdd3fpqepw+eWXc//99wNw3333cemll/b68xEZULFw4jMlwYrmjqfM1RGOxPrYSUREREa74dWDdZyepoFQV1fH008/zUsvvYSZEYvFMDO+973vAZCbm9ulfvdH7Xp79K677m2kmjBhAqtXr2b16tXMnTu310TIOccDDzzAjBkzupSvX7/+uPEUFhaycuVKHnvssR4DdNx2222sX7+eP/zhDyxevJiNGzce8/sIBoOdyx6Pp3Pd4/F0vqO2atUqHnroIRYsWMBdd93Fs88+26OdiooKSkpKePHFF7n33nu57bbbjnlckQHRS4LlGVNBcH+UNw/tZ0LFpAwFJiIiIkOZerCO4/777+fDH/4wu3fvZteuXezdu5eqqir++te/9lp/z549PPfccwD8+te/5vTTT2fGjBns2rWLHTt2APDLX/6Ss84667jHfuyxx4hEEo8pHThwgNraWioqKsjPz6epqamz3gUXXMAPf/hDnHMAbNq0qXPbk08+SV1dHW1tbTz00EOsWLGCw4cPdz7y19bWxpNPPsnMmTN7HH/nzp0sW7aMW265hbKyMvbu3csZZ5zB3XffDcCrr77Knj17eiR2x9LU1ER5eTmRSKSznd5cccUVfPe736WhoYH58+efcPsi6RKPJHqLzXc0wQoWJ96JPHJAc2GJiIhI75RgHceaNWv44Ac/2KXskksu6XM0wRkzZnDrrbcya9Ysjhw5wic+8QmysrL42c9+xmWXXca8efPweDxcf/31xz32E0880TnIxAUXXMD3vvc9xo8fz8qVK3nllVc6B7m48cYbiUQizJ8/nzlz5nDjjTd2trF06VIuueQS5s+fzyWXXEJ1dTU1NTWsXLmS+fPns2TJEs477zwuvPBCAG666SYeeeQRAL7whS8wb9485s6dy2mnncaCBQv45Cc/STweZ968eVxxxRXcddddXXqujueb3/wmy5YtY8WKFV2SukceeYSbbrqpc/3SSy/lnnvu4fLLLz/htkXSKRJuB8B8R/99549N9Fq1aLJhERER6YN19HoMBdXV1a77aHFbt25l1qxZGYpoeLvrrru6DIYxGunfj7xdTfu3kn/Hcp6Z8y1WXvZpABoP7qbgJ/NZO+OrnH7Vv2U4QhEREckkM9vonOsxEpt6sEREehEJJXqwPKk9WKUTiDkj3vhmpsISERGRIW54DXIhJ2XVqlWsWrUq02GIDEvR5DtYHv/Rd7DM6+eIpwh/S02mwhIREZEhblj0YA2lxxhl+NC/G+mPaPIdLI+/6zuGDb5Ssts12bCIiIj0bsgnWFlZWdTW1upmWU6Kc47a2lqysrIyHYoMU9FwogfL6+uaYLVkjaMgcjgTIYmIiMgwMOQfEaysrGTfvn0cPqwbGjk5WVlZVFZWZjoMGaZikcQ8WB5/1yQ9mjue0saNxOIOr+f489yJiIjI6DLgCZaZvRv4L8AL/I9z7qRmC/b7/VRVVQ1IbCIifYlF2gDwdntEkIIKCg60cuhIHWNLSjIQmYiIiAxlA/qIoJl5gVuB9wCzgavMbPZAHlNEJB2iyR4sX7cEy19UAUDdgd2DHpOIiIgMfQP9DtZSYIdz7nXnXBi4B7h4gI8pItJv8UhikAtvoGuClVc6EYCmQ0qwREREpKeBTrAqgL0p6/uSZZ3M7Doz22BmG/SelYgMFfFoogfL360Ha8z4KQC01+4b7JBERERkGMj4KILOududc9XOueqysrJMhyMiAkA8OQ+WL9h1kIvCsZMAiNXvH/SYREREZOgb6ARrPzAxZb0yWSYiMqR1JFjde7A8wVwaycPbciATYYmIiMgQN9AJ1j+AaWZWZWYB4ErgkQE+pohI/0UT72AFsnN6bKr3lRJsOzjYEYmIiMgwMKDDtDvnomb2aeBxEsO0/9Q59/JAHlNEJB1cNNmDFcjusa05UEZB+6HBDklERESGgQGfB8s59yjw6EAfR0QkraIhIs5LIBDosSmcM54JLa/hnMNMkw2LiIjIURkf5EJEZEiKthPGR9Dn7bEpVjCRsVZPQ1NTBgITERGRoUwJlohILywWIoQfv7dnD5WvODGS4Fv73xjssERERGSIU4IlItILi4UIE+j1EcDcsVUANBzYOdhhiYiIyBCnBEtEpBcWDRE2f6/bSireAUDb4V2DGJGIiIgMB0qwRER64YmHidBzgAuAwnGTiTnDHdkzyFGJiIjIUKcES0SkF55YiEgfPVjmC1DrKcbfrHnTRUREpCslWCIivfDGQ0Ss9x4sgPrAeHLbagYxIhERERkOlGCJiPTCGw8TPUaC1Zo9gaLowUGMSERERIYDJVgiIr3wxsNEPX0nWLH8Ssa5WlrbQ4MYlYiIiAx1SrBERHrhi4eJeYJ9bvcWT8JvMQ7u3zV4QYmIiMiQpwRLRKQXPhcm5ul9kAs4OhfWkZrXByskERERGQaUYImI9CKRYPXdg1VYnpgLq/XQG4MVkoiIiAwDSrBERHrhd2Gct+8Eq2TCKQBE6zQXloiIiBylBEtEpBcBF8b5+k6wPFl51FOAr2nfIEYlIiIiQ50SLBGRXviJgi/rmHXq/OPIaXtzkCISERGR4aBfCZaZfc/MtpnZi2b2WzMrTJZPMbM2M9uc/LotLdGKiAyGeAw/UewYPVgAzdkTKAxrLiwRERE5qr89WE8Cc51z84FXgS+nbNvpnFuY/Lq+n8cRERk08XArAB5/9jHrRfInUu4OEYpEByMsERERGQb6lWA5555wznXcWawDKvsfkohIZrW3NADggvnHrOctmkS2hTlQs38wwhIREZFhIJ3vYK0G/piyXmVmm8zsz2Z2RhqPIyIyoNqbEwmWHSfByk7OhVW3/7UBj0lERESGB9/xKpjZn4DxvWz6qnPu4WSdrwJR4O7kthpgknOu1swWAw+Z2RznXGMv7V8HXAcwadKkt/ddiIikUTjZg+XJOnaCVThhKgAtBzXZsIiIiCQcN8Fyzp17rO1mtgq4EHiXc84l9wkBoeTyRjPbCUwHNvTS/u3A7QDV1dXuJOMXEUm7cFsiwfJmHzvBKq1IJFjRut0DHpOIiIgMD/0dRfDdwL8B73fOtaaUl5mZN7l8CjAN0J94RWRYiLQmOtu92WOOWc+bXUA9+Xgb9w5GWCIiIjIMHLcH6zh+BASBJ80MYF1yxMAzgVvMLALEgeudc3X9PJaIyKCItSUSLP9xerAA6vzjyWnVIBciIiKS0K8Eyzk3tY/yB4AH+tO2iEimRJIJVnZe0XHrtmRPoKhx50CHJCIiIsNEOkcRFBEZEaLJBCt/TOFx63bMhdUe1lxYIiIiogRLRKSHeFsjUeehIL/guHW9xYm5sGre3DcIkYmIiMhQpwRLRKSbeKiZFrLJDR7/KeqcsacAUPem5sISERERJVgiIj1YqIlWyyY5eM8xFXXOhfXGQIclIiIiw4ASLBGRbgLhIzR7jj+CIEDxhHcAEK3bNYARiYiIyHChBEtEpJucSB2N3uITquvJLqCBfHyaC0tERERQgiUi0kNe9AhtgZITrl/rH09O65sDGJGIiIgMF0qwRERSOUdh/AjR7NIT3qUlp4LiyIEBDEpERESGCyVYIiIpYm31BIhCXtkJ7xPNr6TcHaKlPTKAkYmIiMhwoARLRCRF/aH9APjyx53wPt7iyWRbmAM1mgtLRERktFOCJSKSouFwIsEKFpaf8D6dc2Ht11xYIiIio50SLBGRFE01iSRpTMU7TnifomTdlkOaC0tERGS0U4IlIpIi8tZOIs7LhMkzTnif4vJEghWr3T1QYYmIiMgwoQRLRCSFv/4NaqyMvOysE97HshJzYfmbNReWiIjIaKcES0QkRX7rXmoDlSe931v+8eS1aS4sERGR0U4JlohIkotFKI/uoaXglJPetzlYrrmwREREpH8JlpndbGb7zWxz8uu9Kdu+bGY7zGy7mV3Q/1BFRAbWm6+9QDZhvBULT3rfcO54SuK1OOfSH5iIiIgMG740tPGfzrl/Ty0ws9nAlcAcYALwJzOb7pyLpeF4IiID4tCr66kASqcvO+l9XX45+QfbOFJ/hKKi4vQHJyIiIsPCQD0ieDFwj3Mu5Jx7A9gBLB2gY4mIpEV8z3qaXDZTpi846X39RYn3tupqdqU5KhERERlO0pFgfdrMXjSzn5pZUbKsAkgdTmtfsqwHM7vOzDaY2YbDhw+nIRwRkbdnfN3feS17AX6//6T3zS6ZCEDzYQ3VLiIiMpodN8Eysz+Z2ZZevi4GfgK8A1gI1AD/cbIBOOdud85VO+eqy8rKTnZ3EZG0OLT3VSriNYQqT3tb+xeMnQxAe92+dIYlIiIiw8xx38Fyzp17Ig2Z2R3A75Or+4GJKZsrk2UiIkPS3uceYCwwrvoDb2v/kgmJBCtWr//qRERERrP+jiJYnrL6QWBLcvkR4EozC5pZFTAN+Ht/jiUiMpCydjzKbqukasb8t7V/MCuXI+Tjba5Jc2QiIiIynPR3FMHvmtlCwAG7gH8GcM69bGb3Aa8AUeBTGkFQRIaqmt3bmRN+kecmX89ks7fdTp23lGDbwTRGJiIiIsNNvxIs59yHj7HtW8C3+tO+iMhg2P30TykHJq9c3a92mgNl5IUOpScoERERGZbSMQ+WiMiw5eJxJu55iC2BBcydMqNfbbVnj2di27Y0RTa0RdqbObJ/B/Vv1dB85BChxrfwRJrBxTEccTwQyCOYX0zOmFJyy6ZQNOEUcnPzMh26iIjIgFKCJSKj2vYNf2KmO8C+WZ/pd1vRvHKK6xqJhNrwB7PTEF3mtbe18PrL/6Dx9X/gOfAiuU1vUBrZzzjqGAuMPcn2DlNErb+cppyJRAur8JVNY0zFDMZNmcOYDE3QHIpEaWlpJtbWSDTcTiwWIxaLEI3GiMei4Bwe4ni8XjxeH+b14/H5MW8An8+Pzx/A5wvgCwTw+QP4vV48nrf/qKmIiAxvSrBEZFRrWvcLWlyQOede0++2vAWJ6f6OHNzN2Ekz+91eJjTWHWLHPx4ntOPPjK17nknRXcy2xCu0jeTypn8yewuXsiN/MhRPIbuonILicRSWjsefXQgewzweLB4j1FJPQ10tzUcOEq7dQ7x+N96GPeS07GNKwz8oa3gcdgMbEsd+izEc9FXSnDuJSGEV/rKpFBSNxZ9bSCB3DIGcArL9XgAicUc85oiGW4mFmmlvbiTU1ky4rYlIaxOx9ibi7Y0QbsZCTXgiLfijzfiiLQRirWTFW8h2beS4NnJpo9jiafsZRp2HMF6i+IjiJWqJ5Rg+YuYlZh3LiS9nXo6++ufwuHjnsjmX+ExZTl034lhHXeKYo7Ms8dlR71hfR79367bkevn+HL0ljz3Leu7be9LpsB6bOo5hXcqOHYv1UpZar7eju368c9nX99O5NQ059ok2EfEE8V19L+OmzOr/QUWk35Rgicio1d7axMy6P/Fy4UqW5hf2u71gSSUA9Qf2DJsEKxJu5/UNT9D80qMUH17P5MgbnGqONhdgZ9ZsNo6/huxJiymftYyyyunM9Jz44LP5Y4opnXBKn9vbWxo5sHsr9Xu3ET74Gp7618lr3s07GtZR2vDHRPLVT3FntFo2rZZNuyeHkCeXiD+HJt9Y6v25xAP5EMyDQB4ukAe+LMzjweP14fF4Ma8PzEMcIx6LQzwKsQjEIxCL4OJRXCyCi0WS5anboxCPYPEo1vHpEsueeBRPPILHRfG4GM6BM3B4iZsPrCNRMJx56LzVtmRa1FFmR+skEpXE+enY3qWeGQ5P5z6YJ5lgJNvo/sNzXZNOl6zpXGpJsqxrEXCi+zq6lnSp1Cvneu6bsrFrW53xOXps6CNl6+UH0TVp662pnq30WvmE9umjUvc2O9bNOc4OPcNzz/yccdd++xhHEJHBogRLREatV565h1NpI7u6/71XAHmlien/Wmv3pqW9gdJSf5htax/EbX2UGc3rmWFthJyf7YHZPDfpOormvItpp57F3EDWgMaRlVvAlNnLYPayHttCrQ0c3LWd+rpDRNsacG2NxEMthGOJG3evB7zmIe7LwgI5+LPyCObkE8zJIzt3DDn5heTkFxLIzifPDL35JSPZq/9nCcX7nsI5h6Wj60xE+kUJloiMWr6X7qWGUmaf9t60tFdUXgVA9Mi+tLSXTq1NR9j+53vxv/IAM1o2sthi1FLItpJ34Zn5XqYufR/zCwszHWanYM4YJs1eyqRMByIyDDSdciGLX/0+2154jpkLT8t0OCKjnhIsERmVamv2MKdtA+srV1Hu9aalzeKiEppdFjS+mZb2+isaauPlvzxI9IX7mN30NxZZmBpKWTfuKoqrL2HW4rNYkqbvXUQyZ/p7P0nr9ltpeOa/QQmWSMYpwRKRUWnn0z9jqTkmnLEqbW16vB5qPSX4WmrS1ubbsf+1zbz59P9jWs3vWEATRyjgxbILyau+kplLzk1bQikiQ0N+YRn/GPs+Fh76HXt37WTilHdkOiSRUU0J1jHs37mFveseZNZ7P8GYorJMhyMiaVT2+m/Z5p3BzJkL09puva+M3AxMNtze2szLf/olOVt+xazwFsY6Ly/krsBOvYb5Z36AZYHgoMckIoOn6qIvYnc+zP6HbmLi5+7OdDgio5oSrGPYu+5Blr/2H7T/4L/ZlLuE2LT3MPmdH6Rs/MRMhyYi/fDmzpepir3B/077Qtrbbg2Opbzl+bS325c3Xl7PoWdvZ9bhP7KYFvZaOf9b9RmmnXcd1RP0BpPIaFE6aSbrx13KkoP3Jd7FWvDOTIckMmopwTqG5VffxI4Xz6Xur3cy6fCzjH/hb8Q338RO7xRqixdhk9/J2OlLqDxlDl5/INPhpl087ghHY4RCYcLhNiKhNiLhENFwOy4axkVDWCycGKLYxYk7By5OPBbHOYdzKZ/xo8t0zOWSnJsF5zBzXYbmPToIUsdcKMk5WbqPjmRdPkgdyrjr/gmdc6v0aJ/e2+8+C0mX7V239Zh7pfvULsdpu+f+fY8ENWBjRA1UwylDFKcO0+xSRkR2qWMTp5Z3/aeBS6mZKHdd9nHuaL3Uw6e2Ed/+OBOAycs+0I9vqnfRvPEUN9XhYtHEEN8DoLW5npcfv4uCrb9mRnQ7Fc7HiwVnkbXsWma/831M9J74UOoiMnLMvuqbNPzXH/E98knCM/5GIGtkTHieDi4ep729nbbWZsKhNmKhNqLhVuLRduLRKNFomHgsSiwaTX5GiMdiuFg0Mf2Ci0G8Y1qFxH2M6/676ujResw20PVXuvWxzZNSYJglpziw1H1S6qTey3Ts07nes00jcZ/TZx1P13uuLvdS1nH/1HVbat3O+easI/Ze2jM7GmUf9xxd7rSSK7HAGCpmLKYkb3g8jaEE6zimzj8N5p9GPBZnx5bnOLL5d2S9uZ45hx8l960HYSOEnZc93gpqsyYTyR2Pd8wEvAXl+PLHkpWXGC44K28Mvqx8fD4/fr8Pv8+Px+sljpdoPEY8EiEWCxOPRolFw8SjEWLREJFIhGg4RCTcTjTcTiwcIhYNEYuEiEfaiUdCxCMhXDTUmfS4WAiiYSwWglgYi4XxxMN4Oj7jETzxCF4Xxtfx6aL4XAQ/EfwuQoAIfqIEiJJlx56TRGQ42uupYOLUuWlvN1BUie9AnEMH9jO2YnJa2379hbW89Zfbmf3WEyyxNnZ7JrJu2r8y8/yPU11WntZjicjwk180jk2nf5dFa69n3R3Xs/zTd6VnxuMMikWjNNUdpKX+EK31hwg11RJuqSfa2kCsrQEXasJCTfiizQSizQRiLQRjLQTjbcn7mRBBFyZIhGxzKOUcnp6NLWDPZfdw4fwJmQ7lhCjBOkEer4epC1bAghUARCJh3ti+gcM7NhM58Aq5jTsZ2/4GxS0byDvcdsLtepNf6RZzRhg/UfMRwU/E/EQt8Rnr+PIEiPryCXsCOI+fuCeA8x79whsAXwDzZoE/gMcbxPxBPL4AzhtM1gmC1wvmwWMezONJ/HXDrHPdY4kJLVOXOya5hMRfU1zKX0c6/upjPSaMdF2295hssfv2owtdP/vYv7fJJVN1mdSyx0SYPddTq9hx63ff3Ft9S1lOv4FKo53r9oe25F/lEkt0+VNVaj1L3cPo/S9eqeXdtnVpq9uBDCiuHJiJgAvGToatcGDvzrQkWK2NdWx94k4Kt63hHdGdlLsALxWeQ95p/8SsJecy+SQm/hWRkW/RuVexfudaltf8inV3fJZlH/sB5hlaA9u4aIimt/bTcHA3zYf3EDqyn1jjAWitxdtWRzB8hNxYAwWukQLXQqE5CvtoK+T8tFgOrZZDuyeHdm8uRwLlxLzZxL1Z4Avi/FmYLxvzZ+EJZGO+LJw/C3zZeHxBzOfH60384dvj9eP1+fB6fXh8frw+P+bxgMeX/PJilrjX6Zimu8vvNTv6+yf1d5LrdgvSuX50IeUz+ayGc12f1Oi4b4l31Om539H7j6P3IZZalmyXzjod907d4iBlvfN+LN6tbkeVeJf67hjtuI54Op5M6nav1/X25+hxCoNFzKkqYbhQgvU2+f0BquaeRtXcrsOhOueobzhC4+F9tNUfpL25gVBLA7H2JjyRFlw8muxyjuFcDK85PAbO/DivDzx+8HjB48d8fjzeQOIC9wfx+rPwBIL4/EF8/ix8wSx8/iz8wSx8gcRnMJhFIJiN1+vXX2lEMqB00gwAmva/DJzzttqIRsK88r+/I7TpHubU/5nFFmKHp4q/zfgScy74GEuLNeiOiPSt+mM/ZP2tjSx/8xds+vcdTPrwbZSUp7dHvVfO0d5US13NLpoO76Wtdi+x+v1Y8wH8rQfJDR2iMPoWxTRQABSk7Bp2XuqtgCbPGNr8RbyVU86BYBHxrGLIKcHySgnklxLMLyGnoJi8gmIKxhQRzMomCBQP/HcncsKUYKWZmVFYWExhoS51kdGotGo+TS4b35sbTmo/F4+zc/NfqH3uV0w9/ATzaaCRHLaUnE/uO/+J2YvPYqp6q0TkBHi9HpZ++uc8t+ZbLH71B0RvW8K6sRdR9s5rqJp/Oh6f/6TbDLU1U39wL42H99Jau4/wkf24xhp8rQfJaT9IfuQwJfFasojQ/SGuWldAnbeEen8pNbmziOWOxwrKCRRVklM6kcJxkygbW87YgI+x6fkRiGSUuR6PImVOdXW127Dh5G5KRESGmi3fXklOuJZTbnrxmPUioTZeXf8YzS/9nslv/Znx7jAh52dL3nJs/uXMPvMSsrJzBylqERmJdr22hdrff4N59U8RsBiN5PBmoIrm3EnEg0XEAnl4vH6IR4nHIlikFX+4EW+4gUC4kZxYPUXxOsbQ0qPtkPNz2Ipp8JfSEhxLJGc8Lr8cX2EF2cWVFIydRPH4SRTk5R4dHEFkBDGzjc656h7l/UmwzOxeYEZytRCod84tNLMpwFZge3LbOufc9cdrTwmWiIwE6+/5vyzb9h12XPQgUxe/q7PcxWPs3b6RAy8+jX/PWqa1bCCPNtpcgG05iwlPfQ8zzrmawqLSDEYvIiNR7eED7Fz/e+I7/0J+8w5KIzXkuRZyLdSlXqsL0mh5tHryaPcVEA4UEsoqI547HgrKySquJK+0ksLxkyguHotXo5bKKDYgCVa3A/wH0OCcuyWZYP3eOXdSQ3QpwRKRkaCh/gixH8wnan72VV5ILBImq2EHE9u2UUgTADWUsrvonQRmv4+Zp11ITm5+hqMWkdEoFo3QHo7g9fkJ+n3qaRI5CX0lWGl5B8sSV+PlvN03ukVERpAxhUW8ctHd+P/wL8zZczcOY5+3ku1jVsDkFVQsOp+KKTMo142MiGSY1+cn9228kyUifUvXIBdnAAedc6+llFWZ2SagEfiac+6vve1oZtcB1wFMmjQpTeGIiGTW7MVnwuJNtIajBDzGVJ+XqZkOSkRERAbccRMsM/sTML6XTV91zj2cXL4KWJOyrQaY5JyrNbPFwENmNsc519i9Eefc7cDtkHhE8GS/ARGRoSwnoMFaRURERpPj/uZ3zp17rO1m5gM+BCxO2ScEhJLLG81sJzAd0AtWIiIiIiIyYqVj6JdzgW3OuX0dBWZWZmbe5PIpwDTg9TQcS0REREREZMhKx7MrV9L18UCAM4FbzCwCxIHrnXN1aTiWiIiIiIjIkDWkJho2s8PA7kzH0U0p8Famg5BBo/M9euhcjx4616OLzvfooXM9ugzF8z3ZOVfWvXBIJVhDkZlt6G18exmZdL5HD53r0UPnenTR+R49dK5Hl+F0vjX9toiIiIiISJoowRIREREREUkTJVjHd3umA5BBpfM9euhcjx4616OLzvfooXM9ugyb8613sERERERERNJEPVgiIiIiIiJpogRLREREREQkTZRgHYOZvdvMtpvZDjP7UqbjkfQxs4lm9oyZvWJmL5vZvyTLi83sSTN7LflZlOlYJT3MzGtmm8zs98n1KjNbn7y+7zWzQKZjlPQws0Izu9/MtpnZVjN7p67tkcnMbkj+H77FzNaYWZau7ZHDzH5qZofMbEtKWa/XsiX8d/K8v2hmp2YucjlZfZzr7yX/H3/RzH5rZoUp276cPNfbzeyCjAR9DEqw+mBmXuBW4D3AbOAqM5ud2agkjaLAvzrnZgPLgU8lz++XgKecc9OAp5LrMjL8C7A1Zf07wH8656YCR4B/ykhUMhD+C3jMOTcTWEDivOvaHmHMrAL4LFDtnJsLeIEr0bU9ktwFvLtbWV/X8nuAacmv64CfDFKMkh530fNcPwnMdc7NB14FvgyQvF+7EpiT3OfHyfv2IUMJVt+WAjucc68758LAPcDFGY5J0sQ5V+Ocez653ETiBqyCxDn+ebLaz4EPZCRASSszqwTeB/xPct2Ac4D7k1V0rkcIMxsDnAncCeCcCzvn6tG1PVL5gGwz8wE5QA26tkcM59xfgLpuxX1dyxcDv3AJ64BCMysflECl33o71865J5xz0eTqOqAyuXwxcI9zLuScewPYQeK+fchQgtW3CmBvyvq+ZJmMMGY2BVgErAfGOedqkpsOAOMyFZek1Q+AfwPiyfUSoD7lP25d3yNHFXAY+FnykdD/MbNcdG2POM65/cC/A3tIJFYNwEZ0bY90fV3Lum8b2VYDf0wuD/lzrQRLRjUzywMeAD7nnGtM3eYScxhoHoNhzswuBA455zZmOhYZFD7gVOAnzrlFQAvdHgfUtT0yJN+9uZhEUj0ByKXnI0YygulaHh3M7KskXu24O9OxnCglWH3bD0xMWa9MlskIYWZ+EsnV3c65B5PFBzseKUh+HspUfJI2K4D3m9kuEo/6nkPiHZ3C5GNFoOt7JNkH7HPOrU+u308i4dK1PfKcC7zhnDvsnIsAD5K43nVtj2x9Xcu6bxuBzGwVcCFwtTs6ee+QP9dKsPr2D2BacjSiAImX6R7JcEySJsl3cO4Etjrnvp+y6RHgo8nljwIPD3Zskl7OuS875yqdc1NIXMdPO+euBp4BLk1W07keIZxzB4C9ZjYjWfQu4BV0bY9Ee4DlZpaT/D+941zr2h7Z+rqWHwE+khxNcDnQkPIooQxDZvZuEo/3v98515qy6RHgSjMLmlkViYFN/p6JGPtiR5NB6c7M3kvi3Q0v8FPn3LcyG5Gki5mdDvwVeImj7+V8hcR7WPcBk4DdwOXOue4v2MowZWZnA593zl1oZqeQ6NEqBjYB1zjnQhkMT9LEzBaSGNAkALwOXEviD4q6tkcYM/sGcAWJx4c2AR8j8S6Gru0RwMzWAGcDpcBB4OvAQ/RyLSeT7B+ReEy0FbjWObchA2HL29DHuf4yEARqk9XWOeeuT9b/Kon3sqIkXvP4Y/c2M0kJloiIiIiISJroEUEREREREZE0UYIlIiIiIiKSJkqwRERERERE0kQJloiIiIiISJoowRIREREREUkTJVgiIiIiIiJpogRLREREREQkTf4/DYYIkv/Ix2gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
36True20.120.0646bAP.soma.v0.00182.86e-06
37True20.120.0646Step1.soma.v0.001945.32e-05
38True20.120.0646Step3.soma.v0.001944.6e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "36 True 2 0.12 0.0646 bAP.soma.v \n", + "37 True 2 0.12 0.0646 Step1.soma.v \n", + "38 True 2 0.12 0.0646 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "36 0.0018 2.86e-06 \n", + "37 0.00194 5.32e-05 \n", + "38 0.00194 4.6e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACeoUlEQVR4nOzdeXxU1f3/8ddnJvsOCYRVglaQLaICYgXXfhXrglQrWjf0a/2qtVXrUrVW0dbft19ra11aqa2t1gWh7nVfUbEiBkRUEEGJ7BASyEL2mfP7415iCNkgk0yW9/PxGJl77rnnfu7czDifOeeea845REREREREpO0C0Q5ARERERESku1CCJSIiIiIiEiFKsERERERERCJECZaIiIiIiEiEKMESERERERGJECVYIiIiIiIiEaIES0SkkzCzHDNzZhYT7Vi6OzObYWbzox1HZ2Nmk81sRbTjEBHpypRgiYhIl2ZmM82sxszK6j2ui3ZcXZFz7j3n3PBItmlmWWb2vpkVmtl2M/vAzA6P5D5ERDoT/UoqIhIhZhbjnKuNdhw91Bzn3DnRDqK9dPG/rTLgQmAl4ICpwL/NrG8XPiYRkSapB0tEpA3MLN/MfmFmS4EdZhZjZhPN7D/+r/WfmNlR9erPM7P/NbOFZlZiZs+ZWe8m2r7AzJabWamZfW1m/9Ng/VQzW+K385WZTfHL083sQTPbaGbrzew3ZhZs4Tj2M7O3/F6GrWb2mJll1FtXZGYH+8sDzKxg53GZ2Slm9rl/vPPMbESD1+caM1tqZsVmNsfMEvb8ld5zZna9/7qUmtkyM5vWRD0zs7vMbIv/Wn5qZqP9dfFmdqeZrTGzzWY2y8wSW7n/h/z6r/sxvGNmQ+qtv9vM1vr7XGRmk+utm2lmT5rZo2ZWAswwswl+7892/9zeZ2Zx9bZxZnaZma309/dr/9z9x9/H3Pr1m4j5KDNb15rjay3nXKVzboVzLgwYEAJ6AY3+3YuIdHVKsERE2u4s4EQgA8gGXgR+g/cF8hrgKTPrU6/+eXi/6PcHaoF7mmh3C3ASkAZcANxVL8mZAPwTuNbf7xFAvr/dQ3673wEOAo4DLmrhGAz4X2AAMAIYDMwEcM59BfwCeNTMkoB/AA875+aZ2TBgNnAl0Ad4Ca93ov4X+TOAKcBQIBeY0WgAZpP85KGpx6QWjqGhr4DJQDpwqx9//0bqHYf3+g3z654BFPrrfuuXj8V7PQcCN+9BDGcDvwaygCXAY/XWfeS32xt4HPhXg+RzKvAk3vl9DC8xucpv6zDgWOCyBvs7HjgEmAhcBzwAnIN3Pkfj/a3uNT9Rbur8/LmlbYFK4Hngb865LW2JRUSkszLnXLRjEBHpsswsH7jNOfd3f/kXwGjn3Ln16rwKPO6ce9jM5gELnHPX++tG4n3xTsT7ErwaiG1s6JSZPQu87Zy728z+ApQ7565qUCcbWANkOOcq/LKzgIudc0fvwXGdCtzinDuoXtnzeEmSA8Y756rM7FfAGOfcGX6dALAWONtPwPKBm5xzj/rr7wDSnHOXtDaWVsQ6E7gRKK9XPNI5t6FBvSX+MT1nZjOAi5xzk8zsGGAWXuK70O9pwcwMb3hbrp9kYmaH4Z3Loa2I6yEgwTl3pr+cAhQDOc65tY3U3wYc5Zz7xD+mY5xzRzTT/pXAkc65af6yAyY55973lxcBc51z/+cv/x4IOueubKbNo4BHnXODWjq+veEnkNOAOOfcw+2xDxGRaNM1WCIibVf/y/IQ4IdmdnK9sljg7Sbqf+Ovz2rYqJmdANyC14MSAJKAT/3Vg/F6ixoa4re30csPwN92ty/0DfaVDdyN1+OT6m+zrUG1v+L1PlzsnKvyywb4xwCAcy5sZmvxenp22lTvebm/TaTNbXgNlpmdB/wcyPGLUmjkdXbOvWVm9wF/AoaY2dN4PY8JeK/5onqvpQHNDrdsoO51d86VmVkR3vGvNbNrgP/2lx1eT2VWY9v6xzMM+AMwzo8rBljUYH+b6z2vaGS53x7EHnHOuUpgtnlDX5c45z6JZjwiIu1BQwRFRNqu/lCAtcAjzrmMeo9k59xv69UZXO/5PkANsLV+g2YWDzwF3AlkO+cy8BKqnd/01wL7NRLLWqAKyKq3/zTn3KgWjuH/+ccxxjmXhjes7Nuswut9+SPwIDDTvr1ubANeUreznvnHt76F/e3GvCnCy5p5TG65lbq2huAlhJcDmf7r91n9Y6rPOXePc+4QYCReQnst3jmpAEbVey3TnXMpe3BYdefafw17Axv8Y7kObzhiLz++4gbxNRxicj/wBbC/f45ubOp42ot519o1dX5m7UFTscC+7RWniEg0KcESEYmsR4GTzex4MwuaWYI/cUD9IVfnmNlI/3qm24AnnXOhBu3EAfFAAVDr92YdV2/9g8AFZnasmQXMbKCZHeCc2wi8BvzezNL8dfuZ2ZEtxJ2KNxyu2MwG4iUY9d0N5DnnLsK7xmznl+m5wIl+HLHA1XgJ3n9aeqEa8qcIT2nm8d4eNJeMl6AUgDdhCN41SLsxs/Fmdqgf/w6864TC/lDBv+Jd+9bXrzvQzI6vt62zepOYNOL7/rVlcXjXYi3whwem4l0nVwDEmNnNeD1YzUkFSoAyMzsAuLSF+hHnnBvVzPlpdNineZO+TDKzODNL9IfRZgMfdmz0IiIdQwmWiEgE+V+ep+L1LhTg9Shdy66ft4/gTUSxCW8Y2s8aaafUL5+LN1TvR3jD83auX4g/8QVez8c7fNuTdB5egrbM3/ZJvAk1mnMrcLDf1ovA0ztXmNlUvEkqdn6h/zlwsJmd7ZxbgdfbdS9ej8/JwMnOueoW9teunHPLgN8DH+ANkxsDvN9E9TS8RGob3nDHQuB3/rpfAKuABebN5vcGMBzAzAYDpXw7bLMxj+MN8yzCm3xi5zDGV4FXgC/9fVbSwjBOvGGLP/L3+VdgTgv1O4t4vOGXhXg9m98HTmx4jZyISHehSS5ERDqQP8nFo865v0U7FmkbMzsHb/jgDU2sfwhY55y7qUMDExGRqNIkFyIiInth58yIIiIi9WmIoIhID2HeTW/bOjmBdHFmdmMTfwcvRzs2EZHuQEMERUREREREIkQ9WCIiIiIiIhHSqa7BysrKcjk5OdEOQ0REREREpFmLFi3a6pzr07C8UyVYOTk55OXlRTsMERERERGRZpnZN42Va4igiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhHSqa7BakxNTQ3r1q2jsrIy2qFIJ5CQkMCgQYOIjY2NdijSDS394DU2zf8nEy77GxnJCdEOR0RERLqgTp9grVu3jtTUVHJycjCzaIcjUeSco7CwkHXr1jF06NBohyPdUNpbN5Bbs4p3P3yLI475frTDERERkS6o0w8RrKysJDMzU8mVYGZkZmaqN1PazYbgAABiVrwQ5UhERESkq+r0CRag5Erq6G9B2pMLhwFILfkyypGIiIhIV9UlEiwRkY6QFC4FIL1qQ5QjERERka5KCVYrmBlXX3113fKdd97JzJkzoxdQPUcddVSzN2c+9dRTmThx4i5lM2fOZODAgYwdO5bRo0fz/PPPt3eYIl1CcrgMgH6hzYRDoShHIyIiIl2REqxWiI+P5+mnn2br1q0Rbdc5R9gfktQetm/fzqJFiyguLubrr7/eZd1VV13FkiVL+Ne//sWFF17YrnGIdBUpzkuw4qyWrZvWRDkaERER6YqUYLVCTEwMF198MXfddddu6woKCjjttNMYP34848eP5/333we8XqI777yzrt7o0aPJz88nPz+f4cOHc9555zF69GjWrl3Ltddey+jRoxkzZgxz5swBYN68eRx11FGcfvrpHHDAAZx99tk45xqN75FHHqnrjVq4cGFd+dNPP83JJ5/MmWeeyRNPPNHotiNGjCAmJmaX5PH6669n5MiR5Obmcs011wCQn5/PMcccQ25uLsceeyxr1nhfPmfMmMGll17KxIkT2XfffZk3bx4XXnghI0aMYMaMGXVtXnrppYwbN45Ro0Zxyy237BZHcXExQ4YMqUv0duzYweDBg6mpqWk0bpH2kOLK+AZvoovt61dGORoRERHpijr9NO313frvz1m2oSSibY4ckMYtJ49qsd5PfvITcnNzue6663Ypv+KKK7jqqquYNGkSa9as4fjjj2f58uXNtrVy5UoefvhhJk6cyFNPPcWSJUv45JNP2Lp1K+PHj+eII44A4OOPP+bzzz9nwIABHH744bz//vtMmjRpt/bKy8tZsmQJ7777LhdeeCGfffYZALNnz+bmm28mOzub0047jRtvvHG3bT/88EMCgQB9+vQBoLCwkGeeeYYvvvgCM2P79u0A/PSnP+X888/n/PPP5+9//zs/+9nPePbZZwHYtm0bH3zwAc8//zynnHIK77//Pn/7298YP348S5YsYezYsdx+++307t2bUCjEsccey9KlS8nNza2LIz09nbFjx/LOO+9w9NFH88ILL3D88cfrflfSccJhUihnWfxYhlRtoLxwXbQjEhERkS6ozT1YZjbYzN42s2Vm9rmZXeGXzzSz9Wa2xH906ZvKpKWlcd5553HPPffsUv7GG29w+eWXM3bsWE455RRKSkooKytrtq0hQ4bUXRc1f/58zjrrLILBINnZ2Rx55JF89NFHAEyYMIFBgwYRCAQYO3Ys+fn5jbZ31llnAXDEEUdQUlLC9u3b2bx5MytXrmTSpEkMGzaM2NjYusQL4K677mLs2LFcc801zJkzp252vvT0dBISEvjv//5vnn76aZKSkgD44IMP+NGPfgTAueeey/z58+vaOvnkkzEzxowZQ3Z2NmPGjCEQCDBq1Ki6mOfOncvBBx/MQQcdxOeff86yZct2O47p06fX9eA98cQTTJ8+vdnXUSSiqooJ4ChJ/Q4A1dvWRzkgERER6Yoi0YNVC1ztnFtsZqnAIjN73V93l3Puzma23SOt6WlqT1deeSUHH3wwF1xwQV1ZOBxmwYIFJCQk7FI3JiZml+ua6t+7KTk5uVX7i4+Pr3seDAapra1ttF7DqcvNjLlz57Jt27a6G/KWlJQwe/Zsbr/9dsC7Bmvn8L+GcS9cuJA333yTJ598kvvuu4+33nqrVXEGAoFdYg4EAtTW1rJ69WruvPNOPvroI3r16sWMGTMavZfVKaecwo033khRURGLFi3imGOOaXa/IhFV5c0gGE4bRGVBLOHSTVEOSERERLqiNvdgOec2OucW+89LgeXAwLa22xn17t2bM844gwcffLCu7LjjjuPee++tW16yZAkAOTk5LF68GIDFixezevXqRtucPHkyc+bMIRQKUVBQwLvvvsuECRP2KK6dvT7z588nPT2d9PR0Zs+ezSuvvFJ33deiRYuavA6rvrKyMoqLi/n+97/PXXfdxSeffALAd7/73brtH3vsMSZPntzq+EpKSkhOTiY9PZ3Nmzfz8ssvN1ovJSWF8ePHc8UVV3DSSScRDAZbvQ+Rtqqt9pJ+i02gMNCb2B2boxyRiIiIdEURneTCzHKAg4AP/aLLzWypmf3dzHo1sc3FZpZnZnkFBQWRDKddXH311btMCHHPPfeQl5dHbm4uI0eOZNasWQCcdtppFBUVMWrUKO677z6GDRvWaHvTpk0jNzeXAw88kGOOOYY77riDfv367VFMCQkJHHTQQVxyySU8+OCD5Ofn88033+wyPfvQoUNJT0/nww8/bLSN73//+2zYsIHS0lJOOukkcnNzmTRpEn/4wx8AuPfee/nHP/5Bbm4ujzzyCHfffXer4zvwwAM56KCDOOCAA/jRj37E4YcfXrfu5ptv3mWa+OnTp/Poo49qeKB0uBo/wQrExFEck0VC5ZYoRyQiIiJdkTU1M90eN2SWArwD3O6ce9rMsoGtgAN+DfR3zl3YXBvjxo1zDe/ptHz5ckaMGBGRGKV70N+EtIeSrz4i7ZHv8caBf6TXV8/Sp3wl+9y8+7WCIiIiIgBmtsg5N65heUR6sMwsFngKeMw59zSAc26zcy7knAsDfwX2bNybiEgHqq3xerCCsQnUJGWTGSqMckQiIiLSFUViFkEDHgSWO+f+UK+8f71q04DPGm4rItJZ1FT5QwRj4yG1H8lWSWlxUZSjEhERka4mErMIHg6cC3xqZkv8shuBs8xsLN4QwXzgfyKwLxGRdhGqqQC8BCs2w7vZcNGmNaSm945mWCIiItLFtDnBcs7NB6yRVS+1tW0RkY5SW10FQExcPPHx3kSopQVrYfjYKEYlIiIiXU0kerBERLq82hovwQrGJpDWKwuAyiLdbFhERET2TESnaRcR6arCNd/2YPXK3geA2uIN0QxJREREuiAlWK307LPPYmZ88cUXTdbJz89n9OjREdvnjBkzePLJJ5tcf+WVVzJw4EDC4XBd2UMPPUSfPn0YO3YsI0eO5K9//WvE4hHpzsL+LIIxcQmkpPVih4uHMt1sWERERPaMEqxWmj17NpMmTWL27NmNrq+trW3zPkKhUKvrhsNhnnnmGQYPHsw777yzy7rp06ezZMkS5s2bx4033sjmzfqSKNKSkN+DFRubiJmxLdCb2HK9d0RERGTPKMFqhbKyMubPn8+DDz7IE088UVc+b948Jk+ezCmnnMLIkSMBL9E6++yzGTFiBKeffjrl5eUAvPnmmxx00EGMGTOGCy+8kKoq78tcTk4Ov/jFLzj44IP517/+tdu+33jjDcaNG8ewYcN44YUXdtn3qFGjuPTSS5tM+vr27ct+++3HN998U1d2zz33MHLkSHJzcznzzDMBKCoq4tRTTyU3N5eJEyeydOlSAGbOnMn555/P5MmTGTJkCE8//TTXXXcdY8aMYcqUKdTU1ABw2223MX78eEaPHs3FF19Mw5tXh8NhcnJy2L59e13Z/vvvr8RPOhW3M8FKiAegJCaLxKqt0QxJREREuqCuNcnFy9fDpk8j22a/MXDCb5ut8txzzzFlyhSGDRtGZmYmixYt4pBDDgFg8eLFfPbZZwwdOpT8/HxWrFjBgw8+yOGHH86FF17In//8Zy6//HJmzJjBm2++ybBhwzjvvPO4//77ufLKKwHIzMxk8eLFje47Pz+fhQsX8tVXX3H00UezatUqEhISmD17NmeddRZTp07lxhtvpKamhtjY2F22/frrr/n666/5zne+U1f229/+ltWrVxMfH1+X8Nxyyy0cdNBBPPvss7z11lucd955LFmyBICvvvqKt99+m2XLlnHYYYfx1FNPcccddzBt2jRefPFFTj31VC6//HJuvvlmAM4991xeeOEFTj755Lp9BgIBpk6dyjPPPMMFF1zAhx9+yJAhQ8jOzm71aRJpb+HanT1YCQBUJGSRXdb0kGARERGRxqgHqxVmz55d19tz5pln7tJjNGHCBIYOHVq3PHjwYA4//HAAzjnnHObPn8+KFSsYOnQow4YNA+D888/n3Xffrdtm+vTpTe77jDPOIBAIsP/++7PvvvvyxRdfUF1dzUsvvcSpp55KWloahx56KK+++mrdNnPmzGHs2LGcddZZ/OUvf6F372/v45Obm8vZZ5/No48+SkyMl1/Pnz+fc889F4BjjjmGwsJCSkpKADjhhBOIjY1lzJgxhEIhpkyZAsCYMWPIz88H4O233+bQQw9lzJgxvPXWW3z++ee7Hcf06dOZM2cOAE888USzxywSDW5nghWfCEBNYja9w0XQoEdWREREpDldqwerhZ6m9lBUVMRbb73Fp59+ipkRCoUwM373u98BkJycvEt9M2t2uTEN22ipvVdffZXt27czZswYAMrLy0lMTOSkk04CvGTmvvvua7S9F198kXfffZd///vf3H777Xz6afM9gvHx3nCpQCBAbGxsXTyBQIDa2loqKyu57LLLyMvLY/DgwcycOZPKysrd2jnssMNYtWoVBQUFPPvss9x0003N7leko7lQNbUuQHyc1xPsUrNJ2lJFWek2UtJ0s2ERERFpHfVgteDJJ5/k3HPP5ZtvviE/P5+1a9cydOhQ3nvvvUbrr1mzhg8++ACAxx9/nEmTJjF8+HDy8/NZtWoVAI888ghHHnlkq/b/r3/9i3A4zFdffcXXX3/N8OHDmT17Nn/729/Iz88nPz+f1atX8/rrr9dd79WUcDjM2rVrOfroo/m///s/iouLKSsrY/LkyTz22GOAd21XVlYWaWlprYpvZzKVlZVFWVlZk7MemhnTpk3j5z//OSNGjCAzM7NV7Yt0mJoqaoghLsb7WIxJHwDAtk1rohmViIiIdDFKsFowe/Zspk2btkvZaaed1uTEEsOHD+dPf/oTI0aMYNu2bVx66aUkJCTwj3/8gx/+8IeMGTOGQCDAJZdc0qr977PPPkyYMIETTjiBWbNmEQ6HeeWVVzjxxBPr6iQnJzNp0iT+/e9/N9rGRRddRF5eHqFQiHPOOYcxY8Zw0EEH8bOf/YyMjAxmzpzJokWLyM3N5frrr+fhhx9u5asDGRkZ/PjHP2b06NEcf/zxjB8/vm7drFmzmDVrVt3y9OnTefTRRzU8UDqnUDXV9RKsxN5eglVSoJsNi4iISOtZwxnfomncuHEuLy9vl7Lly5czYsSIKEUknZH+JqQ9LL1/Bv03vUXWzG8wM775YjFDnjiavEPuYNzJ/xPt8ERERKSTMbNFzrlxDcvVgyUiAhCqoppvrzPM6DcEgNrijdGMSkRERLoYJVgiIoCFqqnh21sdpKX1osLFQemmKEYlIiIiXU2XSLA60zBGiS79LUh7CYSrCdm3E6taIEBhoDcx5VuiGJWIiIh0NZ0+wUpISKCwsFBfrAXnHIWFhSQkJEQ7FOmGLFRDje16s+7SmEySqpRgiYiISOt1+vtgDRo0iHXr1lFQUBDtUKQTSEhIYNCgQdEOQ7qhQLia2gYJVnl8H/ru+DJKEYmIiEhX1O4JlplNAe4GgsDfnHN7dLfg2NhYhg4d2i6xiYjsFAxXU2Vxu5TVJPald+mCKEUkIiIiXVG7DhE0syDwJ+AEYCRwlpmNbM99iojsjUC4htrArj1YLrUfyVbJjtLt0QlKREREupz2vgZrArDKOfe1c64aeAKY2s77FBHZYzGumnCDIYIxaf0BKNq8NhohiYiISBfU3gnWQKD+N5N1flkdM7vYzPLMLE/XWYlItATCNYQDuw4RTOjtfVyVblGCJSIiIq0T9VkEnXMPOOfGOefG9enTJ9rhiEgPFeNqCAV3TbBS+3gTqpRvWx+NkERERKQLau8Eaz0wuN7yIL9MRKRTiXE1hBtcg9Ur2/v4qt2+IRohiYiISBfU3gnWR8D+ZjbUzOKAM4Hn23mfIiJ7LNbV4ILxu5SlZWRR6WKhdHOUohIREZGupl2naXfO1ZrZ5cCreNO0/90593l77lNEZG/EUoNr0INlgQBFgd7ElCvBEhERkdZp9/tgOedeAl5q7/2IiLRFDLW4BtdgAZTEZJJYqQl4REREpHWiPsmFiEjUOUc8NdBgiCDAjrgsUmoLoxCUiIiIdEVKsEREQjXevzG792DVJGWTGVaCJSIiIq2jBEtEejxXW+k9aaQHK5Q6gBQqKC8p6uCoREREpCtSgiUiPV51dRUAgUZ6sGJ7e1O1F274ukNjEhERka5JCZaI9HhVlRUAWMzuPVjJfXIAKN60uiNDEhERkS5KCZaI9HjVVX6CFZuw27pe/fcFoHLrNx0ak4iIiHRNSrBEpMerqfKuwQrG7t6D1af/PtS4IKHtazs6LBEREemClGCJSI9X7SdYMY0kWLGxsRRYJjGlGzo6LBEREemClGCJSI9X409yEYzbfYggwLbYPiRVbOzIkERERKSLUoIlIj1eTbV3DVZjQwQBdiT0J6Nmc0eGJCIiIl2UEiwR6fFqq70hgrFN9GDVpgwkK1xIuLa2I8MSERGRLkgJloj0eDsTrJj4xhMsyxhErIXYVrC+I8MSERGRLkgJloj0eCE/wYprogcrIWsIAEUbvuqwmERERKRrUoIlIj1ebY03yUVsEz1Yqdk5AJRtye+giERERKSrUoIlIlK9A4DYxJRGV2cN3M+rVrSmw0ISERGRrqlNCZaZ/c7MvjCzpWb2jJll+OU5ZlZhZkv8x6yIRCsi0h6qywCIT0xvdHV6RialLhErXteRUYmIiEgX1NYerNeB0c65XOBL4IZ6675yzo31H5e0cT8iIu3G/AQrLjmt8fVmbA32JW6HbjYsIiIizWtTguWce805t3Pe4gXAoLaHJCLSsay6jCoXS3x84/fBAiiOyya1clMHRiUiIiJdUSSvwboQeLne8lAz+9jM3jGzyU1tZGYXm1memeUVFBREMBwRkdax6jJ2WAJm1mSdyqT+ZIa2dGBUIiIi0hXFtFTBzN4A+jWy6pfOuef8Or8EaoHH/HUbgX2cc4VmdgjwrJmNcs6VNGzEOfcA8ADAuHHj3N4dhojI3gvU7KDCkpqt49IHk1FUSkVZCYkpjQ8lFBEREWkxwXLOfa+59WY2AzgJONY55/xtqoAq//kiM/sKGAbktTVgEZFIC9bsoMoSm60T03sIrIYt61Yx5ICDOygyERER6WraOovgFOA64BTnXHm98j5mFvSf7wvsD3zdln2JiLSX2NAOqoLN92ClZA8FoGSTPspERESkaS32YLXgPiAeeN2/dmGBP2PgEcBtZlYDhIFLnHNFbdyXiEi7iAuVUx6T0WydXgO8e2FVFOS3f0AiIiLSZbUpwXLOfaeJ8qeAp9rStohIR4kPl1MaM6DZOn36D6HaBQlv+6aDohIREZGuKJKzCIqIdEkJ4QpCMSnN1gkGgxQEsogtW99BUYmIiEhXpARLRHq8JFdBOC65xXrbYvuRXLGxAyISERGRrkoJloj0aFVVlaRYBSSkt1i3PLE/vWt0s2ERERFpmhIsEenRirduBsBS+rRYN5Q6iCy3jZrqyvYOS0RERLooJVgi0qOVFnk9UrFpfVusG+y9DwFzFKxf3d5hiYiISBelBEtEerTy7V6CFZ+W3WLdxD45AGzb8FV7hiQiIiJdmBIsEenRqoq9IYLJvVtOsDL6e/fCKte9sERERKQJSrBEpEcLlRYAkJbZ/H2wAPoO2heA2qI17RqTiIiIdF1KsESkRwvv2ErIGWm9W74GKz4hiQJ6ESxZ2wGRiYiISFekBEtEejQr28x2SycYDLaqflFMNkkVG9o5KhEREemqlGCJSI+WWLGRopiWe692KkvsT0b15naMSERERLoyJVgi0qNlVG9hR0K/VtevThlI33AB4VCoHaMSERGRrkoJloj0WOFQmD7hAmpSBrZ6m0DGPsRZLUWb17VjZCIiItJVKcESkR5r69aNJFkVZAxq9TYxvYcAULzp6/YKS0RERLowJVgi0mNtXeclSfFZQ1q9TVKffQAoL9RU7SIiIrK7NiVYZjbTzNab2RL/8f16624ws1VmtsLMjm97qCIikbVjy2oA0rL3bfU2GdleMlZTpCGCIiIisruYCLRxl3PuzvoFZjYSOBMYBQwA3jCzYc45XRUuIp1GdeE3AGQNbH2ClZnVj0oXiyvZ2F5hiYiISBfWXkMEpwJPOOeqnHOrgVXAhHbal4jI3ileRwVxpPRq/SyCcbFBCiyTmB1KsERERGR3kUiwLjezpWb2dzPr5ZcNBNbWq7POLxMR6TTid2xga6APmO3RdtuCmSRW6F5YIiIisrsWEywze8PMPmvkMRW4H9gPGAtsBH6/pwGY2cVmlmdmeQUFBXu6uYjIXkup2kRJXPYeb1cWn01qjT6vREREZHctXoPlnPteaxoys78CL/iL64HB9VYP8ssaa/8B4AGAcePGudbsS0QkEjJDW1iTMWyPt6tKzKZ3+Xvg3B73fomIiEj31tZZBPvXW5wGfOY/fx4408zizWwosD+wsC37EhGJpNKyMvqwnXBq6++BtVM4tR/x1BDaUdgOkYmIiEhX1tZZBO8ws7GAA/KB/wFwzn1uZnOBZUAt8BPNICginUnB+tWkAjG999njbQPpXlJWvPkbeqdkRTgyERER6cralGA5585tZt3twO1taV9EpL0Ub/LugZXcZ88TrITe3pw9JVu+ofd+h0Q0LhEREena2muadhGRTq1iaz4AGf1bfw+snZKzvKSsslA3GxYREZFdKcESkR4ptN1LjjL7D93jbXtnDyLkjNriRufuERERkR5MCZaI9EgxpespIp1gfNIeb9snI4WtpGMlG9ohMhEREenKlGCJSI+UWLGRopi+e7VtfEyQAssitnxThKMSERGRrk4Jloj0SBnVmylL6LfX25fEZpFUuSWCEYmIiEh3oARLRHocFw7TJ1xAdfKAvW6jMiGb9NqCCEYlIiIi3YESLBHpcYoKt5BsVZC+5zcZ3qkmuR+pbgdU74hgZCIiItLVKcESkR6naIN3D6zYvbjJ8E6BdK/3q6pIU7WLiIjIt5RgNWPtyk/48J5zKSspinYoIhJBpVu8BCulb85etxHX2+v92rb5m0iEJCIiIt2EEqxmbFr6FuMK/03pXRP47P1/RzscEYmQ6kIvKeo1YM9vMrxTSp8hAJQVrI1ITCIiItI9xEQ7gM5s/GlXsXzwGFJevpzRr5/DJ/MPJe7Y6zng4KOwQPfNTZ1zhMOOUKiWUG0NLlyDCzsczlsfrnuGc94zq1vvcI66cufC4Pw1fhk4Op7t/ZZ7vGnLG+x9NPUb2b0V2/NgW95Nvf9GrM2mmmuH+BtV+BXVLobefQbudRO9+nkJVlXhniVYlRXlBGNiiI2N2+t9Sys4hwuHCNXWUBuqJRyqJRQK1f3b1DZ1T3dd0UTV9v4s+/b90La3hjWztCfNNGhnr4Jq5HMrArE0UdSahvZmIxHpYC4QS2JqOvExwWiH0ipKsFowYsL3qBy1kAVP3cGIr/9O+gvTyH9pHzYMOoH0UcfxnbGHEx+fGPH9Oueoqg1TXlVDeVkp5TtKqCwvpbqijOryUqorSglVlhGq2oGr3oHVlBOorSBQU04wVEFMqIKY2nJiwxXEhSuJDVcQH64k1lUTcCEChAkSIkCIIGGCzlsO+uVBc3SNP2GRPTcRWBsYwODg3v+V98/KpMQlUbN9favqb920hpXP/R9jNjzJ0sz/YsLPHt3rfXdV4VCIspJCKrZvobykiMqy7VSXl1BTXkxtRQnhylKoLiNYXUqwtpxAqMp7hKsJhquICVcTdDXEhquJddXEUU0stXWfYwEX9j/bwgTNYXj/k9P/6EREurZ5oQMp++ETnJS797P/diT9f6cVEpLTmHjebygr+TkfvfYP0r6Yy8RvHiCw5i/UvBQkP9CfwoR9CCdlUhufSTghnZjYOAjEECII4RCBcBVWW0W4tgpXUwk1lQRqywnUlnvJUKiC2FAl8a6CeFdJoqskkSp6WzW99yDWWoJUEE+VJVBlCVQHEqgOJFITk8qOYDbhYDxYEBeIwVkQAkH/35hdn1sQgjFgMRAI4AiAge38tc//qdBh9X7FNP/HQL/Pw+rX3XW79vjVsKnfkq0tvzLv8aYd2TvX4Df2dtm16+AOx47bWcb+h7Zp+8S4IBsDWVDSfIKVv+ITNr56FwcVvsAEaikliaztS9u0786ksrKCok1rKC1YS2XhWmqKN+BKC6BiKzGV24iv3k5S7XbSXAnprpQ0c6Q1016NC7LDEqkggWqLp9biqA14j6qYFMKBeMLBeEKBOMLBeMIWi7MABILe51bAe5gFcfX/9R9Y0BuB0HQ3auvLzfsMbA+7fG616W0RqfdU2z9vGvss3rvPrfY5proidWqJdDqhhP6MGpAe7TBaTQnWHkhJ6834068GrqakcBOr815hx5olJG//kszKdaRUfE6GKyXGws22U+liqbFYKi2BakugKpBITTCR2th0yoL9KIlJwsUmQVwSFpeExacQE59CMCGF2MRk4hJTiU9MIT4pjcTkFOISUyEuGWKTiYmJIxVI7ZBXRKRn25q8H/vtWOJ9S6z3hT0cCvPZ/OcIf/BnxlYuZICLYWnm8WR//wbWvn4/4zbNwYVqsWDn/ggOh8Js3bqJovUr2bFpFTVb8wkWf0Nc+WaSqwvoFdpKJsU0/D2xxgXZbqmUBdIpj0lnW/J+FCT0JpTQC5eYiSX1Iia5F/HJGSSkZJCYkk5yWi9S0jKIjUskw4yMaBywiIhIBHTu/7t3YmmZ/Tjw+Bm7lbtwiMryUsorqyBc6w3HCwQhNoGYuAQS4hNJCAZIQEmQSFdXuc+RZC57m3VfLGTQiEPZvHYlX7/xIIPWPEuu20gh6Xy4z48ZduIVjMseDMDaJcOI21zLlnUr6TtkRJSPAGqrKti8ZgVF61dRvnkV4aJ84kvXkla5nuzQJvpaBX3r1d9GKkWBLHbE92Fb0ii+SumPpfUnrtdAkjIHk5o9mN6Z/ekTG6RP1I5KREQkepRgRZgFgiSkZJCQEu1IRKS9HTDpNMo//18Cc8/jy2Aa36lZSbY5Po/LZdHoKxj1X+dzaGLSLtv02mcMfAbrl3/YYQlWVeUONuV/yfZ1y6ncvIrAtq9ILFtDVtVa+oa3MtAcO6f7qHBxbAlmU5wwgC9Sx2EZQ4jrsy+p/b9D5qD96ZXem14dErWIiEjX1KYEy8zmAMP9xQxgu3NurJnlAMuBFf66Bc65S9qyLxGRzqbvgH1YeNgfyFp4BzUWx0c5FzPoyAsYtW/TidN+B06i+MVkwl++ClNmRCyW8vIyNuV/wbZ1K6jevBLbtpqUHflkVq0n221liDmG+HW3uxQ2xw5gTcqBfJWeQzBrP9L670/ffYaTmT2IId14llQREZH21qYEyzk3fedzM/s9UFxv9VfOubFtaV9EpLObMOUcmHJOq+vHxcezJO0wDih6h5LCTaRl9mvVdpUV5WxZt4rijaupLPia0LY1xJauI6l8Pb1qNtPXFbKvfXvR/nZS2BwzkPVpY8lPH0pMn/1IGTCcfjkjycjsS0ZHTYkvIiLSw0RkiKB508WdARwTifZERLqzXsddR+KTJ7D6/pNZOfbHxPfqj6upoqailNrSAsKlmwju2EJs5VaSq7aSEdpKH7axT702al2ALZbJtth+rEs/hG8yhhDbZ3/SBgynb84IMnr31UQRIiIiURCpa7AmA5udcyvrlQ01s4+BEuAm59x7jW1oZhcDFwPss88+jVUREelW9h9zKIvX/4GhC25iWN61u60PO6PI0ikO9GJHXBbb04bxdfpggr32IanvvmT035c+A4cyIDZutxn8REREJLrMtXATCjN7A2hsDMsvnXPP+XXuB1Y5537vL8cDKc65QjM7BHgWGOWcK2luX+PGjXN5eXl7fhQiIl1QTXUl36z8jMrtm4iJSyQ+KYWkjL707juQ2Ni4aIcnIiIizTCzRc65cQ3LW+zBcs59r4WGY4AfAIfU26YKqPKfLzKzr4BhgLInERFfbFwC3xm12+eyiIiIdGGRmCrqe8AXzrl1OwvMrI+ZBf3n+wL7A19HYF8iIiIiIiKdViSuwToTmN2g7AjgNjOrAcLAJc65ogjsS0REREREpNNqc4LlnJvRSNlTwFNtbVtERERERKQraXGSi45kZgXAN9GOo4EsYGu0g5AOo/Pdc+hc9xw61z2LznfPoXPds3TG8z3EOdenYWGnSrA6IzPLa2x2EOmedL57Dp3rnkPnumfR+e45dK57lq50viMxyYWIiIiIiIigBEtERERERCRilGC17IFoByAdSue759C57jl0rnsWne+eQ+e6Z+ky51vXYImIiIiIiESIerBEREREREQiRAmWiIiIiIhIhCjBaoaZTTGzFWa2ysyuj3Y8EjlmNtjM3jazZWb2uZld4Zf3NrPXzWyl/2+vaMcqkWFmQTP72Mxe8JeHmtmH/vt7jpnFRTtGiQwzyzCzJ83sCzNbbmaH6b3dPZnZVf5n+GdmNtvMEvTe7j7M7O9mtsXMPqtX1uh72Tz3+Od9qZkdHL3IZU81ca5/53+OLzWzZ8wso966G/xzvcLMjo9K0M1QgtUEMwsCfwJOAEYCZ5nZyOhGJRFUC1ztnBsJTAR+4p/f64E3nXP7A2/6y9I9XAEsr7f8f8BdzrnvANuA/45KVNIe7gZecc4dAById9713u5mzGwg8DNgnHNuNBAEzkTv7e7kIWBKg7Km3ssnAPv7j4uB+zsoRomMh9j9XL8OjHbO5QJfAjcA+N/XzgRG+dv82f/e3mkowWraBGCVc+5r51w18AQwNcoxSYQ45zY65xb7z0vxvoANxDvHD/vVHgZOjUqAElFmNgg4Efibv2zAMcCTfhWd627CzNKBI4AHAZxz1c657ei93V3FAIlmFgMkARvRe7vbcM69CxQ1KG7qvTwV+KfzLAAyzKx/hwQqbdbYuXbOveacq/UXFwCD/OdTgSecc1XOudXAKrzv7Z2GEqymDQTW1lte55dJN2NmOcBBwIdAtnNuo79qE5Adrbgkov4IXAeE/eVMYHu9D269v7uPoUAB8A9/SOjfzCwZvbe7HefceuBOYA1eYlUMLELv7e6uqfeyvrd1bxcCL/vPO/25VoIlPZqZpQBPAVc650rqr3PePQx0H4MuzsxOArY45xZFOxbpEDHAwcD9zrmDgB00GA6o93b34F97MxUvqR4AJLP7ECPpxvRe7hnM7Jd4l3Y8Fu1YWksJVtPWA4PrLQ/yy6SbMLNYvOTqMefc037x5p1DCvx/t0QrPomYw4FTzCwfb6jvMXjX6GT4w4pA7+/uZB2wzjn3ob/8JF7Cpfd29/M9YLVzrsA5VwM8jfd+13u7e2vqvazvbd2Qmc0ATgLOdt/evLfTn2slWE37CNjfn40oDu9iuuejHJNEiH8NzoPAcufcH+qteh44339+PvBcR8cmkeWcu8E5N8g5l4P3Pn7LOXc28DZwul9N57qbcM5tAtaa2XC/6FhgGXpvd0drgIlmluR/pu8813pvd29NvZefB87zZxOcCBTXG0ooXZCZTcEb3n+Kc6683qrngTPNLN7MhuJNbLIwGjE2xb5NBqUhM/s+3rUbQeDvzrnboxuRRIqZTQLeAz7l2+tybsS7DmsusA/wDXCGc67hBbbSRZnZUcA1zrmTzGxfvB6t3sDHwDnOuaoohicRYmZj8SY0iQO+Bi7A+0FR7+1uxsxuBabjDR/6GLgI71oMvbe7ATObDRwFZAGbgVuAZ2nkvewn2ffhDRMtBy5wzuVFIWzZC02c6xuAeKDQr7bAOXeJX/+XeNdl1eJd5vFywzajSQmWiIiIiIhIhGiIoIiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiHQSZpZjZs7MYqIdS3dnZjPMbH604+hszGyyma2IdhwiIl2ZEiwREenSzGymmdWYWVm9x3XRjqsrcs6955wbHsk2zSzLzN43s0Iz225mH5jZ4ZHch4hIZ6JfSUVEIsTMYpxztdGOo4ea45w7J9pBtJcu/rdVBlwIrAQcMBX4t5n17cLHJCLSJPVgiYi0gZnlm9kvzGwpsMPMYsxsopn9x/+1/hMzO6pe/Xlm9r9mttDMSszsOTPr3UTbF5jZcjMrNbOvzex/GqyfamZL/Ha+MrMpfnm6mT1oZhvNbL2Z/cbMgi0cx35m9pbfy7DVzB4zs4x664rM7GB/eYCZFew8LjM7xcw+9493npmNaPD6XGNmS82s2MzmmFnCnr/Se87Mrvdfl1IzW2Zm05qoZ2Z2l5lt8V/LT81stL8u3szuNLM1ZrbZzGaZWWIr9/+QX/91P4Z3zGxIvfV3m9laf5+LzGxyvXUzzexJM3vUzEqAGWY2we/92e6f2/vMLK7eNs7MLjOzlf7+fu2fu//4+5hbv34TMR9lZutac3yt5ZyrdM6tcM6FAQNCQC+g0b97EZGuTgmWiEjbnQWcCGQA2cCLwG/wvkBeAzxlZn3q1T8P7xf9/kAtcE8T7W4BTgLSgAuAu+olOROAfwLX+vs9Asj3t3vIb/c7wEHAccBFLRyDAf8LDABGAIOBmQDOua+AXwCPmlkS8A/gYefcPDMbBswGrgT6AC/h9U7U/yJ/BjAFGArkAjMaDcBskp88NPWY1MIxNPQVMBlIB2714+/fSL3j8F6/YX7dM4BCf91v/fKxeK/nQODmPYjhbODXQBawBHis3rqP/HZ7A48D/2qQfE4FnsQ7v4/hJSZX+W0dBhwLXNZgf8cDhwATgeuAB4Bz8M7naLy/1b3mJ8pNnZ8/t7QtUAk8D/zNObelLbGIiHRW5pyLdgwiIl2WmeUDtznn/u4v/wIY7Zw7t16dV4HHnXMPm9k8YIFz7np/3Ui8L96JeF+CVwOxjQ2dMrNngbedc3eb2V+AcufcVQ3qZANrgAznXIVfdhZwsXPu6D04rlOBW5xzB9Urex4vSXLAeOdclZn9ChjjnDvDrxMA1gJn+wlYPnCTc+5Rf/0dQJpz7pLWxtKKWGcCNwLl9YpHOuc2NKi3xD+m58xsBnCRc26SmR0DzMJLfBf6PS2YmeENb8v1k0zM7DC8czm0FXE9BCQ45870l1OAYiDHObe2kfrbgKOcc5/4x3SMc+6IZtq/EjjSOTfNX3bAJOfc+/7yImCuc+7//OXfA0Hn3JXNtHkU8KhzblBLx7c3/ARyGhDnnHu4PfYhIhJtugZLRKTt6n9ZHgL80MxOrlcWC7zdRP1v/PVZDRs1sxOAW/B6UAJAEvCpv3owXm9RQ0P89jZ6+QH42+72hb7BvrKBu/F6fFL9bbY1qPZXvN6Hi51zVX7ZAP8YAHDOhc1sLV5Pz06b6j0v97eJtLkNr8Eys/OAnwM5flEKjbzOzrm3zOw+4E/AEDN7Gq/nMQHvNV9U77U0oNnhlg3Uve7OuTIzK8I7/rVmdg3w3/6yw+upzGpsW/94hgF/AMb5ccUAixrsb3O95xWNLPfbg9gjzjlXCcw2b+jrEufcJ9GMR0SkPWiIoIhI29UfCrAWeMQ5l1Hvkeyc+229OoPrPd8HqAG21m/QzOKBp4A7gWznXAZeQrXzm/5aYL9GYlkLVAFZ9faf5pwb1cIx/D//OMY459LwhpV9m1V4vS9/BB4EZtq3141twEvqdtYz//jWt7C/3Zg3RXhZM4/JLbdS19YQvITwciDTf/0+q39M9Tnn7nHOHQKMxEtor8U7JxXAqHqvZbpzLmUPDqvuXPuvYW9gg38s1+ENR+zlx1fcIL6GQ0zuB74A9vfP0Y1NHU97Me9au6bOz6w9aCoW2Le94hQRiSYlWCIikfUocLKZHW9mQTNL8CcOqD/k6hwzG+lfz3Qb8KRzLtSgnTggHigAav3erOPqrX8QuMDMjjWzgJkNNLMDnHMbgdeA35tZmr9uPzM7soW4U/GGwxWb2UC8BKO+u4E859xFeNeY7fwyPRc40Y8jFrgaL8H7T0svVEP+FOEpzTze24PmkvESlALwJgzBuwZpN2Y23swO9ePfgXedUNgfKvhXvGvf+vp1B5rZ8fW2dVZvEpNGfN+/tiwO71qsBf7wwFS86+QKgBgzuxmvB6s5qUAJUGZmBwCXtlA/4pxzo5o5P40O+zRv0pdJZhZnZon+MNps4MOOjV5EpGMowRIRiSD/y/NUvN6FArwepWvZ9fP2EbyJKDbhDUP7WSPtlPrlc/GG6v0Ib3jezvUL8Se+wOv5eIdve5LOw0vQlvnbPok3oUZzbgUO9tt6EXh65wozm4o3ScXOL/Q/Bw42s7OdcyvwervuxevxORk42TlX3cL+2pVzbhnwe+ADvGFyY4D3m6iehpdIbcMb7lgI/M5f9wtgFbDAvNn83gCGA5jZYKCUb4dtNuZxvGGeRXiTT+wcxvgq8Arwpb/PSloYxok3bPFH/j7/CsxpoX5nEY83/LIQr2fz+8CJDa+RExHpLjTJhYhIB/InuXjUOfe3aMcibWNm5+ANH7yhifUPAeucczd1aGAiIhJVmuRCRERkL+ycGVFERKQ+DREUEekhzLvpbVsnJ5AuzsxubOLv4OVoxyYi0h1oiKCIiIiIiEiEqAdLREREREQkQjrVNVhZWVkuJycn2mGIiIiIiIg0a9GiRVudc30alneqBCsnJ4e8vLxohyEiIiIiItIsM/umsXINERQREREREYkQJVgiIiIiIiIRogRLRKSVQmHHk4vWUVEdinYoIiIi0kl1qmuwGlNTU8O6deuorKyMdijSxSQkJDBo0CBiY2OjHYp0E+9+sZ7VT9/Kv5YfznnnzIh2OCIiItIJdfoEa926daSmppKTk4OZRTsc6SKccxQWFrJu3TqGDh0a7XCkm3CLHuHa2Lms/mYxMCPa4YiIiEgn1OmHCFZWVpKZmankSvaImZGZmameT4momLINAMTWlkU5EhEREemsOn2CBSi5kr2ivxuJuOodAPQLb6GmuirKwYiIiEhn1CUSLBGRTqGmHIAYC1O47ssoByMiIiKdkRKsVjAzrr766rrlO++8k5kzZ0YvoHoWLFjAoYceytixYxkxYkRdXPPmzeM///lPm9qeMmUKGRkZnHTSSRGIVKTrC9TsqHtevGFVFCMRERGRzkoJVivEx8fz9NNPs3Xr1oi265wjHA63qY3zzz+fBx54gCVLlvDZZ59xxhlnAJFJsK699loeeeSRNrUh0p3EhsopIQWA8sJ1UY5GREREOqNOP4tgfbf++3OWbSiJaJsjB6Rxy8mjmq0TExPDxRdfzF133cXtt9++y7qCggIuueQS1qxZA8Af//hHDj/8cGbOnElKSgrXXHMNAKNHj+aFF14A4Pjjj+fQQw9l0aJFvPTSS9x33328/PLLmBk33XQT06dPZ968ecycOZOsrCw+++wzDjnkEB599NHdrivasmUL/fv3ByAYDDJy5Ejy8/OZNWsWwWCQRx99lHvvvZcDDjigyTi/+uorVq1axdatW7nuuuv48Y9/DMCxxx7LvHnzmn1t/vWvf3HrrbcSDAZJT0/n3XffpbKykksvvZS8vDxiYmL4wx/+wNFHH81DDz3Es88+y44dO1i5ciXXXHMN1dXVPPLII8THx/PSSy/Ru3dv/vrXv/LAAw9QXV3Nd77zHR555BGSkpJ22e/EiRN58MEHGTXKO3dHHXUUd955J+PGjWs2XpG2iA9XsjVuEGnVX1C9fWO0wxEREZFOqM09WGY22MzeNrNlZva5mV3hl/c2s9fNbKX/b6+2hxs9P/nJT3jssccoLi7epfyKK67gqquu4qOPPuKpp57ioosuarGtlStXctlll/H555+Tl5fHkiVL+OSTT3jjjTe49tpr2bjR++L28ccf88c//pFly5bx9ddf8/777+/W1lVXXcXw4cOZNm0af/nLX6isrCQnJ4dLLrmEq666iiVLljB58uRm41y6dClvvfUWH3zwAbfddhsbNmxo9ety22238eqrr/LJJ5/w/PPPA/CnP/0JM+PTTz9l9uzZnH/++XWz+X322Wc8/fTTfPTRR/zyl78kKSmJjz/+mMMOO4x//vOfAPzgBz/go48+4pNPPmHEiBE8+OCDu+13+vTpzJ07F4CNGzeyceNGJVfS7uJdJVVxGRSTDKVKsERERGR3kejBqgWuds4tNrNUYJGZvY53k5g3nXO/NbPrgeuBX7RlRy31NLWntLQ0zjvvPO655x4SExPryt944w2WLVtWt1xSUkJZWfNTOA8ZMoSJEycCMH/+fM466yyCwSDZ2dkceeSRfPTRR6SlpTFhwgQGDRoEwNixY8nPz2fSpEm7tHXzzTdz9tln89prr/H4448ze/bsRnudmotz6tSpJCYmkpiYyNFHH83ChQs59dRTW/W6HH744cyYMYMzzjiDH/zgB3XH9NOf/hSAAw44gCFDhvDll96EAEcffTSpqamkpqaSnp7OySefDMCYMWNYunQp4CVhN910E9u3b6esrIzjjz9+t/2eccYZHHfccdx6663MnTuX008/vVXxirRFgqugLJjItkBvYssLoh2OiIiIdEJtTrCccxuBjf7zUjNbDgwEpgJH+dUeBubRxgQr2q688koOPvhgLrjggrqycDjMggULSEhI2KVuTEzMLtdX1b8fU3Jycqv2Fx8fX/c8GAxSW1vbaL399tuPSy+9lB//+Mf06dOHwsLC3eo0FSfsPp35nkxvPmvWLD788ENefPFFDjnkEBYtWtRs/frHFAgE6pYDgUDd8c2YMYNnn32WAw88kIceeqjRhHHgwIFkZmaydOlS5syZw6xZs1ods8jeSqSS7TFJlMVmkVytBEtERER2F9FJLswsBzgI+BDI9pMvgE1AdiT3FQ29e/fmjDPO2GXI2nHHHce9995bt7xkyRIAcnJyWLx4MQCLFy9m9erVjbY5efJk5syZQygUoqCggHfffZcJEya0OqYXX3wR5xzgDT0MBoNkZGSQmppKaWlpi3ECPPfcc1RWVlJYWMi8efMYP358q/f/1Vdfceihh3LbbbfRp08f1q5dy+TJk3nssccA+PLLL1mzZg3Dhw9vdZulpaX079+fmpqaunYaM336dO644w6Ki4vJzc1tdfsieyvBVRKKSaYioQ9pod1/yBARERGJWIJlZinAU8CVzrldZqJwXgbgmtjuYjPLM7O8goLO/4vw1Vdfvctsgvfccw95eXnk5uYycuTIup6U0047jaKiIkaNGsV9993HsGHDGm1v2rRp5ObmcuCBB3LMMcdwxx130K9fv1bH88gjjzB8+HDGjh3Lueeey2OPPUYwGOTkk0/mmWeeYezYsbz33ntNxgmQm5vL0UcfzcSJE/nVr37FgAEDAC/5++EPf8ibb77JoEGDePXVVwFvWOLO662uvfZaxowZw+jRo/nud7/LgQceyGWXXUY4HGbMmDFMnz6dhx56aJeeq5b8+te/5tBDD+Xwww/ngAMOqCt//vnnufnmm+uWTz/9dJ544om6mRNF2pNzjiQqCcckUpPYl8zwNlwbZwEVERGR7sd29n60qRGzWOAF4FXn3B/8shXAUc65jWbWH5jnnGu2G2PcuHEuLy9vl7Lly5czYsSINscojWs422F3o78fiZTKygoSftuPD4deRigmke+u/D2lV3xJaq8u3zkvIiIie8HMFjnndptlLRKzCBrwILB8Z3Llex44339+PvBcW/clIhIt1eXekFsXm0xMutfLu33z2miGJCIiIp1QJGYRPBw4F/jUzJb4ZTcCvwXmmtl/A98AGsfVCc2cOTPaIYh0CdWVO7wnsYkk9BoIQNnWdYBuDyAiIiLfisQsgvOBpqadO7at7YuIdAbVVd5MoBYTT0qWl2BVbWv9PeNERESkZ4joLIIiIt1VbU0VAMHYODKy9/HKinWzYREREdmVEiwRkVao8XuwgrEJZKSlU+oSoWxzlKMSERGRzkYJlohIK9RWVwAQjI0nEDCKrBcx5VuiHJWIiIh0NkqwWunZZ5/FzPjiiy+arJOfn8/o0aMjts8VK1Zw1FFHMXbsWEaMGMHFF18MeDcJfumll9rU9oUXXkjfvn0jGq9Id1ZbvXOIoHdPt9KY3iRUbW1uExEREemBlGC10uzZs5k0aRKzZ89udH1tbW2b9xEKhXZZ/tnPfsZVV13FkiVLWL58OT/96U+ByCRYM2bM4JVXXmlTGyI9yc5rsGLiEgDYEZdFSk1RNEMSERGRTigS07R3nJevh02fRrbNfmPghN82W6WsrIz58+fz9ttvc/LJJ3PrrbcCMG/ePH71q1/Rq1cvvvjiC1577TVqa2s5++yzWbx4MaNGjeKf//wnSUlJvPnmm1xzzTXU1tYyfvx47r//fuLj48nJyWH69Om8/vrrXHfddZx55pl1+924cSODBg2qWx4zZgzV1dXcfPPNVFRUMH/+fG644QZOOukkfvrTn/LZZ59RU1PDzJkzmTp1Kg899BDPPPMMxcXFrF+/nnPOOYdbbrkFgCOOOIL8/Pxmj/udd97hiiuuAMDMePfdd0lJSeG6667j5Zdfxsy46aabmD59OvPmzeOWW24hIyODTz/9lDPOOIMxY8Zw9913U1FRwbPPPst+++3Hv//9b37zm99QXV1NZmYmjz32GNnZu96o9cwzz+Tcc8/lxBNPBLxk8KSTTuL0009v3TkVaQehau8arBi/B6smsQ8Z5R9GMyQRERHphNSD1QrPPfccU6ZMYdiwYWRmZrJo0aK6dYsXL+buu+/myy+/BLxhfZdddhnLly8nLS2NP//5z1RWVjJjxgzmzJnDp59+Sm1tLffff39dG5mZmSxevHiX5Argqquu4phjjuGEE07grrvuYvv27cTFxXHbbbcxffp0lixZwvTp07n99ts55phjWLhwIW+//TbXXnstO3Z49+xZuHAhTz31FEuXLuVf//oXeXl5rT7uO++8kz/96U8sWbKE9957j8TERJ5++mmWLFnCJ598whtvvMG1117Lxo3eTGqffPIJs2bNYvny5TzyyCN8+eWXLFy4kIsuuoh7770XgEmTJrFgwQI+/vhjzjzzTO64447d9jt9+nTmzp0LQHV1NW+++WZdsiUSLSG/ByvW78EKJ/clhQpClWXRDEtEREQ6ma7Vg9VCT1N7mT17dl1Pzplnnsns2bM55JBDAJgwYQJDhw6tqzt48GAOP/xwAM455xzuuece/uu//ouhQ4cybNgwAM4//3z+9Kc/ceWVVwJeQtGYCy64gOOPP55XXnmF5557jr/85S988sknu9V77bXXeP7557nzzjsBqKysZM2aNQD813/9F5mZmQD84Ac/YP78+Ywb17obox5++OH8/Oc/5+yzz+YHP/gBgwYNYv78+Zx11lkEg0Gys7M58sgj+eijj0hLS2P8+PH0798fgP3224/jjjsO8Hre3n77bQDWrVvH9OnT2bhxI9XV1bu8djudcMIJXHHFFVRVVfHKK69wxBFHkJiY2KqYRdrLzgQrJt5LsAKpXs/r9oL1ZA4eHrW4REREpHNRD1YLioqKeOutt7jooovIycnhd7/7HXPnzsU5B0BycvIu9c2s2eXGNGyjvgEDBnDhhRfy3HPPERMTw2effbZbHeccTz31FEuWLGHJkiWsWbOGESNG7HU8O11//fX87W9/o6KigsMPP7zZCT4A4uPj654HAoG65UAgUHeN2k9/+lMuv/xyPv30U/7yl79QWVm5WzsJCQkcddRRvPrqq8yZM6fJBFSkI4Vrq4Fve7DiMrwfE0oK1kUtJhEREel8lGC14Mknn+Tcc8/lm2++IT8/n7Vr1zJ06FDee++9RuuvWbOGDz74AIDHH3+cSZMmMXz4cPLz81m1ahUAjzzyCEceeWSL+37llVeoqakBYNOmTRQWFjJw4EBSU1MpLS2tq3f88cdz77331iV9H3/8cd26119/naKiorrroHb2rrXGV199xZgxY/jFL37B+PHj+eKLL5g8eTJz5swhFApRUFDAu+++y4QJE1rdZnFxMQMHDgTg4YcfbrLe9OnT+cc//sF7773HlClTWt2+SHtxNbteg5WUOQCAHUXroxaTiIiIdD5KsFowe/Zspk2btkvZaaed1uRsgsOHD+dPf/oTI0aMYNu2bVx66aUkJCTwj3/8gx/+8IeMGTOGQCDAJZdc0uK+X3vtNUaPHs2BBx7I8ccfz+9+9zv69evH0UcfzbJlyxg7dixz5szhV7/6FTU1NeTm5jJq1Ch+9atf1bUxYcIETjvtNHJzcznttNPqhgeeddZZHHbYYaxYsYJBgwbx4IMPAjBr1ixmzZoFwB//+EdGjx5Nbm4usbGxnHDCCUybNo3c3FwOPPBAjjnmGO644w769evX6tdz5syZ/PCHP+SQQw4hKyurrjwvL4+LLrqobvm4447jnXfe4Xvf+x5xcXGtbl+kvbiQfw2WP0QwvY83AU319k1Ri0lEREQ6H9vZ69EZjBs3zjWchGH58uV1w91kzzz00EPk5eVx3333RTuUqNHfj0TKe/+cyeSv76LqmtXEp/SmorKa2P/N5uMhFzD+wj9EOzwRERHpYGa2yDm32+QG7d6DZWZTzGyFma0ys+vbe38iIu0i5F2DFedfg5WYEEcR6QR3bIlmVCIiItLJtOssgmYWBP4E/BewDvjIzJ53zi1rz/2KZ8aMGcyYMSPaYYh0D/4kFxbz7WQuxcFexFYURCsiERER6YTauwdrArDKOfe1c64aeAKYuqeNdKZhjNJ16O9GIipUTa0LQCBYV1QWm0lSdWEUgxIREZHOpr0TrIHA2nrL6/yyOmZ2sZnlmVleQcHuvwQnJCRQWFioL8uyR5xzFBYWkpCQEO1QpJuwUBU1FrtLWWVCH9JCSrBERETkW1G/0bBz7gHgAfAmuWi4ftCgQaxbt47Gki+R5iQkJDBo0KBohyHdRaiGGmKof8vrUGIfem3fjguHsHo9WyIiItJztXeCtR4YXG95kF/WarGxsQwdOjSiQYmI7KlAuJoadu3BIjWbmE1hyooLSOnV+tsViIiISPfV3kMEPwL2N7OhZhYHnAk83877FBGJOAtVU9tgiGBMupdUbdu8trFNREREpAdq1wTLOVcLXA68CiwH5jrnPm/PfYqItIdAuJpa27XTP6mXd0lp2dY96pgXERGRbqzdr8Fyzr0EvNTe+xERaU+BcA21FrdLWWqfAQBUbNsQjZBERESkE2r3Gw2LiHQHgXA1oQY9WL36epOo1BZvikZIIiIi0gkpwRIRaYVguJpQIH6XsvT0XpS5BCjbHKWoREREpLNRgiUi0gqxrpraBgmWmbEt0IuY8i1RikpEREQ6GyVYIiKtEBuupjYQt1t5abA3CVW62bCIiIh4lGCJiLRCrKsiFIzfrbw8PovUmq1RiEhEREQ6IyVYIiKtEOuqCQd2T7CqE/uQES6KQkQiIiLSGSnBEhFphXiqCQUTdisPp/QjlQqqy0uiEJWIiIh0NkqwRERaIY5qwo0MEQykezcbLtqU38ERiYiISGekBEtEpBXiXTUuZvcEKzFrMAAlm7/p6JBERESkE1KCJSLSAhcOk2A1uGDibuvS+g4BoHzr2o4OS0RERDohJVgiIi2oran0njTSg5U1YKhXZ5sSLBEREVGCJSLSosqKHd6T2EZ6sFJSKHKpWOmGDo5KREREOqM2JVhm9jsz+8LMlprZM2aWUW/dDWa2ysxWmNnxbY5URCRKqsrLAQjG7T6LoJlRGOxD3I5NHR2WiIiIdEJt7cF6HRjtnMsFvgRuADCzkcCZwChgCvBnMwu2cV8iIlFRVen1YAUa6cECKInrS0r1lo4MSURERDqpNiVYzrnXnHO1/uICYJD/fCrwhHOuyjm3GlgFTGjLvkREoqWy0uvBiolvPMGqTOxHr9qCjgxJREREOqlIXoN1IfCy/3wgUP+K73V+2W7M7GIzyzOzvIICfUERkc6numLnEMGkRteHU/uTQSm1fk+XiIiI9FwtJlhm9oaZfdbIY2q9Or8EaoHH9jQA59wDzrlxzrlxffr02dPNRUTaXU2Vl2DFNtGDFczwfj/atnlNh8UkIiIinVNMSxWcc99rbr2ZzQBOAo51zjm/eD0wuF61QX6ZiEiXszPBiktovAcrMdP7uNu2aTV9hozosLhERESk82nrLIJTgOuAU5xz5fVWPQ+caWbxZjYU2B9Y2JZ9iYhES21VBQCx8Y0nWKl9cgDdbFhERERa0YPVgvuAeOB1MwNY4Jy7xDn3uZnNBZbhDR38iXMu1MZ9iYhERajKu7YqPrHxBCtzQA4ANUVKsERERHq6NiVYzrnvNLPuduD2trQvItIZhCtLAYhL7tXo+oz0dLa7FKxUI6FFRER6ukjOIigi0i1ZdQkACSkZja83ozCYpZsNi4iIiBIsEZGWBKrKAIhPTmuyTklsX5KrdLNhERGRnk4JlohICwLVJZS5RCwQbLJOZWK2bjYsIiIiSrBERFoSrCmjzBqf4GKn2pT+9KaYUHVlB0UlIiIinZESLBGRFgRryqgMNJ9g7bzZcNHmbzoiJBEREemklGCJiLQgtqaUykBKs3XiM/cBoHiTEiwREZGeTAmWiEgLYkM7qIlJbrZOap8hAOzYuqYjQhIREZFOSgmWiEgLEkM7qIlNbbZO7/45gG42LCIi0tMpwRIRaUGiKycc2/wQwd69elPmEqF0QwdFJSIiIp2REiwRkWa4cJhUV0Y4vul7YAEEAsbWQG9id2zuoMhERESkM1KCJSLSjOLiIhKsBpfct8W6JbF9SKzUzYZFRER6soglWGZ2tZk5M8vyl83M7jGzVWa21MwOjtS+REQ6SvGWdQDEpPdrsW55Ql/SdbNhERGRHi0iCZaZDQaOA+pPn3UCsL//uBi4PxL7EhHpSGVb1wOQkNG/xbqhpH70Dm/DhUPtHZaIiIh0UpHqwboLuA5w9cqmAv90ngVAhpm1/A1FRKQTqdjuTVqRnDWo5cppA4i1EKVbN7ZzVCIiItJZtTnBMrOpwHrn3CcNVg0E6s9XvM4va7j9xWaWZ2Z5BQUaWiMinUvN9k0AZPRpOcGK6+19xBVt1s2GRUREeqqY1lQyszeAxi5A+CVwI97wwL3inHsAeABg3LhxroXqIiIdKlSykRoXJL13nxbrJmcNBqB0yxrg8HaOTERERDqjViVYzrnvNVZuZmOAocAnZgYwCFhsZhOA9cDgetUH+WUiIl1GQulaNgezGRRoucM/I3sIAFXb1rV3WCIiItJJtWmIoHPuU+dcX+dcjnMuB28Y4MHOuU3A88B5/myCE4Fi55wuTBCRLqVX5VqKEga3XBHIyh5MyBmhYt1sWEREpKdqz/tgvQR8DawC/gpc1o77EhGJuHAoRP/QBspThraqflxcLIWWQUzZpnaOTERERDqrVg0RbC2/F2vncwf8JJLti4h0pHVrv2YfqyK27/6t3mZ7IJP4Sk3YIyIi0lO1Zw+WiEiXtmnFQgB65eS2epsdsb1IqNneThGJiIhIZ6cES0SkCbVrPqLWBRg08rBWb1Md35vU0LZ2jEpEREQ6MyVYIiJNSNn6CWtihhCXlNrqbWoTs8gIF4PTXSdERER6IiVYIiKNKC8vY//KzyjKPGTPNkzOIt5qqNyxvV3iEhERkc5NCZaISCNWLHiZRKsmYeQJe7RdTGpfALZt0VTtIiIiPZESLBGRRlR+8jQ7SGDYoXuWYMVnZANQWqjb/omIiPRESrBERBooKdnG6O1vs6L3McQlJu/Rtsm9+gFQvl33whIREemJlGCJiDSw7N/3kmoVpB5+8R5vm5o5AIDq4i2RDktERES6ACVYIiL1VFZWsO/Kf/B5XC77H3L0Hm/fq09/AEJlSrBERER6IiVYIiL1LHn69/SlCHf4VXu1fXxCEqUkYju2RjgyERER6QqUYImI+LZu/IbRK+7jk4TxjJp86l63U2wZxFYWRi4wERER6TKUYImI+L6Z/XPiqKH36Xdhgb3/eCyL6UV8VVEEIxMREZGuos0Jlpn91My+MLPPzeyOeuU3mNkqM1thZse3dT8iIu1p+QcvcUjJG+QNOo/B3xnTprYq43qRXLstQpGJiIhIVxLTlo3N7GhgKnCgc67KzPr65SOBM4FRwADgDTMb5pwLtTVgEZFIq62uIun169hgfRn7o9va3F5NfG/SdnwWgchERESkq2lrD9alwG+dc1UAzrmd02ZNBZ5wzlU551YDq4AJbdyXiEi7WDT3/zEkvJZN372VpOTUNrcXTsoi3ZUSCuk3JRERkZ6mrQnWMGCymX1oZu+Y2Xi/fCCwtl69dX7ZbszsYjPLM7O8goKCNoYjIrJntmxYw5iV9/Nx4kQO+t5ZEWkzkJxFjIXZXqTPNBERkZ6mxSGCZvYG0K+RVb/0t+8NTATGA3PNbN89CcA59wDwAMC4cePcnmwrItJWX829kXHU0vf032NmEWkzJrUvAMWFG8ns09jHZ/cTqqmitGgLpdsLKC8ppLJkK9WlRYSqK3C1lVBbDbVVWKgSQtWEw2EMwAyDutfezDAMrzDgPwyzAM7/FzPg23U765kZzgJY/ecYBPy6GJjhCHz7byMi9Gewa5utrddixT3932TrDyZyMe7aou1xzM211h6VI7bpHm0byb+zQGwi+x97PsGY2Mg1KiJ7rcUEyzn3vabWmdmlwNPOOQcsNLMwkAWsBwbXqzrILxMR6TTyly9iwrYXWNzvh4zfb3TE2k3I8BKssqLNEWsz2qpratm05kuK13xG1aYvYPsaYso2kFy5md6hAjIpJgPIaKGdWhegmljczoTKeV++Hbt+OQ3gJ2A4Ari65YDpdziRxny4fSuHTr8+2mGICG2c5AJ4FjgaeNvMhgFxwFbgeeBxM/sD3iQX+wML27gvEZGIKv73L+lNIvuf3vaJLepL7pUNQMX2rplglZeX8fWnCyhetYC4LZ/Qq2wVA2vXsY9V19Upc4kUBPtQGpfN1xkjWJHUH5KziEnpTVxKJglpmaSkZ5GYlEJsfCKxcQnEJSQSExPb6v/xOOdwDsLOEfL/dWFH2IUJh8M4F8aFwoSd9zwcDuGcg7C3PuzC4MKEQ2Gv3IX9hM4rx+2erLU2fWtk0zZzrWzUtbLro/Uxtv5gWtvmLtWaibf17bXytdmD89J83W9jbo99t6q9Pahr/5rBPl/8jdrqq4iJi49sICKyx9qaYP0d+LuZfQZUA+f7vVmfm9lcYBlQC/ykK84gWLB+Nate/TPjzvkNsfrAEulWViz9kAPLP+CDIZdwWJ/+EW07rbc3LLCmtGtcg1WwZQP5ea8R+uodem9fytDa1Yw27yO7gF5sStiPz/ocSqDvcJIGjqL3kNH06dufoYF2GEtXj5lhBoE2DdoS6f4+nnglB8z/Hz56YRbjf3BFtMMR6fHalGA556qBc5pYdztwe1vaj7av3nmcw9Y8wIrfvUf6OQ/Tb8jwaIckIhGy7Y3fU048o6f9POJtp2V6CVa4bGvE246EmopSVn74CsXL3iBr64fsF8qnjznKXTyrE0bwcb9zSBg6nsGjJtOnfw59oh2wiDTrwKPPYMWCP7Df0jspOfos0nr1jXZIIj1aW3uwurWJP/olH72QzQEf3UTg75P5YMgMDjzjlySlpEc7NBFpg41rVnFI8Rss6fcDxvvD+SIpEJdIKUkEd3SeIYIlm/JZ/Z8niVn1Gt8pX8xIaqhysXyVMIpFQy4lY9SxDM2dzCj11ot0OYFgADv5btKe/j6L/3EZ46+ciwXaOlG0iOwtJVgtGH/SRWwcPYlNT17LYWv+QvGdj7Kg74lkTDyH/Q+cRDAY7PCYqmpD7KgKUVZexY4dxVSXl1FTUUqoqoxwVRnhyjJc9Q5cdRlU7yBQXY7V7iBQU+7P4FWLuRAW9v91tQRcyH8eIlDvYS7kX1y+czS4q7soHXbODuXqnn97/bnbdRu+Le94HTe8qGOPrmOOy3Xo8KyO2VdiuAzDMfj717bbPgoDWSRWRjHBCofZsOx9Nuc9S691b5FT+zUHAmvox8LMaSSNPoERE/6LkRG475eIRN+wAw/jw8U/5tBv/sKHj9/GoefMjHZIrVJVWU5FWQmV5SVUlRVTXVFKdUUptRWlhCrLCFWWEa4uI1zjz0YaqsZCNVi4GgtVY+FqAuEaAuEaguFqcCEsHPK/k3jfX4wwARfG/O8zu5e7XWa7dLs9Yfd1TWnFNZKt+f9qS3U68v/Mrf9us2dR7Untz2JGkHb6vRw5rGuMqVCC1Qr9cw6g/zX/5ou8N9nxzn0cvPkp4p6fy9bn01mXNIryXsMJ9BlOWp+BJPTqR0JqFkkJCVgwlrAFcaFawrWVhKvLqayooKqinKrKHdRUln37AVJVRrhyB1R7yVGgZgfB2nKCtRXEhMqJC5cTH64kwVWSSCXJVNK73gXnLQk5o4IEqiyOEEFCFiTs/+sI1C2HLUjYYghbkFAglrAlAAHvzWU75/QyqHuA8+Za9vfkfUyZ1a9H3fZGx35hb+v0wHt0kXEHXgjdUa+ga4+z1ezxd0yKug1YPXAih7XjsN+SuL6kVHfsNVih6gq+XvgSZUufZ5+CdxjgtpHtjM9jRjJvyE/pe8hUDhh1CPsE9cu2SHc0/rz/ZdEflnPoqrtY8HA1h577mw7tyQqFQhRt3UDxlnWUb11H1bYN1JRtxSqKCFZuJ6a6mPiaYpJqS0gOl5Dqyki0avak37zaxVBNLDUWQw2x1FoMIWKosThC/vcXZ0Gcf2sHh/e9ppYAzgKE/Vs8OLxbOTi/vO7/rLbr/2N3vX1H8/+PMtfylCit+67QQp0O/TW3c8zcGo7LJjmu4zs19pa1dtaijjBu3DiXl5cX7TBatL1gI18veA636k0yS5YxOLyeYASnDi4ngUpLoMoSqA4kUhNMojYmiXBMIuHYZFxcMhaXQiAumUBCCsGEFALxKQTjkwkmpBKTmEJsQiqxCSnEJaURl5RKMC6xfW7uIiKNWnDXWXyn5AOybslv1/2UFReyav5TsOIl9i/5gGQqKXMJfJZ0KNX7Hcd+353GwAGN3uddRLqh6qpKltx3NhNK3+DzuAOJO+HX7H/QkW1qs6a2lsItG9i+eQ1lW9dTtW094ZJNBHdsJr5yCynVW8kIFdLbbSfWdp/TrNoFKbFUygJplMekUR2TRnVcBuGEXriEdIhLJZiQTCAhlZiEFGISUolLSiU+KZX45HQSk9JITEomNjZWQx+lUzGzRc65cbuVK8Fqu9rKHWxeu5LCzeuoLS0gXL6N6upqAi5E0NVCIEAomAAx8QTjkoiLTyQmPom4pBTiEtOIT04jKSWNpORUYuJTvJtiikiX9u5frmLShn9gv9qCxcRFtO0N36xi7YKnSFr9CgdUfEKshSggg5UZRxAceSIjvnsSaSkpEd2niHQdLhxi4ZN3MWLZH0hjB/mBwWzsPZGYAWOIyxpKYko6BOMwIFxdRuWOEqp2FBMu24qVbcZ2bCauYitJ1VtJCxWR2UTitJ1Utgd7UxabRVVCH2qT+2Gp2cRmDCCx9yDS+gyiV58BJCan6kde6ZaUYImIdKAP5v6ew5bdRsF/L6TP4LYNRayurGDlR69R8vkrZG95n33D3wCwxgayLvsY0g86leGHHEVMjEZ9i8i3SoqLWP7yX0jKf539K5aSYDUtbhN2RpGlUxzszY7YTKoTswgnZxNI6098rwEkZQ6iV/ZgMvoMIhCX2AFHIdJ5NZVg6f/GIiLtIGmfsbAMCld+tMcJVk1NNauWfkDhsnkkr3+f4RVLGGVVVLsYViaMZuHgU+k34QfsM2ws+7RP+CLSDaSl9+bQM28AbqCmuor1676mdPPXVJaXEghVe9NUxaWQkJxGcmo6SRnZpGX2Iys2jqxoBy/ShSnBEhFpBwMPGE/1y0HKVy+kidsF1inYvI51yz6k4usFpG35iH0rlzHCqgBYH+jP0j4nEX/AcQw7dAqjUjPaP3gR6XZi4+IZuO8I2HdEtEMR6faUYImItIOsjDSWx3yHrA1v40I1WDCWstLtbPjqM7avW05o4zKSt31Ov/KV9KWIPnhDc/KDQ/i0z4nE73s4Qw76HgP756ApKkRERLoOJVgiIu2kIPdiRnx8Ndt+vS8hAmSxnWH+upAz1gYHsSbtYFZn55K+7yEMHnkY+6Znsm9UoxYREZG2UIIlItJOJp98If8JVRGT/w7ExLEyfR8SsoeTOWQE/XJGkZOYTE60gxQREZGIUoIlItJOLBDguz/4CfCTaIciIiIiHaTNN1wys7FmtsDMlphZnplN8MvNzO4xs1VmttTMDm57uCIiIiIiIp1XJO5oewdwq3NuLHCzvwxwArC//7gYuD8C+xIREREREem0IpFgOSDNf54ObPCfTwX+6TwLgAwz6x+B/YmIiIiIiHRKkbgG60rgVTO7Ey9h+65fPhBYW6/eOr9sY/2NzexivB4ugDIzWxGBmCIpC9ga7SCkw+h89xw61z2HznXPovPdc+hc9yyd8XwPaaywVQmWmb0B9Gtk1S+BY4GrnHNPmdkZwIPA91oblXPuAeCB1tbvaGaW55wbF+04pGPofPccOtc9h851z6Lz3XPoXPcsXel8tyrBcs41mTCZ2T+BK/zFfwF/85+vBwbXqzrILxMREREREemWInEN1gbgSP/5McBK//nzwHn+bIITgWLn3MbGGhAREREREekOInEN1o+Bu80sBqjk2+upXgK+D6wCyoELIrCvaOi0wxelXeh89xw61z2HznXPovPdc+hc9yxd5nybcy7aMYiIiIiIiHQLkRgiKCIiIiIiIijBEhERERERiRglWM0wsylmtsLMVpnZ9dGORyLHzAab2dtmtszMPjezK/zy3mb2upmt9P/tFe1YJTLMLGhmH5vZC/7yUDP70H9/zzGzuGjHKJFhZhlm9qSZfWFmy83sML23uyczu8r/DP/MzGabWYLe292Hmf3dzLaY2Wf1yhp9L/uTqt3jn/elZnZw9CKXPdXEuf6d/zm+1MyeMbOMeutu8M/1CjM7PipBN0MJVhPMLAj8CTgBGAmcZWYjoxuVRFAtcLVzbiQwEfiJf36vB950zu0PvOkvS/dwBbC83vL/AXc5574DbAP+OypRSXu4G3jFOXcAcCDeedd7u5sxs4HAz4BxzrnRQBA4E723u5OHgCkNypp6L58A7O8/Lgbu76AYJTIeYvdz/Tow2jmXC3wJ3ADgf187Exjlb/Nn/3t7p6EEq2kTgFXOua+dc9XAE8DUKMckEeKc2+icW+w/L8X7AjYQ7xw/7Fd7GDg1KgFKRJnZIOBE/Pv0mZnh3VbiSb+KznU3YWbpwBF4N73HOVftnNuO3tvdVQyQ6M9knARsRO/tbsM59y5Q1KC4qffyVOCfzrMAyDCz/h0SqLRZY+faOfeac67WX1yAd09d8M71E865KufcarwZyyd0WLCtoASraQOBtfWW1/ll0s2YWQ5wEPAhkF3vfm2bgOxoxSUR9UfgOiDsL2cC2+t9cOv93X0MBQqAf/hDQv9mZsnovd3tOOfWA3cCa/ASq2JgEXpvd3dNvZf1va17uxB42X/e6c+1Eizp0cwsBXgKuNI5V1J/nfPuYaD7GHRxZnYSsMU5tyjasUiHiAEOBu53zh0E7KDBcEC9t7sH/9qbqXhJ9QAgmd2HGEk3pvdyz2Bmv8S7tOOxaMfSWkqwmrYeGFxveZBfJt2EmcXiJVePOeee9os37xxS4P+7JVrxScQcDpxiZvl4Q32PwbtGJ8MfVgR6f3cn64B1zrkP/eUn8RIuvbe7n+8Bq51zBc65GuBpvPe73tvdW1PvZX1v64bMbAZwEnC2+/bmvZ3+XCvBatpHwP7+bERxeBfTPR/lmCRC/GtwHgSWO+f+UG/V88D5/vPzgec6OjaJLOfcDc65Qc65HLz38VvOubOBt4HT/Wo6192Ec24TsNbMhvtFxwLL0Hu7O1oDTDSzJP8zfee51nu7e2vqvfw8cJ4/m+BEoLjeUELpgsxsCt7w/lOcc+X1Vj0PnGlm8WY2FG9ik4XRiLEp9m0yKA2Z2ffxrt0IAn93zt0e3YgkUsxsEvAe8CnfXpdzI951WHOBfYBvgDOccw0vsJUuysyOAq5xzp1kZvvi9Wj1Bj4GznHOVUUxPIkQMxuLN6FJHPA1cAHeD4p6b3czZnYrMB1v+NDHwEV412Lovd0NmNls4CggC9gM3AI8SyPvZT/Jvg9vmGg5cIFzLi8KYcteaOJc3wDEA4V+tQXOuUv8+r/Euy6rFu8yj5cbthlNSrBEREREREQiREMERUREREREIkQJloiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtEpJMwsxwzc2YWE+1Yujszm2Fm86MdR2djZpPNbEW04xAR6cqUYImISJdmZjPNrMbMyuo9rot2XF2Rc+4959zwSLZpZllm9r6ZFZrZdjP7wMwOj+Q+REQ6E/1KKiISIWYW45yrjXYcPdQc59w50Q6ivXTxv60y4EJgJeCAqcC/zaxvFz4mEZEmqQdLRKQNzCzfzH5hZkuBHWYWY2YTzew//q/1n5jZUfXqzzOz/zWzhWZWYmbPmVnvJtq+wMyWm1mpmX1tZv/TYP1UM1vit/OVmU3xy9PN7EEz22hm683sN2YWbOE49jOzt/xehq1m9piZZdRbV2RmB/vLA8ysYOdxmdkpZva5f7zzzGxEg9fnGjNbambFZjbHzBL2/JXec2Z2vf+6lJrZMjOb1kQ9M7O7zGyL/1p+amaj/XXxZnanma0xs81mNsvMElu5/4f8+q/7MbxjZkPqrb/bzNb6+1xkZpPrrZtpZk+a2aNmVgLMMLMJfu/Pdv/c3mdmcfW2cWZ2mZmt9Pf3a//c/cffx9z69ZuI+SgzW9ea42st51ylc26Fcy4MGBACegGN/t2LiHR1SrBERNruLOBEIAPIBl4EfoP3BfIa4Ckz61Ov/nl4v+j3B2qBe5podwtwEpAGXADcVS/JmQD8E7jW3+8RQL6/3UN+u98BDgKOAy5q4RgM+F9gADACGAzMBHDOfQX8AnjUzJKAfwAPO+fmmdkwYDZwJdAHeAmvd6L+F/kzgCnAUCAXmNFoAGaT/OShqcekFo6hoa+AyUA6cKsff/9G6h2H9/oN8+ueART6637rl4/Fez0HAjfvQQxnA78GsoAlwGP11n3kt9sbeBz4V4PkcyrwJN75fQwvMbnKb+sw4Fjgsgb7Ox44BJgIXAc8AJyDdz5H4/2t7jU/UW7q/Py5pW2BSuB54G/OuS1tiUVEpLMy51y0YxAR6bLMLB+4zTn3d3/5F8Bo59y59eq8CjzunHvYzOYBC5xz1/vrRuJ98U7E+xK8GohtbOiUmT0LvO2cu9vM/gKUO+eualAnG1gDZDjnKvyys4CLnXNH78FxnQrc4pw7qF7Z83hJkgPGO+eqzOxXwBjn3Bl+nQCwFjjbT8DygZucc4/66+8A0pxzl7Q2llbEOhO4ESivVzzSObehQb0l/jE9Z2YzgIucc5PM7BhgFl7iu9DvacHMDG94W66fZGJmh+Gdy6GtiOshIME5d6a/nAIUAznOubWN1N8GHOWc+8Q/pmOcc0c00/6VwJHOuWn+sgMmOefe95cXAXOdc//nL/8eCDrnrmymzaOAR51zg1o6vr3hJ5DTgDjn3MPtsQ8RkWjTNVgiIm1X/8vyEOCHZnZyvbJY4O0m6n/jr89q2KiZnQDcgteDEgCSgE/91YPxeosaGuK3t9HLD8Dfdrcv9A32lQ3cjdfjk+pvs61Btb/i9T5c7Jyr8ssG+McAgHMubGZr8Xp6dtpU73m5v02kzW14DZaZnQf8HMjxi1Jo5HV2zr1lZvcBfwKGmNnTeD2PCXiv+aJ6r6UBzQ63bKDudXfOlZlZEd7xrzWza4D/9pcdXk9lVmPb+sczDPgDMM6PKwZY1GB/m+s9r2hkud8exB5xzrlKYLZ5Q1+XOOc+iWY8IiLtQUMERUTarv5QgLXAI865jHqPZOfcb+vVGVzv+T5ADbC1foNmFg88BdwJZDvnMvASqp3f9NcC+zUSy1qgCsiqt/8059yoFo7h//nHMcY5l4Y3rOzbrMLrffkj8CAw0769bmwDXlK3s575x7e+hf3txrwpwsuaeUxuuZW6tobgJYSXA5n+6/dZ/WOqzzl3j3PuEGAkXkJ7Ld45qQBG1Xst051zKXtwWHXn2n8NewMb/GO5Dm84Yi8/vuIG8TUcYnI/8AWwv3+ObmzqeNqLedfaNXV+Zu1BU7HAvu0Vp4hINCnBEhGJrEeBk83seDMLmlmCP3FA/SFX55jZSP96ptuAJ51zoQbtxAHxQAFQ6/dmHVdv/YPABWZ2rJkFzGygmR3gnNsIvAb83szS/HX7mdmRLcSdijccrtjMBuIlGPXdDeQ55y7Cu8Zs55fpucCJfhyxwNV4Cd5/WnqhGvKnCE9p5vHeHjSXjJegFIA3YQjeNUi7MbPxZnaoH/8OvOuEwv5Qwb/iXfvW16870MyOr7ets3qTmDTi+/61ZXF412It8IcHpuJdJ1cAxJjZzXg9WM1JBUqAMjM7ALi0hfoR55wb1cz5aXTYp3mTvkwyszgzS/SH0WYDH3Zs9CIiHUMJlohIBPlfnqfi9S4U4PUoXcuun7eP4E1EsQlvGNrPGmmn1C+fizdU70d4w/N2rl+IP/EFXs/HO3zbk3QeXoK2zN/2SbwJNZpzK3Cw39aLwNM7V5jZVLxJKnZ+of85cLCZne2cW4HX23UvXo/PycDJzrnqFvbXrpxzy4DfAx/gDZMbA7zfRPU0vERqG95wx0Lgd/66XwCrgAXmzeb3BjAcwMwGA6V8O2yzMY/jDfMswpt8YucwxleBV4Av/X1W0sIwTrxhiz/y9/lXYE4L9TuLeLzhl4V4PZvfB05seI2ciEh3oUkuREQ6kD/JxaPOub9FOxZpGzM7B2/44A1NrH8IWOecu6lDAxMRkajSJBciIiJ7YefMiCIiIvVpiKCISA9h3k1v2zo5gXRxZnZjE38HL0c7NhGR7kBDBEVERERERCJEPVgiIiIiIiIR0qmuwcrKynI5OTnRDkNERERERKRZixYt2uqc69OwvFMlWDk5OeTl5UU7DBERERERkWaZ2TeNlWuIoIiIiIiISIQowRIREREREYkQJVgiIk0IhzXLqoiIiOyZTnUNVmNqampYt24dlZWV0Q5FupiEhAQGDRpEbGxstEORLuieua8wcNVspl77N2L0NyQiIiKt1OkTrHXr1pGamkpOTg5mFu1wpItwzlFYWMi6desYOnRotMORLujEz65kv8BGVn95GUNHHRrtcERERKSL6PRDBCsrK8nMzFRyJXvEzMjMzFTPp+yVcCjMfoGNABSs/jTK0YiIiEhX0ukTLEDJlewV/d3I3qqqKKt7XrNpeRQjERERka6mSyRYIiIdqaayvO55cvGqKEYiIiIiXY0SrFYwM66++uq65TvvvJOZM2dGL6B6FixYwKGHHsrYsWMZMWJEXVzz5s3jP//5z163+80333DwwQczduxYRo0axaxZsyIUsUjnV121o+55UuWmKEYiIiIiXU2nn+SiM4iPj+fpp5/mhhtuICsrK2LtOudwzhEI7H2ee/755zN37lwOPPBAQqEQK1asALwEKyUlhe9+97t71W7//v354IMPiI+Pp6ysjNGjR3PKKacwYMCAvY5VpKvY2YNV7YKk1xREORoRERHpStSD1QoxMTFcfPHF3HXXXbutKygo4LTTTmP8+PGMHz+e999/H4CZM2dy55131tUbPXo0+fn55OfnM3z4cM477zxGjx7N2rVrufbaaxk9ejRjxoxhzpw5gJcgHXXUUZx++ukccMABnH322Ti3+z15tmzZQv/+/QEIBoOMHDmS/Px8Zs2axV133cXYsWN57733mo3z3HPP5bDDDmP//ffnr3/9KwBxcXHEx8cDUFVVRTgcbvS1ueeeexg5ciS5ubmceeaZABQVFXHqqaeSm5vLxIkTWbp0ad2+zj//fCZPnsyQIUN4+umnue666xgzZgxTpkyhpqYGgNtuu43x48czevRoLr744t2OOxwOk5OTw/bt2+vK9t9/fzZv3tzcaRRptZoqL8HaEOhHpttGbW1tlCMSERGRrqJL9WDd+u/PWbahJKJtjhyQxi0nj2qx3k9+8hNyc3O57rrrdim/4ooruOqqq5g0aRJr1qzh+OOPZ/ny5i+KX7lyJQ8//DATJ07kqaeeYsmSJXzyySds3bqV8ePHc8QRRwDw8ccf8/nnnzNgwAAOP/xw3n//fSZNmrRLW1dddRXDhw/nqKOOYsqUKZx//vnk5ORwySWXkJKSwjXXXAPAj370oybjXLp0KQsWLGDHjh0cdNBBnHjiiQwYMIC1a9dy4oknsmrVKn73u9812nv129/+ltWrVxMfH1+X8Nxyyy0cdNBBPPvss7z11lucd955LFmyBICvvvqKt99+m2XLlnHYYYfx1FNPcccddzBt2jRefPFFTj31VC6//HJuvvlmAM4991xeeOEFTj755Lp9BgIBpk6dyjPPPMMFF1zAhx9+yJAhQ8jOzm7xPIq0RqiqAoBt8YPJqVzPxs3r6T9wSJSjEhERka5APVitlJaWxnnnncc999yzS/kbb7zB5ZdfztixYznllFMoKSmhrKysiVY8Q4YMYeLEiQDMnz+fs846i2AwSHZ2NkceeSQfffQRABMmTGDQoEEEAgHGjh1Lfn7+bm3dfPPN5OXlcdxxx/H4448zZcqURvfZXJxTp04lMTGRrKwsjj76aBYuXAjA4MGDWbp0KatWreLhhx9utIcoNzeXs88+m0cffZSYmJi6Yzr33HMBOOaYYygsLKSkxEuMTzjhBGJjYxkzZgyhUKgu3jFjxtQd39tvv82hhx7KmDFjeOutt/j888932+/06dPrevueeOIJpk+f3uxrLrInQtVeD1ZFymAAijeviWY4IiIi0oV0qR6s1vQ0tacrr7ySgw8+mAsuuKCuLBwOs2DBAhISEnapGxMTs8uwuvr3Y0pOTm7V/nYO0QNv+F9Tw5T2228/Lr30Un784x/Tp08fCgsLd6vTVJyw+3TmDZcHDBjA6NGjee+99zj99NN3Wffiiy/y7rvv8u9//5vbb7+dTz9t/p5BO48pEAgQGxtbt69AIEBtbS2VlZVcdtll5OXlMXjwYGbOnNnovawOO+wwVq1aRUFBAc8++yw33XRTs/sV2RO1/hDBUK+hsBXKC9dGOSIRERHpKtSDtQd69+7NGWecwYMPPlhXdtxxx3HvvffWLe8cCpeTk8PixYsBWLx4MatXr260zcmTJzNnzhxCoRAFBQW8++67TJgwodUxvfjii3XXKK1cuZJgMEhGRgapqamUlpa2GCfAc889R2VlJYWFhcybN4/x48ezbt06Kir8YVLbtjF//nyGDx++y77D4TBr167l6KOP5v/+7/8oLi6mrKyMyZMn89hjjwHetWRZWVmkpaW16nh2JlNZWVmUlZXx5JNPNlrPzJg2bRo///nPGTFiBJmZma1qX6Q1wjXe335cn/0AqNm2IZrhiIiISBfS5gTLzAab2dtmtszMPjezK/zy3mb2upmt9P/t1fZwo+/qq69m69atdcv33HMPeXl55ObmMnLkyLrpzE877TSKiooYNWoU9913H8OGDWu0vWnTppGbm8uBBx7IMcccwx133EG/fv1aHc8jjzzC8OHDGTt2LOeeey6PPfYYwWCQk08+mWeeeaZukoum4gRvmN/RRx/NxIkT+dWvfsWAAQNYvnw5hx56KAceeCBHHnkk11xzDWPGjAHgoosuIi8vj1AoxDnnnMOYMWM46KCD+NnPfkZGRgYzZ85k0aJF5Obmcv311/Pwww+3+ngyMjL48Y9/zOjRozn++OMZP3583bpZs2btEvf06dN59NFHNTxQIi5c7SVYqf32I+QMV6IES0RERFrHGpuZbo8aMOsP9HfOLTazVGARcCowAyhyzv3WzK4HejnnftFcW+PGjXN5eXm7lC1fvpwRI0a0KUZp2sz/3969x0dV3vse//zmkpncIBcSLgmXbARECQEJyBataL212tKKF87RKnL25tXWXnRfumu7tdUeX6et52XP3tXqtltL7VbU2m5lV2u9v5RzKspNQRGKEiAhSEgC5J6ZWc/5Y4aYAOGWSYZJvu/Xa16Z9axnrfVLFmtYv3me9Tw//GGPwTAGG/37kZOxYcW/UL72DrZev4rh/3EZVfnnMPvbj6c6LBERETmFmNka51zloeV9bsFyztU659Ym3jcBm4ASYAFwsOni18STLhGRU97BFqxgKItGfyHh9j0pjkhERETSRVIHuTCzCcBMYBUw0jlXm1i1GzjiGNpmthRYCjBu3LhkhiPH4Yc//GGqQxA59UQTCVY4i/qMIvI7d6c4IBEREUkXSRvkwsxygN8BtzjnekxW5eL9EI/YF9E595BzrtI5V1lUVJSscERETl4kPthKRjib9nAx+bG9x9hAREREJC4pCZaZBYknV485536fKP4k8XzWwee01MdGRNJDtJ0OFyAjGCCWXUweTXiRjlRHJSIiImkgGaMIGvAwsMk5d2+3VSuAGxPvbwSe7euxREQGRLSdDjLI8Pvw5cZH9dxfV5PioERERCQdJKMFax7wFeBCM1ufeH0e+DFwsZn9BbgosSwicsqzaDvtZBAK+MjIGw3AvrrqFEclIiIi6SAZowiudM6Zc266c25G4vW8c67eOfdZ59wk59xFzrmGZAScKs888wxmxocffthrnaqqKqZNm5a0Y27evJn58+czY8YMpk6dytKlS4H4JMHPP//8Se+3vb2dOXPmUFFRwZlnnskPfvCDZIUsMij4Ei1YZkZWwRgAWuo1F5aIiIgcW9IGuRjsli9fzrnnnsvy5cuPuD4ajfb5GLFYrMfyt771LW699VbWr1/Ppk2b+OY3vwn0PcEKhUK8+uqrvPvuu6xfv54XXniBt956q0+xiwwm5nXSSRCAYUWlAHTsU4IlIiIix6YE6zg0NzezcuVKHn74YZ544omu8tdff53zzjuPL37xi5xxxhlAPNG67rrrmDp1KldddRWtra0AvPLKK8ycOZPy8nKWLFlCR0f8gfkJEybwT//0T5x11ln89re/7XHc2tpaSktLu5bLy8vp7Ozkjjvu4Mknn2TGjBk8+eSTtLS0sGTJEubMmcPMmTN59tn4427Lli1jwYIFzJ8/n0mTJnHnnXcCYGbk5OQAEIlEiEQixB+l6+m3v/0t06ZNo6Kigs985jNAvPXrpptuory8nJkzZ/Laa691HetLX/oSF198MRMmTOC+++7j3nvvZebMmcydO5eGhngD5i9/+Utmz55NRUUFCxcu7Pr7dDd37lzef//9ruX58+dz6ATUIv3JYhGiFk+wCopLAIgd0FDtIiIicmxJnQer3/3xu7B7Q3L3OaocPnf0x8OeffZZLrvsMiZPnkxhYSFr1qxh1qxZAKxdu5aNGzdSVlZGVVUVmzdv5uGHH2bevHksWbKEX/ziF3zjG99g8eLFvPLKK0yePJkbbriBBx54gFtuuQWAwsJC1q5de9hxb731Vi688ELOOeccLrnkEm666Sby8vK46667WL16Nffddx8A3/ve97jwwgt55JFH2LdvH3PmzOGiiy4C4O2332bjxo1kZWUxe/ZsLr/8ciorK4nFYsyaNYutW7dy8803c/bZZx92/Lvuuos//elPlJSUsG/fPgDuv/9+zIwNGzbw4Ycfcskll7BlyxYANm7cyLp162hvb+e0007jJz/5CevWrePWW2/l0Ucf5ZZbbuHKK6/kb//2bwH453/+Zx5++OGulrmDrr32Wp566inuvPNOamtrqa2tpbLysEmyRfqNeZ3ELP7xmJ2VRYPLxdesgVBFRETk2NSCdRyWL1/OokWLAFi0aFGPboJz5syhrKysa3ns2LHMmzcPgOuvv56VK1eyefNmysrKmDx5MgA33ngjb7zxRtc211577RGPe9NNN7Fp0yauvvpqXn/9debOndvV8tXdiy++yI9//GNmzJjB/PnzaW9vZ8eOHQBcfPHFFBYWkpmZyZVXXsnKlSsB8Pv9rF+/nurq6q4k7FDz5s1j8eLF/PKXv+zqvrhy5Uquv/56AE4//XTGjx/flWBdcMEF5ObmUlRUxPDhw/nCF74AxFveqqqqgHgSdt5551FeXs5jjz3Wo6XqoGuuuYann34agKeeeoqrrrrqiH8fkf7i8yLEEi1YAPv8BQTa6lIYkYiIiKSL9GrBOkZLU39oaGjg1VdfZcOGDZgZsVgMM+Oee+4BIDs7u0f9Q7vaHanr3aEO3Ud3Y8aMYcmSJSxZsoRp06YdMRFyzvG73/2OKVOm9ChftWrVMePJy8vjggsu4IUXXjhsgI4HH3yQVatW8dxzzzFr1izWrFlz1N8jFAp1vff5fF3LPp+v6xm1xYsX88wzz1BRUcGyZct4/fXXD9tPSUkJhYWFvPfeezz55JM8+OCDRz2uSLL5vM6uLoIAzYECsjo12bCIiIgcm1qwjuHpp5/mK1/5Ctu3b6eqqoqdO3dSVlbGm2++ecT6O3bs4M9//jMAjz/+OOeeey5TpkyhqqqKrVu3AvCb3/yG888//5jHfuGFF4hEIgDs3r2b+vp6SkpKyM3NpampqavepZdeys9//nOccwCsW7eua91LL71EQ0MDbW1tPPPMM8ybN4+6urquLn9tbW289NJLnH766Ycd/6OPPuLss8/mrrvuoqioiJ07d3Leeefx2GOPAbBlyxZ27NhxWGJ3NE1NTYwePZpIJNK1nyO59tpr+elPf8r+/fuZPn36ce9fJBl8XhTP92mC1RYawbBofQojEhERkXShBOsYli9fzpe//OUeZQsXLux1NMEpU6Zw//33M3XqVBobG/na175GOBzmV7/6FVdffTXl5eX4fD6++tWvHvPYL774YtcgE5deein33HMPo0aN4oILLuCDDz7oGuTi9ttvJxKJMH36dM4880xuv/32rn3MmTOHhQsXMn36dBYuXEhlZSW1tbVccMEFTJ8+ndmzZ3PxxRdzxRVXAHDHHXewYsUKAP7xH/+R8vJypk2bxjnnnENFRQVf//rX8TyP8vJyrr32WpYtW9aj5epYfvSjH3H22Wczb968HkndihUruOOOO7qWr7rqKp544gmuueaa4963SLL4XaRHghXNKibf2weJLzFEREREemPuFLphqKysdIeOFrdp0yamTp2aoojS27Jly3oMhjEU6d+PnIydP5rGruAEzv7uHwD4v7+5k3kf3UvLrR+TPbwwxdGJiIjIqcDM1jjnDhuJTS1YIiKHCLgoMX/Gp8vDRwHQ+MnOVIUkIiIiaUIJ1iC2ePHiId16JXKy/C6C69ZFMJw/GoCmvTWpCklERETSRFokWKdSN0ZJH/p3IycrQLRHgpU7Ij7ZcFujEiwRERE5un5PsMzsMjPbbGZbzey7J7p9OBymvr5eN8tyQpxz1NfXEw6HUx2KpKGAi+K6dRHMLx4HQGTf7lSFJCIiImmiX+fBMjM/cD9wMVANvGNmK5xzHxzvPkpLS6murqauTpN8yokJh8OUlpamOgxJQ0EiPRKs4XmFdLggNH+SwqhEREQkHfT3RMNzgK3OuY8BzOwJYAFw3AlWMBikrKysn8ITETlcwEUx/6ddBH1+H/WWj791TwqjEhERkXTQ310ES4Duw25VJ8q6mNlSM1ttZqvVSiUiKed5BC0G3VqwAA4ECgi36zNKREREji7lg1w45x5yzlU65yqLiopSHY6IDHEu1hl/E+iZYLVmFJIdaUhBRCIiIpJO+jvBqgHGdlsuTZSJiJySOjvbADB/qGd5ZhH5nhIsERERObr+TrDeASaZWZmZZQCLgBX9fEwRkZPW2dEBgO+QFiwvq5g8moh0tqciLBEREUkT/ZpgOeeiwDeAPwGbgKecc+/35zFFRPoi0hlPsOyQBMs/bBQADXuqBzwmERERSR/9PYogzrnngef7+zgiIskQ6Yi3UB3agpWRPwaAA3U1jCw9bcDjEhERkfSQ8kEuREROJZ2JFixfsOczWFkF8QSrpX7XgMckIiIi6UMJlohIN9HOgy1YPROs4UXxSas7GpVgiYiISO+UYImIdBONxFuw/Ie0YBUUlxJzBgdqUxGWiIiIpAklWCIi3UQTXQT9hz6DFQpRb3n4W9SCJSIiIr1TgiUi0k1XC1ZG+LB1Df4iwm27BzokERERSSNKsEREuvESz2D5M0KHrWsOFZPbWTfQIYmIiEgaUYIlItJNrLMVgEBG1mHrOrNGURDbO9AhiYiISBpRgiUi0o2XSLCCmdmHr8sdQy6ttDc3DnRYIiIikiaUYImIdON1tgGQET48wQrmx4dqr99VNZAhiYiISBpRgiUi0s3BBCt0hAQrc8R4APZ9UjWQIYmIiEgaUYIlItJdJN5FMJR5+DNYeSPjCVZ7/c4BDUlERETSR58SLDO7x8w+NLP3zOw/zSyv27rbzGyrmW02s0v7HKmIyABwkfgoguHMnMPWFY2ZAEC0sXogQxIREZE00tcWrJeAac656cAW4DYAMzsDWAScCVwG/MLM/H08lohI/4u20eGC+PyHf2RlZmayl+H4mjXZsIiIiBxZnxIs59yLzrloYvEtoDTxfgHwhHOuwzm3DdgKzOnLsUREBoJF2+mwjF7XN/iLCLV+MoARiYiISDpJ5jNYS4A/Jt6XAN0fUqhOlImInNJ80TY66D3Bas4oJrdzzwBGJCIiIukkcKwKZvYyMOoIq77vnHs2Uef7QBR47EQDMLOlwFKAcePGnejmIiJJ5Yu102GhXtd3Zo2ioO3dAYxIRERE0skxEyzn3EVHW29mi4ErgM8651yiuAYY261aaaLsSPt/CHgIoLKy0h2pjojIQPHFOogcJcHycscwvL6FtuYDZOYMG8DIREREJB30dRTBy4DvAF90zrV2W7UCWGRmITMrAyYBb/flWCIiAyEQayfi6z3BCiQmG95bWzVAEYmIiEg66eszWPcBucBLZrbezB4EcM69DzwFfAC8ANzsnIv18VgiIv3O7x09wcoqjDfOH9i9baBCEhERkTRyzC6CR+OcO+0o6+4G7u7L/kVEBlrQ66AtMLzX9cNHlwHQqsmGRURE5AiSOYqgiEjaC3qdxI7SgnVwsuFYoxIsEREROZwSLBGRboKuHRcI97o+nJlNA8PwNWmyYRERETmcEiwRkW7Crg0XzD5qnXp/EaG23QMUkYiIiKQTJVgiIgnOOXJdK7FQ789gATSHihnWocmGRURE5HBKsEREEtpbWwhZBHeMBKsjazSFXt0ARSUiIiLpRAmWiEhCy/56ACzz6AmWl1vCMFpobd43AFGJiIhIOlGCJSKS0NoUT7B8WflHrRc8ONnwrqr+DklERETSjBIsEZGEjqYGAAJZeUetlzliPAAHdlf1c0QiIiKSbpRgiYgkdDY3AhDMPnoLVv6oCQC01u/o75BEREQkzSjBEhFJaE90EczNH3HUeiPGxFuwvMbqfo9JRERE0osSLBGRhIMtWHnHSLBC4Sz2koevuWYgwhIREZE0ogRLRCQh2hJPsHKHFx6zboO/iHCrJhsWERGRnpKWYJnZ35uZM7MRiWUzs381s61m9p6ZnZWsY4mI9Ad/6x4OkI0vI3zMui2hYoZ1arJhERER6SkpCZaZjQUuAbo/8f05YFLitRR4IBnHEhHpL5ltn9DgO3brFUBHtiYbFhERkcMlqwXrZ8B3ANetbAHwqIt7C8gzs9FJOp6ISNLlROo4kFF0XHXdsBJyaaP5QEM/RyUiIiLppM8JlpktAGqcc+8esqoE2NltuTpRduj2S81stZmtrqvTt8Eikjp50XraQsXHVffgZMP1u7b1Z0giIiKSZgLHU8nMXgZGHWHV94HvEe8eeFKccw8BDwFUVla6Y1QXEekXnZ2dFLhGPso9vob2rO6TDZ8+qx8jExERkXRyXAmWc+6iI5WbWTlQBrxrZgClwFozmwPUAGO7VS9NlImInHJqa6oYb46MRMvUseQlJhtu12TDIiIi0k2fugg65zY454qdcxOccxOIdwM8yzm3G1gB3JAYTXAusN85V9v3kEVEkq9xxyYAskZPPq76I0ZPwHNGbJ8mGxYREZFPHVcL1kl6Hvg8sBVoBW7qx2OJiPRJx+4PASgcP+246meEQtRZHv4mfW8kIiIin0pqgpVoxTr43gE3J3P/IiL9xe39Cy0uzIjR4497mwZ/EZntmmxYREREPpW0iYZFRNJZ1v6t1AZLMd/xfyw2Z4wgJ1Lfj1GJiIhIulGCJSJDnvM8xnX8hX3Dpp7Qdu3hEQyPaR4sERER+ZQSLBEZ8nZVbSHPmomNnnFC23lZxeRzABft6J/AREREJO0owRKRIa/6/ZUAFE85+8Q2zIlPD9hUr+ewREREJE4JlogMed62N2khzPipJ5ZgBfLiCdaBup39EZaIiIikISVYIjLkjWlczceZ0/EFM05ou3D+GABa6jWHuoiIiMQpwRKRIW3vru2Md9W0jPnrE942d0QpAB37NBeWiIiIxCnBEpEhbce6FwHIP/OiE942r6gEAO+AnsESERGROCVYIjKkxT5+kyaXycTyE2/Bys/Npt7lQrMSLBEREYlTgiUiQ9roxnfYmllBIBg84W39PqPB8gm21fVDZCIiIpKOlGCJyJBVv6uKUm8XrSXnnPQ+DgQKyezYm8SoREREJJ31OcEys2+a2Ydm9r6Z/bRb+W1mttXMNpvZpX09johIsm1f8wIAI6Z99qT30ZpRSG6kPlkhiYiISJoL9GVjM7sAWABUOOc6zKw4UX4GsAg4ExgDvGxmk51zsb4GLCKSLN62N9jvsplYPvek99GZWUxeayM4B2ZJjG5gOc+jvq6Whl3baKrbQWdDNbR8Au37sc4WgtFmMmKt+FwUnAfOwwz8ODzzE7MAMQvi+YJdPz0L4vmDOF8Q5wuAL4D5/GB+zBd/4fPj8wUwvx9nPhx+XOLv6FxXdD2WDUfPNZ+uPLjcvQ6H1OFodQ4tO2TxuLYRGWC+jCxmfOlbhEKZqQ5FROhjggV8Dfixc64DwDm3J1G+AHgiUb7NzLYCc4A/9/F4IiJJM6pxLR9lVXBW4OQ/CmNZxQTro7jWBiy7MInR9Z8DTfvZseH/0fLxKqjbzPCWjymJbGeEtTGiWz3PGS0Wps2yaLdM2iyTmC8jnkiaDw8jBpjn4XethFyUgIviJ0Ig8T5AhCBRAkQJuBg+PPymhEQk2dbkFDLr8r9JdRgiQt8TrMnAeWZ2N9AO/INz7h2gBHirW73qRNlhzGwpsBRg3LhxfQxHROT47Nm9k1JXS/WYa/q0H1/uSABaG2rIPkUTrIa9e/j47eeJfvwGBY3vUhbdxjSLdyioJ4/dofF8kPc5KJxIqGAcucXjyR81nmEjxpAbzCA32QE5h/NixGJRotEokWiEaDSGeTFwsUTrWLwVy0i0CvoSy4nFrvJuhQfLuhoSj9iieEjZcdU5xvpe9yPS/6LRGL6fnYm3bSWgBEvkVHDMBMvMXgZGHWHV9xPbFwBzgdnAU2b2VycSgHPuIeAhgMrKSn2tKSIDYtu61ygGRkw9r0/7CeaNAeDA3hqyx05PQmR95zyPjzf+mdrVK8jf9SZTIpuoNI8WF6YqfDrrx9xAuGwuY6adR2FxCQOeFpph/gABf4BABoQH+vgig8y6cDmjGt9JdRgiknDMBMs51+vsm2b2NeD3zjkHvG1mHjACqAHGdqtamigTETklRKpW0en8TCif16f9ZBbEG+fbGlL8Eecc2z54h0/+/DilNS8w0dUyEdgamMTacTeRX/E5yirO58xgRmrjFJGkaxp1NjO3/5wDe6oZVlya6nBEhry+dhF8BrgAeM3MJgMZwF5gBfC4md1LfJCLScDbfTxWSjjPw3wazV5ksMlvWMf2jElMCmX1aT+5I+ItWJ2NqZlseNeOj6h6+SFKqp+jzNvJOGd8EJ5BzaSlTP7MNZymmy2RQa94+kWw/edsfvsFZl+hboIiqdbXBOsR4BEz2wh0AjcmWrPeN7OngA+AKHBzOo4g+OGqF/FevpP86x5m9ITTUx2OiCRJe3sbEzu3sGH0wj7vq7CgkBYXwmuqTUJkxycS6eS9136LrXuUitZVjDHH+xnlrJp4AxPn/3fKRyqpEhlKJlfMY99/5eDb/AdQgiWScn1KsJxzncD1vay7G7i7L/tPtfYDdUzs/AiWzeedGbcz6wtfw+dXa5ZIutu2cRVTLUJwwskPz35QQXYGO10evpY9x67cR7uqNlP10oNMrHmGWTSwlzzWjF3M+Iu/ypnj9SWQyFDlCwR5v+ASKuv/i7YDDWQOK0h1SCJDWl9bsAa1GRdfR81plRx4/EZmr/8ef9n4K1rO+Q7l5y/E7/enOrykcc7heR7RaCexaIRoNIqLRojGonjRKM6L4fDi0/w4h8PhDs454znAxdfhcM5LTDVzsI6LjxhGYgqag2X9Jvmje/XH4GB93mWvQSU/WOuHP0DvuxyYkdj2vfsHAErLz+/zvgJ+H42+AvLa6vq8ryOJdHaw4dUn8a//NeVtaxgFvJ81m91n3ci0+dcwR89UiQgwbO4NhJ7/PWtfXsZZV/5dqsM5dTiH86LEIh1EoxGiMY9YNEokGsNzHnhe4j4lhvPic/w5L/4yEu+dF7+dIX7P1HU7g0vc0Rzt/67e15nvZP7Ps6PemLgjHO9E/xs/qahO4l7hRLZw/jAFo8eTHUqP1MWcO3UG7qusrHSrV69OdRiH8aJR1j73b5Ssu5fR7KWWIraNuoysMy5h8lnnk5UzPPnH9BytnVFaWltpad5Pe0sTHS0HaG9rItLWRLStmWh7M15HC3Q244u24ou0EYi14I+2EYy1EfTayPDaCHlthLx2wq6NDCL4XQw/8ZcPjwAePs1LI0NMrRUx+gdbk7KvN+7+PJPYwejvb0zK/gBqPtrIjlf+jUm7VjCCfeyhgG1jF1J2yVKKx05O2nFEZHBwnse2/zkDA8Z/by2+PszvN9Cc53GguYmmxj207auno6mOzuZ6Yi37iLY34zpbINKCL9KCL9KKP9pKMNbada/j86IEXGdivr1oYu69CEEXJYOo7nEGgddjFTRf/QRXTB+T6lB6MLM1zrnKQ8vT5+pLIV8gQOWCm4lctoR1ry4nsP43zK59nODu3+C9Yuz0jWJvaBzRrCKi4QJcOB9/IAi+ADH84GL4Yx0Q68BF2vEi7Vi0HV+0FX+klUCsLf5B4bXHkyHXThbxV455xx1nFD9thOmwMO2+TDotTKc/k45AAc2BLKL+LJw/A+cLYj4/zhcAXwDMH//pC4DPj/n84A90lZn5cGafzjtjRs9vUOLvrft7i3+L0vWNRtc28Tr90U5x5I/PPn6ontDmA/gBPkBfjLiDX9kNlAH8wqdw4llJ21dnuJhhTev6vJ/2thY2vvIYmRv+gzM73mWk87Ex+2xqZi1m2vkLKQ4EkxCtiAxG5vNRP+vbzH7n71j/h/uY8aVbUhuQczTvr6d+9w6a6nbS2rCL6L5dWPNugu11ZHXUkxndT7bXxHDXxHCLcLSvqyPOT5uFaaPbPY4vk5ZAPp4/hPMF8XwZOF8Azx/C8wVxviD4gzhfBvjj730+P2Y+fD6L3wvhS8yz5wPzgRnO/In7Fh/4fHS/t+l+BxNfPlKb0fH9fY6ystdSO8HtTqF2lB7cCd5cBMLFVJTm9U8w/UAtWCepramRj975Ewe2rSFr34cMa60mJ7aPfLefoPU+nkfMGR1k0GlB2i3+AdHhyyTizyQWyCIWyMILZEFGNmRk4Qvl4A9l4w/lEszMIZiVSygzl3D2MDKzcwll5WIZ2ZCRAwF1FRJJhVd/+V0urHkA77Zd+ELZJ7St8zy2bnibvW/+O2fsfZ7htFBjI9k+biETL1nKyJKyfopaRAabWMzjw/91LmOiO4jc9CLF48/ot2NFolH27NpBQ80WWj7ZRrShisCBanLaqsnv3E2hV0/YIodt10qIBiugKVBAWzCfWGg4XjgfyyrAn11AMKeQQE4h4WEjyBpWQFbucLJzhuMPhvrtdxE5WWrBSrLM3HymXbgIWNRzhXN0tB2gpbUDvCg+F8Pn92PBMP6MTMIZIbL8Pvo2MLSInEoyC8ZADdTt3snI4xxsovqj96l+41FG7XyOSd5OxrsAG4d9htCcxUw95wpKBtFzniIyMPx+HznXPACPXU502ZepWbSckikn11rvPI999bup27mFA7V/IbJ3G779O8lsqSG/cxfFXh0lFqWk2zb15LE3MJJd2VOpyhqN5Y4imDearIIShhePpXDUOLJy83QPJIOeEqxkMyOUNZw+Tq0jImkkZ8xk2AB7t67pNcFynsdHG1dRt+ZZCqtfYXJsC6XAB8FprDr9K0z97I2cVThqYAMXkUFn/OQKPrjiUUY/dwPZj1/M6qIryKy4klFTKskrGIk/EMB5Hh3trTTsqeFAXXW8+17jTlzjdkJNOxjWsYuR0d3kWzv53fbdwDDqA6Ooz5nC7tzP4iuYQGZRGXljTqNo7GkUhnMoTNlvLnLqUBdBEZE+amppxX5axpaRl3PW1x/pKq//pJrt616mc8urlDWsZCT1AGwJTKZx/OeZcP71jBw3KVVhi8ggtnvXDrY/9R0qGl/u6qrnOSOKnwyLHnGbVhfiE/9I9odKaM8phfwJhIv+irySSRSPm0RWTt4A/gYip77euggqwRIRSYLVP72cqa2r2Tj2OqypllH732WcqwHiNy1bcmYTmXgJZed8mRGjxqU4WhEZKpr2N/Dxutfo2P0hsaa94EXAH4JgGH9uMaG8MWQXjmH4yLEUFpVqvk+RE6AES0SkH1V9tBn7jy8z3tXQyDB2ZE6lbfTZ5E09n4kV5xLMCKc6RBEREUkiDXIhItKPJkycgrt9I21treRn5/R4bkFERESGDrUDi4gkifl8ZGbnpDoMERERSSElWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkySk1iqCZ1QHbUx3HIUYAe1MdhAwYne+hQ+d66NC5Hlp0vocOneuh5VQ83+Odc0WHFp5SCdapyMxWH2n4RRmcdL6HDp3roUPnemjR+R46dK6HlnQ63+oiKCIiIiIikiRKsERERERERJJECdaxPZTqAGRA6XwPHTrXQ4fO9dCi8z106FwPLWlzvvUMloiIiIiISJKoBUtERERERCRJlGCJiIiIiIgkiRKsozCzy8xss5ltNbPvpjoeSR4zG2tmr5nZB2b2vpl9O1FeYGYvmdlfEj/zUx2rJIeZ+c1snZn9IbFcZmarEtf3k2aWkeoYJTnMLM/MnjazD81sk5n9ta7twcnMbk18hm80s+VmFta1PXiY2SNmtsfMNnYrO+K1bHH/mjjv75nZWamLXE5UL+f6nsTn+Htm9p9mltdt3W2Jc73ZzC5NSdBHoQSrF2bmB+4HPgecAfw3MzsjtVFJEkWBv3fOnQHMBW5OnN/vAq845yYBrySWZXD4NrCp2/JPgJ85504DGoH/kZKopD/8C/CCc+50oIL4ede1PciYWQnwLaDSOTcN8AOL0LU9mCwDLjukrLdr+XPApMRrKfDAAMUoybGMw8/1S8A059x0YAtwG0Difm0RcGZim18k7ttPGUqwejcH2Oqc+9g51wk8ASxIcUySJM65Wufc2sT7JuI3YCXEz/GvE9V+DXwpJQFKUplZKXA58O+JZQMuBJ5OVNG5HiTMbDjwGeBhAOdcp3NuH7q2B6sAkGlmASALqEXX9qDhnHsDaDikuLdreQHwqIt7C8gzs9EDEqj02ZHOtXPuRedcNLH4FlCaeL8AeMI51+Gc2wZsJX7ffspQgtW7EmBnt+XqRJkMMmY2AZgJrAJGOudqE6t2AyNTFZck1f8BvgN4ieVCYF+3D25d34NHGVAH/CrRJfTfzSwbXduDjnOuBvjfwA7iidV+YA26tge73q5l3bcNbkuAPyben/LnWgmWDGlmlgP8DrjFOXeg+zoXn8NA8xikOTO7AtjjnFuT6lhkQASAs4AHnHMzgRYO6Q6oa3twSDx7s4B4Uj0GyObwLkYyiOlaHhrM7PvEH+14LNWxHC8lWL2rAcZ2Wy5NlMkgYWZB4snVY8653yeKPznYpSDxc0+q4pOkmQd80cyqiHf1vZD4Mzp5iW5FoOt7MKkGqp1zqxLLTxNPuHRtDz4XAducc3XOuQjwe+LXu67twa23a1n3bYOQmS0GrgCuc59O3nvKn2slWL17B5iUGI0og/jDdCtSHJMkSeIZnIeBTc65e7utWgHcmHh/I/DsQMcmyeWcu805V+qcm0D8On7VOXcd8BpwVaKazvUg4ZzbDew0symJos8CH6BrezDaAcw1s6zEZ/rBc61re3Dr7VpeAdyQGE1wLrC/W1dCSUNmdhnx7v1fdM61dlu1AlhkZiEzKyM+sMnbqYixN/ZpMiiHMrPPE392ww884py7O7URSbKY2bnAm8AGPn0u53vEn8N6ChgHbAeucc4d+oCtpCkzmw/8g3PuCjP7K+ItWgXAOuB651xHCsOTJDGzGcQHNMkAPgZuIv6Foq7tQcbM7gSuJd59aB3wN8SfxdC1PQiY2XJgPjAC+AT4AfAMR7iWE0n2fcS7ibYCNznnVqcgbDkJvZzr24AQUJ+o9pZz7quJ+t8n/lxWlPhjHn88dJ+ppARLREREREQkSdRFUEREREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUmS/w/nMFPYyL2jJAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
9False30.08850.0728bAP.soma.v0.0007596.05e-05
10False30.08850.0728Step1.soma.v0.0009694.11e-05
11False30.08850.0728Step3.soma.v0.0007041.59e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "9 False 3 0.0885 0.0728 bAP.soma.v \n", + "10 False 3 0.0885 0.0728 Step1.soma.v \n", + "11 False 3 0.0885 0.0728 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "9 0.000759 6.05e-05 \n", + "10 0.000969 4.11e-05 \n", + "11 0.000704 1.59e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACis0lEQVR4nOzdeXxU1f3/8ddnJntCEgg7QUAEZYuIgFixrl/FuqDVivtWa7W2Vb8utba16Lf226/1V1u1LdpqXYu4S+vSuqFiRQQFFHABDBDWEEhCINvMnN8f9yYOISuZZLK8n4/HPDL33nPP+dy5mWQ+c84915xziIiIiIiISOsF4h2AiIiIiIhIV6EES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJlohIB2NmQ83MmVlCvGOR7sHMlpvZ0fGOQ0SkK1CCJSIinZ6ZzTKzMv9RZWbVUcuvxDu+js45N8Y5Ny+WdZrZnWa23sxKzWytmd0Sy/pFRDoq042GRURiy8wSnHOhVuw/FPgKSGxNPd2Vmc0EDnDOXVDPtladm/bUmWKtj5kdCBQ453aZ2SDg38AvnHPPxTk0EZE2pR4sEZEYMLN8M/uJmS0DdplZgplNMbP/mFmxmS2NHoJlZvPM7H/NbKH/Df+LZtargbovNbOVZrbTzNaY2ffrbJ9uZkv8elab2TR/fZaZPWhmm8xsg5n9ysyCTRzHcDN708yKzGybmT1hZtlR27ab2QR/eaCZFdYcl5md5g81K/aPb1Sd1+cGM1tmZiVmNsfMUlr+SrdcA+fGmdkBUWUeNrNfRS2f4r+mxf45zGtmW0ebWYGZ3eK/fvlmdn7U9pPN7GP/XK33k8GabTVDQ79rZuuAN/31T5vZZv91e8fMxtSJ+09m9orfW/eemfU3s9+b2Q4z+8zMDmnma3R8c46xuZxznzvndkWtigAHNFReRKSrUIIlIhI75wInA9lAP+Al4FdAL+AG4Fkz6xNV/iLgMmAAEALuaaDercApQCZwKXB3VJIzGXgUuNFv95tAvr/fw369BwCHACcAlzdxDAb8LzAQGAUMBmYCOOdWAz8BHjezNOBvwCPOuXlmNhKYDVwL9AFeBv5hZklRdZ8NTAOGAXnAJfUGYDbVT2waekxt4hjqU3tumuoV8hOSh4DvAznA/cBcM0tuZlv9gd7AIOBi4AG/NwdgF955z/bjucrMTq+z/1F4r/2J/vIrwAigL/AR8ESd8mcDP/fbrATe98v1Bp4BftfMuOtlZjc3dj6asW8ZUACkA39vTSwiIp2BEiwRkdi5xzm33jlXDlwAvOyce9k5F3HOvQYsAr4VVf4x59yn/rf8vwDOrq+HyTn3knNutfO8jTfU6kh/83eBh5xzr/ntbHDOfWZm/fy2rnXO7XLObQXuBs5p7ACcc6v8uiqdc4V4H86Pitr+F2AV8AFeYvgzf9MM4CV/32rgLiAV+Ead12ejc2478A9gfAMxzHfOZTfymN/YMTQg+tw05QrgfufcB865sHPuEbzEZUoL2vuF/xq+jZdonw3gnJvnnPvEP1fL8JLSo+rsO9M/Z+X+Pg8553Y65yrxkt2DzSwrqvzzzrnFzrkK4Hmgwjn3qHMuDMzBS673mXPuN42dj6b2BXoAE4DHgJLWxCIi0hkowRIRiZ31Uc+HAN+p803/VLykpL7ya4FEvF6HPZjZSWa2wB+eV4yXONWUGwysrieWIX59m6Lavx+vF6RBZtbPzJ70hxSWAo/XE9NfgLHAvf6HfvB6vNbWFHDORfzjGxS13+ao57uBjMZiibH1TRepNQS4vs65G4x3jM2xo87QuLU1+5rZYWb2lj+0sgS4kr1f39pYzSxoZr8xb+hnKV/3TkbvsyXqeXk9y+35Ou/F/2LgYz+W2+IZi4hIe1CCJSISO9GzBq3H66GK/rY/3f9Gv8bgqOf7AdXAtugK/WFpz+L1CPXzewxexhvKV9PO8HpiWY/X69I7qv1M59yYespG+7V/HOOcc5l4PXE1bWFmGcDvgQeBmfb1dWMb8RKTmnLmH9+GJtrbi5kdaV/PAFjf48ima9lL3RmddgNpUcv9o56vB+6oc+7SnHOzm9lWTzNLj1reD+/1AW+I3FxgsHMuC5hF1OtbT6znAdOB44EsYKi/vu4+bca/nqzB89GCqhKo/3dVRKRLUYIlItI2HgdONbMT/V6IFH8ChNyoMheY2Wj/eqbbgWf8YV3RkoBkoBAImdlJeNdS1XgQuNTMjjOzgJkNMrODnHOb8IYS/j8zy/S3DTezusPR6uoBlAEl5s38dmOd7X8AFjnnLscb+jbLX/8UcLIfRyJwPV6C95+mXqi6nHPvOucyGnm829I667EEOM8/N9PYc5jeX4Ar/d4mM7N08yan6AG1E0s83ET9t5lZkp8MngI87a/vAWx3zlX418+d10Q9PfBexyK8hPDXLTjGmHDO/bqx81HfPv7v2/fNrKf/Gk4GrgbeaN/oRUTanxIsEZE24Jxbj9fzcAtecrQeL1mJ/rv7GN5EFJuBFODH9dSz01//FLAD7wP53KjtC/EnvsC7vuVtvu5JuggvQVvh7/sMew5RrM9teNfLlOAlULVTapvZdLxJKq7yV/03MMHMznfOfY7X23UvXi/cqcCpzrmqJtqLl2vwYiwGzgdeqNngnFsEfA+4D+91W8WeE3IMBt5rpO7N/n4b8SakuNI595m/7QfA7Wa2E7gV77w25lG8IYYb8M7jgqYOrAM5A2/46k68Lxzu9R8iIl2a7oMlIhIHZjYPeNw599d4xyLN58+KuBTI8yfzqLv9aLzzmlt3m4iIdA8J8Q5ARESks/B75EY1WVBERLotDREUEelmzGxWAxMWzGp6b+mMzGy/Riaq2C/e8YmIdCUaIigiIiIiIhIj6sESERERERGJkQ51DVbv3r3d0KFD4x2GiIiIiIhIgxYvXrzNOdenvm0dKsEaOnQoixYtincYIiIiIiIiDTKztQ1t0xBBERERERGRGFGCJSIiIiIiEiNKsERERERERGKkQ12DVZ/q6moKCgqoqKiIdyjSAaSkpJCbm0tiYmK8Q5Eu7M1/v8jH60u49tILCQYs3uGIiIhIJ9LhE6yCggJ69OjB0KFDMdMHne7MOUdRUREFBQUMGzYs3uFIF3bsfy7iWOCjr45nwvCB8Q5HREREOpEOP0SwoqKCnJwcJVeCmZGTk6PeTGlT0TdfL10yN46RiIiISGfU4RMsQMmV1NLvgrS1svKvE/hQ4ZdxjEREREQ6o06RYImItJeSwo21z1N2NniLCxEREZF6KcFqBjPj+uuvr12+6667mDlzZvwCinL00Uc3enPm008/nSlTpuyxbubMmQwaNIjx48czduxY5s7VMCiRGjuLNtQ+zy5fH8dIREREpDNSgtUMycnJPPfcc2zbti2m9TrniEQiMa0zWnFxMYsXL6akpIQ1a9bsse26665jyZIlPP3001x22WVtGodIZxIq9hKsrxL2p3940x7XZImIiIg0RQlWMyQkJHDFFVdw991377WtsLCQM888k0mTJjFp0iTee+89wOsluuuuu2rLjR07lvz8fPLz8znwwAO56KKLGDt2LOvXr+fGG29k7NixjBs3jjlz5gAwb948jj76aM466ywOOuggzj///AY/6D322GO1vVELFy6sXf/cc89x6qmncs455/Dkk0/Wu++oUaNISEjYI3m8+eabGT16NHl5edxwww0A5Ofnc+yxx5KXl8dxxx3HunXrALjkkku46qqrmDJlCvvvvz/z5s3jsssuY9SoUVxyySW1dV511VVMnDiRMWPG8Mtf/nKvOEpKShgyZEhtordr1y4GDx5MdXV1vXGLtJld3ntha48x9LYSthXvjHNAIiIi0pl0+Gnao932j+Ws2Fga0zpHD8zkl6eOabLc1VdfTV5eHjfddNMe66+55hquu+46pk6dyrp16zjxxBNZuXJlo3V9+eWXPPLII0yZMoVnn32WJUuWsHTpUrZt28akSZP45je/CcDHH3/M8uXLGThwIEcccQTvvfceU6dO3au+3bt3s2TJEt555x0uu+wyPv30UwBmz57NrbfeSr9+/TjzzDO55ZZb9tr3gw8+IBAI0KdPHwCKiop4/vnn+eyzzzAziouLAfjRj37ExRdfzMUXX8xDDz3Ej3/8Y1544QUAduzYwfvvv8/cuXM57bTTeO+99/jrX//KpEmTWLJkCePHj+eOO+6gV69ehMNhjjvuOJYtW0ZeXl5tHFlZWYwfP563336bY445hn/+85+ceOKJut+VtLtIVTkA4eyhsAN2bF1Pn55N/40QERERAfVgNVtmZiYXXXQR99xzzx7rX3/9dX74wx8yfvx4TjvtNEpLSykrK2u0riFDhtReFzV//nzOPfdcgsEg/fr146ijjuLDDz8EYPLkyeTm5hIIBBg/fjz5+fn11nfuuecC8M1vfpPS0lKKi4vZsmULX375JVOnTmXkyJEkJibWJl4Ad999N+PHj+eGG25gzpw5tbPzZWVlkZKSwne/+12ee+450tLSAHj//fc577zzALjwwguZP39+bV2nnnoqZsa4cePo168f48aNIxAIMGbMmNqYn3rqKSZMmMAhhxzC8uXLWbFixV7HMWPGjNoevCeffJIZM2Y0+jqKtIVIdSUASX32B2DntoJ4hiMiIiKdTKfqwWpOT1Nbuvbaa5kwYQKXXnpp7bpIJMKCBQtISUnZo2xCQsIe1zVF37spPT29We0lJyfXPg8Gg4RCoXrL1Z263Mx46qmn2LFjR+0NeUtLS5k9ezZ33HEH4F2DVTP8r27cCxcu5I033uCZZ57hvvvu480332xWnIFAYI+YA4EAoVCIr776irvuuosPP/yQnj17cskll9R7L6vTTjuNW265he3bt7N48WKOPfbYRtsVaQuu2uvByhpwAAAVUZNeiIiIiDSl1T1YZjbYzN4ysxVmttzMrvHX9zKz18zsS/9nz9aHG1+9evXi7LPP5sEHH6xdd8IJJ3DvvffWLi9ZsgSAoUOH8tFHHwHw0Ucf8dVXX9Vb55FHHsmcOXMIh8MUFhbyzjvvMHny5BbFVdPrM3/+fLKyssjKymL27Nm8+uqrtdd9LV68uMHrsKKVlZVRUlLCt771Le6++26WLl0KwDe+8Y3a/Z944gmOPPLIZsdXWlpKeno6WVlZbNmyhVdeeaXechkZGUyaNIlrrrmGU045hWAw2Ow2RGIlEqok5AL0zR0OQKhkYxN7iIiIiHwtFkMEQ8D1zrnRwBTgajMbDdwMvOGcGwG84S93etdff/0eE0Lcc889LFq0iLy8PEaPHs2sWbMAOPPMM9m+fTtjxozhvvvuY+TIkfXWd8YZZ5CXl8fBBx/Msccey5133kn//v1bFFNKSgqHHHIIV155JQ8++CD5+fmsXbt2j+nZhw0bRlZWFh988EG9dXzrW99i48aN7Ny5k1NOOYW8vDymTp3K7373OwDuvfde/va3v5GXl8djjz3GH/7wh2bHd/DBB3PIIYdw0EEHcd5553HEEUfUbrv11lv3mCZ+xowZPP744xoeKPFTXUElifTo1Z9qglC2Jd4RiYiISCdisZ6C2MxeBO7zH0c75zaZ2QBgnnPuwMb2nThxoqt7T6eVK1cyatSomMYonZt+J6QtLfrTdxm+5V/0vK2ArbcNZ1XGoXzj+qfiHZaIiIh0IGa22Dk3sb5tMZ3kwsyGAocAHwD9nHOb/E2bgX4N7HOFmS0ys0WFhYWxDEdEpMUsXEmVebNX7kzoRUplbO9/JyIiIl1bzBIsM8sAngWudc7tMZe687rJ6u0qc8494Jyb6JybWDNVuIhI3IQqqSIJgN3JfcmsVoIlIiIizReTBMvMEvGSqyecc8/5q7f4QwPxf26NRVsiIm0pEK4kZF6CVZ3Wh16R7Q3e5FtERESkrljMImjAg8BK59zvojbNBS72n18MvNjatkRE2logUkko4A0RdBkD6GU7Kd65K85RiYiISGcRix6sI4ALgWPNbIn/+BbwG+C/zOxL4Hh/WUSkQwtG9WAlZHkzem7fopsNi4iISPO0+kbDzrn5gDWw+bjW1i8i0p6CkSrCAe+G2Sk9BwJQtm09jDgonmGJiIhIJxHTWQS7shdeeAEz47PPPmuwTH5+PmPHjo1Zm5dccgnPPPNMg9uvvfZaBg0aRCQSqV338MMP06dPH8aPH8/o0aP5y1/+ErN4RLqDhEgV4aDXg5XROxeA3dt1s2ERERFpHiVYzTR79mymTp3K7Nmz690eCoVa3UY4HG522UgkwvPPP8/gwYN5++2399g2Y8YMlixZwrx587jlllvYskU3ShVprgT3dQ9Wdl8vwaou2RzPkERERKQTUYLVDGVlZcyfP58HH3yQJ598snb9vHnzOPLIIznttNMYPXo04CVa559/PqNGjeKss85i9+7dALzxxhsccsghjBs3jssuu4zKykoAhg4dyk9+8hMmTJjA008/vVfbr7/+OhMnTmTkyJH885//3KPtMWPGcNVVVzWY9PXt25fhw4ezdu3a2nX33HMPo0ePJi8vj3POOQeA7du3c/rpp5OXl8eUKVNYtmwZADNnzuTiiy/myCOPZMiQITz33HPcdNNNjBs3jmnTplFdXQ3A7bffzqRJkxg7dixXXHHFXjOuRSIRhg4dSnFxce26ESNGKPGTDinRVRHxE6z0ngOIOMPt1O+qiIiINE+rr8FqV6/cDJs/iW2d/cfBSY3Pv/Hiiy8ybdo0Ro4cSU5ODosXL+bQQw8F4KOPPuLTTz9l2LBh5Ofn8/nnn/Pggw9yxBFHcNlll/GnP/2JH/7wh1xyySW88cYbjBw5kosuuog///nPXHvttQDk5OTw0Ucf1dt2fn4+CxcuZPXq1RxzzDGsWrWKlJQUZs+ezbnnnsv06dO55ZZbqK6uJjExcY9916xZw5o1azjggANq1/3mN7/hq6++Ijk5uTbh+eUvf8khhxzCCy+8wJtvvslFF13EkiVLAFi9ejVvvfUWK1as4PDDD+fZZ5/lzjvv5IwzzuCll17i9NNP54c//CG33norABdeeCH//Oc/OfXUU2vbDAQCTJ8+neeff55LL72UDz74gCFDhtCvX733nhaJq0RXRcQfIkgwgWLLJLhbd5kQERGR5lEPVjPMnj27trfnnHPO2aPHaPLkyQwbNqx2efDgwRxxxBEAXHDBBcyfP5/PP/+cYcOGMXLkSAAuvvhi3nnnndp9ZsyY0WDbZ599NoFAgBEjRrD//vvz2WefUVVVxcsvv8zpp59OZmYmhx12GP/6179q95kzZw7jx4/n3HPP5f7776dXr1612/Ly8jj//PN5/PHHSUjw8uv58+dz4YUXAnDsscdSVFREaal3r+iTTjqJxMRExo0bRzgcZtq0aQCMGzeO/Px8AN566y0OO+wwxo0bx5tvvsny5cv3Oo4ZM2YwZ84cAJ588slGj1kknpKoJhJMrl0uTehFckVhHCMSERGRzqRz9WA10dPUFrZv386bb77JJ598gpkRDocxM377298CkJ6evkd577ZgDS/Xp24dTdX3r3/9i+LiYsaNGwfA7t27SU1N5ZRTTgG8ZOa+++6rt76XXnqJd955h3/84x/ccccdfPJJ4z2CycneB81AIEBiYmJtPIFAgFAoREVFBT/4wQ9YtGgRgwcPZubMmVRUVOxVz+GHH86qVasoLCzkhRde4Oc//3mj7YrES5KrwgVTapd3J+WQUVEUx4hERESkM1EPVhOeeeYZLrzwQtauXUt+fj7r169n2LBhvPvuu/WWX7duHe+//z4Af//735k6dSoHHngg+fn5rFq1CoDHHnuMo446qlntP/3000QiEVavXs2aNWs48MADmT17Nn/961/Jz88nPz+fr776itdee632eq+GRCIR1q9fzzHHHMP//d//UVJSQllZGUceeSRPPPEE4F3b1bt3bzIzM5sVX00y1bt3b8rKyhqc9dDMOOOMM/jv//5vRo0aRU5OTrPqF2lvSVTjEr7uwapK6Ut2eHscIxIREZHORAlWE2bPns0ZZ5yxx7ozzzyzwYklDjzwQP74xz8yatQoduzYwVVXXUVKSgp/+9vf+M53vsO4ceMIBAJceeWVzWp/v/32Y/LkyZx00knMmjWLSCTCq6++ysknn1xbJj09nalTp/KPf/yj3jouv/xyFi1aRDgc5oILLmDcuHEccsgh/PjHPyY7O5uZM2eyePFi8vLyuPnmm3nkkUea+epAdnY23/ve9xg7diwnnngikyZNqt02a9YsZs2aVbs8Y8YMHn/8cQ0PlA4rEqom0cIQlWCF0/uQQzHlla2fKVRERES6Pqs741s8TZw40S1atGiPdStXrmTUqFFxikg6Iv1OSFup2FVKym8H85/9r+EbF90OwJKnfs34Ff9HweXLyc3NjXOEIiIi0hGY2WLn3MT6tqkHS0TEV1VZ7j2J6sFK6jkQgOLCgniEJCIiIp2MEiwREV91hZdgWcLXk1yk9RwAwK7tG+MSk4iIiHQubZ5gmdk0M/vczFaZ2c37UkdHGsYo8aXfBWlLVZXeRDGBxK8TrMy+g71tO5RgiYiISNPaNMEysyDwR+AkYDRwrpmNbkkdKSkpFBUV6YO14JyjqKiIlJSUpguL7IOQP0TQohKs7D6DAAjv3ByXmERERKRzaev7YE0GVjnn1gCY2ZPAdGBFcyvIzc2loKCAwkLd6FO8hFsTDUhbCVV7CVYwKsEKpGRSQRJWtjVeYYmIiEgn0tYJ1iBgfdRyAXBYdAEzuwK4ArwpyetKTExk2LBhbRiiiIinpgcrkJT69UozdgR6kViuL3lERESkaXGf5MI594BzbqJzbmKfPn3iHY6IdGPhKu/G2YGkPYehliXmkFa1LR4hiYiISCfT1gnWBmBw1HKuv05EpMOpSbASonuwgMrk3vQIbY9HSCIiItLJtHWC9SEwwsyGmVkScA4wt43bFBHZJ5Gaa7DqJFihtL7kuB2EwpF4hCUiIiKdSJsmWM65EPBD4F/ASuAp59zytmxTRGRf1fZgJe+ZYNGjH9m2i+0lpXGISkRERDqTtp7kAufcy8DLbd2OiEhruVDNEME9r8EKZg0EYMeW9fTtld3eYYmIiEgnEvdJLkREOopIVSUASXV6sFJyvEtJywrXtntMIiIi0rkowRIR8dX0YCWmpO2xvkcfL8Gq2l7Q7jGJiIhI56IES0TEV5NgJSXvmWBl9x8KQLhEk6CKiIhI45RgiYjUCFUQdkZyUtIeq1MyelJGKsGdm+IUmIiIiHQWSrBERHwWqqSSJJISgnttKwr0Jql8cxyiEhERkc5ECZaISI1wJZUkEgjYXpt2JvUhvXJrHIISERGRzkQJloiIz0KVVJFY77aK1P70DBW2c0QiIiLS2SjBEhHxBcPlVFlSvdsiGQPp7XZQUVnZzlGJiIhIZ6IES0TEFwyVU2kp9W/rOYigOQo3rWvnqERERKQzUYIlIuILhhtOsFL9mw3v2JzfjhGJiIhIZ6MES0TElxgupzpYf4KV2W8oALsK1YMlIiIiDWtVgmVmvzWzz8xsmZk9b2bZUdt+amarzOxzMzux1ZGKiLSxhHAFoUD9CVbvgcMAqN5R0J4hiYiISCfT2h6s14Cxzrk84AvgpwBmNho4BxgDTAP+ZGZ731hGRKQDSYqUEwqm1rstpUcO5SRB6cZ2jkpEREQ6k1YlWM65fzvnQv7iAiDXfz4deNI5V+mc+wpYBUxuTVsiIm0tyVUSCqbVv9GM7YHeJO/WzYZFRESkYbG8Busy4BX/+SBgfdS2An/dXszsCjNbZGaLCgt1jxkRiZ9kV0Ekof4eLIDSpL6kV25px4hERESks2kywTKz183s03oe06PK/AwIAU+0NADn3APOuYnOuYl9+vRp6e4iIjGTSiUuseEEqzK1Pz3D29oxIhEREelsEpoq4Jw7vrHtZnYJcApwnHPO+as3AIOjiuX660REOqZwNYmEcIkNDBEEwj0G0nf7a5SVV5KRmtyOwYmIiEhn0dpZBKcBNwGnOed2R22aC5xjZslmNgwYASxsTVsiIm0pUlnmPUlMb7BMsOdgEi3M1o1r2ykqERER6Wxaew3WfUAP4DUzW2JmswCcc8uBp4AVwKvA1c65cCvbEhFpM5XlXoJlyQ33YKX2HgpAyeav2iMkERER6YSaHCLYGOfcAY1suwO4ozX1i4i0l/LdZaQCgaSGE6ysAd69sHYXqgdLRERE6hfLWQRFRDqtqt07AQgkNTxEMMe/2XB4x7p2iUlEREQ6HyVYIiJA+S4vwUpKzWiwTGJaNjtJw0oL2issERER6WSUYImIAJVl2wFIzujVaLntCX1JLd/UHiGJiIhIJ6QES0QEqPYTrJTMnEbL7UzuT6ZuNiwiIiINUIIlIgKEd+0AIC2zd6PlqtIH0SdSSCTiGi0nIiIi3ZMSLBERwO32erAyshvvwSI7l55WRuGO7e0QlYiIiHQ2SrBERAAqiil1afRIS2m0WHKv/QDYtmFNe0QlIiIinYwSLBERIFBZTCkZBAPWaLmMfkMB2Lklv+2DEhERkU5HCZaICJBQWUJZoEeT5XoNHA5A5TbdbFhERET2pgRLRARIqi6hIqHpBKtH78GEMVzJ+naISkRERDobJVgiIkBqqITqpOymCwYTKLIcEss2tnlMIiIi0vnEJMEys+vNzJlZb3/ZzOweM1tlZsvMbEIs2hERaSs9I9upSu3TrLIlSf3IqNjcxhGJiIhIZ9TqBMvMBgMnAOuiVp8EjPAfVwB/bm07IiJtJVJeQjoVhNL6N6t8eeoAeoZ0s2ERERHZWyx6sO4GbgKi77o5HXjUeRYA2WY2IAZtiYjE3I7N3oQVgayBzSof7jGIfq6IsoqqtgxLREREOqFWJVhmNh3Y4JxbWmfTICD6CvACf52ISIdT5CdY6X0GN6t8sOdgki3E1k2a6EJERET2lNBUATN7Hahv3MzPgFvwhgfuMzO7Am8YIfvtt19rqhIR2Se7Cr1EqWf/Ic0qn9bHK7d90xr2Hza8zeISERGRzqfJBMs5d3x9681sHDAMWGpmALnAR2Y2GdgARH8VnOuvq6/+B4AHACZOnOjqKyMi0paqtnuXkPYdOKxZ5bMG7A/A7q35bRWSiIiIdFL7PETQOfeJc66vc26oc24o3jDACc65zcBc4CJ/NsEpQIlzblNsQhYRia2EkrVspSfpGU3fBwug1wCv1yq8Q0MERUREZE9N9mDto5eBbwGrgN3ApW3UjohIq/XYvZYtCYPo28zywbRsdpNCoLTejnkRERHpxmKWYPm9WDXPHXB1rOoWEWlLOZUb+DLrG83fwYyihL6k7NbNhkVERGRPMbnRsIhIZ1WyYzs5FGM5+7dov7Lk/mRV6V5YIiIisiclWCLSrRV88REAaYPGtGi/qvRB9IkUEo5obh4RERH5mhIsEenWStcuAaDfiAkt2zErlxwrZcv2HbEPSkRERDotJVgi0r1tWcEuUuiTO6JFuyXlePft27ZhTVtEJSIiIp2UEiwR6dYySz+nIHEYFgi2aL8efb2bDZdtXdsWYYmIiEgnpQRLRLotF4mQW/UVpZkjW7xv9kBvUoyqIiVYIiIi8jUlWCLSbW1av4Ys2wX9WjbBBUBG7/2IOIOSgjaITERERDorJVgi0m1tWeXNIJg55OCW75yQzPZAT5LKdLNhERER+ZoSLBHptsoLlgIw6KBJ+7R/SWIfUiu2xjIkERER6eSUYIlIt5W0bQWbrQ8ZWTn7tP/u5L5khQpjHJWIiIh0ZkqwRKTbytm1ii0pw/d5/1D6APpEthEKR2IYlYiIiHRmSrBEpFuqrNjN4HABu3uN2uc6LGsQPaycbduLYhiZiIiIdGatTrDM7Edm9pmZLTezO6PW/9TMVpnZ52Z2YmvbERGJpYIvlpBgERIHjtvnOhJ75QJQtCk/RlGJiIhIZ5fQmp3N7BhgOnCwc67SzPr660cD5wBjgIHA62Y20jkXbm3AIiKxUPyVN4Ng7+ET9rmOjD77AbBz6zpg3ybKEBERka6ltT1YVwG/cc5VAjjnaqbTmg486ZyrdM59BawCJreyLRGRmAlt+pQKl8ig4WP3uY6e/YcBUFm0PlZhiYiISCfX2gRrJHCkmX1gZm+bWc1XuIOA6E8cBf66vZjZFWa2yMwWFRZqNi4RaR8ZxZ+zLmEIiYmJ+1xHjz7eEEFXonthiYiIiKfJIYJm9jrQv55NP/P37wVMwRsf85SZ7d+SAJxzDwAPAEycONG1ZF8RkX01oGI1X2Qd0ao6LDGVHZZFcNemGEUlIiIinV2TCZZz7viGtpnZVcBzzjkHLDSzCNAb2AAMjiqa668TEYm7ndsK6EUJ1X1Gt7qu4oQ+pJZviUFUIiIi0hW0dojgC8AxAGY2EkgCtgFzgXPMLNnMhgEjgIWtbKvdhaoqCVVXxzsMEYmxDauWAZCRO6bVde1K7ktW9damC4qIiEi30NoE6yFgfzP7FHgSuNh5lgNPASuAV4GrO+MMgoue/g3r/3ciS+c9i4voRqIiXUXpxi8B6Lvfvt8Dq0ZFjyHkRjYSDne6P3EiIiLSBlqVYDnnqpxzFzjnxjrnJjjn3ozadodzbrhz7kDn3CutD7X9pfQdQZIr5+B5l/HVr8bzwVP/R3GRJuIQ6ezCRWsIuQD9Bg9vfWW9DyTVqti4dlXr6xIREZFOr1X3werqxv/XeVQdeQYfvXI/PT59lMNW/Jqq5f/HJ6njKRt6AoPG/xeDR47HAsF4h9omXCRCKBwiHKomVF1FOBQiHKoiEqomHKomHA4RCVURCVcTDocJRxw4BzhcxAERXMThcOAiOOdtdzVlnINIGAf++oi//76wFhStv2zDLbeg7kbqb4hzzS/f4leniVhaPatMC481+rVs+lS38HVsQSyp2z5lS6APgxKTWtRGfbL3GwOfwJY1Sxm8/4Gtrk/2jQuHqKysoLKqinB1JZFQNSH/71UkVEkkVEU4VE0kVI0LVROJVBOJOMLhCJFIhEgkXPu3Cby/VVb7HMBhNX/HWsKs9jfZon+n9/p1tXrfTjXromuhdl095f21zqL33Xv71yst+ukeJaPbb6hcbVT17NsU19z3eLPf2zEu1+K/b41r/t+oeB1HM89bzI+judXF53Vp9u9p3H6fu4dQSi+GDD+ItKTOkbp0jijjKCkllQlnXIub/mNWL5vP1gVPMnjLm4z77H/hs/+llDS+Sh5FRfYIrPcBJPUdQXbfwfTuN4j07D6tTr5cOERV5S4qy8upqthFVUU5VZW7CFWUE6rcTahyN+Gq3YSrKghX7cZVV+Cqy6G6HEIVWKgcC1VioQoCkUqC4QoSwpUEI5UkRipJdN4jyVWTQDVBFyGBEEEiJFqYRGDfJ7EW6biWph5W/70jWmjgAXkAlBd8ApzdZPltG9aQ0asfKanpMWi9cwtV7qZ4xzZ27iiifGcRVWXbCe0uJry7GMqLoaKEQFUpgepdBELlBMMVJIbLSXSVJEcqSHYVpFBJiqskyUKkAClxPiYREYm9x0PHUfn9hxg/ODveoTSLEqxmskCA4eO/yfDx3wTn2LBmOeuXvkWgYCG9Sz5h5ObnSN1SBcu/3ifkApRaOlUkEwokUWVJVJMEBgG8b0fN/1YUFyHoQiS5SpKoJtlVkUwViRYmGUjeh5irXJAqkqi0JKpIosqSqQ4kUW3JVAeSKU/MJBJMIhxMwQVTcMFECCZCIGGPhwskYMGa5UQskADBRCwYxIIJWCCRQCCAWcD7ttZqvjoN1D43M5wZAfNHpZphFqz9dteZYeaXb/G3Ns3/RtmaLFu37ZZ9W910/XWr/7p8877U2vf6G2P7VHfLije0Q4PH3eLezJb9Hux/0OEtrL9+aT37s94Gkrn5/QbLuEiE5e+/Smj+7xlf/gELB13M5O/dE5P2O5rq6iqKNn5FyeavKNu+iaqSLVBWSKC8kKSKIlKrtpMR2kG2KyaDcnrjTT1bnwqXSJmlUWGpVAVSCAVSqAqmUhnMpiSYSjiYQjghDZeQCokpWEIygWAilpDo/a2q+ZsWTMKCXy8HgolYMIFgIEAgECAQDBCwAIFAzd+fmr9h5n9bb1DztwuDQDP/RjlX+2sZ/dvp/CX39YqoX/e9f4+/3uRqn9fXkxZdh6uv4b3KRcVSbzlXp9Se9dXXhnPN/FvW7Pd3c/+GNbO+uLXbzGabXbCZ8cX4eJtdrkX/e9q/3Y7+eyV7OyBtIMNyOs8Xk0qw9oUZg4aPZdDwsbWrwuEwWzetZUfBZ5QVbaSieAuB3dsIVhbX9iQlRCpJdFU4jIgDR4AIXvJhgQCRQBKRYLKf8CQTSUiBYDIkpkJCMoHEVCwxhWBSGsHkVIJJqSQkp5HoP5JSa36mk5KaRlJiEklmZMTvlRLpFjb3PpwxW//Jrp0lpPfIql1fsauUFf9+iMxPH2VseDU7yGSryyZz2+I4RrvvnHNsLS1nU0E+pZu+pGrbWqxkLck7C8is3EhO9Wb6uW30t8geN0+MOKPEelAcyGZXQi82p49iXUoOLq03wfReJGX0JDG9J0kZPUnpkUN6Zi/Ss3JISU0jJcbDtERERNqaEqwYCQaD9M3dn765LbrPsoh0AT0mn0/aS8/y4eM3cNC3f8r6zxaze+kLjNz+JhPYzZrAED4c+wvGfetKPv3LD5mw4xVcJNwhr98srwyxceN6igq+ZNeWNYS3f0VCaQEZ5RvICW1iINvoZ6E99imyXmxP7M/WrIMp6DEY67kfSTn7kdV7EFl9BpKVM4CeCYn0jNMxiYiItCclWCIirXTQpON4/71TOHzLU/DnpxgNlLlUPss6guTDv8eYySewf9AbYpa83wTSdzzPqk8XckBebIYptkQk4igs3Erh+i8o3byaqm1fESxZS+quDfSs2kR/t5XhVkn0/IollsmOpAGUZ45iVdYQEnsPpUf/4WQPPIDUPsPISUwlp92PREREpGOyFs+I1IYmTpzoFi1aFO8wRERaLBKO8OEbT1NZtJaM/gdw0GEnkJa29wDdHYUbSbsvjyW9pnHYNY+3SSy7y0rYvO4LijesoqJwDexYR3LZejIrN9I3vJUs27VH+V2ksi2hP2WpgwhlDibQayjp/YaTkzuCzP77YymZbRKniIhIZ2Vmi51zE+vbph4sEZEYCAQDHHbCjCbL9ewzkIV9pzNp67Mse2M2eced26J2XCRCyfatbN+4mrKta6jcthZXvJ7Esg30qNhETmgrPSklerByhUtka7A/pSkDWJUxAXoOIaXPMHoOHEHvwSNJz+hFuq51EhERiQn1YImItLPyshIK7j6GEeHVfJJxBNXDjiO510BITMNVVxAq30nl7lJc2TYCu7eSWF5ISuU2Mqq30ytSRLpV7lmfS2JroC8lSf0pTxuAy9qPxN7DyOy/P30GjySrzyAs0Kr7youIiEgU9WCJiHQgqRlZ9Pvx67zz5K8Yu/Epen3yXoNlS1w6xYFsyhJ6sTXjQDal9SOSlUtir/1I6zuMXgOH06fPAIYElUCJiIh0BOrBEhGJo1AozIa1X7Jzxxao2k0gKYWk1Ewys3qSmaMbEouIiHREbdaDZWbjgVlAChACfuCcW2je3WL/AHwL2A1c4pz7qDVtiYh0RQkJQYYMPwg4KN6hiIiISAy0dkzJncBtzrnxwK3+MsBJwAj/cQXw51a2IyIiIiIi0uG1NsFyQM38vVnARv/5dOBR51kAZJvZgFa2JSIiIiIi0qG1dpKLa4F/mdldeMnaN/z1g4D1UeUK/HWb6lZgZlfg9XKx3377tTIcERERERGR+GkywTKz14H+9Wz6GXAccJ1z7lkzOxt4EDi+JQE45x4AHvDbKjSztS3Zvx30BrbFOwhpNzrf3YfOdfehc9296Hx3HzrX3UdHPNdDGtrQqlkEzawEyHbOOX9iixLnXKaZ3Q/Mc87N9st9DhztnNurB6ujM7NFDc0QIl2Pznf3oXPdfehcdy86392HznX30dnOdWuvwdoIHOU/Pxb40n8+F7jIPFPwEq9Ol1yJiIiIiIi0RGuvwfoe8AczSwAq8K+lAl7Gm6J9Fd407Ze2sh0REREREZEOr1UJlnNuPnBoPesdcHVr6u5AHoh3ANKudL67D53r7kPnunvR+e4+dK67j051rlt1DZaIiIiIiIh8rbXXYImIiIiIiIhPCZaIiIiIiEiMKMFqhJlNM7PPzWyVmd0c73gkdsxssJm9ZWYrzGy5mV3jr+9lZq+Z2Zf+z57xjlViw8yCZvaxmf3TXx5mZh/47+85ZpYU7xglNsws28yeMbPPzGylmR2u93bXZGbX+X/DPzWz2WaWovd212FmD5nZVjP7NGpdve9lf+bqe/zzvszMJsQvcmmpBs71b/2/48vM7Hkzy47a9lP/XH9uZifGJehGKMFqgJkFgT8CJwGjgXPNbHR8o5IYCgHXO+dGA1OAq/3zezPwhnNuBPCGvyxdwzXAyqjl/wPuds4dAOwAvhuXqKQt/AF41Tl3EHAw3nnXe7uLMbNBwI+Bic65sUAQOAe9t7uSh4FpddY19F4+CRjhP64A/txOMUpsPMze5/o1YKxzLg/4AvgpgP957RxgjL/Pn/zP7R2GEqyGTQZWOefWOOeqgCeB6XGOSWLEObfJOfeR/3wn3gewQXjn+BG/2CPA6XEJUGLKzHKBk4G/+suGd+++Z/wiOtddhJllAd8EHgRwzlU554rRe7urSgBS/dvFpAGb0Hu7y3DOvQNsr7O6offydOBR51kAZJvZgHYJVFqtvnPtnPu3cy7kLy4Acv3n04EnnXOVzrmv8G4LNbndgm0GJVgNGwSsj1ou8NdJF2NmQ4FDgA+AflE3xd4M9ItXXBJTvwduAiL+cg5QHPWHW+/vrmMYUAj8zR8S+lczS0fv7S7HObcBuAtYh5dYlQCL0Xu7q2vovazPbV3bZcAr/vMOf66VYEm3ZmYZwLPAtc650uht/v3cdB+DTs7MTgG2OucWxzsWaRcJwATgz865Q4Bd1BkOqPd21+BfezMdL6keCKSz9xAj6cL0Xu4ezOxneJd2PBHvWJpLCVbDNgCDo5Zz/XXSRZhZIl5y9YRz7jl/9ZaaIQX+z63xik9i5gjgNDPLxxvqeyzeNTrZ/rAi0Pu7KykACpxzH/jLz+AlXHpvdz3HA1855wqdc9XAc3jvd723u7aG3sv63NYFmdklwCnA+e7rm/d2+HOtBKthHwIj/NmIkvAuppsb55gkRvxrcB4EVjrnfhe1aS5wsf/8YuDF9o5NYss591PnXK5zbije+/hN59z5wFvAWX4xnesuwjm3GVhvZgf6q44DVqD3dle0DphiZmn+3/Sac633dtfW0Ht5LnCRP5vgFKAkaiihdEJmNg1veP9pzrndUZvmAueYWbKZDcOb2GRhPGJsiH2dDEpdZvYtvGs3gsBDzrk74huRxIqZTQXeBT7h6+tybsG7DuspYD9gLXC2c67uBbbSSZnZ0cANzrlTzGx/vB6tXsDHwAXOuco4hicxYmbj8SY0SQLWAJfifaGo93YXY2a3ATPwhg99DFyOdy2G3ttdgJnNBo4GegNbgF8CL1DPe9lPsu/DGya6G7jUObcoDmHLPmjgXP8USAaK/GILnHNX+uV/hnddVgjvMo9X6tYZT0qwREREREREYkRDBEVERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLRKSDMbOhZubMLCHesUj3YGbLzezoeMchItIVKMESEZFOz8xmmVmZ/6gys+qo5VfiHV9H55wb45ybF8s6zexOM1tvZqVmttbMboll/SIiHZU55+Idg4hIl2JmCc65UCv2Hwp8BSS2pp7uysxmAgc45y6oZ1urzk176kyx1sfMDgQKnHO7zGwQ8G/gF8655+IcmohIm1IPlohIDJhZvpn9xMyWAbvMLMHMppjZf8ys2MyWRg/BMrN5Zva/ZrbQ/4b/RTPr1UDdl5rZSjPbaWZrzOz7dbZPN7Mlfj2rzWyavz7LzB40s01mtsHMfmVmwSaOY7iZvWlmRWa2zcyeMLPsqG3bzWyCvzzQzAprjsvMTvOHmhX7xzeqzutzg5ktM7MSM5tjZiktf6VbroFz48zsgKgyD5vZr6KWT/Ff02L/HOY1s62jzazAzG7xX798Mzs/avvJZvaxf67W+8lgzbaaoaHfNbN1wJv++qfNbLP/ur1jZmPqxP0nM3vF7617z8z6m9nvzWyHmX1mZoc08zU6vjnH2FzOuc+dc7uiVkWAAxoqLyLSVSjBEhGJnXOBk4FsoB/wEvAroBdwA/CsmfWJKn8RcBkwAAgB9zRQ71bgFCATuBS4OyrJmQw8Ctzot/tNIN/f72G/3gOAQ4ATgMubOAYD/hcYCIwCBgMzAZxzq4GfAI+bWRrwN+AR59w8MxsJzAauBfoALwP/MLOkqLrPBqYBw4A84JJ6AzCb6ic2DT2mNnEM9ak9N031CvkJyUPA94Ec4H5grpklN7Ot/kBvYBBwMfCA35sDsAvvvGf78VxlZqfX2f8ovNf+RH/5FWAE0Bf4CHiiTvmzgZ/7bVYC7/vlegPPAL9rZtz1MrObGzsfzdi3DCgA0oG/tyYWEZHOQAmWiEjs3OOcW++cKwcuAF52zr3snIs4514DFgHfiir/mHPuU/9b/l8AZ9fXw+Sce8k5t9p53sYbanWkv/m7wEPOudf8djY45z4zs35+W9c653Y557YCdwPnNHYAzrlVfl2VzrlCvA/nR0Vt/wuwCvgALzH8mb9pBvCSv281cBeQCnyjzuuz0Tm3HfgHML6BGOY757Ibecxv7BgaEH1umnIFcL9z7gPnXNg59whe4jKlBe39wn8N38ZLtM8GcM7Nc8594p+rZXhJ6VF19p3pn7Nyf5+HnHM7nXOVeMnuwWaWFVX+eefcYudcBfA8UOGce9Q5Fwbm4CXX+8w595vGzkdT+wI9gAnAY0BJa2IREekMlGCJiMTO+qjnQ4Dv1PmmfypeUlJf+bVAIl6vwx7M7CQzW+APzyvGS5xqyg0GVtcTyxC/vk1R7d+P1wvSIDPrZ2ZP+kMKS4HH64npL8BY4F7/Qz94PV5rawo45yL+8Q2K2m9z1PPdQEZjscTY+qaL1BoCXF/n3A3GO8bm2FFnaNzamn3N7DAze8sfWlkCXMner29trGYWNLPfmDf0s5Sveyej99kS9by8nuX2fJ334n8x8LEfy23xjEVEpD0owRIRiZ3oWYPW4/VQRX/bn+5/o19jcNTz/YBqYFt0hf6wtGfxeoT6+T0GL+MN5atpZ3g9sazH63XpHdV+pnNuTD1lo/3aP45xzrlMvJ64mrYwswzg98CDwEz7+rqxjXiJSU05849vQxPt7cXMjrSvZwCs73Fk07Xspe6MTruBtKjl/lHP1wN31Dl3ac652c1sq6eZpUct74f3+oA3RG4uMNg5lwXMIur1rSfW84DpwPFAFjDUX193nzbjX0/W4PloQVUJ1P+7KiLSpSjBEhFpG48Dp5rZiX4vRIo/AUJuVJkLzGy0fz3T7cAz/rCuaElAMlAIhMzsJLxrqWo8CFxqZseZWcDMBpnZQc65TXhDCf+fmWX624abWd3haHX1AMqAEvNmfruxzvY/AIucc5fjDX2b5a9/CjjZjyMRuB4vwftPUy9UXc65d51zGY083m1pnfVYApznn5tp7DlM7y/AlX5vk5lZunmTU/SA2oklHm6i/tvMLMlPBk8BnvbX9wC2O+cq/Ovnzmuinh54r2MRXkL46xYcY0w4537d2Pmobx//9+37ZtbTfw0nA1cDb7Rv9CIi7U8JlohIG3DOrcfrebgFLzlaj5esRP/dfQxvIorNQArw43rq2emvfwrYgfeBfG7U9oX4E1/gXd/yNl/3JF2El6Ct8Pd9hj2HKNbnNrzrZUrwEqjaKbXNbDreJBVX+av+G5hgZuc75z7H6+26F68X7lTgVOdcVRPtxcs1eDEWA+cDL9RscM4tAr4H3If3uq1izwk5BgPvNVL3Zn+/jXgTUlzpnPvM3/YD4HYz2wncindeG/Mo3hDDDXjncUFTB9aBnIE3fHUn3hcO9/oPEZEuTffBEhGJAzObBzzunPtrvGOR5vNnRVwK5PmTedTdfjTeec2tu01ERLqHhHgHICIi0ln4PXKjmiwoIiLdloYIioh0M2Y2q4EJC2Y1vbd0Rma2XyMTVewX7/hERLoSDREUERERERGJEfVgiYiIiIiIxEiHugard+/ebujQofEOQ0REREREpEGLFy/e5pzrU9+2DpVgDR06lEWLFsU7DBERERERkQaZ2dqGtmmIoIiIiIiISIwowRIREREREYkRJVgiIjHw0rJNrC4si3cYIiIiEmcd6hqs+lRXV1NQUEBFRUW8Q5FOJiUlhdzcXBITE+MdinRx64vK6PPMdD5MGcPwW/4W73BEREQkjjp8glVQUECPHj0YOnQoZhbvcKSTcM5RVFREQUEBw4YNi3c40sUVfTSXyYHPmVz1OeHIQwQD+lslIiLSXbV6iKCZDTazt8xshZktN7Nr/PW9zOw1M/vS/9lzX+qvqKggJydHyZW0iJmRk5Ojnk9pF5GtK2qfryssjl8gIiIiEnexuAYrBFzvnBsNTAGuNrPRwM3AG865EcAb/vI+UXIl+0K/N9Jeqst21D7fvm5FIyVFRESkq2t1guWc2+Sc+8h/vhNYCQwCpgOP+MUeAU5vbVsiIh1RsKq09nn5xs/iGImIiIjEW0xnETSzocAhwAdAP+fcJn/TZqBfA/tcYWaLzGxRYWFhLMOJGTPj+uuvr12+6667mDlzZvwCirJgwQIOO+wwxo8fz6hRo2rjmjdvHv/5z39aVfe0adPIzs7mlFNOiUGkIl1XUnUpxWQAULljQ5yjERERkXiKWYJlZhnAs8C1zrnS6G3OOQe4+vZzzj3gnJvonJvYp0+fWIUTU8nJyTz33HNs27YtpvU654hEIq2q4+KLL+aBBx5gyZIlfPrpp5x99tlAbBKsG2+8kccee6xVdYh0B0mhnWwKDCBEELdzc7zDERERkTiKySyCZpaIl1w94Zx7zl+9xcwGOOc2mdkAYGtr27ntH8tZsbG06YItMHpgJr88dUyjZRISErjiiiu4++67ueOOO/bYVlhYyJVXXsm6desA+P3vf88RRxzBzJkzycjI4IYbbgBg7Nix/POf/wTgxBNP5LDDDmPx4sW8/PLL3HfffbzyyiuYGT//+c+ZMWMG8+bNY+bMmfTu3ZtPP/2UQw89lMcff3yv64q2bt3KgAEDAAgGg4wePZr8/HxmzZpFMBjk8ccf59577+Wggw5qMM7Vq1ezatUqtm3bxk033cT3vvc9AI477jjmzZvX6Gvz9NNPc9tttxEMBsnKyuKdd96hoqKCq666ikWLFpGQkMDvfvc7jjnmGB5++GFeeOEFdu3axZdffskNN9xAVVUVjz32GMnJybz88sv06tWLv/zlLzzwwANUVVVxwAEH8Nhjj5GWlrZHu1OmTOHBBx9kzBjv3B199NHcddddTJw4sdF4RdpCSriMwkAmxWSTVN4xe+JFRESkfcRiFkEDHgRWOud+F7VpLnCx//xi4MXWthVPV199NU888QQlJSV7rL/mmmu47rrr+PDDD3n22We5/PLLm6zryy+/5Ac/+AHLly9n0aJFLFmyhKVLl/L6669z4403smmTN7Ly448/5ve//z0rVqxgzZo1vPfee3vVdd1113HggQdyxhlncP/991NRUcHQoUO58sorue6661iyZAlHHnlko3EuW7aMN998k/fff5/bb7+djRs3Nvt1uf322/nXv/7F0qVLmTt3LgB//OMfMTM++eQTZs+ezcUXX1w7m9+nn37Kc889x4cffsjPfvYz0tLS+Pjjjzn88MN59NFHAfj2t7/Nhx9+yNKlSxk1ahQPPvjgXu3OmDGDp556CoBNmzaxadMmJVcSNynhnZQHM9iZ2Jv0KiVYIiIi3VkserCOAC4EPjGzJf66W4DfAE+Z2XeBtcDZrW2oqZ6mtpSZmclFF13EPffcQ2pqau36119/nRUrvp41rLS0lLKyskbrGjJkCFOmTAFg/vz5nHvuuQSDQfr168dRRx3Fhx9+SGZmJpMnTyY3NxeA8ePHk5+fz9SpU/eo69Zbb+X888/n3//+N3//+9+ZPXt2vb1OjcU5ffp0UlNTSU1N5ZhjjmHhwoWcfvrpzXpdjjjiCC655BLOPvtsvv3tb9ce049+9CMADjroIIYMGcIXX3wBwDHHHEOPHj3o0aMHWVlZnHrqqQCMGzeOZcuWAV4S9vOf/5zi4mLKyso48cQT92r37LPP5oQTTuC2227jqaee4qyzzmpWvCJtITVcRmVyDyqCYTJL18U7HBEREYmjVidYzrn5QEPzYR/X2vo7kmuvvZYJEyZw6aWX1q6LRCIsWLCAlJSUPcomJCTscX1V9P2Y0tPTm9VecnJy7fNgMEgoFKq33PDhw7nqqqv43ve+R58+fSgqKtqrTENxwt7TmbdkevNZs2bxwQcf8NJLL3HooYeyePHiRstHH1MgEKhdDgQCtcd3ySWX8MILL3DwwQfz8MMP15swDho0iJycHJYtW8acOXOYNWtWs2MWiSnnyHBlVCX0oDo1iX4lS6gOR0gMxnQOIREREekk9AmgBXr16sXZZ5+9x5C1E044gXvvvbd2ecmSJQAMHTqUjz76CICPPvqIr776qt46jzzySObMmUM4HKawsJB33nmHyZMnNzuml156CW8OEW/oYTAYJDs7mx49erBz584m4wR48cUXqaiooKioiHnz5jFp0qRmt7969WoOO+wwbr/9dvr06cP69es58sgjeeKJJwD44osvWLduHQceeGCz69y5cycDBgygurq6tp76zJgxgzvvvJOSkhLy8vKaXb9ITFXvJkiE6sQeuIz+9LIyikoa78UWERGRrksJVgtdf/31e8wmeM8997Bo0SLy8vIYPXp0bU/KmWeeyfbt2xkzZgz33XcfI0eOrLe+M844g7y8PA4++GCOPfZY7rzzTvr379/seB577DEOPPBAxo8fz4UXXsgTTzxBMBjk1FNP5fnnn2f8+PG8++67DcYJkJeXxzHHHMOUKVP4xS9+wcCBAwEv+fvOd77DG2+8QW5uLv/6178Ab1hizfVWN954I+PGjWPs2LF84xvf4OCDD+YHP/gBkUiEcePGMWPGDB5++OE9eq6a8j//8z8cdthhHHHEERx00EG16+fOncutt95au3zWWWfx5JNP1s6cKBIX1eUAuIRUErO8CWd2bF0fz4hEREQkjqym96MjmDhxolu0aNEe61auXMmoUaPiFFHXV3e2w65Gvz/S5orXw+/H8vzgmzn4oJHs/9plfHjcU0w6cu9rB0VERKRrMLPFzrl6Z1hTD5aISGuEvOsrLTGFjD7epDQVO5o/E6eIiIh0LTG5D5Z0XjNnzox3CCKdmqvejQGBxFSy+wwGIFSyKb5BiYiISNyoB0tEpBWqKnYDEEhKJSmrH2GMQNnmOEclIiIi8aIES0SkFaorvEkuAompEAhSbNkklOtmwyIiIt2VEiwRkVaoqvR6sBJS0gDYGexJcuW2xnYRERGRLkwJlohIK1T7QwQTkrwEqzwph/TqHfEMSUREROJICVYzvfDCC5gZn332WYNl8vPzGTt2bMza/Pzzzzn66KMZP348o0aN4oorrgC8mwS//PLLrar7sssuo2/fvjGNV6Q7CtX0YCWnAlCZ0pvs8PZ4hiQiIiJxpASrmWbPns3UqVOZPXt2vdtDoVCr2wiHw3ss//jHP+a6665jyZIlrFy5kh/96EdAbBKsSy65hFdffbVVdYjI1wlWYrLXg+XS+9CLEsorW/83QURERDqfzjVN+ys3w+ZPYltn/3Fw0m8aLVJWVsb8+fN56623OPXUU7ntttsAmDdvHr/4xS/o2bMnn332Gf/+978JhUKcf/75fPTRR4wZM4ZHH32UtLQ03njjDW644QZCoRCTJk3iz3/+M8nJyQwdOpQZM2bw2muvcdNNN3HOOefUtrtp0yZyc3Nrl8eNG0dVVRW33nor5eXlzJ8/n5/+9Keccsop/OhHP+LTTz+lurqamTNnMn36dB5++GGef/55SkpK2LBhAxdccAG//OUvAfjmN79Jfn5+o8f99ttvc8011wBgZrzzzjtkZGRw00038corr2Bm/PznP2fGjBnMmzePX/7yl2RnZ/PJJ59w9tlnM27cOP7whz9QXl7OCy+8wPDhw/nHP/7Br371K6qqqsjJyeGJJ56gX79+e7R7zjnncOGFF3LyyScDXjJ4yimncNZZZzXvnIq0o3CVN8lFkn8NlvXoR7KFKNheSO6AAfEMTUREROJAPVjN8OKLLzJt2jRGjhxJTk4Oixcvrt320Ucf8Yc//IEvvvgC8Ib1/eAHP2DlypVkZmbypz/9iYqKCi655BLmzJnDJ598QigU4s9//nNtHTk5OXz00Ud7JFcA1113HcceeywnnXQSd999N8XFxSQlJXH77bczY8YMlixZwowZM7jjjjs49thjWbhwIW+99RY33ngju3btAmDhwoU8++yzLFu2jKeffppFixY1+7jvuusu/vjHP7JkyRLeffddUlNTee6551iyZAlLly7l9ddf58Ybb2TTJu+eP0uXLmXWrFmsXLmSxx57jC+++IKFCxdy+eWXc++99wIwdepUFixYwMcff8w555zDnXfeuVe7M2bM4KmnngKgqqqKN954ozbZEuloahOs1HTvZ5b3hUHx1oK4xSQiIiLx0+Y9WGY2DfgDEAT+6pxrvLuoMU30NLWV2bNn1/bknHPOOcyePZtDDz0UgMmTJzNs2LDasoMHD+aII44A4IILLuCee+7hv/7rvxg2bBgjR44E4OKLL+aPf/wj1157LeAlFPW59NJLOfHEE3n11Vd58cUXuf/++1m6dOle5f79738zd+5c7rrrLgAqKipYt24dAP/1X/9FTk4OAN/+9reZP38+EydObNZxH3HEEfz3f/83559/Pt/+9rfJzc1l/vz5nHvuuQSDQfr168dRRx3Fhx9+SGZmJpMmTWKA/4398OHDOeGEEwCv5+2tt94CoKCggBkzZrBp0yaqqqr2eO1qnHTSSVxzzTVUVlby6quv8s1vfpPU1NRmxSzS3iLVXoKV4vdgpfb03gO7d+hmwyIiIt1Rm/ZgmVkQ+CNwEjAaONfMRrdlm7G2fft23nzzTS6//HKGDh3Kb3/7W5566imccwCkp6fvUd7MGl2uT906og0cOJDLLruMF198kYSEBD799NO9yjjnePbZZ1myZAlLlixh3bp1jBo1ap/jqXHzzTfz17/+lfLyco444ohGJ/gASE5Orn0eCARqlwOBQO01aj/60Y/44Q9/yCeffML9999PRUXFXvWkpKRw9NFH869//Ys5c+Y0mICKdASuqpwqFyQlOQmAHjmDAKjYoZsNi4iIdEdtPURwMrDKObfGOVcFPAlMb+M2Y+qZZ57hwgsvZO3ateTn57N+/XqGDRvGu+++W2/5devW8f777wPw97//nalTp3LggQeSn5/PqlWrAHjsscc46qijmmz71Vdfpbq6GoDNmzdTVFTEoEGD6NGjBzt37qwtd+KJJ3LvvffWJn0ff/xx7bbXXnuN7du3114HVdO71hyrV69m3Lhx/OQnP2HSpEl89tlnHHnkkcyZM4dwOExhYSHvvPMOkydPbnadJSUlDBrkfQB95JFHGiw3Y8YM/va3v/Huu+8ybdq0Ztcv0t5cqJwKkkhJDAKQ1cf7/Y7sVIIlIiLSHbV1gjUIWB+1XOCvq2VmV5jZIjNbVFhY2MbhtNzs2bM544wz9lh35plnNjib4IEHHsgf//hHRo0axY4dO7jqqqtISUnhb3/7G9/5zncYN24cgUCAK6+8ssm2//3vfzN27FgOPvhgTjzxRH7729/Sv39/jjnmGFasWMH48eOZM2cOv/jFL6iuriYvL48xY8bwi1/8oraOyZMnc+aZZ5KXl8eZZ55ZOzzw3HPP5fDDD+fzzz8nNzeXBx98EIBZs2Yxa9YsAH7/+98zduxY8vLySExM5KSTTuKMM84gLy+Pgw8+mGOPPZY777yT/v37N/v1nDlzJt/5znc49NBD6d27d+36RYsWcfnll9cun3DCCbz99tscf/zxJCUlNbt+kXZXXUklSaQmeQlWYkZvQgSgbGucAxMREZF4sJpejzap3OwsYJpz7nJ/+ULgMOfcD+srP3HiRFd3EoaVK1fWDneTlnn44YdZtGgR9913X7xDiRv9/khbW/mnc8nY/CEDfvkFCUHvO6ui24axMmMyU6+fE+foREREpC2Y2WLnXL0TG7R1D9YGYHDUcq6/TkSkS7BQBZWWVJtcAexM6ElKpW42LCIi0h219SyCHwIjzGwYXmJ1DnBeG7cpvksuuYRLLrkk3mGIdGmBcAVVtucw1t1JOaSXK8ESERHpjtq0B8s5FwJ+CPwLWAk85Zxbvg/1xDo06Qb0eyPtIRCuoLpOglWd0pvs8I44RSQiIiLx1Ob3wXLOvQy8vK/7p6SkUFRURE5OToumGJfuzTlHUVERKSkp8Q5FurhguJJqS95jXSS9L722lbCropr0lMQ4RSYiIiLx0OYJVmvl5uZSUFBAR5xhUDq2lJQUcnNz4x2GdHHBcCWhQM891gUy+pJsIbYWbSV90KAG9hQREZGuqMMnWImJiQwbNizeYYiI1CshUkkouGcPVmJWPwBKCjcwWAmWiIhIt9LWswiKiHRpCa6ScGDPoahpvQYCsHv7xniEJCIiInGkBEtEpBWSIlW4Oj1YPXK8BKuieHM8QhIREZE4UoIlItIKia6SSJ0EK6uPd+1feOeWeIQkIiIicaQES0SkFZKoxiWk7rEuIb0XIYJQpsl5REREuhslWCIi+yoSJpEQLqHO7QACAYoti8RyJVgiIiLdjRIsEZF9VV3u/Uzc+35rOxN6kVJV1M4BiYiISLwpwRIR2VehCu9n3R4soDwph4zq7e0ckIiIiMSbEiwRkX1UXbkLgEBi6t7bUnuTHdmBc669wxIREZE4UoIlIrKPKsp3A2BJeydYkbS+9KKEsoqq9g5LRERE4kgJlojIPqr0E6yE5LS9tgUy+5NkYYoKNVW7iIhId6IES0RkH1WUlwGQkLx3D1Zitnez4dLCde0ak4iIiMRXqxIsM/utmX1mZsvM7Hkzy47a9lMzW2Vmn5vZia2OVESkg6nye7CSktP32pbe27vZcHnRhnaNSUREROKrtT1YrwFjnXN5wBfATwHMbDRwDjAGmAb8ycyCrWxLRKRDqarwJrlITNm7Byur735emR0b2zUmERERia9WJVjOuX8750L+4gIg138+HXjSOVfpnPsKWAVMbk1bIiIdTaiiFICktKy9tmX1GQRAZOemdo1JRERE4iuW12BdBrziPx8ErI/aVuCv24uZXWFmi8xsUWFhYQzDERFpW+HynQCkpGfutc0SUykhg+AuTXIhIiLSnSQ0VcDMXgf617PpZ865F/0yPwNCwBMtDcA59wDwAMDEiRN1wxgR6TQi/n2wktL37sECKA7mkFK+tT1DEhERkThrMsFyzh3f2HYzuwQ4BTjOfX1HzQ3A4Khiuf46EZEuw1V6PVhp9fRgAZQl9SG9clt7hiQiIiJx1tpZBKcBNwGnOed2R22aC5xjZslmNgwYASxsTVsiIh1OZRmVLpG01L0nuQCoTO1Lz0hROwclIiIi8dRkD1YT7gOSgdfMDGCBc+5K59xyM3sKWIE3dPBq51y4lW2JiHQoVr2LXaTQK6H+76oi6f3IKSqmoqqalKTEdo5ORERE4qFVCZZz7oBGtt0B3NGa+kVEOrJAdRnlltLw9swBJFqYrVs3MSh3v3aMTEREROIllrMIioh0K8HqXZRbWoPbk3oOBKB4y7r2CklERETiTAmWiMg+SgztosLqv/4KID3Hm+tnd1FBe4UkIiIicaYES0RkHyWEy6kKNtyDldXPS7CqdmgSVRERke5CCZaIyD5KDu+mupEEK7tPLgCRnZvaKyQRERGJMyVYIiL7KDmym3BieoPbA4nJ7CCT4C7dbFhERKS7UIIlIrKP0l0ZkeTsRssUB3NILleCJSIi0l0owRIR2QeuajdpVBBJ7dVoubKk3mRUF7ZTVCIiIhJvSrBERPbBzh1e0mTpOY2Wq0rtS89wUXuEJCIiIh2AEiwRkX1QtmMzAAkZvRstF07vR44rprKqqj3CEhERkThTgiUisg927/Cuq0rO7NNouUDmAILmKNq6sT3CEhERkThTgiUisg8qdnpDBFOz+zZaLrnnIACKt6xv85hEREQk/pRgiYjsg+rSbQBk9OzXaLm0HO9eWOVFSrBERES6AyVYIiL7wO3yEqysnMZ7sLL7DgagslhDBEVERLqDmCRYZna9mTkz6+0vm5ndY2arzGyZmU2IRTsiIh2FlW2i0GXRIzWl0XI9+3o9WK50U3uEJSIiInHW6gTLzAYDJwDrolafBIzwH1cAf25tOyIiHUly2Qa2BftiZo2WCyQmsZ0sgru2tFNkIiIiEk+x6MG6G7gJcFHrpgOPOs8CINvMBsSgLRGRDiGzcgs7k/s3q2xxMIfkct1sWEREpDtoVYJlZtOBDc65pXU2DQKir+gu8NfVV8cVZrbIzBYVFuoDiIh0As6RE9lKVcbAZhUvS+pDRrX+vomIiHQHCU0VMLPXgfq+pv0ZcAve8MB95px7AHgAYOLEia6J4iIicVdWvIUMqiB7v2aVr0ztw4Dyz9s4KhEREekImkywnHPH17fezMYBw4Cl/jUIucBHZjYZ2AAMjiqe668TEen0tn31KRlAUu/9m1U+nN6PnKISqqqqSEpKatvgREREJK72eYigc+4T51xf59xQ59xQvGGAE5xzm4G5wEX+bIJTgBLnnKbQEpEuoWStNyo6e9ghzSofzBxIwBzbtxa0ZVgiIiLSAbTVfbBeBtYAq4C/AD9oo3ZERNpd9aYVlLlUhu0/slnlk3p612oVb9XNhkVERLq6JocINpffi1Xz3AFXx6puEZGOJKN4JesThzAqIdis8um9vXth7S5SD5aIiEhX11Y9WCIiXVKkqoJhVV+wLSuv2ftk9/EuSa3aoUtRRUREujolWCIiLbB62bskU03y8KnN3qdnv1wiznClm9swMhEREekIlGCJiLRA0dJXCTtj5KTm36EimJDIdssiuEsJloiISFenBEtEpAX6bnyTz5NGk91nQIv2Kw7mkFyhmw2LiIh0dUqwRESaaeMXi9k/vIbt+53Y4n3LkvqQUbWtDaISERGRjkQJlohIM218489UuSAjjv9ui/etSu1DdrioDaISERGRjkQJlohIM5QWbWb05rl8nHks/Qbktnj/cHp/ciihuqqyDaITERGRjkIJlohIM3w2+2aSqCZn2k/3af9ApnfN1nbdbFhERKRLU4IlItKEz5e8x6GFL7C477c5YMyh+1RHcs9BAJRuUYIlIiLSlSnBEhFpRGV5Gclzr6TYshh9/m/2uZ703l6CtauoIFahiYiISAekBEtEpCHO8clfvs/QyDryj/x/9Mjus89VZfXxrtuqLNa9sERERLoyJVgiIg1Y9PeZTNz+T94beAmHHndWq+rq1WcgAOGdW2MRmoiIiHRQSrBEROqx+OW/MfHL37Mw/WgOu+z/tbq+hKRkisnAdinBEhER6cpanWCZ2Y/M7DMzW25md0at/6mZrTKzz82s5XflFBGJk0/ff5UxH9zIysTR5P3w7yQkJMSk3tJATxIrdLNhERGRrqxVnxrM7BhgOnCwc67SzPr660cD5wBjgIHA62Y20jkXbm3AIiJtac3yhez36mUUBvsy8PvPkZKaHrO6dyXmkFa1PWb1iYiISMfT2h6sq4DfOOcqAZxzNWNfpgNPOucqnXNfAauAya1sS0SkTW3M/5yMp2dQYckkXfICWb0HxLT+ypQceoR2xLROERER6Vham2CNBI40sw/M7G0zm+SvHwRE3+ylwF+3FzO7wswWmdmiwsLCVoYjIrJvSrZtIvToGaRQwe6z59Bvv5ExbyOU2puerphIxMW8bhEREekYmhwiaGavA/3r2fQzf/9ewBRgEvCUme3fkgCccw8ADwBMnDhRnzpEpN1VV5az5f4zGBLeyuppjzF6dNt0uFtGXzKsnKKSEnJ6ZrdJG51BOBxmV3ERu0oLqdhZTEXFbip37yISqsCqy3HhKiKRCOGIw2EEzAgYWCBAIGCYBbFAEAsGCAQSvEcwSCCYQLD2ZwKBhCAJgUTvZzCBYEICgWACCQlemcSgt4wFIBAEC/o/6y7X/LR4v3QiItIJNJlgOeeOb2ibmV0FPOecc8BCM4sAvYENwOCoorn+OhGRDsVFIiyZ9V0mVa9kwaTfMeXwk9qsrYRM77uq4sINXTbBcpEw2wpWsyV/OWVbvsKVrCdx5wbSKjbTo3obGZFSMl0ZmebIjHewLRRxRpgAEQK1P+tjNPZdYf3bGkvdGqqv4fWNaVldjdXX0rjaVUxz4Y6fWBcFcghf9E8GDD0o3qGICK2c5AJ4ATgGeMvMRgJJwDZgLvB3M/sd3iQXI4CFrWxLRCTmPnzmt0ze8RL/GXQp3zjlu23aVkpPL8HaWbQRbw6gzq2sdDtrl73Lzq8WE9z2Odm7VjOoeh19rJKaWzKHnVFoOWxP6MuW1BFsSu2JS+2JS+2FpfYiIS2LpNQ0klPSCCalYQnJBJNSCASCJPj5S8Q5v0cLIpGw9whHcJEQkXCIcDhc52cIFw4TiYSIRP2sWef8Olw4hItEiETCmIsQcGEM77nhL7sIARfBXBgj4i0TxiLecs2Hb8eeH8Odv1R/p1f9H9hdncL11tecuqzhNvbYZ68ie66omybtlTa5vWOu3dTCHGuP4nV2bqqqxtpqMowWtFXf8beorYabraetxiuPXjQcRxTOYfnTN9H/+hewgO7AIxJvrU2wHgIeMrNPgSrgYr83a7mZPQWsAELA1Z1xBsFQVQWhcISU1LR4hyIibWD1R29wyPL/Y0naFKbE4F5XTcno5d1suHzHpjZvK9ZcJML6L5ey+ZM3sILF9C39hMHhAsaY91GvkJ5sSR7C0p6nQZ+D6DFoFH33G0GvfkPon5Rc7zhzEYmNDx/NZNKaP/KfZ3/PN77z3/EOR6Tba1WC5ZyrAi5oYNsdwB2tqT/ePpz9P+TmP8eOo3/NuG+ejmn8vUiXsXvnDlL+cRWFlsOQ7z1BIBhs8zaz+3pz/VSXbG7ztmJh+4ZVrF30Mm7NOwwuWcR+7GA/YAc9WJc6ig29TyJ9+BT2G3sEfXr3r+21EpH2deh5t7P8rvc59NNfs3TAgRw89eR4hyTSrcXm7pldVI/9J0P+s+S9dQmfvTuKsgnfJ+/4C0hKSox3aCLSSise/hETIltZOe1JBvbq3S5tpvlDBCM7tzZRMj6qqqpZ+eHrlH8yl8Fb32JQZBO9gCKyWJMxgdVDj2TQ+BPJ3X80PTUMSaTDCCQksN/3n2TLvcey/2vf5ZOExxk3pcFL6EWkjSnBasTYI6dTOel4Fr54LwM/+xsHLbyWbQtnsrrvCaQfchYHTTyGhMSkeIfZoTnniEQc4UiESCSCi0TwBu67Bn+atfQC6caudYguZQ0Wasl1Es2toOG9973exntRW15v8/ZoZr3WvPPQojr9Cp3zrjlwzvk/v75GoeZahq/L7Fm2toy/j3OwbukbTCz6B+8NuJAjDp/W/FhayRKSKaYHibs7Tg9WWdlOVr43l/CKfzKiZD4HU0qVC7IyZTxrcs+jb96JHDB2EpOCSqhEOrIePftRfumLlD50MsNfOY9FO+5k4kmXxDusTqHms0p1KORfm1kNLoyL1Fzv5ur8T6n5xwO4iL8u+v+So+6FdtH/v+3rlVH/M837nFLTRiCqfNR1ldG17FFn1L/VPctbPf+f63y2COxR69f71lyuuUc7gaiy1Fv3np9V6vy/3+tDwl6BN1K28zDX0itR29DEiRPdokWL4h1GvSKhEMvfforqxX9nzK4FJFs1O0llVerB7O47gcwheeTsP4G+uQeQkND2Q41qOOeorKykfPcuKsvLqCwvo6p8F9WVu6iu2E2ochfhyt2EKncTqdqNqyqH6nJc9W4sVEEwXE5CuIJgpJKEcAUJkUoCLkQgEsJcmIALESRMwH39SCBEgDBBwiQQJsGFCRIhQATD+Q8ItDhREmk/hfQk48ZPSE3v0a7trrpjEmWWwfhb3mrXdqNt27qJVfOfJXHVK4za9SFpVslO0liV9Q2Co07mgCNOJ61Hr7jFJyL7rqSwgC33f5uRoc9Z2PNkDrzwD2T16lwDeMPVlewq2UHZzh1UlBVTWVZMVXkJ1btLCe8uJVJZilWWQbgCC1VioQoC4QoC4SoCkUoSwpUEXSWJkSoSXCVJrpqA8z63BP05QIP+ZxfvESbBIvE+bGnE46HjGPv9hxg/ODveodQys8XOuYn1bVMPVjMFEhIYd9x5cNx57Crdzor3XqDyi3nklnxI7toFsBZ4BypdAoWBnpQm9GFXUm9CiRmQlAFJaYQT0nCBRP+7AVeb4UciYVyoCkIVBMKVWLiCQKiSQKSSYLiSYMR7JEYqSYxUkOiqSHaVpLhKkqkixcKk7MMxlZNMJUlUWjJVJFFpKVQHkghbItWWhAsEcYFEnAVxgQTvYQkQCNY+d4EgEUvAmX+vGPO/uTCr/dakZhkLAAHM/BmxrCYV82fhMsO56PV11ZewuYY3NWv/hla3aD6oFuze/HrrvgKN7dmiaZFb9KVKx6i35tu4mtek/i+5rDa5x6JL77lPzfuvz/iT2j25AihLzSWndEW7t1vw1Wes+88zZK79NwdVfsIUi1BIL5b3PZkeB09nxGEncUhicrvHJSKxldUnl9Qb3+X9R27ksA2PUnbPW/xn8AWMPOlqeg8c2q6xuEiY3aU7KN2+mbIdWykv3krlzm2Ey7bhdm8nUL6dxModJFcXkx4uoUdkJxluF8lWTSY0eSuHcpdElSVSRRJVlkS1JVFtyYQDSYQCKVQlZBEOJhMJJBEJJEIg4H+O8T63WCDoPQ8k+M+DtZ9tIICzmv8ke4+Asb27jPbs0YF6P8t8/a8y+v+gqzuVZp3ydXrD/NEYDZWv+UzgiHruovatP6A6ddX3+arhdpo6jvqWrZHPDXU/16RnjKJfZuf5H6UerBjYWbKd/JWLqSxYSnj7WgJlm0it2EpmaBspkXJSXAVpVDT57UiVS6DSEqkkmWq8JKcqkEzIkrw/FsEUwv7DJaTigimQmApJaVhiKpaYRjA5lWBSGgnJaSSkpJOQnE5yahpJqRkkp6aT7P+0hJRO3fUq0lkteug6Dl77CFU3byQ9dV++GmkeF4mw+tMFbP3wOfpufIMDwmsAyA/sx9aBx9F74rcZlneE96FCRLqk1Z98wM5Xb2P8rvcIO2NFUh67B32D1P0PZ9DwcfQaMKTZfwNcJEJ5+S5KdhSya/tmyosLqSrdSqRsK5Fd2wmUF5FYUURK9Q5Sq0voESkm05U1+Nmn2gUpsR6UBTLZnZBNZWIWVUk9CSdnQnImltyDQGomiamZJKZnkZyeRUpGNmk9vEdqWg/9/ZK4aqwHSwlWOwmHI0RClUTC1Tjn39cFwzlHUkKQpORU/aEQ6QaWzb2XvI9+zpfnzGfEQeNiWne4qoIvFr7KzqVz2a/wbfqzjYgzPk8aTenQE9jv8LMYsP/YmLYpIh3f2i+WsuXdR+mz8XWGhfNr11e4REoCmZQHMigPpOMIYuYN9ScSITmym1S3m1RXTporJ9Hqv+NO2BnF1oNSy2J3QhbliT2pTu5JJDUHS+tFMKM3yZm9ScnqS4+efemR058ePbJ1zy7p1DREsAMIBgMEg6lAarxDEZE4yhw6Hj6CHV++DzFIsLZv3ciaBS8S/PJVRuz8gFGUs9sl83n6oaw/4McMP+LbjOo3uPWBi0inNWTkwQwZ6d3rr3jbZjZ89gHFBZ8T3LEGqygmWFVKWqQMnCNcM3Q/GKA8OYfCYDqhxHRI7kEwpQfBtJ4Ee/QlOasvadl9Se/Zj6yefclJSiQnvocp0mEowRIRaUeDR09h93PJhL76D3BFi/ev2L2TNYtfY/fKN+i15T/sH15DL7xJOz7JPp6E0Scz+huncEhG+19fJiIdX3bv/mRPnR7vMES6NCVYIiLtKJiQyJrUcQzbPp9QdVWTt3oo3lpAwafvUrZ6AT22LmZE1UpGW4hKl8AXSaP5T+4P6DN+GsPzptKnHW6WLCIiIo1TgiUi0s6qxl/KgPevZtGc/2Hi+beDGeFwmC3rvqBozRJ2F3xCsHAFA3etYKDbQjbeBeH5ifvz0YAZpBx4HMMOPZ5xmVnxPhQRERGpQ5NciIi0s0g4zMd3ncyh5e+zmxTKSSHblRCMunfcJuvDpvTRVPSbQMbwKeyfdwQZGvYnIiLSIWiSCxGRDiQQDDLm2heZ/8+/ENnwMUmRcsJpfUjMGUp67jgGjTyEAT1zGBDvQEVERKTFlGCJiMRBSnIyU8/8YbzDEBERkRhr1Q0IzGy8mS0wsyVmtsjMJvvrzczuMbNVZrbMzCbEJlwREREREZGOq7V3eLsTuM05Nx641V8GOAkY4T+uAP7cynZEREREREQ6vNYmWA7I9J9nARv959OBR51nAZBtZrqcQEREREREurTWXoN1LfAvM7sLL1n7hr9+ELA+qlyBv25T3QrM7Aq+vttmmZl93sqYYq03sC3eQUi70fnuPnSuuw+d6+5F57v70LnuPjriuR7S0IYmEywzex3oX8+mnwHHAdc55541s7OBB4HjWxKZc+4B4IGW7NOezGxRQ1MwStej89196Fx3HzrX3YvOd/ehc919dLZz3WSC5ZxrMGEys0eBa/zFp4G/+s83AIOjiub660RERERERLqs1l6DtRE4yn9+LPCl/3wucJE/m+AUoMQ5t9fwQBERERERka6ktddgfQ/4g5klABV8fS3Vy8C3gFXAbuDSVrYTTx12+KK0CZ3v7kPnuvvQue5edL67D53r7qNTnWtzzsU7BhERERERkS6htUMERURERERExKcES0REREREJEaUYDXCzKaZ2edmtsrMbo53PBI7ZjbYzN4ysxVmttzMrvHX9zKz18zsS/9nz3jHKrFhZkEz+9jM/ukvDzOzD/z39xwzS4p3jBIbZpZtZs+Y2WdmttLMDtd7u2sys+v8v+GfmtlsM0vRe7vrMLOHzGyrmX0ata7e97I/sdo9/nlfZmYT4he5tFQD5/q3/t/xZWb2vJllR237qX+uPzezE+MSdCOUYDXAzILAH4GTgNHAuWY2Or5RSQyFgOudc6OBKcDV/vm9GXjDOTcCeMNflq7hGmBl1PL/AXc75w4AdgDfjUtU0hb+ALzqnDsIOBjvvOu93cWY2SDgx8BE59xYIAicg97bXcnDwLQ66xp6L58EjPAfVwB/bqcYJTYeZu9z/Row1jmXB3wB/BTA/7x2DjDG3+dP/uf2DkMJVsMmA6ucc2ucc1XAk8D0OMckMeKc2+Sc+8h/vhPvA9ggvHP8iF/sEeD0uAQoMWVmucDJ+PfqMzPDu7XEM34RnesuwsyygG/i3fge51yVc64Yvbe7qgQg1Z/NOA3YhN7bXYZz7h1ge53VDb2XpwOPOs8CINvMBrRLoNJq9Z1r59y/nXMhf3EB3n11wTvXTzrnKp1zX+HNWj653YJtBiVYDRsErI9aLvDXSRdjZkOBQ4APgH5R92zbDPSLV1wSU78HbgIi/nIOUBz1h1vv765jGFAI/M0fEvpXM0tH7+0uxzm3AbgLWIeXWJUAi9F7u6tr6L2sz21d22XAK/7zDn+ulWBJt2ZmGcCzwLXOudLobc67h4HuY9DJmdkpwFbn3OJ4xyLtIgGYAPzZOXcIsIs6wwH13u4a/GtvpuMl1QOBdPYeYiRdmN7L3YOZ/Qzv0o4n4h1LcynBatgGYHDUcq6/TroIM0vES66ecM4956/eUjOkwP+5NV7xScwcAZxmZvl4Q32PxbtGJ9sfVgR6f3clBUCBc+4Df/kZvIRL7+2u53jgK+dcoXOuGngO7/2u93bX1tB7WZ/buiAzuwQ4BTjffX3z3g5/rpVgNexDYIQ/G1ES3sV0c+Mck8SIfw3Og8BK59zvojbNBS72n18MvNjesUlsOed+6pzLdc4NxXsfv+mcOx94CzjLL6Zz3UU45zYD683sQH/VccAK9N7uitYBU8wszf+bXnOu9d7u2hp6L88FLvJnE5wClEQNJZROyMym4Q3vP805tztq01zgHDNLNrNheBObLIxHjA2xr5NBqcvMvoV37UYQeMg5d0d8I5JYMbOpwLvAJ3x9Xc4teNdhPQXsB6wFznbO1b3AVjopMzsauME5d4qZ7Y/Xo9UL+Bi4wDlXGcfwJEbMbDzehCZJwBrgUrwvFPXe7mLM7DZgBt7woY+By/GuxdB7uwsws9nA0UBvYAvwS+AF6nkv+0n2fXjDRHcDlzrnFsUhbNkHDZzrnwLJQJFfbIFz7kq//M/wrssK4V3m8UrdOuNJCZaIiIiIiEiMaIigiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIdDBmNtTMnJklxDsW6R7MbLmZHR3vOEREugIlWCIi0umZ2SwzK/MfVWZWHbX8Srzj6+icc2Occ/NiWaeZ3Wlm682s1MzWmtktsaxfRKSjMudcvGMQEelSzCzBORdqxf5Dga+AxNbU012Z2UzgAOfcBfVsa9W5aU+dKdb6mNmBQIFzbpeZDQL+DfzCOfdcnEMTEWlT6sESEYkBM8s3s5+Y2TJgl5klmNkUM/uPmRWb2dLoIVhmNs/M/tfMFvrf8L9oZr0aqPtSM1tpZjvNbI2Zfb/O9ulmtsSvZ7WZTfPXZ5nZg2a2ycw2mNmvzCzYxHEMN7M3zazIzLaZ2RNmlh21bbuZTfCXB5pZYc1xmdlp/lCzYv/4RtV5fW4ws2VmVmJmc8wspeWvdMs1cG6cmR0QVeZhM/tV1PIp/mta7J/DvGa2dbSZFZjZLf7rl29m50dtP9nMPvbP1Xo/GazZVjM09Ltmtg5401//tJlt9l+3d8xsTJ24/2Rmr/i9de+ZWX8z+72Z7TCzz8zskGa+Rsc35xibyzn3uXNuV9SqCHBAQ+VFRLoKJVgiIrFzLnAykA30A14CfgX0Am4AnjWzPlHlLwIuAwYAIeCeBurdCpwCZAKXAndHJTmTgUeBG/12vwnk+/s97Nd7AHAIcAJweRPHYMD/AgOBUcBgYCaAc2418BPgcTNLA/4GPOKcm2dmI4HZwLVAH+Bl4B9mlhRV99nANGAYkAdcUm8AZlP9xKahx9QmjqE+teemqV4hPyF5CPg+kAPcD8w1s+RmttUf6A0MAi4GHvB7cwB24Z33bD+eq8zs9Dr7H4X32p/oL78CjAD6Ah8BT9Qpfzbwc7/NSuB9v1xv4Bngd82Mu15mdnNj56MZ+5YBBUA68PfWxCIi0hkowRIRiZ17nHPrnXPlwAXAy865l51zEefca8Ai4FtR5R9zzn3qf8v/C+Ds+nqYnHMvOedWO8/beEOtjvQ3fxd4yDn3mt/OBufcZ2bWz2/rWufcLufcVuBu4JzGDsA5t8qvq9I5V4j34fyoqO1/AVYBH+Alhj/zN80AXvL3rQbuAlKBb9R5fTY657YD/wDGNxDDfOdcdiOP+Y0dQwOiz01TrgDud8594JwLO+cewUtcprSgvV/4r+HbeIn22QDOuXnOuU/8c7UMLyk9qs6+M/1zVu7v85BzbqdzrhIv2T3YzLKiyj/vnFvsnKsAngcqnHOPOufCwBy85HqfOed+09j5aGpfoAcwAXgMKGlNLCIinYESLBGR2Fkf9XwI8J063/RPxUtK6iu/FkjE63XYg5mdZGYL/OF5xXiJU025wcDqemIZ4te3Kar9+/F6QRpkZv3M7El/SGEp8Hg9Mf0FGAvc63/oB6/Ha21NAedcxD++QVH7bY56vhvIaCyWGFvfdJFaQ4Dr65y7wXjH2Bw76gyNW1uzr5kdZmZv+UMrS4Ar2fv1rY3VzIJm9hvzhn6W8nXvZPQ+W6Kel9ez3J6v8178LwY+9mO5LZ6xiIi0ByVYIiKxEz1r0Hq8Hqrob/vT/W/0awyOer4fUA1si67QH5b2LF6PUD+/x+BlvKF8Ne0MryeW9Xi9Lr2j2s90zo2pp2y0X/vHMc45l4nXE1fTFmaWAfweeBCYaV9fN7YRLzGpKWf+8W1oor29mNmR9vUMgPU9jmy6lr3UndFpN5AWtdw/6vl64I465y7NOTe7mW31NLP0qOX98F4f8IbIzQUGO+eygFlEvb71xHoeMB04HsgChvrr6+7TZvzryRo8Hy2oKoH6f1dFRLoUJVgiIm3jceBUMzvR74VI8SdAyI0qc4GZjfavZ7odeMYf1hUtCUgGCoGQmZ2Edy1VjQeBS83sODMLmNkgMzvIObcJbyjh/zOzTH/bcDOrOxytrh5AGVBi3sxvN9bZ/gdgkXPucryhb7P89U8BJ/txJALX4yV4/2nqharLOfeucy6jkce7La2zHkuA8/xzM409h+n9BbjS720yM0s3b3KKHlA7scTDTdR/m5kl+cngKcDT/voewHbnXIV//dx5TdTTA+91LMJLCH/dgmOMCefcrxs7H/Xt4/++fd/Mevqv4WTgauCN9o1eRKT9KcESEWkDzrn1eD0Pt+AlR+vxkpXov7uP4U1EsRlIAX5cTz07/fVPATvwPpDPjdq+EH/iC7zrW97m656ki/AStBX+vs+w5xDF+tyGd71MCV4CVTultplNx5uk4ip/1X8DE8zsfOfc53i9Xffi9cKdCpzqnKtqor14uQYvxmLgfOCFmg3OuUXA94D78F63Vew5Icdg4L1G6t7s77cRb0KKK51zn/nbfgDcbmY7gVvxzmtjHsUbYrgB7zwuaOrAOpAz8Iav7sT7wuFe/yEi0qXpPlgiInFgZvOAx51zf413LNJ8/qyIS4E8fzKPutuPxjuvuXW3iYhI95AQ7wBEREQ6C79HblSTBUVEpNvSEEERkW7GzGY1MGHBrKb3ls7IzPZrZKKK/eIdn4hIV6IhgiIiIiIiIjGiHiwREREREZEY6VDXYPXu3dsNHTo03mGIiIiIiIg0aPHixducc33q29ahEqyhQ4eyaNGieIchIiIiIiLSIDNb29A2DREUERERERGJESVYIiIiIiIiMaIES0SkCZGIIxzRjKsiIiLStA51DVZ9qqurKSgooKKiIt6hSCeTkpJCbm4uiYmJ8Q5FOrnfPv8epV/+h5k33kBiUN9LiYiISMM6fIJVUFBAjx49GDp0KGYW73Ckk3DOUVRUREFBAcOGDYt3ONKJuUiEa5dNJ9lCrFh9BqNHjoh3SCIiItKBdfivYisqKsjJyVFyJS1iZuTk5KjnU1pt946NJFsIgI2rPo5zNCIiItLRdfgEC1ByJftEvzcSC6U7imqfRzavjGMkIiIi0hl0igRLRCRedpVur32eWvxlHCMRERGRzkAJVjOYGddff33t8l133cXMmTPjF1CUBQsWcNhhhzF+/HhGjRpVG9e8efP4z3/+s8/1rl27lgkTJjB+/HjGjBnDrFmzYhSxSOdSvvPrBCutfEMcIxEREZHOoMNPctERJCcn89xzz/HTn/6U3r17x6xe5xzOOQKBfc9zL774Yp566ikOPvhgwuEwn3/+OeAlWBkZGXzjG9/Yp3oHDBjA+++/T3JyMmVlZYwdO5bTTjuNgQMH7nOsIp1RZdkOADYFB5JZvS3O0YiIiEhHpx6sZkhISOCKK67g7rvv3mtbYWEhZ555JpMmTWLSpEm89957AMycOZO77rqrttzYsWPJz88nPz+fAw88kIsuuoixY8eyfv16brzxRsaOHcu4ceOYM2cO4CVIRx99NGeddRYHHXQQ559/Ps7tfR+erVu3MmDAAACCwSCjR48mPz+fWbNmcffddzN+/HjefffdRuO88MILOfzwwxkxYgR/+ctfAEhKSiI5ORmAyspKIpFIva/NPffcw+jRo8nLy+Occ84BYPv27Zx++unk5eUxZcoUli1bVtvWxRdfzJFHHsmQIUN47rnnuOmmmxg3bhzTpk2juroagNtvv51JkyYxduxYrrjiir2OOxKJMHToUIqLi2vXjRgxgi1btjR2GkX2SWhXMQDF6cPIcdupDtf/XhARERGBGPRgmdlg4FGgH+CAB5xzfzCzXsAcYCiQD5ztnNvRmrZu+8dyVmwsbV3AdYwemMkvTx3TZLmrr76avLw8brrppj3WX3PNNVx33XVMnTqVdevWceKJJ7JyZeMXwn/55Zc88sgjTJkyhWeffZYlS5awdOlStm3bxqRJk/jmN78JwMcff8zy5csZOHAgRxxxBO+99x5Tp07do67rrruOAw88kKOPPppp06Zx8cUXM3ToUK688koyMjK44YYbADjvvPMajHPZsmUsWLCAXbt2ccghh3DyySczcOBA1q9fz8knn8yqVav47W9/W2/v1W9+8xu++uorkpOTaxOeX/7ylxxyyCG88MILvPnmm1x00UUsWbIEgNWrV/PWW2+xYsUKDj/8cJ599lnuvPNOzjjjDF566SVOP/10fvjDH3LrrbcCcOGFF/LPf/6TU089tbbNQCDA9OnTef7557n00kv54IMPGDJkCP369WvyPIq0lFWWAFCZPYJepe+xqbiUATnZ8Q1KREREOqxY9GCFgOudc6OBKcDVZjYauBl4wzk3AnjDX+60MjMzueiii7jnnnv2WP/666/zwx/+kPHjx3PaaadRWlpKWVlZo3UNGTKEKVOmADB//nzOPfdcgsEg/fr146ijjuLDDz8EYPLkyeTm5hIIBBg/fjz5+fl71XXrrbeyaNEiTjjhBP7+978zbdq0ettsLM7p06eTmppK7969OeaYY1i4cCEAgwcPZtmyZaxatYpHHnmk3h6ivLw8zj//fB5//HESEhJqj+nCCy8E4Nhjj6WoqIjSUi8xPumkk0hMTGTcuHGEw+HaeMeNG1d7fG+99RaHHXYY48aN480332T58uV7tTtjxoza3r4nn3ySGTNmNPqai+yrYNVOQi5AQp/hAGzfUhDniERERKQja3UPlnNuE7DJf77TzFYCg4DpwNF+sUeAecBPWtNWc3qa2tK1117LhAkTuPTSS2vXRSIRFixYQEpKyh5lExIS9hhWF30/pvT09Ga1VzNED7zhf6FQqN5yw4cP56qrruJ73/seffr0oaioaK8yDcUJe09nXnd54MCBjB07lnfffZezzjprj20vvfQS77zzDv/4xz+44447+OSTT5p1TIFAgMTExNq2AoEAoVCIiooKfvCDH7Bo0SIGDx7MzJkz672X1eGHH86qVasoLCzkhRde4Oc//3mj7Yrsq2DVTkpJI713LgA7t60HxsY3KBEREemwYnoNlpkNBQ4BPgD+f3t3Hl9XVe99/PM7Y8YmbZKOaWkVOied0lIplZbZK4NYpHhBgapcFfXCdUQFgfv4PCrP471XQXmBIKjIqAIvQWSSi/VCoQNDoRQKlLaQtpnnM6/nj3OSJm3SpOQkJ8P3/XrllbPXXnvtX7Kzk/PLWnutCankC2AvySGE3R1zqZltNLONVVVV6Qwn7caNG8d5553Hrbfe2lF26qmn8vOf/7xju30o3PTp09m8eTMAmzdv5p133um2zZUrV3LPPfcQj8epqqrimWeeYdmyZX2O6eGHH+54RunNN9/E6/VSWFhIfn4+TU1NvcYJ8OCDDxIKhaipqeHpp59m6dKl7Nmzh7a2NgDq6upYv349s2bN6nLuRCLB7t27Wb16NT/+8Y9paGigubmZlStXcueddwLJZ8mKi4sZM2ZMn76e9mSquLiY5uZm7r///m7rmRnnnHMO//Zv/8acOXMoKirqU/siR8ofbaSZXApKpgEQrtVMgiIiItKztCVYZpYH/AG43DnX5UEpl8wADp2hIbnvZudchXOuoqSkJF3hDJivf/3rVFcfmEnsZz/7GRs3bqS8vJy5c+d2TGe+Zs0aamtrmTdvHjfccAMzZ87str1zzjmH8vJyFixYwIknnshPfvITJk6c2Od4fvvb3zJr1iwWLlzIZz7zGe688068Xi9nnnkmf/rTnzomuegpTkgO81u9ejXLly/nqquuYvLkyWzbto1jjz2WBQsWcMIJJ/CNb3yDsrIyAD7/+c+zceNG4vE4F154IWVlZSxatIivfe1rFBYWcs0117Bp0ybKy8v5zne+wx133NHnr6ewsJAvfOELzJ8/n9NOO42lS5d27Lvpppu6xL127Vp+97vfaXigDChfrIU2y6JgQjLBijVU9nKEiIiIjGbW3cx0R9yImR/4M/BX59xPU2XbgVXOuUozmwQ87Zybdbh2Kioq3MaNG7uUbdu2jTlz5vQ7RuneNddc02UyjJFGPz/SX29cfxLh1kbKrtpA7Lpinin+NCd+5cZMhyUiIiIZZGabnHMV3e3rdw+WJR+iuRXY1p5cpTwEXJR6fRHwYH/PJSIy2DyJCDELgMdDnWcsgTYtByAiIiI9S8dCwyuAzwCvmNmLqbLvAj8C7jWzzwHvAuel4VySZtdcc02mQxAZ0ryJMDFPcmKaRl8xOREtNiwiIiI9S8csgusB62H3Sf1tX0Qkk3yJCHHPOADagsWMad6V4YhERERkKEvrLIIiIiNNMsEKABDNmUBRopZEov/ProqIiMjIpARLROQwfC5C3JNaky63hLHWTF3T4RcTFxERkdFLCZaIyGH4XYSEN5lg+QqSSyjUVb2fyZBERERkCFOC1UcPPPAAZsbrr7/eY52dO3cyf/78tJ1z+/btrFq1ioULFzJnzhwuvfRSILlI8COPPPKB2w2FQixbtowFCxYwb948fvCDH6QrZJERp3OClTV2EgBN1VpsWERERLqnBKuP7rrrLo4//njuuuuubvfHYrF+nyMej3fZ/trXvsYVV1zBiy++yLZt2/jqV78K9D/BCgaDPPXUU7z00ku8+OKLPProozz33HP9il1kpAoQxaUSrNxxUwBoq9NiwyIiItI9JVh90NzczPr167n11lu5++67O8qffvppVq5cyVlnncXcuXOBZKJ1wQUXMGfOHM4991xaW1sBePLJJ1m0aBFlZWWsW7eOcDgMwPTp0/n2t7/N4sWLue+++7qct7KyktLS0o7tsrIyIpEIV199Nffccw8LFy7knnvuoaWlhXXr1rFs2TIWLVrEgw8mlxy7/fbbOfvss1m1ahXHHHMM1157LQBmRl5eHgDRaJRoNEpyObOu7rvvPubPn8+CBQv46Ec/CiR7vy655BLKyspYtGgRf/vb3zrO9YlPfIJTTjmF6dOnc8MNN/DTn/6URYsWsXz5cmprawG45ZZbWLp0KQsWLGDNmjUd35/Oli9fzquvvtqxvWrVKg5egFpkUCTi+InhfMkEq3B88n6M1O/NZFQiIiIyhKVjHazB85fvwN5X0tvmxDL42I8OW+XBBx/k9NNPZ+bMmRQVFbFp0yaWLFkCwObNm9m6dSszZsxg586dbN++nVtvvZUVK1awbt06fvGLX/CVr3yFiy++mCeffJKZM2fy2c9+ll/+8pdcfvnlABQVFbF58+ZDznvFFVdw4oknctxxx3HqqadyySWXUFhYyHXXXcfGjRu54YYbAPjud7/LiSeeyG233UZ9fT3Lli3j5JNPBuD5559n69at5OTksHTpUj7+8Y9TUVFBPB5nyZIl7Nixg8suu4xjjz32kPNfd911/PWvf2XKlCnU19cDcOONN2JmvPLKK7z++uuceuqpvPHGGwBs3bqVLVu2EAqFOProo/nxj3/Mli1buOKKK/jNb37D5Zdfzic/+Um+8IUvAPD973+fW2+9taNnrt3atWu59957ufbaa6msrKSyspKKim4XyhYZWLHkP0JIJVg5qSGCrkmLDYuIiEj31IPVB3fddRfnn38+AOeff36XYYLLli1jxowZHdtTp05lxYoVAFx44YWsX7+e7du3M2PGDGbOnAnARRddxDPPPNNxzNq1a7s97yWXXMK2bdv41Kc+xdNPP83y5cs7er46e+yxx/jRj37EwoULWbVqFaFQiF27kmv1nHLKKRQVFZGdnc0nP/lJ1q9fD4DX6+XFF19kz549HUnYwVasWMHFF1/MLbfc0jF8cf369Vx44YUAzJ49m6OOOqojwVq9ejX5+fmUlJRQUFDAmWeeCSR73nbu3Akkk7CVK1dSVlbGnXfe2aWnqt15553H/fffD8C9997Lueee2+33R2TAxULJz76s5Gd/Fk3k4G3dn7mYREREZEgbXj1YvfQ0DYTa2lqeeuopXnnlFcyMeDyOmXH99dcDkJub26X+wUPtuht6d7CD2+hs8uTJrFu3jnXr1jF//vxuEyHnHH/4wx+YNWtWl/INGzb0Gk9hYSGrV6/m0UcfPWSCjptuuokNGzbw8MMPs2TJEjZt2nTYryMYDHa89ng8Hdsej6fjGbWLL76YBx54gAULFnD77bfz9NNPH9LOlClTKCoq4uWXX+aee+7hpptuOux5RQZKPBrCC1h7ggU0escRCFdnLigREREZ0tSD1Yv777+fz3zmM7z77rvs3LmT3bt3M2PGDP7+9793W3/Xrl08++yzAPz+97/n+OOPZ9asWezcuZMdO3YA8Nvf/pYTTjih13M/+uijRKNRAPbu3UtNTQ1TpkwhPz+fpqamjnqnnXYaP//5z3Euufjpli1bOvY9/vjj1NbW0tbWxgMPPMCKFSuoqqrqGPLX1tbG448/zuzZsw85/1tvvcWxxx7LddddR0lJCbt372blypXceeedALzxxhvs2rXrkMTucJqampg0aRLRaLSjne6sXbuWn/zkJzQ0NFBeXt7n9kXSKRpqA8D8BxKsFn8ROZGaTIUkIiIiQ5wSrF7cddddnHPOOV3K1qxZ0+NsgrNmzeLGG29kzpw51NXV8aUvfYmsrCx+/etf86lPfYqysjI8Hg9f/OIXez33Y4891jHJxGmnncb111/PxIkTWb16Na+99lrHJBdXXXUV0WiU8vJy5s2bx1VXXdXRxrJly1izZg3l5eWsWbOGiooKKisrWb16NeXl5SxdupRTTjmFM844A4Crr76ahx56CIBvfvOblJWVMX/+fI477jgWLFjAl7/8ZRKJBGVlZaxdu5bbb7+9S89Vb/793/+dY489lhUrVnRJ6h566CGuvvrqju1zzz2Xu+++m/POO6/PbYukWziUnISlc4IVziqiIF6XqZBERERkiLP2Xo+hoKKiwh08W9y2bduYM2dOhiIa3m6//fYuk2GMRvr5kf6ofuN5in9/Cv+9+GeccNZFALx487/wofceJHjVewR93gxHKCIiIplgZpucc93OwjbgPVhmdrqZbTezHWb2nYE+n4hIukTDyR4sb+BAD5blTWCMtVFbV5+hqERERGQoG9AEy8y8wI3Ax4C5wKfNbO5AnlMOuPjii0d175VIf8UiyVkEvYHsjjJ/wUQA6qvey0hMIiIiMrQNdA/WMmCHc+5t51wEuBs4+0gbGUrDGGX40M+N9FcskuzB8nXqwcoel0ywmqvfz0hMIiIiMrQNdII1BdjdaXtPqqyDmV1qZhvNbGNVVdUhDWRlZVFTU6M3y3JEnHPU1NSQlZXVe2WRHsTCyR4sT6cerLyi5K+wtvrKjMQkIiIiQ1vG18Fyzt0M3AzJSS4O3l9aWsqePXvoLvkSOZysrCxKS0szHYYMY/FIcpp2f/BAglVQkvyZijXuzUhMIiIiMrQNdIL1HjC103ZpqqzP/H4/M2bMSGtQIiJ9kUg9gxUI5nSUBcaMJ4FB0/5MhSUiIiJD2EAPEXwBOMbMZphZADgfeGiAzykikhaJaDLB6tyDhddPo+XjbVOCJSIiIoca0B4s51zMzL4C/BXwArc5514dyHOKiKRLIpoaIpiV3aW8yTuOrFBNJkISERGRIW7An8Fyzj0CPDLQ5xERSbdELAx0HSII0BooIlcJloiIiHRjwBcaFhEZtqIhEs4IBoJdiiPZJRTG6zS7qYiIiBxCCZaISE9iIcL4yQp07exP5JRQRAPNoWiGAhMREZGhSgmWiEgPXCxMGD8BX9dflZ4xE8i2CNW1GiYoIiIiXSnBEhHpgcWTPVhej3UpDxRMAqCxak8mwhIREZEhTAmWiEgPLBYmQuCQ8pxxkwFoqX1/sEMSERGRIU4JlohIDzzxMFE7NMEaUzwFgHBd5WCHJCIiIkOcEiwRkR70lGDlF5cCkGhUgiUiIiJdKcESEemBJxEhZv5Dy3PHESKAr1kJloiIiHSlBEtEpAfeRJioJ3joDjNqPUUE2/YNflAiIiIypCnBEhHpgTcRIe45dIggQKO/hLzI/kGOSERERIY6JVgiIj3wJcLEu3kGC6A1awJjY9WDHJGIiIgMdUqwRER64HMR4t5uhggC8dyJFLtaYrHYIEclIiIiQ1m/Eiwzu97MXjezl83sT2ZW2GnflWa2w8y2m9lp/Y5URGSQ+RMR4t09gwVYwRSCFqN6v9bCEhERkQP624P1ODDfOVcOvAFcCWBmc4HzgXnA6cAvzMzbz3OJiAyqgIvgvN0PEQwWTQWgdu+7gxmSiIiIDHH9SrCcc48559rHxzwHlKZenw3c7ZwLO+feAXYAy/pzLhGRwZZFCOfP6XZffkkywWqu2jWYIYmIiMgQl85nsNYBf0m9ngLs7rRvT6rsEGZ2qZltNLONVVVVaQxHRKQf4jGyiJAI5HW7e9ykGQBEavcMZlQiIiIyxPWaYJnZE2a2tZuPszvV+R4QA+480gCcczc75yqccxUlJSVHeriIyIBIhJuTLwK53e7PL5pMzHlINLw3iFGJiIjIUOfrrYJz7uTD7Tezi4EzgJOccy5V/B4wtVO10lSZiMiwEGptJAewYH63+83ro9YzFn/L3sENTERERIa0/s4ieDrwLeAs51xrp10PAeebWdDMZgDHAM/351wiIoOprbkBAE+w+yGCAA3+8WSH9g1WSCIiIjIM9NqD1YsbgCDwuJkBPOec+6Jz7lUzuxd4jeTQwcucc/F+nktEZNCEW5oA8GX3nGC1ZY2noHHHYIUkIiIiw0C/Eizn3NGH2fdD4If9aV9EJFPCrckeLG/WmB7rxHInUdKwgWg8gd+rddtFREQkvbMIioiMGNG2ZA9WILv7Z7AArGAyeRaiqrp6sMISERGRIU4JlohINzoSrNyee7CCY5NL/9VWvjMoMYmIiMjQpwRLRKQb8VAywcrK6TnByh9/FABN+7XYsIiIiCQpwRIR6UYilFwHKyuvsMc6hZOmAxCpVYIlIiIiSUqwRES6kQgne7Cyc3p+Biu/eBoJZ1psWERERDoowRIR6YYLNdLqguTnBHuu5AtQ5ynE31w5eIGJiIjIkKYES0SkG95QPfWWj6+X6dcbfCXkhvYOUlQiIiIy1CnBEhHphj9cS6OnoNd6LdkTKIjuH4SIREREZDhQgiUi0o2saD2t3t4TrFjuZEpcDZFYYhCiEhERkaFOCZaISDdyYvWE/GN7rWcFU8i3NvZXqRdLRERElGCJiHQrP9FIJFjYa73AuGkA1FXuHNiAREREZFhQgiUichAXC5NHKy67qNe6eSXJxYZbqt8d6LBERERkGEhLgmVmXzczZ2bFqW0zs5+Z2Q4ze9nMFqfjPCIig6GpZh8A/vziXusWTpwOQLR290CGJCIiIsNEvxMsM5sKnArs6lT8MeCY1MelwC/7ex4RkcFSsz+ZLGUVTuy1bn5JKQlnOC02LCIiIqSnB+s/gG8BrlPZ2cBvXNJzQKGZTUrDuUREBlzLvncAyB0/vde65gtQ6ynE3/L+AEclIiIiw0G/EiwzOxt4zzn30kG7pgCdx8vsSZV118alZrbRzDZWVVX1JxwRkbSI1CSfpyqY9KE+1a/zjScntG8gQxIREZFhwtdbBTN7AuhunMz3gO+SHB74gTnnbgZuBqioqHC9VBcRGXj1u2l1QYpLJvepekvWBAqb3xrgoERERGQ46DXBcs6d3F25mZUBM4CXzAygFNhsZsuA94CpnaqXpspERIY8X/Me9lkJM/zePtWP5kyipHEDLpHAPJqcVUREZDT7wO8EnHOvOOfGO+emO+emkxwGuNg5txd4CPhsajbB5UCDc64yPSGLiAys/NY91Gf1rfcKIDFmCrkWpr6uZgCjEhERkeFgoP7V+gjwNrADuAX48gCdR0QkrVw8ypTYblrHHNPnYwKFyWSsZu+uXmqKiIjISNfrEMG+SvVitb92wGXpaltEZLBUvbuN8RaDCXP6fExOUXIOn+aq3cCSAYpMREREhgM9LCAi0sn+t7YAMGZaeZ+PKRhfCkBbnR41FRERGe2UYImIdNL6zvOEnY8Pz+t7T9S4CdMAiNbvHaiwREREZJhQgiUi0smY6i287T+anJy8Ph8TyCmgjSDWrARLRERktFOCJSKSEg21MCP8BvXjFh7ZgWbUesbhb9s/IHGJiIjI8KEES0Qk5Z2NjxK0KN6Z3S7/d1jN/mJyItUDEJWIiIgMJ0qwRERSml7+My0uyJzlHzviY0NZJRTEtA6WiIjIaKcES0QEcIkEpVXPsC2ngvy8vj9/1S6eM54iV0csnhiA6ERERGS4UIIlIgLsfm0DE1w1kQ+f+sEayJ9InoWoratLb2AiIiIyrCjBEhEB9v/jDiLOyzErz/tAx/sLJgFQt293OsMSERGRYUYJloiMeolohA9XPsxLucdRMmHyB2oje9wUAJqr96QzNBERERlmlGCJyKi3ff0fGUsjifJPf+A28kpKAQjVvZ+usERERGQYUoIlIqNedPPvqKaABavWfOA2xk6YCkC8UQmWiIjIaNbvBMvMvmpmr5vZq2b2k07lV5rZDjPbbman9fc8IiIDobluL3Ma/4fXij9GVlbWB24nmFdEGD/WvC+N0YmIiMhw4+vPwWa2GjgbWOCcC5vZ+FT5XOB8YB4wGXjCzGY65+L9DVhEJJ3efOLXLLI4RSsu7l9DZtTZWPyt+9MS11AUi0aprdlHW/0+wk11hEKtuGgbnngYS0RxeEiYF2c+nMeL1+vD5w/gC2TjDQTxB7LxB7PwB7MJBLIJZGUTCGbh8WeBWaa/PBERkbToV4IFfAn4kXMuDOCca39ncTZwd6r8HTPbASwDnu3n+URE0qpw+31s93yYuQuX97utJn8R2eHqNESVOa0tjex67QUad71CvPotAo07KQztoTBeQ6FrZLy5ATlvxPmImJ8ofqKW/IhbgFj7Z4+fqAWImQ9zDsMBrsfX4PC4VDnt5ST3OTrVo9O+JHMOlyo32l/TUb+9zoAboKTTMYSS2U5fY09RHfqdtsNs9XSePobTt2p99kEvoR1hJGF/AdO+eD/Z+YUf7IQiklb9TbBmAivN7IdACPiGc+4FYArwXKd6e1JlIiJDRuX2jcyIvcUzR3+LWWl4M9sWLGFM8ztpiGxwuESC3W+9wt6XnsCz61mKm19nanwPs1NJVMR52eeZQF1WKdXZ83E5xXjzSrD8Evw54whk5eANZuO8QZzHj5HAEnHMxSERIx6LEouGiUfDxCIhErEwiUgIFw3hYmESsQjEQhCLQDwM8TAWj+CJR7B4BG8ijCcRwZuI4I1HyaIRHzEcno7UKIEHrD2NSo56dxjO2ss9XeqQOg7AmcFBZR3fG0u+xU0eY92UDS19TfcOTibT1/iRt9tzjtrXtrrW62vO+4FSY9fty8O2dtjz9CGIvsYZSIRYGHmBLf94kEWnX9THo0RkIPWaYJnZE8DEbnZ9L3X8OGA5sBS418w+dCQBmNmlwKUA06ZNO5JDRUT6Zc8zd1DsvMw8KT1vSqI54xnbuAnnHDZEh7zVVVXy9v/8EffWU0xr3Mw0apkGVFPIe9mz2Vt8GlnTFlHy4SVMnHY0U31+pmY6aBHpUTQSpvmHRxHZ/jgowRIZEnpNsJxzJ/e0z8y+BPzROeeA580sARQD70GXv8mlqbLu2r8ZuBmgoqJiEMZciIhAIh5n2vuPsDW7gkWTStPSpsudQKG1UN/YSGFBQVraTIfKndvYtf4e8t99nFmRV1lijmoK2ZW/mHenH8/E8lMo/fB8ij2aWFZkuPEHgrxasJxZtX+jtaWJnNz8TIckMur1d4jgA8Bq4G9mNhMIANXAQ8DvzeynJCe5OAZ4vp/nEhFJmzc2PsFsV82uud9MW5vegkkA1O7fk/EEq6a+ga1P/I6x2++mPPoyk4C3vdN5Ydo6xi0+h6PLV1DsVUIlMhIEj/0chY//jecfu51l53w10+GIjHr9TbBuA24zs61ABLgo1Zv1qpndC7wGxIDLhuMMgvFYDOccPr8/06GISJo1vXAXbS7AnNXnp63N7HGTk21X7YFj5qWt3b6KxRM8//w/aH32VioaHuMEa6HSM4ENM75M6crP8qEPzeGIxnCLyLAw+yMf590np1K49XYSZ12GR/88EcmofiVYzrkIcGEP+34I/LA/7WfaC/f9mKIdfyR+2o+YveyUTIcjImmSiEY4uvpJXs07joo0zrqVV5ScyydU1+2I6AGzr6qGl/96GxPfupfj3BtE8LGjaBVNx32OqYtPZ5KG/omMaObxUFe2joUvXcvmp+5h8SmfznRIIqNaf3uwRrTg2FLGxGuZ8Mi5vPpEGW2LPk/ZSZ8mGAhmOjQR6Yc3Nj3BbBpJzDsnre2OnXgUANH6yrS2251EPMGWDU/R8uxtLG58klMsxHu+abw+70qOPvlzzM0vGfAYRGTomP/xy9j98i2Me/aHRE5YQyAQyHRIIqOWEqzDWHT6RbQefzYbHvhPpu34HZM2/Cu1G67ipaLVBMo+wexlp5KVk5fpMDPOJRK4eIxEPErCORKJBC71ObkNCZfApbZJrU3T8Tn12trX13F9n0q4p5naepq/rWv1zuuv9GHGtyOaFa6XugfvTmfbh1S3I2r+iKag7qbhwx99pDPr9V7fkfxRSjiSP3edPiecI+Fccj8Hyqq2/IVjnDHrI2ccYTyHl1s4gajz4hoHLsGqrtrHa3/9FZPfupclbichArw5/hRKPnopU+afoAV7RUYpXyBI/XHfpewfX+HZu67hIxf970yHNLw4RyIWJRqPEo9FicbiJGIxYrEI8XgcEnEsEYPU2ngHDuv7cgGH23fgV3en9yYeO1Bi1uVdS/uGmafT8Qe9m7H24+2g9wKdWrKDztHeLp1GPrTHcfA57ECdru/HOr0+5G+Sdfvy8McAHh9Z2bl4PcPjb5wd/IORSRUVFW7jxo2ZDqNb8ViM1/77XiJb7mFO07PkWJiI87EjMIv6sWUEJ88nb1o5RaWzKCoejw3wkJx4PEGorYVwWzPhthYioRYibW1Ewi3Ewi3Ewm3Ew63EI60kIm24aCsuGoJoCGJtWCyEJ9aGLxHu+PCnPnuJ4UnE8RDH4+J4ieF1cTwk8BLH6+J4ieNLbfssMaBfq8hAeMM3k5nffyHt7e6+bh57g9NZ+u2H09amSyR49dlHaX3uNsobnybLorztP5rmeRcw++RLCOSNTdu5RGQYc45N/+8TlDf9nbfOuJfZS3ucCHpYicfjtNRX09xYS1tTPeGWeiItDUTbGoi1NeJCTbhQI95oC75Yc/I9Tjy5jp4vHsLnIvgSEXwuQsBF8BMlSBi/i+ElgZcEngFaRF3S43exk5j/L7excGphpkPpYGabnHMV3e1TD1YfeX0+yk76Zzjpnwm1NvHKhr/Q9PrTlNRuZPG+P5C1/254MVk37PzUesbS4C0i4ssl7ssm4csh5s0mYT4s9Y+H9hw84eIdC2t64uHkopqJcMcvA18iQsCF8bsIQcIEXYQsi5IL5H6AryVEgAgBwhYkYgEiFiRqAaIWpNU7hrjHjzMfzuOF9s8eH87jg9SHs/Yyb7Juajv5xRnW/oGBeVLFqa869bl9kc/Oi3+6Lv9dSS3u2cPX0bncOv2joG9rYh5Z/SNanPOI/2kxcL/UzbmD/tfWS/0jjeWIqh9Z232JxTkO3E/W/toOKrMDrzvtKyo79Yji6avanOmUtKRnseGafbt587FbmPL2fcx379NENlvHn8mE1ZfyobkfScs5RGQEMeOYz/+K/f+1gkkPf5YdwT9wdPnQ+12RiCeoq6+htnInrdW7iNZXEm+uxrXW4GmrwR+uIxhtIDfWQL5roMA1M8YcYw7TZtwZLZZNG9mELUjMAsQ8AWKeIBFvPm3eIAlPgIQ3SNwTJO4J4LwB8HgxT/t7GC/m9WIeX6rcl/rwgseLM09yEfODR1ccfrNLSXf9L65jn+v0FsJ1+uTo/Df04DouNfKny9/7VCXXfs6O7UPrtJ/DHVzezTm6CaJLm13/dnf9O249vj/q6fgDxubNZHJBVg/HDz3qwUqDWDTK7rdfo/Hdl4nU7CTWUIm3ZR+5kWr88VYCiTYCiTBZhPCSoOOHFev4yY8SIGJ+ohY48EvBgsQ8AeKeIM4bJOEL4nzZOF82+LLAn40nkIXHn4MnmIM3kI0vmIMvmIM/K4dAMIdAdi7B7DyC2bkEs3Iwf7aGEIkMoA2/upzFu39D/Mr3yco68j8GsUiI1565n8TmO5nXsgG/xdnmn0vLvAuYf8pnyco93FsMERF4/53X8d3xT+S6FrYuuY5lZ3xhwEfWtGsNhaiq3EXDvl201ewmWv8+NL6Pv3UvOaH9FMSqKUrUkGvhQ46NOC/1VkCzZwyt/kIi/gJiWeNIZI3DZY/Dk1OIL7uAQG4BwdwCsvMKyMkfR+6YQrJy8vX+RgbV4XqwlGCJiKTRS4/czILnv8mrZ/6ZeUtW9ukYl0jw5kv/oO7Z3zBz/6OMpZFqCnlz4seZvOpzHDV7yQBHLSIjTeXut2j8zQXMim5jW2A+0SWfZ/YJawlk5XywBp2jqaGa2spdNFTtpq1mN7H69/E0VRJo20deZD9j4zUUuXq8Bw23izovNZ4iGvwltAbHE8udCGMm4R9bSva4KeQUT2VM0STGjCkctERQpL+UYImIDJK6fbsZ+8v5PDv9y3zk4v/TYz2XSPD2S3+n5oV7Ka18nMluHxHn4+Xc42DRBZSf8EnNAiYi/RKPRXn+/v/gQ6/fxARqaHVBdmUdQ33+THxjJuHyxuP1B/CYl0g8AZFmLNyECzXgQo34QzXkRKooiNYwNlFLlkUPOUcDedR5i2gOjCeSPYF4/kR8BVPIGldK3vhpjJt4FLmFE0CJk4wwSrBERAbRG/9rKcFEK1Ov3ILHfyBJaq6v4s3n/kx0+xNMq3uOiVQTdV5ezV5MdOaZzDrh04wpGp/ByEVkJIpGo7y8/s9EXn2YsfUvMzm2hzG09FzfeWm2HJotP9nrFCgmmjMBy59IYNxk8oqmUDD+KIomHUUgW7Mpy+ikBEtEZBC98OhvWfrcV3gtezGtJQux5r0UNrzOjNg7eMzR6HJ4O28xkaM/xodXfoqi4gmZDllERhHnHA2NjbTW7yMSiZBIJAj6jEB2PoHcseTm5uHzeTMdpsiQplkERUQGUcWpF/Df+99h/lu3UPDuizRYPu8Fj2bDpBPJm386s5ecwEK/hv+JSGaYGYUFBRQWFGQ6FJERST1YIiIDJJFwhGJxcgL6X5aIiMhIcrgeLD1xKCIyQDweU3IlIiIyyijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNhtQkF2ZWBbyb6TgOUgxUZzoIGTS63qOHrvXooWs9uuh6jx661qPHULzWRznnSrrbMaQSrKHIzDb2NEOIjDy63qOHrvXooWs9uuh6jx661qPHcLvWGiIoIiIiIiKSJkqwRERERERE0kQJVu9uznQAMqh0vUcPXevRQ9d6dNH1Hj10rUePYXWt9QyWiIiIiIhImqgHS0REREREJE2UYImIiIiIiKSJEqzDMLPTzWy7me0ws+9kOh5JHzObamZ/M7PXzOxVM/vXVPk4M3vczN5MfR6b6VglPczMa2ZbzOzPqe0ZZrYhdX/fY2aBTMco6WFmhWZ2v5m9bmbbzOwjurdHJjO7IvU7fKuZ3WVmWbq3Rw4zu83M9pvZ1k5l3d7LlvSz1HV/2cwWZy5yOVI9XOvrU7/HXzazP5lZYad9V6au9XYzOy0jQR+GEqwemJkXuBH4GDAX+LSZzc1sVJJGMeDrzrm5wHLgstT1/Q7wpHPuGODJ1LaMDP8KbOu0/WPgP5xzRwN1wOcyEpUMhP8CHnXOzQYWkLzuurdHGDObAnwNqHDOzQe8wPno3h5JbgdOP6isp3v5Y8AxqY9LgV8OUoySHrdz6LV+HJjvnCsH3gCuBEi9XzsfmJc65hep9+1DhhKsni0Ddjjn3nbORYC7gbMzHJOkiXOu0jm3OfW6ieQbsCkkr/EdqWp3AJ/ISICSVmZWCnwc+FVq24ATgftTVXStRwgzKwA+CtwK4JyLOOfq0b09UvmAbDPzATlAJbq3Rwzn3DNA7UHFPd3LZwO/cUnPAYVmNmlQApV+6+5aO+cec87FUpvPAaWp12cDdzvnws65d4AdJN+3DxlKsHo2BdjdaXtPqkxGGDObDiwCNgATnHOVqV17gQmZikvS6j+BbwGJ1HYRUN/pF7fu75FjBlAF/Do1JPRXZpaL7u0Rxzn3HvB/gV0kE6sGYBO6t0e6nu5lvW8b2dYBf0m9HvLXWgmWjGpmlgf8AbjcOdfYeZ9LrmGgdQyGOTM7A9jvnNuU6VhkUPiAxcAvnXOLgBYOGg6oe3tkSD17czbJpHoykMuhQ4xkBNO9PDqY2fdIPtpxZ6Zj6SslWD17D5jaabs0VSYjhJn5SSZXdzrn/pgq3tc+pCD1eX+m4pO0WQGcZWY7SQ71PZHkMzqFqWFFoPt7JNkD7HHObUht308y4dK9PfKcDLzjnKtyzkWBP5K833Vvj2w93ct63zYCmdnFwBnABe7A4r1D/lorwerZC8AxqdmIAiQfpnsowzFJmqSewbkV2Oac+2mnXQ8BF6VeXwQ8ONixSXo55650zpU656aTvI+fcs5dAPwNODdVTdd6hHDO7QV2m9msVNFJwGvo3h6JdgHLzSwn9Tu9/Vrr3h7ZerqXHwI+m5pNcDnQ0GkooQxDZnY6yeH9ZznnWjvtegg438yCZjaD5MQmz2cixp7YgWRQDmZm/0Ty2Q0vcJtz7oeZjUjSxcyOB/4OvMKB53K+S/I5rHuBacC7wHnOuYMfsJVhysxWAd9wzp1hZh8i2aM1DtgCXOicC2cwPEkTM1tIckKTAPA2cAnJfyjq3h5hzOxaYC3J4UNbgM+TfBZD9/YIYGZ3AauAYmAf8APgAbq5l1NJ9g0kh4m2Apc45zZmIGz5AHq41lcCQaAmVe0559wXU/W/R/K5rBjJxzz+cnCbmaQES0REREREJE00RFBERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERERERERNJECZaIiIiIiEiaKMESERERERFJk/8PMHw2cIAFk2IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
39True30.08850.0728bAP.soma.v0.00181.57e-06
40True30.08850.0728Step1.soma.v0.001821.96e-06
41True30.08850.0728Step3.soma.v0.001833.83e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "39 True 3 0.0885 0.0728 bAP.soma.v \n", + "40 True 3 0.0885 0.0728 Step1.soma.v \n", + "41 True 3 0.0885 0.0728 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "39 0.0018 1.57e-06 \n", + "40 0.00182 1.96e-06 \n", + "41 0.00183 3.83e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADhn0lEQVR4nOzdeXxcdbn48c8zM9n3vdmapPuWLtCWAi1QUBZlEVEKshXkckFRQQERFav38ruKKIqgiKIoYCn7vu8UKKUt3fclbZKmzb5nMtv398eZpGmarc0kk2Se94vQmXO+53ueOTOTnOd8lyPGGJRSSimllFJK9Z8t2AEopZRSSiml1EihCZZSSimllFJKBYgmWEoppZRSSikVIJpgKaWUUkoppVSAaIKllFJKKaWUUgGiCZZSSimllFJKBYgmWEopNUSISL6IGBFxBDuWkU5EFovI8mDHMdSIyAIR2RbsOJRSajjTBEsppdSwJiJLRMQtIo0dfm4LdlzDkTHmI2PMxIGqX0Su9F9EuHag9qGUUsGmV0mVUipARMRhjPEEO44QtcwYc3mwgxgoI+GzJSJJwB3ApmDHopRSA0lbsJRSqh9EpEhEfiwi64EmEXGIyDwR+UREakVknYic1qH8+yLyfyKyUkTqReQFEUnupu6rRWSLiDSIyG4R+e9O6y8QkbX+enaJyNn+5Qki8rCIlIlIqYj8r4jYe3kdY0XkXRGpEpFKEXlcRBI7rKsWkeP8z7NEpKLtdYnI+SKyyf963xeRyZ2Ozy0isl5E6kRkmYhEHv2RPnoicrv/uDSIyGYRubCbciIi94pIuf9YbhCRaf51ESJyj4jsE5GDIvKgiET1cf+P+Mu/5Y/hAxHJ67D+jyJS7N/nahFZ0GHdEhF5WkQeE5F6YLGIzBWRT/3HuUxE7heR8A7bGBH5jojs8O/vf/zv3Sf+fTzZsXw3MZ8mIiV9eX3H4P+A+4DKAapfKaWGBE2wlFKq/y4FvgokAhnAK8D/AsnALcAzIpLWofyVwDVAJuDBOunsSjlwLhAPXA3c2yHJmQv8G7jVv99TgCL/do/46x0HzALOBHrrkiVYJ8BZwGQgF1gCYIzZBfwYeExEooF/Av8yxrwvIhOApcBNQBrwKvBSpxP5i4GzgQJgOrC4ywBE5vuTh+5+5vfyGjrbBSwAEoBf+uPP7KLcmVjHb4K/7MVAlX/dr/3LZ2Idz2zgzqOI4TLgf4BUYC3weId1n/vrTQb+AzzVKfm8AHga6/19HPACN/vrOhE4A/hOp/2dBRwPzANuAx4CLsd6P6dhfVaPmT9R7u79+XMP280FZgMP9mf/Sik1HGiCpZRS/XefMabYGNOCdTL7qjHmVWOMzxjzFrAK+EqH8o8aYzYaY5qAnwMXd9XCZIx5xRizy1g+AN7EShgAvg38wxjzln8/pcaYrSKS4d/XTcaYJmNMOXAvcElPL8AYs9NfV6sxpgL4PXBqh/V/A3YCn2Elhj/1r1oEvOLf1g3cA0QBJ3U6PvuNMdXAS1hJRVcxLDfGJPbw09OkFBd3OtnPMsY85d+vzxizDNgBzO1iWzcQB0wCxBizxRhTJiICXAfcbIypNsY0AP+vt2PZySvGmA+NMa1Yx+xEEcn1v97HjDFVxhiPMeZ3QATQcfzTp8aY5/3xtxhjVhtjVvjLFwF/pcN75He3MabeGLMJ2Ai8aYzZbYypA17DSriPmTFmeg/vT+dkDwD/Z/vPwI3GGF9/9q+UUsOBjsFSSqn+K+7wOA/4poic12FZGPBeN+X3+tendq5URM4BfoHVgmIDooEN/tW5WK1FneX56yuz8gPwb1vcRdmO+8oA/oiVwMX5t6npVOxvwIvAdf6EAawWr71tBYwxPhEpxmrpaXOgw+Nm/zaB9mTnMVgiciXwQyDfvyiWLo6zMeZdEbkfeADIE5FnsVoeI7GO+eoOx1KAHrtbdtJ+3I0xjSJSjfX6i0XkFqxEOQswWC2VqV1t6389E7AS39n+uBzA6k77O9jhcUsXz0cdReyB8h1gvTFmRRD2rZRSg05bsJRSqv9Mh8fFWC1UHa/sxxhjft2hTG6Hx6OxWlAOG5ciIhHAM1gtQhnGmESshKrtTL8YGNtFLMVAK5DaYf/xxpipvbyG/+d/HYXGmHislrhDWYVILPAH4GFgiRwaN7YfK6lrKyf+11fay/6OINYU4Y09/CzovZb2uvKwEsIbgRT/8dvY8TV1ZIy5zxhzPDAFK6G9Fes9aQGmdjiWCcaY2KN4We3vtf8YJgP7/a/lNqzuiEn++Oo6xdfxcwXwF2ArMN7/Ht3R3esZKGKNtevu/emu+98ZwIUickBEDmC1bv7On9QqpdSIowmWUkoF1mPAeSJylojYRSTSP3FATocyl4vIFP94pl8BTxtjvJ3qCcfqMlYBePytWWd2WP8wcLWInCEiNhHJFpFJxpgyrK6EvxOReP+6sSLSuStZZ3FAI1AnItlYCUZHfwRWGWOuxRpj1nYy/STwVX8cYcCPsBK8T3o7UJ35pwiP7eHno6OoLgYrQakAa8IQrDFIRxCROSJygj/+JsAJ+Pzd2f6GNfYt3V82W0TO6rCtkQ6TmHThK/6xZeFYY7FWGGOKsY63xx+fQ0TuxGrB6kkcUA80isgk4IZeygecMWZqD+/P9d1sthhrXN9M/88qrDFxP+2mvFJKDWuaYCmlVAD5T54vwGpdqMBqUbqVw3/fPoo1EcUBrG5o3++ingb/8iexuup9C6t7Xtv6lfgnvsBq+fiAQy1JV2IlaJv92z6NNW6qJ78EjvPX9QrwbNsKEbkAa5KKthP6HwLHichlxphtWK1df8Jq8TkPOM8Y4+plfwPKGLMZ+B3wKVY3uULg426Kx2MlUjVY3R2rgN/61/0Ya+zZCrFm83sb/zgp/1iqBg512+zKf7C6eVZjTT7R1o3xDeB1YLt/n0566caJ1W3xW/59/g1Y1kv5IcEYU2uMOdD2A7iAev+4MKWUGnHEmM49EJRSSg0UEXkfeMwY8/dgx6L6R0Qux+o++JNu1j8ClBhjfjaogSmllAoqneRCKaWUOgbGmMeCHYNSSqmhR7sIKqVUiBDrprdHMzmBGoFE5I5uPgevBTs2pZQaCbSLoFJKKaWUUkoFiLZgKaWUUkoppVSADKkxWKmpqSY/Pz/YYSillFJKKaVUj1avXl1pjEnrvHxIJVj5+fmsWrUq2GEopZRSSimlVI9EZG9Xy7WLoFJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIAMqTFYXXG73ZSUlOB0OoMdihoCIiMjycnJISwsLNihqBGo2eXhwz8sJnn8XOZe+P1gh6OUUkqpYWjIJ1glJSXExcWRn5+PiAQ7HBVExhiqqqooKSmhoKAg2OGoEWjdhvWc3fwSrHsJc8GNiE0b+ZVSSil1dIb82YPT6SQlJUWTK4WIkJKSoq2ZasD4trzS/rho6+ogRqKUUkqp4WrIJ1iAJleqnX4W1EAydaXtj6u2rwhiJEoppZQaroZFgqWUUoPB5qqjikSaTQS+so3BDkcppZRSw5AmWH0gIvzoRz9qf37PPfewZMmS4AXUwWmnndbjzZm/9rWvMW/evMOWLVmyhOzsbGbOnMm0adN48cUXBzpMpYYFh6ueJns8xY48Ymq3BjscpZRSSg1DmmD1QUREBM8++yyVlZUBrdcYg8/nC2idHdXW1rJ69Wrq6urYvXv3Yetuvvlm1q5dy1NPPcU111wzoHEoNVxEeBpwOuKojR3LqNaiYIejlFJKqWFIE6w+cDgcXHfdddx7771HrKuoqOCiiy5izpw5zJkzh48//hiwWonuueee9nLTpk2jqKiIoqIiJk6cyJVXXsm0adMoLi7m1ltvZdq0aRQWFrJs2TIA3n//fU477TS+8Y1vMGnSJC677DKMMV3G9+ijj7a3Rq1cubJ9+bPPPst5553HJZdcwhNPPNHltpMnT8bhcByWPN5+++1MmTKF6dOnc8sttwBQVFTE6aefzvTp0znjjDPYt28fAIsXL+aGG25g3rx5jBkzhvfff59rrrmGyZMns3jx4vY6b7jhBmbPns3UqVP5xS9+cUQcdXV15OXltSd6TU1N5Obm4na7u4xbqYEQ6W3A7YjDlzyGFGppaqgNdkhKKaWUGmaG/DTtHf3ypU1s3l8f0DqnZMXzi/Om9lruu9/9LtOnT+e22247bPkPfvADbr75ZubPn8++ffs466yz2LJlS4917dixg3/961/MmzePZ555hrVr17Ju3ToqKyuZM2cOp5xyCgBffPEFmzZtIisri5NPPpmPP/6Y+fPnH1Ffc3Mza9eu5cMPP+Saa65h40Zr7MjSpUu58847ycjI4KKLLuKOO+44YtvPPvsMm81GWloaAFVVVTz33HNs3boVEaG2thaA733ve1x11VVcddVV/OMf/+D73/8+zz//PAA1NTV8+umnvPjii5x//vl8/PHH/P3vf2fOnDmsXbuWmTNnctddd5GcnIzX6+WMM85g/fr1TJ8+vT2OhIQEZs6cyQcffMDChQt5+eWXOeuss/R+V2pQRfuaqA6PJzx9POyBA0VbGVs4r/cNlVJKKaX8tAWrj+Lj47nyyiu57777Dlv+9ttvc+ONNzJz5kzOP/986uvraWxs7LGuvLy89nFRy5cv59JLL8Vut5ORkcGpp57K559/DsDcuXPJycnBZrMxc+ZMioqKuqzv0ksvBeCUU06hvr6e2tpaDh48yI4dO5g/fz4TJkwgLCysPfECuPfee5k5cya33HILy5Yta5+dLyEhgcjISL797W/z7LPPEh0dDcCnn37Kt771LQCuuOIKli9f3l7Xeeedh4hQWFhIRkYGhYWF2Gw2pk6d2h7zk08+yXHHHcesWbPYtGkTmzdvPuJ1LFq0qL0F74knnmDRokU9HkelAskYQ5xpxBuRQEL2RADqS3UcllJKKaWOzrBqwepLS9NAuummmzjuuOO4+uqr25f5fD5WrFhBZGTkYWUdDsdh45o63rspJiamT/uLiIhof2y32/F4PF2W6zx1uYjw5JNPUlNT035D3vr6epYuXcpdd90FWGOw2rr/dY575cqVvPPOOzz99NPcf//9vPvuu32K02azHRazzWbD4/GwZ88e7rnnHj7//HOSkpJYvHhxl/eyOv/887njjjuorq5m9erVnH766T3uV6lAcnk8xNGMNzye9LxJALSW7wpyVEoppZQabrQF6ygkJydz8cUX8/DDD7cvO/PMM/nTn/7U/nzt2rUA5Ofns2bNGgDWrFnDnj17uqxzwYIFLFu2DK/XS0VFBR9++CFz5849qrjaWn2WL19OQkICCQkJLF26lNdff7193Nfq1au7HYfVUWNjI3V1dXzlK1/h3nvvZd26dQCcdNJJ7ds//vjjLFiwoM/x1dfXExMTQ0JCAgcPHuS1117rslxsbCxz5szhBz/4Aeeeey52u73P+1Cqv5xNDdjF4AuPJz4hmUoSsdV2/b1VSimllOpOvxMsEckVkfdEZLOIbBKRH/iXLxGRUhFZ6//5Sv/DDb4f/ehHh00Icd9997Fq1SqmT5/OlClTePDBBwG46KKLqK6uZurUqdx///1MmDChy/ouvPBCpk+fzowZMzj99NO5++67GTVq1FHFFBkZyaxZs7j++ut5+OGHKSoqYu/evYdNz15QUEBCQgKfffZZl3V85StfYf/+/TQ0NHDuuecyffp05s+fz+9//3sA/vSnP/HPf/6T6dOn8+ijj/LHP/6xz/HNmDGDWbNmMWnSJL71rW9x8sknt6+78847D5smftGiRTz22GPaPVANOndTDQC+iHgAyh1ZxDbtDWZISimllBqGpLuZ6fpcgUgmkGmMWSMiccBq4GvAxUCjMeaenrbvaPbs2abzPZ22bNnC5MmT+xWjGln0M6EGwv6dG8h6bD4rZv2GeRdcz8rfX0x+/SrSl+zufWOllFJKhRwRWW2Mmd15eb9bsIwxZcaYNf7HDcAWILu/9Sql1GBytTYDYA+PAsCdWEA6Vbhaep60RimllFKqo4COwRKRfGAW0NYP7UYRWS8i/xCRpG62uU5EVonIqoqKikCGo5RSfebplGCFpY4B4MC+7UGLSSmllFLDT8ASLBGJBZ4BbjLG1AN/AcYCM4Ey4HddbWeMecgYM9sYM7vtXkxKKTXYPK0tADgirAQrLnMcAHWlmmAppZRSqu8CkmCJSBhWcvW4MeZZAGPMQWOM1xjjA/4GHN3UeEopNYjaWrAc4da931JzrYlpWsp1DJZSSiml+i4QswgK8DCwxRjz+w7LMzsUuxDY2HlbpZQaKjwuqwUrLMKfYKVn02QiMDVFQYxKKaWUUsNNIG40fDJwBbBBRNb6l90BXCoiMwEDFAH/HYB9KaXUgPC1JViRVoIlNhvl9lFENBQHMyyllFJKDTOBmEVwuTFGjDHTjTEz/T+vGmOuMMYU+pefb4wpC0TAwfL8888jImzdurXbMkVFRUybNi1g+1y8eDFPP/10t+tvuukmsrOz8fl87cseeeQR0tLSmDlzJlOmTOFvf/tbwOJRaiTzuqwuguGRUe3LaiOySGjdH6yQlFJKKTUMBXQWwZFs6dKlzJ8/n6VLl3a53uPx9HsfXq+3z2V9Ph/PPfccubm5fPDBB4etW7RoEWvXruX999/njjvu4ODBg/2OTamRzuduBQ61YAE440aT4SnDdLiIoZRSSinVE02w+qCxsZHly5fz8MMP88QTT7Qvf//991mwYAHnn38+U6ZMAaxE67LLLmPy5Ml84xvfoLnZuir+zjvvMGvWLAoLC7nmmmtobbVO5vLz8/nxj3/Mcccdx1NPPXXEvt9++21mz57NhAkTePnllw/b99SpU7nhhhu6TfrS09MZO3Yse/fubV923333MWXKFKZPn84ll1wCQHV1NV/72teYPn068+bNY/369QAsWbKEq666igULFpCXl8ezzz7LbbfdRmFhIWeffTZutxuAX/3qV8yZM4dp06Zx3XXX0fnm1T6fj/z8fGpra9uXjR8/XhM/NbS4rS6CER0SLBLziJZW6iqHdQO8UkoppQZRIMZgDZ7XbocDGwJb56hCOOfXPRZ54YUXOPvss5kwYQIpKSmsXr2a448/HoA1a9awceNGCgoKKCoqYtu2bTz88MOcfPLJXHPNNfz5z3/mxhtvZPHixbzzzjtMmDCBK6+8kr/85S/cdNNNAKSkpLBmzZou911UVMTKlSvZtWsXCxcuZOfOnURGRrJ06VIuvfRSLrjgAu644w7cbjdhYWGHbbt79252797NuHHj2pf9+te/Zs+ePURERLQnPL/4xS+YNWsWzz//PO+++y5XXnkla9euBWDXrl289957bN68mRNPPJFnnnmGu+++mwsvvJBXXnmFr33ta9x4443ceeedAFxxxRW8/PLLnHfeee37tNlsXHDBBTz33HNcffXVfPbZZ+Tl5ZGRkdHnt0mpgWb8CVZkVGz7soi0MbAdKoq3k5iu909XSimlVO+0BasPli5d2t7ac8kllxzWYjR37lwKCgran+fm5nLyyScDcPnll7N8+XK2bdtGQUEBEyZY0z5fddVVfPjhh+3bLFq0qNt9X3zxxdhsNsaPH8+YMWPYunUrLpeLV199la997WvEx8dzwgkn8MYbb7Rvs2zZMmbOnMmll17KX//6V5KTk9vXTZ8+ncsuu4zHHnsMh8PKr5cvX84VV1wBwOmnn05VVRX19fUAnHPOOYSFhVFYWIjX6+Xss88GoLCwkKKiIgDee+89TjjhBAoLC3n33XfZtGnTEa9j0aJFLFu2DIAnnniix9esVFB4nLiN/bALFYnZ4wFoOLAzWFEppZRSapgZXi1YvbQ0DYTq6mreffddNmzYgIjg9XoREX77298CEBMTc1h5a9b67p93pXMdvdX3xhtvUFtbS2FhIQDNzc1ERUVx7rnnAlYyc//993dZ3yuvvMKHH37ISy+9xF133cWGDT23CEZERABWK1RYWFh7PDabDY/Hg9Pp5Dvf+Q6rVq0iNzeXJUuW4HQ6j6jnxBNPZOfOnVRUVPD888/zs5/9rMf9KjXYxOPERRhhHb5zGaOtiyKuyj3BCksppZRSw4y2YPXi6aef5oorrmDv3r0UFRVRXFxMQUEBH330UZfl9+3bx6effgrAf/7zH+bPn8/EiRMpKipi507rKvijjz7Kqaee2qf9P/XUU/h8Pnbt2sXu3buZOHEiS5cu5e9//ztFRUUUFRWxZ88e3nrrrfbxXt3x+XwUFxezcOFCfvOb31BXV0djYyMLFizg8ccfB6yxXampqcTHx/cpvrZkKjU1lcbGxm5nPRQRLrzwQn74wx8yefJkUlJS+lS/UoPG00qrhB+2KCY2nkoSsdcWBScmpZRSSg07mmD1YunSpVx44YWHLbvooou6nVhi4sSJPPDAA0yePJmamhpuuOEGIiMj+ec//8k3v/lNCgsLsdlsXH/99X3a/+jRo5k7dy7nnHMODz74ID6fj9dff52vfvWr7WViYmKYP38+L730Upd1XHvttaxatQqv18vll19OYWEhs2bN4vvf/z6JiYksWbKE1atXM336dG6//Xb+9a9/9fHoQGJiIv/1X//FtGnTOOuss5gzZ077ugcffJAHH3yw/fmiRYt47LHHtHugGpJsXicuwo9YXunIJLq5JAgRKaWUUmo4ks4zvgXT7NmzzapVqw5btmXLFiZPnhykiNRQpJ8JNRBW/+5C0hq3MvoXWw5b/vnvLiKncT2Zv9gRpMiUUkopNRSJyGpjzOzOy7UFSymlsFqwPHJkC5YnPo90XwUeV2sQolJKKaXUcKMJllJKAXZfK25bxJHLU/Kxi6G8ZFcQolJKKaXUcDMsEqyh1I1RBZd+FtRAcXhdeLpIsKJHjQWgplS7CCqllFKqd0M+wYqMjKSqqkpPrBXGGKqqqoiMjAx2KGoEcphWvF0kWCn+e2E1H9R7YSmllFKqd0P+Plg5OTmUlJRQUVER7FDUEBAZGUlOTk6ww1AjUJivlSb7kQlWevYYXMaOt7po8INSSiml1LAz5BOssLAwCgoKgh2GUmqECzMufF0kWHaHg/22DMLq9wUhKqWUUkoNN0O+i6BSSg2GcNOKz95199OaiEzinaWDHJFSSimlhqMBT7BE5GwR2SYiO0Xk9oHen1JKHYsw3BhH1wlWS0wuqZ4DgxyRUkoppYajAU2wRMQOPACcA0wBLhWRKQO5T6WUOhYRxoXpoosggC8xjyQaaKitGuSolFJKKTXcDHQL1lxgpzFmtzHGBTwBXDDA+1RKqaNifD4icXXbghWeao0DLd+3fTDDUkoppdQwNNAJVjZQ3OF5iX9ZOxG5TkRWicgqnSlQKRUMra5WbGKQsK4TrPhMa6r2+gM6VbtSSimlehb0SS6MMQ8ZY2YbY2anpaUFOxylVAhytjQBIGFRXa5PHz0RAFf5rkGLSSmllFLD00AnWKVAbofnOf5lSik1ZLhamoHuE6yE5DTqiYHavYMZllJKKaWGoYFOsD4HxotIgYiEA5cALw7wPpVS6qi4nFaCZeumiyBAuX0UkY3F3a5XSimllIIBvtGwMcYjIjcCbwB24B/GmE0DuU+llDparlari6AtvOsWLIC6qBwymnSSC6WUUkr1bEATLABjzKvAqwO9H6WUOlZuZwsA9vDuW7Cc8QWMavgIr7sVe1jX07krpZRSSgV9kgullAo2d6vVRdARHt1tGUfaBBzi42DRlsEKSymllFLDkCZYSqmQ52n1t2BFdN9FMC7Xukd61T7t5ayUUkqp7mmCpZQKeV6XlWCFRXTfgjWqoBAAZ9m2QYlJKaWUUsOTJlhKqZDndVldBMMiu0+wkpJTqCARW/WOwQpLKaWUUsOQJlhKqZDna2vBiozptoyIcDAsl9jGokGKSimllFLDkSZYSinlsqZpD4+K67FYQ0w+GS69F5ZSSimluqcJllJKuRoBiIjuOcHyJo8jkQaaag4ORlRKKaWUGoY0wVJKKX8LVmQvCVbEqIkAHNy9YcBDUkoppdTwpAmWUkq5mmgyEdjt9h6LpeVPBaC2ePNgRKWUUkqpYUgTLKVUyBN3Ey3S/T2w2mQXTMJlHLgObh+EqJRSSik1HGmCpZQKeXZ3M60S2Wu5sLBw9tuziKrVqdqVUkop1TVNsJRSIc/uaaLV1nsLFkBlzDjSnbsGOCKllFJKDVeaYCmlQp7D24KrjwmWK3kSmaaC5vrqAY5KKaWUUsORJlhKqZAX7mvGbY/uU9mI7EIA9m9fPZAhKaWUUmqY0gRLKRXyInwteBx9S7BSxx4HQP3e9QMZklJKKaWGqX4lWCLyWxHZKiLrReQ5EUn0L88XkRYRWev/eTAg0Sql1ACI8LXgC+tbgpWdN54GE4U5uGmAo1JKKaXUcNTfFqy3gGnGmOnAduAnHdbtMsbM9P9c38/9KKXUgIkyTnyOmD6VdTjs7HMUEFu7bYCjUkoppdRw1K8EyxjzpjHG43+6Asjpf0hKKTV4vF4f0bRAeN8SLIC6+AlkuXZjfL4BjEwppZRSw1Egx2BdA7zW4XmBiHwhIh+IyILuNhKR60RklYisqqioCGA4SinVu6amOsLFiy8yqc/b2EZNJY5mKkp3D2BkSimllBqOek2wRORtEdnYxc8FHcr8FPAAj/sXlQGjjTGzgB8C/xGR+K7qN8Y8ZIyZbYyZnZaW1v9XpJRSR6Glvsp6ENX3BCsxfyYApdtWDUBESimllBrOHL0VMMZ8qaf1IrIYOBc4wxhj/Nu0Aq3+x6tFZBcwAdCzEaXUkNJcWwmAIza5z9vkTpoNr0Fz8TrgkgGKTCmllFLDUX9nETwbuA043xjT3GF5mojY/Y/HAOMB7UujlBpymuusBCsiLqXP28QkJFMqo4is3DBQYSmllFJqmOq1BasX9wMRwFsiArDCP2PgKcCvRMQN+IDrjTHV/dyXUkoFnLPB6iIYk5B6VNsdjJ1MVsPGgQhJKaWUUsNYvxIsY8y4bpY/AzzTn7qVUmowuButBCs26ejGgLoyZpDZ8B41FftJSssaiNCUUkopNQwFchZBpZQadrxNVuN6/FEmWLH5cwAo3fRJwGNSSiml1PClCZZSKrS11OIyDiKi4o5qs9ypJ+EzQnORzt2jlFJKqUM0wVJKhTRHSxX1EgfWONI+S0hKZp8ti8iKdQMUmVJKKaWGI02wlFIhLbq1nGr7sd2D72DsZDKbtwY4IqWUUkoNZ5pgKaVCWry7gvrwY0uwvKNmkmaqqSrbG+ColFJKKTVcaYKllAppSd5KWqMyjmnb5HEnAFC88eNAhqSUUkqpYUwTLKVUyPK0NBBPE77YzGPaPr/wRNzGTsueTwMcmVJKKaWGK02wlFIhq+bgPgBsidnHtH1kdBy7w8aSUPlFIMNSSiml1DCmCZZSKmTVHbTGTkUm5xxzHdXJsxjTuhWPyxmosJRSSik1jGmCpZQKWc1VVgtWXHreMdfhyDuBSHGzb/NngQpLKaWUUsOYJlhKqZDlqSkFIHHU6GOuI6twIQDVWz8KSExKKaWUGt40wVJKha76/dSaGFITk465iqzcAvaThmP/qgAGppRSSqnhShMspVTICms+SJUtBZtNjrkOEaE4ppCchnVgTACjU0oppdRwpAmWUipkxTgPUuc4tpsMd+TKmkOqqaZq/64ARKWUUkqp4UwTLKVUyIr3VNIceWw3Ge4obcoCAPaufa/fdSmllFJqeNMESykVmrxukn01eGJG9buqsdNOoNlE4NrzSQACU0oppdRw1q8ES0SWiEipiKz1/3ylw7qfiMhOEdkmImf1P1SllAqchqpSbGKQhKx+1xUWFs7uyCmkVesNh5VSSqlQF4gWrHuNMTP9P68CiMgU4BJgKnA28GcRsQdgX0opFRA1ZUUARPTjJsMdNWaeyFjfHmoqygJSn1JKKaWGp4HqIngB8IQxptUYswfYCcwdoH0ppdRRa6jw32Q47djvgdVR4tQvAVC0+vWA1KeUUkqp4SkQCdaNIrJeRP4hIm03k8kGijuUKfEvO4KIXCciq0RkVUVFRQDCUUqp3rVWWb+ikkblBaS+MTMW0GCi8O7UiS6UUkqpUNZrgiUib4vIxi5+LgD+AowFZgJlwO+ONgBjzEPGmNnGmNlpaf2fLlkppfrCV7cfpwkjLT0zIPWFh4ezI3ommVWfBaQ+pZRSSg1Pjt4KGGO+1JeKRORvwMv+p6VAbofVOf5lSik1JNibDlAhKeQ6Ajc81J1/GtlbPmXfti8YPXFWwOpVSiml1PDR31kEO176vRDY6H/8InCJiESISAEwHljZn30ppVQgRTkPUBsW2Fbz0fMvwWeE8k//E9B6lVJKKTV89HcM1t0iskFE1gMLgZsBjDGbgCeBzcDrwHeNMd5+7ksppQIm3lVJS0R6QOvMzM5nQ1ghGftexfh8Aa1bKaWUUsNDvxIsY8wVxphCY8x0Y8z5xpiyDuvuMsaMNcZMNMa81v9QlVIqQIwhxVeFOwA3Ge6sZeLXyPWVsHXt8oDXrZRSSqmhb6CmaVdKqSGroeYgEeKG+P7fZLizaWcuptFE0fLuPUesK9+/j89//00+e+qo5wNSSiml1DChCZZSKuRUt91kOCkwNxnuKDYhhXW5l3Fc4wese+MRANyuVj59+g84/noSc+rfJGbLkwHfr1JKKaWGhl5nEVRKqZGmvty6yXBMWm4vJY/Ncd/6H7b9/kMKP7mJzav+Rrq7hBOpZVv4FEoknGxX0YDsVymllFLBpwlWEBifl4aaSuqqymisOYCzthx3fTnu5jpwNyPuZuyeZuyeFuzeFsTnxvh8GOPDBtjEIIDXFo7XFo7HFoHXHoHPFoEtLBIi4pCoROzRiYTFJBMel0xUfDLR8SkkJKURFRUV7EOgVFA5q6wEK3FU/oDUHxUdTdb33uCzJ35OUuUa9sXNonTGIqafvogV//4pKUVraWmsIyo2YUD2r5RSSqng0QRrADQ21FFetJn6A7twVu7F1BQT3lRKrLOMFG8FiaaeePER3832LSYcp0TiJIJWWyQeCQOxIQg+BAMYwG48hBkX4W0/uIgwLsLF02N8TSaSeomlyZ6A0xGHKywBT2QSJjIJW1QSjthkwuJSiU6wfuKTM4iKT0EcEYE+VEoFhbd2P14jpI4amBYsgLiEZE787weOWB6WNhaK4ODereRPPWHA9h/qfF4fbrcTr8eF2+3B63bh87jxeN143S48Hjc+jxuvx40xBgARwf8ARJC2ZQKCDRBrlc3m/3FgEzs2uyA2O3abHbHZsNls2Gx2bHYHNrsdm02s5zY7drsdm82GiB1sdmtfSimlRhRNsPqhsaGWfZtX0rBvPaZ8G9H1u0lrLSKTSmI7lGsx4VTa06gLH8Xu+Al4otOR6FQc8alExGcQnZRBXMooEhJTiIyKI8pmoz9tTO7WFhprK2mur6KlvgpXYzWuxho8TTV4m6uhpRa7s4YwVx0Rnjrim3YS29hAvGnEId1PLd1EJA0SR6MtnlZbNF57JD5HJD5HFD575GHPsUeCPaz9BMPu/xexY8SOsdkx4h8CaEDwgTH+fw89x/jA+PD5rMfGGIzxgs9abnze9jLG+BDjtabHNj7weQH/v/66xBwqLx22Ef+ytuXW/v2P27bDHHqO78jHGKuutnIY2l9g+6PDT6banks36w8re8SJWNd1dbteOi/p24md6b1IF47tpLGn19/jvo5yszGuUqokifSw8GPYX/8kZE+Ez6Fm32ZNsLrQ2tJIQ/VBmusqaa6vprWxGndjDd7mGkxLHdJai6213mrl9zoJ87YQ5nMSZpxE+JxE0EqkcREtrQyXS0JeI/iwYRB8IhhsWL9ZbO3LrXVtjw/9275MrLL4Hx+2Xjout2HkUB2+tmXt5Q+t6173vxV6/ir2sJ3p6TdNT/s7+lhML9vRQyw9bteLnrc9xn32sOpY9zei9fNlD/+j1r9XEMzXvzNsImlf/w0njU0NYhR9pwlWH7laWyna+Am1Oz5BytaS1rCF0d4Spoj1cWs2Eex35LA/YRb7ksbhyJhI3KhxpGaPISk1k1ybjYG7Vn64sIgokjJySco4uj16vT5q6qqpqy6nubaClroKWhur8DZV42uqxtFaayVl7jrCvY2Eu2txuFoJ9zkJx0WkaSUCF+EydG555jFHnqh4/ScYXg6dWLQ97ngC4/OX82H3n4jYDz+RaVsngk8c1slL+wmM1eJo/FfBwfpj1/GXU9sfv7a/5Va5rn99dfxDaUxXfzi7ed5et+mxdHc6p3ADqecTrJ4c/XYV4TnUZy8gsHfB6pvcicfhMTZaS9cFYe/B4fP6qKospbp0D82Ve3HXluFtrMDWVE5YSxVR7ipiPTUk+WqJlZYeE6N6E02TxOC0ReO2ReC2RdIcnuK/wBOFzxGFCYvGOKLAHoGxOxCbA7GHIXYH2Kx/xR6GzRFmtULZbO2tWMZYvwGsp9YFH/8a/38+8BkwXozxtXffxv9vxws8xlgXd6xlVvm2520Xe0zbxR6fz78/X/sFJMH/uOO/HS4Wib8+/Bd5Dl2k8iHGYMPrr8ccWu9/bjNefxpnjvhXMNiNr+fT8x5b3nq4UNTjup4Etk6h59fQc4J5rGmkVW/3id+xxtN9HF1uJ8deZ4fNQ9awf/1BfgHHuvvhdtw1werBvu1rKf30KWLKVjC2ZQMTpBWACpIojZrIgdSzico/nvRxx5ORM5ZxdnuQI+4fu91GUnIqScn9uzpgvG48rc24XFY3HLfHg9vjweN24/V6/ScGXn8LEyBWsiJi/WnHf7UVf8Ji93evae96I4LYHIe62tjt/u44/n/b1wkO7X6jhpjIqBj22HOJqtoU7FACxuf1UV5WROXezTQf2Im3phh7QynRLWUkuMtJ91WQJm7SOm1XSxx1tkQaw5KpiJtMWVQq3ug0iE7BEZNMeGwykXHW+NHYxFTi4pOIDwvrtnu1UkqpkWlKsAM4Sppg9aBs3ducuOd+imyj2ZR+Lo4xC8gsPI1R2fmk6Yl7t8QeRlh0AmHRwY5EqaGpMm4iY+pWWi0ZtuFzt4zaygOU7viCpv3b8FTuIqJ+D0ktxYzyljFKWmm7bbPPCJWSRHVYBuWxEymNXYgtIYfwlDxi0/NISMshMTWTxPAIEoP5gpRSSqkBoAlWDyZ/+WqqTr2U/PRs8oMdjFJqxPDlnkRK3Zvs3f4FeZOOD3Y4R2huqKF0+1pq967De2AzsXXbGdW6h1Rq2xMil7FzwD6KmogcKuJOQFLHEj1qIsm5E0nLHkN6eERQumAqpZRSwaYJVg/iE1OCHYJSagQaPecrsHEJZWteDXqCVXmwhJJNn9BctJqoyg2MatlBpilnvH99iwmnxJHHnsQT2Zk6iejsaaTmTyUjdxyjHWGMDmr0Siml1NCjCZZSSg2yzLyJ7LHlkbTnZeDng7bfmvISSjZ9SlPRKiIr1pPZvI0MqmgbdVkiWZTGTmVP8kVEZk8jfewsMvMnMX6Yjy9VSimlBpMmWEopFQQHx3ydeTvvZfeGTxlTeGLA66+vLKN408c07VlFRMU6Mpu2kU4VSf71xZJFSfxMitKnEz92LqOnzCMnIZmcgEeilFJKhRZNsJRSKggmnfNd6v/0EI2v/BQz9e1+TXZRV1NJyaZPaNrzOWEH15LZtIVRpoKpWBNOFNuy2Bs3k53pM4gfO5vRU08kNyF50G4doZRSSoUSTbCUUioIElPSWDHp+8zb+n98+tB3mfPtP+Lo7cbHxlB1YB8l21bRuG894eXrGdW0lVyznwR/kVLJoCR6KrsyZhA3Zg6jp55EXlIKeQP+ipRSSikFIOaYb+4JIrIMmOh/mgjUGmNmikg+sAXY5l+3whhzfW/1zZ4926xateqY41FKqeHE+Hx8/sBi5la9QJFtNAfyv0ZU9lQcETG4XK14Gw7irS3BV1tCXOMectx7SKSxfftySWF/9CScaTOIyp9NztSTSEnLDOIrUkoppUKHiKw2xszuvLxfLVjGmEUddvA7oK7D6l3GmJn9qV8ppUYysdmYe+O/WPn6v0lZ9Qfm7b4Pdh9ZroZ4ysOy2Z68EE/qZBLyZpA76XjSUzJ1KnSllFJqiAlIF0EREeBi4PRA1KeUUiFDhLnnXAXnXEXVwRIqSnbgaW0hIjyCyMR0EjPySIqLb5+cQimllFJDW6DGYC0ADhpjdnRYViAiXwD1wM+MMR91taGIXAdcBzB6tN5RRSkVulIyckjJ0Hn8lFJKqeGs1wRLRN4GRnWx6qfGmBf8jy8FlnZYVwaMNsZUicjxwPMiMtUYU9+5EmPMQ8BDYI3BOtoXoJRSSimllFJDRa8JljHmSz2tFxEH8HXg+A7btAKt/serRWQXMAHQGSyUUkoppZRSI9ax33jlkC8BW40xJW0LRCRNROz+x2OA8XQ5dFsppZRSSimlRo5AjMG6hMO7BwKcAvxKRNyAD7jeGFPdW0WrV6+uFJG9AYgpkFKBymAHoQaNvt+hQ9/r0KHvdWjR9zt06HsdWobi+93lbSb7dR+sUCAiq7qa316NTPp+hw59r0OHvtehRd/v0KHvdWgZTu93ILoIKqWUUkoppZRCEyyllFJKKaWUChhNsHr3ULADUINK3+/Qoe916ND3OrTo+x069L0OLcPm/dYxWEoppZRSSikVINqCpZRSSimllFIBogmWUkoppZRSSgWIJlg9EJGzRWSbiOwUkduDHY8KHBHJFZH3RGSziGwSkR/4lyeLyFsissP/b1KwY1WBISJ2EflCRF72Py8Qkc/83+9lIhIe7BhVYIhIoog8LSJbRWSLiJyo3+2RSURu9v8O3ygiS0UkUr/bI4eI/ENEykVkY4dlXX6XxXKf/31fLyLHBS9ydbS6ea9/6/89vl5EnhORxA7rfuJ/r7eJyFlBCboHmmB1Q0TswAPAOcAU4FIRmRLcqFQAeYAfGWOmAPOA7/rf39uBd4wx44F3/M/VyPADYEuH578B7jXGjANqgG8HJSo1EP4IvG6MmQTMwHrf9bs9wohINvB9YLYxZhpgBy5Bv9sjySPA2Z2WdfddPgcY7/+5DvjLIMWoAuMRjnyv3wKmGWOmA9uBnwD4z9cuAab6t/mz/7x9yNAEq3tzgZ3GmN3GGBfwBHBBkGNSAWKMKTPGrPE/bsA6AcvGeo//5S/2L+BrQQlQBZSI5ABfBf7ufy7A6cDT/iL6Xo8QIpIAnAI8DGCMcRljatHv9kjlAKJExAFEA2Xod3vEMMZ8CFR3Wtzdd/kC4N/GsgJIFJHMQQlU9VtX77Ux5k1jjMf/dAWQ4398AfCEMabVGLMH2Il13j5kaILVvWyguMPzEv8yNcKISD4wC/gMyDDGlPlXHQAyghWXCqg/ALcBPv/zFKC2wy9u/X6PHAVABfBPf5fQv4tIDPrdHnGMMaXAPcA+rMSqDliNfrdHuu6+y3reNrJdA7zmfzzk32tNsFRIE5FY4BngJmNMfcd1xrqHgd7HYJgTkXOBcmPM6mDHogaFAzgO+IsxZhbQRKfugPrdHhn8Y28uwEqqs4AYjuxipEYw/S6HBhH5KdbQjseDHUtfaYLVvVIgt8PzHP8yNUKISBhWcvW4MeZZ/+KDbV0K/P+WBys+FTAnA+eLSBFWV9/TscboJPq7FYF+v0eSEqDEGPOZ//nTWAmXfrdHni8Be4wxFcYYN/As1vddv9sjW3ffZT1vG4FEZDFwLnCZOXTz3iH/XmuC1b3PgfH+2YjCsQbTvRjkmFSA+MfgPAxsMcb8vsOqF4Gr/I+vAl4Y7NhUYBljfmKMyTHG5GN9j981xlwGvAd8w19M3+sRwhhzACgWkYn+RWcAm9Hv9ki0D5gnItH+3+lt77V+t0e27r7LLwJX+mcTnAfUdehKqIYhETkbq3v/+caY5g6rXgQuEZEIESnAmthkZTBi7I4cSgZVZyLyFayxG3bgH8aYu4IbkQoUEZkPfARs4NC4nDuwxmE9CYwG9gIXG2M6D7BVw5SInAbcYow5V0TGYLVoJQNfAJcbY1qDGJ4KEBGZiTWhSTiwG7ga64KifrdHGBH5JbAIq/vQF8C1WGMx9Ls9AojIUuA0IBU4CPwCeJ4uvsv+JPt+rG6izcDVxphVQQhbHYNu3uufABFAlb/YCmPM9f7yP8Ual+XBGubxWuc6g0kTLKWUUkoppZQKEO0iqJRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSQ4SI5IuIERFHsGMZ6URksYgsD3YcQ42ILBCRbcGOQymlhjNNsJRSSg1rIrJERNwi0tjh57ZgxzUcGWM+MsZMHKj6ReRK/0WEawdqH0opFWx6lVQppQJERBzGGE+w4whRy4wxlwc7iIEyEj5bIpIE3AFsCnYsSik1kLQFSyml+kFEikTkxyKyHmgSEYeIzBORT0SkVkTWichpHcq/LyL/JyIrRaReRF4QkeRu6r5aRLaISIOI7BaR/+60/gIRWeuvZ5eInO1fniAiD4tImYiUisj/ioi9l9cxVkTeFZEqEakUkcdFJLHDumoROc7/PEtEKtpel4icLyKb/K/3fRGZ3On43CIi60WkTkSWiUjk0R/poycit/uPS4OIbBaRC7spJyJyr4iU+4/lBhGZ5l8XISL3iMg+ETkoIg+KSFQf9/+Iv/xb/hg+EJG8Duv/KCLF/n2uFpEFHdYtEZGnReQxEakHFovIXBH51H+cy0TkfhEJ77CNEZHviMgO//7+x//efeLfx5Mdy3cT82kiUtKX13cM/g+4D6gcoPqVUmpI0ARLKaX671Lgq0AikAG8AvwvkAzcAjwjImkdyl8JXANkAh6sk86ulAPnAvHA1cC9HZKcucC/gVv9+z0FKPJv94i/3nHALOBMoLcuWYJ1ApwFTAZygSUAxphdwI+Bx0QkGvgn8C9jzPsiMgFYCtwEpAGvAi91OpG/GDgbKACmA4u7DEBkvj956O5nfi+vobNdwAIgAfilP/7MLsqdiXX8JvjLXgxU+df92r98JtbxzAbuPIoYLgP+B0gF1gKPd1j3ub/eZOA/wFOdks8LgKex3t/HAS9ws7+uE4EzgO902t9ZwPHAPOA24CHgcqz3cxrWZ/WY+RPl7t6fP/ew3VxgNvBgf/avlFLDgSZYSinVf/cZY4qNMS1YJ7OvGmNeNcb4jDFvAauAr3Qo/6gxZqMxpgn4OXBxVy1MxphXjDG7jOUD4E2shAHg28A/jDFv+fdTaozZKiIZ/n3dZIxpMsaUA/cCl/T0AowxO/11tRpjKoDfA6d2WP83YCfwGVZi+FP/qkXAK/5t3cA9QBRwUqfjs98YUw28hJVUdBXDcmNMYg8/PU1KcXGnk/0sY8xT/v36jDHLgB3A3C62dQNxwCRAjDFbjDFlIiLAdcDNxphqY0wD8P96O5advGKM+dAY04p1zE4UkVz/633MGFNljPEYY34HRAAdxz99aox53h9/izFmtTFmhb98EfBXOrxHfncbY+qNMZuAjcCbxpjdxpg64DWshPuYGWOm9/D+dE72APB/tv8M3GiM8fVn/0opNRzoGCyllOq/4g6P84Bvish5HZaFAe91U36vf31q50pF5BzgF1gtKDYgGtjgX52L1VrUWZ6/vjIrPwD/tsVdlO24rwzgj1gJXJx/m5pOxf4GvAhc508YwGrx2ttWwBjjE5FirJaeNgc6PG72bxNoT3YegyUiVwI/BPL9i2Lp4jgbY94VkfuBB4A8EXkWq+UxEuuYr+5wLAXosbtlJ+3H3RjTKCLVWK+/WERuwUqUswCD1VKZ2tW2/tczASvxne2PywGs7rS/gx0et3TxfNRRxB4o3wHWG2NWBGHfSik16LQFSyml+s90eFyM1ULV8cp+jDHm1x3K5HZ4PBqrBeWwcSkiEgE8g9UilGGMScRKqNrO9IuBsV3EUgy0Aqkd9h9vjJnay2v4f/7XUWiMicdqiTuUVYjEAn8AHgaWyKFxY/uxkrq2cuJ/faW97O8IYk0R3tjDz4Lea2mvKw8rIbwRSPEfv40dX1NHxpj7jDHHA1OwEtpbsd6TFmBqh2OZYIyJPYqX1f5e+49hMrDf/1puw+qOmOSPr65TfB0/VwB/AbYC4/3v0R3dvZ6BItZYu+7en+66/50BXCgiB0TkAFbr5u/8Sa1SSo04mmAppVRgPQacJyJniYhdRCL9EwfkdChzuYhM8Y9n+hXwtDHG26mecKwuYxWAx9+adWaH9Q8DV4vIGSJiE5FsEZlkjCnD6kr4OxGJ968bKyKdu5J1Fgc0AnUiko2VYHT0R2CVMeZarDFmbSfTTwJf9ccRBvwIK8H7pLcD1Zl/ivDYHn4+OorqYrASlAqwJgzBGoN0BBGZIyIn+ONvApyAz9+d7W9YY9/S/WWzReSsDtsa6TCJSRe+4h9bFo41FmuFMaYY63h7/PE5ROROrBasnsQB9UCjiEwCbuilfMAZY6b28P5c381mi7HG9c30/6zCGhP3027KK6XUsKYJllJKBZD/5PkCrNaFCqwWpVs5/Pfto1gTURzA6ob2/S7qafAvfxKrq963sLrnta1fiX/iC6yWjw841JJ0JVaCttm/7dNY46Z68kvgOH9drwDPtq0QkQuwJqloO6H/IXCciFxmjNmG1dr1J6wWn/OA84wxrl72N6CMMZuB3wGfYnWTKwQ+7qZ4PFYiVYPV3bEK+K1/3Y+xxp6tEGs2v7fxj5Pyj6Vq4FC3za78B6ubZzXW5BNt3RjfAF4Htvv36aSXbpxY3Ra/5d/n34BlvZQfEowxtcaYA20/gAuo948LU0qpEUeM6dwDQSml1EARkfeBx4wxfw92LKp/RORyrO6DP+lm/SNAiTHmZ4MamFJKqaDSSS6UUkqpY2CMeSzYMSillBp6tIugUkqFCLFuens0kxOoEUhE7ujmc/BasGNTSqmRQLsIKqWUUkoppVSAaAuWUkoppZRSSgXIkBqDlZqaavLz84MdhlJKKaWUUkr1aPXq1ZXGmLTOy4dUgpWfn8+qVauCHYZSSimllFJK9UhE9na1XLsIKqWUUkoppVSAaIKllFJKKaWUUgGiCZZSSvXBK+tKKa6oDXYYSimllBrihtQYrK643W5KSkpwOp3BDkUNM5GRkeTk5BAWFhbsUNQwt23ndk549gz2ho8j96fvBTscpZRSSg1hQz7BKikpIS4ujvz8fEQk2OGoYcIYQ1VVFSUlJRQUFAQ7HDXMlX/xKhOlnlT3Ghob6oiNSwh2SEoppZQaooZ8F0Gn00lKSoomV+qoiAgpKSna8qkCwlVT1v64eP0HQYxEKaWUUkPdkE+wAE2u1DHRz40KFHvzwfbHDXv0VhJKKaWU6t6Q7yKolFLBFtFSQak9hyhvPaZqd7DDUUoppdQQNixasIJNRPjRj37U/vyee+5hyZIlwQuogxUrVnDCCScwc+ZMJk+e3B7X+++/zyeffNKvus8++2wSExM599xzAxCpUsNXvKeKxrAUysOyiWnaF+xwlFJKKTWEaYLVBxERETz77LNUVlYGtF5jDD6fr191XHXVVTz00EOsXbuWjRs3cvHFFwOBSbBuvfVWHn300X7VodRIkOirpjE8lcbo0aS5SoIdjlJKKaWGsGHVRfCXL21i8/76gNY5JSueX5w3tccyDoeD6667jnvvvZe77rrrsHUVFRVcf/317NtnXdX+wx/+wMknn8ySJUuIjY3llltuAWDatGm8/PLLAJx11lmccMIJrF69mldffZX777+f1157DRHhZz/7GYsWLeL9999nyZIlpKamsnHjRo4//ngee+yxI8YVlZeXk5mZCYDdbmfKlCkUFRXx4IMPYrfbeeyxx/jTn/7EpEmTuo1z165d7Ny5k8rKSm677Tb+67/+C4AzzjiD999/v8dj89RTT/HLX/4Su91OQkICH374IU6nkxtuuIFVq1bhcDj4/e9/z8KFC3nkkUd4/vnnaWpqYseOHdxyyy24XC4effRRIiIiePXVV0lOTuZvf/sbDz30EC6Xi3HjxvHoo48SHR192H7nzZvHww8/zNSp1nt32mmncc899zB79uwe41XqWCSaOvaEp+CISSaj7g1amhqJiokNdlhKKaWUGoK0BauPvvvd7/L4449TV1d32PIf/OAH3HzzzXz++ec888wzXHvttb3WtWPHDr7zne+wadMmVq1axdq1a1m3bh1vv/02t956K2Vl1oxlX3zxBX/4wx/YvHkzu3fv5uOPPz6irptvvpmJEydy4YUX8te//hWn00l+fj7XX389N998M2vXrmXBggU9xrl+/XreffddPv30U371q1+xf//+Ph+XX/3qV7zxxhusW7eOF198EYAHHngAEWHDhg0sXbqUq666qn02v40bN/Lss8/y+eef89Of/pTo6Gi++OILTjzxRP79738D8PWvf53PP/+cdevWMXnyZB5++OEj9rto0SKefPJJAMrKyigrK9PkSg0MY4gyrfjCYghLGwdAWdHmIAellFJKqaFqWLVg9dbSNJDi4+O58sorue+++4iKimpf/vbbb7N586GTrfr6ehobG3usKy8vj3nz5gGwfPlyLr30Uux2OxkZGZx66ql8/vnnxMfHM3fuXHJycgCYOXMmRUVFzJ8//7C67rzzTi677DLefPNN/vOf/7B06dIuW516ivOCCy4gKiqKqKgoFi5cyMqVK/na177Wp+Ny8skns3jxYi6++GK+/vWvt7+m733vewBMmjSJvLw8tm/fDsDChQuJi4sjLi6OhIQEzjvvPAAKCwtZv349YCVhP/vZz6itraWxsZGzzjrriP1efPHFnHnmmfzyl7/kySef5Bvf+Eaf4lXqqLlbsInBhEWTmDMRVkFN8TaYOjfYkSmllFJqCBpWCVaw3XTTTRx33HFcffXV7ct8Ph8rVqwgMjLysLIOh+Ow8VUd78cUExPTp/1FRES0P7bb7Xg8ni7LjR07lhtuuIH/+q//Ii0tjaqqqiPKdBcnHDmd+dFMb/7ggw/y2Wef8corr3D88cezevXqHst3fE02m639uc1ma399ixcv5vnnn2fGjBk88sgjXSaM2dnZpKSksH79epYtW8aDDz7Y55iVOhqulkbCAcKiSR09GQB35a6gxqSUUkqpoavfXQRFJFdE3hORzSKySUR+4F+eLCJvicgO/79J/Q83uJKTk7n44osP67J25pln8qc//an9+dq1awHIz89nzZo1AKxZs4Y9e/Z0WeeCBQtYtmwZXq+XiooKPvzwQ+bO7fuV8VdeeQVjDGB1PbTb7SQmJhIXF0dDQ0OvcQK88MILOJ1OqqqqeP/995kzZ06f979r1y5OOOEEfvWrX5GWlkZxcTELFizg8ccfB2D79u3s27ePiRMn9rnOhoYGMjMzcbvd7fV0ZdGiRdx9993U1dUxffr0Ptev1NFwtljfI4mIIT4plRoTh6NWp2pXSimlVNcCMQbLA/zIGDMFmAd8V0SmALcD7xhjxgPv+J8Pez/60Y8Om03wvvvuY9WqVUyfPp0pU6a0t6RcdNFFVFdXM3XqVO6//34mTJjQZX0XXngh06dPZ8aMGZx++uncfffdjBo1qs/xPProo0ycOJGZM2dyxRVX8Pjjj2O32znvvPN47rnnmDlzJh999FG3cQJMnz6dhQsXMm/ePH7+85+TlZUFWMnfN7/5Td555x1ycnJ44403AKtbYtt4q1tvvZXCwkKmTZvGSSedxIwZM/jOd76Dz+ejsLCQRYsW8cgjjxzWctWb//mf/+GEE07g5JNPZtKkSe3LX3zxRe68887259/4xjd44okn2mdOVGoguJqtBMsWHoOIUO4YRVSjziSolFJKqa5JW+tHwCoUeQG43/9zmjGmTEQygfeNMT02Y8yePdusWrXqsGVbtmxh8uTJAY1RHdJ5tsORRj8/qr/2b1pO1lNf5ZMT/sxJ51zG53efR6ZzJzl3bgl2aEoppZQKIhFZbYw5Ypa1gM4iKCL5wCzgMyDDGFPmX3UAyOhmm+tEZJWIrKqoqAhkOEop1W+uFmsyGEeENXbSGZtDmq8C+nkPO6WUUkqNTAGb5EJEYoFngJuMMfUdJ0owxhgR6bKpzBjzEPAQWC1YgYpH9c2SJUuCHYJSQ5rH6U+wouIAMAmjiSh301hdSmxqbjBDU0oppdQQFJAWLBEJw0quHjfGPOtffNDfNRD/v+WB2JdSSg0mb1uCFWndWDg8NR+AqhKdSVAppZRSRwrELIICPAxsMcb8vsOqF4Gr/I+vAl7o776UUmqweZ1NAIT7E6y4jDEANB7UBEsppZRSRwpEF8GTgSuADSKy1r/sDuDXwJMi8m1gL6BTvSmlhh2vy59gRVsJVlrOOABclUXBCkkppZRSQ1i/EyxjzHKguzvTntHf+pVSKphMq9VFMCLGGoOVmpxMtYnD1BUHMyyllFJKDVEBnUVwJHv++ecREbZu3dptmaKiIqZNmxawfW7bto3TTjuNmTNnMnnyZK677jrAuknwq6++2q+6r7nmGtLT0wMar1IjkqsZnxGiIq1ZBG024aA9g0i9F5ZSSimluqAJVh8tXbqU+fPns3Tp0i7Xezyefu/D6/Ue9vz73/8+N998M2vXrmXLli1873vfAwKTYC1evJjXX3+9X3UoFQqMu5lmIogKP9TgXxeeSXxrWQ9bKaWUUipUBWya9kHx2u1wYENg6xxVCOf8uscijY2NLF++nPfee4/zzjuPX/7ylwC8//77/PznPycpKYmtW7fy5ptv4vF4uOyyy1izZg1Tp07l3//+N9HR0bzzzjvccssteDwe5syZw1/+8hciIiLIz89n0aJFvPXWW9x2221ccskl7fstKysjJyen/XlhYSEul4s777yTlpYWli9fzk9+8hPOPfdcvve977Fx40bcbjdLlizhggsu4JFHHuG5556jrq6O0tJSLr/8cn7xi18AcMopp1BUVNTj6/7ggw/4wQ9+AICI8OGHHxIbG8ttt93Ga6+9hojws5/9jEWLFvH+++/zi1/8gsTERDZs2MDFF19MYWEhf/zjH2lpaeH5559n7NixvPTSS/zv//4vLpeLlJQUHn/8cTIyDr9F2iWXXMIVV1zBV7/6VcBKBs8991y+8Y1v9O09VSqAxN2Ck3CSHYeuRzljskmt+gyMAemuh7RSSimlQpG2YPXBCy+8wNlnn82ECRNISUlh9erV7evWrFnDH//4R7Zv3w5Y3fq+853vsGXLFuLj4/nzn/+M0+lk8eLFLFu2jA0bNuDxePjLX/7SXkdKSgpr1qw5LLkCuPnmmzn99NM555xzuPfee6mtrSU8PJxf/epXLFq0iLVr17Jo0SLuuusuTj/9dFauXMl7773HrbfeSlOTNTB/5cqVPPPMM6xfv56nnnqKVatW9fl133PPPTzwwAOsXbuWjz76iKioKJ599lnWrl3LunXrePvtt7n11lspK7Ou5K9bt44HH3yQLVu28Oijj7J9+3ZWrlzJtddey5/+9CcA5s+fz4oVK/jiiy+45JJLuPvuu4/Y76JFi3jyyScBcLlcvPPOO+3JllKDzuPERTg226FEypeQSyQuXHUHghiYUkoppYai4dWC1UtL00BZunRpe0vOJZdcwtKlSzn++OMBmDt3LgUFBe1lc3NzOfnkkwG4/PLLue+++/jyl79MQUEBEyZMAOCqq67igQce4KabbgKshKIrV199NWeddRavv/46L7zwAn/9619Zt27dEeXefPNNXnzxRe655x4AnE4n+/btA+DLX/4yKSkpAHz9619n+fLlzJ49u0+v++STT+aHP/whl112GV//+tfJyclh+fLlXHrppdjtdjIyMjj11FP5/PPPiY+PZ86cOWRmZgIwduxYzjzzTMBqeXvvvfcAKCkpYdGiRZSVleFyuQ47dm3OOeccfvCDH9Da2srrr7/OKaecQlRUVJ9iVirQxOukVcIPWxaWkge7oap0B5mJmUGKbOgwxvDcux+TG+VmzkkLgx2OUkopFVTagtWL6upq3n33Xa699lry8/P57W9/y5NPPokxBoCYmJjDykun7kKdn3elcx0dZWVlcc011/DCCy/gcDjYuHHjEWWMMTzzzDOsXbuWtWvXsm/fPiZPnnzM8bS5/fbb+fvf/05LSwsnn3xyjxN8AERERLQ/ttls7c9tNlv7GLXvfe973HjjjWzYsIG//vWvOJ3OI+qJjIzktNNO44033mDZsmXdJqBKDQab14lbIg5bFuu/F1Z92e5ghDTkbN+5na9/9FXmvPk16msrgx2OUkopFVSaYPXi6aef5oorrmDv3r0UFRVRXFxMQUEBH330UZfl9+3bx6effgrAf/7zH+bPn8/EiRMpKipi586dADz66KOceuqpve779ddfx+12A3DgwAGqqqrIzs4mLi6OhoaG9nJnnXUWf/rTn9qTvi+++KJ93VtvvUV1dXX7OKi21rW+2LVrF4WFhfz4xz9mzpw5bN26lQULFrBs2TK8Xi8VFRV8+OGHzJ07t8911tXVkZ2dDcC//vWvbsstWrSIf/7zn3z00UecffbZfa5fqUCzeVtxd2rBSs6y7oXVqvfCAqBk3Xvtj4s+eTaIkQwt20sr2bppbbDDGFKcbi8ery/YYSil1IDSBKsXS5cu5cILLzxs2UUXXdTtbIITJ07kgQceYPLkydTU1HDDDTcQGRnJP//5T775zW9SWFiIzWbj+uuv73Xfb775JtOmTWPGjBmcddZZ/Pa3v2XUqFEsXLiQzZs3M3PmTJYtW8bPf/5z3G4306dPZ+rUqfz85z9vr2Pu3LlcdNFFTJ8+nYsuuqi9e+Cll17KiSeeyLZt28jJyeHhhx8G4MEHH+TBBx8E4A9/+APTpk1j+vTphIWFcc4553DhhRcyffp0ZsyYwemnn87dd9/NqFGj+nw8lyxZwje/+U2OP/54UlNT25evWrWKa6+9tv35mWeeyQcffMCXvvQlwsPDu6pKqUHh8Drx2CIPWzYqPZVqE4up3RekqIYWb+laPNipMzH4dr4b7HCGhLrmVsxfT2XSU6dSua/n1v9QUe908+L/Xc4Xvzkb09rQ+wYhoLzByRu//Aqf3P9t8GniqdRIIW2tHkPB7NmzTedJGLZs2dLe3U0dnUceeYRVq1Zx//33BzuUoNHPj+qv3XcdT60tieN+8vZhy7f88jiITmXyrW8GKbKhY81dC0mhjipJJNlXQ/7Pvuh9oxHuo0+Ws+BNa3KedQXXMuOq3wU5ouB7c8UXnPn6aQDsOuWPjD19cVDjGQqeeuN9vvnpBQDUXPgfkmbohE5KDScistoYc8TkBtqCpZRSPQjztR7RggVQGz6KeOf+IEQ09CS5D1AXPZq6+Elke/aBxxXskIKuqchKMuuJJqHs4yBHMzTUbv2g/bFv80tBjGToCNv5WvvjqvVvBDESpVQgaYI1gi1evDikW6+UCoQw04rPHnHEcmd0Nineg9a9sEJYs8tDmqnGxI6CUdMIw0NN8ZGT8YQae8UGXDhYnXAWmc5d4O3/zeiHu9iKtTiJ4IOw+STVrA92OENCeM0Oau0pfGamElX6abDDUUoFyIAnWCJytohsE5GdInL7sdQxlLoxquFDPzcqEMJ8bozjyBYsr/9eWJ6G8iBENXSUlVcQK07sCVkk5k4F4OCezUGOKvjiG3ZxMGw0vuzZROCiQZNOIlvKqAvPoDG5kFRvOTRXBzukoPJ4fSS79tMYnUN53BTSnbvB6w52WEqpABjQBEtE7MADwDnAFOBSEZlyNHVERkZSVVWlJ8vqqBhjqKqqIjLyyBNjpY5GOK347Ed+jsJS8gGoKt05yBENLY0VJQCEJ2WTVWD9em8u2x7MkIaEBE8FLVGjiBk9C4DKPWuDG1CQOd1e4jzVuKLSILMQgMa9oT1Wr7yhldFyEHd8Hu6UyYThwVcZ2r9PlBopBvpGw3OBncaY3QAi8gRwAdDny5s5OTmUlJRQUVExQCGqkSoyMpKcnJxgh6GGuQjjAseRN7puuxdWXdkuMib3/fYHI42z+lCClZaaSqVJQGr2BDmq4Gr1eEkz1ZRFH8eogsn4jNC8P7RnEiyvbyWVOkzMGBLyZsBaqN6zltjJZwQ7tKApq6xlFjXsS84nKmE67LWOSWqGTsyk1HA30AlWNlDc4XkJcELHAiJyHXAdwOjRo4+oICwsjIKCggEMUSmluuHzEi4eCDuyBSslx7oXlrMitJMJT10ZALGp2dhswgFHFlGNe4McVXBV1zWQKQ2UxmWSk5pIKWlQvSvYYQVVRaOTiVJHbWwGo3MLaDSROA/uCHZYQVVzYA82MUSl5ZORMw3fR0J98QZS510a7NCUUv0U9EkujDEPGWNmG2Nmp6WlBTscpZRq53I2AyBdJFiZ6WnUmFioCe17YfkarTFo8SnWDcTronJJaS0NZkhBV1duXVe0J2ThsNs4GJZNdENoJ51VNXXEipOwhAyyk6PZyyjsNbuDHVZQNVYfACA+NYf8jBT2k4KvKrQv2Cg1Ugx0glUK5HZ4nuNfppRSQ56zpQkACTuyi2CEw85BWzphjSWDHdaQYpqq8Bgb4TGJALTG55FmKjGu5uAGFkTNVVaCFZ5kdVFuiMkjzVUc0jNONlVbtzSISs7CbhOqwnOJaw7tixNtE+REJqaTFB1GCaOIqA/tRFypkWKgE6zPgfEiUiAi4cAlwIsDvE+llAqIVqeVYNnCj0ywwLoXVlyI3wvL3lpDvcSBzfpzYk8ZC0B1aehOdNFa4+82mWIlWN6kscTSjKf+YDDDCiqn/5jEJGcB0ByXR4rnYEjfM62t9Vdi0hERaiJzSHCG9gUbpUaKAU2wjDEe4EbgDWAL8KQxZtNA7lMppQKltcVqhbF3k2C1RGdbJ4kh3DIR3lpDoz2h/XlM5gQAavaF7qQObS0TCWmZAISnjwegcm/oTl/fllza49IBMMljsePDHcJd4uzNVdaDmFQAnHF5xPvqwFkXxKiUUoEw4GOwjDGvGmMmGGPGGmPuGuj9KaVUoBxKsKK7XO+NzyWKVryNlYMZ1pAS4a6lxZHY/jxl9CQAmkN4AgPj/zxEJVjJREKONStcXWnoJp3G31pDbAYAkRlWIl61L3STzvDWKpolBhzWjcwl2ZrQy10Z2mPTlBoJgj7JhVJKDVVuZwMA9siYLte33QurujR0k4kYbx2u8MT251mjRlFrYvBVh27LhK2linpiEUc4AJmjx+MydlwHQ7fbZFiL/1YrMdZkVkn+RLxh/7ZghRR0Ua5qmsKSDj0fZbV01paEbiKu1EihCZZSSnXD4x+DFRbRdYLVdi+s2rLQnILbGEO8rx5PZHL7sgiHnTJbJpENoTuBQVhrFQ0duk2mJURTSjq22qLgBRVkEa1VVldSexgAuVk51JloPBWheWNdYwyxnlqc4Ye+O8nZVqteo96oW6lhTxMspZTqRluC5YiK7XJ9crY1oYOzomiwQhpSmls9JNIIUUmHLa+NyCLeGboTxka5amju0G1SRKgIyyY2RGfNM8YQ666ipWMyERtBsWQSVlcUvMCCqMnlJYk6PJEp7ctGZ6ZTbhLxaBdBpYY9TbCUUqob3lYrwQqP7DrByszIoM5E46sJzamVa2oqCRMvEpt62HJn3GjSvQfB6wlSZMEV463FGZF82LLGmNGkuUpDckKUZpeXZOpojTj0ORERqsOziWsOzVnzqhtdpEg9vphD9/9Mj4ugmAzCQzTpVGok0QRLKaW64WtLsKK67iIYGWbngGQQHqL3wmqstmaGc8R2ukl8cgEOvDRVhl6LjTGGBF8d3g4tEwC+xHyicbbPMBhKqptcpFKHL/rwz0lL7GhSvAfB6w5SZMFT2dBMMg3Y/LMqwqGkM76lOIiRKaUCQRMspZTqhs9lJVhR0XHdlqkNH0VsS2jeC6u51kqwIhMOP3GOTLe6TlaG4FTt9U2tJNGAiTn8mIT7j0lVcegdk8rGVtKkFmLTD1+RVIADH66q0EvE66vLsYkhPP7wY9Icl0eStwpC+EbdSo0EmmAppVQ3fP6TnKjY7hMsZ2xOyN4Lq7XemhkuOjHjsOVJ2RMBaAjBwfrV1Qexi8HeqVUv3n9MaopDb9a8utoaYqQVR/yow5ZHjhoHQGXxlmCEFVTOWuvGy5GJhx8Tkqyp2r0hPAunUiOBJlhKKdUN42rCZ4TwiK7vgwVAwmiiceKsD717YbkbrNccm3x4gpWZOwaXseOuDL2TxIZK68S5c8vEqNET8RqhNQRnzWuqto5JRKdkIjnHSjrrS0MvEXf6W39jkzMPWx6R3jZVe+gl4kqNJJpgKaVUN8TdjFPCEVv3vyoj0/MBKC8OvZPEthvqxiUdnkwkxESyX9JxhOBg/ebaAwBEJR2eTGQkxVFGKraa0Es6W+usZCImJeuw5dm5BbSYcNyVoXebA59/LF5Ep0Q8yZ90NuwPvd8nSo0kmmAppVQ3xN2Ck8geyyRkWt2cavaH3kkiLVW4cCARR3ahrArLIjYEZ4hz+ZOJuJTDWyZEhPKwbGKaQm+8ka/BSjo7d4dLiomgVDJwhOL9wZr8k510GpeWk51FjYnFXRGCv0+UGkE0wVJKqW7YPC20SkSPZTJHW116nOWhd+8ah7OGOkkAkSPWNcXkkureH3Jj0zwN1ri0+E4JFkBDdA4prhC8P1hjWzJxeFdSEaEqPIu45tCbNc/RUoEbxxH3kMuMj2QfGTjqQq+lU6mRRBMspZTqhs3bgssW1WOZhOQ0GojG1IbevbDCXTU02RO6XOdNyCOOZtxN1YMcVZA1VeJDcHS6NxiAJ7GABNOAt6kmCIEFj73ZOiZEH3lMmmLySPWUhVwiHumsosGedMTFCZtNqAzLCcmkU6mRpF8Jloj8VkS2ish6EXlORBI7rPuJiOwUkW0icla/I1VKqUHm8LbgsvXcRRDggCOb6IbQS7CiPbW0hCV2uS4sNTSnare3VFIn8WCzH7EuvO2YhNiseZGtFTTa4sHuOGKdSconEhettaHVshfjrqI5PKXLdU2xo0nylIOndZCjUkoFSn9bsN4CphljpgPbgZ8AiMgU4BJgKnA28GcROfKvjVJKDWEOrxNPHxKsuug8Ul2hN94o1luPKzypy3VxWW2zoYXWYP2I1upuW/XisiYAUBNiE6JEu6tpCkvucl1khpV0VuwNnaTT6zMk+GpxRXadYPmSCrDjw9SE3kUbpUaKfiVYxpg3jTEe/9MVQI7/8QXAE8aYVmPMHmAnMLc/+1JKqcEW4WvB4+i5iyCAO6GAUb5yWp2hc3NQYwzxph5vZNcJVkaelUw4Q2ywfrS7huZukolR+dYMcc7yHYMZUlAZY4jz1uCM6DqZSMyeBEBdaegck+omF2lSizc6vcv1EenWxDl1pTpVu1LDVSDHYF0DvOZ/nA107EBc4l92BBG5TkRWiciqioqKAIajlFL9E+VrwuOI7bWcPW0cNjEc3Bs63eHqm50k0ATRXZ84pyenUG4SkRCbljzOV4Orm2TCOiZJIXVMmlxeUk0t7qi0LtdnjR6Px9hwhVAiXtnQQgr1SFxGl+sT/TelrgvB+4MpNVL0mmCJyNsisrGLnws6lPkp4AEeP9oAjDEPGWNmG2Nmp6V1/QtYKaWCIYZmPGFHTkHeWXzOZABqizcPdEhDRm1VOTYx2LqYzAGswfrljlFENYbOYP0Wl5ckU48vpvtjctCRSVRD6EzVXt3QSqrUY2K6bq1Jio+hTNKw14ZO0llXdQCH+AiL7zrBys7KpcFE4QrBm1IrNVIcOeK0E2PMl3paLyKLgXOBM4xpnwaoFMjtUCzHv0wppYYF4/MRa5rxhMf3WjYjfyoAzgOh082pvtq6t1F4fNcnzgD1kTmMb147SBEFX3ltPXnSRGls9xcL66JGM7lp5SBGFVwVNVWMltZukwmAyrBs4ptCJxFvqt4PQGTSkVP5A2QlRbHNZBAVQkmnUiNNf2cRPBu4DTjfGNNx8MGLwCUiEiEiBcB4IHT+oiilhr3WlkbCxIuJ6D3BSkxKoYoE7DWh082poaoMgNik7hOs1oQC0kwlprVxsMIKquoKf9KZ0H0y4UnMI8VU43OGxjGpO2i11kUm53RbpikmlzT3/sEKKeicNdbnJDa1y5ETOOw2KsKziQ3Bm1IrNVL0dwzW/UAc8JaIrBWRBwGMMZuAJ4HNwOvAd40x3n7uSymlBk1DnXX/JntU1zPCdSQiHHDkENNYNMBRDR2tNdYJcUL66G7L2NOsmQSrQmSq9oYKaybJ6OSuWyYAHP6p2itCZHbFlkqrZSq+h8+JN7GAeBpx1oXGOGxvvZVgRXfTggXQEJ1LsvsAeD3dllFKDV39nUVwnDEm1xgz0/9zfYd1dxljxhpjJhpjXuupHqWUGmoa/QlWWExin8rXx+SR1ho6U7X76q0EKz6t+5aJuJwpAFTt3TgoMQVba3VbMpHfbZm4TCvprNkXGtOSe/z3t4pJze22THiGNeNkRdGmQYkp2LwN5QBIbPctnb7EMTjwYmq1FUup4SiQswgqpdSI0VxvJVgRMV1PQ96ZN7GAFGpwNtYOYFRDh73xAM1EIpHdt/BlFlhj01rKQqMFy9RZCXZsWvetNWl51oQozQdDpDtpo9WVVOKzui2SMNr6nNQVh0aCJU3ltEoERHQ/gY4jw0rEG0pDIxFXaqTRBEsppbrgbLQSrMj4viVYEf6r8Af2hMZMghEtB6m1p4BIt2UyUpLYb1KxVYdGMmFr2I8LBxLT/SQXo9JHUWPikBA5JuFNB2mUWAiP7rZMdt5EWo0DT3lo3Pcp2nmAhrDUHr878TltSWdotP4qNdJogqWUUl1o9bdExcR3fdPYzhJzre5wNSEyVXusq5LG8K6nI28jIhwMzyW2qWhwggqysKYD1NhTwdb9n1abTSh1ZBPTsHsQIwuemNaDVjLRg4TYKIolk/DakZ90ujw+Uj0HaY7qvkUPYHRODpUmHveB0Gj9VWqk0QRLKaW64GmuBSAuoW8JVvbYKfiM4Do48q/CG2NI8lTgjOx+DEmbhph8MlzF0H4Xj5ErtvUgzX04JjVRBaS37h2EiILL6zOke8tojOl+/FWbivBcEpuLBj6oICurayFHKvHE93xMcpKi2U02YTV6LyylhiNNsJRSqitNlQBEJ3Y/DXlH0dGxlEl6SJwQ1TQ0M4oqfAndjzVq400eRwwttNSM7Gm461rcZJkDuOJ6PybOxHEkmjp8jVWDEFnw7K9pJpdyTEJer2Ub48aQ7ikDr3sQIguesooa0qUWR3LPx8RuEyojRpPUvCckLk4oNdJogqWUUl1wtFTSQDQSFtXnbSoi80hsGvk3B92/bycO8RGeNqbXslGZEwE4uHtkjyXZe6CSTKnGllLQa1lbxiQAqvdtGOiwgqp0fzEx0tqnz4kvZTwOvLSWj+wLFDUHrK6hUem9H5PmhHHE+hqgeWQn4kqNRJpgKaVUFyJaK6m19W2CizbNcWPI8pRgfCP7tn+1pdY9nBKyxvdaNjlvGgD1JSN7bFplsdU1NDZzQq9l2yYwqN03spPOmpK+f04i/Yl4ZdHIPiatB/3HJLv3Y2JPtz5LrQd0JkGlhhtNsJRSqgvRrmoa7EeXYJE+kUhxU1U6sgfrO8ut15c6emKvZXPzxtFiwvGUj+wb6zaV7QAgOXdSr2Wz8ifQYsJxj/Dp613+ZCIxp/fPSbJ/qvam/SM7mTAV1jEJz+j9cxKfax2TqhGedCo1EmmCpZRSXYhxV+OMSDmqbWKzrJkEy/esH4iQhgx79S5aCSciqfubDLeJigijxJZFZN3ITjql0jpxjkjvvWUiKzGaIrJw1OwY6LCCKrx6mzVtffLYXsuOzsrkoElsT0BGqqi6ndTZkyCq94s32XnjaTYRtOwf2a2/So1EmmAppVQnxhgSfLV4o3qeXrqz9LFWd7jm/SO7ZSKxcSf7w0aDzd6n8pVR+SS3FA1sUEEWX7+NCns6RCX2WlZEKA+B8XoJjTupiMgDu6P3slFh7JMcoupH7vT1Hq+PjNZ91Eb3Pk4PoCAtjt0mE3vVyE46lRqJNMFSSqlOausbSZAmbHG9T7ndUUZGNtUmrr01YyTy+gxZrj3UxfXeUtPGmTiedG85PmfjAEYWPD6fIdO5m6qYvh+TlvhxpHkPgqtpACMLnuomF6O9+2hJ7PsxqYrKI6WlaMTOmrfrYD0TZR/u1Cl9Kh/hsHMgfDRxjSM7EVdqJApYgiUiPxIRIyKp/uciIveJyE4RWS8ixwVqX0opNZAqS62ZzBzJvU+53ZGIUBaWS+wIvolscWkJGVKDpE/u8zaOjMnYxFCxd2SOJdm5v4J89kP61D5vY0u3xiU1lIzMMUfbd+0iRyqxZ8/q8zaupAnEmCZMQ9kARhY8e7Z+QbS0Ejtmbp+3aYwdQ4pn5CbiSo1UAUmwRCQXOBPY12HxOcB4/891wF8CsS+llBpoDQes8UJ9mUq5s7qYkX0T2bLNHwMQP7bvJ4mJeYUAVO0ZmdOS79v4MWHiJXHiSX3eJsE/qUPFCB2vV739EwBSJ/X9mIRnWkl77d6R+Tlp3LMSgPSJ8/q8jUm1ZhL0lI/s8XpKjTSBasG6F7gN6NiufwHwb2NZASSKSGaA9qeUUgPGVWl1yUnK7n3K7c48yeNJoh5nXUWgwxoSmnetwGuE3Kl9P3HOGTMVt7HTWjYyB+u7dlvJRMaUBX3eJmvMNDzGRvMIncDAu28lHuzE5c/u8zZJeTMAqCkamUln3IGVNNjisKX2vdtkTLbVnbBqhCadSo1U/U6wROQCoNQYs67TqmyguMPzEv8ypZQa0nzVRbSaMJJHHV0XQYCIUdb0ywd2j8yTxKSq1ZSGj8ERndD3beJjKJZMwqpH5lX4tKqV7A8bjcT0fVKU7JQEisnAXjXyjonL4yO/biUlMdMgPLrP2xXk5VFtYnEfGHlJZ0W9k6mutZQnzwVb30+9Mgqm4DVC4wi/j5xSI02fvuUi8raIbOzi5wLgDuDOYw1ARK4TkVUisqqiYmRe8VVKDS/hdXsot2dgt/dtlryO2m+sWzzyTogOVlYx1bOZ2sy+t161qYjMJ6l55I1N272/gumeTdRknXJU29lswsHwPOIbR94xWb99J1PZgzvv1KPaLi0+kj2SS+QInL7+iy9WkiOVRExYeFTbjRmVzF6TARXbBigypdRA6FOCZYz5kjFmWucfYDdQAKwTkSIgB1gjIqOAUiC3QzU5/mWd637IGDPbGDM7LS2tv69HKaX6LcO5m6qY3u/d05Wc/Ik4TRjugyPvhGjHileIEA9xU8866m1bEscxyrMf43YOQGTBs+3j54gQN6OOP/+ot22KH0uGpxS87gGILHhKP30KmxiyT7jwqLYTEaqiCkhp2TPiZhJsWvscAFlzv35U28VFhrHPPprY+pGXdCo1kvWri6AxZoMxJt0Yk2+MycfqBnicMeYA8CJwpX82wXlAnTFmZE4NpJQaMerra8j2HaA1pe+z5HUUFRlOsS2byNqRd0Ikm5+jnljyjz/zqLe1Z0zGLoaKvSOrZS9+x/PUSiIpU8846m1N2kQceGksGznT+nu8PnKKX+ZgWA7Ro/s+g2AbZ9JEYk3jiJpJsLaplWnVb1IcMw1b4tGPlKiLG0uqqwQ8rQMQnVJqIAzkfbBexWrh2gn8DfjOAO5LKaUConjLamxiiMwuPOY6qiLzSGoZWTMJlh8sY1bTx+xJPwNxRBz19gmjra6TlSNo1ryNmzcyt3UFpbnn9ulmup3F5k4HoHzXF4EOLWg+Xv4ux7OZusmXgshRbz8SZxL86L1XGC8l2I+/8pi296RMwo4PX8XIu2ij1EgV0ATL35JV6X9sjDHfNcaMNcYUGmNWBXJfSik1EGq2W9OQ5xX2fUa4zpwJY8nwHsC4WwIVVtBte/leoqWV1NO/f0zb54ybjtcIzv2bAhxZ8FS8dS8A+efeekzbZ40rxGuElpKRcX8wYwy+Tx6gmUjGnf3dY6ojOd8/k+DekZGIt3q8JKz5Mw0SR9bJlx1THTE51pT+1UWd5xJTSg1VA9mCpZRSw07E/pWUSQaJo/KOuQ57+gTsYqjaNzJuIltbV8vU4qVsiJ5L9qS+T7vdUXJCPKWSgWOEzJq3dfs25la/xNa0M4lJzz+mOrLTUthHBrbKrYENLkiWf/IR850fsC/vImzRScdUR/5o/0yCI2RK//dee4ZTfJ9TVfhtiIg9pjpGjSnEY2zU7xs5rXpKjXSaYCmllJ/X62VM83oOJM7sVz1x/ivOVUUjo2Viw39+RjL1xH/5x/2qpzwyn8Sm4T9rnsfro+6Zm7CLIf/rvzzmeuw2YX94AYkNOwMYXXA0OV3EvX0bzbYYxn3j2I9J20yCESNgJsGDNfWMXfUryu0Z5J177N+dcVmp1kyC5SPjgo1SoUATLKWU8tu+5gNSpB4z9kv9qmfUmGn4jNBSNvxPiNZ9/gEnHnic1clfJW9W/45Lc/w4Mr0lGI8rQNEFx9tP/IETWj9h55Qbicua2K+6GuPHkeYphWE8u6Ixhvf+/hNmmi1Un/QzHHHHPiNw20yCqcN8JkGP18cXf7+R8VKM76xfI0dxP7DOYiMc7HPkE1s//BNxpUKFJlhKKeVXufp5vEYYf/IF/aonIyWJ/aQO+5vIlu3fR9or36bGlsjkK//Q7/psGZMIw0tl8fCdwv7j915m4fa72BF9HNMu+mm/6zNpk3Hgo7ls+HYTfP3Jv/KViofZln4OBV+6rt/1OZOH90yCxhhefPguzm56ge0FVzLqKKdm70p93DhS3PuHdSKuVCjRBEsppQCf18u4A6+yJXo2cUkZ/apLRDgYPpq4xj0Bim7wVZYfoOHvF5Jsamm68FGiE9P7XWd8rjUzY8Xu4TlY/9N3X2TG+9+mypFBzn8/dUwzB3YWO9qaSbBiGM4kaIzhlSf+wpc238He6ClMuPYfxzRzYGdho6YAw3MmQa/P8NLD/8PX99/D7sSTmXD57wNSr0mzZhJ0lw/fixNKhRJNsJRSCtjy2RtkUkHzpG8EpL6G2DFkuIvB5wtIfYNpz46N1D14Jnnevew540Hyp88PSL1Z46xkoqV0eE1gYIzhvcd/w3EfXE2tI5W4618nKiE1IHVnjZmK29hpKR1esyu2tLp568838dWtt1MSPYXR33+tX93gOkrJtz4nNUXDaybBuoZm3r/3Ks4v+R07E0+m4LvPgD0sIHXH5lq3OajaszYg9SmlBlb/L78ppdQIUPPJv2giksIzvhWQ+rwp44mqacVZtY/ItPyA1DkYPn39P0z59BZEYO/Z/2TyiecFrO6UpCT2k4a9evhchT94sIwd/7qRhc1vsyV2DgX//QSR8YFJrgBGpyWym0zslcNnvN7O7ZuoX3YDZ3rXsTH9PKZc+zds4VEBqz8/zz+T4IHhk4ivWfkx0a99jzPMLjblX8nUK/8ANnvA6s8aMxX3u3aaiodfq55SoUgTLKVUyNu7by9zGt5h66hzmREbH5A6o7Mmw044uHs9ecMgwSo/WMbux3/AifVvsDcsn5grlzFh9KSA7kNEOBCRT1Lj0J9J0O3x8Mnzf2XKxrs5wTSwdtwNzPjW/yIB6BbYkcNuY394AVMbh/54vcamJlYsvYsTi/9Opgg7Tvhfpp19Y0C6BXaUFhfJaskldRjMJFhZXc0XS5dwavljNNli2X36X5h6SmAu0nQ0ZlQye8wo7OXDd6yeUqFEEyylVMjb/crvycVDzlduCVidKfmF8CE0lGyGE84PWL2B5nY2sebZ3zNu2984nkY+G30Nx11+F2ERgenu1VlT/FimVKzFeD0BT1YCwRjDF8tfJfq9X3Cqbwe7w8bj+vqTzJx8woDtszF+PGlVH4GrCcJjBmw/x6q51c0nL/2DyRvv4UuUszX+JDIvvZ/xWWMHZH8iQnVUAZNaPrRmEgxwAhcIzU4nnz17H9O2PcCXpZbNqWcx5sr7SUro/1jFrkSG2SkNz2faCJjSX6lQMPT+uiml1CCqra1h1oGn2Rx/MtPypgWs3tE5udSYWEzF0OwO52ppZOOLfyBvy985gRo2R87AeeE9nDBp7oDuV9ImEVnhpmr/TlJyA9tC1l/rP30T93u/5XjXSsolhY1zf8PUs/8LCWBXry6lT4YqcO7fRGT+wB7/o1Hf0sonL/2TvM0P8iX2sC+sgB2nP8qkEwf+goEzeSKxpa9iGsqQ+KwB319f1TU089lLDzFu+0MspJSdkVNp/eojTJm+cMD33RA3npSaT8DVDAEa76aUGhiaYCmlQtq6l//CqdJI3ek3B7TeyHAH2+05RNXtCmi9/dXaXM/GF/9A/taHOY5a1oXNYM/8+zn+lK8ig9BSEJ87DTbDwV3rhkSCZXw+1n70ImEf/57prnXUEscX47/H1K/fTnpU7KDEEJc7DbZA5Z715AyBBKumvokVL/6ViTv/ztmUcsCRTdG8u8k//dqAjivqSfioKVBqzSSYVBj8BKu8ppY1L9zPtD2PcKZUUBxWwM75f2HcKZcOWgubpE/GVmNoPbCFiNHHD8o+lVLHRhMspVTIanW5GLvzEXaET2b8zDMCXn9NVD65zSsCXu+xcDbVs+mFeynY/jDHU8e6sJnsPeU2Zs3/yqAkVm0yx8+AN6ClZAOwaND225nH42XV20+Q8PkfmeXdRgVJrJzwI6Zf8ANmxSQMaizZY6bQasJoDvIEBhU1dax+4X6m7fkn50gFJeFj2Df/fkbP/9agJVZtkvOnw2prJsGkwrMGdd8dlRwoZ8OL93J86X84W2rZEzWZfaf+htHzvj7oXRfjRhfCNqjcvY5sTbCUGtL6nWCJyPeA7wJe4BVjzG3+5T8Bvu1f/n1jzBv93ZdSSgXSmjce5UQOsmnuzwfkZKk1cRxJTa9jmmuQ6KSA198XzqY6Nj7/O8bs+CfHU8/a8FnsO/V2Zpx01qAmVm1SU9IoJoPwio2Dvm8Ap8vNylcfYdS6B5hn9nBA0llT+HMKz/0Ocwdo3Flv8tPi2UY2EUGaSfBgZRVrn/8DM4sf5WypoShqMqUL7yZn7oVBG//UPpNgWXCmr9+1dx87X/odJ1Q8xTnSxI642Xi/9GMKZnw5aMfESsQdNJUE57ujlOq7fiVYIrIQuACYYYxpFZF0//IpwCXAVCALeFtEJhhjvP0NWCmlAsEYQ8Lah9hvG8WUhZcOyD7CMiZCKVTt3Ujq5AUDso/utDRaidW4nf9kNvWsDT+OkoW3M2PemUFJrNqICCUR4yloHNzZ0BpbnHz24l8Zs+WvnEIppfYsNsz6f0w9678YFRY+qLF05rDbqIgsYFrj4LZglZQdYNMLv2NO2VLOkgZ2xszC+6W/kD/r7KBPLJEWF8kKGcvo6sFNJjZt30HJq7/l5JoXGCtOtiWdguec2xk/8eRBjaMr+ekJ7CSLiIrhM329UqGqvy1YNwC/Nsa0Ahhjyv3LLwCe8C/fIyI7gbnAp/3cn1JKBcSGFW8x3buVNVN+QtYAzWYXP3oqrIHqQUywmhtq2Pjc75iw+xHm0MDaiNkUL/wxM074clATq44akqcyqmw5vqYabDED27JXV9/I5y/ez8Sd/+AMDrIvrIBtJ/yRCQsvJ3sIzWLoTJ5Iatl7mJYaJGpgj0nRvn3sePG3nFDxNGdJM9viT8R99k8YN/XUAd3v0RARKhKmMbdu6YBP6mCMYc2GjVS9+VtOaXiVSeJhR9qZZJ57BxPzZw7Yfo9WmN3G3oiJzG9YMWRnV1RKWfr712UCsEBE7gKcwC3GmM+BbKDjwIMS/7IjiMh1wHUAo0eP7mc4Q5vX66Wucj/1lftprC6jtbYMT/1BpLEcaalGXI2Ee5uI8DYT4WsmyrRgN27s+LAZLzZ82PEhGDxix00Ybhx4JAwPDlolklZ7DC5HHJ7wOHzhcRCRgEQlYItOIiw2haj4VGIS04hPTiMuMQ1bWESwD4tSQeH66D7qiWHKV28YsH0UjLW69LTsH/grzk311Wx87h4m7vkXc2lkbeQcHAt/wswTAj+2rL8iRx8HZVC2fSXZswZmfE1VTQ1fPH8f04oe4UtSzZ6IiexZcBcFJ10ENtuA7LM/InNmQBmUb19FxowvD8g+du7ayb6Xf8O86hcYjYutSaeR/tWfMnH8nAHZX3/5so7DXvc4LftWEzUu8BcojDF8vmYVDW//lgXNb2MT2Jl1Ljnn3cGkrOBPwNKV2pRZxJa9hancgaRNCHY4Sqlu9JpgicjbwKguVv3Uv30yMA+YAzwpImOOJgBjzEPAQwCzZ882R7PtUORsaaZk1wYaizfRWrEbqdtHZFMJSa1lZPjKSRYPyZ22aTVh1Eo8TlsMrfYoXPZoGsPTcDuiMfZwbDY7NrsDsTvwGhs+QLwexOfC5nMjPg82n4swbzPhnkbiXCVEOZuINk3E0dJjvE1E0ihxNNvjaQ1LwBORiDciEYlOwh6TTERsChHxKcQmphEVn0pEfCoSnQwOTczU8FWyazOzmpazOucK5g7ghAbJcVHssmVhqxq4e9c01lez8dnfMqno35xAI19EnkDkGbczc87pA7bP/sqefCJ8BlU7Ap9gVVRUsP753zOz5DG+JPXsiJ6O6/Q/UTD7q0P6in/65JPhc6ja+lHAE6xtWzdS9upvOLHuNfLxsjXtLLLO/SlT8gsDup9AS5lwImyB8i2fkBfABMsYw2effUzre79lvvMDPOJg9+hvkH/BHUxKzQ/YfgZC1JgToQxqti0nWROsAePxeGhqaqC1uRG3qxWPuxWvuxWP243X04rP3YrX7cLnacV43RhjrFZFQGg7lTXWcqDjbx4jghE7RuwgdsTuQGx2bDbHocd2B2K3IzYHtrZ//Y9tDgdic2D3L7fb7dZymwO7w4Hd5kDsgl0Eu02wtf/LkOnFEAp6TbCMMV/qbp2I3AA8a6xP0EoR8QGpQCmQ26Fojn/ZiGF8Pg6U7qFs03JcpesJr95OSvNusn37GSe+9nI1xFHpGEVFzHj2x50OCdk44jOJTBpFbEoWCWnZJCQkkzFAV1R9Hg8NDbU01VbSVFdBS10FzvpKPI3VeJurkZYabK21hLvqiGytI7rlIHGmgUSaCJPuh8y1EEGjxNFkj6PFHo/THovXHo6xhWNsYfjs4WALx9jDwR4OjnD/LwjBIHT8dWPav/Bt68BmvAg+8HnB+MB4wedF/P9ifO2PpW298T/2WdvafB6rHD5/eetfm/EB1vZijPUv1nobh8q0LRMMNqyyNn9rorXMKmPzlwHo6gqB6bxQDr3a3kgPz7rSXY1tx7VzDaabOnurp2uBqav7fRxd/dDxs3W4GNOCDxtjvvrDHrYOjJrofDKaA59g1ddWsfm5u5m891Hm0cTaqHlEfuknzDr+tIDvK9DyR49mv0lF9n8RsDrLDuxn6/O/ZVbZMs6QJrbGzqXlyz9m/Mxu/4QNKRPzR7ObbKRkZcDq3Lh+NTVv/Jp5je9QIMLWUeeRd/4dTMseHifmk8aNo8Sk4tn3eUDq8/kMKz5+Gz78HSe5P6WZSLaNuYqx59/GpKQuO9kMOWMnz6JueTT1Oz4hef41wQ5nyGppbqKu6gBNtZW01FXQ2liFp7EaX3MVtNRgc9YS5qrD4WkmzNdMhLeFCNNCpHESaZzESCuDO5doYPmM4EPwYsOLDZd19tJ21oK3/bkNn3R47H9usFl/ceXQX17p+IQj//Z2+bfbdPN32LTVeSgZbXvc4eywwzLDBvtUYr5xPwsnDszNvAOtv10EnwcWAu+JyAQgHKgEXgT+IyK/x5rkYjwQuL8aQeBsaWb3F+/TsPNjIg6sIbt5C5nUkAl4jbDflklVdAEHkr5MeOYU4nKnkZ43iaSEZIIzd5jF5nCQkJRKQlIq0LcuDx6vj9pmFzW1NTTUVNBcV0FLXSWmudr/i6kGe2sd4a46Ijx1RHnqSXSX4DBuHLhxGA9huAnz/xveQ6J2tDzm0C+Gjr8gvJ1+URxaZ8eI9dyIYNo6Wfp/gXj9/xqx4cMBYsMndozNKgPWc/xXnPDXj1jbGLEjYtUtCCLWRXLBulLU9gvq0K+MDr+STM8JS/eJiemmUDdbHJHhWSWlm+LdJ349pjJ93nfP+zjGmLpc3d2+Lb7ceczNKjiqOI6FJ3kiWY0f0VRfQ0x8/38b1NVUsvm5u5m67zHm0cQXUScSc+ZPmTlrcCfR6A+7TSiKKWRS3ep+jyUpKd7Lzhd/w+zyZ1goTjbGL6DlnJ8waUrwJyU4GnabsC9uFnMa3gGvG+xhx1SPMYb1qz+m+Z27OaH5Q1oljE05ixj7tZ8wPW14dcNPi4vg/fDJTK9a06/Piddn+PS9l4n49Pec5FlDAzFsGn89E86/lSlxqQGOemBNykxgBRMYd2BVsEMJCmeri4Ole2g4sBtndTGe2jJM4wEcTeVEtVYS66kiyVtNgjQR1U0dLuOgTuJotsXitMfgtkVRH56M1xGN1xGNCYuBcOvHFh6NOCKwOcIRRzg2Rzg2Rxh2RwTiiMAeFo7NHg62Q2mI9c+hz6pIx3WmwwVfL3g9+HxejNeD8Xnweb0Ynwd8Xnw+a73xeTE+L/j8j/3b4X9sfG0Xo61y4vNiOlyYxnS6WG18iK/DRem2C9b+5+LzYjDtf76NocPzo/ub3vMlWWP9/7DvtfXYdDiObY99ETnERw6dcbO96W+k/wD+ISIbARdwlb81a5OIPAlsBjzAd4fjDIIlOzdS/OlTxJQuZ1zLBqZIKwD7JIu98bPZk3UcSeNPJHfyHHKjYw9rshvOHHYbqXGRpMZlQm5mv+szPh8edysutxuP14dIh29teyFz2JUM/MkMNjt2uwOb3YHNZsduE8K1mVsNI+EFJ2Iv/hvFGz5k0skXHHM9ddUVbH7uN0wtfpwTaeaL6JOIO+unzJoxP4DRDh533qkkb3mPAzvWMGrC0d/TZ8/u7RS//GvmVr1IJh42JZ1Bxrk/Zdq44wYg2sHhzl9IzIaXKd/8AemFR9fyZoxhzadv4/vgHua0rqCRKNbnX82Er93GzKT+/x4PlsbcU0ne/RFN+74gJu/o3lu3x8unbz9D/Od/ZL53IzWSwOYpNzPh3JuYGp04MAEPMMf/b+/O4+Mqy4aP/66Zyb42+9okbdM0bdJ9pRQKsspSEGSRHRVRUUFRQAXR5+EVEEURgQdEAUUWQVlkkbVAgZaudG+TtmnWZt/3mbnfP840pG3Spskkk0mv7+eTZuac+9znmjk503PNvRy7jeq4eRxf+ximsRSJSvN1SF7lcrmpriylbu8WWit34azdi72pmND2CsZ17SPB1JBx0Je2nSaAOts4mhyx1IdkUhU6HxOWgC0iHkdYHEGRvcefJxAcEk68XkP4HX/7ZB9SgmWM6QIu72fdXcBdQ6nf18rWvcGiXb9nry2dzQnnEDT5ZMbPOoXxcYn41/eAviU2GwFBIQQE9fd9klJjV9bMpbg+EBq2fwCDSLAaairZ+tK95JX8g0XSxvqw44k8/WfMmn7cMEQ7cjIXnIN76y+pWPn8USVYhds/Z98b9zC/4U3SgC1xZ5B27s+YnjFt+IIdITnHnU3nxlvZ9+lzA06w3C436z54Gcenv2dO9wYaCWf9pO+Qe+7NzIyMHeaIh1/ynHNw77qLsk+eY/IAE6yOrm5WvfE34jc8xAmmgBqJYev0nzLlrBsYFxQ2zBEPv5Dp58H7j1H6yXOkn/kjX4czKF0d7VTs2ULN3i10VOzAUV9IZGsRKc5SkqS1Z+C/2wi1Mo7agCQqo/Ipi0jHHpNBcHwW4fEZjEtKJyIyhmSbDf/9GkGNRWL66cLjC3PnzjVr1oyeZu/G+hq62luIT8n0dShKKT+2/X8XEkA3E3++dsDbVJcXsfuVe8ir+Bdh0sH6sCVEn/lzsvIWDmOkI2vD/y4hwV1N8s82I0eYMn37ug9pfvc+5rR8SDcOtiadS+a5P2Vc6qQRinZkfHz3ueR3rCX81u3YgiP6LdfZ1cWaN58ibsPD5LgLqZFxlORcy7RzbyQwNHIEIx5eTpeb1Xd9iRyKGPfT7chhJlhqbm1l3X8eJWPbo2RSzj5bEg2zvkPOGd9CAoJHMOrh1dzRzd5fzycuyEXSrRtG5ayYvdXsK6Z462e07N1AUO1W4tsKSXeVHjDOu1piqAkcT1tkFiZ2EkFJU4hOyyEhbSJBwb65AbhSAyEia40xcw9e7j+dGX0galwcjPOv/tlKqdGnNv00Fu/5A3sLNpGRffiZ2/YWbmbfa/cwq+515uJifeSXiDvzFmZNnT9C0Y6c9hlXk7L2h2x681Hyz/rOIeu7urpY/+5zBK37MzO7N9BMCGvTrybn3JuZlTC2ukbtZxZeT+TyS9n0/C/Jv/K+Q9ZXVlaw47+PkrH7GRZTQakthfUzf0X+mdcRNwZ7CTjsNlpmfZOYtd+m4OV7yb7g9kPKFO/dza7/PkRu2YucKHUUOSawY+EfmHzSZSQNcizbaBYRHMCOrCvJK7qT0uV/Ju3k63wdUo/mqr2Ubl5B+55VBNdsJqm9kDga2X8lVSWxVIZMYu24pTgSpxI9fhopE/OIjxhHvC8DV8rLtAVLKaWGWd2+vYQ/PIv1sWez4PtPHbLe7XKxZcXLOFf9memtn+DEwedxZ5F61q2kTsj1QcQjo6vbSeHdixnv2kvpyQ+Ss3gZnd1Odq3/gPoNr5Jd+TqJ1FEtMeyddCVTzv4B4VEH3+hibDHG8PFvLuS41nfZkH0DKYu+SltnF+VbPyVo91tMb11JkHRTEJiLc8F3mLL0a0ds/fN3Hd0u1t57Fgu6VrEl90ZiZ55Fc1sbtds/IXjP28zsWodD3OwInUPAku8zYeGyUT0lvzc0tnZSeN9J5JmdFM68lbRFFxGVOLKDFzpa6ine/AlNhSsJ3LeOlNatxJk6ALqMnT32DOrDczCJ0xg3YTbjc+cRGu0fM8ApNVD9tWBpgqWUUiNg5YPXMr/6X2yYezezzroOt9vNnq2fUb3m36SXvEqaqaCeSHamns+kc24mNunYGOlZurcA5xPLyDRldBu7dWN1MXQbO9tD58Dcq5l24kXYHGOvJaI/dQ0NFDzyNRZ0fHzA8mpiKEk8maSTryclZ3TeHHi47KuuofjRS5nffeCExOW2ZKrSTiPtS98mLmPsfhnRl4KiYlqeupRZ7s04jY0dpz7BtOMHP5HO4Ti7uyjevoa6HZ9A2VrimjYz3lmCzTNpVTFJlIdNozNxFpGTFpKVt5DoyP67uCo1VmiCpZRSPtTW2sTe+08j17mNTmMlC0HSjdsI24PyaMu/gvxTrzgmxxu0tTaz4b9PYavZjrEHE5w6jUkLzyEi2v8naRgst9uw/fNPaCragCMggNRJs0jOmTvmW2YOx+1ys+3zT2gu205wYCApObNJyJh2TL8nTqeLLZ+9S9ZbV1PhSGPSbZ9it9uHVKdxuynbu5N9Wz+mu3g10XUbyewqIES6AOv+nkXBubTGzSA4cz5peYtJTEzR2X3VMUkTLKWU8rHOznY2vvFXuis2Y7OBI2kaExaeS0ziWLnJg1LKF9a+/EfmrP85H2fcwOJrBj6BszGGisoKKrZ8TEfRZ4RVf874jm3E0ARYU6DvCZhEw7h87OPnkph7PGlZudjso3tiDaVGiiZYSimllFJjkHG72XD/V5jV/D6fRZ1B9Gm3MCl3FjbPDXCNMdTU1VFZvJPWks1079tCUN0Okjp2kU4lYE2JXmJPozoyD3fKHGImLyRj6jwCAsfODIxKeZsmWEoppZRSY5Szq4PVT93GvJIncIibBhNGs0Rgw0WkaSFC2r8oa2yUO1JpCJ+EM2E6YRMXkD5tEaERY3sSGaW8TRMspZRSSqkxrq6iiOJP/4l731aksxmx2XEGRkJkCiFx44kan0/ihHwCxuC0/kqNNL0PllJKKaXUGBeTnEnMV37s6zCUOqbpKEWllFJKKaWU8hJNsJRSSimllFLKSzTBUkoppZRSSikvGVWTXIhINbDX13EcJA6o8XUQasTo8T526LE+duixPrbo8T526LE+tozG451hjIk/eOGoSrBGIxFZ09fsIGps0uN97NBjfezQY31s0eN97NBjfWzxp+OtXQSVUkoppZRSyks0wVJKKaWUUkopL9EE68ge9XUAakTp8T526LE+duixPrbo8T526LE+tvjN8dYxWEoppZRSSinlJdqCpZRSSimllFJeogmWUkoppZRSSnmJJliHISJniMgOESkUkVt9HY/yHhFJF5H3RWSriGwRkR94lseIyNsiUuD5Pc7XsSrvEBG7iKwXkf94nmeJyCrP+f2ciAT6OkblHSISLSIviMh2EdkmIov03B6bROQmz2f4ZhF5RkSC9dweO0TkLyJSJSKbey3r81wWywOe475RRGb7LnJ1tPo51r/xfI5vFJF/i0h0r3W3eY71DhE53SdBH4YmWP0QETvwJ+BMYCpwqYhM9W1UyoucwI+MMVOBhcB3Pcf3VuBdY0w28K7nuRobfgBs6/X8HuB+Y8wkoB74uk+iUsPhD8CbxpgpwAys467n9hgjIqnA94G5xpg8wA5cgp7bY8kTwBkHLevvXD4TyPb8XAc8PEIxKu94gkOP9dtAnjFmOrATuA3Ac712CTDNs81Dnuv2UUMTrP7NBwqNMbuNMV3As8AyH8ekvMQYU2GMWed53Ix1AZaKdYyf9BR7EjjPJwEqrxKRNOAs4M+e5wKcDLzgKaLHeowQkSjgBOBxAGNMlzGmAT23xyoHECIiDiAUqEDP7THDGPMhUHfQ4v7O5WXAU8ayEogWkeQRCVQNWV/H2hjzljHG6Xm6EkjzPF4GPGuM6TTG7AEKsa7bRw1NsPqXCpT0el7qWabGGBHJBGYBq4BEY0yFZ9U+INFXcSmv+j3wE8DteR4LNPT64Nbze+zIAqqBv3q6hP5ZRMLQc3vMMcaUAfcBxViJVSOwFj23x7r+zmW9bhvbrgXe8Dwe9cdaEyx1TBORcOBF4EZjTFPvdca6h4Hex8DPicjZQJUxZq2vY1EjwgHMBh42xswCWjmoO6Ce22ODZ+zNMqykOgUI49AuRmoM03P52CAiP8Ma2vG0r2MZKE2w+lcGpPd6nuZZpsYIEQnASq6eNsb8y7O4cn+XAs/vKl/Fp7xmMXCuiBRhdfU9GWuMTrSnWxHo+T2WlAKlxphVnucvYCVcem6PPacAe4wx1caYbuBfWOe7nttjW3/nsl63jUEicjVwNnCZ+eLmvaP+WGuC1b/VQLZnNqJArMF0r/g4JuUlnjE4jwPbjDG/67XqFeAqz+OrgJdHOjblXcaY24wxacaYTKzz+D1jzGXA+8CFnmJ6rMcIY8w+oEREcjyLvgRsRc/tsagYWCgioZ7P9P3HWs/tsa2/c/kV4ErPbIILgcZeXQmVHxKRM7C6959rjGnrteoV4BIRCRKRLKyJTT7zRYz9kS+SQXUwEfky1tgNO/AXY8xdvo1IeYuIHA98BGzii3E5P8Uah/U8MB7YC1xkjDl4gK3yUyKyFLjZGHO2iEzAatGKAdYDlxtjOn0YnvISEZmJNaFJILAbuAbrC0U9t8cYEfklcDFW96H1wDewxmLouT0GiMgzwFIgDqgEfgG8RB/nsifJfhCrm2gbcI0xZo0PwlaD0M+xvg0IAmo9xVYaY673lP8Z1rgsJ9YwjzcOrtOXNMFSSimllFJKKS/RLoJKKaWUUkop5SWaYCmllFJKKaWUl2iCpZRSSimllFJeogmWUkoppZRSSnmJJlhKKaWUUkop5SWaYCmllFJKKaWUl2iCpZRSSimllFJeogmWUkoppZRSSnmJJlhKKaWUUkop5SWaYCmllFJKKaWUl2iCpZRSSimllFJeogmWUkoppZRSSnmJJlhKKTVKiEimiBgRcfg6lrFORK4WkRW+jmO0EZElIrLD13EopZQ/0wRLKaWUXxORO0WkW0Raev38xNdx+SNjzEfGmJzhql9ErvR8ifCN4dqHUkr5mn5LqpRSXiIiDmOM09dxHKOeM8Zc7usghstY+NsSkXHAT4Etvo5FKaWGk7ZgKaXUEIhIkYjcIiIbgVYRcYjIQhH5REQaRORzEVnaq/xyEfm1iHwmIk0i8rKIxPRT9zUisk1EmkVkt4h866D1y0Rkg6eeXSJyhmd5lIg8LiIVIlImIv8rIvYjvI6JIvKeiNSKSI2IPC0i0b3W1YnIbM/zFBGp3v+6RORcEdnieb3LRST3oPfnZhHZKCKNIvKciAQf/Tt99ETkVs/70iwiW0Xk/H7KiYjcLyJVnvdyk4jkedYFich9IlIsIpUi8oiIhAxw/094yr/tieEDEcnotf4PIlLi2edaEVnSa92dIvKCiPxdRJqAq0Vkvoh86nmfK0TkQREJ7LWNEZHviEiBZ3//4zl2n3j28Xzv8v3EvFRESgfy+gbh18ADQM0w1a+UUqOCJlhKKTV0lwJnAdFAIvAa8L9ADHAz8KKIxPcqfyVwLZAMOLEuOvtSBZwNRALXAPf3SnLmA08BP/bs9wSgyLPdE556JwGzgNOAI3XJEqwL4BQgF0gH7gQwxuwCbgH+LiKhwF+BJ40xy0VkMvAMcCMQD7wOvHrQhfxFwBlAFjAduLrPAESO9yQP/f0cf4TXcLBdwBIgCvilJ/7kPsqdhvX+TfaUvQio9ay727N8Jtb7mQrccRQxXAb8DxAHbACe7rVutafeGOAfwD8PSj6XAS9gHd+nARdwk6euRcCXgO8ctL/TgTnAQuAnwKPA5VjHMw/rb3XQPIlyf8fnocNsNx+YCzwylP0rpZQ/0ARLKaWG7gFjTIkxph3rYvZ1Y8zrxhi3MeZtYA3w5V7l/2aM2WyMaQVuBy7qq4XJGPOaMWaXsXwAvIWVMAB8HfiLMeZtz37KjDHbRSTRs68bjTGtxpgq4H7gksO9AGNMoaeuTmNMNfA74MRe6x8DCoFVWInhzzyrLgZe82zbDdwHhADHHfT+lBtj6oBXsZKKvmJYYYyJPszP4SaluOigi/0UY8w/Pft1G2OeAwqA+X1s2w1EAFMAMcZsM8ZUiIgA1wE3GWPqjDHNwP870nt5kNeMMR8aYzqx3rNFIpLueb1/N8bUGmOcxpjfAkFA7/FPnxpjXvLE326MWWuMWekpXwT8H72Okce9xpgmY8wWYDPwljFmtzGmEXgDK+EeNGPM9MMcn4OTPQA8f9sPATcYY9xD2b9SSvkDHYOllFJDV9LrcQbwVRE5p9eyAOD9fsrv9ayPO7hSETkT+AVWC4oNCAU2eVanY7UWHSzDU1+FlR+AZ9uSPsr23lci8AesBC7Cs039QcUeA14BrvMkDGC1eO3dX8AY4xaREqyWnv329Xrc5tnG254/eAyWiFwJ/BDI9CwKp4/32Rjznog8CPwJyBCRf2G1PAZjvedre72XAhy2u+VBet53Y0yLiNRhvf4SEbkZK1FOAQxWS2VcX9t6Xs9krMR3ricuB7D2oP1V9nrc3sfzpKOI3Vu+A2w0xqz0wb6VUmrEaQuWUkoNnen1uASrhar3N/thxpi7e5VJ7/V4PFYLygHjUkQkCHgRq0Uo0RgTjZVQ7b/SLwEm9hFLCdAJxPXaf6QxZtoRXsP/87yOfGNMJFZL3BdZhUg48HvgceBO+WLcWDlWUre/nHheX9kR9ncIsaYIbznMz5Ij19JTVwZWQngDEOt5/zb3fk29GWMeMMbMAaZiJbQ/xjom7cC0Xu9llDEm/CheVs+x9ryHMUC557X8BKs74jhPfI0Hxdf77wrgYWA7kO05Rj/t7/UMF7HG2vV3fPrr/vcl4HwR2Sci+7BaN3/rSWqVUmrM0QRLKaW86+/AOSJyuojYRSTYM3FAWq8yl4vIVM94pl8BLxhjXAfVE4jVZawacHpas07rtf5x4BoR+ZKI2EQkVUSmGGMqsLoS/lZEIj3rJorIwV3JDhYBtACNIpKKlWD09gdgjTHmG1hjzPZfTD8PnOWJIwD4EVaC98mR3qiDeaYIDz/Mz0dHUV0YVoJSDdaEIVhjkA4hIvNEZIEn/lagA3B7urM9hjX2LcFTNlVETu+1rZFek5j04cuesWWBWGOxVhpjSrDeb6cnPoeI3IHVgnU4EUAT0CIiU4BvH6G81xljph3m+Fzfz2ZXY43rm+n5WYM1Ju5n/ZRXSim/pgmWUkp5kefieRlW60I1VovSjznw8/ZvWBNR7MPqhvb9Pupp9ix/Hqur3tewuuftX/8ZnokvsFo+PuCLlqQrsRK0rZ5tX8AaN3U4vwRme+p6DfjX/hUisgxrkor9F/Q/BGaLyGXGmB1YrV1/xGrxOQc4xxjTdYT9DStjzFbgt8CnWN3k8oGP+ykeiZVI1WN1d6wFfuNZdwvW2LOVYs3m9w6ecVKesVTNfNFtsy//wOrmWYc1+cT+boz/Bd4Ednr22cERunFidVv8mmefjwHPHaH8qGCMaTDG7Nv/A3QBTZ5xYUopNeaIMQf3QFBKKTVcRGQ58HdjzJ99HYsaGhG5HKv74G39rH8CKDXG/HxEA1NKKeVTOsmFUkopNQjGmL/7OgallFKjj3YRVEqpY4RYN709mskJ1BgkIj/t5+/gDV/HppRSY4HXugh67nOxBigzxpwtIlnAs0As1jSyV/i6T75SSimllFJKDSdvtmD9ANjW6/k9wP3GmElYA4e/7sV9KaWUUkoppdSo45UWLM/0w08Cd2HNLnUO1uxZScYYp4gsAu40xpx+mGqIi4szmZmZQ45HKaWUUkoppYbT2rVra4wx8Qcv99YkF7/HumFihOd5LNBgjHF6npcCqUeqJDMzkzVr1ngpJKWUUkoppZQaHiKyt6/lQ+4iKCJnA1XGmLWD3P46EVkjImuqq6uHGo5SSimllFJK+Yw3xmAtBs4VkSKsSS1OBv4ARIvI/hayNKCsr42NMY8aY+YaY+bGxx/SwqaUUkoppZRSfmPICZYx5jZjTJoxJhO4BHjPGHMZ8D5woafYVcDLQ92XUkqNFGMMTpfb12EopZRSys8M542GbwGeFZH/BdYDjw+mku7ubkpLS+no6PBqcGrsCw4OJi0tjYCAAF+HovzQn5/4M3NKnmTKj14nNCzS1+EopZRSyk94NcEyxiwHlnse7wbmD7XO0tJSIiIiyMzMRESGWp06RhhjqK2tpbS0lKysLF+Ho/yM2+nkm3tvBuDz1W8zY+kFPo5IKaWUUv7Cm/fBGhYdHR3ExsZqcqWOiogQGxurLZ9qUKqry3set+9414eRKKWUUsrfjPoEC9DkSg2K/t2owaqqrOh5HF27wXeBKKWUUsrv+EWCpZRSI6mlrhKAClsSSV3FPo5GKaWUUv5EE6wBEBF+9KMf9Ty/7777uPPOO30XUC8rV65kwYIFzJw5k9zc3J64li9fzieffDLoevfu3cvs2bOZOXMm06ZN45FHHvFSxEr5gdYaACqiZxNNM001FUfYQCmllFLKMpyzCI4ZQUFB/Otf/+K2224jLi7Oa/UaYzDGYLMNPs+96qqreP7555kxYwYul4sdO3YAVoIVHh7OcccdN6h6k5OT+fTTTwkKCqKlpYW8vDzOPfdcUlJSBh2rUv5C2usA6E5dCHWvU7FrA5FxyT6OSimllFL+QFuwBsDhcHDddddx//33H7KuurqaCy64gHnz5jFv3jw+/vhjAO68807uu+++nnJ5eXkUFRVRVFRETk4OV155JXl5eZSUlPDjH/+YvLw88vPzee655wArQVq6dCkXXnghU6ZM4bLLLsMYc8j+q6qqSE62LvzsdjtTp06lqKiIRx55hPvvv5+ZM2fy0UcfHTbOK664gkWLFpGdnc1jjz0GQGBgIEFBQQB0dnbidvd9P6AHHniAqVOnMn36dC655BIA6urqOO+885g+fToLFy5k48aNPfu66qqrWLJkCRkZGfzrX//iJz/5Cfn5+Zxxxhl0d3cD8Ktf/Yp58+aRl5fHddddd8jrdrvdZGZm0tDQ0LMsOzubysrKwx1GpQbM0V4LwLgpSwBoKtvhy3CUUkop5Uf8qgXrl69uYWt5k1frnJoSyS/OmXbEct/97neZPn06P/nJTw5Y/oMf/ICbbrqJ448/nuLiYk4//XS2bdt22LoKCgp48sknWbhwIS+++CIbNmzg888/p6amhnnz5nHCCScAsH79erZs2UJKSgqLFy/m448/5vjjjz+grptuuomcnByWLl3KGWecwVVXXUVmZibXX3894eHh3HyzNdX01772tX7j3LhxIytXrqS1tZVZs2Zx1llnkZKSQklJCWeddRaFhYX85je/6bP16u6772bPnj0EBQX1JDy/+MUvmDVrFi+99BLvvfceV155JRs2bABg165dvP/++2zdupVFixbx4osvcu+993L++efz2muvcd5553HDDTdwxx13AHDFFVfwn//8h3POOadnnzabjWXLlvHvf/+ba665hlWrVpGRkUFiYuIRj6NSA+HorKfJhJA+cRpOY8NVt9fXISmllFLKT2gL1gBFRkZy5ZVX8sADDxyw/J133uGGG25g5syZnHvuuTQ1NdHS0nLYujIyMli4cCEAK1as4NJLL8Vut5OYmMiJJ57I6tWrAZg/fz5paWnYbDZmzpxJUVHRIXXdcccdrFmzhtNOO41//OMfnHHGGX3u83BxLlu2jJCQEOLi4jjppJP47LPPAEhPT2fjxo0UFhby5JNP9tlCNH36dC677DL+/ve/43A4el7TFVdcAcDJJ59MbW0tTU1WYnzmmWcSEBBAfn4+LperJ978/Pye1/f++++zYMEC8vPzee+999iyZcsh+7344ot7WvueffZZLr744sO+50odjYCuehqJICQ4iCqJI6BJJ7pQSiml1MD4VQvWQFqahtONN97I7Nmzueaaa3qWud1uVq5cSXBw8AFlHQ7HAd3qet+PKSwsbED7299FD6zuf06ns89yEydO5Nvf/jbf/OY3iY+Pp7a29pAy/cUJh05nfvDzlJQU8vLy+Oijj7jwwgsPWPfaa6/x4Ycf8uqrr3LXXXexadOmAb0mm81GQEBAz75sNhtOp5OOjg6+853vsGbNGtLT07nzzjv7vJfVokWLKCwspLq6mpdeeomf//znh92vUkfD5mynQ6y/1brAZMLby3wckVJKKaX8hbZgHYWYmBguuugiHn/88Z5lp512Gn/84x97nu/vCpeZmcm6desAWLduHXv27OmzziVLlvDcc8/hcrmorq7mww8/ZP78+QOO6bXXXusZo1RQUIDdbic6OpqIiAiam5uPGCfAyy+/TEdHB7W1tSxfvpx58+ZRWlpKe3s7APX19axYsYKcnJwD9u12uykpKeGkk07innvuobGxkZaWFpYsWcLTTz8NWGPJ4uLiiIyMHNDr2Z9MxcXF0dLSwgsvvNBnORHh/PPP54c//CG5ubnExsYOqH6lBsLm6qDLk2C1hqYS262zCCqllFJqYDTBOko/+tGPqKmp6Xn+wAMPsGbNGqZPn87UqVN7pjO/4IILqKurY9q0aTz44INMnjy5z/rOP/98pk+fzowZMzj55JO59957SUpKGnA8f/vb38jJyWHmzJlcccUVPP3009jtds455xz+/e9/90xy0V+cYHXzO+mkk1i4cCG33347KSkpbNu2jQULFjBjxgxOPPFEbr75ZvLz8wH4xje+wZo1a3C5XFx++eXk5+cza9Ysvv/97xMdHc2dd97J2rVrmT59OrfeeitPPvnkgF9PdHQ03/zmN8nLy+P0009n3rx5PeseeeSRA+K++OKL+fvf/67dA5XX2Z0ddHsSLGfkeOJooLP98F1/lVJKKaUApK+Z6Xxl7ty5Zs2aNQcs27ZtG7m5uT6KaOy78847D5gMY6zRvx81GHt+vYBaVyhzf/4+q15+hAXrb6H0ax+QNnmmr0NTSiml1CghImuNMXMPXj7kFiwRSReR90Vkq4hsEZEfeJbHiMjbIlLg+T1uqPtSSqmRYHd34rRZLVjhiRMAqC8r8GVISimllPIT3pjkwgn8yBizTkQigLUi8jZwNfCuMeZuEbkVuBW4xQv7U1505513+joEpUadAHcnrkArwYpNt7r3dlTv9mVISimllPITQ27BMsZUGGPWeR43A9uAVGAZsH/wzZPAeUPdl1JKjYQA04nLZs24GZ80ng4TgKkv8m1QSimllPILXp3kQkQygVnAKiDRGLN/6q19QJ93gRWR60RkjYisqa6u9mY4Sik1KIGmC7fDasGy221U2hIIaC71cVRKKaWU8gdeS7BEJBx4EbjRGNPUe52xZtLoczYNY8yjxpi5xpi58fHx3gpHKaUGLdB0YhwhPc8bApMI79Cp2pVSSil1ZF5JsEQkACu5etoY8y/P4koRSfasTwaqvLEvpZQaVsYQTBfG8cVNudtDU4lzVvowKKWUUkr5C2/MIijA48A2Y8zveq16BbjK8/gq4OWh7suXXnrpJUSE7du391umqKiIvLw8r+1zx44dLF26lJkzZ5Kbm8t1110HWDcJfv311wddb0dHB/Pnz2fGjBlMmzaNX/ziF94KWSn/5+qyfvdKsFyR6YyjiY7Wpn42UkoppZSyeKMFazFwBXCyiGzw/HwZuBs4VUQKgFM8z/3WM888w/HHH88zzzzT53qn0znkfbhcrgOef//73+emm25iw4YNbNu2je9973vA0BOsoKAg3nvvPT7//HM2bNjAm2++ycqVK4cUu1Jjhelusx4EfNFF0BGbAUBN2S5fhKSUUkopP+KNWQRXGGPEGDPdGDPT8/O6MabWGPMlY0y2MeYUY0ydNwL2hZaWFlasWMHjjz/Os88+27N8+fLlLFmyhHPPPZepU6cCVqJ12WWXkZuby4UXXkhbm3Wx9u677zJr1izy8/O59tpr6ezsBCAzM5NbbrmF2bNn889//vOA/VZUVJCWltbzPD8/n66uLu644w6ee+45Zs6cyXPPPUdrayvXXnst8+fPZ9asWbz8stVY+MQTT7Bs2TKWLl1KdnY2v/zlLwEQEcLDwwHo7u6mu7sbqyHyQP/85z/Jy8tjxowZnHDCCYDV+nXNNdeQn5/PrFmzeP/993v2dd5553HqqaeSmZnJgw8+yO9+9ztmzZrFwoULqauzDv9jjz3GvHnzmDFjBhdccEHP+9PbwoUL2bJlS8/zpUuXcvANqJUaLl0d1t+krVeCFZaQBUBjeaFPYlJKKaWU//DGfbBGzhu3wr5N3q0zKR/OPHzj2ssvv8wZZ5zB5MmTiY2NZe3atcyZMweAdevWsXnzZrKysigqKmLHjh08/vjjLF68mGuvvZaHHnqIG264gauvvpp3332XyZMnc+WVV/Lwww9z4403AhAbG8u6desO2e9NN93EySefzHHHHcdpp53GNddcQ3R0NL/61a9Ys2YNDz74IAA//elPOfnkk/nLX/5CQ0MD8+fP55RTTgHgs88+Y/PmzYSGhjJv3jzOOuss5s6di8vlYs6cORQWFvLd736XBQsWHLL/X/3qV/z3v/8lNTWVhoYGAP70pz8hImzatInt27dz2mmnsXPnTgA2b97M+vXr6ejoYNKkSdxzzz2sX7+em266iaeeeoobb7yRr3zlK3zzm98E4Oc//zmPP/54T8vcfhdffDHPP/88v/zlL6moqKCiooK5cw+5SbZSw6KzvY0gQHolWONSJgHQXl3km6CUUkop5Te8Ok37WPXMM89wySWXAHDJJZcc0E1w/vz5ZGVl9TxPT09n8eLFAFx++eWsWLGCHTt2kJWVxeTJ1g1Lr7rqKj788MOebS6++OI+93vNNdewbds2vvrVr7J8+XIWLlzY0/LV21tvvcXdd9/NzJkzWbp0KR0dHRQXFwNw6qmnEhsbS0hICF/5yldYsWIFAHa7nQ0bNlBaWtqThB1s8eLFXH311Tz22GM93RdXrFjB5ZdfDsCUKVPIyMjoSbBOOukkIiIiiI+PJyoqinPOOQewWt6KiooAKwlbsmQJ+fn5PP300we0VO130UUX8cILLwDw/PPPc+GFF/b5/ig1HLo6WgGwBX6RYCWkjKfTOHDX7/VVWEoppZTyE/7VgnWElqbhUFdXx3vvvcemTZsQEVwuFyLCb37zGwDCwsIOKH9wV7u+ut4d7OA6ektJSeHaa6/l2muvJS8vr89EyBjDiy++SE5OzgHLV61adcR4oqOjOemkk3jzzTcPmaDjkUceYdWqVbz22mvMmTOHtWvXHvZ1BAUF9Ty22Ww9z202W88YtauvvpqXXnqJGTNm8MQTT7B8+fJD6klNTSU2NpaNGzfy3HPP8cgjjxx2v0p5U1e71UXQEfRFghXgcFBiiyegpcxXYSmllFLKT2gL1hG88MILXHHFFezdu5eioiJKSkrIysrio48+6rN8cXExn376KQD/+Mc/OP7448nJyaGoqIjCQmv8xt/+9jdOPPHEI+77zTffpLu7G4B9+/ZRW1tLamoqERERNDc395Q7/fTT+eMf/4h1uzFYv359z7q3336buro62tvbeemll1i8eDHV1dU9Xf7a29t5++23mTJlyiH737VrFwsWLOBXv/oV8fHxlJSUsGTJEp5++mkAdu7cSXFx8SGJ3eE0NzeTnJxMd3d3Tz19ufjii7n33ntpbGxk+vTpA65fqaHq6rRasOyBoQcsrw9IJKy93BchKaWUUsqPaIJ1BM888wznn3/+AcsuuOCCfmcTzMnJ4U9/+hO5ubnU19fz7W9/m+DgYP7617/y1a9+lfz8fGw2G9dff/0R9/3WW2/1TDJx+umn85vf/IakpCROOukktm7d2jPJxe233053dzfTp09n2rRp3H777T11zJ8/nwsuuIDp06dzwQUXMHfuXCoqKjjppJOYPn068+bN49RTT+Xss88G4I477uCVV14B4Mc//jH5+fnk5eVx3HHHMWPGDL7zne/gdrvJz8/n4osv5oknnjig5epI/ud//ocFCxawePHiA5K6V155hTvuuKPn+YUXXsizzz7LRRddNOC6lfKG7k6rBcsedGCC1RaSSky33gtLKaWUUocn+1s9RoO5c+eag2eL27ZtG7m5uT6KyL898cQTB0yGcSzSvx91tLa9/wy5H1zPxrNeZfq8E3qWr3j8Jxxf8n84by3HEdx/t16llFJKHRtEZK0x5pCZ2LQFSymlenF1WS1YgcEHtmA5Yjz3wirXe2EppZRSqn+aYI1hV1999THdeqXUYDg72wEIDDmwlSrEcy+s+vLdIx6TUkoppfyHXyRYo6kbo/If+nejBsPdZSVYQQd1AxyXMhGA9ipNsJRSSinVv1GfYAUHB1NbW6sXy+qoGGOora0lODjY16EoP+Pu9iRYB7VgJaRk0m3suOqLfRGWUkoppfzEqL8PVlpaGqWlpVRXV/s6FOVngoODSUtL83UYyt94WrCCQw9MsIKDgiiTWBxNJb6ISimllFJ+YtgTLBE5A/gDYAf+bIw5qrsFBwQEkJWVNSyxKaXUwYyznW5jJzgw8JB1dQFJhLZX+CAqpZRSSvmLYe0iKCJ24E/AmcBU4FIRmTqc+1RKqSHp7qCTQBz2Qz8eW0OSiene54OglFJKKeUvhnsM1nyg0Biz2xjTBTwLLBvmfSql1OA5O+iUgD5XdUekEeuuw93dOcJBKaWUUspfDHeClQr0HrBQ6lmmlFKjks3ZTheHdg8EsI3LwCaGuoo9IxyVUkoppfyFz2cRFJHrRGSNiKzRiSyUUr4mrk66JKjPdaHx1njQurLCkQxJKaWUUn5kuBOsMiC91/M0z7IexphHjTFzjTFz4+PjhzkcpZQ6PLurg25b3wlWlOdeWK16LyyllFJK9WO4E6zVQLaIZIlIIHAJ8Mow71MppQbN7u7E2U8LVmLqBFxGcNbtHeGolFJKKeUvhnWadmOMU0RuAP6LNU37X4wxW4Zzn0opNRQOVwfOflqwwkJDqJAY7E2lIxyVUkoppfzFsN8HyxjzOvD6cO9HKaW8weHupCMwot/1dY5EQtvK+l3vb+rraln5n8eZMvdLZE2d4+twlFJKKb/n80kulFJqNAkwXbjtfbdgATQHpzCua+zcC+vzZ27nzN134fjn5bidTl+Ho5RSSvk9TbCUUqqXANOJyx7c73pnRBqx7lrczu4RjGp4dHV1k1f1HwDSTTmFn/7bxxEppZRS/k8TLKWU6iXIdOJ2hPa73hGTgUPc1JT7/0yCO3ZuJU4aWZd/O20miIZNb/o6JKWUUsrvaYKllFK9hJgOjCOk3/VhiRMAqC7x/3thlRVuBCBr2nx2BueTUrvSxxEppZRS/k8TLKWU8jBuN8F0YQL6b8GKTZ8CQNu+nSMV1rDp8LyGcelTaU6YR5qrlLamOh9H5T1dXf7fjVMppZT/0QRLKaU8OtrbsImBwP4TrIS0iXQZO65a/+8iGNCwm1YJg9BYIrJmA7B3y9hoxXrnP8/SeVc6nz70LV+HopRS6hijCZZSSnm0tzYBYDtMguUICGCfLYmgxj0jFdawMMYwrr2Y+pDxIELKlIUAtBSt9XFkQ9fR5SR7zS+IkHYWVT3L3s2f+DokrzDG8PqLT/Dp7y6mpmLs3Oza6XLzyfuvUbxtja9D8ap9dU18vuI13N2dvg5FKTXCNMFSSimPjrZmAGyBYYctVxuUTnRHyUiENGxqW7sYTzkdkVkAxCenU8047JWbfBzZ0K1b+R4Z7GNL/i20miAaPnrU1yF5xdpNmzhj440sanqT6qeu8XU4XvPaM3/iuA++RvKzp1G7e72vw/GKpo5udv/xHGa88zW2PXq1r8NRSo0wTbCUUsqjs70VAHtw+GHLdUSMJ8lVjnG7RyKsYVFcWUcKtdjiJgEgIpQGZRPbvN3HkQ1d29a3AJh8+rfYHDyHlOoVYIyPoxq66g8fB4HV8V8ht30ttbvW+TqkIWvr7GZywWM0i/Wlxr43f+PjiLxjxTuvcpzZAMC06tdpKd3s24CUUiNKEyyllPLobLdasBxB/XcRBDAxEwmhi4Yq/23Fqivdjk0MoclTepY1j5tKqrMEV2ebDyMbuuja9ZQ4MggIj6Ut4yTi3dXU7t3o67CGxBhDZs0H7AmdQeQZt+M2QsWqF3wd1pCtWbeaXNlL9bwfszzsdCZWvQ3d7b4Oa8jsO16hk0A2XfgRXcZOxfLHfR2SUmoEaYKllFIezvYWABxHaMEKScoGoGbv1mGPabi0V+wAIGZ8bs8ye+oMHOJmX6H/dtNyudxkd22jOnomAEnTTwGgfOOHPoxq6ErLy8kxRbSmHsfkCVlssWUTvvcdX4c1ZE1brNcwft65MOVsgumifMPbPo5qaDq6XWQ3raI4cg5Tp+azTqYRXvyer8NSSo0gTbCUUsqjq8PqIhgYEnHYcuM8U7W3VPjvVO1SuwuAwITsnmVxE2YB+PU4mNKiHURJKyZ5BgATcvJpNGE4S1b7OLKh2bf5A2xiCJ+8FBGhMm4RaZ0FuDqafR3akMRUr6LaloAjbgKTF5xBuwmkcfN/fR3WkKzbVsAEKcc24QTsNqEy4XiSu4pwN5T6OjSl1AgZUoIlIr8Rke0islFE/i0i0b3W3SYihSKyQ0ROH3KkSik1zJwdVgtWYMjhW7CS0rOtqdqr/fdmwyHNe6i3xUDQF8lkxqRptJtAusv9d7xIVaE1Lik6ayYAQQEB7A7MIabev7sIdpasw22E1GnWbI/BWYtw4KZ868c+jmzwXG5DWkcBVZHTQITxCTFss00ipNK/Z7Ks3GEl8ylTjwMgNOckAKq2fOCzmJRSI2uoLVhvA3nGmOnATuA2ABGZClwCTAPOAB4SEfsQ96WUUsPK3Wm1YAWHHj7BCg4KpMKWhKOxaASiGh6xHSXWFO29BAcFUmxPJ6TBf1vmOsqsWRBTJ8/uWdYUO4O07iK/bu0Jrt1CuT2FoNAoAFLylgDQsMN/E6yi0jLGS2VPa6OIUDtuBqkdBRg/Hodlyq0W4JD0mQBkTZtHuwmkqXBs3C5AKXVkQ0qwjDFvGWOcnqcrgTTP42XAs8aYTmPMHqAQmD+UfSml1HBzdVmTOwSHHr6LIEB9cDpR7cXDHdKwaOl0kmbKafdM0d5bXdgkEjv89ybKgbXb2ScJBIeP+2JZxnzsYijd4p8XuMYYktsLqA3P6VmWmZbKblJxlPvvvaPKtn8GQPSEOT3L7OMXEICT2oLPfBXWkEU3bqU6IAVCogGYkBDNFplIcKX/z/qolBoYb47BuhZ4w/M4Feg9vVapZ9khROQ6EVkjImuqq6u9GI5SSh2l/S1YYUdOsDoiMkhyluN2+d9U7SXlZcRJU88U7b11xU4h1tTT0Vjlg8iGLr6tkJrQiQcsS8k7HoCGgpW+CGnIKiorSaUaV2JezzKbTSgJyyOlZbPfTkHfXmwlHMk5C3qWxeVax6p2+wqfxDRU9a1dTHTuoil6Ws8ym03YF5FPcttOcOpNh5U6FhwxwRKRd0Rkcx8/y3qV+RngBJ4+2gCMMY8aY+YaY+bGx8cf7eZKKeU1psszyUXw4W80DGCPm0SIdFFZ5n+tPfXF1r2uQpNzDlkXmpYPQMVO//u2vam1lXR3OZ2xUw5Ynp6aTrmJQ/b55zisUk9LT2TW7AOWdybNIco00V7pn106Q2q2UGuLxR6Z2LNs8oQJ7DUJSKl/tmDtKCohw1aFLXXGActdKXMIwElHsf+dV0qpo3fEBMsYc4oxJq+Pn5cBRORq4GzgMmN6vkYrA9J7VZPmWaaUUqOWvbuZFkLAduQho+FpUwGoKvK/CSHa91lTtMdlTDtkXfwkaybBhr2fj2hM3rB3+wYCxEVwav4By202oTR4MjF+ehPl1iJrTE9a7oIDlkdNtHrel275dMRjGiq325DcvpOa8AOT/OAAO7uDcolt3OKjyIamxtO1MXbSgaMiYnIWA1C59aMRj0kpNfKGOovgGcBPgHONMb3vTPkKcImIBIlIFpAN+OfXUUqpY4ajq4kWjtx6BZA4cToA7aV+eCFYuwsXNsISD+0imJaWRb0Jh0r/e10NRRsASJw0+5B1bbHTSHGW4WxrHOGohs5RvZk6iSZ4XMoBy7OmzqXTBNC+1//GYRXtq2ECZbgSpx+yriUmn1hXNaZ5nw8iGxpn2QYAIrPmHLB86uTJlJsYukq0BUupY8FQx2A9CEQAb4vIBhF5BMAYswV4HtgKvAl81xjjGuK+lFJqWAV0N9FmG1iCNS4+jSbCkFr/654V2ryHKlsiOAIPWedw2CkJyCS8scAHkQ2Na98WurETmzH1kHWB6bOwiaF8p/8lIwmtBVSFTj50eXQEhbZMQmo2+SCqoSndvhq7mEO6PQIEjreSE3+c6CKyfiu19ngIiztgeWx4EIWObCLr/K/FWyl19IY6i+AkY0y6MWam5+f6XuvuMsZMNMbkGGPeOFw9Sik1GgR0N9NhP/IEFwBis1EeMJ7w5l3DHJX3xfQxRXtvTRHZpHTt8bvJE8Iad1LhSEccQYesS/JMpFBX4F83HK6qbyLLFNMVd2h3ToDK8FxS2naA278mW2kpslpyknIWHLIuNXcBbiPUF6wa6bCGpK3LSWZXAfVRhyb4AA3R00jsLoEO/2tFVUodHW/OIqiUUn4t2NVCl2NgCRZAU/gEkrr8a6r2rm4Xae4yOvqYon0/V3wuYbTTtM9/JvBwuw1pnbtpiDy0pQcgI3Mi1SYa9vnX2LKi7WsJFBdhGbP6XO9KmkkY7bR6xtX5i6CaTTRJBI6YjEPWZacnsYsUpGLDyAc2BNuLyphgq4CUvo+VLdVqrWvZ4983UlZKHZkmWEop5RHibqE7cOAJlit2MrE00lTrP1Oa7yvbQ5h0IrET+y0TPt6aAW1fof+MFyktLSZZanH3MaYHwG4TioOyGde4dYQjG5qmXVaLW1Luoj7XR02cB0DFVv+Z6MLtNqS2bqMyPBdEDlkf5LBTHJxDXNNWv2pFrdhutbjFZR/aKgcQP9laXr3Df46VUmpwNMFSSimPcNOKOzBywOVDknMBKN/lP60i1buspCl8fN+JCEBytvUNfGux/0xrXrnDuriNzJrbb5mWcVNJ7S7G3dnWb5nRJqByPU2EE5aU3ef6rNw5dPjZRBfFVbVMooSuhBn9lmmNnU60uw7TVD6CkQ1Nd4nVMhV90AyC+02ZkEWxOx5Xmf98caGUGhxNsJRSCnC7XISbNkxQ1IC3icuykpSWEv8ZuN5Rak2IkDJ5Tr9lkhMSKDdx2Gu2jVRYQ9a617poTcntu/UAwJE2C4e4KS/wjy5axhgSm7dSETalz5YegPioMHbaJvjVRBd7t6zEIW4iJ/adiAAEZ1h/nzU7/WccVmT9ZmociYdMcLFfVGgAuwKyia73vxk6lVJHRxMspZQCmpsasImBkIEnWEnjs2k3gbir/ef+SgG126iUWMKi+7+xu4hQHjSBqGb/mUkwuGYTFbZkgiNi+i2T4JlQwV9mp9uzr4aJpgRnUt9jevaricglpX0nuP1jst7m3Va3x5Spi/stkzplPk5jo77QPxKsxvZusroKaIjuezKSnnLj8ohzVkBb3QhFppTyBU2wlFIKaKm3xlE5QscNeBuHw0GpPY2QRv+ZSTC2pYDK4P7HX+3XEpVNirME4+wagaiGxulyk9q+k7rI3MOWy5yQQ70Jx13uH106d29eRYC4GNdPl7P9nEkzCaWD1nL/SPRDqz+n3haDPSql3zLZqQkUkoZ934aRC2wItu/eS5atEnvq4ZNhe5o10UXTbv+azVIpdXQ0wVJKKaC51hrrERiddFTbNYRlEddRNAwReV9XZwfprhLaxk05Yllb4lQCcFFXPPq7MxXuLSZdqpCU/sf0AAQ47OwNnERUg39MdNG+ayUASbn9t/QARHm62lVsG/2TJ7R1OZnUuYWaqPx+uz0CBDpslATnkNDsHxNd1G55D4C4aUsPWy4hZ6FVfufK4Q5JKeVDmmAppRTQVlcBQGhM/9+q96U7JodkU01bc/1whOVVRTs+J1BcBKT0P8HFfpGZMwGoKtwwvEF5QeXGdwGInbr0iGWboqeS1r0H4+wc5qiGLq56JfscqdiiUw9bbsKUWbSZIDqKR//Ysu1bNzNeqnBnnXDEsu3x04lwN+Gu3zsCkQ2NvXgFHQQRMWHhYcvlZqWxy52M0YkulBrTNMFSSimgu9FKsCLjDn8xe7Cg1DwAygo2eDskr6vcaY09Ssvtf6a9/TInz8BpbLSXjf6ZBO17P6KNYBKm9D2V+QFlU2cRiJOKUZ441je1kufcTE384S/YAeKjQimwZRFSM/qPVdXG/wKQOvvMI5YNybD+TqtH+UQXnU4XWc1rKY2YAY7Aw5aNDA5gT2A20Q2jv2VYKTV4mmAppRRgWqwxWOPij64FK2GiNeaioWj0j+uR0s9oIZSEzPwjlo2OjKDElkpAzege12OMIbVhNbtCpyOOoCOWj8u2utNV7xzdY2B2rv+ACGkncPLJAypfHTGVlPaCUT/RRUjpCupsMYSnTj1i2bQp8+gydpp2je5JSTZuL2CylOLOXDKg8k3j8olxVUNz5TBHppTyFU2wlFIKkNYq6oggIPDIF+m9pWTm0GaCcFeO/nE9yY0b2Buah9gdAypfHTqR+LbCYY5qaIqKdpFlSulOH9jFbebkabSYEJxl64c5sqFp3PI2biNkzD1jQOXdyTMJoZPWstH7d1jT1MbUzg1UxS047Pir/SalxLKT8ThG+UQXJav/A0D67IEdq4B0a6KLRp3oQqkxSxMspZQCAtqrabL1P8V3f+x2OyWO8YQ37ByGqLyntKSYiaaY9uTDz0jXW1d8HkmmitaG6mGMbGhKPnsFgNTZpw+ofFBAAHsCJhJZP3oTEZfbML7qffaGTCEoou97Kh0sauI8YHRPdLHpkzeIlyZCpp01oPIBdhtlIVNIaNk2aie6cLsNCcVvUGtP6OnSeCSJOfNxGaGuQCe6UGqs8lqCJSI/EhEjInGe5yIiD4hIoYhsFJHZ3tqXUkp5W3hnJS1BCYPatiE8m6TOPV6OyLsKP30ZgLQ5A7u4BQgdb93stXTr6L0QjCp8mXJbMomTB544NkTlktZViHE5hzGywdvy+WqmsIe2yecNeJuJU2bSYoLpLF4zfIENkWvjC7QRzPhFXxnwNp3x0wkzrbhrdw9jZIO3edde5rvXU5v5ZbAN7JIqNyOZQpMK5aO7FVUpNXheSbBEJB04DSjutfhMINvzcx3wsDf2pZRS3maMIdFZQXt42qC2d8VPIZYGmmoqvByZ9wTt/i8NEkXSlCNPmrBfylTrxrzNe0bnRXt5aRF5XZ9TnvblAXU5209SZhJCF1VFm4cxusGr/vRpXEbIPPHyAW8TFxlKgW0CoTWbhjGywSutaWBO64cUxy9FAsMGvF1IptUqVLVjdCb5e1Y8T6C4SDnuawPeJiI4gD2Bk4lp3DJqW+aUUkPjrRas+4GfAL0/KZYBTxnLSiBaRJK9tD+llPKahvpaoqQVE5UxqO1D06xJI8oLRuc30nW11cxqX0lR4mkD/pYdIDExhXLicVSNztnpdrz7FHYxpC654qi2i51kdafbt330zU7X3NZOTuVr7A6fTVjs0SX81ZFTSekohFHYMrf5nacZJy3ELrzsqLYbP2UunSaA5t2jb6KL1o5uJu59lsqAdMInDLwFFaAlNo8oVz00lQ9TdEopXxpygiUiy4AyY8zBU2ilAiW9npd6lh28/XUiskZE1lRXj95+/kqpsaumxBo/FRCXNajtE7OtHtBNxaMzESn84BmCpZuI+Ud3cSsilIVMJr559M0k2N3dzcQ9T7M7MIfk7FlHtW3WlJm0m0C6S0dfQrzujSdIk2ocC6876m1N0kyC6KKlbHS1zHV0OcnY8TjljjTiZw28iyrAxKRotpNBQOXom6Xzo/deJY9ddMz91lG1oAIEjrda5hp2jb4kXyk1dANKsETkHRHZ3MfPMuCnwB2DDcAY86gxZq4xZm58fPxgq1FKqUFrKi8AIDJ54qC2T0oeT4MJR6pG38QJxhhCtj5PmSQxYeaJR719e2weqe5yulobvB/cEKx+4ynGs4+2ed896m2Dg4IocmQRUTf6EpGkzf9HqT2NzMVfPertoydZrSj7RtlEFx+99SK5Zhftc64Hm/2otnXYbZSH5pLYuh3c7mGK8Oh1Od1Erv0TTRLJ+JOuPertkyfPo9vYaSjUBEupsWhACZYx5hRjTN7BP8BuIAv4XESKgDRgnYgkAWVAeq9q0jzLlFJqVOnYtw2AlInTB7W92GyUBWYS2VTgzbC8Yvva98h3bmJf9iXIUXQP3C8o3WodKt02ei4Eu7q6iV//AOW2FKadfHStcvtVR+UxvnMnxtXt5egG79NXHiPH7KF9/veQo0xEACZNmU6TCaGzeO0wRDc4Le2dpK/9NbW2WCac8o1B1dGVMIMQ00539eiZqfOd157jONcaqvO/eVRjyvabOj6BnSYNyjd4PzillM8NqYugMWaTMSbBGJNpjMnE6gY42xizD3gFuNIzm+BCoNEYM3pHgCuljlmBtTuokHhCwqMGXUdjxGRSuvdgRtG37MYY2t65lwbCmXL2jYOqY/+kGE27Rs9EFyv/eR/ZpoiGRbcM+J5eB3OnzCWETur2jI6uZ2WVVUzddA97AiaRfeo3B1VHbEQIhfaJhI2iiS4+fPY+ppg9NJ3wCyQgZFB1RO0fMzdKWuaqG5rJXn8XVfYkJpzz40HVERbkoCQ4h9gmnehCqbFoOO+D9TpWC1ch8BjwnWHcl1JKDVpM226qgycMqQ6TkEsE7dRVFHknKC9Y+8GrzOlYyZ5JVxEWOW5QdaSnZ1JpxsG+0ZGIFO3azoydf2R7yCymnnLVoOuJyVkMQOXWj7wV2qAZYyh48gbiaSD0vN8fdTe63uqippHcuQucXd4LcJA2blzHCUUPsCtsFlknXjnoeiZNnU2bCaJ5FNyY1xjD6r/8kGxKcJ7+60EnjQCdCdOJcDfjqivyXoBKqVHBqwmWpyWrxvPYGGO+a4yZaIzJN8aMnq8/lVLKo6uzg3RXKe3R2UOqJ2K81b1wX+E6b4Q1ZK2tLSR+cAtlkkTehT8bdD02m1AaPJmYpm1ejG5wGlvbaX76ahziIvaSh496YoHeJudMo8ZE4ir2/UX7u8/+gaVt/2XLxG+QOG3JkOqypc0liG5qfNziWF1bS+C/v45bHCRe9cSQjlVqTAQ7bVmEVvt+UpI3X/gzX256nh1pF5Iyf+D38+pLxATrNgj7tn3ijdCUUqPIcLZgKaXUqLd322oCxUlg+tDuhZ7imcmutWR0dM/a8Nh3SDflNH3pHgKCj36MSG9tsdNIdZbQ1dbspeiOnsvlZsPD15Dv3kblCXcTn5E7pPqCAx3sCsolpsG3LXMr3/4nJ2z/FQUhM8m77NdDri9hmjWRSdUW37XMtbW3U/LIhWS791B3+h8JT8gcUn0iQmXUdFLbd0J3h3eCHIT3336VkzbfRlFwLpOvfGDI9U2YNp92E0hzgSZYSo01mmAppY5ptTutyRuSpy0eUj2xcQlUEoOjxvctPZ/883csbniZNalXkHv8eUOuL2j8HOxifDbRhdvlZsX/fZ8TW95g88RvMOHka7xSb3PsTFKdpbha67xS39Fa9cHr5K/4LuUB40n/zr8Re8CQ65w8KZtSEwclvjlWrW3trP/DxczuXseOef9D5qKhtfLsZ9IWEoCTRh9Na/7Jh28zc8X1NATEk/ztlwc1scXBMhKi2CKTCKvUDj5KjTWaYCmljm3l62kgnMT0yUOqRkSoCMoiqqXQS4ENzto3/sqCzb9iS/AcZl1zv1fqTJu6CIDagpG/uHW53Kz40zc5sepvrE84j7zL7/Na3UFZVhetss0j39rz6RtPM/29q2h0xBJz3asER8R4pd5Ah409IXkkNI58y1xlbS3b7z+LxR0fsGXaj5h69ve8VnfCtBMAqPLBmLl3XnuO6e9eTpc9jIhvvEpQVKJX6rVa5maS0rETulq9UqdSanTQBEspdUyLa9pCaUjOoKYwP1hr1GTSuosxLqcXIjt6n73+JPkrf0RBYC4TbngJu2PoLSIAyekTqGIcjoqRHV/W1FTPut+eywl1L7Au5VJmXv/XIY3lOdj4vONxGaGxYORmp3O73Lz3118wb+UNlAdmEPmdd4lMSD/yhkehNX42ce4aumqLvVrv4ezc/jmND36JmV3r2Dr3f5n21UHfHrNPuRMnsMckISPYMtfV7eKNx+/kxM++TUNgEpHffY+wpEle3YcZvwA7bpr1hsNKjSmaYCmljllNzU1kuvbSHje4+18dTBKnEiTdVBVv90p9A2WM4aOn72Luqh9QFJhN2g3/ISQ80mv1iwjFIVNJbN7itTqPpKhgEzW/P5HZrStYk/MjZn/zYa8kwb2NT05gl4wnYN/IJI519XWs/e25nLz39+yIWkz6je8SHpvi9f2EZx8HQPnmD7xe98GMMSx/9SmSnjmDJFNN6ZlPeLXlar+QQDuFwZ6WuRGY1rykoppP7vsKZ5bcz+7oRSTeuJyQ2DSv7ydxqtUyV711+I+VUmrkaIKllDpmFW1eiUPchGbO80p9URkzAKgqHLnZztrbWvn491ewpOBeNocvIv3GdwiPivX+fuJnkuKuoK2h0ut192bcblb9+0/E/v1UYt217Dz1CeZeeodXW672ExEqwqeR0rIFhvn+ZRs/eZPWPyxidusK1k6+iak3vkJg2ODvu3Y4k/IW0maCaCn4eFjq36+hoY4P77+SpWu/R11gCl3feI+MhecN2/46EucQ6W6ks3J4bzi88v3/YB5ZzAmdH7Bz2o3k/OBVAsIGd5uDI5k2cTw73Wkj2jKnlBp+mmAppY5ZTYUrAUjLG9rU2PulZc/EbYSOss1eqe9Iindtp+S3J3J846usTb+K/B++SkhYxLDsK3SCdcPhkk3Dd9FeXVnBmt+ex4LPf0pZ0AS6v/6+VybpOBx36lwiaaG2eHha51paW1jx0LfJ++8lOMRNybnPM+drd3q9Na63pJgIdtizCa9aO2z7WLX8P7T8fiFLGl9lY/rljL/5I+LScoZtfwDxU60ZEos/f39Y6m9oauL9P36L+csvJ9AONV95gclf/SUM47EKDXSwOySPhMaN4HYN236UUiNLEyyl1DErsHIdVRJLVOJ4r9QXFRVFmSQRUDu8Mwkat5tP//Ug455aSrKrlM+Pf4g5X38AsTuGbZ9ZM6zxSk2F3p9S2hjDR288i/vhRcxsWcFnE75H9k8+JG6IE48MRGL+yQCUbnjb63WvX/k+1fct5Piqf7AufhnRP1xN5pzTvL6fvtTFzSG9qwBXa71X662ua+Cd33+Tee9fjs0m7DnneaZ//U/YgkK9up++5M2cR70Jp6PwQ6/Wa4xhxQdvUfu7RZxU+ywbk84j5kerSZh+ilf305/OlPmEmVY6y0fmixml1PDTBEspdcxKbdlKefg0r9ZZGZJFbOsur9bZW11VGevvO4dFG39GWfBEOq5ZzoxTLhu2/e0XMy6GXfYJROzzblemysoKPr7vqyxZ9S267eFUXvQf5l/5v9gdw5cs9jZ5ynTKTRz23cu9VmdjUxPvP/ht8t/4CuG0UXDqE8y94UlCIqK9to8jCcw5BTuGknVveKU+YwwfvvUi7Q8s4JSG59mScgHxP17NxLkjkzAChAcHsi1kNik1n3ptHFZlbS1v//4bLHrvIqKlnb1nPsXMbz8xbN03+xKfbyVy5WtfG7F9KqWGlyZYSqljUmVFKalU0p00tBsMH6w9ejLJrnKcnW1erRdg0zv/gIcWkte6ks+yf8jkH39AfMYUr++nP5Wx85nQsRWXF16bMYaPX/kL9ocXsLDlXT7P+jopt6wmbdpxXoh04BwOO7si5pLRtMYrXbTWLn+Zpt/N46Saf7A14WwiblpN9uLzvRDp0cmZfRJNJoS2bUNvmSvfV8GHv72EEz65lgC7UHbus+R/63ECQrw3kcpAtaYvJdbU0VS0YUj1GGN4/7Vn6f7jAk5rfIEdqecTdfNaMhYs806gR2HGtGlsd6dj2/XOiO9bKTU8NMFSSh2T9t/7KCp7kVfrDUrNt8baFHjvPkQtjXWs+cOl5K/4NnX2OMoufpP5l/0C2wi18uwXMGkpgeIc8hiYirJiVt97DovX3USzI46qS95gxlW/wxYY4qVIj073+BOIoJXqnYNvnautqeTT+y9lzvIrsduE3V9+hunf/RvBkd6fcGQgEsZFsClgBnGVKwbd2uN2ufngpccIfHgBi5vfYlPm1ST8ZC2ps8/0crQDlzj7LADK1v5n0HUUlxTz0b0XcNLqb2GzB1Jx/r+Yet1fcQzTRBZHEhbkYEfEQlKbNkBHk09iUEp515ATLBH5nohsF5EtInJvr+W3iUihiOwQkdOHuh+llPKmjqLPcBob473cYpKYPReA6oLVXqlvy8f/oeX385lZ9yYfp1xD2o8/IWuqd2Y9PFoT5pxCt7FTv2Vw37Qbt5tP//0nQh5dxMy2T1mX/T0ybllJSu5CL0d6dCYssC7aSz575ai3NW43n776F9wPzmdew5usSbuKuB+vZcL8L3s7zKPWmXEiCa4qaos2HvW2e/fsZN29Z3DihptpDoyn5tI3yb/6D9iDwoYh0oGbOnkyO814gvYc/d+g0+nivef/SPifj2NR23I2T7qOpFvWkjzjS8MQ6dGR7NNw4KJm01tHve3ekhLe+tu9tLR5v9VcKTU4Q/r6U0ROApYBM4wxnSKS4Fk+FbgEmAakAO+IyGRjjE6Ro5QaFcJrPqfYkcGEMO92c0qflE+zCYGyod1bqb21hc+fuImF1c9TLCkUnPMii+ee7KUoBychLo5tAZOJKPvoqLct31tA1TPfZlHHanYETSXyokeYPWnGMER59DIzMtnsmEps8RvA3QPernRvIRXPfI9FHZ+w2zGRjvOfYe4Id3E8nMzFF+EuvJeSj54mNmtg73VXt5NPn7uXOQUPkCAuNuTezIwLb0Xs3rlp9VA57DYKY5dyRt3f6KwrIShmYDdpLtixhaYXvsfJ3WvZFZyL+6KHyJvo3e7BQzFr8enUrw+n/rPniJt34YC26Xa6WP7Cn5i97V5Ok2Y+fTOURV+5YZgjVUoNxFBbsL4N3G2M6QQwxlR5li8DnjXGdBpj9gCFwPwh7ksppbzC7XKR2bGd2uh8r9dts9vZGzSZmIZNg65j25rlVN23gIXVz7Mq/kLib/6MXB8nV/vVjz+VbGcBFXt3DKi80+lkxTP3EPmXJUxu38ia3FuYfMtHJI+S5Gq/usyzyXAWUTWAboLdTicf/OMeov5yPPntq1mXcxOZt64ifRQlVwATJkxig2M6KUX/BpfziOU3rV9Jwd2LObHwHopDp9J67UfMvPj2UZNc7Rd/3BXYMOx557Ejlm1pa+etP99O6j9OYkr3FjbP+BkTfrKCuFGUXAGkx0exMuxkMqrfx91Se8Tyn3++js/v/hKnbr+dppA06kw4jj3vjUCkSqmBGGoH/snAEhG5C+gAbjbGrAZSgZW9ypV6lh1CRK4DrgMYP947UyWPZm6nk4baCppqymmtq6CjoQJXUxXu1hrcHS04nC0EOFsJdLUS5G7D5u7GZlyIcWMzTmwYbGJw4sApAbjki99dthC6HeG4AiNwB0UhwZHYQ6Kwh0YTEBZDUFQc4VHxRMYmEBEZM6xTOis1mpUUbiJDWiF17rDU3xQ3iyllT9HaVE9Y5MDHdXR2trP6qZ+xsPSv1Mo4tpzyFAuOH/lB94eTfvzXYPcDlC3/K8lXHb61p2DzGjpeupHjnZvYGjKL2EsfYe4ITspxNCZ+6RraCv5A5X9/T8LkZ/ott2X1+9jfvIUTXTvYHjqL2EseYfYofU0AddOuYvbGH7L7w6eZcNJVfZepqWLrMz9lYc2LtEooW+bfw7QzvzUsN3f2hjmz5/HZ6zPJ3v4UpvMnSFD4IWWMMax67yXiV9zOaaaE7ZHHkXzZn8hLmuCDiAcmaNE3CXz3FQr/cx+TLvl1n2Wq6+rY8I/bOaH6WZwSwPZZtzPlnJtY+/uLmdS0CrfLhc1uH+HIlVIHO+IVtoi8AyT1sepnnu1jgIXAPOB5ETmqTy9jzKPAowBz5871zryrPmSMoaaylNqiTbTs24Wztgh7UzHhbWXEdFcQZ+qJEUPMQdt1GzutEkK7hNIhobTbQmmxR+J2BILNjtjsYHPgxoYbELcTm7sbu7sbm7F+R7oaCO4uJaS1lXDTRqD0/42l2whNEkarLYJ2ewSdAVE4g6JxB49DQsfhCIslMCKW0Kg4QqPiiIiOxxEeC8HRoImZ8nOV2z4mA0icunhY6o/MPRlH+RNsXvM2M0++aEDbFG74CNsr3+V4917WjTudydc8TGKUbyZIOJz0CbmsD5xNZtGzdHfcTkDwoWNympsa2PTM7cwrf5o2CWHj7P8l/+zvDuvNdYcqNTmF92OWcWLNPynb8gmpB7VGlRXvpuiFn7Oo8XXqJYqN8+5m+pevH7VJyH6LzrycnRsfIPqj/6FjzlkER8b1rGttbWHVv//IjIKHOY4mNiScx5TL7mFadKIPIz4ym01omH8T41ZexfZnbmXK1Q8esH7j2k9ofesuFnWuYJ8tkV0n/x9Tjr941B+rExcv4f0PFnPc9j/TXHwZEePzetY1trSy+qWHyCt8mFOpZUv8mUz42m+ZEmN9d+2a+CXGrX+bgk2fkD3TOzdOP5YZY+jsdtLV1Ym7uwuX0/rtdnbidnbhcrlwuQ1ut8HldgMgYhDAJiCAYACx/uzEZl3HiR2xORC7zXpsD8Bmt2Oz2bHZHYjNjt3uQOzWb5vNjs0GNhHsYtUlo/zvWFnEDOFeEiLyJnCPMeZ9z/NdWMnWNwCMMb/2LP8vcKcx5tPD1Td37lyzZs2aQccz0tpam9i7eSVNe9djqrYR0VhIcncRMTT3lHEboUpiqQtMpi00FWd4MhKeiCMykaDoZCJik4mMTyMqKgab3bsXH10dbTQ31tDaWEdbUy2dTbV0NdXQ3VqHaauD9nrsnY0EdjcS4mwkzN1EpGkhkjZs0v/fRQthtNgiaLNH0OGIpDMgiq6ACIwtEGMPBHsg2IPAEQD2IGyOQMQR5PkQsWF97Hg+IMT6xxhAvlgunlY7MS6M2wXGZXVxMW7r+f5l+38bF7i/KC/GBcYNbqsePHVZv63nmF7rcCNuF2A8+7Z+g9sTh6eM8aS4xo2t1zL44v3qfUod7uySw67tq/yRmT5KCWCO8gO5r3oOt7y/6Pp7hf3Hc7T77af+w5Q3CDHOKsJMGyG3lw3LTHwdbS3IPZlsSFjGgu8+fviy7W1s+PttzC19ijqJZt8Jv2b6yZd4PSZvWvfhq8x+73LWpl/DnK//vmd5V2cnq196kAnbHiKZGtaM+zKTL/sdkXHJvgv2KOyrrICHF2MXqD3tQZInzaBk5+c0fvY08xreRDBsTLuUqZf8LyERvplxbjBWfvQWs965lIrADFoW/Rgndlp2riBn3yvEU09hcB5B5/xm1HVxPBy32/DOb6/gtNZX2Zh0AbYpZ1BfsZfQPW8yp2sNbQSzc9K15F34cxx9fAkwWm3avp2kZ07DZrNRMuNGTMg4GnetJqfydZKllj2BOQSefQ+p0086YLuGqjKiH5rKRylfZ8l1v/NR9L5l3G4aGupprq+kvamWzqYanK11uFprMW31mM5m6GqFrlbszjYCXG0EutsJdLcT7G4n2HQQSBcO4yQAJw5x+/olAeA0NlzYcGHHhQ3rysOGQXBZ/ZowCG7Zv9wqY7DhFmudwYYRW892RvZvY4dez63fNiuRO2JkA7uGEcyAJzL94rrI+i3mi//NCwJziD//Ho6bFNfntr4iImuNMYd0hxlqgnU9kGKMuUNEJgPvAuOBqcA/sMZdpXiWZx9pkovRnGAZt5uSwo1UbfkQd8lqYhs3k+Es6jkBmwmhPCCTpohJmPgpBCXnEpOWQ0L6RIKCfDP18GB0u9zUt7TTUF9DS301bY01dDTV0t1cg3Q0YO9swNHVQGBXI8HOJkJcTYS7mwg3rThwEmi6CcR52ARtuLiMeD589n8Y2TwtfraeDyE3toM+hPZ/yHgeS6/lIrixY0Qwnt9ubCC2L5aL9fzADyTpeSyeBLJv5giJQH9PDqxhv/1v+cFF+0rkTD/LrXr6TYv6Wd63/hPIfvbb74vsr3x/+o+z9z5aU49n4RW/6rfsUK2958uMb9/KuJ8V4AjoewzL5lXvEP7fG8l0l/BZ9JfJufKPRMWMrv88+vPJ7y7luKbXWR13Pu7Uubj2bWVC5X9JoobCgBw4/S4mzT3V12Eeta3rPyb25ctJpK5nWScBbIo/m/Fn30rCKO4OeDgfvfY0Uz+7lVixpgF3GhvbQ+cQeMKNTF541qhv3elLc2sbnz36XU5seKnn/+IqWzylGV9h6vk/OaC1zp+s+exjot74NtlmL2Adq4Kw2YSe+H0y5p/b77HacvdJxHYUE//zHSN2o+6R0NbSQH1lCc3VpbTXleNsrMA078PRVkVwRxXh3bWEuxqINC2HTYo6TQBtEkyHBNNpC7GGVdhC6LKH4rSH4nKE4LYHW18K2wMQRxDYAzxfGgdg7NZy7IGIzYZNbNhs0vP/vDGeLw8N7P/a1RjP/zvGgHEe9EWw2/PlsPPAL43d7gO+OMa4rC+AjRvcTmt7Y3p9WXzgl8jWF8X7v0Q2X6zH3esL5y++OMYYK2UzbvZ/qWz2/295pP/2vfi58cUX73Lgc08suwJziDv/bo6bOLrO6+FKsAKBvwAzgS6sMVjvedb9DLgWcAI3GmOOeDv50ZZg1ewrZvfKV5E9y8loXEOC5z/cJhNGUcgU2uJmEJI5n8Sc+SSmZo3q7i8jzeXsprurg66uDro7O3B2deDsduJ0u7+4yDWGnm8pDkg1DEaspnTEjs1uR+x2bDaH1YTuaU63mtEdnmZ0GzabDbtNsIlYTfR+eMGgxo7P//skMz79PmsX/IE5Z159wLrqimKKnruFeQ2vUymxVC/9DXknXuCbQAepo6OddY9+h3m1LxMgLpzGxtaQOdgWfJNpJ37Vrz8PW5ob2fzeM7hbawmNG0/2wrMIizy4Y7f/aW5uomjzJwQ6HKRMmk7EuARfh+QVFeUl1JfsICYxhaSMXL9MFg/W7XRRtH0dpruT8ZOmETyAFtP1bz7BrJU/YPWih5h3+mUjEKV3tDXXU1m8k7qyXXRU74GGYoJaS4nqrCDeVUk0LYds02kc1Ek0jfZYWgPj6AqOxYTE4AiLwR4WQ0BELAHhsQRHxBEaHU94dByhISF6XaC8blgSLG8bbQnWymfuYuGOe6knkj0Rc3BmnEBC/pcYPynf6935lFJji8vppOyu6ThwEnz9e8QkplFTvpfC137HtNLnCKKLtSmXMvNrdxESEe3rcAetubGO5ppyYlKyCA7xn65YSo01ru4u6v/fZMrsaUz/6Yej6ksOZ3cX5UXbqd6zhY5927HV7SKqdQ+J3aXE0nBA2Q4CqLIl0hiUTEdYKs6INOxRKQSPSyEsNpWohHTGxSZi1+swNQpogjUItZUlNFSVkTV1ns7Ko5Q6aptXvUP265fQhYM6eyzprjIAPo9YQsKy/yE1e6ZvA1RKjSnrXriX2Zvv4tM5v2PROV8f8f07nS5K9xZSWbCG7vJNhNRtI65tF8mucgLli1EiDUSwLyCdprBMnNETCIrPIjJ5Ionpk4mMSxkTrZDq2KAJllJK+cCeLauoeecPBHTW0xabx/gTryRtkvfvv6WUUi6nk+K75xHmrMd57bukjJ84bPtqbGqiePtamorWYyq3ENW4g/Tu3URLa0+ZckmkMmQiHVGTCEiYTFR6LskTpxM+RrqnKqUJllJKKaXUGFe+/TOinj2HCkki5NqXSU3PHFJ9bpebspJdVO5cS3vp5wTVbiWhrYB0dzl2z+xKbQRRFjCBpugcJCmP6KxZpEyeQ3C4/8y2qdRgaIKllFJKKXUM2LXyVVLevJY2E8LWvB8y5+xvERpy+BmNjTHU1dVStftzGvd+jtm3hYjGHaR37SaqV6tUhSRQHZZNZ2wuIekzSMqeS2x6jnWfJ6WOMZpgKaWUUkodIyoK1tP+/DeY0F1IkwmlIHg67ZEZmNB43NixuzuwddQT0F5DREcZCd3lxMgX9/FsNcGUBmbRFDkZSZxGdNYs0qbMG9CMhkodKzTBUkoppZQ6lhhDwSf/pnXdC8Q0bCLBVUEw3T2rWwihWSKpDUyhPXw8jMskOCmH2IlzSM7I1lYppY6gvwRr7NyJTimllFJKfUGE7MVfgcVfsZ673Rhnu3Xj2oAQwu0BhAPJPg1SqbFHEyyllFJKqWOBzYYE6v3qlBpuepc2pZRSSimllPISTbCUUkoppZRSyks0wVJKKaWUUkopLxlVswiKSDWw19dxHCQOqPF1EGrE6PE+duixPnbosT626PE+duixPraMxuOdYYyJP3jhqEqwRiMRWdPX9ItqbNLjfezQY33s0GN9bNHjfezQY31s8afjrV0ElVJKKaWUUspLNMFSSimllFJKKS/RBOvIHvV1AGpE6fE+duixPnbosT626PE+duixPrb4zfHWMVhKKaWUUkop5SXagqWUUkoppZRSXqIJllJKKaWUUkp5iSZYhyEiZ4jIDhEpFJFbfR2P8h4RSReR90Vkq4hsEZEfeJbHiMjbIlLg+T3O17Eq7xARu4isF5H/eJ5nicgqz/n9nIgE+jpG5R0iEi0iL4jIdhHZJiKL9Nwem0TkJs9n+GYReUZEgvXcHjtE5C8iUiUim3st6/NcFssDnuO+UURm+y5ydbT6Oda/8XyObxSRf4tIdK91t3mO9Q4ROd0nQR+GJlj9EBE78CfgTGAqcKmITPVtVMqLnMCPjDFTgYXAdz3H91bgXWNMNvCu57kaG34AbOv1/B7gfmPMJKAe+LpPolLD4Q/Am8aYKcAMrOOu5/YYIyKpwPeBucaYPMAOXIKe22PJE8AZBy3r71w+E8j2/FwHPDxCMSrveIJDj/XbQJ4xZjqwE7gNwHO9dgkwzbPNQ57r9lFDE6z+zQcKjTG7jTFdwLPAMh/HpLzEGFNhjFnnedyMdQGWinWMn/QUexI4zycBKq8SkTTgLODPnucCnAy84Cmix3qMEJEo4ATgcQBjTJcxpgE9t8cqBxAiIg4gFKhAz+0xwxjzIVB30OL+zuVlwFPGshKIFpHkEQlUDVlfx9oY85Yxxul5uhJI8zxeBjxrjOk0xuwBCrGu20cNTbD6lwqU9Hpe6lmmxhgRyQRmAauARGNMhWfVPiDRV3Epr/o98BPA7XkeCzT0+uDW83vsyAKqgb96uoT+WUTC0HN7zDHGlAH3AcVYiVUjsBY9t8e6/s5lvW4b264F3vA8HvXHWhMsdUwTkXDgReBGY0xT73XGuoeB3sfAz4nI2UCVMWatr2NRI8IBzAYeNsbMAlo5qDugnttjg2fszTKspDoFCOPQLkZqDNNz+dggIj/DGtrxtK9jGShNsPpXBqT3ep7mWabGCBEJwEqunjbG/MuzuHJ/lwLP7ypfxae8ZjFwrogUYXX1PRlrjE60p1sR6Pk9lpQCpcaYVZ7nL2AlXHpujz2nAHuMMdXGmG7gX1jnu57bY1t/57Jet41BInI1cDZwmfni5r2j/lhrgtW/1UC2ZzaiQKzBdK/4OCblJZ4xOI8D24wxv+u16hXgKs/jq4CXRzo25V3GmNuMMWnGmEys8/g9Y8xlwPvAhZ5ieqzHCGPMPqBERHI8i74EbEXP7bGoGFgoIqGez/T9x1rP7bGtv3P5FeBKz2yCC4HGXl0JlR8SkTOwuvefa4xp67XqFeASEQkSkSysiU0+80WM/ZEvkkF1MBH5MtbYDTvwF2PMXb6NSHmLiBwPfARs4otxOT/FGof1PDAe2AtcZIw5eICt8lMishS42RhztohMwGrRigHWA5cbYzp9GJ7yEhGZiTWhSSCwG7gG6wtFPbfHGBH5JXAxVveh9cA3sMZi6Lk9BojIM8BSIA6oBH4BvEQf57InyX4Qq5toG3CNMWaND8JWg9DPsb4NCAJqPcVWGmOu95T/Gda4LCfWMI83Dq7TlzTBUkoppZRSSikv0S6CSimllFJKKeUlmmAppZRSSimllJdogqWUUkoppZRSXqIJllJKKaWUUkp5iSZYSimllFJKKeUlmmAppZRSSimllJdogqWUUkoppZRSXvL/ARPXECgiUL/HAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
12False40.05080.0136bAP.soma.v0.0008581.51e-06
13False40.05080.0136Step1.soma.v0.007993.79e-06
14False40.05080.0136Step3.soma.v0.005777.01e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "12 False 4 0.0508 0.0136 bAP.soma.v \n", + "13 False 4 0.0508 0.0136 Step1.soma.v \n", + "14 False 4 0.0508 0.0136 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "12 0.000858 1.51e-06 \n", + "13 0.00799 3.79e-06 \n", + "14 0.00577 7.01e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADZBElEQVR4nOzdd3hcxfXw8e/Zot6LJduSLbn3hhvYpocSeiiG0AnhBymU0BKSEIc3pAAJoQVDgFBjeu/VgAlgZOPei2zJlmT1Lm2b94+7kteymq2VVrLO53nW2p07d+bsXu9qj2buXDHGoJRSSimllFKq62yhDkAppZRSSimlDhWaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSvYyIZImIERFHqGNR/YOIrBWRo0Mdh1JKHQo0wVJKKdXnichCEanx31wi4g54/F6o4+vtjDHjjTGLu6NtEUkSkWIRWdId7SulVG8jeqFhpZQKLhFxGGM8Xdg/C9gOOLvSTn8lIguAEcaYi1rZ1qVj05P6UqztEZF/A6MBmzFmbqjjUUqp7qYjWEopFQQikisit4rIKqBWRBwiMltE/iciFSKyMnAKlogsFpG/iMhSEakSkTdEJKmNti8XkfUiUi0i20Tk/1psP0NEVvjb2SoiJ/nL40XkcREpEJFdIvInEbF38DyGi8inIlIqIiUi8pyIJARsKxORaf7Hg/wjE0f7H5/un2pW4X9+Y1u8PjeJyCoRqRSRF0Qk4sBf6QPXxrExIjIioM6TIvKngMen+l/TCv8xnNTJvo4WkXwRuc3/+uWKyIUB208Rke/9xyrPnww2bWuaGvoTEdkJfOovf0lECv2v2xciMr5F3P8Skff8o3VfiUi6iPxTRMpFZIOITO3ka3R8Z57jgRCRI4AJwH+C3bZSSvVWmmAppVTwXACcAiQAacA7wJ+AJOAm4BURSQ2ofwlwBTAQ8AD3t9HuHuBUIA64HLg3IMmZCTwN3Ozv90gg17/fk/52RwBTgROAKzt4DgL8BRgEjAUygQUAxpitwK3AsyIShfWl+SljzGIRGQUsAq4HUoF3gbdEJCyg7fOAk4BsYBJwWasBiMz1JzZt3Q5mFKT52HQ0KuRPSJ4A/g9IBh4B3hSR8E72lQ6kAIOBS4FHRWS0f1st1nFP8MdzjYic2WL/o7Be+xP9j98DRgIDgOXAcy3qnwf8zt9nI/C1v14K8DLwj07G3SoR+XV7x6Od/ezAg8AvAJ0uo5TqNzTBUkqp4LnfGJNnjKkHLgLeNca8a4zxGWM+AnKAHwbUf8YYs8YYUwv8HjivtREmY8w7xpitxvI58CEwz7/5J8ATxpiP/P3sMsZsEJE0f1/XG2NqjTF7gHuB89t7AsaYLf62Go0xxVhfzo8K2P5vYAvwLVZi+Fv/pvnAO/593cA9QCRwRIvXZ7cxpgx4C5jSRgxLjDEJ7dwO5lyewGPTkauAR4wx3xpjvMaYp7ASl9kH0N/v/a/h51iJ9nkAxpjFxpjV/mO1CispParFvgv8x6zev88TxphqY0wjVrI7WUTiA+q/ZoxZZoxpAF4DGowxTxtjvMALWMn1QTPG/LW949HOrtcC3xpjlnWlf6WU6mt0hSqllAqevID7Q4FzReS0gDIn8Fkb9Xf4t6e0bFRETgb+AIzC+sNYFLDavzkTa7SopaH+9gpEpKnM1qLP/fgTs/uwErhY/z7lLar9G3gTuMr/pR+sEa8dTRWMMT4RycMaxWlSGHC/zr9PT2n3ebcwFLhURH4ZUBZG5+Mt9yfNTXY07Ssis4C/Yk2bCwPCgZfaitWfcN8JnIs1Mujzb0oBKv33iwL2rW/lcUwn4w4aERmElWAd1tN9K6VUqOkIllJKBU/gNKg8rBGqwL/2Rxtj/hpQJzPg/hDADZQENuiflvYK1ohQmn/E4F2sqXxN/QxvJZY8rFGXlID+44wx41upG+jP/ucx0RgThzUS15yhiUgM8E/gcWCB7D1vbDdWYtJUT/zPb1cH/e1HRObJ3hUAW7vN67iV/bScolaHlag2SQ+4nwfc2eLYRRljFnWyr0QRiQ54PATr9QH4L1ZymmmMiQcWEvD6thLrj4EzgOOBeCDLX95yn27jP5+szePRxm4zsUY414lIIVbSPtN/Llm75wEqpVRfpwmWUkp1j2eB00TkRBGxi0iEfwGEjIA6F4nIOP/5THcAL/undQVqGuUoBjz+0awTArY/DlwuIseJiE1EBovIGGNMAdZUwr+LSJx/23ARaTkdraVYoAaoFJHBWOd2BboPyDHGXIk19W2hv/xF4BR/HE7gRqwE738dvVAtGWO+NMbEtHP78kDbbMUK4Mf+Y3MS+07T+zdwtYjMEku0f3GKWGheWOLJDtr/o4iE+ZPBU9k7ShULlBljGvznz/24g3ZisV7HUqyE8M8H8ByDwhjz5/aORxu7vYeVDE7x324HvgemtPJ/XCmlDimaYCmlVDcwxuRhjTzchpUc5WElK4Gfu89gLURRCERgTalq2U61v/xFrKl6P8YaAWnavhT/whdYU8Y+Z+9I0iVYCdo6/74vY40qtOePwDR/W+8ArzZtEJEzsBapuMZf9CtgmohcaIzZiDXa9QDWKNxpwGnGGFcH/YXKdVgxVgAXAq83bTDG5AA/xVqgoRzrnLPLAvbNBL5qp+1C/367sRakuNoYs8G/7WfAHSJSjZV0vNhBnE9jTTHchXUcv+noifUG/vPPCptuWP+f3P77Sil1SNPrYCmlVAiIyGLgWWPMY6GORXWef1XElcAk/2IeLbcfjXVcM1puU0op1T/oIhdKKaVUJ/lH5MZ2WFEppVS/pVMElVKqnxGRhW0sWLCw471VXyQiQ9pZqGJIqONTSqlDSdCmCPpXBcoBdhljThWRbOB5rIs0LgMu7sVz8ZVSSimllFKqy4I5gnUdsD7g8d+Ae40xI7BO9v1JEPtSSimllFJKqV4nKCNY/mWHn8K6GOKvsFZmKgbSjTEeETkc68r0J7bXTkpKisnKyupyPEoppZRSSinVXZYtW1ZijEltbVuwFrn4J3AL1vU6wJoWWGGM8fgf5wODW9tRRK4CrgIYMmQIOTk5QQpJKaWUUkoppYJPRHa0ta3LUwRF5FRgjzFm2cHsb4x51Bgz3RgzPTW11SRQKaWUUkoppfqEYIxgzQFOF5EfYl0oMw64D0gQEYd/FCsD6yKJSimllFJKKXXI6vIIljHmN8aYDGNMFnA+8Kkx5kLgM+Acf7VLgTe62pdSSimllFJK9WbdeaHhW4HnReRPwPfA4wfTiNvtJj8/n4aGhqAGp/qmiIgIMjIycDqdoQ5FHcJqGly8+u87CR9/CvOPnRnqcJRSSinVhwQ1wTLGLAYW++9vA7r8zSQ/P5/Y2FiysrIQka42p/owYwylpaXk5+eTnZ0d6nDUIWzZ529ySek/qfj83zTM3UlEWHf+LUoppZRSh5JgXgerWzQ0NJCcnKzJlUJESE5O1tFM1e3s2z8HIEFqWb1mZYijUUoppVRf0usTLECTK9VM/y+onpBSvpwaogCo2vh5iKNRSimlVF/SJxIspZTqSTGuUtbHzKKSWMIL9Np8SimllOo8TbA6QUS48cYbmx/fc889LFiwIHQBBTj66KPbvTjzmWeeyezZs/cpW7BgAYMHD2bKlClMmDCBN998s7vDVKpPiTcVeCJTKIocRkLNllCHo5RSSqk+RBOsTggPD+fVV1+lpKQkqO0aY/D5fEFtM1BFRQXLli2jsrKSbdu27bPthhtuYMWKFbz00ktcccUV3RqHUn2Jq6GOWOoxUanUJ4xkiHcnDS5PqMNSSimlVB+hCVYnOBwOrrrqKu699979thUXF3P22WczY8YMZsyYwVdffQVYo0T33HNPc70JEyaQm5tLbm4uo0eP5pJLLmHChAnk5eVx8803M2HCBCZOnMgLL7wAwOLFizn66KM555xzGDNmDBdeeCHGmFbje+aZZ5pHo5YuXdpc/uqrr3Laaadx/vnn8/zzz7e679ixY3E4HPskj7/+9a8ZN24ckyZN4qabbgIgNzeXY489lkmTJnHcccexc+dOAC677DKuueYaZs+ezbBhw1i8eDFXXHEFY8eO5bLLLmtu85prrmH69OmMHz+eP/zhD/vFUVlZydChQ5sTvdraWjIzM3G73a3GrVR3qSgpAMAWmwoDxhEn9ezauTXEUSmllFKqr+hTaw//8a21rNtdFdQ2xw2K4w+nje+w3s9//nMmTZrELbfcsk/5ddddxw033MDcuXPZuXMnJ554IuvXr2+3rc2bN/PUU08xe/ZsXnnlFVasWMHKlSspKSlhxowZHHnkkQB8//33rF27lkGDBjFnzhy++uor5s6du197dXV1rFixgi+++IIrrriCNWvWALBo0SJuv/120tLSOPvss7ntttv22/fbb7/FZrORmpoKQGlpKa+99hobNmxARKioqADgl7/8JZdeeimXXnopTzzxBNdeey2vv/46AOXl5Xz99de8+eabnH766Xz11Vc89thjzJgxgxUrVjBlyhTuvPNOkpKS8Hq9HHfccaxatYpJkyY1xxEfH8+UKVP4/PPPOeaYY3j77bc58cQT9XpXqsdVlexmAOCMSyMuMQlWQtmONQwfMTrUoSmllFKqD9ARrE6Ki4vjkksu4f7779+n/OOPP+YXv/gFU6ZM4fTTT6eqqoqampp22xo6dGjzeVFLlizhggsuwG63k5aWxlFHHcV3330HwMyZM8nIyMBmszFlyhRyc3Nbbe+CCy4A4Mgjj6SqqoqKigqKiorYvHkzc+fOZdSoUTidzubEC+Dee+9lypQp3HTTTbzwwgvNq/PFx8cTERHBT37yE1599VWioqyV1L7++mt+/OMfA3DxxRezZMmS5rZOO+00RISJEyeSlpbGxIkTsdlsjB8/vjnmF198kWnTpjF16lTWrl3LunXr9nse8+fPbx7Be/7555k/f367r6NS3cFTvQcAR+wABgwdC0BtkZ6HpZRSSqnO6VMjWJ0ZaepO119/PdOmTePyyy9vLvP5fHzzzTdERETsU9fhcOxzXlPgtZuio6M71V94eHjzfbvdjsfT+nkgLZcuFxFefPFFysvLmy/IW1VVxaJFi7jzzjsB6xyspul/LeNeunQpn3zyCS+//DIPPvggn376aafitNls+8Rss9nweDxs376de+65h++++47ExEQuu+yyVq9ldfrpp3PbbbdRVlbGsmXLOPbYY9vtV6nuYGqKAbDFpBKdkokLB6Z0e4ijUkoppVRfoSNYByApKYnzzjuPxx9/vLnshBNO4IEHHmh+vGLFCgCysrJYvnw5AMuXL2f79ta/oM2bN48XXngBr9dLcXExX3zxBTNnzjyguJpGfZYsWUJ8fDzx8fEsWrSI999/v/m8r2XLlrV5HlagmpoaKisr+eEPf8i9997LypXWRVaPOOKI5v2fe+455s2b1+n4qqqqiI6OJj4+nqKiIt57771W68XExDBjxgyuu+46Tj31VOx2e6f7UCpYfA3VAIRHx4PNTrE9najanSGOSimllFJ9RZ8aweoNbrzxRh588MHmx/fff3/z+Vkej4cjjzyShQsXcvbZZ/P0008zfvx4Zs2axahRo1pt76yzzuLrr79m8uTJiAh33XUX6enpbNiwodMxRUREMHXqVNxuN0888QS5ubns2LFjn+XZs7OziY+P59tvv221jR/+8Ic89thjiAhnnHEGDQ0NGGP4xz/+AcADDzzA5Zdfzt13301qair/+c9/Oh3f5MmTmTp1KmPGjCEzM5M5c+Y0b7v99tuZPn06p59+OmBNEzz33HNZvHhxp9tXKph8rloAIqJiAKiMyCCpblcoQ1JKKaVUHyJtrUzX6QZEMoGngTTAAI8aY+4TkSTgBSALyAXOM8aUt9fW9OnTTctrOq1fv56xY8d2KUZ1aNH/E6o7rXr6ZiZs/TclNxYwIC6S7x+5ipG73yD897txOnRUVSmllFIgIsuMMdNb2xaMKYIe4EZjzDhgNvBzERkH/Br4xBgzEvjE/1gppXo1466jnjCiwv0rWCZmESMNFBbkhzYwpZRSSvUJXU6wjDEFxpjl/vvVwHpgMHAG8JS/2lPAmV3tSymlupu46qgjnEinNVoVkTYCgLL8TaEMSymllFJ9RFAXuRCRLGAq8C2QZowp8G8qxJpC2No+V4lIjojkFBcXBzMcpZQ6YDZPLfVEYLdZq3MmZljXv6or3BzKsJRSSinVRwQtwRKRGOAV4HpjzD5XAzbWiV6tnuxljHnUGDPdGDO96WK3SikVKjZ3HY2y97ILKRkjAfCW5YYoIqWUUkr1JUFJsETEiZVcPWeMedVfXCQiA/3bBwJ7gtGXUkp1J7u3fp8EyxEeRbEk4ajSpdqVUkop1bEuJ1hiXeX2cWC9MeYfAZveBC71378UeKOrfSmlVHdzeOtx2SL3KSt1DiRal2pXSimlVCcEYwRrDnAxcKyIrPDffgj8FfiBiGwGjvc/7rNef/11RKTd61Pl5uYyYcKEoPV52WWX8fLLL7e5/frrr2fw4MH4fL7msieffJLU1FSmTJnCuHHj+Pe//x20eJTqDxzeetz2iH3KaiMHk+wuaGMPpZRSSqm9grGK4BJjjBhjJhljpvhv7xpjSo0xxxljRhpjjjfGlAUj4FBZtGgRc+fOZdGiRa1u93g8Xe7D6/V2uq7P5+O1114jMzOTzz//fJ9t8+fPZ8WKFSxevJjbbruNoqKiLsemVH8R5mvAY993BMsbN4Q0U0JDQ0OIolJKKaVUXxHUVQQPVTU1NSxZsoTHH3+c559/vrl88eLFzJs3j9NPP51x48YBVqJ14YUXMnbsWM455xzq6uoA+OSTT5g6dSoTJ07kiiuuoLGxEYCsrCxuvfVWpk2bxksvvbRf3x9//DHTp09n1KhRvP322/v0PX78eK655po2k74BAwYwfPhwduzY0Vx2//33M27cOCZNmsT5558PQFlZGWeeeSaTJk1i9uzZrFq1CoAFCxZw6aWXMm/ePIYOHcqrr77KLbfcwsSJEznppJNwu90A3HHHHcyYMYMJEyZw1VVX0fLi1T6fj6ysLCoqKprLRo4cqYmf6pVaS7DsyVnYxVCUvzVEUSmllFKqr3CEOoAD8t6voXB1cNtMnwgntz978Y033uCkk05i1KhRJCcns2zZMg477DAAli9fzpo1a8jOziY3N5eNGzfy+OOPM2fOHK644gr+9a9/8Ytf/ILLLruMTz75hFGjRnHJJZfw8MMPc/311wOQnJzM8uXLW+07NzeXpUuXsnXrVo455hi2bNlCREQEixYt4oILLuCMM87gtttuw+1243Q699l327ZtbNu2jREjRjSX/fWvf2X79u2Eh4c3Jzx/+MMfmDp1Kq+//jqffvopl1xyCStWrABg69atfPbZZ6xbt47DDz+cV155hbvuuouzzjqLd955hzPPPJNf/OIX3H777QBcfPHFvP3225x22mnNfdpsNs444wxee+01Lr/8cr799luGDh1KWlqrK/crFVLhpgGfI2qfspi04QCU79rM0BHjQxGWUkoppfoIHcHqhEWLFjWP9px//vn7jBjNnDmT7Ozs5seZmZnMmTMHgIsuuoglS5awceNGsrOzGTVqFACXXnopX3zxRfM+8+fPb7Pv8847D5vNxsiRIxk2bBgbNmzA5XLx7rvvcuaZZxIXF8esWbP44IMPmvd54YUXmDJlChdccAGPPPIISUlJzdsmTZrEhRdeyLPPPovDYeXXS5Ys4eKLLwbg2GOPpbS0lKoqa6X9k08+GafTycSJE/F6vZx00kkATJw4kdzcXAA+++wzZs2axcSJE/n0009Zu3btfs9j/vz5vPDCCwA8//zz7T5npULGGCJowOfcN8FKyrSWaq/foyNYSimllGpf3xrB6mCkqTuUlZXx6aefsnr1akQEr9eLiHD33XcDEB0dvU99a1HFth+3pmUbHbX3wQcfUFFRwcSJEwGoq6sjMjKSU089FbCSmQcffLDV9t555x2++OIL3nrrLe68805Wr25/RDA8PBywRqGcTmdzPDabDY/HQ0NDAz/72c/IyckhMzOTBQsWtHqeyuGHH86WLVsoLi7m9ddf53e/+127/SoVEl4XDnzQIsFKTs/GbeyY8h1t7KiUUkopZdERrA68/PLLXHzxxezYsYPc3Fzy8vLIzs7myy+/bLX+zp07+frrrwH473//y9y5cxk9ejS5ubls2bIFgGeeeYajjjqqU/2/9NJL+Hw+tm7dyrZt2xg9ejSLFi3iscceIzc3l9zcXLZv385HH33UfL5XW3w+H3l5eRxzzDH87W9/o7KykpqaGubNm8dzzz0HWOd2paSkEBcX16n4mpKplJQUampq2lz1UEQ466yz+NWvfsXYsWNJTk7uVPtK9ShXLQCmRYJlczgotqXi1GthKaWUUqoDmmB1YNGiRZx11ln7lJ199tltLiwxevRoHnroIcaOHUt5eTnXXHMNERER/Oc//+Hcc89l4sSJ2Gw2rr766k71P2TIEGbOnMnJJ5/MwoUL8fl8vP/++5xyyinNdaKjo5k7dy5vvfVWq21ceeWV5OTk4PV6ueiii5g4cSJTp07l2muvJSEhgQULFrBs2TImTZrEr3/9a5566qlOvjqQkJDAT3/6UyZMmMCJJ57IjBkzmrctXLiQhQsXNj+eP38+zz77rE4PVL2Wq74GAAnbf1S5PGwgsQ27ezokpZRSSvUx0nLFt1CaPn26ycnJ2ads/fr1jB07NkQRqd5I/0+o7lKdt47Yxw/n0/F/5thzf77Ptpz7LyK77AuSF+gollJKKdXficgyY8z01rbpCJZSSvk11FuLu9jDY/bbZhIySaaSysqKHo5KKaWUUn2JJlhKKeXXNEXQEbn/FMGwFGu10D07N/VoTEoppZTqW/pEgtWbpjGq0NL/C6o7uer8CVYrI1ixA63ryVUWbOnRmJRSSinVt/T6BCsiIoLS0lL9Yq0wxlBaWkpERESoQ1GHKE9DNQDOiNj9tqVmWtexayje3qMxKaWUUqpv6fbrYInIScB9gB14zBhzQBezysjIID8/n+Li4m6JT/UtERERZGRkhDoMdYjyNFjLtDujWhnBSh5MPWFIhV4LSymllFJt69YES0TswEPAD4B84DsRedMYs66zbTidTrKzs7srRKWUauZttBKs8Mj9EyxEKLanEV6T38NRKaWUUqov6e4pgjOBLcaYbcYYF/A8cEY396mUUgfF50+wIqL2nyIIUBUxiIRGvRaWUkoppdrW3QnWYCAv4HG+v6yZiFwlIjkikqPTAJVSoWRcVoIVGd16gtUYk0matxCv19eTYSmllFKqDwn5IhfGmEeNMdONMdNTU1NDHY5Sqj9z1VJnwokKd7a6WRKziJV69hQX9nBgSimllOorujvB2gVkBjzO8JcppVTv466jjnAinfZWN0emDgOgJE+vhaWUUkqp1nV3gvUdMFJEskUkDDgfeLOb+1RKqYMi7loaCMdmk1a3Jwy2roVVXbC1J8NSSimlVB/SrasIGmM8IvIL4AOsZdqfMMas7c4+lVLqYNk89TRI29dZS/FfC8tdqtfCUkoppVTruv06WMaYd4F3u7sfpZTqKoennsZ2EixndCKVxOCozO25oJRSSinVp4R8kQullOot7N56XLa2EyyAPc5M4mr1YsNKKaWUap0mWEop5ef01uO2R7Zbpyp6KAPcerFhpZRSSrVOEyyllPIL89XjsbWfYHkSh5NGGVVV5T0UlVJKKaX6Ek2wlFLKL8zXgNfRfoIVkW4tdFGwbV1PhKSUUkqpPkYTLKWU8gs3DfgcUe3WScwcC0BF3vqeCEkppZRSfYwmWEop5RdBI8bZfoKVnj0eAPcevdiwUkoppfanCZZSSgF43TjxQAcJVlhkDEWSgrNiWw8FppRSSqm+RBMspZQCfI011p2w6A7rloZnEle3s5sjUkoppVRfpAmWUkoB9XXVANjC2x/BAqiLzWaQJx+f19fdYSmllFKqj9EESymlgPpaK8Gyh8d0WFeSRxAvtRQW7erusJRSSinVx2iCpZRSQIM/wXJEdDxFMHrQaAD2bNel2pVSSim1ry4lWCJyt4hsEJFVIvKaiCQEbPuNiGwRkY0icmKXI1VKqW7UWNeUYMV2WDc1ewIAtbvWdmtMSimllOp7ujqC9REwwRgzCdgE/AZARMYB5wPjgZOAf4mIvYt9KaVUt3HXVQDgjI7vsG7SoBHUmzAo3tDNUSmllFKqr+lSgmWM+dAY4/E//AbI8N8/A3jeGNNojNkObAFmdqUvpZTqTp7aCgCc0Ykd1hW7g3znUGIr9VpYSimllNpXMM/BugJ4z39/MJAXsC3fX6aUUr2Sr6ESgIiYjhMsgMrYEQxybcMY051hKaWUUqqP6TDBEpGPRWRNK7czAur8FvAAzx1oACJylYjkiEhOcXHxge6ulFJB4auvACAqrnMJlkkdRwqVFOtKgkoppZQK4OiogjHm+Pa2i8hlwKnAcWbvn3J3AZkB1TL8Za21/yjwKMD06dP1T8FKqZDw1VfRaJzEx3a8yAVAzJBJsAkKNi9nQHpGxzsopZRSql/o6iqCJwG3AKcbY+oCNr0JnC8i4SKSDYwElnalL6WU6k7SUEkVUUQ4O7cez6BR0wCo2bmqO8NSSimlVB/T4QhWBx4EwoGPRATgG2PM1caYtSLyIrAOa+rgz40x3i72pZRS3cbmqqJOOr4GVpP41EwqicFWvL4bo1JKKaVUX9OlBMsYM6KdbXcCd3alfaWU6ikOVzX19pjO7yDC7vBhJFRv7r6glFJKKdXnBHMVQaWU6rOcnmoaDyTBAmrjR5Hp2YHH4+m4slJKKaX6BU2wlFIKiPDW4HYeWIJlTx9PjDSQt31jN0WllFJKqb5GEyyllAJifVW4wpIOaJ+EbGuhi+ItOd0RklJKKaX6IE2wlFLK6yHeVOOJTD6g3TLGzsBt7Lh3aoKllFJKKYsmWEqpfq+xuhibGEzUgSVYzoho8pxDiSld002RKaWUUqqv0QRLKdXvVZYUAGCPHXDA+5bFTyCrcSNery/YYSmllFKqD9IESynV71WV7gYgMiH9gPeVwVOJl1rytq0NdlhKKaWU6oM0wVJK9Xu1ZUUAxCUPPOB9U0cdDkDR+m+CGpNSSiml+iZNsJRS/Z6r0kqwElIHHfC+g0cfRqNx4s1fFuywlFJKKdUHaYKllFJVu2k0DpJS0g54V7szjB1hw4kr14UulFJKKaUJllJK4agtoFiSsdvtB7V/ZcJ4sl2bcbvdQY5MKaWUUn2NJlhKqX4vuqGQMseBryDYxDl0JtHSwNZ1Ok1QKaWU6u+CkmCJyI0iYkQkxf9YROR+EdkiIqtEZFow+lFKqe4Q7yqiNuLAVxBsMnjyMQCUrlscpIiUUkop1Vd1OcESkUzgBGBnQPHJwEj/7Srg4a72o5RS3cF4PST7SvHGDj7oNlIzRlEsSTh3fRvEyJRSSinVFwVjBOte4BbABJSdATxtLN8ACSJy4OsfK6VUNyst3I5DfNgSMw++ERHyYyczpGYlxqcXHFZKKaX6sy4lWCJyBrDLGLOyxabBQF7A43x/WWttXCUiOSKSU1xc3JVwlFLqgJXnWqv/RaSP7VI73ozZpFNKfu7mYISllFJKqT6qwwRLRD4WkTWt3M4AbgNu70oAxphHjTHTjTHTU1NTu9KUUkodsIaC9QAkDJ3QpXZSxx8NwO5Vn3Y1JKWUUkr1YY6OKhhjjm+tXEQmAtnAShEByACWi8hMYBcQON8mw1+mlFK9iineSKmJZdCgjC61kzl6OtVEYnZ8DVwTnOCUUkop1ecc9BRBY8xqY8wAY0yWMSYLaxrgNGNMIfAmcIl/NcHZQKUxpiA4ISulVPBEVW4hzz6ECOfBXQOric3hIDdyAmkVy4MUmVJKKaX6ou66Dta7wDZgC/Bv4Gfd1I9SSh08YxjQuIOK6OygNOfKOJxsk8euvNygtKeUUkqpvidoCZZ/JKvEf98YY35ujBlujJlojMkJVj9KKRUsnuo9xJlqPEkjg9LegMknAZCb815Q2lNKKaVU39NdI1hKKdXrFW2zFkAN7+IKgk0yxs6ikhhs2xYHpT2llFJK9T2aYCml+q2KHdYS7cnZk4LSntgd5MZNJ7v6O7xevR6WUkop1R9pgqWU6re8ezZQbSIZkjUiaG2a7KNIp5St65YFrU2llFJK9R2aYCml+q3w8s3k2QYTE+EMWpuZs84CoGTZ60FrUymllFJ9hyZYSql+K6U+l9LI4Kwg2CR5UDabHaNIyv8oqO0qpZRSqm/QBEsp1S/56ipINmW4EoOzgmCg8iE/YIxnI7t2bAt620oppZTq3TTBUkr1S0XbVwEQNnBM0NvOPPxcAHK/fC7obSullFKqd9MESynVL5XlWisIJg2dGPS2B46cyibHKAZvex7j09UElVJKqf5EEyylVL/UWLCeRuNkyPDgXAOrpeoJl5Dly2f1//Siw0oppVR/ogmWUqpfCi/fRJ5tELFRkd3S/vgTLqOSGLxL7sMY0y19KKWUUqr30QRLKdUvJdXnUhqZ1W3tR0TFsmnET5ja8C1LP/hvt/WjlFJKqd6lywmWiPxSRDaIyFoRuSug/DciskVENorIiV3tRymlgsXbWEeat4jGblhBMNC0825jmz2bsd/czOYcXbZdKaWU6g8cXdlZRI4BzgAmG2MaRWSAv3wccD4wHhgEfCwio4wx3q4GrJRSXVWwbQ0ZYnCmje7WfuxhEURc/ALVT53GyLfPIfe9ITjFR8XMGxl/whXd2rdSSimlQqOrI1jXAH81xjQCGGP2+MvPAJ43xjQaY7YDW4CZXexLKaWCojhvIwDJmd2zwEWgQVmjib72a74c+jPKwgYT6y7DtfqNbu9XKaWUUqHR1QRrFDBPRL4Vkc9FZIa/fDCQF1Av31+2HxG5SkRyRCSnuLi4i+EopVTHGvdsBSAtK/jXwGpNQmIy8y7/C9NufZ8tkZNIrNveI/0qpZRSqud1OEVQRD4G0lvZ9Fv//knAbGAG8KKIDDuQAIwxjwKPAkyfPr1fLbXlcrmoKt9DY00FjXXVuOqr8NRX466vxtdQg6+xBtNYg3HXYdyN+Dwu8HmwGQ82nxub8WA3HsTnwWa8GMCH0LRgmQ9BABEBEUQEI3Z84sBnc2JsTnw2B0ac+OxOsDnB7gR7GGJ3Io4wxB6GOMKwOcKwOcKxOcOwO8KxOcKwh0Vgc4bhcIbvvYVH4HCG4wyPIMwZTlh4BHZHl2aiKhV8FblUEU18YmqPd10fN5xBRTl4PR59b/RixufF63bh8Xpwud143B7cHg8+nwfj84LXC8ZrXefM5wZjXe/MIJjmn9YNALFhExs2u2ATG2KzYbfZsNkEm82G3WbHZrdjs9mx2+3YbLbm+2Kzg9gCbhK6F0YppVSHOvztbow5vq1tInIN8Kqx1iBeKiI+IAXYBWQGVM3wlx3SjM9HRWkRpYU7qC7Ow1W+G6oLkLpS7I3lOBsriPBUEu2tJNZXTZzUkdKJdr1GcOPALQ68OPBgx4MTj9itx+LAh82fTFm/zq2bP9My1q97A9iNFzseHMZDU2tO3DiMlzDxdMvr4jG25vg9+G/ixC1OvOLAK07/zYHXFobP5sQnTnziwDR9mRAbhoD7Ym++bz22fkrAfWufplcDIDB/NwE/rPvif40I2GPv6xe4/952xLTWZoufLfttsWS3YDDGitS0sl/gcTQB+7TaR6tt731u0vI5mJZ9BD6XlnG3vX9nNPW0TzcttlpNtv/l0dD69pZtthdZdt1qiuwDiWu3p+4RMWgsYXs8bN28muFjp4YggkOL1+2ipmIPtRXF1FVX0FBTgauuEldtJd6GakxjNTZXDXZ3DQ53LXZPHXZfA3ZvI3afC4dx4fTfwnATZlyE4yZMPDiwfklGhPpJtuAzgk+s5M2HzX8TDLa9Zf7PPxO4TaxtJmCbEcFg9/+0Bfy0Nf/EX9b0WbtvPcGH3Wpvn3Zb6UesevskiAFvVKs44B1uTItcMvCzt+Wr0spncXNd01y6/6dHQJstPzX2+zwNrN/aNpo/b9vTU39J7rCfTgXS9Wh74vnqlTAOfRujD2POOdeTlRId6lA6pat/Pn0dOAb4TERGAWFACfAm8F8R+QfWIhcjgaVd7CvkvB43e3ZtozRvI7VF2/CW5RJevZOY+t3EeUpI9pWTKB4SW+xXZaKotsVSa4uj3hlPVdQQ8sITITIJiU5CIuKxh8fgiIzBGRmHMzKWiOg4wqNjiYyOIyoymgi7rft/yRsDPg9ejwtXYyNudyPuxgY87kbr5rJ+el2NeD0ufO5GvO69942nEeN14fO4MB4XxutG/GXidYHPjfjvi89tjcL53IjPjcO4sPk8hHuqsRu3lQAaD/i/LggGm9n7dWLfrw0+xAR+tdj//t5fiXt/ve57v0n721vbv/VfwS1/Fcve7bJ/eWB9abW8ta8FrW/bvzwgFmmjvNXYW7Qre8ulle2d0dEe+3wxaaOytP4tqe12WuGzh1M14vQOoukeA8fPgxWwZ82nmmC1or6+gfI9edSU7qK+NB93ZSHemmJMXRn2+jLCXNYfqmJ8VcT5qoiVeuKB+HbadBkHtRJFvURSL5F4bOF4bWG4nHE02MPx2cPx+n/6bOEYezjGHuYfzXdg848uic26b/x/5DFiA5sdI47mpEHEIMb6idn7GAzG58UYgzE+jDH4fNYfVzA+fD4fGJ+1zedFmu/vLcfntUbK/Dfj8yEmsMxqS4wX648iPv9ja5sYL0LTfR9gbRNjfZY21bXhA59V1rTNZlz+95Uv4LPYtPp5bGuus395Uxq4bzrU+mfY3seBfyZr/TO6qV5b2/b9bN9Xe2221Jn+D/bzcR+9aJAyOKH0oiek+qS1DSnUu/vOWnldTbCeAJ4QkTWAC7jUP5q1VkReBNYBHuDnfXEFwbX/e5eq1e8SWbGZ1IZc0nx7GCg+Bvq3e4yNPbZUypzp5MVOJTc6DYkbSHjiIKJTMolLzSQ+NYO4qOiQ/KX8gImA3Ynd7iQyPJruufyqUr3DoBD1O3D4JIpJxLHjS+DGEEURGjU1VZTkb6G6cBuNJTvwVeRhqy0krL6YGFcxCb4ykqhu9bOn2kRSbYujzh5HQ1g8hc6h5Eck4g1PRKKSsEUnERadQFhUPFGxCUTFJhAdl0hUdDxhYRGEwX5//FJKKdU3XBrqAA5QlxIsY4wLuKiNbXcCd3al/VCrXvchh+3+L7vsGRREjSE3/iTsSdnEpA8jOXM0AwYPY5DDGbIvakqpvkdsNnYmHc6Y0s9oqK8jIjIq1CEFjcftYk/eFsrz1lFftAVv2Q6cNbuIqS8gxVtIElXEBNR3GzulkkCVPZnKiMGURk1lc3Qa9riBOBIGEpk0mNiUwSSmDCQ2MpLYkD0zpZRSqvP0DOt2TJi/AAn/G9lh4WSHOhil1CEjbNI5xC5+l5zFLzP95EtCHc4BMT4f5UU7Kdy+hupdG/CVbCG8ajvJDXkM9BUySLzNf3RqME722AZQGZ7O1oQxbI7LxJ40lOgB2cSnDyNl4FDSw5ytrqKklFJK9VWaYLUjJjYh1CEopQ5B4+aeTtHiZMK+fxx6aYJljKFoTyG7Ny6jLm8VjpL1JFRvJsOTSxL1JPnrNRgnBY7BlEUPpzDueCRlBFEDR5M8ZAwD0jMZYu/q1UCUUkqpvkUTLKWU6mF2h5Pc4Rcya+v9bPr6LUYdflpI46mtq2PnppWUb/8eb8Faois3MqhxG+mUNo8uVRLDrrBsVif/EJMyipjBYxiQNZ4Bg4eRbbeHNH6llFKqNxHTi9a2nD59usnJyQl1GEop1e1qaqqpuGc6xmYn/dZlOMO7f1kZn9dH/s4t7Nm8jPpdqwkr3UBq7WYyfbtwirUOkdvY2eUcQnnMSHwDxhGTOZmBow4jbsAQvf6SUkop5Sciy4wx01vbpiNYSikVAjExsWyc9/847MufsurB85hw3avYHM6gtV9ZXsKuTcupzF0Be9YRV7WJDFcuQ6SWIf46RZLCnsgRrEw6lrDBExgw4jAGZI0nyxlOVtAiUUoppfoXTbCUUipEDjvuPL7YtZ4jt/2DjXcfTdw5DzJw5IFdG6uyoozC7Wup2bkSb+E6Iis2MaB+G2mUNl8bqoZIdjmz2Zx6ApI2nvisKQwefRhpcUmkBf9pKaWUUv2aThFUSqkQMsbw1asPMnHVX4iXWjaGTaA6fRb25GzC4gZYF3g2BldNOe7qPfhqSgiv3UVMXR4p7gKSqGpuq9E42WnPpCJmOJ6UsURnTGDgiKmkZIxAbLrYhFJKKRUs7U0R1ARLKaV6gaKCnWx4518M3P0hw73bsEvrn81uY6dYkikJG0R9dCYmMZuItJEkZk8mPWss4WFhPRy5Ukop1f9ogqWUUn1ITW0te3bl0lC1p7ksMjaJhJSBxCekYNOlz5VSSqmQ0kUulFKqD4mJjiZm1HhgfKhDUUoppdQB0j+DKqWUUkoppVSQaIKllFJKKaWUUkGiCZZSSimllFJKBUmvWuRCRIqBHaGOo4UUoCTUQageo8e7/9Bj3X/ose5f9Hj3H3qs+4/eeKyHGmNSW9vQqxKs3khEctpaIUQdevR49x96rPsPPdb9ix7v/kOPdf/R1461ThFUSimllFJKqSDRBEsppZRSSimlgkQTrI49GuoAVI/S491/6LHuP/RY9y96vPsPPdb9R5861noOllJKKaWUUkoFiY5gKaWUUkoppVSQaIKllFJKKaWUUkGiCVY7ROQkEdkoIltE5NehjkcFj4hkishnIrJORNaKyHX+8iQR+UhENvt/JoY6VhUcImIXke9F5G3/42wR+db//n5BRMJCHaMKDhFJEJGXRWSDiKwXkcP1vX1oEpEb/J/ha0RkkYhE6Hv70CEiT4jIHhFZE1DW6ntZLPf7j/sqEZkWusjVgWrjWN/t/xxfJSKviUhCwLbf+I/1RhE5MSRBt0MTrDaIiB14CDgZGAdcICLjQhuVCiIPcKMxZhwwG/i5//j+GvjEGDMS+MT/WB0argPWBzz+G3CvMWYEUA78JCRRqe5wH/C+MWYMMBnruOt7+xAjIoOBa4HpxpgJgB04H31vH0qeBE5qUdbWe/lkYKT/dhXwcA/FqILjSfY/1h8BE4wxk4BNwG8A/N/XzgfG+/f5l/97e6+hCVbbZgJbjDHbjDEu4HngjBDHpILEGFNgjFnuv1+N9QVsMNYxfspf7SngzJAEqIJKRDKAU4DH/I8FOBZ42V9Fj/UhQkTigSOBxwGMMS5jTAX63j5UOYBIEXEAUUAB+t4+ZBhjvgDKWhS39V4+A3jaWL4BEkRkYI8EqrqstWNtjPnQGOPxP/wGyPDfPwN43hjTaIzZDmzB+t7ea2iC1bbBQF7A43x/mTrEiEgWMBX4FkgzxhT4NxUCaaGKSwXVP4FbAJ//cTJQEfDBre/vQ0c2UAz8xz8l9DERiUbf24ccY8wu4B5gJ1ZiVQksQ9/bh7q23sv6ve3QdgXwnv9+rz/WmmCpfk1EYoBXgOuNMVWB24x1DQO9jkEfJyKnAnuMMctCHYvqEQ5gGvCwMWYqUEuL6YD63j40+M+9OQMrqR4ERLP/FCN1CNP3cv8gIr/FOrXjuVDH0lmaYLVtF5AZ8DjDX6YOESLixEqunjPGvOovLmqaUuD/uSdU8amgmQOcLiK5WFN9j8U6RyfBP60I9P19KMkH8o0x3/ofv4yVcOl7+9BzPLDdGFNsjHEDr2K93/W9fWhr672s39sOQSJyGXAqcKHZe/HeXn+sNcFq23fASP9qRGFYJ9O9GeKYVJD4z8F5HFhvjPlHwKY3gUv99y8F3ujp2FRwGWN+Y4zJMMZkYb2PPzXGXAh8Bpzjr6bH+hBhjCkE8kRktL/oOGAd+t4+FO0EZotIlP8zvelY63v70NbWe/lN4BL/aoKzgcqAqYSqDxKRk7Cm959ujKkL2PQmcL6IhItINtbCJktDEWNbZG8yqFoSkR9inbthB54wxtwZ2ohUsIjIXOBLYDV7z8u5Des8rBeBIcAO4DxjTMsTbFUfJSJHAzcZY04VkWFYI1pJwPfARcaYxhCGp4JERKZgLWgSBmwDLsf6g6K+tw8xIvJHYD7W9KHvgSuxzsXQ9/YhQEQWAUcDKUAR8AfgdVp5L/uT7AexponWAZcbY3JCELY6CG0c698A4UCpv9o3xpir/fV/i3VelgfrNI/3WrYZSppgKaWUUkoppVSQ6BRBpZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZTqZUQkS0SMiDhCHYvqH0RkrYgcHeo4lFLqUKAJllJKqT5PRBaKSI3/5hIRd8Dj90IdX29njBlvjFncHW2LSJKIFIvIku5oXymlehsxxoQ6BqWUOqSIiMMY4+nC/lnAdsDZlXb6KxFZAIwwxlzUyrYuHZue1JdibY+I/BsYDdiMMXNDHY9SSnU3HcFSSqkgEJFcEblVRFYBtSLiEJHZIvI/EakQkZWBU7BEZLGI/EVElopIlYi8ISJJbbR9uYisF5FqEdkmIv/XYvsZIrLC385WETnJXx4vIo+LSIGI7BKRP4mIvYPnMVxEPhWRUhEpEZHnRCQhYFuZiEzzPx7kH5k42v/4dP9Uswr/8xvb4vW5SURWiUiliLwgIhEH/kofuDaOjRGREQF1nhSRPwU8PtX/mlb4j+GkTvZ1tIjki8ht/tcvV0QuDNh+ioh87z9Wef5ksGlb09TQn4jITuBTf/lLIlLof92+EJHxLeL+l4i85x+t+0pE0kXknyJSLiIbRGRqJ1+j4zvzHA+EiBwBTAD+E+y2lVKqt9IESymlgucC4BQgAUgD3gH+BCQBNwGviEhqQP1LgCuAgYAHuL+NdvcApwJxwOXAvQFJzkzgaeBmf79HArn+/Z70tzsCmAqcAFzZwXMQ4C/AIGAskAksADDGbAVuBZ4VkSisL81PGWMWi8goYBFwPZAKvAu8JSJhAW2fB5wEZAOTgMtaDUBkrj+xaet2MKMgzcemo1Ehf0LyBPB/QDLwCPCmiIR3sq90IAUYDFwKPCoio/3barGOe4I/nmtE5MwW+x+F9dqf6H/8HjASGAAsB55rUf884Hf+PhuBr/31UoCXgX90Mu5Wiciv2zse7exnBx4EfgHodBmlVL+hCZZSSgXP/caYPGNMPXAR8K4x5l1jjM8Y8xGQA/wwoP4zxpg1xpha4PfAea2NMBlj3jHGbDWWz4EPgXn+zT8BnjDGfOTvZ5cxZoOIpPn7ut4YU2uM2QPcC5zf3hMwxmzxt9VojCnG+nJ+VMD2fwNbgG+xEsPf+jfNB97x7+sG7gEigSNavD67jTFlwFvAlDZiWGKMSWjndjDn8gQem45cBTxijPnWGOM1xjyFlbjMPoD+fu9/DT/HSrTPAzDGLDbGrPYfq1VYSelRLfZd4D9m9f59njDGVBtjGrGS3ckiEh9Q/zVjzDJjTAPwGtBgjHnaGOMFXsBKrg+aMeav7R2Pdna9FvjWGLOsK/0rpVRfoytUKaVU8OQF3B8KnCsipwWUOYHP2qi/w789pWWjInIy8AdgFNYfxqKA1f7NmVijRS0N9bdXICJNZbYWfe7Hn5jdh5XAxfr3KW9R7d/Am8BV/i/9YI147WiqYIzxiUge1ihOk8KA+3X+fXpKu8+7haHApSLyy4CyMDofb7k/aW6yo2lfEZkF/BVr2lwYEA681Fas/oT7TuBcrJFBn39TClDpv18UsG99K49jOhl30IjIIKwE67Ce7lsppUJNR7CUUip4AqdB5WGNUAX+tT/aGPPXgDqZAfeHAG6gJLBB/7S0V7BGhNL8IwbvYk3la+pneCux5GGNuqQE9B9njBnfSt1Af/Y/j4nGmDiskbjmDE1EYoB/Ao8DC2TveWO7sRKTpnrif367OuhvPyIyT/auANjabV7Hreyn5RS1OqxEtUl6wP084M4Wxy7KGLOok30likh0wOMhWK8PwH+xktNMY0w8sJCA17eVWH8MnAEcD8QDWf7ylvt0G//5ZG0ejzZ2m4k1wrlORAqxkvaZ/nPJ2j0PUCml+jpNsJRSqns8C5wmIieKiF1EIvwLIGQE1LlIRMb5z2e6A3jZP60rUNMoRzHg8Y9mnRCw/XHgchE5TkRsIjJYRMYYYwqwphL+XUTi/NuGi0jL6WgtxQI1QKWIDMY6tyvQfUCOMeZKrKlvC/3lLwKn+ONwAjdiJXj/6+iFaskY86UxJqad25cH2mYrVgA/9h+bk9h3mt6/gatFZJZYov2LU8RC88IST3bQ/h9FJMyfDJ7K3lGqWKDMGNPgP3/uxx20E4v1OpZiJYR/PoDnGBTGmD+3dzza2O09rGRwiv92O/A9MKWV/+NKKXVI0QRLKaW6gTEmD2vk4Tas5CgPK1kJ/Nx9BmshikIgAmtKVct2qv3lL2JN1fsx1ghI0/al+Be+wJoy9jl7R5IuwUrQ1vn3fRlrVKE9fwSm+dt6B3i1aYOInIG1SMU1/qJfAdNE5EJjzEas0a4HsEbhTgNOM8a4OugvVK7DirECuBB4vWmDMSYH+CnWAg3lWOecXRawbybwVTttF/r32421IMXVxpgN/m0/A+4QkWqspOPFDuJ8GmuK4S6s4/hNR0+sN/Cff1bYdMP6/+T231dKqUOaXgdLKaVCQEQWA88aYx4LdSyq8/yrIq4EJvkX82i5/Wis45rRcptSSqn+QRe5UEoppTrJPyI3tsOKSiml+i2dIqiUUv2MiCxsY8GChR3vrfoiERnSzkIVQ0Idn1JKHUp0iqBSSimllFJKBYmOYCmllFJKKaVUkPSqc7BSUlJMVlZWqMNQSimllFJKqTYtW7asxBiT2tq2XpVgZWVlkZOTE+owlFJKKaWUUqpNIrKjrW06RVAppZRSSimlgkQTLKWUUkoppZQKEk2wlFLqIBSVVfDR/75DV2JVSimlVKBedQ5Wa9xuN/n5+TQ0NIQ6FNXHREREkJGRgdPpDHUo6hC06dHL+EHDZ3xk/5wfzJoS6nCUUkop1Uv0+gQrPz+f2NhYsrKyEJFQh6P6CGMMpaWl5Ofnk52dHepw1CHG01DDvIbPAPAufRxmPRDiiJRSSinVW/T6KYINDQ0kJydrcqUOiIiQnJysI5+qW5Tkrm2+P6BsWQgjUUoppVRv0+sTLECTK3VQ9P+N6i5lBbkAbHOOZIRvG9X1jaENSCmllFK9Rp9IsJRSqjepLckDoHLI8cRJPTs2r+1gD6WUUkr1F5pgdYKIcOONNzY/vueee1iwYEHoAgrwzTffMGvWLKZMmcLYsWOb41q8eDH/+9//utT2SSedREJCAqeeemoQIlXq0CHVu/EYG6mTTgCgdIcmWEoppZSydDnBEpFMEflMRNaJyFoRuc5fniQiH4nIZv/PxK6HGxrh4eG8+uqrlJSUBLVdYww+n69LbVx66aU8+uijrFixgjVr1nDeeecBwUmwbr75Zp555pkutaHUochZW0AxiQwaNgGAhj1bQhyRUkoppXqLYKwi6AFuNMYsF5FYYJmIfARcBnxijPmriPwa+DVwa1c6+uNba1m3u6rLAQcaNyiOP5w2vt06DoeDq666invvvZc777xzn23FxcVcffXV7Ny5E4B//vOfzJkzhwULFhATE8NNN90EwIQJE3j77bcBOPHEE5k1axbLli3j3Xff5cEHH+S9995DRPjd737H/PnzWbx4MQsWLCAlJYU1a9Zw2GGH8eyzz+53XtGePXsYOHAgAHa7nXHjxpGbm8vChQux2+08++yzPPDAA4wZM6bNOLdu3cqWLVsoKSnhlltu4ac//SkAxx13HIsXL273tXnppZf44x//iN1uJz4+ni+++IKGhgauueYacnJycDgc/OMf/+CYY47hySef5PXXX6e2tpbNmzdz00034XK5eOaZZwgPD+fdd98lKSmJf//73zz66KO4XC5GjBjBM888Q1RU1D79zp49m8cff5zx461jd/TRR3PPPfcwffr0duNVKhgiG/ZQaktiYEwq9UTgqNwR6pCUUkop1Ut0eQTLGFNgjFnuv18NrAcGA2cAT/mrPQWc2dW+QunnP/85zz33HJWVlfuUX3fdddxwww189913vPLKK1x55ZUdtrV582Z+9rOfsXbtWnJyclixYgUrV67k448/5uabb6agoACA77//nn/+85+sW7eObdu28dVXX+3X1g033MDo0aM566yzeOSRR2hoaCArK4urr76aG264gRUrVjBv3rx241y1ahWffvopX3/9NXfccQe7d+/u9Otyxx138MEHH7By5UrefPNNAB566CFEhNWrV7No0SIuvfTS5tX81qxZw6uvvsp3333Hb3/7W6Kiovj+++85/PDDefrppwH40Y9+xHfffcfKlSsZO3Ysjz/++H79zp8/nxdffBGAgoICCgoKNLlSPSbMXUWdPR5EKHEOIqY+P9QhKaWUUqqXCOp1sEQkC5gKfAukGWMK/JsKgbQ29rkKuApgyJAh7bbf0UhTd4qLi+OSSy7h/vvvJzIysrn8448/Zt26dc2Pq6qqqKmpabetoUOHMnv2bACWLFnCBRdcgN1uJy0tjaOOOorvvvuOuLg4Zs6cSUZGBgBTpkwhNzeXuXPn7tPW7bffzoUXXsiHH37If//7XxYtWtTqqFN7cZ5xxhlERkYSGRnJMcccw9KlSznzzDM79brMmTOHyy67jPPOO48f/ehHzc/pl7/8JQBjxoxh6NChbNq0CYBjjjmG2NhYYmNjiY+P57TTTgNg4sSJrFq1CrCSsN/97ndUVFRQU1PDiSeeuF+/5513HieccAJ//OMfefHFFznnnHM6Fa9SwRDurcETNgiAmqgMkiu2YYzRlSuVUkopFbwES0RigFeA640xVYFfNIwxRkRMa/sZYx4FHgWYPn16q3V6i+uvv55p06Zx+eWXN5f5fD6++eYbIiIi9qnrcDj2Ob8q8HpM0dHRneovPDy8+b7dbsfj8bRab/jw4VxzzTX89Kc/JTU1ldLS0v3qtBUn7L+c+YF8SVy4cCHffvst77zzDocddhjLlrV/TaDA52Sz2Zof22y25ud32WWX8frrrzN58mSefPLJVhPGwYMHk5yczKpVq3jhhRdYuHBhp2NWqqsifLV4nLEAeOKHkF3xNZV1LhKiwzvYUymllFKHuqCsIigiTqzk6jljzKv+4iIRGejfPhDYE4y+QikpKYnzzjtvnylrJ5xwAg888EDz4xUrVgCQlZXF8uXLAVi+fDnbt29vtc158+bxwgsv4PV6KS4u5osvvmDmzJmdjumdd97BGCsv3bx5M3a7nYSEBGJjY6muru4wToA33niDhoYGSktLWbx4MTNmzOh0/1u3bmXWrFnccccdpKamkpeXx7x583juuecA2LRpEzt37mT06NGdbrO6upqBAwfidrub22nN/Pnzueuuu6isrGTSpEmdbl+prooydZhwK8GyJw0jQtwU7NLzsJRSSikVnFUEBXgcWG+M+UfApjeBS/33LwXe6GpfvcGNN964z2qC999/Pzk5OUyaNIlx48Y1j6ScffbZlJWVMX78eB588EFGjRrVantnnXUWkyZNYvLkyRx77LHcddddpKendzqeZ555htGjRzNlyhQuvvhinnvuOex2O6eddhqvvfYaU6ZM4csvv2wzToBJkyZxzDHHMHv2bH7/+98zaJA19WnevHmce+65fPLJJ2RkZPDBBx8A1rTEpvOtbr75ZiZOnMiECRM44ogjmDx5Mj/72c/w+XxMnDiR+fPn8+STT+4zctWR//f//h+zZs1izpw5jBkzprn8zTff5Pbbb29+fM455/D88883r5yoVE8w7gbCcUN4PADRA0cAULFrcyjDUkoppVQvIU2jHwfdgMhc4EtgNdA0J+42rPOwXgSGADuA84wxZe21NX36dJOTk7NP2fr16xk7dmyXYlRta7na4aFG//+oYGusLCL83lF8MeIWjrzot9TsXk/Mo7P5dOwdHDv/ulCHp5RSSqkeICLLjDGtrrDW5XOwjDFLgLZO2jmuq+0rpVRv0lBdTjhAeBwAMQOGASDlOkVQKaWUUkFeRVD1PQsWLAh1CEr1KY21FQDYIq0pgjjCKZNEHDWdv7yBUkoppQ5dQVnkQiml+guXP8GyR8Y1l1U404hqKGhjD6WUUkr1J5pgKaXUAXDXWhcbt0fFN5fVRQ0iydPnF0pVSimlVBBogqWUUgfAU28lWM6ABMsbO5h0U0J1vStUYSmllFKql9AESymlDoC3oQaA8MjY5jJ7YiaR4qKoUKcJKqWUUv2dJlid9PrrryMibNiwoc06ubm5TJgwIWh9bty4kaOPPpopU6YwduxYrrrqKsC6SPC7777bpbavuOIKBgwYENR4leoPvI3+BCt67zlYkalDASgv2BKSmJRSSinVe2iC1UmLFi1i7ty5LFq0qNXtHo+ny314vd59Hl977bXccMMNrFixgvXr1/PLX/4SCE6Cddlll/H+++93qQ2l+iPTWAdAVHRMc1lCurVUe+2e3FCEpJRSSqlepG8t0/7er6FwdXDbTJ8IJ/+13So1NTUsWbKEzz77jNNOO40//vGPACxevJjf//73JCYmsmHDBj788EM8Hg8XXnghy5cvZ/z48Tz99NNERUXxySefcNNNN+HxeJgxYwYPP/ww4eHhZGVlMX/+fD766CNuueUWzj///OZ+CwoKyMjIaH48ceJEXC4Xt99+O/X19SxZsoTf/OY3nHrqqfzyl79kzZo1uN1uFixYwBlnnMGTTz7Ja6+9RmVlJbt27eKiiy7iD3/4AwBHHnkkubm57T7vzz//nOuusy6cKiJ88cUXxMTEcMstt/Dee+8hIvzud79j/vz5LF68mD/84Q8kJCSwevVqzjvvPCZOnMh9991HfX09r7/+OsOHD+ett97iT3/6Ey6Xi+TkZJ577jnS0tL26ff888/n4osv5pRTTgGsZPDUU0/lnHPO6dwxVaob+dy11JswosLCmssSB1oJlqc8L1RhKaWUUqqX0BGsTnjjjTc46aSTGDVqFMnJySxbtqx52/Lly7nvvvvYtGkTYE3r+9nPfsb69euJi4vjX//6Fw0NDVx22WW88MILrF69Go/Hw8MPP9zcRnJyMsuXL98nuQK44YYbOPbYYzn55JO59957qaioICwsjDvuuIP58+ezYsUK5s+fz5133smxxx7L0qVL+eyzz7j55pupra0FYOnSpbzyyiusWrWKl156iZycnE4/73vuuYeHHnqIFStW8OWXXxIZGcmrr77KihUrWLlyJR9//DE333wzBQXWeScrV65k4cKFrF+/nmeeeYZNmzaxdOlSrrzySh544AEA5s6dyzfffMP333/P+eefz1133bVfv/Pnz+fFF18EwOVy8cknnzQnW0qFnKuOOsKJDLM3F9mik2kgDFvVrhAGppRSSqneoG+NYHUw0tRdFi1a1DySc/7557No0SIOO+wwAGbOnEl2dnZz3czMTObMmQPARRddxP33388PfvADsrOzGTVqFACXXnopDz30ENdffz1gJRStufzyyznxxBN5//33eeONN3jkkUdYuXLlfvU+/PBD3nzzTe655x4AGhoa2LlzJwA/+MEPSE5OBuBHP/oRS5YsYfr06Z163nPmzOFXv/oVF154IT/60Y/IyMhgyZIlXHDBBdjtdtLS0jjqqKP47rvviIuLY8aMGQwcOBCA4cOHc8IJJwDWyNtnn30GQH5+PvPnz6egoACXy7XPa9fk5JNP5rrrrqOxsZH333+fI488ksjIyE7FrFR3E3cddUSQ7Aj4+5QIpY4BRNTpxYaVUkqp/k5HsDpQVlbGp59+ypVXXklWVhZ33303L774IsYYAKKjo/epLyLtPm5NyzYCDRo0iCuuuII33ngDh8PBmjVr9qtjjOGVV15hxYoVrFixgp07dzJ27NiDjqfJr3/9ax577DHq6+uZM2dOuwt8AISHhzfft9lszY9tNlvzOWq//OUv+cUvfsHq1at55JFHaGho2K+diIgIjj76aD744ANeeOGFNhNQpULB5qmjUSL2K68JTyfeVRSCiJRSSinVm2iC1YGXX36Ziy++mB07dpCbm0teXh7Z2dl8+eWXrdbfuXMnX3/9NQD//e9/mTt3LqNHjyY3N5ctW6wVxp555hmOOuqoDvt+//33cbvdABQWFlJaWsrgwYOJjY2lurq6ud6JJ57IAw880Jz0ff/9983bPvroI8rKyprPg2oaXeuMrVu3MnHiRG699VZmzJjBhg0bmDdvHi+88AJer5fi4mK++OILZs6c2ek2KysrGTx4MABPPfVUm/Xmz5/Pf/7zH7788ktOOumkTrevVHeze+pbTbBc0YNJ9RXj8vhCEJVSSimlegtNsDqwaNEizjrrrH3Kzj777DZXExw9ejQPPfQQY8eOpby8nGuuuYaIiAj+85//cO655zJx4kRsNhtXX311h31/+OGHTJgwgcmTJ3PiiSdy9913k56ezjHHHMO6deuYMmUKL7zwAr///e9xu91MmjSJ8ePH8/vf/765jZkzZ3L22WczadIkzj777ObpgRdccAGHH344GzduJCMjg8cffxyAhQsXsnDhQgD++c9/MmHCBCZNmoTT6eTkk0/mrLPOYtKkSUyePJljjz2Wu+66i/T09E6/ngsWLODcc8/lsMMOIyUlpbk8JyeHK6+8svnxCSecwOeff87xxx9PWMBiAkqFmsNTh8u2f4IlCZkMkAqKyipDEFXfs6eslLee/gdbCkpCHYpSSikVVNI06tFtHYicBNwH2IHHjDFtnkg1ffp003IRhvXr1zdPd1MH5sknnyQnJ4cHH3ww1KGEjP7/UcGW++fD2GOSmPnbj/Yp3/TBI4z6+haWn/kZ06ZMC1F0fcfi+6/k6LKX+CzsaI657Y1Qh6OUUkodEBFZZoxpdWGDbh3BEhE78BBwMjAOuEBExnVnn0op1Z3CvPV47PsvuhKbZi3YUlO0vadD6nN8Hjczy94EYE7jl2zbVRDiiJRSSqng6e4pgjOBLcaYbcYYF/A8cEY396n8Lrvssn49eqVUdwjzNeB17J9gJQ2yroXVWLqjp0Pqc3ZuWkEUjaxMO4sw8ZL33duhDqnP+N/n7/PFH47io9efDnUofcq6bTt45/E72FNaFupQlFL9QHcnWIOBwCtv5vvLmonIVSKSIyI5xcXFrTbS3dMY1aFJ/9+o7hBuWk+wwpMyATAVerHhjpRu/gaA+KN+Tj1hyM5vQxxR32CMIe6LBRwpKxix4s80NLpCHVKfYIzB++x8Tsn7O2ueuTHU4Sil+oGQL3JhjHnUGDPdGDM9NTV1v+0RERGUlpbql2V1QIwxlJaWEhGx/2IESnVFBI0YR9T+GxzhlNkSCavVa2F1RArXUGfCGThyCvnhI0iqXBvqkPqEol25TPCuZ7cjk2wK2LDss1CH1Cds3baFib71AMwuf4e6utoQR6SUOtR194WGdwGZAY8z/GWdlpGRQX5+Pm2NbinVloiICDIyMkIdhjqUeN048eBztn7tukpnGjENhT0cVN/jrNpJoS2NYU4n1UkTGbP7deoaGomKCO94535s95ovSQcqjvwDgz69kop1n8ERJ4Y6rF6vdNUHjACWj/gF07Y8yMqcj5h85JmhDkspdQjr7gTrO2CkiGRjJVbnAz8+kAacTifZ2dndEZtSSh0Q46pBAAlvZQQLaIgaSFLZRowxB3RR7/4mtmE3ZeGDAHAOmkRUwQts2LaRMeMmhTiy3q0ufxU+IwyffiK5nw8lqfi7UIfUJ/jyl1NDJGPOvBn33Q9Tu+FT0ARLKdWNunWKoDHGA/wC+ABYD7xojNG5IEqpPqmxrgYACWt9BMsbm8FASiitaezJsPoWY0j1FlIXbY0uJwwZD0D5zjWhjKpPiKzYRIEtjfCoOErixjGwcYtOn++E6OqtFDoziYpJYKdjKDFl+n9NKdW9uv0cLGPMu8aYUcaY4caYO7u7P6WU6i6NddUA2NpIsBxJmUSKi8JCPQ+rLd7aMqJpwB1rJVgDsicA0Fi4IZRh9QnJddvZE2HN6JAB40mlgt2780McVe+X7tpJeZT1uhXHjmNIw0bQxFQp1Y1CvsiFUkr1FQ11VQDYwltPsKJSswCoLNjWUyH1OZUFWwGQhCEAhMelUi7xOMq2hDKsXs/4fAzwFtEYOxSAhOwpAOzauCyEUfV+nrpKBlBGQ/xwALzpk0mghpLd+v9NKdV9NMFSSqlOcvmnCDoiYlrdnjjQuhZWXYleC6stVcXWiEtk0t4rdhSHDSG+NjdEEfUNpcUFREkjkmitGzVw5FQAGnbrdLf2lO32J/RJ1ghW/JCJAOzetDJkMSmlDn2aYCmlVCe5GqwEyxnZeoIVk2Z9ifOU7+yxmPqaujJrIdnYlL0rfNbGDWOQJw+vT6dttaXCP/LnTM4CICppMBXE4ixZH8Koer/KIuuPHZEp1ojpkFFTAKjZpaeDK6W6jyZYSinVSe56f4LVxgiWRCXTQBj2Kj0vpi3uygIAktICruCRPJJkqaJg9wFdxaNfqS3aDkD0AP+quiIUhGWTWKNT3dpTV2wlWInpWQDEpQykgljspZtDGJVS6lCnCZZSSnWS1z+CFR4V23oFEcodaUTVFfRgVH1MdSHlJoaUhL2vYfTgsQDs2b46VFH1eu6yXACSBg1vLquKG0mmOxfj84Uoqt7PU5GPzwipA4c0lxU4hxBbsz2EUSmlDnWaYCmlVCd5GmuBdhIsoCYinXh3UU+F1OfY64opk0Qc9r2/flKGWku11xZuDFVYvV9VAXUmnKTkAXvLUkcTLQ2UFug5f22R6gJKSCA2eu+166pihjHQrdN4lVLdRxMspZTqJJ8/wYqIimuzjjtmEGmmhDqXp6fC6lMiGoupdiTtU5Y4aDgeY8OUbA1RVL2fvbaQElsS9oDENGrQGAAKdeSvTeF1hZQ5UvYp8yaPJJEqqkoKQxSVUupQpwmWUkp1knFZCVZkdOvnYAFIQiYDpILdpRU9FFXfEusupS48dZ8ycYSxx55GeHVuaILqA6Ia9lDp2Pd1a7qGWO1uvYZYW2Jde6gJG7BPWfhAa0pq0fZVoQhJKdUPaIKllFKd5aql3oQRFR7WZpXwZOs6RSW79ByP/RhDoq8Md2TqfpvKI4aQWJ8XgqD6hjh3MfUR+yYKAwZlU2fCMSW6YENbkrwlNEYN3Kcseai1VHt1vq4kqJTqHppgKaVUZ7nrqCecMEfbH51x6dYqbzV7cnsoqL7DU1tGGB5MTPp+2xrjsxjs243L7Q1BZL2b8flI9pXhiUrbp1xsNgocg4mq0mS+NQ015cRQh4kbtE/5oKEjaTROvMW6AqNSqntogqWUUp1kd9dSJ5Ht1mm62LCrVE+ib6miyBqhcsTvn2DZkocTLY3s3pXbw1H1ftXlewgTD7RIFAAqooaS3Kj/11pTutta/MOZmLFPeZjTwS7bQMIrt4UiLKVUP6AJllJKdZLdXUOdRLVfJ8H/Za5Sr4XVUmWx9ZpEJA7eb1v0oNEAlO7QC+e2VFbYlCjs/7q54oeT7tuDq6G+p8Pq9SqKcgGIShmy37bSyKEk1mtiqpTqHppgKaVUJzk9tTTY2k+wcIRTbkskvHZ3zwTVh9SVWQlWbGrGfttSh44DdKn21lTvsRKB6JTM/bbZB4zELobC3HU9HVavV1dijZg2XWQ4UGNcNuneAnwedw9HpZTqDzTBUkqpTgrz1tBoi+6wXlVYOrGNerHhllwV1muSmLb/iEJ8ejZu7FCqS7W31OhPTBMG7J9gxWVYiWn5Tl2woSVvhfW6pQwcut82W8pInOKlJH9TT4ellOoHupRgicjdIrJBRFaJyGsikhCw7TciskVENorIiV2OVCmlQizcW0ejveMEqz56MAO8RXi8vh6Iqu+Q6gKqTSTJSUn7b7M7KbIPJKJaL5rbkrvSGg1NHrh/YpruX6q9UUf+9iPVuyklnojI/UedYwZb1xAr1ZE/pVQ36OoI1kfABGPMJGAT8BsAERkHnA+MB04C/iUi9i72pZRSIRXhq8XrbPsaWE28CdkMppiiytoeiKrvcNQWUiJJ2G3S6vaKiEySGnSp9pZs1QWUEk94+P4LrCQkJlFMIvZyHflrKaK+kHJ7SqvbUrPGA1BXoNcQU0oFX5cSLGPMh8YYj//hN0DTxPozgOeNMY3GmO3AFmBmV/pSSqlQizJ1+MI6TrAcKcP804/0S2+gyIY9VDlb/8IL0BiXxWBfAY1uPS8mUER9IRVtJAoAhc5MYmtyey6gPiKmcQ814WmtbktLG0SFiYEyXapdKRV8wTwH6wrgPf/9wUDgnyHz/WX7EZGrRCRHRHKKi4uDGI5SSgWR100ELgiP7bBq9MBRANQU6PkdgeLcJdSGD2hzuz11OJHiYneeLp8dKM5VRFXE/kvbN6mOySLNrSN/LaV4i3FFtf662WzCbkcGUdW5PRuUUqpf6DDBEpGPRWRNK7czAur8FvAAzx1oAMaYR40x040x01NTUw90d6WU6hHehmoApBMJVnKmlWB59EKme/l8JJn9L5YbKGagf6n2nTptq5kxDPDuoTFq/2tgNfEmDieeGuoqinowsN6turKMeKnFF7f/ipVNKqOGkqrXEFNKdQNHRxWMMce3t11ELgNOBY4zxhh/8S4gcLmjDH+ZUkr1SbVV5cQBEhHXYd3IxAzqCcNWkdvtcfUVDZVFRODFxA5ss86ALGtFvHod+WtWVVlKnDRg4ttOFMLTx8A2KNq2huxpbSew/Unprq3EAo7k/VcQbOJOGEZK9Qe466twRnb8vlZKqc7q6iqCJwG3AKcbY+oCNr0JnC8i4SKSDYwElnalL6WUCqW66goAHFHxHVe22dhjH0hUjf51vElZkbU6oCOh1dniAMSlZePCgSnTc9ealPnP43Mm7b+CYJPEIVZiWpWvF2luUllgvW4xacParOMcYI0079muS9wrpYKrq+dgPQjEAh+JyAoRWQhgjFkLvAisA94Hfm6M8XaxL6WUCpn66lIAwjqTYAEVERkkNurAfZOaPdY5QlHJ+1/LqZnNTpF9IJG6VHuzqj3W+WjRA7LarDM4axQuY8ezR5dqb9JQkgtASsaINuvEZYwFoDxPl2pXSgVXh1ME22OMafOTyxhzJ3BnV9pXSqneorHKn2DFtr2aWyB33FAG1SzF5fYQ5uzSR+0hod5/sdz4tHYSLKAicgjJtTry16SxxHotEgcOb7NOVEQE22UgYZW6OEgTU76TBuMkeUDbUysHZY/DZ4TGQp2SqpQKrmCuIqiUUocsb20JABHxnVuMx54ynAhxsytve3eG1Wd4KnbjNUJyWttT3QBc8VkM8hXS4NKl2gFMRR6NxkFKWttTKwFKIoaQUKcjf03CavIotqUitra/5iQmxFMoKXoNMaVU0GmCpZRSneCrtUawouLbXmY8UMygkYCuiNfEVO2mTOKJi45ot549ZYSVmO7QL70AzppdFEsKDkf7o6B1sdmke3eD19Nuvf4itr6AivC2F1RpsseZQWytJqZKqeDSBEsppTrB1JbRaJzExXZutbG0odb5HbWFm7szrD4jsnYXpY40RKTderGDrKXay/J0wQaAyPoCKsLavgZWs+SROPFSWaCXBgBI9hZRH9X+qB9Y1xBLd+dB8yLISinVdZpgKaVUZ9SXUU4McVHOTlWPSxuGGzumTM+LAUh07aY6su3zYZqkZo0HoF7PiwEgyV1EY3THCVbUoDEAFO/QFfFqqitJogoT3/75fgC+xOFEU099eUEPRKaU6i80wVJKqU6wNZRTbYvtcASmmd1BsT2NiKrcbo2rL/C4GhngK8Yd1/75VwBxqUNoIAzRpdqpqChnAGX4EtpearxJij8xrdulI3+7c63kPDwlq8O6Ef6LW+/Zvro7Q1JK9TOaYCmlVCeEuSqos3duifYm5ZFDSWnUFfH27NqGQ3zYk7I7rmyz+Zdqz+32uHq7Qv/1mcLSR3dYd/CgDMpNDL5SnSJYusNadj3FP023Pc3XENul50oqpYJHEyyllOqESE8ljc4DS7Aa40eQ6dtNfYOrm6LqG8ryrC+vMQNHdqp+ZdQQUhrzuzOkPqHKPxqVmNlxohDmsLHLPpioKl21srHQet3Sh03ssG7G0JE0GifuIj1XUikVPJpgKaVUJyR4S2kI79wS7U3saaMIFze7dvTvC8A2FFgjCslDJ3Sqvjs+m0GmkPqGxu4Mq9fzFFlT3dKzx3eqfnnkUJIbdMTUUb6FEknGEZXQYd2oiHB22dJxVuqUVKVU8GiCpZRSHTCNNcRSh7sTiw0Eih1sTT8q37muO8LqM2wlGyk3MQxI73iRCwDbgLGEiZfd2/r3gg3h5RvZJWmERcZ0qr4rYTjJpgxvfWU3R9a7JdVtpywyq9P1yyKHklCnialSKng0wVJKqQ5UF+cBYI8fdED7pfmnKDUW9u/zO6KqtrLbOQSbvXO/cuL8I11luau6M6xeL7V2M3uiOjetEiDcf65WUT9OTKvq6hnm20F90phO7+OKH0a6twCvu39P5VVKBY8mWEop1YHyIuuv2xFJnRuBaRKdmEYFsdhL+/H5HcYwsDGX6tjhnd5l8IjJALgK+u/IX01NFRm+AlzJHZ9/1STJv2BD6c7+m2DlbVpBhLhxZEzp9D72tDE4xUvB9v77uimlgksTLKWU6kBNsZVgxaR2fF2dlorChhBb038XHijZtYl4avCkTe70PhHR8RTIAMLK+++1sPLWfYtNDBGZUzq9T+bw8XiN0FDYf8/5q9y2DICk4TM6vU/CUOv/Zum277slJqVU/6MJllJKdcBVZq1olzIo64D3rY0dRro7D2NMkKPqGwrXfwNA3LDpB7RfcWQ2yXX99yLNFRu/AmDwxCM7vU9sTAwFMgB7Wf9dqt3kfUctEaQP69yCKgCDR07GawTXbh3BUkoFR1ASLBG5UUSMiKT4H4uI3C8iW0RklYhMC0Y/SikVEuXbKTVxpCanHPi+KSNIkUoKiwqDH1cfULd9KS5jZ8SEzo8oADQkjGSwdxeNrv65kqCzcBkFMoCU9I4vzhyoNGII8XU7uimq3i+tYgU7Iscjdmen94mJiWWXbSBhZf135E8pFVxdTrBEJBM4AQhcgudkYKT/dhXwcFf7UUqpUImszqXQMQi7TQ5436hB1nkxhdtWBzusPiGhOIctztFERXVuJbwmjvRxhIuHXdvWd1NkvZfX62V47ffsiptywPvWxw9nkCcfr8cT/MB6uYLC3Qzz7aBh4MwD3rcoYhgpdbpUu1IqOIIxgnUvcAsQOP/lDOBpY/kGSBCRgUHoSymlelxSYz5VkQc2ktBkgH8lwer8/rdgQ0NtJdmuzZSlHNj0QICEIdbrVrptRZCj6v22rP6GRKqRYccc8L72tHFEiouC3P6XmO747l1sYkiYeMIB79uQOIqB3gK8jXXdEJlSqr/pUoIlImcAu4wxK1tsGgzkBTzO95cppVSf4m6oZYApxZOQdVD7Jw4agRs7vpL+t5Lgpm/exSleYsYed8D7DhrZf1cSLP3+bQCyZ51ywPvGZk2x2uiHCzb4Nn5AFTFkT5p3wPva08djE8OebS2/ziil1IHrMMESkY9FZE0rtzOA24DbuxKAiFwlIjkiklNcXNyVppRSKuiKtq4AwJ4+7qD2F7uTQvsgoir734INrnXvUmMiGTPrxAPetz+vJJiS/yGbnGNISh96wPsOHjkFnxEad/WvKan19fWMr/6KbYlzD+j8qyYJWf6VBLdrgqWU6roOEyxjzPHGmAktb8A2IBtYKSK5QAawXETSgV1A4HrGGf6y1tp/1Bgz3RgzPTU1tavPRymlgqpsq7Xsc2L2YQfdRmV0NqmN/WvhAY+rkeGli1kfM4uIiMiDaqMkov+tJLh9XQ6jvFuozv7hQe0fGxtPvi2d8NL+dXHrVYtfIl5qCZ/8o4PaP3P4eBqNQ1cSVEoFxUFPETTGrDbGDDDGZBljsrCmAU4zxhQCbwKX+FcTnA1UGmMKghOyUkr1HFf+CmpMJMNHHdwIFoAncQQZppCyqtogRta7bVjyGolUYZt03kG3UZ/Y/1YSLP7sYVzGQdbxVx50G0URI0iu619LtUd+/wR7JJnRc846qP1jo6PYacsgvFxXElRKdV13XQfrXawRri3Av4GfdVM/SinVrRLLVpEbNoIwp+Og2wgbOAaneMnf1n/OJ7IvXUgRSYw/6uBGFAAcaWP71UqC1VXljNvzDivjjyF5wMGfttyQNJpB3gLcDTVBjK732rI2h0mu79medT42Z9hBt1MaNYxUXUlQKRUEQUuw/CNZJf77xhjzc2PMcGPMRGNMTrD6UUqpnuKuqyTLvYWy5IOfHgiQlDUJgIod/eO8mLx13zC24Xs2DLnwoKcHAiQMtV63/rKS4JpX/kaM1JN4dNf+Jhk+eCI2Meze1D8Wuih57y804mTsqb/sUjuu5LEMMCU01pQHKTKlVH/VXSNYSinV521Z9gl2MUSOOPBVyQINyLKWHPcW9Y8RrLJ37qDWRDDx9Gu71M7gUdaCDf3hvJiSwjwm5f6HFVFHMGLasV1qK2X4NKB/rCS45ttPmF3zMasyLiIuuWtXg4kcPAGA/E3LgxGaUqof0wRLKaXaULvmXepNGGNmHfh1dQLZImIotKURUXHoL9W+dvFLTK79iuVZV5KUMqBLbYVHxVFgTyei7BBPTI0h99lrCcNN0pl/6XJzmcPHUWfC8RQe2olpQ30d4R/cRAmJTJi/oMvtDRgxFYCKXF1JUCnVNZpgKaVUa4whY8/nrIuYSmxsXJebK43MJrV+exAC672qyvaQ9Plv2CmDmXHB74LSZnH0SNLqD+0FG759/SGm13zKsuz/Y8ioKV1uz+lwkOcYQnT5obuSoDGGnMevY6RvG0VH/pnI2IQut5mRNYoaE4mvYE3XA1RK9WuaYCmlVCtyv/+YdLOH+pGnBaW9hsRRZPp2UVvfEJT2ehufx0PuYxeR7Cuj9pQHu3TuVSBX8ngyTCGVFYfmeTGr//c+U1YsYH3YRGZc9P+C1m5F7EgGNh66S9x/+fzfmVvyIsvSzmX8sT8OSpt2u50dzmHEV/aPRVWUUt1HEyyllGpF5f+epMZEMu64i4LSnjPdWhEvf+uhN93N+Hwsf/gKJtV9S86YWxg7vWvnEAWKzLQWusjfeOitlbRh6ccM+eAKiu2pDLrqJeyOg1+psiVf6niSqKKsKC9obfYWX718H3M2/Im1UbOYeuW/gtp2RdwYMlzbMF5PUNtVSvUvmmAppVQLNVXljCz5iJXxx5CUmBiUNhP9KwmW71gVlPZ6C6/bxbIHLmR66Rt8NfASDj//1qC2nz5qOgBV2w+tBRu+//h5hr5zAVW2eMKveJP4lK4t0NBSzBDr/9vuQ2jBBp/Xx5f/uY05a25nY+RUhv/85S4ty94akz6RKBooyzt0p1cqpbqfJlhKKdXC2jfvI4pGUo66Kmhtpg+3vvC6Cw+d6UdVpXtY//eTmF7+Lv/LuJIjfnofIhLUPlIGj6CaKGTPoXFejMft5uvHfsXkL69mtyOTqKs/IjVjZND7GTTaSkxrdxwaiWnxniKW//005u14iO/jj2fkr94jIrrr50a2FDfMet2KNn0X9LaVUv1H8OYjKKXUIcBVX8uILf9hZdg0Jh92TNDadUbGUSADCC/fFLQ2Q2n1V+8y4ONfMMpXwdcTF3DEOTd0Sz9is5EfNoyEqo3d0n5P2rBqKebNX3K4ZwPfJf6QiT99pFuSBIDkAYMoIAVncd++9poxhq/efZbh3/2ByaaCnDG/4rD5v0Ns9m7pb+joabjestOYv6Jb2ldK9Q+aYCmlVIDVr/yZw6hg57wbg952SWQ2SXV9eyXBsuJCNj53E7PK32a3LZ2tZ7zO4dOO7NY+q+PHMH7P23i9Xuz27vli3Z2qqipY/tztHFH4LHUSxYoZdzPjlOCNjrZlV+Qo0qv77ohp3raNFLx0I3Prv2SnYyh7znyK6RO6dk26jsTHRrPRNpSIkkNjxFQpFRo6RVAppfyq8tczYcsjLI2cy5S5pwS9/fqEkWR683G53EFvu7v5PB6Wvno/PDSdGeXvsHzQBaTc+A1juzm5ArANnEC0NJC/vW8lCx63i6Uv/x3XPyZzdNFTrE8+Hse13zGlB5IrgPqUiWT4dtFQ07dWYCwrLuB/D19N2lNHMKnuG5aPvJaMW79jcDcnV01KY0eTXrcZjOmR/pRShx5NsJRSCsAYSp7/GY3GSeI5/wz6uUQAzvRxhIubnX1oJUHjdbP+g0fZ/edJzFz1e4qdGew6732m/9/DRMQk9EgMySP858Vs+LZH+usqj9tFzluPkP/nqcxccwfFzkFsOe0VJl/7IjFJwV3Moj1RQw8DYMfavvG6FRTu5rNHbsTx4DRmFz7PqqQTqLnqW6Zd+P+wOcN7LA5f2kQSqaS8aGeP9dkV9aX5bF68COPzhToUpZSfThFUSilg64cLGV6znLeH3sqpw4O/6ABASvYkWA7F21YwYuzkbukjWIzHxdZPniBm6T8Z6y1gi2Tx7Yx7mXHSpdh6eJpe5pgZNBonnp3fAT/p0b4PRGNDHSveXsjgtY8w3RSSaxvCiiMeYvJxP0ZsPf/3zIxxh8MSqNi6FGad1OP9d9aO3G1sf/suphe/xjHSwJq4OcT98A6mj50ekngShx0GmyFv3f9ITB8akhg6ozRvI/lv/4WxRW8xEg+f523lqIuDc4FvpVTXaIKllOr36ssKSP36T6y0jeO4C2/utn4GjrCSqsbda7utj64ynkY2ffhvEpY9wAhvIRvIZt3kfzD31EsZ4QzNrwxHWATbwoaTUN47l7ivra5k1Zv3M3zzE8yijE2OUSyf+XumHHcBWSE8Z2zAwEyKSMJZuCJkMbRn08a1FLz7N2ZXvEsGHtYlHseAH/6GCaNCk1g1yZpwOO737dRv+xaOvSCksbQmd/0ySt//K5MrPiYGG1/HnUR0XT5zt9zD5y8nctQ5Pw91iEr1e5pgKaX6vW3P/oIRpgHfqf8kMtzZbf04IuMosKUTWdb7pggadwMb3ltI8ooHGe0rZr0MZ+3U+zni5AsZExb6XxXliZOYVPQ6blcjzrCemy7WnoryEta9/nfG7HiGw6lmXdgk9sy7l/FzTg/JiFVLIsLO6IkMqV4Z6lD2sWbFd1R89Ddm1XxKNrAu7VQyT/0NE4eMDXVoAETHxrPBMZz44t5zcWtjDKu+/QTP53/nsPr/McCE8+2A88g85WaOyhqBu76aLfedwtzVv+UTj5tj51/XLdOclVKd0+XfmiLyS+DngBd4xxhzi7/8N1hzObzAtcaYD7ral1JKBdvWr15hfNnHfDTwSn4wbVa391cUO47MytUYY3rFFyCfq5717z7EgJUPM9aUsNY2inXT/8gRJ57PWGfvWbHPMWQmkXteZMv6HEZMnhPSWIoLdrL5zbuZuPsljpB6VkXOovjYmxk34wchjas1dekzSdv6OZW7txI/aHjI4jDG8P03n+JefA8zGr6mUZyszTiPYaf/mslpWSGLqy3FCVOYUfoaxt2AOCNCFofX62P5Z68Q/u19THavppIYlg75KaNOu5E5qXvP53NGxjLsunfY8sDpHLfhD3z8eDHHXvEnbLbQf8Yo1R91KcESkWOAM4DJxphGERngLx8HnA+MBwYBH4vIKGOMt6sBK6VUsDTWVhD78S1slUxmX3xHj/TpGjCFQZWfUly0i9T0jB7pszXexjrWvX0/g9Y8wnhTxmrbWNbP+guHH3824x29J7FqMnD8PMiB4g1fhSzB2r19A3lv/4UpJe8wCw8r444m8cRbmDThiJDE0xkp44+GrXez4/uPmBSCBMvn9ZHz2WuEfXsf09wrqSKaVcOuZNTpNzElMb3H4+ksM+RwIkpfZNeGbxg88ege79/lcpPz/lOkrPgXM3xbKZYkvh9zE+NOv5aZUfGt7uOMjGXk9e+x5l8XcHz+gyx+cA9HXPMwYSGa2qtUf9bVd901wF+NMY0Axpg9/vIzgOf95dtFZAswE/i6i/0ppVTQrH32Fqb4Ssk74QWGR0f3SJ9xw2dYJ9Cv+YrU9Pk90mcgd3016966j8z1/2aiqWClfQIbZt/D7GPPwm4P/bS2tgwcOopiknDuXALc0qN9565bSsn7dzGl8hNSsLEi+WQGn3Ir04ZP7NE4DsbICbOofCMa97avgKt7rF+3x0PO+8+QuPxBZvq2UCKJrBhzI+NOu5Yp0Qk9FsfBypp6LHwPhas/69EEq7a2luVvPczQDY9xBAXk2wazatqfGH/ST0kN63gkzRYWwfhrX2bFYz/j6N3P8/XfCxh11VMkJyX3QPRKqSZdTbBGAfNE5E6gAbjJGPMdMBj4JqBevr9sPyJyFXAVwJAhQ7oYjlJKdc6OlV8wZfeLfJV0JvPmnNhj/WZNOALfe0LNtqVAzyVYrroq1r55L1kbHmMyVaxwTGLzEfcz4+jT+8Q0IrHZyE08nNFln+F2u3A6w7q9z805H1P36d1MrvuGVBPBdwPPZ8TptzJzUFa39x0sYWFO1kZOYGD5d9Z1nbp5WmpDQz3L336EwWsf5XCzi922gayc8kcm/PD/SAmL7Na+gykzcyjbJZPonYt7pL+y8jJWv3EvY3OfYR7lbHOOZN2sBxh7zI/JsB/YVzWx2Zny04WsfWUIM1ffTe4DR1N23rOM7OUrlyp1KOnwXSsiHwOtjeP/1r9/EjAbmAG8KCLDDiQAY8yjwKMA06dP16v6AQ2NLuqqK2isrcDVUIeroZ7Ghjrcrnp87kbwNCDeRsTTiPF5Mcbg8/nA+PAZgzGmudwuAnYHYnNaP+1ObHYH4r8vdgd2e5j10xmG3RmOIywchzOcsPAInM4InOHhhIWFExYWgc0RBr3g5G2lusLr9dH41o2USCLjL/57j/YdEZNAnjOTqJKeWXigoaaCdW/8nezNTzKVKr53TmPL3JuYfuQPe8U5YAfCMeoHxH37DhuWf8qYblp23Ph8rF/yKrYl9zLGtYZyYvnfkP9j3Ok3cnhKWrf02d2qhhzH1E1/pmjzMtK6aYW+6qoKayXFLU9yBKVsdwxjzcx7GX/cJQw6wAShNxARclOPYV7Rs7iri3HGpnZLPwW789j85j1MLniJo6SW9RFTqTzqAUbOPrVrybAI48/5LVszJpP8/tXYnj+JLyf8mjk/+iW2XjxSrdShosNPPWPM8W1tE5FrgFeNMQZYKiI+IAXYBWQGVM3wl/UvxlBXU05J4S6qSgtoqCjCU1WEr6YYW30JzoZSnK5qwrw1RPhqifTVEm3qiJEGQndKbcfcxo5HHLhx4MGBRxx4xYlHnHjFgU+ceG1OfP6bESfG7sTYwjB2J9idYA8De5iV5DnCEHuY9dMRjs0RZiVy9rDmuuJoqh8GDqe/fnhzfbHbsYkNm038P8EmAb9ERDAGwPqFZfy/t5ozekPALzNh30zf7K1oNULgv1axwfh/Yoz1h2JMU3UMvr33m5JgfzRWuVXW1KrxNXfor79vO00RWt0F7Ofv379n834E9N/0dJri2PscfM3Pce/rEvBMA+5LQJ2m/UzgK9f0nJq7b4o38JUNLDP7Hovm+wFt79NnW+3sjbu59j51La6dyzjOs4llU/7EYSGYOlOWNJXRRR9S19BAVET3vNvrq8pZ+/pdjNz2NNOoYXnYdLYffStTD/9Bn0usmgybfTqeb35F5ar3gn5dJ5/Hw5pPniXmu/sY59lGEcn8b+RNTDr9Wo6Ibf2cl75i+LwL8G78C7u/WhT0BKu8pIj1b9zNuLxFzKGGDeETKZ97D2PmnNkrVlLsiohJZ+D4+Gk2LHmJMSf/LKht527dSN47f2N66VvMxc2auHkknnAzYyceGdR+hs8+lfLMzyh8+jLmrb2d5ZvfIOqs+xkzdkJQ+znUeT1u6upqaaivw91Yj8fVgNfVgNddj9fdgM/lv3ka8bkb8Hld+LwefB4vXp8X43Xj83oxPi9iPIjxgs+HGK9133j9v+Os39v+X6H+39WBX08EEESavs3Q/Hlu/RDE/93HiM1faLPqiEBTmdisujbrZ8tt0koZ2Kwf2PzlIGLfu09TH9jAZj222vG3YbM1PxabAHb/07FZMYtY+9hsze0ZsWETAbHjjUwma/hoonrBqrad0dUoXweOAT4TkVFAGFACvAn8V0T+gbXIxUhgaRf76nV8Hg8lu7dQmr+F6qJc3OV52Kt3EVlfQLyriFRfMdE00NrExyqiqZR46u0xuBwxlDsGUBIWiy8sDsLjkIhYCI/FFhaNIywCR3gkzrAI7GGR4GxKLMKtkSexYbPbsNlsVnJh9/8UwYvB5/Hg9bibbz6v21/m/wDwuvF53Pg8Lrxul/UB4XHhdTdiPC58HhfG68J4XOB1gde9z0/xuRGfG5vPjc3nwu5zY/O6sXvc2E09duPGYTzWTzw4A25h/ptNdPBS9aztjmFMO+2akPRtH3EcsXveYNX3nzPp8OBOT6ypKGH963cxOvdZplNLTvgswo79NVNnHtNnE6sm8YnJrIuYwMDdH+L1+oJyzpjH1cDq9/5N6sqHmeTbxQ4ZzP8m3MG0U6/iiIi+M6WtPRmZQ1gRNokB+e+BuSco0wT35G9j61t3ManwVY6QRlZGHU7JcTcx5rA2/ybb5xw26xgKPk7Bs+Z1CFKCtWn1d5R9eBeHVX3CYGBNykkMOuVWJg3rvul7iYNHknDrF3z/6j2MWfMP7M8fxZKUs8g89VaGZnfPRdV7A4/HS3V1FbUVe6ivLMZVXYK7pgRPbSXehmp8DdUYVw02dy12Tx0OTx1Obx3hvjrCfPVE+uqJpJ5I04BDfMQCsd0Vq7HhY9/3Zct3acs//bZWJnDIfp961nMcrv97gimZCaEOpVO6mmA9ATwhImsAF3CpfzRrrYi8CKwDPMDP+/IKgpWlhRRsWUFV/gY8xZuJqNpOUsNOBnkLGCAeBgTULSOeMkcqZRFDKYiejYkdRFh8GpGJ6UQlDSQ2aSDxyenEhUcSF7JnFFrGGFxeHy6Pj1qPj3KvD5fLjdvVgMvViNvViM9tJXOmKbnzuhCv20ryfC7wNFqPfS7E4wafG59/9MZnwGd8zSMhez+AmseMWpTvvb/3A82w78dbwJ+L/HeslvbWafrrERJQRwK3721DCBxds/6RvY20cb9Fm9K81/5lAbHujUECvlcF3G/uR1rcD4i7xfNtfq57n9C+z9PfhhFBWpQb9i8DrLqB8e0NIPBHQJ+ttBPwXPfG0/KxdT9j9OFIiKYuZc/8IZ6vrqdyxVsQpASrqqyIDa/9jbF5/2UG9eREziHy+F8z/bDg/kU81FwTzmfIstv4/n/vMnXeqQfdTmN9NavffJDMDY8x1ZSw2TaMb2f8g8NOuIShzu67FlqoVA8/nSkb/h9bln3EiOknHHQ7Ozd+z573/8aksg+ZgWFlwnGknHgLk8fNDGK0vUOY086WtB9yROEzVOzaTMLgg0tGjM/Hum8/pPHze5nW8A11hLNy0LkMP+1Wpg46oLMqDprY7Ew951aqjzyfDS/+jsOLX8Y8+Qo50XOwTb+ccUecQkQ3jaZ3lTGGugYXFWV7qCnfQ21FMY3VxbirS/HVlkF9GfaGcpyuCiLdlUT7qoj1VZFADYniJrGdtusIp45IGiSSBlsULlskdY4EqhyD8Tii8DqiMc4oxBmJzRmOLSwSmyMCmzMcnBHWH7qdEdidEdicEdjDrG1OZxgOhxOHw4HD6cTpcGB3OHE4nIjNZp2qYXNgszkQmw1HEEZ7jf/7j8cYfD5jzXjx+TD++z6f9dg6pcR/agkGn89r1TFe/8yWpn2s003w+cuMsU5F8fmsGSLN+/v8M3ea2vH5p9f4/Pvh/+lr3gefz/+dbW+7e/cze+sH1BkZNZDslJ5ZjCoYxLQyfSZUpk+fbnJyes+F/b757/8ja9OTpFPSXOYyDgrsAymPHEJ9XDaSNJyotBEkDcomLWMYzoi+c/CVUqGz9m/HkVCfx8Dfb+jSORGVxflsfP0uxu96gWgayIk6kpgTfsOYKb136fCucNVVU3fXWHZGjmXSrR8d8P6VpYVsePt+Rm5/hiSqWOsYT8Ph1zP16HMO6XNTqqsr8fx9PAWRoxh3yycHNIpljGHttx/h/uIfTK37mnoTxsrU0xhy6q0MyhrdjVGH3ratG8l4+nDWpp7C1F88c0D7er1eVn+6iIilDzLGvZ4KYtmc9WPGnP4rYpNCu0R9ad5Gtr//ACN2vUYCNVSbSDbGzsadcThJo48ga9x0wsO7YQTXGOprq6koL6a2fA91lcU0VhXjqbGSJakvw95YTlhTsuStItZUEUddmyMzHuxUSwy1tnjqnXE0OhNxhyfgDU/ERCVii0rGHpNMWEwy4fGpRMUlEx0bT0xMPDZ777skheo7RGSZMabVedeaYLXju9cfxLb1E9ypE4jInETq0ImkDxmB3dE35n8qpXqv799+mKk5v+b7o/7D1GN+dMD779mxnry3/8aEPW/jxMPy2KNJOOk2Rkw49EYSWvrqyf/f3n3HV1XeDxz/fO/I3oORRcIeSdgbFKwDJ1pn69bWWrWOalttq1V/HVatttaqrdWq1SpuqYp1ooICslcYAUISCJCE7HnH8/vjXmIICQnk3tyM7/v1uq/cc85znvNNHk643zzj/IqZeY+TM+efjJpzYYfOyd+yiv0fPkpm6f8IlUbWhkzGesLtZE6f1+OHTnbU4ufvZc6uR9k47REy513bbvnG+lo2fvQcYeueZ6RzC+VEkJN6CcPP/inx/VpdGLhX+uKvP2RWyWsUzF/AoAnt9zhXHtzP5kVPkZz7MqmmiD3Sn8KR1zD27BsJCfPXILPj01hXw/av36Fu47ukH1xKAuUAuIyw35JIqT2JutCBEBKNKzgaQqKw2EOx2ywYLLi9vRPirAdHHe7GWoyjFtNYj81RSZCjklBnJSGuKsLd1USaKoKk7QFNNYRQJVHUWKOot0XTGBSDO8STKFnD4rFFJhASlUBYdCKRcf2IiOmHJTTa76tjKtUaTbCUUqqbcTTUUfGHkRywJzPqriUdXhAgb8NXlH30MNkVn+LEyqqYeQw4/ecMHtl3lmCuq62l6OFpxLlLKb/wTdLHTG21XH11GVs/fQn7plcZ3bCOemNnXdw8Ek+5mcG9cEhbexoa6sl9cC6DXbns/c7jDJl95GMCjNvFrtWfULLiVYYfWEQM1eRLMgdGXkbmWTcREt73BrcXl5ZS+9dZxFBJ9fxnSR5/ZJLlrK8hZ+k7NKx7g6yKzwkWB1vso6kbfy1Zp1yBrQseK9BpxnCgYBt7Ni2lfs8G7JUFRNUVEO0oJsLUEC71HaqmwdhpkCCqJZxaSwS11igabVE4gqMxwTFIWAy2sFhsEQmERCcSHpNARGx/omL7YfNHr5lSfqIJllJKdUMrXn+EKRvvY8XIXzDlkl+2Wa6hrorNHz1P5IYXGOrYSrUJZe2A75Jx1s9ITs3owoi7j13b1hP+n/nEUMmmpAuJzj6DkMgEqksLqSrcREjhUobUrCVEHBQwgIL08xlxxk3E90sKdOgBVViQT92/zmGYexfbwiZSm3oChEbjqCoh6MAGUqrWEU85DcbOpsjpyOQfMHbW2b16+GRHbM1ZT8iCixhEEVsjp1E7YAoEheGs2Ed46QYG1W0inHoqCCcn/hTiT/wxw7KnBTpsn3I6GqmvOkhdXR11DicW3FgAq8WCBIViDw4nPCKSILuO8lF9gyZYSinVDbldLtY9fAZja5ezNu0Khn/3l0TEDgBjqD6Qx+61n+La/C5DKr4inHp2SQqFgy8h64zriYn3z3N5epI9BbvY9crPmV79EdYW8zPyJJk9cdMJn3QxWVNO9smKg73FwcpqVr38fwzf+zaDZF/T/gL6sy8yE9fQ0xh+woXExcYFMMruZ3/pQdb95zeMKvmAVDkAeFZ/22kZRGnsWOxjziZr1lkEB3fPxSKUUr6lCZZSSnVTtTVVrH3qWmZU/Q+AMqIJooFwPMNxSk00W2JmETHp+2TNOKPP9yS0prBoH3tzvsZVX0VQVH+ShoxhwIDkPjO36ng5XW72HdiPs7aSqLh+xMUebb01dYjD5aa8opyG2hoSEvsREhwc6JCUUgGgCZZSSnVjxhg2r/mKA2veJaiqALclCGfsMGKHTmbUxBMIDuoB8zeUUkqpPuRoCZYOlFVKqQATEcZMmMmYCTMDHYpSSimlOknHmiillFJKKaWUj2iCpZRSSimllFI+ogmWUkoppZRSSvlIt1rkQkSKgd2BjqOFBKAk0EGoLqPt3XdoW/cd2tZ9i7Z336Ft3Xd0x7YeZIxp9Zkp3SrB6o5EZGVbK4So3kfbu+/Qtu47tK37Fm3vvkPbuu/oaW2tQwSVUkoppZRSykc0wVJKKaWUUkopH9EEq33/CHQAqktpe/cd2tZ9h7Z136Lt3XdoW/cdPaqtdQ6WUkoppZRSSvmI9mAppZRSSimllI9ogqWUUkoppZRSPqIJ1lGIyDwR2SoiuSJyZ6DjUb4jIqki8pmIbBaRTSJyi3d/nIh8JCLbvV9jAx2r8g0RsYrIGhF517udISLLvff3AhEJCnSMyjdEJEZEXheRLSKSIyLT9d7unUTkNu/v8I0i8rKIhOi93XuIyLMickBENjbb1+q9LB6Pedt9vYhMCFzk6li10dYPeX+PrxeRt0Qkptmxu7xtvVVETgtI0EehCVYbRMQK/A04HRgNfE9ERgc2KuVDTuB2Y8xoYBpwo7d97wQ+McYMAz7xbqve4RYgp9n2H4FHjTFDgTLg2oBEpfzhL8AHxpiRwFg87a73di8jIsnAzcAkY0wmYAUuQe/t3uQ5YF6LfW3dy6cDw7yv64AnuyhG5RvPcWRbfwRkGmOygW3AXQDez2uXAGO85zzh/dzebWiC1bYpQK4xZqcxphF4BZgf4JiUjxhjiowxq73vq/B8AEvG08bPe4s9D5wbkACVT4lICnAm8E/vtgAnAa97i2hb9xIiEg2cADwDYIxpNMaUo/d2b2UDQkXEBoQBRei93WsYY74ADrbY3da9PB94wXgsA2JEZGCXBKo6rbW2NsZ8aIxxejeXASne9/OBV4wxDcaYXUAuns/t3YYmWG1LBgqabRd696leRkTSgfHAcqC/MabIe2gf0D9QcSmf+jPwc8Dt3Y4Hypv94tb7u/fIAIqBf3mHhP5TRMLRe7vXMcbsAR4G8vEkVhXAKvTe7u3aupf1c1vvdg2wyPu+27e1JliqTxORCOAN4FZjTGXzY8bzDAN9jkEPJyJnAQeMMasCHYvqEjZgAvCkMWY8UEOL4YB6b/cO3rk38/Ek1UlAOEcOMVK9mN7LfYOI/ArP1I6XAh1LR2mC1bY9QGqz7RTvPtVLiIgdT3L1kjHmTe/u/YeGFHi/HghUfMpnZgLniEgenqG+J+GZoxPjHVYEen/3JoVAoTFmuXf7dTwJl97bvc/JwC5jTLExxgG8ied+13u7d2vrXtbPbb2QiFwFnAVcar59eG+3b2tNsNr2DTDMuxpREJ7JdAsDHJPyEe8cnGeAHGPMI80OLQSu9L6/Eninq2NTvmWMucsYk2KMScdzH39qjLkU+Ay4wFtM27qXMMbsAwpEZIR313eAzei93RvlA9NEJMz7O/1QW+u93bu1dS8vBK7wriY4DahoNpRQ9UAiMg/P8P5zjDG1zQ4tBC4RkWARycCzsMmKQMTYFvk2GVQticgZeOZuWIFnjTG/C2xEyldEZBbwJbCBb+fl/BLPPKxXgTRgN3CRMablBFvVQ4nIHOAOY8xZIjIYT49WHLAGuMwY0xDA8JSPiMg4PAuaBAE7gavx/EFR7+1eRkTuAy7GM3xoDfADPHMx9N7uBUTkZWAOkADsB34DvE0r97I3yX4czzDRWuBqY8zKAIStjkMbbX0XEAyUeostM8Zc7y3/Kzzzspx4pnksallnIGmCpZRSSimllFI+okMElVJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFKqmxGRdBExImILdCyqbxCRTSIyJ9BxKKVUb6AJllJKqR5PRJ4SkWrvq1FEHM22FwU6vu7OGDPGGLPYH3WLSJyIFIvIEn/Ur5RS3Y0YYwIdg1JK9SoiYjPGODtxfjqwC7B3pp6+SkTuBYYaYy5r5Vin2qYr9aRYj0ZEngZGABZjzKxAx6OUUv6mPVhKKeUDIpInIr8QkfVAjYjYRGSaiHwlIuUisq75ECwRWSwifxCRFSJSKSLviEhcG3VfLSI5IlIlIjtF5Ectjs8XkbXeenaIyDzv/mgReUZEikRkj4j8VkSs7XwfQ0TkUxEpFZESEXlJRGKaHTsoIhO820nenok53u1zvEPNyr3f36gWP587RGS9iFSIyAIRCTn2n/Sxa6NtjIgMbVbmORH5bbPts7w/03JvG2Z38FpzRKRQRH7p/fnlicilzY6fKSJrvG1V4E0GDx07NDT0WhHJBz717n9NRPZ5f25fiMiYFnE/ISKLvL11S0VkgIj8WUTKRGSLiIzv4M/o5I58j8dCRGYAmcC/fF23Ukp1V5pgKaWU73wPOBOIAfoD7wG/BeKAO4A3RCSxWfkrgGuAgYATeKyNeg8AZwFRwNXAo82SnCnAC8DPvNc9Acjznvect96hwHjgVOAH7XwPAvwBSAJGAanAvQDGmB3AL4AXRSQMz4fm540xi0VkOPAycCuQCLwP/FdEgprVfREwD8gAsoGrWg1AZJY3sWnrdTy9IE1t016vkDcheRb4ERAP/B1YKCLBHbzWACABSAauBP4hIiO8x2rwtHuMN54fi8i5Lc4/Ec/P/jTv9iJgGNAPWA281KL8RcCvvddsAL72lksAXgce6WDcrRKRO4/WHkc5zwo8DtwE6HAZpVSfoQmWUkr5zmPGmAJjTB1wGfC+MeZ9Y4zbGPMRsBI4o1n5fxtjNhpjaoC7gYta62EyxrxnjNlhPD4HPgRmew9fCzxrjPnIe509xpgtItLfe61bjTE1xpgDwKPAJUf7Bowxud66GowxxXg+nJ/Y7PjTQC6wHE9i+CvvoYuB97znOoCHgVBgRoufz15jzEHgv8C4NmJYYoyJOcrreObyNG+b9lwH/N0Ys9wY4zLGPI8ncZl2DNe72/sz/BxPon0RgDFmsTFmg7et1uNJSk9sce693jar857zrDGmyhjTgCfZHSsi0c3Kv2WMWWWMqQfeAuqNMS8YY1zAAjzJ9XEzxjxwtPY4yqk3A8uNMas6c32llOppdIUqpZTynYJm7wcBF4rI2c322YHP2ii/23s8oWWlInI68BtgOJ4/jIUBG7yHU/H0FrU0yFtfkYgc2mdpcc0jeBOzv+BJ4CK955S1KPY0sBC4zvuhHzw9XrsPFTDGuEWkAE8vziH7mr2v9Z7TVY76fbcwCLhSRH7SbF8QHY+3zJs0H7L70LkiMhV4AM+wuSAgGHitrVi9CffvgAvx9Ay6vYcSgArv+/3Nzq1rZTuig3H7jIgk4UmwJnb1tZVSKtC0B0sppXyn+TCoAjw9VM3/2h9ujHmgWZnUZu/TAAdQ0rxC77C0N/D0CPX39hi8j2co36HrDGkllgI8vS4Jza4fZYwZ00rZ5n7v/T6yjDFReHrimjI0EYkA/gw8A9wr384b24snMTlUTrzf3552rncEEZkt364A2Nprdvu1HKHlELVaPInqIQOavS8Aftei7cKMMS938FqxIhLebDsNz88H4D94ktNUY0w08BTNfr6txPp9YD5wMhANpHv3tzzHb7zzydpsjzZOm4Knh3OziOzDk7RP8c4lO+o8QKWU6uk0wVJKKf94EThbRE4TEauIhHgXQEhpVuYyERntnc90P/C6d1hXc4d6OYoBp7c369Rmx58BrhaR74iIRUSSRWSkMaYIz1DCP4lIlPfYEBFpORytpUigGqgQkWQ8c7ua+wuw0hjzAzxD357y7n8VONMbhx24HU+C91V7P6iWjDFfGmMijvL68ljrbMVa4PvetpnH4cP0ngauF5Gp4hHuXZwiEpoWlniunfrvE5EgbzJ4Ft/2UkUCB40x9d75c99vp55IPD/HUjwJ4e+P4Xv0CWPM74/WHm2ctghPMjjO+7oHWAOMa+XfuFJK9SqaYCmllB8YYwrw9Dz8Ek9yVIAnWWn+e/ffeBai2AeE4BlS1bKeKu/+V/EM1fs+nh6QQ8dX4F34As+Qsc/5tifpCjwJ2mbvua/j6VU4mvuACd663gPePHRARObjWaTix95dPwUmiMilxpiteHq7/oqnF+5s4GxjTGM71wuUW/DEWA5cCrx96IAxZiXwQzwLNJThmXN2VbNzU4GlR6l7n/e8vXgWpLjeGLPFe+wG4H4RqcKTdLzaTpwv4BliuAdPOy5r7xvrDrzzz/YdeuH59+TwvldKqV5Nn4OllFIBICKLgReNMf8MdCyq47yrIq4Dsr2LebQ8PgdPu6a0PKaUUqpv0EUulFJKqQ7y9siNaregUkqpPkuHCCqlVB8jIk+1sWDBU+2frXoiEUk7ykIVaYGOTymlehMdIqiUUkoppZRSPqI9WEoppZRSSinlI91qDlZCQoJJT08PdBhKKaWUUkop1aZVq1aVGGMSWzvWrRKs9PR0Vq5cGegwlFJKKaWUUqpNIrK7rWM6RFAppZRSSimlfEQTLKWUUkoppZTyEU2wlFKqHbraqlJKKaU6qlvNwWqNw+GgsLCQ+vr6QIeiepiQkBBSUlKw2+2BDkX1YMbt5tlHf0UB/fj1rbdgs+rfpZRSSinVtm6fYBUWFhIZGUl6ejoiEuhwVA9hjKG0tJTCwkIyMjICHY7qwXZu38i1VU8AsGz9SUwbPzbAESmllFKqO+v2f4qtr68nPj5ekyt1TESE+Ph47flUnVaS++3KpiUbPgxgJEoppZTqCbp9DxagyZU6LvrvRvmCu2gjbiPUSSgx+74OdDhKKaWU6uZ6RIKllFKBElmZS4EMpDYijX7VuYEORymllFLdXLcfItgdiAi333570/bDDz/MvffeG7iAmlm2bBlTp05l3LhxjBo1qimuxYsX89VXXx13vbt372bChAmMGzeOMWPG8NRTT/koYqV6lqCGUiqscTjihzPI7KW4oibQISmllFKqG9MEqwOCg4N58803KSkp8Wm9xhjcbnen6rjyyiv5xz/+wdq1a9m4cSMXXXQR0PkEa+DAgXz99desXbuW5cuX88ADD7B3795OxapUTxTqrKAhKAb7gNEEi4N9eTmBDkkppZRS3ZgmWB1gs9m47rrrePTRR484VlxczPnnn8/kyZOZPHkyS5cuBeDee+/l4YcfbiqXmZlJXl4eeXl5jBgxgiuuuILMzEwKCgr42c9+RmZmJllZWSxYsADwJEhz5szhggsuYOTIkVx66aWtPovnwIEDDBw4EACr1cro0aPJy8vjqaee4tFHH2XcuHF8+eWXR43z8ssvZ/r06QwbNoynn34agKCgIIKDgwFoaGhoMxF87LHHGD16NNnZ2VxyySUAHDx4kHPPPZfs7GymTZvG+vXrm6515ZVXMnv2bAYNGsSbb77Jz3/+c7Kyspg3bx4OhwOA+++/n8mTJ5OZmcl11113xPftdrtJT0+nvLy8ad+wYcPYv3//0ZpRqeMS5qrCGRxDZGomAFWFmwMckVJKKaW6sx41B+u+/25i895Kn9Y5OimK35w9pt1yN954I9nZ2fz85z8/bP8tt9zCbbfdxqxZs8jPz+e0004jJ+fof+Hevn07zz//PNOmTeONN95g7dq1rFu3jpKSEiZPnswJJ5wAwJo1a9i0aRNJSUnMnDmTpUuXMmvWrMPquu222xgxYgRz5sxh3rx5XHnllaSnp3P99dcTERHBHXfcAcD3v//9NuNcv349y5Yto6amhvHjx3PmmWeSlJREQUEBZ555Jrm5uTz00EMkJSUd8b088MAD7Nq1i+Dg4KaE5ze/+Q3jx4/n7bff5tNPP+WKK65g7dq1AOzYsYPPPvuMzZs3M336dN544w0efPBBzjvvPN577z3OPfdcbrrpJu655x4ALr/8ct59913OPvvspmtaLBbmz5/PW2+9xdVXX83y5csZNGgQ/fv3b7cdlTomxhBlqnCHxJKYNgKAxpKdAQ5KKaWUUt2Z9mB1UFRUFFdccQWPPfbYYfs//vhjbrrpJsaNG8c555xDZWUl1dXVR61r0KBBTJs2DYAlS5bwve99D6vVSv/+/TnxxBP55ptvAJgyZQopKSlYLBbGjRtHXl7eEXXdc889rFy5klNPPZX//Oc/zJs3r9VrHi3O+fPnExoaSkJCAnPnzmXFihUApKamsn79enJzc3n++edb7SHKzs7m0ksv5cUXX8RmszV9T5dffjkAJ510EqWlpVRWehLj008/HbvdTlZWFi6XqynerKyspu/vs88+Y+rUqWRlZfHpp5+yadOmI6578cUXN/X2vfLKK1x88cVH/ZkrdTwcdRXYxYUJjSU4MpFaQrCU5wc6LKWUUkp1Y53uwRKRVOAFoD9ggH8YY/4iInHAAiAdyAMuMsaUdeZaHelp8qdbb72VCRMmcPXVVzftc7vdLFu2jJCQkMPK2my2w4bVNX8eU3h4eIeud2iIHniG/zmdzlbLDRkyhB//+Mf88Ic/JDExkdLS0iPKtBUnHLmcecvtpKQkMjMz+fLLL7ngggsOO/bee+/xxRdf8N///pff/e53bNiwoUPfk8ViwW63N13LYrHgdDqpr6/nhhtuYOXKlaSmpnLvvfe2+iyr6dOnk5ubS3FxMW+//Ta//vWvj3pdpY5HXUUJdsAdEgciFNsGEFpTGOiwlFJKKdWN+aIHywncbowZDUwDbhSR0cCdwCfGmGHAJ97tHi0uLo6LLrqIZ555pmnfqaeeyl//+tem7UND4dLT01m9ejUAq1evZteuXa3WOXv2bBYsWIDL5aK4uJgvvviCKVOmdDim9957r2mO0vbt27FarcTExBAZGUlVVVW7cQK888471NfXU1payuLFi5k8eTKFhYXU1dUBUFZWxpIlSxgxYsRh13a73RQUFDB37lz++Mc/UlFRQXV1NbNnz+all14CPHPJEhISiIqK6tD3cyiZSkhIoLq6mtdff73VciLCeeedx09/+lNGjRpFfHx8h+pX6lg0VHkXtgmLBaA6NIW4Rl3sRSmllFJt63SCZYwpMsas9r6vAnKAZGA+8Ly32PPAuZ29Vndw++23H7aa4GOPPcbKlSvJzs5m9OjRTcuZn3/++Rw8eJAxY8bw+OOPM3z48FbrO++888jOzmbs2LGcdNJJPPjggwwYMKDD8fz73/9mxIgRjBs3jssvv5yXXnoJq9XK2WefzVtvvdW0yEVbcYJnmN/cuXOZNm0ad999N0lJSeTk5DB16lTGjh3LiSeeyB133EFWVhYAP/jBD1i5ciUul4vLLruMrKwsxo8fz80330xMTAz33nsvq1atIjs7mzvvvJPnn3++rfCPEBMTww9/+EMyMzM57bTTmDx5ctOxp5566rC4L774Yl588UUdHqj8xlHl6Q2WsDjPdlQaA80BauodgQxLKaWUUt2YtLYy3XFXJpIOfAFkAvnGmBjvfgHKDm23OOc64DqAtLS0ibt37z7seE5ODqNGjfJZjOpw995772GLYfQ2+u9HdcbuL15i0Kc38PWp/2X6jBPY+OYfyVz/e7ZdsYbhgwcHOjyllFJKBYiIrDLGTGrtmM8WuRCRCOAN4FZjzGFL/RlPFtdqJmeM+YcxZpIxZlJiYqKvwlFKqU5z1nsWgrGHRQIQ2s+TVJXvyQ1YTEoppZTq3nyyTLuI2PEkVy8ZY9707t4vIgONMUUiMhA44ItrKd+69957Ax2CUt2Wq8GTYAWFRgAQkzwUgLoDOwIWk1JKKaW6t073YHmH/z0D5BhjHml2aCFwpff9lcA7nb2WUkp1JVd9DQAhYdEAxCUNA8BdtrvNc5RSSinVt/miB2smcDmwQUTWevf9EngAeFVErgV2Axf54FpKKdVlTGM1biOEhnkerSDBEZQTha2yIMCRKaWUUqq76nSCZYxZAkgbh7/T2fqVUipgGmuoJZjQ4G9/VR609ye8TpdqV0oppVTrfLbIhVJK9TqNNdQSQnjQtwlWbWgSsY79AQxKKaWUUt2ZJlgd9PbbbyMibNmypc0yeXl5ZGZm+uyaW7duZc6cOYwbN45Ro0Zx3XXXAZ6HBL///vvHXW99fT1Tpkxh7NixjBkzht/85je+ClmpXsXi8PRghdi//VXpjExmgCmmrsEZwMiUUkop1V1pgtVBL7/8MrNmzeLll19u9bjT2fkPWy6X67Dtm2++mdtuu421a9eSk5PDT37yE6DzCVZwcDCffvop69atY+3atXzwwQcsW7asU7Er1RuJs456QvCs5eNhiU0jVBop2qfDBJVSSil1JE2wOqC6upolS5bwzDPP8MorrzTtX7x4MbNnz+acc85h9OjRgCfRuvTSSxk1ahQXXHABtbW1AHzyySeMHz+erKwsrrnmGhoaGgBIT0/nF7/4BRMmTOC111477LpFRUWkpKQ0bWdlZdHY2Mg999zDggULGDduHAsWLKCmpoZrrrmGKVOmMH78eN55x7Ng43PPPcf8+fOZM2cOw4YN47777gNARIiI8Cw77XA4cDgch32APOS1114jMzOTsWPHcsIJJwCe3q+rr76arKwsxo8fz2effdZ0rXPPPZdTTjmF9PR0Hn/8cR555BHGjx/PtGnTOHjwIABPP/00kydPZuzYsZx//vlNP5/mpk2bxqZNm5q258yZw8qVKzvcXkr5itVZS72EHrYvNDEDgLIiXapdKaWUUkfyyXOwusyiO2HfBt/WOSALTn/gqEXeeecd5s2bx/Dhw4mPj2fVqlVMnDgRgNWrV7Nx40YyMjLIy8tj69atPPPMM8ycOZNrrrmGJ554gptuuomrrrqKTz75hOHDh3PFFVfw5JNPcuuttwIQHx/P6tWrj7jubbfdxkknncSMGTM49dRTufrqq4mJieH+++9n5cqVPP744wD88pe/5KSTTuLZZ5+lvLycKVOmcPLJJwOwYsUKNm7cSFhYGJMnT+bMM89k0qRJuFwuJk6cSG5uLjfeeCNTp0494vr3338///vf/0hOTqa8vByAv/3tb4gIGzZsYMuWLZx66qls27YNgI0bN7JmzRrq6+sZOnQof/zjH1mzZg233XYbL7zwArfeeivf/e53+eEPfwjAr3/9a5555pmmnrlDLr74Yl599VXuu+8+ioqKKCoqYtKkVh+UrZRf2Zy1NFpCDtsXPdDzsOGa/TuBuQGISimllFLdmfZgdcDLL7/MJZdcAsAll1xy2DDBKVOmkJGR0bSdmprKzJkzAbjssstYsmQJW7duJSMjg+HDhwNw5ZVX8sUXXzSdc/HFF7d63auvvpqcnBwuvPBCFi9ezLRp05p6vpr78MMPeeCBBxg3bhxz5syhvr6e/Px8AE455RTi4+MJDQ3lu9/9LkuWLAHAarWydu1aCgsLm5KwlmbOnMlVV13F008/3TR8ccmSJVx22WUAjBw5kkGDBjUlWHPnziUyMpLExESio6M5++yzAU/PW15eHuBJwmbPnk1WVhYvvfTSYT1Vh1x00UW8/vrrALz66qtccMEFrf58lPI3u6uORuvhPVjx3ocNOw/mByIkpZRSSnVzPasHq52eJn84ePAgn376KRs2bEBEcLlciAgPPfQQAOHh4YeVbznUrrWhdy21rKO5pKQkrrnmGq655hoyMzNbTYSMMbzxxhuMGDHisP3Lly9vN56YmBjmzp3LBx98cMQCHU899RTLly/nvffeY+LEiaxateqo30dwcHDTe4vF0rRtsVia5qhdddVVvP3224wdO5bnnnuOxYsXH1FPcnIy8fHxrF+/ngULFvDUU08d9bpK+UuQuw6n/fAEyxoWSy0hWPRZWEoppZRqhfZgteP111/n8ssvZ/fu3eTl5VFQUEBGRgZffvllq+Xz8/P5+uuvAfjPf/7DrFmzGDFiBHl5eeTm5gLw73//mxNPPLHda3/wwQc4HA4A9u3bR2lpKcnJyURGRlJVVdVU7rTTTuOvf/0rxhgA1qxZ03Tso48+4uDBg9TV1fH2228zc+ZMiouLm4b81dXV8dFHHzFy5Mgjrr9jxw6mTp3K/fffT2JiIgUFBcyePZuXXnoJgG3btpGfn39EYnc0VVVVDBw4EIfD0VRPay6++GIefPBBKioqyM7O7nD9SvlSkLsOpzXs8J0ilNr6E1qri1wopZRS6kiaYLXj5Zdf5rzzzjts3/nnn9/maoIjRozgb3/7G6NGjaKsrIwf//jHhISE8K9//YsLL7yQrKwsLBYL119/fbvX/vDDD5sWmTjttNN46KGHGDBgAHPnzmXz5s1Ni1zcfffdOBwOsrOzGTNmDHfffXdTHVOmTOH8888nOzub888/n0mTJlFUVMTcuXPJzs5m8uTJnHLKKZx11lkA3HPPPSxcuBCAn/3sZ2RlZZGZmcmMGTMYO3YsN9xwA263m6ysLC6++GKee+65w3qu2vN///d/TJ06lZkzZx6W1C1cuJB77rmnafuCCy7glVde4aKLLupw3Ur5WrCpx2ULO2J/dcgAYhr3BSAipZRSSnV3cqjXozuYNGmSablaXE5ODqNGjQpQRD3bc889d9hiGH2R/vtRx83thvtjWRR/Jaf/5LHDDq176hrSiv5H+N0FBNn071RKKaVUXyMiq4wxra7Cpp8MlFKqNQ7PIwSM/cg5khKTSqxUs6+4pKujUkoppVQ3pwlWL3bVVVf16d4rpTrFm2ARdOQQwZCEQQCU7sntyoiUUkop1QP4PcESkXkislVEckXkzuOpozsNY1Q9h/67UZ1hGmsAkFYSrKgBQwCo2r+rS2NSSimlVPfn1wRLRKzA34DTgdHA90Rk9LHUERISQmlpqX5YVsfEGENpaSkhISHtF1aqFQ211QBYgiKOOBaX5EmwGkt3d2lMSimllOr+/P0crClArjFmJ4CIvALMBzZ3tIKUlBQKCwspLi72U4iqtwoJCSElJSXQYageqqG2khDAGnxkD1ZQTBIObEhFYdcHppRSSqluzd8JVjLQ/GmchcDUY6nAbreTkZHh06CUUqo9DXWeHixrSCsPArdYKLUmEFyzp4ujUkoppVR3F/BFLkTkOhFZKSIrtZdKKdVdNHoTLHvIkUMEASqDBxKlz8JSSimlVAv+TrD2AKnNtlO8+5oYY/5hjJlkjJmUmJjo53CUUqpjnHVVQNsJVkN4Ev1cB3C63F0ZllJKKaW6OX8nWN8Aw0QkQ0SCgEuAhX6+plJKdZqz3rOKoD209QSL6DT6Ucb+8qoujEoppZRS3Z1fEyxjjBO4CfgfkAO8aozZ5M9rKqWULzgbPAlWSFhUq8ft8YOwiKFkjy7VrpRSSqlv+XuRC4wx7wPv+/s6SinlS+4Gzxys4LDWe7CiBngW36nYtwOyx3VVWEoppZTq5gK+yIVSSnVH7sZaXEYIDT1ymXaA+OShADSU6LOwlFJKKfUtTbCUUqo1jbXUEkJ4sL3Vw8FxabgRKC9o9bhSSiml+iZNsJRSqhXiqKWOYEKDrK0XsAVRZokjqFqfhaWUUkqpb2mCpZRSrfEmWEG2tn9NVgQNILKhqAuDUkoppVR3pwmWUkq1wuqspV5CjlqmPmwg8c79uN2mi6Lqeg6ni09efJD333oJY3rv96mUUkr5it9XEVRKqZ7I4qxrN8FyR6UwoHQxJVV19ItufTGMnu6bBb/nO7kPA/BZaAhz550f4IiUUkqp7k17sJRSqhU2Vy0Oy9ETLFvcIILFyb6iXrrQhdtNeu6L7LQNpVTiiFn5l0BHpJRSSnV7mmAppVQrbK56HNbQo5YJ7z8YgMq9uV0RUpfL3/QVSWYfRSOvYnf6hYx1rGd3fl6gw1JKKaW6NU2wlFKqFXZ3Ha52EqzYlOEANBzonQlW8YZPAMiYdhbJMy7CIoa8r94IcFRKKaVU96ZzsJRSqhXB7nqctqPPq4roPxQXgpTt6qKoulZY0TLyGMig5HSEdMqIxl74daDDUkoppbo17cFSSqlWBJt6jO3oPVjYgjhg6Udo1e6uCaqL9avZSkHoKEQERCiMzCa1en2vXjUR4MPXnmLx785iyafvBToUpZRSPZAmWEop1ZIxhNCAsbe/MmBZcAqx9b1vkQt3dSnx7lLq40Y17XOlTCWV/eTl7QhgZP614ZsvOHnjncxxfMmYz39EYUF+oEPyu4rqet577VmWLV8a6FC6zIGKGvL2lwU6DKVUL6UJllJKteRswIobCQpvt2hNRBoDXXt73TOi9ueuBiAoObtpX+LoEwEoXP9ZQGLqCo4v/kS1hLHv/LeJlSp2LvpzoEPyK2MMa5+4jDM33cbE989m5dIPAx2S323O2UT9I+NJfGIEXy58NtDhKKV6oU4lWCLykIhsEZH1IvKWiMQ0O3aXiOSKyFYROa3TkSqlVBdxNtR43nQgwTKxg4mWGkqK9/k5qq51cNcaAPoNGd+0L2nUVOoJQgqWByosv6quLGN05VI2JZzOgKy5bAidzIi9b+N0ugIdmt+sW7GYE2s/Irf/6ZRZYgn/5Fe97o8FzRljqHnrNvpJGTXWaLJX/5rKg/sDHZZSqpfpbA/WR0CmMSYb2AbcBSAio4FLgDHAPOAJEbF28lpKKdUlamuqALAGtTMHCwgb4FlJcP+uzX6Nqau5ijZy0ESQkTGkaZ/YgtkdNJz48g0BjMx/tix5mxBxEDP5Qs+OMefSn1I2rP4qsIH5Ue3Xz1JHECmXP0nhmB8xyr2NnJW9t4cyZ/M6JjcuZ8uQa6k89wWiqWHju38LdFhKqV6mUwmWMeZDY4zTu7kMSPG+nw+8YoxpMMbsAnKBKZ25llJKdZX6mgoArCGR7ZaNTxsJQOXerX6NqauFV2wl35ZBSNDhi81WxmUx2LmDhsaGAEXmP85dS6g1wQwbPxeAoTPOA6Bi/buBDMtv6hsaGFP2CVtiTiQkIpYRp/6ARmOlZMVrgQ7Nb0qXvoDbCINPvYGh2dPZbM8kJU8fPaCU8i1fzsG6BljkfZ8MNJ/1XejddwQRuU5EVorIyuLiYh+Go5RSx6ehyjP53RIW027Z/mkjcBvBWdyLFn5wuxnYkEd55PAjDtlTJxAiDnbnrA5AYP6VcHA1u0JGYQsKBiA0Lpmd9qEkFn0R4Mj8Y/uqT4mWGqyjzwEgPCqO3LBxDCr5vFcOEzTGMKDoE7aHjCGqfxoAlYPPIM1dyO7t6wMcnVKqN2k3wRKRj0VkYyuv+c3K/ApwAi8dawDGmH8YYyYZYyYlJiYe6+lKKeVzjTWeBMvWgQTLEhTKAUsi9ore8yysqn25hFGP6TfqiGP9RkwH4OD2FV0dll9VlB8kw7mL6n6TD9tfOnAOI505FPeyOXYAtZv/h8NYSZ96VtO+mvRTGGT2kL+99w0D3bUrl2Emj9r0U5r2Zcw4H4C9K94JVFhKqV6o3QTLGHOyMSazldc7ACJyFXAWcKn59k9ee4DUZtWkePcppVS35/AmWEERcR0qXx6SQnRd71mqvWjbKgAi08cdcWzg4NFUEQpFvasHK2/tZ1jFEDF89mH7Y8Z8B6sYdq/5NECR+U/0/uXk2ocRFf3tv/Pkqd8FYN83bwcoKv8pXPMRAAPHf7vuVv9BI8mzpBJd8HGgwlJK9UKdXUVwHvBz4BxjTG2zQwuBS0QkWEQygGFA7/pzp1Kq1zqUYIVHdyzBqo8axADXXhwutz/D6jI1+etwGyF1xIQjjonFSn7QcOIqeteiHrXbv8RpLGSMP/Gw/YOyT8BhrDTs7F0LXdRVVzKkcStliYdPj05KH8FuSSGk8MsAReY/kreEKsIYMPzw77kg4QSG1W2gsbYyQJEppXqbzs7BehyIBD4SkbUi8hSAMWYT8CqwGfgAuNEY03vXuVVK9SrOmnIAIqPjO1TeEj+EOKmmcG/v6Ki3lWxmj/SnX1zrCWZVXCbpjp04Guu7ODL/iSpeyS77EMIiYg7bHxQaQV7QUGJKe1eP3Y41n2IXF+Ej5hxx7EDcRAbXbsDpcHR9YH7idhsGVa0iP3IcWA5f1Dh0xEnYxcWO1b2vl1IpFRidXUVwqDEm1Rgzzvu6vtmx3xljhhhjRhhjFh2tHqWU6k5MfQX1xk5UZPurCAKEJY8GoGTXRn+G1WXiqrdTFDIEEWn1uC11IkHipHDLqi6OzD8a6msZ0rCF0viJrR4vi5/AkMZt1NfXdXFk/lO95TOcxsKQCScdccySPp1IqSMv55sAROYfubnbSGMfztRZRxwbNvEkXEao2PJ5ACJTSvVGvlxFUCmlegWpr6CScELsHXt8X7+MLABq927yZ1hdwlVfzUBXEbVxRy5wcUi/EdMAKN3eOx44vGv9UkLEQfDgma0eDxk8gxBxsHN97xkmGHNgBTvsw4iIij3iWPLY7wBQsmlxF0flP3vXeedfjTvliGPRMXHssA0l6sDKrg5LKdVLaYKllFItWBoqqJXwDpePGjCEOoKwlGzzY1RdY+/21VjEYE8e22aZlIxRlJsIZO+aLozMf8q3eJZhTxt3ZG8OQOpYz3Oxyrf2jnlJtdXlDGncysHEqa0eH5A2nCISCNqzrIsj8x/r7i+pJIJ+Qye1erwkbgJDGnJwNvSeXkqlVOBogqWUUi3YHZXUWSM6foLFyj5bChFVPf9ZWAd3eOYaJQ4Z32YZi9VCXvBwYit6fo8dQGjRCvItycT3T2n1eGz/VPbKAEKKeseQuR2r255/dUhB5DgGVa/DuHv+wi0utyG9eg0FUePB0vrHHtvgWQSLg90blnRxdEqp3kgTLKWUaiHYWUmdLeqYzikPH0z/ht1+iqjrOIs2UG1CGTSk7SGCAJWxmaQ68nA19uy/+LudTjLqNrAvuu2EEmBv1FgG1W7oFQlHzZbPcBgrQyZ+p80yrpRpxFPO/ryev1rktm2bSWU/7kFHzr865FDvZZnOw1JK+YAmWEop1UKUs4w6e8eWaD/EETecJIqpqCjzU1RdI7wsh3x7BsF221HL2VInYhcXe7f27F6dvJwVRFED6W1/+AYwKVOIp4LCXVu6KDL/iT2wnB1BIwiPjGmzTMIYz7DIovU9f2W9onWeZ1wltTL/6pABA1PYKamE7u0d8wqVUoGlCZZSSjVnDNGmHEdowjGdFpLk6fHZm7vOH1F1CbfTQVpDLhUxo9st22+kZ6GLsh6+0MWBDZ8AkDah7Q/fAIljPA8gLtrYs3s4KsoOMsSxnYr+rc+/OiRj5HjKTCQm/+suisx/QvI/p1yiiM9or5dyHOm1GzAuZxdFppTqrTTBUkqpZpw1ZQThhPDEYzovMSMbgLLdPXde0p6tKwmTBkid0m7Z9PRhlJhoTA9f6CKo8Gv2yAAGpA49arm04ROpJhR3fs9e+GH7yo+wiZuY0a0v6HGIzWZlR2gm/ct7dvs6nE5GVH/D7phpbc6/OsSkTSecOvZv7x2PH1BKBY4mWEop1Ux5iedhwbao/sd0Xv9Bo3EYK679Of4Iq0uUbvGsktdv9IntlrXZrJ6FLsp7bkLpdDgYXLOOopgJ7Za12GzkhYwioXx9F0TmP3XbPPOvBrfy/KuWagdMJtldRFVJYRdE5h9b1iwlXiph6Mntlu2f5RkWeaAXLU+vlAoMTbCUUqqZiuK9AITGDjim8yz2IPbZkgipyPVHWF2jYAX7TByDMoZ1qHhlbCbJzt2Yhmo/B+YfO9Z9QYxUYx06t0PlaxInkuHcRWXFQT9H5h/GGAaVfM620HHYQ9pfJTN6xAkA5K/9zN+h+U3xmvcAGDr9nHbLDhk6iiITjxT0/GGRSqnA0gRLKaWaqT5YBEBEXNIxn1sePph+9Xk+jqjr9K9YR0F4JjZbxx6wbE2ZgBXD/m098wGt5WsW4jQW0qed26Hy4UNnYBVD3rqe+Tys7ZtXk2b2Uj/ktA6VHzp2JvXGTv2Onrl0uTGGxKLF5AUNIzxuYLvlrRZhV3g2yRVrwRj/B6iU6rU0wVJKqWYc5Z4hgjH9U4/93PgRpJh9lJT1vJUEi/K3M9AcwJXS/vyrQ/oN9yyUcLAHLnRhjCGhaDHbgjOJje/XoXMGjT0BtxGqc5f6OTr/2LPsDQCGzLqoQ+XDw8LYbh9JTEnPnJO0bVsOWWYrVRmnd/ic+qSpxJkyqoq2+zEypVRvpwmWUko1I+UF1Jpg4hOObYggQFjqWKxi2LOt5y0MsHfF2wD0n3BWh88ZPGQo+0wsZu9qP0XlPztycxjizqMu4+irBzYXGZNAvjWV8AM97/s1xtB/z4fk2YcRMzCjw+eVJ0xkUOMOGmsr/Ridf+z76mUAUmZf2uFz4kZ65h8WrP3ELzEppfoGTbCUUqqZoJpC9klih4fJNddv6EQAKvN63lLtIbs+Ip8BpA8f2+Fzgm1WdgUNJ6YHLnRR9OW/AciY3bHenEOKY8aSUbcZl8vlj7D8ZtvGbxjt3k750PnHdF7o0JnYxE3eui/8FJl/GGPoX/A+O+zDiE0Z2eHzRmZPptyE49j1lR+jU0r1dj5JsETkdhExIpLg3RYReUxEckVkvYi0v0STUkp1A+G1eykPOvbeK4DY5GHUEYwc6FkJR31NJUOrV5MXNxtpZynrlqrjshjoLMRdV+Gn6HzPuN2kF7zNlqBM4o7hwzeApE0lSmrYvbVn9VKWLvkXDmMl46Srj+m8jPFzcRuhYmvPSrA2rFrCSHcu1cPOO6bzQoLsbA8eQ8LBnjksUinVPXQ6wRKRVOBUIL/Z7tOBYd7XdcCTnb2OUkp1hXjnfurDk4/rXLHaKLRnEF251cdR+dfWpW8TLA6ix519zOcGp03EgqFoS8+Zh7Vl5Sekmr2Ujzi23iuAAWM8K+sVb+45C13U1tYwYv97bIqYTnRiyjGdGx+fyE5rOuH7vvFTdP5R8+UT1BHMiHnXH/O5Vf0nk+zaQ31ZkR8iU0r1Bb7owXoU+DnQfMmd+cALxmMZECMi7S/ho5RSAVRbUUI01ZiYQcddR0XUcFIad2Hcbh9G5l+2tS+ynzhGT+/4YgCHpIyeDkBpD1roouaLJ6ghhOxTrzjmc5OHZFFOBBSu8ENk/rHuvb8TTwVhM394XOcfiBlPev0m3E6HjyPzjz17Chlf/hGbE+YREhV/zOdHDvMk0bvXfurr0JRSfUSnEiwRmQ/sMca0nHCQDBQ02y707mutjutEZKWIrCwuLu5MOEop1Sn7d3geImsfcGzDxpoz/ccQK1XsLczzUVT+VbpnB6NqVrBt4DnY7UHHfH76oHT2mgTY2zOGzBXt3MT4qs9YP/ACwiJjj/l8sVjYHZbJgIqe8cDhhsYGUjf/nVzbUIZNa/9ZUK2xpE8njAbyc3pGUrnznd8ThJO0M356XOcPGz+LemOndnvP6KXcuHkjbzz0Iw6Wlwc6FKWUV7sJloh8LCIbW3nNB34J3NOZAIwx/zDGTDLGTEpMTOxMVUop1SlVBRsBiE7LOu46ogaNA2D/9p4xh2PHB48DkPqdYx9KBWCxCIVhI0mo3OzLsPwmf+FvcWJjyNm/OO466vpPYpAp5OCBvT6MzD9WvfMEKWYfDdNvO+b5dYekjPU8iLlkU/d/4HB+3g4m7X+NdbGnkjh43HHVERMZwVbbCKKLu/897HYbGl79IefXvMLX/7ydvWW1gQ5JKUUHEixjzMnGmMyWL2AnkAGsE5E8IAVYLSIDgD1A84fIpHj3KaVUt9WwL4d6Y2fQ4OPvwUoZMQmA2oLuv5JgTXkxowpeZk34TNKHjjruehoSx5LkLqK2osSH0fnejvVLmFy2iLUDvku/pLTjridqhGcIWX43X8q7rLSYkZseYat9NKPnfv+460lOG8pe+mHb072HgRpj2Pvaz7DhIvX8+ztVV1nCBNIac3HWde/l6ZcuepGJeP64cWb16+Q9egpPvfYeJdUNAY5Mqb7tuIcIGmM2GGP6GWPSjTHpeIYBTjDG7AMWAld4VxOcBlQYY3S2qFKqWwsv20y+bRAhwcc+VK6pjpgE9ksC9pLu36Oz6Y3fE0kdoaf+ulP1hGd4ksrdG7rvA3hdTieOhXdQLpGMvPj3napr8NjZ1Bs7jTu698p6OS/+lBhTRfA5fzru3isAEaEwciypVevBmPZPCJAVHy5gWs0nrMu4loTU4/8jCUDQ4FnYxE3Bus99FJ3vFZeUMOSbeymwpuH+5X4OznmA8bY8frDxMt556FoWrt4d6BCV6rP89Rys9/H0cOUCTwM3+Ok6SinlG243afXbKIka0+mqDoQNJaFmuw+C8p+iXZvIzv83KyNOYvS46Z2qKz1rJgAVO7vvSnMrXvoNI5057JrwS6LjEjpVV0hoGNuDxxBfstJH0fneig9eZEbZQlYlX0p61oxO1+dMmUo85ezP656PICjI38WQr39OgTWVcd/rXO8VwJDxJ+EyQtmW7plguVxutj/7A/qbUizzH8MSFELcnB8Tevs6asdcwrXyX2Lf+j7//LR7tpdSvZ3PEixvT1aJ970xxtxojBlijMkyxnTf/4WUUgo4kL+ZCGpxDxzf6boa4keT5t5DZXW1DyLzPbfLRekrN+DARtLFf+p0fXEJ/SmUAdj3r+18cH6w8esPmLTzSVZFzGHCWT/ySZ3VA6aQ4dxFxcHutzhT7uY1jPz6Z+y0DWbclQ/7pM7E7FMA2Lvmfz6pz5fqamspe/5SwqnDfskL2IJDO11n/36JbLcOJbKoez5wePEL9zGj9jM2jfgJydlzvz0QnkDURU/iPOuvzLRuIvmzW/jv2oK2K1JK+YW/erCUUqpHKVy3GID+o2Z2uq7QlGzs4mL31rWdrssfVv7nXjIb1pKT9TOSUgf7pM4DkaNJqdnU7Zanz8/dRNL/fsB+S3+GXvvPTg2Vay565FwsYti56kOf1Ocr+/fkEfzq93CKjYgrXsHug2QDYMjwbIqIx7Kre/XoNDY62PT4RWS7NrFr+h8YMGyCz+renzCNjPocHLXlPqvTFz5/40nm5v2FjVEnkHXJva2WsU26Avcpv+V06zdse+sB9pTXdW2QSvVxmmAppRTgzltKGZEMHj2x03X1H+apo3zn6k7X5WsbP3+DCbmPszJ8DpO/e5vP6nWlzqA/BynY2X3mnhXt3krQS/OxYrBcuoDoWN+tVDtkwok0GDv127vPPKz9e/Op/+eZxJuDVM5/gX5pI3xWt8VqIS9qMulVqzAup8/q7QyHw8HKxy9nUu2XrB55B6NP+4FP6w8d+R1s4iZv1Uc+rbczlrz7AtPX/4rc0ExG3rgAsVjbLGubcSO1Q07nRhbwt9cWdWGUSilNsJRSyhhSyr9hV1g2VmvbH1g6Kj5tNHUEw77utZJg7urPGPzpj8mzpjPyR//yWW8OQL+s7wCwb93HPquzMwp3bMY8dxZhppYD575C0tBsn9YfHBLOjuBRxJd2jxHwe3bmUP/0PBLdxew+/XnSx89t/6RjZDJOJJpqCnMCv5pgbW016x49lxmVi1id/kMmXHK3z68xfNJ3qDNBVG/uHv+mFy/4M9O+uYWC4KGk3fAOtuCwo58gQti5f0bsIZyS/2eW5nbvVT6V6k00wVJK9XnFO1YzwBRTk3aST+oTq438oKHEVXSf3pxtqxeTuPBSSi1xRP7gHSKi4nxaf9rwcRwkCskP/EqC67/+iLB/n0a4qeHA/FcYNm62X65TNXA6Q507KCvZ55f6O2rT8o8JeeE0Ykw5e856kVHTTvfLdQZNOgOA/esCOw+rcPcO8v50MpNql7B61M+YcJVv5pm1FBMVRU5QJgnFgZ2H1djo4PO/3cCcnN+wPXwCqbd+TEhUfMdOjhyAZfZPmWtdx8KFr2O68SqQSvUmmmAppfq8vcvfwG2EgVO+67M6K2PHkOHYgcPh8Fmdx2vt4rdIfuciaiQCy+Vv0b8Tz4Bqi1gs7AofT1rl6oAt5W3cbr567RGGf/A96iSM6ss+YOj4E/x2vejM07CIIW/Fe367xtG4XW6+evE+hr1/EQ0SStWlixg2+VS/XS85NZ2dkkZowRK/XaM933z+LiH/mku6aycbZ/yFCRd37hED7SkfMINUZz61JYFZKGLv3kI2P3wKJxa/xJp+32X4be8TFBZ1THXYp19PXXAi55U/x5fbtRdLqa6gCZZSqs+LyvuQzdbhDMnI8FmdluQJhEkDBdvX+qzOY2XcblYu+ANjPruW/baBBF33EcmDj/+Bwu1pSJlBf1PCvvytfrtGW6ory1jzlwuZsek+doRmE/2TxST7eFhgS0PGnUCFCce1veuHkBUfKGLtQ6czI/cRNkdMI/zmJaQMG+v36xbFT2VI3Xoc9V27QmZDQz1Lnv4p4z+9nAZLOBWX/o/MU6/y+3VjMz0Ja9437/r9Wi0t/+hVbP+YxaiGjawd/1vG3/AvrPbgY68oKAz77JuZZslh0Yc6F0uprqAJllKqT6s6kEeGYzsHkk9GRHxWb8LwKQAUbwvMfJXq6kq++fPFTMp5gA1hU+h382ckDBzk12smjTsZgN0ru3YIWc7KTzn46AzGln/CkrTrGfmzj4iIG+j369rtdnIjJpFWtqxLV09c99FL8MR0Muu+YeWoOxl7+7s+XcDjaOwjTydEHOxc3nW9dts3rmT3gzOZtecZ1sedSvxtXzFwWOcfp9ARoyfM4ICJxbXlgy65HkBFeTlL/3IlU5f+kDprFAe/9z7j5v+kU3XaJl1JozWMKftfYeOeCh9FqpRqiyZYSqk+bdeS1wBInHSeT+tNHTqWWoJxFa7xab0dsX3jSooeOYFJFR+xbND1jL3jPSKifTvnqjWDRkygjCjI65qV9RrqqvnmHzcy/L/fJZgGcuf9h1nX/NEnC5V0lHvISfTjIDs2LvP7tUr272Hln85j7NIbqLJEs/eCd5l08V0+XaykPaNnnE6VCaV2/UK/X6uhoY4lz95F6mvz6Ofaz4aZf2XCLQsIiYz1+7UPCbbb2RIziyEVy3A3+nepc2MMKz5+nao/T2H6wXdYOfD7JP18GQNHTul85SHRmHGXc5ZlGW8s7r4PBFeqt9AESynVpwXlLiKPJEZnTfJpvRabjYKgYcSUbfJpvUdj3C5WvPI7Ul+bR4K7lO0nP8O0q7su4RCLhbzoqQyrWo7Tz3PPtiz/kAMPTmby3hdZEXsWYbd8w4jpZ/j1mq0ZMvMCXEYo/eY1v13DuN0sX/gPLE9OJbvyc5YNup6UXywnPWuG367ZloiwMDZHTCO99Au/Lte+4esP2PvHKczKf4ItUTOw3LCMrFOu8Nv1jsY6+izCqGfXN+/77RoH9hWw4k/nM2XJtWCxsfvsBUz60ZPY21sp8BgEz7oBqxgGbHmBA1X1PqtXKXUkTbCUUn1WQ/VBhtSsJS9xLlaL74YHHlIVn0mGcwd19Q0+r7ulg0W7yHnoZKZseZAtYRPhhq8ZMft8v1+3JTPyDOKoInf1p36pv6qyjK8e/wHD378Im3Gwbu5zTL/1RSJjOriqmo/F9U9hU3A2SXs+9MviHnt3bWHtg/OYuvpnlNqS2Pe9D5l29R8JCg7x+bU6yj38DGKpZNeaT3xed2nJfr7+82Vk/e9iQk0dG074O+NuX0hUvxSfX6ujMmecTZUJpXrNmz6v2+Vy8fVrjxD81FTGV33OyvTrGPCLVWRMOs3n1yI2nbrBp3GR5RNeWbrN9/UrpZpogqWU6rN2LH0Tu7iIHDvfL/WHpE0kVBrZkbPKL/Ufsua9p7H9fSaDajfxxYi7yb5jEbEB+kA6ZNp8Go2V8rW+H0K29qMXqX1kIjNKXmNVv/OI+uk3jD3Rt0M7j0dF+hmkugvJ3+K7dq6vq2HZsz8n7rlZDK9bxzcj7mDInV+RNtK3Pa3HY8SJF1FtQqn6+jmf1el2ufnq7acwj09mStm7rBz4fWLuWEXWSZf47BrHKzoynLWRJzKs5GOctb6bv7Rp7TJy/jCb6ZvuY2/QYIov+4RJVz2ELTjUZ9doKXz2DcRKNWXL/0O9w+W36yjV12mCpZTqs5yb36PERDNmim+ef9VSUtaJAFTkfO6X+ssO7GH1w+cw/ps72GtLpfjSjznhe3dgsQbuV3t0bDzbQseStO8T3C7fLPxQUrid9Q+dzrilN1JjiWTbmW8w+cZ/ER7VdXNxjmbUSZfiMFb2LP6nT+pb/9nrlDw4kWn5f2dT5Eyqr/uayd+7G4vN5pP6OysuJoa10d9heOkn1FeXdbq+XZuWk/PAbGas/QUV9n7sveh9Jv3oSULCo30QrW8ETbmKMOrZ9ukLna7rYMkBljx2DSPeOp1U527WTfg/Rt75OcnDxnU+0Pakz6YmZjgXuN5n4do9/r+eUn2UJlhKqT7J3VjP4Iqv2RI9i5Agu1+uEZcygr3Sj9BCHz83yBjWL3oGnphGZtVSlqXfyNBffEn6cP8uS95RjlHfJc0UsWl551YTdDY2sPylewl7eiZDq1exNONmUn6xguGTT/ZRpL6RMCCVtZEnkrn/Heprjr+HY19BLqsfOovsz6/FIGw46QUm3vEO/ZMH+zBa34iYfjWhNLD1w2eOu47y0gMse/wa0l49jSTHblZl/4bBdy4jdUzXzy1rz4QZp7KDVMLWv3DcQ0EPDQfk8QlML32T9f3PxXbLGsaeczNi6aKFWUQIm/ljxlh2s/zz9/TBw0r5SacTLBH5iYhsEZFNIvJgs/13iUiuiGwVET8MJlZKqeO345tFRFCHbfRZfr3OnpjJDK1Z47NFHw7uz2fdn84ie/lPOWAdQMFFHzDtqt9jswf5pH5fGHXylVSaMBzLj79HZ8s3H5P/wBSmbn+UrWHjKb3yS2Ze+X8EBR/Hc4C6QNDMG4iklpxFTx3zufW1VSx77i6i/jmDUdXLWZZxI/1+sYqsE/wzdNUXsqecxEbLSJI3/A1nfc0xnet0OPjq1T/h/usEJhe/ycrE85CbVjHxuz9FrN2jl64lu81K3tArSG/cxo4lC475/E3LP2bH76cyfdN9FAelseeiRUy44V+Ex/bzQ7RHJ2MvptEWxdyKt/l6Z2mXX1+pvqBTCZaIzAXmA2ONMWOAh737RwOXAGOAecATItJ16+YqpVQ7qta9Q40JZvSss/16HfvQOURJDdvXL+1UPcbtZvV/n8D65HRGVi3ny/SbyfjFUoaMmeyjSH0nJDyKDQlnkFn+GaVF+cd0bllRHqsevZCR751PuLuK1dMfZ9zPPyB18Ag/ResbWVNPZqNtDOkbH6e+4kCHznG7XKx6529UPjiWaXlPsCViChXXLGHalb8nOMR3q8f5g8VqoWb2r0gwB9n45gMdOse43az/5GUK/zCBGZvv50BQGgUX/o+pN/2LmIT+fo6486adfzO7SCZ08f0YR8dW4du9dQ2rHjyTMYvOJ9ZVwupJDzL8ziWkjZnu52iPIigcy8TLmWddwdufBeY5fUr1dp3twfox8IAxpgHAGHPof5X5wCvGmAZjzC4gF/DBgxyUUqrzjNtFWvFiNodNISoi0q/Xyph8OgCl647/QaXFe3ay4aF5TFh1F3tsaez53sfMvur/CArqPr1WLaWdfhsC7Hr9Vx0qX19bzYrn7yLk71PILP+MpUlXEnH7aiacdrlPHwDtLxaL4DjtISJMDdufu+Gow8iM28XGj//Nrt9PYuKaX1JmjWPDqa8w4WfvMmBQ904km5sy52yWB89gzNa/kb/6wzbLGbeLDYtfZ8sfZpL95fVYjZN10/7MiDuXkJ45tQsj7pzw0BDyJv2KJNcetj/7g6O28e4tq1nx5++R/J+TGFmzkhXpPyLyZ+uYcNaPuvS5ZW2xzbgBEQtZu58lr+TYeiCVUu3r7F0+HJgtIstF5HMROfSn1GSgoFm5Qu++I4jIdSKyUkRWFhcXdzIcpZRqX96mZSSYMpzD5vn9WtH9UtlmH8WAwkXHPN/BuF2sfOMRQp6ewbDaNXw17GeMuPNLBo8c559gfSh1aCbf9LuASaUL2fxF28+IaqyrYc2rv6f6wTFM2fUEG8OmsPeyz5l53WOER8Z0XcA+MH7yTL5Iuoasso/Y9PercNdXHXa8srSI1a8/SMFvs8lcchPB7lq+mfggw365nKwZpwco6uMnIqRe8xx7pD/xC69g2//+Dq5vh8KWFm5j5Su/pfC32WQtvpZ4xz5WjLmb/neuZey8q7tFonGs5pz5ff4bdxXDi/5Lzl/Pp65kd9OxqrIDrPrvk2z843cY9Mpcsso+ZmW/82m4YRVTrnqwWy3aQXQKjVnf52LLYt5cvCLQ0SjV60h7/+GLyMfAgFYO/Qr4HfAZcDMwGVgADAb+CiwzxrzoreMZYJEx5vWjXWvSpElm5cqVx/o99DgNjQ1Ulu6nqmwfteWlNNaU46ytwFVXiauhChqqsDRWYXfWYnPVYnE3YnE1YjUOLG4HNtOI1e3AZjwvC24McOhvvMKRbWoQnGLDhRUnNlxiwy3erxYbRmy4LXaMxYax2DEWu2fbGgxWO1iDml5iC0Zs33612oOw2IOx2oKx2EOw2oOx2YOxBgVjtwdjCw7Bbg/GHhyKPchzTGzB3vq653h71bste+k+pm1/hP0/XNMlCwisff2PjNv4ezaetZDMSSd26JyCnOXUv3ULwxpz2BSUTfTFT5EyZIyfI/WtqqoK9j96IsmuPeyc+CtGn3EDYgvCuF0UbFlJyVf/Jr1wIXFUsMGehcz9FZk9MNFozul08emTN3Nq6YuUSxSFkeNxWYMJr97NoMZc7OJiu2UwJeN+zMR5VxPkpwVWutL2bTnUv3I1We4cqginzN6PMGcFCeYgANusQykecy2TzryaYD8uQd5V6hudLH72Lk4qeoYgcXHAkogYQ6IpAeAAcWxLu4hRZ91CfL+kAEd7FGW7cT42kffc05h+++v0iwrcs9X6OqfTSWNjPc7GBoyzAbejEZfbhdvtwuVyY9xuz7bLhdvt9nw1bozbBcaNYLyf/cTzhwuxenr+LYJgRSwCWDxfxQJiQbwvRLBYPGUsFisWiwWxWLBYbZ5tsSBWC1bvtlgsWK1W7zF6xAgDfxGRVcaYVp+d0W6C1U7FHwB/NMZ85t3eAUwDfgBgjPmDd///gHuNMV8frb6enGAZY6goL6O0aCfVB3bTWFqAu2IPlpp92OpKCWosJ8JVTrS7ghipPmpdLiPUSig1hFEvITjFjtMShFvsuMSOyxKE22LHbQ3CWOxgaZGkGDByKC7PV8FgMQ6sxoXF7US8yZq4nViME4v3q9Vbxmoc2HBix4ndOLDjJAgHVvHtikMuLHiuZPN8FTsO7DjF5nkR5EkMLXbcWEHE+7IAlqb3RiwYwHg7ZT3bFgye8u5m+8X7Qzo8ITVN75v2N90b5rDyGM8vMtNUjzl0+rfJrTm8zm+ZI4aVHH4Ozc47xA3Gs20Oq+/b+o1pXr7FdU3LOFpc/4jrHh6vNB36dr80ffcdYA7VYlrubkHaOX5YK7R3yaPq79pHrYST+pucDtXXWbWVBzF/GsXmyGlMvuOdo5atqTjIppd/yYSiBVRIBFuyfsH0c28I6NLrnbFvTz7F/7qELOcmagih3BpPlKuMSGpxGCvrw6ZgmXET42ad2Wv+ozbGsPTzRViWPUVy/XYsuCi3JVLZbyJxUy5hRNa0HtuebalvaGTZohex7PiY4IZSXEFRMCCThAnzGTZqbK9p2+Y2bFjD/mWvElq+HRHBGZNB4tjTGDFhDhZrz5h2Xv7fu4lZ9RgPp/6VO669ItDhdG/GUF9TQWVZCXWVpdRXleCsKcNRW4mzvhp3QzXu+mpw1CCNNVhdddidtdjdtQS56ghy12MxDuzGgdU4seNo+nxll575TDKX8Xy+cvPtV4MFFxaMSNN282MGwS2efebQcWn53nO+56tne2XIdKZf9huG9ffvsP5j4c8E63ogyRhzj4gMBz4B0oDRwH/wzLtK8u4fZow56r+g7p5gOR2N7M3bSmn+Fur3b8dSvpPQqnyiGoqIdxUTKXWHlXcboUyiqLTEUGePoSEoFmdIHO7QeCQ8EVtUIsER8QRHxhIaEU1YZCzhkbEEhUZ4EoduxBiD021obHTQ2FCPo7EeR2MDjoY6HI4GnI4GXI0NOBsbcDnqcDkacTkbcDsacDsbMd6vOBswrkaMqxGcjYirEYtpxOLyJHyHeums7kZPQujdZzMOxLg4lKAIbs9Xcyit+vYvOOJNgA7d1kCzW9vd9CHdHJZyCDTt54gy0vT+yH7CpnPl8Dppo47DjknLpOLI9O9QTCKHH5fWygutHuco5do+3jxl89Z3WLxt/xttXkyMafPfc8uksD0ta2m91pYtcOQJgqFh1AWMO/uGDl3XF7555jYmFzzL+u/8m+zZ5xxxvKGumo1v/4mhW/9BpKlhedzZDL/0YeJ7wOT/9jQ6XCz7aAFs/5iQ+gM0BsViSZ1ExvTzGJicFujwlOq7Gqqp+tMEDtRb2HPhIk7Iygh0RF3GOBupKdtHefFeqkv3Ule+D2flfqguxlZfQlBDOUGOSkJdlYS5q4g0NR1KhGpMCHUSQr2E0iAhNFhCabSE4rCG4LYEYaxBGIt3VJDt8JFBh44Zqx2xWD29TN6vnp4lTw+SWCye3iT5NinBGM+ffo0B4/a+Dm27vH9rdYPb7f3DsKeM8ZY3xo1xe8oe2sbt+vZ8t7tpvxjPfuN2IU3X8rykqcyhfYfKGO9xF+D2fFYz3/bAHTpXjPvbz3i4vOXcrAqZyozL7mFov76RYAUBzwLjgEbgDmPMp95jvwKuAZzArcaYRe3V190SrC3ffEzZukWEHtxMQl0e/d37D7u5akww+6xJVIQk4QgfiEQnY49NJTQhjaj+6cQNSCMkpOcPh1BKdV59TSX7H55OjCmj8MRHGHPC+RixsD93LXu+fIGMgjeJo5LVQZMImXcvoyfMDnTISqk+oDH3c2wvzucDmU3WTa+QGh8e6JA6xxicNWUc3JdHxb5d1JYU4CovQCr3ElK3j4jGEiJdZcRQ1erpdSaIMommyhJFnS0Khz0KZ1A07uBoJCwOa1gs1vBYbGGxBEXGERIRS1h4FGGRUYSHR2LtIb2XqvP8lmD5WndLsL5++hamFD5PoTWFktAMGqMzsCUOIyp5OImDRhGbmNIjJ+kqpQKjKG8LDc+fT7oppJ4gBEMwDlxGWBUynZDZN5E184xeOZxKKdV9lb7/W+JXPMSrQedx2i3/IDq8+65QCuCqKaO0cAvlhdupP5CLKcsjuLqQiIb9xLlKCOPwZfRdRigmloO2RKrtCTSGJOAOS0Qi+xEU1Y+QmIFEJSYRk5hCdFRMrxvCq/xDE6zjVHGwmKDgEELDu093pFKqZ6uvq2XF/17CFKzAYrUhiSPJmHI2yYP8v9iGUkq1yhiKXr6Jgdte5AP7dxh17dMMGhAfuHhcTmpLdlOcv5Wqou04S3ZirdxNRE0hCY69RHL40vKlJor91v5UBfWnIWwA7shkbLEphCakETMgg8SkNKLCdESR8i1NsJRSSimlVNuMoeDNu0nd8Fd2kcTOCb/kxDO+j83mpyFvjnpq9udSkp9DddF23KU7CarcTXRdAQmuA9j4dkpGo7FSJP0osQ+kOiwVV/Qg7AmDiRg4jMTU4QxITMCmvU6qi2mCpZRSSiml2nVgzSJ49xb6ufaTa0mnOONckqacR9qw7GObFuFsxFmxl7J9eVTu301DyS5M6U6Cq/KJqS8gzl2KpdmiRJUmjD2WgZQFJ1MXkYbEpRPafyixScMZmDqE6AhdRl51L5pgKaWUUkqpDjHOBjb971lC1zzNEOcOAKoJoyhoEI0hCThDEzDW4KYFZ22ueqShAltjFcGOCiKdJcS4yw9LoACKTTRFlgGUhaTSGJmGxA8hbMBQ4lNHkZKURHhIz38unOo7NMFSSimllFLHbF/+NnYt/y/uveuJqNpJuLOcGFOOHSfgefpFHUFUEU6tJYI6ayQ1QQk4wgdCVBL22DTC+6USO2AwqQP6ERqkq+yp3uFoCZattZ1KKaWUUkoNSBvOgLTbD9vndhvcxuA2YDCEIPS36RwopQ7RBEsppZRSSnWYxSJYjvKweaX6Ov1zg1JKKaWUUkr5iCZYSimllFJKKeUjmmAppZRSSimllI90q1UERaQY2B3oOFpIAEoCHYTqMtrefYe2dd+hbd23aHv3HdrWfUd3bOtBxpjE1g50qwSrOxKRlW0twah6H23vvkPbuu/Qtu5btL37Dm3rvqOntbUOEVRKKaWUUkopH9EESymllFJKKaV8RBOs9v0j0AGoLqXt3XdoW/cd2tZ9i7Z336Ft3Xf0qLbWOVhKKaWUUkop5SPag6WUUkoppZRSPqIJllJKKaWUUkr5iCZYRyEi80Rkq4jkisidgY5H+Y6IpIrIZyKyWUQ2icgt3v1xIvKRiGz3fo0NdKzKN0TEKiJrRORd73aGiCz33t8LRCQo0DEq3xCRGBF5XUS2iEiOiEzXe7t3EpHbvL/DN4rIyyISovd27yEiz4rIARHZ2Gxfq/eyeDzmbff1IjIhcJGrY9VGWz/k/T2+XkTeEpGYZsfu8rb1VhE5LSBBH4UmWG0QESvwN+B0YDTwPREZHdiolA85gduNMaOBacCN3va9E/jEGDMM+MS7rXqHW4CcZtt/BB41xgwFyoBrAxKV8oe/AB8YY0YCY/G0u97bvYyIJAM3A5OMMZmAFbgEvbd7k+eAeS32tXUvnw4M876uA57sohiVbzzHkW39EZBpjMkGtgF3AXg/r10CjPGe84T3c3u3oQlW26YAucaYncaYRuAVYH6AY1I+YowpMsas9r6vwvMBLBlPGz/vLfY8cG5AAlQ+JSIpwJnAP73bApwEvO4tom3dS4hINHAC8AyAMabRGFOO3tu9lQ0IFREbEAYUofd2r2GM+QI42GJ3W/fyfOAF47EMiBGRgV0SqOq01traGPOhMcbp3VwGpHjfzwdeMcY0GGN2Abl4Prd3G5pgtS0ZKGi2Xejdp3oZEUkHxgPLgf7GmCLvoX1A/0DFpXzqz8DPAbd3Ox4ob/aLW+/v3iMDKAb+5R0S+k8RCUfv7V7HGLMHeBjIx5NYVQCr0Hu7t2vrXtbPbb3bNcAi7/tu39aaYKk+TUQigDeAW40xlc2PGc8zDPQ5Bj2ciJwFHDDGrAp0LKpL2IAJwJPGmPFADS2GA+q93Tt4597Mx5NUJwHhHDnESPViei/3DSLyKzxTO14KdCwdpQlW2/YAqc22U7z7VC8hInY8ydVLxpg3vbv3HxpS4P16IFDxKZ+ZCZwjInl4hvqehGeOTox3WBHo/d2bFAKFxpjl3u3X8SRcem/3PicDu4wxxcYYB/Amnvtd7+3era17WT+39UIichVwFnCp+fbhvd2+rTXBats3wDDvakRBeCbTLQxwTMpHvHNwngFyjDGPNDu0ELjS+/5K4J2ujk35ljHmLmNMijEmHc99/Kkx5lLgM+ACbzFt617CGLMPKBCREd5d3wE2o/d2b5QPTBORMO/v9ENtrfd279bWvbwQuMK7muA0oKLZUELVA4nIPDzD+88xxtQ2O7QQuEREgkUkA8/CJisCEWNb5NtkULUkImfgmbthBZ41xvwusBEpXxGRWcCXwAa+nZfzSzzzsF4F0oDdwEXGmJYTbFUPJSJzgDuMMWeJyGA8PVpxwBrgMmNMQwDDUz4iIuPwLGgSBOwErsbzB0W9t3sZEbkPuBjP8KE1wA/wzMXQe7sXEJGXgTlAArAf+A3wNq3cy94k+3E8w0RrgauNMSsDELY6Dm209V1AMFDqLbbMGHO9t/yv8MzLcuKZ5rGoZZ2BpAmWUkoppZRSSvmIDhFUSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTykf8HQqFwC7lITkkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
42True40.05080.0136bAP.soma.v0.001481.14e-06
43True40.05080.0136Step1.soma.v0.003437.49e-06
44True40.05080.0136Step3.soma.v0.004675.86e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "42 True 4 0.0508 0.0136 bAP.soma.v \n", + "43 True 4 0.0508 0.0136 Step1.soma.v \n", + "44 True 4 0.0508 0.0136 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "42 0.00148 1.14e-06 \n", + "43 0.00343 7.49e-06 \n", + "44 0.00467 5.86e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACfb0lEQVR4nOzdd5xcdb3/8ddnZrakb7Kb3jaUhPQASQiS0PRSlCKCBKRzkQuKAlJUVIzcy/15EUURFQsKAoYgXZqAECBI20AIkFBSNr1sNmWzybaZ+fz+OCfLZLMt2dnMbvb9fDyGzJzzPd/v55yzM8xnvt/zPebuiIiIiIiISMtFMh2AiIiIiIjIvkIJloiIiIiISJoowRIREREREUkTJVgiIiIiIiJpogRLREREREQkTZRgiYiIiIiIpIkSLBGRNsLMCs3MzSyW6Vj2dWZ2oZnNyXQcbY2ZTTOzjzMdh4hIe6YES0RE2jUzm2FmNWZWnvK4PtNxtUfu/qq7j0h3veEPB9tSzs+f0t2GiEhboV9JRUTSxMxi7h7PdBwd1Cx3PzfTQbSWfeRva7y7L8p0ECIirU09WCIiLWBmxWb2XTObD2wzs5iZTTGzf5vZZjN7z8yOTik/28z+n5m9ZWZlZva4mfVqoO6LzGyhmW01syVm9l911p9qZvPCehab2Qnh8h5mdpeZrTGzVWb2P2YWbWI/9jezF82s1Mw2mNn9ZpaXsm6jmR0Svh5gZiU79svMTjGzD8P9nW1mI+scn2vNbL6ZbTGzWWaWu/tHeveZ2ffC47LVzBaY2WkNlDMzu83M1ofH8n0zGxOuyzGzW81suZmtM7M7zaxTM9u/Oyz/fBjDy2Y2NGX9r8xsRdjmXDOblrJuhpk9ZGb3mVkZcKGZTTaz18PjvMbM7jCz7JRt3My+YWafhu39d3ju/h228WBq+QZiPtrMVjZn/0REpH5KsEREWu5s4EtAHtAXeAr4H6AXcC3wsJn1Til/PnAx0B+IA7c3UO964CSgO3ARcFtKkjMZ+CtwXdjukUBxuN3dYb0HAAcDxwGXNLEPBvw/YAAwEhgMzABw98XAd4H7zKwz8BfgHnefbWbDgZnAVUBv4GngH3W+yJ8JnAAMA8YBF9YbgNnUMHlo6DG1iX2oazEwDegB/CSMv3895Y4jOH7Dw7JnAqXhup+GyycQHM+BwI27EcM5wH8DBcA84P6UdW+H9fYC/gb8vU7yeSrwEMH5vR9IAFeHdR0OfB74Rp32jgcOBaYA1wN/AM4lOJ9jCP5W91iYKDd0fn7bxOavmNlaM3vEzApbEoeISFumBEtEpOVud/cV7l5B8GX2aXd/2t2T7v48UAR8MaX8ve7+gbtvA34EnFlfD5O7P+Xuiz3wMvAcQcIA8J/An939+bCdVe7+kZn1Ddu6yt23uft64DbgrMZ2wN0XhXVVuXsJ8AvgqJT1fwQWAW8SJIY/CFdNB54Kt60BbgU6AZ+rc3xWu/tG4B8ESUV9Mcxx97xGHo1NSnFmnS/7A9z972G7SXefBXwKTK5n2xqgG3AQYO6+0N3XmJkBlwJXu/tGd98K/G9Tx7KOp9z9FXevIjhmh5vZ4HB/73P3UnePu/vPgRwg9fqn1939sTD+Cnef6+5vhOWLgd+Tco5Ct7h7mbt/CHwAPOfuS9x9C/AMQcK9x9x9XCPnp26yl+oooJDgGK8GnjRN5iIi+yh9uImItNyKlOdDga+a2ckpy7KAlxoovyxcX1C3UjM7EfgxQQ9KBOgMvB+uHkzQW1TX0LC+NUF+AOG2K+opm9pWX+BXBAlct3CbTXWK/RF4Arg0TBgg6PFatqOAuyfNbAVBT88Oa1Oebw+3SbcH616DZWbnA98h+GIP0JV6jrO7v2hmdwC/AYaa2SMEPY+5BMd8bsqxNKDR4ZZ11B53dy83s40E+7/CzK4lSJQHAE7QU1lQ37bh/gwnSHwnhnHFgLl12luX8ryintf9diP2tHH3V8Kn1WZ2JVBG0FP6fsNbiYi0T+rBEhFpOU95voKghyr1l/0u7v7TlDKDU54PIehB2ZBaoZnlAA8T9Aj1dfc8goRqxzf9FcD+9cSyAqgCClLa7+7uo5vYh/8N92Osu3cn6In7LKsw6wr8ErgLmGGfXTe2miCp21HOwv1b1UR7u7BgivDyRh7Tmq6ltq6hBAnhFUB+ePw+SN2nVO5+u7sfCowiSGivIzgnFcDolGPZw9277sZu1Z7r8Bj2AlaH+3I9wXDEnmF8W+rEl/p3BfA74CPgwPAc3dDQ/rQWC661a+j83LkbVTl7OXYRkb1FCZaISHrdB5xsZsebWdTMcsOJAwallDnXzEaF1zPdBDzk7ok69WQTDBkrAeJhb9ZxKevvAi4ys8+bWcTMBprZQe6+hmAo4c/NrHu4bn8zqzuUrK5uQDmwxcwGEiQYqX4FFLn7JQTXmO34Mv0g8KUwjizgGoIE799NHai6winCuzbyeHU3qutC8CW+BIIJQwiuQdqFmU0ys8PC+LcBlUDS3ZMESdptZtYnLDvQzI5P2dYtZRKTenwxvLYsm+BarDfcfQXB8Y6H8cXM7EaCHqzGdCPo+Sk3s4OAy5son3buPrqR83NZfduY2WgzmxC+H7oCPydIwBfu1eBFRPYSJVgiImkUfnk+laB3oYSgR+k6dv68vZdgIoq1BMPQvl1PPVvD5Q8SDNX7GsHwvB3r3yKc+IKg5+NlPutJOp8gQVsQbvsQwXVTjfkJcEhY11PAIztWmNmpBJNU7PhC/x3gEDM7x90/Jujt+jVBj8/JwMnuXt1Ee63K3RcQfJF/nWCY3FjgtQaKdydIpDYRDHcsBX4WrvsuwbVnb1gwm98LhNdJhddSbaXxYW5/IxjmuZFg8okdwxj/CTwLfBK2WUkTwzgJhi1+LWzzj8CsJsq3FX0JYi0DlhAM2TwpvGZPRGSfY+51RyCIiEhrMbPZwH3urhuttnNmdi7B8MHvN7D+bmClu/9wrwYmIiIZpUkuRERE9oC735fpGEREpO3REEERkQ7CgpvetnRyAmnnzOyGBv4Onsl0bCIi+wINERQREREREUkT9WCJiIiIiIikSZu6BqugoMALCwszHYaIiIiIiEij5s6du8Hde9dd3qYSrMLCQoqKijIdhoiIiIiISKPMbFl9yzVEUEREREREJE2UYImIiIiIiKSJEiwREREREZE0aVPXYNWnpqaGlStXUllZmelQpA3Izc1l0KBBZGVlZToU2Qf94om3KahcyvlnnpnpUERERKSdavMJ1sqVK+nWrRuFhYWYWabDkQxyd0pLS1m5ciXDhg3LdDiyj0kknS8WXcRBkRWUb/kCXXv0ynRIIiIi0g61+SGClZWV5OfnK7kSzIz8/Hz1Zkqr2Fi6noMiKwBY+v6/MxyNiIiItFdtPsEClFxJLf0tSGuJl2+ofb6t+O0MRiIiIiLtWbtIsEREWlu8qqL2eXbJhxmMRERERNozJVjNYGZcc801ta9vvfVWZsyYkbmAUhx99NGN3pz5y1/+MlOmTNlp2YwZMxg4cCATJkxgzJgxPPHEE60dpkibl6j+LMHqsn1lBiMRERGR9kwJVjPk5OTwyCOPsGHDhqYL7wZ3J5lMprXOVJs3b2bu3Lls2bKFJUuW7LTu6quvZt68efz973/n4osvbtU4RNqDRHVwbd8q+pBfsybD0YiIiEh7pQSrGWKxGJdeeim33XbbLutKSko4/fTTmTRpEpMmTeK1114Dgl6iW2+9tbbcmDFjKC4upri4mBEjRnD++eczZswYVqxYwXXXXceYMWMYO3Yss2bNAmD27NkcffTRnHHGGRx00EGcc845uHu98d177721vVFvvfVW7fJHHnmEk08+mbPOOosHHnig3m1HjhxJLBbbKXn83ve+x6hRoxg3bhzXXnstAMXFxRx77LGMGzeOz3/+8yxfvhyACy+8kMsvv5wpU6aw3377MXv2bC6++GJGjhzJhRdeWFvn5ZdfzsSJExk9ejQ//vGPd4ljy5YtDB06tDbR27ZtG4MHD6ampqbeuEXSLVET9GCV5BZSwGY2bdqU4YhERESkPWrz07Sn+sk/PmTB6rK01jlqQHd+fPLoJst985vfZNy4cVx//fU7Lb/yyiu5+uqrmTp1KsuXL+f4449n4cKFjdb16aefcs899zBlyhQefvhh5s2bx3vvvceGDRuYNGkSRx55JADvvvsuH374IQMGDOCII47gtddeY+rUqbvUt337dubNm8crr7zCxRdfzAcffADAzJkzufHGG+nbty+nn346N9xwwy7bvvnmm0QiEXr37g1AaWkpjz76KB999BFmxubNmwH41re+xQUXXMAFF1zAn//8Z7797W/z2GOPAbBp0yZef/11nnjiCU455RRee+01/vSnPzFp0iTmzZvHhAkTuPnmm+nVqxeJRILPf/7zzJ8/n3HjxtXG0aNHDyZMmMDLL7/MMcccw5NPPsnxxx+v+13JXpMIr8Ha3uNAqHyLkhWf0rPn5AxHJSIiIu2NerCaqXv37px//vncfvvtOy1/4YUXuOKKK5gwYQKnnHIKZWVllJeXN1rX0KFDa6+LmjNnDmeffTbRaJS+ffty1FFH8fbbwQxmkydPZtCgQUQiESZMmEBxcXG99Z199tkAHHnkkZSVlbF582bWrVvHp59+ytSpUxk+fDhZWVm1iRfAbbfdxoQJE7j22muZNWtW7ex8PXr0IDc3l//8z//kkUceoXPnzgC8/vrrfO1rXwPgvPPOY86cObV1nXzyyZgZY8eOpW/fvowdO5ZIJMLo0aNrY37wwQc55JBDOPjgg/nwww9ZsGDBLvsxffr02h68Bx54gOnTpzd6HEXSKVkTDBH03iMA2Lr200yGIyIiIu1Uu+rBak5PU2u66qqrOOSQQ7joootqlyWTSd544w1yc3N3KhuLxXa6rin13k1dunRpVns5OTm1z6PRKPF4vN5ydacuNzMefPBBNm3aVHtD3rKyMmbOnMnNN98MBNdg7Rj+Vzfut956i3/961889NBD3HHHHbz44ovNijMSiewUcyQSIR6Ps3TpUm699VbefvttevbsyYUXXljvvaxOOeUUbrjhBjZu3MjcuXM59thjG21XJJ2S4RDBLgPHwAdQXbKkiS1EREREdqUerN3Qq1cvzjzzTO66667aZccddxy//vWva1/PmzcPgMLCQt555x0A3nnnHZYuXVpvndOmTWPWrFkkEglKSkp45ZVXmDx594Yl7ej1mTNnDj169KBHjx7MnDmTZ599tva6r7lz5zZ4HVaq8vJytmzZwhe/+EVuu+023nvvPQA+97nP1W5///33M23atGbHV1ZWRpcuXejRowfr1q3jmWeeqbdc165dmTRpEldeeSUnnXQS0Wi02W2ItJSHPVjdeg9iq3cisrk4swGJiIhIu9TiBMvMBpvZS2a2wMw+NLMrw+UzzGyVmc0LH19sebiZd8011+w0IcTtt99OUVER48aNY9SoUdx5550AnH766WzcuJHRo0dzxx13MHz48HrrO+200xg3bhzjx4/n2GOP5ZZbbqFfv367FVNubi4HH3wwl112GXfddRfFxcUsW7Zsp+nZhw0bRo8ePXjzzTfrreOLX/wiq1evZuvWrZx00kmMGzeOqVOn8otf/AKAX//61/zlL39h3Lhx3HvvvfzqV79qdnzjx4/n4IMP5qCDDuJrX/saRxxxRO26G2+8cadp4qdPn859992n4YGy1+1IsGI5nVkX7U+nbSsyHJGIiIi0R9bQzHTNrsCsP9Df3d8xs27AXODLwJlAubvf2tj2qSZOnOh17+m0cOFCRo4c2aIYZd+ivwlpDe89MIPxH93G6m8uYfVfzqdP5TKG3PhB0xuKiIhIh2Rmc919Yt3lLe7Bcvc17v5O+HwrsBAY2NJ6RUT2ph09WFnZnajuMoCC5Hpo4Q9QIiIi0vGk9RosMysEDgZ2jEO7wszmm9mfzaxnOtsSEUmreBXVHiU7Owu6D6IzVZRtSe/NxUVERGTfl7YEy8y6Ag8DV7l7GfA7YH9gArAG+HkD211qZkVmVlRSUpKucEREdoslKqkim+xohKz8wQBsXKmZBEVERGT3pCXBMrMsguTqfnd/BMDd17l7wt2TwB+BeqfGc/c/uPtEd5+442a3IiJ7m8WrqCKL7FiErn2GAlC2vv7ZP0VEREQako5ZBA24C1jo7r9IWd4/pdhpgK4WF5E2a0cPVjRi9Oy3HwCVG5ZnOCoRERFpb9Jxo+EjgPOA981sXrjsBuBsM5sAOFAM/Fca2hIRaRWRRDXVZAFQ0HcQNR4luWVVhqMSERGR9iYdswjOcXdz93HuPiF8PO3u57n72HD5Ke6+Jh0BZ8pjjz2GmfHRRx81WKa4uJgxY8akrc0LL7yQhx56qMH1V111FQMHDiSZTNYuu/vuu+nduzcTJkxg1KhR/PGPf0xbPCL7skiikmrLBiCWlcUG60VWuRIsERER2T1pnUVwXzZz5kymTp3KzJkz610fj8db3EYikWh22WQyyaOPPsrgwYN5+eWXd1o3ffp05s2bx+zZs7nhhhtYt25di2MT2ddFE1XUhAkWwKasvnSqWJvBiERERKQ9UoLVDOXl5cyZM4e77rqLBx54oHb57NmzmTZtGqeccgqjRo0CgkTrnHPOYeTIkZxxxhls374dgH/9618cfPDBjB07losvvpiqqioACgsL+e53v8shhxzC3//+913afuGFF5g4cSLDhw/nySef3Knt0aNHc/nllzeY9PXp04f999+fZcuW1S67/fbbGTVqFOPGjeOss84CYOPGjXz5y19m3LhxTJkyhfnz5wMwY8YMLrjgAqZNm8bQoUN55JFHuP766xk7diwnnHACNTU1ANx0001MmjSJMWPGcOmll1L35tXJZJLCwkI2b95cu+zAAw9U4idtiiVriIdDBAG25fYjr2Z9BiMSERGR9igd12DtPc98D9a+n946+42FE3/aaJHHH3+cE044geHDh5Ofn8/cuXM59NBDAXjnnXf44IMPGDZsGMXFxXz88cfcddddHHHEEVx88cX89re/5YorruDCCy/kX//6F8OHD+f888/nd7/7HVdddRUA+fn5vPPOO/W2XVxczFtvvcXixYs55phjWLRoEbm5ucycOZOzzz6bU089lRtuuIGamhqysrJ22nbJkiUsWbKEAw44oHbZT3/6U5YuXUpOTk5twvPjH/+Ygw8+mMcee4wXX3yR888/n3nz5gGwePFiXnrpJRYsWMDhhx/Oww8/zC233MJpp53GU089xZe//GWuuOIKbrzxRgDOO+88nnzySU4++eTaNiORCKeeeiqPPvooF110EW+++SZDhw6lb9++zT5NIq0tkqwhGfnsIzHetT8FZS+RTCSIRKMZjExERETaE/VgNcPMmTNre3vOOuusnXqMJk+ezLBhw2pfDx48mCOOOAKAc889lzlz5vDxxx8zbNgwhg8fDsAFF1zAK6+8UrvN9OnTG2z7zDPPJBKJcOCBB7Lffvvx0UcfUV1dzdNPP82Xv/xlunfvzmGHHcY///nP2m1mzZrFhAkTOPvss/n9739Pr169ateNGzeOc845h/vuu49YLPgyOWfOHM477zwAjj32WEpLSykrKwPgxBNPJCsri7Fjx5JIJDjhhBMAGDt2LMXFxQC89NJLHHbYYYwdO5YXX3yRDz/8cJf9mD59OrNmzQLggQceaHSfRTIh4jUk7LMEy3oMJNsSbCzRdVgiIiLSfO2rB6uJnqbWsHHjRl588UXef/99zIxEIoGZ8bOf/QyALl267FQ+mLW+4df1qVtHU/X985//ZPPmzYwdOxaA7du306lTJ0466SQgSGbuuOOOeut76qmneOWVV/jHP/7BzTffzPvvN94jmJOTAwS9UFlZWbXxRCIR4vE4lZWVfOMb36CoqIjBgwczY8YMKisrd6nn8MMPZ9GiRZSUlPDYY4/xwx/+sNF2Rfa2SDJOwj7rBc7JHwLAptVLKOg3JFNhiYiISDujHqwmPPTQQ5x33nksW7aM4uJiVqxYwbBhw3j11VfrLb98+XJef/11AP72t78xdepURowYQXFxMYsWLQLg3nvv5aijjmpW+3//+99JJpMsXryYJUuWMGLECGbOnMmf/vQniouLKS4uZunSpTz//PO113s1JJlMsmLFCo455hj+7//+jy1btlBeXs60adO4//77geDaroKCArp3796s+HYkUwUFBZSXlzc466GZcdppp/Gd73yHkSNHkp+f36z6RfaWqNfgKUMEu/UNeqbL1xdnKCIRERFpj5RgNWHmzJmcdtppOy07/fTTG5xYYsSIEfzmN79h5MiRbNq0icsvv5zc3Fz+8pe/8NWvfpWxY8cSiUS47LLLmtX+kCFDmDx5MieeeCJ33nknyWSSZ599li996Uu1Zbp06cLUqVP5xz/+UW8dl1xyCUVFRSQSCc4991zGjh3LwQcfzLe//W3y8vKYMWMGc+fOZdy4cXzve9/jnnvuaebRgby8PL7+9a8zZswYjj/+eCZNmlS77s477+TOO++sfT19+nTuu+8+DQ+UNinqcZKRz3qw8gcENxuu2rgiUyGJiIhIO2R1Z3zLpIkTJ3pRUdFOyxYuXMjIkSMzFJG0RfqbkNaw7qYD+aTTeKZdF/TCejJJ5U/68l6/05ly+Z1NbC0iIiIdjZnNdfeJdZerB0tEBIh5HE+5BssiEUoiBWRvW53BqERERKS9UYIlIgJEiePRnW91sCW7L10qdbNhERERab52kWC1pWGMkln6W5DWEvM4RHZOsCo69adnvCRDEYmIiEh71OYTrNzcXEpLS/XFWnB3SktLyc3NzXQosg+K1dODleg2gALfRE11VYaiEhERkfamzd8Ha9CgQaxcuZKSEv2KLEHCPWjQoEyHIfugGHGIZu+0LJo3iMgKZ92aYvoPHZGhyERERKQ9afMJVlZWFsOGDct0GCKyL0smiZHcZYhgbsFQADatWaoES0RERJqlzQ8RFBFpdcma4N86QwR79C0EYHvJsr0ckIiIiLRXrZ5gmdkJZvaxmS0ys++1dnsiIrvL48E1VhbbOcEqGBjcbLhm08q9HpOIiIi0T62aYJlZFPgNcCIwCjjbzEa1ZpsiIrurOpzEIlLnGqwu3fIoowtWpgRLREREmqe1e7AmA4vcfYm7VwMPAKe2cpsiIrtlxyyBFsveZV1ppDe529fs7ZBERESknWrtBGsgsCLl9cpwWS0zu9TMisysSDMFikgm1CZYda7BAijL6Uu3qnV7OyQRERFppzI+yYW7/8HdJ7r7xN69e2c6HBHpgGpqdvRg5eyyrrJzf3ol9OOPiIiINE9rJ1irgMEprweFy0RE2ox4dTUAkXqGCHq3gfRkK9u3le3tsERERKQdau0E623gQDMbZmbZwFnAE63cpojIbomHPVjR2K5DBGO9ghtbl6xauldjEhERkfapVRMsd48DVwD/BBYCD7r7h63ZpojI7toxRDBSzxDBzgWFAJStVYIlIiIiTYu1dgPu/jTwdGu3IyKypxLhEMFY1q5DBPP6DwOgYsPyvRqTiIiItE8Zn+RCRCTTaocI1pNgFfQvDMpsWrHLOhEREZG6lGCJSIeXiIeTXGTtOkQwO7cTpeQRLV+9t8MSERGRdkgJloh0eMl40INV3xBBgI2x3nSq0M2GRUREpGlKsESkw4tX1wAQq6cHC6A8px/dq3WzYREREWmaEiwR6fASYQ9Wdnb9CVZ1l/70TmzAk8m9GZaIiIi0Q0qwRKTDS1RXApCdm1t/gR6D6GKVbNlUuhejEhERkfZICZaIdHjJ6goAsnO71rs+u9cQADasXrTXYhIREZH2SQmWiHR4XrMdgJxO9SdYnfvuB0D52iV7LSYRERFpn5RgiYjUBEMEc3I717s6f9BwAKpLlGCJiIhI45RgiUiHZ/HtJNzqvQ8WQH5BX8q9E2xetpcjExERkfZGCZaIdHhWU0mVZYNZ/esjEdZF+5JTvmIvRyYiIiLtjRIsEenwLFFBFfX3Xu2wJXcgPSpX76WIREREpL1SgiUiHV4kXkmVNZ5gVXYZRJ/EOt0LS0RERBqlBEtEOrxooooay268UM+hdLYqykrViyUiIiINU4IlIh1eNFFJtTVwk+FQTu/9AShZ8eneCElERETaqRYlWGb2MzP7yMzmm9mjZpYXLi80swozmxc+7kxLtCIirSCWrKQm0vgQwR4DggSrfI0SLBEREWlYS3uwngfGuPs44BPg+ynrFrv7hPBxWQvbERFpNVnJKuLRxnuw+gwJ74W1YeneCElERETaqRYlWO7+nLvHw5dvAINaHpKIyN4VS1aRaKIHq3u3HpSQR2TL8r0UlYiIiLRH6bwG62LgmZTXw8zsXTN72cymNbSRmV1qZkVmVlRSUpLGcEREmifbK0k00YMFsCHWj87bVu6FiERERKS9ijVVwMxeAPrVs+oH7v54WOYHQBy4P1y3Bhji7qVmdijwmJmNdveyupW4+x+APwBMnDjR92w3RET2XLZXNyvB2tppIIPL398LEYmIiEh71WSC5e5faGy9mV0InAR83t093KYKqAqfzzWzxcBwoKilAYuIpFsOVXis6QSrptsQepe9RLKmmkhWE9O6i4iISIfU0lkETwCuB05x9+0py3ubWTR8vh9wILCkJW2JiLSWHK9uVoJlvQqJWZKNa/RxJiIiIvVr6TVYdwDdgOfrTMd+JDDfzOYBDwGXufvGFrYlIpJ21VVVdLYqPKdHk2U79wmmat+wUlO1i4iISP2aHCLYGHc/oIHlDwMPt6RuEZG9oXxzCb0A65TXZNmeAw8EYPu6Ra0blIiIiLRb6ZxFUESk3dleVgqAde7ZZNm+g/ajxqMkSpe1dlgiIiLSTinBEpEOrbJsAwBZXXo1WTY3J5u11ptYme6FJSIiIvVTgiUiHVrV1uDy0Kyu+c0qvzG7P10rdC8sERERqZ8SLBHp0KrLNwHQqUfzEqztnQdSULOmNUMSERGRdkwJloh0aDXlwRDBHj37NKt8vPtQelJGTcUu900XERERUYIlIh1bfFvQg5XXq6BZ5WMFhQCULP+ktUISERGRdkwJloh0aF65mXI6EcvKblb5rn2Du1NsXq2p2kVERGRXSrBEpEPLrihhc6TpKdp3yB8c3AurYv2S1gpJRERE2jElWCLSoXWp2kBZrHkTXAD07TuQcs/FNy1txahERESkvVKCJSIdWo94Cdtyeje7fDQaYV2kLzlbNVW7iIiI7EoJloh0WJ5M0iu5kUSXfru13aacAXSvXNVKUYmIiEh7pgRLRDqs0tINdLJqot3779Z2lV0G0SexFtxbKTIRERFpr5RgiUiHtWFNMQC5vQbu1naeN5ROVLF989pWiEpERETaMyVYItJhla0rBqBrn6G7tV127/0A2LBC98ISERGRnbUowTKzGWa2yszmhY8vpqz7vpktMrOPzez4locqIpJe1RuCmQDzBx64W9t17x/cC6tM98ISERGROmJpqOM2d781dYGZjQLOAkYDA4AXzGy4uyfS0J6ISFr45hXUeJRuBbs3RLD3kOEAVG3QvbBERERkZ601RPBU4AF3r3L3pcAiYHIrtSUiskeyy1exIVKARXfvt6b8vDw2e1eSW1a3UmQiIiLSXqUjwbrCzOab2Z/NrGe4bCCwIqXMynDZLszsUjMrMrOikpKSNIQjItI83arWsDl796ZoBzAzNkbzydqmSS5ERERkZ00mWGb2gpl9UM/jVOB3wP7ABGAN8PPdDcDd/+DuE919Yu/ezb/Zp4hIS/WKr6ei84A92nZrdm+6Vq9Pc0QiIiLS3jU5Lsbdv9Cciszsj8CT4ctVwOCU1YPCZSIibcL2igp6+0ZWdB+0R9tX5vZl4GZNciEiIiI7a+ksgql35zwN+CB8/gRwlpnlmNkw4EDgrZa0JSKSTutXLSFqTqznkD3aPtm1P718C/HqqjRHJiIiIu1ZS2cRvMXMJgAOFAP/BeDuH5rZg8ACIA58UzMIikhbsnlNMEV75z6Fe7R9JG8gkZVOyfoV9B10QBojExERkfasRQmWu5/XyLqbgZtbUr+ISGupKCkGoEf//fdo+9xewdDCzWuLlWCJiIhIrdaapl1EpE1LbFoOQMGAYXu0fbc+wdDCbSUrmigpIiIiHYkSLBHpkGJbV1FKHrGcznu0fX6/oQBUb9L8PSIiIvIZJVgi0iF1qljDxlifPd6+e6++VHkWXqabDYuIiMhnlGCJSIeUV72W8tz+TRdsgEUilEZ6EdPNhkVERCSFEiwR6XCSiSR9kiXUdB3Yonq2ZPWmc6VuNiwiIiKfUYIlIh1O6YbVdLJqLG/PbjK8Q0VuH7rHN6QpKhEREdkXKMESkQ5n46olAGTnD21RPfEu/eid3EAykUxHWCIiIrIPUILViM0la5j3/N/wpL48iexLytcHNxnu1ne/FtVj3QeQazVsLNUwQREREQkowWrEwqd/zYTXLmfJzROZ+8xfqK6qzHRIIpIGNaXLACgY2LIbBGf3DK7h2rh2WYtjEhERkX1DLNMBtGWTzv4xbz3VnwHz7+DQN69i05s38m6fE+g24VQOPPRYsvbw/jl7hTskaiBZA4lqSMRJxKuoqqqiurqa6qoKqqurqamuCh411XgijpMMeuzcwYPn7o57EmofjruDJ8J/w2V4A8HYruHVs6xuUQtf1F+2oe3ra6vexbsRVwNtpYHVH9ie1ZW2mtJbWTrjStfhyln1Ots9h249C1pUT9eC4GbDW0uWAYelITJpSDKRpKKygsqKbVRXbSdRuZ1kzXbi1VUk4jUkEnHiNTUkE8Fzj9fgyQTmCUjGw0ci+LwCku64AzjJ8KPLgwVY3c8yb+izbWdm9XyG1PtH2/Syej+LGqorZXGDn63NravR1zvX/1kVrfcZWZ+WfA60aNu9vJ/p0JL/x7Rob1t0nFuwbfs7RdJM1TkFDD3k8/Tv0SnToTSLEqxGxLJzmHzat0icfBnvvfooNUX3cfC6R8h+7kEq/5nFJzkHUd7jIJK9D6JLn0J69B5Mt4KBdO6WR05uZyyyawehu5NMOvGaCqq2l1NdUU5N5TZqwn8TVeUkqraTqNpOsnobXr0dr9kO1RVYfDtWU0EkXkE0XkEkUUEsUUksWUlWooIsryI7WUmOV5FL1S5tR4HO4UOko/skazjD63mP7o4eAw8EIFHyabPKV1Zs471n/0KvYeM5cMK0FrXdniQSSTZv2kD5xjVUbF5Lddl64uWbqNm+Ga8ow6vKiFSVEavZSk68nNxkOTnJCrKTlWRTTY5Xk0s1XczpkumdERGRvW52Yjxz8w/hpHFKsPYZ0VgW4485E445k61bNjL/zWdJLHqRvI3zGbP+CbqU/B0W7LpdpWdRTRYRHCNJlCQRksRIkmNOzm7EkHBjO7lUkk0lOVRaDlWWyzbLoTrSnXikD/FILjXRTiRiuSSjuRDNwWJZRKLZwb+xHKKxLCKxbGJZwSOalVP7PBLNwiKR4Bcvi2A7HpHggVn42jCitWWDfyP1/1JW7y+/DfwanFJ2x7NdfkludPv6F3p9MTQ7rkZibeFPZc38Uby5taWvpjTGldZdJL2x9Ru4f4vr6NVnMBu8B1klHzZarrRkDQufvJ2Dlv2Nw9jM/IUTYMLLLW4/0+LxOCXrVrN57VK2lywnvnkFVraK6Lb15FSVkluzmW6JTfT0LeRbgvwG6in3TmyzzlREulAZ7Up5rBebYl1IRnPxWC7EciGrE5bViUh28O+OZZGsHCLRLKKxLCwaIxaLBZ9z0SyIRLFIDIvGIBIjEongFiNiwS/7O/4FIxIJfjlvsFemife7O/X8gTbvD3bXz6jmfWbZLp9vu/dZt/OmTcda7+dxvbE341jtoYZHSjRj2xa125Jt0/1J2Mx2W9RsOzzOGdpf2TsGZ3WhYHDvTIfRbEqwdlO3Hr2YeNzX4LivAeDJBBtWL2HdyqVs37iKxJa1eHU51FRCvIJIsgazCG47kpQoHomRjOVCVmcsqzNkdyGS3ZloTheiOV2I5XYhltuZrJyuZHfqQnanruTk5JKbHaNLNEIkoj5wkbYgEo2wMmd/emz5qN71xQveZv0Lv2Jc6bNMtRo+zD2UFVUVDKpuH9dsJRIJ1q0qpmT5R1SuW4RvXEJs6yo6Va4lr2Y9BclS+luc1Ns1V3mMUuvJ1lhPyrN7synnIIq7FBDpUkCkW29i3fqQ06MPXXr0pmuPfLp1z6NrVhZdM7aXIiIi6aUEq4UsEqVg0IEUDDow06GISAZsyx/L6NX3sWXdcnr0HUL5lo0seOEeui58kFHxBfTzLObnn0C//7iK0SMnMueeH9F76e1UbCmlU4+G+nT2nnh1FetXLGLDio+oWLeIZOlicrcup2fVSvol1jLAahiwo6xHKLF8Nmf1YW23MazsOoBoj4HkFAyhc8EQevQbRs+CAQyIav4kERHpuJRgiYi0QO+j/pPozL+y9q7pLI12Z8T2d5hs1SyLDOatA67kwOMvZ3Lvz/p4cvuPgqWw/JN3GDHpP/ZKjDXVlaxb9jGbViykYu0nsHEpncuL6Vm1mr7J9QywZG0SVeHZrIv2Y3OnIazvNo1IwX507nsgeQOH03vQ/vTPztmpx0pERER21qIEy8xmASPCl3nAZnefYGaFwELg43DdG+5+WUvaEhFpi4YfNJ45B1zNmMV/YKt15/0+p9DtsHM56JCjGFrPJBr7jZ9G4jVjy/xnIY0JVmVlJWvDJKpy3afYpiV0Ll9GQdVK+ibXM8icQWHZMu/MutgA1nQZybLuJxAr2J+u/Q+kz9CR5PcbQmELJ/8QERHpyKzeCQD2pCKznwNb3P2mMMF60t3H7E4dEydO9KKiorTEIyLSVs2/eRr58fX0/d48YjnNmxGpsrKC9SsXU7Z2CRUlxSQ3LSdatoJO21eTV72Ovl5CzD67KXoZnVkXHciWzoOp7l5ItGB/ug04iN6FIyno3b/eWU5FRESk+cxsrrtPrLs8LUMELZiG6Uzg2HTUJyKyL4tP+RYDX/067/3yVBITziOna08SVduoqdxKvKwEtq4lsr2EnMoNdK7eQI9EKfm+hSH22Q9iSTfWWy82ZfVlbfexrOwxlKzeB9B1wAj6DB1Jj/x+dFcSJSIistel6xqsacA6d0+9GcwwM3sXKAN+6O6v1rehmV0KXAowZMiQNIUjItJ2HfL5M3l97cdM+OR2Or3+5i7r4x5ho+WxJdKT8pwCNnc6iKVdBxDpOZTcPoX07L8/+QOG0S+3E/0yEL+IiIg0rMkhgmb2AtT7//AfuPvjYZnfAYvc/efh6xygq7uXmtmhwGPAaHcva6wtDREUkY5ke/lmVi16n6ptm4nldiW3cze69OpLz179iGVlZTo8ERERacQeDxF09y80UXEM+ApwaMo2VUBV+HyumS0GhgPKnkREQp275nHghGmZDkNERETSKB0D9L8AfOTuK3csMLPeZhYNn+8HHAgsSUNbIiIiIiIibVY6rsE6C5hZZ9mRwE1mVgMkgcvcfWMa2hIREREREWmzWpxgufuF9Sx7GHi4pXWLiIiIiIi0J2m7D1Y6mFkJsCzTcdRRAGzIdBCy1+h8dxw61x2HznXHovPdcehcdyxt8XwPdffedRe2qQSrLTKzovpmB5F9k853x6Fz3XHoXHcsOt8dh851x9KezrfuQikiIiIiIpImSrBERERERETSRAlW0/6Q6QBkr9L57jh0rjsOneuORee749C57ljazfnWNVgiIiIiIiJpoh4sERERERGRNFGCJSIiIiIikiZKsBphZieY2cdmtsjMvpfpeCR9zGywmb1kZgvM7EMzuzJc3svMnjezT8N/e2Y6VkkPM4ua2btm9mT4epiZvRm+v2eZWXamY5T0MLM8M3vIzD4ys4Vmdrje2/smM7s6/Az/wMxmmlmu3tv7DjP7s5mtN7MPUpbV+162wO3heZ9vZodkLnLZXQ2c65+Fn+PzzexRM8tLWff98Fx/bGbHZyToRijBaoCZRYHfACcCo4CzzWxUZqOSNIoD17j7KGAK8M3w/H4P+Je7Hwj8K3wt+4YrgYUpr/8PuM3dDwA2Af+ZkaikNfwKeNbdDwLGE5x3vbf3MWY2EPg2MNHdxwBR4Cz03t6X3A2cUGdZQ+/lE4EDw8elwO/2UoySHnez67l+Hhjj7uOAT4DvA4Tf184CRofb/Db83t5mKMFq2GRgkbsvcfdq4AHg1AzHJGni7mvc/Z3w+VaCL2ADCc7xPWGxe4AvZyRASSszGwR8CfhT+NqAY4GHwiI61/sIM+sBHAncBeDu1e6+Gb2391UxoJOZxYDOwBr03t5nuPsrwMY6ixt6L58K/NUDbwB5ZtZ/rwQqLVbfuXb359w9Hr58AxgUPj8VeMDdq9x9KbCI4Ht7m6EEq2EDgRUpr1eGy2QfY2aFwMHAm0Bfd18TrloL9M1UXJJWvwSuB5Lh63xgc8oHt97f+45hQAnwl3BI6J/MrAt6b+9z3H0VcCuwnCCx2gLMRe/tfV1D72V9b9u3XQw8Ez5v8+daCZZ0aGbWFXgYuMrdy1LXeXAPA93HoJ0zs5OA9e4+N9OxyF4RAw4BfufuBwPbqDMcUO/tfUN47c2pBEn1AKALuw4xkn2Y3ssdg5n9gODSjvszHUtzKcFq2CpgcMrrQeEy2UeYWRZBcnW/uz8SLl63Y0hB+O/6TMUnaXMEcIqZFRMM9T2W4BqdvHBYEej9vS9ZCax09zfD1w8RJFx6b+97vgAsdfcSd68BHiF4v+u9vW9r6L2s7237IDO7EDgJOMc/u3lvmz/XSrAa9jZwYDgbUTbBxXRPZDgmSZPwGpy7gIXu/ouUVU8AF4TPLwAe39uxSXq5+/fdfZC7FxK8j19093OAl4AzwmI61/sId18LrDCzEeGizwML0Ht7X7QcmGJmncPP9B3nWu/tfVtD7+UngPPD2QSnAFtShhJKO2RmJxAM7z/F3benrHoCOMvMcsxsGMHEJm9lIsaG2GfJoNRlZl8kuHYjCvzZ3W/ObESSLmY2FXgVeJ/Prsu5geA6rAeBIcAy4Ex3r3uBrbRTZnY0cK27n2Rm+xH0aPUC3gXOdfeqDIYnaWJmEwgmNMkGlgAXEfygqPf2PsbMfgJMJxg+9C5wCcG1GHpv7wPMbCZwNFAArAN+DDxGPe/lMMm+g2CY6HbgIncvykDYsgcaONffB3KA0rDYG+5+WVj+BwTXZcUJLvN4pm6dmaQES0REREREJE00RFBERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERERERERNJECZaIiIiIiEiaKMESERERERFJEyVYIiIiIiIiaaIES0REREREJE2UYImIiIiIiKSJEiwREREREZE0UYIlIiIiIiKSJkqwRETaCDMrNDM3s1imY9nXmdmFZjYn03G0NWY2zcw+znQcIiLtmRIsERFp18xshpnVmFl5yuP6TMfVHrn7q+4+It31hj8cbEs5P39KdxsiIm2FfiUVEUkTM4u5ezzTcXRQs9z93EwH0Vr2kb+t8e6+KNNBiIi0NvVgiYi0gJkVm9l3zWw+sM3MYmY2xcz+bWabzew9Mzs6pfxsM/t/ZvaWmZWZ2eNm1quBui8ys4VmttXMlpjZf9VZf6qZzQvrWWxmJ4TLe5jZXWa2xsxWmdn/mFm0if3Y38xeNLNSM9tgZvebWV7Kuo1mdkj4eoCZlezYLzM7xcw+DPd3tpmNrHN8rjWz+Wa2xcxmmVnu7h/p3Wdm3wuPy1YzW2BmpzVQzszsNjNbHx7L981sTLgux8xuNbPlZrbOzO40s07NbP/usPzzYQwvm9nQlPW/MrMVYZtzzWxayroZZvaQmd1nZmXAhWY22cxeD4/zGjO7w8yyU7ZxM/uGmX0atvff4bn7d9jGg6nlG4j5aDNb2Zz9ExGR+inBEhFpubOBLwF5QF/gKeB/gF7AtcDDZtY7pfz5wMVAfyAO3N5AveuBk4DuwEXAbSlJzmTgr8B1YbtHAsXhdneH9R4AHAwcB1zSxD4Y8P+AAcBIYDAwA8DdFwPfBe4zs87AX4B73H22mQ0HZgJXAb2Bp4F/1PkifyZwAjAMGAdcWG8AZlPD5KGhx9Qm9qGuxcA0oAfwkzD+/vWUO47g+A0Py54JlIbrfhoun0BwPAcCN+5GDOcA/w0UAPOA+1PWvR3W2wv4G/D3OsnnqcBDBOf3fiABXB3WdTjweeAbddo7HjgUmAJcD/wBOJfgfI4h+FvdY2Gi3ND5+W0Tm79iZmvN7BEzK2xJHCIibZkSLBGRlrvd3Ve4ewXBl9mn3f1pd0+6+/NAEfDFlPL3uvsH7r4N+BFwZn09TO7+lLsv9sDLwHMECQPAfwJ/dvfnw3ZWuftHZtY3bOsqd9/m7uuB24CzGtsBd18U1lXl7iXAL4CjUtb/EVgEvEmQGP4gXDUdeCrctga4FegEfK7O8Vnt7huBfxAkFfXFMMfd8xp5NDYpxZl1vuwPcPe/h+0m3X0W8CkwuZ5ta4BuwEGAuftCd19jZgZcClzt7hvdfSvwv00dyzqecvdX3L2K4JgdbmaDw/29z91L3T3u7j8HcoDU659ed/fHwvgr3H2uu78Rli8Gfk/KOQrd4u5l7v4h8AHwnLsvcfctwDMECfcec/dxjZyfusleqqOAQoJjvBp40jSZi4jso/ThJiLScitSng8FvmpmJ6csywJeaqD8snB9Qd1KzexE4McEPSgRoDPwfrh6MEFvUV1Dw/rWBPkBhNuuqKdsalt9gV8RJHDdwm021Sn2R+AJ4NIwYYCgx2vZjgLunjSzFQQ9PTusTXm+Pdwm3R6sew2WmZ0PfIfgiz1AV+o5zu7+opndAfwGGGpmjxD0POYSHPO5KcfSgEaHW9ZRe9zdvdzMNhLs/wozu5YgUR4AOEFPZUF924b7M5wg8Z0YxhUD5tZpb13K84p6XvfbjdjTxt1fCZ9Wm9mVQBlBT+n7DW8lItI+qQdLRKTlPOX5CoIeqtRf9ru4+09TygxOeT6EoAdlQ2qFZpYDPEzQI9TX3fMIEqod3/RXAPvXE8sKoAooSGm/u7uPbmIf/jfcj7Hu3p2gJ+6zrMKsK/BL4C5ghn123dhqgqRuRzkL929VE+3twoIpwssbeUxrupbauoYSJIRXAPnh8fsgdZ9Sufvt7n4oMIogob2O4JxUAKNTjmUPd++6G7tVe67DY9gLWB3uy/UEwxF7hvFtqRNf6t8VwO+Aj4ADw3N0Q0P701osuNauofNz525U5ezl2EVE9hYlWCIi6XUfcLKZHW9mUTPLDScOGJRS5lwzGxVez3QT8JC7J+rUk00wZKwEiIe9WcelrL8LuMjMPm9mETMbaGYHufsagqGEPzez7uG6/c2s7lCyuroB5cAWMxtIkGCk+hVQ5O6XEFxjtuPL9IPAl8I4soBrCBK8fzd1oOoKpwjv2sjj1d2orgvBl/gSCCYMIbgGaRdmNsnMDgvj3wZUAkl3TxIkabeZWZ+w7EAzOz5lW7eUSUzq8cXw2rJsgmux3nD3FQTHOx7GFzOzGwl6sBrTjaDnp9zMDgIub6J82rn76EbOz2X1bWNmo81sQvh+6Ar8nCABX7hXgxcR2UuUYImIpFH45flUgt6FEoIepevY+fP2XoKJKNYSDEP7dj31bA2XP0gwVO9rBMPzdqx/i3DiC4Kej5f5rCfpfIIEbUG47UME10015ifAIWFdTwGP7FhhZqcSTFKx4wv9d4BDzOwcd/+YoLfr1wQ9PicDJ7t7dRPttSp3X0DwRf51gmFyY4HXGijenSCR2kQw3LEU+Fm47rsE1569YcFsfi8QXicVXku1lcaHuf2NYJjnRoLJJ3YMY/wn8CzwSdhmJU0M4yQYtvi1sM0/ArOaKN9W9CWItQxYQjBk86Twmj0RkX2OudcdgSAiIq3FzGYD97m7brTazpnZuQTDB7/fwPq7gZXu/sO9GpiIiGSUJrkQERHZA+5+X6ZjEBGRtkdDBEVEOggLbnrb0skJpJ0zsxsa+Dt4JtOxiYjsCzREUEREREREJE3UgyUiIiIiIpImbeoarIKCAi8sLMx0GCIiIiIiIo2aO3fuBnfvXXd5m0qwCgsLKSoqynQYIiIiIiIijTKzZfUt1xBBERERERGRNFGCJSIiIiIikiZKsEREmuHFhWtZvbki02GIiIhIG9emrsGqT01NDStXrqSysjLToUg7k5uby6BBg8jKysp0KNLOrd1SSexvZ7AqO8qAH72c6XBERESkDWvzCdbKlSvp1q0bhYWFmFmmw5F2wt0pLS1l5cqVDBs2LNPhSDtXvORjjoy+DwmI19QQU9IuIiIiDWjzQwQrKyvJz89XciW7xczIz89Xz6ekRXT127XPVy3+IIORiIiISFvX5hMsQMmV7BH93Ui6VFdsq32+cdHbjZQUERGRjq5dJFgiIplUXbG99nlNyaIMRiIiIiJtnRKsZjAzrrnmmtrXt956KzNmzMhcQCneeOMNDjvsMCZMmMDIkSNr45o9ezb//ve/W1T3CSecQF5eHieddFIaIhVpv2qqggRrG7lEypZnOBoRERFpy5RgNUNOTg6PPPIIGzZsSGu97k4ymWxRHRdccAF/+MMfmDdvHh988AFnnnkmkJ4E67rrruPee+9tUR0i+wKLB9Ozr44NofP2VRmORkRERNqyNj+LYKqf/ONDFqwuS2udowZ058cnj260TCwW49JLL+W2227j5ptv3mldSUkJl112GcuXB79q//KXv+SII45gxowZdO3alWuvvRaAMWPG8OSTTwJw/PHHc9hhhzF37lyefvpp7rjjDp555hnMjB/+8IdMnz6d2bNnM2PGDAoKCvjggw849NBDue+++3a5rmj9+vX0798fgGg0yqhRoyguLubOO+8kGo1y33338etf/5qDDjqowTgXL17MokWL2LBhA9dffz1f//rXAfj85z/P7NmzGz02f//73/nJT35CNBqlR48evPLKK1RWVnL55ZdTVFRELBbjF7/4Bccccwx33303jz32GNu2bePTTz/l2muvpbq6mnvvvZecnByefvppevXqxR//+Ef+8Ic/UF1dzQEHHMC9995L586dd2p3ypQp3HXXXYweHZy7o48+mltvvZWJEyc2Gq/InogkqkgQYUunIQwofz/T4YiIiEgbph6sZvrmN7/J/fffz5YtW3ZafuWVV3L11Vfz9ttv8/DDD3PJJZc0Wdenn37KN77xDT788EOKioqYN28e7733Hi+88ALXXXcda9asAeDdd9/ll7/8JQsWLGDJkiW89tpru9R19dVXM2LECE477TR+//vfU1lZSWFhIZdddhlXX3018+bNY9q0aY3GOX/+fF588UVef/11brrpJlavXt3s43LTTTfxz3/+k/fee48nnngCgN/85jeYGe+//z4zZ87kggsuqJ3N74MPPuCRRx7h7bff5gc/+AGdO3fm3Xff5fDDD+evf/0rAF/5yld4++23ee+99xg5ciR33XXXLu1Onz6dBx98EIA1a9awZs0aJVfSaiKJSqrIJt59EL2TG4jXVGc6JBEREWmjWtyDZWaDgb8CfQEH/uDuvzKzGcDXgZKw6A3u/nRL2mqqp6k1de/enfPPP5/bb7+dTp061S5/4YUXWLBgQe3rsrIyysvLG61r6NChTJkyBYA5c+Zw9tlnE41G6du3L0cddRRvv/023bt3Z/LkyQwaNAiACRMmUFxczNSpU3eq68Ybb+Scc87hueee429/+xszZ86st9epsThPPfVUOnXqRKdOnTjmmGN46623+PKXv9ys43LEEUdw4YUXcuaZZ/KVr3yldp++9a1vAXDQQQcxdOhQPvnkEwCOOeYYunXrRrdu3ejRowcnn3wyAGPHjmX+/PlAkIT98Ic/ZPPmzZSXl3P88cfv0u6ZZ57Jcccdx09+8hMefPBBzjjjjGbFK7InoolKqi2baK+hZK1KsHp1MQOGDs90WCIiItIGpWOIYBy4xt3fMbNuwFwzez5cd5u735qGNtqEq666ikMOOYSLLrqodlkymeSNN94gNzd3p7KxWGyn66tS78fUpUuXZrWXk5NT+zwajRKPx+stt//++3P55Zfz9a9/nd69e1NaWrpLmYbihF2nM9+d6c3vvPNO3nzzTZ566ikOPfRQ5s6d22j51H2KRCK1ryORSO3+XXjhhTz22GOMHz+eu+++u96EceDAgeTn5zN//nxmzZrFnXfe2eyYRXZXNFFFNdl06r0fAJtWL1aCJSIiIvVq8RBBd1/j7u+Ez7cCC4GBLa23LerVqxdnnnnmTkPWjjvuOH7961/Xvp43bx4AhYWFvPPOOwC88847LF26tN46p02bxqxZs0gkEpSUlPDKK68wefLkZsf01FNP4e5AMPQwGo2Sl5dHt27d2Lp1a5NxAjz++ONUVlZSWlrK7NmzmTRpUrPbX7x4MYcddhg33XQTvXv3ZsWKFUybNo37778fgE8++YTly5czYsSIZte5detW+vfvT01NTW099Zk+fTq33HILW7ZsYdy4cc2uX2R3xZJVVEdy6NYvSLCqSup/P4uIiIik9RosMysEDgbeDBddYWbzzezPZtazgW0uNbMiMysqKSmpr0ibcs011+w0m+Dtt99OUVER48aNY9SoUbU9KaeffjobN25k9OjR3HHHHQwfXv+v3aeddhrjxo1j/PjxHHvssdxyyy3069ev2fHce++9jBgxggkTJnDeeedx//33E41GOfnkk3n00UeZMGECr776aoNxAowbN45jjjmGKVOm8KMf/YgBAwYAQfL31a9+lX/9618MGjSIf/7zn0AwLHHH9VbXXXcdY8eOZcyYMXzuc59j/PjxfOMb3yCZTDJ27FimT5/O3XffvVPPVVP++7//m8MOO4wjjjiCgw46qHb5E088wY033lj7+owzzuCBBx6onTlRpLXEkpXUWA75A/cHILFxWYYjEhERkbbKdvR+tLgis67Ay8DN7v6ImfUFNhBcl/XfQH93v7ixOiZOnOhFRUU7LVu4cCEjR45MS4yyq7qzHe5r9Pcj6fDe/x5NJ69k+A/eYP2PC1lV8DkO/tbfMh2WiIiIZJCZzXX3XWZZS0sPlpllAQ8D97v7IwDuvs7dE+6eBP4INH/cm4hIGxJLVhOPBL2wpbHe5Gxfm+GIREREpK1KxyyCBtwFLHT3X6Qs7+/ua8KXpwEftLQtSb8ZM2ZkOgSRNi/bq6iIdAVga3Yf+ldriKCIiIjULx2zCB4BnAe8b2bzwmU3AGeb2QSCIYLFwH+loS0Rkb0uy6vYGg16sKo69aVXReOzZYqIiEjH1eIEy93nAPXN692ie16JiLQV2V5NIhwimOw2gC4bK4hv30ysc15mAxMREZE2J62zCIqI7IuyvYpENLiHXDQvuAvFprUaJigiIiK7UoIlItKEHKpJhkMEO+UPBmDLOiVYIiIisislWM302GOPYWZ89NFHDZYpLi5mzJgxaWvz448/5uijj2bChAmMHDmSSy+9FAhuEvz00y0bgXnxxRfTp0+ftMYrsq+KEcfDIYLd+gwFYPuG5ZkMSURERNooJVjNNHPmTKZOncrMmTPrXR+Px1vcRiKR2On1t7/9ba6++mrmzZvHwoUL+da3vgWkJ8G68MILefbZZ1tUh0hHkeVxiGUBUNC/EICaTasyGJGIiIi0VemYRXDveeZ7sPb99NbZbyyc+NNGi5SXlzNnzhxeeuklTj75ZH7yk58AMHv2bH70ox/Rs2dPPvroI5577jni8TjnnHMO77zzDqNHj+avf/0rnTt35l//+hfXXnst8XicSZMm8bvf/Y6cnBwKCwuZPn06zz//PNdffz1nnXVWbbtr1qxh0KBBta/Hjh1LdXU1N954IxUVFcyZM4fvf//7nHTSSXzrW9/igw8+oKamhhkzZnDqqady99138+ijj7JlyxZWrVrFueeey49//GMAjjzySIqLixvd75dffpkrr7wSADPjlVdeoWvXrlx//fU888wzmBk//OEPmT59OrNnz+bHP/4xeXl5vP/++5x55pmMHTuWX/3qV1RUVPDYY4+x//77849//IP/+Z//obq6mvz8fO6//3769u27U7tnnXUW5513Hl/60peAIBk86aSTOOOMM5p3TkXSKZkgZkmIZAPQs3tXSr07ka2rMxyYiIiItEXqwWqGxx9/nBNOOIHhw4eTn5/P3LmfTdH8zjvv8Ktf/YpPPvkECIb1feMb32DhwoV0796d3/72t1RWVnLhhRcya9Ys3n//feLxOL/73e9q68jPz+edd97ZKbkCuPrqqzn22GM58cQTue2229i8eTPZ2dncdNNNTJ8+nXnz5jF9+nRuvvlmjj32WN566y1eeuklrrvuOrZt2wbAW2+9xcMPP8z8+fP5+9//TlFRUbP3+9Zbb+U3v/kN8+bN49VXX6VTp0488sgjzJs3j/fee48XXniB6667jjVrgtudvffee9x5550sXLiQe++9l08++YS33nqLSy65hF//+tcATJ06lTfeeIN3332Xs846i1tuuWWXdqdPn86DDz4IQHV1Nf/6179qky2RvS0Rrw6eRIMeLDOjNFJAlm42LCIiIvVoXz1YTfQ0tZaZM2fW9uScddZZzJw5k0MPPRSAyZMnM2zYsNqygwcP5ogjjgDg3HPP5fbbb+c//uM/GDZsGMOHDwfgggsu4De/+Q1XXXUVECQU9bnooos4/vjjefbZZ3n88cf5/e9/z3vvvbdLueeee44nnniCW2+9FYDKykqWLw+uD/mP//gP8vPzAfjKV77CnDlzmDhxYrP2+4gjjuA73/kO55xzDl/5ylcYNGgQc+bM4eyzzyYajdK3b1+OOuoo3n77bbp3786kSZPo378/APvvvz/HHXccEPS8vfTSSwCsXLmS6dOns2bNGqqrq3c6djuceOKJXHnllVRVVfHss89y5JFH0qlTp2bFLJJuNdWVRKF2iCBAWXZvCqrWZywmERERabvUg9WEjRs38uKLL3LJJZdQWFjIz372Mx588EHcHYAuXbrsVN7MGn1dn7p1pBowYAAXX3wxjz/+OLFYjA8++GCXMu7Oww8/zLx585g3bx7Lly9n5MiRexzPDt/73vf405/+REVFBUcccUSjE3wA5OTk1D6PRCK1ryORSO01at/61re44ooreP/99/n9739PZWXlLvXk5uZy9NFH889//pNZs2Y1mICK7A01NUEPlkWza5dVdupHXrwkUyGJiIhIG6YEqwkPPfQQ5513HsuWLaO4uJgVK1YwbNgwXn311XrLL1++nNdffx2Av/3tb0ydOpURI0ZQXFzMokWLALj33ns56qijmmz72WefpaamBoC1a9dSWlrKwIED6datG1u3bq0td/zxx/PrX/+6Nul79913a9c9//zzbNy4sfY6qB29a82xePFixo4dy3e/+10mTZrERx99xLRp05g1axaJRIKSkhJeeeUVJk+e3Ow6t2zZwsCBwX2E7rnnngbLTZ8+nb/85S+8+uqrnHDCCc2uXyTdaqqqALDYZwlWvGt/8tiKV2/PVFgiIiLSRinBasLMmTM57bTTdlp2+umnNzib4IgRI/jNb37DyJEj2bRpE5dffjm5ubn85S9/4atf/Spjx44lEolw2WWXNdn2c889x5gxYxg/fjzHH388P/vZz+jXrx/HHHMMCxYsYMKECcyaNYsf/ehH1NTUMG7cOEaPHs2PfvSj2jomT57M6aefzrhx4zj99NNrhweeffbZHH744Xz88ccMGjSIu+66C4A777yTO++8E4Bf/vKXjBkzhnHjxpGVlcWJJ57Iaaedxrhx4xg/fjzHHnsst9xyC/369Wv28ZwxYwZf/epXOfTQQykoKKhdXlRUxCWXXFL7+rjjjuPll1/mC1/4AtnZ2fVVJbJXxGuCXtZISg9WtMcAADbrXlgiIiJSh+3o9WgLJk6c6HUnYVi4cGHtcDfZPXfffTdFRUXccccdmQ4lY/T3Iy21evEHDLj3CN46+P+YfGrww8hb/3qEya9exNIvzWLYJPWwioiIdERmNtfdd5ncQD1YIiKNqO3BSpnkYsfNhrdtWJGRmERERKTtal+zCMpuufDCC7nwwgszHYZIuxavDia5iMQ+m8QlP7zZcPWmlZkISURERNqwdtGD1ZaGMUr7ob8bSYd4eB+saNZnPVj5vXqxxbtA2apMhSUiIiJtVJtPsHJzcyktLdWXZdkt7k5paSm5ubmZDkXauURNMItgJPbZ31I0YpRGepG1TTcbFhERkZ21+hBBMzsB+BUQBf7k7rt1t+BBgwaxcuVKSkp0zxnZPbm5uQwaNCjTYUg7tyPBimbtPJvl5qw+9Khcl4mQREREpA1r1QTLzKLAb4D/AFYCb5vZE+6+oLl1ZGVlMWzYsNYKUUSkUcmaXYcIAlTk9mXo1iWZCElERETasNYeIjgZWOTuS9y9GngAOLWV2xQRSZtEPOzBSpnkAiDepT89k5vx8BotEREREWj9BGsgkDqP8cpwWS0zu9TMisysSMMARaStSYYJVCx75wTLegwgYs7WUk10ISIiIp/J+CQX7v4Hd5/o7hN79+6d6XBERHZSm2Bl7Zxg5fQMru/btKZ4b4ckIiIibVhrJ1irgMEprweFy0RE2oVkvAbYtQera58hAJSXLNvrMYmIiEjb1doJ1tvAgWY2zMyygbOAJ1q5TRGRtEmG12DV7cHK61cIQPXGFXU3ERERkQ6sVWcRdPe4mV0B/JNgmvY/u/uHrdmmiEg67ZjEIrtOgtW7oC/bPQffsjoTYYmIiEgb1er3wXL3p4GnW7sdEZHWUJtg1blpdXZWlDWWT1Q3GxYREZEUGZ/kQkSkLfNEmGDVuQYLYHOsgM4VSrBERETkM0qwREQa4YlgkotIbNcEa3tuX7rX6PYSIiIi8hklWCIijUlUk3SDSHSXVTVd+tHLN0IykYHAREREpC1SgiUi0ph4DTUWA7NdVlmPgWSRYOtGTXQhIiIiASVYIiKNSVQTZ9feK4DcXsFt/jasWro3IxIREZE2TAmWiEgjIokqqsmud123PkMBKFunmw2LiIhIQAmWiEgjIskqqq3+BCt/4DAAKkuX782QREREpA1TgiUi0ohoopIa23UGQYCC3gOo8Gx884q9HJWIiIi0VUqwREQaEWukB8siEUoivcnetmovRyUiIiJtlRIsEZFGxJJVxCP192ABbMnuS9dK3WxYREREAkqwREQaEUtWUdNIglXRZQC94uv3YkQiIiLSlinBEhFpRFYTPVjJboMoYDMV27ftxahERESkrVKCJSLSiCyvIhHJbXh9r2Cq9vUrF+2tkERERKQNU4IlItKIbK8mEW24B6tLn0IANq9ZspciEhERkbZMCZaISCOyvYpEI0MEew3cD4CKkuK9FJGIiIi0ZUqwREQakUM1Hmt4iGB+/2Ek3Uhs0r2wREREpIUJlpn9zMw+MrP5ZvaomeWFywvNrMLM5oWPO9MSrYjIXpbj1ZDVcIIVzcphQ6QXsa0r92JUIiIi0la1tAfreWCMu48DPgG+n7JusbtPCB+XtbAdEZG9LhGPk21xLNap0XKbYn3pXKF7YYmIiEgLEyx3f87d4+HLN4BBLQ9JRKRt2L69HIBIduMJ1vZO/elZowRLRERE0nsN1sXAMymvh5nZu2b2splNa2gjM7vUzIrMrKikpCSN4YiItExlRXBvK8tqPMGKdxtIH99AdU280XIiIiKy72sywTKzF8zsg3oep6aU+QEQB+4PF60Bhrj7wcB3gL+ZWff66nf3P7j7RHef2Lt375bvkYhImlSGNw+O5jSeYEV6DiHbEqxfvWxvhCUiIiJtWKypAu7+hcbWm9mFwEnA593dw22qgKrw+VwzWwwMB4paGrCIyN5SVbEdgGh250bLde5dCMDG1UsYNHT/1g5LRERE2rCWziJ4AnA9cIq7b09Z3tvMouHz/YADAd2FU0TalerK4BqsWG6XRsvl9QvuhbWtZGmrxyQiIiJtW5M9WE24A8gBnjczgDfCGQOPBG4ysxogCVzm7htb2JaIyF4V374JgFjnvEbL5Q8Keq1qSnUvLBERkY6uRQmWux/QwPKHgYdbUreISKYltm8BINalZ6PlsrvksZXORMqUYImIiHR06ZxFUERknxLfFnS8d+qW32TZ0lhfcrevbu2QREREpI1TgiUi0oDE9s0AdMkraLJseU4/8qrXtXJEIiIi0tYpwRIRaYBXbCbpRrfujQ8RBKjqOpDeyRISSd8LkYmIiEhbpQRLRKQBVrmZcutMJBptumyPQfSwbZRs0A3TRUREOjIlWCIiDYhWl1FuXZtVNqegEIANqxa3YkQiIiLS1inBEhFpQFZNGdsjzUuwevQbBkD5Ot0LS0REpCNTgiUi0oDsmq1Uxbo1q2z+wOBeWJWly1ozJBEREWnjlGCJiDSge3wj1TlNT9EO0KnnQGqIwWbdC0tERKQjU4IlIlKPZCJJby+lpmv/5m0QibAhUkDONt0LS0REpCNTgiUiUo+NG9aQYzV494HN3qYsux/dKte0YlQiIiLS1inBEhGpx+a1wWQVWT0HNXubyi4DyE+sx133whIREemolGCJiNRj85piAHr0K2z2NoluA+nDJjZv3d46QYmIiEibpwRLRKQeFSVBD1a/wQc2e5tIzyFEzdm8TjMJioiIdFRKsERE6pG18WM2040uPfs1e5vsXkMAKF+ve2GJiIh0VEqwRETqkbd1EauzC8Gs2dt0DW82XF26vJWiEhERkbauRQmWmc0ws1VmNi98fDFl3ffNbJGZfWxmx7c8VBGRvaO6JsGgmmK2543Yre3ywgTLNynBEhER6ahiaajjNne/NXWBmY0CzgJGAwOAF8xsuLsn0tCeiEirWrJwLgdZBdmDD96t7bp17cYG70F068pWikxERETautYaIngq8IC7V7n7UmARMLmV2hIRSatNC14CoO/Yz+/WdmbGxkg+2RXrWyMsERERaQfSkWBdYWbzzezPZtYzXDYQWJFSZmW4bBdmdqmZFZlZUUlJSRrCERFpmeiyV1lv+fQZsntDBAG2ZvWiU3VpK0QlIiIi7UGTCZaZvWBmH9TzOBX4HbA/MAFYA/x8dwNw9z+4+0R3n9i7d+/d3VxEJK22lG1hzPa3WNn7KCyy+79BVeXk0zW+qRUiExERkfagyWuw3P0LzanIzP4IPBm+XAUMTlk9KFwmItKmfTz7ASZbFd0OOX2Pto936k3PrZvAfbdmIBQREZF9Q0tnEeyf8vI04IPw+RPAWWaWY2bDgAOBt1rSlojI3tBj/p9ZYQPYf9KJe7S9de1NFgmqyjVMUEREpCNq6SyCt5jZBMCBYuC/ANz9QzN7EFgAxIFvagZBEWnrPpo7m4PiH/HGiO8yOBrdozqi3YMbE28uWUXfbgXpDE9ERETagRYlWO5+XiPrbgZubkn9IiJ7i7uz7bn/ZSudGfOly/a4nty8IMEqK1lF3/3Gpys8ERERaSdaa5p2EZF25e2XHuPQqjf5dPildO3ea4/r6ZI/AICKTWvSFZqIiIi0I0qwRKTDq66JkzfnJtZZb8ad/t0W1dW9ILgjRc2WdekITURERNoZJVgi0uG98ehvGZ5cwobDvkcsp3OL6upV0Icaj5Is182GRUREOiIlWCLSoW3ZvJmDFvyCxVkjGHXcRS2uLycri03Wncg23ThdRESkI2rpLIIiIu3a/Ad/wjQ2se3EP2ORPZs5sK4tkZ5kV3aMBGtr2WbWLvuE8nVLqNm0kkR5CWwrJVq5kdz4Zjolyoklq8nyKrK8mmyvJkqCpBtuRpIITgQ3I0GMhEVJWBYJi5G0GMlIjKRlkYxkQSSGR7LwaBYeyYZoDItmQzSLSDQLoll4JCi7YzuPxILXFgueWxaYYXiwA+7gHrzy5I6luAMkU9Z5sGxHmfA/jmNhGQ82Cv91UgrW/mu+4zWfxbDLunrKhOssZV2raaXbt1lrVdxKWi3aVqg4ktWJ8ad8i9xOLeuBF5H0UIIlIh3WmuWfMnHVfczrcSwTDjk2bfWWZ+XTvXpj2urLNE8mKV23klUfF1G+4n2yNiwgb9tS8uNryWcL3eqU30ontloPtkZ7sC3alUQsl0Q0h2T4iERjRAD3JJ5M4MkkeAJLxrFknIjXEEnWBM+TNUSScaJeScTjxMJHlDgx4mSRIIs4MRJkh8uitheSEJE25o3qbUw576ZMhyEiKMESkQ5s9cM30Aun/xn/l9Z6q3Ly6bZ1SVrr3Ju2bN5I8XsvU77odbqUvMuQyo8ooIwdd/UqJY+12UNZ0nMqi/KGklMwjC5996db30J69u5Pt9zOuyRdrcHdqU4kqYonqaxJUpZIBr1HyQQkayARxxLVkIxjyergdbLmswrMcAczw8yCni0zzMCIYDt6GiJGBKstZxgYmEXCbSBiQf+MRQzCssG/Ybmgwdp2d35ed1342up0daSs81bqyfJ2lpu2Vrzt7fgu+c1XGLH4L1Ruu5bcLt1bpxERaTYlWI1IJhJUbC+nS7cemQ5FRNJs6cfvcfDm53mz/9c4fMjwtNYd71RAzy2bCb+9p7Xu1rBl4wYWvf0s1Z+8SL9NRQxNLGd82Au0LDKExXlT+bTvaLoNGc+gERPJL+hPfoZjhiAxyolFyYlFITfT0YhkTvTYG+j5zBn8e9bNfO7i9P5gJCK7TwlWI9555i6GFf0PHw7/OuNO+w65nbpkOiQRSZO1T/0/+hNj1Ok3pL/yrn3IsgQVZaV06lHQdPm9rLqqikVzX6Dsw+fote7f7F/zKYeas91zWNxpDG/3PYGu+x9O4fgjGdojn6GZDlhEGjXqsP/g3VeP5NBld7Fq0TkMPGBcpkMS6dCUYDWix8CDWD1/GJM/uZXS//sj7/Y/mSGf/y99cIm0c6uLP2bilud4r99XmNh7UNrrj3bvB8DmkpVtJsEqLS3hkzmPYp88y8jyNxhl26jxKIuyR/DWkP8kb/QXOOCQYxibra4gkfZo4Nl3UPWHKWybdQnV17xMdm6nTIck0mEpwWrEgQcfiU+YzQevPUXN679l0uq/EbvvPoojQ1jf+3NkHXAkAw86jN4D98MirTPjfTLpVFRVUbFtK1Xbt1JdsZXqim3EK8uJV5aTqNpGonobXrWdZPU2qN4ONduxeAXEq/DwmoNosgbz4GLxiMeJerAs6vHaR4QEhDNiGUlsp+cQ2bEsfER2ep7cKe6dh5nvOkSqvmHoXm+55m1bfxt73m5jy9v+gC9pSleqcGDIyd9vlfpz84IEa2vpavofMKFV2miO5YsXsvyNR+i27HlGVc3ncEuwie4syj+KyEFfYv/DvsjIHr0yFp+IpE+fgUMpOux/mfjWVbz12/OZeOUDRKLpmRm1tbg7VVVVbCvbSEXZRirLN1FVvpn49k3Et28hXrWNRNV2PF6J1VQQiVdiiUqi8QoiySpiiUqiySosmSDiCSIE/0ZTn6f8GyVR+33FdpqtszailGVeZ93Os4A2ul+pW1nq8maU30lD30/qL9Pc70eNtdncGK2B5btbT1PLd5gbGUPWGX/iC6P6NlqurVCC1QQzY8zUk2DqSaxbvYylL91Np2WzGb/2YXLWPQCvQZl3pjTah/Kc3lTm9CaR3RViuZDVmWQkO5jW1xNYMgGewJNxYvEKLF5BJF5BNF5BLFFBLFlJVqKSbK8kxyvJ9So6UUkXS7A7gxPjHqGSHGosnFvLosRrn6c+sqiJdAqnM47hFsUjkfCCbMPDfzGrnUZ5x3LfaflnF3DbTp8pBviul6DU8wG1SxEamI643m2b94FXt5x7Y2/n+ttp6gOgeTW1wlZ70EhbvpZ9b1y6ZEOmMGnQ/q1Sd9de/QGo2LimVepvSDKR4ON3X2HjO4/Tb+1L7J8sZgiwPDKYeYPOodehX2a/8UdxaFQf/SL7oolfvIi3Sj5m8tLfMfeXpzPqsnvp1GVvTDkTcHfKK2soKVnLlvUrqdy0mkTZGpJl64ltX0d2ZQmdqzbQJb6Jzslyuvh2OltVsy6hrPYoVZZNFTlUWw7Vlk2N5RCPZJO0LGoi2bhFSUaC7zNJi+K13212/BsFi6RMPJMSe+3/3y3lS4mF61I1/oN66neN1MlSPktI6pRvMGnbdXnd70apm+5YnrrVZ7d5aLruRpfv5uwsDX4va6Ce5nyPi+fux4BuObsVRyaZt6EpgyZOnOhFRUWZDqNZKrdvZekHb7Cl+F0iJR+RVb6aLtUbyEuU0skryKGabEvUu23cI1SQQ5XlUGm5VEdyqYnkUhPpRCKaSyLWiWSsMx7rhGd1huwuRLI7YdldiOR0IZrThVhOFyK5XcnO7Up2py5kd+pGTueu5HTqSk5Obqv1qIlI09avW02f342kaOT1TJz+g1Ztq2JbOR+9/iTVHz7J/ptepYDNxD3CJzljKC/8D4ZM+Qr99hvTqjGISNvy77/eyOeW/IpV1o/1U37AuC+cQ7SFvVmVVdVsWLeKzetXsK10JdWbVpPcuo7ItvXkVKynS00peYmNFLCZHKvZZfsKcthoPSmL5bM9uxeJ7B54TnfI7YHldifSOY9YpzxiXXqS2zWP3K496dylK527diMntwumH4akDTKzue4+cZflSrBaT3V1NcmaSqLRKNFojEg0BuG0viKy76qJx0n+dz/eHzidiZf+Ju31l6xdweLXHiF78T85aFsRna2Kcu/EJ90m48NP5MCpX6F7r/YxjEJEWsf7c54k71/XMdhXs4E8Fvc4HAYeQk6fA+jWs4BIdlfcIli8gurKbVSVbyG+tYSasvUky0uIbC8hu6qUrtUbyEtupJdvqfcec1voxpZYL7ZnF1DdqTfepS+R7v3IyRtA5/wBdM4fRPeCgcQ6a0Zm2fc0lGDp54BWlJ2dDdnZmQ5DRPayrFiMTyMD6bRlUVrqq6qq5JO5L7E1nPVveM3H9DZnLQV80Ockuow9mQMnn8AhuqhdREJjp55E/LDjmfvCfbDgcUZueYXuW56BBU1vW+0xNlkPymM92Zbbh7JOoykOE6fcngPpVjCAvD5D6FYwgB5ZuSh1EtlZixIsM5sFjAhf5gGb3X2CmRUCC4GPw3VvuPtlLWlLRKQ92dB5f/armL9H2ybiNSxd8DZr33+JziteYXjFe4y1ChJuLM4aTtHQS+g9+SsUjppCPw0HFpEGxLKyOPTEi+DEi/BkgjUrl1K25hPKt2wiEq/APEk8kktWbmdyunQnt0dfevQeSF5eL/pGIqgfXGTPtCjBcvfpO56b2c+BLSmrF7v7hJbULyLSXlX2GkHfFf+icutGcrs1PFOfJ5OUrF3J6o/eoHLJG3QteYdhlQs5wCo5AFgV6cfC3ieQPfxY9pt8IsPzeu+9nRCRfYZFovQfcgD9hxyQ6VBE9nlpGSJoZgacCRybjvpERNq7HgcdDSt+yyfP38W4r1yHJ5NsWLucdcUL2brmE2z9Arpu/pgBVYvpQxl9CCbAKY4N4/3eXyQ2dAqFE45h4ODhDMz0zoiIiEizpesarGnAOnf/NGXZMDN7FygDfujur6apLRGRNm/8lP9gwYsjGDf/f1j3/p10T5bR26rZ0f9U4dksjw1lUc9peJ/R9Cg8mMFjPscB3fLQ78siIiLtV5MJlpm9APSrZ9UP3P3x8PnZwMyUdWuAIe5eamaHAo+Z2Wh3L6un/kuBSwGGDBmyu/GLiLRJ0WiE/Ese4rXH/o9Y5QY8Jw/LH0aXfgdQMHQUfQYNZ0RM8wyJiIjsa1o8TbuZxYBVwKHuvrKBMrOBa9290TnY97Vp2kVEREREZN/U0DTt6Zh+6gvAR6nJlZn1NrNo+Hw/4EBgSRraEhERERERabPSMT7lLHYeHghwJHCTmdUASeAyd9+YhrZERERERETarBYnWO5+YT3LHgYebmndIiIiIiIi7UmLr8FKJzMrAZZlOo46CoANmQ5C9hqd745D57rj0LnuWHS+Ow6d646lLZ7voe6+yw0q21SC1RaZWVF9F6/Jvknnu+PQue44dK47Fp3vjkPnumNpT+c7HZNciIiIiIiICEqwRERERERE0kYJVtP+kOkAZK/S+e44dK47Dp3rjkXnu+PQue5Y2s351jVYIiIiIiIiaaIeLBERERERkTRRgiUiIiIiIpImSrAaYWYnmNnHZrbIzL6X6XgkfcxssJm9ZGYLzOxDM7syXN7LzJ43s0/Df3tmOlZJDzOLmtm7ZvZk+HqYmb0Zvr9nmVl2pmOU9DCzPDN7yMw+MrOFZna43tv7JjO7OvwM/8DMZppZrt7b+w4z+7OZrTezD1KW1ftetsDt4Xmfb2aHZC5y2V0NnOufhZ/j883sUTPLS1n3/fBcf2xmx2ck6EYowWqAmUWB3wAnAqOAs81sVGajkjSKA9e4+yhgCvDN8Px+D/iXux8I/Ct8LfuGK4GFKa//D7jN3Q8ANgH/mZGopDX8CnjW3Q8CxhOcd7239zFmNhD4NjDR3ccAUeAs9N7el9wNnFBnWUPv5ROBA8PHpcDv9lKMkh53s+u5fh4Y4+7jgE+A7wOE39fOAkaH2/w2/N7eZijBathkYJG7L3H3auAB4NQMxyRp4u5r3P2d8PlWgi9gAwnO8T1hsXuAL2ckQEkrMxsEfAn4U/jagGOBh8IiOtf7CDPrARwJ3AXg7tXuvhm9t/dVMaCTmcWAzsAa9N7eZ7j7K8DGOosbei+fCvzVA28AeWbWf68EKi1W37l29+fcPR6+fAMYFD4/FXjA3avcfSmwiOB7e5uhBKthA4EVKa9XhstkH2NmhcDBwJtAX3dfE65aC/TNVFySVr8ErgeS4et8YHPKB7fe3/uOYUAJ8JdwSOifzKwLem/vc9x9FXArsJwgsdoCzEXv7X1dQ+9lfW/bt10MPBM+b/PnWgmWdGhm1hV4GLjK3ctS13lwDwPdx6CdM7OTgPXuPjfTscheEQMOAX7n7gcD26gzHFDv7X1DeO3NqQRJ9QCgC7sOMZJ9mN7LHYOZ/YDg0o77Mx1LcynBatgqYHDK60HhMtlHmFkWQXJ1v7s/Ei5et2NIQfjv+kzFJ2lzBHCKmRUTDPU9luAanbxwWBHo/b0vWQmsdPc3w9cPESRcem/ve74ALHX3EnevAR4heL/rvb1va+i9rO9t+yAzuxA4CTjHP7t5b5s/10qwGvY2cGA4G1E2wcV0T2Q4JkmT8Bqcu4CF7v6LlFVPABeEzy8AHt/bsUl6ufv33X2QuxcSvI9fdPdzgJeAM8JiOtf7CHdfC6wwsxHhos8DC9B7e1+0HJhiZp3Dz/Qd51rv7X1bQ+/lJ4Dzw9kEpwBbUoYSSjtkZicQDO8/xd23p6x6AjjLzHLMbBjBxCZvZSLGhthnyaDUZWZfJLh2Iwr82d1vzmxEki5mNhV4FXifz67LuYHgOqwHgSHAMuBMd697ga20U2Z2NHCtu59kZvsR9Gj1At4FznX3qgyGJ2liZhMIJjTJBpYAFxH8oKj39j7GzH4CTCcYPvQucAnBtRh6b+8DzGwmcDRQAKwDfgw8Rj3v5TDJvoNgmOh24CJ3L8pA2LIHGjjX3wdygNKw2BvufllY/gcE12XFCS7zeKZunZmkBEtERERERCRNNERQREREREQkTZRgiYiIiIiIpIkSLBERERERkTRRgiUiIiIiIpImSrBERERERETSRAmWiIiIiIhImijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERE2ggzKzQzN7NYpmPZ15nZhWY2J9NxtDVmNs3MPs50HCIi7ZkSLBERadfMbIaZ1ZhZecrj+kzH1R65+6vuPiLd9YY/HGxLOT9/SncbIiJthX4lFRFJEzOLuXs803F0ULPc/dxMB9Fa9pG/rfHuvijTQYiItDb1YImItICZFZvZd81sPrDNzGJmNsXM/m1mm83sPTM7OqX8bDP7f2b2lpmVmdnjZtargbovMrOFZrbVzJaY2X/VWX+qmc0L61lsZieEy3uY2V1mtsbMVpnZ/5hZtIn92N/MXjSzUjPbYGb3m1leyrqNZnZI+HqAmZXs2C8zO8XMPgz3d7aZjaxzfK41s/lmtsXMZplZ7u4f6d1nZt8Lj8tWM1tgZqc1UM7M7DYzWx8ey/fNbEy4LsfMbjWz5Wa2zszuNLNOzWz/7rD882EML5vZ0JT1vzKzFWGbc81sWsq6GWb2kJndZ2ZlwIVmNtnMXg+P8xozu8PMslO2cTP7hpl9Grb33+G5+3fYxoOp5RuI+WgzW9mc/RMRkfopwRIRabmzgS8BeUBf4Cngf4BewLXAw2bWO6X8+cDFQH8gDtzeQL3rgZOA7sBFwG0pSc5k4K/AdWG7RwLF4XZ3h/UeABwMHAdc0sQ+GPD/gAHASGAwMAPA3RcD3wXuM7POwF+Ae9x9tpkNB2YCVwG9gaeBf9T5In8mcAIwDBgHXFhvAGZTw+ShocfUJvahrsXANKAH8JMw/v71lDuO4PgND8ueCZSG634aLp9AcDwHAjfuRgznAP8NFADzgPtT1r0d1tsL+Bvw9zrJ56nAQwTn934gAVwd1nU48HngG3XaOx44FJgCXA/8ATiX4HyOIfhb3WNhotzQ+fltE5u/YmZrzewRMytsSRwiIm2ZEiwRkZa73d1XuHsFwZfZp939aXdPuvvzQBHwxZTy97r7B+6+DfgRcGZ9PUzu/pS7L/bAy8BzBAkDwH8Cf3b358N2Vrn7R2bWN2zrKnff5u7rgduAsxrbAXdfFNZV5e4lwC+Ao1LW/xFYBLxJkBj+IFw1HXgq3LYGuBXoBHyuzvFZ7e4bgX8QJBX1xTDH3fMaeTQ2KcWZdb7sD3D3v4ftJt19FvApMLmebWuAbsBBgLn7QndfY2YGXApc7e4b3X0r8L9NHcs6nnL3V9y9iuCYHW5mg8P9vc/dS9097u4/B3KA1OufXnf3x8L4K9x9rru/EZYvBn5PyjkK3eLuZe7+IfAB8Jy7L3H3LcAzBAn3HnP3cY2cn7rJXqqjgEKCY7waeNI0mYuI7KP04SYi0nIrUp4PBb5qZienLMsCXmqg/LJwfUHdSs3sRODHBD0oEaAz8H64ejBBb1FdQ8P61gT5AYTbrqinbGpbfYFfESRw3cJtNtUp9kfgCeDSMGGAoMdr2Y4C7p40sxUEPT07rE15vj3cJt0erHsNlpmdD3yH4Is9QFfqOc7u/qKZ3QH8BhhqZo8Q9DzmEhzzuSnH0oBGh1vWUXvc3b3czDYS7P8KM7uWIFEeADhBT2VBfduG+zOcIPGdGMYVA+bWaW9dyvOKel73243Y08bdXwmfVpvZlUAZQU/p+w1vJSLSPqkHS0Sk5Tzl+QqCHqrUX/a7uPtPU8oMTnk+hKAHZUNqhWaWAzxM0CPU193zCBKqHd/0VwD71xPLCqAKKEhpv7u7j25iH/433I+x7t6doCfus6zCrCvwS+AuYIZ9dt3YaoKkbkc5C/dvVRPt7cKCKcLLG3lMa7qW2rqGEiSEVwD54fH7IHWfUrn77e5+KDCKIKG9juCcVACjU45lD3fvuhu7VXuuw2PYC1gd7sv1BMMRe4bxbakTX+rfFcDvgI+AA8NzdEND+9NaLLjWrqHzc+duVOXs5dhFRPYWJVgiIul1H3CymR1vZlEzyw0nDhiUUuZcMxsVXs90E/CQuyfq1JNNMGSsBIiHvVnHpay/C7jIzD5vZhEzG2hmB7n7GoKhhD83s+7huv3NrO5Qsrq6AeXAFjMbSJBgpPoVUOTulxBcY7bjy/SDwJfCOLKAawgSvH83daDqCqcI79rI49XdqK4LwZf4EggmDCG4BmkXZjbJzA4L498GVAJJd08SJGm3mVmfsOxAMzs+ZVu3lElM6vHF8NqybIJrsd5w9xUExzsexhczsxsJerAa042g56fczA4CLm+ifNq5++hGzs9l9W1jZqPNbEL4fugK/JwgAV+4V4MXEdlLlGCJiKRR+OX5VILehRKCHqXr2Pnz9l6CiSjWEgxD+3Y99WwNlz9IMFTvawTD83asf4tw4guCno+X+awn6XyCBG1BuO1DBNdNNeYnwCFhXU8Bj+xYYWanEkxSseML/XeAQ8zsHHf/mKC369cEPT4nAye7e3UT7bUqd19A8EX+dYJhcmOB1xoo3p0gkdpEMNyxFPhZuO67BNeevWHBbH4vEF4nFV5LtZXGh7n9jWCY50aCySd2DGP8J/As8EnYZiVNDOMkGLb4tbDNPwKzmijfVvQliLUMWEIwZPOk8Jo9EZF9jrnXHYEgIiKtxcxmA/e5u2602s6Z2bkEwwe/38D6u4GV7v7DvRqYiIhklCa5EBER2QPufl+mYxARkbZHQwRFRDoIC25629LJCaSdM7MbGvg7eCbTsYmI7As0RFBERERERCRN1IMlIiIiIiKSJm3qGqyCggIvLCzMdBgiIiIiIiKNmjt37gZ37113eZtKsAoLCykqKsp0GCIiIiIiIo0ys2X1LdcQQRERERERkTRRgiUiIiIiIpImSrBEROqhGVZFRERkT7Spa7DqU1NTw8qVK6msrMx0KNLO5ObmMmjQILKysjIdirQz//60hKfuvZVzzj6fUSNHZzocERERaUfafIK1cuVKunXrRmFhIWaW6XCknXB3SktLWblyJcOGDct0ONLOLH31b9wcuZMPn18CI/+e6XBERESkHWnzQwQrKyvJz89XciW7xczIz89Xz6fskeEbXwqelK/JbCAiIiLS7rT5BAtQciV7RH83sqci8QoABlUvBV2LJSIiIruhXSRYIiJ7UyQe9Hz2oJxNa4szG4yIiIi0K0qwmsHMuOaaa2pf33rrrcyYMSNzAaV44403OOyww5gwYQIjR46sjWv27Nn8+9//3uN6ly1bxiGHHMKECRMYPXo0d955Z5oiFmn7osmq2ueriz/OYCQiIiLS3rT5SS7agpycHB555BG+//3vU1BQkLZ63R13JxLZ8zz3ggsu4MEHH2T8+PEkEgk+/jj4Mjh79my6du3K5z73uT2qt3///rz++uvk5ORQXl7OmDFjOOWUUxgwYMAexyrSXmR7FWuiA+ifWM229UszHY6IiIi0I+rBaoZYLMall17Kbbfdtsu6kpISTj/9dCZNmsSkSZN47bXXAJgxYwa33nprbbkxY8ZQXFxMcXExI0aM4Pzzz2fMmDGsWLGC6667jjFjxjB27FhmzZoFBAnS0UcfzRlnnMFBBx3EOeecU+99edavX0///v0BiEajjBo1iuLiYu68805uu+02JkyYwKuvvtponOeddx6HH344Bx54IH/84x8ByM7OJicnB4CqqiqSyWS9x+b2229n1KhRjBs3jrPOOguAjRs38uUvf5lx48YxZcoU5s+fX9vWBRdcwLRp0xg6dCiPPPII119/PWPHjuWEE06gpqYGgJtuuolJkyYxZswYLr300l32O5lMUlhYyObNm2uXHXjggaxbt66x0yjSbNlezabOhQDES5VgiYiISPO1qx6sn/zjQxasLktrnaMGdOfHJzd9n5tvfvObjBs3juuvv36n5VdeeSVXX301U6dOZfny5Rx//PEsXLiw0bo+/fRT7rnnHqZMmcLDDz/MvHnzeO+999iwYQOTJk3iyCOPBODdd9/lww8/ZMCAARxxxBG89tprTJ06dae6rr76akaMGMHRRx/NCSecwAUXXEBhYSGXXXYZXbt25dprrwXga1/7WoNxzp8/nzfeeINt27Zx8MEH86UvfYkBAwawYsUKvvSlL7Fo0SJ+9rOf1dt79dOf/pSlS5eSk5NTm/D8+Mc/5uCDD+axxx7jxRdf5Pzzz2fevHkALF68mJdeeokFCxZw+OGH8/DDD3PLLbdw2mmn8dRTT/HlL3+ZK664ghtvvBGA8847jyeffJKTTz65ts1IJMKpp57Ko48+ykUXXcSbb77J0KFD6du3b5PnUaQ5sqlia1Z3SuhJtGxFpsMRERGRdkQ9WM3UvXt3zj//fG6//fadlr/wwgtcccUVTJgwgVNOOYWysjLKy8sbrWvo0KFMmTIFgDlz5nD22WcTjUbp27cvRx11FG+//TYAkydPZtCgQUQiESZMmEBxcfEudd14440UFRVx3HHH8be//Y0TTjih3jYbi/PUU0+lU6dOFBQUcMwxx/DWW28BMHjwYObPn8+iRYu455576u0hGjduHOeccw733XcfsVisdp/OO+88AI499lhKS0spKwsS4xNPPJGsrCzGjh1LIpGojXfs2LG1+/fSSy9x2GGHMXbsWF588UU+/PDDXdqdPn16bW/fAw88wPTp0xs95iK7I8erScZy2ZjVj87bV2c6HBEREWlH2lUPVnN6mlrTVVddxSGHHMJFF11UuyyZTPLGG2+Qm5u7U9lYLLbTsLrU+zF16dKlWe3tGKIHwfC/eDxeb7n999+fyy+/nK9//ev07t2b0tLSXco0FCfsOp153dcDBgxgzJgxvPrqq5xxxhk7rXvqqad45ZVX+Mc//sHNN9/M+++/36x9ikQiZGVl1bYViUSIx+NUVlbyjW98g6KiIgYPHsyMGTPqvZfV4YcfzqJFiygpKeGxxx7jhz/8YaPtiuyOXKpJRnMp7zSAfls/yHQ4IiIi0o60uAfLzAab2UtmtsDMPjSzK8PlM8xslZnNCx9fbHm4mdWrVy/OPPNM7rrrrtplxx13HL/+9a9rX+8YCldYWMg777wDwDvvvMPSpfVfxzFt2jRmzZpFIpGgpKSEV155hcmTJzc7pqeeeqr2GqVPP/2UaDRKXl4e3bp1Y+vWrU3GCfD4449TWVlJaWkps2fPZtKkSaxcuZKKiuBeQJs2bWLOnDmMGDFip7aTySQrVqzgmGOO4f/+7//YsmUL5eXlTJs2jfvvvx8IriUrKCige/fuzdqfHclUQUEB5eXlPPTQQ/WWMzNOO+00vvOd7zBy5Ejy8/ObVb9IUxJJJ4dqPJpLvNtg+iQ3UFNTnemwREREpJ1IxxDBOHCNu48CpgDfNLNR4brb3H1C+Hg6DW1l3DXXXMOGDRtqX99+++0UFRUxbtw4Ro0aVTud+emnn87GjRsZPXo0d9xxB8OHD6+3vtNOO41x48Yxfvx4jj32WG655Rb69evX7HjuvfdeRowYwYQJEzjvvPO4//77iUajnHzyyTz66KO1k1w0FCcEw/yOOeYYpkyZwo9+9CMGDBjAwoULOeywwxg/fjxHHXUU1157LWPHjgXgkksuoaioiEQiwbnnnsvYsWM5+OCD+fa3v01eXh4zZsxg7ty5jBs3ju9973vcc889zd6fvLw8vv71rzNmzBiOP/54Jk2aVLvuzjvv3Cnu6dOnc99992l4oKRVTU0N2ZYgGcvFeg4lyxKUrinOdFgiIiLSTlh9M9O1qEKzx4E7gCOAcne/tYlNak2cONGLiop2WrZw4UJGjhyZ1hjlMzNmzNhpMox9jf5+ZHdt2bKJHrcV8tYBV5E9aDwTZl/ExyfOZMRh7b4TXkRERNLIzOa6+8S6y9M6yYWZFQIHA2+Gi64ws/lm9mcz69nANpeaWZGZFZWUlKQzHBGR3Rav2h48ieXSre9+AFSsX5bBiERERKQ9SdskF2bWFXgYuMrdy8zsd8B/Ax7++3Pg4rrbufsfgD9A0IOVrnikeWbMmJHpEETalNoEK6sT+QMK+f/t3Xl4HNWZ7/Hv24u6tViSJUteJC8CvO/xGsxiM2xJSEiAgHNDEuNMGGaywTMz2UMC8+Q+SZgwd+5AwsBAnPAQAyEZ4GYhGAgJzoTFG9jGCzbItmzJliXLsrZez/2jW7JkS7ZstdRu6fd5HtFVp6pOvXJRrX77nDoHINJQlb6AREREJKOkpAXLzPwkkqvHnHO/BnDOHXTOxZxzceAhoPcjN4iIpMnxBCtIQX4BR1wenkYN1S4iIiK9k4pRBA14GNjmnLu3U/noTrt9DNBYxyJyzouFE6Nnmj8bM6POO4Ksluo0RyUiIiKZIhVdBJcAnwI2m9mmZNk3gE+Y2RwSXQQrgb9LwblERPpVLHQ8wQI46i+lKHTyJNsiIiIi3elzguWcWwtYN5sGxbDsIjK0tLdgebISCVZb9kiGN2xLZ0giIiKSQVI6iuBg9vTTT2NmbN++vcd9KisrmTFjRsrOuWPHDpYuXcqcOXOYOnUqt956K5CYJPh3vzv7/LWtrY2FCxcye/Zspk+fzne+851UhSyS8WLREABefxCAaN4YCjlGvP3ZLBEREZFTUILVS6tXr+aiiy5i9erV3W6PRqN9PkcsFuuy/qUvfYk77riDTZs2sW3bNr74xS8CfU+wAoEAL730Em+++SabNm3iueee49VXX+1T7CKDRTwSBsDj8ydeC8oAaNBQ7SIiItILSrB6oampibVr1/Lwww/z+OOPd5S//PLLXHzxxXzkIx9h2rRpQCLR+uQnP8nUqVO54YYbaGlJfOv94osvMnfuXGbOnMnKlSsJhRLfkk+YMIGvfvWrvO997+OXv/xll/NWV1dTXl7esT5z5kzC4TB33nknTzzxBHPmzOGJJ56gubmZlStXsnDhQubOncszzzwDwKpVq7j22mtZunQpEydO5K677gLAzMjLywMgEokQiURIjFXS1S9/+UtmzJjB7NmzueSSS4BE69ctt9zCzJkzmTt3Ln/84x87zvXRj36UK664ggkTJnDfffdx7733MnfuXBYvXkx9fT0ADz30EAsWLGD27Nlcf/31Hf8+nS1evJitW7d2rC9dupQTJ6AW6S/HW7ACAASKxwFwtKYyXSGJiIhIBknZPFgD4vdfg5rNqa1z1Ez4wPdPucszzzzD1VdfzaRJkyguLmb9+vXMmzcPgA0bNrBlyxYqKiqorKxkx44dPPzwwyxZsoSVK1fy4x//mC984QusWLGCF198kUmTJvHpT3+an/zkJ9x+++0AFBcXs2HDhpPOe8cdd3DZZZdx4YUXcuWVV3LLLbdQWFjI3Xffzbp167jvvvsA+MY3vsFll13GI488QkNDAwsXLuTyyy8H4PXXX2fLli3k5OSwYMECPvShDzF//nxisRjz5s1j165dfP7zn2fRokUnnf/uu+/mD3/4A2VlZTQ0NABw//33Y2Zs3ryZ7du3c+WVV7Jz504AtmzZwsaNG2lra+OCCy7gBz/4ARs3buSOO+7g5z//ObfffjvXXXcdn/vc5wD41re+xcMPP9zRMtfupptu4sknn+Suu+6iurqa6upq5s8/aZJskX4Rj0QA8CUTrGGl4wFort2btphEREQkc6gFqxdWr17N8uXLAVi+fHmXboILFy6koqKiY33s2LEsWbIEgJtvvpm1a9eyY8cOKioqmDRpEgCf+cxn+POf/9xxzE033dTteW+55Ra2bdvGxz/+cV5++WUWL17c0fLV2fPPP8/3v/995syZw9KlS2lra2Pv3sSHwSuuuILi4mKys7O57rrrWLt2LQBer5dNmzZRVVXVkYSdaMmSJaxYsYKHHnqoo/vi2rVrufnmmwGYMmUK48eP70iwli1bxrBhwygpKaGgoIAPf/jDQKLlrbKyEkgkYRdffDEzZ87kscce69JS1e7GG2/kqaeeAuDJJ5/khhtu6PbfR6Q/xKOJLoL+rCwAikZPACByZF+6QhIREZEMklktWKdpaeoP9fX1vPTSS2zevBkzIxaLYWbcc889AOTm5nbZ/8Sudt11vTvRiXV0NmbMGFauXMnKlSuZMWNGt4mQc45f/epXTJ48uUv5a6+9dtp4CgsLWbZsGc8999xJA3Q88MADvPbaa/z2t79l3rx5rF+//pS/RyAQ6Fj2eDwd6x6Pp+MZtRUrVvD0008ze/ZsVq1axcsvv3xSPWVlZRQXF/PWW2/xxBNP8MADD5zyvCKp5GKJFqz2LoIjhg/niMvDNNmwiIiI9IJasE7jqaee4lOf+hR79uyhsrKSffv2UVFRwSuvvNLt/nv37uWvf/0rAL/4xS+46KKLmDx5MpWVlezatQuARx99lEsvvfS0537uueeIJLsr1dTUUFdXR1lZGcOGDePYsWMd+1111VX8x3/8B845ADZu3Nixbc2aNdTX19Pa2srTTz/NkiVLqK2t7ejy19raypo1a5gyZcpJ59+9ezeLFi3i7rvvpqSkhH379nHxxRfz2GOPAbBz50727t17UmJ3KseOHWP06NFEIpGOerpz00038cMf/pCjR48ya9asXtcv0lfx5DNYPl+iBcvrMQ57ivE3a7JhEREROT0lWKexevVqPvaxj3Upu/7663scTXDy5Mncf//9TJ06lSNHjvD3f//3BINBfvrTn/Lxj3+cmTNn4vF4uO2220577ueff75jkImrrrqKe+65h1GjRrFs2TLefvvtjkEuvv3tbxOJRJg1axbTp0/n29/+dkcdCxcu5Prrr2fWrFlcf/31zJ8/n+rqapYtW8asWbNYsGABV1xxBddccw0Ad955J88++ywA//zP/8zMmTOZMWMGF154IbNnz+Yf/uEfiMfjzJw5k5tuuolVq1Z1abk6nX/5l39h0aJFLFmypEtS9+yzz3LnnXd2rN9www08/vjj3Hjjjb2uWyQV4tHElxr+rOP/Xzf4S8nVZMMiIiLSC9be6nEumD9/vjtxtLht27YxderUNEWU2VatWtVlMIyhSP//yJl647HvsuCdf6Ph9vcoLCwC4M/33sysY3+i8Dt6DktEREQSzGy9c+6kkdjUgiUi0omLtQ9yEewoi+aNotA14sKabFhEREROTQnWILZixYoh3XolcjbaB7nw+493EbSCxHx0TXVqwRIREZFTy4gE61zqxiiZQ//fyFmJRYg4L37f8bfHYNFYAI4cqExTUCIiIpIpzvkEKxgMUldXpw/Lckacc9TV1REMBk+/s0hnsQgRfF2mNMjrmGx4T7qiEhERkQxxzs+DVV5eTlVVFbW1tekORTJMMBikvLw83WFIpomFieLtUlQ8JjGZeLi+Kh0RiYiISAY55xMsv99PRUVFusMQkSHC4hGi1vWtsaQoMdmwa9yfpqhEREQkU/R7F0Ezu9rMdpjZLjP7Wn+fT0SkT+IRoid89+T3epKTDR9IU1AiIiKSKfo1wTIzL3A/8AFgGvAJM5vWn+cUEekLi53cggVw1F9KbtuhNEQkIiIimaS/W7AWArucc+8658LA48C1/XxOEZGzZvHoSS1YAC3BURRGlWCJiIjIqfV3glUGdJ44pipZ1sHMbjWzdWa2TgNZiEi6eeIR4t20YMXyRicmG460piEqERERyRRpH6bdOfegc26+c25+SUlJusMRkSEuMciF/+TygsR3Q021mmxYREREetbfCdZ+YGyn9fJkmYjIOSnRguU9qTxQnJxsuPq9gQ5JREREMkh/J1hvABPNrMLMsoDlwLP9fE4RkbPmcVFi3bRgDUtONtxUu3egQxIREZEM0q/zYDnnomb2BeAPgBd4xDm3tT/PKSLSFx4XwXlOfmssHj0BgEi9ugiKiIhIz/p9omHn3O+A3/X3eUREUsEbjxL1ZZ9UXlJURIPL1WTDIiIickppH+RCRORc4nFR4t10EfR5PdR6RuBvrk5DVCIiIpIplGCJiHTicxGc5+QEC9onGz44wBGJiIhIJlGCJSLSiZcY8R4SrNbgKAqimq9PREREeqYES0SkE6+LgLf7x1OjeaMZ7o5qsmERERHpkRIsEZFO/ESIe7K63eYbXg5Aw8E9AxmSiIiIZBAlWCIinQRcGOcLdrstZ8Q4AOoOVA5gRCIiIpJJlGCJiCQ55wgSJu7tPsEqHDUBgKZDasESERGR7inBEhFJisXiBC3SYwtWSVkFACFNNiwiIiI9UIIlIpIUDicGr+gpwcrPL+QouaDJhkVERKQHSrBERJIibS2JhR4SLIA6bymB5gMDFJGIiIhkGiVYIiJJkVAywfJn97hPY2AM+aHqAYpIREREMo0SLBGRpPYWLDtFC1Y4r4zS2CFcPD5QYYmIiEgGUYIlIpIUDSWewTJ/zwkWhWPJs1bq6w4NUFQiIiKSSZRgiYgkxcLtCVbPXQQDIxIjCR6uemdAYhIREZHMogRLRCSp/RksX6DnBCt/9HkAHKt5d0BiEhERkczSpwTLzO4xs+1m9paZ/beZFSbLJ5hZq5ltSv48kJJoRUT6UfszWKdKsEaUTwQgXFc5ECGJiIhIhulrC9YaYIZzbhawE/h6p227nXNzkj+39fE8IiL9LhpqBiArmNvjPsMKS2giGxr2DlRYIiIikkH6lGA55553zkWTq68C5X0PSUQkPaLhNuDUCRZm1HpHEmzWZMMiIiJyslQ+g7US+H2n9Qoz22hmfzKzi1N4HhGRfhFNPoMVyD5FggUcC4wiP1QzECGJiIhIhvGdbgczewEY1c2mbzrnnknu800gCjyW3FYNjHPO1ZnZPOBpM5vunGvspv5bgVsBxo0bd3a/hYhICrjkKIKB7J6fwQII5ZUzofktnHOY2UCEJiIiIhnitAmWc+7yU203sxXANcDfOOdc8pgQEEourzez3cAkYF039T8IPAgwf/58d4bxi4ikTPsw7cFg3ql3LBxH/qEWag8foqRk5ABEJiIiIpmir6MIXg18BfiIc66lU3mJmXmTy+cBEwGNaSwi5zQXTTyDlZ1z6i6C7XNh1WkuLBERETlBX5/Bug8YBqw5YTj2S4C3zGwT8BRwm3Ouvo/nEhHpVxZuIuK8eHxZp9wvf1RiLqzGmvcGIiwRERHJIKftIngqzrkLeij/FfCrvtQtIjLQvOFGjlkuRad5rqpkbPtcWEqwREREpKtUjiIoIpLRfOGjNNlpnr8CcgtLaSEIDfsGICoRERHJJEqwRESS/JFjtHlPn2BhxmFvqebCEhERkZMowRIRSQpGG2nz5fdq38bAaApC1f0ckYiIiGQaJVgiIknZsSYi/mG92jeUV05J7CDxuGaXEBERkeOUYImIJOW6JqJZvWvBonAchdZMXV1t/wYlIiIiGUUJlogI4OJx8lwz8ayCXu0fGDEBgNqqXf0YlYiIiGQaJVgiIkBbSxNZFoPswl7t3z4X1rGa3f0YlYiIiGQaJVgiIsCRukMA+HN614JVMnYSAKG6Pf0Wk4iIiGQeJVgiIsDRQ3sBCBSV9Wr/7MKRtJGFNeztz7BEREQkwyjBEhEBmg9XAZBXOr53B5hR6x1JQHNhiYiISCdKsEREgMiRRII1fOSEXh/TGBhNoebCEhERkU6UYImIABzbT9j5KCge1etDWnLKKIkd6segREREJNMowRIRAfzNNdR6ijFP798WY/ljGW7HaGo80o+RiYiISCZRgiUiAuS2VNGYNfKMjvEMHwvAkQMaql1EREQSlGCJyJDn4nHGRPbRlFdxRscFSxL7Nx18tz/CEhERkQykBEtEhrzDB6sosGZcyeQzOi4/OSBGW31VP0QlIiIimahPCZaZfdfM9pvZpuTPBztt+7qZ7TKzHWZ2Vd9DFRHpHwd3vwlAzpjpZ3TciFFjiTsj1nCgP8ISERGRDORLQR3/5pz7184FZjYNWA5MB8YAL5jZJOdcLAXnExFJqfp3NwAwbsq8MzouLztILQVYU01/hCUiIiIZqL+6CF4LPO6cCznn3gN2AQv76VwiIn3iq9lIrY0gv3TsGR97xFtMVquGahcREZGEVCRYXzCzt8zsETMbniwrA/Z12qcqWXYSM7vVzNaZ2bra2toUhCMi0nvRWJyy5m3U5k87q+ObskaQG9Z7l4iIiCScNsEysxfMbEs3P9cCPwHOB+YA1cCPzjQA59yDzrn5zrn5JSUlZ3q4iEif7Ny9m/FWA+ULzur4tmAphdG6FEclIiIimeq0z2A55y7vTUVm9hDwm+TqfqBzX5vyZJmIyDml5q0XmAaUzrrirI6P5Y6kqOEoLhrGfFmpDU5EREQyTl9HERzdafVjwJbk8rPAcjMLmFkFMBF4vS/nEhHpD969f6GZbEZccHYtWAxLvA0eO6yRBEVERKTvowj+0MzmAA6oBP4OwDm31cyeBN4GosDnNYKgiJxrnHOMb1zPnrw5TPOe3duhv3AMAEdr95A/akIKoxMREZFM1KcEyzn3qVNs+x7wvb7ULyLSnyor36WCA2wq/8RZ15FdnBi/p/mwJhsWERGR1MyDJSKSkQ5sWkMFMGJmrx417VZ+SeJx0/CRwdNFMBIJc2D3Vur2baft8B6scR/+php8kUb8sWYC8Vb88TBx8xIzLzHz0+bLJ5Q1nGigEE9uCd6C0eQUjyG/pJyikePILRwJnv6aGUREROTcoQRLRIYs27OWJnIom3L20/QVlZQRdR7ijdUpjGzgtIVCvLv5f2jc+Rfs4BaGH9vJ+NhexluE8cl9ws7HYU8xrd5hhD05NAdGEvNkYS6OuRi+eBu50SOUhvaQ39hIbm3bSeeJ4OWIDeeYv5i2wAiiOaVEc0YSyy3FG8jF58/CmY+YecE5iIWxWBhiIWKRMPFIGy4SgmgrRENYtBWLhfBE27BYCG88hDcWwudC+OJh/PEQfhchQOIVwJklXun6GseDw3BYYtk8ODzErb28fTnxCh6cGXG8YMe3x9uPJ7F8nOvy0mkh8bt2YnRd72nb2e/XeZsMFlFPkFGffoTSsgnpDkVEUIIlIkNY2dENvJczi5ln+fwVQH5OFgcpxNNUk8LI+k8kEuGdDX/iyJbnGXbwdc4Pvc00CwFQRyE1wfN5a/j7sdHTKSifRmn5+eSPGMMYj7fX52htPsbhmn0cPbSP5voqwkdqcMeq8bUcIthWy7CmKkY2bmaENZ7V7xByfkKWRRg/YQsQsSwilkXUEyDqCRL25RPzBol7A8S9AfAGgGRq4eKJSpzjeOITB+cwF+tYxsUwFwfiWDz56hI/uEQq1b5uxPE4h4cY/mSa5iXekcAlnJjOWKLITt7muix3c1z7tpMypE7bOpatmzpOVb9kHBdnVmg9r7/yC0qXfyPd0YgISrBEZIiqObCP8W4/b4y5oU/1mBn1niKyWs/dyYYb6w+y/ZX/hneeZ9Kx15hmTcSdscc3gbdLryHr/Isom7WMEWMqKE7B+bJzhzH2/GmMPb/nyZujsThHW9sINdTQ1tpEKBSCeAyvi2IeMG8A82Xh8QXJCgbJCmQTCGYTCOYQ8HoJpCBOkcHAOcf+uyaTte8v6Q5FRJKUYInIkLRn00uMAoqmXtrnuhr9IxgTPtj3oFLoaH0tO1/+BcGdzzK1dQMLLU49BbxbdBGeSVdy3qIPU1FUSkWa4vN5PRTk5UDeeWmKQGRwMDP2Fsxj+tE/4WJRrA8t8iKSGroLRWRIilb+lZDzM37GhX2uqzVYSsGxrSmIqm/aWpvZ/MKj+N/+NdNa1rHAYuy3kbw2+pOMWHADk+ZeTNEZdPUTkczgKi4lf9PvqNz6VybMujjd4YgMeUqwRGRIKq7fwHuBSUwJZPe5rmhOKQWNxyAaAt/Ad16r3L6B6pceYOqh37KAJmooYcPo5QxfeBOT5lxMmUbvExnUJi36IGz6KgfW/04Jlsg5QAnWKdTuf493//IUc6/9IlmBYLrDEZEUaW5q5LzILjaW35yS+lzeaAAiR6vxF09ISZ2n09bazOY1j5K7+VGmRbZQ5rxszr+YwKKVTLvwGkappUpkyBgxehzb/VMZU/UbcP8bTIOXiKSTEqxT2P3ST1m8+985sO1B9k67jRlXf5a8YYXpDktE+ui9N19hhsXIPn9JSurzFiQSrMZD+yju5wSrctt6qv/4n0w79BsW0Mx+G8Vr53+JiVfeyvtGju3Xc4vIuevweddx0Y7vsWfr/zB+Rmre20Tk7CjBOoVFn/wub/5pFtlrf8DirXfTsuUHvFF0OYGZH2HSog8QzC1Id4jdc45IuI3WtlZCbW1EIiHikTCxaPj4azRMPBoiHo3gomHisUjiJ+6Ix2LEk0MRJ4YrTgxRTLx92XUMYwwOS+7TeToXl/xvouzkb9Jcb79d63a/buo7ocza17s5vPthie2k053J8MVn+13hgH/J2Ifznf2hZ3dkf/7T2O6XAJgwe1lK6gsWlQHQdHhfSkbhO1FbSxNvrXmUYVseZWpkK2Ocl835lxBc9FmmXfhBytRaJTLkTb9yBaHtP6T65f8aUglWPBoh3NZMONRGONRKOBQiGmkjEmojlnyNR0PEIyGIhXHxGM7FcfH2nxguHk987onHcM7hktM0mHMkpmhwHX+w2z8bdJ1hodNfLDNO+gvW5Y+9dSmzznV22q/zVAsdZSn60HA2tZgNzOeinrQGR1Kx8IOMLcpJcc39QwnWKZjHw+xlN+AuvY4dG17iyNpHmFn/Irl//i2RP3nZ7p9IY8FkoiOmkltaQf7IcQwbUU7esEIC2blYNx96nHPEYnGi4RZam5tobW4k3NZMqKWJSGsTkbYmoqEWYm1NxMPNxMMtEG6GSAueaCueaCveaCu+WBv+eCu+eBuBeBsB10aWC5Ht2ggSwm8Ofxr+zUQyxTu+iUwsLk1JXcNKEi1HoSP7U1Jfu/feXsfBP/4nU2t/y0Ka2WdjePWCO5h05eeYV1qW0nOJSGYbXlzKusLLmFP7/6ivfo+i0ekaI/TMtLW20Fh/iKYjB2lpOESo8TCRpsO45jqstR5vuAlvtAlftAV/rJmsWCtB10K2ayXbtZFtYYKAHuQY3F6OzebNMRcqwRpMzONh8vzLYf7ltLW2sPH1NbRtf4GCwxuYcvgF8uuegR0nHxdyfsL48OAwHF7ieIjjtxg+Em8Gw3sZQwg/bQQIWYCQBQl7gkQ8QaK+PFq9JcS82cR92cR9OTh/Nviz8fgCmD+A1+sHXxZ4/Xi8WeDLwuP1J+aY8WZhPj8eXxZerw+v14vX68XjMTAvmCfxjYp5MPNgHgO8YJZc9oDHg3k8GIbZ8dYjM5Lf+pz427gTC+jS/HWqsl4c67pZ6lWd7nT7da/3e6b5uDP4nU4+9qwPPWfPVz6yPGV1FY0YRdh5iTYc6HNdTY1H2LZmFQXbVzMpsoMy50u0Vi3+LNPe/0HGasAKEenBiA9/F8+jL7L7yW9S9OVfpDWW1qZGaqsrOVZbRWt9FZGGA9ixavwtB8luqyU/epjh8QZyrY0g0N3XXS0uQJPl0ubJJuTJIezJ4ViwkAZfDjF/LvGsPOK+XPBnY74gHl8W5g/g8Qfw+oN4/YGOH48/iHmzMK8Xj8eDx+vDzIMnuW7mxetNrCc+73iTH2Q8uI5ZvTv653QsEz/+B8vaSzv9Eev8t9fReaLz9hfXpazzebot61xyFn8rz/7v6xl8LjqrczhO1e51gS/I8JGp+VJ0ICjBOkPB7BzmXnotXHotAC4e58jBvdTs301z7X5ijdXEQk0QacOiLXhiYcw8OI83kbB4vODxEfNl4/Hn4Ank4g3m4Avk4QvkkpWTRyA7l0BOPsHsXIK5w8gK5hLw+jWxpsg5alRBNjUMJ95YfVbHx2Nxtr6+hpbXVjHjyIsssBCVnrH89YJ/ZMpVf8u8kjEpjlhEBqMJF0zjf0bdyIUHf8GW51cx48oV/XauaLiN2qpd1Fe9Q8uh3cTr9+A/to9hrfsZEa1hOI2MO+GYFhegzlNMo7+YmrzpVGWX4HKK8OQW488rJpBfQk5hKcOGl5JfNJKcYDaZ0V4h0pUSrD4yj4fhoycwfPSEdIciImni83o46huBt7n3kw27eJzdW17l8KurGVf9HDPdIVpcgK1FVzDswpVMnreMCWqtEpEzNPczP2LrjzZxwV/+iU2RELM/eGuXZ3t6y8Vj1Nfs5fC+nTQf3E308Lt4G/eR01JFUaSakng9o80xOrl/2Hk55CnlSNZoduYvJV4wFv/wcoJF5QwrGUfRqHHkDStUK7wMCUqwRERSoDm7jPObNiT6RvTwYSYaCbNrw0sc2fRbympe4AJ3gAnOw9bs91Ez9ctM+5ubWZBXOLCBi8igkp2Tw+i/+xW7H7yBOW98ha2bfkbT5I9TMuX9FI8aRzB3GC4W5VhTMy1HamhtqKGp7gCh+iq8R/eQ3byfotB+SuO1FFukY+CeuDNqrYjD/lHsGTaf3flj8RZXkDvyPIrKJlI6ZgLlfj+p63wtkrn6lGCZ2RPA5ORqIdDgnJtjZhOAbRx/MulV59xtfTmXiMi5LDTuYorffpGanW8wavJCINFKVbV7Mwfeehnfey8xsekNptBMxHl5JziTNyb9LRdc8r+YXTL6NLWLiPReUekY8r7yMm/8+h7KdvyM6Vu+C1u67tPdoBBHyaPWO5JDORewL28ZNnwC2SPPo3DMREaOncjInBxGDsQvIJLhrC8PvnepyOxHwFHn3N3JBOs3zrkZZ1LH/Pnz3bp161ISj4jIQKraW8moh+eyKziNhpKFBOq3M75lC0U0AlDLcCoLL8Q75UrOX/RhCob3x4DuIiJduXicqnfepGb3RqIN1bhIK87jw58VxJM3Al/+SApLyigdM56cfL0viZwJM1vvnJt/YnlKughaonPvjcBlqahPRCTTlI+bwJ+nfJOF27+Pf99Wqj2j2F1wIe+MW8yo6ZcybtIcSvTsgYgMMPN4GDt5LmMnz013KCJDRkpasMzsEuDe9gwu2YK1FdgJNALfcs690sOxtwK3AowbN27enj17+hyPiEi6RMIh4s4RCGhWFhERkcHsrFuwzOwFYFQ3m77pnHsmufwJYHWnbdXAOOdcnZnNA542s+nOucYTK3HOPQg8CIkugqf/VUREzl3+LE2oICIiMpSdNsFyzl1+qu1m5gOuA+Z1OiYEhJLL681sNzAJ0ANWIiIiIiIyaKXigYDLge3Ouar2AjMrMTNvcvk8YCLwbgrOJSIiIiIics5KxSAXy+naPRDgEuBuM4sAceA251x9Cs4lIiIiIiJyzkrZMO2pYGa1wLk2ysUI4HC6g5ABo+s9dOhaDx261kOLrvfQoWs9tJyL13u8c67kxMJzKsE6F5nZuu5GB5HBSdd76NC1Hjp0rYcWXe+hQ9d6aMmk661JWURERERERFJECZaIiIiIiEiKKME6vQfTHYAMKF3voUPXeujQtR5adL2HDl3roSVjrreewRIREREREUkRtWCJiIiIiIikiBIsERERERGRFFGCdQpmdrWZ7TCzXWb2tXTHI6ljZmPN7I9m9raZbTWzLyfLi8xsjZm9k3wdnu5YJTXMzGtmG83sN8n1CjN7LXl/P2FmWemOUVLDzArN7Ckz225m28zs/bq3ByczuyP5Hr7FzFabWVD39uBhZo+Y2SEz29KprNt72RL+b/K6v2Vm70tf5HKmerjW9yTfx98ys/82s8JO276evNY7zOyqtAR9CkqwemBmXuB+4APANOATZjYtvVFJCkWBf3TOTQMWA59PXt+vAS865yYCLybXZXD4MrCt0/oPgH9zzl0AHAE+m5aopD/8O/Ccc24KMJvEdde9PciYWRnwJWC+c24G4AWWo3t7MFkFXH1CWU/38geAicmfW4GfDFCMkhqrOPlarwFmOOdmATuBrwMkP68tB6Ynj/lx8nP7OUMJVs8WArucc+8658LA48C1aY5JUsQ5V+2c25BcPkbiA1gZiWv8s+RuPwM+mpYAJaXMrBz4EPBfyXUDLgOeSu6iaz1ImFkBcAnwMIBzLuyca0D39mDlA7LNzAfkANXo3h40nHN/BupPKO7pXr4W+LlLeBUoNLPRAxKo9Fl319o597xzLppcfRUoTy5fCzzunAs5594DdpH43H7OUILVszJgX6f1qmSZDDJmNgGYC7wGjHTOVSc31QAj0xWXpNT/Ab4CxJPrxUBDpzdu3d+DRwVQC/w02SX0v8wsF93bg45zbj/wr8BeEonVUWA9urcHu57uZX1uG9xWAr9PLp/z11oJlgxpZpYH/Aq43TnX2HmbS8xhoHkMMpyZXQMccs6tT3csMiB8wPuAnzjn5gLNnNAdUPf24JB89uZaEkn1GCCXk7sYySCme3loMLNvkni047F0x9JbSrB6th8Y22m9PFkmg4SZ+UkkV485536dLD7Y3qUg+XooXfFJyiwBPmJmlSS6+l5G4hmdwmS3ItD9PZhUAVXOudeS60+RSLh0bw8+lwPvOedqnXMR4Nck7nfd24NbT/eyPrcNQma2ArgG+KQ7PnnvOX+tlWD17A1gYnI0oiwSD9M9m+aYJEWSz+A8DGxzzt3badOzwGeSy58Bnhno2CS1nHNfd86VO+cmkLiPX3LOfRL4I3BDcjdd60HCOVcD7DOzycmivwHeRvf2YLQXWGxmOcn39PZrrXt7cOvpXn4W+HRyNMHFwNFOXQklA5nZ1SS693/EOdfSadOzwHIzC5hZBYmBTV5PR4w9sePJoJzIzD5I4tkNL/CIc+576Y1IUsXMLgJeATZz/Lmcb5B4DutJYBywB7jROXfiA7aSocxsKfBPzrlrzOw8Ei1aRcBG4GbnXCiN4UmKmNkcEgOaZAHvAreQ+EJR9/YgY2Z3ATeR6D60EfhbEs9i6N4eBMxsNbAUGAEcBL4DPE0393Iyyb6PRDfRFuAW59y6NIQtZ6GHa/11IADUJXd71Tl3W3L/b5J4LitK4jGP359YZzopwRIREREREUkRdREUERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUuT/A29+p6eu/t88AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
15False50.1120.0634bAP.soma.v0.000730.000737
16False50.1120.0634Step1.soma.v0.001077.79e-05
17False50.1120.0634Step3.soma.v0.0008010.000127
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "15 False 5 0.112 0.0634 bAP.soma.v \n", + "16 False 5 0.112 0.0634 Step1.soma.v \n", + "17 False 5 0.112 0.0634 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "15 0.00073 0.000737 \n", + "16 0.00107 7.79e-05 \n", + "17 0.000801 0.000127 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi80lEQVR4nOzdeXxU1f3/8ddnZrIvLEkIS4AgCrKKCogVXPtVrAtaLWjdbetXu6l1+ba2tdRf/X77Vb+1VdtSt7oWse7WpXVDxYoKiLiAChI2WUIg+zbL+f0xN2EI2TCTTELez8djHpl777nnfGYud5jPnHPPNeccIiIiIiIi0nG+RAcgIiIiIiKyr1CCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0SkmzGzQjNzZhZIdCzSO5jZx2Z2dKLjEBHZFyjBEhGRHs/M5plZpfeoN7NgzPILiY6vu3POjXPOLYxnnWZ2n3csKmMe/ni2ISLSHZluNCwiEl9mFnDOhTqwfyGwFkjqSD29lZnNBfZ3zp3bzLYOHZuu1JNibY6Z3QdsdM79ItGxiIh0JfVgiYjEgZkVmdl/mdkKoMrMAmY2zcz+bWalZvZB7BAsM1toZv9jZu+aWbmZPW1m/Vuo+yIzW2lmFWb2hZn9Z5Pts8xsuVfPGjOb6a3vY2b3mNlmM9tkZr9pqwfBzEaa2atmVmJm283sYTPrG7Nth5kd4i0PNrPihtdlZqd6Q81Kvdc3psn7c7WZrTCzMjNbYGape/9O770Wjo0zs/1jytxnZr+JWT7Ze09LvWM4sZ1tHW1mG83sOu/9KzKzc2K2n2Rm73vHaoOXDDZsaxga+h0zWw+86q3/u5lt8d63N8xsXJO4/2RmL3g9RG+Z2UAz+72Z7TSzVWZ2cDvfo6+35zWKiEjrlGCJiMTP2cBJQF8gH3gO+A3QH7gaeNzM8mLKnw9cDAwCQsBtLdS7DTgZyAYuAm6NSXKmAg8A13jtHgkUefvd59W7P3AwcDzw3TZegwH/AwwGxgBDgbkAzrk1wH8BD5lZOvBX4H7n3EIzGwXMB64A8oDngWfNLDmm7tnATGAEMBG4sNkAzKZ7iU1Lj+ltvIbmNB6btnqFvITkXuA/gRzgL8AzZpbSzrYGArnAEOAC4E4zG+1tqyJ63Pt68VxmZqc12f8oou/9Cd7yC8ABwABgGfBwk/KzgV94bdYBb3vlcoHHgN+1M+5mmdlPWzsebez+fS8pX2pmZ3QkDhGRnkIJlohI/NzmnNvgnKsBzgWed84975yLOOdeApYA34gp/6Bz7iPnXBXwS2B2cz1MzrnnnHNrXNTrwL+AGd7m7wD3Oude8trZ5JxbZWb5XltXOOeqnHPbgFuBs1p7Ac651V5ddc65YqJfzo+K2X4XsBp4h2hi+HNv0xzgOW/fIHALkAZ8rcn786VzbgfwLDCphRgWOef6tvJY1NpraEHssWnLJcBfnHPvOOfCzrn7iSYu0/aivV967+HrRBPt2QDOuYXOuQ+9Y7WCaFJ6VJN953rHrMbb517nXIVzro5osnuQmfWJKf+kc26pc64WeBKodc494JwLAwuIJtdfmXPut60dj1Z2vY1dieEvgfvM7IiOxCIi0hMowRIRiZ8NMc+HA99q8kv/dKJJSXPl1wFJRHsddmNmJ5rZYq8noJRo4tRQbiiwpplYhnv1bY5p/y9Ev+y2yMzyzewRb0hhOfBQMzHdBYwHbve+9EO0x2tdQwHnXMR7fUNi9tsS87wayGwtljjb0HaRRsOBq5ocu6FEX2N77PSS5gbrGvY1s8PM7DVvaGUZcCl7vr+NsZqZ38x+a9Ghn+Xs6p2M3WdrzPOaZpa78n1u5Jxb5pwrcc6FnHPPE+15+2YiYhER6UpKsERE4id21qANRHuoYn/tz3DO/TamzNCY58OAILA9tkJvWNrjRHuE8r0eg+eJDuVraGdkM7FsINrrkhvTfrZzblwzZWP9t/c6Jjjnson2xDW0hZllAr8H7gHm2q7rxr4kmpg0lDPv9W1qo709mNkM233muaaPGW3XsoemMzpVA+kxywNjnm8Abmxy7NKdc/Pb2VY/M8uIWR5G9P0B+BvwDDDUOdcHmEfM+9tMrN8GZgFfB/oAhd76pvt0Gu96shaPx15U5ejCuEVEEkUJlohI53gIOMXMTvB6IVK9CRAKYsqca2ZjveuZbgAe84Z1xUoGUoBiIGRmJxK9lqrBPcBFZnacmfnMbIiZHeic20x0KOH/mVm2t22kmTUdjtZUFlAJlJnZEKLXdsX6A7DEOfddokPf5nnrHwVO8uJIAq4imuD9u603qinn3JvOucxWHm/ubZ3NWA582zs2M9l9mN5dwKVeb5OZWYZFJ6fIgsaJJe5ro/5fm1mylwyeDPzdW58F7HDO1XrXz327jXqyiL6PJUQTwv/ei9cYF865/27teLS0n5mdaWaZ3r+944km6890XeQiIomhBEtEpBM45zYQ7Xm4jmhytIFoshL7ufsg0YkotgCpwI+bqafCW/8osJPoF/JnYra/izfxBVAGvM6unqTziSZon3j7PsbuQxSb82vgEK+u54AnGjaY2Syik1Rc5q36CXCImZ3jnPuU6Bfo24n2wp0CnOKcq2+jvUS5nGiMpcA5wFMNG5xzS4DvAXcQfd9Ws/uEHEOBt1qpe4u335dEh8Vd6pxb5W37PnCDmVUA1xM9rq15gOgQw01Ej+Pitl5YN3I50bhLgZuB77k432tLRKQ70n2wREQSwMwWAg855+5OdCzSft6siB8AE73JPJpuP5rocS1ouk1ERHqHQKIDEBER6Sm8HrkxbRYUEZFeS0MERUR6GTOb18KEBfPa3lt6IjMb1spEFcMSHZ+IyL5EQwRFRERERETiRD1YIiIiIiIicdKtrsHKzc11hYWFiQ5DRERERESkVUuXLt3unMtrur5bJViFhYUsWbIk0WGIiIiIiIi0yszWNbdeQwRFRERERETiRAmWiIiIiIhInCjBEhERERERiZNudQ1Wc4LBIBs3bqS2tjbRoUg3kJqaSkFBAUlJSYkORfZR4Yjjxw+9zeQRA7hoxv6JDkdERER6mG6fYG3cuJGsrCwKCwsxs0SHIwnknKOkpISNGzcyYsSIRIcj+6g1Hy/hD2tO4qPVhUSOWIbPp88dERERab9uP0SwtraWnJwcJVeCmZGTk6PeTOlUFZs+IWARJvm+YMPW7YkOR0RERHqYbp9gAUqupJH+LUhnqyrblVRt+Vy3jRAREZG90yMSLBGRrmI1pY3Pa9e/n7hAREREpEdSgtUOZsZVV13VuHzLLbcwd+7cxAUU4+ijj2715synnXYa06ZN223d3LlzGTJkCJMmTWL8+PE888wznR2mSI+RVF9KvfNTTSrs+CLR4YiIiEgPowSrHVJSUnjiiSfYvj2+12M454hEInGtM1ZpaSlLly6lrKyML77Y/YvilVdeyfLly/n73//OxRdf3KlxiPQkScFyyslkeyCftKpNiQ5HREREehglWO0QCAS45JJLuPXWW/fYVlxczBlnnMGUKVOYMmUKb731FhDtJbrlllsay40fP56ioiKKiooYPXo0559/PuPHj2fDhg1cc801jB8/ngkTJrBgwQIAFi5cyNFHH82ZZ57JgQceyDnnnINzrtn4HnzwwcbeqHfffbdx/RNPPMEpp5zCWWedxSOPPNLsvmPGjCEQCOyWPP70pz9l7NixTJw4kauvvhqAoqIijj32WCZOnMhxxx3H+vXrAbjwwgu57LLLmDZtGvvttx8LFy7k4osvZsyYMVx44YWNdV522WVMnjyZcePG8atf/WqPOMrKyhg+fHhjoldVVcXQoUMJBoPNxi3SWZKDZVRYJpWpg+hTvznR4YiIiEgP0+2naY/162c/5pMvy+Na59jB2fzqlHFtlvvBD37AxIkTufbaa3dbf/nll3PllVcyffp01q9fzwknnMDKlStbrevzzz/n/vvvZ9q0aTz++OMsX76cDz74gO3btzNlyhSOPPJIAN5//30+/vhjBg8ezBFHHMFbb73F9OnT96ivurqa5cuX88Ybb3DxxRfz0UcfATB//nyuv/568vPzOeOMM7juuuv22Pedd97B5/ORl5cHQElJCU8++SSrVq3CzCgtLQXgRz/6ERdccAEXXHAB9957Lz/+8Y956qmnANi5cydvv/02zzzzDKeeeipvvfUWd999N1OmTGH58uVMmjSJG2+8kf79+xMOhznuuONYsWIFEydObIyjT58+TJo0iddff51jjjmGf/zjH5xwwgm635V0udRgORWWSSSzgMKKD6kPRUgO6LcoERERaR99a2in7Oxszj//fG677bbd1r/88sv88Ic/ZNKkSZx66qmUl5dTWVnZal3Dhw9vvC5q0aJFnH322fj9fvLz8znqqKN47733AJg6dSoFBQX4fD4mTZpEUVFRs/WdffbZABx55JGUl5dTWlrK1q1b+fzzz5k+fTqjRo0iKSmpMfECuPXWW5k0aRJXX301CxYsaJydr0+fPqSmpvKd73yHJ554gvT0dADefvttvv3tbwNw3nnnsWjRosa6TjnlFMyMCRMmkJ+fz4QJE/D5fIwbN64x5kcffZRDDjmEgw8+mI8//phPPvlkj9cxZ86cxh68Rx55hDlz5rT6Pop0htRQBZW+LKzvMPpaFVu3bUt0SCIiItKDdLgHy8yGAg8A+YAD7nTO/cHM5gLfA4q9otc5557vSFvt6WnqTFdccQWHHHIIF110UeO6SCTC4sWLSU1N3a1sIBDY7bqm2Hs3ZWRktKu9lJSUxud+v59QKNRsuaZTl5sZjz76KDt37my8IW95eTnz58/nxhtvBKLXYDUM/2sa97vvvssrr7zCY489xh133MGrr77arjh9Pt9uMft8PkKhEGvXruWWW27hvffeo1+/flx44YXN3svq1FNP5brrrmPHjh0sXbqUY489ttV2RTpDariCat9gcvNGwCoo2bSaoYMHJjosERER6SHi0YMVAq5yzo0FpgE/MLOx3rZbnXOTvEeHkqvuoH///syePZt77rmncd3xxx/P7bff3ri8fPlyAAoLC1m2bBkAy5YtY+3atc3WOWPGDBYsWEA4HKa4uJg33niDqVOn7lVcDb0+ixYtok+fPvTp04f58+fz4osvNl73tXTp0havw4pVWVlJWVkZ3/jGN7j11lv54IMPAPja177WuP/DDz/MjBkz2h1feXk5GRkZ9OnTh61bt/LCCy80Wy4zM5MpU6Zw+eWXc/LJJ+P3+9vdhki8JLk6Qr5U+gwaCUDFVs0kKCIiIu3X4R4s59xmYLP3vMLMVgJDOlpvd3XVVVdxxx13NC7fdtttjddnhUIhjjzySObNm8cZZ5zBAw88wLhx4zjssMMYNWpUs/WdfvrpvP322xx00EGYGTfddBMDBw5k1apV7Y4pNTWVgw8+mGAwyL333ktRURHr1q3bbXr2ESNG0KdPH955551m6/jGN77B3XffjZkxa9Ysamtrcc7xu9/9DoDbb7+diy66iJtvvpm8vDz++te/tju+gw46iIMPPpgDDzyQoUOHcsQRRzRuu/7665k8eTKnnnoqEB0m+K1vfYuFCxe2u36ReApE6on4kuk/JJpgBUvWJTgiERER6UmspZnpvlJlZoXAG8B44CfAhUA5sIRoL9fOZva5BLgEYNiwYYeuW7f7l5mVK1cyZsyYuMUoPZ/+TUhnqps7gJcyT+Hkq+6m9tcDeCfnNI760V2JDktERES6GTNb6pyb3HR93Ca5MLNM4HHgCudcOfBnYCQwiWgP1/81t59z7k7n3GTn3OSGmexERBIlQBDnTwYztvsHkFb9ZaJDEhERkR4kLgmWmSURTa4eds49AeCc2+qcCzvnIsBdwN5dWCQi0tXCIfxEcP7oZC0VKflk1W1NcFAiIiLSk3Q4wbLoFHb3ACudc7+LWT8optjpwEdN9xUR6VbCdQDRHiygLm0gOeHtLd7kW0RERKSpeNxo+AjgPOBDM1vurbsOONvMJhGdur0I+M84tCUi0nlC0QQLL8GKZA8hd3spZZXV9M1q3+0VREREpHeLxyyCiwBrZlOPn5ZdRHqZcD0AFogOEUzqV4DPHNs2r6dvliZWERERkbbFbZILEZEer6EHKxC9cXh6zlAAyrcWJSggERER6WmUYLXTU089hZm1en+qoqIixo8fH7c2L7zwQh577LEWt19xxRUMGTKESCTSuO6+++4jLy+PSZMmMXbsWO66S9NLi7RbQw9WUnSIYJ9BIwCo3r4+YSGJiIhIz6IEq53mz5/P9OnTmT9/frPbQ6FQh9sIh8PtLhuJRHjyyScZOnQor7/++m7b5syZw/Lly1m4cCHXXXcdW7dqFjSR9gjV1wDg83qw+g0sBCC8c2OiQhIREZEeRglWO1RWVrJo0SLuueceHnnkkcb1CxcuZMaMGZx66qmMHTsWiCZa55xzDmPGjOHMM8+kuroagFdeeYWDDz6YCRMmcPHFF1NXFx2KVFhYyH/9139xyCGH8Pe//32Ptl9++WUmT57MqFGj+Mc//rFb2+PGjeOyyy5rMekbMGAAI0eOJPbmzbfddhtjx45l4sSJnHXWWQDs2LGD0047jYkTJzJt2jRWrFgBwNy5c7nggguYMWMGw4cP54knnuDaa69lwoQJzJw5k2AwCMANN9zAlClTGD9+PJdccskeM65FIhEKCwspLS1tXHfAAQco8ZNuJ1RfC4DPuwbLn9aXalLxVW5OZFgiIiLSg8RjFsGu88JPYcuH8a1z4AQ48betFnn66aeZOXMmo0aNIicnh6VLl3LooYcCsGzZMj766CNGjBhBUVERn376Kffccw9HHHEEF198MX/605/44Q9/yIUXXsgrr7zCqFGjOP/88/nzn//MFVdcAUBOTg7Lli1rtu2ioiLeffdd1qxZwzHHHMPq1atJTU1l/vz5nH322cyaNYvrrruOYDBIUlLSbvt+8cUXfPHFF+y///6N637729+ydu1aUlJSGhOeX/3qVxx88ME89dRTvPrqq5x//vksX74cgDVr1vDaa6/xySefcPjhh/P4449z0003cfrpp/Pcc89x2mmn8cMf/pDrr78egPPOO49//OMfnHLKKY1t+nw+Zs2axZNPPslFF13EO++8w/Dhw8nPz2/3YRLpCsG6GlIBS4omWJixw59HSrUSLBEREWkf9WC1w/z58xt7e84666zdeoymTp3KiBEjGpeHDh3KEUccAcC5557LokWL+PTTTxkxYgSjRo0C4IILLuCNN95o3GfOnDkttj179mx8Ph8HHHAA++23H6tWraK+vp7nn3+e0047jezsbA477DD++c9/Nu6zYMECJk2axNlnn81f/vIX+vfv37ht4sSJnHPOOTz00EMEAtH8etGiRZx33nkAHHvssZSUlFBeXg7AiSeeSFJSEhMmTCAcDjNz5kwAJkyYQFFREQCvvfYahx12GBMmTODVV1/l448/3uN1zJkzhwULFgDwyCOPtPqaRRIlWBftwfInpTauq0wZQFb9tkSFJCIiIj1Mz+rBaqOnqTPs2LGDV199lQ8//BAzIxwOY2bcfPPNAGRk7H5vnOh9l1tebk7TOtqq75///CelpaVMmDABgOrqatLS0jj55JOBaDJzxx13NFvfc889xxtvvMGzzz7LjTfeyIcftt4jmJIS/SXf5/ORlJTUGI/P5yMUClFbW8v3v/99lixZwtChQ5k7dy61tbV71HP44YezevVqiouLeeqpp/jFL37RarsiidAwRNDf0IMF1KcPZEDVWiIRh8/X9vksIiIivZt6sNrw2GOPcd5557Fu3TqKiorYsGEDI0aM4M0332y2/Pr163n77bcB+Nvf/sb06dMZPXo0RUVFrF69GoAHH3yQo446ql3t//3vfycSibBmzRq++OILRo8ezfz587n77rspKiqiqKiItWvX8tJLLzVe79WSSCTChg0bOOaYY/jf//1fysrKqKysZMaMGTz88MNA9Nqu3NxcsrOz2xVfQzKVm5tLZWVli7Memhmnn346P/nJTxgzZgw5OTntql+kK4WCXoKVvKsHy2UPJo+dlFS0fn6JiIiIgBKsNs2fP5/TTz99t3VnnHFGixNLjB49mj/+8Y+MGTOGnTt3ctlll5Gamspf//pXvvWtbzFhwgR8Ph+XXnppu9ofNmwYU6dO5cQTT2TevHlEIhFefPFFTjrppMYyGRkZTJ8+nWeffbbZOr773e+yZMkSwuEw5557LhMmTODggw/mxz/+MX379mXu3LksXbqUiRMn8tOf/pT777+/ne8O9O3bl+9973uMHz+eE044gSlTpjRumzdvHvPmzWtcnjNnDg899JCGB0q3Fa6PTj4TiEmwAv2G4jfH9s3rWtpNREREpJE1nfEtkSZPnuyWLFmy27qVK1cyZsyYBEUk3ZH+TUhnKXr5TgoXXcO7p77G1EMOia57+0kK/3khi4+Zz7SjvpHgCEVERKS7MLOlzrnJTderB0tExBOu33OIYN+BwwGo3r4hITGJiIhIz6IES0TEEw5FhwgmxSRYffKjs4SGS3WzYREREWlbj0iwutMwRkks/VuQzhQJeglWSlrjOkvrSw0p+Cq+TFRYIiIi0oN0+wQrNTWVkpISfbEWnHOUlJSQmpradmGRr8B5PVjJqbsSLMzYGcgjtWZLgqISERGRnqTb3weroKCAjRs3UlxcnOhQpBtITU2loKAg0WHIPsoFawk7IyU5ebf1lSn5ZFfrM0hERETa1ukJlpnNBP4A+IG7nXN7dbfgpKQkRowY0SmxiYjEcqE66kkiJeDfbX19+kByKt8mFI4Q8Hf7jn8RERFJoE79pmBmfuCPwInAWOBsMxvbmW2KiHxloTrqCZAcaPLRmD2YAZSyrawqMXGJiIhIj9HZP8VOBVY7575wztUDjwCzOrlNEZGvJlzv9WDt/tGY1K+AgEXYvkVTtYuIiEjrOjvBGgLEfiPZ6K1rZGaXmNkSM1ui66xEJKHCddQ1k2Bl5BUCULZ1XQKCEhERkZ4k4RcTOOfudM5Nds5NzsvLS3Q4ItKLWbieIAHMbLf1DTcbri1Zn4iwREREpAfp7ARrEzA0ZrnAWyci0u1YuJ6QJe2xPjMvmmCFS/XxJSIiIq3r7ATrPeAAMxthZsnAWcAzndymiMhXEu3BSt5zQ1o/aknWzYZFRESkTZ06TbtzLmRmPwT+SXSa9nudcx93ZpsiIl+VL1JPfTM9WJhRGsgjtWZr1wclIiIiPUqn3wfLOfc88HxntyMi0lG+SD1hXzMJFlCVkk+fKiVYIiIi0rqET3IhItJd+CPNX4MFUJcxiBxXQl0o3MVRiYiISE+iBEtExOOP1BP2NXMNFkD2YPLZydad1V0blIiIiPQoSrBERDyBSD1hX0qz25L7DSXJwmzTzYZFRESkFUqwREQ8ARck0sI1WBl50TtOVGwr6sKIREREpKdRgiUi4gm4IBF/8z1Y/QbtB0BtycauDElERER6GCVYIiKegAviWrgGKzVnGACRUg0RFBERkZYpwRIR8SQRBH8Lk1yk9aOaNJIrlGCJiIhIy5RgiYh4kghCoIUEy4yS5EFk1WiIoIiIiLRMCZaICEAkTIAIFmj+GiyAytQh5Ia2dGFQIiIi0tMowRIRAVyoFqDVBKs+eyiD3Taq64JdFZaIiIj0MEqwRESA+jovwUpKbbGM9R1OutWxdfOmrgpLREREehglWCIiQF1tNQC+lq7BAlIGRKdqL9v8WZfEJCIiIj2PEiwREXYlWJaU3mKZ7EEHAFCzdW2XxCQiIiI9jxIsEREgWF0BgKVktlgmZ8j+AIR3FHVFSCIiItIDKcESEQGCNdEEy5facoKVnJ7FDvoQKF/fVWGJiIhID9OhBMvMbjazVWa2wsyeNLO+3vpCM6sxs+XeY15cohUR6SQhL8EKtJJgAWxPGkRGte6FJSIiIs3raA/WS8B459xE4DPgZzHb1jjnJnmPSzvYjohIpwrVRhMsf2pWq+Uq04bQv35zV4QkIiIiPVCHEizn3L+ccyFvcTFQ0PGQRES6XriuEgB/Wnar5YLZw8h3xdTV13VFWCIiItLDxPMarIuBF2KWR5jZ+2b2upnNiGM7IiJx57werOS01nuwAv0LCViErRvWdEVYIiIi0sO0mWCZ2ctm9lEzj1kxZX4OhICHvVWbgWHOuYOBnwB/M7NmfxY2s0vMbImZLSkuLu74KxIR+QrCtdEerIzM1nuw0gdGZxLcuWl1p8ckIiIiPU+grQLOua+3tt3MLgROBo5zzjlvnzqgznu+1MzWAKOAJc3UfydwJ8DkyZPdXsYvIhIX4bpKws7IaiPByi0YBUD1NvVgiYiIyJ46OovgTOBa4FTnXHXM+jwz83vP9wMOAL7oSFsiIp2qrpIqUslIbf13p5zBIwg5H5ES3WxYRERE9tRmD1Yb7gBSgJfMDGCxN2PgkcANZhYEIsClzrkdHWxLRKTz1FdRQyrZ/tZ/d/IFktjiG0Byhe6FJSIiInvqUILlnNu/hfWPA493pG4Rka7kC1ZSa2ntKrsjZTDZtZs6OSIRERHpieI5i6CISI/lC1VT52tfglWTUUBeSPfCEhERkT0pwRIRAVJCFdT6M9pVNtK3kP5UUFaqkc8iIiKyOyVYIiJARqiUmqR+7SqbnDsCgG3rP+vMkERERKQHUoIlIgJkhcuoT25fgpU1KHr5acXmzzszJBEREemBlGCJiISDZFNJOC23XcUHDDsQgLpi3X1CREREdqcES0R6vbqK7QBYRv92lc/ul0c56VhpUSdGJSIiIj2REiwR6fUqSrYA4MvMa98OZmzzDyKtamMnRiUiIiI9kRIsEen1yr0EKyV7QPv3SR1C37ovOyskERER6aGUYIlIr1exI3pPqz65g9q9T33WUAaGtxIJhzsrLBEREemBlGCJSK8X3LEBgP6DCtu9j/UvJMWClGxZ30lRiYiISE+kBEtEej0r20CFSyMnp/1DBFMHjARg+8ZPOyssERER6YGUYIlIr5dStYmtvnx8Pmv3Pv2GHABA1ZY1nRWWiIiI9EBKsESk18us+ZLS5Py92id/2AFEnBHavraTohIREZGeSAmWiPRuzpEb3kp9ZsFe7ZaSksY2yyFQrmuwREREZBclWCLSq5VtLSKTGiI5o/Z63x1Jg8io1r2wREREZBclWCLSq21f8z4AKUMm7PW+VemD6BfcGu+QREREpAfrUIJlZnPNbJOZLfce34jZ9jMzW21mn5rZCR0PVUQk/qo3fABAzn4H7/W+kewC8lwJdfV18Q5LREREeqh49GDd6pyb5D2eBzCzscBZwDhgJvAnM/PHoS0RkbiybR+zyeUybPDAvd430G8YfnNs3aCJLkRERCSqs4YIzgIecc7VOefWAquBqZ3UlojIV5Zd/jmbkvcj4N/7j8P0ASMAKN2iBEtERESi4pFg/dDMVpjZvWbWz1s3BNgQU2ajt24PZnaJmS0xsyXFxcVxCEdEpH1csJZBoQ1U9h39lfbvO2g/AKq3KcESERGRqDYTLDN72cw+auYxC/gzMBKYBGwG/m9vA3DO3emcm+ycm5yXl7e3u4uIfGUl6z4miTC+geO/0v45g6MJVmjnhjZKioiISG8RaKuAc+7r7anIzO4C/uEtbgKGxmwu8NaJiHQb2z5fSi7Qf8Skr7R/clomO8gmUKEES0RERKI6OovgoJjF04GPvOfPAGeZWYqZjQAOAN7tSFsiIvFWu+lD6lyA4aMP+sp17AgMIK36yzhGJSIiIj1Zmz1YbbjJzCYBDigC/hPAOfexmT0KfAKEgB8458IdbEtEJK5Sd6ykyDeM0RlpX7mOitRB9KvSNVgiIiIS1aEEyzl3XivbbgRu7Ej9IiKdaUDNaj7LmNyhOoIZQxhQ8S4uEsF8une7iIhIb6dvAyLSK9WWbSPX7SSYM7ZjFfUpIN3q2FGyNT6BiYiISI+mBEtEeqVNny4BIG3oxA7Vk5xbCMCOTas7GpKIiIjsA5RgiUivVF60HID8UR0bIpiVXwhAxdaijgUkIiIi+wQlWCLSK7mtH1PishlaMLxD9eQO2R+A+pJ18QhLREREejglWCLSK2WXf8bG5P3w+axj9fTPp8YlQ5nuhSUiIiJKsESkF3LhEEOCRVT0Gd3husznY5t/AMmVuheWiIiIKMESkV6oeNMa0qjHP6DjCRZAeXI+WXWb41KXiIiI9GxKsFqxbuVS3r7nGrZs0OxgIvuSrUUrAcgecmBc6qtJH0z/0La41CUiIiI9W4duNLyv27LiJQ5bfxfcfRerkkZTNvRY+k06mZHjp+H3+xMdnoh8RVVbPgcgb/iYuNQXziogZ0cZtdWVpKZnxqVOERER6ZmUYLXisDk/ZdMXp7Hx9Xvpt+k1Dlv7J1j7J8qfzGBd6hjKcw8mpeAg8vebwOARY/EnJSc65L0WDkeor6+nrq6aYF0t9XW1hIK1BOtqCdXXEgnWEgnWQbgeFw4ScREIh4lEwjgXwUXCuEjEe4Rxzlt2EYiEMRy4CObCmItgOFxM+841H5drZsHRgckIbM99Y9c4a3lbc21b0xLN1N9qhS0WaKZgW3W32YbtGW8Mh7XaRMemgIhtJ+a5231ts/8M3O7bmvu30vq2lnfIWvsval0SuYM6NoNgg9Tc4bAONhR9ygFjD41LndI6F4lQV1NJbVU5NVXl1NVUUldbSzhY1/i5FQnVEwnV4UK1uFAQF4p+lkUaPsMiEe/zKQJEwLnocxcBnPeZ5W130X9TDot50Hh+Rv9peYNCzNjtnPaWXcOJZru2ucay3sNosm/M503jap/Xpu1e3W7t73rqvM+A2HO98TPNq8tid/DWmEVfo8XGtNtr232X2LXWZBtNX4N8JdbSf5rSNVp4/3VUOl9NWj4jDpvFsJz0RIfSLkqw2jBkvwMZst9NAGzfvJ717z1LsGgxeaUfMG7D3fg2OlgMQefnS18+5Um51KXmUZ82gHBaDv6UTJLSMwmkZmPJGVhSKubz4/cbPp8fnxlhjEjYEQnXEwkFcd6XAsJBIuEghOuIhIJEQvW4UF30S0KoHkJ1WLgeInX4wvVYuB5fpB5fuB6/C+KL1BOIBPG7egIuSMAFSXJBkoj+TSZIMiHSzJGW4PdZpKt9mjKO0XHqic4beTAshZLP3lOC1U4uHKKqbDsVO4upKiumpmw79RUlhKpKcNU7sZod+OvKSA6WE4jUkByuISVSQ6qrIZ0a0lwdqeZIBfrGObaIM7zUCofP+9uQojgvFXI0fK1qWG7Y5jN93RIRiaeF4YNYUXCUEqx9Ue6gYeSe+gPgBwDUVpaycfUKSoo+JLTtU9Ir1pFau40B5R/Tv2wR6VbXqfHUOz9Bkqi3JIIkEbLdH2FfMqFAGnWWTcSfjPMlN/51/hQIeH/9KVggGQukYEkp+AIp+JNS8CWlRBPCQArmT/YePnzmx+f3Yz4/Pp8Pv9+H+QL4fL5o0uj3tlt0vTMD82E+Pw0/X+72S2fsr627rafZ9e3+BbSV7o0m/Wi7b2tavMmK5mrbVbS5L1aumWfNxdnyxmZ7Y2Jja/H7XIt77treSgHnIi32oO3ND6m7fuG2ZtY1U77JL/Mt/XtpsX5rbtvu++/fJ7+d0bdt8KjJVLo02LgYuLTFcts2fsHaf/2JjJGHM/6oM+LWfncSqq9lx+YvKNu2kartG6kv20y4fCv+qm2k1BaTESyhb2Qn/VwZmeZobkBlxBnllkGlZVHjy6TOn05l8gBKA+mEA+lEktIhKROXkoElZ+BLzSSQkkFScqr32ZWKLykZfyAFv7cukBR9HkhKIZCURJLfhz8QwMyP+Xze55U/2tfjMwLt7Tlui3PeyRLzt2E9u29zDX8dNJy7LhJh1xK4iGt2mT22R3arx5yLns/s+pxq/LyKqXPPfdyu1lzM34a3J+YjaI+e6SYfT7vabX/HvDSn/W9ec5+X0kF6TxPiQH8KfXLj9/92Z1OC1QGpmX3Zf9KR7D/pyD03Okd9bTWVFaVUVZZTU1mGq6/EBesIhyNEIhEikTCRSAS/gd/AkpLxBZLxBVLwBZKiXxD8yfiSUggkp5CclExSShrJKakkJ6eS7PeTDGR0+SsXkVi+QICi9LEUlLyNi4S9HxOiXCTCZ+++QNVbdzGh/A0GWJhVX74JPTTBqqyt58v1a9m56XNqitcQ2bGOlMoN9Kn9ktzQFga4EgaYY0DMPkHnZ4f1pTyQQ1XqQHakjieYlgfpufgzc0jJzCG1Tw7pffLI7jeA7H659PX7494zlRBm7f5C1spAYRER6UGUYHUWM5LTMuiflkH/AUMSHY2IdLLqMXMYv+xalj93Jwed9J9s+vx9vlz8OIOLnmS0+5Iyl8HS/DMJV2zj0JpFuFA9Fuh+122GwxG2bt3E9g2fU7llNcGSIvxl68mo3kT/4GYGumJGWaixfMQZJb4cdiQPYmPmoazNHIrrN5zU/gVk5RbQL38o/XMGkO/303N+exQREfnqrPkhTYkxefJkt2TJkkSHISKy14L1daz53xkcGP6UMIbfGxi1Mmks5WPPYdx/XEBmZhZvP/UXDl9+LV9883n2m3hEQmItKytl2/rPKPvyc2q3r8V2riO1agN96jYzMLyVTKvZrXwpWexIGkRl+hDC2cMI5Iwgc+D+5BTsT1b+CCwpNSGvQ0REJJHMbKlzbnLT9R3qwTKzBUDDnTr7AqXOuUlmVgisBD71ti12zrV8YYKISA+XlJzCoB+9yOtP34arLiE5dwTDps5izPCRu5UbPW0mwfd/xrY3/9ppCVawrobijWvYsWk1VVvXENlRRFLFBrJqN5EX2kJ/yukTU76GFLb6B1KRNoRVWVPx9SskbcB+9BtyALkFB9A3vc++MVxPRESkC3QowXLOzWl4bmb/B5TFbF7jnJvUkfpFRHqSPn37c9QFc1st03/gcJb0P4FDtj3BJ//+JmO/9o29a8Q5qipKKf5yLWWbv6Bu+1oiO9eTXLGRjNrN5AS3kMtOBgODvV2Czs82Xx47Uwazps9RrO4znOS8EWQP2p+8oaPI6j+IQl24LSIiEhdxuQbLotPUzAaOjUd9IiL7slHn/oEtdxzFAf88l/ffORY34kiS+gzEl5SCq68hWF1GqKaccHUpVrWNpOqtpNVtJztUQr/ITjKsbrfJbeqdn2JfLjuSBrGmzzQ+zRpKIGc4WfkjyCkYRe7gEQwJBNDVoCIiIp0vLtdgmdmRwO8axiB6QwQ/Bj4DyoFfOOfebGHfS4BLAIYNG3bounXrOhyPiEh3V1K8mZWP/JKDtv+DrCbXPMWqcGns9PWjIpBDTWoewbQ8XOZAUvoNJmPAfvQbMpLcgcPxBzRnkYiISFdq6RqsNhMsM3sZGNjMpp875572yvwZWO2c+z9vOQXIdM6VmNmhwFPAOOdceWttaZILEeltgsEgG9eupLZsO5FQHZaUSlpmP9Kz+5GZ3Y+MzOxEhygiIiLN+MqTXDjnvt5GxQHgm8ChMfvUAXXe86VmtgYYBSh7EhGJkZSUxIhRExMdhoiIiMSJLw51fB1Y5Zzb2LDCzPLMzO893w84APgiDm2JiIiIiIh0W/EYtH8WML/JuiOBG8wsCESAS51zO+LQloiIiIiISLfV4QTLOXdhM+seBx7vaN0iIiIiIiI9SVxmEYwXMysGuts0grnA9kQHIV1Gx7v30LHuPXSsexcd795Dx7p36Y7He7hzLq/pym6VYHVHZrakudlBZN+k49176Fj3HjrWvYuOd++hY9279KTjHY9JLkRERERERAQlWCIiIiIiInGjBKttdyY6AOlSOt69h45176Fj3bvoePceOta9S4853roGS0REREREJE7UgyUiIiIiIhInSrBERERERETiRAlWK8xsppl9amarzeyniY5H4sfMhprZa2b2iZl9bGaXe+v7m9lLZva597dfomOV+DAzv5m9b2b/8JZHmNk73vm9wMySEx2jxIeZ9TWzx8xslZmtNLPDdW7vm8zsSu8z/CMzm29mqTq39x1mdq+ZbTOzj2LWNXsuW9Rt3nFfYWaHJC5y2VstHOubvc/xFWb2pJn1jdn2M+9Yf2pmJyQk6FYowWqBmfmBPwInAmOBs81sbGKjkjgKAVc558YC04AfeMf3p8ArzrkDgFe8Zdk3XA6sjFn+X+BW59z+wE7gOwmJSjrDH4AXnXMHAgcRPe46t/cxZjYE+DEw2Tk3HvADZ6Fze19yHzCzybqWzuUTgQO8xyXAn7soRomP+9jzWL8EjHfOTQQ+A34G4H1fOwsY5+3zJ+97e7ehBKtlU4HVzrkvnHP1wCPArATHJHHinNvsnFvmPa8g+gVsCNFjfL9X7H7gtIQEKHFlZgXAScDd3rIBxwKPeUV0rPcRZtYHOBK4B8A5V++cK0Xn9r4qAKSZWQBIBzajc3uf4Zx7A9jRZHVL5/Is4AEXtRjoa2aDuiRQ6bDmjrVz7l/OuZC3uBgo8J7PAh5xztU559YCq4l+b+82lGC1bAiwIWZ5o7dO9jFmVggcDLwD5DvnNnubtgD5iYpL4ur3wLVAxFvOAUpjPrh1fu87RgDFwF+9IaF3m1kGOrf3Oc65TcAtwHqiiVUZsBSd2/u6ls5lfW/bt10MvOA97/bHWgmW9Gpmlgk8DlzhnCuP3eai9zDQfQx6ODM7GdjmnFua6FikSwSAQ4A/O+cOBqpoMhxQ5/a+wbv2ZhbRpHowkMGeQ4xkH6ZzuXcws58TvbTj4UTH0l5KsFq2CRgas1zgrZN9hJklEU2uHnbOPeGt3towpMD7uy1R8UncHAGcamZFRIf6Hkv0Gp2+3rAi0Pm9L9kIbHTOveMtP0Y04dK5ve/5OrDWOVfsnAsCTxA933Vu79taOpf1vW0fZGYXAicD57hdN+/t9sdaCVbL3gMO8GYjSiZ6Md0zCY5J4sS7BuceYKVz7ncxm54BLvCeXwA83dWxSXw5537mnCtwzhUSPY9fdc6dA7wGnOkV07HeRzjntgAbzGy0t+o44BN0bu+L1gPTzCzd+0xvONY6t/dtLZ3LzwDne7MJTgPKYoYSSg9kZjOJDu8/1TlXHbPpGeAsM0sxsxFEJzZ5NxExtsR2JYPSlJl9g+i1G37gXufcjYmNSOLFzKYDbwIfsuu6nOuIXof1KDAMWAfMds41vcBWeigzOxq42jl3spntR7RHqz/wPnCuc64ugeFJnJjZJKITmiQDXwAXEf1BUef2PsbMfg3MITp86H3gu0SvxdC5vQ8ws/nA0UAusBX4FfAUzZzLXpJ9B9FhotXARc65JQkIW76CFo71z4AUoMQrttg5d6lX/udEr8sKEb3M44WmdSaSEiwREREREZE40RBBERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIR6WbMrNDMnJkFEh2L9A5m9rGZHZ3oOERE9gVKsEREpMczs3lmVuk96s0sGLP8QqLj6+6cc+OccwvjWaeZ3ecdi8qYhz+ebYiIdEfmnEt0DCIi+xQzCzjnQh3YvxBYCyR1pJ7eyszmAvs7585tZluHjk1X6kmxNsfM7gM2Oud+kehYRES6knqwRETiwMyKzOy/zGwFUGVmATObZmb/NrNSM/sgdgiWmS00s/8xs3fNrNzMnjaz/i3UfZGZrTSzCjP7wsz+s8n2WWa23KtnjZnN9Nb3MbN7zGyzmW0ys9+01YNgZiPN7FUzKzGz7Wb2sJn1jdm2w8wO8ZYHm1lxw+sys1O9oWal3usb0+T9udrMVphZmZktMLPUvX+n914Lx8aZ2f4xZe4zs9/ELJ/svael3jGc2M62jjazjWZ2nff+FZnZOTHbTzKz971jtcFLBhu2NQwN/Y6ZrQde9db/3cy2eO/bG2Y2rkncfzKzF7weorfMbKCZ/d7MdprZKjM7uJ3v0dfb8xpFRKR1SrBEROLnbOAkoC+QDzwH/AboD1wNPG5meTHlzwcuBgYBIeC2FurdBpwMZAMXAbfGJDlTgQeAa7x2jwSKvP3u8+rdHzgYOB74bhuvwYD/AQYDY4ChwFwA59wa4L+Ah8wsHfgrcL9zbqGZjQLmA1cAecDzwLNmlhxT92xgJjACmAhc2GwAZtO9xKalx/Q2XkNzGo9NW71CXkJyL/CfQA7wF+AZM0tpZ1sDgVxgCHABcKeZjfa2VRE97n29eC4zs9Oa7H8U0ff+BG/5BeAAYACwDHi4SfnZwC+8NuuAt71yucBjwO/aGXezzOynrR2PNnb/vpeULzWzMzoSh4hIT6EES0Qkfm5zzm1wztUA5wLPO+eed85FnHMvAUuAb8SUf9A595Fzrgr4JTC7uR4m59xzzrk1Lup14F/ADG/zd4B7nXMvee1scs6tMrN8r60rnHNVzrltwK3AWa29AOfcaq+uOudcMdEv50fFbL8LWA28QzQx/Lm3aQ7wnLdvELgFSAO+1uT9+dI5twN4FpjUQgyLnHN9W3ksau01tCD22LTlEuAvzrl3nHNh59z9RBOXaXvR3i+99/B1oon2bADn3ELn3IfesVpBNCk9qsm+c71jVuPtc69zrsI5V0c02T3IzPrElH/SObfUOVcLPAnUOucecM6FgQVEk+uvzDn329aORyu73sauxPCXwH1mdkRHYhER6QmUYImIxM+GmOfDgW81+aV/OtGkpLny64Akor0OuzGzE81ssdcTUEo0cWooNxRY00wsw736Nse0/xeiX3ZbZGb5ZvaIN6SwHHiomZjuAsYDt3tf+iHa47WuoYBzLuK9viEx+22JeV4NZLYWS5xtaLtIo+HAVU2O3VCir7E9dnpJc4N1Dfua2WFm9po3tLIMuJQ939/GWM3Mb2a/tejQz3J29U7G7rM15nlNM8td+T43cs4tc86VOOdCzrnnifa8fTMRsYiIdCUlWCIi8RM7a9AGoj1Usb/2ZzjnfhtTZmjM82FAENgeW6E3LO1xoj1C+V6PwfNEh/I1tDOymVg2EO11yY1pP9s5N66ZsrH+23sdE5xz2UR74hrawswygd8D9wBzbdd1Y18STUwaypn3+ja10d4ezGyG7T7zXNPHjLZr2UPTGZ2qgfSY5YExzzcANzY5dunOufntbKufmWXELA8j+v4A/A14BhjqnOsDzCPm/W0m1m8Ds4CvA32AQm990306jXc9WYvHYy+qcnRh3CIiiaIES0SkczwEnGJmJ3i9EKneBAgFMWXONbOx3vVMNwCPecO6YiUDKUAxEDKzE4leS9XgHuAiMzvOzHxmNsTMDnTObSY6lPD/zCzb2zbSzJoOR2sqC6gEysxsCNFru2L9AVjinPsu0aFv87z1jwIneXEkAVcRTfD+3dYb1ZRz7k3nXGYrjzf3ts5mLAe+7R2bmew+TO8u4FKvt8nMLMOik1NkQePEEve1Uf+vzSzZSwZPBv7urc8Cdjjnar3r577dRj1ZRN/HEqIJ4X/vxWuMC+fcf7d2PFraz8zONLNM79/e8UST9We6LnIRkcRQgiUi0gmccxuI9jxcRzQ52kA0WYn93H2Q6EQUW4BU4MfN1FPhrX8U2En0C/kzMdvfxZv4AigDXmdXT9L5RBO0T7x9H2P3IYrN+TVwiFfXc8ATDRvMbBbRSSou81b9BDjEzM5xzn1K9Av07UR74U4BTnHO1bfRXqJcTjTGUuAc4KmGDc65JcD3gDuIvm+r2X1CjqHAW63UvcXb70uiw+Iudc6t8rZ9H7jBzCqA64ke19Y8QHSI4Saix3FxWy+sG7mcaNylwM3A91yc77UlItId6T5YIiIJYGYLgYecc3cnOhZpP29WxA+Aid5kHk23H030uBY03SYiIr1DINEBiIiI9BRej9yYNguKiEivpSGCIiK9jJnNa2HCgnlt7y09kZkNa2WiimGJjk9EZF+iIYIiIiIiIiJxoh4sERERERGROOlW12Dl5ua6wsLCRIchIiIiIiLSqqVLl253zuU1Xd+tEqzCwkKWLFmS6DBERERERERaZWbrmluvIYIiIiIiIiJxogRLREREREQkTpRgiYh8Ra99uo31JdWJDkNERES6kW51DVZzgsEgGzdupLa2NtGhSA+TmppKQUEBSUlJiQ5F9kEbSirZ+dBFvJY6iAt+fneiwxEREZFuotsnWBs3biQrK4vCwkLMLNHhSA/hnKOkpISNGzcyYsSIRIcj+6AdSx7nm/5FEIT60J0kBzQgQERERHrAEMHa2lpycnKUXMleMTNycnLU8ymdpmZ7UePzL9avT1wgIiIi0q10+wQLUHIlX4n+3UhncjVljc9LPn8ngZGIiIhId9IjEiwRke7G6nYlWPXb1iQwEhEREelOlGC1g5lx1VVXNS7fcsstzJ07N3EBxVi8eDGHHXYYkyZNYsyYMY1xLVy4kH//+98dqnvmzJn07duXk08+OQ6Riuxb/PXlbLE8ggRwZRsSHY6IiIh0E0qw2iElJYUnnniC7du3x7Ve5xyRSKRDdVxwwQXceeedLF++nI8++ojZs2cD8UmwrrnmGh588MEO1SGyrwoEK6jyZVHizyWl6stEhyMiIiLdRLefRTDWr5/9mE++LI9rnWMHZ/OrU8a1WiYQCHDJJZdw6623cuONN+62rbi4mEsvvZT13kXuv//97zniiCOYO3cumZmZXH311QCMHz+ef/zjHwCccMIJHHbYYSxdupTnn3+eO+64gxdeeAEz4xe/+AVz5sxh4cKFzJ07l9zcXD766CMOPfRQHnrooT2uK9q2bRuDBg0CwO/3M3bsWIqKipg3bx5+v5+HHnqI22+/nQMPPLDFONesWcPq1avZvn071157Ld/73vcAOO6441i4cGGr783f//53fv3rX+P3++nTpw9vvPEGtbW1XHbZZSxZsoRAIMDvfvc7jjnmGO677z6eeuopqqqq+Pzzz7n66qupr6/nwQcfJCUlheeff57+/ftz1113ceedd1JfX8/+++/Pgw8+SHp6+m7tTps2jXvuuYdx46LH7uijj+aWW25h8uTJrcYrEi8pwUrq/BlEAtlk1mxJdDgiIiLSTagHq51+8IMf8PDDD1NWVrbb+ssvv5wrr7yS9957j8cff5zvfve7bdb1+eef8/3vf5+PP/6YJUuWsHz5cj744ANefvllrrnmGjZv3gzA+++/z+9//3s++eQTvvjiC95666096rryyisZPXo0p59+On/5y1+ora2lsLCQSy+9lCuvvJLly5czY8aMVuNcsWIFr776Km+//TY33HADX37Z/l/jb7jhBv75z3/ywQcf8MwzzwDwxz/+ETPjww8/ZP78+VxwwQWNs/l99NFHPPHEE7z33nv8/Oc/Jz09nffff5/DDz+cBx54AIBvfvObvPfee3zwwQeMGTOGe+65Z49258yZw6OPPgrA5s2b2bx5s5Ir6VKpkQrqAlnUZwwmL1JMOOISHZKIiIh0Az2qB6utnqbOlJ2dzfnnn89tt91GWlpa4/qXX36ZTz75pHG5vLycysrKVusaPnw406ZNA2DRokWcffbZ+P1+8vPzOeqoo3jvvffIzs5m6tSpFBQUADBp0iSKioqYPn36bnVdf/31nHPOOfzrX//ib3/7G/Pnz2+216m1OGfNmkVaWhppaWkcc8wxvPvuu5x22mntel+OOOIILrzwQmbPns03v/nNxtf0ox/9CIADDzyQ4cOH89lnnwFwzDHHkJWVRVZWFn369OGUU04BYMKECaxYsQKIJmG/+MUvKC0tpbKykhNOOGGPdmfPns3xxx/Pr3/9ax599FHOPPPMdsUrEi8ZkSq2BbLwZxeQv+0FtpdVkt8vK9FhiYiISIJ1OMEys6HAA0A+4IA7nXN/MLP+wAKgECgCZjvndna0vUS64oorOOSQQ7jooosa10UiERYvXkxqaupuZQOBwG7XV8XejykjI6Nd7aWkpDQ+9/v9hEKhZsuNHDmSyy67jO9973vk5eVRUlKyR5mW4oQ9pzPfm+nN582bxzvvvMNzzz3HoYceytKlS1stH/uafD5f47LP52t8fRdeeCFPPfUUBx10EPfdd1+zCeOQIUPIyclhxYoVLFiwgHnz5rU7ZpF4SHdV1Acyye43DL85SjavI7/f+ESHJSIiIgkWjyGCIeAq59xYYBrwAzMbC/wUeMU5dwDwirfco/Xv35/Zs2fvNmTt+OOP5/bbb29cXr58OQCFhYUsW7YMgGXLlrF27dpm65wxYwYLFiwgHA5TXFzMG2+8wdSpU9sd03PPPYdz0aFJn3/+OX6/n759+5KVlUVFRUWbcQI8/fTT1NbWUlJSwsKFC5kyZUq721+zZg2HHXYYN9xwA3l5eWzYsIEZM2bw8MMPA/DZZ5+xfv16Ro8e3e46KyoqGDRoEMFgsLGe5syZM4ebbrqJsrIyJk6c2O76RTosEiGDGoKBLNJyCwGo2FaU0JBERESke+hwguWc2+ycW+Y9rwBWAkOAWcD9XrH7gdM62lZ3cNVVV+02m+Btt93GkiVLmDhxImPHjm3sSTnjjDPYsWMH48aN44477mDUqFHN1nf66aczceJEDjroII499lhuuukmBg4c2O54HnzwQUaPHs2kSZM477zzePjhh/H7/Zxyyik8+eSTTJo0iTfffLPFOAEmTpzIMcccw7Rp0/jlL3/J4MGDgWjy961vfYtXXnmFgoIC/vnPfwLRYYkN11tdc801TJgwgfHjx/O1r32Ngw46iO9///tEIhEmTJjAnDlzuO+++3bruWrL//t//4/DDjuMI444ggMPPLBx/TPPPMP111/fuHzmmWfyyCOPNM6cKNJlwnX4cLhAKtkDCwGoL1mX2JhERESkW7CG3o+4VGZWCLwBjAfWO+f6eusN2Nmw3GSfS4BLAIYNG3bounW7f0lZuXIlY8aMiVuMsrumsx3ua/TvRzpFzU7430JeHnYFx377Gny/HcLrQy/jqO/8NtGRiYiISBcxs6XOuT1mWYvbLIJmlgk8DlzhnNttLnUXzeKazeScc3c65yY75ybn5eXFKxwRkU7jQnXRJ4FkfKmZlJFJoHJTYoMSERGRbiEuswiaWRLR5Oph59wT3uqtZjbIObfZzAYB2+LRlsTX3LlzEx2CSI8TrKslGbCk6IyiO/25pNboI05ERETi0IPlDf+7B1jpnPtdzKZngAu85xcAT3e0LRGR7qC+rhoAC0SvLaxKGUBmfXEiQxIREZFuIh5DBI8AzgOONbPl3uMbwG+B/zCzz4Gve8siIj1esK4GAF9SNMGqS8unf3jP2yOIiIhI79PhIYLOuUVASzdOOq6j9YuIdDfBuuh97XxJ0fvKRTIHkrO9jKqaWjLS9rzXnIiIiPQecZvkQkSktwjX755g+fsOxmeO4i3rExmWiIiIdANKsNrpqaeewsxYtWpVi2WKiooYP3583Nr89NNPOfroo5k0aRJjxozhkksuAaI3CX7++ec7VPfFF1/MgAED4hqvSG8RrI9eg+X3JrlI7V8AQPnWDQmLSURERLoHJVjtNH/+fKZPn878+fOb3R4KhTrcRjgc3m35xz/+MVdeeSXLly9n5cqV/OhHPwLik2BdeOGFvPjiix2qQ6S3CtdHp2kPeDfQzsobCkB1iRIsERGR3i4u07R3mRd+Cls+jG+dAyfAia3Pv1FZWcmiRYt47bXXOOWUU/j1r38NwMKFC/nlL39Jv379WLVqFf/6178IhUKcc845LFu2jHHjxvHAAw+Qnp7OK6+8wtVXX00oFGLKlCn8+c9/JiUlhcLCQubMmcNLL73Etddey1lnndXY7ubNmykoKGhcnjBhAvX19Vx//fXU1NSwaNEifvazn3HyySfzox/9iI8++ohgMMjcuXOZNWsW9913H08++SRlZWVs2rSJc889l1/96lcAHHnkkRQVFbX6ul9//XUuv/xyAMyMN954g8zMTK699lpeeOEFzIxf/OIXzJkzh4ULF/KrX/2Kvn378uGHHzJ79mwmTJjAH/7wB2pqanjqqacYOXIkzz77LL/5zW+or68nJyeHhx9+mPz8/N3aPeusszjvvPM46aSTgGgyePLJJ3PmmWe275iKdLJQfXSSi4YerH4DhwNQv1P3whIREent1IPVDk8//TQzZ85k1KhR5OTksHTp0sZty5Yt4w9/+AOfffYZEB3W9/3vf5+VK1eSnZ3Nn/70J2pra7nwwgtZsGABH374IaFQiD//+c+NdeTk5LBs2bLdkiuAK6+8kmOPPZYTTzyRW2+9ldLSUpKTk7nhhhuYM2cOy5cvZ86cOdx4440ce+yxvPvuu7z22mtcc801VFVVAfDuu+/y+OOPs2LFCv7+97+zZMmSdr/uW265hT/+8Y8sX76cN998k7S0NJ544gmWL1/OBx98wMsvv8w111zD5s2bAfjggw+YN28eK1eu5MEHH+Szzz7j3Xff5bvf/S633347ANOnT2fx4sW8//77nHXWWdx00017tDtnzhweffRRAOrr63nllVcaky2R7iASbOjBiiZYGX0HEnR+rGJLIsMSERGRbqBn9WC10dPUWebPn9/Yk3PWWWcxf/58Dj30UACmTp3KiBEjGssOHTqUI444AoBzzz2X2267jf/4j/9gxIgRjBo1CoALLriAP/7xj1xxxRVANKFozkUXXcQJJ5zAiy++yNNPP81f/vIXPvjggz3K/etf/+KZZ57hlltuAaC2tpb166MX2//Hf/wHOTk5AHzzm99k0aJFTJ48uV2v+4gjjuAnP/kJ55xzDt/85jcpKChg0aJFnH322fj9fvLz8znqqKN47733yM7OZsqUKQwaNAiAkSNHcvzxxwPRnrfXXnsNgI0bNzJnzhw2b95MfX39bu9dgxNPPJHLL7+curo6XnzxRY488kjS0tLaFbNIV4h4PVhJyd6MgT4fO339CFQpwRIREent1IPVhh07dvDqq6/y3e9+l8LCQm6++WYeffRRnHMAZGRk7FY+et/llpeb07SOWIMHD+biiy/m6aefJhAI8NFHH+1RxjnH448/zvLly1m+fDnr169nzJgxXzmeBj/96U+5++67qamp4Ygjjmh1gg+AFO96FACfz9e47PP5Gq9R+9GPfsQPf/hDPvzwQ/7yl79QW1u7Rz2pqakcffTR/POf/2TBggUtJqAiiRIJRXuwklLSG9eVJeWRXrctUSGJiIhIN6EEqw2PPfYY5513HuvWraOoqIgNGzYwYsQI3nzzzWbLr1+/nrfffhuAv/3tb0yfPp3Ro0dTVFTE6tWrAXjwwQc56qij2mz7xRdfJBgMArBlyxZKSkoYMmQIWVlZVFRUNJY74YQTuP322xuTvvfff79x20svvcSOHTsar4Nq6F1rjzVr1jBhwgT+67/+iylTprBq1SpmzJjBggULCIfDFBcX88YbbzB16tR211lWVsaQIUMAuP/++1ssN2fOHP7617/y5ptvMnPmzHbXL9IVIsHoDwOBlF33vKpJySM7tD1RIYmIiEg3oQSrDfPnz+f000/fbd0ZZ5zR4myCo0eP5o9//CNjxoxh586dXHbZZaSmpvLXv/6Vb33rW0yYMAGfz8ell17aZtv/+te/GD9+PAcddBAnnHACN998MwMHDuSYY47hk08+YdKkSSxYsIBf/vKXBINBJk6cyLhx4/jlL3/ZWMfUqVM544wzmDhxImeccUbj8MCzzz6bww8/nE8//ZSCggLuueceAObNm8e8efMA+P3vf8/48eOZOHEiSUlJnHjiiZx++ulMnDiRgw46iGOPPZabbrqJgQMHtvv9nDt3Lt/61rc49NBDyc3NbVy/ZMkSvvvd7zYuH3/88bz++ut8/etfJzk5ud31i3QF5yVYySm7hq4GMwaSGykhEnGJCktERES6AWvo9egOJk+e7JpOwrBy5crG4W6yd+677z6WLFnCHXfckehQEkb/fqQzfPDANUxYcxc7r95CTla0F2vpw9dz6Od/oPhHX5DnXfcoIiIi+y4zW+qc22NyA/VgiYjsrVAd9QRISd41T1BSv8EA7NiyPlFRiYiISDfQ6QmWmc00s0/NbLWZ/bSz25NdLrzwwl7deyXSaUJ11JFEsn/XR2hGTvRmwxXFSrBERER6s05NsMzMD/wROBEYC5xtZmP3tp7uNIxReg79u5FOE66jniSS/Ltm5cweEL3ZcO0O3WxYRESkN+vsHqypwGrn3BfOuXrgEWDW3lSQmppKSUmJvizLXnHOUVJSQmpqatuFRfaSeQlW7G0P+uVHe7AiZUqwREREerPOvtHwEGBDzPJG4LC9qaCgoICNGzdSXFwc18Bk35eamkpBQUGiw5B9kC9cR73tPrtlIL0PVaRhFbrZsIiISG/W2QlWm8zsEuASgGHDhu2xPSkpiREjRnR1WCIiLbJwPUGS9li/w59DSs3WBEQkIiIi3UVnDxHcBAyNWS7w1jVyzt3pnJvsnJucl5fXyeGIiHScL1xHyPa8P1tlUh6Z9eptFxER6c06O8F6DzjAzEaYWTJwFvBMJ7cpItKp/JF6Qr49e7Dq0vLpEy5JQEQiIiLSXXRqguWcCwE/BP4JrAQedc593Jltioh0Nl+knpCl7LE+nDmQPLeD2vpgAqISERGR7qDTr8Fyzj0PPN/Z7YiIdJVApJ6wL3OP9b4+g0m2MOu3fMmwYcMTEJmIiIgkWqffaFhEZF/jd/WEfXteg5XSbwgApdt0s2EREZHeSgmWiMheSorUE/btOUQwMy86p0/19g17bBMREZHeQQmWiMheCrggEf+ePVj9BkaHBdbv1M2GRUREeislWCIieymJeiLN9WD1H0zEGa58cwKiEhERke5ACZaIyF5KckFcMz1YFkhmp68vgaotCYhKREREugMlWCIieymZIC6wZw8WQGkgl7TarV0ckYiIiHQXSrBERPZGJEyAMM6f2uzmqtRB9AuqB0tERKS3UoIlIrI3QnXRv4E9hwgCBDMHMyBSTDAU7sKgREREpLtQgiUishdcqBYACzTfg2V9h5FhdWzbpl4sERGR3kgJlojIXgjWNSRYzV+DlZobnaq9ZNOaLotJREREug8lWCIieyFYXxN90kKClT1wPwCqthV1UUQiIiLSnSjBEhHZC/W10QTLl9R8gpU7ZGS0XMm6LotJREREuo8OJVhmdrOZrTKzFWb2pJn1jdn2MzNbbWafmtkJHY5URKQbCNZFE6yWrsFK7TOAWpKx8o1dGZaIiIh0Ex3twXoJGO+cmwh8BvwMwMzGAmcB44CZwJ/MzN/BtkREEq6+rhqAQEpa8wXM2O4fQGrVpi6MSkRERLqLDiVYzrl/OedC3uJioMB7Pgt4xDlX55xbC6wGpnakLRGR7iDoDRFMSklvsUxFSj5ZdZpFUEREpDeK5zVYFwMveM+HABtitm301u3BzC4xsyVmtqS4uDiO4YiIxF99dTkASWmZLZapTR9CTrgY51xXhSUiIiLdRJsJlpm9bGYfNfOYFVPm50AIeHhvA3DO3emcm+ycm5yXl7e3u4uIdKlQbQUASenZLZZxfQoYYKXsKCvvqrBERESkmwi0VcA59/XWtpvZhcDJwHFu18+1m4ChMcUKvHUiIj1a2EuwUtJaTrCS+w+DNVC8aS05fSd1UWQiIiLSHXR0FsGZwLXAqc656phNzwBnmVmKmY0ADgDe7UhbIiLdQaSuEoCUjD4tlskYMAKA8i1fdElMIiIi0n202YPVhjuAFOAlMwNY7Jy71Dn3sZk9CnxCdOjgD5xz4Q62JSKSeF6ClZaR1WKRnCHRmw3XbNe9sERERHqbDiVYzrn9W9l2I3BjR+oXEeluXH0l1S6FjLTmbzQMkDVgOBFnuNL1XRiZiIiIdAfxnEVQRGSf56uvpJoUUgItf3xaIIUdvn4kVejSUxERkd5GCZaIyF6wYDXVpOENi27RzuSBZNZu7qKoREREpLtQgiUishcCoSpqLa3NctVpg+kf2toFEYmIiEh3ogRLRGQv+INV1PrS2ywXzi5goNtOdW1dF0QlIiIi3YUSLBGRvRAIVxP0t92D5e83jCQLs3VTUecHJSIiIt2GEiwRkb2QFK4mktR2D1ZaXvReWDs3615YIiIivYkSLBGRvZARriCY1PJNhhv0GzwSgJritZ0dkoiIiHQjSrBERNorEqEP5YRS+7dZtL+XYIV26F5YIiIivYkSLBGRdgrXlBIgQjg9p82y/tRMdpJNoGJjF0QmIiIi3YUSLBGRdqrasQUAS89tV/kdSflkVH/ZmSGJiIhIN6MES0SknSq8BCuQldeu8lWpg+gb3NKZIYmIiEg3E7cEy8yuMjNnZrnespnZbWa22sxWmNkh8WpLRCQRKnZsBiCr/8B2la/PHEJ+pJhgKNyZYYmIiEg3EpcEy8yGAscDsVdznwgc4D0uAf4cj7ZERBKlpnQrAH3yBrWrvPUbTprVU7x1U2eGJSIiIt1IvHqwbgWuBVzMulnAAy5qMdDXzNr3rUREpBsKlm0DIG/AkHaVT80dDsCOTas7LSYRERHpXjqcYJnZLGCTc+6DJpuGABtiljd665ruf4mZLTGzJcXFxR0NR0Sk0wTK17PN9SMjI6Nd5bMH7gdA5TbdC0tERKS3CLSnkJm9DDR30cHPgeuIDg/8SpxzdwJ3AkyePNm1UVxEJGEyqjeyLTCQAe0snzckei+s+h2aql1ERKS3aFeC5Zz7enPrzWwCMAL4wMwACoBlZjYV2AQMjSle4K0TEemR+tZ9yer0g9pdPjU7lzqScBWbOzEqERER6U46NETQOfehc26Ac67QOVdIdBjgIc65LcAzwPnebILTgDLnnL5liEiPFA7WkRfZTqTPsPbvZMZOX3+SqrZ2XmAiIiLSrbSrB+sreh74BrAaqAYu6sS2REQ61da1HzHYHEl5++/VfuVJeWTWb+ukqERERKS7iWuC5fViNTx3wA/iWb+ISKLsWL2EwUDWfpP3ar/a1AH0KVvZOUGJiIhItxO3Gw2LiOzLatcvo8YlM2L0pL3aL5QxkDy3g/qgbjYsIiLSGyjBEhFph+yS5axL2o/01JS92s+yB5NudWwv0W0oREREegMlWCIibair3Ml+9Z9RnDttr/dN7jcYgLKt6+MdloiIiHRDSrBERNrw6eJ/ELAImWOO2+t903Kid6uo3L6hjZIiIiKyL1CCJSLShsiKJ9jpshg7be/vqd4nPzqte/1O3WxYRESkN1CCJSLSivKSbYwuW8TKnONISUnd6/37DYgmWOEy3QZQRESkN1CCJSLSilXP3Uaa1TPgmMu+0v6+lHTKycRfqQRLRESkN1CCJSLSgoqd2zjwi3t5P2UK+0/Y+wkuGpT6+5Ncuz2OkYmIiEh3pQRLRKQFKxf8kgxXTcZJv+lQPZXJuWTUK8ESERHpDZRgiYg0Y/XSVzh08wLe638yoyZ+9d4rgPqUXLLDO+IUmYiIiHRnSrBERJqoKC0m7R/fZ5vlMub82zpcXzgjn1y3k/pgOA7RiYiISHfW4QTLzH5kZqvM7GMzuylm/c/MbLWZfWpmJ3S0HRGRrhAOBVk/bzZ5kWJKTriDPv36d7hOX1Y+qRZk+w4NExQREdnXBTqys5kdA8wCDnLO1ZnZAG/9WOAsYBwwGHjZzEY55/TzrYh0a0v/cilTa5fx9oS5HH74zLjUmdR3EACl2zYwOD8/LnWKiIhI99TRHqzLgN865+oAnHPbvPWzgEecc3XOubXAamBqB9sSEelU7z56E1OLH+Pf+Wdz+JlXxq3e9P6DAajcviludYqIiEj31KEeLGAUMMPMbgRqgaudc+8BQ4DFMeU2eutERLqlD994mkM+/h+Wpx/GYd+7I651Z+dFP/7qSnUvrHCwnh3bNlK2s5hgVSnBqlLCNeWEa8oJBeuIREL4XBhzEXwuQsQChH1JWCAFf1IK/uRUkpJSCKSkE0hLJyklg+TUDFLTMkhOzyQtLZNASjoEUsAs0S9XRER6oTYTLDN7GRjYzKafe/v3B6YBU4BHzWy/vQnAzC4BLgEYNmzY3uwqIhIXGz5bzvBXL2WDfygjL30Ef6Cjvz3trm/eUABCZVviWm935MIhtm1cw7aij6j6chVWspqU6i1k1m+jb2g7/V0ZeebI6+Q4Ihh1JFNHCvWWTL0vlZAvhZAvlbA/hZA/lZDPe/hTCftSwHyYRfMywzAD58Dhon8dQPSJcxFvY8Rb13Q5+jCiyxazzZzzIgRcBGvYH7DGMtHtRsSrZ/eHDxdTF9BsLtlagmlfbZ9mF/din8bV7dzHWljf2t5tFGt/2r2r5Feqs5V9Wt5kX6m+YFI2g2b/H/3y9T1KpDto81uEc+7rLW0zs8uAJ5xzDnjXzCJALrAJGBpTtMBb11z9dwJ3AkyePNm1P3QRkY4r374F3/w5BEki5fy/k9Wn45NaNBXI6EcdSVjl1rjXnUi1VWUUffwupWvew7flA3IrP2VIaCP5FqThSrMKl0axfwAVyXmUZI7ms8xB+LIHkZKdQyC9L0npfUjJ6EdKZh/SU9NISk4G8+F8ATAfRIK4UB2h+jpqa2uor62hrraG+roaQrVVBOuqCddVEa6vIVJfjauvwQWrIViLBWuwcC2+UA3+cC3+cC2BcC1JwWqS3U4yXB2p1JNC9C+uHf8FGXukORFvtP1uf61pSmQ4a5oe7Vkuuuxrstyw/679Gv+aAbvidrvC3LXkmm5tfrGZFS3v29jOnm03u801v751rtmnbaxss1SLe7XV3F6203KBPUt2tL3RbgkfPvBDDr3qKcynCaJFEq2jP9M+BRwDvGZmo4BkYDvwDPA3M/sd0UkuDgDe7WBbIiJxFaqv5cu7zmBEpITVJy1gXOHozmnIjFJfP5Jqijun/q7gHF+u+4z1y1/Bt/5t8suWMzS0gQMt+jVvB9lsTB3F0pxpWN4BZA0Zy8D9xpEzoIAsfeET6VTvPfAzpnzxJxY98r9M//bPEh2OSK/X0QTrXuBeM/sIqAcu8HqzPjazR4FPgBDwg544g2BV+U5Kt29hyH5jEh2KiHSCZfdeztS6j/j3ITfxtanHdWpblYH+pNX3rGnat3y5no3vPo3/i9cYXL6cwZQwGKggjTWp49kw6ATShx9CwdjDGTC4kP665kkkISaf+xs+/L/3OezTm1nyYgGTZ56X6JBEerUOJVjOuXrg3Ba23Qjc2JH6E+3D5/7M1FU38UH6FOpGn86BR55Jdv8BiQ5LROLgw1f+xtQtj/Dv3DP52qz/7PT2alLy6FNR1OntdEQoFGbl8n9T8v4zDNi8kAPDnzPQHNvox7rMSawtmMbA8ccw7MBDmRTn69RE5Kszn5+Rl/6NtbfNZOLbl7PU5+fQ47+d6LBEei39D9mKkUeexeKqEvbf+CQDlv+M0Ps/56OU8ZQPOoKcA49k+EEzSE3PSnSYIrKXSou/ZNib1/CZf38O+c7tXdJmXcYQCsvfIxyO4Pd3nyFz5RXlrPz3PwitfIGRpW8xgRIA1iSP5v3Cy+g36RQKx01jQDeKWUT2lJ7Vn0E/eIGiO2Zy0Fs/YHHxag47+xe6JqsLOedwEdfiNXUNffxmNM6cYur53yeZa89FvV1k8uTJbsmSJYkOYw8uEuaz99+gZOlTDNr6OsNDRfjMEXR+NvoL2JmxH3X9RpE8cDRZA4aTnTeU/vnDSE5N67yYnCMUcdQHQ9TV1VJfV0N9bS3B+l2PUF0tofpaQsE6wsFaIvV1hEN1RIJ1REJ1uFAdhOpwoXoI10O4Dl8kiC9cj88FCUTq8UWC+F09/kiQgIs+/N7fpIZlwrtmviI661X0754zX8Vcyh0t53Yv1+LrbWH6pOb2aKlsc1MwtdRic3XEI4aWLhNvfwzN62i8vU0q9WRQy/o5L7Hf2Mld0uZ7j9zIlFU3seXSjxk4sKBL2mzJpnWrKXr7SdKKXmJMzfukWT1VpLImayqMOoGRR3yTDO/eXSLSs1RX7GDln8/n0Oo3WZp2OEPOvo2Bw0YlOqyvzIXqqCrfSXlZKZXlO6irKiNcU06ktpxIbSWuvgJXX0MkWIuFaiFUC6E6fOFafOE6/JF6kiJ1BFw9AVePz4XxubD33SWM30XwEcZHBD9h/N42PxH8REiyrrvCJeJ2m57Ge267/d19uzVTrnP2jZ1Ox1nr+9Jiu7u+6VkL8bVkqY0n8K27+Y+x+W2W7UpmttQ5t8cXCfVgtYP5/Iw+9Bg49BgASku28cX7r1K/9m1SSlaRX/kJg8oX4lu/+z+vctKpJp1aXxq1vnTqfengC4DPh8NPxHyNs075XQi/C4ML4YuE8LnoI3ry70pmAoRIdkGSCJJMiAwLkxHH11pPEkECBC2JkCURwvvrPcK+ZEKWRp0vm2pLJuxLwpk/OtuXN/tVw68yznwQMwsW1vArmjXZ5vPOxehyw9O2WLM/DjScwk0r2LNsSwld8+vbl5ZEp13+6vW2PnFxy+nVHmXbM01W07p74K9oHYnYv/8xjO2i5AogM38krIJt6z7t8gQrHA7z2fuvs+P9Z8nf/Br7R9YyBNhs+Xw88DSyDzqZkZNPYGJyapfGJSLxl57Vn4OveoYlj/4/xq26A7vna/w7/0xGfONyBhUm8JrycIi6yu1U7NhGVelWakuLCVZuJ1S5HapK8NXuIFBXSkr9TtJDZaRFKklzNaQQJBPIbKP6iDNqSabekqgnmaAlE7QUgr7o3zpfGlXWh4gvAObHmX/XbKW+AM4XwHzR9fj8RMyPs8Cu7ynE/jfZ5FtGzP+f1mS5KUfs95fYqSubWdc4E2gzc2E2913DNbNvbErVnnZdk+1Nylmb8e0q15hMuejz3dOtprOcNiw0/bYTXQql7seQ7JQ94+qm1IMVJ7XVFXz5xSeUb1tH3c7NhMu+xFezHX+wikCoiqRQFcnhanBhLBL9paThARDGT8gCRCyAMz8RCxDxTnjnSyLiS8b5k3G+JJw/BfzJuEAKFkjG/Cn4AslYUgq+pFT8geTo3+RUAkkpBJJTCCSnkpScSlJK9JGcnEYgOQULpII/Cfwp0b898Eu2SE+wbfUyBjx0DIsm3cT00zr/mq+q8p189vYzBFe+yMjSt8ihjLAzPksZR8Ww4xhy2DcZsv9BOudF9mFfrvuMzU9cx0Glr+DD8VnKGEqHHEP2/oeTP2oy/XMHfqUhaqG6GipLi6nYuZXqsu3UlxdTX1FCuKoEq96Bv24nSXU7SQ2Wkh4qJStSQTaVLdZX7VIoJZNyXzZV/j7UJvUhnJRNJCUbX2oW/tRsktKzSU7vQ3J6NknpfUjK6ENyWjYpGdmkpmeSlpKKT0OZpYu11IOlBEtEpAtEaivgf4by5pDvcNQl/xf/Bpxj05oVbHrvWdLXvcKomg9ItjDlZPBZ1jRs9EwO+NppmqhHpBfavPELvvjXPPI2vcKo8OrG9TvJotzfj0p/X+oC2Zg/QHTAnB+fC5EUqSUQqSUQriEQriUjUkm2qyDd6lpsq8YlU2rZVPqyqfZnU5vcj2ByP8Jp/SGtH77MXJKy8kjNziWt7wCy+w2gb5++pCX7u+KtEIkrDREUEUkgX2oW6/wF9N25Im511lZX8Pk7L1LzyQsM2f4WQ9wWhgBFVsCSgXPIPuhURk85jslJyXFrU0R6nkEF+zHo4psAKN66kc2r3qNu43IiO4rw12wnI7iTfrUbopcleNcihSxAvaVQb6nU+9OpTe7PzqQsQin9iKT2g7T+BDL7k5yVS1qfPNL75JHdP5+srGwG+dQzLr2bEiwRkS6yrc9E9t/5xleeSbC+poq1yxdSuvI1sra+w8jalUywINUuhc/SD2b98IsZOnUWhfsdSGH8wxeRfUBefgF5+QXA6YkORWSfpQRLRKSL+EbMoN/O51j53j8ZM+3E1gs7x7aNa9j4ydvUrXuPvtuXMrJuFaMtRMQZXwT2Y1n+N0kbewIHHjaTSWnxnO5GREREviolWCIiXeTAY8+ldOlvsFf/H7XjDyc1sy8QnVZ585qP2LnuQ4JbPyVz50qG1KxiAOUMAELOx9qkkbyXP5vU/Y9k5KFfZ/+cPPZP6KsRERGR5ijBEhHpIhmZWfx70s/52gc/I3TzCIp9fUl31WRQy0ivTMP99T7vcwRu0EH02/8who+dygHpmRyQ0OhFRESkPZRgiYh0oa+d/n1WDB7NjmVPklqznUhKFpY5gOT8A8kdMYHBI8YwIjmFEYkOVERERL4SJVgiIl1s4mHHwWHHJToMERER6QQdviObmU0ys8VmttzMlpjZVG+9mdltZrbazFaY2SEdD1dERERERKT7isctr28Cfu2cmwRc7y0DnAgc4D0uAf4ch7ZERERERES6rXgkWA7I9p73Ab70ns8CHnBRi4G+ZjYoDu2JiIiIiIh0S/G4BusK4J9mdgvRhO1r3vohwIaYchu9dZtjdzazS4j2cAFUmtmncYgpnnKB7YkOQrqMjnfvoWPde+hY9y463r2HjnXv0h2P9/DmVrYrwTKzl4GBzWz6OXAccKVz7nEzmw3cA3y9vVE55+4E7mxv+a5mZkucc5MTHYd0DR3v3kPHuvfQse5ddLx7Dx3r3qUnHe92JVjOuRYTJjN7ALjcW/w7cLf3fBMwNKZogbdORERERERknxSPa7C+BI7ynh8LfO49fwY435tNcBpQ5pzb3FwFIiIiIiIi+4J4XIP1PeAPZhYAatl1PdXzwDeA1UA1cFEc2kqEbjt8UTqFjnfvoWPde+hY9y463r2HjnXv0mOOtznnEh2DiIiIiIjIPiEeQwRFREREREQEJVgiIiIiIiJxowSrFWY208w+NbPVZvbTRMcj8WNmQ83sNTP7xMw+NrPLvfX9zewlM/vc+9sv0bFKfJiZ38zeN7N/eMsjzOwd7/xeYGbJiY5R4sPM+prZY2a2ysxWmtnhOrf3TWZ2pfcZ/pGZzTezVJ3b+w4zu9fMtpnZRzHrmj2XvUnVbvOO+wozOyRxkcveauFY3+x9jq8wsyfNrG/Mtp95x/pTMzshIUG3QglWC8zMD/wROBEYC5xtZmMTG5XEUQi4yjk3FpgG/MA7vj8FXnHOHQC84i3LvuFyYGXM8v8Ctzrn9gd2At9JSFTSGf4AvOicOxA4iOhx17m9jzGzIcCPgcnOufGAHzgLndv7kvuAmU3WtXQunwgc4D0uAf7cRTFKfNzHnsf6JWC8c24i8BnwMwDv+9pZwDhvnz9539u7DSVYLZsKrHbOfeGcqwceAWYlOCaJE+fcZufcMu95BdEvYEOIHuP7vWL3A6clJECJKzMrAE7Cu0+fmRnR20o85hXRsd5HmFkf4EiiN73HOVfvnCtF5/a+KgCkeTMZpwOb0bm9z3DOvQHsaLK6pXN5FvCAi1oM9DWzQV0SqHRYc8faOfcv51zIW1xM9J66ED3Wjzjn6pxza4nOWD61y4JtByVYLRsCbIhZ3uitk32MmRUCBwPvAPkx92vbAuQnKi6Jq98D1wIRbzkHKI354Nb5ve8YARQDf/WGhN5tZhno3N7nOOc2AbcA64kmVmXAUnRu7+taOpf1vW3fdjHwgve82x9rJVjSq5lZJvA4cIVzrjx2m4vew0D3MejhzOxkYJtzbmmiY5EuEQAOAf7snDsYqKLJcECd2/sG79qbWUST6sFABnsOMZJ9mM7l3sHMfk700o6HEx1LeynBatkmYGjMcoG3TvYRZpZENLl62Dn3hLd6a8OQAu/vtkTFJ3FzBHCqmRURHep7LNFrdPp6w4pA5/e+ZCOw0Tn3jrf8GNGES+f2vufrwFrnXLFzLgg8QfR817m9b2vpXNb3tn2QmV0InAyc43bdvLfbH2slWC17DzjAm40omejFdM8kOCaJE+8anHuAlc6538Vsega4wHt+AfB0V8cm8eWc+5lzrsA5V0j0PH7VOXcO8BpwpldMx3of4ZzbAmwws9HequOAT9C5vS9aD0wzs3TvM73hWOvc3re1dC4/A5zvzSY4DSiLGUooPZCZzSQ6vP9U51x1zKZngLPMLMXMRhCd2OTdRMTYEtuVDEpTZvYNotdu+IF7nXM3JjYiiRczmw68CXzIrutyriN6HdajwDBgHTDbOdf0AlvpoczsaOBq59zJZrYf0R6t/sD7wLnOuboEhidxYmaTiE5okgx8AVxE9AdFndv7GDP7NTCH6PCh94HvEr0WQ+f2PsDM5gNHA7nAVuBXwFM0cy57SfYdRIeJVgMXOeeWJCBs+QpaONY/A1KAEq/YYufcpV75nxO9LitE9DKPF5rWmUhKsEREREREROJEQwRFRERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0SkmzGzQjNzZhZIdCzSO5jZx2Z2dKLjEBHZFyjBEhGRHs/M5plZpfeoN7NgzPILiY6vu3POjXPOLYxnnWZ2n3csKmMe/ni2ISLSHZlzLtExiIjsU8ws4JwLdWD/QmAtkNSRenorM5sL7O+cO7eZbR06Nl2pJ8XaHDO7D9jonPtFomMREelK6sESEYkDMysys/8ysxVAlZkFzGyamf3bzErN7IPYIVhmttDM/sfM3jWzcjN72sz6t1D3RWa20swqzOwLM/vPJttnmdlyr541ZjbTW9/HzO4xs81mtsnMftNWD4KZjTSzV82sxMy2m9nDZtY3ZtsOMzvEWx5sZsUNr8vMTvWGmpV6r29Mk/fnajNbYWZlZrbAzFL3/p3eey0cG2dm+8eUuc/MfhOzfLL3npZ6x3BiO9s62sw2mtl13vtXZGbnxGw/ycze947VBi8ZbNjWMDT0O2a2HnjVW/93M9vivW9vmNm4JnH/ycxe8HqI3jKzgWb2ezPbaWarzOzgdr5HX2/PaxQRkdYpwRIRiZ+zgZOAvkA+8BzwG6A/cDXwuJnlxZQ/H7gYGASEgNtaqHcbcDKQDVwE3BqT5EwFHgCu8do9Eijy9rvPq3d/4GDgeOC7bbwGA/4HGAyMAYYCcwGcc2uA/wIeMrN04K/A/c65hWY2CpgPXAHkAc8Dz5pZckzds4GZwAhgInBhswGYTfcSm5Ye09t4Dc1pPDZt9Qp5Ccm9wH8COcBfgGfMLKWdbQ0EcoEhwAXAnWY22ttWRfS49/XiuczMTmuy/1FE3/sTvOUXgAOAAcAy4OEm5WcDv/DarAPe9srlAo8Bv2tn3M0ys5+2djza2P37XlK+1MzO6EgcIiI9hRIsEZH4uc05t8E5VwOcCzzvnHveORdxzr0ELAG+EVP+QefcR865KuCXwOzmepicc88559a4qNeBfwEzvM3fAe51zr3ktbPJObfKzPK9tq5wzlU557YBtwJntfYCnHOrvbrqnHPFRL+cHxWz/S5gNfAO0cTw596mOcBz3r5B4BYgDfhak/fnS+fcDuBZYFILMSxyzvVt5bGotdfQgthj05ZLgL84595xzoWdc/cTTVym7UV7v/Tew9eJJtqzAZxzC51zH3rHagXRpPSoJvvO9Y5ZjbfPvc65CudcHdFk9yAz6xNT/knn3FLnXC3wJFDrnHvAORcGFhBNrr8y59xvWzserex6G7sSw18C95nZER2JRUSkJ1CCJSISPxting8HvtXkl/7pRJOS5sqvA5KI9jrsxsxONLPFXk9AKdHEqaHcUGBNM7EM9+rbHNP+X4h+2W2RmeWb2SPekMJy4KFmYroLGA/c7n3ph2iP17qGAs65iPf6hsTstyXmeTWQ2Voscbah7SKNhgNXNTl2Q4m+xvbY6SXNDdY17Gtmh5nZa97QyjLgUvZ8fxtjNTO/mf3WokM/y9nVOxm7z9aY5zXNLHfl+9zIObfMOVfinAs5554n2vP2zUTEIiLSlZRgiYjET+ysQRuI9lDF/tqf4Zz7bUyZoTHPhwFBYHtshd6wtMeJ9gjlez0GzxMdytfQzshmYtlAtNclN6b9bOfcuGbKxvpv73VMcM5lE+2Ja2gLM8sEfg/cA8y1XdeNfUk0MWkoZ97r29RGe3swsxm2+8xzTR8z2q5lD01ndKoG0mOWB8Y83wDc2OTYpTvn5rezrX5mlhGzPIzo+wPwN+AZYKhzrg8wj5j3t5lYvw3MAr4O9AEKvfVN9+k03vVkLR6PvajK0YVxi4gkihIsEZHO8RBwipmd4PVCpHoTIBTElDnXzMZ61zPdADzmDeuKlQykAMVAyMxOJHotVYN7gIvM7Dgz85nZEDM70Dm3mehQwv8zs2xv20gzazocraksoBIoM7MhRK/tivUHYIlz7rtEh77N89Y/CpzkxZEEXEU0wft3W29UU865N51zma083tzbOpuxHPi2d2xmsvswvbuAS73eJjOzDItOTpEFjRNL3NdG/b82s2QvGTwZ+Lu3PgvY4Zyr9a6f+3Yb9WQRfR9LiCaE/70XrzEunHP/3drxaGk/MzvTzDK9f3vHE03Wn+m6yEVEEkMJlohIJ3DObSDa83Ad0eRoA9FkJfZz90GiE1FsAVKBHzdTT4W3/lFgJ9Ev5M/EbH8Xb+ILoAx4nV09SecTTdA+8fZ9jN2HKDbn18AhXl3PAU80bDCzWUQnqbjMW/UT4BAzO8c59ynRL9C3E+2FOwU4xTlX30Z7iXI50RhLgXOApxo2OOeWAN8D7iD6vq1m9wk5hgJvtVL3Fm+/L4kOi7vUObfK2/Z94AYzqwCuJ3pcW/MA0SGGm4gex8VtvbBu5HKicZcCNwPfc3G+15aISHek+2CJiCSAmS0EHnLO3Z3oWKT9vFkRPwAmepN5NN1+NNHjWtB0m4iI9A6BRAcgIiLSU3g9cmPaLCgiIr2WhgiKiPQyZjavhQkL5rW9t/REZjaslYkqhiU6PhGRfYmGCIqIiIiIiMSJerBERERERETipFtdg5Wbm+sKCwsTHYaIiIiIiEirli5dut05l9d0fbdKsAoLC1myZEmiwxAREREREWmVma1rbr2GCIqIiIiIiMSJEiwREREREZE4UYIlItIK5xyabVVERETaq1tdg9WcYDDIxo0bqa2tTXQo0sOkpqZSUFBAUlJSokORHuy5R/5M4LPnmPKTx8nJSk10OCIiItLNdfsEa+PGjWRlZVFYWIiZJToc6SGcc5SUlLBx40ZGjBiR6HCkBzv5058B8K8lb3P8McckOBoRERHp7rr9EMHa2lpycnKUXMleMTNycnLU8ykdVuWivVa+z55PcCQiIiLSE3T7BAtQciVfif7dSEfVVpWTRh0AGTtXJjgaERER6Ql6RIIlIpIIVVtX47PoBBc5dRsSHI2IiIj0BEqw2sHMuOqqqxqXb7nlFubOnZu4gGIsXryYww47jEmTJjFmzJjGuBYuXMi///3vr1zvunXrOOSQQ5g0aRLjxo1j3rx5cYpYpOeoqSwHYL2vgILIZmrqQgmOSERERLo7JVjtkJKSwhNPPMH27dvjWq9zjkgk0qE6LrjgAu68806WL1/ORx99xOzZs4GOJ1iDBg3i7bffZvny5bzzzjv89re/5csvv+xQrCI9TXV1FQDbM0eRbnV8uWFNgiMSERGR7k4JVjsEAgEuueQSbr311j22FRcXc8YZZzBlyhSmTJnCW2+9BcDcuXO55ZZbGsuNHz+eoqIiioqKGD16NOeffz7jx49nw4YNXHPNNYwfP54JEyawYMECIJogHX300Zx55pkceOCBnHPOOc3ei2fbtm0MGjQIAL/fz9ixYykqKmLevHnceuutTJo0iTfffLPVOM877zwOP/xwDjjgAO666y4AkpOTSUlJAaCurq7FRPC2225j7NixTJw4kbPOOguAHTt2cNpppzFx4kSmTZvGihUrGtu64IILmDFjBsOHD+eJJ57g2muvZcKECcycOZNgMAjADTfcwJQpUxg/fjyXXHLJHq87EolQWFhIaWlp47oDDjiArVu3tnYYRfZaXXUFAC5vDAA7Nq1OZDgiIiLSA3R4mnYzGwo8AOQDDrjTOfcHM5sLfA8o9ope55zr0DRcv372Yz75srwjVexh7OBsfnXKuDbL/eAHP2DixIlce+21u62//PLLufLKK5k+fTrr16/nhBNOYOXK1i+G//zzz7n//vuZNm0ajz/+OMuXL+eDDz5g+/btTJkyhSOPPBKA999/n48//pjBgwdzxBFH8NZbbzF9+vTd6rryyisZPXo0Rx99NDNnzuSCCy6gsLCQSy+9lMzMTK6++moAvv3tb7cY54oVK1i8eDFVVVUcfPDBnHTSSQwePJgNGzZw0kknsXr1am6++WYGDx68x2v57W9/y9q1a0lJSWlMeH71q19x8MEH89RTT/Hqq69y/vnns3z5cgDWrFnDa6+9xieffMLhhx/O448/zk033cTpp5/Oc889x2mnncYPf/hDrr/+egDOO+88/vGPf3DKKac0tunz+Zg1axZPPvkkF110Ee+88w7Dhw8nPz+/zeMosjeCtdUApA8aDWugpmR9giMSERGR7i4ePVgh4Crn3FhgGvADMxvrbbvVOTfJe/ToOY6zs7M5//zzue2223Zb//LLL/PDH/6QSZMmceqpp1JeXk5lZWWrdQ0fPpxp06YBsGjRIs4++2z8fj/5+fkcddRRvPfeewBMnTqVgoICfD4fkyZNoqioaI+6rr/+epYsWcLxxx/P3/72N2bOnNlsm63FOWvWLNLS0sjNzeWYY47h3XffBWDo0KGsWLGC1atXc//99zfbQzRx4kTOOeccHnroIQKBQONrOu+88wA49thjKSkpobw8mhifeOKJJCUlMWHCBMLhcGO8EyZMaHx9r732GocddhgTJkzg1Vdf5eOPP96j3Tlz5jT29j3yyCPMmTOn1fdc5KuI1EeHCGYOifZghUs3JjIcERER6QE63IPlnNsMbPaeV5jZSmBIR+ttTnt6mjrTFVdcwSGHHMJFF13UuC4SibB48WJSU1N3KxsIBHYbVhd7P6aMjIx2tdcwRA+iw/9CoeYvsB85ciSXXXYZ3/ve98jLy6OkpGSPMi3FCXtOZ950efDgwYwfP54333yTM888c7dtzz33HG+88QbPPvssN954Ix9++GG7XpPP5yMpKamxLZ/PRygUora2lu9///ssWbKEoUOHMnfu3GbvZXX44YezevVqiouLeeqpp/jFL37RarsiX0mwBoCk7IFUkYa/YnOCAxIREZHuLq7XYJlZIXAw8I636odmtsLM7jWzfi3sc4mZLTGzJcXFxc0V6Tb69+/P7NmzueeeexrXHX/88dx+++2Nyw1D4QoLC1m2bBkAy5YtY+3atc3WOWPGDBYsWEA4HKa4uJg33niDqVOntjum5557rvEapc8//xy/30/fvn3JysqioqKizTgBnn76aWpraykpKWHhwoVMmTKFjRs3UlMT/XK5c+dOFi1axOjRo3drOxKJsGHDBo455hj+93//l7KyMiorK5kxYwYPP/wwEL2WLDc39/+3d+fxVZZ33sc/v/ssOdkDIRBC2FRAlrBIWCpuoFan1Vq3YqfaIk/rOF0cnZk+3UZr7Wter2k709m0+rTV2qpFrX1UHjtjtVpnZFq1IC4ooIjsYc0ecvbr+eOchBASCOQkJ8v3/SKv3Nt13b+Tmzs5v3Nd93VRVFTUo9fTlkyNGjWK5uZmnnjiiS6PMzOuvPJK/vqv/5rp06dTWlrao/pFTkpbgpWbT62/jFCrEiwRERE5vowlWGZWAPwauNU51wjcC5wOzCXVwvVPXZVzzv3YOVftnKsuKyvLVDh95m/+5m+OGk3w3/7t31i7di2zZ89mxowZ7cOZX3311dTW1jJz5kzuvvtupk6d2mV9V155JbNnz2bOnDksW7aM73//+5SXl/c4noceeohp06Yxd+5cbrjhBh555BF8Ph+XX345Tz75ZPsgF93FCalufkuXLmXx4sXcfvvtVFRUsHHjRhYtWsScOXM4//zz+du//VuqqqoA+PznP8/atWtJJBJcf/31VFVVMW/ePG655RZKSkq48847WbduHbNnz+brX/86P//5z3v8ekpKSvjCF77ArFmzuOSSS1iwYEH7vvvuu++ouJcvX87DDz+s7oHSd+LpBCuUR3NwDIXRgf0hkIiIiGSfdTUy3UlXYhYAngF+65z7YRf7JwHPOOdmHa+e6upqt3bt2qO2bdy4kenTp/c6RunanXfeedRgGEON/v9Ib6y7/6+YteNhuH0/G//P56jY/zJld247phutiIiIDD9mts45V915e69bsCz1TuN+YGPH5MrMxnY47EpgQ2/PJSLSnyzeSpggQZ+HK6hgFA3UNbVkOywREREZwHo9yAWwBLgBeNvM3khv+ybwaTObS2ro9m3AX2TgXJJhd955Z7ZDEBmwvHiYMDkUm+EfMR7PHAdrtjGy6LiN8SIiIjKMZWIUwTVAV/1lBvWw7CIiXqKVCEEA8somANC4bztMU4IlIiIiXcvoKIIiIkOJLxEmYqmpBYrGTAKg9aAmGxYREZHuKcESEemGv0OCNXLsJACS9buzGJGIiIgMdEqwRES64UuEiaUTLF+oiMOEsOa9WY5KREREBjIlWD301FNPYWZs2rSp22O2bdvGrFmZezZj8+bNXHDBBcydO5fp06dz0003AalJgv/jP079EbdwOMzChQuZM2cOM2fO5Nvf/namQhYZUgLJMDEvlWBhRp2vlJzWfdkNSkRERAY0JVg9tGrVKs455xxWrVrV5f54PN7rcyQSiaPWb7nlFm677TbeeOMNNm7cyFe+8hWg9wlWTk4OL774Im+++SZvvPEGzz77LK+88kqvYhcZinzJKHEv2L7eFCijILo/ixGJiIjIQKcEqweam5tZs2YN999/P48++mj79pdeeolzzz2XT3ziE8yYMQNIJVqf+cxnmD59Otdccw2HDx8G4IUXXmDevHlUVVWxcuVKIpEIAJMmTeJrX/saZ511Fr/61a+OOm9NTQ2VlZXt61VVVUSjUe644w4ee+wx5s6dy2OPPUZLSwsrV65k4cKFzJs3j6effhqABx98kCuuuIILLriAKVOm8J3vfAcAM6OgoACAWCxGLBbrcuLUX/3qV8yaNYs5c+Zw3nnnAanWrxtvvJGqqirmzZvH73//+/ZzffKTn+Tiiy9m0qRJ3H333fzwhz9k3rx5LF68mNraWgB+8pOfsGDBAubMmcPVV1/d/vPpaPHixbzzzjvt6xdccAGdJ6AW6Q8+Fydpgfb1SO4YShKHshiRiIiIDHSZmAer//zn12Hv25mts7wK/uwfjnvI008/zaWXXsrUqVMpLS1l3bp1zJ8/H4DXX3+dDRs2MHnyZLZt28bmzZu5//77WbJkCStXruRHP/oRX/7yl1mxYgUvvPACU6dO5bOf/Sz33nsvt956KwClpaW8/vrrx5z3tttuY9myZZx99tl89KMf5cYbb6SkpIS77rqLtWvXcvfddwPwzW9+k2XLlvHAAw9QX1/PwoULueiiiwB47bXX2LBhA3l5eSxYsICPf/zjVFdXk0gkmD9/Plu2bOFLX/oSixYtOub8d911F7/97W8ZN24c9fX1ANxzzz2YGW+//TabNm3iox/9KO+99x4AGzZsYP369YTDYc444wy+973vsX79em677TZ+8YtfcOutt3LVVVfxhS98AYC/+7u/4/77729vmWuzfPlyHn/8cb7zne9QU1NDTU0N1dXHTJIt0ud8ySiJwJEWrERBOWW1tbSEY+SHAscpKSIiIsOVWrB6YNWqVVx33XUAXHfddUd1E1y4cCGTJ09uXx8/fjxLliwB4Prrr2fNmjVs3ryZyZMnM3XqVAA+97nP8d///d/tZZYvX97leW+88UY2btzItddey0svvcTixYvbW746eu655/iHf/gH5s6dywUXXEA4HGbHjtRQ0hdffDGlpaXk5uZy1VVXsWbNGgB8Ph9vvPEGu3btak/COluyZAkrVqzgJz/5SXv3xTVr1nD99dcDcOaZZzJx4sT2BGvp0qUUFhZSVlZGcXExl19+OZBqedu2bRuQSsLOPfdcqqqqeOSRR45qqWrzqU99iieeeAKAxx9/nGuuuabLn49IX/MTx3lHEilfcQVBS7B//54sRiUiIiID2eBqwTpBS1NfqK2t5cUXX+Ttt9/GzEgkEpgZP/jBDwDIz88/6vjOXe266nrXWec6OqqoqGDlypWsXLmSWbNmdZkIOef49a9/zbRp047a/uqrr54wnpKSEpYuXcqzzz57zAAd9913H6+++iq/+c1vmD9/PuvWrTvu68jJyWlf9jyvfd3zvPZn1FasWMFTTz3FnDlzePDBB3nppZeOqWfcuHGUlpby1ltv8dhjj3Hfffcd97wifcXvYiR9R1qwckamuuw27N0OEyZmKywREREZwNSCdQJPPPEEN9xwA9u3b2fbtm3s3LmTyZMn8/LLL3d5/I4dO/jjH/8IwC9/+UvOOeccpk2bxrZt29iyZQsADz30EOeff/4Jz/3ss88Si8UA2Lt3L4cOHWLcuHEUFhbS1NTUftwll1zCv//7v+OcA2D9+vXt+55//nlqa2tpbW3lqaeeYsmSJRw4cKC9y19rayvPP/88Z5555jHn/+CDD1i0aBF33XUXZWVl7Ny5k3PPPZdHHnkEgPfee48dO3Yck9gdT1NTE2PHjiUWi7XX05Xly5fz/e9/n4aGBmbPnt3j+kUyye9iR7VgFZaNB+DwoZ3ZCklEREQGOCVYJ7Bq1SquvPLKo7ZdffXV3Y4mOG3aNO655x6mT59OXV0df/mXf0koFOJnP/sZ1157LVVVVXiex80333zCcz/33HPtg0xccskl/OAHP6C8vJylS5fy7rvvtg9ycfvttxOLxZg9ezYzZ87k9ttvb69j4cKFXH311cyePZurr76a6upqampqWLp0KbNnz2bBggVcfPHFXHbZZQDccccdrF69GoCvfvWrVFVVMWvWLM4++2zmzJnDF7/4RZLJJFVVVSxfvpwHH3zwqJarE/nud7/LokWLWLJkyVFJ3erVq7njjjva16+55hoeffRRPvWpT/W4bpFMCxAH35H/3yPLU61WkTpNNiwiIiJds7ZWj4GgurradR4tbuPGjUyfPj1LEQ1uDz744FGDYQxH+v8jp8w5+E4Jvxt9Ixd98V9S2xIxkt8t47/Kb2Tpzf+c1fBEREQku8xsnXPumJHY1IIlItKVRDT13ddhtEBfgHorxt+yNzsxiYiIyIA3uAa5kJOyYsUKVqxYke0wRAaneHrETv/RXWAb/KPIDWuyYREREenaoGjBGkjdGGXw0P8b6ZVEaoAZ6zCKIEBrzmiK4gezEZGIiIgMAgM+wQqFQhw6dEhvluWkOOc4dOgQoVAo26HIIBWPtqYWOrVgxfLHUJo8RDyRzEJUIiIiMtD1eRdBM7sU+FfAB/zUOXdSk1lVVlaya9cuDhw40CfxydAVCoWorKzMdhgySMViEfyA5z+6BYvCCkr3NbG3vony0uKsxCYiIiIDV58mWGbmA+4BLgZ2AX8ys9XOuXd7WkcgEGDy5Ml9FaKISJei4TC5gHVqwQqMqACgdt92yks1R5uIiIgcra+7CC4EtjjntjrnosCjwBV9fE4RkV6Lx8IAeIGjW7DySlOTDTfu12TDIiIicqy+TrDGAR3fhexKb2tnZjeZ2VozW6tugCIyUMSjqVEEvU4tWMVjJgAQPqQES0RERI6V9UEunHM/ds5VO+eqy8rKsh2OiAgAsXSC5QsePVBK8eiJACQaavo9JhERERn4+jrB2g2M77Bemd4mIjKgtY0i2LkFy8sbQYQAXrMSLBERETlWXydYfwKmmNlkMwsC1wGr+/icIiK9loimnsHyB49OsDCjzldKsHVfFqISERGRga5PRxF0zsXN7MvAb0kN0/6Ac+6dvjyniEgmxGNRAPydWrAAmoOjKYjomVERERE5Vp/Pg+Wc+w/gP/r6PCIimZRIjyLozzl2supw7hhKDr+Fcw4z6+/QREREZADL+iAXIiIDUSKebsEKHJtgJQoqKKeWxtZof4clIiIiA5wSLBGRLiTTLViBLlqwrGQ8ORbj4L5d/R2WiIiIDHBKsEREuuBiqWHaA50HuQBCo1JDtTfWfNivMYmIiMjApwRLRKQL7S1Yobxj9hWNmQxA68Ht/RqTiIiIDHxKsEREuhJPJVjBUP4xu0ZUnAZAom5Hv4YkIiIiA58SLBGRrsRaSTgj2EUXwZyCkbQQwmvUM1giIiJyNCVYIiJdsHiYMEFyAr4udhoHfWMIHa7p/8BERERkQFOCJSLSBYu3EiaI3+t6nqumnDEURvb2c1QiIiIy0CnBEhHpgpcIEyHY7UTCkfwKyhL7cc71c2QiIiIykCnBEhHpghePELVg9wcUVzLCmqitq+u/oERERGTAU4IlItIFLxEmyrEDXLQJlk4C4MDurf0UkYiIiAwGSrBERLrgS4aP24JVOHoSAI37NNmwiIiIHKEES0SkC/5EhJjXfQvWyHGnAxA+sK2fIhIREZHBQAmWiEgXfMkI8eMkWEVl40lguPqd/RiViIiIDHRKsEREuuBPRkh4oe4P8AU4ZKPwN+/pv6BERERkwFOCJSLShUAyQsLXfQsWQENwDAVhTTYsIiIiR/QqwTKzH5jZJjN7y8yeNLOS9PZJZtZqZm+kv+7LSLQiIv0k4CI4/3FasIDWvApK4/s0F5aIiIi0620L1vPALOfcbOA94Bsd9n3gnJub/rq5l+cREelXQRcleYIEK1k8nnIO0dDS2k9RiYiIyEDXqwTLOfeccy6eXn0FqOx9SCIi2ZdDBPy5xz3GP3Iifkuyb5eGahcREZGUTD6DtRL4zw7rk81svZn9l5md210hM7vJzNaa2doDBw5kMBwRkVOUTBAggQWO34JVMOY0AOprNNmwiIiIpPhPdICZ/Q4o72LXt5xzT6eP+RYQBx5J76sBJjjnDpnZfOApM5vpnGvsXIlz7sfAjwGqq6v1IIOIZF0i3IQPcIGC4x43ouIMAMIH1IIlIiIiKSdMsJxzFx1vv5mtAC4DLnTpJ72dcxEgkl5eZ2YfAFOBtb0NWESkr7U21VEAECo67nFF5ZMASNbv6POYREREZHDo7SiClwL/G/iEc+5wh+1lZuZLL58GTAHUh0ZEBoVIc21q4QQJlgVyOWQjCDRpsmERERFJOWEL1gncDeQAz5sZwCvpEQPPA+4ysxiQBG52ztX28lwiIv0i0lwPgJdbcsJj64Ll5LdqLiwRERFJ6VWC5Zw7o5vtvwZ+3Zu6RUSyJdxcB0Awv+SEx7bmVlBav6GPIxIREZHBIpOjCIqIDAmRplSClVc08oTHxovGU+4O0tga6euwREREZBBQgiUi0knscCrByu9BguUfOZGgJdi3e1sfRyUiIiKDgRIsEZFOEocbACgoLj3hsfmjJwNQt+eDPo1JREREBgclWCIinbjWBlpdkOLC48+DBTByXOpR1Nb9mgtLRERElGCJiBwr0kgzeQT9J/4VWVyeasFK1m3v66hERERkEFCCJSLSSSBSS5NX2KNjLaeAOivG17S7j6MSERGRwUAJlohIJ7mRgzT6T/z8VZu6wBgKWpVgiYiIiBIsEZFjFMYOcjinrMfHt+RWMCK2rw8jEhERkcFCCZaISEfJJCNdHdG8MT0ukigaz1h3gOZwrA8DExERkcFACZaISAfRpoMEiENBeY/L+EZMJGQx9u7Z2YeRiYiIyGCgBEtEpIPavanRAP3FFT0uk5eeC6u+ZkufxCQiIiKDhxIsEZEOavdsBaBozIQelympOA2Aw/u29klMIiIiMngowRIR6aB17yYARk+e2eMyIytOByBet6NPYhIREZHBQwmWiEgHdmgLta6Q0WVje14mVEwDhfgb9QyWiIjIcKcES0Skg/ymD6nxV+J5dlLlav2jKQjX9FFUIiIiMlgowRIRaeMcYyLbaCw47aSLNoXGUhLVXFgiIiLDXa8SLDO708x2m9kb6a+Pddj3DTPbYmabzeyS3ocqItK3DuzYTAlNJCvmnXTZaF45o5IHcc71QWQiIiIyWPgzUMc/O+f+seMGM5sBXAfMBCqA35nZVOdcIgPnExHpE3ve/R/KgBFTPnLSZZOFFRTtP0xDQz3FJSMyH5yIiIgMCn3VRfAK4FHnXMQ59yGwBVjYR+cSEcmIxIdraHE5nDaj+qTLBkZUAnAoPY+WiIiIDE+ZSLC+bGZvmdkDZtb2se04oONwWrvS245hZjeZ2VozW3vgwIEMhCMicgqcY9yBNbybexahUOiki+eWjgegeb8SLBERkeHshAmWmf3OzDZ08XUFcC9wOjAXqAH+6WQDcM792DlX7ZyrLisrO9niIiIZceDDtxjj9nN44rJTKl80eiIA4UMaql1ERGQ4O+EzWM65i3pSkZn9BHgmvbobGN9hd2V6m4jIgLTrtacpA8Yt+MQplR85NpVgJRr0q05ERGQ46+0ogh1n4rwS2JBeXg1cZ2Y5ZjYZmAK81ptziYj0pdDW37LVm8jpp087tfJ5BdRRiNekubBERESGs96OIvh9M5sLOGAb8BcAzrl3zOxx4F0gDnxJIwiKyEC158ONTI9u4I+TvshpdnITDHdU55USat2bwchERERksOlVguWcu+E4+/4e+Pve1C8i0h92vHg/5c6YtGxlr+ppDI6mILI/Q1GJiIjIYJSJebBERAYtl0wwYddq3smZS9WEKb2qK5w7hgnhzRmKbGALtzRwYF8NjYf2EmvaT7S1mUQ8hueSOM8HwXxy8osI5ZdQMHIsoysmkBMMZjtsERGRPqcES0SGtc2v/ZYz3T52zvzrXteVyB/LyLoG4pFW/Dm5GYguu5xzHKzZQc3GP9K6cz126AOKW3cwJr6HEpqOGsnoRGLOR42NoN5fRkvuWKIFlXgjJpI7ejIjKk5n9PgphHLz++y1dMc5RzQaIdzSTLi1iUhrCy6ZSO9L7XeAOUdqCTzzMM/D8/nxPB+eZ3g+Hz7PB56Hz0stmz/13fM8fD5f+lgP83xgXvrr1LukiojIwKQES0SGteZXH6LZ5TLrwj/vdV1eyTjYBXX7dlA24dQGy8imeDTCh2//D7XvvEio5k+Ma91EGfWUAUln7PdGcTBYyaaiZSSLxhMsHkNuyWgChWWE8goJBIPg+XGJOIlwI63NTUQO1xOt20Oifje+5j3kttYwtvldRjf+F4GaROpJ3bQDjKA2UE5jaCzxnJFYqBgvrwRyirBgLj5fAJ/Ph/k8EklwsTAuHoZ4BBcLk4yFIRbGxQ5jsVa8eCteIowvfhh/Mow/ESaYjBB0reS4CDkuQogoOZYgByjOws886YwkhjMjiYej4/fUcuftKQ7rsGY4SCeA1u36ke0dy7Xtg1QiebKO1JY5J1NnT49tf2U9rtq6WBqYopbD4U8/ReXUudkORURQgiUiw1i4pZHptS/y9ogLWVxQ1Ov6ckam2nTqB1GCteeDDex65deEdr7M6a1vM8XCAGy3SrYVL+KD8tkUTl5A5YyFlBeNoDxD503G4+zfu51Du9+nee9W4oe24zXuIO/wHsY1v0tBUxMF7jCenfwb/sMuh7AFiZBDxEJEvRBxL0TEV0hLsIykP0TCn4fz5+ICuVggDwK5eDl5+AJ54POl31Bb+p+l32GntjqXxCUTuGQS55KQTJJ0SVwyCS61nbZ9besutd52PC6R/p5MN5W1HZ/+SiaAJOaS6SQoieccHskjCYUdSZPaYnUYZm1Jhx2J2dpe0ZHj6HyscVSZNsdvZOv59TmV5O2EdXZz/mO2djp3l6XSx3Te5zotHPeM3RzT+aX35CfhThBz224jyXl1T/Leyw8rwRIZIJRgiciw9c6LjzDfwuQv7Ha8npNSOHoCAC0Ht2ekvr6QiMd5//UXaFi/mop9v2d8cjcVwHavkg1lH8N32rlMPOtiJpaPZ2IfxuH5/YyuPJ3Rlad3e0w8Hqe+oY5oSz3xSAuxWJxYPIFLxvF7hi+Ym/4K4Q/mkpObT15uLnl+H3l9GLvIQLPp7zdSuvtFnHOYup2KZJ0SLBEZtoLv/Io9jGbmoo9mpL7SsZMAiNXuykh9meKSST5442UOvfIwZ+x/jjOpJ+p8bArNYeekG5iw+ComTp7WpwnVqfD7/YwsLYPSsmyHIjKgtZzxCeZv/B4b17/M9LPOy3Y4IsOeEiwRGZYO1mxnRuvrvFq5ggqfLyN1jhhRSrMLQdOejNTXWzUfvM3O//o5FTuf4QxXwwTnZ0P+R9g645NMPedKZpeUZjtEEcmAaZfeTMu7/0rTS3eDEiyRrFOCJSLD0tYXH2ShOcadf2PG6jTP46BXir8le5MNhw83s+F3D5H/9kNMj73DGGe8kzOHXVP/kunL/pyzRqo1SGSoKSgeyZ/GXMacfU+xe/sHjJvYfddbEel7SrCOY8+Hm9j5p/9H1Z99nrzCEdkOR0QyqGzrk2zyTePMqXMyWm9joIz88L6M1tkTOzavp+aFezlz/zNU08IuG8sfJt/CpGU3UjX+tH6PR0T61+TLv4b99Cl2PXk74279ZbbDERnWlGAdx47/WcXiLf9Cyzv/yNrCj+Cd+TFO+8gnKSkdne3QRKQX9mx9l8mJD1kz5asZr7s1NIbyprUZr7crkXALG373MLlvPcSM6NuUOx9vF55LcNH/YubZH6cyQ10fRWTgGzV+Kq+OvZbqmkd5780/MHXO2dkOSWTYUoJ1HIv+/NtsWncezX/8GZNqX2bU2t8T/9PXeN9/OnWjzsI38SNUnLmQMROm4fmH1o8ymXTEk45E0hFPJknEY8SiEZKxCIlYmGS8bTlCMh4jmUwCDpd0R4Yidqn5Vlz7EMQOXMf1ZHryTjoMUQzJk4726BGTjsx10t1ISl1vP/5cKieuy3UcRPekz9217mPq5jWfwmtw3cTao7llejnscm9K9+bUsY2/oQKYuPDyXkTQtXjBWEY21OEScczXN78Xdr3/JrtfuJepe59hPk3ssnL+MPkWplx6E/PHnMz0vyIylMxYfhcN//obfKu/SHjqHwjlajzNjhKJJLFYhGiklXi4hXjkMPFImHg8RiweJxGPkYhHicfjJBNxLJnAJWPgklgyDsl4egqGRPq9C+0zzjnn2v8uOdwxf6M6/6m1jn9j26ZROGrqhY6FUke3TcPQtr3t73Tncu3rHct3mMYhVZ8d837pSDnvqBhd+ywObeU61tPhfUTH6SA6nt/atliHcx1bvvPMcx1/ZslgIWNPq2JEfpDBYGhlBRlmnseZCy6EBReSSCTYuP4lmt78Dfn7XqNq75Pk7nsMXoOIC7DbN466vEnEC8ZCQTm+4rGESsoJ5BYSzCsmmFdEML+Q3JwcQsEA5vnB8+FI/ScmGcMl40QjUWLRCLF0QhONxYhHI8RjYRLRCPFomGQ8TDwaIRlPJzix1LKLR3CxKC4RhXgEEhEsEYNEFC8RwZIxvGQ0/RXDl4zhd1F8Lo7fxQi4GAFiBIgTIEYOcQLEySOG7xTmohEZyPZYOZWnV2W8Xisah39PkkP7d1M6NnPj8kXDrWx44WFCb/6CGdG3GON8vFlwDoFFK6lacrlaq0SEwhGjefOc7zNnzc288tMvsuhLD2Cel+2wesc5wocbaTxUQ3PtfsKNB2ltbiB6uJ5kayMWacSLNuOLNeGLNROMNxNMtBBIhgkkIwRdhICLkUOUHKKEzBHK9muSk/ZSYg5br32Uy2ZXZDuUHlGC1UM+n4/p1RdC9YUARCKtvP/uaxza+gZu/ybyGrcwpmUzpU1/INeip3yeQKYCBuJ4xPETI0DMAsQtQKLtywuSCARIekGSXj7OCxLzBYl4QZwXIOkL4nypZefLwfmCkF7GHwR/DvgC4AthPj+e55H6hMQwz8OlP+XADDMv/TGEl/7kxeu0PVXGzNo/PTmmUaXb/K7rHd1PaHni7Ud9qnS8c3RXVzfn7vb4HrY/nbj+4xY6bl3HNmL1X0Ldmxlbjr1WPVcyYUafvPEoKZ8Im2DX9i0ZSbDaWqum7X2Gs2hit43hD5O+zJRL/oLqsRMyELGIDCVzLvo0r2x5mcV7H+GVB0pYtPKHAy7JcskkzfX7qa3ZTtOBHYQP7SLRWEOy5RCBSC050Try4g0UJuopdk2ELEYI6O4BjRYXosXyaLU8wr48Wr0CmoKlJP054AtBIITzh8Cf/u7LgUAuzh/C/Dl4gSA+nx+fL4DP78fzBfD8fszz4Sz1gbj5AmAe5vnbf56p9y3gpVt02lt50stt72lcp0msO/4Zt3S/HZdsO8YdfZBr29bWKpZuNksf51zyqHO0/VVsqy/dnoa1lW/rOdTpPO0TW7cHlzxS3oG59jN2iMNxJI5O9dEWz5F4Xdv+juvdTNLdeaLtgtBIZkwayWChBOsU5eTkMmXe+UyZd/5R210ySUNjHfV7t9Nct494axPJcCPJcBPJaEu6+TmOuSRGEs8lAEian6T5MV8Azx/A8/lT3/1BfP4AXiCE5w/hCwRTk2oGQviDOfiDIYI5IQI5IYLpZc+fA/4c/J4PP+iTGpF+VDF5BrwE9dvfgsUXnlIdLY21bPr9I+S++zgzIqnWqrcKluBfcCOzzr2CcWqtEpHjWPiFf+e1u+tZvOtnvP7DrUy84R5K+6n7cDwapm7vDur3b6flwE5i9btxjXsItOwlN7yPothBSpO1FFqMwk5lG8mj0Ypp8RXTFBzNoZwzieeMgLxSLL+UQGEZOUWl5BeOoKC4lILiEeTmF5Pv85PfL69OpGeUYGWYeR7FJaUUa34ZkWGpZPxMGsknZ++6kyoXi4bZvOZJYusfY3rjGuZbLPVsVbq1ar5aq0SkhzyfjwVfeZg/PnIn1VvuJvyjBbxacTVjz/0sE6YvPM5zwt1zySQtDQeOtDrV7ibesAevqYac1r0URA5QkjjISBopAzpOCBF2AQ56pTT4R7E7fybb8stxhRUERowjb9R4ikdPYFT5BIpycynK2E9BJHuUYImIZJLnsS13JmPr1+OSyeN2zQm3NLD5f54m+s5vmNKwhlk0U0shr4+6nOJF1zN9/lIqfQOra4+IDA7meXzkhrvYvvkqDq6+g/l7fon/8Yc5RAk1uVNoyZ+Alz8Sl1MEvgCeSxCPx3HRFnyRBvzRBrxIA6FoPcWJg5Qm6yiwOAWdzlNLIXXeKBqCo9lfNJNEwVi84gpCIyopGD2BEWMmMrJ0NJU+j8qs/CRE+l+vEiwzewyYll4tAeqdc3PNbBKwEdic3veKc+7m3pxLRGSwCJ92CbPf+S6b//Qs0xZ9rH27SybYuWkde958nrwdL3Hm4deZY3EayOf9orPxZl/LjHOu4OyQOvaKSGZMnDaXiV9dzcE929n8h6cI7niZ4uatTGh9h6KDh7ss0+xyabJ8WnxFRPxF7Mqby4d5Y0gWjiVYUkHuyEpKxkyktLySkXn5DJ4nY0T6h3V+iOyUKzL7J6DBOXdXOsF6xjk362TqqK6udmvX9s/8MSIifaWluZHD/zgbA3ZUXkY8kSC3/n3Gt26ihCYAdls520edT+7sy5m56BKCwcEx9KyIDB2t4Sjhlnri8RiYj1BOkLy8AnwB/T4S6QkzW+ecq+68PSNdBC01TMqngGWZqE9EZDDLLyhixydXYau/wsydq3AYO32VbC45h+SEc5h41sWMmzSNcdkOVESGtdxQkNxQd2PzicipytQzWOcC+5xz73fYNtnM1gONwN85517uqqCZ3QTcBDBhgh7iFpGhYfrcj8DctRyOxsnxeUzRs1QiIiLDwgkTLDP7HVDexa5vOeeeTi9/GljVYV8NMME5d8jM5gNPmdlM51xj50qccz8GfgypLoIn+wJERAayvKDGEhIRERlOTviX3zl30fH2m5kfuAqY36FMBIikl9eZ2QfAVEAPWImIiIiIyJCViT4rFwGbnHO72jaYWZmZ+dLLpwFTgK0ZOJeIiIiIiMiAlYm+K9dxdPdAgPOAu8wsBiSBm51ztRk4l4iIiIiIyICVsWHaM8HMDgDbsx1HJ6OAg9kOQvqNrvfwoWs9fOhaDy+63sOHrvXwMhCv90TnXFnnjQMqwRqIzGxtV+Pby9Ck6z186FoPH7rWw4uu9/Chaz28DKbrrXGDRUREREREMkQJloiIiIiISIYowTqxH2c7AOlXut7Dh6718KFrPbzoeg8futbDy6C53noGS0REREREJEPUgiUiIiIiIpIhSrBEREREREQyRAnWcZjZpWa22cy2mNnXsx2PZI6ZjTez35vZu2b2jpn9VXr7SDN73szeT38fke1YJTPMzGdm683smfT6ZDN7NX1/P2ZmwWzHKJlhZiVm9oSZbTKzjWb2Ed3bQ5OZ3Zb+Hb7BzFaZWUj39tBhZg+Y2X4z29BhW5f3sqX8W/q6v2VmZ2UvcjlZ3VzrH6R/j79lZk+aWUmHfd9IX+vNZnZJVoI+DiVY3TAzH3AP8GfADODTZjYju1FJBsWBv3HOzQAWA19KX9+vAy8456YAL6TXZWj4K2Bjh/XvAf/snDsDqAP+V1aikr7wr8CzzrkzgTmkrrvu7SHGzMYBtwDVzrlZgA+4Dt3bQ8mDwKWdtnV3L/8ZMCX9dRNwbz/FKJnxIMde6+eBWc652cB7wDcA0u/XrgNmpsv8KP2+fcBQgtW9hcAW59xW51wUeBS4IssxSYY452qcc6+nl5tIvQEbR+oa/zx92M+BT2YlQMkoM6sEPg78NL1uwDLgifQhutZDhJkVA+cB9wM456LOuXp0bw9VfiDXzPxAHlCD7u0hwzn330Btp83d3ctXAL9wKa8AJWY2tl8ClV7r6lo7555zzsXTq68AlenlK4BHnXMR59yHwBZS79sHDCVY3RsH7Oywviu9TYYYM5sEzANeBcY452rSu/YCY7IVl2TUvwD/G0im10uB+g6/uHV/Dx2TgQPAz9JdQn9qZvno3h5ynHO7gX8EdpBKrBqAdejeHuq6u5f1vm1oWwn8Z3p5wF9rJVgyrJlZAfBr4FbnXGPHfS41h4HmMRjkzOwyYL9zbl22Y5F+4QfOAu51zs0DWujUHVD39tCQfvbmClJJdQWQz7FdjGQI0708PJjZt0g92vFItmPpKSVY3dsNjO+wXpneJkOEmQVIJVePOOf+b3rzvrYuBenv+7MVn2TMEuATZraNVFffZaSe0SlJdysC3d9DyS5gl3Pu1fT6E6QSLt3bQ89FwIfOuQPOuRjwf0nd77q3h7bu7mW9bxuCzGwFcBnwGXdk8t4Bf62VYHXvT8CU9GhEQVIP063OckySIelncO4HNjrnfthh12rgc+nlzwFP93dsklnOuW845yqdc5NI3ccvOuc+A/weuCZ9mK71EOGc2wvsNLNp6U0XAu+ie3so2gEsNrO89O/0tmute3to6+5eXg18Nj2a4GKgoUNXQhmEzOxSUt37P+GcO9xh12rgOjPLMbPJpAY2eS0bMXbHjiSD0pmZfYzUsxs+4AHn3N9nNyLJFDM7B3gZeJsjz+V8k9RzWI8DE4DtwKecc50fsJVByswuAP7WOXeZmZ1GqkVrJLAeuN45F8lieJIhZjaX1IAmQWArcCOpDxR1bw8xZvYdYDmp7kPrgc+TehZD9/YQYGargAuAUcA+4NvAU3RxL6eT7LtJdRM9DNzonFubhbDlFHRzrb8B5ACH0oe94py7OX38t0g9lxUn9ZjHf3auM5uUYImIiIiIiGSIugiKiIiIiIhkiBIsERERERGRDFGCJSIiIiIikiFKsERERERERDJECZaIiIiIiEiGKMESERERERHJECVYIiIiIiIiGfL/AU4Iwjy29WWRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
45True50.1120.0634bAP.soma.v0.001771.86e-06
46True50.1120.0634Step1.soma.v0.00178.4e-06
47True50.1120.0634Step3.soma.v0.002015.99e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "45 True 5 0.112 0.0634 bAP.soma.v \n", + "46 True 5 0.112 0.0634 Step1.soma.v \n", + "47 True 5 0.112 0.0634 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "45 0.00177 1.86e-06 \n", + "46 0.0017 8.4e-06 \n", + "47 0.00201 5.99e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADqCElEQVR4nOzdd3wc1bnw8d+zVb03W5IluTcJG4wpNj2hJIAhEAyhGV7ChTTgBkgnDgn35iYkJJSEkJCQADEQegi9mA7GNu42rrIlW5bV+2rbef+YlVjZkixbK63K8/2w7O7MmTPPzu7K8+w5c44YY1BKKaWUUkop1X+2aAeglFJKKaWUUiOFJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCml1BAhIoUiYkTEEe1YRjoRWSQi70U7jqFGRE4Qkc+iHYdSSg1nmmAppZQa1kRksYj4RKQ57HZrtOMajowx7xpjpkS6XhGxi8gvRGSPiDSJyKcikhLp/Sil1FCgv5IqpVSEiIjDGOOPdhyj1OPGmMuiHcRAGQGfrZ8BxwPHAbuAGYAnqhEppdQA0RYspZTqBxEpFZHvicgaoEVEHCJyrIh8ICL1IrJaRE4OK79URP5XRJaJSKOIPCciaT3UfZWIbAz94r9dRP5rv/ULRGRVqJ5tInJmaHmyiDwoIhUisjvUcmA/yOuYICJvikiNiFSLyKMdLQyhdbUicmTo+VgRqep4XSJyroisD73epSIybb/jc7OIrBGRBhF5XERiDv1IHzoR+X7ouDSJyAYROb+HciIid4nIvtCxXCsiM0Pr3CJyp4jsEpFKEblfRGL7uP+HQuVfC8XwtogUhK3/vYiUhfa5QkROCFu3WESeFJFHRKQRWCQic0Xkw9BxrhCRe0XEFbaNEZFviMiW0P5+HnrvPgjt44nw8j3EfLKIlPfl9fWViKQCNwJfN8bsNJZ1xhhNsJRSI5ImWEop1X+XAF8GUoBs4D/AL4A04GbgKRHJDCt/BXA1MAbwA3f3UO8+4GwgCbgKuCssyZkL/AO4JbTfE4HS0HYPheqdCMwGTgeuOchrEOB/gbHANCAfWAxgjNkGfA94RETigL8BfzfGLBWRycASrBPoTOBF4N/7nchfBJwJFAElwKJuAxCZH0oeerrNP8hr2N824AQgGasF5RERGdNNudOxjt/kUNmLgJrQul+Gls/COp65wG2HEMOlwM+BDGAV8GjYuk9C9aYB/wT+tV/yuQB4Euv9fRQIADeF6joOOA34xn77OwM4CjgWuBV4ALgM6/2cifVZPWyhRLmn9+cPPWxWjPV5vFBE9orIZhH5Zn/iUEqpIc0Yoze96U1vejvMG1ZSc3XY8+8BD+9X5hXgytDjpcAvw9ZNB7yAHSgEDODoYV/PAjeEHv8JuKubMtlAOxAbtuwS4K1DfF3nAZ/ut+x5YC2wBnCHlv0EeCKsjA3YDZwcdnwuC1v/K+D+CL8Hi0PHsD7sNrabcquABaHHi4D3Qo9PBTZjJSW2sPICtAATwpYdB+zoY1wPAY+FPU/ASpLyeyhfBxwR9preOUj9NwLPhD03wLyw5yuA74U9/w3wu4PUeTJQHuH352uh2B4EYrGS7Crgi5Hcj970pje9DZWbtmAppVT/lYU9LgC+Gv7LPjAfq7Wqu/I7ASdWq0QXInKWiHwU6p5XD3wprFw+VgvN/gpC9VWE7f9PQFZvL0BEskXksVCXwkbgkW5i+jNWK8g9xpj20LKxodcAgDEmGHp9uWHb7Q173IqVaETaE8aYlLDbHhG5QqwulB3HYSbdHGdjzJvAvcB9wD4ReUBEkrBa5OKAFWF1vBxa3led77UxphmoxTpmhLpObgx1nazHaj3L6G7bUPnJIvJCqBWoEfifbl5PZdjjtm6eD8SxP5i20P3txpg2Y8wa4DGsz7NSSo04mmAppVT/mbDHZVgtWOEn+/HGmF+GlckPezwO8AHV4RWKiBt4CrgTyDbGpGB1v5Ow/UzoJpYyrBasjLD9JxljZhzkNfxP6HUUG2OSsLqVdewLEUkAfofVCrFYPr9ubA9WUtdRTkKvb/dB9ncAsYYIb+7ldsLBa+msqwArIfwWkB46fuvCX1M4Y8zdxpijsFoUJ2N1vazGSg5mhB3LZGPMoSQpne916BimAXtCr+VWrO6IqaH4GvaLL/xzBfBHYBMwKfQe/bCn1zNQxLrWrqf35/4eNlsTug9/Pfu/NqWUGjE0wVJKqch6BDhHRM4Qa2jqmNDAAXlhZS4Tkemh65luB540xgT2q8cFuLG6UvlF5Cysa4U6PAhcJSKniYhNRHJFZKoxpgJ4FfiNiCSF1k0QkZMOEnci0Aw0iEguVoIR7vfAcmPMNVjXmHWcTD8BfDkUhxP4LlaC98HBDtT+jDVEeEIvt3cPobp4rJP4KrAGDMFqwTqAiBwtIseE4m/BGt0uGGqN+zPWtW9ZobK5InJG2LZGwgYx6caXQteWubCuxfrIGFOGdbz9ofgcInIb1rV2vUkEGoFmEZkKXH+Q8hFnjJnRy/tzXQ/bbAPeBX4k1qAh04CLgRcGM3allBosmmAppVQEhU6eF2C1LlRhtSjdQte/tw9jXZ+zF4gBvtNNPU2h5U9gXZvzNaxroDrWLyM08AVWy8fbfN6SdAVWgrYhtO2TdO2i2J2fAUeG6voP8HTHChFZgDVIRccJ/X8DR4rIpcaYz7Bau+7BavE5BzjHGOM9yP4GlDFmA9Y1Rx9idZMrBt7voXgSViJVh9XdsQb4dWjd94CtwEehbnmvA1MARCQfaMK6Lq0n/wR+itU18CisYwXWdXkvY137tRMrqSvrroIwN2N9DppC8T5+kPJDySVYn88arM/XT4wxb0Q3JKWUGhhijLbSK6XUYBGRpcAjxpi/RDsW1T8ichlW98Ef9LD+IawBI348qIEppZSKKp1oWCmllDoMxphHoh2DUkqpoUe7CCql1Cgh1qS3hzI4gRqBROSHPXwOXop2bEopNRJoF0GllFJKKaWUihBtwVJKKaWUUkqpCBlS12BlZGSYwsLCaIehlFJKKaWUUr1asWJFtTHmgMnnh1SCVVhYyPLly6MdhlJKKaWUUkr1SkR2drdcuwgqpZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFyJC6Bqs7Pp+P8vJyPB5PtENRQ0BMTAx5eXk4nc5oh6JGoEaPj5fvvYmCmcdyzJmXRTscpZRSSg1DQz7BKi8vJzExkcLCQkQk2uGoKDLGUFNTQ3l5OUVFRdEOR41Ay5e+wEXND8NHD4MmWEoppZQ6DEO+i6DH4yE9PV2TK4WIkJ6erq2ZasC4d77Z+Xjvri1RjEQppZRSw9WQT7AATa5UJ/0sqIFkWmo6H+9d/24UI1FKKaXUcDUsEiyllBoMLm89u21j8Ro77eWroh2OUkoppYYhTbD6QET47ne/2/n8zjvvZPHixdELKMzJJ5/c6+TM5513Hscee2yXZYsXLyY3N5dZs2Yxc+ZMnn/++YEOU6lhwe1vpMWZzi5HAbE1G6IdjlJKKaWGIU2w+sDtdvP0009TXV0d0XqNMQSDwYjWGa6+vp4VK1bQ0NDA9u3bu6y76aabWLVqFf/617+4+uqrBzQOpYaL+EAj7a4UauMnMcazLdrhKKWUUmoY0gSrDxwOB9deey133XXXAeuqqqq44IILOProozn66KN5//33AauV6M477+wsN3PmTEpLSyktLWXKlClcccUVzJw5k7KyMm655RZmzpxJcXExjz/+OABLly7l5JNP5sILL2Tq1KlceumlGGO6je/hhx/ubI1atmxZ5/Knn36ac845h4svvpjHHnus222nTZuGw+Hokjx+//vfZ/r06ZSUlHDzzTcDUFpayqmnnkpJSQmnnXYau3btAmDRokVcf/31HHvssYwfP56lS5dy9dVXM23aNBYtWtRZ5/XXX8+cOXOYMWMGP/3pTw+Io6GhgYKCgs5Er6Wlhfz8fHw+X7dxKzUQEoON+Fwp+FMnkEktbc0N0Q5JKaWUUsPMkB+mPdzP/r2eDXsaI1rn9LFJ/PScGQct981vfpOSkhJuvfXWLstvuOEGbrrpJubPn8+uXbs444wz2LhxY691bdmyhb///e8ce+yxPPXUU6xatYrVq1dTXV3N0UcfzYknngjAp59+yvr16xk7dizz5s3j/fffZ/78+QfU19rayqpVq3jnnXe4+uqrWbduHQBLlizhtttuIzs7mwsuuIAf/vCHB2z78ccfY7PZyMzMBKCmpoZnnnmGTZs2ISLU19cD8O1vf5srr7ySK6+8kr/+9a985zvf4dlnnwWgrq6ODz/8kOeff55zzz2X999/n7/85S8cffTRrFq1ilmzZnHHHXeQlpZGIBDgtNNOY82aNZSUlHTGkZyczKxZs3j77bc55ZRTeOGFFzjjjDN0vis1aLy+ACk0Uxabiit7MuyEiu3rGV9yfLRDU0oppdQwoi1YfZSUlMQVV1zB3Xff3WX566+/zre+9S1mzZrFueeeS2NjI83Nzb3WVVBQ0Hld1Hvvvccll1yC3W4nOzubk046iU8++QSAuXPnkpeXh81mY9asWZSWlnZb3yWXXALAiSeeSGNjI/X19VRWVrJlyxbmz5/P5MmTcTqdnYkXwF133cWsWbO4+eabefzxxztH50tOTiYmJob/9//+H08//TRxcXEAfPjhh3zta18D4PLLL+e9997rrOucc85BRCguLiY7O5vi4mJsNhszZszojPmJJ57gyCOPZPbs2axfv54NGw68vmXhwoWdLXiPPfYYCxcu7PU4KhVJzc2NuMWHiU0lZdx0AOrK9TospZRSSh2aYdWC1ZeWpoF04403cuSRR3LVVVd1LgsGg3z00UfExMR0KetwOLpc1xQ+d1N8fHyf9ud2uzsf2+12/H5/t+X2H7pcRHjiiSeoq6vrnJC3sbGRJUuWcMcddwDWNVgd3f/2j3vZsmW88cYbPPnkk9x77728+eabB5TrLk6bzdYlZpvNht/vZ8eOHdx555188sknpKamsmjRom7nsjr33HP54Q9/SG1tLStWrODUU0/tdb9KRZK3uRYA405hbJGVYPkqdS4spZRSSh0abcE6BGlpaVx00UU8+OCDnctOP/107rnnns7nq1atAqCwsJCVK1cCsHLlSnbs2NFtnSeccAKPP/44gUCAqqoq3nnnHebOnXtIcXW0+rz33nskJyeTnJzMkiVLePnllzuv+1qxYkWP12GFa25upqGhgS996UvcddddrF69GoDjjz++c/tHH32UE044oc/xNTY2Eh8fT3JyMpWVlbz00kvdlktISODoo4/mhhtu4Oyzz8Zut/d5H0r1l9djtTzb3PHExSeylwwcdTrQhVJKKaUOTb8TLBHJF5G3RGSDiKwXkRtCyxeLyG4RWRW6fan/4Ubfd7/73S4DQtx9990sX76ckpISpk+fzv333w/ABRdcQG1tLTNmzODee+9l8uTJ3dZ3/vnnU1JSwhFHHMGpp57Kr371K3Jycg4pppiYGGbPns11113Hgw8+SGlpKTt37uwyPHtRURHJycl8/PHH3dbxpS99iT179tDU1MTZZ59NSUkJ8+fP57e//S0A99xzD3/7298oKSnh4Ycf5ve//32f4zviiCOYPXs2U6dO5Wtf+xrz5s3rXHfbbbd1GSZ+4cKFPPLII9o9UA06r6cNALsrFoAqdz5JrTujGZJSSimlhiHpaWS6PlcgMgYYY4xZKSKJwArgPOAioNkYc2dv24ebM2eO2X9Op40bNzJt2rR+xahGFv1MqIGwcfkbTHvhK6w9+UGKT76Qj+69iunVL5N4227Epo39SimllOpKRFYYY+bsv7zfZw3GmApjzMrQ4yZgI5Db33qVUmow+UMtWA6XdT2lSZtIEq3UVe2OZlhKKaWUGmYi+rOsiBQCs4GOfmjfEpE1IvJXEUmN5L6UUiqS/O1WguWMsUbOjMuZCMC+nZ9FLSallFJKDT8RS7BEJAF4CrjRGNMI/BGYAMwCKoDf9LDdtSKyXESWV1VVRSocpZQ6JAFvKwBOt5VgpeZNAaBpz+aoxaSUUkqp4SciCZaIOLGSq0eNMU8DGGMqjTEBY0wQ+DPQ7dB4xpgHjDFzjDFzOia7VUqpweb3WlMHuEItWDnjphAwgr9aRxJUSimlVN9FYhRBAR4ENhpjfhu2fExYsfOBdftvq5RSQ0XQ17WLoCsmln22DBwNpVGMSimllFLDTSQmGp4HXA6sFZFVoWU/BC4RkVmAAUqB/4rAvpRSakAYr5VgxYQSLIAaVx5JbWXRCkkppZRSw1AkRhF8zxgjxpgSY8ys0O1FY8zlxpji0PJzjTEVkQg4Wp599llEhE2bNvVYprS0lJkzZ0Zsn4sWLeLJJ5/scf2NN95Ibm4uwWCwc9lDDz1EZmYms2bNYvr06fz5z3+OWDxKjWRBn9VF0B0b37msLWEcmf499Hc6C6WUUkqNHjq5Sx8tWbKE+fPns2TJkm7X+/3+fu8jEAj0uWwwGOSZZ54hPz+ft99+u8u6hQsXsmrVKpYuXcoPf/hDKisr+x2bUiNeRxdB9+ctWCa1iDSaqK+riVZUSimllBpmNMHqg+bmZt577z0efPBBHnvssc7lS5cu5YQTTuDcc89l+vTpgJVoXXrppUybNo0LL7yQ1lZrZLI33niD2bNnU1xczNVXX017ezsAhYWFfO973+PII4/kX//61wH7fv3115kzZw6TJ0/mhRde6LLvGTNmcP311/eY9GVlZTFhwgR27tzZuezuu+9m+vTplJSUcPHFFwNQW1vLeeedR0lJCcceeyxr1qwBYPHixVx55ZWccMIJFBQU8PTTT3PrrbdSXFzMmWeeic/nA+D222/n6KOPZubMmVx77bUH/NofDAYpLCykvr6+c9mkSZM08VNDivF78Bsb2J2dy2KyraHaK3ZsjFZYSimllBpmInEN1uB56fuwd21k68wphrN+2WuR5557jjPPPJPJkyeTnp7OihUrOOqoowBYuXIl69ato6ioiNLSUj777DMefPBB5s2bx9VXX80f/vAHvvWtb7Fo0SLeeOMNJk+ezBVXXMEf//hHbrzxRgDS09NZuXJlt/suLS1l2bJlbNu2jVNOOYWtW7cSExPDkiVLuOSSS1iwYAE//OEP8fl8OJ3OLttu376d7du3M3HixM5lv/zlL9mxYwdut7sz4fnpT3/K7NmzefbZZ3nzzTe54oorWLVqFQDbtm3jrbfeYsOGDRx33HE89dRT/OpXv+L888/nP//5D+eddx7f+ta3uO222wC4/PLLeeGFFzjnnHM692mz2ViwYAHPPPMMV111FR9//DEFBQVkZ2f3+W1SaqCJ34NXXF3+KH4+VPtncNQJ0QlMKaWUUsOKtmD1wZIlSzpbey6++OIuLUZz586lqKio83l+fj7z5s0D4LLLLuO9997js88+o6ioiMmTJwNw5ZVX8s4773Rus3Dhwh73fdFFF2Gz2Zg0aRLjx49n06ZNeL1eXnzxRc477zySkpI45phjeOWVVzq3efzxx5k1axaXXHIJf/rTn0hLS+tcV1JSwqWXXsojjzyCw2GdSr733ntcfvnlAJx66qnU1NTQ2NgIwFlnnYXT6aS4uJhAIMCZZ54JQHFxMaWlpQC89dZbHHPMMRQXF/Pmm2+yfv36A17HwoULefzxxwF47LHHen3NSkWDBNppx9VlWXbBNAB8VVujEZJSSimlhqHh1YJ1kJamgVBbW8ubb77J2rVrERECgQAiwq9//WsA4uPju5S3Rq3v+Xl39q/jYPW98sor1NfXU1xcDEBrayuxsbGcffbZgJXM3Hvvvd3W95///Id33nmHf//739xxxx2sXdt7i6Db7QasViin09kZj81mw+/34/F4+MY3vsHy5cvJz89n8eLFeDyeA+o57rjj2Lp1K1VVVTz77LP8+Mc/7nW/Sg02e8CDT7omWK64RGpIxd6ws4etlFJKKaW60hasg3jyySe5/PLL2blzJ6WlpZSVlVFUVMS7777bbfldu3bx4YcfAvDPf/6T+fPnM2XKFEpLS9m61foV/OGHH+akk07q0/7/9a9/EQwG2bZtG9u3b2fKlCksWbKEv/zlL5SWllJaWsqOHTt47bXXOq/36kkwGKSsrIxTTjmF//u//6OhoYHm5mZOOOEEHn30UcC6tisjI4OkpKQ+xdeRTGVkZNDc3NzjqIciwvnnn89///d/M23aNNLT0/tUv1KDxRZoPyDBAqh25ZLYsisKESmllFJqONIE6yCWLFnC+eef32XZBRdc0OPAElOmTOG+++5j2rRp1NXVcf311xMTE8Pf/vY3vvrVr1JcXIzNZuO6667r0/7HjRvH3LlzOeuss7j//vsJBoO8/PLLfPnLX+4sEx8fz/z58/n3v//dbR3XXHMNy5cvJxAIcNlll1FcXMzs2bP5zne+Q0pKCosXL2bFihWUlJTw/e9/n7///e99PDqQkpLC17/+dWbOnMkZZ5zB0Ucf3bnu/vvv5/777+98vnDhQh555BHtHqiGJHugHZ/NfcDylvh8HapdKaWUUn0mQ+mkYc6cOWb58uVdlm3cuJFp06ZFKSI1FOlnQg2EVf9zKgmmmYk/WtZl+fJ//IA52/9A7Y27SEtJjlJ0SimllBpqRGSFMWbO/su1BUsppQB70Iu/mxasmCxrFM69O3ueZFwppZRSqoMmWEopBThNO4FuEqzkXGuo9obyzwY7JKWUUkoNQ8MiwRpK3RhVdOlnQQ0UZ7CdgP3ABCurcCoA7VXbBjskpZRSSg1DQz7BiomJoaamRk+sFcYYampqiImJiXYoagRyGi/BbhIsd2IGjSRgr98RhaiUUkopNdwM+Xmw8vLyKC8vp6qqKtqhqCEgJiaGvLy8aIehRiAXXoL27pP3audYElrKBjkipZRSSg1HQz7BcjqdFBUVRTsMpdQI5zJego4DW7AAmuPzyahfhzGmT5OHK6WUUmr0GvJdBJVSaqAZY3DjhR5asAIpRYwxVdQ39T6Zt1JKKaWUJlhKqVHPHzS48WEc3SdYrsyJOCTInl2bBzkypZRSSg03A55giciZIvKZiGwVke8P9P6UUupQtbe345Ag0kOClZw7GYD63TpUu1JKKaV6N6AJlojYgfuAs4DpwCUiMn0g96mUUoeqva3FeuDqPsHKLLCGavdUbh2skJRSSik1TA10C9ZcYKsxZrsxxgs8BiwY4H0qpdQh8bZb11b11ILlThlLG25sdaWDGJVSSimlhqOBTrBygfCxjctDyzqJyLUislxElutQ7EqpaPC1hRIsZ2z3BUSoco4lvmXnIEallFJKqeEo6oNcGGMeMMbMMcbMyczMjHY4SqlRyOdtA8DeQxdBgKa4fNK9ewYrJKWUUkoNUwOdYO0G8sOe54WWKaXUkOHzWNdg2VxxPZYJJBeSZyqpa/YMVlhKKaWUGoYGOsH6BJgkIkUi4gIuBp4f4H0qpdQh8Xe2YPXQRRBwZk7ELT52l20frLCUUkopNQwNaIJljPED3wJeATYCTxhj1g/kPpVS6lAF+pBgJY2dBEBd+aZBiUkppZRSw5NjoHdgjHkReHGg96OUUofL324lWA53z10EMwqmAeDZq0O1K6WUUqpnUR/kQimloi0YasFyuntuwXKnjcODC3vdlsEKSymllFLDkCZYSqlRL+i1hml39tKChc3OXuc4kpr1GiyllFJK9UwTLKWU6kiwYhN6LdaQUMQYr86FpZRSSqmeaYKllBr1jM8apt0Zl9RrOV/qZHKpor6+djDCUkoppdQwpAmWUkqFWrDi4hN7LebMsQa62Lt97YCHpJRSSqnhSRMspdSoZ7yteI0Dp9PVa7mUgmIAWsp0tgmllFJKdU8TLKXUqGfzNdMm7oOWyymahtfYCe7bOAhRKaWUUmo40gRLKTXq2fxteIg5aDm3y025LRd3vc6FpZRSSqnuaYKllBr1bP5WPLae58AKVxtXRFrrjgGOSCmllFLDlSZYSqlRz+5vw2c7eAsWgC9tMmOCe/G0Ng9wVEoppZQajjTBUkqNeq5AG74+tmDFjJ2OXQxlW9YMcFRKKaWUGo40wVJKjXrOYBt+e98SrMwJswGo3bFyIENSSiml1DClCZZSatRzBT19TrDGjC+mzbgI7tEWLKWUUkodSBMspdSo5zYego6+JVh2h4MyZyFJ9TpUu1JKKaUOpAmWUmrUizEeAs74PpevS5pGvncbJhgcwKiUUkopNRz1K8ESkV+LyCYRWSMiz4hISmh5oYi0iciq0O3+iESrlFIRZoJB4mgDZ1yftwlmF5NEC9W7dT4spZRSSnXV3xas14CZxpgSYDPwg7B124wxs0K36/q5H6WUGhCethZcEiDoTunzNomFRwJQufmTAYpKKaWUUsNVvxIsY8yrxhh/6OlHQF7/Q1JKqcHTXF8NgMSl9Hmb/KlzCBjBs+vTAYpKKaWUUsNVJK/Buhp4Kex5kYh8KiJvi8gJPW0kIteKyHIRWV5VVRXBcJRS6uBaGqwEyxGf2udtkpOTKbPl4qpeN1BhKaWUUmqYchysgIi8DuR0s+pHxpjnQmV+BPiBR0PrKoBxxpgaETkKeFZEZhhjGvevxBjzAPAAwJw5c8zhvQyllDo8nqYaAJzxaYe0XVXCFPKbVg9ESEoppZQaxg6aYBljvtDbehFZBJwNnGaMMaFt2oH20OMVIrINmAws72/ASikVSe1NtQDEJKYf0naB7BJymt6gZt8e0rPGDkRoSimllBqG+juK4JnArcC5xpjWsOWZImIPPR4PTAK292dfSik1EHwtdQDEJR9agpU0fi4A5evejXhMSimllBq++nsN1r1AIvDafsOxnwisEZFVwJPAdcaY2n7uSymlIi7QaiVY8ckZh7RdQfE8AkZo2/7xQISllFJKqWHqoF0Ee2OMmdjD8qeAp/pTt1JKDYZgaz0AicmHdg1WfGIyW+1FJFTrSIJKKaWU+lwkRxFUSqlhJ9haRxNxOJzOQ962KrmYAs8mTDAwAJEppZRSajjSBEspNao52/bRYDu01qsOJm8OibSyd9uaCEellFJKqeFKEyyl1KgW315FkyvzsLbNmDofgL0bdKALpZRSSlk0wVJKjWqpgWo8sVmHte2EqUfQYOLx71wW4aiUUkopNVxpgqWUGrU8Xh+ZppZA/JjD2t5ut1MaO530+rURjkwppZRSw5UmWEqpUatm3x6cEsCWknvYdXiyj6QwsJOG2qoIRqaUUkqp4UoTLKXUqFVfuRMAd2reYdeROOUkbGLY8ekbkQpLKaWUUsOYJlhKqVGrpaoMgISs/MOuY/ysk/AaB56t70QqLKWUUkoNY5pgKaVGLV+dlWClZhUcdh0xcQlsdU0hrXp5pMJSSiml1DCmCZZSatQyjRX4jY3EjLH9qqcucw5F3q14WhoiFJlSSimlhitNsJRSo5ajZS+1tlTE7uhXPXETT8QpAbZ/ujQygSmllFJq2NIESyk1asV69tHgOLxJhsONn30qfmOj6bOl/Q9KKaWUUsOaJlhKqVEr2bePVvfhTTLcpZ7UNLY7J5K09+MIRKWUUkqp4UwTLKXUqGSMIT1Ygzc+JyL11WYdy0TvJpobayNSn1JKKaWGJ02wlFKjUn19HYnShkkcE5H6EmacgVMCbPv4pYjUp5RSSqnhqV8JlogsFpHdIrIqdPtS2LofiMhWEflMRM7of6hKKRU5tXutSYadKYc/yXC4SXNOo8XE4P3stYjUp5RSSqnhqX9DZ1nuMsbcGb5ARKYDFwMzgLHA6yIy2RgTiMD+lFKq35r2WQlWXEZkEiy3O5b1cbPJq/kAjAGRiNSrlFJKqeFloLoILgAeM8a0G2N2AFuBuQO0L6WUOmTtteUAJGUf/iTD+2vJP5kxppKqnRsjVqdSSimlhpdIJFjfEpE1IvJXEUkNLcsFysLKlIeWHUBErhWR5SKyvKqqKgLhKKXUwfnr9wCQnlMYsTpz55wNwM5lz0esTqWUUkoNLwdNsETkdRFZ181tAfBHYAIwC6gAfnOoARhjHjDGzDHGzMnM7P98NEop1Re25goaSMAVGx+xOosmzaBMxhKz7eWI1amUUkqp4eWg12AZY77Ql4pE5M/AC6Gnu4H8sNV5oWVKKTUkuFv3UmdLJzmCdYoIu8aexbHlf6V+705SciLX/VAppZRSw0N/RxEMH9/4fGBd6PHzwMUi4haRImASsKw/+1JKqUhK8FbR5Ip8q3nmvCuwi2Hbm3+LeN1KKaWUGvr6ew3Wr0RkrYisAU4BbgIwxqwHngA2AC8D39QRBJVSQ0lqoBpPbGQmGQ43adoRbHRMJWPrk5ig/tlTSimlRpt+JVjGmMuNMcXGmBJjzLnGmIqwdXcYYyYYY6YYY3TmTaXUkNHe7iHd1BNMiMwkw+FEhMaZV1IQLGPVq/+IeP1KKaWUGtoGaph2pZQasmory7CJwZYc+QQL4KgvX8N2WwG5H91OdUUpACYYZMXLD1O1uIAP/3DtgOxXKaWUUtEXiYmG1SAxwSCtba00NNTR0tyEr60Jf1sTgfZmfD5/aG5TQ+f0ps44XHFJxMQnEZOQTFxSOmlJCdhtOgGqGt0aKncxBnCnRWaS4f05nC6C591P/FPn0/ank1iWdAzZzes5KmjNveWrWjog+1VKKaVU9GmCNQQEAgFq9pZRW7GN1n2leGvLCDTtw9ZWQ0x7LfH+WhIDDaSYBuLFS38Gla41CdTZ0mhypuOJycaTVACp40kYO4WcwumMyc7SBEyNeC3V1jR9CVkDN8rfxJLj2coztL74E8Y3LaPCVcjyqf9FoOwTptW+TugXkQHbv1JKKaWiQxOsQdLaXE/F9vU0lG3AW7kFadhJfFsFKb5KsoLVZImfrLDyXuOg3pZMkz2VVlcqTe4J7IpJh9hUnLGJOGITscUkYHcn4IhJwOl0YkMwWCdtJhgk6G3D29aIv60Zv6cRWmowzftwtFYS76kmt2kZmY0vW9NAr7X2W22S2evIpSG+EF/KeFzZU0gZN53coukkJ8RF49ApFXHeOmvWiLTsgR1GfWLJ8VDyBgAZoWUfPfIzkmqfp7G2iqT0rJ43VkoppdSwpAlWhDXU1VC2cRnNO1dhq95EfPMOMtvLyKKWCaEyQSNUSyq1zhwqE2dQnpCLpOQTkzGOxOzxpI8dT1JyGlk2GwN9+mXam6nfs4WaXRtpqdiMqdlGbFMp05reJ63xRdgFfAI+Y2enZFPlzqclaTySPom4sVPJLComd0wuDod9gCMdOowxBPx+AgFv6D5AMBAgGPATCPgxwUBoWcfjz++DgQAmEACCYTVal0KKsF+LhtDR31PCy4TuTeiJIFYJEWuF2LAJIDZrjU2wiQ2DhB4LEionItYm2BCbIPsvs4tVv82GDTrXI1adYgvt3Waz9v/5CznIPT0s6+54H8ab1O2GYc8bd9NunCSnZx9m5YfPlTUBtkLlro2aYPVTe7uHlqZGPC2NtLc14W1twtfWiN/TTMDTRNDTTNDbSsDXjgn4IOBDgj4k4LXug35sQS8S9GOAoLG+39bHMfTZ7vwOhv4nNoJiJygOguIAcWDsTrA5ELsDbE6wOxCbE7E7EbsDsTuxOZyd9zabA5vDid3hsp47nNg7by4cHcs7yjuc2O3h5VzYHU5sdrv1fVSA9d5Z959/2zuX8fmfBIPp8uehp+VDVVTf8l7+rgrSwx/s/ZZF4SDr1+TQDMnjJYLD4Ro2vaw0weqH2n272bX6bdp2rSCmZgPZbVsZa/Z1TlzaQDwVjnx2Jh/NttQJVmtQ/jTGFs0gKz5hwJOnvhB3AqlFs0ktmn3AOl9LHZXb11JftgHf3k046reR1bKTnKoVuKr8sMkq12xiqbWn0ezMoM2diS8+GxKyscel4YxLxpWQQkx8CrGJqbjiknA63ThcLpwuNw6nC7E5Dvw2GwMmCCbYmZy0ezz42tvw+Tz42z34vG34vB4C3nb8Xg8BXztBn4egr52gr42gvx3ja8f4vRi/FwLtEPCCvx0JtCMBb+jkyoct6MUeuncEfdiNF4fx4TA+nMaHAx9O48eFDxc+HGL0yzMAgkasEyG6fh6kyz/iXdnk0P+xPg4ot+WQZxv8cX7Sxk2HD6Bh1zqYfdKg73+o8rS1UFtZTmNVOa21e/A1VxNsqYW2OuyeOhzeBty+BmL9jSQEG0k0zcSKF/ch7sdn7Pix4xMHfhz4cBDEjhE54LPVwYQ9EII4COAggJ0ADvw4jPXYfhifxf4IGsGHDT8Ogtis707oRwvT+a2Rzu9Tx3fr8+fdlwsn+58cH/A8/DvZ8+sXTJfV4fUaDvxed7fvUB+NXmI7sJ7uy+xf7/4Gpt7IxXKwbbo/dgfb5nD+lio1WJYGjqD5q49xdsnYaIfSJ3qO2EcmGGTX5k+pXPsmUr6MMY1ryTMVpAEBI5Tbc6lImEFZ5kXE5c9izJQ5pOcUkByFE7hIccankld8InnFJ3ZdEQzQWLGVyh3radmzEX9tKdK0lzhvNTlNa0lveJsY8R3SvnzG3vlP/f4nKYL1QY3Eh9VrHHhx4hMHPpz4xYlPrPuAOAnYXPjtMbTbkgjaXATtLozNibG7MXZX6GY9xmZHxA620E3sSOixiO3zxzY7YnMgdqu8dR/6XIT9ukrYr6ddTiQ6f14NdpaVLttZZQxB69fa0M2ETmhM5/Ng6Ayroxyhvey/jQn96tvdcoBg15hCy003p24YE/YPu+mMu3N952sxXZZ1LP+8lW7/pKv7x10+ORK+/MDyCROPZ2CGuOhd3oRi2owL/541Udj74DPBINVVFVTv3kZL5XYCtbugaQ+O1ipi2qtI8NWSGqwliRbGAvv/0+k1DhokkRZbIq32JBpicql2TScYk4rEJCLuRMQdj92dgD0mEUeM1YXaFZeIOzaBmLgEYmPjcLvc2BwunDYbTiB2IF5sMEjA78Xns24Bnxe/z4ff78Xv8xLw+wj4vfj9PgI+H8GAdR8I+Aj6vZiAj4DfRzDgh4Afgj5M0A8BHwSt5xLwg7HWS8eyoB9MoPO7HjTWd63j54rQO/F5mmUO/P6Ff0/3P/02RvZbFN66Hrasy4JuEtb9f0gL+36H19l1P+FlwuoO28/+m4TVeMB+Ox6aLvF183q6+Qn/wAS0D2W6e02HWK8Jj6WHHMh02+SwXz19iH//Rd0l3Qerty+xDCZNGw/NUG3FbY/NY2pOYrTD6DNNsHpRX72XrR//m+CWNyms/4gCaikAakhmV9xMysdcRPLkeRTOPJ6C+EQG9mqOIcRmJyl3Ckm5U7pdbYJBGupraK6voa25Dk9THe0tdfhaGsDXjPH7MQEfJuANnTiETh6wuq2F30xnVzYb4nCDw4043NgcbmyuGGwON3anG4crBrszBrvLeux0x1r3ocdudwwuVwwuuw3X4B4tpbpwOJ1sdxaSWLch2qFETEtzI3u2b6ChfCP+qq3YGnYR07qHZO9eMgNVZEo7mWHl24yLWlsqjY50qmMLqYidi0nIwpE0BlfqWBLSx5CQlkNSajYxsfFk2mxdth+ybDbsrhjsrhhioh2LUkqpqNEEqxebXv0Lx27+NQ3Esy1hDqVFp5A7+3TGFk4jfRi3TA00sdlITsskOW1YnBIpNejqkqczveYVAn4fdocz2uH0STAQpGLXFmp2rKK14jOkdhtxTaVkesvJoZpJYWXrSKTGnkVdbCGVCfORlHzcmQUkZo8ndcwEktOyyLXZyI3aq1FKKaUGjiZYvZh46hVsnjqfCSXzOdKhh0opFRm2ohNIrHmWzavfY/JRp0Q7nAPUVVeye/NymneuQao2kNy4hTxfKbnS1pkUNRJPhSOPsuQjKU2dgCt7Mil508gqnEZqYgqpUX0FSimlVPRo1tCLjJxxZOSMi3YYSqkRZuIxX4Ll36VmzcsQ5QSrek8p5es/wLNzObHVaxjj2UYWtZ0JUgPx7HaNZ0PWl5Ds6STml5A9vpiU9GyStCVfKaWUOoAmWEopNchSM8ey0TmdMWX/wQT/FxmkRKVu327K1r9P647lxFSvIbd1E5nUkYE1WM8u+zh2Js9hR8Z04vKLGTPpKNLHDO/BepRSSqnBpgmWUkpFQdOUrzJt3c/Y8PErTD/urIjX31i7j7J179O84xPc+1aT07KJHKpJxRreu8yeS2ny0WzLnkXyxLkUzDiGovgkiiIeiVJKKTW6aIKllFJRMPOsr1O97vfY3/gpvjmn4XQe/viWTQ217Fr3Ac3bP8G5bzU5zRsYayqZEVpfLmMoTyxhR/YRJI4/hoIZx1CQnDZ6Rj5VSimlBpEmWEopFQVx8YlsmPMj5iy/hWV/WMTs6/6C0x130O3qqyrYs2UlDTs+xbH3U7KbNzLO7O5MpirIZE/8NHZmfZWE8XMZN+M48tKyojLnl1JKKTUa9SvBEpHHgY7JkFKAemPMLBEpBDYCn4XWfWSMua4/+1JKqZFmztnX8tHeDRxb/jfKfzmb8vwFuPNKcMQmQsBPW8M+gvW7kabdxDVuZ4y3lAzqSQltX0Uau+OmsifzHOIKjyZvxnGMycplTDRflFJKKTXK9SvBMsYs7HgsIr8BGsJWbzPGzOpP/UopNdIde83vWLX0JGLf/z/m7nwA2y5zQJlG4ql05LIj5Xi2Zk4lNncm+VPnkJlTMDwm4FVKKaVGkYh0ERQRAS4CTo1EfUopNZrMOvl8OPl8Guv2UVm6iUB7C0bsJKZlk5pTQFJiCknRDlIppZRSfRKpa7BOACqNMVvClhWJyKdAI/BjY8y73W0oItcC1wKMG6dzTimlRq+k1CySUrOiHYZSSiml+uGgCZaIvA7kdLPqR8aY50KPLwGWhK2rAMYZY2pE5CjgWRGZYYxp3L8SY8wDwAMAc+bMObBvjFJKKaWUUkoNEwdNsIwxX+htvYg4gK8AR4Vt0w60hx6vEJFtwGRgeb+iVUoppZRSSqkhzBaBOr4AbDLGlHcsEJFMEbGHHo8HJgHbI7AvpZRSSimllBqyInEN1sV07R4IcCJwu4j4gCBwnTGm9mAVrVixolpEdkYgpkjKAKqjHYQaNPp+jx76Xo8e+l6PLvp+jx76Xo8uQ/H9LuhuoRijlz31RkSWG2PmRDsONTj0/R499L0ePfS9Hl30/R499L0eXYbT+x2JLoJKKaWUUkoppdAESymllFJKKaUiRhOsg3sg2gGoQaXv9+ih7/Xooe/16KLv9+ih7/XoMmzeb70GSymllFJKKaUiRFuwlFJKKaWUUipCNMFSSimllFJKqQjRBKsXInKmiHwmIltF5PvRjkdFjojki8hbIrJBRNaLyA2h5Wki8pqIbAndp0Y7VhUZImIXkU9F5IXQ8yIR+Tj0/X5cRFzRjlFFhoikiMiTIrJJRDaKyHH63R6ZROSm0N/wdSKyRERi9Ls9cojIX0Vkn4isC1vW7XdZLHeH3vc1InJk9CJXh6qH9/rXob/ja0TkGRFJCVv3g9B7/ZmInBGVoHuhCVYPRMQO3AecBUwHLhGR6dGNSkWQH/iuMWY6cCzwzdD7+33gDWPMJOCN0HM1MtwAbAx7/n/AXcaYiUAd8P+iEpUaCL8HXjbGTAWOwHrf9bs9wohILvAdYI4xZiZgBy5Gv9sjyUPAmfst6+m7fBYwKXS7FvjjIMWoIuMhDnyvXwNmGmNKgM3ADwBC52sXAzNC2/whdN4+ZGiC1bO5wFZjzHZjjBd4DFgQ5ZhUhBhjKowxK0OPm7BOwHKx3uO/h4r9HTgvKgGqiBKRPODLwF9CzwU4FXgyVETf6xFCRJKBE4EHAYwxXmNMPfrdHqkcQKyIOIA4oAL9bo8Yxph3gNr9Fvf0XV4A/MNYPgJSRGTMoASq+q2799oY86oxxh96+hGQF3q8AHjMGNNujNkBbMU6bx8yNMHqWS5QFva8PLRMjTAiUgjMBj4Gso0xFaFVe4HsaMWlIup3wK1AMPQ8HagP+8Ot3++RowioAv4W6hL6FxGJR7/bI44xZjdwJ7ALK7FqAFag3+2Rrqfvsp63jWxXAy+FHg/591oTLDWqiUgC8BRwozGmMXydseYw0HkMhjkRORvYZ4xZEe1Y1KBwAEcCfzTGzAZa2K87oH63R4bQtTcLsJLqsUA8B3YxUiOYfpdHBxH5EdalHY9GO5a+0gSrZ7uB/LDneaFlaoQQESdWcvWoMebp0OLKji4Foft90YpPRcw84FwRKcXq6nsq1jU6KaFuRaDf75GkHCg3xnwcev4kVsKl3+2R5wvADmNMlTHGBzyN9X3X7/bI1tN3Wc/bRiARWQScDVxqPp+8d8i/15pg9ewTYFJoNCIX1sV0z0c5JhUhoWtwHgQ2GmN+G7bqeeDK0OMrgecGOzYVWcaYHxhj8owxhVjf4zeNMZcCbwEXhorpez1CGGP2AmUiMiW06DRgA/rdHol2AceKSFzob3rHe63f7ZGtp+/y88AVodEEjwUawroSqmFIRM7E6t5/rjGmNWzV88DFIuIWkSKsgU2WRSPGnsjnyaDan4h8CevaDTvwV2PMHdGNSEWKiMwH3gXW8vl1OT/Eug7rCWAcsBO4yBiz/wW2apgSkZOBm40xZ4vIeKwWrTTgU+AyY0x7FMNTESIis7AGNHEB24GrsH5Q1O/2CCMiPwMWYnUf+hS4ButaDP1ujwAisgQ4GcgAKoGfAs/SzXc5lGTfi9VNtBW4yhizPAphq8PQw3v9A8AN1ISKfWSMuS5U/kdY12X5sS7zeGn/OqNJEyyllFJKKaWUihDtIqiUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkOEiBSKiBERR7RjGelEZJGIvBftOIYaETlBRD6LdhxKKTWcaYKllFJqWBORxSLiE5HmsNut0Y5rODLGvGuMmRLpekXELiK/EJE9ItIkIp+KSEqk96OUUkOB/kqqlFIRIiIOY4w/2nGMUo8bYy6LdhADZQR8tn4GHA8cB+wCZgCeqEaklFIDRFuwlFKqH0SkVES+JyJrgBYRcYjIsSLygYjUi8hqETk5rPxSEflfEVkmIo0i8pyIpPVQ91UisjH0i/92Efmv/dYvEJFVoXq2iciZoeXJIvKgiFSIyO5Qy4H9IK9jgoi8KSI1IlItIo92tDCE1tWKyJGh52NFpKrjdYnIuSKyPvR6l4rItP2Oz80iskZEGkTkcRGJOfQjfehE5Puh49IkIhtE5PweyomI3CUi+0LHcq2IzAytc4vInSKyS0QqReR+EYnt4/4fCpV/LRTD2yJSELb+9yJSFtrnChE5IWzdYhF5UkQeEZFGYJGIzBWRD0PHuUJE7hURV9g2RkS+ISJbQvv7eei9+yC0jyfCy/cQ88kiUt6X19dXIpIK3Ah83Riz01jWGWM0wVJKjUiaYCmlVP9dAnwZSAGygf8AvwDSgJuBp0QkM6z8FcDVwBjAD9zdQ737gLOBJOAq4K6wJGcu8A/gltB+TwRKQ9s9FKp3IjAbOB245iCvQYD/BcYC04B8YDGAMWYb8D3gERGJA/4G/N0Ys1REJgNLsE6gM4EXgX/vdyJ/EXAmUASUAIu6DUBkfih56Ok2/yCvYX/bgBOAZKwWlEdEZEw35U7HOn6TQ2UvAmpC634ZWj4L63jmArcdQgyXAj8HMoBVwKNh6z4J1ZsG/BP4137J5wLgSaz391EgANwUqus44DTgG/vt7wzgKOBY4FbgAeAyrPdzJtZn9bCFEuWe3p8/9LBZMdbn8UIR2Ssim0Xkm/2JQymlhjRjjN70pje96e0wb1hJzdVhz78HPLxfmVeAK0OPlwK/DFs3HfACdqAQMICjh309C9wQevwn4K5uymQD7UBs2LJLgLcO8XWdB3y637LngbXAGsAdWvYT4ImwMjZgN3By2PG5LGz9r4D7I/weLA4dw/qw29huyq0CFoQeLwLeCz0+FdiMlZTYwsoL0AJMCFt2HLCjj3E9BDwW9jwBK0nK76F8HXBE2Gt65yD13wg8E/bcAPPCnq8Avhf2/DfA7w5S58lAeYTfn6+FYnsQiMVKsquAL0ZyP3rTm970NlRu2oKllFL9Vxb2uAD4avgv+8B8rNaq7srvBJxYrRJdiMhZIvJRqHtePfClsHL5WC00+ysI1VcRtv8/AVm9vQARyRaRx0JdChuBR7qJ6c9YrSD3GGPaQ8vGhl4DAMaYYOj15YZttzfscStWohFpTxhjUsJue0TkCrG6UHYch5l0c5yNMW8C9wL3AftE5AERScJqkYsDVoTV8XJoeV91vtfGmGagFuuYEeo6uTHUdbIeq/Uso7ttQ+Uni8gLoVagRuB/unk9lWGP27p5PhDH/mDaQve3G2PajDFrgMewPs9KKTXiaIKllFL9Z8Iel2G1YIWf7McbY34ZViY/7PE4wAdUh1coIm7gKeBOINsYk4LV/U7C9jOhm1jKsFqwMsL2n2SMmXGQ1/A/oddRbIxJwupW1rEvRCQB+B1WK8Ri+fy6sT1YSV1HOQm9vt0H2d8BxBoivLmX2wkHr6WzrgKshPBbQHro+K0Lf03hjDF3G2OOwmpRnIzV9bIaKzmYEXYsk40xh5KkdL7XoWOYBuwJvZZbsbojpobia9gvvvDPFcAfgU3ApNB79MOeXs9AEetau57en/t72GxN6D789ez/2pRSasTQBEsppSLrEeAcETlDrKGpY0IDB+SFlblMRKaHrme6HXjSGBPYrx4X4MbqSuUXkbOwrhXq8CBwlYicJiI2EckVkanGmArgVeA3IpIUWjdBRE46SNyJQDPQICK5WAlGuN8Dy40x12BdY9ZxMv0E8OVQHE7gu1gJ3gcHO1D7M9YQ4Qm93N49hOrisU7iq8AaMASrBesAInK0iBwTir8Fa3S7YKg17s9Y175lhcrmisgZYdsaCRvEpBtfCl1b5sK6FusjY0wZ1vH2h+JziMhtWNfa9SYRaASaRWQqcP1BykecMWZGL+/PdT1ssw14F/iRWIOGTAMuBl4YzNiVUmqwaIKllFIRFDp5XoDVulCF1aJ0C13/3j6MdX3OXiAG+E439TSFlj+BdW3O17CugepYv4zQwBdYLR9v83lL0hVYCdqG0LZP0rWLYnd+BhwZqus/wNMdK0RkAdYgFR0n9P8NHCkilxpjPsNq7boHq8XnHOAcY4z3IPsbUMaYDVjXHH2I1U2uGHi/h+JJWIlUHVZ3xxrg16F13wO2Ah+FuuW9DkwBEJF8oAnrurSe/BP4KVbXwKOwjhVY1+W9jHXt106spK6suwrC3Iz1OWgKxfv4QcoPJZdgfT5rsD5fPzHGvBHdkJRSamCIMdpKr5RSg0VElgKPGGP+Eu1YVP+IyGVY3Qd/0MP6h7AGjPjxoAamlFIqqnSiYaWUUuowGGMeiXYMSimlhh7tIqiUUqOEWJPeHsrgBGoEEpEf9vA5eCnasSml1EigXQSVUkoppZRSKkK0BUsppZRSSimlImRIXYOVkZFhCgsLox2GUkoppZRSSvVqxYoV1caYAyafH1IJVmFhIcuXL492GEoppZRSSinVKxHZ2d1y7SKolFJKKaWUUhGiCZZSSimllFJKRYgmWEopdRANTU18+O8H8fv90Q5FKaWUUkPckLoGqzs+n4/y8nI8Hk+0Q1HDTExMDHl5eTidzmiHooa5jx9ZzOmVf+EDv5fjz78+2uEopZRSaggb8glWeXk5iYmJFBYWIiLRDkcNE8YYampqKC8vp6ioKNrhqGEusW49AHFbngc0wVJKKaVUz4Z8F0GPx0N6eromV+qQiAjp6ena8qkiYqJ3IwAFretAJ2dXSimlVC+GfIIFaHKlDot+blQkeLw+0k0DjcSTSiM1lWXRDkkppZRSQ9iwSLCUUipaGupqsYlhR/wsACq36Fx9SimllOqZJlh9ICJ897vf7Xx+5513snjx4ugFFOajjz7imGOOYdasWUybNq0zrqVLl/LBBx/0q+4zzzyTlJQUzj777AhEqtTw1NxQDYB37Fzredm6aIajlFJKqSFOE6w+cLvdPP3001RXV0e0XmMMwWCwX3VceeWVPPDAA6xatYp169Zx0UUXAZFJsG655RYefvjhftWh1HDX0lgLQMKYSTQSj6ndEeWIlFJKKTWUDflRBMP97N/r2bCnMaJ1Th+bxE/PmdFrGYfDwbXXXstdd93FHXfc0WVdVVUV1113Hbt27QLgd7/7HfPmzWPx4sUkJCRw8803AzBz5kxeeOEFAM444wyOOeYYVqxYwYsvvsi9997LSy+9hIjw4x//mIULF7J06VIWL15MRkYG69at46ijjuKRRx454Lqiffv2MWbMGADsdjvTp0+ntLSU+++/H7vdziOPPMI999zD1KlTe4xz27ZtbN26lerqam699Va+/vWvA3DaaaexdOnSXo/Nv/71L372s59ht9tJTk7mnXfewePxcP3117N8+XIcDge//e1vOeWUU3jooYd49tlnaWlpYcuWLdx88814vV4efvhh3G43L774Imlpafz5z3/mgQcewOv1MnHiRB5++GHi4uK67PfYY4/lwQcfZMYM6707+eSTufPOO5kzZ06v8Sp1qDyNNQDEJKWxz55DbPOuKEeklFJKqaFMW7D66Jvf/CaPPvooDQ0NXZbfcMMN3HTTTXzyySc89dRTXHPNNQeta8uWLXzjG99g/fr1LF++nFWrVrF69Wpef/11brnlFioqKgD49NNP+d3vfseGDRvYvn0777///gF13XTTTUyZMoXzzz+fP/3pT3g8HgoLC7nuuuu46aabWLVqFSeccEKvca5Zs4Y333yTDz/8kNtvv509e/b0+bjcfvvtvPLKK6xevZrnn38egPvuuw8RYe3atSxZsoQrr7yyczS/devW8fTTT/PJJ5/wox/9iLi4OD799FOOO+44/vGPfwDwla98hU8++YTVq1czbdo0HnzwwQP2u3DhQp544gkAKioqqKio0ORKDQhvSx0AcUnpNMTmkda+O8oRKaWUUmooG1YtWAdraRpISUlJXHHFFdx9993ExsZ2Ln/99dfZsGFD5/PGxkaam5t7raugoIBjjz0WgPfee49LLrkEu91OdnY2J510Ep988glJSUnMnTuXvLw8AGbNmkVpaSnz58/vUtdtt93GpZdeyquvvso///lPlixZ0m2rU29xLliwgNjYWGJjYznllFNYtmwZ5513Xp+Oy7x581i0aBEXXXQRX/nKVzpf07e//W0Apk6dSkFBAZs3bwbglFNOITExkcTERJKTkznnnHMAKC4uZs2aNYCVhP34xz+mvr6e5uZmzjjjjAP2e9FFF3H66afzs5/9jCeeeIILL7ywT/EqdaiCbfUAxCam400sILvpPQJ+P3bHsPrzqZRSSqlBomcIh+DGG2/kyCOP5KqrrupcFgwG+eijj4iJielS1uFwdLm+Knw+pvj4+D7tz+12dz622+34/f5uy02YMIHrr7+er3/962RmZlJTU3NAmZ7ihAOHMz+U4c3vv/9+Pv74Y/7zn/9w1FFHsWLFil7Lh78mm83W+dxms3W+vkWLFvHss89yxBFH8NBDD3WbMObm5pKens6aNWt4/PHHuf/++/scs1KHwtZudUt2JaRiSx+PsyJAxe5tjCmYEuXIlFJKKTUUaRfBQ5CWlsZFF13Upcva6aefzj333NP5fNWqVQAUFhaycuVKAFauXMmOHd1fGH/CCSfw+OOPEwgEqKqq4p133mHu3Ll9juk///kPJjTx6ZYtW7Db7aSkpJCYmEhTU9NB4wR47rnn8Hg81NTUsHTpUo4++ug+73/btm0cc8wx3H777WRmZlJWVsYJJ5zAo48+CsDmzZvZtWsXU6b0/WS0qamJMWPG4PP5OuvpzsKFC/nVr35FQ0MDJSUlfa5fqUNhb28gaAR3fDLxORMBqC3bFOWolFJKKTVU9TvBEpF8EXlLRDaIyHoRuSG0PE1EXhORLaH71P6HG33f/e53u4wmePfdd7N8+XJKSkqYPn16Z0vKBRdcQG1tLTNmzODee+9l8uTJ3dZ3/vnnU1JSwhFHHMGpp57Kr371K3Jycvocz8MPP8yUKVOYNWsWl19+OY8++ih2u51zzjmHZ555hlmzZvHuu+/2GCdASUkJp5xyCsceeyw/+clPGDt2LGAlf1/96ld54403yMvL45VXXgGsbokd11vdcsstFBcXM3PmTI4//niOOOIIvvGNbxAMBikuLmbhwoU89NBDXVquDubnP/85xxxzDPPmzWPq1Kmdy59//nluu+22zucXXnghjz32WOfIiUoNBJu3iVZiEJudtHzrh4LWvVujHJVSSimlhirpaP047ApExgBjjDErRSQRWAGcBywCao0xvxSR7wOpxpjv9VbXnDlzzPLlXSfx3LhxI9OmTetXjKpn+492ONLo50f11yf3XEZRzbtkLN6J3+cj+ItsVo79Gsf+173RDk0ppZRSUSQiK4wxB4yy1u8WLGNMhTFmZehxE7ARyAUWAH8PFfs7VtKllFLDivjb8YoLAIfTyV5bNu6mnVGOSimllFJDVUQHuRCRQmA28DGQbYypCK3aC2RHcl8qMhYvXhztEJQa0uwBT2eCBVDnGkOCp6KXLZRSSik1mkVskAsRSQCeAm40xnSZDdhY/RC77YsoIteKyHIRWV5VVRWpcJRSKiLsAQ9++fwawra4PDL8lVGMSCmllFJDWUQSLBFxYiVXjxpjng4trgxdn9Vxnda+7rY1xjxgjJljjJmTmZkZiXCUUipi7MF2fLbPE6xgcj6pNOJpaehlK6WUUkqNVpEYRVCAB4GNxpjfhq16Hrgy9PhK4Ln+7ksppQabI9COPyzBcqYXArCvbEuUIlJKKaXUUBaJFqx5wOXAqSKyKnT7EvBL4IsisgX4Qui5UkoNKw7TTsD++QTdCdnjAajfsy1aISmllFJqCIvEKILvGWPEGFNijJkVur1ojKkxxpxmjJlkjPmCMaY2EgFHy7PPPouIsGlTzxOMlpaWMnPmzIjt87PPPuPkk09m1qxZTJs2jWuvvRawJgl+8cUX+1X31VdfTVZWVkTjVWokcgXbCYS1YGXkTwKgrar7ycOVUkopNbpFbJCLkW7JkiXMnz+fJUuWdLve7/f3ex+BQKDL8+985zvcdNNNrFq1io0bN/Ltb38biEyCtWjRIl5++eV+1aHUaOA0Xozj8xas9Kw8PMaJqdsVxaiUUkopNVRFdJj2AffS92Hv2sjWmVMMZ/Xee7G5uZn33nuPt956i3POOYef/exnACxdupSf/OQnpKamsmnTJl599VX8fj+XXnopK1euZMaMGfzjH/8gLi6ON954g5tvvhm/38/RRx/NH//4R9xuN4WFhSxcuJDXXnuNW2+9lYsvvrhzvxUVFeTl5XU+Ly4uxuv1ctttt9HW1sZ7773HD37wA84++2y+/e1vs27dOnw+H4sXL2bBggU89NBDPPPMMzQ0NLB7924uu+wyfvrTnwJw4oknUlpa2uvrfvvtt7nhhhsAEBHeeecdEhISuPXWW3nppZcQEX784x+zcOFCli5dyk9/+lNSUlJYu3YtF110EcXFxfz+97+nra2NZ599lgkTJvDvf/+bX/ziF3i9XtLT03n00UfJzu46gv/FF1/M5Zdfzpe//GXASgbPPvtsLrzwwr69p0pFkAsvwbAugja7jX22LFzN5VGMamh4/r2VFCXbKC6eFe1QlFJKqSFDW7D64LnnnuPMM89k8uTJpKens2LFis51K1eu5Pe//z2bN28GrG593/jGN9i4cSNJSUn84Q9/wOPxsGjRIh5//HHWrl2L3+/nj3/8Y2cd6enprFy5sktyBXDTTTdx6qmnctZZZ3HXXXdRX1+Py+Xi9ttvZ+HChaxatYqFCxdyxx13cOqpp7Js2TLeeustbrnlFlpaWgBYtmwZTz31FGvWrOFf//oXy5cv7/PrvvPOO7nvvvtYtWoV7777LrGxsTz99NOsWrWK1atX8/rrr3PLLbdQUWHNCbR69Wruv/9+Nm7cyMMPP8zmzZtZtmwZ11xzDffccw8A8+fP56OPPuLTTz/l4osv5le/+tUB+124cCFPPPEEAF6vlzfeeKMz2VJqsLn3a8ECqHePIdGzJ0oRDQ1r163h3NdPYdyTX8Lr9UY7HKWUUmrIGF4tWAdpaRooS5Ys6WzJufjii1myZAlHHXUUAHPnzqWoqKizbH5+PvPmzQPgsssu4+677+aLX/wiRUVFTJ48GYArr7yS++67jxtvvBGwEoruXHXVVZxxxhm8/PLLPPfcc/zpT39i9erVB5R79dVXef7557nzzjsB8Hg87NpldV/64he/SHp6OgBf+cpXeO+995gzZ06fXve8efP47//+by699FK+8pWvkJeXx3vvvccll1yC3W4nOzubk046iU8++YSkpCSOPvpoxowZA8CECRM4/fTTAavl7a233gKgvLychQsXUlFRgdfr7XLsOpx11lnccMMNtLe38/LLL3PiiScSGxvbp5iViiRjDG68sF+C1RafS37N5ihFNTTsW/s6AMnSwmcrXmfKcV+KckTR89Zr/8ZTtpIvXvFjHA57tMOJmp17Ktm2q4xTjjkKa4Dh0amivpX123dx2qzJiE1/x1ZqNNJv/kHU1tby5ptvcs0111BYWMivf/1rnnjiCay5kyE+Pr5L+f3/UenLPzL71xFu7NixXH311Tz33HM4HA7WrVt3QBljDE899RSrVq1i1apV7Nq1i2nTph12PB2+//3v85e//IW2tjbmzZvX6wAfAG735wMB2Gy2zuc2m63zGrVvf/vbfOtb32Lt2rX86U9/wuPxHFBPTEwMJ598Mq+88gqPP/54jwmoUgOtvb0dhwTB2TXBDyZZc2G1NI3eubDsVRsBCBihZeOrUY4mevyBICXvXc9Zu37L+lcfjHY4UbXur9/g1JdPY9Nrf4t2KFH14Z9v5AvPH8Nnz/xvtENRSkWJJlgH8eSTT3L55Zezc+dOSktLKSsro6ioiHfffbfb8rt27eLDDz8E4J///Cfz589nypQplJaWsnXrVgAefvhhTjrppIPu++WXX8bn8wGwd+9eampqyM3NJTExkaamps5yZ5xxBvfcc09n0vfpp592rnvttdeora3tvA6qo3WtL7Zt20ZxcTHf+973OProo9m0aRMnnHACjz/+OIFAgKqqKt555x3mzp3b5zobGhrIzc0F4O9//3uP5RYuXMjf/vY33n33Xc4888w+169UJHnarK62sl+C5cooBGBf2dbBDmnISG7awg7nREpt43BWb4x2OFGzZesW0sX6e2z/7D9RjiZ6apo8zPUts56s7n4wqNGgud3PxCbrOMRueT7K0SilokUTrINYsmQJ559/fpdlF1xwQY+jCU6ZMoX77ruPadOmUVdXx/XXX09MTAx/+9vf+OpXv0pxcTE2m43rrrvuoPt+9dVXmTlzJkcccQRnnHEGv/71r8nJyeGUU05hw4YNzJo1i8cff5yf/OQn+Hw+SkpKmDFjBj/5yU8665g7dy4XXHABJSUlXHDBBZ3dAy+55BKOO+44PvvsM/Ly8njwQeuX1/vvv5/7778fgN/97nfMnDmTkpISnE4nZ511Fueffz4lJSUcccQRnHrqqfzqV78iJyenz8dz8eLFfPWrX+Woo44iIyOjc/ny5cu55pprOp+ffvrpvP3223zhC1/A5XL1uX6lIqm9I8FydU2wOufCqhi9CVaWbzf18eOpiptIdtvoPQ4Vn30MwB5bDmMaV0Poh67RZtPGtWRKI35sFLasBv/ovC5v3c59TBOri36BZxO01EQ5IqVUNIgZQv8YzJkzx+w/CMPGjRs7u7upQ/PQQw+xfPly7r333miHEjX6+VH9sWvbRsY9fCwrZ/2CI8/7dufymspdpP+xmA+n/oDjLv5+FCOMjmAgiPf2LNaOXUizI5lTyu7Df0spjvjUaIc26F752885Y+edfJT3/zi2/EE831pNTKiFczR55dl/cMaqb/Nh1kKO2/c4bVe/Sey4o6Id1qB77bWX+OL7F/Nxxlc4pvppGr/6L5JmnB7tsJRSA0REVhhjDhjcQFuwlFKqB15PKwB2V9dBLtIyR/dcWE2N9cSIj2B8Jq6cqQDs3bE+ylFFh62xDC8OgoUnArBv+5ooRxQd/jpr2gLHlDMAqNp64IBMo0FT9W4AYmZYg77UbPu0t+JKqRFKE6wRbNGiRaO69Uqp/upIsGzuuC7LxWZjn330zoXVVGOdREpCFul5UwCoKet9EJyRKq61ghp7FpnjZwLQUD46j4M07SGAjcwZJ9NuHLTsPnBAptHA01AJQO6kI9hnUvDvHZ3HQanRblgkWEOpG6MaPvRzo/or0G5dg+VwxR2wrsE1eufCaqvbC4AzOZsxhVYLlm/ftmiGFDXJ3gqaYsYwLr+QJhNLYN/oHL7f1bqXBnsa+Vlp7GAs9tE68Enomqv0zDHskHzcdVuiHJBSKhqGfIIVExNDTU2NniyrQ2KMoaamhpiYmIMXVqoHfq/VguVwH5hgeeJzyQxUDnZIQ4KnwUqw3Ck5JCcnU0kqtobS6AYVBcYY0oK1eGOzcDsd7Lbn4mrYHu2woiKxvZJGVzZ2m1DtyiehpSzaIUWF01uHV1yIK4H62HxSPLujHZJSKgoGfKJhETkT+D1gB/5ijDmk2YLz8vIoLy+nqqpqQOJTI1dMTAx5eXnRDkMNY4H2NgCcMQdOdB1MHkdaTSMNDfUkJ6cMcmTRFWi0Esu4VGti8SrHWOJH4Ql1c7ufFJqpiU0DoC5mHOM9o69LmDGG9GANnpjJALQm5JNR9zEEA2AbXRMvx/rqaLUn4xKhPbGApLYXoa0eYlOiHZpSahANaIIlInbgPuCLQDnwiYg8b4zZ0Nc6nE4nRUVFAxWiUkr1KOANJVjuAycDd2cUwnaoKt9CcvLRgxxZdAWbqwFISremaGiKzWNS87JohhQV9Y1N5Es7xFkJVltSEZktb2G8rUg33UpHqlZvgBSaqIxNByCQUoirzk+gYQ/21PwoRzd4jDHE+RvwJFijaUr6eNgH7VXbcI/CERWVGs0GuovgXGCrMWa7McYLPAYsGOB9KqVURAQ7EqyYA0+WE3ImANBQMfq6hJm2ehpNLMnxVsueN7mADFPXec3aaNFUZ/WscMSH5vRLn4hNDE0Vo+s6rLqWdlJohjgrsXBnWvPE1ZZ/Fs2wBl2bL0AqjfjcVsIdlzMRgLpROgCMUqPZQCdYuUB4v5Hy0LJOInKtiCwXkeXaDVApNZQEfR4AXDEHtmBl5FonT56qHYMa01Bga6+jSRKw2wQAe7qVbNaUja4T6tYG698sV5LVchM7xhrwo27X6BqyvrG+BocEsYcSzeSxVlfBht2ja4CH2hYvqTQRjLUSzbRca4TN5r2j6zgopYbAIBfGmAeMMXOMMXMyMzOjHY5SSnUyPqsFy91NgpWcmYvHOGEUzoXlaG+k1ZbQ+Tx+zCQA6kZZi4UnlGDFJFn/dqWPs06oWytH14iKLfX7AHAmWolmVt4EfMZOe9XoOg71rT7SpBHirERzXE4GlSaFYPXoa+VWarQb6ARrNxDeATsvtEwppYY+fyjBij2wi6DYbFTZs3CNwsEdXL5G2uyJnc8z8qwWi7Z9o+tE0tdsDckdn2IlWLnZ2dSYRII1pVGMavC1NVjX5HUkmmPTEtlDBlJfGsWoBl99UzNJ0oY90Uqw0uJdlDEGV9POKEemlBpsA51gfQJMEpEiEXEBFwPPD/A+lVIqMvwegkawObsf7r/BPZYkT8UgBxV9sYFG2p3Jnc9zcsbSZGIxtaOru2SgxUosElKzAIh3O6iQ7FF3Qu1tso5DbLKVWNhtwj57DnHNo+vHh+b6UJfRROvzICLUuXNJbhtdx0EpNcAJljHGD3wLeAXYCDxhjBldndOVUsOW+Dy0ixNEul3vic8lw1856ubpiws04XcmdT53OuxU2HJwNY2yE8nWOgAcCRmdi+rcuSS1ja6OGv5QS15Canbnssa4fFK9o2sibm+D1VUyJjmrc1lbQj6pgRoIzamnlBodBvwaLGPMi8aYycaYCcaYOwZ6f0opFSni9+DF1eN6kzKOdGmkvr5+8IIaAhJNM0F3Spdl9e6xJI+ySVVtnlo8uMD5+TxprQn5pAcqIeCPYmSDy7RaCZYrIb1zmS9pHMmmETwN0Qpr0HmbrBasuLBE06Ra08wE60ZXq6ZSo13UB7lQSqmhyhbw0C7uHte70gsB2Fc+ekYJ83lacIsPQiOldfAk5JMRqIRgMEqRDT5nez3NtqSuC1MKcRDEN4oGP7G11RHABjEpncvsaVZi0VQxer4bwebQsP1hLZruLGvI+vo9o2vofqVGO02wlFKqB7aAB5/03IKVFJoLq3EUzYXVWGddb2OLT+my3KQUEIOXtrrR04rl9tXTYu+aYLk65oAqGz0n1I72OlokAWyfn1J0jCxZUz56joO01loP4j5vyUsZax2Hxj2jJ9FUSmmCpZRSPbIH2ntNsDLyQ3NhVY+ewR06huR2xKd1We7OspLNql2j54Q61t9IuzOly7LkjhPqUdRy4/I1HJBopneMLFm5NRohRYXdE0qwYj//bowdk0+TicVbNXp+hFFKaYKllFI9sgc9+G09dxFMTM/FgxPqR093sI7Jdd2JXect/DyxGD0n1AnBRnyulC7LcvLG024c+EbRHFCxvgY8juQuy3JzOoasHz0/Prja62i2JYLd0blsTGosZSYLe4Neg6XUaKIJllJK9cARbO81wUKEKls27ubywQsqyjyN1oAGHUNyd8jJn0TQCN5RMqmqPxAkyTQRiOl6LVp2Sjy7ycQ2ik6o44ONePdLNBM6h6wfPT8+xPjqaXWkdFnmtNuocuYQ1zJ6/kYopTTBUkqpHjmD7fht3c+B1aHRPWZUzYXla+qYXLdrgpWSlMA+0rDVj47EoqG1nRSaMbEpXZbbbUKVYwxxo2QCan8gSKJpwh82wEWHWncuyW2jJ7FICNQf0GUUoDk2jzTvnlE1AIxSo50mWEop1QOXacdvj+21jCchl6zA3lEzF1YgdCF/YmrXLoIiQpVzDLGj5Jf6hroa7GKwx6cfsK6p44R6FHwmGtp8pNKEiUk7YF1bwjjSAvsg4ItCZIOr3R8g2TTi6+Y4+JILceOF5sooRKaUigZNsJRSqgcxwbaDJlgmpZA0aaKmpmaQooou01aH19hJSEg+YF1TbK6VWIwCnYN9JGQcsM6XVECCaYG2usEOa9DVNTUTL+3Y4g9MLExqEQ6CeGtGfqtmfauPVGkiGHvgcXCkW0PWt+4bPdflKTXaaYKllFI9iMFDwBnfaxlXaPS86l0bBiOkqLN56mmURMR24D8f/qRxZJoagt62KEQ2uFobrOHq3UkHJlj20Al18ygY8KOlrudE090xZH35Z4MaUzTUtbSTRiMSf+BxiM+xRhutHwXHQSll0QRLKaV6EGs8BB29t2Al5U4FoLlidJw8OdrrabEldrvOFkosaveM/MTC22iNphiblHnAurhsK+keDYlFR0teTDeJZnKuNVT7aBiyvrG+DpcEsHeTaGbmTiRghNZKbcFSarTQBEsppboR8PuIER+4EnotlznOSrACVSM/qQBw+xpps3efYMVnW7/U15aP/BNqf7PVJTQh7cAEK7NgCgAto6BLmCc0bH9syoHHYWxeER7jHBVD1rfWW9dXuRIPPA75mSlUkI6pLR3kqJRS0aIJllJKdaOluREAmyuu13LxCUnsJR1n/eiY7ycm0IjHeeD1VwDpedZcWC17R36yGWgJjaaYnHXAuvzsTKpM0qiYA8rbZHWVTEzNPmBdVlIsZWTjqC8d5KgGX1uD1ZIXl3LgcUiOc7JHsnE3jfxr0ZRSln4lWCLyaxHZJCJrROQZEUkJW/cDEdkqIp+JyBn9jlQppQaRp6UJAInpvQULYJ8zl8SW0THfT0KgEb+r+wQrZ2wBHuMkWDvyEwvaagkiyH7DtAPEuRzsteWMijmggqFEs7sugjabUO0YQ3zryB+y3hfqMpqQdmCCBVDvziXJs3swQ1JKRVF/W7BeA2YaY0qAzcAPAERkOnAxMAM4E/iDiNj7uS+llBo0bS0NANjdB0+wWuILyPSN/OHJjTEkmiaC3cx5BOBy2qmw5eBsGvkn1HZPHc2SALbu/2mrHy1zQLWGRkrsZvQ8gOa4fNK9FSN+yHp/s5VgObrpIgjWkPUpwTrwtgxmWEqpKOlXgmWMedUY4w89/QjICz1eADxmjGk3xuwAtgJz+7MvpZQaTO2tVguWow8tWMHU8aTQ1Dmy3EjV0tpKvLT3eDINUOsaS9IoSCyc3npa7Ek9rm9PHEd6sBr83kGMavDZPLV4cIOz+wm5fckFxOLBNO8b5MgGWWh+OOIOnBcNwKQWAhDQ67CUGhUieQ3W1cBLoce5QPhPmOWhZQcQkWtFZLmILK+qqopgOEopdfg6EixnbPcDOoRz51ijpe3dsX5AY4q2+hrrb7S9mzmPOrQkFJDj3w3B4GCFFRWxvno8jpQe10taIXaCtFaVDlpM0eD0NvSaaNozrKHaG/dsHqyQosLhqcGLs8dBcWJD0znUjYKRJZVSfUiwROR1EVnXzW1BWJkfAX7g0UMNwBjzgDFmjjFmTmZm903rSik12PxtVoLlij14C1ZqvjWSYH35pgGNKdqaQnMeuZO6/5UeIJg+kRi8NFeP7OuPkgL1eNw9H4e40IiKVbtG9mcixldPm6P7a/IAEnOsgU9qy0d2guVsr6PFngwi3a5PzbWOQ9OekT/CplIKHAcrYIz5Qm/rRWQRcDZwmjGdnax3A/lhxfJCy5RSaljweZoBcMf3/Ot8h9yiaQSN4Ns3sk+eWkJDcsckHjigQYe4nCmwGfbtWEdCVuEgRTa4vP4gqTRQEdvzcUjNs4Zqbx7hc0AlBepoS+j5x9HswskEjNC2d2QnWHG+etpiUkntYf24vHzqTAK+fdqCpdRo0N9RBM8EbgXONca0hq16HrhYRNwiUgRMApb1Z19KKTWYAqEEKybu4AlWTGw8lZKBfYQP1d7eaF1jlpDcc2KRUTAdgKbdI7flpq65lTSaMPE9JxZ544poNW4CVSM3wWr3B0ijHn9sz8dhXGYq5WQhNSN36P5A0JASrKU9pufvRXaSm1LG4qrfPoiRKaWipb/XYN0LJAKvicgqEbkfwBizHngC2AC8DHzTGBPo576UUmrQGI/VRTAm/uDXYAHUuPNIah3Z3eICTdZkqomZ3V5SC0DuuPG0jPDEor66EpsY7IkHzoHVISHGRZmMxd0wck+o65q9ZFJPIK7nBMtpt1HhyCOheeT++FDX6iVTej8OIkK1exwprToXllKjQX9HEZxojMk3xswK3a4LW3eHMWaCMWaKMeal3upRSqmhRtrrAYjrZn6f7rQkFjHGV4YZyYM7hEaCi0vN6bGI2+lgty2XmMaRm1i01FYA4Erufs6jDlXucaS2lQ5CRNFRU12JSwI4k3v+PAA0xheS6S0bsQOf1DZ7yKQBk9D7cWhLKiIlWAuexkGKTCkVLZEcRVAppUYM8TTQYmKwO119Km/SJ5MobdRWjtw5oByt+6gnEXG4ey1XGzuO1LaR25rXHEqwEtLG9lquLXkCGYF94GsbjLAGXV2VdWl13EGOQyDNGvjEXz8yvxv1NZU4JYA9qfeEmwxroIv2Sr0OS6mRThMspZTqhr29nibpW/dAgNhc69qjfdvXDFRIUedsq6LB3vMQ7R3ak4rIClRifJ5BiGrwtdda83yl5eT3Ws6WOQkbhsYROrpkS42VYCVl9J5gxeRYA35Ul64b8Jiiobm6b4lmwlhrtNHanSN7OgellCZYSinVLae3kVb7wYdo75BZOBOAlj0bByqkqIv3VtPqOniXSXvmJOxiqBmhc/4EG6wTanda7wlWYt40AKp2jszEwltnHYfEjLxey6WOs74bjeUbBjymaGgKJVgpWb1/HrILpxEwQsuekZlwK6U+pwmWUkp1w+VvxOPoewtWdm4RzSYWqkZmUmGMISVQi7eXEeM6JORaiUV16cj8pd7VsocGSQJnbK/lxhQVA4zYE2pbo9WSZ0vpPbEYN66QRhM7Yqcx8NVZXR9j0npPNAuy0ygzWVAzMo+DUupzmmAppVQ34gKNtPcyger+7HYbux15xI7QwR0aW9vJoO6gF/IDZBda3SXb9o7MZDPOU0mDs+cRBDuMzUpnt8lAqkfmCbWrZQ8NtmRwxfVaLi3BzS4Zi6t+2yBFNrgcjWUEsEFy7wlWgtvBbnsucY0jd0RFpZRFEyyllOpGfLCZgLvvCRZAQ3wRme0jcxjm6oqduCSALa3woGWzs7KpNslQPTLnPkr176M15iADGgB2m1DpzCd+hA5RntS+lwbnwY8DQE1MAakjdIjyuNY9NDgywO48aNn6uELS28tH7IiKSimLJlhKKbUfYwyJppngISZYvtRJZJka2prqByawKGrca7U+xGYVHrSszSZUOPNJaBp5rXnNHh85php/Qu8DGnRoTCgix7sLjBngyAaXMYY0/z5aY8f0qXxr0ngyglXgbRngyAaXMYYU316aY/p2HHyp43HTjgl1r1RKjUyaYCml1H6amxuJER/Eph7SdjFjrFHCdm8beSMJtu2zWmGScib2qXxDwgRyvKUjLrHYu3cPSdKKSZvQp/ImbSJxeGir3T3AkQ2uyoY2cqkimNz79VcdbBmTAWgeYdej1bZ4GUsV3oTeuwd2cGZbfyMaykbmgB9KKYsmWEoptZ/6faGL95P69qt0h/TQSIINu0be4A7e6lIAMnL7llgEM6aQSCvN1SNr7qOq0FDjiWOn9Kl8TGho7soRNnx/+a6txEk7rqy+HYeOERWrS9cOZFiDbk91HWOogbSiPpVPL7QGPqkbYcdBKdWVJlhKKbWfhkprktzY9L79Kt1hbNEMfMaOr3Jk/UoP4GjYQbWkYXf3PqBBh7jQvGB7t64awKgGX/Mea+CO7PEz+lQ+MzSSYGPZyBqqvTHUApM8bnqfymePn4nf2GgrH1nHYV/peuxiOj/vB1NUUEiNScS3d+T9CKOU+pwmWEoptZ+O7lyJmX3r/tTB5XZTYc8ZkaOlpbfuoDp2fJ/LZ02YDUDTCEssTPVW/NiIzezbscgfN54GE4epHFnzo7VXWolm+ri+JZoFmSnsJAdbzeaBDGvQtYTm9soMtUwdTFaim+2Sj7tuZI4sqZSyaIKllFL78ddbCVZqzrhD3rYmtpD0tpE1alxru5dxwTI8KZP6vE1u7jjqTMKImxcsufEz9jrH9WnEOAC308EuewFxDSPrhNpZ8xnNEo8t6eDD9gM47DYqXIUkN42wkSWrPyOI4Mya3KfiIkJN7Hgy2raPuOsTlVKfi1iCJSLfFREjIhmh5yIid4vIVhFZIyJHRmpfSik1kEzTXjzGSWJyxiFv602eyJhABd729gGILDrKdmwmXtpxhC7Q7wu73cZu5zjiG0dOYhEIGgp926hP6vtxAKiNH092e+mIOaE2xpDTsonKuMkg0uftmpMmkemvAJ9nAKMbXOmNG6l0jQNnTJ+3aU+dRLxpxTTuGcDIlFLRFJEES0TygdOBXWGLzwImhW7XAn+MxL6UUmqgOVsqqLWlH9LJYwdH9hRcEmD3jpHTJax2yzIAkooO7Xey+vgJ5LTvHDGJxebt28mWOsjpW3ewDt60ySSZJvyNewcossG1p7aJSWYXnsxDOw6SNRU7QVr2jIwR9KqbPEwObKEp7dCOg3uMdb1W/U4d6EKpkSpSLVh3AbcC4f+KLgD+YSwfASkicmhDcimlVBQkt5VR6849rG1TxlkjCdbsHDnXHvl2fYLXOMidOveQtgtmTCGJZlprR8Yv9WVr3gZgzPR5h7Sde4z1mdi3bVWkQ4qKrWs/xi0+EosO7fOQNK4EgH3bVw9EWINu42ebyJQG3AVzDmm7tKIjAKgtHRnHQSl1oH4nWCKyANhtjNn/L0UuED4+b3lo2f7bXysiy0VkeVVVVX/DUUqpfgkGgozx76Y1sfCwth87wTqJ9FSMnBas1NrVlLknYHf1vRsUQOxYawCEipEykmDp+3hxkj75uEPaLGO89Zlo2Dkyhmpv27wUgLFHnHpI2+VOmInP2EfMSIJ1G94AIHvGyYe0XVFBIdUmCf/ekfM3QinVVZ8SLBF5XUTWdXNbAPwQuO1wAzDGPGCMmWOMmZOZmXm41SilVERU7SsnUdqQ9L7N97S/2KRUqiQNZ+3IuPaorq6WKf5N1GUec8jbZk6wfqkfCUOUB4OG/MYVlMfPOKTrbQAKC4qoMwn4R8hIgimVH7LHkY8j5dBaefMyktnJGOzVI2Pgk7jy92i0JRGTd8QhbZeR4GKH5BNTN7JGVFRKfa5PCZYx5gvGmJn734DtQBGwWkRKgTxgpYjkALuB8DGO80LLlFJqyNq3w5qfJi6nb6OCdafKPY6kltIIRRRdmz56GZcESC4+45C3zcsrpMHEY/YN/8Ri8+ZNTGMHrQWH1moDEOd2sss+jrj64Z9079yzj9n+NdSPmX/I29pswl53ISnNw38ag4q6Zma1L6cy/ViwHVpnIBGhJm48GZ4dI+b6RKVUV/3qImiMWWuMyTLGFBpjCrG6AR5pjNkLPA9cERpN8FigwRhT0f+QlVJq4LTsXAVA1qSjDruOtqQJ5PrLCASCEYoqeszG52kmlglHnnbI2zocdsod44hvGP4n1GUfPg5A/rEXHtb2dfETyBoBJ9Sb3n0St/jInHt4x6EleRKZgQrwtkY4ssH16bsvkiGNJB15wWFt702bbI0k2FAe4ciUUkPBQM6D9SJWC9dW4M/ANwZwX0opFRGydzW1JJE5tujw68icQpK0sqe8NHKBRUFdQyPTG95ha+pJ2Fyxh1VHfcJ4stuHd2IRCBrydz1HqWsSyX2cWHd//vTJJNJCe/3w7cgRDBpSNj9JjS2dzBmnHFYdtuxp2DA0la+PcHSDxxiDc91jtBJL9lHnHFYdrjHW56huhFyXp5TqKqIJVqglqzr02BhjvmmMmWCMKTbGLI/kvpRSaiBkNG1kd+yUwxqivUNinjUMc+WO4T0M85rX/kGKtJB63BWHXYc/bQopNNFaP3yHKF/+9vNMNdtpnX7xYdcRm2udUFcO4wE/Vqz4iKP9K6maeCHY7IdVR9I4a0jz4TyS4OqNmzmh/R3K874MrvjDqiO90Br4pK50eP+NUEp1byBbsJRSalipq9lHUWAnrVmz+1VPzkTrovfW3cN3vh+fz8e49X+izJ5HwdFfOux64nJDyebW4XlCbYzB/cFvqCGFyWdef9j1ZE2YBUDDMJ37yBiD943/xSNuir783cOuJ3/CTLzGTtvu4duCVfni/+CQAPlnf++w6xhfMI4qk4R/7/D9G6GU6pkmWEopFbL1k1exiSF1xqFfbxQuMSOfFmKQmuE7Stiy5/9IkdlF/TG39Ks1r3OI8l3DsyvUB68/xSzfasqmfx1HzOG1VgAU5BdSaxIIDtMBPz7+YCnHtb3D9qKv4U7OPux6xqQlspOxOGuG50iCH69cyclNL7BlzAJi+zEQTnqCm1IZR8wIGPhEKXUgTbCUUirEt+UN2nAx/ogT+1eRCJXOcSQ07YhMYIOset9eJq69i62OScz8wuF3DwTIGzeRJhNLcN+mCEU3eGpqayh8/wfsto+leMF/96sul9NOmaOA+Ibhd0Ld0NRM+us3UGdLYcoFP+5XXSJCZUwRKS3Db+CTplYPMS98E784GX/hz/pdX038eDJHwMAnSqkDaYKllFJYEwwX1bzDZ3FzcLjj+l1fU+J4cry7MMPs5CkYCFL60DWkmgYcC36PHOIQ1PtzOuyUOcYR17A1QhEODr8/wOY/X80YU0Xg7PuwR+Az0ZAwgZz20mF1Qh0IBPnkT9cxyeyk4Qu/wZmQ3u86W5MnkR3Yi2lvjkCEgyMYNLzz51s4IriByvk/x51e0O86vWmTiTNtmIayCESolBpKNMFSSilg08qljKGa4OTDv94oXDB9EmOkhr1V1RGpb7C8/+DNzGl9lzWTv01h8byI1FkfP54sT2lE6hoMwUCQd+//Fse1LWXdtBsYN/vQ577qTiB9Kgm00lY7PE6ojTG88Zfv84Xmf7Oh6CrGzzu8Icn3Z8+xrsur3zU8rsMyxvDCQ7/ky3X/YHPOOYw/7ZqI1OsOjSRYs2N4dp9VSvVMEyyllAKaP/47bcbFlFMujUh9cWOnAbBn+7qI1DfQAoEgb/35Vk7Y8yAr0r7MUZf8NGJ1+9KmkEYDnoZ9EatzoLT7fLx/79WcUv1PVmefT8nCxRGrOz7POqGu2LIqYnUOFJ8/wNt/+CanV/yJDelfZPrlv41Y3SmhkQSrt6+KWJ0DJRA0vPznH3Lurl+yNekYJl3zYL+uSQyXERpJsF6HaldqxNEESyk16rW2NjO1+lXWJp1IfHJaROrMDg3u0LRr6CdYbW0e3v39lZyy+0+sST2dWdc/1O+ugeFixlotFhVDfIjymupKVt95LifUPcOK3Msp+a+/RuxkGiBrojU6ZeOuoT2SYHVNDZ/85iucXPUoq7PPZ9o3HoMIfh7yJ82g3Tjw7BnaLVh19Q28/dvLOGvPH9iY9gUmfPt5xOGOWP3WSILJBCqH58AnSqmeaYKllBr1Vr78D5JoJeX4KyNWZ0ruFPzYCFYP7ZEEy7atZ9dvTuTkxudZW3AlJd9+HLvTFdF9ZIyfBUDjEP6lfuU7/8Fz73xmez5mbfEPOOrr90Y0yQTIzxtHjUmCqqF7Qv3JOy/Tes/xHNP6Nmun3sAR1/0NsTsiuo/MpHh2ylictUP3u/HJR+9Q/fsTOLX5BdYXXcW0b/0LccZEdB+p8S5KbeOI1ZEElRpxIvtXUymlhplgIEjGugcpt+cx6ZgvR65ih4tK+1jiGobmaGnBQIAP//VbZm28k2Sxs+a431NyxqIB2Vd+wUQaTRzBvUOvxaKmeh+bH7mJ4+pfYK8ti/Jzn6F41kkDsi+7TSh3FpAwBAf8qNq3ly3/vJnj6//NPslkz4InKZ79hQHZl4hQFVPEpJahl2hWVlWzcckPmF/zJE22RHac8RAzjjt/wPZXGz+emS2vQjAY0VZCpVR0aYKllBrVVn3wEkcGt7L6iNvIs9kjWndDfBGZjTswxiAR7GrWX5tWLMX20i3M829mY8wRZFz+V0ryJg7Y/lxOO5sdhSQ0DJ25j1pbmlj51G+Yvv0vzDXNLBt7KSWX/ZKc+KQB3W9j4kQm1r1sjSQ4BD4TbW0elj17NzM33cNcmlk+9msUX/5L3HHJA7rf1tQpZFW8jfE0IDEDu6++qG1q451n7ueYbXdzstSyKvs8pl72G1KTMgZ0v+1p04htfo5gbSm2jPEDui+l1ODRBEspNaoFPriPBhKYduZ/Rbxuf+pEJjZ8QHVjK5nJhz9JbaSU7/iM3c/+lKPrX6ZWkll+5P9x1NnXRrwrXHfqEiczu/7VqCcWHk8bK569h0mb/sh8alkXcyTN5/wPc2ccNyj7D2ROJ77uGRr3biVpzKRB2Wd32r1elj3/J4rW3cNJVLIlZjqe837HnGnHDMr+bWNKoAJqt31K+oyTB2Wf3Wlsa+ftZ//KtE33cp6UUx47icpz/s6sGf2cC6+PXHmzYBfUbl9OhiZYSo0YmmAppUatHZvXclTrB6wct4g5sQkRr989dhqunQHKtm8gc/bREa+/r/bt2cXWp3/GnKpnyURYPvYSpl9yB3OSIjOgR18EM6eRUP8sjZU7SMoZ/BNJn8/H8ufvZ9zae5hHJZtcM6g77T5mHhOZYfn7Kq7gSNgMVZuXRSXB8vn9LHvhr+Su/h0nmN3scExg88n/y+R5XxnUxDdl/FGwEmq3r4hKgtXW7uetFx5m/NrfcQ6lVLgLqDjlfvKOWTioXfWyJhyB/30bjTs+JWPuRYO2X6XUwOp3giUi3wa+CQSA/xhjbg0t/wHw/0LLv2OMeaW/+1JKqUja8+rvycPG+C/fNCD1pxfMhA+hYdc6iEKCVVu1l41P/YLZFU8wFx+rMs6m8CuLmZs7YdBjSSiYBVtg7+blg5pgBQIBlr/0EDkrfstxppxtjomsP+F/mHHiBVFpSRsz6Uj8r9po2/UpEJkpAfoiEAjyySuPkLH8N8wLlrLTXsDG4//A1FMuGZQWzP0VFU6gyiQR3LN6UPfr9QV4++UnyFn5G75ktlDpGEvZ/N+Rf+IVEOEuwn0xJS+LbWYszr1DdwAYpdSh61eCJSKnAAuAI4wx7SKSFVo+HbgYmAGMBV4XkcnGmEB/Ax4tWltbqKooo2HfLlpqdmMaKwi21oKnEWlvxOlvxO1vwR1sxWb8iAlgNwHsBBEM7eLCK278thj89hjancl4XOmQkIUrJYf4jHEk504hJ6+QOHdkRwxTajior6vhiKoXWJtyKkfmFAzIPtILiwkaIbh3cIdqb2yoZe2Tv6Rk1z84Dg+rUk5jzILbmTN+xqDGES538pHwOjSXrQEG/pd6Ewyy8o3HSf7w/zgmuIOdtnGsOe4eir9wWVQSig65GalsIQ/XvsEZqj0YCLL8zSdJ/vD/ODa4ld22Maw/9jdM/+KiiI8OeCjSEtx8ZCsir3bDoOzPHwjy7uvPk/Lx//HF4AaqbFnsOO6XFJ12DdidgxJDd+LdDsrcEziycXCOg1JqcPT3r+v1wC+NMe0AxpiOWSQXAI+Flu8Qka3AXODDfu5vxGhraaJi5ybqyjfjqdyG1JcS11JOkreS1GANqTTR3SlfKzG0SDxttng89gS8riSwOcHmICh2jNgwgCPoxRFsx+n34AjUEu/bQUpzPe5aH+wKi8O42CI51LlzaUsqwpY5maT8mYydeAQZGZlD6sJ8pSJp/X/uY560kXrajQO2D4lJYo9jDIl1gzNaWltLM58+/Rumbvsz82hiVcI80s5ezJHT5g7K/nuTnZlJOVk4Kgf2l3pjDKve/Tcx79zBUf5N7JEcPp3zfxxx5jUUOKLfK95mE/bGT6G4efmA7scYw8p3XsD97v8w17+BSslkzVF3MPOs/yLXEb2EIlxd0jSOangS/F5wDMwPfcGg4YN3XsX97v9wSmAVtZLKljk/ZeIZ3yAzwsOuH67W1Omk7Xsb01KNxA/soBpKqcHR339tJgMniMgdgAe42RjzCZALfBRWrjy07AAici1wLcC4ceP6Gc7QYoyhqnI3FVs+pbl8PbbqTSQ1bSPbu4sM6gnvJNNMLPvsY2iMGUt13GxIyMGZMpbYtLEkZuaTmJlHYmoWcXYncYcfEIG2Bmory6mr2EZb5VZMzTZcjTsZ27KT7KplOKsCsAF4BfaRSqVrHM2JEyBjMgl5M8iZUEJGzrio/gKsVH/5fT4Ktz3CJtcMppbMH9B9VcVPIbdxYIcn97a3s+K5uxm/4Q8cHxq4oe6MxcyaPTDDjR8OEWFP/HQKmgbuWKz7+HWCb/yc2d5VVEo6K0p+yhFnf5OxrshNDhsJgaxi0kpfo7W2nLi0vIjWbYxhzUevY978BUf5VlEtqawq+THFZ3+bbNfQSCg62MYU42x4jKbytSQWHhXRuo0xfPLROwTfvIP5vo+plyQ2ldzKlLNvJM0V/QFnwrnyZsE+qNv6CWlHnBXtcJRSEXDQBEtEXgdyuln1o9D2acCxwNHAEyJySJ3rjTEPAA8AzJkzxxzKtkNJMBCgfPs69m36CF/5pyTVrWOMt5QsmsgKlWkijt2OAralHM+W5EJcWeNJyZ1CVsEUElOySBjo1iIR7HEpZBalkFk084DVJuCjZvcW9m1bQ8vuDdhqNpPYvJ2impdIqHkaPgPegEbi2OvMpzFhPMH0ycSNnU7WhBLScydjHwK/EB+2YBC/z4PX68Hr8eD1tuNr9+DzevB7O+7b8fvawd+OCXjB78UEvJhggGAwAMFg6N56boIBTDCImABigmCCCAEkGEQIdu7ahD75JuwzYJDO+47HIB3/ATbrEhKxHlurQwtErNZHsfH5BjZrvVj1iNgOWC6hxxJWj3Uftlywtg1bby237kUEg62z9VOko37BJoIRG9IlRqHrnOcmdNvv4HQsNb2s62G70Bvc+ai1bC3HmUo+PfJHDDRPxkxyG9+iobaK5LTMiNbt9/lY8Z8/k7f6dxxnKtnknE7dqfcx87jBHbihr3w5s8netpS6yjJSs/MjVu+mVR/Q9vJiZns+ppYkPpl6C0ec999kxxz2z1EDKmXCXCiFXavfZeopl0Ss3vUr3sXz6s85qv1j6khi5bRbKF5wExkxQyuh6JAyeR5sgn3r3ologrV65ce0vPJzjm9/lybiWT/1BqYuuJmU2IEdgv9wZU8/nsAKofazdzXBiqB2r5fmhhpa6qtob6zB01KPt7URX2sTfk8zxtOI+Fqw+1uw+1utW6AdW9CHBH3Ygj7sxro5jB8HfpzGhx3rahfBdP6LIxgwnf+8di4NYMMvDoLYCYi9y31QrMdGrB5IQXFgOu5t1mNjc3TesDkwNqd1rWCo5xJ2B2Jzhu4diN2JzR56Hnosdic2h/XYZndgc7jAbgexW/8OY/3bbP2bbOv8p11C/45//u+6hP3r/PljY8R6FDQYghhjQv/+GusxBhM0QBCMCa0yGBO0tjOfl+t8bIx1dMOWe10pjJtxHFlJQ+uHop4c9GzYGNPjTIMicj3wtLGOzDIRCQIZwG4g/F/PvNCyEaOxoZYdK96gdcs7JNaspqB9M+OkjXGAxzjZ6RzP1rSTIXMqCXkzGTNxFqk5BUwdwl3uxO4kfdx00sdN77LcBIPU7iujYusqmss3YKo/I6FxOwV1H5JZ9xJsBd4Br3FQJSk0OdJoc6XR7k7HF5OOxCThjE3EEZuEzZ2AxCRgc8bicDhw2B04nA7sdgdBbBhsBI3BBP0Q8IXuAwQDPvx+H36fD7+vnaDPQ9DXhvF5CPo84PMg/nbwe5CAdbP5vdgCHuzB9tDNiyPoxWnacQa9OPHiMl5cWH88nRLAgfWlGJqnZSqSdks2JV/42oDvx503C7bD3s3LSD42MhMZBwNBPn31YdI/+TXHBMvYZh/P2vl/ZuZJFw7p1uWUScfDtrsoX/0mqadf2e/6tm1Y+f/bu+/4uur68eOv9x3ZezTNapOudCXdA8qsTBkFQcAvG5WfigMUUVERUL8O+DoAFUUUFWTIFgTZo0BbuugeSZvV7D1vbu69n98f5zZN26TNuMm9ad/Px+O2957xOe+bc09y3vezaHj5Lha1v0ML0Xw8+avkf+Y2FkUHf16lI5k05yRcbzhxFb4HAUiwdm5eQ/N/7mZx5/u0EM26KV9n9mduZf4Iz2U1XDNnzKLyhSTce1cCwx9oZse2T6h76W5OaH8Tl4SzafL/Y/rF32NWTOLwgx1BMyZmsoOJRJVqL4ojMT4fjY311FeX0lpbjruxEl9LJbb2auyuepxdTUR4mon2thDjayWedpLFkHyEMr1G6JAIOonEJRG4JQKfzYFXnPjsTrptUbhtTnw2p7XM5sT4ExOwauYFOSizMoDPYH2h6vP4v2D1Ij4PNuNFjPW/red/L2G+Ln9fev8yrOd248OOBzteHFh97R14rdfi6+9tHZPe8c5hTfQTnF+QEexQBmS41Q3PA6cDb4vINCAMqANeBP4pIr/CGuRiKrBmmMcKqs72VnauehnXrrdJrlvLJE8Rc8TgNnaKnZPZlnoutoy5JE9byoS8eeQ5j52BI8RmI2n8RJLGT8TqXndAQ10NFUWbaCnbir2hEFt7NWGuOqJd1Yzv2EWiacYpoze2ics46SIMt4ThJoxuWxjd/v/dtnA6HTF4bWF47eH4bOEYezjGEW59G+QIRxxhYA/H5ghDnNb/dmc4dmc4NmcEDmcY9rAIbI5w6+EMQ+xO7HYHNrsDu8OO3WbHbndgdzis5w4HNpvN+rbIZrdugMXeU7PTU9Pj/6ZGhJ7alwO/rjnoGyFjrG/OjM9nJaQ93xBZ/xt8GB/4jPfAt0k9y/3bG2sbg8+/bn/Z1rdMVqLb+1slb8/rA+t8Pd84md7x+XwHve79DZXPZ9Xk0etbqkMn4pVe/1pPD/liQvpfJ732OzzZOLAuJWsK9lHoizJu2mJ4D1r3roNhJljG52PTe88R+f7PWODdTaktkw1Lf8Pcs65BgjAC2mBNmnMKba9E0F30LjD0BKukaDuVL9zJoub/ki5hrMn+PDMv/T6L4o90KxU6EuJi2eCYTlLNqqNvfASFO6yEYnHrm3RKOOtyvsjMz9zOglEcfn84YiPDWB85hzkNa8HnG/Lw6HsKd7Dvhbs4oeVVJoqDLROvIe+SH1AQP+7oO4eACKedsrgFLG99EdztEGJNGEdLR0cbVaVFNFYU0lm7F2kqJaytnBhXFXGeOpJ8jSSJm0M/3S7jpFESaLfH4XLGUxeVRU1EAr6IRExUEraoJBzRSYTFJBIZHUdkTDwxsfFExcRjD4siVoTYoLzj4fF5vXg8HjyeLrq7u/F2u/F6uvF0u/F5rC+lvR43Xo8Hr8eNz9uNz9ONz9sNXg/4vP5aIgAfPp+/HchBNUr+1/gQs79ma39dlkUwvVrMcKBFCzarVY74/y77W770bvFyoLrsQGuY/WVJT2sbwYiQGpbAnMljp4/icBOsvwB/EZEtgBu41l+btVVEnsLqzeMBbhqLIwjWVhSzZ+W/iNj7Onkd65kr3biMk6LwGXyc8Xli8k5l8rzTmRY9Fi/NwEhKGUdSyhmwpO+KTuPz0dnZQUtLI22tTXg62/C5WvG5O+n2evB5PHi8HozPi834sOFDbDaMWFXhYrODzYHYHTjCwnA6wnA6nTjCI3GGRxMWEUlYeCRhEdGEhUcQYbcxNiqP+zKw2s2eVoFqTMjIzKaKFGTf8AY12PbRK/DWT5jTvYVKSWXt3J8w7/wvMSFEBiwYiMjICNZFFJBRs9JqOjvIG+ry4p2UvvBTFja8xHhsrM/4HHmX3MHilPQRinjkNKSfwrzy39FcWUR8+uCGzS/cvY2qf/+Ypc2vkikONmRfTd4lP2BBYtoIRTty2id8ioRdb9NctIr4qScOat89ewope/EnLG38N1nA5ozLmHrJD5mTEth+baPBN+UMwjY8Q93m10hZcPGg9q2rqaTww+cpOOsaoqJCOzlrbmpk354tNJdtw1u7m/DmvcR2lpPsqSaVxoP6pnuMjVpbCg3ONKpiZ1MeNQ6JHU94QgaRSZnEpmYSPy6bqNgk0kO4ddBIsdnthNnthIWHVh9TZRlWgmWMcQNX9bPup8BPh1N+sO1573GW7Pg5+ySNjeMuIjr/00xbfDazQrQ9eygSm43I6Bgio2NISw9cnwulxgoRoSxhEVOb3sfr8Qy6n+LWNW/S/eb/MrdrLXUksHrG7cxb8XXSIyJHKOKR1TX1PNK3/Ii9Wz4gt+DkAe1TtncnZS9aidU4YFPqhUy65E4WpeeMaKwjKeuEy+Ffv2Pvu48y94ofDWifol2bqXzpf1nc/F8mIGzK+CxTLr6DBePGXkKxX87SFbh3/oh97z864ARrT9FOyv79M5Y2vkQ2PramXUDOxXcyLz13hKMdOTOXnkvT+mgaPnpswAlWaWkxe178BUtqn2apuHm/ajsnf+m+EY706IwxVFWWUb1rHZ37tiINu4luLWacu5Q0GtjfcNVnhGpbCg1hmRTHnsie+GzCkicSkzaZlKwpJKRNIN3uZOx9faIUiDmsI3jwLFy40KxdO7JD1w5GU10VzfVVTJhaENL9GpRSoW3tSw+xcO2t7DzvafIWnTmgfbavfg3PWz8jv2s9TcSya8oN5F/8bSLHeI15Q101UffPYlvKOcz/2qNH3LakaBv7XvoZCxteBmDTuBXkrPg+KVlTRiPUEWWMYfOPT2Qc9aR9fytyhLmYdm1dT8OrP2Nhyxt4sbM9/SJyL7qd+FGcsHmkGGN47+crmN/1MWG3biP8CP2lCnduoeo//8viplcRYPu485iw4gckZOWNXsAj6L/3XsvpbS8h3/gEZ2L/SfPuwp2Uv/wLljb8mzC62ZL4KRI7SxnvKqLwM68wc86SUYu5raOTkl2baNq7Hl/lZmKbdpDpLiKVpp5tWoimyplFW3QO3qTJRIyfTtKEWaTlzMChX1irMU5E1hljFh62XBMspZQaWc1NDTh/PZ3NiZ9iyc2P97ud8fnY8uF/kPfvZXbXBhqIo3DK9eRf9C0iY0J7wILBWPnb61jc8CK1n3uNzOkH/10yPh+bPnwFzwe/Y27Hh3ixWYnVRd8nJXPsJ1a9vf/yPzj546+yafotFFxx50Hruj0eNr37LKx5iHmuj+nCydaMS5h60e3Epx1bU5qsW/U28165mG1ZlzL7i38+aJ3H42Xjey/iW/MQ8zs/woeNreMvYtKK24nPGFzTylD30bp1zH/xLEpSTmXaV585qH+p1+tj44ev4v7oIRa0v4sNw7bUc8m84PskT5xFS10lvgcW00oUji++TnpmYD8jxhgqKiuo2PkxHaUbcdRuI7V9NxN9ZYRLNwDdxk65cyJNsdPwjZtN9MS5jJ8yj4TUzMP70Sp1jNAESymlgujj+69hTt1LVF/1DtlTCw5a5+psZ9MrD5O85S9M9u2lnngKp9xAwUXfJDImNIeWHo7qynLsfzwRrzipPfknxGfNoLmmnObtb5JV8RoTTTlNxLAr67NMOe9mksZwU8Aj8Xl9rLnnAhZ3fsCGzM/hnHwynW0t+EpXMan+XdJooJ4ESnIvY+r5txCbPDZGzxosYwxv/ObznNn8DJuSz4VpZ9Pa3onsW0tu/bukU0cTseydcAmTzvvWMZdg9vbS777N+bV/Ylv8yXinX0S724OnbD0T6t5lAlW0EkVh+oVMvvDbxKUf/IXD3o3vMP65z1IjKbRd+BCz5g9tjr+uLheluzZRt2cDnootRDXtILOriPHU92zTIPFUR06lM2kGYZkFpExZQFpuvjVQlFLHEU2wlFIqiKr2FRP10Ik0SzyNp9xFTHIWjeU78O78L9Ob3idO2tlrm0j9rOvJ//QXCI8c200Bj2bHhpXEvXA9GdT0LPMaYWdEAZ15n2H2uZ8/5n8GAK2tLWz64xdY2voadrH+HneaMHbFLkFmX8zM5VfiCLEJgkeCq8vNB3/6BifV/aunRsRlnOyKWYSZeRGzzrgaR/ixP4GGy+3h3b/czkmVjxAtXYA1Bcru6Pn4pl/A9DOvx3mE66J0wxtEvfAFEkwzq2OWI3MuZ9KcUxiXmobNdqAWyeX20NhQQ3NFIU37dtNVW0RE405S2ovI9pYRJh7AqpWqcGTRGJeHGTebuJx5ZOQtJDLp2Ez2lRosTbCUUirIdqx+jeRXbiSVxp5lrUSyM/4UIhZdxawTzz+u+nt2dnSwc80rdLfWERGbwoTZJxI/BkcEDISaqnIaKoqIiowmY9IsHOFjcxCT4WpsbKCmdCcJsVGkZuVhOw6Sy740N7dQXbqDqDAH4yfmDaqvUntjFTv/dRfTK54lChcADSaWdonGh40o00EMHUSK+6D9aiWZqohJdCROJzwjn5TJ80ifXID9OD0HSg2EJlhKKRUCXB2t7FjzBp7OZhLSJzFhxmLCwvUGRikVWN6uDkrWv0bj3o3Ym/Zi3B3YjBevMwqJiMfEjMeelENS1lTGT8zDGR3aEzIrFYo0wVJKKaWUUkqpAOkvwTp+2qIopZRSSiml1AjTBEsppZRSSimlAkQTLKWUUkoppZQKkJDqgyUitUBJsOM4RApQF+wg1KjR83380HN9/NBzfXzR83380HN9fAnF8z3RGJN66MKQSrBCkYis7avzmjo26fk+fui5Pn7ouT6+6Pk+fui5Pr6MpfOtTQSVUkoppZRSKkA0wVJKKaWUUkqpANEE6+j+FOwA1KjS83380HN9/NBzfXzR83380HN9fBkz51v7YCmllFJKKaVUgGgNllJKKaWUUkoFiCZYSimllFJKKRUgmmAdgYicIyI7RaRQRL4b7HhU4IhItoi8LSLbRGSriHzDvzxJRF4Xkd3+/xODHasKDBGxi8gGEXnJ/zpXRFb7r+8nRSQs2DGqwBCRBBF5WkR2iMh2ETlBr+1jk4jc4v8dvkVEHheRCL22jx0i8hcRqRGRLb2W9Xkti+U+/3nfJCLzgxe5Gqx+zvU9/t/jm0TkORFJ6LXue/5zvVNEzg5K0EegCVY/RMQO/A44F5gJfE5EZgY3KhVAHuBbxpiZwFLgJv/5/S7wpjFmKvCm/7U6NnwD2N7r9S+AXxtjpgCNwOeDEpUaCb8FXjXGTAfmYJ13vbaPMSKSCXwdWGiMmQ3YgSvQa/tY8ghwziHL+ruWzwWm+h83An8YpRhVYDzC4ef6dWC2MaYA2AV8D8B/v3YFMMu/z+/99+0hQxOs/i0GCo0xe4wxbuAJYEWQY1IBYoypNMas9z9vxboBy8Q6x3/zb/Y34KKgBKgCSkSygPOAP/tfC7AceNq/iZ7rY4SIxAOnAA8DGGPcxpgm9No+VjmASBFxAFFAJXptHzOMMe8BDYcs7u9aXgH83VhWAQkikj4qgaph6+tcG2NeM8Z4/C9XAVn+5yuAJ4wxXcaYvUAh1n17yNAEq3+ZQFmv1+X+ZeoYIyI5wDxgNZBmjKn0r6oC0oIVlwqo3wC3AT7/62Sgqdcvbr2+jx25QC3wV3+T0D+LSDR6bR9zjDH7gHuBUqzEqhlYh17bx7r+rmW9bzu23QC84n8e8udaEyx1XBORGOAZ4GZjTEvvdcaaw0DnMRjjROR8oMYYsy7YsahR4QDmA38wxswD2jmkOaBe28cGf9+bFVhJdQYQzeFNjNQxTK/l44OIfB+ra8djwY5loDTB6t8+ILvX6yz/MnWMEBEnVnL1mDHmWf/i6v1NCvz/1wQrPhUwy4ALRaQYq6nvcqw+Ogn+ZkWg1/expBwoN8as9r9+Givh0mv72HMGsNcYU2uM6Qaexbre9do+tvV3Let92zFIRK4DzgeuNAcm7w35c60JVv8+Bqb6RyMKw+pM92KQY1IB4u+D8zCw3Rjzq16rXgSu9T+/FnhhtGNTgWWM+Z4xJssYk4N1Hb9ljLkSeBu41L+ZnutjhDGmCigTkTz/ok8B29Br+1hUCiwVkSj/7/T951qv7WNbf9fyi8A1/tEElwLNvZoSqjFIRM7Bat5/oTGmo9eqF4ErRCRcRHKxBjZZE4wY+yMHkkF1KBH5NFbfDTvwF2PMT4MbkQoUETkJeB/YzIF+Obdj9cN6CpgAlACXGWMO7WCrxigROQ241RhzvohMwqrRSgI2AFcZY7qCGJ4KEBGZizWgSRiwB7ge6wtFvbaPMSJyF3A5VvOhDcAXsPpi6LV9DBCRx4HTgBSgGvgR8Dx9XMv+JPsBrGaiHcD1xpi1QQhbDUE/5/p7QDhQ799slTHmS/7tv4/VL8uD1c3jlUPLDCZNsJRSSimllFIqQLSJoFJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIBogqWUUkoppZRSAaIJllJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIBogqWUUkoppZRSAaIJllJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIBogqWUUkoppZRSAaIJllJKhQgRyRERIyKOYMdyrBOR60RkZbDjCDUicrKI7Ax2HEopNZZpgqWUUmpME5E7RaRbRNp6PW4LdlxjkTHmfWNMXqDLFRG7iPxERCpEpFVENohIQqCPo5RSoUC/JVVKqQAREYcxxhPsOI5TTxpjrgp2ECPlGPhs3QWcCJwAlAKzAFdQI1JKqRGiNVhKKTUMIlIsIt8RkU1Au4g4RGSpiHwoIk0i8omInNZr+3dE5GciskZEWkTkBRFJ6qfs60Vku/8b/z0i8v8OWb9CRDb6yykSkXP8y+NF5GERqRSRff6aA/tR3sdkEXlLROpFpE5EHttfw+Bf1yAi8/2vM0Skdv/7EpELRWSr//2+IyIzDvn53Coim0SkWUSeFJGIwf+kB09Evuv/ubSKyDYRubif7UREfi0iNf6f5WYRme1fFy4i94pIqYhUi8iDIhI5wOM/4t/+dX8M74rIxF7rfysiZf5jrhORk3utu1NEnhaRR0WkBbhORBaLyEf+n3OliDwgImG99jEi8hUR2e0/3o/95+5D/zGe6r19PzGfJiLlA3l/AyUiicDNwBeNMSXGssUYowmWUuqYpAmWUkoN3+eA84AEIA14GfgJkATcCjwjIqm9tr8GuAFIBzzAff2UWwOcD8QB1wO/7pXkLAb+Dnzbf9xTgGL/fo/4y50CzAPOAr5wlPcgwM+ADGAGkA3cCWCMKQK+AzwqIlHAX4G/GWPeEZFpwONYN9CpwH+Afx9yI38ZcA6QCxQA1/UZgMhJ/uShv8dJR3kPhyoCTgbisWpQHhWR9D62Owvr5zfNv+1lQL1/3c/9y+di/TwzgTsGEcOVwI+BFGAj8FivdR/7y00C/gn865DkcwXwNNb5fQzwArf4yzoB+BTwlUOOdzawAFgK3Ab8CbgK63zOxvqsDpk/Ue7v/Py+n93ysT6Pl4pIlYjsEpGbhhOHUkqFNGOMPvShD33oY4gPrKTmhl6vvwP845Bt/gtc63/+DvDzXutmAm7ADuQABnD0c6zngW/4n/8R+HUf26QBXUBkr2WfA94e5Pu6CNhwyLIXgc3AJiDcv+yHwFO9trEB+4DTev18ruq1/pfAgwE+B3f6f4ZNvR4ZfWy3EVjhf34dsNL/fDmwCyspsfXaXoB2YHKvZScAewcY1yPAE71ex2AlSdn9bN8IzOn1nt47Svk3A8/1em2AZb1erwO+0+v1/wG/OUqZpwHlAT4//+OP7WEgEivJrgXODORx9KEPfegjVB5ag6WUUsNX1uv5ROCzvb/ZB07Cqq3qa/sSwIlVK3EQETlXRFb5m+c1AZ/utV02Vg3NoSb6y6vsdfw/AuOO9AZEJE1EnvA3KWwBHu0jpoewakHuN8Z0+Zdl+N8DAMYYn//9Zfbar6rX8w6sRCPQnjLGJPR6VIjINWI1odz/c5hNHz9nY8xbwAPA74AaEfmTiMRh1chFAet6lfGqf/lA9ZxrY0wb0ID1M8PfdHK7v+lkE1btWUpf+/q3nyYiL/lrgVqA/+3j/VT3et7Zx+uR+NkfTaf//7uNMZ3GmE3AE1ifZ6WUOuZogqWUUsNnej0vw6rB6n2zH22M+XmvbbJ7PZ8AdAN1vQsUkXDgGeBeIM0Yk4DV/E56HWdyH7GUYdVgpfQ6fpwxZtZR3sP/+t9HvjEmDqtZ2f5jISIxwG+waiHulAP9xiqwkrr924n//e07yvEOI9YQ4W1HeJx89FJ6ypqIlRB+FUj2//y29H5PvRlj7jPGLMCqUZyG1fSyDis5mNXrZxlvjBlMktJzrv0/wySgwv9ebsNqjpjoj6/5kPh6f64A/gDsAKb6z9Ht/b2fkSJWX7v+zs+D/ey2yf9/7/dz6HtTSqljhiZYSikVWI8CF4jI2WINTR3hHzggq9c2V4nITH9/pruBp40x3kPKCQPCsZpSeUTkXKy+Qvs9DFwvIp8SEZuIZIrIdGNMJfAa8H8iEudfN1lETj1K3LFAG9AsIplYCUZvvwXWGmO+gNXHbP/N9FPAef44nMC3sBK8D4/2gzqUsYYIjznC4/1BFBeNdRNfC9aAIVg1WIcRkUUissQffzvW6HY+f23cQ1h938b5t80UkbN77Wuk1yAmffi0v29ZGFZfrFXGmDKsn7fHH59DRO7A6mt3JLFAC9AmItOBLx9l+4Azxsw6wvn5Uj/7FAHvA98Xa9CQGcAVwEujGbtSSo0WTbCUUiqA/DfPK7BqF2qxapS+zcG/b/+B1T+nCogAvt5HOa3+5U9h9c35H6w+UPvXr8E/8AVWzce7HKhJugYrQdvm3/dpDm6i2Je7gPn+sl4Gnt2/QkRWYA1Ssf+G/pvAfBG50hizE6u2636sGp8LgAuMMe6jHG9EGWO2YfU5+girmVw+8EE/m8dhJVKNWM0d64F7/Ou+AxQCq/zN8t4A8gBEJBtoxeqX1p9/Aj/Cahq4AOtnBVa/vFex+n6VYCV1ZX0V0MutWJ+DVn+8Tx5l+1DyOazPZz3W5+uHxpg3gxuSUkqNDDFGa+mVUmq0iMg7wKPGmD8HOxY1PCJyFVbzwe/1s/4RrAEjfjCqgSmllAoqnWhYKaWUGgJjzKPBjkEppVTo0SaCSil1nBBr0tvBDE6gjkEicns/n4NXgh2bUkodC7SJoFJKKaWUUkoFSMBqsPyjZW0QkZf8r3NFZLWIFIrIk/4RlJRSSimllFLqmBWwGiwR+SawEIgzxpwvIk8BzxpjnvA3P/nEGPOHI5WRkpJicnJyAhKPUkoppZRSSo2UdevW1RljDpt8PiCDXPjndzkP+CnwTf9Ek8uxhpMF+BtwJ9Ykif3Kyclh7dq1gQhJKaWUUkoppUaMiJT0tTxQTQR/gzUjvc//OhloMsZ4/K/LgcwAHUsppZRSSimlQtKwEywROR+oMcasG+L+N4rIWhFZW1tbO9xwlFJKKaWUUipoAlGDtQy4UESKgSewmgb+FkgQkf1NELOAfX3tbIz5kzFmoTFmYWrqYU0YlVIqKLw+g46yqpRSSqnBGnYfLP8M9t8DEJHTgFuNMVeKyL+AS7GSrmuBF4ZSfnd3N+Xl5bhcruGGqo4zERERZGVl4XQ6gx2KGmOMz8cz936ZtvA0bvjG3cEORymllFJjSEAGuejHd4AnROQnwAbg4aEUUl5eTmxsLDk5OVhjZyh1dMYY6uvrKS8vJzc3N9jhqDGmoqKcyzqegA4o3XkxE/LmBTskpZRSSo0RAZsHC8AY844x5nz/8z3GmMXGmCnGmM8aY7qGUqbL5SI5OVmTKzUoIkJycrLWfKoh2Vey+8DzTW8HMRKllFJKjTUBTbBGiiZXaij0c6OGqr2utOd5WMXHQYxEKaWUUmPNmEiwlFJqNNlarDF59jomEde6+yhbK6WUUkodoAnWAIgI3/rWt3pe33vvvdx5553BC6iXVatWsWTJEubOncuMGTN64nrnnXf48MMPh1xuSUkJ8+fPZ+7cucyaNYsHH3wwQBErFfqc7ZW4jYPahLmM7y7H5/UdfSellFJKKTTBGpDw8HCeffZZ6urqAlquMQafb3g3btdeey1/+tOf2LhxI1u2bOGyyy4Dhp9gpaen89FHH7Fx40ZWr17Nz3/+cyoqKoYVq1JjRXhnDXWShKROI1Y6qa0uD3ZISimllBojNMEaAIfDwY033sivf/3rw9bV1tZyySWXsGjRIhYtWsQHH3wAwJ133sm9997bs93s2bMpLi6muLiYvLw8rrnmGmbPnk1ZWRnf/va3mT17Nvn5+Tz55JOAlSCddtppXHrppUyfPp0rr7yyzzl5ampqSE9PB8ButzNz5kyKi4t58MEH+fWvf83cuXN5//33jxjn1VdfzQknnMDUqVN56KGHAAgLCyM8PByArq6ufhPB++67j5kzZ1JQUMAVV1wBQENDAxdddBEFBQUsXbqUTZs29Rzr2muv5eSTT2bixIk8++yz3HbbbeTn53POOefQ3d0NwN13382iRYuYPXs2N95442Hv2+fzkZOTQ1NTU8+yqVOnUl1dfaTTqNSA2brb6bJFETk+D4Da4q1BjkgppZRSY8VIDtMecHf9eyvbKloCWubMjDh+dMGso2530003UVBQwG233XbQ8m984xvccsstnHTSSZSWlnL22Wezffv2I5a1e/du/va3v7F06VKeeeYZNm7cyCeffEJdXR2LFi3ilFNOAWDDhg1s3bqVjIwMli1bxgcffMBJJ510UFm33HILeXl5nHbaaZxzzjlce+215OTk8KUvfYmYmBhuvfVWAP7nf/6n3zg3bdrEqlWraG9vZ968eZx33nlkZGRQVlbGeeedR2FhIffccw8ZGRmHvZef//zn7N27l/Dw8J6E50c/+hHz5s3j+eef56233uKaa65h48aNABQVFfH222+zbds2TjjhBJ555hl++ctfcvHFF/Pyyy9z0UUX8dWvfpU77rgDgKuvvpqXXnqJCy64oOeYNpuNFStW8Nxzz3H99dezevVqJk6cSFpa2lHPo1IDIV4XHns4SRNmAtBRuQM4N7hBKaWUUmpM0BqsAYqLi+Oaa67hvvvuO2j5G2+8wVe/+lXmzp3LhRdeSEtLC21tbUcsa+LEiSxduhSAlStX8rnPfQ673U5aWhqnnnoqH39sjVq2ePFisrKysNlszJ07l+Li4sPKuuOOO1i7di1nnXUW//znPznnnHP6POaR4lyxYgWRkZGkpKRw+umns2bNGgCys7PZtGkThYWF/O1vf+uzhqigoIArr7ySRx99FIfD0fOerr76agCWL19OfX09LS1WYnzuuefidDrJz8/H6/X2xJufn9/z/t5++22WLFlCfn4+b731Flu3Hl57cPnll/fU9j3xxBNcfvnlR/yZKzUYNo8Lnz2CtOwpdBknvjod6EIppZRSAzOmarAGUtM0km6++Wbmz5/P9ddf37PM5/OxatUqIiIiDtrW4XAc1Kyu93xM0dHRAzre/iZ6YDX/83g8fW43efJkvvzlL/PFL36R1NRU6uvrD9umvzjh8OHMD32dkZHB7Nmzef/997n00ksPWvfyyy/z3nvv8e9//5uf/vSnbN68eUDvyWaz4XQ6e45ls9nweDy4XC6+8pWvsHbtWrKzs7nzzjv7nMvqhBNOoLCwkNraWp5//nl+8IMfHPG4Sg2G03ThtcdgdzgotacT0Vwc7JCUUkopNUZoDdYgJCUlcdlll/Hwww/3LDvrrLO4//77e17vbwqXk5PD+vXrAVi/fj179+7ts8yTTz6ZJ598Eq/XS21tLe+99x6LFy8ecEwvv/xyTx+l3bt3Y7fbSUhIIDY2ltbW1qPGCfDCCy/gcrmor6/nnXfeYdGiRZSXl9PZ2QlAY2MjK1euJC8v76Bj+3w+ysrKOP300/nFL35Bc3MzbW1tnHzyyTz22GOA1ZcsJSWFuLi4Ab2f/clUSkoKbW1tPP30031uJyJcfPHFfPOb32TGjBkkJycPqHylBiLM14XPbn0Z0RAxgURX6VH2UEoppZSyaII1SN/61rcOGk3wvvvuY+3atRQUFDBz5sye4cwvueQSGhoamDVrFg888ADTpk3rs7yLL76YgoIC5syZw/Lly/nlL3/J+PHjBxzPP/7xD/Ly8pg7dy5XX301jz32GHa7nQsuuIDnnnuuZ5CL/uIEq5nf6aefztKlS/nhD39IRkYG27dvZ8mSJcyZM4dTTz2VW2+9lfz8fAC+8IUvsHbtWrxeL1dddRX5+fnMmzePr3/96yQkJHDnnXeybt06CgoK+O53v8vf/va3Ab+fhIQEvvjFLzJ79mzOPvtsFi1a1LPuwQcfPCjuyy+/nEcffVSbB6qAC8ON12ElWK7YHNK9lRifN8hRKaWUUmoskL5GpguWhQsXmrVr1x60bPv27cyYMSNIER377rzzzoMGwzjW6OdHDUXNjyayb9ypzLvp76x66pcs3fZT6r64gZTMScEOTSmllFIhQkTWGWMWHrpca7CUUqoXn88QgRv8NVgRqZMBqC/fFcywlFJKKTVGDHuQCxHJBv4OpAEG+JMx5rcikgQ8CeQAxcBlxpjG4R5PBdadd94Z7BCUCilur49w3BhnFACJmVMBaKsqDGZYSimllBojAlGD5QG+ZYyZCSwFbhKRmcB3gTeNMVOBN/2vlVIqpLm63ISLp6cGK23CVHxG8NQXBzcwpZRSSo0Jw06wjDGVxpj1/uetwHYgE1gB7B/d4G/ARcM9llJKjbSuzg7rib8GKyIikhpJxt6sIwkqpZRS6ugC2gdLRHKAecBqIM0YU+lfVYXVhLCvfW4UkbUisra2tjaQ4Sil1KB1udoBsIUdmDOu3jme6I7yYIWklFJKqTEkYAmWiMQAzwA3G2Naeq8z1lCFfQ5XaIz5kzFmoTFmYWpqaqDCUUqpIenuSbCiepa1RWWR3F0VrJCUUkopNYYEJMESESdWcvWYMeZZ/+JqEUn3r08HagJxrGB5/vnnERF27NjR7zbFxcXMnj07YMfcuXMnp512GnPnzmXGjBnceOONgDVJ8H/+858hl+tyuVi8eDFz5sxh1qxZ/OhHPwpUyEqNeQcSrMieZd64CYyjHrerI1hhKaWUUmqMGHaCJSICPAxsN8b8qteqF4Fr/c+vBV4Y7rGC6fHHH+ekk07i8ccf73O9x+MZ9jG83oMnMv3617/OLbfcwsaNG9m+fTtf+9rXgOEnWOHh4bz11lt88sknbNy4kVdffZVVq1YNK3aljhX7Eyx7rxose3IuADVlu4MSk1JKKaXGjkDUYC0DrgaWi8hG/+PTwM+BM0VkN3CG//WY1NbWxsqVK3n44Yd54oknepa/8847nHzyyVx44YXMnDkTsBKtK6+8khkzZnDppZfS0WF94/3mm28yb9488vPzueGGG+jq6gIgJyeH73znO8yfP59//etfBx23srKSrKysntf5+fm43W7uuOMOnnzySebOncuTTz5Je3s7N9xwA4sXL2bevHm88IKVyz7yyCOsWLGC0047jalTp3LXXXcBICLExMQA0N3dTXd3N1aefLB//etfzJ49mzlz5nDKKacAVu3X9ddfT35+PvPmzePtt9/uOdZFF13EmWeeSU5ODg888AC/+tWvmDdvHkuXLqWhoQGAhx56iEWLFjFnzhwuueSSnp9Pb0uXLmXr1q09r0877TQOnYBaqZHicXcCYA8/UIMVM96aC6txnyZYSimllDqyYc+DZYxZCRx+d2751HDLP8gr34WqzQEtkvH5cO6Rc78XXniBc845h2nTppGcnMy6detYsGABAOvXr2fLli3k5uZSXFzMzp07efjhh1m2bBk33HADv//97/nqV7/Kddddx5tvvsm0adO45ppr+MMf/sDNN98MQHJyMuvXrz/suLfccgvLly/nxBNP5KyzzuL6668nISGBu+++m7Vr1/LAAw8AcPvtt7N8+XL+8pe/0NTUxOLFiznjjDMAWLNmDVu2bCEqKopFixZx3nnnsXDhQrxeLwsWLKCwsJCbbrqJJUuWHHb8u+++m//+979kZmbS1NQEwO9+9ztEhM2bN7Njxw7OOussdu2yJmDdsmULGzZswOVyMWXKFH7xi1+wYcMGbrnlFv7+979z880385nPfIYvfvGLAPzgBz/g4Ycf7qmZ2+/yyy/nqaee4q677qKyspLKykoWLjxskmylRoS3y0r6HeHRPcuSs6YB0FlTFJSYlFJKKTV2BHQUwWPV448/zhVXXAHAFVdccVAzwcWLF5Obm9vzOjs7m2XLlgFw1VVXsXLlSnbu3Elubi7Tplk3addeey3vvfdezz6XX355n8e9/vrr2b59O5/97Gd55513WLp0aU/NV2+vvfYaP//5z5k7dy6nnXYaLpeL0lJrSOkzzzyT5ORkIiMj+cxnPsPKlSsBsNvtbNy4kfLy8p4k7FDLli3juuuu46GHHuppvrhy5UquuuoqAKZPn87EiRN7EqzTTz+d2NhYUlNTiY+P54ILLgCsmrfi4mLASsJOPvlk8vPzeeyxxw6qqdrvsssu4+mnnwbgqaee4tJLL+3z56PUSPC6rQTL2SvBSk2fgMs48TWWBCsspZRSSo0Rw67BGlVHqWkaCQ0NDbz11lts3rwZEcHr9SIi3HPPPQBER0cftP2hTe36anp3qEPL6C0jI4MbbriBG264gdmzZ/eZCBljeOaZZ8jLyzto+erVq48aT0JCAqeffjqvvvrqYQN0PPjgg6xevZqXX36ZBQsWsG7duiO+j/Dw8J7nNput57XNZuvpo3bdddfx/PPPM2fOHB555BHeeeedw8rJzMwkOTmZTZs28eSTT/Lggw8e8bhKBZLPvb8G60ATQbvdTrktjfAWnQtLKaWUUkemNVhH8fTTT3P11VdTUlJCcXExZWVl5Obm8v777/e5fWlpKR999BEA//znPznppJPIy8ujuLiYwsJCAP7xj39w6qmnHvXYr776Kt3d3QBUVVVRX19PZmYmsbGxtLa29mx39tlnc//992ONhg8bNmzoWff666/T0NBAZ2cnzz//PMuWLaO2tranyV9nZyevv/4606dPP+z4RUVFLFmyhLvvvpvU1FTKyso4+eSTeeyxxwDYtWsXpaWlhyV2R9La2kp6ejrd3d095fTl8ssv55e//CXNzc0UFBQMuHylhsvn74MVFhlz0PLG8AziXBXBCEkppZRSY4gmWEfx+OOPc/HFFx+07JJLLul3NMG8vDx+97vfMWPGDBobG/nyl79MREQEf/3rX/nsZz9Lfn4+NpuNL33pS0c99muvvdYzyMTZZ5/NPffcw/jx4zn99NPZtm1bzyAXP/zhD+nu7qagoIBZs2bxwx/+sKeMxYsXc8kll1BQUMAll1zCwoULqays5PTTT6egoIBFixZx5plncv755wNwxx138OKLLwLw7W9/m/z8fGbPns2JJ57InDlz+MpXvoLP5yM/P5/LL7+cRx555KCaq6P58Y9/zJIlS1i2bNlBSd2LL77IHXfc0fP60ksv5YknnuCyyy4bcNlKBUS3lWCFR0YdtNgVncU4b2VfeyillFJK9ZD9tR6hYOHChebQ0eK2b9/OjBkzghTR2PbII48cNBjG8Ug/P2qwVv79R5y05zd031aKMyq+Z/mH/7iTE4t+TcvNhcQl6KToSiml1PFORNYZYw4biU1rsJRSqjd/DZYj/OAarLCUSQDUlvQ/2bhSSimllCZYx7DrrrvuuK69UmooxNNJt7EjdudBy+MzpgDQUqlDtSullFKqf2MiwQqlZoxq7NDPjRoK8bhwyeH9ClMnWNMsuOv2jnZISimllBpDQj7BioiIoL6+Xm+W1aAYY6ivryciIiLYoagxRjwu3IQdtjw+IZkmYpCm4tEPSimllFJjRsjPg5WVlUV5eTm1tbXBDkWNMREREWRlZQU7DDXG2L0u3HJ4giUi1NrHE9lWHoSolFJKKTVWhHyC5XQ6yc3NDXYYSqnjhJVg9T31QEtEJmkdu0c5IqWUUkqNJSHfRFAppUaT3eui29Z3gtUVm804Xw0+r3eUo1JKKaXUWDHiCZaInCMiO0WkUES+O9LHU0qp4XD4uvD0k2BJUg5h4qG+qmSUo1JKKaXUWDGiCZaI2IHfAecCM4HPicjMkTymUkoNh8PXRbet78FRIsdZc2HVl+0czZCUUkopNYaMdA3WYqDQGLPHGOMGngBWjPAxlVJqyMJ8Lrz91GAlZlpDtbdX61xYSimllOrbSCdYmUBZr9fl/mU9RORGEVkrImt1pEClVLA5jRuvI7LPdWnZU/AZwVNXPLpBKaWUUmrMCPogF8aYPxljFhpjFqampgY7HKXUcS7MdOHrp4lgREQkNZKMvaV0lKMKvPrGRl79vxv48NG7gh2KUkopdUwZ6WHa9wHZvV5n+ZcppVRICqcLn6PvJoIA9c50ojvG/lxY65+/n3Nan4FWKCv6LNmTtXusUkopFQgjXYP1MTBVRHJFJAy4AnhxhI+plFJDFm7cGGffTQQB2qMySemuHMWIRsb48ldokVi8Rqh69+Fgh6OUUkodM0Y0wTLGeICvAv8FtgNPGWO2juQxlVJqqHxeH5Hihn76YAF0x08klQbcro5RjCywXC4XeZ6d7My4iELHFOKqVgU7JKWUUuqYMeJ9sIwx/zHGTDPGTDbG/HSkj6eUUkPVtT9pOkKC5UzOBaCmbNdohDQiSnZvIky8hGXkU5O8mEld2/G42oIdllJKKXVMCPogF0opFSq6OtsBkLD+E6zoNGsurMZ9haMS00ho2LMBgJTJ8wjPXYJTvJTuWBfkqIanZF8Fn9y1lI/uvQSvpzvY4SillDqOaYKllFJ+Xf5aHDlCH6yU7DwAOsfwXFjdVdvxGmH8pALGTVkIQOOesZ1g7XruZ8wx2zmh7Q22vPbXYIczbB+8/yYbf3Iym17/e7BDCYjXX3yMt/7xM3zdXcEOZdjqWzt5428/YffGD4IdilIqRGmCpZRSfvtrsGxhUf1ukzp+Ai7jxDQWj1JUgedsLafOloI9LILsSdNpM5H4KjcHO6whM8aQU/cOuyPnUEEqzs1PBjukYenyeIl/89vM9Wxiygffpqu1LtghDcsn23dy6rqvsbzo52x5auxPC/DeP+7mjL33MPX5T+OqH/tTNiilAk8TLKWU8ut2dQJgD+8/wbLZbVTZ0ghrLet3m1AX46qkKSwNALvdTqkzl7jmnUGOauhKSoqYSiltE89kV/KnmNq5AV9Xe7DDGrKNG9YwmyI+STqbKFwUvft4sEMalvK3/kSYeCm1ZZJb+Dfwjt0mnE0dbuZUP0+tpOAzQvFrvw92SEqpEKQJllJK+XV3WU0E7UfogwXQFJ5BnGvsTumX7KmmIzKj53VT3HQy3XswPm8Qoxq60i0fAZA6Yxm2SafgxMu+Le8HOaqh69z5NgA5l/yUYjMex66XghzR8KTVraYsfAq7Zt1MrGmjZtu7wQ5pyDZ/8jGTpIKOxV9jnS2fuD3/CXZISqkQpAmWUkr5efyjCDrCo4+4nSs6i3HeSjBmNMIKqA6Xi3GmHm9cVs8ykzaLGDqpL98dxMiGzrtvIz4jZOYtJGf+p/AaoXHb28EOa8iiajZQRyLxGVMojp1PRstm8PmCHdaQlNc2ku/bQcv4pWQvPB+3sdP4ydhNSpp2rgQgfd7ZVI1bRkZ3Cb6msftli1JqZGiCpZRSfl63P8GK6L+JIIAvIYdYOmlpqh2NsAKqZl8xDvFhT5zQsywudz4A1bvXBiusYYlt2k6lPR2JiCN7fBolkolUbQp2WEOW0baV0sgZIIJkLyaGdupKxmYfuV3bNhIu3cRNXsrU7HR2Sg7OyrE7oIqzehMdEknYuDwipi0HoGrTG0GOSikVajTBUkopP0+XlWA5j9AHCyA81ZoLq7Z07PVbaqzcC0DUuJyeZZlT5wLQuW9szgOf7CqlPso6JyJCTcx0xneMvXMD4OnqJN1bQUfiDACSZ5wEQPXW94IZ1pB1+D9TaZMLsNmEmrjZpLfvgDHYHNUYQ2bnDqqi8sBmY/qcpXSaMJoKVwc7NKVUiNEESyml/Hxd1iAX4ZExR9wuPmMqAC2VY28urM4aK8FKTJ/UsywpMYkKUrHXjb2kxNXlJsNXhTsut2dZV2o+qaaejoaKIEY2NBV7t2EXg3O8NR3A5Lx5NJoYvKVrghzZ0EjdTnwIYeOmWQsyFxKJi+bSsVcjV9vSySRThivJSn6zU+LYaZtERO3YrS1VSo0MTbCUUsrP120lWGFHaSKY6p8Ly127Z8RjCjRPozWsdFKvBAugOjyXxPaxN7dXRWkh4dKNY9zUnmWRE60mjxU7xl7NQn2xlXgkTpgFQGS4g93O6SQ3bAxiVEMX01pEnSMd/HPLxU85AYCa7WNvDqmS4kKipYvw9Jk9y6pjZpLRuRO8niBGppQKNZpgKaWUn8/fB8sZeeRBLuITk6gjAVvD2EtIHK3lNBKHIzL2oOUd8VPJ8JTj84ytIbTrS7YBEJs5vWdZRt5iANqKx15fn87KHQBkTcnvWdacXEC6pwzjaglWWEPi8foY7y6lOeZA7eLkvAKaTDSe0o+DGNnQNJRsASBp4qyeZd7xc4nAjatyW7DCUkqFoGElWCJyj4jsEJFNIvKciCT0Wvc9ESkUkZ0icvawI1VKqRFm/DVYUVFHbiIIUO3MJrZt70iHFHBRHRU0ONMOW25Lm0GYeKguHls3ip3VuwBIyz1w05s5Po0SxuOsHntNtxwNu6mSVKJi4nuW2TPnYcNQUzi2EsbSuhZyqMSbnNezLDEmnB22qcQ2jL1z011lJb8JE2b3LIubbCXzVds/CkpMSqnQNNwarNeB2caYAmAX8D0AEZkJXAHMAs4Bfi8i9mEeSymlRpRxt+MxNpxhEUfdtjV2MundJWNuqPb47mraItIPXz7RqjGp2/vJaIc0LFJfSDsRxCQfGHZeRKgIn0JS264gRjY0CR3F1IVPOGjZuKmLAKgvHFujPFYW7yBcPERmzDhoeUPcDMZ3FYOnKziBDZGzqYg2iUFixvUsmzy9gBYThatkbJ0bpdTIGlaCZYx5zRizv+HxKmD/X7gVwBPGmC5jzF6gEFg8nGMppdRIE3cb7RIFIkfd1iRPJZ52GmrGzhw4Ho+XNF8t3TEZh63bP5Kga4yNJBjdVkKNI/Owc9aZNIN0byW+zuYgRTZ43R4vmZ4yXPGTD1o+edJU6kwcvoqxlfy2lFmfpeTcOQctN+PzceCls2JLMMIasqSOvdRH5hz0WRsfH8UuySGyfmxdN0qpkRXIPlg3AK/4n2cCZb3WlfuXHUZEbhSRtSKytrZ27M0po5Q6dtjdrXRI5IC2jcq0vpWv3jN2mjrV1lYSJV3YEiYcti4+PoF9jMNRP7ZGEkx1l9MSPfGw5c7MAgCqC9ePdkhDVl5qDaJgH5d30PLIcAd7nZOJaxxbzTd9NVaTuphDarDiJi0EoHrn2OmH1dDuZqLZd1jyKyLUxeSR1lk4JoeeV0qNjKMmWCLyhohs6eOxotc23wc8wGODDcAY8ydjzEJjzMLU1NTB7q6UUgHj9LTjsh15gIv9xuVaTepay8fOTW/9PmtQjvCUnD7X10TkktQxdgbuaGptI8NU402cdNi61CnWTXx90dhJsGr2WDU68dmzDlvXHD+TjO7iMdWsLqq5kHpbCkTEHbR80rTZtJpIXKVj59zsLa9gnDTh2D/cfC/d4/KJoAt3zdhrkqqUGhlHTbCMMWcYY2b38XgBQESuA84HrjSmpzPCPiC7VzFZ/mVKKRWynJ42umxHHqJ9v7SsybSbcHy1Y+emqrXKGlY+Pv3whASgI2Ea6Z59eLvdoxnWkO0r3oFdzIE5lnrJmTSNZhONt3LszLfUUbEdgPQpBYetk/QCHHhpLB4bNabGGFJdJTRG5x62LiMhit1jrFldvf/nHpc9+7B1sTnWtAA1u8bmXGVKqcAb7iiC5wC3ARcaYzp6rXoRuEJEwkUkF5gK6G8epVRIC/O243YcfQRBAJvdTqUji6iWsVPj466zEqxx2Xl9rrenzSBMvFTtHRs3vs2lVkKSmD3jsHURYQ72OiYR07R9tMMaMlv9blqJIjLx8D5ySZOtgS5qdo2Nub1qWjrJpZzuxKmHrRMRamLySOvYPWaa1bkqrc9Rcs7hyW/2tLl0GSftxWOnRk4pNbKG2wfrASAWeF1ENorIgwDGmK3AU8A24FXgJmPM2PgtqpQ6bkX4OvA4BtZEEKApOpdUV8kIRhRYjqa9NBFLWGxSn+sTJlo3j3V7No5iVEPX5W+SNS738CZ1AE1x08jo2jtmbuLj2vZQGz6hz0FWJuVZzerc5RtHP7AhKPVPyhs2/vDkF6A7dTYRdOGp3T3KkQ2Ns2EXbpzYkg7v75czLoHdZOOsHVuDdiilRs5wRxGcYozJNsbM9T++1GvdT40xk40xecaYV45UjlJKhYIo04HXObAaLIDuxCmkU0tH29gYqS6mvYxaZ5/jDQGQNW0OPiN0jZFJU52NhTQRhzMmuc/1vnGziaSL1orQb8bp9vjI9hTTFnd4jQ9AfFQ4RfZJRDeMldpFq2lmYk5+n+ujJs4DoHb32BjoIr5tLzXhE8B2+IwzdptQGTmV1LadY27aBqXUyAjkKIJKKTWmRZkOfGGxA94+PN36dr6iaGx8c53SXUFbdHa/62Ni4qiwpeEcIyMJJrUXURVxeB+f/eJyrJv4yl2hP0dRWVkJKdICaX3X+AA0xOaR7ioaEzVybn+TusQJh/dZAsieNp8u46C1OPQnT+50e8n2ltIeO7nfbVwps4k1rfiaykcxMqVUqNIESymlgO7ubqKlCzOIBCtponXzuP/b+lDW3t7OeFNLd3z/CQlAbUQuSR17RimqoXN3e5ngKaUjvu8aH4AJ0+fhMTY6SjeOXmBDVONvlhmbfXgfn/18aQVE0kVbxY5RimroIht30izxSEzfowNPSktgFxNw1IT+lxN7K2vIpA5Sp/e7TUT2XADqCsdGjZxSamRpgqWUUkBHaxMAEjHwBCt90mzcxo6nKvSb1FWV7sIuBmdq/9/CA3QmTCPDW4HH7RqlyIamrHg3MdKJffzMfrcZl5hAiWQSVhf656ez3Eo00qfO73ebuMnW0POVO1aNSkxDZYwhrXM3NdF9D6YC4LDbqIiYSmrrjpBvVlezdws2McRk9f9ZS5+2AJ8RmvaEfo2cUmrkaYKllFJAa3M9APbI+AHvEx4eQZk9m6jG0K9RaCq3mv3FZvR/0wtgHz8Tp3hDvtlj3Z4NAMRNnHPE7aqjppDSEfoDKdhqd9AisUT0MYLgfjl51mh1rhCvkatsaGGyKaMrte/BR/brTJ5FrGnFNJeNUmRD01LyCQDjJvf/WZuSNZ69pCNVY2MYfaXUyNIESymlgLaGKgDC4gY34Xl99BTGdYb+UO2uaivJGDeh/z4+AEn+Yajr934y4jENR1eFNdhD+pR5R9zOlTyTcb5aPG31oxHWkCW0F1IbOanPEQT3G5cQS5FtAuF1oZ38lu3eSLh4iPQ3m+tPuH99Y1Fo1/qE13xCJxE4x/X/5USE005Z2BQSW0L/yxal1MjTBEsppYDOpmoAohLTBrVfd/J00kwdHS2hfQPvqy+ijSjiko/8/rKmzqXb2PFUhHa/Mkf9DuokiYi4vkcQ3C88y0oYQ3mgi+rmDib5SnAnHbl2EaAmejrpHaE9Wl3rXqt2cdy0xUfcbvxUq1ldY1HonhtjDOPbt1MVPb3PEQR7a02cQYq3BjoaRik6pVSo0gRLKaUAd0sNANGJ4we1X4T/Bn7fztCeZDShZReV4blHrCEBiIyKosSWTVQIDwdujCGlbRd1UUfuTwYwbqrVb6nJf9MfivZs20CcdBKRc+SEBKz5o2Jpp6uueOQDGyJTuQkXYUdtjjotezxFJgNCuFldaW0T000xrnFHbooK4MiYC6D9sJRSmmAppRSAt7UWgISU9EHtN37qAgCai0P3Bt7l9jDRs5f2hKPXkADUxEwjvTN0547aV1XDZFNK1/gFR902Z+Ik6kw8vsrQvYlvK1wJwPjZpxx125gcaxCMih2rRzSmoTLGkNy6neqIyUet8YkOd1ASNpnE5u2jFN3gle5YT7h0E5O76KjbpviT+foQrpFTSo0OTbCUUgqgvY4u4yQyJmFQu6VnTaLZRGOqQ3ekupI9O4iTDhwZ/Q8B3lt3aj5Jpom2utAcfKBk07vYxZCQd/JRt3XabZSFTSK+KXT7xkRWr6NJ4olMm3bUbbNnLMJjbLSF6PxRFfWNzPLtoi3t6AkJQEvCTJK8tdAemk1sW4qsRHbc9BOOuu20SblUmiS8+zaOcFRKqVCnCZZSSgEOVz1NEnfUJnSHstltlIflENsSupPz1u+yhvVOmjKwm95Yfy3Jvu1rRiym4XDv+QCvEbLyj17jA9CSOIvM7mJ87s4RjmzwvD5DdtsmymPyB/TZy0xNolgycYbo/FG7175FuHiIm7F8QNuHZVpN71r2hmatT0TVWlps8YQfZXoDgPhIJ3vsk4htCt0aOaXU6NAESymlgLCuRtrsCUPatyVuGpnuvRifL7BBBYgp+xiXcTJ+2sASrKwZSwBCtpYksX49pWGTsUfGDWh7R/ZCnOKlcmfoJYzbC/cwkUpkwpIBbS8iVEROI7U9NBP6zl3v4MFG1tyBJVhp0633Xbs79CbobensYo7rYyqSlg74i5fG+OmMc5eBu2OEo1NKhTJNsJRSCoh119AWNrgh2nuMm0ksndRVhOZw7YkNGykJn4bNGT6g7VNTUihjPI6a0BvooqW9nandO2lKPvLw7L2Nm34icKAmL5RUrn8JgMy5Zw54n66UWST76ulurhqpsIbE6zOkN6xhX0QeEjGw+eRmTprIPpNC977QmxZgy9r3SJEWnHlnDXgfGT8HOz7ay0Lv/SilRk/AEiwR+ZaIGBFJ8b8WEblPRApFZJOI9D89vVJKBVmKt4au6P4neT2S2IlzAajaHXojCTY21DPNs4u2tKOPULefiFAZOTUka0m2r/w30dJFzKxzBrxPbu4Uakwi7Au98xO/91XqJImEyQOrwQKInGD9Oa3aGVoDXWwtKmaWKaQre9mA94kOd1DsnEJcCDara978KgATl1ww4H1S8qzzWLX9wxGJSSk1NgQkwRKRbOAsoLTX4nOBqf7HjcAfAnEspZQKtOamBuKlHROfPaT9s/Ks0ew6ykJvpLrda17FIT5iZg28hgTAlTKbDF8lrtbGEYpsaHzbXqCNKCYtOX/A+zgcdooj8khuDq1+SzX1DeS71lKethxsA/9znJ5nNfVsDrHhwKtXPYlTvKSdcMWg9mtPmsl4TznG1TJCkQ1et9dHZs17lIZPwxE38Lnxpk+bQZVJxFMSes1RlVKjJ1A1WL8GbgN6z3y4Avi7sawCEkRkcOMfK6XUKKgrt5r2OZMmDGn/hMRkKknFWRd6Iwl6tv+HdiKYMv9Tg9ovcoLVBK98e+jUkri6upje9D674k/EHhYxqH3bkvLJ9JbjaQ+dhHHTu88RKW5SF10yqP1ysjIpNeOwhdD8UT6fIWXvi1Q4sojPXTiofZ0TFmLDUL0zdJpwrl+7igJ24cq7aFD7xUeFscs5ncTG0Dk3SqnRN+wES0RWAPuMMYc2OM4Eeo/xW+5fduj+N4rIWhFZW1tbO9xwlFJq0Fqq9wAQk5Y75DKqIiaT1FYYqJACotPVRV7Te+yKWzbohCRjhjUsdXNR6CRY699+lkRpJWrOxYPeN2yiVetTuT00buKNMcRvf4wGSRxU/ysAu00oj5hGcmvoNKv7ZOsW5ni30TRlxaBH4hw/6yQAGnasHInQhqTlo7/SjZ2c5Z8f/L7JcxjnqcC06T2NUserASVYIvKGiGzp47ECuB24Y6gBGGP+ZIxZaIxZmJo6xA7mSik1DK5qqwYrOXvqkMvoTMoj07uPbrcrUGEN28Y3niBZWoief9mg983IzKaccTgqQ2cC5agND1FPItNO/uyg982YaQ100VT4UaDDGpING9eyqHsd5ZOvALtz0Pu3pcwlzVuFp6V6BKIbvLo3f4tPhNzlXxj0vlMmZFNkMnBUhMZQ7RV1jcxrfJU9iScRljB+0PuHTbT6O9bt1H5YSh2vBpRgGWPOMMbMPvQB7AFygU9EpBjIAtaLyHhgH9C7Q0OWf5lSSoWW+l20EE1SataQi3Ckz8YpXvYVhs7oYVGbHqFGkpl68uCaoIF/OPCoGaS1hsZIgts/WcPcrnXszf3cgEdD7C0nK4sSMx5biCSMDW/+lm4cTDvv60PaP2qyVcO4b/N7gQxrSPaWlXFi44vsSjmLyHGTBr2/026jJHIWaS2bwZij7zDCNjz3a1KkhaTTvzqk/TNnnojH2GjYpQmWUserYTURNMZsNsaMM8bkGGNysJoBzjfGVAEvAtf4RxNcCjQbYyqHH7JSSgVWTOseqpzZyCAGGjhU8iSrz1JDUWjcwBft2Mgc93r2TvwsMoQaEgDXuLmMNzW0NwT/V3fLf39KJ2FMv/AbQ9rfZhP2Rc0grSX4CeO2zes5tfU/7Eq/kIjEoY1cmVuwDLex07o7+M3qdj37v0RLF+nnfWfIZXSmzSfetNBdF9ypDsqr61hc/gh7oueRWjDw4dl7y8tOYycTcFSE1iAkSqnRM5LzYP0Hq4arEHgI+MoIHksppYbEGEOau5TWmMF/895b9pQC3MZBd8XmAEU2PA0v3UmHCWfGp7825DJi/EOHl24O7k38xg9eZUnHO2zLuZaYxME32drPnTaHFFNPe13Z0TceIR6vj6YXv4dbnEy89CdDLicjOYGdtslEVgf3Jn7jho85veFJto07j8Tcoc/GEj3ZasJZvTV4NXLGGDb/83ZSpZm48+4acjkOu419UbMY37YVQnTycaXUyApoguWvyarzPzfGmJuMMZONMfnGmNBoXK2UUr3UVZcxjkZ8KdOHVU5YeDgl9gnENAZ/4IFtH7/Fora32ZR9FXHjht7sMWf2iXiN0L43eANdtLa1EvvGt6mVZGZfNuTuvgDETVkKQNnm9wMR2pC8/+wfOLF7FaWzbiIm+bBxnwZMRKiJLyCrcyd43AGMcOA6XC7k31+nS8LJveL/hlXW5JkLaDWRtBcFr4/c++++zllNT7Ej/SJSZp46rLK6xs8n2nTgrg7+7wOl1OgbyRospZQKeTX+UeUicgc+EW9/6mPySHcFdyRBV2cH4a/cQj0JFFz+w2GVlZSYSLFtApE1welXZoxh41++zmRTStMZ9xIeFTes8iYXnESXcdBRFJy+MVs2rWPBlp9QGD6L6Z/53rDLM1mLCcdNQ9Hof3/p8xne/eM3mePbRvVJPyEyaXizsGQlx7DdNoWomuA0sS0pLyf37ZtotCcz+arfDLu8uKlWH7mqbcFvwqmUGn2aYCmljmsdxWvwGmHCzBOGXZZn3EySaKaltjwAkQ3Nur9+k8m+Yvad8guiYhOHXV513CyyOrYFZfCBD568l5MbnmV9+hVMXfaZYZcXHxfLbscU4mpHv1ldxb5SEp79HF5xMu7avw+5X1xvabOtWpbqbaPfrO61x/6PcxsfY0f6CqacMfihzA8lItQnziW9qwjc7QGIcOBqG5up+8sVpEkDvs/+HWf08K+bvJnzaDLRdBSFxrQASqnRpQmWUuq4FlH7CSX2CcQnJAy7rGj/5LwVOz4edllD8dHTv2FZzeOsTf0MBcuvCEiZvvHziKeNurKdASlvoFa/+hgnbP8pm6OWMPfzDwSs3LrEeUzs2olxdwSszKOprauh+eHPkEIDTRf9nbiMKQEpN2/KNPaZFEzp6DbhfP25v3JG4U/ZFbOIvM8/FLByHRMW4cBH7c7RaybY3NbO3t9fwgLfZipO+SXjZiwLSLnjE6LYYc8LSjKvlAo+TbCUUscvY8jq2EFN7MyAFJc13ZrMtq1k9Js5bXz7GRZuvpstEfOZ+8UHA1Zu4jSrZq9i2wcBK/No1rz8V+Z99DWKw6Yw5Sv/wuYYfm3PfraJJ+DES8X20bmJLy8vpfH3ZzPZu4fy5Q+QO/e0gJUd5rCxN3IW45o3BazMIzHG8J/HfstpG79FecRUcm96FnEMfsj8/mTlWzVytdtHp49cTX0923+zgsXdH7Nj4d1DmlT4SBpSFpLRXYJprwtouUqp0KcJllLquFVXvptEWvCmzwtIeSmpaVSSgr12dIcC3/DGE8x45/9R7sgm58vP4AgL3E3vpJmLcBkn7pKRr5UzxvDuP3/BgjW3UBw2jfE3vUpkTHxAj5GZfxoA9dtHvlnd7i1r8f75LCb4yig7689MOSUwtYq9daQtIMVXh6u+JOBl9+bxeHn9odv59O47KI0pIOvr/8UZObw+cYeamjOBIpOJo2zkm9XtLNxN3QNnsah7LbsX3c3084c2/P+RREw5CYCKzW8HvOzejDGU1DaP6DGUUoOjCZZS6ri1v1YmaeqSgJQnIlRGTCGpbVdAyjsaYwwfPPs7Zr//FcqcE0n+ymvExCcF9BiRkREUOaYSX78xoOUeqrOzk4/uv45Td/0vO6IXMfGW14hOSAn4cXInTGAPmTj3jWyzuo9e+Qfp/zqfONqpvehJJgegD1lfYqdaTdoqPhm5m/ja+nrW3ruCsyp+z7akTzHp5ldwBKCf0qEcdht7Y+aR1foJeLsDXv5+77z2Aon/OJNJppTSMx9i6nmBT64Apsw9hS7jpHn7uyNSPkB7Zxcv/eYrjH9gEhs+fGPEjqOUGhxNsJRSx62ukrV0GQc5MwOTYAF0Js0g01OOu3NkO+p3ud28+/ubWLbpdooiZpH21deIS04bkWPVp8wnp2sX3a62ESm/eO8uiu5dzokNz7Mm42pmfPOVYY8Y2B+bTaiILSCzdfOIzFHkcnXy/u9vYsmqr1HjzMTc+C7Zcz8V8OPslzfnRFpMFJ27RibB2rz+Q1rvP4VFnSvZNONbzPzaM4gzckSOBdCVvYwoOmnbG/i+S+5uD68+9AOWfXA9XkckHdf8l9yTPhvw4+yXnZrAVts0oqvXjEj523fuZOe9Z3BB8z8JFw/tG58dkeMopQZPEyyl1HErpn4TxY5JREYG7obRmTkHh/jYt3t9wMo8VE11BZvv/TSn1T7GxrSLmXbrG8QmJI/Y8SKnnIJTvOzdGPhv4te8/FcSHzmNSd49bDvx1yy+8QFsDkfAj3OQCScQRxtVhYE9R8U7NlB2zzJOrnmUjakXkn3reyRlDG8C66NJio1iS1gBKbWBbVbn7vbw1l9/xLQXLiBBWik//zEKLr8DRAJ6nENlzjkDgNIN/w1ouXuLdrLtF8s5Z9/97Ek6idRvfkjSpKFPjDwQIkJ10kKyXLsxHQ0BK9fnM7zxrz+Q/s/TmeHdSdGJv2Bb+FzS60avn6RS6sg0wVJKHZeM18OErl00JMwOaLlp0xYA0FA0MgnWztWvYv5wEnO61rN17g+Z+6W/YnMGrs9VXybNX47PCM3b3wlYmW2tzaz57ZUs/vhmap0ZtF33FjPPuiFg5R9J5oJzAaha/3JAyvN6fax8/BekPX4Wqd4aNp/0e+Z/9e84I6IDUv7RtGUsI81bRUdVYOZgKyrcxdZffIrlJb+hKG4xYV9dxcRF5wWk7KPJz5tKEVnYigMz0IXP6+O9px8g+e+nMc2zk60Lfkze118YkSaOfbFN/RR2fNRsfCUg5dXUVPPRvZ/hjK3fpSFiAt1feJfJZ32JtuxTmewrprJ8b0COo5QaHk2wlFLHpYqizUTjQjID+y121qRZtJsIvJWbA1qu1+Pho79+hyn/uYJucbLv0n8z66JbR7xGASA5OZUiey5RVYFp6rR5zVs0/GopCxteZlXGNeTctpJxObMCUvZA5OROZTcTiCodfrO6srJi1v/yXE7a+b8URRXg+X8ryT/jygBEOXBJ+WcBULr2P8Mqx+f18dbTfyDpH6cz3bOdrQvuZuY3/0NMckYgwhwQu00oTTyRSe0b8HW2DKusysp9rL33Qk7Z8n2qI3Lp/Py7zLrg66Nyzew3c+FyGk0MzZuHl2AZY3jvv0/j+/0JLGl/h0+mfIXc294nLmsGAOPnWwlw0YfPDzdkpVQAaIKllDouVe/4EIDU6cOfYLg3u91OqTOX2KYdASuzoqyI7b88nRNKHmRD/KeIu/kjcvIDM1/PQNUkL2SyayueztYhl+FydbLyj99gxsuXEEEXu899jKU33o8jLCKAkR6diFCatIzcjs14h3gTb3w+Vj77B2L/vIwC1zo+mfUdZn37NVLScwIb7ADMLlhIhUlGdr065DL2lRWz9p7zWb7luzRGZNF5wzvMuuAbo5qM7OeYdT5heChZ8+KQ9jfG8M5Lj+F48ETmdXzIhmnfYMpt75GcPT3AkR5ddkosn4TNZ1z1yiH3+auur+eNX93AKR99Hq89gurLXmLOVT87aLLqCTMWUy2pRBYGplZWKTU8w06wRORrIrJDRLaKyC97Lf+eiBSKyE4ROXu4x1FKqUDylK2jzUQyceqcgJfdFD+DCe7d+DzDHwnt4/88QuTDpzKpayfr5v2Ehbc8TVyARwocCMf0TxMh3RSuGtpN765PPmDfL5dyUuUjbEo+h+ibPyZv6eg0O+tL9KyzceJh96qXBr1v1b4S1t1zHidt+i514Vk0X/smcz57O2Kzj0CkRxcR5mBr4nImtazG01Y/qH19Xh/vPfN7ov+8jDmda/hk+jfJvW0lSRMCMzfcUOQvPYt6E4tr8+A/a/sqK3j/nss4be1X6HQmUP8/rzLvf+5G7CPcr+8IOicuJ8HXSEvR4EautGqtnsF9/wmc2fosW7MuZ/xtH5M5q48vV0Qoz/o0c7rWUbGvNECRK6WGali/cUTkdGAFMMcY0yUi4/zLZwJXALOADOANEZlmjPEON+DjVWeni6bGGlqbGuhoacDd3oRxNeN1teLtduP1esHnwYYXAby2MHBE4oiIwhkRjTMmGWf8eJLGZZKWnITDrpWX6viW2LiZ4vCpzHYGbhLb/WTiiUTXP0vJ9lVMzD95SGW0NtWz469fZlHzfyl0TCHq8r+wYASSwYHKX3YuTe/F4Nr0Apw+8CZw3e4uPn70hywq+TPNEsuWU/7I/OWBnw9qsOaceC6N78Xi/uRpOP1/BrSP8flY9cIfmfHJT8g3XayffgvzLvtBUG/e94te+Dmcb/yLne/+k7zzvjagfUqKi6h+/CZO6fqIwvAZxFz+R+ZMDt5nbL+EmEjejDyBpXXvY9wdSFjUUffx+Qzv//uvzFx/FyfSwpYpX2DWFT8Z0REPB2riiZfQtfunVKz8O3FTB1ZjXlNby9a/38zprS9RaU+n8sJnmTXnyKNRZpx0LY7H/0bhO4+RceX3AhG6UmqIhvtX4cvAz40xXQDGmBr/8hXAE/7le0WkEFgMfDTM4x2TmhobqC7dSXt1Ee76UnytVdjbqwnvrCG2u55EXwNJ0kokkB6A43WYcPbZkqkPy6Q1agKe+IlEpE0lZcIssifnERUxus11lBpt3W4XE7v3sC798hEpP3PuGbAe6re8NaQEa+tHr5D0368x39SxKvvzLLzmZwGdPHgooiIi+CTuJGY1vo+3uwv7AAbW2L15Deb5L3Oit5C18Wcw7drfM3uEhpIfrMjICD5O/BSLm16mvbGa6MQjx1VSXEj141/jhK4P2eWcTvRlf2T+1LmjE+wALFhyKnvfyMC+5Sk4SoLl8Xh5/+n7mLf9HtLEzSczv03BJd8NiURxP1NwOdFrXmPvu4+Se+aNR9y2rKyYff/8Kqd2vk9x2GR8lz7F7LzATb0wXDNys3kvbAnzS1/EdN2DhMf0u63PZ3jvlSfI+/j7nGoa2DzxKmZe+Uvs4UcfMCU9bwEljhzGFT2Nz/sdbPpFqlJBM9zfptOAk0Xkp4ALuNUY8zGQCfQeM7bcv+y41dTUQGXRZtrLt+Ct3Y2juYTYznJSPJUk0UpCr227jZ0GWwKtjmTao7NoipxHYXQatqhknNEJhMckEhGTgDM6kbDoOMLDIggPc2CzOzFixwCm24XH3UFneyud7W10tdbhaammq6kKT0s1zrYKEjvLmd64mahGFxQDq6HLONhjS6c+Moeu+Mk40qYTnz2LjCn5xMePzqhLSo20km1rmCIewiYsHJHys7JzKCaD8PIPB7Wfq7ODDX//NksqHqPSlsbu855m6aIzRiTGoXDkX0Tch6+y9Z0nmHXmtf1u5+psZ+2jd7Co/BHaJYoNS+9j4Tn9bx8sKad/hYjnnmfdi79iwbW/6HObbncXq5/4GXOL/sB48bJh+reYc+ntIz+U/CCFOx3syrqEs8vvp2rzW4zPX97ndls3fAgv38rpnq0URs4i8Yo/MScnsCNpBsKJn1pB4Zo7iV59Hyy/AfpI/jpdXXz45L0s2PM75tPFpryvkX/ZHYgjLAgR909E6Frw/4hddTWFr9zHlItu73O7Xbt2UPvMtzitayXl9glUXvRX8vNPHdSxmmddTcEnP2b9qteZv0x7ZygVLEf9CyEibwDj+1j1ff/+ScBSYBHwlIgMatIPEbkRuBFgwoQJg9k1JLm7XJTuWEtD4Vq81duJai5kXFcx6dT1JFHdxk61LZWmsHSK4k+nMCGH8HGTiU6bRFLGZBJTxpNmsxOI73n7/57Mzxi6W6qpLt5OY9lW3FU7CWsqIqOjiLT2D3BU+mCjtWk1ydSET6QjbhKSOo3YzJmMnzKHxHHZQekIHUp8Xi9enxevx4PHa/3v9XqsZV4PxucD48P4vIjPizEGfF6EA52ejREQwXDgZ2lE/Mv3LxHEJgg2RMDsfy02BOsPuYhVjogA+5/beq078FzEZq23CYIgNpv/f/8xbNLrmIL4QxER///4jzO2NOyyvv9JnzkyA0WICPsSFlDQ9CZejwf7AG7Gi7asgWdv5ATfXtYkX8is6+8nMzZhROIbqoLTLqHswzuJXH0fZvmVfdZ4bHz3BZLf+S4nmQo2JJzB5KvuZ17q6I1CNxgz5yxh9SvLKNj7V6qKr2V8zoF+R8bn4+M3nyb5o59wkq+EzdFLyLjiPuZNGP2BEgZq3sW3UH3fo3S/cAueKe/jiDwwWXN5yW6Knv0xy5r+TZtE88n8n1Bw/leC1m/saKLCnRTl38LZm7/Jjqd+yPTP/axnncfj4ePXHydlzb18yhSzK3oeSZ/9LQW5wW/e2J/TzzyfVR/PJ3/jfbQsuIi47AOftYqKcrY//0tOqH6CCWLYmncTMy/94ZCaN04/+0baPvk/3B/8ATTBGjBftxtXZytd7S24O9twd7bR3dmK191Od5eb7u4uPB43Hrcbn8eN+LrB6wFfNzZfN8b4MMZgDPgMGH+5+/9W7v+bbP3dtGFsdow4wGbH2J3gfy52B9ic2BwOxOZA7E7Ebn2BLnYnNrsT7A7sDmuZze7AZrdjszt7ljnsDmwO639xOHA4nNjtDhx2O3abYLcJtjH6t3ssEWPM0bfqb2eRV4FfGGPe9r8uwkq2vgBgjPmZf/l/gTuNMUdsIrhw4UKzdu3aIccz2rweD8XbPqZu54dQuZGk5m1M9BQTJh4AXMZJhSObpuhJeJKnEZExk4SJ+aRNnE54eOg3w/O6XVSXbKd272a6Krdjaygkvn0vGd1lRIurZ7tWoqhyZtMUOZHu6PHYY1MJjx+PMy6N8IQ0ouMSiYlLICYmHnGEByQZMz4fbncnXa5O3K4Ours68bg66HZ34unqxOvuxOt24XV34uvuxNftwux/eFzg6UI8LsTjAl834u1CvN2Iz43N243N58ZmurH7PNiNG7vx4Nz/P904jQcn1vMwOX66FvqMWDWkiP+BPyE88NyHHLZs/7b0s9/+BLL3J0M4+HfToetMH9sdaR96rYswbtolioQ7ShDbyDSjWf+fvzB/zS1sPfsJZp1wbr/bdbu7WPv4Xczf8yfaJIp9p/ySghDoo9Sflc/+npM2fY91U77Ogqt+DFid8bevX0nX6z9mnms1+2Q8jaf/nNmnXBzkaI+udO9O4h5ZTqctippldxGTnEnVztWk7H6KPO9uqmQc1Sf+iDlnXDkmvkh69+V/ctKar1ASNoXG/M/T3dWJFL/H3Lb3sWHYnn4RU674OVEJ44Id6lG5u7189H+f5VTXm2xKvRB3xiJcdSVkVrxKrimnypZGy8l3MO20sXFuNm/dTMZTn0Zswt6pn8dti8RX9jFz294lWrrYmrCc7MvvIS59yrCOs+Ghr5Bf/jh7LnuLabPmBSj60Odxu2iq3UdL7T7am2robKnH296A6WzE1tWMo6sJp7uFcE8zkd5WIn3thBsXkcZ1XPwd9xrBiw0vdjzY8WHree0T///+v8s9X+BCz5e+hsOvMSO91hkO/gu8/5o0B/7aH3onYHqe+0sxvY928PZrJR/HZ//MmTNDo5n5fiKyzhhzWHOY4SZYXwIyjDF3iMg04E1gAjAT+CdWv6sM//KpRxvkItQTLHeXiz2bVtK4/V2iKleT27mZODoAaCGa0vCptCXNwpk9n7RpS8jImRFyzUgCwfh8VFcUU71nE+3l26BuNzFte0hzl5FkmnAe4RdVt7HTKRG4ceLzX9QGGz6x4cN6ANjN/l8B1iVvM17/cy8O4yVchjc6m88ILsJw48AtYXhw4BEnHnHiFQdeCcNrc+ATJz5bGD67E2NzYuxhGFsYPnsYxubEZ3OCzWl98yQ2xGa3vhHueW7zr3NYtVNit2qlxO6vrbKx/5cZ5kA6Aof80vH/jzHsv2bN/u2NP9kwxvp15V+OOeT5Yct8/nKslMgqxGetPmQfwX/cvsrzx3Dgt6uVZvW9rXUMeh3D+iUrPe/JyMG/qK1fwPufH1ybd8Ahv/ilv3UHnodNXsb8c647/MMRIO2tzXDvVLYlncGib/yzz212bViJ7aWvMcW7hw0xp5B7zYMkjAvt1tQ+r4+P/+9ilnS8w6bIJbiixpPQuIVpviJaiGbX5OspuPR2wiJHZ5LdQNi0+i1SX/ki6dT1LCu3ZVE16wvMu/ArA+pvFkre+/cjzFj3I1JpAqCROPamnUX2+d8hNXtacIMbpObWDtY9/DVOanyOMPHiM0Jh+Ay65t3ArDOuxeYMreaAR7Nx/WrCXrqJmb7dgHXvsDflNDLOvZXUyYGZk6+1fh/2++exOXIJi297cczXVHjcXdRVldBUuYf22hK6G8qhrQZHZy2RXXXEeBpI8DUST1u/ZXSYcFoklnZbDJ32OFzOOLzOGIwzGuOMwjijICwawqKxhUUh4THYwmNwhEcRFhaBMyyMsLBwwsPDcYSFY3eE+WuUwrA5rRoimwg2Eew2sPl/5D4DPp8PX0/tlsHn8+LzejHebnyebozPY/3v9eDzdePr9uD1duPzuPF5Pfi8Hoz3wHOf16o9s5Z7MD4PxufFeD3g8+DzecFrlYvP639Y27B/mbGeS6/XYrz+ljbWvYTpdb9x6JeXBy3rvY3/sybm4L/gRnp9odrrS9jef8/3b7O/5U1PQudfXh05iYmf/hYFWQmD/xCNoJFKsMKAvwBzATdWH6y3/Ou+D9wAeICbjTFHnWUvFBOsuooS9nz0HI49bzCtbS0x0glAiS2LqoT52HNOJGP2qaTnTB+xb8LHEp/XR1NDDQ21FXQ1VeFuqaG7owVPZyuerjbs3W3YPR3YvF3+i91rNZszVnplx4cR8Sdfdnw2q1+ZT+zY7A6wOawqdEdEz0Oc4dgckdjCIrCFRWJzRmAPi8QRFoEjLBp7eCSO8AjCIyJxhkURFhlNeFgYDrttzP/hUaFt9f3XMq/uJequ/5CMnLye5fU1Fex+6gcsrH2OJomj7MSfMO+sq4MY6eC4XC4+fvSHTN73PBGmkxpnNh1TzmPq2V8iNiEl2OENSWdHB4VrX8fd2ca4nJlkT5s7JmpF+tPd7aZ01ydERMWRMWHSQXMmjUWNjQ20N9WSmJRKdBCmKQgkYwxVFSU4xZCcljUi52bj329j7p4/snLZI5x0ZmjXJHu91pe2jcWbaa/chbexBEfbPmJdlSR215BiGrDLwfeqHSacBlsirY4kOsKS6Y5IwRs9DltMGmHx44lKHEdsYiqxCSlEx6eM+lx76vgxIglWoIVagrXq8f9l6U6r43M1yRQnLcM57VNMnHcGyWlZQY5OKRXqqssLiXloGZWOTDyf/hU+dyfNG19gdtXzROFiXeoKpl91L3EJqcEOVSl1DPG62qj+5SLE58Z500ekpAa3SagxhvrWDkqLttFcugVP9U4imwtJ7iwmy1tOrP/LawC3sVNrS6HJmUZHZAae2ExsidlEJE8gbvwkUjJyiI3TQbdUaNAEawj2bFlN9boXSFuwgtyZi7SGSik1aJvfeZrct7/aU/vtMTY2xZ1Kyvl3MCEvME2ClFLqUHs3vkv2cxexNayAqbe8TFTUUYe9GjZjDLWNDVTu3kxT2VZ8NTuJbCkixVVCtqkk3N9HHaBekqiNmEh77CRMyjQi02eQNHEW4zJzsdtDc/AVpQ6lCZZSSgVJU20FhWv+Q0RkDJn5p5KYGogZ7ZRS6sg2/edBCtZ8h83OAlKve4zxmYEZrdkYQ231PqqKNtNatgVTt4uYliJS3aVkUtuznReh2p5BU3QunsQpRKTPIDk3n6QJM5FIrYVSY58mWEoppZRSx5lPXv4j09b8gC7C2JRzPZPP+n9kZmYPaN9ut4vK4h3Ul2yls2o3tvrdxLXvJb27lERae7brJIxKRzatMbl4k6cRlTGT1EmzScqagTi1/5M6dmmCpZRSSil1HNq3cz2Nz9/G7M6P6TZ2ih051MdMxxeTBuGxYHz4PG4c7mYcHbWEd9WT3F1Jmq/moAEmGomjOiyb1thJkJJHdOZM0iYVkJQxKWTnVFNqJGmCpZRSSil1HKvetZbSlf8kqmYD6a4iEkwLtl4J1P7R+docSbRHpuOKzcE5bioJWdNJnzST2MTQmoNIqWDrL8E69iZpUkoppZRSh0mbtpC0aQfuBY3PS2d7KzaHnTBnOFGOMKKCGJ9SxwpNsJRSSimljkNisxMZmxDsMJQ65ui440oppZRSSikVIJpgKaWUUkoppVSAaIKllFJKKaWUUgESUqMIikgtUBLsOA6RAtQFOwg1avR8Hz/0XB8/9FwfX/R8Hz/0XB9fQvF8TzTGpB66MKQSrFAkImv7Gn5RHZv0fB8/9FwfP/RcH1/0fB8/9FwfX8bS+dYmgkoppZRSSikVIJpgKaWUUkoppVSAaIJ1dH8KdgBqVOn5Pn7ouT5+6Lk+vuj5Pn7ouT6+jJnzrX2wlFJKKaWUUipAtAZLKaWUUkoppQJEEyyllFJKKaWUChBNsI5ARM4RkZ0iUigi3w12PCpwRCRbRN4WkW0islVEvuFfniQir4vIbv//icGOVQWGiNhFZIOIvOR/nSsiq/3X95MiEhbsGFVgiEiCiDwtIjtEZLuInKDX9rFJRG7x/w7fIiKPi0iEXtvHDhH5i4jUiMiWXsv6vJbFcp//vG8SkfnBi1wNVj/n+h7/7/FNIvKciCT0Wvc9/7neKSJnByXoI9AEqx8iYgd+B5wLzAQ+JyIzgxuVCiAP8C1jzExgKXCT//x+F3jTGDMVeNP/Wh0bvgFs7/X6F8CvjTFTgEbg80GJSo2E3wKvGmOmA3Owzrte28cYEckEvg4sNMbMBuzAFei1fSx5BDjnkGX9XcvnAlP9jxuBP4xSjCowHuHwc/06MNsYUwDsAr4H4L9fuwKY5d/n9/779pChCVb/FgOFxpg9xhg38ASwIsgxqQAxxlQaY9b7n7di3YBlYp3jv/k3+xtwUVACVAElIlnAecCf/a8FWA487d9Ez/UxQkTigVOAhwGMMW5jTBN6bR+rHECkiDiAKKASvbaPGcaY94CGQxb3dy2vAP5uLKuABBFJH5VA1bD1da6NMa8ZYzz+l6uALP/zFcATxpguY8xeoBDrvj1kaILVv0ygrNfrcv8ydYwRkRxgHrAaSDPGVPpXVQFpwYpLBdRvgNsAn/91MtDU6xe3Xt/HjlygFvirv0non0UkGr22jznGmH3AvUApVmLVDKxDr+1jXX/Xst63HdtuAF7xPw/5c60JljquiUgM8AxwszGmpfc6Y81hoPMYjHEicj5QY4xZF+xY1KhwAPOBPxhj5gHtHNIcUK/tY4O/780KrKQ6A4jm8CZG6him1/LxQUS+j9W147FgxzJQmmD1bx+Q3et1ln+ZOkaIiBMruXrMGPOsf3H1/iYF/v9rghWfCphlwIUiUozV1Hc5Vh+dBH+zItDr+1hSDpQbY1b7Xz+NlXDptX3sOQPYa4ypNcZ0A89iXe96bR/b+ruW9b7tGCQi1wHnA1eaA5P3hvy51gSrfx8DU/2jEYVhdaZ7McgxqQDx98F5GNhujPlVr1UvAtf6n18LvDDasanAMsZ8zxiTZYzJwbqO3zLGXAm8DVzq30zP9THCGFMFlIlInn/Rp4Bt6LV9LCoFlopIlP93+v5zrdf2sa2/a/lF4Br/aIJLgeZeTQnVGCQi52A177/QGNPRa9WLwBUiEi4iuVgDm6wJRoz9kQPJoDqUiHwaq++GHfiLMeanwY1IBYqInAS8D2zmQL+c27H6YT0FTABKgMuMMYd2sFVjlIicBtxqjDlfRCZh1WglARuAq4wxXUEMTwWIiMzFGtAkDNgDXI/1haJe28cYEbkLuByr+dAG4AtYfTH02j4GiMjjwGlAClAN/Ah4nj6uZX+S/QBWM9EO4HpjzNoghK2GoJ9z/T0gHKj3b7bKGPMl//bfx+qX5cHq5vHKoWUGkyZYSimllFJKKRUg2kRQKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQDTBUkoppZRSSqkA0QRLKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQP4/WZx/F1FkhLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
18False60.05370.0124bAP.soma.v0.0009475.18e-06
19False60.05370.0124Step1.soma.v0.008395.25e-06
20False60.05370.0124Step3.soma.v0.006399.11e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "18 False 6 0.0537 0.0124 bAP.soma.v \n", + "19 False 6 0.0537 0.0124 Step1.soma.v \n", + "20 False 6 0.0537 0.0124 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "18 0.000947 5.18e-06 \n", + "19 0.00839 5.25e-06 \n", + "20 0.00639 9.11e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADjI0lEQVR4nOzdd3hc1bXw4d+aIo16t2QVW3KvcsE2Bmx6KKEHgiEEMNyECwkJcCkhJCEON+TLJSQklMSQQCBATO+9GjAB3Bsu4CJLsmT1Lo00ZX9/zEiMZDVbI43Kep9nrDlt7zVzNPJZs8sRYwxKKaWUUkoppfrOEuoAlFJKKaWUUmq40ARLKaWUUkoppYJEEyyllFJKKaWUChJNsJRSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYJEEyyllBpkRCRbRIyI2EIdixoZRORLETk+1HEopdRwoAmWUkqpIU9ElotIvf/RIiKugOU3Qx3fYGeMmW6MWRnsckXkZBFZLyINIlIoIhcGuw6llBpsRG80rJRSwSUiNmOMuw/HZwN7AXtfyhmpRGQZMMEY8/1OtvXp3AykoRRrZ0RkGrASuBx4F4gD4o0xu0MZl1JK9TdtwVJKqSAQkTwR+ZmIbAYaRMQmIgtF5D8iUi0imwK7YInIShH5fyKyWkRqReRlEUnsouwrRGS7iNSJyB4R+e8O288RkY3+cnaLyGn+9XEi8rCIFIvIfhH5rYhYe3gd40XkAxGpEJFyEXlSROIDtlWKyFz/crqIlLW+LhE529/VrNr/+qZ2eH9uEpHNIlIjIk+LiOPQ3+lD18W5MSIyIWCfR0XktwHLZ/rf02r/OcztZV3H+1tqbvO/f3kicknA9jNEZIP/XBX4k8HWba1dQ/9LRPKBD/zrnxWRA/737WMRmd4h7r+KyJv+1rpPRSRNRP4sIlUiskNE5vTyPTq5N6/xEPwSeNAY86Yxxm2MqdDkSik1EmiCpZRSwXMxcAYQD6QCrwO/BRKBm4DnRSQlYP/LgCuB0YAbuLeLckuBM4FY4ArgnoAkZwHwL+Bmf73HAnn+4x71lzsBmAOcAvygh9cgwP8D0oGpQBawDMB/cfwz4AkRiQT+CTxmjFkpIpOAFcD1QArwBvCqiIQFlH0hcBqQA+QCSzsNQGSRP7Hp6rGoh9fQmbZz01OrkD8heQT4byAJeBB4RUTCe1lXGpAMZOBrvXlIRCb7tzXgO+/x/niuEZFzOxx/HL73/lT/8pvARGAUsB54ssP+F+JLZpKBZuAz/37JwHPAn3oZd6dE5Nbuzkc3hy70H7/Fn+Q/0dWXCEopNZxogqWUUsFzrzGmwBjTBHwfeMMY84YxxmuMeRdYC3w7YP/HjTFbjTENwK+ACztrYTLGvG6M2W18PgLeARb7N/8X8Igx5l1/PfuNMTtEJNVf1/XGmAZjTClwD3BRdy/AGLPLX1azMaYM38X5cQHb/w7sAr7Alxj+wr9pCfC6/1gXcDcQARzd4f0pMsZUAq8Cs7uIYZUxJr6bx6ruXkMXAs9NT67C1/LyhTHGY4x5DF/isvAQ6vuV/z38CF+ifSGAMWalMWaL/1xtxpeUHtfh2GX+c9bkP+YRY0ydMaYZX7I7S0TiAvZ/0RizzhjjBF4EnMaYfxljPMDT+JLrw2aM+X1356ObQzOBS4Hz8SWIEcB9fYlFKaWGAk2wlFIqeAoCno8Fvtvhm/5F+JKSzvbfB9jxtTq0IyKni8jn/u551fgSp9b9soDOul2N9ZdXHFD/g/haQbokIqki8pS/S2Et8EQnMf0dmAHc57/oB1+L177WHYwxXv/rywg47kDA80YgurtYgqyg513ajAVu7HDusvC9xt6o8ifNrfa1HisiR4rIh/6ulTXA1Rz8/rbFKiJWEfm9+Lp+1vJN62TgMSUBz5s6WR7I9zlQE/BPY8xXxph64He0/4JBKaWGJU2wlFIqeAJnDSrA10IV+G1/lDHm9wH7ZAU8HwO4gPLAAv3d0p7H1yKU6m8xeANfV77WesZ3EksBvlaX5ID6Y40x0zvZN9Dv/K9jpjEmFl9LXGtdiEg08GfgYWBZQJevInyJSet+4n99+3uo7yAisli+mQGws8finks5SMcZnRqByIDltIDnBcCdHc5dpDFmRS/rShCRqIDlMfjeH4B/A68AWcaYOGA5Ae9vJ7F+DzgHOBnfJBHZ/vUdj+k3/vFkXZ6Pbg7dTPvXorNqKaVGBE2wlFKqfzwBnCUip/pbIRz+CRAyA/b5vohM849nugN4zt+tK1AYEA6UAW4ROR3fWKpWDwNXiMhJImIRkQwRmWKMKcbXlfCPIhLr3zZeRDp2R+soBqgHakQkA9/YrkB/AdYaY36Ar+vbcv/6Z4Az/HHYgRvxJXj/6emN6sgY84kxJrqbxyeHWmYnNgLf85+b02jfTe/vwNX+1iYRkSjxTU4RA20TSzzaQ/m/EZEwfzJ4JvCsf30MUGmMcfrHz32vh3Ji8L2PFfgSwt8dwmsMCmPM77o7H90c+k98v5vj/L/jtwKvDUzUSikVOppgKaVUPzDGFOBrebgNX3JUgC9ZCfy7+zi+iSgOAA7gp52UU+df/wxQhe+C/JWA7avxT3wB1AAf8U1L0mX4ErRt/mOfo30Xxc78BpjrL+t14IXWDSJyDr5JKq7xr/ofYK6IXGKM2Ymvtes+fK1wZwFnGWNaeqgvVK7DF2M1cAnwUusGY8xa4IfA/fjet120n5AjC/i0m7IP+I8rwjchxdXGmB3+bT8C7hCROuB2fOe1O//C18VwP77z+HlPL2ywMMY8gi/+L/C9hmY6+R1XSqnhRu+DpZRSISAiK4EnjDH/CHUsqvf8syJuAnL9k3l03H48vvOa2XGbUkqpkcEW6gCUUkqpocLfIje1xx2VUkqNWNpFUCmlRhgRWd7FhAXLez5aDUUiMqabiSrGhDo+pZQaTrSLoFJKKaWUUkoFibZgKaWUUkoppVSQDKoxWMnJySY7OzvUYSillFJKKaVUt9atW1dujEnpuH5QJVjZ2dmsXbs21GEopZRSSimlVLdEZF9n67WLoFJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJAMqjFYnXG5XBQWFuJ0OkMdihoEHA4HmZmZ2O32UIeihjFni5tX/3oLMvl0Ljj9W6EORymllFJDyKBPsAoLC4mJiSE7OxsRCXU4KoSMMVRUVFBYWEhOTk6ow1HD2OpP3+W71Q/DFw9Tc2wJcVGOUIeklFJKqSFi0HcRdDqdJCUlaXKlEBGSkpK0NVP1u/DtL7Q937b+kxBGopRSSqmhZtAnWIAmV6qN/i6ogRBZu5sySQKgbufHIY5GKaWUUkPJoO8iqJRSAy2qpZz9kVNwN+0mvmJdqMNRSiml1BAyJFqwQk1EuPHGG9uW7777bpYtWxa6gAIcf/zx3d6c+dxzz2XhwoXt1i1btoyMjAxmz57NjBkzeOWVV/o7TKWGlERvBc0RqZRHT2ZU016MMaEOSSmllFJDhCZYvRAeHs4LL7xAeXl5UMs1xuD1eoNaZqDq6mrWrVtHTU0Ne/bsabfthhtuYOPGjTz77LNceeWV/RqHUkOJp6WJeOpxRabiSZpEpjlAWXVtqMNSSiml1BChCVYv2Gw2rrrqKu65556DtpWVlXH++eczf/585s+fz6effgr4Wonuvvvutv1mzJhBXl4eeXl5TJ48mcsuu4wZM2ZQUFDAzTffzIwZM5g5cyZPP/00ACtXruT444/nggsuYMqUKVxyySVdfov++OOPt7VGrV69um39Cy+8wFlnncVFF13EU0891emxU6dOxWaztUseb731VqZNm0Zubi433XQTAHl5eZx44onk5uZy0kknkZ+fD8DSpUu55pprWLhwIePGjWPlypVceeWVTJ06laVLl7aVec011zBv3jymT5/Or3/964PiqKmpYezYsW2JXkNDA1lZWbhcrk7jVqq/1JUV+p5EpxKZMQ2beCnYtTW0QSmllFJqyBhSY7B+8+qXbCsK7jfJ09Jj+fVZ03vc78c//jG5ubnccsst7dZfd9113HDDDSxatIj8/HxOPfVUtm/f3m1ZX3/9NY899hgLFy7k+eefZ+PGjWzatIny8nLmz5/PscceC8CGDRv48ssvSU9P55hjjuHTTz9l0aJFB5XX2NjIxo0b+fjjj7nyyivZutV3MbhixQpuv/12UlNTOf/887ntttsOOvaLL77AYrGQkpICQEVFBS+++CI7duxARKiurgbgJz/5CZdffjmXX345jzzyCD/96U956aWXAKiqquKzzz7jlVde4eyzz+bTTz/lH//4B/Pnz2fjxo3Mnj2bO++8k8TERDweDyeddBKbN28mNze3LY64uDhmz57NRx99xAknnMBrr73Gqaeeqve7UgOuvryQeMAaN5pRORNgFVTnb4X5x4Q6NKWUUkoNAX1uwRKRLBH5UES2iciXInKdf/0yEdkvIhv9j2/3PdzQiY2N5bLLLuPee+9tt/69997j2muvZfbs2Zx99tnU1tZSX1/fbVljx45tGxe1atUqLr74YqxWK6mpqRx33HGsWbMGgAULFpCZmYnFYmH27Nnk5eV1Wt7FF18MwLHHHkttbS3V1dWUlJTw9ddfs2jRIiZNmoTdbm9LvADuueceZs+ezU033cTTTz/dNjtfXFwcDoeD//qv/+KFF14gMjISgM8++4zvfe97AFx66aWsWrWqrayzzjoLEWHmzJmkpqYyc+ZMLBYL06dPb4v5mWeeYe7cucyZM4cvv/ySbdu2HfQ6lixZ0taC99RTT7FkyZJu30el+kNjbQUAjthk4rKm4kWQsp0hjkoppZRSQ0UwWrDcwI3GmPUiEgOsE5F3/dvuMcbc3c2xh6Q3LU396frrr2fu3LlcccUVbeu8Xi+ff/45Dkf7G5HabLZ245oC790UFRXVq/rCw8PbnlutVtxud6f7dZy6XER45plnqKqqarshb21tLStWrODOO+8EfGOwWrv/dYx79erVvP/++zz33HPcf//9fPDBB72K02KxtIvZYrHgdrvZu3cvd999N2vWrCEhIYGlS5d2ei+rs88+m9tuu43KykrWrVvHiSee2G29SvWHxgZfK3l0dCwSFkWJZRSRtbtDHJVSSimlhoo+t2AZY4qNMev9z+uA7UBGX8sdjBITE7nwwgt5+OGH29adcsop3HfffW3LGzduBCA7O5v169cDsH79evbu3dtpmYsXL+bpp5/G4/FQVlbGxx9/zIIFCw4prtZWn1WrVhEXF0dcXBwrVqzgrbfeahv3tW7dui7HYQWqr6+npqaGb3/729xzzz1s2rQJgKOPPrrt+CeffJLFixf3Or7a2lqioqKIi4ujpKSEN998s9P9oqOjmT9/Ptdddx1nnnkmVqu113UoFSweZwMAEVGxAFQ4skl25oUwIqWUUkoNJUGd5EJEsoE5wBf+VdeKyGYReUREEro45ioRWSsia8vKyoIZTr+48cYb200Ice+997J27Vpyc3OZNm0ay5cvB+D888+nsrKS6dOnc//99zNp0qROyzvvvPPIzc1l1qxZnHjiidx1112kpaUdUkwOh4M5c+Zw9dVX8/DDD5OXl8e+ffvaTc+ek5NDXFwcX3zxRadlfPvb36aoqIi6ujrOPPNMcnNzWbRoEX/6058AuO+++/jnP/9Jbm4ujz/+OH/5y196Hd+sWbOYM2cOU6ZM4Xvf+x7HHPPNWJbbb7+93TTxS5Ys4YknntDugSpkvC2+BCssMhqAxrjxZHr24+qiBVkppZRSKpAE6/4uIhINfATcaYx5QURSgXLAAP8LjDbGXNldGfPmzTMd7+m0fft2pk6dGpQY1fCgvxOqP61+/Fcs2H0vtTfmExsTx7rn7+aILf9L4RVryRw7MdThKaWUUmqQEJF1xph5HdcHpQVLROzA88CTxpgXAIwxJcYYjzHGC/wdOLR+b0opFQKmpRGvESIjfC1YUWm+1ufy/B2hDEsppZRSQ0QwZhEU4GFguzHmTwHrRwfsdh6gN5JRSg164m6kiTBsNt8YwOQxUwBoOvB1KMNSSiml1BARjFkEjwEuBbaIyEb/utuAi0VkNr4ugnnAfwehLqWU6lcWVyNOcdA612dS+jhajBVvxZ6QxqWUUkqpoaHPCZYxZhUgnWx6o69lK6XUQBNXI06+ue2CWG2UWNMIr80LXVBKKaWUGjKCOougUkoNdVZPE82W9ve1q3JkEu8sDFFESimllBpKNMFSSqkANk8jLdI+wXLGZJPmKcbr8XZxlFJKKaWUjyZYvfTSSy8hIuzY0fVMYnl5ecyYMSNodS5dupTnnnuuy+3XX389GRkZeL3fXPQ9+uijpKSkMHv2bKZNm8bf//73oMWj1Ehg9zhxWdsnWCTmEC1Oyku0FUsppZRS3dMEq5dWrFjBokWLWLFiRafb3UG4CanH4+n1vl6vlxdffJGsrCw++uijdtuWLFnCxo0bWblyJbfddhslJSV9jk2pkSLM00SLJbLduohU3/2vyvK3hyIkpZRSSg0hmmD1Qn19PatWreLhhx/mqaeealu/cuVKFi9ezNlnn820adMAX6J1ySWXMHXqVC644AIaGxsBeP/995kzZw4zZ87kyiuvpLm5GYDs7Gx+9rOfMXfuXJ599tmD6n7vvfeYN28ekyZN4rXXXmtX9/Tp07nmmmu6TPpGjRrF+PHj2bdvX9u6e++9l2nTppGbm8tFF10EQGVlJeeeey65ubksXLiQzZs3A7Bs2TIuv/xyFi9ezNixY3nhhRe45ZZbmDlzJqeddhoulwuAO+64g/nz5zNjxgyuuuoqOt682uv1kp2dTXV1ddu6iRMnauKnBqUw04THFtFuXWLWZAAainWqdqWUUkp1LxjTtA+cN2+FA1uCW2baTDj9993u8vLLL3PaaacxadIkkpKSWLduHUcccQQA69evZ+vWreTk5JCXl8fOnTt5+OGHOeaYY7jyyiv561//yrXXXsvSpUt5//33mTRpEpdddhl/+9vfuP766wFISkpi/fr1ndadl5fH6tWr2b17NyeccAK7du3C4XCwYsUKLr74Ys455xxuu+02XC4Xdru93bF79uxhz549TJgwoW3d73//e/bu3Ut4eHhbwvPrX/+aOXPm8NJLL/HBBx9w2WWXsXHjRgB2797Nhx9+yLZt2zjqqKN4/vnnueuuuzjvvPN4/fXXOffcc7n22mu5/fbbAbj00kt57bXXOOuss9rqtFgsnHPOObz44otcccUVfPHFF4wdO5bU1NRenyalBkq4cR6UYI3KmojbWPBU7A5RVEoppZQaKrQFqxdWrFjR1tpz0UUXtWsxWrBgATk5OW3LWVlZHHPMMQB8//vfZ9WqVezcuZOcnBwmTZoEwOWXX87HH3/cdsySJUu6rPvCCy/EYrEwceJExo0bx44dO2hpaeGNN97g3HPPJTY2liOPPJK333677Zinn36a2bNnc/HFF/Pggw+SmJjYti03N5dLLrmEJ554ApvNl1+vWrWKSy+9FIATTzyRiooKamtrATj99NOx2+3MnDkTj8fDaaedBsDMmTPJy8sD4MMPP+TII49k5syZfPDBB3z55ZcHvY4lS5bw9NNPA/DUU091+5qVCiWHacZra99F0B7moMSSQlhNXmiCUkoppdSQMbRasHpoaeoPlZWVfPDBB2zZsgURwePxICL84Q9/ACAqKqrd/iLS7XJnOpbRU3lvv/021dXVzJw5E4DGxkYiIiI488wzAV8yc//993da3uuvv87HH3/Mq6++yp133smWLd23CIaHhwO+Vii73d4Wj8Viwe1243Q6+dGPfsTatWvJyspi2bJlOJ3Og8o56qij2LVrF2VlZbz00kv88pe/7LZepULCGBzGiemQYAFUhGUS21QQgqCUUkopNZRoC1YPnnvuOS699FL27dtHXl4eBQUF5OTk8Mknn3S6f35+Pp999hkA//73v1m0aBGTJ08mLy+PXbt2AfD4449z3HHH9ar+Z599Fq/Xy+7du9mzZw+TJ09mxYoV/OMf/yAvL4+8vDz27t3Lu+++2zbeqyter5eCggJOOOEE/u///o+amhrq6+tZvHgxTz75JOAb25WcnExsbGyv4mtNppKTk6mvr+9y1kMR4bzzzuN//ud/mDp1KklJSb0qX6mBZNzN2MSLCTs4wWqIHkOaez90GGOolFJKKRVIE6werFixgvPOO6/duvPPP7/LiSUmT57MAw88wNSpU6mqquKaa67B4XDwz3/+k+9+97vMnDkTi8XC1Vdf3av6x4wZw4IFCzj99NNZvnw5Xq+Xt956izPOOKNtn6ioKBYtWsSrr77aaRk/+MEPWLt2LR6Ph+9///vMnDmTOXPm8NOf/pT4+HiWLVvGunXryM3N5dZbb+Wxxx7r5bsD8fHx/PCHP2TGjBmceuqpzJ8/v23b8uXLWb58edvykiVLeOKJJ7R7oBq0mpvqAZBOEixvfA4xNFJfXTbQYSmllFJqCJGOM76F0rx588zatWvbrdu+fTtTp04NUURqMNLfCdVfqov3Ev/gbFZNvZ1FS25st23t208y77MfsffcV8iZ3bsWaKWUUkoNXyKyzhgzr+N6bcFSSim/5qY6AKzhB4+LjMvwTdVeW7RzQGNSSiml1NCiCZZSSvm1NPoSLIsj+qBtqdmT8RrBVbZroMNSSiml1BAyJBKswdSNUYWW/i6o/tTiH4Nl66QFKzY6hgOShLU6b4CjUkoppdRQMugTLIfDQUVFhV5YK4wxVFRU4HA4Qh2KGqZcTn+C1UkLFkCZPYPohvyBDEkppZRSQ8ygvw9WZmYmhYWFlJXpzF3Kl3BnZmaGOgw1TLn9CZY9ovMEqy4yi7E1H3e6TSmllFIKBiDBEpHTgL8AVuAfxphDuluw3W4nJyenX2JTSqlAnuYGAMIjO0+w3HHZxNe8hruhCltUwkCGppRSSqkhol+7CIqIFXgAOB2YBlwsItP6s06llDpcbQlWROc32ralTACgvGDHgMWklFJKqaGlv8dgLQB2GWP2GGNagKeAc/q5TqWUOiymhxasmNGTAKgu0KnalVJKKdW5/k6wMoCCgOVC/7o2InKViKwVkbU6zkopFVItvgQrIiqm080pY333wmou1analVJKKdW5kM8iaIx5yBgzzxgzLyUlJdThKKVGMONqpNGEExFm73R7alISJSYBqdozwJEppZRSaqjo7wRrP5AVsJzpX6eUUoOOxdVIE+FYLdLpdqtFOGBNJ7Jep2pXSimlVOf6O8FaA0wUkRwRCQMuAl7p5zqVUuqwWFyNOCW8231qIrJIaNbviZRSSinVuX5NsIwxbuBa4G1gO/CMMebL/qxTKaUOl8XdSLN0fyPr5tixJJlKTHP9AEWllFJKqaGk3++DZYx5A3ijv+tRSqm+snqaaJaIbvexpYyHYqjcv5OkcUcMUGRKKaWUGipCPsmFUkoNFjZPEy5r9y1YcRm+mQTL9+m9sJRSSil1ME2wlFLKz+5pwmXpvgVrdLbvXukNxV8NREhKKaWUGmI0wVJKKb8wrxOPrfsEKzUlhXITh6nUqdqVUkopdTBNsJRSyi/cOPHYIrvdx2IRSu3pRNTpVO1KKaWUOpgmWEop5RdunHh7aMECqI8cQ2Jz4QBEpJRSSqmhRhMspZTyizBOjL37FiwAb0IOaZTT2FA3AFEppZRSaijRBEsppQDjbsEuHuhFghWeOgGA/Xt1JkGllFJKtacJllJKAc1N/hsHh0X1uG9i5hQAKgs0wVJKKaVUe5pgKaUU0OTv7mcJ67kFK9U/Vbuz5Ot+jUkppZRSQ48mWEopBTjrqwAQR2yP+zpik6gkDnul3gtLKaWUUu1pgqWUUoCrsQYAa0R8r/Y/4BhHcoO2YCmllFKqPU2wlFIKaGnwJVi2iJ5bsADq4iaT5c7H7XL1Z1hKKaWUGmI0wVJKKcDjb8GyRfYuwbKkzSBCWti/d1t/hqWUUkqpIUYTLKWUAlxNvgQrLCqhV/sn5MwGoGz3hv4KSSmllFJDkCZYSinFNy1YUbG9S7CyJs/BY4SW/Zv7MyyllFJKDTGaYCmlFOBx1gIQExvfq/3DI6IpsqbjqNR7YSmllFLqG31KsETkDyKyQ0Q2i8iLIhLvX58tIk0istH/WB6UaJVSqp94nbXUGwcxkY5eH1MeOYFRTbv7MSqllFJKDTV9bcF6F5hhjMkFvgJ+HrBttzFmtv9xdR/rUUqpfmVprqNBIrBapNfHuJKnkWkOUFNT1Y+RKaWUUmoo6VOCZYx5xxjj9i9+DmT2PSSllBp4lpY6miTykI6JyJoJQMGO9f0RklJKKaWGoGCOwboSeDNgOUdENojIRyKyuKuDROQqEVkrImvLysqCGI5SSvWezVWH0xJ9SMeMnjQPgJq96/ojJKWUUkoNQbaedhCR94C0Tjb9whjzsn+fXwBu4En/tmJgjDGmQkSOAF4SkenGmNqOhRhjHgIeApg3b545vJehlFJ943DXUmfr3QyCrZIzJ1FNDNZinapdKaWUUj49JljGmJO72y4iS4EzgZOMMcZ/TDPQ7H++TkR2A5OAtX0NWCml+kOMp5ryiJxDO0iEgoipjKr7sn+CUkoppdSQ09dZBE8DbgHONsY0BqxPERGr//k4YCKwpy91KaVUf4o1tbSEJx7ycU0ps8j25FNbU9kPUSmllFJqqOnrGKz7gRjg3Q7TsR8LbBaRjcBzwNXGGL36UEoNSqalgQia8TgOPcGKyDkSixjyt37WD5EppZRSaqjpsYtgd4wxE7pY/zzwfF/KVkqpgVJfVUoMYI1OOuRjs2YcAx9B3Z7VcMwZwQ9OKaWUUkNKMGcRVEqpIam6/AAAYbGjDvnY+JR0iiSVsBKd6EIppZRSmmAppRR1lb4EKyr+0BMsgAPR0xhdvw3/PD9KKaWUGsE0wVJKjXhNVb4EKyZp9GEdb9Lnkk4ZhYX7ghmWUkoppYYgTbCUUiOep2Y/AAmpYw/r+JRpvnup52/8MGgxKaWUUmpo0gRLKTXiWeuKqDZRxMbFHdbxmdOOxokdb96nQY5MKaWUUkONJlhKqREvvPEA5ZZkROSwjrfYw9nrmE5a1bogR6aUUkqpoUYTLKXUiBfpLKHWfngTXLSqTzuS8Z69VJSXBikqpZRSSg1FmmAppUa8eHcZzZFpfSojdsrxWMSQt+H9IEWllFJKqaFIEyyl1IjW0lRPIjV4YjP7VE7OrONoMTaad30SpMiUUkopNRRpgqWUGtHKC3YCYE3K6VM5YRFR7AmfTFL5mmCEpZRSSqkhShMspdSIVrPfl2BFpU3sc1n1aQsZ795FeXl5n8tSSiml1NCkCZZSakRrOPA1AKOyp/S5rMSZp2ITL7u+eK3PZSmllFJqaNIESyk1opmKPdSYKFJHje5zWdmzT6CeCLxfvRuEyJRSSik1FGmCpZQa0aJrd1NkH3PY98AKZLGHsTt6HuNqPsfr8QYhOqWUUkoNNZpgKaVGLmMY3ZJHdfT4oBXpHncSaZSze9vaoJWplFJKqaFDEyyl1IhVV1lEPHV4kiYHrcyxC88BoHSDjsNSSimlRqI+JVgiskxE9ovIRv/j2wHbfi4iu0Rkp4ic2vdQlVIquA7s2giAI2N60MpMTh9HnmUssYUrg1amUkoppYaOYLRg3WOMme1/vAEgItOAi4DpwGnAX0XEGoS6lFIqaOrytwKQMm5WUMstSz+OKc1bKS0pCmq5SimllBr8+quL4DnAU8aYZmPMXmAXsKCf6lJKqcNTtp1aE0lGZt9uMtxR6sLvYRcPX6/8d1DLVUoppdTgF4wE61oR2Swij4hIgn9dBlAQsE+hf91BROQqEVkrImvLysqCEI5SSvVOVO1uCmxjsNmC28A+ZvpCCi3pxOx+NajlKqWUUmrw6zHBEpH3RGRrJ49zgL8B44HZQDHwx0MNwBjzkDFmnjFmXkpKyqEerpRSh8cYUp17qQriDIJtRCjKOJ3pzZvYn78n+OUrpZRSatDqMcEyxpxsjJnRyeNlY0yJMcZjjPECf+ebboD7gayAYjL965RSalBorComnjq8QZxBMNCYk36IAHvfurdfyldKKaXU4NTXWQRHByyeB2z1P38FuEhEwkUkB5gIrO5LXUopFUzF/hkEI4I4g2CgtOypbIk+mmlFz9FQX9cvdSillFJq8OnrGKy7RGSLiGwGTgBuADDGfAk8A2wD3gJ+bIzx9LEupZQKmpp9WwAYNX52v9XhWHwtidSx9aVD7j2tlFJKqSHK1peDjTGXdrPtTuDOvpSvlFL9pmw7NSaKzKxx/VbFpAWnsWHlkczc9VdK8y9i1Jgp/VaXUkoppQaH/pqmXSmlBrXIml3st43Bau2/P4NisZB44X0YI9Q+9j2qSgv7rS6llFJKDQ6aYCmlRh5jSGvOo7o/ZhDsYOy4yXx97L1kuvOx/XU+m/90Drv+81K/16uUUkqp0NAESyk14tRXlfhmEEyeNCD1zT5pCfuXvMW2mKPJrV2Ja6WOyVJKKaWGK02wlFIjTtHe7QBEpU0csDrHT5vHkTc+z+dx3yalpaDnA5RSSik1JPVpkgsVAsbgdjXT1NSIs6melqYmWpwNtDgb8XpciPHiNQaMF+P1gDEY4wGvF2PAWCx4sWGx2bDZ7FhsYdhsNmy2MGz2MKw2G7YwBzZHNHZHJHa7nTCrBREJ9StXKmhqi78GIDFzYFqwArkSxpNc8wbOukocMYkDXr9SSiml+pcmWCHgcbuoKiuipqyIhqpinNUleBqq8DqrkaYaLC212Fy1hLnriPDUE+ltINI0Ek4z4aYFmxhigJgBiNVlrNQThpMwWiSMFsJpsYThknBcFgduSzgeSzgeqwOvzYHXGo6xOTDWCLA7wBaBhEVgsTuwhEViCYvAEhaBLTwKW3gk9vAI7I4owiKiCAuPxOFw4LBbCLdZsVo0qVOHzxjj/+lfDljXXLYHgNSx/XOT4e5EZUyFPMjbsYEp808a8PrVN4zXQ7OzkabGBpqaGmhpaqTZ2Yi7pQlv68PdjHE1YdzNeNwevB43Xq8b43GD8SLGjXi9iPG0LWMMiPi+1EICHmDEAggWiyBiwSICFgsWsYDFilhsYPX9FKsNLDbEageLDYvV99xitbVtt9hsiMWO1b/eYrMjVhtWqx2rzYbV5ltvtfn2sdrtvi/XLFZsVgsW/TurlFJBpwlWMBlDTXU5ZYW7qDuwF2f5PqgtJLyhGEdzOVGuSmK9NcSZOpLFkNxJEY2EUy/RNFmicVqjaQpPptqag9sehbFFgD0CsYUjdl/iYrVHYg2PwBrmAGsYIhYQQSxWBMFYLIhYfS1QIliNF4wb43HhcbvweFx4XS68XjdetwvjdmHczYi7CXE7we1E3E1Y3E7E7cTi8T1sHicOrxObpwa7u5kwbzNhphl/CoYFc1hvodtYcBJGFWG4seHBikeseMWKV2z+xzfPPW3PrXjEhhEbXixYBBABfK+79bkEPDd8c2HR7gII8f1rAtYYLwCCF0zA3gH7+J57EePfL2Ad/nUdjxFjAmoPOLY1K/C/j9L6fpqOUdIuzm/2D9yXtv1pi/ubddLuOP9PE3hc4H7Q1Zn9JqLO1rd7Oe3XcdDmDsvS6T6dxWHMweV2tt9MqaNMEkiJHIivKdobO+1I+BQqv/ocNMHqE6ezieqKEuoqS2mqKcVVV46noQLTVI1x1kJzHZaWeqzuBuzuesI9DTi8jUSaRiJNE1HixAE4gIRQv5gQcBkrLix4Ebz+n0YseLD4P/kW33r55rlp3Vfa72OktQz/evGNQAj8RPo6QnTy2W9d1cUfl/Z/q7sQ8EWKdPGXhA7bjOls346hBWw3XZd70L50eO3dxNSXfTvuf9Cxpn/qUX3T1f+BqmubrdOIvOBvnDBlVKhD6RVNsA6Rx+2iJP9ryvZto7F4J5bK3UQ25BPbfIAUTylx0kxcwP4txkaZJYkaaxIVjrEUO5IwkSlITCphcaOISBhNdOJo4hJGERWXSKQ9jMiQvbogMQY8LeBqwtXcSLOzAZezkRZnAy5nE+6WRtzORjwtjd98S+xq8n1L7GoCly+ZMx4XxuMCrwu8bvC4wetGvC4sxoPVuLEb33ObcWPBg9V4OiQy0Jp4fJPMcNDPb75j9j33Bqz1+pM0b8Ae3g4/fRcUgd9UB2yXrtb5LkQQ/Bclrcu2tmPa3tLWBDHgeWt50PrDv76tO2dAghmwjwlc1/a8dV/fOyIIRlpr7FhnwOFtpZi2WLr9D1y+2d75f94dypDOUqzAcgPiaT3fncbWfkMxIOMWk8LAS8qYQLGk4Nj/WQhqH/yaGuooP5BPbWkBjZX7aakuRupLsDeWEt5cQYS7mihPLbHeWqKliTQgrZNyPEZokEgaJRKnJZJmaxSusHgabZmU2aNw26Mx9mgIi8Rid2ANiwh4OLDYfa3tbevsYdhsYdjtvu7VVqsVS2sLk8Xi+1LLYkesVhCL79NiDCKtP2lb9nq9eDxePF4vbo8Xr9fg8bjxeP0tZG4X3tYvwDytX4i5MV43Xo8L43H717vbtht/yxr+dbS2snl9xwUu4/X4/5a6/V3IPRjjBa8XjP+58SJer2+7MViMh9Yvm3xfBgX8NAYLnrYvlCzG/wUT4G09Ia0tym3Lvn/a/YWQzj7rdPKZ7rhsOknCOhYm7bcF7GtE2u1q6GRZvtk/cOvB3+l0/EJIutlGh+WA7Qd1y++u3O5To85eX1cx9FRPu+2aIxwWTVQPjzc8h7hIe6jD6DVNsLpRXryPfRs/oLlwE1FVO0l07iPVc4B08ZDu36feRHDANppyx1iKoo5C4jIJSxpDTGoOSRnjSEjJIMNiJSOkr2SAiYAtHGzh2CPiGTofB6UGxv74+Uys/IjmZifh4Y5QhzNgmp2NlBXuoap4N42leXiq8rHXFRLlLCbaVUGCt4IYmsjqcJzLWKmUeGqtCTTa46mJHEuBIxEiE7FEJWGPScYRm4IjNoWI+BSi45KJjIoh1mIhNiSvtHtW/0MppVTvHBHqAA6RJljd2LXy3yzc+Xs8RiiwZFASMY6CuJOwJk8gJmMyaTnTSUjJYIJFJ2NUSvWefdoZxH36Bpu+eItZx54b6nCCxni9lJftp2TvNhqLvsJU7MJel09UUxGJrhKSTDWZYsj07+81QrkkUGlLpSwih6LIhZjoVOxxo3EkZBCbkkFC2hii40eRarGSGtJXp5RSSvWOmIP6FIfOvHnzzNq1a0MdRpvyon1UlexjzJS5hEdEhzocpdQw4Wysx3PXeLbGHseR//NMqMM5ZM7GOkp2baQ6/0taSr/GWr2H2MZ8Ut37iaGpbT+3sVBiSaHSPpqmyHQ8sZnYEscQPSqHhIwJpKTnYLWHh/CVKKWUUodPRNYZY+Z1XK8tWN1ITh9LcvrYUIehlBpmHJHRrEk+nVllr1FZUkhiambPB4VAk7OFvF1bqdi9Hu+BL4ms3kmacw/p3gOMFcNYfGOdDsgoKsIz+TI+F0kaT2TaZJLGTCUlayIZYeEjq4u0UkqpEU8TLKWUCoFRp9yA9clX2PvsbSRe+6+QxmKMoWh/PsVfraOxcDP2sm0kNuxijKeAqdIC+BKpYms6ZVETyU84C9voGcSPmUF6zhQyoqI0iVJKKaX8NMFSSqkQGDtpFp+mfIeFZc+xd9PH5Mw6dkDqra+vpWDHeqrzNuIt+ZLYmp2kN+8lQ2rbkqQKiafEMY5tCUcSlj6T5PFzSB03i8zwSAZnW5tSSik1eOgYLKWUCpHK8hJa7j8aGx648i2Sx0wJWtlet4uivdso270B5/6thFfsYFTTLtK9B7D4p79vNOEUhY2lJmYSJnUasWNnkzH5CKISOpv4XCmllFKBuhqDpQmWUkqF0M4tq0l77lwQYd+CXzPz1CsRa+87F3jdLg7kf03p7o04i7Zir9hJQsNuMtyFhIsL8HXvK7KMpjxqAi2JUwjPzCV14lzSxk5BLDphuFJKKXU4+iXBEpGngcn+xXig2hgzW0Syge3ATv+2z40xV/dUniZYSqmRaNeOTbifuZIp3l2USDIFiUdjTZ2KLTELmy0cI4LL2YC7rgxPQyXU7ieyoYCE5iJGecuwi6etrGKSKXXk0BA3EUvqNBKzZ5E1eS4RUToTqlJKKRVM/d6CJSJ/BGqMMXf4E6zXjDEzDqUMTbCUUiOV2+VizdtPErb1KSY2bSJWGrvct4oYSq1p1EZk0hKdhT1lPLFjZjJ64hzi4hMHMGqllFJq5OrXadpFRIALgRODUZ5SSo00Nrudo85cCmcuxeX2sP/AfmpK8/G6XWC82COiiU4YRVxSKgmRkSSEOmCllFJKdSpYswguBkqMMV8HrMsRkQ1ALfBLY8wnQapLKaWGNbvNSkbmGDIyx4Q6FKWUUkodoh4TLBF5D+hsSqlfGGNe9j+/GFgRsK0YGGOMqRCRI4CXRGS6Maa2k/KvAq4CGDNGLyaUUkoppZRSQ1ePCZYx5uTutouIDfgOcETAMc1As//5OhHZDUwCDhpgZYx5CHgIfGOwDiV4pZRSSimllBpMLEEo42RghzGmsHWFiKSIiNX/fBwwEdgThLqUUkoppZRSatAKxhisi2jfPRDgWOAOEXEBXuBqY0xlTwWtW7euXET2BSGmYEoGykMdhBower5HDj3XI4ee65FFz/fIoed6ZBmM53tsZysH1Y2GByMRWdvZ9ItqeNLzPXLouR459FyPLHq+Rw491yPLUDrfwegiqJRSSimllFIKTbCUUkoppZRSKmg0werZQ6EOQA0oPd8jh57rkUPP9cii53vk0HM9sgyZ861jsJRSSimllFIqSLQFSymllFJKKaWCRBMspZRSSimllAoSTbC6ISKnichOEdklIreGOh4VPCKSJSIfisg2EflSRK7zr08UkXdF5Gv/z4RQx6qCQ0SsIrJBRF7zL+eIyBf+z/fTIhIW6hhVcIhIvIg8JyI7RGS7iByln+3hSURu8P8N3yoiK0TEoZ/t4UNEHhGRUhHZGrCu08+y+NzrP++bRWRu6CJXh6qLc/0H/9/xzSLyoojEB2z7uf9c7xSRU0MSdDc0weqCiFiBB4DTgWnAxSIyLbRRqSByAzcaY6YBC4Ef+8/vrcD7xpiJwPv+ZTU8XAdsD1j+P+AeY8wEoAr4r5BEpfrDX4C3jDFTgFn4zrt+tocZEckAfgrMM8bMAKzARehnezh5FDitw7quPsunAxP9j6uAvw1QjCo4HuXgc/0uMMMYkwt8BfwcwH+9dhEw3X/MX/3X7YOGJlhdWwDsMsbsMca0AE8B54Q4JhUkxphiY8x6//M6fBdgGfjO8WP+3R4Dzg1JgCqoRCQTOAP4h39ZgBOB5/y76LkeJkQkDjgWeBjAGNNijKlGP9vDlQ2IEBEbEAkUo5/tYcMY8zFQ2WF1V5/lc4B/GZ/PgXgRGT0ggao+6+xcG2PeMca4/YufA5n+5+cATxljmo0xe4Fd+K7bBw1NsLqWARQELBf616lhRkSygTnAF0CqMabYv+kAkBqquFRQ/Rm4BfD6l5OA6oA/3Pr5Hj5ygDLgn/4uof8QkSj0sz3sGGP2A3cD+fgSqxpgHfrZHu66+izrddvwdiXwpv/5oD/XmmCpEU1EooHngeuNMbWB24zvHgZ6H4MhTkTOBEqNMetCHYsaEDZgLvA3Y8wcoIEO3QH1sz08+MfenIMvqU4Hoji4i5EaxvSzPDKIyC/wDe14MtSx9JYmWF3bD2QFLGf616lhQkTs+JKrJ40xL/hXl7R2KfD/LA1VfCpojgHOFpE8fF19T8Q3Rife360I9PM9nBQChcaYL/zLz+FLuPSzPfycDOw1xpQZY1zAC/g+7/rZHt66+izrddswJCJLgTOBS8w3N+8d9OdaE6yurQEm+mcjCsM3mO6VEMekgsQ/BudhYLsx5k8Bm14BLvc/vxx4eaBjU8FljPm5MSbTGJON73P8gTHmEuBD4AL/bnquhwljzAGgQEQm+1edBGxDP9vDUT6wUEQi/X/TW8+1fraHt64+y68Al/lnE1wI1AR0JVRDkIichq97/9nGmMaATa8AF4lIuIjk4JvYZHUoYuyKfJMMqo5E5Nv4xm5YgUeMMXeGNiIVLCKyCPgE2MI343JuwzcO6xlgDLAPuNAY03GArRqiROR44CZjzJkiMg5fi1YisAH4vjGmOYThqSARkdn4JjQJA/YAV+D7QlE/28OMiPwGWIKv+9AG4Af4xmLoZ3sYEJEVwPFAMlAC/Bp4iU4+y/4k+3583UQbgSuMMWtDELY6DF2c658D4UCFf7fPjTFX+/f/Bb5xWW58wzze7FhmKGmCpZRSSimllFJBol0ElVJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJqkBGRbBExImILdSxqZBCRL0Xk+FDHoZRSw4EmWEoppYY8EVkuIvX+R4uIuAKW3wx1fIOdMWa6MWZlsMsVkZNFZL2INIhIoYhcGOw6lFJqsBFjTKhjUEqpYUVEbMYYdx+Ozwb2Ava+lDNSicgyYIIx5vudbOvTuRlIQynWzojINGAlcDnwLhAHxBtjdocyLqWU6m/agqWUUkEgInki8jMR2Qw0iIhNRBaKyH9EpFpENgV2wRKRlSLy/0RktYjUisjLIpLYRdlXiMh2EakTkT0i8t8dtp8jIhv95ewWkdP86+NE5GERKRaR/SLyWxGx9vA6xovIByJSISLlIvKkiMQHbKsUkbn+5XQRKWt9XSJytr+rWbX/9U3t8P7cJCKbRaRGRJ4WEcehv9OHrotzY0RkQsA+j4rIbwOWz/S/p9X+c5jby7qO97fU3OZ///JE5JKA7WeIyAb/uSrwJ4Ot21q7hv6XiOQDH/jXPysiB/zv28ciMr1D3H8VkTf9rXWfikiaiPxZRKpEZIeIzOnle3Ryb17jIfgl8KAx5k1jjNsYU6HJlVJqJNAESymlgudi4AwgHkgFXgd+CyQCNwHPi0hKwP6XAVcCowE3cG8X5ZYCZwKxwBXAPQFJzgLgX8DN/nqPBfL8xz3qL3cCMAc4BfhBD69BgP8HpANTgSxgGYD/4vhnwBMiEgn8E3jMGLNSRCYBK4DrgRTgDeBVEQkLKPtC4DQgB8gFlnYagMgif2LT1WNRD6+hM23npqdWIX9C8gjw30AS8CDwioiE97KuNCAZyMDXevOQiEz2b2vAd97j/fFcIyLndjj+OHzv/an+5TeBicAoYD3wZIf9L8SXzCQDzcBn/v2SgeeAP/Uy7k6JyK3dnY9uDl3oP36LP8l/oqsvEZRSajjRBEsppYLnXmNMgTGmCfg+8IYx5g1jjNcY8y6wFvh2wP6PG2O2GmMagF8BF3bWwmSMed0Ys9v4fAS8Ayz2b/4v4BFjzLv+evYbY3aISKq/ruuNMQ3GmFLgHuCi7l6AMWaXv6xmY0wZvovz4wK2/x3YBXyBLzH8hX/TEuB1/7Eu4G4gAji6w/tTZIypBF4FZncRwypjTHw3j1XdvYYuBJ6bnlyFr+XlC2OMxxjzGL7EZeEh1Pcr/3v4Eb5E+0IAY8xKY8wW/7najC8pPa7Dscv856zJf8wjxpg6Y0wzvmR3lojEBez/ojFmnTHGCbwIOI0x/zLGeICn8SXXh80Y8/vuzkc3h2YClwLn40sQI4D7+hKLUkoNBZpgKaVU8BQEPB8LfLfDN/2L8CUlne2/D7Dja3VoR0ROF5HP/d3zqvElTq37ZQGddbsa6y+vOKD+B/G1gnRJRFJF5Cl/l8Ja4IlOYvo7MAO4z3/RD74Wr32tOxhjvP7XlxFw3IGA541AdHexBFlBz7u0GQvc2OHcZeF7jb1R5U+aW+1rPVZEjhSRD/1dK2uAqzn4/W2LVUSsIvJ78XX9rOWb1snAY0oCnjd1sjyQ73OgJuCfxpivjDH1wO9o/wWDUkoNS5pgKaVU8ATOGlSAr4Uq8Nv+KGPM7wP2yQp4PgZwAeWBBfq7pT2Pr0Uo1d9i8Aa+rnyt9YzvJJYCfK0uyQH1xxpjpneyb6Df+V/HTGNMLL6WuNa6EJFo4M/Aw8CygC5fRfgSk9b9xP/69vdQ30FEZLF8MwNgZ4/FPZdykI4zOjUCkQHLaQHPC4A7O5y7SGPMil7WlSAiUQHLY/C9PwD/Bl4BsowxccByAt7fTmL9HnAOcDK+SSKy/es7HtNv/OPJujwf3Ry6mfavRWfVUkqNCJpgKaVU/3gCOEtETvW3Qjj8EyBkBuzzfRGZ5h/PdAfwnL9bV6AwIBwoA9wicjq+sVStHgauEJGTRMQiIhkiMsUYU4yvK+EfRSTWv228iHTsjtZRDFAP1IhIBr6xXYH+Aqw1xvwAX9e35f71zwBn+OOwAzfiS/D+09Mb1ZEx5hNjTHQ3j08OtcxObAS+5z83p9G+m97fgav9rU0iIlHim5wiBtomlni0h/J/IyJh/mTwTOBZ//oYoNIY4/SPn/teD+XE4HsfK/AlhL87hNcYFMaY33V3Pro59J/4fjfH+X/HbwVeG5iolVIqdDTBUkqpfmCMKcDX8nAbvuSoAF+yEvh393F8E1EcABzATzspp86//hmgCt8F+SsB21fjn/gCqAE+4puWpMvwJWjb/Mc+R/suip35DTDXX9brwAutG0TkHHyTVFzjX/U/wFwRucQYsxNfa9d9+FrhzgLOMsa09FBfqFyHL8Zq4BLgpdYNxpi1wA+B+/G9b7toPyFHFvBpN2Uf8B9XhG9CiquNMTv8234E3CEidcDt+M5rd/6Fr4vhfnzn8fOeXthgYYx5BF/8X+B7Dc108juulFLDjd4HSymlQkBEVgJPGGP+EepYVO/5Z0XcBOT6J/PouP14fOc1s+M2pZRSI4Mt1AEopZRSQ4W/RW5qjzsqpZQasbSLoFJKjTAisryLCQuW93y0GopEZEw3E1WMCXV8Sik1nGgXQaWUUkoppZQKEm3BUkoppZRSSqkgGVRjsJKTk012dnaow1BKKaWUUkqpbq1bt67cGJPScf2gSrCys7NZu3ZtqMNQSimllFJKqW6JyL7O1msXQaWUUkoppZQKEk2wlFJKKaWUUipINMFSSqnD8Pna1ewqLg91GEoppZQaZAbVGKzOuFwuCgsLcTqdoQ5FDTEOh4PMzEzsdnuoQ1HDzNd797LwtW/xiXcWY3+9ErtVv6tSSimllM+gT7AKCwuJiYkhOzsbEQl1OGqIMMZQUVFBYWEhOTk5oQ5HDTNln/2bicBiyybWbd3CEbNmhTokpZRSSg0Sg/5rV6fTSVJSkiZX6pCICElJSdryqfpF5IE1bc/Lvvw4hJEopZRSarAZ9AkWoMmVOiz6e6P6S2TTAbbaZ9KIg7DiNT0foJRSSqkRY0gkWEopNZjEustpjBjN/ojJjKrfHupwlFJKKTWIaILVCyLCjTfe2LZ89913s2zZstAFFODzzz/nyCOPZPbs2UydOrUtrpUrV/Kf//ynT2WfdtppxMfHc+aZZwYhUqWGCa+XJG8lrshUnHHjSfcW0djiDnVUSimllBokNMHqhfDwcF544QXKy4M7JbMxBq/X26cyLr/8ch566CE2btzI1q1bufDCC4HgJFg333wzjz/+eJ/KUGq4cdWVYBcP7qg0rCkTSZR69hUUhjospZRSSg0SfZ5FUESygH8BqYABHjLG/EVEEoGngWwgD7jQGFPVl7p+8+qXbCuq7VvAHUxLj+XXZ03vdh+bzcZVV13FPffcw5133tluW1lZGVdffTX5+fkA/PnPf+aYY45h2bJlREdHc9NNNwEwY8YMXnvtNQBOPfVUjjzySNatW8cbb7zB/fffz5tvvomI8Mtf/pIlS5awcuVKli1bRnJyMlu3buWII47giSeeOGhcUWlpKaNHjwbAarUybdo08vLyWL58OVarlSeeeIL77ruPKVOmdBnn7t272bVrF+Xl5dxyyy388Ic/BOCkk05i5cqV3b43zz77LL/5zW+wWq3ExcXx8ccf43Q6ueaaa1i7di02m40//elPnHDCCTz66KO89NJLNDQ08PXXX3PTTTfR0tLC448/Tnh4OG+88QaJiYn8/e9/56GHHqKlpYUJEybw+OOPExkZ2a7ehQsX8vDDDzN9uu/cHX/88dx9993Mmzev23iV6itnRSF2wBU1mpj0BNgC5fu+hPHZoQ5NKaWUUoNAMFqw3MCNxphpwELgxyIyDbgVeN8YMxF43788ZP34xz/mySefpKampt366667jhtuuIE1a9bw/PPP84Mf/KDHsr7++mt+9KMf8eWXX7J27Vo2btzIpk2beO+997j55pspLi4GYMOGDfz5z39m27Zt7Nmzh08//fSgsm644QYmT57Meeedx4MPPojT6SQ7O5urr76aG264gY0bN7J48eJu49y8eTMffPABn332GXfccQdFRUW9fl/uuOMO3n77bTZt2sQrr7wCwAMPPICIsGXLFlasWMHll1/eNpvf1q1beeGFF1izZg2/+MUviIyMZMOGDRx11FH861//AuA73/kOa9asYdOmTUydOpWHH374oHqXLFnCM888A0BxcTHFxcWaXKkB0Vzna8mWqGRGZfsS/MbinaEMSSmllFKDSJ9bsIwxxUCx/3mdiGwHMoBzgOP9uz0GrAR+1pe6empp6k+xsbFcdtll3HvvvURERLStf++999i2bVvbcm1tLfX19d2WNXbsWBYuXAjAqlWruPjii7FaraSmpnLcccexZs0aYmNjWbBgAZmZmQDMnj2bvLw8Fi1a1K6s22+/nUsuuYR33nmHf//736xYsaLTVqfu4jznnHOIiIggIiKCE044gdWrV3Puuef26n055phjWLp0KRdeeCHf+c532l7TT37yEwCmTJnC2LFj+eqrrwA44YQTiImJISYmhri4OM466ywAZs6cyebNmwFfEvbLX/6S6upq6uvrOfXUUw+q98ILL+SUU07hN7/5Dc888wwXXHBBr+JVqq9aGqoBsEXGEZ4yDjdWpHJ3aINSSiml1KAR1BsNi0g2MAf4Akj1J18AB/B1IezsmKuAqwDGjBkTzHCC7vrrr2fu3LlcccUVbeu8Xi+ff/45Doej3b42m63d+KrA+zFFRUX1qr7w8PC251arFbe784H048eP55prruGHP/whKSkpVFRUHLRPV3HCwdOZH8r05suXL+eLL77g9ddf54gjjmDdunXd7h/4miwWS9uyxWJpe31Lly7lpZdeYtasWTz66KOdJowZGRkkJSWxefNmnn76aZYvX97rmJXqC5c/wbJHxYPVTqk1jZj6vFCGpJRSSqlBJGiTXIhINPA8cL0xpt1AKWOMwTc+6yDGmIeMMfOMMfNSUlKCFU6/SExM5MILL2zXZe2UU07hvvvua1veuHEjANnZ2axfvx6A9evXs3fv3k7LXLx4MU8//TQej4eysjI+/vhjFixY0OuYXn/9dXxvr6/rodVqJT4+npiYGOrq6nqME+Dll1/G6XRSUVHBypUrmT9/fq/r3717N0ceeSR33HEHKSkpFBQUsHjxYp588kkAvvrqK/Lz85k8eXKvy6yrq2P06NG4XK62cjqzZMkS7rrrLmpqasjNze11+Ur1hafJ1004PCoegOqIsSS3FIQwIqWUUkoNJkFJsETEji+5etIY84J/dYmIjPZvHw2UBqOuULvxxhvbzSZ47733snbtWnJzc5k2bVpbS8r5559PZWUl06dP5/7772fSpEmdlnfeeeeRm5vLrFmzOPHEE7nrrrtIS0vrdTyPP/44kydPZvbs2Vx66aU8+eSTWK1WzjrrLF588UVmz57NJ5980mWcALm5uZxwwgksXLiQX/3qV6SnpwO+5O+73/0u77//PpmZmbz99tuAr1ti63irm2++mZkzZzJjxgyOPvpoZs2axY9+9CO8Xi8zZ85kyZIlPProo+1arnryv//7vxx55JEcc8wxTJkypW39K6+8wu233962fMEFF/DUU0+1zZyo1EDwNvm+P3JExwHQFJtNpreYZpdO1a6UUkopkNbWj8MuwNef7DGg0hhzfcD6PwAVxpjfi8itQKIx5pbuypo3b55Zu3Ztu3Xbt29n6tSpfYpRda3jbIfDjf7+qGD7+rEfk7bneSp/upuxSVFseO4u5my9k31LNzA2e1yow1NKKaXUABGRdcaYg2ZZC0YL1jHApcCJIrLR//g28HvgWyLyNXCyf1kppYY0aamjjggiw3xDWCNG+ZKqqv1fhzIspZRSSg0SwZhFcBXQ1awIJ/W1fNW/li1bFuoQlBpSLM111JlIxoT7/nwmZk4EoKFEZxJUSimlVBAnuVBKqZHA4qqnnggcdt+fz6QMX4LlqcwLYVRKKaWUGiw0wVJKqUNgd9XRZIlqu52BNTyScknAXqczCSqllFJKEyyllDokdncDTktku3WV9tFENxaGKCKllFJKDSaaYCml1CEI8zTSYm2fYDVEZpDkKu7iCKWUUkqNJJpg9dJLL72EiLBjx44u98nLy2PGjBlBq3Pnzp0cf/zxzJ49m6lTp3LVVVcBvpsEv/HGG30q+8orr2TUqFFBjVepkcDubcLTIcFyx44h1ZTT1OQMUVRKKaWUGiw0weqlFStWsGjRIlasWNHpdre77zcZ9Xg87ZZ/+tOfcsMNN7Bx40a2b9/OT37yEyA4CdbSpUt56623+lSGUiNRuHHitrVPsKyJOVjFcKBwV4iiUkoppdRg0edp2gfUm7fCgS3BLTNtJpze/S266uvrWbVqFR9++CFnnXUWv/nNbwBYuXIlv/rVr0hISGDHjh288847uN1uLrnkEtavX8/06dP517/+RWRkJO+//z433XQTbreb+fPn87e//Y3w8HCys7NZsmQJ7777LrfccgsXXXRRW73FxcVkZma2Lc+cOZOWlhZuv/12mpqaWLVqFT//+c8588wz+clPfsLWrVtxuVwsW7aMc845h0cffZQXX3yRmpoa9u/fz/e//31+/etfA3DssceSl5fX7ev+6KOPuO666wAQET7++GOio6O55ZZbePPNNxERfvnLX7JkyRJWrlzJr3/9a+Lj49myZQsXXnghM2fO5C9/+QtNTU289NJLjB8/nldffZXf/va3tLS0kJSUxJNPPklqamq7ei+66CIuvfRSzjjjDMCXDJ555plccMEFvTunSvUXdws2PBh7+wQrKm08ADVFX8NEbRVWSimlRjJtweqFl19+mdNOO41JkyaRlJTEunXr2ratX7+ev/zlL3z11VeAr1vfj370I7Zv305sbCx//etfcTqdLF26lKeffpotW7bgdrv529/+1lZGUlIS69evb5dcAdxwww2ceOKJnH766dxzzz1UV1cTFhbGHXfcwZIlS9i4cSNLlizhzjvv5MQTT2T16tV8+OGH3HzzzTQ0NACwevVqnn/+eTZv3syzzz7L2rVre/267777bh544AE2btzIJ598QkREBC+88AIbN25k06ZNvPfee9x8880UF/vGnmzatInly5ezfft2Hn/8cb766itWr17ND37wA+677z4AFi1axOeff86GDRu46KKLuOuuuw6qd8mSJTzzzDMAtLS08P7777clW0qFVEu972eHBKv1XlhNpXsGOqIh5T/vv8QTzz6L2+MNdShKKaVUvxlaLVg9tDT1lxUrVrS15Fx00UWsWLGCI444AoAFCxaQk5PTtm9WVhbHHHMMAN///ve59957+da3vkVOTg6TJk0C4PLLL+eBBx7g+uuvB3wJRWeuuOIKTj31VN566y1efvllHnzwQTZt2nTQfu+88w6vvPIKd999NwBOp5P8/HwAvvWtb5GUlATAd77zHVatWsW8efN69bqPOeYY/ud//odLLrmE73znO2RmZrJq1SouvvhirFYrqampHHfccaxZs4bY2Fjmz5/P6NGjARg/fjynnHIK4Gt5+/DDDwEoLCxkyZIlFBcX09LS0u69a3X66adz3XXX0dzczFtvvcWxxx5LREREr2JWql+5Gn0/w6LarU5Ky8FlrJiqfSEIamgoKSnh6E8u52jgw4RITjhZvzRRSik1PGkLVg8qKyv54IMP+MEPfkB2djZ/+MMfeOaZZzDGABAV1f5Cq/XeOF0td6ZjGYHS09O58sorefnll7HZbGzduvWgfYwxPP/882zcuJGNGzeSn5/P1KlTDzueVrfeeiv/+Mc/aGpq4phjjul2gg+A8PDwtucWi6Vt2WKxtI1R+8lPfsK1117Lli1bePDBB3E6D54UwOFwcPzxx/P222/z9NNPd5mAKjXgWnwJliU8ut1qi81GqSWFML0XVpcKVj3R9txsfDKEkQx+Lo+XJ5/4B2+99lyoQxn0ahpbeP3jL6ipawx1KEop1UYTrB4899xzXHrppezbt4+8vDwKCgrIycnhk08+6XT//Px8PvvsMwD+/e9/s2jRIiZPnkxeXh67dvkGwD/++OMcd9xxPdb91ltv4XK5ADhw4AAVFRVkZGQQExNDXV1d236nnnoq9913X1vSt2HDhrZt7777LpWVlW3joFpb13pj9+7dzJw5k5/97GfMnz+fHTt2sHjxYp5++mk8Hg9lZWV8/PHHLFiwoNdl1tTUkJGRAcBjjz3W5X5Llizhn//8J5988gmnnXZar8tXqj+5m31dBC1hB38pUhU2mtgmvRdWlwpWU0Y8m+NOZHrdf/BoN8EurX33KS7ZdSOnrf0vdu7VVtHufPbILZzxwSl88cgNoQ5FKaXaaILVgxUrVnDeeee1W3f++ed3OZvg5MmTeeCBB5g6dSpVVVVcc801OBwO/vnPf/Ld736XmTNnYrFYuPrqq3us+5133mHGjBnMmjWLU089lT/84Q+kpaVxwgknsG3bNmbPns3TTz/Nr371K1wuF7m5uUyfPp1f/epXbWUsWLCA888/n9zcXM4///y27oEXX3wxRx11FDt37iQzM5OHH34YgOXLl7N8+XIA/vznPzNjxgxyc3Ox2+2cfvrpnHfeeeTm5jJr1ixOPPFE7rrrLtLS0nr9fi5btozvfve7HHHEESQnJ7etX7t2LT/4wQ/alk855RQ++ugjTj75ZMLCwnpdvlL9qbmxFgCr4+AEqzEqk2T3gYEOaciIr99NcVg2ZsxCUqWKvXu/CnVIg5Zlxyttzw989EgIIxnc3G43c8peAuDoypeoqqoMbUBKKeUnra0eg8G8efNMx0kYtm/f3tbdTR2aRx99lLVr13L//feHOpSQ0d8fFUyVG18l8aXv887RT3LKKWe22/bZY7dx1N4HaLxpH5HR8aEJcLDyemm8YzTrk85k/ElXMvqZb/Px7Ls59twfhjqyQalk2TgKonNJa9rFAWsq8257P9QhDUo71n/ClFfOZFPSt5lV8QZfHPUgR556Uc8HKqVUkIjIOmPMQZMb9HsLloicJiI7RWSXiNza3/UppVR/aW70dRG0R8QctM2WNA6AsvyvBzSmoaC+bB+ROHEnTSJt0jzcWDBFB0/Yo6C2ppJUKnCnzKA8aR5Tmr+kuaU51GENSrV5GwFIOOl6WowV956PQxuQUkr59WuCJSJW4AHgdGAacLGITOvPOtU3li5dOqJbr5QKNleTL8EKi4g+aFt0672wivVmwx2V+m/AHJWSg9jCOWDNIKJ2d4ijGpxK9vju9RiWNgXGLCRamti3c3OIoxqcvGU7aTE20ifOYW/YZBIqNvR8kFJKDYD+bsFaAOwyxuwxxrQATwHnHGohg6kboxo69PdGBZvb6ZtcJjzy4BasZP+9sJrL9F5YHdWV+m4bEZuWDUBV1DhSnXmhC2gQqyv4EoD4sTMYNX4OAGW7NXHoTETNbvZb07HZw6hPmEKmKw+32xPqsJRSqt8TrAwgcN7iQv+6NiJylYisFZG1ZWVlBxXgcDioqKjQi2V1SIwxVFRU4HA4Qh2KGkbcTl8LVkRU7EHbklLSaTDhoPfCOoin2vffQHxqNgDuxIlkmmIqa+q6OWpkcpXtxmOE9OwppI2fhdtYcBUffHsOBYnOfVQ6xvgWRk0jVhopzNcWZKVU6IX8RsPGmIeAh8A3yUXH7ZmZmRQWFtJZ8qVUdxwOB5mZmaEOQw0j3uZGvEaIjDy4i6DFauGANY3wer0XVkdSW0S9cZCY6LvpefjoqVjzDPt3byVx7lEhjm5wkfpiKiWeFP+XQ0W2DCKrdcbFjrxeQ6KngqLoRQDEjZ0FW6F89wayx00OcXSDm9druP2Rl5hU+hYn/9f/kp46KtQhKTXs9HeCtR/ICljO9K/rNbvdTk5OTlCDUkqpw+FtaaCRcKLCO//TWR2WTpLzkP7EjQhhjQcolSTG2awAJOfMgs+gOn8LaILVTrizjBprIin+5aroCaTVbAtpTINRVXUlSeLEEjcagNET5wLg3K+tfT35eEcxPy24nlFSzYZn6kj/yb9DHZJSw05/dxFcA0wUkRwRCQMuAl7p4RillBqcWupp6ibBckZnMspTAtqluZ0IZynV1m/ue5eSPR2vETwHtocwqsEpuqWchrBv3qvmpClkmlIqq6pCGNXgU13iG9dnj0sHICo+mRJJIqxiRyjDGhL2rXuLUVJNjTWBGRVv4WrQ3y2lgq1fEyxjjBu4Fngb2A48Y4z5sj/rVEqp/iKuRhoJJ8Ju7XS7N24MkThpqC4Z4MgGtyh3FU1hiW3LEhZJiTWVyFodL9NRnKcSp+ObLlth6dOxiKFkl050EaiuvBAAR9I3w7pLHeNIatDfqZ5E5X9As4Sz7ag/YcfD/tUvhzokpYadfr8PljHmDWPMJGPMeGPMnf1dn1JK9RdxNeLEgcUinW63J/vuhVVRoGNmAsV4qmlxJLdbVxmRTUJTfogiGpzcrhYSTQ3e6NS2dYnZswGoK9TvJgM5K31dcWOTvxln2xA/iSxPAS6XK1RhDXoNzW6ymr+mMnoyE488nWoTReNXH4Y6LKWGnX5PsJRSariwuJtotkR0uT1m9AQAaov1ZsNtWhqIxIk3sn2C1RybQ4a3mGaXO0SBDT5VpfuxiMESk9a2Lm3sZFqMFU+pJu2BPDXFACSmjW1bZ02ZRJi4Kd63M1RhDXpfHahhmuzDNWomyTER7LBNIb5cW0eVCjZNsJRSqpds7kZaLF1P/T/Kfy+slvK8AYpo8Gus9F0IW2Laz1RmTZlApDSzP1/vG9aqptQ3A2VY/Oi2dTZ7GMXW0YTX6PsUSOoP0EQYjuj4tnUxmdMBqNinrX1dKdy7gxhpImrsbADKEuaQ7toHTdUhjUup4UYTLKWU6iW7pwlXNy1YSYmJVJhYpFrvhdWqprwIgLDY1HbrYzKmAFC+T2fIa9VQ4ev2Fpmc1W59pWMMSU79nQpkbyylUhJBvumuO3rcDACainWii67U+VvXEzKnAmDNmAVA7b6NoQpJqWFJEyyllOolu7cJt7XrBMtiEUqsaTjqCwcwqsGtodKXYDkSRrdbPyrb19rQdEC7c7VqrvIlWHEp7e/f54wbx2hPER63ji1qFdFcRp09qd26uOTRVBONpWJ3iKIa/ExlHgCWJN/tb1LGHwFA6a51oQpJqWFJEyyllOqlMK8Tjy2y231qHOnEN+u9sFo1+WdUjElqn2BFp4zFSRhSobO+tfLWHsBrhMRR7RMsW8okwsTDAR1b1CbWXUFj+ME3yC2xZxFTr90puxJWV4AbG8T4Po8Tx0+g0kTTsn9LiCNTanjRBEsppXrJYZrw2rtPsJqjs0j2loHXM0BRDW7uWl+ClZCS3n6DxUKJLZ3IuryBD2qQsjSUUCWxhIWHt1sfnTkN0LFFrYwxJHkrcUemHLStLiqbVFdBCKIaGmKdhVSHjwaL71YT8VHh7LFkE1WtybtSwaQJllJK9YYxOGiGHhIs4sdix0N9mY6ZAaC+jFoTSWJc7EGbaqPGktyi3SlbhTnLqLYkHrQ+Nad1bJFeBAPU1lQRJU5M9OiDtrkTJ5JMNTVVlSGIbHCraXSR5i2lKar9GL/yqImkNu3WL4WUCiJNsJRSqjfcTiwYjD2q290iU8cDULpPp9UGsDaVUyVxWDu5d5g7fhwZpoSa+qYQRDb4RLeUUR+WfND6hOQ0qojBUqnT/wNU+2dbtMUdnGA5Rk8GoHjP5gGNaSgoqGpkjJRi4se0W9+cNBUHzXgr9oYoMqWGH02wlFKqFzzNDQBYwrtPsBL9U7XrvbB8wporqLMmdLrNPmoydvFQmKezvgHEuStpdhzc7U1EOGDLJEq7UwJQV+Zr9XQkZhy0LXGMb/KU2sLtAxrTUFBUUkKC1BOWMq7d+rCMXACq9q4PRVhKDUuaYCmlVC801FYBYHHEdLtfxpiJeIzQUq7fBgNEuSppCju42xtAfKZvqvbqAr0Y9rrdJJhq3FGpnW6vjcpmVEv+AEc1ODVV+iaRiekw2yLA6JypuI0Fd6l2p+yotsg3oUys/4borUaNy8VrhJqCraEIS6lhSRMspZTqhaZ6X4JljYzrdr+ICAelkoy1Vi+GAWI9VbQ4kjrd1jpVe0uJdqesqijCJl4sMZ0nWO6E8SRTTWOdji1y1/huXp2QOuagbfYwBwcsqYRX61TtHTWX+2ZXjBw1vt36caNTKDTJeEu0JVmpYNEESymlesFZ50uw7BHdJ1gAFWHpRDXqVO3G3Uwc9XgjD55OGyAsNoU6orBW6cVwTYmv21tYfHqn28PSfGOLDuzWVgbqinEaO9GxnbeMVjjGktCkk8x01HYD9ISx7dYnRIWxzzqGqBrt1qxUsPQpwRKRP4jIDhHZLCIvikh8wLafi8guEdkpIqf2OVKllAqh5sYaAMKi4nvctykqk2RXUT9HNPjVlvuSTIlN63wHEUrDsohu0Na+ugpfghWZdHC3N4CELB1b1MrWWEqFJQmxdH4J44wbR7qnCI9HZ8ULFNlQQKMlGiIOHhNZFTWO5OZ88LhDEJlSw09fW7DeBWYYY3KBr4CfA4jINOAiYDpwGvBXEbH2sS6llAoZV0M1AOHR8T3ua+LHkkw1tXW1/RvUIFdT4kuc7F20ygA0RGeT5irE6zUDFdag1FLpS7DiRnWeYKWP840tcunYIiKdpdTaOu92CmBJmYhDXBTna4tMK6/XkNBcTK2j88+iK3ESdtyYKh07qlQw9CnBMsa8Y4xp/brjc6D1f4ZzgKeMMc3GmL3ALmBBX+pSSqlQcjf6kqWI6M5nxAsUnpIDwIG8kT22qKHC14IVkdh50gBgEseTLuWUVFUNVFiDkremCK8REtPGdro9MiKSYksqdh1bRLy7lMaILlpFgeiMqQBU5Gl3ylZl9c1kUkJzzMHj1gDCR/tuZl2zb8tAhqXUsBXMMVhXAm/6n2cAgbdSL/SvO4iIXCUia0VkbVlZWRDDUUqp4PE2+boIRsXG97hvXLpvqvbKopH9DXpzlS/BihuV1eU+jrRJABzYM7K7vlnri6iQeMLDHV3uUxaWRXxD3sAFNQgZr5cUbwUtkV0nWGnjfNOONxbppA2tCirqyZRyJKHzBD45eyYA1fmaYCkVDD0mWCLynohs7eRxTsA+vwDcwJOHGoAx5iFjzDxjzLyUlIPv/6GUUoOBaa6jxViJjur+PlgAqWN8ExI0l47s1gZTW4zbWEgc1XUXwaQxvm/Oa/eP7AQroqmECmv3/wc2xuaQ5tmP8Y7csUU1FQcIEzfEdt0qmpCSTi1RiN6YuU1Z8T7CxYWjwwyCrcZlpFJokvGUjOzPoVLBYutpB2PMyd1tF5GlwJnAScaY1k70+4HArywz/euUUmpIkuZa6ogkMazHP5tEJIymEQcywsczWOpLKCeeVEdYl/skjfHdC8tdOrIvhmNaSikJ67z7VpukiTjKXFQf2Et8+oTu9x2mqg7sJR6wJ3TaKcZHb8x8kPoDvina4/2t6x2lxISzSrKYUD2yP4dKBUtfZxE8DbgFONsY0xiw6RXgIhEJF5EcYCKwui91KaVUKFla6miUSESk551FOGDPJKZ+ZCdYYc5SqqxJ3b5n4oilQhKx14zs9yrRU44zovN7YLWKSvclo2V5I7cbV32pb+KUyJTuk9HaqGxS9cbMbTwVvgQrLHlcp9tFhIrIcSQ598EIbiFVKlj6OgbrfiAGeFdENorIcgBjzJfAM8A24C3gx8YY/cQqpYYsm6uOJons9f41UTmktYzse/FENZdRZ0/ucb9KRxbxTSP3YtjTVEM0jXiju+5KCZDkHydTv3/kji1yVfqGd8el5nS7nztxAqOopK5Gb8wMYKstwItAfNfjIVsSJhKGC6ryBi4wpYapvs4iOMEYk2WMme1/XB2w7U5jzHhjzGRjzJvdlaOUUoNduKuWBmtsr/f3JE5kNOVUVo3cC7w4dwVOR89ja5tic0j37KfF7R2AqAaf8uI8AGwJXY8rAkhPz6LWRGLKR243Lm/NflqMlaTUbroIAuFpvta+4j1fDkRYg15M4z5qbClgC+9yn7A033jI+gKdfVGpvgrmLIJKKTVsRbircdrje79/uu9ipWj3yLxY8bY0EUcdJrrr2d5aSfIEkqWWwqKROVS3fL+v+1ZsauczvLWy2azst2YQUTtyu1NKXRFlkoQjzN7tfon+yVNqCjXBanF7yXAVUB3Vfatfos4kqFTQaIKllFK9EO2pxRXe8z2wWqXk+C5WavJHZoJVWeLrytXdTYZbRY32tTaU7huZM5i1jitKGt39BTBAdWS2b5zMCBXRdIAae8+tomk50/AYwV0yclv7Wu0rr2OcFOFJ6nyCi1Y5GWnsN0m4DozMz6FSwaQJllJK9cTjJoZ6PI7EXh+SMnYqbmPBUzoyx8tU+Lu9RSZ33+0NICV7OgCNRSPzwq6lypeMpmZk97ivO2E8o0wFzf4bX480sa5SmhzdTwYCEO6I5IBlFGHVuwYgqsGtMO9rIqWZCP/NhLuSER/BHjJxVI3sG6QrFQyaYCmlVA/cDZVYMBCZ1OtjxBZOiW00jpqReS+shhLfhW1c+qQe941Jm4ALG1K2s7/DGpSstYVUSjzWsK5vMtwqPM13j7WiPSOvZdTlcpHiLccT0/34q1bljrHEN47c1r5WtQW+bpJJ/lb1rlgsQllEDknOPJ1JUKk+0gRLKaV6UFtZAoA1uvcJFkBVZA7Jzrx+iGjw85TvwWuEUZm9uF+TLYxiWyaxdSOztSG2MZ+ysJ5b+uCb1r6KfSNvbFFpwW7CxY0kdX6z3I6aYseR7tmP1zOykwVPqe+LC0cPLVgAzfETCTMtUD1yZ/VUKhg0wVJKqR40VPkSLHtMz2M/ArUkTCTTW0xNQ1N/hDWo2WrzKZEkoqKierV/ZdR4UptH3uQNxhhSXftpiOp+gotW6eOm4zVCc/HIa+2rLNwGQOToyb3a35I8kQhp4UDhyGxFbhVRs4s6SyxE9XzLBJt/JkFn0chL4JUKJk2wlFKqB/X+BCsyvuexH4HC0yYTJh4Kdm/rj7AGtcj6AsrtPU9w0aolcTKZlFJbW9WPUQ0+VdVVpEg1nsTetcqER0T7xhZVjbzJG2oLfUnl6HEzerV/VIYvWSjfO3JnxXN5vKQ051EV2fMEKgAJY33vbdW+kfueKRUMmmAppVQPmisLAYhP610rQ6uksbnACLxYMYZUVz6N0b1/v+yjfV3fir7e2E9BDU6le31jqcJHdT/DW6DyiHGkNI28Vhlv+dc04CAxteub5QZKHT8bAOf+kTderdXOomomk493VM/dAwGyM9IpNom0FI+8L4WUCiZNsJRSqgfemv00Gxspo0Yf0nEp43yDyt0j7GKlorSAeOoxKVN6fUzq+DkA1ORt7q+wBqWGgk0AxI7J7fUxTYlTyfTsx9nU2F9hDUpxtV9RHJYDIr3aP2nUaEpJwFY+sj5/gfbu3EiMNBEzfmGv9h+bFMkuk0mYziSoVJ9ogqWUUj2w1RdRKklEhnd/c9OOrBGxHLCkElE9ssbLHPhqAwBRmd3PWhYobexkmkwY3pKRNfbDVbQVp7GTOX56r4+xp8/EJl4KR1Brn8vtIcu1l7q43o2/AhARisPHEV83cpOFxj2rAUic2LsEy261UOrIJrExD7zefoxMqeFNEyyllOpBRNMBqqw9DxDvTHnkeEaNsO5c9YW+LpGjJ87u9TEWm4399jFEVo+ssUWRVTsosGdjs/c+eU8c52vtq967ob/CGnQK9u0mQeqxpPVu/FWr+vgpZLry8bha+imywS2ubDX1lhgkuefbJbRqiptAuHFCTUE/RqbU8KYJllJK9SCmpZT68LTDOtaZOIUsbxH1jSOnO5e9ZDNlxJPUy7EyrWpiJjK6ZS/GmH6KbHDxejxkN39FTdzUQzouY/x0nMaO98DIGVtUvvMzAOLGzzuk46yjZxAmbop2j7BxkEBRdRPTmzdTljQPLL2/3LP7p3N3Fo+s1mSlgiloCZaI3CgiRkSS/csiIveKyC4R2Swic4NVl1JKDRTjcZHkKccd0/sZ8QLZR8/ALh4Kv94U5MgGr5TareQ7piKHcFHnO3Aqo6iipLS4fwIbZAp3bSZWGvFmzj+k4+z2MPJtY4ms2tFPkQ0+7vzVtBgb6VN619WtVVKO79KjfM/6/ghrUFu/YR1ZljIiJ51wSMclZfu69lbuHVnjIZUKpqAkWCKSBZwCBN6Z7nRgov9xFfC3YNSllFIDqaZ4F3bxQFIvbpjbieRxswGo2rsxeEENYtUVZWR59+NKnXXIx0b7J3oo3rku2GENSkVbPgIgddqxh3xsVfRERjv3BDukQSu2fD37wiYQ5og4pOOyJs/CZay07B95LVjOra8CMGreOYd03PgxWZSYeJpH2OQ8SgVTsFqw7gFuAQL7dZwD/Mv4fA7Ei8ihTcGllFIhVp7n6yYTkdb7GfECjR43kxZjxT1CutvsXfc2AHFTjz/kY9On+Lp/NeSPjLFF1ryPqCCeMRN7P4NgK++o6SRRTUVJYT9ENrhUVlUy2bWT2rRDa70CcDgiKLBmElE5clr7AGqdLiaUv0exYwKSkH1Ix45JjGQ3WYRVjtzJQZTqqz4nWCJyDrDfGNOx/0sGEDhCstC/Timlhozawu1A729u2pHFHkaRLYuoETKToGvXSppMGONmH3fIx8YkZ1FBPLbS4Z+MejwextevYW/ckYfelRKI9d9jbf8IaO3btfpN7OIhZvoph3V8edREUp27ghzV4Pbxfz5ltuzCm3vhIR9rtQgVETkkNe2FETIeUqlg69VfdRF5T0S2dvI4B7gNuP1wAxCRq0RkrYisLSsrO9xilFKqX5jSHVSYWNLTD//7oeqYiYxu3jPsJ28wXi+ZZZ+wM2IW4Y7IwyqjKGIiKfXDPxndufZ9EqmDiScf1vFZUxYAULdvYxCjGpy8216jjgjGzTnxsI53J08j1VRQW1Ua5MgGJ2MMYZ/fTwt20hcvPawyWhIn4tCZBJU6bL1KsIwxJxtjZnR8AHuAHGCTiOQBmcB6EUkD9gOBU0hl+td1LPshY8w8Y8y8lJSUvr4epZQKqsTabRSET8Ri6d3NTTvjSZ7KaMopKy8PYmSDT972NaSbAzjHn37YZTQmTGOMJ59m5/CedbF6zTM0GztTj73gsI6PTR5NGYnYy4b32KKGxkamVH/MrvhjsYUf2virVpFjfOMBi3asDmZog9ana9dzQvMH7Mv+LhKTelhlhKX7Wuxr9ulEF0odjj51ETTGbDHGjDLGZBtjsvF1A5xrjDkAvAJc5p9NcCFQY4wZGVNDKaWGBW9LE5mufdQm9P4msJ2JGuOblatwmHfnKlv1GC5jZcKxSw67DFvmLOzioWDn8B2H1exsZGr522yLOYqo2MTDLqcocjKj6of32KKtH64gXuqJmHvoXd1apflnHqzfszZYYQ1azW4PrrdvBxGyz/75YZczyn+vtao9w/tvllL9pT/vg/UGvhauXcDfgR/1Y11KKRV0eVs+xS4ewsYc0adyRk/0HV+XP3ynam9uqmd88WtsjTqS5NTMwy4nZaJvyvKq3cP3Ynjjm4+QQC22+Uv7VE5T0gyyPIU01tcEJ7BBxni9RG94mBJJZtLR5x52OalpGRSTjLVk+LfGvPbEXzjBvYqC3J9gTxxz2OVMGJNOvjcFb/HIudeaUsEU1ATL35JV7n9ujDE/NsaMN8bMNMYM3/8tlVLDUvnW9/EaYfy8wxtc3youbRwNRGAp2x6kyAafL197gCRqkKN+3KdyMsdNp8E48BQPz4thj9tF5pb72WUdx4zF5/WprPCxR2AVQ8H2NUGKbnD58j+vMd39JflTf4jFZjvsckSE/RGTSakfvp8/j9fw8lMPcebeO8mPymXcOb/sU3lJ0eHstuYQXT28W0iV6i/92YKllFJDWnTRp+y1ZpOSeng3GW4jQnF4DnG1XwcnsEGmxdlExrYH+dI2jVnHfLtPZVmsVgrCxhFbPTwvhte+8jcyvMXUzL/hsGYPDJQ25UgAavYMvwTL4/FgWfn/KCWRmWf9pM/lNSXNINNbhLOuKgjRDS7Fuzay539nc86OmymJnEj6NS+D9fAT0lZV0ZNIaimEluE9HlKp/qAJllJKdaKp6gCTnZvZP+rQbwLbmfq4SWS582hxeYJS3mCyacXtpJoKXIt/1uekAaA2fipjW3bj8Qyv96qsOJ9Jm+/iK/tk5p5ySZ/LS0vPppw4rAeGX9fTNc//kWnubeyffQOOiKg+l+cY6+umW7j9iz6XNZi4XC5qn7qKHG8+O6f8mKzr38UWffjj+gK5R03HihdPid5wWKlDpQmWUkp14uuVT2AVQ+y8i4JSniVtOglST37+7qCUN1js3vIFs/Ie5ovok5l93LlBKdOSPosocVK4Z/hc2Hk9Hgr+dRVRpgnHBcsRi7XPZYrFQmH4JJJqh1dr394dG5n55R/ZGj6H2WdfG5Qy06f6JroYbq19nz56G5PdO9my4P+YfNHvkPCYoJUdPWY2ABW7daILpQ6VJlhKKdWJ8B0vs0eyyJ17VFDKi8+eDUDpruEzO15tRQmOFy6jVmKYeNm9QSs3afw8AEq/Gj7Tan/28I3MbfqMTVNuYMzkuUErtz5xOpnufNzOhqCVGUplJcVYn76IZgkj7bJ/BKVFFCA9YwwlJA6r1r5Vrz7K8fsfYlPCKcz59g+DXn7WuKnUmQga8zcGvWylhjtNsJRSqoPi3VuY6NxCYca3+3T/q0CjJ/ouqp2Fw2Pyhsa6KoqWn0uKt5zSbz9C4qjDvxFzR5mT5+IyVloKh8fF8H/+dTvHFP2TdYlnMm/JbUEtOyxrLjbxUrBj6M8jVV56gOqHziDNW0blmY+QnDEhaGWLCIWOSSTVDY/Wvk/e+Dfz197I7rDJTPvvR0GC83cq0MS0WHaaLGzlw6clWamBogmWUkp1UPTGXbiwMeWMvg+ub2WPSaZUUoioGPoXKzXlReTfezoTWnbw5cK7mbbgpKCWbw+PoNA2hqjKL4Na7kBzu1x89rerOXrPX1gfcwKzf/Ro0FpkWrV2fSv/emiPLSrYtYXGv53IWPc+vj7hQSbM+1bQ62hMmkGGez8tDUN3WntjDJ889QcWfnEtRWHZZFz7BnZH38eodcZht1IYPp6kuq/BmH6pQ6nhShMspZQKUF2Sz8zyN1iXeDqjRmcFteySqMmMbtwZ1DIH2q6tX9D4wHFkt+xiy1H3MOf0K/qlnvK46Yxt3onX4+2X8vtb2YECttx9GkeVrOCLlAuYfd2zWG32oNeTMXYiVcRA0caglz1Q1r39JHGPn0qMqWXvt59g+vEX9Es9YVlzsYgZshNd1NfXsurPl7F4x2/ZGTmX0T99D0dscr/W2ZAwlQjTANX7+rUepYYbTbCUUirArmd/iWBIP/3moJfdnDydMaaI6urKoJfd37weD2tW3EHWs2dgMy72nvUcc05b2n8VZswlgToK9g6tLl3GGNa8+S8sy49hunMjG3J/zZE/fhhLPyRX0DrRxUQSh+BEFzWVZXx2z8Uc8dmPKLel4lz6HpOPPL3f6suY5htPWbl76E10seE/71Dxx4UsrnmFDZmXMv2mt3DEJPR7vdbRuQA4h0l3XaUGiiZYSinll799NXPKXmF1ynfInpQb9PIdY/zfoA+x8TL7dqxjx/8dx/ydf2RrxDws13zC1HnH92udo6YcA8CBbav6tZ5g2rdrK5vuOo35X/yEGmsSRUveYs53/qff621MzmWMex9NDXX9XlcweN1uVj9/D95757Kg+k3WZF5O1i3/YXT2lH6tNyMrhzISsOxf36/1BFPx/ny+uGcJc975LhE4+erUJ5jzg/uRINznqjdGjZ+N1wgVu4fOe6bUYDAwn1CllBrkvG43zS/8hDqimLrkt/1SR9rkBfAx1O9dBwtP6Zc6gqm89ABfPfMLFpS9QKNE8EXu/7Lg3GuDPo6oM1mT5tJkwnAXrAX+u9/r64uykkJ2PPdbFpQ+RzJWPp94A/MuvBVbmGNA6g/LWYh9/6Ps2foJk4/s242e+5Pxetn4yStEffxbFni+Zrt9OlVn3c383KMHpH4RYV/kDDLqBv9EM7W11ax79g/My3+YObTwRcZlzPre/zIqOn5A45iePZq9Jg1b0eB/z5QaTDTBUkopYOPTdzDXtYP/zPk/jk5J65c6kkZnU0ksUjK4L1aa6qrY8PwfmLb3MY6kgfUp5zL+wt9x5Kj0AYvBYg8jP3wiCVVbBqzOQ1VbXc625+5kZsG/OZpmNiedxtgL/4+FaWMHNI7M3ONgFdR+9SkM0gTry/+8gfnwd8xxbaFUklh7xF0cccYPByRZD+QcPZ/Ruz+huiSf+NQxA1p3b9TV1bLl5XuYvOthTqCGL2OOIvn8uzkyZ0ZI4hkVE85mazZzqnaEpH6lhipNsJRSI17xVxuY8dUDrI5cxFFnX9Vv9YjFQpFj4qC9MayztpwdL/2BcXse52ga2Bq1gPiz7mT+1AUhiacuaRYzi56lsbGeyMjokMTQmfLSA2x/5W5mFfybhdLAupjjST37N8yZNDsk8aSMSmefZOIoHlxji4zXy6b/vIX14/9jZstGykhgzdRbmX3udYwKjwxJTHGTF8PuP1Gw6QPiT1kakhg6U1FVxcaX7yM372GOppqt4XOoPvVXTJ8b3Bk6D5WIUBs3meTqz8BZC47YkMaj1FChCZZSakTzulpofPaHhBPBmEv/1u/fqDclz2BSwRPUNzQQHdU/0ysfqvqqA3z94u+ZmP8Us2lidfhRRH3rVmb08zirnoRNWEx48b/ZtvFjph0d+paZovzd7H31LmaXvshiaWZz9NFEnvorjhigLm7dORA3i6nVKzFeD2KxhjQWj8fDundXEL3mfmZ7tlNJHJ9NvIk5593A/BAnyuNnHkXT62E07/kPsDSksQAUHShix8t/YnbRU5wkdXzlmEXNiQ8xY8GpoQ6tjSVtJlRD8/4thI8/JtThKDUk9DnBEpGfAD8GPMDrxphb/Ot/DvyXf/1PjTFv97UupZQKtg1PLeMI19f854g/cXR6/3cZihgzh7DCx9i5bQ0z5x/f7/V1p7asgF0v/T+m7n+OWaaF1ZHHEnnyLSw4YlFI42o1Zva38Hws1O34AEKYYO3dsZGSN+9ibvVbjMKwJeEkUk77GblT5ocspo5k7FHEVr/Ovh3rGDstNC2Ozc1O1r/2d9K2PsgCU0CxjGL9jF8w44wfcVTE4GiBjIyIYEvYFBLK14U0jrzdO9n3xt3MK3+ZE6WZbTFH0/itm5k068SQxtWZxAnzYQeU7vycLE2wlOqVPiVYInICcA4wyxjTLCKj/OunARcB04F04D0RmWSM8fQ1YKWUCpb9O1Yzc9dyvog+gaPOunJA6kyfvgj+AzVffQohSrCqivaw9+U7mX7gZXLxsDrmJBJOvZWFM+eFJJ6uxCel8LVtPDHFn4Wk/h3rP6L+vT8wt2EVo7GxedQ5jD3rVuaMmRySeLqTPudU2PRLyja8MeAJVl1tNZtfuY/xux7lKMrJs2az6Yg/MOOUKxjdT9PT90Vt+jHM3Pc3qksLiR+VOaB179yyhop3/sD82vfIxPBl0imkfftnTJswd0DjOBQTJ0yi0CTj3vd5qENRasjoawvWNcDvjTHNAMaYUv/6c4Cn/Ov3isguYAEQmv8llVKqA4+rmebn/ptaiSbnsr8iIgNSb2LGRIplFBGFnw5IfYHK9u2g4NU7mVH2OjOB1XGnMerbt3L0lOBPSR8sVaOOZFbR09TV1RIT0//jP4zXy5ZVr8Kqe8ht2UAdkazNWsqks29i3gBfjB+KzOxJ7LLkEJ3/HrBsQOqsKC1i5yt/ZFrhUxxDPdvDZlJ5zO+Zuvj8AZ+84lAkzT4L9v2NvZ+/xJyzr+33+owxbPn8PVo++iPznJ/RRBhb0i8g58xbmJUxod/r76vRcQ7etkxhYcWGUIei1JDR1wRrErBYRO4EnMBNxpg1QAYQ+FVHoX/dQUTkKuAqgDFjBt+MPqHW4mzC2VBLU2MtzY31tDTW0dJUh9tZj8dZj7u5EberBY+7BbwexLgRrxsxbixeNxgvBsGLxfdTLBgsiMWCxWrFarEiVjvYHGALR+wOLHZH209LmIOw8Ejs4RGEOSIJc0TiiIjCERFFuN02YBelSgXbuhV3sMC9h88X3MfC1IGbHQ9gf8J8JlasxO12Y7P1/1DY4t2bKX7tTnIr3yEWK2sSzyLjzNs4Zvzga4npKGb6KYQXP8mXn73C3FO+32/1eDweNr77BDFr7ifX8xXlxLN6wnVMP/t6FsQm9lu9wVQ86liOKn6cxppyIuOS+62eoryd7Hv9D8wqfYWjpZlNUUdTdsKNTJ13cr/VGUwTc4/iwMtJWL9+G+i/BMvr8bLhw2cJ/+Jecl1bqSaaddk/ZPLZNzE3sX9mKu0PIkJl4hziK1ZBTSHEDd4vGpQaLHr8n11E3gM6+0vwC//xicBCYD7wjIiMO5QAjDEPAQ8BzJs3zxzKsUON8XqprS6nqiSfurJCmir34609gGmqwuKsxtZcTbi7hgh3LVHeOuJMHRHSQhhwuN/beo1gkf55W53GjpMwmiWcFsJpkTBaLA7clnDfw+rAaw3HY43A2Bz+RwTYIpAw38Nij8ASHoU1LAJbWCQ2R5QvoYuIIswRRXhEFOERkTjCw7FbB+83okOVMQZjwPifew0YfOsAvP4nrfu0HgOtx7SubP3xzbFtm7xeWo8wXoPB6y/Q9wgsx7TtKR3qk2/qEvHH0xqbfBNP+3D82755DYiv3IayAqbv/jvroxZx5OmXHvob10eWnGOJq3ydr7Z8zqQ5/TfeqWDHWsrfuJNZNR8Sj53PU75Lztm3csyYQ/ozHVLj559O5bsxyNbnoR8SrJZmJ5tef5DUrQ9yhHc/+yWNNTNuJ/fMq1ngGByTkPRW3KwzsR14jK2rXmD2GcGfDXPvtjWUv30Xs6vfJwXYlPAtRp3+M2ZNHrzd2zpjtVrYFXc0c2rexeVswB7k8+xytbDhjUdI2vQ3jvDmUSLJrJ16CzPOvJYjouKCWtdAiRx/FFTcR+WOT0g88uJQhzPieD1eGpoaaKivoane/0V7Uz3u5nq8zno8LQ14W5x4Xc143C14Xc3gdWHxuHw/vS1Y/D/F6/b/3298X8L7f7b+TyoYBPw//f9/irXtC/rW54jV97D4n1t8y2KxgMXqm2zHYkMsNt9Pqw0sdt+X+v5l38OOxWpvt2y12hGbHavNjsVqw2ILQ8JjSc4cT3T40Jifr8cojTFdfiUlItcALxjfFdBqEfECycB+ICtg10z/umHN2VhHSf7XVBfvwlm6B29lHuENRUQ2lxHrriDRW0mcuOj457XFWKmVGBosMTTa4qiLyKAqLI59jgS84XEQFu1LQsKjsIRHY3dEY4uIJiwiGkdENOEOB47wMKy2cMRqRaw2LNYwxP8LbgTfB8frAeMF48XjceNyu3G5PbhdzbhbnLibm3C3NOFpacLT4sTjcvqf+5a9LY14WpwYVxO4msDdhLiaELcTi8f3sHmc2L1OIj3V2N3N2L3NhJlmwmkh3DRjl8MbhtdirNQRhhsbHrFisODBgleseLHgwfeB93b8KVa8WEF8fy4EoPX94JsL8Y4LB6ekvgwj4LLf//yb9QdtM988F386IKb9sd+kBiDGEPjHrfW5aSufg7b7Xo7/uE7j+CZmCYilldD5H1PpcLxgsHRyTPt42m/rr8Q+WJqxk7nkjyFphR17xGmw7meUbHqnXxKsvZtXUfPO75ld/wmJxsF/Rn+fSef8jEWjs3o+eJAJCw9nZ9LJzK54nfraKqJjE4JSbmN9NZtfvpdxX/+T+VSy2zqOdQv+yOxTlpIxAK2K/WHavBMoejsFx+bHIYgJ1o7V7+Bc+SdmN35GqglnfeoFZJ91M/OyJgatjoHmmHMhUStfZdv7jzHtjB8FpczGhlo2v/oAY3Y+wgJTyj5LFuvn/o7c0/6L1AG66XR/mZh7JA1fhFO9/UNNsA6T12uoraulrqKY+soimmtKaamvwt1QibexCpw1WJtrCHPV4vDUEumpJ8pbR4RpIhInMWKIOYx63caCCxsubLjFhhvbN1cF4vufvf2VAAddLVjw+h7Gi7X1edvD41tnfH2lLHixiTcYb1k7Kz2z2Prdpzgzd2B7nByuvv4v8hJwAvChiEwCwoBy4BXg3yLyJ3yTXEwEVvexrkHB1eKkaM+XVOZtwVm8g7DqXcQ05pPkKiGJasYCrbeYbDZ2Si0p1NpTKIqZSX5kKsSkYo9PJzIxg9hRWfz/9u47vs3qauD470iy5L0dxyuxs4ft7EUCJJQRCjRQZsumhe4CpaWb0r7t+1KghRbaUiizpYyyKXsFCJC9d5zEsZ043tuWrHHfP6QYx7FjJ5Yt2znfz8dYesZ9jvzkETq6954nPiWTyOg4ki0W+m5AR4D189NtDQMr0O9v+V4PHlcTLmcTrpYmWp1NuFuacLua/cMdnc14WpvxuZrxuVswrS0YdzO4nYinGZ/Xg8/nRXwe8PmwGA+CD3xeLMaLGB8WPP7fgedheNq6SA51nBwifJ5sdeawz96B7KwtnRDLkW9I4k/iTFsWZ/k8ZZHP0xB/T0qHZW0HbL8u8NMWR2B5u+2kfVwi/jRS8A8FBX+CLe3So7ZtDj/m4W3Tbhv/Pp/H4d/ftO3vf41ytNfQ9nfxb9/psdsemcP/JP4Ms/2ido9NW9J85Hpz2JbtE0GA6PGnkj5yAqGQlJ5NoW0UicVvYcyvg5PkGcPO5a/h/vAPTHaupd5E8knm15hw/q0s6KMbJ/eXhLlfJeL1F1n57hPM/vKNvWqrqqyYXa/ew8SSp5lLE5vt+ZSedDf5p1wwoOcN9YQtLIydIy5lYdH9lO9aw7CxM467La/Hw8b3nyZ81V+Z6N5CDTF8NuIbTPzSD5iTPLj/PQFMWXAOBUtHELX+H/DFb3V4sz82FWXF7Hz1z4F/U/XsCJvIxrm/Jm/RpYwMccn8YJmYnsRSyWfa/g/8/xPV6QFtWt1eKsr2U1e2j5aqItw1+/E1lCHNFdhbKolwVxPtqSHB1BEvLcR30U4T4TRKNM3WGJzWGOrsmVSGxeG1RyP2KMQehTU8GosjGpsjCkt4DDZHFNYI/xfvYY5IHI5wHOH+H1uYA7HasVms2ICIfvyb+HwGr8+L1+PG4/EEprK48Xla8Xg9+NxuvJ5WvF4PPk8rPo8Hn9cd+Aks83owXjcm8DvMnsC0EcH5gq0/iDHH/y2ziNiBR4CpQCv+OVjvB9b9HLgO8AA3GWPe6K69mTNnmtWrVx93PMFWW1HK3g1Lce5bTWT1NhJbCknzlh6WmR8kmQp7Js2RGXhjswhLziF6+GhSMseRmJqJxTo03lyVUsG19t+3MX3nnyi47CPGTJhy3O0Yn5fN7z9F+Io/M9a9g0ri2J59FXlLfkBcwuCYO9Qd4/Ox97dTseIl/afrCAuzH3MbhVtXUvH2PUypeRu7eFgXMY+I037EhFmhvZFrsO0/sJ/Ev09lW8Iipt/07DHv39xQw+bX/krGjifIMAc5SAqF464l/0vfJTJ6cA5v68p7T97FF3b9lj2L/8Wouecd8/77tq6i7J17mFL9Ng5xsylyDvZTf8D42WcNyQTkib/9jqvK7sR7/VKsGdNCHU6/qW9qoqJ4Fw0HduKsLMRbW4Kt4QCRzjLi3eWkmCrCxX3EfjXEUm+Np9mWiCs8CW9ECr6oFCzRKYTFphIen0pUXBIxCSnExCUhtmN/X1OhJyJrjDFHlODtVYIVbAMtwVr+1O+Yu+NOvEYotmRQFZGDK2EMYcPGEz8yl4wxeURGx4c6TKXUIFR9cB/Rf5vGqqTzmf/9R455f4+rhY1vPkzyhr8xwlfCflLZN+HrTP3St4kM8c1c+8KGt59gyqffY8WYm5lzxe092sfncbP1o+eRFQ8w2bWOFmNnY/IXSTvrZkaMm9qn8YbSJ3/7NvPLnmTX4n8zdu45PdqneOd6Drz/dyYdfJEYWthmm0jz9BuYcsYV2I4joR0MGhobqLt7OmINI+UHn2HvwfwoT6uLjUv/g33tw+Q619Ji7GxK/iLpi28mc+zUvg86hN5etZkv/HcBB6Z8j6wv/0+owwmq+voaDu7dSm3JTlordmOpLSSqqZhk936Gm0qs7Ya8e4yFKksitWHDaAlPxROdjiU+k7DELCKTRxKXOoKElAysA/AWBSr4NME6DuX791JVspORk+cOuW/ulFKht+6+rzKp8i3Kr/qIrNGTe7RPTVkRBa/9iVFFz5FELbst2VRO/TbTFl+L3T40PwiDvxdr/V1fJLd5JbtO+ROTvtB1cZLSgg2ULH2EnJKXSaaGchLZnfNVJp7zfeKTU/sx6tCoq62h5k/zSTB1NCx5lMxpZ3a6XX1VKbs+fIaobc8wwb0Vj7GwNuZUok/9PhNnLjohqsSueO9FZn50LXsj88j4xgtExKccsY3xedm98VOqV/yb0aWvkUQd5SSya+RXmHTe90kYAkMme6K51cPW381nZHgzKT/e4C9uMIgYYygvP0hpwQYaijdDxXaiG/aQ1rqP4VQetm0tMVSGpdMYlYU3Lhtr8igiUseQlDGWxNQsLJo8qQBNsJRSaoCp3L8Xx4PzKLVlknXze0R08UWOz93Kjk9fxrXmSSbXfYQVH+vDZ2Fm38C0hRdiOUEqbNZVl3PgL+cy0buDDUlnEzXjMqKG5eBrbaa2eCste1eQVv4RGb5SvEbYEDEbT/7lTPnCJTgc/TkDIfR279yC5d8Xk2VK2ZF4Gt5Ri7DHpOBurMBVup2E8hXktO7CIoa9kkVpzpcZd8bXSU478W6X8vYzf+HUrb+iRcLZm3U+9oypYLXhqizEd3AzOXWrSKKWVmNlY9Q8LNOuIH/hhUO2Z+9onvj7XVxV+luaLnySqLxzQx1Ol6pqaijZsZbGfWuxlG8lun43ae5Ckqlr28aJnQO2EdRF5+BOGEtY6jgSMsYzPHsi4TGDZ66PCi1NsJRSagDa8O6TTP74uxy0Dqdx3o/JmPYFIiKiqTqwm9Kda/AVfEBOzSckUE+NiWFLyhfJOPN75IzLC3XoIVFTV8+mJ25hRuXLRInrsHUuE8bW8Kk0jTiNnJMvI2MQlaPvC2VlZWx++hfMqv4vsdLcttxlbOyxjaYy7VSSpp3HhKkLTpgkvSsbV35Iy7u/Y4Zr1WHzrCuJZ3fUdHxjTmfCgi+TkJIWwihDb3NxJQn/mI3EZZF+89KQzzUzxnBgfzEHdqykuWg99sotDG/ayQizv21YXwMRlIaNpCFmNCZ5PFGZkxk+Kp+E9DGDrhdODTyaYCml1AC1/sOXSPjgJ4yk9Ih1tSaaHdGzIO9i8k/9MhERJ1ZPTFeqqirZvWEZvoaD+KwO4jInMmJMLjHRQ2/+WW81O13s37uN5vpaImISyMiZQFSEI9RhDUjlNbVUFu3E5/OSkJZNeurwE2Ko5LH4159/zhXV91O7+H7i5/bffQQ9Hg9Fu7dSsWsV7pINRNZsJcNVQCo1bduUSzLlUeNoTcklImsqKeNmkpQ+dtBXCFUDlyZYSik1gLW0ONm08l3c+zfiaXVhjc8gceRkxuXOxham4/2VUgPD3vJ6qv9yOhMtxdi+8R724ZOCfozm5ib2bV9L7Z7VmNJNxNdtY6R7D1HiBPyFJkpsI6iOHY9JzSMuZzqZE2YTHnfkHDql+pImWEoppZRSqtfe+Hg5M9+9BIcVzEWPEjfp+G93UFFeSsmO1TQVriOsYhPJjTsZ4S0mTLyA//5QJfbRNMRPwJo+lcQxM8gYOw2bIzJYL0ep49ZVgjU4b1evlFJKKaVC4uyT5/K69ykmfXAd2c9+md0JC5D8S8nMOwV70sjD5mb5vF7qqg5SV15E1YG9tJTvxlq1k9jGPQx3F5NCHYf6naqIpzRiLOuTFuHImsKwcbNJHTmB8UPkhs3qxKE9WEoppZRS6pjtLCln63O/ZX7NS6SIv0KfizCaJAofgt20Em6c2AO9UYfUE0Vp2Ajqo0dhkscROyKP9AlziE3JDMXLUOq46RBBpZRSSikVdJX1Texc/wlNe1dhbyzB2lqPAFgdWMOjICYNa1w6ccOzSRs5lpjE9JBXIFQqGHSIoFJKKaWUCrrk2CiSTzkTTun8ptZKnWi0bqVSSimllFJKBYkmWEoppZRSSikVJJpgKaWUUkoppVSQDKgiFyJSAewLdRwdJAOVoQ5C9Rs93ycOPdcnDj3XJxY93ycOPdcnloF4vkcaY464w/WASrAGIhFZ3Vl1EDU06fk+cei5PnHouT6x6Pk+cei5PrEMpvOtQwSVUkoppZRSKkg0wVJKKaWUUkqpINEEq3sPhjoA1a/0fJ849FyfOPRcn1j0fJ849FyfWAbN+dY5WEoppZRSSikVJNqDpZRSSimllFJBogmWUkoppZRSSgWJJlhHISKLRWSHiBSIyE9CHY8KHhHJEpEPRGSriGwRkRsDyxNF5B0R2RX4nRDqWFVwiIhVRNaJyH8Dz3NEZEXg+n5GROyhjlEFh4jEi8hzIrJdRLaJyDy9tocmEbk58B6+WUSeEpFwvbaHDhF5RETKRWRzu2WdXsvi9+fAed8oItNDF7k6Vl2c67sC7+MbReRFEYlvt+6ngXO9Q0TOCknQR6EJVhdExAr8BTgbmAR8RUQmhTYqFUQe4BZjzCRgLvCdwPn9CfCeMWYs8F7guRoabgS2tXv+e+AeY8wYoAb4WkiiUn3hT8CbxpgJwBT8512v7SFGRDKA7wMzjTG5gBW4DL22h5LHgMUdlnV1LZ8NjA383AD8rZ9iVMHxGEee63eAXGNMPrAT+ClA4PPaZcDkwD5/DXxuHzA0werabKDAGLPHGNMKPA0sCXFMKkiMMaXGmLWBxw34P4Bl4D/Hjwc2exw4PyQBqqASkUzgHOAfgecCnAY8F9hEz/UQISJxwCnAwwDGmFZjTC16bQ9VNiBCRGxAJFCKXttDhjHmI6C6w+KuruUlwBPGbzkQLyJp/RKo6rXOzrUx5m1jjCfwdDmQGXi8BHjaGOMyxuwFCvB/bh8wNMHqWgZQ3O55SWCZGmJEJBuYBqwAUo0xpYFVB4HUUMWlgupe4FbAF3ieBNS2e+PW63voyAEqgEcDQ0L/ISJR6LU95Bhj9gN3A0X4E6s6YA16bQ91XV3L+rltaLsOeCPweMCfa02w1AlNRKKB54GbjDH17dcZ/z0M9D4Gg5yInAuUG2PWhDoW1S9swHTgb8aYaUATHYYD6rU9NATm3izBn1SnA1EcOcRIDWF6LZ8YROTn+Kd2PBnqWHpKE6yu7Qey2j3PDCxTQ4SIhOFPrp40xrwQWFx2aEhB4Hd5qOJTQTMf+JKIFOIf6nsa/jk68YFhRaDX91BSApQYY1YEnj+HP+HSa3voOR3Ya4ypMMa4gRfwX+96bQ9tXV3L+rltCBKRa4BzgcvN5zfvHfDnWhOsrq0CxgaqEdnxT6Z7JcQxqSAJzMF5GNhmjPlju1WvAFcHHl8NvNzfsangMsb81BiTaYzJxn8dv2+MuRz4ALgosJme6yHCGHMQKBaR8YFFXwC2otf2UFQEzBWRyMB7+qFzrdf20NbVtfwKcFWgmuBcoK7dUEI1CInIYvzD+79kjGlut+oV4DIRcYhIDv7CJitDEWNX5PNkUHUkIl/EP3fDCjxijPldaCNSwSIiC4CPgU18Pi/nZ/jnYT0LjAD2AZcYYzpOsFWDlIgsBH5ojDlXREbh79FKBNYBVxhjXCEMTwWJiEzFX9DEDuwBrsX/haJe20OMiPwauBT/8KF1wNfxz8XQa3sIEJGngIVAMlAG/Ap4iU6u5UCSfT/+YaLNwLXGmNUhCFsdhy7O9U8BB1AV2Gy5Meabge1/jn9elgf/NI83OrYZSppgKaWUUkoppVSQ6BBBpZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZQaYEQkW0SMiNhCHYs6MYjIFhFZGOo4lFJqKNAESyml1KAnIg+ISGPgp1VE3O2evxHq+AY6Y8xkY8zSYLcrIqeLyFoRaRKREhG5JNjHUEqpgUaMMaGOQSmlhhQRsRljPL3YPxvYC4T1pp0TlYjcDowxxlzRybpenZv+NJhi7YyITAKWAlcD7wBxQLwxZnco41JKqb6mPVhKKRUEIlIoIj8WkY1Ak4jYRGSuiHwqIrUisqH9ECwRWSoi/yciK0WkXkReFpHELtq+VkS2iUiDiOwRkW90WL9ERNYH2tktIosDy+NE5GERKRWR/SLyWxGxdvM6RovI+yJSJSKVIvKkiMS3W1ctItMDz9NFpOLQ6xKRLwWGmtUGXt/EDn+fH4rIRhGpE5FnRCT82P/Sx66Lc2NEZEy7bR4Tkd+2e35u4G9aGziH+T081sJAT83PAn+/QhG5vN36c0RkXeBcFQeSwUPrDg0N/ZqIFAHvB5b/R0QOBv5uH4nI5A5x/1VE3gj01n0iIsNF5F4RqRGR7SIyrYd/o9N78hqPwS+Avxtj3jDGeIwxVZpcKaVOBJpgKaVU8HwFOAeIB1KB14DfAonAD4HnRSSl3fZXAdcBaYAH+HMX7ZYD5wKxwLXAPe2SnNnAE8CPAsc9BSgM7PdYoN0xwDTgTODr3bwGAf4PSAcmAlnA7QCBD8c/Bv4lIpHAo8DjxpilIjIOeAq4CUgBXgdeFRF7u7YvARYDOUA+cE2nAYgsCCQ2Xf0s6OY1dKbt3HTXKxRISB4BvgEkAX8HXhERRw+PNRxIBjLw9948KCLjA+ua8J/3+EA83xKR8zvsfyr+v/1ZgedvAGOBYcBa4MkO21+CP5lJBlzAZ4HtkoHngD/2MO5OichPjnY+jrLr3MD+mwJJ/r+6+hJBKaWGEk2wlFIqeP5sjCk2xrQAVwCvG2NeN8b4jDHvAKuBL7bb/p/GmM3GmCbgl8AlnfUwGWNeM8bsNn4fAm8DJwdWfw14xBjzTuA4+40x20UkNXCsm4wxTcaYcuAe4LKjvQBjTEGgLZcxpgL/h/NT261/CCgAVuBPDH8eWHUp8FpgXzdwNxABnNTh73PAGFMNvApM7SKGZcaY+KP8LDvaa+hC+3PTnRvw97ysMMZ4jTGP409c5h7D8X4Z+Bt+iD/RvgTAGLPUGLMpcK424k9KT+2w7+2Bc9YS2OcRY0yDMcaFP9mdIiJx7bZ/0RizxhjjBF4EnMaYJ4wxXuAZ/Mn1cTPG3HG083GUXTOBK4EL8SeIEcB9vYlFKaUGA02wlFIqeIrbPR4JXNzhm/4F+JOSzrbfB4Th73U4jIicLSLLA8PzavEnToe2ywI6G3Y1MtBeabvj/x1/L0iXRCRVRJ4ODCmsB/7VSUwPAbnAfYEP/eDv8dp3aANjjC/w+jLa7Xew3eNmIPposQRZcfebtBkJ3NLh3GXhf409URNImg/Zd2hfEZkjIh8EhlbWAd/kyL9vW6wiYhWRO8Q/9LOez3sn2+9T1u5xSyfP+/Pv3F4L8KgxZqcxphH4Xw7/gkEppYYkTbCUUip42lcNKsbfQ9X+2/4oY8wd7bbJavd4BOAGKts3GBiW9jz+HqHUQI/B6/iH8h06zuhOYinG3+uS3O74scaYyZ1s297/Bl5HnjEmFn9P3KFjISLRwL3Aw8Dt7YZ8HcCfmBzaTgKvb383xzuCiJwsn1cA7Ozn5O5bOULHik7NQGS758PbPS4Gftfh3EUaY57q4bESRCSq3fMR+P8+AP8GXgGyjDFxwAO0+/t2EutXgSXA6fiLRGQHlnfcp88E5pN1eT6OsutGDn8tWlVLKXVC0ARLKaX6xr+A80TkrEAvRHigAEJmu22uEJFJgflMvwGeCwzras8OOIAKwCMiZ+OfS3XIw8C1IvIFEbGISIaITDDGlOIfSvgHEYkNrBstIh2Ho3UUAzQCdSKSgX9uV3t/AlYbY76Of+jbA4HlzwLnBOIIA27Bn+B92t0fqiNjzMfGmOij/Hx8rG12Yj3w1cC5Wczhw/QeAr4Z6G0SEYkSf3GKGGgrLPFYN+3/WkTsgWTwXOA/geUxQLUxxhmYP/fVbtqJwf93rMKfEP7vMbzGoDDG/O/RzsdRdn0U/7/NUYF/4z8B/ts/USulVOhogqWUUn3AGFOMv+fhZ/iTo2L8yUr7991/4i9EcRAIB77fSTsNgeXPAjX4P5C/0m79SgKFL4A64EM+70m6Cn+CtjWw73McPkSxM78Gpgfaeg144dAKEVmCv0jFtwKLfgBMF5HLjTE78Pd23Ye/F+484DxjTGs3xwuVG/HHWAtcDrx0aIUxZjVwPXA//r9bAYcX5MgCPjlK2wcD+x3AX5Dim8aY7YF13wZ+IyINwG34z+vRPIF/iOF+/OdxeXcvbKAwxjyCP/4V+F+Di07+jSul1FCj98FSSqkQEJGlwL+MMf8IdSyq5wJVETcA+YFiHh3XL8R/XjM7rlNKKXVisIU6AKWUUmqwCPTITex2Q6WUUicsHSKolFInGBF5oIuCBQ90v7cajERkxFEKVYwIdXxKKTWU6BBBpZRSSimllAoS7cFSSimllFJKqSAZUHOwkpOTTXZ2dqjDUEoppZRSSqmjWrNmTaUxJqXj8gGVYGVnZ7N69epQh6GUUkoppZRSRyUi+zpbrkMElVJKKaWUUipINMFSSimllFJKqSDRBEsppbrh8frw+bTiqlJKKaW6N6DmYHXG7XZTUlKC0+kMdShqkAkPDyczM5OwsLBQh6IGMWerh4/vvJCC2Nl883s/Q0RCHZJSSimlBrABn2CVlJQQExNDdna2frBRPWaMoaqqipKSEnJyckIdjhrENq9ayhmepZxRvZRte77KxNH670kppZRSXRvwQwSdTidJSUmaXKljIiIkJSVpz6fqNdn+atvjkrVvhTASpZRSSg0GAz7BAjS5UsdF/92oYJDafZSSghM7Urwi1OEopZRSaoAb8EMElVIqlCJd5VSHDafRlk5aw+ZQh6OUUkqpAW5Q9GCFmohwyy23tD2/++67uf3220MXUDvLly9nzpw5TJ06lYkTJ7bFtXTpUj799NPjbnffvn1Mnz6dqVOnMnnyZB544IEgRazU4BLrrqLZkUJL/DiyfMU0Od2hDkkppZRSA5gmWD3gcDh44YUXqKysDGq7xhh8Pl+v2rj66qt58MEHWb9+PZs3b+aSSy4Bep9gpaWl8dlnn7F+/XpWrFjBHXfcwYEDB3oVq1KDjjEkmSpckanYUscRKy3sK9ob6qiUUkopNYBpgtUDNpuNG264gXvuueeIdRUVFVx44YXMmjWLWbNm8cknnwBw++23c/fdd7dtl5ubS2FhIYWFhYwfP56rrrqK3NxciouL+dGPfkRubi55eXk888wzgD9BWrhwIRdddBETJkzg8ssvx5gj78NTXl5OWloaAFarlUmTJlFYWMgDDzzAPffcw9SpU/n444+PGueVV17JvHnzGDt2LA899BAAdrsdh8MBgMvl6jIR/POf/8ykSZPIz8/nsssuA6C6uprzzz+f/Px85s6dy8aNG9uOdfXVV3PyySczcuRIXnjhBW699Vby8vJYvHgxbre/Z+A3v/kNs2bNIjc3lxtuuOGI1+3z+cjOzqa2trZt2dixYykrKzvaaVTqmLkaq3Dgxhc9nPgRuQBU7NVhgkoppZTq2qCag/XrV7ew9UB9UNuclB7Lr86b3O123/nOd8jPz+fWW289bPmNN97IzTffzIIFCygqKuKss85i27ZtR21r165dPP7448ydO5fnn3+e9evXs2HDBiorK5k1axannHIKAOvWrWPLli2kp6czf/58PvnkExYsWHBYWzfffDPjx49n4cKFLF68mKuvvprs7Gy++c1vEh0dzQ9/+EMAvvrVr3YZ58aNG1m+fDlNTU1MmzaNc845h/T0dIqLiznnnHMoKCjgrrvuIj09/YjXcscdd7B3714cDkdbwvOrX/2KadOm8dJLL/H+++9z1VVXsX79egB2797NBx98wNatW5k3bx7PP/88d955JxdccAGvvfYa559/Pt/97ne57bbbALjyyiv573//y3nnndd2TIvFwpIlS3jxxRe59tprWbFiBSNHjiQ1NbXb86jUsWioKMEBSMxwhmX73ydcZdtDG5RSSimlBjTtweqh2NhYrrrqKv785z8ftvzdd9/lu9/9LlOnTuVLX/oS9fX1NDY2HrWtkSNHMnfuXACWLVvGV77yFaxWK6mpqZx66qmsWrUKgNmzZ5OZmYnFYmHq1KkUFhYe0dZtt93G6tWrOfPMM/n3v//N4sWLOz3m0eJcsmQJERERJCcns2jRIlauXAlAVlYWGzdupKCggMcff7zTHqL8/Hwuv/xy/vWvf2Gz2dpe05VXXgnAaaedRlVVFfX1/sT47LPPJiwsjLy8PLxeb1u8eXl5ba/vgw8+YM6cOeTl5fH++++zZcuWI4576aWXtvX2Pf3001x66aVH/ZsrdTxcTbUAWCPisMVn0YIDW/Xu0AallFJKqQFtUPVg9aSnqS/ddNNNTJ8+nWuvvbZtmc/nY/ny5YSHhx+2rc1mO2xYXfv7MUVFRfXoeIeG6IF/+J/H4+l0u9GjR/Otb32L66+/npSUFKqqqo7Ypqs44chy5h2fp6enk5uby8cff8xFF1102LrXXnuNjz76iFdffZXf/e53bNq0qUevyWKxEBYW1nYsi8WCx+PB6XTy7W9/m9WrV5OVlcXtt9/e6b2s5s2bR0FBARUVFbz00kv84he/OOpxlToerS3+LyGs4TFgsVAWlklsU2Fog1JKKaXUgNbrHiwRyRKRD0Rkq4hsEZEbA8sTReQdEdkV+J3Q+3BDKzExkUsuuYSHH364bdmZZ57Jfffd1/b80FC47Oxs1q5dC8DatWvZu7fzifEnn3wyzzzzDF6vl4qKCj766CNmz57d45hee+21tjlKu3btwmq1Eh8fT0xMDA0NDd3GCfDyyy/jdDqpqqpi6dKlzJo1i5KSElpaWgCoqalh2bJljB8//rBj+3w+iouLWbRoEb///e+pq6ujsbGRk08+mSeffBLwzyVLTk4mNja2R6/nUDKVnJxMY2Mjzz33XKfbiQgXXHABP/jBD5g4cSJJSUk9al+pY+EOJFhhEf4vReqjskl1F4cyJKWUUkoNcMEYIugBbjHGTALmAt8RkUnAT4D3jDFjgfcCzwe9W2655bBqgn/+859ZvXo1+fn5TJo0qa2c+YUXXkh1dTWTJ0/m/vvvZ9y4cZ22d8EFF5Cfn8+UKVM47bTTuPPOOxk+fHiP4/nnP//J+PHjmTp1KldeeSVPPvkkVquV8847jxdffLGtyEVXcYJ/mN+iRYuYO3cuv/zlL0lPT2fbtm3MmTOHKVOmcOqpp/LDH/6QvLw8AL7+9a+zevVqvF4vV1xxBXl5eUybNo3vf//7xMfHc/vtt7NmzRry8/P5yU9+wuOPP97j1xMfH8/1119Pbm4uZ511FrNmzWpb98ADDxwW96WXXsq//vUvHR6o+oy3xf8lhT3C/wWBO34UGaacunZfXiillFJKtSedVabrVYMiLwP3B34WGmNKRSQNWGqMGX+0fWfOnGlWr1592LJt27YxceLEoMaoPnf77bcfVgxjqNF/P6o3Nr18D3nrbmfXFasYO2YcG197gPxVP2bHRR8wPnd6qMNTSimlVAiJyBpjzMyOy4Na5EJEsoFpwAog1RhTGlh1EOi0xJuI3CAiq0VkdUVFRTDDUUqpXvG5mgAIj/T3YMWk+Xui6w7sCllMSimllBrYglbkQkSigeeBm4wx9e0LJRhjjIh02lVmjHkQeBD8PVjBikf1zO233x7qEJQasIzLPwcrIjoGgGEj/Z3wzgqtJKiUUkqpzgWlB0tEwvAnV08aY14ILC4LDA0k8Ls8GMdSSqn+YlqbcJkwIsP91S+jEtNxYkeqOy9ao5RSSikVjCqCAjwMbDPG/LHdqleAqwOPrwZe7u2xlFKqP4m7mSYchNusgQVCuTWNiCatJKiUUkqpzgVjiOB84Epgk4isDyz7GXAH8KyIfA3YB1wShGMppVS/EXcTTsKxWD4f8lwXkUlCU0kIo1JKKaXUQNbrBMsYswyQLlZ/obftK6VUqFg8LbTI4TfndsVkMaphNR6PF9uhni2llFJKqYCgVhEcyl566SVEhO3bt3e5TWFhIbm5uUE75o4dO1i4cCFTp05l4sSJ3HDDDYD/JsGvv/76cbfrdDqZPXs2U6ZMYfLkyfzqV78KVshKDSk2TxMuS8RhyyQhmyhxUXZQe7GUUkopdSRNsHroqaeeYsGCBTz11FOdrvd4PL0+htfrPez597//fW6++WbWr1/Ptm3b+N73vgf0PsFyOBy8//77bNiwgfXr1/Pmm2+yfPnyXsWu1FBk87bQ2iHBihg2BoCq4h2hCEkppZRSA5wmWD3Q2NjIsmXLePjhh3n66afbli9dupSTTz6ZL33pS0yaNAnwJ1qXX345EydO5KKLLqK5uRmA9957j2nTppGXl8d1112Hy+UCIDs7mx//+MdMnz6d//znP4cdt7S0lMzMzLbneXl5tLa2ctttt/HMM88wdepUnnnmGZqamrjuuuuYPXs206ZN4+WX/fVEHnvsMZYsWcLChQsZO3Ysv/71rwEQEaKjowFwu9243W7al9U/5D//+Q+5ublMmTKFU045BfD3fl177bXk5eUxbdo0Pvjgg7ZjnX/++ZxxxhlkZ2dz//3388c//pFp06Yxd+5cqqurAXjooYeYNWsWU6ZM4cILL2z7+7Q3d+5ctmzZ0vZ84cKFdLwBtVL9IczbgrtDghWfMRaA5rKCUISklFJKqQEuaPfB6hdv/AQObgpum8Pz4Ow7jrrJyy+/zOLFixk3bhxJSUmsWbOGGTNmALB27Vo2b95MTk4OhYWF7Nixg4cffpj58+dz3XXX8de//pXvfve7XHPNNbz33nuMGzeOq666ir/97W/cdNNNACQlJbF27dojjnvzzTdz2mmncdJJJ3HmmWdy7bXXEh8fz29+8xtWr17N/fffD8DPfvYzTjvtNB555BFqa2uZPXs2p59+OgArV65k8+bNREZGMmvWLM455xxmzpyJ1+tlxowZFBQU8J3vfIc5c+Yccfzf/OY3vPXWW2RkZFBbWwvAX/7yF0SETZs2sX37ds4880x27twJwObNm1m3bh1Op5MxY8bw+9//nnXr1nHzzTfzxBNPcNNNN/HlL3+Z66+/HoBf/OIXPPzww209c4dceumlPPvss/z617+mtLSU0tJSZs484ibZSvU5u68Fj+PwBCtlhP9mw56qwhBEpJRSSqmBTnuweuCpp57isssuA+Cyyy47bJjg7NmzycnJaXuelZXF/PnzAbjiiitYtmwZO3bsICcnh3Hj/B/Mrr76aj766KO2fS699NJOj3vttdeybds2Lr74YpYuXcrcuXPber7ae/vtt7njjjuYOnUqCxcuxOl0UlRUBMAZZ5xBUlISERERfPnLX2bZsmUAWK1W1q9fT0lJSVsS1tH8+fO55ppreOihh9qGLy5btowrrrgCgAkTJjBy5Mi2BGvRokXExMSQkpJCXFwc5513HuDveSssLAT8SdjJJ59MXl4eTz755GE9VYdccsklPPfccwA8++yzXHTRRZ3+fZTqaw6fE4818rBlYY5IykkirH5fiKJSSiml1EA2uHqwuulp6gvV1dW8//77bNq0CRHB6/UiItx1110AREVFHbZ9x6F2nQ2966hjG+2lp6dz3XXXcd1115Gbm9tpImSM4fnnn2f8+PGHLV+xYkW38cTHx7No0SLefPPNIwp0PPDAA6xYsYLXXnuNGTNmsGbNmqO+DofD0fbYYrG0PbdYLG1z1K655hpeeuklpkyZwmOPPcbSpUuPaCcjI4OkpCQ2btzIM888wwMPPHDU4yrVV8JNCz5b5BHLq+xpRDfrvbCUUkopdSTtwerGc889x5VXXsm+ffsoLCykuLiYnJwcPv744063Lyoq4rPPPgPg3//+NwsWLGD8+PEUFhZSUOCfs/HPf/6TU089tdtjv/nmm7jdbgAOHjxIVVUVGRkZxMTE0NDQ0LbdWWedxX333YcxBoB169a1rXvnnXeorq6mpaWFl156ifnz51NRUdE25K+lpYV33nmHCRMmHHH83bt3M2fOHH7zm9+QkpJCcXExJ598Mk8++SQAO3fupKio6IjE7mgaGhpIS0vD7Xa3tdOZSy+9lDvvvJO6ujry8/N73L5SQWMM4bjwhR2ZYDVFZpLsLg1BUEoppZQa6DTB6sZTTz3FBRdccNiyCy+8sMtqguPHj+cvf/kLEydOpKamhm9961uEh4fz6KOPcvHFF5OXl4fFYuGb3/xmt8d+++2324pMnHXWWdx1110MHz6cRYsWsXXr1rYiF7/85S9xu93k5+czefJkfvnLX7a1MXv2bC688ELy8/O58MILmTlzJqWlpSxatIj8/HxmzZrFGWecwbnnngvAbbfdxiuvvALAj370I/Ly8sjNzeWkk05iypQpfPvb38bn85GXl8ell17KY489dljPVXf+53/+hzlz5jB//vzDkrpXXnmF2267re35RRddxNNPP80ll+j9qVWIeJxY8YE9+shVcdmkUk1Lc1MIAlNKKaXUQCaHej0GgpkzZ5qO1eK2bdvGxIkTQxTR4PbYY48dVgzjRKT/ftTx8jZWYr17NB/k/JBFV//ysHVrXn2AGWt+TOFlS8meMC1EESqllFIqlERkjTHmiEps2oOllFKdcDbVAyCOI+dIRg333wur7oDeC0sppZRShxtcRS7UMbnmmmu45pprQh2GUoOSs7meKMDiOHKIYFKWvyKos3xPP0ellFJKqYGuz3uwRGSxiOwQkQIR+cnxtDGQhjGqwUP/3ajecDX5C8lYw49MsJKHZdJkHJjqwn6OSimllFIDXZ8mWCJiBf4CnA1MAr4iIpOOpY3w8HCqqqr0w7I6JsYYqqqqCA8PD3UoapBqbWkEwNZJgiUWC2XW4YQ3aql2pZRSSh2ur4cIzgYKjDF7AETkaWAJsLWnDWRmZlJSUkJFRUUfhaiGqvDwcDIzM0Mdhhqk3C3+OVhhETGdrq91ZJDoLOnPkJRSSik1CPR1gpUBtP+KtwSYcywNhIWFkZOTE9SglFKqOx6nvwS7PfLIHiwAZ3QWqc2rMT4fYtF6QUoppZTyC/mnAhG5QURWi8hq7aVSSg0UXqd/DpY9PLbzDRKyiZBW6iv392NUSimllBro+jrB2g9ktXueGVjWxhjzoDFmpjFmZkpKSh+Ho5RSPeN1+XuwwqM7HyJoTxkNQEWxlmpXSiml1Of6OsFaBYwVkRwRsQOXAa/08TGVUqrXTGsgwYrsPMGKyxgLQGPp7n6LSSmllFIDX5/OwTLGeETku8BbgBV4xBizpS+PqZRSwWBcTbiMjaiIiE7Xp44Yi88I7kpNsJRSSin1uT6/0bAx5nXg9b4+jlJKBZW7iRYcxIZZO10dGx3DQUnEWrevnwNTSiml1EAW8iIXSik1EFncTTQTjsUiXW5TaUsjqnlolmo3xvDmk/fy37/8iLpmV6jDUUoppQYNTbCUUqoTFnczTul8eOAh9ZGZJLUe6KeI+te2j19g8a5fcW7Fg6z8929CHY5SSik1aGiCpZRSnbB6mnFZwo+6jTtmBMmmGp+ruZ+i6j+tyx+mkngKwvPJLX6KphZnqENSSimlBgVNsJRSqhM2bwutlqP3YFmS/DdBr9q/sz9C6jfeVicTmleyI+l0fLOuJ02q2LT83VCHpZRSSg0KmmAppVQnwrzNuLvpwYpK9d8Lq6ZkV3+E1G8KN39KOG5so05m1Nzz8GChZYvWKlJKKaV6QhMspZTqRJjPidsaedRtErMmANBcNrRKtdfu+BiAzCmLsEUlsMcxibTqlSGOqu989NZzfPA/Z/PGy0+FOhSllFJDgCZYSinVCYevBa/t6EME09IyaDTh+Kr39FNU/SOsfDOlJon0jBEANA6bwSjvHqrr6kMcWfDVVh4k/9MbWeT9lIVrv8/ePUNruGd7Owp2svSOL/Pqw7/D5zOhDqfPuD1e3nz+Ed568TG8Q/h1Any47CPefvo+ml2toQ5FKdWOJlhKKdWJcOPEZ4s66jaOMBsHLcMJqy/qp6j6R3zjLkrsOYj4S9RHjzkJu3gp2PBJiCMLvi1vPkS8NLL91Aew42bf638MdUh9whhDy1PXsdD5HucV38nH/3081CH1mQ+e/iOLN93MWRtu5OOn7w51OH1m5cpPOOmd8zlz+y9Y+8D1oQ5HKdWOJlhKKdWJcJxgP/oQQYC68Axinfv7IaJ+4mkl3V1EXez4tkUj8k8BoH7Xp6GKqs8k7Xud3dYcJiz6Cltj5jOx8k1a3Z5QhxV0O9cuZap3Exsm3EKxNYu09X/CmKHXu9PibCVv19/Y5xjPbsdEJu+8n5bmoVflE8C8/784xcGOuAXMq36Z0r1bQh2SUipAEyyllOrI4yIML8Ye3e2mrTFZpHpKMT5fPwTW95pKd2DDi0mZ0LYsPCGdMksq0RXrQhhZ8DXUVjG2dRsHhy/yL5i8hFRq2Lr6/dAG1geqVj5Lq7GSs/g7lI2/gnG+PezZ9Fmowwq6TcteIU2qcM75Ls75PyaFWnZ8OPTm1pWVVzC1ZTm7M5YQfs7/YRVDybp3Qh2WUipAEyyllOrA1VQLgDhiut3WkjSKcHFTUVrcx1H1j/LCzQBEZ046bPnBmFyynVuHVK/HnrXvYhVD3ER/gjV63vn4jFC/ZeiVpE8v/5BdEVOJjU9i1MIr8RnhwKqXQh1W0Lm3v4XThDHqpAsZP+9cKonDbH051GEF3f5VL+MQD1HTLiJz9GSajQNTpj1YSg0UmmAppVQHzQ01AEh4bLfbRqeNAaBs37Y+jam/NO7fDkBqTu5hyz1p0xlOFQf2D535Zq49n+I2VnKmLgQgMn4Y+8JyiCtbEdrAgqyivJRss5+mjPkAJA7LYK99DAmlH4c4suDLqP6Mgoh8wsKjsIWFUZCwkHH1K2h1uUIdWnDt/Yh6E8nI/FOxWq0U20YSXTt0C7QoNdj0KsESkbtEZLuIbBSRF0Ukvt26n4pIgYjsEJGzeh2pUkr1k5bGWgCsEXHdbpuc5Z+rVF86NO6FZSp3ctAkMGL4sMOWx46aCUDptqEzrCyyahOF1hFERX+eSNekzGZc61YaGhtDGFlw7dvoT6Tix81tW1aduoAJ7u3U1VSHKqygKz14gGxfMS0Z89qWOcYvIkqc7Nk4tJLJ4TWr2Bmeh90eBkB1zFjSXbthCPUwKzWY9bYH6x0g1xiTD+wEfgogIpOAy4DJwGLgryJi7eWxlFKqX7gCCZYtovserJSMMfiM4Knc28dR9Y+ohj2U2rKwWQ//30PWpDkAuIrWhiKs4DOGjJZdVMVMPGxx5LhTiZBWdq3/KESBBV/z3pX4jDAy96S2ZVGTzsQmPvauHjo3kN67cRkAyePnty0bOd3//W7d1vdCElNfcNWXk+49QP2wmW3LTMpk4mmgpnxoDFVWarDrVYJljHnbGHOo3NJyIDPweAnwtDHGZYzZCxQAs3tzLKWU6i+tTXUA2KO678Gy2MMptw7DUTcEbjZsDMNcxTREZx+xKjw6gWJLBhGVm/o/rj5QeWAPCdTjHT7lsOUjpp+BzwgtOz8MUWTBF1Wxgf22LBxRCW3LRk1fRLNx0LrrgxBGFlyuwlX4jJA5+fMerMRh6ey25BBTOnQqYBZv9t8uITrn849VMdlTATiwY3UoQlJKdRDMOVjXAW8EHmcA7b9GKQksO4KI3CAiq0VkdUVFRRDDUUqp4+NpDiRY0QndbOlXGZFNsrOwDyPqH866MmJowpswptP1FdETyGjZ0c9R9Y0D25YDED9q5mHLI+NSKLJmEV0+ND6otrq9ZLu2U52Qd9jy8PAI9jgmkFC1PjSB9YGYqg3st2USFnX4dXswcRajWrbgcQ2Ncu11u5bjM0JO/oK2ZZnj/f+OG/dtCFVYSql2uk2wRORdEdncyc+Sdtv8HPAATx5rAMaYB40xM40xM1NSUo51d6WUCjpviz/BioiK79H2LXFjyfLux9U6uCfSl+3ZCEB42vhO17tTp5BKFRVlg38YUkvROrxGGDn5yMEVFfFTyHFuw+f1hiCy4CrYtYUkqceaNeuIdU3DppPj2UNdXW3/BxZkHo+XbOd2quLyjlhnG30K4eJm36ZlIYgs+OzlG9hnySAlObltWUJyKmUkYavYHMLIlFKHdJtgGWNON8bkdvLzMoCIXAOcC1xuPq/fux/IatdMZmCZUkoNeD5nPQARMfE92t6aOhGHuNm/Z3sfRtX3aou2ApCcfeSHVICYHP+35Ae2Dv4qe+GVm/w9VdGdzLPLnEUsTRTv2tj/gQVZ5Xb/0LhhE086Yl30mPn+eVgbB3/iUbh3B8lSB5nTj1iXPe00AKq2DYF5dcaQ3rSN8pjJR6w6EDGO5Mah0cOs1GDX2yqCi4FbgS8ZY9r3vb8CXCYiDhHJAcYCK3tzLKWU6i/G2YDL2IiO7v5GwwDxI/MBqNo7uIfneMu20WQcZOWM63R95iR/FbqWfWv6M6w+kd68k4roCZ2uGzbpZADKtw7+D+Rm/xqc2EkZNe2IdSOmnAJAQ8Hgn59Uvs3/GpLHH5lIpg7PoFAyiChd1d9hBV1ZSQFJ1OJLP/J8tiRNJtNbgrO5IQSRKaXa6+0crPuBGOAdEVkvIg8AGGO2AM8CW4E3ge8YYwb/WAul1InBVU8jEUSG9az4afoYf4LlKh3cN/qMqCugyJpFeKD0c0ex8UmUSBqOisHds1NVVkQK1XhT8ztdnzV2CnVEQcng/0CeWLuZYsdYxGY/Yl1MQirFlkyiygZ/wuwtXk2rsZE+bman60tjpzKyeRPGN7g/ipQEClwkjZt3xDp71jSsYijZPjTmDyo1mPW2iuAYY0yWMWZq4Oeb7db9zhgz2hgz3hjzxtHaUUqpgURc9bRIJBaL9Gj78Oh4yiSFsOrBfS+s5Ja9VEfkHHWbg1ETSGse3MOQSrb4C1wcGvLYkcVqpTB8Eim1g7tHsqnFyRhPAQ2JnSeSABXx+WS3bMHr9fVjZMGXULORIvtoLGGOTtd7s+YSS1PbPMPByrlvNa3GSnbgtgntpY7zz7Or3aMJllKhFswqgkopNSSEuWppsHRfor29iogckpr39FFEfc/TVEOKqaI1YexRt3MPy2e4qaC2orSfIgu+5kA57+zcuV1u05gynWxfEc31Vf0YWXDt3bqaCGnFkX1kgYtDJGs2idLAnp2Dt/x+i9PFaPcu6pKmdLnNsEmnAnBw0+AuSx9btYGisFHYwyOOWJcxYiy1JhpKB3cSqdRQoAmWUkp1EO6ppSXs2BIsZ/xYsrwlOF2tfRRV3yot8PfWhGdMOup20YFen5Ktn/V5TH0lomIDRdZMomO7LsMfOdqffBVtGLzzsGp3+uclDZ80v8tt0nL9icdgnm+2e/NKIqQVe3bXCfOocblUmjikaHk/RhZcrlYXo1p3UJvYeSJpsVoocowhvm5bP0emlOpIEyyllOog2lOLK6xn98A6JGz4JBzipmj34PxwU1no78FIyem6FwBgROAmrk2Fg3MYkvH5GNGyjfKY3KNuNzL/VHxGaNw9eAtAhJWuppo4kjI7L7sPkDp6Co1EQvHgrUNVs8t/jjJyF3S5jc1mZXdEHql16/spquDbs2UVUeIiLPvI4YGH1MdPJMtdiM89OL/oUWqo0ARLKaU6iDX1eMKPLcFKCJQ2ry4cnPN2PAe34jRhjBg18ajbxSWmUCLDsVcMziFlB4t3kUg9ppMqbO0lJiax1zKCiLK1/RRZ8GU0bKQoMhek67mEYrGyL2ISw+oG77Ay24E11BBLYkbn1S8PaU6dyXBfGS1VRf0UWXBVb/eX08/IO7XLbaxpU3CIm4N7Buf7kFJDhSZYSinVjmltIgIXvoikY9ovbcxUAFoPDM4bfcZUb2avbRT2LioItlcWNYHhTYPznl+lW/29HQljj6zC1lFZ3BRGtmwdlJXnKspKyDSlOIfP6HZbZ+oMRvn2UVFZ0Q+RBV9a42b2R00+aiIJEDPOX36/eP3Sfogq+Cz7V1Ml8SRndp1IJo7xD+Gt3DX4K2AqNZhpgqWUUu001JQDYIk6tgQrLDKOA5Y0Iqq39kVYfcvnZYRrJxWxR968tDOtw/JIM+XUV5X1cWDB17pvFa3GxsjJXRd+OMSXOYtomikfhL0Be9YtBSB50indbhszbgFWMRSu/7CPowq+gwdLyDb7cQ0/8gbDHY3Jn0ezcdCy55N+iCy4fD5DRuNGSqPzjppIjhw3hWbjwL1/8P2bVWoo0QRLKaXaaaw6CIAtOuWY9y2PGsvw5sFXqr1i7wYicWLSu/+QChCd7f+WvGgQFrpIqlzJLvt4HI4jq7B1lDLR3+NRtmXwFYBw7v4EN1Zy8roucHHIyCmn4DWCc8/gm2+2d6X/LjCJeWd2u218TBQ7bOOIqxh89/0q2L2TEZRhsrqefwUQ7rBTaMsmejB+0aPUEKIJllJKtdNU40+wHPHDjnlfT0ouWRykqnpwlfbevyVQbW7iST3aPmuSf3hd497BVeiirrqCUe4C6lO7Hx4IMGp8PjUmBl/R4CsAMbxqOXsdE7E6Irvd1hEVz76wUcRVDq7zCeDb/SGNRJLdg0QSoCpxOlmtBRhnfR9HFlxl6/2J5LBpZ3e7bXXMBDJcBeAb3Pc2U2ow0wRLKaXaaa7YB0BcavYx7xs10l84oWjb4Jr/4C5aTYOJYNSEo1cQPCQ+OZX9koq9fHAVRti96i2sYojLPaNH24fZrOxxTCS5dnC9zrIDRYz37aEuc2GP96lKms5o13ZcLmffBRZkPp9hRN1KCqOnIdbu5w4C2HJOwoqhdOuyPo4uuOyFH1JFPKljup9T5x2eTzTN1B4YfL3pSg0VmmAppVQ7ntoSfEZISR95zPtmTPAP32koHFyV55Jq1lPoGE+YzdbjfQ5Gjh90hS5cuz6g2TgYM21hj/dpSJlGpreY1obB0ytZtOq/ACRO6b6345Cw7JOIEhd7Nq/oq7CCbtfOLWRRhje7+3lmh2Tl+4dD1mwbPMM+XW43YxtXsS9hTreFPABis/1J2MEdg6/nVamhQhMspZRqx9JwgEriiY3qfmhVR7HDRlBLDJbywVNJsKlqP6O8e6kd3rPhgYd4U6eQbsqoKC/to8iCzBgyqj5ld0Qedkd4j3cLH+UfTli0cRAVgCh4lyriyJncs6GQAJlTFgFQu33wJB7lq14AIHPWeT3eJyc9jV0yEnvp4Oll3rL6IxKlAcf4nvW8jpgwA7ex0lK0ro8jU0p1RRMspZRqx958kGrbsRe4AECE0oixJDXsDG5QfahwxSsARE9efEz7xY+Z7d9/0+AojFC0bRUjzAEass86pv1GT/X3eNTtHByV55wtzYyrX05hwklYrNYe75ecnkOpDMN+YPD0eiTve4091hySRvas+iWAxSKUxEwhs3EzeD19GF3wNK55llZjZfRJF/Ro+6T4WAotmTgqB88XPUoNNUFLsETkFhExIpIceC4i8mcRKRCRjSLSs/JUSikVQrGtZTQ4Uo97/5bEieR4C2lsGRxzWTw73qHCxDN5+oJj2m9k/sn4jNAySCrPHfj0KbxGGLPwK8e0X0pSEnus2USUDY7Kc9s+fJY4acI+9ZJj3nd/zBRGNm3EDILiCHsKtjPRs52anHOOeV9vxmwicNIwCHp4nK5Wxle+xY6YeYTHJvd4v7LI8QxvHjxf9Cg11AQlwRKRLOBMoP3t0c8GxgZ+bgD+FoxjKaVUn/F5GeYtoyUq87ibCM+cQri42btj4N+Hxudxk123gl2xc7CH9by3A8ARnUBRWDaxg6DktfH5yNj/JlsdUxg2POuY969KmMJI5za8nkHQ47HxGSpIYNL8Lx3zrp7MOSRTS+m+HX0QWHAVffRPAHJOueKY902adCoApZuWBjGivrH249dIpYawaceWMLem5JJoanDWHOijyJRSRxOsHqx7gFsB027ZEuAJ47cciBeRtCAdTymlgq62dA8O3EjSmONuY9h4/9C5ml0Df6jVjmUvEEcjtkk9n8PSXlXCNMa4tuNqbQ1yZMG1fcVbZJkDtIzv2RCrjsJGziUKJ3u3Dewy5mUH9jG5aQV7hp+N9RgKlhySErgpcenG94MdWlC1trYyrugZtjvySBwx8Zj3z504if0mGW/hwL+Pm2XNozQQydgFFx/TfhEj/BVNtdCFUqHR6wRLRJYA+40xHb+uzQCK2z0vCSzruP8NIrJaRFZXVFT0NhyllDpuZXv9cxaiM479Q9shSSNzacGBlA784UeeNf+k0sSRt/DYPrwdYsuZR7S0sGfLwP4Q51p2PzXEkLf468e1f2a+v8djoN9weM9//4ANHyPO/M5x7Z89cSa1JhoKB3YJ81VvPUk6FXhnf/O49g8Ps7I3Mo9hNevAmO53CJGdOzYzq/kjdmVd3KP7mbWXPsH/RU/DnoH9pYBSQ1WPEiwReVdENnfyswT4GXDb8QZgjHnQGDPTGDMzJeU4J5YrpVQQNOzfCsDwUXnH3YZYwyhyjCWxbmuwwuoTdRX7mVD/KVtTziYioudV9drLyFsIMKBLXu/fs5X8xk/Ymv5lIqKij6uN1JETqZQE7CUDd75ZdU01k/f/h/Uxp5A2Kve42rBarRRETSWzdtWATTx8Xh+J6/9KmQxj0sJLj7sdd/ockkw19aUFQYwuuA68cTc+LIw574fHvG/W8FSKTCrW8k19EJlSqjs9SrCMMacbY3I7/gB7gBxgg4gUApnAWhEZDuwH2g92zwwsU0qpAclSvo0aE8PwtOOfgwVQn5DLKM9uXK2uIEUWfLteuQsrPjJO+8Zxt5GcOZYKEgkbwJXnSl/6Ja3YGHfuD46/ERH2xc5kVOPaAVsAYtt/fkOsNJN81q29aseVdTKppoLyooF5j7Plrz3KRO9OSqfd2OObC3dm2GT/cMjCde8FK7Sg2rl1PSfVvMKWYecSO2zEMe9vsQj7w8eS2DAwz6NSQ12vhggaYzYZY4YZY7KNMdn4hwFON8YcBF4BrgpUE5wL1BljBskNU5RSJ6L4uq3ss49BLL0bPW3LnEGEtLJv28C84XBDTRkTi59iddQpjJ7UiwKvIhTHTCGrcRNmAPZ47Fz7ITPr32VtxuWkpGf3qi3fyJNJoo6i7QOvqMe+gi3M3P8v1sSdwYi8Y6sG2VHqlDMBKF7zZjBCC6qGhjqy1t7JPutIppxzfMMDDxmbO5t6E0nrnoFXft/nM9S+9GPcEsaoS/73uNtpTprMcO9BvM21wQtOKdUjfXkfrNfx93AVAA8B3+7DYymlVK94Wp1kugtpTOz5PXW6kjbJf4PXyl0ret1WX9j+zK+IMC4Szv5Fr9vyZc5hOJUU7R1YJaHdrU6sr91IFfHkXvqrXreXNs1/n7Dyje/0uq1g8nq91D/7bbxiIfvSu3vd3qjxUyknESkceMM+1z92C1kcxH3mHYj12It4tGe3h1EQmU969cDrff3kxb8xu3U5BRO+TWzK8femOzL9hS5KtdCFUv0uqAlWoCerMvDYGGO+Y4wZbYzJM8boTEul1IBVvG0FdvFiHzGj122lZk+ikUjYP/B6sAo3fcr00qdZnngeY/Nm97q9tCmnA1Cy9q1etxVMqx67ldHevRSe9L/ExiX2ur2M7HGUkIq9+OMgRBc8y//5K/Ja17M1/6ck9bKXDsBitVAYM4Ps+tUDajjkyrefZX7lc6wdfjFj5nwxKG02ZZ5KujlIVdG2oLQXDLt3bGTKxv+hwDGJ/It/1qu20ibOAaCqQD9+KdXf+rIHSymlBo3qrf5v7NNyF/a6LbFYKQ4fR1Ldll63FUzO5gbMS9+iWuKYeMUfg9Jm+rjp1BCLbd+HQWkvGNa+9QQnHXicVQnnMuPMy4PSpoiwP2E2o5rW4XEPjLL069/5N3P33s/6mFOYcf6NQWvXl3MKidRTvGNgfDDfuWUt4z+5iX22HPKuuTdo7aZM9Sdq+1f/N2ht9kZl+UFsT1+GEQuJVz7WqzlmANkjcyg3CZjSjUGKUCnVU5pgKaUUYC35jBKGkzkiJyjtNSfnk+PdS31jY1Da6y3j87HloesZ6dlHycl3k5AUnKqtYrFSGDuTnIY1+Lyh7/HYvvItJnz6Q3baxpF3w4NBbds25lRiaKFgY+jn7Wxa+T7jl93InrAxjPvGv3o9b7C9rBn+xKN83RtBa/N4Fe/ZRtx/LsInVmKufZqw8OOrBNmZsROnUEwq1r2hv+9XXX0dpQ9eRJqvjIpzHyUxc3yv27RahGLHGBLqB04PnVInCk2wlFInPK+rmfFNqylKnIuIBKXNiOyZ2MXL3gFyj6i1j9/KjJo3+CzzOqZ94fjue9UVX/YpDKOGPTvWB7XdY7Vt9ftkvn41lZYkkq9/nvCIqKC2P3r2OfiMULvh9aC2e6w2ffom2a99lVpLAglff5HI6Ligtp8xcgy7JJuYoneD2u6x2rtrK5YnlhCOi/qLnyM5CElHe1aLsDduDtkNa/G5Q1fxs7q6ipL7zmayezO7TrqTMTPPDFrbTYmTyHAX4W1tCVqbSqnuaYKllDrhFa36LxG4YMK5QWszc7K/mltNQegLXSx/8jfM2PcQn8aezbzrel8IoaOsGf4CEGXrQzcPa/PSZxnx6leokzjCvvYaianHXtq6O/Ep6ewMG0/KgQ+C3nZPrXrrSca8dSW11kQc179J8vCs7nc6DgeGncrols046yv7pP3ubF29lNgnFxNDI9UXPMXIyXP65Dhh484gCid71oWmF2v/vgIq7j+Dca3b2Tzvj0w+62tBbT8sYyo28bF/x8CrfqnUUKYJllLqhNey8WVqTRTj5pwdtDZjh4+ijhhsB9cHrc1jZXw+Vj36I+bu+gProk5m1veewGIN/tv+sBETOCjDCC9ZFvS2u2OMYeUz/8fED27ggC0D+/VvkZY5qs+OV55+GqM9u6gvL+qzY3TG5/Xy2SM/YtZn3+ZA2AiivvE2iel99zpjppyLTXzs/uzlPjtGZ4wxLHvuPrJfvYRWcdB0xevkTDmlz443/qRzcRsrtRte67NjdGXtsjdwPHoamb79FJ7+d/IXXxf0Ywyf4C9kU1mwKuhtK6W6pgmWUurE5vWQWfEh6yPmkhwXvPkdiHAgaiLpDZtDco8ot6uZ1fddwax9D7I89mxyb3qBsDB73xxMhJKEWYxpWoe7HwtANNbXsOqeS5i97Q42RM5j+I3v9/p+V91JnrEEgN2fPNenx2mvqnw/6+8+h3lFD7I67gwyb/mQxNTe3Qy7O5NnLaLKxOLe1n/zsBob6lhxz2Us2PwLisLHE/HN90kbM7VPj5mYkMhmxxTSS9+DfrpOPW43Sx/9BbnvXI7LEkn1V95g7MnBHbZ7yIhRk6g3kfj2b+iT9pVSndMESyl1Qivb9B6xpgH32OCUfm6vJW02oyjhYFn/3mO9smQX++46hVk1r/FZxnXMvvHffZdcBdjGn0WcNLFjVf/cJ2r3ho+pvWceM+reYeWI65l6y6vExMb3+XEn5M5mP6lYd/XPjXg3vPc0/PUkcptXsWrCj5lx47M4IoL4RUAXHGFh7IidR07tZxivu8+Pt3X1h1TeM5/ZdW+xauTXGfej94lP7Zvhjx3VjVxMuu8AlXvW9fmxivdsZ+edC1m47z52xZ1E0s2fkjW+Fzf77obVamGffSzxtZv77BhKqSNpgqWUOqGVr3qeFmNn4oLzg952zLiTAdi/cWnQ2+7K5g9fwPaPRaS6S1g++z7mXX9PnwwL7GjcSV+i1dhoWP9qnx7H0+pi+WM/JeuFJYSZVnYsforZ192Nxda7G8/2lMVqoTjlFMY1raWpsb7PjlNXU83yey9nysffoM4ST/FFrzPrsp8FtVpgdyzjzyaORnat6LuiHs3NjSz723cY9+r5RPsa2X7G48y69g9YbL0rUX4schZcgs8I+z5+qs+O4fX6WPrMvSQ8vpAR7t2smfZbJt/8KuExvb9HW3dqE/MZ6d6D19Xc58dSSvlpgqWUOnEZQ1rpe6x3zCAzNTnozY/Im4/bWHHt/jTobXfkbG5gxV++Ru4H11JjSaDiK28x94tX9flxD4mMSWBbxDSyKj7osxvUFm3+lKLfz2Fu4V/ZFHMy9u9+xqR5wZs311Ox084nXNzs+PCZPml/w7v/puVPs5hd8xorM64i49bPGJ3XN0UejiZv0cXUm0gaVz3ZJ+1v+vRNKu6azYKyf7Eh+YuE37yGSQuW9MmxjmbkyBy22iczrOj1PhkmuHfHBjbfsYiF237F/oixtHztI2Ys+R4EqWJpd6wjZhMmXg5sD33BHaVOFJpgKaVOWBU7PiPZV0nzqMV90r4jIoZC+1jiqvq2gtee9R9Rcfcc5lQ8x/KUi0n74WeMmjClT4/ZGefoxWSagxRsDm5pemdzIysf+h7p/zmHGG8tq+fez4wfvkxCcmpQj9NT4+ecTSnJhG9+OqjtlpfsZv1dX2TKsm/RYoli75eeZ/b19+EIjwzqcXoqKiqazQlfYELNUlzNdUFrt7ayjM/+fDWT37oMB61sO/1xZnzvSaLjkoJ2jGNVN+5isnwl7FsfvNL0zpZmPn34R6T/+wuMcu9gw5TbGPejD0jJGhe0Y/RE6qT5AFTv6PsvepRSfppgKaVOWAeW/wePsTBmwUV9doyG1FmMde+kuqYm6G17Wl2seuxWRry4BLvPyYbTHmfud/5BeGTfz9HpzIRFl9NqrFQteyRobW76+BXK75rF7P1PsDr+bCzfXcnMxVcGrf3jYbVa2ZV2HhOa11B9YE+v2/O4W/nsyf8h6qGTGN+4ik+yv0vGj1cxesYXghBt74TPvJxIXOx475+9bsvn9bL8uXvx3T+D2VUvs2b4xcTdsqZPhuceqwlfuIoGE0H9soeD0t6aD1+h7M6ZnFT8IJtjF9D6zZVMueAWxNo/Q1nbyx45igMmGWuplmpXqr9ogqWUOmElFb/DprA8Rmb2XUW2mMln4RAPe1YGdx7Lns3L2fv7k5hV+HfWxJyG/XsrmHLK+UE9xrGKS05jU/QCJpS/jtvVuxubVh0oZO0fLiDvvSux4mPTaU8w9+Z/k5Q8LEjR9s6I064HYO8bf+pVOzuWv86+O2Yzb9fd7I7Io/rqj5h/ze+wOxzBCLPX8ueeyS7JJnHd3zBez3G3s3Pdx+z6v3nM3fwrysJGUHzxW8z61kNEBPkmyccrKTGRtXFnMLbqXZori4+7nQOFO1h953nM+OBKwvCw5bRHmHHLSyQND/592XrKahEKwycyrG5TyGJQ6kTT6wRLRL4nIttFZIuI3Nlu+U9FpEBEdojIWb09jlJKBVNl4SYyvcXUjezbt6ecGWfQZMLx7QhO1blWZwvL/3EzWf/5IoneCtbMuZfZtzxHQlJKUNrvLevMq4mngfVvP35c+3taXax56jeEPziHyfUf82nWDST9aA15p/T/3JyjyR47mZVRpzKx+Gmaaw4e8/6lhdtZd/d5jH/zK0R6G1g3917ybn2bjFET+yDa42ezWamY9j0yfSVsee/Y52JVHChk5Z8uZ8xL55HsOcia6Xcw4afLyM7t/zll3Uk+84dYjY+9z//qmPdtqK/hs4duIunR+UxuWs6q7G+SfOtaJp9yYR9Eeuyah01lmK8cZ03/VjRV6kTVqwRLRBYBS4ApxpjJwN2B5ZOAy4DJwGLgryJi7WWsSikVNEWfPAvAyPl9NzwQwGYPZ2f0LEZWL8Pj8faqrV2r3+XgnTOZW/II6+JOx/Ldlcw4+1qknybL90T+KedTaBlB+rp78R3jPbG2fPQCJXfMZMaOP7DTkU/pFUs56Wt3hWzIY3diFv8Ch3Gx/emf93ifxtoKVjz0fRIfXcD4hhV8MuIbxP1oPdMWX9uvFQKPxayzr2avZDFs+f/gburZUNeGumqW/+Mmov8+i6nVb7By+KWE3bSWGV/61oB9nZNzp/BR7LmMP/AilQU9G07ndrXw2TN30vLH6czb/ygbY0+l/vrlzLrm99j7oZx+T8WPnQdA4YaPQhyJUieG3r7LfQu4wxjjAjDGlAeWLwGeNsa4jDF7gQJgdi+PpZRSQRNb+CbbLWPJGTW+z49lm7iYVKrZtPrD49rf2VTHqr99ndGvXkSYz8n6Ux9m9g+eJSF5eJAj7T2L1crBOT8jw1fKuhf/0KN9irZ8xpbfn8bk96/FblysmfdXpv74LbLH5vZxtL0zOX8WnyR9mellz7Hrw6OX+G6sq2LVoz+Ee/OYs/9xNsWdSt3XP2P+dXcSGRXTTxEfn7CwMA4uvJtEbxW7/nEdHGWoYH11GSse+zGee6Ywt+RRtsSeTMXVnzL3W38nNj74lTqDbewlv6WaODxPXY6zrqLL7ZwtTaz4zx+oviOXedt+R03YcArOe4FZtzxPaubofoy4Z8ZOXYDbWGkoWBbqUJQ6IYjpRUlSEVkPvIy/l8oJ/NAYs0pE7geWG2P+FdjuYeANY8xznbRxA3ADwIgRI2bs27fvuOMZqozPh7vVibOpgZbmelqbG3G1NOBxNuJ2NtPa2orH7cb43IjPA8aDxecFnxuMD4MFH4IJ/PjEisVixWqxYLVZsVjDkLAILDY7FnsEVns4lrAIbPYIbPZwwhwROCKicIRHEO5wEGbTzkg1uFWVFZH0tzyWjfg2C677vz4/nrO+CvnDeNYknsNJNx7D0Dlj2PjOP0n97Nek+KpYnnwhuVfdRWxc3987pzd8Xh8b7zydCc6N7D//OUZPW9jpdvvWL6X2nbvIa/yEeqLYPPYbzLzwh4RHhKZq3vGoq2+k9N5TyfbtY9+cXzP+rG+CJfAe6fNSuGkZFR8/ysTKN4mmhVWRJxN71i8YP2VuaAM/Dm8/+FPOPPBXdsTOI+3Se4nNmACAp9XJjhVv0bLuWSZVvUOkuFgfPpuIM3/J+OmnhDjqY/fR+68x58OrqLGlYM75I2lTF4PFgvG0UrBuKZWrX2Bi2X+Jp4Httgk459/KlFMvGLA9c4ds/u1JRImTnJ+vDXUoSg0ZIrLGGDPziOXdJVgi8i7Q2dekPwd+B3wAfB+YBTwDjALuo4cJVnszZ840q1ev7v7VDGJudyvV5SXUlZXQVH0Ad91BvE3VmJYarM5abK212N31hHvqifI1EGMaicCFTfrmvjLHymsEJ3Zc2GkVB61y6LcDj8X/47WG47M68FnD8dnCMbZwsIVDWAQSFu5P5sIi/cmcIwKrPRKbI5IwRyRh4VHYwyOxR0ThCPcndY4w64AaAqU+d+j949DbiGm/rG0bMBy+3eH7mMP2P9Ru+/1pt+3nbXaIoUObhxZ2FkfBe49y8safsmvJq4yd1j8fANfcewkTaj6k9XsbetTzVLp7I9X/uYnJzjXstmTTcsad5M4bPNNZKw4W4XrgdJJNNdvG3sCYL1xDZGwy+/fuoGrz28TsfpUx7l3UmSi2ZF7CxC//fMDMIztW+0uKKHv0cqZ7N1JhSaYiYjTibSXduYs4GnGaMDbEnUbcohuZMG1+qMM9bl6f4e3Hfstp++7FIR7KLMPwYCPFV44dD00mnM3xi0g8/QeMzRvcg1Y+eu+/jP3o+6RJFQ1E0WSJIt5XQzhu3MbKhqiTiJh3PZPmnzfgE6tD3n/wVk478HdcN23HEZ8W6nBOOMYYnK0enM0NtLY04mppxN3SiNvVhMfZiNfVhLfViafVhdfj9n9J7nWD14OYwG9fK+L1gM+NGC++wP/XjM+0/T9QMG23WBP8t1sTJPDEghErRiwYsYFYQSz4LFYQK2KxgsUGFisS+G2xWkFsiNWKWG1I4LHFasNisYHVhsXify5WW2C5FbGGYbFasQZ+W2xhWK3+L/UtNitWSxhWWxhWmw2r1eZ/bLVhscig+sx33AlWN42+CfzeGPNB4PluYC7wdQBjzP8Flr8F3G6M+exo7Q32BMvrcVO+fw/VJQU0le/BW70PW0MJDmcF0e5K4rw1JJh6LHLk37zVWGmQGBotMbRYY3CFxeG2x+IJi8Nnj0LCIsEeidijsTqisIZHYXNEExYeid3hwGG3+3uirGEYi/8fOBYbYrFiERDjA3xYjA+MD6/Xh8frwe3x4HW78La68Lid+AI/5tDjVifG8/ky425BPE7wOLF4nFi8TqxeJ1avC6vPic3XSphxEeZzYTethOPCYVyEyfHNPfEZwUUYLuy4xE4r9sAbgxUfFnxiwYcVn1gwbb8teMX6+ZsIFnxibfdGA/7/fn4ejnjU4RR1XC+B60b8b2mB5+2WtV1XJvC83eO27emwzaH1XbXbcdvPn0u7CA/t41/e4bhtbdPWxufrDl/f/nfHx3LEcg5rv+M2n79VdvV+c/ibacetzBHrj759d/vYceMSB1G/KMJq65+yyUXbV5P51OmsHHYxc7/zUJfb1VXsZ+fz/8OU0mdxYWfDuO8x++IfYbfb+yXOYKooLWLPY99gjuvI++9st4yhfNQF5J/7HeLjE0IQXXA5XS4+/e+jRO18mYTWg7gtDuqiRuLNXkjuqReSkDQwqh8Gw46CAko/fBhH1XbAhzsqnajRJzHp5AuIiBo48456q6K6hg3vPIn9wErs3kbcESlYR85l8vzziEsY+MMdO/ps2bvMe/dCds7/A+PO+HqowxmUPG43NdUHaagqpbmmDGd9Fa2NNfha6hBXHeKqx9ZaT5i7HoenkQhvIxG+Jhw4iTBOwsUdlDhajf8z0OH/dxVE2j5u8Pkv//+pBYP/k5IXKz6snXwWHQi8RvBiwYcFL1a8gc90KyUPuehRzpw8sIbG91WC9U0g3Rhzm4iMA94DRgCTgH/jn3eVHlg+1hhz1E/ZgyHB8rS6KC3cRmXhZloO7iCsuoDo5mIS3AdJ8VUe9g/WZ4RKSaDOmkSTI5nW8GR8UalYYodjj08nKimd2OQMYhNTCY+MGTTfgh0XnxePqwmns5nWliZanU20OptxO5vxuprxuFrwtvof+1pb8LmbMW4ntEvoJJDQ+XxexHgR40OMD4vx+B/jQ4wXiwn8xofFeJFAYtmWqhz1M/6R35pIhyefv6EdnnaAYOTw5/7V7dIQOTz1OPyYgpFD+8lh+xmRtsTwsG3g8+dy+DE7tkFn2x163q5N/2uwBL4BO/x1td/fHNYOIJbDjm3atvWvO/Rn//ybKTksMfz8L/f5V29tiah8vr7dqfj8t9Au6fTH0N2+9lHzyTnlq/SnFfdfy6yKF9k49w9MPftrh62rLNlB4Rv3MWn/szhMK6vizyb7kt8zPCN05Z2DwRjDtk2rKdv0AbibiUzKJGXifHJGTxhU31IqNdg1OVtx/t9o9ifOJf/G/4Q6nAHD5/VRU1VKTWkhjRXFuKpL8DSUIU2V2F1VhLfWEO2tIdZXS7xp7PRLcvB/5muUSJokimZLNE5rNK22GNxhMWCPQsIiMIHf2KOw2COwOKKx2iOxOqKxhUdhD4/AbncQZndgsYVhsdqx2sKw2OxYw8Kw2BzYrDasVkuv3z+Nz4fxefF5Pfh8XnxeNz6vF6/XjdftX+YNLPN5Pfg8Hrxej/+x1+Nf7nNj2h57MIHtjc+DOfTb58V4PYHH/ucE1uHzgi/w2Hj98zuNF3weML7AtBcv4vNS5hhJ9tk3k5c5MG7tcEhfJVh24BFgKtCKfw7W+4F1PweuAzzATcaYN7prb6AlWFVlJexbv5TW4jWE1+wgsaWQNO/Bw3pjKomnIiydxogM3DGZWBOziRyWQ0L6GIZljsbuCA/hK1BKDSQtTY3svedMJnm2sDF6Pp7h0zGuBqLL1zDetQmvEVZHLyLlvNsYNWFaqMNVSg0xy/5wKdMalhLxkwIs4QO7uEqw1NVWU160k4bSXbgqC6F+P2FNB4l0lRPvqSDZV41djizcUks0DZY4mmwJOO0JuMOT8EWkIFFJ2GJTccQNIyouheiERKJjkwmPioOh/EW56lSfJFjBNtASrOVP/S9zd/wej7FQYs2gKjwbV/xobMPGET9iMmmjcokZBFWRlFIDR1NjA2v/9TPGHHydNCrxGmG3dRRlaYsY8YUbGNkPVQ2VUiemD999hVOXXUnBvDsYc9a3Qh1OUPi8Xsr376Fi31YaSwvw1ezD0VBEbEsJyd6DJNJw2PZOE0alJZn6sBSaw1PxRA1H4tKxJ2QSlTKC+NSRJKakY7MPjJt9q4FNE6zjUHGgkKoDu8meNJvwyBPjmx6lVP/w+gzVtTWER0QRE6H/I1dK9T1nq4fS/83DF57A6J8cOTdyIGtsrKd092Zqi7bgLt+BvXY3Cc2FpHn2Eymutu3cxkq5JYUaRzotUVn44kZgTxlFbNoYUjLHEZM4bGhPyVD9qqsEq39mdw9SKenZpKRnhzoMpdQQZLUIKYkDu9y6UmpoCbfb2D3iEk4vupfSdW+QNu3sUId0hFaXk5JdG6jasw5P6SaianaQ4txLGpWMDWzjM8JByzAqHSPYmDQLSRlHdPoEUkaMJzktmwxbGBkhfRXqRKc9WEoppZRSJ4jymlpc985C7JFk/mQNWEPzXbvx+Th4YB9lu1bTXLSRsKptJDbuIstbjD0w173VWCm2jaA2ajSexDHYh08gYcRk0nIm4YgYOhUr1eClPVhKKaWUUie4YQnxvJ33I87c/CO2//NGJlzzlz4/ZnNTA0U71lK7Zz2+g5uIrd9JRuse0mjg0B25ykiiLGI0axNOISw9n6TR08gYncdonQulBiFNsJRSSimlTiBf+PL1vLXvU84q/Bc7/h3N+Mv+LygV8IzPR2lxAQd3rsFZsgF71TZSmgrI9O1nQqC8ebNxUGLPpiBpIWZYLrEj80kfP5PUhGGk9joCpQYGHSKolFJKKXWCqW92sua+K1jU8g57wnOxnPYTsmd+ESzWbvf1ejwcLNpFddEWWkq3Q+UuousLyGzdS6w0tW13QFIpjxyDK3ESjsw8UsfOYHj2RKQHx1BqMNAqgkoppZRSqo3L7eGDp+9lesH9DJMa6ojhYOQ4mmJyMOFx+MSGxduK19WEzVlJpKuc2NZKkn2Vh907qs5EcdA+grrYcZCaS1zONDLHzyAqVgv5qKFNEyyllFJKKXWEuvp61r77FPY975PYtIs030GiacEmPlzGRith1FjiqbMl0+wYhi8mDWvyWKLSJzBsVC7JKela+lydkLTIhVJKKaWUOkJcbCyLvvwN4BsA+HwGp9uDR0AsFqKtFmJEQhukUoOIJlhKKaWUUqqNxSJEOsJCHYZSg5b25yqllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgXJgKoiKCIVwL5Qx9FBMlAZ6iBUv9HzfeLQc33i0HN9YtHzfeLQc31iGYjne6QxJqXjwgGVYA1EIrK6s/KLamjS833i0HN94tBzfWLR833i0HN9YhlM51uHCCqllFJKKaVUkGiCpZRSSimllFJBoglW9x4MdQCqX+n5PnHouT5x6Lk+sej5PnHouT6xDJrzrXOwlFJKKaWUUipItAdLKaWUUkoppYJEEyyllFJKKaWUChJNsI5CRBaLyA4RKRCRn4Q6HhU8IpIlIh+IyFYR2SIiNwaWJ4rIOyKyK/A7IdSxquAQEauIrBOR/wae54jIisD1/YyI2EMdowoOEYkXkedEZLuIbBOReXptD00icnPgPXyziDwlIuF6bQ8dIvKIiJSLyOZ2yzq9lsXvz4HzvlFEpocucnWsujjXdwXexzeKyIsiEt9u3U8D53qHiJwVkqCPQhOsLoiIFfgLcDYwCfiKiEwKbVQqiDzALcaYScBc4DuB8/sT4D1jzFjgvcBzNTTcCGxr9/z3wD3GmDFADfC1kESl+sKfgDeNMROAKfjPu17bQ4yIZADfB2YaY3IBK3AZem0PJY8Bizss6+paPhsYG/i5AfhbP8WoguMxjjzX7wC5xph8YCfwU4DA57XLgMmBff4a+Nw+YGiC1bXZQIExZo8xphV4GlgS4phUkBhjSo0xawOPG/B/AMvAf44fD2z2OHB+SAJUQSUimcA5wD8CzwU4DXgusIme6yFCROKAU4CHAYwxrcaYWvTaHqpsQISI2IBIoBS9tocMY8xHQHWHxV1dy0uAJ4zfciBeRNL6JVDVa52da2PM28YYT+DpciAz8HgJ8LQxxmWM2QsU4P/cPmBogtW1DKC43fOSwDI1xIhINjANWAGkGmNKA6sOAqmhiksF1b3ArYAv8DwJqG33xq3X99CRA1QAjwaGhP5DRKLQa3vIMcbsB+4GivAnVnXAGvTaHuq6upb1c9vQdh3wRuDxgD/XmmCpE5qIRAPPAzcZY+rbrzP+exjofQwGORE5Fyg3xqwJdSyqX9iA6cDfjDHTgCY6DAfUa3toCMy9WYI/qU4HojhyiJEawvRaPjGIyM/xT+14MtSx9JQmWF3bD2S1e54ZWKaGCBEJw59cPWmMeSGwuOzQkILA7/JQxaeCZj7wJREpxD/U9zT8c3TiA8OKQK/voaQEKDHGrAg8fw5/wqXX9tBzOrDXGFNhjHEDL+C/3vXaHtq6upb1c9sQJCLXAOcCl5vPb9474M+1JlhdWwWMDVQjsuOfTPdKiGNSQRKYg/MwsM0Y88d2q14Brg48vhp4ub9jU8FljPmpMSbTGJON/zp+3xhzOfABcFFgMz3XQ4Qx5iBQLCLjA4u+AGxFr+2hqAiYKyKRgff0Q+dar+2hratr+RXgqkA1wblAXbuhhGoQEpHF+If3f8kY09xu1SvAZSLiEJEc/IVNVoYixq7I58mg6khEvoh/7oYVeMQY87vQRqSCRUQWAB8Dm/h8Xs7P8M/DehYYAewDLjHGdJxgqwYpEVkI/NAYc66IjMLfo5UIrAOuMMa4QhieChIRmYq/oIkd2ANci/8LRb22hxgR+TVwKf7hQ+uAr+Ofi6HX9hAgIk8BC4FkoAz4FfASnVzLgST7fvzDRJuBa40xq0MQtjoOXZzrnwIOoCqw2XJjzDcD2/8c/7wsD/5pHm90bDOUNMFSSimllFJKqSDRIYJKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJB8v+pQtz6g29eWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
48True60.05370.0124bAP.soma.v0.001693.36e-05
49True60.05370.0124Step1.soma.v0.004621.32e-05
50True60.05370.0124Step3.soma.v0.002842.15e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "48 True 6 0.0537 0.0124 bAP.soma.v \n", + "49 True 6 0.0537 0.0124 Step1.soma.v \n", + "50 True 6 0.0537 0.0124 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "48 0.00169 3.36e-05 \n", + "49 0.00462 1.32e-05 \n", + "50 0.00284 2.15e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgL0lEQVR4nOzdeXwV9b3/8dfnnJMFshCyEHaCKMiSEBQQC7i116UuaLWidUOv9aq1VetSta1S7/V3e62trUtLbW21ahHrXte6oWJFBURUQAWJ7BBCSAhkPef7+2OGeAjZICecLO/n4zFmlu985zMzOfF8+H7nO+acQ0RERERERNouEO8AREREREREugolWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsEREOggzyzMzZ2aheMfS1ZnZDDObF+84Ohozm2pmn8U7DhGRzkwJloiIdGpmNtPMas2sImq6Pt5xdUbOubedcyNiWaeftFU0mJyZnR7L44iIdBT6V1IRkRgxs5Bzri7ecXRTc5xz58Y7iPbSmX+3nHNvA6m7ls3sKOCfwEtxCklEpF2pBUtEpA3MrMjMfmJmS4AdZhYys0lm9m8z22ZmH/lfKHeVn2tm/2tm75tZuZk9Y2aZTdR9oZktM7PtZvalmf1Xg+3TzGyxX89KMzveX9/LzO43sw1mts7M/sfMgi2cxzAze93MSsxsi5k9YmYZUdu2mtkh/nJ/MyvedV5mdoqZfeqf71wzG9ng+lxrZkvMrMzM5phZ8t5f6b1nZjf412W7mS01s9OaKGdmdqeZbfav5cdmNsbflmRmd5jZajPbZGazzKxHK4//gF/+FT+GN81sSNT235nZGv+YC81satS2mWb2uJk9bGblwAwzm2hm7/rXeYOZ3WNmiVH7ODO73My+8I/33/69+7d/jMeiyzcR81FmtrY159cGFwCPO+d2tPNxRETiQgmWiEjbnQ2cCGQAucDzwP8AmcC1wBNmlhNV/nzgIqAfUAfc1US9m4GTgHTgQuDOqCRnIvA34Dr/uEcARf5+D/j1HgiMA44FLm7hHAz4X6A/MBIYBMwEcM6tBH4CPGxmPYG/Ag865+aa2XBgNnAVkAO8APyzwRf5M4HjgaFAATCj0QDMpvjJQ1PTlBbOoaGVwFSgF/ALP/5+jZQ7Fu/6DffLngmU+Nt+6a8vxLueA4Cb9yKGc4D/BrKBxcAjUds+8OvNBP4O/KNB8jkNeBzv/j4ChIGr/boOB74JXN7geMcBhwKTgOuB+4Bz8e7nGLzf1X3mJ8pN3Z/ft2L/FOAM4MG2xCEi0qE55zRp0qRJ0z5OeEnNRVHLPwEealDmZeACf34u8MuobaOAGiAI5AEOCDVxrKeBK/35PwJ3NlImF6gGekStOxt4Yy/P61TgwwbrngU+BpYASf66nwOPRZUJAOuAo6Kuz7lR228HZsX4Hsz0r+G2qKl/I+UWA9P8+RnAPH/+GOBzvKQkEFXegB3AsKh1hwOrWhnXA8CjUcupeEnSoCbKlwJjo87prRbqvwp4KmrZAZOjlhcCP4la/jXw2xbqPApYG8v706D+84BVgLXXMTRp0qQp3pOewRIRabs1UfNDgO+a2clR6xKAN5oo/5W/PbthpWZ2AnALXgtKAOiJl+CA1yLxQiOxDPHr22Bmu9YFGhxzD2aWC/wOr8Unzd+ntEGxP+ElWZc456r9df39cwDAORcxszV4LT27bIya3+nvE2uPuQbPYJnZ+cCP8RJX8BKcPa6zc+51M7sHuBcYYmZP4rU8JuNd84VR19LwkuHWqr/uzrkKM9uKd/5rzOxa4D/9ZYfXUpnd2L7++QwHfgOM9+MK4SVR0TZFzVc2stx3L2JvDxcAf3POuTjHISLSbtRFUESk7aK/LK7Ba8HKiJpSnHO/jCozKGp+MFALbImu0MySgCeAO4Bc51wGXkK165v+GmBYI7GswWvByo46frpzbnQL5/D//PPId86l43Ur+zqrMEsFfgvcD8y0r58bW4+X1O0qZ/75rWvheHuwxkebi56mtlxLfV1D8BLCK4As//p9En1O0ZxzdznnDsVrURyO1/VyC15SMjrqWvZyzqU2VkcT6u+1fw0zgfX+uVyP1x2xtx9fWYP4GiYhfwCWAwf59+imps6nvfjP2jV1f2a1sO8gvBayv+2XYEVE4kQJlohIbD0MnGxmx5lZ0MyS/YEDBkaVOdfMRvnPM92K98B/uEE9iUASUAzU+a1Zx0Ztvx+40My+aWYBMxtgZgc75zYA/wJ+bWbp/rZhZnZkC3GnARVAmZkNwEswov0OWOCcuxjvGbNdX6YfA07040gArsFL8P7d0oVqyHlDhKc2M729F9Wl4CUoxeANGIL3DNIezGyCmR3mx78DqAIizrkIXpJ2p5n18csOMLPjovZ1FjWISSO+7T9bloj3LNZ859wavOtd58cXMrOb8VqwmpMGlAMVZnYwcFkL5WPOOTe6mftzaQu7nwf823nP9ImIdFlKsEREYsj/8jwNr3WhGK9F6Tp2/3v7EN7zORvxuqH9qJF6tvvrH8Prqvc9vO55u7a/jz/wBV7Lx5t83ZJ0Pl6CttTf93G8ATWa8wvgEL+u54End20ws2l4g1Ts+kL/Y+AQMzvHOfcZXmvX3XgtPicDJzvnalo4Xrtyzi3Fe+boXbxucvnAO00UT8dLpErxujuWAL/yt/0EWAHM90fzexUYAfUtMtv5uttmY/6O181zK97gE7u6Mb6MN0z55/4xq2ihGydet8Xv+cf8EzCnhfIdzflocAsR6QZM3aBFRPYfM5sLPOyc+3O8Y5G2MbNz8boP3tjE9gfwBoz42X4NTERE4kqDXIiIiOwD59zD8Y5BREQ6HnURFBHpJsx76e1eD04gXYuZ3dTE78GL8Y5NRKQrUBdBERERERGRGFELloiIiIiISIx0qGewsrOzXV5eXrzDEBERERERadbChQu3OOdyGq7vUAlWXl4eCxYsiHcYIiIiIiIizTKzrxpbry6CIiIiIiIiMaIES0REREREJEaUYImIiIiIiMRIh3oGqzG1tbWsXbuWqqqqeIciHUBycjIDBw4kISEh3qFIF/TBa08QWPQAY656kiT9jomIiMg+6PAJ1tq1a0lLSyMvLw8zi3c4EkfOOUpKSli7di1Dhw6NdzjSBQ18+zr6UcLCD97k0G98K97hiIiISCfU4bsIVlVVkZWVpeRKMDOysrLUmintZiPZAFQveznOkYiIiEhn1eETLEDJldTT74K0pyRXDUBKycdxjkREREQ6q06RYImItLdIxNGXLQBkVTX6WgsRERGRFinBagUz45prrqlfvuOOO5g5c2b8Aopy1FFHNfty5lNPPZVJkybttm7mzJkMGDCAwsJCxowZw7PPPtveYYp0eDsqysi0CsLO6BveSKS2Ot4hiYiISCekBKsVkpKSePLJJ9myZUtM63XOEYlEYlpntG3btrFw4ULKysr48ssvd9t29dVXs3jxYv7xj39w0UUXtWscIp1BZVkxAJ8mjCFkETavXh7niERERKQzUoLVCqFQiEsuuYQ777xzj23FxcWcfvrpTJgwgQkTJvDOO+8AXivRHXfcUV9uzJgxFBUVUVRUxIgRIzj//PMZM2YMa9as4brrrmPMmDHk5+czZ84cAObOnctRRx3FGWecwcEHH8w555yDc67R+B566KH61qj333+/fv2TTz7JySefzFlnncWjjz7a6L4jR44kFArtljzecMMNjBo1ioKCAq699loAioqKOOaYYygoKOCb3/wmq1evBmDGjBlcdtllTJo0iQMOOIC5c+dy0UUXMXLkSGbMmFFf52WXXcb48eMZPXo0t9xyyx5xlJWVMWTIkPpEb8eOHQwaNIja2tpG4xaJtcrKnQBU9DoIgC1rPotnOCIiItJJdfhh2qP94p+fsnR9eUzrHNU/nVtOHt1iuR/84AcUFBRw/fXX77b+yiuv5Oqrr2bKlCmsXr2a4447jmXLljVb1xdffMGDDz7IpEmTeOKJJ1i8eDEfffQRW7ZsYcKECRxxxBEAfPjhh3z66af079+fyZMn88477zBlypQ96tu5cyeLFy/mrbfe4qKLLuKTTz4BYPbs2dx8883k5uZy+umnc9NNN+2x73vvvUcgECAnJweAkpISnnrqKZYvX46ZsW3bNgB++MMfcsEFF3DBBRfwl7/8hR/96Ec8/fTTAJSWlvLuu+/y7LPPcsopp/DOO+/w5z//mQkTJrB48WIKCwu57bbbyMzMJBwO881vfpMlS5ZQUFBQH0evXr0oLCzkzTff5Oijj+a5557juOOO0/uuZL+prqoEIKHPcCiBHZuK4huQiIiIdEpqwWql9PR0zj//fO66667d1r/66qtcccUVFBYWcsopp1BeXk5FRUWzdQ0ZMqT+uah58+Zx9tlnEwwGyc3N5cgjj+SDDz4AYOLEiQwcOJBAIEBhYSFFRUWN1nf22WcDcMQRR1BeXs62bdvYtGkTX3zxBVOmTGH48OEkJCTUJ14Ad955J4WFhVx77bXMmTOnfnS+Xr16kZyczH/+53/y5JNP0rNnTwDeffddvve97wFw3nnnMW/evPq6Tj75ZMyM/Px8cnNzyc/PJxAIMHr06PqYH3vsMQ455BDGjRvHp59+ytKlS/c4j+nTp9e34D366KNMnz692esoEkuVVV4LVmqfodS4IJGyNXGOSERERDqjTtWC1ZqWpvZ01VVXccghh3DhhRfWr4tEIsyfP5/k5OTdyoZCod2ea4p+d1NKSkqrjpeUlFQ/HwwGqaura7Rcw6HLzYzHHnuM0tLS+hfylpeXM3v2bG677TbAewZrV/e/hnG///77vPbaazz++OPcc889vP76662KMxAI7BZzIBCgrq6OVatWcccdd/DBBx/Qu3dvZsyY0ei7rE455RRuuukmtm7dysKFCznmmGOaPa5ILNX6v5MJPVLYEsgmsWJdnCMSERGRzkgtWHshMzOTM888k/vvv79+3bHHHsvdd99dv7x48WIA8vLyWLRoEQCLFi1i1apVjdY5depU5syZQzgcpri4mLfeeouJEyfuVVy7Wn3mzZtHr1696NWrF7Nnz+all16qf+5r4cKFTT6HFa2iooKysjK+/e1vc+edd/LRRx8B8I1vfKN+/0ceeYSpU6e2Or7y8nJSUlLo1asXmzZt4sUXX2y0XGpqKhMmTODKK6/kpJNOIhgMtvoYIm0VqfNGDQwlJFGakEtK5YY4RyQiIiKdUZsTLDMbZGZvmNlSM/vUzK701880s3Vmttifvt32cOPvmmuu2W1AiLvuuosFCxZQUFDAqFGjmDVrFgCnn346W7duZfTo0dxzzz0MHz680fpOO+00CgoKGDt2LMcccwy33347ffv23auYkpOTGTduHJdeein3338/RUVFfPXVV7sNzz506FB69erFe++912gd3/72t1m/fj3bt2/npJNOoqCggClTpvCb3/wGgLvvvpu//vWvFBQU8NBDD/G73/2u1fGNHTuWcePGcfDBB/O9732PyZMn12+7+eabdxsmfvr06Tz88MPqHij7XbjWa8EKJiazs0c/etduinNEIiIi0hlZUyPTtboCs35AP+fcIjNLAxYCpwJnAhXOuTua2z/a+PHjXcN3Oi1btoyRI0e2KUbpWvQ7Ie3hneceYPKCK9l49iuseutRJq79C+6nmwglJrW8s4iIiHQ7ZrbQOTe+4fo2t2A55zY45xb589uBZcCAttYrIrI/uboaAIIJyVjvwQTNUbKhKL5BiYiISKcT02ewzCwPGAfs6od2hZktMbO/mFnvJva5xMwWmNmC4uLiWIYjItJqzu8imJCYRI/swQCUbviyuV1ERERE9hCzBMvMUoEngKucc+XAH4BhQCGwAfh1Y/s55+5zzo13zo3f9S4mEZH9bVcLVigxmV79hgGws/ireIYkIiIinVBMEiwzS8BLrh5xzj0J4Jzb5JwLO+ciwJ+AvRsaT0Rkfwp7owgmJCWTM+AAAGq3KsESERGRvROLUQQNuB9Y5pz7TdT6flHFTgM+abiviEhH4fxh2hMSk0lJTWMraQTK9S4sERER2TuxeNHwZOA84GMzW+yvuwk428wKAQcUAf8Vg2OJiLSPsNdFMJDgvTR8azCHxJ0b4xmRiIiIdEKxGEVwnnPOnHMFzrlCf3rBOXeecy7fX3+Kc65Tv7Xz6aefxsxYvnx5k2WKiooYM2ZMzI45Y8YMHn/88Sa3X3XVVQwYMIBIJFK/7oEHHiAnJ4fCwkJGjRrFn/70p5jFI9KVmd+CRTARgO2JfUir0buwREREZO/EdBTBrmz27NlMmTKF2bNnN7q9rq6uzccIh8OtLhuJRHjqqacYNGgQb7755m7bpk+fzuLFi5k7dy433XQTmzbpS6JISyxcQw0hMAOgumc/ssJbWthLREREZHdKsFqhoqKCefPmcf/99/Poo4/Wr587dy5Tp07llFNOYdSoUYCXaJ1zzjmMHDmSM844g507dwLw2muvMW7cOPLz87nooouorvb+tTwvL4+f/OQnHHLIIfzjH//Y49ivvvoq48ePZ/jw4Tz33HO7HXv06NFcdtllTSZ9ffr0YdiwYXz11dcP6t91112MGjWKgoICzjrrLAC2bt3KqaeeSkFBAZMmTWLJkiUAzJw5kwsuuICpU6cyZMgQnnzySa6//nry8/M5/vjjqa2tBeDWW29lwoQJjBkzhksuuYSGL6+ORCLk5eWxbdu2+nUHHXSQEj/pUCxcTQ0J9cuRtAH0ooKqHeVxjEpEREQ6m1g8g7X/vHgDbPw4tnX2zYcTftlskWeeeYbjjz+e4cOHk5WVxcKFCzn00EMBWLRoEZ988glDhw6lqKiIzz77jPvvv5/Jkydz0UUX8fvf/54rrriCGTNm8NprrzF8+HDOP/98/vCHP3DVVVcBkJWVxaJFixo9dlFREe+//z4rV67k6KOPZsWKFSQnJzN79mzOPvtspk2bxk033URtbS0JCQm77fvll1/y5ZdfcuCBB9av++Uvf8mqVatISkqqT3huueUWxo0bx9NPP83rr7/O+eefz+LFiwFYuXIlb7zxBkuXLuXwww/niSee4Pbbb+e0007j+eef59RTT+WKK67g5ptvBuC8887jueee4+STT64/ZiAQYNq0aTz11FNceOGFvPfeewwZMoTc3NxW3yaR9maRGmqjEqxQ74FQBFvWr2LgQWPjF5iIiIh0KmrBaoXZs2fXt/acddZZu7UYTZw4kaFDh9YvDxo0iMmTJwNw7rnnMm/ePD777DOGDh3K8OHDAbjgggt466236veZPn16k8c+88wzCQQCHHTQQRxwwAEsX76cmpoaXnjhBU499VTS09M57LDDePnll+v3mTNnDoWFhZx99tn88Y9/JDMzs35bQUEB55xzDg8//DChkJdfz5s3j/POOw+AY445hpKSEsrLvX+1P+GEE0hISCA/P59wOMzxxx8PQH5+PkVFRQC88cYbHHbYYeTn5/P666/z6aef7nEe06dPZ86cOQA8+uijzZ6zSDxYuIY6+zrB6pnjvWy4bGNRnCISERGRzqhztWC10NLUHrZu3crrr7/Oxx9/jJkRDocxM371q18BkJKSslt585/faGq5MQ3raKm+l19+mW3btpGfnw/Azp076dGjByeddBLgJTP33HNPo/U9//zzvPXWW/zzn//ktttu4+OPm28RTEpKArxWqISEhPp4AoEAdXV1VFVVcfnll7NgwQIGDRrEzJkzqaqq2qOeww8/nBUrVlBcXMzTTz/Nz372s2aPK7K/BSM11EYlWBm53j+c7NyyOl4hiYiISCekFqwWPP7445x33nl89dVXFBUVsWbNGoYOHcrbb7/daPnVq1fz7rvvAvD3v/+dKVOmMGLECIqKilixYgUADz30EEceeWSrjv+Pf/yDSCTCypUr+fLLLxkxYgSzZ8/mz3/+M0VFRRQVFbFq1SpeeeWV+ue9mhKJRFizZg1HH300//d//0dZWRkVFRVMnTqVRx55BPCe7crOziY9Pb1V8e1KprKzs6moqGhy1EMz47TTTuPHP/4xI0eOJCsrq1X1i+wvgcjuLVjZ/fMACG9bG6eIREREpDNSgtWC2bNnc9ppp+227vTTT29yYIkRI0Zw7733MnLkSEpLS7nssstITk7mr3/9K9/97nfJz88nEAhw6aWXtur4gwcPZuLEiZxwwgnMmjWLSCTCSy+9xIknnlhfJiUlhSlTpvDPf/6z0TouvvhiFixYQDgc5txzzyU/P59x48bxox/9iIyMDGbOnMnChQspKCjghhtu4MEHH2zl1YGMjAy+//3vM2bMGI477jgmTJhQv23WrFnMmjWrfnn69Ok8/PDD6h4oHVIgUrdbgpXcoycl9CKwXS8bFhERkdazhiO+xdP48ePdggULdlu3bNkyRo4cGaeIpCPS74S0h8X/7xhS3A4O+ul79eu++O9DqUzoTcENr8YxMhEREemIzGyhc258w/VqwRIRAYKulnBg95E4tyflklazOU4RiYiISGekBEtEBG+Qi4jtnmDV9OxLVqQ4ThGJiIhIZ9QpEqyO1I1R4ku/C9JeQq6WcCBxt3UufQDp7KSivDROUYmIiEhn0+ETrOTkZEpKSvTFWnDOUVJSQnJycrxDkS4o5GqJNEiwEjIHAVCyflU8QhIREZFOqMO/B2vgwIGsXbuW4mJ10xEv4R44cGC8w5AuKIFaIsHdE6ye2d7Lhss3FcHBh8QhKhEREelsOnyClZCQwNChQ+Mdhoh0cQmNtGBl9PX+9lTqZcMiIiLSSu3eRdDMjjezz8xshZnd0N7HExHZFwmuFtegBSunfx4RZ3rZsIiIiLRauyZYZhYE7gVOAEYBZ5vZqPY8pojIvkhgzwQrITGJEssgWLE+TlGJiIhIZ9PeLVgTgRXOuS+dczXAo8C0dj6miMhecc6RSC00SLAASkM5JFdujENUIiIi0hm1d4I1AFgTtbzWXyci0mHUhSMkUocLJu2xbUdSLr1qNsUhKhEREemM4j5Mu5ldYmYLzGyBRgoUkXioqakhYA5CeyZY1Sn9yArrVREiIiLSOu2dYK0DBkUtD/TX1XPO3eecG++cG5+Tk9PO4YiI7Km2phIAC+3ZRdDSB5BqlZRv27q/wxIREZFOqL0TrA+Ag8xsqJklAmcBz7bzMUVE9kptdRUA1kgL1tcvG165X2MSERGRzqldEyznXB1wBfAysAx4zDn3aXseU0Rkb9X4CVZjXQRTcoYA/suGRURERFrQ7i8ads69ALzQ3scREdlXdbVeghVoJMHq3TcPgKqSNXtsExEREWko7oNciIjEW7jGT7AS9kywsvoNIeyMiF42LCIiIq2gBEtEur26mqZbsIKhBIoti4QKJVgiIiLSMiVYItLt7WrBCjbSggVQktCXtMp1jW4TERERiaYES0S6vbraaqDxLoIAFT0GkFm7cX+GJCIiIp2UEiwR6fbCfoIVTExudHtt+mCyI1upq965P8MSERGRTkgJloh0e5FdCVZC4wlWKGsoAXMUr12xP8MSERGRTkgJloh0exF/mPZQEy1YKX2HAVC67ov9FpOIiIh0TkqwRKTbi9R5LVihJlqwsgYeBMDOTV/ut5hERESkc1KCJSJS4z1bFUru2ejm3P55VLsEIltX7c+oREREpBNSgiUi3V6kZgcAST3SGt0eDAbZFOhDwvY1+zMsERER6YSUYIlIt+f8FqzklMYTLIDSpH56F5aIiIi0SAmWiEjNTiLOSGqiiyBAZcog+oT1LiwRERFpnhIsEZHaHVSShAWa/pPoMoaQzg62b9uyHwMTERGRzkYJloh0e4G6SqosqdkySTlDAShe/fn+CElEREQ6KSVYItLtBWp3Um2ND9G+S3q/AwEoW693YYmIiEjT2pRgmdmvzGy5mS0xs6fMLMNfn2dmlWa22J9mxSRaEZF2EAxXUtNCgpUz+GAAaor1LiwRERFpWltbsF4BxjjnCoDPgRujtq10zhX606VtPI6ISLsJhauoCTafYPXqnU0padg2vQtLREREmtamBMs59y/nXJ2/OB8Y2PaQRET2r1C4ktpAjxbLbQ71I6Vi9X6ISERERDqrWD6DdRHwYtTyUDP70MzeNLOpMTyOiEhMJUYqCbfQggVQ3mMQmTV6F5aIiIg0LdRSATN7FejbyKafOuee8cv8FKgDHvG3bQAGO+dKzOxQ4GkzG+2cK2+k/kuASwAGDx68b2chItIGSa6K7aGm34G1S236EPqUv05dTRWhxJYTMhEREel+WkywnHPfam67mc0ATgK+6Zxz/j7VQLU/v9DMVgLDgQWN1H8fcB/A+PHj3V7GLyLSZkmumnCo5S6CwexhBNc51q/+gv4H5u+HyERERKSzaesogscD1wOnOOd2Rq3PMbOgP38AcBCgobdEpENKdlW4VrRgpfQ7CICta5e3d0giIiLSSbXYgtWCe4Ak4BUzA5jvjxh4BHCrmdUCEeBS59zWNh5LRCTmIuEIPakikpjSYtk+g0cCsHPTivYOS0RERDqpNiVYzrkDm1j/BPBEW+oWEdkfdlZsI9UiRJJ6t1g2O3cgO1wSlKhBXkRERBoXy1EERUQ6nYptmwEI9Gw5wQoEA2wM9iO54qv2DktEREQ6KSVYItKt7dy2BYBQanarym9LHkhGlYZqFxERkcYpwRKRbq2yvBiAxLSsVpWvThtC3/BGXLiu5cIiIiLS7SjBEpFurbrca8FK7d2nVeUt6wASrY6SDUXtGJWIiIh0VkqwRKRbq9nuDXCanpnTqvI9cr2xfbas0VDtIiIisiclWCLSrYV3lACQkZnbqvJZg7yh2ivWf9FuMYmIiEjnpQRLRLo1V1lKBT0IJiS2qnzfQQdQ44JESla2c2QiIiLSGSnBEpFuLblyM6WBzFaXT0hIYEOgL4nlGqpdRERE9qQES0S6tdSazZSFWvf81S6lSQNIr1zTThGJiIhIZ6YES0S6tYy6YnYkt24EwV12pg4mN7wBnGunqERERKSzUoIlIt2WC9eRHSmhLqXf3u3XeygpVFG+ZX07RSYiIiKdlRIsEem2SovXEbII1mvAXu2X1OcgADavXtYeYYmIiEgnpgRLRLqtreuLAEjOGrxX+2UOGg7A9vWfxzokERER6eSUYIlIt7W92BsJMD13yF7t13fwcCLOqNvyZXuEJSIiIp2YEiwR6bZqtq4GIKvf0L3ar2fPFIotEyvTSIIiIiKyuzYlWGY208zWmdlif/p21LYbzWyFmX1mZse1PVQRkdiKlK2j2iWQkZW71/uWhPrSc6cGuRAREZHdhWJQx53OuTuiV5jZKOAsYDTQH3jVzIY758IxOJ6ISEwkVGxkSyCLAYG9/7emih79GFTxUTtEJSIiIp1Ze3URnAY86pyrds6tAlYAE9vpWCIi+6Rn1SbKE/fuHVi71KYNIidSQqSuNsZRiYiISGcWiwTrCjNbYmZ/MbPe/roBQPTDCWv9dXsws0vMbIGZLSguLo5BOCIirZNRt5nK5L77tG+g92BCFmHLhqLYBiUiIiKdWosJlpm9amafNDJNA/4ADAMKgQ3Ar/c2AOfcfc658c658Tk5OXu7u4jIPqmuqaGPK6Eube/egbVLjz7ewBil67+IZVgiIiLSybX4DJZz7lutqcjM/gQ85y+uAwZFbR7orxMR6RC2bFjNAIsQyBjUcuFGZPQ9AIAdm1bFMiwRERHp5No6imC/qMXTgE/8+WeBs8wsycyGAgcB77flWCIisVS6wXuHVY+cvXsH1i59Bh0IQF3JVzGLSURERDq/to4ieLuZFQIOKAL+C8A596mZPQYsBeqAH2gEQRHpSHYWFwGQnrt378DapWfPFDaTSaBc78ISERGRr7UpwXLOndfMttuA29pSv4hIe6nb6iVGOQMP2Oc6SkK59Nyp3s8iIiLytfYapl1EpEOz8nWUk0Jyau+WCzdhe4/+ZNRsjGFUIiIi0tkpwRKRbil553pKgm0bubQ2dSA5kS24sN6FJSIiIh4lWCLSLaVVb6I8ad/egbWL9R5MgoUp2aiBLkRERMSjBEtEuqXsyGaqe/ZruWAzeuR4A2RsXbcyFiGJiIhIF6AES0S6ne3lpWRQgUsf2KZ60vsNA2DHpi9jEZaIiIh0AUqwRKTbKVnvvRw4lDm4TfX0GeglWLV6F5aIiIj4lGCJSLezbaOXYKX02beXDO+SlppGMRkEy1fHIiwRERHpApRgNaOqcgfV1ZXxDkNEYqx6i5cQ9e677+/A2mVLMJfknevbXI+IiIh0DW160XBXt+Sl+xm7+FaWJx5EWVYhgcETyM4by4Bho0lMSo53eCKyjyKlawg7I6tf21qwwHsX1oAdy1pV1kUifPLOc2T0O4BBB45p87FFRESk41GC1YzMvEI+3HgGGSWLGbfhMRI3/h3ehzoXYE2gL1sT+1Pdow+RlD5YWl8CPXuT2CONxJ5phHqkY0mphEIJBINBgsEgoaCBBQg7IxKOEK6rxoVridTVEgnX4OpqifjL4boaInU1ROpq/TI1uHAtrq4WF/bmCddAuA4XrsUiNRCpw8I1WPRPV0cgUotFagm4WgKRMAFXS9DVEXBhcBFwDiOCgffTOYzoac9tARxE/WyKw/b6uje1T9Pr9/bYTcfU9JlIV1LgKthimeQmJLa5rtr0PHK3v0nVzu0k90xrstzyD9+m7sWfkl/zER8mTWTQja+0+didXU1VJRXbitlRtoWq8hKqt5dQU1lObWUF4aoKqK2E2p0E6nYSqKskVLeTYLiKYLiq/u9bMFJLwNURJEzI1RGijqCrI0SYIHVf/41y+H/PvJ9EzVvUX4vobY1puKWxkrv9HbGmamtYz57rG/t7tGddLRy/iRj3db/W/E1vzX6xq6d1+zX3d19EOr4PA6NJ/O59fHNkbrxDaRUlWM04cNwRHDjuCACqq3ay6otFbC36hOqNy0natpJe1evpt+1LMku3EbJIXGOtdiFqd32lsF3zIeosRNi8+bA/XxsIURVIxlkILICZgflpkwX8ef+rhwX8n7u+igTq59ltG149UayZdKXpbU2sb2L13tZjzjVZqvm0q/X/c26fJK2TpH7tEGZ7nbkNnUos/kwnD51EaP1fWfnxPEYcdsIe29es+JjNz/ycQ7e/wTbSWBnpR25NUQyO3PGE62rZVryBsuK17ChZR1XpesLbN2EVm0ioLCa5Zis96spJiWwnzVXQw2rIBDKbqbPOBagkiWpLosqSqbZkagNJOAsRCYSoCfbABUJELIFIIETEQkQCCbhAyPsbF/D/xmH1Px3s/nfOXwbvy7lzXy/vxrXit3G3Mm63H7uv37Ou3atv5P8pLdXTaHiRRupuhItgu/2d23OH5v6mN19m93UN/w63tp491zVWprHDd5K/n11QYx8jkX1Rm3QA/VKT4h1GqynBaqWk5J4MzZ/C0Pwpe2yrq6tja8lGdpRvpWpHGZUV2wlXb8dqKoiE63CRCOFImEjEay0KEsECIQiGsGACBBOwYAIWSMBCCQSCiQQTEggEEwgmJBJMSCSUkEggmEQoKYlQKIFQQhKhhEQSEpMIBUMkBgMk6S+ZyH43eOyR8A6ULX8LohKstauWs+aZ/2FC6fNkksD8QRcx5rs/Z9M/bmPSmvuprdpBQnJKHCPfe9WV2yleu5LS9Sup3LyKcOlqEravI7VqHZm1m8hypWSZI6vBfuUuhdJAb3Yk9Kasx0C2JGQQTkrHJWdgPTMJ9MwgMTWLxLRMeqRmkJKaTs/UdJJ7pBJKTCbNjKbbBkVERDoWJVgxEAqFyMwdSGZu296pIyKdT06ffiwNjWJQ0eNU7biRoqUfUPH27ykse50+GItyT+eA79zCpL6DAAjkDCew1rGuaCmDDp4Q5+j3VFNTy/qvllNS9CmVG5YT3PoFvXYU0bd2DZmUMRDY9Zeu1gUpDmSzLTGX1RkTWZnaH0vrR2JGX3pm9ictexC9+/QnPSWN9HielIiIyH6kBEtEpI0qD7+aUW9/H341iIOBHS6ZD/pO56BTrmfigN1HKsw9sBA+hI3L349rglVWupUNqz6mbPWn1G3+jKRtK8msWs2A8DryrI48v1wp6WxKHMiKjMnU9RpCKHMIqbkHkDlgGDn98ugfCtE/bmchIiLS8SjBEhFpo0O/eSaLA0Gqlr+C9S9k9FHf5fBeDTvKeYYcPJ6tpBH86i3gB+0aVyQcZuPalRSv+pid65djJZ+Tsr2I3JrV9GErvfxydS7AhmA/SpMH81HGVEJ9RpA+cCR9hxXQu3cuvds1ShERka6lTQmWmc0BRviLGcA251yhmeUBy4DP/G3znXOXtuVYIiIdWeHRp8PRp7dYLhAM8mXqeIaWvktNVSWJyT3afOyqim2sX/kJ29YspWbTZyRs+5KMnUX0q1tHf6uub2EqpycbEwaxOmMiqzIPIrnfwWQPGUNu3sEMSkxmUJsjERERkTYlWM656bvmzezXQFnU5pXOucK21C8i0hWFxl9A1tw3+OCpXzPh7J+1ap+qHeVsXP0FJeu+oGbjZwS2riC1oog+NWvIoZRdHRHDztgU6MOWpMEsyZ5IIGc4aQNGkntAPr1zBpAe0PvlRURE2lNMugiaN/btmcAxsahPRKQrG3vEND6aP57C5b/hg98XkXDQUSQkp1JXW0vt9s3UVWwhUr6RpIq1pFdvIKtuE5mUkwdRz0alsTFhIF/2msRnGQeQ3HcEvQePYsABo+nfo6eeixIREYmTWD2DNRXY5Jz7ImrdUDP7ECgHfuace7uxHc3sEuASgMGDB8coHBGRjssCAYZd9g8+vP8Sxm56iqTN/9ijTLVLYFOwD9sS+/FF+kjC6YNIzM6jV99h5A4dQ+8sPRslIiLSEZlr4QV8ZvYq0LeRTT91zj3jl/kDsMI592t/OQlIdc6VmNmhwNPAaOdceXPHGj9+vFuwYMHen4WISCdVXl7KhhVLqK2uJCEhRM+MvqRn5pKekYWpO5+IiEiHZWYLnXPjG65vsQXLOfetFioOAd8BDo3apxqo9ucXmtlKYDig7ElEJEp6em/SDzky3mGIiIhIjMTin0e/BSx3zq3dtcLMcsws6M8fABwEfBmDY4mIiIiIiHRYsXgG6yxgdoN1RwC3mlktEAEudc5tjcGxREREREREOqw2J1jOuRmNrHsCeKKtdYuIiIiIiHQmLQ5ysT+ZWTHwVbzjaCAb2BLvIGS/0f3uPnSvuw/d6+5F97v70L3uXjri/R7inMtpuLJDJVgdkZktaGx0EOmadL+7D93r7kP3unvR/e4+dK+7l850vzUGsIiIiIiISIwowRIREREREYkRJVgtuy/eAch+pfvdfehedx+6192L7nf3oXvdvXSa+61nsERERERERGJELVgiIiIiIiIxogRLREREREQkRpRgNcPMjjezz8xshZndEO94JHbMbJCZvWFmS83sUzO70l+faWavmNkX/s/e8Y5VYsPMgmb2oZk95y8PNbP3/M/3HDNLjHeMEhtmlmFmj5vZcjNbZmaH67PdNZnZ1f7f8E/MbLaZJeuz3XWY2V/MbLOZfRK1rtHPsnnu8u/7EjM7JH6Ry95q4l7/yv87vsTMnjKzjKhtN/r3+jMzOy4uQTdDCVYTzCwI3AucAIwCzjazUfGNSmKoDrjGOTcKmAT8wL+/NwCvOecOAl7zl6VruBJYFrX8f8CdzrkDgVLgP+MSlbSH3wEvOecOBsbi3Xd9trsYMxsA/AgY75wbAwSBs9Bnuyt5ADi+wbqmPssnAAf50yXAH/ZTjBIbD7DnvX4FGOOcKwA+B24E8L+vnQWM9vf5vf+9vcNQgtW0icAK59yXzrka4FFgWpxjkhhxzm1wzi3y57fjfQEbgHePH/SLPQicGpcAJabMbCBwIvBnf9mAY4DH/SK6112EmfUCjgDuB3DO1TjntqHPdlcVAnqYWQjoCWxAn+0uwzn3FrC1weqmPsvTgL85z3wgw8z67ZdApc0au9fOuX855+r8xfnAQH9+GvCoc67aObcKWIH3vb3DUILVtAHAmqjltf466WLMLA8YB7wH5DrnNvibNgK58YpLYuq3wPVAxF/OArZF/eHW57vrGAoUA3/1u4T+2cxS0Ge7y3HOrQPuAFbjJVZlwEL02e7qmvos63tb13YR8KI/3+HvtRIs6dbMLBV4ArjKOVcevc157zDQeww6OTM7CdjsnFsY71hkvwgBhwB/cM6NA3bQoDugPttdg//szTS8pLo/kMKeXYykC9NnuXsws5/iPdrxSLxjaS0lWE1bBwyKWh7or5MuwswS8JKrR5xzT/qrN+3qUuD/3Byv+CRmJgOnmFkRXlffY/Ce0cnwuxWBPt9dyVpgrXPuPX/5cbyES5/trudbwCrnXLFzrhZ4Eu/zrs9219bUZ1nf27ogM5sBnASc475+eW+Hv9dKsJr2AXCQPxpRIt7DdM/GOSaJEf8ZnPuBZc6530Rteha4wJ+/AHhmf8cmseWcu9E5N9A5l4f3OX7dOXcO8AZwhl9M97qLcM5tBNaY2Qh/1TeBpeiz3RWtBiaZWU//b/que63PdtfW1Gf5WeB8fzTBSUBZVFdC6YTM7Hi87v2nOOd2Rm16FjjLzJLMbCjewCbvxyPGptjXyaA0ZGbfxnt2Iwj8xTl3W3wjklgxsynA28DHfP1czk14z2E9BgwGvgLOdM41fMBWOikzOwq41jl3kpkdgNeilQl8CJzrnKuOY3gSI2ZWiDegSSLwJXAh3j8o6rPdxZjZL4DpeN2HPgQuxnsWQ5/tLsDMZgNHAdnAJuAW4Gka+Sz7SfY9eN1EdwIXOucWxCFs2QdN3OsbgSSgxC823zl3qV/+p3jPZdXhPebxYsM640kJloiIiIiISIyoi6CIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYh0EGaWZ2bOzELxjqWrM7MZZjYv3nF0NGY21cw+i3ccIiKdmRIsERHp1MxsppnVmllF1HR9vOPqjJxzbzvnRsSyTj9pq2gwOTM7PZbHERHpKPSvpCIiMWJmIedcXbzj6KbmOOfOjXcQ7aUz/245594GUnctm9lRwD+Bl+IUkohIu1ILlohIG5hZkZn9xMyWADvMLGRmk8zs32a2zcw+8r9Q7io/18z+18zeN7NyM3vGzDKbqPtCM1tmZtvN7Esz+68G26eZ2WK/npVmdry/vpeZ3W9mG8xsnZn9j5kFWziPYWb2upmVmNkWM3vEzDKitm01s0P85f5mVrzrvMzsFDP71D/fuWY2ssH1udbMlphZmZnNMbPkvb/Se8/MbvCvy3YzW2pmpzVRzszsTjPb7F/Lj81sjL8tyczuMLPVZrbJzGaZWY9WHv8Bv/wrfgxvmtmQqO2/M7M1/jEXmtnUqG0zzexxM3vYzMqBGWY20cze9a/zBjO7x8wSo/ZxZna5mX3hH++//Xv3b/8Yj0WXbyLmo8xsbWvOrw0uAB53zu1o5+OIiMSFEiwRkbY7GzgRyABygeeB/wEygWuBJ8wsJ6r8+cBFQD+gDririXo3AycB6cCFwJ1RSc5E4G/Adf5xjwCK/P0e8Os9EBgHHAtc3MI5GPC/QH9gJDAImAngnFsJ/AR42Mx6An8FHnTOzTWz4cBs4CogB3gB+GeDL/JnAscDQ4ECYEajAZhN8ZOHpqYpLZxDQyuBqUAv4Bd+/P0aKXcs3vUb7pc9Eyjxt/3SX1+Idz0HADfvRQznAP8NZAOLgUeitn3g15sJ/B34R4PkcxrwON79fQQIA1f7dR0OfBO4vMHxjgMOBSYB1wP3Aefi3c8xeL+r+8xPlJu6P79vxf4pwBnAg22JQ0SkQ3POadKkSZOmfZzwkpqLopZ/AjzUoMzLwAX+/Fzgl1HbRgE1QBDIAxwQauJYTwNX+vN/BO5spEwuUA30iFp3NvDGXp7XqcCHDdY9C3wMLAGS/HU/Bx6LKhMA1gFHRV2fc6O23w7MivE9mOlfw21RU/9Gyi0GpvnzM4B5/vwxwOd4SUkgqrwBO4BhUesOB1a1Mq4HgEejllPxkqRBTZQvBcZGndNbLdR/FfBU1LIDJkctLwR+ErX8a+C3LdR5FLA2lvenQf3nAasAa69jaNKkSVO8Jz2DJSLSdmui5ocA3zWzk6PWJQBvNFH+K397dsNKzewE4Ba8FpQA0BMvwQGvReKFRmIZ4te3wcx2rQs0OOYezCwX+B1ei0+av09pg2J/wkuyLnHOVfvr+vvnAIBzLmJma/BaenbZGDW/098n1h5zDZ7BMrPzgR/jJa7gJTh7XGfn3Otmdg9wLzDEzJ7Ea3lMxrvmC6OupeElw61Vf92dcxVmthXv/NeY2bXAf/rLDq+lMruxff3zGQ78BhjvxxXCS6KibYqar2xkue9exN4eLgD+5pxzcY5DRKTdqIugiEjbRX9ZXIPXgpURNaU4534ZVWZQ1PxgoBbYEl2hmSUBTwB3ALnOuQy8hGrXN/01wLBGYlmD14KVHXX8dOfc6BbO4f/555HvnEvH61b2dVZhlgr8FrgfmGlfPze2Hi+p21XO/PNb18Lx9mCNjzYXPU1tuZb6uobgJYRXAFn+9fsk+pyiOefucs4diteiOByv6+UWvKRkdNS17OWcS22sjibU32v/GmYC6/1zuR6vO2JvP76yBvE1TEL+ACwHDvLv0U1NnU978Z+1a+r+zGph30F4LWR/2y/BiojEiRIsEZHYehg42cyOM7OgmSX7AwcMjCpzrpmN8p9nuhXvgf9wg3oSgSSgGKjzW7OOjdp+P3ChmX3TzAJmNsDMDnbObQD+BfzazNL9bcPM7MgW4k4DKoAyMxuAl2BE+x2wwDl3Md4zZru+TD8GnOjHkQBcg5fg/bulC9WQ84YIT21mensvqkvBS1CKwRswBO8ZpD2Y2QQzO8yPfwdQBUSccxG8JO1OM+vjlx1gZsdF7essahCTRnzbf7YsEe9ZrPnOuTV417vOjy9kZjfjtWA1Jw0oByrM7GDgshbKx5xzbnQz9+fSFnY/D/i3857pExHpspRgiYjEkP/leRpe60IxXovSdez+9/YhvOdzNuJ1Q/tRI/Vs99c/htdV73t43fN2bX8ff+ALvJaPN/m6Jel8vARtqb/v43gDajTnF8Ahfl3PA0/u2mBm0/AGqdj1hf7HwCFmdo5z7jO81q678Vp8TgZOds7VtHC8duWcW4r3zNG7eN3k8oF3miiejpdIleJ1dywBfuVv+wmwApjvj+b3KjAC6ltktvN1t83G/B2vm+dWvMEndnVjfBlvmPLP/WNW0UI3Trxui9/zj/knYE4L5Tua89HgFiLSDZi6QYuI7D9mNhd42Dn353jHIm1jZufidR+8sYntD+ANGPGz/RqYiIjElQa5EBER2QfOuYfjHYOIiHQ86iIoItJNmPfS270enEC6FjO7qYnfgxfjHZuISFegLoIiIiIiIiIxohYsERERERGRGOlQz2BlZ2e7vLy8eIchIiIiIiLSrIULF25xzuU0XN+hEqy8vDwWLFgQ7zBERERERESaZWZfNbZeXQRFRERERERiRAmWiIiIiIhIjCjBEhFphU8Xz2f5ojfjHYaIiIh0cB3qGazG1NbWsnbtWqqqquIdinQyycnJDBw4kISEhHiHIp2cc47RTx8HQHV+CUkJHf5Pp4iIiMRJh/+WsHbtWtLS0sjLy8PM4h2OdBLOOUpKSli7di1Dhw6NdzjSyW2vriPdny9a+gEjxh4e13hERESk4+rwXQSrqqrIyspSciV7xczIyspSy6fERGnF179HFZ/NjV8gIiIi0uF1+AQLUHIl+0S/NxIr24vX1s+Hi1fEMRIRERHp6DpFgiUiEk9VJUX18z0qGn3lhYiIiAigBKtVzIxrrrmmfvmOO+5g5syZ8Qsoyvz58znssMMoLCxk5MiR9XHNnTuXf//7322q+/jjjycjI4OTTjopBpGKdF7hsg0AfBUYSGb12hZKi4iISHemBKsVkpKSePLJJ9myZUtM63XOEYlE2lTHBRdcwH333cfixYv55JNPOPPMM4HYJFjXXXcdDz30UJvqEOkKIjWVABT3PIjc8CZcXU2cIxIREZGOqs2jCJrZIOBvQC7ggPucc78zs5nA94Fiv+hNzrkX2nKsX/zzU5auL29LFXsY1T+dW04e3WyZUCjEJZdcwp133sltt92227bi4mIuvfRSVq9eDcBvf/tbJk+ezMyZM0lNTeXaa68FYMyYMTz33HMAHHfccRx22GEsXLiQF154gXvuuYcXX3wRM+NnP/sZ06dPZ+7cucycOZPs7Gw++eQTDj30UB5++OE9nivavHkz/fr1AyAYDDJq1CiKioqYNWsWwWCQhx9+mLvvvpuDDz64yThXrlzJihUr2LJlC9dffz3f//73AfjmN7/J3Llzm702//jHP/jFL35BMBikV69evPXWW1RVVXHZZZexYMECQqEQv/nNbzj66KN54IEHePrpp9mxYwdffPEF1157LTU1NTz00EMkJSXxwgsvkJmZyZ/+9Cfuu+8+ampqOPDAA3nooYfo2bPnbsedNGkS999/P6NHe/fuqKOO4o477mD8+PHNxiuyLyK11QDUZhxAqOINtm5eS2b/A+IclYiIiHREsWjBqgOucc6NAiYBPzCzUf62O51zhf7UpuQq3n7wgx/wyCOPUFZWttv6K6+8kquvvpoPPviAJ554gosvvrjFur744gsuv/xyPv30UxYsWMDixYv56KOPePXVV7nuuuvYsMHrjvThhx/y29/+lqVLl/Lll1/yzjvv7FHX1VdfzYgRIzjttNP44x//SFVVFXl5eVx66aVcffXVLF68mKlTpzYb55IlS3j99dd59913ufXWW1m/fn2rr8utt97Kyy+/zEcffcSzzz4LwL333ouZ8fHHHzN79mwuuOCC+tH8PvnkE5588kk++OADfvrTn9KzZ08+/PBDDj/8cP72t78B8J3vfIcPPviAjz76iJEjR3L//ffvcdzp06fz2GOPAbBhwwY2bNig5EraT52XYCX1ORCALeu+jGc0IiIi0oG1uQXLObcB2ODPbzezZcCAttbbmJZamtpTeno6559/PnfddRc9evSoX//qq6+ydOnS+uXy8nIqKiqarWvIkCFMmjQJgHnz5nH22WcTDAbJzc3lyCOP5IMPPiA9PZ2JEycycOBAAAoLCykqKmLKlCm71XXzzTdzzjnn8K9//Yu///3vzJ49u9FWp+binDZtGj169KBHjx4cffTRvP/++5x66qmtui6TJ09mxowZnHnmmXznO9+pP6cf/vCHABx88MEMGTKEzz//HICjjz6atLQ00tLS6NWrFyeffDIA+fn5LFmyBPCSsJ/97Gds27aNiooKjjvuuD2Oe+aZZ3Lsscfyi1/8gscee4wzzjijVfGK7AvnJ1ip/YfDIthRrIEuREREpHExfdGwmeUB44D3gMnAFWZ2PrAAr5WrtJF9LgEuARg8eHAsw4m5q666ikMOOYQLL7ywfl0kEmH+/PkkJyfvVjYUCu32fFX0+5hSUlJadbykpKT6+WAwSF1dXaPlhg0bxmWXXcb3v/99cnJyKCkp2aNMU3HCnsOZ783w5rNmzeK9997j+eef59BDD2XhwoXNlo8+p0AgUL8cCATqz2/GjBk8/fTTjB07lgceeKDRhHHAgAFkZWWxZMkS5syZw6xZs1ods8heq/M+v9mDDgagtlQDXYiIiEjjYjbIhZmlAk8AVznnyoE/AMOAQrwWrl83tp9z7j7n3Hjn3PicnJxYhdMuMjMzOfPMM3frsnbsscdy99131y8vXrwYgLy8PBYtWgTAokWLWLVqVaN1Tp06lTlz5hAOhykuLuatt95i4sSJrY7p+eefxzkHeF0Pg8EgGRkZpKWlsX379hbjBHjmmWeoqqqipKSEuXPnMmHChFYff+XKlRx22GHceuut5OTksGbNGqZOncojjzwCwOeff87q1asZMWJEq+vcvn07/fr1o7a2tr6exkyfPp3bb7+dsrIyCgoKWl2/yF4Le4Na9M7pT4VLhvJ1cQ5IREREOqqYJFhmloCXXD3inHsSwDm3yTkXds5FgD8Brc8aOrBrrrlmt9EE77rrLhYsWEBBQQGjRo2qb0k5/fTT2bp1K6NHj+aee+5h+PDhjdZ32mmnUVBQwNixYznmmGO4/fbb6du3b6vjeeihhxgxYgSFhYWcd955PPLIIwSDQU4++WSeeuopCgsLefvtt5uME6CgoICjjz6aSZMm8fOf/5z+/fsDXvL33e9+l9dee42BAwfy8ssvA163xF3PW1133XXk5+czZswYvvGNbzB27Fguv/xyIpEI+fn5TJ8+nQceeGC3lquW/Pd//zeHHXYYkydP5uCDD65f/+yzz3LzzTfXL59xxhk8+uij9SMnirSbumqqScACAbYEsknYsSHeEYmIiEgHZbtaP/a5Aq8/2YPAVufcVVHr+/nPZ2FmVwOHOefOaq6u8ePHuwULFuy2btmyZYwcObJNMUrTGo522NXo90di4Z17LmbsludJnbmBj/7f0fR0Ozjop+/HOywRERGJIzNb6JzbY5S1WDyDNRk4D/jYzBb7624CzjazQryh24uA/4rBsURE9jsL11BDAgCVPfrSv2x+nCMSERGRjioWowjOAxobFaFTD8veXcycOTPeIYh0eIFwNbXmJVh1qf3I2lZKpLaGQEJinCMTERGRjiZmg1yIiHRVgUgNteYlU4FeAwmYo3TzmjhHJSIiIh2REiwRkRYEIjXU+S1YSVneu+nKNjY+MqiIiIh0b0qwRERaEAzXEPZbsFJzhgCwvXh1PEMSERGRDkoJlohIC4KuhrqAl2Bl9vUSrNpSvQtLRERE9qQEq5WefvppzIzly5c3WaaoqIgxY8bE7JifffYZRx11FIWFhYwcOZJLLrkE8F4S/MILbRtD5KKLLqJPnz4xjVekqwpFaggHvC6CmVl9qHSJuPL1cY5KREREOiIlWK00e/ZspkyZwuzZsxvdXldX1+ZjhMPh3ZZ/9KMfcfXVV7N48WKWLVvGD3/4QyA2CdaMGTN46aWX2lSHSHcRdDVE/BasYDDAlkAWoR0b4xyViIiIdESxeA/W/vPiDbDx49jW2TcfTvhls0UqKiqYN28eb7zxBieffDK/+MUvAJg7dy4///nP6d27N8uXL+df//oXdXV1nHPOOSxatIjRo0fzt7/9jZ49e/Laa69x7bXXUldXx4QJE/jDH/5AUlISeXl5TJ8+nVdeeYXrr7+es876+l3MGzZsYODAgfXL+fn51NTUcPPNN1NZWcm8efO48cYbOemkk/jhD3/IJ598Qm1tLTNnzmTatGk88MADPPXUU5SVlbFu3TrOPfdcbrnlFgCOOOIIioqKmj3vN998kyuvvBIAM+Ott94iNTWV66+/nhdffBEz42c/+xnTp09n7ty53HLLLWRkZPDxxx9z5plnkp+fz+9+9zsqKyt5+umnGTZsGP/85z/5n//5H2pqasjKyuKRRx4hNzd3t+OeddZZnHfeeZx44omAlwyedNJJnHHGGa27pyIxFnK1VAWS6pfLQtn0qNoUx4hERESko1ILVis888wzHH/88QwfPpysrCwWLlxYv23RokX87ne/4/PPPwe8bn2XX345y5YtIz09nd///vdUVVUxY8YM5syZw8cff0xdXR1/+MMf6uvIyspi0aJFuyVXAFdffTXHHHMMJ5xwAnfeeSfbtm0jMTGRW2+9lenTp7N48WKmT5/ObbfdxjHHHMP777/PG2+8wXXXXceOHTsAeP/993niiSdYsmQJ//jHP1iwYEGrz/uOO+7g3nvvZfHixbz99tv06NGDJ598ksWLF/PRRx/x6quvct1117FhwwYAPvroI2bNmsWyZct46KGH+Pzzz3n//fe5+OKLufvuuwGYMmUK8+fP58MPP+Sss87i9ttv3+O406dP57HHHgOgpqaG1157rT7ZEomHhKgWLICdSX1Ir90Sx4hERESko+pcLVgttDS1l9mzZ9e35Jx11lnMnj2bQw89FICJEycydOjQ+rKDBg1i8uTJAJx77rncdddd/Md//AdDhw5l+PDhAFxwwQXce++9XHXVVYCXUDTmwgsv5LjjjuOll17imWee4Y9//CMfffTRHuX+9a9/8eyzz3LHHXcAUFVVxerV3ghn//Ef/0FWVhYA3/nOd5g3bx7jx49v1XlPnjyZH//4x5xzzjl85zvfYeDAgcybN4+zzz6bYDBIbm4uRx55JB988AHp6elMmDCBfv36ATBs2DCOPfZYwGt5e+ONNwBYu3Yt06dPZ8OGDdTU1Ox27XY54YQTuPLKK6muruall17iiCOOoEePHq2KWaQ9JLhaIsGvW7BqU/qStf0tcA6ssfesi4iISHelFqwWbN26lddff52LL76YvLw8fvWrX/HYY4/hnAMgJSVlt/LW4MtWw+XGNKwjWv/+/bnooot45plnCIVCfPLJJ3uUcc7xxBNPsHjxYhYvXszq1asZOXLkPsezyw033MCf//xnKisrmTx5crMDfAAkJX39BTQQCNQvBwKB+mfUfvjDH3LFFVfw8ccf88c//pGqqqo96klOTuaoo47i5ZdfZs6cOU0moCL7S4KrxQW/bsEivT9JVktFqboJioiIyO6UYLXg8ccf57zzzuOrr76iqKiINWvWMHToUN5+++1Gy69evZp3330XgL///e9MmTKFESNGUFRUxIoVKwB46KGHOPLII1s89ksvvURtbS0AGzdupKSkhAEDBpCWlsb27dvryx133HHcfffd9Unfhx9+WL/tlVdeYevWrfXPQe1qXWuNlStXkp+fz09+8hMmTJjA8uXLmTp1KnPmzCEcDlNcXMxbb73FxIkTW11nWVkZAwYMAODBBx9sstz06dP561//yttvv83xxx/f6vpF2kMiuydYCRne73DJhq/iFZKIiIh0UEqwWjB79mxOO+203dadfvrpTY4mOGLECO69915GjhxJaWkpl112GcnJyfz1r3/lu9/9Lvn5+QQCAS699NIWj/2vf/2LMWPGMHbsWI477jh+9atf0bdvX44++miWLl1KYWEhc+bM4ec//zm1tbUUFBQwevRofv7zn9fXMXHiRE4//XQKCgo4/fTT67sHnn322Rx++OF89tlnDBw4kPvvvx+AWbNmMWvWLAB++9vfMmbMGAoKCkhISOCEE07gtNNOo6CggLFjx3LMMcdw++2307dv31Zfz5kzZ/Ld736XQw89lOzs7Pr1CxYs4OKLL65fPvbYY3nzzTf51re+RWJiYmNViewXzjkSqYVQcv26lOxBgF42LCIiInuyXa0eHcH48eNdw0EYli1bVt/dTfbOAw88wIIFC7jnnnviHUrc6PdH2qq6to6k27L4YPDFTLjo1wCsLfqcgQ9MYEH+LYw//cdxjlBERETiwcwWOuf2GNxALVgiIs2oqan2ZkJfP2OY3XcwEWdEyvSyYREREdld5xpFUPbKjBkzmDFjRrzDEOnUaqq9gVgs4esEKzk5mWLrRaBiQ7zCEhERkQ6qU7RgdaRujNJ56PdGYqG2aicAFjVMO0BpMJukSo0iKCIiIrtr9wTLzI43s8/MbIWZ3bC3+ycnJ1NSUqIvy7JXnHOUlJSQnJzccmGRZtTW7GrB2v13qSIxh9Sa4niEJCIiIh1Yu3YRNLMgcC/wH8Ba4AMze9Y5t7S1dQwcOJC1a9dSXKwvMrJ3kpOTGThwYLzDkE6utroSgECDBKumZy69Kz+OR0giIiLSgbX3M1gTgRXOuS8BzOxRYBrQ6gQrISGBoUOHtlN4IiLNq/NbsAIJu3cRDKf2I6OkgprKHST2aPpl4SIiItK9tHcXwQHAmqjltf66emZ2iZktMLMFaqUSkY7m6wRr9xasUK/+AGzRy4ZFREQkStwHuXDO3eecG++cG5+TkxPvcEREdhOu8boIBhskWMmZXvfT8s1F+zskERER6cDaO8FaBwyKWh7orxMR6RTqar33YAUTd+8imNZnMAA7S9bu95hERESk42rvBOsD4CAzG2pmicBZwLPtfEwRkZgJ+4NchBJ77LY+s5/3bGhtqf7NSERERL7WroNcOOfqzOwK4GUgCPzFOfdpex5TRCSWInVeC1Yocfcugr0yMtnhkqF8fTzCEhERkQ6qvUcRxDn3AvBCex9HRKQ9hGu9QS4SknZvwTIzSgJZJOzUy4ZFRETka3Ef5EJEpCNzuxKsxD1fWl2WkENq9cb9HZKIiIh0YEqwRESaEfEHuUhM7rnHth09+pNZu3l/hyQiIiIdmBIsEZFmuDqvBSuxQRdBgNrU/mRTSsR/V5aIiIiIEiwRkWa42hoAkpL37CJoGd5Q7aWbivZnSCIiItKBKcESEWmGC3utUxbaM8HqkT0EgK3rV+7XmERERKTjUoIlItIMq6smjEFgz0FXM/ofAECFWrBERETEpwRLRKQ5dTXUkgBme2zqM8BLsOq2rt7fUYmIiEgHpQRLRKQZFq6ihsRGt6WlplJMBoHytfs5KhEREemolGCJiDQjFK6kypKa3F4SzCV55/r9GJGIiIh0ZEqwRESaEQxXUWN7DnCxS0VyX3rV6GXDIiIi4lGCJSLSjFC4ippA0y1Y1SkDyAkX4yKR/RiViIiIdFRKsEREmpEQqaIm0HQLlmUMJMlqKS/ZsB+jEhERkY5KCZaISDMSIlXUNZNgJWXlAbBlnd6FJSIiIkqwRESaldhCgpXedygA2zet2l8hiYiISAemBEtEpBmJrpq6YI8mt2cPPBCA6i1f7a+QREREpANTgiUi0owkV9VsgpXRO5sdLhnK1uzHqERERKSjalOCZWa/MrPlZrbEzJ4yswx/fZ6ZVZrZYn+aFZNoRUT2sySqIaHpBMsCATYHc0mq0MuGRUREpO0tWK8AY5xzBcDnwI1R21Y65wr96dI2HkdEZL9zzpHsmk+wAMqS+pFerVEERUREpI0JlnPuX865On9xPjCw7SGJiHQM1dXVJFoYS+zZbLnKngPICW/aT1GJiIhIRxbLZ7AuAl6MWh5qZh+a2ZtmNrWpnczsEjNbYGYLiouLYxiOiEjb7NixHYBAYkqz5SIZg0hjJzvKSvZHWCIiItKBtZhgmdmrZvZJI9O0qDI/BeqAR/xVG4DBzrlxwI+Bv5tZemP1O+fuc86Nd86Nz8nJafsZiYjESKWfYAWTmk+wErO8odqL13zR7jGJiIhIxxZqqYBz7lvNbTezGcBJwDedc87fpxqo9ucXmtlKYDiwoK0Bi4jsL5U7KwAIJTffRTC17zAAyjeugDGT2j0uERER6bjaOorg8cD1wCnOuZ1R63PMLOjPHwAcBHzZlmOJiOxv1Tu9FqxQCy1Y2QP8d2EVF7V3SCIiItLBtdiC1YJ7gCTgFTMDmO+PGHgEcKuZ1QIR4FLn3NY2HktEZL+q3eH92QqlZDZbLis7lwrXA7at3h9hiYiISAfWpgTLOXdgE+ufAJ5oS90iIvEWrvASrMS0rGbLBYIBNgX7kFShlw2LiIh0d7EcRVBEpEtxldsASEprvgULoCyxH2lVeheWiIhId6cES0SkCZGdpQD07NXyCKdVKf67sLyxfkRERKSbUoIlItKEyM5S6lyA9PSMlsv2GkwqO6ks1+OmIiIi3ZkSLBGRJljVNsotFQu0/KcyISsPgOK1eheWiIhId6YES0SkCaGabVQE0lpVNq3vAQCUb1jRniGJiIhIB6cES0SkCQk15VQFW5dgZQ08CICqLUXtGJGIiIh0dEqwRESa0LNuG9WhXq0qm1P/Lqyv2jkqERER6ciUYImINCEzUkJ1z76tKhsIBtgU6ENixbp2jkpEREQ6MiVYIiKNqNixgyzKiKT3b/U+25L6kV61vh2jEhERkY5OCZaISCO2rPsSgFDGwFbvU5kygOw6vQtLRESkO1OCJSLSiG2bigDomTOk1fu49EGkspOqitJ2ikpEREQ6OiVYIiKNqNyyGoCMvnmt3icx02vtKl63qj1CEhERkU5ACZaISCMiW1YQdkbWgGGt3iclexAA5cWr2yssERER6eCUYImINCK59HPWB/uTkNSz1fuk53gJVlXJ2vYKS0RERDo4JVgiIo3IqfySkp6tb70CyOrnPa8VLtNIgiIiIt2VEiwRkQbKt5cxILKBmszhe7VfSkoqpS4N276hnSITERGRjq5NCZaZzTSzdWa22J++HbXtRjNbYWafmdlxbQ9VRGT/WLFoLkFzpB0waa/33RrMIrFyUztEJSIiIp1BKAZ13OmcuyN6hZmNAs4CRgP9gVfNbLhzLhyD44mItKvtn79NxBlDDzlmr/etSMgmpXpzO0QlIiIinUF7dRGcBjzqnKt2zq0CVgAT2+lYIiIxlbnpXVYnDCU5PWuv961MziWjrqQdohIREZHOIBYJ1hVmtsTM/mJmvf11A4A1UWXW+uv2YGaXmNkCM1tQXFwcg3BERPZd8aZ1jKr9lE39jt6n/etS+5LpthGpq41xZCIiItIZtJhgmdmrZvZJI9M04A/AMKAQ2AD8em8DcM7d55wb75wbn5OTs7e7i4jE1OevP0TQHP0nfXef9g+k9yNgjrJiDdUuIiLSHbX4DJZz7lutqcjM/gQ85y+uAwZFbR7orxMR6bBcJEL/FbNZGRzGsFF7P8AFQGJvr7G+dNNX9O43NJbhiYiISCfQ1lEE+0UtngZ84s8/C5xlZklmNhQ4CHi/LccSEWlvyxa8ztBwEcUjvgdm+1RHz6yBAOzYohYsERGR7qitowjebmaFgAOKgP8CcM59amaPAUuBOuAHGkFQRDq6qrl3sp0eFJzwn/tcR68+XuN9zTa9C0tERKQ7alOC5Zw7r5lttwG3taV+EZH9ZdmCuRyycx7zB/8Xk9J6t7xDE7L69CfijHC53oUlIiLSHbXXMO0iIp2Gc47qf/2CbaSRf8YNbaorOSmJrZZOYIcSLBERke5ICZaIdHsfvv08hTWLWDn8YlLSM9tcX1kgk4RKvXZCRESkO2rrM1giIp1aOByhx5u3UmyZFHzn2pjUWZGQSUrNlpjU1VlEwhHKt5VQvnUDO0o3U1W2idqd23F11RCuxtVV4yJhXCCBQEIygWAigYREAok9CKX0Jik1k6S0LHqmZ5KSlkHPpARsHwcaERERiSclWCLSrX3w0t+YFP6MxeNuJSc5NSZ1ViXn0Le8KCZ1dSSRcIR1q7+g9MsPqd64FEpXk1yxmozqDeRGNpNhdWTE4DhhZ5TRkwpLYaelUBlIoTqUSk0ojbqEVCKJ6UQS0wgkpZKQmERiYhKJSUkEQolEAok4C2AugrkI4P10kTAuEsG5CC5ShwvX4SJhLOL9JFIHu366MIS9n7ZrvavDIhH/Zxhz3vaAP28ujHPgMCIYEeeN/uQwHAEw8+fNH6HS/O2BqGXD+fPUz3uiU01rMGO7/dftfjFt930b1iVt0MT92f2+NL7dGrkL0f+eYE1saLLOhGQOPP0XpPRqewu8iLSdEiwR6bZqa2vot+B21gQGUnDi5TGrN9yzD5nbtnlf4APBmNW7P7lIhNWrlrPx47m4tQtIK/uMgTWrGGQ76l9yuM2lUhzqS3HKQaxPOwZLyyWYmkNieg49M/qQnNqLhMRkAok9SEhMJhgKEamtobammpqaKuqqK6mt2knNjlJqdmwlvKOUSGUZVG4jUF1GoKacUM12etZtJyO8ieTKL+m5Ywcp7CTQMJFoJ7UuSJiAPwWp839G/J9hC9YvG2DmMCBQn045P12K+F+IHQEiAF9vd9Flv97HS9F2/yLemrPeP1dG9tCKC99e96a3VTD/HwlMuvg37XQEEdkbSrBEpNta9Mw9HObWsWTy7xkUSohZvZaWS4KFKd9aTHp235jV257C4QirPn2P4iX/ImH9BwzZ+TFD2MYQYIdLZk3iAXyecyzWdzSpg8eSc0AhmVk5ZMSjG18kAjUV1FXvYGdlNTsqd7KzspJIXS0WqcEiYQgEcRYAC+BcAAIBAsEggUCQQCBAMJRAIBjCQgkEAiECwSDBYAKBUIhAKIFgIEQw6JVNCBhJhrosStw45/yfXydpzrn6+UW/OYVRa2ezfdtPScvIikuMIvI1JVgi0i1VVVWS98k9LA+NJP+Ys2Nad0Iv7x3spZvXdOgEa9vmtXzx7j+JrHiNYdvf50DKOBDYYH1Y02sCXw06jJxRRzBo+KEcHOpA/7sIBCA5nVByOum9ID3e8Yi0s13JvTXWFxFI+48bSH/6RN594n85/D/v2L/BicgeOtD/MUVE9p+Fz/2JyZRQPPVXWCC2A6r2yOwPwPaSdcCEmNbdVkVFX7Lu37PJXPU8I2s/ZQJQSjpFvSay+oCjGTT+2/QbcAD94h2oiLTaQYVTWPjqUYxb/QDrV11M/6EHxzskkW5NCVYzVi75N8WLnqPXwVM5YOxUknrE5gF4EYmvcDjMgE//yKrgAYyeelrM60/LHgBAVen6mNe9t5xzLP+yiKK3Z9N3zQsU1H1CnjmKAkN4Z9B/0efQkxmW/w3GBTvns2Ii4hl41m8I/+lwSuZcTr/rX+m0z3+KdAVKsJqxZembTCq6F4rupebFIJ+FhrEt7UDIHkHPAaNJHzCCnAF59EzpYB1UnCMcrqO2pprammrCtTXU1VZTW+vNh2urqautJVxXTaSuhnBtDZFIGJzz+nS7iN/R2wERr++3PznnLVvD9UTqO4e7Nj/G24rnHFos0tZnJdq4fyue1Wi2RBuf9XCNjlG1N9p6D+J8/VtQtWEZk91aFh8S+9YrgMxcbxiIum0bYl53axWtWcvnbz5K71X/ZFzdEkZahPWhgXxy4CX0/cb3yBtWSF7cohORWMsdOIz5o65l0rLbePehmzn8gtviHVK7cZEIdTWVVFdXUV21k9rqKmqqK6mrqfK+99RUEamrgroafwRRb4pEIhAJE4keWdQfXdQbeTTcYCTO3YeEdJjfXdO+/v/sHsN6Rv+0ZrZRX09D1rDOxlgT/59v5PuDNbNtV4nGN+0ZX6tiawc1SZkMKTyGvr2S9+tx95USrGYcdtaNbNtyIas+fJ3KL/9NxtYlHLjtHbK2vQArvi63nZ5sDWSxI5hOXSjFmxJSCAd6QCCABUIQCGIWwFnQS2Aidd7wvy5MIFLnLftDApvztgUitd7k6gi4OoKRWgLUEYrUEaSWoKsj5OoIESZELSEXJgFvOWiOINA5fg1F9r911pf84y5sl7pT03uz3fUgsH3/tmBt3LyZZW88SuqKZxlbs4g8C7Mp2I/Phl3EoKnn0D9vHP01UINIl3XYd69l4Z3/5rAv72XBs4MYf8ql8Q6pUeHaGsq2bmT71s1sLy2mumwzNRVbsJ2lBKq2YjUVBGorCNXuICG8g4RwJUmRnfRwlfRwVfSkigRzJADqW9Q9zA2PZUHvQk4q6B/vUFpFCVYLMrL7Mu4/vgd8r35dSfEGNq1cQtXmFVSXroftG0mu3ERiXTk9akpJqlpLD1dJMtUEiBBwEX8Q3wghi1Dn/OF9CVAXNczvriliQerMS5vCgQQiFiRsCdQEexIOJOAsRCSQgAuEvHe++PMumAiBEAQTIZAAoQQskADBRCyYgIUSCYS85YA/Hwgl+SNmBbGAgQWAgPcD87sY+P9iY4ZZwJ/3fwYMI9Bge/veE9dSA1mLBVo8Am0ZTHeP99A0doTmisQg/rbV0Maxhts8DrGLQStoyzL7DSUYw5EDG9oY7EvPnWvarf5dSktL+XTuHBKXP8PYqg842mrZHMhh+ZBz6D/5HHKHH0aukiqRbsECAcZc/jCf3nki4xbewLvb1jPp3Jnt0lLfmOraWoo3rGPbxlXsKFlDzda1UL6BxJ0bSKneTK+6LfSOlJLKTjKBxt7aVe0SqLCeVFoPqgM9qQ70ZGdiJttDgwgnpBBJSCESSsUl9MBCSQQSkup/BhOTCSYkEwh56yyUiAVDmD96qAVCBIMBAoGgty4Y9L//BLxrZAH/hQqG3yUn6v/JUT+d2/1/1S5Sv81bv6t3T9R+u8pE7ega+f/916t2O8BuZQzX6FeFRuvbs+I96mu8rkbK+csWfQ409jKJ2P8/p39iCrmDc2Jeb3uxxm5GvIwfP94tWLAg3mG0G+echvkV6Sbe/79v069mNYN+/knM695RsZ1P33wc+/RJxuyYTw+rYYtlsqbfcfQ5/CwGjD7CG2lPRLqlyopyls06l0Mq3mR5wijqjrqJ0Yef2KZEq6qqkuL1qynbVMTOkjXUlq7FyteTsHMTKdWb6F1XTLYrJcHCu+1X64JsDWRSGsphR2IO1T1yoEcmgZRMQmk59EjPoWfvHNIy+pCamUtSj1R9V5JOw8wWOufGN1yvFqz9SH8wRLqPmrTB5Gx6P2YvG95RsZ3l854i8unTjCp/h4lWxVZ6sTT3ZHpPPIuhh3yTbD3ULiJAj9R0xv34ad576m6Gffwbsl85l42v5PBVr0NxfQvp0WcowZTeXitPIEiwdifVO8up3llGpGIrbvsGAjs2kVhZTGrtFjLCJWS6cgaZq3/ROEAlSZQEstie0IcNqYeyLrUfgYwBJGcOIq3PYDL75ZHSux+5gQC5cbsaIvufEiwRkXYQyjqA5M21bF5fRJ+Bw/apjtLSrSx/+wlCnz3LqIr3ONSqKSWNpVn/Qdr46QyfeDyHtmM3RxHpvCwQ4LDTr6TqhP/k/X89SPDzFxlR9g4ZZS/BZ83vG3ZGqfViWzCLnUk5bEsezZdp/Qn26k9y9iDS+wwhq18ePdOzGKh/PBbZgxIsEZF20HPIIbAMSpbP26sEa/3KT1jz/jMkFr3ByKrFHG61lJDB0pxv07PwdEYcdhwTEhLbMXIR6UqSe6Yy8dQfAD8A59iycQ1b1n1BeGc5hKtxkTDhUE+SeqbTM60XPXtlk57Vn+zERLLjHbxIJ9WmBMvM5gAj/MUMYJtzrtDM8oBlfP1vJPOdcx1zKBsRkXaQl/8Ndr6YxM4v3oZvXdBkuS0bvuKrD1+nZuVbDNr6bwa6jfQH1gQG8Gm/75Bx6BkccMgxZAX172Ei0kZmZPcbTHa/wfGORKRLa9P/sZ1z03fNm9mvgbKozSudc4VtqV9EpLNKT+nJh8ljGbrpX1SWldCjVxYV27exdtkHlK1ahK1fxIDyDxngNpEN7HRJfJEyjnVDLqL/+JMZNGzUbs86iIiISOcQk38SNW/0hjOBY2JRn4hIVxA4+gZ6vXg6O+7Mp4JEstw2DjZv5NatpPNVSgFr+p9D74OPZFj+4YxNTIpzxCIiItJWsepzMhXY5Jz7ImrdUDP7ECgHfuace7uxHc3sEuASgMGD1WQtIl3H2EnfZHHtw9Qu+jsRByt6DaLHoEL6jphA7oADyNRQ6iIiIl1Oi+/BMrNXgb6NbPqpc+4Zv8wfgBXOuV/7y0lAqnOuxMwOBZ4GRjvnyps7Vld/D5aIiIiIiHQN+/weLOfct1qoOAR8Bzg0ap9qoNqfX2hmK4HhgLInERERERHpsmLRP+VbwHLn3NpdK8wsx8yC/vwBwEHAlzE4loiIiIiISIcVi2ewzgJmN1h3BHCrmdUCEeBS59zWGBxLRERERESkw2rxGaz9ycyKga/iHUcD2cCWeAch+43ud/ehe9196F53L7rf3YfudffSEe/3EOdcTsOVHSrB6ojMbEFjD69J16T73X3oXncfutfdi+5396F73b10pvutMYJFRERERERiRAmWiIiIiIhIjCjBatl98Q5A9ivd7+5D97r70L3uXnS/uw/d6+6l09xvPYMlIiIiIiISI2rBEhERERERiRElWCIiIiIiIjGiBKsZZna8mX1mZivM7IZ4xyOxY2aDzOwNM1tqZp+a2ZX++kwze8XMvvB/9o53rBIbZhY0sw/N7Dl/eaiZved/vueYWWK8Y5TYMLMMM3vczJab2TIzO1yf7a7JzK72/4Z/YmazzSxZn+2uw8z+YmabzeyTqHWNfpbNc5d/35eY2SHxi1z2VhP3+lf+3/ElZvaUmWVEbbvRv9efmdlxcQm6GUqwmmBmQeBe4ARgFHC2mY2Kb1QSQ3XANc65UcAk4Af+/b0BeM05dxDwmr8sXcOVwLKo5f8D7nTOHQiUAv8Zl6ikPfwOeMk5dzAwFu++67PdxZjZAOBHwHjn3BggCJyFPttdyQPA8Q3WNfVZPgE4yJ8uAf6wn2KU2HiAPe/1K8AY51wB8DlwI4D/fe0sYLS/z+/97+0dhhKspk0EVjjnvnTO1QCPAtPiHJPEiHNug3NukT+/He8L2AC8e/ygX+xB4NS4BCgxZWYDgROBP/vLBhwDPO4X0b3uIsysF3AEcD+Ac67GObcNfba7qhDQw8xCQE9gA/psdxnOubeArQ1WN/VZngb8zXnmAxlm1m+/BCpt1ti9ds79yzlX5y/OBwb689OAR51z1c65VcAKvO/tHYYSrKYNANZELa/110kXY2Z5wDjgPSDXObfB37QRyI1XXBJTvwWuByL+chawLeoPtz7fXcdQoBj4q98l9M9mloI+212Oc24dcAewGi+xKgMWos92V9fUZ1nf27q2i4AX/fkOf6+VYEm3ZmapwBPAVc658uhtznuHgd5j0MmZ2UnAZufcwnjHIvtFCDgE+INzbhywgwbdAfXZ7hr8Z2+m4SXV/YEU9uxiJF2YPsvdg5n9FO/RjkfiHUtrKcFq2jpgUNTyQH+ddBFmloCXXD3inHvSX71pV5cC/+fmeMUnMTMZOMXMivC6+h6D94xOht+tCPT57krWAmudc+/5y4/jJVz6bHc93wJWOeeKnXO1wJN4n3d9tru2pj7L+t7WBZnZDOAk4Bz39ct7O/y9VoLVtA+Ag/zRiBLxHqZ7Ns4xSYz4z+DcDyxzzv0matOzwAX+/AXAM/s7Nokt59yNzrmBzrk8vM/x6865c4A3gDP8YrrXXYRzbiOwxsxG+Ku+CSxFn+2uaDUwycx6+n/Td91rfba7tqY+y88C5/ujCU4CyqK6EkonZGbH43XvP8U5tzNq07PAWWaWZGZD8QY2eT8eMTbFvk4GpSEz+zbesxtB4C/OudviG5HEiplNAd4GPubr53JuwnsO6zFgMPAVcKZzruEDttJJmdlRwLXOuZPM7AC8Fq1M4EPgXOdcdRzDkxgxs0K8AU0SgS+BC/H+QVGf7S7GzH4BTMfrPvQhcDHesxj6bHcBZjYbOArIBjYBtwBP08hn2U+y78HrJroTuNA5tyAOYcs+aOJe3wgkASV+sfnOuUv98j/Fey6rDu8xjxcb1hlPSrBERERERERiRF0ERUREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtEpIMwszwzc2YWincsXZ2ZzTCzefGOo6Mxs6lm9lm84xAR6cyUYImISKdmZjPNrNbMKqKm6+MdV2fknHvbOTcilnX6SVtFg8mZ2emxPI6ISEehfyUVEYkRMws55+riHUc3Ncc5d268g2gvnfl3yzn3NpC6a9nMjgL+CbwUp5BERNqVWrBERNrAzIrM7CdmtgTYYWYhM5tkZv82s21m9pH/hXJX+blm9r9m9r6ZlZvZM2aW2UTdF5rZMjPbbmZfmtl/Ndg+zcwW+/WsNLPj/fW9zOx+M9tgZuvM7H/MLNjCeQwzs9fNrMTMtpjZI2aWEbVtq5kd4i/3N7PiXedlZqeY2af++c41s5ENrs+1ZrbEzMrMbI6ZJe/9ld57ZnaDf122m9lSMzutiXJmZnea2Wb/Wn5sZmP8bUlmdoeZrTazTWY2y8x6tPL4D/jlX/FjeNPMhkRt/52ZrfGPudDMpkZtm2lmj5vZw2ZWDswws4lm9q5/nTeY2T1mlhi1jzOzy83sC/94/+3fu3/7x3gsunwTMR9lZmtbc35tcAHwuHNuRzsfR0QkLpRgiYi03dnAiUAGkAs8D/wPkAlcCzxhZjlR5c8HLgL6AXXAXU3Uuxk4CUgHLgTujEpyJgJ/A67zj3sEUOTv94Bf74HAOOBY4OIWzsGA/wX6AyOBQcBMAOfcSuAnwMNm1hP4K/Cgc26umQ0HZgNXATnAC8A/G3yRPxM4HhgKFAAzGg3AbIqfPDQ1TWnhHBpaCUwFegG/8OPv10i5Y/Gu33C/7JlAib/tl/76QrzrOQC4eS9iOAf4byAbWAw8ErXtA7/eTODvwD8aJJ/TgMfx7u8jQBi42q/rcOCbwOUNjncccCgwCbgeuA84F+9+jsH7Xd1nfqLc1P35fSv2TwHOAB5sSxwiIh2ac06TJk2aNO3jhJfUXBS1/BPgoQZlXgYu8OfnAr+M2jYKqAGCQB7ggFATx3oauNKf/yNwZyNlcoFqoEfUurOBN/byvE4FPmyw7lngY2AJkOSv+znwWFSZALAOOCrq+pwbtf12YFaM78FM/xpui5r6N1JuMTDNn58BzPPnjwE+x0tKAlHlDdgBDItadziwqpVxPQA8GrWcipckDWqifCkwNuqc3mqh/quAp6KWHTA5ankh8JOo5V8Dv22hzqOAtbG8Pw3qPw9YBVh7HUOTJk2a4j3pGSwRkbZbEzU/BPiumZ0ctS4BeKOJ8l/527MbVmpmJwC34LWgBICeeAkOeC0SLzQSyxC/vg1mtmtdoMEx92BmucDv8Fp80vx9ShsU+xNeknWJc67aX9ffPwcAnHMRM1uD19Kzy8ao+Z3+PrH2mGvwDJaZnQ/8GC9xBS/B2eM6O+deN7N7gHuBIWb2JF7LYzLeNV8YdS0NLxlurfrr7pyrMLOteOe/xsyuBf7TX3Z4LZXZje3rn89w4DfAeD+uEF4SFW1T1HxlI8t99yL29nAB8DfnnItzHCIi7UZdBEVE2i76y+IavBasjKgpxTn3y6gyg6LmBwO1wJboCs0sCXgCuAPIdc5l4CVUu77prwGGNRLLGrwWrOyo46c750a3cA7/zz+PfOdcOl63sq+zCrNU4LfA/cBM+/q5sfV4Sd2ucuaf37oWjrcHa3y0uehpasu11Nc1BC8hvALI8q/fJ9HnFM05d5dz7lC8FsXheF0vt+AlJaOjrmUv51xqY3U0of5e+9cwE1jvn8v1eN0Re/vxlTWIr2ES8gdgOXCQf49uaup82ov/rF1T92dWC/sOwmsh+9t+CVZEJE6UYImIxNbDwMlmdpyZBc0s2R84YGBUmXPNbJT/PNOteA/8hxvUkwgkAcVAnd+adWzU9vuBC83sm2YWMLMBZnawc24D8C/g12aW7m8bZmZHthB3GlABlJnZALwEI9rvgAXOuYvxnjHb9WX6MeBEP44E4Bq8BO/fLV2ohpw3RHhqM9Pbe1FdCl6CUgzegCF4zyDtwcwmmNlhfvw7gCog4pyL4CVpd5pZH7/sADM7LmpfZ1GDmDTi2/6zZYl4z2LNd86twbvedX58ITO7Ga8FqzlpQDlQYWYHA5e1UD7mnHOjm7k/l7aw+3nAv533TJ+ISJelBEtEJIb8L8/T8FoXivFalK5j97+3D+E9n7MRrxvajxqpZ7u//jG8rnrfw+uet2v7+/gDX+C1fLzJ1y1J5+MlaEv9fR/HG1CjOb8ADvHreh54ctcGM5uGN0jFri/0PwYOMbNznHOf4bV23Y3X4nMycLJzrqaF47Ur59xSvGeO3sXrJpcPvNNE8XS8RKoUr7tjCfArf9tPgBXAfH80v1eBEVDfIrOdr7ttNubveN08t+INPrGrG+PLeMOUf+4fs4oWunHidVv8nn/MPwFzWijf0ZyPBrcQkW7A1A1aRGT/MbO5wMPOuT/HOxZpGzM7F6/74I1NbH8Ab8CIn+3XwEREJK40yIWIiMg+cM49HO8YRESk41EXQRGRbsK8l97u9eAE0rWY2U1N/B68GO/YRES6AnURFBERERERiRG1YImIiIiIiMRIh3oGKzs72+Xl5cU7DBERERERkWYtXLhwi3Mup+H6DpVg5eXlsWDBgniHISIiIiIi0iwz+6qx9eoiKCIiIiIiEiNKsERERERERGJECZaISCPCEY2wKiIiInuvQz2D1Zja2lrWrl1LVVVVvEORTiY5OZmBAweSkJAQ71Ckkykpq6D3nQN578ArOezcX8Q7HBEREelEOnyCtXbtWtLS0sjLy8PM4h2OdBLOOUpKSli7di1Dhw6NdzjSyXz+xeccjuOwFb8FlGCJiIhI63X4LoJVVVVkZWUpuZK9YmZkZWWp5VP2Sdnmovr5qh1l8QtEREREOp0On2ABSq5kn+j3RvZZ2br62Y1ffhLHQERERKSz6RQJlojI/tSjcmP9fOmapXGMRERERDobJVitYGZcc8019ct33HEHM2fOjF9AUebPn89hhx1GYWEhI0eOrI9r7ty5/Pvf/97ner/66isOOeQQCgsLGT16NLNmzYpRxCIdX0rVRqpdAhFnVG/8It7hiIiISCfS4Qe56AiSkpJ48sknufHGG8nOzo5Zvc45nHMEAvue515wwQU89thjjB07lnA4zGeffQZ4CVZqairf+MY39qnefv368e6775KUlERFRQVjxozhlFNOoX///vscq0hnkVSzjY2WTSK1JJZ9Ge9wREREpBNRC1YrhEIhLrnkEu688849thUXF3P66aczYcIEJkyYwDvvvAPAzJkzueOOO+rLjRkzhqKiIoqKihgxYgTnn38+Y8aMYc2aNVx33XWMGTOG/Px85syZA3gJ0lFHHcUZZ5zBwQcfzDnnnINze76XZ/PmzfTr1w+AYDDIqFGjKCoqYtasWdx5550UFhby9ttvNxvneeedx+GHH85BBx3En/70JwASExNJSkoCoLq6mkgk0ui1ueuuuxg1ahQFBQWcddZZAGzdupVTTz2VgoICJk2axJIlS+qPdcEFFzB16lSGDBnCk08+yfXXX09+fj7HH388tbW1ANx6661MmDCBMWPGcMkll+xx3pFIhLy8PLZt21a/7qCDDmLTpk3N3UaRVgtEqqkhgS0J/UmtXNfyDiIiIiK+TtWC9Yt/fsrS9eUxrXNU/3RuOXl0i+V+8IMfUFBQwPXXX7/b+iuvvJKrr76aKVOmsHr1ao477jiWLVvWbF1ffPEFDz74IJMmTeKJJ55g8eLFfPTRR2zZsoUJEyZwxBFHAPDhhx/y6aef0r9/fyZPnsw777zDlClTdqvr6quvZsSIERx11FEcf/zxXHDBBeTl5XHppZeSmprKtddeC8D3vve9JuNcsmQJ8+fPZ8eOHYwbN44TTzyR/v37s2bNGk488URWrFjBr371q0Zbr375y1+yatUqkpKS6hOeW265hXHjxvH000/z+uuvc/7557N48WIAVq5cyRtvvMHSpUs5/PDDeeKJJ7j99ts57bTTeP755zn11FO54ooruPnmmwE477zzeO655zj55JPrjxkIBJg2bRpPPfUUF154Ie+99x5DhgwhNze3xfso0hqBcA11gUR2JufSp+LDeIcjIiIinYhasFopPT2d888/n7vuumu39a+++ipXXHEFhYWFnHLKKZSXl1NRUdFsXUOGDGHSpEkAzJs3j7PPPptgMEhubi5HHnkkH3zwAQATJ05k4MCBBAIBCgsLKSoq2qOum2++mQULFnDsscfy97//neOPP77RYzYX57Rp0+jRowfZ2dkcffTRvP/++wAMGjSIJUuWsGLFCh588MFGW4gKCgo455xzePjhhwmFQvXndN555wFwzDHHUFJSQnm5lxifcMIJJCQkkJ+fTzgcro83Pz+//vzeeOMNDjvsMPLz83n99df59NNP9zju9OnT61v7Hn30UaZPn97sNRfZG4FIDXWWQF1af7IiW4nU1cU7JBEREekk2tyCZWaDgL8BuYAD7nPO/c7MZgLfB4r9ojc5515oy7Fa09LUnq666ioOOeQQLrzwwvp1kUiE+fPnk5ycvFvZUCi0W7e66PcxpaSktOp4u7rogdf9r66JL3nDhg3jsssu4/vf/z45OTmUlJTsUaapOGHP4cwbLvfv358xY8bw9ttvc8YZZ+y27fnnn+ett97in//8J7fddhsff/xxq84pEAiQkJBQf6xAIEBdXR1VVVVcfvnlLFiwgEGDBjFz5sxG32V1+OGHs2LFCoqLi3n66af52c9+1uxxRfZGIFJL2BIIZgwktD7Cls2rye5/QLzDEhERkU4gFi1YdcA1zrlRwCTgB2Y2yt92p3Ou0J/alFx1BJmZmZx55pncf//99euOPfZY7r777vrlXV3h8vLyWLRoEQCLFi1i1apVjdY5depU5syZQzgcpri4mLfeeouJEye2Oqbnn3++/hmlL774gmAwSEZGBmlpaWzfvr3FOAGeeeYZqqqqKCkpYe7cuUyYMIG1a9dSWVkJQGlpKfPmzWPEiBG7HTsSibBmzRqOPvpo/u///o+ysjIqKiqYOnUqjzzyCOA9S5adnU16enqrzmdXMpWdnU1FRQWPP/54o+XMjNNOO40f//jHjBw5kqysrFbVL9IaQVdDOJBIUuZgALaub/zzKyIiItJQmxMs59wG59wif347sAwY0NZ6O6prrrmGLVu21C/fddddLFiwgIKCAkaNGlU/nPnpp5/O1q1bGT16NPfccw/Dhw9vtL7TTjuNgoICxo4dyzHHHMPtt99O3759Wx3PQw89xIgRIygsLOS8887jkUceIRgMcvLJJ/PUU0/VD3LRVJzgdfM7+uijmTRpEj//+c/p378/y5Yt47DDDmPs2LEceeSRXHvtteTn5wNw8cUXs2DBAsLhMOeeey75+fmMGzeOH/3oR2RkZDBz5kwWLlxIQUEBN9xwAw8++GCrzycjI4Pvf//7jBkzhuOOO44JEybUb5s1a9ZucU+fPp2HH35Y3QMl5oKRGsKWSK++QwGoKP4qzhGJiIhIZ2GNjUy3z5WZ5QFvAWOAHwMzgHJgAV4rV2kj+1wCXAIwePDgQ7/6avcvMsuWLWPkyJExi1F2N3PmzN0Gw+hq9Psj+2Ldf49iTeKBjLzkL/T63TDmH3g1k86dGe+wREREpAMxs4XOufEN18dskAszSwWeAK5yzpUDfwCGAYXABuDXje3nnLvPOTfeOTc+JycnVuGIiOyzkKslEkykV0YWO1wylGmodhEREWmdmAzTbmYJeMnVI865JwGcc5uitv8JeC4Wx5LYmjlzZrxDEOlwQq6WSCARzNgSzCFx54Z4hyQiIiKdRJtbsMwbBu5+YJlz7jdR6/tFFTsN+KStxxIR2R8SXC0umAhAWWIfUqv1EmsRERFpnVi0YE0GzgM+NrPF/rqbgLPNrBBv6PYi4L9icCwRkXaXQC0u6L1SoKpHXwaUroxzRCIiItJZtDnBcs7NA6yRTZ1+WHYR6Z4SqAW/BSuc2p/eW8uorakiIXHP98iJiIiIRIvZIBciIl1CJEyISH0XwUDGAALm2LpxdZwDExERkc5ACVYrPf3005gZy5cvb7JMUVERY8aMidkxP/vsM4466igKCwsZOXIkl1xyCfD/27vz8Lqq897j33efQaM1Wp4kYwvbMsaWjfEYjAljIAkJCRBwmgl8k5QMTeHe2zZDIYU+7ZOENmkbCDQE4iQlzA1wMxgIQwgpmNiYwWA8YVseZFvWPJ5x3T/OsSzJkmVbR8ORfp/n0XPOXnvttd+jrS3tV2vvtRKTBP/2t6feQdjR0cHSpUtZsGABc+fO5dvf/naqQhZJf9EQAOZP3CKYWTQVgPoDmgtLRERE+qcE6wQ98MADnHvuuTzwwAO9ro9GowPeRywW67b8ta99jZtuuonXX3+dzZs381d/9VfAwBOsjIwMnnvuOd544w1ef/111q5dyyuvvDKg2EVGi2i4I/EmmWDlTUgkWG2H9wxXSCIiIpJGlGCdgJaWFl566SXuvfdeHnzwwc7yF154gZUrV/LRj36UM888E0gkWp/61KeYM2cOV199NW1tbQA8++yzLFy4kMrKSlavXk0olPgv+fTp0/m7v/s7zj77bB555JFu+62urqasrKxzubKyknA4zC233MJDDz3EWWedxUMPPURrayurV69m6dKlLFy4kCeeeAKANWvWcMUVV3D++ecza9Ysbr31VgDMjNzcXAAikQiRSITEYJDdPfLII8ybN48FCxZw3nnnAYner+uvv57KykoWLlzI888/37mvj33sY1xyySVMnz6dO+64g+9///ssXLiQ5cuXU1dXB8A999zDkiVLWLBgAVdddVXn96er5cuX8/bbb3cun3/++axfv/6Ej5fIQITD7cDRHqyiyacnyuuVYImIiEj/UjIP1pD53dfhwFupbXNSJXzwO8et8sQTT3DZZZdRUVFBcXExGzZsYNGiRQC89tprbNq0ifLycnbt2sWWLVu49957WbFiBatXr+ZHP/oRX/3qV7nuuut49tlnqaio4LOf/Sx33XUXN954IwDFxcW89tprx+z3pptu4sILL+Scc87hAx/4ANdffz0FBQXcdtttrF+/njvuuAOAb37zm1x44YXcd999NDQ0sHTpUi6++GIAXn31VTZt2kR2djZLlizhwx/+MIsXLyYWi7Fo0SK2b9/OV77yFZYtW3bM/m+77TaeeuopSktLaWhoAODOO+/EzHjrrbd49913+cAHPsDWrVsB2LRpExs3bqSjo4OZM2fy3e9+l40bN3LTTTfx85//nBtvvJErr7ySL3zhCwD8/d//Pffee29nz9wR1157LQ8//DC33nor1dXVVFdXs3jxMZNkiwyKSEeiB+tIgpVXUEyby4AmzYUlIiIi/VMP1gl44IEHWLVqFQCrVq3qdpvg0qVLKS8v71yeOnUqK1asAODTn/40L730Elu2bKG8vJyKigoAPve5z/Hiiy92bnPttdf2ut/rr7+ezZs384lPfIIXXniB5cuXd/Z8dfX000/zne98h7POOovzzz+fjo4OqqoSD+RfcsklFBcXk5WVxZVXXslLL70EgM/n4/XXX2fv3r2dSVhPK1as4LrrruOee+7pvH3xpZde4tOf/jQAZ5xxBtOmTetMsC644ALGjRtHSUkJ+fn5fOQjHwESPW+7du0CEknYypUrqays5P777+/WU3XENddcw6OPPgrAww8/zNVXX93r90dkMISTtwh6yQTLPI9ar5hAqxIsERER6V969WD109M0GOrq6njuued46623MDNisRhmxu233w5ATk5Ot/o9b7Xr7da7nnq20dWUKVNYvXo1q1evZt68eb0mQs45HnvsMWbPnt2tfN26df3GU1BQwAUXXMDatWuPGaDj7rvvZt26dfzmN79h0aJFbNiw4bifIyMjo/O953mdy57ndT6jdt111/H444+zYMEC1qxZwwsvvHBMO6WlpRQXF/Pmm2/y0EMPcffddx93vyKpFA0lE6zA0Z/npkAJOaFDwxWSiIiIpBH1YPXj0Ucf5TOf+Qy7d+9m165d7Nmzh/Lycv74xz/2Wr+qqoqXX34ZgF/+8pece+65zJ49m127drF9+3YAfvGLX/D+97+/332vXbuWSCQCwIEDB6itraW0tJRx48bR3NzcWe/SSy/lhz/8Ic45ADZu3Ni57plnnqGuro729nYef/xxVqxYQU1NTectf+3t7TzzzDOcccYZx+x/x44dLFu2jNtuu42SkhL27NnDypUruf/++wHYunUrVVVVxyR2x9Pc3MzkyZOJRCKd7fTm2muv5Xvf+x6NjY3Mnz//hNsXGahI8hksL3B0zqv2rAnkR2qGKyQRERFJI0qw+vHAAw/w8Y9/vFvZVVdd1edogrNnz+bOO+9kzpw51NfX86UvfYnMzEx++tOf8olPfILKyko8z+OGG27od99PP/105yATl156KbfffjuTJk3iggsu4J133ukc5OLmm28mEokwf/585s6dy80339zZxtKlS7nqqquYP38+V111FYsXL6a6upoLLriA+fPns2TJEi655BIuv/xyAG655RaefPJJAP7mb/6GyspK5s2bxznnnMOCBQv48pe/TDwep7KykmuvvZY1a9Z067nqzz/+4z+ybNkyVqxY0S2pe/LJJ7nllls6l6+++moefPBBrrnmmhNuWyQVjowi6OvSgxXNmcx4V3fMSJ8iIiIiPdmRXo+RYPHixa7naHGbN29mzpw5wxRReluzZk23wTDGIv38yMna+vJvqHjqL9h40X+xcGXiOcJ1D32XZZv/mZq/fIuSyacNc4QiIiIyEpjZBufcMSOxqQdLRKSLWCTRg+UPZHWWZRaVAlCnyYZFRESkH0qwRrHrrrtuTPdeiZyKIwmWL3j0FsGckkSvVWuNEiwRERE5vrRIsEbSbYySPvRzI6ciFklMhRAIHh3komjydABCdXuHIyQRERFJIyM+wcrMzKS2tlYXy3JSnHPU1taSmZnZf2WRLuLJHqyuCVZhSSkR58M17h+usERERCRNjPh5sMrKyti7dy81NRoiWU5OZmYmZWVlwx2GpJn4kR6sjKPPYJnno9Yrwtd6YLjCEhERkTQx6AmWmV0G/DvgA37inDup2YIDgQDl5eWDEpuISE8umkiw/MHuvZ+N/vFkdxwcjpBEREQkjQzqLYJm5gPuBD4InAl80szOHMx9iogMxJEerGCXHiyAtsyJ5EcODUdIIiIikkYG+xmspcB259x7zrkw8CBwxSDvU0Tk1CV7sDJ6PL8XyZlMcbyWeCw+HFGJiIhImhjsBKsU2NNleW+yTERkRHKxMADBHrcIWt5kcixEff3h4QhLRERE0sSwjyJoZl80s/Vmtl4DWYjIsIuGCDk/fr+vW3GwaCoAddW7hiEoERERSReDnWDtA6Z2WS5LlnVyzv3YObfYObe4pKRkkMMREelHLESEwDHFOeMTv8qaa6qGOiIRERFJI4OdYP0ZmGVm5WYWBFYBTw7yPkVETpnFwoTt2AFWCyZNAyBUqwRLRERE+jaow7Q756Jm9lXgKRLDtN/nnHt7MPcpIjIQFgv32oNVNDGRYEU12bCIiIgcx6DPg+Wc+y3w28Hej4hIKnixMFE7NsHyAhnUUoC/pXoYohIREZF0MeyDXIiIjCQW7z3BAmjwjyezXZMNi4iISN+UYImIdOHFw0Qt2Ou61owJjItotFMRERHpmxIsEZEuvOP0YEWyJ1EcO4xzboijEhERkXShBEtEpAtfPEzM670Hy+VNodBaaGhsHOKoREREJF0owRIR6cIXjxDrowfLX5QYSbB2346hDElERETSiBIsEZEu/C5CvI8erKwJpwPQcui9oQxJRERE0ogSLBGRLvwuTNzXe4JVMCWRYIUP7xrCiERERCSdKMESEenCH4/g+kiwiieeRtj5oKFqiKMSERGRdKEES0SkCz8RnC+j93V+PwdtAoHmvUMclYiIiKQLJVgiIl1kuQ5i/uw+19cFJpLbvn8IIxIREZF0ogRLRCTJOUcmYZw/q886rdlTKIocHMKoREREJJ0owRIRSYpEomRYBBfouwcrOm4qxdQTC7UNYWQiIiKSLpRgiYgkdbQ3A2CBvnuwfEfmwtqvubBERETkWEqwRESSQu0tiTfBvnuwsiaUA9Cwf/tQhCQiIiJpRgmWiEhSpL0VADtOglU4eQYAbTW7hiIkERERSTNKsEREkiLJHiwvmNNnnYml04k4H7Ha3UMVloiIiKSRASVYZna7mb1rZm+a2a/MrCBZPt3M2s3s9eTX3SmJVkRkEEU6Ej1Yvoy+e7CyMzM4YOPxNe8ZqrBEREQkjQy0B+sZYJ5zbj6wFfhGl3U7nHNnJb9uGOB+REQGXTR0JMHquwcLoM4/iZw2zYUlIiIixxpQguWce9o5F00uvgKUDTwkEZHhcSTB8mceP8FqyZpCYaR6KEISERGRNJPKZ7BWA7/rslxuZhvN7A9mtrKvjczsi2a23szW19TUpDAcEZGTE00+gxXMGnfcepFxZYx39biw5sISERGR7vpNsMzs92a2qZevK7rU+RYQBe5PFlUDpznnFgL/G/ilmeX11r5z7sfOucXOucUlJSUD/0QiIqcokuzByso+foJlRdMBaDiwc7BDEhERkTTj76+Cc+7i4603s+uAy4GLnHMuuU0ICCXfbzCzHUAFsH6gAYuIDJZYR6IHKzsn97j1skqmA1C/bxuFp80d7LBEREQkjQx0FMHLgL8FPuqca+tSXmJmvuT704FZwHsD2ZeIyGCLh9sByM49fg9WwZRZALQd1K81ERER6a7fHqx+3AFkAM+YGcAryREDzwNuM7MIEAducM7VDXBfIiKDKh5K9GBlZB6/B2ti6XRCzk+sTrcIioiISHcDSrCcczP7KH8MeGwgbYuIDDVfqJEmcsjzjt+5n5+dwS5K8DXtHaLIREREJF2kchRBEZG0Fgg30mzH7706ojYwiZw2JVgiIiLSnRIsEZGkjEgjrd7xn786ojmrlCLNhSUiIiI9KMESEUnKiDbS7s8/obqR3DLyXTOEmgc5KhEREUknSrBERJKyos1EAieWYFnRNACaNZKgiIiIdKEES0QkKdc1E804sQQra8IMAOr3bhvMkERERCTNKMESEQHisRh5rgWXWXhC9QsmJxKstkMaql1ERESOUoIlIgI0N9biM4dln1iCNXFyGW0uQ3NhiYiISDdKsEREgLpD+wEI5pWcUP3i3Az2UoK/ac9ghiUiIiJpRgmWiAjQdDDRE5UzftoJ1Tcz6vyaC0tERES6U4IlIgJ0HK4CIG/S9BPepjmrlMLIAXBukKISERGRdKMES0QEiDUkeqKKJ5ef8DbhcVPJcW3QXj9YYYmIiEiaUYIlIgL4W/ZTSz7BzKwT3sYrTNxO2F6jubBEREQkQQmWiAiQ2VZNvf/EBrg4ImtCorerYf/2wQhJRERE0pASLBERoCRURVP2iQ1wcURB8nmtlpqqQYhIRERE0pESLBEZ81qaG5lMDZGiWSe13aRJZYScn3D9vkGKTERERNKNEiwRGfOqd7wJQHDSnJPabkJeJocogqbqwQhLRERE0tCAEiwz+wcz22dmrye/PtRl3TfMbLuZbTGzSwceqojI4KjbmUiwiqdXntR2nmfU+YoJth0YjLBEREQkDflT0MYPnHP/0rXAzM4EVgFzgSnA782swjkXS8H+RERSKrz3NdrJoGzm/JPetjU4gZLwtkGISkRERNLRYN0ieAXwoHMu5JzbCWwHlg7SvkREBqSg4W32ZszE8wdOettIzkSKYoc12bCIiIgAqUmwvmpmb5rZfWZWmCwrBfZ0qbM3WXYMM/uima03s/U1NTUpCEdE5MTVNrYwM7qD9vEn33sFQN4UMgkTbtFkwyIiInICCZaZ/d7MNvXydQVwFzADOAuoBv71ZANwzv3YObfYObe4pOTk5qARERmo7W/8iSwLkz3r3FPaPliY+N/R4eqdqQxLRERE0lS/z2A55y4+kYbM7B7g18nFfcDULqvLkmUiIiNK67YXAShbcNEpbT+u5DQA6g/sZkrFopTFJSIiIulpoKMITu6y+HFgU/L9k8AqM8sws3JgFvDqQPYlIjIY8g6+yl5fGZmFk/uv3IvCidMBaDs8diYbjscdTs+ciYiI9Gqgowh+z8zOAhywC/hLAOfc22b2MPAOEAW+ohEERWSk6QiFqQhtYseEiyk7xTaKJyd6sOKN+1MX2DBy8ThVVTs5tG0DoX1v4qvfQVb7QfIih8iPNxEkTJAo7QRptWyafUXUZZ2GV1JB3qwVlJ91PlnZOcP9MURERIbNgBIs59xnjrPun4B/Gkj7IiKDafvbrzLP2vCXrzjlNjKzsqlnHF5Lek42HI1EeG/TOmrfeZ7MfS9zWtsmptHItOT6WgqoD0ygJXc6dRnF4M8EXwAv2o6Fm8lsP8Ss1tcoaXkGdt5J6KkAbwXPoGnyORTPv4xZZ52Hz5+KGUGOzzlHU0eUuoZGmg/vI9Kwj3jzIWLhNmLRKJ6L4MWjYEbMC4IXxJ+RSSCYSSArl2B2Hpk5eWTn5pE7roDM7DzwBwc9bhERGX0G/6+eiMgIVf/OHwAoW3BCj5r2qc4bT7DtYCpCGhKHD1Tx3v/8Cv/2p5nZ+hoV1gbAfpvIe/nL2T3lLArKz2by7MUU54+n+ATarK89RNXGZwnveJGimleZu/vHeFX/SdOvc9iRu4j46RcwbcnljJ9acdLxOudoam7icPVuGg5W0Vq7n3DDfmg+QKDtENnhGgpitUygnvLkZ0mFCH7ayCLkZRL2soj4son6s4kHcoj5s4n6son4soj6c3BeEI8o5uK4WDTxFY9CPAbxCMQiWDyCF49g8SMJXwTPRfHFI/hcFM9F8bsIPmL4XIQAUXwulnglTgwPhxHHiOMRN494siyxLlHmMBwezrzk69FlsER55zoPzDrb6ck4eiuo6yzrPDD9fg+7bn/UsWWG67W5YyPqe/tjq51gvT70rOt62971/j062X2dlF6ajXgZFH/2Z0yaOmNw9ikiJ0UJloiMWZnVr3DQSphYOnNA7TRnTGBceOROM+Gc473NG6hZ9whF+56jIrqV8cBBitlSfBG+01cydeHFTCmdwZRT3Edh8QQKL/4kXPxJABpqqtn+6m+IbXuWaQ3rmPTmi/DmrRymgIPBabSNm048uxiXWUAgEIR4nFgsioWb8drrsPY6gqE6xkVqKYzXkW9t5PfYZwQ/Db4iWjPGE8qcxd6ciezNnYg/fzL+gin48yaRmZ2LP5DosXI+P7g4FgsTi3QQ6mgn1N5OqL2FSHsTkfYWou1NRDtaiIdaINSCRVrxIq34om34o20Ew21kxGvJoZ1sOsghRLaFusflfMTwiOEjZh4x/ETxEzU/MUu8j3t+YhYgbn5ivgAxL4uIF6DdAjifH+cFcF4AfAHiFiBuHubiifg7X2OYc+BiQByLJ8qcS6RcOAc9t8Fh8RjgkmWJNnyJlK3XJKu3NMf1uaq3uifWZl+lvW3vrGeZHbu19RVPj2p2cnF2q2d91+u+r97Xn4het+zy+c3FqOzYwLo/PcSkVd885f2ISOoowRKRMcnF40xvfYs9+YuYOMC2QpkTOa19c0riSqUDVdt47/mfM2H3/2NmfCczgK3+Cl6edgMTFn2M0+ctY6I3OPPNF5RMZvGHPw98nngsztZ3N3L4jbUEDm1iXMt7zDj8HPm04LPul7txZzSSS5OXR7s/n7qc0zmUvRyXO4mMwinkjC+jcMJUCidOI5BTRIkZwznBh3OOaDRKPBYhbn4wj6DfR8A79QtqkZPhnKP61lkE97483KGISJISLBEZk3a/t4Xp1FNVtmzAbcVyJ1FU30Q01I4/IysF0Z265qYG3v39z8h992HmhDcxCdgaOIP1s/+O6Ss/RcWUaf22kWqez6Ni7iIq5nYfxj4ajdLY3EBbRwjP85MZDJCRnUNBMEjhMT0UI5OZ4Q8EIBAY7lBkjDIzqvLOpqLpZVw8hnm+4Q5JZMxTgiUiY1L1pheZDpScuXLAbXn5pbAH6g5WMeG02QNu71Ts2byOfb+/i7mH17LE2tltZfzPtC8x7f2fo+L0OcMSU3/8fj/5heOPufVPRE5O9LQVFG56ir3bXqdstubjExluSrBEZExye16hjQzKZi8ecFuZxaUANAxxguWiYba/8F94f/5PZoTeZYILsKnwQnJXfIGKRRcxbZBu/xORkWX62ZfCpluo2rBWCZbICKAES0TGpJL6N9iZMYe5/oHf2pUzPjEX1lBNNhxpa+Td397JxHfuY1a8hp1M4YXym6j80A0sKpk0JDGIyMhRWj6bPV4p+bueAr413OGIjHlKsERkzGluaqA8tpMNpdelpL2iSYnnmiL1+1LSXl+aD+9h+5P/yoyqh6mklTd8c3ln0bdZfukqyoN6BkhkzDJj9+QPcs7ee2k8VEX+hNOGOyKRMU0J1nFsf+NP1Lz2JHmzzmXGwveTmZM33CGJSArsevMlKi1O9unnpKS9wqIJdLgArnlwJhuu3raRA2v/hbmH1zKfGH/OOhffyq+x6H2X4Gm0OhEBJr7vk3iP/oStz/2CJavUiyUynJRgHUftu39k2a7/xNt9N9FnPLb7p1OfM5PY+NlkTZlD7pTZjJ9STl5eITZSnnVwjlg0QiQSIhIOEY2EiYVDRKKJ11g0TCwSJhoNE4+GiEcjxCIh4vE4OIdz8cTEHS6eeA/JOVXiEI8nVrlkXRzE48kJIh3gkm2k4oP0c9HY7zXlAC86BzqC2Qlsbv1U6n1OlpMIYYCfYaD7H/jm1stcN6nhtjwFwLQF709Je57Po8YbT6D1QEraA8A5tr26lo4X/43K1lcocEHWFV7OxEv/N8vnLEjdfkRkVJg1bzE7flVO8bZHcPFvjJzrkiHkYhHaW5tpb22mo72FSDhxzROPhpKvYeKxMPFICBeL4KJhXCxCPB4nFo9BPHktk7yeOTJfnMNh7sj1UOKa6MilTtdrnmP+blrPP4XW/dV6XAlY91rOrMe1Qs/2rfuaHn8zj70OsG5VusabqNvbXHJdrld6nX+u9/Z6C7f/+n23H8ocz7SzL2FKwfCO1HuilGAdx7Jrv05j3efZ+fpztO34H/Jq32Ra03omND0N7x2t1+YyqPcKafXlEfblEPVnE/HnEPOywPPA84PnA8+Hw0tM/BiP4sWjyUkeE+8tHoMj710UXzzS+eq5KH4XTb5G8BHrfA2QWOcnStBi+AAfkDlc3ziRNLDdN4OZRRNS1l6jfzxZHQcH3E4sGuGtZ35Bzoa7mBXdSh3jeLH0C1R85EZWTipLQaQiMlodOnM173vrZt558THOPP8Twx3OSWtraaTh8AFaGw7R3niYUHMt0ZZa4m31WHsdgXAjGZFG/LE2ArF2MuLtBF0Hma6dLBciwyJkA9nD/UEk5V6ILeC18YvTJsEyl5ruhpRYvHixW79+/XCH0a/G+lqqd7xB+8HthOv3E2+qJth+iGCkiUCslWCsjax4GxmE8YjjEcPn4njE8REnlighZh5R/MTwJWqZjxj+xKsFiJuPqAWIm5+4l3y1AHGfH2cBnOcn7gXB58d5AfAC4Esu+4J4vgD4EmWeL4j5A5g/Ue75g4mvQBCfP4h5Hp55if+mdL4m/pthZmA+zMA8DzvyHxXPS6z3jtTzkrcrDey/ZsbxfyZdP+sH3oU2wF64E9i4vxr9fQ/6D2GA34N+th/4J+x/9wP9HvSnaHI5uflFKWtv3Q9WMbPxZYr/Yfcpbd/WXM+mX/+IqVt/ymRXwx6bTNXs1Sy4/Evk5o5LWZwiMnp1dHRQ9515tASKmPn1l/F8I2NOrFgsTs2BKur3bqHt0E7CDdXQfJBA+0EyQ4fJi9RSGK9jnLX32UYbGTQxjlYvlw4vh4gvi6gvi5g/m3ggGxfIgUA2BHPxMrLxBbPwAhl4/iDmC2L+5PXOkesffxBf8hrI53n4/f7kNYwle5YMZ97RaxwS10Z0q9OV69Hb5Lpfr8SP/Zt25E+t6+wx6/LX07kuvWTu6Jpeus5cl+UjW7ke64/0wHWNrnscXfZBL9cRyTuUjnYyHbv+uI5Z3335mL/5PerHA9mML5tJXubIet7YzDY4544Zjlg9WKcgv7CY/MUXAhcOdygiMkJEis+guPF3tNRVk1s0+YS327drG7uf+nfmVT/GUtp4JzCX/Yu+zYKLVjFVk9eKyEnIzMxk7/yvsfTNm1n/8D+z+JM3D8l+nXPUNbexv2o79Xu3Ej60DV/jbnJaqigK72NK/ACTLETXMU7bXZA6r5Am/3gO58ykOnsC8ZyJ+MZNJDCumMy88WTnjye3sIT8ghKyM7LUMyVpQwmWiEgKZJVVwnuJASlmLTt+ghWPRnn7j78i9uq9VLa9wiTgjXHnkf3+v+bMJRcNTcAiMiot+dhXWb/td8x/9wdser6CeRdcm7K2G5ua2b/7XRr2biV0aBte/S5yWqsojuxnijtEpcU664YIcMg3icbsMt4Z9z5cUTkZJTPInzyD4snTyc0rpNSM0pRFJzJyKMESEUmBSbPOhhehYfursOxDvdap2vYWe/7wc07f+ysqqeEwBayf+jlO/8CXOXsIJygWkdHLPI+Kz/+MXT/6IGe8cAPrdrxCxZXforBofP8bO0dTfQ0Hdm+hYf82Iod24DXuJLd1D+Mj+5jo6phjR2/daiWLmkApLfmzeafgMjJKZpBXNpuSqWeQUVjGVM9j6iB+VpGRSs9giYikyPbbzsL5M5n1zVc6y/bv3squlx5m/M4nqIhuBeDtjIW0LfgsCy76C4IZGo5GRFKvqameLfd8niXNvyfkAmzLnEdr/iziuZMwfxCLhrBQI669gYz2Q+SHD1ASO0gu3Z+DqiOfw8EptGSfRrxwOhklMygonU3JtDlk5k8Y+Ki7Immsr2ewBpRgmdlDwJF/uxYADc65s8xsOrAZ2JJc94pz7ob+2lOCJSLp7MU1N3Perv9gw4SriMZhYt2fmR6vAhKjFtZM/wgzL/wsJaUzhjlSERkrdr71J2peWkPh4Q1Mie4lx0Kd60LOT4vl0OQrpCE4mbbsUqzwNLJKyikqq2DitDPIzC0YvuBFRrhBSbB67OBfgUbn3G3JBOvXzrl5J9OGEiwRSWdt7W28/cNrWNL2R1pdBjszz6R56gVMW/5xpsycP9zhicgYF4/FCXW0Eg61E8jMJjMzR5OViwzAoI4iaInxvK9Bw+qJyBiWnZXNkr/9NR3trWQFs5jnG3sTfYrIyOX5PLJyxpGVo6kfRAZTqv76rwQOOue2dSkrN7ONZvYHM1vZ14Zm9kUzW29m62tqalIUjojI8MnMysFTciUiIjIm9duDZWa/h25TFxzxLefcE8n3nwQe6LKuGjjNOVdrZouAx81srnOuqWcjzrkfAz+GxC2CJ/sBRERERERERop+Eyzn3MXHW29mfuBKYFGXbUJAKPl+g5ntACoAPWAlIiIiIiKjViruYbkYeNc5t/dIgZmVmJkv+f50YBbwXgr2JSIiIiIiMmKlYpCLVXS/PRDgPOA2M4sAceAG51xdfw1t2LDhsJntTkFMqTQeODzcQciQ0fEeO3Ssxw4d67FFx3vs0LEeW0bi8Z7WW+GImmh4JDKz9b0Nvyijk4732KFjPXboWI8tOt5jh4712JJOx1vDXImIiIiIiKSIEiwREREREZEUUYLVvx8PdwAypHS8xw4d67FDx3ps0fEeO3Ssx5a0Od56BktERERERCRF1IMlIiIiIiKSIkqwREREREREUkQJ1nGY2WVmtsXMtpvZ14c7HkkdM5tqZs+b2Ttm9raZ/XWyvMjMnjGzbcnXwuGOVVLDzHxmttHMfp1cLjezdcnz+yEzCw53jJIaZlZgZo+a2btmttnM3qdze3Qys5uSv8M3mdkDZpapc3v0MLP7zOyQmW3qUtbruWwJ/5E87m+a2dnDF7mcrD6O9e3J3+NvmtmvzKygy7pvJI/1FjO7dFiCPg4lWH0wMx9wJ/BB4Ezgk2Z25vBGJSkUBf6Pc+5MYDnwleTx/TrwrHNuFvBscllGh78GNndZ/i7wA+fcTKAe+F/DEpUMhn8H1jrnzgAWkDjuOrdHGTMrBb4GLHbOzQN8wCp0bo8ma4DLepT1dS5/EJiV/PoicNcQxSipsYZjj/UzwDzn3HxgK/ANgOT12ipgbnKbHyWv20cMJVh9Wwpsd86955wLAw8CVwxzTJIizrlq59xryffNJC7ASkkc458lq/0M+NiwBCgpZWZlwIeBnySXDbgQeDRZRcd6lDCzfOA84F4A51zYOdeAzu3Ryg9kmZkfyAaq0bk9ajjnXgTqehT3dS5fAfzcJbwCFJjZ5CEJVAast2PtnHvaORdNLr4ClCXfXwE86JwLOed2AttJXLePGEqw+lYK7OmyvDdZJqOMmU0HFgLrgInOuerkqgPAxOGKS1Lq34C/BeLJ5WKgocsvbp3fo0c5UAP8NHlL6E/MLAed26OOc24f8C9AFYnEqhHYgM7t0a6vc1nXbaPbauB3yfcj/lgrwZIxzcxygceAG51zTV3XucQcBprHIM2Z2eXAIefchuGORYaEHzgbuMs5txBopcftgDq3R4fkszdXkEiqpwA5HHuLkYxiOpfHBjP7FolHO+4f7lhOlBKsvu0DpnZZLkuWyShhZgESydX9zrn/ThYfPHJLQfL10HDFJymzAviome0icavvhSSe0SlI3lYEOr9Hk73AXufcuuTyoyQSLp3bo8/FwE7nXI1zLgL8N4nzXef26NbXuazrtlHIzK4DLgc+5Y5O3jvij7USrL79GZiVHI0oSOJhuieHOSZJkeQzOPcCm51z3++y6kngc8n3nwOeGOrYJLWcc99wzpU556aTOI+fc859CngeuDpZTcd6lHDOHQD2mNnsZNFFwDvo3B6NqoDlZpad/J1+5Fjr3B7d+jqXnwQ+mxxNcDnQ2OVWQklDZnYZidv7P+qca+uy6klglZllmFk5iYFNXh2OGPtiR5NB6cnMPkTi2Q0fcJ9z7p+GNyJJFTM7F/gj8BZHn8v5JonnsB4GTgN2A9c453o+YCtpyszOB/6vc+5yMzudRI9WEbAR+LRzLjSM4UmKmNlZJAY0CQLvAdeT+Ieizu1RxsxuBa4lcfvQRuDzJJ7F0Lk9CpjZA8D5wHjgIPBt4HF6OZeTSfYdJG4TbQOud86tH4aw5RT0cay/AWQAtclqrzjnbkjW/xaJ57KiJB7z+F3PNoeTEiwREREREZEU0S2CIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIr8f6U0C+B1b5eFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
21False70.08470.0447bAP.soma.v0.0006675.26e-06
22False70.08470.0447Step1.soma.v0.0009794.98e-05
23False70.08470.0447Step3.soma.v0.001030.000144
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "21 False 7 0.0847 0.0447 bAP.soma.v \n", + "22 False 7 0.0847 0.0447 Step1.soma.v \n", + "23 False 7 0.0847 0.0447 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "21 0.000667 5.26e-06 \n", + "22 0.000979 4.98e-05 \n", + "23 0.00103 0.000144 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj30lEQVR4nOzdeXxU1f3/8ddnJitJSCBhDxBEQLaICogV3Noq1gWtVrTu1lrtptaldrPUX+23X+u3tmpbuti6FrHua60bKlbUgIgILoBhX0JCyL7MzPn9cW/iELJhJkyW9/PhmLnnnnvu587NhPnMOfdcc84hIiIiIiIiHReIdwAiIiIiIiI9hRIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiJdjJnlmZkzs4R4xyK9g5l9YGbHxDsOEZGeQAmWiIh0e2Y238wq/EedmdVHLT8X7/i6OufcROfcoli26SdtFVGPkJk9Fct9iIh0RaYbDYuIxJaZJTjnQh3YPg/4FEjsSDu9lZnNAw50zp3XzLoOnZv9qTvF2hYzM2Ad8HPn3L3xjkdEpDOpB0tEJAbMrNDMfmhmK4BKM0swsxlm9l8zKzWz96KHYJnZIjP7HzN728zKzOwJM+vfQtsXm9lqMys3s3Vm9q0m6+eY2XK/nbVmNtsvzzSzu8xsq5ltNrNfmlmwjeMYbWYvm1mxme00swfMLCtqXYmZHeovDzWzoobjMrNT/V6LUv/4xjd5fa41sxVmttvMFppZyr6/0vuuhXPjzOzAqDp3m9kvo5ZP9l/TUv8c5rdzX8eY2SYz+7H/+hWa2blR608ys3f9c7XRTwYb1jUMDf2GmW0AXvbL/2Vm2/zX7TUzm9gk7j+a2XN+L9EbZjbYzH5nZrvM7EMzO6Sdr9GX2nOMn9NRQA7wSCfuQ0SkS1CCJSISO+cAJwFZwCDgGeCXQH/gWuARMxsQVf8C4BJgCBACbm+h3R3AyUBf4GLgtqgkZzpwL3Cdv9+jgEJ/u7v9dg8EDgGOBy5t4xgM+B9gKDAeGA7MA3DOrQV+CNxvZn2AfwD3OOcWmdlYYAFwFTAAeBZ4ysySoto+C5gNjALygYuaDcBspp/YtPSY2cYxNKfx3LTVK+QnJH8HvgVkA38GnjSz5HbuazBeMjEMuBD4i5mN89dV4p33LD+eK8zstCbbH4332p/gLz8HjAEGAsuAB5rUPwv4qb/PWuBNv14O8DDw23bG3Swzu6G189HOZi4EHnHOVXYkFhGR7kAJlohI7NzunNvonKsGzgOedc4965yLOOdeAAqAr0TVv885t9L/0Pkz4Kzmepicc88459Y6z6vAf4BZ/upvAH93zr3g72ezc+5DMxvk7+sq51ylc24HcBtwdmsH4Jxb47dV65wrwvtwfnTU+r8Ca4C38BLDn/ir5gLP+NvWA7cCqcAXmrw+W5xzJcBTwJQWYljsnMtq5bG4tWNoQfS5actlwJ+dc28558LOuXvwEpcZ+7C/n/mv4at4ifZZAM65Rc659/1ztQIvKT26ybbz/HNW7W/zd+dcuXOuFi/ZPdjMMqPqP+acW+qcqwEeA2qcc/c658LAQrzk+nNzzv26tfPR1vZ+Mn4mXsIvItLjKcESEYmdjVHPRwJfa/JN/0y8pKS5+uuBRLxehz2Y2YlmtsQfnleKlzg11BsOrG0mlpF+e1uj9v9nvF6QFpnZIDN70B9SWAbc30xMfwUmAXf4H/rB6/Fa31DBORfxj29Y1Hbbop5XAemtxRJjG9uu0mgkcE2Tczcc7xjbY1eTnpr1Ddua2eFm9oo/tHI3cDl7v76NsZpZ0Mx+bd7QzzI+652M3mZ71PPqZpb35+vcnK8CJcCrcY5DRGS/UIIlIhI70bMGbcTroYr+tj/NOffrqDrDo56PAOqBndEN+sPSHsHrERrk9xg8izeUr2E/o5uJZSNer0tO1P77OucmNlM32q/845jsnOuL1xPXsC/MLB34HXAXMM8+u25sC15i0lDP/OPb3Mb+9mJms2zP2eeaPma13cpems7oVAX0iVoeHPV8I3Bzk3PXxzm3oJ376mdmaVHLI/BeH4B/Ak8Cw51zmcB8ol7fZmL9OjAH+BKQCeT55U236TT+9WQtno92NHEhcK/TrFoi0ksowRIR6Rz3A6eY2Ql+L0SKPwFCblSd88xsgj+E6ibgYX9YV7QkIBkoAkJmdiLetVQN7gIuNrMvmlnAzIaZ2UHOua14Qwn/z8z6+utGm1nT4WhNZQAVwG4zG4Z3bVe03wMFzrlL8Ya+zffLHwJO8uNIBK7BS/D+29YL1ZRz7nXnXHorj9f3tc1mLAe+7p+b2ew5TO+vwOV+b5OZWZp5k1NkQOPEEne30f4vzCzJTwZPBv7ll2cAJc65Gv/6ua+30U4G3utYjJcQ/mofjjEmnHO/au18tLat//t+LHDP/olWRCT+lGCJiHQC59xGvJ6HH+MlRxvxkpXov7v34V2Xsg1IAb7fTDvlfvlDwC68D+RPRq1/G3/iC2A33jCshp6kC/AStFX+tg+z5xDF5vwCONRv6xng0YYVZjYHb5KKK/yiHwCHmtm5zrmP8Hq77sDrhTsFOMU5V9fG/uLlSrwYS4FzgccbVjjnCoBvAnfivW5r2HNCjuHAG620vc3fbgvehBSXO+c+9Nd9G7jJzMqBG/HOa2vuxRtiuBnvPC5p68C6mPOBN/0JUkREegXdB0tEJA7MbBFwv3Pub/GORdrPnxXxPSDfn8yj6fpj8M5rbtN1IiLSOyTEOwAREZHuwu+RG99mRRER6bU0RFBEpJcxs/ktTFgwv+2tpTsysxGtTFQxIt7xiYj0JBoiKCIiIiIiEiPqwRIREREREYmRLnUNVk5OjsvLy4t3GCIiIiIiIq1aunTpTufcgKblXSrBysvLo6CgIN5hiIiIiIiItMrM1jdXriGCIiIiIiIiMaIES0REREREJEaUYImIiIiIiMRIl7oGqzn19fVs2rSJmpqaeIciXUBKSgq5ubkkJibGOxTpwV589l9s/vRDzr38JyQE9T2UiIiItF+XT7A2bdpERkYGeXl5mFm8w5E4cs5RXFzMpk2bGDVqVLzDkR7sS29fCsDbH53L9AkHxDkaERER6U66/FezNTU1ZGdnK7kSzIzs7Gz1ZkqnqqkLNT7fvfzx+AUiIiIi3VKXT7AAJVfSSL8L0tlKt3zS+Dxpx4o4RiIiIiLdUbdIsERE9peqbZ8lWH0rPo1jJCIiItIdKcFqBzPjmmuuaVy+9dZbmTdvXvwCinLMMce0enPm0047jRkzZuxRNm/ePIYNG8aUKVOYNGkSTz75ZGeHKdJtVFbsBmBd8AAG12/EORfniERERKQ7UYLVDsnJyTz66KPs3Lkzpu0654hEIjFtM1ppaSlLly5l9+7drFu3bo91V199NcuXL+df//oXl1xySafGIdKd1FaWAbC730SGWDE7dpbEOSIRERHpTpRgtUNCQgKXXXYZt912217rioqKOOOMM5g2bRrTpk3jjTfeALxeoltvvbWx3qRJkygsLKSwsJBx48ZxwQUXMGnSJDZu3Mh1113HpEmTmDx5MgsXLgRg0aJFHHPMMZx55pkcdNBBnHvuuS1+k37fffc19ka9/fbbjeWPPvoop5xyCmeffTYPPvhgs9uOHz+ehISEPZLHG264gQkTJpCfn8+1114LQGFhIccddxz5+fl88YtfZMOGDQBcdNFFXHHFFcyYMYMDDjiARYsWcckllzB+/HguuuiixjavuOIKpk6dysSJE/n5z3++Vxy7d+9m5MiRjYleZWUlw4cPp76+vtm4RTpLuLbCezJoIgA7N3/SSm0RERGRPXX5adqj/eKpD1i1pSymbU4Y2pefnzKxzXrf+c53yM/P5/rrr9+j/Morr+Tqq69m5syZbNiwgRNOOIHVq1e32tYnn3zCPffcw4wZM3jkkUdYvnw57733Hjt37mTatGkcddRRALz77rt88MEHDB06lCOPPJI33niDmTNn7tVeVVUVy5cv57XXXuOSSy5h5cqVACxYsIAbb7yRQYMGccYZZ/DjH/94r23feustAoEAAwYMAKC4uJjHHnuMDz/8EDOjtLQUgO9973tceOGFXHjhhfz973/n+9//Po8//jgAu3bt4s033+TJJ5/k1FNP5Y033uBvf/sb06ZNY/ny5UyZMoWbb76Z/v37Ew6H+eIXv8iKFSvIz89vjCMzM5MpU6bw6quvcuyxx/L0009zwgkn6H5Xst9ZXSUAfYZNhA+gfMd6YEbrG4mIiIj4OtyDZWbDzewVM1tlZh+Y2ZV++Twz22xmy/3HVzoebvz07duXCy64gNtvv32P8hdffJHvfve7TJkyhVNPPZWysjIqKipabWvkyJGN10UtXryYc845h2AwyKBBgzj66KN55513AJg+fTq5ubkEAgGmTJlCYWFhs+2dc845ABx11FGUlZVRWlrK9u3b+eSTT5g5cyZjx44lMTGxMfECuO2225gyZQrXXnstCxcubJydLzMzk5SUFL7xjW/w6KOP0qdPHwDefPNNvv71rwNw/vnns3jx4sa2TjnlFMyMyZMnM2jQICZPnkwgEGDixImNMT/00EMceuihHHLIIXzwwQesWrVqr+OYO3duYw/egw8+yNy5c1t9HUU6g9VVEnHGwDzvi5e64vVxjkhERES6k1j0YIWAa5xzy8wsA1hqZi/4625zzt3ayrb7pD09TZ3pqquu4tBDD+Xiiy9uLItEIixZsoSUlJQ96iYkJOxxXVP0vZvS0tLatb/k5OTG58FgkFAo1Gy9plOXmxkPPfQQu3btarwhb1lZGQsWLODmm28GvGuwGob/NY377bff5qWXXuLhhx/mzjvv5OWXX25XnIFAYI+YA4EAoVCITz/9lFtvvZV33nmHfv36cdFFFzV7L6tTTz2VH//4x5SUlLB06VKOO+64Vvcr0hkC9ZVUkkLWoBGECOBKN8U7JBEREelGOtyD5Zzb6pxb5j8vB1YDwzrablfUv39/zjrrLO66667GsuOPP5477rijcXn58uUA5OXlsWzZMgCWLVvGp582P93zrFmzWLhwIeFwmKKiIl577TWmT5++T3E19PosXryYzMxMMjMzWbBgAf/+978br/taunRpi9dhRauoqGD37t185Stf4bbbbuO9994D4Atf+ELj9g888ACzZs1qd3xlZWWkpaWRmZnJ9u3bee6555qtl56ezrRp07jyyis5+eSTCQaD7d6HSKwEQlVUk4IFEymx/iRWbol3SCIiItKNxHSSCzPLAw4B3vKLvmtmK8zs72bWr4VtLjOzAjMrKCoqimU4neKaa67ZY0KI22+/nYKCAvLz85kwYQLz588H4IwzzqCkpISJEydy5513Mnbs2GbbO/3008nPz+fggw/muOOO45ZbbmHw4MH7FFNKSgqHHHIIl19+OXfddReFhYWsX79+j+nZR40aRWZmJm+99VazbXzlK19hy5YtlJeXc/LJJ5Ofn8/MmTP57W9/C8Add9zBP/7xD/Lz87nvvvv4/e9/3+74Dj74YA455BAOOuggvv71r3PkkUc2rrvxxhv3mCZ+7ty53H///RoeKHETDFVRbV6P9O6kQaTXbItzRCIiItKdWKzu8WJm6cCrwM3OuUfNbBCwE3DA/wOGOOcuaa2NqVOnuqb3dFq9ejXjx4+PSYzSM+h3QjrTqv/7CoHyLRw0bzkrfvdVskpXMmLex/EOS0RERLoYM1vqnJvatDwmPVhmlgg8AjzgnHsUwDm33TkXds5FgL8C+zbuTUQkDhLCVdQGUgEIZeQyyBVTVVsX56hERESku4jFLIIG3AWsds79Nqp8SFS104GVTbcVEelqkqISrGBWLskWYvtWTXQhIiIi7ROLWQSPBM4H3jez5X7Zj4FzzGwK3hDBQuBbMdiXiEinSopUUxvw7guXkjMSgLJthZB3QByjEhERke6iwwmWc24xYM2serajbYuI7G+JkRpCid4kFxmDvASrqqgwjhGJiIhIdxLTWQRFRLq7RFdHOOjdz63/YO8+cvWlm+MZkoiIiHQjSrBERKIkuHpcwEuwUjIHUkcClOleWCIiItI+SrDa6fHHH8fM+PDDD1usU1hYyKRJk2K2z4suuoiHH364xfVXXXUVw4YNIxKJNJbdfffdDBgwgClTpjBhwgT++te/xiwekd4gydXhEpK8BTOKAzkkVW2Nb1AiIiLSbSjBaqcFCxYwc+ZMFixY0Oz6UCjU4X2Ew+F2141EIjz22GMMHz6cV199dY91c+fOZfny5SxatIgf//jHbN++vcOxifQKzpFEPc4fIghQnjiAtNqufxN0ERER6RqUYLVDRUUFixcv5q677uLBBx9sLF+0aBGzZs3i1FNPZcKECYCXaJ177rmMHz+eM888k6qqKgBeeuklDjnkECZPnswll1xCbW0tAHl5efzwhz/k0EMP5V//+tde+37xxReZOnUqY8eO5emnn95j3xMnTuSKK65oMekbOHAgo0ePZv369Y1lt99+OxMmTCA/P5+zzz4bgJKSEk477TTy8/OZMWMGK1asAGDevHlceOGFzJo1i5EjR/Loo49y/fXXM3nyZGbPnk19fT0AN910E9OmTWPSpElcdtllNL15dSQSIS8vj9LS0sayMWPGKPGTrifs/U67YFJjUXXqILJCSrBERESkfWIxTfv+89wNsO392LY5eDKc+OtWqzzxxBPMnj2bsWPHkp2dzdKlSznssMMAWLZsGStXrmTUqFEUFhby0Ucfcdddd3HkkUdyySWX8Mc//pHvfve7XHTRRbz00kuMHTuWCy64gD/96U9cddVVAGRnZ7Ns2bJm911YWMjbb7/N2rVrOfbYY1mzZg0pKSksWLCAc845hzlz5vDjH/+Y+vp6EhMT99h23bp1rFu3jgMPPLCx7Ne//jWffvopycnJjQnPz3/+cw455BAef/xxXn75ZS644AKWL18OwNq1a3nllVdYtWoVRxxxBI888gi33HILp59+Os888wynnXYa3/3ud7nxxhsBOP/883n66ac55ZRTGvcZCASYM2cOjz32GBdffDFvvfUWI0eOZNCgQe0+TSL7RagGAEv4rAcrnD6EgbtepaYuREpS9/qTKSIiIvuferDaYcGCBY29PWefffYePUbTp09n1KhRjcvDhw/nyCOPBOC8885j8eLFfPTRR4waNYqxY8cCcOGFF/Laa681bjN37twW933WWWcRCAQYM2YMBxxwAB9++CF1dXU8++yznHbaafTt25fDDz+c559/vnGbhQsXMmXKFM455xz+/Oc/079//8Z1+fn5nHvuudx///0kJHgfFhcvXsz5558PwHHHHUdxcTFlZWUAnHjiiSQmJjJ58mTC4TCzZ88GYPLkyRQWFgLwyiuvcPjhhzN58mRefvllPvjgg72OY+7cuSxcuBCABx98sNVjFombcJ33MyGlsSiQOYxkq6dohya6EBERkbZ1r69j2+hp6gwlJSW8/PLLvP/++5gZ4XAYM+M3v/kNAGlpaXvUN7NWl5vTtI222nv++ecpLS1l8uTJAFRVVZGamsrJJ58MeMnMnXfe2Wx7zzzzDK+99hpPPfUUN998M++/33qPYHKy901+IBAgMTGxMZ5AIEAoFKKmpoZvf/vbFBQUMHz4cObNm0dNTc1e7RxxxBGsWbOGoqIiHn/8cX7605+2ul+ReHChGgywhM+GCKZkDwegZOt6hueOiFNkIiIi0l2oB6sNDz/8MOeffz7r16+nsLCQjRs3MmrUKF5//fVm62/YsIE333wTgH/+85/MnDmTcePGUVhYyJo1awC47777OProo9u1/3/9619EIhHWrl3LunXrGDduHAsWLOBvf/sbhYWFFBYW8umnn/LCCy80Xu/VkkgkwsaNGzn22GP53//9X3bv3k1FRQWzZs3igQceALxru3Jycujbt2+74mtIpnJycqioqGhx1kMz4/TTT+cHP/gB48ePJzs7u13ti+xPdTXVAFjiZz1Y6QO8pKpy54a4xCQiIiLdixKsNixYsIDTTz99j7IzzjijxYklxo0bxx/+8AfGjx/Prl27uOKKK0hJSeEf//gHX/va15g8eTKBQIDLL7+8XfsfMWIE06dP58QTT2T+/PlEIhH+/e9/c9JJJzXWSUtLY+bMmTz11FPNtnHppZdSUFBAOBzmvPPOY/LkyRxyyCF8//vfJysri3nz5rF06VLy8/O54YYbuOeee9r56kBWVhbf/OY3mTRpEieccALTpk1rXDd//nzmz5/fuDx37lzuv/9+DQ+ULquu1vvCIBA1RLD/4JHeul2b4hKTiIiIdC/WdMa3eJo6daorKCjYo2z16tWMHz8+ThFJV6TfCeksJWveov/9x7Po0N9zzKkXeYXhEOH/l8Prgy7gmCtuj2t8IiIi0nWY2VLn3NSm5erBEhHx1TfTg0UwgRLrT0KlbisgIiIibVOCJSLiC9V512AFk1P2KC9LHEBarRIsERERaVu3SLC60jBGiS/9LkhnaujBSkjcM8GqThlE33rdbFhERETa1uUTrJSUFIqLi/XBWnDOUVxcTEpKStuVRT6HUJ2fYCXt+TtWnzaYAa6YulAkHmGJiIhIN9Lp98Eys9nA74Eg8Dfn3D7dzCo3N5dNmzZRVKRvj8VLuHNzc+MdhvRQ4YYhgkmpe5QHMofSd2s1m3buJHfwwHiEJiIiIt1EpyZYZhYE/gB8GdgEvGNmTzrnVrW3jcTEREaNGtVZIYqINArXez1YScl7JlhJ/b2bDe/atl4JloiIiLSqs4cITgfWOOfWOefqgAeBOZ28TxGRzyVSVwtAYnLyHuUNNxsuL1q/32MSERGR7qWzE6xhwMao5U1+WSMzu8zMCsysQMMARSSeIn4PVmKTHqws/2bDtSW62bCIiIi0Lu6TXDjn/uKcm+qcmzpgwIB4hyMivVgk5PVgJSf32aM8PccbIuh2b97vMYmIiEj30tkJ1mZgeNRyrl8mItLlOD/BSmpyHyxLTKXU+pJQsTUeYYmIiEg30tkJ1jvAGDMbZWZJwNnAk528TxGRz6e+mpALkNzMrQB2J+SQUrMjDkGJiIhId9Kpswg650Jm9l3gebxp2v/unPugM/cpIvK5hWqoIYmUhL2/e6pMHkRm5bY4BCUiIiLdSaffB8s59yzwbGfvR0Skw+prqCWJ9ODeCVZd+jDyylcQCkdIaGa9iIiICHSBSS5ERLoKC3sJVnMimcPJskp2Fmu2UxEREWmZEiwREV8gVEO9NZ9gJWbnAbBry9r9GJGIiIh0N0qwRER8gXANdS0kWGkDRwFQuf3T/RmSiIiIdDNKsEREfMFILfWB5GbX9R96IAB1xYX7MSIRERHpbpRgiYj4guFa6q35BCszZwjVLglKN+7nqERERKQ7UYIlIuJLiNQSDjafYFkgQFFwIEkVm/ZzVCIiItKdKMESEfElRGoJtTBEEKAseQh9a7fux4hERESku1GCJSLiS3S1hIMpLa6vSRtGTmg7zrn9GJWIiIh0J0qwRER8Sa6OSCsJFlkj6G/lFO/atf+CEhERkW5FCZaIiC/J1RJp4RosgOScPACKNq7ZTxGJiIhId6MES0TEl0wdJKS2uL7v4NEA7N6mmw2LiIhI85RgiYgARMIkEcIltjxEcECul2DVFulmwyIiItI8JVgiIoCrr/aetNKD1af/MOpIgN26F5aIiIg0TwmWiAhQW1MFgLXSg4V/L6wU3QtLREREWqAES0QEqKmqBMASW+7BAtidPIzM2s37IyQRERHphpRgiYgA9dW7vScpGa3Wq8kYwZDwNsIR3QtLRERE9tahBMvMfmNmH5rZCjN7zMyy/PI8M6s2s+X+Y35MohUR6SS1lV6CFUju23rFfqPItEq2bd+yH6ISERGR7qajPVgvAJOcc/nAx8CPotatdc5N8R+Xd3A/IiKdqrbCS7CS0jJbrZcy0JtJsHjDR50ek4iIiHQ/HUqwnHP/cc6F/MUlQG7HQxIR2f/qq0oBSOrTeoKVNWwsAJXbdbNhERER2Vssr8G6BHguanmUmb1rZq+a2ayWNjKzy8yswMwKioqKYhiOiEj71Vd5PVgpGVmt1hswYhwAoaJ1nR2SiIiIdEMJbVUwsxeBwc2s+olz7gm/zk+AEPCAv24rMMI5V2xmhwGPm9lE51xZ00acc38B/gIwdepUXTUuInERrvb+PKWm92+1XmJqBsVkkVC2fn+EJSIiIt1MmwmWc+5Lra03s4uAk4EvOuecv00tUOs/X2pma4GxQEFHAxYR6Qyuxkuw0jJaHyIIUJw0lPQq3QtLRERE9tbRWQRnA9cDpzrnqqLKB5hZ0H9+ADAG0HgaEem6asuocCmkpSa1WbUibTg59boXloiIiOyto9dg3QlkAC80mY79KGCFmS0HHgYud86VdHBfIiKdxurKqSSV5IRgm3UjmSMZ5Eooq6jYD5GJiIhId9LmEMHWOOcObKH8EeCRjrQtIrI/BWorqLI+7aqbNGA0gULHtvUf0XfiYZ0cmYiIiHQnsZxFUESk2wrWl1MbTGtX3fQhYwAo3fxJZ4YkIiIi3ZASLBERILW+lKqErHbVHZQ3HoDaHboXloiIiOxJCZaICJAR3kVNcutTtDdI6zeEKlKwXYWdG5SIiIh0O0qwREScI8vtpj45u331zdgRHExq5cbOjUtERES6HSVYItLrhatKSSREpM+Adm9TlppL/1pN1S4iIiJ7UoIlIr3eriIvUUrMHNTuber6jmBIZBt19aHOCktERES6ISVYItLr7drhJVh9+g1u9zbB7ANIsXq2bvq0s8ISERGRbkgJloj0ehUlWwDIyB7a7m3SBnu3ASze9HGnxCQiIiLdkxIsEen16ku8ySr6Dx3V7m2ycw8CoGqbpmoXERGRzyjBEpFeL7B7A+UulX792j/JRf9hBxB2RqR4XSdGJiIiIt2NEiwR6fVSKjaxPTCIQLD9fxItIZmiwACSyjVVu4iIiHxGCZaI9HrpNVvYnTxkn7crSckls0YJloiIiHxGCZaI9GouEmFAeDu16cP2eduatOEMCm3FOdcJkYmIiEh3pARLRHq13ds+JY0aItlj933jfnn0t3KKdu6MfWAiIiLSLSnBEpFebee6dwFIGTZ5n7dNHuRN1b5jw0cxjUlERES6LyVYItKrVW18H4Cc0Yfs87b9hnm9XmVbdC8sERER8XQowTKzeWa22cyW+4+vRK37kZmtMbOPzOyEjocqIhJ7VrSKLS6b4UMG7/O2OcPHARDauTbWYYmIiEg3lRCDNm5zzt0aXWBmE4CzgYnAUOBFMxvrnAvHYH8iIjHTt+wTtiQfwNCA7fO2Sen9KCWD4O71nRCZiIiIdEedNURwDvCgc67WOfcpsAaY3kn7EhH5XFyojqGhjZT3/RwTXPh2Jg4lrVJTtYuIiIgnFgnWd81shZn93cz6+WXDgOhPHJv8sr2Y2WVmVmBmBUVFRTEIR0SkfUo2riKREIHBEz53G5V9csmp3xLDqERERKQ7azPBMrMXzWxlM485wJ+A0cAUYCvwf/sagHPuL865qc65qQMGDNjXzUVEPrcda5YDkDVyyuduI5SVx2C3k/LKqtgEJSIiIt1am9dgOee+1J6GzOyvwNP+4mZgeNTqXL9MRKTLqN60gpALMGLswZ+7jcScA0hYH2Hrhk/IGP/52xEREZGeoaOzCA6JWjwdWOk/fxI428ySzWwUMAZ4uyP7EhGJtaTiD9loQ+mXmfG528gY6l2/VbpZU7WLiIhIx2cRvMXMpgAOKAS+BeCc+8DMHgJWASHgO5pBUES6muyqtWzoM45RHWhjgD9Ve80OTdUuIiIiHUywnHPnt7LuZuDmjrQvItJZ6qvLGBLZxsf9Tu1QO+k5w6klEUoKYxOYiIiIdGudNU27iEiXtvWTdwFIHjapYw0FAuwIDia1YkMMohIREZHuTgmWiPRKJZ++B0D2AYd0uK2ylGH0q9U8PiIiIqIES0R6qdDWlVS6ZEaMHt/htmr7jmRIZCt19brUVEREpLdTgiUivVJa6cdsCI4kOTGxw20F+h9AmtWydeumGEQmIiIi3ZkSLBHplQbVrKM048CYtJU6eAwAJRs+iEl7IiIi0n0pwRKRXqdi1w76s5tw9riYtJc9Kh+A6s1KsERERHo7JVgi0utsXuvdEz1taIwSrKGjqSSFyPbVMWlPREREui8lWK0o2lLIRwUvU11RFu9QRCSGyrd+AkD/3LExac8CAbYm5ZFR9nFM2hMREZHuq0M3Gu7p1r22gMM//DWRp4xNgUHsTB5BbfpwrH8eSQMOIG3gaLIGjyA7ZzCBYDDe4YpIO0QijrodawAYNCI2PVgAZf0mMnbbM9TW1ZKclByzdiU2nHOEQyHC4ToioTCRSJhwJIwLh4hEIoTDIVwkQiQSIhIOEwlHcJEQzkW8BiyAYVjAMAzMwP9pBmZ+ecAwAv4y+Cv9el6Zmb/eDLMAYLiANbZh0W366y1gjT8/q9NQFhWb+d+bmu3/F1lERAAlWK0afcy5vNt/ONWbVpBS8iF9qzcxuuh9MnZWQ9QX1SEXoMT6UhbMoiKhP/UJ6YQT03GJaVhyOi7Je05iMoFgIsGEBALBJAIJiVggSMSCOIJABJwDF/H+UXcOcxGvPOKVRSIRXCSMi4QgEsZFwhAJ+T+jnjtv2RrquBAWCYOLYJGQt95/bi4CLkzAeduZi2Au7D8iBFzI/xkhgFf+2XPvZ8NyAK9esOE5EYIuTLDhOZF4nc5O44jNBxkXk1Ya2opVTLH7kNbc8X2e1vc1pub2O416tls2g/qkf44ImmcjjyR9+yOsXvEG46ce12K9nVvWkdynLxlZOTHbd0/iIhHKdu+irGQ7tWU7qa0oIVRdRqi6jHB1OZHacqirwGorsPpKEuorSYhUkRCpIxipI8HVkeDqSXR1JLp6EqknydWTRD0JFul1/+hFnOHw3jfeo8Fnyw3r4LP3l7PP1vV01pG/vrH8w91Jev4Z7OA5lG7hv0wm/LX7mD1pSLxDaZfe9m/NPskZPIKcweftUeYiEXbu3EHJpo+p2rGWutIthMt2YFVFpNSVkFZfQlb1DpIrq0l11aRRTdDi+8avd156E25IgcxLdaJSIMJ+WSTqpyNAxBoSwADOAoQsGdewLpCAswA01LEg+D9dIND4nIBfHmhIJHuT9p772P2OmOuK/9A0E1Mnx9nwBX5jrwHe/8wvSxk9k0Ex3N/oqSfA21C87GloJsHatv5DNj1xE1NLnuHdjGM45JonYrj3rq26qoqd2zZQVrSR2l2bCe3ehpVvI1BdREJNKUn1pfQJ7SY9Uk5fV06mhclspb16F6TKUqimDzWBVGoDqdQHkgklZFAVSCISSCISTMIFk3CBZFxCMiQk44LJEEgAC0Ag6PX2+H+jrKEs8FlZIBDw6jov1XDOgQPnpyTOL/d+vR04h4v6aY6o586v5vC+TPN61RrSmIbnLqotcHs+b3jPuKbr+axN8L+Yo5ltP4vBWmzba8sa6pnrFUlWz09D4nx8+2H3PeH3tPsfQeepSxlJXv8+8Q6j3ZRg7SMLBMgZOJicgYOBo9qsHwqFqaipIlRVRqi+lrq6OkKhOsKhEPX19RCu93qPCANBLOB/k2gBCAT84R4BCBjBQJBAwAgmJGKBBALBIAnBRCwYJBhMIJCQSNB/HkxI9MqCQTp+lx8RaUvfgbmsSJnK2C2PUVM5j5S0vgBs/mQ5W5/7DQcXP0c/AmAwuvydOEcbO845du7cyfb1qynb8hEUryOxbD0p1dtIr9tJVqSEfpQzvMl29S5IqWVQHsikKtiXnSl5bEvOwqX2w/pkE0zPJpieQ2JaP1LSMklOyyQ1PZP0vlkkJ6eSGQi0moSJiIjEixKsTpaQECQ9PQPSM+Idioh0suDR15Lz73NY8/sTqMiZQkbRMsbUf0iOS+SdAadzwGk/5aMX/8HRhb+nYtc20vsNjnfI7eKcY2fRdrYXrqJ8yyeEdq4hafenZFRtZFBoCwOsjAFR9YvoR0nCAEpThrEj9VBcxmASM4eQ0m8YqdnDyBiQS1bOEAYkJOyxnYiISE+gBEtEJEYmHnEib2z+f4x5//8YsfkT1gdH8Pqoqzjo+G/whSEjACg+cBoUwscFr3Dol8+Jb8BRXCRCUdFWdhSuomLLx4R2riVpdyF9qzcyOLSFAVaxRzK03XIoScqlsN8xfNrvAFIHjyFr2DgGjDiIAX0ylDiJiEivZa4LXa8xdepUV1BQEO8wREQ6JBKOUBeOkJK093dYdTXVVP36QNamHcZh1z25X+NykQhF2zZRtH4VFVs/JrRzHUllhWT6SVRfq2qsG3bGjsAASpJzqU4fics+gNRBY+g//CAGDh9LQkrafo1dRESkqzGzpc65qU3LO9SDZWYLgYZ5jrOAUufcFDPLA1YDH/nrljjnLu/IvkREuotAMEBKsPnbDCalpPLukDlM3fJPPnnvv4w5+Asx3XckHKZo23p2rv+Qiq0fE965luSyQjJrNjEktIWBVsNAv27IBdgWGMSulFw+7D8Fsg+gT2MSNYYhyal0j/maREREuo4OJVjOubkNz83s/4DdUavXOuemdKR9EZGe6KCzfkHp75+mz+MXsy3rCQaPPGiftq+uLGf7ho8o3fwJNTvWYqWFpJRvJLN2M4PC2xlkdY0zJNa5INuCg9mVnMvK7KlY/wPoM2QM2cPHM3D4GHITk8iN/SGKiIj0WjG5Bsu8ux2eBbR88xcREQEgs98AVn3lHwx75nxS/34ky/p9EUbMIClrMIHEPoTqqnG1FdRUlhEp30awYhtJNUWk1xWRFdpJDqXkRbVX6VLYHhxMScoItmbMxLJHkzZ4DNkjxjModzQjEhIYEa+DFRER6WViNcnFLGC7c+6TqLJRZvYuUAb81Dn3enMbmtllwGUAI0boI4CI9A4Tpn+RjQNeYeUTNzNx14tklT7fYt0S+rIrkE1FUjYl6WP5JGskiTkHkDFkDDnDx9E/ZzAHBJofkigiIiL7V5uTXJjZi0Bzcwn/xDn3hF/nT8Aa59z/+cvJQLpzrtjMDgMeByY658pa25cmuRCR3igUCrNp/SdUle4gXFtJQkoaiSnppGdk0n/gMJKSU+IdooiIiDTxuSe5cM59qY2GE4CvAodFbVML1PrPl5rZWmAsoOxJRKSJhIQgeaMPAvbtWiwRERHpemIxpuRLwIfOuU0NBWY2wMyC/vMDgDHAuhjsS0REREREpMuKxTVYZwMLmpQdBdxkZvVABLjcOVcSg32JiIiIiIh0WR1OsJxzFzVT9gjwSEfbFhERERER6U7anORifzKzImB9vONoIgfYGe8gZL/R+e49dK57D53r3kXnu/fQue5duuL5HumcG9C0sEslWF2RmRU0NzuI9Ew6372HznXvoXPdu+h89x46171LdzrfunGKiIiIiIhIjCjBEhERERERiRElWG37S7wDkP1K57v30LnuPXSuexed795D57p36TbnW9dgiYiIiIiIxIh6sERERERERGJECZaIiIiIiEiMKMFqhZnNNrOPzGyNmd0Q73gkdsxsuJm9YmarzOwDM7vSL+9vZi+Y2Sf+z37xjlViw8yCZvaumT3tL48ys7f89/dCM0uKd4wSG2aWZWYPm9mHZrbazI7Qe7tnMrOr/b/hK81sgZml6L3dc5jZ381sh5mtjCpr9r1sntv9877CzA6NX+Syr1o417/x/46vMLPHzCwrat2P/HP9kZmdEJegW6EEqwVmFgT+AJwITADOMbMJ8Y1KYigEXOOcmwDMAL7jn98bgJecc2OAl/xl6RmuBFZHLf8vcJtz7kBgF/CNuEQlneH3wL+dcwcBB+Odd723exgzGwZ8H5jqnJsEBIGz0Xu7J7kbmN2krKX38onAGP9xGfCn/RSjxMbd7H2uXwAmOefygY+BHwH4n9fOBib62/zR/9zeZSjBatl0YI1zbp1zrg54EJgT55gkRpxzW51zy/zn5XgfwIbhneN7/Gr3AKfFJUCJKTPLBU4C/uYvG3Ac8LBfRee6hzCzTOAo4C4A51ydc64Uvbd7qgQg1cwSgD7AVvTe7jGcc68BJU2KW3ovzwHudZ4lQJaZDdkvgUqHNXeunXP/cc6F/MUlQK7/fA7woHOu1jn3KbAG73N7l6EEq2XDgI1Ry5v8MulhzCwPOAR4CxjknNvqr9oGDIpXXBJTvwOuByL+cjZQGvWHW+/vnmMUUAT8wx8S+jczS0Pv7R7HObcZuBXYgJdY7QaWovd2T9fSe1mf23q2S4Dn/Odd/lwrwZJezczSgUeAq5xzZdHrnHcPA93HoJszs5OBHc65pfGORfaLBOBQ4E/OuUOASpoMB9R7u2fwr72Zg5dUDwXS2HuIkfRgei/3Dmb2E7xLOx6IdyztpQSrZZuB4VHLuX6Z9BBmloiXXD3gnHvUL97eMKTA/7kjXvFJzBwJnGpmhXhDfY/Du0Ynyx9WBHp/9ySbgE3Oubf85YfxEi69t3ueLwGfOueKnHP1wKN473e9t3u2lt7L+tzWA5nZRcDJwLnus5v3dvlzrQSrZe8AY/zZiJLwLqZ7Ms4xSYz41+DcBax2zv02atWTwIX+8wuBJ/Z3bBJbzrkfOedynXN5eO/jl51z5wKvAGf61XSuewjn3DZgo5mN84u+CKxC7+2eaAMww8z6+H/TG8613ts9W0vv5SeBC/zZBGcAu6OGEko3ZGaz8Yb3n+qcq4pa9SRwtpklm9kovIlN3o5HjC2xz5JBacrMvoJ37UYQ+Ltz7ub4RiSxYmYzgdeB9/nsupwf412H9RAwAlgPnOWca3qBrXRTZnYMcK1z7mQzOwCvR6s/8C5wnnOuNo7hSYyY2RS8CU2SgHXAxXhfKOq93cOY2S+AuXjDh94FLsW7FkPv7R7AzBYAxwA5wHbg58DjNPNe9pPsO/GGiVYBFzvnCuIQtnwOLZzrHwHJQLFfbYlz7nK//k/wrssK4V3m8VzTNuNJCZaIiIiIiEiMaIigiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIdDFmlmdmzswS4h2L9A5m9oGZHRPvOEREegIlWCIi0u2Z2Xwzq/AfdWZWH7X8XLzj6+qccxOdc4ti2aaftFVEPUJm9lQs9yEi0hWZcy7eMYiI9ChmluCcC3Vg+zzgUyCxI+30VmY2DzjQOXdeM+s6dG72p+4Ua1vMzIB1wM+dc/fGOx4Rkc6kHiwRkRgws0Iz+6GZrQAqzSzBzGaY2X/NrNTM3osegmVmi8zsf8zsbTMrM7MnzKx/C21fbGarzazczNaZ2bearJ9jZsv9dtaa2Wy/PNPM7jKzrWa22cx+aWbBNo5jtJm9bGbFZrbTzB4ws6yodSVmdqi/PNTMihqOy8xO9XstSv3jG9/k9bnWzFaY2W4zW2hmKfv+Su+7Fs6NM7MDo+rcbWa/jFo+2X9NS/1zmN/OfR1jZpvM7Mf+61doZudGrT/JzN71z9VGPxlsWNcwNPQbZrYBeNkv/5eZbfNft9fMbGKTuP9oZs/5vURvmNlgM/udme0ysw/N7JB2vkZfas8xfk5HATnAI524DxGRLkEJlohI7JwDnARkAYOAZ4BfAv2Ba4FHzGxAVP0LgEuAIUAIuL2FdncAJwN9gYuB26KSnOnAvcB1/n6PAgr97e722z0QOAQ4Hri0jWMw4H+AocB4YDgwD8A5txb4IXC/mfUB/gHc45xbZGZjgQXAVcAA4FngKTNLimr7LGA2MArIBy5qNgCzmX5i09JjZhvH0JzGc9NWr5CfkPwd+BaQDfwZeNLMktu5r8F4ycQw4ELgL2Y2zl9XiXfes/x4rjCz05psfzTea3+Cv/wcMAYYCCwDHmhS/yzgp/4+a4E3/Xo5wMPAb9sZd7PM7IbWzkc7m7kQeMQ5V9mRWEREugMlWCIisXO7c26jc64aOA941jn3rHMu4px7ASgAvhJV/z7n3Er/Q+fPgLOa62Fyzj3jnFvrPK8C/wFm+au/AfzdOfeCv5/NzrkPzWyQv6+rnHOVzrkdwG3A2a0dgHNujd9WrXOuCO/D+dFR6/8KrAHewksMf+Kvmgs8429bD9wKpAJfaPL6bHHOlQBPAVNaiGGxcy6rlcfi1o6hBdHnpi2XAX92zr3lnAs75+7BS1xm7MP+fua/hq/iJdpnATjnFjnn3vfP1Qq8pPToJtvO889Ztb/N351z5c65Wrxk92Azy4yq/5hzbqlzrgZ4DKhxzt3rnAsDC/GS68/NOffr1s5HW9v7yfiZeAm/iEiPpwRLRCR2NkY9Hwl8rck3/TPxkpLm6q8HEvF6HfZgZiea2RJ/eF4pXuLUUG84sLaZWEb67W2N2v+f8XpBWmRmg8zsQX9IYRlwfzMx/RWYBNzhf+gHr8drfUMF51zEP75hUdtti3peBaS3FkuMbWy7SqORwDVNzt1wvGNsj11NemrWN2xrZoeb2Sv+0MrdwOXs/fo2xmpmQTP7tXlDP8v4rHcyepvtUc+rm1nen69zc74KlACvxjkOEZH9QgmWiEjsRM8atBGvhyr62/4059yvo+oMj3o+AqgHdkY36A9LewSvR2iQ32PwLN5Qvob9jG4mlo14vS45Ufvv65yb2EzdaL/yj2Oyc64vXk9cw74ws3Tgd8BdwDz77LqxLXiJSUM9849vcxv724uZzbI9Z59r+pjVdit7aTqjUxXQJ2p5cNTzjcDNTc5dH+fcgnbuq5+ZpUUtj8B7fQD+CTwJDHfOZQLziXp9m4n168Ac4EtAJpDnlzfdptP415O1eD7a0cSFwL1Os2qJSC+hBEtEpHPcD5xiZif4vRAp/gQIuVF1zjOzCf4QqpuAh/1hXdGSgGSgCAiZ2Yl411I1uAu42My+aGYBMxtmZgc557biDSX8PzPr668bbWZNh6M1lQFUALvNbBjetV3Rfg8UOOcuxRv6Nt8vfwg4yY8jEbgGL8H7b1svVFPOudedc+mtPF7f1zabsRz4un9uZrPnML2/Apf7vU1mZmnmTU6RAY0TS9zdRvu/MLMkPxk8GfiXX54BlDjnavzr577eRjsZeK9jMV5C+Kt9OMaYcM79qrXz0dq2/u/7scA9+ydaEZH4U4IlItIJnHMb8XoefoyXHG3ES1ai/+7eh3ddyjYgBfh+M+2U++UPAbvwPpA/GbX+bfyJL4DdeMOwGnqSLsBL0Fb52z7MnkMUm/ML4FC/rWeARxtWmNkcvEkqrvCLfgAcambnOuc+wuvtugOvF+4U4BTnXF0b+4uXK/FiLAXOBR5vWOGcKwC+CdyJ97qtYc8JOYYDb7TS9jZ/uy14E1Jc7pz70F/3beAmMysHbsQ7r625F2+I4Wa887ikrQPrYs4H3vQnSBER6RV0HywRkTgws0XA/c65v8U7Fmk/f1bE94B8fzKPpuuPwTuvuU3XiYhI75AQ7wBERES6C79HbnybFUVEpNfSEEERkV7GzOa3MGHB/La3lu7IzEa0MlHFiHjHJyLSk2iIoIiIiIiISIyoB0tERERERCRGutQ1WDk5OS4vLy/eYYiIiIiIiLRq6dKlO51zA5qWd6kEKy8vj4KCgniHISIiIiIi0iozW99cuYYIioiIiIiIxIgSLBERERERkRhRgiUi8jmt/mQN73zwSbzDEBERkS6kS12D1Zz6+no2bdpETU1NvEORbiYlJYXc3FwSExPjHYr0UKMeOIIU6ijJK6J/WlK8wxEREZEuoMsnWJs2bSIjI4O8vDzMLN7hSDfhnKO4uJhNmzYxatSoeIcjPVBVTS19qAPgw/cL+MKML8Q5IhEREekKuvwQwZqaGrKzs5VcyT4xM7Kzs9XzKZ1m58aPGp9Xf/xqHCMRERGRrqTLJ1iAkiv5XPR7I52pcuP7jc9t17o4RiIiIiJdSbdIsEREupraXVsA2EVf0iubvQ2GiIiI9EJKsNrBzLjmmmsal2+99VbmzZsXv4CiLFmyhMMPP5wpU6Ywfvz4xrgWLVrEf//73w61PXv2bLKysjj55JNjEKlIzxKuqwJgS8oYBtZtjHM0IiIi0lUowWqH5ORkHn30UXbu3BnTdp1zRCKRDrVx4YUX8pe//IXly5ezcuVKzjrrLCA2CdZ1113Hfffd16E2RHoqV18NQGW/cQx126moqYtzRCIiItIVdPlZBKP94qkPWLWlLKZtThjal5+fMrHVOgkJCVx22WXcdttt3HzzzXusKyoq4vLLL2fDhg0A/O53v+PII49k3rx5pKenc+211wIwadIknn76aQBOOOEEDj/8cJYuXcqzzz7LnXfeyXPPPYeZ8dOf/pS5c+eyaNEi5s2bR05ODitXruSwww7j/vvv3+u6oh07djBkyBAAgsEgEyZMoLCwkPnz5xMMBrn//vu54447OOigg1qMc+3ataxZs4adO3dy/fXX881vfhOAL37xiyxatKjV1+Zf//oXv/jFLwgGg2RmZvLaa69RU1PDFVdcQUFBAQkJCfz2t7/l2GOP5e677+bxxx+nsrKSTz75hGuvvZa6ujruu+8+kpOTefbZZ+nfvz9//etf+ctf/kJdXR0HHngg9913H3369NljvzNmzOCuu+5i4kTv3B1zzDHceuutTJ06tdV4RWLF6qupc0GSc/JI2hpm/ZaNjDlgdLzDEhERkTjrcA+WmQ03s1fMbJWZfWBmV/rl/c3sBTP7xP/Zr+Phxs93vvMdHnjgAXbv3r1H+ZVXXsnVV1/NO++8wyOPPMKll17aZluffPIJ3/72t/nggw8oKChg+fLlvPfee7z44otcd911bN26FYB3332X3/3ud6xatYp169bxxhtv7NXW1Vdfzbhx4zj99NP585//TE1NDXl5eVx++eVcffXVLF++nFmzZrUa54oVK3j55Zd58803uemmm9iyZUu7X5ebbrqJ559/nvfee48nn3wSgD/84Q+YGe+//z4LFizgwgsvbJzNb+XKlTz66KO88847/OQnP6FPnz68++67HHHEEdx7770AfPWrX+Wdd97hvffeY/z48dx111177Xfu3Lk89NBDAGzdupWtW7cquZL9q76KWpJIGzASgN3bdR2WiIiIxKYHKwRc45xbZmYZwFIzewG4CHjJOfdrM7sBuAH4YUd21FZPU2fq27cvF1xwAbfffjupqamN5S+++CKrVq1qXC4rK6OioqLVtkaOHMmMGTMAWLx4Meeccw7BYJBBgwZx9NFH884779C3b1+mT59Obm4uAFOmTKGwsJCZM2fu0daNN97Iueeey3/+8x/++c9/smDBgmZ7nVqLc86cOaSmppKamsqxxx7L22+/zWmnndau1+XII4/koosu4qyzzuKrX/1q4zF973vfA+Cggw5i5MiRfPzxxwAce+yxZGRkkJGRQWZmJqeccgoAkydPZsWKFYCXhP30pz+ltLSUiooKTjjhhL32e9ZZZ3H88cfzi1/8goceeogzzzyzXfGKxIqFaqkhmYyBIwCoLtZ1WCIiIhKDBMs5txXY6j8vN7PVwDBgDnCMX+0eYBEdTLDi7aqrruLQQw/l4osvbiyLRCIsWbKElJSUPeomJCTscX1V9P2Y0tLS2rW/5OTkxufBYJBQKNRsvdGjR3PFFVfwzW9+kwEDBlBcXLxXnZbihL2nM9+X6c3nz5/PW2+9xTPPPMNhhx3G0qVLW60ffUyBQKBxORAINB7fRRddxOOPP87BBx/M3Xff3WzCOGzYMLKzs1mxYgULFy5k/vz57Y5ZJBYsVE2tJTNwsHcj69CuzXGOSERERLqCmE5yYWZ5wCHAW8AgP/kC2AYMamGby8yswMwKioqKYhlOzPXv35+zzjprjyFrxx9/PHfccUfj8vLlywHIy8tj2bJlACxbtoxPP/202TZnzZrFwoULCYfDFBUV8dprrzF9+vR2x/TMM8/gnAO8oYfBYJCsrCwyMjIoLy9vM06AJ554gpqaGoqLi1m0aBHTpk1r9/7Xrl3L4Ycfzk033cSAAQPYuHEjs2bN4oEHHgDg448/ZsOGDYwbN67dbZaXlzNkyBDq6+sb22nO3LlzueWWW9i9ezf5+fntbl8kFoLhauosiaS+gwgRhLL2D60VERGRnitmCZaZpQOPAFc55/aYicJ5GYBrbjvn3F+cc1Odc1MHDBgQq3A6zTXXXLPHbIK33347BQUF5OfnM2HChMaelDPOOIOSkhImTpzInXfeydixY5tt7/TTTyc/P5+DDz6Y4447jltuuYXBgwe3O5777ruPcePGMWXKFM4//3weeOABgsEgp5xyCo899hhTpkzh9ddfbzFOgPz8fI499lhmzJjBz372M4YOHQp4yd/XvvY1XnrpJXJzc3n++ecBb1hiw/VW1113HZMnT2bSpEl84Qtf4OCDD+bb3/42kUiEyZMnM3fuXO6+++49eq7a8v/+3//j8MMP58gjj+Sggw5qLH/yySe58cYbG5fPPPNMHnzwwcaZE0X2p2C4ljpLgUCAkkB/kqu2tr2RiIiI9HjW0PvRoUbMEoGngeedc7/1yz4CjnHObTWzIcAi51yr3RhTp051BQUFe5StXr2a8ePHdzhGaV7T2Q57Gv3+SGf56H9mURuOkP/TN/jkf46gMpzAlJ++Hu+wREREZD8xs6XOub1mWYvFLIIG3AWsbkiufE8CF/rPLwSe6Oi+RES6ioRIDeGAd01jdcog+oVie588ERER6Z5iMYvgkcD5wPtmttwv+zHwa+AhM/sGsB7QOK4uaN68efEOQaRbSozUUp/kJVihtCEMKP0v9aEwiQnBOEcmIiIi8RSLWQQXAy1NO/fFjrYvItIVJbrPerDoO5Q+W2rZsrOIoftwDaWIiIj0PDGdRVBEpLdIdrWEE7wEK7m/d7+6XVubny1UREREeg8lWCIin0OSqyMS9BKsPjnDAajcqZsNi4iI9HZKsEREPodkanEJqQD0GzQSgFrdbFhERKTXU4LVTo8//jhmxocffthincLCQiZNmhSzfX700Uccc8wxTJkyhfHjx3PZZZcB3k2Cn3322Q61fckllzBw4MCYxivSa4TrSSSMS/QSrMyB3hDBSJnuhSUiItLbKcFqpwULFjBz5kwWLFjQ7PpQKNThfYTD4T2Wv//973P11VezfPlyVq9ezfe+9z0gNgnWRRddxL///e8OtSHSW7n6Ku+J34NliansJp1g5fY4RiUiIiJdQSymad9/nrsBtr0f2zYHT4YTf91qlYqKChYvXswrr7zCKaecwi9+8QsAFi1axM9+9jP69evHhx9+yH/+8x9CoRDnnnsuy5YtY+LEidx777306dOHl156iWuvvZZQKMS0adP405/+RHJyMnl5ecydO5cXXniB66+/nrPPPrtxv1u3biU3N7dxefLkydTV1XHjjTdSXV3N4sWL+dGPfsTJJ5/M9773PVauXEl9fT3z5s1jzpw53H333Tz22GPs3r2bzZs3c9555/Hzn/8cgKOOOorCwsJWj/vVV1/lyiuvBMDMeO2110hPT+f666/nueeew8z46U9/yty5c1m0aBE///nPycrK4v333+ess85i8uTJ/P73v6e6uprHH3+c0aNH89RTT/HLX/6Suro6srOzeeCBBxg0aNAe+z377LM5//zzOemkkwAvGTz55JM588wz23dORTpZbXUlKQBJqY1lpQk5JFfviFtMIiIi0jWoB6sdnnjiCWbPns3YsWPJzs5m6dKljeuWLVvG73//ez7++GPAG9b37W9/m9WrV9O3b1/++Mc/UlNTw0UXXcTChQt5//33CYVC/OlPf2psIzs7m2XLlu2RXAFcffXVHHfccZx44oncdtttlJaWkpSUxE033cTcuXNZvnw5c+fO5eabb+a4447j7bff5pVXXuG6666jsrISgLfffptHHnmEFStW8K9//YuCgoJ2H/ett97KH/7wB5YvX87rr79Oamoqjz76KMuXL+e9997jxRdf5LrrrmPrVm9Y1Hvvvcf8+fNZvXo19913Hx9//DFvv/02l156KXfccQcAM2fOZMmSJbz77rucffbZ3HLLLXvtd+7cuTz00EMA1NXV8dJLLzUmWyJdQV219/6yxD6NZZVJOWTUFcUrJBEREekiulcPVhs9TZ1lwYIFjT05Z599NgsWLOCwww4DYPr06YwaNaqx7vDhwznyyCMBOO+887j99tv58pe/zKhRoxg7diwAF154IX/4wx+46qqrAC+haM7FF1/MCSecwL///W+eeOIJ/vznP/Pee+/tVe8///kPTz75JLfeeisANTU1bNiwAYAvf/nLZGdnA/DVr36VxYsXM3Xq1HYd95FHHskPfvADzj33XL761a+Sm5vL4sWLOeeccwgGgwwaNIijjz6ad955h759+zJt2jSGDBkCwOjRozn++OMBr+ftlVdeAWDTpk3MnTuXrVu3UldXt8dr1+DEE0/kyiuvpLa2ln//+98cddRRpKam7lVPJF4aEqxgVA9WbeoghlSui1dIIiIi0kWoB6sNJSUlvPzyy1x66aXk5eXxm9/8hoceegjnHABpaWl71DezVpeb07SNaEOHDuWSSy7hiSeeICEhgZUrV+5VxznHI488wvLly1m+fDkbNmxg/PjxnzueBjfccAN/+9vfqK6u5sgjj2x1gg+A5OTkxueBQKBxORAINF6j9r3vfY/vfve7vP/++/z5z3+mpqZmr3ZSUlI45phjeP7551m4cGGLCahIvNTVeAlWIOmzHqxI+mByKKWiujZeYYmIiEgXoASrDQ8//DDnn38+69evp7CwkI0bNzJq1Chef/31Zutv2LCBN998E4B//vOfzJw5k3HjxlFYWMiaNWsAuO+++zj66KPb3Pe///1v6uvrAdi2bRvFxcUMGzaMjIwMysvLG+udcMIJ3HHHHY1J37vvvtu47oUXXqCkpKTxOqiG3rX2WLt2LZMnT+aHP/wh06ZN48MPP2TWrFksXLiQcDhMUVERr732GtOnT293m7t372bYsGEA3HPPPS3Wmzt3Lv/4xz94/fXXmT17drvbF9kfGhKsYPJnX44EM4eQYBGKt2uqdhERkd5MCVYbFixYwOmnn75H2RlnnNHibILjxo3jD3/4A+PHj2fXrl1cccUVpKSk8I9//IOvfe1rTJ48mUAgwOWXX97mvv/zn/8wadIkDj74YE444QR+85vfMHjwYI499lhWrVrFlClTWLhwIT/72c+or68nPz+fiRMn8rOf/ayxjenTp3PGGWeQn5/PGWec0Tg88JxzzuGII47go48+Ijc3l7vuuguA+fPnM3/+fAB+97vfMWnSJPLz80lMTOTEE0/k9NNPJz8/n4MPPpjjjjuOW265hcGDB7f79Zw3bx5f+9rXOOyww8jJyWksLygo4NJLL21cPv7443n11Vf50pe+RFJSUrvbF9kfQrVegpWQ/FkPVko/74uD0h0b4hKTiIiIdA3W0OvRFUydOtU1nYRh9erVjcPdZN/cfffdFBQUcOedd8Y7lLjR7490hg9feYCDXv02y096minTZgGwaeVich8+iSWH/4EZJ54X5whFRESks5nZUufcXpMbdHoPlpnNNrOPzGyNmd3Q2fsTEelskVrvPlhJKZ8NEew3eAQAdbs0RFBERKQ369RZBM0sCPwB+DKwCXjHzJ50zq3qzP2K56KLLuKiiy6KdxgiPU64zkuwEqMSrLR+Q4k4w5Vvi1dYIiIi0gV0dg/WdGCNc26dc64OeBCYs6+NdKVhjNJ96PdGOkvET7CSU6NmAA0msCuQRULl9jhFJSIiIl1BZydYw4CNUcub/LJGZnaZmRWYWUFR0d436UxJSaG4uFgflmWfOOcoLi4mJSUl3qFID+TqqgFISk3fo3x3Qg4pNTviEZKIiIh0EXG/0bBz7i/AX8Cb5KLp+tzcXDZt2kRzyZdIa1JSUsjNzY13GNIDufpqIs5ISdnzBthVyQPoW7klTlGJiIhIV9DZCdZmYHjUcq5f1m6JiYmMGjUqpkGJiHRIfRU1JJGStOef0Lo+gxhSvhLn3D7d1FtERER6js4eIvgOMMbMRplZEnA28GQn71NEpFNZqIZqkkhOaPInNH0w2VZGaXllfAITERGRuOvUBMs5FwK+CzwPrAYecs590Jn7FBHpbBaqppakvXqpErK8S0x3btvY3GYiIiLSC3T6NVjOuWeBZzt7PyIi+0sgVE2tJe9VnprtJVjlRRtgrG5wLSIi0ht1+o2GRUR6mkC4hrpmEqyMHO+S0+pi3WxYRESkt1KCJSKyj4LhGuqbSbD6DR4BQH2pEiwREZHeSgmWiMg+SgjXUhfY+x5ryRkDqCcBq9gWh6hERESkK1CCJSKyjxIiNYSaSbAIBCix/iRWbd//QYmIiEiXoARLRGQfJUZqCAf3HiIIsDtpAGk1SrBERER6KyVYIiL7KNHVEQo204MFVKUOoX9ox36OSERERLoKJVgiIvso2dUQCaY2uy6UPoyBbie19fX7OSoRERHpCpRgiYjso2RXSySh+R6sYFYuyRZix9ZN+zkqERER6QqUYImI7AvnSKEOl9B8D1ZKzkgAdm39dH9GJSIiIl2EEiwRkX0RqvF+JjafYPUdPAqAyh2F+ykgERER6UqUYImI7INwbRUAltin2fXZQ0cDUL9rw36LSURERLoOJVgiIvugproCgEBSC0MEM/pTRQqBMl2DJSIi0ht1KMEys9+Y2YdmtsLMHjOzrKh1PzKzNWb2kZmd0OFIRUS6gJqqhgSr+R4szNgZHEBy5db9GJWIiIh0FR3twXoBmOScywc+Bn4EYGYTgLOBicBs4I9mFuzgvkRE4q7W78FKSE5rsU550mAyanWzYRERkd6oQwmWc+4/zrmQv7gEyPWfzwEedM7VOuc+BdYA0zuyLxGRrqCu2rsGKyG5+SGCADVpQ8kJ78A5t7/CEhERkS4iltdgXQI85z8fBmyMWrfJL9uLmV1mZgVmVlBUVBTDcEREYq+uugyAhNT0Fuu4vsPIsd3sLi/fX2GJiIhIF9FmgmVmL5rZymYec6Lq/AQIAQ/sawDOub8456Y656YOGDBgXzcXEdmvQg0JVp+sFusk9h8OQNFm3QtLRESkt0loq4Jz7kutrTezi4CTgS+6z8bDbAaGR1XL9ctERLq1sJ9gJfXJbLFO2oA8AMq2F8L4g/dDVCIiItJVdHQWwdnA9cCpzrmqqFVPAmebWbKZjQLGAG93ZF8iIl2Bq/GG/SWltZxg9Rt6AADVRev3S0wiIiLSdbTZg9WGO4Fk4AUzA1jinLvcOfeBmT0ErMIbOvgd51y4g/sSEYm/Wq8HKyW9lQRrUB4AkVLdbFhERKS36VCC5Zw7sJV1NwM3d6R9EZEup7acapdEn5SUFqsEklIotn4klGtktIiISG8Ty1kERUR6PFdbTgWpZCS3/v1UScIg0qq37KeoREREpKtQgiUisg+stpwq60MgYK3Wq0wdSr/6bfspKhEREekqlGCJiOyDQH0F1YE+bdarz8hlkNtJbX39fohKREREugolWCIi+yAxVEltIK3NeoF+I0i2EEVbNNGFiIhIb6IES0RkHySFKgkltp1g9cnJA6Bk69pOjkhERES6EiVYIiL7IDVSQSghvc16fYeMBqBq+6edHZKIiIh0IUqwRETayzmyXCl1KdltVs0Z7iVYoV0aIigiItKbKMESEWknV1dBCnWEUnParJvcJ5NS0gmWbdwPkYmIiEhXoQRLRKSdqkt3eE/6tJ1gARQnDCK1SvfCEhER6U2UYImItFNpkZcsJWQMbFf98pShZNXpXlgiIiK9iRIsEZF2KiveCkB69pB21a9LG8bA8A4i4UhnhiUiIiJdiBIsEZF2qt7l9UZl5bQvwSJrOH2slpKd6sUSERHpLWKWYJnZNWbmzCzHXzYzu93M1pjZCjM7NFb7EhGJh/rdXg9W9qBh7aqflD0SgOItuheWiIhIbxGTBMvMhgPHA9HzEZ8IjPEflwF/isW+RETiJaF8IztdJhnpGe2q33ewN1V75XYlWCIiIr1FrHqwbgOuB1xU2RzgXudZAmSZWTvH1YiIdD19KjezIzgIM2tX/ZzcAwGo27m+M8MSERGRLqTDCZaZzQE2O+fea7JqGBB9A5hNflnT7S8zswIzKygqKupoOCIinSazdgulKe0bHgiQkZVDpUuB3boXloiISG+R0J5KZvYiMLiZVT8Bfow3PPBzcc79BfgLwNSpU10b1UVE4sKF6xkQ3sEnGe3/c2eBAEXBgSRXbu7EyERERKQraVeC5Zz7UnPlZjYZGAW85w+ZyQWWmdl0YDMwPKp6rl8mItLt7NjwMYMsQsKAA/dpu9LkIWTWbu2kqERERKSr6dAQQefc+865gc65POdcHt4wwEOdc9uAJ4EL/NkEZwC7nXP6lCEi3VLJuqUApI84eJ+2q0kbSk54R2eEJCIiIl1QZ94H61lgHbAG+Cvw7U7cl4hIp6rasJyQCzBs7CH7tJ3rO5y+VFJZtquTIhMREZGupF1DBNvL78VqeO6A78SyfRGReEna8T4bg7mMysrct+36eZNiFG0pJK1vv84ITURERLqQzuzBEhHpEVy4nrzqlWzLnLLP26YPHAFA6XZN1S4iItIbKMESEWnDxlVLyKAKN3LmPm/bb3AeAFU7N7ReUURERHoEJVgiIm3YXvAkEWeMPvzEfd4220+wQqWaRFVERKQ3UIIlItIa5xi46XlWJU5k0JAR+7x5MLkPpWQQLN/SCcGJiIhIV6MES0SkFeuWvcjI8HpKDzztc7dRmjCAlOrtsQtKREREuiwlWCIirah49Q/sdmlMPvGbn7uNyuSBZNTpXlgiIiK9gRIsEZEWbPl0NRN2v8rygXPIzMz63O3Upg0hO1KMd/cKERER6cmUYImItGDHo9dTRyLj5lzXsYYyhpBtZZTsLotNYCIiItJlKcESEWnG6jeeYkr5axQMv4jBuQd0qK1E/2bDxdt0LywREZGeTgmWiEgTVeUlZL14NRttCIed/bMOt5eaMxKA8u26F5aIiEhPpwRLRCSKi0RY9ddvMjCyk92z7yQtPaPDbWYN8hKs6mIlWCIiIj2dEiwRkShvLfw1U8te5O28bzHp8C/FpM1+/s2Gw7t1LywREZGeLqGjDZjZ94DvAGHgGefc9X75j4Bv+OXfd84939F9iYh0plVL/s1hH97Ku2lf4PALfhWzdoOpfakklYBuNryXSH0dVTVVVFfXQCSEuRBmAQKJKVhCMn36pJOUGIx3mCIiIu3WoQTLzI4F5gAHO+dqzWygXz4BOBuYCAwFXjSzsc65cEcDFhHpDEWbP2Xgv7/F1sAgRl92P4FgbD/UlwRzSO5FNxuOhMNsW/8RRetXU11ciCvdRGL5ZlJrtpFcX0ZapJy+roI0qyEdSG+lrVqXSJWlUm4ZVAYzqE7IpD4pi1ByP1xqfwJp/UlIzyap7wD6ZA4kLWsAmdmDSOvTBzPbX4csIiICdLwH6wrg1865WgDnXMOdNOcAD/rln5rZGmA68GYH9yciEnN1NdXsunsuw1wN5Wc9St+s7JjvozxpIBm1PfNmw+W7tlP43utUrF9GYvHHZFWuY1hoI0OtjqF+nZALUGT92Z04gMrUIZQmHsT6pEzCKZkEk1IJJiRBIIGwJYALEwjXEwjXEKmrJlxfTaCugsS63STXl5IVKiKtdi19y8pJpbbFuCpcCmWWQWWgL9WJmYQT+uASUogEvYdLSMElpEKw4Z9CAwzXmJMZ5sJYuB6LRD9CBBp+Ou9nMFKPuRAB/2GRMMGGZcIEXIigC3sPQt46wiT4ywH2vEeai3ri9ihvmjAazi9vWOcay5tb55dbQ1ufbdOwHL0drTwHcGaN+2tLe1Ndoz33i2vfPeXa01Ys42qrLWtxob0xNK86mEHgzL8xfNyh+96oiMRcRxOsscAsM7sZqAGudc69AwwDlkTV2+SX7cXMLgMuAxgxYkQHwxER2Xfv/fVbTKv/iIIZv2fqhMM6ZR+1fQYztGpdp7S9P0XCYTZ++A7FH7yCbV7KwPKVDItsZbK/fhs57EjJ472c6QQGHkTf4ePpP/RA+g8azpDEJIbEOJ5wXTVlJTsoL9lO9e4d1OwuIlRRTLiyGKpLCNbsIqm2lNRQKQnVO0lytSS5OpJcHSnUkWz17dpPrUsgRJAQCdSTQNiC3k8SCFnQ/5lAPUHClkDYEolYChHzlp152zhLJGJBXCCBiCU0/iQQJGBGwMDMu0C6cTlgGHjP/XgcgPPSHZyXEkWXWeNNrd1n9aLq7pG5uUhjXWtSF6JSLhfdVmMUjdvskX74zTdNCFy7exTbU699bTXG1Ur1vRPX5htxzaZZUcfuvB01l4q5JtnyXnX2WN3cs70LGp4eXPlfNjxyNUN/+DLBGPe+i8i+azPBMrMXgcHNrPqJv31/YAYwDXjIzPbphjHOub8AfwGYOnVq+76SEhGJkWWP/pZpxU/wxpALOfLEizptP5GMoeTsLKW8qpqMPqmdtp+Yc46ta99j49LnSVj/OgdUvctIKhgJbKc/G/tMoHDgGfQdPYORk7/A4KzsZv/B6CzBpFT6DR5Jv8EjP9f24XCYcDi8R7Li8Z67YAIJwUSSAkayhhtKF7X0kf/jsPdvYvG9P2Xmxf8T73BEer02EyznXIvTaJnZFcCjzjkHvG1mESAH2AwMj6qa65eJiHQZ695bzKT3fsnylKkcfsn/deq+glnDCJpj59YNZIwe16n76qjqynI+WfI09aueZWTJYoa4EoYAWxnAJ1lHE86bxaD8LzIybwyDAt076QgGg/rGX7q9Q0+/mnfXv8ERhX/i7efGM/3EC+Idkkiv1tEhgo8DxwKvmNlYIAnYCTwJ/NPMfos3ycUY4O0O7ktEJGaqK3aT9MQ32WVZ5H7jARISEzt1f6nZ3ndOu3eshy6YYFUVb+bj1xZiHz/PuKql5Fs9FS6V1WlT+XDkseQeOpuRo8czJKC7e4h0NRYIMP5bd7P2d1/m4CU/YGVmNpO+cFK8wxLptTqaYP0d+LuZrQTqgAv93qwPzOwhYBUQAr7THWcQXLXk35S//QA2OJ+MvEMZMuZgsvrlxDssEYmBVf/4NoeEt7Lyy/eRP7DzB7VlDvSGsFUVbez0fbVXTVkxnyx6gMTVjzGm6l2mmGMLA3lv4Bz6TD6ZMdNnMy2lGw1nFOnFUtL6MvjyJ9n2hy8y6vlLWFF7J/nHfi3eYYn0Sh1KsJxzdcB5Lay7Gbi5I+3HW8XWTzio5CUyS570UkVgF30pShxKWZ8R1GWMIJCVS5/+Q8nIGUZ6Ti4Z2UNISU6Ob+D7yjnvIudIGFx4j58uEiIcChEKh3CRMKFwiEgoRCQcJhz2fkb8n+GI99OFQ4SdIxJxRFyEcNj7GXHR1zd4Gi8Fjr7uoeFn1AXWe6xq5+xRLYvh1E2tcBi2rxu28xqP6Frtv2i8pRbaKv38Plds+7qN817riHON1+A7vOeNZTgijesgsms9s4qf5r9DzuMLM0/Z9xg/h35D8gCo37Vhv+yvJXVVZXz82kPw/sOMq3ibyRZmA4N5ffAFZB9+NhMPnsHQoHqpRLqjvtmDqL/sWbb+9TQmLLqM1zd/xMyv/xjr5T3PLhKhtraamsoK6mqrCNXXEQ7VEamvIxSqJxL6bNmF64mEvbJIqJ5IJESk4R8Q718Qfx6YyF4TyHjLEcybceaz6U9c1EQq5n0ycA2fEOyzGTkby70VfvTecmvln7XrzRBq/nrvv0Dj+uitG/+ttajfjWZi2CumqPKmsZs1+T1r2Kc1jaFh3w0VA34onx2bV/2z5VByFkPHHkp2evf4jG3OdfTDauxMnTrVFRQUxDuMPbhIhC3rP6Fk7VKqtn0EJevoU7GenLrNDHLFBGzv16/CpVJpqdQE0qgN9KE2mEZ9MBUXSCQSSMQFEiGQAMEkIoEEIgT8WZgi3q9U1BvWoi68Nhci4N+I0/sZJuDqCURCBFy4cXpgb2rgMAG8aYI/mxY47E8LHCJIGG/eqzBBInsdg0hPt8OySfvBu6RlZO6fHTrH7l/ksjLzWI68+v79s09fqLaKjxY/Rui9fzG27A1SqWMb2Xyc82Uyp81l4mFHk5Cg65BEeorK8lLWzT+byZVvsjL5ENLPvIO8MZPb3rALCdXXUV66k8rdxVSX76KmYhd1FaWEqkoJV5fiqssI1JeTUFdGYqiCYKiahEgNiZEaEiO1JLkakl0tKa6WFOqa/bwm3cei8MFUfO1BTs4f2nbl/cjMljrnpjYt7+gQwR7PAgGGjRrHsFF7XzMRqq1m546NFG/fROXOLYTLtmKVO6CmDKsrJ1BXTmKokqRwJRn1xQT8e580JDiJzpvkN0Ak6t4kzd9zxGGE8KYJjpg3VXDYvOQsbFFTBVsSEetDJOBNDRyxBJwFvUQuakpg5z93gSBYAgQCYEEIeA8LBBuXLarMe55AwC9r/BkMYoEELBAkEEggEDCCZgQCAQIBvJ9R3674r67/Y89vLKLvr9K0jKbb7rPP8Qf2c/1Ndvu8Wfvu/dK0E/DzHE/z27T2ZUt7Y2txl+2uuO/7aZy+umF6a//3KeB/42bRU183fPNm0C9vCqn7K7kCMGN78kj6VuyfqdrD9XV8vORpqpc9xNhdrzKRKopdX5b2/wp9DjmLSUecwFGJ+idApCdKy8hi0jXPsuTh/2PyqltJvv8oCvrPJuvY73Hg5CP2faRADNRUV7Fr51YqirdRVbqN2t1FhCuKcJU7CVYXk1hbQmr9LtJCpWRGdpNplfQD+rXSZgWpVJBGdaAPtZZKKJhCTUI24WAKkYRUIg33ukvsA4mpWFIfAgnJkJBEIJiIBRMJJCRiQW85kJiEBRMJJiQRSEgikJBIQkICgUDAG5MS8D+XWAAal6Oe+59bzLzPc2aBz+5AZ3gzk/q9W16x8//tdXv+87dHvaj1ruGzhbdd9O0ZPtvefVbPL2z49901fKEeaShv2CL61g3RsUXHwF4xNHQIuKh9WJN9frat/zMSaVLeEPeese0xognISspi4qjY36Oys6gHS0RkP1n+h/MZseMV+t64gYROGIbnwiE+KfgPZe88xOidL9GPMspdKh9kHk0w/2tMnnVK9xvCLCIdsmtrIR8++ksO2fE4KVbP+sBwtg84gpQDZpI9dgaDh48mmLDvX7ZUV5ZTunMLFSXbqdq1ndqyHYQrisBPmJL8hCk9XEpmpIx0q262nZALsNv6UhbIpCoxi9qk/oRS+hNJzYbU/gT7ZJKY1o/k9CxS0/vTJ7M/6Zn9SU3LxIL6kkjiq6UeLCVYIiL7yfKHfsWUVf/L+ouWMjLvwJi06SJh1i17mV3vPEje9pfIYRfVLomV6V/ATTqDiUd9lbS09JjsS0S6r7Libax66V7S1z7D6JpVpFodAPUuyI5ADlWBvtQmpBEKpvk9Md5lCuZCJIarSApXkRKpItVV0cdVk9LCTbrrXAKl1pfyYBZViVnU+QmT65NDMCOHxIyBpGQNIr3fIPrmDCEjM9sbHSPSDWmIoIhInGWMnQmr/pft77/coQQrEgrx0bJF7C54iAN2vMhoiqlxiaxMO5y1B53G+GO+xrS+WbELXES6vb7Zg5lx1vXA9VRXV7N65X+p2LCCup2fklyxicT6MpLDFfSp3+VPbACOABELUBfoQ1nSQEoS0ggnphNJTMf69COYPoCkvgNJyRpIRv/B9M0ZSnpGFgMDAQbG+XhF4kkJlojIfjJq0hGUP55KZO0i4LJ92rayvJS1S56kftVzjNq1mPGUUecS+KDPNNYddBrjjjqLqf36d0rcItKzpKamMn7aF2HaF+MdikiPpARLRGQ/CSQk8lHmTCbtepmK3SWkZ7acEIVD9axf+QZFK16kz+Y3GFezgnwLsdul8XHG4aw76ETGzfwqh2Tp3nwiIiJdiRIsEZH9KPPYK+nz2Ius+Ps3GH/5vSSnZoBzlGzfyLYP36Li03dI3vEuo6ve5wCr5gDg08BI3h3yNfpMOpmx077EtOSUeB+GiIiItEAJlojIfjRmyixeXXYFR2/4I3W/zqPYMkingv7U0x+IOGNjMJcPco7HRh3FyMOOZ9SQEYyKd+AiIiLSLkqwRET2s6Mu/hXL3zyG3e8+QVLdLsLJWQSycsnIO5Tc8Yczsl9/RsY7SBEREflclGCJiOxnZsaUL5wAXzgh3qGIiIhIjMX+TpciIiIiIiK9lBIsERERERGRGFGCJSIiIiIiEiPmnIt3DI3MrAhYH+84msgBdsY7CNlvdL57D53r3kPnunfR+e49dK57l654vkc65wY0LexSCVZXZGYFzrmp8Y5D9g+d795D57r30LnuXXS+ew+d696lO51vDREUERERERGJESVYIiIiIiIiMaIEq21/iXcAsl/pfPceOte9h85176Lz3XvoXPcu3eZ86xosERERERGRGFEPloiIiIiISIwowRIREREREYkRJVitMLPZZvaRma0xsxviHY/EjpkNN7NXzGyVmX1gZlf65f3N7AUz+8T/2S/esUpsmFnQzN41s6f95VFm9pb//l5oZknxjlFiw8yyzOxhM/vQzFab2RF6b/dMZna1/zd8pZktMLMUvbd7DjP7u5ntMLOVUWXNvpfNc7t/3leY2aHxi1z2VQvn+jf+3/EVZvaYmWVFrfuRf64/MrMT4hJ0K5RgtcDMgsAfgBOBCcA5ZjYhvlFJDIWAa5xzE4AZwHf883sD8JJzbgzwkr8sPcOVwOqo5f8FbnPOHQjsAr4Rl6ikM/we+Ldz7iDgYLzzrvd2D2Nmw4DvA1Odc5OAIHA2em/3JHcDs5uUtfRePhEY4z8uA/60n2KU2Libvc/1C8Ak51w+8DHwIwD/89rZwER/mz/6n9u7DCVYLZsOrHHOrXPO1QEPAnPiHJPEiHNuq3Numf+8HO8D2DC8c3yPX+0e4LS4BCgxZWa5wEnA3/xlA44DHvar6Fz3EGaWCRwF3AXgnKtzzpWi93ZPlQCkmlkC0AfYit7bPYZz7jWgpElxS+/lOcC9zrMEyDKzIfslUOmw5s61c+4/zrmQv7gEyPWfzwEedM7VOuc+BdbgfW7vMpRgtWwYsDFqeZNfJj2MmeUBhwBvAYOcc1v9VduAQfGKS2Lqd8D1QMRfzgZKo/5w6/3dc4wCioB/+ENC/2Zmaei93eM45zYDtwIb8BKr3cBS9N7u6Vp6L+tzW892CfCc/7zLn2slWNKrmVk68AhwlXOuLHqd8+5hoPsYdHNmdjKwwzm3NN6xyH6RABwK/Mk5dwhQSZPhgHpv9wz+tTdz8JLqoUAaew8xkh5M7+Xewcx+gndpxwPxjqW9lGC1bDMwPGo51y+THsLMEvGSqwecc4/6xdsbhhT4P3fEKz6JmSOBU82sEG+o73F41+hk+cOKQO/vnmQTsMk595a//DBewqX3ds/zJeBT51yRc64eeBTv/a73ds/W0ntZn9t6IDO7CDgZONd9dvPeLn+ulWC17B1gjD8bURLexXRPxjkmiRH/Gpy7gNXOud9GrXoSuNB/fiHwxP6OTWLLOfcj51yucy4P7338snPuXOAV4Ey/ms51D+Gc2wZsNLNxftEXgVXovd0TbQBmmFkf/296w7nWe7tna+m9/CRwgT+b4Axgd9RQQumGzGw23vD+U51zVVGrngTONrNkMxuFN7HJ2/GIsSX2WTIoTZnZV/Cu3QgCf3fO3RzfiCRWzGwm8DrwPp9dl/NjvOuwHgJGAOuBs5xzTS+wlW7KzI4BrnXOnWxmB+D1aPUH3gXOc87VxjE8iREzm4I3oUkSsA64GO8LRb23exgz+wUwF2/40LvApXjXYui93QOY2QLgGCAH2A78HHicZt7LfpJ9J94w0SrgYudcQRzCls+hhXP9IyAZKParLXHOXe7X/wnedVkhvMs8nmvaZjwpwRIREREREYkRDREUERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBGRLsbM8szMmVlCvGOR3sHMPjCzY+Idh4hIT6AES0REuj0zm29mFf6jzszqo5afi3d8XZ1zbqJzblEs2/STtoqoR8jMnorlPkREuiJzzsU7BhGRHsXMEpxzoQ5snwd8CiR2pJ3eyszmAQc6585rZl2Hzs3+1J1ibYuZGbAO+Llz7t54xyMi0pnUgyUiEgNmVmhmPzSzFUClmSWY2Qwz+6+ZlZrZe9FDsMxskZn9j5m9bWZlZvaEmfVvoe2LzWy1mZWb2Toz+1aT9XPMbLnfzlozm+2XZ5rZXWa21cw2m9kvzSzYxnGMNrOXzazYzHaa2QNmlhW1rsTMDvWXh5pZUcNxmdmpfq9FqX9845u8Ptea2Qoz221mC80sZd9f6X3XwrlxZnZgVJ27zeyXUcsn+69pqX8O89u5r2PMbJOZ/dh//QrN7Nyo9SeZ2bv+udroJ4MN6xqGhn7DzDYAL/vl/zKzbf7r9pqZTWwS9x/N7Dm/l+gNMxtsZr8zs11m9qGZHdLO1+hL7TnGz+koIAd4pBP3ISLSJSjBEhGJnXOAk4AsYBDwDPBLoD9wLfCImQ2Iqn8BcAkwBAgBt7fQ7g7gZKAvcDFwW1SSMx24F7jO3+9RQKG/3d1+uwcChwDHA5e2cQwG/A8wFBgPDAfmATjn1gI/BO43sz7AP4B7nHOLzGwssAC4ChgAPAs8ZWZJUW2fBcwGRgH5wEXNBmA2009sWnrMbOMYmtN4btrqFfITkr8D3wKygT8DT5pZcjv3NRgvmRgGXAj8xczG+esq8c57lh/PFWZ2WpPtj8Z77U/wl58DxgADgWXAA03qnwX81N9nLfCmXy8HeBj4bTvjbpaZ3dDa+WhnMxcCjzjnKjsSi4hId6AES0Qkdm53zm10zlUD5wHPOueedc5FnHMvAAXAV6Lq3+ecW+l/6PwZcFZzPUzOuWecc2ud51XgP8Asf/U3gL87517w97PZOfehmQ3y93WVc67SObcDuA04u7UDcM6t8duqdc4V4X04Pzpq/V+BNcBbeInhT/xVc4Fn/G3rgVuBVOALTV6fLc65EuApYEoLMSx2zmW18ljc2jG0IPrctOUy4M/Oubecc2Hn3D14icuMfdjfz/zX8FW8RPssAOfcIufc+/65WoGXlB7dZNt5/jmr9rf5u3Ou3DlXi5fsHmxmmVH1H3POLXXO1QCPATXOuXudc2FgIV5y/bk5537d2vloa3s/GT8TL+EXEenxlGCJiMTOxqjnI4GvNfmmfyZeUtJc/fVAIl6vwx7M7EQzW+IPzyvFS5wa6g0H1jYTy0i/va1R+/8zXi9Ii8xskJk96A8pLAPubyamvwKTgDv8D/3g9Xitb6jgnIv4xzcsarttUc+rgPTWYomxjW1XaTQSuKbJuRuOd4ztsatJT836hm3N7HAze8UfWrkbuJy9X9/GWM0saGa/Nm/oZxmf9U5Gb7M96nl1M8v783VuzleBEuDVOMchIrJfKMESEYmd6FmDNuL1UEV/25/mnPt1VJ3hUc9HAPXAzugG/WFpj+D1CA3yewyexRvK17Cf0c3EshGv1yUnav99nXMTm6kb7Vf+cUx2zvXF64lr2Bdmlg78DrgLmGefXTe2BS8xaahn/vFtbmN/ezGzWbbn7HNNH7PabmUvTWd0qgL6RC0Pjnq+Ebi5ybnr45xb0M599TOztKjlEXivD8A/gSeB4c65TGA+Ua9vM7F+HZgDfAnIBPL88qbbdBr/erIWz0c7mrgQuNdpVi0R6SWUYImIdI77gVPM7AS/FyLFnwAhN6rOeWY2wR9CdRPwsD+sK1oSkAwUASEzOxHvWqoGdwEXm9kXzSxgZsPM7CDn3Fa8oYT/Z2Z9/XWjzazpcLSmMoAKYLeZDcO7tiva74EC59yleEPf5vvlDwEn+XEkAtfgJXj/beuFaso597pzLr2Vx+v72mYzlgNf98/NbPYcpvdX4HK/t8nMLM28ySkyoHFiibvbaP8XZpbkJ4MnA//yyzOAEudcjX/93NfbaCcD73UsxksIf7UPxxgTzrlftXY+WtvW/30/Frhn/0QrIhJ/SrBERDqBc24jXs/Dj/GSo414yUr039378K5L2QakAN9vpp1yv/whYBfeB/Ino9a/jT/xBbAbbxhWQ0/SBXgJ2ip/24fZc4hic34BHOq39QzwaMMKM5uDN0nFFX7RD4BDzexc59xHeL1dd+D1wp0CnOKcq2tjf/FyJV6MpcC5wOMNK5xzBcA3gTvxXrc17Dkhx3DgjVba3uZvtwVvQorLnXMf+uu+DdxkZuXAjXjntTX34g0x3Ix3Hpe0dWBdzPnAm/4EKSIivYLugyUiEgdmtgi43zn3t3jHIu3nz4r4HpDvT+bRdP0xeOc1t+k6ERHpHRLiHYCIiEh34ffIjW+zooiI9FoaIigi0suY2fwWJiyY3/bW0h2Z2YhWJqoYEe/4RER6Eg0RFBERERERiRH1YImIiIiIiMRIl7oGKycnx+Xl5cU7DBERERERkVYtXbp0p3NuQNPyLpVg5eXlUVBQEO8wREREREREWmVm65sr1xBBERERERGRGFGCJSIiIiIiEiNKsERE2lAfjsQ7BBEREekmutQ1WM2pr69n06ZN1NTUxDsU6WZSUlLIzc0lMTEx3qFIN7ZmRwXz7/xfjjn2eE4+dla8wxEREZEurssnWJs2bSIjI4O8vDzMLN7hSDfhnKO4uJhNmzYxatSoeIcj3dimRXdxa+B2lrzxXzj2pXiHIyIiIl1clx8iWFNTQ3Z2tpIr2SdmRnZ2tno+pcMytr8NwID6LYQjujG7iIiItK7LJ1iAkiv5XPR7I7Fg1bsAGMVWtu4oinM0IiIi0tV1iwRLRCReUkJlAATMsX3t8vgGIyIiIl2eEqx2MDOuueaaxuVbb72VefPmxS+gKEuWLOHwww9nypQpjB8/vjGuRYsW8d///vdzt7t+/XoOPfRQpkyZwsSJE5k/f36MIhbpXtLCZWwODAWgbOvaOEcjIiIiXV2Xn+SiK0hOTubRRx/lRz/6ETk5OTFr1zmHc45A4PPnuRdeeCEPPfQQBx98MOFwmI8++gjwEqz09HS+8IUvfK52hwwZwptvvklycjIVFRVMmjSJU089laFDh37uWEW6o/RIOWv7HMywyi2w69N4hyMiIiJdnHqw2iEhIYHLLruM2267ba91RUVFnHHGGUybNo1p06bxxhtvADBv3jxuvfXWxnqTJk2isLCQwsJCxo0bxwUXXMCkSZPYuHEj1113HZMmTWLy5MksXLgQ8BKkY445hjPPPJODDjqIc889F+f2vsB+x44dDBkyBIBgMMiECRMoLCxk/vz53HbbbUyZMoXXX3+91TjPP/98jjjiCMaMGcNf//pXAJKSkkhOTgagtraWSKT5+wDdfvvtTJgwgfz8fM4++2wASkpKOO2008jPz2fGjBmsWLGicV8XXnghs2bNYuTIkTz66KNcf/31TJ48mdmzZ1NfXw/ATTfdxLRp05g0aRKXXXbZXscdiUTIy8ujtLS0sWzMmDFs3769tdMosu+cI8OVsTt5MCWWSVL5pnhHJCIiIl1ct+rB+sVTH7BqS1lM25wwtC8/P2Vim/W+853vkJ+fz/XXX79H+ZVXXsnVV1/NzJkz2bBhAyeccAKrV69uta1PPvmEe+65hxkzZvDII4+wfPly3nvvPXbu3Mm0adM46qijAHj33Xf54IMPGDp0KEceeSRvvPEGM2fO3KOtq6++mnHjxnHMMccwe/ZsLrzwQvLy8rj88stJT0/n2muvBeDrX/96i3GuWLGCJUuWUFlZySGHHMJJJ53E0KFD2bhxIyeddBJr1qzhN7/5TbO9V7/+9a/59NNPSU5Obkx4fv7zn3PIIYfw+OOP8/LLL3PBBRewfPlyANauXcsrr7zCqlWrOOKII3jkkUe45ZZbOP3003nmmWc47bTT+O53v8uNN94IwPnnn8/TTz/NKaec0rjPQCDAnDlzeOyxx7j44ot56623GDlyJIMGDWrzPIrsk7pKkghRl5hJSeIQ0qs3xzsiERER6eLUg9VOffv25YILLuD222/fo/zFF1/ku9/9LlOmTOHUU0+lrKyMioqKVtsaOXIkM2bMAGDx4sWcc845BINBBg0axNFHH80777wDwPTp08nNzSUQCDBlyhQKCwv3auvGG2+koKCA448/nn/+85/Mnj272X22FuecOXNITU0lJyeHY489lrff9qalHj58OCtWrGDNmjXcc889zfYQ5efnc+6553L//feTkJDQeEznn38+AMcddxzFxcWUlXmJ8YknnkhiYiKTJ08mHA43xjt58uTG43vllVc4/PDDmTx5Mi+//DIffPDBXvudO3duY2/fgw8+yNy5c1t9zUU+F38GwfqkTCpShpBVvyPOAYmIiEhX1616sNrT09SZrrrqKg499FAuvvjixrJIJMKSJUtISUnZo25CQsIew+qi78eUlpbWrv01DNEDb/hfKBRqtt7o0aO54oor+OY3v8mAAQMoLi7eq05LccLe05k3XR46dCiTJk3i9ddf58wzz9xj3TPPPMNrr73GU089xc0338z777/frmMKBAIkJiY27isQCBAKhaipqeHb3/42BQUFDB8+nHnz5jV7L6sjjjiCNWvWUFRUxOOPP85Pf/rTVvcr8rnUlAIQTs4kkjaYnN3/pa4+TFJiML5xiYiISJfV4R4sMxtuZq+Y2Soz+8DMrvTL+5vZC2b2if+zX8fDja/+/ftz1llncddddzWWHX/88dxxxx2Nyw1D4fLy8li2bBkAy5Yt49NPm784ftasWSxcuJBwOExRURGvvfYa06dPb3dMzzzzTOM1Sp988gnBYJCsrCwyMjIoLy9vM06AJ554gpqaGoqLi1m0aBHTpk1j06ZNVFdXA7Br1y4WL17MuHHj9th3JBJh48aNHHvssfzv//4vu3fvpqKiglmzZvHAAw8A3rVkOTk59O3bt13H05BM5eTkUFFRwcMPP9xsPTPj9NNP5wc/+AHjx48nOzu7Xe2L7AtX7/0+BhJTCWYOJc1q2bFzZ5yjEhERka4sFkMEQ8A1zrkJwAzgO2Y2AbgBeMk5NwZ4yV/u9q655hp2Rn3Auv322ykoKCA/P58JEyY0Tmd+xhlnUFJSwsSJE7nzzjsZO3Zss+2dfvrp5Ofnc/DBB3Pcccdxyy23MHjw4HbHc9999zFu3DimTJnC+eefzwMPPEAwGOSUU07hsccea5zkoqU4wRvmd+yxxzJjxgx+9rOfMXToUFavXs3hhx/OwQcfzNFHH821117L5MmTAbj00kspKCggHA5z3nnnMXnyZA455BC+//3vk5WVxbx581i6dCn5+fnccMMN3HPPPe0+nqysLL75zW8yadIkTjjhBKZNm9a4bv78+XvEPXfuXO6//34ND5ROU1frfclgiSkkZ+cCsHNrYRwjEhERka7OmpuZrkMNmj0B3Ok/jnHObTWzIcAi59y41radOnWqKygo2KNs9erVjB8/PqYxymfmzZu3x2QYPY1+f6QjKj94nrR/ncX/b+/Ow+Oo7nz/v79V3VJrtWRZ8iJ5EV7wbgzyEgzEENYJgUyAwNyQBJwZbjLMJPBklqxkYG5+v8xwb3LnZr0kEE/yEAwhGXAmCUsAJ3GGzdgG2xiDwfIqybIWa1dv5/7RbVnW4k0ttZbP63nk7jp1quorlUvqb51T5/yq4t9ZWppD2ZM38qf3/YhVV92U7tBEREQkzczsNedcRc/ylA5yYWYzgKXAy8BE51xVclU10OcQb2Z2h5ltMrNNtbW1qQxHRGRAIp1tAPgZIQonTQegs/FQOkMSERGRYS5lg1yYWS7wC+Au51xT94ESnHPOzPpsKnPOPQA8AIkWrFTFI6fnn/7pn9IdgsiwFUl2EQxkZJGT7CIYP6oES0RERPqXkhYsMwuSSK4eds79Mllck+waSPJV4xuLyIgSTSZYwVA2ZGTTTA5+S3WaoxIREZHhLBWjCBrwILDTOffNbqvWA59Mvv8k8ORAjyUiMpSi4WSClZmY3qAxMIFQh+4ViYiISP9S0UVwFfBxYJuZbU2WfQn4BvCYmX0K2At8NAXHEhEZMrFjCVZGNgCtmSXkt+lZUREREenfgBMs59xGwPpZ/YGB7l9EJF3iyXmwgqFEghXJLmFCy7vE4g7f6+/XnoiIiIxlKR1FcDR74oknMDPeeuutfutUVlaycOHClB1z165drF69mvPOO4958+Zxxx13AIlJgn/zm9+c9X47OjpYvnw5S5YsYcGCBXzta19LVcgio0o8nEiwMkOJLoIubwrFNFLX1JbOsERERGQYU4J1mh555BEuuugiHnnkkT7XR6PRAR8jFoudsPzZz36Wu+++m61bt7Jz507+9m//Fhh4gpWZmcnzzz/P66+/ztatW3nqqad46aWXBhS7yGjkoh10ugChjCAAgYIpBCzOkcMH0hyZiIiIDFdKsE5DS0sLGzdu5MEHH2TdunVd5Rs2bODiiy/muuuuY/78+UAi0frYxz7GvHnzuPHGG2lrS9zpfu6551i6dCmLFi1izZo1dHZ2AjBjxgz+8R//kfPPP5+f//znJxy3qqqKsrKyruVFixYRDoe55557ePTRRznvvPN49NFHaW1tZc2aNSxfvpylS5fy5JOJ8UTWrl3L9ddfz+rVq5k9ezb33nsvAGZGbm4uAJFIhEgkQvdh9Y/5+c9/zsKFC1myZAmXXHIJkGj9uv3221m0aBFLly7lhRde6DrWhz/8Ya644gpmzJjBd77zHb75zW+ydOlSVq5cSX19PQA//OEPWbZsGUuWLOGGG27o+vl0t3LlSnbs2NG1vHr1anpOQC0yFFykg06ChII+ANnJodqPHt6fzrBERERkGEvZPFhD4rdfgOptqd3npEVwzTdOWuXJJ5/k6quvZs6cORQVFfHaa69xwQUXALB582a2b99OeXk5lZWV7Nq1iwcffJBVq1axZs0avve97/E3f/M33HbbbTz33HPMmTOHT3ziE3z/+9/nrrvuAqCoqIjNmzf3Ou7dd9/NZZddxoUXXsiVV17J7bffTkFBAffddx+bNm3iO9/5DgBf+tKXuOyyy3jooYdobGxk+fLlXH755QC88sorbN++nezsbJYtW8YHP/hBKioqiMViXHDBBezevZs777yTFStW9Dr+fffdx9NPP01paSmNjY0AfPe738XM2LZtG2+99RZXXnklb7/9NgDbt29ny5YtdHR0MGvWLP7lX/6FLVu2cPfdd/OTn/yEu+66i4985CP81V/9FQBf+cpXePDBB7ta5o65+eabeeyxx7j33nupqqqiqqqKiopek2SLDDoX7aCTDEKBxL2o/OJpAHTUqQVLRERE+qYWrNPwyCOPcMsttwBwyy23nNBNcPny5ZSXl3ctT506lVWrVgFw6623snHjRnbt2kV5eTlz5swB4JOf/CR/+MMfura5+eab+zzu7bffzs6dO7npppvYsGEDK1eu7Gr56u6ZZ57hG9/4Bueddx6rV6+mo6ODffv2AXDFFVdQVFREVlYWH/nIR9i4cSMAvu+zdetWDhw40JWE9bRq1Spuu+02fvjDH3Z1X9y4cSO33norAHPnzmX69OldCdall15KXl4excXFjBs3jg996ENAouWtsrISSCRhF198MYsWLeLhhx8+oaXqmI9+9KM8/vjjADz22GPceOONff58RAZdtJNOgmRlJFqwxk2cDkCkUZMNi4iISN9GVgvWKVqaBkN9fT3PP/8827Ztw8yIxWKYGffffz8AOTk5J9Tv2dWur653PfXcR3dTpkxhzZo1rFmzhoULF/aZCDnn+MUvfsG55557QvnLL798yngKCgq49NJLeeqpp3oN0PGDH/yAl19+mV//+tdccMEFvPbaayf9PjIzM7vee57Xtex5XtczarfddhtPPPEES5YsYe3atWzYsKHXfkpLSykqKuKNN97g0Ucf5Qc/+MFJjysyaKIddLogoUAiwfLzSojiYc1VaQ5MREREhiu1YJ3C448/zsc//nH27t1LZWUl+/fvp7y8nD/+8Y991t+3bx8vvvgiAD/72c+46KKLOPfcc6msrGT37t0A/PSnP+X973//KY/91FNPEYlEAKiurqauro7S0lLy8vJobm7uqnfVVVfx7W9/G+ccAFu2bOla9+yzz1JfX097eztPPPEEq1atora2tqvLX3t7O88++yxz587tdfx3332XFStWcN9991FcXMz+/fu5+OKLefjhhwF4++232bdvX6/E7mSam5uZPHkykUikaz99ufnmm/nXf/1Xjh49yuLFi097/yKp5EU7CFsG3rEh2T2fRq+QjLaa9AYmIiIiw5YSrFN45JFH+PM///MTym644YZ+RxM899xz+e53v8u8efNoaGjgM5/5DKFQiB//+MfcdNNNLFq0CM/z+PSnP33KYz/zzDNdg0xcddVV3H///UyaNIlLL72UN998s2uQi69+9atEIhEWL17MggUL+OpXv9q1j+XLl3PDDTewePFibrjhBioqKqiqquLSSy9l8eLFLFu2jCuuuIJrr70WgHvuuYf169cD8Pd///csWrSIhQsXcuGFF7JkyRL++q//mng8zqJFi7j55ptZu3btCS1Xp/LP//zPrFixglWrVp2Q1K1fv5577rmna/nGG29k3bp1fPSjmp9a0sdinYQt44Sy5mAxOZ2H0xSRiIiIDHd2rNVjOKioqHA9R4vbuXMn8+bNS1NEI9vatWtPGAxjLNL/HxmI9+6/hIa2KBd87b+6ynZ+60MEGvcw+97e3XVFRERk7DCz15xzvUZiUwuWiEg//FiYaI8WrGjOJEqoo6Vz4HPfiYiIyOijBGsUu+2228Z065XIQPnxTqLeiQmWN24K46yNmiMNaYpKREREhrMRkWANp26MMnLo/40MlB8PE/NOfMYwo7AUgMaayjREJCIiIsPdoCdYZna1me0ys91m9oUz3T4UClFXV6cPy3JGnHPU1dURCoXSHYqMYAEXJuafmGDlTJgKQEvt/nSEJCIiIsPcoM6DZWY+8F3gCuAA8KqZrXfOvXm6+ygrK+PAgQPU1tYOVpgySoVCIcrKytIdhoxgwXiYeI8WrMJJicmGww0H0hGSiIiIDHODPdHwcmC3c+49ADNbB1wPnHaCFQwGKS8vH6TwRET6F3Rh4j1asLKKEi1YrkmTDYuIiEhvg91FsBTo3o/mQLKsi5ndYWabzGyTWqlEZDgJEsYFeszzlplHK1n4LUqwREREpLe0D3LhnHvAOVfhnKsoLi5OdzgiIgnxGBlEwe89kXZjYAJZHZpsWERERHob7ATrIDC123JZskxEZHiLdiZeA70HSmnLLCEvohZ3ERER6W2wE6xXgdlmVm5mGcAtwPpBPqaIyMBFOxKvPbsIAuHsiRTF64jG4kMclIiIiAx3g5pgOeeiwN8ATwM7gcecczsG85giIqngkgmWBXu3YLm8yRTTyJGm9qEOS0RERIa5wR5FEOfcb4DfDPZxRERSKdzRTiZ9J1iBcaUELcaRwweYVHju0AcnIiIiw1baB7kQERmOwh2J1ikvI6vXuqzkZMNNNfuGNCYREREZ/pRgiYj0IdzZBoDXRwtWfsk0ANrr9vdaJyIiImObEiwRkT5EkgmWH+zdgjUumWBFjx4a0phERERk+FOCJSLSh0hnYpCLQGbvBMvLm0gUH69ZCZaIiIicSAmWiEgfIh2tAAQyencRxPOp8yaQ1VY1xFGJiIjIcKcES0SkD9FwYpCLQGZ2n+ubMieS31k9lCGJiIjICKAES0SkD8cSrGBmHy1YQFvWFIpjNTjnhjIsERERGeaUYImI9CEWTjyDFeynBSuWV0oJ9TS3dwxlWCIiIjLMKcESEelDPJwYRTAz1HeC5RVOwzdH3aHKIYxKREREhjslWCIifYgnh2kP5eT3uT5UNB2Appo9QxaTiIiIDH9KsERE+uDCrcSdkZWd2+f6/EnnANB+WAmWiIiIHKcES0SkDxZpo50MsjMDfa4vnjoTgGjDvqEMS0RERIa5ASVYZna/mb1lZm+Y2X+YWUG3dV80s91mtsvMrhpwpCIiQynSRjuZBP2+f00GQ7k0kI/fdHCIAxMREZHhbKAtWM8CC51zi4G3gS8CmNl84BZgAXA18D0z8wd4LBGRIeNHWumwvodoP6Y+OJGstkNDFJGIiIiMBANKsJxzzzjnosnFl4Cy5PvrgXXOuU7n3B5gN7B8IMcSERlKXrSd9lMkWK2hSRRENNmwiIiIHJfKZ7DWAL9Nvi8F9ndbdyBZ1ouZ3WFmm8xsU21tbQrDERE5e36snbBlnbRONLeMkvgRwpHYEEUlIiIiw90pEywz+52Zbe/j6/pudb4MRIGHzzQA59wDzrkK51xFcXHxmW4uIjIogrF2wt7JW7C8wmlkWyfV1XoOS0RERBL6Hh6rG+fc5Sdbb2a3AdcCH3DOuWTxQWBqt2plyTIRkREhEG8n6pectE5WcWIurLpD7zFt6rShCEtERESGuYGOIng18A/Adc65tm6r1gO3mFmmmZUDs4FXBnIsEZGhlBHvIOKfvItgweTEXFgtmmxYREREkk7ZgnUK3wEygWfNDOAl59ynnXM7zOwx4E0SXQfvdM7pIQURGTFC8XaifvZJ6xSVzgYgUlc5BBGJiIjISDCgBMs5N+sk674OfH0g+xcRSZdM14ELnjzBCuQW0UYIv2n/SeuJiIjI2JHKUQRFREYH5wjRAadIsDDjSGASWW16xFREREQSlGCJiPTgIu34OCwz95R1W0JTKAxXDUFUIiIiMhIowRIR6aGtqS7xJqvglHXDeWVMjB+mIxw9ZV0REREZ/ZRgiYj00NqYmPTcyx5/yrpe4XTyrZ3qmurBDktERERGACVYIiI9dDQdASCYW3TKulkliaHa6w7uHtSYREREZGRQgiUi0kNnc6KLYDD31C1YBVNmAtBS896gxiQiIiIjgxIsEZEeIskEK5Q/4ZR1xyfnworW7x3UmERERGRkUIIlItJDpCWRYOUXlpyyrp9dSCtZ+EeVYImIiIgSLBGRXqKt9YSdz4TxhaeubEZdcBLZbYcGPzAREREZ9pRgiYj01N5AE7mEMgKnVb0lNFlzYYmIiAigBEtEpJdARx3N3rjTrt+ZO41JrlZzYYmIiEjqEiwz+7yZOTObkFw2M/s/ZrbbzN4ws/NTdSwRkcGU23mYxmDxadf3CqeRZ+3UHNZcWCIiImNdShIsM5sKXAns61Z8DTA7+XUH8P1UHEtEZLAVRGtpzZx42vVDJeUA1GsuLBERkTEvVS1Y3wL+AXDdyq4HfuISXgIKzGxyio4nIjIoXLSTwngjkZxJp73NuEmJubBaNReWiIjImDfgBMvMrgcOOude77GqFNjfbflAsqzn9neY2SYz21RbWzvQcEREBuTo4QN45ggUlp32NkVlx+bCqhykqERERGSkOK0hsszsd0Bft3O/DHyJRPfAs+KcewB4AKCiosKdorqIyKCqPfgeBUDuhKmnvU0wp5AWsvGP7j91ZRERERnVTivBcs5d3le5mS0CyoHXzQygDNhsZsuBg0D3TyhlyTIRkWGr+dAuAArKzj39jcw4EphIdpt+xYmIiIx1A+oi6Jzb5pwrcc7NcM7NINEN8HznXDWwHvhEcjTBlcBR55wmihGRYc3V7qLTBZg0fe4ZbdccKqVAc2GJiIiMeYM5D9ZvgPeA3cAPgb8exGOJiKRERuO7HPAmkxXKPKPtwrllTIwfJhqNDVJkIiIiMhKcVhfB05VsxTr23gF3pnL/IiKDrbBtD9VZM894OyucRm51BwdrqigtPf0BMkRERGR0GcwWLBGREaWjuYGy+CE6Jiw4421Dxcm5sA5pLiwREZGxTAmWiEjS/h1/AiBz+vIz3jZ/0jkAtFRrLiwREZGxTAmWiEhSw65EgjVj8aoz3nbC1DkAROr2pjQmERERGVmUYImIJOUd2sg73jkUF/c17d/JhXILaSWENR8YhMhERERkpFCCJSICdLQ0MKtjBzUlZ956BYAZ9X4xmW3VqQ1MRERERhQlWCIiQOWrvyVoMUJzrzrrfTRnTiS/syaFUYmIiMhIowRLRARo3vE0LS7EucsuO+t9dGZPZnyslsQsFSIiIjIWKcESkTEvGglTfmQDb+ctJy8n56z34/JLKbFGGptaUhidiIiIjCQpnWhYRGQkevO//pPFNLJ/0U0D2k+wcCoAhw/toXDc4lSENuyEw2Gq3ttB/cG3aT1ciTUfxDqOYpF2PBclYpkQzCKSPRG/aAbjSucyc+FycrOz0h26iIjIkFCCJSJjXufmdTSRzfz33zCg/WQXTweguWYvzBv5CVY8Fue9t7ZQ9+YL2KHNFDTtYnp0L9MtwvRknajzaLEcOi1EzAJkuE5CroPc+jY4ALwOHb8OsiMwi8MTVpK/+M9YULGaUGZGOr81ERGRQaMES0TGtPbWZuY3/p4d4z/A8tDZdw8EKJxUntjnkZE7F9bB93ZyaNN6/H1/YnrLVmZxlFlAA3kcDM3mjZKbYdIC8kvnMGnqbPInlFLg9/5TEm9vouHQbmrefZ2OylfIP7KZS6rX4tf8mPpn8ng9bznx2Vcx58LrKCqePKTfYzgcobbmAA1VlXTUHyTWXE2svYl4RzNepIVAtA0/1k48HsfF4wB4BmZG1A8R8ULEA1l4Gdl4GdkEMnPws/IJZueRkV1AZs44snLzyc4rJCdvHH5mHvTxMxpUzkEsAvEILhYmFokQjYaJRMLEolGisThRZ0RiEHOAge95+J6HeR6+52Me+J6P7/uY7xPwfDzPw/d9fM/H830wr9uXDe33KCIyTCnBEpExbeeGdZxvHWRf8N8GvK+CSTMAiDWOnLmwYtEo77z2HA1bf8Wkmt9THt9HKVBFMe+NW0nljFVMXnw5k8vnUeid/mO7XlY+RTPPp2jm+cDtAHQcrWXXS+sJv/U0cxpepHDLc8Q2/yNvBudyZNIljJ93CeWLVpGTX3jW30+0vZm66r001uyltXY/kcaD0HSIYFsNOZ2HKYgeocg1UGpxSntsG3dGm4VoJ0SnhXDmAYmkwSX/zXBhMl0nWXQQInzacXWQQbtl0WHZdHjZdPpZhL1sIn4WZh6eARju2LGS//gugh8P48WjXe99FyXgIgRcJPGeCAEXxSeGT4wAUQLEu45tJP7YB4DQ2f1YT1vMGXE8HEbcDIdHnOOv3d93Z7gey5x0Pb3qu27ve+q/bld9d7L1Jx+05sRj967bV9rZ9z5dv/VPtW2HZVJ703rKFyw/xdYiMhQGnGCZ2d8CdwIx4NfOuX9Iln8R+FSy/LPOuacHeiwRkVTzdzxODUXMe981A96XF8qliVz8lkMpiGzwxGMxdr3yDE2b1jGn7nnm0kTE+ewKLeaVGTczqeI6ps5axOQUt0iExhUz/6pPwVWfwsWivPvGRuq3/ieFhzZwyYH/Cwf+L/FnjL1eKY3Z0wjnlELeRCyYhWVk4wcysGgH8XAb8c5W4u0NBNpqyeo8Qk6knsJ4Pbm0MRGY2O24zS6Len8CzcEJ7M9dxt7cyfjjSgkVlZIzYSo5RWXkF44nM5RHrueRe9o/yDgd7S20tDTR1txIe8tROlubCLceJdzelGgV62zBdTZj4Ra8cCt+tIWMWBuZ8Xayo3VkuE7c8Yyqx4dnI2JBogSIWgadXoCY5RLzAsS8DOIWJO4lvpwXwCVf8QLgBcEP4vwg5gXAD2LHvjwf3zMCZvieS4525XAuTjzuwMWJO3Auhou7RCueiyeX4ziXXO4qj2MuDs5hLpZoPSOx7lg5dK8TxyPeOyXq9d+tR0Gv/48nW3/yui5Z91hpohHveB2H9ZvpWLftSW7n+lnXfzzJY/Qq673Qd71uZS7OhdU/pealR5VgiQwTA0qwzOxS4HpgiXOu08xKkuXzgVuABcAU4HdmNsc5FxtowCIiqdJUV8P81ld5ddItTPT9lOyzPlBCVltVSvaVapXbX+Twn37C9KqnmUcdbS6TN/NX4eZ9iHMvvJ6FBUVDFov5AWYuXc3MpasBaGmoYffWP9C+ZxNZR94gr/0gJS1byDvc3u8+WlyIeiukKTCeqtA57A2twOVOwi8oJauojHETpzNhynTy8wvJG4xvwvMI5eQTysmHiWWDcQSR07Lrf7xC4aHf45zD1FVTJO0G2oL1GeAbzrlOAOfc4WT59cC6ZPkeM9sNLAdeHODxRERSZtfzP2WZxSi+8NaU7bM1NJH81uGTYLU21bPj6YcY/9bPmBV7lynOZ0f2MvbN/wLzV3+UiryCdIcIQG7hRM679Ca49PhIjs45mlpb6GxrJdLRSmdnJ5aRTUZWDtnZOYzLySJXHyZFaDnnGi54+1u8s2MTsxcuS3c4ImPeQBOsOcDFZvZ1oAP4O+fcq0Ap8FK3egeSZb2Y2R3AHQDTpk0bYDgiIqcv550nqLQyZi1ambJ9RnKmMKV5G9FYnICfvqkG9277I0de+AHz6p5luXXynjeDF+d+gTkfuJ2lxZPSFteZMDPyc/Mgd1Dan0RGjdlX/nfCu77NkQ0/UIIlMgycMsEys98Bff01/nJy+/HASmAZ8JiZnXMmATjnHgAeAKioqDj5k6QiIilSe/A95nZu56XpdzDjDAZvOKVxZRTWtFBV38Dk4qHrcgcQjUbZ/LtHyX3te8yPbGeCy+T1wsspuOgvmXv+as5J5fcpIsNG/oTJbB63moW1v6ahoZ7CwvHpDklkTDtlguWcu7y/dWb2GeCXzjkHvGJmcWACcBCY2q1qWbJMRGRY2LPhpxSbo/Tij6d0v5njE7/6jhx6b8gSrLa2Frb85wOU7vwRy91Bqq2Y/5r1eeb+2Z28b/zQJnkikh5FH/gsef/xOzY++U0uuu1/pDsckTFtoLcznwAuBTCzOUAGcARYD9xiZplmVg7MBl4Z4LFERFJm/J5f8bY/i+mzF6V0v7kTZwDQUlOZ0v32pf5IDRsf+iJt/zqfVW/eS9wP8fqK/0XJl97kwlvvYbySK5ExY/qS97MtaxkLKtdy9GhDusMRGdMG+gzWQ8BDZrYdCAOfTLZm7TCzx4A3gShw50gcQXDvzteo2fF7xs+soHTO+WTlnPbgvSIyjB0+8C6zou/wp/LPMSfF+y4sOxeAaO07Kd7zcQf37GLvr+9nSe16LrJOtmcto+7iz3Hu+67VZK8iY1j2lV+h8Mnr+eO6f+Li//5v6Q5HZMwaUILlnAsDfQ6/5Zz7OvD1gew/3ape+xUrd38LticmTzzolVCfUUpH3nTiheUEis4hp2Qa40umUjSxFD+Yme6Qh55LzJmCi0M8Bi5GPBYlFo8TiztisThR53CxONF41xSayXlRunZy4qs7cdn6nBgkBY/rnfUH0ZNsd+oZIs/yKGcf61kN2dvPNqfe0+kdq+9pYs7ue3TOiDuXnLfHEQfiziUmbI07nCO5/nidgxt/TgkwpeKDZ3XMk8mdMJUWsvDqUp9gvbN1I0ef+1+c17SBEow3Ci+n+MrPs3D+ipQfS0RGnplLV7P591ex4tBPqdz5CWbMuyDdIY0oLh4j0tlBJNxBNJx8jUaIRqJEYzHi8RguFsOR+Mzj4sfmg4sl54mLQTye+GhEt9ntzLCuv8eW+HtnybnXkpOMc2xi8+SyGZglJu1OFB3bPtH5LLGr5P4APMO61iWPeewYGOYd+xvbfdm6HTOxnSXjOHbMY1/W8/PEsXiSz/Z2HScZl+F1/Vnv2qorHvpYd3wmuuPrusXmeWTl5BNM4+BRZ8JcKj6opkhFRYXbtGlTusPo4uIxDlXuovrtV4kd2kag4V1y2w8wMXKQcdbaq34juTRaAe1+HuFADtFALvGMPGLBXOKBLPAzsMCxyR4z8AJB8ILEzcdcDOcSk0w6XDJxSV6exyZtjEUSSUzy1eIRLB6FeARzUYhHsXgULx4Fl3g1F0u+RvG6l7kovoviuRiei2HEu70mJoE0F8Mj8f5Y2bEvnzgeMfxTzHAvMlzVUcD4e/ZggzDww7tfX0Yz2Zz35d8PeF8uHmfb73+J99K3Wdi5lRaXxY7Jf845H/o7iktnpiBaERlN6g4fxP/ecuq8Yko//4fEPG2jUCQSprG+lpbGI7Q31hJpPUKstZF4RzPxzmZcZyuEW/AirfiRVvxoG8FYG8F4GxnxDoIuTNBFCBIhw0UIEiVoI66z1ZixIbaElpvWce3iKekO5QRm9ppzrqJn+UC7CI5q5vmUnjOf0nPmn1DunONoQy11+3fRcmQ/bfVVRJtqCLbXktlxhGCkmexoExnharJa2shxbeRYx6DEGHE+MTyiBIjgE8MnZonXKD5RAsTteHnYAsQIELcM4pZF3ALEPR+HhzMfZ4lXjpV5PiTLzHyc54H5OC+5bH7iA6p54PmY50OyzMzD88BIvHrJOy3HZ7k/fieka1b67rc5updz4l2TxLqzN6BOVP3elDhVRGcZ8VluZrgBNPT1teFp7CylxzudzdzxG2xdd/wSZ9eDrrtlZuB13VVLnP/8mcspGqRR9Vrzz2HKkZeJxeL4Z3m3LdzRxrbf/pCibT9icXwfhxnPizM/x4IPfY4VQzghsIiMLEUlpbyx+t9Y+MJfsvV7/43Fn/sFgYyR0cMmFotTf6SK+qpKWg7vpbP+AK7pIMHWarI6awlFm8iONZEXbybf2igGivvZV9wZbYRotxDtlkWnl0XYy6Y1UERTIAvnZxL3M3BeEOdn4vwMnJ8JfgYEMrBABuZnYoEMfN/D8wJdn21IfjbCfOhWZuYlb9oZHi7xx6brhjmAS0wG7RI307vfWD9WlvhzePwme9c6R9d+HC75N75br56uY8S7ylyvdcdv3Pe57tiNfXrv93iMdNWzXvF038/xI3btvkdp3+uOH/r4akc0NIV5k0fOzQIlWGfBzBg3voRx40tOfyPniMeihMOdhMOdRJJfLhYGF09clCc0xXrJptpkUuIZgUAmXiCIHwgSCGbgeQECvkfQG1C6ICIpFp10PiV1T7G38m2mz5x7RtserT3IO7/+35xTuY4LaOJdr5xXz/s6S675S96XGRqkiEVkNFm8+kZernqLFbvu5/VvXcfMT/+M3HHpvTETi8WoP3yQuqo9tB7eR7jhAO7oQQKtVeR01DAuWktxvI5ii5yQNMWcccTGczRQRFuggKPZ0zmQWYDLGo+XXUggt4iM3CKCeUVk5o4nlFtIVk4+Obl55AZ89PS8pIMSrKFihhcIEgoECWXrchcZzQrmXgI7/j+qt71wegmWc7yzZQMNf3iAJQ3PUmERNodWsO99d7Lk4g8xU/NXicgZWvEXX+GlxzKo2PH/c+Rby3lr2Ze44JrbEj1NUiwWjXCkeh8N1ZW01e6js/4ANB0k2FZNTkcNBZFaJrh6ii12QvIUdj51XhFHg8UczpvPoZzJ2LhSMsZPJbd4GuMnzaCgpJSJfpCJKY9aZPDoGSwRkRRzsSiN/1zOnpzzOP/vf9Vvvaa6w7z9uweZ8PY6ZsQqaXOZbJtwDRMuv4uZ85YOYcQiMlrt3PQ8Wb+9ixmxvVRbMfumXEPO3MuYtvBC8gpKTjrAkIvHaTlaS2PNfpprD9DReIhoYxWuuZqMtmqyO2oojNZS5BrwTxyRig4X5Ig3gaPBYtqzJhLNmYyNKyNUVJZIniaXUzBh8qAkfCJDpb9nsJRgiYgMghe//2kqqh/j8MdfoHTWkq7y1qP17P7T47gdTzCv5RUyLcIubxZ1c/+ChVetIX/c+DRGLSKjUSwaZfNTawluX8fC9tcIWOI5nTaXSYNXSIefk3zm2fBdlFC8lSzXRo5r73Pgh1YXotafQHOwhPasScRyJuMVTEkmTzOYMGUG+YUlgzKIkMhwogRLRGQI1RzcQ+YDFxH2MjlQ+kHikQ7yG7Yzo3MXGRajhvFUlnyA8avWMGvx+85uOH0RkTPUUH+Evds20rp3C15LFcH2WrxIG5YcqCBuPtFgYgRkl5EHuRMIjptCqHAKeRNKKZg4lXHjCvU7SwQlWCIiQ27Hpt/j/fbvmBV9lwgB9gTOoan4fHKWfJh5yy4jGNBjsCIiIiOVhmkXERliCyreDxWv0toZJSPgsWCETJAoIiIiZ08JlojIIMvJ1K9aERGRsUK3U0VERERERFJECZaIiIiIiEiKKMESERERERFJkWE1iqCZ1QJ70x1HDxOAI+kOQoaMzvfYoXM9duhcjy0632OHzvXYMhzP93TnXHHPwmGVYA1HZrapr+EXZXTS+R47dK7HDp3rsUXne+zQuR5bRtL5VhdBERERERGRFFGCJSIiIiIikiJKsE7tgXQHIENK53vs0LkeO3Suxxad77FD53psGTHnW89giYiIiIiIpIhasERERERERFJECZaIiIiIiEiKKME6CTO72sx2mdluM/tCuuOR1DGzqWb2gpm9aWY7zOxzyfLxZvasmb2TfC1Md6ySGmbmm9kWM/vP5HK5mb2cvL4fNbOMdMcoqWFmBWb2uJm9ZWY7zex9urZHJzO7O/k7fLuZPWJmIV3bo4eZPWRmh81se7eyPq9lS/g/yfP+hpmdn77I5Uz1c67vT/4ef8PM/sPMCrqt+2LyXO8ys6vSEvRJKMHqh5n5wHeBa4D5wF+Y2fz0RiUpFAU+75ybD6wE7kye3y8AzznnZgPPJZdldPgcsLPb8r8A33LOzQIagE+lJSoZDP8GPOWcmwssIXHedW2PMmZWCnwWqHDOLQR84BZ0bY8ma4Gre5T1dy1fA8xOft0BfH+IYpTUWEvvc/0ssNA5txh4G/giQPLz2i3AguQ230t+bh82lGD1bzmw2zn3nnMuDKwDrk9zTJIizrkq59zm5PtmEh/ASkmc439PVvt34MNpCVBSyszKgA8CP0ouG3AZ8Hiyis71KGFm44BLgAcBnHNh51wjurZHqwCQZWYBIBuoQtf2qOGc+wNQ36O4v2v5euAnLuEloMDMJg9JoDJgfZ1r59wzzrlocvEloCz5/npgnXOu0zm3B9hN4nP7sKEEq3+lwP5uyweSZTLKmNkMYCnwMjDROVeVXFUNTExXXJJS/xv4ByCeXC4CGrv94tb1PXqUA7XAj5NdQn9kZjno2h51nHMHgf8J7CORWB0FXkPX9mjX37Wsz22j2xrgt8n3w/5cK8GSMc3McoFfAHc555q6r3OJOQw0j8EIZ2bXAoedc6+lOxYZEgHgfOD7zrmlQCs9ugPq2h4dks/eXE8iqZ4C5NC7i5GMYrqWxwYz+zKJRzseTncsp0sJVv8OAlO7LZcly2SUMLMgieTqYefcL5PFNce6FCRfD6crPkmZVcB1ZlZJoqvvZSSe0SlIdisCXd+jyQHggHPu5eTy4yQSLl3bo8/lwB7nXK1zLgL8ksT1rmt7dOvvWtbntlHIzG4DrgU+5o5P3jvsz7USrP69CsxOjkaUQeJhuvVpjklSJPkMzoPATufcN7utWg98Mvn+k8CTQx2bpJZz7ovOuTLn3AwS1/HzzrmPAS8ANyar6VyPEs65amC/mZ2bLPoA8Ca6tkejfcBKM8tO/k4/dq51bY9u/V3L64FPJEcTXAkc7daVUEYgM7uaRPf+65xzbd1WrQduMbNMMysnMbDJK+mIsT92PBmUnszsz0g8u+EDDznnvp7eiCRVzOwi4I/ANo4/l/MlEs9hPQZMA/YCH3XO9XzAVkYoM1sN/J1z7lozO4dEi9Z4YAtwq3OuM43hSYqY2XkkBjTJAN4DbidxQ1HX9ihjZvcCN5PoPrQF+EsSz2Lo2h4FzOwRYDUwAagBvgY8QR/XcjLJ/g6JbqJtwO3OuU1pCFvOQj/n+otAJlCXrPaSc+7TyfpfJvFcVpTEYx6/7bnPdFKCJSIiIiIikiLqIigiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikyP8D1VN/ufWHl8YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
51True70.08470.0447bAP.soma.v0.001680.000482
52True70.08470.0447Step1.soma.v0.001769.33e-06
53True70.08470.0447Step3.soma.v0.00225.53e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "51 True 7 0.0847 0.0447 bAP.soma.v \n", + "52 True 7 0.0847 0.0447 Step1.soma.v \n", + "53 True 7 0.0847 0.0447 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "51 0.00168 0.000482 \n", + "52 0.00176 9.33e-06 \n", + "53 0.0022 5.53e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcdb34/9d7+vbN9prdTSWVACGAEJpKUQERpVxEylV+2EVFvepV9H691wtc8VIUC1cUMHQBRUGKoUlLSAgJIX2T3WSz2d6nf35/nLObSbIt2dmdndn38/EYmDnlc97TNvM+n8/nfcQYg1JKKaWUUkqpsXMkOgCllFJKKaWUShWaYCmllFJKKaVUnGiCpZRSSimllFJxogmWUkoppZRSSsWJJlhKKaWUUkopFSeaYCmllFJKKaVUnGiCpZRSk4SIVIuIERFXomNJdSJylYi8kug4JhsRWS4imxIdh1JKJTNNsJRSSiU1EblRREIi0h1z+1ai40pGxpiXjTFz492uiJwpIm+LSKeIbBeRa+N9DKWUmiw0wVJKqTjRnqeEetAYkxlzuynRAcVTMn+2RMQN/An4FZADXAL8TESOTmhgSik1TjTBUkqpMRCRWhH5toisA3pExCUiJ4rIP0WkXUTeEZHTY7ZfKSL/JSJv2mfznxCRvCHavlpENopIl33W//87aP0FIrLWbmebiJxjL88RkbtFpEFEdovI/xMR5wjPY6aIvCAiLSLSLCL3i0huzLpWETnWflwmIk39z0tEzheRDfbzXSki8w56fb4pIutEpENEHhQR3+G/0odPRL5jvy5dIvKeiFw4xHYiIreKyD77tXxXRBba67wicouI7BKRRhG5S0TSRnn8e+ztn7VjeFFEqmLW/6+I1NnHXC0iy2PW3Sgij4jIfSLSCVwlIstE5DX7dW4QkTtExBOzjxGRL4jIFvt4/2G/d/+0j/FQ7PZDxHy6iNSP5vkdhjwgG7jXWN4CNgLz43wcpZSaFDTBUkqpsbsM+CiQCxQDTwH/D+uH5TeBR0WkMGb7zwDXAKVAGLhtiHb3AR/D+nF6NXBrTJKzDPgDcIN93FOBWnu/e+x2ZwHHAGcBnx3hOQjwX0AZMA+oBG4EMMZsA74N3Cci6cDvgN8bY1aKyBxgBfA1oBD4K/Dng37IXwycA9QAi4GrBg1A5BQ7eRjqdsoIz+Fg24DlWL0mP7LjLx1ku7OwXr859rYXAy32up/ay5dgvZ7lwA8OI4bLgf8ACoC1wP0x696y280D/gg8fFDyeQHwCNb7ez8QAa632zoJ+CDwhYOOdzZwHHAi8C3g18Cnsd7PhVif1SNmJ8pDvT+/GGwfY0wj1mfkahFxishJQBWgc+CUUqnJGKM3velNb3o7whtWUnNNzONvY52pj93mGeBK+/5K4Kcx6+YDQcAJVAMGcA1xrMeBr9r3fwXcOsg2xUAASItZdhnwj8N8Xh8H1hy07EngXWAd4LWX/TvwUMw2DmA3cHrM6/PpmPU3AXfF+T240X4N22NuZYNstxa4wL5/FfCKff9MYDNWUuKI2V6AHmBmzLKTgB2jjOse4IGYx5lYSVLlENu3AUfHPKeXRmj/a8CfYh4b4OSYx6uBb8c8/h/g5yO0eTpQH8/3x273PKARK/EPA5+L9zH0pje96W2y3LQHSymlxq4u5n4V8KnYM/vAKVi9VYNtvxNwY/VKHEBEzhWR1+3hee3AR2K2q8TqoTlYld1eQ8zxfwUUDfcERKRYRB6whxR2AvcNEtNvsHpBbjfGBOxlZfZzAMAYE7WfX3nMfntj7vdiJRrx9pAxJjfmtkdEPiPWEMr+12Ehg7zOxpgXgDuAO4F9IvJrEcnG6pFLB1bHtPG0vXy0Bt5rY0w30Ir1mmEPndxoD51sx+o9KxhsX3v7OSLyFxHZa79H/znI82mMud83yOPxeO2HJSJHAQ9g9dx6gAXAt0TkoxMdi1JKTQRNsJRSauxMzP06rB6s2B/7GcaYn8ZsUxlzfzoQAppjGxQRL/AocAtQbIzJxRp+JzHHmTlILHVYPVgFMcfPNsYsGOE5/Kf9PBYZY7KxhpX1HwsRyQR+DtwN3Cj7543twUrq+rcT+/ntHuF4hxCrRHj3MLflI7cy0FYVVkL4JSDffv3Wxz6nWMaY24wxx2H1KM7BGnrZjJWULIh5LXOMMYeTpAy81/ZrmAfssZ/Lt7CGI06z4+s4KL7YzxXAL4H3gdn2e/TdoZ7PeBFrrt1Q789dQ+y2ENhsjHnGGBM1xmzCGkZ77sRFrpRSE0cTLKWUiq/7gPNE5Gx7vonPLhxQEbPNp0Vkvj2f6cfAI8aYyEHteAAv0ASEReRcrLlC/e7GmtPyQRFxiEi5iBxljGkA/g78j4hk2+tmishpI8SdBXQDHSJSjpVgxPpfYJUx5rNYP477f0w/BHzUjsMNfAMrwfvnSC/UwYxVIjxzmNvLh9FcBlaC0gRWwRCsH/qHEJHjReQEO/4ewA9E7d6432DNfSuyty0XkbNj9jUSU8RkEB+x55Z5sOZivW6MqcN6vcN2fC4R+QHWXLvhZAGdQLfdK/T5EbaPO2PMgmHen+uG2G0NMFusUu0iIjOx5haum7jIlVJq4miCpZRScWT/eL4Aq3ehCatH6QYO/Ht7L9b8nL2AD/jKIO102csfwpqb8y9Yc6D617+JXfgCq+fjRfb3JPUPxXrP3vcRDhyiOJgfAcfabT0FPNa/QkQuwCpS0f+D/uvAsSJyud0b8Wngdqwen/OA84wxwRGON66MMe9hzTl6DWuY3CLg1SE2z8ZKpNqwhju2ADfb674NbAVet4flPQfMBRCRSqALa17aUP4I/BBraOBxWK8VWPPynsaa+7UTK6mrG6yBGN/E+hx02fE+OML2k4KxiqRcg1XMpRPrs/oo8NtExqWUUuNFjDl4BIJSSqnxIiIrgfuMMfrjMsmJyKexhg/+2xDr78EqGPH9CQ1MKaVUQiXthQuVUkqpRDLG3JfoGJRSSk0+OkRQKaWmCLEuens4xQlUChKR7w7xOfhbomNTSqlUoEMElVJKKaWUUipOtAdLKaWUUkoppeJkUs3BKigoMNXV1YkOQymllFJKKaWGtXr16mZjzCEXn59UCVZ1dTWrVq1KdBhKKaWUUkopNSwR2TnYch0iqJRSSimllFJxogmWUkoppZRSSsWJJlhKKaWUUkopFSeTag7WYEKhEPX19fj9/kSHoiYBn89HRUUFbrc70aGoFPTOq3+l9eW7mfuvv6asMD/R4SillFIqCU36BKu+vp6srCyqq6sRkUSHoxLIGENLSwv19fXU1NQkOhyVgvyv3sUZ/hf55yP/Ttnnf5HocJRSSimVhCb9EEG/309+fr4mVwoRIT8/X3sz1bhx+NsBqNj3j8QGopRSSqmkNekTLECTKzVAPwtqvBhjKIvsAWC62UPL7m0JjkgppZRSySgpEiw1NL/fTzDQl+gwlEp63T3dlNLM2vQPAFC37sUER6SUUkqpZKQJ1iiICN/4xjcGHt9yyy3ceOONiQvIFo5EOfuM5ax74TGi0cig23z84x/nxBNPPGDZjTfeSHl5OUuWLGHhwoU8+eSTExGuUpNa+77dOMQQqvkgIeOkZ9faRIeklFJKqSSkCdYoeL1eHnvsMZqbm+ParjGGaDR6xPv7Q2FEDADBrpZD1re3t7N69Wo6OjrYvn37Aeuuv/561q5dy8MPP8w111wzpjiUSgWB3k4A3Jl51Lumk9m6IcERKaWUUioZaYI1Ci6Xi2uvvZZbb731kHVNTU1cdNFFHH/88Rx//PG8+uqrgNVLdMsttwxst3DhQmpra6mtrWXu3Ll85jOfYeHChdTV1XHDDTewcOFCFi1axIMPPgjAypUrOf300/nkJz/JUUcdxeWXX44x5oBjRwPdANz76FMsO/l0Fi5cyJtvvjmw/rHHHuO8887j0ksv5YEHHhj0uc2bNw+Xy3VA8vid73yH+fPns3jxYr75zW8CUFtby5lnnsnixYv54Ac/yK5duwC46qqr+PznP8+JJ57IjBkzWLlyJddccw3z5s3jqquuGmjz85//PEuXLmXBggX88Ic/PCSOjo4OqqqqBhK9np4eKisrCYVCQ7wrSsVXONALgMObQUvWXMoDWxMckVJKKaWS0aQv0x7rR3/ewHt7OuPa5vyybH543oIRt/viF7/I4sWL+da3vnXA8q9+9atcf/31nHLKKezatYuzzz6bjRs3DtvWli1b+P3vf8+JJ57Io48+ytq1a3nnnXdobm7m+OOP59RTTwVgzZo1bNiwgbKyMk4++WReffVVTjnllIF2ouEgAF19Qd7++4P8c0sr11xzDevXrwdgxYoV/OAHP6C4uJiLLrqI7373u4fE8sYbb+BwOCgsLASgpaWFP/3pT7z//vuICO3t7QB8+ctf5sorr+TKK6/k//7v//jKV77C448/DkBbWxuvvfYaTz75JOeffz6vvvoqv/3tbzn++ONZu3YtS5Ys4Sc/+Ql5eXlEIhE++MEPsm7dOhYvXjwQR05ODkuWLOHFF1/kjDPO4C9/+Qtnn322Xu9KTZiIvwcAhzedcNEiCtqfpnnvLgpKpic4MqWUUkolE+3BGqXs7Gw+85nPcNtttx2w/LnnnuNLX/oSS5Ys4fzzz6ezs5Pu7u5h26qqqhqYF/XKK69w2WWX4XQ6KS4u5rTTTuOtt94CYNmyZVRUVOBwOFiyZAm1tbUHNmT39nziExfhIszyk0+is7OT9vZ2Ghsb2bJlC6eccgpz5szB7XYPJF4At956K0uWLOGb3/wmDz744EB1vpycHHw+H//6r//KY489Rnp6OgCvvfYa//Iv/wLAFVdcwSuvvDLQ1nnnnYeIsGjRIoqLi1m0aBEOh4MFCxYMxPzQQw9x7LHHcswxx7Bhwwbee++9Q16XSy65ZKAH74EHHuCSSy4Z9nVUKp7CQSvBcvkyyaw6FoDG998cbhellFJKqUMkVQ/WaHqaxtPXvvY1jj32WK6++uqBZdFolNdffx2fz3fAti6X64B5TbHXbsrIyBjV8bxe78B9p9NJOBw+cAO7sIV4rCQoZA9xEhEeeugh2traBi7I29nZyYoVK/jJT34CWHOw+of/HRz3m2++yfPPP88jjzzCHXfcwQsvvDCqOB0OxwExOxwOwuEwO3bs4JZbbuGtt95i2rRpXHXVVYNey+r888/nu9/9Lq2traxevZozzzxz2OMqFU/RgJ1geTMoql4Ez0Jv3Rrgk4kNTCmllFJJRXuwDkNeXh4XX3wxd99998Cys846i9tvv33g8dq1awGorq7m7bffBuDtt99mx44dg7a5fPlyHnzwQSKRCE1NTbz00kssW7ZsdAEZK8F6/Mm/APDyiyvJyckhJyeHFStW8PTTTw/M+1q9evWQ87BidXd309HRwUc+8hFuvfVW3nnnHQA+8IEPDOx///33s3z58tHFiJXcZWRkkJOTQ2NjI3/7298G3S4zM5Pjjz+er371q3zsYx/D6XSO+hhKjZUJWicoXN4M8vILaCQfmrckOCqllFJKJZuk6sGaDL7xjW9wxx13DDy+7bbbBuZnhcNhTj31VO666y4uuugi/vCHP7BgwQJOOOEE5syZM2h7F154Ia+99hpHH300IsJNN91ESUkJ77///oixiIliENLT01ly1mWEwlF+94f7qK2tZefOnQeUZ6+pqSEnJ4c33nhj0LY+8pGP8Nvf/hYR4YILLsDv92OM4Wc/+xkAt99+O1dffTU333wzhYWF/O53vxv1a3b00UdzzDHHcNRRR1FZWcnJJ588sO4HP/gBS5cu5fzzzwesYYKf+tSnWLly5ajbVyoe+hMsT1omAE3e6WT3DH5iRCmllFJqKHJwZbpEWrp0qVm1atUByzZu3Mi8efMSFNHk1rlnC2kSwF26kJ49m3BJBG/p/ESHNe70M6HGw+o//ojjNv+M5i9vpyA/nzfu/FcW7HuKjB/uQRza2a+UUkqpA4nIamPM0oOXj/lXg4hUisg/ROQ9EdkgIl+1l98oIrtFZK19+8hYj6UOJEQx9lsYdvpwmyAYvZ6VUkck1N+DZc+RLJhNpvTR1LArgUEppZRSKtnE47RsGPiGMWY+cCLwRRHp70a51RizxL79NQ7HUjEcJooRe56Sy4cDQzR0aPEIpdQohHoJGDc+jweAjDKrl3TfjnWJjEoppZRSSWbMCZYxpsEY87Z9vwvYCJSPtV01MgdRjFhvocOTBkA40JfIkJRKWo5wH314cDutSxYUzlgEQM/u4a9rp5RSSikVK64TC0SkGjgG6K+k8CURWSci/yci0+J5rKnOGIOT/T1Ybq+VYEW0B0upI2IlWN6Ba8IVlVbTbdKgeXOCI1NKKaVUMolbgiUimcCjwNeMMZ3AL4GZwBKgAfifIfa7VkRWiciqpqameIWT8qLG6sHC7sHyuF0EjRPCmmApdSQc4T4Csv86buJwsMdVQUbX9gRGpZRSSqlkE5cES0TcWMnV/caYxwCMMY3GmIgxJgr8Bhj04k7GmF8bY5YaY5YWFhbGI5wpIWoMDsxAguUQISQeHJFggiNTKjk5I3345cALhrdn1FDo35mgiJRSSimVjOJRRVCAu4GNxpifxSwvjdnsQmD9WI+VSI8//jgiMuz1qWpra1m4cGHcjnnVVVfxyCOPDLrOGMPXf3gTMxctIxq1KgdGHB7uf+BhCgsLWbJkCfPnz+c3v/lN3OJRKpU5I35CMT1YAOFpsyimBX93e2KCUkoppVTSiUcP1snAFcCZB5Vkv0lE3hWRdcAZwPVxOFbCrFixglNOOYUVK1YMuj4cDo/5GJFIZNTbhsNh/vT0P6goL+PFF18EwDi9ODBcfPGnWLt2LStXruS73/0ujY2NY45NqVTnjAYJi+eAZZ6SuQA0bE/q80NKKaWUmkDxqCL4ijFGjDGLY0uyG2OuMMYsspefb4xpiEfAidDd3c0rr7zC3XffzQMPPDCwfOXKlSxfvpzzzz+f+fOtyvThcJjLL7+cefPm8clPfpLeXuvaOs8//zzHHHMMixYt4pprriEQCABQXV3Nt7/9bY499lgefvjhQ4793HPPsXTpUubMmcNf/vKXgeUvrvwHC+bO5HPXXDmQ9InbGt5kIlayV1RUxMyZM9m5c/8Qp9tuu4358+ezePFiLr30UgBaW1v5+Mc/zuLFiznxxBNZt84qS33jjTdy5ZVXsnz5cqqqqnjsscf41re+xaJFizjnnHMIhUIA/PjHP+b4449n4cKFXHvttRx88epoNEp1dTXt7e0Dy2bPnq2Jn5pUnNEgEceBCVbudKtHun2XJlhKKaWUGh1XogM4LH/7Dux9N75tliyCc3867CZPPPEE55xzDnPmzCE/P5/Vq1dz3HHHAfD222+zfv16ampqqK2tZdOmTdx9992cfPLJXHPNNfziF7/gS1/6EldddRXPP/88c+bM4TOf+Qy//OUv+drXvgZAfn4+b7/99qDHrq2t5c0332Tbtm2cccYZbN26FZ/Px0MPPshlF5zN2R/7KDf+5CZCoRBOO8GKRq2esO3bt7N9+3ZmzZo10N5Pf/pTduzYgdfrHUh4fvjDH3LMMcfw+OOP88ILL/CZz3yGtWvXArBt2zb+8Y9/8N5773HSSSfx6KOPctNNN3HhhRfy1FNP8fGPf5wvfelL/OAHPwDgiiuu4C9/+QvnnXfewDEdDgcXXHABf/rTn7j66qt54403qKqqori4+PDeK6XGkTMaIup0H7CsvGY+ESOEGrWSoFJKKaVGJ65l2lPVihUrBnp7Lr300gOGCS5btoyampqBx5WVlZx88skAfPrTn+aVV15h06ZN1NTUMGfOHACuvPJKXnrppYF9LrnkkiGPffHFF+NwOJg9ezYzZszg/fffJxgM8swzz/Dxc84gOzeHE044gWeeeQa310cUePSxx1myZAmXXXYZv/rVr8jLyxtob/HixVx++eXcd999uFxWfv3KK69wxRVXAHDmmWfS0tJCZ2cnAOeeey5ut5tFixYRiUQ455xzAFi0aBG1tbUA/OMf/+CEE05g0aJFvPDCC2zYsOGQ53HJJZfw4IMPAvDAAw8M+5yVSgSnObQHKy09nQZHMe72bQmKSimllFLJJrl6sEboaRoPra2tvPDCC7z77ruICJFIBBHh5ptvBiAjI+OA7fuvoTPU48Ec3MZI7T3zzDN0dHSw6IMXYxwu+vr8pKWl8dGPfpQITi46/1zu+r/7Bm3vqaee4qWXXuLPf/4zP/nJT3j33eF7BL1ea9K/w+HA7XYPxONwOAiHw/j9fr7whS+watUqKisrufHGG/H7Dy0Vf9JJJ7F161aampp4/PHH+f73vz/scZWaaG4TJHpQggXQ7J1Obq9WElRKKaXU6GgP1ggeeeQRrrjiCnbu3EltbS11dXXU1NTw8ssvD7r9rl27eO211wD44x//yCmnnMLcuXOpra1l69atANx7772cdtppozr+ww8/TDQaZdu2bWzfvp25c+eyYsUKbr/9NmrfeIotG95hx44dPPvss/T19RHBhZjooG1Fo1Hq6uo444wz+O///m86Ojro7u5m+fLl3H///YA1r6ygoIDs7OxRxdefTBUUFNDd3T1k1UMR4cILL+TrX/868+bNIz8/f1TtKzVRXCaEcXoPWd6XXUNJeDcmOvoiNEoppZSaujTBGsGKFSu48MILD1h20UUXDVlNcO7cudx5553MmzePtrY2Pv/5z+Pz+fjd737Hpz71KRYtWoTD4eC6664b1fGnT5/OsmXLOPfcc7nrrruIRqM8/fTTnPXhDwPWxVAzMjI45ZRT+POf/0zU4bIuQBxTaOKzn/0sq1atIhKJ8OlPf5pFixZxzDHH8JWvfIXc3FxuvPFGVq9ezeLFi/nOd77D73//+1G/Prm5uXzuc59j4cKFnH322Rx//PED6+666y7uuuuugceXXHIJ9913nw4PVJOS24QwzkN7sKRgDmkSpGm3XnBYKaWUUiOTgyu+JdLSpUvNqlWrDli2ceNG5s2bl6CIJq/O9laye3cSnjYLV1rWwPKO5r3kBBuIFs7H4T70bHwq0M+EGg/+Gwt5s+ATnPqlXx2wfP2rT7Hw2X9hw5n3sODUC4fYWymllFJTjYisNsYsPXi59mAlKWMPAxTHgW+h2ElVJNg34TEplbSMwU0IXIeelCiqWQRA7573JjoqpZRSSiUhTbCSVX+CJQe+hS5PGgCR0KGFJpRSQ4iGcWIGTbAKSyroMmmY5q0JCEwppZRSySYpEqzJNIxx0hiiB8vj8RAxDkyKJlj6WVDjwYTt74vTd8g6cThocFeS3rVjgqNSSimlVDKa9AmWz+ejpaVFf1gfzH49Di7j7nQIQXEjkUAiohpXxhhaWlrw+Q79EazUWATsapjiPrTIBUBHehWFgV0TGZJSSimlktSkvw5WRUUF9fX1NDU1JTqUSaWvq520SCe0e+CgYYL+jibcJoSzbfBy7cnM5/NRUVGR6DBUign6+/AB4ho8eQ9Pm0Vx57P0dXeSljm6SxgopZRSamqa9AmW2+2mpqYm0WFMOn/75bc4t/FX8L294E47YN1f7/wNH2m6G767BzxDX8RYKWUJ2kVhHIPMwQLwlMyFnbBn+7vMXHzyRIamlFJKqSQz6YcIqsE5IvackUHOuEvBbAD69m6eyJCUSlpBv51geQbvwcqbPh+A9l1aSVAppZRSw9MEK1mFAwRxw0FzsAAyy44CoKl2/URHpVRSCgWtExbOIa4dV1qzgKgRQo2bJjIspZRSSiUhTbCSlDPiJyiDT8gvqrbOtvc2vD+RISmVtMIDCdbgPVi+9Ez2Ogpxt2+byLCUUkoplYTGPcESkXNEZJOIbBWR74z38aYKRzRAaIgEq6qkgN2mAJq3THBUSiWnUMAaIugaYoggQLO3ipzenRMVklJKKaWS1LgmWCLiBO4EzgXmA5eJyPzxPOZU4YwECMngw5l8bie7neWkd+p1e5QajcgIQwQBerNrKA3XE42kXnVOpZRSSsXPePdgLQO2GmO2G2OCwAPABeN8zCnBGQ0QdgzegwXQnl5NQbBu4HpZSqmhhe0Lc7u96UNuIwWzyZAA+/boiQullFJKDW28E6xyoC7mcb29bICIXCsiq0RklV7ravRc0QBhx9Bn28O5M0k3fZiuvRMYlVLJqb8Hy+0d+juVWTYP0OIxSimllBpewotcGGN+bYxZaoxZWlhYmOhwkoYrGhw2wXIVzwGgrU7LSis1kqjdg+XypA25TfGMRQD07tbvlFJKKaWGNt4J1m6gMuZxhb1MjZHbBIgMk2DlVlpT3dp2bZiokJRKWlH7QsOetKEvzJ1fMp1Ok440a6l2pZRSSg1tvBOst4DZIlIjIh7gUuDJcT7mlOAxQaLOoROs8qpZ9BkPwUa92LBSIzEhO8HyDZ1gicNBvbuarE6tzqmUUkqpoY1rgmWMCQNfAp4BNgIPGWO0SyUO3CZI1Dl0SenSnHRqKcXVptftUWpEAwnW0EUuADqyZlEWrNXiMUoppZQa0rjPwTLG/NUYM8cYM9MY85PxPt5UYIzBS5Coa+geLIdDaPJUkN1TO3GBKZWs7DlYvmGGCAKYwqPIoZvWxrpht1NKKaXU1JXwIhfq8IUiBi8hcA3dgwXQkzWDgvBeCAcmKDKlkpMJ9+E3bpxO57DbZVZahS4atrw9EWEppZRSKglpgpWE/OEIPoKYYYYIApj8WTiJEmzePkGRKZWcHOE+AjL0deX6lc45FoDuXevGOySllFJKJSlNsJJQIBS1e7CGHiIIkFYyF4AWvW6PUsOSkJ8Aw3+fAAqKymklG2l+fwKiUkoppVQy0gQrCQVCIbwSQtxDX7MHIL96IQCd9RsnIiylkpZE/ARl5ARLRGjw1JDTtXUColJKKaVUMtIEKwkF/FbFM3EPP0RwRkUp+0wukSYt1a7UcJwRP6FRJFgA3TmzqQjtJBqJjnNUSimllEpGmmAloWBfL8CIPViZXhf1jnJ8nTsmIiylkpYz6ifkGHkOFoCjeB4Z4qdhl14PSymllFKH0gQrCQUCVoLl8g6fYAG0Z9RQ6N+h1+1RahiuSICQY/ge4X7ZVUsA2Ld19ThGpJRSSqlkpQlWEvL3dgPg8g5/UVSAQN5cskwPkc6G8Q5LqaTligaIjFCVs1/5UUuJGiFQt3Z8g1JKKaVUUtIEKwkF/VYPlmcUPVi+sgUANG1bM64xKZXMPMZPxDG6OViZWbnUOcpIa9HqnEoppZQ6lCZYSSjst3qwPOnZI26bX3M0AB073x3XmJRKZm4TJOIa+YRFv8aMuRT3avEYpZRSSh1KE6wkFOnrBEaXYFVXVdFksok0vjfeYSmVtLwmgHGOrgcLIFS4kBLTRFdb4zhGpZRSSqlkpAlWEor4uwDwZuSOuG22z81Ox3Qy2rXimVJD8ZoA5jB6sDKqjwOgbsPr4xWSUkoppZKUJljJKNCfYI3cgwXQmjGTwoBWElRqMCYaxUcQM8JlD2JVzj8RgO5arSSolFJKqQNpgpWMAtYcLPFmjWrzYN5c0k0f0fa68YxKqaTk7+vBLRGintF9nwDyC0tooBBX47pxjEwppZRSyWhMCZaI3Cwi74vIOhH5k4jk2surRaRPRNbat7viEq0CQEJWDxaezFFt77UrCbbseGe8QlIqafV0tALgSMs5rP0a0udS2L1pPEJSSimlVBIbaw/Ws8BCY8xiYDPwbzHrthljlti368Z4HBXDEewhhAtco5uUXzjDqiTYXqtn25U6WE9XGwDOw0ywAgULqTR76O5sHY+wlFJKKZWkxpRgGWP+bowJ2w9fByrGHpIaiTPUTZ+kgciotp8xvYK9ZppWElRqEP4uK0FyZxxegpVWsxSAundfjXtMSimllEpe8ZyDdQ3wt5jHNSKyRkReFJHlQ+0kIteKyCoRWdXU1BTHcFKXK9yDX0Y/IX+gkmCHVhJU6mCBng4APKOoyhmravFpAHRu/We8Q1JKKaVUEhsxwRKR50Rk/SC3C2K2+R4QBu63FzUA040xxwBfB/4oIoOWvDPG/NoYs9QYs7SwsHDsz2gKcIV7CDrTD2uf9syZFPprIRodn6CUSlKh3nYAfJnTDmu/aflF1EoFvr1aSVAppZRS+7lG2sAY86Hh1ovIVcDHgA8aY9UBN8YEgIB9f7WIbAPmAKvGGrACT6SXkDfjsPYJFxyFr+sxwq21uApmjFNkSiWfSK/Vg5WWdXgJFkBjzmLmtL+MiUYRhxZlVUoppdTYqwieA3wLON8Y0xuzvFBEnPb9GcBsYPtYjqX280Z6iLhHV0GwX1r5QgCatq8dh4iUSl7RPivBSs/OO/ydK5cxjS7qt62Pc1RKKaWUSlZjPeV6B5AFPHtQOfZTgXUishZ4BLjOGKOltuIgHImSYzoJew/vx2CxXUmwc6dWElQqlvF3ApCZmXvY+xbPt6aX7t3wUjxDUkoppVQSG3GI4HCMMbOGWP4o8OhY2laD6/SHyZdOutPyD2u/GRWl1JsCzD6tJKjUAYJd9BgfGa7D/3M4fc4xdJJOdNeb4xCYUkoppZKRThpIMh2dHWRIADIOL8FK8zipc1WTqZUElTqAo6+VLkfWke3rdLLTN4/Cdr2It1JKKaUsmmAlma7WRgAcWUWHvW975iyKgrsgEop3WEolLW+glW7X4Re46NdTdBzVkZ10tOllJpRSSimlCVbS6W5pACAtp/iw940WzsNDmGCT9mIp1S891EbAcwQFLmwZc0/HIYZdbz8bx6iUUkoplaw0wUoyfe1WD1ZWQclh75tRuQiAfVvXxjMkpZKWMYasaDvhw5zTGGvmMafjN276trwYv8CUUkoplbQ0wUoygc59AOTklx32vmUzFxMxQnedVhJUCqCtJ0genUjGkV/kPD09gy3eBRQ0vRHHyJRSSimVrDTBSjLSuQcAZ/bh92BVl+RTSynStDHeYSmVlPY1N+GVMK7sw5/TGKuz5ERmRHbQ2dIYp8iUUkoplaw0wUoyaT11tEkueDIOe1+Py8EedzU5XVvjH5hSSai9yTphkZZ7+HMaY+XOPxOAbaueGXNMSimllEpummAlmay+3bR7D394YL/O7NkUhvZAqC+OUSmVnLpbdgOQeQRDbmPNPuY0eo2X4Fadh6WUUkpNdZpgJZFAOEJRZC+BzMojbkOK5uEkSl+DDhNUKthaB0BOSc2Y2vF4fWzzLaCo5a14hKWUUkqpJKYJVhKpa2qnlBZkWtURt5E1fTEATVpJUCmk0+rB8kw78pMW/XrKPkBNdCfNjbvH3JZSSimlkpcmWEmkafs6XBLFW77wiNuomLmAgHHRu/vdOEamVHJy9+yhWzLAmznmtgoWfRCAHaueHnNbSimllEpemmAlkc4dqwEomrPsiNuYXpjDDspwNr8fr7CUSloZfY20ucZWQbBfzeLldJJOdOs/4tKeUkoppZKTJlhJxNm4jl7SSC+Ze+RtOIS93hqmdWslQaVyw/vo9Y2tgmA/p8vNlvTjqG5/DYyJS5tKKaWUSj6aYCWJUCTK9K417M6YD46xvW09uXMoiOwDf2ecolMq+fhDEQpNC8GM0vi1WXU6xaaZPTrHUSmllJqyxvRLXURuFJHdIrLWvn0kZt2/ichWEdkkImePPdSp7d2Nm5jDLqIzzhhzW47i+QB0160fc1tKJaumtg4KpBOyK+LW5vRl5wGwe9Wf49amUkoppZJLPHqwbjXGLLFvfwUQkfnApcAC4BzgFyLijMOxpqx9bz0CQMXx5425rdwqu5LgjjVjbkupZNW2txYAd97YKwj2q6yZyw6pJG2nzsNSSimlpqrxGiJ4AfCAMSZgjNkBbAWOvDLDFBcIR6jY+Tj17hoyKo8ec3vTZxyF37jp26OFLtTU1b1vJwAZhUd+2YPBNBSezJy+dfh7dAiuUkopNRXFI8H6koisE5H/E5Fp9rJyoC5mm3p7mToCr73wFxayFf/iK0BkzO2VTctgJ6U427bFITqlklOwdRcAucXVcW03Y/7ZeCTM5jeeimu7SimllEoOIyZYIvKciKwf5HYB8EtgJrAEaAD+53ADEJFrRWSViKxqamo63N1TXl8gRP5rP6FNcplx1nVxaVNEaPJOJ6dnR1zaUyoZmXbrgsCZRfEbIggw98Rz6TQZBN/5U1zbVUoppVRycI20gTHmQ6NpSER+A/zFfrgbiP3VUmEvG6z9XwO/Bli6dKnWNj7Iy3d/i7PMJradfAvTvBlxa7cnawaFLf+EcABc3ri1q1SycPU00EEWOZ74fa8AfL401uWeyryOlQT8vXh96XFtXymllFKT21irCMbWN74Q6C9L9yRwqYh4RaQGmA28OZZjTUXPPXgHH2r8HRsKP8LMD302vo0XzMZJFH+jXg9LTU3p/r20xukiwwfzLrmILPp475UnxqV9pZRSSk1eY52DdZOIvCsi64AzgOsBjDEbgIeA94CngS8aYyJjPNaUEQyFee43/8aZ732fbemLOeqzv43L3KtY6WXzANhX+25c21UqWeQE99Edp4sMH2z+yefRRhasuX9c2ldKKaXU5DXiEMHhGGOuGGbdT4CfjKX9qejdN/8Bz3yPD0U2sGHamcz7/P04vPEfYlQ0YyH8A3p2b4x720pNdsYYCqJNbEs/blzad3t8vF9yPsc3rGDvzk2UVM0dl+MopZRSavIZrzLt6jBEIlHWrPwTq356Lov++nHKI3VsOP6/WPDVx8YluQKoKimiweRhmraMS/tKTWZt7e3kSg8mq2zcjlH9sW8SwcnuR783bsdQSiml1OQzph4sdeSikShb3n2NlrceoXzPMxxjdtNOFm9Xf475n/weCzKnjdzIGPjcTnY7Kyjo0lLtauppbdhBHuCK40WGD1ZaMYN/VlzBB3b/H2889N8s++QNdLY1seHvv2PazOOYt+zD43ZspZRSSiWOJlgTqL15Lzvefpa+zS8yvfkl5tJIxAibfYt4Z9GXmfehKzl2AiuOdaRXcVTPC2BM3Od4qfjwB8N0dXfS29FCX1cbwe5Wgr2dBPq6Cfl7MaE+JNwHIT8S9uOI9EEkRDRqiJooTgHB4BABcRBxeog6fEScPsSThtubjis9F3dWAb6cAjJyCsnILSInJxuvy5nopz9u+i8ynFYwfVyPc/yV/8U7P3uXE977T5p//AtyTScfkCibts8DTbAmnXAkSldPH709HYR6Own2dhLq6yIU6CUcDBAOBQkFAxANIdEwjmgIMRGi4iCKkygOxOHE6fbgdntw+TJx+bJxpmfhTc/Gk5FLdnYOOeleRP/mKqVUytIEaxw1761j59vPEd7+EkWtq6mJ7uQYoM942JaxhMbZX2TW8k8xr2D8hikNJzRtNpndfyba1YgjuyQhMUwVxhi6+gK0t+yju7WBvvZGgh2NRLqboKcZZ18zrkA77lAnvnA3adFuskw3WfRSKKOvD+PHTQQXBsFKrcDY/3cQxUMIL6ER2+kxXhoknw5XAT2+YsIZpUhOOd68SjKLppNfNoOCwlKczuQcZexvsS4ynFNSM67HcXt8LPzm33jzyV/CrtcIpxdRsfc5ssPN43rcqS4Y8NPR0khHayO97fvo62gm1N2M6W3D0deGK9CGJ9SOL9SBN9KDN9pHmuklAz/TJMR4jh+IGqGNTNodOXQ58+j15BHy5hPNKISMIry5pWTkl5NTVEFhSQXpPr2MhlJKJRtNsOJo3+5adq35O5Htr1DSvpqqaD0FQK/xsjVtIa+XfIyceaczY8lyFnrTEh0u3pK5UAfNtespWqwJ1pEw0SjtbS20Ne6ku7kef+tuoh27ke5GXH1NeANtZITbyI52MI0usuXQS71FjdAhWXQ7svA7swn6ptHuqaLFk4PxZkNaDo60XJzp03Bn5OLLyCUtPYO0jEy8aRm4vRk4PWng8uFzjCLhiUYh7Cca7KO7p4ue9hZ6O/YR6Gom1NVCtKcFeptxdu8l3b+Xkp615Hc9j6sxekAzfcZDsyOfdncxfWklhDNLceZW4CuYTk5xNQXlM8nMzpuUvaPR9noA8kuqxv1YTpebZZ/4CvAVAF777Tc4oe5ugv4+PL7E/x1IFsGAn5Z9u2nfV09Pyx4C7Q1Euxpx9u7D628mPdhCVriVXNNOJn0UAoWDtOPHTSfZdDuz6HNm0+krI+LOxHgywZOJeLNw+DLBm4XDl4XTl4Xbm4bb48Xr8eL2eHG43IjTg3G6EHEhRBATQUwUEwkTCAYJBgMEe7sI+zuJ9HUR9XdiAt2EezuQ3hZc/mbSAy0U+jeT3dtOZlvvIbFGjNBEDu3OPHo8+QR8hUQyinFkFeOdVkZ6Xjm5RRXklUzHPU7zdSeCiYQJBPoI+vsIBnoJ+v2EAr2EAn2Eg9YtEgwQCfYRDfmJBv1Ew32YUBAT9kPYD+EAEvZDJIgjGsAZDSEmipgImCiY6MBjB/3LDQ4TQYjiMBHA+vvcf4IqigME7HEAIELUXofI/hNZ4sCIA3AQFSeIAyNOa5l9H4f9/wOWOaF/maN/nbVcHLH37f/b24nDiYi1jThc1mOHA3G6rP+LE3E6cYgLnE4cDgcOp7Wdw97f4bTu9y+PYj2HKA5wOIhGDcZEMdGo/X8D0SgGa1nURK1/S0wUYwwmGrH+b7/WRO3lRDFR67XGbg8TJWqs9sDabv97ZLUhGGs5But//fftf0Nj12HAGIz9//71xj69GLu/tTzmMf2nIof5fLL/3zCx75uD/l0b8l85GW7tQW3I4JGIHBjD/j0HaXeoNgbddqjYZIi2h2pi8DgGd+Tb9vmKmLnsI1TmJcffOk2wxqBx93Z2rv47ZsfLlLevpsI0UAR0mTS2py+iofQTTJt/BjMWn8xiz+Q7Czlt+gJ4C9rr3qNo8aiuJz2lmGiU1qZ6Wuu30d24nUBrHdHOBlw9jWQE95ETbiE/2so0CR5yxrvTpNPunEaPaxodGTW0puVTm1GAM7MQd3YR3pxiMvNKyMovJT2ngGlO97ieNT+AwwGedByedLIz88kurh55n2iErpbdtOzZQfe+nfS11GE66nF3N5Du30tRx1sUtLfi3H3gn/Zuk0aHI4deZw5+dw5hby4Rby4R3zTwZeP0ZOD2peP2ZeD0ZiCeNJxuH06H4HQ6cTqsHwf9P0qiQDgcIhIKEgnbt1CIaDhENGLfj4SsH1whPybsx4T8EOqzf4RZQykr2tfQTC4FCTjR4SychaPe0LhrE5Vzlkz48Sejzq4O9tVtp2tfrfU9a6/H1b0HX+9esoP7yI22kksXpUDpwfuSQbtjGl2uPBozj6LeV4BJz8eZkYcnqwBfdiEZ04rIzismc1oRPm8GPmB8roB25Eywl562vbQ11tHTXE9fWwORzr1I9148fU1kBZupaN/KtLZ2nIOcqOkkgzbHNLqdOYScmYTdGTGJYxbiywSXD4fTPZAgisuN0+XC6fRgHK6BH7nWj+b+H9ARiEaJRCPW9yzkx4QDmHAAwgFMOIhEAvYtaN2iQRyRIM5oAEfU+r8zGsIdDeIyQdwE8ZgQHoK4TQiPRPABvjG8fkHjIihu7NaJiNMatikOTEzysP//TjuBcmDERVi87P9BZxCzv/9///3IwLqBZcbYCVoUwUriHDGPHTHLnOxf5iCK004knOxf7xjkvVVKwcrI0bxT9gFNsFJR8946alf9jej2lyhtW02l2UMx1j9s29OPZnf5v5C/4AxqFp7E0a7J/9JWVs+i13gJ7n0/0aEkRDgcprmhltbdW+ndt51wy04cXfWk9ewhN7iXomgT+RIiP2afPuOh1ZlPp6uAfVnz2Z1eAlmluHNLScurIKtoOnkllWRnZJOdsGc2DhxOsgqnk1U49JylSDhE496dtO3ZQXfTLoKtdTg6d+PyN+MOduALtjKtr5Yc00WW9E1g8Ba/cRPAQ1A8BPGwpehsCiY8CsgqnwtroGXnhimTYHV1tNJUt5nOPVsINm1H2mvx9uwhI9BIfqSJXLoP+b60kEObs4BWbzl704/BZBThzC7BN62MzPxScgsryC0sJ9uTlhLfNfGkk1k8g8ziGcNuFw2HaW1poK2xju7m3fjb9hDubEC695EWaMIXaicz3II3UEea6SXd9JEugXGLO2qEIC6CuAnZCU5I3IRxE3Z4CIuHoMNDxJVFxOHBOD1EnV6iTi/G6cW4vIjTC24f4vIhbh8OlxeHx4fD7cPlScPpScPl8eLypOP2peH2puHxpuHxpeH1puP2+vA4nHjG7VlODGMMkaghEokQjYYJh8NEImGikQjRaISofT8SCVuPw9Z2/etNNGLtGwljovaySMS+H8ZEIkSjUUw0bPVMRa3tTDSKQyI4jEFMBCdRu/dM7LmCDrtHzYGIIOLEOMTqUbPXOcTqybN60KwbIuBwDswB7u9dQ8Bh99iJyMA+/SfSAOt4YLcldieHdR/7sYhYPTMSs521k/0Y6F+P2O3Ycdv77+89ObC3xAws3Z/w9neO7b9z0MYH9R0d0KN2yK4HbztIuwNtHHq4wfqp9vfUHbx99JBlmIH/jC6OQZYxyPMbetvBjmadyB5840O3nuPykVsy2U6NDW3yZwEJFI1E2PrOK7Ss+TMFDSuZHd5CAdBJup1QXUrhog9RM/8EliRBQnWwvEwf70sZnvatiQ5l3ITCYRrqd9CycyO9DZswrdtI66plmr+esuheSiRE7ODIFnJocRWzL2M29RmnI7nT8RZUkVU6k8KymWTn5lHucFCesGc0eTldboorZlFcMWvEbQMBP73dnfT1dNHb042/r5twoAcT7MOE/ESjUSLRqPUjIhoFY+xBOgaHy43T6cLh8uB0eazHLg9Ot/XY5Xbh8qTh8KTh8qThScvA50vD63LiixmKkKj3cPrc44j8WfDvehu4PEFRxJeJRmlv2cu+7evo3LOZUPN23B07yerbTVGkgTw6yYrZvsNk0OwsostbTHP6Esgpx5NXSUbhdLKLa8grqSLfl37AyQ1lcbhc5BVXklc8+gqYwWCQ3q4OQsG+gR7gcChIOBQgEg4RCQcx0aj9g9MamiYO677DHt7mcjpxeTy4PWm4vT7cnjQ8Ph8etxefyzmm3idlERGcTrHntroTHY5SagySLyuYQG/+8UecuO1/iRphi3sur1VdR8GSjzJj0QeSMqE6mIjQ5Ktifs/6RIcyZv5AgF1b19Neu45gwwa8bVvI69tBWaSB6RKkv98laFzsdZXSnjGdd7OWY/Jm4iusIad0JkUVs8jPyNQfdRPA6/Xh9fqYlp88Z6PiJSMrh1pnBWnN7yY6lMMWDYdp2LWZxu3r6N2zEVfLFrJ7dlAW3sU0ugeGuYaNg32OQtq85WzLPYPNOVW4C2aQVTqLgso5TMsvImcSzs1LVR6PB0/+YDPSlFJKjYfkzxLGUcVJF/NWdgkzT7qAuUWp2WfRk7+Ygt0rCbfvwZWbmGqGhyMaibJ75yb2bV5F7+71eFo3UdC7nYrobuZIeGC7BimmKa2G9dkfwFEwk8yyuRRWzWdaSTXTnS7Gtzi3UsNryprPjI7XMdGINYF9kjHGsK+llfr336Jv52o8+96loPt9ysL1lEtooPevjWwaPdPZkn8mkfw5pJXOI3/6fEoqZ1Lm8TL5/6IopZRS8acJ1jAqZi2kYtbCRIcxrrJmngC7oX7Dq1Sf/KlEh3MAfzDMti3v0bL1TczuNeS0baA6uIVK6aZ/cMxeKaI5vYZ3c0/FVTKfvOrFlMw8mtL0rEMmwys1WZjq5eS/8wzb1r/BzMUfSGwsxtDY1ETde6/TU7saT9O7lPRsotrsptiecN9KNvW+OawpOBFX0VxyqxZSNvNopk0rmrjiLEoppVSS0ARripu5+CQCL7ro2vQSJDDBCoYi7Nj2Po2bXidS/zbZbRuoCW1hgXQDEMJJnauabQVnQOkScmcupXz2Ekoyc9EC8yrZzDjpAnjn+zStfmJCEyxjDI37Gqjb8AZ9O1fhbVpPSe8mqmgY+B41Sx6NWUexrvBjpFcdS8lRJ5JXNJ08HdKnlFJKjYomWFNcaUE+q5zzKW14acKOGYlEqd2+mb3vv0a4/m2yWjdQHdzMXOliLlYytdtdTX3xmTSUH0PBnBMpmnUMM9x6zSCVGgpKprPBvYjKXX8iEvlPnM74DxM0xtDYUMfuja/Tu/NtfM3rKevdRDn7BpKpRiliX9Zc1hR/gsyapVTMO5GCvLKEVFdUSimlUoUmWIqm0tNYuvt2une/R2b5/Li2HYlE2VW7hb3vv06objVZrRuYHtjMTOlkJtZk+N3uKuoKT2d3+RIK55xE8ZxjqdZkSqU4/zFXU/7m11n9119z3HmfH1Nbxhga6nfQsPENAnWrrWSqbzMltAwkU3scpezLXsDe4svIqllK5fyTKM4tpHjsT0UppZRSMWSoevWJsHTpUrNq1apEhzHlrN+8lTn3L2Nr5UXM/+xvjridSCRK3fb3aNz8BsG6tWS1bqAysIV86QT6k6nptOYsQMqWkD/nRMrnLMXhTY6LxikVT5FIhG3/eQJFkQY6LnuKqrlLRrdfOEz9tvU0bXmL4O53yGh9j/LAVgroAKzrEtU7y2nOOopI8dFkz1jK9PknkpadN47PRimllJp6RGS1MWbpIcvHkmCJyIPAXPthLtBujFkiItXARmCTve51Y8x1I7WnCVZiGGN44ZZ/4bSep2m66DFKF50x4j4dbS3Ub1lLx653MY0bye7YyPTAVnKkB4CQcVLnrqI9Zz5Supj82SdQftTxOL0Z4/10lEoau7dvIO0P5+A1Qd6tvIxpS85jWnElDncafV2tdLbsxd+yi1DjFlzt28ju2UlleCdpEgQgaJzUu6pozZ6LKV5EzozjqZx/AmmZOQl+ZkoppVTqG5cE66AD/A/QYYz5sZ1g/cUYc1gl+DTBSpyd9fXw2w9RbJrZWHYhUr0cV0Yu4aCfUHcrodZdSEc96T11lAZrKaJ1YN+AcbPLXUN7zjykbAkFs5dRMfdYXNozpdSI9ux4nz0P38DS3qHnQUaNsE8KaPFW0JUzB0fpYgpmL6VyzhLcHr3Eq1JKKZUI45pgiYgAu4AzjTFbNMFKTnU7d1D34Nc5tudlfBI6ZH07WbS4SmjNqCGSP5f08gUUzzyaoso5iFOn8yk1Fvt272T3hpcJdrVA2I8jLYe0nCIyCsoprp5PekZWokNUSimlVIzxTrBOBX7WfwA7wdoAbAY6ge8bY14eYt9rgWsBpk+fftzOnTvHHI8am7a2Vpp2vkewpx2vLx1fVh4FZTNIy8xOdGhKKaWUUkpNCkecYInIczDopYa+Z4x5wt7ml8BWY8z/2I+9QKYxpkVEjgMeBxYYYzqHO5b2YCmllFJKKaWSwVAJ1ojjuowxHxqhYRfwCeC4mH0CQMC+v1pEtgFzAM2elFJKKaWUUinLEYc2PgS8b4yp718gIoUi4rTvzwBmA9vjcCyllFJKKaWUmrTiUZngUmDFQctOBX4sIiEgClxnjGk9ZE+llFJKKaWUSiGT6kLDItIETLYqFwVAc6KDUBNG3++pQ9/rqUPf66lF3++pQ9/rqWUyvt9VxpjCgxdOqgRrMhKRVYNNXlOpSd/vqUPf66lD3+upRd/vqUPf66klmd7veMzBUkoppZRSSimFJlhKKaWUUkopFTeaYI3s14kOQE0ofb+nDn2vpw59r6cWfb+nDn2vp5akeb91DpZSSimllFJKxYn2YCmllFJKKaVUnGiCpZRSSimllFJxognWMETkHBHZJCJbReQ7iY5HxY+IVIrIP0TkPRHZICJftZfnicizIrLF/v+0RMeq4kNEnCKyRkT+Yj+uEZE37O/3gyLiSXSMKj5EJFdEHhGR90Vko4icpN/t1CQi19t/w9eLyAoR8el3O3WIyP+JyD4RWR+zbNDvslhus9/3dSJybOIiV4driPf6Zvvv+DoR+ZOI5Mas+zf7vd4kImcnJOhhaII1BBFxAncC5wLzgctEZH5io1JxFAa+YYyZD5wIfNF+f78DPG+MmQ08bz9WqeGrwMaYx/8N3GqMmQW0Af+akKjUePhf4GljzFHA0Vjvu363U4yIlANfAZYaYxYCTuBS9LudSu4Bzjlo2VDf5XOB2fbtWuCXExSjio97OPS9fhZYaIxZDGwG/g3A/r12KbDA3ucX9u/2SUMTrKEtA7YaY7YbY4LAA8AFCY5JxYkxpsEY87Z9vwvrB1g51nv8e3uz3wMfT0iAKq5EpAL4KPBb+7EAZwKP2Jvoe50iRCQHOBW4G8AYEzTGtKPf7VTlAtJExAWkAw3odztlGGNeAloPWjzUd/kC4A/G8jqQKyKlExKoGrPB3mtjzN+NMWH74etAhX3/AuABY0zAGLMD2Ir1u33S0ARraOVAXczjenuZSjEiUg0cA7wBFBtjGuxVe4HiRMWl4urnwLeAqP04H2iP+cOt3+/UUQM0Ab+zh4T+VkQy0O92yjHG7AZuAXZhJVYdwGr0u53qhvou6++21HYN8Df7/qR/rzXBUlOaiGQCjwJfM8Z0xq4z1jUM9DoGSU5EPgbsM8asTnQsakK4gGOBXxpjjgF6OGg4oH63U4M99+YCrKS6DMjg0CFGKoXpd3lqEJHvYU3tuD/RsYyWJlhD2w1UxjyusJepFCEibqzk6n5jzGP24sb+IQX2//clKj4VNycD54tILdZQ3zOx5ujk2sOKQL/fqaQeqDfGvGE/fgQr4dLvdur5ELDDGNNkjAkBj2F93/W7ndqG+i7r77YUJCJXAR8DLjf7L9476d9rTbCG9hYw265G5MGaTPdkgmNScWLPwbkb2GiM+VnMqieBK+37VwJPTHRsKr6MMf9mjKkwxlRjfY9fMMZcDvwD+KS9mb7XKcIYsxeoE5G59qIPAu+h3+1UtAs4UUTS7b/p/e+1frdT21Df5SeBz9jVBE8EOmKGEqokJCLnYA3vP98Y0xuz6kngUhHxikgNVmGTNxMR41BkfzKoDiYiH8Gau+EE/s8Y85PERqTiRUROAV4G3mX/vJzvYs3DegiYDuwELjbGHDzBViUpETkd+KYx5mMiMgOrRysPWAN82hgTSGB4Kk5EZAlWQRMPsB24GuuEon63U4yI/Ai4BGv40Brgs1hzMfS7nQJEZAVwOlAANAI/BB5nkO+ynWTfgTVMtBe42hizKgFhqyMwxHv9b4AXaLE3e90Yc529/few5mWFsaZ5/O3gNhNJEyyllFJKKaWUihMdIqiUUkoppZRScaIJllJKKaWUUkrFiSZYSimllFJKKRUnmmAppZRSSimlVJxogqWUUkoppZRScaIJllJKKaWUUkrFiSZYSimllFJKKRUnmmAppZRSSimlVJxogqWUUkoppZRScaIJllJKKaWUUkrFiSZYSimllFJKKRUnmmAppZRSSimlVJxogqWUUpOEiFSLiBERV6JjSXUicpWIvJLoOCYbEVkuIpsSHYdSSiUzTbCUUkolNRG5UURCItIdc/tWouNKRsaYl40xc+PdroicKSJvi0iniGwXkWvjfQyllJosNMFSSqk40Z6nhHrQGJMZc7sp0QHFUzJ/tkTEDfwJ+BWQA1wC/ExEjk5oYEopNU40wVJKqTEQkVoR+baIrAN6RMQlIieKyD9FpF1E3hGR02O2Xyki/yUib9pn858Qkbwh2r5aRDaKSJd91v//O2j9BSKy1m5nm4icYy/PEZG7RaRBRHaLyP8TEecIz2OmiLwgIi0i0iwi94tIbsy6VhE51n5cJiJN/c9LRM4XkQ32810pIvMOen2+KSLrRKRDRB4UEd/hv9KHT0S+Y78uXSLynohcOMR2IiK3isg++7V8V0QW2uu8InKLiOwSkUYRuUtE0kZ5/Hvs7Z+1Y3hRRKpi1v+viNTZx1wtIstj1t0oIo+IyH0i0glcJSLLROQ1+3VuEJE7RMQTs48RkS+IyBb7eP9hv3f/tI/xUOz2Q8R8uojUj+b5HYY8IBu411jeAjYC8+N8HKWUmhQ0wVJKqbG7DPgokAsUA08B/w/rh+U3gUdFpDBm+88A1wClQBi4bYh29wEfw/pxejVwa0ySswz4A3CDfdxTgVp7v3vsdmcBxwBnAZ8d4TkI8F9AGTAPqARuBDDGbAO+DdwnIunA74DfG2NWisgcYAXwNaAQ+Cvw54N+yF8MnAPUAIuBqwYNQOQUO3kY6nbKCM/hYNuA5Vi9Jj+y4y8dZLuzsF6/Ofa2FwMt9rqf2suXYL2e5cAPDiOGy4H/AAqAtcD9MevestvNA/4IPHxQ8nkB8AjW+3s/EAGut9s6Cfgg8IWDjnc2cBxwIvAt4NfAp7Hez4VYn9UjZifKQ70/vxhsH2NMI9Zn5GoRcYrISUAVoHPglFKpyRijN73pTW96O8IbVlJzTczjb2OdqY/d5hngSvv+SuCnMevmA0HACVQDBnANcazHga/a938F3DrINsVAAEiLWXYZ8I/DfF4fB9YctOxJ4F1gHeC1l/078FDMNg5gN3B6zOvz6Zj1NwF3xfk9uNF+DdtjbmWDbLcWuMC+fxXwin3/TGAzVlLiiNlegB5gZsyyk4Ado4zrHuCBmMeZWElS5RDbtwFHxzynl0Zo/2vAn2IeG+DkmMergW/HPP4f4OcjtHk6UB/P98du9zygESvxDwOfi/cx9KY3veltsty0B0sppcauLuZ+FfCp2DP7wClYvVWDbb8TcGP1ShxARM4Vkdft4XntwEditqvE6qE5WJXdXkPM8X8FFA33BESkWEQesIcUdgL3DRLTb7B6QW43xgTsZWX2cwDAGBO1n195zH57Y+73YiUa8faQMSY35rZHRD4j1hDK/tdhIYO8zsaYF4A7gDuBfSLyaxHJxuqRSwdWx7TxtL18tAbea2NMN9CK9ZphD53caA+dbMfqPSsYbF97+zki8hcR2Wu/R/85yPNpjLnfN8jj8XjthyUiRwEPYPXceoAFwLdE5KMTHYtSSk0ETbCUUmrsTMz9OqwerNgf+xnGmJ/GbFMZc386EAKaYxsUES/wKHALUGyMycUaficxx5k5SCx1WD1YBTHHzzbGLBjhOfyn/TwWGWOysYaV9R8LEckEfg7cDdwo++eN7cFK6vq3E/v57R7heIcQq0R49zC35SO3MtBWFVZC+CUg33791sc+p1jGmNuMMcdh9SjOwRp62YyVlCyIeS1zjDGHk6QMvNf2a5gH7LGfy7ewhiNOs+PrOCi+2M8VwC+B94HZ9nv03aGez3gRa67dUO/PXUPsthDYbIx5xhgTNcZswhpGe+7ERa6UUhNHEyyllIqv+4DzRORse76Jzy4cUBGzzadFZL49n+nHwCPGmMhB7XgAL9AEhEXkXKy5Qv3uxprT8kERcYhIuYgcZYxpAP4O/I+IZNvrZorIaSPEnQV0Ax0iUo6VYMT6X2CVMeazWD+O+39MPwR81I7DDXwDK8H750gv1MGMVSI8c5jby4fRXAZWgtIEVsEQrB/6hxCR40XkBDv+HsAPRO3euN9gzX0rsrctF5GzY/Y1ElPEZBAfseeWebDmYr1ujKnDer3DdnwuEfkB1ly74WQBnUC33Sv0+RG2jztjzIJh3p/rhthtDTBbrFLtIiIzseYWrpu4yJVSauJogqWUUnFk/3i+AKt3oQmrR+kGDvx7ey/W/Jy9gA/4yiDtdNnLH8Kam/MvWHOg+te/iV34Aqvn40X29yT1D8V6z973EQ4cojiYHwHH2m09BTzWv0JELsAqUtH/g/7rwLEicrndG/Fp4HasHp/zgPOMMcERjjeujDHvYc05eg1rmNwi4NUhNs/GSqTasIY7tgA32+u+DWwFXreH5T0HzAUQkUqgC2te2lD+CPwQa2jgcVivFVjz8p7Gmvu1EyupqxusgRjfxPocdNnxPjjC9pOCsYqkXINVzKUT67P6KPDbRMallFLjRYw5eASCUkqp8SIiK4H7jDH64zLJicinsYYP/tsQ6+/BKhjx/QkNTCmlVEIl7YULlVJKqUQyxtyX6BiUUkpNPjpEUCmlpgixLnp7OMUJVAoSke8O8Tn4W6JjU0qpVKBDBJVSSimllFIqTrQHSymllFJKKaXiZFLNwSooKDDV1dWJDkMppZRSSimlhrV69epmY8whF5+fVAlWdXU1q1atSnQYSimllFJKKTUsEdk52HIdIqiUUkoppZRScaIJllJKKaWUUkrFiSZYSik1DH8owp9W1dIbCCU6FKWUUkolgUk1B2swoVCI+vp6/H5/okOZlHq72nESxZuVl+hQJh2fz0dFRQVutzvRoagk9upjd3D+ez/kjXX/Hx+45r8THY5SSimlJrlJn2DV19eTlZVFdXU1IpLocCYVfyiCr2kdAKG86bh9GQmOaPIwxtDS0kJ9fT01NTWJDkclMd+ul3GKoaT+b4AmWEoppZQa3qQfIuj3+8nPz9fkahCh4P5evXBPWwIjmXxEhPz8fO35VGPmCzQBMCO6k9aGHQmORimllFKT3aRPsABNroYQDfYO3JdQTwIjmZz0c6PiITvcQqtMA6Buwz8THI1SSimlJrukSLDU4EwkDECPZOCJ9oExCY5IqdRijCHftFGfdwJRI/TsXJvokJRSSik1yWmCNQoiwje+8Y2Bx7fccgs33nhj4gKymWiU11ev47SPXcqxH76EefPmDcS1cuVK/vnPsZ1tP+ecc8jNzeVjH/tYHKJVKvkEAn7ypJu+zCr2OEvxtGxMdEhKKaWUmuQ0wRoFr9fLY489RnNzc1zbNcYQjUaPeH8xEa782g+5/fbbWPvsA6x+/SUuvvhiID4J1g033MC99947pjaUSmbB9r0AhNKLaEqfRXHf1gRHpJRSSqnJbtJXEYz1oz9v4L09nXFtc35ZNj88b8Gw27hcLq699lpuvfVWfvKTnxywrqmpieuuu45du3YB8POf/5yTTz6ZG2+8kczMTL75zW8CsHDhQv7yl78AcPbZZ3PCCSewevVq/vrXv3LHHXfwt7/9DRHh+9//PpdccgkrV67kxhtvpKCggPXr13Pcccdx3333HTivyETZ19JKZdUMjGlEIkHmz59PbW0td911F06nk/vuu4/bb7+do446asg4t23bxtatW2lubuZb3/oWn/vc5wD44Ac/yMqVK4d9bR5++GF+9KMf4XQ6ycnJ4aWXXsLv9/P5z3+eVatW4XK5+NnPfsYZZ5zBPffcw+OPP05PTw9btmzhm9/8JsFgkHvvvRev18tf//pX8vLy+M1vfsOvf/1rgsEgs2bN4t577yU9Pf2A45544oncfffdLFhgvXenn346t9xyC0uXLh02XqUOR7DLOqkS9eUTyJtHedfL9HZ3kJ6Zk+DIlFJKKTVZaQ/WKH3xi1/k/vvvp6Oj44DlX/3qV7n++ut56623ePTRR/nsZz87YltbtmzhC1/4Ahs2bGDVqlWsXbuWd955h+eee44bbriBhoYGANasWcPPf/5z3nvvPbZv386rr756QDtiInz1c1ewaOECPv6v3+S3//c7/H4/1dXVXHfddVx//fWsXbuW5cuXDxvnunXreOGFF3jttdf48Y9/zJ49e0b9uvz4xz/mmWee4Z133uHJJ58E4M4770REePfdd1mxYgVXXnnlQDW/9evX89hjj/HWW2/xve99j/T0dNasWcNJJ53EH/7wBwA+8YlP8NZbb/HOO+8wb9487r777kOOe8kll/DQQw8B0NDQQENDgyZXKu5C/m4AHN503OWLcYhhz+Y1CY5KKaWUUpNZUvVgjdTTNJ6ys7P5zGc+w2233UZaWtrA8ueee4733ntv4HFnZyfd3d3DtlVVVcWJJ54IwCuvvMJll12G0+mkuLiY0047jbfeeovs7GyWLVtGRUUFAEuWLKG2tpZTTjlloB0xUb739S9wxXVf588P38vDjz3Jo089P2iv03BxXnDBBaSlpZGWlsYZZ5zBm2++ycc//vFRvS4nn3wyV111FRdffDGf+MQnBp7Tl7/8ZQCOOuooqqqq2Lx5MwBnnHEGWVlZZGVlkZOTw3nnnQfAokWLWLfOuqbX+vXr+f73v097ezvd3d2cffbZhxz34osv5qyzzuJHP/oRDz30EJ/85CdHFa9ShyPkt6pzOr3p5FfOhNegc+caOPb0xAamlFJKqUlrzAmWiFQCfwCKAQP82hjzvyJyI/A5oMne9LvGmL+O9XiJ9LWvfY1jjz2Wq6++emBZNBrl9ddfx+fzHbCty+U6YH5V7PWYMjJGd0Fgr9c7cN/pdBIOhw9Y7yCCwcHMmTO5+upr+OK/fJSio8+ipaXlkLaGihMOLWd+OOXN77rrLt544w2eeuopjjvuOFavXj3q5+RwOAYeOxyOged31VVX8fjjj3P00Udzzz33DJowlpeXk5+fz7p163jwwQe56667Rh2zUqMVDvQB4PKmU149h4BxE9q3JcFRKaWUUmoyi8cQwTDwDWPMfOBE4IsiMt9ed6sxZol9S+rkCiAvL4+LL774gCFrZ511FrfffvvA47Vr1wJQXV3N22+/DcDbb7/Njh2DX6B0+fLlPPjgg0QiEZqamnjppZdYtmzZqOJxGMNfn38JYwy4fWzdsQun00Fubi5ZWVl0dXWNGCfAE088gd/vp6WlhZUrV3L88ceP6vgA27Zt44QTTuDHP/4xhYWF1NXVsXz5cu6//34ANm/ezK5du5g7d+6o2+zq6qK0tJRQKDTQzmAuueQSbrrpJjo6Oli8ePGo21dqtCIBqwfL5cvA7XLR4CzF07E9wVEppZRSajIbc4JljGkwxrxt3+8CNgLlY213svrGN75xQDXB2267jVWrVrF48WLmz58/0JNy0UUX0drayoIFC7jjjjuYM2fOoO1deOGFLF68mKOPPpozzzyTm266iZKSklHF4iDK/Y/8mblz57L89A9xxVf+nXt+80ucTifnnXcef/rTn1iyZAkvv/zykHECLF68mDPOOIMTTzyRf//3f6esrAywkr9PfepTPP/881RUVPDMM88A8IMf/GBgvtUNN9zAokWLWLhwIR/4wAc4+uij+cIXvkA0GmXRokVccskl3HPPPQf0XI3kP/7jPzjhhBM4+eSTOeqoowaWP/nkk/zgBz8YePzJT36SBx54YKByolLxFrYv5u32WkVW2tKmM81fl8iQlFJKKTXJiYnjxWlFpBp4CVgIfB24CugEVmH1crUNss+1wLUA06dPP27nzp0HrN+4cSPz5s2LW4ypwhhDaM96Iu4M0opm4A+G8DWvp89bRFr+6PPbg6sdphr9/KixeO/xW5i/9j/YdMUa5s6cweu/+hLH7lmB4/t7cbndiQ5PKaWUUgkkIquNMYdUWYtbFUERyQQeBb5mjOkEfgnMBJYADcD/DLafMebXxpilxpilhYWF8Qon5UWN1YOFWG+hx+0iaJwQ8Y+wp1JqtKJ2D5bHZ82bdBTMwiNh9tVvS2RYSimllJrE4lJFUETcWMnV/caYxwCMMY0x638D/CUex1IWYwwOzECC5RAhJB5ckeBhtXPjjTeOQ3RKpQYTsopceNOsBCuzbC68Cy07N1BWc9Rwu6akJ19ZQ3Tvei74xOWIQ6/yoZRSSg1mzP9CilVy7m5gozHmZzHLS2M2uxBYP9Zjqf2ixuCQ/QkWQMThwWVCCYxKqdRiQn0EjIs0rweAomrrUhG9ezcnMqyECIYinP3sh/n4+i+xdfVziQ5nwjW1d/Obu+9i8/vvJDqUCWeM4fnH7ubtf/490aEkxFvv1/LqQz/DRMIjb6yUUsRniODJwBXAmSKy1r59BLhJRN4VkXXAGcD1cTiWspn+EvAxCZZxenAS0X8ElIqXUB9+PPjcTgDyiyvoMT5o2ZrgwCbepu078Ip1Aqf1nacSHM3EW/PnO/lc3bdxP/aviQ5lwm3a08oH132dY//+KUJdTSPvkEKiUYP//ss5+b0fsf21PyU6HKVUkohHFcFXjDFijFkcW5LdGHOFMWaRvfx8Y0xDPAJWlqjpT7D2X7NKXNY1riIhnYelVDxI2EqwvC7rT6U4HOxxlZPevXOEPVNPW/37A/cL9r2ewEgSpHEDADXBLfg7m0fYOLVsXvPSwP3a1x5PXCAJsGVvB8ud1gCc4JqHEhyNUipZ6CD6JGWiVvVHienBcrjtBCuoCZZS8eAI9+HHi8Ox/0RGR9p08qdgqfZAozUs8t2MkygPbodoJMERTaycntqB+7vXPpu4QBLAs+fNgfv+2qmVXO/dvf8alkVtbycwEqVUMtEEa5Qef/xxRIT3339/yG1qa2tZuHBh3I65adMmTj/9dJYsWcK8efO49tprAesiwU//zb5uc0yC5fZ4MQaio+jBuuaaaygqKoprvEqlGkc4QEAOvIZbMKeG4mgj4Sl2IsPbWUsYBx3TP4SPIC11Q/8tTDXRqKEyWs87macSNULPrjWJDmlCObv20Esaq52LyWlem+hwJlRPo5VgvZd2HPnRZkz31BoiqZQ6MppgjdKKFSs45ZRTWLFixaDrw+Gxz3uKRA48I/yVr3yF66+/nrVr17Jx40a+/OUvA1aC1X/RX4k5s+52uwjhgkhgxGNdddVVPP3002OOWalU5oj0ETwowXIWzMIphsadUyfBAHAF2ugki6yaYwHYt3V1giOaOO1d3ZRJC5GiBeyiBFfTxkSHNKHc/ha6XHm0ZM6lJLhzSvVehlut4cDt0z9s/b9We7GUUiNLrgTrb9+B3300vre/fWfEw3Z3d/PKK69w991388ADDwwsX7lyJcuXL+f8889n/vz5gJVoXX755cybN49PfvKT9PZa19F5/vnnOeaYY1i0aBHXXHMNgYCVBFVXV/Ptb3+bY489locffviA4zY0NFBRUTHweNGiRQSDQX7wgx/w6KOPsuTDl/LIY0/Q09PDNddcw4knnMDxZ1/CU0/9DYB77rmHCy64gNNPP53Zs2fzox/9aKCtU089lby8vGGf94svvsiSJUtYsmQJxxxzDF1dXRhjuOGGG1i4cCGLFi3iwQcfHHgtTjvtNC644AJmzJjBd77zHe6//36WLVvGokWL2LbNum7Qn//8Z0444QSOOeYYPvShD9HY2HjIcS+99FKeemr/JPqrrrqKRx55ZIR3San4c0b8hA5KsDLLrfLsrXVT60e2K9hFryODkhlHA+Bv2JTgiCZOa7P1d8qdXcxe3wymdU+tIieZ4Vb6PHlE82bhIUSodVeiQ5ow0mkNB3bP+ygA7TumXhVJpdThS64EK0GeeOIJzjnnHObMmUN+fj6rV+8/c/v222/zv//7v2zebM1P2LRpE1/4whfYuHEj2dnZ/OIXv8Dv93PVVVfx4IMP8u677xIOh/nlL3850EZ+fj5vv/02l1566QHHvf766znzzDM599xzufXWW2lvb8fj8fDjH/+YT3ziQtY++wAXf/IifvKTn3DmmWfy5ptv8udH/8h3/+Nmerq7AXjzzTd59NFHWbduHQ8//DCrVq0a9fO+5ZZbuPPOO1m7di0vv/wyaWlpPPbYY6xdu5Z33nmH5557jhtuuIGGBqt+yTvvvMNdd93Fxo0buffee9m8eTNvvvkmn/3sZ7n99tsBOOWUU3j99ddZs2YNl156KTfddNMhx73kkkt46CFrMnEwGOT555/nox/96KjjVipeXNEAIceBCVZR9TwA/Hu3JCKkhHGHewg4MijKz6PRTEPatic6pAnT2boPgLScfHpzZ1McaYDwyCMFUkVutB2/Nx9fqfXZb6qdOldd8fmb6JJMptfMpt1kENw3tb73SqkjE5cLDU+Yc3+akMOuWLGCr371q4DVu7JixQqOO+44AJYtW0ZNTc3AtpWVlZx88skAfPrTn+a2227jwx/+MDU1NcyZMweAK6+8kjvvvJOvfe1rgJVQDObqq6/m7LPP5umnn+aJJ57gV7/6Fe+803/2zC5y4XDw97//nSeffJJbbrmFSDiEPxBkZ6314+fDH/4w+fn5AHziE5/glVdeYenSpaN63ieffDJf//rXufzyy/nEJz5BRUUFr7zyCpdddhlOp5Pi4mJOO+003nrrLbKzszn++OMpLbUufzZz5kzOOusswOp5+8c//gFAfX09l1xyCQ0NDQSDwQNeu37nnnsuX/3qVwkEAjz99NOceuqppKWljSpmpeLJGQ0QcRzY01tQWEqHyYDWqZNgAHgi3QRcmYgI+9xTq5Jid7uVYGXkFiJ5M3E0GjobtpFdOT/BkY2/QDhCPh3UpxVQWL0A/gkd9e9RtvS8RIc2IVyhLvocmRRl+3hXSsmYQicWlFJHTnuwRtDa2soLL7zAZz/7Waqrq7n55pt56KGHMMZKcDIyMg7YXmLKpg/2eDAHtxGrrKyMa665hieeeAKXy8X69faZQ/v4iANjDI8++ihr167l1ZdfZNdbf2XOrJojjqffd77zHX7729/S19fHySefPGyBDwCvd/+ZfofDMfDY4XAMzFH78pe/zJe+9CXeffddfvWrX+H3H1oowOfzcfrpp/PMM8/w4IMPDpmAKjXeXNEgkYN6sESEva4y0qZQggHgi/QQdll/q7rSKykI7k5wRBMn0NUCQGZuERml1omy5l1TY4hoV08f06SbaFoBVdOr6DDpRPZNnQtte8PdBJ0ZiAit3kqy+6bO8Eil1JHTBGsEjzzyCFdccQU7d+6ktraWuro6ampqePnllwfdfteuXbz22msA/PGPf+SUU05h7ty51NbWsnWrNW7/3nvv5bTTThvx2E8//TShkHVhz71799LS0kJ5eTlZWVl0dVlDAB0OB2effTa33347xhgcHh9r1r8/UKr92WefpbW1lb6+Ph5//PGB3rXR2LZtG4sWLeLb3/42xx9/PO+//z7Lly/nwQcfJBKJ0NTUxEsvvcSyZctG3WZHRwfl5eUA/P73vx9yu0suuYTf/e53vPzyy5xzzjmjbl+peHKbIFGn95DlnenTKQhMrVLt6aaHsDsLgEjuDPJMO8GejgRHNUF6WwFIzymgoMqag9fdMDWGivXavXcmo4BMn5s6Rzme9qnTi+OL9hB0ZQIQyK6hMLIPQn0JjkopNdlpgjWCFStWcOGFFx6w7KKLLhqymuDcuXO58847mTdvHm1tbXz+85/H5/Pxu9/9jk996lMsWrQIh8PBddddN+Kx//73v7Nw4UKOPvpozj77bG6++WZKSko444wz2LRpE0s+fCkPPfwo//7v/04oFGLx4sUsO/4E/v2mXxANWfMDli1bxkUXXcTixYu56KKLBoYHXnbZZZx00kls2rSJiooK7r77bgDuuusu7rrrLgB+/vOfs3DhQhYvXozb7ebcc8/lwgsvZPHixRx99NGceeaZ3HTTTZSUlIz69bzxxhv51Kc+xXHHHUdBQcHA8lWrVvHZz3524PFZZ53Fiy++yIc+9CE8Hs+o21cqnlwmNGiCFcypoSjaTCgwdX5opZs+oh4rwXIXzQSgcefU6MURfxsAzox8ykor6DRpRFq2JTiqidHXafXeOdOmAdDqqyLPP3V6b9Oi+08sUDALgJ4pNv9SKXX4kmsOVgL0zx2K9ZWvfGXg/umnnz5wv7q6eshhdB/84AdZs+bQa6fU1tYOeeyf/exn/OxnPztkeV5eHv949mlygg1QtABcHn71q18BEDWG0J71RO0J2BUVFTz++OOHtDFUghib+PUXpjjYzTffzM0333zAstNPP/2A12LlypWDrrvgggu44IILDmlz6dKl/Pa3vx147Ha7aW1tHfT4Sk0UtwmC89AE3104C0e9Yc/OTVTMWTLxgU2wQChMJr0Yr/VDM6d8LqyCtrpNVM4/McHRjT+nv50QLtyeDHwi1DpK8XbWJjqsCeG3eyk9GTkA9OXMoGDvcxDoBm9mIkMbd+FIlAzTS499YiGjdA5shJad75FRuTjB0SmlJjPtwUpaUet/B82pcogQEg+O6NSpcKXUePEQwgzSg5VVbs3DmSql2ru6OnCKweHLBqC42iruEGiaGuXK3cF2OiVr4O9tu6+S3L76BEc1MYLdVu+dJ9PqwXLYvThdDak/D6s7ECZL+jBe63NfWGV97run0CUKlFJHRhOsZGX6E6xD38KIw4PLhLjqyiu54447JjgwpVJENIqbMLh8h6wqrloAQN8UGSrU22n9yHakWT80p+VOo5kcHFOkkqIr1E2fY38xIn/2dAqjjZhwMIFRTYxQbycAaZm5AANFPqbCyYWuvhBZ9CI+qwdremkJTSYH0zw1TiwopY5cUiRY/RX7VIyBKoKDVAV0enESxUTDExvTJKOfGzUmEbsX2H1oD9a0gmI6yEBap8g8nC4rwXKlWcPERIRGVwUZPVNjLo4n0k3AuT/BkryZuInQuXdHAqOaGJE+a4hgepZ1uYLC6VaRj569qZ9kdHd34ZIoDp/1uU/zONntKMPXNTU+90qpIzfpEyyfz0dLS4v+WD6YifZfCeuQVWL/IIwEp84E/IMZY2hpacHnO7T3QanRiNqVOMV1aIJllWqfOteCCnS3A+DOyB1Y1pVeSf4UKdXujfQQikmwMkpmA9BcN/ylK1KB8dsJVrY1RLCypIgmk020JfV7LwdOLKTnDixr91WQ658aw0OVUkdu0he5qKiooL6+nqampkSHMqn0dbbgi/YiHYf+Ax8IBvH27iO8N4QrLSsB0U0OPp+PioqKRIehklQg0EsaIK7BL3LdlTad8u53Bl2XagIHFToACOVUU9j5NKG+Ltwp/nfGG+2lz1048Di/ah4APVNgHhL+LgBc9vBQn9vJZkcp6VOgyIffnn/mjvncB7KryW98FoI94Bn6GpZKqalt0idYbrebmpqaRIcx6Tz3P1ewrPsfZP/w0DNpdc1dFN1+JttnXsG8z/x84oNTKgUE+6wEy+E5tAcLIJRbQ3Hn8wT8PXh9qf1DK9zbDuwfJgZWJUXqYN/OTZQftTRBkU2M9Ggv3e79SWRpWRU9xkukOfWHiEqwkx58ZDicA8vafZWU+dcmLqgJEuxpB8Cdvj/BcubPgEbo2ruVrOlHJygypdRkN+5DBEXkHBHZJCJbReQ74328qcIRCRKSwX/4leVlUkcxjrbUH8Kh1HgJ2Ne4crgH78FyFc7CIYa9talfUSzitwod+OxCBwDZ5XMBaK1P7WIHkaghnT6MZ3+C5fO42OMoxTMFenGcoW565cATCIHsagqizSl/wd3+Ews+u4IiQEaZVeSjeYpcA04pdWTGNcESESdwJ3AuMB+4TETmj+cxpwpXxE/YMfgFeJ0OodFdTuYUmR+i1HgI+nsBcLkHn8eXbf/QapsK83DsQgcZ2ft/aBbZJasDjaldSbEnECKTPvAeOAyy1VtBTl9dgqKaOK5QF35H+gHLJH8GAN0pXugi3GedWEjP3t9z21/ko3fvFBgeqpQ6YuPdg7UM2GqM2W6MCQIPAIdeZVYdNmc0SFgGT7AAujKqKQzthmh0AqNSKnWEAlaRC6dn8ASrpMYq1e5vTP0fWiZgzcNx2/NwAPLz82k2OUiKl2rvGagkd+BFdfuyqiiO7IVIaldr9YQPrKAIMUU+dqX2yYWonWDFzj2sKC2lxWRNiSIfSqkjN94JVjkQe4qv3l42QESuFZFVIrJKC1mMnssEh+zBAojm1uAhRLQ99c+wKjUeQnYVTqd38CGCOfnFtJOJtKV+qW5HsJNu0iBmHo6IsM9VRnr3rgRGNv56utoBBkp1D8ibiZswXU21Ex7TRPJGegi6DkwuC+xenO6G1O69JGD13Ip3/4kFn9tJg6MUb6eOEFFKDS3hZdqNMb82xiw1xiwtLCwceQcFgCsaIOIYfA4WgLvYvhhkfWqfYVRqvITtBMvlGTzBAtjnKiOju3aCIkocR7CbPkk/ZHlH+nQKgqldsnqgklxM7x1Amt2L05Lic3HSoj2E3QcOj6woK6fdZBBtSe0iHw675/bg4aHtaZXk+vXkpVJqaOOdYO0GKmMeV9jL1Bi5TZCIc+gEa1qldYaxvS61//FXaryE7SIX7iGGCAJ0pVdREEjtBAPAFeqmz3FopcRQTjWFpoWwvzsBUU2Mvh5rmFhsqW6AfLsXp2tPap/ESjd9RDwHJhhpHid7HKV4U7zIhyPURa8c2HMLEMiuoiDajEnxIh9KqSM33gnWW8BsEakREQ9wKfDkOB9zSnCbINFherDKK2fQa7yE9qX4EA6lxknEvtCwxzd0D1Y4t5oi04K/r2eiwkqIwebhgFVJEaB5V+pWUgzZ1wDzHpRglVXU0Gu8RJpTdy5OKBIlk17wHHqds7YpcMFdd6ibPjn0c+/In4UDQ8ee1C7yoZQ6cuOaYBljwsCXgGeAjcBDxpgN43nMqcJtgkSH6cEqzk5jJyW42lP3H3+lxlMkZCdY3kOHxvVzFc3GIYaGHandizHYPByAzDK7VHsK95SHeq0Ey5eRe8DydK+b3Y4SPB2pOwevq9dPugTAm33IukBWFQWRfRAOJiCyieEOd+F3DvK5L+0v8pG6n3ul1NiM+xwsY8xfjTFzjDEzjTE/Ge/jTQXGGDwEMa6hEyyHQ2jyVJDVoxNxlToSo+nByimzhom1pfi1oNKiPYQHSbCK7VLtfSlcqj1ql6hPy8o9ZF2Lt5LcvtQt8tHT2QqAI+3QBIu8GTiJ0r0vdU/iWScWDu3BKqiaB0BvQ+pXEFVKHZmEF7lQhy8UMXgJYZxDzw0B6MmspjDcAJHQBEWmVOron1/h9Q3dg1U8wyrVHtibukPkANJN7yHzcAAKCwpoNjk4UrhUe8SeX5Y+SILVm1lFYaQxZUu193ZaBT4caTmHrEu3i3w07Uzd3ltftIew69DPfXlpf5GP1P3cK6XGRhOsJBQIR/CN0IMFEM2biZMo4ZbaiQlMqRRiQtaFhr3ph/7A6peVW0AzubhaU3cuRiRqyKAX4zm0B8vhEBpdZaSl8kXNA1aRCxlkmBx5M3ATpq+5dmJjmiB93e0AuA8aHgn7i3x0p2gvjjGGjOjgJxY8LgcNzjK8XSn8uVdKjYkmWEkoEI7iJQSu4XuwfMV2GeFd701EWEqlFAn1ETGC1zv892yvezrZPak7D6e7z0/GEPNwADrSKslP5UqKgW5CuGCQE1ppJdblMJpStFR7sKcdOLTAB0BFeRXdxkekOTVLtfcGI2RJL1Hv4CdY2n0VTNNS7UqpIWiClYQCoQg+CSEj9GDlTbfmR3TuTt0hHEqNFwn14seLOIb/M9mZNYPS0C4wZoIim1jdwwwTg/2l2qOB1Kyk6Ax10SdpIHLIumkVVpGP7j2pOUR0oMBH5rRD1qV5XexxlOBJ0VLtXf4wWfQOeWIhkF1FYWQfJhyY4MiUUslAE6wkFLCvz4N76Mn3AFUVlXSYdC3VrtQRkHAffhn+JAaAyZ9NNj10NKfmJf78XVaC5Rys0AHgtEu1N9WlZpLhCg1+kWWA8soaeoyXcHNqDhGN9LYDkJZ1aIIF0OatIKcvNXsvu3t7rBOZvsE/9478mTjF0LY7NXvwlFJjowlWEgr5rbkhDvfwQ5fyMr3skjLcWqpdqcMm4T4Co0iwMsqsimIN29aNd0gJ0T8Px5U+eA9WVqnVi9OWoiWrXZHeQa8BBpCV5qFeSvF01E5sUBMk0tcFQEb24AlWX1YVRZG9EI1MZFgToqerHQDnEJ/7zFJreGhzCl+iQCl15DTBSkL+PivBcnqGT7AAWn1VTOvTibhKHS5n2E9ARv6OFc1YBEBXXWrOdQx0Wz1YnozBf2QXVqd2qXZvpIfQIKW6+7V6y8nuTdG5OHaBD/cQw0P7i3x070u9OYi9dol6T3ruoOsL7VLtPXtSs8iHUmpsNMFKQkG/NUTQ5Rm6fHS/vtxZFESbwd853mEplVKckT5CjpETrJKKmfQYL9Gm1BwiF+q1/nYMVugAoKSwkGaTA62pOVTKSrAOraDYrzezmqJIQ2qWag90EsY55HD0NLtUe3Nt6p1cCNg9t95BKigClJZW0G3SiKTwJQqUUkdOE6wkFPBbk8ndw1yfp5+jyBq+01G3YVxjUirVuKJ+Qo6Rhwg6nE4aXBWkdabmD62QXUkuIztv0PUOh7DXVUZ6V+3EBTWB0k0vUffQPViSPwMXEXqaaicuqAniCHbRI+mDFvgAmFZl9d727Em9f1+CPXaBj0GufwbgcjlpcJaS1pl6vXdKqbHTBCsJhfoTLO/ICVbOdOsfwJbad8c1JqVSjTsSIDKKHiyA9owaCv2pORQ30mf90MwcYh4OQEfGDIpS8PmHIlEy6SHiGbzQAUBmmXU9qMYd6ycqrAnjDHXhdwydXFaUV9JmMjH7Uq/3NmwX+EjPGvzEAkBLWhUFOgRfKTUITbCSUP/EY0/60P/o9yuvOYqAcePfk3pDOJQaTx7TR9g1fKXOfuG82ZTSRHdXxzhHNfFMnz0HK3PoH5qhvDlMowN/x76JCmtCdPeFyKUH48sdcpvimYsB6ErBUQLuUPeQBT4A0r1udjkqSO9MveGh/ScWvJm5Q27TlzObYrMPE+iaoKiUUslCE6wkFLH/mHsyR06wyqZlsYNSXK2pd4ZRqfHkiQaIOEeXYPlKrV6MPVtTr5KgI9CBHw8MU7XUa1dS3LvtnYkKa0J0d3XilgikDd17V15WQYvJxjSl3vUGPZHuYeefATT7qsnvq52YgCaS3z5Z4h2iwAcg9hD8lp16AlMpdSBNsJKQ8VsJlm+I8rGxHA6h0VtNbndqzg9Rarx4CWBG2YOVV7MEgPadqZdgOQPtdMvwP7Lzq61enM5dqTVMrq+rCQBH+tAJlsvpYLdrOhkp2Ivji/QSdmcNu40/dxY5phPT0zxBUU0Mh7+dKAJpuUNuk1mxAIC2nToEXyl1IE2wkpAJdgPg8g3/D1+/nuyZFEQaIdg7nmEplVJ8JoAZ4WLe/cpq5hMwbqKNqTdMzBPspNc5fG/59OrZdBsf4cbUuiZQb0cLAO5hhkcCtGfOoCRQC8ZMQFQTIxSJkmF6iHqG/3fGXWL13nbsSq3PvjvQTo9kgMM55DbFVfMJGSehBu3BUkodSBOsJCQBK8HCO/xZ5QEFc3Fg6NubekNYlBoPkUgUH4Ehy1MfzOX2UOesJLM99Ybi+sKd+J3D/8j2eVzUOytIa986QVFNDH+n1SuTlp0/7HaR/Llk0UNf256JCGtCdPaFyJQ+8A7/3ufZlQSba1Or99Ybbh/xxEJZfja1lOJqTc1rwCmljtyYEiwRuVlE3heRdSLyJxHJtZdXi0ifiKy1b3fFJVoFgCNkJ1ie0SVYmZULAWjekVr/ACo1Xvr8vTjFgHvkSp39WjJmUuxPvaG4adEugu6R53u2pNVQ6E+tktX+Lutis5m5hcNul15uDRXbu3XteIc0YTp6A+TQgyN9+N676TPm0Gu8BBpSq/cyLdxBn2v4YfhOh9Dgnk5OT+oND1VKjc1Ye7CeBRYaYxYDm4F/i1m3zRizxL5dN8bjqBiOUC99eIcduhCrtMYaxtBbn1pDOJQaL/5O64c1vpHnOfYL5s+j0LTS29E0TlElRma0m7A3d8TtgnmzKTCthHvaxj+oCRLp6U+wCobdrnCGPQetLnXmoHW1N+EUg2QOn1wWZqWxU8pwp1gvTkakk6B75O9/Z9YMCkINEA5MQFRKqWQxpgTLGPN3Y0z/5etfByrGHpIaiTPcQ0BGN3QJoKpoGjspQZpTb/iSUuOhx06wnOm5o94nrcIaKrVn0+rxCCkhQpEo2XQTHaaSWj93yXwAGrenTk95tHfkEvUAFRXVtJsMTArNQfO37QXAnT18giUiNPuqmdZbOwFRTYxQJEp2tIuIb+jiJv2kcB5OogQaN09AZEqpZBHPOVjXAH+LeVwjImtE5EURWT7UTiJyrYisEpFVTU2pdeZ3vLjDPfgdo0+wPC4HDe7pZHfrMAalRqOvyy5ukDH8D+tYRbOOAaBzZ+qUKu/s7iFDAsOWKe+XV20lmK0pdFFzZ18LATwjDsf2uJ3UuapI70ydOWjBTuvfY2920Yjb+nNnURhNnetBtXQHyZVuZIThkQDZ060h+I0pNDxUKTV2IyZYIvKciKwf5HZBzDbfA8LA/faiBmC6MeYY4OvAH0Vk0EH8xphfG2OWGmOWFhYOf6ZMWVzhHoLDXPxxMF3ZMykM7dFhDEqNQrDL6rnwZo6cWPQrr5xJh8kg2pg6FcU6mq2iDY6skX9kV8+cR8C4CTakzlBkb6CZNsc0EBlx2/aMGRT7a1OmkmCgoxGAzPzSEbd1llhJRtuO1Di50NLRRZb04RzFCZaKmQuJGKGrPnWGhyqlxm7EBMsY8yFjzMJBbk8AiMhVwMeAy42x/mUxxgSMMS32/dXANmDOuD2LKcYd6SPsGv3kewBTcJQOY1BqlIL20DBf1uh7sJxOB/XuarI7U+c71tm0GwDftLIRt033ednprMTXljrPPy3QQrd7dJ+BcN4ccujC3753nKOaGOGufQBk5ZWMuG2OfR24lu1rxjOkCdN/YsGTO3JyOb04n12U4EjBC00rpY7cWKsIngN8CzjfGNMbs7xQRJz2/RnAbCD1ymsliC/aQ8Q9yhLttv4LIjZtT40zjEqNp6hdqCEjZ/jy3AfryJpNWbA2ZXoxelusBCuroHxU27dkzKbEnzpDkbPCLQS8wxe46Oct7x8q9vZ4hjRhot1WiXpJH/k7UDXjKDpNGqE9qTE8tK+lHoC0vJGnlTsdwh7vDPK6UufEglJq7MY6B+sOIAt49qBy7KcC60RkLfAIcJ0xpnWMx1JAMBwlhy4i3tEPXQIonWENY+jWYQxKjSja1wFA5mEmWKZ4AZn00rInNZKMYIfVGzOtaHT1i0KF88k3bfS0NoxnWBMiEI4wzbQTSR95eCRA4axjAejauXYco5o4rr4muiQLnO4Rty3I8rFNqkhrTY0iH6F2qwcrq7ByVNt35R5FcWQPpMgcNKXU2I21iuAsY0zlweXYjTGPGmMW2MuONcb8OT7hqo6+EPl0EhnFWcVYVSX51FGslQSVGg1/BwHjxpd2eENxs6Zb5br3bk6NXgzTbc3DSZ828jAxgPSKowHYs2nVuMU0Ufa1dZNHF46s4lFtX1VZRaPJxexNjZNYWYFG2j2je+4AzRmzKerbmhK9t6bLOkGQlj+6EwuOEqvAS3sKFbhRSo1NPKsIqgnQ2dlOmgRHNWwjltflpN5dRVZnapxZV2o8ib+DbslARlHcIFb5HKsXo7c+NX5oOXr20UEWuLyj2r50znFAavTiNDfuxiFmVPNwwKrWuss9k+yO5D+JZYxhWngffb7RJdYAoYJ5ZJhewq07xzGyiSFde4nggPTRDQ+dNtP63LekyPBQpdTYaYKVZHrbrTPKjhEu/jiYrsyZFIXqIRyMd1hKpRRnoI0ex+HNcwTILyhiLwW4mlNjwnuGfy8drtGfzCkrr6TJ5CL7kr+SYE+jdTIqvah61Pt05cyhNLQTIqFximpidAXClNJMKHN0ySVAmt17uW9b8icZrt5GOpx54BjdT6SaGXPoMOkEd6fGiRWl1NhpgpVkulqsBCstd3TzAmJFC4/CRYRg05Z4h6VUSskINtPlHt3Z64M1+GYwrTs1vmN5wT20+0ZX4AKsi87We2eSkwKVFEPNOwDIKZs96n2kZBEewrTtSu4Es7GpmRzphZzRzUECKLF7Lzt2JH8lwZzAHjp9I1fO7FeQ5WOrVKfMHDSl1NhpgpVk+tpHXzr3YBnl8wFo2r4urjEplWpywi34fUd2Xb7e3LmUh+uJhJL7mnOBUJiS6D5CWdMPa7/u3LlUhHdikr2nvH0nUSNkFtWMepdcu1z5vi2rxymoidFYZ10wObOoatT7zCwvZqcpRhqTO7ls7w1SaRoIZlcf1n7NmbMp6tsO0ej4BKaUSiqaYCWZYKeVYOWM4uKPByuZsZioEbrrUmMStlLjwUSj5Js2QmmH30sM4ChdhFsiNGxN7uFCu+t3kS4BXAWjTzAAHCUL8RCmsTa5f2i7OnbS6sxD3L5R7zN99tEEjAt/fXKfxOrebfXEFFTNH/U+HpeDes+MpO+9rGtspkTakPwZh7VfMH8+6fQRaa0dn8CUUklFE6xk022VTXZmj766U7/q0gJ2UQR6QUSlhtTZ0YJXQpB1+L3EAHkzjgGS/6KrTbusvxNZJbMOa79pdi9OU5JP+M/p20WHb3RV5Prl52RSK5V4Wt4bp6gmhmmyCnVklI0+wQLoyjmKovBuCPaOvPEk1VJnJYjpJaMfGgqQVmlVEN23JfkraCqlxk4TrCTj7a6nQ7LBm3XY+/rcTna7ppPZpZUElRpK216rCpor5/B7iQGmz1pMwLiS/qKrgT1WT3dBzeLD2m/63GMIGifB3cnbi9PZF6QmuoveaUcd9r5NGbMo6t06DlFNnLSObTQ7C8F7eIVenKULcRKlY1fyfvb79lg9r3nTDy+5LJtzHBEjdO5M7hMrSqn40AQryWT27aHdc2Rn1gE6M2dSFKxL+ipXSo2XlgYrwcopOry5R/3S0nzUOSvxtSZ3uW7HvvfoJo3skpmHtV9mejq7HJV4W5J3wv+u7e+TJX24ShYc9r6B/Pnkm1aCHfvGIbLxF40aigM7aEs7vKGhANNqrN7bfVuTdw6aNLxDCBdpZQsPa79ZZYXUUpr0c9CUUvGhCVYSiUQN+eG99KWPvqrXwaKFc3ETJtikvVhKDca/1xoiVFg174jbaM6YRbE/uXsxcjo30eCdMepS1bGaM2ZZF51NUi3brAShP2E4HGkV1kVnGzYn51Cx7XuamG12ESo5+rD3rZk9n27jI5ik14EzxpDb+T6N3hpweQ5rX2sO2kxyO5P7xIpSKj40wUoie9p6KacJco/szDpAerl1Vq5l+9o4RaVUanG0bqMHHzmFhzf/JlYwfx6FppXe9uTsxeju7WNGeBs9eYffgwMQKphPkWmht6MpzpFNjNCO1wnionju8Ye9b8kca5/2JC1XvuPdf+KSKHlzTz7sffOz0tjuqMKXpOXK93b0clR0K735h9d71a9n2lEURfZi/B1xjkwplWw0wUoie3dtxich3EVzjriNohrr7GpXvQ5jUGow6d072OssR46g56ZfWoU1b2nP5uQcKrVt3atkSADXjFOOaP90e8J//ftvxTOsCWGMobhtNfVpRyHutMPef3rldPaZXGhMzmqtwe2vAFA87/ATLICmjDkU924FY+IZ1oTYuu51cqUHz6xTj2h/d5n172v7jrVxjEoplYw0wUoinbVWVa5pM4494jZmlBWxyxRi9mklQaUGUxCooyP9yHuJAYpnWxdd7apdG4eIJl7r+ucBqDnuw0e0f6nd89ORhD80d9TVc5TZTl/ZSUe0v8vpoM4zg+wkLFdujKGs5Z/s8sxCMo/sMgWhgvlk0kOwZWecoxt/reufBaD8mLOOaP+Cmdb3fl+SV9BUSo2dJlhJJLx7HREc5NllkI9EmsdJvauKzM7knR+h1HhpbW6k3DQSLjyyoXH9yiuqaTVZmH3JWa67uOEFtrtnkZFXdkT7l5ZNp5Vs2Jd8PeW73ngC9//P3n3Ht1Wdjx//HG15ynvv2I4d23F2yICEllX2KNAWKPBrKd2lg45vB7RfOqAtHZTS8qUtFAplj1IoFAg7IXsvJ957L1nznt8fkoOT2PGSLSk579dLEF3de+4jS7L13HPOc4SXhIWXTLmN/thiMtw1YbfY8oGaOsq8++jPnFoPDkBEdiUALQfCq/fS5dHIanudJnMBxripDQ8umFNEj4zE0xS+FTQVRQkMlWCFEVv3DlqMWWCKmFY7vVEFJLnqwOsJUGSKcnKo2/0+AJF5k597M5J+uBejN/wmvB+q2s9cz366s86ZchtCp6MxTBedjTzwLB0intSSFVNuQ/gXW+6qC68Eu/btRzAKL+krPznlNjKKF6FJQX+YlSvfsnMnC9nP0JwLptxGjNXEYX0+Ed3hOQdNUZTAUQlWmGjo6KHcs5uelOXTbsubUIwJD57OwwGITFFOHvbqDwDIKpv6l+thfTFFZLhrQNOm3dZsanj9z+iEJO/M66fVzqBtLlnuGrye8LmQs3//Hha6NtGQc+mUqicOs/mrD7aG0aKzLreXrMNP0GjMIS5/8ZTbyUlNopYUdGFWrrz77fvREGSuuWFa7XRFF5PmOASaN0CRKYoSjqaVYAkhbhNCNAohtvlvHxvx2HeFEFVCiP1CiKlfClUA2PfBa0QIJ/FlH512W5EZvgUU2w+HZyldRZkpUU3vUa3LISZuavNPRpLJ87DipKshfHqxenv7KGt8gj0RS4jPnHoxHQB9ehlW4aLxcPgUe+j89x140ZN/3pen1U5ukW+xZUdD+Cy4+96rT1DCYQYqPwNCTLkdg15Hk7mAuP7wed83NDayovMpqmyrMCdNfv2vkWRKGRZcDLaEz/NXFCXwAtGDdbeUstJ/+zeAEKIUuBqYB5wL3CuE0AfgXKcssftphjCTuuBj4+88juQ8X4WvvobwGr6iKDOpt6+PIucuOlOm33sFEJvjW0eopSp8hkptf/IOEkQvER+5ddptJeSH14T/A3u2s7Tn3+xIu4yYlOl9yY6NjqBWl4WlKzx+xw4MOcja+L+06FIoOvuz02/PVkKqtxnp6AtAdDNv35O3E80QCRf+eNptxeT6ei9bwrCCpqIogTNTQwQvBh6TUjqllNVAFbB0hs510qtrbmXxwOvUJa1BmKOm3V5eZgqt0oa3/WAAolOUk0PVu89gEW5iys8LSHuZRZUA2BvCY8L7of3bWVr3ANuizyB30dSqqI2UWVSJR+pwNYb+83e53Dif/gJOYaLo8h8FpM22iEKS7eFRTOi9h39MgaxncO2Pp1Sa/lj6dN9FvO6a0B8lseGd1zi960n2pVxAQsHUK/QOy5m7EJfUY6/fNv3gFEUJW4FIsL4khNghhPiLECLOvy0DqB+xT4N/23GEEDcJITYJITa1t4fnopQzbffzvyFW2En8yFcD0l6EyUCjLgNLX01A2lOUk4F+z1N0Ekv+ksAkWAnx8TSQgqEj9JdEGBzox/P4/8MtjORcc09A2jRZImjUZ2LpCu3nL6Xk3b/cSrlnF4eW3E7MNBaYHsmdWEqi7MLRG9qLTb//xguc2fBH9saeQcGqqwLS5nCi0l4V2nPQ6hsbSfvv5+nVxTHnmt8EpM2UuGgOiyxM7eE1B01RlMAaN8ESQvxXCLFrlNvFwB+BAqASaAZ+NdkApJR/llIullIuTkpKmuzhJ70Dh6pY0fQgB6OXkTB3ags/jqYnIpsER/itU6IoM6Gvt4u5fe9xIOGjGIymgLXbYsknfvBQwNqbCQ6nkz33fpJCTxV1p/+KuJTprQE2UldUISlDofv8pZT856GfsbblL2xP+BgVH/tcwNo+stj0/tBNMrZ98BYl6z5HmyGV/M8+OK25VyPlFxT7ypWHcO9lW0cnfQ9cSiqdaJf9H6aYxIC0K4SgLaKIpMHwq6CpKErgjJtgSSk/KqUsG+X2nJSyVUrplVJqwP18OAywEcga0Uymf5syCYN2O/3/uBGzcJN4xa8D2rYzNp9Y2Ye0dwW0XUUJR3te/RsW4SbxtKmXpx7NUFwx6Z4GvC5HQNsNFPtgP9t/czlL7G+xteTrzDszsM/fmzyPDNpo7wi9Xhypaay7/1bOrf4F+6JPo/zmwCUYAClFvkp8fdWhOQfvg9efIffFq3HprETc+DzmqLjxD5qg2AgTh/V5IVuuvKa2mq57z6bYe5D6M+8hpXxtQNt3JZYSL7tx9zYHtF1FUcLHdKsIpo24eykwXC7qeeBqIYRZCJEHFAIfTOdcp5oB+xBbfv9JFnm3U7/iJ8TllAW0fUOSr0JYX2NoD99RlJkmNY20PX/lkC6POQvPDGjbhtRSDEKj+VDoXcmvq95P46/XsGzobbaXfotFV/8w4OeIyvYV+mjYtzngbU9Hb3cXG359BWub/sz2+HMp/upz6ALYcwmQlZVDu4xFtoVWFUWX28vLD9zGwjdvpM+QgPkzL2HLKAz4eTqjikh1HA65cuXvvfYs1r+sJUerp/asP1Nw+icCfg5LViUAzftVoQtFOVVNdw7WnUKInUKIHcBa4BYAKeVu4HFgD/Ay8EUpZWj9lg1hdbXVVN19DquH3mB3ydcoPPvmgJ8jOnMuAJ21apy4cmrb9fYz5Gh1dFR8FjGNtY9Gk5DvqyjWcXhbQNudDqlpfPDsPcT+bS2p3kZ2rL6P+Vd+f0bOlV7sW7A5lBad3fzmCwz8dhlL+l9nc/4XqfjSowiDOeDn0esEDaYCbH2hU677cNU+dt/5Ec6tv5tDthWkfP0tYjOmV45/LFqSb5kCZ1toFPro6Ori9d/fzLK3rsdjiKD3E/+iYNXHZ+Rc6cW+3sve6vCooKkoSuAZpnOwlPLaEzx2B3DHdNo/1diH7Gx86m7mH7yXFOFkz9KfM+9jn5+Rc6XlFOOROhwtapy4cmqT7/2BduKoPO/GgLedXViOS+pxNYfGhYzaqt10PfFVljo3ss9Uiu2T/0dF3rwZO19Mcja9RKFvC/7zb2mspe6xb7C0/1WaRQrVFz7JokXTX1fwRPpji5nX8QTS40IYAttDNhm9ff1sfvR2ljc9RKqA3QtvZ96FXw3okMhjReVUwiFfL05uavGMnWc8Hq/GWy88yNxt/8uZdLAz5SLmXn8PxojYGTtnTmYmjTIRWkKr91JRlNkzrQRLCYz21ib2vfwn8qv/wRm0sd86n/ir/kBpXvmMnTMz0UY9yYiu0J2Arigz7eDODVQ4N7M+70ssN0+/PPWxLBYrh0Ogkl53Zzv7Hv8Bi1qeIFno2VTyHRZe/i10hhn+EyAEjdYikvqDNxenr6+bnU/8jIq6h6jExYbsG6n85I9Js0bP+LlFWgWmjkdpq95JcuGiGT/fsbxeL+//66/kbv0FZ9LGLtsasq76FfPS58z4uTOLFuB+Tc9g3Tbgmhk/32h2fLAO9yu3caZnK/WGXBou/DPl8z8y4+fV6wQN5jlkhNFiy4qiBJZKsIKkt6eHvW8/hW7f88wfeJfVws1+0zwOrLmL4tMuntEri+D7A9BizCRjoGZGz6Mooaz71V9il2ZKLwzMEgij6YzIJ3MwOD04A4ODbHrq18w/9CeWMcCmuPPIv/KnLE6f3kK6k2GPL6Oi4RHsQ3YirBGzdt4hu53Nz/ya0oN/YiV9bItaRcplP2NZQcWsxWCbsxR2QseB9bOaYHm9GpteeYT4jb9ilVZNnSGHmnP+QdmS82cthqzkeKpIxxCEcuW7tm1k8OXbWeZ4mx6i2VPxHUou+sas9iIOxJWQ1roB6RpEmCJn7byKooQGlWDNEs3rpWbvRtp2vIqp/h1K7FtYLlx0EcOO5ItI+8gXKJ67eFZj6o/MIal3B2gaBHjuiTI9Lo9G/8AAA31dOPo6cPZ34ervwmPvwTPUh8dpR3PZER47Oq8TvWcIvdeBQXMgNDdSk0gkAtAJEABCh1tnxiPMuHVmMFrQGa1gtaGLiMcQnYQpJglLbDJR8SkkJyZjMZ28vyKaaw+woPc1tqRcwbL45Bk7jyuhhLSBN7D3dxMRHbhKbSfidNjZ/Ozvyd/3J9bQyb6IBfRd8HOWzls+K+cfyZi1AFPjQxzet5m5C1bP+PlcLhcbn/8jebt+zyra2WOupPuc26hcGNhKcRORV1xBn7TibZiduTiaV+OD/z5O3Ia7WKZV0aRLY8eSX1B+7mcQ+tn9LOt0gmbLHOYN7Jy1c+7as5POF3/CqoFXcAgzW/JuouSy71E6S5+7kQzpFehbJa1V20gpDdwSK4qihIeT99tTkElNo27/Vlp2vIqx7l3yBreSTz/5QINIY0/KRcQsupyCRWezZKaH6YzBG1eApdeFt7cRfVzW+AcoU+Zwueloa6Gvs5mh7hacva14+9sQ9nb09g5Mzi4s7h6s3j4itQFiGCRBuEgYp10vOhyYcQoTLmHGJSxowuDvAfX1gmoSpBQIvJikC5N0fvh/XBjQRm17UJqpFon0GJMZsqbiiUpHb8vEkphLbGouSRn5xMbaAvpzmk21L/6KJCS5F3xrRs9jySiDWmg8sI3CRTP7Jd/tcrDj+XvI2PVHVtDBAVMpA2f+jrnLzp/xXvGxJBcvg/XQc2gTzGCC5XQ62PLCfWTvvpeVspVDhkL2n/krSk+7KGjPPcpiYot+DvFdM5tkaF6ND954huj372S5dx8tIpkdi+6g7LzPkW4wzui5T8QeX0Ji8xtIexciIn7GzrN39w7aXrqDFf2vogkdu7M/yZzLfsjCuNQZO+d4Eucshq3QcWjTjCZY9oEedj57N3E1/0a78HfMnX/ajJ3rZOQYGqS/q43B3jaGejtxDPTgtPehDfWBawDp7EfnGkDnHsTgGcDgsWP0DqHT3OilC4P0YJRuDHgw4sYgPejxAgIJSMSHN+H7vwsTLv/fbI/OjFtnwav33TyGSDRzDNJiQ1htGCLjMEbFY46OJyImkYjYBGJsiZjNlmD/6JRxqAQrQKSmUX9oF83bXkVf9w65/VvIoYccoIUkDsaugrzVZC86h8ysOWQGO2DAklIMNdBRu4cUlWBNidvtprO1gd7WWgY76nF1NyL7mjAMtmB1tBHh7iJG68Em+8kUxycyXinoFTH06W3YDTb6rXn0mmNoNNt8PUtWG/qIOIxRcZijE7DGxBMRZSMyKhq9KRK93kikEEx5AIqUeIb66O9qZbC3naGeNlz97Xh6W9F6GzEMNBHjaCGrfz3xvT3omuRRh3fLaDoNSfSbUnFGpSNjMjElZBOdkkdCegHxKZkInX6q0c2Y3q52KlqfYVvsR1icHfgS1SOlFCyA96CnZhvMUILldjnY/vw9ZO6+j0Wynb2GuXSc/ivKVs/8cOPxpObMpR8rNG+fkfYdjiG2Pn8vOXvu4zTaOGSYw64VtzFvzdUBrwo5FZ22Msq6nkB6nAGvVqh5NTaue46I9+5iuXc3bSKR7ZW3U37+50k1Br4y4mSZMiuhGVr3vU/qwsAPT9y/exvtL/2U5f2vki/07M38OHMu+R4VSTkBP9dk5c8ppV9acc/QYsu9PV3sefaXzK15iGX045IGap/7Iq6S9ZhMwSuoEkxS0+jr6aCnrZ6BjiacPc24+1rxDnYihroxOHuOXMiM8vYRI/uJEE4sQNIYbWpSYBcWhrAypLPi0EXi1lnwmGJw6YxoR24mpM6Ipjf7f+8IhNSQ0pdmISVIDYGG8LrQeR2+kSeaE6PXQYSrH5N0YNXsRMpBrMJ1wuc6KC30iSjsumiGDDG4jDF4TDFow98dIuIxRMZjio7HEp1ApC2RKFsSkdFx6PSh9zcZfCO9XC4HbqcDt8uBx+XE7XLicTvxuBy4hJnUvHnERYbH+1slWNPQUn+Iuk0vIWreIrt3E9l0kg20E0dNzGIO56wmY8E5pOcWkxoCf+iPZcsuhQ3Q07CHlMpzgh1OyJGaRld7Ix31BxloPYyrsxZ6GzHZW4hytWPzdpAge0gVGiOvk7qlnk4RR68hgT5LBl3WCohMRh+dhCkmBYsthcj4NGIS04mITSJep2fmru2OQwgMEbHERcQSl3nics3S46SrpZaupsMMtNfi7qxD9DVgHmwiztlA0tAWItsdMKJuikvq6RGxDOpjGTLG4jLF4TXH4bHEgzkavSUSgzkSozUSgykCTBHojRb0egN6nUCvN6DT6Y78wfJK8HrceDwuvG43Xo8Lr9uF1+NC87rRPG40jwvpdoDHgfA4kO4hcDvAM4Twb4scrGOucBJ31sz2XgGk5xYzKM1oM1BRzOV0sO2Fe8nafS+LZTv7DHNpWvELFqy5NCSSCwCh01NnKiSxN7C9OI4hO5ufu4f8fX/iNDqoMhaxe+VPKT398pB57gCmrIWYuh6ltWozKXNXBKRNzauxZd1TWN/7Ncu8e+gQceyo+D7zLvgyyabQubKdO/90vB8IOve+FdAE68DuzXS+9FOW9r9GjjCwK/NqCi/7HyoSQuHSpY/VbGC7oYDYAPdednW0sfvZu6iof4TTxCDbrUtpPfM7uLvrKX/vq6z767dZ87m7A3rOYNO8XrraG+lprmGgvRZHdzPevhZ09jbMjg4i3Z3EeLpIkD3ECg/H1of0SkG/iKJfF4NdH8OgOZkeUxFeSxzSEo+IjMcQlYApKgFrtI3IaBsRUTas0TZMliiidDqiZvk5e5x2+ns6GeztxN7XgbO/G9dAJ97BbrShHoSjG72zF4OrF7O7j/ihGiIHB4iRA5iFe8x2NSkYxIRTmHFiwi3MuHQWPDqTrydNZ0Hq9EihQ6IDnR7QIYUOhA4p9GgIhPT6EkbpRRzz/yOJpPSikxp66UavudFLN4YjN3+PH26M0oMRD0bhxQKM9RtsnXc+hz7+GBdUpM/EjzzgVII1Cb1d7Rza8C/cVetI6/qAbNlEKtBNDNVRC6jJXkV65dlkzqkgKYT+wI8lMzsfuzTjaT01S7VLTaO7o4XO+v30tx7G1VGD6K3DOthIrKuZFG8rCcJ91DC9PiLp1iXQb0qiPmYONVGp6GLSMcdnEJGQRVxaDnGJGaTq9QRvcMrMEAYz8ZlFxI+ViElJX28nHQ2H6GupxtFRi+ytRz/UicHZjcXdg81xgFjZRwwD6IUcvZ0Z4JZ6nJhwCtORPyrvJ36c08qXzfi5dXo9NaZC4roD90XL5XSy5YU/kL37jyyVbRwwFNG68mfMPyO0kothHQmLWdX0V1wD3ZiipjcfZsg+yJZnf0fBgftZSScHjHPpXn0nJatCJ6kcKXXe6bAd2na+Me0Ey+vV2Pzqo8Rs/A2LvQdoEwlsL/8eZRd8mUTz7BUQmaj8jFT2iVxMjRsC0t7ubRvof+WnLB18k0xhYlvmNRRd+h0qE0MnsRqp2baQss6HkUM9CKttWm21tjaz79k7WdD0GKuFnR1RK4g467vMrzzdt4OUbNv3Mmua/8I7z81j1cWfmf4TmAVS0+jvaqOt8RC9rTU4OuoQfY0YB5uIdLRi87SRqHWSKLwkjjhOk4JuEUuvPo5BYwINUfnUWJMhKhljbCpmWxpRCRnEJqZhi0/CptdjC9aTnAKDOYK4lAjiUiY/ushhH6Cvu4MB/7BHZ38nnoFuvPYudM4ehNt+5GKjzutE53Vg8Dowak6snj500osOL0JKdGjH/Nt38/1Xjyb8W/z/l/5tEoEmfImaRxhx6SPw6kzH9PaZQGdE6k1IvQkMZtAbEQYzQm/y/d9gQhjN6A0moiJTKc0N2uXoSVMJ1jgaD++m/v2niK59lWLnLhYKjUFpoSqigqbMq0mefw65JUtYGKJdrieSEGVmn0jD0HM42KHMqO7uLpqrd9PbsBdPWxXGnsPEDtWR7mkgXgwe1XvUTTQd+hQ6rfk0Ra1G2HKwJOURk55PUsYcYmLjiQnaMwlxQhBjSyTGlghlJ05cPB4PvQN92AcHGBrsZ8jej8cxiHTZkW4HXk3Dq3nRNA1N0xBSwvCvb4MRncHk///wv00YDCb0JiMGgwmDyYrBHIHeHIHFGonFbCZKJ466Cjmbg4h6kxaxpPFhHPZ+LBFTLw/udAyy9fk/krXnzyynlQOGIrav/CkVIZpYDYsoOgN98184sOkVStZcNaU2Bgf62fbsbyiqeoCVdLPPNI+u0++mdGXw5lhNxJw5xVSTjrH2TeB/ptSG2+Nh00sPkbj1dyzVqmkWyWyd/yPKP/Z5kmdgeYFAEULQELuYM3qfQTr7EebJv/ellOzY/C5Dr/2cpfZ3GBJmtmZ/mqJLv8Oi+LQZiDpwDAWno+98iMbtr5Gx/PIptVFXX0fV83eytO1JzhBD7Ig5Hdu5/0PFsQVrhKD0pr9w8O6PsGzLrbwjvay65HMBeBbT1z9op7W+it7GAzjaDyO6q7H01xHrbCTV00yMcBz1d9Ul9XToEuk1JtEcXUFdVDoiNgNTfBZRSTnEpWYTn5hGgsE47jzlU5ElIgpLRBTJGbnBDuWUphKsE1j/j5+w/MAvyQCqdblsyrwOW8X5FCw4g/mm4I9vny4hBO3mHErswVujJpA6OztoPLCF/rod0LaX6P6DpLrqSKabkdfMW0UiXeYsDsafjTcuH1NyIbFpBSRmziEuNp7Zrzd16jEYDMTa4om1hc/VqOmInLMSY9ODHNz8GqWrL5n08YP9Pex8/rcUHPwry+nmgKGInSv/l7IzrgjpxGrYvGVnMbDOytCuf8EkE6yujjZ2P/8bSuoeZiW97DVX0LXmD8xd/rGQTqyG6XWC+rjTWNr9PG57D8YI24SPdbpcbHrxL6TtuIfTZD0NunS2LfoZ5ed+hjRjmMxDKDkP0/onqP7gRfJWXz3h46SUbHvvFTxv/ZolzvUMYGV73v+j+JJvs8g2c1U/A6li+dn0bbDSu/WZSSdYVVX7qH/xLpZ2vUAmLnbHrSXpY9+nomjscv8mSwRZX/o31fdcwKptt7KufiuLb/wlUZEzO8BNSklnZydtdfvoazqAq/0w+t4aIgfrSXQ3kSo7mDNiDrJTGmnRp9JjTmdn/GKkLQdLYjYxKXkkpucRk5hOuk5PeAwEU5TRqQTrBNIWfoz1Qkf28svJy5vL7K0cM3sG4kpJankTbaADXVTi+AeEAKfLRd2B7XQe/ABPyx4ieg6Q5jxMGh1HrmbZMdNgzKM+bjm18QWYU4qJzy4hNbeEFEsUKUF9BsqpJn/JuQy9aWJw179gEglWd2cbe5+9i9L6f7CcAXaZKmlZ/VvKVl4YFonVsIiISN6PPI2SjjfwOIcwTKDXpan+ENUv/JL5rc+wWgyx27qY7jXfpGTZebMQcWBZFnwcy+tPsffNRyk57/Pj7t/b083Of/2BvKqHWEkrdfpsdi75NWVnfZrMWS63Pl0LV51Hx/sxODc/AhNIsNweD5tfeZToLfeywLOHXqLYXnAzxRffyoKY8OqvSI6PZZ1lOYvaXp/welh7tm+g59W7WNL/OjnAvsSzSb/gu5TnzZ/QOS3RceTf8grb/vpl1rQ+StNd/2Vb4Q2UnPNZEhKnnph6PR5aGw7R1XCA/pZDaF3VGPvqiBlqJNnTRKLoP2oIXzcxdBrT6LBV0BKbizEhj8jUQhKyi7ElZ5Gj08/qKAJFmW3CV+EkNCxevFhu2rQp2GGcUta9/CRr1v8/Gs5/mMwlFwY7nOMMONwcOriH7gPvQ9NW4nt3ke+uIko4AN/cmgZDNj1Rc/AkziUys5zkwkoS0ueEZPU65dS19c7zyLLvIfq7+zCPk2A0Hd5D3Ut3U9b2AlFiiO0Rp2E+81vMXfyRWYo28Da9/gyL37qerfNvZ8GlXxt1Hykleze/Sd/b97Gw5xX0aOyIPZOEc75F9rzwLT/tcHlo/mkFOoOR7O9tGfN3U0PtQWr+/RvKW54hVgxywFSKe9kXKV37ibD+ffaf33yOj/Q8ztBn3iU6s3TUfXq6u9jx0v1kHXyIPNlAi0imseRGyi/4EqZpDKsNttf/8yxnvv9p9lX+D3MvuXXUfVwuN5tffwLDlr+wxLWRIczsS7+M/ItuJTY1f8rnPrjhRXT/vZ0C934c0sh+Uynd8ZWYU4sx2DKIjI5FZ4xASA9e55BvqHZ/B9pAG7K/FTHYRqSjhXh3MylaO0bhPdK2R+po0yXRbc5gKCobGZeDNXkOsRlFJGcXY57mXEtFCRdCiM1SyuMWslUJ1imutrGJrD+Xsrvo85R/6mdBjcXt1Th0+BDNe9/DU7+Z2K6dFHgOkiD6AXBhoN40h564MvSZi0gsWk56fhm6MBkqo5zadr35FGVv3MgH5bez9PKvHfe41+Nh97svINffR7l9Ax507LSdSeI53yKndOaLccw0zaux76fLSfc24brxNZKzi4881t7aQNWbj5Gw/1GKvFXYpZndyeeTc8G3Sc6ZG8SoA+etZ/7E6dtvZVvuZ6j89C+PDG/s7e5i37vPYN75KOUO39+/XTFnEHPmLeQtWBO8gANo/6HDpD+0gjZLLplfeRlzpA0Ap8vJng2vYt/0KJU9rxIpnNQYChhc/AVKPnLdSfG73ePxsuNnayj2HmTgmn+TMmch4LuYcHDPFpree4yixmdIp50uYaM2/xMUXfB1IuMCNwyyZue7dL73EPEdG8lxHUY3gQJDbqmnW2ej15BIvzUDR1Q2hoRcIlIKSMwqJikjH30Q11hTlFChEixlVFJKdt++mEirlbxvvzOr521obqF+97sMVW8ksnMHOY59pIkuwLeAbpMxh974cgyZi0gsPo2E/MqAryOjKLNFal72/XQlGZ46ms77C8VLzsbttHN4+1t0bv0Xc1pfIoUuuohhf+bHKTjvqyRnnFyDaA7t2UziPy9ECNgfuxJNGLANHGKO+wB6IanR59BR/ClKzvkskbEn1/w8j8fLB7/9BCv6/0ONPocuaw4RjjYK3AcxCi9tIoHazIvJO+tzJGafHEnlSG88fT+nb/8W3SKWxogShGeIHOdBYsUgQ5jZG38WcaffRN7808Nibt1k7N27k/jHLsTGAAcjKnFLHcmOajJoA2CPZSFy0fWUrLka3QyvX+Z1DdHRUMVgRwODg/3gtiN1enTGSKwRUVhjE4mITyc2Pimse00VZbaoBEsZ00u/+yJndf0DvnEAQ/RYy+1NT2d3NzW7N9B/aAPm1m2k2/eSQ/ORx5v16XTGzkNkLCSx+DSSC5cgzLO98oSizKym6n3w0EWky1aGpAkTbvRC4pZ69kQuxVN2BWVnfgKzZcpLR4e86n3b6Hz+B2Tbd6FDo92USV/KaSQvu4zc0uVhNbdsslxuDxuf+jXRh18k1tPBoCGegaRKYsvPo3Dx2egM4TW/arK2vPMy8r3fE+toROpN9EYXYi45m8LTLsJykg8pq66uoumF/yW5Zwd6IemLyMKbvYqC1VdiS80NdniKokyRSrCUMb373pusfOUiDlR+h6JLvjvt9gYGB6ne/QHdVR+gb9lOcv9u8rQ6DP4qQu0igdaoUjxplcQWLCNz3kqMUSfX1WpFGUt/bxd7Xv4/tK7DCGMEhuzFFC09ixjbzFzcUBRFURRlZsxIgiWE+CcwPJDeBvRIKSuFELnAXmC//7H1Usqbx2tPJVjB4fJo7LljJdk0EfWNbZNaCLR/oJ/6fZvpO7wRmreT0LubHG8tJv9k2F6iaIwowZE8n8i8pWSWrSQyITQXhVQURVEURVGUiRorwZrWeAQp5ZEFTYQQvwJ6Rzx8SEpZOZ32ldlhMugYXPtjol+7itrff4yYy39LcuGSI+PgpabR0d5EW30V/U0HkK17MXcfIGnoEOlaC6X+CbO9RNFgKWJ74mqsOYvIKF1BXPocYk+y8fSKoiiKoiiKMpaADPgWQgjgSuDMQLSnzL6Vp5/FGx2/YMn27xP1j7PoIYoBEY1RuoiR/SQJF8MDmDxSR5M+jc7IQlriz8eSWU5S8XJSsoqYdxLPn1AURVEURVGU8QRqRu1qoFVKeXDEtjwhxFagD/i+lPLt0Q4UQtwE3ASQnZ0doHCUqVh72WdpXHYuW956FFP7bgzuPjBY8JpiELZsrMm5xGUUkZxbRrbFinq1FEVRFEVRFOVo487BEkL8F0gd5aH/kVI+59/nj0CVlPJX/vtmIEpK2SmEWAQ8C8yTUvad6FxqDpaiKIqiKIqiKOFgynOwpJQfHadhA3AZsGjEMU7A6f/3ZiHEIaAIUNmToiiKoiiKoignrUBMmPkosE9K2TC8QQiRJITQ+/+dDxQChwNwLkVRFEVRFEVRlJAViDlYVwOPHrPtdODHQgg3oAE3Sym7AnAuRVEURVEURVGUkBVSCw0LIdqB2mDHcYxEoCPYQSizRr3epw71Wp861Gt9alGv96lDvdanllB8vXOklEnHbgypBCsUCSE2jTZ5TTk5qdf71KFe61OHeq1PLer1PnWo1/rUEk6vt1q0SFEURVEURVEUJUBUgqUoiqIoiqIoihIgKsEa35+DHYAyq9TrfepQr/WpQ73Wpxb1ep861Gt9agmb11vNwVIURVEURVEURQkQ1YOlKIqiKIqiKIoSICrBUhRFURRFURRFCRCVYJ2AEOJcIcR+IUSVEOI7wY5HCRwhRJYQ4g0hxB4hxG4hxFf92+OFEK8KIQ76/x8X7FiVwBBC6IUQW4UQ//LfzxNCbPB/vv8phDAFO0YlMIQQNiHEk0KIfUKIvUKI09Rn++QkhLjF/zt8lxDiUSGERX22Tx5CiL8IIdqEELtGbBv1syx8fud/3XcIIRYGL3JlssZ4re/y/x7fIYR4RghhG/HYd/2v9X4hxDlBCfoEVII1BiGEHvgDcB5QCnxCCFEa3KiUAPIA35BSlgLLgS/6X9/vAK9JKQuB1/z3lZPDV4G9I+7/ArhbSjkH6Ab+X1CiUmbCb4GXpZRzgfn4Xnf12T7JCCEygK8Ai6WUZYAeuBr12T6Z/A0495htY32WzwMK/bebgD/OUoxKYPyN41/rV4EyKWUFcAD4LoD/+9rVwDz/Mff6v7eHDJVgjW0pUCWlPCyldAGPARcHOSYlQKSUzVLKLf5/9+P7ApaB7zV+0L/bg8AlQQlQCSghRCZwPvB//vsCOBN40r+Leq1PEkKIWOB04AEAKaVLStmD+myfrAyAVQhhACKAZtRn+6QhpXwL6Dpm81if5YuBh6TPesAmhEiblUCVaRvttZZSviKl9Pjvrgcy/f++GHhMSumUUlYDVfi+t4cMlWCNLQOoH3G/wb9NOckIIXKBBcAGIEVK2ex/qAVICVZcSkD9BrgV0Pz3E4CeEb+41ef75JEHtAN/9Q8J/T8hRCTqs33SkVI2Ar8E6vAlVr3AZtRn+2Q31mdZfW87ud0IvOT/d8i/1irBUk5pQogo4Cnga1LKvpGPSd8aBmodgzAnhLgAaJNSbg52LMqsMAALgT9KKRcAgxwzHFB9tk8O/rk3F+NLqtOBSI4fYqScxNRn+dQghPgffFM7Hgl2LBOlEqyxNQJZI+5n+rcpJwkhhBFfcvWIlPJp/+bW4SEF/v+3BSs+JWBWAhcJIWrwDfU9E98cHZt/WBGoz/fJpAFokFJu8N9/El/CpT7bJ5+PAtVSynYppRt4Gt/nXX22T25jfZbV97aTkBDieuAC4FPyw8V7Q/61VgnW2DYChf5qRCZ8k+meD3JMSoD45+A8AOyVUv56xEPPA5/2//vTwHOzHZsSWFLK70opM6WUufg+x69LKT8FvAFc4d9NvdYnCSllC1AvhCj2b/oIsAf12T4Z1QHLhRAR/t/pw6+1+myf3Mb6LD8PXOevJrgc6B0xlFAJQ0KIc/EN779ISmkf8dDzwNVCCLMQIg9fYZMPghHjWMSHyaByLCHEx/DN3dADf5FS3hHciJRAEUKsAt4GdvLhvJzv4ZuH9TiQDdQCV0opj51gq4QpIcQa4JtSyguEEPn4erTiga3ANVJKZxDDUwJECFGJr6CJCTgM3IDvgqL6bJ9khBC3A1fhGz60FfgMvrkY6rN9EhBCPAqsARKBVuBHwLOM8ln2J9n34BsmagdukFJuCkLYyhSM8Vp/FzADnf7d1kspb/bv/z/45mV58E3zeOnYNoNJJViKoiiKoiiKoigBooYIKoqiKIqiKIqiBIhKsBRFURRFURRFUQJEJViKoiiKoiiKoigBohIsRVEURVEURVGUAFEJlqIoiqIoiqIoSoCoBEtRFEVRFEVRFCVAVIKlKIqiKIqiKIoSICrBUhRFURRFURRFCRCVYCmKoiiKoiiKogSISrAURVEURVEURVECRCVYiqIoiqIoiqIoAaISLEVRFEVRFEVRlABRCZaiKEqIEELkCiGkEMIQ7FhOdkKI64UQ7wQ7jlAjhFgthNgf7DgURVHCmUqwFEVRlLAmhLhNCOEWQgyMuN0a7LjCkZTybSllcaDbFUKcKYTYIoToE0IcFkLcFOhzKIqihAqVYCmKogSI6nkKqn9KKaNG3O4MdkCBFM7vLSGEEXgG+BMQC1wF/FoIMT+ogSmKoswQlWApiqJMgxCiRgjxbSHEDmBQCGEQQiwXQrwnhOgRQmwXQqwZsf86IcTPhBAf+K/mPyeEiB+j7RuEEHuFEP3+q/6fO+bxi4UQ2/ztHBJCnOvfHiuEeEAI0SyEaBRC/K8QQj/O8ygQQrwuhOgUQnQIIR4RQthGPNYlhFjov58uhGgffl5CiIuEELv9z3edEKLkmJ/PN4UQO4QQvUKIfwohLJP/SU+eEOI7/p9LvxBijxDi0jH2E0KIu4UQbf6f5U4hRJn/MbMQ4pdCiDohRKsQ4j4hhHWC5/+bf/9X/TG8KYTIGfH4b4UQ9f5zbhZCrB7x2G1CiCeFEA8LIfqA64UQS4UQ7/t/zs1CiHuEEKYRx0ghxBeEEAf95/uJ/7V7z3+Ox0fuP0bMa4QQDRN5fpMQD8QAf5c+G4G9QGmAz6MoihISVIKlKIoyfZ8AzgdsQArwIvC/+L5YfhN4SgiRNGL/64AbgTTAA/xujHbbgAvwfTm9Abh7RJKzFHgI+Jb/vKcDNf7j/uZvdw6wADgb+Mw4z0EAPwPSgRIgC7gNQEp5CPg28LAQIgL4K/CglHKdEKIIeBT4GpAE/Bt44Zgv8lcC5wJ5QAVw/agBCLHKnzyMdVs1znM41iFgNb5ek9v98aeNst/Z+H5+Rf59rwQ6/Y/93L+9Et/PMwP44SRi+BTwEyAR2AY8MuKxjf5244F/AE8ck3xeDDyJ7/V9BPACt/jbOg34CPCFY853DrAIWA7cCvwZuAbf61mG7706Zf5EeazX597RjpFStuJ7j9wghNALIU4DcgA1B05RlJOTlFLd1E3d1E3dpnjDl9TcOOL+t/FdqR+5z3+AT/v/vQ74+YjHSgEXoAdyAQkYxjjXs8BX/f/+E3D3KPukAE7AOmLbJ4A3Jvm8LgG2HrPteWAnsAMw+7f9AHh8xD46oBFYM+Lnc82Ix+8E7gvwa3Cb/2fYM+KWPsp+24CL/f++HnjH/+8zgQP4khLdiP0FMAgUjNh2GlA9wbj+Bjw24n4UviQpa4z9u4H5I57TW+O0/zXgmRH3JbByxP3NwLdH3P8V8Jtx2lwDNATy9fG3eyHQii/x9wCfDfQ51E3d1E3dQuWmerAURVGmr37Ev3OAj4+8sg+swtdbNdr+tYARX6/EUYQQ5wkh1vuH5/UAHxuxXxa+Hppj5fjbax5x/j8BySd6AkKIFCHEY/4hhX3Aw6PEdD++XpDfSymd/m3p/ucAgJRS8z+/jBHHtYz4tx1fohFoj0spbSNuTUKI64RvCOXwz6GMUX7OUsrXgXuAPwBtQog/CyFi8PXIRQCbR7Txsn/7RB15raWUA0AXvp8Z/qGTe/1DJ3vw9Z4ljnasf/8iIcS/hBAt/tfop6M8n9YR/x4a5f5M/OxPSAgxF3gMX8+tCZgH3CqEOH+2Y1EURZkNKsFSFEWZPjni3/X4erBGftmPlFL+fMQ+WSP+nQ24gY6RDQohzMBTwC+BFCmlDd/wOzHiPAWjxFKPrwcrccT5Y6SU88Z5Dj/1P49yKWUMvmFlw+dCCBEF/AZ4ALhNfDhvrAlfUje8n/A/v8Zxzncc4SsRPnCC2+rxWznSVg6+hPBLQIL/57dr5HMaSUr5OynlInw9ikX4hl524EtK5o34WcZKKSeTpBx5rf0/w3igyf9cbsU3HDHOH1/vMfGNfF8B/BHYBxT6X6PvjfV8ZorwzbUb6/W5b4zDyoADUsr/SCk1KeV+fMNoz5u9yBVFUWaPSrAURVEC62HgQiHEOf75JhZ/4YDMEftcI4Qo9c9n+jHwpJTSe0w7JsAMtAMeIcR5+OYKDXsA35yWjwghdEKIDCHEXCllM/AK8CshRIz/sQIhxBnjxB0NDAC9QogMfAnGSL8FNkkpP4Pvy/Hwl+nHgfP9cRiBb+BL8N4b7wd1LOkrER51gtvbk2guEl+C0g6+giH4vugfRwixRAixzB//IOAANH9v3P345r4l+/fNEEKcM+JYKUYUMRnFx/xzy0z45mKtl1LW4/t5e/zxGYQQP8Q31+5EooE+YMDfK/T5cfYPOCnlvBO8PjePcdhWoFD4SrULIUQBvrmFO2YvckVRlNmjEixFUZQA8n95vhhf70I7vh6lb3H079u/45uf0wJYgK+M0k6/f/vj+ObmfBLfHKjhxz/AX/gCX8/Hm3zYkzQ8FGuP/9gnOXqI4mhuBxb623oReHr4ASHExfiKVAx/of86sFAI8Sl/b8Q1wO/x9fhcCFwopXSNc74ZJaXcg2/O0fv4hsmVA++OsXsMvkSqG99wx07gLv9j3waqgPX+YXn/BYoBhBBZQD++eWlj+QfwI3xDAxfh+1mBb17ey/jmftXiS+rqR2tghG/iex/0++P95zj7hwTpK5JyI75iLn343qtPAf8XzLgURVFmipDy2BEIiqIoykwRQqwDHpZSqi+XYU4IcQ2+4YPfHePxv+ErGPH9WQ1MURRFCaqwXbhQURRFUYJJSvlwsGNQFEVRQo8aIqgoinKKEL5FbydTnEA5CQkhvjfG++ClYMemKIpyMlBDBBVFURRFURRFUQJE9WApiqIoiqIoiqIESEjNwUpMTJS5ubnBDkNRFEVRFEVRFOWENm/e3CGlPG7x+ZBKsHJzc9m0aVOww1AURVEURVEURTkhIUTtaNvVEEFFURRFURRFUZQAUQmWoiiKoiiKoihKgKgES1EUZRQujxbsEBRFURRFCUMhNQdrNG63m4aGBhwOR7BDUcKMxWIhMzMTo9EY7FCUMPPq+5vwvPQ9Ms79OhUrzg12OIqiKIqihJGQT7AaGhqIjo4mNzcXIUSww1HChJSSzs5OGhoayMvLC3Y4SpiJfu9Olus2sO3tX4NKsBRFURRFmYSQHyLocDhISEhQydUopJR0tzUy0F4X7FBCjhCChIQE1fOpTInZ3gxAsX0rrqHBIEejKIqiKEo4CfkEC1DJ1RicHo04TxtR7k7cDvUl8FjqfaNMVZS3BwCrcHFo94bgBqMoiqIoSlgJiwRLGZ3b+WHvjGewK4iRKMrJw6tJ4mQP+yOXANBzSK3NpyiKoijKxKkEawKEEHzjG984cv+Xv/wlt912W/AC8tNcdtZv3sGyC65j+RlnU1JSciSudevW8d5770257draWhYuXEhlZSXz5s3jvvvuC1DUihLa+uxO4uhnKGk+vURBy85gh6QoiqIoShgJ+SIXocBsNvP000/z3e9+l8TExIC1K6VESolON7U8V2oePv21H/Hgn3/H0pJsZPI89h84CPgSrKioKFasWDGlttPS0nj//fcxm80MDAxQVlbGRRddRHp6+pTaU5Rw0dPVRpyQ6KKTaTTPIa5vX7BDUhRFURQljKgerAkwGAzcdNNN3H333cc91t7ezuWXX86SJUtYsmQJ7777LgC33XYbv/zlL4/sV1ZWRk1NDTU1NRQXF3PddddRVlZGfX093/rWtygrK6O8vJx//vOfgC9BWrNmDVdccQVz587lU5/6FFLKo0+uabR1dpGUnosOCZqH0tJSampquO+++7j77ruprKzk7bffPmGc1157LaeddhqFhYXcf//9AJhMJsxmMwBOpxNNG31NoN/97neUlpZSUVHB1VdfDUBXVxeXXHIJFRUVLF++nB07dhw516c//WlWr15NTk4OTz/9NLfeeivl5eWce+65uN1uAH784x+zZMkSysrKuOmmm4573pqmkZubS09Pz5FthYWFtLa2jv9iKso4XL0tAIioJAbiS8n1VON2u4IclaIoiqIo4SKserBuf2E3e5r6AtpmaXoMP7pw3rj7ffGLX6SiooJbb731qO1f/epXueWWW1i1ahV1dXWcc8457N2794RtHTx4kAcffJDly5fz1FNPsW3bNrZv305HRwdLlizh9NNPB2Dr1q3s3r2b9PR0Vq5cybvvvsuqVas+bEh6ueWzn2LxitNZs3whHznnfD5z8xfJzc3l5ptvJioqim9+85sAfPKTnxwzzh07drB+/XoGBwdZsGAB559/Punp6dTX13P++edTVVXFXXfdNWrv1c9//nOqq6sxm81HEp4f/ehHLFiwgGeffZbXX3+d6667jm3btgFw6NAh3njjDfbs2cNpp53GU089xZ133smll17Kiy++yCWXXMKXvvQlfvjDHwJw7bXX8q9//YsLL7zwyDl1Oh0XX3wxzzzzDDfccAMbNmwgJyeHlJSUcV9HRRmPHOzw/SMiAVIrsDT/g7pDO8meuyi4gSmKoiiKEhZUD9YExcTEcN111/G73/3uqO3//e9/+dKXvkRlZSUXXXQRfX19DAwMnLCtnJwcli9fDsA777zDJz7xCfR6PSkpKZxxxhls3LgRgKVLl5KZmYlOp6OyspKampqjG5Jevn/Lzbz3/gbOOn05/3z8Cc49d/Q1e04U58UXX4zVaiUxMZG1a9fywQcfAJCVlcWOHTuoqqriwQcfHLWHqKKigk996lM8/PDDGAyGI8/p2muvBeDMM8+ks7OTvj5fYnzeeedhNBopLy/H6/Ueibe8vPzI83vjjTdYtmwZ5eXlvP766+zevfu481511VVHevsee+wxrrrqqhP+zBVlojz+ipx6SzSxuQsB6D68JZghKYqiKIoSRsKqB2siPU0z6Wtf+xoLFy7khhtuOLJN0zTWr1+PxWI5al+DwXDUsLqR6zFFRkZO6HzDQ/QA9Ho9Ho/nqMeF1NDQMbe4iLzrPsm1111LdtkKOjs7j2trrDjh+HLmx95PT0+nrKyMt99+myuuuOKox1588UXeeustXnjhBe644w527jxxQYDh56TT6TAajUfOpdPp8Hg8OBwOvvCFL7Bp0yaysrK47bbbRl3L6rTTTqOqqor29naeffZZvv/975/wvIoyUV7XEABGUwRpc8rwSoGzZX+Qo1IURVEUJVyoHqxJiI+P58orr+SBBx44su3ss8/m97///ZH7w0PhcnNz2bLFd9V7y5YtVFdXj9rm6tWr+ec//4nX66W9vZ233nqLpUuXTigeIb28+NrbALh1ZqqrDqLX67HZbERHR9Pf3z9unADPPfccDoeDzs5O1q1bx5IlS2hoaGBoyPdFs7u7m3feeYfi4uKjzq9pGvX19axdu5Zf/OIX9Pb2MjAwwOrVq3nkkUcA31yyxMREYmJiJvSchpOpxMREBgYGePLJJ0d/7kJw6aWX8vWvf52SkhISEhIm1L6ijEdz+96DBouVqMhIWkQyhu6qIEelKIqiKEq4mHaCJYTIEkK8IYTYI4TYLYT4qn/7bUKIRiHENv/tY9MPN/i+8Y1v0NHRceT+7373OzZt2kRFRQWlpaVHyplffvnldHV1MW/ePO655x6KiopGbe/SSy+loqKC+fPnc+aZZ3LnnXeSmpo6oVh0aDzy1L8oLi5mxVmXcONXvsMjf38IvV7PhRdeyDPPPHOkyMVYcYJvmN/atWtZvnw5P/jBD0hPT2fv3r0sW7aM+fPnc8YZZ/DNb36T8vJyAD7zmc+wadMmvF4v11xzDeXl5SxYsICvfOUr2Gw2brvtNjZv3kxFRQXf+c53ePDBByf887XZbHz2s5+lrKyMc845hyVLlhx57L777jsq7quuuoqHH35YDQ9UAsrr8iVYJrMVgA5LNrH22mCGpCiKoihKGBHHVaabbANCpAFpUsotQohoYDNwCXAlMCCl/OWJjh9p8eLFctOmoxf13Lt3LyUlJdOK8WRlb9yDXm/AnFpEb1c7sY4GvPGF6C1RE27jtttuO6oYxslGvX+Uydr4+J0s2XMHbTfvJjk1k/X3fpaK1uew/LAZnV4f7PAURVEURQkRQojNUsrFx26fdg+WlLJZSrnF/+9+YC+QMd12lfHp0JDC9xLq/VfbPf75I4qiTI10+z5DZnMEALrEIiKEk5aGw8EMS1EURVGUMBHQIhdCiFxgAbABWAl8SQhxHbAJ+IaUsnuUY24CbgLIzs4OZDgnNU1KdGh4/QmW0WRByg/nj0zUbbfdNgPRKUr4kh7fZ8hs9SVY0ZklsAfaanaRnlMYzNAURVEURQkDAStyIYSIAp4Cvial7AP+CBQAlUAz8KvRjpNS/llKuVhKuTgpKSlQ4Zz0pJTokSB8Q5ZMBj0ujOBxBjkyRQlv0u3AKwUmowmAlLwyAOxNqpKgoiiKoijjC0iCJYQw4kuuHpFSPg0gpWyVUnqllBpwPzCx0njKhGgSBBr4e7CEELiFEZ3mCnJkihLehNeJExM6ve+zFZeSzSAW6DwY5MgURVEURQkHgagiKIAHgL1Syl+P2J42YrdLgV3TPZfyIalJdAIYsWaVpjNhlC6YZuESRTmVCY8TpzB9eF+no8WQSWT/6EstKIqiKIqijBSIOVgrgWuBnUKIbf5t3wM+IYSoBCRQA3wuAOdS/DTpX8RYfJgjS4MZnUsivW6EwTTGkYqinIjwOHzDbUfojcghte/Ei2griqIoiqJAYKoIviOlFFLKCillpf/2bynltVLKcv/2i6SUzYEIOFieffZZhBDs27dvzH1qamooKysL2Dn379/PmjVrqKyspKSkhJtuugnwLRL80r//7dtpRIIlDBYAPK4TF7pwOBwsXbqU+fPnM2/ePH70ox8FLGZFCXc6zYlbHH2BwhM3h1TZzuBA/xhHKYqiKIqi+ASsyMXJ7tFHH2XVqlU8+uijoz7u8XimfQ6v13vU/a985SvccsstbNu2jb179/LlL38Z8CVY/3n5JQCE7sMhgnqTL8HyjlNJ0Gw28/rrr7N9+3a2bdvGyy+/zPr166cdv6KcDHTe4xMsU0oROiFpqt4TpKgURVEURQkXKsGagIGBAd555x0eeOABHnvssSPb161bx+rVq7nooosoLS0FfInWpz71KUpKSrjiiiuw2+0AvPbaayxYsIDy8nJuvPFGnE5ftb/c3Fy+/e1vs3DhQp544omjztvc3ExmZuaR++Xl5bhcLn74wx/y5JNPUnnW1Tzx9PMMDg5y4403suaMM1hw9id4/vnnAfjb3/7GxRdfzJo1aygsLOT2228HfAUxoqJ8ixG73W7cbjdixFyuYU888QRlZWXMnz+f008/HfD1ft1www2Ul5ezYMEC3njjjSPnuuSSSzjrrLPIzc3lnnvu4de//jULFixg+fLldHV1AXD//fezZMkS5s+fz+WXX37k5zPS8uXL2b1795H7a9as4dgFqBVlpui8TjzHJFixWb7FqrvrVIKlKIqiKMqJBXQdrBn30negJcDzIFLL4byfn3CX5557jnPPPZeioiISEhLYvHkzixYtAmDLli3s2rWLvLw8ampq2L9/Pw888AArV67kxhtv5N577+VLX/oS119/Pa+99hpFRUVcd911/PGPf+RrX/saAAkJCWzZsuW4895yyy2ceeaZrFixgrPPPpsbbrgBm83Gj3/8Y95//z3+9KPP44zO5vY77uDMM8/kgQceoHXv+6y+8FOcf9knAPjggw/YtWsXERERLFmyhPPPP5/Fixfj9XpZtGgRVVVVfPGLX2TZsmXHnf/HP/4x//nPf8jIyKCnpweAP/zhDwgh2LlzJ/v27ePss8/mwIEDAOzatYutW7ficDiYM2cOv/jFL9i6dSu33HILDz30EF/72te47LLL+OxnPwvA97//fR544IEjPXPDrrrqKh5//HFuv/12mpubaW5uZvHi4xbJVpQZoddcuHXmo7al5c0DwNV2IBghKYqiKIoSRlQP1gQ8+uijXH311QBcffXVRw0TXLp0KXl5eUfuZ2VlsXLlSgCuueYa3nnnHfbv309eXh5FRUUAfPrTn+att946csxVV1016nlvuOEG9u7dy8c//nHWrVvH8uXLj/R8DRcKFELHK6+8ws9//nMWLFjA2R//fzgdDurq6gA466yzSEhIwGq1ctlll/HOO+8AoNfr2bZtGw0NDUeSsGOtXLmS66+/nvvvv//I8MV33nmHa665BoC5c+eSk5NzJMFau3Yt0dHRJCUlERsby4UXXgj4et5qamoAXxK2evVqysvLeeSRR47qqRp25ZVX8uSTTwLw+OOPc8UVV4z681GUmWDQnHh1R/dgWaJsdBCHoftwkKJSFEVRFCVchFcP1jg9TTOhq6uL119/nZ07dyKEwOv1IoTgrrvuAiAyMvKo/Y8dajfa0LtjHdvGSOnp6dx4443ceOONlJWVjUiEfBmW0OmQUvLUU09RXFxMb2st0d5udGlz2bBhw7jx2Gw21q5dy8svv3xcgY777ruPDRs28OKLL7Jo0SI2b958wudhNn941V+n0x25r9PpjsxRu/7663n22WeZP38+f/vb31i3bt1x7WRkZJCQkMCOHTv45z//yX333XfC8ypKIBk0Jw5DzHHb281ZRNvrghCRoiiKoijhRPVgjePJJ5/k2muvpba2lpqaGurr68nLy+Ptt98edf+6ujref/99AP7xj3+watUqiouLqampoaqqCoC///3vnHHGGeOe++WXX8btdgPQ0tJCZ2cnGRkZREdHM9Dvq2YmhI5zzjmH3//+90gpQW9m+669SI9vweFXX32Vrq4uhoaGePbZZ1m5ciXt7e1HhvwNDQ3x6quvMnfu3OPOf+jQIZYtW8aPf/xjkpKSqK+vZ/Xq1TzyyCMAHDhwgLq6OoqLiyf88+zv7yctLQ23232kndFcddVV3HnnnfT29lJRUTHh9hVlugzSdVwPFoA9KpdUd4Pvc6YoiqIoijIGlWCN49FHH+XSSy89atvll18+ZjXB4uJi/vCHP1BSUkJ3dzef//znsVgs/PWvf+XjH/845eXl6HQ6br755nHP/corrxwpMnHOOedw1113kZqaytq1a9m3f7+vyMWTT/ODH/wAt9tNRUUFy1ev4Qd33ovHNQT4hjBefvnlVFRUcPnll7N48WKam5tZu3YtFRUVLFmyhLPOOosLLrgAgB/+8IdHimR861vfory8nLKyMlasWMH8+fP5whe+gKZplJeXc9VVV/G3v/3tqJ6r8fzkJz9h2bJlrFy58qik7vnnn+eHP/zhkftXXHEFjz32GFdeeeWE21aUQDBKF5p+lPd0whwSRB9tba2zH5SiKIqiKGFDhNLV2MWLF8tjq8Xt3buXkpKSIEUUunq72oh1NKIlzkVnsh7Zbh9yENG9F0dEGo89+zKbNm3innvuCWKkwaXeP8pktd2WR3XcSpZ99eGjtu994zFK3vwcO859morlHwlSdIqiKIqihAohxGYp5XGV2FQPVriSGuCbgzWS0WTCKwXS7QxGVIoS9ky4kIbje7ASc3yJel/T2IuNK4qiKIqiqAQrXPl7Ho8tWmHQCVwYEV4n119//Snde6UoU2GWLuQoQwQTMovxSoG3/WAQogqcmvo6dty2hJcfujPYoSiKoijKSSksEqxQGsYYMvw9WMe+hEIIPDoTes01+zGFGPW+USZLahpm3GCwHPeYzmShTZ+Cubc6CJEFzv7XHqSCA5x7+A76utuCHY6iKIqinHRCPsGyWCx0dnaqL8vH+nAhrOMe0nRmDLhHJGGnHiklnZ2dWCzHf1FWlLG43S50QiJGSbAAuizZxA2Fd6n21KbXj/y76r3nghiJoiiKopycQn4drMzMTBoaGmhvbw92KCFlqL8Lq3cAevYfl2QNDfZhdfcgu3Yh9MYgRRh8FouFzMzMYIehhBGHw44JwDh6guWMzSNncAcOlweLKeR/fR5HSkmys5btcR8lp/t9RPWbwGeDHdaUOFxunv/Nl8m0ODntSw8cNx81nOzZv4/c3HwizMcvDxAuPF6N7p4ukhISgx3KtNhdHgQCq0kf7FAURQljIf8NwWg0kpeXF+wwQs4rv72ZNd1PYLqt87jH3nzjZRa+eRVN5z5A+vIrghCdooQnl8MOgBgjwTIkFRLV7KCqvoY5BXNmM7SA6OjpI4UuWhMKqbN3Et0TvgU7Nq57nivtj4IdqrZ8kjmLzwp2SFPy1rr/cPq6K9lrnk/Jd94cdVRCOHjiL7/iyoY72LL8bhaed0Oww5mSQaeH7b84i2Stg+TPv0BMSm6wQ1IUJUyF7yW/U5zwOnGL0a92JmT7qp31q2pnijIprqFBYOwEKzrdt3ZbZ93uWYspkNrrD6ATEkNiAfa4uWS6a/D4FzMPN66qt478u3/DwyfYM7Q5N/4dgBLndlqqtgY5mqlxuL2sabgXvZBkbPzZh0PYw8wHmzexQtvCHOqoeeXeYIejKEoYm/EESwhxrhBivxCiSgjxnZk+36lC53XiZvQEKzsjnXYZg9ZeNctRKUp4czt9C3TrxkiwkvPLALA375+1mAJpoOkAANHphejTyrAIN83V4ZksJnRtodpUyBbTEhK7Ngc7nCmRUlI4sImDphI0KWjd8ESwQ5qSnfsPkCa6aNSlk6K1MhCmn4+hXS8C0CDSSKp9McjRKIoSzmY0wRJC6IE/AOcBpcAnhBClM3nOU4XB68StO76UNECMxUiDSMfce3iWo1KU8DacYOlHLN49UmRiDk6M0HloNsMKGFd3AwBxafnE5lQC0Hk4PHtNEjyt9EXm0p+ymCxvPY7e8Jun29bdRyat2DNXc0hkY2raGOyQpqT/sC/u5vLPA9C05eVghjNl1p59dOvi2JFyMWmeBrT+8HtPKYoSGma6B2spUCWlPCyldAGPARfP8DlPCXrNiWeMIYIA3dZs4h3hXe1MUWab2+VPsIyjJ1jodLQZ0onsr5m9oAJIG/B9YYyOTyGjaAEeqcPduCPIUU2e0+0hSXbhiUzFmrcMgKa964Mc1eQ1Hd6DQWhY0kpoiS4j074HtDCs/tqyC4C5H72OThmDs3ZTkAOaGpu9jh5LFpa80wBo2ft2kCNSFCVczXSClQHUj7jf4N92hBDiJiHEJiHEJlUpcOL0mmvMHiwAR0weNq0bHL2zGJWihDevP8EymMdIsIC+yBwSXPVhuXSEfqiDPqIQBjORkZHU6TKwdIffXM2O9lYswo0uJp2UwkUA9NVtD3JUk9fbsAeAhJwynKkLiGYQe8uBIEc1efq+OrqFjahoG7XGfKJ6w+891Wt3kymbfZVCy1filYKeg+GXtA9zerx0D6r1MBUlWIJe5EJK+Wcp5WIp5eKkpKRghxM2DJoDr27sHixdYiEAg2E6Fl5RgsF7ZIjg2OuneWz5ZMkWuvqHZiusgDE5OunV2Y7cb7MWkGQPv+GO3a2+3nlTXDqZGVl0yFho3RPkqCbP0+H72SdkFxOdswCA5oNbghnSlETYm+g1pQLQG1NMuqsGvJ7gBjVJrR1tJIleZPwc8lITqSUNXfveYIc1JW6vxm9/9RMG7pzH4R3vBjscRTklzXSC1Qhkjbif6d+mTJNBuvGeoAcrMsNXSbCzNjz/QChKMBzpwTJFjLmPKaUIk/DSWBt+PQ0WVzeDxrgj951xhSR72/A6B4MY1eQNdvjmkkUlZqLXCRpMucT0HQxyVJOnH2xlCAvCEktmUSWaFAzU7wx2WJMipSTB28ZQRLrvfso8zLjpbwyvXqzelhoATAk56HSCZnMetv7we08BbDrUzNfsvyNLtKF/6VvBDkdRTkkznWBtBAqFEHlCCBNwNfD8DJ/zlGCULrz6sROs1Ny5aFJgbw6vP3KKEkwef4Jlsow9RDAuy3fxoqcu/C5eRHm7cZrij9w3ppSgE5LWw+H1pd7Z7btOZ0vOBqAvuoh0dw1o3iBGNXnmoXa69QkApCcl0CCSw67XpNfuIp0OPNG+Rd2j/cVTWg+GV8EOuz9pj07yPY/B2CKSvS3gCq+LDwCHNv0Xk/BSZSknZ2g3nu768Q9SFCWgZjTBklJ6gC8B/wH2Ao9LKcOzJnCIMUkn8gQJVlZSHA0kQlf4Df9RlGDR3A4AzNaxe7CScn2l2p1t4Tf81qb14rEkHLkfl+N7Lh014ZVgyb4mAGKS/QMkUkqx4KK7Mbx6FSNd7QyafK+HEIJWcz62gfBaXqOzrQmLcCNsvsQku3gBbqlnqD685sS5enzvqdgUX9KuS52HDklPbXh9NgAimt7Dg56m5T8AoGXzv4IckaKcemZ8DpaU8t9SyiIpZYGU8o6ZPt+pwoQb7QQJlsWop1mfSUR/9SxGpSjhTXP5EiyTeewESx+VxACR6LvDaxkEu8NBnOhHRiYe2ZYxpwyP1OFqCa9eE91AK71EIfzVHmOy5wPQGmbzl2zeLhyW5CP3B22FpHkbkf5EPxz0tft6fsxxviGCybZoqkUGps7wmhMn+5sBMNt8zyM2x/ee6ji8LVghTVmsvY4uUxpFlafTJaMYPBy+xToUJVwFvciFMnker4YZF9Iw9kR8gN6IbBKd9RCG1c4UJRik2zdE0GyJHHsnIWg3ZxIzWDtLUQVGd3sLACLqwy/0MZGRNIpUjF3h1WticbTRY/gwUUwvrgTA3rgrSBFN3qDDTRLdaJEpR7bpU0oxoNFRGz4DPexdvgQrMtHXgyWEoM1SQPxgeF2A0A22MYgVTL7Pfs6ceTikEUdjePVgOdxekj1N2COzSLVZOaAvJLIzvJ6DopwMVIIVhlz+BAvD2D1YAC5bPhFyCDnQOkuRKUp40zz+IYInmIMFMBiVR5qnAY83fNYs6uv0XaE3xRxdrbXdkkOcPbx6uqNc7QyaPkywkuLiaSQJfWf4DNts7+okQjjRxaQd2RaTUwGEV6+Js9v3vrIlfVjPaiiukCStHRlGy4RYHW30jkjak2IjOCwyMXeFz3sKoKFrkBzRhteWC0BnTClpzmpwh1/VU0UJZyrBCkNOt4YZN1J/4h4sY7KvVHtvgyp0oSgTIdwONCnQGU988UImFpIhOmho7ZilyKbP3u3rwbLaUo/aPhRbQJqnEel1ByOsKYnzduK0ftgTJ4SgxZRL7ED49Jr0DJea9w9JA8iaU4FH6nA2hU8Pluz3va8iEj5c4tKQWgpAZxjN7YtydzJk/jDBEkLQbsknwR4+7ymAxuYmYoQdU2IBAFrqfPRoOBrCa06cooQ7lWCFIafbiwUXGE+cYMX6S7V31YXXWHhFCRad245DmECIE+5nzfAVh2g7HD5fWly9vp7sqISjEyxd0lyMwkt7XXhciBkYcpJID1pU2lHbB2PmkOZpCJtEcbDTVwkxIvHDxCQ+Npp6kYahM3yKdejtbQwQCcYPe31t/p64zurw+Hx4vBo2rQuX9ejeXbutkHitEznUHaTIJq/XX+glNsN3gTV2zjIA2vZvCFpMinIqUglWGHK6nOiFRIyTYGXkFOKURpyt4fPHWlGCSXiHcHDizxVAUp5vAry9MXx6GrwDbQDEjuhpAIjO8vU2dFSHR29DR2sjBqFhiE0/artILsaMm+6m8JhP5vKXmo9Nyjpqe5slj7gwWvzZMtROjz7+qG05BaU4pBFXmPTEdQ44SaYHGXX0xQdjqu8iZXdt+Mztc7X73jvRab4Eq6CgiHYZg7tuUzDDUpRTjkqwwpDL6RtLLcYpcpERH0UtKYjO8PljrSjBpPcM4RDjJ1ixGUU4MaJrD49eHwAGOvBIHdaYhKM2pxX4ehvsTeHR093b5htaN1y1blh0lr9X8VB49Jpofb6hdcPrLg0bshWR6mlGc4XHnJlId8dR8+EA4qOt1IhMTN3hcXGvvaMNq3BhiD26VzQ22/fZ6KreEYywpkTXXQOAiMsDIN1mpUrkYukKr0qhihLuVIIVhpxDvoUP9eYTT8TX6QQdpixiBsNrAruiBIvBM4RLnHj+FQA6PU2GLKL6w6O3BEA/1EGviAXd0b/2ExMSaSUefZgMS7N3+hZNjTqm5ydtzgIAhsKkV1E/2MIQZoQ55qjthtQS9ELSVh0evSY2b9dR8+GGdVjzSAiT4inHlpofllMwlyFpwtkcHu8pgIjBOnr0CWDyLTUhhKAzcg5JjhrweoIbnKKcQlSCFYYcDjsABuOJEyyAgZgCkj2N4HHOdFiKEvb0mgOXbvweLICeyHxSnTUzG1AAmZxd9Oltx20XQtBszCYmTApEuLp9C8LGpeYctT05MYFmEhAd4VH1zTQ8tO6Y+X62nHIgPOYvDTjcJNONjDw+wXLYCknUOpBDPbMf2CQNz4eLPiZpT4qx+tb06gqPiw9eTRLvaqbfenSvqDthrm/tTDWaRVFmjUqwwpBryJdgGccpJQ0gk+ZiQMPeEh5/IBQlmIzaEC7d+J8rAFd8Eem0098XHhPgI9xdDBnjRn1sILqANHc9aGFQdr6/BU0KIo/pbRiuJBgzEB5fIqNcbfQbk47bnlVYgVvqcYTB/KWO9lbMwo04ZmgdgCHNN7evPQyG13l6fEl7TOLRiclwJcH4MOmJa+lzkCVaccUeffHBkjk81HFbEKJSlFOTSrDCkMvhGyJoNEeMu29Upm9eQvuhbTMZkqKcFEzeITwT7MEyps4DoLkq9L9AAkR7e3BZEkZ9TCYWEYGD3raa2Q1qCgyDrXTrbKA3HPfYQHQB6e66sEgUbd5OHNaU47bHRkXSINLCotekt903XNNsSz/usfhcXyGYsJi/1O9by8tgyzjuIbutkAStIywqCda3dpImujAk5B+1PaVgPl4p6KsN/V5RRTlZqAQrDHmH+gAwRcSOu29qfjleKcKq2pmiBItJOvHoJ9aDFZ/rG8rVXx/6XyC9msQme/FaR0+wIjJ8vQ2tYVAgwuJoo9cw+vMgqRgLLnqaQ7sXa8jpIVl24Y08PsECaLfmEh8G6y8NdvjmLkUmHJ+Y5BSUMiRNuMJg/pJhsIVBEQHmqOMfS/FVEuytD/3n0dVwEIAofwXBYYUZSdTIVGRbeBSyUZSTgUqwwpDX0Q+AOXL8BCs7JZ46UtB1hFG1M0UJErN04DVMLMFKzyvFKY14WkK/OldXTy9RwoGIOn5IGkByvm8I0UBD6H8Bi3G3YzeN/jyisnxJb2uI99i3t7dgEW50Mcf3/AA4bEWkepvxhnglQYd/PpwtJfu4x2IjzdSITMxhUEkwwtFGryFx1MeG58R1hMGad/Y2X9Gd2Iyio7ZHW4zUGXKJ7g3910JRThYqwQpD2pEEK2acPcGo19FkzCG6P7Sv6CpKKDBLB9oEEyyTyUiDPhNrGHyB7OnwD4GKPr4YAUB6ejY9MhJCvECElJJ4rQtXZOqoj6f6S84PhniPfXerv9R8fOaojxtSS9ELScvh0F6bTOvzva+iEkZ/Hh0R+SQOhf78pVh3O4Pm0XsTswtK/D1xoX/xgU7fz9qQUHDcQ30xhSS6m8A1ONtRKcopSSVY4cg1AIDROn6CBdAXPYdkdyN4XDMZlaKEPYt0Io3jz20c1hVdSKoj9C9e9Hf6ehossaN/idTrdTQasonsC+1haT39gySIPogaI8FKSaVNxiHaQztRHOwYLjU/emISl+tLFEO9kqBuoJVBrKMOrQNwxhWSoHWi2UN3/pLHq5EgO3FGjP7ZSPZXEjSGwZw480AtdhEBEfHHPaYll6JD4g6DHndFORmoBCscOX0J1lh/1I6lJRZjwIurPfT/QChKsHjcbizCjTBFTvyYpHkk00VPe9MMRjZ9zm5fGerIxKwx9+mLyifFWQNSzlJUk9fR4ktMDLGjD60TQtBsyiEmxNcnc3f75i7FpuSM+nhWYTluqccV4pUEzSeaD8eHhWBCefHnjr4hkuiB6OMrIYLvPdVmySd+MLQvPkgpsQ010mPJPK70P0C0f9HkjsNbZjs0RTklTSvBEkLcJYTYJ4TYIYR4Rghh82/PFUIMCSG2+W/3BSRaBQCd259gmaIntH9Ehu+PXPvh0J+MryjBMjjgG3qrm0B1zmGR2b7FbRv3b5yRmALF0+sbyhWbPHqPCYCWPA8b/XS31c9WWJPW3+4bWmcdpajCsL7oOaS7a0HzzlZYk6b1tQBjD62LioigQZeGsfvgbIY1aZGuTuym0ecuAcTn+SoJdteEboLV2dqAQWjoY8d+Tw3FzvFXEuyZvcAmqb3fSbpswRUzetKeme8rOmKvD+1hp4pysphuD9arQJmUsgI4AHx3xGOHpJSV/tvN0zyPMoLOPYgT06hlikeT4q8kOFC/a4YjU5TwZbf7LlzozRPvwUovXgLAYO22mQgpcPqbfWtHxY9+lR4gKteXLDbv2zBbUU2avb0WgNjUvDH30VLKseKkuyF0C/sYBlvoJRphHHtJgA5rHon20B1+qmmSeK0Tl3X0eX0AOQXF2KUZd0vozl/q97+nrGMkuwCmdN9Fyq4QHrJZ1dpLpmhHf0yJ9mH5ybFUyQz07WqIoKLMhmklWFLKV6SUHv/d9cDYv6GUgNG7BxkSE5uID5Cflki9TIYQn5egKME01O+bJ2KwTGxuI0BiSjqtxKNvC+2LFwZ7G13ChtAbx9wnc64/WazbNktRTZ67y9eDlZA++pdIgNi8hQC0hHCvotXRSs8YVeuG2eNLydCa8dh7ZieoSeoYcJBMN3KM+XAAMVYzNbpMLCHcEzfU6RuuGZM8es8PQMIc32ejs+qDWYlpKtpq92IWHqIzS0d93GTQ0WzOJ24gdF8LRTmZBHIO1o3ASyPu5wkhtgoh3hRCrB7rICHETUKITUKITe3t7QEM5+Rl8Azi0E18GJPFqKfRmEN0v/rFqihjcQ50AKCPjJvUcU2WQuIHQnt+o2Wo/YRzZQASEpJoJBlDe+jO+9H1NTKIFX2Ebcx9cksW4pJ6HPVbZy+wSYpydTBoHrvnB8CQXglAy4HNsxDR5HW2NPjmLMblnnC/jog5JA9VhezcPleXb0hsXOrYCVZB/hw6ZAyextDtwXL6K2fG5swfc58BWzGxWg8MqO9aijLTxk2whBD/FULsGuV28Yh9/gfwAI/4NzUD2VLKBcDXgX8IIUa9LCyl/LOUcrGUcnFS0uhrmyhHM3oGcesnnmAB9EUXkOxqAK97hqJSlPDmHvD1YBkjj6/AdSL2uLlkeurxOEN3zaIoVxtD5vF/vzZbC0kK4WTRYm+my3DixMQWHUWNLhtLR2gmii6PRoLWgXeMUvPD4v29Jn2HN81GWJPW3eQrJBKRMvZwTYChxHJsshd3d2jO7dP6mnFjQESO/fmItpo4ZCgguid0h9dpbXvQEIik4jH30fuLjtgb1HxsRZlp4yZYUsqPSinLRrk9ByCEuB64APiUlL5LVFJKp5Sy0//vzcAhoGiMUyiTZPTacRsmPk8EQEuc66sk2Ba6X54UJZi8g74Eyxw9uQTLmDEfo/BSfzA0e0y8miRZa8cVNfYk/mFD8aWke5tw2ftmIbLJi3W3MmA5cWIC0BZZTOrQgZDsNWlq6yBJ9EL8iROT3Nx82qQNrTk0e036W31V9ZKzTvynPSLHP2Rz3/oZj2kqLINNvuGauhN/HeqOnkuasxo8zlmKbOKcHi9p/bvptmSDaeyLr3G5lQB0Ht42O4EpyilsulUEzwVuBS6SUtpHbE8SQuj9/84HCoHQrnEaRizaINokE6zIzOFKgqH5x1pRgs3rX6vHEnPiuTHHSilaDEDHwdDsaWhrayVWDIJt7CFQw0xZleiEpHF/6A1Lc7o9pGktuKPGLjU/zJ00jzjZi91fnj6UdNT75sJaU45fDHYkq0lPjXEOsT2hWSDC21kDQERS7gn3y5y7FK8U9FWH3ntKSkmiq4Fea/b4+6ZWYMCLvTH05lsebulmidhDX9qKE+6Xl5tHp4zG2aQqCSrKTJvuHKx7gGjg1WPKsZ8O7BBCbAOeBG6WUnZN81wK4PZqxNKPxzK5eSKp+RVoqpKgooxpOMGyxU9uqHJW/jzs0oy3KTSH3XQ2+oZyWZJO3GMCkFLoSxa7Q3CtnJaWJmKFHZlw4sQEINLfa9K0N/SKEgw0+0YRxGWOPZRrWJ+thDR3LdIdesNPTX219Ohs467HmJOayCEyMbaG3sW97kEX2TTjjs0dd9+YPN9no+1A6L2n2vevJ1I4MRatPeF+mfERVJGNpUsVvFKUmTbdKoJzpJRZx5Zjl1I+JaWc59+2UEr5QmDCVXqH3CTQh9d64gnrx8pLT6SeZFAlWhVldEPd2KUZq3XiFToBdAYDdaYCYntCc87PQIsvwYpJGz8xycwppEdGIltCL1nsrvP97jKnFI67b4a/ImJ/Teglip4O32COuIzxR80bMioxoNFxKPSGnyY6aum05I67n04naLIWkTQQemXzG5t9Sbt+Akl7fvE8+qWVodrQe08N+XvVkucsPeF+QgjaIwpIHDoMmjYboSnKKSuQVQSVWdDb24tVuBCRkxvGZDboaTDmEN1XNUORKUp4E45eBsTkht4O640rI8d1CI879IrIuDuqAUgcZ64MgMGg9yeLoTcsrbfR9wU9JXfeuPumpyRTRwr61tAbCmXuqaJHxKKLGH8UQmKR7wtz28HQKjnf73CTLRtwxI6fmICv0EWc1o23t2mGI5uc7jrfRZGo9PF7E1NjI6jS5WLpDL0LKaLjAA5MmBLGHwbsjJ+LRTqQ3TUzH5iinMJUghVm7D0tAOiiJl9xsS+qgGR3I3hcgQ5LUcKewdWLXRc9pWP1GZVECCf1B0Ov58fQdYAuYic8t6wvvpxs1+GQq4qote3DjYG4jPF7sIQQNEfMJbk/9BLF+MFDtFonlpjMKSylV0bibgitHqz6hgbixQC65InVrhoudNG8N7QKXdjrfZ/XpDkLxt1XCEFndAmpQ1WgeWc6tEmJGThMuzl73EIdAOaMcgB6Q31xdEUJcyrBCjP9na0AWG0nLlU8Gi2pBANenKqSoKIcx+LuYcgQO6Vjk4uXAdB+YEMgQwoI2+BhWsy5E97flL0Ek/BQF2Lzl2J699NozIYTLJY80lDyQlJlG4OdoVPootfuJFerwxk3fo8JgMVk4LCxAFtXaM2d7TzkK1gRk1U2of1z5p2GJgXdh0KrJ87YuY9BrBjjx+/5AZDpC7DipK8udC6k9A65yfLWMRQ7Z0L7J+VXAtBdHXpz4hTlZKISrDAz1ONLsKITxi9VfKzITN8fQ1VJUFGOF+vpYNA8uaG3wzLmVGKXZrTG0Opp8Ho1Mt212GMm1mMCkDZvFQBdB96fqbAmTdMkWa7D9ERPLDEBiJ6zHIC6nW/NVFiTVnNwN5HCiSljYokJQFfcfDLdh5CuwRmMbHKG6nzv89S5yye0f05aEtUiHUNLaH0+4gcO+noThZjY/sUrAWjZ885MhjUpBw8fJkN0ossYvxcOoDArlVotGa019IY6KsrJRCVYYcbV1wZAbEL6pI9NKyjHKwUD9aE3L0FRgklqGolaF66IyV+4ANCHaKGL+poDRIshRErphI/JzC6gjTh0jaFTVruuvoZk0Y1MGX/+1bD8stNwST1Dh0NnWFr3QV/Smlh02oSP0Wcvw4BGSwgNr4vo2Em7Lhl91MQuSAghaIosI21gd8isTdbc3U+xdghn4sST3aK55XTKaDw1odNT3XnQ19OcUHjiAhfD4iNNVOtziOpRlQQVZSapBCvc9DcDoI9OmfShuakJ1JGCrl39YlWUkXq72jELN7qYtKm3YSsl21WF1+MJYGTT07r3XQASJvGFXuh01FtLSe4PnWFpjTvWAZA0d9WEj4mzxXJYn0dkW+j0msj6jQxhJjFv/oSPySxbDUDHvtDoNXF7NXIde+iImXjSDuBKW4xN9jHQHBp/f6p2fkCEcBI558RrR40UbTVxwDgXW3fojAJx1W5EQxCXv3jCx/RGzyHR1QBuxwxGpiinNpVghRnrQAM9InbctUdGYzboaTTmEN2vKgkqykgdLTUAmOMzp9yGLmMBkcJJfVXozM/w1G3EJQ1kzp34ly+AoeT5ZGpNDPS0z1Bkk+OpeR8nRjJKJ54oArTFlJPl2I/0Bj/plVKS1ruNRutc0BsmfFx+Tg61MhVdU2gsZL137y4yRTsyZ+KJCYDNP7yuKUSGbA4c9CWsaWVnTOq4nvhK0t11SP+6ecHk1SSp3RtpshSCJWbixyWWokfD2xZ6pfMV5WShEqwwEzXUSI9p6lfZ+6PnkOxuAI8zgFEpSnjra6sHICopa8ptJBX5C13sD53hQ3Edm6k1F2EwWSZ1XGT+8Pyl0Og1Se3eSI2lBGGc3PMgczEROEJi3mlNfR1zqWYwc/WkjtPpBPWR80jr2xkSw+tatr8GQOaCsyZ1XGHZYvqkFWdNaAx1tDW/Q5s+dcIFLoYZcnxD8Tr2vTsTYU3KnrpWKuRBHJmTS3YjsioA6DgcOr27inKyUQlWGHF7NRK9rTiipn6VXUsqQY+Gs1VVElSUYc6OGgDi0nKn3EZWUSVD0oQ3RApdNLW0UOw9SH/6ykkfm1O+Ck0KBg4FP1msrjlMsXaYwaw1kz42scQ3pLB1z9sBjmryDq9/AYC0hedN+lhn6iLiZTeD7TUBjmryour+S6eIJya7clLHxVjNHDQUE9uxbUbimoz6tm7K3TvoSF094QIXwzJKV+KVgq4D781QdBNXt+nfmIWbxPnnTuq49IJ5OKVBzcdWlBmkEqww0tA5QDrtYJvcFbeRovxlddsObQtQVIoS/kT3YZzSSHxq/pTb0BuM1JoKiOkOjUIX1RteQC8kSZP88gUQH59ArS4TSwjMX6p970kAspZdMuljC4rK6JbReOuDP7wu6tCLdIp4kosn19sAYCvyHdPgn4sWLM0dnVQ4NtGccsaE1lw6Vld8JRnuaqSjbwaim7j97z5LlHAQv/DiSR9bmJ3GQbLQh8CQTUvVvxkkAlvJRyZ1XGFqPIdkBrq20FsnTlFOFirBCiNttbsxCS/m1LlTbiO9oByP1GFvCJ0J7IoSbObeapr1qej0+mm102ubR46rCq83+AuRmg68QBexZFasmdLxbTHzyLTvCeqwNCkl8Yefo16fSVLBwkkfbzYaOGSeS0JPcIcINjQ0MN+xkYa0s6aUmMwpX86QNGE/HNwexQP/fYgo4SDutGumdLwxdxl6NNr2BW8JACklxj1P0SeiSa2c/MUHo15HQ+Q8Uvt3gabNQIQTU9vUwvKht6hP/SgYTJM61mrS02DKw9Z/cIaiUxRFJVhhpM8/XjqhcHIT1kfKSY6nllREu5rcqijDbEP19Fqzp92OSK8kUjhoqAru0JuOtmbKBt6nJvkjiEkUVBjJk7aIePporw/ecOK9uzZT4dlFZ/4lkx7KNWwgsZIsTx3Oga7ABjcJh1+5B4twk/aRz0/p+NhIKwcNhcR0BK9HUdMkyQceoV6fRUbF5HpMhqWX+YZsdgaxIuLuvXtY6XqXhpxLJ7xo9bE8aYuJkoPYm/cGOLqJ2/ef+4kUThLXTu091R9TSJy3A4aCX6xDUU5GKsEKI1rzdtwYiMmc+LodxzIZdDQZc4gZUJUEFQXA4RgiXWvGZZv4YrxjSSryTYBv3x/cifxVL/0Bq3CRsOYLU24jvthXsa9pV/CqvnX/925c0sCcc7845TYiC3zPo27Hm4EKa1IG7EMU1/2TPdaFJBdMbDHY0XTFV5LtOojmGgpgdBP3wbuvUqIdpLvkmiknuwVZWb6haUEcXtfy6u8AyD7vlim3ET/XN6+xMUgVEXsHHBTUPEaduYjEKQw5BRD+NeWcTWo0i6LMBJVghQkpJSm922myzJn0cIBj9cfMIcndpNbAUBSgaf8mzMKDyJj6l99hWUULGJImPEEsdOFwDJFX/Qg7zQvIKV0y5XbySpcyIC14aoIznKtm3zaW9fybnamXEjWFhdWH5S9Yg1cK+vYHp9dk01O/JoUuzKu/PK12DDnLMOKlae/sF1fwejWsb/6YHmIoPe9zU25HrxM0RJWR1h+cioj7DuxnedezHEw8k6iUqc+3nFu2kB4ZibM6OJ+N9c/ewxzRgG7lV6bcRmxOJQCdh4I/z1JRTkYqwQoTB+ubmacdYDBj4gttjkUmzvVXEgyNBR8VJZj6q3xfkmyFk1tjaTQGo4k6Y35QC11sfeIXpNCFftXUv3wBWMxmqkxzSeia/S9gUtPoePa7uISR/Mtvm1ZbCfEJVOnziWrdGJjgJqGpqZ7Kqj+wz7qAgtMunVZb6eVrAOjcM/s9cW//62/M9+ykbv5XMETGTastT/oSYmU//Q2zO7xO0yQdz3wbo/CSefnPptVWjNXMPmMpCZ2bAxTdxNU2tVJ58B6qLSVkrp7aXDiAnLwCemUEjkZVSVBRZsK0EiwhxG1CiEYhxDb/7WMjHvuuEKJKCLFfCHHO9EM9tVV/8C+MwjulSbnHisoqB1QlQUUBoHETbdJGbl5RQJrrsZWS7axCC0Khi+aGaiqq/sh26zJKV1827fb6EheR5a7GNdgz/eAmYf1zf2Sx4z32Fd5MXPLUl6UY1mpbSI5jD3IWe+29Xo36hz5HJA5iL7t7ysPqhuVmZXOYDExNHwQowomprjlE+ZYfUWfMp/zCr067vfiSNQA07Hht2m1NxhvP/YVVQ29wcM6NRKdP/7Pem7SENE8Dnr7WAEQ3MR6vRs3fP08iPcRc+qtpvadyEqM4ILMxdQZvHpminMwC0YN1t5Sy0n/7N4AQohS4GpgHnAvcK4SYXnmuU5iUksj9T9MtbMSXrp12exkF8/BKwUCT+sWqKEm9O6mxlGAwBOZXlMhYQJQYouHQ7F4Z9rjddD70aXRoJH38NwFp01KwAr2Q1O6Yvbkm+3Z8QNm2n7DPNI/Kq34YkDb1uSuw4KZxz+wN6Vr34O0sc7zLntKvkVY4/eGnOp2gLmo+mf07Zq163YDdTu/D1xMpHER+8m+IaQ5PB5g7bwEdMgZP9ewNddy2bRNLtn2falMR8676cUDatM7xz8OaxdL5//n7Lzhj6DX2z/0CCcWTX99uJKNeR4u1gPjBQyGxgLWinGxmaojgxcBjUkqnlLIaqAKWztC5Tno79uxmmesDWnMvgilWBBspJyWeRpKgQ5VoVU5trv5O0r1NDCRVBqzNxMJlwOwXulh//1coc21n94Ifkp5fGpA28+afgVcK+g/MzvylxrrDRD/9KVzCTPL1f0dnmP7vO4CM+WcC0DFLw+vefObPrK39LbtjVlPx8e8HrF1v5nKiGaS7dubLzrtcbrbecy2Vnh3ULL+DhLz5AWnXajZwwFJOctfsDK+rObSP5GevQtMZSLjhUYTREpB2C+avwiGNDByYnYsP/3n6b5xTfScHo5dRetVPAtLmkK2ICGmH3vqAtKcoyocCkWB9SQixQwjxFyHE8ODsDGDkJ7bBv+04QoibhBCbhBCb2tvbAxDOyUVKSfu/f4oQkuzzvh6QNo16Hc2GLKL6awLSnqKEq4ZdbwMQkbcsYG1mFS/AIY14GmZv7tI7D93GqrZ/sDnpMhZfMr1iCiMlJSVxWJeDtWXmq77VHNqH/Mt52OjDfvnDxKdPv6rjsJzsHGpIx9Q48+tIvfnkH1ix7TscspRS/IXHEFNY92osqeW+EQyN214PWJujGRpysPk3V7La/l92FX+FuefeFND2B1OWkqK14uisDWi7xzp4cB/i75cQjZ2hq54kJm1OwNrOSLSxV1dIZOvMfzZef/p+1m7/Ok2WAvK/8CToAtPbbkzzVSQerN8RkPYURfnQuL/5hRD/FULsGuV2MfBHoACoBJqBX002ACnln6WUi6WUi5OSkiZ7+Env7TdeYu3AvzmQdRURyXkBa7cvMockV31QF0pUlGDrq1qPJgXZ5dMvHjPMaDRRa8wnehYKXUhN472/3Mqqw3ezNfoMKj93f8DP0WqrJHtoN9LrCXjbw/Zv34Dp7xdgo4/Wix8lq3x1QNsXQlAfPZ/MgZkbXqd5Nf7zl9tYvfN/OGwtI+vLL2KwRAX0HEXF82iVcWi1MzfUsb2jnd13X8hp9tfZVvRVyj4RmN6SkaKLzwCgYevMzcPavH4dsY+cSwK99F72D9LmBu4iyrC2uIVkOg8gnQMBbxt88/he/ttPOWP7t6izziX1y6+it8YErP2EfF+vZHd1cBfiVpST0bgJlpTyo1LKslFuz0kpW6WUXimlBtzPh8MAG4GsEc1k+rcpk1B1cC9Fb36RTn0ShVdPr+rRsbxxBVhw4u1rCmi7ihJOzC2bOSyySEtKDGi73bNQ6MLhcPDWb29gRd2f2BR7DuVffgJ9gIbUjSSzlhGJg9aqLQFvG2DTSw+R9fSFmPDQd+XT5C84c0bO48lcTgwDdNUG/mr94EA/H/zmas6pu5v9tlXMueVlLFHTq7Y3GqNBT3XkfFJ7t87IvJldOzYycM8ZVDo3sbPyR1R+MjDzlY5VXLGcPmnFcSjwQ0+llLz2xL3MfelKEHoGPvkvMiumP3d5NPrcFRjQaN8b+OfR1dvPW7/+JOfW/IKqmGXkfe0VTAF+T+VnZdAoE3A3q7WwFCXQpltFMG3E3UuB4U/p88DVQgizECIPKARmt/RRmNu3exvGRy4lUjjQffIxjNMsjXssU0oxAJ21wSsnrShBJSXpg3tpjp6HmGaFt2Pp0n2FLpoOz8wXl/bmOqp++RHO6H2WbVnXsuirj2IwmWfkXKnz1gDQsmtdQNt1OR28e9+XWbzhyzQYc5CffYP00umXyh9L8jz/8Lrtge01ObRvO42/PoPl/f9hc+5NzP3qc+jNEQE9x0iujNNIlh10NewLWJtSSt56+o/kPHUhNgZovPgxyi8JzJD00cRFW9lrnEdce2BL5/f2DfD2b67jI7u/S7O1kKgvriO1aFFAzzFS7oIzcUs9HTteCWi7e3Zvo+U3a1g7+BK7Cj5L0ddeRB/g3lCADJuVQ2Rj7VZLtihKoE13cPidQoidQogdwFrgFgAp5W7gcWAP8DLwRSnl7NcsDkOaV+PNJ/9A6uMfw0Y/A5c/SuKcwP+BiMv2reLeU78n4G0rSjjobthHLP1o6YH/fMUX+jrzW/cHfs7Prnf/hfanMyhwH2Dnsl9R+f/uQQRoTsZo8ufMpZV4ZG3ginbU7NtG7Z0rWdnyEJsSLiT3m2+SlBG4IdCjKZ5bRitxaNWB6W3QvBrvPXYnaY+eRarWwt6197Po+rtm9LUASJjvW6qjadO/AtJee3sLG355Kafv+A6tljz0n3+TnIUzv7JKX/JSMjx1ODoDU2Bh+wdv0n73Ck7vfZ6tWdeS/403iEjMGv/AaSjITGWnrpjoxsAUuvB6Ndb9405yHz+bLNlM7Uf+RNm1v0QEoLjVaIQQdETOIdFRC173jJxDUU5V0/rUSimvPcFjdwB3TKf9U4mUkq1vv4jxrZ9yhmc3h8xzib32QdKy5s7I+bJy8hmUZtxqsWHlFNWw623igPhpljseTU7xQoakCW/9RiAwBQLcziG2PvgtFjc+TKMujZYr/kF52cz1+AzT63XURC+iqG8D0uuZ1pc9zavx/hO/ZOHeu3AKE9tO+z2Lz7kugNGOzWDQcyh6CWW97yG9boTeOOW2GuuraXv4s6xwbmSXdRFp1/2FkvTcwAV7AkUlFdTJFAzVrwPfmlZb6//7DLnvfINFsofNBV9kwSdvR2eY+s9lMmIqL4Cme6nd8CzFH5t6YRany8n6B/+HFQ1/oU8XQ83Zf2XBiumvATcRQghaElewsP3/0Prb0EUnT7mturpaWh/+LGtcG9gXsZC06/9KTkpu4IIdgzuhBIP9CWTHAUTKvBk/n6KcKmaqTLsyQd1dnbz72F0c/MkiFr7+KdK8TWyv+AH5336XxBlKrgASoszUiXSMPYdm7ByKEspcNR8wIC0Uzlsc8LaNJjOHTHNJ6AzMvKXDezZRd+cKljb9nQ3xF5LwjfXkzUJyNcyTfxZx9NG4Z+prFzXVH2L7Xeeyct8dHLKW4/3ce1TOUnI1zF1wDjEM0LRz3ZSOl5rGe8/9mYj/W02JYxtb5n2Pebe+SsIsJVfgqwJbFbOMnL7NaK6pLZzc09PFut/cyPJ3rsert9ByxfMsuu6ns5ZcAcyvXEaDTETuf3nKbezZsZHqn6/kjMb72RO3loivbiR3lpKrYZaSswCo3/TilI7XvBrrnrmfiAdWU+Haws6y71D8rf8SOwvJFYA1qxyAnhpV6EJRAmlm+p2VE2ptbqDq3SexHnyReY4trBQeqvV5bCn/PuXnf4FES+SMxyCEoN2czVx74MbxK8Hh1SQutxeX04HL7cTp8uD2evB4vOgFGIRELyQ6owm90YLeZMWgN2A16TEZTt1rLLFd26g2FVJunv7iqaPpSV5CScNfcAx0T7nggcfj4b3Hfs7Sg7/BLqxsXnEvp539qQBHOr6cpRfg3fZt2re+QGb56ZM6VvNqrH/qbsp330UcXjaXfpuFH//2jA+lG03hiotxbv02bZueJaPyrEkd21R3iJZHv8iKofc5ZCoi4qr/Y+GcwKwNNVnWkrOwfvA8Bzb9h6IVF0/q2I3/fYKMd77LGtrZkfZxSq+7G4M1eoYiHZvFZGBv9ApW9f4H6R5CGK0TPtY+NMR7D/+E1Q1/ZkhY2LXyd8w/69MzGO3YFi1bS+ebMQzu/BesvWFSx1ZXH6TtsS+zxvk+1aY5yKvvp7xg4QxFOrq0/Arc7+rpq9lO3LJPzuq5FeVkphKsWdDd3kzNlldwVb1FcudG8rRaUoAWkczO9I8Tv+xq8uefQV6AJ9qPZyg6j8SOt8A9BJP446YEltPloqerg77uNgZ7Ohnqa8c92I20d4OjG52zF6OzF5O7D4NnEIPmwKQ5MGsOLDiw4CICB1Yx8apiLqnHiYlezAzoohnUR+MwxOIyxeIx2fBEpqC3ZRCZkEVsai4pGbnERM7cxP3Z5nbayXYd5oPUT8zYOSLmrELf+AAHt77B3NWTv6pee3An/Y9/ntPdO9kZuZyMT/8fi1Jmdk7JWDIzMthlmEtM3RuTOq7m4E76H/8iK9zb2WOpJO7qP7IoLzCLIE9FenIS28wVJDW9htS0Ca1R5fV6ef/xXzF/36+Jw8vGoltYdNX/zGpvz7Hmrb6EgQ23Mrj5cZhggtXW2kzVw19hRf8r1OsyOXz+k1QsmlySGWim0vOxfvA8Ve89x5wzrp7QMTvWv471P7fwUVnDHttqsq+9j7LEzBmOdGyxkWZejz6d07peRToHEObxi1G43F7e/uevWHLwbtKEmx0l36D8iu9Oa9jqVBVnJnBYpmFqVQWvgsnh8tDf181gfzeO/h6c9j5cg7247b14HX1oQ/3gGsDg7gevC53XhdDcCK8LneZCp7l9N7xo6JFCINEd+T86PVJnwmOIQDNE4DVGgDECgyUavTUWY0wi5ugkrLYUYuJTiLPZMBhm/yLYyUQlWDOgp6OFw5tfxVX1JimdG8nTaogD7NJMlbWM99MuJHPx+WSVnkbqLCdVI4mkQnQdEnvLQSKyKoIWx8loaLCfrtYGejqaGOxqxtnTgjbQhs7egdnRgdXdTbSnC5vWg00MkAKkjNUWZvpFFHZdNC59BB5TFA5DMnajFWmw4vX/wsRoRRhM6HV69Ho9QqdDQ6BJgVeC8LrB60TndSK8TjTXENI1iMHZg8ndS6KnhQjnQWJkH5YOF4xYA1STgnZi6TIkMmBOxRmRhozNwBSfRXRyHnHpeSSmZM9ImfCZULvrfeYIL+bcpePvPEV5lWtxr9PTv/8tmESCpXk8fPDPnzL/wO+JEwa2LvgJlRd+KaAL1k5Fb9ZHKav5Pa3Vu0jJKzvhvm63m/X/+F8WH76XBKFnc8VtLLzkq0F/DgBDxZeQufOHHN76GvnjJBhVe7Yw9PRXWOXZyV5rJXFX38eS3JJZinRsMdExvBt9OpWd/8U92H3CKrNer8b7z91Hyfafs5R+tuTeSPkn78A4g5UOJ2rx2kto3/BtnBsfhHESrPbOTvY88m1WdT5Jly6O/Wv+SOma0Ohx0VVcifW9f3Hw9QcpPO+LJ9x39/aNuJ//Oh/x7uBARCUJn7iPiuzgvadiLEY2GHJZ2HcgaDGcbDRN0t3bQ29bg+/vf187rv4OvIOdCHsnOkc3RlcPVncPkd4+orU+YhkgSXgZbzVYlzTgFCbcGPAI45Gb13+T6BBoCKkhpMSXXnkRUkMvXVj8F2at0onuBBdlndJIp4imT2dj0BiH0xSPx5qIjExCH5WMOTYZS1w6MYmpxCWmExEREfBqvOEuPL4NhbjerjYObXoF18E3SercSJ63hoVCMiRNVFnKeD/tY8SVnkn+/NOpMM9MKeWpiEqfC3uhvWY3OSrBmhCny0V7SyO9bbUMddTj7m5A9jdjHGzB6mglxt1OvNZFFENkABnHHN9PBH06GwOGeHqi8mm3JCCtiegi4zFFxWOOTiAyNpEI/80SnYDVYGJW+xelRBvqobu1hu7mGuztvucp+psw25tJctSSYN9EZIcDRkzhc0s9bbp4egzJ2K1peKPT0cVmYojLxGpLJtqWTGxCMhExCQjDzAzLG/epeVw4HYN07n6dOTDp4W6TERcXxwHjHGJa3p3wMTX7tuB86vMsd+9jW8RpZF57HwtmcX7PieSc+f/wPPAHav/ze1Ju/tOY++18999EvPY9VmvV7IhaQcan/siiEHkOACUf/TS9O37B4Ou/hjESrO6uDvY++j2WtD2JQ5jZtuAnzA+BJHck04qbiXzlP+x44TdUXH37qPvs3vw2vHQrqzx7OGQqwnnZEywsCfyCu1MVabXwfsqlfLTtr3Qe2kxCwfEVPd0eD+8980fm7vo1q+lmW+pllF7zK5KiA7/O2FQtX3M+B97PJXLTvXD2TTBKT1RrWxt7H/seKzufZkhY2Lv4J5Sc/2UIgS+l/bFFJHS/A44+sARuIeOTjebV6O5sobutnoGOBpzdzXh6mxGDbRjtbVhdHUR7ukjQukkQQySM0oZb6ukTMfTrY3AYYumz5tNttqFFJIA1Dr0lBoM1BmNkLObIGCyRcURExWKNjsMUEYPJYCIgfz2lRLrt2Af66O/pZLCnDWdfO+6+djwDHcjBDnRDnRgdXUS5u0gdqMfW3/3/27vz6LarK4Hj3yvZlrzv+xI7cRI7C2QhIYGWJVCgDBCmywDtnELboYc2c+hQmGmZdkoHzkyHtrTQdWBKgXYKKUMpMD2lUwqUpTQhK9njbHa8yfsiL5It6c4fEsEkMSGgRLJ8P+fo+Lc8yVd5efLv6vcW3Bx/tskBTWfAkY3XmYsvJZcxdwGh1AIko5CkrGJSc0vIyM4jIyMbV1oG7rRMkt3pp2yGzHiQuO/sFBry9nNg4x8Z2fsCBV3rmRU4wBJRfJrMfvcC1lfdRG79KmYuOo+FLnesw51UYXV4xqDhtt0xjiR++EaG6GzZz0DbfkY7D6F9jaQMtZDm85Az3kW+9lEhISZ2SBlXJz2SR39SAV2ps2hNOwcyiknKKiE1p5iM/DJyi8rJyi8hMzmV0z/a4SSJ4EjLJb8ml/yaxccvo8rwYC/drfsZ8DTi6zlMsK+ZpKE20kY9lAxup3DgRVJaj786wxCpeCWDMXETcLgJOF0EHS4CDhcBpxvEiYgj/I1Y5KGAqhBSRULjOEKB8E+NdI3QAI5QAIcGSNJxknWMFPWTomOkMIZLx0iSEG7gbKCdAkrKq0/RP2JYb9UlrDj4AzyHGyipmjNpOd/oMJse/VeWHX6QYUll/ZJvsfyKG+Pqgr6iqob12R/izPZf03n4SxRVzX3b+ZZDe2j79e0sH3qBDingjZX3ceYl18fFBeREOdk5vFL1KT7Y/BN2v7iW+gvfunPiHexn2//+kPp997NCvWwuuILZ197NosKjvyqJvbNWXsjrf1rO/D3/Sdehj1M44a7igd1b6PzdNzl78A8MSCZbFt3JoivXxOXFzNzV/0j/A48z8Pgacm99EUdK+OukYDDIxufWkv369zg/tI+DrjkErnyIJQsviG3Ax+FOSaL5jC9y0Ru3sPt/vkH9tW9NoNzV08POZ+5jYeNDnIeX7cWrqb3ubupzS2IY8dtJ8XzoA3/7Dlw158Q6nJhQVQYHvXS2HmCwyr6r3QAAET9JREFU4xC+7iZCfc04h9pIG20nN9BJcaiLfBk/JnEaxk2/Ixdvcj59mXPoSi2CzGKcWaW4sotJzSkiI6+Y7LxiUtKyyRc5bvJ1WokgKemk56WTnld64vIAqvhHBhjobsfb085In4exAQ9Bbxcy3EWSrweXv4cC32GyRraRrd53vEsG4NNkfOImQBIhcRDCSQjHW9sS7okjwK6keWR+9PucN+dE9/nig+gpWA3+vTrrrLN048aNsQ7jGKFgiAPb/0z3pmfI9bzKrLG9JEuQMU1iv6uewZJzyJ6/illnnk+Ke+qMZfIHgvTdNYueonOYv+bRWIdzWgSDITxtTXQ17sDnaSDUd5gU72EyR9vID3gooP9t5cc0iQ5HIf3JxfhTiwllluHMLseVX056YRU5RTPIKSyLyYD9eDceCNDT0cpQZxNDA134BnsYH+qBkV6c/n6SxwZwBEZxBHw4Qz6SQpFkSP04NAiEuzcASGRbIntBnJFuEU6CkkRQkglJEkFJIuRIRh1JBMRFwOki5HSjSW5485GSiiSlkl93LnMXf/CU/hu0HNhFxS9W8pfKG1n52e8cc15V2fbi4xS88nXK1cOWrFXM+OQPyCuO3ZiSd9J8cC+5j5xPR1Iprut+QV5JJQe2vcbwuodYOvBHQjjYVn0DC6+5A3da/H6VMDQ8RNs951EVPMz26hvQzDKCbW9Q1/s8uXjZ41pI6pV3M2NB9Kfwj6b9+3aR+9+X4hBomHEdQYUMz3oW+N/ATzK7yj9G/TV3kZZdEOtQ39HzT9zPhdu/TGPKLLorLmHM20NV98tU0U6HFNK57DYWXHZjXH/OjgeCvPadj3G+7wW25lyML7cOuhuYN/gqWTLCntTF5Kz+D0rqVsQ61GO8sH4Lq569gJYV36DisltiHc4pEwyG8LQ20tO8F2/7PkI9B0gZbCJ7tIXCYAf5Mvi28iEVeh059CcXM+QuZSy9FM0qJyWnnLS8UrIKK8ktrsCdnh2jdxTfNDjOYI+Hge52hnvbGPH24R/xouOjMDYMYyPI+AgSGEFCAQgFEQ0/iPx0agghhCIcTplN2eo7WF6TF+u39jYisklVj5mO2BKsd9Cw+SX6X/0vqnv/TBG9hFTYnzyb3uKVZNRdRO3SVXF9EfFubL7zA+SljFP9legviBpLfX29tB7YjrdlN4GuBlL6D5E7epiyYCsZMnqkXLhbWwF9KaWMppYTyK4kKa+a9JJZ5JXXUlg6A6czfv+om/j3xrc/zIyhbeia9eQWvZU47d/6CkO/v5NFvtdpkgoGL/x3Fp53cjPCxcLmF56g7qUvkCb+I8dGNYUdpX9NzZVfpqB8Vgyje/c87S20PfIZlvjCn30j6qIh82wyzr+Z2mWxnfzhZOzZvpHA0zezIBCepKDFUU575eXMveJLZBWWxTi6d0dVefnpB5m19W4q6GRMnRxMOwP/wk+w8EM34EiOTZfikzU4PMLGh27l7K4nSRcf/WTSmHsuhavWUH4KuyO/Xx2DPkL31DNcspzaz/8q1uG8L6qKp7OTzoPbGG7dCV17SfU2ku1rpTTYTqqMHSkbUAddzkL6XBWMplegWRUk51WRXlRNbtlMcotn4EiOn2EdJj5ZgvUebHjqR9RvuYuGzGUEay+l9tyPkDtF/mC9W8/dcz0f9D6L+1/aIA67j5zIgHeIln1bGWh8g1DHTjIGGij1HaSYniNlQip0OArpcc/Al1WNFMwmvayO/Mp68stqYjobmEl8jbs3Ubr2UpqTquhfsobQUDdpB3/HAv9WBkhnb+2NLPr47aTEcXfio3laDtH48i8JjftIL5lN7cqrSM+KnzExJ6Oro5WAf5SC4nKSXVOnB8LRBvp7cbtduE7DMh+nioZCjI4O43KlTpkJc45nfHyccf8IqelZU2bg/0t3XcZ8OUjB16bGZBeqiqfDg2ffRoabd0J3A5neA5SMNVEsfUfK+TUZj7OEfncl/qwqHHkzSSudQ2FVHflls6ZM8m7ilyVY74FvdBiHwzmlLnxO1u8fvY/LGr6O9zOvkFkVvxNdqCoeTyttu17Dd3gzKd27KRjZT2WojSQJAeG7US1JVfRm1BLMn0tqWR2FM+ZTOKMeZ8rUvXAyU9+259dS9cpt5OAFoE2KaK7+OPVX30ZWdnx1dzDGTD9P3X8HV7ffS+jvt+AomBnrcN5mLBDiYHMLnXtfZ6x5E+k926nwNVBJx5Eyw7hpT67CmzkLLZhLWtl88msWUlAxOy7HHprEMVmCZf/r3oE7dep+E/huFc1dAQ3QuvNV6uIkwVJVWjydNO98jdHGDaT3bKNydA/ldPHmUMw2KaE7fRZb8y7FVb6AgpmLKa6eT01yCjUxjd6YY51x0bX4z7mCg/u24c4uorRyJmVxNIGFMWZ6S627BNrvpX3zbym/5OaYxTEWCLGvqZm2PesYO7yZzN6dVI/tpU46qYuU8ThK6Mqup6voGtKqllBSu4ickmpqp8jdQjM92B2saW7YN4bvmzPxFH2A+WvWxiSG7r4+Gneuw3tgA67OrZQO76aGtiPnPY5iOjPnM15yJhk1y6mcv4K0TPvW3xhjjImG3iE/fd9eRHJWMVW3/um0/M5gSDnU0krLrnX4m8J3pir9DcyQt+5MdTlL6MmqJ1S6mOxZyyiZezbOjJjPwWfMEXYHyxxXujuFja4lnNGzDkIhOMXfqg+NjHBwxwb696/D6dlKkXcXNaHDnBXp5tcteXRkzuONko+QPetsyuevpCSzkPiZ0NYYY4xJLHkZLl7MvYSP9j+M37MHV0ndiZ90ElSVlnYPzbv+wmjjRlK7t1Mxupda6aA2UqbTWUxv3jz2lH2CvNrlFM45m8L0/BMuvmtMPLIEy+CfdQm5u1+ic/tzFJ15adRe1+f3c3D3Znr3rYe2reQP7GRm8BBnSHihugEyaE2rZ1vRxWTULKNywbkU5FcS3xMKG2OMMYmn8qLPM/rEo3ie/Bo1X3jiPb+OqtLe0UHLrnWMNG7A3b2DspE9VOGhMlKmw1FEd04920uvI692GSV1KyjKKKAoOm/FmJizLoKGlq5e0n+4kK7sBcz50v+9p9cYGxujae8WuhvWo21byOnfRU3g4JEpUYdIpcU9h6H8hbirl1Ex71xyymrjbhFSY4wxZjpSVZ783s18dPDnHFp2BzWX33LCv9GhYIj2lkY8+15ntGkzru6dlI42UEHnkTIdUkhnZj2B4jPJmbWc8nkrScmy+1ImMZySWQRF5FfA3MhuDtCvqotEpBrYDeyNnFunqjed6PUswYqd391/O5e3/5jdi79O/epbJy2noRBd7U2079vMcMsOHF17yR7aT3Xg0JFkahg3za5ahvIWkFK5lJL6FRTOmB/Xi0QaY4wx012fd4Q9913FysAG9qUtYWTu1bgKaiA5Ff/wAKMDnQT7W0nqO0DGcBOl483kiffI81sdpXRn1BEsXkhmzVIq563EnVMcw3dkzKl1yqdpF5F7gAFVvTOSYP1WVReczGtYghU73uERdt97FcvHN3AgpY7uwhWoO5vQuA/x9eMaaiXD76E40E62DB95Xi9ZdLhq8ObUk1y5mOK5KyiducCmRTXGGGOmoP6hEV597Fssb3mYoglrSk3UTS5drkpGM2ugqJ706qVU1S8jNXNqrodnzHt1ShMsCa+kdxhYpar7LMGamnx+P39ZezflTb9hZrDxyPpSI+qi01mE11WCP6OSYMFcMisXUj5nMdkFibXwsjHGGGPANxagef92Rvs8MDaMOyOHrPwicooqcWdYImUMnPoE6zzgu2/+gkiCtRNoAAaBr6nqK5M893PA5wCqqqqWNjU1ve94zPsXDAQYGR4kLT0TZ1JyrMMxxhhjjDEmrrznadpF5I9w3Fmyv6qqT0e2rwMem3CuHahS1R4RWQo8JSLzVXXw6BdR1QeAByB8B+vEb8WcDs6kJDKzba0pY4wxxhhjTsYJEyxVvfidzotIEvARYOmE5/gBf2R7k4gcAOYA1v/PGGOMMcYYk7CisarsxcAeVW1584CIFIqIM7I9E5gNHIzC7zLGGGOMMcaYuBWNqd6u5e3dAwHOA+4UkXEgBNykqr1R+F3GGGOMMcYYE7fiaqFhEekC4m2WiwKgO9ZBmNPG6nv6sLqePqyupxer7+nD6np6icf6nqGqx6ycHVcJVjwSkY3Hmx3EJCar7+nD6nr6sLqeXqy+pw+r6+llKtV3NMZgGWOMMcYYY4zBEixjjDHGGGOMiRpLsE7sgVgHYE4rq+/pw+p6+rC6nl6svqcPq+vpZcrUt43BMsYYY4wxxpgosTtYxhhjjDHGGBMllmAZY4wxxhhjTJRYgvUOROQyEdkrIvtF5CuxjsdEj4hUisiLIrJLRHaKyBcjx/NE5DkR2Rf5mRvrWE10iIhTRLaIyG8j+zUisj7Svn8lIimxjtFEh4jkiMgTIrJHRHaLyEpr24lJRG6JfIbvEJHHRMRtbTtxiMjPRKRTRHZMOHbctixh34/U+zYRWRK7yM3JmqSuvx35HN8mIr8RkZwJ526P1PVeEbk0JkG/A0uwJiEiTuBHwIeBecB1IjIvtlGZKAoAt6rqPGAFsCZSv18BnlfV2cDzkX2TGL4I7J6wfzfwPVWtBfqAz8YkKnMq3Af8XlXrgDMJ17u17QQjIuXAzcBZqroAcALXYm07kTwMXHbUscna8oeB2ZHH54CfnKYYTXQ8zLF1/RywQFXPABqA2wEi12vXAvMjz/lx5Lo9bliCNbnlwH5VPaiqY8BaYHWMYzJRoqrtqro5su0lfAFWTriOH4kUewS4OiYBmqgSkQrgr4CfRvYFWAU8ESlidZ0gRCQbOA94EEBVx1S1H2vbiSoJSBWRJCANaMfadsJQ1ZeB3qMOT9aWVwM/17B1QI6IlJ6WQM37dry6VtU/qGogsrsOqIhsrwbWqqpfVQ8B+wlft8cNS7AmVw40T9hviRwzCUZEqoHFwHqgWFXbI6c8QHGs4jJRdS/wT0Aosp8P9E/44Lb2nThqgC7goUiX0J+KSDrWthOOqrYC3wEOE06sBoBNWNtOdJO1ZbtuS2yfAZ6NbMd9XVuCZaY1EckAfg38g6oOTjyn4TUMbB2DKU5ErgA6VXVTrGMxp0USsAT4iaouBoY5qjugte3EEBl7s5pwUl0GpHNsFyOTwKwtTw8i8lXCQzt+GetY3i1LsCbXClRO2K+IHDMJQkSSCSdXv1TVJyOHO97sUhD52Rmr+EzUnAtcJSKNhLv6riI8Ricn0q0IrH0nkhagRVXXR/afIJxwWdtOPBcDh1S1S1XHgScJt3dr24ltsrZs120JSERuAK4APqlvLd4b93VtCdbkNgCzI7MRpRAeTPdMjGMyURIZg/MgsFtVvzvh1DPA9ZHt64GnT3dsJrpU9XZVrVDVasLt+AVV/STwIvCxSDGr6wShqh6gWUTmRg5dBOzC2nYiOgysEJG0yGf6m3VtbTuxTdaWnwE+FZlNcAUwMKEroZmCROQywt37r1LVkQmnngGuFRGXiNQQntjk9VjEOBl5Kxk0RxORywmP3XACP1PVf4ttRCZaROQDwCvAdt4al/PPhMdhPQ5UAU3A36jq0QNszRQlIhcAt6nqFSIyk/AdrTxgC/C3quqPYXgmSkRkEeEJTVKAg8CnCX+haG07wYjIvwLXEO4+tAX4O8JjMaxtJwAReQy4ACgAOoA7gKc4TluOJNk/JNxNdAT4tKpujEHY5j2YpK5vB1xAT6TYOlW9KVL+q4THZQUID/N49ujXjCVLsIwxxhhjjDEmSqyLoDHGGGOMMcZEiSVYxhhjjDHGGBMllmAZY4wxxhhjTJRYgmWMMcYYY4wxUWIJljHGGGOMMcZEiSVYxhhjjDHGGBMllmAZY4wxxhhjTJT8P15Ul1dlzVKaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
24False80.070.0122bAP.soma.v0.004145.44e-06
25False80.070.0122Step1.soma.v0.008211.45e-05
26False80.070.0122Step3.soma.v0.008023.6e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "24 False 8 0.07 0.0122 bAP.soma.v \n", + "25 False 8 0.07 0.0122 Step1.soma.v \n", + "26 False 8 0.07 0.0122 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "24 0.00414 5.44e-06 \n", + "25 0.00821 1.45e-05 \n", + "26 0.00802 3.6e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADzpUlEQVR4nOzdeXicZbn48e89e/a9SZqkTbpv6QJtKbIjCig7SkGU7SAH3JCjKHqUA5yDP4/icgAVVBRFLGUTUDbZChTZutGW7kvapE3S7Pvsz++Pd5KmbbY2k8wkuT/XNVfn3Z7nnvedSeeeZ3nFGINSSimllFJKqcGzxToApZRSSimllBotNMFSSimllFJKqSjRBEsppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppeKMiBSLiBERR6xjUWODiHwsIqfHOg6llBoNNMFSSik14onIAyLSGnn4RSTQbfnFWMcX74wxs40xK6JZpohkishyEakTkVoReVREUqNZh1JKxSNNsJRSKsq05Wn4GWNuNMYkG2OSgR8ByzuXjTHndu43kq7NSIq1F/8DZAAlwGQgF7gjlgEppdRw0ARLKaWiQETKROS7IrIeaBMRh4gsEZF/iUijiHzUvQuWiKwQkf8nIh+ISLOIPCsimb2Ufa2IbBaRFhHZJSL/ftj2C0VkXaScnSJyTmR9mog8JCKVIrJPRP5HROz9vI7JIvL6Ya0O6d221YvIcZHl8SJS0/m6ROSCSFezxsjrm3nY+fm2iKwXkaZIy4bn6M/00evl2hgRmdJtn4dF5H+6LZ8XOaeNkWs4d4B1nS4iFSLy/cj5KxORK7tt/6yIrI1cq3IRuaPbts6uof8mInuB1yPrnxCRqsh5e0tEZh8W969F5MVIa907IpInIr8UkQYR2SIiCwZ4js4ayGs8CiXAM8aYZmNME/A3YHY/xyil1IinCZZSSkXPFcBngXSsX+ufx/oVPxP4NvCUiOR02/8q4DogHwgC9/ZS7gHgPCAVuBb4RbckZzHwZ+DWSL2nAmWR4x6OlDsFWAB8Gri+n9cgwP8DxgMzgSIirQ7GmJ3Ad4G/iEgi8EfgT8aYFSIyDVgGfBPIAV4A/i4irm5lXwacg/XFey5wTY8BiJwcSWx6e5zcz2voSde1McYE+zwBVkLyB+DfgSzgQeA5EXEPsK48IBsoAK4Gfisi0yPb2rCue3oknptE5KLDjj8N69yfHVl+EZgKjAPWAI8etv9lwA8idfqAdyP7ZQNPAj8fYNw9EpHb+roefRz6K+A8EckQkQzg0shrUUqpUU0TLKWUip57jTHlxpgO4IvAC8aYF4wxYWPMK8Aq4DPd9n/EGLPRGNMG/BC4rKcWJmPM88aYncbyJvBP4JTI5n8D/mCMeSVSzz5jzBYRyY3U9U1jTJsx5gDwC+Dyvl6AMWZHpCyfMaYG68v5ad22/w7YAbyPlRj+Z2TTUuD5yLEB4B4gAfjEYednvzGmHvg7ML+XGFYaY9L7eKzs6zX0ovu16c8NwIPGmPeNMSFjzJ+wEpclR1HfDyPn8E2sRPsyAGPMCmPMhsi1Wo+VlJ522LF3RK5ZR+SYPxhjWowxPqxkd56IpHXb/2/GmNXGGC9WK5HXGPNnY0wIWI6VXB8zY8yP+7oefRy6BnABdZFHCPj1YGJRSqmRQBMspZSKnvJuzycCnz/sl/6TsZKSnvbfAzixWh0OISLnish7ke55jViJU+d+RcDOHmKZGCmvslv9D2K1gvRKRHJF5LFIl8Jm4C89xPQ7YA5wX+RLP1gtXns6dzDGhCOvr6DbcVXdnrcDyX3FEmXl/e/SZSLwrcOuXRHWaxyIhkjS3GlP57EicoKIvBHpWtkE3MiR57crVhGxi8iPxer62czB1snux1R3e97Rw/JwnufuHge2ASlYra87sd5PSik1qmmCpZRS0WO6PS/HaqHq/mt/kjHmx932Ker2fAIQAGq7FxjplvYUVotQbqTF4AWsrnyd9UzuIZZyrFaX7G71pxpj+hsD86PI6yg1xqRitcR11oWIJAO/BB4C7pCD48b2YyUmnftJ5PXt66e+I4jIKXJwBsCeHqf0X8oRzGHL7UBit+W8bs/LgbsPu3aJxphlA6wrQ0SSui1PwDo/AH8FngOKjDFpwAN0O789xPoF4ELgLCANKI6sP/yYIRMZT9br9ejj0PlYLYFtxphWrNf6mT72V0qpUUETLKWUGhp/Ac4XkbMjrRCeyAQIhd32+aKIzIqMZ7oLeDLSras7F+AGaoCgiJyLNZaq00PAtSLySRGxiUiBiMwwxlRidSX8mYikRrZNFpHDu6MdLgVoBZpEpABrbFd3/wesMsZcj9X17YHI+seBz0bicALfwkrw/tXfiTqcMebtbjMA9vR4+2jL7ME64AuRa3MOh3bT+x1wY6S1SUQkSazJKVKga2KJh/sp/04RcUWSwfOAJyLrU4B6Y4w3Mn7uC/2Uk4J1HuuwEsIfHcVrjApjzI/6uh59HPohcL2IJIhIAlbXy/XDE7VSSsWOJlhKKTUEjDHlWC0P38dKjsqxkpXuf3cfwZqIogrwAN/ooZyWyPrHgQasL+TPddv+AZGJL4Am4E0OtiRdhZWgbYoc+ySHdlHsyZ3AcZGyngee7twgIhdiTVJxU2TVfwDHiciVxpitWK1d92G1wp0PnG+M8fdTX6zcjBVjI3Al8EznBmPMKuDLwP1Y520Hh07IUQS800fZVZHj9mNNSHGjMWZLZNtXgLtEpAW4Heu69uXPWF0M92Fdx/f6e2Fx5DqsFrcKrPgnYU36oZRSo5oYc3ivCaWUUkNNRFYAfzHG/D7WsaiBi8yK+BEwNzKZx+HbT8e6roWHb1NKKTU2jPSbGCqllFLDJtIiN7PfHZVSSo1Z2kVQKaXGGBF5oJcJCx7o/2g1EonIhD4mqpgQ6/iUUmo00S6CSimllFJKKRUl2oKllFJKKaWUUlESV2OwsrOzTXFxcazDUEoppZRSSqk+rV69utYYk3P4+rhKsIqLi1m1alWsw1BKKaWUUkqpPonInp7WaxdBpZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKImrMVg9CQQCVFRU4PV6Yx2KigMej4fCwkKcTmesQ1Gj2OuvvsDmDav4/HW3Mi4tIdbhKKWUUmoEifsEq6KigpSUFIqLixGRWIejYsgYQ11dHRUVFZSUlMQ6HDWKTV95M2dygOef8fDZq78T63CUUkopNYLEfRdBr9dLVlaWJlcKESErK0tbM9WQaqirIc/UAJBX/nyMo1FKKaXUSBP3CRagyZXqou8FNdQObH0Xuxh2OSYzJ7CR2vr6WIeklFJKqRFkRCRYSik1XFpq9wPQPO0S3BJk50f/inFESimllBpJNMEaABHhW9/6VtfyPffcwx133BG7gLo5/fTT+7w580UXXcSSJUsOWXfHHXdQUFDA/PnzmTNnDs8999xQh6nUiBFstboHjl94PgAde/Tm50oppZQaOE2wBsDtdvP0009TW1sb1XKNMYTD4aiW2V1jYyOrV6+mqamJXbt2HbLtlltuYd26dTzxxBNcd911QxqHUiNKWy1BYyN74hwOSBYJNR/FOiKllFJKjSCaYA2Aw+Hghhtu4Be/+MUR22pqarj00ktZtGgRixYt4p133gGsVqJ77rmna785c+ZQVlZGWVkZ06dP56qrrmLOnDmUl5dz6623MmfOHEpLS1m+fDkAK1as4PTTT+dzn/scM2bM4Morr8QY02N8jzzySFdr1AcffNC1/umnn+b888/n8ssv57HHHuvx2JkzZ+JwOA5JHm+77TZmzZrF3Llz+fa3vw1AWVkZZ555JnPnzuWTn/wke/fuBeCaa67hpptuYsmSJUyaNIkVK1Zw3XXXMXPmTK655pquMm+66SYWLlzI7Nmz+a//+q8j4mhqamLixIldiV5bWxtFRUUEAoEe41ZqqEhHPY2Sis1u50DiVLLad8Y6JKWUUkqNIHE/TXt3d/79Yzbtb45qmbPGp/Jf58/ud7+vfvWrzJ07l+9859Apm2+++WZuueUWTj75ZPbu3cvZZ5/N5s2b+yxr+/bt/OlPf2LJkiU89dRTrFu3jo8++oja2loWLVrEqaeeCsDatWv5+OOPGT9+PCeddBLvvPMOJ5988hHltbe3s27dOt566y2uu+46Nm7cCMCyZcu4/fbbyc3N5dJLL+X73//+Ece+//772Gw2cnJyAKirq+Nvf/sbW7ZsQURobGwE4Otf/zpXX301V199NX/4wx/4xje+wTPPPANAQ0MD7777Ls899xwXXHAB77zzDr///e9ZtGgR69atY/78+dx9991kZmYSCoX45Cc/yfr165k7d25XHGlpacyfP58333yTM844g3/84x+cffbZer8rNexcvnpabGlkA/6MaUxtXUVTWwdpSXo/LKWUUkr1T1uwBig1NZWrrrqKe++995D1r776Kl/72teYP38+F1xwAc3NzbS2tvZZ1sSJE7vGRa1cuZIrrrgCu91Obm4up512Gh9++CEAixcvprCwEJvNxvz58ykrK+uxvCuuuAKAU089lebmZhobG6murmb79u2cfPLJTJs2DafT2ZV4AfziF79g/vz5fPvb32b58uVds/OlpaXh8Xj4t3/7N55++mkSExMBePfdd/nCF74AwJe+9CVWrlzZVdb555+PiFBaWkpubi6lpaXYbDZmz57dFfPjjz/Occcdx4IFC/j444/ZtGnTEa9j6dKlXS14jz32GEuXLu3zPCo1FBIDjbTa0wBw5c/CLUH27Try/aqUUkop1ZMR1YI1kJamofTNb36T4447jmuvvbZrXTgc5r333sPj8Ryyr8PhOGRcU/d7NyUlJQ2oPrfb3fXcbrcTDAZ73O/wqctFhMcff5yGhoauG/I2NzezbNky7r77bsAag9XZ/e/wuD/44ANee+01nnzySe6//35ef/31AcVps9kOidlmsxEMBtm9ezf33HMPH374IRkZGVxzzTU93svqggsu4Pvf/z719fWsXr2aM888s896lRoKyaFGyl3W5yZ94hz4EJr2bITS42McmVJKKaVGgkG3YIlIkYi8ISKbRORjEbk5sv4OEdknIusij88MPtzYyszM5LLLLuOhhx7qWvfpT3+a++67r2t53bp1ABQXF7NmzRoA1qxZw+7du3ss85RTTmH58uWEQiFqamp46623WLx48VHF1dnqs3LlStLS0khLS2PZsmW89NJLXeO+Vq9e3es4rO5aW1tpamriM5/5DL/4xS/46CNrgP8nPvGJruMfffRRTjnllAHH19zcTFJSEmlpaVRXV/Piiy/2uF9ycjKLFi3i5ptv5rzzzsNutw+4DqWixRNux29PBiB3ktWNNVDdd7dfpZRSSqlO0WjBCgLfMsasEZEUYLWIvBLZ9gtjzD19HDvifOtb3+L+++/vWr733nu7xmcFg0FOPfVUHnjgAS699FL+/Oc/M3v2bE444QSmTZvWY3kXX3wx7777LvPmzUNE+MlPfkJeXh5btmwZcEwej4cFCxYQCAT4wx/+QFlZGXv27DlkevaSkhLS0tJ4//33eyzjM5/5DL///e8RES688EK8Xi/GGH7+858DcN9993Httdfy05/+lJycHP74xz8OOL558+axYMECZsyYQVFRESeddFLXtttvv52FCxdywQUXAFY3wc9//vOsWLFiwOUrFU1u4yPksMZbORPTqJZs3A3bYxyVUkoppUYK6W1mumMuUORZ4H7gJKD1aBKshQsXmsPv6bR582ZmzpwZ1RjVyKbvCTWU/HdksTJ7KWd+7dcAbPzfs3D76ph6+9oYR6aUUkqpeCIiq40xCw9fH9VJLkSkGFgAdDaTfE1E1ovIH0QkI5p1KaVU1IWCuAhinAdnDGxPm0xRqJxQKBTDwJRSSik1UkQtwRKRZOAp4JvGmGbgN8BkYD5QCfysl+NuEJFVIrKqpqYmWuEopdTRC3ZY/zoOJli27Gl4JEBl+Y4YBaWUUkqpkSQqCZaIOLGSq0eNMU8DGGOqjTEhY0wY+B3Q48wNxpjfGmMWGmMWdt6LSSmlYiHsjyRY3VqwUgpmAFBT9nEsQlJKKaXUCBONWQQFeAjYbIz5ebf1+d12uxjYePixSikVT/wdbQDYXIld63InlQLQvn9rTGJSSiml1MgSjVkETwK+BGwQkXWRdd8HrhCR+YAByoB/j0JdSik1ZHwdrXgAm+tgC1b6uCLa8ECddhFUSimlVP8GnWAZY1YC0sOmFwZbtlJKDSe/t7MFq9vNwEWochSS1NrzveyUUkoppbqL6iyCo9kzzzyDiPR5f6qysjLmzJkTtTqvueYannzyyV63f/Ob36SgoIBwONy17uGHHyYnJ4f58+cza9Ysfve730UtHqVGu84Ey+7yHLK+OXEiOb7yWISklFJKqRFGE6wBWrZsGSeffDLLli3rcXswGBx0HUczDXQ4HOZvf/sbRUVFvPnmm4dsW7p0KevWrWPFihV8//vfp7q6etCxKTUWBLztANjdSYesD2ZMIt/U0NbWGouwlFJKKTWCaII1AK2traxcuZKHHnqIxx57rGv9ihUrOOWUU7jggguYNWsWYCVaV155JTNnzuRzn/sc7e3WF7bXXnuNBQsWUFpaynXXXYfP5wOguLiY7373uxx33HE88cQTR9T96quvsnDhQqZNm8Y//vGPQ+qePXs2N910U69J37hx45g8eTJ79uzpWnfvvfcya9Ys5s6dy+WXXw5AfX09F110EXPnzmXJkiWsX78egDvuuIOrr76aU045hYkTJ/L000/zne98h9LSUs455xwCgQAAd911F4sWLWLOnDnccMMNHH7z6nA4THFxMY2NjV3rpk6dqomfijvBSAuW03NoguUcNw2bGPbv2hSLsJRSSik1gkRjkovh8+JtULUhumXmlcK5P+5zl2effZZzzjmHadOmkZWVxerVqzn++OMBWLNmDRs3bqSkpISysjK2bt3KQw89xEknncR1113Hr3/9a772ta9xzTXX8NprrzFt2jSuuuoqfvOb3/DNb34TgKysLNasWdNj3WVlZXzwwQfs3LmTM844gx07duDxeFi2bBlXXHEFF154Id///vcJBAI4nc5Djt21axe7du1iypQpXet+/OMfs3v3btxud1fC81//9V8sWLCAZ555htdff52rrrqKdevWAbBz507eeOMNNm3axIknnshTTz3FT37yEy6++GKef/55LrroIr72ta9x++23A/ClL32Jf/zjH5x//vldddpsNi688EL+9re/ce211/L+++8zceJEcnNzB3yZlBoOQV9ngpV4yPq0opnwITSWb4LSHu84oZRSSikFaAvWgCxbtqyrtefyyy8/pMVo8eLFlJSUdC0XFRVx0kknAfDFL36RlStXsnXrVkpKSpg2bRoAV199NW+99VbXMUuXLu217ssuuwybzcbUqVOZNGkSW7Zswe/388ILL3DRRReRmprKCSecwMsvv9x1zPLly5k/fz5XXHEFDz74IJmZmV3b5s6dy5VXXslf/vIXHA4rv165ciVf+tKXADjzzDOpq6ujubkZgHPPPRen00lpaSmhUIhzzjkHgNLSUsrKygB44403OOGEEygtLeX111/n44+PvF/Q0qVLWb58OQCPPfZYn69ZqVgJ+a0WZ5cn+ZD1eSXW2Er/ge3DHpNSSimlRpaR1YLVT0vTUKivr+f1119nw4YNiAihUAgR4ac//SkASUmHdiWybgvW+3JPDi+jv/JefvllGhsbKS2N3J+nvZ2EhATOO+88wEpm7r///h7Le/7553nrrbf4+9//zt13382GDX23CLrdbsBqhXI6nV3x2Gw2gsEgXq+Xr3zlK6xatYqioiLuuOMOvF7vEeWceOKJ7Nixg5qaGp555hl+8IMf9FmvUrEQ8kUSrIRDP5MJKRnUko6jYWcswlJKKaXUCKItWP148skn+dKXvsSePXsoKyujvLyckpIS3n777R7337t3L++++y4Af/3rXzn55JOZPn06ZWVl7Nhh3UfnkUce4bTTThtQ/U888QThcJidO3eya9cupk+fzrJly/j9739PWVkZZWVl7N69m1deeaVrvFdvwuEw5eXlnHHGGfzv//4vTU1NtLa2csopp/Doo48C1tiu7OxsUlNTBxRfZzKVnZ1Na2trr7MeiggXX3wx//Ef/8HMmTPJysoaUPlKDScTsD5DnoQjf/Q44JpAalvZMEeklFJKqZFGE6x+LFu2jIsvvviQdZdeemmvE0tMnz6dX/3qV8ycOZOGhgZuuukmPB4Pf/zjH/n85z9PaWkpNpuNG2+8cUD1T5gwgcWLF3PuuefywAMPEA6Heemll/jsZz/btU9SUhInn3wyf//733ss4/rrr2fVqlWEQiG++MUvUlpayoIFC/jGN75Beno6d9xxB6tXr2bu3Lncdttt/OlPfxrg2YH09HS+/OUvM2fOHM4++2wWLVrUte2BBx7ggQce6FpeunQpf/nLX7R7oIpbxt8B9JxgtaVMJDdYccQkLkoppZRS3Uk8fVlYuHChWbVq1SHrNm/ezMyZM2MUkYpH+p5QQ2XtQ19n5t5l8INqPE77Idvef/ROTtj+c+q/upXMnLwYRaiUUkqpeCEiq40xCw9fry1YSikVIYEOOnDjdhz5pzEhz5qkpnr3kZO4KKWUUkp10gRLKaUiJOjFh6vHyWkyJ1j3umvet3m4w1JKKaXUCDIiEqx46saoYkvfC2ooSbADn7h73JY3cQZBYyNUo1O1K6WUUqp3cZ9geTwe6urq9Iu1whhDXV0dHo8n1qGoUcoW8uLvJcFyuNxU2vJwN+0a5qiUUkopNZLE/X2wCgsLqaiooKamJtahqDjg8XgoLCyMdRhqlLL3kWAB1HsmkNmxdxgjUkoppdRIE/cJltPppKSkJNZhKKXGAEeogzZb7wlWR2oJ06tWEw6FsNntve6nlFJKqbEr7rsIKqXUcHGEfQRtvXdBleypeCTAgX07hzEqpZRSSo0kQ55gicg5IrJVRHaIyG1DXZ9SSh0rZ9hHyN57gpU0fjoAtWWbhiskpZRSSo0wQ5pgiYgd+BVwLjALuEJEZg1lnUopdaycxttngjWuuBSA9v06VbtSSimlejbULViLgR3GmF3GGD/wGHDhENeplFLHxGX8hPtIsHLyi2gzHkzdjmGMSimllFIjyVAnWAVAebflisi6LiJyg4isEpFVOlOgUiqW3MZH2JHQ63ax2djvKCCxpWz4glJKKaXUiBLzSS6MMb81xiw0xizMycmJdThKqbHKGNz4MM7eEyyAxsSJZPt0qnallFJK9WyoE6x9QFG35cLIOqWUii8hP3YM9NGCBRBIm0RuuAa/t32YAlNKKaXUSDLUCdaHwFQRKRERF3A58NwQ16mUUkct7IskTP20YDnGTcMmhqrdOpOgUkoppY40pAmWMSYIfA14GdgMPG6M+Xgo61RKqWPh87YCYHP1PskFQGrhTADq92qCpZRSSqkjOYa6AmPMC8ALQ12PUkoNhre9lQRAXEl97jd+8hwAOqq2DENUSimllBppYj7JhVJKxQN/RwvQf4KVmpZJDRnY6ncOR1hKKaWUGmE0wVJKKSDQYXURtLv7TrAAat0TSG7dM9QhKaWUUmoE0gRLKaUAfyTBcnj6T7A6UksoDO4lFAoPdVhKKaWUGmE0wVJKKQ62YDkTUvrfOXc2adJGxd4dQxyVUkoppUYaTbCUUgoI+qwEy5WQ3O++qRPmAVCzY+2QxqSUUkqpkUcTLKWUAoKRGwd7EvtPsPKnHQ+Ab9/6IY1JKaWUUiOPJlhKKQUYXxsA7sTUfvdNSs+mWrJw1ulU7UoppZQ6lCZYSikFhP1WgpWY1H8LFkC1ZzLZbToGSymllFKH0gRLKaUA428jYOwkJCQMaP+29BkUhsoJ+H1DHJlSSimlRhJNsJRSCiDQTgduXPaB/Vl0jZ+NS0KUb/9oiANTSiml1EiiCZZSSgG2QDsd4kZEBrR/zuTjAKjZsWYow1JKKaXUCKMJllJKAbZgOz48A96/YOo8AsZOoHLjEEallFJKqZFGEyyllAJsQS8+28ATLLvTzX5HIYkNOpOgUkoppQ7SBEsppQBHqB2/bWATXHSqT53JRO82wqHwEEWllFJKqZFGEyyllAI8wRa89pSjOiaUv4AsaWJ/uU7XrpRSSinLoBIsEfmpiGwRkfUi8jcRSY+sLxaRDhFZF3k8EJVolVJqiHjCrfgdR5dgpU05AYDqLe8ORUhKKaWUGoEG24L1CjDHGDMX2AZ8r9u2ncaY+ZHHjYOsRymlhlRSuI2QK/Wojimaudia6GLvqiGKSimllFIjzaASLGPMP40xwcjie0Dh4ENSSqlhFg6TZNoIu48uwfIkJLHHUUxS3YYhCkwppZRSI000x2BdB7zYbblERNaKyJsickpvB4nIDSKySkRW1dTURDEcpZQamKC3GbsY8KQf9bH1abN1ogullFJKdek3wRKRV0VkYw+PC7vt859AEHg0sqoSmGCMWQD8B/BXEenxp2FjzG+NMQuNMQtzcnIG/4qUUuootTbVA2BLTDvqY22Fx5Mqbezdoa1YSimllAJHfzsYY87qa7uIXAOcB3zSGGMix/gAX+T5ahHZCUwDdKCCUirutDXVkQ44EtOP+tjcGUtgPVRufo/i6fOiHZpSSimlRpjBziJ4DvAd4AJjTHu39TkiYo88nwRMBXYNpi6llBoqHc1WC5YrOeOojy2YehxenIQqPox2WEoppZQagfptwerH/YAbeEVEAN6LzBh4KnCXiASAMHCjMaZ+kHUppdSQ8LZaf57cyZlHfazN6WK3eybjGtZGOyyllFJKjUCDSrCMMVN6Wf8U8NRgylZKqeESbK0DICEt+5iObx63kIV7/0hrcwPJqUffCqaUUkqp0SOaswgqpdSIFG6pBiA5K/+Yjk+ceip2Mexa+0Y0w1JKKaXUCKQJllJqzDMtB2g1HrLSj631acpxZxI0Nlq2vhnlyJRSSik10miCpZQa8+wdNdRLOnabHNPxCclplLmmkHZAJ0pVSimlxjpNsJRSY57LW0eL4+gnuOiuMWcRUwNbaW5tiVJUSimllBqJNMFSSo15yYE6OlyDS7CSp52KWwJsX6PdBJVSSqmxTBMspdSYlxpuwO/JGVQZxQs+SdgILVt0ogullFJqLNMESyk1pgW9raTTSjg5d1DleNJy2O2aSvaBf0UpMqWUUkqNRJpgKaXGtMo92wFwZJUMuqz6vJOYEdhCY0PdoMtSSiml1MikCZZSakyrqbASrIzxkwddVsrsT+OQMLs+eHHQZSmllFJqZNIESyk1prVW7wYgf+L0QZc1acGZtBs3gW2vDLospZRSSo1MmmAppca0YH0ZARykZhcOuiyX28P2pAUU1L2HMSYK0SmllFJqpNEESyk1piU27+aAIx9s0flzGCo+nUKq2LVtQ1TKU0oppdTIogmWUmrMMsaQ6y+jIWnw4686TTzhIgAqP3wmamUqpZRSauTQBEspNWbVNDYxwVQRzJwWtTKzJs5kj30C6Xt0HJZSSik1FmmCpZQas/bv3IhdDJ7xs6JabmX+Wcz0b6Cxtiqq5SqllFIq/mmCpZQas1r2WuOksibNi2q5mcdfgl0MO1Y+EdVylVJKKRX/BpVgicgdIrJPRNZFHp/ptu17IrJDRLaKyNmDD1UppaIrfGALQWMje0J0W7CmzjuJKrKxb3shquUqpZRSKv5FowXrF8aY+ZHHCwAiMgu4HJgNnAP8WkTsUahLKaWiJrFpO1WO8YjTE9VyxWajfNwZzGz7kKamxqiWrZRSSqn4NlRdBC8EHjPG+Iwxu4EdwOIhqksppY7JOG8Z9YklQ1J2+qLL8EiALW88OiTlK6WUUio+RSPB+pqIrBeRP4hIRmRdAVDebZ+KyLojiMgNIrJKRFbV1NREIRyllOpfW1sbBeFKfBnRm0GwuynHn8U+ySVp0/IhKV8ppZRS8anfBEtEXhWRjT08LgR+A0wG5gOVwM+ONgBjzG+NMQuNMQtzcnKO9nCllDom+3ZuxCFhXHkzh6R8sdnYN/ES5vg/omzHx0NSh1JKKaXiT78JljHmLGPMnB4ezxpjqo0xIWNMGPgdB7sB7gOKuhVTGFmnlFJxoXHvegAyiucOWR1TPn0DQWOj6uVfDlkdSimllIovg51FML/b4sXAxsjz54DLRcQtIiXAVOCDwdSllFLRFKrcTMgIeZNKh6yOzPGTWJ1+NvMP/I3qfWVDVo9SSiml4sdgx2D9REQ2iMh64AzgFgBjzMfA48Am4CXgq8aY0CDrUkqpqHE3bme/LR+XJ3FI6ym68HYchNj55O1DWo9SSiml4sOgEixjzJeMMaXGmLnGmAuMMZXdtt1tjJlsjJlujHlx8KEqpVT0ZHfsojZhaGYQ7G78pFmsyfs8n2h4lnWv6IyCSiml1GjniHUAKrba/UEamltpbayjo7Ueb0sDvtYGAm2NhDuaMN5mTMALIR8S8iORf21hP8EwBIxgsGHETljsBMWJ15ZMwJmMcadgPBmEknJxZhSQmZNPYWYyhRkJ5CS7sdkk1i9fjVFBv5fxof1UpJ81LPXNvfpnbPvZWmat/DqrKjcw7+Jv40zJHpa6lVJKKTW8NMEaZQLBEI31NTTVVtHWUIW3sRp/ywFMaw22jloc3noS/A0kBRtJDTeRRisFEhhQ2X6cBMRJQFyExIEAdsLYCCMmhM2EcJoATnouz2ccVJsMtplc/kkBtQkT8adPJqVwFhMmTmbm+DSKs5Kwa+Klhljlnq0USRjHuKGZov1wnsQUcr/6Aht+dzULd/2Gjb/fzJxbnh2WupVSSik1vDTBGiFCoTD1dVU0VJXTWluOr2Efoab92FqrcXccIMlfQ3qojkzTSI6E6GnC+1YSabal0ebIoCOpgBZPKfsSMrAnpGNPTMOZlIE7KR1PaiaJqZkkpWRg86SCMwHsLlwiuAYSbNAH3mbwNoG3EVoq8dWX01Zbjqu+nJmNu1nUuhKP/2U4AByAhtXJfByeyAqZRGP6TOzj51EwaQ6zCzOZmpuM0z5U98RWY1F9+RaKgNTxw5NgAaRl5nDcd55nw/9+kvSW7cNWr1JKKaWGlyZYcSAcClFfs4+6fTtpPVCGv24P0lSBs72aRF8NacE6skw9ORI8InFqJJlGexZtzmz2pU6mPDEHSR6HM3UcnrRxJGbmk5aVT0pmLslOD8nD8YIcbkjOsR4R7sijizHQWg212whUb8aUrWVW5XqWNL+Eo/nv0Axtm91sNhNZTjGNqTNwji8lZ9I8ZhXnMyUnGYcmXeoYtVftBGDcxBnDWq+I0JQ+hxmV6wgH/NicA/rJQg03Y/B722lrrsPb1kJHewu+9hZ8Ha0EOloJelsJ+9oh0I4E2pFgBxL0YkJBTDgAoQASDmIzQWwmhM0EsZsgYoKIMYQBg2AQQEAExNb13IiNkLgI2ZyEbS5wuDF2F+Jwg8ONzeFGHG5sTjc2VyI2VxI2dxJ2TxIOTzJOTwruhGQ8SSl4klJI9Hi0Z4BSSg0jTbCGgd/vp6ZiO437d9Bes4dQ/V5sLftI7NhPur+anHAt2RKg+4iMVhKos2XT4symMmk+FUm5SGo+zvTxJGUXkj5uAhm5RaS7E0mP1QsbDBFIyYOUPJwlp5K5JLI+FICarYT3ryNYtoaSfWspbViJu/WfsA3CW4U9Zhyvy0QakqZA7mwyJsyisGQGRXk5pHicMX1Z8SQUDOLtaMPb0Yavow2/t52Ar4Ogvx3j7yDs7yAcaMcEvJFHByYUwIQChEPByPMQJuSHcAgTDkIoCOFAV5dQmwlaz8PWF0kIW8kzAAaMwUBknSGygAHEWF8xEbH+BUAwEhnXhw0jNowI4e7LWF9Gw2KDQ/azQee/CEbsGBFrH7HGCWKzY8RGbt37tBs3GTkFw3tRAEfudJxVIcp3b6Jo2vxhr38s8fl9NNdV09JQhbfxAP6mAwRaawm3N2A6mhBfM3Z/M85AC55QC4nhVhJNOymmDZcEB9ZiD4SM4MNFUByEsBMSOyEchI5Ytkfe70TSK4N0fja6PbeZEI5Id2ur23UQJwHcvXS/7vc8GActuPGKB1/kEbC5CdgSCNgTCDmsh3EkYpxJ4EzA5vRgd3mwuxJwuBJwuBOwuzyR9QnWw+nB6Y5sd3lwupw4HU5cThc2uwNssf0RzITDmHCYcDhIOBQiHA5hwiFCIevvWTgUJBwOE44sm1CIkAlHEuVQ1zFEjguHQoRNqFu5ITBhjDGEQ9bzcDiMMWFMOBT513pgwoSNtY3Iuq7nJowxIYwxB5fDYcREUnET7v1FSs+Js5W8Hy3p8WnXjwCR1V1ld1tn7XPov51FmMPWGZFuxdsOrS+yzSDdXtqh9R0ap+3QNXJ4bNJtXU/lyWHxH1xzMIaD+4scem6l2/k/IoZupOv/RSJlmyP2ods+PWztqsP0trFLH++XrsJ7L6Tb/8Y9bz9kdb/BDOh1DeBF4fVkU3L8pylIT+i/zjigCVaUBHztVJVtpaFiC+3VO5D6XSS07iXTV0FuuIYCCdH5VS5shFrJoMExjurkGVQkjUcyJuDJmkhq/iSyCiaTmp49PK1N8cbuhLw52PLmkHbcF6114TA0lhGu2kjD7o9wVXzE8fVbyGj/ENtuA7uBN6HGpLJL8mj0FBBILsSZmos7PQ9Peh5Jmfmk5RSQmZmNwznMSZgxEPJD0EpkfL4OAh3t+H3t+L1tBH0dBLxtBP0dhHwdhPzthPwdhDuTnoD16zgBLxLyYgv6sIW82MM+7CEfDuPDGfbhMj6cJoALH27jxyUhkoCkQYbvN3ZC2AmK9W+Yg8udz0OR52Hp/ELV/T+iXp53+4+q8yumGBATRjDYTBih83ko8oU0jBhjjfsjjM1Y62yd+x2+PbLOZkUXeW79Id+UsoRZMfgCmDd5HnwE+7au0gTrGLS3tdBQXUFL7V466vcTbNxPuOUA0lGHw1uPx99AcqiRtHATadJGDvTYZdprnLRKEu22ZLz2ZHyudNqcRQScqYRdqRhPKrjTsHuScXqScHqScSamkJCYjCfRaiFyJSbj8iTjcHlI7OWLblQZQyjox+dtx+f14vO2E/C24u9oJ+RrJehtI+RrJexrI+RtI+xvA38bBNoh0IYt0IEt2I492IEj1EFyuAWXvwaX14vbePHgJQF/1MINGyGEjVDkk3fwb4gt8u/BL+jdf2SxfngB6x9zxBc+w8EE1W4Ofr4F0/U5txPGJtZfGO3roNTItyI0j7U5i0ZMgiVmAFnjcFm4cKFZtWpVrMPoU3NjDfu3raOpfCPh6s0kNe9knG8P48K12OTguWw2iVQ7xtOcUEggrRh71iQSxk0iY/xksgtKcLtHxhskrvnbCB3YyoE9m2mp3E6odjeulr2keivIDNVi7+VXnA5cdJCA15aI15ZAwJZIyO5CbA7E5sDY7Fbrh81htY4Y65dEMdYvlGJCkcfByT3sJoAj7McR9uEwfhzGj9P4cZkA7kF+YfEZBz6c+HHhEzd+cREQN0Gbi6DNTcjmJmT3ELa7MXYPxmE9cCZY3YhcCYgrAbsrEZvTg82VgM0ZWXZ5sLsScbgTI79Su3E6nDhdLlwuN06HY/R1LTIGwiGw2Xv99XcohQJ+fP9TyPrsz7Dk6w8Pe/3xyoTDNNdVUhvpKu2tKyfUXIW9rZoE7wFSg7VkhOpJk7Yjjg0aG42SSostjQ5nBj5XBkFPBiYhC5JycKTk4ErNxpOeS3JGLmkZOSQkDvanh1EqHCYc8NLR0Y438vD52vB52wn6vIQDHZiAl7DfSzjoxQR8mMiPP+FQiHAoYLXsRFqBrG6RYSRs/d20EULCwa6/n51JFubg7+5dP7gA1o8ykWdycNl63q11uqsV246xdS5b/yK2SOt1ZNlm7YfYkc7nNjtis3ftK2JH7Af3sbYdfC42OyI2bDaJbBNstsj2yH42mw1b5za7DZtYx9lsnft2369zuw273da1TaTz71RPf6t6+f7W5/e6/o85pHXFmMimSA8E05nkhg8e1tlTgW779nC8ifRqOLjJHPKvmMg+XeUcLMmEwz28tsjx4UNjOhhjJOyuVuKDdXUL/pC4u7aagwV0j0nMwX2MOfiONebQ63Pw/dvNgP6/6d461tc+fZcl/fy/Lf3Ec0jrY0/bD2/h7HXpyAN6q/ZgXb20yjoTySqYHHc9lURktTFm4eHrtQWrD7X7yyhb8wrB8tWkNG5mnG8POTSQGtneYVzscxSxN3keO9Mn4cieTGrBVHInziIjK5fUGHePGPVcSdgLjyO/8DjyD98WDtPRVENDTQWtdfvpaKgi0FxNoK2JoLcFW6AVe6AdZ6gNV6gd8XdYSVM4hJ0gNmO1zTgIWb+Hiq2r/SMsVrtIKNJiE8aOX1wEJYWQzUXI7iZkd2NsLivZsVvjJnC4EacHm8Nj/etKwBbpauNwJeLyWImOy5OEOyEBT0ISHk8SbreTFIftkK4IahBEwB67P312p4sdCXPJr/8QY8yYua7hYJDayl0cKN9J24FdhOr34mipwNNRSbq/ipxQDWniJ63bMX5jp86WSYsji8bEEg4knEA4ORdbaj7ujPEkZReRNq6QjMxcsh12dOL7KLDZsLkTSXInkpQe62CUUmpk0gSrDzveXMaSrT/GZ5yUOYrZlXYCO7Kmk1Awi3GT5pM3YSpT7PZYh6l6YrORkJFLQkYucHyso1HqEL7iM5i45Sfs2b6eidPmxTqcqAkFAxyo2EH93s20V23H1O3C07KbDG8FuaEqxkmIcd32ryONOkcuNQmT2Zd8KqRNwJU1keTcYrLyS8jMziPfbjvyBxSllFIqjmmC1YcpZ1zJjlmnMnHmQqa73P0foJRSAzDh5KWw5SfsW/noiEywOtrbqNi2joaytYSqNpHUtJ0M3z5yQ1XkS6grIWo3birt+VR7JlGeeia2rBKScyeRnj+JnMLJZCUkkxXTV6KUUkpFnyZYfcjOm0B23oRYh6GUGmVyC6ewyTOfSXufIhD4H5xxOl17KBhk3+6Pqdm5Dv++jbjqt5DTvpOC8H6mRsac+o2DffZCahImU576SezZk0nKn0b2hJmMy5/IZL2dglJKqTFGEyyllIqBwMIbyFv5FVY9/1sWXvS1mMZiwmFqq/ZSuW01bRUbsNdsJqN1B4XBvUwQPxOwZoSrtOVSkziZ/Rnn4C6YQ/akBYyfNJsSp4uSmL4CpZRSKn7oLIJKKRUD4VCYHT9aTHaoGvtX3iFt3PC0lrc01rFv22qa93yEqd5ESvN2xvt3k05r1z61pFPpnkR7+jRsebPJKJ5P4bT5eJJS+yhZKaWUGlt0FkGllIojNruN8IW/xvPUeex96At4bn4ed2Ja/wcOkN/bTsWO9TTsXktg/8ckNG4lt2MXedQyI7JPq0mgwlnM1swzYdxMkovmUTDtOLJz8nVGPqWUUuoYaYKllFIxMmPuYt7deSeL132PvT8/HceF91FUevJRldHR3sa+HR/RuGcDwapNeBq3k92xm/xQJZO6xknZqbAXUZEyn93ZM0goLGXc5AXkT5jKDL2dhFJKKRVVg+oiKCLLgemRxXSg0RgzX0SKgc3A1si294wxN/ZXnnYRVEqNRe+//BhT//VtMqWFHc5pNOYuwTluGvakLOwOJ8FQiGB7A6G2BgLNB3C1VpDUsY8sfxU51HeVEzQ29tnGU5tYgi99Kq78WWRNWkDB5FJcbp0JVSmllIqm3roIRm0Mloj8DGgyxtwVSbD+YYyZczRlaIKllBqr6urr+Pi5XzKu/CVKgrtwS7DH/UJGOCDZ1DnzaU0Yj0mfiDtvBpnFpeRPnoPbnTDMkSullFJj05COwRIRAS4DzoxGeUopNdZkZWZx6jX/Dfw37V4vO8q24W9vIuj343TY8KRkkpCWTXbWOPKdTr35rlJKKRWnojUG6xSg2hizvdu6EhFZCzQDPzDGvN3TgSJyA3ADwIQJes8ppZRK9HiYMmNurMNQSiml1DHoN8ESkVeBvB42/acx5tnI8yuAZd22VQITjDF1InI88IyIzDbGNB9eiDHmt8BvweoieLQvQCmllFJKKaXiRb8JljHmrL62i4gDuAQ4vtsxPsAXeb5aRHYC0wAdYKWUUkoppZQataIxP+9ZwBZjTEXnChHJERF75PkkYCqwKwp1KaWUUkoppVTcisYYrMs5tHsgwKnAXSISAMLAjcaY+iOOPMzq1atrRWRPFGKKpmygNtZBqGGj13vs0Gs9dui1Hlv0eo8deq3Hlni83hN7Whm1adpHKxFZ1dP0i2p00us9dui1Hjv0Wo8ter3HDr3WY8tIut7R6CKolFJKKaWUUgpNsJRSSimllFIqajTB6t9vYx2AGlZ6vccOvdZjh17rsUWv99ih13psGTHXW8dgKaWUUkoppVSUaAuWUkoppZRSSkWJJlhKKaWUUkopFSWaYPVBRM4Rka0iskNEbot1PCp6RKRIRN4QkU0i8rGI3BxZnykir4jI9si/GbGOVUWHiNhFZK2I/COyXCIi70c+38tFxBXrGFV0iEi6iDwpIltEZLOInKif7dFJRG6J/A3fKCLLRMSjn+3RQ0T+ICIHRGRjt3U9fpbFcm/kuq8XkeNiF7k6Wr1c659G/o6vF5G/iUh6t23fi1zrrSJydkyC7oMmWL0QETvwK+BcYBZwhYjMim1UKoqCwLeMMbOAJcBXI9f3NuA1Y8xU4LXIshodbgY2d1v+X+AXxpgpQAPwbzGJSg2F/wNeMsbMAOZhXXf9bI8yIlIAfANYaIyZA9iBy9HP9mjyMHDOYet6+yyfC0yNPG4AfjNMMaroeJgjr/UrwBxjzFxgG/A9gMj3tcuB2ZFjfh353h43NMHq3WJghzFmlzHGDzwGXBjjmFSUGGMqjTFrIs9bsL6AFWBd4z9FdvsTcFFMAlRRJSKFwGeB30eWBTgTeDKyi17rUUJE0oBTgYcAjDF+Y0wj+tkerRxAgog4gESgEv1sjxrGmLeA+sNW9/ZZvhD4s7G8B6SLSP6wBKoGradrbYz5pzEmGFl8DyiMPL8QeMwY4zPG7AZ2YH1vjxuaYPWuACjvtlwRWadGGREpBhYA7wO5xpjKyKYqIDdWcamo+iXwHSAcWc4CGrv94dbP9+hRAtQAf4x0Cf29iCShn+1RxxizD7gH2IuVWDUBq9HP9mjX22dZv7eNbtcBL0aex/211gRLjWkikgw8BXzTGNPcfZux7mGg9zEY4UTkPOCAMWZ1rGNRw8IBHAf8xhizAGjjsO6A+tkeHSJjby7ESqrHA0kc2cVIjWL6WR4bROQ/sYZ2PBrrWAZKE6ze7QOKui0XRtapUUJEnFjJ1aPGmKcjq6s7uxRE/j0Qq/hU1JwEXCAiZVhdfc/EGqOTHulWBPr5Hk0qgApjzPuR5SexEi79bI8+ZwG7jTE1xpgA8DTW510/26Nbb59l/d42ConINcB5wJXm4M174/5aa4LVuw+BqZHZiFxYg+mei3FMKkoiY3AeAjYbY37ebdNzwNWR51cDzw53bCq6jDHfM8YUGmOKsT7HrxtjrgTeAD4X2U2v9ShhjKkCykVkemTVJ4FN6Gd7NNoLLBGRxMjf9M5rrZ/t0a23z/JzwFWR2QSXAE3duhKqEUhEzsHq3n+BMaa926bngMtFxC0iJVgTm3wQixh7IweTQXU4EfkM1tgNO/AHY8zdsY1IRYuInAy8DWzg4Lic72ONw3ocmADsAS4zxhw+wFaNUCJyOvBtY8x5IjIJq0UrE1gLfNEY44theCpKRGQ+1oQmLmAXcC3WD4r62R5lROROYClW96G1wPVYYzH0sz0KiMgy4HQgG6gG/gt4hh4+y5Ek+36sbqLtwLXGmFUxCFsdg16u9fcAN1AX2e09Y8yNkf3/E2tcVhBrmMeLh5cZS5pgKaWUUkoppVSUaBdBpZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZSKMyJSLCJGRByxjkWNDSLysYicHus4lFJqNNAESyml1IgnIg+ISGvk4ReRQLflF2MdX7wzxsw2xqyIZpkikikiy0WkTkRqReRREUmNZh1KKRWPNMFSSqko05an4WeMudEYk2yMSQZ+BCzvXDbGnNu530i6NiMp1l78D5ABlACTgVzgjlgGpJRSw0ETLKWUigIRKROR74rIeqBNRBwiskRE/iUijSLyUfcuWCKyQkT+n4h8ICLNIvKsiGT2Uva1IrJZRFpEZJeI/Pth2y8UkXWRcnaKyDmR9Wki8pCIVIrIPhH5HxGx9/M6JovI64e1OqR321YvIsdFlseLSE3n6xKRCyJdzRojr2/mYefn2yKyXkSaIi0bnqM/00evl2tjRGRKt30eFpH/6bZ8XuScNkau4dwB1nW6iFSIyPcj569MRK7stv2zIrI2cq3KReSObts6u4b+m4jsBV6PrH9CRKoi5+0tEZl9WNy/FpEXI61174hInoj8UkQaRGSLiCwY4Dk6ayCv8SiUAM8YY5qNMU3A34DZ/RyjlFIjniZYSikVPVcAnwXSsX6tfx7rV/xM4NvAUyKS023/q4DrgHwgCNzbS7kHgPOAVOBa4BfdkpzFwJ+BWyP1ngqURY57OFLuFGAB8Gng+n5egwD/DxgPzASKiLQ6GGN2At8F/iIiicAfgT8ZY1aIyDRgGfBNIAd4Afi7iLi6lX0ZcA7WF++5wDU9BiByciSx6e1xcj+voSdd18YYE+zzBFgJyR+AfweygAeB50TEPcC68oBsoAC4GvitiEyPbGvDuu7pkXhuEpGLDjv+NKxzf3Zk+UVgKjAOWAM8etj+lwE/iNTpA96N7JcNPAn8fIBx90hEbuvrevRx6K+A80QkQ0QygEsjr0UppUY1TbCUUip67jXGlBtjOoAvAi8YY14wxoSNMa8Aq4DPdNv/EWPMRmNMG/BD4LKeWpiMMc8bY3Yay5vAP4FTIpv/DfiDMeaVSD37jDFbRCQ3Utc3jTFtxpgDwC+Ay/t6AcaYHZGyfMaYGqwv56d12/47YAfwPlZi+J+RTUuB5yPHBoB7gATgE4edn/3GmHrg78D8XmJYaYxJ7+Oxsq/X0Ivu16Y/NwAPGmPeN8aEjDF/wkpclhxFfT+MnMM3sRLtywCMMSuMMRsi12o9VlJ62mHH3hG5Zh2RY/5gjGkxxviwkt15IpLWbf+/GWNWG2O8WK1EXmPMn40xIWA5VnJ9zIwxP+7revRx6BrABdRFHiHg14OJRSmlRgJNsJRSKnrKuz2fCHz+sF/6T8ZKSnrafw/gxGp1OISInCsi70W65zViJU6d+xUBO3uIZWKkvMpu9T+I1QrSKxHJFZHHIl0Km4G/9BDT74A5wH2RL/1gtXjt6dzBGBOOvL6CbsdVdXveDiT3FUuUlfe/S5eJwLcOu3ZFWK9xIBoiSXOnPZ3HisgJIvJGpGtlE3AjR57frlhFxC4iPxar62czB1snux9T3e15Rw/Lw3meu3sc2AakYLW+7sR6Pyml1KimCZZSSkWP6fa8HKuFqvuv/UnGmB9326eo2/MJQACo7V5gpFvaU1gtQrmRFoMXsLryddYzuYdYyrFaXbK71Z9qjOlvDMyPIq+j1BiTitUS11kXIpIM/BJ4CLhDDo4b24+VmHTuJ5HXt6+f+o4gIqfIwRkAe3qc0n8pRzCHLbcDid2W87o9LwfuPuzaJRpjlg2wrgwRSeq2PAHr/AD8FXgOKDLGpAEP0O389hDrF4ALgbOANKA4sv7wY4ZMZDxZr9ejj0PnY7UEthljWrFe62f62F8ppUYFTbCUUmpo/AU4X0TOjrRCeCITIBR22+eLIjIrMp7pLuDJSLeu7lyAG6gBgiJyLtZYqk4PAdeKyCdFxCYiBSIywxhTidWV8GcikhrZNllEDu+OdrgUoBVoEpECrLFd3f0fsMoYcz1W17cHIusfBz4bicMJfAsrwftXfyfqcMaYt7vNANjT4+2jLbMH64AvRK7NORzaTe93wI2R1iYRkSSxJqdIga6JJR7up/w7RcQVSQbPA56IrE8B6o0x3sj4uS/0U04K1nmsw0oIf3QUrzEqjDE/6ut69HHoh8D1IpIgIglYXS/XD0/USikVO5pgKaXUEDDGlGO1PHwfKzkqx0pWuv/dfQRrIooqwAN8o4dyWiLrHwcasL6QP9dt+wdEJr4AmoA3OdiSdBVWgrYpcuyTHNpFsSd3AsdFynoeeLpzg4hciDVJxU2RVf8BHCciVxpjtmK1dt2H1Qp3PnC+McbfT32xcjNWjI3AlcAznRuMMauALwP3Y523HRw6IUcR8E4fZVdFjtuPNSHFjcaYLZFtXwHuEpEW4Has69qXP2N1MdyHdR3f6++FxZHrsFrcKrDin4Q16YdSSo1qYszhvSaUUkoNNRFZAfzFGPP7WMeiBi4yK+JHwNzIZB6Hbz8d67oWHr5NKaXU2DDSb2KolFJKDZtIi9zMfndUSik1ZmkXQaWUGmNE5IFeJix4oP+j1UgkIhP6mKhiQqzjU0qp0US7CCqllFJKKaVUlGgLllJKKaWUUkpFSVyNwcrOzjbFxcWxDkMppZRSSiml+rR69epaY0zO4evjKsEqLi5m1apVsQ5DKaWUUkoppfokInt6Wq9dBJVSSimllFIqSjTBUkoppZRSSqko0QRLKaWOwp7aVl7asB+dgVUppZRSPYmrMVg9CQQCVFRU4PV6Yx2KGmE8Hg+FhYU4nc5Yh6JGkdpfn8O80D5WBf/GogXzYx2OUkoppeJM3CdYFRUVpKSkUFxcjIjEOhw1QhhjqKuro6KigpKSkliHo0aJmro6jg9vAIF1//oTaIKllFJKqcPEfRdBr9dLVlaWJlfqqIgIWVlZ2vKpoqp2x8FZTovr3ophJEoppZSKV3GfYAGaXKljou8bFW3e8nUArMr4DFNDu6ipb4xpPEoppZSKPyMiwVJKqXgQatyH39hJnnseDgmz++MPYh2SUkoppeKMJlgDICJ861vf6lq+5557uOOOO2IXUDfvvfceJ5xwAvPnz2fmzJldca1YsYJ//etfgyr7nHPOIT09nfPOOy8KkSo18klHA02SQsGsEwHo2Ls6xhEppZRSKt5ogjUAbrebp59+mtra2qiWa4whHA4Pqoyrr76a3/72t6xbt46NGzdy2WWXAdFJsG699VYeeeSRQZWh1Gji9DfSIimkjCuhhURstVtjHZJSSiml4kzczyLY3Z1//5hN+5ujWuas8an81/mz+9zH4XBwww038Itf/IK77777kG01NTXceOON7N27F4Bf/vKXnHTSSdxxxx0kJyfz7W9/G4A5c+bwj3/8A4Czzz6bE044gdWrV/PCCy9w//338+KLLyIi/OAHP2Dp0qWsWLGCO+64g+zsbDZu3Mjxxx/PX/7ylyPGFR04cID8/HwA7HY7s2bNoqysjAceeAC73c5f/vIX7rvvPmbMmNFrnDt37mTHjh3U1tbyne98hy9/+csAfPKTn2TFihV9npsnnniCO++8E7vdTlpaGm+99RZer5ebbrqJVatW4XA4+PnPf84ZZ5zBww8/zDPPPENbWxvbt2/n29/+Nn6/n0ceeQS3280LL7xAZmYmv/vd7/jtb3+L3+9nypQpPPLIIyQmJh5S75IlS3jooYeYPdu6dqeffjr33HMPCxcu7DNepQbD5W+k3Z4KIhxwTSCldVesQ1JKKaVUnNEWrAH66le/yqOPPkpTU9Mh62+++WZuueUWPvzwQ5566imuv/76fsvavn07X/nKV/j4449ZtWoV69at46OPPuLVV1/l1ltvpbKyEoC1a9fyy1/+kk2bNrFr1y7eeeedI8q65ZZbmD59OhdffDEPPvggXq+X4uJibrzxRm655RbWrVvHKaec0mec69ev5/XXX+fdd9/lrrvuYv/+/QM+L3fddRcvv/wyH330Ec899xwAv/rVrxARNmzYwLJly7j66qu7ZvPbuHEjTz/9NB9++CH/+Z//SWJiImvXruXEE0/kz3/+MwCXXHIJH374IR999BEzZ87koYceOqLepUuX8vjjjwNQWVlJZWWlJldqyCWEmulwpAHQmlJCnr+ccFhvOKyUUkqpg0ZUC1Z/LU1DKTU1lauuuop7772XhISErvWvvvoqmzZt6lpubm6mtbW1z7ImTpzIkiVLAFi5ciVXXHEFdrud3NxcTjvtND788ENSU1NZvHgxhYWFAMyfP5+ysjJOPvnkQ8q6/fbbufLKK/nnP//JX//6V5YtW9Zjq1NfcV544YUkJCSQkJDAGWecwQcffMBFF100oPNy0kkncc0113DZZZdxySWXdL2mr3/96wDMmDGDiRMnsm3bNgDOOOMMUlJSSElJIS0tjfPPPx+A0tJS1q9fD1hJ2A9+8AMaGxtpbW3l7LPPPqLeyy67jE9/+tPceeedPP7443zuc58bULxKDUZSqBl/4iwAJHsqeXUvUnGghsK8cTGOTCmllFLxYkQlWLH2zW9+k+OOO45rr722a104HOa9997D4/Ecsq/D4ThkfFX3+zElJSUNqD6329313G63EwwGe9xv8uTJ3HTTTXz5y18mJyeHurq6I/bpLU44cjrzo5ne/IEHHuD999/n+eef5/jjj2f16r4H/Xd/TTabrWvZZrN1vb5rrrmGZ555hnnz5vHwww/3mDAWFBSQlZXF+vXrWb58OQ888MCAY1bqmBhDimkh6LZasDx5M2Ar1JR9rAmWUkoppboMuougiBSJyBsisklEPhaRmyPrM0XkFRHZHvk3Y/DhxlZmZiaXXXbZIV3WPv3pT3Pfffd1La9btw6A4uJi1qxZA8CaNWvYvXt3j2WecsopLF++nFAoRE1NDW+99RaLFy8ecEzPP/88xlhdlLZv347dbic9PZ2UlBRaWlr6jRPg2Wefxev1UldXx4oVK1i0aNGA69+5cycnnHACd911Fzk5OZSXl3PKKafw6KOPArBt2zb27t3L9OnTB1xmS0sL+fn5BAKBrnJ6snTpUn7yk5/Q1NTE3LlzB1y+UsfCBNpxEyDssf6UZU60WtRb92+OZVhKKaWUijPRGIMVBL5ljJkFLAG+KiKzgNuA14wxU4HXIssj3re+9a1DZhO89957WbVqFXPnzmXWrFldLSmXXnop9fX1zJ49m/vvv59p06b1WN7FF1/M3LlzmTdvHmeeeSY/+clPyMvLG3A8jzzyCNOnT2f+/Pl86Utf4tFHH8Vut3P++efzt7/9jfnz5/P222/3GifA3LlzOeOMM1iyZAk//OEPGT9+PGAlf5///Od57bXXKCws5OWXXwasbomd461uvfVWSktLmTNnDp/4xCeYN28eX/nKVwiHw5SWlrJ06VIefvjhQ1qu+vPf//3fnHDCCZx00knMmDGja/1zzz3H7bff3rX8uc99jscee6xr5kSlhpK3pQEASUgHIKtoBiEjULMthlEppZRSKt5IZ+tH1AoUeRa4P/I43RhTKSL5wApjTJ/NGAsXLjSrVq06ZN3mzZuZOXNmVGNUBx0+2+Foo+8fFS0N5ZvJeGgJb5X+iFMv/SoA+++awb6EaSy69bkYR6eUUkqp4SYiq40xR8yyFtVZBEWkGFgAvA/kGmMqI5uqgNxo1qWUUsPJ125NCmN3HbxlQJ2niIyOvbEKSSmllFJxKGqTXIhIMvAU8E1jTHP3iRKMMUZEemwqE5EbgBsAJkyYEK1w1ADdcccdsQ5BqREh4G0DwO4+OEmNN6WYkrb1hEJh7Ha960UnYwwf729mck4yCS57rMNRSimlhlVUvhGIiBMruXrUGPN0ZHV1pGsgkX8P9HSsMea3xpiFxpiFOTk50QhHKaWiLuC1WrAc7oMtWJI5iWTxcqCqIlZhxaUP3niOhAdP4IVfj86ux4NhjGHjvib8wXD/O48xxhhqWnyxDiMueQMhmr2BWIehlBqgaMwiKMBDwGZjzM+7bXoOuDry/Grg2cHWpZRSsdLZguXwHGzBSsybCkDtnk09HjNWBdctZ7KtkjMbHudAQ3Osw4krbz3/KJ4Hl/CPP/xPrEOJOy/9+cfs+enJvPneB7EOJa4YY3ju5zey6cens69OP09KjQTRaME6CfgScKaIrIs8PgP8GPiUiGwHzoosK6XUiBT0WQmWMyG5a13mROumw62VOpNgd4WtHwGQIa3s+PClGEcTXxI/XsYU234W7/sTHT5tkehkwmGO2/1bFtq2YXvzR7EOJ67s2LKeyzoeZwkb2fLCr2MdjlJqAAadYBljVhpjxBgz1xgzP/J4wRhTZ4z5pDFmqjHmLGNMfTQCVkqpWAj72gFweQ4mWOMKphA0NsJ1O2MVVtzxtjQwMVzBe+OvImwE3+73Yx1S3AiHwkzu+IgwQqHUsm3t27EOKW5U7dpALtbXhDntH+L1+WMcUfyo33LwfZJW8XoMI1FKDZSOyh6gZ555BhFhy5Ytve5TVlbGnDlzolbn1q1bOf3005k/fz4zZ87khhtuAKybBL/wwguDKvu6665j3LhxUY1XqdEs5LdasNwJB7sI2pwuqm3jcDWVxSiq+FO7fxcAkjeXfc4iUuo+inFE8aOmYhuZtLC2+MsA1G1dGeOI4sf+HesBWDP+SjKkla3r3olxRPEjdGArAWNnXdZnmebdoMmnUiOAJlgDtGzZMk4++WSWLVvW4/ZgMDjoOkKh0CHL3/jGN7jllltYt24dmzdv5utf/zoQnQTrmmuu4aWXtOuOUgPV2YLlSUw+ZH29u5B0b3ksQopLrQf2AODJKqIubQ4TfNsJh6N7v8WRqrHSSj7tJSdRK5kkHNDks5Ov1jo3Bad8EYCmXatjGU5c8TTuoNI+Hik5hVRpZ+82fd8oFe9GVoL14m3wx89G9/Hibf1W29raysqVK3nooYd47LHHutavWLGCU045hQsuuIBZs6yxGMFgkCuvvJKZM2fyuc99jvZ260vZa6+9xoIFCygtLeW6667D57NmSiouLua73/0uxx13HE888cQh9VZWVlJYWNi1XFpait/v5/bbb2f58uXMnz+f5cuX09bWxnXXXcfixYtZsGABzz5rzSfy8MMPc+GFF3L66aczdepU7rzzzq6yTj31VDIzM/t83W+++Sbz589n/vz5LFiwgJaWFowx3HrrrcyZM4fS0lKWL1/edS5OO+00LrzwQiZNmsRtt93Go48+yuLFiyktLWXnTqsL1d///ndOOOEEFixYwFlnnUV1dfUR9V5++eU8//zzXcvXXHMNTz75ZD9XSakhFuhMsJIOWd2RUkxecD8mrLPCAXjrrRkVk3MmQM4Mxkkj+6sq+zlqbGivte6ZlpJbzP6kmeS3b45xRPHD3rSXFpNA7owTaSERx4H1sQ4pbuT49lDrmUjmpPkA1O7Wc6NUvBtZCVaMPPvss5xzzjlMmzaNrKwsVq8++MvamjVr+L//+z+2bbMGuW/dupWvfOUrbN68mdTUVH7961/j9Xq55pprWL58ORs2bCAYDPKb3/ymq4ysrCzWrFnD5Zdffki9t9xyC2eeeSbnnnsuv/jFL2hsbMTlcnHXXXexdOlS1q1bx9KlS7n77rs588wz+eCDD3jjjTe49dZbaWuzujN98MEHPPXUU6xfv54nnniCVatWDfh133PPPfzqV79i3bp1vP322yQkJPD000+zbt06PvroI1599VVuvfVWKiutL08fffQRDzzwAJs3b+aRRx5h27ZtfPDBB1x//fXcd999AJx88sm89957rF27lssvv5yf/OQnR9S7dOlSHn/8cQD8fj+vvfYan/3sZwcct1JDwt9Bu3GT4HIeuj5zEinSQW3N/tjEFWdCTdZ5yMybQFLBTACqd22IZUhxI1BvtXRmjy/BnzmdgnAVzW3tMY4qPiS0VXDAngcilLunktnSe3f8sSYzXE+bJ5fxk+cSNkKgSmctVSreRe1Gw8Pi3NhMRLhs2TJuvvlmwGpdWbZsGccffzwAixcvpqSkpGvfoqIiTjrpJAC++MUvcu+99/KpT32KkpISpk2bBsDVV1/Nr371K775zW8CVkLRk2uvvZazzz6bl156iWeffZYHH3yQjz46smvAP//5T5577jnuueceALxeL3v3Wr+UfupTnyIrKwuASy65hJUrV7Jw4cIBve6TTjqJ//iP/+DKK6/kkksuobCwkJUrV3LFFVdgt9vJzc3ltNNO48MPPyQ1NZVFixaRn58PwOTJk/n0pz8NWC1vb7zxBgAVFRUsXbqUyspK/H7/Ieeu07nnnsvNN9+Mz+fjpZde4tRTTyUhIWFAMSs1ZILteHGReNgNhT25U2Ar1OzZQk5uYS8Hjx221kpqTRpZKUnYS0oBaNm3CTg7toHFAWnZT6NJJi0llYT8mTj3hti6/WPmzF8U69BiLtVXRZ3L+v+jPW0yU6tfJhgM4XCM8RtVBzpIooNQYg52dxL77Xl4GnTWUqXinbZg9aO+vp7XX3+d66+/nuLiYn7605/y+OOPY4w1piAp6dDuQtZtwXpf7snhZXQ3fvx4rrvuOp599lkcDgcbN248Yh9jDE899RTr1q1j3bp17N27l5kzZx5zPJ1uu+02fv/739PR0cFJJ53U5wQfAG63u+u5zWbrWrbZbF1j1L7+9a/zta99jQ0bNvDggw/i9XqPKMfj8XD66afz8ssvs3z58l4TUKWGkwQ68Ir7iPUZRTMAaN2/dbhDikvO9gM02DIQEVLzp+LHganRL4QA7rZK6uzZiAhZxdYEQ43lR/5NH4uSQ40EErIBcORMJ03aqNi3N8ZRxZ6vsQqAcGIOAPWJk8jp2BXLkJRSA6AJVj+efPJJvvSlL7Fnzx7KysooLy+npKSEt9/ueXrdvXv38u677wLw17/+lZNPPpnp06dTVlbGjh07AHjkkUc47bTT+q37pZdeIhCw7pNSVVVFXV0dBQUFpKSk0NLS0rXf2WefzX333deV9K1du7Zr2yuvvEJ9fT0dHR0888wzXa1rA7Fz505KS0v57ne/y6JFi9iyZQunnHIKy5cvJxQKUVNTw1tvvcXixYsHXGZTUxMFBQUA/OlPf+p1v6VLl/LHP/6Rt99+m3POOWfA5Ss1VOyhDnwcmWDlTphOyAihWp2qHcDpb6bDkWot2B1UOwpIbNYvhAAJgQZaHNbY15xI616wWhNzjCHNtBD2WOcmqcD60aKu7ONYRhUXWuusLre2lFwAfJnTKDKVtLZr11Kl4pkmWP1YtmwZF1988SHrLr300l5nE5w+fTq/+tWvmDlzJg0NDdx00014PB7++Mc/8vnPf57S0lJsNhs33nhjv3X/85//ZM6cOcybN4+zzz6bn/70p+Tl5XHGGWewadOmrkkufvjDHxIIBJg7dy6zZ8/mhz/8YVcZixcv5tJLL2Xu3LlceumlXd0Dr7jiCk488US2bt1KYWEhDz30EAAPPPAADzzwAAC//OUvmTNnDnPnzsXpdHLuuedy8cUXM3fuXObNm8eZZ57JT37yE/Ly8gZ8Pu+44w4+//nPc/zxx5Odnd21ftWqVVx//fVdy5/+9Kd58803Oeuss3C5XAMuX6mhYgt24LcdmWC53B6qbeNw6lTtAHhCzfidqV3LjUkljPNrSwRAQqil69zYPSkckGzcjTtiHFXseVsbcEqIcKLVnX1csZV8tlfqOKz2BmuMszPNSrDsubNwSojKndryqVQ8k85Wj3iwcOFCc/gkDJs3b+7q7qaOzsMPP8yqVau4//77Yx1KzOj7R0XLlh+fRjDgZ84P3z1i24b/dwbuUCvTfvBhDCKLLzV3lrAjdQkn3mL9CLX2j99iTtkfaft2OekpvXeHHgsa7ihic8aZfOJmq/V+0/+egc3fwowfDnzyodGods8msv94Iv+aezefuORrmHAI7115rM65hJO/+mCsw4upHS/dz5T3/pNVl7zNwrlz2bn+XSY/fQ6rF/+S4z9zbazDU2rME5HVxpgjJjfQFiyllBoAR9iL397zZCttyRPJC+6DOPrBKlaSTSthd1rXsjNvOk4JsX/3GJ/5zBhSTCvGc/DctKVOpjBYQSg0tqf4b2uwbtfhSB4HgNjsVNkLSGrZHcuw4kK4pQaA5ExrApD8SdYtYQIHdFyjUvFME6xR7JprrhnTrVdKRZMz7CVo8/S4LZxRQiptNNcfGOao4kvY7yUBP2FPete6tEJrPE1jxdju7uVta8QhYUxCxsGV2dNIlg6q9pXFLK544GuyPjeu1IPdxhsSi8n2adfSUFs9bcZNWop1g/PE5DSqycTeqOMalYpnIyLBiqdujGrk0PeNiiZX2EvY3nOC5R43FYDqPWO7laatuRYAW0J617rc4tkA+A9sj0VIcaO1MXJuEg8mWMn51q076vaO7fdNoMVKsBLSc7vW+dMmMT5chc/XEauw4oO3kSaSyEg8OBa5xlVIatueGAallOrPkCdYInKOiGwVkR0ictvRHu/xeKirq9Mvy+qoGGOoq6vD4+n5C7FSR8tlfIQcPb+f0iOtNC37x3a3na4kolsrjSsliyZSsDeM7e5ebZFz40zK7FqXPdHq7tVaObbfN8G2egCS0sd1rXOMm4JdDFVlY3uWRZuviRaS8TgP3g+sLamYcYF9MYxKKdWfIb3RsIjYgV8BnwIqgA9F5DljzIB/rissLKSiooKampqhClONUh6Ph8JCvfGrig638RHuZQxWfvF0wkYI1oztGeE6Wqwvys7kjEPW17oKSBnjv7i3N9cB4E7plmCNn4TfODC1Y/t9Y9obCRg7qWkHx6eljJ8Oa6ChfAsTp8+PXXAx5vA10mRLOWRdKGMSGQ3P0dJYQ0p6TowiU0r1ZUgTLGAxsMMYswtARB4DLgQGnGA5nU5KSkqGKDyllBoYNz6MM7HHbYmJSeyXbByNY7uVxttiJRGu5MxD1rclT2Bc3RqMMUd1s/PRxB85N57Ug1+Ixe6gyp6Pp7ksRlHFCW8jzSSS6XF2rcortlr3OqrHdtdSd7CZDkfuoetyp8EuOLB7EykL+r+nplJq+A11F8ECoLzbckVkXRcRuUFEVonIKm2lUkrFpaAfJyGMs+cWLLBaaZLby3vdPhYEWhsASEjNOmR9OGMyedRxoKEpFmHFhUCr1bqXnHbouWlIKCLTN7bfN3ZfE62SfEjynZaVRzNJSP3YvoG3J9iC35F6yLr0IqtLctO+sT1xjFLxLOaTXBhjfmuMWWiMWZiTo03dSqn4E/K3WU96acECaE2aSG6gYpgiik+hNivBSjosifDkTsUmhsrdm2MRVlwIt3eOM8o+ZL0vtZj8UCXBYDAWYcUFu7+ZdlvyoStFqHIUkNQ6truWJoVbCHa77QFAfvEMQkYIjvGJY5SKZ0OdYO0DirotF0bWKaXUiOFtbwXA5uq9BSuUXkIarXgjM+mNReEOK8FKPiyJyCiybvbdtG/sTlhgOhrxGQcpyYe2RtiypuCRAFUVY7elxh1spsOeesT6lsQisvxj+EeLoJ8EfITd6YesTkxMokpyxnyXZKXi2VAnWB8CU0WkRERcwOXAc0Ncp1JKRVVngiWupF73cY2bDED1nrHbSkNHI23GTXLCoYlozkQrwRrLk4DYfA20SBI2+6H/7SaNnw5A3d6x293LE2zB70w5Yn0grYTccA3ejvYYRBV7JvKDhXS77UGnWlchqe1ju3VPqXg2pAmWMSYIfA14GdgMPG6M+Xgo61RKqWjzd1hdBG3u3hOs1ILIuIiKsdtKY/M10SLJ2GyHTmRhS8ygUVJxjOGbo9p9zbTKkUlEZ/LZXjl23zeJ4TaCriNbsBw5kana94zNc9MeaQ23J2Ycsa0tpZi84D7QW9goFZeGfAyWMeYFY8w0Y8xkY8zdQ12fUkpFm6+jBQBHHwlW3sQZhI0QGMPjIpz+Jtokucdtda5CUtv3DnNE8cMVaKbDfmSClZVfjNc4MXVjtIugMSTTSviwcUYAqQVW615D+dhsFe68r5wjOeuIbeHMySTTTkv9/uEOSyk1ADGf5EIppeJdwGu1YDncvU9ykZ6aQrVkYm8sG6ao4o8z0EJ7D0kEQEfKRPKC+wiGwsMcVXxICDbjdRyZRIjNTpV9PAktZcMfVBwI+1pxEgLPkecmr3g2AL4xOlV7R5OVYHW/d1onz7ipgDVVu1Iq/miCpZRS/QhGEiynp/cWLBHhgKOApLax20rjCbXgc/ScYJE5mXypZ39N3fAGFScSwy0EeugGB9CYMIFM79iczKGzlYbEI5OI1KxcmkiChrHZtdQXuXdaYlr2EdsyJlhdS5t1qnal4pImWEop1Y+g15rkwpXQe4IF0JI0gWz/2J0oNTHUgt/ZcxKRkDcNgOo9Y/MLYbJpIdRDNzgAb1oJ+eFKgoHAMEcVe22N1v0vHUlHdoMDqB7DU7X7I/dOS+ohwRo/cToBYyc0hieOUSqeaYKllFL9CPsiCVZiz1+QOwXTismgiUDkflBjTZJpJdxLK01m5Bf3ljE4VXs4GCCFDownvcft9uzJuCRE1d6x1xWuvdlKsFw9jDMCaEmcQLZvbLbuhdutvyOp6UcmWAkeN/tteTibdKp2peKRJlhKKdWPsM/qIuhK7HkCh06uyLiI6rIxOCg/FCAJL+Fekoj0QmvCgmDt2PvFvbXR6urV03TbAMmdU7WPwckc/JFucJ60nhOsQFoJuaYWb2Qmz7HEdDTQbBJJT/b0uL3WVUiaTtWuVFzSBEsppfphIi1YnsSeW2c6ZRR2flEee93gvC1WdyZJOHJKaQDxpNEo6bjG4C/urZHJCmw9jDMCyJk4C4COym3DFlO88EfeN4mpR7bSADjHTcE2RqdqF28jTSTjtPf8Va0jZSK5of0QHpsTxygVzzTBUkqp/gTa8Rs7iQm9zyIIUDDZ+qLsHYOznrV0TimdlN7rPvWeQtI6xt4kIG1NVjc4Z3LPCVZWbhFtxgP1Y2+q9lCb1YKVkjGux+2pkda9+jHYuufwN9Nu673VPJw5hQT8NNeMvc+UUvFOEyyllOqH+Ftpx4Pb0fefzNSUNKrJxFY/9mY9a2vqTLB6TiIAvCkTyQ9V4g2EhiusuNA5G5wnpedWGrHZqHKMzanaTUcDXuMkLbXn1uHczqnaq8bejxbuQBMdvc3KycGJY2rKPh6ukJRSA6QJllJK9cMWbKcdDzab9LtvnatwTE7V3tFsdfXy9HDPnk6SNZk8aaC8una4wooLnbPBJaT2PM4IoCmhiKwxOJmDLdINztXLjxepWeNoJBnbGJyq3R1swdfDvdM6ZUW6lrbuH3tdkpWKd5pgKaVUP2yBdnzS80Dzw7UnT2RccB/GmCGOKr74IkmEp48kIjHf6u51YIxNAhJstWaDS8rouQULwJdWQl64moDfN1xhxQWHr5FWW++tNAAHHONJHINTtSeFmwm4ek+wxhdNwmucBHWqdqXijiZYSinVD0ewHa8kDGznzElk00Rt3di6oW6wzUqwknuYUrpTVmSq9tb9Y2vCAtNhnZvU9Jxe97FnT8EhYar2jq2JLlz+JtrsfU8e05I4kWz/GGvdM4YU00q4l3unAXhcTvbZ8nE3lw1fXEqpARlUgiUiPxWRLSKyXkT+JiLp3bZ9T0R2iMhWETl70JEqpVSM2EPt+O0DS7CS8q1xEft3j61xEeG23u/Z0yk5cm7CdWPrF3fpaKTVePB4em8FTRmjkzl4Qs19doMDCKSXkGvq6GgfO1O1h32tOAlBL1P7d6pzF5E+BieOUSreDbYF6xVgjjFmLrAN+B6AiMwCLgdmA+cAvxYR+yDrUkqpmHCGOgjYBpZgZRdb4yKayzcNZUhxx3gb8RoniYlJve/kTqHBloFnjP3ibvc10iJ930MtJ/K+8VaOrda9pFAz/j66wQG4cqdjE0PFzo3DFFXsNTf0PbV/J29qMbmhSkwoMBxhKaUGaFAJljHmn8aYYGTxPaAw8vxC4DFjjM8YsxvYASweTF1KKRUrrlA7IUffU7R3yp4wi6CxYQ6MrZYIh7eBRklDpO+JQBo8RaR3lA9TVPHB7a+nxZbe5z5ZOeNpMQkwxmagTDathNzpfe6TWVIKQOOeDcMQUXxoqj8AgDul9zGNALbsqTgJUb9v7E3xr1Q8i+YYrOuAFyPPC4Du/4NWRNYdQURuEJFVIrKqpqYmiuEopVR0uIyXsHNgCZY4PVQ6xpPYNLamlXb56mmx9T2WBsCXOokJpoIW79j5xd0TaKDNkd7nPmKzUe0sGFNTtRt/Ox78mH66wY2fVErICIGqsfOjRWvkvnIJqX23YKUWzACgWqdqVyqu9JtgicirIrKxh8eF3fb5TyAIPHq0ARhjfmuMWWiMWZiT0/sAYKWUipUE00HY2UfXt8PUJ05mnHf3EEYUfxKCjf0mEQDkziRLWigvHzvjRpKCTfj7aaUBaEqaxDjf2JktrzVy7zRbQt9JhMuTyH5bPu6GsTMBSEez9YNzSh8TowDkllhdS9t0qnal4kq/CZYx5ixjzJweHs8CiMg1wHnAlebgvMT7gKJuxRRG1iml1MgSDpFMB2F3/60znfyZ0ygIV9Ha2jKEgcWXpGAjXmd6v/ulFFndvRrKPhriiOJHmmki5Om7qxdAKGs6edTRWDc2enM01Vnd4Fz9tNIA1CUUk9Uxdn608EcSrNSs/D73G5dXRKtJIFw7tiaOUSreDXYWwXOA7wAXGGPau216DrhcRNwiUgJMBT4YTF1KKRULnfd3Mp70AR/jyJ+NXQz7d4ydJCIl3EzAndHvftmT5gHgrxwbXZp8Ha0k4oOk3mdX7OQpnAPA/h3rhjiq+NDSYCVYian9917xZkyjILQfv8871GHFh9ZqAFKzx/e5m9hsVDoLSWwZO8mnUiPBYMdg3Q+kAK+IyDoReQDAGPMx8DiwCXgJ+KoxJjTIupRSati1R7oxSUL/yUOnrBIriWgoWz8kMcWbsN9LMu2QOIAkIqOAZpJw1Y+N2fIa66oAsCf3n0TkTJoPQMvesfG+6Wiwzk1yZl6/+zrzZuCUEPt3jY3E3NZeQyPJ2J2ufvdtSJpMnq9s6INSSg3YYGcRnGKMKTLGzI88buy27W5jzGRjzHRjzIt9laOUUvGqo9lqwbInpg/4mIJJc/AbO8GqsTFVe2O99Wu7I6X/BAsRKl3FpLeOjdnymmutJMI1gFaa3KKptBv3mJmBMtC0H4D0cUX97AlpE+YCUDdGfrRwddTRZBvYjzrBzGnk0EBL49joWqrUSBDNWQSVUmrU8Ue6CDqSBt6CZXe6qHQU4mkcGzMJNh6whti603IHtH9zyhQKg2WYcHgow4oLHXUVACRk9t3VC8Bmt1PhnEhK89h439BSjd/YScvs/31TMGUuYSP4K8dG8pkQqKPV2f/YNAB3wWwAqsZI11KlRgJNsJRSqg+dY7Bcyf1PUtBdY9Ikcr27ODj3z+jVVmvNCJiQXdjPnpZQ9gzSaKO2avTfD8vfaLXSpORMGND+jclTxkx3L3t7NfWSgc3e/1eRhKQUKm3jcI2RmQRTgvV4XQP7m5NdbI3dayrXmQSViheaYCmlVB98LVaClZIxgO5v3QSzZ1LIAWoa6ocirLjia7CSiLQBJhGpE6yZBPdvXzNkMcUL07yfsBEycgeWfAazppNFY1fXwtHM462hyTGwVhqAGk8JGW1jYDIHY8gINxJIGNjfnPETp+E3dgI1YyP5VGok0ARLKaX6EGyzEqTUfu5Hc7ikIutX5X1b1kY9pngTbrKSiMzc/sfSABROOw6A1vKNQxlWXLC1VlJHGokez4D2T4pMY1++bfQnn8mBOtqcA//hwpcxjcJQOT5fxxBGFXvNTbUkiZdwysCScqfTRaU9H1fjGEg+lRohNMFSSqk+hNsb8Rkn6WkDvw8WQP60xQC07Bn9X5TtbZXUSRqeASYRqdnjaSQFW83oH0/jbD9Ag2PgSUTB1AUANO8d/VP8Z4Tq8CUObNwegKtgLi4JsXfr6D43NeU7AfBkD6xFGKDRM4EM79i5ebdS8U4TLKWU6oO9o5YGScU5gHEi3aWNn0IridirR38rjavjAI22oxijJkKlZxIZraN/ModkXzXt7nED3j8rv5gWEqF6dCef7c31pNGKSRt4EpEzdREA9TtXD1VYcaGpypphMyW3ZMDH+NMmWfcJ8weGKiyl1FHQBEsppfrg9tbQYBv4OJEuIlS4J5PRMvrv95Tmq6LJPfCWCIDW9FkUB3fj9/uHKKrYM+EweaEqvMkD6+oF1o1j97knk9EyuicsqCm3xgs5sooHfMz4SbPxGiehytE9Vbu3dg8AOQWTB3yMPXcqbgmwb8/o/9FCqZFAEyyllOpDkr+WVufRzSDYqTV9JhODu0f1r8omHGJcqBJv8sSjOs5eMA+PBCjfNnq7ezXW7idRfJj0gbdEALSkz2JCoIxAYPS+b5qrrG5wKXkDTyJsDiflzhJSGkd38mkay/EbB2k5/U/t3ymtYBYAtXvGxo2YlYp3mmAppVQfUoP1+DxHN8FFJ/v4uSSJj/Jdo/dLT9OBcjwEIPPokojsKQsBqN+5aijCigu1e61EwJM78CQCwDZ+Honio2LHhqEIKy60V1sJVnbR1KM6rjFtBkW+HYRDo/ceaoktu6m05yM2+4CPyZ9s3Quro3J0J59KjRSaYCmlVC/CAT8ZNGGSBj6GpruMyVYSUbdj9CYRNXussUIJuUf3RXn8lHlWd6/9o7cFq3m/1V0rrWDaUR2XFRlrVLv9g6jHFC+kbgfNJJGdnXd0B+aVki6tVEYmghiNsr17qPMcXYtwYsZ4WkhE6nYMUVRKqaOhCZZSSvWioWYfAI60/GM6vmDqfALGTnDf6B0z0lJpjTHLLJp+VMc5nC72OktIbtg0FGHFBX/VZgLGTmHJzKM6rnDKPHyjPPlMbdlBhaMYsR3d15D0EmuWxaptHw5FWDHn9XrJC1Xhz5hydAeKsN9VMiYmjlFqJNAESymletFQac3m5c4c+CQF3TndCZQ7JpA4ipOIcOVGWo2HwpKjS7AAmtJmMGEUd/dKbNhChb0Il3tg09d3crjc7HGUkDJK3zcmHCbfv4emlKPrOglQNMNq3fOWr4tyVPFh7/aNOCVEYv7Rf55aUqdSFCgbtZ8npUaSqCVYIvItETEikh1ZFhG5V0R2iMh6ETkuWnUppdRwaKuyutskjz+6Ll7dNaRMp8C7A2NMtMKKK0mNW9nrKMbpcBz9wXnzSJU29u/ZFv3A4kBexw7qko+yJSKiPnU6Rb7tmPDo+7JcW7mHNFqRcUfXsgfgSU5nny0fd93oTD7rdlgtc51jFI+GGTeLNGmjurIsylEppY5WVBIsESkCPg10v8vducDUyOMG4DfRqEsppYZLqHYnYSNkFx57ghXOLSWHBqr2l0cxsvhgwmHG+3bRmHps5ycz8iWycuv70QwrLjTVVpJLHcHsWcd0vMmbSypt1FSMvi5f+z9eCUDqpMXHdHxN0jTy20dnUh7evxavcZI3ef5RH5tYWApA7Y61UY5KKXW0otWC9QvgO0D3n2gvBP5sLO8B6SJybAMZlFIqBqRhF1WSTUZq8jGXkTbJarzft2X0TVhQtWsDabTC+AXHdHzRjIWEjOAbhd29dq99A4DkKZ84puMzplhd4fZtHn3JZ/vu9/AbOyWlJx7T8b5x8yigmoba6ihHFnuZjRvY65qMzek66mPzplqfw459o//m5krFu0EnWCJyIbDPGHP4aNwCoPtPthWRdYcff4OIrBKRVTU1NYMNRymloiapdQ91rgJE5JjLKJpxAgDte0ffr8r711tJRO6cM47peFdCMvscRSTWj75p7Nt2rMRvHEw97tRjOr545iKCxoZ3FL5vUmvWsMc1lYTEpGM6PrHYavnct+ndaIYVc+2tTUz2b6U++/hjOj4zO48DZGCv3RzlyJRSR2tACZaIvCoiG3t4XAh8H7j9WAMwxvzWGLPQGLMwJ+fY7jWjlFLRZkJBigJltKQde/dAgIS0LKpkHK7a0ZdEyJ6V1JNKybR5x1xGXcoMCrzbR90YtXG177HLPQO359iSCE9iMhX2QhLqRtf7prGhlumBLTTkHlvrFcCE2daxrbtHV6vw9lWv4pIQyTPOPKbjRYRKVwlpLaOvW6lSI82AEixjzFnGmDmHP4BdQAnwkYiUAYXAGhHJA/YBRd2KKYysU0qpuHegbCMJ4sfkzh10WTVJ0xjXNrq+9ISDQSY1vcv2lBOw2Y+9M4TJm0su9eyrGD1j1Gr37WZqaCf1BcfWstepLnUmBd5toyr53Pne33FImJQ5Zx9zGWmZ46iQfNwHRtftDzo+fgGvcTL5+E8fcxlt6dMoDOwhHAxGMTKl1NEaVBdBY8wGY8w4Y0yxMaYYqxvgccaYKuA54KrIbIJLgCZjTOXgQ1ZKqaG3b9N7AORMWzTosgI5s5lo9nGgvn7QZcWLbav+STqtyPRzB1VO2iSru9f+ze9FI6y4sP3NRwEoOOGSQZVj8uaSQwP7K/ZEI6y4ENrwNHWkMfX4Tw6qnKrkmeS3bYlSVLEXCoUoqXmdLcmLSUhOPeZy7Lmz8EiAqj2j59woNRIN5X2wXsBq4doB/A74yhDWpZRSURUs+xetJoFJMwd/h4nkiQuwi6F88+i5OWrL+3+hzXiYddrnBlVO4ewlhI3g2zt6zk32zr+x0z6ZiTMG995Jn2LNsle56Z1ohBVz1dWVzG17lz25n8JxDJM4dBfInUceNdRVV0Qputja8PYz5FKPmX3poMpJL7a66x7YOfrG7ik1kkQ1wYq0ZNVGnhtjzFeNMZONMaXGmFXRrEsppYZSfsMqdiTMHfQXQYDxM62JLlp2rxl0WfGguWY/c+pfYUPGJ0lOSRtUWe6kDPbZC0is3RCl6GJr0wevMjW0g9qpnx90WUWzllizLO4dHf997nz5N3gkQO4Z/z7osjqneK/4eHRMdGHee5AGUpl95hcGVU7htAWEjeCtGB2fJ6VGqqFswVJKqRGpZu82isL7aB1/bFNsHy55XAlNpOCoHh1jRrY/+2PcBMg5+9aolFeTMosi75aRP9bIGMKv/4gmkpl73uA7bbgTU9nrmEhy7ch/37Q11TNr1x/Y4F5AwYxju/9VdxPnWC2f7WUjP/lc/+4rLPC+z47JV+HyJAyqrKSUNCptuTjrtYugUrGkCZZSSh1m9zuPA1B44uC6v3URYX/idHJaR/6XnrrKvcwoX86qpNOYPPPY7n91uFD+AsbRQGXFrqiUFysbVjzJHO9qNk7+dxKSB9ey16kubTYTfFsx4XBUyouVDU/cRTotOM6+KyrlJadmUm4vwFN7+B1iRhYTDiOv30k9aZRe8t2olFmTOJnstp1RKUspdWw0wVJKqcNk7HyOnbZiiqfOiVqZHVlzKAnvobGlNWplDjtj2PfojdgJkXdxdL4oA6RFxhpVbR653b0aG2rJfOs/KZfxLLwsOi17ACb/ODJoYX/Z1qiVOdx2fvQ2x5X/mVWpZzHzGO8L1pOa5JkUtG8d0S2fHzzxU0oDG9hVejOepGOf3KI7b8Z0CsL76Whvi0p5SqmjpwmWUkp1s3Pj+0wNbqV68uAGmx8uYeICXBKibPPqqJY7nD548mfMbX2H1ZO+woSpx37vq8NNmHUCQWPDt2dkdvcKh0Ls+N215IZr6Pjsfbjdg+vm1V3mNGv8XuXmf0WtzOHUWFuN65kbaJQ0Jl/166iWHcqfzzjqqdm/N6rlDpdta99m7qZ7WO9ZyPEX3xK1cj0Fc3BImPLtI7t1T6mRTBMspZTqpunVn9Fu3Mw+54aolps/Y4lV/q6ROVvehhVPcdzGu1nvWcQJX/hhVMv2JKaw1z6BpLqRNzDfhMO8/+BNLGx/i7XTbmbawrOiWv6EmYvwGwfB8pGXmLe3NrH/gYvIDR+g/tzfkJGdG9Xy0yZbyWfFppGXfJZtW0/ms1+k0ZZG4bV/RGzR+zqWM9mavbJ+17qolamUOjqaYCmlVETVnq3MbXiFNTkXkZaVF9Wy08dPo5VEbFUjb8KCj15/nGlv/Dt77RMovulxHE5n1OuoTZvNBO+WETXWyOf38cH913DigeW8N+4yFl5xe9TrcLo87HZOJrV+ZL1vGg/so+KXZzE9sJlNn/gZM044J+p1FM8+gZARvCOs5XP7R++R/NfzcRAicPkTZOZOiGr5+SWz8Rs7oaqNUS1XKTVwmmAppVTE3qdvJ4yNyRfdFv3CbTb2eaaS1bw5+mUPkXAozDt/vp05b95AuWMCmV95mdS0zCGpS8YfRzqtlO8eGROBVFVW8PFPz+WE+md5d/zVnHDjA1FtheiuIX0Oxb5thIPBISk/2nas/xetvzmTokAZH510P/PPvmZI6vEkpbLXPoGEETLFvzGGD557kIKnL8Bgo+ny55gwPToTxXRnc7qocEwkqXHkjttTaqTTBEsppYAda1awuOklVo+/gvzCSUNSR1vmHCaFdtPa4R2S8qOpvrqctT+7gJN2/R/rU04l/5uvk54d3Va97sbNPBGAfR/H/01117/5NPYHT6bUv46Nx/83J95wL2KzD1l9UngcieKjYkd8j6kJBgKsfOROJjx1Pi7jZ8/5j3Hcp784pHXWpc1iondT3Ld81hyo4p2fXc7iNd9hj2sKtn9/c9A3ou5LQ8o0Cnw7R/QEIEqNZJpgKaXGPL/PC8/fQg0ZzFoavdnxDucqWoBHApRtWTtkdQxWOBTm3b/9BvnNicxpe48Pp97C/P94hqSU9CGtt2j6Qvw4COyN37FGdVV7WfXzS5n7xrW025KpXPoCc87/xpDXmzvDuh9bVRyPNdq8+k3K/ncJJ+/8OZuTF+P4yjvMWPjJIa83WLCITFrYvys+u8OZcJj3//EQ/PoElrT8k7UTr2Pad1aQlR/dboGHC42bTQ4N1FZXDGk9SqmeOWIdgFJKxdpHf7mNRaFdrDvpV8xPH5oucAB5M06A96F+x4ew4MQhq+dY7Vq3At/z3+PEwCa2OWfgvvQ3LBrCX9m7sznd7HFNI6th3bDUdzRaW5tZ9+T/Mm/3Q8wlwLsTrmfBFXfiSUwelvonTptHC4mEyj8YlvqOxv492yh76naWNL1EnaSzetHPOP4z/wYiw1L/uFmnwUao3PAmBVPmDkudA/XxB68jr/yAEwIfs8sxGe8ly1kwa8mw1J00YQFsg8qtq8jJKxqWOpVSB2mCpXoVCIVp94Vo8wdp93ppb2vD19GKt6OdQMBPGCFshDBY/9pciDsZuyuRZI+T1AQHqR4nqQlO0hKc2G3D8x+uUkdj95rXOG7vw7yb/hlO/NTQdmfKmjCLDtxQuW5I6zlae3ZupuaZ77Ow5XVqSWNV6R0cf9HXEfvw/hfRNG4Rc8v/QnNLE6kp0blR72D4fB2sfvr/mLr1N5xMIxuSlpB28U85cerwfpEXm52yxFLGN64Z1nr70lCzn+1P3sn8qifJQlhbcAUzL7+b41OH7geKnhRPX0ATSZi97wJfH9a6e7N78xpq/n4ni9tXUE8aH865neMu+gZ2R/Qnh+lNwYxF8Cq07V0HXDxs9SqlLIP+31NEvg58FQgBzxtjvhNZ/z3g3yLrv2GMeXmwdalj5wsEqa2vp6V2P+0Nlfibqgm01hNub8B0NGDzNWH3N+EOtJAQaiYp3EoS7XgIkIMfp4QGXFfICG14aCaJWpPGNpNOLRl0eHLwpkyEzEm4cqcxLmcck3OSmZqbjNsxdOMXlOqNt7UR99+/QpXkMP2aXw15fWJ3sNc9jXFN8TEov7JsC3uf/W+Oq3+Rcdh5t/A6Zn3+hywcwla8vnimnIKr4k9sXvcm8065ICYxAAT8Pta98DvGf3QvnzDVbHbNoelTv6d00adiFlPH+BMp3fFLqvfvIXf8xJjFUVu9n63P/oT5+5ZxPD5WZXyGks/9N8cXTo5JPDa7nbKEUnIb18Wk/u7KNn1I/Yt3M795BbniYtWEf2P2529n0RB3r+1JenYe1WThrPl42OtWSg0ywRKRM4ALgXnGGJ+IjIusnwVcDswGxgOvisg0Y8zAv6WrAWlta6O+ag8tB/bS3rCfQGMVpvUAtvYaXN5aEgP1pIYayDRNFIi/xzKC2GiTJNptKXgdKQQ8GbS7iml1pYAzEZsrAZsrAbs7EYcrAac7CbvDiU0MgsGG9S8hH8bXStjbStjXiq29gfz2A0zoqMHj3UlioBHqsR47oMaksj1cyKMUU586A1v+PMaVzGFWURaz8lPxODXpUkPr4z9+jQXhatZ/ahnzM4YnqWjIWcjC8j/R0lRPyhDNyNefyl0fs/8f/8O8upfIwsbacRcx5ZIfcmJ+SUzi6TRx/pmE3xDat70NMUiwvO2trP/7/UzY8nsWmRp22Cez8ZQfMfvUS4ZshsCBypz9SdjxS/aueYXc8dcPe/01+3ay89kfM7f6WU4SH+tSTyP9s3dywozoz4J3tLz5i5iw6z1qqvaSkze0Y5t6sn39ezS/fDfHt71FjvHw3virmHXJ91iYkz/ssXRXmTCVnNaRMSunUqPNYFuwbgJ+bIzxARhjDkTWXwg8Flm/W0R2AIuBdwdZ39hhDM1N9dTtL6PpQBneugqCjfuwtVbi6agm2V9DVqiWLGnm8FEAISM0SSrN9gzaXZnUeoo5kJiDLWUcjtRcXGl5JGbkkZKRS3J6Fg5PKmkiDHmHnIAXGsqgbgf+A9twVW5hVvUmFjW+hrPtBdgB3u1OtpginjYl1KXOxF4wn7wpxzO3eByTspOwaTdDFSXrX1/O8XV/Z2X+lzj55HOHrd6UaafhqPgju9a8wbwzLh22egH2bPuIA8/fzYLGV8jAzvs5lzL5ou+zeIhmTTxaKelZ7HBMIqX6/WGtt7Wpno+f/RlTd/2ZxTSz2TmLqiV3M++Mz8c8sepUPGcJrc8kEN79NjB8CVbVrg3s+8ePKa17keOBdRmfIv8z3/v/7d13eFxnlfjx75k+6r3LktwtW7bsuKUXIIV0EpJASEICZIFQAoHQlhDYZTcEltDJDwgkgZBCOgQCqaTacY17kW3Jqlbv0+f9/TFjR7YlW7ZGGkk+n+eZRzO3vPeMru7onnkblTMrxyyGo0mrOA92/5y6d/5G9iWfHbPjbl35Lzyv/phFnrfpwc2KopuYfdnXOSXGEyofr/7sSir3rqC7s5WUtKx4h6NGgTGGYNgQCAQIeD0Egz6CwSAmHMZE1xtj4MDP6GibYsVqt2NzOLHZHNjsDmw2OzarYLMIMkZ9KCezkSZYM4HTReT7gBf4ijFmFVAIrBiwXV102WFE5GbgZoApU8b+m6d4CYfCtDbX01K7k559uwm2VWPrqcXdV0+av4msUAsp4iXlkP06SKHDlkWfK4fqhAp2JRdgTS3AmV5EUnYh6dmFpGTkkWG1EZ/vxo/A7oKc2ZAzG8cccOxfHgpC205M47sEatZSXLue2e3v4Op7CXZAYLuVHaaIpy1T6Umbi6O4kvxZS5hfVkBGouNIR1SjzRiMCRMOhwmFwoTDocjDGEKhECYcWRd5hAibMOFQOPLhb0AsFkQifUwQwSJWxCKRm1qxICJYLFaEyLL9D0t0nQhYov8ILNHXMvD5EP8kujo7yXrtW9RYill8w91j+AuDqYvOIfiShd4d/4YxSrCqNrxFx7/uZlHPq+RgZ1Xe1Uy79JucWjD+PnPbc5ZT2fAIXR2tpKaP7k1hZ3MdO565mzn1j7EMD++6ltBwxm3MPfn8cXeDYbM7qEpYQHH725hweNQTvz0b3qTrhR8wv/s10rCxOutSSi76OkvKZo3qcY/H9Pmn0vxMOpadzwOjm2CZcIiNr/4F+9s/Y05gM50k8U7JfzD78q+yPC17VI99rJKmnwJ772Xvu68x78wPxTscBQQCAbo72+jrbMHT3Yq3px1/fxeB/h5Cnm6MvxeLvxdLoA9bMPKwh/pxhPqxhX3YTACbCeAwfuwEcBDEQYAEGfk0BWEjBLDRh5UgVoLY8IsDn7gIWJz4LS6CFjdBq4ugzU3Y6sbY3Bh7Atjd4EjA6kjA4kzE6kzC5krA7krC4UrGkZCIKyEZV0Iy7sRkHI7Jf+921ARLRF4EBpv85FvR/TOA5cAS4DEROaavQo0xvwF+A7B48eJJNWFDX18v+2q20l23DX/zTqSzBmdvPan+RnJCzeSIn5wB23eSTKs1h1ZXKQ1Jp0ByPvaMIpKyiknLKyUrbwrpzgTS4/aORonVBjlzkJw5JC+4JrLMGOioJtTwLt27VpFRt45z29eR1PkKdEJog7DLFLDaVkZfUimSOZ3EglnklJYztbiQZNfYdSYec6EgBD2E/B58nj68/X34vb34vf0Eoo+gv5+Qv5+Qz0M44MH4PZiAB4IeLEEvlpAXa8iHhANIOIAlHERMAGs4iJgg1uhzC0FsJojVBLERfZggdkLYCEWbiYI1+hjzX4URDEIIy4FHGAvBAc/3/xz43ImfImll9wf/gsudMKYxu5NS2eGYSXrLqtE9kDFsXfEPAv/+MfO9q+jFzdrCa5l26Tc4ObdodI89AkkLr8DR+BBb3nycyos+PSrHaK7dQc2zd1HR/CyLCbI26UxS3v9VFiw8bVSOFyve6R+kYOMdVG96g9L5Z8S8fBMOs3nFPwm/9iPme1fTY9y8XXAd0y/+KqeMw2R8P6vVQlXaaSzofIFQwIfV7oz5MQJ+H+/+43dkvXsv88N7aSSLt2d+lQWXfJ6lSfEfkGUwJfNPJ/SS0LfrLdAEK+ZCoTBdHa10tTbQ196Ir7OJYHcTpq8V4+nA6uvE7u/CHewmMdRNsukhhX4yxZB5hHL9xka/uPGIG68lAZ8lAZ8tiX5rFsbqBKsDrE6M1YGxOsDqwFidGJsTsToQizXyBZGAYMFEvywSsRBdCCaMCQUwoQCE/BAKQDiIhPwQDkZeh/xIyIcl2I815MUW8uIKdWIP+nB4vLiMFyc+XMaPRY7t9t1vrHjFhRcnPnHht7gIWFwErC5CFjchm5tw9GHskUSuN6mUqWddx7TssRm9daSOmmAZY94/1DoR+QzwpInMZPeOiISBLKAeGDguaFF02aQTCgZoqt5KW80W+pt2IO27SOipJstfR65pY+qAP7oOk0yrLZc291Qak8/Akl6CO6eMtPxpZBdNJy0pjbT4vZXxRQQyyrBmlJE577LIMmOguwFf7VpadryDs34di7p3kd79FtbuMOwB3oQuk0CVZNJtz6LfmUswMRdbcg7ulExcyRk4kzNwp2SRmJpJclISVrsLbE44nolCw+Hoh5P/wAdSKOjD5/Xi8/UT8PQR8PYR9PYR9PUR8vUT8nsI+/sx/n4I9EM08ZGgF0vAgyXkOfBhZg97sYV9OEzk4cSPjUhXRiuQEH0MK1QjeHHgw4FPIj9DYiMk9gM//WIlbEkgLHaMxU7YYsdYbBiLHWO1gyWyPPKwglgjNU0WC4hEPsDFMuDnwbVRkeWRWqoD59SEow8DRGrEDlqOeW+9Gfh84LoQluhP2f86HEKIvBYTguhPMWECJsSW0jMoX3zusZ/zGOjMXc7C2j/S2txEVk5sJ+814RCbXnkMx4qfMiewlTZSWVF2C+WXfpklE6CZ0MxFZ9L090xk6zMQ4wRr16aVtL/wf1R2vkgasDbtfHI/+DUWz1oQ0+OMlulnfAT/hu/StuLhmCZYoWCQ9S8+TMLqXzIvuJV2Uni77BbKL7mNU9OPdCs4ftjnfJDEt//Kpreei2ltTW9PJxuf/TllO+9nMa3ssZTwzsK7qDz/JvKdsU/kYik1LYNd1hISm8fv3HLjkQmH6GhpoKOpmr6Wvfja6wh3N2Dpa8HubSXB30ZKqJN000WGBA5rLRQ2Qrck0ivJeGwp+ByptDim0ORMI+xKR9zpWBIzsCdl4EzKICE5jYTkNJKS03AmpuCwOXHAxLkfNIaw34PX04u3vwdffy9eTw8BT+979z/ePsK+vui9Tx8E+pFA/3v3PEEP1pAHe7CfhHA7TuPFaby4jA83PmwS5uVQJdtnXzZhEiwZySzfIvJpoMAYc4eIzAReAqYA5cCfifS7Kogun3G0QS4WL15sVq9efdzxjCYTDtFcW8W+qnX01W/G1rqV9L5dFAdrcUrgwHZdJLLPVkhPYinBtDLsOTNILphFdmk5qWmZ467ZyaQQ9BFq20NrzWa66rbiba3B2tuI29tMSqCFdNOBlaP/nQexEql0t0e+4WH/uRqwrwELIez7a3MYWbW8z9jw4og+nPjEiV+cBMRJwOIiaHURsjoJW12ErS6MzQ12F8buRmwurA43FkdkIBKbMwG7MyHy05WIw52A05WE052Ay52I2+XGpqM1jgs1G1+n5ImLeH3u9zj9w1+MSZn7v2HPfvdeSsJ7qSeXvbM/QeXFt+BOnBj/kPZb8ctPsbD5Kbxf3EpqxsiaXZlwmE2vPwVv/YIK31r6jZMNuZcx5cLbKSiZHqOIx86a/z2PIt9Osv5zB1bbyFr5e/t72Pi3X5O/9fcUmUYaJZu6OZ+k4qJbcCUkxyjiseH19OH9wUx2Jy9h0W1Pj7i81qZadv71HsrrHyGVPrY45hFY/gUqzvwwFuv46Jc3HG//7Hrmtf+LxP+swzLCv5fJoruzlZa92+lurMLTWgvd9Tj6mkj07SM12EJWuA3HISMnB42FDkml25qOx5GBz5VN2J2FSYr0bXem5pGQkU9yVgFpGbnY7JO4FU0cBAN+/IEANocbh218XX8issYYs/jQ5SO92n4P/F5ENgF+4IZobdZmEXkM2AIEgVsm4giCO9e/TtvbD5HSvpGSQBW5eNnfdbWJLJpdZazLPhnJmU1y0VzyyspJz8ojVZOosWVzYs2dTW7ubHKXDrI+FKS3u422liZ6O9vw9bYT6G0n2N9FwO8h5PciQS8S9iNBH5awn1DYEI7mVSJggQN9foxYCVnsB2p5QhY7xuLAWOyI3YHV5sRqd2CxuyNtkaPJj82ViM2VhNOZgN2diNOdiMvpxGW3kGG3Yp9A/7TVyJTMO43Gp3JJ2/E4MLIEq7urnU1/+wVTdz7AYlrZZSnl7cq7OemDN1I4Qdu5Z51xE84nHmPt337Gydf/13GVEfB52PCP35Gx4bdUhGtoIZ23y25h7kW3sjwz5+gFjFOWRR8l9+0vsP6FB6m84KbjKqOlcS+7nruH2XWPsYRetttmsvak21nwgevIH8O5mmLJ5U5kTfZFLG3+Cy17t5M95fj6iu3e+BYdL/2Uio4XOVmCrE84Ffc5X6Z88ZCNecY1S+mpJLc/w66NbzBt4VnxDmdM+L0emmt30Nmwk/59uwh31ODsqSXZU09OqIkU+g7q3+41dlotWXTZs6lPXkB1Yj6SWoAjvZiE7Cmk55aSmVtAts3G+Opld+Kw2SMDcUwkI6rBirXxVoO16smfsuDd77HHPp321LlI3lxSS+ZTMHMRqWkTo9mEUmp8Wvngt1i2+xdsv/x5Zi04+Zj331e9hZq/30P5vr+SJB62OubhX34rFWdeMaG+YR/KxrveR7F3G5bPryUlc/ijsrXUVbHrn79ieu0TZNHJbksJLRU3U/nBT+B0ukcx4rERDASo/59KrBIm5/a1OFzDe08mHGbHqn/R9cZvqex+FRsh1ieegv20LzBv+bnjZrTEkWjYu4vM+5axOfV0Fn35qWHvF/D72PDSw7jX/pbywCb6jJMNWR+k6LxbKR5HoyUej7aWRtJ+MYc1Uz7B0k/8X7zDiZlwKExzYzXNezbR37AN07qDhO49ZPlryQ83H9QnyGfsNFly6XTm40kswqSV4MieSkreNHKKppGSkTsp/v5VfAxVg6UJ1hF4+3uxWG04nK54h6KUmmR6OprhpwvY7ZzD/K+9OKx/8OFgkM1vPUt4xW+o6FtBEAvvpp5D+tlfYPrC2A96EE87N66k9PEL2JK4lIov/xXLEWpW/F4P2954Aln7IHP73gFgg3sJZtlnWHDGZZMi4Rxo/StPUPnvm1ibeTELb3nwiH87rY3V7Hrlj+RXPcqUcC09uNmacyGF591K4bSKMYx6bLx531c5tfY3rK/8LpWX3XrEbfdsWUXL679neuNzZNBFg+RQM+1jlH/wsyNumjqebP7vU0gK9zDlP9+dcImECYdprttF447VeGrXY2/fSVp/NfnBehLFe2C7fuOk0VZEV0IJvrRpWDLLSMqbTmbRTLLzp2C1avN4NTo0wVJKqXFm5cPfZ9n2u3m77BZOvuF/Bt/IGGp3vkvT6w9QUvcMOaaNdlLYUnAlUz/4BQqK4js58Gh688//y6k77mK7awFpl/+Q3JlLI212jaGtsZq69S8R2v5PZnS9TjIeWkhnR8FllHzgMxSNw+HEY+m1e7/IGU33sy1xCekXfpfc2cvBYiXk6aZ621raNr9Myt6XmOnbjEUM26yzaJ9zLQvO+ziJyeNz1LtYCPh9bP7RBVT617Ah7woKLriNrCnlIEJ/ewPVm1fSv/UFcpv+TXG4joCx8m7CcmwnXUfFWR8ecb+28WjFY3ezfMv32XnZ35hReXq8wxmSz9tH7fZ1dOxeS6hxIymdWyn07yaVvgPbNEo2rc4p9CdPxZI9g4SCOeSWzSMzv3TCJY9qctAESymlxplwKMS6n1zJST0vsynxZGxLbiS1cCae/l766rfgrVlNQcvrFIYbCRnhXddiQvM/wvz3XYPTlRjv8MfEvx+9h4Vb7iZF+ukkGY8lgbRwJ258AHSZRLalnYFzwYcoP/VSHON8ZLdYCYfCvPrQ/7Bk1y9IFg9+YyMgdhLxHNhmt6WEpsLzKDz1I5TMXhTHaMdWX38/K3/zec7qeAKLGLzRWRdd+IHI4EJbnRV4y85l+jk3kJU76DSdk0Z3ZwvWe+ayPf0sFt36WLzDAaBtXy0N21fRV7MeW8sWMnt3UByqxRadz6nfOKm1l9KVMguTV0Fq6UKKZi8mKWXSTVSjJjhNsJRSahzy+wOsfOgO5lU/SLr0HrTOa+xscVXiLX0/U0+/mrxJXFt1JA31e9n+70dwNW9AAn34XFlYM0rJnH0aUyuW43ScGEnVYBoa6tjx5tPYWrdgAj7CSXm4c6dTuvB95IzjuavGQlXVdpreeRLTUYNBkOQ8EooXMGPRGaSkHjq49uT2xi8+xfKWx2m45gWmzDnsXnDUBAN+6ndtpGXnaoING0no2EqBt4osOg9ss49MmtzT6c+Yg6NwPjkzFlNQNndS1iaqyUcTLKWUGsd6errYsf5NfO21OJ0JuPJmMG12JS6X9gFVSo1MW3MD1l8toduWRd6XXsORGPtmot2drdRvXUV3zTosTZtI691OcaAGV3QqG7+xUmubQlvSLMI5c0kqqaRo9lLSsmI7F6BSY0kTLKWUUkqpE9Qbzz/GyW/fzM6ESqbc/AgJ6ceX2AT9Php2b6R11zoCDZtwdWwj17OLPNNyYJsOkql3TqMnbQ62/PlkTj+JohkLdNAwNemM1jxYSimllFJqnDvt/Kt4tbuRkzf/F/0/XcL2qdeSt/QK8qZVIPaDE5+gp4eOlgZa63fT27iDUNtuHN3VpPVXUxSsY4oEmQIEjJVaaxG1SRXsyZpDQvFC8mctITt/Cuk66IQ6gWkNllJKKaXUCWLD6jfw//M7LA68d7/VQQohsSLG4MZDQnQQmf0CxkqjJZd2ZxGe9JnY8itIK62keOYCXMOci02pyUhrsJRSSimlTnDzF5+GOelF9uzeQf27LxJu24Otbx9CGBDC9gRMYjaWpBySsovJKJ5DbvE0ptgdnNjDpig1fJpgKaWUUkqdQESEsmmzKJs2ueeLUypetIGsUkoppZRSSsWIJlhKKaWUUkopFSOaYCmllFJKKaVUjIyrUQRFpAWoiXcch8gCWuMdhBozer5PHHquTxx6rk8ser5PHHquTyzj8XyXGGOyD104rhKs8UhEVg82/KKanPR8nzj0XJ849FyfWPR8nzj0XJ9YJtL51iaCSimllFJKKRUjmmAppZRSSimlVIxognV0v4l3AGpM6fk+cei5PnHouT6x6Pk+cei5PrFMmPOtfbCUUkoppZRSKka0BksppZRSSimlYkQTLKWUUkoppZSKEU2wjkBEzheR7SJSJSJfj3c8KnZEpFhEXhGRLSKyWUS+GF2eISIviMjO6M/0eMeqYkNErCKyTkT+Fn1dJiIro9f3oyLiiHeMKjZEJE1EHheRbSKyVURO1mt7chKRL0U/wzeJyMMi4tJre/IQkd+LSLOIbBqwbNBrWSJ+Fj3vG0RkUfwiV8dqiHP9w+jn+AYReUpE0gas+0b0XG8XkfPiEvQRaII1BBGxAr8ELgDKgY+ISHl8o1IxFARuM8aUA8uBW6Ln9+vAS8aYGcBL0ddqcvgisHXA6x8A9xhjpgMdwCfiEpUaDT8FnjfGzAYWEDnvem1PMiJSCHwBWGyMmQdYgWvQa3syuR84/5BlQ13LFwAzoo+bgV+PUYwqNu7n8HP9AjDPGDMf2AF8AyB6v3YNMDe6z6+i9+3jhiZYQ1sKVBljdhtj/MAjwKVxjknFiDGm0RizNvq8h8gNWCGRc/xAdLMHgMviEqCKKREpAi4Efhd9LcA5wOPRTfRcTxIikgqcAdwHYIzxG2M60Wt7srIBbhGxAQlAI3ptTxrGmNeA9kMWD3UtXwo8aCJWAGkikj8mgaoRG+xcG2P+ZYwJRl+uAIqizy8FHjHG+Iwxe4AqIvft44YmWEMrBGoHvK6LLlOTjIiUAguBlUCuMaYxuqoJyI1XXCqmfgLcDoSjrzOBzgEf3Hp9Tx5lQAvwh2iT0N+JSCJ6bU86xph64EfAXiKJVRewBr22J7uhrmW9b5vcbgL+EX0+7s+1JljqhCYiScATwK3GmO6B60xkDgOdx2CCE5GLgGZjzJp4x6LGhA1YBPzaGLMQ6OOQ5oB6bU8O0b43lxJJqguARA5vYqQmMb2WTwwi8i0iXTseincsw6UJ1tDqgeIBr4uiy9QkISJ2IsnVQ8aYJ6OL9+1vUhD92Ryv+FTMnApcIiLVRJr6nkOkj05atFkR6PU9mdQBdcaYldHXjxNJuPTannzeD+wxxrQYYwLAk0Sud722J7ehrmW9b5uEROTjwEXAtea9yXvH/bnWBGtoq4AZ0dGIHEQ60z0b55hUjET74NwHbDXG/HjAqmeBG6LPbwCeGevYVGwZY75hjCkyxpQSuY5fNsZcC7wCXBndTM/1JGGMaQJqRWRWdNH7gC3otT0Z7QWWi0hC9DN9/7nWa3tyG+pafha4Pjqa4HKga0BTQjUBicj5RJr3X2KM6R+w6lngGhFxikgZkYFN3olHjEOR95JBdSgR+SCRvhtW4PfGmO/HNyIVKyJyGvA6sJH3+uV8k0g/rMeAKUANcJUx5tAOtmqCEpGzgK8YYy4SkalEarQygHXAx4wxvjiGp2JERCqJDGjiAHYDNxL5QlGv7UlGRL4LXE2k+dA64JNE+mLotT0JiMjDwFlAFrAP+A7wNINcy9Ek+xdEmon2AzcaY1bHIWx1HIY4198AnEBbdLMVxphPR7f/FpF+WUEi3Tz+cWiZ8aQJllJKKaWUUkrFiDYRVEoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkqpcUZESkXEiIgt3rGoE4OIbBaRs+Idh1JKTQaaYCmllJrwROReEemNPvwiEhjw+h/xjm+8M8bMNca8GssyRSRDRB4VkTYRaRWRh0QkJZbHUEqp8UgTLKWUijGteRp7xphPG2OSjDFJwP8Aj+5/bYy5YP92E+ncTKRYh/DfQDpQBkwDcoE74xmQUkqNBU2wlFIqBkSkWkS+JiIbgD4RsYnIchF5S0Q6ReTdgU2wRORVEflfEXlHRLpF5BkRyRii7BtFZKuI9IjIbhH5j0PWXyoi66Pl7BKR86PLU0XkPhFpFJF6EflvEbEe5X1ME5GXD6l1SBuwrl1EFkVfF4hIy/73JSKXRJuadUbf35xDfj9fEZENItIVrdlwHftv+tgNcW6MiEwfsM39IvLfA15fFP2ddkbP4fxhHussEakTkW9Gf3/VInLtgPUXisi66LmqFZE7B6zb3zT0EyKyF3g5uvwvItIU/b29JiJzD4n7VyLyj2ht3ZsikiciPxGRDhHZJiILh/k7ev9w3uMxKAOeNsZ0G2O6gKeAuUfZRymlJjxNsJRSKnY+AlwIpBH5tv45It/iZwBfAZ4QkewB218P3ATkA0HgZ0OU2wxcBKQANwL3DEhylgIPAl+NHvcMoDq63/3RcqcDC4FzgU8e5T0I8L9AATAHKCZa62CM2QV8DfiTiCQAfwAeMMa8KiIzgYeBW4Fs4O/AX0XEMaDsq4Dzidx4zwc+PmgAIqdFE5uhHqcd5T0M5sC5McYEj/gLiCQkvwf+A8gE/h/wrIg4h3msPCALKARuAH4jIrOi6/qInPe0aDyfEZHLDtn/TCK/+/Oir/8BzABygLXAQ4dsfxXwn9Fj+oC3o9tlAY8DPx5m3IMSka8f6XwcYddfAheJSLqIpANXRN+LUkpNappgKaVU7PzMGFNrjPEAHwP+boz5uzEmbIx5AVgNfHDA9n80xmwyxvQB3wauGqyGyRjznDFml4n4N/Av4PTo6k8AvzfGvBA9Tr0xZpuI5EaPdasxps8Y0wzcA1xzpDdgjKmKluUzxrQQuTk/c8D63wJVwEoiieG3oquuBp6L7hsAfgS4gVMO+f00GGPagb8ClUPE8IYxJu0IjzeO9B6GMPDcHM3NwP8zxqw0xoSMMQ8QSVyWH8Pxvh39Hf6bSKJ9FYAx5lVjzMboudpAJCk985B974yeM090n98bY3qMMT4iye4CEUkdsP1Txpg1xhgvkVoirzHmQWNMCHiUSHJ93Iwxdx3pfBxh17WAA2iLPkLAr0YSi1JKTQSaYCmlVOzUDnheAnz4kG/6TyOSlAy2fQ1gJ1LrcBARuUBEVkSb53USSZz2b1cM7BoklpJoeY0Djv//iNSCDElEckXkkWiTwm7gT4PE9FtgHvDz6E0/RGq8avZvYIwJR99f4YD9mgY87weSjhRLjNUefZMDSoDbDjl3xUTe43B0RJPm/Wr27ysiy0TklWjTyi7g0xz++z0Qq4hYReQuiTT97Oa92smB++wb8NwzyOux/D0P9BiwA0gmUvu6i8jfk1JKTWqaYCmlVOyYAc9ridRQDfy2P9EYc9eAbYoHPJ8CBIDWgQVGm6U9QaRGKDdaY/B3Ik359h9n2iCx1BKpdckacPwUY8zR+sD8T/R9VBhjUojUxO0/FiKSBPwEuA+4U97rN9ZAJDHZv51E31/9UY53GBE5Xd4bAXCwx+lHL+Uw5pDX/UDCgNd5A57XAt8/5NwlGGMeHuax0kUkccDrKUR+PwB/Bp4Fio0xqcC9DPj9DhLrR4FLgfcDqUBpdPmh+4yaaH+yIc/HEXatJFIT2GeM6SXyXj94hO2VUmpS0ARLKaVGx5+Ai0XkvGgthCs6AELRgG0+JiLl0f5M3wMejzbrGsgBOIEWICgiFxDpS7XffcCNIvI+EbGISKGIzDbGNBJpSvh/IpISXTdNRA5tjnaoZKAX6BKRQiJ9uwb6KbDaGPNJIk3f7o0ufwy4MBqHHbiNSIL31tF+UYcyxrw+YATAwR6vH2uZg1gPfDR6bs7n4GZ6vwU+Ha1tEhFJlMjgFMlwYGCJ+49S/ndFxBFNBi8C/hJdngy0G2O80f5zHz1KOclEfo9tRBLC/zmG9xgTxpj/OdL5OMKuq4BPiohbRNxEml5uGJuolVIqfjTBUkqpUWCMqSVS8/BNIslRLZFkZeDn7h+JDETRBLiALwxSTk90+WNAB5Eb8mcHrH+H6MAXQBfwb96rSbqeSIK2Jbrv4xzcRHEw3wUWRct6Dnhy/woRuZTIIBWfiS76MrBIRK41xmwnUtv1cyK1cBcDFxtj/Ec5Xrx8kUiMncC1wNP7VxhjVgOfAn5B5PdWxcEDchQDbx6h7Kbofg1EBqT4tDFmW3TdZ4HviUgPcAeR83okDxJpYlhP5DyuONobG0duIlLjVkck/qlEBv1QSqlJTYw5tNWEUkqp0SYirwJ/Msb8Lt6xqOGLjor4LjA/OpjHoevPInJeiw5dp5RS6sQw0ScxVEoppcZMtEZuzlE3VEopdcLSJoJKKXWCEZF7hxiw4N6j760mIhGZcoSBKqbEOz6llJpMtImgUkoppZRSSsVIzGqwoiMxrRORv0Vfl4nIShGpEpFHo+3WlVJKKaWUUmrSilkNloh8GVgMpBhjLhKRx4AnjTGPRJudvGuM+fWRysjKyjKlpaUxiUcppZRSSimlRsuaNWtajTHZhy6PySAX0XldLgS+D3w5OsHkObw3v8cDwJ3AEROs0tJSVq9eHYuQlFJKKaWUUmrUiEjNYMtj1UTwJ8DtQDj6OhPoNMYEo6/rgMIhArtZRFaLyOqWlpYYhaOUUkoppZRSY2/ECZaIXAQ0G2PWHM/+xpjfGGMWG2MWZ2cfVsOmlFJKKaWUUhNGLJoIngpcIiIfBFxACvBTIE1EbNFarCIis7grpdSEEgobjDHYrDqrhVJKKaWObsQJljHmG8A34MAM9l8xxlwrIn8BrgQeAW4Anjme8gOBAHV1dXi93pGGqk4wLpeLoqIi7HZ7vENRE1Q4bPjVPXeSGmjmqtt+gctujXdISimllBrnYjLIxRC+BjwiIv8NrAPuO55C6urqSE5OprS0lMjYGUodnTGGtrY26urqKCsri3c4aoLatXkVn+/5CQCvvfMRzjj1jPgGpJRSSqlxL6ZtXowxrxpjLoo+322MWWqMmW6M+bAxxnc8ZXq9XjIzMzW5UsdERMjMzNSaTzUibbvXHXgeWv9oHCNRSiml1EQxIToVaHKljof+3aiRMm1VANTYp5LZvu4oWyullFJKTZAESyml4sHRtYdGsujIWcb0YBVdfZ54h6SUUkqpcU4TrGEQEW677bYDr3/0ox9x5513xi+gAVasWMGyZcuorKxkzpw5B+J69dVXeeutt4673JqaGhYtWkRlZSVz587l3nvvjVHESk0cKZ46mu1FOEqWkiA+arYd12wUSimllDqBaII1DE6nkyeffJLW1taYlmuMIRwOH33DI7jhhhv4zW9+w/r169m0aRNXXXUVMPIEKz8/n7fffpv169ezcuVK7rrrLhoaGkYUq1ITTUKwC68jnexplQB01WyMb0BKKaWUGvc0wRoGm83GzTffzD333HPYupaWFq644gqWLFnCkiVLePPNNwG48847+dGPfnRgu3nz5lFdXU11dTWzZs3i+uuvZ968edTW1vLVr36VefPmUVFRwaOPRjrSv/rqq5x11llceeWVzJ49m2uvvRZjzGHHb25uJj8/HwCr1Up5eTnV1dXce++93HPPPVRWVvL6668fMc7rrruOk08+mRkzZvDb3/4WAIfDgdPpBMDn8w2ZCP7sZz+jvLyc+fPnc8011wDQ3t7OZZddxvz581m+fDkbNmw4cKwbbriB008/nZKSEp588kluv/12KioqOP/88wkEAgB873vfY8mSJcybN4+bb775sPcdDocpLS2ls7PzwLIZM2awb9++I51GpY6ZO9xHyJ5M1pRyQkYI7tsW75CUUkopNc6N5jDtMffdv25mS0N3TMssL0jhOxfPPep2t9xyC/Pnz+f2228/aPkXv/hFvvSlL3Haaaexd+9ezjvvPLZu3XrEsnbu3MkDDzzA8uXLeeKJJ1i/fj3vvvsura2tLFmyhDPOiAwFvW7dOjZv3kxBQQGnnnoqb775JqeddtpBZX3pS19i1qxZnHXWWZx//vnccMMNlJaW8ulPf5qkpCS+8pWvAPDRj350yDg3bNjAihUr6OvrY+HChVx44YUUFBRQW1vLhRdeSFVVFT/84Q8pKCg47L3cdddd7NmzB6fTeSDh+c53vsPChQt5+umnefnll7n++utZv349ALt27eKVV15hy5YtnHzyyTzxxBPcfffdXH755Tz33HNcdtllfO5zn+OOO+4A4LrrruNvf/sbF1988YFjWiwWLr30Up566iluvPFGVq5cSUlJCbm5uUc9j0odiyT6CDtTELuLJlsB7q6qeIeklFJKqXFOa7CGKSUlheuvv56f/exnBy1/8cUX+dznPkdlZSWXXHIJ3d3d9Pb2HrGskpISli9fDsAbb7zBRz7yEaxWK7m5uZx55pmsWrUKgKVLl1JUVITFYqGyspLq6urDyrrjjjtYvXo15557Ln/+8585//zzBz3mkeK89NJLcbvdZGVlcfbZZ/POO+8AUFxczIYNG6iqquKBBx4YtIZo/vz5XHvttfzpT3/CZrMdeE/XXXcdAOeccw5tbW10d0cS4wsuuAC73U5FRQWhUOhAvBUVFQfe3yuvvMKyZcuoqKjg5ZdfZvPmzYcd9+qrrz5Q2/fII49w9dVXH/F3rtSxCvk9OAhiXCkAdCZOJdu7Z9CaZKWUUkqp/SZUDdZwappG06233sqiRYu48cYbDywLh8OsWLECl8t10LY2m+2gZnUD52NKTEwc1vH2N9GDSPO/YDA46HbTpk3jM5/5DJ/61KfIzs6mra3tsG2GihMOH8780NcFBQXMmzeP119/nSuvvPKgdc899xyvvfYaf/3rX/n+97/Pxo1H7qOy/z1ZLBbsdvuBY1ksFoLBIF6vl89+9rOsXr2a4uJi7rzzzkHnsjr55JOpqqqipaWFp59+mv/8z/884nGVOla9na2kAlZXKgCBjJnM7HqL9u4+MlOT4hucUkoppcYtrcE6BhkZGVx11VXcd999B5ade+65/PznPz/wen9TuNLSUtauXQvA2rVr2bNnz6Blnn766Tz66KOEQiFaWlp47bXXWLp06bBjeu655w58o75z506sVitpaWkkJyfT09Nz1DgBnnnmGbxeL21tbbz66qssWbKEuro6PJ7IkNQdHR288cYbzJo166Bjh8NhamtrOfvss/nBD35AV1cXvb29nH766Tz00ENApC9ZVlYWKSkpw3o/+5OprKwsent7efzxxwfdTkS4/PLL+fKXv8ycOXPIzMwcVvlKDVdvdzsA1oQ0AGy5c7BLiKbqIzcBVkoppdSJTROsY3TbbbcdNJrgz372M1avXs38+fMpLy8/MJz5FVdcQXt7O3PnzuUXv/gFM2fOHLS8yy+/nPnz57NgwQLOOecc7r77bvLy8oYdzx//+EdmzZpFZWUl1113HQ899BBWq5WLL76Yp5566sAgF0PFCZFmfmeffTbLly/n29/+NgUFBWzdupVly5axYMECzjzzTL7yla9QUVEBwCc/+UlWr15NKBTiYx/7GBUVFSxcuJAvfOELpKWlceedd7JmzRrmz5/P17/+dR544IFhv5+0tDQ+9alPMW/ePM477zyWLFlyYN299957UNxXX301f/rTn7R5oBoVgb5OACzuSA1Waknk779n74Z4haSUUkqpCUDGU3+CxYsXm9WrVx+0bOvWrcyZMydOEU1+d95550GDYUw2+vejjlfV288w/Z/Xs/Z9D7Po9A/i9/Ti+EEhb0z5NKfd9IN4h6eUUkqpOBORNcaYxYcuH3ENlogUi8grIrJFRDaLyBejyzNE5AUR2Rn9mT7SYyml1FgJeboAsLjTAHC4k2iWTGydgzf3VUoppZSC2AxyEQRuM8asFZFkYI2IvAB8HHjJGHOXiHwd+DrwtRgcT8XQnXfeGe8QlBqXjKcTAHti2oFlrY5iUvtr4hOQUkoppSaEEddgGWMajTFro897gK1AIXApsL/zzQPAZSM9llJKjZWQrx8AR0LygWX9SSXkBup1qHallFJKDSmmg1yISCmwEFgJ5BpjGqOrmoBBZ4EVkZtFZLWIrG5paYllOEopddyMP5JgOd3vDckezphGhvTQ1tocr7CUUkopNc7FLMESkSTgCeBWY0z3wHUm8nXvoF/5GmN+Y4xZbIxZnJ2dHatwlFJqRMIBD2EjB80d58qLjAbaXH345NdKKaWUUhCjBEtE7ESSq4eMMU9GF+8Tkfzo+nxAv/JVSk0c/n48OHA73uuqmjklMiJld/22eEWllFJKqXEuFqMICnAfsNUY8+MBq54Fbog+vwF4ZqTHiqenn34aEWHbtqFvrKqrq5k3b17Mjrl9+3bOOussKisrmTNnDjfffDMQmST473//+3GX6/V6Wbp0KQsWLGDu3Ll85zvfiVXISk0eQS9eHLjs1gOLcktmEzJCqKUqjoEppZRSajyLRQ3WqcB1wDkisj76+CBwF/ABEdkJvD/6esJ6+OGHOe2003j44YcHXR8MBkd8jFAodNDrL3zhC3zpS19i/fr1bN26lc9//vPAyBMsp9PJyy+/zLvvvsv69et5/vnnWbFixYhiV2qykYAHL07s1vc+Jm0OF02WXJzdOlS7UkoppQYXi1EE3zDGiDFmvjGmMvr4uzGmzRjzPmPMDGPM+40x7bEIOB56e3t54403uO+++3jkkUcOLH/11Vc5/fTTueSSSygvLwciida1117LnDlzuPLKK+nvj3SUf+mll1i4cCEVFRXcdNNN+Hw+AEpLS/na177GokWL+Mtf/nLQcRsbGykqKjrwuqKiAr/fzx133MGjjz5KZWUljz76KH19fdx0000sXbqUhQsX8swzkcrC+++/n0svvZSzzjqLGTNm8N3vfhcAESEpKdJxPxAIEAgEiFREHuwvf/kL8+bNY8GCBZxxxhlApPbrxhtvpKKigoULF/LKK68cONZll13GBz7wAUpLS/nFL37Bj3/8YxYuXMjy5ctpb4+c/t/+9rcsWbKEBQsWcMUVVxz4/Qy0fPlyNm9+r4/LWWedxaETUCs12ixBDz5xHra83VlEav/eOESklFJKqYkgFvNgjZ1/fB2aNsa2zLwKuODIlWvPPPMM559/PjNnziQzM5M1a9Zw0kknAbB27Vo2bdpEWVkZ1dXVbN++nfvuu49TTz2Vm266iV/96ld87nOf4+Mf/zgvvfQSM2fO5Prrr+fXv/41t956KwCZmZmsXbv2sON+6Utf4pxzzuGUU07h3HPP5cYbbyQtLY3vfe97rF69ml/84hcAfPOb3+Scc87h97//PZ2dnSxdupT3v//9ALzzzjts2rSJhIQElixZwoUXXsjixYsJhUKcdNJJVFVVccstt7Bs2bLDjv+9732Pf/7znxQWFtLZ2QnAL3/5S0SEjRs3sm3bNs4991x27NgBwKZNm1i3bh1er5fp06fzgx/8gHXr1vGlL32JBx98kFtvvZUPfehDfOpTnwLgP//zP7nvvvsO1Mztd/XVV/PYY4/x3e9+l8bGRhobG1m8+LBJspUaVZaQFz+Ow5b3J5dS1vwcJhxGLDEdiFUppZRSk4DeHQzDww8/zDXXXAPANddcc1AzwaVLl1JWVnbgdXFxMaeeeioAH/vYx3jjjTfYvn07ZWVlzJwZGYHshhtu4LXXXjuwz9VXXz3ocW+88Ua2bt3Khz/8YV599VWWL19+oOZroH/961/cddddVFZWctZZZ+H1etm7N/IN+wc+8AEyMzNxu9186EMf4o033gDAarWyfv166urqDiRhhzr11FP5+Mc/zm9/+9sDzRffeOMNPvaxjwEwe/ZsSkpKDiRYZ599NsnJyWRnZ5OamsrFF18MRGreqqurgUgSdvrpp1NRUcFDDz10UE3VfldddRWPP/44AI899hhXXnnloL8fpUaTNeTFb3EdttxkTCNJPLS31MchKqWUUkqNdxOrBusoNU2job29nZdffpmNGzciIoRCIUSEH/7whwAkJiYetP2hTe0Ga3p3qEPLGKigoICbbrqJm266iXnz5g2aCBljeOKJJ5g1a9ZBy1euXHnUeNLS0jj77LN5/vnnDxug495772XlypU899xznHTSSaxZs+aI78PpfK85lcViOfDaYrEc6KP28Y9/nKeffpoFCxZw//338+qrrx5WTmFhIZmZmWzYsIFHH32Ue++994jHVWo0WENeApbDmwi682bBdmit3kxmbnEcIlNKKaXUeKY1WEfx+OOPc91111FTU0N1dTW1tbWUlZXx+uuvD7r93r17efvttwH485//zGmnncasWbOorq6mqioy8tgf//hHzjzzzKMe+/nnnycQCADQ1NREW1sbhYWFJCcn09PTc2C78847j5///OdEphuDdevWHVj3wgsv0N7ejsfj4emnn+bUU0+lpaXlQJM/j8fDCy+8wOzZsw87/q5du1i2bBnf+973yM7Opra2ltNPP52HHnoIgB07drB3797DErsj6enpIT8/n0AgcKCcwVx99dXcfffddHV1MX/+/GGXr1Ss2MJegoPUYKUXR66VnoYdYx2SUkoppSYATbCO4uGHH+byyy8/aNkVV1wx5GiCs2bN4pe//CVz5syho6ODz3zmM7hcLv7whz/w4Q9/mIqKCiwWC5/+9KePeux//etfBwaZOO+88/jhD39IXl4eZ599Nlu2bDkwyMW3v/1tAoEA8+fPZ+7cuXz7298+UMbSpUu54oormD9/PldccQWLFy+msbGRs88+m/nz57NkyRI+8IEPcNFFFwFwxx138OyzzwLw1a9+lYqKCubNm8cpp5zCggUL+OxnP0s4HKaiooKrr76a+++//6Caq6P5r//6L5YtW8app556UFL37LPPcscddxx4feWVV/LII49w1VVXDbtspWLJHvYRsh6eYOVNmYnfWAm37oxDVEoppZQa72R/rcd4sHjxYnPoaHFbt25lzpw5cYpoYrv//vsPGgzjRKR/P+p4tXxvGtsSTuL0rzx22Lrq75bTmTiNyq/8NQ6RKaWUUmo8EJE1xpjDRmLTGiyllBqE0/gIW92DrmtzTiHNUzPGESmllFJqItAEaxL7+Mc/fkLXXik1Eg7jI2wbPMHyJJeQF2qAcHiMo1JKKaXUeDchEqzx1IxRTRz6d6OOmzG48GNsh/fBAjCZ03ERoKu5emzjGmXGGP5+///y+E++TLfHH+9wlFJKqQlp3CdYLpeLtrY2vVlWx8QYQ1tbGy7X4DfISh1R0Bv5aR+8BishLzKnXXP1lrGKaEzs3bKSD1bfxZWd9/HmU7+OdzhKKaXUhDTu58EqKiqirq6OlpaWeIeiJhiXy0VRUVG8w1ATkPH3I4AMkWBlTIkMnNLXsB24aOwCG2Utq56k2Ah9kkD27qeBL8Y7JKWUUmrCGfUES0TOB34KWIHfGWOOabZgu91OWVnZqMSmlFKD8Xl7ccGQNVj5RVPpN07CrVVjGtdoczWtotpaQnfRmVTW/JHG5lbyc7LiHVbMhMKGp554CLvNwiWXfWRYE8FPNN5ACJfdGu8wlFLqhDaqTQRFxAr8ErgAKAc+IiLlo3lMpZQaKb+nHwBxJAy63uWwUW/Jx9m9ZyzDGl3GUOrdRkPKfNLmvh+bhNn97qvxjiqmVr30OFduvoVL3/0M76xdffQdJpjnH/8dO/7rJP72xIPxDiXmuvv6eOoHH+dvP7iOPm8g3uHE3D//8TT//O4Hee3Vf8Y7FKVUDIx2H6ylQJUxZrcxxg88Alw6ysdUSqkR8Xl6AbAOkWABtDuLSfPsHauQRp2no4kk+glmzKRw3umEjRDc83a8w4op24aHDjz3vPbLOEYSez6/n8qN/8N8yx4WbvgeHo833iHF1Orn/sDlnqe4yPMsK/52X7zDialAMMjslV/jPPMm2a9+nWAwGO+QlFIjNNoJViFQO+B1XXTZASJys4isFpHV2s9KKTUe+L19AFidQydY/cml5ISaIDQ5boYaowN2JOTNwJ6YTp1tCkltG+IcVQwZw7SeNaxMvYCtKacxvfMNAsFQvKOKmeq1L5InbWxKex+F0sLaN/4e75BiKrPqCZosuTRZcknb/mi8w4mp7atepIQmqhIqmcNuNqx6Ld4hKaVGKO6jCBpjfmOMWWyMWZydnR3vcJRSisD+BMuROPRGmdOwE6Jn364ximp09TTsACC9aBYAnSmzKPDuIhSeHCO4du6rIZ1ugrkLCE57P0XSwo6t6+IdVsx07ngLgLyrfoQPO6GtkyfBCodCTPNtpSbjVBryP0CF/126OtrjHVbMdGx/E4CMq35J2Aj9m56Lc0RKqZEa7QSrHige8LooukwppcatoC/SB8vmGroGyx0dqr2tZnIM1R5q203ICFlFMwCQvHnkSxvVtbVH2XNiaN6+EgD3lIUUzT8bgKYtb8YzpJiyNW+kQXLJKpjKHtdcsjsnT/JYt3szSeLBUlCJa865OCTEnvWvxDusmHG3bqRRcsgonUeVfSYZzZOraa5SJ6LRTrBWATNEpExEHMA1wLOjfEyllBqR/TVYDvfQNViZJZHxenobto9JTKPN1lNPM+mkJUfec3LJQgCaqybHjXp//UYA8mYuJr2kgn5cWBsmx3sDyO/fTr0rkvT78hYxLbSHprbO+AYVIy073gEgY/oSyuafQdgIPbtWxjmq2Mnv30a9O1Jz3JW5gFJ/FR6vL85RKaVGYlQTLGNMEPgc8E9gK/CYMWbzaB5TKaVGan8NluMIfbAKC4roNgmTZqh2u6eZdmvWgaHL82aeBIC37t14hhUz4bY9tJg08rMzwWKl3jWD7J7JUftI0E9uuImelGkAJJYtxSEh9m6ZHElIcN82wkYonLEAd0o69bYi3C3r4x1WTAT8XvJCTfjSIzXHCWVLSRAfOzatinNkSqmRGPU+WMaYvxtjZhpjphljvj/ax1NKqZEK+z0AOBOShtwmwWmn1lIwaYZqT/S10Gt/b84rV3oBHaTiaJ0cSYirt5ZWe/6BBLIvaz7TQrvp6u2Pc2Qj19e8GysG0iNzRhbOOxWA/j2TI8Gyd9WwTzJxRWuU29PmUeLdRnASDFJSv2c7VjE4cyMJVn75aQB0V62IZ1hKqRGK+yAXSik13oSjNViuIyRYAB3OYtInyVDtacFWvK6c9xaI0OieRlbfjvgFFUOZ/nq63UUHXjunLMElAaq3TPyago66SDNVZ3akBsudOYVWycC1b30co4qdZE8tLfb3BiAO5y8iW7qoq9kZx6hio6NuGwDJBZHmnRnFs+kmEVvT+jhGpZQaKU2wlFLqEPtrsNzuIydYvtQyssItmIBnLMIaNcbfTwq9hJJyD1renzaLKaFafIGJPbGrCXjJDrfhS5pyYFl++ckAdO2a+AlWX1Mk0UgpnHlgWUNiOQV9k6P2MdtfT3fCe+NlpU5fDkDr9ok/GESgJdLEOKNodmSBCDWuWeT0aG8KpSYyTbCUUuoQJtCP31hxuRxH3M6aPR0Lho66iV3L09seGdzVkpJ/0HJrXjlu8VO3e2s8woqZ7n01WMRA+nsJVlrBTPpwIc2b4hhZbATbqvEYB3kFJQeW+XMqmEIjbe1tcYxs5MKebtLoJpDy3rkrnL2YgLESqFsfv8BipWMvfcZJZnbBgUU9GRVMCdbg907sL26UOpFpgqWUUocK9OPDgcN65I/IlMI5ADRXT+yagq59kWaOjvSD5oEnrWQBAG27J/ZAF+2NkX5yrsz3btKxWGhwTiWte2InxwCW7joaySIr2XlgWWJxJQC121bHKarY6GjcDYBtQHLsdCVQZy0ioWNiX3cAjr56mi05WAZ81tgL5mOXEHU7J88ol0qdaDTBUkqpQ0jQixfngQERhpI/dS4AfY3bxiKsUdPbUgdAYmbRQcsLZkQSLH/jxK7l6WupASAlr/Sg5T1pcygJ7sEfmNiDJbj6G2m35Rz091owawkAPdUT+ya9oymSHLtzSg9a3pY0g3zPxB/BM9HbRJfj4Ka5OTMiI3i271oTj5CUUjGgCZZSSh1Cgh78cuTmgQB5OTm0mlRo2zUGUY0eX0ekiWB67pSDljsT02iUHOxtE7uWx98emSw5M7/soOXW/HmkSD81uyf2XGYp/mb6XHkHLUvNn0o3iVibJ3Zfnr7mSHKcnjf1oOWB7Lnk0E5XW1M8woqZzGAznoSDm+YWTp2HxzgINWyMU1RKqZHSBEsppQ5hDfbjFfdRtxMRmu2FJPZWj35QoyjU1YjP2MnOzjtsXYt7KlmeiZ1A0l1Hh0kmMy3toMWZUxcB0FI1gZvRBX1kmnYCSQUHLxehwTmV9J6JnTwGO/YSNBZyC0sOWp44JTIRdv22iTtIid/bTwZdhJMPbpprs9uptZeS1DWxa8aVOpFpgqWUUoewh/rxWoaeZHignsQSMn11oxzR6LL2NdIi6bidtsPWedNnUhSqx+v1xiGy2HD0NdJqzcJiObjJZ96MSILlr98Qj7Bior81UjtnSSs+bF1f+hymBKsn9CiQlu46miWDJLfroOX5sxYD0FMzcZtAttZHmj/a0g8/dx3Jsyj07cKEw2MdllIqBjTBUkqpQzhC/fitR6/BAghnTCWbDnq7O0Y5qtHj8jTTac0cdJ0jfx5OCVJbNXH7YSX59tFtzz1suc2dQqMlH3fHxK0paIsOAuHKmnLYOmv+fBLFx96qidtM0NXfRLst57DlWblFtJA2oZtA7h/AIyG79LB14dy5pNFLW+PkmMhcqRONJlhKKXUIR6ifgHV4NViu3FkANOyauDd6SYEW+hzZg67LKIuOJLhn4o4kmBFswZNwePNHgNakmeR5qjDGjHFUsdETHQQiNa/ssHWZ0yKDJbRWTdzBElID++hzHn7uRIQG5zQyJnATyP7WagDS8qceti65NFK72rhjAjdfVeoEpgmWUkodwhn2ELAmDmvbzCmRCUI76iboXFHGkBFqw+MePAEpmFZByAiBxomZQAY9PaTQe1g/lwPrs8opNk00t7WPcWSx4Y0O4JFdePhNesHMhQSNhWDDxGwCacIhskMth/cvi+pNm0NRcC+hgG+MI4uN0P5zV1B62Lqi6CiQnr3rxzAipVSsjCjBEpEfisg2EdkgIk+JSNqAdd8QkSoR2S4i5404UqWUGiNu4yFoG14N1v6h2v37do5mSKMm1N+JGx/h5MFvYm2uRBqt+bg6JuZIgvvnwLKlDZ5gJZZUYhFD3fYJWsvTWUe7SSY7Pe2wVVaHmwZbEQkTtAlkV0s9dgkN2r8MwFIwH4eEaNw1MRNIS08draThch/+WZOWnkEduThaJ/5cX0qdiEZag/UCMM8YMx/YAXwDQETKgWuAucD5wK9ExDrCYyml1Jhw4yVsH14Nlt2VxD7JxtExMROszn2RBMQ6RAIC0JYwjWzv7rEKKaY698+jlH14HyV4b7CE7ur1YxVSTDn66mm15gw5Z1t70kwKvBOzCWRbQ+TcOTNLBl2/fxTItgnaBNIdnb9sKPvc08nqm5hfbCh1ohtRgmWM+ZcxJhh9uQLYP0vlpcAjxhifMWYPUAUsHcmxlFJqTAR92AlihplgAexzTyO7f2JOetrVFJlnyJ05eC0BQCBzNkXhRrp6escqrJjpb6kGIDV/+qDrk3On0Ycba/PEHMQjxddE9yB9lPYL5cwln1aam/eNYVSx0dMUmR4gZZA+SgBTZs7HZ+wEJmgTyHR/Iz2uwWuOATyZ5RSEGvH394xhVEqpWIhlH6ybgH9EnxcCtQPW1UWXHUZEbhaR1SKyuqWlJYbhKKXUsQt6Ijcz4koe9j7ejDkUh+vp7+8brbBGTX/rXgBScwevJQBwFZZjkzB1OyfeQBfh9mqCxjJoPxcgOl/UNNJ7J2ANpDHkhJrwJBUNuUlSSXS+qO0Tb76oQFukBiuraMag611OJ9XWKSR0TLz+j6FgkJxwM4GUwWtWARyFC7CIoX7HxKyhU+pEdtQES0ReFJFNgzwuHbDNt4Ag8NCxBmCM+Y0xZrExZnF29uCjWCml1Fjp7+0EwOpKGvY+jsL52CXE3h0TLwEJdNYTNkJW3tA3ellTIzfpHdUT7/1ZumppkiySE4Yedr8vfTalwT14/cEhtxmP+jsacOHHpA6dHBfMjjSB7KtZP0ZRxY6ls4Z2k0xaWvqQ27QlzaTAUwUTrAlkS2M1Dgkh6UOfu+zpkVEgO/esHauwlFIxctQEyxjzfmPMvEEezwCIyMeBi4BrzXuNvOuBge1NiqLLlFJqXOvv6QLA5koZ9j7Z0yN9QTr3TLxJT6WngRbSyEgZuklkbmk5AWMlvG/idbhP7K+nzTZ0EzoAW0EFyeJhT9XEen9ttZH+Ofasw4do3y85s4gOUrC1TLwmkO6+Wppt+UP2LwMIZM0ljW762ibWZN8ddZEa04ScwZs/AhSXzaLbJGAaN45VWEqpGBnpKILnA7cDlxhj+geseha4RkScIlIGzADeGcmxlFJqLPT3RRIsR8LwE6z8srn4jJ1Q48S7iXX0NdFuzTriTazYnDTainB3TrxmdOmBRnrdQw/gAQPmi9o1sWoKuhsj/f5S8gdvQgeACI3u6WROwCaQab5Guo/QRwkgIdoEsmGCNYHs2xc5d6kFQ587m81KjX0qyZ0TcxRIpU5kI+2D9QsgGXhBRNaLyL0AxpjNwGPAFuB54BZjTGiEx1JKqVHn7Y0kWM7E4SdYFpudOnsJSV0T70YoyddMzxCTDA/UkTSNPN+eCTUanfH3k2U6CKYMPYAHQO60hYSNEKifWIMleJsjfZTyphwhwQL608spCe3F450480WFg0GyQs0Eko987vJnRpLj3gnWBDLUVkPYCLlTBh98Zb/OlFkU+ndDODxGkSmlYmGkowhON8YUG2Mqo49PD1j3fWPMNGPMLGPMP45UjlJKjRfB3lYAnCnH1ie0I3kGBb7dEyoBAUgPteBz5x51u2B2OcXso7V14gxG1N4QGVrekjF0PxcAiyuJJlsBiRNtvqjOappJJyMt9Yib2Qvn45QANROoj2BrtI+SNXPo5o8AhXl51JtsrM0TayJsa/demiUTp3PovoEAJncuCXhpr98+RpEppWIhlqMIKqXUhBfuawfAnZp1bPtll5NNJy1NE6cvSKC/i2T6MUNMMjyQe0qkn1n9tpWjHVbMtNdHmsUlHqGfy4Ftk2aQ59s1oRJkd18dbba8IzbvhPcGS2jfNXFGo2vZG0koEnOnHXE7EaHBNY30nomVgCR56mizH7lvIEBqaaQJZPPOiXPulFKaYCml1EFMfyTBSjzGBCsleiNUt311zGMaLfuqI8NbO7KPfBMLUDTnZAB690ycG72epkgNVsYQw3wPFMqZS7HZR/2+1tEOK2bSfQ30JRy5fxlA3tT5+I2N0AQaLKG3KdJHKbNo5lG37c8opyBYR9A7caZJyPA30pcw9PD6+xXNXETICJ69E28AHaVOZJpgKaXUAOLpoNskkJzgOqb9iucsAaC3euIMlNBeFxmFLqXw6DexKdkFNEsmjuaJ00/J37ILn7FTVHzkZmYASSWV0TmHJkaC7PX0k2NaCR5hiPb9LHYHdfYpE2qwhGDbboLGQm7x0ZN/V9ECrGKo3T4xkv/u7k5yaMeklx5128z0NGqkEHvrxBrhUqkTnSZYSik1gHjb6ZJk7NZj+3hMTM9jn2TjbJk4tQTefZEmdPml5cPavjFhNrl9E+cm3d1VRb21EJvNdtRtC2ZFE+SaidFPqWnPZqxisOXOHtb2ncmzKJxATSATuqposOZjtTuPum3erMhcX61VEyPBqq+KfEa4CuYOa/uWxJlk9028USCVOpFpgqWUUgPYfF30WZKPa9+mxDkUTKAERDr20E4K6RmZw9renzOf4nADbe1toxxZbGR7q+lIPHrtFYA7q5ReErG1TIzBEjr3Rm7SU4rnDWt7kzuPbOmkob52NMOKmUzPHlpdwzt3xWVz6DOuCdMEsqsmUgucVTZ/WNuHcsrJNS10dUycAWaUOtFpgqWUUgM4A5147UcelW0o/tz5FNNIa8u+GEc1OpJ7d9NkO3o/kP2SSk/CIoaazW+PYlSx0d/XTV64mUD60Zs/AiBCg3s6Ob1bRzewGPE1bCFkhILpw7tJTy6LDFLStG38nzuvp5+CUCO+YZ47i9VKrWMqqZ0ToxldcN82AsY67JrjlNLIICV7N60YzbCUUjGkCZZSSg3gDnYTcBxfgpVUFmlmVrdl/N/EYgwF/mo6k448D89AxXMnzkAX9TvWYxGDs2B4N7EAPZmVTAvtpqe3ZxQjiw1761YaLPkkJSYNa/uiuacQMoK/+p1Rjmzk6naswybhYzp3nRkLmBqoIuD3jmJksZHUuY16WxEWu2NY20+pOA2A3t0T4HNFKQVogqWUUu8xhoxwOwF3znHtXjj3FAD6q1fFMqpR0d1SSwp9BLOG14cHICmriFbJwL5v/A900bMnMlhF+vSlw97HVroMh4So2zL+awoK+rfRnDT8c5eQlEa1rYyklvE/CEvnrkgSmDlj2bD3sZYsxykB9m4e3+fOGEORdwfNSXOGvU9KRg41liLc+8b/uVNKRWiCpZRSUd6edtziJ5yUf1z7p6TnUC95OJvH/0AJddsiSWBqyfCamO3XlDibgr7x3xTLNKyn0yRSVDpr2PsUzjsDgK4db45WWDHR3txAHq0Echcc036tafMp9W4lFAqNUmSxEaxbTw9uiqcNbxAIgILouWvf9sZohRUT+xpqyKITk3eM111yBSX9mzHh8ChFppSKJU2wlFIqqrOpGgBL6tEn3h1KU9LEGOiib88qwkaYEm32N1yevMWU0EDLvvpRiiw20jo3sdc5A5vNOux9svKKaZBcHI3juwlk3abXAUiONkkdLuuUpSSLh5pt4/v9ZXZuYK9zFhbr8M9dQXEZjWRhbRjfw+zXb/w3ABkzlh/TfuHCJaTTTXPNxOgjqNSJThMspZSK6m3dC4AjffgDPxwqkFtJPi20jvMExNW8nhpLIekZxzih8oxIM8i97742GmHFhLeng9LAbrqyTzrmfRuTKyjs2zSuhzP3VL2B31gpWXD6Me1XMO9MAJq3vD4aYcVEZ0crU0N76Ms9tuRRRKhPqqCgZ3yPJBjY/SYe42BKxSnHtF/GrEg/rKbN4/e6U0q9J2YJlojcJiJGRLKir0VEfiYiVSKyQUQWxepYSik1GnqaIwlWev7whoceTNq0SJ+fvZveiklMo8GEQxT1bWZf0vCbYO1XOv80AsaKd8/4fX9Va17CKobkmWcc876hwsXk0k7j3qpRiCw2UpvfYbdjFklJKce0X35ZOR2kIPXjt49gzbrIuUuceeYx7xsqXEwerTTV7R6FyGIjs201e1yzcTrdx7RfWflJ9Bg3geqVoxSZUiqWYpJgiUgxcC6wd8DiC4AZ0cfNwK9jcSyllBot/vZawkYoKCo97jJK5kWa3PWN44Eu6revIZ1uTOlpx7yv051MtX0aqa3rRiGy2Ojf+gI+Y2fmSWcf876Zs08FoH7Tv2MdVkx0tzUzI7Cdztxja2IGIBYLexPKyesav7U8/VtfwGvsTFt0HOduVqRGr3bD+Dx3LU17mRHaRXf+sV93DruNPa5y0jvWxz4wpVTMxaoG6x7gdmBgm4pLgQdNxAogTUSOr+e4UkqNAXvnHpokG7f72L5dHsidnE6tpQh3y/gdaa/p3X8BULjovOPavzNrIdP82/F6x+eQ2Pktr7PVNZ+EpGMfbr9kzjI8xkGwenyORle14hmsYkidf9Fx7e/LPYkSU0dbS1OMIxs5Ew5T3PI6OxMW4UoY3vDzA5XOW4bX2AnsGZ/Dme944ykA8hdfclz79+csojRYTVdneyzDUkqNghEnWCJyKVBvjDl02KxCYOCU8XXRZYfuf7OIrBaR1S0tOku5Uip+UvtraHYcf/+r/dpSy5ni2UYoND5H/Erc8wJ7pIji0mFOwnsIZ9nJuMVP1YbxdyO7e+PbFIfr8U09vuTR5nCy21VOdtv4HAjCuvkJWkhn5qJjb0IHkDI7sl/NuhdjGVZM7N7wBkU04ZtxwXHtb3O42O2aQ3b7+BzoInnHUzRJDiXlwx9+/qD9Z52BVQx71r0U48iUUrE2rARLRF4UkU2DPC4FvgnccbwBGGN+Y4xZbIxZnJ2dfbzFKKXUyBhDbrCO3qTSkRdVuJgc6aCmeufI44qx7rYmZng30JD3PkTkuMqYsiDSfKtj+/gbLKH1jfvxGxsz33fDcZfRm7eMqaE9tLfui2FkI9fdUs/cvpXsyL0Qq812XGWULTgdj3Hgrxp/gyW0v/mHSPPAs6477jI6c5YzLbibns7WGEY2cs11u5nnW09N0aVgOb7vtqctOhu/seLZMT6bQCql3jOsq9wY835jzLxDH8BuoAx4V0SqgSJgrYjkAfVA8YBiiqLLlFJq3OlsriUJD2ROH3FZWbP3j/g1/hKQnS/9AZuEyVx2zXGXkZZXSrNk4Wp8J4aRjVwo4Gf6vr+zIfFk0rPyjructPJzsIhhz5rxVcuz7YX7sEmYrNOOP3l0uhLY5Sonu2189RH0evqZ2fJPNqacecwjWw6UNOtMLGKoWTu+zl3Vi/dhEUP+mR8/7jJcCcnscswms0UHulBqvBtRE0FjzEZjTI4xptQYU0qkGeAiY0wT8CxwfXQ0weVAlzGmceQhK6VU7NVvjdy0pJQsHHFZhbMW48VOeO/4SkBMOETW9j9TZZ3KrAXHNv/VoepSFzGt/13C46gZ5Prnf08G3VgWXjuicqZWnoHP2PGNo1qeUMBP0c4/sd02m1kVS0dUVk/ecsqCe+hqGz81dBv+9itS6SNh2fUjKmfawrPwGTv9O8dPLY/P28f06j+zxVnJlOnzRlRWR85Spgaq6OvWflhKjWejOQ/W34nUcFUBvwU+O4rHUkqpEemrWQtA8XH2jxjIYndS45hJRsehXVPja9u/H6MktJemuZ867uaB+4VLTiODbvZsXxuj6EYmFAyQs/an7LaUUnnOVSMqy+4cf7U86//6KwrMPnqX3TristKjNXS71rww8sBiwOftp2Tzr9hmm0P5KRePqKzExCR2OueQ0Tx+annWP/1TcmgndNpXRlxW0qyzsUmYPWtfjkFkSqnREtMEK1qT1Rp9bowxtxhjphljKowx47PXqVJKAc6WDeyVfNIzMmNSXk9WJdOCu+jv74tJeSNlwmGsb/6YenJZfOEnRlxe4cJzAdj37vhoirX22V9SbBpoX/oVLFbriMvry1vG1NBu2triP/hSb08nhRt+znbbLBaec/WIy5u64Aw8xjFuauhWP/YDcmnDf/rXkOPsnzRQT+5ypgZ309Ue/35YXR0tTNv2/9jqqGDeqReOuLyp0X5Y/TteHXlwSqlRM5o1WEopNSGYcIjS3vU0JC+IWZnOsuU4JcDuTePjm/R3n7uXmcEd1Fd8FpfTOeLy8ktms0+ycNTFf8Lh1qa9zNxwN1vtc1n0gZE1D9wvtfzsyIht46CWZ8sfv0KOaUPO+z4W68j/bTtcbna55pLTGv8mrNU7N7No16/YkLCc+WdcFpMy08rPxiKGqtX/ikl5I7H9wS+SZrqxX3hXTJLHpKQUdtpnk94c/3OnlBqaJlhKqRNe3bZVpNKLKTsjZmUWzYuU1bXjzZiVebza99VRuuZ/2GKdw6JLPxebQkWoSz2Jsr51cR2OPhwKUf/Ap3AZPwlX/iomCQhAWeVZkTmVdsa3Kda7rzzO4n2PszL7CmYu+UDMyu3NP4Vp4T2076uLWZnHyuv14H30EwTFSsHH7oURNlvdb9rCsyIjJcb53K15/kGWdjzH6oJrmb7g2CcXHkpn7nKmBnbQ0xn/2lWl1OA0wVJKnfD2RSfeLT7OiXcHk55fSrNk4miK73xKoWCQpj98DLfx4r7i59iOc3jvwVjKTiOTbnZtid97fOf+21ngWcG6ObdRMqsyZuXanQnscFdS2Ba/Grq9OzdQ9u8vUG0tYeGN98S07PQFkbmm9rzz15iWO1wmHGbdvZ9kdnArVcv+l6yCspiV7XAlsCOhkqLW+H25sWPDO8x++6vssM1k0Q0/jGnZqfMvwCqGXSvic+6UUkenCZZS6oTnqn2DGimkcMq0mJZbnzSPwt7NMS3zmBjDmt/eQrl3HWvmfZOy8iUxLb442g+reWN8mtGtfuwultf+jndSL2DZVV+Lefl9xWcxJVxPU832mJd9NM17t+N46HJCWHF87BFciSkxLX/6/FNoIxV2jv2ktSYc5p3ffo6TO//GquIbWXjBjTE/Rl/RWRSbBlpqtsW87KOp3bGejCc/TL8kkH7jozhc7piWP3PhmXSZREI74t98VSk1OE2wlFInNJ+3j6l966lPXzLikfUOFcxfTAHNNNRVx7Tc4TDG8OYfvs7SfY/wdtaVnPLhL8f8GFnFs2iQXBJqx36whFV/+RGLt/wva92nUPnZB2LSv+VQBYsjgxLUjHEtT+2uLQT/cBFu46H18scomjon5sewWq3sTl3G1O6VhEOhmJc/lHAozNu//QLLGh9iReblLL7xx6NynJxFFwFQu3psz92uLatx/PlyBIP3o0+RXTg15sdwOBzsSFpMScfbYEzMy1dKjZwmWEqpE9qON58hQXwkVFwS87Kz50T6XdS8O7Zz8kRqCL7AqXvvZU3quSz9zG9G50Ai1GWewqz+tXi9ntE5xiHCoRArf3crSzb/F+vdy5jz+SdwxGDQjsFMmbGARrJx7Bm7vjzbV79I0h/PI8H003LZI8wY4XxlRyLT30863ex8d2ya0vX19bHqnis5pfGPrMq8lKWfvW9UEmOAqTMrqCMX++6xq6Fb9+9nyH7sYmyE6b3qcYpnVo7asXyl7yPLdNCwffxMJaCUeo8mWEqpE1pww5N0mGRmnzzyIZQPNWXuyXixE9z9RszLHorX08fqn17DsoYHWZFxKQs//zDWGAxbPpSE8vNIFB9bV45+c6WezjbW/t+lLKv7AyvSLqL81r/iTkgYteOJxUJtxsnM6FuL3+cbteMAYAyrnvg/Sv96Db2SSNdH/8H0hbEbdGUw05dfTNgIbeufG9XjADRUb2fvj89mWe9LrJ72eRbfcn9MhtMfisVqoS7zFKb1rsXr6R+140CkVu61B77DvJdvpN2She/j/6KkfGSTQR/NlKWR+cIaVv9tVI+jlDo+mmAppU5YIb+HGV1vsDXtDFwuV8zLtzjcVLvKyesYm2kA99VVUfd/Z7Kk65+snHIzyz53P5YYDmoxmOlLL8BvrPRufn5Uj7N7w1t0//QUKvveZNWML7HsC38ctZqrgRyzzyVJPOxYNXpDfnd1trP6x1eyZOP32O5eQMotr1Ayc/6oHW+/tOwCdtlnkNnwyqgeZ80/HyLp/rMpCu1l8+m/ZPF1/z1qNVcDJcw9nwTxsW3FP0btGB1tzaz/0YWcsecnbE05hdxb/01B6axRO95+U0qmUmUpI3Hv2PehU0odnSZYSqkT1s63niEJD9Z5l4/aMXrzlzMttIeWln2jdgyAtS/8GfvvziYvUMfqk3/Jspt+OCY3sa6kNHa55zOl5VVMOPbDtYeDAd7547cpeuJibMbP1vMfZsm1d47JewOYecol9BsnvWsfH5XyN7/1d3p/spyF3S/xdulnKP/KP0nNyh+VYw2mpehcZgW301K7I+Zl93a1s/InH+Wktz/LPms+HR97kbnv+1jMjzOUWSdfRK9xE9jwxKiUv+aFRwj8fBnz+lfyzuzbqfjSs7hTMkblWIPZV/B+Zvk209FUM2bHVEoNjyZYSqkTlnf9E3SaJCpOu2jUjpE2JzLp6Z61L45K+d6+bt75+fUsevMzdFoz6fjoP1h83tjdxAL0TruIElNP9dbY9gep27meXT84jaW7fsbGxJNx3PImFSefH9NjHE1CUirbU05hZvvL+P3+mJXr6e1m1a8/ydx/fQQjFvZc9BdO/vhdMR1GfziKTo9MzLz71T/FtNyNrz1J308Ws7jj76wsuIHS299gyvR5MT3G0TjdSWxOOY1ZHa8S8ntjVm5nWwsrfnw1J735H/RZU6i/4q8sveZbY5b075d98rVYxFD97z+O6XGVUkenCZY6JuGwoc8XpKPPT1uvj5YeH83dXpq6Io+2Xh893gChsI5spMa3oK+f6Z2vszn1DBLcsR1GeaCSBWfiM3YCVbEf6GLX+tdo/b9lLG59lrfzrqXoq29TPGthzI9zNKVnXEPQWNj31p9jUl4wEOCtB79D9p/eT3agjrcq72bRV54lPbsgJuUfK9v8K8igm01vxGZEuo2vPUPb/y1hyb6/8GbWh0m/7R2mx3AS4WMxZVo5222zyKyOTV+ejtYmVtzzUSpevhEvbrZf9CTLbv4ZdufoXWNHIhVXkkIfW15/auSFGcO6f/0R38+XsrjrX7xTfBNFt6+gbP6pIy/7OMwor2SHZRrJVc/E5fhKqaGN+KsyEfk8cAsQAp4zxtweXf4N4BPR5V8wxvxzpMdSseHxBensaKGnfR/93e14utvw97UT7O0g7OkEbxdWfxfOYA+2kAdryI817MdmfNhMACcBnBIAIGwshLAQRghhpQ8nvcZNLwl4LQn021LpsWcTSMzFllaIO6uEtLxSijISKUpPIDvJicUS26GxlRqO7W8+zVw8OOePXvNAiExYu9G9gJLWf2PC4Zh8y+319LP2T99kSd2DtEkaG9//ICefHvtREIcrO7eIja5Kihv+QTj04xENXrBr/WuYv97KKaFdrEs6laKP3csp+VNiGO2xm336h+h+82vI2vvhnCuOu5yOfXupfuhWFna/RJ3ks/nchzn1lA/GLtDj1Dn9MpZt+wF71v+bssozj6sMEw6x7tlfUrb+bhabPlYVfoyK6+7G5U6McbTHpvLMy2l763ZY83t430eOu5yGPdtoeewLLPSsZI+1lL6LH2Bp5egOQnI0IkLr1Es5perH1G5+m+K5ozfipFLq2IwowRKRs4FLgQXGGJ+I5ESXlwPXAHOBAuBFEZlpjBm7yTZOMH6/n/bmerpaG+hrb8TbuY9gdxP0tWLztOL0tZEY7CAt3EkGXeRLiKFa+Qex0itJeCxJ+K1uwk4nYYsbY03D2JyEbC76bQ4EEMJYMFhNGJsJ4g70kxfsxRZoxx7YS0KwA7vXD16gDdgFHuNgt8lnpSmg1lKEN30GtsJKCkrnMLcwjRm5SditWrmqRpfv3SfpNEnMO230ExPf9Aso2vRfVG1ZxfR5y0ZU1rZ3XsD9/K2cEq5jddp5zLjhFyzIyIlRpMfPN+8aCtfczsZ/P0bFOcd+I9vT2cKOh25nYfNTtEka65b+mIUX3AQxnpvseNhdiazM+xCnNP6J5pqt5JQc27xUwYCfNY//kLnbf065CfJm8ac46drvUhTn5GO/med9mq6tv6DrpR/BcSRYezavxPfMl1jk38xWezmdl/2UJXNHdxS94XI4nWwqvJoz639D08415M046Zj293r6WfvI91hU/TvSsPD2jC+z+KqvY3eM/gArwzHz/M/S8/Nf0/3ij2Du6PQ1U0odOzEjmKRORB4DfmOMefGQ5d8AMMb8b/T1P4E7jTFvH6m8xYsXm9Wrx2a0rYnChMN0dbXT1lhNd/NePK11hLrqsfQ24vI0kxxoIT3USqbpwiKHn0sfdjoljT5bOl5nBgFXFiF3FiRlY0vOwpWUSUJqBompWSSnZmJLzAC7O3Y3NcaApwN6mqCnAX9rDf2NWwk178DRuYtETz0WInF3mwQ2h0vZShntqeXYixZSNH0eC6ZkMjUrUWu6VMz4vR78d5WxKfUcln8pNs3ajqS1aS8Zv57PypJPcfJNPzyuMvp7Otj04G0sbn6SZsmi+awfMP+s469NiTW/30/r/5TT48hh1jffGvZ+4WCQNX/7NVPX/5A0081bWVcy/2N3k5o+doMFDEd97R6yfreYjVkfZPHnh9nnxRi2vP4krle/x9RwNRuci0m+4h7KxmCEwGP11m++wPL6B6n7yEtMmT28JKRzXy07H/sWi1qfpVuS2Drvqyy7/HOjOi3A8WhsaiD115VsTz2NhV9+clj7mHCYDf+6n6yVd1Fo9rE26UwKr7mH3KJpoxztsXvhp//BOR2P4v/sGtw54y8+pSYzEVljjFl86PKRNhGcCZwuIt8nUkfxFWPMKqAQWDFgu7rossECuxm4GWDKlPg2A4kHj8dDU20VXY278LXWYDpqsPXU4fY2keJvISPcRpr4SDtkvy6S6LBm0evIpsY9m92J+VhS8nCk5pKYkUdKVgHpOYU43ankxvMbYBFIyIg8cstxTAfHwPUBD7RsI9ywAVO9mln161nc+SL23udgG/RvdbLVTOExSxm9aeU4iispnHkSFaU55CTHflhtdWLYsfpF5uHBOS/2c18NJitvCtscc8ire55w6AdYjqGG1oTDvPvCn8hf8V0Wh9tYmXMlFdf/iLzktNEL+Dg4HA6qZ97IKTvuZsOrjzP/rCuPus+ON5/C/vJ3WRLawzbbbFovepjTK+PTn+VoCovLeDP7ck5t/Qt7Vv+DssUXHHH73e++gff5b1PuWUu95LL+5J+x4APXjflACMM1+7Kv0fnLJwk++WnM7W8iNseQ2/Z0trL5yR8wf+8DVJogq3KuZM41/80pmXljGPHw5ecV8HrhtZze8Ht2/vsRZpx5zdAbG8OWt/6G9ZX/YkFwO7stJWw6+34WnTG6TYlHIvfMT2F9+hG2vfU3Fl72xXiHowYIBoN0dXfR392Jr78bf38XAU83QU8PYU83YV8P+HoI+z2YoBcT8EHIiyUUwBr2Yw37sIYDWMORLhpiQogJYzCICR/UkgjMgS+sQ1gJYiUskYcRW/S5DSNWjMVG2GIjZHERtLowNhfYXGBPALsbi92N1ZmAxeHG5kzA5kzA4UrE5krE6U7C6U7EmZCE252Ew+kaFy0Nxpuj1mCJyIvAYJ+a3wK+D7wCfAFYAjwKTAV+DqwwxvwpWsZ9wD+MMUcc53Yy1mAFAwGa63bRUbeN/uZdhNr3YuuuI9FbT0ZgH9mm46Cap5ARWiSTDns2/c4cAgl5SEoBjvRCErOLSc8tJSNvClbn6E2uGXehALTuIFy/jq49awnUv0tK51Zc4T4AgsZClSmk2jaV3tQZWLOnk1Iwk7yyuUzNz8btGF/fno4lfyCEx9uPz9OHr78Pn68fv7efgLePgM9D0NePCXgwAS8m6IWAFwl6IOhDgl4k6MUS8mEJebGGvFhCfsQEIRwa8DPa4y7602LCCGGsJtIbz7L/JyEif9qG/X/hBon+PJQcWCYDtgMwEiktjGCwEBILhv3LLISP8Nrsf76/DLFiEHL8dcwI78Z32y4Sx2hY5fXP/JTKdXew9pw/seiMi4e1T/3O9XQ88SXmedeyx1KC57wfU77s/aMc6fHzeftp+sES3KYf63+8SmZ+yeEbGUPV20/j//c9lPvepZ4c6hbdzpILP3FMiWc8dHR20vOT5bjEj7n+WXLLDh4Vz4RDbH3rb/DmTyn3rKGTJDZOvZklV92OyxWfQR6OxatP/Y6z3r2NddmXUHnzbxH7wV9itdTuoOb5nzK7/gmS8LA68QwyLvk+U2eNvxq5Q3X39dH0f6eTE95H94f+zJT5BzeFDPm9bHrlERJX/5LpgR00k8Geils56ZLPYrPb4xT18IRCYfq+V8iO7HNZ/LkH4h3OpBQKBuhsbaS7vZnezhY8XS0E+9qhvx3T347V14nd34kz0E1CqIvEUA9Jpo9EGf7olX5jwy92AtgJyP6Hg2D0ERI7xmIFsUQfEk2pJPKQ9z4/I/+HQ1ii/7st5r2fluhPqwniMD6cxocTP07jH7Ql1FF/N0bw4cArTnzixC8u/BYnQXEStEYSuJDVjbE6CdvcGHsC2NxgdyGOBCzRh9WRgMXmwGJ3YLE5sNocWO0OrHYnNpsdizuV9NxiEhxjO9Lq0QxVgzXSJoLPAz8wxrwSfb0LWA58Ek6cJoLhYJDm+l201mylr3E74bZduLpryPDVkh9uwiHvdT0LGCstliw67Ll4EgsJpxRjyyghMbeMtPxpZOaXYRsnbbvHlXAYOmvw1a2nrWoVwfoNpHRuJS3UetBmjSaDfdb8aHKaDUl52FPzcWcWkpqZR0paJkmpmbgSU8AyiomYMRD0QciHCXgJ+L34ff34Pf0EvP34ff0Eff0EfR6Cfg8hfz9hv4eQ3xtNgDwQ8MKBpMeLhHxYQ15sYR/WsB972Ifd+LCbwIEPSFd08JHj5TEO/NjxiRMfDgLiIBT99suIJfLNV/RnJFmJJDHhA+uj67CCJZLMiEjkWzbhoJ/RX1QksYp+DhlATGSZMfvTrug3ddHELfI8fCDR25/giYmmYSYUScXM/iQvmpoN3J8w+7JPoeLT94/o93UsAt5eeu4qp9E+hTlff+2IyUR3axPbnvguCxsexYOTTbM+x5IPfxW7fehahfGiasPb5D9xKV2WNHrOvJOZp14OYmXfnk00rHqajF1PUxqqYR8Z7JpxEwsvvw13wsT5wmjbujfJe/oqXOJje8GHsBYvJuj3Emp4lynNr5Bt2mghjW0lH2P+5V8mNS0z3iEPmzGGf9/7ec7a90fqLQU0l1yEJSmHYGcdKU0rmBHYRsgIq5LOIuPcrzJzwfisbRzKnp2bcD10KbmmjS0Z5xDKP4lw0I/Zt4kZXW+RTD+1kk/1zJtYctktcR+g41hs+J8zSQj1MP3ba+MdyoQRDgZpb22gs7mO7tYG/J2NhHuakb5mbJ5W3P5WkgLtpIY7STU9QyYfAWOlW5LptSTjsSbjsacSsKcSdqaCMwmrKxmrKwWrOxmrKxm7OxVbQjLOhFRciam4klNxJyTHv2mtMZigF5+nH6+nD5+nF5+nj8D+L2m9fQR9/YT8/YR8/YT9/eDvxwQ9SPTLWmvIgyXoidS4hbzYw17sYR8OE3m48OEyPhwSPObw/h2aT/eVj3LxgviMJjuU0UqwPg0UGGPuEJGZwEvAFKAc+DOwlMggFy8BM442yMV4T7DCwSBNNdvZt2sd3obN2Nu2kdG3m8JQ/YFR9SByk9pkK6DLPQVfSimSOZWEvJlkFM0kp6B03H8bNqF4uwi07qKtZivd9dsJtVbh6K4h0d9KWrgdF0PPW9OLG6+4CYiDsNgIiT3y02LD7P+mCAPGIMYAYThwY28QE8JmAthMALvxY4/+tBHAwbF/eAwUMFZ82PHhwC+RRCcgTgIWJ0GLk5DFQcjqImx1YazOSPW+PVLFL3YXYndjdSRgdbiwOhOwORKwOyNV/VZnAjanC6vDjcOZiM2VgMPpxmp3jdvmS5PF6sd/xOJN/8VbM27nlGu/ddj6nrYGtj79I+bWPoTb+Hgn7YNM+8gPyM4rjkO0x2/zOy+T9vdPU0hkcuWwkQM3J9usM2krv54FF3yCpAmUWA20Z/cOGv/yVU7qfwNn9Eah3zjZ4l5IuPxyKt5/He6EiXNzPpAxhjeff5TMVT9iZqgKqxgCxspu21QaC85l2tk3UDx1VrzDPG7NzfvY/PA3md/+LzKlG4B9pFOdugxrxRVUnnn5hPwf/fZ9X2HZ3t/RecsWMnLG1w1oPISCQfY11tDRWE1/616CHXXQXY+jr5FEXzNpgRYyTTt2Ofy2tN846bCk0WPLwOPIwO/KJuzOQpJysKdk4k7JJjEtm8S0LJLScnAlpmoTuWMUDATwevvw9vfi9/ThjyZw4aCPkN9PKBggHPIRDvgJBwOYkJ8+ewZTl15Iccb4+r8xWgmWA/g9UAn4ifTBejm67lvATUAQuNUY84+jlTfeEqyG6u3Urvob0rCGzJ5tFAb2HlRD0CTZNLvK6EuZjmRPJzl/Njml5WTlT0FGs3ZEDY8xBPs7aW+upbO5lt72Znx9nYQ9XYS93YivB4u/B0J+JBzAGg4g4WC0+jyAxYSiTdXkQFMzE62SRyLPg2InFE2AQhY7YasTrE6M1Qk2J2JzYrG7EJsDiyPartnhxuqMJEB2VwJ2pwu7MxGnOxGXOwGXOxGX04nTZkH0Q3tSMeEQG350IRV9K3gn7xoKT/0IdmcCjVXrkO1/p7zrNRwSYlXiWaR/8A6mzz22Ec/Gk36Ph7WvPE2wbg02wpBeSv7C85g6beak+btu7uikra4Ku8NFUelMXM7xX8M4XMYYWtvb6evtIT0zm9SkiZkwDsXrD7JvXyN2h5O87OwJP4hS1brXmP7Mxbyz8C6WXvqZeIcz6kw4TGtzHW21O+ht2kWwdTfWrr0k9NeRGWgkK9yGTcIH7eM1dlos2XTbs+l35xFIzMeSko8zvYCkzHxSsgpJzS6MJExKDdOoJFixNt4SrJWP3s2yrd+nkyT2OmfSlzoDa245KSUVFM1cSNIY9d1QSk0eXk8fG37zKRa3//2gJicdJpkt2eeTc9anmTHvsM9qpZQaUjgUouW/ptOUMJMFt0+OaUdNOEzbvlqa92yit34rpmUHjp69pPnqyQ3tI0F8B23fQjqt9nx63YUEk4uwpRXhzppCUk4JmQWlJKVmaysNFXOaYB2HzpZG+nraKSidoxelUiqmGmqq2LXpbSwhH5nFs5g2bzn2Cdg0SSk1Prz9/z7HkoaHaP/UGnKKpsY7nGHzevpp3L2Rjr1b8O3bjr29ipT+GvIDtSSL58B2HuOgyVpAl6sQX3IxpJfizplKSsEMcotn4k5MiuO7UCcqTbCUUkoppSapuj3byL3/FDblf4iFn/5dvMM5jAmHaNq7k3071+Kp34CjdStZ/VUUhhoOas7XRBYtzmL6kssgcyYJBbPJLp1LbtE0LPEeCEKpQ4zWPFhKKaWUUirOispm83rqBSxrfIrm2tvJKZ4Zt1j6Oluo276a7pp3Yd8WUru3U+ivJl+85Ee3aZBcmt3TaMz4ALa8ctKK55I/dR55yamDzg2k1ESiCZZSSiml1CQw7YrvEPz9C3T96Uayv/rKESeMjoVwwE/j7o207lqDv34j7vat5Hh3k2Pa2D/WZKdJot5RxobsC7HkziW1dAFFs06iICUdHe9QTVaaYCmllFJKTQIFJTN5ed6dnLP5G2z45UeZ+5k/YnXEZpLrzpYGGravom/vu1hbNpPWs4OiwF4KJUgh4DM2aq3F7ElaxI6sOSQUzSdvxiLyi8pI037s6gSjCZZSSiml1CRx9pWf4ZWuWs6u+xXVd59M4Kz/ZPrJlyLWow+iEw6FaGnYTVv1ZvobtxFu2Ym7exf5vj1k0UladLtm0ml0TmVV5slY8ytIn7qIKTMWMN3tYvqovjulJgYd5EIppZRSapJ587kHKV31PQppoYMUGhJm40kpI+xMJWyxYw15Cfv7sXlaSfA2kxRoJSvUglv8B8roNW4a7UV0JU4lmD0X95RK8macRE5e4aSZz06pkdBRBJVSSimlTiB9/f2se+HPWHb+k6z+KgpCDSSJF4CwETw46JQ0umyZ9DlzCCflYTKnk1Awm8ySeeQXlGCxavM+pYaiowgqpZRSSp1AEhMSOO3STwKfBCAUNviCAUwoCFYHCXYriSIUxjdMpSYdTbCUUkoppU4AVotgdTiA0R1dUKkTndb7KqWUUkoppVSMaIKllFJKKaWUUjGiCZZSSimllFJKxci4GkVQRFqAmnjHcYgsoDXeQagxo+f7xKHn+sSh5/rEouf7xKHn+sQyHs93iTEm+9CF4yrBGo9EZPVgwy+qyUnP94lDz/WJQ8/1iUXP94lDz/WJZSKdb20iqJRSSimllFIxogmWUkoppZRSSsWIJlhH95t4B6DGlJ7vE4ee6xOHnusTi57vE4ee6xPLhDnf2gdLKaWUUkoppWJEa7CUUkoppZRSKkY0wVJKKaWUUkqpGNEE6whE5HwR2S4iVSLy9XjHo2JHRIpF5BUR2SIim0Xki9HlGSLygojsjP5Mj3esKjZExCoi60Tkb9HXZSKyMnp9PyoijnjHqGJDRNJE5HER2SYiW0XkZL22JycR+VL0M3yTiDwsIi69ticPEfm9iDSLyKYBywa9liXiZ9HzvkFEFsUvcnWshjjXP4x+jm8QkadEJG3Aum9Ez/V2ETkvLkEfgSZYQxARK/BL4AKgHPiIiJTHNyoVQ0HgNmNMObAcuCV6fr8OvGSMmQG8FH2tJocvAlsHvP4BcI8xZjrQAXwiLlGp0fBT4HljzGxgAZHzrtf2JCMihcAXgMXGmHmAFbgGvbYnk/uB8w9ZNtS1fAEwI/q4Gfj1GMWoYuN+Dj/XLwDzjDHzgR3ANwCi92vXAHOj+/wqet8+bmiCNbSlQJUxZrcxxg88Alwa55hUjBhjGo0xa6PPe4jcgBUSOccPRDd7ALgsLgGqmBKRIuBC4HfR1wKcAzwe3UTP9SQhIqnAGcB9AMYYvzGmE722Jysb4BYRG5AANKLX9qRhjHkNaD9k8VDX8qXAgyZiBZAmIvljEqgascHOtTHmX8aYYPTlCqAo+vxS4BFjjM8YsweoInLfPm5ogjW0QqB2wOu66DI1yYhIKbAQWAnkGmMao6uagNx4xaVi6ifA7UA4+joT6Bzwwa3X9+RRBrQAf4g2Cf2diCSi1/akY4ypB34E7CWSWHUBa9Bre7Ib6lrW+7bJ7SbgH9Hn4/5ca4KlTmgikgQ8AdxqjOkeuM5E5jDQeQwmOBG5CGg2xqyJdyxqTNiARcCvjTELgT4OaQ6o1/bkEO17cymRpLoASOTwJkZqEtNr+cQgIt8i0rXjoXjHMlyaYA2tHige8LooukxNEiJiJ5JcPWSMeTK6eN/+JgXRn83xik/FzKnAJSJSTaSp7zlE+uikRZsVgV7fk0kdUGeMWRl9/TiRhEuv7cnn/cAeY0yLMSYAPEnketdre3Ib6lrW+7ZJSEQ+DlwEXGvem7x33J9rTbCGtgqYER2NyEGkM92zcY5JxUi0D859wFZjzI8HrHoWuCH6/AbgmbGOTcWWMeYbxpgiY0wpkev4ZWPMtcArwJXRzfRcTxLGmCagVkRmRRe9D9iCXtuT0V5guYgkRD/T959rvbYnt6Gu5WeB66OjCS4HugY0JVQTkIicT6R5/yXGmP4Bq54FrhERp4iUERnY5J14xDgUeS8ZVIcSkQ8S6bthBX5vjPl+fCNSsSIipwGvAxt5r1/ON4n0w3oMmALUAFcZYw7tYKsmKBE5C/iKMeYiEZlKpEYrA1gHfMwY44tjeCpGRKSSyIAmDmA3cCORLxT12p5kROS7wNVEmg+tAz5JpC+GXtuTgIg8DJwFZAH7gO8ATzPItRxNsn9BpJloP3CjMWZ1HMJWx2GIc/0NwAm0RTdbYYz5dHT7bxHplxUk0s3jH4eWGU+aYCmllFJKKaVUjGgTQaWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRjRBEsppZRSSimlYkQTLKWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRj5/yhCOpqzsHpwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
54True80.070.0122bAP.soma.v0.003841.24e-06
55True80.070.0122Step1.soma.v0.003971.97e-05
56True80.070.0122Step3.soma.v0.003949.26e-05
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "54 True 8 0.07 0.0122 bAP.soma.v \n", + "55 True 8 0.07 0.0122 Step1.soma.v \n", + "56 True 8 0.07 0.0122 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "54 0.00384 1.24e-06 \n", + "55 0.00397 1.97e-05 \n", + "56 0.00394 9.26e-05 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACuwElEQVR4nOzdeXxU9b3/8ddnJisQ9hBWCS4gq6iAWMGtvS6tSq1W9Lp7W6+2tmqrdldqr/fXWltbtbdWa2urFrHurVarVVSsqKCICKgsYV9CgISEbDPz+f1xTuIQsmEmTALv5+MxD+ac8z3f8znnZMJ88l2OuTsiIiIiIiLSdpF0ByAiIiIiIrKvUIIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLRKSDMLNCM3Mzy0h3LPs6M7vEzOakO46OxsymmtmH6Y5DRKQzU4IlIiKdmpnNMLNaMytPet2Q7rg6I3d/zd1HpLpeMzvdzBaF9+bfZjYq1ccQEekolGCJiKSIWp7Sapa7d0t63ZrugFKpM/9smdkhwEPAFUBP4G/A0535nEREmqMES0SkDcysyMy+Y2YLgQozyzCzyeFf6beb2XtmdnxS+dlm9v/M7C0zKzOzp8ysdxN1X2pmS8xsh5mtMLP/brB9mpktCOtZbmanhOt7mNl9ZrbBzNaZ2f+YWbSF8zjIzF4ysxIz22JmD5lZz6RtW83siHB5oJkV152XmZ1hZh+E5zvbzEY2uD7XmdlCMys1s1lmlrPnV3rPmdl3w+uyw8wWm9mZTZQzM7vdzDaH1/J9MxsTbss2s9vMbLWZbTKzu80st5XHvz8s/0IYwytmNjRp+6/NbE14zPlmNjVp2wwze9TMHjSzMuASM5tkZm+E13mDmd1lZllJ+7iZfc3MPg6P95Pw3v07PMYjyeWbiPl4M1vbmvPbAycDr7n7HHePAT8DBgHHpfg4IiIdghIsEZG2Ow/4AsFf5wuAZ4D/AXoD1wGPmVl+UvmLgMuAAUAMuKOJejcDpwHdgUuB25OSnEnAn4Hrw+MeCxSF+90f1nswcDhwEvCVFs7BgP8HDARGAkOAGQDuvhz4DvCgmXUB/gj8yd1nm9lwYCZwDZAPPAv8rcEX+XOAU4BhwDjgkkYDMJsSJg9Nvaa0cA4NLQemAj2AH4fxD2ik3EkE1294WPYcoCTc9tNw/XiC6zkIuHEPYjgf+AnQF1hA0JJT5+2w3t7AX4C/Nkg+pwGPEtzfh4A4cG1Y19HAZ4GvNTjeycCRwGTgBuAe4AKC+zmG4Gf1UwsT5abuz/81t2uD9xbGIyKyz1GCJSLSdne4+xp3ryT4Mvusuz/r7gl3fwGYB3w+qfwD7r7I3SuAHwHnNNbC5O7PuPtyD7wC/JMgYQD4L+AP7v5CeJx17r7UzArCY13j7hXuvhm4HTi3uRNw92VhXdXuXgz8kqQWBne/F1gGvEmQGP4g3DQdeCbctxa4DcgFPtPg+qx3960E3cPGNxHDHHfv2cyruUkpzmnwZX+gu/81PG7C3WcBHwOTGtm3FsgDDgXM3Ze4+wYzM+By4Fp33+ruO4D/belaNvCMu7/q7tUE1+xoMxsSnu+D7l7i7jF3/wWQDSSPf3rD3Z8M46909/nuPjcsXwT8jt1bgW519zJ3/wBYBPzT3Ve4eynwD4KE+1Nz93HN3J+GyV6dF4HjwtaxLOD7QBbQpS2xiIh0VEqwRETabk3S+6HAl5O/7ANTCJKSxsqvAjIJWiV2YWanmtncsHvedoLEqa7cEIIWmoaGhvVtSDr+74B+zZ2AmRWY2cMWdCksAx5sJKZ7CVod7gwTBghavFbVFXD3RHh+g5L225j0fifQrblYPqVHGnzZX29mF1nQhbLuOoyhkevs7i8BdwG/ATab2T1m1p2gRa4LMD+pjufC9a1Vf6/dvRzYSnDNCLtOLgm7Tm4naD3r29i+YfnhZvZ3M9sY3qP/beR8NiW9r2xkuT2ufbPcfSlwMcE13kAQ82Ig1V0RRUQ6BCVYIiJt50nv1xC0UCV/2e/q7j9NKjMk6f0BBC0oW5IrNLNs4DGCFqECd+9J0P2urqvVGuCgRmJZA1QDfZOO393dR7dwDv8bnsdYd+9O0BJX363LzLoBvwLuA2bYJ+PG1hMkdXXlLDy/dS0cbzcWTBFe3sxrasu11Nc1lCAhvAroE16/RezaVa2eu9/h7kcCowi6BF5PcE8qgdFJ17KHu+9JklJ/r8Nr2BtYH57LDQTdEXuF8ZU2iC/55wrgt8BS4JDwHn2/qfNpLxaMtWvq/tzd1H7u/qi7j3H3PsBNQCFBF0kRkX2OEiwRkdR6EDjdzE42s6iZ5YRdowYnlbnAzEaF45luBh5193iDerIIuowVAzEzO5VgrFCd+4BLzeyzZhYxs0Fmdqi7byDoSvgLM+sebjvIzFqaUCAPKAdKzWwQQYKR7NfAPHf/CsEYs7ov048AXwjjyAS+TZDg/bulC9VQOEV4t2Zer+1BdV0JEpRiCCYMoYkxP2Y20cyOCuOvAKqARNgady/B2Ld+YdlBZnZy0r5uSZOYNOLz4diyLIKxWHPdfQ3B9Y6F8WWY2Y0EY+2akweUAeVmdihwZQvlU87dRzdzf65oaj8zOzL8POQTjAt7OmzZEhHZ5yjBEhFJofDL8zSC1oVighal69n19+0DBBNRbARygG82Us+OcP0jwDbgP4Gnk7a/RTjxBUHLxyt80pJ0EUGCtjjc91F27aLYmB8DR4R1PQM8XrfBzKYRTFJR94X+W8ARZna+u39I0Np1J0GLz+nA6e5e08Lx2pW7LwZ+AbxB0E1uLPB6E8W7EyRS2wi6O5YAPw+3fYdg7NncsFvei4TjpMKxVDuA95sJ5S8ELTZbCSafuCBc/zxBd8OPwmNW0aBLYCOuI/g52BHGO6uF8h3Jr4HtwIcE1/mraY1GRKQdmXvDHggiItJezGw28KC7/z7dsUjbmNkFBN0Hv9fE9vuBte7+w70amIiIpJUe8iciIvIpuPuD6Y5BREQ6HnURFBHZT1jw0Ns9mpxA9j1m9v0mfg7+ke7YRET2BeoiKCIiIiIikiJqwRIREREREUmRDjUGq2/fvl5YWJjuMERERERERJo1f/78Le6+28PnO1SCVVhYyLx589IdhoiIiIiISLPMbFVj69VFUEREREREJEWUYImIiIiIiKSIEiwREREREZEU6VBjsBpTW1vL2rVrqaqqSnco0gHk5OQwePBgMjMz0x2K7GPcnb/+34/oMuZUTjvumHSHIyIiIp1Uh0+w1q5dS15eHoWFhZhZusORNHJ3SkpKWLt2LcOGDUt3OLKPWbduDecU3wkv30n8M8VEM7PSHZKIiIh0Qh2+i2BVVRV9+vRRciWYGX369FFrprSLkpKS+vdFS95OYyQiIiLSmXX4BAtQciX19LMg7aWyfHv9++Klb6QvEBEREenUOkWCJSLS3qoqyurfZ2x8N42RiIiISGemBKsVzIxvf/vb9cu33XYbM2bMSF9ASY4//vhmH878xS9+kcmTJ++ybsaMGQwaNIjx48czZswYnn766fYOU6TDq6kMEqxqssjbsTzN0YiIiEhnpQSrFbKzs3n88cfZsmVLSut1dxKJRErrTLZ9+3bmz59PaWkpK1as2GXbtddey4IFC/jrX//KZZdd1q5xiHQG8codAGzIHU5+7VrcPc0RiYiISGekBKsVMjIyuPzyy7n99tt321ZcXMxZZ53FxIkTmThxIq+//joQtBLddttt9eXGjBlDUVERRUVFjBgxgosuuogxY8awZs0arr/+esaMGcPYsWOZNWsWALNnz+b444/n7LPP5tBDD+X8889v8gvfAw88UN8a9dZbb9Wvf/zxxzn99NM599xzefjhhxvdd+TIkWRkZOySPH73u99l1KhRjBs3juuuuw6AoqIiTjzxRMaNG8dnP/tZVq9eDcAll1zClVdeyeTJkznwwAOZPXs2l112GSNHjuSSSy6pr/PKK69kwoQJjB49mptuumm3OEpLSxk6dGh9oldRUcGQIUOora1tNG6RVIvUlgOws+9YerODLZs3pjkiERER6Yw6/DTtyX78tw9YvL6s5YJ7YNTA7tx0+ugWy339619n3Lhx3HDDDbusv/rqq7n22muZMmUKq1ev5uSTT2bJkiXN1vXxxx/zpz/9icmTJ/PYY4+xYMEC3nvvPbZs2cLEiRM59thjAXj33Xf54IMPGDhwIMcccwyvv/46U6ZM2a2+nTt3smDBAl599VUuu+wyFi1aBMDMmTO58cYbKSgo4KyzzuL73//+bvu++eabRCIR8vPzgWAmtSeeeIKlS5diZmzfvh2Ab3zjG1x88cVcfPHF/OEPf+Cb3/wmTz75JADbtm3jjTfe4Omnn+aMM87g9ddf5/e//z0TJ05kwYIFjB8/nltuuYXevXsTj8f57Gc/y8KFCxk3blx9HD169GD8+PG88sornHDCCfz973/n5JNP1vOuZK+JxHYG/w48DNbMZPOqxeQXDEhzVCIiItLZqAWrlbp3785FF13EHXfcscv6F198kauuuorx48dzxhlnUFZWRnl5ebN1DR06tH5c1Jw5czjvvPOIRqMUFBRw3HHH8fbbwRTRkyZNYvDgwUQiEcaPH09RUVGj9Z133nkAHHvssZSVlbF9+3Y2bdrExx9/zJQpUxg+fDiZmZn1iRfA7bffzvjx47nuuuuYNWtW/ex8PXr0ICcnh//6r//i8ccfp0uXLgC88cYb/Od//icAF154IXPmzKmv6/TTT8fMGDt2LAUFBYwdO5ZIJMLo0aPrY37kkUc44ogjOPzww/nggw9YvHjxbucxffr0+ha8hx9+mOnTpzd7HUVSKaO2AoBuwyYAULHho3SGIyIiIp1Up2rBak1LU3u65pprOOKII7j00kvr1yUSCebOnUtOTs4uZTMyMnYZ15T87KauXbu26njZ2dn176PRKLFYrNFyDacuNzMeeeQRtm3bVv9A3rKyMmbOnMktt9wCBGOw6rr/NYz7rbfe4l//+hePPvood911Fy+99FKr4oxEIrvEHIlEiMVirFy5kttuu423336bXr16cckllzT6LKszzjiD73//+2zdupX58+dz4oknNntckVTKiFVQQwb9ho0l7kai+ON0hyQiIiKdkFqw9kDv3r0555xzuO++++rXnXTSSdx55531ywsWLACgsLCQd955B4B33nmHlStXNlrn1KlTmTVrFvF4nOLiYl599VUmTZq0R3HVtfrMmTOHHj160KNHD2bOnMlzzz1XP+5r/vz5TY7DSlZeXk5paSmf//znuf3223nvvfcA+MxnPlO//0MPPcTUqVNbHV9ZWRldu3alR48ebNq0iX/84x+NluvWrRsTJ07k6quv5rTTTiMajbb6GCJtlRHbyU5yycrOYUOkgKzSFS3vJCIiItJAp2rB6gi+/e1vc9ddd9Uv33HHHfXjs2KxGMceeyx33303Z511Fn/+858ZPXo0Rx11FMOHD2+0vjPPPJM33niDww47DDPj1ltvpX///ixdurTVMeXk5HD44YdTW1vLH/7wB4qKili1atUu07MPGzaMHj168OabbzZax+c//3l+//vfY2ZMmzaNqqoq3J1f/vKXANx5551ceuml/PznPyc/P58//vGPrY7vsMMO4/DDD+fQQw9lyJAhHHPMMfXbbrzxRiZMmMAZZ5wBBN0Ev/zlLzN79uxW1y+SChnxCnZaLj2BLVmD6VG5Jt0hiYiISCdkHWkq4gkTJnjDZzotWbKEkSNHpiki6Yj0MyHt4b3bTqP7zlUMu/F9/n3npYwr+QfdbtoADbrgioiIiACY2Xx3n9BwfZu7CJrZEDN72cwWm9kHZnZ1uH6Gma0zswXh6/NtPZaISHuJJGqotSwAvOdQulFJeWlJmqMSERGRziYVXQRjwLfd/R0zywPmm9kL4bbb3f22ZvYVEekQIokYCQvG/eX0HQbLYfPqj+jWs2+aIxMREZHOpM0tWO6+wd3fCd/vAJYAg9par4jI3mQeI27B35zy+h8EQNmGZekMSURERDqhlM4iaGaFwOFA3UwKV5nZQjP7g5n1amKfy81snpnNKy4uTmU4IiKtFvFaEhY82LrvkEMAqN5SlMaIREREpDNKWYJlZt2Ax4Br3L0M+C1wEDAe2AD8orH93P0ed5/g7hPy8/NTFY6IyB6JJmIkwhasXr3z2eG5sH11mqMSERGRziYlCZaZZRIkVw+5++MA7r7J3ePungDuBfbs4U4iIntR1GMkIkGCZZEIm6MFZFesTXNUIiIi0tmkYhZBA+4Dlrj7L5PWD0gqdiawqK3HSqcnn3wSM2v2+VRFRUWMGTMmZce85JJLePTRR5vcfs011zBo0CASiUT9uvvvv5/8/HzGjx/PqFGjuPfee1MWj8i+LOIxPOwiCFCaPZAeVevTGJGIiIh0RqlowToGuBA4scGU7Lea2ftmthA4Abg2BcdKm5kzZzJlyhRmzpzZ6PZYLNbmY8Tj8VaXTSQSPPHEEwwZMoRXXnlll23Tp09nwYIFzJ49m+9///ts2rSpzbGJ7OuiHiMR/WRi1epug+iX2AQd6FmBIiIi0vGlYhbBOe5u7j7O3ceHr2fd/UJ3HxuuP8PdN6Qi4HQoLy9nzpw53HfffTz88MP162fPns3UqVM544wzGDVqFBAkWueffz4jR47k7LPPZufOnQD861//4vDDD2fs2LFcdtllVFdXA1BYWMh3vvMdjjjiCP7617/uduwXX3yRCRMmMHz4cP7+97/vcuzRo0dz5ZVXNpn09evXj4MOOohVq1bVr7vjjjsYNWoU48aN49xzzwVg69atfPGLX2TcuHFMnjyZhQsXAjBjxgwuvvhipk6dytChQ3n88ce54YYbGDt2LKeccgq1tbUA3HzzzUycOJExY8Zw+eWX0/Dh1YlEgsLCQrZv316/7pBDDlHiJx1KBjE88kkLFj2H0pUqyrZuTl9QIiIi0umk4jlYe88/vgsb309tnf3Hwqk/bbbIU089xSmnnMLw4cPp06cP8+fP58gjjwTgnXfeYdGiRQwbNoyioiI+/PBD7rvvPo455hguu+wy/u///o+rrrqKSy65hH/9618MHz6ciy66iN/+9rdcc801APTp04d33nmn0WMXFRXx1ltvsXz5ck444QSWLVtGTk4OM2fO5LzzzmPatGl8//vfp7a2lszMzF32XbFiBStWrODggw+uX/fTn/6UlStXkp2dXZ/w3HTTTRx++OE8+eSTvPTSS1x00UUsWLAAgOXLl/Pyyy+zePFijj76aB577DFuvfVWzjzzTJ555hm++MUvctVVV3HjjTcCcOGFF/L3v/+d008/vf6YkUiEadOm8cQTT3DppZfy5ptvMnToUAoKClp9m0TaW9RjuH3yKzGrTyF8DJvXfET3PvpZFRERkdZJ6TTt+6qZM2fWt/ace+65u7QYTZo0iWHDhtUvDxkyhGOOOQaACy64gDlz5vDhhx8ybNgwhg8fDsDFF1/Mq6++Wr/P9OnTmzz2OeecQyQS4ZBDDuHAAw9k6dKl1NTU8Oyzz/LFL36R7t27c9RRR/H888/X7zNr1izGjx/Peeedx+9+9zt69+5dv23cuHGcf/75PPjgg2RkBF8m58yZw4UXXgjAiSeeSElJCWVlZQCceuqpZGZmMnbsWOLxOKeccgoAY8eOpaioCICXX36Zo446irFjx/LSSy/xwQcf7HYe06dPZ9asWQA8/PDDzZ6zSDpEiUP0kz9S9BgYPAtrx8YV6QpJREREOqHO1YLVQktTe9i6dSsvvfQS77//PmZGPB7HzPj5z38OQNeuXXcpH8z50fRyYxrW0VJ9zz//PNu3b2fs2LEA7Ny5k9zcXE477TQgSGbuuuuuRut75plnePXVV/nb3/7GLbfcwvvvN98imJ2dDQStUJmZmfXxRCIRYrEYVVVVfO1rX2PevHkMGTKEGTNmUFVVtVs9Rx99NMuWLaO4uJgnn3ySH/7wh80eV2Rva9hFMH9w8Cysmi0r0xWSiIiIdEJqwWrBo48+yoUXXsiqVasoKipizZo1DBs2jNdee63R8qtXr+aNN94A4C9/+QtTpkxhxIgRFBUVsWzZMgAeeOABjjvuuFYd/69//SuJRILly5ezYsUKRowYwcyZM/n9739PUVERRUVFrFy5khdeeKF+vFdTEokEa9as4YQTTuBnP/sZpaWllJeXM3XqVB566CEgGNvVt29funfv3qr46pKpvn37Ul5e3uSsh2bGmWeeybe+9S1GjhxJnz59WlW/yN6S4bFdWrC69+pLqXfFSvUsLBEREWk9JVgtmDlzJmeeeeYu684666wmJ5YYMWIEv/nNbxg5ciTbtm3jyiuvJCcnhz/+8Y98+ctfZuzYsUQiEa644opWHf+AAw5g0qRJnHrqqdx9990kEgmee+45vvCFL9SX6dq1K1OmTOFvf/tbo3V85StfYd68ecTjcS644ALGjh3L4Ycfzje/+U169uzJjBkzmD9/PuPGjeO73/0uf/rTn1p5daBnz5589atfZcyYMZx88slMnDixftvdd9/N3XffXb88ffp0HnzwQXUPlA4pg/guLVhmRnFGAdnlehaWiIiItJ41nPEtnSZMmODz5s3bZd2SJUsYOXJkmiKSjkg/E5JqiYTDj3vx9gGXctR/3V6//p1bP0/vqjUU3pjiyXVERESk0zOz+e4+oeF6tWCJyH6vNlZLxBwiu87EWd1tMP3im/Ckh3mLiIiINEcJlojs92prgufSEc3adUPPoXSxakpLNu79oERERKRT6hQJVkfqxijppZ8FaQ+x2hoALLprC1Z2fiEAW9Yu29shiYiISCfV4ROsnJwcSkpK9MVacHdKSkrIyclJdyiyj2kqwerev+5ZWMv3ekwiIiLSOXX452ANHjyYtWvXUlxcnO5QpAPIyclh8ODB6Q5D9jFNJVj5Q4KHg9ds0cOGRUREpHU6fIKVmZnJsGHD0h2GiOzD4rXBGCzL2HUMVo+evdlON6x0TTrCEhERkU6ow3cRFBFpb7VNtGABFEcLyKlYt7dDEhERkU5KCZaI7PcSsSDBimTsnmDtyB5Ij+oNezskERER6aTaPcEys1PM7EMzW2Zm323v44mI7KlYbS0A1nCadqA6T8/CEhERkdZr1wTLzKLAb4BTgVHAeWY2qj2PKSKyp+KxYAxWJGP3BMt6DiXXathWrG6CIiIi0rL2bsGaBCxz9xXuXgM8DExr52OKiOyRRG3TXQSz84NJdkr0LCwRERFphfZOsAYBydNvrQ3X1TOzy81snpnN01TsIpIOiXjQRTDaSAtWj4EHAlC2Sc/CEhERkZalfZILd7/H3Se4+4T8/Px0hyMi+6FYMy1Y+YMOBqB2S9HeDElEREQ6qfZOsNYBQ5KWB4frREQ6DA9nEYxmZu+2La9Hb7aRR6R09d4OS0RERDqh9k6w3gYOMbNhZpYFnAs83c7HFBHZI3XTtEcbacEC2BLtr2dhiYiISKtktGfl7h4zs6uA54Eo8Ad3/6A9jykisqcS4SyC0aycRreX5Qwgv1JjsERERKRl7ZpgAbj7s8Cz7X0cEZFP65MugrmNbq/JG0xB+Rt4Io5FonszNBEREelk0j7JhYhIulmsCoBoduMtWJFeQ8m2Wko2rd2bYYmIiEgnpARLRPZ7XpdgZTaeYOXkFwJQsu7jvRWSiIiIdFJKsERkv2fhGKzMrC6Nbu8x4BAAyjeu3GsxiYiISOekBEtEJEywMproIthvSPgsrBIlWCIiItI8JVgist+zeNiC1chzsAC6dOvBVrrrWVgiIiLSIiVYIiLxaqo8k8yMpn8lbsnoT66ehSUiIiItUIIlIhKrpposzKzJIjtyBtKzZuNeDEpEREQ6IyVYIrLfs3g1tdb8YwFr8gZTkNhMIh7fS1GJiIhIZ6QES0T2e5F4NTVkNV+m11CyLEbJRo3DEhERkaYpwRIRiddQa80nWDn5wwA9C0tERESapwRLRPZ70Xg1MctstkzPAcFU7RWbVuyNkERERKSTUoIlIvu9SLyaWKT5FqyCA4KHDddu0bOwREREpGlKsERkvxdN1BBrqYtgl25sojcZpUqwREREpGlKsERkvxf1GhIttGABFGcNJq9Ck1yIiIhI09qUYJnZz81sqZktNLMnzKxnuL7QzCrNbEH4ujsl0YqItIOMRA3xSHaL5cq7DqVfrR42LCIiIk1rawvWC8AYdx8HfAR8L2nbcncfH76uaONxRETaTYbXEI+23IKV6HUgvSijorRkL0QlIiIinVGbEix3/6e7x8LFucDgtockIrJ3ZXotiWjLLVhZ+cFMgpuKFrd3SCIiItJJpXIM1mXAP5KWh5nZu2b2iplNbWonM7vczOaZ2bzi4uIUhiMi0jqZXoO3ogWr55BDAShdt7S9QxIREZFOKqOlAmb2ItC/kU0/cPenwjI/AGLAQ+G2DcAB7l5iZkcCT5rZaHcva1iJu98D3AMwYcIE/3SnISLy6WV7NWTktliuf+FIAGo2L2vvkERERKSTajHBcvfPNbfdzC4BTgM+6+4e7lMNVIfv55vZcmA4MK+tAYuIpFIiHqcblSSy8los261bHpvoQ8Z2TdUuIiIijWvrLIKnADcAZ7j7zqT1+WYWDd8fCBwCrGjLsURE2sPOilIi5pDTo1Xlg6naV7VzVCIiItJZtXUM1l1AHvBCg+nYjwUWmtkC4FHgCnff2sZjiYik3M6y7QBYTvdWld/R9QDya9e3Y0QiIiLSmbXYRbA57n5wE+sfAx5rS90iIntDVfk2AKK5rUuwvNeB9Nr2N3aWldCle5/2DE1EREQ6oVTOIigi0unUJVgZXVrXRTCzn6ZqFxERkaYpwRKR/Vpt+XYAsrr0alX5noPCqdrXaqp2ERER2Z0SLBHZr9VWlgKQ1a11LVgDhmmqdhEREWmaEiwR2a/Fdm4HoEte71aV79Ytj430Jaqp2kVERKQRSrBEZL9WuzNowerRq/UTVhRnDdJU7SIiItIoJVgisl9LVJYSd6NL19bNIghQ3nUo/WrXtWNUIiIi0lkpwRKR/VrGzs1ssx5YpPW/DhM9h9GTHews3dKOkYmIiEhnpARLRPZrXas2URLN36N9MvsdAmiqdhEREdmdEiwR2a/1qN1MWVbBHu3Ta0gwVXvZug/bIyQRERHpxJRgicj+y50+8WIqcvYswepfeCgJN6o1VbuIiIg0oARLRPZbiZ3b6UIV8byBe7RfXrc8iq0Xtn11O0UmIiIinZUSLBHZb23btAKAjF5D9nzfjAJyK9enOiQRERHp5JRgich+q3RDEQBd+gzd430rcgroUbM5xRGJiIhIZ6cES0T2Wzu3BF38uvcv3ON9q7sOpF+iGE8kUhyViIiIdGZtSrDMbIaZrTOzBeHr80nbvmdmy8zsQzM7ue2hioikVmzbGmIeoWDgnrdg0WMw2VZL6ZYNqQ9MREREOq2MFNRxu7vflrzCzEYB5wKjgYHAi2Y23N3jKTieiEhKWNk6NtObAV1z9njfrLBbYcmG5fTsNyjVoYmIiEgn1V5dBKcBD7t7tbuvBJYBk9rpWCIin0pO5UZKMvIxsz3eN69fIQDlm4pSG5SIiIh0aqlIsK4ys4Vm9gcz6xWuGwSsSSqzNlwnItJhdK/eRHn2nj0Dq07vgQcCUFOiqdpFRETkEy0mWGb2opktauQ1DfgtcBAwHtgA/GJPAzCzy81snpnNKy4u3tPdRUQ+HXd6J7ZQ02XAp9q9T9/+7PRsKF2b4sBERESkM2txDJa7f641FZnZvcDfw8V1QPKDZQaH6xqr/x7gHoAJEyZ4a44lItJW1WWbyKYW7/7pGtcj0QibI33JrGj0V5uIiIjsp9o6i2Dyn37PBBaF758GzjWzbDMbBhwCvNWWY4mIpNLW9SsByOi95w8ZrlOaWUC3qo2pCklERET2AW2dRfBWMxsPOFAE/DeAu39gZo8Ai4EY8HXNICgiHUnpxpUMAPLyP8UU7aHK3P4MLJubuqBERESk02tTguXuFzaz7RbglrbULyLSXipLgnl46iar+DRi3QbQZ/s2ErU1RDKzUhWaiIiIdGLtNU27iEiHFt+2hmrPpF//Tz/BabTHICLmbNusiS5EREQkoARLRPZLGeXr2Wx9yM789A352b0HA7Bt48pUhSUiIiKdnBIsEdkv5VZuZHtmvzbVkVdQCEB5sZ6FJSIiIgElWCKyX+pZu5mdOZ/uIcN1eg8oBKB2m7oIioiISEAJlojsdzweo0+ihFi3gW2qp3fvfHZ6NolSPQtLREREAkqwRGS/s33zWjIsgfUY3KZ6LBJhS6QPmRV6FpaIiIgElGCJyH6nZEMwKUVO3wPaXFdpZj+6VG1qcz0iIiKyb1CC1YzSbVtYX/RhusMQkRTbsbkIgLx+hW2uqzKngJ6x4jbXIyIiIvuGNj1oeF+39IU/cNTiW/g4ejBbDjiZgsNPo3DUJCIZumwinVlN+JDh/EGf/iHDdWLdBtC3tIRErJZIRmab6xMREZHOTZlCMw44ahpzq3bQe/VzHL3yN7DyN+x4PJeVuWOp6DOO7IGj6F04lvwDDqVrt+7tHo8nElRXV1JdVUlt9U5qwn9rqyuJVVcSq9lJvKaKeE0lidoqEjVVeG0VHgtexGshEYdEDDyOJeKQiGMeA09gifBfj2GJOOZxIh4HTyRHsVtclrTO3OuXbJeyu++3ax11payFEru+bWJF4+tt12M03KupYxvg1tQxGtdUXU2f357XxR7GJJ/oX7GMnZ5Nj15921yX9TmYjPUJNq5eSv8Dx6Yguv2YO9WVO6go3UpFaQmVO3dQtXMH8aoK4jU7SVRX4LU7oaYSaiugthKP1YS/22oxjxFJxILfXYkYEf/kZR6H8PeTed3vo+Dfuk+S1S83//sq2DPca5fPodVvq/+d1mB7/e9HS/5sN/wX3OqWG/mc267H2eV3hO1aV2O/u3Y/7ifrkn6bJ8XSoM7dIxIRaVfbM/Lx//gfPjeqbbP/7i1KsJoxYOgIBlz0E+AnbF63klXznye+8t8MKH2H0WveJrrW4a2gbDm5bLdelGb0oibajURGDp6RSzyaQ8IyMBKAf/IfuzsWryaSqCESryaaqCaaqCEjUUOm15Dhwb9ZXkMWNWR7LdlWSw6Q08bzqvUocSIkiBCzKAkixEn61yIkiBK3KE4keCX9H93cf84N7bq+qTJ1W5v6b7vp/86b3Ge31bt+kWq4pfkvVI1vazqta6r8pzm/PTuGtN77fU/lqEjbe0n3GDoG3ofNKxa0mGDF43Hee+kRuvcv5OCxR7f52B1dTVUl24rXsmPLBnZuXUf19o3Ed2wiUlFMpGo7mbWl5MR2kJvYQddEOXleTrbFyQZ6t6L+as+glkxiFiVORv2/8fD3V5wM4pZBwjJIWAQwzCwpuQk+SclpVcNEI/l3WMPPXWN/RAr+yJRUoydvY5fydRHs9jvIG/6+Sk57kpJDD/8A1GDbLmXqtzWyfxPbmovFGsTyaf5oJPso/ShIO6qxHayuqE53GK2mBKuV+g0aRr9BVwBXAFBVWcGKj96nbM371G5dRaJsI9lVxXStLaF7rITMmioyE9XkUE2ERNJ/W5/8J15rWdSSSW0ki5hlEYtkU5vRlcpIbxKRLBLRbDyaRSKag2dkQ0YOVvdvZi6WmUMkK4doZi7RrBwysur+7UJmTi6Z2blk5XQhK7sLWTk5ZGbmEIlGyQTUkUn2d22f3iIw6KDDAKhat7jJMtVVFSx85l7yF93LEb6WxRkjYezcFEWQHtVVFRSvXcH2DSvYuWUV8a1riO5YS5fK9eTVbqFXYhvdqaAAaPj3xjLvQlmkO1XRblRF86jIKWBDVg8S2T0gpweW25Nol15k53Yjq0semTldyczpSkZONzJzu5Kd242c3DyyMjPIVkuuiMg+7wCgM/1ZUgnWp5ST25VDDpsMh01OdygikkY9evVmHQXkbH53t23Fm9by0TN3cOjqh5lIKSuiw3g3PoKDY0VBy0AHTg48kWBL8To2r1xM+foPiW9ZTnZZEXlV6+kT20wftjMYqJvoPuHGFuvFtox+lOQeyIbcfBJd8ol0LyC7R39yew+ge99B9MofRPcuXWn/TtUiIiLpoQRLRKSNivoey4TiJ6ks20Zmbjc+mPMEifkPMHrH6xxjcRbmTmLdZ77B2GNO498P/4y8j37Ktk2r6NW/ML2Bu7N9y0Y2rfqAHes+pLZ4GVmlK+mxczUFsfXkWyX5YdGYR9gYKWBr1kCW5Q3no7zBRHsPoUt+Ib0GHET+oGH0y86hX1pPSEREJP2UYImItFHPyReQ+bdH2Xz7RHJ9J4dRwTbymF9wNgd87muMGz6+vmzXIWPgI1j34fy9lmDt2F7CpqIPKF27lNjmj8jYvpK8navpH1tHTyroGZaLu7Ex0o+S7CEs7n049B5Gl/4j6HPASPoNOYTBWdm07dHMIiIi+742JVhmNgsYES72BLa7+3gzKwSWAHUPkZrr7le05VgiIh3V6AnH88b6W+m26CEquw4mc8RJjD5hOkdn7z4lzcGHHUPNixnsXPICHHdWymIoLy9jw4rFlK5bSu3mj4huW0leRRH9atfRh1LywnIJNzZZX7ZkD2Zxj/+A3geRUzCcXkMOZUDhoQzKzmFQyqISERHZ/7QpwXL36XXvzewXQGnS5uXuPr4t9YuIdBZHn3E5nHF5i+W6de/N/NyJDNv4HFUVZeR0bd1opJ07Kyhet5ztG1ZQVbwS37aKzB1r6bpzHb1qN1LAVg5JKr+FnmzOGsLyXlP5qNeBZPUbTq8DDmVA4SgGdOnKgE95niIiItK8lHQRNDMDzgFOTEV9IiL7sqxjr6bP8+ex5I7TqRl/CZnd+xKvqSRWuYPYjmJ8xyaiFZvIqSomt6aEHvES+ngpQ80ZGtYR8wibrS9bs/qzuudRFPU4gKyCEfQYfCj9h42ib14v2v6ULxEREdlT5u4tl2qpErNjgV+6+4RwuRD4APgIKAN+6O6vNbHv5cDlAAcccMCRq1atanM8IiId3ZuP/pIx7/+Mrla127a4G1utJ9ujvdmZ1Yfa3H543kCifQrp0m8YPQceTN8BhWRkZqUhchEREQEws/l1+c8u61tKsMzsRaB/I5t+4O5PhWV+Cyxz91+Ey9lAN3cvMbMjgSeB0e5e1tyxJkyY4PPmzWvN+YiIdHpVO3ew5uP3qS4vISO7K9ld8sjrXUDPPgPIyNTT6kRERDqyphKsFrsIuvvnWqg4A/gScGTSPtVAdfh+vpktB4YDyp5EREI5XfI45LDPpDsMERERSaFICur4HLDU3dfWrTCzfDOLhu8PBA4BVqTgWCIiIiIiIh1WKia5OBeY2WDdscDNZlYLJIAr3H1rCo4lIiIiIiLSYbU5wXL3SxpZ9xjwWFvrFhERERER6UxSMotgqphZMdDRphHsC2xJdxCy1+h+7z90r/cvut/7D93r/Yfu9f6lI97voe6e33Blh0qwOiIzm9fY7CCyb9L93n/oXu9fdL/3H7rX+w/d6/1LZ7rfqZjkQkRERERERFCCJSIiIiIikjJKsFp2T7oDkL1K93v/oXu9f9H93n/oXu8/dK/3L53mfmsMloiIiIiISIqoBUtERERERCRFlGCJiIiIiIikiBKsZpjZKWb2oZktM7PvpjseSR0zG2JmL5vZYjP7wMyuDtf3NrMXzOzj8N9e6Y5VUsPMomb2rpn9PVweZmZvhp/vWWaWle4YJTXMrKeZPWpmS81siZkdrc/2vsnMrg1/hy8ys5lmlqPP9r7DzP5gZpvNbFHSukY/yxa4I7zvC83siPRFLnuqiXv98/D3+EIze8LMeiZt+154rz80s5PTEnQzlGA1wcyiwG+AU4FRwHlmNiq9UUkKxYBvu/soYDLw9fD+fhf4l7sfAvwrXJZ9w9XAkqTlnwG3u/vBwDbgv9ISlbSHXwPPufuhwGEE912f7X2MmQ0CvglMcPcxQBQ4F3229yX3A6c0WNfUZ/lU4JDwdTnw270Uo6TG/ex+r18Axrj7OOAj4HsA4fe1c4HR4T7/F35v7zCUYDVtErDM3Ve4ew3wMDAtzTFJirj7Bnd/J3y/g+AL2CCCe/ynsNifgC+mJUBJKTMbDHwB+H24bMCJwKNhEd3rfYSZ9QCOBe4DcPcad9+OPtv7qgwg18wygC7ABvTZ3me4+6vA1garm/osTwP+7IG5QE8zG7BXApU2a+xeu/s/3T0WLs4FBofvpwEPu3u1u68ElhF8b+8wlGA1bRCwJml5bbhO9jFmVggcDrwJFLj7hnDTRqAgXXFJSv0KuAFIhMt9gO1Jv7j1+d53DAOKgT+GXUJ/b2Zd0Wd7n+Pu64DbgNUEiVUpMB99tvd1TX2W9b1t33YZ8I/wfYe/10qwZL9mZt2Ax4Br3L0seZsHzzDQcww6OTM7Ddjs7vPTHYvsFRnAEcBv3f1woIIG3QH12d43hGNvphEk1QOBruzexUj2Yfos7x/M7AcEQzseSncsraUEq2nrgCFJy4PDdbKPMLNMguTqIXd/PFy9qa5LQfjv5nTFJylzDHCGmRURdPU9kWCMTs+wWxHo870vWQusdfc3w+VHCRIufbb3PZ8DVrp7sbvXAo8TfN712d63NfVZ1ve2fZCZXQKcBpzvnzy8t8PfayVYTXsbOCScjSiLYDDd02mOSVIkHINzH7DE3X+ZtOlp4OLw/cXAU3s7Nkktd/+euw9290KCz/FL7n4+8DJwdlhM93of4e4bgTVmNiJc9VlgMfps74tWA5PNrEv4O73uXuuzvW9r6rP8NHBROJvgZKA0qSuhdEJmdgpB9/4z3H1n0qangXPNLNvMhhFMbPJWOmJsin2SDEpDZvZ5grEbUeAP7n5LeiOSVDGzKcBrwPt8Mi7n+wTjsB4BDgBWAee4e8MBttJJmdnxwHXufpqZHUjQotUbeBe4wN2r0xiepIiZjSeY0CQLWAFcSvAHRX229zFm9mNgOkH3oXeBrxCMxdBnex9gZjOB44G+wCbgJuBJGvksh0n2XQTdRHcCl7r7vDSELZ9CE/f6e0A2UBIWm+vuV4Tlf0AwLitGMMzjHw3rTCclWCIiIiIiIimiLoIiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSLSQZhZoZm5mWWkO5Z9nZldYmZz0h1HR2NmU83sw3THISLSmSnBEhGRTs3MZphZrZmVJ71uSHdcnZG7v+buI1Jdr5mdbmaLwnvzbzMblepjiIh0FEqwRERSRC1PaTXL3bslvW5Nd0Cp1Jl/tszsEOAh4AqgJ/A34OnOfE4iIs1RgiUi0gZmVmRm3zGzhUCFmWWY2eTwr/Tbzew9Mzs+qfxsM/t/ZvaWmZWZ2VNm1ruJui81syVmtsPMVpjZfzfYPs3MFoT1LDezU8L1PczsPjPbYGbrzOx/zCzawnkcZGYvmVmJmW0xs4fMrGfStq1mdkS4PNDMiuvOy8zOMLMPwvOdbWYjG1yf68xsoZmVmtksM8vZ8yu958zsu+F12WFmi83szCbKmZndbmabw2v5vpmNCbdlm9ltZrbazDaZ2d1mltvK498fln8hjOEVMxuatP3XZrYmPOZ8M5uatG2GmT1qZg+aWRlwiZlNMrM3wuu8wczuMrOspH3czL5mZh+Hx/tJeO/+HR7jkeTyTcR8vJmtbc357YGTgdfcfY67x4CfAYOA41J8HBGRDkEJlohI250HfIHgr/MFwDPA/wC9geuAx8wsP6n8RcBlwAAgBtzRRL2bgdOA7sClwO1JSc4k4M/A9eFxjwWKwv3uD+s9GDgcOAn4SgvnYMD/AwYCI4EhwAwAd18OfAd40My6AH8E/uTus81sODATuAbIB54F/tbgi/w5wCnAMGAccEmjAZhNCZOHpl5TWjiHhpYDU4EewI/D+Ac0Uu4kgus3PCx7DlASbvtpuH48wfUcBNy4BzGcD/wE6AssIGjJqfN2WG9v4C/AXxskn9OARwnu70NAHLg2rOto4LPA1xoc72TgSGAycANwD3ABwf0cQ/Cz+qmFiXJT9+f/mtu1wXsL4xER2ecowRIRabs73H2Nu1cSfJl91t2fdfeEu78AzAM+n1T+AXdf5O4VwI+AcxprYXL3Z9x9uQdeAf5JkDAA/BfwB3d/ITzOOndfamYF4bGucfcKd98M3A6c29wJuPuysK5qdy8GfklSC4O73wssA94kSAx/EG6aDjwT7lsL3AbkAp9pcH3Wu/tWgu5h45uIYY6792zm1dykFOc0+LI/0N3/Gh434e6zgI+BSY3sWwvkAYcC5u5L3H2DmRlwOXCtu2919x3A/7Z0LRt4xt1fdfdqgmt2tJkNCc/3QXcvcfeYu/8CyAaSxz+94e5PhvFXuvt8d58bli8CfsfurUC3unuZu38ALAL+6e4r3L0U+AdBwv2pufu4Zu5Pw2SvzovAcWHrWBbwfSAL6NKWWEREOiolWCIibbcm6f1Q4MvJX/aBKQRJSWPlVwGZBK0SuzCzU81sbtg9bztB4lRXbghBC01DQ8P6NiQd/3dAv+ZOwMwKzOxhC7oUlgEPNhLTvQStDneGCQMELV6r6gq4eyI8v0FJ+21Mer8T6NZcLJ/SIw2+7K83s4ss6EJZdx3G0Mh1dveXgLuA3wCbzeweM+tO0CLXBZifVMdz4frWqr/X7l4ObCW4ZoRdJ5eEXSe3E7Se9W1s37D8cDP7u5ltDO/R/zZyPpuS3lc2stwe175Z7r4UuJjgGm8giHkxkOquiCIiHYISLBGRtvOk92sIWqiSv+x3dfefJpUZkvT+AIIWlC3JFZpZNvAYQYtQgbv3JOh+V9fVag1wUCOxrAGqgb5Jx+/u7qNbOIf/Dc9jrLt3J2iJq+/WZWbdgF8B9wEz7JNxY+sJkrq6chae37oWjrcbC6YIL2/mNbXlWurrGkqQEF4F9Amv3yJ27apWz93vcPcjgVEEXQKvJ7gnlcDopGvZw933JEmpv9fhNewNrA/P5QaC7oi9wvhKG8SX/HMF8FtgKXBIeI++39T5tBcLxto1dX/ubmo/d3/U3ce4ex/gJqCQoIukiMg+RwmWiEhqPQicbmYnm1nUzHLCrlGDk8pcYGajwvFMNwOPunu8QT1ZBF3GioGYmZ1KMFaozn3ApWb2WTOLmNkgMzvU3TcQdCX8hZl1D7cdZGYtTSiQB5QDpWY2iCDBSPZrYJ67f4VgjFndl+lHgC+EcWQC3yZI8P7d0oVqKJwivFszr9f2oLquBAlKMQQThtDEmB8zm2hmR4XxVwBVQCJsjbuXYOxbv7DsIDM7OWlft6RJTBrx+XBsWRbBWKy57r6G4HrHwvgyzOxGgrF2zckDyoByMzsUuLKF8inn7qObuT9XNLWfmR0Zfh7yCcaFPR22bImI7HOUYImIpFD45XkaQetCMUGL0vXs+vv2AYKJKDYCOcA3G6lnR7j+EWAb8J/A00nb3yKc+IKg5eMVPmlJuoggQVsc7vsou3ZRbMyPgSPCup4BHq/bYGbTCCapqPtC/y3gCDM7390/JGjtupOgxed04HR3r2nheO3K3RcDvwDeIOgmNxZ4vYni3QkSqW0E3R1LgJ+H275DMPZsbtgt70XCcVLhWKodwPvNhPIXghabrQSTT1wQrn+eoLvhR+Exq2jQJbAR1xH8HOwI453VQvmO5NfAduBDguv81bRGIyLSjsy9YQ8EERFpL2Y2G3jQ3X+f7likbczsAoLug99rYvv9wFp3/+FeDUxERNJKD/kTERH5FNz9wXTHICIiHY+6CIqI7CcseOjtHk1OIPseM/t+Ez8H/0h3bCIi+wJ1ERQREREREUkRtWCJiIiIiIikSIcag9W3b18vLCxMdxgiIiIiIiLNmj9//hZ33+3h8x0qwSosLGTevHnpDkNERERERKRZZraqsfXqIigiIiIiIpIiSrBERERERERSRAmWiEgLFr41m4+Xf5zuMERERKQT6FBjsBpTW1vL2rVrqaqqSnco0snk5OQwePBgMjMz0x2KdGKxeIJxz04DwG/ajpmlOSIRERHpyDp8grV27Vry8vIoLCzUFxtpNXenpKSEtWvXMmzYsHSHI53YqpJyDqp7v/QdCkcemdZ4REREpGPr8F0Eq6qq6NOnj5Ir2SNmRp8+fdTyKW1Wtq2k/n3x0n+nMRIRERHpDDp8ggUouZJPRT83kgpVZcX17+PrF6YxEhEREekMOkWCJSKSLrU7ttS/71G6NI2RiIiISGegBKsVzIxvf/vb9cu33XYbM2bMSF9ASebOnctRRx3F+PHjGTlyZH1cs2fP5t//blt3plNOOYWePXty2mmnpSBSkc4pVh4kWKszh5FfszrN0YiIiEhHpwSrFbKzs3n88cfZsmVLy4X3gLuTSCTaVMfFF1/MPffcw4IFC1i0aBHnnHMOkJoE6/rrr+eBBx5oUx0ind7OrQBs7zmWvmxnZ3lpmgMSERGRjqzDzyKY7Md/+4DF68tSWueogd256fTRzZbJyMjg8ssv5/bbb+eWW27ZZVtxcTFXXHEFq1cHf9n+1a9+xTHHHMOMGTPo1q0b1113HQBjxozh73//OwAnn3wyRx11FPPnz+fZZ5/lrrvu4h//+Admxg9/+EOmT5/O7NmzmTFjBn379mXRokUceeSRPPjgg7uNK9q8eTMDBgwAIBqNMmrUKIqKirj77ruJRqM8+OCD3HnnnRx66KFNxrl8+XKWLVvGli1buOGGG/jqV78KwGc/+1lmz57d7LX561//yo9//GOi0Sg9evTg1VdfpaqqiiuvvJJ58+aRkZHBL3/5S0444QTuv/9+nnzySSoqKvj444+57rrrqKmp4YEHHiA7O5tnn32W3r17c++993LPPfdQU1PDwQcfzAMPPECXLl12Oe7kyZO57777GD06uHfHH388t912GxMmTGg2XpE9lVG1DYDEoCOh+GnWF33IwWMmpTkqERER6ajUgtVKX//613nooYcoLd31r9dXX3011157LW+//TaPPfYYX/nKV1qs6+OPP+ZrX/saH3zwAfPmzWPBggW89957vPjii1x//fVs2LABgHfffZdf/epXLF68mBUrVvD666/vVte1117LiBEjOPPMM/nd735HVVUVhYWFXHHFFVx77bUsWLCAqVOnNhvnwoULeemll3jjjTe4+eabWb9+fauvy80338zzzz/Pe++9x9NPPw3Ab37zG8yM999/n5kzZ3LxxRfXz+a3aNEiHn/8cd5++21+8IMf0KVLF959912OPvpo/vznPwPwpS99ibfffpv33nuPkSNHct999+123OnTp/PII48AsGHDBjZs2KDkStpFZm0pcTfyhh4OQNn6j9IckYiIiHRknaoFq6WWpvbUvXt3LrroIu644w5yc3Pr17/44ossXry4frmsrIzy8vJm6xo6dCiTJ08GYM6cOZx33nlEo1EKCgo47rjjePvtt+nevTuTJk1i8ODBAIwfP56ioiKmTJmyS1033ngj559/Pv/85z/5y1/+wsyZMxttdWouzmnTppGbm0tubi4nnHACb731Fl/84hdbdV2OOeYYLrnkEs455xy+9KUv1Z/TN77xDQAOPfRQhg4dykcfBV9KTzjhBPLy8sjLy6NHjx6cfvrpAIwdO5aFC4MZ2hYtWsQPf/hDtm/fTnl5OSeffPJuxz3nnHM46aST+PGPf8wjjzzC2Wef3ap4RfaUxWuoJou+B4wAoKZ4RZojEhERkY6sUyVY6XbNNddwxBFHcOmll9avSyQSzJ07l5ycnF3KZmRk7DK+Kvl5TF27dm3V8bKzs+vfR6NRYrFYo+UOOuggrrzySr761a+Sn59PSUnJbmWaihN2n858T6Y3v/vuu3nzzTd55plnOPLII5k/f36z5ZPPKRKJ1C9HIpH687vkkkt48sknOeyww7j//vsbTRgHDRpEnz59WLhwIbNmzeLuu+9udcwie8ISNcTIoHuvfpR5F2z7qnSHJCIiIh1Ym7sImtkQM3vZzBab2QdmdnW4foaZrTOzBeHr820PN7169+7NOeecs0uXtZNOOok777yzfnnBggUAFBYW8s477wDwzjvvsHLlykbrnDp1KrNmzSIej1NcXMyrr77KpEmtH9/xzDPP4O5A0PUwGo3Ss2dP8vLy2LFjR4txAjz11FNUVVVRUlLC7NmzmThxYquPv3z5co466ihuvvlm8vPzWbNmDVOnTuWhhx4C4KOPPmL16tWMGDGi1XXu2LGDAQMGUFtbW19PY6ZPn86tt95KaWkp48aNa3X9InskXkutZWCRCJsz+tOlXDMJioiISNNSMQYrBnzb3UcBk4Gvm9mocNvt7j4+fD2bgmOl3be//e1dZhO84447mDdvHuPGjWPUqFH1LSlnnXUWW7duZfTo0dx1110MHz680frOPPNMxo0bx2GHHcaJJ57IrbfeSv/+/VsdzwMPPMCIESMYP348F154IQ899BDRaJTTTz+dJ554gvHjx/Paa681GSfAuHHjOOGEE5g8eTI/+tGPGDhwIBAkf1/+8pf517/+xeDBg3n++eeBoFti3Xir66+/nrFjxzJmzBg+85nPcNhhh/G1r32NRCLB2LFjmT59Ovfff/8uLVct+clPfsJRRx3FMcccw6GHHlq//umnn+bGG2+sXz777LN5+OGH62dOFGkPkXgttWQCsD17ED2r16U5IhEREenIrK71I2UVmj0F3AUcA5S7+22t3XfChAk+b968XdYtWbKEkSNHpjRG+UTD2Q73Nfr5kbaa/8uzKdjxPoNv+pA5v/0akzbOIvPGTVhUPaxFRET2Z2Y23913m2UtpbMImlkhcDjwZrjqKjNbaGZ/MLNeTexzuZnNM7N5xcXFqQxHRKTNLFFDzMJkqudQsixG2Za16Q1KREREOqyUJVhm1g14DLjG3cuA3wIHAeOBDcAvGtvP3e9x9wnuPiE/Pz9V4UgrzZgxY59tvRJJhUiilnjYRTA3vxCALeuWpzEiERER6chSkmCZWSZBcvWQuz8O4O6b3D3u7gngXkBP5hSRTifiMeIWJFg9+g8DYMfGxietEREREUnFLIIG3AcscfdfJq0fkFTsTGBRW48lIrK3RRK1xCJBgpU/6GAAako0VbuIiIg0LhWjtI8BLgTeN7MF4brvA+eZ2XjAgSLgv1NwLBGRvSqaqCEWtmB179mLUu+KlWkMloiIiDSuzQmWu88BGnsy7T4xLbuI7N+iXktNNBcIHsK9JdqP7ApN1S4iIiKNS+ksgvuyJ598EjNj6dKlTZYpKipizJgxKTvmhx9+yPHHH8/48eMZOXIkl19+ORA8JPjZZ9uWv1522WX069cvpfGK7IuiHiMRtmABlGb3J696UxojEhERkY5MCVYrzZw5kylTpjBz5sxGt8disTYfIx6P77L8zW9+k2uvvZYFCxawZMkSvvGNbwCpSbAuueQSnnvuuTbVIbI/yPBaEpFPEqzqLgPpG9+cxohERESkI+tcT8r8x3dh4/uprbP/WDj1p80WKS8vZ86cObz88sucfvrp/PjHPwZg9uzZ/OhHP6JXr14sXbqUf/7zn8RiMc4//3zeeecdRo8ezZ///Ge6dOnCv/71L6677jpisRgTJ07kt7/9LdnZ2RQWFjJ9+nReeOEFbrjhBs4999z6427YsIHBgwfXL48dO5aamhpuvPFGKisrmTNnDt/73vc47bTT+MY3vsGiRYuora1lxowZTJs2jfvvv58nnniC0tJS1q1bxwUXXMBNN90EwLHHHktRUVGz5/3KK69w9dVXA0HXqFdffZVu3bpxww038I9//AMz44c//CHTp09n9uzZ3HTTTfTs2ZP333+fc845h7Fjx/LrX/+ayspKnnzySQ466CD+9re/8T//8z/U1NTQp08fHnroIQoKCnY57rnnnsuFF17IF77wBSBIBk877TTOPvvs1t1TkRSKemyXBCvRYzB5JTupLNtGbvdGH+8nIiIi+zG1YLXCU089xSmnnMLw4cPp06cP8+fPr9/2zjvv8Otf/5qPPvoICLr1fe1rX2PJkiV0796d//u//6OqqopLLrmEWbNm8f777xOLxfjtb39bX0efPn145513dkmuAK699lpOPPFETj31VG6//Xa2b99OVlYWN998M9OnT2fBggVMnz6dW265hRNPPJG33nqLl19+meuvv56KigoA3nrrLR577DEWLlzIX//6V+bNm9fq877tttv4zW9+w4IFC3jttdfIzc3l8ccfZ8GCBbz33nu8+OKLXH/99WzYsAGA9957j7vvvpslS5bwwAMP8NFHH/HWW2/xla98hTvvvBOAKVOmMHfuXN59913OPfdcbr311t2OO336dB555BEAampq+Ne//lWfbInsbZnUkohkfbLc+wAAitctS1dIIiIi0oF1rhasFlqa2svMmTPrW3LOPfdcZs6cyZFHHgnApEmTGDZsWH3ZIUOGcMwxxwBwwQUXcMcdd/Af//EfDBs2jOHDhwNw8cUX85vf/IZrrrkGCBKKxlx66aWcfPLJPPfcczz11FP87ne/47333tut3D//+U+efvppbrvtNgCqqqpYvXo1AP/xH/9Bnz59APjSl77EnDlzmDBhQqvO+5hjjuFb3/oW559/Pl/60pcYPHgwc+bM4bzzziMajVJQUMBxxx3H22+/Tffu3Zk4cSIDBgSz8x900EGcdNJJQNDy9vLLLwOwdu1apk+fzoYNG6ipqdnl2tU59dRTufrqq6murua5557j2GOPJTc3t1Uxi6RahsfwpASra7/gZ7Zs4woYOTFdYYmIiEgHpRasFmzdupWXXnqJr3zlKxQWFvLzn/+cRx55BHcHoGvXrruUDx4L1vRyYxrWkWzgwIFcdtllPPXUU2RkZLBo0e6PE3N3HnvsMRYsWMCCBQtYvXo1I0eO/NTx1Pnud7/L73//eyorKznmmGOaneADIDs7u/59JBKpX45EIvVj1L7xjW9w1VVX8f777/O73/2Oqqqq3erJycnh+OOP5/nnn2fWrFlNJqAie0MGMTz6SRfBXgMPBKBqi56FJSIiIrtTgtWCRx99lAsvvJBVq1ZRVFTEmjVrGDZsGK+99lqj5VevXs0bb7wBwF/+8hemTJnCiBEjKCoqYtmyoEvRAw88wHHHHdfisZ977jlqa2sB2LhxIyUlJQwaNIi8vDx27NhRX+7kk0/mzjvvrE/63n333fptL7zwAlu3bq0fB1XXutYay5cvZ+zYsXznO99h4sSJLF26lKlTpzJr1izi8TjFxcW8+uqrTJo0qdV1lpaWMmjQIAD+9Kc/NVlu+vTp/PGPf+S1117jlFNOaXX9IqmW6bW7JFj9+g+h2jNIbF+TxqhERESko1KC1YKZM2dy5pln7rLurLPOanI2wREjRvCb3/yGkSNHsm3bNq688kpycnL44x//yJe//GXGjh1LJBLhiiuuaPHY//znPxkzZgyHHXYYJ598Mj//+c/p378/J5xwAosXL2b8+PHMmjWLH/3oR9TW1jJu3DhGjx7Nj370o/o6Jk2axFlnncW4ceM466yz6rsHnnfeeRx99NF8+OGHDB48mPvuuw+Au+++m7vvvhuAX/3qV4wZM4Zx48aRmZnJqaeeyplnnsm4ceM47LDDOPHEE7n11lvp379/q6/njBkz+PKXv8yRRx5J375969fPmzePr3zlK/XLJ510Eq+88gqf+9znyMrKaqwqkb0igxgkdRHMyMig2PqSsUMPGxYREZHdWV2rR0cwYcIEbzgJw5IlS+q7u8meuf/++5k3bx533XVXukNJG/38SJskEnBzL14f/FWO+cpt9avfv+VYsqhlxA/eSGNwIiIikk5mNt/dd5vcQC1YIiJNiMdqgjfRXVtRd+b2p1dMDxsWERGR3SnB2oddcskl+3XrlUhb1dYEk7BYxq4JVixvMH0TW4nX1qQjLBEREenAOkWC1ZG6MUrnoZ8baava2urgTdIkFwCRXkOImLN1Y9HeD0pEREQ6tA6fYOXk5FBSUqIvy7JH3J2SkhJycnLSHYp0YrXVQYLVsAUrt28hANvWL9/bIYmIiEgH1+EfNDx48GDWrl1LcXFxukORTiYnJ4fBgwenOwzpxOJhF0Gi2bus794/eBZWxeaivRyRiIiIdHQdPsHKzMxk2LBh6Q5DRPZDsbCLYKRBC1b+oOB3Uu3W1Xs9JhEREenY2r2LoJmdYmYfmtkyM/tuex9PRCRV6hKshl0E8/K6U0IPImV6FpaIiIjsql0TLDOLAr8BTgVGAeeZ2aj2PKaISKrUJVjRjOzdtpVE88nZuX5vhyQiIiIdXHu3YE0Clrn7CnevAR4GprXzMUVEUiJR03gXQYCy7AF0r964t0MSERGRDq69E6xBwJqk5bXhunpmdrmZzTOzeZrIQkQ6klgsmOQikrV7C1ZN14HkJ4pBM5yKiIhIkrRP0+7u97j7BHefkJ+fn+5wRETqxWuCBwk31oLlPYaQSzXl2zfv7bBERESkA2vvBGsdMCRpeXC4TkSkw0vEggQrmrl7C1ZmnwMAKFmnZ2GJiIjIJ9o7wXobOMTMhplZFnAu8HQ7H1NEJCUSsaYnucjrF0zVXrZxxV6NSURERDq2dn0OlrvHzOwq4HkgCvzB3T9oz2OKiKRKXYKV0cgYrN6DDgKgasuqvRqTiIiIdGzt/qBhd38WeLa9jyMikmqfdBHM2W1b3/wBVHoWlOpZWCIiIvKJtE9yISLSUXltkGBlNtKCFY1G2BTJJ7NcCZaIiIh8QgmWiEgTPB4kWBlZu88iCFCaWUC3Kj0LS0RERD6hBEtEpAkedhHMaKSLIMDOLgPpXbtpb4YkIiIiHZwSLBGRptS3YO3eRRAgnjeI3pQSq6rYm1GJiIhIB6YES0SkCXUtWFlZjbdgRXsFz8LasqFob4UkIiIiHZwSLBGRpsRriLuRmZnZ6OYu+YUAbF+vhw2LiIhIQAmWiEhT4jXUkkE0Yo1u7jXwQAAqNq/cm1GJiIhIB6YES0SkKYlaasnArPEEq2DIQcQ8Qmxr0d6NS0RERDosJVgiIk2wsAWrKdlZ2WyyfDJLV+/FqERERKQjU4IlItIEi9cQs8bHX9UpyRpAt0o9bFhEREQCSrBERJpgYRfB5lR0GUzf2g17KSIRERHp6JRgiYg0JV5DvIUWrFj3A+hNKbWVZXspKBEREenIlGCJiDQh0ooEK6PvMACKV3+0N0ISERGRDk4JlohIEyxRSzzSfBfBrgUHA1C6ftneCElEREQ6OCVYIiJNiCRqSbTQgtVn8HAAKjfrYcMiIiLSxgTLzH5uZkvNbKGZPWFmPcP1hWZWaWYLwtfdKYlWRGQviiZqiEeymi1TUDCAHZ6LbyvaO0GJiIhIh9bWFqwXgDHuPg74CPhe0rbl7j4+fF3RxuOIiOx12Ymd1Ea7NFsmIyPKxkgBOTv0LCwRERFpY4Ll7v9091i4OBcY3PaQREQ6hhyvpDaja4vltmUPIq9q/V6ISERERDq6VI7Bugz4R9LyMDN718xeMbOpTe1kZpeb2Twzm1dcXJzCcERE2ibHq4hlNN+CBVDZdTD94hvBfS9EJSIiIh1ZiwmWmb1oZosaeU1LKvMDIAY8FK7aABzg7ocD3wL+YmbdG6vf3e9x9wnuPiE/P7/tZyQikiJdvJJ4ZsstWN6zkBxqqNqmViwREZH9XfPzDwPu/rnmtpvZJcBpwGfdgz/funs1UB2+n29my4HhwLy2Biwislck4nSxahKt6CKYlT8MlsOWNR8xuPegvRCciIiIdFRtnUXwFOAG4Ax335m0Pt/MouH7A4FDgBVtOZaIyN5UU7kjeJPVrcWy3QcGz8Iq26BnYYmIiOzvWmzBasFdQDbwgpkBzA1nDDwWuNnMaoEEcIW7b23jsURE9pqKsu1kAZGclhOs/MGHkHCjpljPwhIREdnftSnBcveDm1j/GPBYW+oWEUmnivJSegEZOXktls3v2YNN9CJSuqr9AxMREZEOLZWzCIqI7DOqyksByOzS6Pw8u4hEjOKM/uRWrG3vsERERKSDU4IlItKIqooyALJakWABlOYMome1ZhEUERHZ3ynBEhFpRE1lkGBld21dglXd7QD6JEqgtqo9wxIREZEOTgmWiEgjasNZBLt07dGq8ta7kAhO+WZNmCoiIrI/U4IlItIIrygBILdH31aVz+13EABb137cbjGJiIhIx6cES0SkMRXFxN3I69WvVcV7DgomVa3YqGdhiYiI7M+UYImINCKys5ht1oOMzMxWle8/sJAqzyRWUtS+gYmIiEiHpgRLRKQRWVUllEV6trp8r65ZrKWAjDI9C0tERGR/pgRLRKQRuTUlVGT2bnV5M6Mksz9dd65rx6hERESko1OCJSLSiLz4Nqqz++zRPuVdhtCnZj24t1NUIiIi0tEpwRIRaSART9ArsZ14l9bNIFinNm8IXdmJ79zaTpGJiIhIR6cES0SkgeKNq8m1GqxX4R7tl9l7CABlxWvaISoRERHpDJRgiYg0sGX1EgBy+w/fo/3y+g4CoGSjJroQERHZXynBEhFpYOf6pQD0HjJyj/brVTAUgB2b1YIlIiKyv1KCJSLSQM3mj6nxDAqGHLxH+/UfHCRY1ds0k6CIiMj+qk0JlpnNMLN1ZrYgfH0+adv3zGyZmX1oZie3PVQRkb2j27bFrMs8oNUPGa6T1y2P7XQjsWNDO0UmIiIiHV1GCuq43d1vS15hZqOAc4HRwEDgRTMb7u7xFBxPRKTdxONxDqxeytL8Uxj2KfbfHulN1s7NKY9LREREOof26iI4DXjY3avdfSWwDJjUTscSEUmZVUvnk2eV2OAJn2r/8qy+dKspTnFUIiIi0lmkIsG6yswWmtkfzKxXuG4QkDzKe224bjdmdrmZzTOzecXF+lIiIum16Z1nATjgyFM+1f6V2f3oEStJZUgiIiLSibSYYJnZi2a2qJHXNOC3wEHAeGAD8Is9DcDd73H3Ce4+IT8/f093FxFJqe6rX2RlpJB+ezjBRZ3argX09u14Qj2iRURE9kctjsFy98+1piIzuxf4e7i4DhiStHlwuE5EpMNas/wDRte+z5tD//tTjb8CoFt/Mi1OWckmuucPTGV4IiIi0gm0dRbBAUmLZwKLwvdPA+eaWbaZDQMOAd5qy7FERNrbun/dTcwjDDvpyk9dR0aP4Nfi9uLVqQpLREREOpG2ziJ4q5mNBxwoAv4bwN0/MLNHgMVADPi6ZhAUkY6soqKcQ9Y/xcIukzli0KduvyKndzDcdOeWNcDkFEUnIiIinUWbEix3v7CZbbcAt7SlfhGRvWX+oz/nWEopOf6qNtXTre9gAKq26VlYIiIi+6P2mqZdRKTT2LplM+NW/J4Pcicy/KgvtKmuXv2CBCtetjEVoYmIiEgnk4oHDYuIdGqLH/0JU6ycstP/p8119cjLo9S7QrkeNpysJpagYmclFRXlxGK1uMcxT5Cd04Wued3pmpNDNGLpDlNERKTNlGCJyH5t/ZrlHLnhYd7p+R8cMartY6YiEWOr9SSzcv95rl8inmDDhjVsXvk+OzauILFtNdkV6+hauYGcWCld42X0oJxeVkWvJuqo9gxKyWVbpCflGX2ozulLvEs+1n0A2b0G07XvEHoNGErvgqFEs3L26vklc3dq4gnisVpqq3YSj9USjyeIJeLE4wlwJ2JOBCdqYNEokUgGkWgmlhH8G83IJBqNkhGNEjEwU2IpIrIvUYIlIvu11Y/dSF8SDPpS6oaM7sjoTU71lpTV15FU7Sxn1Qdz2b78LeKblpJXtozBsVUMsvJdniZfYr3YmtGP6twCqnJGUJzTk0ROLyJZXYhEMyESwYmQqK0kXl2B11Rg1eVkVW0ht3oL+eWL6FW2ldxNNbvFsI3ubM/oy87sftR0KaC2SwGWnUc0pxvRnDwyc7phGZk4HuwQ/hOvrSZevZN4TSWJ2koSNZVQW4nXVkKsikisEotVEYlVkRGvJJqoJjNRRWaimiyvJturyaGabGroYm2ft6nWo9QQJU6UGBHiRElYhAThy6I4Flwni4b/RnCLhmWMBBEMMBIYjrljJGC3dfU1fbItaf0uFwqw+rcelv9k2yfrPrHr9uY5TSeUzdfS3H6fts7m693TXayJAk3FYK1baPHQMcug4tQ7GT7hs03uJyJ7jxIsEdlvrVzyDhO3PcP8/tOZNHREyurdmdWHvlUfpqy+dInH46xcMp/iJXOw9e/Qt+wDCmNFjLDgS3oZXdmYXcjKXp9lRb+RdB04kn5DhtNr4DD6ZObSp43H90SC7dtK2LJhJTs2r6Zy61ri29cRLd9IduUm8io3U1C+hL5W2qbjVHsG1WRRbdnUWBY1lkNtJJt4JIearF5URXNIZOSQyMiFzFw8I5dERg4ezcGiGUQiESJmWCSKW5CyJBwSbrgnsEQMwpclYuDxT9bFayERxzwG8WBbsD2OuwfvPR6WSQTvvS61ShDxRHjMCGC4BemWE8GNXdbvVsaCZcKYDcB2TZuCxXBduG2XdUlf971+3ybSiRYznV0T4tbu3DC5c298W2M1NJUYNhfCbtvCAza2zy5bGingSYlsc5fHG2xsWHZUxZuUPf8j/IgTsIiG14ukmxIsEdlvbfvbj+hLDsPPnpHSemty8um5c25K69wb4vE4yxbNo3jRi+Sse4MDdy7gYHZwMEEytTpnBG/3v5jswokMHPkZCgYOpXs7fpmzSISeffLp2ScfmNRoGXenqqaGneVl7CwvpbJiB1UVZZAIW5jqcgN3MrKyycrtSlZOF7JzupLdpSu5ud3Izswku93OQqT9vfHwTzl66f/j/TlPMvbYL6U7HJH9nhIsEdkvfbxwLkfsnMObQy/nqPwBLe+wBxLdCuiytYpE1Q4iOXkprTvVirdsYdm/nyTj439w8I43GcEORgCbLJ+VvY5hZeEUBo49gf6FoxjTAf8ybmbkZGeTk51P7z756Q5HJC0On/ZNNnx4H3mzb6TmqM+TlZ2+cYoiogSrWUvfepEdr99L9mFfYuSUaWSmcWC1iKRW2fP/Szm5jPzSDSmvO6N7fwC2bV5LnwNGprz+tnB3Fn/4EevefIxea15gXO1CjrYY28nj4x5HEz3wOA448iQKBg+nIN3Bikir5OR2YfPUn3DYq//N3L/cxORLf5bukET2a0qwmrFjw0eMKH2V7q8+R9mr17Cw6wRiQz5D/3GfY/CII4hGo+kO8VPzRIJEIhHOgBULpk2OxYjFakgk4sTjtcRrY3giRjyRILnHtyca9v72pA7iHhZNKt+w83gjkvv+WyMDfesGMCdvSx5MnDwLV3PjhC15r2amhG5qVi/33QLcdVt9vI2MCbC6bQ3386T9GtaXfDzffVsr9vNG99utysZjboK3cr/dD9fEeIfdBzU0ua3Rc23NsZNWVJesYnL5q7w9+GKO6pn6Vo+cXkGL2PYOkmDFYnHeX/AmJfOfYMDGlxntHzMa2BgdwJIh59Lj8GkMPewEJmZkpjtUEfmUDjvxXOa9O4sJRffw4ZvHMeKoz6c7pL3Kw+80tTVV1NZUEaupora2hlgsQSwc6+gJxxNx3ON4IoEngjGPnkiAJ0h4ov7/cq//rz6CWfDtwc0wi3zyTaJuORyX6HXjFs2C7xv2yTjG5HLhrru8DxaDXgJG8B3FGikbVNugN0GzM5E2/CJkrdyWIq34DtiqaqKZdOsziLyczvH/lLXmy+/eMmHCBJ83b166w9hFdXUlH7z2NIkPnmTw9rfp78HUyxWezfrMAyjtdhA13QvJ6jWQrJ4DyOgxgC7depLbNY+u3bqTndsVIhl8koQE/8YTCaqrKqmprqC2qpLaqp3U1lQSqw5mtorVVBKvqSJRN9tVbRVeWwW1VRALXharwuLVWLyaaLyaSKKajEQ1GYma4F+vIctryPQasqgh02PUzT2VmYIZsEQ6s52eTc1V79Ezxd0DAT587w1GPHEK7x19B4edfHHK62+Nquoa3n/jeSoWPs2BW1/hADYBsDJ7BBWFJzPk6LPpMXRc+/yHKiJpUbp9K6W/PoZuXs6Oc59m6KGHpzukJnkiQXl5GTu2bmJnaTHVpcXUlG+htqKUeGUZieodRGrKidRWkBGrIDNWQVa8guxEZf13nExiZHktWdSQRYyIdZzvtJJaHyUG8fJn/8Z/H3dQukPZhZnNd/cJDderBasF2dm5HPG56fC56QCsW/kh69/7J4n1C8nd/jFDt79J/vbnYPWe1ZsJtKXDYaVnUWOZ1JBFjWVRa1nELItYJJtYJJvqjDzi0RwSkSwSGdl4NAePZOKRaJDwRTLAolgkA5LXRYJ1Fs3AI+HsWOG4i+RpcOv+euKf/EEFklqbdp1lipa/xDUyC1N9Q0z9tsamYGq4mNyE0VyLTCu3fdK4VF9w1xay5JazXetsOEnvrq1vSQvuzVwe37Vss3U2iLOpaYR3W9+66YCbe1ZPwy2t/WPa7sWamuS48ZbNxra1Nl3oNngs/dshuQLoVTAEgOrt69ul/qaUlpay5PUnSSx5hkPL/s1E20ENGSzvegQfDL+SA6ecxbA+B+zVmERk7+nRszel580k8Zdp5D18Bks//wcOnfQfezWGRPVOtm1aRenm1VSWrKV66zooW0905yYyq7eRXbudbvFSevgO8qyW5kapVpDDTnKpjHShOnxVZvUgnpEL0Sw8mk0imo1HM/FoNh7NxjKyIZqNZWRh0Uwi0SiRSBQikeC7i0UxMzySEbQwRaJgESzcbsn/f7rjnqhb+OQP5YS9Tzz81pH03vCwZ0pSj576com6mpIml/T6Y9UvJ3UMarif1R+nTjMzbDbTbWW3GTR3Kdvwy08bpeAPeTUZeRw3ovOMs1WCtYcGDRvBoGG7TudcVVlB8YY1VJSsJVa6kdrKHdRWVRCrqiAS20nE40lT59ZlJBEsMwfLyMEyc4hk5RLJzCGalUs0K5eM7ByiWV3IzMolM6cLWTm5ZOV0JSenC5lZ2eRGIuTu/dMXkVbokz+AmEfwso3tfqyN61ez4vVHyVn+PKMq5zPZatlBF1b0PoZNo0/j4M98kZFderZ7HCLSMRwwfDyr/vNpMmZ+mUOe+TJvzvsyB33pR/Tt37Y/rngizo6STWzbtIry4tVUbV1HonQdkfKN5FRuolvNZnrFS+hOOX1gl8c0lHsOJdaLioyelGX1Z1vOSFbl9obc3liXPmTk9SUrry+5PfPp1r0Ped17ktM1j66RKF3bFLVIeqiLoIhIO1g7YzjF3Udz+LeeSGm9nkiwcvHbbHj7KXqte4lDa5cSMWeT9WVNvxPocfgXOejIk4hkZqX0uCLSuZRu28rSP3+TCVv/jmMszR1Peb8JZA8eR5c+g8np1jN49LQDNRVUlW+ncsc2qndsgR0bydi5iazKzXSpLqZ7rITeiW1kWWyXYyTc2GI92RbtQ3lWPlU5BcS7DSDSYyDZvQbTNX8IvQqG0rdvXzKjHW8WUpG2UhdBEZG9aFN2IX13rkhJXaU7drDszWeJL32OA0pe40Av5kBgWcbBzC/8KgWTzuKAUUdRoPFUIhLq0as3R139IGuWvc/af/2O/pteYdSqe4msbt0f1kvpyrZIb8oy+rI973BWdCmA7gPI7DmILn2H0KPgAPoUHEC/nGz6tfO5iHQ2bUqwzGwWUNdfriew3d3Hm1khsAT4MNw2192vaMuxREQ6k4oeBzF283w8XotF92zWo+rqSj565xVKF/+L7hvnMqJmCUdaLTs9m6VdjmT1wV/nwM+cycEDCtsneBHZZww5eCxDDr4LgPKyrWxY8QEVJeuIVe4gSgLDiWd2I6tLD7p270X3Xn3pnj+EHrld6ZHm2EU6qzYlWO4+ve69mf0CKE3avNzdx7elfhGRziqjYCRZm2Os/XgBgw+d2GQ5TyQo2bCSdR+8TmXR23TbspADq5cw1qpJuFGUOYz3B32ZbiM/x4ETT+WInC578SxEZF/SrXtvDhk/Nd1hiOzzUtJF0ILpxc4BTkxFfSIind3QSWcQW3gTm1+7vz7B2r5lE5tXLmTHmkXUblpK7vZlDKpeRl+20xeo8SirMg/k/X6nkzv8eIZNOJkDe/XjwPSeioiIiOyBVI3BmgpscvePk9YNM7N3gTLgh+7+WoqOJSLS4Q0aUsib3Y7jqHUPsuHHz9Pdd9CTKnqG26s8k/UZQ1jV8yiWFRxO94MnceCYyRySqzmzREREOrMWEywzexHo38imH7j7U+H784CZSds2AAe4e4mZHQk8aWaj3b2skfovBy4HOOAAPZ9FRPYdI6/4M/9+5Gaytq+kKKcXkR6Dyep/KL2HjWNw4QgOjEbTHaKIiIikWJunaTezDGAdcKS7r22izGzgOndvdg52TdMuIiIiIiKdQVPTtKfioQSfA5YmJ1dmlm9m0fD9gcAhQGrmKxYREREREemgUjEG61x27R4IcCxws5nVAgngCnffmoJjiYiIiIiIdFhtTrDc/ZJG1j0GPNbWukVERERERDqTNo/BSiUzKwZWpTuOBvoCW9IdhOw1ut/7D93r/Yvu9/5D93r/oXu9f+mI93uou+c3XNmhEqyOyMzmNTZ4TfZNut/7D93r/Yvu9/5D93r/oXu9f+lM9zsVk1yIiIiIiIgISrBERERERERSRglWy+5JdwCyV+l+7z90r/cvut/7D93r/Yfu9f6l09xvjcESERERERFJEbVgiYiIiIiIpIgSLBERERERkRRRgtUMMzvFzD40s2Vm9t10xyOpY2ZDzOxlM1tsZh+Y2dXh+t5m9oKZfRz+2yvdsUpqmFnUzN41s7+Hy8PM7M3w8z3LzLLSHaOkhpn1NLNHzWypmS0xs6P12d43mdm14e/wRWY208xy9Nned5jZH8xss5ktSlrX6GfZAneE932hmR2RvshlTzVxr38e/h5faGZPmFnPpG3fC+/1h2Z2clqCboYSrCaYWRT4DXAqMAo4z8xGpTcqSaEY8G13HwVMBr4e3t/vAv9y90OAf4XLsm+4GliStPwz4HZ3PxjYBvxXWqKS9vBr4Dl3PxQ4jOC+67O9jzGzQcA3gQnuPgaIAueiz/a+5H7glAbrmvosnwocEr4uB367l2KU1Lif3e/1C8AYdx8HfAR8DyD8vnYuMDrc5//C7+0dhhKspk0Clrn7CnevAR4GpqU5JkkRd9/g7u+E73cQfAEbRHCP/xQW+xPwxbQEKCllZoOBLwC/D5cNOBF4NCyie72PMLMewLHAfQDuXuPu29Fne1+VAeSaWQbQBdiAPtv7DHd/FdjaYHVTn+VpwJ89MBfoaWYD9kqg0maN3Wt3/6e7x8LFucDg8P004GF3r3b3lcAygu/tHYYSrKYNAtYkLa8N18k+xswKgcOBN4ECd98QbtoIFKQrLkmpXwE3AIlwuQ+wPekXtz7f+45hQDHwx7BL6O/NrCv6bO9z3H0dcBuwmiCxKgXmo8/2vq6pz7K+t+3bLgP+Eb7v8PdaCZbs18ysG/AYcI27lyVv8+AZBnqOQSdnZqcBm919frpjkb0iAzgC+K27Hw5U0KA7oD7b+4Zw7M00gqR6INCV3bsYyT5Mn+X9g5n9gGBox0PpjqW1lGA1bR0wJGl5cLhO9hFmlkmQXD3k7o+HqzfVdSkI/92crvgkZY4BzjCzIoKuvicSjNHpGXYrAn2+9yVrgbXu/ma4/ChBwqXP9r7nc8BKdy9291rgcYLPuz7b+7amPsv63rYPMrNLgNOA8/2Th/d2+HutBKtpbwOHhLMRZREMpns6zTFJioRjcO4Dlrj7L5M2PQ1cHL6/GHhqb8cmqeXu33P3we5eSPA5fsndzwdeBs4Oi+le7yPcfSOwxsxGhKs+CyxGn+190Wpgspl1CX+n191rfbb3bU19lp8GLgpnE5wMlCZ1JZROyMxOIejef4a770za9DRwrpllm9kwgolN3kpHjE2xT5JBacjMPk8wdiMK/MHdb0lvRJIqZjYFeA14n0/G5XyfYBzWI8ABwCrgHHdvOMBWOikzOx64zt1PM7MDCVq0egPvAhe4e3Uaw5MUMbPxBBOaZAErgEsJ/qCoz/Y+xsx+DEwn6D70LvAVgrEY+mzvA8xsJnA80BfYBNwEPEkjn+Uwyb6LoJvoTuBSd5+XhrDlU2jiXn8PyAZKwmJz3f2KsPwPCMZlxQiGefyjYZ3ppARLREREREQkRdRFUEREREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERDoIMys0MzezjHTHsq8zs0vMbE664+hozGyqmX2Y7jhERDozJVgiItKpmdkMM6s1s/Kk1w3pjqszcvfX3H1Equs1s9PNbFF4b/5tZqNSfQwRkY5CCZaISIqo5SmtZrl7t6TXrekOKJU688+WmR0CPARcAfQE/gY83ZnPSUSkOUqwRETawMyKzOw7ZrYQqDCzDDObHP6VfruZvWdmxyeVn21m/8/M3jKzMjN7ysx6N1H3pWa2xMx2mNkKM/vvBtunmdmCsJ7lZnZKuL6Hmd1nZhvMbJ2Z/Y+ZRVs4j4PM7CUzKzGzLWb2kJn1TNq21cyOCJcHmllx3XmZ2Rlm9kF4vrPNbGSD63OdmS00s1Izm2VmOXt+pfecmX03vC47zGyxmZ3ZRDkzs9vNbHN4Ld83szHhtmwzu83MVpvZJjO728xyW3n8+8PyL4QxvGJmQ5O2/9rM1oTHnG9mU5O2zTCzR83sQTMrAy4xs0lm9kZ4nTeY2V1mlpW0j5vZ18zs4/B4Pwnv3b/DYzySXL6JmI83s7WtOb89cDLwmrvPcfcY8DNgEHBcio8jItIhKMESEWm784AvEPx1vgB4BvgfoDdwHfCYmeUnlb8IuAwYAMSAO5qodzNwGtAduBS4PSnJmQT8Gbg+PO6xQFG43/1hvQcDhwMnAV9p4RwM+H/AQGAkMASYAeDuy4HvAA+aWRfgj8Cf3H22mQ0HZgLXAPnAs8DfGnyRPwc4BRgGjAMuaTQAsylh8tDUa0oL59DQcmAq0AP4cRj/gEbKnURw/YaHZc8BSsJtPw3Xjye4noOAG/cghvOBnwB9gQUELTl13g7r7Q38Bfhrg+RzGvAowf19CIgD14Z1HQ18Fvhag+OdDBwJTAZuAO4BLiC4n2MIflY/tTBRbur+/F9zuzZ4b2E8IiL7HCVYIiJtd4e7r3H3SoIvs8+6+7PunnD3F4B5wOeTyj/g7ovcvQL4EXBOYy1M7v6Muy/3wCvAPwkSBoD/Av7g7i+Ex1nn7kvNrCA81jXuXuHum4HbgXObOwF3XxbWVe3uxcAvSWphcPd7gWXAmwSJ4Q/CTdOBZ8J9a4HbgFzgMw2uz3p330rQPWx8EzHMcfeezbyam5TinAZf9ge6+1/D4ybcfRbwMTCpkX1rgTzgUMDcfYm7bzAzAy4HrnX3re6+A/jflq5lA8+4+6vuXk1wzY42syHh+T7o7iXuHnP3XwDZQPL4pzfc/ckw/kp3n+/uc8PyRcDv2L0V6FZ3L3P3D4BFwD/dfYW7lwL/IEi4PzV3H9fM/WmY7NV5ETgubB3LAr4PZAFd2hKLiEhHpQRLRKTt1iS9Hwp8OfnLPjCFIClprPwqIJOgVWIXZnaqmc0Nu+dtJ0ic6soNIWihaWhoWN+GpOP/DujX3AmYWYGZPWxBl8Iy4MFGYrqXoNXhzjBhgKDFa1VdAXdPhOc3KGm/jUnvdwLdmovlU3qkwZf99WZ2kQVdKOuuwxgauc7u/hJwF/AbYLOZ3WNm3Qla5LoA85PqeC5c31r199rdy4GtBNeMsOvkkrDr5HaC1rO+je0blh9uZn83s43hPfrfRs5nU9L7ykaW2+PaN8vdlwIXE1zjDQQxLwZS3RVRRKRDUIIlItJ2nvR+DUELVfKX/a7u/tOkMkOS3h9A0IKyJblCM8sGHiNoESpw954E3e/qulqtAQ5qJJY1QDXQN+n43d19dAvn8L/heYx19+4ELXH13brMrBvwK+A+YIZ9Mm5sPUFSV1fOwvNb18LxdmPBFOHlzbymtlxLfV1DCRLCq4A+4fVbxK5d1eq5+x3ufiQwiqBL4PUE96QSGJ10LXu4+54kKfX3OryGvYH14bncQNAdsVcYX2mD+JJ/rgB+CywFDgnv0febOp/2YsFYu6buz91N7efuj7r7GHfvA9wEFBJ0kRQR2ecowRIRSa0HgdPN7GQzi5pZTtg1anBSmQvMbFQ4nulm4FF3jzeoJ4ugy1gxEDOzUwnGCtW5D7jUzD5rZhEzG2Rmh7r7BoKuhL8ws+7htoPMrKUJBfKAcqDUzAYRJBjJfg3Mc/evEIwxq/sy/QjwhTCOTODbBAnev1u6UA2FU4R3a+b12h5U15UgQSmGYMIQmhjzY2YTzeyoMP4KoApIhK1x9xKMfesXlh1kZicn7euWNIlJIz4fji3LIhiLNdfd1xBc71gYX4aZ3Ugw1q45eUAZUG5mhwJXtlA+5dx9dDP354qm9jOzI8PPQz7BuLCnw5YtEZF9jhIsEZEUCr88TyNoXSgmaFG6nl1/3z5AMBHFRiAH+GYj9ewI1z8CbAP+E3g6aftbhBNfELR8vMInLUkXESRoi8N9H2XXLoqN+TFwRFjXM8DjdRvMbBrBJBV1X+i/BRxhZue7+4cErV13ErT4nA6c7u41LRyvXbn7YuAXwBsE3eTGAq83Ubw7QSK1jaC7Ywnw83DbdwjGns0Nu+W9SDhOKhxLtQN4v5lQ/kLQYrOVYPKJC8L1zxN0N/woPGYVDboENuI6gp+DHWG8s1oo35H8GtgOfEhwnb+a1mhERNqRuTfsgSAiIu3FzGYDD7r779Mdi7SNmV1A0H3we01svx9Y6+4/3KuBiYhIWukhfyIiIp+Cuz+Y7hhERKTjURdBEZH9hAUPvd2jyQlk32Nm32/i5+Af6Y5NRGRfoC6CIiIiIiIiKaIWLBERERERkRTpUGOw+vbt64WFhekOQ0REREREpFnz58/f4u67PXy+QyVYhYWFzJs3L91hiIiIiIiINMvMVjW2Xl0ERUREREREUkQJloiIiIiISIoowRIRacDdQTOsioiIyKfQocZgNaa2tpa1a9dSVVWV7lCkk8nJyWHw4MFkZmamOxTpZF79v69xVPGjRH+4kcyMaLrDERERkU6kwydYa9euJS8vj8LCQsws3eFIJ+HulJSUsHbtWoYNG5bucKSTOa74LwC8986rHDbphDRHIyIiIp1Jh+8iWFVVRZ8+fZRcyR4xM/r06aOWT9ljiYSzzvsAULXomTRHIyIiIp1Nh0+wACVX8qno50Y+jfKaGF0JEvPsLR+kORoRERHpbDpFgiUisreUlZbS0yoAKKhcluZoREREpLNRgtUKZsa3v/3t+uXbbruNGTNmpC+gJHPnzuWoo45i/PjxjBw5sj6u2bNn8+9///tT17tq1SqOOOIIxo8fz+jRo7n77rtTFLFIx7ZzS/DMwFWRAxjgm6kq35bmiERERKQzUYLVCtnZ2Tz++ONs2bIlpfW6O4lEok11XHzxxdxzzz0sWLCARYsWcc455wBtT7AGDBjAG2+8wYIFC3jzzTf56U9/yvr169sUq0hnULOjBICNvY4AYN3y99MZjoiIiHQySrBaISMjg8svv5zbb799t23FxcWcddZZTJw4kYkTJ/L6668DMGPGDG677bb6cmPGjKGoqIiioiJGjBjBRRddxJgxY1izZg3XX389Y8aMYezYscyaNQsIEqTjjz+es88+m0MPPZTzzz8/eDZPA5s3b2bAgAEARKNRRo0aRVFREXfffTe3334748eP57XXXms2zgsvvJCjjz6aQw45hHvvvReArKwssrOzAaiurm4yEbzjjjsYNWoU48aN49xzzwVg69atfPGLX2TcuHFMnjyZhQsX1h/r4osvZurUqQwdOpTHH3+cG264gbFjx3LKKadQW1sLwM0338zEiRMZM2YMl19++W7nnUgkKCwsZPv27fXrDjnkEDZt2tTcbRRplUSsGoBovxEAbFv7cTrDERERkU6mw0/TnuzHf/uAxevLUlrnqIHduen00S2W+/rXv864ceO44YYbdll/9dVXc+211zJlyhRWr17NySefzJIlS5qt6+OPP+ZPf/oTkydP5rHHHmPBggW89957bNmyhYkTJ3LssccC8O677/LBBx8wcOBAjjnmGF5//XWmTJmyS13XXnstI0aM4Pjjj+eUU07h4osvprCwkCuuuIJu3bpx3XXXAfCf//mfTca5cOFC5s6dS0VFBYcffjhf+MIXGDhwIGvWrOELX/gCy5Yt4+c//zkDBw7c7Vx++tOfsnLlSrKzs+sTnptuuonDDz+cJ598kpdeeomLLrqIBQsWALB8+XJefvllFi9ezNFHH81jjz3GrbfeyplnnskzzzzDF7/4Ra666ipuvPFGAC688EL+/ve/c/rpp9cfMxKJMG3aNJ544gkuvfRS3nzzTYYOHUpBQUGL91GkJYnaGgC6DBwFS6B2y4o0RyQiIiKdiVqwWql79+5cdNFF3HHHHbusf/HFF7nqqqsYP348Z5xxBmVlZZSXlzdb19ChQ5k8eTIAc+bM4bzzziMajVJQUMBxxx3H22+/DcCkSZMYPHgwkUiE8ePHU1RUtFtdN954I/PmzeOkk07iL3/5C6ecckqjx2wuzmnTppGbm0vfvn054YQTeOuttwAYMmQICxcuZNmyZfzpT39qtIVo3LhxnH/++Tz44INkZGTUn9OFF14IwIknnkhJSQllZUFifOqpp5KZmcnYsWOJx+P18Y4dO7b+/F5++WWOOuooxo4dy0svvcQHH+w+k9v06dPrW/sefvhhpk+f3uw1F2mteJhg5XTvQwk9iG4vSm9AIiIi0ql0qhas1rQ0tadrrrmGI444gksvvbR+XSKRYO7cueTk5OxSNiMjY5dudcnPY+ratWurjlfXRQ+C7n+xWKzRcgcddBBXXnklX/3qV8nPz6ekpGS3Mk3FCbtPZ95weeDAgYwZM4bXXnuNs88+e5dtzzzzDK+++ip/+9vfuOWWW3j//ebHq9SdUyQSITMzs/5YkUiEWCxGVVUVX/va15g3bx5DhgxhxowZjT7L6uijj2bZsmUUFxfz5JNP8sMf/rDZ44q0Vl0XwYzMLLZkDKDLzrVpjkhEREQ6E7Vg7YHevXtzzjnncN9999WvO+mkk7jzzjvrl+u6whUWFvLOO+8A8M4777By5cpG65w6dSqzZs0iHo9TXFzMq6++yqRJk1od0zPPPFM/Runjjz8mGo3Ss2dP8vLy2LFjR4txAjz11FNUVVVRUlLC7NmzmThxImvXrqWyshKAbdu2MWfOHEaMGLHLsROJBGvWrOGEE07gZz/7GaWlpZSXlzN16lQeeughIBhL1rdvX7p3796q86lLpvr27Ut5eTmPPvpoo+XMjDPPPJNvfetbjBw5kj59+rSqfpGWeDxowcrIzGFHl8H0rtHkLiIiItJ6SrD20Le//e1dZhO84447mPf/27vv8LjKM/H733v6qPcuWXJvsmUsl2CaKQHSqMFkAwk4gSU9XMlm08gS9pfdbHg3u9lAwoZASAgxEJIAS0JxgARswOCGbXDBRZYly1bv0+d5/5ixkG0V25rRqNyf65pLc9pzbunojM6tp23cyIIFC5g7d27fcObXXHMNra2tzJs3j3vuuYeZM2cOWN5VV13FggULWLhwIRdeeCE/+tGPKCgoOOV4Hn74YWbNmkVVVRU33ngjjzzyCFarlY9+9KP86U9/6hvkYrA4IdLMb+XKlSxfvpw77riDoqIidu7cybJly1i4cCHnn38+X//616msrATgs5/9LBs3biQUCnHDDTdQWVnJokWL+PKXv0xGRgZ33nknmzZtYsGCBXzzm9/k17/+9Sl/PxkZGdxyyy3Mnz+fSy+9lCVLlvRtu++++46Le9WqVfz2t7/V5oEqpsyxGiyHk0DqFPLDTQT9J9eiKqWUUkoNRAYame60ChApBX4D5AMG+IUx5icicidwC9AU3fXbxpi/DFVWdXW12bhx43Hrdu7cyZw5c0YUoxrcnXfeedxgGBON/v6o0/X64//JB969i9Z/3Mre159h6bbv0vCp1yicmtgmykoppZQaW0RkkzGm+sT1sajBCgJfM8bMBZYDXxCRudFt/2WMqYq+hkyulFJqLHi/iaCTpILpALTU7UlkSEoppZQaR0Y8yIUxpgFoiL7vEpGdQPFIy1Wj484770x0CEqNLdEEy+5wkVU8AwDP0X2JjEgppZRS40hM+2CJSDmwCNgQXfVFEdkmIg+KSOYgx9wqIhtFZGNTU9NAuyil1KgxwWMJloPcoikEjJVw+6EER6WUUkqp8SJmCZaIpAB/AL5qjOkEfg5MA6qI1HD950DHGWN+YYypNsZU5+bmxiocpZQ6M6EAAFa7E7vdTpNkY+vSodqVUkopdWpikmCJiJ1IcvWIMeaPAMaYo8aYkDEmDNwPnPrY40oplSghP2EjiCXSgrrNnk+SpyHBQSmllFJqvBhxgiWRmWIfAHYaY37cb31hv92uAnaM9FxKKRV3oQABbBCdBLs3qYjMwNEEB6WUUkqp8SIWNVgrgBuBC0Vka/T1IeBHIrJdRLYBK4HbY3CuhHnyyScREXbt2jXoPjU1NcyfPz9m59y9ezcXXHABVVVVzJkzh1tvvRWITBL8l7+c+aCMXq+XpUuXsnDhQubNm8e//Mu/xCpkpcY9Cfvxi71vOZhSTK5pIej3JTAqpZRSSo0XsRhFcB0gA2yaUMOyr1mzhnPOOYc1a9bw/e9//6TtwWBwxOcIhUJYrda+5S9/+cvcfvvtXHHFFQBs374diCRYGzdu5EMf+tAZncfpdPLSSy+RkpJCIBDgnHPO4fLLL2f58uUj/h6UGu8kFCDY76PRklWGtd7Q0FBD4ZRZCYxMKaWUUuNBTEcRnKi6u7tZt24dDzzwAI8++mjf+r/97W+ce+65fOxjH2Pu3MjUX8FgkE9+8pPMmTOHa6+9lt7eXgBefPFFFi1aRGVlJatXr8bni/w3vLy8nH/+53/mrLPO4ve///1x521oaKCkpKRvubKyEr/fz/e+9z0ee+wxqqqqeOyxx+jp6WH16tUsXbqURYsW8dRTTwHw0EMPccUVV3DBBRcwY8aMvsRQREhJSQEgEAgQCAQQOTlH/v3vf8/8+fNZuHAh5513HhCp/br55puprKxk0aJFvPzyy33nuvLKK7nkkksoLy/nnnvu4cc//jGLFi1i+fLltLa2AnD//fezZMkSFi5cyDXXXNP38+lv+fLlvPPOO33LF1xwASdOQK1UvEjYf1yClZQzBYC2w/sTFZJSSimlxpER12CNqme/CUe2x7bMgkq4/IdD7vLUU09x2WWXMXPmTLKzs9m0aROLFy8GYPPmzezYsYOKigpqamrYvXs3DzzwACtWrGD16tX87Gc/44tf/CI33XQTL774IjNnzuRTn/oUP//5z/nqV78KQHZ2Nps3bz7pvLfffjsXXnghZ599Nh/84Ae5+eabycjI4K677mLjxo3cc889AHz729/mwgsv5MEHH6S9vZ2lS5dy8cUXA/Dmm2+yY8cOkpKSWLJkCR/+8Ieprq4mFAqxePFi9u7dyxe+8AWWLVt20vnvuusunn/+eYqLi2lvbwfg3nvvRUTYvn07u3bt4oMf/CB79kQmYd2xYwdbtmzB6/Uyffp0/uM//oMtW7Zw++2385vf/IavfvWrXH311dxyyy0AfPe73+WBBx7gS1/60nHnXbVqFY8//jjf//73aWhooKGhgerqkybJViouJBwkKO9/NGYUTgWgp7EmQREppZRSajzRGqxTsGbNGq6//noArr/+etasWdO3benSpVRUVPQtl5aWsmLFCgBuuOEG1q1bx+7du6moqGDmzJkAfPrTn+aVV17pO2bVqlUDnvfmm29m586dfPzjH+dvf/sby5cv76v56u+FF17ghz/8IVVVVVxwwQV4vV5qa2sBuOSSS8jOzsbtdnP11Vezbt06AKxWK1u3bqWurq4vCTvRihUruOmmm7j//vsJhUIArFu3jhtuuAGA2bNnM2XKlL4Ea+XKlaSmppKbm0t6ejof/ehHgUjNW01NDRBJws4991wqKyt55JFHjqupOua6667jiSeeAODxxx/n2muvHfDno1Q8WMJ+gv36YOWWTAcg2HowUSEppZRSahwZXzVYw9Q0xUNraysvvfQS27dvR0QIhUKICHfffTcAycnJx+1/YlO7gZrenejEMvorKipi9erVrF69mvnz5w+YCBlj+MMf/sCsWcf3D9mwYcOw8WRkZLBy5Uqee+65kwbouO+++9iwYQN//vOfWbx4MZs2bRry+3A6nX3vLRZL37LFYunro3bTTTfx5JNPsnDhQh566CH+9re/nVROcXEx2dnZbNu2jccee4z77rtvyPMqFUsSDhDqV4PlSkqhlTQsnToXllJKKaWGpzVYw3jiiSe48cYbOXjwIDU1NRw6dIiKigpeffXVAfevra3l9ddfB+B3v/sd55xzDrNmzaKmpoa9e/cC8PDDD3P++ecPe+7nnnuOQCAy6emRI0doaWmhuLiY1NRUurq6+va79NJL+elPf4oxBoAtW7b0bVu7di2tra14PB6efPJJVqxYQVNTU1+TP4/Hw9q1a5k9e/ZJ59+3bx/Lli3jrrvuIjc3l0OHDnHuuefyyCOPALBnzx5qa2tPSuyG0tXVRWFhIYFAoK+cgaxatYof/ehHdHR0sGDBglMuX6mRsoYDhPrVYAG02PJx9+pcWCMRCIUJh02iw1BKKaXiThOsYaxZs4arrrrquHXXXHPNcc0E+5s1axb33nsvc+bMoa2tjc997nO4XC5+9atf8fGPf5zKykosFgu33XbbsOd+4YUX+gaZuPTSS7n77rspKChg5cqVvPvuu32DXNxxxx0EAgEWLFjAvHnzuOOOO/rKWLp0Kddccw0LFizgmmuuobq6moaGBlauXMmCBQtYsmQJl1xyCR/5yEcA+N73vsfTTz8NwD/90z9RWVnJ/PnzOfvss1m4cCGf//znCYfDVFZWsmrVKh566KHjaq6G86//+q8sW7aMFStWHJfUPf3003zve9/rW7722mt59NFHue666065bKViwXJCDRZAt7OAdP+RBEU0/rX1+Lnl3+7jjXs/A+FwosNRSiml4kqO1XqMBdXV1ebE0eJ27tzJnDlzEhTR+PbQQw8dNxjGZKS/P+p07fjBOdgsMPtb6/rWvfnzf2T+kT/h+t4RLFb9v9Tp+vPWGj785EIAAre+ir1Ia6WVUkqNfyKyyRhz0khs+qSglFL9WM3JTQTJLCNJfLQ0azPBM9F06MD777e/lMBIlFJKqfjTBGsCu+mmmyZ17ZVSZ8JqgoRPSLBc2WUANNfvS0RI4563/XDf+9DBNxIYiVJKKRV/4yLBGkvNGNX4ob836kzYTICQ5fgEK7UgMhdW99EDAx2ihhHujPRfO2IysbfrhM1KKaUmtjGfYLlcLlpaWvRhWZ0WYwwtLS24XK5Eh6LGGasJYk5IsHKLpwHgb9G5sM6EpecoALvs80jz1oF+niullJrAxvw8WCUlJdTV1dHU1JToUNQ443K5KCkpSXQYapyxmSDhExKslMx8PDihQ+fCOhNuXzMhrDSlV5LUsg56WyE5O9FhKaWUUnEx5hMsu91ORUVFosNQSk0SNgIY6wmDXIjQZMnD2VOfmKDGubRQKz32TMJZU6EFwi37sGiCpZRSaoIa800ElVJqNNkJYiyOk9Z3OgtI8+lcWKfLGENauAOPPQtn3gwAuhr2JDgqpZRSKn7inmCJyGUisltE9orIN+N9PqWUGomBmggCeJOLyA42an/Q0+QJhEihl5AjlfSi6YSN0NPwXqLDUkoppeImrgmWiFiBe4HLgbnAJ0RkbjzPqZRSI2EnCNaTa7BIKyFbOuno7Bj9oMaxLm+QFDyEHSmU5GRwmGxCzTrcvVJKqYkr3jVYS4G9xpj9xhg/8ChwRZzPqZRSZ8QYE2kiOECCZc+eAkBjnQ4zfjqOJVjGkUpxppuD4XxsnToao1JKqYkr3glWMXCo33JddJ1SSo05wWAQm4RhgCaCKfmRwXY6j2iCdTq6vAGSxYvFlUaSw8ZRWyGpPbWJDksppZSKm4QPciEit4rIRhHZqEOxK6USKRDwRd7YTq7Byi6KzIXlba4ZxYjGvy5vkFQ8WFypAHQnFZMSagd/T2IDU0oppeIk3glWPVDab7kkuq6PMeYXxphqY0x1bm5unMNRSqnBBfx+AGSAJoLp+WWEjBBuO3TSNjW4Hk8vTglgc6cBEEyN/klo15+jUkqpiSneCdZbwAwRqRARB3A98HScz6mUUmck6PdG3pw4DxYgVjstlmzs3ToX1unwdkcGBbEnpwNgyyoHINxak6CIlFJKqfiKa4JljAkCXwSeB3YCjxtj3onnOZVS6kwFo00EZYAmggBtjgJSvA2jGdK45+uJJFiOpEiClZQ/FYCuozqSoFJKqYnJFu8TGGP+Avwl3udRSqmRCvmHTrA87iJy27eMZkjjXqA3kmA5ozVYOfkleI0dT+N+0hMZmFJKKRUnCR/kQimlxopgINJEcKA+WAChtGLyTCs9Ht9ohjWuhTydAFhdkT5YpdnJ1JlcQq06VLtSSqmJSRMspZSKCkWbCFoGqcGyZpZhlxBHD9eMYlTjW9jbFXnjjCRYxRlu6kwu9i4d5EIppdTEpAmWUkpFhQKRUQQtNueA25PzygFoP6xzYZ0y37EEKwUAl91Ks72AZM/hBAallFJKxY8mWEopFRUKDl2DlVEYmQurp6lmtEIa//zHEqzUvlW9ScUkhzrB25mgoJRSSqn40QRLKaWiQtF5sCz2gROs7KLICHihttpRi2m8sw6QYIXSyiJv2vXnqJRSauLRBEsppaLCoaGbCFpcqXSQirWzbjTDGtcsgR7CCNiT+9bZs8sBCOlcWEoppSYgTbCUUioqHB3kwmofOMECaLXnk6T9h06ZPdiN3+IGy/t/bpILIjWBnUd0LiyllFITjyZYSikVFQ5GarCGSrC63MVk+XWy4VPlCPXgtyYfty4/r4ge48TTeCBBUSmllFLxowmWUkpFmVNIsPyppRSZRnyBwGiFNW4ZY3CGegnYUo5bf2wuLNOmc2EppZSaeDTBUkqpqPdrsAYe5ALAklWBUwI01mtyMJxef4gUPATtx9dgFaa7qCNP58JSSik1IWmCpZRSUccmGnY4XYPu48qLDNXeVr93VGIaz3p8QVLEQ9h+fA2WzWqhzV5AqvcwGJOg6JRSSqn40ARLKaWijiVYziESrMyi6QB4GjXBGk6XL0gKHowj9aRtvcnFuMM94G0f/cCUUkqpONIESymlokLRJoIup3vQfXJKphM2QrhFB2gYTrc3SLJ4EdfJCZZJj86Fpf2wlFJKTTCaYCmlVJQJeAFwugavwbI73TRKNjbtPzSsbl+QNHoRV9pJ2xw5FQD4W2pGOSqllFIqvjTBUkqpKEugh7ARLI6kIfdrdRSS0quTDQ+ny+MjTXqxJGWdtC0lX+fCUkopNTGNKMESkbtFZJeIbBORP4lIRnR9uYh4RGRr9HVfTKJVSqk4kkAvHnGCyJD79SSVkB3QubCG4+9uA8CenHnStoL8AjqNG1+TNrVUSik1sYy0BmstMN8YswDYA3yr37Z9xpiq6Ou2EZ5HKaXizhLsxcvgzQOPCaVPIY9WPL09oxDV+BXoagbAnpJ90rbSrGTqTJ7OhaWUUmrCGVGCZYx5wRgTjC6+AZSMPCSllEoMW9CDVwafZPgYe7T/0JHaPfEOaVwL9LQC4E47OcHKS3VymFyc3drUUiml1MQSyz5Yq4Fn+y1XiMgWEfm7iJw72EEicquIbBSRjU1NTTEMRymlTo8t1ItPBh9B8JjUgshQ7e31mmANJdAdSbCsySf3wbJYhHZnIWk6F5ZSSqkJxjbcDiLyV6BggE3fMcY8Fd3nO0AQeCS6rQEoM8a0iMhi4EkRmWeM6TyxEGPML4BfAFRXV+tfWaVUwthCHvyW4ROsnLKZAHgb98c7pHEt1Bvpg4X75D5YAJ6UUpxtXuhphpTcUYxMKaWUip9hEyxjzMVDbReRm4CPABcZE/k3pDHGB/ii7zeJyD5gJrBxpAErpVS8OMIevKeQYGXmluAxDkxbTfyDGsfEM3SCRXoZtAHtBzXBUkopNWGMdBTBy4BvAB8zxvT2W58rItbo+6nADED/1auUGtPsYS8B69BDtAOIxUKjtQBXt86FNRSrrz3yxpU+4HZn3jQAehv3jlJESimlVPwNW4M1jHsAJ7BWIsMavxEdMfA84C4RCQBh4DZjTOsIz6WUUnHlDHsJWoevwQLocBVF+g+pQTn9bXgsybit9gG3pxVG+rJ1Nexj+LRWKaWUGh9GlGAZY6YPsv4PwB9GUrZSSo02l/EQtp1aguVLLWNqz9uEQ2EsVp2zfSCpwRZ63DkM9hMtycumyaTjb9IGDkoppSYOfSpQSqkol/FiHMmntnPmFFLEQ1OTTjg8kG5fkBzThteVN+g+pZlJ1Jo8rO06F5ZSSqmJQxMspZQCwqEQSeLDcooJljvaf6j5kA7VPpCGdg/5tGFSBhqENiI9yc4RSz7uXp0LSyml1MShCZZSSgFd3V0AWJynlmBlFkeGau9seC9uMY1nh9s95EkbtoyiIffrdBWT7j8KocAoRaaUUkrFlyZYSikF9HRGxuGxuNNOaf/c0hkABJsPxC2m8ay56ShOCeLOKh5yv0BaGRbC0KG1WEoppSYGTbCUUgrwdjQCYE3OOaX9HUlptJKOtaM2nmGNWz1NNQCk5pYOuZ8lqxyAcGtNfANSSimlRokmWEopBXjbjwJgS8s/5WOa7UUka/+hAZmWyMiA1pwBB5vt486PbO8+onNhKaWUmhg0wVJKKcDXGanBSso89QSrN6mY7IDOhTUQR0d06PWsqUPul10wBb+x0nN03yhEpZRSSsWfJlhKKQUEowlWWvbgo96ddEz6FApMMz0eb7zCGpeMMSR3HaDDngvOlCH3Lc1Jpd7kEGrRvmxKKaUmBk2wlFIKCHU3EzJCZvap12DZsiuwSZiGWm3e1l9jl4+ycB29KeXD7luc4eYQedg6tS+bUkqpiUETLKWUAiyeFjokFZvNdsrHpBZG5sJqq9eh2vvbXd/MHDlIuHDRsPu67FaabYWkeupHITKllFIq/jTBUkopwOppocuSflrH5JTOAsDbqP2H+qvb+SZOCZI58wOntH9vUinJoQ7wdsY5MqWUUir+NMFSSikg3XeYDufQk+KeKC1vCgGsmLaa+AQ1ToUOrAcgaeryU9s/IzqUe/vBeIWklFJKjRpNsJRSk54Jh8kPNuBNKTmt48Rqo9GSh6v7UJwiG386vQFmdqyn0T0N0k4tYbXnREYaDOhAF0oppSYATbCUUpNeV1szqeIhnDHltI9tdRSS7tOh2o95ddMOFstuwjMuO+VjUvIjfdk6DmtfNqWUUuOfJlhKqUnvaO0uABw5Q8/ZNJAedwl5wSOxDmnc6njtQWwSJv+81ad8TG5uAT3Gia9FJ21WSik1/o0owRKRO0WkXkS2Rl8f6rftWyKyV0R2i8ilIw9VKaXio7X2XQByp8w57WMDqaVk0knA0xXrsMadDTsPcHn3H6nLXoHkTD/l4woy3BwxWYQ7dCRBpZRS418sarD+yxhTFX39BUBE5gLXA/OAy4CfiYg1BudSSqmYCzdsw29sFE6tPO1jrRnFALQemdwDNHj9QVr/+HXSpJfcK/7faR1bkOaiwWRh79amlkoppca/eDURvAJ41BjjM8YcAPYCS+N0LqWUGpHk9l0cspVhczhP+1hXdmRgjI7GyZtgBUNhnvnf73B54K/Uz/tHnGVnndbxboeVZmsubu/ROEWolFJKjZ5YJFhfFJFtIvKgiGRG1xUD/YfVqouuO4mI3CoiG0VkY1NTUwzCUUqpUxcKhSn2vEd72qwzOj4tNzIwRm/z5Ow/1Nnr5fmffpFrW+7jQP4HKbvm386onB5nHqmBZggFYxyhUkopNbqGTbBE5K8ismOA1xXAz4FpQBXQAPzn6QZgjPmFMabaGFOdm5t7uocrpdSI7Nv1NtnSiaVs2Rkdn1UYSbCCbZMrwTLG8Porz3P47rP5cPsj7Cm+iopbHgHLmf3fzpdUgIUwdGstllJKqfHNNtwOxpiLT6UgEbkfeCa6WA+U9ttcEl2nlFJjSuOOl5gJFC286IyOz8zIoNMkQefk6D8UCoXYvO5ZZP1P+ID/TVoki/3n/w8zL/gUiJxxuSa1GNqI/BzTB2zwMOEYY6hv7Wb/rq001bxLqPUAST11iL8LE/TTQSpdzny6cqooX3Qhly0oIdVlT3TYSimlhjFsgjUUESk0xjREF68CdkTfPw38TkR+DBQBM4A3R3IupZSKB1vdG7SRRn7F6Q9wASAiNFuycXgmcM2LMRzasY6G135HWcMLLKGZdlLZOv3zzL/6m2QnpY/4FLbMEqiFUPshrKVLYhD02BMIhdm5ZzeH334JU7+Z/K53mGX2c574+vbxSBJeWyrY7biCHbgDXdDwG44czuSBZz9M3sVfYdUHZmC1nHkyq5RSKr5GlGABPxKRKsAANcA/Ahhj3hGRx4F3gSDwBWNMaITnUkqpmDLGUNq1lYOpVWSOoPalw55LqrcxhpGNAcbQsX8jh179Lbm1z1IaPkq+sfJu0hIa5n2dyotuoMqdGrPTubPLAOhpriUtZqUmVjhs2LNvL/Vb12I5uI6Krs0skAYWAH7sNLhncij3GpIqllAwrRJHzjTc7kzc/X8XPW2Y/X/Hvf6XfPXwbznw/Fru3H4nX//0x0l3j53aLE9PF831+2hraaKrsx383QSNBb/YCTvSsGeXkZVXyvT8VFKcI330UEqpsW1En3LGmBuH2PYD4AcjKV8ppeLpUM0eymikoeTmEZXT68yjtHsCVNIbQ9PejTS8toa82r9QEGogyVjZYq9i1+zPM3flJ6jKzY/LqbOy8+g1TrzNh8Z1glV3pIn3NvwZy/6XKO3YyGzqmQ304KYufRG7ym+kaOElpE2pYorNMXyB7kxk3pWkz7sSs+9l8h6/le82fJl7/nsHn/jcHRRluOP+PfXnb2/g0M436arZgqXxHZK6D5IZOEI2HZRyfN+AE3mNnXfNFPY7ZuMrWkbOwstYOruczORT+DnEgzF4u9tpazlCV+tRervaCfp9hEMBwkEfAWMlaHVjdSbjcKfiyCgkO6+Q/PQkXHadeUYpNTj9N5JSatI6/PZLlAG58y8cUTnBpHwyu9oiI+BZx9nHqjHU797EkdfXUFD3LMWhejKNha22hWydupryc1axdOqUuIdRkOGmwWSR1DG+BgsJBEO88/ZbNG99hqzDrzAv+A4lEqQXFwdTFrKjbBWFVR8ke9oSZo3wd0OmrST5y2/Q/shNfO3wvaz5aS1LbrmX6QUjb6I5oKCf1r0baNrxMtZDr5PT9S4Z4XamRTc3mGyOOkppyTyPPRll2DLLSMnIJS09E7s7FasYbGEfod5WvE0H8Tfto6DxbeZ1rsVZ+wyBg3ey6amZ7Ek7G8fsSziregUz8lOREdQmHyccxt9eT8uhPbQffg9/836k/SDunjoyfA1khNtxSYhCoPAUiwwYK41k0CJZdNhz8bkLCacV48ieQkreFLKLp1FYVIrLMYLaxXAIfJ0EetroaW/G09WCr6uVQHcrwZ42jKcNvB1YvB3YAh1I0IMJGxxX/g9lc6rP/LxKqZgZZ08CSikVO6ZmPV0kUTZ7ZA8lJq0Y61GDt70BV/ZQ/8MfO+r3bKV+/SMUHHqWsvAhCoyw3bGAPVNvYso511E9pXxU48lPc7HHZDGja+wPFtLR1cu29X8mvPP/mN7+GlUSmWLkkG0Ku8v/gZyqD1NYuZI5ttOfV21YydlkfOZPtPzxa3zinYd4+b4jeD71GyqnFo28bH8vrXvWc3T7y9jqXqe0ZwdZ+MkC9pkiNrurCebOI618EaVzllJYUEThmfQFCwUI1r5Jy5ZnmLpvLcu7H4CND3D0rQyesy3CX7yckrnLmDqnmsz0IZqhhsPQfQRPUw0t9Xvpaawh2HoQe2ctqd56soNHcRDsS6DCRjhCFk22QhqTqwkn52NJycKWkoszLQd3SiZ2pxO73YHV5sAuISTQi9/TTaC3k2DnEfzth6HrCEk9R8jx1ZHVuQlXpy8yGU2Uz9iok2za7bkEbckYWxLGnoyx2rESxkIYEw5CKIA92IMj1I0z2I0r1IM73EMSvVgw2IGM6Ou4y2SsdJBMJyn0SDJ+i5uFoXfY+OqvNcFSaozQBEspNWkVdmyhxl1J5QhrFmwZkYfb9iMHKRjDCdbhmt3UvvJb8g7+H1NDByg0wruO+ayfcQMV536CqpL411QNJjvZwVHJZr5nd8JiGEpHZxfbX30S8+7TzO9+jXOlGw9O9qcvoX36FylffiWleeVDNpGLGauN7I//hJasaZz36r+w69cfYuNVv6a6auHplePtoPu9dTTueBnbodcp7N1FFkEyjLBbylmf/hFM2dnkzb+AWdOmMs0Wo2ZxVju2ihUUVKwA/h066unY8Tze7c9xXuNrJNe+DLUQflZolVQ6bdmErC4QCxbCuELduINdpJgubIRwExmqGKDNpNAgeex3VvBO2nmYjCk4cytIL5pBQel0CjPTKIpVDRmAMRhPG20N+2k9vJ+exoME2g5h6aonyXsUl78Zh9eD03ixmwBBrISwEMZKWKz0ShJdliSaLPn4XamE7KmEHGkYVzrizsSalIktJRNHchautGyS0rJJTU0lze0gx2Htq+3b+YMPkNP4Ruy+L6XUiGiCpZSalBqP1lNu6niz6KoRl+WOJlXdzbUjLivWWo/Wseulh8nY9zRzg+9SBOy2zeL1mf9E+fk3ML+4PNEhAmCxCJ32PFL86yNNpCyJ7+PS0e3l7VefxLbjcRZ0r+cc8dJFEgdzzqO96mrKl32UeY6khMWXfdGXacuuoOLJWzB/uoQNb3+GhVd9DVdazsk7GwNtNfTuf52Wna9iO/wW+Z69pGBwGCvvMI3t6ddgKV/BlKqVzC4vZc5ojVSYXkz6itWkr1gN4TDexr3s3/4anvp38XccxuFpgqAPY8IYhF5LDqGkVELODHzJRZBeSkpBBblF0ykpzGPuaA7+IYIkZZE1LYusaYmrPWrN+wDL6x6kt7OFpLTshMWhlIrQBEspNSnVbnmZPCBz9vkjListPzICnq91bPQfCgZDvL3uGcxbD7Cwex1nS4ga6xQ2VHyB0vNuZFbFnESHOCB/UgHWrlBksuG0GDR5OwPhsGHLW6/S/sbDzG9dy3nSRhdJ7M27hLSzrqViyeXMj0fTvzOUWfVROvLXc+DhL7DswM8I/vh/qUueQzizAovVRjjgwdV1iJSegySFu0kCwsbFNjOd9ek3RBKqhedRWV7IItuZTRIdUxYLroKZzC2YmehIxpWUORdhrX+A9zY8y8JLbkh0OEpNeppgKaUmJf+B9fiMnfIF54y4rOzcInzGRqg9sf2H9h+qZ9/a+5le+ziLqaeDFDYVXEfB+Z+hfO4SyhMa3fBMWhF0EZlseJQTrLqGI+xe+0vKDvyexaaGAFb2ZXyA3sX/QPkHrqbKPrqj9Z2O9MJpVH3jOTa/uY66dQ9T2L6Vwu7XEQwhY2O3yaXRfjY9WbOgbDkz5i3lrPJsztaR8CaMOUsuonetE8/OF0ATLKUSThMspdSklNWymf2OmcxxjvzBOTPZSR2ZWLobht85xoKhMG+u/yu+N37J8p6XmSp+9jvnsGPBl5h10adY7koe9ZjOlD2zFOoh3F6HpST+za38wTCvr3+R0JsPsKz7JS4SHwfs09k+97vMuPDTzE7Pi3sMsXTW0nM4a+k5eAMhDrd78ARCpLnsLHDbx9ScWSr2HE4XO1KXM7P1ZUIBP1Z7goa+V0oBmmANqbuzFU93F7lFiev4rZSKvd6eTqYG3mNz8SdjUp6I0GrJJtlzJCblnYrG1la2PfsgRXt/x9lmX2TAhaIPU3TRF5k6fXyOJJace2yy4YPEbgrjkx1taWXrsw9SvPdRzuc9vDjYV3AZuSs/R8Xss+N45tHhsluZmpuS6DDUKAvPv46sN/7Ojtf+j/nnX5PocJSa1DTBGsK7zz9I9Y7/x07nPDqnfoTC6o9ROnUOYhkD7dSVUmds/5ZXmC8h3DPOjVmZXY5c8vz7Y1beQIwx7Hh7I81//zlntT7HxdJDnW0KOyvvYOYln2VeUkZczx9v2TkFeI0dT/OhmCdYxhi2bdtC88v3Ut32LJdKD/X2MvZUfpfpF3+WeUmZMT6jUqNr/vlX0/nGN/BsWgOaYCmVUJpgDaFk8YfY0HWUgrrnmLPrh7Drhxwlm7q0s/AXLCKtbD4FMxaRlVsy6klXOBjE5+3F5+3F7/Pg9/QQ8HsI+jwEfL2E/B5Cfi8hfy9hv5dwwAshf2TujXAo+gq+/9UEI3OKhIOICb3/1YQwYYNgjjv/sWVj6Lft+K9iol/7bRnMcfvIiVsGHslqsGPkhGhPLM70rRl8hKyTQhhkXzNEGYMeM+TAXKd/nqFjUANJ7dxL2AjlVStjVqbHlU9mx4boTRHba9Lr8bDp+d+SuuM3VAW3EcDK7qwL6bngNkoWXBTz8yVKUWYSh002rvbYDRbS6/Xx1trHSXr7QZYENxPAyp6slfRe8DmKJ9DPTimXO4ltOR9kYdMzNB+uIaeoPNEhxU3Q76Onu5Perja8PV14e9vx9XRhfN0Yfw+hgB8T9BEO+jBBX2QUyqAfQn4kHMAa9iPhIBiDEAYTjrw3YQyRr5hwdFt0mXC/CCT6tzfy+WGQfs8X/db1bRtg3bG/3RIpq++JSY4v//3nnOPPOZSTn2EGXTylQuRUn5eGOcHQ55YB3x5b7LLn4Lzom5w7I3fIUsYKTbCGUDR1LkVT78aYH1G/bxv1m5/DWvsaUzrfIqdzLewB/go9xkmbJYsuezbd9hxC9mSMPQmxuzH2JMJii96c799CJhyGkA8JepGQD0vQhyXswxryYQ37sIV9WMN+7MaHPezHbgLY8eM0fhz4cUhk7o9YdbsOmMjcHKHoHB0hsRLCGo14oA8G6H8H9KVWcvy291Ou4W6r4VKwE5jBj+m//sQ9Bj9mmJMNc55TLW/oY07zZzDEMWdS1mSzJfU8FmfG7oM6lFKIq8MP3nZwx6Y25OD+3Rx84WfMOfIk59LOUUseb8/8CjMuu435WYkZZS+eijPcvGOymBaDyYb31x5i7/P3Mbf+cc6nkRbJYvuMzzP98i8yL6s4BtEqNfYUXf4NrL95iv1P/Ts5n/vfRIczrHAoTFd7Ex1NdfS21OPtbMLf1UyopxXpbcXia8Phb8cd7CA11EmS6cFtvDglQDqQfprn8xk7AbERwNb3vGOwYBDCEvlHucFCGMGIJfoMFP0qkeQm8ve135OQeX9ZjnvqMcc9CR33NGXeX/f+tvf/bg+23PcMearf8Bh9FBgqrMGeXw5SxPbmHk2wJhIRoXj6QoqnRydxNIbmo4eo37MFT/0OaK/F2nOUZF8zhZ73cPZ4cOLDZbw4JDRouQFjxS92fJGUiYA4CFgcBMVB0OLEZ0vFY8kmZHUStjoJW10YqxNsTozNjdiciN2F2N1YHC4sdjdWR+Rlc7iwOZOwO93Yo19tDicWqx2rzYbVasNqs2Oz2bFYrdgB7QKtJpOsWBeYWghEhmp3Fp95ghUKBtj28uOw6dcs8LxJKfBuyjLal9/C9LOvJH+EkyKPZWluG82WHOb17jqj4wPBEG+ufxHfhgc4u+dFpkqAve4F7F16B9POvZ5sm3b8VxNbybS5vJVxCZVH/sjBvV9iyvT5CYslEAzRdOQQHYffw3N0H4H2euhqwNZzFLevmfRgMzmmjfRosnSiLtx0SRq91jQ8tnTq3aUEHWkYewo4krG4UrA6U7G5U7G503AkpWB1pWFzJmN3unE4XdgdLhwuJw6HG5vdgVOEsTPJgjodWcCiRAdxGibuX+p4EiGnoIycgjLgikF3M8YQCgbAhKCvijjyVRDsNht2YPyM8aWUGkxSTmSAhqbDNZQUV5728Qf37aT+pf9lev1TLKKVJjLZXHYTFZd+nvklk2NOIBGhM3Ua6d2vQG8rJJ1aGry/pob9Lz1Iee2fWEEtHpzsK/oohZd8ielTz4pz1EqNLRXX/RuB+8/D/+jNeL/+Ci5X/KYY6OjspLF2N+317+Fr2o+01+DqPkSmr57C8FGKxE//uvZu46bVmkW3PYejyQupT84nnFKANb0QR3ohyZl5pGXmk56dR6rTFdfBbpSKJ02w4khEdKhUpSaJwtKpADQfPkDJKR7T0XyY3S/9lpT3nmRu4B1KjLAjaQmHqj7NgguvY8kk/Pzw5y+C7l8RrtuEZeYlg+7X1NrGO3//A86dT1Dte5OpEmKfYza7Ku9ixkWfHvcDfih1pnKKp7Nx2b9RveEr7PjvD1F66+OkZ51Zs6pQKEzjkVpaanfTfWQvoZYD2DoPktJbT27wMHm0HVf71IuLRmsBncllvJN6DpJVjiNnGqmF08guqiA1LRMd31JNBppgKaVUDJSVT8VvrASO7Bxyv+bDB3hv/R9J2vsX5nk3s1TC1FhKeavi81Rc/FkWFk8bpYjHprxZywnvFRp3vEzBCQlW3ZEmdq/7A+69z1DleZMLxEebZLBzyj9QsvIWplUsTFDUSo0t1ZffxAZPJ2e9fSc9/1PFa8XXkVr5YabMWEBqVi4iggmH6e3uoL25gc6WBjzNtQSaD0B7La6eOtJ9DeSHGykUP4XRcsNGaLJk0+oo4lDqB6jJKMeZW0Fa4Uxyy2aSklVIuQ4coxRizJn3gBORx4BZ0cUMoN0YUyUi5cBOYHd02xvGmNuGK6+6utps3LjxjONRSqlE2vKDC8gNN1Nyx46+dV5PD+9t/jtd7zxPwdG/MzV0AIAGyeNg4WVkL/sk0yuX6vQPUR2eAFv+/WIW2w/Q+fE/cKTxKJ27XiG7cT2zAztxSIhWyeBQ/kVkLvk4ZVWXwATul6bUSOzbtp7eZ+9kXu9bWCTyvBc0kUEbBINNwicd004KzdZ8ulxFBFJLkaxy3HnTyCqZSV7pDGwxmJxdqYlCRDYZY06afHJEf5WMMav6neA/gY5+m/cZY6pGUr5SSo0nPRWXsmjPD9n0s5sJYCe9bTvT/HuolCBBY2G3cx7ry75E8dIrmTLrLAo1qTpJuttOw6KvYtt6K8WPXsyx8f5q7NN4d8oNFFR/jIL5K8myWBMap1LjwbQFK2DBWjqbDnNg60t4GvdhelvBGCwWCyFHOva0HFzp+bhzysgtmUFGZjYZiQ5cqXFuRDVYfYWICFALXGiMeS9ag/WMMea0hq/RGiyl1Hjm9XrZ9pNrWOpZh8c4qHVMozX7LJJmnMv06g+SnJ6d6BDHBWMMm7duJlSznrTsIsoXnIMroyDRYSmllFLHGawGK1YJ1nnAj4+dIJpgvUNkpqhO4LvGmFcHOfZW4FaAsrKyxQcPHhxxPEoplUie3h6cTjcWq9ZQKaWUUhPVGTcRFJG/AgP96/A7xpinou8/Aazpt60BKDPGtIjIYuBJEZlnjOk8sRBjzC+AX0CkBmv4b0UppcY2d5JOvqCUUkpNVsMmWMaYi4faLiI24Gpgcb9jfIAv+n6TiOwDZgLa/k8ppZRSSik1YcWi/crFwC5jTN2xFSKSKyLW6PupwAxgfwzOpZRSSimllFJjVizGtr2e45sHApwH3CUiASAM3GaMaY3BuZRSSimllFJqzIrJIBexIiJNwFgb5SIHaE50EGrU6PWePPRaTy56vScPvdaTh17ryWUsXu8pxpjcE1eOqQRrLBKRjQONDqImJr3ek4de68lFr/fkodd68tBrPbmMp+utYwgrpZRSSimlVIxogqWUUkoppZRSMaIJ1vB+kegA1KjS6z156LWeXPR6Tx56rScPvdaTy7i53toHSymllFJKKaViRGuwlFJKKaWUUipGNMFSSimllFJKqRjRBGsIInKZiOwWkb0i8s1Ex6NiR0RKReRlEXlXRN4Rka9E12eJyFoReS/6NTPRsarYEBGriGwRkWeiyxUisiF6fz8mIo5Ex6hiQ0QyROQJEdklIjtF5AN6b09MInJ79DN8h4isERGX3tsTh4g8KCKNIrKj37oB72WJ+J/odd8mImclLnJ1uga51ndHP8e3icifRCSj37ZvRa/1bhG5NCFBD0ETrEGIiBW4F7gcmAt8QkTmJjYqFUNB4GvGmLnAcuAL0ev7TeBFY8wM4MXospoYvgLs7Lf8H8B/GWOmA23AZxISlYqHnwDPGWNmAwuJXHe9tycYESkGvgxUG2PmA1bgevTenkgeAi47Yd1g9/LlwIzo61bg56MUo4qNhzj5Wq8F5htjFgB7gG8BRJ/XrgfmRY/5WfS5fczQBGtwS4G9xpj9xhg/8ChwRYJjUjFijGkwxmyOvu8i8gBWTOQa/zq626+BKxMSoIopESkBPgz8MroswIXAE9Fd9FpPECKSDpwHPABgjPEbY9rRe3uisgFuEbEBSUADem9PGMaYV4DWE1YPdi9fAfzGRLwBZIhI4agEqkZsoGttjHnBGBOMLr4BlETfXwE8aozxGWMOAHuJPLePGZpgDa4YONRvuS66Tk0wIlIOLAI2APnGmIbopiNAfqLiUjH138A3gHB0ORto7/fBrff3xFEBNAG/ijYJ/aWIJKP39oRjjKkH/j+glkhi1QFsQu/tiW6we1mf2ya21cCz0fdj/lprgqUmNRFJAf4AfNUY09l/m4nMYaDzGIxzIvIRoNEYsynRsahRYQPOAn5ujFkE9HBCc0C9tyeGaN+bK4gk1UVAMic3MVITmN7Lk4OIfIdI145HEh3LqdIEa3D1QGm/5ZLoOjVBiIidSHL1iDHmj9HVR481KYh+bUxUfCpmVgAfE5EaIk19LyTSRycj2qwI9P6eSOqAOmPMhujyE0QSLr23J56LgQPGmCZjTAD4I5H7Xe/tiW2we1mf2yYgEbkJ+AjwSfP+5L1j/lprgjW4t4AZ0dGIHEQ60z2d4JhUjET74DwA7DTG/LjfpqeBT0fffxp4arRjU7FljPmWMabEGFNO5D5+yRjzSeBl4NrobnqtJwhjzBHgkIjMiq66CHgXvbcnolpguYgkRT/Tj11rvbcntsHu5aeBT0VHE1wOdPRrSqjGIRG5jEjz/o8ZY3r7bXoauF5EnCJSQWRgkzcTEeNg5P1kUJ1IRD5EpO+GFXjQGPODxEakYkVEzgFeBbbzfr+cbxPph/U4UAYcBK4zxpzYwVaNUyJyAfB1Y8xHRGQqkRqtLGALcIMxxpfA8FSMiEgVkQFNHMB+4GYi/1DUe3uCEZHvA6uINB/aAnyWSF8MvbcnABFZA1wA5ABHgX8BnmSAezmaZN9DpJloL3CzMWZjAsJWZ2CQa/0twAm0RHd7wxhzW3T/7xDplxUk0s3j2RPLTCRNsJRSSimllFIqRrSJoFJKKaWUUkrFiCZYSimllFJKKRUjmmAppZRSSimlVIxogqWUUkoppZRSMaIJllJKKaWUUkrFiCZYSimllFJKKRUjmmAppZRSSimlVIz8/76/BgWLTLWpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
27False90.1250.0545bAP.soma.v0.0007478.27e-05
28False90.1250.0545Step1.soma.v0.001050.000133
29False90.1250.0545Step3.soma.v0.009095.62e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "27 False 9 0.125 0.0545 bAP.soma.v \n", + "28 False 9 0.125 0.0545 Step1.soma.v \n", + "29 False 9 0.125 0.0545 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "27 0.000747 8.27e-05 \n", + "28 0.00105 0.000133 \n", + "29 0.00909 5.62e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACw9UlEQVR4nOzdd3wc1b3//9dni4plyb03mWLjigEbTLBpyQUTeiAYQicJFxIS4FJuKnH4hXvzTbghAZIYEhIIEGNCT4AQmgETmm2MKaa4yL3Ili25qO3u5/fHjuSVrGa08krW+/l47EM7Z86c+cyMV96Pzpkz5u6IiIiIiIhI64UyHYCIiIiIiMi+QgmWiIiIiIhImijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNlGCJiIiIiIikiRIsEZF2xswKzczNLJLpWKRzMLMPzezYTMchIrIvUIIlIiIdnpnNNLPtwavKzKpTlp/NdHztnbuPcfc56WzTzAaZ2ZNmVmJmq83sinS2LyLSXpkeNCwikl5mFnH3WCu2LwSWA9HWtNNZmdkM4AB3v6CBda26NntTR4q1IWb2MvAecAMwGngZOMvdX85oYCIibUw9WCIiaWBmRWb232a2CNhhZhEzm2xm/zazrWb2XuoQLDObY2b/a2Zvm1lZ8Jf+no20famZLTazbWa2zMz+s976081sYdDOUjObFpR3M7N7zGydma0xs5+ZWbiZ49jfzF4ys81mtsnMHjSz7inrSszs0GB5oJkV1xyXmZ0WDDXbGhzfqHrn53ozW2RmpWY228xy9vxM77lGro2b2QEpde41s5+lLJ8SnNOtwTUc38J9HRv01vwgOH9FZnZ+yvqTzezd4FqtCpLBmnU1Q0O/bmYrgZeC8r+Z2frgvL1qZmPqxf07M3s26K173cz6m9mvzWyLmX1sZoe08Bx9qSXH2MLz0BU4FrjF3avd/T3gEeCydO1DRKS9UoIlIpI+5wEnA92BfsDTwM+AnsD1wKNm1iel/kUkv3AOAGLA7Y20uxE4BSgALgVuS0lyDgf+QrKXoDtwNFAUbHdv0O4BwCHACcA3mjkGA/4XGAiMAoYAMwDcfSnw38ADZtYF+DNwn7vPMbMRwCzgGqAP8AzwdzPLSmn7HGAaMBwYD1zSYABmU4LEprHXlGaOoSG116a5XqEgIfkT8J9AL+Au4Ckzy27hvvoDvYFBwMXA3WY2Mli3g+R17x7Ec6WZnVFv+2NInvsTg+VngQOBvsAC4MF69c8BfhTssxJ4I6jXm2RS86sWxt0gM/teU9ejsc3q/ax5P7Y1sYiIdARKsERE0ud2d1/l7uXABcAz7v6Muyfc/XlgHvDllPr3u/sH7r4D+DFwTkM9TO7+tLsv9aRXgH8BU4PVXwf+5O7PB/tZ4+4fm1m/YF/XuPsOd98I3Aac29QBuPuSoK1Kdy8m+eX8mJT1fwCWAG+RTAx/GKyaDjwdbFsN3ArkAl+od37WunsJ8HdgQiMxzHX37k285jZ1DI1IvTbNuRy4y93fcve4u99HMnGZvAf7+3FwDl8hmWifA+Duc9z9/eBaLSKZlB5Tb9sZwTUrD7b5k7tvc/dKksnuwWbWLaX+4+4+390rgMeBCnf/i7vHgdkkk+vPzd1/3tT1aGSbbcDrwI/NLCf4g8BZQJfWxCIi0hEowRIRSZ9VKe+HAV+t95f+KSSTkobqrwCiJHsd6jCzk8zszWB43laSiVNNvSHA0gZiGRa0ty5l/3eR7AVplJn1M7OHgiGFZcADDcT0B5I9EXcEX/oh2eO1oqaCuyeC4xuUst36lPc7ga5NxZJmq5qvUmsYcF29azeE5DG2xJYgaa6xomZbMzvCzF4OhlaWAlew+/mtjdXMwmb2c0sO/SxjV+9k6jYbUt6XN7C8N89zqvNJ9lauAn5P8t/S6gzFIiKy1yjBEhFJn9RZg1aR7KFK/Wt/nrv/PKXOkJT3Q4FqYFNqg8GwtEdJ9gj1C3oMnmHX0KtVwP4NxLKKZK9L75T9F7j7mAbqpvqf4DjGuXsByZ642mFewb01vwbuAWbYrvvG1pJMTGrqWXB8a5rZ327MbKrtmgGwodfU5lvZTf0ZnXZStzelf8r7VSTvHUq9dl3cfVYL99XDzPJSloeSPD8AfwWeAoa4ezdgJnWH0dWP9WvA6cCXgG5AYVBef5s2E9xP1uj1aGw7d1/h7qe4ex93P4JkUvj23opbRCRTlGCJiLSNB4BTzezEoBciJ5gAYXBKnQvMbHRwP9PNwCPBsK5UWUA2UAzEzOwkkvdS1bgHuNTMvmhmIUtOjX2Qu68jOZTw/8ysIFi3v5nVH45WXz6wHSg1s0Ek7+1K9Rtgnrt/g+TQt5lB+cPAyUEcUeA6kgnev5s7UfW5+2vu3rWJ12t72mYDFgJfC67NNOoO0/sDcEXQ22RmlmfJySnyoXZiiXubaf+nZpYVJIOnAH8LyvOBEnevCO6f+1oz7eSTPI+bSSaE/7MHx5gW7v4/TV2PxrYzs1Fmlh+chwtI/rtt1f1gIiIdgRIsEZE24O6rSPY8/IBkcrSKZLKS+nv3fpITUawHcoDvNtDOtqD8YWALyS/kT6Wsf5tg4gugFHiFXT1JF5FM0D4Ktn2EukMUG/JT4NCgraeBx2pWmNnpJCepuDIo+i/gUDM7390/IdnbdQfJXrhTgVPdvaqZ/WXK1SRj3EpyKNsTNSvcfR7wTeBOkudtCXUn5BhC8v6ixqwPtltLckKKK9z942Ddt4CbzWwbcBPJ69qUv5AcYriG5HV8s7kDa0dOBJaRPBdXANOC+/pERPZpeg6WiEgGmNkc4AF3/2OmY5GWC2ZFfA8YH0zmUX/9sSSv6+D660REpHOIZDoAERGRjiLokRvVbEUREem0NERQRKSTMbOZjUxYMLP5raUjMrOhTUxUMTTT8YmI7Es0RFBERERERCRN1IMlIiIiIiKSJu3qHqzevXt7YWFhpsMQERERERFp0vz58ze5e5/65e0qwSosLGTevHmZDkNERERERKRJZraioXINERQREREREUkTJVgiIiIiIiJpogRLREREREQkTdrVPVgNqa6uZvXq1VRUVGQ6FGkHcnJyGDx4MNFoNNOhyD5q9fqNzPvL9xl82o+YeNDwTIcjIiIiHUy7T7BWr15Nfn4+hYWFmFmmw5EMcnc2b97M6tWrGT5cX3ylbSx75UHO2PkIc54shYMeyXQ4IiIi0sG0+yGCFRUV9OrVS8mVYGb06tVLvZnSpio2rwRgTPk7xBN6ELuIiIjsmXafYAFKrqSW/i1IW+u2YzkAfdjKmnXrMhyNiIiIdDQdIsESEdlb+lSuIO7JRH79Z3oun4iIiOwZJVgtYGZcd911tcu33norM2bMyFxAKY499tgmH858xhlnMHny5DplM2bMYNCgQUyYMIGxY8fy1FNPtXWYIh1GQXwri7ocAUDFqoWZDUZEREQ6HCVYLZCdnc1jjz3Gpk2b0tquu5NIJNLaZqqtW7cyf/58SktLWbZsWZ111157LQsXLuRvf/sbl112WZvGIdKRRL2K8i4D2UYX2Lw00+GIiIhIB6MEqwUikQiXX345t912227riouLOeuss5g0aRKTJk3i9ddfB5K9RLfeemttvbFjx1JUVERRUREjR47koosuYuzYsaxatYobbriBsWPHMm7cOGbPng3AnDlzOPbYYzn77LM56KCDOP/883Fv+Ib7+++/v7Y36u23364tf+yxxzj11FM599xzeeihhxrcdtSoUUQikTrJ4/e+9z1Gjx7N+PHjuf766wEoKiri+OOPZ/z48Xzxi19k5crkRACXXHIJV155JZMnT2a//fZjzpw5XHbZZYwaNYpLLrmkts0rr7ySiRMnMmbMGH7yk5/sFkdpaSnDhg2rTfR27NjBkCFDqK6ubjBukbaS7ZVYNJdN0YHk7Vyd6XBERESkg2n307Sn+unfP+SjtWVpbXP0wAJ+cuqYZut9+9vfZvz48dx44411yq+++mquvfZapkyZwsqVKznxxBNZvHhxk2199tln3HfffUyePJlHH32UhQsX8t5777Fp0yYmTZrE0UcfDcC7777Lhx9+yMCBAznqqKN4/fXXmTJlym7t7dy5k4ULF/Lqq69y2WWX8cEHHwAwa9YsbrrpJvr168dZZ53FD37wg922feuttwiFQvTp0weAzZs38/jjj/Pxxx9jZmzduhWA73znO1x88cVcfPHF/OlPf+K73/0uTzzxBABbtmzhjTfe4KmnnuK0007j9ddf549//COTJk1i4cKFTJgwgVtuuYWePXsSj8f54he/yKJFixg/fnxtHN26dWPChAm88sorHHfccfzjH//gxBNP1POuZK/yRIIcq4ZILtu7DKZX6aeZDklEREQ6GPVgtVBBQQEXXXQRt99+e53yF154gauuuooJEyZw2mmnUVZWxvbt25tsa9iwYbX3Rc2dO5fzzjuPcDhMv379OOaYY3jnnXcAOPzwwxk8eDChUIgJEyZQVFTUYHvnnXceAEcffTRlZWVs3bqVDRs28NlnnzFlyhRGjBhBNBqtTbwAbrvtNiZMmMD111/P7Nmza2fn69atGzk5OXz961/nscceo0uXLgC88cYbfO1rXwPgwgsvZO7cubVtnXrqqZgZ48aNo1+/fowbN45QKMSYMWNqY3744Yc59NBDOeSQQ/jwww/56KOPdjuO6dOn1/bgPfTQQ0yfPr3J8yiSbrGqcgA8kkN1wTAG+EZ2lFdmOCoRERHpSDpUD1ZLepra0jXXXMOhhx7KpZdeWluWSCR48803ycnJqVM3EonUua8p9dlNeXl5LdpfdnZ27ftwOEwsFmuwXv2py82Mhx9+mC1bttQ+kLesrIxZs2Zxyy23AMl7sGqG/9WP++233+bFF1/kkUce4c477+Sll15qUZyhUKhOzKFQiFgsxvLly7n11lt555136NGjB5dcckmDz7I67bTT+MEPfkBJSQnz58/n+OOPb3K/IulWWVFOFCCaS6R7b7JXxVi1ZjkHHHBQpkMTERGRDkI9WHugZ8+enHPOOdxzzz21ZSeccAJ33HFH7fLChQsBKCwsZMGCBQAsWLCA5cuXN9jm1KlTmT17NvF4nOLiYl599VUOP/zwPYqrptdn7ty5dOvWjW7dujFr1iz++c9/1t73NX/+/Ebvw0q1fft2SktL+fKXv8xtt93Ge++9B8AXvvCF2u0ffPBBpk6d2uL4ysrKyMvLo1u3bmzYsIFnn322wXpdu3Zl0qRJXH311ZxyyimEw+EW70MkHaoqdgBg0Wzy+h8IwJbVGiYoIiIiLdfqBMvMhpjZy2b2kZl9aGZXB+UzzGyNmS0MXl9ufbiZd91119WZEOL2229n3rx5jB8/ntGjRzNz5kwAzjrrLEpKShgzZgx33nknI0aMaLC9M888k/Hjx3PwwQdz/PHH84tf/IL+/fvvUUw5OTkccsghXHHFFdxzzz0UFRWxYsWKOtOzDx8+nG7duvHWW2812MaXv/xl1q5dy7Zt2zjllFMYP348U6ZM4Ve/+hUAd9xxB3/+858ZP348999/P7/5zW9aHN/BBx/MIYccwkEHHcTXvvY1jjrqqNp1N910U51p4qdPn84DDzyg4YGSEdUVOwEIRXPpPST5mS3fsCSTIYmIiEgHY43NTNfiBswGAAPcfYGZ5QPzgTOAc4Dt7n5rU9unmjhxotd/ptPixYsZNWpUq2KUfYv+TUhbWf3JfAbPOp63J/6KSdMuJP7/9eP1/hdyzJW3N7+xiIiIdCpmNt/dJ9Yvb/U9WO6+DlgXvN9mZouBQa1tV0Rkb4tVBj1YWblYJIvicF9ytq/McFQiIiLSkaT1HiwzKwQOAWrGoV1lZovM7E9m1qORbS43s3lmNq+4uDid4YiI7JFYZXIWwXBWctKarVkDyK9Ym8mQREREpINJW4JlZl2BR4Fr3L0M+D2wPzCBZA/X/zW0nbvf7e4T3X1izbOYREQyoaYHK5yVfDxBRd5Aesc2NvqQbxEREZH60pJgmVmUZHL1oLs/BuDuG9w97u4J4A/Ank2NJyKyl8WrkglWJDuZYCUKhtDXtlC2bUcmwxIREZEOJB2zCBpwD7DY3X+VUj4gpdqZwAf1txURaU8SwYOGI0EPVrTnUAA2rF6asZhERESkY0nHg4aPAi4E3jezhUHZD4DzzGwC4EAR8J9p2JeISJtJVCcfgB3JyQWga7/9AChdvwxGH5yxuERERKTjaHUPlrvPdXdz9/HuPiF4PePuF7r7uKD8tGC2wQ7riSeewMz4+OOPG61TVFTE2LFj07bPSy65hEceeaTR9ddccw2DBg0ikUjUlt1777306dOHCRMmMHr0aP7whz+kLR6RfV1ND1Y0GCLYc9D+AFRsKspUSCIiItLBpHUWwX3ZrFmzmDJlCrNmzWpwfSwWa/U+4vF4i+smEgkef/xxhgwZwiuvvFJn3fTp01m4cCFz5szhBz/4ARs2bGh1bCKdgVcnE6ysnDwAuvUbRsKNxJZVmQxLREREOhAlWC2wfft25s6dyz333MNDDz1UWz5nzhymTp3KaaedxujRo4FkonX++eczatQozj77bHbuTN40/+KLL3LIIYcwbtw4LrvsMiorKwEoLCzkv//7vzn00EP529/+ttu+X3jhBSZOnMiIESP4xz/+UWffY8aM4corr2w06evbty/7778/K1asqC27/fbbGT16NOPHj+fcc88FoKSkhDPOOIPx48czefJkFi1aBMCMGTO4+OKLmTp1KsOGDeOxxx7jxhtvZNy4cUybNo3q6moAbr75ZiZNmsTYsWO5/PLLd5txLZFIUFhYyNatW2vLDjzwQCV+0v7EkkMEoznJHiyLZLM51JPo9tWZjEpEREQ6kHTcg7X3PPs9WP9+etvsPw5O+nmTVZ588kmmTZvGiBEj6NWrF/Pnz+ewww4DYMGCBXzwwQcMHz6coqIiPvnkE+655x6OOuooLrvsMn73u99x1VVXcckll/Diiy8yYsQILrroIn7/+99zzTXXANCrVy8WLFjQ4L6Liop4++23Wbp0KccddxxLliwhJyeHWbNmcd5553H66afzgx/8gOrqaqLRaJ1tly1bxrJlyzjggANqy37+85+zfPlysrOzaxOen/zkJxxyyCE88cQTvPTSS1x00UUsXLgQgKVLl/Lyyy/z0UcfceSRR/Loo4/yi1/8gjPPPJOnn36aM844g6uuuoqbbroJgAsvvJB//OMfnHrqqbX7DIVCnH766Tz++ONceumlvPXWWwwbNox+/fq1+DKJ7BWx5B8+srKya4u2ZvUjr7xDj3AWERGRvUg9WC0wa9as2t6ec889t06P0eGHH87w4cNrl4cMGcJRRx0FwAUXXMDcuXP55JNPGD58OCNGjADg4osv5tVXX63dZvr06Y3u+5xzziEUCnHggQey33778fHHH1NVVcUzzzzDGWecQUFBAUcccQTPPfdc7TazZ89mwoQJnHfeedx111307Nmzdt348eM5//zzeeCBB4hEkvn13LlzufDCCwE4/vjj2bx5M2VlZQCcdNJJRKNRxo0bRzweZ9q0aQCMGzeOoqIiAF5++WWOOOIIxo0bx0svvcSHH36423FMnz6d2bNnA/DQQw81ecwimeLxKio9SjSy61fjztwB9Iypt1VERERapmP1YDXT09QWSkpKeOmll3j//fcxM+LxOGbGL3/5SwDy8vLq1E/OWt/4ckPqt9Fce8899xxbt25l3LhxAOzcuZPc3FxOOeUUIJnM3HnnnQ229/TTT/Pqq6/y97//nVtuuYX332+6RzA7O/mX/FAoRDQarY0nFAoRi8WoqKjgW9/6FvPmzWPIkCHMmDGDioqK3do58sgjWbJkCcXFxTzxxBP86Ec/anK/Iplg8WqqiJAX2pVgxfOH0G/LHHZUVJGXk5XB6ERERKQjUA9WMx555BEuvPBCVqxYQVFREatWrWL48OG89tprDdZfuXIlb7zxBgB//etfmTJlCiNHjqSoqIglS5YAcP/993PMMce0aP9/+9vfSCQSLF26lGXLljFy5EhmzZrFH//4R4qKiigqKmL58uU8//zztfd7NSaRSLBq1SqOO+44/t//+3+Ulpayfft2pk6dyoMPPggk7+3q3bs3BQUFLYqvJpnq3bs327dvb3TWQzPjzDPP5L/+678YNWoUvXr1alH7IntVvIpqwoRCu/6wEek5lCyLs2FNUebiEhERkQ5DCVYzZs2axZlnnlmn7Kyzzmp0YomRI0fy29/+llGjRrFlyxauvPJKcnJy+POf/8xXv/pVxo0bRygU4oorrmjR/ocOHcrhhx/OSSedxMyZM0kkEvzzn//k5JNPrq2Tl5fHlClT+Pvf/95gG9/4xjeYN28e8XicCy64gHHjxnHIIYfw3e9+l+7duzNjxgzmz5/P+PHj+d73vsd9993XwrMD3bt355vf/CZjx47lxBNPZNKkSbXrZs6cycyZM2uXp0+fzgMPPKDhgdJuWbyKGHXvZezSNzkEuGSdHjYsIiIizbP6M75l0sSJE33evHl1yhYvXsyoUaMyFJG0R/o3IW1l4e3n0qdkHoNmLKkt27xsIb3+cgyvjf85U79yZQajExERkfbEzOa7+8T65erBEhEJWGL3HqweA5MPG46VrMxESCIiItLBKMESEQlYvJqY1Z37J5STTyn5RLbpWVgiIiLSvA6RYLWnYYySWfq3IG0plNg9wQLYEu1Hl/K1GYhIREREOpp2n2Dl5OSwefNmfbEW3J3NmzeTk5OT6VBkHxX2KuIW3a18R+4Auletz0BEIiIi0tG0++dgDR48mNWrV1NcXJzpUKQdyMnJYfDgwZkOQ/ZRoUQ1VQ0kWNVdB1NY+jYVVTFystr9r00RERHJoHb/TSEajTJ8+PBMhyEinUAoESNu2buX9xhC3tpKijaspXDI0AxEJiIiIh1Fux8iKCKyt4S9mnho9x6s3D7JP/JsXrNsb4ckIiIiHUybJ1hmNs3MPjGzJWb2vbben4jI5xX2ahINDBHsNmA/AHZsXL63QxIREZEOpk0TLDMLA78FTgJGA+eZ2ei23KeIyOcV9moSDfRg9QwSLD0LS0RERJrT1j1YhwNL3H2Zu1cBDwGnt/E+RUQ+l0gjCVYkvw8VZBEqXZWBqERERKQjaesEaxCQ+o1kdVBWy8wuN7N5ZjZPMwWKSCZFPEYilLX7CjM2h/uRs1PPwhIREZGmZXySC3e/290nuvvEPn36ZDocEenEIh7Dw7v3YAFsyxlANz0LS0RERJrR1gnWGmBIyvLgoExEpN2JUo03MEQQoKrrIPomNlIdT+zlqERERKQjaesE6x3gQDMbbmZZwLnAU228TxGRzyVC4z1Y1n0IvWwbGzaV7OWoREREpCNp0wTL3WPAVcBzwGLgYXf/sC33KSLyubgT9Rg0dA8WkN27EIDiNUv2YlAiIiLS0UTaegfu/gzwTFvvR0SkVRJxQuZ4pOEEq6B/8mHD29YvBybvxcBERESkI8n4JBciIu2BxysBsHDDCVbPgQcAUL15xV6LSURERDoeJVgiIkC8Kplg0UiCldVjEDHCoGdhiYiISBOUYImIANVBgmWNDBEkFGZzqDfZOzQRqoiIiDROCZaICFBdVZF800gPFkBZdn8KKvUsLBEREWmcEiwRESBWuTP5JprbaJ3KvEH0iW8gnvC9FJWIiIh0NEqwRESA6sodAISaSLC82xD6soWNW8v2VlgiIiLSwSjBEhEBqsuDBCs7r9E60T77ETZn02o9C0tEREQapgRLRASoDoYIRrIa78HqOmAkANvWfrpXYhIREZGORwmWiAi7hghGchrvweo15CAA4sXqwRIREZGGKcESEQFiFckerGh2l0br5Pboz3ZyCW9dvrfCEhERkQ5GCZaICJCoChKsJnqwMGNDZCB5O1bspahERESko1GCJSICxKvKAcjKbSLBAkpzh9KrUg8bFhERkYYpwRIRATzowcrO7dpkvaqCYfRPbKC6qnJvhCUiIiIdjBIsERHAq5M9WNk5jd+DBRDqfQARS7Bh5Wd7IywRERHpYFqVYJnZL83sYzNbZGaPm1n3oLzQzMrNbGHwmpmWaEVE2ohX7aTaw+Tm5jRZr+uAEQCUrP54b4QlIiIiHUxre7CeB8a6+3jgU+D7KeuWuvuE4HVFK/cjItK2qiuoIIucSLjJan2GjQKgYr2ehSUiIiK7a1WC5e7/cvdYsPgmMLj1IYmI7H0WL6eCLEIha7Je736D2eE5UKKp2kVERGR36bwH6zLg2ZTl4Wb2rpm9YmZTG9vIzC43s3lmNq+4uDiN4YiItJxVV1BlWc3XC4VYFx5I7raitg9KREREOpxIcxXM7AWgfwOrfujuTwZ1fgjEgAeDdeuAoe6+2cwOA54wszHuXla/EXe/G7gbYOLEif75DkNEpHVC8XIqren7r2pszR1C/3JNciEiIiK7azbBcvcvNbXezC4BTgG+6O4ebFMJVAbv55vZUmAEMK+1AYuItIVQvILqFvRgAVTmD6Pf9rl4vBoLR9s4MhEREelIWjuL4DTgRuA0d9+ZUt7HzMLB+/2AA4FlrdmXiEhbisZ2UhVqeor2GtZ7f6IWZ/OapW0clYiIiHQ0rb0H604gH3i+3nTsRwOLzGwh8AhwhbuXtHJfIiJtJidWRmUkv0V1u/RPTtW+eeXitgxJREREOqBmhwg2xd0PaKT8UeDR1rQtIrI3dUlspypa0KK6vYYkp2rfsU5TtYuIiEhd6ZxFUESkw+rq26nO6taiuv0HDWWHZ+ObNfJZRERE6lKCJSISqyKXShLZ3VtUPRoJszY0gGxN1S4iIiL1KMESkU6vekdwi2hu9xZvsyVnMN0qVrdNQCIiItJhKcESkU5v+9ZNANgeJFgVXYfSL74eEvE2ikpEREQ6IiVYItLplW1JJli5Bb1avlHP/cgiRtnGFW0UlYiIiHRESrBEpNPbUVoMQF633i3eJqffgQBsWqGp2kVERGQXJVgi0umVb00mWPk9+7Z4mx5DDgJg27rP2iQmERER6ZiUYIlIp5coWwNAj/5DW7zNoKH7UelR4puWtlVYIiIi0gEpwRKRTi+0bT1bPY/8ri170DBAl+ws1lg/omXL2zAyERER6WiUYIlIp5dVvp7NoV6Y2R5ttzlrEAU7V7VRVCIiItIRKcESkU6vS8VGSqN99ni7HV2H0je2DtzbICoRERHpiJRgiUin1626mMrcfnu8nffYj1wqqdiytg2iEhERkY5ICZaIdGrV5WX0ZguJgiF7vG1W3wMAKNZU7SIiIhJQgiUinVrx0veSb/qN2eNtuw0aAUDZWk3VLiIiIklKsESkU9u2ahEAeUPG7fG2A4ceQMKNyk2aSVBERESSWpVgmdkMM1tjZguD15dT1n3fzJaY2SdmdmLrQxURSb/Y2g/Y4dkMHH7QHm/bIz+PjfTESle2QWQiIiLSEUXS0MZt7n5raoGZjQbOBcYAA4EXzGyEu8fTsD8RkbTJKvmY5TaEsQVd9nhbM2NTtB+5O9a0QWQiIiLSEbXVEMHTgYfcvdLdlwNLgMPbaF8iIp9bn51LKe5ywOfefkfuQLpXrU9jRCIiItKRpSPBusrMFpnZn8ysR1A2CEh9+ubqoGw3Zna5mc0zs3nFxcVpCEdEpGXi2zbS3Uup6jXyc7cRyx9C78Qm4rHqNEYmIiIiHVWzCZaZvWBmHzTwOh34PbA/MAFYB/zfngbg7ne7+0R3n9inz54/6FNE5PPa8Nl8AHIG7fkEFzUivQqJWIINq5elKywRERHpwJq9B8vdv9SShszsD8A/gsU1QOpDZQYHZSIi7cbWovcYCPQ94NDP3UbXvsMB2Lz6MwYWfv6eMBEREdk3tHYWwQEpi2cCHwTvnwLONbNsMxsOHAi83Zp9iYikW2L9B2zyAoYPK/zcbfQYdCAAOzeqB0tERERaP4vgL8xsAuBAEfCfAO7+oZk9DHwExIBvawZBEWlvupR+xspIIYdGw5+7jb6D9yPhRrxkRRojExERkY6qVQmWu1/YxLpbgFta076ISJtJJOhfWURR95Nb1UwkK4cN1pPIttVpCkxEREQ6sraapl1EpF3bvmEJXaiAvqNb3VZJtD95O3WbqYiIiCjBEpFOat1nCwAoGDa+1W3t6DKIntV6FpaIiIgowRKRTmr7ykUADB7x+WcQrBHLH0wf30xVVVWr2xIREZGOTQmWiHRK4eLFrKIf/Xr3an1bPYcRsQTFa5anITIRERHpyJRgiUin1GP7Z2zIGY6ZtbqtLsGzsLas+azVbYmIiEjHpgRLRDqdeFUFA2JrKO9+UFra6zGw5llY6sESERHp7JRgiUins2b5YiKWIKv/yLS016f2WVhFaWlPREREOi4lWE3YsPIzFr3yGOXbyzIdioikUcnKxQD0GDIqLe1Fs3LYZD0J61lYIiIinV6rHjS8r1v26oMcueQ2ql8K83H0AEq7jSI88GC67XcYAw48lK5d8zMdooh8DhUbPgWgX2Hrn4FVoySrP112KsESERHp7JRgNWHCGdfy3rxx7Px0Dt03vcuoTf+iYPMT8D7E3VhnvSjJGsTOrkOozh9KqNtAcrr1pWvPAXTr3Z+uPfqT06UrFmrbjkJPJIjHqqmuqqSquopYVQWxWBXxqipisUpi1ZXEq6qJxyqJV1eRiFWRiFUTj1XhsSoS8WoSsUoSsWqIVeGJajxeBbEYxKsgUQ3xakhUY/FqQl5N2GOYx8Ad3DESte8hAc6uMhKYO4YDTsiTP40EBrU/6xxTnSVLKd99QoLUMq8zYUHqdru3V7etRvaR8nZXedPxNGgPJ1Jo/bQLbcebrbCrRrN196TtZhprenXdtYMql7OVrnTv1a9lgbVAecF+FBa/THUsTjQSTlu7Ah6Psb2shO1lW9i5rYyqijJi5duJlW8jUbmdROV2vHIHVO3AqnaQiFVCvBLiVYQSVYQS1YQT1YQ95adXE/I4Vvs7KoHhhGp/N3md5VDt77AgppRaAImgJpZ8X1Mn2ULw3kJBC7t++yW3qdmb1fv9U7O8qzz5O67uskHdekadtqnTbnJ9Tf1d+6BOfahthpQfnZo190uojdXs3TyzcaTak3PSfqKWjmhl1gEMOv0nTCzsmelQWkQJVhNyu3bj4GPPgmPPAiART7Bi+WJKls4ntvZ9bGsRXXesYnjJa/QuKW2wjZiHqCCbSku+qiybassK/qOt+c9t13vcCXmcMLHkTw9+knyFPE6EOBFihD35M8viREhezNw2OA8JN6qJELMwMSLEiFBNhISF63xJ8OBYgOQxme12jF6nbuoXil2/pnf9955sidryBt6n/MZucP1ubTTX7q61De+vobaa/k8mo/+p7MnO0/QNqi2+iKVhor86EuFslvb/Dw5LY5s2eCI9Nv2dJUs+4ICDDk5jy/sWTyTYVraZLetXs23zaiq2rCNWtgF2bsEqthCpKiWrqpTsWBl58TK6+nbyfQf55rRkzEC5Z1FFlJhFiVmEaqLELUK1ZRG3CDGLUmU5xMIFYCHcwsk/ggW/k91C7PqdVvN7K+X3GVb7m4uU32yk/BGp9o9OkJLABamVJ6D2N18i+Ix6UJ7cs9dut6tNc3a9p6ZN8Jr0qM7+2S2mOn8W8tSy1Ph3Le/+x6Mgrj241unS4j9k7QXtJ5b2EkdnS5zaz3n/vDrqEaypzmdHVTzTYbSYEqw9EAqHGHbAGIYdMGa3dVU7t1GycTVlm9exo2QdFaUbsZ2boWo7VJVDrJxQbCfhWAVRrwy+qAf/qab26JhRHc7BLZxMYCyCWwQPRXAL46EoHgpDKJosC2dhoSiEo1g4CpEsLBzFwllYJEooHCUUyU6+j2QRjmQRjmYRCmcRimYRiWYTiWYTjkaD91lEsrKJRrOIZuUQjmQRCoXJBrL39gkXaUPD0txezxFfgIWw6aPXGk2wSrdu5uPn/kiP/Q5jxKQvpTmCzIvF4mxYv5rNqz5h54ZlsGU54e3ryKooJrdyMwXxEnomtlBgMQrqbZtwo8zy2G757AjnUx4poDR3CLGs7nhudyy3B5HcAqK5+YRz8onkdiWam09WlwKyg1duXldyolFy052Ri4hIRg3PdAB7SAlWmmR1yad/4Sj6F6bnpnkR6ViGjDyUDfSiy6dPAFfVWbfqkwWse/43jC1+liOskiWfHQiT5mUkztZwd0pLt7Jh5aeUrf2Myk3LsC0ryNmxmh6Va+if2Mggq2RQyjYlFLAl1JMd0V5s7VLIsi59sK79iHTrT26PAeT3HkS33oPI79Gb7uEw3TN1cCIiImmiBEtEJA0sHGHZ4DM5YtU9vP+P39Jt2Hg2fPgqBUv/zsjqxfT1KO91/xJ5O1awX2wJHq9O9jq3M1VVVWxcvYzNaz5l54alJEqKyCpbSX75GvrE19OL0jpJ0A5yKA73pyxvKB/lTyHUo5DcfvvTfeAB9Bh0AD275NMxRsyLiIikh3k7ully4sSJPm9ex/urrogIwLayraz79RcZkVhSW7Y0NJwNw05lxLQr6N1vEP9+/Hd84b3vs/zs5xg+dvJej9ETCbZs3kDxyk8oW7eE6k3LCZeuIHfHanpVr6VvYhNR2zXOPeYhNob6sCV7IBV5g0l0H0Z27/0oGHgAfYaOJK97v/TfJCciItIBmNl8d59Yv7xVPVhmNhuoeVJnd2Cru08ws0JgMfBJsO5Nd7+iNfsSEWnv8gu6E75hLm+99iQeq6T/iInst/9o9k9JQEYcMY3Ywh+y/tU/tVmCVbFzGxtWLmHrus+o2LAU37KC7G0rKahYS7/4enpaeZ1epRIK2BQZwIb8MawuGEq453C69t+fXoNH0GvgfgyMRBnYJpGKiIjse1qVYLn79Jr3ZvZ/QOpUekvdfUJr2hcR6Wi65OZyxAnnNrq+98D9mNfjBA7b8Agf/fsMRn/hy3u8j+1lWyhevYSydUup2FSEb11J1rbV5Feso1dsPT0pYxi7JvIo9yw2hPtRmj2ITV0Pgx6F5PTdj+4DD6TvkBH0zO+uYXwiIiJpkpZ7sMzMgHOA49PRnojIvmzEhXew4c5jOPC5C1j41nEkhh9DtNsAQtEsEtUVVO8sJb6zjPjOLdiOjUR3biC3chP5sRJ6JkroapV0TWmv0qNsCPVha9YAPs0fSbxgCFm9hpHff396Dx1Jr76DKWzj5/GJiIhIUlruwTKzo4Ff1YxBDIYIfgh8CpQBP3L31xrZ9nLgcoChQ4cetmLFilbHIyLS3m0uXs/ih37E+E1PU2A7G623zXPZEurBtkgvynP6EMvtg3ftR7TXMLr2HU6vwQfSq+8gQmE93FhERGRvauwerGYTLDN7AejfwKofuvuTQZ3fA0vc/f+C5Wygq7tvNrPDgCeAMe5e1tS+NMmFiHQ2sepqVi//mPKyYhLVlVg0h9yuPehS0IOuBT3I61r/iVEiIiLSHnzuSS7cvcmnYZpZBPgKcFjKNpVAZfB+vpktBUYAyp5ERFJEolEKR4zLdBgiIiKSJukYlP8l4GN3X11TYGZ9zCwcvN8POBBYloZ9iYiIiIiItFvpmOTiXGBWvbKjgZvNrBpIAFe4e0ka9iUiIiIiItJutTrBcvdLGih7FHi0tW2LiIiIiIh0JGmZRTBdzKwYaG/TCPYGNmU6CNlrdL07D13rzkPXunPR9e48dK07l/Z4vYe5e5/6he0qwWqPzGxeQ7ODyL5J17vz0LXuPHStOxdd785D17pz6UjXW0+eFBERERERSRMlWCIiIiIiImmiBKt5d2c6ANmrdL07D13rzkPXunPR9e48dK07lw5zvXUPloiIiIiISJqoB0tERERERCRNlGCJiIiIiIikiRKsJpjZNDP7xMyWmNn3Mh2PpI+ZDTGzl83sIzP70MyuDsp7mtnzZvZZ8LNHpmOV9DCzsJm9a2b/CJaHm9lbwed7tpllZTpGSQ8z625mj5jZx2a22MyO1Gd732Rm1wa/wz8ws1lmlqPP9r7DzP5kZhvN7IOUsgY/y5Z0e3DdF5nZoZmLXPZUI9f6l8Hv8UVm9riZdU9Z9/3gWn9iZidmJOgmKMFqhJmFgd8CJwGjgfPMbHRmo5I0igHXuftoYDLw7eD6fg940d0PBF4MlmXfcDWwOGX5/wG3ufsBwBbg6xmJStrCb4B/uvtBwMEkr7s+2/sYMxsEfBeY6O5jgTBwLvps70vuBabVK2vss3wScGDwuhz4/V6KUdLjXna/1s8DY919PPAp8H2A4PvaucCYYJvfBd/b2w0lWI07HFji7svcvQp4CDg9wzFJmrj7OndfELzfRvIL2CCS1/i+oNp9wBkZCVDSyswGAycDfwyWDTgeeCSoomu9jzCzbsDRwD0A7l7l7lvRZ3tfFQFyzSwCdAHWoc/2PsPdXwVK6hU39lk+HfiLJ70JdDezAXslUGm1hq61u//L3WPB4pvA4OD96cBD7l7p7suBJSS/t7cbSrAaNwhYlbK8OiiTfYyZFQKHAG8B/dx9XbBqPdAvU3FJWv0auBFIBMu9gK0pv7j1+d53DAeKgT8HQ0L/aGZ56LO9z3H3NcCtwEqSiVUpMB99tvd1jX2W9b1t33YZ8Gzwvt1fayVY0qmZWVfgUeAady9LXefJZxjoOQYdnJmdAmx09/mZjkX2ighwKPB7dz8E2EG94YD6bO8bgntvTieZVA8E8th9iJHsw/RZ7hzM7Ickb+14MNOxtJQSrMatAYakLA8OymQfYWZRksnVg+7+WFC8oWZIQfBzY6bik7Q5CjjNzIpIDvU9nuQ9Ot2DYUWgz/e+ZDWw2t3fCpYfIZlw6bO97/kSsNzdi929GniM5Oddn+19W2OfZX1v2weZ2SXAKcD5vuvhve3+WivBatw7wIHBbERZJG+meyrDMUmaBPfg3AMsdvdfpax6Crg4eH8x8OTejk3Sy92/7+6D3b2Q5Of4JXc/H3gZODuopmu9j3D39cAqMxsZFH0R+Ah9tvdFK4HJZtYl+J1ec6312d63NfZZfgq4KJhNcDJQmjKUUDogM5tGcnj/ae6+M2XVU8C5ZpZtZsNJTmzydiZibIztSgalPjP7Msl7N8LAn9z9lsxGJOliZlOA14D32XVfzg9I3of1MDAUWAGc4+71b7CVDsrMjgWud/dTzGw/kj1aPYF3gQvcvTKD4UmamNkEkhOaZAHLgEtJ/kFRn+19jJn9FJhOcvjQu8A3SN6Loc/2PsDMZgHHAr2BDcBPgCdo4LMcJNl3khwmuhO41N3nZSBs+RwaudbfB7KBzUG1N939iqD+D0nelxUjeZvHs/XbzCQlWCIiIiIiImmiIYIiIiIiIiJpogRLREREREQkTZRgiYiIiIiIpIkSLBERERERkTRRgiUiIiIiIpImSrBERERERETSRAmWiIiIiIhImijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSLSzphZoZm5mUUyHYt0Dmb2oZkdm+k4RET2BUqwRESkwzOzmWa2PXhVmVl1yvKzmY6vvXP3Me4+J51tmtkgM3vSzErMbLWZXZHO9kVE2itz90zHICKyTzGziLvHWrF9IbAciLamnc7KzGYAB7j7BQ2sa9W12Zs6UqwNMbOXgfeAG4DRwMvAWe7+ckYDExFpY+rBEhFJAzMrMrP/NrNFwA4zi5jZZDP7t5ltNbP3UodgmdkcM/tfM3vbzMqCv/T3bKTtS81ssZltM7NlZvaf9dafbmYLg3aWmtm0oLybmd1jZuvMbI2Z/czMws0cx/5m9pKZbTazTWb2oJl1T1lXYmaHBssDzay45rjM7LRgqNnW4PhG1Ts/15vZIjMrNbPZZpaz52d6zzVybdzMDkipc6+Z/Sxl+ZTgnG4NruH4Fu7r2KC35gfB+Ssys/NT1p9sZu8G12pVkAzWrKsZGvp1M1sJvBSU/83M1gfn7VUzG1Mv7t+Z2bNBb93rZtbfzH5tZlvM7GMzO6SF5+hLLTnGFp6HrsCxwC3uXu3u7wGPAJelax8iIu2VEiwRkfQ5DzgZ6A70A54Gfgb0BK4HHjWzPin1LyL5hXMAEANub6TdjcApQAFwKXBbSpJzOPAXkr0E3YGjgaJgu3uDdg8ADgFOAL7RzDEY8L/AQGAUMASYAeDuS4H/Bh4wsy7An4H73H2OmY0AZgHXAH2AZ4C/m1lWStvnANOA4cB44JIGAzCbEiQ2jb2mNHMMDam9Ns31CgUJyZ+A/wR6AXcBT5lZdgv31R/oDQwCLgbuNrORwbodJK979yCeK83sjHrbH0Py3J8YLD8LHAj0BRYAD9arfw7wo2CflcAbQb3eJJOaX7Uw7gaZ2feauh6NbVbvZ837sa2JRUSkI1CCJSKSPre7+yp3LwcuAJ5x92fcPeHuzwPzgC+n1L/f3T9w9x3Aj4FzGuphcven3X2pJ70C/AuYGqz+OvAnd38+2M8ad//YzPoF+7rG3Xe4+0bgNuDcpg7A3ZcEbVW6ezHJL+fHpKz/A7AEeItkYvjDYNV04Olg22rgViAX+EK987PW3UuAvwMTGolhrrt3b+I1t6ljaETqtWnO5cBd7v6Wu8fd/T6SicvkPdjfj4Nz+ArJRPscAHef4+7vB9dqEcmk9Jh6284Irll5sM2f3H2bu1eSTHYPNrNuKfUfd/f57l4BPA5UuPtf3D0OzCaZXH9u7v7zpq5HI9tsA14HfmxmOcEfBM4CurQmFhGRjkAJlohI+qxKeT8M+Gq9v/RPIZmUNFR/BRAl2etQh5mdZGZvBsPztpJMnGrqDQGWNhDLsKC9dSn7v4tkL0ijzKyfmT0UDCksAx5oIKY/kOyJuCP40g/JHq8VNRXcPREc36CU7danvN8JdG0qljRb1XyVWsOA6+pduyEkj7EltgRJc40VNdua2RFm9nIwtLIUuILdz29trGYWNrOfW3LoZxm7eidTt9mQ8r68geW9eZ5TnU+yt3IV8HuS/5ZWZygWEZG9RgmWiEj6pM4atIpkD1XqX/vz3P3nKXWGpLwfClQDm1IbDIalPUqyR6hf0GPwDLuGXq0C9m8gllUke116p+y/wN3HNFA31f8ExzHO3QtI9sTVDvMK7q35NXAPMMN23Te2lmRiUlPPguNb08z+dmNmU23XDIANvaY238pu6s/otJO6vSn9U96vInnvUOq16+Lus1q4rx5mlpeyPJTk+QH4K/AUMMTduwEzqTuMrn6sXwNOB74EdAMKg/L627SZ4H6yRq9HY9u5+wp3P8Xd+7j7ESSTwrf3VtwiIpmiBEtEpG08AJxqZicGvRA5wQQIg1PqXGBmo4P7mW4GHgmGdaXKArKBYiBmZieRvJeqxj3ApWb2RTMLWXJq7IPcfR3JoYT/Z2YFwbr9zaz+cLT68oHtQKmZDSJ5b1eq3wDz3P0bJIe+zQzKHwZODuKIAteRTPD+3dyJqs/dX3P3rk28XtvTNhuwEPhacG2mUXeY3h+AK4LeJjOzPEtOTpEPtRNL3NtM+z81s6wgGTwF+FtQng+UuHtFcP/c15ppJ5/kedxMMiH8nz04xrRw9/9p6no0tp2ZjTKz/OA8XEDy322r7gcTEekIlGCJiLQBd19FsufhBySTo1Ukk5XU37v3k5yIYj2QA3y3gXa2BeUPA1tIfiF/KmX92wQTXwClwCvs6km6iGSC9lGw7SPUHaLYkJ8ChwZtPQ08VrPCzE4nOUnFlUHRfwGHmtn57v4Jyd6uO0j2wp0KnOruVc3sL1OuJhnjVpJD2Z6oWeHu84BvAneSPG9LqDshxxCS9xc1Zn2w3VqSE1Jc4e4fB+u+BdxsZtuAm0he16b8heQQwzUkr+ObzR1YO3IisIzkubgCmBbc1ycisk/Tc7BERDLAzOYAD7j7HzMdi7RcMCvie8D4YDKP+uuPJXldB9dfJyIinUMk0wGIiIh0FEGP3KhmK4qISKelIYIiIp2Mmc1sZMKCmc1vLR2RmQ1tYqKKoZmOT0RkX6IhgiIiIiIiImmiHiwREREREZE0aVf3YPXu3dsLCwszHYaIiIiIiEiT5s+fv8nd+9Qvb1cJVmFhIfPmzct0GCIiIiIiIk0ysxUNlWuIoIiIiIiISJoowRIREREREUkTJVgiIntoc+k2/rXgMzQLq4iIiNTXru7Bakh1dTWrV6+moqIi06FIB5OTk8PgwYOJRqOZDkX2MZ/e801OKHuWVyLzOWb8AZkOR0RERNqRdp9grV69mvz8fAoLCzGzTIcjHYS7s3nzZlavXs3w4cMzHY7sY8aXvQJA5Zv3wPj/zXA0IiIi0p60+yGCFRUV9OrVS8mV7BEzo1evXur5lDZRQj4AXTcvynAkIiIi0t60+wQLUHIln4v+3UhbSMTj9PNNAAysXKr7sERERKSODpFgiYi0F9s3ryHL4my2Hgz19WzcXJLpkERERKQdUYLVAmbGddddV7t86623MmPGjMwFlOLNN9/kiCOOYMKECYwaNao2rjlz5vDvf/+7VW1PmzaN7t27c8opp6QhUpF9w87ilQAsKziCkDlrli3OcEQiIiLSnijBaoHs7Gwee+wxNm3alNZ23Z1EItGqNi6++GLuvvtuFi5cyAcffMA555wDpCfBuuGGG7j//vtb1YbIvmbnti0AeL8xAOzYsCST4YiIiEg70+5nEUz1079/yEdry9La5uiBBfzk1DFN1olEIlx++eXcdttt3HLLLXXWFRcXc8UVV7ByZfKv2r/+9a856qijmDFjBl27duX6668HYOzYsfzjH/8A4MQTT+SII45g/vz5PPPMM9x55508++yzmBk/+tGPmD59OnPmzGHGjBn07t2bDz74gMMOO4wHHnhgt/uKNm7cyIABAwAIh8OMHj2aoqIiZs6cSTgc5oEHHuCOO+7goIMOajTOpUuXsmTJEjZt2sSNN97IN7/5TQC++MUvMmfOnCbPzd/+9jd++tOfEg6H6datG6+++ioVFRVceeWVzJs3j0gkwq9+9SuOO+447r33Xp544gl27NjBZ599xvXXX09VVRX3338/2dnZPPPMM/Ts2ZM//OEP3H333VRVVXHAAQdw//3306VLlzr7nTx5Mvfccw9jxiSv3bHHHsutt97KxIkTm4xXpLUqK3YA0GXQGPgUqjYXZTYgERERaVda3YNlZkPM7GUz+8jMPjSzq4PyGWa2xswWBq8vtz7czPn2t7/Ngw8+SGlpaZ3yq6++mmuvvZZ33nmHRx99lG984xvNtvXZZ5/xrW99iw8//JB58+axcOFC3nvvPV544QVuuOEG1q1bB8C7777Lr3/9az766COWLVvG66+/vltb1157LSNHjuTMM8/krrvuoqKigsLCQq644gquvfZaFi5cyNSpU5uMc9GiRbz00ku88cYb3Hzzzaxdu7bF5+Xmm2/mueee47333uOpp54C4Le//S1mxvvvv8+sWbO4+OKLa2fz++CDD3jsscd45513+OEPf0iXLl149913OfLII/nLX/4CwFe+8hXeeecd3nvvPUaNGsU999yz236nT5/Oww8/DMC6detYt26dkivZK+LVyX/Loe6DKSebcOnKDEckIiIi7Uk6erBiwHXuvsDM8oH5ZvZ8sO42d781DfsAaLanqS0VFBRw0UUXcfvtt5Obm1tb/sILL/DRRx/VLpeVlbF9+/Ym2xo2bBiTJ08GYO7cuZx33nmEw2H69evHMcccwzvvvENBQQGHH344gwcPBmDChAkUFRUxZcqUOm3ddNNNnH/++fzrX//ir3/9K7NmzWqw16mpOE8//XRyc3PJzc3luOOO4+233+aMM85o0Xk56qijuOSSSzjnnHP4yle+UntM3/nOdwA46KCDGDZsGJ9++ikAxx13HPn5+eTn59OtWzdOPfVUAMaNG8eiRckprz/44AN+9KMfsXXrVrZv386JJ564237POeccTjjhBH7605/y8MMPc/bZZ7coXpHW8qpyAMJZuWyK9KfLzpb/QUJERET2fa1OsNx9HbAueL/NzBYDg1rbbnt0zTXXcOihh3LppZfWliUSCd58801ycnLq1I1EInXur0p9HlNeXl6L9pednV37PhwOE4vFGqy3//77c+WVV/LNb36TPn36sHnz5t3qNBYn7D6d+Z5Mbz5z5kzeeustnn76aQ477DDmz5/fZP3UYwqFQrXLoVCo9vguueQSnnjiCQ4++GDuvffeBhPGQYMG0atXLxYtWsTs2bOZOXNmi2MWaY1E0IMVze7CtpyBdN++LsMRiYiISHuS1kkuzKwQOAR4Kyi6yswWmdmfzKxHI9tcbmbzzGxecXFxOsNJu549e3LOOefUGbJ2wgkncMcdd9QuL1y4EIDCwkIWLFgAwIIFC1i+fHmDbU6dOpXZs2cTj8cpLi7m1Vdf5fDDD29xTE8//XTtc3g+++wzwuEw3bt3Jz8/n23btjUbJ8CTTz5JRUUFmzdvZs6cOUyaNKnF+1+6dClHHHEEN998M3369GHVqlVMnTqVBx98EIBPP/2UlStXMnLkyBa3uW3bNgYMGEB1dXVtOw2ZPn06v/jFLygtLWX8+PEtbl+kNbw62YMVze5Cdf4Q+vsGKqoa/uOHiIiIdD5pS7DMrCvwKHCNu5cBvwf2ByaQ7OH6v4a2c/e73X2iu0/s06dPusJpM9ddd12d2QRvv/125s2bx/jx4xk9enRtT8pZZ51FSUkJY8aM4c4772TEiBENtnfmmWcyfvx4Dj74YI4//nh+8Ytf0L9//xbHc//99zNy5EgmTJjAhRdeyIMPPkg4HObUU0/l8ccfZ8KECbz22muNxgkwfvx4jjvuOCZPnsyPf/xjBg4cCCSTv69+9au8+OKLDB48mOeeew5IDkusud/qhhtuYNy4cYwdO5YvfOELHHzwwXzrW98ikUgwbtw4pk+fzr333lun56o5/9//9/9xxBFHcNRRR3HQQQfVlj/11FPcdNNNtctnn302Dz30UO3MiSJ7RU0PVk4XrMcwCqycdRvWZzgoERERaS+spvejVY2YRYF/AM+5+68aWF8I/MPdxzbVzsSJE33evHl1yhYvXsyoUaNaHaM0rP5sh/sa/fuRdHv3LzdwyLK72XL9RorfeYQRr3yLBSc9waFHHJfp0ERERGQvMrP57r7bLGvpmEXQgHuAxanJlZkNSKl2JvBBa/clIpJpFqukwqNkRcMUDNgfgPINyzIclYiIiLQX6ZhF8CjgQuB9M1sYlP0AOM/MJgAOFAH/mYZ9SZrNmDEj0yGIdCgWq6CCLPIiIXoNSiZYVVtWZTgqERERaS/SMYvgXKChaeeeaW3bIiLtjcUqqCRKt5BhXXtTSRZWuibTYYmIiEg7kY4eLBGRTsPilcmkKnicwaZwH3J2aqp2ERERSUrrNO0iIvu6cLyCKts1K+b27H7kV23IYEQiIiLSnijBEhHZA6F4JVWWVbtc2WUAvePFJBKtn5FVREREOj4lWC30xBNPYGZ8/PHHjdYpKipi7NgmZ6LfI5988gnHHnssEyZMYNSoUVx++eVA8iHBzzzTulvcLrvsMvr27ZvWeEU6g1C8kmp2JVjebTB92Mqm0u0ZjEpERETaCyVYLTRr1iymTJnCrFmzGlwfi8VavY94PF5n+bvf/S7XXnstCxcuZPHixXznO98B0pNgXXLJJfzzn/9sVRsinVE4UUl1aFeCldVjCCFzitcuz2BUIiIi0l50rEkunv0erH8/vW32Hwcn/bzJKtu3b2fu3Lm8/PLLnHrqqfz0pz8FYM6cOfz4xz+mR48efPzxx/zrX/8iFotx/vnns2DBAsaMGcNf/vIXunTpwosvvsj1119PLBZj0qRJ/P73vyc7O5vCwkKmT5/O888/z4033si5555bu99169YxePDg2uVx48ZRVVXFTTfdRHl5OXPnzuX73/8+p5xyCt/5znf44IMPqK6uZsaMGZx++unce++9PP7445SWlrJmzRouuOACfvKTnwBw9NFHU1RU1ORxv/LKK1x99dUAmBmvvvoqXbt25cYbb+TZZ5/FzPjRj37E9OnTmTNnDj/5yU/o3r0777//Pueccw7jxo3jN7/5DeXl5TzxxBPsv//+/P3vf+dnP/sZVVVV9OrViwcffJB+/frV2e+5557LhRdeyMknnwwkk8FTTjmFs88+u2XXVKQNRRKVxCyvdjmv7zAASjesgDHjMxWWiIiItBPqwWqBJ598kmnTpjFixAh69erF/Pnza9ctWLCA3/zmN3z66adAcljft771LRYvXkxBQQG/+93vqKio4JJLLmH27Nm8//77xGIxfv/739e20atXLxYsWFAnuQK49tprOf744znppJO47bbb2Lp1K1lZWdx8881Mnz6dhQsXMn36dG655RaOP/543n77bV5++WVuuOEGduzYAcDbb7/No48+yqJFi/jb3/7GvHnzWnzct956K7/97W9ZuHAhr732Grm5uTz22GMsXLiQ9957jxdeeIEbbriBdeuSM6i99957zJw5k8WLF3P//ffz6aef8vbbb/ONb3yDO+64A4ApU6bw5ptv8u6773Luuefyi1/8Yrf9Tp8+nYcffhiAqqoqXnzxxdpkSyTToolKYqFdk1z0HLgfABWbVmYqJBEREWlHOlYPVjM9TW1l1qxZtT055557LrNmzeKwww4D4PDDD2f48OG1dYcMGcJRRx0FwAUXXMDtt9/Of/zHfzB8+HBGjBgBwMUXX8xvf/tbrrnmGiCZUDTk0ksv5cQTT+Sf//wnTz75JHfddRfvvffebvX+9a9/8dRTT3HrrbcCUFFRwcqVyS97//Ef/0GvXr0A+MpXvsLcuXOZOHFii477qKOO4r/+6784//zz+cpXvsLgwYOZO3cu5513HuFwmH79+nHMMcfwzjvvUFBQwKRJkxgwYAAA+++/PyeccAKQ7Hl7+eWXAVi9ejXTp09n3bp1VFVV1Tl3NU466SSuvvpqKisr+ec//8nRRx9Nbm5ui2IWaWthryaeMkSwa59kD1Z8qx42LCIiIurBalZJSQkvvfQS3/jGNygsLOSXv/wlDz/8MO7JGcPy8vLq1K95Nk5jyw2p30aqgQMHctlll/Hkk08SiUT44IMPdqvj7jz66KMsXLiQhQsXsnLlSkaNGvW546nxve99jz/+8Y+Ul5dz1FFHNTnBB0B29q6/6odCodrlUChUe4/ad77zHa666iref/997rrrLioqKnZrJycnh2OPPZbnnnuO2bNnN5qAimRCxKtJhHclWGTns408Itv1sGERERFRgtWsRx55hAsvvJAVK1ZQVFTEqlWrGD58OK+99lqD9VeuXMkbb7wBwF//+lemTJnCyJEjKSoqYsmSJQDcf//9HHPMMc3u+5///CfV1dUArF+/ns2bNzNo0CDy8/PZtm1bbb0TTzyRO+64ozbpe/fdd2vXPf/885SUlNTeB1XTu9YSS5cuZdy4cfz3f/83kyZN4uOPP2bq1KnMnj2beDxOcXExr776KocffniL2ywtLWXQoEEA3HfffY3Wmz59On/+85957bXXmDZtWovbF2lrEa8mkdKDBbA12pcu5eszFJGIiIi0J0qwmjFr1izOPPPMOmVnnXVWo7MJjhw5kt/+9reMGjWKLVu2cOWVV5KTk8Of//xnvvrVrzJu3DhCoRBXXHFFs/v+17/+xdixYzn44IM58cQT+eUvf0n//v057rjj+Oijj5gwYQKzZ8/mxz/+MdXV1YwfP54xY8bw4x//uLaNww8/nLPOOovx48dz1lln1Q4PPO+88zjyyCP55JNPGDx4MPfccw8AM2fOZObMmQD8+te/ZuzYsYwfP55oNMpJJ53EmWeeyfjx4zn44IM5/vjj+cUvfkH//v1bfD5nzJjBV7/6VQ477DB69+5dWz5v3jy+8Y1v1C6fcMIJvPLKK3zpS18iKyuroaZEMiLi1XgoWqdsR+4AulVvzFBEIiIi0p5YTa9HezBx4kSvPwnD4sWLa4e7yZ659957mTdvHnfeeWemQ8kY/fuRdKua0YtXep7Df3x310Q1H9x9GQPXPEf2D1aQl92xbm0VERGRz8fM5rv7bpMbqAdLRKSl3Mkihofr9qqGug2mp21n/aaSDAUmIiIi7YUSrH3YJZdc0ql7r0TSLp68J9IidROsnN7JmQQ3r9PDhkVERDq7DpFgtadhjNJx6N+NpF28EgAPZ9cpLuhXCMC2DUV7OSARERFpb9p9gpWTk8PmzZv1ZVn2iLuzefNmcnJyMh2K7EuCHizqJVjd+yef51ZdoocNi4iIdHZtfje2mU0DfgOEgT+6+x49LXjw4MGsXr2a4uLiNolP9l05OTkMHjw402HIPiRRXUEICEXqziIY6Z589AClehaWiIhIZ9emCZaZhYHfAv8BrAbeMbOn3P2jlrYRjUYZPnx4W4UoItJi1VUVZANE6vZgEclmS6gHWTvWZiIsERERaUfaeojg4cASd1/m7lXAQ8DpbbxPEZE2UV1VAUAosvuz2cqy+pFXuWFvhyQiIiLtTFsnWIOAVSnLq4OyWmZ2uZnNM7N5GgYoIu1ZVWWQYEWzd1tX0aU/veIbiSd0v6iIiEhnlvFJLtz9bnef6O4T+/Tpk+lwREQaFavtwdp98pRE/mAGsJnisoq9HZaIiIi0I22dYK0BhqQsDw7KREQ6nOqq5DTt4QZ6sKI9hpBnlazfqGGCIiIinVlbJ1jvAAea2XAzywLOBZ5q432KiLSJeHWyd6qhBKtL3+TDhreu18OGRUREOrM2nUXQ3WNmdhXwHMlp2v/k7h+25T5FRNpKrKYHK2v3IYLdgocN7ywu2osRiYiISHvT5s/BcvdngGfaej8iIm2t5h6sSAM9WHl9CgGIb1m9N0MSERGRdibjk1yIiHQUiepkD1Yke/ceLLr2JUaY0DbdZioiItKZKcESEWmheE2C1UAPFqEwWyO9ydm5bi9HJSIiIu2JEiwRkRaq6cGKNtSDBWzP7k+3as0iKCIi0pkpwRIRaaFELEiwsnIbXF/ddSB9E5vYVlG9N8MSERGRdkQJlohIC9UkWFlZDQwRBCgYRH8rYd3WnXsxKhEREWlPlGCJiLSQNzNEMKv3MLIsTvHaFXszLBEREWlHlGCJiLSQBz1Y2TkNDxHM738gANs3LN1rMYmIiEj7ogRLRKSFLFZOhUfJjkYbXN9t4AEAxDYt35thiYiISDuiBEtEpIUsVk452UTD1uD6cI+hJDBCpRoiKCIi0lkpwRIRaaFQrJwKsjBrOMEikk1JqBe521ft3cBERESk3VCCJSLSQqFYOZXWyAyCgdKcQXSv1MOGRUREOislWCIiLRSOV1BJwzMI1ijPG0y/xHpi8cReikpERETaEyVYIiItFI5XNNuDleg+jAFWwoYtpXspKhEREWlPlGCJiLRQJF5BVajpBCvaez8AStYs2RshiYiISDujBEtEpIUiiQrizSRY+f33B2D7eiVYIiIinVGrEiwz+6WZfWxmi8zscTPrHpQXmlm5mS0MXjPTEq2ISAZFEhXEwg0/ZLhGzyEjAKjSs7BEREQ6pdb2YD0PjHX38cCnwPdT1i119wnB64pW7kdEJOOyEpXEw01PctGlxyAqiBLaqmdhiYiIdEatSrDc/V/uHgsW3wQGtz4kEZH2KcsrSESaTrAwY2O4v56FJSIi0kml8x6sy4BnU5aHm9m7ZvaKmU1N435ERDIi2yvxSJdm65VmD6Jb5dq9EJGIiIi0N5HmKpjZC0D/Blb90N2fDOr8EIgBDwbr1gFD3X2zmR0GPGFmY9y9rIH2LwcuBxg6dOjnOwoRkbaWSJBDFR5p+h4sgMqugync8R6JeIJQWHMJiYiIdCbNJlju/qWm1pvZJcApwBfd3YNtKoHK4P18M1sKjADmNdD+3cDdABMnTvQ9jF9EZO+IVSR/ZjWfYNFzOPkby9mwaQP9+g1o27hERESkXWntLILTgBuB09x9Z0p5HzMLB+/3Aw4ElrVmXyIimRSrTP6KC0WbT7By+iSfhbVp5SdtGpOIiIi0P60du3InkA88X2869qOBRWa2EHgEuMLdS1q5LxGRjNm5fQsAlpPfbN3ugw4EYJuehSUiItLpNDtEsCnufkAj5Y8Cj7ambRGR9mRn6SYKgHCXns3W7TMkmWDFNqnjXkREpLPR3dciIi1QXroJgGh+8wlWdl53tlBAqFRTtYuIiHQ2SrBERFqgcntylHNOfq8W1S+J9qPLzjVtGZKIiIi0Q0qwRERaoHpbMsHK69ayBGt77iB6VK1ry5BERESkHVKCJSLSAvGdyUku8rr3blH9WP4Q+nsxFVXVbRmWiIiItDNKsEREWqK8hAqP0i2/oEXVI70KybZq1q1Z2caBiYiISHuiBEtEpCUqtlJKV3Kj4RZV79J3OAAlaz5ry6hERESknVGCJSLSAuHKUnZYHmbWovo9ByefYrFzg6ZqFxER6UyUYImItEB2xSa2R3u0uH7PgckEK1ZS1EYRiYiISHukBEtEpAW6V29kR3b/Fte3rDy2WDciZXoWloiISGeiBEtEpDmJOD29hOq8AXu02ZboAPLK17ZRUCIiItIeKcESEWnGzpI1REjgBYP3bLu8QfSqXo+7t1FkIiIi0t4owRIRaUbJuuUAZPUcskfbxfKHMIBiynZWtkVYIiIi0g4pwRIRacbWtUsAKOhfuEfbhXoOI8vibFq3og2iEhERkfZICZaISDMq1n5EzEMMOXDcHm2XGzwLq2z90rYIS0RERNohJVgiIs3I2vwxq0MDKOiav0fbFfRPTtVeUby8LcISERGRdkgJlohIM3rvXMqG3P33eLueAwoBiG1dk+aIREREpL1qVYJlZjPMbI2ZLQxeX05Z930zW2Jmn5jZia0PVURk79u+ZQMDE+uo7D12j7eN5uZTRh6hbZqqXUREpLOIpKGN29z91tQCMxsNnAuMAQYCL5jZCHePp2F/IiJ7zYoFzzMGKDjo2M+1/ZZwb7LLN6Q1JhEREWm/2mqI4OnAQ+5e6e7LgSXA4W20LxGRNlPxyUuUexYHTpj6ubbfnt2X/MqNaY5KRERE2qt0JFhXmdkiM/uTmfUIygYBq1LqrA7KdmNml5vZPDObV1xcnIZwRETSwxNxhhW/xIddJpHXpcvnaqMqtx894pvTHJmIiIi0V80mWGb2gpl90MDrdOD3wP7ABGAd8H97GoC73+3uE919Yp8+ffZ0cxGRNrPknefo7VuIHXTa524jkT+Q3mylbMfONEYmIiIi7VWz92C5+5da0pCZ/QH4R7C4BhiSsnpwUCYi0mHsmHsXpZ7H6OO/9rnbiHQfRMicTetXUbD/yDRGJyIiIu1Ra2cRHJCyeCbwQfD+KeBcM8s2s+HAgcDbrdmXiMjetObjdxhf9gqL+n+FgvyCz91OTq/k35rKNhSlKTIRERFpz1o7i+AvzGwC4EAR8J8A7v6hmT0MfATEgG9rBkER6Ug2PfUjutKFg876UavaKegzFICdm1anIywRERFp51qVYLn7hU2suwW4pTXti4hkwvsv/pWDd77JG/tdxZF9+7eqrR7Bw4bjpRolLSIi0hm01TTtIiId0rp1qxnw2vdZEhrOIdNb13sFkFPQm0qiWJkeNiwiItIZKMESEQlUVFRQfM+55PsOsr96Fzk5ua1v1IzNod5k7Vzf+rZERESk3WvtPVgiIvsEd+edu65gaux9PjjiF4wddUTa2i6N9iFPDxuu5YkE27YWs3n9Kso2raG8ZC2JnVvwqh14VTlU7yCcqAYLQSiEWxiiXbDc7oTyehDN60l2fm+69x9On4HDyMrKyvQhiYiI1FKCJSICvPG325i65XHmDzqfw778n2ltuyKnL31LF6W1zY5g2+a1rPt0HqWrPia2aQnZZSvoWbmaAYkNFFg1jc3NWE42VUQJkUi+PEGuVTVYN+7GBuvJlkhfduT2p7rrQELdBpHdcyj5/QrpPXA/8nsNwEKZHbCRiCeoqqqgsrKC6sqdVFfspLqqgnhVOdWVFcSrK4hVV5PwBDi4J7DkGxzHANzBDAtFCIWjhCJRLBwhHI4QikQJh6OEo8mfoUiESCSr9mc4EiESiRAOhwmHIlg4jFkIzDJzQtxTfqbhfYs0c6zNnouWb+/uKe93rU+Ntk6deu2HzAgZWJ2Ymth/KJx8iUi7oARLRDq9j956nokf/owPuhzGIZf+Ju3tx/IG0HvrHGKxOJHIvvclyBMJ1iz7kPWL/0312kV03fIxAyqW0Jut5Ad1yj2LDZGBbO0ynLVdj4aCQWR1H0DXXgPp1mcwed17k5uXTzQ7j1wz6g/OTMRibN9WwvYtm9hZtomKrRup2LyK+NaVhLetJXfnOvpvX0zvsrlkr6uus22VRygO9aY0qy87s3qRyCrAs7tjud2wLt2xaG5twhIOZ0E4iifiJOLVeO2rCo/FSFSXk6jaCVU7oLqcUGwnoeqdhOPlROLlROIVRBMVZCfKyfYKcqgky6vIsWpygJy9cUH2QNyNOCGcEPHalNZIWG16i+EYTohkQmNQbzlZFiIBwTqrrZdIWb8nyVDH1sK0KG12kMuqaX/moMkn7YW9iUhzlGCJSKe2Yc0y+j77DTaG+jL0P2cTikTTv5OCgWSvjbFx0zr69h+c/vb3svId21i68FW2fvo6eRvnU1j+IYPZxmCSycyqyFCWFRzBx33G0GXIwfTbbzwDBhVSGP78vUihSISCHn0p6NG3yXqJeILiTWsoWVvE9g1FVJasxEvXEN2xlvzKDfTb/gldfAf5vp0s+/xPD0m4UU4WFZZDZfCqCuVQHcqlMquA0kgO8XAuHu2CR3Ihkl37skgOoWgOFskmlJV8H45mE4lECYVqepWszk/DcCPZ1ZGoJh6L4fEYiXiMRLyaRDyWkgwm13kieMWrIREnkYhDzcsTmCfAk+/xeLCcLDffVcchJU0KflrdNMpTYq3pjXFCtfWSRcn3ycOoqc+uNmsEvTa1dWrLUsprqxuN9TxZIwsNJz/eYCJktaXeRAeXYQ0kj6n1zetUb3L/NVXdPZmyevK9s6vXa9dysu7otY/R5bn/onTk4XTr0auxQEVkL1GCJSKdVmXFDkr/PJ1BXsHOcx+loHufNtlPVs9kUrVl/YoOmWBVlO/ks3kvsu3jF+m98d8Mr1rC2CA5WRUaxJLuU/HBk+g18iiGjZzA/lnZ7J+hWEPhEH36DaFPvyHA1EbrJeIJSndsY0fpJuJVFcSqq4jHqohXV5GIVREKhQlHs7BwlEg0i3Aki1A4SnZuF3LzupKT05W8cIi8vXdoIo365K3j2O+Z81l811c56L/+qfsSRTJMCZaIdE7uvH/3N5kY+5QFX7iTQw+a2Ga76ho8bHhH8UrgqDbbT7p4IkHRR2+x8d1nyV0zlwPL32ecVRHzEEuiI3ln0AV0PeAohh9yLEN69GNIpgP+HELhEN0KutGtoFumQxFptZFHnMQ7q29i0vs/4d93XswRVz9AOLzvDUcW6SiUYDXh/VcfI/7GXVQOnUqP0cdTeNBhZGVnZzosEUmDd5+6g4klTzN30GVMObHRZ6anRbd+wwCo2rK6TffTGtVVlXzy1j/ZsegphhW/wnCKGQ4UhYawqN/p5I78IvtPOpGDCnpmOlQRacCks65h/rbVfKHoD7xz+7lMuOpBolH1ZIlkghKsJlRtL6VfxQoGf/ImfPJLKj3Kp9H92NJtFPF+48gfNIr+haPoPWAY1lln73HHEzHi8TiJhJPwBIlE8PIEibiTcMcT8eTYcffkeP/g5mjcMd/1vukZoRoYAN/goPgGyhq89cMaqGlBs7vfD1C3ZWtodb26tlvdmkVvIG5rqKyRY969qjW0p9p46tavW6t2Mq86Zd5AGXUqesraFrdR+9N3K6xz5VuwD09tooF/Nt5EGzu2rGP/Bf/Lh1njmHzpL3ffOM169h1M3I1E6Zo239ee2F5WwqdzH8c/fpoDy95gLDup8Cgf501k5f5XMWzy6RQOGk5hpgMVkRY57JJbeePeCEcW/Z5Ft57EwMv+Qu9+gzIdVrvkiTixWIyqqiqqqquJxapq72v0eDWJWBxPVCfvXYxXk4jHk99n3En4rv9bjLr/z9b5FpByC+Fu9WzXdwQLpby30K71VrtVcBui7drOQljt94HkfZo1dWp2ZBYKbnNMtpM6c6gF93ZS227QSu2MqzVloZTvHan3PO5+f2TNPZV1DrTRbfaQhYhEs4m04l7evcm8oW8mGTJx4kSfN29epsOow93ZsGoJ695/mYqVC+ha8hHDqj+jgJ21dSo8yrrwAMqifajM7kWiSx+sa18srxeRnK5EcvPJyu1KVpcCsnK6EopkEQqHsFCYcCiMhUOELYyFjHg8RjwWIx6rIhGLEYtVJ29gjlUTjyVvZE7EqoLlShKx6mA5+fJ4NV7zM14FsSpIxCBeBYlqLF4NiWpCNT+9GkvECCeqMU/+DHmcsFcHrxgRjxEmToRqIh4nSowIyZ/RVtwkLpJJlR6l5OI5DNhv7F7Z38YZwynqdgSHX/vQXtlfY4rXLGP5638jd9lzjCxfSJbF2UI+n3WfSmT0yRz0hVPp0lXD5kQ6snmP3sa4RbdQavms+cL/x4QvfS3jjyr4XNyJ7dxK6dYtbC8rYXvZFqp2lBKrKCNRXoZXlEHlNqxqO6GqbVisnFCsglC8knCikqhXEk1UEfXkbJ5ZVJFNFdleRcQSmT462QNz4gez/asPccr4gZkOpQ4zm+/uu91joB6sZpgZ/YceSP+hB9aWeSLOpjVL2FC0mG1rPyWxeRl5O1bSpbKYfttW0qN0K9lW3USre1+Vh4lZhBjJV7VFiBMhbjWvKAmLEA9FSFgWMetCVSiKh6IkQlEIRfDwruWERfFQhEQoK/kwUAsFf4EJ/mJiNX/x2PVyC5E621Ttz9rZpHbNPrW7BmZoauhAG/yDwe6/RM13b7Fm795QV0rq+0b/JrF7T0n9maW8gbJk/YaOr6EdNRB4TdyNbJ/atKXUrT1/wbN1kut3+xNcyrYNlDVYr6Fes7qNNDlbVyOzfe1W1tS+G6hTv3q3kVMZspeSK0g+bDi7fMNe218NTyRYsfgdNrz9KL3WvMgBsSX0AVbZQOb3n07BhNMZOfGLHB5tg9kTRSQjJp51LUUHfQF79Osc8u9v8+E7M0l84buMnvoVwpHMffWLVWynrGQDO7ZsYMeWjVSWFRPbVkxixyZC5SVEKraQVb2FLtVbyU+Uku/biBKnF9DU3Ig7PJtyy6XccolZNrFQFrFQNrFwVypCOcTDWSTCOcTD2Xg4m0Q4BwtHa1+hcAQLRyAUCZ4plvxpoZqyCFiYUMhqe41S/09JndGR2ve7/x+cHKdTM5pn14yQtWtT3idH/VCzxe7PgAtm+KyZXBR33BO7dpQyUqh2P6ntpwbndevuts+a9tyDyT+93n5qyoL3db7TpK6vmVGzzreQFqnKHcRB/Rt7emL7ox6sNuCJBGWlW9ixdSOVO8uo3LmNyvLtxHZuI1G5HU/EMY+T8ASeSE6Pm/zpWDj5wQ6FohCO1PngWyj5MMnk81qyCEeziESzg59ZhCPZRLOyiWRlE4lmEc3KJhrNJhyJfr7uWBFJmw9uO5380k8Y+pPFDQ4HTad4dRWfvv1Ptr33d4YUz2GAbyThxqfRkZQM+RIDDj+LwpETOuZftEWkxaoqK1n45K/Z76Pf0ZutbKAXK3sfTeSA4xhw0OH0GTLic0+GEavYwbYtG9m2ZSM7S4upKC2mettmEjs2YeUlhCtKyK4sITdWSl68lG5eRi6VDbYVd2Mr+ZSFCtgR7kZ5tDtVWT2J5/SALj2JdOlGVl53cvK6k53Xjeyu3cju2p2crj3Iyysgoj8QSYY01oOlBEtEZC9Y8JfvMWHpTEquXkrvnul/Tk1ZyUaW/Ptx+PSfHFj2BvmUU+FRFuceRuX+J7LfUWfTd+DQtO9XRNq/iopyPnz5IULvP8yIHfPJs2Sis8Oz2Rzqxc5oD8qjPYiHc7BQBLcQcYdwoqr2AdqReDnReDl5iW0U+Da6WMPJEsA2z6XUdiVLlVk9iOX0xHN7EsrrTSS/D9kFfcjt3pf8nv3o3qMPuTmakEM6Hg0RFBHJoOwhhxBa5qz75B16Hzmt1e15Is7KxfNY9+6zFKx8gRGVH3KoJdhENz7sdjzhUSdx0BdO5ZCC7q0PXkQ6tJycXA476VI46VIqK8tZ/P4blK1YRKh4MaHt68mqLKFH+UoiXkXIE4SIE8aptGwqLZsqyyYWzqUypxslWQcRy+5OIqcndOlBtGtvsgt606V7X7r26Ev3Xv3Jz80lP9MHLZJBSrBERPaCQaOPhFdg66f/hs+ZYK1d/jFrFjxLuOgVhm+bzzDKGAYsCxXy9uCL6XHIaYw45Bgm6/k3ItKI7OxcRk08HiYen+lQRPZZrUqwzGw2MDJY7A5sdfcJZlYILAY+Cda96e5XtGZfIiIdWfd+Q1ka3p/+q54Gbm62flVlBSs+eIOtn75OZO08Bm5/n4G+iYFAMT34rGAyPvwYhkw8if2G7M9+bX4EIiIi0hKtSrDcfXrNezP7P6A0ZfVSd5/QmvZFRPYlxQeczeRP/h8Ln7yDCaddlZw5Mx5j84aVrF/6PjtWvUe4eDHdt33KkOoVHBjMRrqO3qzKG0vR4MPpP2EaQ0ceQh9NUCEiItIupWWSC0tOibUSON7dPwt6sP7h7ns0B7ImuRCRfVllZQVLbj2eMdUfUkpXqonS3UvrPI9lE91Yk7U/5T1HkVV4OAPGHkP/QYVtPvOgiIiI7Jm2nuRiKrDB3T9LKRtuZu8CZcCP3P21RgK7HLgcYOhQzXAlIvuu7Owc9r/uReY++Vts/SLCiRjxvL6ECgaSP/gg+h14KL37DqK3kikREZEOq9keLDN7AejfwKofuvuTQZ3fA0vc/f+C5Wygq7tvNrPDgCeAMe5e1tS+1IMlIiIiIiIdwefuwXL3LzXTcAT4CnBYyjaVkHyanLvPN7OlwAhA2ZOIiIiIiOyz0nGX9JeAj919dU2BmfUxs3Dwfj/gQGBZGvYlIiIiIiLSbqXjHqxzgVn1yo4GbjazaiABXOHuJWnYl4iIiIiISLuVllkE08XMioEVmY6jnt7ApkwHIXuNrnfnoWvdeehady663p2HrnXn0h6v9zB371O/sF0lWO2Rmc1r6OY12Tfpenceutadh65156Lr3XnoWncuHel660mVIiIiIiIiaaIES0REREREJE2UYDXv7kwHIHuVrnfnoWvdeehady663p2HrnXn0mGut+7BEhERERERSRP1YImIiIiIiKSJEiwREREREZE0UYLVBDObZmafmNkSM/tepuOR9DGzIWb2spl9ZGYfmtnVQXlPM3vezD4LfvbIdKySHmYWNrN3zewfwfJwM3sr+HzPNrOsTMco6WFm3c3sETP72MwWm9mR+mzvm8zs2uB3+AdmNsvMcvTZ3neY2Z/MbKOZfZBS1uBn2ZJuD677IjM7NHORy55q5Fr/Mvg9vsjMHjez7inrvh9c60/M7MSMBN0EJViNMLMw8FvgJGA0cJ6Zjc5sVJJGMeA6dx8NTAa+HVzf7wEvuvuBwIvBsuwbrgYWpyz/P+A2dz8A2AJ8PSNRSVv4DfBPdz8IOJjkdddnex9jZoOA7wIT3X0sEAbORZ/tfcm9wLR6ZY19lk8CDgxelwO/30sxSnrcy+7X+nlgrLuPBz4Fvg8QfF87FxgTbPO74Ht7u6EEq3GHA0vcfZm7VwEPAadnOCZJE3df5+4LgvfbSH4BG0TyGt8XVLsPOCMjAUpamdlg4GTgj8GyAccDjwRVdK33EWbWDTgauAfA3avcfSv6bO+rIkCumUWALsA69NneZ7j7q0BJveLGPsunA3/xpDeB7mY2YK8EKq3W0LV293+5eyxYfBMYHLw/HXjI3SvdfTmwhOT39nZDCVbjBgGrUpZXB2WyjzGzQuAQ4C2gn7uvC1atB/plKi5Jq18DNwKJYLkXsDXlF7c+3/uO4UAx8OdgSOgfzSwPfbb3Oe6+BrgVWEkysSoF5qPP9r6usc+yvrft2y4Dng3et/trrQRLOjUz6wo8Clzj7mWp6zz5DAM9x6CDM7NTgI3uPj/TscheEQEOBX7v7ocAO6g3HFCf7X1DcO/N6SST6oFAHrsPMZJ9mD7LnYOZ/ZDkrR0PZjqWllKC1bg1wJCU5cFBmewjzCxKMrl60N0fC4o31AwpCH5uzFR8kjZHAaeZWRHJob7Hk7xHp3swrAj0+d6XrAZWu/tbwfIjJBMufbb3PV8Clrt7sbtXA4+R/Lzrs71va+yzrO9t+yAzuwQ4BTjfdz28t91fayVYjXsHODCYjSiL5M10T2U4JkmT4B6ce4DF7v6rlFVPARcH7y8GntzbsUl6ufv33X2wuxeS/By/5O7nAy8DZwfVdK33Ee6+HlhlZiODoi8CH6HP9r5oJTDZzLoEv9NrrrU+2/u2xj7LTwEXBbMJTgZKU4YSSgdkZtNIDu8/zd13pqx6CjjXzLLNbDjJiU3ezkSMjbFdyaDUZ2ZfJnnvRhj4k7vfktmIJF3MbArwGvA+u+7L+QHJ+7AeBoYCK4Bz3L3+DbbSQZnZscD17n6Kme1HskerJ/AucIG7V2YwPEkTM5tAckKTLGAZcCnJPyjqs72PMbOfAtNJDh96F/gGyXsx9NneB5jZLOBYoDewAfgJ8AQNfJaDJPtOksNEdwKXuvu8DIQtn0Mj1/r7QDawOaj2prtfEdT/Icn7smIkb/N4tn6bmaQES0REREREJE00RFBERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERERERERNJECZaIiIiIiEiaKMESERERERFJEyVYIiIiIiIiaaIES0REREREJE2UYImIiIiIiKSJEiwREREREZE0UYIlIiIiIiKSJkqwRETaGTMrNDM3s0imY5HOwcw+NLNjMx2HiMi+QAmWiIh0eGY208y2B68qM6tOWX420/G1d+4+xt3npLNNMxtkZk+aWYmZrTazK9LZvohIe2XunukYRET2KWYWcfdYK7YvBJYD0da001mZ2QzgAHe/oIF1rbo2e1NHirUhZvYy8B5wAzAaeBk4y91fzmhgIiJtTD1YIiJpYGZFZvbfZrYI2GFmETObbGb/NrOtZvZe6hAsM5tjZv9rZm+bWVnwl/6ejbR9qZktNrNtZrbMzP6z3vrTzWxh0M5SM5sWlHczs3vMbJ2ZrTGzn5lZuJnj2N/MXjKzzWa2ycweNLPuKetKzOzQYHmgmRXXHJeZnRYMNdsaHN+oeufnejNbZGalZjbbzHL2/EzvuUaujZvZASl17jWzn6UsnxKc063BNRzfwn0dG/TW/CA4f0Vmdn7K+pPN7N3gWq0KksGadTVDQ79uZiuBl4Lyv5nZ+uC8vWpmY+rF/TszezborXvdzPqb2a/NbIuZfWxmh7TwHH2pJcfYwvPQFTgWuMXdq939PeAR4LJ07UNEpL1SgiUikj7nAScD3YF+wNPAz4CewPXAo2bWJ6X+RSS/cA4AYsDtjbS7ETgFKAAuBW5LSXIOB/5CspegO3A0UBRsd2/Q7gHAIcAJwDeaOQYD/hcYCIwChgAzANx9KfDfwANm1gX4M3Cfu88xsxHALOAaoA/wDPB3M8tKafscYBowHBgPXNJgAGZTgsSmsdeUZo6hIbXXprleoSAh+RPwn0Av4C7gKTPLbuG++gO9gUHAxcDdZjYyWLeD5HXvHsRzpZmdUW/7Y0ie+xOD5WeBA4G+wALgwXr1zwF+FOyzEngjqNebZFLzqxbG3SAz+15T16Oxzer9rHk/tjWxiIh0BEqwRETS53Z3X+Xu5cAFwDPu/oy7J9z9eWAe8OWU+ve7+wfuvgP4MXBOQz1M7v60uy/1pFeAfwFTg9VfB/7k7s8H+1nj7h+bWb9gX9e4+w533wjcBpzb1AG4+5KgrUp3Lyb55fyYlPV/AJYAb5FMDH8YrJoOPB1sWw3cCuQCX6h3fta6ewnwd2BCIzHMdffuTbzmNnUMjUi9Ns25HLjL3d9y97i730cycZm8B/v7cXAOXyGZaJ8D4O5z3P394FotIpmUHlNv2xnBNSsPtvmTu29z90qSye7BZtYtpf7j7j7f3SuAx4EKd/+Lu8eB2SST68/N3X/e1PVoZJttwOvAj80sJ/iDwFlAl9bEIiLSESjBEhFJn1Up74cBX633l/4pJJOShuqvAKIkex3qMLOTzOzNYHjeVpKJU029IcDSBmIZFrS3LmX/d5HsBWmUmfUzs4eCIYVlwAMNxPQHkj0RdwRf+iHZ47WipoK7J4LjG5Sy3fqU9zuBrk3Fkmarmq9SaxhwXb1rN4TkMbbEliBprrGiZlszO8LMXg6GVpYCV7D7+a2N1czCZvZzSw79LGNX72TqNhtS3pc3sLw3z3Oq80n2Vq4Cfk/y39LqDMUiIrLXKMESEUmf1FmDVpHsoUr9a3+eu/88pc6QlPdDgWpgU2qDwbC0R0n2CPULegyeYdfQq1XA/g3Esopkr0vvlP0XuPuYBuqm+p/gOMa5ewHJnrjaYV7BvTW/Bu4BZtiu+8bWkkxMaupZcHxrmtnfbsxsqu2aAbCh19TmW9lN/RmddlK3N6V/yvtVJO8dSr12Xdx9Vgv31cPM8lKWh5I8PwB/BZ4Chrh7N2AmdYfR1Y/1a8DpwJeAbkBhUF5/mzYT3E/W6PVobDt3X+Hup7h7H3c/gmRS+PbeiltEJFOUYImItI0HgFPN7MSgFyInmABhcEqdC8xsdHA/083AI8GwrlRZQDZQDMTM7CSS91LVuAe41My+aGYhS06NfZC7ryM5lPD/zKwgWLe/mdUfjlZfPrAdKDWzQSTv7Ur1G2Ceu3+D5NC3mUH5w8DJQRxR4DqSCd6/mztR9bn7a+7etYnXa3vaZgMWAl8Lrs006g7T+wNwRdDbZGaWZ8nJKfKhdmKJe5tp/6dmlhUkg6cAfwvK84ESd68I7p/7WjPt5JM8j5tJJoT/swfHmBbu/j9NXY/GtjOzUWaWH5yHC0j+u23V/WAiIh2BEiwRkTbg7qtI9jz8gGRytIpkspL6e/d+khNRrAdygO820M62oPxhYAvJL+RPpax/m2DiC6AUeIVdPUkXkUzQPgq2fYS6QxQb8lPg0KCtp4HHalaY2ekkJ6m4Mij6L+BQMzvf3T8h2dt1B8leuFOBU929qpn9ZcrVJGPcSnIo2xM1K9x9HvBN4E6S520JdSfkGELy/qLGrA+2W0tyQoor3P3jYN23gJvNbBtwE8nr2pS/kBxiuIbkdXyzuQNrR04ElpE8F1cA04L7+kRE9ml6DpaISAaY2RzgAXf/Y6ZjkZYLZkV8DxgfTOZRf/2xJK/r4PrrRESkc4hkOgAREZGOIuiRG9VsRRER6bQ0RFBEpJMxs5mNTFgws/mtpSMys6FNTFQxNNPxiYjsSzREUEREREREJE3UgyUiIiIiIpIm7eoerN69e3thYWGmwxAREREREWnS/PnzN7l7n/rl7SrBKiwsZN68eZkOQ0REREREpElmtqKhcg0RFBERERERSRMlWCIiIiIiImmiBEtEpAnxhGZaFRERkZZrV/dgNaS6uprVq1dTUVGR6VCkg8nJyWHw4MFEo9FMhyId1LoNG1j++7NZMfGHnHfKtEyHIyIiIh1Au0+wVq9eTX5+PoWFhZhZpsORDsLd2bx5M6tXr2b48OGZDkc6qKKFL/MFFnHQO1+HU9ZkOhwRERHpANr9EMGKigp69eql5Er2iJnRq1cv9XxKq5RvXAZAT9vOhpLSDEcjIiIiHUG7T7AAJVfyuejfjbRWVuny2verPn03g5GIiIhIR9EhEiwRkUwoKF9NNWEAdqxcmNlgREREpENQgtUCZsZ1111Xu3zrrbcyY8aMzAWU4s033+SII45gwoQJjBo1qjauOXPm8O9///tzt7tixQoOPfRQJkyYwJgxY5g5c2aaIhbpOPKrink/OoFKorDho0yHIyIiIh1Au5/koj3Izs7mscce4/vf/z69e/dOW7vujrsTCn3+PPfiiy/m4Ycf5uCDDyYej/PJJ58AyQSra9eufOELX/hc7Q4YMIA33niD7Oxstm/fztixYznttNMYOHDg545VpKOJJiqIZfWnONGf3O2rMh2OiIiIdADqwWqBSCTC5Zdfzm233bbbuuLiYs466ywmTZrEpEmTeP311wGYMWMGt956a229sWPHUlRURFFRESNHjuSiiy5i7NixrFq1ihtuuIGxY8cybtw4Zs+eDSQTpGOPPZazzz6bgw46iPPPPx/33Z/Hs3HjRgYMGABAOBxm9OjRFBUVMXPmTG677TYmTJjAa6+91mScF154IUceeSQHHnggf/jDHwDIysoiOzsbgMrKShKJRIPn5vbbb2f06NGMHz+ec889F4CSkhLOOOMMxo8fz+TJk1m0aFHtvi6++GKmTp3KsGHDeOyxx7jxxhsZN24c06ZNo7q6GoCbb76ZSZMmMXbsWC6//PLdjjuRSFBYWMjWrVtryw488EA2bNjQ1GUU2WORRCUeyWFbzkC6V63LdDgiIiLSAXSoHqyf/v1DPlpbltY2Rw8s4Cenjmm23re//W3Gjx/PjTfeWKf86quv5tprr2XKlCmsXLmSE088kcWLFzfZ1meffcZ9993H5MmTefTRR1m4cCHvvfcemzZtYtKkSRx99NEAvPvuu3z44YcMHDiQo446itdff50pU6bUaevaa69l5MiRHHvssUybNo2LL76YwsJCrrjiCrp27cr1118PwNe+9rVG41y0aBFvvvkmO3bs4JBDDuHkk09m4MCBrFq1ipNPPpklS5bwy1/+ssHeq5///OcsX76c7Ozs2oTnJz/5CYcccghPPPEEL730EhdddBELFy4EYOnSpbz88st89NFHHHnkkTz66KP84he/4Mwzz+Tpp5/mjDPO4KqrruKmm24C4MILL+Qf//gHp556au0+Q6EQp59+Oo8//jiXXnopb731FsOGDaNfv37NXkeRPRH1KjySQ2V2N4Zvf5/KWJzsSDjTYYmIiEg7ph6sFiooKOCiiy7i9ttvr1P+wgsvcNVVVzFhwgROO+00ysrK2L59e5NtDRs2jMmTJwMwd+5czjvvPMLhMP369eOYY47hnXfeAeDwww9n8ODBhEIhJkyYQFFR0W5t3XTTTcybN48TTjiBv/71r0yb1vDDUJuK8/TTTyc3N5fevXtz3HHH8fbbbwMwZMgQFi1axJIlS7jvvvsa7CEaP348559/Pg888ACRSKT2mC688EIAjj/+eDZv3kxZWTIxPumkk4hGo4wbN454PF4b77hx42qP7+WXX+aII45g3LhxvPTSS3z44Ye77Xf69Om1vX0PPfQQ06dPb/Kci3weWSR7sEI9C+lmO1mvXlIRERFpRqt7sMxsCPAXoB/gwN3u/hszmwF8EygOqv7A3Z9pzb5a0tPUlq655hoOPfRQLr300tqyRCLBm2++SU5OTp26kUikzrC61Ocx5eXltWh/NUP0IDn8LxaLNVhv//3358orr+Sb3/wmffr0YfPmzbvVaSxO2H068/rLAwcOZOzYsbz22mucffbZddY9/fTTvPrqq/z973/nlltu4f3332/RMYVCIaLRaO2+QqEQsViMiooKvvWtbzFv3jyGDBnCjBkzGnyW1ZFHHsmSJUsoLi7miSee4Ec/+lGT+xX5PHK8ikQ4h5w+yYdVb1r1KcMG6T5EERERaVw6erBiwHXuPhqYDHzbzEYH625z9wnBq1XJVXvQs2dPzjnnHO65557ashNOOIE77rijdrlmKFxhYSELFiwAYMGCBSxfvpyGTJ06ldmzZxOPxykuLubVV1/l8MMPb3FMTz/9dO09Sp/9/+3dd3xc1Z3//9eZplHvXS5yb3LBFYwBE1oWQg+QDSTG2bBsCgu72U2y2RBCfnnsJvludjcLCQlLIGHpkIBTaKEEHMBgg8HduMhVsnqf0bTz+2PGsmxJtmyNNJL8fj4eeujec+899zO+vqP5zDn3nI8/xul0kpWVRXp6Oq2trSeME+C5557D7/dTX1/P66+/zsKFC9m/fz8+nw+AxsZGVq9ezdSpU486dyQSYd++fSxfvpwf/OAHNDc309bWxrJly3jkkUeA6LNkeXl5ZGRk9Ov1HE6m8vLyaGtr4+mnn+51P2MMV111Ff/wD//A9OnTyc3N7Vf9Iv0WCeM2YazLS3bpZADaqncmOCgREREZ7gacYFlrq6y178eWW4EtQOlA6x2u/vEf/5G6urqu9Z/85CesXbuW2bNnM2PGjK7hzK+55hoaGhqYOXMm99xzD1OmTOm1vquuuorZs2czZ84czj//fH74wx9SVFTU73gefvhhpk6dyty5c7npppt45JFHcDqdfOpTn+K3v/1t1yAXfcUJ0W5+y5cvZ8mSJXz729+mpKSELVu2sHjxYubMmcO5557L1772NSoqKgD4m7/5G9auXUs4HObGG2+koqKCefPmcdttt5GVlcVdd93FunXrmD17Nt/4xjf41a9+1e/Xk5WVxRe/+EVmzZrFxRdfzMKFC7u23XfffUfFff311/N///d/6h4ogyISiH7BYJ1eckuj92+4oTKBEYmIiMhIYHobme6UKzNmPPAGMAv4B2AF0AKsJdrK1djLMbcAtwCMHTt2/p49e47avmXLFqZPnx63GOVod91111GDYYw2+v8jp8rfXIP3Pyfz5sSvseymb9N6VzEfZF3EObf3/wsDERERGb2MMeustQuOLY/bIBfGmDTgGeB2a20L8DNgIjAXqAL+o7fjrLW/sNYusNYuyM/Pj1c4IiIDEuyMtmDhTgag3lVEqu9gAiMSERGRkSAuw7QbY9xEk6tHrLW/AbDWHuq2/X7g9/E4l8TXXXfdlegQRIalUGdHdMEdHRimxVtCdvue4xwhIiIiEocWLBMdBu4BYIu19sfdyou77XYVsHGg5xIRGSqHEyzjirZgBVJLyI/UEYnEr1u1iIiIjD7xaMFaCtwEbDDGrI+V/QvwGWPMXKJDt1cCfxuHc4mIDInDCZbDE5vaILOM9EM+autryc8vSGBkIiIiMpwNOMGy1q4GTC+bRvyw7CJy+grHRhE0sWewPDljAKg/uFsJloiIiPQpboNciIiMJqHYIBfGE02wUgvGA9B2qPc57URERERACVa/Pfvssxhj2Lp1a5/7VFZWMmvWrLidc9u2bZx33nnMnTuX6dOnc8sttwDRSYL/+MdTbyD0+/0sWrSIOXPmMHPmTL7zne/EK2SRUSMciHYRdMYGucgpmQCAv2FfwmISERGR4U8JVj899thjnH322Tz22GO9bg+FQgM+RzgcPmr9tttu44477mD9+vVs2bKFr371q8DAE6ykpCReffVVPvzwQ9avX88LL7zAO++8M6DYRUabSNAPgMuTAkBWfhkh64AmJVgiIiLSNyVY/dDW1sbq1at54IEHePzxx7vKX3/9dZYtW8bll1/OjBkzgGii9dnPfpbp06dz7bXX0tER/Rb8lVdeYd68eVRUVLBy5Uo6OzsBGD9+PF//+tc544wzeOqpp446b1VVFWVlZV3rFRUVBAIB7rzzTp544gnmzp3LE088QXt7OytXrmTRokXMmzeP5557DoCHHnqIK664gvPOO4/Jkyfz3e9+FwBjDGlpaQAEg0GCwSDRwSCP9tRTTzFr1izmzJnDOeecA0Rbv26++WYqKiqYN28er732Wte5rrzySi688ELGjx/PPffcw49//GPmzZvHkiVLaGhoAOD+++9n4cKFzJkzh2uuuabr36e7JUuWsGnTpq718847j7Vr1/b7eonEQyT2DJYzKdpF0Dhd1DnycLdrLiwRERHpW1zmwRoyz38DqjfEt86iCvjkvx93l+eee45LLrmEKVOmkJuby7p165g/fz4A77//Phs3bqS8vJzKykq2bdvGAw88wNKlS1m5ciU//elP+cpXvsKKFSt45ZVXmDJlCp/73Of42c9+xu233w5Abm4u77//fo/z3nHHHZx//vmcddZZXHTRRdx8881kZWVx9913s3btWu655x4A/uVf/oXzzz+fX/7ylzQ1NbFo0SIuuOACAN599102btxISkoKCxcu5NJLL2XBggWEw2Hmz5/Pjh07+PKXv8zixYt7nP/uu+/mxRdfpLS0lKamJgDuvfdejDFs2LCBrVu3ctFFF7F9+3YANm7cyAcffIDf72fSpEn84Ac/4IMPPuCOO+7g17/+NbfffjtXX301X/ziFwH413/9Vx544IGulrnDrr/+ep588km++93vUlVVRVVVFQsW9JgkW2RQ2a4WrOSusiZ3Pqn+6kSFJCIiIiOAWrD64bHHHuOGG24A4IYbbjiqm+CiRYsoLy/vWh8zZgxLly4F4MYbb2T16tVs27aN8vJypkyZAsDnP/953njjja5jrr/++l7Pe/PNN7NlyxY+/elP8/rrr7NkyZKulq/uXnrpJf793/+duXPnct555+H3+9m7dy8AF154Ibm5uSQnJ3P11VezevVqAJxOJ+vXr2f//v1dSdixli5dyooVK7j//vu7ui+uXr2aG2+8EYBp06Yxbty4rgRr+fLlpKenk5+fT2ZmJp/61KeAaMtbZWUlEE3Cli1bRkVFBY888shRLVWHXXfddTz99NMAPPnkk1x77bW9/vuIDCYbit5rriRvV1mHt5isYE2iQhIREZERYGS1YJ2gpWkwNDQ08Oqrr7JhwwaMMYTDYYwx/OhHPwIgNTX1qP2P7WrXW9e7Yx1bR3clJSWsXLmSlStXMmvWrF4TIWstzzzzDFOnTj2qfM2aNSeMJysri+XLl/PCCy/0GKDjvvvuY82aNfzhD39g/vz5rFu37rivIykpqWvZ4XB0rTscjq5n1FasWMGzzz7LnDlzeOihh3j99dd71FNaWkpubi4fffQRTzzxBPfdd99xzysyGCKhAAAu95EEK5ReQkHza4RCIVyukfX2KSIiIkNDLVgn8PTTT3PTTTexZ88eKisr2bdvH+Xl5bz55pu97r93717efvttAB599FHOPvtspk6dSmVlJTt27ADg4Ycf5txzzz3huV944QWCwSAA1dXV1NfXU1paSnp6Oq2trV37XXzxxfzP//wP1loAPvjgg65tL7/8Mg0NDfh8Pp599lmWLl1KbW1tV5c/n8/Hyy+/zLRp03qcf+fOnSxevJi7776b/Px89u3bx7Jly3jkkUcA2L59O3v37u2R2B1Pa2srxcXFBIPBrnp6c/311/PDH/6Q5uZmZs+e3e/6ReLFxhIst+dIgmUyx+AxYeoOHUhUWCIiIjLMKcE6gccee4yrrrrqqLJrrrmmz9EEp06dyr333sv06dNpbGzk7/7u7/B6vTz44IN8+tOfpqKiAofDwa233nrCc7/00ktdg0xcfPHF/OhHP6KoqIjly5ezefPmrkEuvv3tbxMMBpk9ezYzZ87k29/+dlcdixYt4pprrmH27Nlcc801LFiwgKqqKpYvX87s2bNZuHAhF154IZdddhkAd955J6tWrQLgn/7pn6ioqGDWrFmcddZZzJkzhy996UtEIhEqKiq4/vrreeihh45quTqR733veyxevJilS5celdStWrWKO++8s2v92muv5fHHH+e6667rd90i8WTDAcLWkORxd5Ul5UUnG26s2pmosERERGSYM4dbPYaDBQsW2GNHi9uyZQvTp09PUEQj20MPPXTUYBinI/3/kVP10YO3MaXyUfxfP0hWigeAyo1rGP/0Raxd9F8s+KubExyhiIiIJJIxZp21tsdIbGrBEhHpTThAABce15G3yZzS6IA2wYa9iYpKREREhjk9pT2KrVixghUrViQ6DJGRKRwkgJsU55EEKyMrnw6bBC16Bive9jV00O7vZFpJdqJDERERGZAR0YI1nLoxysih/zcyECYcIIgLp6PbyJvGUOfMx6PJhuPKWssT9/4rpT+fTnP9oUSHIyIiMiDDPsHyer3U19frw7KcFGst9fX1eL3eE+8s0gsTDhDC1WNqgxZPIWmabDiuNh1s4bbQQ6QbHwdf/M9EhyMiIjIgw76LYFlZGfv376e2tjbRocgI4/V6KSsrS3QYMlKFg4RMz7dIf0oxhQ0aRTCe9u7dxSwTncw8+cBfEhyNiIjIwAz7BMvtdlNeXp7oMETkNGMiAYK4e5RHMkrJb2iio6OdlJS+JwmX/mut2gVAlaOIwo7tEAmDw5ngqERERE7NoHcRNMZcYozZZozZYYz5xmCfT0QkHhyRAOFeWrDc2dG5sGoOVA5xRKOXv2EfALtzzyXZ+onUfpzgiERERE7doCZYxhgncC/wSWAG8BljzIzBPKeISDw4IkFCpmcLVnL+eACaq3cNcUSjl6st+kybb9xyABr2bkxkOCIiIgMy2C1Yi4Ad1tpd1toA8DhwxSCfU0RkwPpKsLKLo12WfXWaCyteUjqrCRgPqRMWA9B2cHuCIxIRETl1g51glQL7uq3vj5V1McbcYoxZa4xZq4EsRGS4cESCRBw9E6zcWIIValSCFS8ZgVqaXfmUFRfRYNMI1ql1UERERq6ED9Nurf2FtXaBtXZBfn5+osMREQHAaYNEemnBcnlTaSQDR6vmwoqXjHADHUl5FGcms9cW4W6uTHRIIiIip2ywE6wDwJhu62WxMhGRYc1pe2/BAmhwFZDcUTXEEY1OoXCEtEgrQU82Toeh1lNKWse+Ex8oIiIyTA12gvUeMNkYU26M8QA3AKsG+ZwiIgPmtCHCDk+v29q9hWQGDg1xRKNTsy9IlmnHejMB6EgdQ3aoBkKdCY5MRETk1AxqgmWtDQFfAV4EtgBPWms3DeY5RUTiwRUJYPtowQqklpIfqSUSsUMc1ejT2BEkizZMSjYA4axynESwjXsSHJmIiMipGfRnsKy1f7TWTrHWTrTWfn+wzyciEg8uQlhn7wmWySwl3fior9fAPAPV3NJKsgngTM0BwJ0/CYDWKs2FJSIiI1PCB7kQERmOXDaE7aOLYFLeWADqDmq0u4Fqb64DwJ2WC0BGyRQAWjRUu4iIjFBKsEREehFtweo9wUovGA9A6yF1YxsoX0s0wfKm5wFQXFJGm/XSWbszkWGJiIicMiVYIiK9cBOEProI5pRMBKCzvnIIIxqdAq31ACRnRROsspwU9tl8HE2aZ0xEREYmJVgiIseKRHAThr5asPLKCFontknDiQ9UqD2aYKVkRLsIpnhcHHIWkdymf1sRERmZlGCJiBwrHIj+7iPBwuGk1llAUtv+oYtplAp3NAJgknO6ylq8pWQFDoLVKI0iIjLyKMESETlGqLMjuuD29rlPU1IJGT7Nmz5QxhdNsEjO7ioLpI/Fa/3QXpegqERERE6dEiwRkWMEO9sBsK7kPvfxpY2hMFyFVSvLgDj9TYRxQFJ6V5kjZxwAoYbdiQpLRETklCnBEhE5RtAfbcEyx0mwyB5Pjmmlrk6tLAPhDjTT4UgHY7rKUgqic2E1H9BcWCIiMvIowRIROUbQH23BwtN3gpWUPwGAmn3bhiKkUSsp1ILPlXFUWVZpdJTGtuodiQhJRERkQJRgiYgcI9TpA8C4+06wMmMT4rZWKQkYiORwKwF35lFlZQW51NgsQhoGX0RERiAlWCIixwjGBrlwHKcFK3/sVAACtXpO6FT5g2HSbSuhpKMTrOLMZPbbfFwtmshZRERGHiVYIiLHiHQlWCl97uNNz6GZNJzNlUMU1ejT7AuSRRsRb/ZR5U6Hoc5dQppGaRQRkRFICZaIyDFCgWiC5TxOCxZAnauYlA7NhXWqGtoDZJl2HMlZPbZ1pJSSFayBcHDoAxMRERkAJVgiIsc4PA+W25t23P1aU0rJCRwcipBGpcbWdjJMB860vB7bQpnjcBKBZiWwIiIysijBEhE5Rig2iqA3JfW4+wXTx1IUqaEzEBiKsEadtsYaADwZ+T22uXLHA+Cr2TmUIYmIiAzYgBIsY8yPjDFbjTEfGWN+a4zJipWPN8b4jDHrYz/3xSVaEZEhEA5GRxFMSj5+guXMLSfJhKjer4EuToW/OZpgJWcV9tiWVhydC6vpoEZpFBGRkWWgLVgvA7OstbOB7cA3u23baa2dG/u5dYDnEREZMuFYF8GklON3EUwtiiYBDQe2D3pMo1Fncy0Aqb0kWPnF5QSsUy1YIiIy4gwowbLWvmStDcVW3wHKBh6SiEhi2dggFyne47dg5ZRG58LyHVIScCoi7dEEq7dnsMbmpXPA5mEbKoc4KhERkYGJ5zNYK4Hnu62XG2M+MMb82RizLI7nEREZVDbox2c9pHhdx90vt2QCIesgoiTglJiOuuhCas8EKyvFTZUpxNu2b4ijEhERGZjjf3oAjDF/Aop62fQta+1zsX2+BYSAR2LbqoCx1tp6Y8x84FljzExrbUsv9d8C3AIwduzYU3sVIiLxFPLhx0OW8/jfQTncHqod+Xha9g5RYKOLw9cYXUjO6bHNGENjUgkV/reGOCoREZGBOWGCZa294HjbjTErgMuAT1hrbeyYTqAztrzOGLMTmAKs7aX+XwC/AFiwYIE9yfhFROIv6COAB2PMCXdtTCoh3aehxE+Fp7OBdkc6qc7e/xR1ppWR3tAC/hbwZgxxdCIiIqdmoKMIXgL8M3C5tbajW3m+McYZW54ATAZ2DeRcIiJDxRHy0WmS+rWvL3UMBaFqYt8vyUlIC9TQ6uk5RPthNmt89Hdj5dAEJCIiEgcDfQbrHiAdePmY4djPAT4yxqwHngZutdY2DPBcIiJDwhNsoc1x/BEED4tkjSPXNNPc3DS4QY0yHYEQuZF6OpN7jiB4mLdgAgDNVRqqXURERo4TdhE8HmvtpD7KnwGeGUjdIiKJ4g210tjPBCspfwLshEN7t5OVtXiQIxs9Djb5KTIN+NLn9blPRvFkAFqrdpA1RHGJiIgMVDxHERQRGRW84VYC7v4985NREk0CWg5+PJghjTrVjS3k04wrq6TPfYqLimmxyQTq1MNcRERGDiVYIiLHSI60EfT0L8HKHzsNgM5aJQEno/HQfhzGkpzb9+ixZTkp7LMFOJo0SqOIiIwcSrBERLqzlnTbRtiT2a/d0zLzaCUFR1Pl4MY1yvhqKwHIKOw7wfK6nRxyFpPSrrmwRERk5FCCJSLSjQ204SIM3qz+HWAMNa5ikpUEnBTTsBMAd8GU4+7XklxGdqAKIpGhCEtERGTAlGCJiHTjb40OeOpIyer3Ma3eUrI7Dw5SRKOTu2kXIZyQefwJ5oMZY/EQhLbqIYpMRERkYJRgiYh009ZUB4AzJbvfxwTTx1IUOUQoFBqssEadtPa9NHhKoY9Jhg9z5JQDEKzdORRhiYiIDJgSLBGRbg4nWElp/U+wHLnj8Zoghw5qMIb+aGgPMDayD1/G+BPum1w4EYBmjdIoIiIjhBIsEZFuOhqiXf1S80r7fUxyYXRKwPr92wclptFm+75qJpqD2KLZJ9w3r2QCYWtoP6QWLBERGRmUYImIdBNo2A9AVuH4fh+TUxYdqKG9esdghDTqHNz2Lk5jyZu85IT7luVnUUUukYbdQxCZiIjIwCnBEhHpruUA7TaJvNz8fh+SXzaJiDWE65UE9Ed4z7sApE1YeMJ9CzO87LOFuFvU/VJEREYGJVgiIt242quoMbl43M5+H+N0J1HjyMPdsmcQIxsdQuEIxQ1rqEkaB+lFJ9zf6TA0eIrJ8O0fguhEREQGTgmWiEg3Xt8hmt39b706rMFToiSgH9bvrma+3Ux72Tn9PqY9dQwZ4UYItA9iZCIiIvGhBEtEpJvsQDX+5OKTPs6fUkJ2qGYQIhpddq1+imQToHDhVf0+JpI5LrrQqBZCEREZ/pRgiYjE+FsbyKORYPakkz7WZpSSZxtp6fANQmSjQ6s/SFnl0zS68kiZcl6/j3PnR4dq76jRICIiIjL8KcESEYmp3fURAO6i6Sd9rCe7DJeJcOiABmPoy4t/eoGz+Aj/3JXg6P8zbulF0YS35aASLBERGf6UYImIxNTtjiZY2eNPPD/Tsbx5YwFoqamMZ0ijRm2Ljwlr/z9aHJkUf+LLJ3VscVEJ7TYJf23l4AQnIiISRwNKsIwxdxljDhhj1sd+/qrbtm8aY3YYY7YZYy4eeKgiIoMrePBD2m0SEyadfAtWRmzeLH+dWrCOFY5Y/vLAP3EGW/GdeyckZ53U8WNyUzhg86B53+AEKCIiEkfxaMH6T2vt3NjPHwGMMTOAG4CZwCXAT40x/e8PIiKSALkNH7LLMxW3233Sx+YUlwMQbDwQ77BGtHDE8rv7v8OVzQ+zs+RyCs/5wknXkZnsptoUkNSmURpFRGT4G6wuglcAj1trO621u4EdwKJBOpeIyIAFfG2MDe6iKWfuKR3vTs3GRxLOViVYhx2oqeOV/7iJK6v+m53Zy5j4hV+CMSddjzGG5qQi0jurBiFKERGR+IpHgvUVY8xHxphfGmOyY2WlQPe+HPtjZT0YY24xxqw1xqytra2NQzgiIidv57vP4zZhUqb0f36moxhDvSOfJF91fAMbgTqDQV7/7f2E7z2Li9p/x7byzzPxK8+C8+RbBrvqTC0lLdIKna3xC1RERGQQuE60gzHmT0BRL5u+BfwM+B5gY7//A1h5MgFYa38B/AJgwYIF9mSOFRGJF/+mP9JmvUxZ/MlTrqPFU0B656E4RjWytLW1sO4PD1C09VecZ3ez3z2Wmk89xdQ5Fw247kjmGGgEmvZB4YyBBzvCWWtp7QzRGYxgseSkeHA5NW6ViMhwcMIEy1p7QX8qMsbcD/w+tnoAGNNtc1msTERk2LGRCKW1f2ZT8nwWp6Wdcj3+lCJKGtbEMbLhLxyOsOHdV2l+73Hm1P+Rc007+11j2b7wh0y+4AsY5wn/zPSLJ3ccVEJ7zS5ST6MEy1rLgbomdm5eR2vlBzgad+JtryIjUE2GbcVFmE7cbCeDA65xtBfMJ7PiEi6aP5V076m3GIqIyKkb0F8+Y0yxtfZwp/irgI2x5VXAo8aYHwMlwGTg3YGcS0RksGz/6G2m2np2TR7YgKfhtBLy6xvwd3biTUqKU3TDj42EqVz/GvXvPklZ9SvMpY4gTrZknUvtWbcwedElp/Ss1fGkF04AoKV6F6kVca16WPEHw2zZsomGLX/Gtf8dils3UG73U2bCAIRw0ujKpyO9kEhyCTg9pEY6yeqoZWH7qyRV/xFf1Q946aUlNJzxVa675HxSk+KT5IqISP8M9F33h8aYuUS7CFYCfwtgrd1kjHkS2AyEgC9ba8MDPJeIyKCofftRJloHM8799IDqcWaV4txrOVi1lzHjJ8cpuuEhEgqyY91LtK57hvE1r1JOIyXWzeaU+VTN+Eemn3s9szNyB+38eUVj6LRuOuv2DNo5EiEUCrNt60fUfPgyrv3vMKHjQ+aZOgDaSWZf6iy2FlxAZvkZFE9bhDtvIvl9TdIcDmEPvk/7X37Fxduewfn+DTy34ZNMvOHfmDdp7BC+qpPn9/s5dHAPTXVVdHa0EuhoIxT0Yx1uIg4PTm8q3pxS0nNLKc3LJCvFk+iQRUT6NKAEy1p703G2fR/4/kDqFxEZbMFgkCmH/siWtEVU5JUMqC5vbrRndPOhPaMiwQoHA2x75w90rP8NE+tfZwot+KyHjSmL2Tb1MqYuu5Z5uXlDEktZTioHbC6maeQnWPuqDvHxmj/g2Pkqk1rWMNPUMBNoMFlU58yjbfxSiiqWkzl+HtP6SqZ643Rhxiwi74ZF0PYdDj13J1d//Dj7Hn6Xxyq+z6evujahz2mFOjuo2r2J+t0b8FdtxdX4MZkde8kO15FjmxlnLOP6UU+tzeA9M5balEmEC2aQM2khk2ctpCArfdBfw8kIBjppa2mkrbWZjvZWfO1t2GAHNhImbA1ha8AYXO4k3CkZeFKy8KRmkpGeQXaqnqkTGcnUb0BETmsbV69iHg1Uzf7rAdeVlh/9eNgxgicbDgX8fPzW7+j48DdManyDGbTRbr1sSj8TO/1TTDv7GhZmZg15XDmpHraafMa3jbzHeYOhMJvXv03j+lXkVL3J9NA2xpgwHXipzFzAhvJbKJt/KTljppMTr66VaQUUfvY+Oj7+a9Kf/CLXbbiF3+1+mbO+8P8oyMmMzzmOw4aDVO/4kENb/0Jk3zqymzYwJljJGBNhDBCxhmpHPnVJY2nMnM6u9GLcWSUkZxWSlJpJcmoGniQvhAPYUIBARwudjQcJNh0g0riXwqbtVHQ8j7fyWaiEzpfdbHaOpyFzJo7SeRRPP5NxU8/A4Yr/c2iRzg4aavbSfGg/bfX76Ww8SLilGmf7IZL8taQF68kKN5BNK9nGkn3iKo8Ssg5aSKHZZNDuzMTnyiKQlA3JubjS8/Bm5pOSXUR2XhHZecU403IhKSPu3XJF5NQpwRKR01ro/UdoJpXp51434LpySg5PNjyyJsQNBvxse2sVnR/+hsmNbzCddlpsClsyluKYeRUzz7mCRSmnPvhHPBhjaPYUk+5/L6Fx9Fe7r5MP3nqBzg2rmNr0BnOoAWCXezKbyj9P4bxLKZ55DjNcg9vVLWXyOaR8bS27H/l7rtz7JNt/soaDl97L3IXL4ncSa2k9tJP9G1bTsXsNafUfMbbzY4rppBhosqnsTprG/uJzcJfMJGfcLMomzaIkNYMBtRlHwgRqd3Bg89u07lpLUu1HzG18kbTGZ2Ej+HGzzzOJxswZ2KIK0vPHkJ5bSmZuMWmpKThcHnC4INRJsLONTl87ne3NdDRU095YTbC5mkhbLY6OWjy+WlIDdWSG60mngzyge9tt0DppMFm0uHJpSy6hMXkuO1LyITkblzcNT3IaHm8qxpOMw+nCAThMBGMtoWAnIV8rEV8zEX9L9KejEYe/EXdnI/nBatJat5LR3ILnUO9PW/hMMo03/J6SqQsG8i8qInGiBEtETlstzQ3ManmTDfmXssibPOD60jLz8FkPpuVgHKIbXKFAJ1v+sorOD59mStObzDqcVGUuw1VxFTOWXsHilJREh3kUX0oJGc2NEPSBe+DXK97aOnxsePNZIhufZXrLXzjbtNKJm13pC9g45TbKl17DhJyBdUM9JUnplK/8JQfWXEbeC3eQ8fvLWfPO5Uy//vtkFJSddHW2rYbabWuo3/42joPvU9i2iSzbwnSg07rZ6ZrIutzLMWXzKZh2FuMnz2Ke6yS6OvaXw4mncCrlhVNh+YpobJEwB3Zt5MCmtwnse5+spo3MrPkDqbXPHLcqd+wnDej+JGGb9dJAJs3OHBo949iVsZBIaiGuzGK8OSWk55WRUziGnPxiCp1OCuP/KrvYSITm5iZqaw7QWFdFW0MNvuYaQi01XHroPva++YgSLJFhQgmWiJy2tr7yMItMgMwlfT5OenKMod6Zh7u96sT7JoK17N70NrVvPsikQy9QQQstNoWtmctwzr6amUsvZ3Hy8EqqugtnjoFmonNh5U9JdDgA+ANB1v3lRYIfPMHs5tc407TSSgq7cs6mfvblTFhyBdOTMxIdJgCli6+mfcpSPnj0G5xR8xzc+zu25JxD2tyrKZ21DEf2OHB0e+7H34xt2EXD/u007dmIqV5PVtMWcsK1FAB51rCDMj5MO5Nw0Tyyp5zJpFmLmJGauP9DxuGkdNIcSifN6SqLhEIc3LeDuuq9+BqrCLTUEgz4IRzEhoNEXMkYdzIOTwoObxqejELScorJyi8mNzubscNkFEbjcJCZnUNmdg5MPXoozc3ff5OCg69gIxGMQ89uiSTa8HjXEBFJgNStT7HXlDDljOVxq7PFXUBqZ03c6ouHuuq97HzlQQp2/YbycCWl1snG1LOonHsDM5ZdzaJhnFR1584ZB3vBX1eJN4EJlrWWrVs2UPPn+5l06HmWUosfDztyllE393omnXkFczzehMV3PKnZhSz88oPs2Poh+178H2Y3vEjua6/BaxDGgc+RisNG8Fg/LsIYoi062daw2xaxzj2d9oJPkzJ+AeNmnsmkMcVMcQzvZ38cLhcl5dMoKZ+W6FAGjX/KFczY9H02r32NGYs+kehwRE57SrBE5LRUvWcbMwMbeGvc3zE2jt/4dqYUUtj4ftzqO1U2Embz6lUE1txPRdvbLDYRtrmm8va0bzLtghWckVeU6BBPWmpsLqzm6p14pw/9+Wua2/jgT0+Ss+Vh5gc/YAqwLW0hbbP/mUnn3MCsYdJS1R+Tps1h0rT/pba5nVfef4vmHWswLQdwB5oJ4yDkTMYkZxHMGEdq8RRKJ0xn8phiJg6T1hw52rRLvkjrxh/T8eY9oARLJOH0Tikip6W9rz1IETDuvJvjWm8krZj8hgb8gSBeT/xHMDuRloYatjx/H6U7HmWmraKBDN4t+SzF536BqdPmDXk88ZRbNI6gdeKvqRyyc1prWbdxK1Wv/ZwF9c9xsWmg3pHLpsm3Mv6iv2NGQX8GFh++8jNT+cTyC2H5hYkORQYgJT2bd4uvYF7VU+zZuZVxE0dva53ISKAE6zg62pqx1pKanpXoUEQknqyldO+zbHDPpqJ8alyrdmaV4t4X5uDBfYwbPyGudR/PzvVv0PjnnzKr4U8sNkE2u2fybsXtzL7wc5w1QroAnsiY3DSqbQ6RpsEfBr/VF+DtV36Ld/1DnBlcwwITZlfmIqrOuoXihVeS6xz65FnkeCZd/nUiP3+GQ6u+w7g7nkh0OCKnNSVYx7HxxQeZ99HdbPFMoyF/Ecnj5jNm5pnkl07UfBMiI9ieLWsZF6li77Qvxr3u5NyxADRWVw56gtXpa2XTiw+SsfHXTAp9TLv18kHuX5F33peYMXvJoJ47EfLSkniXfMpa9w3aOXbs2cv2F3/O9APPcJGposVksHPiTZRf/BUmFI78yaNl9MopmcA7xdexqOpRPv7wbSbPOTPRIYmctpRgHUfe1DN5r+6z5NW+w5IDD+E8+CC8DY2ks88zifb08ZicCaQUTSa1eDLZhePJysrBMUJmX7fWEg5HCIZCBAJ+QsEAoYCfUCBIMNhJONhJKBQgHOwkHAwSDnYSCQUgEoRwEMIBiIQgEsJGIlgbwVqLtRYOL0div7GYSASwgMVgwYIhWmasjW07WT0TXdtr8tt7Qmx62ddieux9pM5jtpieNdtYyVHlR52nj+Tc9Nx+eMkec0y0ur6S/F7Ke3udh8u6/tmjC7bbZTj2inRft71eLttblbH97bFFPerttU57+FfPjcc7rvfwoqXJVe8wDphw1pW97TUgmcXRpKqjZhdwftzrB6jauYH9L9/L1OpVnEE7ux1jeWvqN5l5yS2cmZ0zKOccDhwOQ6OnmBm+96PXMk5fdAVDYdasfpHQmgdY0vFnJpkgu1NmsWfRPzPu7L8mwz08B6wQOdaM6+6i6Se/w7Hqy4Smv4VrmA62MpQi4TB+Xxudvg4CvjYC/naC/g6CnR2EOtsJd3ZEf0IBwqHoyJJEwthw9PONiUTXD3/eMZEQ2BDWQiT2N8Uc8xfn6L/4tmd514IDS/StLPp3PrbBRJcP/623xhz5ZNH988jhctP3sV3791J+uE5rTLfPQ44jywYMjljVR5+v63PJUZ9Hupcficl2rYO1R2I6+jV3/6zT873d7y1g/KJLGZMzMnpkKME6jgmzFjNh1mIA/B2tfLz5PRp2vIf70IfktG6nvP5F0us74OMjx3RaN40mkxZXDj5XJmFXMmFXCtadinWnYF0pWKcLY5zR4XCNA+NwYowDMFgbhnAIG7uRCUdvZMIhjA1BJBy72UM4wgGMjd78JhLCGQnisEEckRAOG8Jpg7hsCKcN4SSEy4Zwdf9NmCQTwgUMvxllRAbXTvdkJpZNjHu9OWNnELEGW7MtrvWGQ0E2vfYYznUPMtP/PnnWyfq0ZSSd+bfMOvMSykfIFzsD1Zw5jYz6V6C1GjKKB1TXodo6Nrzwv4zZ+Thns5sOvOwsvZKyC79MefnIfl5NTk8ZOQW8t+T7LHznq6z55R0svvVniQ5pwGwkQmtrE6311bQ1VOFvriHQWkeovYmIrxlHZzOOQCuuYBtJoVaSwm0kR9pJse2kWh9JJkgKEK+P5QHrJIyzxxefPeI+ZnvP/W1X8hVNM44ka+Yk9nGYU/lyeuR5PTyHD0uWKsEabbwp6UxbcD4sOPKNtI1EqK8/RE3lZjprdhJsOkikrQZHRy1J/gZSQk14AtV4Ij6S8ZNsO0kywZM+d8g6COMkhIMwLkLGQQh3tMy4CRsnYeMmbFxEjIuwcRF0ptJpXFiHm0jsxzrc4HBhnR5wuMHpjv52eTBO95Eflwfj8uBweXA43ThcSTjcHpyu6LJxRY81zug+xuEE48DpcGBM9JsPpzO67HAYHN3Kj3ybYsA4ui3H3jq6fwtzlJ5vIOZ4zR3dS3pvasHaSG+FfbaT9KzG9mxVsV3NLUfi7C26Yyo7smq77Wt7lHXt28trsvT8Fg2i/097lFl71Jf/xhiwtutbq6MbBnqWHfstXPc2v2O/f+reSthLI92RY7t/6dWPOkwv5+6lgbHP4yakFzAYPMlpVDnycTd9fOKd+6HuYCU7XvgpE/Y+zWzqqSaPN8fcyuRLvsTC0pE9wMKpcJfNg3ro2LuOlFmXnfTxoVCY9995Fd+aXzK/5VUuMH72uiewdc7dTP7EzcwcQSMBivRm4SWf452PX2VJ9aO892gxC//6zkSH1CsbCtBad4DG6kraavcQqN9HpOUgpqMOl7+B5GAjGeEmsmwLGSZIX3dmG8m0k4LPkYrfmYbPk0OLexxhdzoRTzrWnYxxecGdgsOTjPGk4PQk40hKweVJweVNxe1NwePx4nG7cbrdOJwuXK4kjNOFy+XG4XbjcnlwOBx4EvSISLSHUKwfkLXR/j829knk8EePiMUSiZZbG+1ZFCsn1psouo/t6nEU7WUUOdzBqKvX0bH7YQ+fJ4KNHP4McVQ3lSPr9khieFR59ASxv9v2mC4zR/Yx0X5PR73+SS4v2YWD83d7MCjBGgDjcJCbX0xufjFw4mFRrbUEQ8FoE3QkQjgSJhwOY8NhIpEwkUgkeiO7oje0y+WJ/nY6cAFJg/6KRCQe6pPHk9NRecrHhwJ+tq7+DcF1j1DR9hZLTISPkhaw74zvMfv8T1Pk9sQv2BGmYMpCwusN9VtXn1SCdaC6mq0vPkBZ5VMssrvxkcTHBReSf+4tjJ15jp6rlVHljL+9n/f/q46F2/+DdT/bS8WK/8KTnDZk548E/DTW7KWpupL22r0EG/djWw7gaa8mxX+IrFAt2ZFGMow9KnHyWQ8NJot2ZxYdnjyavVOo9OZCah7OtDzcGQV4MwtJyy4kLTuPjIxs0pwuhu6VJY4xptvblN6vhjvT17f7ibBgwQK7du3aRIchIjIg7z1wO3P3/pr22z8mKzu3X8fYSISdH62m4a1fM7nmRbJpoZ5MPi66jLILvkTZpFmDHPXI0OoPsvnfllGe7KfgG+uPu29TSwsbXn8G9+ZnmOt7B68Jssc9kbZZNzLlgptxp2YPTdAiCRAIBFjz8y+zrP5Jqk0Be6Z/kYpLvkBKRv/ek/oS9LXQULWH5kN7aK/fR7DxAKblIJ6OatI6a8gO1ZBDc4/jWm0ydY48mt35dHgLCaUWYzJL8eSUkVYwjqyi8eTnFuBxOwcUn8hQMsass9YuOLZcLVgiInGWPvMi3PseZNd7z3PGRTf2uZ+NhNm5/g0a1j5DSfUrTIocpNO6+ShtKWbuZ6g49yqWeNR23V26182u/AtYXPc/+Ha8SfKkZUdtr2uoZ9vbf8Bu+T2zW99kmemg0WSytfhKis9bybipZ6q1Sk4LHo+HZV+9n/ffuJz0P3+XxZu/T2jTv7E1aTptOTMhZyJJGfngzYw+AmDDBIIBgv426Ggi4msk0t6Aw99Asr+GjEAtOZF60uigECjsdq4mm0q9M48WdwE1aVMJpxXjyCwlKWcM6QXjyC4eT25OHukO3XtyehhQC5Yx5gng8CQyWUCTtXauMWY8sAU4/JT3O9baW09Un1qwRGQ0CHT68f3bRPYkz2D2118+altzfTW73n2e4I7XKK9/k3waCFonm71z6Zh0KdPP/xxZufkJinxkWLfjAEUPL8PrclA376u048V3cAtpte8zLbCJJBOijRR25p5HxsK/ZvzCSzCat0pOYzYSYcu616hb9xwFde9QFtxDmvGf8Dif9dBi0mly5dLmKcDvLcCmF+PKKsWbU0ZG4Vhyi8aTkZnV66i8IqNdXy1YcesiaIz5D6DZWnt3LMH6vbX2pPq0KMESkdHirV/fyVm7/puPMs4lmDURWg6Q07qNcaE9OIyl3XrZkrqQ0JRLmbrsWrKVVJ2UZ59/njPeuY2xpgaAsDXsd42lvugcsudeyri55+Nwq/VPpDehUJi6QwdobqzB+poIhUJEcJDk8ZCUkoYnPZeUjFwy09OVOIkcx6AmWCZ69+0FzrfWfqwES0ROd6FgkL/cfwdzDv2GdDqoN9lUJZXTUbiQ7FkXMHHuObjV/W9Amtp87KvcRrIJMXbiDDzekTF8r4iIjA6DnWCdA/z48AliCdYmYDvQAvyrtfbNE9WjBEtERptgOEIwHCHFo0deRURERpNTHuTCGPMnoKiXTd+y1j4XW/4M8Fi3bVXAWGttvTFmPvCsMWamtball/pvAW4BGDt27IlfiYjICOJ2OnCfJpMAi4iISD8SLGvtBcfbboxxAVcD87sd0wl0xpbXGWN2AlOAHs1T1tpfAL+AaAvWyQQvIiIiIiIynMTja9ULgK3W2v2HC4wx+cYYZ2x5AjAZ2BWHc4mIiIiIiAxb8Xgo4AaO7h4IcA5wtzEmCESAW621DXE4l4iIiIiIyLAVt2Ha48EYUwvsSXQcx8gD6hIdhAwZXe/Th6716UPX+vSi63360LU+vQzH6z3OWttjnpVhlWANR8aYtb2NDiKjk6736UPX+vSha3160fU+fehan15G0vXW0FYiIiIiIiJxogRLREREREQkTpRgndgvEh2ADCld79OHrvXpQ9f69KLrffrQtT69jJjrrWewRERERERE4kQtWCIiIiIiInGiBEtERERERCROlGAdhzHmEmPMNmPMDmPMNxIdj8SPMWaMMeY1Y8xmY8wmY8zfx8pzjDEvG2M+jv3OTnSsEh/GGKcx5gNjzO9j6+XGmDWx+/sJY4wn0TFKfBhjsowxTxtjthpjthhjztS9PToZY+6IvYdvNMY8Zozx6t4ePYwxvzTG1BhjNnYr6/VeNlE/iV33j4wxZyQucjlZfVzrH8Xexz8yxvzWGJPVbds3Y9d6mzHm4oQEfRxKsPpgjHEC9wKfBGYAnzHGzEhsVBJHIeAfrbUzgCXAl2PX9xvAK9baycArsXUZHf4e2NJt/QfAf1prJwGNwBcSEpUMhv8GXrDWTgPmEL3uurdHGWNMKXAbsMBaOwtwAjege3s0eQi45Jiyvu7lTwKTYz+3AD8bohglPh6i57V+GZhlrZ0NbAe+CRD7vHYDMDN2zE9jn9uHDSVYfVsE7LDW7rLWBoDHgSsSHJPEibW2ylr7fmy5legHsFKi1/hXsd1+BVyZkAAlrowxZcClwP/G1g1wPvB0bBdd61HCGJMJnAM8AGCtDVhrm9C9PVq5gGRjjAtIAarQvT1qWGvfABqOKe7rXr4C+LWNegfIMsYUD0mgMmC9XWtr7UvW2lBs9R2gLLZ8BfC4tbbTWrsb2EH0c/uwoQSrb6XAvm7r+2NlMsoYY8YD84A1QKG1tiq2qRooTFRcElf/BfwzEImt5wJN3d64dX+PHuVALfBgrEvo/xpjUtG9PepYaw8A/w/YSzSxagbWoXt7tOvrXtbnttFtJfB8bHnYX2slWHJaM8akAc8At1trW7pvs9E5DDSPwQhnjLkMqLHWrkt0LDIkXMAZwM+stfOAdo7pDqh7e3SIPXtzBdGkugRIpWcXIxnFdC+fHowx3yL6aMcjiY6lv5Rg9e0AMKbbelmsTEYJY4ybaHL1iLX2N7HiQ4e7FMR+1yQqPombpcDlxphKol19zyf6jE5WrFsR6P4eTfYD+621a2LrTxNNuHRvjz4XALuttbXW2iDwG6L3u+7t0a2ve1mf20YhY8wK4DLgs/bI5L3D/lorwerbe8Dk2GhEHqIP061KcEwSJ7FncB4Atlhrf9xt0yrg87HlzwPPDXVsEl/W2m9aa8usteOJ3sevWms/C7wGXBvbTdd6lLDWVgP7jDFTY0WfADaje3s02gssMcakxN7TD19r3dujW1/38irgc7HRBJcAzd26EsoIZIy5hGj3/suttR3dNq0CbjDGJBljyokObPJuImLsizmSDMqxjDF/RfTZDSfwS2vt9xMbkcSLMeZs4E1gA0eey/kXos9hPQmMBfYA11lrj33AVkYoY8x5wNestZcZYyYQbdHKAT4AbrTWdiYwPIkTY8xcogOaeIBdwM1Ev1DUvT3KGGO+C1xPtPvQB8DfEH0WQ/f2KGCMeQw4D8gDDgHfAZ6ll3s5lmTfQ7SbaAdws7V2bQLCllPQx7X+JpAE1Md2e8dae2ts/28RfS4rRPQxj+ePrTORlGCJiIiIiIjEiboIioiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInHy/wP4Y58hUjZkcQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
replace_axonparam_ignabar_hh.somaticgkbar_hh.somaticprotocolresidual_rel_l1_normresidual_rel_l1_error
57True90.1250.0545bAP.soma.v0.001751.32e-06
58True90.1250.0545Step1.soma.v0.002024.4e-06
59True90.1250.0545Step3.soma.v0.00816.47e-06
\n", + "
" + ], + "text/plain": [ + " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", + "57 True 9 0.125 0.0545 bAP.soma.v \n", + "58 True 9 0.125 0.0545 Step1.soma.v \n", + "59 True 9 0.125 0.0545 Step3.soma.v \n", + "\n", + " residual_rel_l1_norm residual_rel_l1_error \n", + "57 0.00175 1.32e-06 \n", + "58 0.00202 4.4e-06 \n", + "59 0.0081 6.47e-06 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_fine_dt:\n", " for param_i in range(len(params)):\n", @@ -992,9 +5329,216 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
replace_axonprotocolgnabar_hh.somaticgkbar_hh.somaticefel
FalsebAP0.09690.0153Spikecount6600
time_to_first_spike-34.4-34.40-0
time_to_second_spike-12.4-12.40-0
time_to_last_spike67.8680.20.295
Step10.09690.0153Spikecount8800
...........................
TrueStep10.1250.0545time_to_last_spike2.62.600
Step30.1250.0545Spikecount2200
time_to_first_spike1.71.700
time_to_second_spike16.416.400
time_to_last_spike16.416.400
\n", + "

205 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 6 \n", + " time_to_first_spike -34.4 \n", + " time_to_second_spike -12.4 \n", + " time_to_last_spike 67.8 \n", + " Step1 0.0969 0.0153 Spikecount 8 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 2.6 \n", + " Step3 0.125 0.0545 Spikecount 2 \n", + " time_to_first_spike 1.7 \n", + " time_to_second_spike 16.4 \n", + " time_to_last_spike 16.4 \n", + "\n", + " Arbor \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 6 \n", + " time_to_first_spike -34.4 \n", + " time_to_second_spike -12.4 \n", + " time_to_last_spike 68 \n", + " Step1 0.0969 0.0153 Spikecount 8 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 2.6 \n", + " Step3 0.125 0.0545 Spikecount 2 \n", + " time_to_first_spike 1.7 \n", + " time_to_second_spike 16.4 \n", + " time_to_last_spike 16.4 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_second_spike 0 \n", + " time_to_last_spike 0.2 \n", + " Step1 0.0969 0.0153 Spikecount 0 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 0 \n", + " Step3 0.125 0.0545 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_second_spike 0 \n", + " time_to_last_spike 0 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 Spikecount 0 \n", + " time_to_first_spike -0 \n", + " time_to_second_spike -0 \n", + " time_to_last_spike 0.295 \n", + " Step1 0.0969 0.0153 Spikecount 0 \n", + "... ... \n", + "True Step1 0.125 0.0545 time_to_last_spike 0 \n", + " Step3 0.125 0.0545 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_second_spike 0 \n", + " time_to_last_spike 0 \n", + "\n", + "[205 rows x 4 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis and run_fine_dt:\n", " spike_results_fine_dt = joint_spike_analysis(arb_responses_fine_dt, nrn_responses_fine_dt, replace_axon, params)\n", @@ -1003,9 +5547,187 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
abs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount600000000600000000
time_to_first_spike600.0050.02200000.1600.2190.97-0-0005
time_to_last_spike600.0150.040400000.2600.03560.10800000.667
time_to_second_spike250.0120.033200000.1250.09260.259-00000.917
\n", + "
" + ], + "text/plain": [ + " abs_diff Arbor to Neuron \\\n", + " count mean std min 25% 50% 75% \n", + "efel \n", + "Spikecount 60 0 0 0 0 0 0 \n", + "time_to_first_spike 60 0.005 0.022 0 0 0 0 \n", + "time_to_last_spike 60 0.015 0.0404 0 0 0 0 \n", + "time_to_second_spike 25 0.012 0.0332 0 0 0 0 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + " max count mean std min \n", + "efel \n", + "Spikecount 0 60 0 0 0 \n", + "time_to_first_spike 0.1 60 0.219 0.97 -0 \n", + "time_to_last_spike 0.2 60 0.0356 0.108 0 \n", + "time_to_second_spike 0.1 25 0.0926 0.259 -0 \n", + "\n", + " \n", + " 25% 50% 75% max \n", + "efel \n", + "Spikecount 0 0 0 0 \n", + "time_to_first_spike -0 0 0 5 \n", + "time_to_last_spike 0 0 0 0.667 \n", + "time_to_second_spike 0 0 0 0.917 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis and run_fine_dt:\n", " display(spike_results_fine_dt[['abs_diff Arbor to Neuron',\n", @@ -1021,9 +5743,144 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NeuronArborabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
replace_axonprotocolgnabar_hh.somaticgkbar_hh.somaticefel
FalsebAP0.09690.0153time_to_last_spike67.8680.20.295
Step30.1250.0545time_to_last_spike1515.10.10.667
0.070.0122time_to_last_spike50.750.80.10.197
0.05080.0136time_to_last_spike45.745.80.10.219
TrueStep10.05370.0124time_to_last_spike5252.10.10.192
\n", + "
" + ], + "text/plain": [ + " Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 time_to_last_spike 67.8 \n", + " Step3 0.125 0.0545 time_to_last_spike 15 \n", + " 0.07 0.0122 time_to_last_spike 50.7 \n", + " 0.0508 0.0136 time_to_last_spike 45.7 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 52 \n", + "\n", + " Arbor \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 time_to_last_spike 68 \n", + " Step3 0.125 0.0545 time_to_last_spike 15.1 \n", + " 0.07 0.0122 time_to_last_spike 50.8 \n", + " 0.0508 0.0136 time_to_last_spike 45.8 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 52.1 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 time_to_last_spike 0.2 \n", + " Step3 0.125 0.0545 time_to_last_spike 0.1 \n", + " 0.07 0.0122 time_to_last_spike 0.1 \n", + " 0.0508 0.0136 time_to_last_spike 0.1 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 0.1 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.0969 0.0153 time_to_last_spike 0.295 \n", + " Step3 0.125 0.0545 time_to_last_spike 0.667 \n", + " 0.07 0.0122 time_to_last_spike 0.197 \n", + " 0.0508 0.0136 time_to_last_spike 0.219 \n", + "True Step1 0.0537 0.0124 time_to_last_spike 0.192 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis and run_fine_dt:\n", " display(spike_results_fine_dt[ [el[spike_results_fine_dt.index.names.index('efel')] == 'time_to_last_spike'\n", @@ -1031,17 +5888,6 @@ " by='abs_diff Arbor to Neuron', ascending=False).head(5))" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if run_spike_time_analysis and run_fine_dt:\n", - " display(spike_results_fine_dt[['abs_diff eFEL to Arbor-internal',\n", - " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe())" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1051,9 +5897,71 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt
efel
Spikecount0
time_to_first_spike0.0857
time_to_last_spike0.0462
time_to_second_spike0.103
\n", + "
" + ], + "text/plain": [ + " ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt\n", + "efel \n", + "Spikecount 0 \n", + "time_to_first_spike 0.0857 \n", + "time_to_last_spike 0.0462 \n", + "time_to_second_spike 0.103 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "if run_spike_time_analysis and run_fine_dt:\n", " display((spike_results_fine_dt[['abs_diff Arbor to Neuron']].groupby('efel').mean()/\n", @@ -1061,6 +5969,13 @@ " columns={'abs_diff Arbor to Neuron': \n", " 'ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt'}))\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/examples/simplecell/.gitignore b/examples/simplecell/.gitignore index 19c36437..e52cdc36 100644 --- a/examples/simplecell/.gitignore +++ b/examples/simplecell/.gitignore @@ -1,2 +1,3 @@ /.ipynb_checkpoints/ /simplecell.py +/simplecell_arbor.py diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index ea12c803..e13ff707 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -1,22 +1,19 @@ #!/usr/bin/env python -'''Example for generating a mixed JSON/ACC Arbor cable cell description +'''Example for generating a mixed JSON/ACC Arbor cable cell description (with optional axon-replacement) $ python generate_acc.py --output-dir test_acc/ --replace-axon Will save 'simple_cell.json', 'simple_cell_label_dict.acc' and 'simple_cell_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: - 'with open("test_acc/simple_cell_cell.json") as cell_json_file: - cell_json = json.load(cell_json_file) - morpho = arbor.load_swc_arbor("test_acc/" + cell_json["morphology"]["path"]) - labels = arbor.load_component("test_acc/" + cell_json["label_dict"]).component - decor = arbor.load_component("test_acc/" + cell_json["decor"]).component' - An implementation with axon-replacement is available in ephys.create_acc.read_acc. + 'cell_json, morpho, labels, decor = \ + ephys.create_acc.read_acc("test_acc/simple_cell_cell.json")' An Arbor cable cell is then created with - cell = arbor.cable_cell(morpho, labels, decor) + 'cell = arbor.cable_cell(morpho, labels, decor)' The resulting cable cell can be output to ACC for visual inspection - in the Arbor GUI (File > Cable cell > Load) using - arbor.write_component(cell, "simple_cell.acc") + and e.g. validating/deriving custom Arbor locset/region/iexpr + expressions in the Arbor GUI (File > Cable cell > Load) using + 'arbor.write_component(cell, "simple_cell_cable_cell.acc")' ''' import argparse diff --git a/examples/simplecell/simplecell_arbor.ipynb b/examples/simplecell/simplecell_arbor.ipynb index 86529064..922fdef8 100644 --- a/examples/simplecell/simplecell_arbor.ipynb +++ b/examples/simplecell/simplecell_arbor.ipynb @@ -8,9 +8,10 @@ } }, "source": [ - "# Simulating optimized cells in Arbor and cross-validation with Neuron\n", + "# Creating a simple cell optimisation\n", "\n", - "This notebook demonstrates how to run a simulation of a simple single compartmental cell with fixed/optimized parameters in Arbor. We follow the standard BluePyOpt flow of setting up an electrophysiological experiment and export the cell model to a mixed JSON/ACC-format. We then cross-validate voltage traces obtained with Arbor with those from a Neuron simulation." + "This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised.\n", + "As this optimisation is for example purpose only, no real experimental data is used in this notebook." ] }, { @@ -29,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "pycharm": { "name": "#%%\n" @@ -56,12 +57,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" - }, - "tags": [] + } }, "outputs": [], "source": [ @@ -69,17 +69,64 @@ "import bluepyopt.ephys as ephys" ] }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "If you want to see a lot of information about the internals, \n", + "the verbose level can be set to 'debug' by commenting out\n", + "the following lines" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# import logging\n", + "# logger = logging.getLogger()\n", + "# logger.setLevel(logging.DEBUG)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "Setting up a cell template\n", + "-------------------------\n", + "First a template that will describe the cell has to be defined. A template consists of:\n", + "* a morphology\n", + "* model mechanisms\n", + "* model parameters\n", + "\n", + "### Creating a morphology\n", + "A morphology can be loaded from a file (SWC or ASC)." + ] + }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ - "import os\n", - "import tempfile\n", - "import numpy\n", - "import pandas\n", - "import arbor" + "morph = ephys.morphologies.NrnFileMorphology('simple.swc')" ] }, { @@ -90,9 +137,7 @@ } }, "source": [ - "If you want to see a lot of information about the internals, \n", - "the verbose level can be set to 'debug' by commenting out\n", - "the following lines" + "By default a Neuron morphology has the following sectionlists: somatic, axonal, apical and basal. Let's create an object that points to the somatic sectionlist. This object will be used later to specify where mechanisms have to be added etc." ] }, { @@ -101,14 +146,11 @@ "metadata": { "pycharm": { "name": "#%%\n" - }, - "tags": [] + } }, "outputs": [], "source": [ - "import logging\n", - "logger = logging.getLogger()\n", - "logger.setLevel(logging.DEBUG)" + "somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic')" ] }, { @@ -119,26 +161,25 @@ } }, "source": [ - "## Setting up the cell model\n", + "### Creating a mechanism\n", "\n", - "We use a single-compartimental cell model with the same morphology and mechanisms as in `simplecell.ipynb` that can be instantiated with different options for axon replacement policy and mechanism parameter values." + "Now we can add ion channels to this morphology. Let's add the default Neuron Hodgkin-Huxley mechanism to the soma. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ - "import simplecell_model # enables simplecell_model.create(do_replace_axon=...)" + "hh_mech = ephys.mechanisms.NrnMODMechanism(\n", + " name='hh',\n", + " suffix='hh',\n", + " locations=[somatic_loc])" ] }, { @@ -149,26 +190,41 @@ } }, "source": [ - "## Creating the protocols\n", + "The 'name' field can be chosen by the user, this name should be unique. The 'suffix' points to the same field in the NMODL file of the channel. 'locations' specifies which sections the mechanism will be added to.\n", "\n", - "A protocol consists of a set of stimuli, and a set of responses (i.e. recordings). These responses will later be used to compare voltage traces from simulations between Arbor and Neuron for different parameter values and axon replacement configurations.\n", + "### Creating parameters\n", "\n", - "Let's create two protocols, two square current pulses injected centrally at the soma with different amplitudes and a slightly displaced probe location." + "Next we need to specify the parameters of the model. A parameter can be in two states: frozen and not-frozen. When a parameter is frozen it has an exact value, otherwise it only has some bounds but the exact value is not known yet.\n", + "Let's define first a parameter that sets the capacitance of the soma to a frozen value" ] }, { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ - "# Define locations on branch 0 of the morphology (soma)\n", - "location_defs = dict(stim_site='(location 0 0.5)',\n", - " probe_site='(location 0 0.75)')\n", - "\n", - "# Make location available to Arbor through a callback\n", - "def instantiate_locations(labels):\n", - " labels.append(arbor.label_dict(location_defs))" + "cm_param = ephys.parameters.NrnSectionParameter(\n", + " name='cm',\n", + " param_name='cm',\n", + " value=1.0,\n", + " locations=[somatic_loc],\n", + " frozen=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "And parameters that represent the maximal conductance of the sodium and potassium channels. These two parameters will be optimised later." ] }, { @@ -181,17 +237,18 @@ }, "outputs": [], "source": [ - "soma_loc = ephys.locations.NrnSeclistCompLocation(\n", - " name='soma',\n", - " seclist_name='somatic',\n", - " sec_index=0,\n", - " comp_x=0.5)\n", - "\n", - "probe_loc = ephys.locations.NrnSeclistCompLocation(\n", - " name='probe',\n", - " seclist_name='somatic',\n", - " sec_index=0,\n", - " comp_x=0.75)\n" + "gnabar_param = ephys.parameters.NrnSectionParameter( \n", + " name='gnabar_hh',\n", + " param_name='gnabar_hh',\n", + " locations=[somatic_loc],\n", + " bounds=[0.05, 0.125],\n", + " frozen=False) \n", + "gkbar_param = ephys.parameters.NrnSectionParameter(\n", + " name='gkbar_hh',\n", + " param_name='gkbar_hh',\n", + " bounds=[0.01, 0.075],\n", + " locations=[somatic_loc],\n", + " frozen=False)" ] }, { @@ -202,61 +259,108 @@ } }, "source": [ - "and then the stimuli, recordings and protocols. For each protocol we add a recording and a stimulus in the soma." + "### Creating the template\n", + "\n", + "To create the cell template, we pass all these objects to the constructor of the template" ] }, { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ - "# Protocol prots configuration\n", - "protocol_steps = []\n", - "for name, amplitude in [('step1', 0.01), ('step2', 0.05)]:\n", - " protocol_steps.append(dict(name=name,\n", - " amplitude=amplitude,\n", - " delay=100,\n", - " duration=50,\n", - " total_duration=200,\n", - " recording_name='%s.soma.v' % name))" + "simple_cell = ephys.models.CellModel(\n", + " name='simple_cell',\n", + " morph=morph,\n", + " mechs=[hh_mech],\n", + " params=[cm_param, gnabar_param, gkbar_param]) " ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "We make current stimuli, voltage and spike recordings available to Arbor through callbacks" + "Now we can print out a description of the cell" ] }, { "cell_type": "code", "execution_count": 10, - "metadata": {}, - "outputs": [], + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "simple_cell:\n", + " morphology:\n", + " simple.swc\n", + " mechanisms:\n", + " hh: hh at ['somatic']\n", + " params:\n", + " cm: ['somatic'] cm = 1.0\n", + " gnabar_hh: ['somatic'] gnabar_hh = [0.05, 0.125]\n", + " gkbar_hh: ['somatic'] gkbar_hh = [0.01, 0.075]\n", + "\n" + ] + } + ], "source": [ - "# Current stimuli\n", - "def instantiate_stimuli(decor, step):\n", - " decor.place('\"stim_site\"',\n", - " arbor.iclamp(step['delay'], step['duration'], current=step['amplitude']),\n", - " step['name'])\n", - "\n", - "# Spike detection with a voltage threshold of -10 mV\n", - "# (different from spike_time observables in eFEL that measure 'peak_time')\n", - "def instantiate_spike_recordings(decor):\n", - " decor.place('\"probe_site\"', arbor.spike_detector(-10), \"spike_detector\")\n", + "print(simple_cell)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "With this cell we can build a cell evaluator." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "## Setting up a cell evaluator\n", "\n", - "# Attach voltage probe sampling at 10 kHz (every 0.1 ms).\n", - "def instantiate_voltage_recordings(cell_model):\n", - " # alternatively arbor.cable_probe_membrane_voltage\n", - " cell_model.probe(\"voltage\", '\"probe_site\"', frequency=10)" + "To optimise the parameters of the cell we need to create cell evaluator object. \n", + "This object will need to know which protocols to inject, which parameters to optimise, etc." ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "The protocols for Neuron are defined as in `simplecell.ipynb`." + "### Creating the protocols\n", + "\n", + "A protocol consists of a set of stimuli, and a set of responses (i.e. recordings). These responses will later be used to calculate\n", + "the score of the parameter values.\n", + "Let's create two protocols, two square current pulses at somatic`[0]`(0.5) with different amplitudes.\n", + "We first need to create a location object" ] }, { @@ -269,21 +373,10 @@ }, "outputs": [], "source": [ - "sweep_protocols = []\n", - "for step in protocol_steps:\n", - " stim = ephys.stimuli.NrnSquarePulse(\n", - " step_amplitude=step['amplitude'],\n", - " step_delay=step['delay'],\n", - " step_duration=step['duration'],\n", - " location=soma_loc,\n", - " total_duration=step['total_duration'])\n", - " rec = ephys.recordings.CompRecording(\n", - " name=step['recording_name'],\n", - " location=probe_loc,\n", - " variable='v')\n", - " protocol = ephys.protocols.SweepProtocol(step['name'], [stim], [rec])\n", - " sweep_protocols.append(protocol)\n", - "twostep_protocol = ephys.protocols.SequenceProtocol('twostep', protocols=sweep_protocols)" + "soma_loc = ephys.locations.ArbBranchRelLocation(\n", + " name='soma',\n", + " branch=0,\n", + " pos=0.5)\n" ] }, { @@ -294,167 +387,110 @@ } }, "source": [ - "## Running a protocol on an Arbor cable cell\n", - "\n", - "To run a protocol in Arbor, we need to export the cell model to a mixed JSON/ACC-format and assemble an Arbor cable cell that integrates the procotols. We use this cell to build a `single_cell_model` that sets up the constituents of an Arbor simulation and enables running the protocols.\n", - "\n", - "To run the protocols also with Neuron, we follow the same strategy as in `simplecell.ipynb` (creating a simulator object)." + "and then the stimuli, recordings and protocols. For each protocol we add a recording and a stimulus in the soma." ] }, { "cell_type": "code", "execution_count": 12, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ - "# Write cell model to ACC/JSON and run protocol step\n", - "def output_acc_and_run_protocol_step(step, cell, params, dt):\n", - " # Export cell model to mixed JSON/ACC-format\n", - " with tempfile.TemporaryDirectory() as acc_dir:\n", - " ephys.create_acc.output_acc(acc_dir, cell, params)\n", - " cell_json, morph, labels, decor = \\\n", - " ephys.create_acc.read_acc(\n", - " os.path.join(acc_dir, cell.name + '.json'))\n", - " \n", - " # Instantiate protocols on cable cell components\n", - " instantiate_locations(labels)\n", - " instantiate_stimuli(decor, step)\n", - " instantiate_spike_recordings(decor)\n", - " \n", - " # Create cable cell\n", - " cable_cell = arbor.cable_cell(morph, labels, decor)\n", - " # can output and visualize the cable cell in the Arbor GUI using\n", - " # arbor.write_component(cable_cell, '.acc')\n", - "\n", - " # Create single cell model\n", - " arb_cell_model = arbor.single_cell_model(cable_cell)\n", - "\n", - " # Add catalogues with qualifiers\n", - " arb_cell_model.properties.catalogue = arbor.catalogue()\n", - " arb_cell_model.properties.catalogue.extend(\n", - " arbor.default_catalogue(), \"default::\")\n", - " arb_cell_model.properties.catalogue.extend(\n", - " arbor.bbp_catalogue(), \"BBP::\")\n", - " \n", - " # Instantiate remaining voltage recording\n", - " instantiate_voltage_recordings(arb_cell_model)\n", - "\n", - " # Run the simulation for the protocol step\n", - " arb_cell_model.run(tfinal=step['total_duration'], dt=dt)\n", - " return arb_cell_model\n", - "\n", - "\n", - "# Run multiple protocol steps and extract voltage traces/detected spikes\n", - "def arb_protocols_run(protocols, cell_model, params, dt=0.025):\n", - " arb_resp = dict()\n", - " for step in protocols:\n", - " arb_cell_model = output_acc_and_run_protocol_step(\n", - " step, cell_model, params, dt)\n", - " arb_resp[step['recording_name']] = \\\n", - " dict(time=arb_cell_model.traces[0].time,\n", - " voltage=arb_cell_model.traces[0].value,\n", - " spikes=arb_cell_model.spikes)\n", - " return arb_resp" + "sweep_protocols = []\n", + "for protocol_name, amplitude in [('step1', 0.01), ('step2', 0.05)]:\n", + " stim = ephys.stimuli.NrnSquarePulse(\n", + " step_amplitude=amplitude,\n", + " step_delay=100,\n", + " step_duration=50,\n", + " location=soma_loc,\n", + " total_duration=200)\n", + " rec = ephys.recordings.CompRecording(\n", + " name='%s.soma.v' % protocol_name,\n", + " location=soma_loc,\n", + " variable='v')\n", + " protocol = ephys.protocols.ArbSweepProtocol(protocol_name, [stim], [rec])\n", + " sweep_protocols.append(protocol)\n", + "twostep_protocol = ephys.protocols.SequenceProtocol('twostep', protocols=sweep_protocols)" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "## Cross-validation of Arbor and Neuron voltage traces\n", + "### Running a protocol on a cell\n", "\n", - "To cross-validate Arbor with Neuron simulation output, we run the protocols over a set of parameter values - the first two from `simplecell.ipynb`, the others with random sampling as in\n", - "```python\n", - "{\n", - " 'gnabar_hh': random.uniform(0.05, 0.125),\n", - " 'gkbar_hh': random.uniform(0.01, 0.075)\n", - "}\n", - "```\n", - "as well as both with and without axon replacement. " + "Now we're at a stage where we can actually run a protocol on the cell. We first need to create a Simulator object." ] }, { "cell_type": "code", "execution_count": 13, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ - "replace_axon = [False, True]\n", - "params = [{'gnabar_hh': 0.1, 'gkbar_hh': 0.03},\n", - " {'gnabar_hh': 0.05, 'gkbar_hh': 0.05},\n", - " {'gnabar_hh': 0.120040, 'gkbar_hh': 0.029655},\n", - " {'gnabar_hh': 0.122883, 'gkbar_hh': 0.034736},\n", - " {'gnabar_hh': 0.073270, 'gkbar_hh': 0.048908},\n", - " {'gnabar_hh': 0.098042, 'gkbar_hh': 0.047296},\n", - " {'gnabar_hh': 0.108495, 'gkbar_hh': 0.046297},\n", - " {'gnabar_hh': 0.050006, 'gkbar_hh': 0.058192},\n", - " {'gnabar_hh': 0.084285, 'gkbar_hh': 0.041788},\n", - " {'gnabar_hh': 0.108877, 'gkbar_hh': 0.022503}]" + "sim = ephys.simulators.ArbSimulator()" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "This enables us to run all simulations involving all protocols for each combination of axon replacement and parameter value choice" + "The run() method of a protocol accepts a cell model, a set of parameter values and a simulator" ] }, { "cell_type": "code", "execution_count": 14, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [], "source": [ - "def run_all_simulations(replace_axon_policies, param_list, dt=0.025):\n", - " arb_resp = dict()\n", - " nrn_resp = dict()\n", - "\n", - " nrn_sim = ephys.simulators.NrnSimulator(dt=dt)\n", - " for do_replace_axon in replace_axon_policies:\n", - " for param_i in range(len(param_list)):\n", - "\n", - " simple_cell = simplecell_model.create(do_replace_axon=do_replace_axon)\n", - " # calculate morphology with axon-replacement in Neuron\n", - " simple_cell.instantiate_morphology(nrn_sim)\n", - " # alternatively, as a function based on CellModel.instantiate only\n", - " # def instantiate_morphology(cell_model, nrn_sim):\n", - " # if cell_model.morphology.do_replace_axon:\n", - " # # Need to freeze parameters to instantiate morphology through model\n", - " # to_unfreeze = []\n", - " # for param in cell_model.params.values():\n", - " # if not param.frozen:\n", - " # param.freeze(0 if param.bounds is None else param.bounds[0])\n", - " # to_unfreeze.append(param.name)\n", - " # cell_model.instantiate(nrn_sim) # calculate axon-replacement in Neuron\n", - " # cell_model.unfreeze(to_unfreeze)\n", - "\n", - " key = (do_replace_axon, param_i)\n", - " arb_resp[key] = arb_protocols_run(protocol_steps, simple_cell, param_list[param_i], dt=dt)\n", - "\n", - " # need to destroy instantiated cell model first to avoid Hoc serialization error\n", - " simple_cell.destroy(sim=nrn_sim)\n", - " nrn_resp[key] = twostep_protocol.run(simple_cell, param_list[param_i], nrn_sim)\n", - " return arb_resp, nrn_resp\n", - "\n", - "\n", - "arb_responses, nrn_responses = run_all_simulations(replace_axon, params)" + "default_params = {'gnabar_hh': 0.1, 'gkbar_hh': 0.03}\n", + "responses = twostep_protocol.run(cell_model=simple_cell, param_values=default_params, sim=sim)" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "and to plot the responses for visual cross-validation." + "Plotting the response traces is now easy:" ] }, { "cell_type": "code", "execution_count": 15, - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABlX0lEQVR4nO2deXgURfr4P+/ckwMC4RAIEEBuEg65XEBhRQ5ZRUUFRRFZd3XVXfFa2UO/6K6/VdTVVVnZRRSvRTwB13NFEVERQe5TkHCJHOHKnTnq90f3DJNkJpmQSTJJ6vM880x3VXX121Xd9XZVvV2vKKXQaDQajSbesNS2ABqNRqPRhEMrKI1Go9HEJVpBaTQajSYu0QpKo9FoNHGJVlAajUajiUu0gtJoNBpNXKIVVClEJF1ElIjYaluW+o6ITBWRFTV0LreIvC8ix0Xk9zVxzlLnzxKRkTVwnmUicmOEuHp/b5vXd3Zl42IsQ8S6FpHhIrK/umWINSLyrogcEZFHa/K8WkFpYoKIzBQRj4jkhvxqXBGUw0ggE2irlJoVCDQbk/RakyqOMOtwZiXSXyMie0QkT0QWiUjTctL+W0S2i4hfRKZWUq4GU0ciMr8y5SMid4jITyJySkSeFxFnOWkvEJFtIpIvIp+JSPuQuFkiss/MZ4+I/DH0WKXUxcAI4G4RSan8lZ0Z9U5B1ee3wzrAQqVUUshvVsWH1BhNgSylVG5tC1IVxKDWn1sR6Qn8C7gOaAnkA/8s55D1wC3Ad9UvXfUSL22MiIwGZgAXAO2BjsADEdI2A94G7sN4FlYDC0OSzAO6KaUaAT8DJovI5aF5KKU2mZupMbyMcqn1Gz0WmG9Y94rIBiBPRGwiMlhEvhKREyKyXkSGh6RfJiJ/E5FV5hvD4khvfyJyg4hsFZEcEflBRG4qFT9eRNaZ+ewSkTFmeGMRmSciB0XkgIj8VUSsFVxHJxH5VESyReSoiLwaeFsx446JSD9zv7XZ5R5u7l8iIpvN610mIt1Llc/dIrJBRE6KyEIRcVW+pCuPiMwwyyVHRLaIyGUR0omIPCEih82y3Cgivcw4p4g8JiJ7ReSQiMwREXclRbEB/gpkTRVjKOOUiHxr1tmKkHglIjeLyPdmOc8WETHjItZdCAPMMjguIi8E6kBEmojIf836PG5up4Wcd5mIPCQiX2Iogo4VXGt7EfnSLPOPzcYplMlmWR4VkT9VkFckJgPvKqWWm0r/PuByEUkOl1gpNVsptRQoPMPzARXXUam0Q8XoFQwPCb7IfI6PisijYir7iupPwrQxFYjap7znTUTuMu/1gyJyw5mUBXA9ME8ptVkpdRz4CzA1QtrLgc1KqTeUUoXATKC3iHQDUEptV0rlhaT3A+GGQxXGs1QzKKXq/A/IAtYBbQE30AbIBi7CUMIXmvvNzfTLgANALyAReAt4xYxLx6wEc38c0AkQ4HyMBqKfGTcQOGnmbzHP282MewfjDTMRaAGsAm6q4DrONvNyAs2B5cCTIfG/ArYACcBHwGNmeBcgzzzWDvwe2Ak4QspnFdAa4+1pK3BzBBmGAifK+Q2NcNzMQBmWCr/SPK8FmGjK2cqMmwqsMLdHA2uAFLOsu4ekewJYYsqeDLwL/K0S94cdeDmcfKXSvWb+EoAewL6AfGa8Av5rytgOOAKMibLusoBNGPdoU+BL4K9mXCowwTxvMvAGsCjk2GXAXqAnRuNgL+calgG7zHvCbe4/XOrenmvG9QaKgO4R8iqvvhcD95YKywXOqaCMVwBTq/CsR1NHZwNjzLiBpeI+M8u/HbADuLES9bfOrD93FO1R2OcNGA54gQfN+/IijDalSZh82pl10C7CedYDE0P2m5nXmBom7T+AZ0uFbQImhOzPMOtQAT8AaWHy2QPcCsiZ1mGl6rsmTlLtF2HcENNC9u8FXi6V5iPgenM7+NCa+z2AYsBKKQUV5lyLgNvN7X8BT4RJ09J88N0hYVcDn1Xyui4F1pYKWwJsBDYATjPsPuD1kDQWDAU8PKR8rg2JnwXMiXEdzDTL8ETIr3WYdOuA8eb2VE4rqJ9jNBiDAUtIesFQap1Cws4FdkcpVx/AAxwCzi4nndVM1zUk7K+UbfyGhuy/DsyIpu7MOrg5ZP8iYFc5Mh8P2V8GPBjl9S4D/hyyfwvwobkduLfTQuJXAZPOoL6XUuolJ/SeK+e4M1ZQlaijP2A0pL1KHa8wXyhCymZpJepvWpRyRnzeMBRUASHtC3AYGHwG5bGr1PXYzWtMD5N2HiFtnhn2Zem6MJ+3vhhDhclh8rkM8zk/kzqs7K9eDPGZ7AvZbg9caQ7DnBCRExg9g1YR0u/BqNzSQyGIyFgRWWkOr53AaFgC6dpi3CSlaW/mdzDk/P/C6ElFRERaishrYgwJngJeCSPTXIye39NKqSIzrLV5DQAopfzm9bUJOe6nkO18IKk8Wc6Q15VSKSG/H0VkihhDoIFy6EWYclZKfQo8A8wGDosxqd4I4202AVgTkseHZniFKKXWYfRKvgaml5O0OUbvJPS+2BcmXdhyjLLuSt9zrc1jE0TkX2JMTp/CeHtPkZJDwuFkiURFdR2LeyEXaFQqrBGQcwZ5RUu0dTQd417cFCYuUh1Utv4qorwyzlZKecuJj5bSdRDYDlcHUdWXMliLoUTDzWc9gPEyGtEgJpbUJwUVuiz7PoweVGhjmaiUejgkTduQ7XYYb2ZHQzMUwyLmLeAxoKVSKgV4H+MtI3CeTmFk2YfRg2oWcv5GSqmeFVzD/zOvI0MZk5XXhpwLEUkCnsR4G5opp+fNfsRQioF0Yl7fgQrOVwYRGSYlLfFK/4ZVIq/2GAr1NoxhhxSMYQUJl14p9ZRS6hyMHm0X4B6MOikAeoaUZWOlVNQPtDLG3D8w843EEYyhl7SQsLYR0oaj3LoLk187jHoDuAvoCgwyjz3PDA89PvT+jgc2YwwRAiAiHTGGx3ZU4zmjraMrgUtF5PYwcZHqIJr6i+s6MLcPKaWyK0orIokYbdfmCHnbCN+2dQcWmy/B1U59UlChvAJcLCKjRcQqIi4xvj8IvbGvFZEeIpKAMR78plLKVyofB8ZDdwTwishYYFRI/DzgBjHMNy0i0kZEuimlDgIfA4+LSCMzrpOInF+B3MkYbzonRaQNRgMdyj+A1UqpG4H3gDlm+OvAOFMOO0aDVwR8VVFBlUYp9YUqaYlX+vdFJbJLxHioj4BhcILRgyqDiAwQkUGm/HkYk+l+80GYCzwhIi3MtG3EsGAKHKtKTYSHowijPsNi1v3bGIo/wZw8nhLVVRpUVHcAt4pImvli8SdOW1ElYyjhE2bc/1XivLXFqxjP2DCzsXsQeFspFbYHJSIO01BAALv5TAYMFIaLSIWNfyXq6EcMy7bbReQ3peLuEcMopS1wOyXroKL6izdeAn5ptmMpwJ+B+RHSvgP0EpEJZj3cD2xQSm0z26ebzHIRERmIMc+0NEw+NoxnqUaolwpKKbUPGA/8EaNx3Idxw4Ve78sYlfkT4AJ+FyafHDP8deA4cA3GHFAgfhVwA8Yk/kngc073ZKZgNIhbzGPfpOQQYzgeAPqZeb2H8TAChrUgxsRv4IG7E+gnIpOVUtsx3viexuhxXAxcrJQqruB81YpSagvwOMbw2iEgA2PcOxyNMBTRcYyhl2wg8FHgvRhGHyvN4ZdPMHocmA1NDsa8XHn4qfh+vw1ojHFPvAwsIPqHMWLdhfAfjBeXHzCGhv9qhj+JYbRwFFiJMYRZ65TXY1ZKbQZuxlBUhzEa+FtCjv1ASn5L8zGGEv4Z8G9zO9BTbEv0L1NR1ZFSai+GkpohJT9cXoxhjLMOo57mmeHR1F+NIiLtzDpoFy5eKfUhxvzWZxhGNHsIebkRw6p3spn2CIYhzkMYz9ggYFJIdpdh3JM5GC/4T5u/UHkCQ8410nsC0xKjoSEiyzAsup6rbVk0VUNErsUY/vtDBelGYTx43ZRSx6LM+xHgLKXU9VWXVBMJEXkOeEMp9dEZHKvrqIYwe1ZfAymResqxJi4+ONNozhSl1CtRJl0G/A/YLCKPK6UeK53AHDJyYPTGBgC/BMIuG6SJHeaQdVToOqodRGQRRg/zvppSTqAVVI0jInMwhuNK84pS6uaalqehYA53Tq4gWTLGkFFrjCHJxzGGhOIKEYm0GsbYSs4R1kVqvY7MIbctEaJ7mMOL9Qql1KW1cd4GOcSn0Wg0mvinXhpJaDQajabuE1dDfM2aNVPp6em1LYZGo9FoapA1a9YcVUqV+fg+rhRUeno6q1evrm0xNBqNRlODiMiecOF6iE+j0Wg0cYlWUBpNHUAbM2kaIlpBaTRxzo5DOVx93z9Yt6sya5VqNHWfuJqDCofH42H//v0UFlbJz5mmgeFyuUhLS8Nut9e2KFXm23Xrec32f2z44Bu4bUFti6PR1Bhxr6D2799PcnIy6enpGIt0azTlo5QiOzub/fv306FDh9oWp8qk+o4A0CxvZy1LotHULHE/xFdYWEhqaqpWTpqoERFSU1PrTa/baTHmn2y+/FqWRKOpWeJeQQFaOWkqTX26Z5Tf8ALj9OXVsiQaTc1SJxSURtOQUX7D+arLr3tQmoaFVlBRICLcddddwf3HHnuMmTNn1p5AFbBs2TK++qrSvgpLMGbMGFJSUvjFL34RI6k0Z4ypoJyqxvzEaTRxgVZQUeB0Onn77bc5evRoxYkrgVIKvz/2vr9ioaDuueceXn755RhJpKkKfl9pR88aTcNAK6gosNls/PrXv+aJJ54oE3fkyBEmTJjAgAEDGDBgAF9+aTiMnTlzJo89dtrlUK9evcjKyiIrK4uuXbsyZcoUevXqxb59+7jnnnvo1asXGRkZLFxoeKBetmwZw4cP54orrqBbt25Mnjw57MeaTz31FD169CAzM5NJkyaRlZXFnDlzeOKJJ+jTpw9ffPFFuTJed911nHvuuXTu3Jm5c+cG873gggtITk4ut1zeeOMNevXqRe/evTnvPMM5amFhITfccAMZGRn07duXzz77DID58+dz6aWXcuGFF5Kens4zzzzD3//+d/r27cvgwYM5dszwITh37lwGDBhA7969mTBhAvn5ZYe1Bg8ezObNm4P7w4cPr99LZJk9KI2moRH3ZuahPPDuZrb8eCqmefZo3Yj/u7hnheluvfVWMjMz+f3vf18i/Pbbb+eOO+5g6NCh7N27l9GjR7N169Zy8/r+++958cUXGTx4MG+99Rbr1q1j/fr1HD16lAEDBgQb+7Vr17J582Zat27NkCFD+PLLLxk6dGiJvB5++GF2796N0+nkxIkTpKSkcPPNN5OUlMTdd98NwDXXXBNRxg0bNrBy5Ury8vLo27cv48aNo3Xr1lGV3YMPPshHH31EmzZtOHHiBACzZ89GRNi4cSPbtm1j1KhR7NixA4BNmzaxdu1aCgsLOfvss3nkkUdYu3Ytd9xxBy+99BLTp0/n8ssv51e/+hUAf/7zn5k3bx6//e1vS5x34sSJvP766zzwwAMcPHiQgwcP0r9//6hkrov4fVpBaRomugcVJY0aNWLKlCk89dRTJcI/+eQTbrvtNvr06cMll1zCqVOnyM2N5E/OoH379gwePBiAFStWcPXVV2O1WmnZsiXnn38+3377LQADBw4kLS0Ni8VCnz59yMrKKpNXZmYmkydP5pVXXsFmC/++UZ6M48ePx+1206xZM0aMGMGqVauiLpMhQ4YwdepU5s6di88chlqxYgXXXmv4Y+zWrRvt27cPKqgRI0aQnJxM8+bNady4MRdffDEAGRkZwWvbtGkTw4YNIyMjg1dffbVETynAVVddxZtvvgnA66+/zhVXXBG1zHUSFTLEp5c80jQg6lQPKpqeTnUyffp0+vXrxw033BAM8/v9rFy5EpfLVSKtzWYrMb8U+k1OYmJiVOdzOp3BbavVitdb9k36vffeY/ny5bz77rs89NBDbNy4sUyaSDJCWXPsyphnz5kzh2+++Yb33nuPc845hzVr1pSbPvR6LBZLcN9isQSvberUqSxatIjevXszf/58li1bViafNm3akJqayoYNG1i4cCFz5syJWua6iArtQXkLwe6uPWE0mhpE96AqQdOmTbnqqquYN29eMGzUqFE8/fTTwf1169YBhuuQ7777DoDvvvuO3bt3h81z2LBhLFy4EJ/Px5EjR1i+fDkDBw6MSh6/38++ffsYMWIEjzzyCCdPniQ3N5fk5GRycnIqlBFg8eLFFBYWkp2dzbJlyxgwYEBU5wbYtWsXgwYN4sEHH6R58+bs27ePYcOG8eqrrwKwY8cO9u7dS9euXaPOMycnh1atWuHxeIL5hGPixInMmjWLkydPkpmZGXX+dZLQOahibWquaThoBVVJ7rrrrhLWfE899RSrV68mMzOTHj16BN/mJ0yYwLFjx+jZsyfPPPMMXbp0CZvfZZddRmZmJr179+bnP/85s2bN4qyzzopKFp/Px7XXXhs0SPjd735HSkoKF198Me+8807QSCKSjGAMEY4YMYLBgwdz3333Beefhg0bxpVXXsnSpUtJS0vjo48+AuD+++9nyZIlgGHpl5GRQa9evfjZz35G7969ueWWW/D7/WRkZDBx4kTmz59foudUEX/5y18YNGgQQ4YMoVu3bsHwJUuWcP/99wf3r7jiCl577TWuuuqqqPOuqwQ+1AXwFeWUk1KjqV9IPC3j379/f1XaGmvr1q107969liSq38ycObOEMUV9o77cOx/M/3+MzXoEgLxffkFi23reY9Q0OERkjVKqjKWT7kFpNPFOyBBfUV5srVg1mnimThlJaGJLPK+GoQkhZIivqEAP8WkaDroHpdHEORJiZl6crxWUpuGgFZRGE+eokCE+r+5BaRoQWkFpNPFOqBVfoVZQmoaDVlAaTbxTwsy8/FVKNJr6hFZQUbJo0SJEhG3btkVMk5WVRa9evapVjnXr1vH+++9XKY9p06bRokWLapdVExss6vQQn79IOy3UNBy0goqSBQsWMHToUBYsWBA2PtwyRJXFF4VbhVgoqKlTp/Lhhx9WKQ9NDeL34cVCgXJAsVZQmoaDVlBRkJuby4oVK5g3bx6vvfZaMHzZsmUMGzaMSy65hB49egCGopo8eTLdu3fniiuuCLqLWLp0KX379iUjI4Np06ZRVGQ4n0tPT+fee++lX79+vPHGGyXOW9qdRXFxMffffz8LFy6kT58+LFy4kLy8PKZNm8bAgQPp27cvixcvBgz3FuPHj2f48OF07tyZBx54IJjveeedR9OmTcu95s8//5w+ffrQp08f+vbtS05ODkqpiK5Bzj//fMaPH0/Hjh2ZMWMGr776KgMHDiQjI4Ndu3YB8O677zJo0CD69u3LyJEjOXToUJnzTpo0iffeey+4P3Xq1ODCsA0VUT58WMnDpRWUpkFRt76D+mAG/FR2MdQqcVYGjH243CSLFy9mzJgxdOnShdTUVNasWcM555wDGOvsbdq0iQ4dOpCVlcX27duZN28eQ4YMYdq0afzzn//ktttuY+rUqSxdupQuXbowZcoUnn32WaZPnw5AampqcN2+UEq7s3A4HDz44IOsXr2aZ555BoA//vGP/PznP+f555/nxIkTDBw4kJEjRwKwatUqNm3aREJCAgMGDGDcuHFRu6V47LHHmD17NkOGDCE3NxeXy8Xbb78d0TXI+vXr2bp1K02bNqVjx47ceOONrFq1in/84x88/fTTPPnkkwwdOpSVK1ciIjz33HPMmjWLxx9/vMR5A640xo0bR3FxMUuXLuXZZ5+NSub6ikV58WMhHyfi0QpK03Co9h6UiIwRke0islNEZlT3+aqDBQsWMGnSJMB4ww8d5hs4cCAdOnQI7rdt25YhQ4YAcO2117JixQq2b99Ohw4dguvxXX/99Sxfvjx4zMSJE8OeN5w7i9J8/PHHPPzww/Tp04fhw4dTWFjI3r17AbjwwgtJTU3F7XZz+eWXs2LFiqiveciQIdx555089dRTnDhxApvNVq5rkAEDBtCqVSucTiedOnVi1KhRQElXGvv372f06NFkZGTw6KOPhnWlMXbsWD777DOKior44IMPOO+883C7G/jq3cqPHyuFuLFoBaVpQFRrD0pErMBs4EJgP/CtiCxRSm05owwr6OlUB8eOHePTTz9l48aNiAg+nw8R4dFHHwXKus44E/cVkdxvROPOQinFW2+9VWbF8G+++aZKrjRmzJjBuHHjeP/99xkyZEhwsdhIRONK47e//S133nknl1xyCcuWLQu7koXL5WL48OF89NFHLFy4MPhi0JAR5cMvFgrFjdurVzPXNByquwc1ENiplPpBKVUMvAaMr+ZzxpQ333yT6667jj179pCVlcW+ffvo0KEDX3zxRdj0e/fu5euvvwbgP//5D0OHDqVr165kZWWxc+dOAF5++WXOP//8Cs8dzp1FaVcao0eP5umnnw66g1+7dm0w7n//+x/Hjh2joKCARYsWBXt20bBr1y4yMjK49957GTBgANu2bauSaxCAkydP0qZNGwBefPHFiOkmTpzICy+8wBdffMGYMWOizr++EpiDKhIXNq2gNA2I6lZQbYB9Ifv7zbAgIvJrEVktIquPHDlSzeJUngULFnDZZZeVCJswYUJEa76uXbsye/ZsunfvzvHjx/nNb36Dy+XihRde4MorryQjIwOLxcLNN99c4bnDubMYMWIEW7ZsCRpJ3HfffXg8HjIzM+nZsyf33Xdf8PiBAwcyYcIEMjMzmTBhQnD+6eqrr+bcc89l+/btpKWlBf1bzZkzJ+iK48knn6RXr15kZmZit9sZO3ZslVyDgLH235VXXsk555xDs2bNguGrV6/mxhtvDO6PGjWKzz//nJEjR+JwOKLOv75iUT78WCi2JmD3FdS2OBpNjVGt7jZE5ApgjFLqRnP/OmCQUuq2cOm1u43YMX/+/BLGFA2R+nLvfP7oVfQsWMNmR2+6ezbR4r4dtS2SRhNTasvdxgGgbch+mhmm0WiiRMwelNfmxuEvrG1xNJoao7rNzL8FOotIBwzFNAm4pprPqcH4fmjq1Km1LYYmBhhGElb8tgRcSg/xaRoO1aqglFJeEbkN+AiwAs8rpcraFlecT6Us0DSaePIUXVUsyo8fCz57Ii6KjbX5LNbaFkujqXaq/UNdpdT7wBmvzeNyucjOziY1NVUrKU1UKKXIzs7G5XLVtigxwaJ8KLGi7ObnCMV54GpUu0JpNDVA3K8kkZaWxv79+4lHCz9N/OJyuUhLS6ttMWKC4McnVnBoBaVpWMS9grLb7SVWatBoGhoW5UVhQRxJAHgLc7A1alXLUmk01Y9eLFajiXNE+fGLFYvL6EEV5p+qZYk0mppBKyiNJs6xmFZ8VmcyAMX52quupmGgFZRGE+dY8KPEis1lDPEV5ekelKZhoBWURhPnBJY6srmNHpSnQPegNA0DraA0mjhHzB6Uw1RQ3kLtckPTMNAKSqOJcwLfQTkSTQVVpHtQmoaBVlAaTZxjwYcSC+4E49snVZhbyxJpNDWDVlAaTZxjUX78YsPtTsCrLPiLtILSNAy0gtJo4hyr2YNKcNrIx4Uq1nNQmoaBVlAaTZxjUYaRRKLTRh4uRCsoTQNBKyiNJs4xelBWnDYL+cqJxaMVlKZhoBWURhPnWPCDWBERCsWNxZNf2yJpNDWCVlAaTZwjyo8y/T8VWtxYfboHpWkYaAWl0cQ5VnyIqaCKLW5sXu1VV9Mw0ApKo4ljlFJY8CMWwzOOx+LG7tcKStMw0ApKo4ljfH6FldMu3r02Nw6fVlCahoFWUBpNHFPs82PDj1jNHpQ1AafSCkrTMNAKSqOJYzxehQMPyuoEwG9PxK0KQKlalkyjqX60gtJo4phinx8nHrCdVlBW/OAtqmXJNJrqRysojSaOKfYUYxM/2BwAKHuCGaFNzTX1H62gNJo4xltUaGxYXca/0/CqS7FeMFZT/9EKSqOJY7zFhkGEmEN8FoehoLyF2ieUpv6jFZRGE8d4ikwFZTd6UBZnIgBF+VpBaeo/WkFpNHFMUd5JAKxuw1mh1WX0oLSC0jQEtILSaOIYT/4JAOwJKQDYXIbb92KtoDQNAK2gNJo4xpNv9KCcSY0BsLuNHpRHz0FpGgBaQWk0cYw3/xQAzsQU4z/BGOrzFmgFpan/aAWl0cQx/gJDQbmSUgCwJxhDfL5CbWauqf9USUGJyEwROSAi68zfRSFxfxCRnSKyXURGV11Ujabh4ck/DkBSo6YAuM0elL9IKyhN/ccWgzyeUEo9FhogIj2ASUBPoDXwiYh0UUr5YnA+jabBYM39iSIcON0pACS4HBQoh1ZQmgZBdQ3xjQdeU0oVKaV2AzuBgdV0Lo2m3uIu+JGj1uYgAkCCw0o+TkQvdaRpAMRCQd0mIhtE5HkRaWKGtQH2haTZb4aVQUR+LSKrRWT1kSNHYiCORlN/aFT0EznOlsH9RKeNApwoT34tSqXR1AwVKigR+URENoX5jQeeBToBfYCDwOOVFUAp9W+lVH+lVP/mzZtX9nCNpt6SX1hEum8vBSldg2FOm4V85cTi0T6hNPWfCueglFIjo8lIROYC/zV3DwBtQ6LTzDCNRhMl29Z/TT8pwtm2XzBMRCgWFy6v7kFp6j9VteJrFbJ7GbDJ3F4CTBIRp4h0ADoDq6pyLo2moXFq3WL8SkgffHGJ8CKLC4t2+65pAFTVim+WiPQBFJAF3ASglNosIq8DWwAvcKu24NNooicvL4/uBxexI6Ev3Zq0KhHnsbiwefWHupr6T5UUlFLqunLiHgIeqkr+Gk1D5btX/sQwjpEz/OkycR6LG7tfGxRp6j96JQmNJs746sMFnPvji6xtMpqzB/2iTLzX6sLmL6wFyTSamiUWH+pqNJoY8d3XS+nz9e3sc3Sg+y//FTaNz+bGWVQ9CqqwIJ9dW74jZ98G/HlHsaOwNj6LFh1707pLfyw23WRoag59t2k0ccK2Davo8OH1nLKm0OymJbiSmoRN57cl4FSxU1CHj2WzfenLuHZ+QM/CtfSUorKJVkMOCexO7ENR22G06DOGdl36IJbIgzA+r4eTRw+Sk/0jecd+oujkQYpzj+PxeLDiw4LCb3GCIwFxJGBxJGJ1uLE6XNgDP6cbh8uFBYXyeRHlR/k94PeD3wvKB8oPSgEKFdhWyggH3M3a07R9z5iVl6bm0ApKo4kDDvywldS3r8JnsWGfuoTkZmkR0yqbGyfF4PeBxXrG59y9YwMHP3iczGMfMUwKOCQt2HbWL7B2GErzTn1Jbp6G1wdHD+7h6PffIHu+JO3EatK2fQXbHiGbFI460sh1NAOxoHxe3N4TJHqP09h/ksYqh6aiaHrGEsYGnxI2DXqEXhfdVMuSaCpLvVNQnuIi9u5YR/bOb/Fm78Ga8yPOwiNY/YXY/MVYxY9HnHgtTnxWF36rC789AWVPQOwJWJyJWBwJiDMRn80NYkMwVpqxoFBKAaBUYNt4Uzu9rU7HlQ7Db9g7xgipRFpVTmKpVE5RnAtFUDoVGh4pffidQFlHf2zkwlURtiPKVyK8Yjmius5SEaH5dv1hPnY85ExcQtt23SKdBQC/PcHY8BSAM6nctOHYtmU9R9/7C4Nzl9IaK1tTL6DZ+TeTljmcllL2XmiS2pzOvfoDt6KUYv/ubRxY+yHs+ZqkggO0yNthXIlYybM24pg7nUOupvjdzZGkFtgatcTZ5CySmraiUZPmJLrdKLHiA/zFhXgK8yguyMFTmIe3MBdvcSHe4kI8xUX4PEX4igvxixUlFhArSqwoixUsNpQIYCppiwUQFBLcFiDp60fJ+OZefrApOo66OepyKi4u5sfdWzn50w8UnjyM99RhrIXHwVcEvmLE7wXlxy92/BYbPrHjtzjwW2woix0lVuMFwpQZi/FTYgWxYBEx2hURQ2oxvnMz9sEiZe+kMrUT9p4vGSbh7shynpVyjysVVuRqzrBx11aY15lSrxTUzvVf0vbt8XQSD50AvxKOSWNOWlPxWF14bW48SrD5i0jwnsBRXIhdFeNUhbhUIW6Kw94UGk11U4CDnRe+SEa3cypMK46AgsqvlII6fCKXVf95gAsPvUC6CBvTJtHhkj/Sp2Xbig8OnFuEtI7dSevYHbgj6uMi0ygGeZTPoT7DWPPPSxnw1b18u2877cfdSYuzTl/zyePZHPxhA6f2bcF7eDuuE7toWpBFa/9B0qXk1zF+JRRjw4MNr9hQCDZ82PFiw4udhvU1zTeqO2gFFR1ndejB2rOuwJbWl+adB9KqQ3eaOV00i/L4Yo+P/Pxc8vNOUVyQh3jywO9HAX7MIW2LBN9ywNgWS2DbgsUigCUYLhL4mWEIWGLQY6mMHo2yZ1EVQvpMYLzDnkZCN0/viIRJEhIYmodEyIOIaSoXTgS5IudfwXVgNOYVy2PsuJ3JZLiia6zFkQiAvygPSxT6SSnFh59+Stsv7uEX7GJb0xGkXfMUfZu3i+p8dZ2WqU1w/O5dVs6dyuB9z8Oc5zlMUzzYSSKXxuTR2EzrUVZ+tLbmeEJ7DqVcgK1FV5LO6kBS09Y0btaaxMapuCxWXJFO5veD3wM+cwjW7zPmyfw+lN+D3+fD7/eh/F78fsGvFH5UcNrMF5g+UwqfUhFuxtJhYdKUCQqXpmSYiiJN6bzSrY4w8bGjXimopEZNGPybOWd8vMNuxdG4MSmNG1ecWKOpJSxmD6qwIJeECtL+dCyHFfP/xCUnX6HAmsShC+fQ7dyrq1/IOKNJ40YMvvtt9m5dzYFVb2M5noVdFXPA0Qh/chtcrbqT2r4HrdK7097hpP2ZnshiAYsTbM4yUYHByDOfNWx41CsFpdE0BCxOowdVlJ9TroL6fPmntPj0Tq5gN7tbjaH95GdonNywF2Ru170/7br3r20xNFGiFZRGU8ewmvNOxfnhlzs6fiqXlS/+kZFHXyHX0oifxjxHh0FX1qSIGk1M0ApKo6ljWBMNw21PTtnljlYt/5Amn97DWPaytcVYOl8/myZJqTUtokYTE7SC0mjqGI6mhnGD9/hpn6BZWTvJevP/OC/nPY5amrFn1PN0P3dCbYmo0cQEraA0mjrGWS2ak6tcFGfvZfO6rzm67N8MOv4uafjY1PZqul3zCC0Sqt98W6OpbrSC0mjqGG2aJLDa0pXBe/4De/6DR1nZ0mw0bS+bSWZa14oz0GjqCFpBaTR1DJvVgv2SJ/nqy9kktOrK2SOm0LvpWbUtlkYTc7SC0mjqIOf07Qd959W2GBpNtaL9QWk0Go0mLtEKSqPRaDRxiagoVrWtKUTkCLAnBlk1A47GIJ+aQMtafdQleeuSrFC35K1LskLdkjdWsrZXSpVZ5iSuFFSsEJHVSqk6sZ6JlrX6qEvy1iVZoW7JW5dkhbolb3XLqof4NBqNRhOXaAWl0Wg0mrikviqof9e2AJVAy1p91CV565KsULfkrUuyQt2St1plrZdzUBqNRqOp+9TXHpRGo9Fo6jhaQWk0Go0mLqlXCkpExojIdhHZKSIzalueUESkrYh8JiJbRGSziNxuhs8UkQMiss78XVTbsgYQkSwR2WjKtdoMayoi/xOR783/JnEgZ9eQ8lsnIqdEZHo8la2IPC8ih0VkU0hY2LIUg6fM+3iDiPSLA1kfFZFtpjzviEiKGZ4uIgUhZTynJmUtR96IdS8ifzDLdruIjI4DWReGyJklIuvM8Hgo20jtVs3cu0qpevEDrMAuoCPgANYDPWpbrhD5WgH9zO1kYAfQA5gJ3F3b8kWQOQtoVipsFjDD3J4BPFLbcoa5D34C2sdT2QLnAf2ATRWVJXAR8AEgwGDgmziQdRRgM7cfCZE1PTRdHJVt2Lo3n7n1gBPoYLYZ1tqUtVT848D9cVS2kdqtGrl361MPaiCwUyn1g1KqGHgNGF/LMgVRSh1USn1nbucAW4E2tSvVGTEeeNHcfhG4tPZECcsFwC6lVCxWJIkZSqnlwLFSwZHKcjzwkjJYCaSISKsaEZTwsiqlPlZKec3dlUBaTclTERHKNhLjgdeUUkVKqd3AToy2o0YoT1YREeAqYEFNyVMR5bRbNXLv1icF1QbYF7K/nzhVACKSDvQFvjGDbjO7w8/Hw5BZCAr4WETWiMivzbCWSqmD5vZPQMvaES0ikyj5gMdr2ULksoz3e3kaxltygA4islZEPheRYbUlVBjC1X08l+0w4JBS6vuQsLgp21LtVo3cu/VJQdUJRCQJeAuYrpQ6BTwLdAL6AAcxuvjxwlClVD9gLHCriJwXGqmMPn3cfKcgIg7gEuANMyiey7YE8VaWkRCRPwFe4FUz6CDQTinVF7gT+I+IxIM73zpT9yFcTcmXq7gp2zDtVpDqvHfrk4I6ALQN2U8zw+IGEbFjVPKrSqm3AZRSh5RSPqWUH5hLDQ43VIRS6oD5fxh4B0O2Q4Euu/l/uPYkLMNY4Dul1CGI77I1iVSWcXkvi8hU4BfAZLNRwhwqyza312DM6XSpNSFNyqn7eC1bG3A5sDAQFi9lG67doobu3fqkoL4FOotIB/NNehKwpJZlCmKOL88Dtiql/h4SHjo+exmwqfSxtYGIJIpIcmAbY5J8E0aZXm8mux5YXDsShqXEG2i8lm0IkcpyCTDFtIgaDJwMGU6pFURkDPB74BKlVH5IeHMRsZrbHYHOwA+1I+Vpyqn7JcAkEXGKSAcMeVfVtHxhGAlsU0rtDwTEQ9lGareoqXu3Ni1EYv3DsCDZgfGm8afalqeUbEMxusEbgHXm7yLgZWCjGb4EaFXbsprydsSwdloPbA6UJ5AKLAW+Bz4Bmta2rKZciUA20DgkLG7KFkNxHgQ8GOPyv4xUlhgWULPN+3gj0D8OZN2JMbcQuHfnmGknmPfHOuA74OI4KduIdQ/8ySzb7cDY2pbVDJ8P3FwqbTyUbaR2q0buXb3UkUaj0Wjikvo0xKfRaDSaeoRWUBqNRqOJS7SC0mg0Gk1cohWURqPRaOISraA0Go1GE5doBaXRaDSauEQrKI1Go9HEJVpBaTQajSYu0QpKo9FoNHGJVlAajUajiUu0gtJoNBpNXKIVlEaj0WjiEq2gSiEi6SKiTP8smmpERKaKyIoaOpdbRN4XkeMi8vuaOGep82eJyMgaOM8yEbkxQly9v7fN6zu7snExliFiXYvIcBHZHy4unhGRd0XkiIg8WpPn1QpKExNEZKaIeEQkN+RX44qgHEYCmUBbpdSsQKDZmKTXmlRxhFmHMyuR/hoR2SMieSKySESalpP23yKyXUT8puPDysjVYOpIROZXpnxE5A4R+UlETpmu7Z3lpL1ARLaJSL6IfCYi7UPiZonIPjOfPSLyx9BjlVIXAyOAu0UkpfJXdmbUOwVVn98O6wALlVJJIb9ZFR9SYzQFspRSubUtSFUwHcHV+nMrIj2BfwHXAS2BfOCf5RyyHrgFw69RnSZe2hgRGQ3MAC4A2mP4cHsgQtpmwNvAfRjPwmpCvPdiOCXsppRqBPwMmCwil4fmoZQKOH1MjeFllEut3+ixwHzDuldENgB5ImITkcEi8pWInBCR9SIyPCT9MhH5m4isMt8YFkd6+xORG0Rkq4jkiMgPInJTqfjxIrLOzGeX6XkUEWksIvNE5KCIHBCRvwa8Y5ZzHZ1E5FMRyRaRoyLyauBtxYw7JiL9zP3WZpd7uLl/iYhsNq93mYh0L1U+d4vIBhE5KSILRcRV+ZKuPCIywyyXHBHZIiKXRUgnIvKEiBw2y3KjiPQy45wi8piI7BWRQyIyR0TclRTFBvgrkDVVjKGMUyLyrVlnK0LilYjcLCLfm+U8W0TEjItYdyEMMMvguIi8EKgDEWkiIv816/O4uZ0Wct5lIvKQiHyJoQg6VnCt7UXkS7PMPzYbp1Amm2V5VET+VEFekZgMvKuUWm4q/fuAy8X0wlwapdRspdRSoPAMzwdUXEel0g4Vo1cwPCT4IvM5Pioij4qp7CuqPwnTxlQgap/ynjcRucu81w+KyA1nUhYYnmznKaU2K6WOA38BpkZIezmwWSn1hlKqEJgJ9BaRbgBKqe1KqbyQ9H4g3HCowniWaoaa9tBYTV4fszA8PbYF3EAbDO+qF2Eo4QvN/eZm+mXAAaAXhifWt4BXzLh0zEow98cBnTA8RZ6P0UD0M+MGAifN/C3mebuZce9gvGEmAi0w3ErfVMF1nG3m5QSaA8uBJ0PifwVsARKAj4DHzPAuQJ55rB3DNfdOwBFSPquA1hhvT1sp5b2zlAfNE+X8hkY4bmagDEuFX2me1wJMNOVsZcZNBVaY26OBNUCKWdbdQ9I9geEVtSmQDLwL/K0S94cdw8NqGflKpXvN/CUAPTA8yK4IiVfAf00Z2wFHgDFR1l0WhtvxtuZ1fAn81YxLxfCemmBe3xvAopBjlwF7gZ4YjYO9nGtYhuHNtAvGs7AMeLjUvT3XjOsNFAHdI+RVXn0vBu4tFZYLnFNBGa8AplbhWY+mjs4GxphxA0vFfWaWfzsM79s3VqL+1pn1546iPQr7vAHDAS/woHlfXoTRpjQJk087sw7aRTjPemBiyH4z8xpTw6T9B/BsqbBNwISQ/RlmHSoM1/JpYfLZA9wKhrPb6v5V+wlq5CKMG2JayP69wMul0nwEXG9uBx9ac78HUAxYKaWgwpxrEXC7uf0v4IkwaVqaD747JOxq4LNKXtelwNpSYUs47craaYbdB7weksaCoYCHh5TPtSHxszBddsewDmaaZXgi5Nc6TLp1wHhzeyqnFdTPMRqMwYAlJL1gKLVOIWHnArujlKsPhnvtQ8DZ5aSzmum6hoT9lbKN39CQ/deBGdHUnVkHN4fsXwTsKkfm4yH7y4AHo7zeZcCfQ/ZvAT40twP3dlpI/Cpg0hnU91LKuigP3nPlHHfGCqoSdfQHjIa0V6njFeYLRUjZLK1E/U2LUs6IzxuGgiogpH0BDgODz6A8dpW6Hrt5jelh0s4jpM0zw74sXRfm89YXY6gwOUw+l2E+52dSh5X91YshPpN9IdvtgSvNYZgTInICo2fQKkL6PRiVW3ooBBEZKyIrzeG1ExgNSyBdW4ybpDTtzfwOhpz/Xxg9qYiISEsReU2MIcFTwCthZJqL0fN7WilVZIa1Nq8BAKWU37y+NiHH/RSynQ8klSfLGfK6Uiol5PejiEwRYwg0UA69CFPOSqlPgWeA2cBhMSbVG2G8zSYAa0Ly+NAMrxCl1DqMXsnXwPRykjbH6J2E3hf7wqQLW45R1l3pe661eWyCiPxLjMnpUxhv7ylSckg4nCyRqKiuY3Ev5AKNSoU1AnLOIK9oibaOpmPci5vCxEWqg8rWX0WUV8bZSilvOfHRUroOAtvh6iCq+lIGazGUaLj5rAcwXkYjGsTEkvqkoFTI9j6MHlRoY5molHo4JE3bkO12GG9mR0MzFMMi5i3gMaClUioFeB/jLSNwnk5hZNmH0YNqFnL+RkqpnhVcw/8zryNDGZOV14acCxFJAp7EeBuaKafnzX7EUIqBdGJe34EKzlcGERkmJS3xSv+GVSKv9hgK9TaMYYcUjGEFCZdeKfWUUuocjB5tF+AejDopAHqGlGVjpVTUD7Qyxtw/MPONxBGMoZe0kLC2EdKGo9y6C5NfO4x6A7gL6AoMMo89zwwPPT70/o4HNmMMEQIgIh0xhsd2VOM5o62jK4FLReT2MHGR6iCa+ovrOjC3DymlsitKKyKJGG3X5gh52wjftnUHFpsvwdVOfVJQobwCXCwio0XEKiIuMb4/CL2xrxWRHiKSgDEe/KZSylcqHwfGQ3cE8IrIWGBUSPw84AYxzDctItJGRLoppQ4CHwOPi0gjM66TiJxfgdzJGG86J0WkDUYDHco/gNVKqRuB94A5ZvjrwDhTDjtGg1cEfFVRQZVGKfWFKmmJV/r3RSWyS8R4qI+AYXCC0YMqg4gMEJFBpvx5GJPpfvNBmAs8ISItzLRtxLBgChyrSk2Eh6MIoz7DYtb92xiKP8GcPJ4S1VUaVFR3ALeKSJr5YvEnTltRJWMo4RNm3P9V4ry1xasYz9gws7F7EHhbKRW2ByUiDtNQQAC7+UwGDBSGi0iFjX8l6uhHDMu220XkN6Xi7hHDKKUtcDsl66Ci+os3XgJ+abZjKcCfgfkR0r4D9BKRCWY93A9sUEptM9unm8xyEREZiDHPtDRMPjaMZ6lGqJcKSim1DxgP/BGjcdyHccOFXu/LGJX5E+ACfhcmnxwz/HXgOHANxhxQIH4VcAPGJP5J4HNO92SmYDSIW8xj36TkEGM4HgD6mXm9h/EwAoa1IMbEb+CBuxPoJyKTlVLbMd74nsbocVwMXKyUKq7gfNWKUmoL8DjG8NohIANj3DscjTAU0XGMoZdsIPBR4L0YRh8rzeGXTzB6HJgNTQ7GvFx5+Kn4fr8NaIxxT7wMLCD6hzFi3YXwH4wXlx8whob/aoY/iWG0cBRYiTGEWeuU12NWSm0GbsZQVIcxGvhbQo79QEp+S/MxhhL+GfBvczvQU2xL9C9TUdWRUmovhpKaISU/XF6MYYyzDqOe5pnh0dRfjSIi7cw6aBcuXin1Icb81mcYRjR7CHm5EcOqd7KZ9giGIc5DGM/YIGBSSHaXYdyTORgv+E+bv1B5AkPONdJ7AtMSo6EhIsswLLqeq21ZNFVDRK7FGP77QwXpRmE8eN2UUseizPsR4Cyl1PVVl1QTCRF5DnhDKfXRGRyr66iGMHtWXwMpkXrKsSYuPjjTaM4UpdQrUSZdBvwP2CwijyulHiudwBwycmD0xgYAvwTCLhukiR3mkHVU6DqqHURkEUYP876aUk6gFVSNIyJzMIbjSvOKUurmmpanoWAOd06uIFkyxpBRa4whyccxhoTiChGJtBrG2ErOEdZFar2OzCG3LRGie5jDi/UKpdSltXHeBjnEp9FoNJr4p14aSWg0Go2m7hNXQ3zNmjVT6enptS2GRqPRaGqQNWvWHFVKlfn4Pq4UVHp6OqtXr65tMTQajUZTg4jInnDheohPo9FoNHGJVlAaTRxR6PHx4caDaOMljUYrKI0mrvjv+0sY81Y31n31cW2LotHUOnE1BxUOj8fD/v37KSyskp8zTQPD5XKRlpaG3W6vbVEqhfXAtwAkf/8ODBldQWqNpn4T9wpq//79JCcnk56ejrFIt0ZTPkopsrOz2b9/Px06dKhtcSqFSjA8PEhBVKsxaTT1mrgf4issLCQ1NVUrJ03UiAipqal1stdtdSYAIJ78WpZEo6l94l5BAVo5aSpNXb1n7OYTafFqBaXR1AkFpdE0GPyGo1WbVlAajVZQ0SAi3HXXXcH9xx57jJkzZ9aeQBWwbNkyvvqq0r4Kg6xbt45zzz2Xnj17kpmZycKFCys+SBMb/IbPTK2gNBqtoKLC6XTy9ttvc/To0YoTVwKlFH5/7H1/VVVBJSQk8NJLL7F582Y+/PBDpk+fzokTJ2InoCYyplNnh6+glgXRaGofraCiwGaz8etf/5onnniiTNyRI0eYMGECAwYMYMCAAXz5peEwdubMmTz22GmXQ7169SIrK4usrCy6du3KlClT6NWrF/v27eOee+6hV69eZGRkBHsry5YtY/jw4VxxxRV069aNyZMnh/1486mnnqJHjx5kZmYyadIksrKymDNnDk888QR9+vThiy++KFfG6667jnPPPZfOnTszd+5cALp06ULnzp0BaN26NS1atODIkSNlzv3GG2/Qq1cvevfuzXnnGc5RCwsLueGGG8jIyKBv37589tlnAMyfP59LL72UCy+8kPT0dJ555hn+/ve/07dvXwYPHsyxY4bV2ty5cxkwYAC9e/dmwoQJ5OeX7UkMHjyYzZs3B/eHDx9ef5bI8plDfKrGvGprNHFL3JuZh/LAu5vZ8uOpmObZo3Uj/u/inhWmu/XWW8nMzOT3v/99ifDbb7+dO+64g6FDh7J3715Gjx7N1q1by83r+++/58UXX2Tw4MG89dZbrFu3jvXr13P06FEGDBgQbOzXrl3L5s2bad26NUOGDOHLL79k6NChJfJ6+OGH2b17N06nkxMnTpCSksLNN99MUlISd999NwDXXHNNRBk3bNjAypUrycvLo2/fvowbN47WrVsH81+1ahXFxcV06tSpzHU8+OCDfPTRR7Rp0ybYw5o9ezYiwsaNG9m2bRujRo1ix44dAGzatIm1a9dSWFjI2WefzSOPPMLatWu54447eOmll5g+fTqXX345v/rVrwD485//zLx58/jtb39b4rwTJ07k9ddf54EHHuDgwYMcPHiQ/v37l1vmdQazB2X3awWl0egeVJQ0atSIKVOm8NRTT5UI/+STT7jtttvo06cPl1xyCadOnSI3N5I/OYP27dszePBgAFasWMHVV1+N1WqlZcuWnH/++Xz7rfGx5sCBA0lLS8NisdCnTx+ysrLK5JWZmcnkyZN55ZVXsNnCv2+UJ+P48eNxu900a9aMESNGsGrVquBxBw8e5LrrruOFF17AYil7qwwZMoSpU6cyd+5cfD5f8Hquvdbwx9itWzfat28fVFAjRowgOTmZ5s2b07hxYy6++GIAMjIygte2adMmhg0bRkZGBq+++mqJnlKAq666ijfffBOA119/nSuuuKLc8q5TmHNQDopjmm1ukZedh8u/LzWaeKNO9aCi6elUJ9OnT6dfv37ccMMNwTC/38/KlStxuVwl0tpsthLzS6Hf5CQmJkZ1PqfTGdy2Wq14vd4yad577z2WL1/Ou+++y0MPPcTGjRvLpIkkI5Q1xw7snzp1inHjxvHQQw8FlWlp5syZwzfffMN7773HOeecw5o1a6K+HovFEty3WCzBa5s6dSqLFi2id+/ezJ8/n2XLlpXJp02bNqSmprJhwwYWLlzInDlzyj1vncK04rMS27nJ/zf/Hcbtf4L0P36Izd0oJnmu3Xucpet3cdcvzomZWf/2n3JYuu0Qtww/Oyb5aeo2ugdVCZo2bcpVV13FvHnzgmGjRo3i6aefDu6vW7cOMFyHfPfddwB899137N69O2yew4YNY+HChfh8Po4cOcLy5csZOHBgVPL4/X727dvHiBEjeOSRRzh58iS5ubkkJyeTk5NToYwAixcvprCwkOzsbJYtW8aAAQMoLi7msssuY8qUKeX2Tnbt2sWgQYN48MEHad68Ofv27WPYsGG8+uqrAOzYsYO9e/fStWvXqK4HICcnh1atWuHxeIL5hGPixInMmjWLkydPkpmZGXX+8Y6okJeQGBrQXLB/NkOsm8nZ8knM8nzmrf9x95oLyP36+Zjl+eiS1Vz62YWcWrcoZnnuOJTDwx9s0wvw1kG0gqokd911VwlrvqeeeorVq1eTmZlJjx49gm/zEyZM4NixY/Ts2ZNnnnmGLl26hM3vsssuIzMzk969e/Pzn/+cWbNmcdZZZ0Uli8/n49prrw0aJPzud78jJSWFiy++mHfeeSdoJBFJRjCGCEeMGMHgwYO57777aN26Na+//jrLly9n/vz59OnThz59+gSV2v3338+SJUsAuOeee8jIyKBXr1787Gc/o3fv3txyyy34/X4yMjKYOHEi8+fPL9Fzqoi//OUvDBo0iCFDhtCtW7dg+JIlS7j//vuD+1dccQWvvfYaV111VdR51wnMIT4Af1HshuSKMdYkLCiInfm6M/8gAJYNr8Usz8P7vqe1HCPh43tiluesD7dx4IuXOfr1KzHLU1MzSDy9VfTv31+VtsbaunUr3bt3ryWJ6jczZ84sYUxR36iL986Hc37PmJ/+BUD+bZtIaNY2Jvl+9H+jGC3fkDV0Fukjb4pJnr95ZC7PFtxNfkpXEqavqviAKJjy4Gxe8v8RjysV+4wfYpLnhX//nP+dusTYmXkyJnlqYouIrFFKlbF00j0ojSae8J8e4ivIi11j6rUYvVhPfuysYN028+XWFzuDjhSrYb2oYji86XZYY5aXpmapU0YSmtgSz6thNFQkZIivMC+nnJSVwycOUOAvjN2wYYLFlNUXO5P4RjYPeED8npjl6bJpBVVX0T0ojSaOEHVaQRXHsAcV+EzAXxTDHpTVkFVi2INyW41emcUXu5XonfaQZs4bW/N9TfWiFZRGE0eEKihPQeyUicNiDJmpGPag3FYjz1gqKJepoKyq7CcVZ4oztAdVrL8Fq0toBaXRxBElFFQM54scYvZ2YthAu8w8LTEcjnOKr+JElc3TFvKNllZQdQqtoDSaOEJCjCR8hbGbg7JiKhNvXszyDCgmq4pdDyp0Di52eYYo0Bia7muqH62gomTRokWICNu2bYuYJisri169elWrHOvWreP9998/4+MDH/b26NGDnj178o9//COG0mmqiigfHowhKX8MFZQl4GfKE8MGOqigYqdUSn6oHJt8/d4QBaV7UHUKraCiZMGCBQwdOpQFCxaEjQ+3DFFlCaxnVx5VVVA2m43HH3+cLVu2sHLlSmbPns2WLVvOOD9NbBHlIw/D7buK4du+RcXeEaL4Yje0F8wzpAdJcYx6e36toOoqWkFFQW5uLitWrGDevHm89trpr+aXLVvGsGHDuOSSS+jRowdgKKrJkyfTvXt3rrjiiqC7iKVLl9K3b18yMjKYNm0aRUWGaW56ejr33nsv/fr144033ihx3tLuLIqLi7n//vtZuHAhffr0YeHCheTl5TFt2jQGDhxI3759Wbx4MWC4txg/fjzDhw+nc+fOPPDAAwC0atWKfv36AZCcnEz37t05cOBAmWv+/PPPg6tI9O3bl5ycHJRSEV2DnH/++YwfP56OHTsyY8YMXn31VQYOHEhGRga7du0C4N1332XQoEH07duXkSNHcujQoTLnnTRpEu+9915wf+rUqcGFYRsConz4xE6ecsa0MbUEVkn3xXCIL4ZDe0FCe00xun7l1UN8dZW69R3UBzPgp7KLoVaJszJg7MPlJlm8eDFjxoyhS5cupKamsmbNGs455xzAWGdv06ZNdOjQgaysLLZv3868efMYMmQI06ZN45///Ce33XYbU6dOZenSpXTp0oUpU6bw7LPPMn36dABSU1OD6/aFUtqdhcPh4MEHH2T16tU888wzAPzxj3/k5z//Oc8//zwnTpxg4MCBjBw5EjBcZWzatImEhAQGDBjAuHHjSrilyMrKYu3atQwaNKjMuR977DFmz57NkCFDyM3NxeVy8fbbb0d0DbJ+/Xq2bt1K06ZN6dixIzfeeCOrVq3iH//4B08//TRPPvkkQ4cOZeXKlYgIzz33HLNmzeLxxx8vcd6AK41x48ZRXFzM0qVLefbZZ6OszLqPRflQYiEPd0wNGgJWcQ5/7BwhluhB+bxgrXpzUmKIL0Y9KOXTPai6iu5BRcGCBQuYNGkSYLzhhw7zDRw4kA4dOgT327Zty5AhQwC49tprWbFiBdu3b6dDhw7B9fiuv/56li9fHjxm4sSJYc8bzp1FaT7++GMefvhh+vTpw/DhwyksLGTv3r0AXHjhhaSmpuJ2u7n88stZsWJF8Ljc3FwmTJjAk08+SaNGZVe3HjJkCHfeeSdPPfUUJ06cwGazlesaZMCAAbRq1Qqn00mnTp0YNWoUUNKVxv79+xk9ejQZGRk8+uijYV1pjB07ls8++4yioiI++OADzjvvPNxud9hrr4+I8uHDSoG4sXhi2dsxGn5nDBWURcW+4S85xBcjZaKNJOosdasHVUFPpzo4duwYn376KRs3bkRE8Pl8iAiPPvooUNZ1RiT3FeURyf1GNO4slFK89dZbZVYM/+abbyLK4vF4mDBhApMnT+byyy8Pe+4ZM2Ywbtw43n//fYYMGcJHH31U7jVE40rjt7/9LXfeeSeXXHIJy5YtC7uShcvlYvjw4Xz00UcsXLgw+GLQUBDlwy9WCsWFNZYWd6YVn0vF7gPYEublxXngTqlyntXfg4qd4Ymm+qn2HpSIjBGR7SKyU0RmVPf5Ys2bb77Jddddx549e8jKymLfvn106NCBL774Imz6vXv38vXXXwPwn//8h6FDh9K1a1eysrLYuXMnAC+//DLnn39+hecO586itCuN0aNH8/TTTwddCaxduzYY97///Y9jx45RUFDAokWLGDJkCEopfvnLX9K9e3fuvPPOcs+dkZHBvffey4ABA9i2bVuVXIMAnDx5kjZt2gDw4osvRkw3ceJEXnjhBb744gvGjBkTdf71AYvy4cdKoSUBewwVlM1s+O14Y7aagpRWUDHAEtqDilVvxxeq9GJnJKKpfqpVQYmIFZgNjAV6AFeLSI/qPGesWbBgAZdddlmJsAkTJkS05uvatSuzZ8+me/fuHD9+nN/85je4XC5eeOEFrrzySjIyMrBYLNx8880VnjucO4sRI0awZcuWoJHEfffdh8fjITMzk549e3LfffcFjx84cCATJkwgMzOTCRMm0L9/f7788ktefvllPv3006ARRMAqcM6cOUFXHE8++SS9evUiMzMTu93O2LFjq+QaBIy1/6688krOOeccmjVrFgxfvXo1N954Y3B/1KhRfP7554wcORKHwxF1/vUBi/LhFwseqxu7L3aNaeA7KCBmQ2fWahiOC/1QOXZDfCEKOVaWgZoaoVrdbYjIucBMpdRoc/8PAEqpv4VLr91txI758+eXMKZoiNTFe+eb/zeas9RhfrS3o33RDlrftzUm+W7/vwy6ijE3yfRNkFJ1Nx4L/nItV/veBUBd/y7S4bwq5/n8A1OZpt4x8rz4KeSc66uc502PPMe/Cu4y8ux7HTK+4T4T8UptudtoA+wL2d9vhoUK9msRWS0iq48cOVLN4mg08Y3FnIPyWhNjatBg43Rvp7ggNvMwlpD5Im/M8jw9bOiN1YfKIUORsXQCqal+at2KTyn1b6VUf6VU/+bNm9e2OPWGqVOnNujeU13FgjEH5bMn4laxU1BWfJxUhjFOUYzW+LOGNPxF+bFSUD7yVWx9V5VcPkorqLpEdSuoA0DoWEKaGVYp4snrr6ZuUFfvGeM7KCvKkUQChRADx31+v8KGj1xLEgCFebFp+G3Kiw/DMrQ4RsrE4vdRLA6KlB1vrJRJiJFELFfn0FQ/1a2gvgU6i0gHEXEAk4AllcnA5XKRnZ1dZxscTc2jlCI7OxuXy1XbolQai/LjNxUUEBNDAY/fjw0fBaaCipUysSoPp0gGwFsQm4bfghe/WMnFFbPFcsUcNjyhElHaSKJOUa3fQSmlvCJyG/ARYAWeV0qV/TqzHNLS0ti/fz96fkpTGVwuF2lpabUtRqWx4MMvTsRhDMcVF+TgcJX9kLoy+MweVKE1GXzgidF8kQ0v+ZYkmvhP4S2qep5+v8Kq/PjFRoGykxAjBWXxe0HgpErEpXtQdYpq/1BXKfU+cMarm9rt9hIrNWg09ZnAEJ+4jJ5JYe5JHE3aVHBU+Xh8CjteiuzJUBwbgwalFDblxWN1Ueiz44tBnl6/wiY+lMVGHnbcRTFcLNYKJ0nkrBiuzqGpfmrdSEKj0ZzGiqGgrAEFlV91t+9enx8rfryOxsZ+DOZ2vH5lWAZa7OThisncjtccikSs5BO7xXID1oYnVWJMl4/SVD9aQWk0cYSYc1A2tzGsV5RXdQXl8yvs+FAOQ+nFwtTa4/Mbq1JYHeQrV0zmdjw+U+lZ7eQqN+Kp+ofKSqng6hQnSTLcjej57DqDVlAaTRwR6EEFFFQsDBo8Zm/H6nBToBwx6e14fAq7+BCbg1xcMVl53VB6PpTVTj4uLDFwrhiQE4welOAHb+zWI9RUL1pBaTRxhNWcg3ImGArKG4Pvi7xeL1ZROBxOcnHFZLkfr8+PAy9idZCPKya9Ha85VyZWO3k4scbAuWJw2BBjDgrQyx3VIbSC0mjiCIvZg3IkmObbMbBk83gM55h2hzEcJzGYh/H6DWVisRkKyhqT3o6hTMRipwBXTLz/GsOGp3tQgPYJVYfQCkqjiSMs+FEWG+6kFAD8MVBQXo8xB2Ox2ikUV0wMBQJzUMrqoEjc2GKwsK3Xr3CIkWexNSEmi+V6A3NlQIHVUPq6B1V30ApKo4kjAnNQ7qSAQUPVFZTPY6zmbbHaKbS4YzN0Zg7HYbVTbHFj81Z9WSav2YPCYsNjTcCuiku6yjgDAib2AIU283syraDqDFpBaTRxRGAOKsnlIFe5kFiYb5v+n8QWUCaxGDrz4xDDis9jTcDuj+FwnNWOz5ZgBFZxOC5geAFQaDfM7ImB0tfUDFpBaTRxhBU/WKy47VbyYmQdF+hBidVOsSU2Q2fFIWbmHps7Jiuve/2G4YWy2PHZYmPQYChSY6kjr133oOoaWkFpNHGE1ZyDEhHyccdkvshnDpNZbA681gQcMVAmgaEzsRnKxBGj4bhAD8rviJWCUjjx4rM4wBlY31ArqLqCVlAaTRwRmIMCKBQ3lhi4ffeaVnwWqw1vjHo7gaEzsdrx22NjHWfMQRlm5tgDyqRqw3FBYw6LHXHGbgFeTc2gFZRGE0dYzaV+AIosCTGZL/J7jSEui82Bz56IS1X9Q1WP9/R3UKcVVNWUqddvflRrdYAzhkN8ePBbHcHlo3QPqu6gFZRGEycopbCZQ3wAxVY3Dl/VG1O/aSRhtRm9HSdVH44r9vrMIb7TK6/HQpkELAOtMRqOCwxFKqsTuzMRP6IVVB1CKyiNJk7wmUsSKYsdgGJrIo4YGDT4QnpQOGIzdOb1erGIwmJzxGzozGvOQYnVhiXQ26miFWPA2lBZ7CS6bOTHaCUNTc2gFZRGEyf4fMaSRIEelNeWiCsG5tuBIT6r1Rbs7VR1PT6fxxgmtNicWEwFpapovu31+82ljpzYAnlWUekVm0N8WB0kOGzkKZeeg6pDaAWl0cQJnhBzcMCcL6q6QUNQQdkdQT9TRVV0++4vNhSnOBKCvR1PFb3qGsNxPixWG/aEQJ5VVHo+ZZiuWx0kOqzkKWfMPPVqqh+toDSaOKG4yLC2E6sDAGVPxE0R+H1Vylf5zN6OwxUzP1O+4gIzTzc2t6n0qphncC0+mwO7OzYKqtg05sDqIMFpDPHFwt2IpmbQCkqjiRM8xaaCshkKyu+IjaGAmL0dqyMJq+k+vii3in6mAnk6E7CbrkE8VXQN4vF4sIsPi91JgstJgXLgLahanvnF3uCitokO4+NnraDqDlpBaTRxwmkFZQzxiSM2czvK7O3Y3QnBobPiKvZMlMfIU+zuoGuQquZZXGgoYpsziUSnjTxc+Kro/Te/2IdDPIjdRYLTmINSsXIlr6l2tILSaOKE0x/UGj2owHxRYRW96vrNHpgrIfl0b6eKPRNfkdGDcriTgq5BqrryemBuyO5OJtFhI185q6yc84t9OPFgtTtJdFhNKz7dg6oraAWl0cQJgR6U1W4oqIDxQUEVFZQKGDTYE3Emmo4Qq2p8EFBQzgQSXQ7ylbPKCsof6EG5k0hwmsNxxVWzYiwo9pJMARZXo6AVXyz8YWlqBq2gNJo4wWcOPYnDWMnb5jKG+IqraHGnAt5u7W5cicaK3lXu7ZiKw+JMMBp+XFU2XQ/09MSRSKLDRh7uKq/mnlfsI1kKEFcjEp1W8nHGZH1DTc2gFZRGEycEJu/FafSc7ObcTlEVjQ/EnC/C7iYhIQmfkpgpKGxuEp1WY26nikNnweE8R6KhTJSzyr2d/GIfyZIPzkZBRWr15oNSVcpXUzNoBaXRxAl+swdlMdehs7uN3k5Vh+Ms3nwKcYIISS47ebirPLcTsOLD7g42/JaqriRhDvHhSDJ7UFX3/ltcmI8TD5g9qDzlxqJ84C2qUr6amkErKI0mTvCaFmt2c2jv9HxR1XpQVm8+heIGINFpIzcGy/3Yio4bGwlNSXRaycWNeKo2XxS4fuwJJDgNg4aqev/1F5rzd87GpmWg09jXyx3VCbSC0mjihMBKDO5EY4jPlWT0oKq68oGr+Dh5thQAHDZLTPxMWQuP48EOjiRcNmM4zuqpWg/KUmgqPXcKTpuVAlzYq7hYrjc3O5hngt204oMqr0WoqRm0gtJo4gSvqYgSTMWUkJiMXwmqigoq0XucAkfT4H6RuLFUUZk4A0pPBItFKLQkYK9ibyeh+KixkdgCgGJrAnZf1ZZ6Sszbb2w0ScdmtVBsMXqSugdVN9AKSqOJEwJWfInJRg8q0WknH2eVrOP8fkUj/wk8rtMKqtDixlZFR4gJ3hMU2lOC+0WWBGxVWHldKYW7KJt8a2MwV9LwWhOwKQ+Y7kLOhJQiU0E17QQQM99VmpqhSgpKRGaKyAERWWf+LgqJ+4OI7BSR7SIyuuqiajT1nKIc/Epwmh/TBowPqmLJdiK/mOacwJ/QPBhWbE3EUYXezqlCD2epoxS5WwbDvFY3ziqsvH6ywEMT/zEKXc1O52kzzO05w+s/me/hLO+PFNmSIMFQ0P5Anvpj3TpBLHpQTyil+pi/9wFEpAcwCegJjAH+KWK6CdVoNGGxFx7lhCSDxXhUHDaL8S1QFRrT/fuzSJYCbM06BcM8tgQcVVAmPxzOpb38BKkdQ/JMxOEvOGPz7f3HC+ggB/E0Tg+GVbW3szs7jw7yE4XJ7UEEAOXQXnXrEtU1xDceeE0pVaSU2g3sBAZW07k0mnqBNf8op6wpJcIKxY21CsNxx7I2AZCc1iMY5rMl4vSf+dzOgT3fkyhFJLTqGpJnEhYUnKEl37YD2XSQn3C07BYMCyqoMxzi/OFILmdbDmBJPft0oKNqeWpqllgoqNtEZIOIPC8iTcywNsC+kDT7zbAyiMivRWS1iKw+cuRIDMTRaOomzqJsihypJcIKLQlVmi/y7P4SP0LLroODYX57Eu4q+Jk69f1XADTpfO7pPM3VL8604c/+fiV28dH47JD32Cq6ff/+++20kWwSOp6+9lh5/9XUDBUqKBH5REQ2hfmNB54FOgF9gIPA45UVQCn1b6VUf6VU/+bNm1d8gEZTD/H4/KT6juBNbFkivKgK1nFKKZodWcl+e0esSacVn3Ik4qQYfN5K5+n3K1L3f0KOpRG21pmn87SfecPv9yvcP/wPHxYs6cOC4QHvv2eap/X7DwGwdhoeDA98BK2H+OoGtooSKKVGRpORiMwF/mvuHgDahkSnmWEajSYMPx7Opr1kk53auUS4x+rGeYbWces3rKOvfzObO99aMiLoZyoH3E3KHlgOX2/cxlDfKg6nX0Ky6fkXQDnOXEF9teMAF3qXcaTlEM5KPK1IpQo9qC93HmFM8cecanw2jVqeHt50uBLxI1i0gqoTVNWKr1XI7mXAJnN7CTBJRJwi0gHoDKyqyrk0mvrMYXOuyN2qW4lwb8D4oJIopcj98AGKsNNx1M0l4gKrpFd2jT+fX5H9wd9wiofWY+8qmWdAmVRyiM/r87NryaO0kmM0HXlHiTjrGQ7H+f2KL5fMo5clC/f500vEuZ12CnDqIb46QlXnoGaJyEYR2QCMAO4AUEptBl4HtgAfArcqparmt1qjqcfk/7gNgKbtepYI99oScZ+Bxd2nbz/H0ILP2N5xKu7UdiXiAsqkIKdybjwWvfMavyhYwt70K3Cc1b1EXKC3U9k1/j56ez7X5r3IwVYX4OhyQYk4m2luX1kPuM8s+YJf5czmROPu2PteXSIu0Wn4mdJDfHWDCof4ykMpdV05cQ8BD1Ulf42moaCO7MCvhCZtS/ag/PYkXBSB3xc0P6+Irz97j6Eb/sAPru70nPhgmfhAw1+YF70y+WDZ51yw4S6OOtNIv/rvZeKtIY4QHVHm+dXyjxmxaQb7XV1oN/WlMvF2t+n9N/9UYIGiCnlp2QZGfncbSTYvjskvgLVkE5fgMFZeTy3O16sU1AF0HWk0cYDr1A8ctrZA7O4S4ZWd29m0/lu6Lfs12bbmtL5lCVZnQpk0gYa/MD+6HtSKtRvJ+GwaYrWT8qslQXcgodhClElUcm5aT5elN3LK2oSWNy8+Pd8UgiPBCIt2Nff31mXR6dOb6WrZj+3qV5EW3cukSXLaKMCJT5uZ1wm0gtJo4oDUwj1ku9LLhCtn9N/t7Mn6gSbvXI2yWEmYthhX4xZh0zlNF+3ROELc8H0WqYsmkyq52Ke8haN5x7DpHIkpAHiiUFC79uwl6c2J2MWPc+rbuJq0Cpsu0eUkXzmDaxSWx9ffH4a3b2aIZTO+S57B2vmCsOkSHDbycQZdm2jiG62gNJpaxuPx0Na3n4LGZRt/i9mD8lTgcuPosWwKX5xAU05RdOUCUtp0iZg24MajuIKeye6DR/C+Oomz5QBFE14kIb1/xLQuM09PBb2yA0ePkTf/ClpxlIIJr9Ck1JxbKMZST84KV3PfdvAke169lXGWryk4/34c/a6JmDboXFH3oOoEVZqDqisU5OeRn5+Hp6gQu/ixOxOwuxJwuBKwWrWO1tQuP+3ZRlvxoFr0KBNncZledfNOYS8Ta5BfUMCeZ6+kj383e0bNo2OPIeWez22ull5ez+TwiVz2z72aIWzj6Oh/0iJjTLl5Jpm9nfKUybGcAnbOuYZhagc/XvgsaRnDy80z0WE4GEwqJ88DJwr4Yu7d/IqPyT3nNySNuCtiWjCUXgFOqOJq7tHi8frIOXUC5SvGjsJqFeyuROyuRCTKOcWGTL1SUCePH2Xn10so2r+ehONbSSn6kaa+bBpJPu4Ix+QrJ4XioBgXRRYXxRYnHosbn9WF1+JCiYC5vJhCIcrYFRSgEGX8g0LAXItMhcQTjAdC0lcdc3mxqDElrDkURvmVDq7w8ssmUOVHV3B0lGkrzLcSOauwm2FJ8hsNcGLbjDJxNrdpcZd/irKzNOD1+lgz+waGedawpf9f6DFkQoWiJQT9TIVvpHMKiln/z+u50P8t+8/9C2nnRu6RBK/BZSMXd0RX8nmFHlbMvolLvF+zp/+faT/k6rDpQjEcDLpIijD/diK/mLfn3M9v/a9zouuVpPzibxXn6bByCCcUH64wbbQopdh75AS71y2ncM+3uE/soFn+bpr6j5LKSZpKeANmo+1xUiguPOLEIw68Fides+3xiY3T7UZouwNh2x4UKFUyjSHg6faokm1PuDYjNGS/82zG3PlcpfKsDPVKQR07mMU5q+7Ao6zst7bluLs9hxIGQVILrI4EsDnxKgvKW4R4CsCbb/x7CrB4C7D68rH6CrH6CnEWnyBJFYVU6OlqCVaaBGLFDDP3JfJ+ieOrSmz0XLUhqApljFgS5UVIOdEV5BWLkq8wj4jni3Skiy2OYXTqNahMTMDizpNXduhMKcXnz93DBbkfsKHjr8m8+HcVSQZAoukQMZxJeJHXx+ezb+EXxZ+Q1eu3pI+OLs8kp5Vc5cIRIc93n53BpMLF7O08lfa/uCc6OZ1WsnHTMoyCKvT4eOFfj3F7wVyOtR1J06vmRPXGluC0ka9i4Ere62fVlu859M0btPrxE3r7t9BeDDfyxyWFI+6OHE7ozAFXM/zupmCx41WCTyks3gIsngLw5GH15iPeAqy+Qiy+Imy+QmzefNz+49gwVvpQpdsNCaojIrU9CkFC04iEpC1LuMc0mpTirZq/roqoVwqqbedMdl72Pm279qWDq6z1kkZT13AkGL2dcNZxny54nAt+mseGZheRed2sqPNMcDnCfgvk9ys++NcfuTT3DXalT6LThL9EnWeS084RXDhLKROfX7HwuVlMOfkce1uPpd3VT0Qvp8PGXuXCEibPOc/P5dYTj3G82TmkXv9KGXPySCQ6rOTjxHKGDesPR3JZ/r/FpO+YxxC1Drv4OGxvw/5Wl5HU/QJa9RpOk+QWVG59jrpLt4qTVIl6paBsdgdn9y5//F2jqUs4EoweVOm5nc8XPcfw7X9le1J/et30YqXGe0WEfHGVMF1XSrHkxUe59Mgcvm8+is5Tnq1UnolOK7tVAs1K5fniS89x3cFH2d90IO2mvQiW6Od8Ex3GsKHNk10izzkL3uBXP95PbnInUm98C+yRBvDLkuA0rPisPtM1SJTX+M2uoyz/YAHnH36ZqZbtnLI24cDZN9BqyGRatO1Li8qOt2uiol4pKI2mvhGwjvOGWPF99eFrnLv29+x29aDjbe9gsUf7aexpTkgKriLDxbpSirdens2lWX/jh8YDOfumVyqlSCBUmZwK5vnyqy9yze4/cCyxE2k3vQU2Z+XydFo5pJrgLloLypgBfPa1RUzacSceVypNb3oX3CmVlNNKvnIZA2Ke/NPuNyLwza4jfP3efEYefYV7LFnkuFuSM+T/0ejcaTSqhGLUnBlaQWk0cYw7sRF+JUGz6M/f+TeD1/2BA4500m77L3ZzjqqyZFub06roED6/4r8vzuKyrL9xIKkXHW55C6mkIgGwWIRsazOSC7fh8/lZ8OpzXLXrj5xMaE+LW94HV+XltFkt5NibY/cX4s07znOLP2LyjjsRRxLJv/4vJJ9V6TwTHDaOYX5onHc0ooJatfMn1rw3lwuz/8N0y4+cTGqH5+dPk9xnUtAlvab60QpKo4ljUhIc5OGiOPcYn/779ww/8G92uXrQ9tYluJKbnnG+J2zN6Vu4jqVP3sj4U2+yq9EAOt62KOyKDtGSl9QeV+5HfPzEDVyTs5hDiV0469b3kcRmFR8cAV9yKzgFK579DTfkLiXf1ZKUm99HmrQ/o/wcNgvZAbd1OT9BSD5KKVZs3cf3H83hwuOv8xvLEbIbdaH4wudonHF51EtNaWKHVlAaTRzTJNHBekt7ev/4OgAbmo6ix03zsbnKH5qqiOMtB+PY8wGjTr3JtrYT6Xb905UegiuNr+3PYOu/GZW7iD2tRtN+2gsVDqFVSPuhFG2wMTzvQ35qNpizbngFkqrmN67Q1QK8QM5BAHIKPXy+chWnvn6RsYXvMUxyOZSSQfGYp0jtPrby33NoYoZWUBpNnJNz3v18981TOPpeReaoaTFpMMdOvIVP37PT+ezOdOs7KgZSwuRLL+Z/Sc/Rq1Ui7fvGpmH/zS/OZWnii5zTtIiz+l8ak16Mu3kHvAct/Pj5i6z75DPaHVvBL2QnfoSDZ40gacw9tEw/VyumOEBUxV9N1hj9+/dXq1evrm0xNBpNPeb11fuwL76Jy6xfGkrJ3Rl6Xk7roZORlHYVZ6CJOSKyRilVZi0t3YPSaDQNiqv6t+X7Nv/hx1Pf06rt2bRJaChfLdU9tILSaDQNjs6tUqDVgNoWQ1MBeqVUjUaj0cQlWkFpNBqNJi6JKyMJETkC7IlBVs2AozHIpybQslYfdUneuiQr1C1565KsULfkjZWs7ZVSZb4fiCsFFStEZHU4i5B4RMtafdQleeuSrFC35K1LskLdkre6ZdVDfBqNRqOJS7SC0mg0Gk1cUl8V1L9rW4BKoGWtPuqSvHVJVqhb8tYlWaFuyVutstbLOSiNRqPR1H3qaw9Ko9FoNHUcraA0Go1GE5fUKwUlImNEZLuI7BSRGbUtTygi0lZEPhORLSKyWURuN8NnisgBEVln/i6qbVkDiEiWiGw05VpthjUVkf+JyPfmf60vZCYiXUPKb52InBKR6fFUtiLyvIgcFpFNIWFhy1IMnjLv4w0i0i8OZH1URLaZ8rwjIilmeLqIFISU8ZyalLUceSPWvYj8wSzb7SIyOg5kXRgiZ5aIrDPD46FsI7VbNXPvKqXqxQ+wAruAjoADWA/0qG25QuRrBfQzt5OBHUAPYCZwd23LF0HmLKBZqbBZwAxzewbwSG3LGeY++AloH09lC5wH9AM2VVSWwEXAB4AAg4Fv4kDWUYDN3H4kRNb00HRxVLZh69585tYDTqCD2WZYa1PWUvGPA/fHUdlGardq5N6tTz2ogcBOpdQPSqli4DVgfC3LFEQpdVAp9Z25nQNsBdrUrlRnxHjgRXP7ReDS2hMlLBcAu5RSsViRJGYopZYDx0oFRyrL8cBLymAlkCIirWpEUMLLqpT6WCnlNXdXAmk1JU9FRCjbSIwHXlNKFSmldgM7MdqOGqE8WUVEgKuABTUlT0WU027VyL1bnxRUG2BfyP5+4lQBiEg60Bf4xgy6zewOPx8PQ2YhKOBjEVkjIr82w1oqpQ6a2z8BLWtHtIhMouQDHq9lC5HLMt7v5WkYb8kBOojIWhH5XESG1ZZQYQhX9/FctsOAQ0qp70PC4qZsS7VbNXLv1icFVScQkSTgLWC6UuoU8CzQCegDHMTo4scLQ5VS/YCxwK0icl5opDL69HHznYKIOIBLgDfMoHgu2xLEW1lGQkT+hOEw/VUz6CDQTinVF7gT+I+INKot+UKoM3UfwtWUfLmKm7IN024Fqc57tz4pqANA25D9NDMsbhARO0Ylv6qUehtAKXVIKeVTSvmBudTgcENFKKUOmP+HgXcwZDsU6LKb/4drT8IyjAW+U0odgvguW5NIZRmX97KITAV+AUw2GyXMobJsc3sNxpxOl1oT0qScuo/XsrUBlwMLA2HxUrbh2i1q6N6tTwrqW6CziHQw36QnAUtqWaYg5vjyPGCrUurvIeGh47OXAZtKH1sbiEiiiCQHtjEmyTdhlOn1ZrLrgcW1I2FYSryBxmvZhhCpLJcAU0yLqMHAyZDhlFpBRMYAvwcuUUrlh4Q3FxGrud0R6Az8UDtSnqacul8CTBIRp4h0wJB3VU3LF4aRwDal1P5AQDyUbaR2i5q6d2vTQiTWPwwLkh0Ybxp/qm15Ssk2FKMbvAFYZ/4uAl4GNprhS4BWtS2rKW9HDGun9cDmQHkCqcBS4HvgE6BpbctqypUIZAONQ8LipmwxFOdBwIMxLv/LSGWJYQE127yPNwL940DWnRhzC4F7d46ZdoJ5f6wDvgMujpOyjVj3wJ/Mst0OjK1tWc3w+cDNpdLGQ9lGardq5N7VSx1pNBqNJi6pT0N8Go1Go6lHaAWl0Wg0mrhEKyiNRqPRxCVaQWk0Go0mLtEKSqPRaDRxiVZQGo1Go4lLtILSaDQaTVzy/wEpsbv9smwqVwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6PUlEQVR4nO3deZwcdZn48c/T91xJSGYScjLhCBBISELMEhFXBNYAIqLCEsRjdRf5Ka7sEcWFFVxhV1BYb1hYuVa5VNBwiCQaAZVrckAuEiYhkMk5mdxz9VHf3x9V3VM996Srp6u7n/cr80pPdXf1MzU936e/txhjUEoppfwmUOgAlFJKqd5oglJKKeVLmqCUUkr5kiYopZRSvqQJSimllC+FCh2AW21tramvry90GEoppYbR8uXL9xhj6rof91WCqq+vp6GhodBhKKWUGkYi8k5vx7WJTymllC9pglJKKeVLmqCUKgLb97ez53BnocNQalj5qg9KKdW79377D9TEQqy+6UOFDkXlKJFI0NTUREdHR6FDGXaxWIxJkyYRDocH9XhNUEoViUMdyUKHoDzQ1NRETU0N9fX1iEihwxk2xhhaWlpoampi6tSpg3qONvEp5XO6oHNp6ejoYMyYMWWVnABEhDFjxgyp5qgJSimfS1maoEpNuSWntKH+3JqglPK5lNagVJnSBKWUz1lW121t7lP58L3vfY+2trYjfv4LL7zAnDlzCIVC/PKXv/QsrpwTlIhMFpFlIrJORNaKyFec4zeJyDYRWeV8XZB7uEqVH3cNqiNh9fNIpY5MrglqypQp3H///VxxxRUeRuXNKL4k8C/GmBUiUgMsF5Elzn3/bYz5rgevoVTZcvdBtSdSVESCBYxGFbvW1lYuu+wympqaSKVSXHrppWzfvp2zzz6b2tpali1bxnPPPceNN95IZ2cnxx13HPfddx/V1dXU19dz2WWX8dvf/paKigoeeughjj/+eNJrqAYC3jbK5ZygjDE7gB3O7UMish6YmOt5lVI2q1uCUqXjm0+uZd32g56ec/qEEdx40Sl93v/ss88yYcIEnn76aQAOHDjAfffdx7Jly6itrWXPnj3cfPPNLF26lKqqKm699VbuuOMOvvGNbwAwcuRIVq9ezYMPPsi1117LU0895Wn8bp6mOxGpB2YDrziHrhGRN0TkXhE5ysvXUqpcuJv42uOaoFRuZsyYwZIlS/ja177Giy++yMiRI7Puf/nll1m3bh1nnnkms2bN4oEHHuCdd7rWcl24cGHm/5deeimvsXo2UVdEqoFfAdcaYw6KyJ3AtwDj/H878LlenncVcBXY7ZhKqWzuGlSH1qBKSn81nXyZNm0aK1as4JlnnuGGG27gnHPOybrfGMN5553Hww8/3Ovz3UPF8z1c3pMalIiEsZPTz40xjwMYY3YZY1LGGAu4B5jX23ONMXcbY+YaY+bW1fXYDkSpspd0Jag2rUGpHG3fvp3KykquvPJKFi1axIoVK6ipqeHQoUMAnHHGGfz5z3+msbERsPusNm7cmHn+o48+mvl//vz5eY015xqU2Cn0p8B6Y8wdruPjnf4pgEuANbm+llLlqPsgCaVysXr1ahYtWkQgECAcDnPnnXfy0ksvsWDBAiZMmMCyZcu4//77WbhwIZ2d9gLFN998M9OmTQNg3759zJw5k2g0mqllvfbaa1xyySXs27ePJ598khtvvJG1a9fmHKvkOq9CRN4HvAisBtJjYP8NWAjMwm7i2wJ8wZWwejV37lyjGxYqle2dllb++jt/BOCuK09nwalHFzYglZP169dz8sknFzqMI5LeVLa2tvaIz9Hbzy8iy40xc7s/1otRfH8CemuIfCbXcyulsmtQ2gelyomuZq6Uz1lGm/iUP2zZsmVYX0+XOlLK51KuxSN0mHlpKNclq4b6c2uCUsrndJBEaYnFYrS0tJRdkkrvBxWLxQb9HG3iU8rnLKN9UKVk0qRJNDU10dzcXOhQhl16R93B0gSllM9l1aC0ia/ohcPhQe8oW+60iU8pn3MvddSmNShVRjRBKeVzWcPMtQalyogmKKV8TgdJqHKlCUopn9PtNlS50gSllM+l+6CCAdFBEqqsaIJSyufSTXxVkaAOM1dlRROUUj6XngdVHQ1pE58qK5qglPK59FJHVZqgVJnRBKWUz2Wa+KIh2uPWAI9WqnTkPUGJyAIR2SAijSJyXb5fT6lSk27iq4mFaI8nCxyNUsMnrwlKRILAj4HzgenAQhGZns/XVKrUpGtQ6T6ocltkVJWvfNeg5gGNxpjNxpg48AhwcZ5fU6mSkq5BVUZCWAbiKW3mU+Uh3wlqIrDV9X2TcyxDRK4SkQYRaSjH1X2VGkhXDSoIQIf2Q6kyUfBBEsaYu40xc40xc+vq6godjlK+4x4kAbqahCof+U5Q24DJru8nOceUUoOUbuLTBKXKTb4T1GvACSIyVUQiwOXA4jy/plIlJd3lVJ1OULrckSoTed2w0BiTFJFrgN8BQeBeY8zafL6mUqUmpTUoVabyvqOuMeYZ4Jl8v45SpcrqPkhCE5QqEwUfJKGU6l/3QRJt2sSnyoQmKKV8zr1YLGgTnyofmqCU8jn3ShKg276r8qEJSimf00ESqlxpglLK59JL71VFNEGp8qIJSimfSzfxVTqj+HQelCoXmqCU8rl0ggoFhFg4oMPMVdnQBKWUz1nGIAIiQkU4qE18qmxoglLK51KWISgCYCcobeJTZUITlFI+lzKGQMBOULFIkDatQakyoQlKKZ+zutWgdB6UKheaoJTyuZQFwYCriU9rUKpMaIJSyucsY3DyExURTVCqfGiCUsrnUpbJrkFpE58qEzklKBH5joi8KSJviMgTIjLKOV4vIu0issr5usuTaJUqQynjSlCRoM6DUmUj1xrUEuBUY8xMYCPwddd9m4wxs5yvq3N8HaXKljEGEe2DUuUnpwRljHnOGJN0vn0ZmJR7SEopN/c8qJg28aky4mUf1OeA37q+nyoiK0XkeRE5q68nichVItIgIg3Nzc0ehqNUacgaxRcJ0pGwChyRUsNjwC3fRWQpcHQvd11vjPmN85jrgSTwc+e+HcAUY0yLiJwO/FpETjHGHOx+EmPM3cDdAHPnzjVH9mMoVbosYwg4HyUrwkHiKYtkyiIU1DFOqrQNmKCMMef2d7+IfBb4MHCOMfbGAMaYTqDTub1cRDYB04CGXANWqtx0X+oI7C03ajRBqRKX6yi+BcBXgY8YY9pcx+tEJOjcPhY4Adicy2spVa66L3UEuieUKg8D1qAG8CMgCixxRhm97IzYez/wHyKSACzgamPM3hxfS6my1H2pI4COuPZDqdKXU4Iyxhzfx/FfAb/K5dxKKZt7om6l1qBUGdFGbKV8LpGyCDv9Te4+KKVKnSYopXwukTJEQvafaiys276r8qEJSimfi6cswsGueVCALnekyoImKKV8Lp7UJj5VnjRBKeVziZRFNJSdoNq0iU+VAU1QSvmcuwYVi9j/aw1KlQNNUEr5XLyXUXy67bsqB5qglPK59ngqM/8ppn1QqoxoglLK59riKaqi9pz6cDBAOCiaoFRZ0ASllI8ZY2iNJ6lyalCg276r8qEJSikf60hYGAOV0a5VyXTbd1UuNEEp5WOtcXvD6h41KE1QqgxoglLKx1o77QRVGemqQem276pcaIJSysdaO+1EVBV11aAiWoNS5SHXDQtvEpFtIrLK+brAdd/XRaRRRDaIyIdyD1Wp8rOvLQ7AyIpI5pgOklDlItcNCwH+2xjzXfcBEZkOXA6cAkwAlorINGOM/lUpNQS7D3UAMHZENHOsIhxkf1uiUCEpNWzy1cR3MfCIMabTGPM20AjMy9NrKVWymg91AjC2pitBxcJBOpL6WU+VPi8S1DUi8oaI3CsiRznHJgJbXY9pco71ICJXiUiDiDQ0Nzd7EI5SpWPHgQ4qI0GqXcPMo+EAnQnd8l2VvgETlIgsFZE1vXxdDNwJHAfMAnYAtw81AGPM3caYucaYuXV1dUN9ulIlrXH3YY6tq0JEMsdiYZ0HpcrDgH1QxphzB3MiEbkHeMr5dhsw2XX3JOeYUmqQjDFs2HmI9x1fm3U8FtIEpcpDrqP4xru+vQRY49xeDFwuIlERmQqcALyay2spVW4272ll96FOTq8/Kut4LBygI6lNfKr05TqK7zYRmQUYYAvwBQBjzFoReQxYBySBL+kIPqWGZtmbuwF61qDCQVKWIeHahkOpUpRTgjLGfKqf+24Bbsnl/EqVq5RleOS1rZw2eRTHjKnKui+zJ1QipQlKlTR9dyvlQ79a3kTj7sN8/n1Te9wXC9t/th06kk+VOE1QSvnM9v3t/Ndv1zN7yigumjm+x/1RVw1KqVLmxUoSSimPJFIW1zy0gnjS4vZLT8saXp6W3lW3M4+TdQ+0Jdi6r43OZIrRVVEmjqogEtLPs2p4aYJSykdueXo9K97dzw8XzubYuupeHxMLed/EZ4zhpc0tPLtmJ394czdN+9qz7q8IB3nP1NF88MQ6zjl5HJNHVx7R61iWIWFZJFOGpGWIhQNEgoFeE7FSmqCU8olfNGzl/r9s4fPvm8pFp03o83ExD5v4OpMpfrm8ifv/vIW3dh8mFg5w1gl1fOqMYzhmTBXRcICWw3HWbDvACxubuenJddz05DpOOrqG86aPY/5xY5g0qpKKSBDLGPa1xdl1sJNdBzrYedD5OmB/7TrYQUtrvEcMwYBQGQ5SEQlSGQkSc92uCAcJBwOkLINlDJYhcztlmezbxk6A7uMiUBUNcdNFp3Da5FE5Xy81vMomQSVSFm3O1gWRUIBIKEAwoJ/alD+s2XaA63+9hvceN4avn39Sv4/tSlBHXoOyLMNvXt/Gd3+3kW3725kxcSS3X3oaF84cnzm/2ydOnwTA5ubD/H79bpas38WPlzXywz809vs6o6sijBsRY/zIGKdNHkVddYRoOEg4KARE6ExatMWTtMVTtMdTtCey/9/fliCetAgG7Mfb/0MgIARFCASEUCBANCTOMQgGAgQDEBDBGFi1dT+fu/81nvjimUwZc2Q1P1UYJZegdhxop2HLPpa/s49NzYd5p6WNnQc6iKd6/jFHggEqIkGqIkEqoyGqIkHn+xCV0RCV4SCVUfsTnTF2M4j9yQwsY+zvnU91xqTPapzHZr6zv0/fa3qEcURybRHJNTVri4y3/rKphdGVEX50xRxCAwwdT4/iO9I9oTY1H+Zrv3yDhnf2ccqEEfzXx2Zw1gm1g2pmO7aummPrqvmH9x/L3tY4a7cfYMeBDjqTFgGBURURxo2IMrYmxtgR0V6T3XDb1HyYj/3kL3z2/ld5/P+9l1GVkYGfBOxtjbN+x0E27DzEroN2DbD5cCdt8RSdCYvOZAqDXY6EgkI4GCAcCBAO2UkzHAwQdo6HgpJ5XChg//6MMRh6LyvsY/2XJV7w4s/43y+azohY2IMz9VRSCWrP4U7m/9cfALvN/IRx1Zw2eRTnnxqjOmonHYB40iKetJxPaUla46nMp7i2zhQ7D3bQHk/RGk/S1pmiI5lCxPnkJvYnN3E+xQWc4yCZQluwC3Bxfv32bec+H5TsJscs6eUfiLJVRILcfukMRlcNXHgeaROfZRnueXEzty/ZSEU4yG2fmMkn5kwicIQtCaOrIpx1gv/Xzzyurpp7Pj2XK//3FT5z76v858dmcMqEkZn7EymLLXtaeXPnIdbvOMj6HQdZt+Mguw52Zh4TCQUYWxOlriZKdTTEmKog0VAABJIpi0TKnjidSFl0JiwOp5KZY0nLEE9aJK2ux9llhGTKhnS5kC470uVJX2WJF+VIruVAWjyPq5qUVIKqrY7y7Y/NYPqEEZw8foROYlQlKRYaeoLa3xbnnx5dxbINzXzolHF866OnMrYmlq8QfWfe1NH88IrZLPrF61z4gz8xbkSUMVVRWuNJtu9vJ5GyC+tQQDh+bDXvPa6W6ePtcuSk8TWMqYr44sNluSmpBAVw+bwphQ5BqbzKTNQd5CfX17fu54s/X8HuQx186+JTuPKMY8qysP3QKUczr340T72xndebDrC/LU5FJMT5p45n2rhqpo2r4YRx1URDhW+WVLaSS1BKlbr0RN3OQdSgfrW8ia8/sZq66ii/uPq9zCrzkWxHVUX41Px6+lyjTfmKJiilikzXUkd9J6iUZfj2b9dzz4tvc8axo/nJJ08fVP+WUn6iCUqpIhMJ2lMk2uK9J6gD7Qn+8eGVPL+xmU/PP4Z///B07Y9VRUkTlFJFRkQYXRWh5XDPSa9vNO3nHx9eSdO+dv7zkhlc8VfaJ6uKV04JSkQeBU50vh0F7DfGzBKRemA9sMG572VjzNW5vJZSqsvYmijNh7uGQSdSFj/909vc/twGaqujPHzVGbynfnQBI1Qqd7nuB/W36dsicjtwwHX3JmPMrFzOr5Tq3diaKLsPdWCM4Y8bmvnPZ9bz1u7DLDjlaL798RmDnoyqlJ950sQn9pjVy4APenE+pVT/jh9bzbINzXzw9ud5e08rk0dXcM+n53LuyWPLcgi5Kk1e9UGdBewyxrzlOjZVRFYCB4EbjDEv9vZEEbkKuApgyhRtL1dqMD49v56/bGqhKhLiyx88ng/PnKDbYaiSIwMtdyEiS4Gje7nremPMb5zH3Ak0GmNud76PAtXGmBYROR34NXCKMeZgf681d+5c09DQMPSfQimlVNESkeXGmLndjw9YgzLGnDvAiUPAx4DTXc/pBDqd28tFZBMwDdDso5RSalC8aBM4F3jTGNOUPiAidSISdG4fC5wAbPbgtZRSSpUJL/qgLgce7nbs/cB/iEgCsICrjTF7PXgtpZRSZWLAPqjhJCLNwDsenKoW2OPBeYZDMcUKxRVvMcUKxRVvMcUKxRVvMcUK3sR7jDGmx94tvkpQXhGRht463PyomGKF4oq3mGKF4oq3mGKF4oq3mGKF/Mar41KVUkr5kiYopZRSvlSqCeruQgcwBMUUKxRXvMUUKxRXvMUUKxRXvMUUK+Qx3pLsg1JKKVX8SrUGpZRSqshpglJKKeVLJZWgRGSBiGwQkUYRua7Q8XQnIpNFZJmIrBORtSLyFef4TSKyTURWOV8XFDpWABHZIiKrnZganGOjRWSJiLzl/H9UoeMEEJETXddvlYgcFJFr/XJtReReEdktImtcx3q9lmL7gfM+fkNE5vgk3u+IyJtOTE+IyCjneL2ItLuu8V0+iLXP37uIfN25thtE5EPDGWs/8T7qinWLiKxyjhf62vZVZg3Pe9cYUxJfQBDYBBwLRIDXgemFjqtbjOOBOc7tGmAjMB24CfjXQsfXS7xbgNpux24DrnNuXwfcWug4+3gv7ASO8cu1xV5dZQ6wZqBrCVwA/BYQ4AzgFZ/E+zdAyLl9qyveevfjfBJrr7935+/tdSAKTHXKjGCh4+12/+3AN3xybfsqs4blvVtKNah52CuqbzbGxIFHgIsLHFMWY8wOY8wK5/Yh7F2HJxY2qiG7GHjAuf0A8NHChdKnc7A3zPRiVRJPGGNeALov99XXtbwYeNDYXgZGicj4YQnU0Vu8xpjnjDFJ59uXgUnDGVNf+ri2fbkYeMQY02mMeRtoxC47hk1/8Ypk9tbrvnxcQfRTZg3Le7eUEtREYKvr+yZ8XPiLSD0wG3jFOXSNUyW+1y/NZoABnhOR5WLv2wUwzhizw7m9ExhXmND61X19SD9eW+j7WhbDe/lz2J+U06aKyEoReV5EzipUUN309nv3+7Xtc2+9Ql/bbmXWsLx3SylBFQ0RqQZ+BVxr7D2y7gSOA2YBO7Cr+H7wPmPMHOB84Esi8n73ncau0/tqnoKIRICPAL9wDvn12mbx47Xsi4hcDySBnzuHdgBTjDGzgX8GHhKREYWKz1EUv/deLCT7w5Uvrm0vZVZGPt+7pZSgtgGTXd9Pco75ioiEsX/RPzfGPA5gjNlljEkZYyzgHoa5yaEvxphtzv+7gSew49qVrrI7/+8uXIS9Oh9YYYzZBf69to6+rqVv38si8lngw8AnnYIJp7msxbm9HLtfZ1rBgqTf37ufr216b71H08f8cG17K7MYpvduKSWo14ATRGSq8yn6cmBxgWPK4rQv/xRYb4y5w3Xc3UZ7CbCm+3OHm4hUiUhN+jZ2B/ka7Gv6GedhnwF+U5gI+5T1CdSP19alr2u5GPi0MyLqDOCAqzmlYERkAfBV4CPGmDbXcd/t/9bP730xcLmIREVkKnasrw53fH3w3d56fZVZDNd7t1CjQ/LxhT2CZCP2p4zrCx1PL/G9D7sq/Aawyvm6APg/YLVzfDEw3gexHos92ul1YG36egJjgN8DbwFLgdGFjtUVcxXQAox0HfPFtcVOmjuABHa7/Of7upbYI6B+7LyPVwNzfRJvI3b/Qvq9e5fz2I8775FVwArgIh/E2ufvHbjeubYbgPP9cG2d4/dj753nfmyhr21fZdawvHd1qSOllFK+VEpNfEoppUqIJiillFK+pAlKKaWUL2mCUkop5UuaoJRSSvmSJiillFK+pAlKKaWUL2mCUkop5UuaoJRSSvmSJiillFK+pAlKKaWUL4UKHYBbbW2tqa+vL3QYSimlhtHy5cv3GGPquh/3VYKqr6+noaGh0GEopZQaRiLyTm/HtYlPKaWUL2mCUkop5UuaoJTyEWMMtz37Jm/uPFjoUJQqOF/1QSlV7joSFj/54yb+909vs/Hm8wsdjsqDRCJBU1MTHR0dhQ5l2MViMSZNmkQ4HB7U4zVBKeUjKWeH63jSKnAkKl+ampqoqamhvr4eESl0OMPGGENLSwtNTU1MnTp1UM/RJj6lfCRlmUKHoPKso6ODMWPGlFVyAhARxowZM6SaoyYopXzE0gRVFsotOaUN9efWBKWUj6Sb+JRSmqCU8hWtQalC+N73vkdbW9sRP/+OO+5g+vTpzJw5k3POOYd33ul13u2QaYJSykeSmqBUAeSaoGbPnk1DQwNvvPEGn/jEJ/jqV7/qSVyaoJTyER0kofKttbWVCy+8kNNOO41TTz2Vb37zm2zfvp2zzz6bs88+G4DnnnuO+fPnM2fOHC699FIOHz4M2MvRffWrX2XGjBnMmzePxsZGAM4++2wqKysBOOOMM2hqavIkVh1mrpSPWK4+qJRlCAbKszO9XHzzybWs2+7tpOzpE0Zw40Wn9Hn/s88+y4QJE3j66acBOHDgAPfddx/Lli2jtraWPXv2cPPNN7N06VKqqqq49dZbueOOO/jGN74BwMiRI1m9ejUPPvgg1157LU899VTW+X/6059y/vnezOHTGpRSPuKuQbUnUgWMRJWqGTNmsGTJEr72ta/x4osvMnLkyKz7X375ZdatW8eZZ57JrFmzeOCBB7L6lBYuXJj5/6WXXsp67s9+9jMaGhpYtGiRJ7FqDUopH3HXoNriSaqj+idayvqr6eTLtGnTWLFiBc888ww33HAD55xzTtb9xhjOO+88Hn744V6f7x4q7r69dOlSbrnlFp5//nmi0agnsWoNSikfcQ+SaI9rDUp5b/v27VRWVnLllVeyaNEiVqxYQU1NDYcOHQLsPqQ///nPmf6l1tZWNm7cmHn+o48+mvl//vz5AKxcuZIvfOELLF68mLFjx3oWq348U8pH8tXEZ4zhsYatnD9jPCNig1sHTZWm1atXs2jRIgKBAOFwmDvvvJOXXnqJBQsWMGHCBJYtW8b999/PwoUL6ezsBODmm29m2rRpAOzbt4+ZM2cSjUYztaxFixZx+PBhLr30UgCmTJnC4sWLc45VjI8mBs6dO9fohoWqnK1uOsBFP/oTAI9/8b3MmXKUJ+ddv+Mg53//RT50yjj+51NzPTknwE//9DYnHV3DmcfXenbOlza1MKY6wrRxNZ6d00/Wr1/PySefXOgwjkh6U9na2iP/fff284vIcmNMjzem1qCU8hH3ShJeNvF1OovPbmpu9eycAN96ah0AW759oWfnXHjPy56fUxUn7YNSykfcTXxtHiaog+0JAMp11Pojr75L/XVP6yrxOdqyZUtOtaeh0gSllI9kJ6ikZ+dN16DKdSLwLU+vB6D5cGeBI7H5qWtlOA3159YEpZSPpPI0ii993njK3zWIfBXc6dHQew4VPkHFYjFaWlrKLkml94OKxWKDfo72QSnlI9nzoPKQoHzexOVOoMmURSjozWfoaDgIHUlaPayVHqlJkybR1NREc3NzoUMZdukddQdLE5RSPpKvYeZJyy74vUxQ+Vh53f3zt8ZTjKzwJkFFnETnh7ll4XB40DvKljtt4lPKR1ImP31Q6YK/08MElbC8r41lJahO737+SMgu6ryslar80wSllI+kUsXTxJdMZS9s64W8JSgf1aDU4GmCUspH8jUPKl3we7nflDtBedUcmcxTE2c4ZI+S8LJWqvJPE5RSPmLlaR5UPjZCdDfxeZVM8zUPLF2DatMV4ouKJiilfCRdgwoFJC9NfODdUO6sGlQeEpSXNahQQJv4ipEmKKV8JF1AV8dCtCe8HyQB3s2FSrjO0+ZRrPmaB5YexaiDJIqLJiilfCRdQNfEQnnpgwJo68xDf5FHseZru5H0z6+bQBYXTVBK+UimBhUN560PyrMBDan89kF5Ow/MSVBagyoqmqCU8pH0ShI10ZCnBXTKPaDBo/Mm8jAkPt9LPekovuKiCUopH0lXSqpjofzVoDxrjvM+6eXjnPZ50wlKa1DFRBOUUj6SHsVXHfW2D8o9fL0jDzUor5JJvoaZp5sjvfrZ1fDIe4ISkQUiskFEGkXkuny/nlLFLOUUpDWxEG3xpHdDwvNQ8Oe7D8rLZKI1qOKU1wQlIkHgx8D5wHRgoYhMz+drKlXM0pWS6mgIy3i3dl4+Bh/kY+BFvvbD0lF8xSnfNah5QKMxZrMxJg48Alyc59dUqmhZVlcTH+Rn+LZ3TXze16Cyk56H6wY65+3QGlRRyXeCmghsdX3f5BzLEJGrRKRBRBrKcX8UpdwyfVAxO0F5tTRPPvp28rEWX/YoPu9qUOnmSF3qqLgUfJCEMeZuY8xcY8zcurq6QoejVEGletSgvFuhIeDsKutVbScfNSidB6Xc8p2gtgGTXd9Pco4ppXrRtZJEGPCwtmOZzDk9mweVxz6omqi3w+zd+2HlY6NFlR/5TlCvASeIyFQRiQCXA4vz/JpKFa3uNSjvJsBaVISDBMS7Pqh0s1koIJ73QVV7vNRT0l2D1Ga+opHXBGWMSQLXAL8D1gOPGWPW5vM1lSpmljGIQGU0CHjZdAbBgFARDnreBzWiIux5Dao6GvJ2mHnK6mo21QRVNEL5fgFjzDPAM/l+HaVKQcoyBEWojDgJyrOC3yIUFCoiQQ+b+LrmbHndB1UTC9G0r92Tc1qWwTJ2s+nBjqT2QxWRgg+SUEp1SRlDMCBUhr1t4kta9nkrIkHPhlqna1A1sZBno+PSSx1VxzyslZmuOEFrUMVEE5RSPpJKdSUS8HYUX1C8beJLj+IbEQt7lvTcgyTyUSsDHclXTDRBKeUjKZPdxOflKuHpPiivV5KoiXm38nrS1QeVtEzWUPYjlT6H9kEVH01QSvmIZRkCTiIBbxOU131QSVcNyuvtNtK1HS/O233ovtagiocmKKV8JN0HFQgIsXDA05pJMBCgIhz0fDXzmljY86Hr6WTixXmT3Zv4tAZVNDRBKeUj6aY4gMpIyLMFU+0+KKiIeDjM3LLsAR1OrcyLlde7JxMva1DV2gdVdDRBKeUj6cEMgLdzliyLUCBARdi7wQfJlCHkDOhIWYa4B/1F7pGB4E0ycQ/mAF2Pr5hoglLKR9ITagG7ZuJRMrHSE3UjAU+b+MLBQKa/rCPuQYLq3l/kQazdV+fQFc2LhyYopXzEMoaA81dZ6XFzXCjo8UoSrsm/AG2J3JsjuwZeeFeD0j6o4qUJSikfcTfxxcLe1aAyw8wjIc/6ixIpQygQ6Fr1wtNk4l0NKt3EFwsHiQQDuqtuEdEEpZSPZA+SCHpSKwFnFJ90DV/3YqfeZMoiHBRiYe+WZUoPvMjUyjwYJJLu1woHA8TC3jVxqvzTBKWUj/Qcxef1RF37T96r2k662dCzc7oGXoA3w8zTgzcy88C0BlU0NEEp5SMpYwikR/F5WJjGUxaRUIDKiHc79SZSFmF3E59Hc5ZCAaHSw4nK6RpUJGj//DqKr3hoglLKR6xuTXyerTyesogEA8Q87C9KpOxBEjFPa1AWoWCgay1CD/ug7CY+rUEVE01QSvlIeiUJ8HZSbSLZbUi4F7UdZ5CEl8kkXYOKhgKIeJP0spr4tA+qqGiCUspHUlZXE19lOEQ8aWXm8eQikbIIh7zdZyphGcJB8XYUX8ru1xJnQIdX5wRXE59Hq3Oo/NMEpZSPpJxCH3CtaJ57gRpPWZkmLvuc3jTHuWtl3tWg7GKpIhz0rK8MyDRHtidyH8GohocmKKV8JJnKbuID7/qLIu5k4tHw7ayJup6MDLT7tQDPNld090FVRrxbLFflnyYopXwkYdm1EsDTPaHSyxJ5ek4n1kgwQMCj/qJ0HxTg2d5VCVcTn72ShjbxFQtNUEr5SMpVQHuVTCzLOE2H3iaojoRFNBRERKiMeLNpYTJlZZr4vFrqKaHzoIqWJiilfCSRsvdtAqiIpNeOy+0Tf8JymrhC3k6A7UymiDoTf2MerfGXbjZMn9PrYeZebtio8k8TlFI+kl4+CLyrQSW6jWLz4pwAnQmLaKirtuNJv1a3GqQ3/W/OUkfOho2JlDdbyav80wSllI+4lzryatv3hLPuXiggBANCJOTNgqmdSbuJD7xrjutMpjLn9Kq2k6lBhcTTeWAq/zRBKeUjvQ2SyLUW0VVAe1vbsZNJujnSm2TSnrAyq114tblislsTH+iuusVCE5RSPpJKuZu4vGmOi7sKaIBKj/qLOpNWZl6VV5NqO+KpzIK2FZGAN3PAXDVIL+dsqfzTBKWUj8RdgwS82nLC3QeVPm+uE2CNMcST2X1QXiS99kQqk5i9GmZ+uDNFVSQ92lATVDHRBKWUj3QmUlm1Esi9vyT9/K5kknvTWXo/qWi4a8ShN018rp8/EqIjYWHluNRTa2eSKme795iHw+xV/mmCUspHOpJdBXQkFCAUkJwL09ZOuwaWLqS9mKza6SwXlBkk4dEEWLuJLztB57q5Yms8SbXrZ0+/jvI/TVBK+UQyZZFImUwhCt6saH64e4LyYPh2ZzK7VubVyuvtiRQVke4raeSW+Nw1KG3iKy6aoJTyiQ6nphALd/1ZejEXqLXTfn61q5DOuVbmPD9d4Fd4sMZdImWRtEyPGlSuyaS1M0VVNPuc2sRXHDRBKeUT6UTkrkF5sQNsVxNfVzLJtYA+0J4AYGRFGLCb+HKdAJtORF19UN4MCT/c6Wri0xpUUdEEpZRPdHQroCE9fDu3Jq5DToJy16ByLaC7JygvVjQ/0Gafc0T6nB7VoA60J6iJZZ9TJ+oWB01QSvlEbwnKk+a4bn1QXmza16MGlV43MIdY97bGARhTFQG8qUGlLMOugx2MHxnLOqc28RUHTVBK+US6puD1IIm9rXGqo6HMRN2KcDDn4duZBFWZTlC5D2jY22YnqKO6Jahcmjh3H+ogaRkmHlUBQCykK0kUE01QSvlEutDsXoPKtTDdfaiDsSOiWeeE3JrO9h62k8moCjuZxDxojtvn1KBGVzoJyoMh4dv2tQMwYZSdoAIBIRYOaB9UkcgpQYnITSKyTURWOV8XuO77uog0isgGEflQ7qEqVdrStZIRFaHMMXuQRG7NcbsPdjK2pmeCyqVmtm1/G3U1USIh79YN3HmwA4BaJ1Zv4rQT1CQnQdnn9WaNP5V/oYEfMqD/NsZ8131ARKYDlwOnABOApSIyzRij7wql+rDfGSRwlFODAG/mLO040MF76o9yndP+s89loMC2/e1MzCr0c08m77a0UVsd6TGpNpfaTjpBTXDF6tUSSir/8tXEdzHwiDGm0xjzNtAIzMvTaylVEvY5fTCjq7oSVK4Lu7bFk2zb386xddVd5/Qgmbzd3MoxYyoz33sx+ODtPa1MGd11zvSyRLkk0s3NrdRWRzIDRMCeZ6Y1qOLgRYK6RkTeEJF7RST9MW0isNX1mCbnWA8icpWINIhIQ3NzswfhKFWc9rbFnU0Fu/VBJVIYc2QDGjbsPATACWO7ElSui9Dua42z/UAH08eP6DpnprZzZOe0LMO67QeZPqHnOXNJemu3H2T6hJFZx7zanl7l34AJSkSWisiaXr4uBu4EjgNmATuA24cagDHmbmPMXGPM3Lq6uqE+XamSsedQnNFVEUQkc6wiEsIY6Egc2QTYV97eC8Dpria+ynBu/UUvbW4BYPYU1zlz3Bpk3Y6DHOpMMmty1znDwQDhoBxxMtnbGufNnQeZM2VU1nGvtgZR+TdgH5Qx5tzBnEhE7gGecr7dBkx23T3JOaaU6sPWfW1MHl2Rdcw94q7CVbMarBffaub4sdWMrYm5zplbMvn9+t3UxEJZBX+uc5aWrNuFCHzgxOwPqbkkk2Vv7sYY+MCJY7PPGQmy3xmQovwt11F8413fXgKscW4vBi4XkaiITAVOAF7N5bWUKnVNe9uY7OqDgdya45r2tfGXTS1cOGN81vFc5hfta43z9OrtXDhjPKFg9pqBcGQJKpGyeKxhK/OPHUNtdTTrvlwGifzslXeYWlvFzInZTXxerM6hhkeuo/huE5FZgAG2AF8AMMasFZHHgHVAEviSjuBTqm+dyRQ7DnYw+ahuCSqH5rgf/aGRcCDA375nctbxdII6kvlF97y4mY6ExWfPrM86nm6OO5Kk98vlTew40MEtl5za476K8JFtrvjCxmZWvrufmy6aTiAgWffZC9vmtoWHGh45JShjzKf6ue8W4JZczq9Uudi+vwNjyBrFBkc+4m7lu/v4xfImPj3/mKwh1tDVBzXUWlnj7kP874tv87HZEznp6BE97o8dQXPcnsOd3Pbsm8yrH83Z3ZriwNkIcYjnbI+nuOnJtRwzppKFfzWllzgDuhZfkfBiHpRSKkfv7m0DYMqYvpr4Bl+g7muNc81DKzl6RIxrz5nW4/4jaeJrj6f44s9XUB0Lcd0FJ/X6mKohrvGXsgxfeWQlbfEUN19yatbgkEysR5BMblq8ls3Nrfzf5+dlNlR0i+k8qKKhCUopH0gnqO5NfJlFWAc5fNuyDP/82Cp2H+rgl1e/N7NWnls0FEBkaE18//6bNby1+zAP/N28rAEX2bEGM/tEDcb3f/8Wf25s4daPz2DauJo+zjm0pPfrldt4tGErXzr7OM46ofdRwbFw7ntXqeGha/Ep5QNNe9uIhAJZSxLB0Jv4/ueFzSzb0MwNF07ntMmjen2MiDjbvg/unI+9tpVfLm/iy2cfz/un9T0VZCgDGv64YTc//MNbfHzOJC6bO7nPx8WGEOeGnYf4+uOrmVc/mn86t2fNMROns3dVMoe9q9Tw0ASllA+809LG5KMqenboD2Gy6qtv7+W7z23gwhnj+fT8Y/p97GD3hFqz7QA3/GYNZx4/hq/0U+jD4Jv43m1p4yuPrOLEcTXc/NHem/aGGufBjgRX/2w51bEQP7pidtYIw+4yi9AmNUH5nSYopXzg7T2tTK2t7nF8sMO39xzu5MsPr2DyURV8++Mz+i30YXADGva1xrn6Z8uprYrwg8tnEwz0f87B1KDa4ym+8LPlGGP4n0+dPuDcrsHsh2VZhn957HW27m3jJ5+cw9gRvTdBpsXCgUwsyt9Kug8qnrTYtr+dnQc6aIsnaY2nECASChANBYiFg1RGglRGQlRGglRFQlREgpkVmpUaDpZleLullfdPq+1x32Am1aYsw7WPrGJfW4L7vjgvs3tsfwaqmaQsw7WPrmL3wU4eu3o+Y7rNT+rrnNv2931OYwzXP7GaN3ce5N7PvIdjxlQNeM7BJL27XtjEknW7+PcPT+c99aMHPGdsGHbVNcZwoD3BroOd7D7UQUfCImVZpCyoiASoioSoijpfkSCV0RCV4WCPGnS5K6kE1dqZ5Fcrmljxzj5Wbd3Pu3vbOJI92cJBu42+KuokrGAAyxgsA5Yx4Pyf/j69TJoxBgPYDzHOMTLHoOuxXhjgQ/Jgz5L7GfRvKifGGOJJi/rangV2LGwPaOhvYumP/tDInxr38O2Pzchay64/A/VB/eD3b/H8xmZuueRUZvXRl9XdQNtY/N/L7/D4ym3807nTOPuknkPKez9nkLZ4EmNMr7XCP721h+/+bgMfnjmez3Wbm9WXfCSoZMpi5db9vLCxmVVb97N+x0H2OHtmDYVd7tgfmsNB++dN/9zpn94uT5wSxilf0uWQccoY+yu7POoqi4ZSCA38x/3stWf1mGDtlZJKUCLwzSfXMboqwpwpo/jIaROYMqaK8SNjVEdDmeaSzqRlfyVStMVTtMaTtMdTtMZTtDs1rfZ4itbOJG2JFMmURUCEgAgIzm37fwEQEATnbud/yRTc4jzIfX+uvEh0XuRKLxNuOYuGAiw45egexwca0PDnxj187/cb+djsiT0m5Panv5rJsjd38/3f2wMYrpjXcx5RX9LJpDfL39nHt55axzknjeXLHzx+COcMYRn7b9a9kSPYW2n84yMrOa6umls/PnPAZs00L7bxALugX/HuPn7R0MTTq3dwqCNJQODEo0fwgRPHcuK4GsaPilFXHaUyEiIUtMuQ9oRdthzuTNplTDxlt/B02v+3OWVPwjKZP1L3B950+eL8s8uhTNnSVSalyyd3eSSuxw748w3yOuSzxamkElRlJMRL132QuprooN+sSvldZaT31RR2HezgK4+s5Pi66j7nEfWlIhzs9RP+uy1tXPvoKqaPH8EtQzxnX8PMWw53cs1DKzh6ZIw7Lps1pGYs90oa7gTVmbTnZcWTFnd96vSs7TQGPGeO6wYmUha/WbWdu57fROPuw1SEg5x/6tGcO30cZx5X2+vQfnVkSipBAQN2kCpVbCoiwR5zluJJiy8/tJLWzhQP/8OcTF/VYNnzi9qyjrkHMNx15ek9aiyDOWc8aZGyTGZAhT0ZdxUtrXEe/3+9z8vqT1XUjqE1nuQo1z5ZN/5mLa9v3c9dV87huLqeg0v6kx4kMdRRfCnL8FjDVn70h0a27W/npKNruO3jM7lg5vjMJovKW3pVlfK5ynCoRxPfN59cy6tb9vL9y2dxQh+TXPtTEwtxoL2rOc4Yw7+lBzB89j09VrQYVJyuhW3TAzX+e8nGTP/Yqd0WbR2MUc7uwvtaE0xyduJ46JV3eeQ1ezLuglPH9/Ps3sWOYH3Dv2zaw388uY43dx5i9pRRfOujp3D2iWO1pSbPNEEp5XMV3Zr4HnxpCz9/5V2u/uvjuHhWr/uADqiuJsre1s5Mbecnf9zEEyu38S/nTet1TbzBSNeO9rUmqImF7drGskb+du7kIfWPdY8T7GH0AH9p3MONi9fwgRPr+OfzTjyic1Y5tc3WzsHN2brlmXX8bu0uJo6q4MdXzOGCGUdrYhommqCU8rnKSNf2EE+sbOLGxWs556SxLPrQkRXQAGNroljG7h/6w5u7+c7vNvDRWRP40tmDH8DQ3SRnUdqm/W00Nh/i3x5fzVkn1A65f8ytzhkd1ny4k9e37ucfHmzg2Npqvv+3A8/L6svoartWtre171F2bfEkP1m2ibtf3EwoIPzr30zj7886dsjNnio3mqCU8rnKSJCmfXEefvVdbvj1Gs6YOoYff3LOERfQ0NVXe/2v17Bk3S7eP62O2z5xWk7zcCYeZSeo25/byOtb93Py+BH85JNzCPezqsNA7AFP8MBftvBuSxtHVUV48PPzchqIUBMNEQkG2NPa2eM+YwxPvbGD/3xmPTsOdHDJ7Il8bcFJHD1S+7YLQROUUj43fcJIlq7fzdcfX81fT6vjJ5+ck/Mn+Xn1owkHhSXrdnHBjKO547JZOQ8XnjiqgomjKlj+zj7+aupo7vnM3EFNGu5PLBxk/rFj+MumFqaNq+b+v5vHuBwHQokItdUR9hzqqkEZY1iybhffW/oW63Yc5JQJI/jhwtnMHcTEX5U/mqCU8rkr/2oK67YfYOakUXzxA8f1u87cYB1VFeHRL8xn98FO/mb6OE9WMAgFA9z/d+9h467DLDj16JxqeG7fv3w2L21u4byTxx3Rtve9GT+qgsbdh9jcfJhn1+7ksde2sqWljfoxldx+6Wl8dPZEz+JXR06GNqs4v+bOnWsaGhoKHYZSqsT9eFkj3/ndhsz386aO5op5U/jwzPGefABQQyMiy40xc7sf1xqUUqrs/P1ZUxkRCyEi/PW0OiaPHvqwepV/mqCUUmUnGgryqfn1hQ5DDUDrskoppXxJE5RSSilf0gSllFLKl3w1ik9EmoF3PDhVLbDHg/MMh2KKFYor3mKKFYor3mKKFYor3mKKFbyJ9xhjTF33g75KUF4RkYbehiz6UTHFCsUVbzHFCsUVbzHFCsUVbzHFCvmNV5v4lFJK+ZImKKWUUr5Uqgnq7kIHMATFFCsUV7zFFCsUV7zFFCsUV7zFFCvkMd6S7INSSilV/Eq1BqWUUqrIaYJSSinlSyWVoERkgYhsEJFGEbmu0PF0JyKTRWSZiKwTkbUi8hXn+E0isk1EVjlfFxQ6VgAR2SIiq52YGpxjo0VkiYi85fx/VKHjBBCRE13Xb5WIHBSRa/1ybUXkXhHZLSJrXMd6vZZi+4HzPn5DROb4JN7viMibTkxPiMgo53i9iLS7rvFdPoi1z9+7iHzdubYbRORDwxlrP/E+6op1i4isco4X+tr2VWYNz3vXGFMSX0AQ2AQcC0SA14HphY6rW4zjgTnO7RpgIzAduAn410LH10u8W4DabsduA65zbl8H3FroOPt4L+wEjvHLtQXeD8wB1gx0LYELgN8CApwBvOKTeP8GCDm3b3XFW+9+nE9i7fX37vy9vQ5EgalOmREsdLzd7r8d+IZPrm1fZdawvHdLqQY1D2g0xmw2xsSBR4CLCxxTFmPMDmPMCuf2IWA9MLGwUQ3ZxcADzu0HgI8WLpQ+nQNsMsZ4sSqJJ4wxLwB7ux3u61peDDxobC8Do0Rk/LAE6ugtXmPMc8aYpPPty8Ck4YypL31c275cDDxijOk0xrwNNGKXHcOmv3hFRIDLgIeHM6a+9FNmDct7t5QS1ERgq+v7Jnxc+ItIPTAbeMU5dI1TJb7XL81mgAGeE5HlInKVc2ycMWaHc3snMK4wofXrcrL/wP14baHva1kM7+XPYX9STpsqIitF5HkROatQQXXT2+/d79f2LGCXMeYt1zFfXNtuZdawvHdLKUEVDRGpBn4FXGuMOQjcCRwHzAJ2YFfx/eB9xpg5wPnAl0Tk/e47jV2n99U8BRGJAB8BfuEc8uu1zeLHa9kXEbkeSAI/dw7tAKYYY2YD/ww8JCIjChWfoyh+771YSPaHK19c217KrIx8vndLKUFtAya7vp/kHPMVEQlj/6J/box5HMAYs8sYkzLGWMA9DHOTQ1+MMduc/3cDT2DHtStdZXf+3124CHt1PrDCGLML/HttHX1dS9++l0Xks8CHgU86BRNOc1mLc3s5dr/OtIIFSb+/dz9f2xDwMeDR9DE/XNveyiyG6b1bSgnqNeAEEZnqfIq+HFhc4JiyOO3LPwXWG2PucB13t9FeAqzp/tzhJiJVIlKTvo3dQb4G+5p+xnnYZ4DfFCbCPmV9AvXjtXXp61ouBj7tjIg6Azjgak4pGBFZAHwV+Igxps11vE5Egs7tY4ETgM2FiTITU1+/98XA5SISFZGp2LG+Otzx9eFc4E1jTFP6QKGvbV9lFsP13i3U6JB8fGGPINmI/Snj+kLH00t878OuCr8BrHK+LgD+D1jtHF8MjPdBrMdij3Z6HVibvp7AGOD3wFvAUmB0oWN1xVwFtAAjXcd8cW2xk+YOIIHdLv/5vq4l9gioHzvv49XAXJ/E24jdv5B+797lPPbjzntkFbACuMgHsfb5eweud67tBuB8P1xb5/j9wNXdHlvoa9tXmTUs711d6kgppZQvlVITn1JKqRKiCUoppZQvaYJSSinlS5qglFJK+ZImKKWUUr6kCUoppZQvaYJSSinlS/8fDW+06w4vTFEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -466,54 +502,41 @@ } ], "source": [ - "def plot_response_comparison(arb_resp, nrn_resp, title):\n", - " num_steps = len(arb_resp)\n", - " for i, step in enumerate(arb_resp):\n", - " plt.subplot(num_steps, 1, i+1)\n", - " plt.plot(nrn_resp[step]['time'], nrn_resp[step]['voltage'], label='Neuron ' + step)\n", - " plt.plot(arb_resp[step]['time'], arb_resp[step]['voltage'], label='Arbor ' + step)\n", - " plt.title(title)\n", - " plt.legend(loc='upper left')\n", + "def plot_responses(responses):\n", + " plt.subplot(2,1,1)\n", + " plt.plot(responses['step1.soma.v']['time'], responses['step1.soma.v']['voltage'], label='step1')\n", + " plt.legend()\n", + " plt.subplot(2,1,2)\n", + " plt.plot(responses['step2.soma.v']['time'], responses['step2.soma.v']['voltage'], label='step2')\n", + " plt.legend()\n", " plt.tight_layout()\n", "\n", - "\n", - "def plot_response_comparison_for(arb_resp, nrn_resp, *key):\n", - " plot_response_comparison(arb_resp[key], nrn_resp[key],\n", - " 'replace_axon = %s, %s ' % (key[0], str(params[key[1]])))\n", - "\n", - "plot_response_comparison_for(arb_responses, nrn_responses, False, 0)" + "plot_responses(responses)" ] }, { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjhElEQVR4nO2deXxVxfm4n/fu2SAQkF022UnYFwsIWAWUKiIouCHytVYt1q0uv7ZatLV1rYqiWERxoQKuaF3rgogVKcgOgiBhExUICdnvNr8/zrmXm+QmuSE3uTc383w+NzlnZs7Me2bmzHvemTkzopRCo9FoNJp4wxJrATQajUajCYdWUBqNRqOJS7SC0mg0Gk1cohWURqPRaOISraA0Go1GE5doBaXRaDSauEQrqCoQkU4iokTEFmtZNCePiNwgIj+IyMYYpD1HRF6uh3RmisiqKvxXiMjVdS1HrBCRRSLy15r6RVmGKstaRLJF5Ky6liOaiMg0EckTkf+KSNv6Tl8rKE1UEZH5IlJg/twi4gk5fz9GYs0BrldK9QuRc46IzImRPHGF+SKWXcPwn4lIkYh8W1WjKyIXm41bkYisqKFcjaaMRGRMTfJHRPqLyDozX9eJSP8qwjYXkTdFpFBE9orIpSF+Y0Vks4jkishRM1y7gL9SainQwjy9uOZ3VjsSWkFpy6f+UUpdq5RKVUqlAn8DlgbOlVLnBMLVc9k0B7bUY3p1QhzV51eA9UAG8EfgNRFpWUnYHOAx4P76Ea1uiYcyEBEHsBx4GWgGvAAsN93DMQ9wA62Ay4CnRaSP6bcNGK+USgfaAt8BT4derJTyADsxyrteSTgFZZrRd4jIJqBQRGwiMtx8i8sVkY0iMiYk/AoR+buIrBGR4yKyXESaVxL3VSKyXUTyReR7EflNOf9JIrLBjGe3iEww3ZuKyEIROSQiB0XkryJireY+uorIp+ZbzRERWSwi6SF+OSIy0DxvKyKHA/clIueLyFbzfleISK9y+fN7Edlkmu5LRcRV85yuOZWUjRKR00LClOmOEZFfmXmaa5ZhVg3TDOSzv5pwt5vl84OIXB0qlynTPBF51yz7r0Wka8i1j4vIfrPc14nIqHLRu8x8zheRb0Qk1JK706wr+SKyTUQmh/jNFJEvReRRETmKYQlWd78Pi8gxEdkjIueU8+5oxpcvIh+JSIuwkVQdf3dgIPBnpVSxUup1YDMwJVx4pdTHSqllwA81TStM2pWWUblwaWJYeHNFREznFiLyH/PePxeRjiHhKy0/May410TkZRE5DsysRkyHiLxoprNVRAaX8+8fhWdvDGADHlNKlSql5gICnFk+oIikYJTNXUqpAqXUKuBt4AoApdRPSqnQsvEBFfIU4/mpf+WslEqoH5ANbAA6AElAO+AocC6GQj7bPG9phl8BHAT6AinA68DLpl8nQAE283wi0BWjMowGioCBpt9QIM+M32Km29P0exN4xoz/FGAN8Jtq7uM0My4n0BJYiVEhA/6/xnj7SQY+BB423bsDhea1duB2YBfgCMmfNRhvS82B7cC1lcgwEsit4jeymnuYE8jLcGVjuingtJAwi4C/mscDgJ+BYYAVuNKMw1mD+jABKAFSqgnzI9DHzM+XQ+UyZTpqlrENWAwsCbn+coy3SxtwqxmXKyQPPMBUszx+D+wB7Kb/RWZZWIBpZtm1Mf1mAl7gBjPupCruYaaZzq/NvLoOQylISD3fbdaPJPP8/kriegp4qhK/ycD2cm5PAk9UUw5XAytq8VxHUkZ/NcthTaAOhfjlA2dgPE+PA6tqWH4XmGVUVRnMMevauWYZ/B1YXa7+R/rs/Ru4sxK/m4H3w4S/NUzYAUBRObffA++EnJ+K8Tz7zXudGSaee4DPqeI5qotfvSVUbzdkVIJZIed3AC+VC/MhcKV5XOZBBXpjmMNWyimoMGm9BdxoHj8DPBomTCugNLRiA5cAn9Xwvi4A1pdzexvj7XUTZqMN3AUsCwljwVDAY0Ly5/IQ/weB+XVUFnOoqKBmlQtTlYJ6GvhLufA7gNERpr/WjP931YR7Dvh7yPlpVGz8ng3xPxf4tor4jgH9QvIgtJGyAIeAUZVcuwGYZB7PBPZFeK8zgV0h58nmPbQOqed/CvG/HvjgJMr0itD7Md3uAxZVc11tFVQkZfQcRlfubeWuXUTZF4pUDEuhQ4Tlt7IG9f3jkPPeQHG5+l/rZw/jGV9Szm0xMCdM2FHAj+Xcfh2uLDCU5h3A8DB+zTC6+XzAhSdbjjX9JVwXn8n+kOOOwEVmF1GuiORiWAZtKgm/F+NNt0L3h4icIyKrze61XIyGKhCuA8Ybank6mvEdCkn/GQxLqlJEpJWILDG7BI9jvDGWl2kBhuX3hFKq1HRra94DAEopv3l/7UKu+zHkuAjjga0v9lcfJEhH4NZyZdcB4x4jYQgwHZgjIvYqwrUtJ1c4GSvNM7PLdLvZbZMLNKVsWQXjM8vjQOAeRGRGSBdmLkZ5hr02AoIyKqWKzMPUcP7l76EGFABNyrk1wbBQ6pJIymgihnU4P4xfaBkUYIyNBcog4vKLgPJ57JKy41b1XQYRh1VK5XBiPKt8d95VwHGguVLqjZOQ+aRIVAUVukT7fgwLKj3kl6KUCh207RByfCqGmXskNEIRcWJ0/z0MtFLGoOJ7GN19gXS6UpH9GBZUi5D0myil+oQJG8rfzPvIVEo1weiGCKSFiKRiDD4vxGiAA+NmP2A07IFwYt7fwWrSq4CIjJITM/DC/cqPtURC+eXzizDe9gO0DjneD9xXruySlVKvRJSQ8er3FsbbX5sqgh4C2oecd6gsYHnMPLgdY4ZTM7Ne5BFSVqHxiYjFTOsHcxxkATAbyDCv3VLu2vL5FWu2Al1EJC3ErZ/pXpdEUkYLgA+A98yxF8KFN5+d5hhlEEn5xWMZZIWMrwFkEb4MdgI2EekW4lZVedkwXp7LK7VeGL0+eScn8smRqAoqlJeB80RkvIhYRcQlxpTO0Mp+uYj0FpFk4F7gNaWUr1w8Doz+68OA1xyAHhfivxC4SkR+KSIWEWknIj2VUoeAj4BHRKSJ6ddVREZXI3caxttPnhjTPm8r5/84sFYpdTXwLifeGpcBE0057Bh96qXAf6vLqPIopb5QJ2bghft9UdM4w7ABuNQsmwkYY3sBFgDXisgwMUgRkYmBxlGMyQuLqrmHgGVZ2QwnMPLsKhHpZdaBu2ogfxrGONFhjIbgbio+3INE5ELzrfQmjPJYjTEmqcxrEZGrMCyouEUptROjzP5sPkuTMRrH18OFDzxzGA2fxbzGHuKfLSIzI0g60jKajdEN/I6IJIW4nysiI8WY6fYXjG7K/URWfvHGCoyutt+JiFNEZpvun5YPqJQqBN4A7jWfnxHAJOAlALNe9jDbpZbAPzCGEnLKRWXHqLf1SsIrKLMSTgL+gFEJ92M09qH3/hJGP/WPgAv4XZh48k33ZRh91JdijAEF/NdgmMGPYryBfc4JS2YGRgO5zbz2Nap+owdjUHKgGde7GJUMMGYLYgwaX2c63QIMFJHLlFI7MKytJzCswPOA85RS7mrSixU3YsiYizEF9q2Ah1JqLUZ/+ZMY+baLsrOoOgBfRpCGooq6rpR6H5gLfGamsdr0iuSB/BDjrX0nRtdqCRW7hJZjTIA4hjGGc6FSyqOU2gY8AnwF/ARkRng/dYoY37KF6yYLMB0YjHE/9wNTlVIBJXuZiIS+nV8BFGOMJ44yjxeYYR0YkxNWUw2RlpFpNV+D0Y26XE7MkvsX8GeMrr1BGM8IRFZ+9Y6IvC8ifwjnZz7LF2C0K7nALOCCwDMuIn+Qst8cXo/R9fkzxicC1ymlAmXUDuP+8zHGs/0YE2HKY6WambB1QWCGT6NFjI/jXlZKPRtrWTSRYzZuG4EsZXynUVXYH4DblVIRreggxrT8LRgTT7y1FlYTFhEZCfxWKXXJSVyry6ieMC3RVcBCpdRT9Zl2wltQmsREKeVWSvWqTjmZ3InRJbWusgAiMtnsLmkGPIAxDVc3fHWIUmpVTZSTLqP6R0QuxrAsf8LoPapXtIKKIVJ2WaDQX1XdK5oaopR6USnVTSk1qIpgv8HoAtmN0b9/XRVhY4KuL7EvI7PrLVwZhO2Oa+gopZYppU5RSp2rlDpS/RXRpdF38Wk0Go0mPtEWlEaj0WjikpgvfBhKixYtVKdOnWIthkaj0WjqkXXr1h1RSlVYcDiuFFSnTp1Yu3ZtrMXQaDQaTT0iInvDuesuPo1Go9HEJVpBaTQNGD3JSZPIaAWl0TRQ3li3n/MfeBO3t94/8Ndo6oW4GoMKh8fj4cCBA5SUlMRaFE0DwuVy0b59e+z2qhYxb9is/XAx77j/zo9b02jd7+xYi6PRRJ24V1AHDhwgLS2NTp06UXbxXo0mPEopjh49yoEDB+jcuXOsxakzTlN7AJDvV4BWUJoEJO67+EpKSsjIyNDKSRMxIkJGRkbCW91Wi7Gbvdunu/g0iUncKyhAKydNjWkMdcZu6Cc9BqVJWBqEgtJoNBWxm0+v310cW0E0mjpCK6gIEBFuvfXW4PnDDz/MnDlzYidQNaxYsYL//rfG+xOWYcKECaSnp/OrX/0qSlJpoo3TYlpOpXW927pGExu0gooAp9PJG2+8wZEj0V3MVymF3x/97ploKKjbbruNl156KUoSaeoCuxjfQIlbKyhNYqIVVATYbDauueYaHn300Qp+hw8fZsqUKQwZMoQhQ4bw5ZfGhqhz5szh4YcfDobr27cv2dnZZGdn06NHD2bMmEHfvn3Zv38/t912G3379iUzM5OlS5cChpIZM2YMU6dOpWfPnlx22WVhP8qcO3cuvXv3Jisri+nTp5Odnc38+fN59NFH6d+/P1988UWVMl5xxRWcfvrpdOvWjQULFgTj/eUvf0laWlqV+fLqq6/St29f+vXrxxlnnAEYk1quuuoqMjMzGTBgAJ999hkAixYt4oILLuDss8+mU6dOPPnkk/zjH/9gwIABDB8+nJwcY4fpBQsWMGTIEPr168eUKVMoKiqqkO7w4cPZuvXEpq1jxoxplEtk2cUHgNVTEGNJNJq6Ie6nmYdyzztb2fbD8ajG2bttE/58Xp9qw/32t78lKyuL22+/vYz7jTfeyM0338zIkSPZt28f48ePZ/v27VXG9d133/HCCy8wfPhwXn/9dTZs2MDGjRs5cuQIQ4YMCTb269evZ+vWrbRt25YRI0bw5ZdfMnLkyDJx3X///ezZswen00lubi7p6elce+21pKam8vvf/x6ASy+9tFIZN23axOrVqyksLGTAgAFMnDiRtm3bRpR39957Lx9++CHt2rUjNzcXgHnz5iEibN68mW+//ZZx48axc+dOALZs2cL69espKSnhtNNO44EHHmD9+vXcfPPNvPjii9x0001ceOGF/PrXvwbgT3/6EwsXLuSGG24ok+60adNYtmwZ99xzD4cOHeLQoUMMHjw4IpkTCr+hoCxePQalSUy0BRUhTZo0YcaMGcydO7eM+8cff8zs2bPp378/559/PsePH6egoOo32o4dOzJ8+HAAVq1axSWXXILVaqVVq1aMHj2a//3vfwAMHTqU9u3bY7FY6N+/P9nZ2RXiysrK4rLLLuPll1/GZgv/vlGVjJMmTSIpKYkWLVowduxY1qxZE3GejBgxgpkzZ7JgwQJ8Pl/wfi6//HIAevbsSceOHYMKauzYsaSlpdGyZUuaNm3KeeedB0BmZmbw3rZs2cKoUaPIzMxk8eLFZSylABdffDGvvfYaAMuWLWPq1KkRy5xIiDLy3OaraGVqNIlAg7KgIrF06pKbbrqJgQMHctVVVwXd/H4/q1evxuVylQlrs9nKjC+FfpOTkpISUXpOpzN4bLVa8Xor7m797rvvsnLlSt555x3uu+8+Nm/eXCFMZTJCxenYNZmePX/+fL7++mveffddBg0axLp1le6oDpS9H4vFEjy3WCzBe5s5cyZvvfUW/fr1Y9GiRaxYsaJCPO3atSMjI4NNmzaxdOlS5s9vLBvKlsNv5JnNpy0oTWKiLaga0Lx5cy6++GIWLlwYdBs3bhxPPPFE8HzDhg2AsXXIN998A8A333zDnj17wsY5atQoli5dis/n4/Dhw6xcuZKhQ4dGJI/f72f//v2MHTuWBx54gLy8PAoKCkhLSyM//8TAeWUyAixfvpySkhKOHj3KihUrGDJkSERpA+zevZthw4Zx77330rJlS/bv38+oUaNYvHgxADt37mTfvn306NEj4jjz8/Np06YNHo8nGE84pk2bxoMPPkheXh5ZWVkRx59IWEwLyq4VlCZB0Qqqhtx6661lZvPNnTuXtWvXkpWVRe/evYNv81OmTCEnJ4c+ffrw5JNP0r1797DxTZ48maysLPr168eZZ57Jgw8+SOvWrSOSxefzcfnllwcnJPzud78jPT2d8847jzfffDM4SaIyGcHoIhw7dizDhw/nrrvuCo4/jRo1iosuuohPPvmE9u3b8+GHHwJw99138/bbbwPGTL/MzEz69u3LL37xC/r168f111+P3+8nMzOTadOmsWjRojKWU3X85S9/YdiwYYwYMYKePXsG3d9++23uvvvu4PnUqVNZsmQJF198ccRxJxpiWlBOf2KvmKFpvEg8Ldc/ePBgVX421vbt2+nVq1eMJEps5syZU2YyRaKR6HXn879fwOjSz/Bgwz7naKzF0WhOGhFZp5SqMNNJW1AaTQMlMEnCjhd8nhhLo9FEnwY1SUITXeJ5NQxN9VhUyKQZdyEkpcdMFo2mLtAWlEbTQAlMkgAMBaXRJBhaQWk0DRQJVVAe/S2UJvHQCkqjaaCEWlDKrZc70iQeWkFpNA2UUAXlLtJdfJrEo84VlIhMEJEdIrJLRO6s6/TqirfeegsR4dtvv600THZ2Nn379q1TOTZs2MB7771XqzhmzZrFKaecUueyauoWCz5KlTHPqbRYr2iuSTzqVEGJiBWYB5wD9AYuEZHedZlmXfHKK68wcuRIXnnllbD+4ZYhqimB9eyqIhoKaubMmXzwwQe1ikMTeyzKRwHJALiLtILSJB51bUENBXYppb5XSrmBJcCkOk4z6hQUFLBq1SoWLlzIkiVLgu4rVqxg1KhRnH/++fTubehdr9fLZZddRq9evZg6dWpwu4hPPvmEAQMGkJmZyaxZsygtLQWMJZHuuOMOBg4cyKuvvlom3fLbWbjdbu6++26WLl1K//79Wbp0KYWFhcyaNYuhQ4cyYMAAli9fDhjbW0yaNIkxY8bQrVs37rnnnmC8Z5xxBs2bN6/ynj///HP69+9P//79GTBgAPn5+SilKt0aZPTo0UyaNIkuXbpw5513snjxYoYOHUpmZia7d+8G4J133mHYsGEMGDCAs846i59++qlCutOnT+fdd98Nns+cOTO4MKymLFZ8FIqhoDwlegxKk3jU9XdQ7YD9IecHgGGhAUTkGuAagFNPPbXq2N6/E36suBhqrWidCefcX2WQ5cuXM2HCBLp3705GRgbr1q1j0KBBgLHO3pYtW+jcuTPZ2dns2LGDhQsXMmLECGbNmsVTTz3F7NmzmTlzJp988gndu3dnxowZPP3009x0000AZGRkBNftC6X8dhYOh4N7772XtWvX8uSTTwLwhz/8gTPPPJPnnnuO3Nxchg4dyllnnQXAmjVr2LJlC8nJyQwZMoSJEydGvC3Fww8/zLx58xgxYgQFBQW4XC7eeOONSrcG2bhxI9u3b6d58+Z06dKFq6++mjVr1vD444/zxBNP8NhjjzFy5EhWr16NiPDss8/y4IMP8sgjj5RJN7CVxsSJE3G73XzyySc8/fTTEcnc2LAoH8XWFPCDVysoTQIS80kSSql/KqUGK6UGt2zZMtbihOWVV15h+vTpgPGGH9rNN3ToUDp37hw879ChAyNGjADg8ssvZ9WqVezYsYPOnTsH1+O78sorWblyZfCaadOmhU033HYW5fnoo4+4//776d+/P2PGjKGkpIR9+/YBcPbZZ5ORkUFSUhIXXnghq1ativieR4wYwS233MLcuXPJzc3FZrNVuTXIkCFDaNOmDU6nk65duzJu3Dig7FYaBw4cYPz48WRmZvLQQw+F3UrjnHPO4bPPPqO0tJT333+fM844g6SkpIjlbkxY8VFqTQXApxWUJgGpawvqINAh5Ly96XZyVGPp1AU5OTl8+umnbN68GRHB5/MhIjz00ENAxa0zTmb7isq234hkOwulFK+//nqFFcO//vrrWm2lceeddzJx4kTee+89RowYEVwstjIi2Urjhhtu4JZbbuH8889nxYoVYVeycLlcjBkzhg8//JClS5cGXww0FbEoHx5bKnjAX6pn8WkSj7q2oP4HdBORziLiAKYDb9dxmlHltdde44orrmDv3r1kZ2ezf/9+OnfuzBdffBE2/L59+/jqq68A+Ne//sXIkSPp0aMH2dnZ7Nq1C4CXXnqJ0aNHV5t2uO0sym+lMX78eJ544ongdvDr168P+v3nP/8hJyeH4uJi3nrrraBlFwm7d+8mMzOTO+64gyFDhvDtt9/WamsQgLy8PNq1awfACy+8UGm4adOm8fzzz/PFF18wYcKEiONvTPj9Chs+sDkoVg58eiUJTQJSpwpKKeUFZgMfAtuBZUqpiv06ccwrr7zC5MmTy7hNmTKl0tl8PXr0YN68efTq1Ytjx45x3XXX4XK5eP7557nooovIzMzEYrFw7bXXVpt2uO0sxo4dy7Zt24KTJO666y48Hg9ZWVn06dOHu+66K3j90KFDmTJlCllZWUyZMiU4/nTJJZdw+umns2PHDtq3bx/c32r+/PnBrTgee+wx+vbtS1ZWFna7nXPOOadWW4OAsfbfRRddxKBBg2jRokXQfe3atVx99dXB83HjxvH5559z1lln4XA4Io6/MeH1K6z4sVjtFOHUSx1pEhK93UaCsmjRojKTKRojiVx3itxecu7rwbGWQ2l2eA0lbYZz2rWVb/Co0cQzersNjSaBCFhQNpudIuVEvHotPk3iobfbSFBmzpzJzJkzYy2Gpo7w+owxKIvVRhEumurFYjUJSIOwoOKpG1LTMEj0OuP1+bHiA6uNUnFh8RbHWiSNJurEvYJyuVwcPXo04RscTfRQSnH06FFcLlesRakzvH6FDT9YbLgtLmw+bUFpEo+47+Jr3749Bw4c4PDhw7EWRdOAcLlctG/fPtZi1Blen8KCH7HY8FiTsPsqLhul0TR04l5B2e32Mis1aDQa8Pr92PAhVhseSxJ2n+7i0yQecd/Fp9FoKhKYxYfFhteajMNfEmuRNJqooxWURtMA8Xr92MWHWGz4bEk4VQnocVpNgqEVlEbTAPH6PACIxYbfnmwse+Rzx1gqjSa6aAWl0TRAvB5DGYndCXZjTyi93JEm0dAKSqNpgPg8xoaXYnWgAgpKf6yrSTDifhafRqOpSFBB2R3gsBuObq2gNImFVlAaTQPEZ3bxWax2xFRQ/tJC3SWiSSh0fdZoGiA+r2FBWWwOrE5jw8vS4uOxFEmjiTpaQWk0DRC/aUFZ7U5sLmPbd3eR3vZdk1hoBaXRNED8XrOLz+bAGlBQxVpBaRILraA0mgZIYJKExebEnpQGgLckP5YiaTRRR0+S0GgaIMp7oovPbjcsKE+J/g5Kk1hoBaXRNECUL6CgHLhshgXlK9FdfJrEQisojaYBEjpJwpVkzOLzl2oFpUks9BiURtMA8ZsWlM3uJMlpp0g5UXqpI02CoRWURtMQ8Z7o4kt2WCnCidIrSWgSDK2gNJoGSGAWn83uJNluo0g5Eb0WnybB0ApKo2mA+DzGBoVic5LksFKESysoTcKhFZRG0wARtzkhwpmGw2ahBCcWrx6D0iQWWkFpNA0Qi8dURg7jG6hSiwurtziGEmk00UcrKI2mAWL1FODFCjYnAKWShM2nu/g0iYVWUBpNA8TmLaREkkAEgFJrMg6toDQJhlZQGk0DxOYtotSSFDz3WJNx+HQXnyax0ApKo2mA2L2FuK3JwXOPLQWXX1tQmsRCKyiNpgHi8h3HY28SPPfZknHgBp83hlJpNNFFKyiNpoHh9vpp7j+G29Uy6Oazp5ieessNTeKgFZRG08A4VuTmFMnFl9oq6OY3t9xALxirSSBqpaBEZI6IHBSRDebv3BC//yciu0Rkh4iMr72oGo0G4Mejx2giRVjSWp9wNL+HQi8Yq0kgorHdxqNKqYdDHUSkNzAd6AO0BT4Wke5KKV8U0tNoGjWH92wBoEm7HkE3cRp7QuHWFpQmcairLr5JwBKlVKlSag+wCxhaR2lpNI2K4oOGgsrolBV0E6cxBuXT275rEohoKKjZIrJJRJ4TkWamWztgf0iYA6ZbBUTkGhFZKyJrDx8+HAVxNJrExvHDWopIwnbKCQvK4jIsKHdRXqzE0miiTrUKSkQ+FpEtYX6TgKeBrkB/4BDwSE0FUEr9Uyk1WCk1uGXLltVfoNE0YvIKSsgq+i8H0weD9UQPvdVlTDn3FB2PlWgaTdSpdgxKKXVWJBGJyALg3+bpQaBDiHd7002j0dSCrz5YzATJYf+g6WXc7UmGBaUVlCaRqO0svjYhp5OBLebx28B0EXGKSGegG7CmNmlpNI2dH376md6bH+CQrR0dfjGtjJ892bCgvCV6koQmcajtLL4HRaQ/oIBs4DcASqmtIrIM2AZ4gd/qGXwazcmTcyyHI/+cTG8Oc3TS62C1l/F3JqXiU4K/RFtQmsShVgpKKXVFFX73AffVJn6NRgOb1q4i5d3r6O0/wO6Rj9Aj88wKYZKdNgpx4dcf6moSiGh8B6XRaOoAt9vDf1/6M7/YN598SxP2TniBHqefHzZsssNKIUmoUj3NXJM4aAWl0cQh2d9tpXDp1YzxbmNz+mi6zFxA12atKg2f7LBRqFwk1fGHun6fn73793Js/1a8+Uex4CO1WWvadO5J01adg/tTaTTRQCsojSaOUEqxcvmzDFp/FxkibB76AJnn/Kbahj/ZYeUQLpLrYKmjY3n5bPpsGZbd/+G0/DV05iidw4Q7LBkcajYEZ49f0mnYr3Cmt42aDEoplDIGuy0CohVho0ArKI0mTsg7XsA3z17P2OPL2eXsRfqVL5HZrltE1yY5rBSqJCye6CgopRTr16/l+OdP0i/3Y0ZLAfmksKfJYH7qcDop7XriTG+DHwu5Px8k/+B27Ae/ptvR/5Lx1Qfw1W3sd3ThWOtR2DoOoUmbbiQ1a4PT5aLE46e0IJfigmMUHT9KSd5hvAVH8RcegaIcbCXHcLhzSfbmkuI/Tro6TpoUo5SgEDwICgtuseHBjkfseMSBV+x4xYHPYvz85q8ktT29L/kbqU0zopI3mvqj8SgopSh1l1BUVILyuVE+D1hsYLVjc7iw2x3YrFbsVtFvZ5p6Z/eOTXiWXMlY9T2bT72cPlf8A4vdGfH1yXYrhbiwems3i08pxVdffoZa+Qinl36JR2x813w0ecOvpNPgc8myhmkyeoPxlQkUlbpZ882X5G76gBY/raLv3pdx7HuhTPDUKtIvxMVxaUKRrSklrnSOOjrzs6s5HlsKCFhQKOXH7/OCz4N4SxCfG4uvFIvfjcXvweovxer1YFcF2PweeuV/Rc5jn5J34QLaZY6pVf5o6peEUlB5x46w66t3KP35O+y52SQV/0CS5xhN/Hk0Vcdxio+qHnm3slKEDTd2PNjwYsMj9hP/xYYPO16LHUEQMbsbUFjMhyeAKAUoxHQL+EhIGKXKnleOIqJg1cVRY5/oouorocrSj2pk0b2Zjr59+MXC92ctIHPkxTW+3ma1UCxJ2L2HTlqGzdu3cWT5Hxlb8ikFJLOt6yxOO+82+jZrU/3FJslOB0NPHwunjwXgaE4OB3ZvpuTnXajCY/g8pTisYHE1wZLUFFdac1LSTyEtozVNm51CisNFyknfQXi++e9/aPXRdbR6bTJfrZ5B78l30LRF9d2Pbo+Pw4d/JOfHvRQc3ktpzkFU3g/YCg+R6j5MU+8RnP5ibMqNQ3lw4MaGHx8WFIIPC34s+BH8YsGHFT/mf/NcYcEnhrtfrPixBv8HunVFoPwrc8V2o+y5hNTP6toYQZUJUT58mfNyUe11dGX87YurjL82JJSCyv0xm0FrbgLgCOkctbWi0NWGHGdfPK7mWJypWO0OlMWBslixKB/i96J8bsT84XMjfo9x7vdg8Xuw+Iw3M5vy4PS7sfrdKBR+JSf+q1B1ZPxXCJiVFU4MIwTOK9Q6E5GQMCdcqzyN0OskqDy2qKZTD/dTXTyVG851b1Hvtv+CNlP+TpdTe1QfuBJKLUnYfTXf9v3Y8UL++9LdnPnzi3QXxfau/0e3C++ib0qz6i+uhozmzcloPhoYXeu4TpaBvzibH0/7kg0vX8/pBxfhfuIltrn6UJDeE29yK6w2G353Cdbio1iKj+AqOUxTz2FaqqO0E0+ZRUT9CLnSlFxrC/IcrfHaUsDmApsTn9muiFJY8CHKD8oPyof4zf+Bn9+HEPjvx6K8iPJjUT5syosoY2fkgJ5RSlVsE8pV2GA7Y/45ET6Migq5NtBWSbnzygj1U7akSsNFg4RSUG279mXXlA9o17k3LVKb0iLWAmk09YjbmoKjhgrqq69W0fSj3zFR7WZHizPpcPEj9GrVpY4kjB2tT2lF61teZ/e2b/h55bO0PLya3j++TaqUBMPkqyTyLOkU2JtzpEkffk5rjbVJO5wZ7UlreSrN2nQipXk7mtscNI/hvcQTmXUcf0IpKLvDxWmZp8daDI0mJvjtKdhL3ODzlllINhx5hSV88cLdnP3TQootKew/6xl6jJxe5TWJQNfeA+na+ykAlN9PSXEBpR4fSS4naa5k0mIsn6YsCaWgNJpGjSMVSgB3PiRV3j339f9Wk/zeDfxK7WRnxpl0uvIZ0pueUn9yxgliseBKaYIr1oJoKkUrKI0mQbC40uA4UFoQVkHlF5Ww8qV7+eUP/8RtcbF37BN0P+MK/XGtJm7RCkqjSRBs5pYbhFnu6KuvvyL1gxuZqHaws9koTp3xDB2bh91DVKOJG7SC0mgSBGvzTrAXin/6jqRWvQE49PNhNi35M2OOLsNtcZI9+jG6j5mprSZNg0ArKI0mQWjZtR/+b4SjO7/Cm96f796fR/8fljBe8vj2lAl0uewxOqVH/k2TRhNrtILSaBKEgae1ZxX9OWPL0/g3z6eTKL5LHYz/V/fSs9eIWIun0dQYraA0mgShictO6sXzWfHZ46Q1aUqnkdPo1mVArMXSaE4araA0mgRiYJ+e0OfpWIuh0UQFS6wF0Gg0Go0mHFpBaTQajSYuERXrJaZDEJHDwN4oRNUCOBKFeOoDLWvd0ZDkbUiyQsOStyHJCg1L3mjJ2lEp1bK8Y1wpqGghImuVUoNjLUckaFnrjoYkb0OSFRqWvA1JVmhY8ta1rLqLT6PRaDRxiVZQGo1Go4lLElVB/TPWAtQALWvd0ZDkbUiyQsOStyHJCg1L3jqVNSHHoDQajUbT8ElUC0qj0Wg0DRytoDQajUYTlySUghKRCSKyQ0R2icidsZYnFBHpICKficg2EdkqIjea7nNE5KCIbDB/58Za1gAiki0im0251ppuzUXkPyLynfm/8q1b60/OHiH5t0FEjovITfGUtyLynIj8LCJbQtzC5qUYzDXr8SYRGRgHsj4kIt+a8rwpIummeycRKQ7J4/n1KWsV8lZa9iLy/8y83SEi4+NA1qUhcmaLyAbTPR7ytrJ2q37qrlIqIX6AFdgNdAEcwEagd6zlCpGvDTDQPE4DdgK9gTnA72MtXyUyZwMtyrk9CNxpHt8JPBBrOcPUgx+BjvGUt8AZwEBgS3V5CZwLvA8IMBz4Og5kHQfYzOMHQmTtFBoujvI2bNmbz9xGwAl0NtsMayxlLef/CHB3HOVtZe1WvdTdRLKghgK7lFLfK6XcwBJgUoxlCqKUOqSU+sY8zge2Aw1xS9NJwAvm8QvABbETJSy/BHYrpaKxIknUUEqtBHLKOVeWl5OAF5XBaiBdROptI6dwsiqlPlJKec3T1UD7+pKnOirJ28qYBCxRSpUqpfYAuzDajnqhKllFRICLgVfqS57qqKLdqpe6m0gKqh2wP+T8AHGqAESkEzAA+Np0mm2aw8/FQ5dZCAr4SETWicg1plsrpdQh8/hHoFVsRKuU6ZR9wOM1b6HyvIz3ujwL4y05QGcRWS8in4vIqFgJFYZwZR/PeTsK+Ekp9V2IW9zkbbl2q17qbiIpqAaBiKQCrwM3KaWOA08DXYH+wCEMEz9eGKmUGgicA/xWRM4I9VSGTR833ymIiAM4H3jVdIrnvC1DvOVlZYjIHwEvsNh0OgScqpQaANwC/EtEmsRKvhAaTNmHcAllX67iJm/DtFtB6rLuJpKCOgh0CDlvb7rFDSJixyjkxUqpNwCUUj8ppXxKKT+wgHrsbqgOpdRB8//PwJsYsv0UMNnN/z/HTsIKnAN8o5T6CeI7b00qy8u4rMsiMhP4FXCZ2ShhdpUdNY/XYYzpdI+ZkCZVlH285q0NuBBYGnCLl7wN125RT3U3kRTU/4BuItLZfJOeDrwdY5mCmP3LC4HtSql/hLiH9s9OBraUvzYWiEiKiKQFjjEGybdg5OmVZrArgeWxkTAsZd5A4zVvQ6gsL98GZpgzooYDeSHdKTFBRCYAtwPnK6WKQtxbiojVPO4CdAO+j42UJ6ii7N8GpouIU0Q6Y8i7pr7lC8NZwLdKqQMBh3jI28raLeqr7sZyhki0fxgzSHZivGn8MdbylJNtJIYZvAnYYP7OBV4CNpvubwNtYi2rKW8XjNlOG4GtgfwEMoBPgO+Aj4HmsZbVlCsFOAo0DXGLm7zFUJyHAA9Gv/z/VZaXGDOg5pn1eDMwOA5k3YUxthCou/PNsFPM+rEB+AY4L07yttKyB/5o5u0O4JxYy2q6LwKuLRc2HvK2snarXuquXupIo9FoNHFJInXxaTQajSaB0ApKo9FoNHGJVlAajUajiUu0gtJoNBpNXKIVlEaj0WjiEq2gNBqNRhOXaAWl0Wg0mrhEKyiNRqPRxCVaQWk0Go0mLtEKSqPRaDRxiVZQGo1Go4lLtILSaDQaTVyiFVQViEgnEVHmXi2aBoqI3CAiP4jIxhikPUdEXq6HdGaKyKoq/FeIyNV1LUesEJFFIvLXmvpFWYYqy1pEskXkrLqWI5qIyDQRyROR/4pI2/pOXysoTVQRkfkiUmD+3CLiCTl/v/oY6oQ5wPVKqX4hcs4RkTkxkieuMF/EsmsY/jMRKRKRb6tqdEXkYrNxKxKRFTWUq9GUkYiMqUn+iEh/EVln5us6EelfRdjmIvKmiBSKyF4RuTTEb6yIbBaRXBE5aoYLbtGulFoKtDBPL675ndWOhFZQ2vKpf5RS1yqlUpVSqcDfgKWBc6XUOYFw9Vw2zYm/zQprTBzV51eA9Rh7Av0ReE1EWlYSNgd4DLi/fkSrW+KhDMwNWZcDLwPNgBeA5aZ7OOYBbqAVcBnwtIj0Mf22AeOVUulAW4z9nZ4OvVgp5cHYZy8jundSPQmnoEwz+g4R2QQUiohNRIabb3G5IrJRRMaEhF8hIn8XkTUiclxElotI80rivkpEtotIvoh8LyK/Kec/SUQ2mPHsNnchRUSaishCETkkIgdF5K+BnTKruI+uIvKp+VZzREQWi0h6iF+OiAw0z9uKyOHAfYnI+SKy1bzfFSLSq1z+/F5ENpmm+1IRcdU8p2tOJWWjROS0kDBlumNE5FdmnuaaZZhVwzQD+eyvJtztZvn8ICJXh8plyjRPRN41y/5rEekacu3jIrLfLPd1IjKqXPQuM5/zReQbEQm15O4060q+iGwTkckhfjNF5EsReVREjmJYgtXd78MickxE9ojIOeW8O5rx5YvIRyLSImwkVcffHRgI/FkpVayUeh1jY7op4cIrpT5WSi0DfqhpWmHSrrSMyoVLE8PCmysiYjq3EJH/mPf+uYh0DAlfafmJYcW9JiIvi8hxYGY1YjpE5EUzna0iMricf/8oPHtjABvwmDK2hZ+LsVHgmeUDirEb9hTgLqVUgVJqFcYGjlcAKKV+UkqFlo0PqJCnGM9P/Svn+t6hsR52gMzG2PWxA5AEtMPYafVcDIV8tnne0gy/AjgI9MXYlfV14GXTrxPGbpI283wi0BWjMowGioCBpt9QIM+M32Km29P0exN4xoz/FIwtpn9TzX2cZsblBFoCKzEqZMD/1xhvP8nAh8DDpnt3oNC81o6xTfcuwBGSP2sw3paaA9spt5Nnud00c6v4jazmHuYE8jJc2ZhuCjgtJMwi4K/m8QDgZ2AYYMXYWjobcNagPkwASoCUasL8CPQx8/PlULlMmY6aZWwDFgNLQq6/HOPt0gbcasblCskDDzDVLI/fA3sAu+l/kVkWFmCaWXZtTL+ZgBe4wYw7qYp7mGmm82szr67DUAqBTUlXYOxy2h3juVgB3F9JXE8BT1XiNxlj++9QtyeBJ6oph6uBFbV4riMpo7+a5bAmUIdC/PKBMzCep8eBVTUsvwvMMqqqDOaYde1cswz+DqwuV/8jffb+DdxZid/NwPthwt8aJuwAoKic2++Bd0LOT8V4nv3mvc4ME889wOdU8RzVxa/eEqq3GzIqwayQ8zuAl8qF+RC40jwu86ACvTHMYSvlFFSYtN4CbjSPnwEeDROmFVAaWrGBS4DPanhfFwDry7m9zYltrZ2m213AspAwFgwFPCYkfy4P8X8Qc/vuOiiLOVRUULPKhalKQT0N/KVc+B3A6AjTX2vG/7tqwj0H/D3k/DQqNn7PhvifC3xbRXzHgH4heRDaSFkwtvweVcm1G4BJ5vFMYF+E9zoT2BVynmzeQ+uQev6nEP/rgQ9OokyvCL0f0+0+YFE119VWQUVSRs9hdOXeVu7aRZR9oUjFsBQ6RFh+K2tQ3z8OOe8NFJer/7V+9jCe8SXl3BYDc8KEHQX8WM7t1+HKAkNp3gEMD+PXDKObzwdceLLlWNNfwnXxmewPOe4IXGR2EeWKSC6GZdCmkvB7Md50K3R/iMg5IrLa7F7LxWioAuE6YLyhlqejGd+hkPSfwbCkKkVEWonIErNL8DjGG2N5mRZgWH5PKKVKTbe25j0AoJTym/fXLuS6H0OOizAe2Ppif/VBgnQEbi1Xdh0w7jEShgDTgTkiYq8iXNtycoWTsdI8M7tMt5vdNrlAU8qWVTA+szwOBO5BRGaEdGHmYpRn2GsjICijUqrIPEwN51/+HmpAAdCknFsTDAulLomkjCZiWIfzw/iFlkEBxthYoAwiLr8IKJ/HLik7blXfZRBxWKVUDifGs8p3510FHAeaK6XeOAmZT4pEVVAq5Hg/hgWVHvJLUUqFDtp2CDk+FcPMPRIaoYg4Mbr/HgZaKWNQ8T2M7r5AOl2pyH4MC6pFSPpNlFJ9woQN5W/mfWQqpZpgdEME0kJEUjEGnxdiNMCBcbMfMBr2QDgx7+9gNelVQERGyYkZeOF+5cdaIkGVOy/CeNsP0DrkeD9wX7myS1ZKvRJRQsar31sYb39tqgh6CGgfct6hsoDlMfPgdowZTs3MepFHSFmFxiciFjOtH8xxkAXAbCDDvHZLuWvL51es2Qp0EZG0ELd+pntdEkkZLQA+AN4zx14IF958dppjlEEk5RePZZAVMr4GkEX4MtgJ2ESkW4hbVeVlw3h5Lq/UemH0+uSdnMgnR6IqqFBeBs4TkfEiYhURlxhTOkMr++Ui0ltEkoF7gdeUUr5y8Tgw+q8PA15zAHpciP9C4CoR+aWIWESknYj0VEodAj4CHhGRJqZfVxEZXY3caRhvP3liTPu8rZz/48BapdTVwLuceGtcBkw05bBj9KmXAv+tLqPKo5T6Qp2YgRfu90VN4wzDBuBSs2wmYIztBVgAXCsiw8QgRUQmBhpHMSYvLKrmHgKWZWUznMDIs6tEpJdZB+6qgfxpGONEhzEagrup+HAPEpELzbfSmzDKYzXGmKQyr0VErsKwoOIWpdROjDL7s/ksTcZoHF8PFz7wzGE0fBbzGnuIf7aIzIwg6UjLaDZGN/A7IpIU4n6uiIwUY6bbXzC6KfcTWfnFGyswutp+JyJOEZltun9aPqBSqhB4A7jXfH5GAJOAlwDMetnDbJdaAv/AGErIKReVHaPe1isJr6DMSjgJ+ANGJdyP0diH3vtLGP3UPwIu4Hdh4sk33Zdh9FFfijEGFPBfg2EGP4rxBvY5JyyZGRgN5Dbz2teo+o0ejEHJgWZc72JUMsCYLYgxaHyd6XQLMFBELlNK7cCwtp7AsALPA85TSrmrSS9W3IghYy7GFNi3Ah5KqbUY/eVPYuTbLsrOouoAfBlBGooq6rpS6n1gLvCZmcZq0yuSB/JDjLf2nRhdqyVU7BJajjEB4hjGGM6FSimPUmob8AjwFfATkBnh/dQpYnzLFq6bLMB0YDDG/dwPTFVKBZTsZSIS+nZ+BVCMMZ44yjxeYIZ1YExOWE01RFpGptV8DUY36nI5MUvuX8CfMbr2BmE8IxBZ+dU7IvK+iPwhnJ/5LF+A0a7kArOACwLPuIj8Qcp+c3g9RtfnzxifCFynlAqUUTuM+8/HGM/2Y0yEKY+VambC1gWBGT6NFjE+jntZKfVsrGXRRI7ZuG0EspTxnUZVYX8AbldKRbSigxjT8rdgTDzx1lpYTVhEZCTwW6XUJSdxrS6jesK0RFcBC5VST9Vn2glvQWkSE6WUWynVqzrlZHInRpfUusoCiMhks7ukGfAAxjRc3fDVIUqpVTVRTrqM6h8RuRjDsvwJo/eoXtEKKoZI2WWBQn9Vda9oaohS6kWlVDel1KAqgv0GowtkN0b//nVVhI0Jur7EvozMrrdwZRC2O66ho5RappQ6RSl1rlLqSPVXRJdG38Wn0Wg0mvhEW1AajUajiUtivvBhKC1atFCdOnWKtRgajUajqUfWrVt3RClVYcHhuFJQnTp1Yu3atbEWQ6PRaDT1iIjsDeeuu/g0Go1GE5doBaXRxBl+v+L9zYfw+fUEJk3jRisojSbO+M/X3zD8tcH8+6MPYy2KRhNT4moMKhwej4cDBw5QUlISa1E0DQiXy0X79u2x26taxDw+se1ZQTMp4LTvnoMJE2ItjkYTM+JeQR04cIC0tDQ6depE2cV7NZrwKKU4evQoBw4coHPnzrEWp8ZY7ObycX69SIKmcRP3XXwlJSVkZGRo5aSJGBEhIyOjwVrdDn8xAF5f+QX1NZrGRdwrKEArJ02NadB1xrScbL6GqWA1mmjRIBSURtOYUH7DcrL5imMsiUYTW7SCigAR4dZbbw2eP/zww8yZMyd2AlXDihUr+O9/a7w/YZANGzZw+umn06dPH7Kysli6dGkUpdNUi2lBOfxF1QTUaBIbraAiwOl08sYbb3DkSHQX81VK4fdHfw+w2iqo5ORkXnzxRbZu3coHH3zATTfdRG5ubvQE1FRJwIJyaAtK08jRCioCbDYb11xzDY8++mgFv8OHDzNlyhSGDBnCkCFD+PJLY0PUOXPm8PDDDwfD9e3bl+zsbLKzs+nRowczZsygb9++7N+/n9tuu42+ffuSmZkZtFZWrFjBmDFjmDp1Kj179uSyyy4j3Mrzc+fOpXfv3mRlZTF9+nSys7OZP38+jz76KP379+eLL76oUsYrrriC008/nW7durFgwQIAunfvTrdu3QBo27Ytp5xyCocPH66Q9quvvkrfvn3p168fZ5xxBmBMarnqqqvIzMxkwIABfPbZZwAsWrSICy64gLPPPptOnTrx5JNP8o9//IMBAwYwfPhwcnKMHaYXLFjAkCFD6NevH1OmTKGoqKIVMXz4cLZuPbFp65gxYxJriaxAF1/cboKs0dQPcT/NPJR73tnKth+ORzXO3m2b8Ofz+lQb7re//S1ZWVncfvvtZdxvvPFGbr75ZkaOHMm+ffsYP34827dvrzKu7777jhdeeIHhw4fz+uuvs2HDBjZu3MiRI0cYMmRIsLFfv349W7dupW3btowYMYIvv/ySkSNHlonr/vvvZ8+ePTidTnJzc0lPT+faa68lNTWV3//+9wBceumllcq4adMmVq9eTWFhIQMGDGDixIm0bds2GP+aNWtwu9107dq1wn3ce++9fPjhh7Rr1y5oYc2bNw8RYfPmzXz77beMGzeOnTt3ArBlyxbWr19PSUkJp512Gg888ADr16/n5ptv5sUXX+Smm27iwgsv5Ne//jUAf/rTn1i4cCE33HBDmXSnTZvGsmXLuOeeezh06BCHDh1i8ODBVeZ5gyLQxaci2XFeo0lctAUVIU2aNGHGjBnMnTu3jPvHH3/M7Nmz6d+/P+effz7Hjx+noKCgyrg6duzI8OHDAVi1ahWXXHIJVquVVq1aMXr0aP73v/8BMHToUNq3b4/FYqF///5kZ2dXiCsrK4vLLruMl19+GZst/PtGVTJOmjSJpKQkWrRowdixY1mzZk3wukOHDnHFFVfw/PPPY7FUrCojRoxg5syZLFiwAJ85JXrVqlVcfvnlAPTs2ZOOHTsGFdTYsWNJS0ujZcuWNG3alPPOOw+AzMzM4L1t2bKFUaNGkZmZyeLFi8tYSgEuvvhiXnvtNQCWLVvG1KlTq8zvBodpQdkj2ixYo0lcGpQFFYmlU5fcdNNNDBw4kKuuuiro5vf7Wb16NS6Xq0xYm81WZnwp9JuclJSUiNJzOp3BY6vVitdb8cPNd999l5UrV/LOO+9w3333sXnz5gphKpMRKk7HDpwfP36ciRMnct999wWVaXnmz5/P119/zbvvvsugQYNYt67SHdUr3I/FYgmeWyyW4L3NnDmTt956i379+rFo0SJWrFhRIZ527dqRkZHBpk2bWLp0KfPnJ9iGsuYu5i5KQCmI8pT5PUcKaZHqIM3V8FbZ0DQutAVVA5o3b87FF1/MwoULg27jxo3jiSeeCJ5v2LABMLYO+eabbwD45ptv2LNnT9g4R40axdKlS/H5fBw+fJiVK1cydOjQiOTx+/3s37+fsWPH8sADD5CXl0dBQQFpaWnk5+dXKyPA8uXLKSkp4ejRo6xYsYIhQ4bgdruZPHkyM2bMqNI62b17N8OGDePee++lZcuW7N+/n1GjRrF48WIAdu7cyb59++jRo0dE9wOQn59PmzZt8Hg8wXjCMW3aNB588EHy8vLIysqKOP4GQWAMCj94o9vN5/Mr/vGPv/Hyc3OrD1xD8oo9LFj5fZ0scrtubw6bD+RFPV5NfKMVVA259dZby8zmmzt3LmvXriUrK4vevXsH3+anTJlCTk4Offr04cknn6R79+5h45s8eTJZWVn069ePM888kwcffJDWrVtHJIvP5+Pyyy8PTkj43e9+R3p6Oueddx5vvvlmcJJEZTKC0UU4duxYhg8fzl133UXbtm1ZtmwZK1euZNGiRfTv35/+/fsHldrdd9/N22+/DcBtt91GZmYmffv25Re/+AX9+vXj+uuvx+/3k5mZybRp01i0aFEZy6k6/vKXvzBs2DBGjBhBz549g+5vv/02d999d/B86tSpLFmyhIsvvjjiuBsM/hMrSHhK8qsIWHNyCt084XiS636+N6rxAjz23no6/2cW61d/GvW4H39mPh0W9IISraQaExJuZlisGDx4sCo/G2v79u306tUrRhIlNnPmzCkzmSLRaKh154t5v2HU4SUAHL/2G5q0rjhB5WTZn1NEh7ltjJM50W3s73l2GX8+8GsKUzuS8vtNUY17+92Z9LLsg1kfwqnhu5w1DRcRWaeUqjDTSVtQGk2cISEWVElBdJWIxxf97+4CpNqMl12LpzDqcbsDw+VFOVGPWxO/NKhJEproEs+rYTRqQhSUuyi6n1V4QxWU3w9hZmeeLMlWY3KHxRv9NQS9WAHwl+brt+pGhC5rjSbeUKEKKrpjUG5PyNT1KFs6DsxFbv3RXwEjoKBKC3OjHrcmftEKSqOJM0TV3SQJn/fE6hSqNLpx4zOUn1VFd5sQpRReFVBQ0bUoNfGNVlAaTZwRqqB8xVFWUO4T09ZLC6Mbt/LWzdJModPWfcVaQTUmtILSaOINv5cSZXxE6y2pelWSmuIN+a6quDC6EzCUr26WZvL4FDYxlLavRCuoxoRWUBHy1ltvISJ8++23lYbJzs6mb9++dSrHhg0beO+99076+sCHvb1796ZPnz48/vjjUZROEw1E+ckXY7WRaHfD+TwnrJzSKE/ACHTxRRu3z4/dHN9SWkE1KrSCipBXXnmFkSNH8sorr4T1D7cMUU3xRbDFd20VlM1m45FHHmHbtm2sXr2aefPmsW3btpOOTxN9RPkokWT8SlCl0Z3I4PecsHLcUR7PKdPFF8VtZDw+PzaMZyPa+aGJb7SCioCCggJWrVrFwoULWbJkSdB9xYoVjBo1ivPPP5/evXsDhqK67LLL6NWrF1OnTg1uF/HJJ58wYMAAMjMzmTVrFqWlRkPRqVMn7rjjDgYOHMirr75aJt3y21m43W7uvvtuli5dSv/+/Vm6dCmFhYXMmjWLoUOHMmDAAJYvXw4Y21tMmjSJMWPG0K1bN+655x4A2rRpw8CBAwFIS0ujV69eHDx4sMI9f/7558FVJAYMGEB+fj5KqUq3Bhk9ejSTJk2iS5cu3HnnnSxevJihQ4eSmZnJ7t27AXjnnXcYNmwYAwYM4KyzzuKnn36qkO706dN59913g+czZ84MLgzbWLAoH8pipRAXuKPbIIdOkvBEeXxLfCEKKoozBD0+P3ZTQYk7ul2emvimYX0H9f6d8GPFxVBrRetMOOf+KoMsX76cCRMm0L17dzIyMli3bh2DBg0CjHX2tmzZQufOncnOzmbHjh0sXLiQESNGMGvWLJ566ilmz57NzJkz+eSTT+jevTszZszg6aef5qabbgIgIyMjuG5fKOW3s3A4HNx7772sXbuWJ598EoA//OEPnHnmmTz33HPk5uYydOhQzjrrLMDYKmPLli0kJyczZMgQJk6cWGZbiuzsbNavX8+wYcMqpP3www8zb948RowYQUFBAS6XizfeeKPSrUE2btzI9u3bad68OV26dOHqq69mzZo1PP744zzxxBM89thjjBw5ktWrVyMiPPvsszz44IM88sgjZdINbKUxceJE3G43n3zyCU8//XSEhZkYiPKhxEoRTsQT3QbZX0ZBRdeCEn+IgnIXgjMtKvF6vCrYxScevctwY0JbUBHwyiuvMH36dMB4ww/t5hs6dCidO3cOnnfo0IERI0YAcPnll7Nq1Sp27NhB586dg+vxXXnllaxcuTJ4zbRp08KmG247i/J89NFH3H///fTv358xY8ZQUlLCvn37ADj77LPJyMggKSmJCy+8kFWrVgWvKygoYMqUKTz22GM0adIkbNq33HILc+fOJTc3F5vNVuXWIEOGDKFNmzY4nU66du3KuHHjgLJbaRw4cIDx48eTmZnJQw89FHYrjXPOOYfPPvuM0tJS3n//fc444wySkpLC3nuiIsqHHyvFkoQlyg1yqILyR3kKe5kxqChafh7/iS4+i1crqMZEnVtQIjIBeBywAs8qpao2V6qiGkunLsjJyeHTTz9l8+bNiAg+nw8R4aGHHgIqbp1R2fYVVVHZ9huRbGehlOL111+vsGL4119/XaksHo+HKVOmcNlll3HhhReGTfvOO+9k4sSJvPfee4wYMYIPP/ywynuIZCuNG264gVtuuYXzzz+fFStWhF3JwuVyMWbMGD788EOWLl0afDFoTIjy4xcrXnFh9UZ7DCpEQUV5PMcSakFFcXKHx+fHac7is2oF1aioUwtKRKzAPOAcoDdwiYj0rss0o81rr73GFVdcwd69e8nOzmb//v107tyZL774Imz4ffv28dVXXwHwr3/9i5EjR9KjRw+ys7PZtWsXAC+99BKjR4+uNu1w21mU30pj/PjxPPHEE8Ht4NevXx/0+89//kNOTg7FxcW89dZbjBgxAqUU//d//0evXr245ZZbqkw7MzOTO+64gyFDhvDtt9/WamsQgLy8PNq1awfACy+8UGm4adOm8fzzz/PFF18wYcKEiONPFCz4UGKh1JKELcoNst8XqqCi231o8deRBRXSxWfzaQXVmKjrLr6hwC6l1PdKKTewBJhUx2lGlVdeeYXJkyeXcZsyZUqls/l69OjBvHnz6NWrF8eOHeO6667D5XLx/PPPc9FFF5GZmYnFYuHaa6+tNu1w21mMHTuWbdu2BSdJ3HXXXXg8HrKysujTpw933XVX8PqhQ4cyZcoUsrKymDJlCoMHD+bLL7/kpZde4tNPPw1OggjMCpw/f35wK47HHnuMvn37kpWVhd1u55xzzqnV1iBgrP130UUXMWjQIFq0aBF0X7t2LVdffXXwfNy4cXz++eecddZZOByOiONPFCzKh1+suC3J2KPcICtPuXGiKGIN2QE4msrPHTKLz6EVVKOiTrfbEJGpwASl1NXm+RXAMKXU7JAw1wDXAJx66qmD9u7dWyaOhrplQqxZtGhRmckUjZGGWnc2/3UEDquFo5JOR88e2t21JWpxf/Dmi0zYeIORTouJZM7+V9Ti/tdfZnCpz5hFWnrBQpz9K9/ssias/v4ovV/oSxMpwo9guTsnqovcamJP3G63oZT6p1JqsFJqcMuWLWMtjkYTcwRzDMqajENFd+HV0C6+aG+LYQmxoKK5CrvXp05MkkCBN/qL0Wrik7pWUAeBDiHn7U03TR0zc+bMRm09NWQsyhiD8tmTSYr2yuBeQ4kU4Yr6hAOb8uI2F3WN5jdWxoe6XvKVOZszyl2TmvilrhXU/4BuItJZRBzAdODtmkYST7v+ahoGDbnOWJQfJTb89hRcFEM078W0oAokNeoTDqzKTb4Y3z55o6ig3F4fDvGRL6mmg/5Yt7FQpwpKKeUFZgMfAtuBZUqpih+/VIHL5eLo0aMNusHR1C9KKY4ePYrL5Yq1KCeFBR9+saDsKdjwgzd6i7Aq81ulQmta1Cdg2JSXUksSpcqGL4rfWHkDVp/F/PBXW1CNhjr/Dkop9R5w0ovHtW/fngMHDnD48OEoSqVJdFwuF+3bt4+1GCeFRflBLChHwGIoBHuUlK2poIqtTWjm/Tk6cZpYlRe/2CnEFdVZfF7z4+ISWxq40QqqERH3Sx3Z7fYyKzVoNImOFR9+sWFxGh9wu4vzcaRkRCdyX6Cxb4LTvbeawDXDpjz4rQ6KvK6odsP5zF2A3fYmpoLSXXyNhZjP4tNoNGWx4EeJBTEtqJJo7tvkP9HYu1RJ1KL1+RUOvCiLnUIV3UVuAwvc+hzGklwqyh8Ya+IXraA0mjjDWCzWhtVlKKiobnNuNvZeRxOSKYnathgec88msTkowoUlilZOYHkmnysdMCxKTeNAKyiNJs6w4geLBZvLmBTgjuKq46KMJYO8jnTDIUqL0Xr9Crt4EauDAuWK6qrjPnOSBK7mALiLtIJqLGgFpdHEGcZafDZsSYYFFdUG2efGj4DL6C6LljXi8xldfJgWVDQXufWZsxgtKc0A8EZ7FXZN3KIVlEYTZ1jNMSh7clMgug2y+Dx4sWIx92oqLoiOdebx+40xKKsDtyUJWzRXezC7JR3JTfEpwVusx6AaC1pBaTRxhkX5URYbruTAR6/Ra5Atfg9e7MHxreIojW95fcaK48pix21NwuGLngUV2MPK6UqiEBc+PUmi0RD308w1msaGDR+IFWdKYNZaFC0ovxef2E6Mb0Wp+zAwSQKrHY/VgSOKFpQyu/jsThdFUf7GShPfaAtKo4kzbHjxW+wkJafiVxLVBlmUG5/YsJvjW6VRmoARmCShrE68tmQcqhT84XeBrikBC8rldFGoXHqaeSNCKyiNJs4IdJWlOB0U4YzqN0VWvwefWHGY3YfRWtTV6/PjwANWOz5bsuEYJbkDCsrhdFKME9ErSTQatILSaOII5fdjx4ey2ElyWCkkuh+9Wv0evOLEmWx0H0ZrUVdPYBaf1YGyGytgRGvFBxW0oIwxKInyNiGa+EUrKI0mjvD7fVhEoSx2HDYLRVFukG3KjdfiICnFmCHoK4mOEvGaihWrE3/oGoJRQJnLMyUlJVOknFiivE2IJn7RCkqjiSN8HmNCgLIa85dKJQmrJ3pjLla/G684cKUaXXzRGt/y+o1ZfNjsiCO6FlRgmrnd4aRYXNii+BGwJr7RCkqjiSM8bnPHW6sDgFJLUlQ3FrQrNz6Lg9SUNPxKUFFSIm6PF7v4sFidiLNuLCisDtyW5KjvY6WJX7SC0mjiCK/HWMDVYiootzUJWx0oKKc9uuNb7hJjWrnF7gh+YxW16fHmFiHGFPbkqO9jpYlftILSaOIIj9vcnNBmKCivNRm7L3rfFNmVB5/FiYhQLC7EHZ3G3lNqxGN1JmNxRXeGICEWlNeWhNMf5V2GNXGLVlAaTRzhMVfuDlhQXluK0SBHCTtu/IHuQ3FhidIEDG+pEY/VkYI92grKH7CgHPisKVjxnVBamoRGKyiNJo7wmhaUxWYHwG9PwaWi2cXnwW91AlAsydiitKirr+SEBWVPju4qFVafuW+VzYHfHt1vrDTxjVZQGk0cEZjFJzZDiShHMkmURKVLy+9X5se0Rtyl1uSorZnnMxWG3ZVCsrlEkydKq1QEuzjtKVH/xkoT32gFpdHEEd5AF59pQWFPxYYfzPXoakOJ14cTN9gDCioFpy86Db3fHMuyu1JJSUqiRNmj9hGww19MqbjAYgFnQEFpC6oxoBWURhNHeE0Lymo3xoksruitmVfk9uHEg9hcALhtabj80ek+9JUaVo7dlUyqy0ZhFBd1tfmK8VgNmQlMYY/iArqa+EUrKI0mjgh08VnNLj6r2SBHY9+m4lIvLtyIPclIy5ZCUpQUlDI/nrU5U0hz2ShSLvyl0bFyHL4iPFZj7EmcRvehVlCNA62gNJo4IrC9udVudPFZzRlxxfl5tY67uPA4VlGIy1zmyJFGCkXRGd8yp5ljTyLNaaMAV1TGiTw+P05Vis9qKFVLQPbi2ueHJv7RCkqjiSO85tp4drNrLzAjrrio9g2yu/AYAJJkNPLKkWbsPeUtqXXcwU0E7cmkuezGGoJRGCcqLPWSTAl+c3KE1VzktrRQK6jGgFZQGk0c4SsxuvKc5mKujqRAg1z7Lr6SfENB2cyt5DG3ffdGQflZSoy4SWqGy24schuNb6wKSr0kSyl+m2FB2U3ZvdqCahRoBaXRxBE+c3t3V6qpoKK4b1Nxfg4AyU0yABBTQRUXHKt13I7SY3iwgyMFEcFtSYrKN1bHi700Ix9/UnMjHVNxe7UF1SjQCkqjiSNUqWEpJZsKyhX8pqj24zkBCyqlidHYB7r6Sgtyax2305NHkTUNRABwW6OzqOuRglIy5DjW1JYApDgdFCiXHoNqJGgFpdHEEVJagF8JSaZiCiiqQNdfbfAVHgEgtVkrAGxRHM9xefMotjUNnnutyTiisIbgkbx80qUQR1ND5hSnjQKS8OtZfI0CraA0mnjCXWBMMLBYAUhJMxp9fxQ2FrTm/2D8b9oWODGe466lgirx+Ej35eBxtQi6+eypUfnGqvDYTwAkp5sKymGjQCVBFBS2Jv7RCkqjiSOkNJ8iSQ6eJyWnGvs2ReGbIkvBIfKkCdiNj16jNeHgUF4J7eUw3qanBt189lTseGq9Aobn6F4AnBkdAUh2WsknGXFrC6oxUCsFJSJzROSgiGwwf+eG+P0/EdklIjtEZHztRdVoEh9n6RHybc2C52KxUixOiMKuuqlFB8lztAqeu1LSAfDWcpWKQ4dzaCl5WJt3Crqp4IoPtZPbe3iXcdC8CwCpThv5KgmLVlCNAlsU4nhUKfVwqIOI9AamA32AtsDHItJdKeWLQnoaTcKS4j5CoatlGbdikqCW+za5vX5O9e0lJ2N40M2Vlg6AqmV32dHd6wBocmrfoJtyGDMEKT0OKRknHXdy3nd4xY4t3bDOkh1WCkjC6j588gJrGgx11cU3CViilCpVSu0BdgFD6ygtjSZhSPfnUOo6pYxbqcWFtZZTtnfu+o42koO0zgy6pSQlU6pstVZQ3n1rAEjv9ougW2DFh9osSXQ4v5Senm0cSesV3MAx2WEjX0VvmxBNfBMNBTVbRDaJyHMiEuibaAfsDwlzwHSrgIhcIyJrRWTt4cP6rUjTeCkqzCdD5eFPa1vGvdRS+wb5xw0fANCq37igW4rTRj7JtVIiPr+i+c9fc9TWCtJaB92tSYYFVVqLj4BXb99DpnyPtePpJ+K1CCWWZBxevd1GY6BaBSUiH4vIljC/ScDTQFegP3AIeKSmAiil/qmUGqyUGtyyZcvqL9BoEpQfdm/GIgpH615l3D3WZOy1/KYodfe/ybE0I6PLwKBbkt3oLqvNeM7a7bsZrjaQ23FCGffABIySWnxj9dPXy3CKl4zBU8q4l1pTcPqLwK9HDBKdaseglFJnRRKRiCwA/m2eHgQ6hHi3N900Gk0l5O7bAkCzjn3KuHutydg9R0863o0b/scQ9//Y1uUqmltOvJNaLEIRSdhqMQHj0EePMky8tD/z12XcAwrqZD8C3nkolzMOL+FoamcyTi07OuCxp4IbYzFaV9PwEWgSgtrO4msTcjoZ2GIevw1MFxGniHQGugFrapOWRpPouH/YgkdZadOlrILy2ZNx+k/uo1efz0/pe3+kRJycdt7tFfyLLSnYTrK77Iuvv2Zc7qvsbvFLnO0yy/gFliTynEQXn1KKr5Y+QHfLQRxn/iG4OkUAj03vCdVYqO0svgdFpD+ggGzgNwBKqa0isgzYBniB3+oZfBpN1TQ9/A177F3p7kop4+63JeNSJ7fi+NoX72SY+2s29b6NrOZtKviXWpKxe2u+Ft/m7B9Je++3+C022l/6eAX/pFRjONpzEt9YvfreB0w7toADp5xB+0EXVfD3200FVXIctAGV0NRKQSmlrqjC7z7gvtrEr9E0FkpLS+ji3sHm1hdU8FOOVFIoxudXWC1S8eJKWP/2Uwzb+wyrm4xn2NQ/hE/XmoLTd6BGsu47nM/hF65gjOwi/1fPktq8Q4UwKSmpeJUFXw2/sfrv+o2MWnM9JbamtLvinxWsJzD2sTKE1xZUoqNXktBo4oDvN39FkrhxdD69gp84U0mmhMJST8Txbf1iOX3X/YlNjgH0v/4FxBL+UXfbUnH5Ip8heKyglA3P/B9nqjUcHXkvTQdNDRsuLclOAUmoksiVyPrv9tL8rctpKsU4r3wdaVLR4gOC24RoBZX4aAWl0cQBx7avBKBjvzMr+FmcqdjET0FhZIpk9+av6fjxb9hvbU/H617H5UqqNKzXnkqSimxX3RKPjw+fvoXzvR9yKPM6Wp71u0rDppqLuka6Zt6ug4fxLp7OaXIQ95RFJJ3av9KwJ7Z91yuaJzpaQWk0cUDSoa84IG1o1qZTBT+rubtucUH1DfKhfbtIfX06RZJE8lVv0rRZ1as4+Oxp2PFWu2aez6947Zl7mV74Mgc6TqbNhX+vMnyqy1iSKJI18w7m5HNw4aUMYRt54+eSnjmhyvCWpMg/An7hvc/509/+SmGpt9qwmvhDKyiNJsb4vV66Fm3ih/SBYf2tZoNcVI2Cyj12lKJFU0ihmKKpS2jdoWu1aStH9TPilFK8+vLTXHL4cfZnjKT9jAVhx4ZCcdqsFEky1mqmsOcUlLLx6ZmM9q/hx1/cQ8bpl1crc+Aj4OpWwFi+8n/88utZ/NX9EOtWf1ZtvJr4Ixpr8cUdBfl5HDnwHcd/zKYo9ydUUQ5SnAPuQpTPg0X5sCgvSiz4xYZXHGC1o6x2lNUJFgditYHNgVgdiNWOmMcWuwOL1YHVasFmESyiQBkPsaAwTwB1wk0pwnWgBF1DPI2elrKhVcVgZWKpMlzQrWK48LFUTLe6NFTFCwhzaSV5EE4mVcGtXI5UKmt19xZO1nBO4UosvKxVpVvxBsrIYp7Yi35kPIWojiMrRgLYktMBcBfkhPUHKCkpIfvpKfTx7WfX2c/Rq++wSsOWkdEZsmZeavgP5f/9zutM3n03h1J70+E3y8BqjyjuEktyld9YFZZ6+WTebC7yfMzBrNm0G3dTRPHakprgV4K/+HilDdin63fS8+OryLAWUaRc8PUzMPrsiOKvirzcHI5kb6Hwh28pPXYIb8Fh7KU5WL3F4PMgfi8W8eOzOPBZnPgsTvxWJ9icKJsLzJ/YXVjsSYjdicWejM3pwmIu5xSkQqUy2pSgn1KA3zxUCGadUyr4v2xYs0aax5VR4dWjipcRryuDoWPOqybXTp6EUlB7tn5Nk1cvIoM8Usv5+ZRQjAuvWPFhxYsVARx4sOHFgQcHuhtAExs8ykrHweG7tpxp5pTtSj569fn8rHvySka417Nx0H30G3lBxOkGxnP8JcfDdqd89sUKzlh3A8ccrWl73dvgSAkTKjyllhTs3iNh/dxeP289/QcuK17GgS7TaT/5rxHHm+pyUIALR3Fe2AZs7a5DpL41gy6WQ/imL2PX50sYdvANtu38jt7du0Uuv8fLt5vXkrvtE9IOraZD4RZaklNmZrtbWcmVphRLEn6x4hcbfgSb8mBXbhzKjQM3TuXGicd4oU0gvla9QCuoyGh2yqnsbDaKXekdsWV0JqVlR5q2bEtKs1NIbZJBqtVadQRKgc+D8rnxuN14PSV4PR487hK8Hjd+jxuvpxSfpxSf34/Hr8yXFDFeO0TMYwEsKASxmP7IiTeTkDcSqehkhpQwrzLhwpVzk7Lxhp5IRaeyR2GvjUTW8C9Z4eKRik5h3cJFJNXIGpSlEiEkTEaEl6GiEBJOhnCiRpr/5fLDlpRO6/SK07UBnKnGFu3eoorfKyml+Pyft3BmwQes7/IbBpw/O2wclWEJrJlXmEf5qRTfbNpEr4+vwmdNIv03/8aS2qJiBFXgtqXgDLOGoN+vWPLsQ8zIfYb9rc+mw+VPVdtlGEpgAkZaUR6ucn47fsgl9+UZnCXbKfjVP0nt8Us6p7bBvuBVDrz+/+jy+6W47OHbAb/Pz+4dG/lx43+w7/+SroXr6SdGt+qP0pI9aYPY1aIHztY9SWnbgxZtOtG8eQtOqWSGZAWUwud1U1pSiLu4mNLSIjwlRXhKi/GWFuP1lpapX8ahhJ5AsE0BEQuB9kaC55x41iyBdscMIyfCBtuq8iKGkbkSHwBa2CqfgBMNEkpBpbdsw9AbF598BCJGt57NgcMJjuqv0GjqnKQmxkQHf3FuBb+VL9/HmT89z8aWv2LAFQ/UOG6rK7Ak0bEyCmrH93tJf2M6qVKK/8r3cLXoVOO4vbZUXO6yCkopxSsvP8Olh+7nQLMhdLh6MViqeXEsR8s0JwUqCVe5VSoO5BSy+dlrmMoacs+4l/TB0wBIbdebPT2vYdy3z/DBozM45Vd/pudpXXCXlvLjnq3kfLsS6/6v6JT/Dd3IoRtwRJpzsPkwfup6BqcOnEDrNqfRugZKNCwiWO1Oku1OktNqF1VjIaEUlEaTiCSbCkqKy1pQn746jzN3P8Tm1JFk/mZRjayQAIEliULXzPt+/0H8L15AO34mb+pSTunY/6TkLnU2w1VYakzAMMe6Xn19CVN3/4mfU3vQ7to3wOascbynNHGSTzLNQlap+CmvmFVPX890/4cc7X89GWfeWOaazhf/nd0vFzHu+5exLPs3BcpFE0pJN7vcjtGE7LRBHOw0ig4Dx9OyUx9a1FYhaWqNVlAaTZxjTWpCnkrBVXhiveUvXn+KM7b8iZ3J/eh1w6tYbJFNXChPRuv2ABQe3gfA3oM/UPzcJLqzjyMTn6NN31+etNwFSeYOO8f2olr14bXXXuHcLTeT62pL6+v+jbianFS8p6S5WKPS6VpwCICf84r5z5OzudzzFj/3nMEpk/5W8SKLla4znqTowLVkf/U6nrwfjSn2LbrQotdI2nTuQzOtkOIOraA0mgbAIUsrUosP4Pf5+fSlv3Lmnn+wMymLLrPfweZMPul427dqxQHVAvXzNjZt3kTK65fQnR/5cfx8OgyZVCuZrRld4SAU/bCN5e99zIV7/8oxVztOuf79Go9nhdIs2c4ey6mMK1rHzr372fHijVzu+4Sfu0/nlIsfr9KSTG7fl94X9a3UXxNfaAWl0TQAjiR3ZXDB52x4eCJnFf+XbU1G0O23r2J3RT6rLhwtUh18bOvN2T99QOFrn+EXG4cn/YsOA8bXWuaOfYZydGMaSW/P5hJKOZiWSZtrl2NJPfkt4MGYYFLQaiiWn1+n43MD6C4efh54I6ecd89JdXNq4hf9oa5G0wBQA6/Eonz0Lvof606bTa+b36m1cgKjsXee9Uc2WnqzO30EXLuStlFQTgAjurXm3VPvYJ+tMzv73ES7mz+rtXIKMHHSJbzluoC9qVnkXriEU86/VyunBERUuC8MY8TgwYPV2rVrYy2GRhOX7M3+nvS0FJpmtIq1KBpNVBGRdUqpweXddRefRtNA6NipS6xF0GjqFd3Fp9FoNJq4RCsojUaj0cQlcTUGJSKHgb1RiKoFEH4RsPhDy1p3NCR5G5Ks0LDkbUiyQsOSN1qydlRKVVitOK4UVLQQkbXhBtziES1r3dGQ5G1IskLDkrchyQoNS966llV38Wk0Go0mLtEKSqPRaDRxSaIqqH/GWoAaoGWtOxqSvA1JVmhY8jYkWaFhyVunsibkGJRGo9FoGj6JakFpNBqNpoGjFZRGo9Fo4pKEUlAiMkFEdojILhG5M9byhCIiHUTkMxHZJiJbReRG032OiBwUkQ3m79xYyxpARLJFZLMp11rTrbmI/EdEvjP/N4sDOXuE5N8GETkuIjfFU96KyHMi8rOIbAlxC5uXYjDXrMebRGRgHMj6kIh8a8rzpoikm+6dRKQ4JI/n16esVchbadmLyP8z83aHiERnZdzaybo0RM5sEdlgusdD3lbWbtVP3VVKJcQPsAK7gS4Yu7VvBHrHWq4Q+doAA83jNGAn0BuYA/w+1vJVInM20KKc24PAnebxncADsZYzTD34EegYT3kLnAEMBLZUl5fAucD7gADDga/jQNZxgM08fiBE1k6h4eIob8OWvfnMbQScQGezzbDGUtZy/o8Ad8dR3lbWbtVL3U0kC2oosEsp9b1Syg0sAWq341oUUUodUkp9Yx7nA9uBdrGV6qSYBLxgHr8AXBA7UcLyS2C3UioaK5JEDaXUSiCnnHNleTkJeFEZrAbSRaRNvQhKeFmVUh8ppbzm6WqgfX3JUx2V5G1lTAKWKKVKlVJ7gF0YbUe9UJWsIiLAxcAr9SVPdVTRbtVL3U0kBdUO2B9yfoA4VQAi0gkYAHxtOs02zeHn4qHLLAQFfCQi60TkGtOtlVLqkHn8IxBvez9Mp+wDHq95C5XnZbzX5VkYb8kBOovIehH5XERGxUqoMIQr+3jO21HAT0qp70Lc4iZvy7Vb9VJ3E0lBNQhEJBV4HbhJKXUceBroCvQHDmGY+PHCSKXUQOAc4LcickaopzJs+rj5TkFEHMD5wKumUzznbRniLS8rQ0T+CHiBxabTIeBUpdQA4BbgXyLSJFbyhdBgyj6ESyj7chU3eRum3QpSl3U3kRTUQaBDyHl70y1uEBE7RiEvVkq9AaCU+kkp5VNK+YEF1GN3Q3UopQ6a/38G3sSQ7aeAyW7+/zl2ElbgHOAbpdRPEN95a1JZXsZlXRaRmcCvgMvMRgmzq+yoebwOY0yne8yENKmi7OM1b23AhcDSgFu85G24dot6qruJpKD+B3QTkc7mm/R04O0YyxTE7F9eCGxXSv0jxD20f3YysKX8tbFARFJEJC1wjDFIvgUjT680g10JLI+NhGEp8wYar3kbQmV5+TYww5wRNRzIC+lOiQkiMgG4HThfKVUU4t5SRKzmcRegG/B9bKQ8QRVl/zYwXUScItIZQ9419S1fGM4CvlVKHQg4xEPeVtZuUV91N5YzRKL9w5hBshPjTeOPsZannGwjMczgTcAG83cu8BKw2XR/G2gTa1lNebtgzHbaCGwN5CeQAXwCfAd8DDSPtaymXCnAUaBpiFvc5C2G4jwEeDD65f+vsrzEmAE1z6zHm4HBcSDrLoyxhUDdnW+GnWLWjw3AN8B5cZK3lZY98Eczb3cA58RaVtN9EXBtubDxkLeVtVv1Unf1UkcajUajiUsSqYtPo9FoNAmEVlAajUajiUu0gtJoNBpNXKIVlEaj0WjiEq2gNBqNRhOXaAWl0Wg0mrhEKyiNRqPRxCX/H+B76w370lNxAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 0)" + "As you can see, when we use different parameter values, the response looks different." ] }, { "cell_type": "code", - "execution_count": 17, - "metadata": {}, + "execution_count": 16, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABbeklEQVR4nO2deXzUxf3/n+/dTbJJCFe4CXLJTUI4AlhAwSqIVFFRwaKI1Fq12nrU49tWi7b91bMqaqWlKJ4IKoJ4oaIR0SJyyY2KRA6RIxBIyL07vz8+n4TNZjcHOXY3eT8fLPl8ZuYz8/rMzOfznpnPfD4jxhgURVEUJdxwhFqAoiiKogRCDZSiKIoSlqiBUhRFUcISNVCKoihKWKIGSlEURQlL1EApiqIoYYkaKEBEuoiIERFXqLU0dERkuoisrKe0YkXkXRE5KiJ31keafulniMg59ZBOuohcG8SvUddtEZknIn+rrl8ta5gpIi9V4F8v9aQ2EZE77etqmYjE1VU6aqCUU8a+8IpEJMfnV++GoALOAVKATsaYh0oc7RtCl5CpCiPsMpxZjfC/FJEfROSEiCwWkZYVhE0VkbUikmv/TfVL17/udKsLzZGMiIwWkfRqhA+a5wHCthSRN+2y/EFEfumXrtevfK4u8bevpySgNzD2lE6uCjQIA9VYW4dhwgJjTBOf30OVH1JvtAQyjDE5oRZSE8Qi5NeqiPQD/g1cBbQFcoF/BQkbDSwBXgJaAM8DS2z3Evzrzvd1egJ1SDjcg6qY5748DRRileVU4Bm7jEv40a98nvc92BhzAtgFJNbyqZQS8kp/qtit4LtEZCNwQkRcIjJcRL4QkSwR+VpERvuETxeRf4jIahE5LiJLgrX+ROQaEdkmItki8r2I/MbPf6KIbLDj2Ski59nuzURkrojsF5F9IvI3EXFWch7dReRjEckUkcMi8rKINPfxOyIig+z9DiJyqOS8RORCEdlin2+6iPTxy58/iMhGETkmIgtExF39nK4+InK3nS/ZIrJVRC4OEk5E5DEROWjn5SYR6W/7xYjIIyKyW0QOiMhsEYmtphQX4K1Ea6KILLXT/8ous5U+/kZErheRb+18flpExPYLWnY+pNl5cFREnispAxFpISJv2+V51N5O8kk3XUT+LiKfYxmCynoXnUXkczvPPxCRVn7+U+28PCwif6okrmBMBZYaY1bYRv8e4BIRSQgQdjRW/j9ujCkwxswCBDj7FNMOiljDTftF5EcRudYus9MDhEsQkU9EZFZJGQKtRORDO98+FZHOPuGfEJE9dt1YKyKjfPxmisjrIvKSiBwHplciM1pEXrDT2SIiQ/z8U2vhWh1NFfNcROKBScA9xpgcY8xK4C2sxkd18Npp1g3GmIj8ARnABqATEAt0BDKB87EM77n2fms7fDqwD+gPxANvAC/Zfl0AA7js/QlAd6zCPQvrBjHI9hsKHLPjd9jp9rb93sRqYcYDbYDVwG8qOY/T7bhigNbACqwKVuL/a2ArEAcsAx6x3XsCJ+xjo4A7ge+AaJ/8WQ10wOpJbAOuD6JhJJBVwW9kkONmluShn/tldroOYLKts73tNx1YaW+PA9YCze287uMT7jGsC6YlkAAsBf5RjfoRBbwYSJ9fuFftXxzQF9hTos/2N8DbtsbTgEPAeVUsuwxgM1YdbQl8DvzN9kvEukHE2ef3GrDY59h0YDfQD+sGEFXBOaQDO+06EWvvP+BXt+fYfgOAAqBPkLgqKu8lwF1+bjnA4ABhbwXe83N7G7jdp+4cA44AW4AbTvE+cB7wk51PcVi9BwOcbvvPA/5m5/fqkvz38csGzrTL8Am/sr/SPs4F3G6n4/bRXwRchFXPYyvQOBPIx7o3OYF/AKv86klVr9W3gbuD+FWY537uA4FcP7c/YDVAwDJ2hcABrF7SY0B8gHieB+Zj33dq+1frEdbXzy7UGT77dwEv+oVZBlxtb5detPZ+X7sAnPgZqABpLQZ+b2//G3gsQJi2WBd+rI/bFcAn1Tyvi4D1fm5vAZuAjUCM7XYPsNAnjAPLAI/2yZ8rffwfAmbXchnMtPMwy+fXIUC4DcBEe3s6Jw3U2cA3wHDA4RNesIxadx+3M4BdVdSVinXzOIB9owoSzmmH6+Xj9jfKG6iRPvsLCX6DKFN2dhlc77N/PrCzAs1HffbTgfureL7pwJ999m8E3re3S+p2ko//amDKKZT3cvxunL51zs/9HuBVP7eXgZn2dl+sG7IT+BmwH7jiFDQ9i0/DBavR4G+gnsVqKNzhd+w8X41AE8CD9cwyUFpHgQE+dX9FNa6Tj3z2+wJ5fvWkxtdqZXnu5z4K+MnP7ddAur3dztbpALpiNb7+HSCe7liGuwgYUl3Nlf0idojPZo/PdmfgMnsYJktEsrB6Bu2DhP8Bq5XtPxSCiIwXkVX28FoW1o2lJFwnrNaqP53t+Pb7pP9vrJ5UUESkrYi8KtaQ4HGsFqC/pjlYPb8njTEFtlsH+xwAMMZ47fPr6HPcTz7buVgXYG2z0BjT3Of3o4hME2sItCQf+hMgn40xHwNPYY2FHxSR/4hIU6zeSByw1ieO9233SjHGbMDqlfwPuKWCoK2xWse+9WJPgHAB87GKZedf5zrYx8aJyL/Fejh9HOsG0FzKDgkH0hKMysq6NupCDtDUz60pVi+kWmGNMVuNMT8aYzzGmC+wei+XnoKmDlRefhOweo+zA/iVhjfWsOURTpbRH8Qa6j9m18FmlC3fmpSPW8o+twq38vnJLiOvMWYX1gjNpADx/B74CmhqjFlzCporJNINlO+n2Pdg9aB8b5bxxpgHfMJ08tk+DcvqH/aNUERisIb/HgHaGmOaA+9itepL0ukeQMserB5UK5/0mxpj+gUI68v/s88j2RjTFGtYoSQtRKQJ8DgwF5gpJ5+b/YhlFEvCiX1++ypJrxwiMkrKztbx/42qPJbSuDpjGdSbgEQ7/zb7npMvxphZxpjBWK21nsAdWGWSB/TzyctmxpgqX7TGmHzgPTveYBwCirFmI5XQKUjYQFRYdgHiOw2r3MAaMuoFDLOPPdN29z3et36HA1uwhggBEGvWXQxWLzhQ2BSfZz1gzajcEiRuQ5A6Ugn7qbz85mA1cN61n70QKLx9rbUEfrTr/J3A5UALux4fI/zLp6p5/g3gEpEePm4DgoQF61wD2Ys+WL31vFPQWymRbqB8eQm4QETGiYhTRNxiTZX0rbxXikhfsebt3w+8bozx+MUTjXXRHQKKRWQ8ZadRzgWuEZGfi4hDRDqKSG9jzH7gA+BREWlq+3UXkbMq0Z2A1Zo5JiIdsW7QvjwBrDHGXAu8w8lW4EJggq0jCuuGVwB8UVlG+WOM+cyUna3j//usGtHFY1XmQ2BNOMHqQZVDRNJEZJit/wTWOL3X7g3OAR4TkTZ22I4iMs7nWCM+k2CCUIBVngGxy34RluGPE5HewLQqnaVFZWUH8FsRSbIbFn8CFvgcmwdk2X5/qUa6oeJlrGtslH2jvx9YZIwJ1EJPxxou+51YE15ust0/htKJRi3EYijwO6xnXNj+GSIyvQqaFmJdj33s6/qeIOFuAnYAS6XsZJvzRWSkWDPd/or1bGgPVvkUY9Vjl4jcS/keR7iRTgV57ouxZuAtAu4XkXgRGQFMxHpui4iMEZHOdvl0Ah7Ap3x8iMK6zuqEBmOg7Eo1EfgjVqXag3XD8D3HF7HGnX8C3FgXhX882bb7Qqwx519iPQMq8V8NXIP10PAY8CknezLTsG6IW+1jX6fsEGMg7gMG2XG9g1VpAOsixnoIfIPtdBswSESmGmN2YLXYn8TqcVwAXGCMKawkvTrFGLMVeBRreO0AkIw1OSAQTbEM0VGs4a9M4GHb7y6sSR+r7CGwj7B6HNgXTDbWc7mK8FJ5Hb8Ja+jmJ6z6MZ+qX3BBy86HV7AaLt9jDQ2XvBj6ONaw02FgFVYLP+RU1GM2xmwBrscyVAexbuI3+hz7noj80Q5biPVMbhrWs8kZwEU+9XMKVvlmAy8ADxp7GrNtLBKx8qVCjDHvAbOAT+z4So4p8AtngOuAvVhTr0tmyb2C1Tg4AgzGuqbAen79PlZP4wesxlN1hvTqBN889qeyPBeRP4rIez6H3IhVBw9i1fsb7DIGaxLFF1gNxy+wrrVy90usZ4gVzpStCWI/6GrwiPWy20vGmP+GWotSM0TkSqzhv/+rJNxYrJ51b2PMkSrG/SDQzhhzdc2VKqeCiIwEfmuMueIUju2DNaQcY4wprnVxSilivVKxFbjWGPNuXaTRYHpQSuPBGPNSZcbJJh34ENgiIn8IFEBEeotIis9Q06+wXhdQQoQxZmV1jJOIXGwPabUAHsSaKq3GqQ6xr6ftWCNIy+sqHTVQ9YBYL5kGmnwQaFaRUksYYwqNMVONMe2NMY8ECZaANTR3Auv50KMEHmsPKUHqT7UmsDRgfoM1TLUT6xnMDRUHr33sobdA5RNwOC7SMcY8YoxpZ4y5wmdmca3TaIb4FEVRlMhCe1CKoihKWBLyDxz60qpVK9OlS5dQy1AURVHqkbVr1x42xpR7ET+sDFSXLl1Ys6bWX0ZWFEVRwhgR+SGQuw7xKYqiKGGJGihFCVN0ApPS2FEDpShhyI70V/jhvr58tfjpUEtRlJARVs+gAlFUVMTevXvJz88PtRQlgnC73SQlJREVFRVqKdXG4/HQNP0e2nOYxA1/5cQ5VxHfJNw/A6cotU/YG6i9e/eSkJBAly5dEDmVjx0rjQ1jDJmZmezdu5euXbuGWk61+WH7WrpxmLUtzmPw0ff56pNXSbvgulDLUpR6J+yH+PLz80lMTFTjpFQZESExMTFie91Htlgfn279i7+QRRPY+UmIFSlKaAh7AwWocVKqTSTXGc+PGzlCUzp168P3cakkHdNXL5TGSUQYKEVpTDTJ/p6DMZ0REQqTfkZ7c5ADu78NtSxFqXfUQFUBEeH2228v3X/kkUeYOXNm6ARVQnp6Ol98Ue11C8tw3nnn0bx5c37xi1/UkiqlqnTw7CWnSTcAmvc8A4D9O74MpSRFCQlqoKpATEwMixYt4vDhw5UHrgbGGLze2l/rqzYM1B133MGLL75YS4qUqpKddZgWZFPU3JrccVqfIXiMULB7fYiVKUr9owaqCrhcLq677joee+yxcn6HDh1i0qRJpKWlkZaWxuefW4vHzpw5k0ceObnCQ//+/cnIyCAjI4NevXoxbdo0+vfvz549e7jjjjvo378/ycnJLFhgrQienp7O6NGjufTSS+nduzdTp04N+OLmrFmz6Nu3LykpKUyZMoWMjAxmz57NY489RmpqKp999lmFGq+66irOOOMMevTowZw5c0rj/fnPf05CQkKF+fLaa6/Rv39/BgwYwJlnnglYk1quueYakpOTGThwIJ98Yj3gnzdvHhdddBHnnnsuXbp04amnnuKf//wnAwcOZPjw4Rw5Yq0nOGfOHNLS0hgwYACTJk0iNze3XLrDhw9ny5YtpfujR49uMJ/IytyfAUBUyyQA4uKbstvZidjMyhYPVpSGR9hPM/flvqVb2Prj8VqNs2+Hpvzlgn6Vhvvtb39LSkoKd955Zxn33//+99x6662MHDmS3bt3M27cOLZt21ZhXN9++y3PP/88w4cP54033mDDhg18/fXXHD58mLS0tNKb/fr169myZQsdOnRgxIgRfP7554wcObJMXA888AC7du0iJiaGrKwsmjdvzvXXX0+TJk34wx+sNfp++ctfBtW4ceNGVq1axYkTJxg4cCATJkygQ4cOVcq7+++/n2XLltGxY0eysrIAePrppxERNm3axPbt2xk7dizffPMNAJs3b2b9+vXk5+dz+umn8+CDD7J+/XpuvfVWXnjhBW655RYuueQSfv3rXwPw5z//mblz53LzzTeXSXfy5MksXLiQ++67j/3797N//36GDBlSJc3hzrED1ifJElp1KnU7GN+L7jkNwwArSnXQHlQVadq0KdOmTWPWrFll3D/66CNuuukmUlNTufDCCzl+/Dg5OTkVxtW5c2eGDx8OwMqVK7niiitwOp20bduWs846i6+++gqAoUOHkpSUhMPhIDU1lYyMjHJxpaSkMHXqVF566SVcrsDtjYo0Tpw4kdjYWFq1asWYMWNYvXp1lfNkxIgRTJ8+nTlz5uDxeErP58orrwSgd+/edO7cudRAjRkzhoSEBFq3bk2zZs244IILAEhOTi49t82bNzNq1CiSk5N5+eWXy/SUSrj88st5/fXXAVi4cCGXXnpplTWHO3mZewFo3q5LqVtRmxRamaMcP7Q3RKoUJTREVA+qKj2duuSWW25h0KBBXHPNNaVuXq+XVatW4Xa7y4R1uVxlni/5vpMTHx9fpfRiYmJKt51OJ8XF5Vexfuedd1ixYgVLly7l73//O5s2lR8KCqYRyk/Hrs707NmzZ/Pll1/yzjvvMHjwYNauXVtheN/zcTgcpfsOh6P03KZPn87ixYsZMGAA8+bNIz09vVw8HTt2JDExkY0bN7JgwQJmz244CxMXZ+0DILHdaaVu8V0Gwk7Yt301TVsnhUqaotQ72oOqBi1btuTyyy9n7ty5pW5jx47lySefLN3fsGEDYC0dsm7dOgDWrVvHrl27AsY5atQoFixYgMfj4dChQ6xYsYKhQ4dWSY/X62XPnj2MGTOGBx98kGPHjpGTk0NCQgLZ2dmVagRYsmQJ+fn5ZGZmkp6eTlpaWpXSBti5cyfDhg3j/vvvp3Xr1uzZs4dRo0bx8ssvA/DNN9+we/duevXqVeU4s7Ozad++PUVFRaXxBGLy5Mk89NBDHDt2jJSUlCrHH+5Izn6ySMAVE1fqltRnGAAnftCJEkrjQg1UNbn99tvLzOabNWsWa9asISUlhb59+5a25idNmsSRI0fo168fTz31FD179gwY38UXX0xKSgoDBgzg7LPP5qGHHqJdu3ZV0uLxeLjyyitLJyT87ne/o3nz5lxwwQW8+eabpZMkgmkEa4hwzJgxDB8+nHvuuaf0+dOoUaO47LLLWL58OUlJSSxbtgyAe++9l7feeguwZvolJyfTv39/fvaznzFgwABuvPFGvF4vycnJTJ48mXnz5pXpOVXGX//6V4YNG8aIESPo3bt3qftbb73FvffeW7p/6aWX8uqrr3L55ZdXOe5IIDbvIEedrcq4tW7Vhr20wXVQJ0oojQsJp0/6DxkyxPjPxtq2bRt9+vQJkaKGzcyZM8tMpmhoRGLd2f63oXhc8fS7u+znjdY8eD7tCjJIundriJQpSt0hImuNMeVmOmkPSlHCiHjPcQqjW5Rzz2vZlw6eHynMrd1ZrIoSzkTUJAmldgnnr2E0RowxJHiPc8Bd3kBFd0rFsc+wb8daug4cEwJ1ilL/aA9KUcKEvIJCmpILceUNVNse1uSVo99XPFNSURoSaqAUJUzIOnIQhxgccYnl/Dp16UGWicfs3xgCZYoSGmpsoETkZhHZLiJbROQhP7/TRCRHRBrmU3hFqUVOZB0CwNmkvIFyOh3sjj6dZscq/kqJojQkavQMSkTGABOBAcaYAhFp4xfkn8B7NUlDURoLBcet1xeimrQK6H+seW96HlqE8RQhzshbyl5RqktNe1A3AA8YYwoAjDEHSzxE5CJgF1D+WzURyOLFixERtm/fHjRMRkYG/fv3r1MdGzZs4N13361RHDNmzKBNmzZ1rlWpHkU5mQBEJwQ2UM72Kbgp4sCuzfUpS1FCRk0NVE9glIh8KSKfikgagIg0Ae4C7qssAhG5TkTWiMiaQ4cO1VBO3TF//nxGjhzJ/PnzA/oH+gxRdSn5nl1F1IaBmj59Ou+//36N4lBqH0+21YNyN2sd0L9Ft8EAHPzmq3rTpCihpFIDJSIficjmAL+JWEOELYHhwB3AQrE+5jYTeMwYU/FXUwFjzH+MMUOMMUNatw58YYaanJwcVq5cydy5c3n11VdL3dPT0xk1ahQXXnghffv2BSxDNXXqVPr06cOll15aulzE8uXLGThwIMnJycyYMYOCggLA+iTSXXfdxaBBg3jttdfKpOu/nEVhYSH33nsvCxYsIDU1lQULFnDixAlmzJjB0KFDGThwIEuWLAGs5S0mTpzI6NGj6dGjB/fdd7KtcOaZZ9KyZcsKz/nTTz8lNTWV1NRUBg4cSHZ2NsaYoEuDnHXWWUycOJFu3bpx99138/LLLzN06FCSk5PZuXMnAEuXLmXYsGEMHDiQc845hwMHDpRLd8qUKbzzzjul+9OnTy/9MGxDx5uXBUB8s/LPoAC69B5EjnFT9IMuXqg0Dip9BmWMOSeYn4jcACwy1ucoVouIF2gFDAMutSdNNAe8IpJvjHmqRmrfuxt+quXPvbRLhvEPVBhkyZIlnHfeefTs2ZPExETWrl3L4MFWa3bdunVs3ryZrl27kpGRwY4dO5g7dy4jRoxgxowZ/Otf/+Kmm25i+vTpLF++nJ49ezJt2jSeeeYZbrnlFgASExNLv9vni/9yFtHR0dx///2sWbOGp56ysvKPf/wjZ599Ns8++yxZWVkMHTqUc86ximz16tVs3ryZuLg40tLSmDBhQpWXpXjkkUd4+umnGTFiBDk5ObjdbhYtWhR0aZCvv/6abdu20bJlS7p168a1117L6tWreeKJJ3jyySd5/PHHGTlyJKtWrUJE+O9//8tDDz3Eo48+WibdkqU0JkyYQGFhIcuXL+eZZ56pkuZIx1NgteeaJDQL6B/rjmF9TF9aZerSG0rjoKZDfIuBMQAi0hOIBg4bY0YZY7oYY7oAjwP/r8bGKYTMnz+fKVOmAFYL33eYb+jQoXTt2rV0v1OnTowYMQKAK6+8kpUrV7Jjxw66du1a+j2+q6++mhUrVpQeM3ny5IDpBlrOwp8PPviABx54gNTUVEaPHk1+fj67d+8G4NxzzyUxMZHY2FguueQSVq5cWeVzHjFiBLfddhuzZs0iKysLl8tV4dIgaWlptG/fnpiYGLp3787YsWOBsktp7N27l3HjxpGcnMzDDz8ccCmN8ePH88knn1BQUMB7773HmWeeSWxsbJV1RzKm8ASFxkVUdPBvFx5vk0bn4gzyj9fu6s6KEo7U9EsSzwLPishmoBC42tTlx/0q6enUBUeOHOHjjz9m06ZNiAgejwcR4eGHHwbKL51xKstXBFt+oyrLWRhjeOONN8p9MfzLL7+s0VIad999NxMmTODdd99lxIgRpR+LDUZVltK4+eabue2227jwwgtJT08P+CULt9vN6NGjWbZsGQsWLChtGDQKCk+QJ26iKwgS3+NM2Ptvfli/nF5nBW7YKEpDoUY9KGNMoTHmSmNMf2PMIGPMxwHCzDTGPBLo+Ejg9ddf56qrruKHH34gIyODPXv20LVrVz777LOA4Xfv3s3//vc/AF555RVGjhxJr169yMjI4LvvvgPgxRdf5Kyzzqo07UDLWfgvpTFu3DiefPLJ0uXg168/uSTDhx9+yJEjR8jLy2Px4sWlPbuqsHPnTpKTk7nrrrtIS0tj+/btNVoaBODYsWN07NgRgOeffz5ouMmTJ/Pcc8/x2Wefcd5551U5/khHCnPJl/Jrdvly+sAzyTPR5G//sJ5UKUro0C9JVML8+fO5+OKLy7hNmjQp6Gy+Xr168fTTT9OnTx+OHj3KDTfcgNvt5rnnnuOyyy4jOTkZh8PB9ddfX2nagZazGDNmDFu3bi2dJHHPPfdQVFRESkoK/fr145577ik9fujQoUyaNImUlBQmTZpU+vzpiiuu4IwzzmDHjh0kJSWVrm81e/bs0qU4Hn/8cfr3709KSgpRUVGMHz++RkuDgPXtv8suu4zBgwfTqtXJqdRr1qzh2muvLd0fO3Ysn376Keeccw7R0RX1JxoWjuJcCh0VD2c2b9qUr2MG0/HAJxBGKxEoSl2gy200UObNm1dmMkVjJNLqztr/93Oak033P66uMNxH8x/nnB1/4fAV79Oq1xn1pE5R6g5dbkNRwpwoTy4eZ+UTQrqNuJQ8E83B9H/XgypFCR263EYDZfr06UyfPj3UMpRqEOXJx+NqXmm4bqclsTzubEbsf4fi7EO4Eip/f9AYw7GsTHIP76Pg+AHy83IpLi7GiRcREHHgdDpxOh24nE6cDgeIA0QwCAYHRsRyQ0AEEQdGHKX+IDhdDmJcTmKirFuLx2vweg1F9l+PMXi8Bo/Xi8dYo5TGGAyBRyydDiHKKRhjKPZy8livQURwOnx+Ak6HA6dDAIPHC16vIb5lW9p1OK06RaGECRFhoIwx1ZqBpijhNHRdVdwmj7youKqFPfNmXO9/wPcL7qbntXMDhtm5axd7vlhAkz2fkJT/Le3IpHkt6o0Uck0Mx+/YSdMmCaGWolSTsDdQbrebzMxMEhMT1UgpVcIYQ2ZmJm53xTPiwonCYi9uCsiNDvzKgT8/Gz6Cdz+/iAl7X+eHt3vT+fzbweHg4N7v+fazhSTsfJt+RZvpLob9jnb81HwQu1v1xSR0wNGkNe7YeFyuKLziwGsMxmvweD0UF3so9ngp9hQjgNV/8lp/jRcBMF4wXgwGhynxBzFePF4vhcXFFHm8ADjsXs7Jv1YvxyGWnwgIgv3P/s/GgNcYij0GBFwOweEQnGLFZ7B6SF5j/azeFXiNF0RwILBzOYMzl7LvaKYaqAgk7A1UUlISe/fuJZy/06eEH263m6SkpFDLqDInCoqJJ58jVTRQIkLatbP47Mm9jFrzN7LWPkkhUbQxh2kD7HZ2YmP3X9NpxBW07zaQ9o20cbd+aR5kLqUo73iopSinQNgbqKioqDJfalCUhsiJgiLakY9U0UABtGmegPsPb/Pu4v8Sv3cFUeLhm9Z96HzGJE7rmYo+dQFHTBMAivJOhFiJciqEvYFSlMZAXn4eLvEi9g21qjSNjeH8K34L/LZuhEU4Trc1rFeUn11JSCUc0WnmihIG5J+wbqDOmKr3oJTKcdn56clTAxWJNCgDZbxejmUeIDfnWKilKEq1KDxhPSNxVrMHpVSMK9bqQZV8KV6JLBqUgco+foRmT/Zk45InQi1FUapFQZ51A42K1ZlmtUmJgfIW6DOoSKRBGai4+KbWhraWlAijKN/qQbnc2oOqTaJtA2XUQEUkDcpAuaKiyTPRUKQGSoksivOtG2hMvPagapPoONvg6z0hImlQBgogV2JxFGplVCILT75VZ6PjmoZYScMiNs42+IXag4pEGpyBypNYnEVaGZXIwmtPg3bHaQ+qNnFHR3HCxCCFuaGWopwCDc5A5TvicBWrgVIiC699A41yq4GqTZwOIRc3Dr0nRCQNzkAVOGKJ8mhrSYkspGRYOrpqH4tVqk6+uHEU6z0hEmlwBqrIGU+0R1tLSmQhRXnWRpS+qFvb5OHGpQYqIml4BsoVh9ubF2oZilItnMUnKMQFrsazxH19UeCIxVWs94RIpMEZKI8rHrdXW0tKZOEszqVAImd5kEhCh/0jl4ZnoKKaEIu2lpTIwuXJI18qX+5dqT6FjliidFQlImlwBspENyGefPB6Qy1FUapMlCeXQu1B1QkeVyzR2oOKSBqcgSpZrqBAFyhTIgiXJ48Cp/ag6gKPK55okx9qGcop0OAMlMN+j+REtn7RXIkcYrx5FDl0inld4HXFEasGKiJpcAYqKtb6VMyJ40dDrERRqk6MN49ipw7x1QUmOp4YCsFTHGopSjWpsYESkZtFZLuIbBGRh3zcU0Tkf7b7JpH6GWAvMVB5OTrEp0QOMSafYpf2oOqEkpef9RNoEUeNlnwXkTHARGCAMaZARNrY7i7gJeAqY8zXIpIIFNVYbRWIiW8GQP6JrPpITlFqhVjyOaIGqk6QaOu5dFFeNlHuZiFWo1SHmvagbgAeMMYUABhjDtruY4GNxpivbfdMY4ynhmlViZiElgAU5egQnxI5xJp8vGqg6gSHPXEq74Qu+x5p1NRA9QRGiciXIvKpiKT5uBsRWSYi60TkzmARiMh1IrJGRNYcOnSohnIgtlkrADy5R2ocl6LUBx6Pl1gK8OpnjuoElz1xKj9Xh/0jjUqH+ETkI6BdAK8/2ce3BIYDacBCEelmu4+03XKB5SKy1hiz3D8SY8x/gP8ADBkyxJzieZQSbxsoowZKiRDy8/OIFw9EaQ+qLnDFWoa/4IQaqEijUgNljDknmJ+I3AAsMsYYYLWIeIFWwF5ghTHmsB3uXWAQUM5A1Tbx8U0pMC4kT4f4lMigIDebeKzZZkrtE2Uv+16Qq0N8kUZNh/gWA2MARKQnEA0cBpYBySISZ0+YOAvYWsO0qoTD6eCYJOAoyKqP5BSlxhTmWTdOUQNVJ8TYqxQX5amBijRqNIsPeBZ4VkQ2A4XA1XZv6qiI/BP4CjDAu8aYd2qYVpXJkQRcBfqirhIZlLTsS76CotQuJQaqOF8NVKRRIwNljCkErgzi9xLWVPN6J8+VQHSRGiglMijOtxYrdLjVQNUF7nhriM+Tr+9BRRoN7ksSAAWuZsQWq4FSIoOSlr0zRof46oLYeKsH5S3ICbESpbrUdIgvLCmOaU583vZTj8AYdm76nANfLSH28CaaF+4n2ptHNMUUSxSFEkOhI5ZChxuP043X6cbjcuN1xeJ1xuJxxmAcUYiI/XMgIuCzj/im55d8BboqlX4Kx/gjwRWUDSeVhykbb/UpUWKMKd3xV2fKbZTslj0g2HG+WeSwiglB7L9WOK/X4DEGjxe8xovHa8XuEMHpEBxi/ZyCXdYn4wx23iXurqydAETZ06GV2qVJfBM8RvAWnHoPyni9bPziPQq+XkSzrM20LvqRWJOPEw/54iZf3BSImwJHHIXOOIqccXhc8Xii4vFGN0FcsTicDow4MQhGHBgcIIIJUkNKrkP/+m2g3HVdtq5Xfv0GSjHgdS8gFUR3IrYtP5/8+0rTO1UapIHyulvQ1GRjvF7EUb1O4s4NKyh85y76FG2lqxH2OJM44k6i2NWEQqJwegpwevOJ8uQR7ckntiibaFNAtMkn2hTipoBYCnFUVKqK4keOiaVlx26hltEgiYlykoMbc4o9qB2bVlO85PcMKN5Kronh++hefNtyNMWuJuBwIsV5OIpycRWfwOXJJbo4lyZFPxFj8og1ecSZPGKlsJbPKjz4ytsbUANVLUx8G9xSRPbxoyQ0T6zaMV4vq16eSdp3T3JEmvO/nnfRb+wMOrdqR+dqCzBgvBjjxePx4jFevB5jt7y9eL1eK4xPF0T82zT+u1LWw78FJGXi8vNzVN53Kd/Rso4JZmZNoJ6ZBO97Be3IBXE3GCtPpKRXY+VQyWmW5Jd/Ly6Yv5T6i9/+yfAGg9eA1xi8xmDsbYBopwOnQ8qXk5/mYq/B4w18Ur55YPxO3O2KoklUVNC4lVNHRMiTWExB9SdJrHr3eVK+vIN8iWFd8j30G38d/e1JF9WhsNhLUbEHwQvG91fZB3ZK6mv5+l5yXQeu61LmnuBLoNp50u3kMWWuWSm5H5Q9OtmcyrhI1WmQBkqatgfg+KE9VTJQxhi+nHsrZ+ybx7qEs+g+Yy5ntGxdAwEC4kRw4nI20ExugAjgtH+nenyU/VPCixOOBKIKs6p1zJcfLmTQl7eyO/p0Wv/6dQa1Oe2U0492OYh2NchH/nVKg8yx6BYdAMjN3Ful8F8sfJTh++axuuUFpN76Js1qYpwURQk7cl3NcRdlVTn8zm8203fl79gb1Zmk371PsxoYJ+XUaZAGqkmrTgDkHq7cQH379f9I2/r/2Bw7hCE3PofDeartZ0VRwpWC6ObEe6o2s7ewsIj8BdciIjS/ZiFu+wPUSv3TIA1Uq/ZWa6cw68cKwxUWFMCSG8mWBJJ+9TIOlw7OKEpDpCimBQneqn2L74tFT9LPs42MoX+hZccedaxMqYgGaaBaNG9BtonFHN9fYbiNix6gh/d79o38O81bBfoerqIoDQFvbCuamRy8xRWvqpt5JJO+22bxXXQf+o//TT2pU4LRIA2UiHDEkUhU7k9Bw+RmH+H0Hf9hfcwQkn8+tR7VKYpS78Ql4hBDdlbFS/psfPNR2shR3BP+Uf0X/ZRap0EaKICj0e1olr8vqP/m1/9Bc3Jwj7036HRMRVEaBs4m1mze45nBG61Hs3PpvftVdsQNImnAmPqSplRAgzVQ2U260r54L3i95fyOHd5Pvx9eYE3cmfQZfFYI1CmKUp9EN7Vm5uZmHQwa5stlr9BeMokfdX19yVIqocEaKJPYg1gKOH5wdzm/7a/fj9sU0PKCmfUvTFGUeie2ufWMOT8r8HNpr9fQauvzHHa0JmnopPqUplRAgzVQTTr2AeCnXRvLuB/ct4sB+19jbfNxdOszOBTSFEWpZ0o+I1WYWb7BCrB27SqGeDdyqPdUcOqr9eFCgzVQbboNACBnd1kDtWvRTBx46TjxvlDIUhQlBCS2bEOOccOxPQH9sz+bTSEuuo27oZ6VKRXRYA1Uh46nsY/WuPatLnXb++3XDD78FutbT6Rjt94hVKcoSn3icDo45GxDdE75iVM/HTzI0GPv802rc4hppq+bhBMN1kA5HMKeJgPodHw9xlMEwKE3/48Coul22f0hVqcoSn2TFd2OhILyz6C2vv8fmkg+rcbcHAJVSkU0WAMFUNjjfFpwnO+/XMqGD19hYO7nbOk2g9ZtO4VamqIo9UxeXAcSi8vO4isu9tD1+/l8H92Tdn1HhEiZEowGbaAG/nwyP5pWNP/wNnp+fgvfObuROvneUMtSFCUEmOZdaEYOxzNP9qLWrXiLruwld8AMfTE3DGnQBiqhSRP2nP0kR00TtkYlEzt9EdHu2FDLUhQlBDTpMgiAPVtPPpeW1f8hiwR6/3xaqGQpFdDg51MOO+t8OOv8UMtQFCXEnNZ3GHwM2RlrYdREdmzZwOC8/7GhywwGueNDLU8JQIPuQSmKopTQolU7MqQjTX78HICDyx6hWJz0vOC2ECtTgqEGSlGURsP+NmfRM3c9az98lZ8de5vNbSfSpFVSqGUpQVADpShKo6HDuTcBwuDPf0OmtKTHlH+EWpJSAWqgFEVpNHQ+vR87z53L6raX4716KQkt2oZaklIBDX6ShKIoii99Rl4EIy8KtQylCmgPSlEURQlL1EApiqIoYYkYY0KtoRQROQT8UAtRtQIO10I89UEkaYXI0qta645I0htJWiGy9NaW1s7GmNb+jmFloGoLEVljjBkSah1VIZK0QmTpVa11RyTpjSStEFl661qrDvEpiqIoYYkaKEVRFCUsaagG6j+hFlANIkkrRJZe1Vp3RJLeSNIKkaW3TrU2yGdQiqIoSuTTUHtQiqIoSoSjBkpRFEUJSxqUgRKR80Rkh4h8JyJ3h1qPPyLSSUQ+EZGtIrJFRH5vu88UkX0issH+hcUCViKSISKbbE1rbLeWIvKhiHxr/20RBjp7+eTdBhE5LiK3hFO+isizInJQRDb7uAXMS7GYZdfjjSIyKAy0Piwi2209b4pIc9u9i4jk+eTx7PrUWoHeoGUvIv9n5+0OERkXBloX+OjMEJENtns45G2we1b91F1jTIP4AU5gJ9ANiAa+BvqGWpefxvbAIHs7AfgG6AvMBP4Qan0B9GYArfzcHgLutrfvBh4Mtc4A9eAnoHM45StwJjAI2FxZXgLnA+8BAgwHvgwDrWMBl739oI/WLr7hwihvA5a9fb19DcQAXe17hjOUWv38HwXuDaO8DXbPqpe625B6UEOB74wx3xtjCoFXgYkh1lQGY8x+Y8w6ezsb2AZ0DK2qajMReN7efh64KHRSAvJzYKcxpja+SFJrGGNWAEf8nIPl5UTgBWOxCmguIu3rRSiBtRpjPjDGFNu7q4CwWUQpSN4GYyLwqjGmwBizC/gO695RL1SkVUQEuByYX196KqOCe1a91N2GZKA6Ant89vcSxjd/EekCDAS+tJ1usrvEz4bDsJmNAT4QkbUicp3t1tYYs9/e/gkIt/UKplD2Ag/HfC0hWF6Ge12egdVKLqGriKwXkU9FZFSoRAUgUNmHc96OAg4YY771cQubvPW7Z9VL3W1IBipiEJEmwBvALcaY48AzQHcgFdiP1c0PB0YaYwYB44HfisiZvp7G6tOHzXsKIhINXAi8ZjuFa76WI9zyMhgi8iegGHjZdtoPnGaMGQjcBrwiIk1Dpc+HiCl7H66gbOMqbPI2wD2rlLqsuw3JQO0DOvnsJ9luYYWIRGEV9MvGmEUAxpgDxhiPMcYLzKEehxwqwhizz/57EHgTS9eBki67/fdg6BSWYzywzhhzAMI3X30IlpdhWZdFZDrwC2CqfVPCHirLtLfXYj3T6RkykTYVlH245q0LuARYUOIWLnkb6J5FPdXdhmSgvgJ6iEhXuyU9BXgrxJrKYI8xzwW2GWP+6ePuO0Z7MbDZ/9j6RkTiRSShZBvrIflmrDy92g52NbAkNAoDUqYFGo756kewvHwLmGbPiBoOHPMZTgkJInIecCdwoTEm18e9tYg47e1uQA/g+9CoPEkFZf8WMEVEYkSkK5be1fWtLwDnANuNMXtLHMIhb4Pds6ivuhvKGSK1/cOaQfINVkvjT6HWE0DfSKyu8EZgg/07H3gR2GS7vwW0DwOt3bBmO30NbCnJTyARWA58C3wEtAy1VltXPJAJNPNxC5t8xTKc+4EirHH5XwXLS6wZUE/b9XgTMCQMtH6H9WyhpN7OtsNOsuvHBmAdcEGY5G3Qsgf+ZOftDmB8qLXa7vOA6/3ChkPeBrtn1Uvd1U8dKYqiKGFJQxriUxRFURoQaqAURVGUsEQNlKIoihKWqIFSFEVRwhI1UIqiKEpYogZKURRFCUvUQCmKoihhiRooRVEUJSxRA6UoiqKEJWqgFEVRlLBEDZSiKIoSlqiBUhRFUcISNVBYK0WKiLHXZFHqEBGZLiIr6ymtWBF5V0SOisid9ZGmX/oZInJOPaSTLiLXBvFr1HVbROaJyN+q61fLGmaKyEsV+NdLPalNRORO+7paJiJxdZWOGijllLEvvCIRyfH51bshqIBzgBSgkzHmoRJH+4bQJWSqwgi7DGdWI/wvReQHETkhIotFpGUFYVNFZK2I5Np/U/3S9a873epCcyQjIqNFJL0a4YPmeYCwLUXkTbssfxCRX/ql6/Urn5L1n7CvpySgN9ZacXVCgzBQjbV1GCYsMMY08fk9VPkh9UZLIMMYkxNqITXBXvwt5NeqiPQD/g1cBbQFcoF/BQkbjbWI3UtAC+B5YIntXoJ/3Qn5QoenSjjcg6qY5748DRRileVU4Bm7jEv40a98nvc92BhzAtiFtTZUnRDySn+q2K3gu0RkI3BCRFwiMlxEvhCRLBH5WkRG+4RPF5F/iMhqETkuIkuCtf5E5BoR2SYi2SLyvYj8xs9/oohssOPZKdZqo4hIMxGZKyL7RWSfiPxN7BUxKziP7iLysYhkishhEXlZRJr7+B0RkUH2fgcROVRyXiJyoYhssc83XUT6+OXPH0Rko4gcE5EFIuKufk5XHxG5286XbBHZKiIXBwknIvKYiBy083KTiPS3/WJE5BER2S0iB0RktojEVlOKC/BWojVRRJba6X9ll9lKH38jIteLyLd2Pj8tImL7BS07H9LsPDgqIs+VlIGItBCRt+3yPGpvJ/mkmy4ifxeRz7EMQWW9i84i8rmd5x+ISCs//6l2Xh4WkT9VElcwpgJLjTErbKN/D3CJ2Csv+zEaK/8fN9bS5bOwFrM7+xTTDopYw037ReRHEbnWLrPTA4RLEJFPRGRWSRkCrUTkQzvfPhWRzj7hnxCRPXbdWCsio3z8ZorI6yLykogcB6ZXIjNaRF6w09kiIkP8/FNr4VodTRXzXKxVsicB9xhjcowxK7EWdryqmml67TTrhvpeobEWV3rMwFrdsRMQC3TEWlH1fCzDe66939oOnw7sA/pjrb76BvCS7dcFa9VIl70/AeiOVbhnYd0gBtl+Q4FjdvwOO93ett+bWC3MeKAN1lLSv6nkPE6344oBWgMrsCpYif+vga1AHLAMeMR27wmcsI+NwlqO+zsg2id/VgMdsHoS2/BbsdNv1cysCn4jgxw3syQP/dwvs9N1AJNtne1tv+nASnt7HLAWaG7ndR+fcI9hXTAtgQRgKfCPatSPKKxVVcvp8wv3qv2LA/pirRq70sffAG/bGk8DDgHnVbHsMrCWGu9kn8fnwN9sv0SsG0ScfX6vAYt9jk0HdgP9sG4AURWcQzrWCqY9sa6FdOABv7o9x/YbABQAfYLEVVF5LwHu8nPLAQYHCHsr8J6f29vA7T515xhwBGvV2BtO8T5wHvCTnU9xWL0HA5xu+88D/mbn9+qS/PfxywbOtMvwCb+yv9I+zgXcbqfj9tFfBFyEVc9jK9A4E8jHujc5gX8Aq/zqSVWv1beBu4P4VZjnfu4DgVw/tz9gNUDAMnaFwAGsXtJjQHyAeJ7HWiU4+lTKr9LyrYtI6+NnF+oMn/27gBf9wiwDrra3Sy9ae7+vXQBO/AxUgLQWA7+3t/8NPBYgTFusCz/Wx+0K4JNqntdFwHo/t7c4uXx1jO12D7DQJ4wDywCP9smfK338H8JeprsWy2CmnYdZPr8OAcJtACba29M5aaDOBr4BhgMOn/CCZdS6+7idAeyqoq5UrJvHAewbVZBwTjtcLx+3v1HeQI302V9I8BtEmbKzy+B6n/3zgZ0VaD7qs58O3F/F800H/uyzfyPwvr1dUreTfPxXA1NOobyXU35Z8tI65+d+D/Cqn9vLwEx7uy/WDdkJ/AxrGfQrTkHTs/g0XLAaDf4G6lmshsIdfsfO89UINAE8WM8sA6V1FBjgU/dXVOM6+chnvy+Q51dPanytVpbnfu6jgJ/83H4NpNvb7WydDqArVuPr3wHi6Y5luIuo4fLugX4RO8Rns8dnuzNwmT0MkyUiWVg9g/ZBwv+A1cr2HwpBRMaLyCp7eC0L68ZSEq4TVmvVn852fPt90v83Vk8qKCLSVkReFWtI8DhWC9Bf0xysnt+TxpgC262DfQ4AGGO89vl19DnuJ5/tXKwLsLZZaIxp7vP7UUSmiTUEWpIP/QmQz8aYj4GnsMbCD4rIf0SkKVZvJA5Y6xPH+7Z7pRhjNmD1Sv4H3FJB0NZYrWPferEnQLiA+VjFsvOvcx3sY+NE5N9iPZw+jnUDaC5lh4QDaQlGZWVdG3UhB2jq59YUqxdSrbDGmK3GmB+NMR5jzBdYvZdLT0FTByovvwlYvcfZAfxKwxtr2PIIJ8voD2IN9R+z62AzypZvTcrHLWWfW4Vb+fxkl5HXGLMLa4RmUoB4fg98BTQ1xqw5Bc0VEukGyvhs78HqQfneLOONMQ/4hOnks30altU/7BuhiMRgDf89ArQ1xjQH3sVq1Zek0z2Alj1YPahWPuk3Ncb0CxDWl/9nn0eyMaYp1rBCSVqISBPgcWAuMFNOPjf7EcsoloQT+/z2VZJeOURklJSdreP/G1V5LKVxdcYyqDcBiXb+bfY9J1+MMbOMMYOxWms9gTuwyiQP6OeTl82MMVW+aI0x+cB7drzBOAQUY81GKqFTkLCBqLDsAsR3Gla5gTVk1AsYZh97pu3ue7xv/Q4HtmANEQIg1qy7GKxecKCwKT7PesCaUbklSNyGIHWkEvZTefnNwWrgvGs/eyFQePtaawn8aNf5O4HLgRZ2PT5G+JdPVfP8G8AlIj183AYECQvWuQayF32weut5p6C3UiLdQPnyEnCBiIwTEaeIuMWaKulbea8Ukb5izdu/H3jdGOPxiyca66I7BBSLyHjKTqOcC1wjIj8XEYeIdBSR3saY/cAHwKMi0tT26y4iZ1WiOwGrNXNMRDpi3aB9eQJYY4y5FniHk63AhcAEW0cU1g2vAPiisozyxxjzmSk7W8f/91k1oovHqsyHwJpwgtWDKoeIpInIMFv/Caxxeq/dG5wDPCYibeywHUVknM+xRnwmwQShAKs8A2KX/SIswx8nIr2BaVU6S4vKyg7gtyKSZDcs/gQs8Dk2D8iy/f5SjXRDxctY19go+0Z/P7DIGBOohZ6ONVz2O7EmvNxku38MpRONWojFUOB3WM+4sP0zRGR6FTQtxLoe+9jX9T1Bwt0E7ACWStnJNueLyEixZrr9FevZ0B6s8inGqscuEbmX8j2OcCOdCvLcF2PNwFsE3C8i8SIyApiI9dwWERkjIp3t8ukEPIBP+fgQhXWd1QkNxkDZlWoi8EesSrUH64bhe44vYo07/wS4sS4K/3iybfeFWGPOv8R6BlTivxq4Buuh4THgU072ZKZh3RC32se+TtkhxkDcBwyy43oHq9IA1kWM9RD4BtvpNmCQiEw1xuzAarE/idXjuAC4wBhTWEl6dYoxZivwKNbw2gEgGWtyQCCaYhmio1jDX5nAw7bfXViTPlbZQ2AfYfU4sC+YbKznchXhpfI6fhPW0M1PWPVjPlW/4IKWnQ+vYDVcvscaGi55MfRxrGGnw8AqrBZ+yKmox2yM2QJcj2WoDmLdxG/0OfY9EfmjHbYQ65ncNKxnkzOAi3zq5xSs8s0GXgAeNPY0ZttYJGLlS4UYY94DZgGf2PGVHFPgF84A1wF7saZel8ySewWrcXAEGIx1TYH1/Pp9rJ7GD1iNp+oM6dUJvnnsT2V5LiJ/FJH3fA65EasOHsSq9zfYZQzWJIovsBqOX2Bda+Xul1jPECucKVsTxH7Q1eAR62W3l4wx/w21FqVmiMiVWMN//1dJuLFYPevexpgjVYz7QaCdMebqmitVTgURGQn81hhzxSkc2wdrSDnGGFNc6+KUUsR6pWIrcK0x5t26SKPB9KCUxoMx5qXKjJNNOvAhsEVE/hAogIj0FpEUn6GmX2G9LqCECGPMyuoYJxG52B7SagE8iDVVWo1THWJfT9uxRpCW11U6aqDqAbFeMg00+SDQrCKlljDGFBpjphpj2htjHgkSLAFraO4E1vOhRwk81h5SgtSfak1gacD8BmuYaifWM5gbKg5e+9hDb4HKJ+BwXKRjjHnEGNPOGHOFz8ziWqfRDPEpiqIokYX2oBRFUZSwJOQfOPSlVatWpkuXLqGWoSiKotQja9euPWyMKfciflgZqC5durBmTa2/jKwoiqKEMSLyQyB3HeJTFEVRwhI1UIoShny09QCZOXU2OUpRIgI1UIoSZhzPL2LzK3fzwhuLQy1FUUJKWD2DCkRRURF79+4lPz8/1FKUCMLtdpOUlERUVFSopVSbgoJCbnEtgl2LsJbTUpTGSdgbqL1795KQkECXLl0QOZWPHSuNDWMMmZmZ7N27l65du4ZaTrXx5gf69qqiND7CfogvPz+fxMRENU5KlREREhMTI7bX7ck/HmoJihIWhL2BAtQ4KdUmkuuMKcgNtQRFCQsiwkApSmPCU6yz9xQF1EBVCRHh9ttvL91/5JFHmDlzZugEVUJ6ejpffFHtdQtL2bBhA2eccQb9+vUjJSWFBQsWVH6QUmt4PPohbkUBNVBVIiYmhkWLFnH48OHKA1cDYwxeb+2v9VVTAxUXF8cLL7zAli1beP/997nlllvIysqqPYFKhXiL1UApCqiBqhIul4vrrruOxx57rJzfoUOHmDRpEmlpaaSlpfH559bisTNnzuSRR06u8NC/f38yMjLIyMigV69eTJs2jf79+7Nnzx7uuOMO+vfvT3JycmlvJT09ndGjR3PppZfSu3dvpk6dSqAvz8+aNYu+ffuSkpLClClTyMjIYPbs2Tz22GOkpqby2WefVajxqquu4owzzqBHjx7MmTMHgJ49e9KjRw8AOnToQJs2bTh06FC5tF977TX69+/PgAEDOPPMMwFrUss111xDcnIyAwcO5JNPPgFg3rx5XHTRRZx77rl06dKFp556in/+858MHDiQ4cOHc+SItZ7gnDlzSEtLY8CAAUyaNInc3PLPY4YPH86WLVtK90ePHt2gPpGlPShFsQj7aea+3Ld0C1t/rN0ZTn07NOUvF/SrNNxvf/tbUlJSuPPOO8u4//73v+fWW29l5MiR7N69m3HjxrFt27YK4/r22295/vnnGT58OG+88QYbNmzg66+/5vDhw6SlpZXe7NevX8+WLVvo0KEDI0aM4PPPP2fkyJFl4nrggQfYtWsXMTExZGVl0bx5c66//nqaNGnCH/5grdH3y1/+MqjGjRs3smrVKk6cOMHAgQOZMGECHTp0KI1/9erVFBYW0r1793Lncf/997Ns2TI6duxY2sN6+umnERE2bdrE9u3bGTt2LN988w0AmzdvZv369eTn53P66afz4IMPsn79em699VZeeOEFbrnlFi655BJ+/etfA/DnP/+ZuXPncvPNN5dJd/LkySxcuJD77ruP/fv3s3//foYMGVJhnkcSXk9RqCUoSligPagq0rRpU6ZNm8asWbPKuH/00UfcdNNNpKamcuGFF3L8+HFycnIqjKtz584MHz4cgJUrV3LFFVfgdDpp27YtZ511Fl999RUAQ4cOJSkpCYfDQWpqKhkZGeXiSklJYerUqbz00ku4XIHbGxVpnDhxIrGxsbRq1YoxY8awevXq0uP279/PVVddxXPPPYfDUb6qjBgxgunTpzNnzhw8Hk/p+Vx55ZUA9O7dm86dO5caqDFjxpCQkEDr1q1p1qwZF1xwAQDJycml57Z582ZGjRpFcnIyL7/8cpmeUgmXX345r7/+OgALFy7k0ksvrTC/Iw2v9qAUBYiwHlRVejp1yS233MKgQYO45pprSt28Xi+rVq3C7XaXCetyuco8X/J9Jyc+Pr5K6cXExJRuO51OigM8m3jnnXdYsWIFS5cu5e9//zubNm0qFyaYRig/Hbtk//jx40yYMIG///3vpcbUn9mzZ/Pll1/yzjvvMHjwYNauXVvl83E4HKX7Doej9NymT5/O4sWLGTBgAPPmzSM9Pb1cPB07diQxMZGNGzeyYMECZs9uWAsT6zMoRbHQHlQ1aNmyJZdffjlz584tdRs7dixPPvlk6f6GDRsAa+mQdevWAbBu3Tp27doVMM5Ro0axYMECPB4Phw4dYsWKFQwdOrRKerxeL3v27GHMmDE8+OCDHDt2jJycHBISEsjOPvk1gmAaAZYsWUJ+fj6ZmZmkp6eTlpZGYWEhF198MdOmTauwd7Jz506GDRvG/fffT+vWrdmzZw+jRo3i5ZdfBuCbb75h9+7d9OrVq0rnA5CdnU379u0pKioqjScQkydP5qGHHuLYsWOkpKRUOf5IoMwQn9cTOiGKEmLUQFWT22+/vcxsvlmzZrFmzRpSUlLo27dvaWt+0qRJHDlyhH79+vHUU0/Rs2fPgPFdfPHFpKSkMGDAAM4++2weeugh2rVrVyUtHo+HK6+8snRCwu9+9zuaN2/OBRdcwJtvvlk6SSKYRrCGCMeMGcPw4cO555576NChAwsXLmTFihXMmzeP1NRUUlNTS43avffey1tvvQXAHXfcQXJyMv379+dnP/sZAwYM4MYbb8Tr9ZKcnMzkyZOZN29emZ5TZfz1r39l2LBhjBgxgt69e5e6v/XWW9x7772l+5deeimvvvoql19+eZXjjhR8h/iKCvNCqERRQosEmhkWKoYMGWL8Z2Nt27aNPn36hEhRw2bmzJllJlM0NCK17qxb9iKD/ncTADm//5YmLdqEWJGi1C0istYYU26mk/agFCXMMD5DfIX5+tkjpfFS55MkROQ84AnACfzXGPNAXaepVI1w/hpGY8Z4Tw7xFaiBUhoxddqDEhEn8DQwHugLXCEifesyTUWJdIzPLL5i/XCs0oip6yG+ocB3xpjvjTGFwKvAxDpOU1EiGuPVIT5Fgbo3UB2BPT77e223UkTkOhFZIyJrAn1OR1EaG16v7yy+yFzTSlFqg5BPkjDG/McYM8QYM6R169ahlqMoocdz8t0njw7xKY2YujZQ+4BOPvtJtlvEsXjxYkSE7du3Bw2TkZFB//7961THhg0bePfdd0/5+JIXe/v27Uu/fv144oknalGdUhsYn/egPPoelNKIqWsD9RXQQ0S6ikg0MAV4q47TrBPmz5/PyJEjmT9/fkD/QJ8hqi4eT+VfDaipgXK5XDz66KNs3bqVVatW8fTTT7N169ZTjk+pfXxn8XnVQCmNmDo1UMaYYuAmYBmwDVhojCn/9c8wJycnh5UrVzJ37lxeffXVUvf09HRGjRrFhRdeSN++1uTE4uJipk6dSp8+fbj00ktLl4tYvnw5AwcOJDk5mRkzZlBQYK2a2qVLF+666y4GDRrEa6+9ViZd/+UsCgsLuffee1mwYAGpqaksWLCAEydOMGPGDIYOHcrAgQNZsmQJYC1vMXHiREaPHk2PHj247777AGjfvj2DBg0CICEhgT59+rBvX/lO7aefflr6FYmBAweSnZ2NMSbo0iBnnXUWEydOpFu3btx99928/PLLDB06lOTkZHbu3AnA0qVLGTZsGAMHDuScc87hwIED5dKdMmUK77zzTun+9OnTSz8M21jwNVAefQalNGLq/D0oY8y7wKk3+X157274qfzHUGtEu2QYX/GrWUuWLOG8886jZ8+eJCYmsnbtWgYPHgxY39nbvHkzXbt2JSMjgx07djB37lxGjBjBjBkz+Ne//sVNN93E9OnTWb58OT179mTatGk888wz3HLLLQAkJiaWfrfPF//lLKKjo7n//vtZs2YNTz31FAB//OMfOfvss3n22WfJyspi6NChnHPOOYC1VMbmzZuJi4sjLS2NCRMmlFmWIiMjg/Xr1zNs2LByaT/yyCM8/fTTjBgxgpycHNxuN4sWLQq6NMjXX3/Ntm3baNmyJd26dePaa69l9erVPPHEEzz55JM8/vjjjBw5klWrViEi/Pe//+Whhx7i0UcfLZNuyVIaEyZMoLCwkOXLl/PMM89UsTAbCD49aW+RPoNSGi8hnyQRCcyfP58pU6YAVgvfd5hv6NChdO3atXS/U6dOjBgxAoArr7ySlStXsmPHDrp27Vr6Pb6rr76aFStWlB4zefLkgOkGWs7Cnw8++IAHHniA1NRURo8eTX5+Prt37wbg3HPPJTExkdjYWC655BJWrlxZelxOTg6TJk3i8ccfp2nTpgHTvu2225g1axZZWVm4XK4KlwZJS0ujffv2xMTE0L17d8aOHQuUXUpj7969jBs3juTkZB5++OGAS2mMHz+eTz75hIKCAt577z3OPPNMYmNjA557g8VnmrkpKgihEEUJLRG13EZlPZ264MiRI3z88cds2rQJEcHj8SAiPPzww0D5pTOCLV9REcGW36jKchbGGN54441yXwz/8ssvg2opKipi0qRJTJ06lUsuuSRg2nfffTcTJkzg3XffZcSIESxbtqzCc6jKUho333wzt912GxdeeCHp6ekBv2ThdrsZPXo0y5YtY8GCBaUNg8aE8fr2oHSIT2m8aA+qEl5//XWuuuoqfvjhBzIyMtizZw9du3bls88+Cxh+9+7d/O9//wPglVdeYeTIkfTq1YuMjAy+++47AF588UXOOuusStMOtJyF/1Ia48aN48knnyxdDn79+vWlfh9++CFHjhwhLy+PxYsXM2LECIwx/OpXv6JPnz7cdtttFaadnJzMXXfdRVpaGtu3b6/R0iAAx44do2NH6zW4559/Pmi4yZMn89xzz/HZZ59x3nnnVTn+hoJ4i/Aau3FRpJMklMaLGqhKmD9/PhdffHEZt0mTJgWdzderVy+efvpp+vTpw9GjR7nhhhtwu90899xzXHbZZSQnJ+NwOLj++usrTTvQchZjxoxh69atpZMk7rnnHoqKikhJSaFfv37cc889pccPHTqUSZMmkZKSwqRJkxgyZAiff/45L774Ih9//HHpJIiSWYGzZ88uXYrj8ccfp3///qSkpBAVFcX48eNrtDQIWN/+u+yyyxg8eDCtWrUqdV+zZg3XXntt6f7YsWP59NNPOeecc4iOjq5y/A0GbzFFuCg0LvDoEJ/SeNHlNhoo8+bNKzOZojESqXXni6evY8ChJXiMg21tf8GwG+eEWpKi1CnBltuIrGdQitIY8HooxkWRuJBifQalNF7UQDVQpk+fzvTp00MtQzkFxBThwUGhROPQIT6lERMRz6DCaRhSiQwiuc6ItxgPLookGodHe1BK4yXsDZTb7SYzMzOibzhK/WKMITMzE7fbHWopp4R4i/GIkyKJweEtDLUcRQkZYT/El5SUxN69e9GlOJTq4Ha7SUpKCrWMU0KMBw9OiiUal/aglEZM2BuoqKioMl9qUJSGjniL8YoLjyMap/aglEZM2A/xKUpjQ7xFeMRJsTMGl9FJEkrjRQ2UooQZDuPBK068jhiitAelNGLUQClKmCHGHuJzxhClPSilEaMGSlHCDKsH5cI4Y4gyRZUfoCgNFDVQihJmOLzF1hCf0000OsSnNF7UQClKmGH1oKIwLjcxRg2U0nhRA6UoYYbDFGMcTnDFEEMRxusNtSRFCQlqoBQlzHDiwYgLXLE4xFBQoC/rKo0TNVCKEmaU9KAkyvpUU0GBLlqoNE7UQClKmOE0HoxElRqoorwTIVakKKFBDZSihBlOSnpQsQAUag9KaaSogVKUMCOGQjxON85oqwdVmJ8bYkWKEhrUQClKmBFjCvE6Y3BEWz2oIjVQSiNFDZSihBkxFOJ1unHZPajiQh3iUxonaqAUJYwoLvYQK4XgisUVE2e5FWgPSmmcqIFSlDAit2TGXnQszmg1UErjRg2UooQRBbmWgXJExxLljgfAq0N8SiNFDZSihBH5eTkAOKJiiS41UNqDUhonaqAUJYwosGfsOWPiiXJbQ3ymSHtQSuNEDZSihBGF9jMoZ8zJHpTRHpTSSFEDpShhRFFeNgCumCbExNoGqlg/Fqs0TtRAKUoYUZyTCUBUk0RiYtx4jYAO8SmNFDVQihJGFJ44CkCTFq0Rh4N8ohHtQSmNFDVQihJGeE5YPaimLdoAkC/ROIq1B6U0TtRAKUoYYXKz8BohNqEFAIXEIB7tQSmNkxoZKBGZKSL7RGSD/Tvfx+//ROQ7EdkhIuNqLlVRGj7OvEyOSxNwOAEolGgcnoIQq1KU0OCqhTgeM8Y84usgIn2BKUA/oAPwkYj0NMZ4aiE9RWmwxOT+xFFna5rb+4USg8ujQ3xK46SuhvgmAq8aYwqMMbuA74ChdZSWojQY4gsPkBfbtnS/yBGDU3tQSiOlNgzUTSKyUUSeFZEWtltHYI9PmL22m6IoQcjOK6St9xDeph1K3YodMbi8aqCUxkmlBkpEPhKRzQF+E4FngO5AKrAfeLS6AkTkOhFZIyJrDh06VN3DFaXBsHvvblpIDs7WvUrdihxuorw6SUJpnFT6DMoYc05VIhKROcDb9u4+oJOPd5LtFij+/wD/ARgyZIipSlqK0hDJzNgMQLNOfUvdPM4Yogq1B6U0Tmo6i6+9z+7FwGZ7+y1giojEiEhXoAewuiZpKUpDJ3//NgBadU0pdfM43ESZwlBJUpSQUtNZfA+JSCpggAzgNwDGmC0ishDYChQDv9UZfIpSMa4j35CHm9iWp5W6eVxuoo32oJTGSY0MlDHmqgr8/g78vSbxK0pjomnOLg5En0YXkVI344wlBjVQSuNEvyShKGGAx2voULSb7IRuZdyNK4YYdIhPaZyogVKUMODHA4fpIJmYVj3LuBtXLC684CkKkTJFCR1qoBQlDDiwayMAcR36lHE3UbEAeApO1LsmRQk1tfGpI0VRakjO3i1A2Rl8AGIbqML8XGLjmlc5PmMM321bx4H/LSDh0FoSC/YRa/JwUozBgQcnHnHixYlHXHjFidfvb0kYg1SeYCAN1QwvQbatHSmnQsoFLNmV0h0B8uI6MOD653A4ndVUpIQaNVCKEgZI5rcU4aRZh7JDfI4oN2AtBR9bxbh2bPma40vvIi3/f/QAdjm7cqBJb4pcTcHpxBhjDRl6PYi3CDH2X68HMcU4jAen8eAyxbhqOEGjqqYtsDEzmAAe5ZzMSTfjFy7Bm03vE1/x/beb6dZ7QBXVKOGCGihFCQPij+/kJ2d7Ormiy3pExwFQWIUhPq/XkP7Kw5zx7cN4xMW6rr+h63k30bXtaXStC9ERwLcbVsLiCRzLWAdqoCIONVCKEga0zv+BzPiuZT6/AuCMtvpNRXm5FR5fVFzMZ/+6gbOPLGRbfBpJ1zzLoNanVXhMY6Dd6QMoNg48P24KtRTlFGhQkySM18OqZ+/kp93fhlqKolSZosICOnj3k9+sezk/R1ScHSZ4D6qgqJgVs37F2UcWsrHDZHrf/j4JapwASGiSwG7pQOyRbaGWopwCDaoHtf+Hb+n7w4scf+4t9l31Jh279an8ID88xcXk552gID+PosJ8MMVl/AONidcmUu3n0RUf4KvXBPEIdk7+zgZTml6weI1vvEF0+PoETdvP3VB5vMHTCxa+ch2W36mfU3CtJ3fyD+7kZ+JBfD4SW4LTbRmo4vzAa0J5vYZl/76bC48vZmuXaaRcPetUKlGD5kBcD7qd2Fx5wMowhvz8PE7kHMdbmEtxYR5er6HYG6TylJaDzwQP201EOHnt+pSX+AYrCevbj5DKi9d/4ojfAeUmm5RJvnp1xziiaNs+qVrHVIcGZaA6dO3N9l+8SId3puF6/iy+ajMBV/czcTdri9dAYU4mxdmHKc4+iJw4jCvvMDGFR4gvPkpz71ESzAmixEM8EB/qk1EaHS06p5Rzi7KfQQWbZv7OCw9z4eE5fNN2PH2nPaHGKQCeNv1om/EJxw/vp2mr9pWGz887wc51n3Ds+7XEZG4h7sQemhUdppU5gluKcdeD5kjhK29v2t7/ZZ3F36AMFEDvtHP4qe2nZLz+RwYdfIvoQ4sChssmlmPSnBOuFhyPO43MmFSKYlqAKwaHK8aaPRUVAxLOWRRs7lMFU3YJ7BGsjVUmHjEB3cuEr8L9sWyc1YvnVNIN5lWm5RhER1DXIHkX9HwqERcV34IeA35WztsZY/egCsv3oJa9OY/xu/7Bd82G0uPXz4OjQY3Y1xqtUsZBxlN8u/I1Bl/0u4BhDmYe5ev0N4j77m0G5K6in1j5fZCWHIxO4sdmqWTEtkFim+GKice4YjGuGBziwOEo2/MwPtMKpdy8QqsnXepuTvalS9xMSSDfvz7H+1LdER3jF0dNR4QK3K1qFkElhPPd95Rpd1oP2t32Gnm5J/j2m/XkZ2cigLtpK+Kbt6ZF6w4kxDUhIdRCFaUSotxWX95bWHaSxGcfv8OZG+5gn/t0ut3wBuKKCYW8iKBX6kh2L21Pi83P4f3FjThc1m3vePYxNqW/gWxdQkruKs6VfI5JAt+0PhdHnwl0SzmTNq070CbE+hszDdJAlRAbF0+P1JGhlqEop0ypgSo62YPasOZzkj/9NVmuVrS9YSmO2KahkhcRiMPBj6m3Mnz9nWx6dDwn2gzCfehrepxYxwgpIIumfN9uPIlDL6dj6rkMckaFWrJi06ANlKJEOtG2gTIFVg9q06b1dFz6S4odMcRf+zbu5u1CKS9iGHbhdXyW9SMp38+h2Q+r+VHasrXN+bQYcindh4wjRY1SWKIGSlHCmIQmTTlu4nBl7+Xrrz6lw9vTiBYPhVctoWn78tPSlcCICKOuvg+v517yiwrp4I6lQ6hFKZWiBkpRwphm8dFskg4k71tIzt63yHU0oWjaUlp3LT/jT6kch9OJ21nVj0YpoUan/ShKmLO31SgAfoztQeyNn5T7oKyiNFS0B6UoYc7YG/7JD99Np0ePZMShX+RWGg9qoBQlzHE6HXTulRpqGYpS7+gQn6IoihKWqIFSFEVRwhIxdf3102ogIoeAH2ohqlbA4VqIpz6IJK0QWXpVa90RSXojSStElt7a0trZGNPa3zGsDFRtISJrjDFDQq2jKkSSVogsvaq17ogkvZGkFSJLb11r1SE+RVEUJSxRA6UoiqKEJQ3VQP0n1AKqQSRphcjSq1rrjkjSG0laIbL01qnWBvkMSlEURYl8GmoPSlEURYlw1EApiqIoYUmDMlAicp6I7BCR70Tk7lDr8UdEOonIJyKyVUS2iMjvbfeZIrJPRDbYv/NDrRVARDJEZJOtaY3t1lJEPhSRb+2/LcJAZy+fvNsgIsdF5JZwylcReVZEDorIZh+3gHkpFrPserxRRAaFgdaHRWS7redNEWluu3cRkTyfPJ5dn1or0Bu07EXk/+y83SEi48JA6wIfnRkissF2D4e8DXbPqp+6a4xpED/ACewEugHRwNdA31Dr8tPYHhhkbycA3wB9gZnAH0KtL4DeDKCVn9tDwN329t3Ag6HWGaAe/AR0Dqd8Bc4EBgGbK8tL4HzgPUCA4cCXYaB1LOCytx/00drFN1wY5W3Asrevt6+BGKCrfc9whlKrn/+jwL1hlLfB7ln1UncbUg9qKPCdMeZ7Y0wh8CowMcSaymCM2W+MWWdvZwPbgI6hVVVtJgLP29vPAxeFTkpAfg7sNMbUxhdJag1jzArgiJ9zsLycCLxgLFYBzUWkfb0IJbBWY8wHxphie3cVkFRfeiojSN4GYyLwqjGmwBizC/gO695RL1SkVUQEuByYX196KqOCe1a91N2GZKA6Ant89vcSxjd/EekCDAS+tJ1usrvEz4bDsJmNAT4QkbUicp3t1tYYs9/e/gloGxppQZlC2Qs8HPO1hGB5Ge51eQZWK7mEriKyXkQ+FZFRoRIVgEBlH855Owo4YIz51sctbPLW755VL3W3IRmoiEFEmgBvALcYY44DzwDdgVRgP1Y3PxwYaYwZBIwHfisiZ/p6GqtPHzbvKYhINHAh8JrtFK75Wo5wy8tgiMifgGLgZdtpP3CaMWYgcBvwiog0DZU+HyKm7H24grKNq7DJ2wD3rFLqsu42JAO1D+jks59ku4UVIhKFVdAvG2MWARhjDhhjPMYYLzCHehxyqAhjzD7770HgTSxdB0q67Pbfg6FTWI7xwDpjzAEI33z1IVhehmVdFpHpwC+AqfZNCXuoLNPeXov1TKdnyETaVFD24Zq3LuASYEGJW7jkbaB7FvVUdxuSgfoK6CEiXe2W9BTgrRBrKoM9xjwX2GaM+aePu+8Y7cXAZv9j6xsRiReRhJJtrIfkm7Hy9Go72NXAktAoDEiZFmg45qsfwfLyLWCaPSNqOHDMZzglJIjIecCdwIXGmFwf99Yi4rS3uwE9gO9Do/IkFZT9W8AUEYkRka5YelfXt74AnANsN8bsLXEIh7wNds+ivupuKGeI1PYPawbJN1gtjT+FWk8AfSOxusIbgQ3273zgRWCT7f4W0D4MtHbDmu30NbClJD+BRGA58C3wEdAy1FptXfFAJtDMxy1s8hXLcO4HirDG5X8VLC+xZkA9bdfjTcCQMND6HdazhZJ6O9sOO8muHxuAdcAFYZK3Qcse+JOdtzuA8aHWarvPA673CxsOeRvsnlUvdVc/daQoiqKEJQ1piE9RFEVpQKiBUhRFUcISNVCKoihKWKIGSlEURQlL1EApiqIoYYkaKEVRFCUsUQOlKIqihCX/H5CgDbN6quJHAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAv0ElEQVR4nO3deXRc5Znn8e9Ti0qrJdvygi0bL9gkBi8YQ8zaMUvYEggkZKCbhJykh5BJ0k06MUmGDIEc0h3SHYaZSYaEdNgaGugkhDiEEHDiBoaDwQsGYwPGNjbIqyTbsmRttbzzR13JJVklyS6p6lbV73OOjkrvreXRW7fuU+9y72vOOURERPwmkOsARERE+qMEJSIivqQEJSIivqQEJSIivqQEJSIivhTKdQCpamtr3bRp03IdhoiIZNGaNWsanXPj+pb7KkFNmzaN1atX5zoMERHJIjPb3l+5uvhERMSXlKBERMSXlKBEfMg5x5rt+2jriuU6FJGc8dUYlIgk3f/SNr7/1EbOmVXLv33xI7kOR4ZRNBqlvr6ejo6OXIeSdaWlpdTV1REOh4d0fyUoER965JXkmPGL7zbyzu4WTpxYleOIZLjU19dTVVXFtGnTMLNch5M1zjmampqor69n+vTpQ3qMuvhEfGbfoS62NBzi82dOA+A/39mb24BkWHV0dDB27NiiSk4AZsbYsWOPquWoBCXiM69/cACAi06ayIkTqvh/mxtzG5AMu2JLTt2O9v9WghLxmU17WgCYM2kUC6bUsH5HM1oWR4qREpSIz2zf18bo8jDVZWHm1lVzoC1K/f72XIclBezuu++mra3tmB//wgsvsHDhQkKhEL/+9a+HLS4lKBGf+WBfG1PHlAMwd3I1AG/uaM5lSFLgMk1QU6dO5YEHHuCv//qvhzEqJSgR33l/XxtTvAR14sQqzODt3S05jkoKxaFDh7jsssuYP38+J598Mrfffjs7d+5kyZIlLFmyBIBnn32WM844g4ULF3L11VfT2toKJC9Hd/PNNzN37lxOP/10Nm/e3FM+b948AoHhTSmaZi7iI845djV3cNFJEwEoDQeZMrqczQ2tOY5MRsLtv9/Axp0Hh/U550waxfc+cVLa7c888wyTJk3iD3/4AwDNzc3cf//9rFixgtraWhobG7njjjtYvnw5FRUV3Hnnndx1113ceuutAFRXV7N+/XoeeughbrrpJp566qlhjT+VWlAiPnKwI0ZXLMG4ykhP2azxlWzZqwQlw2Pu3Lk899xzfOtb3+LFF1+kurq61/aVK1eyceNGzjrrLBYsWMCDDz7I9u2Hr+V67bXX9vx++eWXRzRWtaBEfKSxtROA2qqSnrITxlfy4ruNxOIJQkF9pywkA7V0Rsrs2bNZu3YtTz/9NN/97nc5//zze213znHhhRfy6KOP9vv41KniIz1dXnu7iI80tngJKqUFNXN8JV3xBB9oJp8Mg507d1JeXs51113H0qVLWbt2LVVVVbS0JMc5Fy9ezEsvvdQzvnTo0CE2bdrU8/jHH3+85/cZZ5wxorGqBSXiI42tXQCMqzqcoE4YXwnA5r2tTK+tyElcUjjWr1/P0qVLCQQChMNh7rnnHl5++WUuvvhiJk2axIoVK3jggQe49tpr6exMfmG64447mD17NgD79+9n3rx5RCKRnlbWqlWruPLKK9m/fz+///3v+d73vseGDRsyjlUJSsRHerr4KvtPUBfOmZCTuKRwXHTRRVx00UW9yhYtWsTXvva1nr/PO+88Vq1a1e/jly5dyp133tmr7LTTTqO+vn7YY1UXn4iPNLZ2EjAYXX54DGpUaZgJoyK8u1dTzaW4qAUl4iONrZ2MqYgQDPQefD5BM/nEB7Zt25bV11MLSsRHDrRFGV1+5Fo5s8ZXsXlvq67JVyCK9X082v9bCUrERw52RBlVdmSCmjm+kkNdcXY1F98id4WmtLSUpqamoktS3etBlZaWDvkx6uIT8ZGD7TFqK0uOKJ+VMlFiUk1ZtsOSYVRXV0d9fT0NDQ25DiXrulfUHSolKBEfaW6PMnPckVPJu2fyvbu3lXNnj8t2WDKMwuHwkFeULXbq4hPxkXRdfGMrSqgpD7NZEyWkiChBifiEc46D7VFGlR6ZoMyMWeMr2ayp5lJElKBEfKK1M0bCQXU/LShIdvO9q5l8UkQyTlBm9jUze9vMNpjZj/psm2pmrWb2zUxfR6TQHeyIATCqrP+h4RPGV3GgLUrToa5shiWSMxlNkjCzJcAVwHznXKeZje9zl7uAP2byGiLF4mB7FBi4BQXJmXypl0ISKVSZtqC+DPzQOdcJ4Jzb273BzD4JvAdkfsVAkSLQ7CWo/sag4PBU83c1UUKKRKYJajZwjpm9YmbPm9lpAGZWCXwLuH2wJzCzG8xstZmtLsbzAkS6tXhdfFVpEtRx1aVURUK8s3t4V2AV8atBu/jMbDkwsZ9Nt3iPHwMsBk4D/sPMZgC3Af/TOdc62IJWzrl7gXsBFi1apNFfKVptXckEVR4J9rvdzDhp8ijeqG/OZlgiOTNognLOXZBum5l9GXjCJacVvWpmCaAW+AjwaW/SRA2QMLMO59xPhidskcLTEY0DUBbuP0EBzK+r4b6X3qMzFicSSn8/kUKQ6ZUkngSWACvMbDZQAjQ6587pvoOZ3Qa0KjmJDKy9a/AENa+uhmjc8c7uFubV1WQpMpHcyHQM6j5ghpm9CTwGXO90kobIMWmPJgAoKxkoQVUD8Lq6+aQIZNSCcs51AdcNcp/bMnkNkWLR7nXxRULpvzfWjS6jtrKEtdv389nFx2crNJGc0JUkRHyiIxqnLBxkoIlFZsbiGWN5aXOjrighBU8JSsQn2rviA3bvdTtnVi17WzrZtEfnQ0lhU4IS8Yl2rwU1mLNnJZfb+M939g5yT5H8pgQl4hPt0Til4cE/kpNrypg/pYYn1+3MQlQiuaMFC0V8ojMap3QILSiAq06ZzPeWbWDjzoPMmTRqSI9JJBx7WjrYfyhKc3uUhHMYgEHAjIAZwUDydigQIBCAYMAImhHwfgcDhhkDjpP5TXk4yOiKI1cpFv9TghLxiaF28QFcPn8Sdz7zNv/3Pzfzk79emPZ+u5rbefK1nfxpw27e2d3SM1OwmAQMVnzzoxw/9siVisXflKBEfKK9K05FZGgfydEVJXzhrOn8ZMVmrlq4h/M+NKFnW2tnjGfe3M0Ta+t5eWsTzsGCKTVce/pUZo6vYGxFCaNKwwQDhgOcSy6WmHAQSyRIOEc8AfGE824f/h1POPJp8uCWxlZ+/vxWdjV3KEHlISUoEZ9ojyYYWzn0yxd99bwT+Mvbe7nx4bV84azpTBgVYdW2ffzl7b10RBNMHVPO3503iytPmcy02uI8OL/2/n5+/vzWomw5FgIlKBGf6DiKLj6A0nCQR/72I3znifX8/IUtOAfjqyJ8amEdVy2czMKpo/NqrGgkdE/b7+hSgspHSlAiPtHedXQJCpJdfT/77Km0dsbojMYZU1FS9EkpVXd9qgWVn5SgRHyiPTq0E3X7UxkJUTnE8atiogSV33QelIhPtB/FNHMZmlIv4beriy8vKUGJ+EA84eiKJY66i08G1l2fHWpB5aWCSlAtHVEuvvsFfr2mPtehiByVnsUKSwrqI5lz4WCAUMDUxZenCurTEA4GeHt3C3sOduQ6FJGj0j6E1XTl2JSFg7R3JXIdhhyDgkpQkVCAYMBo64rlOhSRo9I9RqIxqOFXWhJUCypPFVSCMjPKw0HaNCAqeaa7i08JaviVhYMag8pTBZWgIHlinmbsSL5RF9/ISXbx6ZiQjwouQZWXBDmknVHyTPcB9FjPg5L01MWXvwouQZWVhGjXGJTkmXZ18Y2YsnBALag8VXAJqrxEY1CSfzrUxTdiysJqQeUrJSgRH+iIJqdBq4tv+JWpiy9vFWSCUnNe8o0mSYycUk2SyFsFmKBCtEU1BiX5pWeShBLUsNM08/xVcAmqrCRIW6d2RskvPZMkdKmjYVeuLr68VXCfBp2oK/moIxonYFASLLiPZM51T5Jw+bRWvQCFmKC8b0uJhHZGyR/dixVqscHhV1oSxDnojOl6fPmm4BJUWUly0baOmFpRkj8yWaxQBqYlN/JXwSWoikhyZ1Q3n+QTLVY4crSqbv4quATVszMqQUke6VCCGjFlWlU3bxVcgir3uvgO6XJHkke6x6Bk+JWqBZW3Mk5QZvY1M3vbzDaY2Y9SyueZ2cte+XozK830tYaivERdfJJ/2qNKUCNFY1D5K5TJg81sCXAFMN8512lm473yEPAw8Fnn3OtmNhaIZhztEKg5L/moPZqguiyc6zAK0uFjgmbx5ZtMW1BfBn7onOsEcM7t9co/BrzhnHvdK29yzmUlY1RGkjm3pUNdfJI/OrrilIULrsfdF7pbUFppO/9k+omYDZxjZq+Y2fNmdlpKuTOzP5nZWjO7Od0TmNkNZrbazFY3NDRkGA6MKk1+C23pyEqDTWRYqItv5GgMKn8N2sVnZsuBif1susV7/BhgMXAa8B9mNsMrP9srawP+bGZrnHN/7vskzrl7gXsBFi1alPHZtaPKkv/SQbWgJI/oPKiR012vGoPKP4MmKOfcBem2mdmXgSdc8hoir5pZAqgF6oEXnHON3v2eBhYCRySo4Xa4i08tKMkfHV2aZj5SdOpJ/sq0i+9JYAmAmc0GSoBG4E/AXDMr9yZM/BWwMcPXGpJQMEBFSZCD7WpBSf5QF9/IOXyiriZJ5JuMZvEB9wH3mdmbQBdwvdea2m9mdwGrAAc87Zz7Q4avNWSjysJqQUneiMYTxBJOCWqERELJ7+Eag8o/GSUo51wXcF2abQ+TnGqedVWlIQ4qQUme6FnuXWNQIyIQMErDAY1B5aGCnNc6qjSsaeaSN3rWglILasSUaVXdvFSYCaosrBaU5I0O7wRSJaiR070mlOSXTMegfKmqNMSWhsxbUM45dhxoZ1tjGy0dUaIJRzhgVERCVJaGqIqEKI+EKA8HKSsJEgkFtJ6PHLXuA6fGoEZO6TCtqhtPODbuPMjWxlYaW7twzhEKGNXlYarLwlSXlVBdFqIyEqYiEqSiJEQgoGPCsSrIBDWqNMzB9mNvQe1t6eCXL77HU2/sYseB9iE/LhgwysNBSkuChAJGwAwzjvh9zDI4SyyTE8wyXYk0s9fO6KXzQpe3kF6ZlnsfMWXhIB0ZdPE1t0f55YtbefiV99l3qOuoHlsZCVEaDhIMQNCMQMCSxwfvGNGfdJ+5tB+HNBvS3f9onz/d5zAcNP78jY+miypjhZmgykIc7IiRSLij+vbinOPXa+r53rINdMYSLDlxPDd+dCYzx1UwuryEcNCIJRytHTFaOmO0dsRo74pzqCtGW1ecNu93e1echHMkHCScw6X8jjtHJjkqkxZaZq+bwYMzfu3C/wZaVhLk1OPH5DqMglWeQQvqtff385VH1rKzuYOPzZnAZfOOY85xoxhXFSEYMKJxR3N7lANtXTS3R2npiNHqHR96jhPeKt9x50gkHDHvtnMOS/fpOLritJ+T9PfP/PmDI9w6LMgENbYiQjyR3GlGV5QM6THOOe56bhP/5y+bWTxjDD+8ah7TaitGOFIRyYbScPCYri6zats+rr/vVcZWlvDb/3Ymp0wd3e/9xlSUADpeDLeCTFC1VREAmg51DjlB/eLFrfyfv2zmmtOm8IMr5474NwMRyZ7qsjD1+4feXQ+wu7mDG/9tDRNHlfLYDYsZPyorKwZJioLs9K71klJDy9D6il99bx93PvMOl86dyD8qOYkUnOqyMM1HMS7tnOPvH3uNjmicX1y/SMkpRwoyQY2tPNyCGkxHNM43f/U6U0aXceen5mnGjUgB6k5QQ53w8+S6Hbzy3j5u/cQcZo6rHOHoJJ0CTVDJFlRT6+AtqP/7n1t4f18b/3jVXKpKtWCcSCGqKQ8TTzgODWEmX3tXnH96+m3m11Vz9alTshCdpFOQCWp0eQkBg8bWgVtQTa2d/Pz5LVw+fxJnzqzNUnQikm3dqxUfaBv8S+tjq95nb0snt1w2Rz0qOVaQCSoYMMZUlNA4SAvqoZe30xlL8Hfnz8pSZCKSC90JarBxqK5Ygl+8sJXTpo3m9Oma9p9rBZmgIDnVfKAWVHtXnIde3sYFHx7PCePVxyxSyKrLkt3+gyWoP23Yzc7mDr780ZnZCEsGUbAJ6riaUnYOcBWIX6+tZ39blBvO1Y4oUui6W1CDXWHmydd2cFx1KR+dPT4bYckgCjZBTR1Tzvv72vrdFk84/vXFrcyfUsNp0/o/8U5ECkd1efcYVPoE1dTayfObGrh8wSSNPflEQSeolo4Yzf3skM9t3M32pja+dO6MoriMjkixq+meJDFAC+qpN3YRSziuPGVytsKSQRRsgqobXQ5wRCvKOcfPX9jK1DHlXHTSxFyEJiJZVl4SpLwkSENL+nHp3762gw9NrOJDE0dlMTIZSMEmqKlj+k9Qa7bv57X3D/C350zXFSNEioSZMWFUKXsOdvS7/b3GQ6z74ABXLVTryU8KNkFNqy3HDDbtaelV/vMXtlJTHubTp9blKDIRyYXxVZG0CerJ13ZgBpfPV4Lyk4JNUOUlIWaOq+TNHc09ZVsaWln+1h4+t/h4yksK8jq5IpLGxOpS9hw8sovPOceT63Zw5syxTKzWNff8pGATFMDcydW8Xt/cc/2tn67YTCQU4HNnTsttYCKSdRNGlbL7YMcR1+N77YMDbG9q45ML1Hrym4JOUGefUEtjayfrdzSzpaGV363byXUfOZ5a72KyIlI8JowqpSuWOOJk3Sdf20EkFODikzVpym8Kup/rvA+NpyQY4KcrNtPQ0klFSZAv/ZVOzBUpRhO9JTN2HGinpjx5ZYloPMHvX9/JhXMm6GLRPlTQLajRFSX87TnT+dOGPaz74AD/eNVcxlWp9SRSjGaMS654u6XhUE/ZC5sa2N8W1blPPlXQLSiAb37sRBZMqeG46jLm1lXnOhwRyZHptRUEDDbvbe0p+/WaesZWlHDu7HE5jEzSKfgEFQgYH9MJuSJFrzQcZMqYct71Tj1pau1Mzuo9YxrhYEF3JuUtvSsiUjROmVLDqm37cc7xxNodROOOzyzSooR+pQQlIkXjzJnJmb1rtu/nFy9uZfGMMZw4sSrXYUkaSlAiUjQ+dtIEKkqCfPpnL7O3pZN/uPDEXIckA1CCEpGiUVNewvevOJkZtRXc+vE5WjXX5wp+koSISKpPnVrHp3QtzrygFpSIiPiSEpSIiPiSEpSIiPiS9b2yby6ZWQOwfRieqhZoHIbnyYZ8ihXyK958ihXyK958ihXyK95ijPV459wRl/PwVYIaLma22jm3KNdxDEU+xQr5FW8+xQr5FW8+xQr5Fa9iPUxdfCIi4ktKUCIi4kuFmqDuzXUARyGfYoX8ijefYoX8ijefYoX8ilexegpyDEpERPJfobagREQkzylBiYiILxVUgjKzi83sHTPbbGbfznU8fZnZFDNbYWYbzWyDmf29V36bme0ws3Xez6W5jhXAzLaZ2XovptVe2Rgze87M3vV+j851nABmdmJK/a0zs4NmdpNf6tbM7jOzvWb2ZkpZv3VpSf/b24/fMLOFPon3n83sbS+m35pZjVc+zczaU+r4Zz6INe37bmbf8er2HTO7KJuxDhDv4ymxbjOzdV55rus23TErO/uuc64gfoAgsAWYAZQArwNzch1XnxiPAxZ6t6uATcAc4Dbgm7mOr594twG1fcp+BHzbu/1t4M5cx5lmX9gNHO+XugXOBRYCbw5Wl8ClwB8BAxYDr/gk3o8BIe/2nSnxTku9n09i7fd99z5vrwMRYLp3zAjmOt4+238M3OqTuk13zMrKvltILajTgc3Oua3OuS7gMeCKHMfUi3Nul3NurXe7BXgLmJzbqI7aFcCD3u0HgU/mLpS0zge2OOeG46okw8I59wKwr09xurq8AnjIJa0EaszsuKwE6ukvXufcs865mPfnSsAXlwRPU7fpXAE85pzrdM69B2wmeezImoHiNTMDPgM8ms2Y0hngmJWVfbeQEtRk4IOUv+vx8cHfzKYBpwCveEVf9ZrE9/ml2wxwwLNmtsbMbvDKJjjndnm3dwMTchPagK6h9wfcj3UL6esyH/blL5D8ptxtupm9ZmbPm9k5uQqqj/7ed7/X7TnAHufcuyllvqjbPsesrOy7hZSg8oaZVQK/AW5yzh0E7gFmAguAXSSb+H5wtnNuIXAJ8BUzOzd1o0u26X11noKZlQCXA7/yivxat734sS7TMbNbgBjwiFe0C5jqnDsF+Afg381sVK7i8+TF+96Pa+n95coXddvPMavHSO67hZSgdgBTUv6u88p8xczCJN/oR5xzTwA45/Y45+LOuQTwC7Lc5ZCOc26H93sv8FuSce3pbrJ7v/fmLsJ+XQKsdc7tAf/WrSddXfp2XzazzwMfB/7GOzDhdZc1ebfXkBzXmZ2zIBnwffdz3YaAq4DHu8v8ULf9HbPI0r5bSAlqFTDLzKZ736KvAZblOKZevP7lXwJvOefuSilP7aO9Eniz72OzzcwqzKyq+zbJAfI3Sdbp9d7drgd+l5sI0+r1DdSPdZsiXV0uAz7nzYhaDDSndKfkjJldDNwMXO6ca0spH2dmQe/2DGAWsDU3UfbElO59XwZcY2YRM5tOMtZXsx1fGhcAbzvn6rsLcl236Y5ZZGvfzdXskJH4ITmDZBPJbxm35DqefuI7m2RT+A1gnfdzKfBvwHqvfBlwnA9inUFyttPrwIbu+gTGAn8G3gWWA2NyHWtKzBVAE1CdUuaLuiWZNHcBUZL98l9MV5ckZ0D91NuP1wOLfBLvZpLjC9377s+8+37K20fWAWuBT/gg1rTvO3CLV7fvAJf4oW698geAG/vcN9d1m+6YlZV9V5c6EhERXyqkLj4RESkgSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLSlAiIuJLoVwHkKq2ttZNmzYt12GIiEgWrVmzptE5N65vua8S1LRp01i9enWuwxARkSwys+39lauLT0REfEkJSkREfEkJSsSHHnjpPV7Y1JDrMERyyldjUCKSdNvvNwKw7YeX5TgSGW7RaJT6+no6OjpyHUrWlZaWUldXRzgcHtL9laBERLKovr6eqqoqpk2bhpnlOpyscc7R1NREfX0906dPH9Jj1MUn4jPOuVyHICOoo6ODsWPHFlVyAjAzxo4de1QtRyUoEZ/pjCVyHYKMsGJLTt2O9v9WghLxma64EpQIKEGJ+E48ri4+ya67776btra2Y378XXfdxZw5c5g3bx7nn38+27f3e97tUVOCEvGZuMagJMsyTVCnnHIKq1ev5o033uDTn/40N99887DEpQQl4jOJhBKUjJxDhw5x2WWXMX/+fE4++WRuv/12du7cyZIlS1iyZAkAzz77LGeccQYLFy7k6quvprW1FUheju7mm29m7ty5nH766WzevBmAJUuWUF5eDsDixYupr68fllg1zVzEZ2JKUEXj9t9vYOPOg8P6nHMmjeJ7nzgp7fZnnnmGSZMm8Yc//AGA5uZm7r//flasWEFtbS2NjY3ccccdLF++nIqKCu68807uuusubr31VgCqq6tZv349Dz30EDfddBNPPfVUr+f/5S9/ySWXXDIs/4sSlIjPxFMSVCLhCASKc8aXjIy5c+fyjW98g29961t8/OMf55xzzum1feXKlWzcuJGzzjoLgK6uLs4444ye7ddee23P769//eu9Hvvwww+zevVqnn/++WGJVQlKxGcSKWNQXfEEpYFgDqORkTRQS2ekzJ49m7Vr1/L000/z3e9+l/PPP7/XduccF154IY8++mi/j0+dKp56e/ny5fzgBz/g+eefJxKJDEusGoMS8ZnULj6dEyXDbefOnZSXl3PdddexdOlS1q5dS1VVFS0tLUByDOmll17qGV86dOgQmzZt6nn8448/3vO7u2X12muv8aUvfYlly5Yxfvz4YYtVLSgRn0mdJNGlBCXDbP369SxdupRAIEA4HOaee+7h5Zdf5uKLL2bSpEmsWLGCBx54gGuvvZbOzk4A7rjjDmbPng3A/v37mTdvHpFIpKeVtXTpUlpbW7n66qsBmDp1KsuWLcs4VvPTZVUWLVrktGChFLu3dx/k4rtfBOClb5/H5JqyHEckw+mtt97iwx/+cK7DOCbdi8rW1tYe83P09/+b2Rrn3KK+91UXn4jPxOJqQYmAuvhEfCd1kkRnLJ7DSER627ZtW1ZfTy0oEZ+Jawyq4PlpaCWbjvb/VoIS8RklqMJWWlpKU1NT0SWp7vWgSktLh/yYEe/iM7OLgf8FBIF/dc79cKRfUySfKUEVtrq6Ourr62loaMh1KFnXvaLuUI1ogjKzIPBT4EKgHlhlZsuccxtH8nVF8lnqxWI7tfRGwQmHw0NeUbbYjXQX3+nAZufcVudcF/AYcMUIv6ZIXlMLSiRppBPUZOCDlL/rvbIeZnaDma02s9XF2OQV6UsJSiQp55MknHP3OucWOecWjRs3LtfhiORc72nmSlBSvEY6Qe0ApqT8XeeViUgaOlFXJGmkE9QqYJaZTTezEuAaIPMLNIkUsF5XM9eJulLERnQWn3MuZmZfBf5Ecpr5fc65DSP5miL5LnXiXpdm8UkRG/HzoJxzTwNPj/TriBSKWOJwUlIXnxSznE+SEJHeenfxKUFJ8VKCEvGZ1F49nagrxUwJSsRn4ildfJ1RJSgpXkpQIj6jSRIiSUpQIj7TfS2+kmBAY1BS1JSgRHwm7rWaykqCSlBS1JSgRHwm5l2Lr1wJSoqcEpSIz3RfLLasJKgxKClqSlAiPqMWlEiSEpSIz3S3oMrDITp1LT4pYkpQIj7T3YIqVQtKipwSlIjPJBKOYMCIhAJaD0qKmhKUiM/EvARVEgpokoQUNSUoEZ+JJxKEAkZEJ+pKkVOCEvGZXi0oJSgpYkpQIj4TTzhCXoLSGJQUMyUoEZ+JpUySUAtKipkSlIjPxOOaJCECGSYoM/tnM3vbzN4ws9+aWY1XPs3M2s1snffzs2GJVqQIxJ0jFAhQEgwST7ieE3dFik2mLajngJOdc/OATcB3UrZtcc4t8H5uzPB1RIpGPGWSBGjZdyleGSUo59yzzrmY9+dKoC7zkESKWyxlkgQoQUnxGs4xqC8Af0z5e7qZvWZmz5vZOekeZGY3mNlqM1vd0NAwjOGI5Kd4ItGrBdUZ1/X4pDiFBruDmS0HJvaz6Rbn3O+8+9wCxIBHvG27gKnOuSYzOxV40sxOcs4d7Pskzrl7gXsBFi1apM52KXoxb5JEJOglqKhaUFKcBk1QzrkLBtpuZp8HPg6c71xyrWrnXCfQ6d1eY2ZbgNnA6kwDFil03WNQkbDXxaeZfFKkMp3FdzFwM3C5c64tpXycmQW92zOAWcDWTF5LpFj0jEEFNQYlxW3QFtQgfgJEgOfMDGClN2PvXOD7ZhYFEsCNzrl9Gb6WSFFIOM3iE4EME5Rz7oQ05b8BfpPJc4sUq1i8T4JSF58UKV1JQsRnuuIJSkIBdfFJ0VOCEvGZzlicSCioLj4pekpQIj7TGU0QCQUOnwcV03lQUpyUoER8piueTFCRUBBAS25I0VKCEvGZZAsqSKSnBaUEJcVJCUrEZzpjcSLhQE+C0hiUFCslKBGf6Yypi08ElKBEfCeZoIKHL3WkBCVFSglKxEdi8QTxhEvO4gtqFp8UNyUoER/p7s4rCQUIeNfjUxefFCslKBEf6U5G3RMkIqGAltuQoqUEJeIjbV3JBarLSpITJCLhgLr4pGgpQYn4SEtHMkFVlYYBiISC6uKToqUEJeIjhxNUcqGBkpDGoKR4KUGJ+EhLRxRIbUEF6Iyqi0+KkxKUiI/0bUFF1IKSIqYEJeIjh1tQ3QkqqBN1pWgpQYn4yP62ZIKqKSsBNItPiltGCcrMbjOzHWa2zvu5NGXbd8xss5m9Y2YXZR6qSOFraOmkpjzcsxaUuvikmIWG4Tn+p3PuX1ILzGwOcA1wEjAJWG5ms51z+iooMoCGlk7GVUZ6/tY0cylmI9XFdwXwmHOu0zn3HrAZOH2EXkukYOxt6aC2V4JSF58Ur+FIUF81szfM7D4zG+2VTQY+SLlPvVd2BDO7wcxWm9nqhoaGYQhHJH/V72+nbnRZz9+RsC51JMVr0ARlZsvN7M1+fq4A7gFmAguAXcCPjzYA59y9zrlFzrlF48aNO9qHixSM9q44e1s6mTqmvKdMXXxSzAYdg3LOXTCUJzKzXwBPeX/uAKakbK7zykQkjff3tQEwdezhBFWiLj4pYpnO4jsu5c8rgTe928uAa8wsYmbTgVnAq5m8lkih605Qx4+t6CmLhAJ0xRI453IVlkjOZDqL70dmtgBwwDbgSwDOuQ1m9h/ARiAGfEUz+EQGtr3pEADH9+riC5BwEEs4wkHLVWgiOZFRgnLOfXaAbT8AfpDJ84sUk/f3tVEVCVFTHu4pi4SSy250xhKEgzqvXoqL9ngRn9je1MbUseWYHW4pRcLesu+6YKwUISUoEZ/4YF8bx6dMkIDDK+tqJp8UIyUoER+IJxwf7G9jypi+CepwF59IsVGCEvGBXc3tROOO48dU9Co/3IJSF58Un+G4Fp+IZOjwFPM+LaieMaijb0F1xuI8u2EPL2xqYNPeVhpbOgEIBY1IKEBpOEhpKEgknLxdFg4SGmym4BBmuw9lQvxQps0P7XkGv09laYjvXvZhykt0uMs3esdEfOD9Ju8k3TRdfF3xoSco5xxPrN3BD595m4aWTqrLwsydXM3M2grMjFgiQWc0QUcsTkc0TktHjIaWTjqicaJxhw2SowbbDmAMfqehPc8Q7jPAE3XFEuw40M7H5kzgoyeOH8KziZ8oQYn4wPZ9bYQCxnHVpb3Ku5fdGGoLqr0rztcfX8czG3azcGoN/3L1fM4+oZZgoDjPoWpq7eTUO5azpeEQHz0x19HI0VKCEvGB9/e1UTe6jFCfc52OZgyquT3K9fe9yhv1B/jvl36IL549o2gTU7cxFSXUlIfZ0tCa61DkGChBifjA+01tTB1bcUT5UGfxdUTj/NcHV7NhZzP3XHcqF500cUTizDdmxsxxlWxVgspLBTWLr7Uzxt89+hrr65tzHYrIUdnedIipY8qOKB9KC8o5xzf+43VWbd/HXZ9ZoOTUx4zaCrY0HMp1GHIMCqoF1RmNs2b7flZtW82vbjyDutHlgz8oDecc0bgjnhiZi3QOZYA4n15Hjl1ze5SDHbEjppjD0Gbx3f/SNv6wfhffvuRDfGL+pBGLM1/NHF/Jr9bU09wepbosPPgDhiAaT9AZS9DltWyN5GfNMLDu28kWXN+PYN/PZH8TSoZjokq2dLfyR0JBJaixlRHu/dypXHPvSq74yUvcdMEsLpwzkfFVERLOcbAjxs4D7ew80M6OA+3sau6gsbWTptYuGls72X+oi/ZonM5Ygo5onBHKTSL96jvFHAbv4luzfT//+PRbXDhnAl86d8aIxpevZo6rBGDz3lZOPX70IPdO6ooleKP+ABt2HuStXQd5f18be1s62XOwg7au+Ih9cc03JcEAm35wyYg9f0ElKICTJlXz2/92Jkt//Qb/43cb+B+/24BZ/+dLlIQCjKuMUFtZwoRRpXxo4ijKS4KUhgNEQsnffQeth8OxrJzghnRWSOavI7lRFg5y7uwjF+wcqItv36EuvvrvazmuppR/uXr+gNOti9mCKTUArNzaNGCCauuK8cf1u/nTht28tLmRQ13JOh9dHmZ6bQWzxldy1syxVJaGes4fK/GOD47k5y35O/nBS/7d+0PY9zPZ30f0yPsM/By5NNKTcAouQQGcML6KJ758Jht2HmTN9v00tnYSDgaojISYVFPG5JoyJtWUMqaiRB9q8bXuBNXVpwWVSDi+/vg6mlq7+M2Xzxy2rqtCNK4qwpzjRvHcxj18ZckJR2x/a9dBHnp5O79/fSetnTEm15TxyVMmc86scSyYUsOEUREdJ3KkIBMUJPt+T55czcmTq3MdisgxCwUDBAN2RBffPc9v4flNDdzxyZOZW6d9fDCfPrWO7z+1kf/3biNnz6olGk/wl7f3cv9L77Fy6z5KwwEumzuJzyyq4/TpY5SQfKJgE5RIoSgJBnolqJVbm/jxs+/wifmT+JuPTM1hZPnjmtOn8PAr2/nig6uYX1fDO3taaG6PMrmmjO9c8iGuOW0q1eVqhfqNEpSIz5WGA7R1xYDk+VJfeWQt08ZW8E9XzdU3/SEqLwnx6H9dzN3L32XL3lYunDOBi06ayJITx43IOLMMDyUoEZ+bMKqUXQc62Heoi88/8Cpx5/jX6xdRGdHH92hMGFXKP101N9dhyFHIaA83s8eB7itc1QAHnHMLzGwa8BbwjrdtpXPuxkxeS6RYTRlTzsotTVxz78vU72/n4S9+hBne1GmRQpZRgnLO/Zfu22b2YyD1Eg5bnHMLMnl+EYHZEyp5buMe4vvbeeDzp3H69DG5DkkkK4alj8CSHeGfAc4bjucTkcO+suQEJo4q5awTatVykqIyXKOD5wB7nHPvppRNN7PXzOx5Mzsn3QPN7AYzW21mqxsaGoYpHJHCUV4S4rNnTFNykqIzaAvKzJYD/V198hbn3O+829cCj6Zs2wVMdc41mdmpwJNmdpJz7mDfJ3HO3QvcC7Bo0SIfnSMtIiK5NGiCcs5dMNB2MwsBVwGnpjymE+j0bq8xsy3AbGB1RtGKiEjRGI4uvguAt51z9d0FZjbOzILe7RnALGDrMLyWiIgUieGYJHENvbv3AM4Fvm9mUSAB3Oic2zfYE61Zs6bRzLYPQ0y1QOMwPE825FOskF/x5lOskF/x5lOskF/xFmOsx/dXaM5Pl8YdJma22jm3KNdxDEU+xQr5FW8+xQr5FW8+xQr5Fa9iPUzX+BAREV9SghIREV8q1AR1b64DOAr5FCvkV7z5FCvkV7z5FCvkV7yK1VOQY1AiIpL/CrUFJSIieU4JSkREfKmgEpSZXWxm75jZZjP7dq7j6cvMppjZCjPbaGYbzOzvvfLbzGyHma3zfi7NdawAZrbNzNZ7Ma32ysaY2XNm9q73e3Su4wQwsxNT6m+dmR00s5v8Urdmdp+Z7TWzN1PK+q1LS/rf3n78hpkt9Em8/2xmb3sx/dbMarzyaWbWnlLHP/NBrGnfdzP7jle375jZRdmMdYB4H0+JdZuZrfPKc1236Y5Z2dl3nXMF8QMEgS3ADKAEeB2Yk+u4+sR4HLDQu10FbALmALcB38x1fP3Euw2o7VP2I+Db3u1vA3fmOs40+8Jukif/+aJuSZ68vhB4c7C6BC4F/ggYsBh4xSfxfgwIebfvTIl3Wur9fBJrv++793l7HYgA071jRjDX8fbZ/mPgVp/UbbpjVlb23UJqQZ0ObHbObXXOdQGPAVfkOKZenHO7nHNrvdstJBd1nJzbqI7aFcCD3u0HgU/mLpS0zie5HtlwXJVkWDjnXgD6Xk0lXV1eATzkklYCNWZ2XFYC9fQXr3PuWedczPtzJVCXzZjSSVO36VwBPOac63TOvQdsJnnsyJqB4jXrWbqo79V5cmKAY1ZW9t1CSlCTgQ9S/q7Hxwd/S646fArwilf0Va9JfJ9fus0ABzxrZmvM7AavbIJzbpd3ezcwITehDajv5bf8WLeQvi7zYV/+Aslvyt2m2xCW18my/t53v9ftMS9dNNL6HLOysu8WUoLKG2ZWCfwGuMkllyC5B5gJLCC5VMmPcxddL2c75xYClwBfMbNzUze6ZJveV+cpmFkJcDnwK6/Ir3Xbix/rMh0zuwWIAY94Rd3L65wC/APw72Y2KlfxefLife9HuqWLclq3/RyzeozkvltICWoHMCXl7zqvzFfMLEzyjX7EOfcEgHNuj3Mu7pxLAL8gy10O6Tjndni/9wK/JRnXnu4mu/d7b+4i7NclwFrn3B7wb9160tWlb/dlM/s88HHgb7wDE153WZN3ew3JcZ3ZOQuSAd93P9dt99JFj3eX+aFu+ztmkaV9t5AS1CpglplN975FXwMsy3FMvXj9y78E3nLO3ZVSntpHeyXwZt/HZpuZVZhZVfdtkgPkb5Ks0+u9u10P/K7/Z8iZXt9A/Vi3KdLV5TLgc96MqMVAc0p3Ss6Y2cXAzcDlzrm2lHLfLa8zwPu+DLjGzCJmNp1krK9mO740fLd0UbpjFtnad3M1O2QkfkjOINlE8lvGLbmOp5/4zibZFH4DWOf9XAr8G7DeK18GHOeDWGeQnO30OrChuz6BscCfgXeB5cCYXMeaEnMF0ARUp5T5om5JJs1dQJRkv/wX09UlyRlQP/X24/XAIp/Eu5nk+EL3vvsz776f8vaRdcBa4BM+iDXt+w7c4tXtO8Alfqhbr/wBkksTpd4313Wb7piVlX1XlzoSERFfKqQuPhERKSBKUCIi4ktKUCIi4ktKUCIi4ktKUCIi4ktKUCIi4ktKUCIi4kv/HyC2f5DKY+bwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -525,2774 +548,407 @@ } ], "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 1)" + "other_params = {'gnabar_hh': 0.05, 'gkbar_hh': 0.05}\n", + "plot_responses(twostep_protocol.run(cell_model=simple_cell, param_values=other_params, sim=sim))" ] }, { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABeZ0lEQVR4nO2deXxVxfm4n/dm3yAQ9kU22UlYA1hAwAVBqqigUEFFtNa22lKtS2tV1Pqra1XUyreK4kIRt6LWfUNFRWTfQZAIQUAIJCSErPf9/XHOvdzc3JvckOUumefzuck5M++Zec/MnHnPLGdGVBWDwWAwGEINR7AVMBgMBoPBF8ZAGQwGgyEkMQbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgPBCRziKiIhIdbF0MJ4+IXC8iP4nIuiDEPUdEXmqAeGaKyLIq/JeKyNX1rUcoIiJjRCS7pn51rEOVdUlDlZO6RETaiUi+iGwTkTMaIk5joAy1QkTmiUiB/SsRkVKP8/eCpNYc4Heq2t9DzzkiMidI+oQUduWZVUP5z0SkUES2ishZVcjGicizInJURPaLyA1e4ahH+SgQkdvrQ+dwR0SyRKRzgLJ+09yP/J9suaP2dXFe8R73yJ8PXX6q+pOqpgBvA384yVurERFloEzLp+FR1WtVNVlVk4H/Byx2navqBJdcA+dNc2BjA8ZXL4RQeV4ErAHSgNuA10SkpR/ZOUB3oBMwFrhZRMZ7yaR6lJF76knneieE8mcO1ac5ACJyDnArcKYt3xW4y0vsPI/8GecjmI1YZaHeCXsDZVv8W0RkPXBMRKJFZLiIfC0iuSKyTkTGeMgvFZF/iMgK+w3iTRFp7ifsK0Vki92s/UFEfuPlP0lE1trh7HQVChFpKiLzRWSfiOwVkb+LSFQ199FNRD4VkRwROSQiC0Uk1cPvsIgMss/bichB132JyPkissm+36Ui0tsrff4sIutFJE9EFotIfM1Tuub4yRsVkVM9ZBaIyN89zn9pp2munYcZNYzTlc7OauRutvPnJxG52lMvW6cnReQdO++/FZFuHtc+JiJ77HxfJSKjvIKPt9M5X0RWi4hnS+5Wu6zki8hmEbnQw2+miHwlIo+ISA5WxVPd/T4kIkdEZJeITPDy7mSHly8iH4pIi+rC8xF+D2AQcKeqHlfV14ENwGQ/l1wB3KOqR1R1C/A0MLOm8Qag1yARWWPf26t2ev/dj+wf7LTu4OH2V/s5yxKR6R7uE+1wj9p5PMfDz9UCvEpEdgOfBqDqdBHZbcd1m5dfrIi8YN/DJhEZUrNUcFOTNL8CmK+qm1T1CHBPFbL+cAINY5xVNax/QBawFugIJADtgRzgXCwDfLZ93tKWXwrsBfoBScDrwEu2X2dAgWj7fCLQDRBgNFAIDLL9hgJ5dvgOO95ett9/gf+zw28FrAB+U819nGqHFQe0BL4AHvXw/zWwGUgEPgAest17AMfsa2OAm4EdQKxH+qwA2mG1LLYA1/rRYSSQW8VvZDX3MMeVlr7yxnZT4FQPmQXA3+3jgcDPwDAgCuthygLialAexgNFQFI1MvuBvnZ6vuSpl61Tjp3H0cBC4GWP62dgvUFGAzfaYcV7pEEpMMXOjz8Du4AY2/9iOy8cwFQ779rafjOBMuB6O+yEKu5hph3Pr+20+i3wEyAe5XynXT4S7PP7/IT1L+BffvwuBLZ4uT0BPO5Dtpmdjq093KYAG7yer71ANvAc0OIknvlY4Efgj3YaXwSUeJSjMUC2fXwHsJoTz/8YO43/ifWsjbbzoKeHf7qdPxnAAeACL/1fwHq2q8ofl+zTdvr3B4qB3h7lpAirnooC/gEs9xPWpcB6P35VprkP+XXAVI/zFvb1aR7P7AHgIPAh0N9HGGOBI8ApNc27Gud1fUdQ7zdgJegsj/NbgBe9ZD4ArrCPKzyoQB+7cEfhZaB8xLUE+KN9/H/AIz5kWtsFMcHD7VfAZzW8rwuANV5ub2G9va7HrrSB24FXPGQcWBXAGI/0meHh/wAwr57yYg6VDdQsL5mqDNRTWG+CnvLbgNEBxr/SDv8P1cg9C/zD4/xUKhuoZzz8zwW2VhHeEdeDbKfBcg8/B7APGOXn2rXAJPt4JrA7wHudCezwOE+076GNRzn/m4f/74D3TyJPL8Or4gTuBRb4kO1o6xDv4XY2kGUfJwNDsIxva+A14IOT0Ol0u4yLh9syKhqovVhGaBnQ1ENuDJaBSvJwewW43U9cj2I/55yoH7oGoKNLtoOH2wpgmkc5+djDrw9w/CTSoso09yG/ExjvcR5jX9/ZPh+BZVATgb9gvXyl+gjnVfu6R2uqc01+Yd/FZ7PH47gTcLHdRZQrIrlYLYO2fuR/xMqkSt0fIjJBRJbb3Wu5WBWVS64jVmZ708kOb59H/P+H1ZLyi4i0FpGX7S7Bo1hv9d46PY3V8ntcVYttt3b2PQCgqk77/tp7XLff47gQq6JoKPZUL+KmE3CjV951xLrHQMgEpgFzRCSmCrl2Xnr50tFvmtldplvsLtNcoCkV88odnp0f2a57EJHLPbowc7Hy0+e1AeDWUVUL7cNkX/7e91ADCoAmXm5NgHw/si7/SrKqWqCqK1W1TFUPANcB40QkpYY6tQP2ql1T2ninWypwDdaLSJ6X3xFVPeZx/iMn8meYWBNCDopIHnAtlZ/Dk8ojKueBt1+81Hxcq8o09yPvLQsn8ugrtbpyC1X1H1g9JxW6sMUaajgXq8dodg31rRGRYqC8C+qLqprq8UtS1fs8ZDp6HJ+C1VVyyDNAsWa2vA48hNV8TgXexeruc8XTjcrswWpBtfCIv4mq9q3mHv6ffR/pqtoEqxvJFRcikoz1NjcfqwJ2jZv9hFWxu+TEvr+91cRXCREZJRVnWHn/vMdaAkG9zgux3s5ctPE43gPc65V3iaq6KKCIrAprCVa3R9sqRPcBHTzOO/oT9MZOg5uBS4BmdrnIwyOvPMMTEYcd108i0gnrJeM6rC6VVKwBZ89rvdMr2GwCunoZkf62ewXUGtPYZ/tXKeu6xP5f03poH9DeLusuvPPwCPBL4DkRGeHl10xEkjzOT8F6jgD+g9VT0VFVmwLzqJg/nnoHnZNI800+ZA+oao6/KKh8/72Bzaq6reYa14xIMVCevAScJyLniEiUiMSL9e2DZ4U0Q0T6iEgicDfwmqqWe4UTi9VHfRAoswegPWe0zAeuFJEzRcQhIu1FpJeq7sPqu31YRJrYft1EZHQ1eqdgvd3kiUh74CYv/8eAlap6NfAO1oMDVvfERFuPGKwxkWLg6+oSyhtV/VJPzN7x9fuypmH6YC1wqZ0347HGAFw8DVxrv8WKiCTZg9Yp4J68sKCae3C1LGOrEHsFK+9622UgoKnONilYXUQHgWgRuYPKLYzBInKR/TY8Gys/lmONW6h9LSJyJVYLKmRR1e1YeXan/SxdiDU287qfS14A/iYizUSkF9YY2QJwt0562s9EGjAXWOpq4Yj1KcDSANT6BigHrhNr4s0krPFCb92XAtOBN0TE2/8uEYm1Xzh+idVlBVb+HlbVIvuaSwPQJ9j4TXM/slfZ9V8q8DdO5M8pIjLCTpd4EbkJq/X4lVcYMVhlut6JOAOlqnuAScBfsSqCPViVvee9voiVKfuBeHzM6VfVfNv9Fay3sUux3qxc/iuAK4FHsN6gP+dES+ZyrApys33ta1T9Rg/WVM9BdljvAG+4POwHcDzWQDjADcAgEZluv8XMAB7HagWehzVNtKSa+ILFH7F0zMWqPJa4PFR1JdbD9QRWuu2g4gyjjlR+WHyhVFG2VfU9rMrxMzuO5bZXIA/dB8D7wHasrqEiKnf5vIk1AeII1hjORapaqqqbgYexKtgDWIPxgdxPvSLWt2zzqhCZhjV2dAS4D5iiqi4jO11EPN/W78Tq+v4R65l4UFXft/26YqVdPlbLsRhrfNZFQPlrl+2LgKuwytEM4H/4yD9V/QiYBbxtd02B9dwfwWo1LcSaNLTV9vsdcLeI5GNNsHilOn3qGx9p7I3fNLeNToGInAJguz+AVfZ329fcaYeTgjUOfASrB2Y8MMFH6yqKambJ1hWuGT+NBvsN7SVVfSbYuhgCR0RisWYgZahqaTWyPwE3q2pAX+qLNS1/I9bEk7JaK2s4KURkLXBmFd1NVV37Ldbkn+fqXDGDG7vLei7QSlUvqe/4Iq4FZYhMVLVEVXtXZ5xsbsXqklrlT0BELhTrC/xmwP3A28Y4BRdVHRCocRKR0SLSxu7iuwKr2/H96q4znDwi0g6rV2o4Vk9AvWMMVAMiFZcF8vxV1b1iqCGq+oKqdlfVwVWI/Qbrm6udWOMZv61CNiiY8lIlPbFa1LlY465T7PHfBsPuevOVP1V1x4Utai11lKaqQ1T124aIs9F18RkMBoMhPDAtKIPBYDCEJKGy2CEALVq00M6dOwdbDYPBYDA0IKtWrTqkqpUWIA4pA9W5c2dWrlwZbDUMBoPB0ICIyI++3E0Xn8FgMBhCEmOgDIYQxmNxToOh0WEMlMEQoqiznKWPXM72ewazeeVnwVbHYGhwQmoMyhelpaVkZ2dTVFQUbFUMYUR8fDwdOnQgJqaqRc1Dm6/f/Ddjj76FE+HA/66muN964uKTqr/QYIgQQt5AZWdnk5KSQufOnam4eLHB4BtVJScnh+zsbLp06RJsdU6aJpteYk9UB3JPv5v0z2bx3btPk3nR7GCrZTA0GCHfxVdUVERaWpoxToaAERHS0tLCutV99NB++pZuYm+78fQbdSE/OjqSsPnV6i80GCKIkDdQgDFOhhoT7mVmx9qlOERp0ucsxOFg/ykT6VO6iYN7fwi2agZDgxEWBspgaGzk7/yWchW69f8FAC2HTsEhyq5vlgRXMYOhATEGKgBEhBtvvNF9/tBDDzFnzpzgKVQNS5cu5euva7xfYQXGjx9Pamoqv/zlL+tIK0NNaHJ4PdkxnYhLbApAl16D+Zk0HD98GmTNDIaGwxioAIiLi+ONN97g0KFD1QvXAFXF6az7fb/qwkDddNNNvPjii3WkkaGmtC3eRU5yT/e5OBz82Gw4PY6toqw0VPeiNBjqFmOgAiA6OpprrrmGRx55pJLfwYMHmTx5MpmZmWRmZvLVV9aGoHPmzOGhhx5yy/Xr14+srCyysrLo2bMnl19+Of369WPPnj3cdNNN9OvXj/T0dBYvXgxYRmbMmDFMmTKFXr16MX36dJ8fbM6dO5c+ffqQkZHBtGnTyMrKYt68eTzyyCMMGDCAL7/8skodL7vsMk477TS6d+/O008/7Q73zDPPJCUlpcp0efXVV+nXrx/9+/fn9NNPB6xJLVdeeSXp6ekMHDiQzz6zvt9ZsGABF1xwAWeffTadO3fmiSee4J///CcDBw5k+PDhHD58GICnn36azMxM+vfvz+TJkyksLKwU7/Dhw9m06cSOBmPGjImoJbJyDh+mDTk4m59awV1OPZMmUsiudV8GSTODoWEJ+Wnmntz19iY2/3S0TsPs064Jd57Xt1q53//+92RkZHDzzTdXcP/jH//In/70J0aOHMnu3bs555xz2LJlS5Vhff/99zz//PMMHz6c119/nbVr17Ju3ToOHTpEZmamu7Jfs2YNmzZtol27dowYMYKvvvqKkSNHVgjrvvvuY9euXcTFxZGbm0tqairXXnstycnJ/PnPfwbg0ksv9avj+vXrWb58OceOHWPgwIFMnDiRdu3aBZR2d999Nx988AHt27cnNzcXgCeffBIRYcOGDWzdupVx48axfft2ADZu3MiaNWsoKiri1FNP5f7772fNmjX86U9/4oUXXmD27NlcdNFF/PrXvwbgb3/7G/Pnz+f666+vEO/UqVN55ZVXuOuuu9i3bx/79u1jyJAhAekcDvz0w2bSgIS2PSu4dxoyHr67gSObPoYhZwZHOYOhATEtqABp0qQJl19+OXPnzq3g/vHHH3PdddcxYMAAzj//fI4ePUpBQUGVYXXq1Inhw4cDsGzZMn71q18RFRVF69atGT16NN999x0AQ4cOpUOHDjgcDgYMGEBWVlalsDIyMpg+fTovvfQS0dG+3zeq0nHSpEkkJCTQokULxo4dy4oVKwJOkxEjRjBz5kyefvppysvL3fczY8YMAHr16kWnTp3cBmrs2LGkpKTQsmVLmjZtynnnnQdAenq6+942btzIqFGjSE9PZ+HChRVaSi4uueQSXnvtNQBeeeUVpkyZErDO4UDBvm0ApHbsXcG9Zev27HB0IeWnr4KhlsHQ4IRVCyqQlk59Mnv2bAYNGsSVV17pdnM6nSxfvpz4+PgKstHR0RXGlzy/yUlKCmw1gLi4OPdxVFQUZWWVdyR/5513+OKLL3j77be599572bBhQyUZfzpC5enYNZmePW/ePL799lveeecdBg8ezKpVfndYByrej8PhcJ87HA73vc2cOZMlS5bQv39/FixYwNKlSyuF0759e9LS0li/fj2LFy9m3rzI2mDWeeh7AFqc0quS3/604Qz9+VVKiwqIiU9uaNUMhgbFtKBqQPPmzbnkkkuYP3++223cuHE8/vjj7vO1a9cC1tYhq1evBmD16tXs2rXLZ5ijRo1i8eLFlJeXc/DgQb744guGDh0akD5Op5M9e/YwduxY7r//fvLy8igoKCAlJYX8/PxqdQR48803KSoqIicnh6VLl5KZmRlQ3AA7d+5k2LBh3H333bRs2ZI9e/YwatQoFi5cCMD27dvZvXs3PXv2rCakE+Tn59O2bVtKS0vd4fhi6tSpPPDAA+Tl5ZGRkRFw+OGAIy+bwzQhLrFJJb+4HmOJlTJ2rTaz+QyRjzFQNeTGG2+sMJtv7ty5rFy5koyMDPr06eN+m588eTKHDx+mb9++PPHEE/To0cNneBdeeCEZGRn079+fM844gwceeIA2bdoEpEt5eTkzZsxwT0j4wx/+QGpqKueddx7//e9/3ZMk/OkIVhfh2LFjGT58OLfffrt7/GnUqFFcfPHFfPLJJ3To0IEPPvgAgDvuuIO33noLsGb6paen069fP37xi1/Qv39/fve73+F0OklPT2fq1KksWLCgQsupOu655x6GDRvGiBEj6NXrRAvirbfe4o477nCfT5kyhZdffplLLrkk4LDDhbjj+8mNrrR3GwDdhpxNqUaRv+XjBtbKYGh4JJSW8h8yZIh6z8basmULvXv39nOFoTbMmTOnwmSKSCNcy873d/WnKLEd6Te959N/4z2nkegoo+tt3zWwZgZD/SAiq1S10kynWregROR6EdkqIptE5AEvv1NEpEBEIrMGNBjqgRbOHIoTW/v1P9RyOJ1Lvqc4P6cBtTIYGp5aTZIQkbHAJKC/qhaLSCsvkX8Cvl8DDUEnlFfDaKwcK8inmeTjTG7rVyah15k49j/Lj6s/osfoaQ2oncHQsNS2BfVb4D5VLQZQ1Z9dHiJyAbALqDxP2GAw+OTI/h8BkKbt/cr0GjyWQo2jcOsnDaWWwRAUamugegCjRORbEflcRDIBRCQZuAW4q7oAROQaEVkpIisPHjxYS3UMhvCm4OBuAGKbd/Ar0zQlic2x/WhxcHlDqWUwBIVqDZSIfCwiG338JmF1ETYHhgM3Aa+I9SHNHOARVa36i1VAVf+tqkNUdUjLlr5nLhkMjYXiw9kAJKV1rFIut/VwOpTtpsiWNxgikWrHoFT1LH9+IvJb4A21pgKuEBEn0AIYBkyxJ02kAk4RKVLVJ+pGbYMhMik5uh+A1Fb+W1AATXqfBdlPsnvl+/QYd3VDqGYwNDi17eJbAowFEJEeQCxwSFVHqWpnVe0MPAr8v3A3TkuWLEFE2Lp1q1+ZrKws+vXrV696rF27lnfffbdWYcyaNYtWrVrVu66GmuMsOESpRtGsedW9Cb0GjeCIJlP8vflg1xC51NZAPQt0FZGNwMvAFRpKH1bVIYsWLWLkyJEsWrTIp7+vZYhqims9u6qoCwM1c+ZM3n///VqFYagfHIWHyJMUoqKqfjSbJMSxPWEgbQ4th3rYssVgCAVqZaBUtURVZ6hqP1UdpKqVXudUdY6qPuTr+nChoKCAZcuWMX/+fF5++WW3+9KlSxk1ahTnn38+ffr0ASxDNX36dHr37s2UKVPc20V88sknDBw4kPT0dGbNmkVxcTFgLYl0yy23MGjQIF599dUK8XpvZ1FSUsIdd9zB4sWLGTBgAIsXL+bYsWPMmjWLoUOHMnDgQN58803A2t5i0qRJjBkzhu7du3PXXSfmq5x++uk0b968ynv+/PPPGTBgAAMGDGDgwIHk5+ejqn63Bhk9ejSTJk2ia9eu3HrrrSxcuJChQ4eSnp7Ozp07AXj77bcZNmwYAwcO5KyzzuLAgQOV4p02bRrvvPOO+3zmzJnuhWEbA9HFh8mPSg1ItujUCbTUHPZu+Kx+lTIYgkRYLRbLe7fC/sqLodaKNukw4b4qRd58803Gjx9Pjx49SEtLY9WqVQwePBiw1tnbuHEjXbp0ISsri23btjF//nxGjBjBrFmz+Ne//sV1113HzJkz+eSTT+jRoweXX345Tz31FLNnzwYgLS3NvW6fJ97bWcTGxnL33XezcuVKnnjC6jH961//yhlnnMGzzz5Lbm4uQ4cO5ayzrGHDFStWsHHjRhITE8nMzGTixIkBb0vx0EMP8eSTTzJixAgKCgqIj4/njTfe8Ls1yLp169iyZQvNmzena9euXH311axYsYLHHnuMxx9/nEcffZSRI0eyfPlyRIRnnnmGBx54gIcffrhCvK6tNCZOnEhJSQmffPIJTz31VEA6RwIJJUcojE4NSLbH6VMp3HAXOd8spH1/s/2GIfIwa/EFwKJFi5g2zfogctq0aRW6+YYOHUqXLl3c5x07dmTEiBEAzJgxg2XLlrFt2za6dOniXo/viiuu4IsvvnBfM3XqVJ/x+trOwpsPP/yQ++67jwEDBjBmzBiKiorYvduaqnz22WeTlpZGQkICF110EcuWLQv4nkeMGMENN9zA3Llzyc3NJTo6usqtQTIzM2nbti1xcXF069aNcePGARW30sjOzuacc84hPT2dBx980OdWGhMmTOCzzz6juLiY9957j9NPP52EhISA9Q53ksrzKI6runXrom2rFqxJPI1O+z/AWVpcz5oZDA1PeLWgqmnp1AeHDx/m008/ZcOGDYgI5eXliAgPPvggUHnrjJPZvsLf9huBbGehqrz++uuVVgz/9ttva7WVxq233srEiRN59913GTFihHuxWH8EspXG9ddfzw033MD555/P0qVLfa5kER8fz5gxY/jggw9YvHix+8WgMaCqNHXmcSAhLeBrZMClNP1mKds/fZ4e51xTj9oZDA2PaUFVw2uvvcZll13Gjz/+SFZWFnv27KFLly58+aXvbbd3797NN998A8B//vMfRo4cSc+ePcnKymLHjh0AvPjii4wePbrauH1tZ+G9lcY555zD448/7t4Ofs2aNW6/jz76iMOHD3P8+HGWLFnibtkFws6dO0lPT+eWW24hMzOTrVu31mprEIC8vDzat7dWSHj++ef9yk2dOpXnnnuOL7/8kvHjxwccfrhTePw4TaQQTWwR8DWDxk5mB6eQ8N2TEJnzkwyNmPBqQQWBRYsWccstt1Rwmzx5MosWLfLZNdezZ0+efPJJZs2aRZ8+ffjtb39LfHw8zz33HBdffDFlZWVkZmZy7bXXVhv3TTfdxPfff4+qcuaZZ9K/f39OOeUUd5feX/7yF26//XZmz55NRkYGTqeTLl268L///Q+wuh8nT55MdnY2M2bMcI8//epXv2Lp0qUcOnSIDh06cNddd3HVVVe5t+G49tprefTRR/nss89wOBz07duXCRMmEBsbyzfffEP//v0REffWIFVNvfdkzpw5XHzxxTRr1owzzjjDvUfWypUrmTdvHs888wxg7V912WWXMWnSJGJjYwMKOxI4evgASYAkBW6g4mOj2d37as7Ycgfff/Is3c+6KuBrjxeXsfuHzRzJWk/ZkT04jv0MZUXEaAlRlFMuMTgdMWhUHBIVg0TF4IiOxREVbf2iY8ERjVOiUUcUKlGV4lDU86Siiw97quryUI9zv+JVIkBstIOUVp3oNmRcDa82hAJmu40IZcGCBRUmUzRGwq3s7NjwDae+Pp41wx9j4PiZAV9XWFRM1v2/oA0HSbjuKxKqWIXip58PseXzV0ne+T9OPb6ONDnRGneqUEQsJcRQjoNoyomhzPpJ9Z9AhCrlKuT/6QdSUwMb2zM0PP622zAtKIMhRCjKs9aijE2p2ZJfifFxFJ07l7j/XcjP8ybR4pr/ktSyk9u/sCCXDZ+9BpuXkFH4LWdKCTnSnL2tRrOvwxCadBlE83ZdSWrWlsSoaBK9wldVisvKKCkupqSkhNJS+1dSAlqOOEvBWY44y6CacU4BW8aSc4l7XmW5ide5Sy7wcVSnKnu/fplhu/5F/pFDxkCFIcZARSgzZ85k5syZwVbDUANKCnIBSGhS84p0UOYIPvv5MTJXzMbxZCbrmo6kNLYpCflZdDu+gWFSSg6pbG83iTanXUrrfmNIcwQ2BC0ixMXEEBcTU2O9gs3BnathFxQfyw22KoaTICwMlKrWaAaawRBKXdeBUlKYC0BSk2Yndf3Yib9i4yk9yfvwfrrkriSBYg5GtWJNy0k0HTSZXkPHkRYdFo98nRGd2BSA0sK8IGtiOBlCvrTGx8eTk5NDWlqaMVKGgFBVcnJyiI+PD7YqNaLs+FEAUpqefFdUv/RBkL7YfX5ypi5ycBmoMmOgwpKQN1AdOnQgOzsbs1eUoSbEx8fToUPVK4KHGs7jViWakJwaXEUiiNjEVADK7dapIbwIeQMVExNTYaUGgyFiKTpKEbHERzeeqfX1TVxSKgBOu3VqCC8i6kPd0pJitqz4iP17dgRbFYOhxjhK8jkmvlcVMZwccSlWJ6cWmy6+cCSiDFTR8WP0fncKuz5/KdiqGAw1Jqo0nyKHMVB1SUpyE8rUAUWmBRWORJSBSkpOpVwFKcoNtioGQ42JKT1GSZQxUHVJXEwU+SRCcX71woaQI6IMlCPKQb4k4Sg2b0uG8COuvICSmORgqxFRiAiFkkBUiTFQ4UhEGSiAY5JEVIkxUIbwI1GPURaTEmw1Io5CSSK61BiocCTyDJQjhRhjoAxhhqqSqIU4TQuqzjnuSCKmrCDYahhOgogzUEVRycSWmbclQ3hRVOokmeM445oEW5WIoyQ6mThjoMKSiDNQpTEpJJQbA2UIL/KPF5Eix8EYqDqnJDqZOOexYKthOAkizkCVxzYl0WnelgzhxbF86zsdR7wxUHVNeUwKicZAhSURZ6Cc8U1J1mNhuVioofFSVHAEgKiEpkHWJPIoj00hiUKz43AYEnEGSuKbkiAlFB0/HmxVDIaAKc7PBU4sbmqoOzQ2hWjKodTUCeFGxBmoqERraZO8I4eCrInBEDjF9mKmsfbacYY6xO42LTF7QoUdEWegopPTACg4sj/ImhgMgVN2zBqDijMrmdc5rnG94/lHgqyJoaZEnIGKbdIKOLF9tsEQDpSbrTbqDYc9rldk71hsCB8izkAlploGqvjoz0HWxGAIHKe9mGnCSe6ma/BPjN1t6pqIYggfIs5AJTVrA0B5vmlBGcIHtQ1UXJIxUHWNK02LjxkDFW5EnIFqktYaAC3MCbImBkPgSMlRynBATGKwVYk4Eu1WqZkkEX5EnIGKi4vnqCYixkAZwghHcT6FJIJIsFWJOJKbWgaq1BiosKPWBkpErheRrSKySUQe8HDPEJFvbPcNIhJf27gCJc/RlJiiww0VncFQa6LL8ik0mxXWC6lNmwNQbrZ9Dzuia3OxiIwFJgH9VbVYRFrZ7tHAS8BlqrpORNKA0lprGyAFUU2JKTH9zYbwIab0GEUO071XHyTGx1KgCe5xPkP4UNsW1G+B+1S1GEBVXVPnxgHrVXWd7Z6jquW1jCtgimOakVhqDJQhfIgrL6Akymy1UR+ICAWSiJiNTMOO2hqoHsAoEflWRD4XkUwPdxWRD0RktYjc7C8AEblGRFaKyMqDB+tm5l1pfHOSy/PqJCyDoSGIdx6jNNp08dUXxx1JZlfdMKTaLj4R+Rho48PrNvv65sBwIBN4RUS62u4jbbdC4BMRWaWqn3gHoqr/Bv4NMGTIkDpZzVET00g9nEd5uZOoqIibB2KIQBKchRSa3XTrjZIos6tuOFKtgVLVs/z5ichvgTfUWjp8hYg4gRZANvCFqh6y5d4FBgGVDFR9oMltiJVycnL2kdaqfUNEaTDUiiQ9xs+xxkDVFyXRKcSVmIlT4UZtmxdLgLEAItIDiAUOAR8A6SKSaE+YGA1srmVcARPTzDJKeQd2N1SUBsNJU1ZWTjKFqDFQ9UZRXHNSynODrYahhtTWQD0LdBWRjcDLwBVqcQT4J/AdsBZYrarv1DKugIlv3hGAwkN7GipKg+GkKSwqJFbKcRoDVW+UxqXRTPPMnlBhRq2mmatqCTDDj99LWFPNG5yUlpaBKjmSHYzoDYYaUexaZdvspltvaFIL4qWUomN5xJsFecOGiJxB0Lx1R5wqOPN+CrYqBkO1HLdX2TbbvdcjSS0BKMjZF2RFDDUhIg1UUmICOTTFUWD2hDKEPq414hxmu/d6I7aJtUbn0Rzz0hpO1KqLL5Q5Et2CmMK6M1BHjhxm6zf/w5m9mui8H4kvz8fhLMXpiKY0OoXymGSccU3Q+FRIaIYjsRlRSc2JTW5GfEoLEpqmkdykOSkJscSYqe+NBlVFFcpVKXcqTtd/p+WmquQdsdaNjDIGqt5Iam59KXOsDjcy/WnrCrK/WkzywVU0Kd5PEz2KEwdlEk2BoykFMc0pimtBWUILSGyBI6U1cU1bk9CsDckt2tEsNY2ExCSIivEZvtrjZdKI12eMWAN1LLYlqSW1b87v2LaBff/7fww9+hGnSSnlKvzsaEVBVBPKJQZHWSHNi38iUQtJ0QJipazK8MrUQTFRlEkU5URRRhROBFcRFBRQUBD3OYBWkHG5i+1HBdn6Qfye+MCHKpEwPC3uPxUOcOWZfVQlDvvnevj64QSB+GSz1UZ9kdqiHQDFuQdqHdZP277j6H9vpFfROlqpgx+iurI/qRd74poBirO0mPiSIySVHaZ90R6a5eYSL/5XeitTB0XEUkIMzgpPNHiWMVfZq1hX+DqvWAK93U+EWMN6w4fYOunJL+Z8Edj1J0HEGqjjSe3pfnytNWvnJN5AiktLWf7iXQz7cR4dBDa2mkjzzKl07D+WtnEJvi9SpbT4GAW5ORw/eoiiozkUF+RQVnAYLTyCs+gopaWllJWV4CwrI4oyHFqOAycus+NGThQ7xDZgYpksAPU8xvPYj2peevpKE3+ppPY1WuHc+u8dlGfd7RneCXf/eVHf74m1eRFV9/1qxWPsFwkRxL5nh/vY/m/nn+vY4Slv6yTxqfTqN7SWd2jwR/NWloEqO1oLA6XKqtfuJ2PjA8STyJddZ9N9/G/o0bpd1Zc5nRQU5JF36CcKDu/j+JH9lOXtp7gwn7LiQqKdxcRoCTFacqIWELEMh4ITu8yp0xpbV8Wpdpn0rCc8/7vLuqPCubuO8XOdz3evCqcnwhcgP75+vzONWAOlzbqQfOg4R3N+okmLmiXi8WMFrHviUkYf/5wNTUbRcfqTDG7TqfoLRYiJT6ZZm2SaBSJvMBgahPiERI6SBIWHTjqM7577M5m7n2F1wnA6XLmAUa3bBnSdOBwkN2lGcpNm0LXvScffGInYwZD41t0B+DmrZt8H5x8rZPPcCxla+AXret1A+g1vk2qMjcEQ9uQ5UokpPLn1Ple/fA+Zu5/h66YTSf/zO7QK0DgZakfEGqhmHXsDkP/TtoCvcZY72fivyxhcvIKNA++k/7Q7zQZyBkOEkBfTkpTimk+S+P7bd+m/5WFWJIxi2PUvEBMdsR1PIUfEGqi2nXpSqlGUH9wR8DUfvfwYpx37mLXdfkvGBX+qR+0MBkNDUxDfjuZlP1cv6MGxIz/T7L3fsdfRlh7XvECUMU4NSsQaqIT4OPY5WhGd+0NA8svXrOO07fezMzGD/pf+vZ61MxgMDU1JcntacAQtLQr4mu0LbyBV88j/5dOkNmtej9oZfBGxBgogJ74zzY/trFYu/3gxjreuI0aUDjOfQ6LMW5LBEGlIqrUE2pH9uwKS/2Hlhww89DZft5pG38Ej61M1gx8i2kAVpvWjQ/leiuylZPzx6Uv3MVTXc/AXfyOu1akNo5zBYGhQklp2BuBQdvUvreosR96/lX20oP+Mf9SzZgZ/RLSBiu04CIcoe7eu8CuzZs0qzs5+kp1NhnHK2dc1oHYGg6Ehad6+GwAFB6rv9t/86UK6lO1kZ7/ZNG2aWs+aGfwR0Qaqfd/TADi87Ruf/seLSoh++3eUSzTtrphvZuwZDBFMm47dcKpQkpNVpZyzrIyUbx5gl3Rg6PnXNoxyBp9EtIFq16ELP0p7ErKX+fT/6sU7SXduZf+Ie0hI69jA2hkMhoYkPj6Bn6Q18blVd/Gtf/8ZTinfw4FBNxAb63udPEPDENEGCmBPs+F0O76WouPHKrivW7mMUdn/ZlPTMXQ/a1aQtDMYDA3J/vguNC/0b6DKSoppteoRvnd0JfPcmQ2nmMEnEW+gmg6YRAIlbPxkodstPz+PJu9cS4EjhS4z/8907RkMjYTi5r1oW/YTxUWFPv3XvvUE7XQ/R39xC1FRUQ2sncGbiDdQfUf8kmxpQ5O1z+AsL6esrIwt866gkzObnHGPk9isTbBVNBgMDURyh77ESDm7tq6t5FdUWMApG59ga3RvBp1xScMrZ6hExBsoR1QUu/v+nh5l21j52DQ2PDiBocc+Y3X3P9DjtPOCrZ7BYGhA2va1vmfK3VZ5XHrdf/9JKw5TNuY2xBHxVWNY0Ci+SD3toutYfmgLmfsWUSRxrOpzK0MuvjXYahkMhgamZceeHKA5sXsrzuwtOHqYHt//mw1xg0gfaV5cQ4VGYaDE4WD4tU9Rcuw+YqJiGRzvZz8ng8EQ0YjDQVbyQHoc/Y7yslKioq1ZehsX38Vw8vn5nLuCrKHBk0bVjo1NakqsMU4GQ6PG0e8CmnGU9UtfB2DzuuUMzn6R75qOo+eg04OsncGTRmWgDAaDYcAZU8khlcRvH2Vv1naSllxFgSTR64rHg62awQtjoAwGQ6MiJjaOLRk307N0C+0XZNLaeYD94/9NSnMzozfUaBRjUAaDweDJyIt+z+YWbTiy/Wu6jL6M3t0HBFslgw+MgTIYDI2SPqdPhtMnB1sNQxWYLj6DwWAwhCTGQBkMBoMhJBFVDbYObkTkIPBjHQTVAjhUB+E0BOGkK4SXvkbX+iOc9A0nXSG89K0rXTupaktvx5AyUHWFiKxU1SHB1iMQwklXCC99ja71RzjpG066QnjpW9+6mi4+g8FgMIQkxkAZDAaDISSJVAP172ArUAPCSVcIL32NrvVHOOkbTrpCeOlbr7pG5BiUwWAwGMKfSG1BGQwGgyHMMQbKYDAYDCFJRBkoERkvIttEZIeIhNyOhCLSUUQ+E5HNIrJJRP5ou88Rkb0istb+nRtsXQFEJEtENtg6rbTdmovIRyLyvf2/WQjo2dMj7daKyFERmR1K6Soiz4rIzyKy0cPNZ1qKxVy7HK8XkUEhoOuDIrLV1ue/IpJqu3cWkeMeaTyvIXWtQl+/eS8if7HTdpuInBMCui720DNLRNba7qGQtv7qrIYpu6oaET8gCtgJdAVigXVAn2Dr5aVjW2CQfZwCbAf6AHOAPwdbPx/6ZgEtvNweAG61j28F7g+2nj7KwX6gUyilK3A6MAjYWF1aAucC7wECDAe+DQFdxwHR9vH9Hrp29pQLobT1mff287YOiAO62HVGVDB19fJ/GLgjhNLWX53VIGU3klpQQ4EdqvqDqpYALwOTgqxTBVR1n6quto/zgS1A++BqVWMmAc/bx88DFwRPFZ+cCexU1bpYkaTOUNUvgMNezv7SchLwglosB1JFpG2DKIpvXVX1Q1Uts0+XAx0aSp/q8JO2/pgEvKyqxaq6C9iBVXc0CFXpKiICXAIsaih9qqOKOqtBym4kGaj2wB6P82xCuPIXkc7AQOBb2+k6u0n8bCh0m9ko8KGIrBKRa2y31qq6zz7eD7QOjmp+mUbFBzwU09WFv7QM9bI8C+st2UUXEVkjIp+LyKhgKeUDX3kfymk7Cjigqt97uIVM2nrVWQ1SdiPJQIUNIpIMvA7MVtWjwFNAN2AAsA+rmR8KjFTVQcAE4PciUmE/bLXa9CHznYKIxALnA6/aTqGarpUItbT0h4jcBpQBC22nfcApqjoQuAH4j4g0CZZ+HoRN3nvwKyq+XIVM2vqos9zUZ9mNJAO1F+jocd7BdgspRCQGK6MXquobAKp6QFXLVdUJPE0DdjlUharutf//DPwXS68Dria7/f/n4GlYiQnAalU9AKGbrh74S8uQLMsiMhP4JTDdrpSwu8py7ONVWGM6PYKmpE0VeR+qaRsNXAQsdrmFStr6qrNooLIbSQbqO6C7iHSx36SnAW8FWacK2H3M84EtqvpPD3fPPtoLgY3e1zY0IpIkIimuY6xB8o1YaXqFLXYF8GZwNPRJhTfQUExXL/yl5VvA5faMqOFAnkd3SlAQkfHAzcD5qlro4d5SRKLs465Ad+CH4Gh5giry/i1gmojEiUgXLH1XNLR+PjgL2Kqq2S6HUEhbf3UWDVV2gzlDpK5/WDNItmO9adwWbH186DcSqym8Hlhr/84FXgQ22O5vAW1DQNeuWLOd1gGbXOkJpAGfAN8DHwPNg62rrVcSkAM09XALmXTFMpz7gFKsfvmr/KUl1gyoJ+1yvAEYEgK67sAaW3CV23m27GS7fKwFVgPnhUja+s174DY7bbcBE4Ktq+2+ALjWSzYU0tZfndUgZdcsdWQwGAyGkCSSuvgMBoPBEEEYA2UwGAyGkMQYKIPBYDCEJMZAGQwGgyEkMQbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgDAaDwRCSGANlMBgMhpDEGCiDwWAwhCTGQBkMBoMhJDEGygMR6Swiau/NYghTROR6EflJRNYFIe45IvJSA8QzU0SWVeG/VESurm89QhERGSMi2TX1q2MdqqxLGqqc1CUi0k5E8kVkm4ic0RBxGgNlqBUiMk9ECuxfiYiUepy/V30I9cIc4Heq2t9DzzkiMidI+oQUduWZVUP5z0SkUES2ishZVcjG2VusHxWR/SJyg1c46lE+CkTk9vrQOdwRkSx7i/VAZP2muR/5P9lyR+3r4rziPe6RPx+6/FT1J1VNAd4G/nCSt1YjIspAmZZPw6Oq16pqsqomA/8PWOw6V9UJLrkGzpvmhN7mhDUmhMrzImAN1h5AtwGviUhLP7JzsDbW6wSMBW62Nzv0JNWjjNxTTzrXOyGUP3OoPs0BEJFzgFuBM235rsBdXmLneeTPOB/BbMQqC/VO2Bso2+LfIiLrgWMiEi0iw0XkaxHJFZF1IjLGQ36piPxDRFbYbxBvikhzP2FfKSJb7GbtDyLyGy//SSKy1g5np6tQiEhTEZkvIvtEZK+I/N21M2YV99FNRD4VkRwROSQiC0Uk1cPvsIgMss/bichB132JyPkissm+36Ui0tsrff4sIutFJE9EFotIfM1Tuub4yRsVkVM9ZBaIyN89zn9pp2munYcZNYzTlc7OauRutvPnJxG52lMvW6cnReQdO++/FZFuHtc+JiJ77HxfJSKjvIKPt9M5X0RWi4hnS+5Wu6zki8hmEbnQw2+miHwlIo+ISA5WxVPd/T4kIkdEZJeITPDy7mSHly8iH4pIi+rC8xF+D2AQcKeqHlfV17E2opvs55IrgHtU9YiqbsHabn1mTeMNQK9BIrLGvrdX7fT+ux/ZP9hp3cHD7a/2c5YlItM93Cfa4R6183iOh5+rBXiViOwGPg1A1ekistuO6zYvv1gRecG+h00iMqRmqeCmJml+BTBfVTep6hHgnipk/eEEGsY4N/QOjfWw42MW1i6PHYEEoD3WzqrnYhngs+3zlrb8UmAv0A9rF9bXgZdsv85Yu0dG2+cTgW5Yu0SOBgqBQbbfUCDPDt9hx9vL9vsv8H92+K2wtpT+TTX3caodVhzQEvgCeNTD/9fAZiAR+AB4yHbvARyzr43B2pZ7BxDrkT4rgHZYLYsteO3c6bV7Zm4Vv5HV3MMcV1r6yhvbTYFTPWQWAH+3jwcCPwPDgCishykLiKtBeRgPFAFJ1cjsB/ra6fmSp162Tjl2HkcDC4GXPa6fgfUGGQ3caIcV75EGpcAUOz/+DOwCYmz/i+28cABT7bxra/vNBMqA6+2wE6q4h5l2PL+20+q3wE/g3oR0Kdaupj2wnoulwH1+wvoX8C8/fhdibfft6fYE8LgP2WZ2Orb2cJsCbPB6vvZi7Sb7HNDiJJ75WOBH4I92Gl8ElHiUozFAtn18B9ZutC09/MqAf2I9a6PtPOjp4Z9u508GcAC4wEv/F7Ce7aryxyX7tJ3+/YFioLdHOSnCqqeigH8Ay/2EdSmw3o9flWnuQ34dMNXjvIV9fZrHM3sAOAh8CPT3EcZY4AhwSk3zrsZ5Xd8R1PsNWAk6y+P8FuBFL5kPgCvs4woPKtDHLtxReBkoH3EtAf5oH/8f8IgPmdZ2QUzwcPsV8FkN7+sCYI2X21uc2MY6zna7HXjFQ8aBVQGM8UifGR7+D2Bv110PeTGHygZqlpdMVQbqKaw3QU/5bcDoAONfaYf/h2rkngX+4XF+KpUN1DMe/ucCW6sI74jrQbbTYLmHnwNri+9Rfq5dC0yyj2cCuwO815nADo/zRPse2niU8795+P8OeP8k8vQyvCpO4F5ggQ/ZjrYO8R5uZwNZ9nEyMATL+LYGXgM+OAmdTrfLuHi4LaOigdqLZYSWAU095MZgGagkD7dXgNv9xPUo9nPOifqhawA6umQ7eLitAKZ5lJOPPfz6AMdPIi2qTHMf8juB8R7nMfb1ne3zEVgGNRH4C9bLV6qPcF61r3u0pjrX5Bf2XXw2ezyOOwEX211EuSKSi9UyaOtH/kesTKrU/SEiE0Rkud29lotVUbnkOmJltjed7PD2ecT/f1gtKb+ISGsRednuEjyK9VbvrdPTWC2/x1W12HZrZ98DAKrqtO+vvcd1+z2OC7EqioZiT/UibjoBN3rlXUesewyETGAaMEdEYqqQa+elly8d/aaZ3WW6xe4yzQWaUjGv3OHZ+ZHtugcRudyjCzMXKz99XhsAbh1VtdA+TPbl730PNaAAaOLl1gTI9yPr8q8kq6oFqrpSVctU9QBwHTBORFJqqFM7YK/aNaWNd7qlAtdgvYjkefkdUdVjHuc/ciJ/hok1IeSgiOQB11L5OTypPKJyHnj7xUvNx7WqTHM/8t6ycCKPvlKrK7dQVf+B1XNSoQtbrKGGc7F6jGbXUN8aESkGyrugvqiqqR6/JFW9z0Omo8fxKVhdJYc8AxRrZsvrwENYzedU4F2s7j5XPN2ozB6sFlQLj/ibqGrfau7h/9n3ka6qTbC6kVxxISLJWG9z87EqYNe42U9YFbtLTuz721tNfJUQkVFScYaV9897rCUQ1Ou8EOvtzEUbj+M9wL1eeZeoqosCisiqsJZgdXu0rUJ0H9DB47yjP0Fv7DS4GbgEaGaXizw88sozPBFx2HH9JCKdsF4yrsPqUknFGnD2vNY7vYLNJqCrlxHpb7tXQK0xjX22f5Wyrkvs/zWth/YB7e2y7sI7D48AvwSeE5ERXn7NRCTJ4/wUrOcI4D9YPRUdVbUpMI+K+eOpd9A5iTTf5EP2gKrm+IuCyvffG9isqttqrnHNiBQD5clLwHkico6IRIlIvFjfPnhWSDNEpI+IJAJ3A6+parlXOLFYfdQHgTJ7ANpzRst84EoROVNEHCLSXkR6qeo+rL7bh0Wkie3XTURGV6N3CtbbTZ6ItAdu8vJ/DFipqlcD72A9OGB1T0y09YjBGhMpBr6uLqG8UdUv9cTsHV+/L2sapg/WApfaeTMeawzAxdPAtfZbrIhIkj1onQLuyQsLqrkHV8sytgqxV7DyrrddBgKa6myTgtVFdBCIFpE7qNzCGCwiF9lvw7Ox8mM51riF2tciIlditaBCFlXdjpVnd9rP0oVYYzOv+7nkBeBvItJMRHphjZEtAHfrpKf9TKQBc4GlrhaOWJ8CLA1ArW+AcuA6sSbeTMIaL/TWfSkwHXhDRLz97xKRWPuF45dYXVZg5e9hVS2yr7k0AH2Cjd809yN7lV3/pQJ/40T+nCIiI+x0iReRm7Baj195hRGDVabrnYgzUKq6B5gE/BWrItiDVdl73uuLWJmyH4jHx5x+Vc233V/Behu7FOvNyuW/ArgSeATrDfpzTrRkLseqIDfb175G1W/0YE31HGSH9Q7whsvDfgDHYw2EA9wADBKR6fZbzAzgcaxW4HlY00RLqokvWPwRS8dcrMpjictDVVdiPVxPYKXbDirOMOpI5YfFF0oVZVtV38OqHD+z41huewXy0H0AvA9sx+oaKqJyl8+bWBMgjmCN4VykqqWquhl4GKuCPYA1GB/I/dQrYn3LNq8KkWlYY0dHgPuAKarqMrLTRcTzbf1OrK7vH7GeiQdV9X3brytW2uVjtRyLscZnXQSUv3bZvgi4CqsczQD+h4/8U9WPgFnA23bXFFjP/RGsVtNCrElDW22/3wF3i0g+1gSLV6rTp77xkcbe+E1z2+gUiMgpALb7A1hlf7d9zZ12OClY48BHsHpgxgMTfLSuoqhmlmxd4Zrx02iw39BeUtVngq2LIXBEJBZrBlKGqpZWI/sTcLOqBvSlvljT8jdiTTwpq7WyhpNCRNYCZ1bR3VTVtd9iTf55rs4VM7ixu6znAq1U9ZL6ji/iWlCGyERVS1S1d3XGyeZWrC6pVf4ERORCsb7AbwbcD7xtjFNwUdUBgRonERktIm3sLr4rsLod36/uOsPJIyLtsHqlhmP1BNQ7xkA1IFJxWSDPX1XdK4YaoqovqGp3VR1chdhvsL652ok1nvHbKmSDgikvVdITq0WdizXuOsUe/20w7K43X/lTVXdc2KLWUkdpqjpEVb9tiDgbXRefwWAwGMID04IyGAwGQ0gSKosdAtCiRQvt3LlzsNUwGAwGQwOyatWqQ6paaQHikDJQnTt3ZuXKlcFWw2AwGAwNiIj86MvddPEZDAaDISQxBspgCFFUlQ837aeo1HuRE4OhcWAMlMEQonyz4yAb/3MbL733RbBVMRiCQkiNQfmitLSU7OxsioqKgq2KIYyIj4+nQ4cOxMRUtah5aOM4tJUbYl5j66ZtcP6yYKtjMDQ4IW+gsrOzSUlJoXPnzlRcvNhg8I2qkpOTQ3Z2Nl26dAm2OidNbEkuAHHO48FVxGAIEiHfxVdUVERaWpoxToaAERHS0tLCvtXtLLPWPo0J2XV/DYb6JeQNFGCMk6HGREKZ0TLLMEmlnWAMhsZBWBgog6Ex4jJQDmOgDI0UY6ACQES48cYb3ecPPfQQc+bMCZ5C1bB06VK+/rrG+xW6Wbt2Laeddhp9+/YlIyODxYsX16F2hkApdxmohtl6x2AIOYyBCoC4uDjeeOMNDh06VL1wDVBVnM66r3xqa6ASExN54YUX2LRpE++//z6zZ88mNze37hQ0BEa5tbOIQ42BMjRO6t1Aich4EdkmIjtE5Nb6jq8+iI6O5pprruGRRx6p5Hfw4EEmT55MZmYmmZmZfPWVtSHonDlzeOihh9xy/fr1Iysri6ysLHr27Mnll19Ov3792LNnDzfddBP9+vUjPT3d3VpZunQpY8aMYcqUKfTq1Yvp06fja+X5uXPn0qdPHzIyMpg2bRpZWVnMmzePRx55hAEDBvDll19WqeNll13GaaedRvfu3Xn66acB6NGjB927dwegXbt2tGrVioMHD1aK+9VXX6Vfv37079+f008/HbAmtVx55ZWkp6czcOBAPvvsMwAWLFjABRdcwNlnn03nzp154okn+Oc//8nAgQMZPnw4hw8fBuDpp58mMzOT/v37M3nyZAoLCyvFO3z4cDZtOrGjwZgxYyJyiSx3Fx+mi8/QOKnXaeYiEgU8CZwNZAPfichb9tbXNeautzex+aejdakifdo14c7z+lYr9/vf/56MjAxuvvnmCu5//OMf+dOf/sTIkSPZvXs355xzDlu2bKkyrO+//57nn3+e4cOH8/rrr7N27VrWrVvHoUOHyMzMdFf2a9asYdOmTbRr144RI0bw1VdfMXLkyAph3XfffezatYu4uDhyc3NJTU3l2muvJTk5mT//+c8AXHrppX51XL9+PcuXL+fYsWMMHDiQiRMn0q5dO3f4K1asoKSkhG7dulW6j7vvvpsPPviA9u3bu1tYTz75JCLChg0b2Lp1K+PGjWP79u0AbNy4kTVr1lBUVMSpp57K/fffz5o1a/jTn/7ECy+8wOzZs7nooov49a9/DcDf/vY35s+fz/XXX18h3qlTp/LKK69w1113sW/fPvbt28eQIUOqTPNwRMtNF5+hcVPfLaihwA5V/UFVS4CXgUn1HGe90KRJEy6//HLmzp1bwf3jjz/muuuuY8CAAZx//vkcPXqUgoKCKsPq1KkTw4cPB2DZsmX86le/IioqitatWzN69Gi+++47AIYOHUqHDh1wOBwMGDCArKysSmFlZGQwffp0XnrpJaKjfb9vVKXjpEmTSEhIoEWLFowdO5YVK1a4r9u3bx+XXXYZzz33HA5H5aIyYsQIZs6cydNPP015ebn7fmbMmAFAr1696NSpk9tAjR07lpSUFFq2bEnTpk0577zzAEhPT3ff28aNGxk1ahTp6eksXLiwQkvJxSWXXMJrr70GwCuvvMKUKVOqTO9wRU0Xn6GRU98f6rYH9nicZwPDPAVE5BrgGoBTTjmlysACaenUJ7Nnz2bQoEFceeWVbjen08ny5cuJj4+vIBsdHV1hfMnzm5ykpKSA4ouLi3MfR0VFUVZWeUfyd955hy+++IK3336be++9lw0bNlSS8acjVJ6O7To/evQoEydO5N5773UbU2/mzZvHt99+yzvvvMPgwYNZtcrvDuuV7sfhcLjPHQ6H+95mzpzJkiVL6N+/PwsWLGDp0qWVwmnfvj1paWmsX7+exYsXM29ehG4wa7egokwXn6GREvRJEqr6b3sL4SEtW1baDiSkaN68OZdccgnz5893u40bN47HH3/cfb527VrA2jpk9erVAKxevZpdu3b5DHPUqFEsXryY8vJyDh48yBdffMHQoUMD0sfpdLJnzx7Gjh3L/fffT15eHgUFBaSkpJCfn1+tjgBvvvkmRUVF5OTksHTpUjIzMykpKeHCCy/k8ssvr7J1snPnToYNG8bdd99Ny5Yt2bNnD6NGjWLhwoUAbN++nd27d9OzZ8+A7gcgPz+ftm3bUlpa6g7HF1OnTuWBBx4gLy+PjIyMgMMPK4yBMjRy6ttA7QU6epx3sN3ClhtvvLHCbL65c+eycuVKMjIy6NOnj/ttfvLkyRw+fJi+ffvyxBNP0KNHD5/hXXjhhWRkZNC/f3/OOOMMHnjgAdq0aROQLuXl5cyYMcM9IeEPf/gDqampnHfeefz3v/91T5LwpyNYXYRjx45l+PDh3H777bRr145XXnmFL774ggULFjBgwAAGDBjgNmp33HEHb731FgA33XQT6enp9OvXj1/84hf079+f3/3udzidTtLT05k6dSoLFiyo0HKqjnvuuYdhw4YxYsQIevXq5XZ/6623uOOOO9znU6ZM4eWXX+aSSy4JOOywo9xqVZoxKENjRXzNDKuzwEWige3AmViG6TvgUlWtPLAADBkyRL1nY23ZsoXevXvXm46NmTlz5lSYTBFphHvZWTbvekbuf8E6uTMXImB1DIPBFyKySlUrzXSq1zEoVS0TkeuAD4Ao4Fl/xslgMFREnKXuYy0rRmIqjyEaDJFMva9mrqrvAu/WdzyGmhPKq2EYcH+oC1BafJxYY6AMjYygT5IwGAy+8WxBlRRX/mDZYIh0jIEyGEIUh4eBKi4ye0IZGh/GQBkMIYqngSo1LShDI8QYKIMhVPHs4jMtKEMjxBioAFmyZAkiwtatW/3KZGVl0a9fv3rVY+3atbz77snPOXF92NunTx/69u3LY489VofaGeoSzxZUWYkxUIbGhzFQAbJo0SJGjhzJokWLfPr7WoaoprjWs6uK2hqo6OhoHn74YTZv3szy5ct58skn2bz5pNbuNdQzUXqiTJUWmS4+Q+PDGKgAKCgoYNmyZcyfP5+XX37Z7b506VJGjRrF+eefT58+fQDLUE2fPp3evXszZcoU93YRn3zyCQMHDiQ9PZ1Zs2ZRXFwMWEsi3XLLLQwaNIhXX321Qrze21mUlJRwxx13sHjxYgYMGMDixYs5duwYs2bNYujQoQwcOJA333wTsLa3mDRpEmPGjKF79+7cddddALRt25ZBgwYBkJKSQu/evdm7t/LiHp9//rl7FYmBAweSn5+PqvrdGmT06NFMmjSJrl27cuutt7Jw4UKGDh1Keno6O3fuBODtt99m2LBhDBw4kLPOOosDBw5UinfatGm888477vOZM2e6F4ZtbHjO4is3LShDI6Tev4OqU967FfZXXgy1VrRJhwn3VSny5ptvMn78eHr06EFaWhqrVq1i8ODBgLXO3saNG+nSpQtZWVls27aN+fPnM2LECGbNmsW//vUvrrvuOmbOnMknn3xCjx49uPzyy3nqqaeYPXs2AGlpae51+zzx3s4iNjaWu+++m5UrV/LEE08A8Ne//pUzzjiDZ599ltzcXIYOHcpZZ50FWFtlbNy4kcTERDIzM5k4cWKFbSmysrJYs2YNw4YNqxT3Qw89xJNPPsmIESMoKCggPj6eN954w+/WIOvWrWPLli00b96crl27cvXVV7NixQoee+wxHn/8cR599FFGjhzJ8uXLERGeeeYZHnjgAR5++OEK8bq20pg4cSIlJSV88sknPPXUUwFmZmQRpWUUaALJcpzykqLqLzAYIgzTggqARYsWMW3aNMB6w/fs5hs6dChdunRxn3fs2JERI0YAMGPGDJYtW8a2bdvo0qWLez2+K664gi+++MJ9zdSpU33G62s7C28+/PBD7rvvPgYMGMCYMWMoKipi9+7dAJx99tmkpaWRkJDARRddxLJly9zXFRQUMHnyZB599FGaNGniM+4bbriBuXPnkpubS3R0dJVbg2RmZtK2bVvi4uLo1q0b48aNAypupZGdnc0555xDeno6Dz74oM+tNCZMmMBnn31GcXEx7733HqeffjoJCQk+7z3SidJSjot17+WlpgVlaHyEVwuqmpZOfXD48GE+/fRTNmzYgIhQXl6OiPDggw8ClbfO8Ld9RVX4234jkO0sVJXXX3+90orh3377rV9dSktLmTx5MtOnT+eiiy7yGfett97KxIkTeffddxkxYgQffPBBlfcQyFYa119/PTfccAPnn38+S5cu9bmSRXx8PGPGjOGDDz5g8eLF7heDxki0lnLckQjOwzhNC8rQCDEtqGp47bXXuOyyy/jxxx/Jyspiz549dOnShS+//NKn/O7du/nmm28A+M9//sPIkSPp2bMnWVlZ7NixA4AXX3yR0aNHVxu3r+0svLfSOOecc3j88cfd28GvWbPG7ffRRx9x+PBhjh8/zpIlSxgxYgSqylVXXUXv3r254YYbqow7PT2dW265hczMTLZu3VqrrUEA8vLyaN++PQDPP/+8X7mpU6fy3HPP8eWXXzJ+/PiAw480HFpOkSMRAGepMVCGxocxUNWwaNEiLrzwwgpukydP9jubr2fPnjz55JP07t2bI0eO8Nvf/pb4+Hiee+45Lr74YtLT03E4HFx77bXVxu1rO4uxY8eyefNm9ySJ22+/ndLSUjIyMujbty+33367+/qhQ4cyefJkMjIymDx5MkOGDOGrr77ixRdf5NNPP3VPgnDNCpw3b557K45HH32Ufv36kZGRQUxMDBMmTKjV1iBgrf138cUXM3jwYFq0aOF2X7lyJVdffbX7fNy4cXz++eecddZZxMbGBhx+pBGtpZREJwPGQBkaJ/W63UZNMdtt1B0LFiyoMJmiMRLuZSd7Tk8OJnVn4LEv+bbr9Qy7/O/BVslgqBf8bbdhWlAGQ4gSRRnlMfb4ZJlpQRkaH+E1ScIQMDNnzmTmzJnBVsNQC6Ipg+g4ijUGyoqDrY7B0OCERQsqlLohDeFBJJSZGC0DRwzFxJgWlKFREvIGKj4+npycnIiocAwNg6qSk5NDfHx4b/AXTRlExVAisUi5aUEZGh+16uITkQeB84ASYCdwparmikhnYAuwzRZdrqrVT1vzQYcOHcjOzubgwYO1UdXQyIiPj6dDhw7BVuOkKXcqMZRDVCylxOAwLShDI6S2Y1AfAX9R1TIRuR/4C3CL7bdTVQfUMnxiYmIqrNRgMDQGSsvKiaUMoqIplVgczpJgq2QwNDi16uJT1Q9V3UsuLwfC95XVYAghiktLcYhaLSiJxWG6+AyNkLocg5oFvOdx3kVE1ojI5yIyyt9FInKNiKwUkZWmG89gsCgtsQySRMVS5oglymkMlKHxUW0Xn4h8DPhaLuA2VX3TlrkNKAMW2n77gFNUNUdEBgNLRKSvqh71DkRV/w38G6wPdU/uNgyGyMJtoKJdBsp08RkaH9UaKFU9qyp/EZkJ/BI4U+2pdqpaDBTbx6tEZCfQA1jpLxyDwXCCslLLQDmiYyh3xBFfVundzmCIeGrVxSci44GbgfNVtdDDvaWIRNnHXYHuwA+1ictgaEyUFluz9iQqjnJHHNGmBWVohNR2Ft8TQBzwkb2Vg2s6+enA3SJSCjiBa1X1cC3jMhgaDa4uPkdMLGVRcUSrMVCGxketDJSqnurH/XXg9dqEbTA0ZpwlVoeExCTijIoj1hgoQyMk5FeSMBgaI+XFxwBwxFoGKobSIGtkMDQ8xkAZDCGIs8Ta4l1iE8G0oAyNFGOgDIYQpLzY6uKLiUtAo+OINS0oQyPEGCiDIQQps7v4YhOSkeh44qSMslJjpAyNC2OgDIYQxNNAEWOtyl5UfDyYKhkMDY4xUAZDCFJuj0HFJyQhtoEqOV5Y1SUGQ8RhDJTBEIKoPc08PjEZR3QcAMWmBWVoZBgDZTCEIC4DFZeQhMQkAFBaZFpQhsaFMVAGQwgSVXyUIo1BYhKIirW7+EwLytDIMAbKYAhBokpyKZBkwPpYF6DMGChDI8MYKIMhBIkqyafQYRkoVwuq1BgoQyPDGCiDIQSJLT1KUXQKANGx1hiUa2afwdBYMAbKYAhBEsrzKYlpAlirSQCUlxYFUyWDocExBspgCEGaOQ9TFNcC8GhBFZtZfIbGhTFQBkOIUVxcRJrmUpbUFoDYeMtAOUtNF5+hcWEMlMEQYhzatxuHKNHN2gMQE29NllAzBmVoZNR2y/c5IrJXRNbav3M9/P4iIjtEZJuInFN7VQ2GxsHhfbsASGxxCgCxCdY0c8qMgTI0Lmq75TvAI6r6kKeDiPQBpgF9gXbAxyLSQ1XL6yA+gyGiOfZzFgBNWncGIC4+CTAtKEPjo766+CYBL6tqsaruAnYAQ+spLoMhoijZt5kyddC6c2/gxCw+KTOz+AyNi7owUNeJyHoReVZEmtlu7YE9HjLZtlslROQaEVkpIisPHjxYB+oYDOFNzOHtHIhuR0yc1bUnjiiKNMZ08RkaHdUaKBH5WEQ2+vhNAp4CugEDgH3AwzVVQFX/rapDVHVIy5Yta3q5wRBRFJWW07b4B/KbnFrBvVhiTQvK0OiodgxKVc8KJCAReRr4n326F+jo4d3BdjMYDFWwbecP9Jf9bOt4WQX3YuJwmBaUoZFR21l8bT1OLwQ22sdvAdNEJE5EugDdgRW1ictgaAz8vPkLAFr2GV3BvUTiiHIWB0MlgyFo1HYW3wMiMgBQIAv4DYCqbhKRV4DNQBnwezODz2CoHtm9nGJiaH5qxTlFJRKHo9x08RkaF7UyUKp6WRV+9wL31iZ8g6Gx0SZvDdkJvehm76LrotQRR7QxUIZGhllJwmAIEfbnHKGn8wcKWmdW8it1xBFtuvgMjQxjoAyGECFr/VfESDkpp/6ikl+ZI94YKEOjwxgogyFEOPbDcgA69BtVya/MEUesMVCGRkZdLHVkMBjqgMSf13Agqg2tU9tU8nNGxROjtTNQJaVl7PthI/kHs3E4i4lObEpccnNS01qT0qwVjuiYWoVvMNQ1xkAZDCFAabmTzkWbOZQ2mNY+/Muj4onVkpMKe8uaZRz57An65X1OJ/G/p1QeyeQ7mnIsqgllEo0gIIICqGIfIeqscAyWn+WmiGrlwEUQH3GKj5PKcva1UknUOwqf1x1LaMupv3+N6JhYH1cZQhljoAyGEGDnzu/pJYfJaT/Ep78zOp54ataCOnLkMBuf+wMj8v5HkcSypflY6DSSuJadcUbFUV54lLJjRygtOIQWHEKOHya6+DCJZbmIloM6UVUcWCYIBBXBKdHuY9d/dY0WiLhlPTlhsxT16e7hq65jj/+Kh/uJizyv10oHkOLMpV/x53y/6Vu6D6jcdWoIbYyBMhhCgJ+3fEUvoEWvkT79NTqeuBp08W3fvA7HqzP4hXMP6zr8ih6X/J3BTdPqSNvwIfvH7+G5IRzdvgyMgQo7jIEyGEIAzf6OEqJp3cN3C0qjE4iRcigvg6iqH9u1a1bQfsnFxEoZu899kYHDzqsPlcOCdh1PZS8tidn7bbBVMZwEETeLb//u71FffeAGQwjT/Mh6dseeisTE+xaItrbcKC/xP4YEsH3zWtovuZhoh1Jy+bt0acTGCcDhEPYkZdDu6NrK/YmGkCeiDNRPWdtImj+K7+bO4HjB0WCrYzAERElJCd1Kvye3eX+/Mi7DVVx0zK/Mvv37iH9lGtHixHn527Ts6j+8xkR5x+G00CPs/3FrsFUx1JCI6uJr06EbyztM4xd7n+Pnh75mQ49ZdD3jClq0OaXK60pKy8nNz+PY0SMU5B3meH4uxQW5lBbmEVWST1RZPtElBUh5MU6nE6eqPQRsz2SiijezSlOLvAaP7XOXq3rIi5eMy00rT1eqFIfPOVPVXeaLAF46NRChuomq7sKpg8gCuu8ARBzFeYyQYujgu3sPgBirBVV6vBCaVfbOP1bI/mem0k9/Zt8Fr3JKF2OcXHQYNB623svur16hTec7TyoMdTrJObCHQ9k7OHpgF3r0J7QoHy3OJ6q0AHGW457J4dlSEwe4ZkPaxyoORMTtZ7nbsm53j2M/E09Cgfz4tpw946Z6Cz+iDJQjOppf/PpRNi2fQNTHdzJ0+0Ow/SEOkEZuTEuKo5JwqJNoZxHR5UUkOAtJ1EKSKaSVVL+WbalGuU0SuCbX4j72xttwVTZV3rVX5dqsumuqi8MQHuRJMh0GjvPr74i1Ni8sKSqo5FdWVs53T/2aM8rWsf20++kx8Mx60zMc6dQjg63RPWm981XU+TfEEVXtNcXFRWxd8SGFWz4mKWcjHYq304J8WnjJFWocxyWBUo+qVO2ZjaInpt97/xw4Aaz/av23TJD13zp3yVr/o0Rxamg94SvpBRgDVSP6Dj8HHTaOH7Z8x/5V7xJ7cCOxxTnEl+VTThRlUfGUxDQlLyYFjU2B+KY44lOITkwlJrEpccnNSEhOJSEllejEpm73GPMho6GeaGr//CGxdguqqPIY1Ecv3MuEgv+xueuV9Bl/bf0oGObk9buSXmtvZfXbTzFo0nU+ZQ7u382ur98kaueH9Cj4jv5ynFKNYnd0J35ofjrbW/YjsVVXUtt1o0nLU0hu2ozEmFgSG/A+Qm1MZmj1IrUiIg0UgIjQtc9Quvap7yQ0GOofSWgOQNmxQxXcl77/Kmf/+AjbUkfSZ0aNN7RuNAw57xo2b3yB3qvvYrUIvcZMo7S0lL3b13B000c03/8lPcq20xI4SHO2pZ1FXJ9z6X7aRLolVfXqYKhPItZAGQyRRFQTa32J0twDbreN61cx4Js/si+mI91+8x8IoOuqsRIVFUXaVa/y4zMXMmj1X2H1XwGr1VquwvcxvVje6VpaDZlEl77DaekItbZK48QYKIMhDGjeqj0ARXn7Afgx6wdS3piOiIOms14jOtG85VdH67YdaH7r16z76m0Kdq8lyhFFQruedB5wBr2atwq2egYfGANlMIQBLdJaUKhxOHOz2bt3D6XPX0B7DpNz0WI6tOsRbPXChpiYGPqPuQi4KNiqGAKgVgZKRBYDPe3TVCBXVQeISGdgC7DN9luuqmb01mA4SZokxLDGcSpds9+h4OlP6chh9p/7PJ0yxgZbNYOh3qjtlu9TXcci8jCQ5+G9U1UH1CZ8g8FgISLs6zqZQTvvplRi+PnC1+mUMTrYahkM9UqddPGJiACXAGfURXgGg6Ey5864gZ07JtKx4ym0jG/Iyc0GQ3Coq6kqo4ADqvq9h1sXEVkjIp+LiN9lhEXkGhFZKSIrDx48WEfqGAyRh4jQrXsvYo1xMjQSqm1BicjHQOUtPuE2VX3TPv4VsMjDbx9wiqrmiMhgYImI9FXVSgvkqeq/gX8DDBkyxKzmaDAYDAYgAAOlqmdV5S8i0VhTYgZ7XFMM1u5qqrpKRHYCPYCVtdLWYDAYDI2GuhiDOgvYqqrZLgcRaQkcVtVyEekKdAd+qC6gVatWHRKRH+tApxbAoWqlQoNw0hXCS1+ja/0RTvqGk64QXvrWla6dfDnWhYGaRsXuPYDTgbtFpBRwAteq6uHqAlLVlnWgDyKyUlWrWBo6dAgnXSG89DW61h/hpG846QrhpW9961prA6WqM324vQ68XtuwDQaDwdB4MQtOGQwGgyEkiVQD9e9gK1ADwklXCC99ja71RzjpG066QnjpW6+6iqqZ2W0wGAyG0CNSW1AGg8FgCHOMgTIYDAZDSBJRBkpExovINhHZISK3Blsfb0Sko4h8JiKbRWSTiPzRdp8jIntFZK39OzfYugKISJaIbLB1Wmm7NReRj0Tke/t/sxDQs6dH2q0VkaMiMjuU0lVEnhWRn0Vko4ebz7QUi7l2OV4vIoNCQNcHRWSrrc9/RSTVdu8sIsc90nheQ+pahb5+815E/mKn7TYROScEdF3soWeWiKy13UMhbf3VWQ1TdlU1In5AFLAT6ArEAuuAPsHWy0vHtsAg+zgF2A70AeYAfw62fj70zQJaeLk9ANxqH98K3B9sPX2Ug/1YH/6FTLpifRs4CNhYXVoC5wLvAQIMB74NAV3HAdH28f0eunb2lAuhtPWZ9/bztg6IA7rYdUZUMHX18n8YuCOE0tZfndUgZTeSWlBDgR2q+oOqlgAvA5OCrFMFVHWfqq62j/Ox9sxqH1ytaswk4Hn7+HngguCp4pMzsbZ6qYsVSeoMVf0C8P5Y3V9aTgJeUIvlQKqItG0QRfGtq6p+qKpl9ulyoEND6VMdftLWH5OAl1W1WFV3ATuw6o4GoSpdRdy7QngvfBA0qqizGqTsRpKBag/s8TjPJoQrf7E2dRwIfGs7XWc3iZ8NhW4zGwU+FJFVInKN7dZaVffZx/uB1sFRzS/eK5uEYrq68JeWoV6WZ2G9JbvoIgHsXBAEfOV9KKftSe8K0RB41VkNUnYjyUCFDSKSjLXSxmy1Vnh/CugGDMBaCf7h4GlXgZGqOgiYAPxeRE739FSrTR8y3ymISCxwPvCq7RSq6VqJUEtLf4jIbUAZsNB2cu1cMBC4AfiPiDQJln4ehE3ee+BvV4igp62POstNfZbdSDJQe4GOHucdbLeQQkRisDJ6oaq+AaCqB1S1XFWdwNM0YJdDVajqXvv/z8B/sfQ64Gqy2/9/Dp6GlZgArFbVAxC66eqBv7QMybIsIjOBXwLT7UoJu6ssxz5ehTWm0yNoStpUkfehmrauXSEWu9xCJW191Vk0UNmNJAP1HdBdRLrYb9LTgLeCrFMF7D7m+cAWVf2nh7tnH+2FwEbvaxsaEUkSkRTXMdYg+UasNL3CFrsCeNN3CEGhwhtoKKarF/7S8i3gcntG1HAgz6M7JSiIyHjgZuB8VS30cG8pIlH2ccA7F9Q3VeT9W8A0EYkTkS5Y+q5oaP184HNXiGCnrb86i4Yqu8GcIVLXP6wZJNux3jRuC7Y+PvQbidUUXg+stX/nAi8CG2z3t4C2IaBrV6zZTuuATa70BNKAT4DvgY+B5sHW1dYrCcgBmnq4hUy6YhnOfUApVr/8Vf7SEmsG1JN2Od4ADAkBXXdgjS24yu08W3ayXT7WAquB80Ikbf3mPXCbnbbbgAnB1tV2X4C164OnbCikrb86q0HKrlnqyGAwGAwhSSR18RkMBoMhgjAGymAwGAwhiTFQBoPBYAhJjIEyGAwGQ0hiDJTBYDAYQhJjoAwGg8EQkhgDZTAYDIaQ5P8DnocWYu1V22cAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 1)" + "### Defining eFeatures and objectives\n", + "\n", + "For every response we need to define a set of eFeatures we will use for the fitness calculation later. We have to combine features together into objectives that will be used by the optimalisation algorithm. In this case we will create one objective per feature:" ] }, { "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEYCAYAAADBFIhjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB0HklEQVR4nO2deZhUxfWw39O311nYBmSXTXaGTUAMoGgUJERQUUFxQWMSk5jEJUazaNAkXxQ17j9JDHEliLsY9w0RDSIIyiKg6MgiItvA7NNLfX/U7aZnpmemZ7pnunuo93n6mb5Vdeuernunzj2nTlWJUgqDwWAwGFoijlQLYDAYDAZDU2GUnMFgMBhaLEbJGQwGg6HFYpScwWAwGFosRskZDAaDocVilJzBYDAYWixpq+REpKeIKBFxplqWlo6IzBGR5c10LZ+IvCwiB0Tkt81xzWrXLxCRU5rhOktF5LJa8syz3UTUdX/Nvc88RGSmiBwUkQ9EpEtj6khbJWdoHCIyV0T8IlIc9Wl2ZVIHpwBDge5KqXnhRLsD6pkyqdII+x7ObUD580XkaxEpEZHnRaRdHWX/KSKbRSQkInOq5V0sIqtF5JCI7BCRedGdsYi0E5Hn7Ot8LSLnN1QOEekrIuUi8ngDft9SEZkYb/lMponv/XD7/pbaf4dH5V0rIutFpEhEvhKRa6ud+z0RWWnnfyoi46vldxCR/9gK6YCILIzKe1hEKqv1SZadF1b60Xk3hM9VSi0G2tuH58bbLtE0mZIzbyopZbFSKifqM6/+U5qNdkCBUqo41YIkgmhS/pIoIoOBfwAXAh2BUuD/6jjlE+DnwMcx8rKAK9GdynHA94HfROXfD1Ta15kNPGBfvyFy3A98FNePS1My8d6LiBt4AXgcaAs8ArxgpwMIcJGddxpwhYjMss9tB7wI3Aa0AeYBL4pI26hLPAt8CxwNHAXcXk2EedX6pGC1/DZReX+OzlBK+YEtQF79rVKTpN4o+238OhH5FCgREaeIjLVNzUIR+ST6jcx+Q/ub/YZwSEReqO1NREQuEZHP7DeJL0Xkp9Xyp4vIWruerSJymp3eWkQWiMguEdkpIn8Jv0XU8Tv6iMjbIrJPRPaKyEIRaROVt19ERtrHXURkT/h3icg0Edlg/96lIjKwWvv8xn4TOigii0XE2/CWbjgicr3dLkUislFEzqylnIjInSLynd2W60RkiJ3nEZHbRWSbiOwWkfki4mugKE4gVI+seSLyon39j+x7tjwqX4nI5SLyud3O94uI2Hm13rsoRtttcEBEHgrfAxFpKyL/te/nAft7t6jrLhWRv4rI++gOpXc9v7WHiLxvt/nrItK+Wv5suy33isgf6qmrNmYDLyqlltkvDjcAZ4lIbqzCSqn7lVJvAeUx8h5QSr2nlKpUSu0EFgLjAEQkG5gB3KCUKlZKLQeWoDvYuOSwO81C4K1G/tawu/sR+/58JiK/FZEdtZQdKNoqOS8q+Ui99xPR/3t3KaUqlFL3oBXbyQBKqXlKqY+VUgGl1Ga0Qhxnn/s94Ful1FNKqaBS6nFgD3AWgIhMAroD1yqlDiql/EqpNY38TbURsuVvOEqppH2AAmAt+gf7gK7APuAHaIV6qn3cwS6/FNgJDAGygWeAx+28noACnPbxVKAP+saciH7QRtp5Y4CDdv0O+7oD7Lzn0G872eg3jJXAT+v5HcfYdXmADsAy9MMRzv8xsBH95vsacLud3g8osc91Ab8FvgDcUe2zEuiCtmg+Ay6vRYbx6A6hts/4Ws6bG27Daunn2Nd1ADNtOTvbeXOA5fb3ycBq9BubAAOjyt2J7tjaAbnot7u/NeD5cAGPxZKvWrkn7E8WMAjYHpbPzlfAf20Zj0b/w50W570rANajn9F2wPvAX+y8PHRHnmX/vqeA56POXQpsAwaj/+FcdfyGpcBW+5nw2ce3VHu2H7TzhgEVwMBa6qrrfr8AXFctrRg4tp42Xg7MqafM81EyjwBKq+X/Bt3J1isH0Ar9Nt6ttmc0zmfoFuBdtMXRDfgU2FHt/p4CjLTv1Q/NvVcAVwGvVEv7L3BNjLICrMHum4AfAhurlfkcuNP+fiO6H3wc3b9/BJwYVfZhYL/9WQ3MiMoLt8dOYAfwENA+hkw32fc9u8HPTGMetDpubgFwadTxdcBj1cq8Blwc9TDcEpU3CO0Osaim5Gr5B/y1/f0f4QavVqaj/QD5otLOA95p4O86A1hTLW0JsA79T+ax024Anowq47Bv3sSo9rkgKn8eMD/J92Cu3YaFUZ8uMcqtBabb3+dwWMmdjO6MxgKOag9+CdAnKu144Ks45RoO+IHdwDF1lLPscv2j0v5CTSU3Pur4SeD6eO6dfQ8ujzr+AbC1DpkPRB0vBW6O8/cuBf4Ydfxz4FX7e/jZ7haVvxKY1Yj7/RbVXpSin7k6zqtTyQGXojud9vbxBPTbfHSZHwNL45EDuBu7QyYxJfclMDnq+DJqKrmbbNknVjv3iL336L7piWppC4G5McrehHZrh/u1PHQ/ch76RfVitGX1Dzv/n/Zv+pGdH7bYw8/OSLsOp93mRcA4Oy8HGGXndQSeBl6LIVNbdL8UBM5qSDs1hV95e9T3HsA5tkupUEQK0RZK51rKf41upOqmPSIyRURW2K7CQnRjhct1R785VaeHXd+uqOv/A23R1YqIdBSRJ0S7Nw+h31Cqy/Qg2gK9VylVYad1sX8DAEqpkP37ukad923U91L0TU42Tyql2kR9vhGRi0S7c8PtMIQY7ayUehu4Dz128p3oQIVWaKsoC1gdVcerdnq9KKXWot+Q/4ce96mNDugHPvq52B6jXMx2jPPeVX/mutjnZonIP0QP5B9CW4FtpKp7O5YstVHfvU7Gs1CMtpKiaYXuSBqFiJwB/A2YopTaG+d1as0XHeBwCtoTkChdqP/ZuBz4QCm1NEbekXrv4yorIlegx+amhvs1pdQ+YDpwNfol9TTgTfSLBEAZepx9gdKuyifQbTXOPv9jpdQ+pV2hL6OV61l2XrFSapWdtxu4ApgUw+V6CXAIaKeUera+hommKZScivq+HW3JRXe42UqpW6LKdI/6fjT6LX5vVBoi4kG7Mm8HOiql2gAvo62L8HX6xJBlO9qSax91/VZKqcH1/Ib/Z/+OfKVUK+CCqGshIjnAXcACYK4cHkf8Bq1Yw+XE/n0767leDURkglSNOKr+mdCAunqglfIVQJ7dfuujf1M0Sql7lFLHoi3rfsC16HtSBgyOasvWSqm4/zmVUuXAK3a9tbEHCKBdUWG611I2FnXeuxj1HY2+bwDXAP2B4+xzT7DTo8+Pfr7TgQ1olxcAItIb7ard0pjKRI9lPwicrpRaF5W1BXCKSN+otGH29euTYyLagtkmIt+i3ZwzRCRW8Et97KL+Z+Ny4GgRiaVUj9R7vwEYavdJYYZy+P4hIpcC1wPfV0pVGedUSr2rlBqtlGqHHocdgLZAQXuzqrdNXW2lqKXviTqvum4aiPbAHayj3pg0dYTQ48DpIjJZRCwR8YrIxOgBXeACERkkIlnAzcDTqmbkjRt98/YAARGZAkyKyl8AXCIi3xcRh4h0FZEBSqldwOvAHSLSys7rIyIn1iN3LvrN56CIdEV38tHcDaxSSl0GvATMt9OfBKbacrjQ/zgVwAf1NVR1lA4AyKnj814DqstGPzx7QAfxoC25GojIaBE5zpa/BB2gELKt0geBO0XkKLtsVxGZHHWukvpDvSvQ9zMm9r1/Fv3ykCUiA9BvlvFS370D+IWIdLNfTv4ALI46twwotPP+1IDrpoqF6P+xCaKDQ24GnlVKxbTkRMRtB1sI4LL/Jx123sl2fTOUUiujz1NKlaDvy80iki0i49Bv94/FIcc/0S+hw+3PfPT/zWT7uuEw8p5x/N4ngd+JDhTpin5xq04R2to4QURuqZZ3pN77pWhX369EB5CF2+1tABGZjX5BPFUp9WX1k0VkhIi4bK/O7cB2pdRrdvZzQFvRU1AsETkb/SLyvn3u2SKSY/e/k9AvnkvsvONEpL+dlwfcg3aBV1dmLnTf0WCaVMkppbaj/xF+j+5gt6M7nejrPoYemPwW8AK/ilFPkZ3+JHAAOB+7kez8lWhz9k50AMq7HLaoLkJ3qhvtc5+mqrs0Fjeh/cgH0f+MEfNYRKaj/4F+ZiddDYwUkdlKRyVdANyLtnxOR78RV9ZzvSZFKbURuAPtKtwN5GM/gDFohVZmB9DunH3o0GHQY6xfACtsl86b6LdfRKQ7unNZV73CaoSo/7m7AmiNfiYeAxYR/wNe672L4j/ol58v0W7uv9jpd6GDAfYCK9Du2JRTl+WulNqAtlwWAt+hO+ufR537ioj8PuqU19Gd+ffQyqeMw1bLDeh2fznKY/BK1Lk/R7fPd+h78jP7+nXKoZQqVUp9G/6gX0LKlVJ77Hq7o5+1eDweN6PdZF+hn7+nifFsKKUK0QFIU0QkOiT9iLz3dh90Bro/LESPuZ4R1Tf9BT1u9lHUvQ+/vIMOotuL7sM7A5HobKXUfmAa2kI/iLYGp0e5un+NvreF6L7kx1Gu5N7oti5Ce5cq0GN/1bGoJyq7NsQe1EsJIrIUPQD9r5QJYUgKInIB2pX5u3rKTUJb+APsf4546r4V6KSUujhxSQ3phoj8EdijlPpHI879GTpooz7vjCFDET1NaTmwQClV1xzQmKR8QqOhZaCUerw+BWezFHgD2CAiv4lVQEQGiMhQ0YxBR209lzxpDemEUuov8So4EeksIuNs91Z/9JCAeTZaKCJyLtrK34325DWYI3ZVEtsUvyBG1uNKqcubW54jBds9MrueYrlod1gX9MN9B3pOUFohIrWt2jKlgWOmhvhxoyOke6HdX09Q9wovTYK5982DUupJGqncwqTUXWkwGAwGQ1Ni3JUGg8FgaLGklbuyffv2qmfPnqkWw2AwGAzNyOrVq/cqpeJaWKKhpJWS69mzJ6tWrUq1GAaDwWBoRkTk6/pLNQ7jrjQYDAZDi8UoOYMhzTHBYQZD4zFKzmBIY+b/933+9KeY0wkNBkMcpNWYXCz8fj87duygvLzGHo8GQ614vV66deuGy+VKtSgJMX7lzxniKMB/8De4Wte3Gp3BYKhO2iu5HTt2kJubS8+ePam6gLbBEBulFPv27WPHjh306tUr1eIkRE/RO7Ls37OLjilScnuKKij3B+neLisl1wc4UFKJ2+kg25P2XZYhzUh7d2V5eTl5eXlGwRniRkTIy8trEdb/IbIBKDvwbT0lm46LHniLx++4GvxlKZNh7J9f4q7774ZQ9Q1KDIa6SXslBxgFZ2gwLeWZOWTvHek/tKeekk3HGYce53euRagtr9VfuIm4xHqVPxy6GTb9N2UyGDKTjFByBsORSqlD70kbKNmXMhmy7J1sylNoTbYXe3uxA002ncrQQjFKLg5EhGuuuSZyfPvttzN37tzUCVQPS5cu5YMPGrxPaxVOO+002rRpww9/+MMkSWVoDH6HF4Bg2aGUyVCMD4DK0sKUyVBiy0BlbesiGwyxMUouDjweD88++yx79+6tv3ADUEoRCjVqH8A6SYaSu/baa3nsscfqL2hoUpSlN1EPlaeucy9WWsEEUqhoS5QHAFUec8Nzg6FWjJKLA6fTyU9+8hPuvPPOGnl79uxhxowZjB49mtGjR/P++3rD7blz53L77bdHyg0ZMoSCggIKCgro378/F110EUOGDGH79u1ce+21DBkyhPz8fBYvXgxoRTVx4kTOPvtsBgwYwOzZs2NOCr7nnnsYNGgQQ4cOZdasWRQUFDB//nzuvPNOhg8fznvvvVenjBdeeCHHH388ffv25cEHH4zU+/3vf5/c3Nw62+Wpp55iyJAhDBs2jBNO0JtLl5eXc8kll5Cfn8+IESN45513AHj44Yc544wzOPXUU+nZsyf33Xcff//73xkxYgRjx45l/369f+qDDz7I6NGjGTZsGDNmzKC0tLTGdceOHcuGDRsixxMnTmyxy8G5RN9zVZH6zj1YdjBl1w6PsPrLU6doDZlJRsXj3vTiBjZ+k9yHfFCXVvzp9MH1lvvFL37B0KFD+e1vf1sl/de//jVXXXUV48ePZ9u2bUyePJnPPvuszro+//xzHnnkEcaOHcszzzzD2rVr+eSTT9i7dy+jR4+OKIw1a9awYcMGunTpwrhx43j//fcZP358lbpuueUWvvrqKzweD4WFhbRp04bLL7+cnJwcfvMbPYn4/PPPr1XGTz/9lBUrVlBSUsKIESOYOnUqXbp0iavtbr75Zl577TW6du1KYWEhAPfffz8iwrp169i0aROTJk1iy5YtAKxfv541a9ZQXl7OMcccw6233sqaNWu46qqrePTRR7nyyis566yz+PGPfwzAH//4RxYsWMAvf/nLKtedOXMmTz75JDfddBO7du1i165djBo1Ki6ZMw0HtqWfQjedEx3RmEpr0rJlCJalXtkbMgtjycVJq1atuOiii7jnnnuqpL/55ptcccUVDB8+nGnTpnHo0CGKi+vuDHr06MHYsWMBWL58Oeeddx6WZdGxY0dOPPFEPvroIwDGjBlDt27dcDgcDB8+nIKCghp1DR06lNmzZ/P444/jdMZ+Z6lLxunTp+Pz+Wjfvj0nnXQSK1eujLtNxo0bx5w5c3jwwQcJBoOR33PBBXov2gEDBtCjR4+IkjvppJPIzc2lQ4cOtG7dmtNPPx2A/Pz8yG9bv349EyZMID8/n4ULF1ax2MKce+65PP300wA8+eSTnH322XHLnGk4lG5Xhz+FCkZsJVdZ06puLlxhJVeZumkMhswkoyy5eCyupuTKK69k5MiRXHLJJZG0UCjEihUr8Hq9Vco6nc4q423Rc7ays7Pjup7H44l8tyyLQCBQo8xLL73EsmXLePHFF/nrX//KunXrapSpTUaoGWrfkND7+fPn8+GHH/LSSy9x7LHHsnr16jrLR/8eh8MROXY4HJHfNmfOHJ5//nmGDRvGww8/zNKlS2vU07VrV/Ly8vj0009ZvHgx8+fPj1vmjEPpZ8gZKEmZCC7bmpTK1MiglEoLRWvITIwl1wDatWvHueeey4IFCyJpkyZN4t57740cr127FtDbBn388ccAfPzxx3z11Vcx65wwYQKLFy8mGAyyZ88eli1bxpgxY+KSJxQKsX37dk466SRuvfVWDh48SHFxMbm5uRQVHXbr1CYjwAsvvEB5eTn79u1j6dKljB49Oq5rA2zdupXjjjuOm2++mQ4dOrB9+3YmTJjAwoULAdiyZQvbtm2jf//+cddZVFRE586d8fv9kXpiMXPmTObNm8fBgwcZOnRo3PVnGg7bgnEGUmfBeCw9Lij+1Ci5kAJn2G2bBmOThszCKLkGcs0111SJsrznnntYtWoVQ4cOZdCgQRGrYsaMGezfv5/Bgwdz33330a9fv5j1nXnmmQwdOpRhw4Zx8sknM2/ePDp16hSXLMFgkAsuuCAS5PGrX/2KNm3acPrpp/Pcc89FAk9qkxG0u/Okk05i7Nix3HDDDZHxuAkTJnDOOefw1ltv0a1bN157TU8EvvHGG1myZAmgIzDz8/MZMmQI3/ve9xg2bBg///nPCYVC5OfnM3PmTB5++OEqFlx9/PnPf+a4445j3LhxDBgwIJK+ZMkSbrzxxsjx2WefzRNPPMG5554bd92ZiNiWnDuYOkvOLVoGR4qUXDCkImNy4jeWnKFhSDpt4zFq1ChVPUrus88+Y+DAgSmSqGUzd+7cKgEqLY2W8Oxs+Mv3GBzYwLeOjnS6cUtKZFg0dybn8Sr7PV1p97uNzX79ssogi24+n0udr1Li60z2dZuaXQZD0yIiq5VSTRI9Ziw5gyGNCbsrvSp17spw8IsrmBorKqgOW3JWwFhyhoaRUYEnhuSSzqu2GDRhd6UvhUpOVBAE3MHUyBAMqsiYnCuFATiGzMRYcgZDGhOeJ+fBD0F/amSwLTmPKk/JLgBVLDkVgEBls8tgyFyMkjMY0hhRh5WKqmj+uXJKqYjLFIAUBH4EQiFcEiWDWb/S0ACMkjMY0hiHOjzXsqK0+Ze00uH70Qqm+d2FodDhFU8AM43A0CCMkjMY0pjIsl5AeXFhs18/OnwfSImSC4RCh+fJpUgGQ+ZilFycPP/884gImzbVHr5cUFDAkCFDmlSOtWvX8vLLLydUx6WXXspRRx3V5LIaEsdBiEP2LgDlJc1vwYSUiiypBaTEVVhT0Rp3pSF+jJKLk0WLFjF+/HgWLVoUMz/WklsNJbz+Y10kQ8nNmTOHV199NaE6DM2DQwUpkSwAKkqafxcArWBSa0UFQ6qay9QoOUP8GCUXB8XFxSxfvpwFCxbwxBNPRNKXLl3KhAkTmDZtGoMGDQK0sps9ezYDBw7k7LPPjmwV89ZbbzFixAjy8/O59NJLqajQuy337NmT6667jpEjR/LUU09VuW71rWwqKyu58cYbWbx4McOHD2fx4sWUlJRw6aWXMmbMGEaMGMELL7wA6K1tpk+fzsSJE+nbty833XRTpN4TTjiBdu3a1fmb3333XYYPH87w4cMZMWIERUVFKKVq3RboxBNPZPr06fTu3Zvrr7+ehQsXMmbMGPLz89m6dSsAL774IscddxwjRozglFNOYffu3TWuO2vWLF566aXI8Zw5cyKLMR+JCCFKRe8O7k/Bfm4hVVXBpGLLn7CSq1D2jKcUBOAYMpfMmif3yvXwbc0FiBOiUz5MuaXOIi+88AKnnXYa/fr1Iy8vj9WrV3PssccCel3K9evX06tXLwoKCti8eTMLFixg3LhxXHrppfzf//0fV1xxBXPmzOGtt96iX79+XHTRRTzwwANceeWVAOTl5UXWuYym+lY2brebm2++mVWrVnHfffcB8Pvf/56TTz6Zf//73xQWFjJmzBhOOeUUAFauXMn69evJyspi9OjRTJ06Ne4taW6//Xbuv/9+xo0bR3FxMV6vl2effbbWbYE++eQTPvvsM9q1a0fv3r257LLLWLlyJXfffTf33nsvd911F+PHj2fFihWICP/617+YN28ed9xxR5XrhrfRmTp1KpWVlbz11ls88MADccncErEIUWblQAD8KdhmJhz0cYhsWlFCZWkR8S/Slhz0FIIQRWTj4aAZkzM0CGPJxcGiRYuYNWsWoC2NaJflmDFj6NWrV+S4e/fujBs3DoALLriA5cuXs3nzZnr16hVZv/Liiy9m2bJlkXNmzpwZ87qxtrKpzuuvv84tt9zC8OHDmThxIuXl5Wzbtg2AU089lby8PHw+H2eddRbLly+P+zePGzeOq6++mnvuuYfCwkKcTmed2wKNHj2azp074/F46NOnD5MmTQKqbqOzY8cOJk+eTH5+PrfddlvMbXSmTJnCO++8Q0VFBa+88gonnHACPp8vbrlbGg5CVFjakgumYFfsoFI4JUSJ6J0zKkubX4ZAUFtyYRmMu9LQEDLLkqvH4moK9u/fz9tvv826desQEYLBICLCbbfdBtTcNqcxW9fUtvVOPFvZKKV45plnaqz0/+GHHya0jc7111/P1KlTefnllxk3blxkgebaiGcbnV/+8pdcffXVTJs2jaVLl8ZcccXr9TJx4kRee+01Fi9eHHm5OFJxqBB+Vy5UQCgVSs4O+ii3ciDwHZUpcplaEqLUyoEgRskZGkSTW3IicpqIbBaRL0Tk+qa+XrJ5+umnufDCC/n6668pKChg+/bt9OrVi/feey9m+W3btvG///0PgP/85z+MHz+e/v37U1BQwBdffAHAY489xoknnljvtWNtZVN9G53Jkydz7733El5oe82aNZG8N954g/3791NWVsbzzz8fsTDjYevWreTn53PdddcxevRoNm3alNC2QAAHDx6ka9euADzyyCO1lps5cyYPPfQQ7733Hqeddlrc9bdEHIRQrmxCSgilaDK4RUgrOSCQgt3BA3bwi9/KIqjE7A5uaBBNquRExALuB6YAg4DzRGRQU14z2SxatIgzzzyzStqMGTNqjbLs378/999/PwMHDuTAgQP87Gc/w+v18tBDD3HOOeeQn5+Pw+Hg8ssvr/fasbayOemkk9i4cWMk8OSGG27A7/czdOhQBg8ezA033BA5f8yYMcyYMYOhQ4cyY8aMyHjceeedx/HHH8/mzZvp1q1bZH+8+fPnR7bhueuuuxgyZAhDhw7F5XIxZcqUhLYFAr1W5jnnnMOxxx5L+/btI+mrVq3isssuixxPmjSJd999l1NOOQW32x13/S0RByEsl4sSvEgqwvdtJReyfPiVRTAFSi5kKzlxOCnBSyAFFq0hc2nSrXZE5HhgrlJqsn38OwCl1N9ilTdb7SSPhx9+uEqAypFIS3h2iv7UiS2dp9N112t8d9R4hv7i8Wa9/o4DpRTeeTxW6y50PvQJxf3Potv5zftMrfhyH1kPfx8rtyPtirfQavBkss9twbvBH4Fk8lY7XYHtUcc77LQIIvITEVklIqv27NnTxOIYDJmDXjcyhHI4KBNfSjYtDUdXOpzamgxVpEIGbclZlkWJ8qbEbWvIXFIeXamU+qdSapRSalSHDh1SLU6LYc6cOUe0FdcSCClsN51FhfiwUrDNTEgdVjClyoukZFkvrewty2krWuOuNMRPUyu5nUD3qONudlqDSKfdyw2ZQUt4ZgKhkF67UizKHVk4U7BhaHhMznK6KMGTsnFBZ1gG5YUUWJOGzKWpldxHQF8R6SUibmAWsKQhFXi9Xvbt29ciOi1D86CUYt++fXi93lSLkhDaVRgCh0WllZWSnbkPuwqdlCpvSlymwaC25JxObcmJ37grDfHTpPPklFIBEbkCeA2wgH8rpWrOAK6Dbt26sWPHDsx4naEheL1eunXrlmoxEiIQDOITBWIRsLLwVKbGkvMSQiwnZeLFCqQuwjOs5ByVpi8wxE+TTwZXSr0MNHpFYZfLVWVFEYPhSCEUtBdGdlgEnFl4y8uaX4YQOCSEclhUOnw4g981uwzhRaKdLhelyouVAretIXNJeeCJwWCITTCkV4oRh0XQlYNXpUDJhRdoltS5TIMhhSVBnE4XxfhwpiAAx5C5GCVnMKQpgYBff3FYKFc2PiogVP92TMkkaEc24tAuU3ew+RVtxJJzOinDgytU3uztYMhcjJIzGNIUZbsrxWGhPKlZnDg8HobDqV2mqkz7MJtTBlvRisNJpRVuB2PNGeLDKDmDIU0JBLUlJ2Ih7lyg+bfbUXb4vohF0GUrGH/zuiz1fnJ6vmDQqTeQNUrOEC9GyRkMaYoKb6/ksBCvXiC5vLh5dwEIhoi4K5UrNVZUILJ2ZZSiNTsRGOLEKDmDIU0J2uNO4rBwerUlV1ZS2Mwy2IEnDgvcKXKZ2pPixbLAKDlDA8ms/eQMhiOIUNhd6bBw+loBUFHavJZcSIXHwyxwa2uyuRVMIKxoLRehsAxm/UpDnBhLzmBIU0KBw5acy6ctucpmVnLhyEYcThyesJJrXnfl4cATC0mRDIbMxSg5gyFNCc+Tw2HhztKWXKC0eQNPQqEQlihwWFi2y7S593MLj8k5qihaY8kZ4sO4Kw2GNCUY1ErOspw4wkqumRWMipqQ7nDZ1mTJoWbtOAKBoFa0lhOHrWiNkjPEi7HkDIY0JRjlrvTltAYg1MxKLhiZq+fEnaUVTEVZc7tMbUVrWbjssUkzJmeIF6PkDIY0JWSveOJwusgKK7lm3ktNBQ+vuhIeF/Q3s8s0PJXC4bBw+bS7MmiUnCFOjJIzGNKUsJITy0m210WJ8jS7BRMIHHaZerO1FRVsdmsyPF/QSZbXQ5lyE2hma9KQuRglZzCkKcFgJQAOy4XPZVGCr9k3LY3I4HTh82VRqSyC5c0rg4oKwMn26O12As288oshczFKzmBIU8KuQofTjYhQiq/ZNy0N+m1XoWWR43FSipdQM1uTwfBC1WIrOeVtdmvSkLkYJWcwpCnBiLvSBUC5w4fVzLti+yMRni6y3BbF+FDNrORU6PDyZjkei1K8zS6DIXMxSs5gSFPCY3KW01Zy0vz7uUVksJzaklOeZg/fDwUPuyuz3E6K8aLMFAJDnBglZzCkKdHuSkBvWtrMG4aG/BVaBpeHLNtd2dwuUwnocUEsj61ovYix5AxxYpScwZCmqGqWnN+ZhSfUvJacCuhNUi2PjyyXRbHy4mjmrXYIakWL00O2R1ty0syK1pC5GCVnMKQp4ajCiJKzsvGEmndnbvGXaxncWTgcQoXDh7O5rcmAreQsN9kei1LlxWpmGQyZi1FyBkOaogJawTjcPgCCrmx8qpmtqLAlZ8tQ4cjC2dzjgv4oS87tpBgfzkAzt4MhYzFKzmBIV+yV9p0evYeacufgpRLCgRjNga1ocWol57eycAWb15pUUZZclltHV7oCpaBUs8phyEyMkjMY0pRQpVYm3iy9lJVypWAFfr+t0FxefWilYFzQH1a0HkQEv5WFgyCElZ/BUAdGyRkMaUo4uMJjr9eIvc1Mcy7SHFa0YUsu5MrCoyogPHetGYiMAdobpvqtLH1sphEY4sAoOYMhTVG2ghGX7tTD28yUlRxsNhlC1Sy5oEu7Tptz09KIkvPkVpPBKDlD/RglZzCkKRIooxw3OPS/aVjJlTejklP+qpacSoGScwVsZeaxF4h22jKYuXKGODBKzmBIUxyBUsrxRI6dXt3JVzSjkpNqlhzu5reiHOGlzGxLLpQCRWvIXIySMxjSFEegjArxRo5d9u7gzbmfm9t/kADOyHiYeJo3+CUYUrgDJQTFCU6t8FVE0ZpFmg31k5CSE5G5IrJTRNbanx9E5f1ORL4Qkc0iMjlxUQ2GIwtnoIRKx2ElF96Zu7K0+fZS81bup8TZBkQAcNjWVHMtkFxU7ieHMiqduREZUuEyNWQuziTUcadS6vboBBEZBMwCBgNdgDdFpJ9SqvlCsgyGDMdXeYASV7vIsSdb7w4ebKYNQ0MhRXagkPKcdrS20yxvWNEWRTlSm44DpX7ay0H8nrb4wom2ojVjcoZ4aCp35XTgCaVUhVLqK+ALYEwTXctgaJG0Cu6nwtM+cuzNbgNAqKJ53HSFZX7yOEjAe1jRuuzpDBXNpGh3Hiiji+wllNs1kmZ5TXSlIX6SoeSuEJFPReTfItLWTusKbI8qs8NOMxgMcRAMKdqpQgJZHSJpWdnZBJSj2TYt/aawjKNlN8HWR0fSXL7wuGDzKLkdB0rpKvtwtut+ODFsyRklZ4iDepWciLwpIutjfKYDDwB9gOHALuCOhgogIj8RkVUismrPnj0NPd1gaJF8u2snuVKGo3W3SFq210UpnmZz0xVs+5p2Uoyvy6BIWnhcsLmCX77dtYMOchBfp/6RNI/HR0A5zMaphriod0xOKXVKPBWJyIPAf+3DnUDUqxfd7LRY9f8T+CfAqFGjzGJ0BgOwe+taugLZ3QZH0rLdTvbigWba6qZwy/sAtO0zKpLmtiM8A83kMi396kMArG4jI2lZHhcleMkpL8JqFikMmUyi0ZWdow7PBNbb35cAs0TEIyK9gL7AykSuZTAcSRRtXQFA5wGjI2mWQyijefZzC4YUeV+/Srn4cB59eDg92+elXLkIlTe9FfXtwXL67XubSkcWdDssg9elF2kOVpjoSkP9JBpdOU9EhgMKKAB+CqCU2iAiTwIbgQDwCxNZaTDET9tv3qXA6knP9t2rpJeLF2mGbWZee+8Dvh98n297n00P5+E4ymyPRQleVDMouadeX8pPHe9TPugC3K7DUymy3BalykMbo+QMcZCQklNKXVhH3l+BvyZSv8FwJPL5pnUMqVzH2l6X0bNaXoV48QWadqubdVu20vednxJ0uOg2/Y9V8rLdTkqVF9XEQR9Lln/MpHXXEHBl02rS9VXyfC6LMjyEzDw5QxwkY56cwWBIIgde/CN+nBwz5Vc18vwOH62aaNPSsooAb764kNHr5tJWijh05n/IatOtSplsj5PdeMnyN42COVRcxPL/3MKEnQ/jswI4Zi2GVl2qlPG5LcpwoyrMxqmG+jFKzmBIIz585m6OK1nKql4/ZVTHo2vk+y0vrtCBpF4zGFK88+bLtP3fXzldbWCXuzslM5+kwzGja5TN9ujxsOwkK7nSikr+99wDDNx0Dz9gL1vbjKXbzDtwdxlSo6zPZVGmPNBEitbQsjBKzmBIEzZ88DIjP72Jdb6RDD//zzHLBCwf7srkuCuVUny48gMCb9zMKYEVFEobCsbMpeekX4DTHfMct+WgDC9WkhRMhT/Auy8vpseaeXyfAr5y9+XLU+6lz5gf1HpOlttiL17E33wLVRsylyNCySmlKDx4kJL9uygvr8DlFLy+LLxtOtEqJwex18QzGFLFN1s30PX1H/ON1Zmjf/oUTnfsRbMCzizc5eUJX2/jxnV89+JcJpS+Rbl42TLo1/Sdfi1twhOta0FEKHdk4QwkNqc1GFK8/fZrtP3gL0wKreNbqzNbx91Dn4kXRrYWqg2f26IUT7ME4Bgynxap5HZt38r2j14muHM1bQ9upIt/O22llLYxyhYpH/sd7TjobE+ppwOVWZ0gtxNW66742nWmdU42DqcLHC4kFCQUKEcFKgj59V/lr0AF/ahgJSrgRwX9EKzUf0N+VDBIEAchBUGEkBKCSkAEJQ4QByCRxWcRIVrlCrpjEdThhJZGHLMjVYwyKo4Ta5wnUvOsWJXHdf36iVkmRmKvrY+iEByzn6R12/Y1C9iEnFl4VeMtuW93f8OWRb9n7IEl9BEHm3pdSL8ZN9Ivt0P9J9tUOnw4ExgXXLF2HUUv3cip/rc5KK3YOupGep92BeKMbzXMbLeTMuXB4W+6AJy9+/bxxSfvU7F9Nd59n+Er+4a8wHfkqiLcyo+LABW4KRMf5Q4f5c5WVDpb4fe0IeRtg/ja4shqhyO7HUFPG3DnYjnAIaBCQZQKoUIhVCgIIb/eaT0UQAUDqFAQCQUgFESpQOR7+KNQKKWf/xCCCnG4/6D643W4XzmcX72HqXZeVB9UpazUPK/MexQTp1/SmCZuNlqUkvtq40eopy+jd6iAzkAxPra7j2HTUVOQVp2RnE64PB4CIQhUlOAo3YsUf4ez9DuyKr7jqJJPySt+B9d3ZraDoXkpVR62Tn6U/D6D6ywXcmbhpRJCoXotnmjK/UHeevZBxmz8f3yPIjZ0nMYx59zM4A49Giyr38rC0wglt233flb950+cVrgYS0Js7f9jep95A629res/OYpsj5NSPFhJDMDxB4Ks/WgZB9b+l057PmBQcBNjJQTAXtqyz92F3blD2OFpC04vAXHiCFZARTEOfzEu/yF85YW0Kd1GK1VMK0pxSMtf2+JDNRCMkms+8rr0YpurDR92u5KOx07l6P7HMtBq4JoIoRDlh76jcPc2Du37hqLScgj4IRTQVpfTA04P4vLgcHoRy43D5UacbiynC4fTg+Vy47CPLcvC5RAsUThFYYnCIYBSKBXSb2cqpN/sEFCHLRT9tqbdrYrDb1UKhbQwk676r4n162K5lWucF+PE6PfS2k6MfV58MsR1XrXU6tW4vDnk++p2FeqCWfqvvxTCe7vVw7pNmznw9JVMDXzANu8xBM96mmH9G79eeqUzB6+/RD+gcbRHKKR45bX/0n/F9ZwlO/iy46l0PWcefTr0btT1czxOynDjDJbHLUMsAsEQa9atZ9//HqXf7pcZbS/KVODux7ruc2jVbwJdBx1P+7adqd22jl3vgZJyDhbupaJoP1J+ACqKCYYghCAOQcSBOCzEsrSXyOFELKdOczhxWPax5dTHDidiuRCHA4dDcIjgEIWI4EDFfi5t90MV30UVl0SsdIUKf6+3LPS1XA1omdTQopRcqzbtGfK7dxOrxOHA26YTndp0olNyxDIYkoc7fiVXXhngjSfuZsLWO+gnlXw57Df0nnY9JNgxBVw5OMuC4C87LE8tbNu9nzWP/pYfFj9NobM9+07/D72HT03o+l6Xg3K8uvMOlIPLV/9JNv5giDVbtrHjg8V037GE0Uov0rTVN5SNgy6nzwnn0rN1pxrzExuC03KQ1yqLvFZHAzUjZA3NS4tScgZDS0fsHbory4px5xxVa7n1G9dT+swvOT34MQXZ+Thn/5PeXQfVWr4hBN3h/dyKalVyoZDilVdfZMCH1zFdvuHLo2fQ6/y/I742CV9fRAg6bcVWWVqrkiv3B3n45WUEN76Iu0Nf3OXf0XnvB5ygVjNG/Hzn6srnfX/J0RMvoc9RfRKWy5CeGCVnMGQQ4tF7qVWUHMIdI1akvNLPuwtvYVzBfTgEPj/2RvpOvapB43f1oSJK7hDkdqyRv233XtY++lumFj+rrbfpT9B76JSkXR+g0sqBIFBeCNl5NfJXf7Wbjxf9hYsqFpMlFXqzL6DIasvuXjM56vgLOKr3WI4ykdUtHqPkDIYMwvLam5aWHqT6CN76NR/Ai1cxObSJz3NH0+mCf9C3U/ItFBWeZlBedU85fzDES/99jqEf/5Fp8g1be5xD7/PvQBoYWBIPJe48KAOKd0Pe4d94sNTPM88+wbgtt/Bjxw72dj+VrB/+SbtWs/LIbdebXKPYjiiMkjMYMgixl7iq2L8tkrZj+9d8/uxNjN//PMWSzZbj59Fv0k8aHZBRHyGfbTmVfAfowKgPVn9M5Wt/4gz/e+x1dWT/tCfpM3Ryk1wfwO876rCSAyoDIV5d/j+c7/6NS9V7HPB2omza47QfcnqTyWDIDIySMxgyiHbd+gFQ8s3nrPtoKYXvP8SoAy/TGT8bOk6jz3m3069t7WN1ySDQ9hgACgvW8HFBOdaqBYyrfJ+AOPli0C84Zvrv4478bCxZed1gPxTt2srSLxbj/GQhPwi+R0gs9oz4FR2m/K7eoBjDkYGoOCbCNhejRo1Sq1atSrUYBkPaUlwRYPf/y6ePfANAhXLxWftT6Xr6DXTomZzAkvpYVbCftv/+Hn0cuwAoIYvtvc6hz7RrcbXtXs/ZyWHBe18y7o1pDHBsB6BMfOzpdx7dp14bsXYNmYOIrFZKjaq/ZCPqNkrOYMgs3l/+DtbaR/F2H0HfE88nu01DZnEljlKKF996h45fPk+HfqPpdfwZSD3LgSWbikCQp15+g4F7XqHbwDF0HHWmsdwyGKPkDAaDwdBiaUoll7y4YoPBYDAY0gyj5AwGg8HQYkkrd6WI7AG+TkJV7YG9SainOTCyNh2ZJG8myQqZJW8myQqZJW+yZO2hlIp/K4wGkFZKLlmIyKqm8u8mGyNr05FJ8maSrJBZ8maSrJBZ8maCrMZdaTAYDIYWi1FyBoPBYGixtFQl989UC9AAjKxNRybJm0myQmbJm0myQmbJm/aytsgxOYPBYDAYoOVacgaDwWAwGCVnMBgMhpZLi1JyInKaiGwWkS9E5PpUyxONiHQXkXdEZKOIbBCRX9vpc0Vkp4istT8/SLWsYUSkQETW2XKtstPaicgbIvK5/bdtGsjZP6r91orIIRG5Mp3aVkT+LSLficj6qLSYbSmae+zn+FMRGZkGst4mIptseZ4TkTZ2ek8RKYtq4/nNKWsd8tZ670Xkd3bbbhaRptsPKH5ZF0fJWSAia+30dGjb2vqttHx2Y6KUahEfwAK2Ar0BN/AJMCjVckXJ1xkYaX/PBbYAg4C5wG9SLV8tMhcA7aulzQOut79fD9yaajljPAffAj3SqW2BE4CRwPr62hL4AfAKIMBY4MM0kHUS4LS/3xola8/ocmnUtjHvvf0/9wngAXrZfYaVSlmr5d8B3JhGbVtbv5WWz26sT0uy5MYAXyilvlRKVQJPANNTLFMEpdQupdTH9vci4DOga2qlahTTgUfs748AZ6ROlJh8H9iqlErGyjlJQym1DNhfLbm2tpwOPKo0K4A2ItK5WQQltqxKqdeVUgH7cAXQrbnkqY9a2rY2pgNPKKUqlFJfAV+g+45moS5ZRUSAc4FFzSVPfdTRb6XlsxuLlqTkugLbo453kKZKRER6AiOAD+2kK2zT/t/p4P6LQgGvi8hqEfmJndZRKbXL/v4t0DE1otXKLKp2EunatlB7W6b7s3wp+m09TC8RWSMi74rIhFQJFYNY9z6d23YCsFsp9XlUWtq0bbV+K2Oe3Zak5DICEckBngGuVEodAh4A+gDDgV1od0W6MF4pNRKYAvxCRE6IzlTaP5E2c1BExA1MA56yk9K5bauQbm1ZGyLyByAALLSTdgFHK6VGAFcD/xGRVqmSL4qMufdRnEfVF7S0adsY/VaEdH92W5KS2wlEb0vczU5LG0TEhX5QFiqlngVQSu1WSgWVUiHgQZrRdVIfSqmd9t/vgOfQsu0Oux/sv9+lTsIaTAE+VkrthvRuW5va2jItn2URmQP8EJhtd2zYbr999vfV6DGufikT0qaOe5+ubesEzgIWh9PSpW1j9Vtk0LPbkpTcR0BfEellv9HPApakWKYItr99AfCZUurvUenR/uozgfXVz00FIpItIrnh7+jAg/XoNr3YLnYx8EJqJIxJlTfhdG3bKGpryyXARXak2ljgYJRrKCWIyGnAb4FpSqnSqPQOImLZ33sDfYEvUyPlYeq490uAWSLiEZFeaHlXNrd8MTgF2KSU2hFOSIe2ra3fIoOe3ZRGvST7g47s2YJ+4/lDquWpJtt4tEn/KbDW/vwAeAxYZ6cvATqnWlZb3t7oKLRPgA3h9gTygLeAz4E3gXapltWWKxvYB7SOSkubtkUr312AHz1O8aPa2hIdmXa//RyvA0algaxfoMdaws/ufLvsDPv5WAt8DJyeJm1b670H/mC37WZgSqpltdMfBi6vVjYd2ra2fistn91YH7Osl8FgMBhaLC3JXWkwGAwGQxWMkjMYDAZDi8UoOYPBYDC0WIySMxgMBkOLxSg5g8FgMLRYjJIzGAwGQ4vFKDmDwWAwtFiMkjMYDAZDi8UoOYPBYDC0WIySMxgMBkOLxSg5g8FgMLRYjJIzGAwGQ4slbZWciPQUEWXvs2RoQkRkjogsb6Zr+UTkZRE5ICK/bY5rVrt+gYic0gzXWSoil9WSZ57tJqKu+2vufeYhIjNF5KCIfCAiXRpTR9oqOUPjEJG5IuIXkeKoT7Mrkzo4BRgKdFdKzQsn2h1Qz5RJlUbY93BuA8qfLyJfi0iJiDwvIu3qKPtPEdksIiF7E9TovItFZLWIHBKRHSIyL7ozFpF2IvKcfZ2vReT8hsohIn1FpFxEHm/A71sqIhPjLZ/JNPG9H27f31L77/CovGtFZL2IFInIVyJybbVzvyciK+38T0VkfLX8DiLyH1shHRCRhVF5D4tIZbU+KbxPXljpR+fdED5XKbUYaG8fnhtvu0TTZErOvKmklMVKqZyoz7z6T2k22gEFSqniVAuSCPamkCl/SRSRwcA/gAuBjkAp8H91nPIJ8HP0/mTVyQKuRHcqxwHfB34TlX8/UGlfZzbwgH39hshxP3qD44wlE++96I2kXwAeB9oCjwAv2Omg94G7yM47DbhCRGbZ57YDXgRuA9oA84AXRaRt1CWeBb4FjgaOAm6vJsK8an1SsFp+m6i8P0dnKKX86H1C8+pvlZok9UbZb+PXicinQImIOEVkrG1qForIJ9FvZPYb2t/sN4RDIvJCbW8iInKJiHxmv0l8KSI/rZY/XUTW2vVsFb2TMSLSWkQWiMguEdkpIn8Jv0XU8Tv6iMjbIrJPRPaKyEIRaROVt19ERtrHXURkT/h3icg0Edlg/96lIjKwWvv8xn4TOigii0XE2/CWbjgicr3dLkUislFEzqylnIjInSLynd2W60RkiJ3nEZHbRWSbiOwWkfki4mugKE4gVI+seSLyon39j+x7tjwqX4nI5SLyud3O94uI2Hm13rsoRtttcEBEHgrfAxFpKyL/te/nAft7t6jrLhWRv4rI++gOpXc9v7WHiLxvt/nrItK+Wv5suy33isgf6qmrNmYDLyqlltkvDjcAZ4m9q3t1lFL3K6XeAspj5D2glHpPKVWplNoJLATGQWR3+BnADUqpYqXUcvRmpBfGK4fdaRaiN9tsFKLd3Y/Y9+czEfmtiOyopexA0VbJeVHJR+q9n4j+37tLKVWhlLoHrdhOBlBKzVNKfayUCiilNqMV4jj73O8B3yqlnlJKBZVSjwN7gLMARGQS0B24Vil1UCnlV0qtaeRvqo2QLX/DSfIusgXonWO7Az6gK3q35h+gFeqp9nEHu/xSYCcwBL2z8zPA43ZeT/SOtE77eCrQB31jTkQ/aCPtvDHAQbt+h33dAXbec+i3nWz0G8ZK4Kf1/I5j7Lo8QAdgGfrhCOf/GNiIfvN9DbjdTu8HlNjnuoDfondUdke1z0qgC9qi+YxquwFX25G3sI7P+FrOmxtuw2rp59jXdQAzbTk723lzgOX298nAavQbmwADo8rdie7Y2gG56Le7vzXg+XChd2yuIV+1ck/YnyxgEHpH6uVR+Qr4ry3j0eh/uNPivHcFwHr0M9oOeB/4i52Xh+7Is+zf9xTwfNS5S4FtwGD0P5yrjt+wFL07cj/0/8JS4JZqz/aDdt4woAIYWEtddd3vF4DrqqUVA8fW08bLgTn1lHk+SuYRQGm1/N+gO9l65QBaod/Gu9X2jMb5DN0CvIu2OLqhd6zeUe3+ngKMtO/VD829VwBXAa9US/svcE2MsgKswe6bgB8CG6uV+Ry40/5+I7offBzdv38EnBhV9mFgv/1ZDcyIygu3x070TukPAe1jyHSTfd+zG/zMNOZBq+PmFgCXRh1fBzxWrcxrwMVRD8MtUXmD0O4Qi2pKrpZ/wF/b3/8RbvBqZTraD5AvKu084J0G/q4zgDXV0pagt3f/FPDYaTcAT0aVcdg3b2JU+1wQlT8PmJ/kezDXbsPCqE+XGOXWAtPt73M4rORORndGYwFHtQe/BOgTlXY88FWccg0H/MBu4Jg6yll2uf5RaX+hppIbH3X8JHB9PPfOvgeXRx3/ANhah8wHoo6XAjfH+XuXAn+MOv458Kr9Pfxsd4vKXwnMasT9fotqL0rRz1wd59Wp5IBL0Z1Oe/t4AvptPrrMj4Gl8cgB3I3dIZOYkvsSmBx1fBk1ldxNtuwTq517xN57dN/0RLW0hcDcGGVvQru1w/1aHrofOQ/9onox2rL6h53/T/s3/cjOD1vs4WdnpF2H027zImCcnZcDjLLzOgJPA6/FkKktul8KAmc1pJ2awq+8Pep7D+Ac26VUKCKFaAulcy3lv0Y3UnXTHhGZIiIrbFdhIbqxwuW6o9+cqtPDrm9X1PX/gbboakVEOorIE6Ldm4fQbyjVZXoQbYHeq5SqsNO62L8BAKVUyP59XaPO+zbqeyn6JiebJ5VSbaI+34jIRaLdueF2GEKMdlZKvQ3chx47+U50oEIrtFWUBayOquNVO71elFJr0W/I/0OP+9RGB/QDH/1cbI9RLmY7xnnvqj9zXexzs0TkH6IH8g+hrcA2UtW9HUuW2qjvXifjWShGW0nRtEJ3JI1CRM4A/gZMUUrtjfM6teaLDnA4Be0JSJQu1P9sXA58oJRaGiPvSL33cZUVkSvQY3NTw/2aUmofMB24Gv2SehrwJvpFAqAMPc6+QGlX5RPothpnn/+xUmqf0q7Ql9HK9Sw7r1gptcrO2w1cAUyK4XK9BDgEtFNKPVtfw0TTFEpORX3fjrbkojvcbKXULVFlukd9Pxr9Fr83Kg0R8aBdmbcDHZVSbYCX0dZF+Dp9YsiyHW3JtY+6fiul1OB6fsP/s39HvlKqFXBB1LUQkRzgLmABMFcOjyN+g1as4XJi/76d9VyvBiIyQapGHFX/TGhAXT3QSvkKIM9uv/XRvykapdQ9Sqlj0ZZ1P+Ba9D0pAwZHtWVrpVTc/5xKqXLgFbve2tgDBNCuqDDdaykbizrvXYz6jkbfN4BrgP7Acfa5J9jp0edHP9/pwAa0ywsAEemNdtVuaUxloseyHwROV0qti8raAjhFpG9U2jD7+vXJMRFtwWwTkW/Rbs4ZIhIr+KU+dlH/s3E5cLSIxFKqR+q93wAMtfukMEM5fP8QkUuB64HvK6WqjHMqpd5VSo1WSrVDj8MOQFugoL1Z1dumrrZS1NL3RJ1XXTcNRHvgDtZRb0yaOkLoceB0EZksIpaIeEVkYvSALnCBiAwSkSzgZuBpVTPyxo2+eXuAgIhMASZF5S8ALhGR74uIQ0S6isgApdQu4HXgDhFpZef1EZET65E7F/3mc1BEuqI7+WjuBlYppS4DXgLm2+lPAlNtOVzof5wK4IP6Gqo6SgcA5NTxea8B1WWjH549oIN40JZcDURktIgcZ8tfgg5QCNlW6YPAnSJylF22q4hMjjpXSf2h3hXo+xkT+94/i355yBKRAeg3y3ip794B/EJEutkvJ38AFkedWwYU2nl/asB1U8VC9P/YBNHBITcDzyqlYlpyIuK2gy0EcNn/kw4772S7vhlKqZXR5ymlStD35WYRyRaRcei3+8fikOOf6JfQ4fZnPvr/ZrJ93XAYec84fu+TwO9EB4p0Rb+4VacIbW2cICK3VMs7Uu/9UrSr71eiA8jC7fY2gIjMRr8gnqqU+rL6ySIyQkRctlfndmC7Uuo1O/s5oK3oKSiWiJyNfhF53z73bBHJsfvfSegXzyV23nEi0t/OywPuQbvAqyszF7rvaDBNquSUUtvR/wi/R3ew29GdTvR1H0MPTH4LeIFfxainyE5/EjgAnI/dSHb+SrQ5eyc6AOVdDltUF6E71Y32uU9T1V0ai5vQfuSD6H/GiHksItPR/0A/s5OuBkaKyGylo5IuAO5FWz6no9+IK+u5XpOilNoI3IF2Fe4G8rEfwBi0QiuzA2h3zj506DDoMdYvgBW2S+dN9NsvItId3bmsq15hNULU/9xdAbRGPxOPAYuI/wGv9d5F8R/0y8+XaDf3X+z0u9DBAHuBFWh3bMqpy3JXSm1AWy4Lge/QnfXPo859RUR+H3XK6+jO/Hto5VPGYavlBnS7vxzlMXgl6tyfo9vnO/Q9+Zl9/TrlUEqVKqW+DX/QLyHlSqk9dr3d0c9aPB6Pm9Fusq/Qz9/TxHg2lFKF6ACkKSISHZJ+RN57uw86A90fFqLHXM+I6pv+gh43+yjq3odf3kEH0e1F9+GdgUh0tlJqPzANbaEfRFuD06Nc3b9G39tCdF/y4yhXcm90WxehvUsV6LG/6ljUE5VdG2IP6qUEEVmKHoD+V8qEMCQFEbkA7cr8XT3lJqEt/AH2P0c8dd8KdFJKXZy4pIZ0Q0T+COxRSv2jEef+DB20UZ93xpChiJ6mtBxYoJSqaw5oTFI+odHQMlBKPV6fgrNZCrwBbBCR38QqICIDRGSoaMago7aeS560hnRCKfWXeBWciHQWkXG2e6s/ekjAPBstFBE5F23l70Z78hrMEbsqiW2KXxAj63Gl1OXNLc+Rgu0emV1PsVy0O6wL+uG+Az0nKK0QkdpWbZnSwDFTQ/y40RHSvdDuryeoe4WXJsHc++ZBKfUkjVRuYVLqrjQYDAaDoSkx7kqDwWAwtFjSyl3Zvn171bNnz1SLYTAYDIZmZPXq1XuVUnEtLNFQ0krJ9ezZk1WrVqVaDIPBYDA0IyLydf2lGodxVxoMBoOhxWKUnMGQRuw+WMbyTQ1eBc5gMNSCUXIGQxrx9kM3Mv6JQZQd3JdqUQyGFkFajcnFwu/3s2PHDsrLa+zxaDDUitfrpVu3brhcrlSL0iAGHlgKAvu+WkO34aekWhyDIeNJeyW3Y8cOcnNz6dmzJ1UX0DYYYqOUYt++fezYsYNevXqlWpwGUeRsA0EoK9xTb1mDwVA/ae+uLC8vJy8vzyg4Q9yICHl5eRlp/Vda2QBUlBSmVhCDoYWQ9koOMArO0GAy9ZkJOPX2fP7SwtQKYjC0EDJCyRkMRwoBl1ZyQaPkDIakYJRcHIgI11xzTeT49ttvZ+7cuakTqB6WLl3KBx80eJ/WCGvXruX4449n8ODBDB06lMWLF9d/kiEpuCz9Lyllce1CZDAY6sEouTjweDw8++yz7N27t/7CDUApRSjUqH0A6yRRJZeVlcWjjz7Khg0bePXVV7nyyispLCxMnoCGWhEVBMBRWdsi940jGDILsRuOTIySiwOn08lPfvIT7rzzzhp5e/bsYcaMGYwePZrRo0fz/vt6w+25c+dy++23R8oNGTKEgoICCgoK6N+/PxdddBFDhgxh+/btXHvttQwZMoT8/PyI1bR06VImTpzI2WefzYABA5g9ezaxdoy45557GDRoEEOHDmXWrFkUFBQwf/587rzzToYPH857771Xp4wXXnghxx9/PH379uXBBx8EoF+/fvTt2xeALl26cNRRR7FnT81ov6eeeoohQ4YwbNgwTjhBby5dXl7OJZdcQn5+PiNGjOCdd94B4OGHH+aMM87g1FNPpWfPntx33338/e9/Z8SIEYwdO5b9+7Xl8uCDDzJ69GiGDRvGjBkzKC0trXHdsWPHsmHDhsjxxIkTW8xycGElZwVKklbnXS9+yP/76x+TVt/Gbw4x779rYz6PjWFvcQXzXvmMikAwKfUVlfv5+5IPObjfRKgaMmAKQTQ3vbiBjd8cSmqdg7q04k+nD6633C9+8QuGDh3Kb3/72yrpv/71r7nqqqsYP34827ZtY/LkyXz22Wd11vX555/zyCOPMHbsWJ555hnWrl3LJ598wt69exk9enREYaxZs4YNGzbQpUsXxo0bx/vvv8/48eOr1HXLLbfw1Vdf4fF4KCwspE2bNlx++eXk5OTwm9/oPUnPP//8WmX89NNPWbFiBSUlJYwYMYKpU6fSpUuXSP0rV66ksrKSPn361PgdN998M6+99hpdu3aNWHr3338/IsK6devYtGkTkyZNYsuWLQCsX7+eNWvWUF5ezjHHHMOtt97KmjVruOqqq3j00Ue58sorOeuss/jxj38MwB//+EcWLFjAL3/5yyrXnTlzJk8++SQ33XQTu3btYteuXYwaNarONs8URAUAsPw1lXtjOW7llRxvbSS4/ydY7XokXN+/nnqBvx+4gn1dHiVv5PSE67vz9c389dMJbN83m+4XJL413Iuf7OKK1VNwfxyEuQcTrs+Q2RhLLk5atWrFRRddxD333FMl/c033+SKK65g+PDhTJs2jUOHDlFcXLerqUePHowdOxaA5cuXc95552FZFh07duTEE0/ko48+AmDMmDF069YNh8PB8OHDKSgoqFHX0KFDmT17No8//jhOZ+x3lrpknD59Oj6fj/bt23PSSSexcuXKyHm7du3iwgsv5KGHHsLhqPmojBs3jjlz5vDggw8SDAYjv+eCC/RetAMGDKBHjx4RJXfSSSeRm5tLhw4daN26NaeffjoA+fn5kd+2fv16JkyYQH5+PgsXLqxisYU599xzefrppwF48sknOfvss+ts70xCbPe1K5g8S+4Yxw4ASgqT427PLdoKgPXpoqTUV1ms5er+xcKk1AfgluRYhYbMJ6MsuXgsrqbkyiuvZOTIkVxyySWRtFAoxIoVK/B6vVXKOp3OKuNt0XO2srOz47qex+OJfLcsi0AgUKPMSy+9xLJly3jxxRf561//yrp162qUqU1GqBlqHz4+dOgQU6dO5a9//WtEIVdn/vz5fPjhh7z00ksce+yxrF69Ou7f43A4IscOhyPy2+bMmcPzzz/PsGHDePjhh1m6dGmNerp27UpeXh6ffvopixcvZv78+XVeN5MIuyvdweRZckUqiw5yiPKivbRKQn2W0wkBCAb8SagNWruSOy6d5baSWp8hszGWXANo164d5557LgsWLIikTZo0iXvvvTdyvHbtWkBvG/Txxx8D8PHHH/PVV1/FrHPChAksXryYYDDInj17WLZsGWPGjIlLnlAoxPbt2znppJO49dZbOXjwIMXFxeTm5lJUVFSvjAAvvPAC5eXl7Nu3j6VLlzJ69GgqKys588wzueiii+q0krZu3cpxxx3HzTffTIcOHdi+fTsTJkxg4UL9Rr5lyxa2bdtG//794/o9AEVFRXTu3Bm/3x+pJxYzZ85k3rx5HDx4kKFDh8Zdf7oTVnLeUBKVHFkAVBxKzhhVrqWVW7KUXLaV3KCYKu9tgYqk1m3IPIySayDXXHNNlSjLe+65h1WrVjF06FAGDRoUsSpmzJjB/v37GTx4MPfddx/9+vWLWd+ZZ57J0KFDGTZsGCeffDLz5s2jU6dOcckSDAa54IILIkEev/rVr2jTpg2nn346zz33XCTwpDYZQbs7TzrpJMaOHcsNN9xAly5dePLJJ1m2bBkPP/www4cPZ/jw4RHFeOONN7JkyRIArr32WvLz8xkyZAjf+973GDZsGD//+c8JhULk5+czc+ZMHn744SoWXH38+c9/5rjjjmPcuHEMGDAgkr5kyRJuvPHGyPHZZ5/NE088wbnnnht33ZmAI6zkVFnS6ixWPgACxclZ9DnXUQlAKEkKxOdMrpLzB6Pqq0hulKoh85BkRUglg1GjRqnqUXKfffYZAwcOTJFELZu5c+dWCVBpaWTis/PerWcxoewtKnHinpscpfTGDSdzqrWaL4ZewzFn3Vj/CfXw2F3Xc2HhA+xuPYyOVy1LuL5/PPMyP113nj5IQqDI4o+2MfOlfH3wq7XQLrPWLz0SEZHVSqkmiR4zlpzBkEZExuQIoJJkKfnRY1TBsqJ6SsaHx6HH0Bz+5ATHqOix5iS8dAei5wQmeb6hIfPIqMATQ3JJ51VbjlQcHI4KrCgtwtsqfldvbbhEd/oqSa67sEvVCibJpRqqPPzdXwburISqqzLxvSI5it2QuRhLzmBII8KWHEBpUWFS6vQ47Dork9Phq1BYySXH0lTBKEsuCZaXP3pSuVFyRzxGyRkMaYRDRU07KUnORGan2O7FyiTNvQtppeQMJSlyMRSl5JKglFQwKurTKLkjHqPkDIY0wqEOd/jJUnJh96LDn6TxKXv+pzuUnP36qiilJFhyIaPkDFEYJWcwpBESZclVliRnCTvLVnLOJK2HGV56zIUfApX1lI6DJFtyoSh3pTJK7ojHKLk4ef755xERNm3aVGuZgoIChgwZ0qRyrF27lpdffrnR54cnjw8aNIjBgwdz9913J1E6Q6JYBClBr0zjT1I0ZDiYxZWsVVRCyR1Do4rllXh9wSj5guXJXevWkHkYJRcnixYtYvz48SxaFHu9vlhLbjWU8PqPdZGoknM6ndxxxx1s3LiRFStWcP/997Nx48ZG12dILqJClIjeODWQLCWX7KXCooJjkqHkJMlKM9r96S8zUwiOdIySi4Pi4mKWL1/OggULeOKJJyLpS5cuZcKECUybNo1BgwYBWtnNnj2bgQMHcvbZZ0e2innrrbcYMWIE+fn5XHrppVRU6EH7nj17ct111zFy5EieeuqpKtetvpVNZWUlN954I4sXL2b48OEsXryYkpISLr30UsaMGcOIESN44YUXAL21zfTp05k4cSJ9+/blpptuAqBz586MHDkSgNzcXAYOHMjOnTtr/OZ33303strJiBEjKCoqQilV67ZAJ554ItOnT6d3795cf/31LFy4kDFjxpCfn8/WrXpB3xdffJHjjjuOESNGcMopp7B79+4a1501axYvvfRS5HjOnDmRxZiPBBwEKbPs3cGTYIUopbBI7lJh0RGgSVlRJErJBZLwm0NR0ZrBMmPJHelk1jy5V66Hb2suQJwQnfJhyi11FnnhhRc47bTT6NevH3l5eaxevZpjjz0W0OtSrl+/nl69elFQUMDmzZtZsGAB48aN49JLL+X//u//uOKKK5gzZw5vvfUW/fr146KLLuKBBx7gyiuvBCAvLy+yzmU01beycbvd3HzzzaxatYr77rsPgN///vecfPLJ/Pvf/6awsJAxY8ZwyimnAHqbnPXr15OVlcXo0aOZOnVqlS1pCgoKWLNmDccdd1yNa99+++3cf//9jBs3juLiYrxeL88++2yt2wJ98sknfPbZZ7Rr147evXtz2WWXsXLlSu6++27uvfde7rrrLsaPH8+KFSsQEf71r38xb9487rjjjirXDW+jM3XqVCorK3nrrbd44IEH4ryZmY+lgpQ5cyGQnPGkYEjhRI/zJWupMEcTWnL+kkOJd0rRSq7cjMkd6RhLLg4WLVrErFmzAG1pRLssx4wZQ69eh5cN6t69O+PGjQPgggsuYPny5WzevJlevXpF1q+8+OKLWbbs8HJIM2fOjHndWFvZVOf111/nlltuYfjw4UycOJHy8nK2bdsGwKmnnkpeXh4+n4+zzjqL5cuXR84rLi5mxowZ3HXXXbRqVXNt+nHjxnH11Vdzzz33UFhYiNPprHNboNGjR9O5c2c8Hg99+vRh0qRJQNVtdHbs2MHkyZPJz8/ntttui7mNzpQpU3jnnXeoqKjglVde4YQTTsDn88X87S0RIUjQmUWlspIShBGMsuRcBJKyYHG0JZcUJaKi3YvJteSUWfHkiCezLLl6LK6mYP/+/bz99tusW7cOESEYDCIi3HbbbUDNbXNq27qmLmrbeieerWyUUjzzzDM1Vvr/8MMPa5XF7/czY8YMZs+ezVlnnRXz2tdffz1Tp07l5ZdfZty4cbz22mt1/oZ4ttH55S9/ydVXX820adNYunRpzBVXvF4vEydO5LXXXmPx4sWRl4sjBUuFCIhFKb4kBWEonFRzLzoTW0XFEYpalaXkIImtT1LVkgskQWmqUHIDWQyZjbHk6uHpp5/mwgsv5Ouvv6agoIDt27fTq1cv3nvvvZjlt23bxv/+9z8A/vOf/zB+/Hj69+9PQUEBX3zxBQCPPfYYJ554Yr3XjrWVTfVtdCZPnsy9995LeKHtNWvWRPLeeOMN9u/fT1lZGc8//zzjxo1DKcWPfvQjBg4cyNVXX13ntfPz87nuuusYPXo0mzZtSmhbIICDBw/StWtXAB555JFay82cOZOHHnqI9957j9NOOy3u+lsCDoIosSiRLKwkzGsLhhQWUfu1JWHVk+ilxypLE5/LF63kQkkItlFRXg9J1gR4Q8bS5EpORE4Tkc0i8oWIXN/U10s2ixYt4swzz6ySNmPGjFqjLPv378/999/PwIEDOXDgAD/72c/wer089NBDnHPOOeTn5+NwOLj88svrvXasrWxOOukkNm7cGAk8ueGGG/D7/QwdOpTBgwdzww03RM4fM2YMM2bMYOjQocyYMYNRo0bx/vvv89hjj/H2229HAkvC0Zrz58+PbMNz1113MWTIEIYOHYrL5WLKlCkJbQsEeq3Mc845h2OPPZb27dtH0letWsVll10WOZ40aRLvvvsup5xyCm63O+76WwKWCqIcFuXiw0rCvLZQCJwSpDQyLSFxd6CoEMVoF7K/NPH6HLaSO6iyCCVjnpztrgwoB5KkRaQNmUuTbrUjIhawBTgV2AF8BJynlIoZs2622kkeDz/8cJUAlSORTHx2CuYO5FCbgVjFu8DpYfD1SxOqb19xBZW3DcByCEepfRSd/19y+01IqM5X5v6AEWyhE3v45thr6XL6HxOq71+3XctlJf9kW6gD3i6DOOryJQnVd9sjT3HtV5exT+Xi9XrJ/t0XCdVnaHoyeaudMcAXSqkvlVKVwBPA9Ca+psGQsYTdlZVWFp5g4lZIUOkxuVJHLpCcpcKEEJUOD5XKIpSEMbRwIMtBspPiXlS2ZXhIZeEKJG+HdUNm0tRKriuwPep4h50WQUR+IiKrRGTVnj17mlicI4c5c+Yc0VZcpmIRQomF38pOyuTtUEivolLu1EqusjRxpWSpIDiclOBLrpJT2clZX9N2Vx4iR6/ykkYbQxuan5QHniil/qmUGqWUGtWhQ4fayjSzVIZMJ1OfGYcKoRwWQVc2PpW4kguEQjgJUeHU00SSMoZGEHFYevmxJASyhANPDpKdlHHI8OTyEkcOggK/seaOZJpaye0Eukcdd7PT4sbr9bJv376M7bQMzY9Sin379uH1elMtSoOxCII4Cbpy8SVh8nbYkvO7tZILJCHwxKFC4HBSrHyQBPdi2JIrIicpi0iH96crc+iVY8w0giObpp4n9xHQV0R6oZXbLOD8hlTQrVs3duzYgXFlGhqC1+ulW7duqRajwTjtMTnlyiGHMq2lHI1/F9VjciFC7tYASXEvOgjisLQll5OMFU9UgBAOKqys5KyvaSvNcmcOVGKvytIx8XoNGUmTKjmlVEBErgBeAyzg30qpmstc1IHL5aqyoojB0JJxoN2Vyq3H0ALlRTizWje6vmAohEUQhyebCuVMOERfKRU1JmfhSEKIviMUJCQWfkc27mA5hILgsBovo+2urHDmRik5w5FKk694opR6GWj8svkGwxGERQjEgcOrXW2lRQdplYiSCyqcEsLlcukxtASVnJ5crkCclIsLZ+C7hOoD7a4MYRFwZkMQrZS8jf/N4cATv8ters64K49oUh54YjAYNCF7dRLlcOLw6Q66tPhAQnUG7Q7f7XZTonwJh+gHlcKSIMrhoNLKwpWEaQ4OpS25gCtJY2j2smMBl60ozaonRzRGyRkMaUIgpBdTFoeF06vdlRXFic1rCwX0Oo5Op7bkEg3RD4XC44ZOey5f4mNoDhUgJBbKba/hmqh70d65POixLbkkRIAaMhej5AyGNCFkT9xGnJFxuIoEQ/5D4XUhLSdljiysBMfQAqEQLgIoh5OAMxtPKPF5aIK25HAnx5ILT0lQXmPJGYySMxjShkAwhCUKHBYeW8klugBy2JITh5MKR1bCIfoRS87hJOjM0WOIgfKE6nQoHVEqHm29Jmx52e5K8bXRx2ZM7ojGKDmDIU0Ij5/hcOLJ1q62RHe2Di9WLA4nlQ6fXgEkAbQlF0Q5XITC7sUElYgek3PiCCu5hMfk9G922EouGdv3GDIXo+QMhjQhGAgrOQtfThudliQlh+XEH3YvJkB4LUzlcB12LyZoeYUtOYcvbMklx13p9vgoVy4CSdi+x5C5GCVnMKQJwaC92afDIiu3DUDi89qClbrK6DG0BAhv3aMcTvAkPoam7J3LQ2LhspVcotsBqZDeP8/r9VCCNymrvBgyF6PkDIY0IRQ47FrMzsqmUlmQoKstFKjQX5xugs5svKo8oUCRcOAJDtdh92ICllfQjihVDieurOSsryl2dGWWx0OJ8hI0Y3JHNEbJGQxpQjB0WMm5XRYl+JBEV+UPaEsOy03IbQeKJLBgcXTgicOb+LhhIKSXHVNi4fXlEFRCIMFgm7C70mdbcslYysyQuRglZzCkCSH/4TE5gFLx4UhwfErZSs7h9KCSEKIfDjzBcmHZq7JUlDReyYVsd6USixyvixJ8CQeKOJR2+/o8bkpIziLShszFKDmDIU0Iz2kTS6+2Vy5ZWAlacio8zud0IfYYmkpAcYaiAk/c4WkOybDkHE6yPU6Kk2B5OUP6N2dlZVGqPIhZu/KIxig5gyFNCM9pC1ty5Y4snAnubB0ek7OcHhze8MapjVdKlQGFkwBiJWcMLRg8bMlluy1KlA+VYLCNhW7HbF8WxfiMkjvCMUrOYEgTwtGV4tCWXKWVjTuY4DJcflvJuTxYdqBIRUnjx7z8gSBuCeKw3PiyE9+jLmzJYVtyehHpxH6zM+QnIC6yvS5KlDc5G7EaMhaj5AyGNCEycdt2V1Y6s/EmGvJvj8k5XR4se9HnRMbQKsMrqDhdZPm8lCk3wQTci8FQeMFnJzkeJ8XKm1CwTSikcBEg6HCT7bEoxpewNWzIbIySMxjShFBUJCRAIJlKzu3BbbsXE1kqLFBpB7JYLluJeBOay+cPhuz1Oh22JedLaH1NfyiEGz8hhwu35aBcvHqnhATX1zRkLkbJGQxpQjgSUpxayYVcOfhU8iw5l+1eTGSytT/s/nS6yfE4KVG+hNyLFYEQXvwopzeiNBNRcoGgwm1bciJCpZWtN3kNzxc0HHEYJWcwpAlhJYdDKznlziGbcj05LcE6XW4PvqzwGFoCllfYknO5ImNoiQR2VASCeKgEpw+P06IMX0J71AWCCrf4CdltGHQmafseQ8ZilJzBkCaEIpacCwBlB4ok4g4ML+vldHnw5mgll0iIfsCW0XK6yXY7KcaX0B51lYEQXqkEl1cfW1kJLSJdEQza7kpbybmy7AwzIfxIxSg5gyFNCERci7qDFk94d/DGj6GpqDG5bK8OFEkkRD/gP6zkvC4HpSox96J2V1YiLh8Afmc2ThVotHuxwh/CTQBlhZVceBFpY8kdqRglZzCkCUF/2LWorRrLntdWVlSYQKWHg1ly7MnWCS2oXKEVmuXJRkQotxKby1cRCOGjEmyLK+JebKSMZf4gHvyR4B2StB2QIXMxSs5gSBMCdlCHy7bkwlvPlJccaHSdh8f5nGR59GTrRMbQlK0swgq40pGV0BhaRWUAL5U43NqSC7rCY2iNszbL/UHcEgCnByCyyotZ2uvIxSg5gyFNCFbqHbZdHm3VhEP+K0oa716UsCvRnY3HaVEqXhwJuBeVrSyc4W1xnNl4EhhD81dW4BCFZSu5kCuxjVPLKvWYnESUXJJ2GzdkLEbJGQzpgm1huXza+nBntQHAn8C8NkdlMWV4wNLBLGWSldAKIOGJ397waifObLyqrNERoKWl9m/2agtOeRIbQyvzB8miAmVbhOGdEoy78sjFKDmDIV2wx7vc9sok7uzE14Z0+osoc2QfvoQjC2cSlJzYOxpEohcbaR2W20rO48uuUm8illxrKUF8bYDDFqcJPDlyMUrOYEgTwq5Fd7bumCO7g5c3Xsm5AiWUO7Iix5VWFu4E3IuhisPuT0jcvRheLNptK6OI5dVI92JhmZ9WlODMblOl3kTmBhoyG6PkDIY0QfylBJQDtz0+5ctpA4BKQMl5gsWUWzmR40orK6ExtMh8M1vJHd6jrpFKpGQPAJLdHgCHLzFL7mBxCdlSgSc3DwCfz0eFcia0iLQhszFKzmBIE1RlMaV4cVj63zInO5sK5UxoMrg7UEwgbG2hQ/Q9CSwV5q7YTwAn2HP4SDCwQ0r36S+2knPZllxjN06tKNqv68lqq6t161VZjJI7cklIyYnIXBHZKSJr7c8PovJ+JyJfiMhmEZmcuKgGQwunsoQK8UYOPU4HJTR+d/BAMERbdYCgN+9wmjMbn2r8UmHeij0ccuaBQ3cd4T3qGmvJhUr26i9ZWsk5I3vUNS7Yxl9k1+ezlZy9vmYiOyUYMhtnEuq4Uyl1e3SCiAwCZgGDgS7AmyLSTykVTML1DIYWieUvpsLhixyLCKXiw9FIK2l/URkd2c/B3K6RtIh7sbIYwuNfcaKUIqdyL6W5HWgXltkbXvS5CFcjZLRKv9NfbEsu2+elQrkaPYYWOrBNf2nTXddnL/qcY6Irj1iayl05HXhCKVWhlPoK+AIY00TXMhhaBD7/AYqcbauklUkWzkauDbn72+24JYjVtnskrYqSayAHSv10YQ/+7E6RNKcdCVpZUtjg+pRS5JXv4KC7U2TydpZbr8rSWMvLOrRdf2nTA4Acj5NSvCa68ggmGUruChH5VET+LSLh/9CuwPaoMjvstBqIyE9EZJWIrNqzZ08SxDEYMpNc/37K3HlV0iocPqxgWaPq2//lJwC07T7gcKKn8YEdX+zcQw/ZDR0GRtLcWa2Bw1GSDWHb/lJ6sJOy3B6RNL19j7dRi0iX+4N0KP+KSocPcjoCWmmWKC9iVjw5YqlXyYnImyKyPsZnOvAA0AcYDuwC7mioAEqpfyqlRimlRnXo0KGhpxsMLQJ/MESb0AGU3TmHSWRV/ortHwPQoe9hJ4rDDhQJNCJi89tNK7BE0bbPyEiaO1sruUAjlNzGr79hkHyNo9uxkbQst0UJvkYtIr1u50GGylZK2g2OjBnmhLcDSmCVF0NmU++YnFLqlHgqEpEHgf/ahzuB7lHZ3ew0g8EQg52799BTSnC16VIlPWD5cFc2zsPRcfd7bHf1pnvOYeswHChSXnyQnNpOrIXg528QxEGbgSdH0nw+H35lNUpp7lz7Ni4J0m7w9yNp2fYi0kc1wr24asMWfipfUtH3mqj6LErxYvkT23zWkLkkGl3ZOerwTGC9/X0JMEtEPCLSC+gLrEzkWgZDS2ZPwToAsjoPqJIesLJwhxrurtywcT1DghspPLrqO6orSyu5igZaXjv3FzHm0BvsaDUS7NVEALK9LorxEWpgiH5xRYCu256nxGqFs9f4w/XZ0ZANDbYJhhSBtYtxiMI37Ixq9XkTWuXFkNkkOiY3T0TWicinwEnAVQBKqQ3Ak8BG4FXgFyay0mConZKdmwBo33NIlfSgKxuvKm9wfd+9Oo8QDnpN/kWVdFc4UKSBIfornn+ArrKXnBN/WSU9PA+toe7FF994i0nqf5QMnBnZMBUOR0M2dBHpJR99ztmVz7Ov/WjolB9J9zgdlIoPZyIT4A0ZTUJTCJRSF9aR91fgr4nUbzAcMezdQgAHrbv2q5Iccmbho2GW3Or3X+eEg0v4rMtZDDmqZ5W88BhaQ9bD/HTz50z8+h62Zw+i+4hpVfJyPE6KlI9WDVByX313kP4f/ZEKK4ujpvyuSl62W1tyzgYouT1FFVS89ic6y37UDx+vkici+C0fTuWHQCU43XHXa2gZmBVPDIY0IOvQl+x2dIpsERNGubNxE4CgP656du7YxlFv/JJ9jjz6za4ZB+axoyGDcc5D27VvP/LE+eRIBe1mzY8EdITJ9uhAEUec0xyKyv18tOBqRsoW/KfdDtlVo0l14Ik3bssrGFL856F7mBV6mQND5iA9x9UsYyW2iLQhszFKzmBIA9qVb+OAr0fNjPBCyHGE/JeUFFP40Ll0YB/+sxbgzmlbo4wvO5eQkrjmoRWVVfD5/AsYHPqcPafeS/bRw2qUyfY4KVa+uNyL/mCIp/7xZ86teJpvjjmP1mPOr1FGRA4vIq1UnfUppfj34qf46b5b2dt2OG2n3xqzXCiyEatRckciRskZDCmmoqKco0M7KGvTt0aew1Zy5SV1uxeDwSAb/282g4Of8eX4v9M1f2LMcjleV1xjaP5giKUP/IoT/O9TMPI6uo2bFbOcx+mgFG+9E9aVUjz26D+5eP89fNNhAl3Ou6/2a1vZCKpepbTotfc4Y9M1lHmPov1lz1QZ24smstu4WfXkiCQZy3qlLYcOFbLts48o3bmRisJdOMv2ogJ+HA4Qpxe/Nw/J6YCrdRd8eV3J7dCddh06ket1IyKpFt9whPDtVxvoIUGk46AaeQ578nZZySGyaplGqpRi+fxfcmLJUlb1vYpRp1xU67Wy7Xljda0AopRiyb//xoxDT/BF93M4Ztr1tZYVEcqtbFzBuhXS4heWMKvgRvbkDKDLZU+AVXvXE3RlQwVaRk/siQ4vr9zA6A8uJ8up8P3o+ciyYDFxN70lV14ZYOfObezf9hnB/QUEyg7i9BdjOQScHhwuH85WHXG37oivbWdy8rrSqlUb3C6ryWQyaFqUkisvLWbzilco/ew1Ou37kB7B7QyRwy6PInwEcKEAj6ogWypq1FGpLL6hLQcc7ShxtcNyunE4XQTFiaggVqjS/vixVCWOUABL+bFUAIcK4FQBLAJYKoCTIA5ChBBCCNh/QzhQ9ndlf8Jp0cRSs0J1F46qlh/rnCSRVnq/fmFUrQe1J9btIKv7Yo0910clCOR0H1ojz7K3nqkoqd3yemfhPE7es5CPjzqLUef/qc5r5Xic7FRepA4l9+Jzi5i24w6+anMcx8x5AOp54fNb2bjrUHKvLvsf319zBWXutnS8/PlaFVeYiJKrKIbcmvn/27SDjv+dQ0/Hd6jZz+I4ql/NQlFIAkuZ1caB4nLWrXyb0s3v0Hbfx/Tzb6KPFNOnAXVUKCffkUuRI5dSqxUhy4tY4V7DASqk+5aQH6fyR/oZp7KPCYJSUb2LqvKpir6Hh/sY+zjq1qoaZcLPdG3p8JnVn5P/+FIDfnXz06KU3I7PP2HYsssoVy4+9w3lo6Mmk9VjJHm9hnNUlx7kerOrlA9WlHBwz04O7dlJ6f4d+Au/QR3ahVW8G0/Zblr5v4NyP6ICOAkQxCIgLvy4CIiLgMNNUHyErFxC4iLkcKEcTvvjAocTHJZ+AFWUSrO/o0KHVZ39sNbsKMMP2GGqK8ManXkdnVJdwxwquqY6y6Wa+CWQqLaSGl9iqEqpmS4xFGptTVw9XWJcrPqpAuzKas+Q/ONq1GfZK5RU1DIPbdnLizjh81v4LOc4Rvz0n/UqpPDOBjm1jKEtW/YmJ31yNXs8R9Pjp0+CVf+yy5VWNt7KMr2zQbXAlA83fE6/ty7B61B4LluC5HaqpZbDhFxhpVRTsW/csZ/SRRdznONzyqYvILvPCfXWF7aGE7Xk9haV8dHSF3FseJYRZf/jBCkEYKfzaHZ2PIkdHYeQ1bk/OZ36kNOmA5Y3l4ogBCrLKSspouzAbsoLv8F/6FtU0W4o3Yej7ADOykI8lYVI8BD4g1gSxCJEECdBCX9cVFpZhMRJyGH3NWL3LyKICEoEpaL+RiQPv4Hp/3BR9n96VGdwuLSyn1lVJb2m0tRpFd4Y48hpRotScn3yx7Lu4KP0HfV98rPqX8/B8mTTrls/2nWr+03QYEgV4cnb/hjRkKuXv8aoD3/NTndPjvnFU0gcCklEKHf4aBNDya1es5qBb11KhZVDu58uwZHVJi4ZA65sqKTGzgabt+/G/eRsusle/LOfx92xf1z14Y69vuaO/SVs+vdPOEtWcXDiX2g9YkZc1UW2A2qEJaeU4qMNm9n+1oOM2v8iU2Q3pfjY0X4cZUN+SPfR0+iakxd7YV5AjxLmQF57OLpXg69vSJwWpeTEYZF/wvRUi2EwJA23PXk7UFa1g9706Ur6vHEphVY72l/+X1z21IB4qHBk4Qzsr5L26eYtdHj+PDyOEFzyPN68o+Ou77DldVjJffntPvb9+1zGyhYKp/6TdseMr6OGqoinplLaU1TB2/Ov4qLQG+wf8QvaTfxlLWfXJOzybYiSCwRDvPG/VVQuu5vJFa8xRvx83WoEu0b/ns7Hz6Sfy1d/JYa0oEUpOYOhpeHJ1h1+dMj/5vWraPvsuQTFhfuS58nOq82OiE2FlYU7uONwfV98QdaiM+kghZTNepZ23YfUcXZNItv32BGb2/ccZPs/Z3GiWsvuk+6g4+hzG1Sfw1vVkvuuqJyX77uKOZWL2XPMOXSY1rA1JlzecBsWU1+YRyAY4s3lH6Deu4NT/O8iAtuOnkbXH/yWHp1rBgYZ0h+j5AyGNMbT6igApPhbANZ8uJSjX75Qzyeb/Rydug+o6/SYVDpz8ZUfAqVYs+5T2jw7k44coOis/3BU//gtrjAqbHlVFLP562/Y//B5nKjWsut7c+l84mUNrs+T0waAYFkh3x4oYdkDv2RO5TN812cGR53/j3rHHWvUZ7t8K8uKqM3+qgyEePO993Euv41TA8vwi5tv+p5P96m/pXfb+K1aQ/phlJzBkMZ0bNeGXaodcuArlj11D6PX/5lDjtZw0Qt06jW4UXWW5fYmu+y/vP/03QxafzsuCVFyzmKOGjyxUfX52nSC7bBx2TM4N7/IaNnBtyfeRueTftKo+jp06kaJ8rBn7VsUvLqY89RH7O53Hh1n3Q+OhofcZ3s9lCpPzAnw5f4gr76zFM+Ku5kc1Mpt+4Af0eP06+iRc1Sj5DekF0bJGQxpjNvpYJezKyP3vAx7XmaTdyjdfvwfctp3r//kWrC6j4DvYNyGP7HT3YOcixfTodvA+k+shQ59R3HoUx+DttzPQUdrDk5fSKfhP2h0fQO7tOOTUB++t+sVumGxZ/xNdPz+rxtswYXJ8lgcIIfcQ7siaV9/u4+P336KLp8/zhlqHeV42DnwR3T/4XX0NMqtRSGqnqVzmpNRo0apVatWpVoMgyGtWPb2S7T5360E+05h+IzfxBVFWRfF5X6WPXE73XIU+dOvQhIMogiGFP99YRFHl25kyA+vwNW6/mkC9bHk7Xfpuu1FBp86B2/Xho0RVmfFl/soeuhsvuf5ig+6/xj3zv9xbMVH5Eg5+60OFA+9mO6n/Aypa0K5oUkRkdVKqVFNUrdRcgaDoSVTEQjyt1v/zFz/nQAUOtqyq+NEOo49l3ZDJtW5+oqheWhKJWfursFgaNF4nBZXX/MHNn15FkfnZdPmqN60Mcv2HTEYJWcwGFo8rbwuWg2quWyaoeVjdiEwGAwGQ4vFKDmDwWAwtFjSKvBERPYAXyehqvbA3iTU0xwYWZuOTJI3k2SFzJI3k2SFzJI3WbL2UErVsplUYqSVkksWIrKqqSJ1ko2RtenIJHkzSVbILHkzSVbILHkzQVbjrjQYDAZDi8UoOYPBYDC0WFqqkvtnqgVoAEbWpiOT5M0kWSGz5M0kWSGz5E17WVvkmJzBYDAYDNByLTmDwWAwGIySMxgMBkPLpUUpORE5TUQ2i8gXInJ9quWJRkS6i8g7IrJRRDaIyK/t9LkislNE1tqfxu9RkmREpEBE1tlyrbLT2onIGyLyuf23bRrI2T+q/daKyCERuTKd2lZE/i0i34nI+qi0mG0pmnvs5/hTERmZBrLeJiKbbHmeE5E2dnpPESmLauP5zSlrHfLWeu9F5Hd2224WkclpIOviKDkLRGStnZ4ObVtbv5WWz25MlFIt4gNYwFagN+AGPgEGpVquKPk6AyPt77nAFmAQMBf4Tarlq0XmAqB9tbR5wPX29+uBW1MtZ4zn4FugRzq1LXACMBJYX19bAj8AXgEEGAt8mAayTgKc9vdbo2TtGV0ujdo25r23/+c+ATxAL7vPsFIpa7X8O4Ab06hta+u30vLZjfVpSZbcGOALpdSXSqlK4AlgeopliqCU2qWU+tj+XgR8BnRNrVSNYjrwiP39EeCM1IkSk+8DW5VSyVg5J2kopZYB+6sl19aW04FHlWYF0EZEOjeLoMSWVSn1ulIqYB+uALo1lzz1UUvb1sZ04AmlVIVS6ivgC3Tf0SzUJauICHAusKi55KmPOvqttHx2Y9GSlFxXYHvU8Q7SVImISE9gBPChnXSFbdr/Ox3cf1Eo4HURWS0iP7HTOiqlwlssfwt0TI1otTKLqp1EurYt1N6W6f4sX4p+Ww/TS0TWiMi7IjIhVULFINa9T+e2nQDsVkp9HpWWNm1brd/KmGe3JSm5jEBEcoBngCuVUoeAB4A+wHBgF9pdkS6MV0qNBKYAvxCRE6IzlfZPpM0cFBFxA9OAp+ykdG7bKqRbW9aGiPwBCAAL7aRdwNFKqRHA1cB/RKRVquSLImPufRTnUfUFLW3aNka/FSHdn92WpOR2At2jjrvZaWmDiLjQD8pCpdSzAEqp3UqpoFIqBDxIM7pO6kMptdP++x3wHFq23WH3g/33u9RJWIMpwMdKqd2Q3m1rU1tbpuWzLCJzgB8Cs+2ODdvtt8/+vho9xtUvZULa1HHv07VtncBZwOJwWrq0bax+iwx6dluSkvsI6Csivew3+lnAkhTLFMH2ty8APlNK/T0qPdpffSawvvq5qUBEskUkN/wdHXiwHt2mF9vFLgZeSI2EManyJpyubRtFbW25BLjIjlQbCxyMcg2lBBE5DfgtME0pVRqV3kFELPt7b6Av8GVqpDxMHfd+CTBLRDwi0gst78rmli8GpwCblFI7wgnp0La19Vtk0LOb0qiXZH/QkT1b0G88f0i1PNVkG4826T8F1tqfHwCPAevs9CVA51TLasvbGx2F9gmwIdyeQB7wFvA58CbQLtWy2nJlA/uA1lFpadO2aOW7C/Cjxyl+VFtboiPT7ref43XAqDSQ9Qv0WEv42Z1vl51hPx9rgY+B09OkbWu998Af7LbdDExJtax2+sPA5dXKpkPb1tZvpeWzG+tjlvUyGAwGQ4ulJbkrDQaDwWCoglFyBoPBYGixGCVnMBgMhhaLUXIGg8FgaLEYJWcwGAyGFotRcgaDwWBosRglZzAYDIYWy/8HqRKH2puQCoYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "execution_count": 17, + "metadata": { + "pycharm": { + "name": "#%%\n" } - ], + }, + "outputs": [], "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABxjElEQVR4nO2dd7hUxdnAf+/Zehsd6dIEpFyaNKUIxoZEUVHBYEFjjEk0tkRJUVHjF2s0Voyi2ILYohgLRiNiCSJIbwpypXcu3L5tvj/m7HJub3vZvffO73n22T0zc+a8Z+bsvOedeWdGlFIYDAaDwdCQsBItgMFgMBgM8cYoN4PBYDA0OIxyMxgMBkODwyg3g8FgMDQ4jHIzGAwGQ4PDKDeDwWAwNDiSXrmJSBcRUSLiTrQshpojIteJyA4RWZGAa88QkZePwnWmicgXFcQvEJGr6lqOxkZF9Wvqvn4iIgdF5EcRmVLTPJJeuRmqj4jMFJFc+xMQkaDj+IMEiTUD+LVSaoBDzhkiMiNB8iQV9ktcVjXTfyoi+SKyXkROrSDtRSLylZ12QYm4niLyjojsFZEDIjJfRHqVSHOjiOwSkcMi8pyI+Korh4h8Up2XVFtZzK5K2vpOHde9z66zw3Yd3uSIGyEi/7Hrfa+IvC4i7RzxzUTkBRHZY39mlJH/9SKyWUTyRGSdiPS0w8eKSMTR7uSKyOWO8xaISKEjboMzX6VUc+ABYHpVy6Ukda7cjMV19FFKXaOUSldKpQP/B8yNHiulxkfTHeW6aQGsPorXqxOS6HmeAywDWgJ/At4QkdblpD0APALcW0ZcM2Ae0AtoAywG3olGisgZ6AbmJ0BnoBtwZ3XkEJGpgKc6N5eM1NO6nwH0QNfdOOAWETnTjmsO/APoYsfnAM87zn0YSLXjhwGXisgV0UjbEv05MAFIB34K7HOcv8PR7qQrpV4oIdu1jrhelGa1fY81ok6Um4hkicitIrISyBMRt/2W8JWIZIvIChEZ60i/QET+KiKL7TeMd0SkRTl5X2G/IeSIyA8i8ssS8RNFZLmdz6ZoRYpIUxGZJSI7RWS7iPxFRFyV3Ed3EfmviOwXkX0i8oqINHPEHRCRwfZxe/vtZ6x9fI6IrLHvd4GI9C5RPr8TkZUickhE5oqIv/olXX3KqRslIsc50swWkb84jn9ql2m2XYf9q3nNaDlHKkl3i10/O0TkKqdctkxPiMh7dt1/LSLdHef+XUS22vW+VERGl8jeb5dzjoh8KyJOC3K6/azkiMhaETnPETdNRL4UkYdFZD+6sajsfh8U3a2yWUTGl4jubOeXIyIfiUiryvIrI/+ewGDgDqVUgVLqTWAVMKms9Eqpj5VSrwE7yohbrJSapZQ6oJQKohu0XiISbVQuB2YppdYopQ4CdwPTqiqHiDQF7gBuqe59lrjny0R3U+0Xkdvs57iUxSIiHhGZIyJviojXDm60dY+uv7uVUgeVUuuAZ7DrTyn1gVLqdaXUYaVUPvA4MNJx7tnA/UqpfKVUFjALuNKWw0LX641KqbVKs0kpdaC691QBEaDmLxRKqbh/gCxgOdAJSAE6APuBs9AK9TT7uLWdfgGwHegHpAFvAi/bcV0ABbjt4wlAd0CAk4F8YLAdNww4ZOdv2dc93o77F/C0nf8x6DfUX1ZyH8fZefmA1sBC4BFH/C+Atei3m/nAg3Z4TyDPPteD/mNvBLyO8lkMtEdbNOuAa8qRYRSQXcFnVCX3MCNalmXVjR2mgOMcaWYDf7F/DwL2AMMBF/rPkgX4qvE8nAkUAmmVpNkF9LXL82WnXLZM++06dgOvAK86zr8E/ZbnBm628/I7yiAIXGDXx++AzYDHjr/QrgsLmGzXXTs7bhoQAq6z806p4B6m2df5hV1Wv0IrFHE855vs5yPFPr63nLyeBJ4sJ+48YF2JsMeBxyqph6uABZWkORfY6TheAUx2HLey66VlVeQAngBupMT/uJrtSR8gF/1f8AIP2uV8qvMZt8v0PftZcTX2ukdbZgpo4wi7AFhVTt43AIscx/uAYY7jPwEH7d/H2nlfD2y1y/ROwLLjxwIBYLcd9zCO/799/3vta3wJjC1Dnm52+Q+s7jOjlKpT5Xal4/hW4KUSaeYDlztu9F5HXB+7YFxU8qcA3gaut38/DTxcRpo2QJHz4QQuBj6t5n2dCywrETYP/ea0ErvBB24DXnOksdDKe6yjfC5xxN8PzKyjuphBaeV2ZYk0FSm3p9Bvfs70G4CTq3j9JXb+v60k3XPAXx3Hx1FauT3riD8LWF9BfgeBAY4ycP5pLWAnMLqcc5cDE+3f04AtVbzXacBGx3GqfQ9tHc/5nx3xvwY+rEGdXuq8HzvsHmB2JedVqNyAjvZzerEjbBNwpuPYY99Tl8rkAIbYZemmdsrtdmBOiXINUFy5zQM+Ax7FViiNve7RL7AK+yXPDjsNyCojbX909/VoR9jLwFtABvr/uAkosuNOsvN+D9213QX4DviFHd8W3Y5bQFe0YfC0I+/hdr4+9AtzDtC9DLketK/zdnXLqi7H3LY6fncGLrS7tbJFJBv9FtaunPQ/ov9Epcx2ERkvIovsLsFsdCMXTdcJXQEl6Wznt9Nx/afRFly5iEgbEXlVdDfmYXRll5TpGbTF+ZhSqsgOa2/fAwBKqYh9fx0c5+1y/M5H91kfLbZWniRGZ+DmEnXXCX2PVWEoMAWYISIVjbu0LyFXWTKWW2Z2N+86u5s3G2hK8bqK5WfXx7boPdhdXssd99evvHOrQExGpbt6oHjdxqPec4EmJcKaoBuIGiF6zOYjtMUwp4JrRX/nVCSH3W31JPrFM1RTuWyKPRt2ue4vkWYEuoG+V9mtooPGWve5jvhy09pd/x+g6+pzR9RvgQLge/Q47Bx02WGHg+62zFa62/JpdHuMUmqX0t2VEaXUZnTvVazrVCn1tVIqRylVpPRY3JfRcx1yHWPLMEYpdW4Z91chdancnA/YVrTl1szxSVNKOQe4Ozl+H4s28Z2Dk4j20noTrc3bKKWaAe+juyij1+lOabaiLbdWjus3UUr1reQe/s++j0ylVBN011f0WohIOnqgfha68Y6OE+5AK4VoOrHvb3sl1yuFiIyW4h5HJT8lx5aqQsk/fz76TTNKW8fvrcA9JeoutUQDWP6FdEPzNrqLpF0FSXeiLYconcpLWBK7DG4BLgKa28/FIRx15czPbng7AjtEpDP6BeVaoKV97uoS55Ysr0SzBugmIhmOsAF2eLURkeZoxTZPKXVPGdcaUOI6u5VS+yuRownacpsrIruAb+z4bTV4Zos9GyKSQmlHg4+AvwKfiEibEnGNsu6VHiPdSen6i6W1y+BjdO/MSyXOP6CUmqqUamu3lRZ6OAV0702A4uVTUVkpKtY3iuLlDtoR5lAJhVtljtZUgJeBs0XkDBFxiYhftKuoszG7RET6iEgqcBfwhlIqXCIfL9qM3QuE7AHb0x3xs4ArROQnImKJSAcROV4ptRP98D8kIk3suO4icnIlcmeg334OiUgH4Pcl4v8OLFFKXYU2z2fa4a8BE2w5POgxoCLgq8oKqiRKqc9VcY+jkp8aVXwJlgM/s+vmTPRYZpRngGtEZLho0kRkQvTPJdrRY3Yl9xC1aL0VJHsNXXe97WfgtmrIn4Hum98LuEXkdkq/3Z4gIueL9ni7AV0fi9BjsMo+F9HeYP2qce2jjlLqO3Sd3WH/l85DWy1vlpU++p9Ddw9a9jkeO64JeojgS6VUWW7XLwI/t/+bzYA/o7uIK5PjENo6Gmh/om/lJwBf29deIFWbCvIGuv04SbSTyAxKN4Qope4H/olWcE7rq9HWPbr+/iwizUXkePSY4GwAu037L/C4UmpmyRPtNrKl/fyMB64G/mLLkQ/MRXtfZtht+dXAv+1zx4lIZ7vN6IT21H3Hjmtm6wK/aIe2qcAY4MMSInjQdVUjjopyU0ptBSYCf0Q/SFvRisJ5/ZfQhb4L8KPN0ZL55Njhr6HHVH6G7muPxi8GrkAPXh5C98FHLajL0I3rWvvcN6jYkgA9QDrYzus9dP8zoL0y0U4Qv7KDbgIGi8hUpdQGtJX3GNr6PBs4WykVqOR6ieJ6tIzZwFS0pQWAUmoJ+g/xOLrcNmJ7W9l0QncpVEaFb25KqQ/Q4yWf2tdYZEdV5eGej/5jfIfuDi6kdHfSO2iHgYPocYvzlVJBpdRa4CHgf+jB78wq3k+dInquYqkGx8EUtGV0EN1wXKCUijbSU0XE+SZ/Kbob6SlgtP37GTvuPHTX8RUlegSOBVBKfYgeE/4U2IIu3zsqk0NpdkU/2AoEbfVF/wdVenaUUmvQTh2voi2RXLSTU6lnQyl1N/r5/djRk9KY6/4O9FDNj+j28AG7TkGPwXZD9zrF6t5x7glof4IctFU81a6LKNei62IHugz/iR47B+2I9hXaQecrO59om+5BK8moQ8l1wLm24nbiohIP64qIevIkFNETS19WSj2baFkMVcd+i14B9FfajbyitDuAW5RSVVotQvTUidVoJ53ajtkYkgz7Tf81pdRJNTg3Hf0i1sMezzE0QETkFrTiHlaT880KJYYao5QKKKV6V6bYbKaju1KWlpdARM4TvaJCc+A+4F2j2BomSqlt1VFsInK2iKSKSBp6zH0V2vPX0AARkb1oL8o7K0tbHo1euUnxpaqcn4q6BQzVRCn1olKqh1LqhAqS/RLd3bQJCHOkyzdpMM9LwpiI7v7agXY0mFKGV2SdYur+6KGUaq2U6quUeq+meSRFt6TBYDAYDPGk0VtuBoPBYGh4JMtCoAC0atVKdenSJdFiGAwGg+EosnTp0n1KqfIWf64RSaXcunTpwpIlSxIthsFgMBiOIiLyY+WpqofpljQYDAZDg8MoN4OhHmEcwAyGqmGUm8FQT8jam8vvb/sjizdUZy1fg6FxklRjbmURDAbZtm0bhYWFiRbFUI/w+/107NgRj6febwAdY+Wyr3jQ/SSr3l8Hvd5OtDgGQ1KT9Mpt27ZtZGRk0KVLF0RKrZVqMJRCKcX+/fvZtm0bXbt2TbQ4ccMX0Uspti34PsGSGAzJT9J3SxYWFtKyZUuj2AxVRkRo2bJlg7P2U8J6TdtkGnb7eO1uJv/hQfYcPJxoUWI89sn33PaP1yFclVXhDA2VpFdugFFshmrTEJ8ZCev9Ia1I8jTa8xZ+zVzf3ai3k2eltFf/8yV377gKPp6RaFEMCaReKDeDwQAqrNeQ9kYKKkl59EiL6E2dm+2q9laFdUZH0Xscq80LEyyJIZEY5VYFRISbb745dvzggw8yY8aMxAlUCQsWLOCrr2rX2Jx55pk0a9aMn/70p3GSylBblN3N5lfJo9xauvU4YDJNUfCL3i4uHEzW7RMNRwOj3KqAz+fjrbfeYt++fXHNVylFJFLjvfjKJR7K7fe//z0vvfRS5QkNRw+lnxUvydMt2dSy9wuNhBMriAMXWhYVTJ6XAMPRxyi3KuB2u7n66qt5+OGHS8Xt3buXSZMmMXToUIYOHcqXX+qNfGfMmMGDDz4YS9evXz+ysrLIysqiV69eXHbZZfTr14+tW7fy+9//nn79+pGZmcncuXMBraDGjh3LBRdcwPHHH8/UqVPLfDt+9NFH6dOnD/3792fKlClkZWUxc+ZMHn74YQYOHMjnn39eoYyXXnopJ554Ij169OCZZ56J5fuTn/yEjIyMCsvl9ddfp1+/fgwYMIAxY8YA2gHoiiuuIDMzk0GDBvHpp58CMHv2bM4991xOO+00unTpwuOPP87f/vY3Bg0axIgRIzhw4AAAzzzzDEOHDmXAgAFMmjSJ/Pz8UtcdMWIEa9Yc2RB47NixjWLZNpWEDhI+l1a47nDyOO94bOVGyCi3xkzSTwVwcue7a1i7I75eWX3aN+GOs/tWmu43v/kN/fv355ZbbikWfv3113PjjTcyatQotmzZwhlnnMG6desqzOv777/nhRdeYMSIEbz55pssX76cFStWsG/fPoYOHRpTFMuWLWPNmjW0b9+ekSNH8uWXXzJq1Khied17771s3rwZn89HdnY2zZo145prriE9PZ3f/e53APzsZz8rV8aVK1eyaNEi8vLyGDRoEBMmTKB9+/ZVKru77rqL+fPn06FDB7KzswF44oknEBFWrVrF+vXrOf300/nuO717/OrVq1m2bBmFhYUcd9xx3HfffSxbtowbb7yRF198kRtuuIHzzz+fX/ziFwD8+c9/ZtasWVx33XXFrjt58mRee+017rzzTnbu3MnOnTsZMmRIlWSu1zitfKUgCZxmxLbY3Cp5ugCjlpuEkkfhGo4+xnKrIk2aNOGyyy7j0UcfLRb+8ccfc+211zJw4EDOOeccDh8+TG5uboV5de7cmREjRgDwxRdfcPHFF+NyuWjTpg0nn3wy33zzDQDDhg2jY8eOWJbFwIEDycrKKpVX//79mTp1Ki+//DJud9nvKhXJOHHiRFJSUmjVqhXjxo1j8eLFVS6TkSNHMm3aNJ555hnC4XDsfi655BIAjj/+eDp37hxTbuPGjSMjI4PWrVvTtGlTzj77bAAyMzNj97Z69WpGjx5NZmYmr7zySjELLcpFF13EG2+8AcBrr73GBRdcUGWZ6zPK6SUZThJlEkm+jdLd6JcAo9waN/XKcquKhVWX3HDDDQwePJgrrrgiFhaJRFi0aBF+v79YWrfbXWw8zTnnKi0trUrX8/l8sd8ul4tQqHRD8t5777Fw4ULeffdd7rnnHlatWlUqTXkyQmmX+eq40M+cOZOvv/6a9957jxNOOIGlS5dWmN55P5ZlxY4ty4rd27Rp03j77bcZMGAAs2fPZsGCBaXy6dChAy1btmTlypXMnTuXmTMbyUbIznGtolxw+8pPe5RQSajcopabK5IkLwCGhGAst2rQokULLrroImbNmhULO/3003nsscdix8uXLwf09j3ffvstAN9++y2bN28uM8/Ro0czd+5cwuEwe/fuZeHChQwbNqxK8kQiEbZu3cq4ceO47777OHToELm5uWRkZJCTk1OpjADvvPMOhYWF7N+/nwULFjB06NAqXRtg06ZNDB8+nLvuuovWrVuzdetWRo8ezSuvvALAd999x5YtW+jVq1eV88zJyaFdu3YEg8FYPmUxefJk7r//fg4dOkT//v2rnH+9xqHcIkU5FSQ8ijiVWx04R9WEFFdyyGFILEa5VZObb765mNfko48+ypIlS+jfvz99+vSJWRGTJk3iwIED9O3bl8cff5yePXuWmd95551H//79GTBgAKeccgr3338/bdu2rZIs4XCYSy65JOa88dvf/pZmzZpx9tln869//SvmUFKejKC7NceNG8eIESO47bbbYuNto0eP5sILL+STTz6hY8eOzJ8/H4Dbb7+defPmAdqjMjMzk379+nHSSScxYMAAfv3rXxOJRMjMzGTy5MnMnj27mMVWGXfffTfDhw9n5MiRHH/88bHwefPmcfvtt8eOL7jgAl599VUuuuiiKudd73EoksK8JFkRxKncgqWdfxKBz5U80xIMiUOSaX7KkCFDVEmvt3Xr1tG7d+8ESdSwmTFjRjHHk4ZGQ3t2Pp31B8ZtfRKAAxf/mxa9RidYInjxsTu4bP8j+uDm7yCjTULlAbj3rt8xPWJ7/v55L7i9iRXIUCkislQpFVevMGO5GQz1BUe3ZDA/OSw3UQ7LLVCxI9XRwo1jbDJJZDIcfeqVQ4khviTzKiuGMnAot0Bekoy5hZNPkVhOhVuUA6ktEieMIWEYy81gqC+oI4okVJgkyq2YIkkO5VbMmkyScUDD0ccoN4OhvuBw3ggVJEm3pNOhJJCXOEEciHPKRJLIZDj6GOVmMNQTpNhUgOSwkpxdpcliTUrJbklDo8QoN4OhvqDC5CsfYSWowuRQbuLoKg0kgZOLUgpLGcvNYJRblXn77bcREdavX19umqysLPr161encixfvpz333+/VnlceeWVHHPMMXUuqyG+SCRMGIs8UlBJ4rzhtJKCBYm3kiKqpLekUW6NFaPcqsicOXMYNWoUc+bMKTO+rKWxqks4XPm2IfFQbtOmTePDDz+sVR6Go4+oEBFxkYsfSRblVmwcMPHKLRiO4MKxQkmSlJPh6GOUWxXIzc3liy++YNasWbz66qux8AULFjB69GjOOecc+vTpA2glN3XqVHr37s0FF1wQ27Llk08+YdCgQWRmZnLllVdSVKT3werSpQu33norgwcP5vXXXy923ZJbygQCAW6//Xbmzp3LwIEDmTt3Lnl5eVx55ZUMGzaMQYMG8c477wB6i5mJEycyduxYevTowZ133hnLd8yYMbRoUbF79GeffcbAgQMZOHAggwYNIicnB6VUudvznHzyyUycOJFu3boxffp0XnnlFYYNG0ZmZiabNm0C4N1332X48OEMGjSIU089ld27d5e67pQpU3jvvfdix9OmTYstktzYERUhLC7ylR8rmByNtmV3lRYpN+EkGHMLRRRuwoSU3bQZy63RUr/muX0wHXaVXhi4VrTNhPH3VpjknXfe4cwzz6Rnz560bNmSpUuXcsIJJwB63cjVq1fTtWtXsrKy2LBhA7NmzWLkyJFceeWVPPnkk1x77bVMmzaNTz75hJ49e3LZZZfx1FNPccMNNwDQsmXL2DqUTkpuKeP1ernrrrtYsmQJjz/+OAB//OMfOeWUU3juuefIzs5m2LBhnHrqqQAsXryY1atXk5qaytChQ5kwYUKVt4Z58MEHeeKJJxg5ciS5ubn4/X7eeuutcrfnWbFiBevWraNFixZ069aNq666isWLF/P3v/+dxx57jEceeYRRo0axaNEiRIRnn32W+++/n4ceeqjYdaPb2UyYMIFAIMAnn3zCU089VSWZGzoSCaFwUSAppCSJi7uoMBFxUaQ8hJPAySUc1soth1Sak2uUWyOmzi03ETlTRDaIyEYRmV7X16sL5syZw5QpUwBtWTi7JocNG0bXrl1jx506dWLkyJEAXHLJJXzxxRds2LCBrl27xtaXvPzyy1m4cGHsnMmTJ5d53bK2lCnJRx99xL333svAgQMZO3YshYWFbNmyBYDTTjuNli1bkpKSwvnnn88XX3xR5XseOXIkN910E48++ijZ2dm43e4Kt+cZOnQo7dq1w+fz0b17d04//XSg+HY227Zt44wzziAzM5MHHnigzO1sxo8fz6effkpRUREffPABY8aMISUlpcpyN2hUhDAuiqwU3KHkaLQtW7nl4UclgeUWjES05SZu8pQPlQQK15AY6tRyExEX8ARwGrAN+EZE5iml1tYow0osrLrgwIED/Pe//2XVqlWICOFwGBHhgQceAEpvX1OTLWTK2wKnKlvKKKV48803S628//XXX9dqO5vp06czYcIE3n//fUaOHBlbOLk8qrKdzXXXXcdNN93EOeecw4IFC8pcIcXv9zN27Fjmz5/P3LlzYy8VhuiYm0WRpOIO70+0OIBDuSk/GUlgJYXCChcRlN196y3MwZNooQwJoa4tt2HARqXUD0qpAPAqMLGOrxlX3njjDS699FJ+/PFHsrKy2Lp1K127duXzzz8vM/2WLVv43//+B8A///lPRo0aRa9evcjKymLjxo0AvPTSS5x88smVXrusLWVKbmdzxhln8NhjjxFdAHvZsmWxuP/85z8cOHCAgoIC3n777ZhFWRU2bdpEZmYmt956K0OHDmX9+vW12p4H4NChQ3To0AGAF154odx0kydP5vnnn+fzzz/nzDPPrHL+DZ2oIgm6UvGGk6dbUomLfPxIMPHKLRiO4JYwStzkKX9SjAMaEkNdK7cOwFbH8TY7LIaIXC0iS0Rkyd69e+tYnOozZ84czjvvvGJhkyZNKtdrslevXjzxxBP07t2bgwcP8qtf/Qq/38/zzz/PhRdeSGZmJpZlcc0111R67bK2lBk3bhxr166NOZTcdtttBINB+vfvT9++fbntttti5w8bNoxJkybRv39/Jk2aFBtvu/jiiznxxBPZsGEDHTt2jO1PN3PmzNh2OI888gj9+vWjf//+eDwexo8fX6vteUCvZXnhhRdywgkn0KpVq1j4kiVLuOqqq2LHp59+Op999hmnnnoqXq9Z0T2KqDAKi6A7FV8kOZSbC61IcpPEySVsO5QoSyvcpJnsbjjq1OmWNyJyAXCmUuoq+/hSYLhS6tqy0pstb+LH7NmzizmeNEYa2rPz9b1n0S60nbWpQxl7eB7+GXsSLRLvzvgpI72b+KagPSdkZNPqlop3Y69rNu7JYf1jkzghZRfbCn307tiK9Ks/SKhMhsqpj1vebAc6OY472mEGg6GaRLslI540/BRBuPZzK2uLS2nLrVD8uJKgqzQYVriJIJabPJVivCUbMXWt3L4BeohIVxHxAlOAeXV8TQN6flhjttoaIqLCRLBQXtsBKQnGuCzCRCwXRa40vKHEK7dwROEirJUbPsQot0ZLnSo3pVQIuBaYD6wDXlNKlfb/rjyfeItmaOA0xGfGZVtueNN1QBKMJ7lsh5KgKwVvEowDBsMRPIQRl1tPdk8ChWtIDHU+iVsp9T5Q4/Wi/H4/+/fvp2XLltVyZTc0XpRS7N+/H7/fn2hR4ooo7SiBLwPQOwMkeomhaLdk2J2KJxTQXaWuxK0NEYpabm4PefixksC6NSSGpF+hpGPHjmzbto1k9KQ0JC9+v5+OHTsmWoy4osfc3Lj82nIrzDtEagLlidiKJGK5CYndVRrIhZRmCZMpGI7gJoLlcpOPP2kmuxuOPkmv3DweT7EVQAyGxopFGCVeXH5tuSVauYWVik0FUO6ocstLqHILRxR+CeFyechTflwqBKEAuM2UksZGons1DAZDFYl6S7pTmgAQyE/sBOVwROGWCErcRDwOyy2BhGxvScutPTiTQSZDYjDKzWCoJ1iEUZYbb4q23IIJ3hzUOWFaok4uCVYkesubMFgegm7brjUek40So9wMhnpC1DPRm2pbbgnePy2sbOUmbsTn6JZMpEwRe56by03EZZRbY8YoN4OhnmARBnHhT9PKLZLgdRPDYWVbSW4sv5Yp0dMTghGFmxBiuQl7k0PhGhKDUW4GQz0hOs8tJb0pQMIXBQ7ZVpKyXDEPzoTLZO/ELS43ypMcXaWGxGCUm8FQT7BsRZLm9yTFXmURdcRyc9vjgIGCxI4DhuzNSnF5wGu6JRszRrkZDPUEyx7fSvPpOVySaM/EmEOJG4/twRksSLxMLokglgexJ7sby61xYpSbwVBPcKkIWC5SPS5ylT/ha0tGbOWG5cGbqrsAQwl2cglFIngIYbncWL7kmJ5gSAxGuRkM9QSXbSW5XRYFkoIrCSw3l2iFm+bzka98CR9zC4SOjLm5Ypab6ZZsjBjlZjDUE1yEQfSiQoWSgivBiwKHI5FYt2Sqz0UePiJFibbctDXpcntxpxhvycaMUW4GQz1AqWgXoAuAgJWCO5zoOWXgtreXSfPqVfgjRYmVKWhbbpbLTarPR4HyJtzxxpAYjHIzGOoBep+ySEy5FbnS8IQLEipTyLbcsLSTSx4pkGDLTW95E0JcUWvST9got0aJUW4GQz0g5plod0uG3Kn4Erzz9ZHxLQ9pdrekFUy8TF5CiNtvW5M+QgkeBzQkBqPcDIZ6QEQpLCKIbbmF3Kn4VWIVSVFIW26Wy7bcVAqSaA/OUABLFLh9MWsykmAPTkNiMMrNYKgHBEN6NRBcHgAinnT8qhASuON4wKHcUj3acnMlenPQUKH+dvtJt7slzZhb48QoN4OhHlAU0BaJZe9yrTypWChIYDdgMBDALRHE48ftsiiSFNwJ7iqNhIr0D7ePVK+bPOVHBYzl1hgxys1gqAcEirTziLj1HmUqtsVM4iylUEArMpc3RYviSsWbYA9OgkcstzSfm9wkWMnFkBiMcjMY6gGBQruBttdLjC4tpRLonRgp0srNsmUKulLxhgsS2lUqYWe3pB4HtMw8t0aJUW4GQz0gWBhVJNpys3zacitK4G7cEdtyiy5zFXan6Ynm4UACZYoqNx+pXj3m5goZ5dYYMcrNYKgHBAt1A215tJXkslfhL8w9lDCZwkHdVRrtlgzbsiVyT7dwsLjllksK7lB+Qq1JQ2Iwys1gqAeEA8W7AN1+rdyK8hOn3KKrkbhty015Er9QccRWuLGpAMqPRSShjjeGxGCUm8FQDwjb41suv1Zu0S1mAvmJ2z8tWKgViT+6hqM38QsVRxyWm9dtUWiZPd0aK0a5GQz1gLDtLem2uwC9qVqRBBM4QTlkW26u6NYy3sRbbke8JX360B3tKjXTARobRrkZDPWAkD2O5fVrRxJfelOAhG4xE1VueGwnF390ekLilJsnaFuyfl0+EXcSKFxDQjDKzWCoBwRsb8m0NK1AUtJ0t2QilZtErSF7WkJUuSVyekJK2FZuKc21LNH5gGaVkkaHUW4GQz0gnJ8NQGoT3WinpqRQpNwJXVrKU3RA/0htBYA7JdpVmhiZguEI/tBhFAI+rfwjydBVakgIRrkZDPUAq0ArEm+TYwD0BGX8CbVI3IUHCeGOWW7eBDu5HMwL0JQ8Ap4mYOmmLTrZ3Yy5NT6McjMY6gGuwv3kkhJzlEjzuclP8NJS3sAB8tzNQAQ44sEZLEiMctufF6C55BLyNouFWVHlZiy3RketlJuIzBCR7SKy3P6c5Yj7g4hsFJENInJG7UU1GBovroID5FhNY8cel0UeKUiC5m8ppcgIHqDA2yIWlpKaRlgJoQR1S+7JKaKD7COU0SEWJn4z5tZYccchj4eVUg86A0SkDzAF6Au0Bz4WkZ5KqXAcrmcwNDpSi/aS72lRLKxQUkgLJqbR3nGokGPZSVGTzFhYmt+T0J2vs/blMV724m01NBbmTTGWW2OlrrolJwKvKqWKlFKbgY3AsDq6lsHQoFFK0Ta0nZy0zsXCi6zEbTGzccd+jpU9uFsdFwtL9equ0kiCPDh37NzJMZKNv02PWFiK30+B8poxt0ZIPJTbtSKyUkSeE5HmdlgHYKsjzTY7rBQicrWILBGRJXv37o2DOAZDw2L77r20lQNIy+7FwgOuVDyhxCi33RsW45YITbsfeWdNt5e7StRqIIU/LgZAOgyOhaV5XeTiT+iUCUNiqFS5icjHIrK6jM9E4CmgOzAQ2Ak8VF0BlFL/UEoNUUoNad26dXVPNxgaPDvWfAFAerehxcKDrlS8kYJEiATfzyeMRXqP0bGgNHvn60RYSXtzijju4OcELR90GOKQSW97Eyo03ZKNjUrH3JRSp1YlIxF5Bvi3fbgd6OSI7miHGQyGalK49gOCuOiUeXKx8JA7DV/R0bfc1m7Zzei8j9jeYhjHph95IU3zutmGPyFOLm9+tZYp1lcUdj0dj70dENjKLYFdpYbEUVtvyXaOw/OA1fbvecAUEfGJSFegB7C4NtcyGBojh3Nz6L3/I9anj8Cb3rxYXMSdSoo6upZbIBRh06u30k4O0OLM6cXi0nxuctXR3z9t4+7DtP3ydppIPhk/+V1xmbxauSVy1RRDYqitt+T9IjIQUEAW8EsApdQaEXkNWAuEgN8YT0mDofp8++o9jCWbnNG/KRUX9qTjIQShALi9dS7L4fxCvnj6es7O/xdZ3X5Gl17jisV73RaF4scd2lfnskRZ8X0W2+Zcz7nWQnKG30xG+4HF4tN8LvKUH2V2BWh01Eq5KaUurSDuHuCe2uRvMDRmvl3wNidt/Qcrm55M/2FnlYoXn2OhYneLUvHxIhgK8c37z9N22d85S23lu46T6HnJ42WmDVipenPQOmbXnj2sfetehuycwwDJZ9+Qm2h15m2l0qX73OzCjwSOnsI1JAfxmOdmMBjizLcfz6XX59exw92RblfOiq0CUozoJqFFOUhq/JVbMBRi8Qcv0u7bhzlJbeFH17H8cPJMeo65uNxzAnXs5LJr7z5WvfUAQ3a8zCmSy5qmozl20l9o1XlgmenTfG7ylR8JGsutsWGUm8GQRETCEb548Q5GZT3GD+5utP7l26Q3K9uL2PIdWcvR17zMJDUiFArz9Ycv0ebbhxkZyWKr1ZFVw/9Gv9MuR1wVNxlhdyreogJQqmyFXEN27t3P8n/9jWHbX+Q0Ocz6JidSNOEO+h5/YoXnRdfgdBnl1ugwys1gSBIOHTzAd89cxpj8z1nRdBy9rnkJv70paVm47aWl8nMP4YvD9cPhCIvm/5PWSx5iZOQHtlvtWT38QfqefgWdKlFqsTw86VhFCoL5RzYvrQU79x/k27ceYei22YyXbL7PGEr4rNs5vs+YKp0f9ZZ0h/PjrnANyU2jUG6F+bns2/4D2Qf2EMjZT7jgEOFQEMty4XZbuDx+xN8Ey98EX3ozUjNakJrRjPT0DDxuV6LFNzQCflj9NZ43pzEosoulx9/E4Mm3IVbFzszRLWaK8mq3UHEkolj837dp8tX/MTLyHTusdqwZdh99zvg5HVyeauWlYlvM5NVKue0/nMeXbz3BkM0zmSD7+SF9IIy/nR79flKtfLRDSQqWCkOoKLaxal1xKD/A1qzvyP5xNeH9m5C8fbgKD8S6ai0RxJeGSmmBldoCb5NjSG3RliYt29O0VXvcGa3BMm1OPGhQyi1QVMjmNYs5uOkbrF0rSM/5gZaB7bThAB3Rk+2qQ0hZHCKFfEmh0Eql0Eol5EoFy00EQYkFCEoEEFARQIECIQJKISg7nNhxNA5AouegkGh6FCiFFQ0v9tF5V/f9s7bvq6pWJ1f97Fpdp7Z5x/HipbOqOPNOahe5ksams+ZwwvAzq3QNb2rtt5hZtvhz5KM/MSK0gj3SitUn3E3f8dfQvobelxLbHDQH0o+p9vn5RUH+89Zz9Fv/d86R7WxJPZ49ZzxJtwFn1Mjq8rldFFm2Qgvkxl257c7OZdWijyna9DmtDyzl+NB6+knxMcdDpJMvKfpAKfyqkKbkYUnpZyKCcFiakONqRq67BQXuJuDyErHcRHARFheWimCpEFYkiNjfrkgIS4UQFXZ8h3ERwor91t8WYbuZ0uUZESv2O9rCHGmJLJQQC8MOjx7/4OnBaX94Pa5lGi8alHL7cd1Ses07G4DDKo3t3s5sbz6MrCadsZp3IbX5MfgzWuBNa47H6yUcDhMMRQgFCrQ1V3CYYP4hwgWHiBQc1nNjAjlYgVxcwVzcoTx84TxUKIKgsIjEFJKgYkouqpYQ/fuIAtQPCyI6TgTs41g4ovUkFhEprtKUnY/zuErNaLwabSnzZ7khVY+tLO/qUer8CgKqfa1KTqhOfs6063wn0On8u+nV9tgqnx9TbgXVn8O178ABVr48nTH7XydX0lnRbzr9zrmBY7wp1c7LSTEPzmryv6VLsN67mYmR5ezydmLnKc9w7IgLa92VGHKn6v9AIBfSWtUqL4CN2/ey5vN/kb75QwYXfs2pou91u6crW9qfhatdf5p07kfLY/vgb3IMTV1umjrOV0qRW1DE4YN7yd6/i7wDuyjI3kXo8G7I3YurYB/+wAEyQtm0DGzCFQnhIoSLCG5CRLAI4iYsbsK4CYn+HREXYXETxE1EvCiXi4i4UOImIm6UpX8jFiJS7EVaiKB17ZGwI3HRl/QjL9vRF9awL3lXlWpQyq1LnxNYuvNR2vceTttje9K7km4dg6E+40/XTWa4GvunKaX4/P05dP/mdk5hLyvbnkvPqQ8xoEntG30ASbGb8cJDVT5nT3YOX718F2fsnY0SFz8Ou4POZ/wWqjjOVxlhTzoEqNWalzmFQT7/ciHhJS8wKv8TJkouuZLO9jZjyB84kfYDTqNDWsuyF9AtgYiQkeonI7UTHTp0qvwEQ41oUMrN4/VzwvjLEy2GwXBUSEnTiqSq6yZmZf3AjldvYEzhZ2xzHcu2s9+k/8Aqra5XZSS1pZYpd1+ljUskovjoPx/Q5X/TOZcf2dTyZDpe8jidW1Tdeq0KypOmlVsNVinZsi+Phe+/wvGbZnGWrCeIm61tTkFGXUmzvqfSq5pjkoajR4NSbgZDYyI9LZ2wElRRxZZbUTDI53MfYuj3j9JOAqzs8Rv6XXg7ljf+zhWudK3cig5XrNw2bt3Jhjm3cmbePA65WrDrjGfpPvzCuMsDEPS1gDwgr+oTuVdt2c/S959lxI6XuMTaygFvG7YP/BPtx15Jtzh0bRrqHqPcDIZ6Sprfw36a4sovv9FeufRL5P3fcWp4LRtSB9FqyhP079y3zmRyp+uGP5hT9vZVhYEQ89+cxdD19zFeDvBDl8l0n3IfktKszmQKp7aGA0Du7krTfvP9Dta+/ySn7H+VadZe9qZ1JXvM47QYNgWMlVavMMrNYKinpHpdbKIVabmlN9zYvXcfa//5B0YfeINcSWPd8PvofeYv63yeV9vmTTisUik4uJNmjnClFJ9/sxTX/OlMDH/DDn9XDp//Asf1Gl1eVnEjtUVbvaNkXtkKVynFV2t+4McPH+W0nLcYKofZ1SyT/NP+Ruu+PwUzdl8vMcrNYKiniAiHvG04piArFnYgO5uVb/+NfptnczKHWdX2XHpcfD+9m1XfLb8mdG6ZyibVnvZ71wNacSxf9x273/s/xuX+m4i4+GHQdLr99HdHzRJq1zyDvaoJzQ9kFWvwCoNhPv3yf+QvmsXpBR8wUgrY1mokRWdOp+1xo82E73qOUW4GQz3mYLN+tN37Javee5JDP3xL330fMlZyWJc6mNBP72ZA31FHVZ72zVL4UrrR5+BCvnr9YcIbP2VY4ZdkSoTNHc+ly6Q76RZnh5HK6NYqjVWRbpyU9T9CgRDL16xh5+K36bjzQ8azljAW29qdhu+nf6Bjx0FHVTZD3WGUm8FQj+kw+lKy33yZzG/+QFC5WNt0NLnjrqP3oPh6QVYVlyXkDbiC0IrPOGnNDHJI44fOF9HlrBvp0bZnQmQa2aMVD8hwTjn8NHn3tGeEFAGw19OBH/vezLGnXEXnJu0TIpuh7hBVjdUj6pohQ4aoJUuWJFoMg6Fe8cOPP5K/Yx3H9RuOPyOOKyjXEKUU6zdtpkloP+2PG4Achb3mKuObzfvY/p/H6RzeQnr74zl22Nn42h5vuh6TBBFZqpQaEtc8jXIzGAwGQyKpC+Vm3IAMBoPB0OAwys1gMBgMDY6k6pYUkb3Aj3HIqhVQX/aVN7LWHfVJ3vokK9QveeuTrFC/5I2XrJ2VUnFdhTmplFu8EJEl8e6/rSuMrHVHfZK3PskK9Uve+iQr1C95k1lW0y1pMBgMhgaHUW4Gg8FgaHA0VOX2j0QLUA2MrHVHfZK3PskK9Uve+iQr1C95k1bWBjnmZjAYDIbGTUO13AwGg8HQiDHKzWAwGAwNjgal3ETkTBHZICIbRWR6ouVxIiKdRORTEVkrImtE5Ho7fIaIbBeR5fbnrETLGkVEskRklS3XEjushYj8R0S+t78TvpihiPRylN9yETksIjckU9mKyHMiskdEVjvCyixL0TxqP8crRWRwEsj6gIist+X5l4g0s8O7iEiBo4xnHk1ZK5C33LoXkT/YZbtBRM5IAlnnOuTMEpHldngylG157VZSPrvFUEo1iA/gAjYB3QAvsALok2i5HPK1AwbbvzOA74A+wAzgd4mWrxyZs4BWJcLuB6bbv6cD9yVazjKeg11A52QqW2AMMBhYXVlZAmcBHwACjAC+TgJZTwfc9u/7HLJ2caZLorIts+7t/9wKwAd0tdsMVyJlLRH/EHB7EpVtee1WUj67zk9DstyGARuVUj8opQLAq8DEBMsUQym1Uyn1rf07B1gHdEisVDViIvCC/fsF4NzEiVImPwE2KaXisdJN3FBKLQQOlAgurywnAi8qzSKgmYi0OyqCUrasSqmPlFIh+3AR0PFoyVMZ5ZRteUwEXlVKFSmlNgMb0W3HUaEiWUVEgIuAOUdLnsqooN1KymfXSUNSbh2ArY7jbSSp8hCRLsAg4Gs76FrbhH8uGbr5HCjgIxFZKiJX22FtlFI77d+7gDaJEa1cplC8cUjWsoXyyzLZn+Ur0W/nUbqKyDIR+UxERidKqDIoq+6TuWxHA7uVUt87wpKmbEu0W0n/7DYk5VYvEJF04E3gBqXUYeApoDswENiJ7pZIFkYppQYD44HfiMgYZ6TS/RBJM5dERLzAOcDrdlAyl20xkq0sy0NE/gSEgFfsoJ3AsUqpQcBNwD9FpEmi5HNQb+rewcUUfzFLmrIto92KkazPbkNSbtuBTo7jjnZY0iAiHvQD8opS6i0ApdRupVRYKRUBnuEodpFUhlJqu/29B/gXWrbd0W4G+3tP4iQsxXjgW6XUbkjusrUpryyT8lkWkWnAT4GpdoOG3b233/69FD2GlZgttx1UUPfJWrZu4HxgbjQsWcq2rHaLevDsNiTl9g3QQ0S62m/wU4B5CZYpht2fPgtYp5T6myPc2R99HrC65LmJQETSRCQj+hvtULAaXaaX28kuB95JjIRlUuzNN1nL1kF5ZTkPuMz2PBsBHHJ0ASUEETkTuAU4RymV7whvLSIu+3c3oAfwQ2KkPEIFdT8PmCIiPhHpipZ38dGWrwxOBdYrpbZFA5KhbMtrt6gPz26iPFnq4oP21PkO/Ybzp0TLU0K2UWjTfSWw3P6cBbwErLLD5wHtEi2rLW83tFfZCmBNtDyBlsAnwPfAx0CLRMtqy5UG7AeaOsKSpmzRSncnEESPQ/y8vLJEe5o9YT/Hq4AhSSDrRvRYSvTZnWmnnWQ/H8uBb4Gzk6Rsy6174E922W4AxidaVjt8NnBNibTJULbltVtJ+ew6P2b5LYPBYDA0OBpSt6TBYDAYDIBRbgaDwWBogBjlZjAYDIYGh1FuBoPBYGhwGOVmMBgMhgaHUW4Gg8FgaHAY5WYwGAyGBodRbgaDwWBocBjlZjAYDIYGh1FuBoPBYGhwGOVmMBgMhgaHUW4Gg8FgaHAkvXITkS4iouz9jgz1FBG5TkR2iMiKBFx7hoi8fBSuM01EvqggfoGIXFXXcjQ2KqpfU/f1ExE5KCI/isiUmuaR9MrNUH1EZKaI5NqfgIgEHccfJEisGcCvlVIDHHLOEJEZCZInqbBf4rKqmf5TEckXkfUicmoFaS8Ska/stAtKxPUUkXdEZK+IHBCR+SLSq0SaG0Vkl4gcFpHnRMRXXTlE5JPqvKTaymJ2VdLWd+q47n12nR226/AmR9wIEfmPXe97ReR15z54ItJMRF4QkT32Z0YZ+V8vIptFJE9E1olITzt8rIhEHO1Orohc7jhvgYgUOuI2OPNVSjUHHgCmV7VcSlLnys1YXEcfpdQ1Sql0pVQ68H/A3OixUmp8NN1RrpsWJN9modUmiZ7nOcAy9L5afwLeEJHW5aQ9ADwC3FtGXDP0fme9gDbojTtjG9CKyBnoBuYnQGf0Pn93VkcOEZkKeKpzc8lIPa37GehNTjsD44BbRG88C9Ac+AfQxY7PAZ53nPswkGrHDwMuFZEropG2JfpzYAKQjt6lfZ/j/B2OdiddKfVCCdmudcT1ojSr7XusEXWi3EQkS0RuFZGVQJ6IuO23hK9EJFtEVojIWEf6BSLyVxFZbL9hvCMiLcrJ+wr7DSFHRH4QkV+WiJ8oIsvtfDZFK1JEmorILBHZKSLbReQvYu9yW8F9dBeR/4rIfhHZJyKviEgzR9wBERlsH7e3337G2sfniMga+34XiEjvEuXzOxFZKSKHRGSuiPirX9LVp5y6USJynCPNbBH5i+P4p3aZZtt12L+a14yWc6SSdLfY9bNDRK5yymXL9ISIvGfX/dci0t1x7t9FZKtd70tFZHSJ7P12OeeIyLci4rQgp9vPSo6IrBWR8xxx00TkSxF5WET2oxuLyu73QdHdKptFZHyJ6M52fjki8pGItKosvzLy7wkMBu5QShUopd5Ebww5qaz0SqmPlVKvATvKiFuslJqllDqglAqiG7ReIhJtVC4HZiml1iilDgJ3A9OqKoeINAXuQO/iXWNE5DLR3VT7ReQ2+zkuZbGIiEdE5ojImyLitYMbbd2j6+9updRBpdQ64Bns+lNKfaCUel0pdVjp3dUfB0Y6zj0buF8pla+UykLvyH2lLYeFrtcblVJrlWaTUupAde+pAiJAzV8o6mj31iz0jq2dgBSgA3qX5LPQCvU0+7i1nX4BsB3oh95R+U3gZTuuC3onWLd9PAHojt7x9WQgHxhsxw0DDtn5W/Z1j7fj/gU8bed/DPoN9ZeV3Mdxdl4+oDWwEHjEEf8LYC367WY+8KAd3hPIs8/1oP/YGwGvo3wWA+3RFs06SuzCW2In3OwKPqMquYcZ0bIsq27sMAUc50gzG/iL/XsQsAcYDrjQf5YswFeN5+FMoBBIqyTNLqCvXZ4vO+WyZdpv17EbeAV41XH+Jei3PDdws52X31EGQeACuz5+B2wGPHb8hXZdWMBku+7a2XHTgBBwnZ13SgX3MM2+zi/ssvoVWqFENwVegN6huCf6f7EAuLecvJ4Eniwn7jxgXYmwx4HHKqmHq4AFlaQ5F9jpOF4BTHYct7LrpWVV5EDvynwjJf7H1WxP+gC56P+CF3jQLudTnc+4Xabv2c+Kq7HXPdoyU0AbR9gFwKpy8r4BWOQ43gcMcxz/CTho/z7Wzvt69A7tm9EWvWXHjwUCwG477mEc/3/7/vfa1/gSGFuGPN3s8h9Y3WdGKVWnyu1Kx/GtwEsl0swHLnfc6L2OuD52wbio5E8BvA1cb/9+Gni4jDRtgCLnwwlcDHxazfs6F1hWImweR7az99lhtwGvOdJYaOU91lE+lzji7wdm1lFdzKC0cruyRJqKlNtT6Dc/Z/oNwMlVvP4SO//fVpLuOeCvjuPjKK3cnnXEnwWsryC/g8AARxk4/7QWsBMYXc65y4GJ9u9pwJYq3us0YKPjONW+h7aO5/zPjvhfAx/WoE4vdd6PHXYPMLuS8ypUbkBH+zm92BG2CTjTceyx76lLZXIAQ+yydFM75XY7MKdEuQYortzmAZ8Bj2IrlMZe9+gXWIX9kmeHnQZklZG2P7r7erQj7GXgLSAD/X/cBBTZcSfZeb+H7truAnwH/MKOb4tuxy2gK9oweNqR93A7Xx/6hTkH6F6GXA/a13m7umVVl2NuWx2/OwMX2t1a2SKSjX4La1dO+h/Rf6JSZruIjBeRRXaXYDa6kYum64SugJJ0tvPb6bj+02gLrlxEpI2IvCq6G/MwurJLyvQM2uJ8TClVZIe1t+8BAKVUxL6/Do7zdjl+56P7rI8WWytPEqMzcHOJuuuEvseqMBSYAswQkYrGXdqXkKssGcstM7ubd53dzZsNNKV4XcXys+tjW/Qe7C6v5Y7761feuVUgJqPSXT1QvG7jUe+5QJMSYU3QDUSNED1m8xHaYphTwbWiv3MqksPutnoS/eIZqqlcNsWeDbtc95dIMwLdQN+r7FbRQWOt+1xHfLlp7a7/D9B19bkj6rdAAfA9ehx2DrrssMNBd1tmK91t+TS6PUYptUvp7sqIUmozuvcq1nWqlPpaKZWjlCpSeizuy+i5DrmOsWUYo5Q6t4z7q5C6VG7OB2wr2nJr5vikKaWcA9ydHL+PRZv4zsFJRHtpvYnW5m2UUs2A99FdlNHrdKc0W9GWWyvH9ZsopfpWcg//Z99HplKqCbrrK3otRCQdPVA/C914R8cJd6CVQjSd2Pe3vZLrlUJERktxj6OSn5JjS1Wh5J8/H/2mGaWt4/dW4J4SdZdaogEs/0K6oXkb3UXSroKkO9GWQ5RO5SUsiV0GtwAXAc3t5+IQjrpy5mc3vB2BHSLSGf2Cci3Q0j53dYlzS5ZXolkDdBORDEfYADu82ohIc7Rim6eUuqeMaw0ocZ3dSqn9lcjRBG25zRWRXcA3dvy2GjyzxZ4NEUmhtKPBR8BfgU9EpE2JuEZZ90qPke6kdP3F0tpl8DG6d+alEucfUEpNVUq1tdtKCz2cArr3JkDx8qmorBQV6xtF8XIH7QhzqITCrTJHayrAy8DZInKGiLhExC/aVdTZmF0iIn1EJBW4C3hDKRUukY8XbcbuBUL2gO3pjvhZwBUi8hMRsUSkg4gcr5TaiX74HxKRJnZcdxE5uRK5M9BvP4dEpAPw+xLxfweWKKWuQpvnM+3w14AJthwe9BhQEfBVZQVVEqXU56q4x1HJT40qvgTLgZ/ZdXMmeiwzyjPANSIyXDRpIjIh+ucS7egxu5J7iFq03gqSvYauu972M3BbNeTPQPfN7wXcInI7pd9uTxCR80V7vN2Aro9F6DFYZZ+LaG+wftW49lFHKfUdus7usP9L56GtljfLSh/9z6G7By37HI8d1wQ9RPClUqost+sXgZ/b/81mwJ/RXcSVyXEIbR0NtD/Rt/ITgK/tay+Qqk0FeQPdfpwk2klkBqUbQpRS9wP/RCs4p/XVaOseXX9/FpHmInI8ekxwNoDdpv0XeFwpNbPkiXYb2dJ+fsYDVwN/seXIB+aivS8z7Lb8auDf9rnjRKSz3WZ0QnvqvmPHNbN1gV+0Q9tUYAzwYQkRPOi6qhFHRbkppbYCE4E/oh+krWhF4bz+S+hC3wX40eZoyXxy7PDX0GMqP0P3tUfjFwNXoAcvD6H74KMW1GXoxnWtfe4bVGxJgB4gHWzn9R66/xnQXploJ4hf2UE3AYNFZKpSagPaynsMbX2eDZytlApUcr1EcT1axmxgKtrSAkAptQT9h3gcXW4bsb2tbDqhuxQqo8I3N6XUB+jxkk/tayyyo6rycM9H/zG+Q3cHF1K6O+kdtMPAQfS4xflKqaBSai3wEPA/9OB3ZhXvp04RPVexVIPjYAraMjqIbjguUEpFG+mpIuJ8k78U3Y30FDDa/v2MHXceuuv4ihI9AscCKKU+RI8JfwpsQZfvHZXJoTS7oh9sBYK2+qL/gyo9O0qpNWinjlfRlkgu2smp1LOhlLob/fx+7OhJacx1fwd6qOZHdHv4gF2noMdgu6F7nWJ17zj3BLQ/QQ7aKp5q10WUa9F1sQNdhv9Ej52DdkT7Cu2g85WdT7RN96CVZNSh5DrgXFtxO3FRiYd1RUQ9eRKK6ImlLyulnk20LIaqY79FrwD6K+1GXlHaHcAtSqkqrRYheurEarSTTm3HbAxJhv2m/5pS6qQanJuOfhHrYY/nGBogInILWnEPq8n5ZoUSQ41RSgWUUr0rU2w209FdKUvLSyAi54leUaE5cB/wrlFsDROl1LbqKDYROVtEUkUkDT3mvgrt+WtogIjIXrQX5Z2VpS2PRq/cpPhSVc5PRd0ChmqilHpRKdVDKXVCBcl+ie5u2gSEOdLlmzSY5yVhTER3f+1AOxpMKcMrsk4xdX/0UEq1Vkr1VUq9V9M8kqJb0mAwGAyGeNLoLTeDwWAwNDySZSFQAFq1aqW6dOmSaDEMBoPBcBRZunTpPqVUeYs/14ikUm5dunRhyZIliRbDYDAYDEcREfmx8lTVw3RLGgwGg6HBYZSbwZBk7D5cyMLv9lae0GAwlItRbgZDkvH0q29x8KXLKCwsTLQoBkO9JanG3MoiGAyybds280c3VAu/30/Hjh3xeOrfBtC/3P4H2riy2bp1A516DKj8BIPBUIqkV27btm0jIyODLl26IFJqrVSDoRRKKfbv38+2bdvo2rVrosWpNkG0Qs4/ZLomDYaakvTdkoWFhbRs2dIoNkOVERFatmxZb639PEkDIHDYKDeDoaYkvXIDjGIzVJv6/MzkWXqrrlDOvkpSGgyG8qgXys1gaEwUuLTlpvJLbjZtMBiqilFuVUBEuPnmm2PHDz74IDNmzEicQJWwYMECvvqq2vuixli+fDknnngiffv2pX///sydOzeO0hkqQ1l6T9dwYW4lKQ0GQ3kY5VYFfD4fb731Fvv2xbebSClFJFLjvfjKpbbKLTU1lRdffJE1a9bw4YcfcsMNN5CdnR0/AQ0V4hK9mLkqykuwJAZD/cUotyrgdru5+uqrefjhh0vF7d27l0mTJjF06FCGDh3Kl1/qjXxnzJjBgw8+GEvXr18/srKyyMrKolevXlx22WX069ePrVu38vvf/55+/fqRmZkZs5IWLFjA2LFjueCCCzj++OOZOnUqZe3g8Oijj9KnTx/69+/PlClTyMrKYubMmTz88MMMHDiQzz//vEIZL730Uk488UR69OjBM8/ozZl79uxJjx49AGjfvj3HHHMMe/eWdm54/fXX6devHwMGDGDMmDGAdgC64ooryMzMZNCgQXz66acAzJ49m3PPPZfTTjuNLl268Pjjj/O3v/2NQYMGMWLECA4cOADAM888w9ChQxkwYACTJk0iPz+/1HVHjBjBmjVHNgQeO3Zsg1q2TZR+4bGC8bXcQuEIcxZvIRCK7wuVUopgOP4vaZGI2bHEUHOSfiqAkzvfXcPaHYfjmmef9k244+y+lab7zW9+Q//+/bnllluKhV9//fXceOONjBo1ii1btnDGGWewbt26CvP6/vvveeGFFxgxYgRvvvkmy5cvZ8WKFezbt4+hQ4fGFMWyZctYs2YN7du3Z+TIkXz55ZeMGjWqWF733nsvmzdvxufzkZ2dTbNmzbjmmmtIT0/nd7/7HQA/+9nPypVx5cqVLFq0iLy8PAYNGsSECRNo3759LP/FixcTCATo3r17qfu46667mD9/Ph06dIhZdk888QQiwqpVq1i/fj2nn346332nd49fvXo1y5Yto7CwkOOOO4777ruPZcuWceONN/Liiy9yww03cP755/OLX/wCgD//+c/MmjWL6667rth1J0+ezGuvvcadd97Jzp072blzJ0OGDKmwzOsTosIAWMHSir02fLhsI93+fSnzdk7ngonnxS3fB9/6AvXdfG6ZfjfEyZEnPxDi0hmP8asTj+HUs6fGJU9D48JYblWkSZMmXHbZZTz66KPFwj/++GOuvfZaBg4cyDnnnMPhw4fJza34jbtz586MGDECgC+++IKLL74Yl8tFmzZtOPnkk/nmm28AGDZsGB07dsSyLAYOHEhWVlapvPr378/UqVN5+eWXcbvLflepSMaJEyeSkpJCq1atGDduHIsXL46dt3PnTi699FKef/55LKv0ozJy5EimTZvGM888Qzgcjt3PJZdcAsDxxx9P586dY8pt3LhxZGRk0Lp1a5o2bcrZZ58NQGZmZuzeVq9ezejRo8nMzOSVV14pZqFFueiii3jjjTcAeO2117jgggsqLO/6hmVvPu4OxddyC+zawHBrPePW/jmu+XZbfi+3FD1G8MfFlSeuIvtzA7zpncGpS38dtzwNjYt6ZblVxcKqS2644QYGDx7MFVdcEQuLRCIsWrQIv99fLK3b7S42nuacc5WWllal6/l8vthvl8tFKBQqlea9995j4cKFvPvuu9xzzz2sWrWqVJryZITSLvPR48OHDzNhwgTuueeemCIuycyZM/n666957733OOGEE1i6dGmV78eyrNixZVmxe5s2bRpvv/02AwYMYPbs2SxYsKBUPh06dKBly5asXLmSuXPnMnNmw9oIOdot6Q4XxDXfVIrs/MNxzbcVujel4NBu4rUeTMjZJalU3CxCQ+PBWG7VoEWLFlx00UXMmjUrFnb66afz2GOPxY6XL18O6O17vv32WwC+/fZbNm/eXGaeo0ePZu7cuYTDYfbu3cvChQsZNmxYleSJRCJs3bqVcePGcd9993Ho0CFyc3PJyMggJyenUhkB3nnnHQoLC9m/fz8LFixg6NChBAIBzjvvPC677LIKraJNmzYxfPhw7rrrLlq3bs3WrVsZPXo0r7zyCgDfffcdW7ZsoVevXlW6H4CcnBzatWtHMBiM5VMWkydP5v777+fQoUP079+/yvnXByxb+XjD8e2WdNljeGWN3dYGQedXmHsobnmGnGN4wfgqeUPjwCi3anLzzTcX85p89NFHWbJkCf3796dPnz4xK2LSpEkcOHCAvn378vjjj9OzZ88y8zvvvPPo378/AwYM4JRTTuH++++nbdu2VZIlHA5zySWXxJw3fvvb39KsWTPOPvts/vWvf8UcSsqTEXS35rhx4xgxYgS33XYb7du357XXXmPhwoXMnj2bgQMHMnDgwJhCvP3225k3bx4Av//978nMzKRfv36cdNJJDBgwgF//+tdEIhEyMzOZPHkys2fPLmaxVcbdd9/N8OHDGTlyJMcff3wsfN68edx+++2x4wsuuIBXX32Viy66qMp51xeiys0XiW+jLiGdnysSjGu+Rba9Fsg9ELc8g2GHAi6K7zi7oXEg8X6Lqw1DhgxRJb3e1q1bR+/evRMkUcNmxowZxRxPGhr19dlZcdcIBkTWsUdacswdP8Qt349efYzT1/+ZAkkl5Y6dccv33dvO4GzXIjYPuImu590RlzxXbsum/7Od9cG1S6BVj7jka0hORGSpUiquXmHGcjMYkgyXbbmlqjh3x0X0uKYvzvmG7WYkUhC/bkljuRlqS71yKDHEl2ReZaUxY6GVW4oqiK8zRTho5x/f3ho39vhYYfyUULExt6Kc8hMaDOVgLDeDIcmwbG9JlyjCgfhZWSpS2ts2Hvgs2/syED8l5PSWVIXxswgNjQej3AyGJCNquQEU5sWxYQ87HEki8ZsO4BV7RZVA/JYLC4aOyBcsMGtsGqqPUW4GQ5LhcsxDK4ijez1Oyy0QP4XhJrqiSvyUW9gxpzOQbyw3Q/Uxys1gSDIsIgTt4fCi/PiNYxXrliyKn3KLWpquUPzm5YXDgdhvY7kZaoJRblXk7bffRkRYv359uWmysrLo169fncqxfPly3n///RqfH5303adPH/r27cvf//73OEpniAcuwuTYu3EX5cVPuYljflskjsotaml64jjpPBw8Imu4wHhLGqqPUW5VZM6cOYwaNYo5c+aUGV/W0ljVJbo+Y0XUVrm53W4eeugh1q5dy6JFi3jiiSdYu3ZtjfMzxB8XEfKtdACCBXH0FHQ8X0VxHMtzEf8VVSIOy83sa2eoCUa5VYHc3Fy++OILZs2axauvvhoLX7BgAaNHj+acc86hT58+gFZyU6dOpXfv3lxwwQWxLVs++eQTBg0aRGZmJldeeSVFRXqdvy5dunDrrbcyePBgXn/99WLXLbmlTCAQ4Pbbb2fu3LkMHDiQuXPnkpeXx5VXXsmwYcMYNGgQ77zzDqC3mJk4cSJjx46lR48e3HnnnQC0a9eOwYMHA5CRkUHv3r3Zvn17qXv+7LPPYquTDBo0iJycHJRS5W7Pc/LJJzNx4kS6devG9OnTeeWVVxg2bBiZmZls2rQJgHfffZfhw4czaNAgTj31VHbv3l3qulOmTOG9996LHU+bNi22SHJjwSJCYUy5xdFqcVhu8XRUcdkLPfsi8VNuoZDDyozj+KCh8VC/5rl9MB12lV4YuFa0zYTx91aY5J133uHMM8+kZ8+etGzZkqVLl3LCCScAet3I1atX07VrV7KystiwYQOzZs1i5MiRXHnllTz55JNce+21TJs2jU8++YSePXty2WWX8dRTT3HDDTcA0LJly9g6lE5Kbinj9Xq56667WLJkCY8//jgAf/zjHznllFN47rnnyM7OZtiwYZx66qmA3q5m9erVpKamMnToUCZMmFBsa5isrCyWLVvG8OHDS137wQcf5IknnmDkyJHk5ubi9/t56623yt2eZ8WKFaxbt44WLVrQrVs3rrrqKhYvXszf//53HnvsMR555BFGjRrFokWLEBGeffZZ7r//fh566KFi141uZzNhwgQCgQCffPIJTz31VBUrs2HgJkyROwOCEI6j5SYOD8lAnPKNRFTMcvOpwrjNy4s4uiXjOT5oaDwYy60KzJkzhylTpgDasnB2TQ4bNoyuXbvGjjt16sTIkSMBuOSSS/jiiy/YsGEDXbt2ja0vefnll7Nw4cLYOZMnTy7zumVtKVOSjz76iHvvvZeBAwcyduxYCgsL2bJlCwCnnXYaLVu2JCUlhfPPP58vvvgidl5ubi6TJk3ikUceoUmTJmVe+6abbuLRRx8lOzsbt9td4fY8Q4cOpV27dvh8Prp3787pp58OFN/OZtu2bZxxxhlkZmbywAMPlLmdzfjx4/n0008pKirigw8+YMyYMaSkpJR57w0RpbSyCHp0nUTiOIHZOeYWiJOjSiiiYpO4XUTitsixcnRLxtOz09B4qF+WWyUWVl1w4MAB/vvf/7Jq1SpEhHA4jIjwwAMPAKW3rylvC5mKKG8LnKpsKaOU4s033yy18v7XX39drizBYJBJkyYxdepUzj///DKvPX36dCZMmMD777/PyJEjmT9/foX3UJXtbK677jpuuukmzjnnHBYsWFDmCil+v5+xY8cyf/585s6dG3upaCyEIwoXEUJeW7kVxnHMzTHFIBQnyy0UicSmAgAQyANvaq3zdU4FiOf8OUPjoc4tNxE5U0Q2iMhGEZle19eLN2+88QaXXnopP/74I1lZWWzdupWuXbvy+eefl5l+y5Yt/O9//wPgn//8J6NGjaJXr15kZWWxceNGAF566SVOPvnkSq9d1pYyJbezOeOMM3jsscdi25gsW7YsFvef//yHAwcOUFBQwNtvv83IkSNRSvHzn/+c3r17c9NNN1V47czMTG699VaGDh3K+vXra7U9D8ChQ4fo0KEDAC+88EK56SZPnszzzz/P559/zplnnlnl/BsCYaWVm3hTCSiXVhZxQiJBipR+nw3HSWkGw0e6JYG4rVLidCixQka5GapPnSo3EXEBTwDjgT7AxSLSpy6vGW/mzJnDeeedVyxs0qRJ5XpN9urViyeeeILevXtz8OBBfvWrX+H3+3n++ee58MILyczMxLIsrrnmmkqvXdaWMuPGjWPt2rUxh5LbbruNYDBI//796du3L7fddlvs/GHDhjFp0iT69+/PpEmTGDJkCF9++SUvvfQS//3vf2MOI1Hvy5kzZ8a2w3nkkUfo168f/fv3x+PxMH78+FptzwN6LcsLL7yQE044gVatWsXClyxZwlVXXRU7Pv300/nss8849dRT8Xq9Vc6/IRCJ6DE3y+Umj5S4dsmJCpNrTzGIl0UYjig8hMlDb4Sr4jQ+FrEdSoqUB7dRboYaUKdb3ojIicAMpdQZ9vEfAJRSfy0rvdnyJn7Mnj27mONJY6Q+Pjt5RSE8/3cMa7pcRpsf32VPiyEM/O3cuOT96X0X0qdwKemRXLZ1m0yvyx+r/KRK2HO4kNBDvXFZFm3UPgovfQ9/91G1zvefb73Nz1Zezh7VnBSPRcaf47f1jyH5qI9b3nQAtjqOt9lhMUTkahFZIiJL9u7dW8fiGAzJTVhpBw0lbgolJa5LWlkqjBI3+fjjZhGGbMstOi8vXlMMlO38kmul44njFAND4yHh3pJKqX8opYYopYa0bt060eI0GKZNm9aorbb6SiQcxhIFlotCKzWuXXKiQihxk6v8SLyUmz3mVujSDjBF+fHp7lR2t2S+lY4/UqD7aw2GalDXym070Mlx3NEOqxbJtFu4oX5QX5+ZmJeg5SZgpeIJx2/LG0uFUJaLfEnBCsbHGgra3pJF9tSFYJymGETCuhzyrQz7QsZ6M1SPulZu3wA9RKSriHiBKcC86mTg9/vZv39/vW2sDEcfpRT79+/H7/cnWpRqE23UsdwE3WlxXdLKioQIi5siScEVJ4swbM9zi05diNcUg+hqKoVuW7mZuW6GalKn89yUUiERuRaYD7iA55RSpWfuVkDHjh3Ztm0bZjzOUB38fj8dO3ZMtBjVJrZyv1iE3Gn4C+On3FyEiYjb7u6M11SACG5CKF9TIH5TDJS991zA0wQKiOuUCEPjoM4ncSul3gdqvNKvx+MptgKIwdCQcXZLRjyppKj4dktGxE3AlYonXHpdz5oQCmvLzeVPI6BccVNu0Y1Voyu1GMvNUF0S7lBiMBiOEInulm25Ud50rdzi1CVvqRBKXARdKfji1N0ZCoWwROH1+sjHH7d5blELNmxbhGZ9SUN1McrNYEgilL2GqFgulDcdj4RRoaK45O1SYSKWW3d3xskiDIf0SiJer5dcUuLXfWgr+bCvmT423ZKGamKUm8GQRESiY26WC/FpZ4qCOM0di465hd1pegX/OLjXh20HGJ/XR57yYwXjZGHZ+Sp/MyC+C0gbGgdGuRkMSYTTW9KylVt+TnZc8napEMpyo7xpWKi4uNeHg9pys9xuCsUftykGorTlZqU0B+K3RY+h8WCUm8GQRKjYmJsLd4pWboW58bPclOixPCAuThphe7K15fLEd9K5reQlTSu3eM2fMzQejHIzGJKISCQ65uaOKbeivPg07NExN2LKrfaKKGKPuVkuDwErBXcoTpZbROfrTm0BxHlHckOjwCg3gyGJUA5vSU+KvaRVnBp2F6Fi3Z2hOOR7xHJzE3Slxm3SeXRjVV9qBkXKTbjQeEsaqodRbgZDEqFCtuXmcuNP127wwTit1+i2uyUtv7bcivJr390ZDmpPTsvjJ+ROwxeJjxem2I41KX4/efjju2mroVFglJvBkEREvSXFcuFP08otHhaWUnqBY2V54trdGV3g2PJ4CbvT8Kv4WG6WbbmlpKSQj5+ImedmqCZGuRkMSURs+S3LjT9dd0vGw2qJbiqqLBduu7szEAeLMBLWlpvL4yPiTcNLMDZHrTZYkSBhXKT73eQpv5nnZqg2RrkZDEmECh+x3NIztKegisMcr1BE6W5Jy4M3NbrIcRwst2i3pNsXVy9MKxIkJB5SvW7yiN8WPYbGg1FuBkMSEZ0Ubbk9+P1+ipQ7LktahSO6W1Jcbry25RaMw9yxmLekx49403RgHKwsS+kdDNJ82nKTOG7aamgcGOVmMCQRUe9Dt8uDiJAvKXGxWkKxbkk3KbajSlycNMK2y77HG1tRJR4WoRUJEhYPqV4X+fhxGeVmqCZGuRkMSUR04WSXW2/YkU9qXBr2sN0tieUhNcVHofLEx0kjNubmx2V7YRbm1V5pulSQiOXG47IokBTccdzXztA4MMrNYEgiwsEj3ocAhVYKrlDtlVAgGMYjYcRyk+HT41jxGMuLRC1Nr/fIiipxWAvTUkEi4gHQW/SE4rf1j6FxYJSbwZBEqGg3n9sHQJErDU8clrQqDOh8XW4PGX6P9kCMg+Um9o4F4vbjiU4xiMNSWS4VImxp6zXoSsUbMZaboXoY5WYwJBFHHDS0ctOrftReuQXsHb3Fk4LfY5FHSnycNOz5aLg8eFOjk85rr9zcKoSyLbeQKxWPCsRlioGh8WCUm8GQRKhQ1EHD7pJzp+OPg9USLNSKTLypiAhFVgpWHJRbJLrXnMuHLzU+XphKKVwqRMTSZaA8US9MMx3AUHWMcjMYkohot6TLttzC7jRS4qHcinQeljcVgKI4reAfneeGyxubdB6upRdmIBzBQwhlK7eI7YVJoVk82VB1jHIzGJKImOXm9QMQ8aSTQu2dKUL2wsMun1ZuAVcqnjh4IEa7UXF5SE1rQkRJracYFATC+CSIsscdiSo3s2GpoRoY5WYwJBOOeWMAyptOGoUoeyucmhKyuyVdtuUWdsdnBX8V7ZZ0+0j3e8il9o4q+YEw6RQQ8dgrnvj1WB5FxnIzVB2j3AyGZMJWFh7bclO++HgghgNakbn9evwq7EnHr2pvEbpDeYSxwO0nzecmlxQkUDtZ8wNhUilE2SueWPaKKqZb0lAdjHIzGJIICWol5LXd6i2//s7Pya5VvmF7zM3jUG4pqgCUqlW+nlAeBZIKIvjcFrkqFStQ+27JNCmKbarqSW0GQDA/u1b5GhoXRrkZDEmEBHLJVz4slwsAl19bLQW5tZsYHQlqK81jj7kpXwYuIrX2QPSG8yh0aYUpIuRbqbiDtVNu+YEQaRQgPlu5pTUDoCgvu1b5GhoXRrkZDEmEhPIpEH/s2BXdjbuWDXuwQCuxtHTbOcNWmqqwdkrTF84jYKXGjgusNNy1nGKQHwiSJkVYPq00o/vaBYxyM1QDo9wMhiTCFcyn0KHcohOjA7XcWFTlHwTAl9ESAMt20ijMza5Vvt5wHqGo4wd6RRVfuJYOJbna8ovuO5eamkFQuQjFYedwQ+PBKDeDIYlwhfIJSErs2JuqLa1gLRt2q+AAEQT8zfRxiv4uOHygxnlGIoqUSB5hh3ILuNLx1XJFlfzD+wFISdcyZqR4yCGFcIFRboaqY5SbwZBEuMP5FLmOKDef3cCHarnqh7voILmSDi69XmN0HKswt+bKLacwRAtyCPubx8JCnnRSIrVTboHsXQCktOgAQIbfQ45KRRlvSUM1MMrNYEgiPOFCQtaRbsno3mvhWo6NeQMHybWaxI59tnIL1KJbcl9uIcfIQSLpbWNhIXcGforA3nS1JkRytHJzNWkDQIZfTzEwUwEM1aFWyk1EZojIdhFZbn/OcsT9QUQ2isgGETmj9qIaDA2ftPAhAt5mseNo11xtd+NOLdpLga9V7Nifoa2t2nR37t69E5+E8DXvGAuL2O77tZlwHTmslRvpWrk18XvIofZTDAyNC3cc8nhYKfWgM0BE+gBTgL5Ae+BjEemplKrdMgsGQwOneeQgO1Jax47TUlMpUu5aKYtAKEK7yE72po+OhaXYjiW1cdI4tPMHADKOOTYWppxLZaW2qFG+3pwthHHhspVbut9NjkrFFTSWm6Hq1FW35ETgVaVUkVJqM7ARGFZH1zIYGgQFebmkSwEq7Yhyc7vs7WlqMR9tx559tJFsVPMusbC09HSCyoUqyK5xvkU71wLQ9Nh+sTCp5RSDcETRqnALB/ydwKUXTnZZ0flzZlcAQ9WJh3K7VkRWishzIhIdWe4AbHWk2WaHlUJErhaRJSKyZO/evXEQx2Con+zftQUAV5O2xcLzJQVXoOZOGltXfw5A065DY2FRD8TaWISuPasI4MHV6rhYmGUrt0ANlwv7btdh+somilocXyy8yJVe6ykGhsZFpcpNRD4WkdVlfCYCTwHdgYHATuCh6gqglPqHUmqIUmpI69atKz/BYGig7N+6DoCMdj2KhRdaqbhCNW/YC3/4CoAOmWNiYeleNzmkIjVUboXBMMflLmVbRv+YhQXgSo3OnztYo3zXrVtJezlASs+Ti4UH3fYUg1ouF2ZoPFQ65qaUOrUqGYnIM8C/7cPtQCdHdEc7zGAwlEPhTq3cWnfNLB5upeKp4d5rkYii0+7/stnbk65pR1z2LUvII63GS2Ut/nYpY+RHNne/sFi4O6V2q4nkr3gbgBb9Ti8WHvKk4wpEIJgP9oLKBkNF1NZbsp3j8Dxgtf17HjBFRHwi0hXoASyuzbUMhgbPvu85TBotWrcvFhxwpeGt4cToJf/7hOPVD+T1Oq9UXL6VhqcGyk0pRfZnMwlh0fHkK4rFRefP1cQL87udBzkp+9/szMhEHF2dABGv2RnAUD1qO+Z2v4isEpGVwDjgRgCl1BrgNWAt8CHwG+MpaTBUTNPstezwdUWs4n/LoCsNXw32XguHI1gL/o/DpNPrzF+Vii9ypeOtQXfnkuUrOT1vHlvanoHHMQ0AwG8rt3A1lZtSisVvPkI3axcZP/ld6Xifrdyq2Y26L7eI91ftrNY5hoZBrZSbUupSpVSmUqq/UuocpdROR9w9SqnuSqleSqkPai+qwdBwyck5TPfQJnJaDS4VF/Kkk6Kqr9wWvPEYQ4JL2ZJ5LR5Hl2SUgLv6ThqH8wtR714HIrS/4L5S8SmpaQSVq9pLZX2yaAkT9z7N9qYnkD5gYqn46NY/1bHcwhHFX//2IMHXrmT11n3VksdQ/zErlBgMScCmFV/ikTCp3U8sFRfxppNaTeW24puFjFh7D9/7+9H33N+XmSboyajWUlmRiGLhs7cwLLKC3SfNwN+qc6k0ejfulGotlbVm8w7affgLXBa0uew5ECmVxkqp/m7cL7z2Og9F7mei6yuWzX+5yucZGgZGuRkMSUDO9wsB6DzolFJxyteEFIogHKxSXlmbNtD2vcvIszJoc8UcxFW231jIk6E3LI1EqpTvu688yk8PvMB3bX9K59N+XWaaNJ+bHJWiJ3FXgW37D3PgxUs4Xn4kMPFZ3C27lJnOZSu3UBUtwjf+8znnrLuZg952FFpp9N7yT3YdKqzSuYaGgVFuBkMS0HTX12RZnUlv3rZ0pK/qe7rt3beH8MsXkEYRkYtfo0mbY8tNq3xNsFBVsoY++vdcxm+8k81pg+jx82fLtK5AK7dcUrECled5KD/AtzN/yWi1lH1j7qHZwJ+Wmza2YWkVphh8uvw7Bn5+NSkuRZOr5lEw8haGWBv4cP67lZ5raDg0SuUWDofJLywkGAyiImEzd8aQUEKBQo4rXM2uFkPKjI+u+pFfyfY0+QUFbHv6Io6NbGfP+Gdo2/OEii/sr5qTxv++/JQTv7mePd5jOfY3/0I8KeWmTfO6yCEFVyUrqgRCEd6d+UfOCb7P9j6/oM0pZVuCUXz2mGFRJQs9r/pxN6n/upzO1h5cP/snrmN60nzUVeRZTei0ZiaH8qtm/daGSDhCUSBAJGLalUQSj7Ulk47sfbvZsWExOdvWEtr3Ayl5W2lStIvU8GEyVC4ZUkCqI31QuciVVPJJId9Ko9BKJ+hOJeROI+RJR3nSwZeO+NJx+TNwuz36zVVcIIISCxBQEZRS9kcrzehxLC4SscP1dywcVfxYKSSaBoVgfyuFiP6uEKnwsNqUulolly8dXTykMvErbRZUhYdxvV7l7z6qgqPSASXjvYX7GSNFuLqNoSzc0b3Xcg9S2i1EEw5HWPrENEYHl7Fm2F/pO7x8KyhKdMPSQF423mZlW3grV62k+0fTKHKl0fKX83CllieBLavLIl9ScYfK75ZUSvHacw9xyeFn2NbudDpecH+lsqakNyGipMJuyc17DrP7+cs4VdZy6KwnaXqcXZ6+dPIH/pyffPswc/77Xy7+ac3XcVfhEHu3rGXvxmUUbl+Fyt6Kv2A3TYN7SIvk4FNF+AngE0VYCQV4COAhIF4KxU+RlULQ8hN0pRB2pRJ2p6I8KShPKnjTEW8qLl86eNMIiwdU2H4BD+vuYxWGSFi3E9HvaDsRTRdrXyL2Ofan2JMnKBG7XbBbh5g1fuRYodMoO1of69YIEfJS2nHalOtrXJ51SYNSbj+s/prUN6bSlr00s8MK8LLbaku2rx2HfD3Y7mtK2JuB5fagIhHCkQiEinAHc/GEcnAHc/GGckkL7cUf2II/kk8KBaQQSOStGRo42TSh+7DxZca507QSKsrJLjNeKcWCZ3/PT3I/ZEW3qxkwoWIrKErUSaMg5yDeMuK/z9pCxpuTSZEg4cvmkdKq/C5OJwVWOp7QrnLj33jtBS7a/le2NTuBjle+BFblHUgZKT5y8Ze70POeQwV8+4+rmcQi9o28nVbDphaLb33qbylY9jTHLbmL7HFjaZbmq9K9RPKz2bpyAQfXf0bqzsUcW7SBYwhyDBBWwj5pwUF3a/akdCfsb47ypKLcKYjLA5EgEipCwgEkVIgVysMVKsAdLsAfysEb2ItXFeJXhaSoQlKkbtqYsBIiugMa0KrLVk+Ob40l1bM2v1a9AaPc6pyWHbrxfUYmPx7Tj5RjB9OuxyBatT2WLlX481SGCgfJzzlEXu4higIhwPHmZL8dWZZlf7RFZ1kWlghiWYhEf7v0t0uwLBcigiUWYuljSywsC8S2CkFsK9Eq+3dN70eVtmxKZie1yN9QPZoh5Tby3tRmQPljbgteuY+f7HyWlS3HM+DSyq2gKLENS3MO0rRE3PY9+yh44QJ6sZfsSa/RpsuAKucbcKWWO8Xgnffe5ay1t7AvpSsdrnkLPP4y05Ukw6+XCytrKsDhwiAfPPV7Lg99wJ7MqznmtJtLZ5DaggMjb2PoF3/gvaev4yfXPonfW7r5ixQcYvvKTzi05r9k7FpEx8BGOqNor1x85+rO4pbn4WqXSZPOA+jUcyBtmjalTZXuoHKKgkHycnMoyMshWJCDW4V022G5EZdLtx2W/ta/LVwuN1guXK4jbY9lue04F2JZuABXTQSKthGOniUdpGLtxwlJPKTToJRb0+atGXLzv+okb3F5SGvWirRmrSpPXA8oqbaMGkteonuvhfKzS8V99vYznPz9vazJOJF+17xYrRceb2zD0uJOGgcO57Ll6ckMV9+x4/Sn6ZhZ2oOzIgLudPyF+aXemOYv/JJRi39FvqcFbX71b8Tubq0KGfa2NxkllFthMMycp+7ml4UvsbvLubQ5r/TcuygdfvIrvv/xWyZsncua+1aQd9zZpDZtTaQgG9m7nrQDazg28D2diHCM8rDG1YvvWl+O/7jRHDd4LH1b1+1/3+fx4GveAprXbKuguCNHuidLdFjWCxqUcjMYGiJHlFvxLrmv5s/lxGW3stHfl57XvoHlKatzsXx86boRDTqUZnZOHusfv5CTwkvIGvEXupw0udryhjzpuAtDECoE2/nki8Xf0P+TS3C7LFKunoerabtKcilOht/DXlJo4tiwtCgU5uWn7+MX2Y+yu80o2lz6bMVdnCL0uPIZ1v67P82/fYK+Gx6IRR1Sqfzo7spnrS/FfdwYug8ex+DWLat344akwig3gyHJadaiDUXKgxzeEQv74t8vMPSbm9ju6cKx176Lx59e7XxTm9hK03bS2J99mDVPXMyY4Fd8N+hP9DzzupoJnNoKcoDc3dC8C598+T/6fPQz0qwQ7mnv4j2mZ7WzzPC7OaxSObYoG9AW24tP/ZWr9j/I7pZDaXfV68V2JygXEfqc/VvUhGvZtXMbh7L3401ryjFtO9HfX4XzDfUGo9wMhiSnaZqPTXIM7kM/EAlHWDjnXkZ+/yA/+nrQ/jfv4c+oWTdW04x0DqtUJHsrP/yYRc4LP2NMZA2bBv2BnhNvqbG8ckxv2A2BHWv46PPFnLT0RtwuF65p75J67MAa5elxWWy1OjAq/2P2HDzMp89O5+q8V9jdajjtfvk2eFMrzaOYjJZF2w7H0rZD1ZxkDPUPo9wMhnrAHl8XMg8t4dsHf8rYgi9Zkz6C4379amz+V03o0CyFz63eDN32LvnPfURHyWfTmEfpfsrltZK1zXGDKFzpIe/13zBeZbPH24nUn7+Fv22Pyk+ugNzWg/Due4/I3wcymf1s63wuHS/9B7ir5vloaFw0ykncBkN9o2jgFaSoAvrmf8O3PX5Ln5vfr5ViA+0NW3DizexTTdmb0o1Dl/6n1ooNYHS/rrzR4hcU4WFD54tpe/MXtVZsAIPPuITPZCghdxq7xv2NjtNmG8VmKBcp6RKeSIYMGaKWLFmSaDEMhqRk8+ZNtGjWjKbNjaODoWEhIkuVUmUv0VNDTLekwVBP6Nq1e6JFMBjqDaZb0mAwGAwNDqPcDAaDwdDgSKoxNxHZC/wYh6xaAfVl610ja91Rn+StT7JC/ZK3PskK9UveeMnaWSnVOg75xEgq5RYvRGRJvAcn6woja91Rn+StT7JC/ZK3PskK9UveZJbVdEsaDAaDocFhlJvBYDAYGhwNVbn9I9ECVAMja91Rn+StT7JC/ZK3PskK9UvepJW1QY65GQwGg6Fx01AtN4PBYDA0YoxyMxgMBkODo0EpNxE5U0Q2iMhGEZmeaHmciEgnEflURNaKyBoRud4OnyEi20Vkuf05K9GyRhGRLBFZZcu1xA5rISL/EZHv7e/ard4bHzl7OcpvuYgcFpEbkqlsReQ5EdkjIqsdYWWWpWgetZ/jlSIyOAlkfUBE1tvy/EtEmtnhXUSkwFHGM4+mrBXIW27di8gf7LLdICJnJIGscx1yZonIcjs8Gcq2vHYrKZ/dYiilGsQHcAGbgG6AF1gB9Em0XA752gGD7d8ZwHdAH2AG8LtEy1eOzFlAqxJh9wPT7d/TgfsSLWcZz8EuoHMylS0wBhgMrK6sLIGzgA8AAUYAXyeBrKcDbvv3fQ5ZuzjTJVHZlln39n9uBeADutpthiuRspaIfwi4PYnKtrx2KymfXeenIVluw4CNSqkflFIB4FVgYoJliqGU2qmU+tb+nQOsAzokVqoaMRF4wf79AnBu4kQpk58Am5RS8VjpJm4opRYCB0oEl1eWE4EXlWYR0ExE2h0VQSlbVqXUR0qpkH24COh4tOSpjHLKtjwmAq8qpYqUUpuBjei246hQkawiIsBFwJyjJU9lVNBuJeWz66QhKbcOwFbH8TaSVHmISBdgEPC1HXStbcI/lwzdfA4U8JGILBWRq+2wNkqpnfbvXUCbxIhWLlMo3jgka9lC+WWZ7M/ylei38yhdRWSZiHwmIqMTJVQZlFX3yVy2o4HdSqnvHWFJU7Yl2q2kf3YbknKrF4hIOvAmcINS6jDwFNAdGAjsRHdLJAujlFKDgfHAb0RkjDNS6X6IpJlLIiJe4BzgdTsomcu2GMlWluUhIn8CQsArdtBO4Fil1CDgJuCfItIkUfI5qDd17+Biir+YJU3ZltFuxUjWZ7chKbftQCfHcUc7LGkQEQ/6AXlFKfUWgFJqt1IqrJSKAM9wFLtIKkMptd3+3gP8Cy3b7mg3g/29J3ESlmI88K1Sajckd9nalFeWSfksi8g04KfAVLtBw+7e22//Xooew+qZMCFtKqj7ZC1bN3A+MDcalixlW1a7RT14dhuScvsG6CEiXe03+CnAvATLFMPuT58FrFNK/c0R7uyPPg9YXfLcRCAiaSKSEf2NdihYjS7Ty+1klwPvJEbCMin25pusZeugvLKcB1xme56NAA45uoASgoicCdwCnKOUyneEtxYRl/27G9AD+CExUh6hgrqfB0wREZ+IdEXLu/hoy1cGpwLrlVLbogHJULbltVvUh2c3UZ4sdfFBe+p8h37D+VOi5Skh2yi06b4SWG5/zgJeAlbZ4fOAdomW1Za3G9qrbAWwJlqeQEvgE+B74GOgRaJlteVKA/YDTR1hSVO2aKW7EwiixyF+Xl5Zoj3NnrCf41XAkCSQdSN6LCX67M60006yn4/lwLfA2UlStuXWPfAnu2w3AOMTLasdPhu4pkTaZCjb8tqtpHx2nR+z/JbBYDAYGhwNqVvSYDAYDAbAKDeDwWAwNECMcjMYDAZDg8MoN4PBYDA0OIxyMxgMBkODwyg3g8FgMDQ4jHIzGAwGQ4Pj/wEvLICGW5CptQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABvrklEQVR4nO2dd5xVxfm4n/f23WUBaUqTJp2lSBEFFBIVlSgqKiiKaIzRxBhrYop+0cRfFDUa1EhiUIwVe2+xrIoJIghKUVR0pUjHhe23ze+PmXs5e/duvRf27u48n8/dPWdmzpz3zJkz77xTRSmFxWKxWCwtBVdjC2CxWCwWy4HEKj6LxWKxtCis4rNYLBZLi8IqPovFYrG0KKzis1gsFkuLwio+i8VisbQoMkbxiUhPEVEi4mlsWZo7IjJbRBYfoHtlicirIvKDiPzmQNwz4f4FInLsAbhPvohcVI2fzduNhIgsFJE/19cvzTLMEZFHavA/IHm0uWDKku9EZEZD48gYxWdpGOajColIseN3wBVMDRwLDAW6K6XmxhzNx96z0aTKIMw7nFOP8OeYD79ERJ4XkXY1hP2niKwTkaiIzE7wO19ElovIXhHZJCJzY8pZRPwissDcp0hEVorIiQnXnyUinxv/tSJyqsNPROTPIrJZRPaYisFgh/9cEdlo7v2diPy+Hs9fr/RqyojIRBHJr0f44eadlpr/w2sI205EnjP56DsROcfhN0lEVolIoYjsMuG6VhPHDmdFWkRmJpRHpabiN9L4Xyki35h3/72I3JlYKRSRX4vIt0a2z0WkX8xPKXUQcBtwXV3TJZG0KT5bm21UFimlWjl+c2u/5IDRDihQShU3tiCpYAryRq8oGuXxD+A84GCgFPh7DZd8CvwC+CSJXzZwBdABOAL4MXCN8fMAG4FjgDbAH4EnY5UVUwg+AlwFtAauBR4TkU7m+jOBC4EJ6DzwP+Bhx70XAAOUUq2Bo4CZInJ6HZIgI8mE8k9EfMAL6PdyEPAQ8IJxT8a9QBCdj2YC9zkqJ2uByUqptkAX4CvgviRx3Ap87nRQSj3qLI/Q+e8b9uXBF4HDzbsfAgwDLnc8x0XAT4EpQCvgJ8DOhPuuBtpXmxi1kNKHbGrtvxWRz4ASEfGIyFgR+a+pKXwqIhMd4fNF5C8istRo+xeqq62KyAWO2uQ3IvLzBP+ppha6V0TWi8gJxr2NqaluMbXNP4uIu5bn6CMi75iazU4ReVRE2jr8dovI4ea8i6nhTDTnp4jIGvO8+SIyMCF9rhGRz0ytd5GIBOqf0vVHRK4z6RKrjZ9WTTgxNa7tJi1XicgQ4+cXkdtFZIOIbBOR+SKSVU9RPEC0Flnbi8hL5v4fm3fmrEEqEblERL4y6XyviIjxq/bdORht0uAHEXkw9g5E5CARedm8zx/McTfHffNF5GYR+RCtYHrX8qw9RORDk+ZvikiHBP+ZJi13isgfaomrOmYCLyml3jeVieuB00UkN1lgpdS9Sqm3gfIkfvcppT5QSgWVUpuBR4Fxxq9EKTVHKVWglIoqpV4GvgVGmsu7AYVKqdeU5hWgBOhj/HsBi5VS3yilIujCeJDj3uuUUiUOcaLAYQ1JEBH5jfnevxeRi0x+qRKXiOSKyLsiMi+Wf4AOIvIf887eE5EejvB/k31W6XIRmeDwmyMiT4vIIyKyF5hdi5g+Efm3uc8aERmV4D88DeXERPT3dpdSqkIpNQ8Q4EeJAUUkB5gGXK+UKlZKLUYrpPMAlFLblFLfOy6JkPB+ROQotOJ6sBa5zgf+rcwyYUqp9Uqpwlg0ON696Mrl/wFXKqXWmry1Xim1OyHOqHnWhqGUavAPKABWAt2BLKArsAs4Ca1UjzPnHU34fGAzOrFygGeAR4xfT0ABHnM+Bf0RCbrWWYquJQCMAfaY+F3mvgOM33PoGnEO0AlYCvy8luc4zMTlBzoC76MzT8z/Z+gaUDbwBnC7ce+H/tiPA7zAb4CvAZ8jfZaia0zt0DWjS6qRYTxQWMNvfDXXzYmlYYL7mea+LmC6kbOz8ZuNLpQAJgPLgbYmrQc6wt2J/hjaAbnAS8Bf6pE/vOhafhX5EsI9YX7Z6MJxY0y+2LcCvGxkPBTYAZxQx3dXgK4ddjfP8SHwZ+PXHv3xZ5vnewp43nFtPrABGIz+yLw1PEM+sN7kiSxzfktC3r7f+A0DKoCB1cRV0/t+AfhtglsxMLKWNF4MzK4lzPMxmZP4HYxWnrHvzA28B5xijk8FNgE5xr+HyVf9TD6Y60xbE+Y6I7tCWwTdGlAGnQBsNe8oG61gFXCY8V8I/Nm866Wxd+/wKwKONvnnbwn57lxznQe42twn4PjuQua5XUBWDTLOMWl3kkmrvwBLEvJoXcuJl4HrqvG7EngtSfirk4QdAZQmuF2DrlTFzg81eTFqnnW2w8+NtuBG4ihPktynB1pp9kpwPwfYa97VDmCY454K+DW6HPgWuBFwJVzfGwgDw+ubZ5RSaVF8FzrOfws8nBDmDeB8c5yP48NCF3JBk4g9cSi+aj7KX5vjfwB3VvNxVjgzIXA28G49n+tUYEWC24vAKuAzwG/crgeedIRxoRX7REf6nOvwnwvMTyXNk8g6x6RhoePXJUm4lcBUcxzPqOja4JfAWGfmQivBEqCPw+1I4Ns6yjXcfCzbMIVQNeHcJlx/h9ufqar4xjvOn6T6j7/SuzPv4BLH+UnA+hpk/sFxng/cVMfnzQf+6Dj/BfC6OY7l7W4O/6XAjAa877dJKBSdea6G62pUfOhmyU1AhyR+XuAt4B8J7j9FK64wumI6xeHnQysSZfy/JaHwc+SzEejCLbcB6fEAjsoYuiKUqPgeQFd+rk24diHwhOO8FbqQ7l7NvX5gXwE9B3i/jjLOAd5ynA8CyhLyaMrlBLo8eiLB7VFgTpKwE4CtCW4/A/KThG2HLtvHOtyuBO4zx7OpXvFdnyxOh39f4E/AIeb8KPP+XkFXdHuiy6efJbn2dhP2+fqmVTr6LDY6jnsAZ5rmqEIRKURbMp2rCf8d+qNKbBJCRE4UkSWmmbEQXWDFwnVH164T6WHi2+K4/z/Qll+1iMjBIvKE6KbRvehaY6JM96Mt1buVUhXGrYt5BgCUUlHzfM5O4K2O41L0x5VunlRKtXX8vheRWaKbgmPpMIQk6ayUege4B93ev130YIjWaOspG1juiON1414rSqmVaCvqf+h+pOroyL7+pBgbk4RLmo51fHeJea6LuTZbRP4humN/L9pabCuVm8aTyVIdtb3rdOSFYnSfmpPWaMulQYgelPIX4ESl1M4EPxfaag8Clzncj0UX0BPRSu4Y4F+ybzDFDcBo9LcaQCu2d0Qk2xm/0qwAykyY+tKF2vPOFLSlPT+JXzy80k3Hu9mXP64R3d2yx+T/NlTOW6nkjYBU7hc80HmjzmGVbmaM9Rd6RKQLuk+uLs31s8y1SVFKfQWsYV8/dZn5P1cpVaiUKkCX4Sc5rxPdl3w5cLRS6tQ6yFGJdCg+5TjeiLb4nIVwjlLqFkeY7o7jQ9G1/cSPzY9uBr0dOFjpDtZX0bXD2H36UJWNaIuvg+P+rZVSg5OEdfL/zHPkKd3heq7jXohIK+AudIf8HNnXL/k9WtnGwol5vs213K8KIjJBKo+ESvxNqD2WeFw90Ir6MqC9Sb/VzmdyopSap5Qaia6J9kMPVNiJzoSDHWnZRunO6jqhlCoHXsPRt5OEHWiLoJvDrXs1YZNR47tLEt+h6PcGuvmqP3CEufZo4+683pm/M4E16KZSAESkN7qZ7suGRCa6b/x+4GSl1KoEP0Hn+YOBaUqpkMN7ONriWaZ0H+DHwEfoUbwx/0VKqU1KqbBSaiF6wEV1ecFD8m+6NrZQe965H11pe9X0bZEsvPnO2wHfm+/tN8BZwEHmG9pD5ueNoY7+S9AjqtckCfsl4BGRvg63YdWEBf1+OqGV4xi0MbNWRLaiLfsxIrLVWWkUkXHoSsTTtcjtfPfr0JUsZ9omS+e+wB6l1Ae1xJ2UdI9SewQ4WUQmi4hbRAKih+M6M+a5IjLI1PxuAp5WuvPbiQ/9Me8AwqKHUR/v8F8AXCAiPxYRl4h0FZEBSqktwJvAHSLS2vj1EZFjapE7F10D2iN6tNq1Cf5/A5YppS5Cm+CxmuOTwBQjhxddkFYA/60toRJRepBBqxp+9XnBOexrO0dELkBbfFUQkdEicoSRvwTdFxE11uv9wJ2mdoVJ58mOa5U4Bi9VQwX6fSbFvPtn0RWKbBEZgK4l1pXa3h3AL0Wkm6mw/AFY5Li2DCg0fv9Xj/s2Fo+iv7EJphC/CXhWKZXU4hMRnxkoIYDXfJMu4/cjE980pdTSJJffh+7zPVkpVZbg9zEwIWbhicgIdPPZZw7/M41F7hKR89CtMV+b85+LHlwkIjIG+CW6GTcmd4EkTL+ohifRZcFAU6ZcX024y9CF6ktSeYDWSSIyXvTIxz+h+942ovNGGP0NeUTkBqpaSJlGPrqp9nLRA9NiFvo7iQGVHlj0LHCTiOQYJTUVM/JWRE4Xkf7mXXUE/oruQtiNrsz2RFduhqOt+xXo/jZnWX4+8Exi3hQ9AClWpgwCfod590qpUvT3+RvRg5G6ARej+yqdeNFlS4NIq+IzGWYq8Ht0htmILoic93kY3ba+Fd0EcjkJmIS6HJ2pf0B3hL7o8F8KXIAefLEH3ckes7xmoQvatebap6nc1JqMG4HDTVyvoDMEoEePojvQLzVOVwGHi8hMpdQ6tIVxN9pCOhldSARrud9+RSm1FrgD3cy4DchDD+pIRmu0gvsB3Qy4Cz1HBnS7/tfAEtMU+BbaQkJEuqObRVYlRphAlNrz2WXoZqSt6PzxOHXP1NW+OwePoStE36CbyGOTlu9CN4HtBJagrYJGpyYLXym1BrgErbC2owvoXziufU0qz4l7E63cjwL+aY5jlu316HR/1dGy8JqJpwfwc3TBttXhP9PI8R667+ppESlCt9D8P6XUmybuW9FTKVai+52vRCvYQuN/GvpdFKErzHebX2xYfnv0O6kRpdRrwDzgXUxeNV4VCeEUugDdhG6yi42afAxd4dmNHqhxrnF/A50fvkR/F+XUr2lzv5Dk/cYx5c6p6DKwEN1ve2qsPBKR38fer+EX6Py/Hf3NXWryF+jumtfZ941H0e8MpUeMbo390N9eyBzH5AygreVkzZzjgFUiUoJuyXsVrTNiXIauzH6PLsMeQ/fTOnFTy2jxmhDTSXhAED0R8xGl1L8O2E0t+wURORfdDPq7WsIdjy7YBqiqQ5Kru+ZWdGf3+alLamlqiMh44JdKqbMbcO1AdLO+XykVTrtwloxA9CIdZyilxjTk+kafdGlpmiilql2CKYF84D/AGhG5Qyl1e2IA07zpQ9csR6NHCyZd/svS/FF6Tlmdl9QTPUf1VfRgrFvRQ/Kt0mumiMgOtJXa4BWqGn0ligOF6MnXyQaNJBvpZUkTSk+OnqmU6pxM6Rly0U2UJej2/TvQ89UyimryT70GHln2Cz9HF4Tr0X1cl9YcPP2YJshkeaPOS7FZ6oZSqqNSarDSiyY0iAPa1GmxWCwWS2PTYiw+i8VisVggw/r4OnTooHr27NnYYlgsFovlALJ8+fKdSqk6LY6RDjJK8fXs2ZNly5Y1thgWi8ViOYCIyHe1h0oftqnTYrFYLC0Kq/gslgzHDkCzWNKLVXwWS4bzp9tv4/lHa9pr1mKx1IeM6uNLRigUYtOmTZSXV9lH02KplkAgQLdu3fB6vY0tSsrcUHKz3v9638pkFoslBTJe8W3atInc3Fx69uyJVFp03GJJjlKKXbt2sWnTJnr16tXY4lgslgwj45s6y8vLad++vVV6ljojIrRv3775tRJEEzcxsVgsDSHjFR9glZ6l3jTLPFOxt7ElsFiaBU1C8VksFigv+qGxRbBYmgVW8dUBEeHqq6+On99+++3MmTOn8QSqhfz8fP7733rvhVuJE044gbZt2/KTn/wkTVJZUqVsb512dbJYLLVgFV8d8Pv9PPvss+zcuTOt8SqliEYbvJditaRD8V177bU8/PDDaZLIkg4qSqzis1jSgVV8dcDj8XDxxRdz5513VvHbsWMH06ZNY/To0YwePZoPP9Qbnc+ZM4fbb9+3C8+QIUMoKCigoKCA/v37M2vWLIYMGcLGjRu59tprGTJkCHl5eSxatAjQymvixImcccYZDBgwgJkzZyadyDxv3jwGDRrE0KFDmTFjBgUFBcyfP58777yT4cOH88EHH9Qo43nnnceRRx5J3759uf/+++Px/vjHPyY3N7fGdHnqqacYMmQIw4YN4+ij9abe5eXlXHDBBeTl5TFixAjeffddABYuXMipp57KcccdR8+ePbnnnnv461//yogRIxg7diy7d+tC/f7772f06NEMGzaMadOmUVpaWuW+Y8eOZc2aNfHziRMnNtul7qLRfe88WGL7+CyWdJDx0xmc3PjSGtZ+n96Pf1CX1vzfyYNrDffLX/6SoUOH8pvfVN778Ne//jVXXnkl48ePZ8OGDUyePJnPP/+8xri++uorHnroIcaOHcszzzzDypUr+fTTT9m5cyejR4+OK5EVK1awZs0aunTpwrhx4/jwww8ZP358pbhuueUWvv32W/x+P4WFhbRt25ZLLrmEVq1acc011wBwzjnnVCvjZ599xpIlSygpKWHEiBFMmTKFLl261CntbrrpJt544w26du1KYWEhAPfeey8iwqpVq/jiiy84/vjj+fLLLwFYvXo1K1asoLy8nMMOO4xbb72VFStWcOWVV/Lvf/+bK664gtNPP52f/exnAPzxj39kwYIF/OpXv6p03+nTp/Pkk09y4403smXLFrZs2cKoUaPqJHNTI6JUvHYaKi9qVFksluaCtfjqSOvWrZk1axbz5s2r5P7WW29x2WWXMXz4cE455RT27t1LcXFxjXH16NGDsWPHArB48WLOPvts3G43Bx98MMcccwwff/wxAGPGjKFbt264XC6GDx9OQUFBlbiGDh3KzJkzeeSRR/B4ktdjapJx6tSpZGVl0aFDByZNmsTSpUvrnCbjxo1j9uzZ3H///UQikfjznHvuuQAMGDCAHj16xBXfpEmTyM3NpWPHjrRp04aTTz4ZgLy8vPizrV69mgkTJpCXl8ejjz5aybKLcdZZZ/H0008D8OSTT3LGGWfUWeamRiSqCCv9mYbLrOKzWNJBk7L46mKZ7U+uuOIKDj/8cC644IK4WzQaZcmSJQQCgUphPR5Ppf4755yynJycOt3P7/fHj91uN+FwuEqYV155hffff5+XXnqJm2++mVWrVlUJU52MUHXYf32mAcyfP5+PPvqIV155hZEjR7J8+fIawzufx+Vyxc9dLlf82WbPns3zzz/PsGHDWLhwIfn5+VXi6dq1K+3bt+ezzz5j0aJFzJ8/v84yNzWiSlGOj1aUEy2vuUJlsVjqhrX46kG7du0466yzWLBgQdzt+OOP5+67746fr1y5EtBbLH3yyScAfPLJJ3z77bdJ45wwYQKLFi0iEomwY8cO3n//fcaMGVMneaLRKBs3bmTSpEnceuut7Nmzh+LiYnJzcykq2mcdVCcjwAsvvEB5eTm7du0iPz+f0aNH1+neAOvXr+eII47gpptuomPHjmzcuJEJEybw6KOPAvDll1+yYcMG+vfvX+c4i4qK6Ny5M6FQKB5PMqZPn87cuXPZs2cPQ4cOrXP8TY1IVBE09dNIhVV8Fks6sIqvnlx99dWVRnfOmzePZcuWMXToUAYNGhS3PqZNm8bu3bsZPHgw99xzD/369Usa32mnncbQoUMZNmwYP/rRj5g7dy6HHHJInWSJRCKce+658YEkl19+OW3btuXkk0/mueeeiw9uqU5G0E2lkyZNYuzYsVx//fXx/r0JEyZw5pln8vbbb9OtWzfeeOMNAG644QZefPFFQI/8zMvLY8iQIRx11FEMGzaMX/ziF0SjUfLy8pg+fToLFy6sZOnVxp/+9CeOOOIIxo0bx4ABA+LuL774IjfccEP8/IwzzuCJJ57grLPOqnPcTZFKg36DJY0mh8XSnJBM2vJk1KhRKnF03ueff87AgQMbSaLmzZw5cyoNgmluNIe8s6u4Au9tPWktpazuMo0hFz/Q2CJZLGlHRJYrpQ7YCDVr8VksGUxEKdzogUMSrDq1w2Kx1J8mNbjFkl4yefUZiyYaBTe6vdMVtk2dFks6sBafxZLBaItPKz5PyFp8Fks6sIrPYslgolGH4otYxWexpAOr+CyWDCYSieASPQDNaxWfxZIWrOKzWDKYcDgUP/ZFreKzWNKBVXx15Pnnn0dE+OKLL6oNU1BQwJAhQ/arHCtXruTVV19NKY4LL7yQTp067XdZLamjovtW6wlEm9mO8hZLI2EVXx15/PHHGT9+PI8//nhS/2TLidWX2HqXNZEOxTd79mxef/31lOKwHBiiJl+FlYuAKmtkaSyW5oFVfHWguLiYxYsXs2DBAp544om4e35+PhMmTOCUU05h0KBBgFaAM2fOZODAgZxxxhnxbXXefvttRowYQV5eHhdeeCEVFRWAXtrst7/9LYcffjhPPfVUpfsmbvsTDAa54YYbWLRoEcOHD2fRokWUlJRw4YUXMmbMGEaMGMELL7wA6G2Apk6dysSJE+nbty833nhjPN6jjz6adu3a1fjM7733HsOHD2f48OGMGDGCoqIilFLVbqF0zDHHMHXqVHr37s11113Ho48+ypgxY8jLy2P9+vUAvPTSSxxxxBGMGDGCY489lm3btlW574wZM3jllVfi57Nnz44vSN0SiUR0U2eR5OAjBJFQLVdYLJbaaFrz+F67DrZWXYQ5JQ7JgxNvqTHICy+8wAknnEC/fv1o3749y5cvZ+TIkYBeh3P16tX06tWLgoIC1q1bx4IFCxg3bhwXXnghf//737nsssuYPXs2b7/9Nv369WPWrFncd999XHHFFQC0b98+vq6nk8Rtf3w+HzfddBPLli3jnnvuAeD3v/89P/rRj3jggQcoLCxkzJgxHHvssQAsXbqU1atXk52dzejRo5kyZUqdt++5/fbbuffeexk3bhzFxcUEAgGeffbZardQ+vTTT/n8889p164dvXv35qKLLmLp0qX87W9/4+677+auu+5i/PjxLFmyBBHhX//6F3PnzuWOO+6odN/YlkNTpkwhGAzy9ttvc99999VJ5uaIiupWgBLJ4SBVpJcty2rbuEJZLE0ca/HVgccff5wZM2YA2iJxNneOGTOGXr16xc+7d+/OuHHjADj33HNZvHgx69ato1evXvH1Os8//3zef//9+DXTp09Pet9k2/4k8uabb3LLLbcwfPhwJk6cSHl5ORs2bADguOOOo3379mRlZXH66aezePHiOj/zuHHjuOqqq5g3bx6FhYV4PJ4at1AaPXo0nTt3xu/306dPH44//nig8pZDmzZtYvLkyeTl5XHbbbcl3XLoxBNP5N1336WiooLXXnuNo48+mqysrDrL3dyImsEt5S69o4cK2oWqLZZUaVoWXy2W2f5g9+7dvPPOO6xatQoRIRKJICLcdtttQNUthhqyzU912xTVZdsfpRTPPPNMlR0QPvroo5S2HLruuuuYMmUKr776KuPGjYsvUl0dddly6Fe/+hVXXXUVp5xyCvn5+UlXjgkEAkycOJE33niDRYsWxSscLZWoqfCUe3IhAhUlewm0aWShLJYmzn63+ETkBBFZJyJfi8h1+/t+6ebpp5/mvPPO47vvvqOgoICNGzfSq1cvPvjgg6ThN2zYwP/+9z8AHnvsMcaPH0///v0pKCjg66+/BuDhhx/mmGOOqfXeybb9SdxyaPLkydx9993EFhtfsWJF3O8///kPu3fvpqysjOeffz5uidaF9evXk5eXx29/+1tGjx7NF198kdIWSgB79uyha9euADz00EPVhps+fToPPvggH3zwASeccEKd42+ORCO60hD05AJQVrK3McWxWJoF+1XxiYgbuBc4ERgEnC0ig/bnPdPN448/zmmnnVbJbdq0adWO7uzfvz/33nsvAwcO5IcffuDSSy8lEAjw4IMPcuaZZ5KXl4fL5eKSSy6p9d7Jtv2ZNGkSa9eujQ9uuf766wmFQgwdOpTBgwdz/fXXx68fM2YM06ZNY+jQoUybNi3ev3f22Wdz5JFHsm7dOrp16xbfX3D+/PnxLYvuuusuhgwZwtChQ/F6vZx44okpbaEEem3QM888k5EjR9KhQ4e4+7Jly7jooovi58cffzzvvfcexx57LD6fr87xN0eiUd3UGfZqxVdRahWfxZIq+3VbIhE5EpijlJpszn8HoJT6S7Lwdlui9LFw4cJKg2BaIs0h7yxb/jGjXjqW/x18Nkdue5zvJi+gx5FnNLZYFktaaW7bEnUFNjrONxm3OCJysYgsE5FlO3bs2M/iWCxNC2UsPvytAQiX2cEtFkuqNPqoTqXUP5VSo5RSozp27NjY4jQbZs+e3aKtveaCMoNbJEuPaAmV2aZOiyVV9rfi2wx0d5x3M271IpN2ibc0DZpLnokNbnEbxRcttxafxZIq+1vxfQz0FZFeIuIDZgAv1ieCQCDArl27mk1BZtn/KKXYtWsXgUCgsUVJmahZqcWT3VafV1jFZ7Gkyn6dx6eUCovIZcAbgBt4QClVddZyDXTr1o1NmzZh+/8s9SEQCNCtW7fGFiN1zMotgaxsypQPZRWfxZIy+30Cu1LqVaDBqyp7vd5KK6NYLC0JZZo6s/xeSghAqKSRJbJYmj6NPrjFYrFUj1La4vN6fZQRQIJW8VksqWIVn8WSwcS2JXK5PJRJALe1+CyWlLGKz2LJYGIb0bo8HiokC3fY7sJusaSKVXwWSyZjFJ/b4yHoysJjFZ/FkjJW8VksGUzc4nN5CLqz8Uat4rNYUsUqPoslg4ltROtyewh5svFFyhpZIoul6WMVn8WSwcSmM7g8XiKebPzKKj6LJVWs4rNYMpnYkmVuD1FvDllW8VksKWMVn8WSwcTm8bndXpQ3Bz8hMMuYWSyWhmEVn8WSyZjBLeJ2gy9Hu9lJ7BZLSljFZ7FkMLHBLR6PF/G1AiBcXtSYIlksTR6r+CyWDMY5qlP8WvGVl1rFZ7GkglV8FksGI7GmTpcHTyAXgPLiPY0pksXS5LGKz2LJYGIWHy437iyt+CpK7S7sFksqWMVnsWQwMYsPlxtvlm7qDNqmToslJazis1gyGImaqQtuH96s1gCEyqzis1hSwSo+iyWDiVt8bh+BHN3UGbGjOi2WlLCKz2LJYCQaJIILXG782W0AiFQUN7JUFkvTxio+iyWDkUiIEB4Aslppiy9abhWfxZIKVvFZLJlMJEgENwDZgQDlygvW4rNYUsIqPoslg5FoiLBoiy/H56aEAITskmUWSypYxWexZDKRIGG8AHjcLsoIIFbxWSwpYRWfxZLBuKMVhF2++HmZZOG2is9iSQmr+CyWDMYXKaNcsuLn5a4s3OHSRpTIYmn6WMVnsWQw/kgpFe7s+HnQlYXXKj6LJSWs4rNYMhi/KiPk2qf4Qu5svFGr+CyWVLCKz2LJYPzRUsKeyorPFylrRIkslqaPVXwWSwYTiJahzAa0ABFPNn5lFZ/FkgopKT4RmSMim0Vkpfmd5PD7nYh8LSLrRGRy6qJaLC2LUCRKFuWILyfuFvVkk6XKG1Eqi6Xp40lDHHcqpW53OojIIGAGMBjoArwlIv2UUpE03M9iaRHsLSmjLaWQ1SbuFvXm4CcIkTC40/H5Wiwtj/3V1DkVeEIpVaGU+hb4Ghizn+5lsTRL9u7cjFsU5HaOuym/afYM2mXLLJaGkg7Fd5mIfCYiD4jIQcatK7DREWaTcauCiFwsIstEZNmOHTvSII7F0jzYvfU7ALI7HBp3izV72h0aLJaGU6viE5G3RGR1kt9U4D6gDzAc2ALcUV8BlFL/VEqNUkqN6tixY30vt1iaLSXbvgXgoEN6xd1cZqBLecneRpHJYmkO1NpJoJQ6ti4Ricj9wMvmdDPQ3eHdzbhZLJY6EtnyGSHlpl2PwXE3CWjFV1Gyl5zqLrRYLDWS6qjOzo7T04DV5vhFYIaI+EWkF9AXWJrKvSyWlkb7XZ/wva8nLt++Jcvcfq3ugqV2F3aLpaGkOixsrogMBxRQAPwcQCm1RkSeBNYCYeCXdkSnxVJ3Nm3awODwWlb0vJAeDnePsfiC5XahaouloaSk+JRS59XgdzNwcyrxWywtlW9evp0uwKFHz6rk7g1oiy9kB7dYLA3GrtxisWQY3yz/D2O3PMrqtpPo1Gd4JT+fsfgi5Xa9ToulodgZsBZLBrH1m1W0f2k238vBdDv3vir+/myt+ML70eILhSNs+GYdxTs2QCRIq3aHcGjfIXj92bVfbLE0Aazis1gyhD07vyfy8BlEEKJnL6Jdx0OqhPEZxRetSK/Ft2XzBr58fxGtCv5D3/JV9JHK8Zfh48vsEUT6T6HfxLMJtOlU73sUFe5i19YNhEJBXCqEy+VC/K3JatWWnNYHkZ2Vjcsl6Xoki6VarOKzWDKA8tJitv7jdHpEd/H1SY8zpH9e0nCBLKP4gqkrvlA4zPJ3nkM+eZCRZf+js0TZ6jqYrzoeh7vrcAIdeyNuH0W7N1P+zRJ67FpM9xU3EP5kDutajSDU7xTa9h1LTvsuRIHiPYWU7NpMyc6NhHZvwLV3E1ml39O6Yhvto9tpTSm5NchToTwUk02p5FDqyqbc3YqIO4BbQFQUVBRUBFc0jEuFcaswbsK4VcQcR/AQxkMED3osXQQ3O72dOej8R+jYrW/KaWZpHjQ7xaeiUcpKiyjZ+wOle3ZRWrIHFQkTjUQgGkZFIyhARBCXC5e4EHHpmqa4jJsgLjcigsvl0jVTcTnO3SASvwYEZf4jseNq5FP1c69b2KoXJ4su0U0luek+F3GEq8P9ktyw6v2SCFVX2VVimNpkSG45JJez9udJnp61v7S6PnPo9RsYHvyCT464i1FHHFdtfNkBPxXKg0pB8QVDYZa8/ABdPrubsWoDhbRmVfeZHDJhNp37jeQQSZZ2PyMSibJy+WJ2ffwkfXa8Rf8V/wcr9oVon3DFHnLY6e5EYaAL27NHEm3TDV/bLnj82URwQTQKwWIi5XuhfA9UFCMVe/GEivCGismKFOMJ7ySs9HemvysXUbcHJdmEXB6CLi9R8aBcsZ8+D+MiGgVUmMG73yb4wIkUXfgyud0G1Du9KsqK2Pb9ZsoKtxIq3kVFRTmRUBC3CuNyuVBuH7h9iDeA2+vXP48Xt8eHxxv7efGY87hVq5Qjf5jcZBz0t2mOHX/Z52yuibkr457kGkBFFUkiqJQ/ayofqi233H66du+Z3DODaVaK75vVH9H9qRPJlgi2N8LS1Phvn19z1EmzawyT5XNTjg9pwC7s0ahi8dvP0+2/N3C02sAmd3fWjprLgB+fzwhfoNbr3W4Xw8ccDWOOpiIU5vPPP6Fwwxoo3o6I4MtqhadtF9p26k6Hrr1pk3sQbWqNdf/z0X/fpe8b5xFccAIFpz1Mz6ETqoRR0Qi7N3/Fjm8+o+z7z5FdX5Jd9C2dKjbSlr0cmiReC3ykBtL1xiWNLUa9aVaKr22n7izrei4E2uDKaoMnuy2e7NZ43F5wuRCXB3G7EXQNKKoUSkVQUYVSUVQ0ilLK/DfHTvfEYxVFMM0wKPMfhCjVWRw1Ud0VSSvgdbg2+XVSe5gk1TupgxDJgtQlFRoqe7ILBarIXyfZ6yxD7Rcmv0xqDONpcwhHjp1a6+18bhe7CUCofnvyfVWwge+euJpjy99ki+tg1oy9k0HHzqJbA3d48Hs9DBw6BoZm/trzRxw1ieW+p+n+8gx6PvsTvnypP4U5fVBuH57yXbQp/56u4Y20l2Dcat2h2rDF043VrY9Gte1B1kGH4GvdCU+rDvizAni9fm1pRqOoSAXRUAXRULn+Hw4SCQeJhoNEI2Gi4RDRSFC3PIVDCdJJwqHE3URAxY4BJc6A5iQxk8bjAEHi1+ug+lhVvmtCFNV/Y8lycDjQgaZIs1J87Tp14ciL5zW2GBbLfkNEqMCP1FHxlQfDvPXkvYz96nZ6STHr+lxI37P+TGd/y1rwbOSosRT2WsriF++k3eZ8ehR+hJcQRa427PF1YkW7UaiOA8juNoROvfPo3OkQOtqBNs2WZqX4LJaWQFD8uMO1K74Vn64g/OIV/CSyku+yBuKd/nf69zr8AEiYmbRt34nxF/ylklu7RpLF0rhYxWexNDEqXAF8ker7+PaWlPLhIzcx8fsFKHGxftQN9DnpCnC5D5yQFksGYxWfxdLEKHHl0ib8QxV3pRRL81+iw/u/50S1kXUHHc2h595Lnw52aIbF4sQqPouliVHo7cigii8rua1Z+RF7Xv8zR5W/z1bpxDfH3k//8Wc1koQWS2ZjFZ/F0sSoyDqE1mV72LtrO6s/fAn/6icYGVxKKQFW9fk5A8+8Ib6Lg8ViqYpVfBZLE8PdZRjshtZ39+UoYKccxIpeF9PvlGvJO6j+S4lZLC0Nq/gslibG0VPO4T+FX9FG7aXD0Mn0GnUCHRo4H89iaYnYr8ViaWK0zvJx3EV2q0uLpaHY/fgsFovF0qKwis9isVgsLQpJtkJ/YyEiO4Dv0hBVB2BnGuI5EFhZ9x9NSd6mJCs0LXmbkqzQtORNl6w9lFId0xBPncgoxZcuRGSZUmpUY8tRF6ys+4+mJG9TkhWalrxNSVZoWvI2JVmd2KZOi8VisbQorOKzWCwWS4uiuSq+fza2APXAyrr/aEryNiVZoWnJ25RkhaYlb1OSNU6z7OOzWCwWi6U6mqvFZ7FYLBZLUqzis1gsFkuLolkpPhE5QUTWicjXInJdY8vjRES6i8i7IrJWRNaIyK+N+xwR2SwiK83vpMaWNYaIFIjIKiPXMuPWTkT+IyJfmf8HZYCc/R3pt1JE9orIFZmUtiLygIhsF5HVDrekaSmaeSYffyYiB3Tb9GpkvU1EvjDyPCcibY17TxEpc6Tx/AMpaw3yVvvuReR3Jm3XicjkDJB1kUPOAhFZadwzIW2rK7cyMu/WGaVUs/gBbmA90BvwAZ8CgxpbLod8nYHDzXEu8CUwCJgDXNPY8lUjcwHQIcFtLnCdOb4OuLWx5UySD7YCPTIpbYGjgcOB1bWlJXAS8BogwFjgowyQ9XjAY45vdcja0xkug9I26bs339yngB/oZcoMd2PKmuB/B3BDBqVtdeVWRubduv6ak8U3BvhaKfWNUioIPAFMbWSZ4iiltiilPjHHRcDnQNfGlapBTAUeMscPAac2nihJ+TGwXimVjhWA0oZS6n1gd4JzdWk5Ffi30iwB2opI5wMiKMllVUq9qZQKm9MlQLcDJU9tVJO21TEVeEIpVaGU+hb4Gl12HBBqklVEBDgLePxAyVMbNZRbGZl360pzUnxdgY2O801kqGIRkZ7ACOAj43SZaRZ4IBOaDh0o4E0RWS4iFxu3g5VSW8zxVuDgxhGtWmZQueDI1LSF6tMy0/PyhehafYxeIrJCRN4TkQmNJVQSkr37TE7bCcA2pdRXDreMSduEcqup5l2geSm+JoGItAKeAa5QSu0F7gP6AMOBLeimjkxhvFLqcOBE4JcicrTTU+m2jYyZDyMiPuAU4CnjlMlpW4lMS8vqEJE/AGHgUeO0BThUKTUCuAp4TERaN5Z8DprMu3dwNpUrbRmTtknKrThNJe86aU6KbzPQ3XHezbhlDCLiRWeeR5VSzwIopbYppSJKqShwPwew2aU2lFKbzf/twHNo2bbFmi7M/+2NJ2EVTgQ+UUptg8xOW0N1aZmReVlEZgM/AWaawg7TZLjLHC9H95n1azQhDTW8+0xNWw9wOrAo5pYpaZus3KKJ5d1EmpPi+xjoKyK9TM1/BvBiI8sUx7TfLwA+V0r91eHubP8+DVideG1jICI5IpIbO0YPbliNTtPzTbDzgRcaR8KkVKoxZ2raOqguLV8EZpkRcmOBPY5mpUZBRE4AfgOcopQqdbh3FBG3Oe4N9AW+aRwp91HDu38RmCEifhHphZZ36YGWLwnHAl8opTbFHDIhbasrt2hCeTcpjT26Jp0/9IiiL9E1oz80tjwJso1HNwd8Bqw0v5OAh4FVxv1FoHNjy2rk7Y0e/fYpsCaWnkB74G3gK+AtoF1jy2rkygF2AW0cbhmTtmiFvAUIofs9flpdWqJHxN1r8vEqYFQGyPo1uu8mlnfnm7DTTP5YCXwCnJwhaVvtuwf+YNJ2HXBiY8tq3BcClySEzYS0ra7cysi8W9efXbLMYrFYLC2K5tTUabFYLBZLrVjFZ7FYLJYWhVV8FovFYmlRWMVnsVgslhaFVXwWi8ViaVFYxWexWCyWFoVVfBaLxWJpUVjFZ7FYLJYWhVV8FovFYmlRWMVnsVgslhaFVXwWi8ViaVFYxWexWCyWFkXGKD4R6SkiyuxLZdmPiMhsEVl8gO6VJSKvisgPIvKbA3HPhPsXiMixB+A++SJyUTV+Nm83EiKyUET+XF+/NMswR0QeqcH/gOTR5oIpS74TkRkNjSNjFJ+lYZiPKiQixY7fAVcwNXAsMBTorpSaG3M0H3vPRpMqgzDvcE49wp9jPvwSEXleRNrVEPafIrJORKJmI1mn3/kislxE9orIJhGZG1POZr+6BeY+RSKyUkROTLj+LBH53PivFZFTHX4iIn8Wkc0issdUDAY7/OeKyEZz7+9E5Pf1eP56pVdTRkQmikh+PcIPN++01PwfXkPYdiLynMlH34nIOQ6/SSKySkQKRWSXCde1mjh2OCvSIjIzoTwqNRW/kcb/ShH5xrz770XkzsRKoYj8WkS+NbJ9LiLxDXiVUgcBtwHX1TVdEkmb4rO12UZlkVKqleM3t/ZLDhjtgAKlVHFjC5IKpiBv9IqiUR7/AM4DDgZKgb/XcMmnwC/Q+7klkg1cAXQAjgB+DFxj/Dzo/feOAdoAfwSejFVWTCH4CHAV0Bq4FnhMRDqZ688ELgQmoPPA/9B75MVYAAxQSrUGjgJmisjpdUiCjCQTyj/RG3C/gH4vBwEPAS8Y92TcCwTR+WgmcJ+jcrIWmKyUagt0Qe+7d1+SOG4FPnc6KKUedZZH6Pz3Dfvy4IvA4ebdDwGGAZc7nuMi9J6KU4BWwE+AnQn3XY3eE7BBpPQhm1r7b0XkM6BERDwiMlZE/mtqCp+KyERH+HwR+YuILDXa/oXqaqsicoGjNvmNiPw8wX+qqYXuFZH1oneIRkTamJrqFlPb/LOYXYxreI4+IvKOqdnsFJFHRaStw2+3iBxuzruYGs5Ec36KiKwxz5svIgMT0ucaEfnM1HoXiUig/ildf0TkOpMusdr4adWEE1Pj2m7ScpWIDDF+fhG5XUQ2iMg2EZkvIln1FMUDRGuRtb2IvGTu/7F5Z84apBKRS0TkK5PO94qIGL9q352D0SYNfhCRB2PvQEQOEpGXzfv8wRx3c9w3X0RuFpEP0Qqmdy3P2kNEPjRp/qaIdEjwn2nScqeI/KGWuKpjJvCSUup9U5m4HjhdRHKTBVZK3auUehsoT+J3n1LqA6VUUCm1GXgUGGf8SpRSc5RSBUqpqFLqZeBbYKS5vBtQqJR6TWleAUqAPsa/F7BYKfWNUiqCLowHOe69TilV4hAnChzWkAQRkd+Y7/17EbnI5JcqcYlIroi8KyLzYvkH6CAi/zHv7D0R6eEI/zfZZ5UuF5EJDr85IvK0iDwiInuB2bWI6RORf5v7rBGRUQn+w9NQTkxEf293KaUqlFLz0BvD/igxoIjkoDe6vV4pVayUWoxWSOcBKKW2KaW+d1wSIeH9iMhRaMX1YC1ynQ/8W5nNX5VS65VShbFocLx70ZXL/wOuVEqtNXlrvVJqd0KcUfOsDSPF3XkL0DvydgeygK7oXbBPQivV48x5RxM+H9iMTqwc4BngEePXE73Tr8ecT0F/RIKudZaiawkAY4A9Jn6Xue8A4/ccukacA3QClgI/r+U5DjNx+YGOwPvozBPz/xm6BpQNvAHcbtz7oT/24wAv8Bv0TtU+R/osRdeY2qFrRpdUI8N4oLCG3/hqrpsTS8ME9zPNfV3AdCNnZ+M3G10oAUwGlgNtTVoPdIS7E/0xtANygZeAv9Qjf3jRtfwq8iWEe8L8stGF48aYfLFvBXjZyHgosAM4oY7vrgBdO+xunuND4M/Grz364882z/cU8Lzj2nxgAzAY/ZF5a3iGfPSu0/3Q30I+cEtC3r7f+A0DKoCB1cRV0/t+AfhtglsxMLKWNF4MzK4lzPMxmZP4HYxWnrHvzA28B5xijk9F7yieY/x7mHzVz+SDuc60NWGuM7IrtEXQrQFl0AnAVvOOstEKVgGHGf+FwJ/Nu14ae/cOvyLgaJN//paQ784113mAq819Ao7vLmSe2wVk1SDjHJN2J5m0+guwJCGP1rWceBm4rhq/K4HXkoS/OknYEUBpgts16EpV7PxQkxej5llnO/zcaAtuJI7yJMl9eqCVZq8E93OAveZd7QCGOe6pgF+jy4FvgRsBV8L1vYEwMLy+eUYplRbFd6Hj/LfAwwlh3gDON8f5OD4sdCEXNInYE4fiq+aj/LU5/gdwZzUfZ4UzEwJnA+/W87lOBVYkuL0IrAI+A/zG7XrgSUcYF1qxT3Skz7kO/7nA/FTSPImsc0waFjp+XZKEWwlMNcfxjIquDX4JjHVmLrQSLAH6ONyOBL6to1zDzceyDVMIVRPObcL1d7j9maqKb7zj/Emq//grvTvzDi5xnJ8ErK9B5h8c5/nATXV83nzgj47zXwCvm+NY3u7m8F8KzGjA+36bhELRmedquK5GxYdultwEdEji5wXeAv6R4P5TtOIKoyumUxx+PrQiUcb/WxIKP0c+G4Eu3HIbkB4P4KiMoStCiYrvAXTl59qEaxcCTzjOW6EL6e7V3OsH9hXQc4D36yjjHOAtx/kgoCwhj6ZcTqDLoycS3B4F5iQJOwHYmuD2MyA/Sdh26LJ9rMPtSuA+czyb6hXf9cnidPj3Bf4EHGLOjzLv7xV0Rbcnunz6WZJrbzdhn69vWqWjz2Kj47gHcKZpjioUkUK0JdO5mvDfoT+qxCYhROREEVlimhkL0QVWLFx3dO06kR4mvi2O+/8DbflVi4gcLCJPiG4a3YuuNSbKdD/aUr1bKVVh3LqYZwBAKRU1z+fsBN7qOC5Ff1zp5kmlVFvH73sRmSW6KTiWDkNIks5KqXeAe9Dt/dtFD4ZojbaesoHljjheN+61opRaibai/ofuR6qOjuzrT4qxMUm4pOlYx3eXmOe6mGuzReQfojv296KtxbZSuWk8mSzVUdu7TkdeKEb3qTlpjbZcGoToQSl/AU5USu1M8HOhrfYgcJnD/Vh0AT0RreSOAf4l+wZT3ACMRn+rAbRie0dEsp3xK80KoMyEqS9dqD3vTEFb2vOT+MXDK910vJt9+eMa0d0te0z+b0PlvJVK3ghI5X7BA5036hxW6WbGWH+hR0S6oPvk6tJcP8tcmxSl1FfAGvb1U5eZ/3OVUoVKqQJ0GX6S8zrRfcmXA0crpU6tgxyVSIfiU47jjWiLz1kI5yilbnGE6e44PhRd20/82PzoZtDbgYOV7mB9FV07jN2nD1XZiLb4Ojju31opNThJWCf/zzxHntIdruc67oWItALuQnfIz5F9/ZLfo5VtLJyY59tcy/2qICITpPJIqMTfhNpjicfVA62oLwPam/Rb7XwmJ0qpeUqpkeiaaD/0QIWd6Ew42JGWbZTurK4TSqly4DUcfTtJ2IG2CLo53LpXEzYZNb67JPEdin5voJuv+gNHmGuPNu7O6535OxNYg24qBUBEeqOb6b5sSGSi+8bvB05WSq1K8BN0nj8YmKaUCjm8h6MtnmVK9wF+DHyEHsUb81+klNqklAorpRaiB1xUlxc8JP+ma2MLteed+9GVtldN3xbJwpvvvB3wvfnefgOcBRxkvqE9ZH7eGOrovwQ9onpNkrBfAh4R6etwG1ZNWNDvpxNaOY5BGzNrRWQr2rIfIyJbnZVGERmHrkQ8XYvczne/Dl3JcqZtsnTuC+xRSn1QS9xJSfcotUeAk0Vksoi4RSQgejiuM2OeKyKDTM3vJuBppTu/nfjQH/MOICx6GPXxDv8FwAUi8mMRcYlIVxEZoJTaArwJ3CEirY1fHxE5pha5c9E1oD2iR6tdm+D/N2CZUuoitAkeqzk+CUwxcnjRBWkF8N/aEioRpQcZtKrhV58XnMO+tnNE5AK0xVcFERktIkcY+UvQfRFRY73eD9xpaleYdJ7suFaJY/BSNVSg32dSzLt/Fl2hyBaRAehaYl2p7d0B/FJEupkKyx+ARY5ry4BC4/d/9bhvY/Eo+hubYArxm4BnlVJJLT4R8ZmBEgJ4zTfpMn4/MvFNU0otTXL5feg+35OVUmUJfh8DE2IWnoiMQDeffebwP9NY5C4ROQ/dGvO1Of+56MFFIiJjgF+im3FjchdIwvSLangSXRYMNGXK9dWEuwxdqL4klQdonSQi40WPfPwTuu9tIzpvhNHfkEdEbqCqhZRp5KObai8XPTAtZqG/kxhQ6YFFzwI3iUiOUVJTMSNvReR0Eelv3lVH4K/oLoTd6MpsT3TlZjjaul+B7m9zluXnA88k5k3RA5BiZcog4HeYd6+UKkV/n78RPRipG3Axuq/SiRddtjSItCo+k2GmAr9HZ5iN6ILIeZ+H0W3rW9FNIJeTgEmoy9GZ+gd0R+iLDv+lwAXowRd70J3sMctrFrqgXWuufZrKTa3JuBE43MT1CjpDAHr0KLoD/VLjdBVwuIjMVEqtQ1sYd6MtpJPRhUSwlvvtV5RSa4E70M2M24A89KCOZLRGK7gf0M2Au9BzZEC3638NLDFNgW+hLSREpDu6WWRVYoQJRKk9n12Gbkbais4fj1P3TF3tu3PwGLpC9A26iTw2afkudBPYTmAJ2ipodGqy8JVSa4BL0AprO7qA/oXj2tek8py4N9HK/Sjgn+Y4Ztlej073Vx0tC6+ZeHoAP0cXbFsd/jONHO+h+66eFpEidAvN/1NKvWnivhU9lWIlut/5SrSCLTT+p6HfRRG6wny3+cWG5bdHv5MaUUq9BswD3sXkVeNVkRBOoQvQTegmu9ioycfQFZ7d6IEa5xr3N9D54Uv0d1FO/Zo29wtJ3m8cU+6cii4DC9H9tqfGyiMR+X3s/Rp+gc7/29Hf3KUmf4Hurnmdfd94FP3OUHrE6NbYD/3thcxxTM4A2lpO1sw5DlglIiXolrxX0TojxmXoyuz36DLsMXQ/rRM3tYwWrwkxnYQHBNETMR9RSv3rgN3Usl8QkXPRzaC/qyXc8eiCbYCqOiS5umtuRXd2n5+6pJamhoiMB36plDq7AdcORDfr+5VS4bQLZ8kIRC/ScYZSakxDrm/0SZeWpolSqtolmBLIB/4DrBGRO5RStycGMM2bPnTNcjR6tGDS5b8szR+l55TVeUk90XNUX0UPxroVPSTfKr1miojsQFupDV6hqtFXojhQiJ58nWzQSLKRXpY0ofTk6JlKqc7JlJ4hF91EWYJu378DPV8to6gm/9Rr4JFlv/BzdEG4Ht3HdWnNwdOPaYJMljfqvBSbpW4opToqpQYrvWhCgzigTZ0Wi8VisTQ2Lcbis1gsFosFMqyPr0OHDqpnz56NLYbFYrFYDiDLly/fqZSq0+IY6SCjFF/Pnj1ZtmxZY4thsVgslgOIiHxXe6j0YZs6LRaLxdKisIrPYskgdhRV8Pbn2xpbDIulWWMVn8WSQbz62Dx+vKgfu3dsrT2wxWJpEBnVx5eMUCjEpk2bKC+vso+mxVItgUCAbt264fV6G1uUejFsh16Zr/DrJbTreGrjCmOxNFMyXvFt2rSJ3NxcevbsiVRadNxiSY5Sil27drFp0yZ69erV2OLUi5AnB8JQVrK3sUWxWJotGd/UWV5eTvv27a3Ss9QZEaF9+/ZNspUg6tYbB4SK67SsqcViaQAZr/gAq/Qs9aap5hnl1YovUrKrkSWxWJovTULxWSwtBa9bK2xV+kMjS2KxNF+s4qsDIsLVV18dP7/99tuZM2dO4wlUC/n5+fz3v/XeCzfOypUrOfLIIxk8eDBDhw5l0aJFtV9kSQtupbcYc1XYPj6LZX9hFV8d8Pv9PPvss+zcuTOt8SqliEYbvJditaSq+LKzs/n3v//NmjVreP3117niiisoLCxMn4CW6okpvnBJIwtisTRfrOKrAx6Ph4svvpg777yzit+OHTuYNm0ao0ePZvTo0Xz4od7ofM6cOdx++75deIYMGUJBQQEFBQX079+fWbNmMWTIEDZu3Mi1117LkCFDyMvLi1tX+fn5TJw4kTPOOIMBAwYwc+ZMku2kMW/ePAYNGsTQoUOZMWMGBQUFzJ8/nzvvvJPhw4fzwQcf1Cjjeeedx5FHHknfvn25//77AejXrx99+/YFoEuXLnTq1IkdO3ZUufdTTz3FkCFDGDZsGEcfrTf1Li8v54ILLiAvL48RI0bw7rvvArBw4UJOPfVUjjvuOHr27Mk999zDX//6V0aMGMHYsWPZvVsP5rj//vsZPXo0w4YNY9q0aZSWlla579ixY1mzZk38fOLEic1nqTsVAcATSq/i+3ZHMYsWr6k9YD3Ztjf9A4iKykNJ87rFki4yfjqDkxtfWsPa79PbBDSoS2v+7+TBtYb75S9/ydChQ/nNbyrvffjrX/+aK6+8kvHjx7NhwwYmT57M559/XmNcX331FQ899BBjx47lmWeeYeXKlXz66afs3LmT0aNHx5XIihUrWLNmDV26dGHcuHF8+OGHjB8/vlJct9xyC99++y1+v5/CwkLatm3LJZdcQqtWrbjmmmsAOOecc6qV8bPPPmPJkiWUlJQwYsQIpkyZQpcuXeLxL126lGAwSJ8+fao8x0033cQbb7xB165d4xbhvffei4iwatUqvvjiC44//ni+/PJLAFavXs2KFSsoLy/nsMMO49Zbb2XFihVceeWV/Pvf/+aKK67g9NNP52c/+xkAf/zjH1mwYAG/+tWvKt13+vTpPPnkk9x4441s2bKFLVu2MGrUqBrTvMlgLD5PpKrCT4WnFtzCb8rvprj3Elp1GZiWON9dt52vHr6CcVNmMfjIE9ISZ2FpkBNueoJfjOvMrJOPS0ucFksi1uKrI61bt2bWrFnMmzevkvtbb73FZZddxvDhwznllFPYu3cvxcXFNcbVo0cPxo4dC8DixYs5++yzcbvdHHzwwRxzzDF8/PHHAIwZM4Zu3brhcrkYPnw4BQUFVeIaOnQoM2fO5JFHHsHjSV6PqUnGqVOnkpWVRYcOHZg0aRJLly6NX7dlyxbOO+88HnzwQVyuqlll3LhxzJ49m/vvv59IJBJ/nnPPPReAAQMG0KNHj7jimzRpErm5uXTs2JE2bdpw8sknA5CXlxd/ttWrVzNhwgTy8vJ49NFHK1l2Mc466yyefvppAJ588knOOOOMGtO7SWEUnzfNiq9/yXIASr9ueBN4Ih9/uZmLPa8w+I3paYuzuCLMu/6rOWd5+uIE+Md767niiRVpjdPSdGlSFl9dLLP9yRVXXMHhhx/OBRdcEHeLRqMsWbKEQCBQKazH46nUf+ecU5aTk1On+/n9/vix2+0mHA5XCfPKK6/w/vvv89JLL3HzzTezatWqKmGqkxGqDvuPne/du5cpU6Zw8803x5V0IvPnz+ejjz7ilVdeYeTIkSxfvrzOz+NyueLnLpcr/myzZ8/m+eefZ9iwYSxcuJD8/Pwq8XTt2pX27dvz2WefsWjRIubPn1/jfZsSYhSfL1KW1niVywdAeTCYtjg7SPoH4ESiiixJn4wx/vLaFwDcOX14k53qYkkf1uKrB+3ateOss85iwYIFcbfjjz+eu+++O36+cuVKQG+x9MknnwDwySef8O233yaNc8KECSxatIhIJMKOHTt4//33GTNmTJ3kiUajbNy4kUmTJnHrrbeyZ88eiouLyc3NpaioqFYZAV544QXKy8vZtWsX+fn5jB49mmAwyGmnncasWbNqtKbWr1/PEUccwU033UTHjh3ZuHEjEyZM4NFHHwXgyy+/ZMOGDfTv379OzwNQVFRE586dCYVC8XiSMX36dObOncuePXsYOnRonePPeIziy1LptfhiFnsojZP6W7kq0hZXjHDU0bcXSn//YUU4/YPJLE0Pq/jqydVXX11pdOe8efNYtmwZQ4cOZdCgQXHrY9q0aezevZvBgwdzzz330K9fv6TxnXbaaQwdOpRhw4bxox/9iLlz53LIIYfUSZZIJMK5554bH0hy+eWX07ZtW04++WSee+65+OCW6mQE3VQ6adIkxo4dy/XXX0+XLl148sknef/991m4cCHDhw9n+PDhcWV5ww038OKLej3Ja6+9lry8PIYMGcJRRx3FsGHD+MUvfkE0GiUvL4/p06ezcOHCSpZebfzpT3/iiCOOYNy4cQwYMCDu/uKLL3LDDTfEz8844wyeeOIJzjrrrDrH3RQQdMEcUOkt9MNubfFFygrTFqfbDMRJJ+GIQ/GV70l7/EXlVVtNLC0PyaTRU6NGjVKJo/M+//xzBg5MT2e8pTJz5sypNAimudEU886q204gr+R/RJTgnvMDpKlZ7rn/N5PTgi+zrs+F9D+v6ujkhvDUSy9x5nLdn8uc9CipNd/vYfA/D9Unv/wYOiavMNaXnte9AsA7Vx9D746t0hKnJX2IyHKl1AEboWYtPoslgxBjRblFEQ2mr7nT59IVXFVRVEvIuhNN0uecKpUtvsK0x19cEYblC+HvR0E4/X2JlqZBkxrcYkkvmbz6TIvF0QJTVrKHHH/dBkLVhk/SvyJMNBJKW1wxws4FHdKopGMUlYfhpV/rk9Kd0LpLzRdYmiXW4rNYMojYqE6AsuL0KSk32pJ0pXFifDTisPjStAJRJYsvmD5ZXabFuKjcoazT2N9paVpYxWexZBDCvgEj5cWF6Yt3PyyFVsniS5NCrTSqM42Kz+9xA1BSEQGMFtwPTamWpoFVfBZLJuFo6qwoTV9TX6zv0BtOX7+hclp8FTUv2lBXnIovmsamTr9XF3UlwTB4zChja/G1WKzis1gyCJeKUKb01INgGhWfK6b40rgiTKWmzmCaFF8kSkRpiyxUlkbF59FFXXFFGDxmIYf9MF3C0jSwiq+OPP/884gIX3zxRbVhCgoKGDJkyH6VY+XKlbz66qsNvj424X3QoEEMHjyYv/3tb2mUzpI6UYrIBiBUlr4+vpjF50vnUmjOps40WWfhqCKMbpZMp+LzmAn8pRUR8Or0xW791GKxiq+OPP7444wfP57HH388qX+y5cTqS2y9y5pIVfF5PB7uuOMO1q5dy5IlS7j33ntZu3Ztg+OzpBeXilImumCOlKe/qdOv0rgUWnRfnldps/gUHtPPGUmj4o+YJlRt8ZmmzjTJbGl6WMVXB4qLi1m8eDELFizgiSeeiLvn5+czYcIETjnlFAYNGgRoBThz5kwGDhzIGWecEd9W5+2332bEiBHk5eVx4YUXUlGhl3vq2bMnv/3tbzn88MN56qmnKt03cdufYDDIDTfcwKJFixg+fDiLFi2ipKSECy+8kDFjxjBixAheeOEFQG8DNHXqVCZOnEjfvn258cYbAejcuTOHH344ALm5uQwcOJDNmzdXeeb33nsvvmrLiBEjKCoqQilV7RZKxxxzDFOnTqV3795cd911PProo4wZM4a8vDzWr18PwEsvvcQRRxzBiBEjOPbYY9m2bVuV+86YMYNXXnklfj579uz4gtQtAhWlzKWnMETK01cwx1ZZCajySv2IKeFQfMHSdCm+MG7R8kXK0ze4JTZNojQYBjHFXpr6JS1Nj6Y1j++162Br1UWYU+KQPDjxlhqDvPDCC5xwwgn069eP9u3bs3z5ckaOHAnodThXr15Nr169KCgoYN26dSxYsIBx48Zx4YUX8ve//53LLruM2bNn8/bbb9OvXz9mzZrFfffdxxVXXAFA+/bt4+t6Oknc9sfn83HTTTexbNky7rnnHgB+//vf86Mf/YgHHniAwsJCxowZw7HHHgvoLYVWr15NdnY2o0ePZsqUKZW27ykoKGDFihUcccQRVe59++23c++99zJu3DiKi4sJBAI8++yz1W6h9Omnn/L555/Trl07evfuzUUXXcTSpUv529/+xt13381dd93F+PHjWbJkCSLCv/71L+bOncsdd9xR6b6xLYemTJlCMBjk7bff5r777qvjy2z6CIoKdw5E0zvZPD4xniiEysCXnXqk0X0tFBUle6j7wnTVE3G0nETTaJHFBs2UVET2KWxr8bVYrMVXBx5//HFmzJgBaIvE2dw5ZswYevXqFT/v3r0748aNA+Dcc89l8eLFrFu3jl69esXX6zz//PN5//3349dMn558C5Zk2/4k8uabb3LLLbcwfPhwJk6cSHl5ORs2bADguOOOo3379mRlZXH66aezePHi+HXFxcVMmzaNu+66i9atWye991VXXcW8efMoLCzE4/HUuIXS6NGj6dy5M36/nz59+nD88ccDlbcc2rRpE5MnTyYvL4/bbrst6ZZDJ554Iu+++y4VFRW89tprHH300WRlZSV99uaIS0WJugNUKE9aJ3C7nOtqpqnAF4fFl67+uGjEsZpKOhWfmR9YEgzvU9hpnC5haVo0LYuvFstsf7B7927eeecdVq1ahYgQiUQQEW677Tag6hZD1W3zUxPVbVNUl21/lFI888wzVXZA+Oijj6qVJRQKMW3aNGbOnMnpp5+e9N7XXXcdU6ZM4dVXX2XcuHG88cYbNT5DXbYc+tWvfsVVV13FKaecQn5+ftKVYwKBABMnTuSNN95g0aJF8QpHyyEKLhelZCFpLPhdJCq+TqlHqtKv+JwWXzqbIkMR3dRZUhGGqBmUsx9WhrE0Dfa7xSciJ4jIOhH5WkSu29/3SzdPP/005513Ht999x0FBQVs3LiRXr168cEHHyQNv2HDBv73v/8B8NhjjzF+/Hj69+9PQUEBX3/9NQAPP/wwxxxzTK33TrbtT+KWQ5MnT+buu+8mttj4ihX7Ntv8z3/+w+7duykrK+P5559n3LhxKKX46U9/ysCBA7nqqqtqvHdeXh6//e1vGT16NF988UVKWygB7Nmzh65duwLw0EMPVRtu+vTpPPjgg3zwwQeccEJ6dvZuKrhUFIWLUslK6yorTosvlKZpEuJo6gynaSCOCu8bKZrO5983uMXZ1GktvpbKflV8IuIG7gVOBAYBZ4vIoP15z3Tz+OOPc9ppp1VymzZtWrWjO/v378+9997LwIED+eGHH7j00ksJBAI8+OCDnHnmmeTl5eFyubjkkktqvXeybX8mTZrE2rVr44Nbrr/+ekKhEEOHDmXw4MFcf/318evHjBnDtGnTGDp0KNOmTWPUqFF8+OGHPPzww7zzzjvxwSuxUaLz58+Pb1l01113MWTIEIYOHYrX6+XEE09MaQsl0GuDnnnmmYwcOZIOHTrE3ZctW8ZFF10UPz/++ON57733OPbYY/H5fHWOvzkgRFHiolyycKdxlZXYdkcA5aXpmb8mDosvmibFF3EqvjRNtldKxfv4SoNhiNg+vpbOft2WSESOBOYopSab898BKKX+kiy83ZYofSxcuLDSIJiWSFPMOxtuGsSO7L5klW8DT4BB1+WnJd7P/m8kPdlCaylh59RH6DDi5JTjfPjO33LenvmElJvNvc+k5/n/SD3ON//Hef/VVn6xryOtfv91ynGGI1EO+8NrAHRo5WOZnK+XWDt4CFz6YcrxW1KnuW1L1BXY6DjfZNwsFksSRCkQF0FXVlpXWXETodhMk0jXijAxi28POWmznpSZFL9HZeNNk8XrXAat0qhO28fXYmn0UZ0icrGILBORZTt27GhscZoNs2fPbtHWXlNFN3W6CXly8EfTp/hcRClz6Q1Y0zUQJTZFYq/KRtLUXxbb469IWuGNlqVlzmFM8eX43JSFIqjY4Bbbx9di2d+KbzPQ3XHezbjFUUr9Uyk1Sik1qmPHjkkjyaRd4i1Ng6aaZ1xEQVxEPDkE0qn4VIQydy6QvhVRYoNb9pKdtoEoykxnKJVWuFB6zmGKhM2IzjZZXoTovq2fbB9fi2V/K76Pgb4i0ktEfMAM4MX6RBAIBNi1a1eTLcgsBx6lFLt27SIQCDS2KPVGlB7cEvHmkJWm5cWiUb0MWMijLb5ImqYJuExTZzE5aVN8UdMMWeLWsqZDOYXMHL7WWV48sUE+bj+Ey/cNdLG0KPbrPD6lVFhELgPeANzAA0qpqrOWa6Bbt25s2rQJ2wxqqQ+BQIBu3bo1thj1JmbxKW8rspVp6qvDXNCaiCiFiyjKk0WF8qRtBKZLhYngosKVjSeyPS1xxqYzlLtbQZi0zDmMTWVom+2Nb8hLVlso3qbjz2qbUvyWpsd+n8CulHoVaPCqyl6vt9LKKBZLc8aFHtyi/K1wiyIaLMPlT215sUhU4SGKy+OllAAqTX1bEo0QFTdBSd9AnNgefxWe1lBBWvrhQo6mztgC2ATaGsVXYhVfC6TRB7dYLJZ9xCw+8eumvrKS1OfcRaIKt0TweDyUEEjbijAuIkTwEPLkpG27I2WaOoMes4xeGhRfzOKrpPhiys7287VIrOKzWDIIiSs+PRClrDh1xRc2Fp/b46NEBXClyeJzqTBRcRP2ZOOPlqclTszglrDPKL409EfGdmZo4+zjC7TV/63ia5FYxWexZBAupVAuN56ALvjLiwtTjlMPbgmDy01ZGpdCc0UjRMRD1JONlxCEg7VfVAvKLMYe8bfRDmlQTOFKFp8ZzBKz+OzWRC0Sq/gslgzCRRQRF55sbfFVlKY+9SBsRnXi8lLhysKTpmZJN9rii3rTNwIz1tQZjSu+1JV0bGeGNllePJJo8dm5fC0Rq/gslgxCD25x483SFl8wDYovqhReIii3l6ArfSuiiNIWn/KZ3UXSoUTM5HLJ0oovHYtfxwe3ZPv2WXyB9FmUlqaHVXwWSwbhIoq4XPhztOILp8nicxMBl4eQO0uviJIG3CqMwo34Y4ovDUrEjOqUrIMACKdhlZnY4JbWAc++wS3Z7fR/q/haJFbxWSwZQjSq4qM6/Tnps3iikSg+MYrPk4M/TU2dLqWnM2AG4qTD4os1dXqzWhFS7rQsrxabwO7zuMj1mIUwjGK1fXwtE6v4LJYMIaIUbqIol4cso/jSMdk8HLOi3F4inhyyVJr6+FSYqMuDx5++NUDFNHX6/QFK8adF8ccsPq/bRWuf7eOzWMVnsWQMkUgUr7HMsnO14lNp2EEgGq7Qcbm8RH05eAmnZQSmC23xuQPa4gumY58/s/5nwOejhEBaFH/ITGdwu4Rcr7H4PH7wpm9XCUvTwio+iyVDiJih/IibnECAcuVNS1NcJBwx0XpQ3vT1x7lVhKh48Wbr/sh0jEAV09SZFfBTqgKoijSs3BLWis/ndtEq1tTp9oG/lVV8LRSr+CyWDCHWJInbg8sllJCFhFIvmKMx687lBV9s6kHqCsVNBCVuvFmxps40TGcw+/EF/H6KCaDSuEi11+0i1xtbpNoHvhzbx9dCsYrPYskQomaBZnG5ASiTLNxpmGweW/hZ3J74UmjpaEJ1qwjK5YkPxAmlYbujfRZfgFIVQNLw/LGVW7xuIccdU3ymEmD7+FokVvFZLBlCxGzCikuvHV/uyk6L4ouYZcBwe3EF0jcxPjaBPSvH7POXjhGoRvFlZ/kpIT3LqwXDMcWX0NTps02dLRWr+CyWDCFqmvlweQGocGXhjaRe8Md2NRe3F3cgPYtfR+NzA71k+72UKD/R8tRljVl82X4/pQRwp2GyvXM6Q7bH9KN6/LqPLw2Wr6XpYRWfxZIhRIzic5mmzgp3Tlq2+wmbUZ0utze+IkyoNLUCPxiJmmXQ3LTyeyghKz1KxExnyA5oi88dTv35Yyu3eN0usis1debYps4WilV8FkuGEA1pa0eZps6wOzstk81DId3U6fb68GbFph6k1tSpFV9UT73weShR/vSMFI0tWeYJEHRlp2W7o32KT+KKT8UG+timzhaJVXwWS4YQMc18LrdRfN4cAmmYbB4OaWXi8Xj3rQiT4gjMYDiqmzrd3rjFl459/rzRCsLiBZeLkDsLX7QMzOCUBsvqsPgCLt3UWR716BVnrMXXIrGKz2LJEPb18emmzqg3hyyV+rqaccXn8+E3c+4i5alZfKF4U6eHgNdlmiVTVyKeaAVhl1/L6DFzDkOpKf9QeN90hiy3VnylUZdp6iwGpVKK39L0sIrPYskQYvPtxK0HtyhvK3IoT9niiZh4vR4fWTm5RJUQSXH+WjAcxS8hlNuPiFAu2XjSMALVqxyKz5ueXR/C0Shul+B2CQHRiq84LLqpU0UhlJ5Fuy1NB6v4LJYMIVyhC2CXNwCA8un+uGiKSioS0ruju31+cgJeSgikPHE7GI6STTnKmw1AhTs9I1B9KhhXfLG4U+2HC0aieN0CQJYEiSqhJGQsvjTEb2l6WMVnsWQI4aBRUF5d8LvM1IPSFHdhjy375c3KJcfnphR/yiuiVISjZFMBPq2cgu6clAeihCNR/ASJuLXiJ00b3FaEovjcuqgLqDJKCFASijp2lbCKr6VhFZ/FkiFEQnragduXBYDLFMxlxan1x8VWP/EEWpkRmAEkmJqSCoZCBCSkF3oGwu4c/Cnu8xeKKAIEibp82sGfnuXVSirC5Pj1gKFApJRisiiuCO+z+OyyZS0Oq/gslgwhHNSKw+PTFo/bTD0oT3GyOQ6Lz+dxUSYBXCn2x5WbeYCegFF8nmz8qjy+u0JDKAmGteLz6OePWbypKr7SYCSu+HyREopVFqUVkbSuW2ppWljFZ7FkCJGgtvg8Pt3U6TGTzStSVHz7LD5jQUpWyiMwy0piik8rj6gv9WbJkoowAQmCR1u8sVVmUp0YX1wRJsenR8p6w8W6qbMi7FB81uJraVjFZ7FkCFEzutDt1/1mse1+QilONo/355mmvaArG0+KK6JUGIvPZ3ZmiHpTt56KK8IECCFmcI/bn57BPaXBfU2d3nAJRSqLkmDY0ZRqFV9Lwyo+iyVDEGPZxCw9f7bZ9SDFxZ9VRQlh3HphZiDoykp5KbTYFkQ+0xwbt55SUFLF5WFaSwkE9HP7jOIPprize3FFhGyfVnyu4F5KyDIWn+3ja6lYxWexZAixSeXZuQcBEGgVm2yeWsEvoRLKJQCih/SHPNl6RZQUiJQWAuBv1RZzoP8HGy5rcUWYdhRBTgdgn+JL1eLdsqeMTq3NSNnirezgIEqCto+vJWMVn8WSISij+HJy2wKQbZYXi6ao+LKCuylyt42fR9zZKY/AjBRtA8DXpjNAfLujVJR04Z49ZEsFvtyOAGRlBQgqN+HyhltkP5QEKSwN0btDju4rLN/DTnenhD4+u0NDSyMlxScic0Rks4isNL+THH6/E5GvRWSdiExOXVSLpZlTUUSp8uPx6ibJ7Fyt+FLdNLZVaCcl3g7x84g3h4AqS22pruLtJvKDgX0jUIMpDMQp2q2Vac5BnXTUZg3QVJTpNzu10uzdMQcKNwJQ6O2kpzN4fLr511p8LQ5PGuK4Uyl1u9NBRAYBM4DBQBfgLRHpp5Rq+Fhni6WZ4woWUypZmPVK4vvcpdIHFYkq2kZ2U5adF3eLerNxE4VwOXizGhSvp3Q7EVy4s3SzbGy7o2BpEQ2LEYKFm3VcxorM9nkoIYAvhedfv0Mrtd4dWsGmtwHY7O+Np8IURb4c28fXAtlfTZ1TgSeUUhVKqW+Br4Ex++leFkuzwB3cS5krJ34uIpSShSvU8IJ5+55iOrML1bpL3E2loW+rVekGdvs6g0sXIfsGojTc4lM71+uD9ofpe/g9lCo/KgXF9O3OErxuodtBWfDVfyCrHbsCPfWoTgCf3aGhJZIOxXeZiHwmIg+IyEHGrSuw0RFmk3GrgohcLCLLRGTZjh070iCOxdI0CZRvp8TbvpJbmWThTmGy+ffr1+KXEJ5DBsfdJMU1KncVV9AjsoHS1ofF3bxmBGo4hQ1us/d8RQQ3tO0BQI7fTSmBlBTTl1uL6Nk+B8/G/8La52HY2eQEfLqPD8wODbaPr6VRq+ITkbdEZHWS31TgPqAPMBzYAtxRXwGUUv9USo1SSo3q2LFjfS+3WJoF0aiiTXgXoZxDKrmXpzjn7od1iwHoPGBs3E2MxRdt4KCRz7/+hsPke+h6eNwtK7uV3vWhgXFu3F3K4NAqdrYZrPve0BZfsQrEJ+DXF6UUHb97iedKZsFDp8BBveCY35Dtc1MSa+r0t7IWXwuk1j4+pdSxdYlIRO4HXjanm4HuDu9uxs1isSRh295SOvEDe9t0qeQedAVSUnxZ373NLld72h86NO7mNiMwy0v3xvsT68PWT17GJYpDDp8Sd8vx610fog0ciPO/Ves4Xb5h72GXxd2y/R5KCeAONWw6w7LvfuC0yBu0UoUw6qcw6Q+Q1VYPmgk6LD7bx9fiSHVUZ2fH6WnAanP8IjBDRPwi0gvoCyxN5V4WS3Pm++++xi8hfB37VHIPubLwRssbFOdX33zNqIqP+L7zsfE5fABus9pKQ5ZCKyoLcth3T7LD2wV/95Fx9xy/h1L8RCvqbz1Fo4qi//4Lj0Q5aMzZcfcsr9tscNswxZ//3rsc4fqC4MTr4Sd/hRzdjJztdzuaOq3F1xJJdVTnXBEZDiigAPg5gFJqjYg8CawFwsAv7YhOi6V6ijatAaBN98GV3EPuLLzB7fWOTynFlmf+QE8UPU68spJfbM3OYFn9LZ3/PDWf0+VLNo+5OT6wBXR/XIkK4GpAv+ErHy7jzPJn2HrI0Rxy8KC4u9slVEgW3gYovlUbf+DI9XdQ7m1FYMyFlfxy/J59TZ2+VraPrwWSkuJTSp1Xg9/NwM2pxG+xtBTC274AoH3PoZXcI+4sfA2w+Ba/cD9Hl7zOpz1nM6zbwEp+XmPxheq5FNji/DeYvP7PbMoeQLcfX1rJL8fvYRcBcuvZH7d+w0YGvHUBXhd0OuOvVfyD7my89Zxsv7csyLqHLuMM1xrKfnQbZLer5N/K5yEYiRIMR/HZPr4WiV25xWLJAHw/fM0eycWdW3mAV9STpbf7qQcr332GI1Zcxxf+IeSd85cq/v7YUmD1UHzLli1h0LsXUuQ5iPY/ew5c7kr+2aZZ0hWqu3W2adtOih88gx6yhaJTH8LVsW+VMGFPtlb8ddzuqCwY4ZV7r+GM8MtsHXgBWUf9rEqYbLNgdWkwbPv4WihW8VksGUC70m/Z5utRxT3qzSJA3RXfmqVv0zf/UjZ5DqXrpS/i8lcdvhLIia0BWrcCf/Xna+n60jng8pDz05fIatelShiP20W51L0/bnthERv+OZ08tY4dx91Np2HJF3cKu438dbDKguEoT9x3I2cXP8Sm7idzyJl/rdS3GaOVXyttvV5nLkQqIBKqk9yW5oFVfBZLIxONROkW/o7i3D5VPb05ZBGEaLTWeL5avYyur8xij+sg2l78Irlt2ycNl5VtpjPUwdL5+rsNZC06g1wpg5lPk9ulX7Vhg66sOo1A3VMSZOXfz+eoyDI2HXkTXcedU23YqDc257BmxReORFn4r7s4f/c8vu84gW6zH6zUB+kktlNDpR0a7NZELQqr+CyWRmb7lgLaSgnhjoOqenq1xRMJ1qxQvvtmHblPn0VEPLjPf552Bx9abdjsgM+siFKzMtm0bSdlC6fRje2Unv4w7Q4bXWP4oCsbb6TmOEuDYd6591KOD77NhrzLOXTy5TWGr4vii0YVC/79IOdvuZkdbYfS5WdPgttbbfhWfofi86e+nZKl6ZGOtTozhj27trHu/SeJlu1Ble9BKvYiwWIkGkZQEI0gxGrOYppBBMSlj53niKkxStxPcIQzYVTsGgQlLhSgaqhP1HdZ4CrhVS3+SeNowEXO4HUIXzVIZZeGrIdc2yW1PVf901rqEEcSl1puVJsc2WVbOQQIdM2r4ic+rfjKS4vIie1InsCWLZvg4dPIoYy9M16ga8+BScPFyPG5KcGPqkGZ7CgsZvM/z2SU+ootk/9Bt6G1T+cNe7LxhaofiBIMR3nu779jZunTbOh9NoeeflOtce6zyJL3Ryql+Neipzm34HcU5fTg4EteAF/NsxOzzW7sJRXp35po0w+lrN68l292FFG06XN8O1fToexbOoc30U4V0o49ZKlyXKJwoYiKhwpXFhXuHELuHMKeHCKeLJQ3G7xZKG8OEXcWYfHEn1cpUERB6XNUFHNiMmPUHEdjiQREEaVLJ4mFRZdclUhoGlZIjWGKsrpy/LnXpiXtDiTNSvEVbt/EmE//GD8vUQFKJYsIbpS4iCJE0Zle4irKZAalM0Siu8tkkpif/oHLKFAxYZz+rnoXuc2Uqt0rGXyLxn1nO6UdPQYfWcU91kdXVrqXnHadq/jv3L2LPfefSk+1na0nP07PAbUviZvt87ClhhVR9paWs+bv5zAx8gkF426h55HT6/QMEXc2/gqz60NCARqORHnsH7cwu/CfbOx8PIeee2/S/rcq+GtWTAtfeJMzvriCoL8d7S95GbIOShrOSWw39uJKWxM1zOIrD0XIX7ed/HU7+Ozr7xi4ZzET3Ss50/U5HUXPk4zg4gdfZ/Z6OrDH05ftrmwiSghFQSJBvJFSfJFS/KEisqNb8akKAlSQRQVZBHFJevJmVAlRRylX9eupfJ9kb0cSwixjIGAVX6PSufdgvj//I3JaH6R/Xh85tV9msTQ6Hapxd/ljk82rFvx7iorY+PfTyYus59tj/0HfkcfV6V4+j4tSCSRdA7S0IsTHd5/Pj4Pv8c2wa+h93KVJYkhOxJuDhwhEguDxx92jUcUjD/yN87bPZXP7I+j+00eqjAqtDpff7PCeRPE99sYHTF5xCV6vl1YXv4y0rjroJhmtnKM6c+uv+JRS/G/9Lp5dsZk3V3/PqNAyzvO9y5/4DK8vRCi7E/Q8FvocA11H4u7Qlw4ef7XvuLp7VISjFFaEIVyGOxpGXIJLBLdLTMOTPne53IgI4nIhsdaqWCuWo8XKRfr7tsbWHiQjaVaKz+cP0KXXgMYWw2JJGx6/rrpVJEw9KC4pYf3dpzI89CnrjryVgRPOqle8FZJFbsJAlLKKMO/Nu4gTy17nq/4/p+9p19crTuVzjMA0ik8pxSMP/5OZm/7EtjbD6HrJc5WUYm24AqbqmrAU2nP5HzH+wwto4wkRuPAVpMNhSa5OTnZsVKdzcEsd+vjCkSivrNrCffnr+Wbrbs7yL+E/gVc5WL5D5XZGBl8MQ07H23Vk3azZGhARAl43Aa8bqHt6WepGs1J8Fktzw5Wtm+4iJbvibnuLi/hi3jTGBJfx2cg/MfSEn9c73gpXFu3C+6yosooQ7979c04qeZ71vc+j74xb6x2n8jqsp+x2RKOKxx+Zz/Rvrmdnq750+cWL+xRNHXFl7Xv+mI34zDtLGJF/Ph3cJXhnv4y7y7B6xRkf3BKsWx9fWTDCU8s38s/3v2HPD7v4VZsPOK/Na2RVbIe2Q+CofyJDTq9xQI0ls7CKz2LJYNxm0ero3q0AbN32PTvvn8aY8FrWjLiBoafUPCqyOgrd7ekX/BSAHYVFfHbfbE6qeIuvep5D3/PubpjF4tfzAyn7gfKcrjyz4Famb7mN7a0G0PkXL0OgTf3jzOlISLmJFH6PRBWPvPAKx638FW3cFXhmPYP30JG1x5FAlteNSMzia6sdkwye2VMa4t//K+DB/xbgLdnKde3e5eRWr+OpKIFeR8O4+6DPj1O27iwHHqv4LJYMplV7PaAlvGcLnyx+nU5vXU5ftZs14//G4ONmNzjeokAX2hS9w8oVS/G9eCk/Vl/z9eBf0feMPzW4IC/L1VMotn+1jGUP/j9mBl9n00Fj6HbpsxDrq6snHVtnsY2D8G8r4OX7bubM7XcT9ubivfANvF2qjoKtCyJCjs+s15lk8MzmwjIeXPwtjy/dQI/Qeua1e5ejVD5SFkEGnQrjLocuIxp0b0tmYBWfxZLBdOvUjp2qNYO/mEfk87vZ7urIttOeZvCwialF3L4PriLF8BeOo4gcCn48n8MmnF37dTXQtvsgQp+66fTOVZwEfDfw5/Q44+aUmgD7dsrlm2hnjv72eS4Avm83is6z/420SbqvdZ3Re/KFzTxJIVy2l7fXbOXZTzbxv7Xfcpz7E55v/V/6lq6EYDaMugDG/gLa9UrpvpbMwCo+iyWD8XvcvHvIDMZtfZgvu0xl8MxbCLSqfch+bYw4YRb5D33IQa2y6Df9z/TsUHW5tPpy7NAePPnxrxlRvpRDTriGHoMmpRznwM65/GPw1bTbcB8dR06ly6RL6jwitCZaBTys3bKXBz4s4CfezhR+8CQrw5uY5f2CewNr8agg+A6FcX+Cw8+r0zQJS9NBVENmFu8nRo0apZYtW9bYYlgslmbOn15ey4LF3wLwu1av8PPwowCoDgOQPpNgyOnQbbTtvztAiMhypdSoA3Y/q/gsFktLIxpVrN2yl/atfHRuHYAfCvTgm4QtjCwHhgOt+GxTp8ViaXG4XMKQro5RprbvrkVhF6m2WCwWS4vCKj6LxWKxtCgyqo9PRHYA36Uhqg7AzjTEcyCwsu4/mpK8TUlWaFryNiVZoWnJmy5ZeyilOqYhnjqRUYovXYjIsgPZUZoKVtb9R1OStynJCk1L3qYkKzQteZuSrE5sU6fFYrFYWhRW8VksFoulRdFcFd8/G1uAemBl3X80JXmbkqzQtORtSrJC05K3Kckap1n28VksFovFUh3N1eKzWCwWiyUpVvFZLBaLpUXRrBSfiJwgIutE5GsRua6x5XEiIt1F5F0RWSsia0Tk18Z9johsFpGV5ndSY8saQ0QKRGSVkWuZcWsnIv8Rka/M/0Zftl5E+jvSb6WI7BWRKzIpbUXkARHZLiKrHW5J01I080w+/kxEDs8AWW8TkS+MPM+JSFvj3lNEyhxpPP9AylqDvNW+exH5nUnbdSIyOQNkXeSQs0BEVhr3TEjb6sqtjMy7dUYp1Sx+gBtYD/QGfMCnwKDGlsshX2fgcHOcC3wJDALmANc0tnzVyFwAdEhwmwtcZ46vA25tbDmT5IOtQI9MSlvgaOBwYHVtaQmcBLwGCDAW+CgDZD0e8JjjWx2y9nSGy6C0TfruzTf3KeAHepkyw92Ysib43wHckEFpW125lZF5t66/5mTxjQG+Vkp9o5QKAk8AUxtZpjhKqS1KqU/McRHwOZDabpqNw1TgIXP8EHBq44mSlB8D65VS6VgBKG0opd4Hdic4V5eWU4F/K80SoK2IdD4ggpJcVqXUm0qpsDldAnQ7UPLURjVpWx1TgSeUUhVKqW+Br9FlxwGhJllFRICzgMcPlDy1UUO5lZF5t640J8XXFdjoON9EhioWEekJjAA+Mk6XmWaBBzKh6dCBAt4UkeUicrFxO1gptcUcbwUObhzRqmUGlQuOTE1bqD4tMz0vX4iu1cfoJSIrROQ9EZnQWEIlIdm7z+S0nQBsU0p95XDLmLRNKLeaat4FmpfiaxKISCvgGeAKpdRe4D6gDzAc2IJu6sgUxiulDgdOBH4pIkc7PZVu28iY+TAi4gNOAZ4yTpmctpXItLSsDhH5AxAGHjVOW4BDlVIjgKuAx0SkdWPJ56DJvHsHZ1O50pYxaZuk3IrTVPKuk+ak+DYD3R3n3YxbxiAiXnTmeVQp9SyAUmqbUiqilIoC93MAm11qQym12fzfDjyHlm1brOnC/N/eeBJW4UTgE6XUNsjstDVUl5YZmZdFZDbwE2CmKewwTYa7zPFydJ9Zv0YT0lDDu8/UtPUApwOLYm6ZkrbJyi2aWN5NpDkpvo+BviLSy9T8ZwAvNrJMcUz7/QLgc6XUXx3uzvbv04DVidc2BiKSIyK5sWP04IbV6DQ93wQ7H3ihcSRMSqUac6amrYPq0vJFYJYZITcW2ONoVmoUROQE4DfAKUqpUod7RxFxm+PeQF/gm8aRch81vPsXgRki4heRXmh5lx5o+ZJwLPCFUmpTzCET0ra6cosmlHeT0tija9L5Q48o+hJdM/pDY8uTINt4dHPAZ8BK8zsJeBhYZdxfBDo3tqxG3t7o0W+fAmti6Qm0B94GvgLeAto1tqxGrhxgF9DG4ZYxaYtWyFuAELrf46fVpSV6RNy9Jh+vAkZlgKxfo/tuYnl3vgk7zeSPlcAnwMkZkrbVvnvgDyZt1wEnNrasxn0hcElC2ExI2+rKrYzMu3X92SXLLBaLxdKiaE5NnRaLxWKx1IpVfBaLxWJpUVjFZ7FYLJYWhVV8FovFYmlRWMVnsVgslhaFVXwWi8ViaVFYxWexWCyWFsX/B+yoBAPpdvMlAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABsbklEQVR4nO2dd5hURfaw39NhuifBECUKiGSGJMkFFAyIoqKCgmJA13XNurq6btBFd/3WuCrqym9ZFNMqmHXNCRVdRBBEsrqOBBFJA0zuUN8fVd3c6eme6Rkapmeo93n66Xur6tY9t27dOnUqilIKi8VisVgaM676FsBisVgslv2NVXYWi8ViafRYZWexWCyWRo9VdhaLxWJp9FhlZ7FYLJZGj1V2FovFYmn0pJ2yE5HOIqJExFPfsljqjohcJSI/ishX9XDv6SLy1AG4zzQRWVCN/3wRuXh/y2GpjIiMFpGNtfVLsQzVlmMHKo82FkTkIRHZISJPi0id9FbaKTtL7RGRmSJSZH4VIhJwnL9ZT2JNBy5XSvV3yDldRKbXkzxphSkMC2oZ/kMRKRGRNSJyXDVhzxKRz0zY+TF+3UXkFRHZagqPt0Wkh8P/AhFZIiK7RWSjiNzlLLCNHG+IyE4R+ckUQk7/Y0TkS3P9/0TkEoffGBH5WkQKRWS7iLwkIu1r8fwFyaVWw0dECkSkc5JhfSLyqEnzn0TkuhrC/8aE222u8zn8PjR5Y7eIfCUiExLE8ahR5oc73IpifiERedD49RaRxSbf7BSR90Skd0ycg0TkY3PtFhG5JuKnlLoS6AGcDvRLJl1iSbmysxbZgUcpdalSKkcplQP8P2Bu5FwpdWIk3AF+N82BFQfwfvuFNMrPzwBLgRbAH4HnRaRVgrA7gPuBO+L45QGvoguOQ4BFwCsO/yzgWqAlMAw4Fvitw/8fwM9AW2AAcDRwOYCIeIGXgP8DmgKTgb+LSKTCswo4QSmVB7QDvgEeqenB05U0yhvTgW5AJ2AMcKOIjIsXUEROAG5Cv9dOwGHArY4g1wBtlVJNgEuAp0SkbUwcI4GusXE7ypwcoA1QCjxnvH8EJqHLhZboPPisI86WwFvovNMCOBx4Jyb+rei816La1EhASpSdqYX8TkSWA8Ui4hGR4aZ2WWhqCKMd4eeLyN9EZJGpQbwiIs0TxH2hiKwWkT2mpvjrGP8JIrLMxPNd5CWLSFMRmS0im0Vkk4j8VUTcNTxHVxH5wNQ6t4k2mfMcfjtEZJA5b2dqQKPN+akistI873wR6RWTPr8VkeUisktE5oqIv/YpXXsSvJvYGtkcEfmr4/xkk6aF5h3WqiblSOdwDeFuNO/nRxG52CmXkelhEXndvPvPRaSr49oHRGSDee9LRGRUTPR+k857RFsaTgvzJpNX9ojIKhE53eE3TUQ+FZH7RGQ7uiCp6XnvMbXV70XkxBjvTia+PSLyjvmoa4WIdAcGAX9WSpUqpV4AvgYmxguvlHpPKTUPXcDE+i1SSs1WSu1QSgWA+4AeItLC+D+ilPpEKVWhlNoEPA2McETRBZinlCpTSv2ELqD6GL/mQBPgSaX5AlgN9DZxb1FKOWUKoQu1WiPaClhq0vU5867/miDs1eY9d3C4/cF84wUiMtXhPt7Eu9vkr+kOv0jT5C9FZD3wQRKiThWR9eZef4zxyxCRJ8wzrBSRwbVLhSgXAH9RSu1USq0GZgHTqgk7Wym1Uim1E/iLM6xSarlSKhg5BbxAx4i/aAX/IHBVDTJNRCumT0y8hUqpAqWX7BKqvvvrgLeVUk8rpcqVUnvMs8QSBupWyVBK7fMPKACWoRMlE2gPbAdOQivU4815KxN+PrAJ6AtkAy8ATxm/zuhE9pjz8ehahKBrkSXAIOM3FNhl4neZ+/Y0fpEaZjbQGl2D/XUNz3G4icsHtAI+Bu53+P8KXTvNAt4G7jHu3YFic60XuBH4FshwpM8idG22OboAuDSBDCOBwmp+I2t4humRtIz3boybAg53hJkD/NUcD0Rn0mGAG/1xFAC+WuSHcUAZkF1DmJ/QBWUW8JRTLiPTdvOOPehC91nH9eeia3ge4HoTl9+RBgF0TdKLtky+B7zG/0zzLlxo66MYXZsF/eEH0R+zJ5JmCZ5hmrnPr0xaXYZWMOLI59+Z/JFpzu9IENc/gH8k8DsdWB3j9hDwYA3v4WJgfg1hTgM2V+P/slNm4NfAE+adtUdb76c7/P8NXGHS40iTlzo6/A9F5+OwSbtpdShvMoAf0FaIFzgDqHDk4dHARnN8C/Ale8ue0eb9/h39nR9t3n8Ph3++yRv9gC3AaTFl0xPocqW6vBEJO8u8+/5AOdDLkUfL0GWkG/gbsDBBXOcAyxP4NTP3OcThNgn4OkH4r4DJjvOW5voWDrf/GNkUujLjcvjdADwQrxyJuc8HwPQ47oUm/cPAn2LCPwB8ZvLMa8Chca7/CLgLcNc639T2ggQPVgBc5Dj/Hbp25wzzNnCBOZ5P5Q+ot8msbmKUXYKP7xpz/H/AfXHCHGIyVqbD7Wzgw1o+12nA0hi3V9G16uUYBQDcjK7tRsK40Mp8tCN9znX43wXMTEXax5F5OlWV3UUxYapTdo+ga4nO8GuBo5O8/2IT/9U1hHsU+Jvj/HCqKrt/OfxPAtZUE99OoL8jDRY6/FzAZmBUgmuXARPM8TRgfZLPOg341nGeZZ6hjSOfOz/oy4G36vBOzyOmIARuB+bUcF21yg7oYPLp2Qn8LwI2Ai0dbr2AJegCS5n3JA7/U9AKImh+v0oQd3N0OTG8DulxlJHbed8FVFZ2m9AKbQHQ1BFutJEr2+E2D7g5wb3ux5Qx7C2bDktCxkjYDg63RcAURx59z+HXGyitQ1p0NPfxO9yOBwoShP8OGOc495rrO8eE8wInAtfF3OvbSHqSQNmhm0dDQJcEMmSbb2G8w20dWhEOAfzADODTONceCexBl++ta5NWqeyz2+A47gScaZrBCkWkEG2xtE0Q/gd04lZp4hGRE0VkoWlCLEQXepFwHdEvL5ZOJr7Njvv/H9rCS4iIHCIiz5pmz91oayNWplloi/RBpVS5cWtnngEApVTYPJ+z8/0nx3EJkFOdLClmQ81BonQCro95dx3Rz5gMQ4ApwHTRfTiJaBcjVzwZE6aZaRZebZqFC9F9RM53FY3PvI+NkWcQkfMdzbSF6PcZ99okiMqolCoxhznx/GOfoRYUoZsHnTRBf/R1QnR/3ztoa/KZOP6noa2NE5VS24ybC13TfxFdYLVEWxZ3Gv+e6H6Y89HWVx90/9H42PiVUjuAx4FXpPZ9X+2ATcqUfobYd5aH7nP6m1JqV4zfTqVUseP8B/bmjWGyd5DGLuBSqpYBdcofVH3/sX7+OqRFkfl35o/q8kZsXoocVwqvlAoopd4ExorIqcb5fuC2OOkZy3nAAqXU9/E8TdrPBJ4QkUiZXAq8pJT6QilVhu5H/IWINI25/PfoVp5spdTPNchRiVQqu9iM96RSKs/xy1ZKOTvMOzqOD0U3aWxzRih6lNALwD1oMz0PeAPdpBm5T5WOUuNejq6RRu7fRCnVJ05YJ//PPEe+0h205zruhYjkoF/4bHRhHuln/BGtJCLhxDzfphruVwURGSVVRzU5f7F9U8mgYs5L0FZIhDaO4w3A7THvLitegRj3RroAehldCLatJuhmtGURoWOigLGYNLgROAtoZvLFLhzvisr9DC5zrx9FpBO6wnIluukmD90U57w2Nr3qm5XAYSKS63Drb9xrjYg0Qyu6V5VSt8fxH4dOo1OUUl87vJqjv9WHlO5X2Q48hq6Agq40rFNKva2UCiul1gKvoy2EeHjQFdBYRV4Tm4H25juLEJt/dgInA4+JyIgYv2Yiku04P5S9/Zv/RrfedFRKNUUXyhJzfdrkD6X73Taj80OE6vLGyjhht5h3GQ8Pe8vYY4G7RY/kjCjq/4rIOTHXnI+uyFSHi71N4aBbypzpmiiNewGvqb39ikmzv6YePAWcIiIniIhbRPyi57c4C7dzRQ9HzQJuA55XSoVi4slAt6tvBYKm83+sw382cKGIHCsiLhFpLyI9lVKb0R/zvSLSxPh1FZGja5A7F13z2SV6SPQNMf4PAIuVUhejP+KZxn0eMN7I4UX3IZWj259rhdKDA3Kq+X1S2zjjsAw4x7ybceh+iwizgEtNDVdEJNt02udCdODInBqeIWLxZlQTbB763fUyeeDmWsifi26K2gp4ROQWqhaYR4jIGaamfC36fSxEWyTKXIuIXIgupNMWpdQ69Dv7s/mWIsOvX4gXPvLNoQsql7nGa/yaoLsUPlVK3RTn2mPQNeeJSqlFMXJsQ/d9XiZ6oFMeuk93uQmyFOgmevqBiB5QdHLE37yPHuZ7bIVuZlxqrLzI1JT5SSTJf9HNZFcaOSag+3Zj020+MBV4UURi/W8VkQxTcTqZvaMGc4EdSqkyc01sQZ6OPAH8SUSaGev6V+jm5URhf2nK3jzgT5GwItJTdEtapoh4ReRcdJPxR+ba7mjlOMD8QDdbvxSJXER+gVZgkfSMuB8vIgNN3myCfvc70eMXQFeaTheRASav3oy2DmOtSC/6W641+0XZKaU2ABOAP6ALlQ1oxeG835PoRP4J3UZ7dZx49hj3eeiEOQdd64r4LwIuRI8o24V+KRELK9KUsspc+zzVWxqgTedBJq7X0c01gB71iR5UcZlxug4YJCJTTQ32XPQopW3oDHCKUqqihvvVF9egZSxEFwYvRzyUUovRH8tD6HT7lsojuzoCnyZxD0U1+cs0kcwAPjT3WGi8ksnIb6Ob09ahm6DKqNq09Ap68MlOdLPKGaZpZhVwL7rA3IIejJDM8+xXRM+VnFlNkCnAYPTz3AFMUnooNiIyVUScNfnz0M1CjwCjzPEs43c6uqn5wpgWg0ON/83oJuE3JP5czTPQ38FW9HsLAL8BUEp9h+7nmwHsRn+PLwD/Mte2R7+3Peh+77CRJ0JSect8V2cAv0Tn4XPRgyqq5B2l1LtGptfEjKRGlzk70dbc0+jBYmuM3+XAbSKyBz24ZV5N8uxv4rzfWP6M7s75AZ3mdyul3jLXHup8v8b9LvR3t95c8+fIrdB9iT+j3+816MEsX5prf1ZK/RT5mWu2KaVKHbJcALxoym4neejpM7uMrF3RfYdlJu4P0PridXP/w4lf0XBTwyjvRERGjR1QTO3tKaXUv2oKa0kfRCQDPZqrn9LD1qsL+yNwo1IqqVUiRE/VWIEe9FPrJgpLw0dElgHHVtOkVt21n6MHfT2WcsEsaYGIRAbIDDSV1lphV1CxJI3Sc6961aToDDehm92WJAogIqeLXv0hMsihTm3xlsaBUmpAsopORI4WkTamGfMCdLPuW/tXQkt9ISIz0K0//6yLooODUNlJ5aW1nL/qmpAstUQp9YRSqptS6ohqgv0a3WTxHboP5rJqwtYLNr+kLT3QrQyF6D7ySaav/oBhmhfj5Y06DRyyJEYpdbVSqr1SqqbJ7Ampl2ZMi8VisVgOJAedZWexWCyWg490WcgUgJYtW6rOnTvXtxgWi8ViOYAsWbJkm1Iq0cLmKSGtlF3nzp1ZvHhxfYthsVgslgOIiPxQc6h9wzZjWiwWi6XRY5WdxdIAsQPLLJbaYZWdxdLA+GjtFq665Va2FBbXHNhisQBp1mcXj0AgwMaNGykrK6tvUSwNCL/fT4cOHfB6q9t4oWGy8oNneMh9H/97H5g4vb7FsVgaBGmv7DZu3Ehubi6dO3dGJHbxcYulKkoptm/fzsaNG+nSpUt9i5NyPGG95GrWjjotJGGxHJSkfTNmWVkZLVq0sIrOkjQiQosWLRpta0CmW/fXBeq0HK7FcnCS9soOsIrOUmsac57JcevF/YNBu4yoxZIsDULZWSyWvfhcZiRmoKT6gBaLJYpVdkkgIlx//fXR83vuuYfp06fXn0A1MH/+fD77rNb7xlZi3Lhx5OXlcfLJJ6dIKkuqcJk9jl3B0hpCWiyWCFbZJYHP5+PFF19k27ZtKY1XKUU4nPqOl1QouxtuuIEnn3wyRRJZUkpYKztPyFp2FkuyWGWXBB6Ph0suuYT77ruvit/WrVuZOHEiQ4YMYciQIXz6qd5oefr06dxzzz3RcH379qWgoICCggJ69OjB+eefT9++fdmwYQM33HADffv2JT8/n7lz5wJaYY0ePZpJkybRs2dPpk6dGnci8YwZM+jduzf9+vVjypQpFBQUMHPmTO677z4GDBjAJ598Uq2M5513HkceeSTdunVj1qxZ0XiPPfZYcnNzq02X5557jr59+9K/f3+OOuooQA8ouvDCC8nPz2fgwIF8+OGHAMyZM4fTTjuN448/ns6dO/PQQw/x97//nYEDBzJ8+HB27NgBwKxZsxgyZAj9+/dn4sSJlJRULdCHDx/OypV7d1EZPXr0QbXMnFIRZWctO4slWdJ+6oGTW19byaofd6c0zt7tmvDnU/rUGO6KK66gX79+3HjjjZXcr7nmGn7zm98wcuRI1q9fzwknnMDq1aurjeubb77h8ccfZ/jw4bzwwgssW7aMr776im3btjFkyJCo4li6dCkrV66kXbt2jBgxgk8//ZSRI0dWiuuOO+7g+++/x+fzUVhYSF5eHpdeeik5OTn89re/BeCcc85JKOPy5ctZuHAhxcXFDBw4kPHjx9OuXbuk0u62227j7bffpn379hQWFgLw8MMPIyJ8/fXXrFmzhrFjx7Ju3ToAVqxYwdKlSykrK+Pwww/nzjvvZOnSpfzmN7/hiSee4Nprr+WMM87gV7/6FQB/+tOfmD17NlddVXkLq8mTJzNv3jxuvfVWNm/ezObNmxk8eHBSMjcGJKwHprjNFASLxVIz1rJLkiZNmnD++eczY8aMSu7vvfceV155JQMGDODUU09l9+7dFBUVVRtXp06dGD58OAALFizg7LPPxu12c8ghh3D00UfzxRdfADB06FA6dOiAy+ViwIABFBQUVImrX79+TJ06laeeegqPJ37dpToZJ0yYQGZmJi1btmTMmDEsWrQo6TQZMWIE06ZNY9asWYRCoejznHvuuQD07NmTTp06RZXdmDFjyM3NpVWrVjRt2pRTTjkFgPz8/OizrVixglGjRpGfn8/TTz9dyYKLcNZZZ/H8888DMG/ePCZNmpS0zI0BiTRjWmVnsSRNg7LskrHA9ifXXnstgwYN4sILL4y6hcNhFi5ciN/vrxTW4/FU6o9zzvnKzs5O6n4+ny967Ha74w41f/311/n444957bXXuP322/n666+rhEkkI1Qdol+bIfszZ87k888/5/XXX+eII45gyZIl1YZ3Po/L5Yqeu1yu6LNNmzaNl19+mf79+zNnzhzmz59fJZ727dvTokULli9fzty5c5k58yDbNNw0Y3pVeT0LYrE0HKxlVwuaN2/OWWedxezZs6NuY8eO5cEHH4yeL1u2DNDbFX355ZcAfPnll3z//fdx4xw1ahRz584lFAqxdetWPv74Y4YOHZqUPOFwmA0bNjBmzBjuvPNOdu3aRVFREbm5uezZs6dGGQFeeeUVysrK2L59O/Pnz2fIkCFJ3Rvgu+++Y9iwYdx22220atWKDRs2MGrUKJ5++mkA1q1bx/r16+nRo0fSce7Zs4e2bdsSCASi8cRj8uTJ3HXXXezatYt+/folHX+jwFh2flUGdkFoiyUprLKrJddff32lUZkzZsxg8eLF9OvXj969e0etjIkTJ7Jjxw769OnDQw89RPfu3ePGd/rpp9OvXz/69+/PMcccw1133UWbNm2SkiUUCnHuuedGB4NcffXV5OXlccopp/DSSy9FB6gkkhF0M+iYMWMYPnw4N998c7S/btSoUZx55pm8//77dOjQgbfffhuAW265hVdffRXQIzbz8/Pp27cvv/jFL+jfvz+XX3454XCY/Px8Jk+ezJw5cypZdDXxl7/8hWHDhjFixAh69uwZdX/11Ve55ZZboueTJk3i2Wef5ayzzko67saCGMvOTRiC1rqzWJJB0mmrkMGDB6vYUXWrV6+mV69e9SRR42b69OmVBrI0Nhpr3nnnvosZu+s5fXLD/yC7Rf0KZLHsIyKyRCm1X0eZWcvOYmlgRCw7ACqqHwxlsVg0DWqAiiW1pPMqMJbEOJWdqiim8a4CarGkDmvZWSwNjMjUA4CK0j3VhLRYLBGssrNYGhhOy66ixCo7iyUZrLKzWBoYlZSdtewslqSwys5iaWC4HMouYC07iyUprLJLkpdffhkRYc2aNQnDFBQU0Ldv3/0qx7Jly3jjjTf2KY6LLrqI1q1b73dZLfsJFaJE6bmLgTI7GtNiSQar7JLkmWeeYeTIkTzzzDNx/VOxa3RkfcnqSIWymzZtGm+99dY+xWGpP1wqRBFZAITKrGVnsSSDVXZJUFRUxIIFC5g9ezbPPvts1H3+/PmMGjWKU089ld69ewNa6U2dOpVevXoxadKk6BY177//PgMHDiQ/P5+LLrqI8nK98kXnzp353e9+x6BBg3juuecq3Td2C52KigpuueUW5s6dy4ABA5g7dy7FxcVcdNFFDB06lIEDB/LKK68AekudCRMmMHr0aLp168att94ajfeoo46iefPm1T7zRx99xIABAxgwYAADBw5kz549KKUSbkd09NFHM2HCBA477DBuuukmnn76aYYOHUp+fj7fffcdAK+99hrDhg1j4MCBHHfccWzZsqXKfadMmcLrr78ePZ82bVp00WeLRlSIYtHKLlxuLTuLJRn2+zw7ERkHPAC4gX8ppe6oc2Rv3gQ/VV3oeJ9okw8nVi/SK6+8wrhx4+jevTstWrRgyZIlHHHEEYBe93LFihV06dKFgoIC1q5dy+zZsxkxYgQXXXQR//jHP7jyyiuZNm0a77//Pt27d+f888/nkUce4dprrwWgRYsW0XU0ncRuoZORkcFtt93G4sWLeeihhwD4wx/+wDHHHMOjjz5KYWEhQ4cO5bjjjgNg0aJFrFixgqysLIYMGcL48eOT3grnnnvu4eGHH2bEiBEUFRXh9/t58cUXE25H9NVXX7F69WqaN2/OYYcdxsUXX8yiRYt44IEHePDBB7n//vsZOXIkCxcuRET417/+xV133cW9995b6b6R7XvGjx9PRUUF77//Po888khSMh8suFSIkCuDspAXZZWdxZIU+9WyExE38DBwItAbOFtEeu/Pe+4PnnnmGaZMmQJoy8PZlDl06FC6dOkSPe/YsSMjRowA4Nxzz2XBggWsXbuWLl26RNfHvOCCC/j444+j10yePDnufeNtoRPLO++8wx133MGAAQMYPXo0ZWVlrF+/HoDjjz+eFi1akJmZyRlnnMGCBQuSfuYRI0Zw3XXXMWPGDAoLC/F4PNVuRzRkyBDatm2Lz+eja9eujB07Fqi8fc/GjRs54YQTyM/P5+677467fc+JJ57Ihx9+SHl5OW+++SZHHXUUmZmZSct9MOBSIXC5KcaPqrC7lVssybC/LbuhwLdKqf8BiMizwARgVZ1iq8EC2x/s2LGDDz74gK+//hoRIRQKISLcfffdQNXteuqyZU6iLX+S2UJHKcULL7xQZWeBzz//fJ+277npppsYP348b7zxBiNGjIguBJ2IZLbvueqqq7juuus49dRTmT9/ftwVXPx+P6NHj+btt99m7ty50UqGZS9CGHG5KVF+u1yYxZIk+7vPrj2wwXG+0bhFEZFLRGSxiCzeunXrfhan9jz//POcd955/PDDDxQUFLBhwwa6dOnCJ598Ejf8+vXr+e9//wvAv//9b0aOHEmPHj0oKCjg22+/BeDJJ5/k6KOPrvHe8bbQid2+54QTTuDBBx8ksqD30qVLo37vvvsuO3bsoLS0lJdffjlqcSbDd999R35+Pr/73e8YMmQIa9as2aftiAB27dpF+/b69T/++OMJw02ePJnHHnuMTz75hHHjxiUd/8GCS4W0ssOHBKxlZ7EkQ70PUFFK/VMpNVgpNbhVq1b1LU4VnnnmGU4//fRKbhMnTkw4KrNHjx48/PDD9OrVi507d3LZZZfh9/t57LHHOPPMM8nPz8flcnHppZfWeO94W+iMGTOGVatWRQeo3HzzzQQCAfr160efPn24+eabo9cPHTqUiRMn0q9fPyZOnBjtrzv77LM58sgjWbt2LR06dIjuzzdz5szo9j/3338/ffv2pV+/fni9Xk488cR92o4I9FqcZ555JkcccQQtW7aMui9evJiLL744ej527Fg++ugjjjvuODIyMpKO/2BBN2N6KMGPK1Bc3+JYLA2C/brFj4gcCUxXSp1gzn8PoJT6W7zwdouf1DFnzpxKA1kORhpr3ll663CaZGWytThAu2zh0BvitzJYLA2FxrDFzxdANxHpIiIZwBTg1f18T4ulUeNSIcLipkL8eEK2GdNiSYb9OkBFKRUUkSuBt9FTDx5VSlUdgmdJOdOmTWPatGn1LYZlP+AmhHK5qXBn4A1tqm9xLJYGwX6fZ6eUegPYpyU/lFK1GklosezP5vn6xqXCKPEQ9GSRUVFa3+JYLA2Ceh+gUhN+v5/t27c36sLLklqUUmzfvh2/31/fouwX3IRQ4iboziJDldW3OBZLgyDtdyrv0KEDGzduJB2nJVjSF7/fT4cOHepbjP2CmxABl4ewJwufKoNwGFxpX2+1WOqVtFd2Xq+30golFsvBjpsQAXET9mbjQkGwFDLiL0xgsVg0tjposTQglFK4VQjl8iARBVdh59pZLDVhlZ3F0oAIhRVuCYPLvdeas8rOYqkRq+wslgZEMKzwmAEqLp9WdnabH4ulZqyys1gaEGGlcBMGlwfx5QBQUWo3cLVYasIqO4ulAREMR5SdG09mLgBlxbvrWSqLJf2xys5iaUCEQgo3eiFor99YdiW2GdNiqQmr7CyWBoTus9PNmF5j2VWUWsvOYqkJq+wslgaE7rPTll1GllZ2wTJr2VksNWGVncXSgIiMxhSXB19WE+1WZgeoWCw1YZWdxdKACAVDuEWBy0NWtrbswmV2np3FUhNW2VksDYhgMKAPXG6yfF5KlA9VYZsxLZaasMrOYmlAhENG2bk9ZPs8FOODcmvZWSw1YZWdxdKACIeCAIjLQ1aGmxLlh4BVdhZLTVhlZ7E0IKLNmG4PPo+LUnxIoKR+hbJYGgBW2VksDYhQQCs7t9uLiFDmysQdtMrOYqkJq+wslgZERaACALdbb0VZLlbZWSzJYJWdxdKACJVrxebyZQJQ4c7EG7LKzmKpCavsLJYGRETZuc1edkF3Jt5waX2KZLE0CKyys1gaEKEKo+x8WQAE3Vn4rLKzWGrEKjuLpQERjlF2IU8WvnBZfYpksTQIrLKzWBoQ4QptxXkju5R7s/FTDuFQfYplsaQ9VtlZLA0IZSw7j18rO+XVFh52rp3FUi1W2VksDYhIn50/Uys7zEAVKuwqKhZLdVhlZ7E0IIJmNGaGUXbi07uVq3K7GLTFUh1W2VksDYjI1APx6nl2Yiy7ilK7p53FUh1W2VksDQh3eSEhXOBrqs/92rIrK95dn2JZLGmPVXYWSwMio3wHeyQXXPrTjSi7ihJr2Vks1WGVncXSgPAHdlLkzoueZ2Tq3cptM6bFUj37pOxEZLqIbBKRZeZ3ksPv9yLyrYisFZET9l1Ui8Xir9hJeUaz6Lk3U1t2gTKr7CyW6vCkII77lFL3OB1EpDcwBegDtAPeE5HuSik789ViqSMVwTCtwz9TlH1E1M2X1QSAUKmdemCxVMf+asacADyrlCpXSn0PfAsM3U/3slgOCn7avoN2bCfY7PComy/bKLtya9lZLNWRCmV3pYgsF5FHRSTSvtIe2OAIs9G4VUFELhGRxSKyeOvWrSkQx2JpnPywZikuUTTp0DvqlpWZQ1gJYTvPzmKplhqVnYi8JyIr4vwmAI8AXYEBwGbg3toKoJT6p1JqsFJqcKtWrWp7ucVy0FDyzccAtO17VNQty++hBB+q3DZjWizVUWOfnVLquGQiEpFZwH/M6Sago8O7g3GzWCx1IBRWtN/0Jhu8XejY/NCoe3aGh2L8drkwi6UG9nU0ZlvH6enACnP8KjBFRHwi0gXoBizal3tZLAczn33wKn3VN+zpNbmSe6bXTbHyIXYhaIulWvZ1NOZdIjIAUEAB8GsApdRKEZkHrAKCwBV2JKbFUjc2//QjXRbcwFZXK3qOv7qSn8sllEkm7qC17CyW6tgnZaeUOq8av9uB2/clfovlYKdg+QIyXrqIQ9Q2Nk94EZfZx85JufjJDVrLzmKpDruCisWShqhwmC/m3Um7FybgUiG+Gf8ch/YfHTdsuTsTT7D0wAposTQwUjGp3GKxpJBdhTv47l/TGFL0EUszh9Hxosfp3bptwvAVrky8oR37TZ5QKMzqFUvYsfJ9Mn5cTG7pRvJC20GEIk9zipp0xd/jOLoeOQF/bvP9JofFsi9YZWexpBFrl31K1iu/pF94C//tejXDpk7H5XZXe03QnUVGILWWnVKK1Su+ZPMnT9Lt5zfpy08AbJNmbPMdypac/oTCiszyrXTdNp+87f8h8On1rM4djKvPaXQdNRlPTouk7xcKhdmxbQs7t2xgz7YNVOz8kXBFMQRKUcFy3ITB40M8PsTjx+3LxO3LwuPPxePPxuvPxpeZiz9b/zIzc/D4skAkpeliabhYZWexpAEqHObTefcyZPWd7JZcvjvpWY4cltySsiFPJr7y1Ci7sooAX7w7j5xlsxgYWEpPJXyTNYDlPS6l4xHjaNmhJy1jFEhZeQVLvviAPcte5vBt79Hh898T/PxPrMocQGnLftDiMDKymhLETbh8D2VFu1C7fiSj+Eeyyn4iL/AzrdQOWkmAVM60DSmhmEx2uppTeNR0+o85M4WxWxoajUrZlZUUsenbrygr3kOgrIhweTGqogQVKCUcChIOhwiFwghhXCgEhQAioiuA4kIQRAREENA1Q+1pDl3R2qIYd0T2HmsfEEFFJYucR+5INM4IypyrvRdVQ/WBkomiLrdxyqZiPCN+KsYh3n1UzEHV88TXxsYbm16qalDHuUoYNvaaOskUe23MfeK/W+3YYtOHjCx+n5VZg+l40ZP0aNUuXuC4hDzZ+FRZ0uHjUREI8dlrj3Lo8vsZxUa2SXOWdruK7if8mh4tO1Z7rd+XwREjx8HIcZRVBPns8/mULH2Bw3YuoNv6J/BuqDoQO6hcbHO1pNDbip+b9OXHnLZIblu8zdqR06IjTVq3x5+dhy8zkwxfNmFcVJSXEigrpaK8hLLSYspLiwiUFlFRWkSgrJhQuf7mwxUlqIoSXIFi3IFiWm9bSP+PLmbhqrfoPeVvNGnRutbpo8Jhdm77ie2bCyjetoFASSHBkt2Ey3bjDhSDCoEKo1QYUUrnF3Hp8sLlBnHhEhfK5UbEhbi0u4gbcbkQcYPLhcvlQlxuEDcuE8blcqFwocSNEkHJXks/fn6v9KHGDSeoSt9wcuVOVYL+5gw/9vS6XXyAaVTKbvP3K+n64kk1B7RY0oyQEj7vchlDz79dF3a1IOzNIoMAhALg9tbu2rBiwTvP0/rzvzFafcdGz6GsG/Z3uo05l5YeX63iAvBnePjFqONglF6LYndxMVu2rKd4zy7cBPFm5tIsrwW5LdrQxu2hTZLxuoFMTy6Z2bm1lqmspIjPH7uGIT+/QMmM11nUciy+HsfTvEs/mjY7hBAQKCtm946fKdr6AxU7NhAu3Ii7aDNZpT/RNPAzLcPbaC4B4vVIhpUQxAUIYUeFVlC4TMXahcIlddQoacznqhdYZXfgadWxO18e+RAZmTlkZObg8efg8Wfj8WXj9Xrxejy4PW5c4iYcyZhKEVagVJhwOIxSilA4rOs85lwpXQdSYYVS4eg5KkxYKQgrwkoZg0+ZapLO2BI91u7aXlQxVSllwhmS6GaoKUhyXRU1B4rEIzHn8a6WyEce41HpmohVHBNJ7LXxJEscf0ycleKpHGGV+OM8z97/mp+HBHLHylQ53ao+ndvfhGG5yRb9lVFeMx2hohgy85K+bvXatWx/8TqOKl/AFldr1g67i+7H/xJxp65YaJKdTZPDeqUsvrrgz8ph2BWz+XbFJex69276bnuLrO2vwGeVwzntvaBysVWaU+htzZacnmzMbos0bU9Gs45kt+xAVtMWZOU2I7tJHr7MJmTU8MGFw4pAOEwoFNK/cJBQMEQoHEKFQgRDIdP6pMOEQ0HCKkwoGEKFQ6Z8COMyFqQuU6rmT2d+U1Xy5t6A2i0mJ9ahe/MQT1btL6onGpWyy2nSjEEnJJz6Z7E0Tnx6TzvKdyel7HaXlPLJ03dw1Mb/4zAJsqrn1fSa+EcO8fr3r5z1zOF9h0Hf5ykrKWLlis8p2byWYPEOXCIobxa+nDyyWnYir20XWrTuQFuvl8RjYGuHyyW4XG68ntpZ7ZbU0aiUncVyMBL261GPwaJtePIOrTbsZ5+8S7P3b2Q8/+PbpsM45OyH6N22+4EQM23wZ+XQZ+ixwLH1LYrlAGKVncXSwFFZWtmV79qKp0P8MFu2bmf5UzdwTOGLFLqa8cOYhzl81FQ7NN9y0GCVncXSwPHn6d6mop0/EbuYWCAY4uPXHqfXsts5Xraxsv0kuk+9hxbZzapGZLE0Yqyys1gaOM1a6X2RS7ZtjLqFw4rPP3mL7I9u49jwKjZ6O/HThH/RJ39MfYlpsdQrVtlZLA2cdm3asFG1hB+/ZPuO7az8cB7NVj3BkaFV7JSmrDniVnqceDniyahvUS2WesMqO4ulgdO2qZ//ZAzmlJ/fIvBAN46SED+5DuHrvjfR66TLaZbVtL5FtFjqHavsLJYGjojQ+7y/8+F/WpGd4eGQQSfRacCxtKnl5HSLpTFjlZ3F0gjoemh7ul7+UH2LYbGkLXY/O4vFYrE0eqyys1gsFkujR2JXgq9PRGQr8EMKomoJbEtBPAcCK+v+oyHJ25BkhYYlb0OSFRqWvKmStZNSKpU7PFUhrZRdqhCRxUqpwfUtRzJYWfcfDUnehiQrNCx5G5Ks0LDkbUiy2mZMi8VisTR6rLKzWCwWS6OnsSq7f9a3ALXAyrr/aEjyNiRZoWHJ25BkhYYlb4ORtVH22VksFovF4qSxWnYWi8VisUSxys5isVgsjZ5GpexEZJyIrBWRb0XkpvqWx4mIdBSRD0VklYisFJFrjPt0EdkkIsvM76T6ljWCiBSIyNdGrsXGrbmIvCsi35j/et8YTUR6ONJvmYjsFpFr0yltReRREflZRFY43OKmpWhmmHy8XEQGpYGsd4vIGiPPSyKSZ9w7i0ipI41nHkhZq5E34bsXkd+btF0rIiekgaxzHXIWiMgy454OaZuo3ErLvFstSqlG8QPcwHfAYUAG8BXQu77lcsjXFhhkjnOBdUBvYDrw2/qWL4HMBUDLGLe7gJvM8U3AnfUtZ5x88BPQKZ3SFjgKGASsqCktgZOANwEBhgOfp4GsYwGPOb7TIWtnZ7g0Stu47958c18BPqCLKTPc9SlrjP+9wC1plLaJyq20zLvV/RqTZTcU+FYp9T+lVAXwLDChnmWKopTarJT60hzvAVYD7etXqjoxAXjcHD8OnFZ/osTlWOA7pVQqVuJJGUqpj4EdMc6J0nIC8ITSLATyRKTtARGU+LIqpd5RSgXN6UKgw4GSpyYSpG0iJgDPKqXKlVLfA9+iy44DQnWyiogAZwHPHCh5aqKacist8251NCZl1x7Y4DjfSJoqExHpDAwEPjdOVxqT/9F0aBZ0oIB3RGSJiFxi3A5RSm02xz8Bh9SPaAmZQuXCIl3TFhKnZbrn5YvQtfcIXURkqYh8JCKj6kuoOMR79+mctqOALUqpbxxuaZO2MeVWg8u7jUnZNQhEJAd4AbhWKbUbeAToCgwANqObMdKFkUqpQcCJwBUicpTTU+l2i7SZuyIiGcCpwHPGKZ3TthLplpaJEJE/AkHgaeO0GThUKTUQuA74t4g0qS/5HDSYd+/gbCpX1NImbeOUW1EaSt5tTMpuE9DRcd7BuKUNIuJFZ5inlVIvAiiltiilQkqpMDCLA9ikUhNKqU3m/2fgJbRsWyLNEub/5/qTsAonAl8qpbZAeqetIVFapmVeFpFpwMnAVFPAYZoDt5vjJeg+sO71JqShmnefrmnrAc4A5kbc0iVt45VbNLC8C41L2X0BdBORLqaGPwV4tZ5limLa42cDq5VSf3e4O9uzTwdWxF5bH4hItojkRo7RAxRWoNP0AhPsAuCV+pEwLpVqxumatg4SpeWrwPlmZNtwYJejyaheEJFxwI3AqUqpEod7KxFxm+PDgG7A/+pHyr1U8+5fBaaIiE9EuqDlXXSg5YvDccAapdTGiEM6pG2icosGlHej1PcImVT+0COB1qFrQH+sb3liZBuJNvWXA8vM7yTgSeBr4/4q0La+ZTXyHoYetfYVsDKSnkAL4H3gG+A9oHl9y2rkyga2A00dbmmTtmglvBkIoPsxfpkoLdEj2R42+fhrYHAayPotui8mkndnmrATTf5YBnwJnJImaZvw3QN/NGm7FjixvmU17nOAS2PCpkPaJiq30jLvVvezy4VZLBaLpdHTmJoxLRaLxWKJi1V2FovFYmn0WGVnsVgslkaPVXYWi8ViafRYZWexWCyWRo9VdhaLxWJp9FhlZ7FYLJZGj1V2FovFYmn0WGVnsVgslkaPVXYWi8ViafRYZWexWCyWRo9VdhaLxWJp9KSdshORziKizP5OlgaKiFwlIj+KyFf1cO/pIvLUAbjPNBFZUI3/fBG5eH/LYamMiIwWkY219UuxDNWWYwcqjzYWROQhEdkhIk+LSJ30VtopO0vtEZGZIlJkfhUiEnCcv1lPYk0HLldK9XfIOV1EpteTPGmFKQwLahn+QxEpEZE1InJcNWHPEpHPTNj5MX7dReQVEdlqCo+3RaSHw/8CEVkiIrtFZKOI3OUssI0cb4jIThH5yRRCTv9jRORLc/3/ROQSh98YEflaRApFZLuIvCQi7Wvx/AXJpVbDR0QKRKRzkmF9IvKoSfOfROS6GsL/xoTbba7zOfw+NHljt4h8JSITEsTxqFHmhzvcimJ+IRF50Pj1FpHFJt/sFJH3RKR3TJyDRORjc+0WEbkm4qeUuhLogd6bsF8y6RJLypWdtcgOPEqpS5VSOUqpHOD/AXMj50qpEyPhDvC7aU76bZZaa9IoPz8DLEXvI/ZH4HkRaZUg7A7gfuCOOH556P3degCHoDcudW7AmwVcC7QEhgHHAr91+P8DvSt1W2AAcDRwOUR3tH4J+D+gKTAZ+LuIRCo8q4ATlFJ5QDv0XmiP1PTg6Uoa5Y3p6I1dOwFjgBtFb7ZbBRE5AbgJ/V47ofetvNUR5Br03n9NgEuAp6TyRriIyEiga2zcjjInB2gDlALPGe8fgUnocqElOg8+64izJfAWOu+0AA4H3omJfys677WoNjUSkBJlZ2ohvxOR5UCxiHhEZLipXRaaGsJoR/j5IvI3EVlkahCviEjzBHFfKCKrRWSPqSn+OsZ/gogsM/F8F3nJItJURGaLyGYR2SQifxWz6281z9FVRD4wtc5tok3mPIffDhEZZM7bmRrQaHN+qoisNM87X0R6xaTPb0VkuYjsEpG5IuKvfUrXngTvJrZGNkdE/uo4P9mkaaF5h7WqSTnSOVxDuBvN+/lRRC52ymVkelhEXjfv/nMR6eq49gER2WDe+xIRGRUTvd+k8x7RlobTwrzJ5JU9IrJKRE53+E0TkU9F5D4R2Y4uSGp63ntMbfV7ETkxxruTiW+PiLxjPupaISLdgUHAn5VSpUqpF9AbY06MF14p9Z5Sah66gIn1W6SUmq2U2qGUCgD3AT1EpIXxf0Qp9YlSqkIptQl4GhjhiKILME8pVaaU+gldQPUxfs2BJsCTSvMFsBrobeLeopRyyhRCF2q1RrQVsNSk63PmXf81QdirzXvu4HD7g/nGC0RkqsN9vIl3t8lf0x1+kabJX4rIeuCDJESdKiLrzb3+GOOXISJPmGdYKSKDa5cKUS4A/qKU2qmUWg3MAqZVE3a2UmqlUmon8BdnWKXUcqVUMHIKeIGOEX/RCv5B4KoaZJqIVkyfmHgLlVIFSm+gKlR999cBbyulnlZKlSul9phniSUM1K2SkaLdbAvQO9h2BDKB9uhdo09CK9TjzXkrE34+sAnoi95h+gXgKePXGZ3IHnM+Hl2LEHQtsgQYZPyGArtM/C5z357GL1LDzAZao2uwv67hOQ43cfmAVsDHwP0O/1+ha6dZwNvAPca9O1BsrvUCN6J3ds5wpM8idG22OboAuDSBDCOBwmp+I2t4humRtIz3boybAg53hJkD/NUcD0Rn0mGAG/1xFAC+WuSHcUAZkF1DmJ/QBWUW8JRTLiPTdvOOPehC91nH9eeia3ge4HoTl9+RBgF0TdKLtky+B7zG/0zzLlxo66MYs5M1+sMPoj9mTyTNEjzDNHOfX5m0ugytYCKbIs9H79jcHf1dzAfuSBDXP4B/JPA7HVgd4/YQ8GAN7+FiYH4NYU4DNlfj/7JTZuDXwBPmnbVHW++nO/z/DVxh0uNIk5c6OvwPRefjsEm7aXUobzKAH9BWiBc4A6hw5OHRwEZzfAt6l+9WDr8g8Hf0d360ef89HP75Jm/0A7YAp8WUTU+gy5Xq8kYk7Czz7vsD5UAvRx4tQ5eRbuBvwMIEcZ0DLE/g18zc5xCH2yTg6wThvwImO85bmutbONz+Y2RT6MqMy+F3A/BAvHIk5j4fANPjuBea9A8Df4oJ/wDwmckzrwGHxrn+I+AuwF3rfFPbCxI8WAFwkeP8d+janTPM28AF5ng+lT+g3iazuolRdgk+vmvM8f8B98UJc4jJWJkOt7OBD2v5XKcBS2PcXkXXqpdjFABwM7q2GwnjQivz0Y70OdfhfxcwMxVpH0fm6VRVdhfFhKlO2T2CriU6w68Fjk7y/otN/FfXEO5R4G+O88Opquz+5fA/CVhTTXw7gf6ONFjo8HMBm4FRCa5dBkwwx9OA9Uk+6zTgW8d5lnmGNo587vygLwfeqsM7PY+YghC4HZhTw3XVKjugg8mnZyfwvwjYCLR0uPUClqALLGXekzj8T0EriKD5/SpB3M3R5cTwOqTHUUZu530XUFnZbUIrtAVAU0e40UaubIfbPODmBPe6H1PGsLdsOiwJGSNhOzjcFgFTHHn0PYdfb6C0DmnR0dzH73A7HihIEP47YJzj3Guu7xwTzgucCFwXc69vI+lJAmWHbh4NAV0SyJBtvoXxDrd1aEU4BPADM4BP41x7JLAHXb63rk1apbLPboPjuBNwpmkGKxSRQrTF0jZB+B/QiVuliUdEThSRhaYJsRBd6EXCdUS/vFg6mfg2O+7/f2gLLyEicoiIPGuaPXejrY1YmWahLdIHlVLlxq2deQYAlFJh83zOzvefHMclQE51sqSYDTUHidIJuD7m3XVEP2MyDAGmANNF9+Ekol2MXPFkTJhmpll4tWkWLkT3ETnfVTQ+8z42Rp5BRM53NNMWot9n3GuTICqjUqrEHObE8499hlpQhG4edNIE/dHXCdH9fe+grcln4vifhrY2TlRKbTNuLnRN/0V0gdUSbVncafx7ovthzkdbX33Q/UfjY+NXSu0AHgdekdr3fbUDNilT+hli31keus/pb0qpXTF+O5VSxY7zH9ibN4bJ3kEau4BLqVoG1Cl/UPX9x/r565AWRebfmT+qyxuxeSlyXCm8UiqglHoTGCsipxrn+4Hb4qRnLOcBC5RS38fzNGk/E3hCRCJlcinwklLqC6VUGbof8Rci0jTm8t+jW3mylVI/1yBHJVKp7GIz3pNKqTzHL1sp5eww7+g4PhTdpLHNGaHoUUIvAPegzfQ84A10k2bkPlU6So17ObpGGrl/E6VUnzhhnfw/8xz5SnfQnuu4FyKSg37hs9GFeaSf8Ue0koiEE/N8m2q4XxVEZJRUHdXk/MX2TSWDijkvQVshEdo4jjcAt8e8u6x4BWLcG+kC6GV0Idi2mqCb0ZZFhI6JAsZi0uBG4CygmckXu3C8Kyr3M7jMvX4UkU7oCsuV6KabPHRTnPPa2PSqb1YCh4lIrsOtv3GvNSLSDK3oXlVK3R7Hfxw6jU5RSn3t8GqO/lYfUrpfZTvwGLoCCrrSsE4p9bZSKqyUWgu8jrYQ4uFBV0BjFXlNbAbam+8sQmz+2QmcDDwmIiNi/JqJSLbj/FD29m/+G91601Ep1RRdKEvM9WmTP5Tud9uMzg8RqssbK+OE3WLeZTw87C1jjwXuFj2SM6Ko/ysi58Rccz66IlMdLvY2hYNuKXOma6I07gW8pvb2KybN/pp68BRwioicICJuEfGLnt/iLNzOFT0cNQu4DXheKRWKiScD3a6+FQiazv+xDv/ZwIUicqyIuESkvYj0VEptRn/M94pIE+PXVUSOrkHuXHTNZ5foIdE3xPg/ACxWSl2M/ohnGvd5wHgjhxfdh1SObn+uFUoPDsip5vdJbeOMwzLgHPNuxqH7LSLMAi41NVwRkWzTaZ8L0YEjc2p4hojFm1FNsHnod9fL5IGbayF/LropaivgEZFbqFpgHiEiZ5ia8rXo97EQbZEocy0iciG6kE5blFLr0O/sz+Zbigy/fiFe+Mg3hy6oXOYar/Frgu5S+FQpdVOca49B15wnKqUWxcixDd33eZnogU556D7d5SbIUqCb6OkHInpA0ckRf/M+epjvsRW6mXGpsfIiU1PmJ5Ek/0U3k11p5JiA7tuNTbf5wFTgRRGJ9b9VRDJMxelk9o4azAV2KKXKzDWxBXk68gTwJxFpZqzrX6GblxOF/aUpe/OAP0XCikhP0S1pmSLiFZFz0U3GH5lru6OV4wDzA91s/VIkchH5BVqBRdIz4n68iAw0ebMJ+t3vRI9fAF1pOl1EBpi8ejPaOoy1Ir3ob7nW7Bdlp5TaAEwA/oAuVDagFYfzfk+iE/kndBvt1XHi2WPc56ET5hx0rSvivwi4ED2ibBf6pUQsrEhTyipz7fNUb2mANp0HmbheRzfXAHrUJ3pQxWXG6TpgkIhMNTXYc9GjlLahM8ApSqmKGu5XX1yDlrEQXRi8HPFQSi1GfywPodPtWyqP7OoIfJrEPRTV5C/TRDID+NDcY6HxSiYjv41uTluHboIqo2rT0ivowSc70c0qZ5immVXAvegCcwt6MEIyz7NfET1XcmY1QaYAg9HPcwcwSemh2IjIVBFx1uTPQzcLPQKMMsezjN/p6KbmC2NaDA41/jejm4TfkPhzNc9Afwdb0e8tAPwGQCn1HbqfbwawG/09vgD8y1zbHv3e9qD7vcNGnghJ5S3zXZ0B/BKdh89FD6qokneUUu8amV4TM5IaXebsRFtzT6MHi60xfpcDt4nIHvTglnk1ybO/ifN+Y/kzujvnB3Sa362Uestce6jz/Rr3u9Df3XpzzZ8jt0L3Jf6Mfr/XoAezfGmu/Vkp9VPkZ67ZppQqdchyAfCiKbud5KGnz+wysnZF9x2Wmbg/QOuL1839Dyd+RcNNDaO8ExEZNXZAMbW3p5RS/6oprCV9EJEM9GiufkoPW68u7I/AjUqppFaJED1VYwV60E+tmygsDR8RWQYcW02TWnXXfo4e9PVYygWzpAUiEhkgM9BUWmuFXUHFkjRKz73qVZOiM9yEbnZbkiiAiJwuevWHyCCHOrXFWxoHSqkBySo6ETlaRNqYZswL0M26b+1fCS31hYjMQLf+/LMuig4OQmUnlZfWcv6qa0Ky1BKl1BNKqW5KqSOqCfZrdJPFd+g+mMuqCVsv2PyStvRAtzIUovvIJ5m++gOGaV6MlzfqNHDIkhil1NVKqfZKqZomsyekXpoxLRaLxWI5kBx0lp3FYrFYDj7SZSFTAFq2bKk6d+5c32JYLBaL5QCyZMmSbUqpRAubp4S0UnadO3dm8eLF9S2GxWKxWA4gIvJDzaH2DduMabFYLJZGj1V2FkuaUVhSwfurt9S3GBZLo8IqO4slzXjluUc5dm53Nm+u9dKqFoslAWnVZxePQCDAxo0bKSsrq29RLA0Iv99Phw4d8Hqr23ghPem7/mkAir5bCG3j7s9qsVhqSdoru40bN5Kbm0vnzp0RiV183GKpilKK7du3s3HjRrp06VLf4tSasMsHISgrLao5sMViSYq0b8YsKyujRYsWVtFZkkZEaNGiRYNtDRC3G4BgcU3bhlkslmRJe2UHWEVnqTUNOc8E3XqrtVDpznqWxGJpPDQIZWexHEyEPX4AVKm17CyWVGGVXRKICNdff330/J577mH69On1J1ANzJ8/n88+q/W+sVGWLVvGkUceSZ8+fejXrx9z585NoXSWmnCbTZqlzCo7iyVVWGWXBD6fjxdffJFt27alNF6lFOFwnfYhrJZ9VXZZWVk88cQTrFy5krfeeotrr72WwsLC1AloqR4VAsBdEbv/pcViqStW2SWBx+Phkksu4b777qvit3XrViZOnMiQIUMYMmQIn36qN1qePn0699xzTzRc3759KSgooKCggB49enD++efTt29fNmzYwA033EDfvn3Jz8+PWlHz589n9OjRTJo0iZ49ezJ16lTi7VAxY8YMevfuTb9+/ZgyZQoFBQXMnDmT++67jwEDBvDJJ59UK+N5553HkUceSbdu3Zg1S29m3b17d7p16wZAu3btaN26NVu3bq1y7+eee46+ffvSv39/jjrqKEAPKLrwwgvJz89n4MCBfPjhhwDMmTOH0047jeOPP57OnTvz0EMP8fe//52BAwcyfPhwduzYAcCsWbMYMmQI/fv3Z+LEiZSUlFS57/Dhw1m5cu8uKqNHj25Uy8yJUXaeoB2NabGkirSfeuDk1tdWsurH3SmNs3e7Jvz5lD41hrviiivo168fN954YyX3a665ht/85jeMHDmS9evXc8IJJ7B69epq4/rmm294/PHHGT58OC+88ALLli3jq6++Ytu2bQwZMiSqOJYuXcrKlStp164dI0aM4NNPP2XkyJGV4rrjjjv4/vvv8fl8FBYWkpeXx6WXXkpOTg6//e1vATjnnHMSyrh8+XIWLlxIcXExAwcOZPz48bRr1y4a/6JFi6ioqKBr165VnuO2227j7bffpn379lHL7+GHH0ZE+Prrr1mzZg1jx45l3bp1AKxYsYKlS5dSVlbG4Ycfzp133snSpUv5zW9+wxNPPMG1117LGWecwa9+9SsA/vSnPzF79myuuqryFlaTJ09m3rx53HrrrWzevJnNmzczePDgatO8IbFX2VVV9PtKeTDEnx95ioljhjOkb4+Uxr27LMBn327nhD6HpHyA0Lc/78HtctGlZXZK47UcPFjLLkmaNGnC+eefz4wZMyq5v/fee1x55ZUMGDCAU089ld27d1NUVH2NvFOnTgwfPhyABQsWcPbZZ+N2uznkkEM4+uij+eKLLwAYOnQoHTp0wOVyMWDAAAoKCqrE1a9fP6ZOncpTTz2FxxO/7lKdjBMmTCAzM5OWLVsyZswYFi1aFL1u8+bNnHfeeTz22GO4XFWzyogRI5g2bRqzZs0iFApFn+fcc88FoGfPnnTq1Cmq7MaMGUNubi6tWrWiadOmnHLKKQDk5+dHn23FihWMGjWK/Px8nn766UoWXISzzjqL559/HoB58+YxadKkatO7oSFKN217Q6lXdj/vLueO7VfT84VjUh737He+pPe8kRR89XHK477hvtmUzjgSyq21a6kbDcqyS8YC259ce+21DBo0iAsvvDDqFg6HWbhwIX6/v1JYj8dTqT/OOecrOzu52qnP54seu91ugsFglTCvv/46H3/8Ma+99hq33347X3/9dZUwiWSEqkP0I+e7d+9m/Pjx3H777VHFHMvMmTP5/PPPef311zniiCNYsmRJ0s/jcrmi5y6XK/ps06ZN4+WXX6Z///7MmTOH+fPnV4mnffv2tGjRguXLlzN37lxmzmxcm4ZHLDtfOPXKLhjWTeG5KvVKY9d3izjUtZVdn/0VBhyd0rh/7/03vV0/wMYvoOuYlMZtOTiwll0taN68OWeddRazZ8+Ouo0dO5YHH3wwer5s2TJAb1f05ZdfAvDll1/y/fffx41z1KhRzJ07l1AoxNatW/n4448ZOnRoUvKEw2E2bNjAmDFjuPPOO9m1axdFRUXk5uayZ8/ewQ2JZAR45ZVXKCsrY/v27cyfP58hQ4ZQUVHB6aefzvnnn1+t1fTdd98xbNgwbrvtNlq1asWGDRsYNWoUTz+tl7tat24d69evp0eP5JvL9uzZQ9u2bQkEAtF44jF58mTuuusudu3aRb9+/ZKOvyEQUXb+cGnK4w6EUj8gKoLfpeUO7YdBVwFl6uUVxSmP23JwYJVdLbn++usrjcqcMWMGixcvpl+/fvTu3TtqZUycOJEdO3bQp08fHnroIbp37x43vtNPP51+/frRv39/jjnmGO666y7atGmTlCyhUIhzzz03Ohjk6quvJi8vj1NOOYWXXnopOkAlkYygm0HHjBnD8OHDufnmm2nXrh3z5s3j448/Zs6cOQwYMIABAwZEFeQtt9zCq6++CsANN9xAfn4+ffv25Re/+AX9+/fn8ssvJxwOk5+fz+TJk5kzZ04li64m/vKXvzBs2DBGjBhBz549o+6vvvoqt9xyS/R80qRJPPvss5x11llJx91QiDRj+lXqLbtAMJTyOCM0dZcDEA6l/h5BzKoyZants7ccPEi8EX71xeDBg1XsqLrVq1fTq1evepKocTN9+vRKA1kaGw017yz727EMKF9MEBeeP++AFA72WF7wM/3m6JG2TE/tPL7H/vE3Lvz5Drbl9qLl9QtTGvdbNx/HOPcXlBx3B1kjL0tp3Jb6R0SWKKX26ygza9lZLGmGKzIakzAEU7u+ZyhYntL4nPhcuuLsCqa++bUMvXtFoMRadpa60aAGqFhSSzqvAnMwE2nGBAiV7cHtzUxZ3MFAYO9JKAju1BUBLvQgI3co9Qtwh029PGSXULPUEWvZWSxphrC3z6ssxTsfhAMVe0/KU2wlhbSy8+wHZecxaRIqtZadpW5YZWexpBkuh2VXXpRaZedsxlQVKZ5+ENZWo1ultqlUKRVVdsoOULHUEavsLJY0w6VChJQelFKW4j6qkMOyqyhJ7dqbEjaWXbiihpC1IxRWeCPKzk49sNQRq+wsljRDCLEbvfBARYqVXTi4VxGVpVjZEVF2hCCFo7yDYYU70rRrlZ2ljlhllyQvv/wyIsKaNWsShikoKKBv3777VY5ly5bxxhtv1Pn6yCT03r1706dPHx544IEUSmdJBS4Vpki0sgumuI8q7GjGLC9ObdwRyw6AUOqsu0AoHG3GdAXscmGWumGVXZI888wzjBw5kmeeeSauf7ylvGpLKInJuPuq7DweD/feey+rVq1i4cKFPPzww6xatarO8VlSj4swJVFll1rrKxzcOxqzIsWKtJKyS6EFFgztbcZ074fFsS0HB1bZJUFRURELFixg9uzZPPvss1H3+fPnM2rUKE499VR69+4NaKU3depUevXqxaRJk6Jb1Lz//vsMHDiQ/Px8LrroIsrLdQ27c+fO/O53v2PQoEE899xzle4bu4VORUUFt9xyC3PnzmXAgAHMnTuX4uJiLrroIoYOHcrAgQN55ZVXAL2lzoQJExg9ejTdunXj1ltvBaBt27YMGjQIgNzcXHr16sWmTZuqPPNHH30UXT1l4MCB7NmzB6VUwu2Ijj76aCZMmMBhhx3GTTfdxNNPP83QoUPJz8/nu+++A+C1115j2LBhDBw4kOOOO44tW7ZUue+UKVN4/fXXo+fTpk2LLvp8sOBSIUrdOQCEy1JryajQXssu1XPWKiu71MkdCIdxi1V2ln2jYc2ze/Mm+KnqQsf7RJt8OPGOaoO88sorjBs3ju7du9OiRQuWLFnCEUccAeh1L1esWEGXLl0oKChg7dq1zJ49mxEjRnDRRRfxj3/8gyuvvJJp06bx/vvv0717d84//3weeeQRrr32WgBatGgRXUfTSewWOhkZGdx2220sXryYhx56CIA//OEPHHPMMTz66KMUFhYydOhQjjvuOEBvz7NixQqysrIYMmQI48ePr7QVTkFBAUuXLmXYsGFV7n3PPffw8MMPM2LECIqKivD7/bz44osJtyP66quvWL16Nc2bN+ewww7j4osvZtGiRTzwwAM8+OCD3H///YwcOZKFCxciIvzrX//irrvu4t57761038j2PePHj6eiooL333+fRx55JMmX2ThwEabcnQNBCJfvP8suWJpaRSpq/1t2+2MnCMvBgbXskuCZZ55hypQpgLY8nE2ZQ4cOpUuXLtHzjh07MmLECADOPfdcFixYwNq1a+nSpUt0fcwLLriAjz/euw3K5MmT49433hY6sbzzzjvccccdDBgwgNGjR1NWVsb69esBOP7442nRogWZmZmcccYZLFiwIHpdUVEREydO5P7776dJkyZx733dddcxY8YMCgsL8Xg81W5HNGTIENq2bYvP56Nr166MHTsWqLx9z8aNGznhhBPIz8/n7rvvjrt9z4knnsiHH35IeXk5b775JkcddRSZmambVN0QcKkweHyUKy+kWNkpxwCVYFmKR2M6lJ1K4VY8wZDCYyase0OpX53FcnDQsCy7Giyw/cGOHTv44IMP+PrrrxERQqEQIsLdd98NVN2uJ9GWOdWRaMufZLbQUUrxwgsvVNlZ4PPPP08oSyAQYOLEiUydOpUzzjgj7r1vuukmxo8fzxtvvMGIESN4++23q32GZLbvueqqq7juuus49dRTmT9/ftwVXPx+P6NHj+btt99m7ty50UrGwYSLEC6PlyL8KR996FR24fLUxu1yNGMGSneTkaJ4A+GwXjoN8KoKCAXA7U1R7JaDhf1u2YnIOBFZKyLfishN+/t+qeb555/nvPPO44cffqCgoIANGzbQpUsXPvnkk7jh169fz3//+18A/v3vfzNy5Eh69OhBQUEB3377LQBPPvkkRx9d835f8bbQid2+54QTTuDBBx8ksqD30qVLo37vvvsuO3bsoLS0lJdffpkRI0aglOKXv/wlvXr14rrrrqv23vn5+fzud79jyJAhrFmzZp+2IwLYtWsX7du3B+Dxxx9PGG7y5Mk89thjfPLJJ4wbNy7p+BsLLsK4XB6K8ad89GE4vLcZM5XWF+zdmgigPIXTGrRl52jZsNMPLHVgvyo7EXEDDwMnAr2Bs0Wk9/68Z6p55plnOP300yu5TZw4MeGozB49evDwww/Tq1cvdu7cyWWXXYbf7+exxx7jzDPPJD8/H5fLxaWXXlrjveNtoTNmzBhWrVoVHaBy8803EwgE6NevH3369OHmm2+OXj906FAmTpxIv379mDhxIoMHD+bTTz/lySef5IMPPogOQImM7pw5c2Z0+5/777+fvn370q9fP7xeLyeeeOI+bUcEei3OM888kyOOOIKWLVtG3RcvXszFF18cPR87diwfffQRxx13HBkZqbIPGg5uQuByUUYmEkhxwe7osyPFitTlaMZM5fxAPfVg/wx+sRw87NctfkTkSGC6UuoEc/57AKXU3+KFt1v8pI45c+ZUGshyMNJQ8862Px/KD61G492+hsysHLrd8EHK4n7j6Qc46Ru9L+CqluPofeXclMX9+m0TODb8KX4C/DTq/9Hm2CtSEu+yDYW0mDWY1rITnwThikXQKvkNgS3pT2PY4qc9sMFxvtG4RRGRS0RksYgs3rp1634Wx2JJf1yEUeKmzJWFN5jiPruQtux2k4UrxVajWwUpRk+ZSOX8wFA4jEdC7DGryljLzlIX6n00plLqn0qpwUqpwa1atapvcRoN06ZNO6ituoaMmzC43ATcWSkfai9mZZMiclI+Z01UiBK3VkihFM4PDJjRmEUurUhtn52lLuxvZbcJ6Og472DcakU67aZuaRg05DzjJowSDwFPNr5waofaKzNissiViyfFitSjgoRdXoqVj1DKpx6EKbXKzrIP7G9l9wXQTUS6iEgGMAV4tTYR+P1+tm/f3qALL8uBRSnF9u3b8fv99S1KnXATQrnchDzZ+FSKJ1Eby67EnZPyOWsuFURcHkrwp3R3Aj31IESZx8wHtcrOUgf26zw7pVRQRK4E3gbcwKNKqaoziauhQ4cObNy4EdufZ6kNfr+fDh061LcYtUYpZZSdh5A3m0xVqncQSGK+ZjKI6bMrczcho2JzSuKM4CYEbi/Fyo+k2LLzEqTC2wTKdX9gw5ogbEkH9nueUUq9AdR55WKv11tphRKLpTETVugJ1OJGeX36OFgG3hStImPm2ZV5m+IrT92O4kop3CqEmPmBWSkc/BIMhXETJpihLbtA6W6r7Cy1pt4HqFgslr2EQiFcosDlBl+udkyhleQyyi7ozSUzhU2kobDCIyHE7aUEf0pHegZCYbwSQvma6vMU7wRhOTiwys5iSSNCka2iXB7EZ4bxp3ANSwlXUIGHkDeHDIIQTM2+c8GwXuVEuTyUuzJTOtIzZGT0ZPgpVRmEUrymp+XgwCo7iyWNCJk+NcSNy68tu9KiXSmLX8JBgniRDDNnLUUWWMih7CpcmSkd6Rk2FYCMjAyK8ad0WoPl4MEqO4sljQiF9lp2Hr+27MqKU6fsXOEAIXGDsRpTpTgi61cq8VDhziIjhSM9g8ayy8jwUaJ8hO2kcksdsMrOYkkjVLQZ040nSw/IKE+hspNwkKB4cfsiijQ1a1gGzfQAXB6C7kwywqmz7JRZz9Pn81GMH1K8W4Pl4MAqO4sljYg2Y7o8ZGRqZZfKRZVd4QAh3LiM1ViaImUXbcZ0e/X8wBROhg8ZZef3+SjZD9seWQ4OrLKzWNIIFdpr2fmytbJL5QAVlwoQEi/eTN0fWFGSGqsxYJQd4ibkzcabwsEvkQEq/sxMilXqtz2yHBxYZWexpBEhs5yXuDz4svRQ+1AKh9q7w0FC4sETtRpTE3copMiQIMrtA29qF2yObDib5c80e/yleFUZy0GBVXYWSxoRDu5txszKyQNI6VB7lwoQFg8ZWdqyS9WctWA4rK05txcVGemZouZGFdST3/1+PyX4U76AteXgwC5EYLGkESpkduR2ucnO8lOuvKjyFFp2KkjI7cVnLLtUbcUTDCsyCKLcGbjcqV2wObItkdvro0wyU74ThOXgwFp2FksaEZl6IG432T4PxfhSOiDDFQ4Qdnnx52hll6rdCYIhRQYBcGdEJ8OnKm4VKNcHbh8Bt1V2lrphlZ3FkkaEHfPsfB4XxWQiKZxX5lZBwuIhK1s3Y4ZTNM8uFNaLNYs7Izo/MGVTJswSZ7i9eo8/VQGRdLJYksQqO4sljVCmYBeXBxGhVDJxp3CdSbcKolxesjN9lKqMlFmNwWAAtyiUJwO3WfmlIkVNpOHIqE53BiFPlj62E8sttcQqO4sljYhMKheX7k4vkyzcwRQqO7Syy/K6KcKfMqURDuqmRnFn4DWDX8pTNIcvsgcf7gxC3tQOfrEcPFhlZ7GkESEzQMXl1squwp2JN4XKLkNVEHZn4HG7KMWPpMhqrCjXys7t9UUnw6dq8ItElZ0XZZWdpY5YZWexpBGRdSDdHi8AFa6slO4o7qOCsMsHQFkKm0gDFXp6gNvrI8P0BwZS1B+oHJadSvEcPsvBg1V2FksaEQyYYfYebdkFPdn4UrTOZCistLLz+AFSuhVPoHyvssvKigx+SbFl5/FFR3pay85SW6yys1jSiMjUA4+x7ILebPwpUnaBUBgfAcJurexSuRVPMKCVncfrI8uvdydI1dQDCe0djRlZ09MqO0ttscrOYkkjQlHLTiu7kDebTEpBqX2OuyIUxk8Fylh2AXcWGalSdhW6z86T4ScnMj8wVfPsHM2Y7qiys82YltphlZ3FkkaogO6fc2dkagdvNh7CYEY77gsVgRCZslfZVXhSZzVWsux8bopUJlKRmmZMFXl2lxeP30yGL0vdThCWgwOr7CyWNCIcUXY+PZ9MZej+r1RYMqWlWrGJUaRBbw5Z4dQ0B4YrtNxefybZGR72kIU7RcrOHTQDdDKy8JrFsStSNa3BctBglZ3Fkk6YFf09Pj3q0GUGZKRiT7vSUq0w3RlakQa9TXQTaTi8z3FHNlT1ZDbF7RKKJQtPIDXKzhMsJoQbPH4yMnMIKyFYmroNbS0HB1bZWSxpRKQZ0+PXCknMaiRlxYX7HHdZiVFIPm3ZqYxcXChIgQUmFVoZu80cuzJXdsrmB2aESih3Z4EI2f4MivATLLWWnaV2WGVnsaQRyjQH+sxAjMg6k2VF+27JRJRdRqSJ1KcVqUpB/1d0mkGGkdeVTUYwNYNIfOFiAm5t6eb4PBSRSdgqO0stscrOYkkjVIVuxszO1krDnZm6dSYDxjp0Z+VpBzPYoyIFVmN0GyKjQMs9OfjD+67slFL4w6UEPFrZZWXowS+p3PbIcnBglZ3FkkaoQAnlyovHq6ceZEQGZKSgzy5UvA0AX25LAFxG2ZUXFe5z3BKj7AKeHD3Scx/7A4vKg2RTStAou2xj2WGVnaWWWGVnsaQRKlBKuWREzzOyIutM7ruyCxZtByAzrxUA7kytSMtTYNm5AkVUkAHuyPzASH/gvll324sqyJWSqBLN9nlSOq3BcvBglZ3FkkZIoIRy8UXP/dlmXlkKmjEjyi63WWsAPKY5s6KkcJ/jzqrYzh5Ps+h5yPTd7asFtr24nNZSCLltAMj2udlDJu6AnVRuqR1W2VksaYQvsIsiyY2eZ+Zo6yuUgkWVVfF2wgiS2RyAjOw8AIL7uMmqUoomFVsp8bWOuoUztJKmfN8s0m17ymhNIe4mWtnl+DwUq0w8VtlZask+KTsRmS4im0Rkmfmd5PD7vYh8KyJrReSEfRfVYmn8ZAZ2UuLJi55nZWZRrjwpmR6QWbKJHa7mYLYP8hllF9rHOWs7SwK0YgeB7DZ7HU1/IPs40rNw62Y8EsbfvD0AmV43RWTiTdFIT8vBgycFcdynlLrH6SAivYEpQB+gHfCeiHRXSoVScD+LpdGSEyxka06Pvec+D8X4U7LOZJOyTRT62tPSnGdm5xJULsL7qJA2bd9Dd9nKprxDo25ilJ0q24XsQ9xFP64BIOeQrjpeEcrd2XpNz3AYXLZxypIc+yunTACeVUqVK6W+B74Fhu6ne1ksjQKlFE3Cuwj5m0fd/F4XxWQi+zjQo7gswKGh9ZQ36RJ1y/Z59cjGfVR2G7/9Gp8EyTm0X9TN5dfNr/u60olsXa3/D+kddatwZyMoSNFefJaDg1QouytFZLmIPCoikR7q9sAGR5iNxq0KInKJiCwWkcVbt25NgTgWS8OkaNcOmkoxody9n4qIUIYf1z6uRrJu7QqaSxGuDkdE3bJ9bvaoLGQf+9VK//dfAFoevrc+u3cNy7oru2AoTKudyyjy5EGTDnvdvakZ/GI5uKhR2YnIeyKyIs5vAvAI0BUYAGwG7q2tAEqpfyqlBiulBrdq1aq2l1ssjYYtBSsByDikWyX3UlcW7sC+7U6wfel/ADh00PFRt8icNdc+9AcqpWj648fsdLfAdUivqHtk4npgH6Y1LPthO8P4msI2Iyo1V4assrPUgRr77JRSxyUTkYjMAv5jTjcBHR3eHYybxWJJQOFG3T/VomOvSu7lrkxyQ3W37MKhMG3Wv8omT0fat9/bHOjzuNhDFtn7sGDzl6vWMTK0iA1dJtFM9vbOZWblElJCsLSwznGv/Oh5BkshpUMmVXLfq+zsIBVL8uzraMy2jtPTgRXm+FVgioj4RKQL0A1YtC/3slgaOxWbVxFSQpsulZVdRWRARh1Z8P5L9A2vY2efaZXcRYQSVxbeOg7jV0rx41v34pMgHcZeU8kvy+/dpzUsN2wvot/3s9nlbUVm31Mqe5oJ5vs6rcFycLGvozHvEpEBgAIKgF8DKKVWisg8YBUQBK6wIzEtlurJ2bqMAs9hdM3MqeQedGfiK6+bsivcvZtDP/sTP7ta0fuky6r4l7lyyAj+VKe4P/jgbcbtfp5v2p9Kt3a9K/nl+NzsIQtvHQa/hMOK+U/8lfNc31B4zIPRVVkiiC8yh882Y1qSZ5+UnVLqvGr8bgdu35f4LZaDhYqKAF3LV7Oy9Xi6xvgFvdn4ykprHWcoGOCbR6YwhB/5fuxTtDZ75Dkpd2fjC9Xeslu38ksGfPwrCt0tOOyc+6r4Z2V42KOyaF4H6+v1Z//B1MKZbDpkNO2HVy1iJDNi2VllZ0keO0nFYkkDvlv5OdlSRkbn4VX8wt4cMlUpKJV0fCocZuk/pjGk9FO+7PU7ugw/JW646ILNtYh7U8E3NHnuTFwC7gtewZ3TskqYHJ+H3dR+pOebLz/NCWtv5ofsfNpd/G+QqrP0PH5r2Vlqj1V2FksasH3VRwB07D+mil/Ym4OHEATLk4pLKcXCWVczeMd/+LTdhQya/IeEYQOeXDwEIViWVNw//bSRwOMTyKaYXZPm0bxT77jhIlvxuGsx0vOdt1/l6KW/YYuvMx2veBXJqGqJwt4NYvd1Mrzl4MIqO4slDcja9BmbpTUtOnSr6ukzfXhJTiz/9IlbOHLzkyxqcRq/uPjv1YaNLtichOLYtm0bhf+cQJvwz2w5+Qk69z0yYdhsn4c9ZOJJcqTnhx/PZ+hnl7Lb24JDLn8DT3azhGGzMv2UKW9SE9aVUuwuCyQlg6VxY5WdxVLPhEMhupYsZUPTwXH9xSikZLb5+XjefYz8fgZLm4xh8GWzkRqW0wpnJNf/Vbh7Nxtnnk7X0PesP24mhw8eW214n8dFEVl4k5gM/+miL+jz/gWE3X6a/foNMvLaVBs+1+9lD5kEatjjLxxW3DnrCR7966XsLErOKrY0XlKxNmbaUFZSxIZ1SykvKSJQWkS4ohgCpaiKEsLhIOFQmFA4BErhQuEijIiACAJ7j8UV7SsQMYVFNFwkjOM8Ek4EFVkJ0Fyvz8WcCwpQ5jgRteg+qRZFaiKqKo+q1r+6u9YYtqZ71Sru6m9WU+qohCfaYqhrXLHXuoq3Mppiwp1Hxb3W5dfKrrR4N7lVu8eiLHjtMUasvJWVWYPJv/JZXJ6aP28V7f9KbCXtKSllzUNnMjy4nLUj/k6PUZMSho0gIpS5c/TgF6Xi9r0BLFq+io6vn4PfFcJ90ev4WnWJG85J00wvRSqTjGosO6UUs5+dy1WbbiDbU87784/j2JPPrjHu6giUl7Lhm6/Y9eM3BLb+D9m1AcoKyQjswRcuRoXDKHTZEBY3Fa5Mgp4sgu4sQt4sQp4cVEY2eLNweX24vH48Xh9urx+vz4fHq/cxVOEwSimUCuu0UyHCYQUqrPO0UqiwAnOsc5fS+Urpf4mcEzbe8XOoCHvLLGJKpXjvLMYt4G/BkcdN3IdUPXA0KmW3+ftVdHv55PoWw2KpNRXKTachJ8X1c0d2FC/eRW7cELDwnXkMWfxbvvf14PCrXsST4U/qvtFh/AmaMUvKK1j84HmMqVjImoE303PsL5OKF6DCnYM7ZPoDvZlV/JetKyDvhbNoJbsJTH2F7A59k4q3iZnDl5fA0lVKMefF15i89jeU+1tRUVFE7tJ/Ej5pCi5X8stS/7zpBwq++A9q/UJa7FrJocECDpO9M6iKVCa7XU0odWVT5soC8SCiCIcVEq6gSXAX/rJS/KqMTMrIIrl+0YbE56oXWGV34GndsRtLR84kw59FRmYuXn82rowsPP5svF4vGR4PHrcbcbkI4yIMqDCETe0oHA4TVmHC4b21KoVegQL0R6Rrb9pfoWthKEVYRe02Ry1K17CitS/jLkmYbgkqwrUmmXiSuZXUEFGst8TEWt3lNV27r/eShCe1k1P7x4SP9a/Gr8q9HeeerDzaNmsX954eM9S+PME6k4s/+g/9P72Czd5DaX/FG/jMupTJ4DKKNFS2C3eMX1lFkI8fvIRxpe+ypteV9Jzw26TjBbOGZQitSGOU3eqCTfDvM+ksmyme+G+aHV51FGoitGWXlbDp9YnX3uWU5VcQzsih2aVvsPadfzF09QzeePs/nHRi/FGpAEVFe1i36B3K1rxLm22fcVj4B1oDu8hmva87S1qfg6f9API69KBFh+40a9GanNp8qOEQqqKYQFkxZWWlBMpLKS8vo6K8jEB5GYGKckQEcQmIK9pa5BIX4nKbBqK9LU8iguAynVG6lUlcgsJlwpkWKGdrlANdDO0ti1RVz8quqmpbURtP1UpMutKolF12k2YMPG7fmioslnQjI0sru4o4u5V/tfADen5wMds8rWl52etkNm1Rq7jdmXk67uJdOIutikCI+Q9fxriil1jX5Tx6nvXXWssd9DjWsMw9JOq+dsNmSudMpB/fUjj+n7TMr912l00zvfxEJhJnpOdTb37I2CW/JsPrIeeSN5Fmnehx6nVsW/csAxdezevAMceeRGaGm8KiEtavWcKuFe/Q5MdP6FG+gkESoEJ5+Mafz+cdTqNl/xPp0mco+e7YqkAdcLkRfxMy/E3I2PfYLLWkUSk7i6UxkmEstWDMgIwvP3uHrm9PY4+rCbm/eoOcFvEtw+rwmp3Qy4sKo8qurCLI+w9fwfhd81jTcTI9z3+wTk0NYV8TKKJSf+DqH36i6LGJDGIt2094mNZDzqx1vE0y9UhPV6Dyyi/PvfU+xy38JTmeEJkXv4Wr1eEASGYzMs+fi/vxiYz//Fw2LWxBEA9t2E4/CQKw3n0oK9qeQVavsRw2eCx9spvUWi5LemOVncWS5jTN08Pwy4oKo26fv/cCfT+5jF3u5mT+8jXy2nSqU9ytmmtLsHj3DvLQg1E+f/hixhf/h3Udz6TnRf9X5zb1rCbNYDvR/sBlq9fhmnsOg/iOHWMfpPWR59Qp3ly/l2IyyajQ8eo+ulc5efmVZHjc+C9+E3ebPpWuye40iKwblvL9+7Mo+2EJKhRkdXZbMjr0o/2AsRx6SCcOjXczS6PBKjuLJc1pe0hb9qhM1I7vCYXCLHjqL/zifw/wo7cjeZe8RtPWdS+m27doQpHyU7prKwU/FPDzExdyXOhL1h7+S3qcc88+dR43bdYSvoeKPVv56L236PHJVbSWQrafNIvWQ2se0ZkIt0vYndUJf/m77Nm2gRee/zdTNt9DeUYe2Rf/B88hPeJeJ5l5dDn5hjrf19KwscrOYklzMn1elrsOpc3m91lxxxiODizj69yRdPv1U/hzE0++ToaOzTP5isPo+/0LlP7vNdpKKd8N+ys9Trxqn+Vue1g+e5ZkUvHKjYwO72a3uxmBc16l9eGJJ6MnS1nr/rABih4azTS2sTlvAG0unoc4+gYtFid2UrnF0gDY2OVMWqttHBZYx7L8P9L3utf2WdEB+Dxufup/JbtVFluzu1N0/rt0TYGiAxjZsz0v5F1ISAnfdjidvOu/IDcFig7g2ONP4Q3X0Yjbw8Yhf6Dt1e9ZRWepFomd4FqfDB48WC1evLi+xbBY0g6lFN9/s4q27Q8lMzvRbDuLpWEiIkuUUvGXEEoRthnTYmkAiAiHde9Tc0CLxRIX24xpsVgslkaPVXYWi8ViafSkVZ+diGwFfkhBVC2BbSmI50BgZd1/NCR5G5Ks0LDkbUiyQsOSN1WydlJKtUpBPAlJK2WXKkRk8f7u7EwVVtb9R0OStyHJCg1L3oYkKzQseRuSrLYZ02KxWCyNHqvsLBaLxdLoaazK7p/1LUAtsLLuPxqSvA1JVmhY8jYkWaFhydtgZG2UfXYWi8VisThprJadxWKxWCxRrLKzWCwWS6OnUSk7ERknImtF5FsRuam+5XEiIh1F5EMRWSUiK0XkGuM+XUQ2icgy8zupvmWNICIFIvK1kWuxcWsuIu+KyDfmf99XI953OXs40m+ZiOwWkWvTKW1F5FER+VlEVjjc4qalaGaYfLxcRAalgax3i8gaI89LIpJn3DuLSKkjjWceSFmrkTfhuxeR35u0XSsitdsmff/IOtchZ4GILDPu6ZC2icqttMy71aKUahQ/wA18BxwGZABfAb3rWy6HfG2BQeY4F1gH9AamA7+tb/kSyFwAtIxxuwu4yRzfBNxZ33LGyQc/AZ3SKW2Bo4BBwIqa0hI4CXgTEGA48HkayDoW8JjjOx2ydnaGS6O0jfvuzTf3FeADupgyw12fssb43wvckkZpm6jcSsu8W92vMVl2Q4FvlVL/U0pVAM8CE+pZpihKqc1KqS/N8R5gNdC+fqWqExOAx83x48Bp9SdKXI4FvlNKpWIlnpShlPoY2BHjnCgtJwBPKM1CIE9E2h4QQYkvq1LqHaVU0JwuBDocKHlqIkHaJmIC8KxSqlwp9T3wLbrsOCBUJ6uICHAW8MyBkqcmqim30jLvVkdjUnbtgQ2O842kqTIRkc7AQOBz43SlMfkfTYdmQQcKeEdElojIJcbtEKXUZnP8E5Bum4hNoXJhka5pC4nTMt3z8kXo2nuELiKyVEQ+EpFR9SVUHOK9+3RO21HAFqXUNw63tEnbmHKrweXdxqTsGgQikgO8AFyrlNoNPAJ0BQYAm9HNGOnCSKXUIOBE4AoROcrpqXS7RdrMXRGRDOBU4DnjlM5pW4l0S8tEiMgfgSDwtHHaDByqlBoIXAf8W0Sa1Jd8DhrMu3dwNpUrammTtnHKrSgNJe82JmW3CejoOO9g3NIGEfGiM8zTSqkXAZRSW5RSIaVUGJjFAWxSqQml1Cbz/zPwElq2LZFmCfP/c/1JWIUTgS+VUlsgvdPWkCgt0zIvi8g04GRgqingMM2B283xEnQfWPd6E9JQzbtP17T1AGcAcyNu6ZK28cotGljehcal7L4AuolIF1PDnwK8Ws8yRTHt8bOB1Uqpvzvcne3ZpwMrYq+tD0QkW0RyI8foAQor0Gl6gQl2AfBK/UgYl0o143RNWweJ0vJV4Hwzsm04sMvRZFQviMg44EbgVKVUicO9lYi4zfFhQDfgf/Uj5V6qefevAlNExCciXdDyLjrQ8sXhOGCNUmpjxCEd0jZRuUUDyrtR6nuETCp/6JFA69A1oD/Wtzwxso1Em/rLgWXmdxLwJPC1cX8VaFvfshp5D0OPWvsKWBlJT6AF8D7wDfAe0Ly+ZTVyZQPbgaYOt7RJW7QS3gwE0P0Yv0yUluiRbA+bfPw1MDgNZP0W3RcTybszTdiJJn8sA74ETkmTtE347oE/mrRdC5xY37Ia9znApTFh0yFtE5VbaZl3q/vZ5cIsFovF0uhpTM2YFovFYrHExSo7i8VisTR6rLKzWCwWS6PHKjuLxWKxNHqssrNYLBZLo8cqO4vFYrE0eqyys1gsFkuj5/8Dc8IialLhHyIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEYCAYAAAAqIzNgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiVklEQVR4nO2dd5xU1fm4n3d2tsLC0kSaNOnssiAgBlAwCiJRVFRQLGiMUaOxl18SDZrytUZFiUSCYkWsoLFFUQSMiPQqCLoCSlnKwha2zZzfH+fOMjs7s4UtU3ifz2d27z31veece97T7jlijEFRFEVRYhVXuAVQFEVRlPpEFZ2iKIoS06iiUxRFUWIaVXSKoihKTKOKTlEURYlpVNEpiqIoMU3EKjoR6SQiRkTc4ZYl1hGRySKyuIHiShaRD0TkgIjc1RBxBsSfJSJnNEA8C0TkmhB2WrbrCRGZJSJ/raldHcswRURersS+QcpgrCAiq0Vkp4jcerRhRKyiU44O5yUrEZE8v1+DK5RKOAPIADoYYx72GTovf6ewSRVBOHk4pQbuLxWRH0UkX0TmikjzStxmishyESlw/mf62X0YUG6KRWStn/3nIpItIoecymecn91YEVksIjkisktE/i0iqX726wPCLhWR9+ojPaIZERkhIgtq4D5kfgZx21xE3nHKyY8icmkId885DbET/cw6+TVQd4nI0/4NNRE5R0TWOXn7PxHpHRDmrY6/Q074iQHPsEhEDorIDhG519+vMaYf8Bvgz9VNl0DqTdFpazWszDHGNPb7PVy1lwajOZBljMkLtyC1QSxhbyiKSB/gX8DlQGugAPhnCLcJwDzgZaAZ8AIwzzHHGDPGv9wA/wPe8AviZqCNMaYJcC3wsoi0ceyaAn8F2gK9gHbAIz6Pxpg+fuGmAtsDwo4qIqF+qyo/gzANKMaWk0nAM0758Q9zGNA1iN9/AnuANkAmcBpwg+OnG/AKcB2QBrwHvOtLIxEZDdwD/BLoCHQB7vcL+1VgIbZuOA24QUTODYh/HdBUROJCpUdl1OmL6rTK7xaRNUC+iLhFZIij4XOcVuAIP/cLROT/RGSpo+nnhWqNishVIrJRRHJF5HsR+W2A/TgRWeWEs1VEznLMm4rITLFd359E5K9VJZaIdBWRz0Rkn4jsFZFXRCTNz26/iAxw7ts6rdwRzv25Tus1x3m+XgHpc4eIrHFaL3NEJKnmKV1zROQeJ11yRWSDiJwfwp2IyOMissdJy7Ui0texSxSRR0Vkm4jsFpHpIpJcQ1HcgLcKWVuIyHtO/N84ebbYz96IyHUi8p2TztNERBy7kHnnxyAnDQ6IyPO+PBCRZiLyHyc/DzjX7f3iXSAifxORL7EKpUsVz9pRRL500vy/ItIywH6Sk5Z7ReSPVYQViknAe8aYhU7j4V7gAvHrTfkxApv+TxhjiowxUwEBTg90KLZ3PRx40WdmjFljjCn13QLxQAfH7lVjzEfGmAJjzAFgBjA0hMynAi2Bt2r6sI5sdznv888ico0E9D783KWK7YVO9ZUPoKWIfOLkyRci0tHP/ZMist0pd8tFZLif3RQReVNEXhaRQ8DkKsRMEJEXnXjWi8jAAPvMOqgHRlD9/GwEjAfuNcbkGWMWA+9iG0g+N27gKeCmIHF1Bl43xhQaY3YBHwE+JTkaWGSMWeyUj4ewDZ3THPsrgZnGmPVO2fgL5dOvE/CKMcZjjNkKLPYL24evzji6BoYxps5+QBawClv4k52H3QecjVWqZzr3rRz3C4CfgL5AI2zBf9mx64R9mdzO/VhsS0OcBCwABjh2g4GDTvguJ96ejt072BZvI+A4YCnw2yqe40QnrESgFba18YSf/W+ADUAK8DHwqGPeHch3/MYDdwFbgAS/9FmKbfU2BzYC14WQYRiQU8lvWAh/U3xpGGB+kROvC5jgyNnGsZsMLHauRwPLsS0zwbbOfe4ex74czbGt8veA/6tB+YgHXgomX4C715xfCtAb2/pf7GdvgP84Mp4AZANnVTPvsrCtww7Oc3wJ/NWxa4GtDFKc53sDmOvndwGwDfsSuoH4Sp5hAbDVKRPJzv2DAWV7hmPXDygCeoUIq7L8ngfcHWCWB5wUxO2twIcBZv8Bbg/i9j5gQRDz/wCFjvwfAa4Qcj0BvBbC7jlg1lHWMWcBu5w8SMH2ZgxwomM/C9uzbIF91/7q53cWkItVtInAkwHl6jLHnxu43Yknye+9KgHOw75DyZXIOMVJo7OBOOD/gCUBZbC69cB/gHtC2NUkP/sDBQFmd2AbSb77O4En/d6xE/3sfott9KRg69d1wPmO3Y3AB35u45znv9m5Xw1M8LNv6YTfwrn/O/Agtn7oAewABgXImgwcBn51VOXmaDxVksFZwNV+93cDLwW4+Ri40rlegPPyO/e9sV3rOAIUXZC45vol5L+Ax4O4aY2tQJL9zC4BPq/hc50HrAwwexdYC6wBEh2ze7GtHp8bF1aRj/BLn8v87B8GptdxHkxx0jDH79c2iLtVwDjnejJHFN3pwGZgCH6VGFbp5QNd/cxOAX6oplyZ2Ipit/8LFMRdnOOuh5/ZX6mo6Ib53b9O6MqgXN45eXCd3/3ZwNZKZD7gd78AeKCaz7sA+JPf/Q3AR861r2y397NfCkw8ivyeT0Al6V/mAszvJUD5YIecpgRxuwWYHCLOeGAMcFsI+zOBA0D3IHYpwKFg8lXzeZ/Dr3GFbdgEKrrnsBXxnQF+Z/k/P9AY8GDni4PFdQDoZ468VwurKeMU4FO/+97A4YAyWOt6oIb5ORzYFWD2G5zGDLbhtwVo6twHKrpe2AZwqWM3CxDHrie2bhgBJDhyeYH/59hvxWmI+pUfA3Ry7n/hxO0L+/4Qz3uTE+6qmqZVfcwxbPe77ghc5Awv5YhIDran0iaE+x+dRAgc4kFExojIEmfYMAdbQfncdcAmZiAdnfB2+sX/L2zPLiQi0lpEXhM71HkI22oMlGkGtif6lDGmyDFr6zwDAMYYr/N87fz87fK7LsC+bHXN68aYNL/fzyJyhdihXV869CVIOhtjPgOexo7n7xGRZ0WkCbZ3lAIs9wvjI8e8Sowxq7C9pK+AWypx2grbovYvF9uDuAuajtXMu8Ay19bxmyIi/xI7UX8I2xtMk/JD3cFkCUVVeV0XZSEPaBJg1gTbczkqt2LnaY4H3gwWoTGmxBjzITBKAuZSRGQIds7lQmPM5iDeLwD2A18EfZqqaUvVZWMstgcwPYhdmXtjh3r3cyT/7xA7PXLQKd9NKV92apP3SVJ+Xi/S8v4JbCPuYKBHsXPRHwFvY0fGWmLnBB8CMMZ8ix2efBrY6dhvwPbMgsXtu84VO1X1EfAAkISty0eLyA0BMrix83qXY3unNaI+FJ3xu96O7dH5V7qNjDEP+rnp4Hd9ArY1v9c/QLErdN4CHgVaG2PSgA+wvQxfPMEmULdje3Qt/eJvYowJHP8N5O/Oc6QbO/F+mV9ciEhjbMGYCUyRI/OKP2OVq8+dOM/3UxXxVUBEhkv5VWqBv+FVh1IWVkesYr4RO1yQhm3xSjD3xpipxpiTsC3R7tghjb3YoYM+fmnZ1NjFBdXCGFMIfOiEG4psbMuuvZ9ZhxBug1Fp3gUJ7wRsvoEdruoBnOz4PdUx9/fvX74jgfXYoU8ARKQLdlgumJJZD2T4zVeBXQG7PsDdlcDbpuoFQ2783jsR6Y8d6bjaGDM/hJ8rgReN00Q/CnZSddmYga08P3Dmpgjm3nmPmwM/O+/TXcDFQDPnHTlI5Od9dfITbHlwi1044qOfn9tfAo+IXRnpU8JfiV2Z2Rz7njxt7FzgPuB5bGcDAGPMm8aYvsaYFtjVkZ2Ab/zkLCujzvVuJ5wugMcY86IxptQYswM7bXE25WmNVa5zj6bs1PeqsZeBc0RktIjEiUiS2OWz/gX1MhHpLSIpWK3+pjHGExBOAvblzQZKRWQMMMrPfiZwlYj8UkRcItJORHoaY3YC/wUeE5Emjl1XETmtCrlTsa2QgyLSDlvR+/MksMwYcw3wPkdajq8DYx054rEVZxF29VqNMMYsMuVXTgb+FtUguEbYlzQb7MIebI+uAiIySEROduTPx461e53e6QzgcRE5znHbTuyKKp9fI36LjUJQhM3PoDh5/za2AZEiIj2BK6r1lJaq8g7gdyLS3mmg/BGY4+f3MJDj2P25BvGGi1ew79hwp1J/AKukgrXqF2CH6n4vdmHRjY75Zz4HYhcXXYwdmsLPvKczqpIsIvEichm2IfCFY98Xq1xuMsYE/WzAee9HYlcHBtplicjkajzv69h3vZdTZ9wbwt2NwCbgPSm/YOpsERkmdmXiX7BzZ9uxeV+KfUfcInIfFXtAkcYCqshPH8aYfOx79YCINBKRocA47Jw52AZtP+xwfaZjdg7wjjFmL/ADcL3YBYZp2AbLGl/4InKSU8e3Ap4F3nV6emDn9n7t1PNpwJ84Ur42W+9yqVM/H49dQ1AWtkO887+Io6BeFZ1TgMYBf8AWoO3Yisc/3pewD70L23X9fZBwch3z17Hj5pdiW44++6XAVdjFEgexL5+vZ3UFtmLd4Ph9k/JDp8G4HxjghPU+toAAdnUndkL8esfoNmCAiEwyxmzC9iCewvaAzgHOMcYUVxFfvWKM2QA8hh023A2kYxdhBKMJVqEdwA7r7ePIMvG7sWPpS5yhvU+xPSBEpAN2GGRtYIABeKm63N2IHTbahS0fs6l+AQ+Zd368im0AfY8d8vZ9RPwEdshrL7AEW3GHncp68MaY9dhl3a9gl3+n4iz7dvx+KCJ/cNwWY+csr8DO3V4NnBdQPs9z7D4PFAM797QH+y7fjF1gsMKxvx077DzTb9QhsGdxOfCVsSvr/J8vAbsIZEklyeB73g+BqY58W/z8FAW4M9hPIHZgl9z7VjW+im3A7AdOwr6vYNcOfISteH/ENvBqMlRZL/jnXyBV5aeI/EFEPvTzcgO2fO/BvlPXO+UHY8weY8wu389xv9cYc9i5vgBb72Vj070EuxjGx5OODJuwdcdv/OT8CDsP+Tl2MdePOI1IY8whJ+xbHX+rsKNNgR/2+6YPKl2xHQrfZGJYEPth5MvGmH+HTQilTnBa+H2MMf+vCnejsD39nsaY/dUM+yHgeGPMlbWXVIk0xM4J/s4Yc8lR+O2FrRgTzZFPH5QYQ0Quxg6dVrq+IhRh/+hRiQ2MMSG3PApgAfAJsF5EHjPGPBrowBmuTMD2DgcBvwaCbqelRD/GftNV7S3oxH4D+gF2cdRD2CXyquRiFBFZjh3huftowzhmFZ2ITOfIsIU/LxtjrmtoeY4VnGGVSVU4S8UOrbTFDrU+hv1eLKIQkVCLNcbUcA5VqRm/xU53eLDTFDdU6roecIYEgw0n/90Y8/eGlieWcRbG1YqwDl0qiqIoSn1T68UoInKTiHwrdpubhx2zM8VuobPW+V9hSxpFURRFaQhqNXQpIiOxqyr7GWOKfMvOcVYcOh8q98WuaGoXKhwfLVu2NJ06daqNSIqiKEqUsXz58r3GmGptPnE01HaO7nrsFl5FYJeoOv9X+rlZDySLSKLfDiJB6dSpE8uWLaulSIqiKEo0ISI/Vu3q6Knt0GV3YLiIfC12J/BBQdyMB1ZUpeQURVEUpT6oskcnIp9i970L5I+O/+bYDYAHAa+LSBffFi1izzp6iPK7mASGfy32w05OOOGEmsqvKDGLMQYpt7uToihHQ5WKzhgT8sh3Ebkeu92QAZaKiBe7oWe2s93PO8AVgTshBIT/LHbLGAYOHKhLQBUFyN6bTda0C2jeqjVdfzsb4uKr9qQoSlBqO0c3F7t33eci0h37ke9eZz+z97FHp4TaaqpalJSUsGPHDgoLC2spqnIskZSURPv27YmPj04FseHdxznNrIE9sO7j5+h79m+r9qQoSlBqq+ieA54TkXXYM9CuNMYYZ3PRE4H7nM1RAUb5FqvUhB07dpCamkqnTp10GEepFsYY9u3bx44dO+jcuXO4xTkqWu74lK3x3UkpPUDJ2rdBFZ2iHDW1UnTOLhcVdhcxxvyViptyHhWFhYWq5JQaISK0aNGC7OzscItyVBzKPUhPz2ZWtLuKPYcP0T97HqXFRbgTEsMtmqJEJfV9TE+doEpOqSnRXGZ+2LCCODGkdBxAYpdfkCQlbF2/NNxiKUrUEhWKTlGOJXJ+XA1Aux4n0bbPUGv23VfhFElRohpVdNVARLj99tvL7h999FGmTJkSPoGqYMGCBfzvfzU+67UcZ511FmlpafzqV7+qI6mU6hKX/S1FxJPWtjutO3RnP01w71xZtUdFUYKiiq4aJCYm8vbbb7N37946DdcYg9d7VOcIVkpdKLo777yTl156qWqHSp3TOPd7fo5rB3FuxOXip4QupOZuCbdYihK1qKKrBm63m2uvvZbHH3+8gl12djbjx49n0KBBDBo0iC+/tF9TTJkyhUcfPXLUWt++fcnKyiIrK4sePXpwxRVX0LdvX7Zv386dd95J3759SU9PZ86cOYBVViNGjODCCy+kZ8+eTJo0iWAnTUydOpXevXuTkZHBxIkTycrKYvr06Tz++ONkZmayaNGiSmW8/PLLOeWUU+jWrRszZswoC/eXv/wlqamplabLG2+8Qd++fenXrx+nnnoqYBcPXXXVVaSnp9O/f38+/9weVD1r1izOO+88zjzzTDp16sTTTz/NP/7xD/r378+QIUPYv9+ewTpjxgwGDRpEv379GD9+PAUFBRXiHTJkCOvXHzm8esSIETG1dVxq8S5yk9qU3Rc06Uq7km2YemgUKcqxQFSdR3f/e+vZ8POhOg2zd9sm/PmcPlW6+93vfkdGRgZ33XVXOfObb76ZW2+9lWHDhrFt2zZGjx7Nxo0bKw3ru+++44UXXmDIkCG89dZbrFq1itWrV7N3714GDRpUpjRWrlzJ+vXradu2LUOHDuXLL79k2LBh5cJ68MEH+eGHH0hMTCQnJ4e0tDSuu+46GjduzB133AHApZdeGlLGNWvWsGTJEvLz8+nfvz9jx46lbdu21Uq7Bx54gI8//ph27dqRk5MDwLRp0xAR1q5dy7fffsuoUaPYvHkzAOvWrWPlypUUFhZy4okn8tBDD7Fy5UpuvfVWXnzxRW655RYuuOACfvOb3wDwpz/9iZkzZ3LTTTeVi3fChAm8/vrr3H///ezcuZOdO3cycODAaskc6Xi9hpaeveQ08nue43rSaO9b7P75e1q3PzF8wilKlKI9umrSpEkTrrjiCqZOnVrO/NNPP+XGG28kMzOTc889l0OHDpGXF+o8TkvHjh0ZMmQIAIsXL+aSSy4hLi6O1q1bc9ppp/HNN98AMHjwYNq3b4/L5SIzM5OsrKwKYWVkZDBp0iRefvll3O7g7ZbKZBw3bhzJycm0bNmSkSNHsnRp9Vf3DR06lMmTJzNjxgw8Hk/Z81x2mf3ipGfPnnTs2LFM0Y0cOZLU1FRatWpF06ZNOeeccwBIT08ve7Z169YxfPhw0tPTeeWVV8r13HxcfPHFvPnmmwC8/vrrXHjhhdWWOdLJ3rePppKPpHUoM2vUrre127omXGIpSlQTVT266vS86pNbbrmFAQMGcNVVV5WZeb1elixZQlJSUjm3bre73Pyb/84ujRo1qlZ8iYlHvpuKi4ujtLS0gpv333+fhQsX8t577/G3v/2NtWvXVnATSkaouAy/Jsvyp0+fztdff83777/PSSedxPLlyyt17/88Lper7N7lcpU92+TJk5k7dy79+vVj1qxZLFiwoEI47dq1o0WLFqxZs4Y5c+Ywffr0assc6eTs+p7WgLtZ+zKz1l37wSdQ8PMG4IKwyaYo0Yr26GpA8+bNufjii5k5c2aZ2ahRo3jqqafK7letWgXYI4dWrFgBwIoVK/jhhx+Chjl8+HDmzJmDx+MhOzubhQsXMnjw4GrJ4/V62b59OyNHjuShhx7i4MGD5OXlkZqaSm5ubpUyAsybN4/CwkL27dvHggULGDQo2AEUwdm6dSsnn3wyDzzwAK1atWL79u0MHz6cV155BYDNmzezbds2evToUe0wc3NzadOmDSUlJWXhBGPChAk8/PDDHDx4kIyMjGqHH+kUZG8DILllpzKzlse144BJJW7vt2GSSlGiG1V0NeT2228vt/py6tSpLFu2jIyMDHr37l3Wuxg/fjz79++nT58+PP3003Tv3j1oeOeffz4ZGRn069eP008/nYcffpjjjw92WERFPB4Pl112WdnCj9///vekpaVxzjnn8M4775QtRgklI9ihz5EjRzJkyBDuvffesvm54cOHc9FFFzF//nzat2/Pxx9/DMB9993Hu+++C9iVmenp6fTt25df/OIX9OvXjxtuuAGv10t6ejoTJkxg1qxZ5XpyVfGXv/yFk08+maFDh9KzZ88y83fffZf77ruv7P7CCy/ktdde4+KLL6522NFA8YEdAKQed+QkD3G5+Dn+BBrnBm8sKYpSORJsJV+4GDhwoAlcPbdx40Z69eoVJolimylTppRbtBJrRGPZ+d+sP/CLrGkU3b2DxOQjq16XPHEp3XMW0XzK9jBKpyj1g4gsN8bU24oy7dEpSgRh8vdymMRySg6gtHk3mnOI/AM13hddUY55omoxilK3RPLuLscqcYf3cVCakhxgnnR8D/gedv2wlq7NfhkW2RQlWtEenaJEEInFB8h3p1Uwb9GpLwCHtlf83EJRlMpRRacoEUSj0hwKE5pVMG/bqQdFxk3pnu/CIJWiRDeq6BQlgkj15lCSWFHRJSYk8pOrLYk5uuelotQUVXSKEiGUlnpoZg7hSW4R1H5/ckeaH/6xgaVSlOhHFV01mTt3LiLCt9+G/mg3KyuLvn371qscq1at4oMPPqhVGFdffTXHHXdcvcuq1IycQzkkSQmktAxqX9ikC8d7duItKWpgyRQlulFFV01mz57NsGHDmD17dlD7YNtz1RTffpGVUReKbvLkyXz00Ue1CkOpe/L27wbA1Ti4ootr3QO3eNn9o+6Qoig1QRVdNcjLy2Px4sXMnDmT1157rcx8wYIFDB8+nHPPPZfeve3Gu6WlpUyaNIlevXpx4YUXlh0zM3/+fPr37096ejpXX301RUW2Vd6pUyfuvvtuBgwYwBtvvFEu3sBjcIqLi7nvvvuYM2cOmZmZzJkzh/z8fK6++moGDx5M//79mTdvHmCPxRk3bhwjRoygW7du3H///WXhnnrqqTRv3rzSZ/7iiy/IzMwkMzOT/v37k5ubizEm5JFCp512GuPGjaNLly7cc889vPLKKwwePJj09HS2bt0KwHvvvcfJJ59M//79OeOMM9i9e3eFeCdOnMj7779fdj958uSyDZxjncM5Nj3cqa2C2jdpb8vYvh915aWi1ITo+o7uw3tgV8VNi2vF8ekw5sFKncybN4+zzjqL7t2706JFC5YvX85JJ50E2H0s161bR+fOncnKymLTpk3MnDmToUOHcvXVV/PPf/6TG2+8kcmTJzN//ny6d+/OFVdcwTPPPMMtt9wCQIsWLcr2xfQn8BichIQEHnjgAZYtW8bTTz8NwB/+8AdOP/10nnvuOXJychg8eDBnnHEGAEuXLmXdunWkpKQwaNAgxo4dW+3jbB599FGmTZvG0KFDycvLIykpibfffjvkkUKrV69m48aNNG/enC5dunDNNdewdOlSnnzySZ566imeeOIJhg0bxpIlSxAR/v3vf/Pwww/z2GOPlYvXdwTP2LFjKS4uZv78+TzzzDPVkjnaKc6zZ/IlNA4+R9emSzoAhTsrPwZKUZTyaI+uGsyePZuJEycCtsfhP3w5ePBgOnfuXHbfoUMHhg4dCsBll13G4sWL2bRpE507dy7b7/LKK69k4cKFZX4mTJgQNN5gx+AE8t///pcHH3yQzMxMRowYQWFhIdu22Y2BzzzzTFq0aEFycjIXXHABixcvrvYzDx06lNtuu42pU6eSk5OD2+2u9EihQYMG0aZNGxITE+natSujRo0Cyh/Bs2PHDkaPHk16ejqPPPJI0CN4xowZw+eff05RUREffvghp556KsnJgZ9PxyZF+fasxZTUpkHtmzVvwR6aIft05aWi1IRa9+hE5Cbgd4AHeN8Yc5ef3QnABmCKMebREEFUnyp6XvXB/v37+eyzz1i7di0igsfjQUR45JFHgIpH7hzNsTehju2pzjE4xhjeeuutCicEfP3117U6gueee+5h7NixfPDBBwwdOrRsU+dQVOcInptuuonbbruNc889lwULFgTdmSUpKYkRI0bw8ccfM2fOnLIGxrFAyWFH0TVOC2ovIuyO70Bqnm7urCg1oVY9OhEZCYwD+hlj+gCByuwfwIe1iSPcvPnmm1x++eX8+OOPZGVlsX37djp37syiRYuCut+2bRtfffUVAK+++irDhg2jR48eZGVlsWWLbYm/9NJLnHbaaVXGHewYnMAjeEaPHs1TTz2Fb3PulStXltl98skn7N+/n8OHDzN37tyynmZ12Lp1K+np6dx9990MGjSIb7/9tlZHCgEcPHiQdu3aAfDCCy+EdDdhwgSef/55Fi1axFlnnVXt8KMdj6PoGjdJC+kmt3EX2pT8CBG0GbuiRDq1Hbq8HnjQGFMEYIwp23FWRM4DfgCieuZ89uzZnH/++eXMxo8fH3L1ZY8ePZg2bRq9evXiwIEDXH/99SQlJfH8889z0UUXkZ6ejsvl4rrrrqsy7mDH4IwcOZINGzaULUa59957KSkpISMjgz59+nDvvfeW+R88eDDjx48nIyOD8ePHl83PXXLJJZxyyils2rSJ9u3bl52vN3369LIjfJ544gn69u1LRkYG8fHxjBkzplZHCoHdW/Oiiy7ipJNOomXLIysLly1bxjXXXFN2P2rUKL744gvOOOMMEhISqh1+tOMtsqe+J6YEH7oEKG7Vl1QKyN21uaHEUpSop1bH9IjIKmAecBZQCNxhjPlGRBoDnwBnAncAedUZutRjeuqOWbNmlVu0ciwSbWXn82k3MDz7Ndx/3gchhpm/WbKAQR+NY/OwJ+l+xuSGFVBR6omwH9MjIp+KyLogv3HYOb7mwBDgTuB1sRNBU4DHjTF51Qj/WhFZJiLLsrOza/c0ihLNFOdTQHJIJQfQrc8gCk08BVlLG1AwRYluqlyMYow5I5SdiFwPvG1st3CpiHiBlsDJwIUi8jCQBnhFpNAYU6F7YYx5FngWbI/uqJ5CqcDkyZOZPHlyuMVQakBcST5FrspXmKalNmJ9XBeSs+v4MxtFiWFqu+pyLjAS+FxEugMJwF5jzHCfAxGZgh26POoxNGNMjVYMKkpthuTDRVxpPsVxKVW6O5DWhwH7P8CUFiPuY2cOU1GOltouRnkO6CIi64DXgCtNHdcwSUlJ7Nu3LyorLiU8GGPYt28fSUlJ4RalRiSU5lNSDUVnOg4jhUJ2bqj+d5GKcixTqx6dMaYYuKwKN1NqE0f79u3ZsWMHOn+n1ISkpCTat28fbjFqRKL3MCXuJlW6a9N/NKUrXOxf/QFtM06v0n1JqYdVy7/i4PpPSDrwLUlF+0k0hzHixuNOxuNuhDc+BRPfCJPQGElohCSl4kpKBZevihBEwFBxZMUYypmagCv/RqoQrMFq6vVrieQWHUg/ZXT9RaBEPBG/BVh8fHy5nUcUJVZJMgV449tU6a5rh3ascXUnbfvnlborLC5hwbzn6Lx+GoOwx/sckKbkuFtR7EoGbyEJRQdIPHyYRFNIijlMshTXybNEEqXGxf6e39O8WcVz/pRjg4hXdIpyLFDq8ZJCIYfiG1fpVkTY1W4U/XZM5WDWapp26lfBzer16yl+6zrO8q5hl7s9mzLuo9Owi2nWvAOVVfclJSUU5B+iMP8ghXmHEFMKxvj1ygwGEEO5bpxYwQgwKfvvb2WQiv1CkXqZh9/1v9kMzPoXBYf2qaI7hlFFpygRQH6xh0YUcig++HZwgXT95TUUz5rGjo8fp+lvZ5WZe72GT9+Yxskb/k68ePj+5L/QZfTvON4VV61w4+PjaZrWgqZpwTeWjjaytyyDrCP7iCrHJrqps6JEAPlFpTTiMCRW3aMDOLFzR75oci49f57L7nULANj183aWPjKOURv/yL7kjnh+u5AuY34P1VRysUhcUipwZB9R5dhEe3SKEgEUFOSTIB7EqZirQ48Jf2P7v5fQ+o2LWD2vFycWf8sASlnd/SYyJv4ZiYuvR4mjg7gku7inVBXdMY326BQlAijIOwgc6YFUhxPat8Nc8R6bW42mkcnnu+POYt/ln9Fv0l9VyTkkpNj09BzOrcKlEstoj05RIoCifFsR10TRAXTu0g1ufLk+RIoJ4pNtj85bqD26Yxnt0SlKBFBUYHt0vopZqRviG6UBR06GUI5NVNEpSgRQUmB7HAmVHNGj1JykRk7DoUiHLo9lYkrRFeQdZMmzN7FhyUfhFkVRaoTHGVpLbFSzoUulcpJTGuMxAsXaozuWiSlF53LFMeTnFzm4Kfjp34oSqZQ6iyWSG6eFV5AYIyneTT7JuFTRHdPElKJLTEqh2LiRwoPhFkVRaoRxhtYSU7RHV5e4XEI+ScSVqKI7lokpRScuF4ekMa6inHCLoig1whTlAyCJuhilrimQFOJK8sMthhJGYkrRAeRLY9zFupRYiS7EN7RWzZ1RlOpTKCm4S1XRHcvEnKI7HJdKYokqOiW6iCvNpwQ3uBPDLUrMUehKJt5TEG4xlDASc4qu0J1KokeXEivRhbskn0KJroNio4WiuBQSPNqjO5aJOUVXHN+EFI9OPCvRRbwnn0JJDrcYMUmJqxGJXu3RHcvEnKIrTWhKI6OKToku4j2HKXSlhFuMmKQkvhFJquiOaWJO0ZnEJqSafPB6wy2KolSbBE8BxXGq6OoDb3xjks1hKDs8VjnWiDlFR3IaLjEczssJtySKUm0SvQUUx1Xv0FWlZpiExrjxQGlRuEVRwkTMKbr4Rs0AyNm/J8ySKEr1STIFlLq1R1cfiO+TDd0d5Zgl5hRdQmoLAPJyssMsiaJUn2RzmFK39ujqhUTnlPEC3THpWCXmFF1yE6vo8g/uC7MkilJ9kk0h3nhVdPWB75TxQp3OOGaptaITkZtE5FsRWS8iD/uZZ4jIV475WpGG+UiocbPjASg6qEOXSnTg8RoacRhvvO6KUh/EJdsene8Ud+XYo1YnjIvISGAc0M8YUyQixznmbuBl4HJjzGoRaQGU1FraatCkVVsAPLmq6JTooPBwAY3Eg0nQHl19kJBie3RFBbpj0rFKbXt01wMPGmOKAIwxPu0yClhjjFntmO8zxnhqGVe1aNy0JaXGBfmq6JTooDDf6WkkaI+uPkh0Dl8tUUV3zFJbRdcdGC4iX4vIFyIyyM/ciMjHIrJCRO4KFYCIXCsiy0RkWXZ27ReQiCuOA9IUd4EuRlGig6J8pwJO1CN66oNE59R2VXTHLlUOXYrIp8DxQaz+6PhvDgwBBgGvi0gXx3yYY1YAzBeR5caY+YGBGGOeBZ4FGDhwYJ180XkorhmJRboYRYkOig/bHl1ckiq6+iC5sVV0pYdV0R2rVKnojDFnhLITkeuBt40xBlgqIl6gJbADWGiM2eu4+wAYAFRQdPVBvrs5KSX7GyIqRak1JQV2E/K4JB26rA9SUtMA8BbqZu/HKrVajALMBUYCn4tIdyAB2At8DNwlIilAMXAa8Hgt46o2hxNb0Do3q1ZhfLdxNT+v+ADJ3kRi4R7wenCJUOJOoTi+KSYpDZLTcCc3IbFRUxIbNcWd3ARJSsXtTsTtjsMdF4fb7cbtdiPiApFyuxAZjtwYPwsTYCbGhNy9qLw///B84ZT3e+TalLMTAUFwiSACLrHmLudaRMoJZ/CW+TUBYZuj3Gqp5t5qHk9N4ziaJ6np8x/6aROgPbr6onFyIgUmsewU96Nl66qFHFj6GqnZK0kt3UeiKaKQRIpcyRx2p1Ic35TShKZ4k5pBSnPiUpoTn9qCpNQWJDdtSXKT5rhc8fZ9ctlZI4/X4PFCqfHi9Ro8Xi9e45QhY/C9dvadFDCmYvnyuxenxJb5c+x993WNiUukfceu9RN4HVJbRfcc8JyIrMMqtCud3t0BEfkH8A22rvjAGPN+LeOqNp6UVjQ7mIPxehBXXI38rv7qE5j/AP1K19ANyCWFHHdLvBKP8XpJLimgUX4ejdFjP5S64QTnf1LTVmGVI1ZpnOhmL0lHreh2bdvMvtnX0+fwMopMPFvju7GjcTrEJxPnKSKuJI+EklzSDm+jcX4uTU0uCVJax08RmXzj7Un7B74OtxhVUitFZ4wpBi4LYfcy9hODBsfVtD0Ju0rZu+cnWh5/QtUegJLSUpb8+zaG7nyRfa5mLO9+C12GT6RZ+56kBmsOeUrxHD5I7sH95B46QH5uDp7CXExRHt7SYrweDx6PB6/Xg8fjRfwWnfoHVy5kPwspb4ORALd+dxKiuebrpZmAOH1+JSBO4/QcDdhWJUd6J16/RuQRL1LuuuKj1LwZeTQNz/pqrZaLo4aS1VSmuEbNyeiZWTNPSrUQEQ5L8lFtAbZ15Re0nHcpnUwpi7rcQvq5N9O7WfNK/Rivl9z8XHL3Z5OXk03Bob0U5+7DU3AAjLesV2aAOKenFucCwYXLBYiUlbey0RIEg3HM/btrZU95JP5Av04FYEzdvysliS3qNsB6orY9uogksVVn2AQHftpaLUVXXFLKiicvZnjefJa3/BW9J0/jJGdcPyRxbuIatyCtcQvS2tWN3Iqi1A9FrhRcNVR0OzYtp/W8CRyUJhRf+hbDu6dXy5+4XKSmNiU1tSl0PPFoxFXqmJjbAgygyfGdAcjd80OVbo3Xy9fP/JYhefNZceKNnHTjyyRXpeQURYkqiuMa4S6t/nRD/sH9yJxJHCYRmfwBnaup5JTIJCYVXcv23QAo2ZtVpdtF82YwfP+brGgzkQGX/a1hxsEURWlQSuJTSSqt/ucFG1+8mdae3fx85nTaaq8s6olJRdc0rTkHTSPk4PZK3X2//Sd6rfobPyR0o/810xpIOkVRGpqipJY09eZUy+33Kz9j4L53WXrcxfQbOqZ+BVMahJhUdADZ7tYk54dWdMYYts6+k+ZyiKYXT0PiYnK6UlEUoDS5JWnmEMZT+WpI4/VS/MEf2U1z+kx6sIGkU+qbmFV0+5I7c1xh6Dm6xZ9/wJkF77O54ySan3hyA0qmKEpDYxq1Ik4MeTm7K3W3dtFcepZs4Mc+N9A0rVkDSafUNzGr6Epa9qa12Utezt4KdnkFh2mz6B6yXS3pPvH/wiCdoigNiatxawBy9/4c2pExJC5+mF20JPOcGxtIMqUhiFlF17hjPwC2f/tNBbuls//CiWYbh0b+nbjkJg0tmqIoDUySc05l3r6dId2sXzqfHiUbyep5DQlJyQ0lmtIAxKyia9djMAC535dXdNu2buCUbTNYmzqcrsMnhEM0RVEamCYt2wNw+EBoRXdo0XTySCbzV9c3lFhKAxGziq5lmxP4gXak/rToiKEx5Lzxe7y4aDPxyfAJpyhKg9L8OLurQ3FOcEW3e+d2BuR+zqbWY0lqnNaAkikNQcwqOhHhx2ZD6Jy/Ck+h3RFh/QfTySj8htXdb6Jlu8jfiFRRlLohLa05uSY55CdHmz98hkQppe0ZOjcXi8SsogNI6ncBSRSz+cN/kr11JR2/eYA1cX0YePE94RZNUZQGxBXnYldcG5LztlWwKykpoeu219mY1I823fqHQTqlvolpRTdw2BhWxGXQbfX/kfrSKApMIqmXzCQhXr+ZU5RjjZykdqQV7qhgvuqzN2hLNqUn/ToMUikNQUwrOrc7jtTLXuTTpNF8mXgqBya+R+cTe4VbLEVRwkBRakeO8+yu8NF4/IqZZNOc3iMuCZNkSn0T812bbp070+2e18IthqIoYUaadyZ+t4d9O7+nRfvuAPy4eTWZRctY2um3tIpPCLOESn0R0z06RVEUH6kdMwDY+e3SMrOdnzxNsYmj6xhdhBLLqKJTFOWYoEv6Lyg2cRzOsidiH8zZT58977GmyQhatK7eAc1KdKKKTlGUY4LGjRqz1X0izXcvAWDD2w+SKodp9stbwiuYUu+oolMU5ZhhT4fRdC3ZzLr5r5L+44usSBlG18xTwy2WUs+oolMU5Zih+6hrOWBS6bvoerzios3Fj4VbJKUBUEWnKMoxQ5u2HfjpnNksbH05ey7+D2069Qy3SEoDEPOfFyiKovjTd+BwGDg83GIoDYj26BRFUZSYRhWdoiiKEtOIMSbcMpQhItnAj3UQVEug4tHikUk0yQrRJa/KWn9Ek7zRJCtEl7x1JWtHY0yrOggnKBGl6OoKEVlmjBkYbjmqQzTJCtElr8paf0STvNEkK0SXvNEiqw5dKoqiKDGNKjpFURQlpolVRfdsuAWoAdEkK0SXvCpr/RFN8kaTrBBd8kaFrDE5R6coiqIoPmK1R6coiqIogCo6RVEUJcaJKUUnImeJyCYR2SIi94RbnkBEpIOIfC4iG0RkvYjc7JhPEZGfRGSV8zs73LICiEiWiKx1ZFrmmDUXkU9E5Dvnf7MIkLOHX9qtEpFDInJLJKWriDwnIntEZJ2fWdC0FMtUpxyvEZEBESDrIyLyrSPPOyKS5ph3EpHDfmk8vSFlrUTekHkvIv/PSdtNIjI6AmSd4ydnloiscswjIW1D1VkRWXZDYoyJiR8QB2wFugAJwGqgd7jlCpCxDTDAuU4FNgO9gSnAHeGWL4i8WUDLALOHgXuc63uAh8ItZ5BysAvoGEnpCpwKDADWVZWWwNnAh4AAQ4CvI0DWUYDbuX7IT9ZO/u4iKG2D5r3zvq0GEoHOTp0RF05ZA+wfA+6LoLQNVWdFZNkN9YulHt1gYIsx5ntjTDHwGjAuzDKVwxiz0xizwrnOBTYC7cIrVY0ZB7zgXL8AnBc+UYLyS2CrMaYudtipM4wxC4H9Acah0nIc8KKxLAHSRKRNgwhKcFmNMf81xpQ6t0uA9g0lT1WESNtQjANeM8YUGWN+ALZg644GoTJZRUSAi4HZDSVPVVRSZ0Vk2Q1FLCm6dsB2v/sdRLASEZFOQH/ga8foRqer/1wkDAc6GOC/IrJcRK51zFobY3Y617uA1uERLSQTKV9RRGK6+giVlpFelq/Gttp9dBaRlSLyhYhE0rEAwfI+ktN2OLDbGPOdn1nEpG1AnRVVZTeWFF3UICKNgbeAW4wxh4BngK5AJrATO3wRCQwzxgwAxgC/E5FyRzEbO1YRMd+niEgCcC7whmMUqelagUhLy1CIyB+BUuAVx2gncIIxpj9wG/CqiDQJl3x+RE3e+3EJ5RtpEZO2QeqsMqKh7MaSovsJ6OB3394xiyhEJB5bYF4xxrwNYIzZbYzxGGO8wAwacCilMowxPzn/9wDvYOXa7RuKcP7vCZ+EFRgDrDDG7IbITVc/QqVlRJZlEZkM/AqY5FRuOEOA+5zr5dg5r+5hE9KhkryP1LR1AxcAc3xmkZK2weosoqzsxpKi+wboJiKdnZb9RODdMMtUDmcMfiaw0RjzDz9z/zHs84F1gX4bGhFpJCKpvmvsYoR12DS90nF2JTAvPBIGpVyLOBLTNYBQafkucIWzgm0IcNBvmCgsiMhZwF3AucaYAj/zViIS51x3AboB34dHyiNUkvfvAhNFJFFEOmPlXdrQ8gXhDOBbY8wOn0EkpG2oOosoKrtA7Ky6NEdW/GzGtnz+GG55gsg3DNvFXwOscn5nAy8Bax3zd4E2ESBrF+zqtNXAel96Ai2A+cB3wKdA83DL6sjVCNgHNPUzi5h0xSrgnUAJdt7i16HSErtibZpTjtcCAyNA1i3YuRdfuZ3uuB3vlI9VwArgnAhJ25B5D/zRSdtNwJhwy+qYzwKuC3AbCWkbqs6KyLIb6qdbgCmKoigxTSwNXSqKoihKBVTRKYqiKDGNKjpFURQlplFFpyiKosQ0qugURVGUmEYVnaIoihLTqKJTFEVRYhpVdIqiKEpMo4pOURRFiWlU0SmKoigxjSo6RVEUJaZRRacoiqLENBGr6ESkk4gY55wmpR4RkckisriB4koWkQ9E5ICI3NUQcQbEnyUiZzRAPAtE5JoQdlq26wkRmSUif62pXR3LMEVEXq7EvkHKYKwgIqtFZKeI3Hq0YUSsolOODuclKxGRPL9fgyuUSjgDyAA6GGMe9hk6L3+nsEkVQTh5OKUG7i8VkR9FJF9E5opI80rcZorIchEpcP5n+tl9GFBuikVkrZ/95yKSLSKHnMpnnJ/dWBFZLCI5IrJLRP7tO8/QsV8fEHapiLxXH+kRzYjICBFZUAP3IfMziNvmIvKOU05+FJFLQ7h7zmmInehn1smvgbpLRJ72b6iJyDkiss7J2/+JSO+AMG91/B1ywk8MeIZFInJQRHaIyL3+fo0x/YDfAH+ubroEUm+KTlurYWWOMaax3+/hqr00GM2BLGNMXrgFqQ3OwZJhbyiKSB/gX8DlQGugAPhnCLcJ2AMyXwaaAS8A8xxzjDFj/MsN8D/gDb8gbsae69YEuBZ4WY4ccNoU+CvQFugFtAMe8Xk0xvTxCzcVe7adf9hRRSTUb1XlZxCmAcXYcjIJeMYpP/5hDgO6BvH7T+wp4m2ATOA04AbHTzfgFeA6IA14D3jXl0YiMhq4B/gl0BF71uX9fmG/CizE1g2nATeIyLkB8a8DmopzEG1NqdMX1WmV3y0ia4B8EXGLyBBHw+c4rcARfu4XiMj/ichSR9PPC9UaFZGrRGSjiOSKyPci8tsA+3EissoJZ6vYE5ERkaYiMlNs1/cnEflrVYklIl1F5DMR2Scie0XkFRFJ87PbLyIDnPu2Tit3hHN/rtN6zXGer1dA+twhImuc1sscEUmqeUrXHBG5x0mXXBHZICLnh3AnIvK4iOxx0nKtiPR17BJF5FER2SYiu0Vkuogk11AUN+CtQtYWIvKeE/83Tp4t9rM3InKdiHznpPM0ERHHLmTe+THISYMDIvK8Lw9EpJmI/MfJzwPOdXu/eBeIyN9E5EusQulSxbN2FJEvnTT/r4i0DLCf5KTlXhH5YxVhhWIS8J4xZqHTeLgXuED8elN+jMCm/xPGmCJjzFTsQZmnBzoU27seDrzoMzPGrDHGlPpugXigg2P3qjHmI2NMgTHmADADGBpC5lOBlsBbNX1YR7a7nPf5ZxG5RgJ6H37uUsX2Qqf6ygfQUkQ+cfLkCxHp6Of+SRHZ7pS75SIy3M9uioi8KSIvi8ghYHIVYiaIyItOPOtFZGCAfWYd1AMjqH5+NsIe5HqvMSbPGLMYeyDt5X5u3MBTwE1B4uoMvG6MKTTG7AI+AnxKcjSwyBiz2CkfD2EbOqc59lcCM40x652y8RfKp18n4BVjjMcYsxVY7Be2D1+dcXQNjDo+jTYLewJtByDZedh92BNpXcCZzn0rx/0C4CegL/aE6LeAlx27TtiXye3cj8W2NMRJwAJggGM3GDjohO9y4u3p2L2DbfE2Ao4DlgK/reI5TnTCSgRaYVsbT/jZ/wbYAKQAHwOPOubdgXzHbzxwF/Zk5gS/9FmKbfU2BzYScKpwwMm+OZX8hoXwN8WXhgHmFznxuoAJjpxtHLvJwGLnejSwHNsyE2zr3OfucezL0RzbKn8P+L8alI947MnPFeQLcPea80sBemNb/4v97A3wH0fGE4Bs4Kxq5l0WtnXYwXmOL4G/OnYtsJVBivN8bwBz/fwuALZhX0I3EF/JMyzAnrLcHfsuLAAeDCjbMxy7fkAR0CtEWJXl9zzg7gCzPOCkIG5vBT4MMPsPcHsQt/cBC4KY/wcodOT/CHCFkOsJ4LUQds8Bs46yjjkL2OXkQQq2N2OAEx37WdieZQvsu/ZXP7+zgFysok0EngwoV5c5/tzA7U48SX7vVQlwHvYdSq5ExilOGp0NxAH/BywJKIPVrQf+A9wTwq4m+dkfKAgwuwPbSPLd3wk86feOnehn91tsoycFW7+uA8537G4EPvBzG+c8/83O/Wpggp99Syf8Fs7934EHsfVDD+zJ64MCZE0GDgO/OqpyczSeKsngLOBqv/u7gZcC3HwMXOlcL8B5+Z373tiudRwBii5IXHP9EvJfwONB3LTGViDJfmaXAJ/X8LnOA1YGmL2LPSp+DZDomN2LbfX43LiwinyEX/pc5mf/MDC9jvNgipOGOX6/tkHcrQLGOdeTOaLoTgc2A0Pwq8SwSi8f6OpndgrwQzXlysRWFLv9X6Ag7uIcdz38zP5KRUU3zO/+dUJXBuXyzsmD6/zuzwa2ViLzAb/7BcAD1XzeBcCf/O5vAD5yrn1lu72f/VJg4lHk93wCKkn/Mhdgfi8Bygc75DQliNstwOQQccYDY4DbQtifCRwAugexSwEOBZOvms/7HH6NK2zDJlDRPYetiO8M8DvL//mBxoAHO18cLK4DQD9z5L1aWE0ZpwCf+t33Bg4HlMFa1wM1zM/hwK4As9/gNGawDb8tQFPnPlDR9cI2gEsdu1mAOHY9sXXDCCDBkcsL/D/HfitOQ9Sv/Bigk3P/CyduX9j3h3jem5xwV9U0repjjmG733VH4CJneClHRHKwPZU2Idz/6CRC4BAPIjJGRJY4w4Y52ArK564DNjED6eiEt9Mv/n9he3YhEZHWIvKa2KHOQ9hWY6BMM7A90aeMMUWOWVvnGQAwxnid52vn52+X33UB9mWra143xqT5/X4WkSvEDu360qEvQdLZGPMZ8DR2PH+PiDwrIk2wvaMUYLlfGB855lVijFmF7SV9BdxSidNW2Ba1f7nYHsRd0HSsZt4Flrm2jt8UEfmX2In6Q9jeYJqUH+oOJksoqsrruigLeUCTALMm2J7LUbkVO09zPPBmsAiNMSXGmA+BURIwlyIiQ7BzLhcaYzYH8X4BsB/4IujTVE1bqi4bY7E9gOlB7MrcGzvUu58j+X+H2OmRg075bkr5slObvE+S8vN6kZb3T2AbcQcDPYqdi/4IeBs7MtYSOyf4EIAx5lvs8OTTwE7HfgO2ZxYsbt91rtipqo+AB4AkbF0+WkRuCJDBjZ3XuxzbO60R9aHojN/1dmyPzr/SbWSMedDPTQe/6xOwrfm9/gGKXaHzFvAo0NoYkwZ8gO1l+OIJNoG6Hduja+kXfxNjTOD4byB/d54j3diJ98v84kJEGmMLxkxgihyZV/wZq1x97sR5vp+qiK8CIjJcyq9SC/wNrzqUsrA6YhXzjdjhgjRsi1eCuTfGTDXGnIRtiXbHDmnsxQ4d9PFLy6bGLi6oFsaYQuBDJ9xQZGNbdu39zDqEcBuMSvMuSHgnYPMN7HBVD+Bkx++pjrm/f//yHQmsxw59AiAiXbDDcsGUzHogw2++CuwK2PUB7q4E3jZVLxhy4/feiUh/7EjH1caY+SH8XAm8aJwm+lGwk6rLxgxs5fmBMzdFMPfOe9wc+Nl5n+4CLgaaOe/IQSI/76uTn2DLg1vswhEf/fzc/hJ4ROzKSJ8S/krsyszm2PfkaWPnAvcBz2M7GwAYY940xvQ1xrTAro7sBHzjJ2dZGXWudzvhdAE8xpgXjTGlxpgd2GmLsylPa6xynXs0Zae+V429DJwjIqNFJE5EksQun/UvqJeJSG8RScFq9TeNMZ6AcBKwL282UCoiY4BRfvYzgatE5Jci4hKRdiLS0xizE/gv8JiINHHsuorIaVXInYpthRwUkXbYit6fJ4FlxphrgPc50nJ8HRjryBGPrTiLsKvXaoQxZpEpv3Iy8LeoBsE1wr6k2WAX9mB7dBUQkUEicrIjfz52rN3r9E5nAI+LyHGO23ZiV1T5/BrxW2wUgiJsfgbFyfu3sQ2IFBHpCVxRrae0VJV3AL8TkfZOA+WPwBw/v4eBHMfuzzWIN1y8gn3HhjuV+gNYJRWsVb8AO1T3e7ELi250zD/zORC7uOhi7NAUfuY9nVGVZBGJF5HLsA2BLxz7vljlcpMxJuhnA857PxK7OjDQLktEJlfjeV/Hvuu9nDrj3hDubgQ2Ae9J+QVTZ4vIMLErE/+CnTvbjs37Uuw74haR+6jYA4o0FlBFfvowxuRj36sHRKSRiAwFxmHnzME2aPthh+szHbNzgHeMMXuBH4DrxS4wTMM2WNb4wheRk5w6vhXwLPCu09MDO7f3a6eeTwP+xJHytdl6l0ud+vl47BqCsrAd4p3/RRwF9aronAI0DvgDtgBtx1Y8/vG+hH3oXdiu6++DhJPrmL+OHTe/FNty9NkvBa7CLpY4iH35fD2rK7AV6wbH75uUHzoNxv3AACes97EFBLCrO7ET4tc7RrcBA0RkkjFmE7YH8RS2B3QOcI4xpriK+OoVY8wG4DHssOFuIB27CCMYTbAK7QB2WG8fR5aJ340dS1/iDO19iu0BISIdsMMgawMDDMBL1eXuRuyw0S5s+ZhN9Qt4yLzz41VsA+h77JC37yPiJ7BDXnuBJdiKO+xU1oM3xqzHLut+Bbv8OxVn2bfj90MR+YPjthg7Z3kFdu72auC8gPJ5nmP3eaAY2LmnPdh3+WbsAoMVjv3t2GHnmX6jDoE9i8uBr4xdWef/fAnYRSBLKkkG3/N+CEx15Nvi56cowJ3BfgKxA7vk3req8VVsA2Y/cBL2fQW7duAjbMX7I7aBV5OhynrBP/8CqSo/ReQPIvKhn5cbsOV7D/adut4pPxhj9hhjdvl+jvu9xpjDzvUF2HovG5vuJdjFMD6edGTYhK07fuMn50fYecjPsYu5fsRpRBpjDjlh3+r4W4UdbQr8sN83fVDpiu1Q+CYTw4LYDyNfNsb8O2xCKHWC08LvY4z5f1W4G4Xt6fc0xuyvZtgPAccbY66svaRKpCF2TvB3xphLjsJvL2zFmGiOfPqgxBgicjF26LTS9RWhCPtHj0psYIwJueVRAAuAT4D1IvKYMebRQAfOcGUCtnc4CPg1EHQ7LSX6MfabrmpvQSf2G9APsIujHsIukVclF6OIyHLsCM/dRxvGMavoRGQ6R4Yt/HnZGHNdQ8tzrOAMq0yqwlkqdmilLXao9THs92IRhYiEWqwxpoZzqErN+C12usODnaa4oVLX9YAzJBhsOPnvxpi/N7Q8sYyzMK5WhHXoUlEURVHqm7Dv1acoiqIo9UlEDV22bNnSdOrUKdxiKIqiKA3I8uXL9xpjqrX5xNEQUYquU6dOLFu2LNxiKIqiKA2IiPxYtaujR4cuFUVRlJhGFZ2iRBg/7M3nq637wi2GosQMqugUJcJ4/PnZrHj+lnCLoSgxQ0TN0QWjpKSEHTt2UFhYGG5RlCgiKSmJ9u3bEx8fX7XjCGNq/u3gBm9JMa74kNuCKopSTSJe0e3YsYPU1FQ6depE+U26FSU4xhj27dvHjh076Ny5c7jFOWoO5x+kUVq9LURTlGOGiB+6LCwspEWLFqrklGojIrRo0SLqRwEK8yscDaYoylEQ8YoOUCWn1JhYKDPF+YfCLYKixARRoegU5VikqEB7dIpSF6iiqwYiwu233152/+ijjzJlypTwCVQFCxYs4H//q/FZr2WsWrWKU045hT59+pCRkcGcOXOq9qTUGUXGTp0XFwQ7O1VRlJqiiq4aJCYm8vbbb7N37946DdcYg9d7VOcIVkptFV1KSgovvvgi69ev56OPPuKWW24hJyen7gRUKqXIOYDdc1gVnaLUBaroqoHb7ebaa6/l8ccfr2CXnZ3N+PHjGTRoEIMGDeLLL+3B3VOmTOHRR48ctda3b1+ysrLIysqiR48eXHHFFfTt25ft27dz55130rdvX9LT08t6TwsWLGDEiBFceOGF9OzZk0mTJhHspImpU6fSu3dvMjIymDhxIllZWUyfPp3HH3+czMxMFi1aVKmMl19+OaeccgrdunVjxowZAHTv3p1u3boB0LZtW4477jiys7MrxP3GG2/Qt29f+vXrx6mnngrYxUNXXXUV6enp9O/fn88/twdVz5o1i/POO48zzzyTTp068fTTT/OPf/yD/v37M2TIEPbvt2ewzpgxg0GDBtGvXz/Gjx9PQUFBhXiHDBnC+vVHDq8eMWJETG0dV4T9JKK0SBWdotQFEf95gT/3v7eeDT/X7QR977ZN+PM5fap097vf/Y6MjAzuuuuucuY333wzt956K8OGDWPbtm2MHj2ajRs3VhrWd999xwsvvMCQIUN46623WLVqFatXr2bv3r0MGjSoTGmsXLmS9evX07ZtW4YOHcqXX37JsGHDyoX14IMP8sMPP5CYmEhOTg5paWlcd911NG7cmDvuuAOASy+9NKSMa9asYcmSJeTn59O/f3/Gjh1L27Zty8JfunQpxcXFdO3atcJzPPDAA3z88ce0a9eurMc3bdo0RIS1a9fy7bffMmrUKDZv3gzAunXrWLlyJYWFhZx44ok89NBDrFy5kltvvZUXX3yRW265hQsuuIDf/OY3APzpT39i5syZ3HTTTeXinTBhAq+//jr3338/O3fuZOfOnQwcOLDSNI8mSpzX0lt8OMySKEpsoD26atKkSROuuOIKpk6dWs78008/5cYbbyQzM5Nzzz2XQ4cOkZcX6jxOS8eOHRkyZAgAixcv5pJLLiEuLo7WrVtz2mmn8c033wAwePBg2rdvj8vlIjMzk6ysrAphZWRkMGnSJF5++WXc7uDtlspkHDduHMnJybRs2ZKRI0eydOnSMn87d+7k8ssv5/nnn8flqlhUhg4dyuTJk5kxYwYej6fseS67zJ5n27NnTzp27Fim6EaOHElqaiqtWrWiadOmnHPOOQCkp6eXPdu6desYPnw46enpvPLKK+V6bj4uvvhi3nzzTQBef/11LrzwwkrTO9oodnp0qugUpW6Iqh5ddXpe9cktt9zCgAEDuOqqq8rMvF4vS5YsISkpqZxbt9tdbv7N/5uuRo0aVSu+xMTEsuu4uDhKS0sruHn//fdZuHAh7733Hn/7299Yu3ZtBTehZISKy/B994cOHWLs2LH87W9/K1PKgUyfPp2vv/6a999/n5NOOonly5dX+3lcLlfZvcvlKnu2yZMnM3fuXPr168esWbNYsGBBhXDatWtHixYtWLNmDXPmzGH69OmVxhttlDqvpSmpOGyrKErN0R5dDWjevDkXX3wxM2fOLDMbNWoUTz31VNn9qlWrAHvk0IoVKwBYsWIFP/zwQ9Awhw8fzpw5c/B4PGRnZ7Nw4UIGDx5cLXm8Xi/bt29n5MiRPPTQQxw8eJC8vDxSU1PJzT0yvxNKRoB58+ZRWFjIvn37WLBgAYMGDaK4uJjzzz+fK664otLe0tatWzn55JN54IEHaNWqFdu3b2f48OG88sorAGzevJlt27bRo0ePaj0PQG5uLm3atKGkpKQsnGBMmDCBhx9+mIMHD5KRkVHt8KMBI85rWayKTlHqAlV0NeT2228vt/py6tSpLFu2jIyMDHr37l3Wuxg/fjz79++nT58+PP3003Tv3j1oeOeffz4ZGRn069eP008/nYcffpjjjz++WrJ4PB4uu+yysoUfv//970lLS+Occ87hnXfeKVuMEkpGsEOfI0eOZMiQIdx77720bduW119/nYULFzJr1iwyMzPJzMwsU4733Xcf7777LgB33nkn6enp9O3bl1/84hf069ePG264Aa/XS3p6OhMmTGDWrFnlenJV8Ze//IWTTz6ZoUOH0rNnzzLzd999l/vuu6/s/sILL+S1117j4osvrnbY0UKcOCMBJdG9s4uiRAoSbCVfuBg4cKAJXD23ceNGevXqFSaJYpspU6aUW7QSa0Rr2cma0otO/MyK4y5gwA3Ph1scRal3RGS5MabeVpRpj05RIow4bI/OVaqLURSlLoiqxShK3RLJu7scy7iwK1hdHh26VJS6QHt0ihJhuIzt0cVpj05R6gRVdIoSYfiGLuO0R6codYIqOkWJMFyOonN7i8IsiaLEBqroFCXC8M3Rub3ao1OUukAVXTWZO3cuIsK3334b0k1WVhZ9+/atVzlWrVrFBx98cNT+fR+Y9+7dmz59+vDkk0/WoXRKbfF6DW6nR5egPTpFqRNU0VWT2bNnM2zYMGbPnh3UPtj2XDXFt19kZdRW0bndbh577DE2bNjAkiVLmDZtGhs2bDjq8JS6xWNM2dBlvFFFpyh1Qb0rOhE5S0Q2icgWEbmnvuOrD/Ly8li8eDEzZ87ktddeKzNfsGABw4cP59xzz6V3796AVXiTJk2iV69eXHjhhWXHzMyfP5/+/fuTnp7O1VdfTVGRrcQ6derE3XffzYABA3jjjTfKxRt4DE5xcTH33Xcfc+bMITMzkzlz5pCfn8/VV1/N4MGD6d+/P/PmzQPssTjjxo1jxIgRdOvWjfvvvx+ANm3aMGDAAABSU1Pp1asXP/30U4Vn/uKLL8p2Renfvz+5ubkYY0IeKXTaaacxbtw4unTpwj333MMrr7zC4MGDSU9PZ+vWrQC89957nHzyyfTv358zzjiD3bt3V4h34sSJvP/++2X3kydPLtvA+VjA4zVli1ESVdEpSp1Qr9/RiUgcMA04E9gBfCMi7xpjjq4L8eE9sKvipsW14vh0GPNgpU7mzZvHWWedRffu3WnRogXLly/npJNOAuw+luvWraNz585kZWWxadMmZs6cydChQ7n66qv55z//yY033sjkyZOZP38+3bt354orruCZZ57hlltuAaBFixZl+2L6E3gMTkJCAg888ADLli3j6aefBuAPf/gDp59+Os899xw5OTkMHjyYM844A7BH7Kxbt46UlBQGDRrE2LFjyx1nk5WVxcqVKzn55JMrxP3oo48ybdo0hg4dSl5eHklJSbz99tshjxRavXo1GzdupHnz5nTp0oVrrrmGpUuX8uSTT/LUU0/xxBNPMGzYMJYsWYKI8O9//5uHH36Yxx57rFy8viN4xo4dS3FxMfPnz+eZZ56pZmZGP15jcDtzdAkUh1kaRYkN6rtHNxjYYoz53hhTDLwGjKvnOOuc2bNnM3HiRMD2OPyHLwcPHkznzp3L7jt06MDQoUMBuOyyy1i8eDGbNm2ic+fOZftdXnnllSxcuLDMz4QJE4LGG+wYnED++9//8uCDD5KZmcmIESMoLCxk27ZtAJx55pm0aNGC5ORkLrjgAhYvXlzmLy8vj/Hjx/PEE0/QpEmToHHfdtttTJ06lZycHNxud6VHCg0aNIg2bdqQmJhI165dGTVqFFD+CJ4dO3YwevRo0tPTeeSRR4IewTNmzBg+//xzioqK+PDDDzn11FNJTk4O+uyxiH+PLoliqIcT6BXlWKO+d0ZpB2z3u98BlOs+iMi1wLUAJ5xwQuWhVdHzqg/279/PZ599xtq1axERPB4PIsIjjzwCVDxyJ9SxN5UR6tie6hyDY4zhrbfeqnBCwNdffx1SlpKSEsaPH8+kSZO44IILgsZ9zz33MHbsWD744AOGDh3Kxx9/XOkzVOcInptuuonbbruNc889lwULFgTdmSUpKYkRI0bw8ccfM2fOnLIGxrGC12OIE8Nhk0CyFEPpYUio3rFOiqIEJ+yLUYwxzxpjBhpjBrZq1Src4lTgzTff5PLLL+fHH38kKyuL7du307lzZxYtWhTU/bZt2/jqq68AePXVVxk2bBg9evQgKyuLLVu2APDSSy9x2mmnVRl3sGNwAo/gGT16NE899RS+zblXrlxZZvfJJ5+wf/9+Dh8+zNy5cxk6dCjGGH7961/Tq1cvbrvttkrjTk9P5+6772bQoEF8++23tTpSCODgwYO0a9cOgBdeeCGkuwkTJvD888+zaNEizjrrrGqHHwuUekoAKBDbiy0p0qN6FKW21Lei+wno4Hff3jGLGmbPns35559fzmz8+PEhV1/26NGDadOm0atXLw4cOMD1119PUlISzz//PBdddBHp6em4XC6uu+66KuMOdgzOyJEj2bBhQ9lilHvvvZeSkhIyMjLo06cP9957b5n/wYMHM378eDIyMhg/fjwDBw7kyy+/5KWXXuKzzz4rW2ziW8U5ffr0siN8nnjiCfr27UtGRgbx8fGMGTOmVkcKgd1b86KLLuKkk06iZcuWZebLli3jmmuuKbsfNWoUX3zxBWeccQYJCQnVDj8W8Hhs77fQUXSFBZWfVq8oStXU6zE9IuIGNgO/xCq4b4BLjTEVJ2fQY3rqklmzZpVbtHIsEo1lZ9fe/Rz/dGe2xnWhq+d79k1eTItO6eEWS1Hqlfo+pqde5+iMMaUiciPwMRAHPBdKySmKAl6nR1cUlwIeKC7UoUtFqS31fkyPMeYD4Oi/cFaOismTJzN58uRwi6HUEJ+iK4lLsf8P54dTHEWJCcK+GKU6RNIp6Ep0EK1lxqfoSt12pWVJkSo6RaktEa/okpKS2LdvX9RWXErDY4xh3759JCUlhVuUGuNTdB5H0ZXqqktFqTURf8J4+/bt2bFjB9nZ2eEWRYkikpKSaN++fbjFqDE+ReeN9yk67dEpSm2JeEUXHx9fbucRRYllvF6r6Exiqr3XHp2i1JqIH7pUlGMJj7OLjCQ2tvfFqugUpbaoolOUCMJ47Z6mLkfRmeLD4RRHUWICVXSKEkH45uhcztClKdEenaLUFlV0ihJBGGeOLj4xiSLjxpRoj05RaosqOkWJILzOcUwJ7ngKSUBU0SlKrVFFpygRhHGGLomLo5BEXKWq6BSltqiiU5QIwjd06XLFUSyJiKcwzBIpSvSjik5RIghTas+jw51IkSTiKlVFpyi1RRWdokQQxlMMgLgTKJZE4jw6dKkotUUVnaJEEo6ic7kTKHUl4vYUhVkgRYl+VNEpSgTh69ERl0CJKwm3V4cuFaW2qKJTlEii1Cq6uPhEPHFJxKuiU5Rao4pOUSIIr6Po3O54SuOSiDfFYZZIUaIfVXSKEkGUKbqEJLxxSSQY7dEpSm1RRacoEYRP0cXHJ+J1J5NodDGKotQWVXSKEkn4FF1iIsadRCLFYEyYhVKU6EYVnaJEEF5n1aU7Pgnik3HjBU9JmKVSlOhGFZ2iRBKOootPSMS4UwAwJfnhlEhRoh5VdIoSQfi2AItPSETikwEoOqxn0ilKbVBFpyiRhKcYjxEkzo0rwVF0BXlhFkpRohtVdIoSSXhKKMENcETRFerQpaLUBlV0ihJJlBZSIvEAxCU2AqBEFZ2i1ApVdIoSQcSV5FEgdhFKXKL9X1yoc3SKUhtU0SlKBOEuzeOwq7yiKy3SHp2i1AZVdIoSQcSXFlDkskOW8c7QZWmRnkmnKLVBFZ2iRBCJnnxK4mxPLiHJKjqP9ugUpVaoolOUCCLJm09JfGMA4pOswvMU6RydotSGWik6EZkiIj+JyCrnd7af3f8TkS0isklERtdeVEWJfVJMAR5H0SUm2x6dt1gVnaLUBncdhPG4MeZRfwMR6Q1MBPoAbYFPRaS7McZTB/EpSkxSUlpKM3OQrJRWACSmWIVnSnSOTlFqQ30NXY4DXjPGFBljfgC2AIPrKS5FiQn2Z/9MvHhwpR4PQFJSCl4jqugUpZbUhaK7UUTWiMhzItLMMWsHbPdzs8MxUxQlBDm7dwCQkNYWgKT4OApJQFTRKUqtqFLRicinIrIuyG8c8AzQFcgEdgKP1VQAEblWRJaJyLLs7OyaeleUmCFv11YAGh3XCQB3nItCEqBUFZ2i1IYq5+iMMWdUJyARmQH8x7n9CejgZ93eMQsW/rPAswADBw7UEyaVY5ainRsAaHtivyNmkoCoolOUWlHbVZdt/G7PB9Y51+8CE0UkUUQ6A92ApbWJS1Finfj9m9glrUhOTSszKyIRV2lh+IRSlBigtqsuHxaRTMAAWcBvAYwx60XkdWADUAr8TldcKkrlNM//nj1JnTnez6xYkojzqKJTlNpQK0VnjLm8Eru/AX+rTfiKcqxQWlJCe88OVjU9pZx5iSuROE9RmKRSlNhAd0ZRlAjg56yNJEoJrta9y5mXuBJxe3SOTlFqQ118MK4oSi3Z+8MaTgDSTuhbzrzUlUicJ/eowzVeL99vWMbeLd/gPbSLOJfgSmpKXFo7Ulp2IK11B5o3b0V8YnKARwPG4PV68Hg9eDz25/V6rF0QRCSYof13xKCidRB/gqvMWAQEQQRcIvi8BI0vGK54iNOq7lhGc19RIoDin+2KyzbdMsuZe+KSSSit+dDlgQP7WTP3cbr/OJuuZNO1qvhNHMXE48ZDHF7ixU6pu5xffI0liBz2kUbiHWtp3LhJuEVRwoQqOkWJAOL3b2YXLTm+SbNy5p64ROK9NVN0/3v/JTp/82dOYx8bkzLZ0e1G2mSMpHmbjpSUGvIP7iN/73YK9m2nOOdnivIO4i7NI85bjEfceMUNrjgQF0gcIi5wuZz/cQhgAntTIXp5jmVoNyH8GefvEesj18bfmzEYKpobxy4h90eGHnyfb9cvoefJoyqRUYllVNEpSgSQVvA9exI7lVtxCeB1J5NoqqfoioqL+PrZmzl172y2uTvx49gZ9Or/ywrumqY1g44n1oHUkc9P27Ng5vsUZC0FVXTHLDGn6Pbu2k7L4ztU7VBRIgTj9dC2ZDsrmw2sYOeNSyaRqhVdzsGDbJk2nlOLv2F56wvJvOafxMUn1oe4UUWbdh352bQkYdeKcIuihJGYUnS7tm8haeZpLD1uDP2unkqic56XcuxgggyFBRoFugj0U9E+0L+p1L7q+MsbHNixhXZSDK16VPQbn0SiKbaBhFh8sT8nh6ynz2NAySrWDZjCSeNurVygYwiXS8hK6kmXg+vDLYoSRmJK0bVs3YFvjhvLKXvmsOvBz8nqcB6Nup5CcrPjcQGHD+dTfCgbT+4evHnZuAr2IkUHiSvOJb4kl0RPPskmnzjjIQ7nZzy48OKqUP0FIGCoehVY9fY4k2q4DRJXFRV6cHmqI3NdPVfd+YslUvGAQOP2fSpaupNxiYHSIohPqmC9b/9+tv9zHJkla9l8ykP0Peu3DSBxdFHUOpPjty2m4MAuUpoFDg4HJ3v3dnas/ZLCXd8St38LSQU7SS49SCPPIZJNAW5TShxe3JTixlvOb4WGkt/7U/7aIpW5k8rDI0h41Y03eBg1C2+ddGf4nz+rEGKkEVOKzp2QyCk3PMuahWNxL36UQdtmErf93yHd55pkcqUxha5GFLpTyU9qTU5cI7yueDsZ73KDy42ROIwEqLqgNyEm1h1jqdCWr4gEuJCgSuaIm4qNfCkXaWUrsAPjCggh5H0Fg4AuS1WrvoMtJq+J/+oQMl1CylDT8KrhpwoD/1tvYhq9B51eMYx4u+y/pCif+ABFdyDnINv+OY6MkrVsGfYYPc/8dc2FPAZo0XM4bHuajV++x0m/+k1QN4WHC1j/5Xt4NrxHmwPL6WB+ppVjd4Am7HW3psCdRk5yRzyJTRBXPF6XG+Ny20U79gMITIDSA//XwxukigiyUKdsQY2pWGf4uQv1/gJIuXeyoh8TcF/Bf4VWc/B485OiY5oophSdj4xTx8Gp48jZu5sdW1ZTmrsHj1dITE4hqelxpKS1pknLNjROSSG1LmpVRakv4u3we1FBHvGNW5QZH8zN5ftp59G/ZC3fDX2MHqrkQtL35DP5+ZPWpK56Fs9ZVxHnttVeYUEeGxfPxbPuHXoc/JKT5DB5JPNdciY/tb2ItO5DaXNiJs1atKZZFXEokU1MKjofaS1bk9ZSV1op0YtJTgOgOHcvHNcRgNy8PDY9NZ7BJSvYePLf6TVKlVxluOLi2NbvVoasuof1j55JXqtMEvZvpnveMvpLITk0ZlPzkSRlnE+PX5xD/8CP55WoJ6YVnaJEOybFDqCVHNoFwO49e9j17AUMLl3LxgFT6HX278IoXfQwZNx1fJmXTc8t/6bF9hXskONZ3+JMkjPH03PI2QxM0BWqsYwqOkWJYBo1tydh5e3byb7VX5M499f09v7Mt794jF6jrwmzdFGECEMvuw+v916KPR7ax7tpH26ZlAZDFZ2iRDDNW9vqOO3Lv9LIm0eBpPDTr16i56CxYZYsOnG5hASXVnvHGnp6gaJEMCe0PZ6lrn60MAfY0mQI7hu/opMqOUWpEdq0UZQIJj7ORY/fv8vPB3bRt3PPcIujKFGJKjpFiXCapqXRNC0t3GIoStSiQ5eKoihKTKOKTlEURYlpJNgmuOFCRLKBH+sgqJbA3joIpyGIJlkhuuRVWeuPaJI3mmSF6JK3rmTtaIxpVbWzoyOiFF1dISLLjDEVzzyJQKJJVogueVXW+iOa5I0mWSG65I0WWXXoUlEURYlpVNEpiqIoMU2sKrpnwy1ADYgmWSG65FVZ649okjeaZIXokjcqZI3JOTpFURRF8RGrPTpFURRFAVTRKYqiKDFOTCk6ETlLRDaJyBYRuSfc8gQiIh1E5HMR2SAi60XkZsd8ioj8JCKrnN/Z4ZYVQESyRGStI9Myx6y5iHwiIt85/8N++LKI9PBLu1UickhEbomkdBWR50Rkj4is8zMLmpZimeqU4zUiMiACZH1ERL515HlHRNIc804ictgvjac3pKyVyBsy70Xk/zlpu0lERkeArHP85MwSkVWOeSSkbag6KyLLbkiMMTHxA+KArUAXIAFYDfQOt1wBMrYBBjjXqcBmoDcwBbgj3PIFkTcLaBlg9jBwj3N9D/BQuOUMUg52AR0jKV2BU4EBwLqq0hI4G/gQEGAI8HUEyDoKcDvXD/nJ2snfXQSlbdC8d9631UAi0NmpM+LCKWuA/WPAfRGUtqHqrIgsu6F+sdSjGwxsMcZ8b4wpBl4DxoVZpnIYY3YaY1Y417nARqBdeKWqMeOAF5zrF4DzwidKUH4JbDXG1MUOO3WGMWYhsD/AOFRajgNeNJYlQJqItGkQQQkuqzHmv8aYUud2CUTOuaUh0jYU44DXjDFFxpgfgC3YuqNBqExWERHgYmB2Q8lTFZXUWRFZdkMRS4quHbDd734HEaxERKQT0B/42jG60enqPxcJw4EOBviviCwXkWsds9bGmJ3O9S6gdXhEC8lEylcUkZiuPkKlZaSX5auxrXYfnUVkpYh8ISLDwyVUEILlfSSn7XBgtzHmOz+ziEnbgDorqspuLCm6qEFEGgNvAbcYYw4BzwBdgUxgJ3b4IhIYZowZAIwBficip/pbGjtWETHfp4hIAnAu8IZjFKnpWoFIS8tQiMgfgVLgFcdoJ3CCMaY/cBvwqog0CZd8fkRN3vtxCeUbaRGTtkHqrDKioezGkqL7Cejgd9/eMYsoRCQeW2BeMca8DWCM2W2M8RhjvMAMGnAopTKMMT85//cA72Dl2u0binD+7wmfhBUYA6wwxuyGyE1XP0KlZUSWZRGZDPwKmORUbjhDgPuc6+XYOa/uYRPSoZK8j9S0dQMXAHN8ZpGStsHqLKKs7MaSovsG6CYinZ2W/UTg3TDLVA5nDH4msNEY8w8/c/8x7POBdYF+GxoRaSQiqb5r7GKEddg0vdJxdiUwLzwSBqVcizgS0zWAUGn5LnCFs4JtCHDQb5goLIjIWcBdwLnGmAI/81YiEudcdwG6Ad+HR8ojVJL37wITRSRRRDpj5V3a0PIF4QzgW2PMDp9BJKRtqDqLKCq7QOysujRHVvxsxrZ8/hhueYLINwzbxV8DrHJ+ZwMvAWsd83eBNhEgaxfs6rTVwHpfegItgPnAd8CnQPNwy+rI1QjYBzT1M4uYdMUq4J1ACXbe4teh0hK7Ym2aU47XAgMjQNYt2LkXX7md7rgd75SPVcAK4JwISduQeQ/80UnbTcCYcMvqmM8CrgtwGwlpG6rOisiyG+qnW4ApiqIoMU0sDV0qiqIoSgVU0SmKoigxjSo6RVEUJaZRRacoiqLENKroFEVRlJhGFZ2iKIoS06iiUxRFUWKa/w/ORoXQVDLWYwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 4)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjaklEQVR4nO2dd3xUVfq4n3cmZZIQEgi9SJNOQkCaAgoWLKyigoKCiK6767oWLKtuwUV33VXsoivfZVEsrGJbwJ8F14KKCkjvIGikIxACSUidOb8/zp1wM5lJZiDJFM7zyXxy76nvPefc8552zxGlFAaDwWAwxBKOcAtgMBgMBkNtY5SbwWAwGGIOo9wMBoPBEHMY5WYwGAyGmMMoN4PBYDDEHEa5GQwGgyHmiHjlJiLtRUSJSFy4ZTGcOCJym4jsEZE1YYh7qoi8Vg/xTBKRxdXYLxKRm+pajlMNERkmIrtCtatlGaqtp+qrDMYKInKviBwWkYUiknwiYUS8cjOEjojMEJEC61cqImW2+w/DJNZU4BalVG+bnFNFZGqY5IkorMoxJ0T3n4vIMRHZLCLnV+M2UUReFJGjIrJPRO6y2Y23lY0CKzwlImdY9neKyA+W3z0i8pS3AheRZiLyumV+RES+FpGBtrD/6BN2kYh4RKRJbadHtCMiOSLSPki3AfMzgPs7LXdHLX+JftycY+X732xmIiJ/E5HdVv4uEpGeNvvWIjJfRHJFZJeI3OwTZraIrLDK1AoRyfZ5hhkist/y/56ItPbaK6WmAW2AbsCIYNLFlzpXbqbHVf8opW5WSjVQSjUA/g7M9d4rpS72uqvnvGkMrK/H+OqECCrPrwOrgAzgT8DbItI0gNupQGegHTAcuFdELgJQSs2xlY0GwC3AD8BKy+8CoK9SqiHQC+gN3G7ZNQC+A85A5+/LwPsi0sAK++8+YT8KLFJKHaytRKhPIijvpxIgP30RkQuB+4HzLPcdgQd93MQDzwBLfbxfBdwIDEXn77fAqzb714AfgebASODvIjLcCjMBmG+5aYQuG/Mtc4A7gDOBLKAVcBiYbo9cKVVohZ9RfXL4p06Um9UKuU9E1gKFIhInIoNE5BsRyRORNSIyzOZ+kYj8Q0SWWa2L+SLSOEDYN4jIJhHJt1qUv/GxHyUiq61wtnszXUTSRGSWiOy1WiJ/ExFnDc/RSUQ+E5FDInJQROaISLrNLldE+lr3rUTkgPe5ROQyEdlgPe8iEenukz73iMhaq0U0V0Rcoad06ATIGyUip9vczPZpwf3CStM8Kw+zQozTm86eGtzda+XPHhG5yS6XJdPzIvK+lfdLRaSTze8zIrLTyvcVIjLUJ3iXlc75IrJSROw9yPutspIvIhtF5Aqb3STRPZKnROQQumKp6XkfFz2k8qOIXOxj3c4KL19EPpYgejF+wu8C9AX+opQqUkq9A6wDRgfwcj3wV6XUYaXUJmAmMKkat68oa+sipdR2pVSeN2p0Hp5u2f2glHpSKbVXKeVWSv0LSAC6+pFZgInoSi5kRKSviKyy0u0tKy//FsDt7VY+trGZ/dF6h3NEZLzNfKQV7lGr/Ey12XmHGn8pIjuAz4IQdbyI7LDi+pOPXYKIvGI9wwYR6RdaKlQQan7OUkptUEodBv7qx+3dwMfAZh/zDsBiK5/daEXVA0B0A2YY8LBSqkwptQZ4G60MsezigKeVUiVKqWfR5edcW9gLlVL7lVLFwFygoldow2OFEzpKqVr/ATnAaqAtkAS0Bg4Bl6AV6gXWfVPL/SJgN7plmAK8A7xm2bUHFBBn3Y8EOlkJdQ5wDN2yBBgAHLHCd1jxdrPs/gv8nxV+M2AZ8JsanuN0K6xEoCnwJTqzvPa/AjYCycBC4HHLvAtQaPmNB+4FtgEJtvRZhm6xNAY2ATcHkGEIkFfNb0gNzzDVm5b+8sZbhwGn29zMBv5mXfcBfgYGAk70y5IDJIZQHi4CioGUGtzsQxfwZPSLVCGXJdMhK4/jgDnAGzb/E9AtvDj0y7oPcNnSoAwYY+XHPegWYbxlf5WVFw5grJV3LS27SUA5cJsVdlI1zzDJiudXVlr9FtgDiK2cb7fKR5J1/0iAsP4J/DOA3RXAJh+z54Dpftw2stKxuc1sDLDOj9t2gBvo4GN+LXDUCucA0DuAXNlWPqf5sTsbKAAanEB9kgD8hG7txwNXAqW2MjoM2GVdP4DudTa12ZUDT6Lf43Os/O1qs8+08j4L2A9c7lP3vIKuN6rLe6/bmVbe9gZKgO62MliMrgOdwD+AJQHCuhZYG8Au6Py07NYAY233TSz/GbY834ruhc/2pqnNboVVXuOBacA8yy7VCqeZzf1MYJV1fSfwoY8s/w+427ruB3yNfu+Sgf9gq1ttfl5Gj1IkhFxuQvUQZGHMAW603d8HvOrjZiFwvXW9CNtLjm4dlFqFwFto4gLENQ+4w7r+P+ApP26aWwUtyWZ2DfB5iM91uTfzbGYL0K3mtVgVPjAFeNPmxoFW3sNs6TPBZj8NmFFHeTGVqsrtRh831Sm3F9CtRLv7LcA5Qca/3Ar/9hrcvQj8w3Z/OlWV279t9pcAm6sJ7zBWJWylwRKbnQPYCwwN4Hc1MMq6ngTsCPJZJwHbbPfJ1jO0sJXzP9vsbwE+OoE8vQ6fihF4GJjtx21bSwaXzewCIMeP2ynoYcNA8XZGt/xb+LFraL0Hfwjgd5Y/+YJ83rOt90dsZouprNx2oxXYYmzKlePKLcVm9iYwJUBcT2PVIRyvezoGIaPXbRub2TJgnK0MfmKz6wEUnUBaBJ2flt124CLbfbzlv711Px9L+VFVuSWghyuVlYY/Ymv4WGk9HXChRxJygS22svSGjyxzgKnWdRrwhi3sVUBjP/J3QjdUy4B+oaRVXc657bRdtwOusoa18kQkD90jaRnA/U/oTKgyZCMiF4vIEmtIMA9dyXndtUVnpi/trPD22uL/P3QPLiAi0lxE3rCGMY+iexO+Ms1E9zinK6VKLLNW1jMAoJTyWM/X2uZvn+36GLrlVF/srNlJBe2Au33yri36GYOhPzAOmCp6bD8QrXzk8idjwDSzhnk3WcO8eeiXx55XFeFZ+bHL+wwiMtE27JqHzk+/foOgQkal1DHrsoE/e99nCIECtDKx0xDID+DWa1+T22qHDZVS3wMb0L3KCkQkCXgPrXD/4etP9Gq3q6oLuwZaAbuVVdtZ+OZJOvBrdAPpiI/dYaXnb7z8xPG8Hyh6Yc4BETkC3EzVd/yE8p+q+etr55LQ5/FCyU+ve1+3APkicimQqpSaG8DvA+j3ty1agT0IfCbHVy+ORw8v7kQ3gl9Dv1f+4vWV83l0TzoD3St+F/C32O0O9LxuQ6XU8gBy+qUulZtvQXxVKZVu+6UopR6xuWlruz4NrakrTTyLXuXzDvA4ulueDnyAHqL0xtOJquxE99ya2OJvqJTyN8Zr5+/Wc2QqPaE+wRaXd9z5aXSrdKocnyfcg1YKXndiPd/uGuKrgogMlcorznx/vnNLwaB87o+hexleWtiud6LH1e15l6yUej2oiHSFNA89nNKyGqd70aujvLQN5NAXKw3uBa4GGlnl4gi2vLKHJyIOK649ItIO3UC5FT1Uk45e+GL365te4WYD0FFEUm1mvS3zSig9z7LXsg/oVkQGoyv8t2uIOw7bO2a9k/PQldpvAvi5At2qX1RD2IHYC7S23iMvvuXjMPAL4CXrWew0EpEU2/1p6HcU9HDYAqCtUioNmEHlvIcIyv9g89PGBj9u9yulDqEXmfQTvZJyH3pIfrKIzLfcZqMXo+1SSpUrpWaj3+Meliw/KaV+oZRqqpQaiG4ULLPFm+WTZ1k2ObPRPflcq1MwHRjgZw66O3p0o6jahPFDfX0K8BpwqYhcKCJOEXGJ/v7EXplNEJEeVqvgIeBtpScx7SSgtf0BoNyarLcvE50F3CAi54mIQ/RS1W5Kqb3oCdMnRKShZddJRM6pQe5UdAvkiOhlqr/3sX8GWK6Uugl4H/1igB72GGnJEY+eAyoBvqkpoXxRSn2lbCvO/Py+CjVMP6wGrrXy5iL0vISXmcDNVgtXRCTFmoRPhYqFHrNreAZvjzahGmdvovOuu1UGpoQgfyp6aOMAECciD1C11XiGiFxptZQno/NjCbrVqCy/iMgN6J5bxKKU2orOs79Y79IV6IrjnQBeXgH+LCKNRKQbek5wto+b64F3lFKVegCiF/Y0s657AH8APrXu49HKsAg9xRBowdD12Bap2MKeKiKLan5ivkXPBd4qegHUKPTcayWUUovQvYl3RcTX/kERSbAaQr8A3rLMU4FcpVSx5efaIOQJN8Hkp93tL626NR34s83tFPR8Wrb1W4B+32+w7L9Dj7g1t+rM69AjYNsArHc11UrXCei6+EnL7yJ0nt0uetn/rZb5Z7awJ4pe6BePHqLfo6qupI1Hv6shUy/KTSm1ExgF/BFdiexEKwp7/K+iE30fugt8Oz5YL97t6IrwMLogLrDZL0NnzFPolvsXHO9BTURXrhstv29TfU8CdDe8rxXW++iuM6BXZaIXQfzWMroL6Csi45VSW9C9vOno3uelwKVKqdIa4gsXd6BlzENXDvO8FtZQwK/QCxYOowv2JJvftuiJ4ZpQVFPelFIfAs8Cn1txLLGsginYC4GP0BPjP6En7n2HkuajW6aH0XNWVyq9ymsj8AS6At2PXlwQzPPUKaK/AZpRjZNx6En5w8AjwBillFdBjxcRe0v+L+jh+p/Q78RjSqmPbHG50L1ef8OGg4F1IlKIHiX5AP0eA5yFVhQjgDx/owlWo/BcdCXrS1Blx3pvrgR+iS6jE9CLE6qUDaXU/9Ar9t4TayUzuk45jO6tzUEv3vKuDLwFeEhE8tHDcG/WJE9d4yf/fAmYnyJympUHpwFY5tPQ79UOy89fLLt8pdQ+7w/dSClUSuVa8TyKXpCyGp3udwKj1fHVsxeiPxs5jB7OvchbBq08uxxd7+ah8+RyWx14D/o9/R6tEy5B9/B9cVLDKutAiE9jKixYrbfXlFL/DrcshuAR/c3KGiBLKVVWg9s9wL1KqaB2aRD96cR69CKd8pMW1hBxiMhq4DxriCxUv0vRi7BeqnXBDBGB1dPcCNyklPogVP9mhxLDCaOUKlVKda9JsVncjx5GWxHIgYhcYQ1hNEK3Gt8zii12UUplB6vYRO+g0cIalrwePQz7UU3+DNGJiNyD/u7uC6xh8FA55ZWbVN6qyv6rbkjIECJKqVeUUp2VUmdU4+w36G/qtqPH639bjduwYMpL2OiKHiXIQ89hj7Hm0usNqbpVmfdX3RCi4QRQSj2ulGqhlLrGNmcfEhExLGkwGAwGQ21yyvfcDAaDwRB7RMpGoAA0adJEtW/fPtxiGAwGg6EeWbFixUGlVKCNv0+IiFJu7du3Z/nykD5CNxgMBkOUIyI/1ewqNMywpMFgMBhiDqPcDIYIx+0xi74MhlAxys1giGD+32tPs/fB0/l/z96OWdlsMARPRM25+aOsrIxdu3ZRXFwcblEMUYTL5aJNmzbEx1d3EEFks3/vLoZ9/w9cUsovcl9m2efnMuDcy8MtlsEQFUS8ctu1axepqam0b98eEd/Nug2GqiilOHToELt27aJDhw7hFueE2fC/2Zwrxey56kNcb1+DLHkOjHIzGIIi4ocli4uLycjIMIrNEDQiQkZGRtT39pvu+h87nKfRqudZ/NhmFH1KVrB//76aPRoMhshXboBRbIaQifYyU1JaQseSTezLGAhA0/6jiRMP338d6FQbg8FgJyqUm8FwqrFt/XekSAmuDlq5te01hEOSTtz2T8IsmcEQHRjlFgQiwt13311x//jjjzN16tTwCVQDixYt4ptvQj4XtRIXXXQR6enp/OIXv6glqQyhkLv1WwDaZp4NgDic7ErtQ4fC1SjPCR1vZTCcUhjlFgSJiYm8++67HDzoe0jsyaGUwlMHFVVtKLff//73vPrqq7UkkSFU5OdNFOKiUesuFWZlbc+iObns+GFjGCUzGKIDo9yCIC4ujl//+tc89dRTVewOHDjA6NGj6d+/P/379+frr/XBwlOnTuXxxx+vcNerVy9ycnLIycmha9euTJw4kV69erFz505+//vf06tXLzIzM5k7dy6gFdSwYcMYM2YM3bp1Y/z48X6/c3r22Wfp0aMHWVlZjBs3jpycHGbMmMFTTz1FdnY2X331VbUyXnfddZx55pl07tyZmTNnVoR73nnnkZqaWm26vPXWW/Tq1YvevXtz9tm6h1FcXMwNN9xAZmYmffr04fPPPwdg9uzZXH755VxwwQW0b9+e5557jieffJI+ffowaNAgcnP14b8zZ86kf//+9O7dm9GjR3Ps2LEq8Q4aNIgNG46fMjJs2LCY27YtJf9H9se3BdvcYdNe5wLw89oTOt7KYDiliPhPAew8+N4GNu45Wqth9mjVkL9c2rNGd7/73e/Iysri3nvvrWR+xx13cOeddzJkyBB27NjBhRdeyKZNm6oN6/vvv+fll19m0KBBvPPOO6xevZo1a9Zw8OBB+vfvX6EoVq1axYYNG2jVqhWDBw/m66+/ZsiQIZXCeuSRR/jxxx9JTEwkLy+P9PR0br75Zho0aMA999wDwLXXXhtQxrVr17JkyRIKCwvp06cPI0eOpFWrVkGl3UMPPcTChQtp3bo1eXl5ADz//POICOvWrWPz5s2MGDGCrVu3ArB+/XpWrVpFcXExp59+Oo8++iirVq3izjvv5JVXXmHy5MlceeWV/OpXvwLgz3/+M7NmzeK2226rFO/YsWN58803efDBB9m7dy979+6lX79+QckcLTQr28nB9N6VzNp26UsuqTh2fgPcER7BDIYowfTcgqRhw4ZMnDiRZ599tpL5J598wq233kp2djaXXXYZR48epaCgoNqw2rVrx6BBgwBYvHgx11xzDU6nk+bNm3POOefw3XffATBgwADatGmDw+EgOzubnJycKmFlZWUxfvx4XnvtNeLi/LdVqpNx1KhRJCUl0aRJE4YPH86yZcuCTpPBgwczadIkZs6cidvtrnieCRMmANCtWzfatWtXodyGDx9OamoqTZs2JS0tjUsvvRSAzMzMimdbv349Q4cOJTMzkzlz5lTqoXm5+uqrefvttwF48803GTNmTNAyRwNHjh6lpTpIWXqnSuYOp4OcpF40P7I2TJIZDNFDVPXcgulh1SWTJ0+mb9++3HDDDRVmHo+HJUuW4HK5KrmNi4urNJ9m/+YqJSUlqPgSExMrrp1OJ+Xl5VXcvP/++3z55Ze89957PPzww6xbt66Km0AyQtUl86EsoZ8xYwZLly7l/fff54wzzmDFihXVurc/j8PhqLh3OBwVzzZp0iTmzZtH7969mT17NosWLaoSTuvWrcnIyGDt2rXMnTuXGTNi6xDsAzs2kSYKZ7POVeyONe9Hm5xvyc/dS2rjlmGQzmCIDkzPLQQaN27M1VdfzaxZsyrMRowYwfTp0yvuV69eDejje1auXAnAypUr+fHHH/2GOXToUObOnYvb7ebAgQN8+eWXDBgwICh5PB4PO3fuZPjw4Tz66KMcOXKEgoICUlNTyc/Pr1FGgPnz51NcXMyhQ4dYtGgR/fv3DypugO3btzNw4EAeeughmjZtys6dOxk6dChz5swBYOvWrezYsYOuXbsGHWZ+fj4tW7akrKysIhx/jB07lmnTpnHkyBGysrKCDj8ayN+9BYAGrbpVsWvYWQ9L71j9eb3KZDBEG0a5hcjdd99dadXks88+y/Lly8nKyqJHjx4VvYjRo0eTm5tLz549ee655+jSpYvf8K644gqysrLo3bs35557LtOmTaNFixZByeJ2u5kwYULF4o3bb7+d9PR0Lr30Uv773/9WLCgJJCPoYc3hw4czaNAgpkyZUjHfNnToUK666io+/fRT2rRpw8KFCwF44IEHWLBgAaBXVGZmZtKrVy/OOussevfuzS233ILH4yEzM5OxY8cye/bsSj22mvjrX//KwIEDGTx4MN26Ha/cFyxYwAMPPFBxP2bMGN544w2uvvrqoMOOFooP6qOtmrap2nPr0HswpcrJse3f1rdYBkNUIZG003i/fv2U76q3TZs20b179zBJFNtMnTq10sKTWCNay843//wNffa/i+sv+xFH1fbnxr8OIC4uji5/OLnPPQyGSEFEViilanVVmOm5GQwRRnzhXg45m/hVbAAH0/vQrmQrqiy69840GOqSqFpQYqhdInmXlVOZlOL95Cc0D2jvaDeQxENvsHvzElpnDqs/wQyGKML03AyGCKOx+yBFSYGVW/Ne+jvIQ5sW15dIBkPUYZSbwRBBlJWV0UTlUpYS+EP6ju07sUM1J2730nqUzGCILoxyMxgiiMM/7yJOPEhaYOXmdAg5yb1oeXQtRNCCMIMhkjDKzWCIII7szwEgLr1Nte6ONe9HI5VHyYHt9SCVwRB9GOUWJPPmzUNE2Lx5c0A3OTk59OrVq07lWL16NR988MFJhXHjjTfSrFmzOpfVEDrHcvVJ2ykZ1e/vmdr5LAD2rFtUxxIZDNHJSSs3EblNRDaLyAYRmeZjd5qIFIhI1H9I9frrrzNkyBBef/11v/b+tsYKFe/+jNVRG8pt0qRJfPTRRycVhqFuKD7yMwBpTarfWqtzr/4cVUkUbTffuhkM/jgp5SYiw4FRQG+lVE/gcR8nTwIfnkwckUBBQQGLFy9m1qxZvPHGGxXmixYtYujQoVx22WX06NED0Epu/PjxdO/enTFjxlQc2fLpp5/Sp08fMjMzufHGGykpKQH0Nl333Xcfffv25a233qoUr++RMqWlpTzwwAPMnTuX7Oxs5s6dS2FhITfeeCMDBgygT58+zJ8/H9BHzIwaNYphw4bRuXNnHnzwwYpwzz77bBo3blztM3/xxRdkZ2eTnZ1Nnz59yM/PRykV8Hiec845h1GjRtGxY0fuv/9+5syZw4ABA8jMzGT7dj109t577zFw4ED69OnD+eefz/79+6vEO27cON5///2K+0mTJlVsknwqUH5UK7dGTatXbs3SUtgS15XUAyvrQyyDIeo42e/cfgs8opQqAVBK/ey1EJHLgR+BwpOM4zgf3g/7qm4MfFK0yISLH6nWyfz587nooovo0qULGRkZrFixgjPOOAPQ+0auX7+eDh06kJOTw5YtW5g1axaDBw/mxhtv5J///Ce33norkyZN4tNPP6VLly5MnDiRF154gcmTJwOQkZFRsQ+lHd8jZRISEnjooYdYvnw5zz33HAB//OMfOffcc3nxxRfJy8tjwIABnH/++QAsW7aM9evXk5ycTP/+/Rk5cmTQR8M8/vjjPP/88wwePJiCggJcLhfvvvtuwON51qxZw6ZNm2jcuDEdO3bkpptuYtmyZTzzzDNMnz6dp59+miFDhrBkyRJEhH//+99MmzaNJ554olK83uNsRo4cSWlpKZ9++ikvvPBCUDLHBMcOUIiLlKTqz9IDyGvSlzP2vYT72GGcyY3qQTiDIXo42WHJLsBQEVkqIl+ISH8AEWkA3Ac8WK1v7fbXIrJcRJYfOHDgJMWpG15//XXGjRsH6J6FfWhywIABdOjQoeK+bdu2DB48GIAJEyawePFitmzZQocOHSr2l7z++uv58ssvK/yMHTvWb7z+jpTx5eOPP+aRRx4hOzubYcOGUVxczI4dOwC44IILyMjIICkpiSuvvJLFi4P/Lmrw4MHcddddPPvss+Tl5REXF1ft8Tz9+/enZcuWJCYm0qlTJ0aMGAFUPs5m165dXHjhhWRmZvLYY4/5Pc7m4osv5vPPP6ekpIQPP/yQs88+m6SkpKDljnacRQc54kgPym1Kp7NwiGLH2q/qViiDIQqpsecmIp8A/nby/ZPlvzEwCOgPvCkiHYGpwFNKqYKajlBRSv0L+BfovSWrdVxDD6suyM3N5bPPPmPdunWICG63GxHhscceA6oeX3MiR8gEOgInmCNllFK88847VXbeX7p06UkdZ3P//fczcuRIPvjgAwYPHlyxcXIggjnO5rbbbuOuu+7isssuY9GiRX53SHG5XAwbNoyFCxcyd+7cikbFqYKrNJdCZ3pQbjufMRz318LBjYvoMOiyuhXMYIgyauy5KaXOV0r18vObD+wC3lWaZYAHaAIMBKaJSA4wGfijiNxad49Rd7z99ttcd911/PTTT+Tk5LBz5046dOjAV1/5by3v2LGDb7/VO7b/5z//YciQIXTt2pWcnBy2bdsGwKuvvso555xTY9z+jpTxPc7mwgsvZPr06Xg3wF61alWF3f/+9z9yc3MpKipi3rx5FT3KYNi+fTuZmZncd9999O/fn82bN5/U8TwAR44coXXr1gC8/PLLAd2NHTuWl156ia+++oqLLroo6PBjgQbleRQlVD8f6qVpRhO2xnel8Z4v6lgqgyH6ONlhyXnAcAAR6QIkAAeVUkOVUu2VUu2Bp4G/K6WeO8m4wsLrr7/OFVdcUcls9OjRAVdNdu3aleeff57u3btz+PBhfvvb3+JyuXjppZe46qqryMzMxOFwcPPNN9cYt78jZYYPH87GjRsrFpRMmTKFsrIysrKy6NmzJ1OmTKnwP2DAAEaPHk1WVhajR4+umG+75pprOPPMM9myZQtt2rSpOJ9uxowZFcfhPP300/Tq1YusrCzi4+O5+OKLT+p4HtB7WV511VWcccYZNGnSpMJ8+fLl3HTTTRX3I0aM4IsvvuD8888nISEh6PBjgTRPHqWJwSk3gJ9bj6BT+TaO7NlWh1IZDNHHSR15IyIJwItANlAK3KOU+szHzVSgQCnlu5KyCubIm9pj9uzZlRaenIpEW9nxuD24H2rCijbXMehXzwTlZ/PGNXR782xWdruHvuOm1OzBYIhA6uLIm5NaLamUKgUm1OBm6snEYTCcKuQfOUSauFHJTWp2bNG1exZbHZ1ovO0dUH+GEOZVAXbs2sWOtV9RtmcNjsL9JJYeARQOhxNPXDLlCal4EtPwuNKRpDQkqRHxiSkkJiWTmJRCYlIKLlcKyYlOEuMcKKXwKEApFAqlQAF4PHgUKJRlB26PR7v3KDzWf4VCgIQ4BwlOB05B26EDUkrfKx0koOedPd7/SuHxgNujcFv3KWlNade6+k8rDLGHOfImRpk0aRKTJk0KtxiGEMg/tIc0wNmgadB+RITdncYx/PuH2bV2EW16D6/RT2FxGUs+fIX0Da/Su2wNp4nWEvmkUOBIRSGIcpOoSkhVBcRLzZsLRDL5Kokjd28jrWGDcItiqEeiQrkppUJa6WcwRNIJ88Fy7LDeeis+rVlI/rIu/iVHtj7N0f89AtUot3K3h88+nkeLpf/gPLay39GcDR0m0TjrIlp1H0RqUhpVvq5TClV2jJL8XIrycynNz6WkqIDS4kJKi4soLymkvLSY0nIPZW5PxXuq/0tFR9J7b/2BCA4RxPrpaxDRvb8yD5S5PShl+bX8OSqFDw7LXN8eD8ch4HAI7h++ovfB99mZu98ot1OMiFduLpeLQ4cOkZGRYRScISiUUhw6dAiXyxVuUUKiOD8XgKSGGSH5y2icwSdtJ3H+ruf54et36Dh4dBU3q1cupeiDKYwoX0quI4OcMx+h/bm/ormzhipABElIwZWRgiujbUhyRQKrP0yEg+9TUpgLdAq3OIZ6JOKVW5s2bdi1axeR+oG3ITJxuVy0aVP9zvqRRknBYQBSQlRuAP3H/oHtT75Hk//dwc9NT6NZl/4A7P9pMz+8+yAD8j6kSJLY2nMynUfdS+ME/99WxhrO5DQAygrzwiuIod6JeOUWHx9faQcQgyFWKTt2BICG6cF/CuAlLTWVnVe+QvHbV9L4Pxey0ZVJXPkxTi/7nnTiWNNqLD3G/ZUuIQ55RjtxKXpbsrLCw2GWxFDfRLxyMxhOFTzHdAWcmhZ6zw2gV2Yffkz9lPXzHqZN/hrcTheL2/yS0y+6hb5tT80hucQGuqHgPpYXXkEM9Y5RbgZDpFB8hCISSYpPrNltADq070iHybMq7qPnK7+6wdVA99zcRUfCLImhvjGHlRoMEYKU5FMoyeEWI6ZISdM9N1WUF15BDPWOUW4GQ4QQV3aUIodZrl6bNEhpQImKh+Kj4RbFUM8Y5WYwRAjxZQWUxhnlVps4HUI+yThKzLDkqYZRbgZDhOBy51MaV/MhpYbQKHQ0wFlqem6nGjGl3AqO5rJq2iWs/Pi1cItiMIRMsiqkPKFhuMWIOY45UogvKwi3GIZ6JqaUW0JiCn2OfU3p7nXhFsVgCAmPR9FAFeJJMD232qbE2YBEd37NDg0xRYwpt0SOqmTk2KFwi2IwhERhaTmpHEMlpoVblJijJC4Vl9v03E41Ykq5ARxxpBFfYpSbIbrILyggUcoRl1FutU1ZfEOSPUa5nWrEnHIrdKaRWGK22jFEF8eO6k2THclGudU27oRUUlRhuMUw1DMxp9yK4huRVG6UmyG6KLaUmzO5UZgliT1UYhqJlEFZcbhFMdQjMafcyhIbkeo237QYoosSa2PfhJT08AoSi1hDvSVm8+RTiphTbp7kJqSpo3jcnnCLYjAEjfe4G+9eiIbaw5GklZt36NdwahBzys2R0oQEcXM0zywqMUQP5dZxN65Uo9xqG2dyOgBFRrmdUsSccnM21OdV5R3YHWZJDIbg8Vgb+3o3+jXUHvHWmW7FBUa5nUrEnHJLbNQagMJDu8IsicEQAsVWz62BUW61jStVp2lJvplzO5WIOeWW0uQ0AEoOm56bIXqQkqOU40ASUsItSszRwOoNl5oFJacUMafc0ppr5ebOM8rNED04S49SQAqIhFuUmCM1vQkA5eY07lOKmFNu6WmNKFAuKNgXblEMhqCJK82nyGF6bXVBesOGlCknnmPmE6FTiZhTbg6HcMiRQVzh/nCLYjAETXx5vjmotI6Ij3OSL8lQnBduUQz1SMwpN4D8+CYkFf8cbjEMhqBxlRdQYs5yqzOOSQMc5ky3U4qTVm4icpuIbBaRDSIyzWaeJSLfWubrRMR1snEFS5GrGWnlB+srOoPhpHF5CiiLNz23uqLI2YA4o9xOKeJOxrOIDAdGAb2VUiUi0swyjwNeA65TSq0RkQyg7KSlDZLylOZkHMlFeTyIIyY7p4YYI0UVciTeHFRaV5TEpZJYbs50O5U42Zr/t8AjSqkSAKWUdyxwBLBWKbXGMj+klHKfZFxB42jYigQp5/BBs6jEEPkopUhRx3CbU7jrjNL4dBq488IthqEeOVnl1gUYKiJLReQLEelvM1cislBEVorIvYECEJFfi8hyEVl+4MCBkxRHk9C4LQC5e3+olfAMhrqkpLSUVClCJRrlVleUJjUh3WNWS55K1DgsKSKfAC38WP3J8t8YGAT0B94UkY6W+RDL7BjwqYisUEp96huIUupfwL8A+vXrp07wOSqR3LwTAIX7tkHvIbURpMFQZxw7ehgXoFxGudUVnuSmNJAiyooLiXeZTy5OBWpUbkqp8wPZichvgXeVUgpYJiIeoAmwC/hSKXXQcvcB0BeootzqgqandQOg5IDpuRkin+KCPABzCnddktIUgCMHd9OkTZcwC2OoD052WHIeMBxARLoACcBBYCGQKSLJ1uKSc4CNJxlX0DRq1JhcUiH3x/qK0mA4YUoKrYNKk9LDK0gME5+mB5/yD+6t9bCLikvYsnkDm9YsZfO67/h5zw48ZaW1Ho8hNE5qtSTwIvCiiKwHSoHrrV7cYRF5EvgOUMAHSqn3TzKuoBERDsS1IqlwZ62Ep5Ri6+b17F2+gPgDG2hQtBuXKkKUhxKHC7czmfKEhrhdjSApHUdyYxIaNCYxNYPktCakpDelYeNmxCc3AufJJrkh1ii1em5Oc1BpndEgoyUABYf21Ep4xwrzWfPeCzTYNp/OZVvoKlUXgx8mjSNxGRxzNcOd0hxp2IrExm1IbdqWtGan4WrcGkluAmZFd51wUjWtUqoUmBDA7jX05wBhoTC5Dc2Prj+pMDwexVcL3yT9u6fp7dlIVyCPhhyIb0VxXAMQB/GeYpLLDpJUkkODI/k0lGPVhplPMoXSADcOEEEhgPe/qvgPgNL/BdtUZCUzr7kCBeK9tvnx7lSoY7BPaSrsuxhKlYtKlzaT6qdFq7P1DU/ZLpSvfbVyVBvaCXEivkPdBVJRkX2VaEEZiDmFuy5Ja9IKgJK8k19BvfSjObRbMoUzOcQO52msb3UViS27I0kNUW43RUcPUnr0AJK/j8Si/aQW7qdp/iYy9h3FIZULQJlyckgaUSYJuMWBwolbnHhw4EDZ3gvrfVbH33n7+yzel6iSuf0dVxVuqviz1RWCb/0ileoOXzcbHF0554GPTy5B64iY7UaUp7Wn+ZHPOVZURHJSUsj+d+/dzQ8v38I5xYv42dGUNd3upN2QcaS37kp6NZvblpSWcOTwQfJzD1CYd4Di/IOU5h+ivPAwHMtFSo6Q5M5HlNuq6RSo44XYgdJKT8QqSGKVbgf6UsCyQwTxymIzO/46HFeYiuN+QSr25/UglnJRFRWvUt6KWB1/TZRlL/jIZUXv/a+FqLg//hqpKhW7iJbDYV0r6+WreN0CyOGV0TfyysrajyH+jY5np1R140eHKp/nqaKvAmhKp0NwOvQzV1bsCndiOr17DfTv0XDSNG6mj8Iqzz/xbflKy9x8M+suhu2bTU5cB7ac/xxdB17MaUFsdl3m9rA7N58D+3ZwZP8OyvJ2E1e4j4Sin3EVH0DcpYhyWz8PDuWu1Dz11gfexvDxcumwru3lXSr5szdxjxd2Oe5WKr853ntla3Qfb4BXVp/HXG2DS7wwELPKLb55V+J2evhp+3o69epfswcb69atJvWdaxik9rOh2630GDOFZvHBbbCSmJBIs+atada89YmIbTAY6gBXUgpHSYaCE9uWTynF4hm3cO6hN1jd5Bf0/NVM4hOTg/Yf73TQtmkabZtmQmbmCclgCI2YHexNbZ8NwNGfVoXkb92a72j59mU0Ip+fr3ybntc8jASp2AwGQ+SS52hEQtGJfUv7+ZzHOPfQG6xpeRXZv3stJMVmCA8x23Nr1SmLUuXEvTf4ebedOdvI+O84nA4ov/5DWrc3LSyDIVbIi29Oaknoc27Lvv6UId8/wuYG/cm6aYY5cy9KiNmeW3JSEjucp5F4KLgvEI4cOUrJK2NIo4Diq+eSYRSbwRBTFLhakVEe2pxbwbFjZHwymaOONDrc/AZiVjtHDTGr3AByG3SmVdH3/peo2fB4FCv/9RtO9/zIrnOfo2X3M+tJQoPBUF+UN2xDY45QXlwYtJ/lr/6JTmoHeec9RmJqkzqUzlDbxLRyK2vVjwzy+HnHpmrdLXprOsMLP2B9x1/S9eyr6kk6g8FQnyQ0Pg2AA7u2BeV+89YtDNrzKmvTz+f0IWPqUjRDHRDTyq1Zr/MA2L3qk4BuNq37jkEb/8ZWVxY9xz9aX6IZDIZ6JrVFRwAO7g5Oue1e8BBO8dBhnKkXopGYVm4du/flEGmoHz73a3/kSB6J795IiSTS4oY5iDO+niU0GAz1RdO2ek/Jwv01b8u3dt1qzs7/kC2tryS1xel1LZqhDohp5eZ0Otje+Gy6HfmawoLKBxV63B42zPwl7T07OTDiORo2Py1MUhoMhvqgact2egV1bk6NbvM+eAi3OOk4emqdy2WoG2JauQGk9RtLspSw4ZNXK5l/+cY0zir4hDWdfkOXs0aFSTqDwVBfiDOOPc7WpBytflhy1YpvGHLsM7a2u4bkxm3qSTpDbRPzyq3LoEv4wdGOlmufo6iwAIDvPpjN0K2PsDFlANnjHw6zhAaDob44kNyJZkWBhyWVUpR8/DeKxEWXK6fUo2SG2ibmlZs4nBSc/QBtPbvZ/sxIlj59LWcsncz2hK60u/kt892KwXAKUZTemVZqH2VF+X7tVy35jEElX7Pt9Em40prWs3SG2iTmlRtA1rAxfNNjCu1Kt9Ln8EKWN72C0+78hJTU9HCLZjAY6hFXq14A7Nq8ooqdUgo++xt5pNL9ivvrWzRDLXPKdFvOuvoePOWTKXW7GZCYGG5xDAZDGGjZcygsg7wtX0GfYZXsvvviPQaUrWRN97vpbY4finpOGeUG4IiLwxV3Sj2ywWCw0ea0DvxES5w7v6lk7na7SfvqIQ5IBj1H3R0m6Qy1ySkxLGkwGAygzw3c37gfHQpWUVx0fBuulR++RFf39+zqczdxrpQwSmioLYxyMxgMpxSu3qNJlSK2fPkWAEdyf+a05Q/zg7MDvS/5TZilM9QWRrkZDIZTiu5n/YK9NCHlu+nkH83jh5kTyVB5qMum4zDTFjGDUW4Gg+GUIj4+nj0D/szp5dtwPdGRPkXfsrLn/XTqPTTcohlqEdNMMRgMpxxnXHIDS3Hg/OEz4nqMZMC5V4dbJEMtY5SbwWA4JRl4yfXA9eEWw1BHmGFJg8FgMMQcRrkZDAaDIeYQpVS4ZahARA4AP9VCUE2Ag7UQTn0QTbJCdMlrZK07okneaJIVokve2pK1nVKqVjfzjCjlVluIyHKlVL9wyxEM0SQrRJe8Rta6I5rkjSZZIbrkjWRZzbCkwWAwGGIOo9wMBoPBEHPEqnL7V7gFCIFokhWiS14ja90RTfJGk6wQXfJGrKwxOedmMBgMhlObWO25GQwGg+EUxig3g8FgMMQcMaXcROQiEdkiIttEJOLOiReRtiLyuYhsFJENInKHZT5VRHaLyGrrd0m4ZQUQkRwRWWfJtNwyaywi/xOR763/jSJAzq62tFstIkdFZHIkpauIvCgiP4vIepuZ37QUzbNWOV4rIn0jQNbHRGSzJc9/RSTdMm8vIkW2NJ5Rn7JWI2/AvBeRP1hpu0VELowAWefa5MwRkdWWeSSkbaA6KyLLbiWUUjHxA5zAdqAjkACsAXqEWy4fGVsCfa3rVGAr0AOYCtwTbvn8yJsDNPExmwbcb13fDzwabjn9lIN9QLtISlfgbKAvsL6mtAQuAT4EBBgELI0AWUcAcdb1ozZZ29vdRVDa+s17631bAyQCHaw6wxlOWX3snwAeiKC0DVRnRWTZtf9iqec2ANimlPpBKVUKvAGMCrNMlVBK7VVKrbSu84FNQOvwShUyo4CXreuXgcvDJ4pfzgO2K6VqY6ebWkMp9SWQ62McKC1HAa8ozRIgXURa1oug+JdVKfWxUqrcul0CtKkveWoiQNoGYhTwhlKqRCn1I7ANXXfUC9XJKiICXA28Xl/y1EQ1dVZEll07saTcWgM7bfe7iGDFISLtgT7AUsvoVqsb/2IkDPVZKOBjEVkhIr+2zJorpfZa1/uA5uERLSDjqFw5RGK6egmUlpFelm9Et869dBCRVSLyhYhE0qFo/vI+ktN2KLBfKfW9zSxi0tanzor4shtLyi1qEJEGwDvAZKXUUeAFoBOQDexFD01EAkOUUn2Bi4HficjZdkulxyEi5lsSEUkALgPesowiNV2rEGlpGQgR+RNQDsyxjPYCpyml+gB3Af8RkYbhks9G1OS9jWuo3DCLmLT1U2dVEKllN5aU226gre2+jWUWUYhIPLqQzFFKvQuglNqvlHIrpTzATOpxmKQ6lFK7rf8/A/9Fy7XfO8xg/f85fBJW4WJgpVJqP0RuutoIlJYRWZZFZBLwC2C8VaFhDe8dsq5XoOewuoRNSItq8j5S0zYOuBKY6zWLlLT1V2cRBWU3lpTbd0BnEelgteDHAQvCLFMlrDH1WcAmpdSTNnP7mPQVwHpfv/WNiKSISKr3Gr2gYD06Tb0nPF4PzA+PhH6p1PKNxHT1IVBaLgAmWivPBgFHbENAYUFELgLuBS5TSh2zmTcVEad13RHoDPwQHimPU03eLwDGiUiiiHRAy7usvuXzw/nAZqXULq9BJKRtoDqLaCi74VrJUhc/9EqdregWzp/CLY8f+Yagu+9rgdXW7xLgVWCdZb4AaBkBsnZErypbA2zwpieQAXwKfA98AjQOt6yWXCnAISDNZhYx6YpWunuBMvQ8xC8DpSV6pdnzVjleB/SLAFm3oedSvOV2huV2tFU+VgMrgUsjJG0D5j3wJytttwAXh1tWy3w2cLOP20hI20B1VkSWXfvPbL9lMBgMhpgjloYlDQaDwWAAjHIzGAwGQwxilJvBYDAYYg6j3AwGg8EQcxjlZjAYDIaYwyg3g8FgMMQcRrkZDAaDIeYwys1gMBgMMYdRbgaDwWCIOYxyMxgMBkPMYZSbwWAwGGIOo9wMBoPBEHNEvHITkfYioqzzjgxRiojcJiJ7RGRNGOKeKiKv1UM8k0RkcTX2i0TkprqW41RDRIaJyK5Q7WpZhmrrqfoqg7GCiNwrIodFZKGIJJ9IGBGv3AyhIyIzRKTA+pWKSJnt/sMwiTUVuEUp1dsm51QRmRomeSIKq3LMCdH95yJyTEQ2i8j51bhNFJEXReSoiOwTkbtsduNtZaPACk+JyBmW/Z0i8oPld4+IPOWtwEWkmYi8bpkfEZGvRWSgLew/+oRdJCIeEWlS2+kR7YhIjoi0D9JtwPwM4P5Oy91Ry1+iHzfnWPn+N5uZiMjfRGS3lb+LRKSnzb61iMwXkVwR2SUiN/uEmS0iK6wytUJEsn2eYYaI7Lf8vycirb32Sqlp6INOu6HPkgyZOldupsdV/yilblZKNVBKNQD+Dsz13iulLva6q+e8aUzkHRYaMhFUnl8HVqHP1foT8LaINA3gdir6oMt2wHDgXtGHj6KUmmMrGw2AW9AHYq60/C4A+iqlGgK9gN7A7ZZdA/QhwWeg8/dl4H0RaWCF/XefsB8FFimlDtZWItQnEZT3UwmQn76IyIXA/cB5lvuOwIM+buKBZ4ClPt6vAm4EhqLz91v0OXleXgN+BJoDI4G/i8hwK8wE9AGmrwGN0GVjvmUOcAdwJpAFtAIOA9PtkSulCq3wM6pPDv/UiXKzWiH3ichaoFBE4kRkkIh8IyJ5IrJGRIbZ3C8SkX+IyDKrdTFfRBoHCPsGEdkkIvlWi/I3PvajRGS1Fc52b6aLSJqIzBKRvVZL5G9inXJbzXN0EpHPROSQiBwUkTkikm6zyxWRvtZ9KxE54H0uEblMRDZYz7tIRLr7pM89IrLWahHNFRFX6CkdOgHyRonI6TY3s31acL+w0jTPysOsEOP0prOnBnf3WvmzR0RusstlyfS8iLxv5f1SEelk8/uMiOy08n2FiAz1Cd5lpXO+iKwUEXsP8n6rrOSLyEYRucJmN0l0j+QpETmErlhqet7HRQ+p/CgiF/tYt7PCyxeRjyWIXoyf8LsAfYG/KKWKlFLvoA+GHB3Ay/XAX5VSh5VSm4CZwKRq3L6irIMelVLblVJ53qjReXi6ZfeDUupJpdRepZRbKfUvIAHo6kdmASaiK7mQEZG+IrLKSre3rLz8WwC3t1v52MZm9kfrHc4RkfE285FWuEet8jPVZucdavyliOwAPgtC1PEissOK608+dgki8or1DBtEpF9oqVBBqPk5Sym1QSl1GPirH7d3Ax8Dm33MOwCLrXx2oxVVDwDRDZhhwMNKqTKl1BrgbbQyxLKLA55WSpUopZ5Fl59zbWEvVErtV0oVA3OBil6hDY8VTujU0emtOegTW9sCSUBr9CnJl6AV6gXWfVPL/SJgN7plmAK8A7xm2bVHnwQbZ92PBDpZCXUOcAzdsgQYAByxwndY8Xaz7P4L/J8VfjP00fK/qeE5TrfCSgSaAl+iM8tr/ytgI5AMLAQet8y7AIWW33jgXvRJxgm29FmGbrE0Bjbhcwqvz0m4edX8htTwDFO9aekvb7x1GHC6zc1s4G/WdR/gZ2Ag4ES/LDlAYgjl4SKgGEipwc0+dAFPRr9IFXJZMh2y8jgOmAO8YfM/Ad3Ci0O/rPsAly0NyoAxVn7cg24Rxlv2V1l54QDGWnnX0rKbBJQDt1lhJ1XzDJOseH5lpdVvgT1QcSjwIvQJxV3Q78Ui4JEAYf0T+GcAuyuATT5mzwHT/bhtZKVjc5vZGGCdH7ftADfQwcf8WuCoFc4BoHcAubKtfE7zY3c2UAA0OIH6JAH4Cd3ajweuBEptZXQYsMu6fgDd62xqsysHnkS/x+dY+dvVZp9p5X0WsB+43KfueQVdb1SX9163M6287Q2UAN1tZbAYXQc6gX8ASwKEdS2wNoBd0Plp2a0Bxtrum1j+M2x5vhXdC5/tTVOb3QqrvMYD04B5ll2qFU4zm/uZwCrr+k7gQx9Z/h9wt3XdD/ga/d4lA//BVrfa/LyMHqVICLnchOohyMKYA9xou78PeNXHzULgeut6EbaXHN06KLUKgbfQxAWIax5wh3X9f8BTftw0twpaks3sGuDzEJ/rcm/m2cwWcPw4+0TLbArwps2NA628h9nSZ4LNfhowo47yYipVlduNPm6qU24voFuJdvdbgHOCjH+5Ff7tNbh7EfiH7f50qiq3f9vsLwE2VxPeYaxK2EqDJTY7B7AXGBrA72pglHU9CdgR5LNOArbZ7pOtZ2hhK+d/ttnfAnx0Anl6HT4VI/AwMNuP27aWDC6b2QVAjh+3U9DDhoHi7Yxu+bfwY9fQeg/+EMDvLH/yBfm8Z1vvj9jMFlNZue1GK7DF2JQrx5Vbis3sTWBKgLiexqpDOF73dAxCRq/bNjazZcA4Wxn8xGbXAyg6gbQIOj8tu+3ARbb7eMt/e+t+Ppbyo6pyS0APVyorDX/E1vCx0no64EKPJOQCW2xl6Q0fWeYAU63rNOANW9irgMZ+5O+EbqiWAf1CSau6nHPbabtuB1xlDWvliUgeukfSMoD7n9CZUGXIRkQuFpEl1pBgHrqS87pri85MX9pZ4e21xf9/6B5cQESkuYi8YQ1jHkX3JnxlmonucU5XSpVYZq2sZwBAKeWxnq+1zd8+2/UxdMupvthZs5MK2gF3++RdW/QzBkN/YBwwVfTYfiBa+cjlT8aAaWYN826yhnnz0C+PPa8qwrPyY5f3GURkom3YNQ+dn379BkGFjEqpY9ZlA3/2vs8QAgVoZWKnIZAfwK3Xvia31Q4bKqW+Bzage5UViEgS8B5a4f7D15/o1W5XVRd2DbQCdiurtrPwzZN04NfoBtIRH7vDSs/fePmJ43k/UPTCnAMicgS4marv+AnlP1Xz19fOJaHP44WSn173vm4B8kXkUiBVKTU3gN8H0O9vW7QCexD4TI6vXhyPHl7ciW4Ev4Z+r/zF6yvn8+iedAa6V/wu4G+x2x3oed2GSqnlAeT0S10qN9+C+KpSKt32S1FKPWJz09Z2fRpaU1eaeBa9yucd4HF0tzwd+AA9ROmNpxNV2YnuuTWxxd9QKeVvjNfO363nyFR6Qn2CLS7vuPPT6FbpVDk+T7gHrRS87sR6vt01xFcFERkqlVec+f5855aCQfncH0P3Mry0sF3vRI+r2/MuWSn1elAR6QppHno4pWU1TveiV0d5aRvIoS9WGtwLXA00ssrFEWx5ZQ9PRBxWXHtEpB26gXIreqgmHb3wxe7XN73CzQago4ik2sx6W+aVUHqeZa9lH9CtiAxGV/hv1xB3HLZ3zHon56Ertd8E8HMFulW/qIawA7EXaG29R158y8dh4BfAS9az2GkkIim2+9PQ7yjo4bAFQFulVBowg8p5DxGU/8Hmp40NftzuV0odQi8y6Sd6JeU+9JD8ZBGZb7nNRi9G26WUKldKzUa/xz0sWX5SSv1CKdVUKTUQ3ShYZos3yyfPsmxyZqN78rlWp2A6MMDPHHR39OhGUbUJ44f6+hTgNeBSEblQRJwi4hL9/Ym9MpsgIj2sVsFDwNtKT2LaSUBr+wNAuTVZb18mOgu4QUTOExGH6KWq3ZRSe9ETpk+ISEPLrpOInFOD3KnoFsgR0ctUf+9j/wywXCl1E/A++sUAPewx0pIjHj0HVAJ8U1NC+aKU+krZVpz5+X0Vaph+WA1ca+XNReh5CS8zgZutFq6ISIo1CZ8KFQs9ZtfwDN4ebUI1zt5E5113qwxMCUH+VPTQxgEgTkQeoGqr8QwRudJqKU9G58cSdKtRWX4RkRvQPbeIRSm1FZ1nf7HepSvQFcc7Aby8AvxZRBqJSDf0nOBsHzfXA+8opSr1AEQv7GlmXfcA/gB8at3Ho5VhEXqKIdCCoeuxLVKxhT1VRBbV/MR8i54LvFX0AqhR6LnXSiilFqF7E++KiK/9gyKSYDWEfgG8ZZmnArlKqWLLz7VByBNugslPu9tfWnVrOvBnm9sp6Pm0bOu3AP2+32DZf4cecWtu1ZnXoUfAtgFY72qqla4T0HXxk5bfReg8u130sv9bLfPPbGFPFL3QLx49RL9HVV1JG49+V0OmXpSbUmonMAr4I7oS2YlWFPb4X0Un+j50F/h2fLBevNvRFeFhdEFcYLNfhs6Yp9At9y843oOaiK5cN1p+36b6ngTobnhfK6z30V1nQK/KRC+C+K1ldBfQV0TGK6W2oHt509G9z0uBS5VSpTXEFy7uQMuYh64c5nktrKGAX6EXLBxGF+xJNr9t0RPDNaGoprwppT4EngU+t+JYYlkFU7AXAh+hJ8Z/Qk/c+w4lzUe3TA+j56yuVHqV10bgCXQFuh+9uCCY56lTRH8DNKMaJ+PQk/KHgUeAMUopr4IeLyL2lvxf0MP1P6HficeUUh/Z4nKhe73+hg0HA+tEpBA9SvIB+j0GOAutKEYAef5GE6xG4bnoStaXoMqO9d5cCfwSXUYnoBcnVCkbSqn/oVfsvSfWSmZ0nXIY3Vubg1685V0ZeAvwkIjko4fh3qxJnrrGT/75EjA/ReQ0Kw9OA7DMp6Hfqx2Wn79YdvlKqX3eH7qRUqiUyrXieRS9IGU1Ot3vBEar46tnL0R/NnIYPZx7kbcMWnl2ObrezUPnyeW2OvAe9Hv6PVonXILu4fvipIZV1oEQn8ZUWLBab68ppf4dblkMwSP6m5U1QJZSqqwGt3uAe5VSQe3SIPrTifXoRTrlJy2sIeIQkdXAedYQWah+l6IXYb1U64IZIgKrp7kRuEkp9UGo/s0OJYYTRilVqpTqXpNis7gfPYy2IpADEbnCGsJohG41vmcUW+yilMoOVrGJ3kGjhTUseT16GPajmvwZohMRuQf93d0XWMPgoXLKKzepvFWV/VfdkJAhRJRSryilOiulzqjG2W/Q39RtR4/X/7Yat2HBlJew0RU9SpCHnsMeY82l1xtSdasy76+6IUTDCaCUelwp1UIpdY1tzj4kImJY0mAwGAyG2uSU77kZDAaDIfaIlI1AAWjSpIlq3759uMUwGAwGQz2yYsWKg0qpQBt/nxARpdzat2/P8uUhfYRuMBgMhihHRH6q2VVomGFJg8FgMMQcRrkZDBGIUooP1u2lpNx3kx6DwRAMRrkZDBHId9v2Im9ex6vzF4ZbFIMhKomoOTd/lJWVsWvXLoqLi8MtiiGKcLlctGnThvj46g4iiFw8u1dxsfM7ftwyFb0zkcFgCIWIV267du0iNTWV9u3bI+K7WbfBUBWlFIcOHWLXrl106NAh3OKcEPEO/f2pM6jNXwwGgy8RPyxZXFxMRkaGUWyGoBERMjIyorq3LyV6c363MuXeYDgRIl65AUaxGUIm2suMcustNaXKqU8GgyEYokK5GQynGh6PVm5xZt9og+GEMMotCESEu+++u+L+8ccfZ+rUqeETqAYWLVrEN9+EfC5qBatXr+bMM8+kZ8+eZGVlMXduoFPoDXWFcuu5tjgi9QhAgyGyMcotCBITE3n33Xc5eND3kNiTQymFx3NC5/BVy8kqt+TkZF555RU2bNjARx99xOTJk8nLy6s9AQ014nGbnpvBcDIY5RYEcXFx/PrXv+app56qYnfgwAFGjx5N//796d+/P19/rQ8Wnjp1Ko8//niFu169epGTk0NOTg5du3Zl4sSJ9OrVi507d/L73/+eXr16kZmZWdFLWrRoEcOGDWPMmDF069aN8ePH4+8Eh2effZYePXqQlZXFuHHjyMnJYcaMGTz11FNkZ2fz1VdfVSvjddddx5lnnknnzp2ZOXMmAF26dKFz584AtGrVimbNmnHgwIEqcb/11lv06tWL3r17c/bZZwN6AdANN9xAZmYmffr04fPPPwdg9uzZXH755VxwwQW0b9+e5557jieffJI+ffowaNAgcnP14b8zZ86kf//+9O7dm9GjR3Ps2LEq8Q4aNIgNG46fMjJs2LDY27bNGpZ0GuVmMJwQEf8pgJ0H39vAxj1HazXMHq0a8pdLe9bo7ne/+x1ZWVnce++9lczvuOMO7rzzToYMGcKOHTu48MIL2bRpU7Vhff/997z88ssMGjSId955h9WrV7NmzRoOHjxI//79KxTFqlWr2LBhA61atWLw4MF8/fXXDBkypFJYjzzyCD/++COJiYnk5eWRnp7OzTffTIMGDbjnnnsAuPbaawPKuHbtWpYsWUJhYSF9+vRh5MiRtGrVqiL8ZcuWUVpaSqdOnao8x0MPPcTChQtp3bp1Rc/u+eefR0RYt24dmzdvZsSIEWzduhWA9evXs2rVKoqLizn99NN59NFHWbVqFXfeeSevvPIKkydP5sorr+RXv/oVAH/+85+ZNWsWt912W6V4x44dy5tvvsmDDz7I3r172bt3L/369as2zaMN74KSeIxyMxhOBNNzC5KGDRsyceJEnn322Urmn3zyCbfeeivZ2dlcdtllHD16lIKCgmrDateuHYMGDQJg8eLFXHPNNTidTpo3b84555zDd999B8CAAQNo06YNDoeD7OxscnJyqoSVlZXF+PHjee2114iL899WqU7GUaNGkZSURJMmTRg+fDjLli2r8Ld3716uu+46XnrpJRyOqkVl8ODBTJo0iZkzZ+J2uyueZ8KECQB069aNdu3aVSi34cOHk5qaStOmTUlLS+PSSy8FIDMzs+LZ1q9fz9ChQ8nMzGTOnDmVemherr76at5++20A3nzzTcaMGVNtekcl3mFJo9wMhhMiqnpuwfSw6pLJkyfTt29fbrjhhgozj8fDkiVLcLlcldzGxcVVmk+zf3OVkpISVHyJiYkV106nk/LyqhXd+++/z5dffsl7773Hww8/zLp166q4CSQjVF0y770/evQoI0eO5OGHH65QxL7MmDGDpUuX8v7773PGGWewYsWKoJ/H4XBU3DscjopnmzRpEvPmzaN3797Mnj2bRYsWVQmndevWZGRksHbtWubOncuMGbF3CLayhiUTMB9xGwwngum5hUDjxo25+uqrmTVrVoXZiBEjmD59esX96tWrAX18z8qVKwFYuXIlP/74o98whw4dyty5c3G73Rw4cIAvv/ySAQMGBCWPx+Nh586dDB8+nEcffZQjR45QUFBAamoq+fn5NcoIMH/+fIqLizl06BCLFi2if//+lJaWcsUVVzBx4sRqe0Xbt29n4MCBPPTQQzRt2pSdO3cydOhQ5syZA8DWrVvZsWMHXbt2Dep5APLz82nZsiVlZWUV4fhj7NixTJs2jSNHjpCVlRV0+NGCV7k5qDrPajAYasYotxC5++67K62afPbZZ1m+fDlZWVn06NGjohcxevRocnNz6dmzJ8899xxdunTxG94VV1xBVlYWvXv35txzz2XatGm0aNEiKFncbjcTJkyoWLxx++23k56ezqWXXsp///vfigUlgWQEPaw5fPhwBg0axJQpU2jVqhVvvvkmX375JbNnzyY7O5vs7OwKhfjAAw+wYMECAH7/+9+TmZlJr169OOuss+jduze33HILHo+HzMxMxo4dy+zZsyv12Grir3/9KwMHDmTw4MF069atwnzBggU88MADFfdjxozhjTfe4Oqrrw467KjCY4YjDYaTQfytwAsX/fr1U76r3jZt2kT37t3DJFFsM3Xq1EoLT2KNaC47X7/0Jwb/9Jy+mXIQnNG5AbTBEAwiskIpVaurwkzPzWCIRDzH59rKSgrDKIjBEJ1E1YISQ+0SybusnPJ4ju8pWVJUSHxyevhkMRiiENNzMxgiEdvH2yVFVT9kNxgM1WOUm8EQibiP99xKi82wpMEQKnWu3ETkIhHZIiLbROT+uo7PYIgJbD23smLTczMYQqVOlZuIOIHngYuBHsA1ItKjLuM0GGICj1FuBsPJUNc9twHANqXUD0qpUuANYFQdx1knzJs3DxFh8+bNAd3k5OTQq1evOpVj9erVfPDBByfs3/vRd48ePejZsyfPPPNMLUpnqC3EtqCkvNQoN4MhVOpaubUGdtrud1lmUcfrr7/OkCFDeP311/3a+9saK1Tc7ppPXT5Z5RYXF8cTTzzBxo0bWbJkCc8//zwbN2484fAMdYRtWLK8xCg3gyFUwr6gRER+LSLLRWS5v2NVIoGCggIWL17MrFmzeOONNyrMFy1axNChQ7nsssvo0UOPtpaXlzN+/Hi6d+/OmDFjKo5s+fTTT+nTpw+ZmZnceOONlJSUAHqbrvvuu4++ffvy1ltvVYrX90iZ0tJSHnjgAebOnUt2djZz586lsLCQG2+8kQEDBtCnTx/mz58P6CNmRo0axbBhw+jcuTMPPvggAC1btqRv374ApKam0r17d3bv3l3lmb/44ouK3Un69OlDfn4+SqmAx/Occ845jBo1io4dO3L//fczZ84cBgwYQGZmJtu3bwfgvffeY+DAgfTp04fzzz+f/fv3V4l33LhxvP/++xX3kyZNqtgk+VRCPEa5GQwnQ11/57YbaGu7b2OZVaCU+hfwL9A7lFQb2of3w76qGwOfFC0y4eJHqnUyf/58LrroIrp06UJGRgYrVqzgjDPOAPS+kevXr6dDhw7k5OSwZcsWZs2axeDBg7nxxhv55z//ya233sqkSZP49NNP6dKlCxMnTuSFF15g8uTJAGRkZFTsQ2nH90iZhIQEHnroIZYvX85zz+ndK/74xz9y7rnn8uKLL5KXl8eAAQM4//zzAX1czfr160lOTqZ///6MHDmy0tEwOTk5rFq1ioEDB1aJ+/HHH+f5559n8ODBFBQU4HK5ePfddwMez7NmzRo2bdpE48aN6dixIzfddBPLli3jmWeeYfr06Tz99NMMGTKEJUuWICL8+9//Ztq0aTzxxBOV4vUeZzNy5EhKS0v59NNPeeGFF4LMzNhB1PFevKe0uBqXBoPBH3Xdc/sO6CwiHUQkARgHLKjjOGud119/nXHjxgG6Z2EfmhwwYAAdOnSouG/bti2DBw8GYMKECSxevJgtW7bQoUOHiv0lr7/+er788ssKP2PHjvUbr78jZXz5+OOPeeSRR8jOzmbYsGEUFxezY8cOAC644AIyMjJISkriyiuvZPHixRX+CgoKGD16NE8//TQNGzb0G/ddd93Fs88+S15eHnFxcdUez9O/f39atmxJYmIinTp1YsSIEUDl42x27drFhRdeSGZmJo899pjf42wuvvhiPv/8c0pKSvjwww85++yzSUpK8vvssYx43BxTek9OT5npuRkMoVKnPTelVLmI3AosBJzAi0qpqjVasNTQw6oLcnNz+eyzz1i3bh0igtvtRkR47LHHgKrH1wQ6QqY6Ah2BE8yRMkop3nnnnSo77y9dujSgLGVlZYwePZrx48dz5ZVX+o37/vvvZ+TIkXzwwQcMHjyYhQsXVvsMwRxnc9ttt3HXXXdx2WWXsWjRIr87pLhcLoYNG8bChQuZO3duRaPiVENUOUWSRDIleEqLwi2OwRB11Pmcm1LqA6VUF6VUJ6XUw3UdX23z9ttvc9111/HTTz+Rk5PDzp076dChA1999ZVf9zt27ODbb78F4D//+Q9Dhgyha9eu5OTksG3bNgBeffVVzjnnnBrj9nekjO9xNhdeeCHTp0/HuwH2qlWrKuz+97//kZubS1FREfPmzWPw4MEopfjlL39J9+7dueuuu6qNOzMzk/vuu4/+/fuzefPmkzqeB+DIkSO0bq3XE7388ssB3Y0dO5aXXnqJr776iosuuijo8GMJUW6KRPdYVZlRbgZDqIR9QUmk8/rrr3PFFVdUMhs9enTAVZNdu3bl+eefp3v37hw+fJjf/va3uFwuXnrpJa666ioyMzNxOBzcfPPNNcbt70iZ4cOHs3HjxooFJVOmTKGsrIysrCx69uzJlClTKvwPGDCA0aNHk5WVxejRo+nXrx9ff/01r776Kp999lnFghHv6ssZM2ZUHIfz9NNP06tXL7KysoiPj+fiiy8+qeN5QO9ledVVV3HGGWfQpEmTCvPly5dz0003VdyPGDGCL774gvPPP5+EhISgw48lHKqcMocLjxIoM3NuBkOomCNvYpTZs2dXWnhyKhLNZWflPy4gzX2YFmU72NBqNAN+c+otqjGcOpgjbwyGUwQHbjzipIQEpNz03AyGUDFH3sQokyZNYtKkSeEWw3CCiEcrt1JJNMrNYDgBoqLnFklDp4boINrLjEO5UeKkVBJwuo1yMxhCJeKVm8vl4tChQ1FfWRnqD6UUhw4dwuVyhVuUE8ahjvfcHEa5GQwhE/HDkm3atGHXrl1E6tZchsjE5XLRpk2bcItxwug5tzjKHabnZjCcCBGv3OLj4yvtAGIwnAo4VDnlDifK4SLOUxJucQyGqCPihyUNhlMRB24QJ+WORKPcDIYTIOJ7bgbDqUiccuOReModDuKNcjMYQsYoN4MhAolTZXgc8XgknnhVGm5xDIaowyg3gyECiaMc5YjDQxwJyvTcDIZQMcrNYIhAnLhRjniUJJKI6bkZDKFilJvBEIHEq3I8jniU00WiGZY0GELGrJY0GCKQeMpRjniId5Eg5Sh3ebhFMhiiCqPcDIYIJJ5ylDMe4pMBKCk2p3EbDKFglJvBEGEopawFJfEQrw8sLSkqDLNUBkN0YZSbwRBhlJeX4xQFjngcRrkZDCeEUW4GQ4ThLtNL/5UzHkeCVm5lxQXhFMlgiDqMcjMYIoyyMr06UpwJOBIbAFBabHpuBkMoGOVmMEQY5aXWR9vOBJyJekFJWZHpuRkMoWCUm8EQYZSU6CNunPHxOF0pALhNz81gCAmj3AyGCKOsVA9LOuMSiXfpYcnyUqPcDIZQMMrNYIgwSkq9PbdE4izl5jE9N4MhJIxyMxgijDLrg21nfCKJSZZyMz03gyEkjHIzGCIMd4lWZA5XAxKTUgHwlJodSgyGUDDKzWCIMNxFRwFwuFJxpeiemzI9N4MhJIxyMxgiDO8QZJyrAcmuREpUHJiem8EQEka5GQwRRnlRPgCu5IbEOx0UkYiUGeVmMISCUW4GQ4ThVW7JqQ0BKBYXUlYUTpEMhqjDKDeDIcJwl+jdSBqkpgNQIi6k3PTcDIZQMMrNYIgwVInuuSVY37iVSiJxbtNzMxhCwSg3gyHCiCs+TB6p4NCvZ6kjCadRbgZDSBjlZjBEGIkluRxxpFfclzldxLuLwyeQwRCFnJRyE5GpIrJbRFZbv0tsdn8QkW0iskVELjx5UQ2GU4PE0kMUxjWquC93uIj3mJ6bwRAKcbUQxlNKqcftBiLSAxgH9ARaAZ+ISBellLsW4jMYYprU8lxyU7tW3HvikkkoLgmjRAZD9FFXw5KjgDeUUiVKqR+BbcCAOorLYIgZPOXltPAcoDilbYWZOy6JRGWGJQ2GUKgN5XariKwVkRdFxDuW0hrYaXOzyzIzGAzVsHfHNhKkHGeTThVmKi4JF0a5GQyhUKNyE5FPRGS9n98o4AWgE5AN7AWeCFUAEfm1iCwXkeUHDhwI1bvBEFPsz9kAQMM23SrMVHwySaoElAqXWAZD1FHjnJtS6vxgAhKRmcD/s253A21t1m0sM3/h/wv4F0C/fv3M22s4pSnevQ6Alp2yjhsmpOAQRXlpEXGJyWGSzGCILk52tWRL2+0VwHrregEwTkQSRaQD0BlYdjJxGQynAin7lrFTWtKwyfFRfEdCEgBFx/LDJZbBEHWc7GrJaSKSDSggB/gNgFJqg4i8CWwEyoHfmZWSBkP1KI+bdoVr2Zw2pNKwhySkAFBcmE9qo+bhEc5giDJOSrkppa6rxu5h4OGTCd9gOJXYvW0tbchHnXZmJXNnot6Gq6SoIBxiGQxRidmhxGCIEPat/RSAVlnnVjJ3uo733AwGQ3DUxkfcBoOhFpCdSzhIOqd16lnJPN5SbmXFJ99zO/TzHg7v/QF3aTEN0pqQ0bojrpSGJx2uwRBpGOVmMEQIrY+u5qeU3jRxVB5QibdOBygvLjyhcPfu2cHWD6bTfs8HtPPsIsNm51HCbkcz9ie251iDdjjT25DQqBWOeBfijAd3GVJeBOXFSHkxUlaEuEtQHg/K48ajFEoplPLgUeDxKJSILQbvswhYxgpBvP/F57/XLeANRrD9rzA7HkeFO1u0YjNwprclc+TNJ5R2hujFKDeDIQLYt+N7WqgD5LQZVMUuIcmr3ELruRWXlPDtnIfo/9O/OUeK2ZiYzZLWV5LYoiuOeBclRw/iPvQDrsNbyTj2A90PribpYGjbfHmU4EFQFWpJVfz36hqHhP8Ln5+6DKZd58xwi2GoR4xyMxgigF2rP6UF0LTnsCp2iclaublLgu+5/fTj9xx9bSLD3RvZkHomGVc8Qo9O2dV7Uoojufs5/PNuystK8JSX4YiLR+KTcMQnIQlJOBNScCS4iHM6cTodxDkEp0OIczhwOgSHQ3BIRXAAeABli0MpBShtphRKgcJT6Rt1baYqzBToHqLNHlURiuUeK2zvNez/cSO95p3PwTUfGeV2imGUm8EQAbhzviGfJNr3qLoFa2JyqnYTpHJbt3opLeddRVNK2HTmE/S88KbghBAhLaMFaRktgpa7huD8mdZK2MGSkXkGu+c1IyFnEfD7eo3bEF5ibrXkxm8/pKzU7KBuiC6a563kx6RMnHFV25suS7l5So/VGM5X3yym5X+vQsRB3rUf0j1YxRajOJwOctIH0qFgBZ6y0nCLY6hHYqrntidnC50/Gs/e/7Vgf+Zv6X7+RBqkpp14gErhLivhWHEx5eVuUG487nKUxw3WZLovvu3SKu1UoaJJKz62/lu6Xjsft1XsA/oMHGjgyEL3U0081W6JWMtxBRNPaDNAdZ9+x47k0t6zk29bXObXPslSbpRW33Nbsuwbui28FqfTgWPS+2Sc1rNa96cK8Z3Po8F377F+6Uf0GuI/jUOltLSUY0cOcqwwn+LiIigrQjxl+vR0cYI4QByIOBCHA3E4cTiciDhwOB04xDJzanuHOHE6nODUfpDQ+x3eYd4TQZ3ovqXiIC298Yn5rWNiSrm1PK0zq4c8R6Nv/0H/NX+mZPWDbErsxtEGHXA3aIkzIYly5UA8pTjLCnGU5uMsK8BZVkB8eSFx7iISPcdweY6RpIpIVkXEiYfUcD+YIabxHqWR0vlsv/bOuDhKVDyUBe65rVixjI7vX0OcQ4i/8X0atDGKzUvW8DEc/e5PlC6dBaEoN6Uo2reFn9Z/S95Pa0nI3UpayR7S3Lk0UkdIF0V6nUkdHXzn6Ub/h5aGWwy/xJRyE4eDPhdcizpvHFu+W8ihlfPJOLSSLrmLaJR7tJLbcuWgkCQKJZliRzIljiSOOZI5mtgUd1wy7vgUVHwDVEID4uPjEYcTHLpFphzOitaZvY3u2/ZRvibVNY58Wk7K51ps9jUFU9FxOKHW2Im14OQE/J2InxMUr4rHoDpXJ9iaPaG+aFIaZwwcEdC+SBKhzP9p3GtXL6ftgqtJcChkklFsvriSU1nZ4goG7p3D9lVf0KnPOQHdHtn3A7tWLMTzwxe0PLyMJp5DdAPcStjjbMWhxDbkJvVke0pzVHIGzsQUnIlJEOfCI3H6PVUewIMoD0q5weMB5UEpj/6EQnn0QpqKazfK47FWxbhBKRzK7fNJRSicoL8TiK/I1ezE4qoHYkq5eRGHg64DL4aBF1eYlZUWU1RcTLwo4uLjccYnk+Z0cBKDlgZDvVFCIo7yqj23jetW0vy/Y4h3ePBMfI/G7cyKQH/0HPdXDj79AQ3nT2JLyfN0GXAhSsGeHd/z8/pFeHIW0+rwclp59pIG5KpUNif1YWWrM2ncdQhde/ahbYPUSnt+GiKbmFRu/ohPcBGf4Aq3GAbDCVHqcOEsr9xzW7/mO5q+exWJ4qZ8wgKadOgdJukin7T0xhwYM5fUt8fR9aNrKP0wDlC0ETdtgKMqmW1JWWxrdS3pPc+jS+YAzkqID7fYhpPglFFuBkM0c9SRToOyQxX3a1d8TasF1+AQKJ0wn2ad+oRRuujg9F4DKGi3iiWfvIZn/0ZEBGdGe9I7n0mHHgPoG2+UWSxhlJvBEAUcTGhFr+KVAHz1/16hz3f3UuxIwj1xAc06mKHIYGmQmsagK34XbjEM9YBRbgZDFFCW1oGMY/9jxeOXMbTgC35I6EyTX75Nwxbtwy2awRCRxNxH3AZDLNJo4LUUKBfZ+V+ystW1nHb3F0axGQzVYHpuBkMUcEZ2H3Y3XU5JnNC3eZtwi2MwRDxGuRkMUULr1mYhusEQLGZY0mAwGAwxh1FuBoPBYIg55IQ3zKwDROQA8FMtBNUEOFgL4dQH0SQrRJe8Rta6I5rkjSZZIbrkrS1Z2ymlmtZCOBVElHKrLURkuVKqX7jlCIZokhWiS14ja90RTfJGk6wQXfJGsqxmWNJgMBgMMYdRbgaDwWCIOWJVuf0r3AKEQDTJCtElr5G17ogmeaNJVogueSNW1picczMYDAbDqU2s9twMBoPBcApjlJvBYDAYYo6YUm4icpGIbBGRbSJyf7jl8UVE2orI5yKyUUQ2iMgdlvlUEdktIqut3yXhlhVARHJEZJ0l03LLrLGI/E9Evrf+N4oAObva0m61iBwVkcmRlK4i8qKI/Cwi621mftNSNM9a5XitiPSNAFkfE5HNljz/FZF0y7y9iBTZ0nhGfcpajbwB815E/mCl7RYRuTACZJ1rkzNHRFZb5pGQtoHqrIgsu5VQSsXED3AC24GOQAKwBugRbrl8ZGwJ9LWuU4GtQA9gKnBPuOXzI28O0MTHbBpwv3V9P/BouOX0Uw72Ae0iKV2Bs4G+wPqa0hK4BPgQEGAQsDQCZB0BxFnXj9pkbW93F0Fp6zfvrfdtDZAIdLDqDGc4ZfWxfwJ4IILSNlCdFZFl1/6LpZ7bAGCbUuoHpVQp8AYwKswyVUIptVcptdK6zgc2Aa3DK1XIjAJetq5fBi4Pnyh+OQ/YrpSqjZ1uag2l1JdAro9xoLQcBbyiNEuAdBFpWS+C4l9WpdTHSqly63YJEDFHEwRI20CMAt5QSpUopX4EtqHrjnqhOllFRICrgdfrS56aqKbOisiyayeWlFtrYKftfhcRrDhEpD3QB1hqGd1qdeNfjIShPgsFfCwiK0Tk15ZZc6XUXut6H9A8PKIFZByVK4dITFcvgdIy0svyjejWuZcOIrJKRL4QkaHhEsoP/vI+ktN2KLBfKfW9zSxi0tanzor4shtLyi1qEJEGwDvAZKXUUeAFoBOQDexFD01EAkOUUn2Bi4HficjZdkulxyEi5lsSEUkALgPesowiNV2rEGlpGQgR+RNQDsyxjPYCpyml+gB3Af8RkYbhks9G1OS9jWuo3DCLmLT1U2dVEKllN5aU227AfuBVG8ssohCReHQhmaOUehdAKbVfKeVWSnmAmdTjMEl1KKV2W/9/Bv6Llmu/d5jB+v9z+CSswsXASqXUfojcdLURKC0jsiyLyCTgF8B4q0LDGt47ZF2vQM9hdQmbkBbV5H2kpm0ccCUw12sWKWnrr84iCspuLCm374DOItLBasGPAxaEWaZKWGPqs4BNSqknbeb2MekrgPW+fusbEUkRkVTvNXpBwXp0ml5vObsemB8eCf1SqeUbienqQ6C0XABMtFaeDQKO2IaAwoKIXATcC1ymlDpmM28qIk7ruiPQGfghPFIep5q8XwCME5FEEemAlndZfcvnh/OBzUqpXV6DSEjbQHUW0VB2w7WSpS5+6JU6W9EtnD+FWx4/8g1Bd9/XAqut3yXAq8A6y3wB0DICZO2IXlW2BtjgTU8gA/gU+B74BGgcblktuVKAQ0CazSxi0hWtdPcCZeh5iF8GSkv0SrPnrXK8DugXAbJuQ8+leMvtDMvtaKt8rAZWApdGSNoGzHvgT1babgEuDreslvls4GYft5GQtoHqrIgsu/af2X7LYDAYDDFHLA1LGgwGg8EAGOVmMBgMhhjEKDeDwWAwxBxGuRkMBoMh5jDKzWAwGAwxh1FuBoPBYIg5jHIzGAwGQ8zx/wFZWvlT5GkcWQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 4)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjrUlEQVR4nO2deXxVxdmAn/dmDyQsAdmCLMpOwr5YQMEPQUoRFRcsimit1VZb12oXLfrVfopYVyqtRXGhiitiXesSASsiCLKjIpFFZAmELGS/8/0xk3Bzc28WEnJvkvf5/W5yzsycmffMvGfe2c4ZMcagKIqiKE0BT6gFUBRFUZT6Qo2eoiiK0mRQo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJkCBujJyJdRcSISGSoZWnsiMgsEVlRT2nFichbInJYRH5bH2n6pZ8uIuPrIZ00EbkqiJ/qdgioLN/rs0xcOqcG8au3Z7ExICK/dXXJuyISfzxxhI3RU44PEZktIkUikuPzq3fjUgnjgVSgszFmTqmjM0ZdQyZVGOHKcHYNwv9URL4TkVwRWSIirSsJO1BE1ojIUfd/oI9fSxF5WkT2u9/sANcuF5EjIrJbRO7w8/8fEdnq4v5IRLoESL+1iBzwrdhFZKSI/EdEDjm/l0SkQw3uv8m8XOwaU2OrGVZE5D4RyXC/+0REKglfpR6JSA8RyReR53zcfu9X3+SJiFdE2jj/uSLytYhkO/2Y6RfnFBHZ6K79r4j09fPvLiL/dtcfFJGyesPVIclAb2BCdfLFnzozetqKDSmLjTHNfX5zqr6k3mgNpBtjckItSG1wFUrIG4ki0g/4O3AZ0A44CvwtSNho4HXgOaAV8DTwunMHeBCIB7oCw4HLROQKnyj+BSzDluEZwC9F5BwXdxvgVeAO578aWBxAjPuALX5urYB/uHS7ANnAU9W4/bAkjOq+q4FzgQHYhuYU4BeBAtZAj+YBn/s6GGP+4lvfYMs4zRhz0AXJdWm3AC4HHhaRH7l0ewCLgGuAlsAbwNLSPHS6+R/gQ6A91sCVGVyXfi6wA0iqRp5UoFYPsWut3yYi64FcEYl0rbj/ikimiHzp20pxrZb/E5FVIpIlIq8Ha6WKyBUissVZ+29F5Bd+/lNFZJ2LZ7uInO3cW4jIAhHZKyJ7ROTPIhJRxX2cIiIfutbRQRFZJCItffwOichgd97RtU7HuvNzRGSTu980Eenjlz+3iMh6sa3lxSISW/OcrjkicrvLl2wR2Swi5wUJJyLyoNiWfpaIbBCR/s4vxrXadorIPhGZLyJxNRQlEvBWIWuSiLzh0v/clZlvz8CIyDWu9ZgpIvNEbAu2srLzYZjLg8Mi8lRpGYhIK9eiPOD8/i0iyT7pponIPSLyCbZS6F7FvXYRkU9cnr/nDIMvM1xeHhSRP1QRVzBmAG8YY5a5hsQdwPkikhAg7Fhs/j9kjCkwxjwCCHCm858CzDHGHDXGpAMLgCt9ru8KLDLGlBhjtgMrgH7O73xgkzHmJWNMPjAbGCAivUsvdhVdf/wMmjHmbXddljHmKPAYMOp4MkNEuonIMpfn7zvdeC5I2Gnumezv43yliHzv6otbfMIOF5FPnb7tFZHH5FhjoVQnfyUiXwNfV0PU8YH01ye+uU4Hd4jIpBpmQymXAw8YY3YbY/YADwCzgoStUo9EZDqQCXwQLEF3HzOxDSoAjDF/MsZsNcZ4jTGfAcuB05z3RGC5MWaFMaYYazA7YRtVOHm/N8b81RiTa4zJN8asD5C0F6vbNccYc9w/IB1YB3QG4pzwGcCPsQb1LHfe1oVPA/ZgH4RmwCvAc86vK2CASHc+GTgF+5Cega10Bju/4cARF7/Hpdvb+b2GbcE0A04CVgG/qOI+TnVxxQBtsa3bh3z8fw5sxraK3wXmOvee2FbNWUAU8FvgGyDaJ39WAR2xreEtwDVBZBiNVbBgv9FBrptdmod+7he6dD3AxU7ODs5vFrDCHU8E1mBbXQL08Qn3ILDUyZ6AbZX9Xw30Iwp4NpB8fuFecL94oC+wq1Q+52+AfzsZTwYOAGdXs+zSgY1YHW0NfAL82fklAdNcugnAS8ASn2vTgJ3Yij4SiKrkHtKA7U4n4tz5vX66/YTzGwAUAH2CxFVZeb8O3ObnlgMMCRD2RuBtP7d/Aze744PAcB+/PwCHfc7/AtzryrEXsBsY5vweBh73i3sjMM0dRwBfAEN89S3IPd0ArDzOOuhTYC4QjX2GsghQpwBXYJ/NU/38nsfWFSlOr8Y7/yHASHdtV+yze4OfTv7H6VRcFTJWpr+zgCJsHRMBXAt8D0iwOqKSdI4AI3zOhwLZx6NHQCLwFbanNZsgzzBwuruueRD/OGCvz/1eB7zl4x8B5AO/cedPYuuMt51+pgEpAeJ92pVddI115ngUzSfhdOBKn/PbgGf9wrwLXO6O03AVgTvvCxS6Gy9T0CBpLfHJmL8DDwYI0w5bmcT5uF0CfFTD+zoXWOvnthTYAKwHYpzbHcCLPmE8WKM+1id/LvXxnwPMr02eB5B1tsvDTJ9fxwDh1gFT3fEsjhm9M51yjwQ8PuEFayhP8XE7DdhRTbkGYh/mfbiKJki4CBeul4/bn6lo9Eb7nL8I3F6dsnNlcI3P+Y+B7ZXIfNjnPA24u5r3mwb80ef8l8A77rhUt5N9/FcB04+jvD/Ar+Hkq3N+7ncAL/i5LQJmu+PnsEOUCdjGw3agwCfsj7CGotjJf5eP3wJ8nmXn9gkwyx3fiDOKVGL0sMNwh4Axx5EXJzvZ4n3cnqOi0bsF22j1zf9Sv94+bnOABUHSugF4zU8nz6ymnEH11+XNNz5+8S58++PIjxK/++nh4gpkQCvVI2yj5jZ3PJvgRm8BsLASmZ4G3imVATsXl4sdhYh2OuoFfuf838PWB5Oc/63At/gZN2yH6AcXdmhN8qku5ih2+Rx3AS50XfhMEcnEtk46BAn/HbYV6T8MhIhMEpGVbmgxE1tZlYbrjH1A/eni4tvrk/7fsT2+oIhIOxF5QexwaBb2wfGX6QlsD/VRY0yBc+vo7gEAY4zX3V8nn+t+8Dk+CjSvTJbj5EVjTEuf3/ciMlPs8G9pPvQnQD4bYz7EDi/NA/aLyD9EJBHba4oH1vjE8Y5zrxJjzDpsZfoptsIIRltsa9pXL3YFCBcwH6tZdv4619FdGy8ifxc7mZ+F7SW2lPLD4YFkCUZVZV0XupCDbYX7koidF6tp2F8DedjhudexLefdYBegYMv7biAW+8xNFJFfVhW3iHR0cVc6hCt2RePb2Mbs8srCBqEjcMjYIdJSApXXrcA8Y8zuAH7BdKOnG+7+wenGX6hcr6qisrIv8/O5l7rQjUQgxzgrUUXY0vDZYhc7jceO9ARF7OrJC/EZ2vTzvx9b71xUKoMxZit2GPYxbA+wDbZBUlo2edgG0tvGmEJsLz4JOwLly2+wc42JxpjVlcnpT10YPd8M3YXt6flWwM2MMff6hOnsc3wy1lIf9HFDRGKwQ59zgXbGmJbAW9jeR2k6pwSQZRe2p9fGJ/1EY0y/AGF9+Yu7jxRjTCJwqU9aiEhz4CFsq2a2HJuH/B5raEvDibu/PVWkVwERGSPlV0T5/8bUIK4uWCN9HZDk8m+j7z35Yox5xBgzBNvz7omtJA5iFbCfT162MHbiuloYO9fztos3GAewrfVkH7fOQcIGotKyCxDfydhyA7gZO2w3wl17unP3vT5QhRFKNmGHRwG70g07tPtVkLCpfvNHqc4dY8whY8wMY0x794x4sD1QsPOXJcaYZ4wxxc5gvIBtfAaSoxn2mdyEnX7oAGwWkR+wvYbhzoBEuPBdgPeB/zXGPHucebEXaC3ll64H0p0JwB9FZFoAv2C68TiwFejhdOP3VNSrsNYNd7ypOmH99Ggstie805XfLcA0EfnCL47zsL30NP/IReQubG9tgjEmy9fPGPOyMaa/MSYJ+JNLq3SxzHqql699sCMpedUIW466Xo32HDBFRCaKSISIxIrIWN/FAcClItLXKerdwMvGmBK/eKKxBXAAKHYTu77LUxcAV4hdMu0RkU4i0tsYsxfbPX5ARBKd3ykickYVcidgWz5HRKQTttL35WFgtTHmKuBNYL5zfxGY7OSIwlaiBcB/q8oof4wxy035FZj+v5q0hJthFecA2EVB2BZXBURkmIiMcPLnYsfXva7X+gTwoIic5MJ2EpGJPtcaqXo5dQG2PAPiyv5VbGMiXuxCiJnBwgegqrID+JWIJLvGyh84tsowAWvYM53fn2qQbqhYhH3GxjhDczfwqjEmUE8vDTvk9Wuxi5Kuc+4fQtkioCT3rE7Crv77swvzlQ0iP3XPUXvs3HDpooLXgP5iF4fEAncC611L/m1sRTbQ/e4E1gIDjTElrpw+BB4zxpQ+S2WIfXctvaqMMMZ8h101OltEokXkNOziHH82AWcD88StPvXhDqd3/bDzfr66kQXkOJ28tip5woBngJvcc9oRWx8tDBK2Mj36B7YBM9D95mPrvYl+cVwOPOPfkxSR3wE/xc6PZvgnLCJDnM61dWktdXoD1oaMFJHxroF0A7YB7r8COApbt9SYOjV6xphdwFRsq+gAtud1q186z2IL4gfssMmvA8ST7dxfBA5jM3Cpj/8qrII+iJ28/ZhjPa6Z2Ep2s7v2ZcoPrwbiLmCwi+tNbCUM2FWi2AemVOlvAgaLyAxjzDZsz+JRbMFMAaa4bnnIMMZsxq7c+hQ7p5aCnW8JRCLWuB3GDu9kAPc7v9uwczor3RDP+9ieESLSGTtMtqEKcbxUrWfXYZc3/4DVj+epvkIHLTsf/oVtDH2LHRYvrdgfwk60HwRWYofzQk5lPXtjzCbscu9FwH5s5fxLn2vfFpHfu7CF2DnOmdi53iuBc330cwi2/LKB/wNmuPhxrfPzsXNzh7FzwhtxeWeMOYBdBHSP8x8BTHd+BcaYH0p/2LIpcscAV2F7krN9RzN8brMzwfXVnxnYueYMJ9tiAuiOMeZL4CfAE1J+deTHWB3/ALtA7T3nfgu23snGPh+BXseoV0pHgyoJ8nfsYrMN2LJ607mVXl+mV5XpkbGreX3LLwfId2VeGlcn7HqAZwLI8Rdsr/kbn/L9vY//w1h93IbVnZ+XevjUqfOd31TgnAB1agRVrAoPhpiAw70nBhFJw06I/rPeElVOCCJyKXbo83dVhJuAbb31NsYcqmbc92En8i+vvaRKQ0NE3sPO8/m37qtz7WJgqzGmIfTaleNA7CtJm4GrjDFv1fT6kL9sqzRMjDHPVWXwHGnYpd2bxOc9KF9EpLeIpIplOPAz7PCZ0gQxxkyorsFzw/OnuCHYs7E9gyUnVEAlZLg6ZCu2hx70/cHKCJcvCZxwRGQ+ttvsz3PGmGvqW56mghuWmFFFsATskGZH7HDsA9jVhGFFJUNLk45z9aFSe9pjh7STsCsArzXGrK1PAdyQ4duB/Gqy8EupGmPMXOwCx+OmXoc3FUVRFCWU6PCmoiiK0mQIq+HNNm3amK5du4ZaDEVRFKUeWbNmzUFjTLU+fFFbwsrode3aldWra/RyvaIoitLAEZHvqg5VN+jwpqIoitJkUKOnKGGM16sLzRSlLlGjpyhhyhfbv2fu3b/hny+/EWpRFKXREFZzeoEoKipi9+7d5Ofnh1oUpQERGxtLcnIyUVFRoRbluNn12mx+y2IObniNXaePovNJAfdbVhSlBoS90du9ezcJCQl07dqV8h+LV5TAGGPIyMhg9+7ddOvWLdTiHBdZR/MZkf0ehZ4Y2pBF2n9fo/O5Pwu1WIrS4An74c38/HySkpLU4CnVRkRISkpq0KMD3276nPZymG+H/Yl8ojHpK0ItkqI0CsLe6AFq8JQa09B15vA3dlu79qlnsiOuP8lZ60IrkKI0EhqE0VOUpkbE3rVkE0/Ljr3IadmbziW7KCwsCrVYitLgUaNXDUSEm2++uex87ty5zJ49O3QCVUFaWhr//W+N97Etx9lnn03Lli35yU9+UkdSKTWhbc5Wvo/rBR4PEe36ECtFfJ9e4512FEXxQ41eNYiJieHVV1/l4MGDdRqvMQav97j2QayUujB6t956K88++2wdSaTUhKLiEjqV7CGvxSkAJJ6cAkDGjqr261UUpSrU6FWDyMhIrr76ah588MEKfgcOHGDatGkMGzaMYcOG8ckndsPn2bNnM3fusR0w+vfvT3p6Ounp6fTq1YuZM2fSv39/du3axa233kr//v1JSUlh8WK7QXNaWhpjx47lggsuoHfv3syYMYNAO2I88sgj9O3bl9TUVKZPn056ejrz58/nwQcfZODAgSxfvrxSGS+77DJOO+00evTowRNPPFEW7//8z/+QkJBQab689NJL9O/fnwEDBnD66acDduHRFVdcQUpKCoMGDeKjjz4CYOHChZx77rmcddZZdO3alccee4y//vWvDBo0iJEjR3LokN1f9oknnmDYsGEMGDCAadOmcfTo0Qrpjhw5kk2bNpWdjx07tlF9vm7fvh9IlKPQyq487XjqAAAK9m6q7DJFUapB2L+y4Mtdb2xi8/dZdRpn346J/GlKvyrD/epXvyI1NZXf/va35dx/85vfcOONNzJ69Gh27tzJxIkT2bKl8mGor7/+mqeffpqRI0fyyiuvsG7dOr788ksOHjzIsGHDygzI2rVr2bRpEx07dmTUqFF88sknjB49ulxc9957Lzt27CAmJobMzExatmzJNddcQ/PmzbnlFrtn609/+tOgMq5fv56VK1eSm5vLoEGDmDx5Mh07dqxW3t199928++67dOrUiczMTADmzZuHiLBhwwa2bt3KhAkT+OqrrwDYuHEja9euJT8/n1NPPZX77ruPtWvXcuONN/LMM89www03cP755/Pzn/8cgD/+8Y8sWLCA66+/vly6F198MS+++CJ33XUXe/fuZe/evQwdOrRaMjcEDu7aRjIQ2+5UAOITW3OIRCSz3j5PqCiNllr39ETkehHZKiKbRGSOcztLRNaIyAb3/8zaixpaEhMTmTlzJo888kg59/fff5/rrruOgQMHcs4555CVlUVOTrC9Ri1dunRh5MiRAKxYsYJLLrmEiIgI2rVrxxlnnMHnn38OwPDhw0lOTsbj8TBw4EDS09MrxJWamsqMGTN47rnniIwM3IapTMapU6cSFxdHmzZtGDduHKtWrap2nowaNYpZs2bxxBNPUFJSUnY/l15q9+rt3bs3Xbp0KTN648aNIyEhgbZt29KiRQumTJkCQEpKStm9bdy4kTFjxpCSksKiRYvK9ehKueiii3j55ZcBePHFF7nggguqLXNDIHfv1wC0Su5Z5pYR2Z5med+HSiRFaTTUqqcnIuOAqcAAY0yBiJzkvA4CU4wx34tIf+BdoFPtRKVaPbITyQ033MDgwYO54ooryty8Xi8rV64kNja2XNjIyMhy83W+74w1a9asWunFxMSUHUdERFBcXFwhzJtvvsmyZct44403uOeee9iwoeK8TzAZoeLS/pos9Z8/fz6fffYZb775JkOGDGHNmjWVhve9H4/HU3bu8XjK7m3WrFksWbKEAQMGsHDhQtLS0irE06lTJ5KSkli/fj2LFy9m/vz51Za5IVBy6FsA2nTuVeaWE9eRNjnbQiWSojQaatvTuxa41xhTAGCM2e/+rzXGlDZLNwFxIhITJI4GQ+vWrbnoootYsGBBmduECRN49NFHy87XrVsH2G2SvvjiCwC++OILduzYETDOMWPGsHjxYkpKSjhw4ADLli1j+PDh1ZLH6/Wya9cuxo0bx3333ceRI0fIyckhISGB7OzsKmUEeP3118nPzycjI4O0tDSGDRtWrbQBtm/fzogRI7j77rtp27Ytu3btYsyYMSxatAiAr776ip07d9KrV68qYjpGdnY2HTp0oKioqCyeQFx88cXMmTOHI0eOkJqaWu34GwKRR74jQ1oREXOscVTYvBMneQ+W9agVRTk+amv0egJjROQzEflYRALVmNOAL0oNoz8icrWIrBaR1QcOHKilOCeem2++udwqzkceeYTVq1eTmppK3759y3od06ZN49ChQ/Tr14/HHnuMnj17BozvvPPOIzU1lQEDBnDmmWcyZ84c2rdvXy1ZSkpKuPTSS8sWjfz617+mZcuWTJkyhddee61sIUswGcEOj44bN46RI0dyxx13lM3njRkzhgsvvJAPPviA5ORk3n33XQDuvPNOli5dCtgVnikpKfTv358f/ehHDBgwgF/+8pd4vV5SUlK4+OKLWbhwYbkeXlX87//+LyNGjGDUqFH07t27zH3p0qXceeedZecXXHABL7zwAhdddFG1424oxOft5XBUu/KOLbsQI0Uc2rc7NEIpSiNBAq0ILBdA5H0gUC38B+Ae4CPg18AwYDHQ3bhIRaQfsBSYYIzZXpUwQ4cONf6r8LZs2UKfPn2qvhOlxsyePbvcgpfGRkPVnR139Se7eTdSbz62u8KXH77AgGW/YNtPXqHX0PEhlE5R6h4RWWOMqZfVaFXO6Rljgj5hInIt8KozcqtExAu0AQ6ISDLwGjCzOgZPURT77mZr7yEOxY8s557QvjsAufsCD5MrilI9avvKwhJgHPCRiPQEooGDItISeBO43RjzSS3TUE4Q4fxVmaZK5pEsWkkupnn5wZU2nezrC4UZO0MhlqI0Gmo7p/ck0F1ENgIvAJe7Xt91wKnAnSKyzv1OqiwiRVHg8P5dAES27FDOPbFFa46YZniy94RCLEVpNNSqp2eMKQQuDeD+Z+DPtYlbUZoi2Qes0YttVfENn4yINsTk6rt6ilIb9DNkihJG5B2yPbmEtp0r+B2Jbk9Cwb76FklRGhVq9BQljCg+YntyrdqfXMEvL74DSSX761skRWlUqNGrJkuWLEFE2Lp1a9Aw6enp9O/f/4TKsW7dOt56661axXHllVdy0kknnXBZleMg+wcKTSTxiW0qeHkTOtKCHAqPZge4UFGU6qBGr5o8//zzjB49mueffz6gf6BPhNWU6nxtoy6M3qxZs3jnnXdqFYdyYojIO0SmpwUE+BxcREs75Hlo77f1LZaiNBrU6FWDnJwcVqxYwYIFC3jhhRfK3NPS0hgzZgznnHMOffv2BazxmzFjBn369OGCCy4o2xrngw8+YNCgQaSkpHDllVdSUGA/UNO1a1duu+02Bg8ezEsvvVQuXf+tewoLC7nzzjtZvHgxAwcOZPHixeTm5nLllVcyfPhwBg0axOuvvw7YrXymTp3K2LFj6dGjB3fddVdZvKeffjqtW7eu9J4//vhjBg4cyMCBAxk0aBDZ2dkYY4Jug3TGGWcwdepUunfvzu23386iRYsYPnw4KSkpbN9uX9N84403GDFiBIMGDWL8+PHs21dxfmr69Om8+eabZeezZs0q+7h0UyC6MJOciBYB/eLadgEg6wd9V09RjpcGtbUQb98OP9TxRprtU2DSvZUGef311zn77LPp2bMnSUlJrFmzhiFDhgD2u5obN26kW7dupKens23bNhYsWMCoUaO48sor+dvf/sZ1113HrFmz+OCDD+jZsyczZ87k8ccf54YbbgAgKSmp7Dudvvhv3RMdHc3dd9/N6tWreeyxxwD4/e9/z5lnnsmTTz5JZmYmw4cPZ/x4+z2BVatWsXHjRuLj4xk2bBiTJ0+u9hY8c+fOZd68eYwaNYqcnBxiY2N59dVXg26D9OWXX7JlyxZat25N9+7dueqqq1i1ahUPP/wwjz76KA899BCjR49m5cqViAj//Oc/mTNnDg888EC5dEu3DZo8eTKFhYV88MEHPP7449WSuTEQV5xJfmRgo5fYzu6vd/SgvqunKMeL9vSqwfPPP8/06dMB2xPxHeIcPnw43bp1Kzvv3Lkzo0aNAuDSSy9lxYoVbNu2jW7dupV9f/Pyyy9n2bJlZddcfPHFAdMNtHWPP++99x733nsvAwcOZOzYseTn57Nzp60UzzrrLJKSkoiLi+P8889nxYoV1b7nUaNGcdNNN/HII4+QmZlJZGRkpdsgDRs2jA4dOhATE8Mpp5zChAkTgPLbBu3evZuJEyeSkpLC/fffH3DboEmTJvHRRx9RUFDA22+/zemnn05cXFy15W7oNCs5QkF0q4B+bTt2xWuEksNq9BTleGlYPb0qemQngkOHDvHhhx+yYcMGRISSkhJEhPvvvx+ouE3Q8WzVE2yroeps3WOM4ZVXXqmwk8Fnn31Wq22Dbr/9diZPnsxbb73FqFGjyj44HYzqbBt0/fXXc9NNN3HOOeeQlpYW8IswsbGxjB07lnfffZfFixeXNTaaCi28WRyIDTz0nNAsnn20xJOlL6gryvGiPb0qePnll7nsssv47rvvSE9PZ9euXXTr1o3ly5cHDL9z504+/fRTAP71r38xevRoevXqRXp6Ot988w0Azz77LGeccUaVaQfausd/26CJEyfy6KOPUvrh8LVr15b5/ec//+HQoUPk5eWxZMmSsh5oddi+fTspKSncdtttDBs2jK1bt9ZqGySAI0eO0KmTfen66aefDhru4osv5qmnnmL58uWcffbZ1Y6/oZOXX0giuRAXuKcHkBF5ErF5P9SjVIrSuFCjVwXPP/885513Xjm3adOmBV3F2atXL+bNm0efPn04fPgw1157LbGxsTz11FNceOGFpKSk4PF4uOaaa6pMO9DWPePGjWPz5s1lC1nuuOMOioqKSE1NpV+/ftxxxx1l1w8fPpxp06aRmprKtGnTyubzLrnkEk477TS2bdtGcnJy2f6A8+fPL9t26KGHHqJ///6kpqYSFRXFpEmTarUNEthvfV544YUMGTKENm2OLclfvXo1V111Vdn5hAkT+Pjjjxk/fjzR0dHVjr+hk3l4Px4xeJolBQ2TFd2exEI1eopyvFS5tVB9olsL1R0LFy4st+ClKdLQdOerTWvo+dKZfDniAQZMuipgmI8fvZoRGa8R+6f9AV9rUJSGSH1uLaQ9PUUJE/Iy7ddWYlu0DRrGm5hMLIUUZYf/hsuKEo6o0WukzJo1q0n38hoi+Ues0YtvEXxDkshW7gX173WLSkU5HhqE0QunIVilYdAQdaY4JwOAhNbtgoaJP6krANn7vqsPkRSl0RH2Ri82NpaMjIwGWYkpocEYQ0ZGBrGxsaEWpUZ4c6s2ei3b23dC8zPU6CnK8RD27+klJyeze/duDhzQOQyl+sTGxpKcnBxqMWpERP4h8kw0cTGB39sEOKldR/JNFCWZu+pRMkVpPIS90YuKiir3xRNFaaxEFGSSLQlU9v2ZhLho0mlDRLZuJqsox0OthzdF5HoR2Soim0Rkjp/fySKSIyK31DYdRWnsRBZlk+eJrzLcociTiDuqRk9Rjoda9fREZBwwFRhgjCkQEf9lZ38F3q5NGorSVIguyiY/onmV4fLiO9A55/N6kEhRGh+1Hd68FrjXGFMAYIwp29ZZRM4FdgC5tUxDUZoEMSW5FES3rDKcN7EzSVnvUlJwlIiYqnuGpexI386Bz1/DHNhGvKcIT0I7ok7qSVy34bQ9uQ+x0WE/26Eotaa2Wt4TGCMi9wD5wC3GmM9FpDlwG3AWUOnQpohcDVwNcPLJJ9dSHEVpuMR5c8iJ6lxluIh2vfHsMezdsYEOvUdUGf5wVg5fPnsbp+1fTDcpIsfEkUc0rfdmEfG1gU8g0zRja9Qp5LTsTXTH/kS3SiYysR0RsQlERHiIiIgk0gPGW0xJcQklxUUUlxTjLbHHJSXFeEusn5hiMF487r+YqjdHtlT8wkz5j85U8QWaIF+oadamM70GVv+7s0rjpkqjJyLvA4E+sPgHd31rYCQwDHhRRLoDs4EHjTE5VX3Z3xjzD+AfYD9DVhPhFaUxEW+OUhKVUGW4hM794QvITF9fpdHbfzCD7/82hbHeTaxvM4m2E2+j/akDiPIa9hzO5fB3GyjetZrIvV+QkLmFXgeXEHfwxbq6pbCgyERwuMt2WrUK/iFvpelQpdEzxowP5ici1wKvGvsS3SoR8QJtgBHABW5hS0vAKyL5xhj9RIiiBMAYQ3NzFBOTWGXYDt37UWQiKPxhc6XhDmcf5fvHp9K/ZAs7zniI1DOvKPOL8cDJbRM5ue0oGHqsF+QtLmb3d9s4mrGH4ux9mMKjeL1evCUleI3BeCLweCLxRETiiYggIqL0ONIdRyCeSIwnAiQCIxHg8eC7Zi5gy9bvPVxTIVTFq3wvCda0PvTFEobtXEBO5gE1egpQ++HNJcA44CMR6QlEAweNMWNKA4jIbCBHDZ6iBCf3aC7NpQhiqzZ6SYnN+VY6EJWxLWiYEq/hP0/czkUlG/h61Bx6+Bi8yvBERpJ8Sj84pV+1ZQ9nsn/YDjuhIDcz1KIoYUJtX1l4EuguIhuBF4DLjX46RVFqTO6RQwB4YltUGVZE2B/XnaTcr4OGef3ttzjvyHN813ESPSb8os7kbGhExtveXVHu4RBLooQLterpGWMKgUurCDO7NmkoSlMgN8tWypHxLasVPqfNQNrtWkZ+xi5ik8ovftm1L4PUVbeSHdmKky/9W12L2qCIbNYSgCLt6SmOsP/2pqI0BfJzbE8vqlnVPT2AxF5nALBz3Ufl3I0xbHz2Zk6VPTD1b0h867oVtIER3cz29Lx5R0IsiRIuqNFTlDCgIMf29KKbV89I9Rk8ihwTS/5XH5RzT3vnJSblvMbWk39K69SJdS5nQyOmuRo9pTxq9BQlDCgdfotr3rJa4RPj41gTO4Iu+z+EkiIA9u7dQ5+Vt7MnMpmeM+aeIEkbFnEJbsVmvho9xaJGT1HCgJKjmQDEJVZ/OLK47zRamCzSP36WvLx89i2cSWuO4Jn2TzyV7NTQlIiPjyffRCEFavQUixo9RQkDvPlZADSrgdEbMfESNtONNsv+wO65oxhYsJqNA/5Ahz6nnSgxGxwxkR6yicdTkB1qUZQwQY2eooQB4irlmPiq39MrpXlsNEfPXchm042I4qOsG3Ivg8+/6USJ2CAREXJoRmRRVqhFUcKERvWFWW9JCQf2phMb15wWScF3n1aUcMNTkEUOcTSPqNkjOXTgQIpSVmAMREdqGzYQuZ5mRBVpT0+xNKqnJPvIIdr9czBb3vl7qEVRlBoRUZRNLtXfMcGXqAiPGrxKyPM0I7pYjZ5iaVRPSmLLJApMFOT8EGpRFKVGRBbnVGsDWaXmFEQkEFOcE2oxlDChURk98XjI8LQiKnd/1YEVJYyIKj5KgRq9E0JhVHPivGr0FEujMnoAWRFJxBYcCLUYilIjokqOUuiJC7UYjZKS6ETivLqXtWJpdEYvN7oNzYsyQi2GotSIGO9RiiL13boTgTc6kVgKobgg1KIoYUCjM3qFcW1p5T0UajEUpUbEePMoVqN3YijduSJfX1tQGqHR8zZrRyK5FOXrcIbScIgzeZSo0TshiDN6he6rN0rTptEZvYjEDgAc2rcrxJIoSvWJM/l4o9TonQgi4q3RO3pEpz2URmj0mrXpBMChH3aGWBJFqR6muJAYKYJoNXongii3p15ejm4kqzRCo9eyfVcAsvenh1QORaku+blurikmIbSCNFJK99QryNa5fqURGr22nXsCUHJwR4glUZTqkZdrdwDQnRFODKU7VxTq7ukKdWD0ROR6EdkqIptEZI6Pe6qIfOrcN4hIbG3Tqg6xzRLJoAURWd/VR3KKUmsKcmxPT2Kr/7FppfrEJ1ijV6wLWRRq+cFpERkHTAUGGGMKROQk5x4JPAdcZoz5UkSSgKJaS1tNDkR2IP7onvpKTlFqRf5R29OLjNXhzRNB88QWlBjBm5dZd5F6S+x/T0TdxanUC7XdZeFa4F5jTAGAMab0+18TgPXGmC+de70um8qO60Ryzobjvt54vXyzeQ0ZW5YRcXgHFOYgGIhuholrhcS3ITqxDbEtTqJ5q3YktmlPs8Q2SA2/kK8oAIVHbU8vMk6N3okgMS6GbOJr9Z5efn4eX7z9FAlfvUrnvK20xH7AOotmZEe0IifmJIqadUBadCKmdWcST+pCqw7diGqVDHGtQKSubkepJbWtpXsCY0TkHiAfuMUY87lzNyLyLtAWeMEYMydQBCJyNXA1wMknn1xLcSyFCSdzUtaHlBQVEhEVXe3rioqL+ez1+XTaOJ8eZhc9gAITSa7EYfAQb/KIk8KA13qNkC3xFBFFsURSTCTFEgWINZgYxP0wpszNU+pncOdeACp7RIzPkSnvAFJ6rdj/UuYcJI6qHJVKCZC/5cqkgkfFbG5nCkEgugZ76SnVJz46gt3EI/nHt3v6pjXLif/3tfzI7GK3tGdLi9Mpad4BMJijh4jKO0DzvP0k5X7KSfsPEyHlSzifaA56kiiSGFcDeDBia4PSuqBcHeEU6JgbCF7E2Hilgp9/3YLzP/FsiejJ6Xe8Wy9p1RVVGj0ReR9oH8DrD+761sBIYBjwooh0d+6jndtR4AMRWWOM+cA/EmPMP4B/AAwdOrROSioyqRsR3xv27PyKTqf0r9Y16d9u48i/rmJ08Xq+i+zKmt5/pOPQn9AuuQetI202eb2GIzlZ5BzaT07mfo5m7qPgyAGKcw7C0QwiCzKhpBDxFiHeYiK8hRhjsJZIMOKmUEUAj/0vUuZvp1gFI06djX8FaRAE8ViTJs7AecQeG2PNoNcLXsB4jT034C17YOSYCA4pdx6uLdLwtMgGl+8GjDGIKwuPHPMvLUePa4WUlpttoAgeAW9sKwb0Hx6am2jkiAi50gxPYc23F1r1/iv0W34tuZ7mbD59Pn3GXkRykCHN4hIvezNz2LdnJ5n70inI2EVkzvfE5u0jvmA/Hm8RYrzgDJjgdXWCM1NlrVRnEKXU3d/NNo/dzdnjUvfS+qQ0fA2oNHQQz9yYzjVKIxyo0ugZY8YH8xORa4FXja3ZV4mIF2gD7AaWGWMOunBvAYOBCkbvRNCyaypsgP3b11bL6G1a9yltl1xCW/LYMOTP9J/8S7oEUGyPR2iR2IIWiS2AHidAckVRTgQFEc2Jr+Hu6evXrKD/8ms5ENWBVr/4N33bVl7BR0Z4SE5KJDmpP1C9xrZS/9R29eYSYByAiPQEooGDwLtAiojEu0UtZwCba5lWtUnuORivEQp2r68y7I6v1tNpyQWICFkz3iFlyvWITk4rSqOiMDKBqKLqby905PAhkt64glxPc1r94t8kVmHwlIZDbY3ek0B3EdkIvABcbiyHgb8CnwPrgC+MMW/WMq1q0yyhBbs9HYjJ2FJpuH0ZGZQ8fykCFM/8Nx16DKofARVFqVdKohOILam+0dv07E10MAfImvJPNXiNjFotZDHGFAKXBvF7DvvaQkjYH9+Djke3BvUvLi7hm3/MYqR3J7smP0vXbv3qUTpFUeoTE9OCZtnVM3obPvuQHx16jVUdpjN88JknWDKlvml0X2QpJa/9UDqafWTuDfxlluXPzmZUwTK29buBrsOn1LN0iqLUJ95mbUjgKEUFRysPaAy8/ycOk0jKjPvqRzilXmm0Rq91P9tC2/nFOxX81i9byunpj7Ih8Qz6Xvin+hZNUZT6JqEjAEf2Vf4h+q8+XUpK0Xq+7n0tcQkt60Ewpb5ptEavR8pIMkjEbCtv9Pbt/JrOH/6KXRHJnPrzZ/SlUUVpAkS3sruvZO2v3OjJsjl8Txv6n/Ob+hBLCQGN1uhFR0WysfVE+h5ZTs7hHwAoyM3k6NMXEmmK8FyySFtyitJEaH6S/fBF7sHg+2x+v+m/9MjfyNaulxEfrx//bqw0WqMHcNK4X+DBy45/3UTewe/47pHJdC7+jq1jHuPkHgNCLZ6iKPVEm47dACg8FNzoHXj/r+SYOFJ+8qv6EksJAY3a6PVJGcZHbS8l5cCbxD2WSpf8rawcdB/Dxl8QatEURalHklolkWPi8GZ9H9D/8A/p9D30IWvbTKFtm7b1LJ1SnzT6LySfcc3DvP/6ALwHv6b9adMZnTo41CIpilLPeDzCfk8bYnJ2B/Tf/u+/MggvyWffWM+SKfVNozd6UZERjJ/281CLoShKiMmI7UKHvPQK7vm5WfTY/QpfNBvDsB59618wpV5p1MObiqIopRxNPIX2xd9jigvKuW94az4tyCF2zHUhkkypT9ToKYrSJJCTehMpXjJ2Hvs8obekhA6bn2JbZE/6jzgrhNIp9YUaPUVRmgStuqQA8MPXa8rcNnz0Isnme7IHXo14tDpsCmgpK4rSJDil31ByTCxF334KgPF6ifzsMfaRxIAJM0MsnVJfqNFTFKVJEB8Xx7bofpx04BMwhg0fv0q/oo181/sqoqJjQi2eUk+o0VMUpcmQdcpkOnm/Z/tHz5C07PfskXYMPO+mUIul1CNq9BRFaTIMOPtn7KIdpyz7NW29B8meNI/omNhQi6XUI43+PT1FUZRSWrdsyb6LX+HjFc/QbsgUeg8+PdQiKfWMGj1FUZoUffqk0KfP/aEWQwkROrypKIqiNBnU6CmKoihNBjHGhFqGMkTkAPBdHUTVBjhYB/HUBw1JVmhY8qqsJ46GJG9DkhUalrx1JWsXY0y9bG8RVkavrhCR1caYoaGWozo0JFmhYcmrsp44GpK8DUlWaFjyNiRZS9HhTUVRFKXJoEZPURRFaTI0VqP3j1ALUAMakqzQsORVWU8cDUnehiQrNCx5G5KsQCOd01MURVGUQDTWnp6iKIqiVECNnqIoitJkaFRGT0TOFpFtIvKNiNweann8EZHOIvKRiGwWkU0i8hvnPltE9ojIOvf7cahlBRCRdBHZ4GRa7dxai8h/RORr979VGMjZyyfv1olIlojcEE75KiJPish+Edno4xYwL8XyiNPj9SIyOAxkvV9Etjp5XhORls69q4jk+eTx/PqUtRJ5g5a9iPzO5e02EZkYBrIu9pEzXUTWOfdwyNtgdVZY6m61MMY0ih8QAWwHugPRwJdA31DL5SdjB2CwO04AvgL6ArOBW0ItXwB504E2fm5zgNvd8e3AfaGWM4Ae/AB0Cad8BU4HBgMbq8pL4MfA24AAI4HPwkDWCUCkO77PR9auvuHCKG8Dlr173r4EYoBurs6ICKWsfv4PAHeGUd4Gq7PCUner82tMPb3hwDfGmG+NMYXAC8DUEMtUDmPMXmPMF+44G9gCdAqtVDVmKvC0O34aODd0ogTkf4Dtxpi6+LJPnWGMWQYc8nMOlpdTgWeMZSXQUkQ61IugBJbVGPOeMabYna4EkutLnqoIkrfBmAq8YIwpMMbsAL7B1h31QmWyiogAFwHP15c8VVFJnRWWulsdGpPR6wTs8jnfTRgbFBHpCgwCPnNO17nhgCfDYcjQYYD3RGSNiFzt3NoZY/a64x+AdqERLSjTKV9phGO+lhIsL8Ndl6/EtuZL6SYia0XkYxEZEyqhAhCo7MM5b8cA+4wxX/u4hU3e+tVZDVV3G5XRazCISHPgFeAGY0wW8DhwCjAQ2Isd4ggHRhtjBgOTgF+JSLnNx4wdzwibd15EJBo4B3jJOYVrvlYg3PIyGCLyB6AYWOSc9gInG2MGATcB/xKRxFDJ50ODKXsfLqF8gy1s8jZAnVVGQ9HdUhqT0dsDdPY5T3ZuYYWIRGGVZ5Ex5lUAY8w+Y0yJMcYLPEE9DrdUhjFmj/u/H3gNK9e+0uEK939/6CSswCTgC2PMPgjffPUhWF6GpS6LyCzgJ8AMV9Hhhgkz3PEa7BxZz5AJ6aik7MM1byOB84HFpW7hkreB6iwamO760piM3udADxHp5lr804GlIZapHG7MfgGwxRjzVx933zHv84CN/tfWNyLSTEQSSo+xCxk2YvP0chfscuD10EgYkHIt5XDMVz+C5eVSYKZbCTcSOOIzlBQSRORs4LfAOcaYoz7ubUUkwh13B3oA34ZGymNUUvZLgekiEiMi3bDyrqpv+QIwHthqjNld6hAOeRuszqIB6W4FQr2Spi5/2JVDX2FbRH8ItTwB5BuNHQZYD6xzvx8DzwIbnPtSoEMYyNodu8rtS2BTaX4CScAHwNfA+0DrUMvq5GoGZAAtfNzCJl+xxngvUISd5/hZsLzErnyb5/R4AzA0DGT9BjtXU6q3813YaU4/1gFfAFPCJG+Dlj3wB5e324BJoZbVuS8ErvELGw55G6zOCkvdrc5PP0OmKIqiNBka0/CmoiiKolSKGj1FURSlyaBGT1EURWkyqNFTFEVRmgxq9BRFUZQmgxo9RVEUpcmgRk9RFEVpMqjRUxRFUZoMavQURVGUJoMaPUVRFKXJoEZPURRFaTKo0VMURVGaDGFj9ESkq4gYt6+UcgIRkVkisqKe0ooTkbdE5LCI/LY+0vRLP11ExtdDOmkiclUQP9XtEFBZvtdnmbh0Tg3iV2/PYmNARH7r6pJ3RST+eOIIG6OnHB8iMltEikQkx+dX78alEsYDqUBnY8ycUkdnjLqGTKowwpXh7BqE/6mIfCciuSKyRERaVxJ2oIisEZGj7v9AH7+WIvK0iOx3v9kBrl0uIkdEZLeI3OHn/z8istXF/ZGIdAmQfmsROeBbsYvISBH5j4gccn4v+e1/V9X9N5mtYVxjamw1w4qI3CciGe53n9sPL1j4KvVIRHqISL6IPOfj9nu/+iZPRLwi0sb5zxWRr0Uk2+nHTL84p4jIRnftf0Wkr59/dxH5t7v+oIiU1RuuDkkGemP3+KwxdWb0tBUbUhYbY5r7/OZUfUm90RpIN8bkhFqQ2uAqlJA3EkWkH/B34DKgHXAU+FuQsNHYzT2fA1oBTwOvO3eAB4F4oCt2Z/HLROQKnyj+BSzDluEZwC9F5BwXdxvgVeAO578an12/fbgP2OLn1gr4h0u3C5ANPFWN2w9Lwqjuuxo4FxiAbWhOAX4RKGAN9GgedoPuMowxf/Gtb7BlnGaMOeiC5Lq0W2A3mH1YRH7k0u0BLAKuAVoCbwBLS/PQ6eZ/gA+B9lgDV2ZwXfq5wA7snn41plYPsWut3yYi64FcEYl0rbj/ikimiHzp20pxrZb/E5FVIpIlIq8Ha6WKyBUissVZ+29F5Bd+/lNFZJ2LZ7vYnZ0RkRYiskBE9orIHhH5s7jdhyu5j1NE5EPXOjooIotEpKWP3yERGezOO7rW6Vh3fo6IbHL3myYiffzy5xYRWS+2tbxYRGJrntM1R0Rud/mSLSKbReS8IOFERB4U29LPEpENItLf+cW4VttOEdknIvNFJK6GokQC3ipkTRKRN1z6n7sy8+0ZGBG5xrUeM0VknohtwVZWdj4Mc3lwWESeKi0DEWnlWpQHnN+/RSTZJ900EblHRD7BVgrdq7jXLiLyicvz95xh8GWGy8uDIvKHKuIKxgzgDWPMMteQuAM4X9wu936Mxeb/Q8aYAmPMI9hNPs90/lOAOcaYo8aYdOwO2Vf6XN8VWGSMKTHGbAdWAP2c3/nAJmPMS8aYfGA2MEBEepde7Cq6/vgZNGPM2+66LGN3YX8MGHU8mSEi3URkmcvz951uPBck7DT3TPb3cb5SRL539cUtPmGHi8inTt/2ishjcqyxUKqTvxKRr7EbqVbF+ED66xPfXKeDO0RkUg2zoZTLgQeMMbuNMXuAB4BZQcJWqUciMh3IxG4WGxB3HzOxDSoAjDF/MsZsNcZ4jTGfAcuB05z3RGC5MWaFMaYYazA7YRtVOHm/N8b81RiTa4zJN8asD5C0F6vbNaeWu+qmY3fS7QzEOeEzsDvreoCz3HlbFz4N2IN9EJoBrwDPOb+u2B16I935ZOAU7EN6BrbSGez8hgNHXPwel25v5/catgXTDDgJWAX8oor7ONXFFQO0xbZuH/Lx/zmwGdsqfheY69x7Yls1ZwFRwG+xO0xH++TPKqAjtjW8Bb/dkf12KM6s5Dc6yHWzS/PQz/1Cl64HuNjJ2cH5zQJWuOOJwBpsq0uAPj7hHsTuOt0aSMC2yv6vBvoRhd3BuoJ8fuFecL94oC92h+4VPv4G+LeT8WTgAHB2NcsuHdiI1dHWwCfAn51fEnZ36nh3fy8BS3yuTQN2Yiv6SCCqkntIw+4W3RP7LKQB9/rp9hPObwBQAPQJEldl5f06cJufWw4wJEDYG4G3/dz+Ddzsjg8Cw338/gAc9jn/C3CvK8de2J2+hzm/h4HH/eLeCExzxxHY3b6H+OpbkHu6AVh5nHXQp8BcIBr7DGURoE4BrsA+m6f6+T2PrStSnF6Nd/5DgJHu2q7YZ/cGP538j9OpuCpkrEx/Z2F3Uf+5y7Nrge/BbvAdqI6oJJ0jwAif86FA9vHoEZAIfIXtac0myDMMnO6uax7EPw67U3zp/V4HvOXjHwHkA79x509i64y3nX6mASkB4n3alV10jXXmeBTNJ+F04Eqf89uAZ/3CvAtc7o7TcBWBO+8LFLobL1PQIGkt8cmYvwMPBgjTDluZxPm4XQJ8VMP7OhdY6+e2FNgArAdinNsdwIs+YTxYoz7WJ38u9fGfA8yvTZ4HkHW2y8NMn1/HAOHWAVPd8SyOGb0znXKPBDw+4QVrKE/xcTsN2FFNuQZiH+Z9uIomSLgIF66Xj9ufqWj0RvucvwjcXp2yc2Vwjc/5j4Htlch82Oc8Dbi7mvebBvzR5/yXwDvuuFS3k338VwHTj6O8P8Cv4eSrc37udwAv+LktAma74+ewQ5QJ2MbDdqDAJ+yPsIai2Ml/l4/fAnyeZef2CTDLHd+IM4pUYvSww3CHgDHHkRcnO9nifdyeo6LRuwXbaPXN/1K/3j5uc4AFQdK6AXjNTyfPrKacQfXX5c03Pn7xLnz748iPEr/76eHiCmRAK9UjbKPmNnc8m+BGbwGwsBKZngbeKZUBOxeXix2FiHY66gV+5/zfw9YHk5z/rcC3+Bk3bIfoBxd2aE3yqS7mKHb5HHcBLnRd+EwRycS2TjoECf8dthXpPwyEiEwSkZVuaDETW1mVhuuMfUD96eLi2+uT/t+xPb6giEg7EXlB7HBoFvbB8ZfpCWwP9VFjTIFz6+juAQBjjNfdXyef637wOT4KNK9MluPkRWNMS5/f9yIyU+zwb2k+9CdAPhtjPsQOL80D9ovIP0QkEdtrigfW+MTxjnOvEmPMOmxl+im2wghGW2xr2lcvdgUIFzAfq1l2/jrX0V0bLyJ/FzuZn4XtJbaU8sPhgWQJRlVlXRe6kINthfuSiJ0Xq2nYXwN52OG517Et591gF6Bgy/tuIBb7zE0UkV9WFbeIdHRxVzqEK3ZF49vYxuzyysIGoSNwyNgh0lICldetwDxjzO4AfsF0o6cb7v7B6cZfqFyvqqKysi/z87mXutCNRCDHOCtRRdjS8NliFzuNx470BEXs6skL8Rna9PO/H1vvXFQqgzFmK3YY9jFsD7ANtkFSWjZ52AbS28aYQmwvPgk7AuXLb7BzjYnGmNWVyelPXRg93wzdhe3p+VbAzYwx9/qE6exzfDLWUh/0cUNEYrBDn3OBdsaYlsBb2N5HaTqnBJBlF7an18Yn/URjTL8AYX35i7uPFGNMInCpT1qISHPgIWyrZrYcm4f8HmtoS8OJu789VaRXAREZI+VXRPn/xtQgri5YI30dkOTyb6PvPflijHnEGDME2/Puia0kDmIVsJ9PXrYwduK6Whg71/O2izcYB7Ct9WQft85Bwgai0rILEN/J2HIDuBk7bDfCXXu6c/e9PlCFEUo2YYdHAbvSDTu0+1WQsKl+80epzh1jzCFjzAxjTHv3jHiwPVCw85clxphnjDHFzmC8gG18BpKjGfaZ3ISdfugAbBaRH7C9huHOgES48F2A94H/NcY8e5x5sRdoLeWXrgfSnQnAH0VkWgC/YLrxOLAV6OF04/dU1Kuw1g13vKk6Yf30aCy2J7zTld8twDQR+cIvjvOwvfQ0/8hF5C5sb22CMSbL188Y87Ixpr8xJgn4k0urdLHMeqqXr32wIyl51QhbjrpejfYcMEVEJopIhIjEishY38UBwKUi0tcp6t3Ay8aYEr94orEFcAAodhO7vstTFwBXiF0y7RGRTiLS2xizF9s9fkBEEp3fKSJyRhVyJ2BbPkdEpBO20vflYWC1MeYq4E1gvnN/EZjs5IjCVqIFwH+ryih/jDHLTfkVmP6/mrSEm2EV5wDYRUHYFlcFRGSYiIxw8udix9e9rtf6BPCgiJzkwnYSkYk+1xqpejl1AbY8A+LK/lVsYyJe7EKImcHCB6CqsgP4lYgku8bKHzi2yjABa9gznd+fapBuqFiEfcbGOENzN/CqMSZQTy8NO+T1a7GLkq5z7h9C2SKgJPesTsKu/vuzC/OVDSI/dc9Re+zccOmigteA/mIXh8QCdwLrXUv+bWxFNtD97gTWAgONMSWunD4EHjPGlD5LZYh9dy29qowwxnyHXTU6W0SiReQ07OIcfzYBZwPzxK0+9eEOp3f9sPN+vrqRBeQ4nby2KnnCgGeAm9xz2hFbHy0MErYyPfoHtgEz0P3mY+u9iX5xXA4849+TFJHfAT/Fzo9m+CcsIkOczrV1aS11egPWhowUkfGugXQDtgHuvwI4Clu31Jg6NXrGmF3AVGyr6AC253WrXzrPYgviB+ywya8DxJPt3F8EDmMzcKmP/yqsgj6Inbz9mGM9rpnYSnazu/Zlyg+vBuIuYLCL601sJQzYVaLYB6ZU6W8CBovIDGPMNmzP4lFswUwBprhuecgwxmzGrtz6FDunloKdbwlEIta4HcYO72QA9zu/27BzOivdEM/72J4RItIZO0y2oQpxvFStZ9dhlzf/gNWP56m+QgctOx/+hW0MfYsdFi+t2B/CTrQfBFZih/NCTmU9e2PMJuxy70XAfmzl/Eufa98Wkd+7sIXYOc6Z2LneK4FzffRzCLb8soH/A2a4+HGt8/Oxc3OHsXPCG3F5Z4w5gF0EdI/zHwFMd34FxpgfSn/YsilyxwBXYXuSs31HM3xuszPB9dWfGdi55gwn22IC6I4x5kvgJ8ATUn515MdYHf8Au0DtPed+C7beycY+H4Fex6hXSkeDKgnyd+xisw3YsnrTuZVeX6ZXlemRsat5fcsvB8h3ZV4aVyfseoBnAsjxF2yv+Ruf8v29j//DWH3chtWdn5d6+NSp853fVOCcAHVqBFWsCg+GmIDDvScGEUnDToj+s94SVU4IInIpdujzd1WEm4BtvfU2xhyqZtz3YSfyL6+9pEpDQ0Tew87z+bfuq3PtYmCrMaYh9NqV40DsK0mbgauMMW/V9PqQv2yrNEyMMc9VZfAcadil3ZvE5z0oX0Skt4ikimU48DPs8JnSBDHGTKiuwXPD86e4IdizsT2DJSdUQCVkuDpkK7aHHvT9wcoIly8JnHBEZD622+zPc8aYa+pbnqaCG5aYUUWwBOyQZkfscOwD2NWEYUUlQ0uTjnP1oVJ72mOHtJOwKwCvNcasrU8B3JDh24H8arLwS6kaY8xc7ALH46ZehzcVRVEUJZTo8KaiKIrSZAir4c02bdqYrl27hloMRVEUpR5Zs2bNQWNMtT58UVvCyuh17dqV1atr9HK9oiiK0sARke+qDlU36PCmoiiK0mRQo6coYcYn3xwkI+e4PjahKEoVqNFTlDAir7CEpU/dy4NPLAi1KIrSKAmrOb1AFBUVsXv3bvLz80MtitKAiI2NJTk5maioqFCLUiPyCgq4L+oJ++GuY18XUxSljgh7o7d7924SEhLo2rUr5T8WryiBMcaQkZHB7t276datW6jFqRElhTX+aLyiKDUg7Ic38/PzSUpKUoOnVBsRISkpqUGODnhL/DccURSlLgl7oweowVNqTEPVmRJvcahFUJRGTYMweorSVDDFavQU5USiRq8aiAg333xz2fncuXOZPXt26ASqgrS0NP773xrvY1vGunXrOO200+jXrx+pqaksXhzyrcSaDDq8qSgnFjV61SAmJoZXX32VgwcP1mm8xhi83uPaB7FSamv04uPjeeaZZ9i0aRPvvPMON9xwA5mZmXUnoBKUcsObJdrrU5S6Ro1eNYiMjOTqq6/mwQcfrOB34MABpk2bxrBhwxg2bBiffGI3fJ49ezZz5x7bAaN///6kp6eTnp5Or169mDlzJv3792fXrl3ceuut9O/fn5SUlLJeVVpaGmPHjuWCCy6gd+/ezJgxg0A7YjzyyCP07duX1NRUpk+fTnp6OvPnz+fBBx9k4MCBLF++vFIZL7vsMk477TR69OjBE088AUDPnj3p0aMHAB07duSkk07iwIEDFdJ+6aWX6N+/PwMGDOD0008H7MKjK664gpSUFAYNGsRHH30EwMKFCzn33HM566yz6Nq1K4899hh//etfGTRoECNHjuTQIbu/7BNPPMGwYcMYMGAA06ZN4+jRoxXSHTlyJJs2bSo7Hzt2bKP5fJ3x6emZotwQSqIojZOwf2XBl7ve2MTm77PqNM6+HRP505R+VYb71a9+RWpqKr/97W/Luf/mN7/hxhtvZPTo0ezcuZOJEyeyZUvl+19+/fXXPP3004wcOZJXXnmFdevW8eWXX3Lw4EGGDRtWZkDWrl3Lpk2b6NixI6NGjeKTTz5h9OjR5eK699572bFjBzExMWRmZtKyZUuuueYamjdvzi232D1bf/rTnwaVcf369axcuZLc3FwGDRrE5MmT6dixY1n8q1atorCwkFNOOaXCfdx99928++67dOrUqawnOG/ePESEDRs2sHXrViZMmMBXX30FwMaNG1m7di35+fmceuqp3Hfffaxdu5Ybb7yRZ555hhtuuIHzzz+fn//85wD88Y9/ZMGCBVx//fXl0r344ot58cUXueuuu9i7dy979+5l6NChleZ5Q8Hr09MrzMshJrZFCKVRlMaH9vSqSWJiIjNnzuSRRx4p5/7+++9z3XXXMXDgQM455xyysrLIyQm216ilS5cujBw5EoAVK1ZwySWXEBERQbt27TjjjDP4/PPPARg+fDjJycl4PB4GDhxIenp6hbhSU1OZMWMGzz33HJGRgdswlck4depU4uLiaNOmDePGjWPVqlVl1+3du5fLLruMp556Co+noqqMGjWKWbNm8cQTT1DieigrVqzg0kvtXr29e/emS5cuZUZv3LhxJCQk0LZtW1q0aMGUKVMASElJKbu3jRs3MmbMGFJSUli0aFG5Hl0pF110ES+//DIAL774IhdccEGl+d2Q8J3Ty8/NDqEkitI4aVA9ver0yE4kN9xwA4MHD+aKK64oc/N6vaxcuZLY2NhyYSMjI8vN1/m+M9asWbNqpRcTE1N2HBERQXGAlX1vvvkmy5Yt44033uCee+5hw4YNFcIEkxEqLu0vPc/KymLy5Mncc889ZQban/nz5/PZZ5/x5ptvMmTIENasWVPt+/F4PGXnHo+n7N5mzZrFkiVLGDBgAAsXLiQtLa1CPJ06dSIpKYn169ezePFi5s+fX2m6DYlyRi8vF+3nKUrdoj29GtC6dWsuuugiFiw49l3ECRMm8Oijj5adr1u3DrDbJH3xxRcAfPHFF+zYsSNgnGPGjGHx4sWUlJRw4MABli1bxvDhw6slj9frZdeuXYwbN4777ruPI0eOkJOTQ0JCAtnZx3oJwWQEeP3118nPzycjI4O0tDSGDRtGYWEh5513HjNnzqy0F7V9+3ZGjBjB3XffTdu2bdm1axdjxoxh0aJFAHz11Vfs3LmTXr16Vet+ALKzs+nQoQNFRUVl8QTi4osvZs6cORw5coTU1NRqxx/u+A5vFuVpT09R6ho1ejXk5ptvLreK85FHHmH16tWkpqbSt2/fsl7HtGnTOHToEP369eOxxx6jZ8+eAeM777zzSE1NZcCAAZx55pnMmTOH9u3bV0uWkpISLr300rJFI7/+9a9p2bIlU6ZM4bXXXitbyBJMRrDDo+PGjWPkyJHccccddOzYkRdffJFly5axcOFCBg4cyMCBA8sM5Z133snSpUsBuPXWW0lJSaF///786Ec/YsCAAfzyl7/E6/WSkpLCxRdfzMKFC8v18Krif//3fxkxYgSjRo2id+/eZe5Lly7lzjvvLDu/4IILeOGFF7jooouqHXdDwLenV3C08mFyRVFqjgRaERgqhg4davxX4W3ZsoU+ffqESKLGzezZs8steGlsNETd2bhmBf3fmAzAtrF/p9fY6SGWSFFOPCKyxhhTL6vRtKenKGGE8RneLM7Xnp6i1DUNaiGLUreE81dlmiq+7+mVFOh7eopS12hPT1HCCN+FLN5CNXqKUteo0VOUMMJ4fb7IUljxazSKotQONXqKEkaUN3ra01OUukaNnqKEEb6vLEiR9vQUpa5Ro1dNlixZgoiwdevWoGHS09Pp37//CZVj3bp1vPXWW8d9fenL7H379qVfv348/PDDdSidUlt8e3pq9BSl7lGjV02ef/55Ro8ezfPPPx/QP9AnwmpKSTX2Uqut0YuMjOSBBx5g8+bNrFy5knnz5rF58+bjjk+pW3yNnqcoL4SSKErjRI1eNcjJyWHFihUsWLCAF154ocw9LS2NMWPGcM4559C3b1/AGr8ZM2bQp08fLrjggrKtcT744AMGDRpESkoKV155JQUFBYD9XNltt93G4MGDeemll8ql6791T2FhIXfeeSeLFy9m4MCBLF68mNzcXK688kqGDx/OoEGDeP311wG7lc/UqVMZO3YsPXr04K677gKgQ4cODB48GICEhAT69OnDnj17Ktzzxx9/XPY1lkGDBpGdnY0xJug2SGeccQZTp06le/fu3H777SxatIjhw4eTkpLC9u3bAXjjjTcYMWIEgwYNYvz48ezbt69CutOnT+fNN98sO581a1bZx6WbAqakqOzYU6w9PUWpaxrWe3pv3w4/VPygcq1onwKT7q00yOuvv87ZZ59Nz549SUpKYs2aNQwZMgSw39XcuHEj3bp1Iz09nW3btrFgwQJGjRrFlVdeyd/+9jeuu+46Zs2axQcffEDPnj2ZOXMmjz/+ODfccAMASUlJZd/p9MV/657o6GjuvvtuVq9ezWOPPQbA73//e84880yefPJJMjMzGT58OOPHjwfstkAbN24kPj6eYcOGMXny5HJb8KSnp7N27VpGjBhRIe25c+cyb948Ro0aRU5ODrGxsbz66qtBt0H68ssv2bJlC61bt6Z79+5cddVVrFq1iocffphHH32Uhx56iNGjR7Ny5UpEhH/+85/MmTOHBx54oFy6pdsGTZ48mcLCQj744AMef/zxahZmI8DYnl6+iSKyRHt6ilLXaE+vGjz//PNMn24/BzV9+vRyQ5zDhw+nW7duZeedO3dm1KhRAFx66aWsWLGCbdu20a1bt7Lvb15++eUsW7as7JqLL744YLqBtu7x57333uPee+9l4MCBjB07lvz8fHbu3AnAWWedRVJSEnFxcZx//vmsWLGi7LqcnBymTZvGQw89RGJiYsC0b7rpJh555BEyMzOJjIysdBukYcOG0aFDB2JiYjjllFOYMGECUH7boN27dzNx4kRSUlK4//77A24bNGnSJD766CMKCgp4++23Of3004mLiwt4742R0pfTcyWeSG9+FaEVRakpJ7ynJyJnAw8DEcA/jTGVd6sqo4oe2Yng0KFDfPjhh2zYsAERoaSkBBHh/vvvBypuExRsq57KCLbVUHW27jHG8Morr1TYyeCzzz4LKktRURHTpk1jxowZnH/++QHTvv3225k8eTJvvfUWo0aN4t133630HqqzbdD111/PTTfdxDnnnENaWlrAL8LExsYyduxY3n33XRYvXlzW2GgqlM7pHZV4orSnpyh1zgnt6YlIBDAPmAT0BS4Rkb4nMs265uWXX+ayyy7ju+++Iz09nV27dtGtWzeWL18eMPzOnTv59NNPAfjXv/7F6NGj6dWrF+np6XzzzTcAPPvss5xxxhlVph1o6x7/bYMmTpzIo48+SumHw9euXVvm95///IdDhw6Rl5fHkiVLGDVqFMYYfvazn9GnTx9uuummStNOSUnhtttuY9iwYWzdurVW2yABHDlyhE6dOgHw9NNPBw138cUX89RTT7F8+XLOPvvsasffGDClw5sSR7T29BSlzjnRw5vDgW+MMd8aYwqBF4CpJzjNOuX555/nvPPOK+c2bdq0oKs4e/Xqxbx58+jTpw+HDx/m2muvJTY2lqeeeooLL7yQlJQUPB4P11xzTZVpB9q6Z9y4cWzevLlsIcsdd9xBUVERqamp9OvXjzvuuKPs+uHDhzNt2jRSU1OZNm0aQ4cO5ZNPPuHZZ5/lww8/LFuoUroadP78+WXbDj300EP079+f1NRUoqKimDRpUq22QQL7rc8LL7yQIUOG0KZNmzL31atXc9VVV5WdT5gwgY8//pjx48cTHR1d7fgbBW54syCiGdFGjZ6i1DUndGshEbkAONsYc5U7vwwYYYy5zifM1cDVACeffPKQ7777rlwcDXF7mHBg4cKF5Ra8NEUaou588sqjjNrwR76IG0mvvC9pNvuHUIukKCecJrW1kDHmH8aYocaYoW3btg21OIoSWtycXnFkc2IpgDDa71JRGgMneiHLHqCzz3myc1NOMLNmzWLWrFmhFkOpIaULWYqjmhOBF4oLICo2xFIpSuPhRPf0Pgd6iEg3EYkGpgNLaxpJOO3urjQMGqzOOKNnohLsqe6ppyh1ygk1esaYYuA64F1gC/CiMabiy1mVEBsbS0ZGRsOtxJR6xxhDRkYGsbENr4dUunrTxDQHoEB3T1eUOuWEv6dnjHkLOO6PRSYnJ7N7924OHDhQh1IpjZ3Y2FiSk5NDLUbNcT09ibUfDMjPzSauTWUXKIpSE8L+M2RRUVHlvniiKI2Z0jm9iFg7vFmQl11ZcEVRakjIV28qiuJDqdGLsz29ojwd3lSUukSNnqKEE25OL9IZvUI1eopSp6jRU5RwwpT29FoAUKwLWRSlTlGjpyjhhNcLQFS8NXolBWr0FKUuUaOnKOGEm9OLblZq9HQjWUWpS9ToKUo44YY3Y+LtnJ6+nK4odYsaPUUJJ7wlFOMhLt6+nG4KtaenKHWJGj1FCSeMFy8e4mKjyTdRUKg9PUWpS9ToKUoYIaYYLx5iIyPIIwaKtKenKHWJGj1FCSe8JZQQgccj5BGDp1iNnqLUJWr0FCWMEFNCMREAFEgsHu3pKUqdokZPUcIIj7eYEl+jV5IfYokUpXGhRk9RwgiPKaZY7HfgCz2xRBbnhVgiRWlcqNFTlDBCzLGeXqEnjkivGj1FqUvU6ClKGOHxFlPienrFEbFEe3V4U1HqEjV6ihJGiCkp6+mVRMQRrT09RalT1OgpShgh3mK8rqdXEhlHjNGenqLUJWr0FCWMEG9RmdHzRsYTawpCLJGiNC7U6ClKGCGmBK/Y4U0TFU8MhWU7LyiKUnvU6ClKGBFhCinxRAPW6AFQpPN6ilJXqNFTlDAiyltIsScGAIluBkCJbi+kKHWGGj1FCSOifHp6Em17enlHs0IpkqI0KtToKUoYEWUK8UZYo+eJsT29gtzsUIqkKI0KNXqKEkZEmUK8bngzwhm9wrycUIqkKI0KNXqKEkbEUICJjAUgMlaNnqLUNWr0FCVMMMbQ3BzFG50AQGSs/V+Ur8ObilJXqNFTlDAhLy+XGCmGmEQAouOaA1Ccr3vqKUpdoUZPUcKE3COHAJC4FoCP0SvQ4U1FqStqZfREZLaI7BGRde73Yx+/34nINyKyTUQm1l5URWnc5OUcBsDjjF5MvDV63nx9T09R6orIOojjQWPMXF8HEekLTAf6AR2B90WkpzFGv6ekKEE4mmWNXlR8SwBi4+0wp7dQhzcVpa44UcObU4EXjDEFxpgdwDfA8BOUlqI0CnIO7wegWau2AMTFxeM1ginUnp6i1BV1YfSuE5H1IvKkiLRybp2AXT5hdju3CojI1SKyWkRWHzhwoA7EUZSGSdHh3QC0OOlkAOJjIjlKDKjRU5Q6o0qjJyLvi8jGAL+pwOPAKcBAYC/wQE0FMMb8wxgz1BgztG3btjW9XFEaDSbre7xGaNXOGr2oCA95xCDFOrypKHVFlXN6xpjx1YlIRJ4A/u1O9wCdfbyTnZuiKEHwZO3hkLSgTVRMmVu+xOLRXRYUpc6o7erNDj6n5wEb3fFSYLqIxIhIN6AHsKo2aSlKY6dl7nb2x3Qp55ZPDBElavQUpa6o7erNOSIyEDBAOvALAGPMJhF5EdgMFAO/0pWbihIcb4mXTkU72dLqx+XcCz1xRBSr0VOUuqJWRs8Yc1klfvcA99QmfkVpKuzbs50Okgdte5dzL/TEkqA9PUWpM+riPT1FUWrJ/m/X0wFonty/nHuhJ44o7/7jjjc/P4+17z5L9NYlnJy3meYmlyOeFvyQ0A9v73PoNfp8miW2Cnq9MYbso0cpysmguLgYb4mXqOhoomNiiY6OJSYmFomIApHjllFR6hM1eooSBuTtsdPh7U8dWM69JCKW6ML8GsdnvF5W/vufdPliDqdxgH3Shp0tR1AU04qI3H10y1pDm1VpFHx2G1/GDyK/TSomrhXFhXlE5uwlNncPiQV7aVVyiFZS+QevvUYokkiKiKII+98AgsGDFw9ee2zcf0x5Wf1lx9eASrl/xt+9YsgKZESeRIdb/ktsbFyl96E0DdToKUoYEHFwGxm0IOmkjuXciyPiiPbWzOjt2b2TA8/9jNPyV5Ee2Y3Np/8ffUafTztPxLF4i4rYvPp9stYtodP+j+m483MixJqUbOLYH9GerNhOHGo2GJq3oyQ2CU9EBCIeikuKMUUFmJJCTHEBlBRCcQGmpAgpKSDSWwQCIh6MeKDCTzhmxY6ZsVJDeez4GMYYBIPxucT4/DHGHppjF2CA+LwfGJr/X7ZsXEmfoeNqlI9K40SNnqKEAS1yvmFvdFeS/NxLIuOINdU3eutXfkD7d35GX5PN531+y5ALbsMTWfExj4yKou9pk+C0SQAUFuSTnX2EZs3iSYhLIKE2NxNGfL9zOzw5mKPfrgQ1egqN0OgZrxfx6OYRSsPBeEvoVPQdX7b5SQW/koh4YiioVjwfvvMawz+9hmxPCw5d8jbDelX/y3/RMbFEx8RWO3xDoX1yd/aaJKL3rgm1KEqY0KiMXn7eUXY9MIbD3c9l4LRbG+VD3Fgxxm+ex2+ip8K8j3/4Cv7+11cef0V5anZ9ZfJVJVvW3u10Jr/Cyk0AExVHJCVQXAiR0UHlXfrKM5y1/mYORbUj8RdvkdD25KBhmxIej5Ae24duR9bXWZzG68Xr9VJSUoy3pJiSkmIwBvEIgsf+F0HEg0cE8XgQxLl7cGO/uvgnRDQqo5eTeYD8iESGfzWXzP/7O+tajsG0609UYluMJxpTmIu34Cje/CwoOIIUZBNRmEVkUQ7RxTnEluQQ582lGUeJMCUIpmzivfTYn4ou4ucvPsf+1wYPWzGd6oetL6qwG4rDv6T8z5PwgkDzzikVrjVR8fagKDeo0XvzxSeYuOl2DsZ24aRfvU1UYrvaC92IKOwwhPbpK8g6uIfENgE/AVyBzIP72Lk+jZxd64k4vIOE3J00Kz5Mc5NNoskhSkqIqDqaauE14uYjpey59q1xArmHC+ulFz+a/XGoxagRjcrotenQhaTbPmD9iqUUrlpIj8zltMp8K2DYYuMhR+I5Ks3I8zQjP6I5WbEdORSVQEl0AsYTZQOKByNiJ+Dxa51V6C4YP0tgghwHuNZUEtYH8fOvSv0r+FfhUGV8NXzeKiZXeQS1Tb9GdyOVnlYVvMbXV7jc52ZMbAv6Df+fioGim1n/wlwkruKrBe88/ygTt97JnrjeJF//FhHNgr9+0FRJ6nMGpD/MN/99ncHn/DJgGG9xMV+veZ/MNa/S7uB/6erdRUvnl0FLDkR1JKPZKeyLaYk3pgUmMg48HpAIxBPhDJFxz7H7737G393nvzFB/NwCHV+zhzm20CdcyI7tWHWgMKNRGT0A8XhIPf1cOP1cjNfLwQPfk334oF1VFtOMqLjmNE9sRXyzBFp6PGWKrShhievpFeblENPimLMxhvcXzWXC1/ewo1kqXa//NxFxiSESMrzpO3Qcu97pSIv1/8T745/jibQN2uLCArZ99hZH171G94yP6UUmBSaKr+IG8FmHKST0GE2XfqeR1KJ1hQVGSsOl0Rk9X8TjoU27ZNq0Sw61KIpyXHiindE7mk3pZ6i9XsP7C/7IhD2Psa35ME799etExDQLnZBhjifCw+5BN3LaF7eyae4Esk8aRuShr+mR8xn9yCXXxLCl+Wl822cKvcacT0qL1qEWWTmBNGqjpygNnVJjVpCXQwKQX1DIf/9+PRMOvcCmVmfS59rn8UTrgq2qGDnl56zI2k/fr+fTb+cX7COJr1uMRvqeQ5/RUxnarLG8pKFUhRo9RQljYprZIcvc7ExydnxN5qIrObN4Pes7XEjKVfORCH2Eq4OIMPrSP1JS8nsKigtpFxOLLvdpmugToyhhTItk+xpD7Hu/pVlJFu3Ey5bh95L642tDLFnDJCLCQ0SE9oybMvoWt6KEMd1P7sI66U07736+SxhM7pXL6aMGT1GOG+3pKUoYExcdQefr3+aH3EP063xqqMVRlAaPGj1FCXOSWreG1rqiUFHqAh3eVBRFUZoMavQURVGUJoP4f7g3lIjIAeC7OoiqDXCwDuKpDxqSrNCw5FVZTxwNSd6GJCs0LHnrStYuxpi2dRBPlYSV0asrRGS1MWZoqOWoDg1JVmhY8qqsJ46GJG9DkhUalrwNSdZSdHhTURRFaTKo0VMURVGaDI3V6P0j1ALUgIYkKzQseVXWE0dDkrchyQoNS96GJCvQSOf0FEVRFCUQjbWnpyiKoigVUKOnKIqiNBkaldETkbNFZJuIfCMit4daHn9EpLOIfCQim0Vkk4j8xrnPFpE9IrLO/X4calkBRCRdRDY4mVY7t9Yi8h8R+dr9bxUGcvbyybt1IpIlIjeEU76KyJMisl9ENvq4BcxLsTzi9Hi9iAwOA1nvF5GtTp7XRKSlc+8qInk+eTy/PmWtRN6gZS8iv3N5u01EJoaBrIt95EwXkXXOPRzyNlidFZa6Wy2MMY3iB0QA24HuQDTwJdA31HL5ydgBGOyOE4CvgL7AbOCWUMsXQN50oI2f2xzgdnd8O3BfqOUMoAc/AF3CKV+B04HBwMaq8hL4MfA2IMBI4LMwkHUCEOmO7/ORtatvuDDK24Bl7563L4EYoJurMyJCKauf/wPAnWGUt8HqrLDU3er8GlNPbzjwjTHmW2NMIfACMDXEMpXDGLPXGPOFO84GtgCdQitVjZkKPO2OnwbODZ0oAfkfYLsxpi6+7FNnGGOWAYf8nIPl5VTgGWNZCbQUkQ71IiiBZTXGvGeMKXanK4Hk+pKnKoLkbTCmAi8YYwqMMTuAb7B1R71QmawiIsBFwPP1JU9VVFJnhaXuVofGZPQ6Abt8zncTxgZFRLoCg4DPnNN1bjjgyXAYMnQY4D0RWSMiVzu3dsaYve74Bwi7DainU77SCMd8LSVYXoa7Ll+Jbc2X0k1E1orIxyIyJlRCBSBQ2Ydz3o4B9hljvvZxC5u89auzGqruNiqj12AQkebAK8ANxpgs4HHgFGAgsBc7xBEOjDbGDAYmAb8SkdN9PY0dzwibd15EJBo4B3jJOYVrvlYg3PIyGCLyB6AYWOSc9gInG2MGATcB/xKRxFDJ50ODKXsfLqF8gy1s8jZAnVVGQ9HdUhqT0dsDdPY5T3ZuYYWIRGGVZ5Ex5lUAY8w+Y0yJMcYLPEE9DrdUhjFmj/u/H3gNK9e+0uEK939/6CSswCTgC2PMPgjffPUhWF6GpS6LyCzgJ8AMV9Hhhgkz3PEa7BxZz5AJ6aik7MM1byOB84HFpW7hkreB6iwamO760piM3udADxHp5lr804GlIZapHG7MfgGwxRjzVx933zHv84CN/tfWNyLSTEQSSo+xCxk2YvP0chfscuD10EgYkHIt5XDMVz+C5eVSYKZbCTcSOOIzlBQSRORs4LfAOcaYoz7ubUUkwh13B3oA34ZGymNUUvZLgekiEiMi3bDyrqpv+QIwHthqjNld6hAOeRuszqIB6W4FQr2Spi5/2JVDX2FbRH8ItTwB5BuNHQZYD6xzvx8DzwIbnPtSoEMYyNodu8rtS2BTaX4CScAHwNfA+0DrUMvq5GoGZAAtfNzCJl+xxngvUISd5/hZsLzErnyb5/R4AzA0DGT9BjtXU6q3813YaU4/1gFfAFPCJG+Dlj3wB5e324BJoZbVuS8ErvELGw55G6zOCkvdrc5PP0OmKIqiNBka0/CmoiiKolSKGj1FURSlyaBGT1EURWkyqNFTFEVRmgxq9BRFUZQmgxo9RVEUpcmgRk9RFEVpMvw/0X5/EX+CLQgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABlQElEQVR4nO2deXxVxfm4n/fe7CFhCYjsm+wk7IsCAtYNqVJFRUURrVptte7Lt60Wbe3PfUdpKYq74K51oRVFxBaRfV8lsm+BhASy3vv+/piTcHNzb3JDEu7NZZ7P5ybnzMyZec+cOfPOOzNnRlQVi8VisViiGVe4BbBYLBaLpa6xys5isVgsUY9VdhaLxWKJeqyys1gsFkvUY5WdxWKxWKIeq+wsFovFEvVEnLITkfYioiISE25ZLMeOiNwiIjtFZHkY0p4sIm8ch3Qmicj8Svznish1dS2HpTyV5fvxeiYiMkNE/lqJv4rIKXUtRzQgIi1FJFdE1ovIGccaT8QpO0v1EZGpIpLn/IpEpNjn/IswiTUZ+K2q9vaRc7KITA6TPBGF06jLrGb4b0TkiIisE5EzKwkbLyIvi8ghEdktInf4+V8nIpuc8vGliLT0u3aqiOwRkQMi8qmItPLxbyIiH4rIYRH5WUSuCCLDy74VuhPvdOeaXBFZJiKjq3H/M0RkUqjh6zNOI2pGNcL/wikTR5wy0q6SsCGVIxGZ42t0iEhbnzql9KcicqfjP0ZE5otItlPm/ikiKT7xtRKRj50ytV1EbvRLzy0if3UayLkislREGgGo6k5VTQE+BX4far74U+vKzlpkxx9VvVFVG6hqA+BvwMzSc1Utq1CO87NpAqw6junVCRFUnt8GlgJpwB+B90SkWZCwk4HOQDtgFHCPiJwLICIjMWVkLOYZbXHiLuVW4FQgA2gJHASe9/GfAhQBzYEJwEsi0tM3cREZBnTykykG2AaMABoCfwJmiUj7qm89MhERdwTI0BT4ALgf8zwXATMruaTKciQiE4BYXzdV3epTpzQA0gEv8L4TpCHwV0yZ6Q60Ah73ieINTFlrDowB/iYio3z8HwROw5S9VOAqoMBP9lWO3MdErSg7EckUkXtFZAVwWERiRGSIiPzX0fTLnZesNPxcEfl/IrLQaX1+LCJNgsR9jYisdbT9TyLyGz//sU4r8ZCIbPZ5qRs6LcldIrLDaTVUWjhFpJOIfC0iWSKyX0TeLG1dOH4HRKSfc95SRPaV3peIXCAiq537nSsi3f3y5y4RWSEiOSIyU0QSqp/T1SfIsynXhSJ+XS4i8ksnT7OdZ5hRzTRL89lbRbh7nOezU4y14WsJzBCRKSLymfPsfxCRTj7XPisi25znvlhEhvtFn+Dkc66ILBERXwvzPqes5IrIGhG50Mdvkoh8LyJPi0gWRnFUdb9PiMhBEdkiFa2Vdk58uSLyb6dyqhYi0gXoB/xZVfNV9X1gJTAuyCVXA39R1YOquhaYBkxy/H4JvKuqq1W1CPgLcLpP3nYAZqvqHlUtwFScPR05kp0071fVPFWdD3yCqZhKZY3BKMdbfAVS1cOqOllVM1XVq6r/wlR+/Y8hP9wi8qTzjm4RkZslyNCHiLRw3ru7fZw7Bat7RORdMZZJjojMEx9F7pTJl0TkcxE5jGlIVEbjYOXX4UwR2ei8Z1NERKqbF8BFwGpVfdd5XpOB3iLSzT9gKOVIRBoCfwbuqSLdicA8Vc0EUNW3VPVLVT2iqgcxZW6oE2cDYCTwsKoWq+py4D3gWse/MXAbcL2q/qyGVc79+OLFNJqODVWt8Q/IBJYBbYBEjFbPAs7DKNSznPNmTvi5wA6gF5CMaR284fi1BxSIcc7HYFqJgmkVHgH6OX6DgBwnfpeTbjfH70Pg7078JwELgd9UcR+nOHHFA82AecAzPv7XA2uAJGA28ITj3gU47Fwbiykom4A4n/xZiGn1NAHWAjcGkWEYkF3Jb1gV9zC5NC8DPRvHTYFTfMLMAP7qHPcF9gKDATem4swE4qtRHs7FtMqSqwizG1ORJmFafmVyOTJlOc84BngTeMfn+isxrbwY4E4nrgSfPCgGLnaex12YijXW8b/EeRYuYLzz7Fo4fpOAEkxlHVOaZ0HuYZKTzvVOXt0E7ATEp5xvdspHonP+SJC4XgReDOJ3IbDWz+0F4PkAYRs7+djcx+1iYKVz/IRvOph3RoGxzvkA4Hsnf5KAt3DeAadsHPFL7y7gU5/zu4FnA5Uzv+uaO2Wk2zHUNzdi3sPWzv1+Rfk6Yy5wHUZxbwBu8Ll2LkHqHsf/WiAFUwc8Ayzze09yMJW4q7S8BZFxBpWXXwX+BTQC2gL7gHODxLUCuCKI37PAS35uq4Bxx1KOMJb77fjVw37XCKZcT6rk/p8pvV8nPxU4ycd/GrDUOT4dU7fdi3mPNwC/CxDnKExPQ9vqlhlVrVVld63P+b3A635hZgNX+xS4R3z8emC6RtyVZbIT9iPgVuf478DTQV6kQnwqKuBy4Jtq3tevSh+Ij9snmNbQChwFgOlCmOUTxoV5oUb65M+VPv6PAVNrI+8DyDyZisruWr8wlSm7lzBWgW/49cCIENNf5MT/+yrCvQz8P5/zU6io7P7p438esK6S+A4CvX3yYIHf89gFDA9y7TKOVvaTgK0h3uskYJPPeZJzDyf7lPM/+fj/FvjyGJ7pVb7347g9DMwIELaNI0OCj9tZQKZzfCawH9NNmei8Q17gcse/IfCOE0cJpsurieM3HNjtl971wFyftDcBDQOVM59rYjEK6u/HWMa/xqfh6tyTv7J7yin7l/tdO5cgdU+AdBo58ZbezwzgtRBlrLT8OvEO8zmfBdx3DHkxHb8GFKaxMqm65QjT0FmGUc7tCa7shgN5QIMgMp2FeR+7+LjNx1j8CRjr8gCw3vG7wklrulMmMzDK/6wAcb/rhH2munlVm2N223yO2wGXOOZ5tohkYyyWFkHC/4x5ASp08YjIaBFZ4HQhZmMKTWm4NpgWhj/tnPh2+aT/d4yFFxQRaS4i74jp9jyEsTb8ZZqGaRU+r6qFjltL5x4AUFWvc3+tfK7b7XN8BGhQmSy1zLaqg5TRDrjT79m1wdxjKAwELgMmi0hsJeFa+skVSMageeZ0C691upuyMZW077Mqi895HttL70FEJvp002ZjnmfAa0OgTEZVPeIcNgjk738P1SAPM47hSyqQGyRsqX+FsKr6Faab6n2MMsh0/LY7YadgrJo0jOXzAVA6yakqOZ4BHlLVnGA3IiIu4HWMgrk5WLgqCKXsTMA0ON8L4Bew7nG6Rx9xurgPYfIGaqFsEPjZh6NsBAzrPJcXMYZESRVpXg28r6p5/h4iMgTTG3Cxqm7w8ZqAsbS3YRrUb3C0zOU7/x9S0726AtPgOs8v7n6OWzdVva0KGStQm8pOfY63YSy7Rj6/ZFV9xCdMG5/jtpjuoP2+EYpIPOalfALTLdMI+BxjRpem498PXupeCDT1ST9VVXsGCOvL35z7SFfVVExXWVk/utP3/AymBTLZp69/J0ZJlIYT5/52VJFeBURkuFSc9eT78x+bCgX1Oz+CsUJKOdnneBumb9332SWp6tuEgJrm10eY7qUWlQTdhemGKqVNsID+OHlwD3Ap0NgpFzn4PCvf+JwXuTWwU8xMtWmYijbNuXaV37X++RVuVgMdxWd2G9DbcS+HmvGSXY5/wLCqOkVVO6tqc8z7FcPRyUR9MC39A05j7nlgkDPWuAGIEZHOQeL+BfC4M+ZVWpH/T5wZm857MR3T8zJOVYurmQ+lhFJ2JmPqk7ek4lh9sLrnCszEnTMxjaf2TphILxtlz9oZV+1EgLJB5eUoFWPZzXSe3Y+O/3bfOkdEEjHDAK/6Ry4ifTE9X9eq6hxfPzVjcb9U1WaqOhjTgFjoeK8oDeZ7SQD5uwNrVHV9AL8qqatPD94AzheRc5zWUoKIjBQR3wJ6pYj0EJEk4CHgPVX1+MUTh2ll7gNKnMH/s338pwPXiJl66xIzvbWbqu4C/g08KSKpjl8nERlRhdwpmNZPjpjp1nf7+T8LLFLV64DPgKmO+yxgjCNHLGYMqRD4b1UZ5Y+qfqc+s54C/L6rbpwBWAZc4TybczFjoaVMA24UkcFiSBYzrTgFygbpZ1RxD6UWb1wlwWZhnl13pwzcXw35UzBdbPswle8DVGyx9heRi8RMWrgN8zwWYKwVda5FRK7BWHYRi9NCXgb82XmXLsR09bwf5JLXgD+JSGNnosL1mG41nOt7Oc+2LfAPzBjbQefaH4GJYiZ4xWK6Xneq6n5VPYyx9B5yysVQjHJ43bm2C6by7OP8AM7HjJ+DadF3B85X1dLWfBliJpmMDCFLZgG3Ou97I8ywiT/FmEo5GXjNafCUEqzuScGUkyxMY/BvIcgSbj4EeonIODGT3h4AVqjqOv+AVZSjHIzF3Mf5lVpV/YEffKK5ENNF+Y1v3CLSC/gSuEVVP/VP23nPU0QkTkSuxNTjTzlybQa+A/4o5hOV7pjeoX/5RROLeT7HRJ0oO1XdhnkJ/oCpVLZhFIdveq9jXsDdmH7cCt9PqGqu4z4Lk8FXYFoOpf4LgWuApzEP61uOWlgTMZXtGufa96jc0gAz/bWfE9dnmBcbMLM+MZMqbnKc7gD6icgEp6VxJaYVvB/zgp+vZrZbJHIrRsZsTPfCR6UeqroIUzm+gMm3TRydyQemVfx9CGkolZQvVf0CeA7z0mzCKCIIrTDPxrxYGzDdUAVU7F76GDP55CBmrOIiNTPB1gBPAv8D9mCmUIdyP3WKmG/bplYS5DJMy/sg8Aimm6hUYU8QEd+W/J8x3fs/Y96Jx1X1S8cvAdPNlIdpWf+P8g2NuzD5uRHz7p6HqeBK+S1mXGUvZhr7Taq6GkBV96rq7tKfE36/quY7FvVvMBXpbp+eignOPbTBdL2trDq3mIZpzK7AjCl+jmn8lGssO+/fRRhL8mUfhRes7nnNybMdmHpjARGAmFneEwL5OWVgHGbs7SBmYtllPtf6l6uA5UgNvs9unxN+j189djWm187f8roTM6lvus+z9S2T5wA/OeneiJmMs8/H/3JM3Z2FqXvv97cOMXM6Kp3hXRlSUea6R0TmYiZR/PO4J245ZkQkDlgOZFTVBSUiO4F7VDWklUyc1twqzKSfqsYMLFGG09rvqar/dwzXjsZM+GpXZWBLvcRpqDyHmdF56bHEYVdQsYSMqhapavcQx1ruw3SXLA4WQEQudLotGgOPYqawW0V3AqKqb4Sq6EQkUUTOE/PNaCuMJfthVddZ6idiVvjZBwzB9MocEyecspPyS2v5/irrQrJUE1V9zZkEUdlHw7/BdIdtxnRB3VRJ2LBgy0tEIpghh4OYbsy1mLGq4yuE6V4MVDYCdjlajg01y4WlqeoAVf2h6isCE5ZuTIvFYrFYjicnnGVnsVgslhOPSFnkFoCmTZtq+/btwy2GxWKxWI4jixcv3q+qwRY2rxUiStm1b9+eRYsWhVsMi8VisRxHROTnqkPVjBp3Y4rZpHOdM1j7mON2lpiV6Fc6/495wz2LxWKxWGpKjSw7MfsRjcUswFsoIqVrT+7HfFS90/myfjbl14m0WCzVQFWRY9oBxmKxQM0tu5swK24XgllBwfm/VFV3OmFWA4li1rm0WCzVQL0efnj5Lj5/8HyWrT2mJQEtFgs1H7PrAgwXkYcxSwzdpao/+oUZByzxWS+xWhQXF7N9+3YKCvz38bNYgpOQkEDr1q2Jja1s44XI58t3XmD01mkAfPfeLXj/OBuXy1p4Fkt1qVLZichXlF8Vv5Q/Otc3wXzZPhCYJSIdS9dNE7PL76OUX7zZP/4bgBsA2rZtW8F/+/btpKSk0L59e9uNYwkJVSUrK4vt27fToUOHcItzzKgq7Te+xvbY9uR1HM3w9S+xfOUSeveu9ubeFssJT5XdmKp6pqr2CvD7GLMf0QfOIqILMYt0NgUQs8PBh8BEZ1XrYPH/w/kyfkCzZhVnnhYUFJCWlmYVnSVkRIS0tLR63xuwccMauusmsjpdRNszzeIyu38ItD2bxWKpipqO2X2E2SodEemC2WVgv7PtxmeYnXdrvKK8VXSW6hINZWbH0n8D0Gbwr0hq1o6f4zrTcvc3VVxlsVgCUVNl9zJmM8BVmJ1lr3a6MG8GTgEeELMj9DKfmZoWiyUEYncuIpdkmrRLB+BAi2F082xg74EDYZbMYql/1EjZOavgX+l0a/ZT1a8d97+q2Zm8j89vb+2IfPwREe68886y8yeeeILJkyeHT6AqmDt3Lv/9b7X3jS3HueeeS6NGjfjlL39ZS1JZqkuL3JVsTeoJLvOapnYZTqx42Lxsfpgls1jqH3ZtzBCIj4/ngw8+YP/+/bUar6ri9R7zXoRBqQ1ld/fdd/P6669XHdBSJ+QcyqW9dyv5zTLK3NpmmA3l8zfX7NlaLCciVtmFQExMDDfccANPP/10Bb99+/Yxbtw4Bg4cyMCBA/n+ezNEOXnyZJ544omycL169SIzM5PMzEy6du3KxIkT6dWrF9u2bePuu++mV69epKenM3PmTMAorJEjR3LxxRfTrVs3JkyYQKAdKp577jl69OhBRkYGl112GZmZmUydOpWnn36aPn368N1331Uq41VXXcWpp55K586dmTZtWlm8v/jFL0hJSak0X95991169epF7969Of300wEzoeiaa64hPT2dvn378s03ZoxpxowZ/OpXv+Kss86iffv2vPDCCzz11FP07duXIUOGcMDpmps2bRoDBw6kd+/ejBs3jiNHjlRId8iQIaxefXQT5JEjR0bdMnOZG1fgFiWpVa8yt9iUpmx3taZh1tIwSmax1E8iam3Mqnjw09Ws2XmoVuPs0TKVP5/fs8pwv/vd78jIyOCee+4p537rrbdy++23M2zYMLZu3co555zD2rVrK41r48aNvPrqqwwZMoT333+fZcuWsXz5cvbv38/AgQPLFMfSpUtZvXo1LVu2ZOjQoXz//fcMGzasXFyPPPIIW7ZsIT4+nuzsbBo1asSNN95IgwYNuOuuuwC44oorgsq4YsUKFixYwOHDh+nbty9jxoyhZcuWIeXdQw89xOzZs2nVqhXZ2dkATJkyBRFh5cqVrFu3jrPPPpsNGzYAsGrVKpYuXUpBQQGnnHIKjz76KEuXLuX222/ntdde47bbbuOiiy7i+uuvB+BPf/oT06dP55ZbbimX7vjx45k1axYPPvggu3btYteuXQwYMCAkmesLeduMMm/Srlc5970p3WmVs8SuqGKxVBNr2YVIamoqEydO5Lnnnivn/tVXX3HzzTfTp08fLrjgAg4dOkReXl6lcbVr144hQ4YAMH/+fC6//HLcbjfNmzdnxIgR/Pij+S5/0KBBtG7dGpfLRZ8+fcjMzKwQV0ZGBhMmTOCNN94gJiZw26UyGceOHUtiYiJNmzZl1KhRLFy4MOQ8GTp0KJMmTWLatGl4PJ6y+7nyyisB6NatG+3atStTdqNGjSIlJYVmzZrRsGFDzj//fADS09PL7m3VqlUMHz6c9PR03nzzzXIWXCmXXnop771npuDPmjWLiy++OGSZ6wvevevwqNCsffmGmOeknpxMFvv27g6TZBZL/aReWXahWGB1yW233Ua/fv245ppryty8Xi8LFiwgISGhXNiYmJhy43G+33wlJyeHlF58/NEV1txuNyUlJRXCfPbZZ8ybN49PP/2Uhx9+mJUrV1YIE0xGqDhFvzrWwtSpU/nhhx/47LPP6N+/P4sXL640vO/9uFyusnOXy1V2b5MmTeKjjz6id+/ezJgxg7lz51aIp1WrVqSlpbFixQpmzpzJ1KnRt2l4Ys4mdrua0yo+qZx7Sru+sBF2rP+Rk5pfECbpLJb6h7XsqkGTJk249NJLmT59epnb2WefzfPPP192vmzZMsBsV7RkyRIAlixZwpYtWwLGOXz4cGbOnInH42Hfvn3MmzePQYMGhSSP1+tl27ZtjBo1ikcffZScnBzy8vJISUkhNze3ShkBPv74YwoKCsjKymLu3LkMHDgwpLQBNm/ezODBg3nooYdo1qwZ27ZtY/jw4bz55psAbNiwga1bt9K1a9eQ48zNzaVFixYUFxeXxROI8ePH89hjj5GTk0NGRkbQcPWVxvk/k5XYroJ7y27m+eT9vOw4S2Sx1G+ssqsmd955Z7lZmc899xyLFi0iIyODHj16lFkZ48aN48CBA/Ts2ZMXXniBLl26BIzvwgsvJCMjg969e3PGGWfw2GOPcfLJgVZnq4jH4+HKK68smwzy+9//nkaNGnH++efz4Ycflk1QCSYjmG7QUaNGMWTIEO6///6y8brhw4dzySWXMGfOHFq3bs3s2bMBeOCBB/jkk08AM2MzPT2dXr16cdppp9G7d29++9vf4vV6SU9PZ/z48cyYMaOcRVcVf/nLXxg8eDBDhw6lW7duZe6ffPIJDzzwQNn5xRdfzDvvvMOll14actz1Ba9XOcmzh8KUisvnpTZtxQEaEruvYveuxWIJjgSa4RcuBgwYoP6z6tauXUv37t3DJFF0M3ny5HITWaKN+lp2duzeRaup3VjS7S76XXZ/Bf/Vj55BbGE2XR5YEgbpLJbaR0QWq2qdzjKzlp3FEmEc3GGWkk1oWrEbEyC/cXfaebaSX3BMG4lYLCck9WqCiqV2ieRVYE5kDu/9CYCU5oF3bIhpmU78zjfYsHEFXdJDH2O1WE5krGVnsUQYxVlbAWjS6pSA/mmd+gKQtcV+XG6xhIpVdhZLhOHK2UY+cSQ3DjxRqWWn3hSrG8/OVcdZMoul/mKVncUSYcQf2cF+VzMI8s2jOy6BHTGtSc5ed5wls1jqL1bZWSwRRkrBbrLjKv/8JCu5MycXBN0T2WKx+GGVXYh89NFHiAjr1gVvTWdmZtKrV6+g/rXBsmXL+Pzzz2sUx7XXXstJJ51U57Jajo0mnn0UJFau7EqadqcF+8nO2necpLJY6jdW2YXI22+/zbBhw3j77bcD+gdayqu6lK4vWRm1oewmTZrEl19+WaM4LHVDYVERjTUHbVC5sktq0xuA7RsqX6LNYrEYrLILgby8PObPn8/06dN55513ytznzp3L8OHDueCCC+jRowdglN6ECRPo3r07F198cdkWNXPmzKFv376kp6dz7bXXUlhovpFq37499957L/369ePdd98tl67/FjpFRUU88MADzJw5kz59+jBz5kwOHz7Mtddey6BBg+jbty8ff/wxYLbUGTt2LCNHjqRz5848+OCDZfGefvrpNGnSpNJ7/vbbb+nTpw99+vShb9++5ObmoqpBtyMaMWIEY8eOpWPHjtx33328+eabDBo0iPT0dDZvNt1tn376KYMHD6Zv376ceeaZ7Nmzp0K6l112GZ999lnZ+aRJk8oWfT4R2L9nJ25RYlIrV3Ynd+kPQN7Py4+HWBZLvad+fWf3xX2wu+JCxzXi5HQY/UilQT7++GPOPfdcunTpQlpaGosXL6Z/f1PZLFmyhFWrVtGhQwcyMzNZv34906dPZ+jQoVx77bW8+OKL3HzzzUyaNIk5c+bQpUsXJk6cyEsvvcRtt90GQFpaWtk6mr74b6ETFxfHQw89xKJFi3jhhRcA+MMf/sAZZ5zByy+/THZ2NoMGDeLMM88EYOHChaxatYqkpCQGDhzImDFjQt4K54knnmDKlCkMHTqUvLw8EhIS+OCDD4JuR7R8+XLWrl1LkyZN6NixI9dddx0LFy7k2Wef5fnnn+eZZ55h2LBhLFiwABHhn//8J4899hhPPvlkuXRLt+8ZM2YMRUVFzJkzh5deeikkmaOBQ/u30wqIbdSi0nBNW7Qnh2Rkr102zGIJBWvZhcDbb7/NZZddBhjLw7crc9CgQXTocPTj3zZt2jB06FAArrzySubPn8/69evp0KFD2fqYV199NfPmzSu7Zvz48QHTDbSFjj///ve/eeSRR+jTpw8jR46koKCArVvNd1pnnXUWaWlpJCYmctFFFzF//vyQ73no0KHccccdPPfcc2RnZxMTE1PpdkQDBw6kRYsWxMfH06lTJ84++2yg/PY927dv55xzziE9PZ3HH3884PY9o0eP5ptvvqGwsJAvvviC008/ncTExJDlru8cydoBQFJa5XsKisvF9riONDy04XiIZbHUe+qXZVeFBVYXHDhwgK+//pqVK1ciIng8HkSExx9/HKi4Xc+xbJkTbMufULbQUVXef//9CjsL/PDDDzXavue+++5jzJgxfP755wwdOrRsIehghLJ9zy233MIdd9zBBRdcwNy5cwOu4JKQkMDIkSOZPXs2M2fOLGtknCgU5Zh96lKbtq4ybG7DrqTv/Rfq9SAud12LZrHUa6xlVwXvvfceV111FT///DOZmZls27aNDh068N133wUMv3XrVv73v/8B8NZbbzFs2DC6du1KZmYmmzZtAuD1119nxIgRVaYdaAsd/+17zjnnHJ5//nlKF/ReuvToqhr/+c9/OHDgAPn5+Xz00UdlFmcobN68mfT0dO69914GDhzIunXrarQdEUBOTg6tWrUC4NVXXw0abvz48bzyyit89913nHvuuSHHHw14Dxll1+ikqpUdzXuSLAXs3rqxjqWyWOo/VtlVwdtvv82FF15Yzm3cuHFBZ2V27dqVKVOm0L17dw4ePMhNN91EQkICr7zyCpdccgnp6em4XC5uvPHGKtMOtIXOqFGjWLNmTdkElfvvv5/i4mIyMjLo2bMn999/dJX8QYMGMW7cODIyMhg3blzZeN3ll1/Oqaeeyvr162ndunXZ/nxTp04t2/7nmWeeoVevXmRkZBAbG8vo0aNrtB0RmLU4L7nkEvr370/Tpk3L3BctWsR1111Xdn722Wfz7bffcuaZZxIXFxdy/NGA6/BeckkiNqHqDX4btjczMvdstDMyLZaqsFv8RCkzZswoN5HlRKQ+lp3Fj19As/xNtH1gTZVhj+TlEPd4exa1mcSQ654+DtJZLHWD3eLHYjnBSCzaT25MWkhhkxo0JDOmPSn77ILQFktV1FjZicgtIrJORFaLyGN+fm1FJE9EonN30Ahm0qRJJ7RVV19JLTlAQXzTqgM67GvYm/aFa1FPzRc1sFiimRopOxEZBYwFeqtqT+AJvyBPAV/UJA2ASOpqtdQP6muZSfXmUJIQmmUHQJuBJFPAjo3WurNYKqOmnx7cBDyiqoUAqrq31ENEfgVsAQ7XJIGEhASysrJIS0ur1tR5y4mLqpKVlUVCQkK4RakWRwoKSZUjSHLlq9v40qLX6bAcdq38ltbdqr+R6669+1n7n5dJ2TaXlgUbSVUz0zfPlcKBmOYcTO6IN60ziS170LRdT1q1O4W42Pr1xZLFAjVXdl2A4SLyMFAA3KWqP4pIA+Be4Cyg0i5MEbkBuAGgbdu2Ffxbt27N9u3b2bfPLnhrCZ2EhARatw5h+n4EkX1gH0lATFLjkK9p16knu2lK3M9zqeJVK8fh/ELmvfUIp239O2fIYXa5mrOnYTo7E5riVcWVf4DUgp1kZH9FavbHsBn4DvI1js3uluTFNaMwthFFcY1wxcYjLhdeFbwIeD2gzs9rfuLjJl4vqAcXXlx4EfU6xx5czrHgDSD10cauUr7h638O5rtSl0Bhg9b0/c10XG47ReFEpkplJyJfAYHml//Rub4JMAQYCMwSkY7AZOBpVc2ryhpT1X8A/wAzG9PfPzY2ttwKJRZLtJJ7cD8AsQ1Ct+zE5WJTwyH0zZmDlhQiMfFVXrN9Xxbb/z6e0SU/sjFlAIWjH6BFj9NpEehdVeXIgR3s3ryKnB1r8ezdQPyhn0gqzKJZ4VZSNZcYLcaFIiguvHjFhVFl7lIVZo7FqDR1/nvFjbdM5bnK/Et/lFNgR6sGoXw14X9+VHQlxZNNyyML2bXnIVq0bBNKllqilCqVnaqeGcxPRG4CPlAzQLJQRLxAU2AwcLEzYaUR4BWRAlW1MyYsliAcyTG9FwmpoU9QAeCUs0le/C+2LP2aDgNHVxp0+eZtFL8+nkGsYeOAP9N5zO1BN4kFQISktNZ0TGsNhPaBvxuIDV36OmXZZ/+g5Y93k38oC6yyO6GpqV3/ETAKQES6AHHAflUdrqrtVbU98AzwN6voLJbKKcjNAqqv7HoMO59CjeHg4g8qDbd2cyau18bSh7XsO+t5Ov/yjsoVXRTgdsY/i5y8tZy41HTM7mXgZRFZBRQBV2t9nQZnsYSZ0go5pfFJ1bquSeMm/DdpGL12f463KB9XXMWFszdt3kjc67+io+wh54IZNO83tlZkjnRiU8zM1sI8q+xOdGpk2alqkapeqaq9VLWfqn4dIMxkVfX/JMFisfjhOXwAgJRG1ezGBOg3kVTyWPvvlyt4bdu8hsTXz+Nk9nPwwrdJO0EUHUCCo+w8eQfCLIkl3NjpSRZLhKD5BwFwV2M2ZimDRv2KNXIKJy1+iqK8g2Xum5Z9R+Lro0nmCFnj3uPk3mfVmrz1gYSGpuHgPXKwipCWaMcqO4slQpCCHPJIAnf1RxdiYtwcGvVXGnkPsu3Fsexc+iULX/0/Wn14EcXEkjP+E9qmD68DqSObBqlpeFUg31p2JzpW2VksEUJMYTZHXA2O+fohp4/mP10n0/LwWlp+PJ5BW15kdWI/Yn7zNe26969FSesPyQlx5JIEBdnhFsUSZuxSCBZLhBBfkkN+TGqN4jjvit+zeuMYdq/9H6d07cWArn1qR7h6ioiQKw1wW2V3wmOVncUSISSWHKIoqWGN4+nZuRM9O3eqBYmigzxXCnFFOeEWwxJmbDemxRIhJHtzKY6rubKzlCffnUp8iVV2JzpW2VksEUCxx0sqh/HGW2VX2xTGppJQkhtuMSxhxio7iyUCyDlSREPy0MTqf3ZgqZziuEY08Fpld6ITlcpOvYFWTLdYIpfcQznEiQexyq7W8cQ3JIVcsPXCCU1UKbucrN1kT27FD7MeqzqwxRJBHHYWgY5JrsbGrZbQSGyMG8VbcCjckljCSFQpu5RGzUjUQsjZFm5RLJZqUZBrPnqObWAtu9pGnBVp8rL3h1kSSziJKmXncrvZ62pKfN6OcItisVSLwrIdD6xlV9u4k8zOB6XWs+XEJKqUHcDB2OYkF+wKtxgWS7UoyTu27X0sVRPvLAadn2MtuxOZqFN2+UktaVy8J9xiWCzVwnvEdGMmN2oWZkmij3inAVFo97Q7oYk6ZedJaU0zDlJYcCTcolgsIaP52cDRLWkstUeys2VSyWGr7E5kok7Zxaa1A2Dv9p/CLInFEjqugmyKiIHYpHCLEnU0aFiq7Ow2PycyUafsGjTvCMCBnZvCLInFEjoxhdnkSgqIhFuUqKNhSgMOazzkW2V3IhN1yq5Jm64AFOzeGGZJLJbQiSvO4YgrJdxiRCUJsW4O0QCxyu6EJuqUXbMW7Tmi8UiWtews9Yf44lzyY6yyqyvyXCm4C7PDLYYljESdsnO53ex0tyTxkB2zs9QfEj2HKIq1i0DXFfkxqcQW250PTmSiTtkBHExqR5OCreEWw2IJmQZqt/epS4piG5JQbJcLO5GJSmVX3LAjJ3v3UFyYH25RLJYqUVVSNQ+P3d6nzvDGNyTZ7nxwQhOVyi62eVfcouzcsjbcolgsVZJfUEADKcCbYNfFrCu8iU1oqIfweuzOBycqNVZ2InKLiKwTkdUi8piPe4aI/M9xXykiCTVNK1QatekBQNbPq49XkhbLMXO4dBkrq+zqjgbNiRMPudl7wy2JJUzE1ORiERkFjAV6q2qhiJzkuMcAbwBXqepyEUkDimssbYi0OKU3XhWKd644XklaLMdM/iGzsocr2Sq7usLdsAUAOXu30TDt5NqLWJX929eTt3MjJQW5eCWGBmmtaNK6Mwmpzex3kxFEjZQdcBPwiKoWAqhqabPpbGCFqi533I/rOj0NUhqS6WpJ4v5VtRbnzt27+HnpNxTvXIEc3ku85zAqLjzuBCShIZLSgthGLUlq2pKGzdrSpHlrEhISay19S/RSeMhYdu4kq+zqirhGrQA4vH87MLDG8e3ft4fN/3qSNls/oqXuIdDy3bkksTeuLYdTOkDTLjRo1Z2TOqbT4OQuEBNXYxks1aOmyq4LMFxEHgYKgLtU9UfHXUVkNtAMeEdVA+6oKiI3ADcAtG3btobiHGVvcjfaHV5eozi8XmXB1x8Rv3AKGYVLaCkeAA6RzBFJwqVe4imkgR7GLVrh+jxNJEdSyXOnUhDTkGJ3Il53HOqKxeuKA1csLgFBEbyg5r+giCqoFxel8SqgCOqE80mv7FyR0rAVxQlKxaBandNqoUFPqghbw/Srl27VKWiAIIHS0CAJ+l6fXFK6l51dF7OuSDmpDQD5B2q+/df3n79B1x/+wGDJYXl8fzI7/Bp3857EJDdEPEXkH9iBN+snOLCFlLyfOHn/D5yc9QWsB76GElzscTVnX2wrSuJS0bgUSuJSUFcsImJ+uPACeL0oXlAveD3mv3oR9aCqiHOOepxjLfMvrU9c6j1ar1RZtoNYoo6FqgpeNW+IqrIrrh1jb3+xxnl6PKhS2YnIV0Agu/+PzvVNgCGY5tIsEenouA9z3I4Ac0RksarO8Y9EVf8B/ANgwIABNalHy1HcrBfN8+ZwaP9uUptWv9ti08a1HJr1W04rXkKWNGZV2wk06nM+bboPIjWpEak+YT0lJWTt30nO3m0c3r+NwoM78OTuRfIP4C44SFzhQZJLcogt3kuMFhFDCbFajBsPCk4xdOFFwCmWR4991Z1xO6r2jhZMLVeUy/sFpZIgddn5Uq24/bqBqn5Z60CGECKSKmIN6OPjuCG+F2269KktqSx+NGthGtLF2TuPOQ5V5ZtXH+KMzKfIjO1I/oXv0LvnaVVe5/EqP+/ey+6fVnJo+xpcWZtoeCSTRoU7ScjbQZIepoEeIQbTmHb5NJy9erQ+UFx4cKEiPnWGq9yxytG6xCsuFJfTlHb8y5XE8u9S8NKrFcIYhQwFxFd5/5FClcpOVc8M5iciNwEfqKoCC0XECzQFtgPzVHW/E+5zoB9QQdnVFQ07DYQtkLlyHhmjLq3WtfM/fYU+i/6PFqKs6HUvPS+4nbS44F2S7pgY0k5uS9rJtWeZWiyW2iOlQQo5JEPuse91OffNRzgj8ylWpo6gx80zcVdSJ/jidgntWjanXcvmQNDqtAyv11hOLhSXyxXRU+brU41X03z8CBgFICJdgDhgPzAbSBeRJGeyyghgTQ3TqhYd+oygSN0UbpoX8jWqytev/JnTFt3Onvi2FF33HRkX/yHkQm2xWCKXg640Yo8c22zMhV+9x/CNj7EmeQg9f/9+ndYJLpfgdgniimQ1V/+o6Zjdy8DLIrIKKAKudqy8gyLyFPAjxgb+XFU/q2Fa1SK5QSqrYrvSeO8PIYVXVb7+5x/4xY4XWdloJN1veouYhOQ6ltJisRwv8uKaklxYfWW3c+c2On53Bzti2tDptzNxxcTWgXSWuqZGyk5Vi4Arg/i9gfn8IGzkNB9C9+2vkJu9j5QqdoD+9o2/8YsdL7Ki8dmk3/w24q5pO8BisUQSBUktaH7g+2pdo14v21//DX04TPGlHxCf3KhuhLPUOVFtJzfM+CVuUTLnz6o03H/ff46Rmx9jZcowev32TavoLJYopDi1Hc3IpuBw6Gtkrvz2fQblf8+Kzr+jRdcBdSidpa6JamXXtf9ItnMSrjUfBg2z+ItXGLziAVYl9Kfbze/hirXfv1gs0YgrzWzsvG/b+pDCez0ekuc/zA5pTsYlf6hL0SzHgahWdrExbra0OI9uhxeRtbXiOpmr575H+oI72RDXg043f0RsvJ2IYrFEK4nNTwEgb1doGzsv/XwanTxb2NX/LuLij9tqh5Y6IqqVHUDbc26lhBh2ffjHcu6rv36LTt/cyM/u9rT87ackNkgNEoPFYokG0tp0BeDI7qo3di4qLKDFkqfY5O5Ev9G/rmvRLMeBqFd27dp35LuTJ9Lr4BzWvX0fhTtWsnT6LXT/9rdkxnSgyY3/omFju3KFxRLttDy5BTmajCer6o2dl334FC11D4eH/xGX230cpLPUNSfETIzTrvkb857exOnrX4L1L9EX+L7hefT89Us0atgo3OJZLJbjgIiwJ7YVSYe2VBru8KGDnLLuJVbF9Sbj9AuPk3SWuuaEUHZJCQmceveHzPn6M4r2/UTz7kM5re8AxK5IbrGcUGSndqHLgbmo1xv0o+1V7z3MYA6x95wH7YfdUcQJoezATFb5xdkXhFsMi8USRjwnpdPowL/Yv2sLTVt1quB/cO8Oev38OosbDKd//1FhkNBSV9hmi8ViOWFo0K4vAHs3/BjQf+N7fyaeItLO/+vxFMtyHLDKzmKxnDC06j6YQo2hcPP8Cn67f15Hnz0fsKjJGNp363P8hbPUKVbZWSyWE4YmjRqxNqY7jff8t4Lf3vfvoYQY2o/7Sxgks9Q1VtlZLJYTiqzmp9G+eDOH9/1c5rZh4WwyDn3Lj62v5uTWHcIonaWusMrOYrGcUDQdcgVeFX7+z1QAio7kkvzlbeyiKf0vvz/M0lnqCqvsLBbLCUV6r94sjO1Pmw2vkr/5eza+eAktPLvYdvqTNLArKUUtVtlZLJYTCpdLkHMfoUSFxNfPo1vuAr7tfC+DzvhVuEWz1CEnzHd2FovFUsrgAQP5r+tzdi76F026nMqoEfabumjHKjuLxXJCclq/3tCvd7jFsBwnbDemxWKxWKIeq+wsFovFEvWIqoZbhjJEZB/wc5UBq6YpsL8W4jke1CdZoX7Ja2WtO+qTvPVJVqhf8taWrO1UtVktxBOUiFJ2tYWILFLVAeGWIxTqk6xQv+S1stYd9Une+iQr1C9565OsthvTYrFYLFGPVXYWi8ViiXqiVdn9I9wCVIP6JCvUL3mtrHVHfZK3PskK9UveeiNrVI7ZWSwWi8XiS7RadhaLxWKxlGGVncVisViinqhSdiJyroisF5FNInJfuOXxR0TaiMg3IrJGRFaLyK2O+2QR2SEiy5zfeeGWFUBEMkVkpSPTIsetiYj8R0Q2Ov8bR4CcXX3ybpmIHBKR2yIpX0XkZRHZKyKrfNwC5qUYnnPK8QoR6RcBsj4uIusceT4UkUaOe3sRyffJ46nHU9ZK5A367EXk/5y8XS8i50SArDN95MwUkWWOeyTkbbA6KyLLbqWoalT8ADewGegIxAHLgR7hlstPxhZAP+c4BdgA9AAmA3eFW74A8mYCTf3cHgPuc47vAx4Nt5wBysFuoF0k5StwOtAPWFVVXgLnAV8AAgwBfogAWc8GYpzjR31kbe8bLoLyNuCzd9635UA80MGpM9zhlNXP/0nggQjK22B1VkSW3cp+0WTZDQI2qepPqloEvAOMDbNM5VDVXaq6xDnOBdYCrcIrVbUZC7zqHL8K/Cp8ogTkF8BmVa2NlXhqDVWdBxzwcw6Wl2OB19SwAGgkIi2Oi6AEllVV/62qJc7pAqD18ZKnKoLkbTDGAu+oaqGqbgE2YeqO40JlsoqIAJcCbx8veaqikjorIstuZUSTsmsFbPM5304EKxIRaQ/0BX5wnG52zP6XI6Fr0EGBf4vIYhG5wXFrrqq7nOPdQPPwiBaUyyhfWURivpYSLC8jvSxfi2m9l9JBRJaKyLciMjxcQgUg0LOP5LwdDuxR1Y0+bhGTt351Vr0ru9Gk7OoNItIAeB+4TVUPAS8BnYA+wC5MV0YkMExV+wGjgd+JyOm+nmr6LSLm2xURiQMuAN51nCI1XysQaXkZDBH5I1ACvOk47QLaqmpf4A7gLRGJhO2+682z9+FyyjfUIiZvA9RZZdSXshtNym4H0MbnvLXjFlGISCym0Lypqh8AqOoeVfWoqheYxnHsVqkMVd3h/N8LfIiRa09pt4Tzf2/4JKzAaGCJqu6ByM1XH4LlZUSWZRGZBPwSmOBUcDjdgVnO8WLMGFiXsAnpUMmzj9S8jQEuAmaWukVK3gaqs6hnZReiS9n9CHQWkQ5OC/8y4JMwy1QOp09+OrBWVZ/ycfft074QWOV/7fFGRJJFJKX0GDNBYRUmT692gl0NfBweCQNSrmUcifnqR7C8/ASY6MxsGwLk+HQZhQURORe4B7hAVY/4uDcTEbdz3BHoDPwUHimPUsmz/wS4TETiRaQDRt6Fx1u+AJwJrFPV7aUOkZC3weos6lHZLSPcM2Rq84eZCbQB0wL6Y7jlCSDfMIy5vwJY5vzOA14HVjrunwAtIkDWjphZa8uB1aX5CaQBc4CNwFdAk3DL6siVDGQBDX3cIiZfMUp4F1CMGcf4dbC8xMxkm+KU45XAgAiQdRNmLKa03E51wo5zyscyYAlwfoTkbdBnD/zRydv1wOhwy+q4zwBu9AsbCXkbrM6KyLJb2c8uF2axWCyWqCeaujEtFovFYgmIVXYWi8ViiXqssrNYLBZL1GOVncVisViiHqvsLBaLxRL1WGVnsVgslqjHKjuLxWKxRD1W2VksFosl6rHKzmKxWCxRj1V2FovFYol6rLKzWCwWS9RjlZ3FYrFYop6IU3Yi0l5E1NnfyVJPEZFbRGSniCwPQ9qTReSN45DOJBGZX4n/XBG5rq7lsJSnsnw/Xs9ERGaIyF8r8VcROaWu5YgGRKSliOSKyHoROeNY44k4ZWepPiIyVUTynF+RiBT7nH8RJrEmA79V1d4+ck4WkclhkieicBp1mdUM/42IHBGRdSJyZiVh40XkZRE5JCK7ReQOP//rRGSTUz6+FJGWftdOFZE9InJARD4VkVY+/k1E5EMROSwiP4vIFUFkeNm3Qnfine5ckysiy0RkdDXuf4azeWzU4zSiZlQj/C+cMnHEKSPtKgkbUjkSkTm+RoeItPWpU0p/KiJ3Ov5jRGS+iGQ7Ze6fpfthOv6tRORjp0xtF5Eb/dJzi8hfnQZyrogsFZFGAKq6U1VTgE+B34eaL/7UurKzFtnxR1VvVNUGqtoA+Bsws/RcVcsqlOP8bJoQeZulVpsIKs9vA0sx+4j9EXhPRJoFCTsZs9FnO2AUcI+YzVcRkZGYMjIW84y24LPhLXArcCqQAbQEDgLP+/hPAYqA5sAE4CUR6embuIgMAzr5yRSD2Q9vBNAQ+BMwS0TaV33rkYk4G6uGWYamwAfA/ZjnuQif3c4DUGU5EpEJQKyvm6pu9alTGgDpgBezgzmYZ/pXTJnpDrQCHveJ4g1MWWsOjAH+JiKjfPwfBE7DlL1U4CqgwE/2VY7cx0StKDsRyRSRe0VkBXBYRGJEZIiI/NfR9Mudl6w0/FwR+X8istBpfX4sIk2CxH2NiKx1tP1PIvIbP/+xTivxkIhs9nmpGzotyV0issNpNVRaOEWkk4h8LSJZIrJfRN4sbV04fgdEpJ9z3lJE9pXel4hcICKrnfudKyLd/fLnLhFZISI5IjJTRBKqn9PVJ8izKdeFIn5dLiLySydPs51nmFHNNEvz2VtFuHuc57NTjLXhawnMEJEpIvKZ8+x/EJFOPtc+KyLbnOe+WESG+0Wf4ORzrogsERFfC/M+p6zkisgaEbnQx2+SiHwvIk+LSBZGcVR1v0+IyEER2SIVrZV2Tny5IvJvp3KqFiLSBegH/FlV81X1fczGmOOCXHI18BdVPaiqa4FpwCTH75fAu6q6WlWLgL8Ap/vkbQdgtqruUdUCTMXZ05Ej2UnzflXNU9X5mI1Rr/KRNQajHG/xFUhVD6vqZFXNVFWvqv4LU/n1P4b8cIvIk847ukVEbpYgQx8i0sJ57+72ce4UrO4RkXfFWCY5IjJPfBS5UyZfEpHPReQwpiFRGY2DlV+HM0Vko/OeTRERqW5eABcBq1X1Xed5TQZ6i0g3/4ChlCMRaQj8GbMrfWVMBOapaiaAqr6lql+q6hFVPYgpc0OdOBsAI4GHVbVYVZcD7wHXOv6NgduA61X1ZzWscu7HFy+m0XRs1NJutpmYHWzbAIkYrZ6F2dHWBZzlnDdzws8FdgC9MDtMvw+84fi1x+yMG+Ocj8G0EgXTKjwC9HP8BgE5TvwuJ91ujt+HwN+d+E8CFgK/qeI+TnHiigeaAfOAZ3z8rwfWAEnAbOAJx70LcNi5NhZTUDYBcT75sxDT6mkCrMVvV2K/nYGzK/kNq+IeJpfmZaBn47gpcIpPmBnAX53jvsBeYDDgxlScmUB8NcrDuZhWWXIVYXZjKtIkTMuvTC5HpiznGccAbwLv+Fx/JaaVFwPc6cSV4JMHxcDFzvO4C1Oxxjr+lzjPwgWMd55dC8dvElCCqaxjSvMsyD1MctK53smrm4CdULYp8lzMjs1dMO/FXOCRIHG9CLwYxO9CYK2f2wvA8wHCNnbysbmP28XASuf4Cd90MO+MAmOd8wHA907+JAFv4bwDTtk44pfeXcCnPud3A88GKmd+1zV3yki3Y6hvbsS8h62d+/2K8nXGXOA6jOLeANzgc+1cgtQ9jv+1QAqmDngGWOb3nuRgKnFXaXkLIuMMKi+/CvwLaAS0BfYB5waJawVwRRC/Z4GX/NxWAeOOpRxhLPfb8auH/a4RTLmeVMn9P1N6v05+KnCSj/80YKlzfDqmbrsX8x5vAH4XIM5RmJ6GttUtM6paq8ruWp/ze4HX/cLMBq72KXCP+Pj1wHSNuCvLZCfsR8CtzvHfgaeDvEiF+FRUwOXAN9W8r1+VPhAft08wraEVOAoA04UwyyeMC/NCjfTJnyt9/B8DptZG3geQeTIVld21fmEqU3YvYawC3/DrgREhpr/Iif/3VYR7Gfh/PuenUFHZ/dPH/zxgXSXxHQR6++TBAr/nsQsYHuTaZRyt7CcBW0O810nAJp/zJOceTvYp53/y8f8t8OUxPNOrfO/HcXsYmBEgbBtHhgQft7OATOf4TGA/ppsy0XmHvMDljn9D4B0njhJMl1cTx284sNsvveuBuT5pbwIaBipnPtfEYhTU34+xjH+NT8PVuSd/ZfeUU/Yv97t2LkHqngDpNHLiLb2fGcBrIcpYafl14h3mcz4LuO8Y8mI6fg0oTGNlUnXLEaahswyjnNsTXNkNB/KABkFkOgvzPnbxcZuPsfgTMNblAWC943eFk9Z0p0xmYJT/WQHiftcJ+0x186o2x+y2+Ry3Ay5xzPNsEcnGWCwtgoT/GfMCVOjiEZHRIrLA6ULMxhSa0nBtMC0Mf9o58e3ySf/vGAsvKCLSXETeEdPteQhjbfjLNA3TKnxeVQsdt5bOPQCgql7n/lr5XLfb5/gI0KAyWWqZbVUHKaMdcKffs2uDucdQGAhcBkwWkdhKwrX0kyuQjEHzzOkWXut0N2VjKmnfZ1UWn/M8tpfeg4hM9OmmzcY8z4DXhkCZjKp6xDlsEMjf/x6qQR5mHMOXVCA3SNhS/wphVfUrTDfV+xhlkOn4bXfCTsFYNWkYy+cDoHSSU1VyPAM8pKo5wW5ERFzA6xgFc3OwcFUQStmZgGlwvhfAL2Dd43SPPuJ0cR/C5A3UQtkg8LMPR9kIGNZ5Li9iDImSKtK8GnhfVfP8PURkCKY34GJV3eDjNQFjaW/DNKjf4GiZy3f+P6Sme3UFpsF1nl/c/Ry3bqp6WxUyVqA2lZ36HG/DWHaNfH7JqvqIT5g2PsdtMd1B+30jFJF4zEv5BKZbphHwOcaMLk3Hvx+81L0QaOqTfqqq9gwQ1pe/OfeRrqqpmK6ysn50p+/5GUwLZLJPX/9OjJIoDSfO/e2oIr0KiMhwqTjryffnPzYVCup3fgRjhZRyss/xNkzfuu+zS1LVtwkBNc2vjzDdSy0qCboL0w1VSptgAf1x8uAe4FKgsVMucvB5Vr7xOS9ya2CnmJlq0zAVbZpz7Sq/a/3zK9ysBjqKz+w2oLfjXg414yW7HP+AYVV1iqp2VtXmmPcrhqOTifpgWvoHnMbc88AgZ6xxAxAjIp2DxP0L4HFnzKu0Iv+fODM2nfdiOqbnZZyqFlczH0oJpexMxtQnb0nFsfpgdc8VmIk7Z2IaT+2dMJFeNsqetTOu2okAZYPKy1EqxrKb6Ty7Hx3/7b51jogkYoYBXvWPXET6Ynq+rlXVOb5+asbifqmqzVR1MKYBsdDxXlEazPeSAPJ3B9ao6voAflVSV58evAGcLyLnOK2lBBEZKSK+BfRKEekhIknAQ8B7qurxiycO08rcB5Q4g/9n+/hPB64RM/XWJWZ6azdV3QX8G3hSRFIdv04iMqIKuVMwrZ8cMdOt7/bzfxZYpKrXAZ8BUx33WcAYR45YzBhSIfDfqjLKH1X9Tn1mPQX4fVfdOAOwDLjCeTbnYsZCS5kG3Cgig8WQLGZacQqUDdLPqOIeSi3euEqCzcI8u+5OGbi/GvKnYLrY9mEq3weo2GLtLyIXiZm0cBvmeSzAWCvqXIuIXIOx7CIWp4W8DPiz8y5diOnqeT/IJa8BfxKRxs5Ehesx3Wo41/dynm1b4B+YMbaDzrU/AhPFTPCKxXS97lTV/ap6GGPpPeSUi6EY5fC6c20XTOXZx/kBnI8ZPwfTou8OnK+qpa35MsRMMhkZQpbMAm513vdGmGETf4oxlXIy8JrT4CklWN2TgiknWZjG4N9CkCXcfAj0EpFxYia9PQCsUNV1/gGrKEc5GIu5j/Mrtar6Az/4RHMhpovyG9+4RaQX8CVwi6p+6p+2856niEiciFyJqcefcuTaDHwH/FHMJyrdMb1D//KLJhbzfI6JOlF2qroN8xL8AVOpbMMoDt/0Xse8gLsx/bgVvp9Q1VzHfRYmg6/AtBxK/RcC1wBPYx7Wtxy1sCZiKts1zrXvUbmlAWb6az8nrs8wLzZgZn1iJlXc5DjdAfQTkQlOS+NKTCt4P+YFP1/NbLdI5FaMjNmY7oWPSj1UdRGmcnwBk2+bODqTD0yr+PsQ0lAqKV+q+gXwHOal2YRRRBBaYZ6NebE2YLqhCqjYvfQxZvLJQcxYxUVqZoKtAZ4E/gfswUyhDuV+6hQx37ZNrSTIZZiW90HgEUw3UanCniAivi35P2O693/GvBOPq+qXjl8CppspD9Oy/h/lGxp3YfJzI+bdPQ9TwZXyW8y4yl7MNPabVHU1gKruVdXdpT8n/H5VzXcs6t9gKtLdPj0VE5x7aIPpeltZdW4xDdOYXYEZU/wc0/gp11h23r+LMJbkyz4KL1jd85qTZzsw9cYCIgAxs7wnBPJzysA4zNjbQczEsst8rvUvVwHLkRp8n90+J/wev3rsakyvnb/ldSdmUt90n2frWybPAX5y0r0RMxlnn4//5Zi6OwtT997vbx1i5nRUOsO7MqSizHWPiMzFTKL453FP3HLMiEgcsBzIqKoLSkR2AveoakgrmTituVWYST9VjRlYogyntd9TVf/vGK4djZnw1a7KwJZ6idNQeQ4zo/PSY4nDrqBiCRlVLVLV7iGOtdyH6S5ZHCyAiFzodFs0Bh7FTGG3iu4ERFXfCFXRiUiiiJwn5pvRVhhL9sOqrrPUT8Ss8LMPGILplTkmTjhlJ+WX1vL9VdaFZKkmqvqaMwmiso+Gf4PpDtuM6YK6qZKwYcGWl4hEMEMOBzHdmGsxY1XHVwjTvRiobATscrQcG2qWC0tT1QGq+kPVVwQmLN2YFovFYrEcT044y85isVgsJx6RssgtAE2bNtX27duHWwyLxWKxHEcWL168X1WDLWxeK0SUsmvfvj2LFi0KtxgWi8ViOY6IyM9Vh6oZthvTYrFYLFGPVXYWSwSybvchNuwJtLyhxWI5Fqyys1gikL8+9yIvPzc53GJYLFFDRI3ZBaK4uJjt27dTUOC/j5/FEpyEhARat25NbGxlGy9ELm/E/T/n6Ji/obVYLD5EvLLbvn07KSkptG/fHjmmjXwtJxqqSlZWFtu3b6dDhw7hFsdisUQAEd+NWVBQQFpamlV0lpAREdLS0qKiN0A9dvU0i6U2iHhlB1hFZ6k20VJmCo8cCrcIFktUUC+UncVyolKQlx1uESyWqMAquxAQEe68886y8yeeeILJkyeHT6AqmDt3Lv/9b7X3jS1j2bJlnHrqqfTs2ZOMjAxmzpxZi9JZqkNB7sGqA1ksliqxyi4E4uPj+eCDD9i/f3+txquqeL3HvBdhUGqq7JKSknjttddYvXo1X375JbfddhvZ2dm1J6AlZIrybTemxVIbWGUXAjExMdxwww08/fTTFfz27dvHuHHjGDhwIAMHDuT7782m15MnT+aJJ54oC9erVy8yMzPJzMyka9euTJw4kV69erFt2zbuvvtuevXqRXp6epkVNXfuXEaOHMnFF19Mt27dmDBhAoF2qHjuuefo0aMHGRkZXHbZZWRmZjJ16lSefvpp+vTpw3fffVepjFdddRWnnnoqnTt3Ztq0aQB06dKFzp07A9CyZUtOOukk9u3bVyHtd999l169etG7d29OP/10wEwouuaaa0hPT6dv37588803AMyYMYNf/epXnHXWWbRv354XXniBp556ir59+zJkyBAOHDgAwLRp0xg4cCC9e/dm3LhxHDlypEK6Q4YMYfXqo5sgjxw5MmqXmSvKPxxuESyWqCDiPz3w5cFPV7NmZ+22dHu0TOXP5/esMtzvfvc7MjIyuOeee8q533rrrdx+++0MGzaMrVu3cs4557B27dpK49q4cSOvvvoqQ4YM4f3332fZsmUsX76c/fv3M3DgwDLFsXTpUlavXk3Lli0ZOnQo33//PcOGDSsX1yOPPMKWLVuIj48nOzubRo0aceONN9KgQQPuuusuAK644oqgMq5YsYIFCxZw+PBh+vbty5gxY2jZsmVZ/AsXLqSoqIhOnTpVuI+HHnqI2bNn06pVqzLLb8qUKYgIK1euZN26dZx99tls2LABgFWrVrF06VIKCgo45ZRTePTRR1m6dCm33347r732GrfddhsXXXQR119/PQB/+tOfmD59Orfccku5dMePH8+sWbN48MEH2bVrF7t27WLAgAGV5nl9pTjfrqJisdQG1rILkdTUVCZOnMhzzz1Xzv2rr77i5ptvpk+fPlxwwQUcOnSIvLy8SuNq164dQ4YMAWD+/PlcfvnluN1umjdvzogRI/jxxx8BGDRoEK1bt8blctGnTx8yMzMrxJWRkcGECRN44403iIkJ3HapTMaxY8eSmJhI06ZNGTVqFAsXLiy7bteuXVx11VW88soruFwVi8rQoUOZNGkS06ZNw+PxlN3PlVdeCUC3bt1o165dmbIbNWoUKSkpNGvWjIYNG3L++ecDkJ6eXnZvq1atYvjw4aSnp/Pmm2+Ws+BKufTSS3nvvfcAmDVrFhdffHGl+V2fKSmwlp3FUhvUK8suFAusLrntttvo168f11xzTZmb1+tlwYIFJCQklAsbExNTbjzO95uv5OTkkNKLj48vO3a73ZSUVPzm6rPPPmPevHl8+umnPPzww6xcubJCmGAyQsUp+qXnhw4dYsyYMTz88MNlitmfqVOn8sMPP/DZZ5/Rv39/Fi9eHPL9uFyusnOXy1V2b5MmTeKjjz6id+/ezJgxg7lz51aIp1WrVqSlpbFixQpmzpzJ1KnRu2m4t8gqO4ulNrCWXTVo0qQJl156KdOnTy9zO/vss3n++efLzpctWwaY7YqWLFkCwJIlS9iyZUvAOIcPH87MmTPxeDzs27ePefPmMWjQoJDk8Xq9bNu2jVGjRvHoo4+Sk5NDXl4eKSkp5OYe7f4KJiPAxx9/TEFBAVlZWcydO5eBAwdSVFTEhRdeyMSJEyu1mjZv3szgwYN56KGHaNasGdu2bWP48OG8+eabAGzYsIGtW7fStWvXkO4HIDc3lxYtWlBcXFwWTyDGjx/PY489Rk5ODhkZGSHHX9/wFlplZ7HUBlbZVZM777yz3KzM5557jkWLFpGRkUGPHj3KrIxx48Zx4MABevbsyQsvvECXLl0CxnfhhReSkZFB7969OeOMM3jsscc4+eSTQ5LF4/Fw5ZVXlk0G+f3vf0+jRo04//zz+fDDD8smqASTEUw36KhRoxgyZAj3338/LVu2ZNasWcybN48ZM2bQp08f+vTpU6YgH3jgAT755BMA7r77btLT0+nVqxennXYavXv35re//S1er5f09HTGjx/PjBkzyll0VfGXv/yFwYMHM3ToULp161bm/sknn/DAAw+UnV988cW88847XHrppSHHXR/xFuWHWwSLJSqQQDP8wsWAAQPUf1bd2rVr6d69e5gkim4mT55cbiJLtFFvy44qPNgIgMVtf03/a58KrzwWSx0jIotVtU5nmVnLzmKJMNTrMzZbXPHTC4vFUn3q1QQVS+0SyavAnMh4SkrKXkwpscrOYqkNrGVnsUQYJSXFZceuEjtmZ7HUBlbZWSwRhsfnExOr7CyW2sEqO4slwvB4jlp2MR6r7CyW2sAqO4slwvC17GI89X8DWoslErDKLkQ++ugjRIR169YFDZOZmUmvXr3qVI5ly5bx+eefH/P1pR+h9+jRg549e/Lss8/WonSW2sDXsou1lp3FUitYZRcib7/9NsOGDePtt98O6B9oKa/qUrq+ZGXUVNnFxMTw5JNPsmbNGhYsWMCUKVNYs2bNMcdnqX08PhNU4tRadhZLbWCVXQjk5eUxf/58pk+fzjvvvFPmPnfuXIYPH84FF1xAjx49AKP0JkyYQPfu3bn44ovLtqiZM2cOffv2JT09nWuvvZbCwkLALCt277330q9fP959991y6fpvoVNUVMQDDzzAzJkz6dOnDzNnzuTw4cNce+21DBo0iL59+/Lxxx8DZkudsWPHMnLkSDp37syDDz4IQIsWLejXrx8AKSkpdO/enR07dlS452+//bZs9ZS+ffuSm5uLqgbdjmjEiBGMHTuWjh07ct999/Hmm28yaNAg0tPT2bx5MwCffvopgwcPpm/fvpx55pns2bOnQrqXXXYZn332Wdn5pEmTyhZ9PlEo7cYsURex3sIwS2OxRAd1/p2diJwLPAu4gX+q6iPHHNkX98Huigsd14iT02F05SJ9/PHHnHvuuXTp0oW0tDQWL15M//79AbPu5apVq+jQoQOZmZmsX7+e6dOnM3ToUK699lpefPFFbr75ZiZNmsScOXPo0qULEydO5KWXXuK2224DIC0trWwdTV/8t9CJi4vjoYceYtGiRbzwwgsA/OEPf+CMM87g5ZdfJjs7m0GDBnHmmWcCZnueVatWkZSUxMCBAxkzZky5rXAyMzNZunQpgwcPrpD2E088wZQpUxg6dCh5eXkkJCTwwQcfBN2OaPny5axdu5YmTZrQsWNHrrvuOhYuXMizzz7L888/zzPPPMOwYcNYsGABIsI///lPHnvsMZ588sly6ZZu3zNmzBiKioqYM2cOL730UogPMzrweoyyyyORBGvZWSy1Qp1adiLiBqYAo4EewOUi0qMu06wL3n77bS677DLAWB6+XZmDBg2iQ4cOZedt2rRh6NChAFx55ZXMnz+f9evX06FDh7L1Ma+++mrmzZtXds348eMDphtoCx1//v3vf/PII4/Qp08fRo4cSUFBAVu3bgXgrLPOIi0tjcTERC666CLmz59fdl1eXh7jxo3jmWeeITU1NWDad9xxB8899xzZ2dnExMRUuh3RwIEDadGiBfHx8XTq1Imzzz4bKL99z/bt2znnnHNIT0/n8ccfD7h9z+jRo/nmm28oLCzkiy++4PTTTycxMTHgvUcrpZbdYUkiHmvZWSy1QV1bdoOATar6E4CIvAOMBY5tkKgKC6wuOHDgAF9//TUrV65ERPB4PIgIjz/+OFBxu55gW+ZURrAtf0LZQkdVef/99yvsLPDDDz8ElaW4uJhx48YxYcIELrroooBp33fffYwZM4bPP/+coUOHMnv27ErvIZTte2655RbuuOMOLrjgAubOnRtwBZeEhARGjhzJ7NmzmTlzZlkj40TC60xQOSLJxOs+8HrA5Q6zVBZL/aaux+xaAdt8zrc7bmWIyA0iskhEFu3bt6+Oxak+7733HldddRU///wzmZmZbNu2jQ4dOvDdd98FDL9161b+97//AfDWW28xbNgwunbtSmZmJps2bQLg9ddfZ8SIEVWmHWgLHf/te8455xyef/55Shf0Xrp0aZnff/7zHw4cOEB+fj4fffQRQ4cORVX59a9/Tffu3bnjjjsqTTs9PZ17772XgQMHsm7duhptRwSQk5NDq1bm8b/66qtBw40fP55XXnmF7777jnPPPTfk+KOF0m7MQlcSAFpU+WbAFoulasI+QUVV/6GqA1R1QLNmzcItTgXefvttLrzwwnJu48aNCzors2vXrkyZMoXu3btz8OBBbrrpJhISEnjllVe45JJLSE9Px+VyceONN1aZdqAtdEaNGsWaNWvKJqjcf//9FBcXk5GRQc+ePbn//vvLrh80aBDjxo0jIyODcePGMWDAAL7//ntef/11vv7667IJKKWzO6dOnVq2/c8zzzxDr169yMjIIDY2ltGjR9doOyIwa3Fecskl9O/fn6ZNm5a5L1q0iOuuu67s/Oyzz+bbb7/lzDPPJC4uLuT4o4UyZRfTwPzPt3vaWSw1pU63+BGRU4HJqnqOc/5/AKr6/wKFt1v81B4zZswoN5HlRKS+lp11i+bQ7V8XsSBpFEOOfEPOdQtp2Dr0DXAtlvpGNGzx8yPQWUQ6iEgccBnwSR2nabHUa9Sx7EpijWVXUGAtO4ulptTpBBVVLRGRm4HZmE8PXlbVilPwLLXOpEmTmDRpUrjFsBwDHkfZeeNSACg6kltZcIvFEgJ1/p2dqn4OHPuSHyaOkGY1Wiyl1GX3fF1TatlpvFF2xdays1hqTNgnqFRFQkICWVlZ9bryshxfVJWsrCwSEhLCLcoxUTpBRRxlV1JgZ2NaLDUl4ncqb926Ndu3bycSP0uwRC4JCQm0bt063GIcE15nbUxXQkMASqxlZ7HUmIhXdrGxseVWKLFYoh2v16yW404yys5TaJWdxVJTIr4b02I54XC6MWOTzDJu3iKr7CyWmmKVncUSYXi9phszLrmROS88EkZpLJbowCo7iyXScCy7hORGeFVQa9lZLDXGKjuLJcJQZyHopMQE8omDYrtbucVSU6yys1giDUfZxcXFk088Umy7MS2WmmKVncUSYagzZueKiaVA4nGVWGVnsdQUq+wslkjDsexiYuIolARcJbYb02KpKVbZWSyRRukKKjGxFEkCbo9VdhZLTbHKzmKJMNRnzK7IlYDbUxBmiSyW+o9VdhZLpOEou9jYOIpdCcRay85iqTFW2VkskYa3GK8K7pgYPO5E4rzWsrNYaopVdhZLhKGeEkpwIyKUuBOJU6vsLJaaYpWdxRJpeIspwW0OYxKJt5adxVJjrLKzWCIM8RZTImZDEk9MIvEUhlkii6X+Y5WdxRJpON2YAMQkkkAReL3hlcliqedYZWexRBjiLcbjbDWpcUnG0X5YbrHUCKvsLJYIQ7wllIix7CQ2GYCSgrxwimSx1HussrNYIgxfy04cyy7/SG44RbJY6j1W2VksEYZoCR5ngoor3lh2hUesZWex1ASr7CyWCMPlLS5Tdu54Y9kV5VtlZ7HUBKvsLJYII9aTT6HLKLkYx7Iryre7lVssNcEqO4slwojzHqHY7Si7xBQAigvsmJ3FUhOssrNYIox4bz4lMUbZxSaUzsa0lp3FUhOssrNYIox4bz4eR9nFJTYAwFNolZ3FUhOssrNYIoxECvA639fFO8rOa5WdxVIjrLKzWCIIVSVJC9BYY9klJDuWXdGRcIplsdR7rLKzWCKI/IJ84qQEiTdKLtGZoKLWsrNYaoRVdhZLBJG9bxcA7uSmACTEx5CvcVBs18a0WGpCjZSdiEwWkR0issz5nefj938isklE1ovIOTUX1WKJfvKydgIQ2/BkAOLcLo4QjxRby85iqQkxtRDH06r6hK+DiPQALgN6Ai2Br0Ski6p6aiE9iyVqyT9oLLv4xkbZiQiFxCN21wOLpUbUVTfmWOAdVS1U1S3AJmBQHaVlsUQNR7K2A5DWvE2ZW4Ek4LLKzmKpEbWh7G4WkRUi8rKINHbcWgHbfMJsd9wqICI3iMgiEVm0b9++WhDHYqm/eLN+okjdNG3ZocytyBWP2yo7i6VGVKnsROQrEVkV4DcWeAnoBPQBdgFPVlcAVf2Hqg5Q1QHNmjWr7uUWS1SRkJvJHvfJiDu2zK1IEnB7rLKzWGpClWN2qnpmKBGJyDTgX87pDqCNj3drx81isQRBVWl2eCMHGnQu9/KUuBNI9thdDyyWmlDT2ZgtfE4vBFY5x58Al4lIvIh0ADoDC2uSlsUS7WzbtYu27Mbbom859xJ3IrHegjBJZbFEBzWdjfmYiPQBFMgEfgOgqqtFZBawBigBfmdnYloslZO5Yj5tgaZdhpRzL3EnEqe2G9NiqQk1UnaqelUlfg8DD9ckfovlRKJk8zyKcdMq/fRy7l53IvHewhrH7/V4WLfkW7JX/Qd33g6ISSCuRS86nXYhqSe1qToCi6UeUxvf2VksllqgedZCfo7vyikJKeXcvbFJxHPsyq6oqJgfP32JVqum0kPN0PlBUojTIpL3zMS79AHWJfeF9EvoPOIK3EmNAsbj9XjZu3sre7f/REHWVjQ/m5LiImLFiys+GVdCKu6khsQlpRCflEJCYirJKam4YhPwerx4SorwekooKSnG6ynB4ynB6ynB6/Hg8ZSgHg+oB5cLXCK4xIWI4HaBS1zG3eXCJWLcRZxz/P4LLpcgCIhAYhNoYCe/nehYZWexRAD7srLo4tnEyjZXV/SMTSRBC0HVVN7VYN3S79FPb2WodyOZMR1Ykv4wXU6/lMaNT8Lj8bJ25QL2LHiXjrs/o+0P/0fBD39mTcPTONK4Gx5i0PxsYnO30bhgK608OzlZCjm5lu75eFFAHIW3rKJhWvNwi2IJI1bZWSwRQOaSOQwUDw26jqrgJ7FJuETxFuXjik8KKT6vx8s3bz7K8M2Pc1iSWTPkCbqf/Wvau47OSXO7XXTvcxrd+5xGYfHj/O+/X3Fk0Vtk5HxLs5y5ABSpm/3uk8hKaMuqlMFIWkeSm7WnQbO2xDdqRkJcPEUKRYcPU3Qkm6LDByk6kkdxQR4l+bl4Cg/j8hSiLjfiikHcMSBuxB2LuFyIOwaXyw0uNy6XGxU3HgVU8To/VcXrBVUvXi39r6hXfc59/nsVxVwnuTsZs2sK6xZ8TJ8xN9TGo7LUU6yys1gigMJN31Kkbtr3PaOiZ7zZ264gP5ekEJRdfn4BS1+cyC9yZ7O2wSBa//p1ejSp3B6Lj43h1BHnwohzUVUKiwpwq5fYuERauly0PKa7Cj/FJSXs/8sbyMbZgFV2JzJRt+uBx2MnfVrqH82yFrI5rlvZzuS+uOOMgss/XPW3dvuzD7Hi6Qs4LXc2SzrcQLc7vySlCkXnj4gQH59ITEIy4qrfVURsTAzrUk6lQ/b/8BYXhVscSxiJKsuuIP8IBx7rw/YmQ2gw8Aq69BtFTFx8rcTt8XjwekoAM3RiMN0lgRAEMOMrZcMsIhw9PFqJiM84jDmUo24hjtGoqt+5z3FVYSv4+/oFj7eiDH7nVVyr5fxCl8nfs67SqfBsKz+tVr75nhYdzqZT8SZ+bH0NgXAnGAVYcPhQQP9S9h44wNYpFzHYs5S1fR+g39g7Kw1/ohDTfTSpP37JhiVf0WXweVVfECIF+Yc5kneI4vw8ivLzKPaUILhwud24XS7cbhculxtXTAxup7vW5TbH7pgY3G43bncsLncMuNwgrmqPyVpCJ6qU3ZHcg2xP7Uv6/i9I/PJjDn+RwKa4juQmtcWb2ASJS8bjisHtKcZbUoAWF0JJPq6SfNyefNyeAmI9BcRpIfFq/idoIQkUkihFuMN9g354NbQXwz+UfZ0iC5coCCR1GxnQ353YCIDCwweDxrF3/352vDSWfiWr2XzaI3Q/56Y6kLR+0mP4WA4vvIfc/74C1VR2OQez2L72B/K2Loe9a0jO20pqyT7SPFkkSwEJtSyrRwUPLoK/pZW0Niu5yvgFv7Zyv+AsohuDHlxQqUyRQlQpuyYntWLQ7TM5fOgAi77/FO9P35KcvZ72OQtpkJ1HohztxijQWIollkLiKXIlUCTxlLgTKI5NpNDdkCPuBLwxiXjciWhsIupOxOs+ml0+NloQadT5a/6LBrEBA5ks6nfuG7bU4AtkYon/afBiWsGnwrWVcLzS8b+0klZvVfFU1mCuKGPlsVVaoVQhiAQ7S2xI+qmBK+KY5EYAlARRdrv37mH/1PNJ92xky4hn6HTGpMqFOMFITW3M9yddyOC9s/h59Q+06zk4aNhDB/by0+J/U7BxHk2zFtGx5Cd6innXckhmT2xr9id1YmfiUEhuhishGYlNgrhk3DExoIp6vXjVg9fjBfXi9XrAU4J6PajXfF6hXg/i9aDqAW8JeD2IehG8uKpaf6OKQqaVvJHq4+MfjQa4SgIc+ZKb0CKgeyQSVcqulOTUJgwYfTVwdBq3qlJSUmIKlyuWhBg3CUBK0FgslsggtoHZTKQ4gLLbvn0bedPH0tWbyc9nvEinEZcfb/HqBV0v/jMHX/qS2PeuItPzT9pnmA/3Dx3cy5aV/+Xw2jk02/c/OhVvoo8oBRrL5vgeLGx1PUkdBnNyl/40a9GOhvV8DPNEJiqVXSBEhJjYWCC2yrAWSyQR3yANAD2SU859y08b4bVf0Z49bD9nGp1OGxcO8eoFTZu3ZO0vX6H5v66m5Qfnk/2BaeY2IpfeQLG62RjXnQVtr6dhjzPo1GcEPRND+8zDUj84YZSdxVJfSUwxlp0n/6hlt3LJf2nyydU0JJc9F7xJh37nhEu8ekP3AWdwsONSvv9yGu59a0FAG7WnQbs+dOp/Bj0aNAq3iJY6xCo7iyXCOalxKvs1FdfBTLweL999+CIDVz7EEVcS2Re/T7ueQ8MtYr2hcZOmDL3i/8IthiUMWGVnsUQ4sW4Xme72nLJ/HsseO5sRhT+yMaEnza+bSdNmdgFniyUU7GirxVIP2NvhVzTSHDoXrmZpj3s55Z5vSbWKzmIJGWvZWSz1gHMn3MHmTefQsmVb+jZIDbc4Fku9wyo7i6Ue4HIJnbr0CrcYFku9xXZjWiwWiyXqscrOYrFYLFGP+C+MG05EZB/wcy1E1RTYXwvxHA/qk6xQv+S1stYd9Une+iQr1C95a0vWdqpap9vJR5Syqy1EZJGqDgi3HKFQn2SF+iWvlbXuqE/y1idZoX7JW59ktd2YFovFYol6rLKzWCwWS9QTrcruH+EWoBrUJ1mhfslrZa076pO89UlWqF/y1htZo3LMzmKxWCwWX6LVsrNYLBaLpQyr7CwWi8US9USVshORc0VkvYhsEpH7wi2PPyLSRkS+EZE1IrJaRG513CeLyA4RWeb8zgu3rAAikikiKx2ZFjluTUTkPyKy0fnfOALk7OqTd8tE5JCI3BZJ+SoiL4vIXhFZ5eMWMC/F8JxTjleISL8IkPVxEVnnyPOhiDRy3NuLSL5PHk89nrJWIm/QZy8i/+fk7XoROa4bAQaRdaaPnJkissxxj4S8DVZnRWTZrRRVjYof4AY2Ax2BOGA50CPccvnJ2ALo5xynABuAHsBk4K5wyxdA3kygqZ/bY8B9zvF9wKPhljNAOdgNtIukfAVOB/oBq6rKS+A84AtAgCHADxEg69lAjHP8qI+s7X3DRVDeBnz2zvu2HIgHOjh1hjucsvr5Pwk8EEF5G6zOisiyW9kvmiy7QcAmVf1JVYuAd4CxYZapHKq6S1WXOMe5wFqgVXilqjZjgVed41eBX4VPlID8AtisqrWxEk+toarzgAN+zsHycizwmhoWAI1EpMVxEZTAsqrqv1W1xDldALQ+XvJURZC8DcZY4B1VLVTVLcAmTN1xXKhMVhER4FLg7eMlT1VUUmdFZNmtjGhSdq2AbT7n24lgRSIi7YG+wA+O082O2f9yJHQNOijwbxFZLCI3OG7NVXWXc7wbaB4e0YJyGeUri0jM11KC5WWkl+VrMa33UjqIyFIR+VZEhodLqAAEevaRnLfDgT2qutHHLWLy1q/OqndlN5qUXb1BRBoA7wO3qeoh4CWgE9AH2IXpyogEhqlqP2A08DsROd3XU02/RcR8uyIiccAFwLuOU6TmawUiLS+DISJ/BEqANx2nXUBbVe0L3AG8JSKRsOFevXn2PlxO+YZaxORtgDqrjPpSdqNJ2e0AfLdubu24RRQiEospNG+q6gcAqrpHVT2q6gWmcRy7VSpDVXc4//cCH2Lk2lPaLeH83xs+CSswGliiqnsgcvPVh2B5GZFlWUQmAb8EJjgVHE53YJZzvBgzBtYlbEI6VPLsIzVvY4CLgJmlbpGSt4HqLOpZ2YXoUnY/Ap1FpIPTwr8M+CTMMpXD6ZOfDqxV1ad83H37tC8EVvlfe7wRkWQRSSk9xkxQWIXJ06udYFcDH4dHwoCUaxlHYr76ESwvPwEmOjPbhgA5Pl1GYUFEzgXuAS5Q1SM+7s1ExO0cdwQ6Az+FR8qjVPLsPwEuE5F4EemAkXfh8ZYvAGcC61R1e6lDJORtsDqLelR2ywj3DJna/GFmAm3AtID+GG55Asg3DGPurwCWOb/zgNeBlY77J0CLCJC1I2bW2nJgdWl+AmnAHGAj8BXQJNyyOnIlA1lAQx+3iMlXjBLeBRRjxjF+HSwvMTPZpjjleCUwIAJk3YQZiyktt1OdsOOc8rEMWAKcHyF5G/TZA3908nY9MDrcsjruM4Ab/cJGQt4Gq7MisuxW9rPLhVksFosl6ommbkyLxWKxWAJilZ3FYrFYoh6r7CwWi8US9VhlZ7FYLJaoxyo7i8VisUQ9VtlZLBaLJeqxys5isVgsUc//B33vckSUQkaqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEYCAYAAADPvfYMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABm50lEQVR4nO2deXxVxfm4n/fe7JAQCIvsm+wk7IsCCoqgpUIVFSyKSK3Vqq1aty5a9Fv7c60rldaiuCCLu9a1oiigiCD7KkhYlDWQkIWs9/39MefGm5t7bxISuDfJPJ/PTc6ZmTPznjlz5p3tzCuqisVisVgs9RVXuAWwWCwWiyWcWEVosVgslnqNVYQWi8ViqddYRWixWCyWeo1VhBaLxWKp11hFaLFYLJZ6TUQrQhHpICIqIlHhlqWuIyLTRGTpKUorXkTeF5GjInLHqUjTL/10ERl9CtJZLCLXBPGzZTsMhMr3U/lMnHROD+J3yt7FuoCI3OHUJR+JSMKJxBHRitByYojIDBEpEpEcn98pVzghGA2kAW1V9SGvo6OgOoRNqgjCeYYzqhD+lyKyS0RyReQtEWkSIuy/RWSriHhEZFoA/1tEZL+IHBOR50Qk1sevr4gsEZEsEdkrIncHSeMep7If7ePWWkTeFpEjzrXX+V2jjvzeMvufKtx/vfkg2mlgjaxkWBGRB0Ukw/k9KCISInyF5UhEuohIvoi87OfeTEReccrGURGZ6+P3iIh8JyLZIrJFRKb6XXuhiGxwnvuXItLTx2+WX11WICLZXn+nDmkDdAfGVCZf/DmpitC2dsPKAlVt6PN7qOJLThlNgHRVzQm3INXBqWTC3pgUkV7Av4ArgRZAHvDPEJesBX4LfBsgrrHAXcC5QHugE3CvT5BXgC8wz/Bs4LciMt4vjs7ApcA+v+hfBnY6Mo4D/i4io/zC9PEpswF707WBCKr7rgV+AfTBND4vBH4TKGAVytFM4JsA7m8A+4F2QHPgER+/XCftRsBVwBMicqaTbhdgLnAdkAy8C7zjzUNVvc63LgPmAa/6JqyquZiylRI0J0JQ4y+x06q/U0TWAbkiEiUiQx0tnykia31bM07r5v+JyAqnBfp2sNasiFwtIpudVsX3IvIbP/8JIrLGiWeHiJzvuDcSkdkisk9EfhCRv4mIu4L76CwinzqtqMMiMldEkn38johIf+e8lYgc8t6XiIwXkY3O/S4WkR5++XObiKxzWk4LRCSu6jlddUTkLidfskVkk4hcFCSciMhjInLQycv1ItLb8Yt1Wne7ReSA01qLr6IoUYCnAllTRORdJ/1vnGe21MdfReQ6p5WZKSIzRUxLN9Sz82GQkwdHReR57zMQkcYi8l/neR51jtv4pLtYRO4XkWWYiqJTBffaXkSWOXn+sYg09fOf4uTlYRH5cwVxBWMK8K6qfuE0Lu4GLhaRxECBVXWmqi4C8gN4XwXMVtWNqnoU+D9gmo9/B2Cuqpao6g5gKdDLL46ZwJ1AoddBRBoCI4H7VbVIVdcCrwHTq3qzFSEiHUXkCyfPP3HKxstBwk503snePs7TReRHp764zSfsYBH5yilv+0TkaRGJ8fFXEblBRL4DvquEqKMDlV+f+B5xyuBOEbmgitng5SrgUVXdq6o/AI9S9nn6UmE5EpHJQCawyE/WMUBb4HZVzXKe8Wqvv6r+VVW3qKpHVb8GlgBnON5jgSWqulRVi4EHgdaYhlYZRKQBMBF4IYD8HkzdUnVUtUZ/QDqwxsmUeOeGMoCfYRTvec55Myf8YuAHoDfQAHgdeNnx6wAoEOWcjwM6A+JkUh7Q3/EbDGQ58bucdLs7fm9iWjoNMC2VFcBvKriP0524YoFmmFbw4z7+vwY2AQnAR8AjjntXTOvnPCAauAPYDsT45M8KoBWmVb0ZuC6IDMMxhS7Yb3iQ62Z489DP/VInXRcwyZGzpeM3DVjqHI8FVmFaZwL08An3GPCOI3sipvX2/6pQPqKBlwLJ5xduvvNLAHoCe7zyOf4K/NeRsR1wCDi/ks8uHdiAKaNNgGXA3xy/FMyLluDc36vAWz7XLgZ2Yyr/KCA6xD0sBnY4ZSLeOX/Ar2w/6/j1AQqAHkHiCvW83wbu9HPLAQZUkMdLgWl+bmuBST7nTR05U5zzvwMPOM+xG7AXGORXxt72yefRznGiE09zn7DPAqv9numPmF7FG0CHE6yDvsL0RmIw79AxAtQpwNWYd/N0P795mLoi1SlX3nsYAAx1ru2AeXdv9pP/f06Ziq9AxlDldxpQhKlj3MD1Tr5IsDoiRDpZwBCf84FA9omUIyAJ2IYZhpyBzzsM3IOpB1/G1O/fAGcHSSceM1rgvd8bgfd9/N2YRtrvA1w7Ffg+SF684Dy7mCqXmRMpaBU84HRgus/5ncBLfmE+Aq5yjhfjVA7OeU9MS9KNnyIMkNZb3szCKLrHAoRpgalg4n3cLgc+q+J9/QKfl9ZxewdYD6wDYh23u4GFPmFcGEU/0id/rvDxfwiYVcPPYIaTh5k+v1YBwq0BJjjH0/hJEZ7jFPihgMsnvGCUZ2cftzOAnZWUqy/mBT+AU/kECed2wnXzcfsb5RXhcJ/zhcBdlXl2zjO4zuf8Z8COEDIf9TlfDNxXyftdDPzF5/y3wIfOsbdst/HxXwFMPoHnvQi/xpRvmQtxXSBFuAOngnLOox05OzjnZ2KUR7Hjfq9P2ERMT8gbNh1Hifik9xQQB/QHjgBbffzPwiivZOBpTGMl4Lsf4p7aObIl+Li9THlFeBumIeub/16/7j5uD2F6yIHSuhl4069MnlNJOYOWX8y7uN3HL8EJf9oJlI0Sv/vp4sQVSJGELEfAEziKkvKK8N9OvL9yyoy359g0QDovAB96ZcDM7eViRgxiMHWoB/hjEBlnBLnXzphGVBEwsCr5dLLmN/b4HLcHLnW6/5kikolpxbQMEn4XJiP9h5AQkQtEZLkzLJmJqcC84dpiXmJ/2jvx7fNJ/1+YnmFQRKSFiMwXM5R6DPMy+cv0LKYn+5SqFjhurZx7AEBVPc79tfa5br/PcR7QMJQsJ8hCVU32+f0oIlPFDB1786E3AfJZVT/FVEQzgYNiFlckYXpXCcAqnzg+dNwrRFXXYCrLrzCVSDCaYVrdvuViT4BwAfOxks/Ov8y1cq5NEJF/iVkwcAzTm0yWskPpgWQJRkXPuibKQg6mte5LEpAdIGxV4/IeZ4uZsvgQuA+jzNoCY0Xkt06YGZhGb3qQuKcAHTH59wzmuez1eqoZkitU1Uzg907YHgHiCUUr4Iiq5vm4BXpetwMzVXVvAL9gZaOrM1S+3ykbfyd0uaqIUM++1M/nXmqibCQBOepojgrCesNni0hfzCK3x4Kkcxwz7z9bzbDofExeDPMNJCIPY+qdy7wyqOoWzBDu05ieYlNMI2Wv37XtMMryxSAy/B7TE01S1ZVBwgTkZClC30zeg3k5fCvlBqr6gE+Ytj7H7TAa/bBvhGJWrr2OGfJooarJwPuYXoo3nc4BZNmD6RE29Uk/SVX95zX8+btzH6mqmgRc4ZOWd87jcWA2MEN+mtf8EaN8veHEub8fKkivHCIyQsqulvL/jahCXO0xivtGzDBXMqbFHXAFmao+qaoDMD30rpiK4zCmwPfyyctGaiawK4Wq5gMfOPEG4xCmVd/Gx61tkLCBCPnsAsTXDvPcAP6AGfIb4lx7luPue32gSiScbMQMrQIgIp0ww8LbqhuXc3xAVTMw86ElqvqiqhY7SmQ+pkEKZoHN7xxFsR+TxwtF5E4AVd2lqj9X1WaqOgRT4a0IIYsSpHyGYB/QRMouow9UdsYAfxGRiQH8gpWNZ4AtQBenbPwpgHwRXTac442VCetXjkZiesy7nWd7GzBRRLwLrtZR/t7LnIvIvcAFwBhVPVYmoOprqtpbVVOAvzpp+S/IuRJYpqrfB5G/B2bE5XgQ/6CcihVvLwMXishYEXGLSJyIjPRdgABcISI9ncJ7H/Caqpb4xRODeSiHgGJn8th3qexs4GoROVdEXGKWandX1X3Ax8CjIpLk+HUWkbMrkDsR00LKEpHWGEXgyxPASjUr294DZjnuC4FxjhzRmIq1APiyoozyR1WXaNmVn/6/JVWIrgGmYB4Cs/AI0zIrh4gMEpEhjvy5mPF6j9O7fRZ4TESaO2Fbi1lp6L1WpeKl3QWY5xkQ59m/gWlgJIhId8zcQGWp6NkB3CAibZwGzJ+BBT7XHgcyHb+/ViHdcDEX846NcBYT3Ae8oaoBe4QiEiNmcZAA0c476a0LXgR+5byPycBfgDmO3zZzufzSeY9Ow8w1r3P8z8WUqb7O70fMCsWZTro9RCTRSf8KzPv7D8evl5hPM9xOI/NRTONxs+M/TUTSK8oIVd0FrMSUnRgROQOzWtGfjcD5wEzxW/UK3O2Uu16YeUTfsnEMyHHK5PUVyRMBvAjc6rynrTD10ZwgYUOVo39jOhp9nd8sTL3nffffBBqLyFXOM7wE05BdBiAifwR+iRkqz/BPWEQGONc1c9J6x+kp+jI1hOxgRv4KQvgH5aQrQlXdA0zAtJ4OYXpot/ul/RLmBvdjhlx+FyCebMd9IXAUk6nv+PivwBTaxzATxJ/zU89sKqbi3eRc+xplh2YDcS9mHiML88Df8HqIyATMS+R9EW4F+ovIFFXdiumBPIXpQV0IXKiqhYQRVd2EqVy+wszRpeIU0gAkYRTeUczQUAbwsON3J2aOaLkzPPQJpgeFiLTFDMetr0AcDxWXvRsxS633Y8rHPCpfyIM+Ox9ewTSQvscMqf/NcX8cM5l/GFiOGQoMO6FGAFR1I2bp+VzgIKbC/q3PtR+IyJ98LvkYo+zPxFQ6x3F6vqr6IWZe7DPMoqBdOI0BpxV/MXALpmyswYwq/M3xz1DV/d4fZn7qqP70mcxYTH4fdeQ9X1UPOX4tMArnmBOmA/BzVS1y/NsSvLz6MwUzd53hyLaAAGVHzcrVnwPPStlVmZ9jyvgizCK4jx332zD1Tjbm/VhAmPGOGoUI8i/Mgrb1mGf1nuPmvb60XIUqR6qa5/dsc4B87/NT1SPAeEweZWE+wZmgqt6Rvb9jetfbfUa0fMvkE5g5xa2Y8vFrv/s8A6NYy3w24YebClajB8M7WRk2RGQxZtK10h/PWiITp5XfS1X/WEG4MZiRgu7OC1SZuB/ELBa4qvqSWmobIvIxZmHc5hO4dgGwRVVrQ+/ecgI4oxebgGtU9f2qXh/2j4EtdQdVfbkiJeiwGLPMfKP4fKfli4h0F5E0MQzGrEZ7s+aktdQmVHVMZZWgM7Tf2Rm+PR8zIvXWSRXQEjacOmQLpie/qILgAYmU3Q/CgojMwgxj+vOyql4XwN1SAzjDxFMqCJaIGQ5thRnKfRTznVNEEWJY6oIqzuFaao7TMMPhKZiVh9erz8fdpwJnuPGDQH5VWVxmqRhVfYSyu9hUmbAPjVosFovFEk5qZGhURG4Ss5HqRhHx3UT5jyKyXcwGv2ODXNtRRL52wi0Qny2LLBaLxWI52VS7Ryhm09w/A+NUtUBEmqvqQTG7h8/DbH3WCrO6sKv/ZxEishCzRHe+M1S5VlWfCZVm06ZNtUOHDtWS22KxWCyRwapVqw6raqU25jgZ1MQc4fWYLdIKAFT1oOM+AZjvuO8Uke0YpfiV90IREcx2Xr90nF7A7E4RUhF26NCBlSurtHGAxWKxWCIUEdlVcaiTR00MjXYFRjjDm5+LyCDHvTVltxvaS9ltxsBMZmeq2XE8WBgARORaEVkpIisPHToUKIjFYrFYLFWmUj1CEfkEsxLLnz87cTTBbNA8CLOlUkWmaaqMqv4b8/EvAwcOtCt8LPUW73SGBLevarFYqkClFKGqjg7mJyLXY+b4FFghIh7MHoI/UHbPvjaU328zA7OhcZTTKwwUxmKxOGTnF/GHx+eQ6C7m7ht+RXKCXVtmsVSXmpgjfAsYBXwmIl0xW5kdxmx/9oqI/AOzWKYLfhvsqqqKyGfAJZjNe6/iBL8VKyoqYu/eveTnB7I1arEEJi4ujjZt2hAdHR1uUSrFJ8uWM+v47bhEeWdZF8afF7SNarFYKklNKMLngOdEZAPGBt5VTu9wo7MidBPGksAN3hWjIvI+ZiucHzF7V84Xkb8BqzGbZ1eZvXv3kpiYSIcOHeyQkaVSqCoZGRns3buXjh07hlucStFg3Yu4xBkaXbcQrCK0WKpNtRWhs0tIoN1ZUNX7gfsDuP/M5/h7zGrSapGfn2+VoKVKiAgpKSnUlsVXqkqHrK/ZljCAGApok70WVbVl3mKpJnVqr1FbIViqSm0qM3t//JGu7CKv9RnkNU2ju37PoWO54RbLYqn11ClFaLHUZdI3mW9nm5w+mOg2/YmXQnZt2xBmqSyW2o9VhDWIiPCHP/yh9PyRRx5hxowZ4ROoAhYvXsyXX1bZXnAZzj//fJKTk/n5z39eQ1JZglH4o1F6p3XpT3Kb7gDk7t8eTpEsljqBVYQ1SGxsLG+88QaHDx+uOHAVUFU8nhOyNxmSmlCEt99+Oy+99FINSWQJRfTRbeSQQEzjNjRu0w0AzbCK0GKpLlYR1iBRUVFce+21PPbYY+X8Dh06xMSJExk0aBCDBg1i2TJjbHvGjBk88shPFkR69+5Neno66enpdOvWjalTp9K7d2/27NnD7bffTu/evUlNTWXBAmMce/HixYwcOZJLLrmE7t27M2XKFALtH/vkk0/Ss2dP0tLSmDx5Munp6cyaNYvHHnuMvn37smTJkpAyXnnllZxxxhl06dKFZ599tjTec889l8TExJD58uqrr9K7d2/69OnDWWedBZjFTVdffTWpqan069ePzz77DIA5c+bwi1/8gvPOO48OHTrw9NNP849//IN+/foxdOhQjhwxdnyfffZZBg0aRJ8+fZg4cSJ5eXnl0h06dCgbN24sPR85cmSt3pqvSc52fozpACJEJTYzSvFYerjFslhqPXXSHuG9725k04/HajTOnq2S+OuFvSoMd8MNN5CWlsYdd9xRxv33v/89t9xyC8OHD2f37t2MHTuWzZtD2xn97rvveOGFFxg6dCivv/46a9asYe3atRw+fJhBgwaVKpXVq1ezceNGWrVqxbBhw1i2bBnDhw8vE9cDDzzAzp07iY2NJTMzk+TkZK677joaNmzIbbcZ27i//OUvg8q4bt06li9fTm5uLv369WPcuHG0atWqUnl333338dFHH9G6dWsyMzMBmDlzJiLC+vXr2bJlC2PGjGHbtm0AbNiwgdWrV5Ofn8/pp5/Ogw8+yOrVq7nlllt48cUXufnmm7n44ov59a9/DcBf/vIXZs+ezU033VQm3UmTJrFw4ULuvfde9u3bx759+xg4cGClZI40VJVWxbvYkTLKOIhw2N2cuLx94RXMYqkD2B5hDZOUlMTUqVN58skny7h/8skn3HjjjfTt25fx48dz7NgxcnKC2XQ1tG/fnqFDhwKwdOlSLr/8ctxuNy1atODss8/mm2++AWDw4MG0adMGl8tF3759SU9PLxdXWloaU6ZM4eWXXyYqKnD7J5SMEyZMID4+nqZNmzJq1ChWrFgRMI5ADBs2jGnTpvHss89SUlJSej9XXGG+uunevTvt27cvVYSjRo0iMTGRZs2a0ahRIy688EIAUlNTS+9tw4YNjBgxgtTUVObOnVum5+flsssu47XXXgNg4cKFXHLJJZWWOdLIPHqEJmSjjX/63jE3tjmJhbXj0w+LJZKpkz3CyvTcTiY333wz/fv35+qrry5183g8LF++nLi4uDJho6Kiysz/+e6M06BBg0qlFxsbW3rsdrspLi4uF+a9997jiy++4N133+X+++9n/fr15cIEkxHKf2ZQlc8OZs2axddff817773HgAEDWLVqVcjwvvfjcrlKz10uV+m9TZs2jbfeeos+ffowZ84cFi9eXC6e1q1bk5KSwrp161iwYAGzZs2qtMyRxv7d22gMxDX7aRvfwoQWNM/dar8ltFiqie0RngSaNGnCZZddxuzZP22SM2bMGJ566qnS8zVr1gDGpNS3334LwLfffsvOnTsDxjlixAgWLFhASUkJhw4d4osvvmDw4MrtQ+DxeNizZw+jRo3iwQcfJCsri5ycHBITE8nOzq5QRoC3336b/Px8MjIyWLx4MYMGDaKy7NixgyFDhnDffffRrFkz9uzZw4gRI5g7dy4A27ZtY/fu3XTr1q3ScWZnZ9OyZUuKiopK4wnEpEmTeOihh8jKyiItLa3S8UcaWft2ANC41emlbprYkhSOkZVTfn7UYrFUHqsITxJ/+MMfyqweffLJJ1m5ciVpaWn07NmztHcyceJEjhw5Qq9evXj66afp2rVrwPguuugi0tLS6NOnD+eccw4PPfQQp50WyCBIeUpKSrjiiitKF6b87ne/Izk5mQsvvJA333yzdLFMMBnBDK2OGjWKoUOHcvfdd5fOD44YMYJLL72URYsW0aZNGz766CMA7rnnHt555x3ArCxNTU2ld+/enHnmmfTp04ff/va3eDweUlNTmTRpEnPmzCnTE6yI//u//2PIkCEMGzaM7t27l7q/88473HPPPaXnl1xyCfPnz+eyyy6rdNyRyPFDpoHUvF2XUrfo5Na4RDm4b3e4xLJY6gTVtlAfDgYOHKj+q/82b95Mjx49wiRR3WbGjBllFtXUNWpD2fn8qV8zOONt4v96AJxh0O+WvEaXRb9i9XkL6TdsbJgltFhOHBFZpaphW8lme4QWSy0gIe9HDrlblCpBgPiUNgAUZv4YLrEsljpBnVwsY6lZInl3nPpCo8L9ZMWUHQpPamqGp4uOHQyHSBZLncH2CC2WWkBySQaFCc3LuCU2aQGA5tpPKCyW6mAVocUS4eTlF5CimXgalO0RSlQsx2iAKy8jTJJZLHUDqwgtlgjn0P69uEWJatSynN8xVzIxBVYRWizVwSpCiyXCyTxoPo+Ia1J+S7vcqMbEFR491SJZLHUKqwhrmLfeegsRYcuWLUHDpKen07t375Mqx5o1a3j//ferFcf06dNp3rz5SZfVEpq8jB8AaNi0TTm//JgmNCy2itBiqQ5WEdYw8+bNY/jw4cybNy+gf6Dtz6qKd7/OUNSEIpw2bRoffvhhteKwVJ+izP0ANGrerrxfXAqNPJmnWCKLpW5hFWENkpOTw9KlS5k9ezbz588vdV+8eDEjRoxg/Pjx9OzZEzAKccqUKfTo0YNLLrmk1IzQokWL6NevH6mpqUyfPp2CggLAbMV255130r9/f1599dUy6fqbOSosLOSee+5hwYIF9O3blwULFpCbm8v06dMZPHgw/fr14+233waM2aMJEyYwcuRIunTpwr333lsa71lnnUWTJk1C3vPnn39O37596du3L/369SM7OxtVDWoy6uyzz2bChAl06tSJu+66i7lz5zJ48GBSU1PZscNsI/buu+8yZMgQ+vXrx+jRozlw4EC5dCdPnsx7771Xej5t2rTSDbbrGpJjLEwkppSfI/QkNCWZHPKdcmKxWKpOtb8jFJGbgBuAEuA9Vb1DRM4DHgBigELgdlX9NMC1M4BfA971339S1ep1YwA+uAv2l99UulqclgoXPBAyyNtvv835559P165dSUlJYdWqVQwYMAAw+4hu2LCBjh07kp6eztatW5k9ezbDhg1j+vTp/POf/+TGG29k2rRpLFq0iK5duzJ16lSeeeYZbr75ZgBSUlJK9yX1xd/MUUxMDPfddx8rV67k6aefBuBPf/oT55xzDs899xyZmZkMHjyY0aNHA7BixQo2bNhAQkICgwYNYty4cZU2V/TII48wc+ZMhg0bRk5ODnFxcbzxxhtBTUatXbuWzZs306RJEzp16sQ111zDihUreOKJJ3jqqad4/PHHGT58OMuXL0dE+M9//sNDDz3Eo48+WiZdr4mlcePGUVhYyKJFi3jmmWcqJXNtIyrvIEdJonFU+S3oXA2b4RIl8/ABTmtdvsdosVgqplo9QhEZBUwA+qhqL8BrYfYwcKGqpgJXAaFMmD+mqn2dX/WVYBiZN28ekydPBkyPxXd4dPDgwXTs+JMJnbZt2zJs2DAArrjiCpYuXcrWrVvp2LFj6X6jV111FV988UXpNZMmTQqYbiAzR/58/PHHPPDAA/Tt25eRI0eSn5/P7t1mEcZ5551HSkoK8fHxXHzxxSxdurTS9zxs2DBuvfVWnnzySTIzM4mKigppMmrQoEG0bNmS2NhYOnfuzJgxY4CyJpb27t3L2LFjSU1N5eGHHw5oYumCCy7gs88+o6CggA8++ICzzjqL+Pj4Sstdm4jLP8RRd+CeeVSS+bYw+4i1S2ixnCjV7RFeDzygqgUAqnrQ+b/aJ8xGIF5EYr3hTjoV9NxOBkeOHOHTTz9l/fr1iAglJSWICA8//DBQ3qTSiZg1CmaWqTJmjlSV119/vZyFh6+//rpaJpbuuusuxo0bx/vvv8+wYcNKN90ORmVMLN10003ceuutjB8/nsWLFwfc2SYuLo6RI0fy0UcfsWDBgtIGSF2kQVEGOdFNA/rFNzYf1edaRWixnDDVnSPsCowQka9F5HMRCWSbZyLwbQgleKOIrBOR50SkcbCERORaEVkpIisPHYq8nTRee+01rrzySnbt2kV6ejp79uyhY8eOLFmyJGD43bt389VXXwHwyiuvMHz4cLp160Z6ejrbt28H4KWXXuLss8+uMO1AZo78TSyNHTuWp556Cu8m66tX/9RW+d///seRI0c4fvw4b731VmlPtTLs2LGD1NRU7rzzTgYNGsSWLVuqZTIKICsri9atWwPwwgsvBA03adIknn/+eZYsWcL5559f6fhrG4klRymIDdwjbNDYfFJRmFV+HtVisVSOChWhiHwiIhsC/CZgepRNgKHA7cBC8elOiEgv4EHgN0GifwboDPQF9gGPBgmHqv5bVQeq6sBmzZpV8vZOHfPmzeOiiy4q4zZx4sSgq0e7devGzJkz6dGjB0ePHuX6668nLi6O559/nksvvZTU1FRcLhfXXXddhWkHMnM0atQoNm3aVLpY5u6776aoqIi0tDR69erF3XffXXr94MGDmThxImlpaUycOLF0fvDyyy/njDPOYOvWrbRp06bUvuKsWbNKTTQ9/vjj9O7dm7S0NKKjo7nggguqZTIKzN6ml156KQMGDKBp0596QitXruSaa64pPR8zZgyff/45o0ePJiYmptLx1zaSPMcoiQusCJOamgU0xdmR1zi0WGoL1TLDJCIfAg+q6mfO+Q5gqKoeEpE2wKfA1aq6rBJxdQD+q6oVfrRmzTDVHHPmzCmzqKY+EsllJy83m4SH27C84w0Mverv5fzVU0LJvU1Z0XoqZ177RBgktFiqT203w/QWMApARLpiVokeFpFk4D3grlBKUER814NfBGyopjwWS50i87D5hjCqYeBREHG5yZQk3HmHA/pbLJaKqa4ifA7oJCIbgPnAVWq6mDcCpwP3iMga59ccQET+IyJezf+QiKwXkXUYhXpLNeWxVJFp06bV695gpJNzxMz9RScGXiwDcMxt9xu1WKpDtVaNqmohcEUA978BfwtyzTU+x1dWJ/0AcVdpxaPFUp2pgVNBbpaxNRif3Dx4mOgUGhRZRWixnCh1ZmeZuLg4MjIyIr5is0QOqkpGRgZxcXHhFiUoBVlmEUzDxsEXG+XHNiXJ7jdqsZwwdcZCfZs2bdi7dy+R+GmFJXKJi4ujTZvym1lHCsU5pjw3ahpcERYnNKNJ5lHU40FcdaZta7GcMuqMIoyOji6zc4vFUhfQ3MN4VEhISgkeqEFzYqSYnGNHaJgcfC7RYrEExjYfLZYIxn38KFmSiLiDt1ndiWZ3maxDe0+VWBZLncIqQoslgokpPEK2Kyl0mGTzFVJOxo+nQiSLpc5hFaHFEsHEFWWS624UMkyDFLPNWv5Ru9+oxXIiWEVosUQwDYqzyI9ODhkmqZlZ7FOUZRWhxXIiWEVosUQwCZ4cimJC9wgbN2lOoboh5+ApkspiqVvUmVWjFktdpKHm4omtYI4w2s1+ScaVV7VPhzwe5fP/vYmuf50G+fspjkkmutMwepx9CYnNrJFfS/3BKkKLJUIpKiyggeSjcckVhs1yNybmeOUVYXZuLquensqo45+QSzyHY1rT8PgOUjZ8gmf9fXyXkIqn50V0OuuXRDeqvOUQi6U2YhWhxRKhHMvMIAVwxYceGgXIi25Ko8LK2SQsLCpmw5OXMLLgSzaefh09L/sr7WMSUI+HLRtW8uOX82m//yO6rLqXklX3sSWuD5kdLqBxh1Rat+1Iw/g4ikuUrMwMMo8cJCfzMHnHjnA89xhakIO7OI+o4jzUUwKAAiLOLIwIiKAI4DJbIoqguBw/EFwgLuc6wbtpYvDdE313kwq9xWLygIvpNXBkpfLJUn+witBiiVBysowidCckVxg2P6EFnY5UznjLkjl3c27Bl2xMvZNeE/9U6i4uF93TBtM9bTCFxR6WrVjG8dWv0vXw/+i+5f/Blp/iiAJSnJ8/hUSRTxzF4kYAUUVQFHBhjnFUoeBx/mvAn2rl9g6uzMaKMVLCqk+2gVWEFj+sIrRYIpTj2UcAiG7QuMKwxYntaHQkh6K8TKJDKM7N61cxYu+/2NB4FL0v/mPQcDFRLoadOQLOHIF6POzbvY196VvI2L+bo7kFJMa6iU9sTMNGTWnUuBmNU5rSuEkK7tiGxLijiUQzyZv+31nEFR8LtxiWCMQqQoslQik4ZixKxDWsWBFKk3awC478sIMWXQYEDKOq5L57F4USQ8ep/ww11lg2bpeLlh2607JD98oLH4EURiXRqGhXuMWwRCD28wmLJUIpzDUWJeKTmlQYNq5ZJwCy928PGmbNkv8ysHAF27tfT4MmrWpGyFpEUXQiDTw54RbDEoFYRWixRCjFuZkAJDSqeCPtJq1OB+D4wZ1Bw7iWPcYRGtHrF7fViHy1jeKYJBpqbrjFsEQgVhFaLBGK53gmAInJISxPOLRs2YY8jaU4Iz2g//frltGnYBXfdbqS6LgGNShl7aEkthEJUoAWF4RbFEuEYRWhxRKp5GdRrC5i40N/UA8QHxvFj64WxBxLD+h/7JOHydZ4ul94aw0LWYtwvsfMO3YkvHJYIg6rCC2WCEUKssiRBpVe1HIoriNN874v556xewtpWYtZ02IijRpX3Luss8QnA5DvLEKyWLxYRWixRCjRhcfIlcoPY+Y17kELzwE8eZll3He/9wjFuOgw7g81LGHtwvs9Zn62VYSWslhFaLFEKDHF2eS5EysdPqpVKgCHtn9b6nY88xDdD7zNN4nn0bZ9pxqXsTYRlWBW3xbm2KFRS1mqrQhF5CYR2SIiG0XkIcetg4gcF5E1zm9WkGubiMj/ROQ753/FH0xZLPWE2OIc8t0NKx2+edchAGRsXVLqtuW/jxFPIUnn3FLj8tU2ohoaRVjkfJZisXipliIUkVHABKCPqvYCHvHx3qGqfZ3fdUGiuAtYpKpdgEXOucViAeI9ORRGVV4RduncmS3anrj0TwEoyM6g0/YXWBU7mN79hpwsMWsN3o0JSvyGji2W6vYIrwceUNUCAFWtqkG0CcALzvELwC+qKU+lWPXIBL56/s5TkZTFcsLEe/Iojq7C0KjbxY7kM2mXu56SrB/5/tU/k6i5yLl3m82t6zmxzsYEmmd7hJayVFcRdgVGiMjXIvK5iAzy8esoIqsd9xFBrm+hql6z2vuBFsESEpFrRWSliKw8dKhqdtf8ST6+m4SD31Yc0GIJIwnkURJd+R4hQMLQ6ahC5j/H0GP3PD5uOJ5+g4K9fvWLhg0acFxj0PyscItiiTAqVIQi8omIbAjwm4DZq7QJMBS4HVgopum5D2inqv2AW4FXRCTkx1CqarakD+7/b1UdqKoDmzVrVvk7DMCx2JY0KthXcUCLJUyop4SGHEdjKt8jBBgxeCD/SryRkvxs3nONotdVT9jeoEOj+GiyaAD5meEWxRJhVLjptqqODuYnItcDbzhKbIWIeICmqnoI8A6XrhKRHZje40q/KA6ISEtV3SciLYGqDq2eEPkN29A8dyXq8SAuu3DWEnkU5B0jDiC2aoowyu1i+u/u4Zv0mzijdSOaNIhEOxDhITbKTQ4NcBfYHqGlLNXVAm8BowBEpCsQAxwWkWYi4nbcOwFdgPJf+sI7wFXO8VXA29WUp3I0akeCFHDsSOUMmVosp5q8bFNZS1zFu8r4kxATxdldm1klGIBcV0OiCq0itJSluorwOaCTiGwA5gNXOb3Ds4B1IrIGeA24TlWPAIjIf0RkoHP9A8B5IvIdMNo5P+nENO0AwKG9352K5CyWKnM8JxMAV1zVeoSW0Bx3JxJTlB1uMSwRRrXsEapqIXBFAPfXgdeDXHONz3EGcG51ZDgRkk7rDED2/h0YnW2xRBYFjuWJqPhG4RWkjlEYnURc4e5wi2GJMOrlBFnLDt0AOH5gR5glsVgCU5hrhu9iEqwirEmKopNIKLE2CS1lqZeKsGGjJhyiMVFH7NCoJTIpyjsGQHSDqs8RWoLjiW1EAnng8YRbFEsEUS8VIcCB2A4k5wZav2OxhJ/i40YRxjVIDq8gdQyNa4QLBbty1OJDteYIazM5SZ1JPfjfan1CUVRwnB93bODY4b0UFRYQGxNLTFJT4pKa0ahpCxIbNrKfZ1hOCE++owgTk8MrSB3DlWC2WSvIPkJs/Iltbbx1w7ccWPI8jY+sIbkkAw9CXlQTjjdsg6dxJxJa9aBFx940adsdiY6rSfEtJ4l6qwhp1o0Gh17j0L6dNGvdudKXeUpKWP2/V4ha+yI98r6lvRQHDXtcY8iUJHLcyRyPbkxBbBPzXZgrGnVF4XH+A6gCKKpmVwFVjzlWUP99BoJsOyCOR/nwQfcpCIoE39sgaHwhr6lyOsHjkgrup9z34yHCVzX9mr1HgsrWOGsTAA2sIqxR3I4izM06TGzzyr/3AJnHjrF29k0Mz3ybzgg7Y7pyIP50BCW+4DBtMr6i+ZH3YQewBEoQDrpO41BcewrjW6BxSZREJyLRcbgEPAoedd55TzHq8aDqAU+J8+J7QEvMf48H8CBagqgieHDhQQD/4u5f/r1FzNQr6vw3f8wuJlJ6jfgei4nbd0MGVS2V2+Mxx/GjbmVw3z5VystIo94qwoZtUmET7N/2baUV4faNKyl54zoGlHzHfpqxqsVEotsOIKFZB2Ji4igoOE5xTgZFORmU5ByG3EO4j2cQU3CE+OKjNM9PJ07ziKKEaEqIohi3VL1iDYWn3GvxE2VTkiDuvuFD7UgS2C/U3QSLL1Q6oVRYZKZf9biCXbM+OpVe8fFB47NUnRhn4+28Y0doUoXrfty/jyP/nsDZnq2saXUZnS+ZQZeU1mXCqCqHjxzhhx3ryNy9ieKDW2mYvZOm+btpnbeZhppHrBRVSd4SFTziKlV7yk/H5jxAM8vfwUfJ+VNRw079T6RsyReBbzOvrNS9RDL1VhF2SD2Dko+EvO+Xw6hLKwy/4r//oc83d5En8azq93f6jruW06Kiqy2Hp6QEEQm8DdYJbI1lB2LrDsnhFqAOkpDUFDA9wsqSlZ3LgWcvpbdnOztGzqTvyHJfjAGm59Q0JYWmKaNg8Khy/qpKfv5xCvLzKVYlyiW4XUKUC9zuKNzuKFwuN4gLXG4QwQ24T+hOTx3l77T2UW8VYcPEZLZHdaThwVUVht301qMMXnMfW2J70fxXCxnQok2NyeFyR3oxt1jqDslNjCI8fqxyVupVlZX/uYlzS9azffg/OD2IEqwMIkJcfAJx8QknHIfl5FCvOxCHkvvSoWAznuLgwxXbPv4PPdfcx4qYobS7+WOa1KAStFgsp5YmKc0BKMipnCmmLz99m3OzXmdD60s5ffSvTqZoljBSrxWhtD+DBuSzc/2ygP47lr1Bx2V3sMadRtcbXyMhoWomcSwWS2SRlNSIQnVTknukwrDH8wtoufQv7HOdRo8rHz/5wlnCRr1WhF3OnECRujm6svxucLvXfU6r/13HTld7Wl/3BslJds9Hi6W2Iy4XR12Nic6reMP9r157jE66h2Nn/RV3nG0E12XqtSJMadqCDXH9aPfje3iKCkrd921fS9IbUzhMYxKmv0V17R9aLJbI4WhUMxLy94cMk5mVRdp3/+S7uFS6nX35KZLMEi7qtSIEKBhwLc01g/Vv/wOAvZtX4H75IkpwUXj5q7Rp2z7MEloslpokO/Y0kotCmz799p1/0lSyiDnv7hNavW2pXdR7RTj43Ev5NmYAvdY/xMZHzqfp/J+hKEcmvkrnbmnhFs9isdQwhQmnkeI5HHQzg7z8Ak7f8Tzfx3Snff8xp1g6Szio94rQ5XbR9tr5LG94Lg1z0vm20Wj0mk/pkjok3KJZLJaTgCexFXEUkZsZuFf41Xsv0o4D6LDf2d5gPaHefkfoS7OmzWl2+2sA2IFQi6Vu06BZO9gB+3Z/x+mNW5TxKyou4bQN/2K/uyWdR0wOk4SWU0297xFaLJb6ReO2PQHI3LOpnN/Xi/9LL/2OzL6/Mbu7WOoFVhFaLJZ6RctOvSlWFyX7N5dxV1Wiv36Ko9KIrmN+EybpLOHAKkKLxVKviItP4AdXS+IyyxrmXrvqS4YUfcPe06fgirXboNUnrCK0WCz1jkPxHUnJ21HGLfezf5BHHF1+fmuYpLKEi2orQhG5SUS2iMhGEXnIcZsiImt8fh4R6Rvg2hki8oNPuJ9VVx6LxWKpiOPN+tLG8yM5GT8AsP27TQzJ+ZRtrS8mrpHdQKO+US1FKCKjgAlAH1XtBTwCoKpzVbWvqvYFrgR2quqaINE85g2rqu9XRx6LxWKpDI16nAvA91//F4CDb91NCW46XnhHOMWyhInqfj5xPfCAqhYAqGqgD3MuB+ZXMx2LxWKpMXoMGMG+D5sSveYlvnQnc2buJ3zb/mr6n9Yx3KJZwkB1h0a7AiNE5GsR+VxEBgUIMwmYFyKOG0VknYg8JyKNqymPxWKxVEh0dDQ/9vw1PQrXc+ZX15Ie1ZFek+8Nt1iWMFFhj1BEPgFOC+D1Z+f6JsBQYBCwUEQ6qZq9i0RkCJCnqhuCRP8M8H+AOv8fBaYHkeNa4FqAdu3aVSS2xWKxhKT/JXfw5bxCEo4foNOEPxOb0CjcIlnChGiQ/fYqdbHIh8CDqvqZc74DGKqqh5zzx4BDqvr3SsTVAfivqvauKOzAgQN15cqVJyy3xWKxWCIHEVmlqgPDlX51h0bfAkYBiEhXIAY47Jy7gMsIMT8oIi19Ti8CgvUcLRaLxWI5KVR3scxzwHMisgEoBK7Sn7qYZwF7VPV73wtE5D/ALFVdCTzkfFahQDpgt3OwWCwWyymlWkOj4UJEDgG7qhlNU5zea4RTW+SE2iOrlbPmqS2yWjlrnpqQtb2qhu0DzlqpCGsCEVkZzjHpylJb5ITaI6uVs+apLbJaOWue2iRrMOwWaxaLxWKp11hFaLFYLJZ6TX1WhP8OtwCVpLbICbVHVitnzVNbZLVy1jy1SdaA1Ns5QovFYrFYoH73CC0Wi8VisYrQYrFYLPWbeqcIReR8EdkqIttF5K5wy+OLiLQVkc9EZJNj3/H3jnvE2W0UkXQRWe/Is9JxayIi/xOR75z/Yd1EXUS6+dnFPCYiN0dKfjobzR90NqTwugXMQzE86ZTbdSLSP8xyPuzYIV0nIm+KSLLj3kFEjvvk7axTJWcIWYM+bxH5o5OnW0VkbJjlXOAjY7qIrHHcw5anIeqkiCun1UJV680PcAM7gE6Y7eDWAj3DLZePfC2B/s5xIrAN6AnMAG4Lt3x+sqYDTf3cHgLuco7vwuxDG3ZZfZ79fqB9pOQnZvel/sCGivIQ+BnwASCYTe6/DrOcY4Ao5/hBHzk7+IaLkDwN+Lydd2stEAt0dOoGd7jk9PN/FLgn3Hkaok6KuHJanV996xEOBrar6veqWojZB3VCmGUqRVX3qeq3znE2sBloHV6pqsQE4AXn+AXgF+ETpRznAjtUtbo7EtUYqvoFcMTPOVgeTgBeVMNyINlvr95TKqeqfqyqxc7pcqDNqZClIoLkaTAmAPNVtUBVdwLbMXXESSeUnCIimH2aQ5mvOyWEqJMirpxWh/qmCFsDe3zO9xKhisaxxtEP+NpxijS7jQp8LCKrxJjIAmihqvuc4/1Ai/CIFpDJlK1YIi0/vQTLw0guu9MxvQAvHUVktRgbpSPCJZQfgZ53pObpCOCAqn7n4xb2PPWrk2pjOQ1KfVOEtQIRaQi8Dtysqscwdhs7A32BfZhhk3AzXFX7AxcAN4jIWb6easZJIuLbHBGJAcYDrzpOkZif5YikPAyGiPwZKAbmOk77gHaq2g+4FXhFRJLCJZ9DrXjePlxO2UZb2PM0QJ1USm0opxVR3xThD0Bbn/M2jlvEICLRmAI3V1XfAFDVA6paoqoe4FlO0fBNKFT1B+f/QeBNjEwHvMMgzv+D4ZOwDBcA36rqAYjM/PQhWB5GXNkVkWnAz4EpTmWIM8yY4Ryvwsy7dQ2bkIR83pGYp1HAxcACr1u48zRQnUQtKqeVob4pwm+ALiLS0eklTAbeCbNMpThzA7OBzar6Dx/3iLLbKCINRCTRe4xZOLEBk5dXOcGuAt4Oj4TlKNPCjrT89CNYHr4DTHVW5Q0FsnyGpk45InI+cAcwXlXzfNybiYjbOe4EdAG+DxzLqSHE834HmCwisSLSESPrilMtnx+jgS2qutfrEM48DVYnUUvKaaUJ92qdU/3DrGrahmlV/Tnc8vjJNhwzxLAOWOP8fga8BKx33N8BWoZZzk6Y1XZrgY3efARSgEXAd8AnQJMIyNMGQAbQyMctIvITo5z3AUWYuZRfBctDzCq8mU65XQ8MDLOc2zFzQd5yOssJO9EpE2uAb4ELIyBPgz5v4M9Onm4FLginnI77HOA6v7Bhy9MQdVLEldPq/OwWaxaLxWKp19S3oVGLxWKxWMpgFaHFYrFY6jVWEVosFoulXmMVocVisVjqNVYRWiwWi6VeYxWhxWKxWOo1VhFaLBaLpV5jFaHFYrFY6jVWEVosFoulXmMVocVisVjqNVYRWiwWi6VeYxWhxWKxWOo1Ea0IRaSDiKhjo8tyEhGRaSKy9BSlFS8i74vIURG541Sk6Zd+uoiMPgXpLBaRa4L42bIdBkLl+6l8Jk46pwfxO2XvYl1ARO5w6pKPRCThROKIaEVoOTFEZIaIFIlIjs/vlCucEIwG0oC2qvqQ19FRUB3CJlUE4TzDGVUI/0sR2SUiuSLylog0CRH23yKyVUQ8jnFdf/9bRGS/iBwTkedEJNbHr6+ILBGRLBHZKyJ3B0njHqeyH+3j1lpE3haRI8611/ldo4783jL7nyrcf70xo+M0sEZWMqyIyIMikuH8HnRsDAYLX2E5EpEuIpIvIi/7uTcTkVecsnFUROb6+D0iIt+JSLaIbBGRqX7XXigiG5zn/qWI9PTxm+VXlxWISLbX36lD2gDdMbZRq8xJVYS2tRtWFqhqQ5/fQxVfcspoAqSrak64BakOTiUT9sakiPQC/gVcCbQA8oB/hrhkLfBbjG07/7jGAncB5wLtMbYn7/UJ8grwBeYZng38VkTG+8XRGbgUY2/Pl5eBnY6M44C/i8govzB9fMpswN50bSCC6r5rgV8AfTCNzwuB3wQKWIVyNBNj5NyfN4D9QDugOfCIj1+uk3YjjCHfJ0TkTCfdLsBc4DogGXgXeMebh6p6nW9dhrHl+KpvwqqaiylbKUFzIgQ1/hI7rfo7RWQdkCsiUSIy1NHymSKy1rc147Ru/p+IrHBaoG8Ha82KyNUistlpVXwvIr/x858gImuceHaIsaKNiDQSkdkisk9EfhCRv4lj8TnEfXQWkU+dVtRhEZkrIsk+fkdEpL9z3kpEDnnvS0TGi8hG534Xi0gPv/y5TUTWOS2nBSISV/WcrjoicpeTL9kisklELgoSTkTkMRE56OTlehHp7fjFOq273SJywGmtxVdRlCjAU4GsKSLyrpP+N84zW+rjryJyndPKzBSRmSKmpRvq2fkwyMmDoyLyvPcZiEhjEfmv8zyPOsdtfNJdLCL3i8gyTEXRqYJ7bS8iy5w8/1hEmvr5T3Hy8rCI/LmCuIIxBXhXVb9wGhd3AxeLSGKgwKo6U1UXAfkBvK8CZqvqRlU9CvwfMM3HvwMwV1VLVHUHsBTo5RfHTOBOoNDrICINgZHA/apapKprgdeA6VW92YoQkY4i8oWT5584ZePlIGEnOu9kbx/n6SLyo1Nf3OYTdrCIfOWUt30i8rSIxPj4q4jcICLfYQzWVsToQOXXJ75HnDK4U0QuqGI2eLkKeFRV96rqD8CjlH2evlRYjkRkMpCJMcrrK+sYoC1wu6pmOc94tddfVf+qqltU1aOqXwNLgDMc77HAElVdqqrFwINAa0xDqwwi0gBjqPiFAPJ7MHVL1TkJFo3TMVaM2wLxzg1lYKwau4DznPNmTvjFwA9Ab4w18deBlx2/DhjryFHO+TigM8YK8tmYiqi/4zcYyHLidznpdnf83sS0dBpgWiorgN9UcB+nO3HFAs0wreDHffx/DWwCEoCPgEcc966Y1s95QDRwB8aad4xP/qwAWmFa1Zvxs0jtZx06M8RveJDrZnjz0M/9UiddFzDJkbOl4zcNWOocjwVWYVpnAvTwCfcYxsp3EyAR03r7f1UoH9EYi+Hl5PMLN9/5JQA9MdbQl/r4K/BfR8Z2wCHg/Eo+u3RgA6aMNgGWAX9z/FIwL1qCc3+vAm/5XLsY2I2p/KOA6BD3sBhjqbsr5l1YDDzgV7afdfz6AAVAjyBxhXrebwN3+rnlAAMqyOOlwDQ/t7XAJJ/zpo6cKc7534EHnOfYDWNdfZBfGXvbJ59HO8eJTjzNfcI+C6z2e6Y/YnoVbwAdTrAO+grTG4nBvEPHCFCnAFdj3s3T/fzmYeqKVKdcee9hADDUubYD5t292U/+/zllKr4CGUOV32kYy/W/BtzA9U6+SLA6IkQ6WcAQn/OBQPaJlCMgCdiGGYacgc87DNyDqQdfxtTv3wBnB0knHjNa4L3fG4H3ffzdmEba7wNcOxX4PkhevOA8u5gql5kTKWgVPOB0YLrP+Z3AS35hPgKuco4X41QOznlPTEvSjZ8iDJDWW97Mwii6xwKEaYGpYOJ93C4HPqviff0Cn5fWcXsHWA+sA2Idt7uBhT5hXBhFP9Inf67w8X8ImFXDz2CGk4eZPr9WAcKtASY4x9P4SRGe4xT4oYDLJ7xglGdnH7czgJ2VlKsv5gU/gFP5BAnndsJ183H7G+UV4XCf84XAXZV5ds4zuM7n/GfAjhAyH/U5XwzcV8n7XQz8xef8t8CHzrG3bLfx8V8BTD6B570Iv8aUb5kLcV0gRbgDp4JyzqMdOTs452dilEex436vT9hETE/IGzYdR4n4pPcUEAf0B44AW338z8Ior2TgaUxjJeC7H+Ke2jmyJfi4vUx5RXgbpiHrm/9ev+4+bg9hesiB0roZeNOvTJ5TSTmDll/Mu7jdxy/BCX/aCZSNEr/76eLEFUiRhCxHwBM4ipLyivDfTry/csqMt+fYNEA6LwAfemXAzO3lYkYMYjB1qAf4YxAZZwS5186YRlQRMLAq+XSy5jf2+By3By51uv+ZIpKJacW0DBJ+FyYj/YeQEJELRGS5MyyZianAvOHaYl5if9o78e3zSf9fmJ5hUESkhYjMFzOUegzzMvnL9CymJ/uUqhY4bq2cewBAVT3O/bX2uW6/z3Ee0DCULCfIQlVN9vn9KCJTxQwde/OhNwHyWVU/xVREM4GDYhZXJGF6VwnAKp84PnTcK0RV12Aqy68wlUgwmmFa3b7lYk+AcAHzsZLPzr/MtXKuTRCRf4lZMHAM05tMlrJD6YFkCUZFz7omykIOprXuSxKQHSBsVePyHmeLmbL4ELgPo8zaAmNF5LdOmBmYRm96kLinAB0x+fcM5rns9XqqGZIrVNVM4PdO2B4B4glFK+CIqub5uAV6XrcDM1V1bwC/YGWjqzNUvt8pG38ndLmqiFDPvtTP515qomwkATnqaI4KwnrDZ4tIX8wit8eCpHMcM+8/W82w6HxMXgzzDSQiD2Pqncu8MqjqFswQ7tOYnmJTTCNlr9+17TDK8sUgMvwe0xNNUtWVQcIE5GQpQt9M3oN5OXwr5Qaq+oBPmLY+x+0wGv2wb4RiVq69jhnyaKGqycD7mF6KN53OAWTZg+kRNvVJP0lV/ec1/Pm7cx+pqpoEXOGTlnfO43FgNjBDfprX/BGjfL3hxLm/HypIrxwiMkLKrpby/42oQlztMYr7RswwVzKmxR1wBZmqPqmqAzA99K6YiuMwpsD38snLRmomsCuFquYDHzjxBuMQplXfxsetbZCwgQj57ALE1w7z3AD+gBnyG+Jce5bj7nt9oEoknGzEDK0CICKdMMPC26obl3N8QFUzMPOhJar6oqoWO0pkPqZBCmaBze8cRbEfk8cLReROAFXdpao/V9VmqjoEU+GtCCGLEqR8hmAf0ETKLqMPVHbGAH8RkYkB/IKVjWeALUAXp2z8KYB8EV02nOONlQnrV45GYnrMu51nexswUUS8C67WUf7ey5yLyL3ABcAYVT1WJqDqa6raW1VTgL86afkvyLkSWKaq3weRvwdmxOV4EP+gnIoVby8DF4rIWBFxi0iciIz0XYAAXCEiPZ3Cex/wmqqW+MUTg3koh4BiZ/LYd6nsbOBqETlXRFxilmp3V9V9wMfAoyKS5Ph1FpGzK5A7EdNCyhKR1hhF4MsTwEo1K9veA2Y57guBcY4c0ZiKtQD4sqKM8kdVl2jZlZ/+vyVViK4BpmAeArPwCNMyK4eIDBKRIY78uZjxeo/Tu30WeExEmjthW4tZaei9VqXipd0FmOcZEOfZv4FpYCSISHfM3EBlqejZAdwgIm2cBsyfgQU+1x4HMh2/v1Yh3XAxF/OOjXAWE9wHvKGqAXuEIhIjZnGQANHOO+mtC14EfuW8j8nAX4A5jt82c7n80nmPTsPMNa9z/M/FlKm+zu9HzArFmU66PUQk0Un/Csz7+w/Hr5eYTzPcTiPzUUzjcbPjP01E0ivKCFXdBazElJ0YETkDs1rRn43A+cBM8Vv1CtztlLtemHlE37JxDMhxyuT1FckTAbwI3Oq8p60w9dGcIGFDlaN/YzoafZ3fLEy953333wQai8hVzjO8BNOQXQYgIn8EfokZKs/wT1hEBjjXNXPSesfpKfoyNYTsYEb+CkL4B+WkK0JV3QNMwLSeDmF6aLf7pf0S5gb3Y4ZcfhcgnmzHfSFwFJOp7/j4r8AU2scwE8Sf81PPbCqm4t3kXPsaZYdmA3EvZh4jC/PA3/B6iMgEzEvkfRFuBfqLyBRV3YrpgTyF6UFdCFyoqoWEEVXdhKlcvsLM0aXiFNIAJGEU3lHM0FAG8LDjdydmjmi5Mzz0CaYHhYi0xQzHra9AHA8Vl70bMUut92PKxzwqX8iDPjsfXsE0kL7HDKn/zXF/HDOZfxhYjhkKDDuhRgBUdSNm6flc4CCmwv6tz7UfiMiffC75GKPsz8RUOsdxer6q+iFmXuwzzKKgXTiNAacVfzFwC6ZsrMGMKvzN8c9Q1f3eH2Z+6qj+9JnMWEx+H3XkPV9VDzl+LTAK55gTpgPwc1UtcvzbEry8+jMFM3ed4ci2gABlR83K1Z8Dz0rZVZmfY8r4IswiuI8d99sw9U425v1YQJjxjhqFCPIvzIK29Zhn9Z7j5r2+tFyFKkeqmuf3bHOAfO/zU9UjwHhMHmVhPsGZoKrekb2/Y3rX231GtHzL5BOYOcWtmPLxa7/7PAOjWMt8NuGHmwpWowfDO1kZNkRkMWbStdIfz1oiE6eV30tV/1hBuDGYkYLuzgtUmbgfxCwWuKr6klpqGyLyMWZh3OYTuHYBsEVVa0Pv3nICOKMXm4BrVPX9ql4f9o+BLXUHVX25IiXosBizzHyj+Hyn5YuIdBeRNDEMxqxGe7PmpLXUJlR1TGWVoDO039kZvj0fMyL11kkV0BI2nDpkC6Ynv6iC4AGJlN0PwoKIzMIMY/rzsqpeF8DdUgM4w8RTKgiWiBkObYUZyn0U851TRBFiWOqCKs7hWmqO0zDD4SmYlYfXq8/H3acCZ7jxg0B+VVlcZqkYVX2EsrvYVJmwD41aLBaLxRJO7NCoxWKxWOo1tXJotGnTptqhQ4dwi2GxWCyWGmDVqlWHVbVSG3OcDGqlIuzQoQMrV1Zp4wCLxWKxRCgisqviUCcPOzRqsVgslnqNVYQWS4STV1jMhxv2Yxe2WSwnB6sILZYI55XXXuP817qxc+uacItisdRJauUcYSCKiorYu3cv+fmBbI1aLIGJi4ujTZs2REdHh1uUoLTa9wkAns3/he79wiyNxVL3qDOKcO/evSQmJtKhQwdEqrphvaU+oqpkZGSwd+9eOnbsGG5xglIY2xiyQXPL7VVssVhqgDozNJqfn09KSopVgpZKIyKkpKRE/CiCRsWbg6LIltNiqa3UGUUIWCVoqTK1ocxoVKw5KK6ymTWLxVIJ6pQitFjqIq4oY7pRbY/QYjkpWEVYg4gIf/jDH0rPH3nkEWbMmBE+gSpg8eLFfPllle0Fl7JmzRrOOOMMevXqRVpaGgsWhN08W53E7TWxVmwVocVyMrCKsAaJjY3ljTfe4PDhwxUHrgKqisdzQvYmQ1JdRZiQkMCLL77Ixo0b+fDDD7n55pvJzMysOQEtAKinBAApPiHj2xaLpQKsIqxBoqKiuPbaa3nsscfK+R06dIiJEycyaNAgBg0axLJlxtj2jBkzeOSRnyyI9O7dm/T0dNLT0+nWrRtTp06ld+/e7Nmzh9tvv53evXuTmppa2vtavHgxI0eO5JJLLqF79+5MmTIl4IfXTz75JD179iQtLY3JkyeTnp7OrFmzeOyxx+jbty9LliwJKeOVV17JGWecQZcuXXj22WcB6Nq1K126dAGgVatWNG/enEOHDpVL+9VXX6V379706dOHs846CzCLm66++mpSU1Pp168fn332GQBz5szhF7/4Beeddx4dOnTg6aef5h//+Af9+vVj6NChHDli7Pg+++yzDBo0iD59+jBx4kTy8vLKpTt06FA2btxYej5y5MjauTWfpxgAsT1Ci+WkUGc+n/Dl3nc3sunHYzUaZ89WSfz1wl4VhrvhhhtIS0vjjjvuKOP++9//nltuuYXhw4eze/duxo4dy+bNoe2Mfvfdd7zwwgsMHTqU119/nTVr1rB27VoOHz7MoEGDSpXK6tWr2bhxI61atWLYsGEsW7aM4cOHl4nrgQceYOfOncTGxpKZmUlycjLXXXcdDRs25LbbjG3cX/7yl0FlXLduHcuXLyc3N5d+/foxbtw4WrVqVRr/ihUrKCwspHPnzuXu47777uOjjz6idevWpT3GmTNnIiKsX7+eLVu2MGbMGLZt2wbAhg0bWL16Nfn5+Zx++uk8+OCDrF69mltuuYUXX3yRm2++mYsvvphf//rXAPzlL39h9uzZ3HTTTWXSnTRpEgsXLuTee+9l37597Nu3j4EDB4bM80hES0yP0OWxPUKL5WRge4Q1TFJSElOnTuXJJ58s4/7JJ59w44030rdvX8aPH8+xY8fIyQlm09XQvn17hg4dCsDSpUu5/PLLcbvdtGjRgrPPPptvvvkGgMGDB9OmTRtcLhd9+/YlPT29XFxpaWlMmTKFl19+maiowO2fUDJOmDCB+Ph4mjZtyqhRo1ixYkXpdfv27ePKK6/k+eefx+UqX6SGDRvGtGnTePbZZylxKvWlS5dyxRXGJnL37t1p3759qSIcNWoUiYmJNGvWjEaNGnHhhRcCkJqaWnpvGzZsYMSIEaSmpjJ37twyPT8vl112Ga+99hoACxcu5JJLLgmZ35GKOj1Cd4ntEVosJ4M62SOsTM/tZHLzzTfTv39/rr766lI3j8fD8uXLiYuLKxM2KiqqzPyf7zdtDRo0qFR6sbGxpcdut5vi4uJyYd577z2++OIL3n33Xe6//37Wr19fLkwwGaH8Zwbe82PHjjFu3Djuv//+UqXtz6xZs/j666957733GDBgAKtWrar0/bhcrtJzl8tVem/Tpk3jrbfeok+fPsyZM4fFixeXi6d169akpKSwbt06FixYwKxZs0KmG7E4c4TRtkdosZwUbI/wJNCkSRMuu+wyZs+eXeo2ZswYnnrqqdLzNWvWAMak1LfffgvAt99+y86dOwPGOWLECBYsWEBJSQmHDh3iiy++YPDgwZWSx+PxsGfPHkaNGsWDDz5IVlYWOTk5JCYmkp2dXaGMAG+//Tb5+flkZGSwePFiBg0aRGFhIRdddBFTp04N2dvasWMHQ4YM4b777qNZs2bs2bOHESNGMHfuXAC2bdvG7t276datW6XuByA7O5uWLVtSVFRUGk8gJk2axEMPPURWVhZpaWmVjj+SEDWKMEoLwyyJxVI3sYrwJPGHP/yhzOrRJ598kpUrV5KWlkbPnj1LeycTJ07kyJEj9OrVi6effpquXbsGjO+iiy4iLS2NPn36cM455/DQQw9x2mmnVUqWkpISrrjiitKFKb/73e9ITk7mwgsv5M033yxdLBNMRjBDq6NGjWLo0KHcfffdtGrVioULF/LFF18wZ84c+vbtS9++fUuV5z333MM777wDwO23305qaiq9e/fmzDPPpE+fPvz2t7/F4/GQmprKpEmTmDNnTpmeYEX83//9H0OGDGHYsGF079691P2dd97hnnvuKT2/5JJLmD9/Ppdddlml4440vIow2ipCi+WkILXRtMvAgQPVf/Xf5s2b6dGjR5gkqtvMmDGjzKKaukakl513n/w9Fx6ZQw4JNJyxL9ziWCw1joisUtWwrWSzPUKLJcIRNfOisdg5QovlZFAnF8tYapZI3h2nPiBqFlNFUwIlReCOXJNRFkttxPYILZYIx+XMEQIU5Yf+5MZisVQdqwgtlgjH2yMEOJ6bHSKkxWI5EawitFgiHO8cIUBBnu0RWiw1jVWEFkuE49sjLMir2a0DLRaLVYQ1zltvvYWIsGXLlqBh0tPT6d2790mVY82aNbz//vsnfL33A/yePXvSq1cvnnjiiRqUzlIVfOcIC4/bHqHFUtNYRVjDzJs3j+HDhzNv3ryA/oG2P6sq3v06Q1FdRRgVFcWjjz7Kpk2bWL58OTNnzmTTpk0nHJ/lxLGLZSyWk4tVhDVITk4OS5cuZfbs2cyfP7/UffHixYwYMYLx48fTs2dPwCjEKVOm0KNHDy655JJSM0KLFi2iX79+pKamMn36dAoKzLdjHTp04M4776R///68+uqrZdL1N3NUWFjIPffcw4IFC+jbty8LFiwgNzeX6dOnM3jwYPr168fbb78NGLNHEyZMYOTIkXTp0oV7770XgJYtW9K/f38AEhMT6dGjBz/88EO5e/78889Ld5Xp168f2dnZqGpQk1Fnn302EyZMoFOnTtx1113MnTuXwYMHk5qayo4dOwB49913GTJkCP369WP06NEcOHCgXLqTJ0/mvffeKz2fNm1a6QbbdQ0powhzwyiJxVI3qZvfEX5wF+wvv6l0tTgtFS54IGSQt99+m/PPP5+uXbuSkpLCqlWrGDBgAGD2Ed2wYQMdO3YkPT2drVu3Mnv2bIYNG8b06dP55z//yY033si0adNYtGgRXbt2ZerUqTzzzDPcfPPNAKSkpJTuS+qLv5mjmJgY7rvvPlauXMnTTz8NwJ/+9CfOOeccnnvuOTIzMxk8eDCjR48GjAmlDRs2kJCQwKBBgxg3blwZc0Xp6emsXr2aIUOGlEv7kUceYebMmQwbNoycnBzi4uJ44403gpqMWrt2LZs3b6ZJkyZ06tSJa665hhUrVvDEE0/w1FNP8fjjjzN8+HCWL1+OiPCf//yHhx56iEcffbRMul4TS+PGjaOwsJBFixbxzDPPVPJh1i5cPnOEJbZHaLHUOLZHWIPMmzePyZMnA6bH4js8OnjwYDp27Fh63rZtW4YNGwbAFVdcwdKlS9m6dSsdO3Ys3W/0qquu4osvvii9ZtKkSQHTDWTmyJ+PP/6YBx54gL59+zJy5Ejy8/PZvXs3AOeddx4pKSnEx8dz8cUXs3Tp0tLrcnJymDhxIo8//jhJSUkB07711lt58sknyczMJCoqKqTJqEGDBtGyZUtiY2Pp3LkzY8aMAcqaWNq7dy9jx44lNTWVhx9+OKCJpQsuuIDPPvuMgoICPvjgA8466yzi4+MD3nttx0UxBcQAUFJge4QWS00TET1CETkfeAJwA/9R1dBdr4qooOd2Mjhy5Aiffvop69evR0QoKSlBRHj44YeB8iaVgpk1CkUws0yVMXOkqrz++uvlLDx8/fXXQWUpKipi4sSJTJkyhYsvvjhg2nfddRfjxo3j/fffZ9iwYXz00Uch76EyJpZuuukmbr31VsaPH8/ixYsD7mwTFxfHyJEj+eijj1iwYEFpA6QuIuohVxKI1UI8hXnhFsdiqXOEvUcoIm5gJnAB0BO4XER6hleqqvPaa69x5ZVXsmvXLtLT09mzZw8dO3ZkyZIlAcPv3r2br776CoBXXnmF4cOH061bN9LT09m+fTsAL730EmeffXaFaQcyc+RvYmns2LE89dRTeDdZX716danf//73P44cOcLx48d56623GDZsGKrKr371K3r06MGtt94aMu3U1FTuvPNOBg0axJYtW6plMgogKyuL1q1bA/DCCy8EDTdp0iSef/55lixZwvnnn1/p+GsbLi0h35VgTmyP0GKpccKuCIHBwHZV/V5VC4H5wIQwy1Rl5s2bx0UXXVTGbeLEiUFXj3br1o2ZM2fSo0cPjh49yvXXX09cXBzPP/88l156KampqbhcLq677roK0w5k5mjUqFFs2rSpdLHM3XffTVFREWlpafTq1Yu777679PrBgwczceJE0tLSmDhxIgMHDmTZsmW89NJLfPrpp6WLYbyrUGfNmlVqounxxx+nd+/epKWlER0dzQUXXFAtk1Fg9ja99NJLGTBgAE2bNi11X7lyJddcc03p+ZgxY/j8888ZPXo0MTExlY6/tiF4KHbFUqRutMj2CC2WmibsZphE5BLgfFW9xjm/EhiiqjcGu8aaYao55syZU2ZRTX0k0svOivtH00KO0rjgR7adNo6B1/8n3CJZLDWKNcNUSUTkWhFZKSIrDx06FG5xLJZThqgHD27yJRYpOh5ucSyWOkckKMIfgLY+520ctzKo6r9VdaCqDmzWrNkpE66uM23atHrdG6wNuCjBIy7yJQ5XsR0atVhqmkhQhN8AXUSko4jEAJOBd04konAP81pqH7WhzLjUg0eiKJA43CX54RbHYqlzhF0RqmoxcCPwEbAZWKiq5T8cq4C4uDgyMjJqRcVmiQxUlYyMDOLi4sItSkhclKDiotAVT1SJ7RFaLDVNRHxHqKrvAye+MSbQpk0b9u7di50/tFSFuLg42rRpE24xQuLCg0fcFLncNLCK0GKpcSJCEdYE0dHRZXZusVjqCm4tQXFT7I4hujAj3OJYLHWOsA+NWiyW0Hh7hJ6oeGI9do7QYqlprCK0WCIcl5o5whJ3PLFqFaHFUtNYRWixRDguPKi48UQnEIdVhBZLTWMVocUS4bgpQcUN0QnEaSHYldEWS41iFaHFEuGY7wjdaHQCLlFKCu3uMhZLTWIVocUS4Xh7hBJjzHAdz8uu4AqLxVIVrCK0WCIc7xyhxBpFmJ93LMwSWSx1C6sILZYIx9sjdDs9wsK8nDBLZLHULawitFgiHBce1OUmKtYY5y2wQ6MWS41iFaHFEuG4ne8I3XENASg8bnuEFktNYhWhxRLhuPCAK4roeKMIi/NzwyyRxVK3sIrQYolwovAg4iYmPhGA4nw7NGqx1CRWEVosEYyqlvYIYxJMj7CkwFqgsFhqEqsILZYIptijuClBXG7iHEXoKbBzhBZLTWIVocUSwRSXKFGUgCuKuPgkALTQ9ggtlprEKkKLJYIpKi7CLQruaOIbmB6hFtrFMhZLTWIVocUSwRQXFZoDdzQx0VHkaixSZHuEFktNYhWhxRLBlDiKUN0xAORLnFWEFksNYxWhxRLBFBcVACDuaADyicVVZIdGLZaaxCpCiyWC8Q6NitMjLHDF4y6xZpgslprEKkKLJYIpKVWEpkdYIHFEFVtFaLHUJFYRWiwRTElx2aHRInc8UR6rCC2WmsQqQoslgvEU5puD6DgAilzxxNihUYulRrGK0GKJYIqPm31F3XHOPqNRCcRqfjhFsljqHFYRWiwRTFG+2U4tOs4Y5fVExRPrsYrQYqlJrCK0WCIYr6WJmASzvVpJVAKxWEVosdQkVhFaLBFMsdMjjHFsERKdQILmg2oYpbJY6hZWEVosEYynwHw8H9fAzBFqdANcongK7YIZi6WmOCWKUERmiMgPIrLG+f3Mx++PIrJdRLaKyNhTIY/FUltQx+RSfINGAEismSvMP26N81osNUXUKUzrMVV9xNdBRHoCk4FeQCvgExHpqqolp1AuiyVi0QKj8OITTI/QFZMAQH7uMRKSW4RNLoulLhHuodEJwHxVLVDVncB2YHCYZbJYIgbJO0wWDXFFmy3WvD3CgjxrnNdiqSlOpSK8UUTWichzItLYcWsN7PEJs9dxs1gsQEz+YbJcyaXnUbGmZ1iYZ4dGLZaaosYUoYh8IiIbAvwmAM8AnYG+wD7g0ROI/1oRWSkiKw8dOlRTYlssEU184RFyolNKz6PizOrRwnyrCC2WmqLG5ghVdXRlwonIs8B/ndMfgLY+3m0ct0Dx/xv4N8DAgQPt2nFLvaBx0UH2JfUpPY+OM3OERfnWJqHFUlOcqlWjLX1OLwI2OMfvAJNFJFZEOgJdgBWnQiaLJdLJzTlGSw5R1OT0UreYeDNHWGwVocVSY5yqVaMPiUhfQIF04DcAqrpRRBYCm4Bi4Aa7YtRiMezbsZ7TgegW3UvdYuNNj7C40CpCi6WmOCWKUFWvDOF3P3D/qZDDYqlNZO3ZBEBy+16lbt4dZrwf2p8oGRmH2fK/54nZu4zY4hwKm3Slw/m/o2m77hVfbLHUMU7ld4QWi6UKFB/YSokKrTr+pAjjHUVYcoI7y+TlZrNm/n303v0ywySPg5JCliuZbj8swPXcfDb2uYtev7gdRAJen19YzKY1y8nf+RWa9QMuSnDFJRF3Wjead+5Li/Y9cEVFB02/oKiYo0cOU5J7FBFBoqKJjo4mJi6BuLgGRMfEIq5wf9VlqW9YRWixRCgxmd+xz9WCNs68IEBcgmOFoqjqinDl4ndpsfh2zmQfaxLPovHYO2jfezjNRdi963v2z/0Ng9fez6Ydn9H6in/S6LSOqCp7d+9k18oPkO8/o0vON/SXTABKVCjBTYwUw/fAl1CoUeyLak1W7GmUuGKhpIj44iwSirNoqMdI0lxOE09IOfM1mkKJoZBoFEHQ0h8oLvUegwsPRmUrLp9wXjfvsaAgsKrVFQy59qkq552lbmMVocUSoSTnpXM4th1tfNxiY+PxqEAVeoQlJSUsnv1HRv7wbw64T2Pr6Jfoe+b4MmHate9Eyzs+5NOX/8aZO58i6pn+7Ha3IsaTT1sO0xbIJJE9TYaQ0XU0zVNH06RlR9zuKLKyMvlx+1qydq2leP8W4rO206jgEFGeQjyuaPLcjTjc4HQOxDWB+Ma4GjSBuGRKFMRTjKe4EE9RAVqcD0XHobgASgpwl+TjQlFxISLmP2J6q+Iq/S8YP7wqTzD/S88FVWix/zNa7vuk2s/FUvewitBiiUA8xUW0Lt7LvqbDyriLy8VxYqC4coqwqDCfDU9dxrnZn7Ohybl0ueY5WjVIDhg2OsrNOdP+yvZtl7Dvs2dpkPUdGh3P3tPSOC1tNK17DCHZ5S53XaNGyTQacDYMOLvK93kqWfr8Hxm+65/kH8sgLiml4gss9QarCC2WCOTArs20lGJcLXqU8yuUGKQSirAgP48tT15Mv7yv+LLTzZx55Yygc3++nN61F6d3ffwEpI5sotsNhl3/ZN+mL+k49MJwi2OJIOqlIvzm8cspTmpDzwm30SilGhsXq+LxeCgqLsJT4gENMPfhV/GIf0VUrmKqvL9IJa4HRCpefFCJ+jFAzMHiqjhk5eOqmfSqgjq2/lTN9z6qipb6gaJlzAH6uqlPHIqP2cAKwpSm4Pjv2fotLYHEdqnl5CuQWKQ4tHHe47k5fPfUL+iT/w3Le/yZMyfdUdVsqHO07HkGni+ErO1fQTUVoapyPC+b4uN5FJUUUlJcQklxoVkAhCAuM5wrLheCC1zgcoZxXS4zrCsuQcSNiBg/lynLIi5c3mudYWHxDgV7h4ZLh4hrtuzXV+qdIiwqLCCqKItBu9+n6MnZbIzrTXaj7tCwBUTFIiVFaMExKMjBVZhNVFE20cU5xJbkEO/JJUHzaKh5RFOMSxQXEBvum6omHo3cl6kyWwidzG2GnCrnlNNCFI8KrTr3KedXVIEizMk5xvdPjqd3wRq+SZvB0Im3nExRaw1tT2vBTmlN1L5Vlb4mNyebHWu+ID/9a/TwNhrlpNO4+CBJmk2CFJ5EaStPuN/fD86cx7ixF4RVhupS7xRhdEws/W5/n+83fM2BZS/R7OCXdDzwFgkHC0rDeFTIkXjySOC4qwEF7gYUxDQhJ7odnpgkiqIaoO4YRNzgcpvl3uL+qaVWil8V7WdVXMpV4aHDVxxfICpI06e3E5JKapuaVEqVkuxkaUHx/pOfTqWMl2mU+/bQS938ohIpex0/NeTFz8E3TFTzrvRo3Bh/ilyxRJUEVoRZmUfZPXM8vQvXs2bA/Qwaf0PAcPUREeFAcj9SMz+h4Hg2sfGJAcPtTd9G+pJ5NNn9MacXbiFNigE4TDIHY9uxq8EgPAkpEN8EjUrA5Y5C3FGIM39qevqKqscZUijxDi2gGDdVD4Ka0QcnnPHT0p/y0zF4EOd9966eFZ/Vs+GkfftO4Rah2tQ7ReilU+8hdOo9BABPSQl5+bkU5+dDdAwNGySR5HaRFGYZLZZAFLnicAdQhBlHMtj3z5/Ts2gzG4Y+TP8Lfh0G6SKb+AGTabjoXVb99xkGXPrTcPG+3d+x84tXaJz+Pj2Kt9AG2OnuyLetJtOwywhapZ5N02YtaRo+0S0nkXqrCH1xud0kNEiCBlb1WSKfIncCcYVZZdwO7P+Ro/8eT/eSHWwd/jhp500Lj3ARTtqZP2PDF2n03PAwK47uRhEaHfyG7sWbaQl87+7Eyk430HbEL+nYsTcdwy2w5ZRgFaHFUsvIjW5Cu/xdpec7tm2AeZPp6NnP9nP+Rc+zLwujdJGNy+2i2fS5bJkzncE/vkShukmP6sTyDr+l3fBf0un0VGr/QJ+lqlhFaLHUMo7HptD4WCbq8bDkvZdIW/lHXAI/XvgS3QfW7kULp4IWLdvR4o+fcPz4cdwuF11ja/tyN0t1sYrQYqllFMQ2I5YiNj1wFmcVrmdXTEcaXDmfjnbD7CoRHx8fbhEsEYLd3dZiqWU06jGKQnXToXAbq07/HW3v+NpajbBYqoHtEVostYwhw85hV+sVNG3ShAFJTcItjsVS67GK0GKphbTvcHrFgSwWS6WwQ6MWi8ViqddYRWixWCyWeo1ouW28Ih8ROQTsqjBgaJoCh2tAnJNNbZETao+sVs6ap7bIauWseWpC1vaq2qwmhDkRaqUirAlEZKWqDgy3HBVRW+SE2iOrlbPmqS2yWjlrntokazDs0KjFYrFY6jVWEVosFoulXlOfFeG/wy1AJaktckLtkdXKWfPUFlmtnDVPbZI1IPV2jtBisVgsFqjfPUKLxWKxWKwitFgsFkv9pt4pQhE5X0S2ish2Ebkr3PL4IiJtReQzEdkkIhtF5PeO+wwR+UFE1ji/n0WArOkist6RZ6Xj1kRE/ici3zn/G4dZxm4+ebZGRI6JyM2Rkp8i8pyIHBSRDT5uAfNQDE865XadiPQPs5wPi8gWR5Y3RSTZce8gIsd98nbWqZIzhKxBn7eI/NHJ060iMjbMci7wkTFdRNY47mHL0xB1UsSV02qhqvXmB7iBHUAnIAZYC/QMt1w+8rUE+jvHicA2oCcwA7gt3PL5yZoONPVzewi4yzm+C3gw3HL6Pfv9QPtIyU/gLKA/sKGiPAR+BnwACDAU+DrMco4BopzjB33k7OAbLkLyNODzdt6ttUAs0NGpG9zhktPP/1HgnnDnaYg6KeLKaXV+9a1HOBjYrqrfq2ohMB+YEGaZSlHVfar6rXOcDWwGWodXqioxAXjBOX4B+EX4RCnHucAOVa3ujkQ1hqp+ARzxcw6WhxOAF9WwHEgWkZbhklNVP1bVYud0OdDmVMhSEUHyNBgTgPmqWqCqO4HtmDripBNKThER4DJg3qmQJRQh6qSIK6fVob4pwtbAHp/zvUSoohGRDkA/4GvH6UZnqOG5cA85OijwsYisEpFrHbcWqrrPOd4PtAiPaAGZTNmKJdLy00uwPIzksjsd0wvw0lFEVovI5yIyIlxC+RHoeUdqno4ADqjqdz5uYc9TvzqpNpbToNQ3RVgrEJGGwOvAzap6DHgG6Az0BfZhhk3CzXBV7Q9cANwgImf5eqoZJ4mIb3NEJAYYD7zqOEVifpYjkvIwGCLyZ6AYmOs47QPaqWo/4FbgFRFJCpd8DrXieftwOWUbbWHP0wB1Uim1oZxWRH1ThD8AbX3O2zhuEYOIRGMK3FxVfQNAVQ+oaomqeoBnOUXDN6FQ1R+c/weBNzEyHfAOgzj/D4ZPwjJcAHyrqgcgMvPTh2B5GHFlV0SmAT8HpjiVIc4wY4ZzvAoz79Y1bEIS8nlHYp5GARcDC7xu4c7TQHUStaicVob6pgi/AbqISEenlzAZeCfMMpXizA3MBjar6j983H3H2C8CNvhfeyoRkQYikug9xiyc2IDJy6ucYFcBb4dHwnKUaWFHWn76ESwP3wGmOqvyhgJZPkNTpxwROR+4Axivqnk+7s1ExO0cdwK6AN+HR8pSmYI973eAySISKyIdMbKuONXy+TEa2KKqe70O4czTYHUStaScVppwr9Y51T/MqqZtmFbVn8Mtj59swzFDDOuANc7vZ8BLwHrH/R2gZZjl7IRZbbcW2OjNRyAFWAR8B3wCNImAPG0AZACNfNwiIj8xynkfUISZS/lVsDzErMKb6ZTb9cDAMMu5HTMX5C2ns5ywE50ysQb4FrgwAvI06PMG/uzk6VbggnDK6bjPAa7zCxu2PA1RJ0VcOa3Oz26xZrFYLJZ6TX0bGrVYLBaLpQxWEVosFoulXmMVocVisVjqNVYRWiwWi6VeYxWhxWKxWOo1VhFaLBaLpV5jFaHFYrFY6jX/H50h+wPW/2SFAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 6)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmPklEQVR4nO2deZhUxdW439PdszNsw74vsjPDIpsBFAwqShQVVBIQkU+NJhr35ZdEgybmU+MWlEgkKO6Cu35qSERRUQHZdxBkZEdgmGEGZu/z+6PujD093bPPdE9Pvc/TT99bVbfq3Lp161SdqlslqorFYrFYLJGMK9QCWCwWi8VS21hlZ7FYLJaIxyo7i8VisUQ8VtlZLBaLJeKxys5isVgsEY9VdhaLxWKJeMJO2YlIFxFREfGEWhZL1RGRm0TkgIisD0Has0Tk5TpIZ4aILCvDf6mIXFPbclhKUla+19UzEZEFIvKXMvxVRE6rbTkiARFpJyKZIrJdRM6uajxhp+wslUdE5opIlvPLE5F8n/OPQyTWLOA3qjrAR85ZIjIrRPKEFU6jLrWS4T8TkVMisk1ExpUR9nIR+doJuzSA/0ARWe34rxaRgT5+MU55OiwiaSLygYi0DxBHDxHJ8W1UiOEPIrJHRE6IyOsi0tjHf4FTPrN8fu4K3v8CEZlRkbD1HacRtaAS4X/ulIlTThnpXEbYCpUjEVkSqNMhIjeLyG4ROSkiW0Wkp+M+QUSWiUi6iBwSkX+JSKLPde1F5D2nTO0Tket9/Eb7lYksJ+1JAKp6QFUTgQ+A31U0X/ypcWVne2R1j6per6qNVLUR8FdgYdG5qp5fFK6On01zYFMdplcrhFF5fg1YCyQBfwDeFJGWQcKmAU8CD/l7iEg08B7wMtAMeAF4z3EHuBk4A0gB2gHHgacCpDEH+NbPbTpwJTDSuTYuwLWP+JTNRqpaGOyGw52KKupalqEF8DZwL+adWwUsLOOScsuRiEwFogKkdQ3wP8AEoBHwC+Co490E+AvmufcB2gN/87n8ZWA30Nq5/q8iMhZAVb/0LRNOvFnAv/1E2OTIXSVqRNmJSKqI3C0iG4CTIuIRkRFO6zJdRNaLyBif8EtF5H9FZKXTAnxPRJoHiftqpwWRKSLfi8iv/fwnisg6J55dIjLecW8iIvNF5KCI7BeRv5RXOEWku4h8KiLHROSoiLwiIk19/NJEZLBz3k5EjhTdl4hcJCKbnftdKiJ9/PLnDhHZICIZIrJQRGIrn9OVJ8izKWFCET+Ti4j8wsnTdOcZplQyzaJ89pYT7i7n+RwQkWt85XJkmiMiHzrPfoWIdPe59u8istd57qtFZLRf9LFOPmeKyBoR8e1h3uOUlUwR2SIil/j4zRCRr0TkCRE5humhlne/j4rIcTEt3vP9vDs78WWKyH+cyqlSiGk9Dwb+pKrZqvoWsBGYFCi8qn6iqouAAwG8xwAe4ElVzVXV2YAAReahrsBiVT2sqjmYirOfnzxTgHRgiV/cFwLzVXWvqmYBDwNXiEh8Ze+5LETELSKPOe/obhG5UYIMfYhIW+e9u9PHuXuwukdE3hDTM8kQkS9EpJ+P3wIReUZEPhKRk8DYckRtFqz8OowTke+c92yOiEgVsuNSYLOqvuE8r1nAABHp7R+wIuVIRJoAfwLu8rvW5bjfqqpb1LBLVdMAVPVVVf23qp5S1ePAPEyjBxFphCl3D6pqvqquB94EZga5p6uAN1X1pJ+7F1N2q4aqVvsHpALrgI6Y1lx74BhwAUahnuOct3TCLwX2A/2BBOAt4GXHrwuggMc5nwB0x7yQZwGngMGO3zAgw4nf5aTb2/F7B/inE38rYCXw63Lu4zQnrhigJfAFplIo8r8W2ALEA4uBRx33nsBJ59ooTEHZCUT75M9KTKunObAVuD6IDKMwFUmw36hy7mFWUV4GejaOmwKn+YRZAPzFOR4E/AgMB9yYgpcKxFSiPIwHcoCEcsIcwlSk8ZiWX7FcjkzHnGfsAV4BXve5fhqmlecBbnfiivXJg3xgsvM87sC0KqMc/8ucZ+ECrnCeXVvHbwZQANzkxB1Xxj3McNK51smrGzAKRnzK+S6nfMQ55w8FiesfwD+C+F0CbPVzexp4qpzncA2w1M/tVuBjP7f/A253jocAXzn5Ew+8Ssl3oDGwA+gQoKy9Cdzlcz7SeaYDfJ5pmvNbDUyqYn1zPeY97IDpnX5CyTpjqXPvXR1Zr/O5dilB6h7HfyaQiKkDngTW+b0nGc59uYrKWxAZF1B2+VUn35sCnYAjwPggcW0AfhXE7+/AM35umwLlbUXKEabHfiul6+FOzvnNwF7M+3Q/4Aoi15NF9+vkpwKtfPznAWsDXJcAZAJjAviNxVgaOlWp3FTlogBCpAIzfc7vBl7yC7MYuMqnwD3k49cXyMNUGCUyOUBa7wI3O8f/BJ4IEKY1kItPRQX8Eviskvd1sf8DAd7HtIY24CgAjAlhkU8YF+aFGuOTP9N8/B8B5tZE3geQeRalld1MvzBlKbtngD/7hd8OnFXB9Fc58f+unHDPAf/rc34apZXdv3z8LwC2lRHfcX6qVGcBy/2ex0FgdJBr1wETneMZwJ4K3usMYKfPebxzD218yvkfffx/A/y7Cs/0St/7cdweBBaUc10gZXcvPpWu4/YKMMs5bgK87txHAcbk1dwn7N+Bu4OUtWswyqWLE8/7TjxnOP6D+amBcgGmUhtZhfz4FJ+GKzCO0srucafs/9Lv2qUEqXsCpNPUibeJT5l8sYIylll+nXhH+ZwvAu6pQl7Mx68BhWmszKhsOcI0dNY5z6eLX57+zDn/0MmXLs6zvjZAOudg3seePm7LMCbtWKccpAHbg8i4G6fBGMD/DUeOJyubVzU5ZrfX57gzcJnTPU8XkXRMj6VtkPA/YFrgpUw8InK+iCx3TIjpmEJTFK4jpuXsT2cnvoM+6f8T08MLioi0FjOovl9ETmB6G/4yzcO0Cp9S1VzHrZ1zDwCoqte5P9+B/UM+x6cwNu+6Ym/5QYrpDNzu9+w6Yu6xIgwFpgCzRKSU3d+Hdn5yBZIxaJ45ZuGtjrkpHVO5+j6r4vic57Gv6B5EZLqPmTYd8zwDXlsBimVU1VPOYaNA/v73UAmyMD0qXxpjlEVNxzUH06tJwrSy3wY+BjOxBaNYnggS93OYMaGlwGbgM8d9H4CqrlHVY6paoKofYZTspVW4h4qUnamYBuebAfwC1j2OefQhx8R9AqMsoQbKBoGffV2XjaBhHTPlPzAdiYIA12Y7/4+oarqqpmLq1At8A4nICIw1YLKq7vDxmorpae/FNKhfxikXflyFaVCov4eYIaQLMNa7WwJcWyY1qex8hduL6dk19fklqKrvgHlHn+NOGHPQUR83RCQGY2Z4FGitqk2BjzAmzaJ0/O3gRe65QAuf9Burar8AYX35q3MfyaraGGMqK7ajO7bnJzGtqVk+tv4DGCVRFE6c+9tfTnqlkMAzk3x//mNTFcG/4JzC9EKKaONzvBdjW/d9dvGq+lqFEjKF9F2MealtGUEPYsxQRXQMFtAfJw/uAi4HmjnlIgOfZ+Ubn/MidwAOiJmpNg+4EUhyrt3kd22pFy3EbAa6ic/sNmCA416VuFL8xodSfOIaiGnppzmNuaeAYc5Y4xhMi36PiBzCmIcnicgaMI0KVf2TqnZR1Q5OnPsJ/h4oJfO9olSk7MzC1CevSumx+mB1z6+AiRiF3gRzrxD+ZWNA0YmIJGDqxEBlo6xy1BjTs1voPNuiyUf7nPdtO6YH7Hv/JfJCRAZhevMzVbXEeK6q/qCqv1DVlqo6HNOAWOl3fUdMGXsxyL32Abao6vYg/mVSW58evAxcKCLnOa2lWBEZIyK+BXSaiPR1Bq8fwAxI+s/Misa0Mo8ABc7g/7k+/vOBq8VMvXWJmd7aW1UPAv8BHhORxo5fdxE5qxy5EzGtnwwx063v9PP/O7BKVa/BdOfnOu6LgAmOHFGYMaRc4OvyMsof9ZuZFOD3ZWXjDMA64FfOsxmPGQstYh5wvYgMF0OCmGnFiVA8SL+gnHso6vFGlxFsEebZ9XHKwL2VkD8RY2I7AnhE5D5Kt1hPF5FLxUxauAXzPJZjeivqXIuIXI3p2YUtTgt5HfAn5126BKOg3goUvuidw5ijXM41Rb3spUAh8Dsxnxnc6Lh/6vx/C0wXM8ErCmN6PaCqR4FnMRXpQOc3F/MenOek29x5z0RE+mJMiQ84PWtEZLKINHLex3Mxjcn3feRW8ZnIVgaLgJud970pZtjEn3zM2GwC8KLT4CkiWN2TiCknxzCNwb9WQJZQ8w7QX0QmOc/8PmCDqm7zD1hOOcrA9JgHOr+iHtvpwArHarEQuEtEEp26/DrMuCMi0h8ze/ImVf3AP23nPU8UkWgRmYapxx/3C3Yl8LWqBrLWgemB5wbxK5daUXaquhfTQvo9plLZi1Ecvum9hLFrH8LYcUt9P6GqmY77IowN+Ff4vByquhK4GmNWyQA+56ce1nRMZbvFufZNyu5pgBlwHezE9SHGhAOYWZ+YSRU3OE63AYNFZKrT0piGaQUfxcxKu1BV88pJL1TcjJExHWNeeLfIQ1VXYSZcPI3Jt52YsakiOmLGBMpDKaN8qerHwGyMqWsnRhFBxQrzYsyLtQNjhsqhtHnpPczkk+OYl+hSNTPBtgCPAd8Ah4HkCt5PrSLm27a5ZQSZgml5H8d8UjBZVYsU9lQR8W3JX4kxOz0DjHaO5wE4ZfJizPuRjpmQcbFPWb0Dk5/fYd7dCzATG1Az0+5Q0Q/TMMwpkgPTWv8IM+HnY+A5VX3WR66bMb28dMy09GtVdalzDx0xpreN5ecW8zCN2Q2YMcWPMI2fEo1l554uxYzhP+ej8ILVPS9iytN+TL2xnDBAzCzvqYH8nLyfhBl7O46ZWDbF51r/chWwHKnB99kWPdPDPmXjRswzP4B5f17FmK7BNPBbAvN9rFC+ZfI84Hsn3esxk3GOUJLpmE9hguGmnBneZVE0a6xOEfOh68uq+q86T9xSZcR8i7UeSFHV/HLCHsDMzKvQSiZiPtXYhJn0E2jMwBLBOK39fqr6/6pw7fmYCV+dyw1sqZc4DZXZmBmdl1clDruCiqXCqGqeqvYpT9E53IMxl6wOFkBELnFMac0w32R9YBVdw0RVX66oohOROBG5QMw3o+0x33+9U7sSWkKFiLTD9DRHYKwyVaLBKTspubSW768sE5Klkqjqi6raQ1VPLyPYrzHf9O3CmKBuKCNsSLDlJSwRzJDDcYwZcytmrKpuhTDmxUBlI6DJ0VI11CwXlqSqQ1R1RVXjCYkZ02KxWCyWuqTB9ewsFovF0vAIl0VuAWjRooV26dIl1GJYLBaLpQ5ZvXr1UVUNtrB5jRBWyq5Lly6sWrUq1GJYLBaLpQ4RkR/KD1U9rBnTYrFYLBGPVXYWSz2g0Fu8EK7FYqkCYWXGtFgspXn148/I+Po5snpczJ3TA25hZ7FYyiHslV1+fj779u0jJycn1KJY6hGxsbF06NCBqKiyNl4If/YeyWDk8l/T2X2YI7uWsnzrEEb0sQuFWCyVJeyV3b59+0hMTKRLly5IlTbytTQ0VJVjx46xb98+unbtGmpxqsWmT17ifDlMxpDf0XLVbL78fD70eSDUYlks9Y6wH7PLyckhKSnJKjpLhRERkpKSIsIakJj6b9JczWhywf3sj+lO50P/oaCwymvhWiwNlrBXdoBVdJZKEwllJj3zJCk5qzjQ8kxwuTjZ5RwG6ja2p1Zm/1CLxQI1oOxE5CYR2easE/eI43aOiKwWkY3O/9nVF9ViaVj8sHUljSUb92nm9WnWfxxuUQ5sXhZiySyW+ke1lJ2IjMXsWzfA2QX8UcfrKGY/t2TMNusvVUvKECMi3H777cXnjz76KLNmzQqdQOWwdOlSvv660vvGlmD8+PE0bdqUX/ziFzUklaWynPzebOTcqs9IAFr0HEEhLrw/hMU2axZLvaK6PbsbgIeKdqZW1R+d/7WqesAJsxmIE5GYaqYVMmJiYnj77bc5evRojcarqni9NT/+UhPK7s477+Sll+p1G6XeE3VoHcdpTFL70wCQmET2R3cjKX19iCWzWOof1VV2PYHRIrJCRD4XkaEBwkwC1hQpRH9E5DoRWSUiq44c8d+4NjzweDxcd911PPHEE6X8jhw5wqRJkxg6dChDhw7lq6/MptezZs3i0UcfLQ7Xv39/UlNTSU1NpVevXkyfPp3+/fuzd+9e7rzzTvr3709ycjILFy4EjMIaM2YMkydPpnfv3kydOjXgR8WzZ8+mb9++pKSkMGXKFFJTU5k7dy5PPPEEAwcO5MsvvyxTxiuvvJIzzjiDHj16MG/evOJ4f/7zn5OYmFhmvrzxxhv079+fAQMGcOaZZwJmQtHVV19NcnIygwYN4rPPPgNgwYIFXHzxxZxzzjl06dKFp59+mscff5xBgwYxYsQI0tLSAJg3bx5Dhw5lwIABTJo0iVOnTpVKd8SIEWze/NMmyGPGjInIZeaSMreyN6Yn+Iw/nmjahy4Fu8nJLyzjSovF4k+5nx6IyCdAmwBef3Cub47ZVG8osEhEuqlTK4tIP8ymnOcGi19VnwWeBRgyZEiZS0Tc/8Fmthw4UZ7IlaJvu8b86cJ+5Yb77W9/S0pKCnfddVcJ95tvvplbb72VUaNGsWfPHs477zy2bt1aZlzfffcdL7zwAiNGjOCtt95i3bp1rF+/nqNHjzJ06NBixbF27Vo2b95Mu3btGDlyJF999RWjRo0qEddDDz3E7t27iYmJIT09naZNm3L99dfTqFEj7rjjDgB+9atfBZVxw4YNLF++nJMnTzJo0CAmTJhAu3btKpR3DzzwAIsXL6Z9+/akp6cDMGfOHESEjRs3sm3bNs4991x27NgBwKZNm1i7di05OTmcdtppPPzww6xdu5Zbb72VF198kVtuuYVLL72Ua6+9FoA//vGPzJ8/n5tuuqlEuldccQWLFi3i/vvv5+DBgxw8eJAhQ4ZUSOb6QmFBAe0K9rGuxYiSHq370eLHD9ixJ5We3buHRjiLpR5Sbs9OVcepav8Av/eAfcDbalgJeIEWACLSAbN78HRV3VWbN1EXNG7cmOnTpzN79uwS7p988gk33ngjAwcO5KKLLuLEiRNkZWWVGVfnzp0ZMcJUYsuWLeOXv/wlbreb1q1bc9ZZZ/Htt98CMGzYMDp06IDL5WLgwIGkpqaWiislJYWpU6fy8ssv4/EEbruUJePEiROJi4ujRYsWjB07lpUrV1Y4T0aOHMmMGTOYN28ehYWFxfczbdo0AHr37k3nzp2Lld3YsWNJTEykZcuWNGnShAsvvBCA5OTk4nvbtGkTo0ePJjk5mVdeeaVED66Iyy+/nDfffBOARYsWMXny5ArLXF/Yu3s7sZJPVOveJdwTOw0A4Oj3a0MhlsVSb6nuR+XvAmOBz0SkJxANHBWRpsCHwD2q+lU10yimIj2w2uSWW25h8ODBXH311cVuXq+X5cuXExsbWyKsx+MpMR7n+81XQkJChdKLiflpmNPtdlNQUFAqzIcffsgXX3zBBx98wIMPPsjGjRtLhQkmI5Seol+ZKftz585lxYoVfPjhh5x++umsXr26zPC+9+NyuYrPXS5X8b3NmDGDd999lwEDBrBgwQKWLl1aKp727duTlJTEhg0bWLhwIXPnRt6m4T/u3kAXoFmX/iXcW/cYDEDe/o1A5Cl5i6W2qO6Y3XNANxHZBLwOXOWYMG8ETgPuE5F1zq9VNdMKOc2bN+fyyy9n/vz5xW7nnnsuTz31VPH5unXrALNd0Zo1awBYs2YNu3fvDhjn6NGjWbhwIYWFhRw5coQvvviCYcOGVUger9fL3r17GTt2LA8//DAZGRlkZWWRmJhIZmZmuTICvPfee+Tk5HDs2DGWLl3K0KGBhl0Ds2vXLoYPH84DDzxAy5Yt2bt3L6NHj+aVV14BYMeOHezZs4devXpVOM7MzEzatm1Lfn5+cTyBuOKKK3jkkUfIyMggJSWlwvHXF7IPGDNz+x4DS7jHNm1DmjQh+ti2EEhlsdRfqqXsVDVPVac5Zs3Bqvqp4/4XVU1Q1YE+vx9rRuTQcvvtt5eYlTl79mxWrVpFSkoKffv2Le5lTJo0ibS0NPr168fTTz9Nz549A8Z3ySWXkJKSwoABAzj77LN55JFHaNMm0BBpaQoLC5k2bVrxZJDf/e53NG3alAsvvJB33nmneIJKMBnBmEHHjh3LiBEjuPfee4vH60aPHs1ll13GkiVL6NChA4sXLwbgvvvu4/333wfMjM3k5GT69+/Pz372MwYMGMBvfvMbvF4vycnJXHHFFSxYsKBEj648/vznPzN8+HBGjhxJ794/mfDef/997rvvvuLzyZMn8/rrr3P55ZdXOO76REz6To7TmJjEFqX8DsV2J+nkzhBIZbHUXySctg0ZMmSI+s+q27p1K3369AmRRJHNrFmzSkxkiTTqc9nZ+NeziNZcev2h9Dd1q+ZeS5+D7xF970GiPO4QSGex1CwislpVa3WWWb1YLsxiaWg0yzvIybjAs2LdrXqTILns/+G7OpbKYqm/hP2uB5baI5xXgWnI5OXl00qPcqBxx4D+jTsmwwY48v0GunTvHTCMxWIpie3ZWSxhxuEDqURLIe5mnQL6tz7NTMjJPVT295wWi+UnrLKzWMKM4/vNZ6nxrboF9G/UrA3HaYz7mDVjWiwVxSo7iyXMOPmjUXbN2gdfIeVQdCeanqz3azVYLHWGVXYWS5hRkLYHgBbtgiu7E4ndaZf/A4TRbGqLJZyxyq6CvPvuu4gI27YF/5g3NTWV/v37B/WvCdatW8dHH31UrThmzpxJq1atal1WS9XwZO7lGE3xxAZfacfbvCdNOMnxI/vrUDKLpf5ilV0Fee211xg1ahSvvfZaQP9AS3lVlqL1JcuiJpTdjBkz+Pe//12tOCy1R3z2IdI8ZS84FNu+LwA/fr+hLkSyWOo9VtlVgKysLJYtW8b8+fN5/fXXi92XLl3K6NGjueiii+jb11Q+BQUFTJ06lT59+jB58uTiLWqWLFnCoEGDSE5OZubMmeTmmh2PunTpwt13383gwYN54403SqTrv4VOXl4e9913HwsXLmTgwIEsXLiQkydPMnPmTIYNG8agQYN47733ALOlzsSJExkzZgw9evTg/vvvL473zDPPpHnz5mXe8+eff87AgQMZOHAggwYNIjMzE1UNuh3RWWedxcSJE+nWrRv33HMPr7zyCsOGDSM5OZldu8zY0gcffMDw4cMZNGgQ48aN4/Dhw6XSnTJlCh9++GHx+YwZM4oXfW4oNMo/yqmYlmWGSeqSDEDWvtILZVssltLUr+/sPr4HDpVe6LhatEmG8x8qM8h7773H+PHj6dmzJ0lJSaxevZrTTz8dMOtebtq0ia5du5Kamsr27duZP38+I0eOZObMmfzjH//gxhtvZMaMGSxZsoSePXsyffp0nnnmGW655RYAkpKSitfR9MV/C53o6GgeeOABVq1axdNPPw3A73//e84++2yee+450tPTGTZsGOPGjQNg5cqVbNq0ifj4eIYOHcqECRMqvBXOo48+ypw5cxg5ciRZWVnExsby9ttvB92OaP369WzdupXmzZvTrVs3rrnmGlauXMnf//53nnrqKZ588klGjRrF8uXLERH+9a9/8cgjj/DYY4+VSLdo+54JEyaQl5fHkiVLeOaZZyokc6TQrDCN43GDywzTrkM3sjQOjmyvI6kslvqN7dlVgNdee40pU6YApufha8ocNmwYXbt2LT7v2LEjI0eOBGDatGksW7aM7du307Vr1+L1Ma+66iq++OKL4muuuOKKgOkG2kLHn//85z889NBDDBw4kDFjxpCTk8OePWaCwznnnENSUhJxcXFceumlLFu2rML3PHLkSG677TZmz55Neno6Ho+nzO2Ihg4dStu2bYmJiaF79+6ce67ZwtB3+559+/Zx3nnnkZyczN/+9reA2/ecf/75fPbZZ+Tm5vLxxx9z5plnEhcXV2G56ztZp07RXDLxJpa9PqrH42avuwMJJ+wamRZLRahfPbtyemC1QVpaGp9++ikbN25ERCgsLERE+Nvf/gaU3q6nKlvmBNvypyJb6Kgqb731VqmdBVasWFGt7XvuueceJkyYwEcffcTIkSOLF4IORkW277npppu47bbbuOiii1i6dGnAFVxiY2MZM2YMixcvZuHChcWNjIbCsUN7aQRENWlbbti0+G70Plnx/QctloaM7dmVw5tvvsmVV17JDz/8QGpqKnv37qVr1658+eWXAcPv2bOHb775BoBXX32VUaNG0atXL1JTU9m507TCX3rpJc4666xy0w60hY7/9j3nnXceTz31FEULeq9d+9Omnv/9739JS0sjOzubd999t7jHWRF27dpFcnIyd999N0OHDmXbtm3V2o4IICMjg/bt2wPwwgsvBA13xRVX8Pzzz/Pll18yfvz4CscfCWT8uBeA2Gbl7xaf2+w0kvQ4hSeP17ZYFku9xyq7cnjttde45JJLSrhNmjQp6KzMXr16MWfOHPr06cPx48e54YYbiI2N5fnnn+eyyy4jOTkZl8vF9ddfX27agbbQGTt2LFu2bCmeoHLvvfeSn59PSkoK/fr149577y2+ftiwYUyaNImUlBQmTZpUPF73y1/+kjPOOIPt27fToUOH4v355s6dW7z9z5NPPkn//v1JSUkhKiqK888/v1rbEYFZi/Oyyy7j9NNPp0WLn7auWbVqFddcc03x+bnnnsvnn3/OuHHjiI6OrnD8kcCpY/sASGwZeF1MXzytzI4OR3bbGZkWS3nYLX4ilAULFpSYyNIQqY9l58tX/5fROx7i5E1bSEhqX2bY9evXMuCdMWwb9ld6X/DbOpLQYql57BY/FksDQzIPUahCQrPye8ztu/YiR6PItwtCWyzlUr8mqFgqzIwZM5gxY0aoxbBUkqhTP5ImzWjpKn9T1qTEOHZIezxpO+pAMoulflMvenbhZGq11A/qa5mJzT1ChqfsD/6LEBGOxXel+andtSyVxVL/CXtlFxsby7Fjx+pt5WWpe1SVY8eOERsbG2pRKk2j/GNkRZW9eoovBc170Nr7I3mnMssPbLE0YMLejNmhQwf27dvHkSNHQi2KpR4RGxtLhw4dQi1GpWlSmMbR2H4VDh/Xrh/sg33frafbgFFVTjczK5M1Xy8h68gPeHER16wdLXucTs/OHYmLLt+karGEO9VWdiJyE/BboBD4UFXv8vHrBGwBZqnqo1WJPyoqqsQKJRZLpKJeL000E29cxcyYAK26DYCVcDR1Y5WU3d7UXRz44M+kHP2QsySvpOdKSNU2pMYn4+0wnLYpY+nZdzBud9gbhCyWUlRL2YnIWGAiMEBVc0XEf6n2x4GPq5OGxdJQOHEinSZSiCu+4squQ/d+5GgU3v1ryw/sx9cfvkjflfcwiBzWNjuPpCGT6NKjP25Rju7/nvRdq/DuX82g9BU0+e6/8N1fOP5WInvi+3Oy9enEtu5BfLN2uOObEhMTTUyUh/zcHHJPnSA/O5P87EwKc7IozD2JNy+bwrwcND8bzc/G5c1FVFERwPxUBHWOKXbnp2ORkscUebtABEFMEOeSohhczTsxaOLvKp0/lsiiuj27G4CHVDUXQFV/LPIQkYuB3cDJaqZhsTQIMo4dogkQ1Sipwte4o6LZFt2LFscrp+w+e/URztr+V3ZH9yB/6gKGdylpOm3Zqg8tB00wJ6qk7d3KD2uXkL/7a9pkrGPA7m/M210FcjSKPIlCEUedKT+pOefYGaP3dccvjPEHlwQez/eqGL8f4MgZl9OyVcUXQLBEHtVVdj2B0SLyIJAD3KGq34pII+Bu4BzgjrIiEJHrgOsAOnXqVE1xLJb6S+ZxMy4d3bhFOSFLcqT5IEYdeoWC7Ew8cYnlhl/69rOM3fEgmxsNp+dNbxMV26jsC0Ro3qkvzTv1BW4C4OTxHzm4dxfZaQfw5mSQX1BIQUE+rqhY3LGN8MQ2Jjo+kej4RGLjE4mNSyAuPp7YmHhi3S5qY+qQer14EbyqeFVRhY0fPcvQtfeQdfywVXYNnHKVnYh8AgQqJX9wrm8OjACGAotEpBswC3hCVbPKW3xYVZ8FngWzgkplhLdYIolT6cYwEt+04rMxAWK7jcJz+CV2bfyC7sMmlBn225VfMXT9H9kZ24/eN7+PO7pqaiehWStOa1b2BrN1jbhcuAE3P9U5sU1MXuaesBPcGjrlKjtVHRfMT0RuAN5W813AShHxAi2A4cBkEXkEaAp4RSRHVRvu2lUWSznknjgKQOPmrSt1XfdBY/F+LWRs+QzKUHaHDx+izUczyXXF0/66hVVWdPWJqETTS85z8tbScKmuGfNdYCzwmYj0BKKBo6o6uiiAiMwCsqyis1jKJj/rGACNm1VO2bVs1ZqNnj602L8kaJiCggL2PzeNZD3C4UveonlS+QtNRwKxjkm44OSxEEtiCTXVnUP8HNBNRDYBrwNXqf3622KpEnoqDYDoRhWfjVnE4fbj6JT/PScOfBfQf+XzdzI491u2DPg9HQaMrZac9Yn4psbU6rXKrsFTLWWnqnmqOk1V+6vqYFX9NECYKn9jZ7E0JFzZaWSRAO7KG1zaDr8MgD2fzS/lt2nJK/xs/3N82/QCBlxye7XlrE80btKcfHUjTkPC0nCxX4daLGGCOy+dLHf5sykD0bdvMis8Q2i/8zU096elww5s+YbuX97KVncv+l/3rxLfpzUEYqM9pNMIV45Vdg0dq+wsljAhNj+DbE+TKl0rIpwcfitNvBl8/9LvwOvl6JbPSVh0GekkkjB9IXHxCTUscf0g09UYT47dzb2hY5WdxRImJBSeIDeqaZWvH/PzCbyfeBnd971NxoPdaLHoIk5oHMcmvUGnzg13yb0sV2Oi8zNCLYYlxIT9QtAWS0OhkTeTE9Hdqny9yyX8/LdzePWl7rQ4tIzMZj0YOOku+ndoW4NS1j9yoprQtGB/qMWwhBir7CyWMCAnv5CmZJIe16xa8STGRfOr6+6pIakig9zoZiTk2t3cGzrWjGmxhAEnTmbTWE6hldjxwFIxCmOa0kRPgP0qqkFjlZ3FEgZkppsVPtwJFV8E2lIxNK45HgrR3BOhFsUSQqyys1jCgJPpZu1GTyV2PLBUkHiTp9kZdsmwhkxEKbucU1ms+r9nSd26KtSiWCyVIifDLAIdk1i5HQ8s5eNpZPI0M+1wiCWxhJKIUnaFhQUMWXUnh1a8HWpRLJZKkZdplrOKa2KVXU0TnVjUs7M7HzRkIkrZJSQ25Uea40nfFWpRLJZKUeis3ZgQZtvmRAJxTUye2m1+GjYRpewADkd1pPHJ1FCLYbFUiqJFoBtVci87S/nEOw2Igiw7ZteQiThld7JRF1rl7wu1GBZLpZDs4+TjRmIah1qUiKNx0yS8KhSetOtjNmQiTtnR4jSaksXxIwdDLYnFUmHcucfJlMQGt1BzXdA0IY50EuCU3eanIRNxyi6+bS8ADn6/McSSWCwVJzovnZOuqu14YCmbaI+LDEnElW0Xg27IRJyya9l9IACZezaEVhCLpRJUZ8cDS/mcdDXGk2eVXUMm4pRd6w49OKHxuA5vCrUoFkuFqe6OB5ayyYlqSmxeeqjFsISQiFN2LreLPdHdaZJhF3611B8a6QnyY5qGWoyIJS+6KQmFdrmwhkzEKTuArKa96ZC3m8KCglCLYrGUi9erNNEsCq2yqzUKY5uRqFbZNWQiUtm526UQL7ns+35zqEWxWMol6+QJYiUfja3e9j6WMohPIpY8CnKyQi2JJUREpLJr0WMIAD9uXxliSSyW8jnlLAJNvN3ep7aIchbYTjtyqFbiP3kqm7Sjh8k5lVkr8VuqT7U3bxWRm4DfAoXAh6p6l+OeAvwTaAx4gaGqmlPd9CpCx56nc0pj0L3LgWtrNO70Eyc4eXQ/eXk5FOTnE5vYjEZNkmjcuClud0S2HSy1TNGajXZ7n9ojtll7ANJ/3EOrjqdVOz5VZdU3S8hZ/jydTqyiM4dIcPxOEssBT0eOJfSgoGUfEjoNom2vobRu1Rqx31GGjGopOxEZC0wEBqhqroi0ctw9wMvAlaq6XkSSgPxqS1tBPNExbInpQ8u0NdWOKzs7h/Wfvo5u+4hOmWtpq0doKqU3gcxVD0elMVnuZmRHNyU/tgUa3wJJaIGrUUs8iS3xJLbCFZOAy+3B7fbg8kSZY5dRkqqKKnhV8TobTapzXOSu6kUV5+dFAW/RsYJ6FS8mPOo1fijqNXKKgAAuAcR07cVxd2FOfMMU/WtRPEW3rmrOMWmClrgHRSmZTT4nJTbR1FL+EtDfD58wQunwggS/thZRdfJEjSxFx86pc64/3bUqOXvW0BW7vU9tktCyMwCnju6pdlwHDuzj+xd/y6icpWQTw67EYXybNBGNTqQwPwfviUM0ztpFz4xlNM/4CHYCn8J+WrI/pgenmvUmtvVpJLboQHSz9sQ2TqJRo0QS4hPAHY1XvRQW5OMtLKCwsICCfOe/IJ/C4l8e3oICCgrzobAA0ULEWwBF//6UUrJSwksJ7l/WtRqdSO8Bw6uSjXVOdXt2NwAPqWougKr+6LifC2xQ1fWOe50vXXCi1VD67/0Xp04cI75x5SuRnNxclr/5OH2/+ycjOE46ifyQeDqHWvSGJh2QqDjcbheF2RkUnjoOJ9Pg1DGico8Rm3ecZtl7aZaWQbzk1sLdWSKRJq07hVqEiKVpW6Ps8tOqt5Tg5vUrafLOVIaRxobuv6bPpN/TP75p0PAnjuzl4PZVnPxhDe4fN9MuawftDn6D61Bk7Jr+rbc3DFgRajEqRHWVXU9gtIg8COQAd6jqt467ishioCXwuqo+EigCEbkOuA6gU6eae9kb9TwT17557Fr9KcljL6vUtds2rMTz7rWM8aayIyaZtJ89Qq9RlzLAXbnsyi0o5HB6Ollph8nJOExB5mEoyEML89HCAtRbgBbkF/fiREDE5fSsTLdKEMddnAaWmGMfd3OtFIcRp3vmciIVofhaLe5dOP8+xwBeNT0iVVAB9RobtG86RRS7AYjL+QfB5fz74XNtyZaklPInkD9GpoBhyou7DlCf1H56FkXnFOcPiNNrlmK/mMQkuvRMqTNZGxrNk9qQrdHIif1VjmPHtvW0fPtyPC7lx0vfJiX5rHKvadyyI41bdoRRlxS7eXNPsn/f96Qf3kthxn4KT2WQn3uKwrxTeLz5qMsN4gbn3+V2gzsKcXlwuT2IcyyOZQhXFOpyo+JGXR4QV4l3QPwtHCWMLIq/BUSCWmEoFdYdXX8WQii39haRT4A2Abz+4FzfHBgBDAUWiUg3x32U43YKWCIiq1V1iX8kqvos8CzAkCFDaqy502PwWLKXRJO99d9QCWW34p2nGbBuFtkSx7bRT9P77GlVXq8wxuOmdYskWrdIAvpWKQ6LxVJ93G4XR1xJeE5Wbc3cH388TPzrlxEtBeRN+4AO3QdVWRZXTALtuyfTvntyleOwVJ5ylZ2qjgvmJyI3AG+raR6sFBEv0ALYB3yhqkedcB8Bg4FSyq62SGiUyOr4oXQ58hnq9SKusiePeAu9fD7vDsYems/m2IG0n/kyvVt3rCNpLRZLbZPuaUVcduV3Ky8s9JL63NUM0qMcuOQtOldD0VlCR3WnD74LjAUQkZ5ANHAUWAwki0i8M1nlLGBLNdOqNLk9zqeVHuP7dZ+XGS4/P48Vs6cy9tB81iddQO87/ktTq+gslogiJ64NTfIrv4Hrl4ueYFjOV2zqeyudB46tBcksdUF1ld1zQDcR2QS8DlylhuPA48C3wDpgjap+WM20Kk2/sVPJ0lhOfDk3aJic7JNsfOISzsj4iG87X8OAG1/FHRVdh1JaLJa6wNu4PS30GHl5eRW+Zv++Hxi07TG2xw5g4GV/qEXpLLVNtSaoqGoeMC2I38uYzw9CRpNmzVnW/HyGpX3A0QPf06JdtxL+x4+nsfeZSxict45ve9/F0Cm2MFsskYqnRTc8+7zs+WE7nXpUbLxs72u3Mphcml4+p9yhEEt4E/FPr8uFd+NFOPDa71Cvt9j9wK7NpD01lr65G1g35GGr6CyWCCehXW8A0vdWbERl/YpPGXFyCRu6zKB1NzuZpL5T7RVUwp0O3frwRdcbODN1NuuemkLU4F+R9d0y+v/wEvHiYdc5zzHQZ1qwxWKJTFp07gdA7uEd5YZVVfjkfo7TmP6X/bG2RbPUARGv7ABGXnk/S+dlMfrg87iXLAZgdcIo2l7+OL269AqxdBaLpS5o0aot6doISdtVbtjVn73NkPx1rOl7N4Mb2QW6I4EGoezcbhdjrn+CIwdvZd9362jXrR+nd+gearEsFksdIiIc8LQnIXN3meEKCwtpvOxBDkorUibeWkfSWWqbBqHsimjZthMt29olmSyWhkpmo670yPjGrAwSZLGIVR89x3DvLtYOeYi2MXF1LKGltoj4CSoWi8VSRH7rATQng/RDgXt3ebm5tFvzGLvdXRgwvmZ3TLGEFqvsLBZLg6FxN7NC/4EtXwX0X/vuk3TUg2SO/D0uT4MyfEU8VtlZLJYGQ+d+w8lVD9nff1PK71TmcU7bOofNUckkj6nc4vGW8McqO4vF0mBoktiIbdH9aHG4dM9u05v/SxIZyLn32w/IIxD7RC0WS4Mird0YOhekcuLAzmK3A99vITn1eVYnnEnfoT8PoXSW2sIqO4vF0qBod8blFKqQuvhpALQwn4xF11OIm/ZTngytcJZawyo7i8XSoOjVuz/LY0fS/YfXyPxuGVv+eTV9ctazpt89tOlov7+NVKyys1gsDY6mEx8mR6NJfGUC/X78gP+0mM7oy24OtViWWsTOrbVYLA2Ofn37s37Kf/nqqzdo1CmFceMuQoJ8ZG6JDKyys1gsDZIBfXozoM+9oRbDUkdYM6bFYrFYIh6r7CwWi8US8YiqhlqGYkTkCPBDDUTVAjhaA/HUBfVJVqhf8lpZa4/6JG99khXql7w1JWtnVW1ZA/EEJayUXU0hIqtUdUio5agI9UlWqF/yWllrj/okb32SFeqXvPVJVmvGtFgsFkvEY5WdxWKxWCKeSFV2z4ZagEpQn2SF+iWvlbX2qE/y1idZoX7JW29kjcgxO4vFYrFYfInUnp3FYrFYLMVYZWexWCyWiCeilJ2IjBeR7SKyU0TuCbU8/ohIRxH5TES2iMhmEbnZcZ8lIvtFZJ3zuyDUsgKISKqIbHRkWuW4NReR/4rId85/szCQs5dP3q0TkRMicks45auIPCciP4rIJh+3gHkphtlOOd4gIoPDQNa/icg2R553RKSp495FRLJ98nhuXcpahrxBn72I/D8nb7eLyHlhIOtCHzlTRWSd4x4OeRuszgrLslsmqhoRP8AN7AK6AdHAeqBvqOXyk7EtMNg5TgR2AH2BWcAdoZYvgLypQAs/t0eAe5zje4CHQy1ngHJwCOgcTvkKnAkMBjaVl5fABcDHgAAjgBVhIOu5gMc5fthH1i6+4cIobwM+e+d9Ww/EAF2dOsMdSln9/B8D7gujvA1WZ4Vl2S3rF0k9u2HATlX9XlXzgNeBiSGWqQSqelBV1zjHmcBWoH1opao0E4EXnOMXgItDJ0pAfg7sUtWaWImnxlDVL4A0P+dgeTkReFENy4GmItK2TgQlsKyq+h9VLXBOlwMd6kqe8giSt8GYCLyuqrmquhvYiak76oSyZBWz7cLlwGt1JU95lFFnhWXZLYtIUnbtgb0+5/sIY0UiIl2AQcAKx+lGp9v/XDiYBh0U+I+IrBaR6xy31qp60Dk+BLQOjWhBmULJyiIc87WIYHkZ7mV5Jqb1XkRXEVkrIp+LyOhQCRWAQM8+nPN2NHBYVb/zcQubvPWrs+pd2Y0kZVdvEJFGwFvALap6AngG6A4MBA5iTBnhwChVHQycD/xWRM709VRjtwibb1dEJBq4CHjDcQrXfC1FuOVlMETkD0AB8IrjdBDopKqDgNuAV0Wkcajk86HePHsffknJhlrY5G2AOquY+lJ2I0nZ7Qc6+px3cNzCChGJwhSaV1T1bQBVPayqharqBeZRh2aVslDV/c7/j8A7GLkOF5klnP8fQydhKc4H1qjqYQjffPUhWF6GZVkWkRnAL4CpTgWHYw485hyvxoyB9QyZkA5lPPtwzVsPcCmwsMgtXPI2UJ1FPSu7EFnK7lugh4h0dVr4U4D3QyxTCRyb/Hxgq6o+7uPua9O+BNjkf21dIyIJIpJYdIyZoLAJk6dXOcGuAt4LjYQBKdEyDsd89SNYXr4PTHdmto0AMnxMRiFBRMYDdwEXqeopH/eWIuJ2jrsBPYDvQyPlT5Tx7N8HpohIjIh0xci7sq7lC8A4YJuq7ityCIe8DVZnUY/KbjGhniFTkz/MTKAdmBbQH0ItTwD5RmG6+xuAdc7vAuAlYKPj/j7QNgxk7YaZtbYe2FyUn0ASsAT4DvgEaB5qWR25EoBjQBMft7DJV4wSPgjkY8Yx/idYXmJmss1xyvFGYEgYyLoTMxZTVG7nOmEnOeVjHbAGuDBM8jboswf+4OTtduD8UMvquC8ArvcLGw55G6zOCsuyW9bPLhdmsVgslognksyYFovFYrEExCo7i8VisUQ8VtlZLBaLJeKxys5isVgsEY9VdhaLxWKJeKyys1gsFkvEY5WdxWKxWCIeq+wsFovFEvFYZWexWCyWiMcqO4vFYrFEPFbZWSwWiyXiscrOYrFYLBFP2Ck7EekiIurs72Spp4jITSJyQETWhyDtWSLych2kM0NElpXhv1RErqltOSwlKSvf6+qZiMgCEflLGf4qIqfVthyRgIi0E5FMEdkuImdXNZ6wU3aWyiMic0Uky/nliUi+z/nHIRJrFvAbVR3gI+csEZkVInnCCqdRl1rJ8J+JyCkR2SYi48oIe7mIfO2EXRrAf6CIrHb8V4vIQB+/GKc8HRaRNBH5QETaB4ijh4jk+DYqnD3M/iAie0TkhIi87ruztqMA8nzKZlbRfm0VuP8FzuaxEY/TiFpQifA/d8rEKaeMdC4jbIXKkYgsCdTpEJGbRWS3iJwUka0i0tNxnyAiy0QkXUQOici/ivbDdPzbi8h7TpnaJyLX+/iN9isTWU7akwBU9YCqJgIfAL+raL74U+PKzvbI6h5VvV5VG6lqI+CvwMKic1U9vyhcHT+b5oTfZqmVJozK82vAWsw+Yn8A3hSRlkHCpgFPAg/5e4jZ2Pg94GWgGfAC8J7jDnAzcAaQArQDjgNPBUhjDmbDZF+mA1cCI51r4wJc+4hP2WykqoXBbjjcqaiirmUZWgBvA/di3rlV+Ox2HoByy5GITAWiAqR1DWavwAlAI8yu9Ucd7ybAXzDPvQ/QHvibz+UvA7uB1s71fxWRsQCq+qVvmXDizQL+7SfCJkfuKlEjyk5EUkXkbhHZAJwUEY+IjHBal+kisl5ExviEXyoi/ysiK50W4Hsi0jxI3Fc7LYhMEfleRH7t5z9RRNY58ewSs6MyItJEROaLyEER2S8ifymvcIpIdxH5VESOichREXlFRJr6+KWJyGDnvJ2IHCm6LxG5SEQ2O/e7VET6+OXPHSKyQUQyRGShiMRWPqcrT5BnU8KEIn4mFxH5hZOn6c4zTKlkmkX57C0n3F3O8zkgItf4yuXINEdEPnSe/QoR6e5z7d9FZK/z3FeLyGi/6GOdfM4UkTUi4tvDvMcpK5kiskVELvHxmyEiX4nIEyJyDNNDLe9+HxWR42JavOf7eXd24ssUkf84lVOlENN6Hgz8SVWzVfUtzMaYkwKFV9VPVHURcCCA9xjAAzypqrmqOhuz4WaReagrsFhVD6tqDqbi7OcnzxQgHbN5py8XAvNVda+qZgEPA1eISHxl77ksRMQtIo857+huEblRggx9iEhb572708e5e7C6R0TeENMzyRCRL0Skn4/fAhF5RkQ+EpGTwNhyRG0WrPw6jBOR75z3bI6ISBWy41Jgs6q+4TyvWcAAEentH7Ai5UhEmgB/wuxK73uty3G/VVW3qGGXqqYBqOqrqvpvVT2lqseBeZhGDyLSCFPuHlTVfFVdD7wJzAxyT1cBb6rqST93L6bsVo0a2s02FbODbUdMa649ZtfoCzAK9RznvKUTfimwH+iP2WH6LeBlx68LZmdcj3M+AeiOeSHPAk4Bgx2/YUCGE7/LSbe34/cO8E8n/lbASuDX5dzHaU5cMUBL4AtMpVDkfy2wBYgHFgOPOu49gZPOtVGYgrITiPbJn5WYVk9zYCt+uxL77QycXsZvVDn3MKsoLwM9G8dNgdN8wiwA/uIcDwJ+BIYDbkzBSwViKlEexgM5QEI5YQ5hKtJ4TMuvWC5HpmPOM/YArwCv+1w/DdPK8wC3O3HF+uRBPjDZeR53YFqVUY7/Zc6zcAFXOM+ureM3AygAbnLijivjHmY46Vzr5NUNGAVTtCnyUsyOzT0x78VS4KEgcf0D+EcQv0uArX5uTwNPlfMcrgGW+rndCnzs5/Z/wO3O8RDgKyd/4oFXKfkONAZ2AB0ClLU3gbt8zkc6z3SAzzNNc36rgUlVrG+ux7yHHTC9008oWWcsde69qyPrdT7XLiVI3eP4zwQSMXXAk8A6v/ckw7kvV1F5CyLjAsouv+rke1OgE3AEGB8krg3Ar4L4/R14xs9tU6C8rUg5wvTYb6V0PdzJOb8Zs2P9buB+wBVErieL7tfJTwVa+fjPA9YGuC4ByATGBPAbi7E0dKpSuanKRQGESAVm+pzfDbzkF2YxcJVPgXvIx68vkIepMEpkcoC03gVudo7/CTwRIExrIBefigr4JfBZJe/rYv8HAryPaQ1twFEAGBPCIp8wLswLNcYnf6b5+D8CzK2JvA8g8yxKK7uZfmHKUnbPAH/2C78dOKuC6a9y4v9dOeGeA/7X5/w0Siu7f/n4XwBsKyO+4/xUqc4Clvs9j4PA6CDXrgMmOsczgD0VvNcZwE6f83jnHtr4lPM/+vj/Bvh3FZ7plb7347g9CCwo57pAyu5efCpdx+0VYJZz3AR43bmPAozJq7lP2L8Ddwcpa9dglEsXJ573nXjOcPwH81MD5QJMpTayCvnxKT4NV2AcpZXd407Z/6XftUsJUvcESKepE28TnzL5YgVlLLP8OvGO8jlfBNxThbyYj18DCtNYmVHZcoRp6Kxznk8Xvzz9mXP+oZMvXZxnfW2AdM7BvI89fdyWYUzasU45SAO2B5FxN06DMYD/G44cT1Y2r2pyzG6vz3Fn4DKne54uIumYHkvbIOF/wLTAS5l4ROR8EVnumBDTMYWmKFxHTMvZn85OfAd90v8npocXFBFpLWZQfb+InMD0NvxlmodpFT6lqrmOWzvnHgBQVa9zf74D+4d8jk9hbN51xd7ygxTTGbjd79l1xNxjRRgKTAFmiUgpu78P7fzkCiRj0DxzzMJbHXNTOqZy9X1WxfE5z2Nf0T2IyHQfM2065nkGvLYCFMuoqqecw0aB/P3voRJkYXpUvjTGKIuajmsOpleThGllvw18DGZiC0axPBEk7ucwY0JLgc3AZ477PgBVXaOqx1S1QFU/wijZS6twDxUpO1MxDc43A/gFrHsc8+hDjon7BEZZQg2UDQI/+7ouG0HDOmbKf2A6EgUBrs12/h9R1XRVTcXUqRf4BhKRERhrwGRV3eHjNRXT096LaVC/jFMu/LgK06BQfw8xQ0gXYKx3twS4tkxqUtn5CrcX07Nr6vNLUFXfAfOOPsedMOagoz5uiEgMxszwKNBaVZsCH2FMmkXp+NvBi9xzgRY+6TdW1X4BwvryV+c+klW1McZUVmxHd2zPT2JaU7N8bP0HMEqiKJw497e/nPRKIYFnJvn+/MemKoJ/wTmF6YUU0cbneC/Gtu777OJV9bUKJWQK6bsY81LbMoIexJihiugYLKA/Th7cBVwONHPKRQY+z8o3PudF7gAcEDNTbR5wI5DkXLvJ79pSL1qI2Qx0E5/ZbcAAx70qcaX4jQ+l+MQ1ENPST3Mac08Bw5yxxjGYFv0eETmEMQ9PEpE1YBoVqvonVe2iqh2cOPcT/D1QSuZ7RalI2ZmFqU9eldJj9cHqnl8BEzEKvQnmXiH8y8aAohMRScDUiYHKRlnlqDGmZ7fQebZFk4/2Oe/bdkwP2Pf+S+SFiAzC9OZnqmqJ8VxV/UFVf6GqLVV1OKYBsdLv+o6YMvZikHvtA2xR1e1B/Muktj49eBm4UETOc1pLsSIyRkR8C+g0EenrDF4/gBmQ9J+ZFY1pZR4BCpzB/3N9/OcDV4uZeusSM721t6oeBP4DPCYijR2/7iJyVjlyJ2JaPxliplvf6ef/d2CVql6D6c7PddwXARMcOaIwY0i5wNflZZQ/6jczKcDvy8rGGYB1wK+cZzMeMxZaxDzgehEZLoYEMdOKE6F4kH5BOfdQ1OONLiPYIsyz6+OUgXsrIX8ixsR2BPCIyH2UbrGeLiKXipm0cAvmeSzH9FbUuRYRuRrTswtbnBbyOuBPzrt0CUZBvRUofNE7hzFHuZxrinrZS4FC4HdiPjO40XH/1Pn/FpguZoJXFMb0ekBVjwLPYirSgc5vLuY9OM9Jt7nznomI9MWYEh9wetaIyGQRaeS8j+diGpPv+8it4jORrQwWATc773tTzLCJP/mYsdkE4EWnwVNEsLonEVNOjmEag3+tgCyh5h2gv4hMcp75fcAGVd3mH7CccpSB6TEPdH5FPbbTgRWO1WIhcJeIJDp1+XWYcUdEpD9m9uRNqvqBf9rOe54oItEiMg1Tjz/uF+xK4GtVDWStA9MDzw3iVy61ouxUdS+mhfR7TKWyF6M4fNN7CWPXPoSx45b6fkJVMx33RRgb8K/weTlUdSVwNcaskgF8zk89rOmYynaLc+2blN3TADPgOtiJ60OMCQcwsz4xkypucJxuAwaLyFSnpTEN0wo+ipmVdqGq5pWTXqi4GSNjOsa88G6Rh6quwky4eBqTbzsxY1NFdMSMCZSHUkb5UtWPgdkYU9dOjCKCihXmxZgXawfGDJVDafPSe5jJJ8cxL9GlamaCbQEeA74BDgPJFbyfWkXMt21zywgyBdPyPo75pGCyqhYp7Kki4tuSvxJjdnoGGO0czwNwyuTFmPcjHTMh42KfsnoHJj+/w7y7F2AmNqBmpt2hoh+mYZhTJAemtf4RZsLPx8Bzqvqsj1w3Y3p56Zhp6deq6lLnHjpiTG8by88t5mEasxswY4ofYRo/JRrLzj1dihnDf85H4QWre17ElKf9mHpjOWGAmFneUwP5OXk/CTP2dhwzsWyKz7X+5SpgOVKD77MteqaHfcrGjZhnfgDz/ryKMV2DaeC3BOb7WKF8y+R5wPdOutdjJuMcoSTTMZ/CBMNNOTO8y6Jo1lidIuZD15dV9V91nrilyoj5Fms9kKKq+eWEPYCZmVehlUzEfKqxCTPpJ9CYgSWCcVr7/VT1/1Xh2vMxE746lxvYUi9xGiqzMTM6L69KHHYFFUuFUdU8Ve1TnqJzuAdjLlkdLICIXOKY0pphvsn6wCq6homqvlxRRScicSJygZhvRttjvv96p3YltIQKEWmH6WmOwFhlqkSDU3ZScmkt319ZJiRLJVHVF1W1h6qeXkawX2O+6duFMUHdUEbYkGDLS1gimCGH4xgz5lbMWFXdCmHMi4HKRkCTo6VqqFkuLElVh6jqiqrGExIzpsVisVgsdUmD69lZLBaLpeERLovcAtCiRQvt0qVLqMWwWCwWSx2yevXqo6oabGHzGiGslF2XLl1YtWpVqMWwWCwWSx0iIj+UH6p6WDOmxWKxWCIeq+wsljDk611HOZSRE2oxLJaIwSo7iyXMUFVen/8Ef37Kft1gsdQUYTVmF4j8/Hz27dtHTo5t5VoqTmxsLB06dCAqqqyNF8KTzJx8Zkc/bRbA4pYQS2OxRAZhr+z27dtHYmIiXbp0Qaq0ka+loaGqHDt2jH379tG1a9dQi1NpCvIrskCNxWKpDGFvxszJySEpKckqOkuFERGSkpLqrTWgML9+ym2xhDNhr+wAq+gslaY+lxlvfpV3MbFYLEGoF8rOYmlI2J6dxVLzWGVXAUSE22+/vfj80UcfZdasWaETqByWLl3K119Xet/YYtatW8cZZ5xBv379SElJYeHChTUonaU8NN9nG8RCuwmExVITWGVXAWJiYnj77bc5evRojcarqni9Vd6LMCjVVXbx8fG8+OKLbN68mX//+9/ccsstpKen15yAljLxFvzUsyvMzQyhJBZL5GCVXQXweDxcd911PPHEE6X8jhw5wqRJkxg6dChDhw7lq6/MptezZs3i0UcfLQ7Xv39/UlNTSU1NpVevXkyfPp3+/fuzd+9e7rzzTvr3709ycnJxL2rp0qWMGTOGyZMn07t3b6ZOnUqgHSpmz55N3759SUlJYcqUKaSmpjJ37lyeeOIJBg4cyJdfflmmjFdeeSVnnHEGPXr0YN68eQD07NmTHj16ANCuXTtatWrFkSP+mwrDG2+8Qf/+/RkwYABnnnkmYCYUXX311SQnJzNo0CA+++wzABYsWMDFF1/MOeecQ5cuXXj66ad5/PHHGTRoECNGjCAtLQ2AefPmMXToUAYMGMCkSZM4depUqXRHjBjB5s0/bYI8ZsyYiFpmTgt/mo2Ze8oqO4ulJgj7Tw98uf+DzWw5cKJG4+zbrjF/urBfueF++9vfkpKSwl133VXC/eabb+bWW29l1KhR7Nmzh/POO4+tW7eWGdd3333HCy+8wIgRI3jrrbdYt24d69ev5+jRowwdOrRYcaxdu5bNmzfTrl07Ro4cyVdffcWoUaNKxPXQQw+xe/duYmJiSE9Pp2nTplx//fU0atSIO+64A4Bf/epXQWXcsGEDy5cv5+TJkwwaNIgJEybQrl274vhXrlxJXl4e3bt3L3UfDzzwAIsXL6Z9+/bFPb85c+YgImzcuJFt27Zx7rnnsmPHDgA2bdrE2rVrycnJ4bTTTuPhhx9m7dq13Hrrrbz44ovccsstXHrppVx77bUA/PGPf2T+/PncdNNNJdK94oorWLRoEffffz8HDx7k4MGDDBkypMw8r08UFhYWH+ecyiI+hLJYLJGC7dlVkMaNGzN9+nRmz55dwv2TTz7hxhtvZODAgVx00UWcOHGCrKysMuPq3LkzI0aMAGDZsmX88pe/xO1207p1a8466yy+/fZbAIYNG0aHDh1wuVwMHDiQ1NTUUnGlpKQwdepUXn75ZTyewG2XsmScOHEicXFxtGjRgrFjx7Jy5cri6w4ePMiVV17J888/j8tVuqiMHDmSGTNmMG/evOIKetmyZUybNg2A3r1707lz52JlN3bsWBITE2nZsiVNmjThwgsvBCA5Obn43jZt2sTo0aNJTk7mlVdeKdGDK+Lyyy/nzTffBGDRokVMnjy5zPyub3i9P43T5dmencVSI9Srnl1FemC1yS233MLgwYO5+uqri928Xi/Lly8nNja2RFiPx1NiPM73m6+EhIQKpRcTE1N87Ha7KSgoPVnhww8/5IsvvuCDDz7gwQcfZOPGjaXCBJMRSk/RLzo/ceIEEyZM4MEHHyxWzP7MnTuXFStW8OGHH3L66aezevXqCt+Py+UqPne5XMX3NmPGDN59910GDBjAggULWLp0aal42rdvT1JSEhs2bGDhwoXMnRtZy2p5fXp2eTllN5wsFkvFsD27StC8eXMuv/xy5s+fX+x27rnn8tRTTxWfr1u3DjDbFa1ZswaANWvWsHv37oBxjh49moULF1JYWMiRI0f44osvGDZsWIXk8Xq97N27l7Fjx/Lwww+TkZFBVlYWiYmJZGb+1CMIJiPAe++9R05ODseOHWPp0qUMHTqUvLw8LrnkEqZPn15mr2nXrl0MHz6cBx54gJYtW7J3715Gjx7NK6+8AsCOHTvYs2cPvXr1qtD9AGRmZtK2bVvy8/OL4wnEFVdcwSOPPEJGRgYpKSkVjr8+UOgzA7Mg2/bsLJaawCq7SnL77beXmJU5e/ZsVq1aRUpKCn379i3uZUyaNIm0tDT69evH008/Tc+ePQPGd8kll5CSksKAAQM4++yzeeSRR2jTpk2FZCksLGTatGnFk0F+97vf0bRpUy688ELeeeed4gkqwWQEYwYdO3YsI0aM4N5776Vdu3YsWrSIL774ggULFjBw4EAGDhxYrCDvu+8+3n//fQDuvPNOkpOT6d+/Pz/72c8YMGAAv/nNb/B6vSQnJ3PFFVewYMGCEj268vjzn//M8OHDGTlyJL179y52f//997nvvvuKzydPnszrr7/O5ZdfXuG46w0+PbsC27OzWGoECTTDL1QMGTJE/WfVbd26lT59+oRIoshm1qxZJSayRBr1texs/uZj+i2eAsCW4Y/Q9/xfh1gii6V2EZHVqlqrs8xsz85iCTPUp2fnzT0ZQkkslsihXk1QsdQs4bwKTEPG6/VRdnlW2VksNYHt2VksYYbvpwdqlZ3FUiNYZWexhBm+ZkzySq8gY7FYKo9VdhZLmKE+ZkzJtz07i6UmsMrOYgkzvCWUne3ZWSw1gVV2FeTdd99FRNi2bVvQMKmpqfTv379W5Vi3bh0fffRRla8v+gi9b9++9OvXj7///e81KJ2lJlCfj8rdBVbZWSw1gVV2FeS1115j1KhRvPbaawH9Ay3lVVl8FwAORnWVncfj4bHHHmPLli0sX76cOXPmsGXLlirHZ6l5isyY2RqNuyA7xNJYLJGBVXYVICsri2XLljF//nxef/31YvelS5cyevRoLrroIvr27QsYpTd16lT69OnD5MmTi7eoWbJkCYMGDSI5OZmZM2eSm5sLmGXF7r77bgYPHswbb7xRIl3/LXTy8vK47777WLhwIQMHDmThwoWcPHmSmTNnMmzYMAYNGsR7770HmC11Jk6cyJgxY+jRowf3338/AG3btmXw4MEAJCYm0qdPH/bv31/qnj///PPi1VMGDRpEZmYmqhp0O6KzzjqLiRMn0q1bN+655x5eeeUVhg0bRnJyMrt27QLggw8+YPjw4QwaNIhx48Zx+PDhUulOmTKFDz/8sPh8xowZxYs+NxSKzJhZxOEutMrOYqkJ6td3dh/fA4dKL3RcLdokw/kPlRnkvffeY/z48fTs2ZOkpCRWr17N6aefDph1Lzdt2kTXrl1JTU1l+/btzJ8/n5EjRzJz5kz+8Y9/cOONNzJjxgyWLFlCz549mT59Os888wy33HILAElJScXraPriv4VOdHQ0DzzwAKtWreLpp58G4Pe//z1nn302zz33HOnp6QwbNoxx48YBZnueTZs2ER8fz9ChQ5kwYUKJrXBSU1NZu3Ytw4cPL5X2o48+ypw5cxg5ciRZWVnExsby9ttvB92OaP369WzdupXmzZvTrVs3rrnmGlauXMnf//53nnrqKZ588klGjRrF8uXLERH+9a9/8cgjj/DYY4+VSLdo+54JEyaQl5fHkiVLeOaZZyr4MCMER9mdlHiirLKzWGqEWu/Zich4EdkuIjtF5J7aTq82eO2115gyxSzfNGXKlBKmzGHDhtG1a9fi844dOzJy5EgApk2bxrJly9i+fTtdu3YtXh/zqquu4osvvii+5oorrgiYbqAtdPz5z3/+w0MPPcTAgQMZM2YMOTk57NmzB4BzzjmHpKQk4uLiuPTSS1m2bFnxdVlZWUyaNIknn3ySxo0bB0z7tttuY/bs2aSnp+PxeMrcjmjo0KG0bduWmJgYunfvzrnnnguU3L5n3759nHfeeSQnJ/O3v/0t4PY9559/Pp999hm5ubl8/PHHnHnmmcTFxQW890il2IwpCUR7rbKzWGqCWu3ZiYgbmAOcA+wDvhWR91W1aoNE5fTAaoO0tDQ+/fRTNm7ciIhQWFiIiPC3v/0NKL1dT7Atc8oi2JY/FdlCR1V56623Su0ssGLFiqCy5OfnM2nSJKZOncqll14aMO177rmHCRMm8NFHHzFy5EgWL15c5j1UZPuem266idtuu42LLrqIpUuXBlzBJTY2ljFjxrB48WIWLlxY3MhoSBQpuxx3PNHe4yGWxmKJDGq7ZzcM2Kmq36tqHvA6MLGW06xR3nzzTa688kp++OEHUlNT2bt3L127duXLL78MGH7Pnj188803ALz66quMGjWKXr16kZqays6dOwF46aWXOOuss8pNO9AWOv7b95x33nk89dRTFC3ovXbt2mK///73v6SlpZGdnc27777LyJEjUVX+53/+hz59+nDbbbeVmXZycjJ33303Q4cOZdu2bdXajgggIyOD9u3bA/DCCy8EDXfFFVfw/PPP8+WXXzJ+/PgKxx8pFM3GzHcnEK055YS2WCwVobaVXXtgr8/5PsetGBG5TkRWiciqI0eO1LI4lee1117jkksuKeE2adKkoLMye/XqxZw5c+jTpw/Hjx/nhhtuIDY2lueff57LLruM5ORkXC4X119/fblpB9pCZ+zYsWzZsqV4gsq9995Lfn4+KSkp9OvXj3vvvbf4+mHDhjFp0iRSUlKYNGkSQ4YM4auvvuKll17i008/LZ6AUjS7c+7cucXb/zz55JP079+flJQUoqKiOP/886u1HRGYtTgvu+wyTj/9dFq0aFHsvmrVKq655pri83PPPZfPP/+ccePGER0dXeH4IwVVs+lvgSeBWM0NsTQWS2RQq1v8iMhkYLyqXuOcXwkMV9UbA4W3W/zUHAsWLCgxkaUhUl/LzrJXH2LUjv/li6YXc2b6u3DvUXBHhVosi6XWiIQtfvYDHX3OOzhuFoslCKpmzK4wOtE42MWgLZZqU9vK7lugh4h0FZFoYArwfi2nacF8n9aQe3X1mqLlwmKMsrM7H1gs1adWlZ2qFgA3AouBrcAiVS0937z8eGpaNEuEU6/LjKPsJNZ8EpJ7KrOs0BaLpQLU+kflqvoRUOX1rWJjYzl27BhJSUkVmsZvsagqx44dIzY2NtSiVAn1mgkqLqdnl3Mqk/p5JxZL+BD2K6h06NCBffv2EY4zNS3hS2xsLB06dAi1GFVCnDE7V1wTwPbsLJaaIOyVXVRUVIkVSiyWSKdogorbMWPmZWeFUhyLJSKwC0FbLOGGM2bniTc9u/wcq+wslupilZ3FEm44yi4q3vTsCqyys1iqjVV2Fku4oYUUqhATZyaoFFplZ7FUG6vsLJYww+UtoEA8RMcbZefNtcrOYqkuVtlZLGGGaAEFuIlPaASAN/dUiCWyWOo/VtlZLGGGeAsowEN8TAzZGo3m2xVULJbqYpWdxRJmuLz5FOImLtrNKWKQPNuzs1iqi1V2FkuYYcyYHqI9LrKJgXyr7CyW6mKVncUSZri0gAJxA5AjsbgLrLKzWKqLVXYWS5jh8hZQ6CxulGuVncVSI1hlZ7GEGS4toNDp2eW5YnEXZodYIoul/mOVncUSZoi3kEKMsst3xRFllZ3FUm2ssrNYwgzTszNmzHx3vFV2FksNYJWdxRJmuDQfr6PsCtxxRGtOiCWyWOo/VtlZLGGGeAuKlZ3XE0eM1yo7i6W6WGVnsYQZLi3A6ypSdvHEYZWdxVJdrLKzWMIMt/7UsyM6Hg+FUJAXWqEslnqOVXYWS5jh0kLU6dlpVIJxtOtjWizVwio7iyXMcGkBKlHmJNooO7uBq8VSPayys1jCDLcWFPfs3DFG2eWcygylSBZLvccqO4slzPBoAV6X6dm5HGWXe8r27CyW6mCVncUSZsSRTYEnHgBPsbI7EUqRLJZ6j1V2FkuYEac5xRNT3HFmt/K8bNuzs1iqg1V2FksYkZ+fT5zkFU9MiYo1ys5OULFYqodVdhZLGHEqy5grJcYouej4xgDk256dxVItrLKzWMKI7JMZALgcZRfjmDG9ufY7O4ulOlhlZ7GEETlOz84dmwhAnNOzs8rOYqkeVtlZLGFEzinTs/PEGWUXm+D07PKssrNYqkO1lJ2IzBKR/SKyzvld4OP3/0Rkp4hsF5Hzqi+qxRL5ZB8/BEBc09YAxMdEka3RYJWdxVItPDUQxxOq+qivg4j0BaYA/YB2wCci0lNVC2sgPYslYslLN8ousUV7AOKi3BwnBvJPhVIsi6XeU1tmzInA66qaq6q7gZ3AsFpKy2KJGLwnjLJr2tIoO5dLyCYWsQtBWyzVoiaU3Y0iskFEnhORZo5be2CvT5h9jlspROQ6EVklIquOHDlSA+JYLPWYzAOcIIHY+EbFTrkSi6sgO4RCWSz1n3KVnYh8IiKbAvwmAs8A3YGBwEHgscoKoKrPquoQVR3SsmXLyl5usUQUCVk/cNjToYRbrisWt1V2Fku1KHfMTlXHVSQiEZkH/J9zuh/o6OPdwXGzWCxl0DpvD/ubDC7hlidxJBTaMTuLpTpUdzZmW5/TS4BNzvH7wBQRiRGRrkAPYGV10rJYIp3DB/bQmmPkt0ou4Z7vjiWq0PbsLJbqUN3ZmI+IyEBAgVTg1wCqullEFgFbgALgt3YmpsVSNqnrP6c10LL3z0q4F7jjiM7LqbF0MtLT+e7bf1NwbDfuRi3pNfIiGjdrVWPxWyzhSLWUnapeWYbfg8CD1YnfYmlIZKeuoEBddO7vp+w88UTnVL9nl7r7O/a99wCDji9miOQWu5/69ves63sTAy77A+Ky60xYIpOa+M7OYrHUAElHV7MnpgfdnD3sivB64onVqvfsMrOyWP/qvQzZ/xLt8bKpxXjiT59Cy+4D+XHvTrI+eZghWx9l/RPf0uvXLxDbqFnwyFQ59v0aDq79Nzn7NhKXtYcobw4ugcyolngbtyeqVQ+aduxL6679iGnRFVzuUtHk557ixLHDZKUfJevEcbIzjyMFp0Dc4HLj9kThiY7FEx2HJzqW6Ng4oqLjiIqNIzo6DnV7EG8haCGoF7xe57jQcfeC4x/VKInYpI4BbsbSkLDKzmIJA44fP06vgu1sbDetlJ/XE0csuQGuKp8ta74k5oPfMEr3sLbpODpf9r8M6tCz2L956054B43hy5fv54zvZ3Po8ZFw8T/okDKmOExG2hFSV36A7lhMx+MrSNLjJAFHaMqxmA7kxrRCvYU0zjtMy8MbaPzjW8Wj93l4OOxqQ74rGvV6idVsmmoGCeSQBCRV6a4qR45GkfbbDTRv1a4OUrOEK1bZWSxhwPdrlnC6FJLYe2xpz6gEPBRCQR54oisUn6ry6cLZjNr6ZzJdjfhu3HMMGjUpYFiX28Xoq+5n9edD6fjpjbR6eyJ73uvEiagWJOYdoUPhPgaIclwT2ZYwhJxOZ9Fm0AX07NGTli4pEVd+QSG79u7h4PebOHlwO57ju2iSvReXFuByuUj3xLMnpjkal4QkJBHVqDmxjZoR16gp7tgE1OtFC/MpyM+jIC+XgvwcCvOyKcjPxZuXjTc/Fy3IxaUFKG5UXHjF/Ku4it2Kft4Thxn3w+NsXfkezX9xQ6WfiyVysMrOYgkDcr5bSr666Tzo56U9o+MB0LyTSAWUnbeggJXP3sDPf1zE9vhBtLv2dXo0b1Pudaef9QuOJp/B0g+eovGBr4gvyCQttiMHk8bTuP94Tht0FmdER5UZR5THTfeuXenetStwYblp1jYFBQUc+fNzuL9bDFhl15Cxys5iCQNaHF3Bruhe9Ha29CmBo+xys08QG1/GeBpQkJfLxqenMOLEpyxvdQXDrpuDy1O2giohR/Mkxlw1qzKihzUej4cdTUYyIONTCvNzcUfFhFokS4iIKGVXkJ/HrodHkd5yKI0HXkT3AaOJjo2vfsTeQgryc8nNLwQUVEv8i5S+RHw+YZQSph4J6B4svPiEL0pI/eLREsf60/FPhyXwdS8rvO+p+niWdA98QbB4/UWqSLxK4AiCylHB9EukXcm8qnC8QWX86aTg1Al65H/Hyg4zA8rgjjHb/eSczCK2jEGu3Owstj81iUGnlvNll5sYddWfkUCFs4Hh6XsBjZZ/yPZvF9PrZxfVSJzq9XIi/SinsjLIy84iPzuLgvxcRFy43B5cbhculwe324XLHY3b48Hl9uD2ROFye/C4o3BFReHxGDePJwpxeUBcBKxQfNMOUm7LereCFvBSV1UyLOCJqphpPdRElLI7fuwQuZ5EBh94jaiDL5P3kZvv3R3JimlNdkwLxBODVzx4VfF4c/AU5uAqzMVdmE2UNwePN5co5xetucSQS6zmEiWFeIiwzLKEFwIJvccE9HI5szNzTp0IevmprHRSn7qI/jkbWNbnj4yecmdtSFkv6TfqIjK/uYOsb56DSiq7zBPH2bdlORmp6+HwFhpnfU+Tgh9p4U2jieTTpBbkLdTSyi6Y+nNJMMVUN3zr7c3QB1aEVIaKElH1d8s2nWh5zxIyjh9h54p/k79nJbHHvyMh70faZn+HR/PxSAEAucSQQwx5rljyJZp8Vyw5rsYURMXidcdS6Db/GhUHnlhcnmjcLpdP70pABFUp0bPC8f3pMFjXp/Luvv23ohMpCh+kNShBzspqPAbuh5aKzMc5SNplpRE0rvIDldXurVC8JXrLFYs7WD5UJX8DXSFxTUkeOSFgGHesUXb52VkB/TPS0zg4ZwI987axYvDDjJr464ol3kBo1KgxX7edxPCDr5C66Ru69D8jaNicU1nsWP0pmVuX0OzHFfTI30EfMethnCCBA1GdOdioP3sT2kBiG9xxjXFFJ+CKicftiUHxooVevN4CM9nGW2iOCwvBm48WFqDeAigsQL2FJY5FC3CpF6GQwCUxcMHztQqV+XIE8SxdfxG0APur1pOxbQOGC0ciStkV0aRZS04ffyUQ9Jt3EutOHIulWkTHmh0Q8k5llvI7euRHjs79Bd0LdrLhjCc4Y/yMOpauftBr0r2kzfmQmLems5sX6eoovOyTWexa/yVZ2z4j8dA3nJa7lRTJp0BdfB/dk7UdrySm289o23MoLdt1obf96L7eEpHKzmKJJDxxpmlWkF3SjLl/3w9kPXcJ3QpT2X7W0ww++1ehEK9ekNSyDVt+8Txt/m86bd8cz9E3m+FFaKHH6S+KV4XvPd1Y22Yy8b3GctrQc+iZ2DzUYltqEKvsLJYwJ7GlWf0jP/2njUM2rVtBs3en0Yl0fhj3LP1HTw6VePWGvkPGcrTTt3z9n2dxH9mCC2Vn44406jyIzoPP4bTmrTgt1EJaag2r7CyWMKdN6zZkaSyFx/fgLfSy7K2nGbz5r+S6Ykmb9A49+o8KtYj1hhat2tBi2n2hFsMSAqyys1jCnPiYKLZLG1of/Iz1D4/jzLzVbI9Nps3VL9K+TbdQi2ex1AvsaKvFUg/Y2XESbbyH6Za3nXV976bnXUtpYhWdxVJhbM/OYqkHjJ/xR77bMZGOnbszML5RqMWxWOodVtlZLPUAt9tFjz4DQi2GxVJvsWZMi8VisUQ8VtlZLBaLJeIRDbroZ90jIkeAH2ogqhbA0RqIpy6oT7JC/ZLXylp71Cd565OsUL/krSlZO6tqyxqIJyhhpexqChFZpapDQi1HRahPskL9ktfKWnvUJ3nrk6xQv+StT7JaM6bFYrFYIh6r7CwWi8US8USqsns21AJUgvokK9Qvea2stUd9krc+yQr1S956I2tEjtlZLBaLxeJLpPbsLBaLxWIpxio7i8VisUQ8EaXsRGS8iGwXkZ0ick+o5fFHRDqKyGciskVENovIzY77LBHZLyLrnN8FoZYVQERSRWSjI9Mqx625iPxXRL5z/puFgZy9fPJunYicEJFbwilfReQ5EflRRDb5uAXMSzHMdsrxBhEZHAay/k1EtjnyvCMiTR33LiKS7ZPHc+tS1jLkDfrsReT/OXm7XUTOCwNZF/rImSoi6xz3cMjbYHVWWJbdMlHViPgBbmAX0A2IBtYDfUMtl5+MbYHBznEisAPoC8wC7gi1fAHkTQVa+Lk9AtzjHN8DPBxqOQOUg0NA53DKV+BMYDCwqby8BC4APgYEGAGsCANZzwU8zvHDPrJ28Q0XRnkb8Nk779t6IAbo6tQZ7lDK6uf/GHBfGOVtsDorLMtuWb9I6tkNA3aq6veqmge8DkwMsUwlUNWDqrrGOc4EtgLtQytVpZkIvOAcvwBcHDpRAvJzYJeq1sRKPDWGqn4BpPk5B8vLicCLalgONBWRtnUiKIFlVdX/qGqBc7oc6FBX8pRHkLwNxkTgdVXNVdXdwE5M3VEnlCWriAhwOfBaXclTHmXUWWFZdssikpRde2Cvz/k+wliRiEgXYBCwwnG60en2PxcOpkEHBf4jIqtF5DrHrbWqHnSODwGtQyNaUKZQsrIIx3wtIlhehntZnolpvRfRVUTWisjnIjI6VEIFINCzD+e8HQ0cVtXvfNzCJm/96qx6V3YjSdnVG0SkEfAWcIuqngCeAboDA4GDGFNGODBKVQcD5wO/FZEzfT3V2C3C5tsVEYkGLgLecJzCNV9LEW55GQwR+QNQALziOB0EOqnqIOA24FURaRwq+XyoN8/eh19SsqEWNnkboM4qpr6U3UhSdvuBjj7nHRy3sEJEojCF5hVVfRtAVQ+raqGqeoF51KFZpSxUdb/z/yPwDkauw0VmCef/x9BJWIrzgTWqehjCN199CJaXYVmWRWQG8AtgqlPB4ZgDjznHqzFjYD1DJqRDGc8+XPPWA1wKLCxyC5e8DVRnUc/KLkSWsvsW6CEiXZ0W/hTg/RDLVALHJj8f2Kqqj/u4+9q0LwE2+V9b14hIgogkFh1jJihswuTpVU6wq4D3QiNhQEq0jMMxX/0IlpfvA9OdmW0jgAwfk1FIEJHxwF3ARap6yse9pYi4neNuQA/g+9BI+RNlPPv3gSkiEiMiXTHyrqxr+QIwDtimqvuKHMIhb4PVWdSjsltMqGfI1OQPMxNoB6YF9IdQyxNAvlGY7v4GYJ3zuwB4CdjouL8PtA0DWbthZq2tBzYX5SeQBCwBvgM+AZqHWlZHrgTgGNDExy1s8hWjhA8C+ZhxjP8JlpeYmWxznHK8ERgSBrLuxIzFFJXbuU7YSU75WAesAS4Mk7wN+uyBPzh5ux04P9SyOu4LgOv9woZD3gars8Ky7Jb1s8uFWSwWiyXiiSQzpsVisVgsAbHKzmKxWCwRj1V2FovFYol4rLKzWCwWS8RjlZ3FYrFYIh6r7CwWi8US8VhlZ7FYLJaI5/8DLBUUEzBdW1QAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 6)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABhEklEQVR4nO2deXxVxdn4v8/NDgSQgMgmm+wkLLIpoGARtVZRUcGiiNb6aqutta36tmrR1vfnWlcqrUWxLghuiHWtCypWRBBkR0Eii8geIEC2e5/fH3MSbpJ7kxuy3Jub5/vJ/eScObM8Z2bOeWaemTMjqophGIZhNAR80RbAMAzDMOoKU3qGYRhGg8GUnmEYhtFgMKVnGIZhNBhM6RmGYRgNBlN6hmEYRoMhZpSeiHQSERWRxGjLEu+IyBQRWVBHaaWJyJsisldEbqqLNMukny0iY+ognfkiclWYa1a3o4CITBWRZ6t6rYZlqPBZq6jeGOURkddFZKeI3He0ccSM0jOODu/hLRSR3KBfnSuXChgDZAEdVPXeYkdPGXWKmlQxhFeGU6vg/6ci8p2IHBSRuSLSogK//UVkiYgc8v73L5Nu2brTJcKwIiL3iMhu73ePiEgkYb3rA0XkYy/N7SLy6wjvfYqIzIzEb33HayxlV9H/h16er62osSciKSLypIjsF5EfROTGMvFomXpxW9D1FiIy2yv3XSLynIg0Dbr+ZxFZISJFZeu1V2/+KCKbvLRfKBP2fhH5RkQOePcwOTi8qp4DjAZ+JyLNI82bYGpM6VkrNqrMVtUmQb97Kw9SZ7QAslU1N9qCVAfvYY16I1FE+gB/By4DWgOHgL+F8ZsMvAY8CxwDPA285rkXU7bufBth2KuB84B+uEbNOcD/RBJWRFoCb3v3kQGcALxbrYyJIjH07psFLMXl6R+Bl0SkVRi/U4FuQEecErlJRM4s46d5UL34c5D7X3Dl2hnoiquHU4OurwduAt4Ike5kXN0dDrQF0oBHg64fxNWlZsDlwMMicnJwBKq60jvMCHNvFVKth9hrrd8sIsuBgyKSKCLDROS/IpIjIl+JyKgg//NF5P+JyCJPy78WrpUqIleIyBpP438rIv9T5vo4EVnmxbOhuMBEpJmIzBCRbSKyVUT+IiIJldxHVxH5oEzLpXnQtT0iMtA7byuuez3KOz9XRFZ59ztfRHqVyZ/fichyEdnntY5Sq57TVUdEbvHy5YCIrBaR88P4ExF5UER2eHm5QkT6etdSvJbXJnGt8ekiklZFURKBQCWyZogzW+wXkS+8MlsQdF1F5BqvBZgjItNEXK+iorILYrCXB3tF5KniMhCRY0Tk31557vWO2welO19E7hKRT3HKpQsV01FEPvXy/F3v5R7MJC8vd4nIHyuJKxyTgNdV9WOvIXEbcIGIpIfwOwqX/w+par6qPgIIcFoE6VQW9nLgAVXdoqpbgQeAKRGGvRF4R1Wf864fUNU1kWfBEURksrhe724RuU3CmLNFJElEZonIy3JEcad6z+QBEflSRPoF+Q/7/IjrbX7qPTe7Kf3CDyfn/V4d2ygiZ5W5XFm9iSQfugMDgT+p6mFVfRlYAYwPE+Ry4M+qutfL+yc4Un6V0RmYq6r7VXUf8CrQp/iiqj6tqm8BB0KEPQeYoaqbvfp7DzBBRBp5Yf+kqmtVNaCqnwOfACeFiEdxdazK1ETL9RLgbKA5TuO/gWsJtAB+B7wspVsbk4ErgTZAEfBImHh3AD8BmgJXAA8GKZ4hwL+A33vpngJke+FmevGeAAwAxgKV2cwF+H+4lkcvoANeRVbVDcDNwLNewTwFPK2q872KNgu4AWgFvAm8LqVb0hcDZ+IqShZhKpaIjPBe6OF+Iyq5h7JsAEbiWkx3ePK3CeFvLC7/unt+LwZ2e9fu9tz74/KzHXB7pAKISBLuBbip7DVV7aSq2d7pNFwL7zjcw3h5iOh+AgzG5eHFwBnFyRCm7IKY5Pnv6t3PrZ67D1eeHYHjgcPAY2XCXobr1aQD31V0v8BPcXX1WCAZV/+DGQH0AH4E3F7cQFLVqapaInMl5d0H+Kr4xKufBd59hfK7XEuvNbicoBcUcI64Rt0qEbm2CmFLyeEd94kw7DBgj7jG8Q6vwXN8mPstharOVNUpACLSG9fLnYR7nzTD1dFSeA21uUA+cLGqFniXxgEv4t5VzwNzvToLlT8/Q4Fvce+8uyoReyiwDmgJ3AvMKG60eYSsN6qaraqdgu7jbyISslePy9tvVTVY0QSXSQkicgwuv8KVXzHficgWr6EYrIinAT/xGo3H4BTrW2HkCoWUOU7B9TrLypmGe+ZXhYhjMzCmTD5Ghqoe9Q+naK4MOr8ZeKaMn3eAy73j+cDdQdd64x7YBKATnvYOk9Zc4Nfe8d+BB0P4aY2r2GlBbpcAH1bxvs4DlpZxm4drOS0HUjy324A5QX58wFZgVFD+XBp0/V5genXyPISsU708zAn6tQ3hbxkwzjueAizwjk8Dvsa9iHxB/gWniLoGuZ0EbIxQrv5AIbAdOKECfwmevx5Bbn8pls87V2BE0Pkc4JZIys4rg2uCzn8MbKhA5r1B5/OBOyO83/nArUHnvwDe9o6L63b7oOuLgIlHUd7vB9+P51ZS58q43wa8UMbtOWCqd9wb11hIAE4GtgGXRBjWD/QMutbNu0eJIOzXXj0dDKTiGr6fHkVe3A7MCjpvhHsWxgQ9G/OAj7w0pMxzszDo3Ofd/8gwaS2j9POzKUIZpwDry8iowHGV1Zsq5sVlwffjud0FzAzht4MnQ2qQ2+m4YQiAJsAgXE+qNfASrmde7Lct8B7OghMA/gMkh0jn2eIyD3K7yiv/TrgGxTxPlpNChH8aZwaXENfO98o6p6p5VRM9vc1Bxx2Bi4J7KLjWbZsw/r8DknAtoFKIyFkistBrhebgXlbF/jrgWmJl6ejFty0o/b/jWlBhEZHW4gZUt4rIflxhlZXpCaAv8Kiq5ntubQlq/atqwLu/4NbmD0HHh3AVqqaZo6rNg37fe2afZUH50JcQ+ayqH+B6N9OAHSLyD3EDy61wD+iSoDje9twrRVWX4XpHn+F6wuFohXu4guvF5hD+QuZjhGVXts619cI2EpG/e+ax/cDHQHMpbQ4PJUs4KivrmqgLuTjrRzBNCW1KqtCvqq5W1e9V1a+q/wUeBi6MMJ2y15sCuereSJWFPQy8qqpfqGoerid1sog0C3EPFdGWoPJR1UMcsVIUMwxnHbjbky2Y4LABYAtH6kZlz89R1QtPRihd9tGoF8XXy/lV1VxVXayqRaq6HbgOGBtkQp+DU1zpXrgNuOcuEp7EWcfm43pwH3ruW4I9iZud2RfXMw+1K8IduIZL2Elc4agJpRcs0GZcTy/4BdxYVe8O8tMh6Ph4XCt/V3CEIpICvAzcD7RW1eY402FxV3YzzlRVls24nl7LoPSbqmq5Ln4Z/s+7j0xVbQpcGpQWItIEeAiYAUyVI+OQ3+MUbbE/8e5vayXplUNERkrp2VJlfyOrEFdHnJK+Dsjw8m8lpc0KJajqI6p6Iq7l3x1nNt6Fezn1CcrLZqoa8QPpvdDe8uINx06cObp9kFuHMH5DUWHZhYjveFy5AfwWZ24c6oU9xXMPDh9r25Cswk0eAUDcbMsU3EsolN+sMiagLEKbi+BITy2SsKXk8I5XRRh2OaXz9WjzeBtB9cYzh5Wd3PAuzvz9voi0LnOtpF6Im6TUHvg+wucnFutFFyk9thtcJiWo6l5c3oUrv3JBvP/F+qI/8HdVPahuXG46rlNSKerG6v6kbnijvZfmVoLemSJyB3AWMFZV94eJqhfwmtdYqRI1PRvtWdwYwRkikiAiqSIySoImBwCXikhvb3zsTuAlVfWXiScZ9yDvBIq8gd+xQddnAFeIyI9ExCci7USkp6puw1XyB0SkqXetq4icWonc6bjWzz4RaYd76QfzMLBYVa/CjVlO99znAGd7ciThXqL5wH8ry6iyqOonWnoWXdnfJ1WIrjGuou4ENykI12oqh4gMFpGhnvwHgTwg4FWmJ3Bjqcd6ftuJyBlBYVWCJiqFIR9XniHxyv4VXGOikYj0xI37RkplZQfwSxFp7zVW/gjMDgp7GMjxrv2pCulGi+dwz9hIEWmMe4Ze0dJjOcXMx5khfyVuUtJ1nvsHUDIZ7BhxDAF+hZt1WWlY3Jj6jV6daIur+zMjDPsUcL64zxqScObQBeomRRRPIJoaQV685OXFyeLG0acSomGnbjbz8zjFF9xbO1FELhA3+/IGXF1dSBWen1hBVb/GmWD/5L13z8c1NF4OE+RfwK1e+fcEfo5Xft77oIf3/szAmYbnF5cP8AVwlbhvcNNwY97LiyMWN2koFadfEj15ErxrLbx3sogbk/0rbggh4F3/X9wY5xhVLdtrDyYRV15VpkaVnqpuxg0O/wFXYTbjXkLB6TyDy9wfcPb8X4WI54DnPgfYi8uEeUHXF+FNbgH24Wz2xT2uybiX7Gov7EuUNq+G4g7czKd9OKX2SvEFERmHm4hSPMh/IzBQRCap6jpcz+JRXM/oHOAcPTJQHhVUdTVuNt1nuDG1TODTMN6b4pTbXpzpbzdQ/OHnzbjpxws98997uJ4RItIBZw5ZUYk4ASqvZ9fh7Ps/4OrHLCKv0GHLLojncY2hb3GmmL947g/hpkzvwr3s3o4wzVqlop69qq4CrsEpvx04xf2LoLBvicgfPL8FuDHOybgxtCuB84Lq50Rc+R7AvQTvUdWnIwz7d+B1XPmvxOX93yMJ65nU/+CF2YGbJPXToNvsQPj6WjYvrgdewPVccr34ytUddVPu5wLvBVlqXgMm4Or+ZcAFqlpYxeenzhA3e3p6BV4m4sbi9uImoV2oqsWKe5KIBPfk/oR7Fr7DvT/vU9Xi+t8F9ywcwJVtPm5uRDFX4sbktuB6aF0oPfnsCVxj8hJcI/MwLn/BmYjfxDWw3wKeVNV/BIX9P5w1Zn2QlesPZfKhePihyr088AYI6woRmQ88q6r/rLNEjVpBRC7FmT7/txJ/Y3EWgJ6quifCuO/BDfSHmsVpxDGeVWiOqp5cqefyYZvglGw3Vd1Y07IZsYFnlfgM9x1hKAtHhUT9Y1ujfqKqz1am8Dzm42Z3rRKRslP4ARCRniKSFWRm+xnu2x+jgaHuu7+IFZ6InOOZxRvj5gCs4MjnS0acISJzcda7245G4cFRftxXH/HMApeGuPSsql5T1/I0FDyT1qRKvKXjTJptceakBzgythQziEi4VWXOquKYq1FzjMOZxAVYjPsMpE4nmdi7pe5Q1fOqG0edmjcNwzAMI5qYedMwDMNoMMSUebNly5baqVOnaIthGIZh1CFLlizZpaoRLXxRXWJK6XXq1InFixdHWwzDMAyjDhGRyta1rTHMvGkYhmE0GEzpGYZhGA0GU3qGEYOsm/lLcqa2Z+WCf0dbFMOIK2JqTC8UhYWFbNmyhby8vGiLYtQjUlNTad++PUlJSZV7jjE2rF9Hj2y3aP3ej++AET+JskSGET/EvNLbsmUL6enpdOrUCTmK/QKNhoeqsnv3brZs2ULnzp2jLU6V2fvlXAA+aXYuI/fNY3v2Glp36hVdoQwjToh582ZeXh4ZGRmm8IyIEREyMjLqrXUgYdsSdugxdB7n1tnd+N9wC+UbhlFVYl7pAabwjCpTn+tMswPf8H1qF9p36cX3HEvy94uiLZJhxA31QukZRkOhqLCA9oWbONy8BwBb0vtxfO5ysOUCDaNGMKUXASLCb3/725Lz+++/n6lTp0ZPoEqYP38+//1vlfexLcWZZ55J8+bN+clPbBJFXbLpu29JliJSj+sGQEHbwbRkL7u2hNoY3TCMqmJKLwJSUlJ45ZVX2LVrV43Gq6oEAke1D2KF1ITS+/3vf88zzzxTQxIZkZLzg9sGrsmxnQBo2WMYAJtXfRYtkQwjrjClFwGJiYlcffXVPPjgg+Wu7dy5k/HjxzN48GAGDx7Mp5+6DZanTp3K/fffX+Kvb9++ZGdnk52dTY8ePZg8eTJ9+/Zl8+bN/P73v6dv375kZmYye/ZswCmuUaNGceGFF9KzZ08mTZpEqB0xHnnkEXr37k1WVhYTJ04kOzub6dOn8+CDD9K/f38++eSTCmW87LLLOOmkk+jWrRtPPPFESbw/+tGPSE9PrzBfXnzxRfr27Uu/fv045ZRTADfx6IorriAzM5MBAwbw4YcfAjBz5kzOO+88Tj/9dDp16sRjjz3GX//6VwYMGMCwYcPYs8ftL/vEE08wePBg+vXrx/jx4zl06FC5dIcNG8aqVUc2gR41alTcLF+Xt2sTAOme0uvcexBF6iNv09IoSmUY8UO1P1kQkeuBXwJ+4A1VvSno2vHAamCqqt4fJoqIueP1Vaz+fn91oylF77ZN+dM5fSr198tf/pKsrCxuuummUu6//vWv+c1vfsOIESPYtGkTZ5xxBmvWrKkwrm+++Yann36aYcOG8fLLL7Ns2TK++uordu3axeDBg0sUyNKlS1m1ahVt27Zl+PDhfPrpp4wYMaJUXHfffTcbN24kJSWFnJwcmjdvzjXXXEOTJk343e/cnq0//elPw8q4fPlyFi5cyMGDBxkwYABnn302bdu2jSjv7rzzTt555x3atWtHTk4OANOmTUNEWLFiBWvXrmXs2LF8/bUzza1cuZKlS5eSl5fHCSecwD333MPSpUv5zW9+w7/+9S9uuOEGLrjgAn7+858DcOuttzJjxgyuv/76UulOmDCBOXPmcMcdd7Bt2za2bdvGoEGDIpI51vHnbAGgRRv3qUVKamO+TTieRntWVRTMMIwIqZbSE5HRuE0c+6lqvogcW8bLX4G3qpNGrNC0aVMmT57MI488QlpaWon7e++9x+rVq0vO9+/fT25uuL1GHR07dmTYMGe2WrBgAZdccgkJCQm0bt2aU089lS+++IKmTZsyZMgQ2rdvD0D//v3Jzs4up/SysrKYNGkS5513Huedd17I9CqScdy4caSlpZGWlsbo0aNZtGhR2HjKMnz4cKZMmcLFF1/MBRdcUHI/xUqqZ8+edOzYsUTpjR49mvT0dNLT02nWrBnnnHMOAJmZmSxfvhxwivHWW28lJyeH3NxczjjjjHLpXnzxxYwdO5Y77riDOXPmcOGFF0Ykb30g4cBWDpJK48bNS9x2p/ek876F0RPKMOKI6vb0rgXuVtV8AFXdUXxBRM4DNgIHq5lGCZH0yGqTG264gYEDB3LFFVeUuAUCARYuXEhqamopv4mJiaXG64K/GWvcuHFE6aWkpJQcJyQkUFRUVM7PG2+8wccff8zrr7/OXXfdxYoVK8r5CScjlJ/aX5Wp/tOnT+fzzz/njTfe4MQTT2TJkiUV+g++H5/PV3Lu8/lK7m3KlCnMnTuXfv36MXPmTObPn18unnbt2pGRkcHy5cuZPXs206dPj1jmWCfl0A/s9rWicVA5+I/LouW+t9n1/Xe0bNsxitIZRv2numN63YGRIvK5iHwkIoMBRKQJcDNwR2URiMjVIrJYRBbv3LmzmuLULi1atODiiy9mxowZJW5jx47l0UcfLTlftmwZ4LZJ+vLLLwH48ssv2bhxY8g4R44cyezZs/H7/ezcuZOPP/6YIUOGRCRPIBBg8+bNjB49mnvuuYd9+/aRm5tLeno6Bw4cqFRGgNdee428vDx2797N/PnzGTx4cERpA2zYsIGhQ4dy55130qpVKzZv3szIkSN57rnnAPj666/ZtGkTPXr0iDjOAwcO0KZNGwoLC0viCcWECRO499572bdvH1lZWRHHH+ukFewhN7llKbemnU8EYOtam8xiGNWlUqUnIu+JyMoQv3G4nmILYBjwe2COuK7CVOBBVa3Yzgeo6j9UdZCqDmrVqk72EKwWv/3tb0vN4nzkkUdYvHgxWVlZ9O7du6TXMX78ePbs2UOfPn147LHH6N69e8j4zj//fLKysujXrx+nnXYa9957L8cdd1xEsvj9fi699NKSSSO/+tWvaN68Oeeccw6vvvpqyUSWcDKCM4+OHj2aYcOGcdttt5WM540cOZKLLrqI999/n/bt2/POO+8AcPvttzNv3jzAzfDMzMykb9++nHzyyfTr149f/OIXBAIBMjMzmTBhAjNnzizVw6uMP//5zwwdOpThw4fTs2fPEvd58+Zx++23l5xfeOGFvPDCC1x88cURx10faBzYR0Fy81JuHXq5RtDh72wyi2FUFwk1IzDiwCJvA/eo6ofe+QacAnwF6OB5aw4EgNtV9bGK4hs0aJCWnYW3Zs0aevWydQdrg6lTp5aa8BJv1Me6k/OndqxvPZZBv3iqlPumO3qxJ60z/W96M0qSGUbtISJLVLVOZqNVd0xvLjAa+FBEugPJwC5VHVnsQUSmArmVKTzDaOjk5RfQlINoaoty17Y36cXxucvqXijDiDOqq/SeBJ4UkZVAAXC5VqfraNQpsbyqTEMkZ+8OjhNFGrcsd63g2CxaH3if/Tu30rRVuyhIZxjxQbWUnqoWAJdW4mdqddIwjIZC7h43kSuxSUa5a407D4YNsGXNf+nd6qK6Fs0w4gZbkcUwYoTDOdsBSG5afkJXh97DCKhweGN8rDxjGNHClJ5hxAh5+3cDkNa8vNLLaJHBJmlL8s7y32EahhE5pvQMI0YoynXmzSbHtA55fVvjnrQ5WPESd4ZhVIwpvQiZO3cuIsLatWvD+snOzqZv3761KseyZct4883qTVu/8sorOfbYY2tdVqNq+A/vAyC9WfkxPYC8Y7NoqXs4uPO7uhTLMOIKU3oRMmvWLEaMGMGsWbNCXg+1RFhV8fv9lfqpCaU3ZcoU3n777WrFYdQ8mu/WckhpFHp3i+Y9RwHw3Zfv1pVIhhF3mNKLgNzcXBYsWMCMGTN44YUXStznz5/PyJEjOffcc+nduzfglN+kSZPo1asXF154YcnWOO+//z4DBgwgMzOTK6+8kvz8fMAtV3bzzTczcOBAXnzxxVLplt26p6CggNtvv53Zs2fTv39/Zs+ezcGDB7nyyisZMmQIAwYM4LXXXgPcVj7jxo1j1KhRdOvWjTvuOLIi3CmnnEKLFuW/BQvmo48+on///vTv358BAwZw4MABVDXsNkinnnoq48aNo0uXLtxyyy0899xzDBkyhMzMTDZs2ADA66+/ztChQxkwYABjxoxh+/bt5dKdOHEib7zxRsn5lClTeOmllyIrqHqOFhwinyQkISnk9Z79TmafNqZw/cd1LJlhxA/V3lqoTnnrFvihhgfyj8uEs+6u0Mtrr73GmWeeSffu3cnIyGDJkiWceKJbD/HLL79k5cqVdO7cmezsbNatW8eMGTMYPnw4V155JX/729+47rrrmDJlCu+//z7du3dn8uTJPP7449xwww0AZGRklKzTGUzZrXuSk5O58847Wbx4MY895r71/8Mf/sBpp53Gk08+SU5ODkOGDGHMmDEALFq0iJUrV9KoUSMGDx7M2WefHfEWPPfffz/Tpk1j+PDh5ObmkpqayiuvvBJ2G6SvvvqKNWvW0KJFC7p06cJVV13FokWLePjhh3n00Ud56KGHGDFiBAsXLkRE+Oc//8m9997LAw88UCrd4m2Dzj77bAoKCnj//fd5/PHHI5K5viOFB8kjhXCLtqWlJrMiNYsOu7+oU7kMI56wnl4EzJo1i4kTJwKuJxJs4hwyZAidO3cuOe/QoQPDhw8H4NJLL2XBggWsW7eOzp07l6y/efnll/Pxx0da6xMmTAiZbvHWPU888URY0+e7777L3XffTf/+/Rk1ahR5eXls2uQ2Ij399NPJyMggLS2NCy64gAULFkR8z8OHD+fGG2/kkUceIScnh8TExLDbIAEMHjyYNm3akJKSQteuXRk7dizgtg3Kzs4GYMuWLZxxxhlkZmZy3333ldoItpizzjqLDz/8kPz8fN566y1OOeWUUls5xTO+wkPkS8X3mtvmJNoEtpH7w/o6ksow4ov61dOrpEdWG+zZs4cPPviAFStWICL4/X5EhPvuuw8ov03Q0WzVE26roUi27lFVXn755XI7GXz++efV2jbolltu4eyzz+bNN99k+PDhJQtOhyOSbYOuv/56brzxRs4991zmz58fckWY1NRURo0axTvvvMPs2bNLGhsNAV/RIQoSKlZ6LU8cB9l/JfuTF+h70a11JJlhxA/W06uEl156icsuu4zvvvuO7OxsNm/eTOfOnfnkk09C+t+0aROffea2gHn++ecZMWIEPXr0IDs7m/XrXev8mWee4dRTT6007VBb95TdNuiMM87g0UcfpXj1t6VLj6zE/5///Ic9e/Zw+PBh5s6dW9IDjYQNGzaQmZnJzTffzODBg1m7dm21tkEC2LdvH+3auSW0nn766bD+JkyYwFNPPcUnn3zCmWeeGXH89Z1E/yEKfeX3PAymb59+rJPOpK3/dx1JZRjxRVwqvZpc/nPWrFmcf/75pdzGjx8fdhZnjx49mDZtGr169WLv3r1ce+21pKam8tRTT3HRRReRmZmJz+fjmmuuqTTtUFv3jB49mtWrV5dMZLntttsoLCwkKyuLPn36cNttt5WEHzJkCOPHjycrK4vx48eXjOddcsklnHTSSaxbt4727duX7A84ffr0km2HHnroIfr27UtWVhZJSUmcddZZ1doGCdxanxdddBEnnngiLVseWV9y8eLFXHXVVSXnY8eO5aOPPmLMmDEkJydHHH99J8mfR1ElPT2fT9ja7iy65q9h/yb7UN0wqkq1thaqaaq7tZC/qAjf9hUcTG1Nk4y2tSFivWHmzJmlJrw0ROrb1kKrpw7A1/Q4et74VoX+1qz/ls7PDGFD23Po8z9PVejXMOoD9WlroZhCfIIIoIFoi2IYVSZV88hPbFSpv14ndOGD9DMYue01DmxaTvrxle8c7/cH2L97G7k5O8k/uB8KchECKIIigKAi+MQHIvhEQARVKFIlEBD8CgEFBBJ8Pnw+n/ff+Q8o+AOKXxW/XwmgJIiP5AQhMdFHUoI7Bij0K4WBAIVFAYoCSpHfSeErfoYBn4APwf2VH4+OdIg6vWUbWrfrEplnI+6JL6UnPlSBGOq9RospU6YwZcqUaIthREheoZ9U8shPrlzpAbQ5/y8c+Nd8Dj4zmZTr3yO56RFzsQYC/JC9mu+Xf4hu+owWOSs5zv8Dx0g+x9TWDcQwhzWZ/b/bQNP0ptEWxYgB6oXSU9WIZh6KCAHEenpGjY7r1gUH84toRD45SaFn8palV9fO/GfQ/Zy6+JfkPjiITW3PoigxDd+ebzn+wFLakEMbIEeb8F2j3uxtfhKFTTuS0KQViWnpaGIa+BIARRQggKiiBNAAKIqq4hNIELz/3nOoSiCgBNTv/S/2KySI4POBz+st+gNKUSBAod/7X6QgkOgTEhN8JPmExASvZ4lrryrqepS4cgxVlKFKN1SZF339HoN3vcqenD2m9AygHii91NRUdu/eTUZGRkSKLyCChHwkjIaCqrJ7925SUyueCRlLHCrw05o8JMKeHsDp51zCf5tlkPzR/5G5ZQ6J+NkhLdmYfiLfdDiJVn1G07nnAPolJNSi5LHNl/n7YderFOYdqNyz0SCIeaXXvn17tmzZws6dOyPy78/ZSZFvPym7D9eyZEYsk5qaSvv27aMtRsQczssjWfxISmQ9vWJOPmUsnDKW3LxCijRAm7QU2tSSjPURX7LLz6LDuVGWxIgVYl7pJSUllVrxpDK23HEe29P70uvGl2tRKsOoWfIO7gfAl9LkqMI3SQ29XmdDJ8HLz8I8U3qGI+6+0yuUFHz+vGiLYRhVouCQM78lHqXSM0KTkOry029Kz/CIQ6WXTEKgINpiGEaVKPDMb4mpVTNvGhVjSs8oS9wpvSJfCokB6+kZ9YtCby+9xDSbYViTJHlKL1BgSs9wxJ3S8/uSSQzkR1sMw6gSRYedeTM5zcybNUmytyGv5h+KsiRGrBB3Ss/19My8adQv/HkHAUhpZEqvJklO85Se9fQMj7hTev6EVJLUlJ5RvwgUOKWX2sjMmzVJiqf0KLCenuGIO6UXSEgxpWfUOwLeRIskM2/WKCkpSeRpEr7Cg9EWxYgR4lLpJauN6Rn1Cy30eiIRLkNmREZKoo+DpCKF1tMzHNVWeiJyvYisFZFVInJvkHuWiHzmua8QkTpZE0oTU0nBenpG/aKkJ5JsSq8mERHySMFXZD09w1GtFVlEZDQwDuinqvkicqznngg8C1ymql+JSAZQWG1pI0ATUknWOknKMGoMX9EhAgi+pIo3kTWqzmFJI6HIliU0HNXt6V0L3K3q7ImqusNzHwssV9WvPPfdquqvZloRoUmpJImfQJEpPqP+kFB0mDxSI98kzoiYfEklscjMm4ajukqvOzBSRD4XkY9EZHCQu4rIOyLypYjcVM10Iqa4pZxnC8wa9YiEokPkS0q0xYhL8iSVxID19AxHpeZNEXkPOC7EpT964VsAw4DBwBwR6eK5j/DcDgHve9vBvx8i/quBqwGOP/74o7yNI/iS3NDh4cOHaJTeELfMNOojSf7D5PvMtFkbFCakkeTfHW0xjBihUqWnqmPCXRORa4FX1O3euEhEAkBLYAvwsaru8vy9CQwEyik9Vf0H8A+AQYMGVXsjPJ+3NUveQevpGfWHRP9hCkzp1QpFCY1IKtwSbTGMGKG65s25wGgAEekOJAO7gHeATBFp5E1qORVYXc20IsKX4j5GzT+8vy6SM4waITmQR4Gv/mx6W58oSkgjxcybhkd199N7EnhSRFYCBcDlXq9vr4j8FfgCUOBNVX2jmmlFRKL3cW/xVi2GUR9ICRyiKNk+TK8NAklppKgtQm84qqX0VLUAuDTMtWdxny3UKcWrqhcv4GsY9YFkzSMv4dhoixGXBBIbk0o+qNrsWCP+VmRJ8rZmKbL9s4x6RKrm4U+0Mb1aIakRCQSgyHp7RhwqveKtRPx51tMz6g9pmkcgwZRebaDFu9HbotMGcaj0Uhq7nl7AenpGPUFVSSWfgK27WSv4khsBUGBDHgZxqPTSvK1ZbKdko75QWBSgEfkEkhpFW5S4xOf19PIO2YxuIx6VXmNn3pR8U3pG/SAvLxefKJjSqxUSipXeQevpGXGo9JKTkzikKWD7Zxn1hHzv8xq1TxZqBfuMyQgm7pQewGFJxWf7Zxn1hMJDziohydbTqw2S02zBCuMI8an0SLWdko16Q6E3waJ4CT2jZknylF6RLUJvEKdKL8/XiATbSsSoJxTmuQZa8YQLo2ZJ9T5jsm93DYhTpVeYkFbzSk/V/QyjhinyvilNsJ5erZDa2BasMI5Q3bU3Y5KihEYkF1XPfr/z22Vsnj+TZjsW0Tz/e47RHHw4pVdIAgUkUUAyhZJEoSSX/IokmSJfMn5fCv7i/wnJ4EvEF7QEktOfLj4t7VjazUNK/gsiCgpKGf9V0MllV2OK1uJMkYisYW/OSR3JylJHc391tWJV2qFtACSmWk+vNkhv2gwAfzWUnhbmseHTF8n96t+02L+GZv7dpOtBAgh+SaCIxCPvA1+Kexf4UvD7UijypRBISMGfkOLeDyQA7ln2/pCSynaknrtn3V1X3HMQUAWUQJgHp7IqW1GdlnIHR05CBRNgb1oHxlz1f5WkGlvEpdIrTEqnaf62owq7c9smts2+gayc92muCaxNOIGtTU6iKK0lPl8iPlHUX4TPn48vkI/PX0BCIJ+EQAEJgQISAwUkBfJJK9pPkhaQpIUkUUCCFqFhqmSwazg/ZQld56v2lq4v/daq6p76cl/BbPQdT+uOvaItRlzStHEjCjQBf/7RjfNv+Oh5msy/nRN0J7u1KRtTe7G1+YkUJTVFUDRQhPoL8RXlIf589z7w55MYyCexqIDEwF5StIAkLSCVAhLxl6ujwecSfF7mwhHVKJRXk7VP2bT2S7c6TL1miEulV5TSjPQDVZ+e/M2KRTR7eQI9dT/vt76CnufeSGb76m9saxiV0SraAsQxiQk+9pGKVvHbXQ34WfLP6xn0/XN8LZ35esidnHjaeAal2g73xdTHJdLjUukFUprTVHMJ+AP4EiIbtvxu/UpavXw+RSSx5aI3+FHfYbUspWEYdcVhSUMKq6b0lsz4FYO+f44Fx5xP/58/TvdGtjZqPBCXE1lIO4ZECXAwNyci77kH9uF/7hIEKJz8Bl1M4RlGXJGb0JSUgr0R+//s5UcYtPVZPm1xPidf9yRNTOHFDXGp9BIaHQNAbs7OiPwve+Zmuugmto2ZRpsufWpTNMMwosDBhOakFe6LyO8Pm74mc/n/sSYli6HXPhGxtcioH8RlaSY0bgHAoX27KvW7dumnDNs+myUtx9FzxHm1LJlhGNEgL6k5jf05lfpTVba98CsEpdnEJ0hMSqp94Yw6JS6VXnK6U3p5+ytWeqrKobenclAa0fPSB+pCNMMwokBh6jE0DVT+GdMXH7/BgEOfsarrVbTt3LMOJDPqmrhUeqlNWwJQkFuxDX/Z5x8wMH8R60+YQuPmNn/OMOIVTcugCYfQovywfgL+AI0//gu7pAUDL/7fOpTOqEviUuk18pSe/+CeCv0F5t/LPprQ9/zf1YVYhmFECV8T16jdv3t7WD+LP32XPv41bMn8hS0UEMfEpdJrcoyr4IEKlN4336xlwOHP+abjBFIaH1NXohmGEQWS0l1DeN/uH8L6KVj4Dw6SRt+z/qeuxDKiQHwqvcbp5GkSHN4d1k/2f/4OQPczf1FXYhmGESXSmrcGIHdvaKW3ITubwQc/YkO7c0lMa1qXohl1TFwqPZ9P2CkZJB7aEfJ67uF8+myfx/omJ9K0zQl1LJ1hGHVN44x2AOTv3Rry+jfvPE6KFHH82OvrUiwjCsSl0gPISWxFo7zQ9vslH75KW9lFwuApdSuUYRhRoUWbzgD492wqd23/oTz6fv8yGxoPoHnHzLoWzahj4lbpHUw5lmaFoXt6yV89Q440pcvwi+pYKsMwokGzpk3Zqc3x7Suv9Ba/N4f2spPEoT+PgmRGXRO3Si+/0XFkBHZDIFDKPfu7bE7M+4zsduciSalRks4wjLpERNiV2Jq0g6XNm6pKk+VPs0eOoePwi6MknVGXxK3Sk2btSKaIgzmlTZwb359Bsvjp8KOroySZYRjRYH9qW5oVlN5ybNWq5QwqXMLWrhMgwVZfaQhUW+mJyPUislZEVonIvZ5bkog8LSIrRGSNiNT5l56NMtoDsGPrhhK3oiI/nTe9xDcpfcjo3K+uRTIMI4oUprenlX8n/sKCEredHz5OAKHLGTaLu6FQLaUnIqOBcUA/Ve0D3O9dughIUdVM4ETgf0SkU3XSqirp7dwSQge2rClxW/rp23Tie/KyLq1LUQzDiAES22SSJH62fvMlAPv272PArtdZ22wkjVt1jLJ0Rl1R3Z7etcDdqpoPoKrFM0cUaCwiiUAaUABUvvBdDdKhWyaFmsDhLStL3IoWzSCXRvQ87bK6FMUwjBigZbehAOz+ehEAq976B80ll0anXBdNsYw6prpKrzswUkQ+F5GPRGSw5/4ScBDYBmwC7lfVkMujiMjVIrJYRBbv3BnZVkCR0CitEVsT25O8ezUA27dtZmDuR6w77ickpaXXWDqGYdQPOnbvy17SYeNH5Ofn0X7tDDYknkCXE0+PtmhGHVKp0hOR90RkZYjfONzO6y2AYcDvgTkiIsAQwA+0BToDvxWRLqHiV9V/qOogVR3UqlXNLvq8q3k/Tji8gqKCfNb9+2FSpIg2P/pljaZhGEb9ICkxkTXNTqX7vgUs/ecvOV63kT/8JhCJtmhGHVKp0lPVMaraN8TvNWAL8Io6FgEBoCXwU+BtVS30TJ6fAoNq80ZCEThhDOlymCXz/saALc/yVZORtO3Wv67FMAwjRmh12vUkayHDdr7El+mj6XWqfavb0KiueXMuMBpARLoDycAunEnzNM+9Ma4nuLaaaVWZrFEX8T3HMnTlVBIlwLHn/19di2AYRgzRrd8w1o+by+KB95B5/QuIL26/2jLCkFjN8E8CT4rIStxklctVVUVkGvCUiKwCBHhKVZdXM60qk5rWiLwLn2Xxx9NpMXQSXbpm1bUIhmHEGL0GngIDT4m2GEaUEFWNtgwlDBo0SBcvXhxtMQzDMIw6RESWqGqdDIFZ394wDMNoMJjSMwzDMBoMMWXeFJGdwHc1EFVL3ISa+kB9khXql7wma+1Rn+StT7JC/ZK3pmTtqKo1+81aGGJK6dUUIrK4ruzD1aU+yQr1S16TtfaoT/LWJ1mhfslbn2QtxsybhmEYRoPBlJ5hGIbRYIhXpfePaAtQBeqTrFC/5DVZa4/6JG99khXql7z1SVYgTsf0DMMwDCMU8drTMwzDMIxymNIzDMMwGgxxpfRE5EwRWSci60XklmjLUxYR6SAiH4rIahFZJSK/9tynishWEVnm/X4cbVkBRCRbRFZ4Mi323FqIyH9E5Bvv/zExIGePoLxbJiL7ReSGWMpXEXlSRHZ469QWu4XMS3E84tXj5SIyMAZkvU9E1nryvCoizT33TiJyOCiPp9elrBXIG7bsReR/vbxdJyJnxICss4PkzBaRZZ57LORtuHdWTNbdiFDVuPgBCcAGoAtut4evgN7RlquMjG2Agd5xOvA10BuYCvwu2vKFkDcbaFnG7V7gFu/4FuCeaMsZoh78AHSMpXwFTgEGAisry0vgx8BbuMXahwGfx4CsY4FE7/ieIFk7BfuLobwNWfbe8/YVkILb63MDkBBNWctcfwC4PYbyNtw7KybrbiS/eOrpDQHWq+q3qloAvACMi7JMpVDVbar6pXd8AFgDtIuuVFVmHPC0d/w0cF70RAnJj4ANqloTK/vUGKr6MbCnjHO4vBwH/EsdC4HmItKmTgQltKyq+q6qFnmnC4H2dSVPZYTJ23CMA15Q1XxV3Qisx7076oSKZPU24L4YmFVX8lRGBe+smKy7kRBPSq8dsDnofAsxrFBEpBMwAPjcc7rOMwc8GQsmQw8F3hWRJSJytefWWlW3ecc/AK2jI1pYJlL6pRGL+VpMuLyM9bp8Ja41X0xnEVkqIh+JyMhoCRWCUGUfy3k7Etiuqt8EucVM3pZ5Z9XXuhtXSq/eICJNgJeBG1R1P/A40BXoD2zDmThigRGqOhA4C/iliJTahEydPSNmvnkRkWTgXOBFzylW87UcsZaX4RCRPwJFwHOe0zbgeFUdANwIPC8iTaMlXxD1puyDuITSDbaYydsQ76wS6kvdLSaelN5WoEPQeXvPLaYQkSRc5XlOVV8BUNXtqupX1QDwBHVobqkIVd3q/d8BvIqTa3uxucL7vyN6EpbjLOBLVd0OsZuvQYTLy5isyyIyBfgJMMl70eGZCXd7x0twY2TdoyakRwVlH6t5mwhcAMwudouVvA31zqKe1d1g4knpfQF0E5HOXot/IjAvyjKVwrPZzwDWqOpfg9yDbd7nAyvLhq1rRKSxiKQXH+MmMqzE5enlnrfLgdeiI2FISrWUYzFfyxAuL+cBk72ZcMOAfUGmpKggImcCNwHnquqhIPdWIpLgHXcBugHfRkfKI1RQ9vOAiSKSIiKdcfIuqmv5QjAGWKuqW4odYiFvw72zqEd1txzRnklTkz/czKGvcS2iP0ZbnhDyjcCZAZYDy7zfj4FngBWe+zygTQzI2gU3y+0rYFVxfgIZwPvAN8B7QItoy+rJ1RjYDTQLcouZfMUp421AIW6c42fh8hI3822aV49XAINiQNb1uLGa4no73fM73qsfy4AvgXNiJG/Dlj3wRy9v1wFnRVtWz30mcE0Zv7GQt+HeWTFZdyP52TJkhmEYRoMhnsybhmEYhlEhpvQMwzCMBoMpPcMwDKPBYErPMAzDaDCY0jMMwzAaDKb0DMMwjAaDKT3DMAyjwWBKzzAMw2gwmNIzDMMwGgym9AzDMIwGgyk9wzAMo8FgSs8wDMNoMMSM0hORTiKi3r5SRi0iIlNEZEEdpZUmIm+KyF4Ruaku0iyTfraIjKmDdOaLyFVhrlndjgIiMlVEnq3qtRqWocJnraJ6Y5RHRF4XkZ0ict/RxhEzSs84OryHt1BEcoN+da5cKmAMkAV0UNV7ix09ZdQpalLFEF4ZTq2C/5+KyHciclBE5opIiwr89heRJSJyyPvfv0y6ZetOlwjDiojcIyK7vd893t5rlYb1rg8UkY+9NLeLyK8jvPcpIjIzEr/1Ha+xlF1F/x96eb62osaet5/gkyKyX0R+EJEby8SjZerFbUHXW4jIbK/cd4nIcxK0o7uI/FlEVohIUdl67dWbP4rIJi/tF8qEvV9EvhGRA949TA4Or6rnAKOB34lI80jzJpgaU3rWio0qs1W1SdDv3sqD1BktgGxVzY22INXBe1ij3kgUkT7A34HLgNbAIeBvYfwm4zb3fBY4BngaeM1zL6Zs3fk2wrBXA+cB/XCNmnOA/4kkrIi0BN727iMDOAF4t1oZE0Vi6N03C1iKy9M/Ai+JSKswfqfiNqXtiFMiN4nbKDiY5kH14s9B7n/BlWtnoCuuHk4Nur4et+HwGyHSnYyru8OBtkAa8GjQ9YO4utQMtzntwyJycnAEqlq8IXBGmHurkGo9xF5r/WYRWQ4cFJFEERkmIv8VkRwR+UpERgX5ny8i/09EFnla/rVwrVQRuUJE1nga/1sR+Z8y18eJyDIvng3FBSYizURkhohsE5GtIvIX8XYfruA+uorIB2VaLs2Dru0RkYHeeVtx3etR3vm5IrLKu9/5ItKrTP78TkSWi8g+r3WUWvWcrjoicouXLwdEZLWInB/Gn4jIgyKyw8vLFSLS17uW4rW8NolrjU8XkbQqipIIBCqRNUOc2WK/iHzhldmCoOsqItd4LcAcEZkm4noVFZVdEIO9PNgrIk8Vl4GIHCMi//bKc6933D4o3fkicpeIfIpTLl2omI4i8qmX5+96L/dgJnl5uUtE/lhJXOGYBLyuqh97DYnbgAvE2+W+DKNw+f+Qquar6iO4TT5PiyCdysJeDjygqltUdSvwADAlwrA3Au+o6nPe9QOquibyLDiCiEwW1+vdLSK3SRhztogkicgsEXlZjijuVO+ZPCAiX4pIvyD/YZ8fcb3NT73nZjelX/jh5Lzfq2MbReSsMpcrqzeR5EN3YCDwJ1U9rKov4zZxHR8myOXAn1V1r5f3T3Ck/CqjMzBXVfer6j7gVaBP8UVVfVpV3wIOhAh7DjBDVTd79fceYIKINPLC/klV16pqQFU/Bz4BTgoRj+LqWJWpiZbrJcDZQHOcxn8D1xJoAfwOeFlKtzYmA1cCbYAi4JEw8e4AfgI0Ba4AHgxSPEOAfwG/99I9Bcj2ws304j0BGACMBSqzmQvw/3Atj15AB7yKrKobgJuBZ72CeQp4WlXnexVtFnAD0Ap4E3hdSrekLwbOxFWULMJULBEZ4b3Qw/1GVHIPZdkAjMS1mO7w5G8Twt9YXP519/xejNuBHOBuz70/Lj/bAbdHKoCIJOFegJvKXlPVTqqa7Z1Ow7XwjsM9jJeHiO4nwGBcHl4MnFGcDGHKLohJnv+u3v3c6rn7cOXZETgeOAw8VibsZbheTTrwXUX3C/wUV1ePBZJx9T+YEUAP4EfA7cUNJFWdqqolMldS3n1wu9njhd0AFHj3Fcrvci29U/Rygl5QwDniGnWrROTaKoQtJYd33CfCsMOAPeIaxzu8Bs/xYe63FKo6U1WnAIhIb1wvdxLufdIMV0dL4TXU5gL5wMWqWuBdGge8iHtXPQ/M9eosVP78DAW+xb3z7qpE7KG4XdpbAvcCM4obbR4h642qZqtqp6D7+JuIhOzV4/L2W1UNVjTBZVKCiByDy69w5VfMdyKyxWsoBiviacBPvEbjMTjF+lYYuUIhZY5TcL3OsnKm4Z75VSHi2AyMKZOPkVHNreSzgSuDzm8Gninj5x3gcu94PnB30LXeuAc2AeiEp73DpDUX+LV3/HfgwRB+WuMqdlqQ2yXAh1W8r/OApWXc5uFaTsuBFM/tNmBOkB8fsBUYFZQ/lwZdvxeYXp08DyHrVC8Pc4J+bUP4WwaM846nAAu849OAr3EvIl+Qf8Epoq5BbicBGyOUqz9QCGwHTqjAX4Lnr0eQ21+K5fPOFRgRdD4HuCWSsvPK4Jqg8x8DGyqQeW/Q+Xzgzgjvdz5wa9D5L4C3vePiut0+6PoiYOJRlPf7wffjuZXUuTLutwEvlHF7DpjqHffGNRYSgJOBbcAlEYb1Az2DrnXz7lEiCPu1V08HA6m4hu+nR5EXtwOzgs4b4Z6FMUHPxjzgIy8NKfPcLAw693n3PzJMWsso/fxsilDGKcD6MjIqcFxl9aaKeXFZ8P14bncBM0P47eDJkBrkdjpuGAKgCTAI15NqDbyE65kX+20LvIez4ASA/wDJIdJ5trjMg9yu8sq/E65BMc+T5aQQ4Z/GmcElxLXzvbLOqWpe1URPb3PQcUfgouAeCq512yaM/++AJFwLqBQicpaILPRaoTm4l1Wxvw64llhZOnrxbQtK/++4FlRYRKS1uAHVrSKyH1dYZWV6AugLPKqq+Z5bW4Ja/6oa8O4vuLX5Q9DxIVyFqmnmqGrzoN/3ntlnWVA+9CVEPqvqB7jezTRgh4j8Q9zAcivcA7okKI63PfdKUdVluN7RZ7iecDha4R6u4HqxOYS/kPkYYdmVrXNtvbCNROTvnnlsP/Ax0FxKm8NDyRKOysq6JupCLs76EUxTQpuSKvSrqqtV9XtV9avqf4GHgQsjTKfs9aZArro3UmVhDwOvquoXqpqH60mdLCLNQtxDRbQlqHxU9RBHrBTFDMNZB+72ZAsmOGwA2MKRulHZ83NU9cKTEUqXfTTqRfH1cn5VNVdVF6tqkapuB64DxgaZ0OfgFFe6F24D7rmLhCdx1rH5uB7ch577lmBP4mZn9sX1zMuWG7g6MxXXS68SNaH0ggXajOvpBb+AG6vq3UF+OgQdH49r5e8KjlBEUoCXgfuB1qraHGc6LO7KbsaZqsqyGdfTaxmUflNVLdfFL8P/efeRqapNgUuD0kJEmgAPATOAqXJkHPJ7nKIt9ife/W2tJL1yiMhIKT1bquxvZBXi6ohT0tcBGV7+raS0WaEEVX1EVU/Etfy748zGu3Avpz5BedlMVSN+IL0X2ltevOHYiTNHtw9y6xDGbygqLLsQ8R2PKzeA3+LMjUO9sKd47sHhQz1w0WQVbvIIAOJmW6bgXkKh/GaVMQFlEdpcBEd6apGELSWHd7wqwrDLKZ2vR5vH2wiqN545rOzkhndx5u/3RaR1mWsl9ULcJKX2wPcRPj+xWC+6SOmx3eAyKUFV9+LyLlz5lQvi/S/WF/2Bv6vqQXXjctNxnZJKUTdW9yd1wxvtvTS3EvTOFJE7gLOAsaq6P0xUvYDXvMZKlajp2WjP4sYIzhCRBBFJFZFREjQ5ALhURHp742N3Ai+pqr9MPMm4B3knUOQN/I4Nuj4DuEJEfiQiPhFpJyI9VXUbrpI/ICJNvWtdReTUSuROx7V+9olIO9xLP5iHgcWqehVuzHK65z4HONuTIwn3Es0H/ltZRpVFVT/R0rPoyv4+qUJ0jXEVdSe4SUG4VlM5RGSwiAz15D8I5AEBrzI9gRtLPdbz205EzggKqxI0USkM+bjyDIlX9q/gGhONRKQnbtw3UiorO4Bfikh7r7HyR2B2UNjDQI537U9VSDdaPId7xkaKSGPcM/SKlh7LKWY+zgz5K3GTkq7z3D+Akslgx4hjCPAr3KzLSsPixtRv9OpEW1zdnxlh2KeA88V91pCEM4cuUDcpongC0dQI8uIlLy9OFjeOPpUQDTt1s5mfxym+4N7aiSJygbjZlzfg6upCqvD8xAqq+jXOBPsn7717Pq6h8XKYIP8CbvXKvyfwc7zy894HPbz3ZwbONDy/uHyAL4CrxH2Dm4Yb815eHLG4SUOpOP2S6MmT4F1r4b2TRdyY7F9xQwgB7/r/4sY4x6hq2V57MIm48qoyNar0VHUzbnD4D7gKsxn3EgpO5xlc5v6As+f/KkQ8Bzz3OcBeXCbMC7q+CG9yC7APZ7Mv7nFNxr1kV3thX6K0eTUUd+BmPu3DKbVXii+IyDjcRJTiQf4bgYEiMklV1+F6Fo/iekbnAOfokYHyqKCqq3Gz6T7DjallAp+G8d4Up9z24kx/u4HiDz9vxk0/XuiZ/97D9YwQkQ44c8iKSsQJUHk9uw5n3/8BVz9mEXmFDlt2QTyPawx9izPF/MVzfwg3ZXoX7mX3doRp1ioV9exVdRVwDU757cAp7l8EhX1LRP7g+S3AjXFOxo2hXQmcF1Q/J+LK9wDuJXiPqj4dYdi/A6/jyn8lLu//HklYz6T+By/MDtwkqZ8G3WYHwtfXsnlxPfACrueS68VXru6om3I/F3gvyFLzGjABV/cvAy5Q1cIqPj91hrjZ09Mr8DIRNxa3FzcJ7UJVLVbck0QkuCf3J9yz8B3u/XmfqhbX/y64Z+EArmzzcXMjirkSNya3BddD60LpyWdP4BqTl+AamYdx+QvORPwmroH9FvCkqv4jKOz/4awx64OsXH8okw/Fww9V7uWBN0BYV4jIfOBZVf1nnSVq1AoicinO9Pm/lfgbi7MA9FTVPRHGfQ9uoD/ULE4jjvGsQnNU9eRKPZcP2wSnZLup6saals2IDTyrxGe47whDWTgqJOof2xr1E1V9tjKF5zEfN7trlYiUncIPgIj0FJGsIDPbz3Df/hgNDHXf/UWs8ETkHM8s3hg3B2AFRz5fMuIMEZmLs97ddjQKD47y4776iGcWuDTEpWdV9Zq6lqeh4Jm0JlXiLR1n0myLMyc9wJGxpZhBRMKtKnNWFcdcjZpjHM4kLsBi3GcgdTrJxN4tdYeqnlfdOOrUvGkYhmEY0cTMm4ZhGEaDIabMmy1bttROnTpFWwzDMAyjDlmyZMkuVY1o4YvqElNKr1OnTixevDjaYhiGYRh1iIhUtq5tjWHmTcMwDKPBYErPMGKQ5Vty+G73wWiLYRhxhyk9w4hBfjttNpPunxNtMQwj7oipMb1QFBYWsmXLFvLy8qItilGPSE1NpX379iQlJVXuOQb5T8pN3tEVUZXDMOKNmFd6W7ZsIT09nU6dOiFHsV+g0fBQVXbv3s2WLVvo3LlztMUxDCOGiHnzZl5eHhkZGabwjIgRETIyMsw6YBhGOWJe6QGm8IwqY3XGMIxQ1AulZxiGYRg1gSm9CBARfvvb35ac33///UydOjV6AlXC/Pnz+e9/q7yPbQnLli3jpJNOok+fPmRlZTF79uzKAxk1R/B6uP6i6MlhGHGIKb0ISElJ4ZVXXmHXrl01Gq+qEggc1T6IFVJdpdeoUSP+9a9/sWrVKt5++21uuOEGcnJyak5Ao2L0SJ3QwkNRFMQw4g9TehGQmJjI1VdfzYMPPlju2s6dOxk/fjyDBw9m8ODBfPqp22B56tSp3H///SX++vbtS3Z2NtnZ2fTo0YPJkyfTt29fNm/ezO9//3v69u1LZmZmSa9q/vz5jBo1igsvvJCePXsyadIkQu2I8cgjj9C7d2+ysrKYOHEi2dnZTJ8+nQcffJD+/fvzySefVCjjZZddxkknnUS3bt144oknAOjevTvdunUDoG3bthx77LHs3LmzXNovvvgiffv2pV+/fpxyyimAm3h0xRVXkJmZyYABA/jwww8BmDlzJueddx6nn346nTp14rHHHuOvf/0rAwYMYNiwYezZ4/aXfeKJJxg8eDD9+vVj/PjxHDpU/qU/bNgwVq06sgn0qFGj4mr5OvUXlhwX5JvSM4yaJOY/WQjmjtdXsfr7/TUaZ++2TfnTOX0q9ffLX/6SrKwsbrrpplLuv/71r/nNb37DiBEj2LRpE2eccQZr1qypMK5vvvmGp59+mmHDhvHyyy+zbNkyvvrqK3bt2sXgwYNLFMjSpUtZtWoVbdu2Zfjw4Xz66aeMGDGiVFx33303GzduJCUlhZycHJo3b84111xDkyZN+N3v3J6tP/3pT8PKuHz5chYuXMjBgwcZMGAAZ599Nm3bti2Jf9GiRRQUFNC1a9dy93HnnXfyzjvv0K5du5Ke4LRp0xARVqxYwdq1axk7dixff/01ACtXrmTp0qXk5eVxwgkncM8997B06VJ+85vf8K9//YsbbriBCy64gJ///OcA3HrrrcyYMYPrr7++VLoTJkxgzpw53HHHHWzbto1t27YxaNCgCvO8PhEI+EnwjgsOHySlWVTFMYy4wnp6EdK0aVMmT57MI488Usr9vffe47rrrqN///6ce+657N+/n9zccHuNOjp27MiwYcMAWLBgAZdccgkJCQm0bt2aU089lS+++AKAIUOG0L59e3w+H/379yc7O7tcXFlZWUyaNIlnn32WxMTQbZiKZBw3bhxpaWm0bNmS0aNHs2jRopJw27Zt47LLLuOpp57C5ytfVYYPH86UKVN44okn8Pv9Jfdz6aVuP82ePXvSsWPHEqU3evRo0tPTadWqFc2aNeOcc84BIDMzs+TeVq5cyciRI8nMzOS5554r1aMr5uKLL+all14CYM6cOVx44YUV5nd9o7CwoOS4yHp6hlGj1KueXiQ9strkhhtuYODAgVxxxZFVMgKBAAsXLiQ1NbWU38TExFLjdcHfjDVu3Dii9FJSUkqOExISKCoqP6nhjTfe4OOPP+b111/nrrvuYsWKFeX8hJMRyk/tLz7fv38/Z599NnfddVeJgi7L9OnT+fzzz3njjTc48cQTWbJkScT34/P5Ss59Pl/JvU2ZMoW5c+fSr18/Zs6cyfz588vF065dOzIyMli+fDmzZ89m+vTpFaZb3wgu50JTeoZRo1hPrwq0aNGCiy++mBkzZpS4jR07lkcffbTkfNmyZYDbJunLL78E4Msvv2Tjxo0h4xw5ciSzZ8/G7/ezc+dOPv74Y4YMGRKRPIFAgM2bNzN69Gjuuece9u3bR25uLunp6Rw4cKBSGQFee+018vLy2L17N/Pnz2fw4MEUFBRw/vnnM3ny5Ap7URs2bGDo0KHceeedtGrVis2bNzNy5Eiee+45AL7++ms2bdpEjx49IrofgAMHDtCmTRsKCwtL4gnFhAkTuPfee9m3bx9ZWVkRx18fCBQeGdMryj8cRUkMI/4wpVdFfvvb35aaxfnII4+wePFisrKy6N27d0mvY/z48ezZs4c+ffrw2GOP0b1795DxnX/++WRlZdGvXz9OO+007r33Xo477riIZPH7/Vx66aUlk0Z+9atf0bx5c8455xxeffXVkoks4WQEZx4dPXo0w4YN47bbbqNt27bMmTOHjz/+mJkzZ9K/f3/69+9foihvv/125s2bB8Dvf/97MjMz6du3LyeffDL9+vXjF7/4BYFAgMzMTCZMmMDMmTNL9fAq489//jNDhw5l+PDh9OzZs8R93rx53H777SXnF154IS+88AIXX3xxxHHXF4qCJrIUFZjSM4yaRELNCKzRBETOBB4GEoB/qurd4fwOGjRIy87CW7NmDb169apVGRsqU6dOLTXhJd6or3Vn55b1tPrniQBsPOMpOp90QZQlMozaRUSWqGqdzEar1Z6eiCQA04CzgN7AJSLSuzbTNIz6TlHRkZ6ev8DWDzWMmqS2J7IMAdar6rcAIvICMA5YXcvpGhEQy6vKNGT8QRNZ/Pmm9AyjJqntMb12wOag8y2eWwkicrWILBaRxaE+gDaMhkaw0gsU2ZieYdQkUZ/Ioqr/UNVBqjqoVatW0RbHMKJOwH/kO72AmTcNo0apbaW3FegQdN7eczMMIwzBPT0tMqVnGDVJbSu9L4BuItJZRJKBicC8Wk7TMOo1/qCdFbTQlJ5h1CS1qvRUtQi4DngHWAPMUdXy60rVA+bOnYuIsHbt2rB+srOz6du3b63KsWzZMt58882jDl/8MXvv3r3p06cPDz/8cA1KZ9QEgaDZmwFTeoZRo9T6mJ6qvqmq3VW1q6reVdvp1RazZs1ixIgRzJo1K+T1UEuEVZXi9SsrorpKLzExkQceeIDVq1ezcOFCpk2bxurVNpk2lggEfZxO0PieYRjVJ+oTWeoDubm5LFiwgBkzZvDCCy+UuM+fP5+RI0dy7rnn0ru3+/ywqKiISZMm0atXLy688MKSrXHef/99BgwYQGZmJldeeSX5+fmAW67s5ptvZuDAgbz44oul0i27dU9BQQG33347s2fPpn///syePZuDBw9y5ZVXMmTIEAYMGMBrr70GuK18xo0bx6hRo+jWrRt33HEHAG3atGHgwIEApKen06tXL7ZuLT/M+tFHH5WsxjJgwAAOHDiAqobdBunUU09l3LhxdOnShVtuuYXnnnuOIUOGkJmZyYYNGwB4/fXXGTp0KAMGDGDMmDFs3769XLoTJ07kjTfeKDmfMmVKyeLSDYVAcOPHxvQMo0apVwtO89Yt8EP5BZWrxXGZcFbYRWIAtz7lmWeeSffu3cnIyGDJkiWceKJbMePLL79k5cqVdO7cmezsbNatW8eMGTMYPnw4V155JX/729+47rrrmDJlCu+//z7du3dn8uTJPP7449xwww0AZGRklKzTGUzZrXuSk5O58847Wbx4MY899hgAf/jDHzjttNN48sknycnJYciQIYwZMwZw2wKtXLmSRo0aMXjwYM4+++xSW/BkZ2ezdOlShg4dWi7t+++/n2nTpjF8+HByc3NJTU3llVdeCbsN0ldffcWaNWto0aIFXbp04aqrrmLRokU8/PDDPProozz00EOMGDGChQsXIiL885//5N577+WBBx4olW7xtkFnn302BQUFvP/++zz++OMRFmZ84A/q6UlRfhQlMYz4w3p6ETBr1iwmTpwIuJ5IsIlzyJAhdO7cueS8Q4cODB8+HIBLL72UBQsWsG7dOjp37lyy/ubll1/Oxx9/XBJmwoQJIdMNtXVPWd59913uvvtu+vfvz6hRo8jLy2PTpk0AnH766WRkZJCWlsYFF1zAggULSsLl5uYyfvx4HnroIZo2bRoy7RtvvJFHHnmEnJwcEhMTK9wGafDgwbRp04aUlBS6du3K2LFjgdLbBm3ZsoUzzjiDzMxM7rvvvpDbBp111ll8+OGH5Ofn89Zbb3HKKaeQlpYW8t7jFQ0ylZvSM4yapX719CrpkdUGe/bs4YMPPmDFihWICH6/HxHhvvvuA8pvExRuq56KCLfVUCRb96gqL7/8crmdDD7//POwshQWFjJ+/HgmTZrEBReEXtfxlltu4eyzz+bNN99k+PDhvPPOOxXeQyTbBl1//fXceOONnHvuucyfPz/kijCpqamMGjWKd955h9mzZ5c0NhoSwWN64jfzpmHUJNbTq4SXXnqJyy67jO+++47s7Gw2b95M586d+eSTT0L637RpE5999hkAzz//PCNGjKBHjx5kZ2ezfv16AJ555hlOPfXUStMOtXVP2W2DzjjjDB599FGKFw5funRpybX//Oc/7Nmzh8OHDzN37lyGDx+OqvKzn/2MXr16ceONN1aYdmZmJjfffDODBw9m7dq11doGCWDfvn20a+cW5Hn66afD+pswYQJPPfUUn3zyCWeeeWbE8ccLgcCRnp7PJrIYRo1iSq8SZs2axfnnn1/Kbfz48WFncfbo0YNp06bRq1cv9u7dy7XXXktqaipPPfUUF110EZmZmfh8Pq655ppK0w61dc/o0aNZvXp1yUSW2267jcLCQrKysujTpw+33XZbSfghQ4Ywfvx4srKyGD9+PIMGDeLTTz/lmWee4YMPPiiZqFI8G3T69Okl2w499NBD9O3bl6ysLJKSkjjrrLOqtQ0SuLU+L7roIk488URatmxZ4r548WKuuuqqkvOxY8fy0UcfMWbMGJKTkyOOP15Q7zu9g5qCL2DmTcOoSWp9a6GqYFsL1RwzZ84sNeGlIVJf687C1/7OsKU3sVObkdOoI91uDm1VMIx4IW62FjIM4yjwzJuHJY0EM28aRo1SvyayGBEzZcoUpkyZEm0xjKOgeCJLnq8RKWrmTcOoSepFTy+WTLBG/aBe1xlP6eX7GpEYsJ6eYdQkMa/0UlNT2b17d/1+iRl1iqqye/duUlNToy3K0eEpvYKERiSpKT3DqEli3rzZvn17tmzZgm0wa1SF1NRU2rdvH20xjgr1lF5hQiOSCkzpGUZNEvNKLykpqdSKJ4YR9wSc0itKakzSocJKPBuGURVi3rxpGA0O7zu9QGITkrGenmHUJKb0DCPW8Hp6/qTGJFMEgUCUBTKM+MGUnmHEGoFCitSHJnoTcfz22YJh1BSm9AwjxhB/EUUkgKf01HZPN4waw5SeYcQYGiikSBKRRLdTRVHB4ShLZBjxgyk9w4gxxF+EnwQkyfX08vMORVkiw4gfTOkZRqwRKKSIRBKSXE+vMN96eoZRU5jSM4wYQwKF+CUBSXI7xpvSM4yaw5SeYcQa/iL8kkhCsjNvFuabedMwagpTeoYRY4gWEZBEErwxvaJ8m71pGDWFKT3DiDGceTORhGRn3iyynp5h1Bim9AwjxkgIFOKXpCNKz77TM4waw5SeYcQYSYE8CnxpJKY4pecvMKVnGDWFKT3DiDGSNZ8iXypJntIL2MfphlFjmNIzjBgjWfMoSkglOdVTeoWm9AyjpjClZxgxRormU5SQSlJKIwACNqZnGDWGKT3DiDFSNJ9AYirJaY0BUOvpGUaNYUrPMGKMVM2DpEakpqTiVwHr6RlGjWFKzzBiiPwiP6kUIEmNSE1KJI9ksJ6eYdQYpvQMI4Y4eCiPJPHjS25EUoKQRzJSZD09w6gpTOkZRgxxeP9ud5DaDBGhgGSkyHp6hlFTmNIzjBji8P5dACQ0bgFAnqTg81tPzzBqClN6hhFD5O3fCUBik5YAFJrSM4waxZSeYcQQB3Oc0ktvcSwAhZJMgj8/miIZRlxhSs8wYoj8fdsBaJ5xHACFvhQSrKdnGDVGtZSeiEwVka0issz7/Tjo2v+KyHoRWSciZ1RfVMOIf5JyvqVAE0k/tiMARb4UEgPW0zOMmiKxBuJ4UFXvD3YQkd7ARKAP0BZ4T0S6q6q/BtIzjLilyYGNbPG1oUuCezSLfKkkFZrSM4yaorbMm+OAF1Q1X1U3AuuBIbWUlmHEDS0Of8eO5I4l5/6EVJLUlJ5h1BQ1ofSuE5HlIvKkiBzjubUDNgf52eK5lUNErhaRxSKyeOfOnTUgjmHUT7SogGP92zjcrHOJWyAhlWRTeoZRY1Sq9ETkPRFZGeI3Dngc6Ar0B7YBD1RVAFX9h6oOUtVBrVq1qmpww4gb9mz9miT8JLTqUeIWSEwlWQuiKJVhxBeVjump6phIIhKRJ4B/e6dbgQ5Bl9t7boZhhGHHtyvIAJp16F3iFkhIJQVTeoZRU1R39maboNPzgZXe8TxgooikiEhnoBuwqDppGUa8c/D7NQC07Zp5xDEplUT84C+MklSGEV9Ud/bmvSLSH1AgG/gfAFVdJSJzgNVAEfBLm7lpGBUju75hB8fQquURM78mut3TKTwMCUlRksww4odqKT1VvayCa3cBd1UnfsNoSDTJ3ciO5A4cK1LiJklO6fkLDpOQ2jRaohlG3GArshhGDKCBAMcVbuJgepdS7pKUCkD+4YPREMsw4g5TeoYRA+zYvpVmHMTXslsp9+KeXkGeKT3DqAlM6RlGDPD9+uUApLfvXcrdl+yUXv7h3DqXyTDikZpYhswwjGqyf6ubudmma1Yp94SUxgAU5ld9I9m8/HzWfPYmh75ZQNq+b0gq2EeK5lFEAn5JxC9J+CURxAfiQ/EdORYfUnkS1URrPYVEnxBo1oEBU/6K+KyNb5jSM4yYQHZ+Qx7JNDuu9JheQorr6RVWwbx5+NBBPn/xPvpsfIoB5BBQ4XvfceQmHkOerxE+AiRpIamBPBK0EFEQ/IgqQgCfBhACaJ2ovdpNI1UP0Wrfe2Rv+DmduvWp1bSM+oEpPcOIARrnbuSHxHZ0KtMbSfR6ev6CQxHFs+yLT2j65rWM0s2sSRvIjkE/o+uwc2jfuFmNy1wfWLv4A1r9+3xyspeCKT2DOFR6Bw/k0KhxUzNlGPWKYws2satJDzqVcU/yxvT8EZg3P5z3NMOW/I5DvsasPW0GvU65sOYFrWccd8IAAir4v18RbVGMGCGuNMO279Zx4IET+eK1adEWxTAipiDvMG0DP5DfrGu5a0mpjQD3nV5FfPbqNE5Z8mu2pXQm5br/0tMUHgDNmx/DZjmOlN1roi2KESPEVU+vdfsTWJvUhl5f3cXWrNG069q3ynEUFRZw+PBBAkVFBIryCRQVEvAX4A8ogYDnSSoYhyh3rXbHLCoSpWrx1P74jRGavZvX0UsUadW93LWk1CYABPLDmzcXvfMcg5fdyrq0fpzwq3+T3Ci91mStj2xL7crxud/USFwF+XnkHdxP3qEDFBUVgSqgiAYIPzHnyLNVbgwzxPuilFOFz6V4XiQCv7WDJCbTus3xdZ5udYgrpedLSKDpxH9Q9MxYkp/5CcuG3k73Uy6iUeN0NBBg187t7Ph+I/u2b+Lw7s0E9m8j8eAPNMrbzjH+3WQEdpMh+7FXhlGXHOf9T+9QvpGWnOZ6eoHC0D29pQveIuu/vyY7qSudf/maKbwQFLTszXGbP+XQgT00Sm9Rqf9d27ewddUCDmV/SfKedTTJ+4EWRTtopvtIFj/JgK2N4/gi0JPWd34ebTGqRFwpPYD2XXvz7UWvIC//jP6f/4bAwhs5QCpp5NNKApTdvGifNGVfUisOprbmu9Qsvkk7FpIbQUIS6kuChGTwJeLzCYIgUqY1F3Qq5Vp6QeeqJS0x1dqfql0lakCcGLujekdCo2MY2P/kcu4pqW4ii4ZQequXfkrX/1zJzoTWHHvt66SlN69tMeslx/Q+Dd+Wf/D1J6/Q/8dXlbuuqnyz/hu+W/A8bba8Q1//alpCyazXnOTj2NhkGIFGLdHkxkhyEyS5Mb6EBNdzE/F6cMW/UrGHOQ7xvtDSPip6n0jZd0iE75Safk7zUzNqOMbaJ+6UHkCXPkMo6LaEZZ++Rt63n+PL30dRUmOSmmSQltGB5q070KptZ1KOaUezxBQa5rw2oz6QmpJKkfrKKb1v1q6k1Ws/Jd+XRqOfzaNpRpswMRi9hpzOD+9m0GjpP9Ezr0B8CQBs3byRDR89zzEb36BP0Wq6i7IpsTNfdL6Wxj1GcXzvobRvegztoyy/UbPEpdIDSE5Opv/oi2D0RdEWxTCOmpQkH3kkQ2FeidvG7I2kvDCeFIo4NGkurdqVnwBjHCExMZFv+1zPyaumsvK+M8htegLNdy+le+E62omyKaEjy7tdS6dTJnH88X2pXyNURlWJW6VnGPFASqKPXJKRIjeR5btN31E48zyOYy+7L5hD+xMGRFnC+sFJ43/NJwf30Cv7aZocWsampM4s7nw1HU6+hOO7DzBF14AwpWcYMYyIkE8KvqLDrF69gsZzLuZ4drHrJzNpnzUq2uLVG8TnY+SUPwN/RlXpbrOVGyym9Awjxtma0JYhu98mZ/YnJIiy47wXOL7/j6ItVr3FPs9p2MTVx+mGEY9sazMGgL3JbSj62Qem8AyjGlhPzzBinJ9ceSubsi+kU6fuSII9soZRHewJMowYJyHBx/Fde1fu0TCMSjHzpmEYhtFgMKVnGIZhNBgklpbEEpGdwHc1EFVLYFcNxFMX1CdZoX7Ja7LWHvVJ3vokK9QveWtK1o6qWnaVyFohppReTSEii1V1ULTliIT6JCvUL3lN1tqjPslbn2SF+iVvfZK1GDNvGoZhGA0GU3qGYRhGgyFeld4/oi1AFahPskL9ktdkrT3qk7z1SVaoX/LWJ1mBOB3TMwzDMIxQxGtPzzAMwzDKYUrPMAzDaDDEldITkTNFZJ2IrBeRW6ItT1lEpIOIfCgiq0VklYj82nOfKiJbRWSZ9/txtGUFEJFsEVnhybTYc2shIv8RkW+8/8fEgJw9gvJumYjsF5EbYilfReRJEdkhIiuD3ELmpTge8erxchEZGAOy3iciaz15XhWR5p57JxE5HJTH0+tS1grkDVv2IvK/Xt6uE5EzYkDW2UFyZovIMs89FvI23DsrJutuRKhqXPyABGAD0AVIBr4CekdbrjIytgEGesfpwNdAb2Aq8LtoyxdC3mygZRm3e4FbvONbgHuiLWeIevAD0DGW8hU4BRgIrKwsL4EfA28BAgwDPo8BWccCid7xPUGydgr2F0N5G7LsveftKyAF6Oy9MxKiKWuZ6w8At8dQ3oZ7Z8Vk3Y3kF089vSHAelX9VlULgBeAcVGWqRSquk1Vv/SODwBrgHbRlarKjAOe9o6fBs6Lnigh+RGwQVVrYmWfGkNVPwb2lHEOl5fjgH+pYyHQXETa1ImghJZVVd9V1SLvdCHQvq7kqYwweRuOccALqpqvqhuB9bh3R51QkaziNvq7GJhVV/JURgXvrJisu5EQT0qvHbA56HwLMaxQRKQTMAD43HO6zjMHPBkLJkMPBd4VkSUicrXn1lpVt3nHPwCtoyNaWCZS+qURi/laTLi8jPW6fCWuNV9MZxFZKiIficjIaAkVglBlH8t5OxLYrqrfBLnFTN6WeWfV17obV0qv3iAiTYCXgRtUdT/wONAV6A9sw5k4YoERqjoQOAv4pYicEnxRnT0jZr55EZFk4FzgRc8pVvO1HLGWl+EQkT8CRcBzntM24HhVHQDcCDwvIk2jJV8Q9absg7iE0g22mMnbEO+sEupL3S0mnpTeVqBD0Hl7zy2mEJEkXOV5TlVfAVDV7arqV9UA8AR1aG6pCFXd6v3fAbyKk2t7sbnC+78jehKW4yzgS1XdDrGbr0GEy8uYrMsiMgX4CTDJe9HhmQl3e8dLcGNk3aMmpEcFZR+reZsIXADMLnaLlbwN9c6intXdYOJJ6X0BdBORzl6LfyIwL8oylcKz2c8A1qjqX4Pcg23e5wMry4ata0SksYikFx/jJjKsxOXp5Z63y4HXoiNhSEq1lGMxX8sQLi/nAZO9mXDDgH1BpqSoICJnAjcB56rqoSD3ViKS4B13AboB30ZHyiNUUPbzgIkikiIinXHyLqpr+UIwBlirqluKHWIhb8O9s6hHdbcc0Z5JU5M/3Myhr3Etoj9GW54Q8o3AmQGWA8u834+BZ4AVnvs8oE0MyNoFN8vtK2BVcX4CGcD7wDfAe0CLaMvqydUY2A00C3KLmXzFKeNtQCFunONn4fISN/NtmlePVwCDYkDW9bixmuJ6O93zO96rH8uAL4FzYiRvw5Y98Ecvb9cBZ0VbVs99JnBNGb+xkLfh3lkxWXcj+dkyZIZhGEaDIZ7Mm4ZhGIZRIab0DMMwjAaDKT3DMAyjwWBKzzAMw2gwmNIzDMMwGgym9AzDMIwGgyk9wzAMo8Hw/wFYY2enwC2GKwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 7)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABl4ElEQVR4nO2dd5xVxfm4n/dub7QFkSZF6Sx9AQUUjCJKlCgq2JEYo4kmaGwpGjTx97XGHlFEsQWxogZbNCBiRATpTURXQAFpu+yybLv3/f0xZ9ezd+/dvVtvYZ7P5+6eM/U9M3PmnXZmRFWxWCwWiyWW8YRbAIvFYrFYGhur7CwWi8US81hlZ7FYLJaYxyo7i8ViscQ8VtlZLBaLJeaxys5isVgsMU9EKjsR6SIiKiLx4ZbFUndE5FoR+UFEVoch7hki8kITxDNVRJZUY79IRK5obDksP1Fd/dGUdYsTz3FB7KotN5bKiMhkEckTkf+JSPu6hBGRys5Se0RkpogUOL8SESl13b8bJrFmAL9R1QEuOWeIyIwwyRNROBVvTi3dLxSRQhHZJCKnVOM2SUSeFpGDIrJLRK73C0dd5aNARG4Nxa9j/zMn/kJHns618JsqIv8Ukb1O5bW4Fs9/xHwU7DSSxoToVkTkbhHZ5/zuFhGpxv2FIvKdiBwSkfki0sov3iJXudjs5/daEfnWyd/lIjLKZTfWKQ95gcq1iJwgIstEJF9E1vj5nSAiS0Qk1yk3T4lIRrm9qs4DWju354eSLv40irKzPbKmR1WvUtV0VU0H/h8wr/xeVU8vd9fEedMKWNeE8TUKEVSe5wIrgUzgz8CrItImiNsZQHegMzAWuElExvu5aeEqI38Lxa+ItAZeB27F5O9yYF4t4n3S8dfb+X9diM8ecURQubgS+AUwAOgPnAn8OpBDEekLPAFcArQFCoF/+jm7xlUuerr8DgfuAs4FmgOzgTdEJM5xcgh4GrgxQLytgLeBe4EWwD3A2yLS0nHSHPg70B5TNjo4bitQ1VLgK0z5rzUNpuxEJEdEbhaRNcAhEYkXkRFOtzNXRFa7WypOC+L/HE1/UETedLcw/MK+XEQ2Oi2Cb0Tk1372E0VklRPOVteL2VxEZovIThH5XkT+7sqYYM9xrIj812kh7RWRF0Wkhctuv4gMdu7bi8ie8ucSkbNEZL3zvItEpLdf+tzgtGjyRGSeiCTXPqVrT5C8qTTEIiJzROTvrvufO2ma6+Rh/1rGWZ7Ovhrc3eTkzw8icoVbLkemx0RkgZP3n4vIsS6/D4nIdiffV4jIaL/gk510zheRL0XE3cO8xSkr+SKyQUTOdtlNFZFPReQBEdmHqcBret77ROSAmFbv6X7WnZ3w8kXkA0dh1AoR6QEMBv6qqodV9TVgLTApiJfLgL+p6gFV3QjMAqaGGF11fs8B1qvqK6pahEmbASLSqya/jpuzgCtVdY+qelV1RYgyVUJEuorIYidNP3TKScBhaxGZ5LwD/VzG05wyt1NEbnC5HSYinznlfqeIPCoiiS57FZHfisgWYEsIop4iIluc8B4TqdzjqqHchMplwP2qukNVvwfuJ3heXwS8raqLVbUA02g5R1y9qGrogsn7FWq23noO09s6CkBVl6nq88A3AfyeAOxyyo1XVV8A9mDKE6r6L1V9T1ULVfUAptyMDBCOD6hbI0NVG+QH5ACrgE5ACkYz7wPOwCjVU537No77RcD3QD8gDXgNeMGx6wIoEO/cTwCOBQQ4CdMaGezYDQPynPA9Try9HLs3MK2YNEyGLAN+XcNzHOeElQS0ARYDD7rsfwVsAFKB94H7HPMemJbNqUACcBPwNZDoSp9lmJZLK2AjcFUQGUYBudX8RtXwDDPK0zJQ3jhmChzncjMH+LtzPQj4ERgOxGFephwgqRblYTxQBKTV4GYX0NdJzxfccjky7XPyOB54EXjJ5f9iTCsvHviDE1ayKw1KMa3QBOAG4FsgwbE/z8kLDzDZybt2jt1UoAy41gk7pZpnmOrE8ysnra4GfgDEVc63OuUjxbm/K0hY/wT+GcTubGCjn9mjwCMB3LZ00rGty+xcYK3f+/U9sAN4Bmgdot+HgMf94luHUbo1+b0Uo6AfAPY615PqWN98BtwHJGLel4MEqD+AyzHv4XF+dnMx9UIWptI9xbEfAoxw/HbBvKfTXfEq8B/MOxy0XLjc/hvTkznGiWd8KOUmUH1QTTx5wHDX/VAgP4jbN4Gb/cwKgCGu8rrHyZ9PgTEud82AFfxUL1yLGWkQv/BOAXL8zH4ObPAz2wI8EETOB3G96y7z24GPqaZeCZpOdSloQYTLAaa57m8Gnvdz8z5wmStR73LZ9QFKnESsKKxB4poP/N65fiJQgmG66MXuAglcACys5XP9AljpZ/YW5kVdg6MAMC2kl11uPJjKZIwrfS522d8DzGyo9PeTbwZVld00PzfVKbvHMa1zt/vNwEkhxr/cCf93Nbh7Gvg/1/1xVFV2T7nszwA2VRPeAWCAKw2W+uXHTmB0EL+rgInO9VRgW4jPOhX42nWf6jzD0a5y/heX/W+A9+qQp5e4n8cxuxOYE8BtJ0eGZJfZqTgVEJCOqRDjnffkVeD9EP3Oxk9ZYyrFqSH4/ZNjPwOjpE7CVLS9a5kWx2AaI6kusxeoquxuwDRMO7rcldv1cpndA8wOEtd04A2/9+bkEOVUXA1T4GXgllDKTS3Tw+v3PN2dsAIpzo/wa2RTuZ4aDmRgGvuXAfnAsY6dOHlY6qT/XiA7QByBlF0mpqF+AabxeRmml/ZEAP+nYt7lHgHsWmKGMr3AObVJp4aes9vuuu4MnOd033NFJBfTQmkXxP13TiJUGeIRkdNFZKkzhJiLqfTK3XXCtJz96eyEt9MV/xM4Xe5giEhbEXnJGfY8iHmJ/GWahemRPqKqxY5Ze+cZAFBVn/N8HVz+drmuCzGVTlOxvWYnFXQG/uCXd50wzxgK2cAUYIaIJFTjrr2fXIFkDJpmzrDwRmdYOBcz7u/Oq4rwnPzYUf4MInKpa5g2F5OfAf2GQIWMqlroXKYHsvd/hlpQgGlZu2mGqYwCuS23r+JWVQtUdbmqlqnqbuAaYJwzlFWt3xrkqMnvYUxF+XdVLVHVj4GFwLgAz1Ad7YH9rrSGwPl1I/CYqu4IYOdf95SXix4i8m8xiyQOYua//d//OpUNquZ9TeUmVPzzpBlQoI52qMFtufvysvG5quararGqPotpyJzhuPslpqfcF9NYuRj4t4SwOlJV9wETgeuB3ZhRnQ8x72QFIjIC+Bdwrqp+FSCoyzG9+Faq+npN8bppaGXnTtztmJ5dC9cvTVXvcrnp5Lo+BvMi7HUHKCJJmCHO+zDDIy2AdzCtjPJ4jqUq2zE9u9au+Jupat8anuH/Oc+RparNMBlaMc4uIumYLvZsTGVePs/4A0ZJlLsT5/m+ryG+KojIaKm8Us7/5z83FQr+Bb8Q05os52jX9XbgTr+8S1XVuSFFZF6y+ZhWWLtqnO4EOrruOwVz6I+TBjdhVma1dMpFHq68cocnIh4nrh/ErB6chankMx2/6/z8Bqoowsl6oJvf3MoAx7wSauY8djr21bot9+L894Tgd73bTkTSMO/f+hD8rqkm7tqwE2glIu7yG6jsjAP+IiKB5jX9654fnOvHgU1Ad+f9/xOVy0VdZW5MKuUJ1ee1f/51w/TiAikWcHqIzvVA4N+q+pWq+lT1PUxenBCKkKr6sapmq2orzEhFL8zUTrksgzCjZtNU9aMgwfTGjM7lhRKnm8b89OAF4EwROU1E4kQkWUTGiIi7crtYRPo4hfYO4FVV9fqFk4jJjD1AmTOJ624JzgYuF7Mc2iMiHUSkl6ruBD4A7heRZo7dsSJyUg1yl7du80SkA1VXFj0ELFfVK4AFwEzH/GVggiNHAmYOqRj4X00J5Y+qfqI/rYYK9PuktmEGYBVwoZM34zFDSuXMAq4SkeFiSBOzNDgDKhaOzKnhGcp7vInVOHsZk3e9nTJwazVu/cnADKXsAeJF5DaqtliHiMg5YlbNTcfkx1LMXI06fhGRyzE9u4jFaeWuAv7qvEtnY1bevRbEy3OYir6lmIUhv8IMC+Pka0/nncgEHgYWuSqQoH4x8+D9xCz6SAZuA9ao6qYQ/C4GtgF/FLNIaiRmxeb7jlxTJYRPMVT1O8xQ+QwRSRSR4zErEP1Zj+lBPCYiZ/nZ3SrmM4i+mN5C+YrSDEzPocCR/+qa5IkAngOud+q+9pi6Z04Qty9i6uXRTkPlDuB1Vc0XkRZOfZ3s5M9FwInAe47fLzB1XDenXjgVMxe9DkyD0ikTCeZWkqXy4p5BIpIgIs0wnZftqlqe9/2ceK5V1beredYEzHtcaxpN2anqdky39U+YSmU7RnG443wekym7gGTgdwHCyXfMX8aM416I0f7l9sswhfUBTMv+Y37qYV2KqWw3OH5fpfqeBpgJ0MFOWAswy6wBs+oT8/KUvwDXA4NF5CJV3YzpBT6C6Z2eCZypqiU1xBcufo+RMRezQmt+uYWqLsdUUo9i0u1rKq/u6oQZ3qgJpZoypqrvYirahU4cSx2rUArz+5iX4yvMMFQRVYeX3sQsPjmAaUmeo6qlqroBs2LtM8yQSlaIz9OoiPlWcmY1TqZg5toO4CwBV9VyhX2RiLhb83/FDO9/h3kn7nVa4gDdMGmXj6moijFzKTX6deKbhJkvPICZ45kSot9STJ1wBub9mgVc6lKUoZYrMGX2eMwCpr9jlFWVcqOqqzGLI2ZJ5dWOH2PK3EeYRWYfOOY3YOqYfEc+92cVYaF8pKcaJ09glvWvxeTnAses3H/FaJCqrgeuwii9HzHK/TeO0wRMWpYvULkW+IVrOPE54CXMPPRBzLv7a1f+nYgZqn4H01s+jOlwlHOTE+52TD18tsvuD5gFgbNdI1iBeqdx1LDCOxjlK8aaHBFZhJlQfiosAljqhNNSWw30dyqv6tz+ANykZplxKGH3xrysSapaVm9hLVGFiHyAWXi2sQ5+52EWL/214SWzRAIikgIswSwm8v82sEbsDiqWWuEsLOhdk6JzuAUz7Bb0WyoROVvMrhstgbsx3wBZRXcEoqrjQlV0IpLtTEt4nGH4ibhGJyyxhYicjxkt2I0Z5as1R6Syk8pba7l/1Q0hWWqJqj6nqt1VdUg1zn6NGU7ZillOHHFzJLa8RCRHY4bTCjDDaVer6sqmFECqWUjWlHIcCajqy6p6lKqeoap7a/ZRlbANY1osFovF0lQckT07i8VisRxZRMpGpgC0bt1au3TpEm4xLBaLxdKErFixYq+qBtvUvEGIKGXXpUsXli9fHm4xLBaLxdKEiMh3NbuqH3YY02KxWCwxj1V2Fksko4r66vQNrcVicRFRw5gWi+UnNm9cQ/N551CmQsmFr9OtZ1a4RbJYopaIV3alpaXs2LGDoqKicItiiSKSk5Pp2LEjCQnVHboQ2RQu+DNdOYBXPHz9xu/gloXhFsliiVoiXtnt2LGDjIwMunTpglQ+5NdiCYiqsm/fPnbs2EHXrl3DLU6dOLDvR/rmf8ryo88nPr0Nw7Y+zPpVS+k7cES4RbNYopJ6z9mJyLUisklE1ovIPX52xzg7CtwQzH9NFBUVkZmZaRWdJWREhMzMzKgeDVi/ZD6J4qXdiMn0/vk1lGg8+Z89E26xLJaopV49OxEZi9mTboCqFouI/8Go/wDerU8cTjz1DcJyhBHtZca3bTnFJNAl6wQkPonVqUPo9ONC1OdDPHZdmcVSW+r71lwN3FV+dpmq/lhuISK/AL4l+CGCFoslCK3y1rItsTsSnwRAaffT6aC72bL28zBLZrFEJ/VVdj2A0SLyuYh8LCLZUHGa982Ys+GqRUSuFJHlIrJ8z5499RSncRAR/vCHP1Tc33fffcyYMSN8AtXAokWL+N//an1mbCXGjx9PixYt+PnPf95AUllCpbi0lG6lWznY6qfzZLuONIdt71v173CJZbFENTUqOxH5UETWBfhNxAyDtgJGYA5mfVnM+NEM4AFVrXH3b1V9UlWHqurQNm0adbeYOpOUlMTrr7/O3r112mw7KKqKrxG+oWoIZXfjjTfy/PPPN5BEltqwc9vXpEoxnra9K8wy2x7Dt3FdSP8+7GfMWixRSY3KTlVPUdV+AX5vAjswR7qrc2K4D2iNOb34HhHJAaYDfxKRaxrvMRqX+Ph4rrzySh544IEqdnv27GHSpElkZ2eTnZ3Np5+aymjGjBncd999Fe769etHTk4OOTk59OzZk0svvZR+/fqxfft2brzxRvr160dWVhbz5pmDkRctWsSYMWM499xz6dWrFxdddBGBTqh4+OGH6dOnD/3792fKlCnk5OQwc+ZMHnjgAQYOHMgnn3xSrYyXXHIJxx9/PN27d2fWrFkV4f7sZz8jIyOj2nR55ZVX6NevHwMGDODEE08EzIKiyy+/nKysLAYNGsTChWa5/Jw5c/jFL37BqaeeSpcuXXj00Uf5xz/+waBBgxgxYgT79+8HYNasWWRnZzNgwAAmTZpEYWFhlXhHjBjB+vU/jY6PGTMmpraZ2/udOdIto32vSuZ7Wo+ge/E6DhceCodYFktUU99PD+YDY4GFItIDSAT2qurocgciMgMoUNVH6xkXt7+9ng0/HKxvMJXo074Zfz2zb43ufvvb39K/f39uuummSua///3vue666xg1ahTbtm3jtNNOY+PG6s+f3LJlC88++ywjRozgtddeY9WqVaxevZq9e/eSnZ1doThWrlzJ+vXrad++PSNHjuTTTz9l1KhRlcK66667+Pbbb0lKSiI3N5cWLVpw1VVXkZ6ezg03mEWwF154YVAZ16xZw9KlSzl06BCDBg1iwoQJtG/fPqS0u+OOO3j//ffp0KEDubm5ADz22GOICGvXrmXTpk2MGzeOr776CoB169axcuVKioqKOO6447j77rtZuXIl1113Hc899xzTp0/nnHPO4Ve/+hUAf/nLX5g9ezbXXnttpXgnT57Myy+/zO23387OnTvZuXMnQ4cODUnmaODwLpNeR3WpXC5Tep1M8u6XWL3iIwaMPiscolksUUt95+yeBrqJyDrgJeAyjdED8po1a8all17Kww8/XMn8ww8/5JprrmHgwIGcddZZHDx4kIKC6kdvO3fuzIgR5nupJUuWcMEFFxAXF0fbtm056aST+OKLLwAYNmwYHTt2xOPxMHDgQHJycqqE1b9/fy666CJeeOEF4uMDt12qk3HixImkpKTQunVrxo4dy7Jly0JOk5EjRzJ16lRmzZqF1+uteJ6LL74YgF69etG5c+cKZTd27FgyMjJo06YNzZs358wzzwQgKyur4tnWrVvH6NGjycrK4sUXX6zUgyvn/PPP59VXXwXg5Zdf5txzzw1Z5mhA9n/DYZJo1qZTJfPjho6jTD0UbPwoTJJZLNFLvXp2qloCXFyDmxn1icNNKD2wxmT69OkMHjyYyy+/vMLM5/OxdOlSkpOTK7mNj4+vNB/n/uYrLS0tpPiSkpIqruPi4igrK6viZsGCBSxevJi3336bO++8k7Vr11ZxE0xGqLpEvzZL9mfOnMnnn3/OggULGDJkCCtWrKjWvft5PB5Pxb3H46l4tqlTpzJ//nwGDBjAnDlzWLRoUZVwOnToQGZmJmvWrGHevHnMnBlbB4anHtrG7rij6eL3iUFKRku+SuxJq92fhUkyiyV6sR/s1IJWrVpx/vnnM3v27AqzcePG8cgjj1Tcr1q1CjDHFX355ZcAfPnll3z77bcBwxw9ejTz5s3D6/WyZ88eFi9ezLBhw0KSx+fzsX37dsaOHcvdd99NXl4eBQUFZGRkkJ+fX6OMAG+++SZFRUXs27ePRYsWkZ2dHVLcAFu3bmX48OHccccdtGnThu3btzN69GhefPFFAL766iu2bdtGz549Qw4zPz+fdu3aUVpaWhFOICZPnsw999xDXl4e/fv3Dzn8aCCj+EfyE9sGtMtrdwI9yr5i377IXLlssUQqVtnVkj/84Q+VVmU+/PDDLF++nP79+9OnT5+KXsakSZPYv38/ffv25dFHH6VHjx4Bwzv77LPp378/AwYM4OSTT+aee+7h6KOPDkkWr9fLxRdfXLEY5He/+x0tWrTgzDPP5I033qhYoBJMRjDDoGPHjmXEiBHceuutFfN1o0eP5rzzzuOjjz6iY8eOvP/++wDcdtttvPXWW4BZsZmVlUW/fv044YQTGDBgAL/5zW/w+XxkZWUxefJk5syZU6lHVxN/+9vfGD58OCNHjqRXr58WaLz11lvcdtttFffnnnsuL730Eueff37IYUcLLb17KUkNrOxa9BtHnChbl73XxFJZLNGNRNIU29ChQ9V/Vd3GjRvp3bt3EB+W+jBjxoxKC1lijWgsO/mHCkm7pz1fdv0VQ6feW8XeW1JEyf87hi9bTWDk7+z2YZbYQERWqGqjrjKzPTuLJYLYu2s7HlHiW3QIaB+XmMzW1AF0OPB5wE9RLBZLYCL+1ANL4xHJu8AcqeT9+B0AKZmdgrop6nQi/Tbfx7bvvuaYLt2bSjSLJaqxPTuLJYIo2f89AGmtOwZ1027QeAC2L6/3HusWyxGDVXYWSwThzTPKrlmbY4K6ad9jMPtpTlzOx00llsUS9VhlZ7FEEFKwmxKNJ6NV4NWYAOKJ47vmw+hesAxvgG8vLRZLVayys1giiLjCvRyQ5jWeWeftcTqZHOSbFf9pIskslujGKrsQmT9/PiLCpk2bgrrJycmhX79+Qe0bglWrVvHOO+/UK4xp06Zx1FFHNbqsltqTUHKAgrjmNbrrdsLZFGsCB1e+0QRSWSzRj1V2ITJ37lxGjRrF3LlzA9oH2sqrtpTvL1kdDaHspk6dynvv2Y+SI5HkklwOx9es7Fq1bMW6lKF02v0h6qu53FgsRzpW2YVAQUEBS5YsYfbs2bz00ksV5osWLWL06NGcddZZ9OnTBzBK76KLLqJ3796ce+65FUfUfPTRRwwaNIisrCymTZtGcXExYLYVu/nmmxk8eDCvvPJKpXj9j9ApKSnhtttuY968eQwcOJB58+Zx6NAhpk2bxrBhwxg0aBBvvvkmYI7UmThxImPGjKF79+7cfvtP5+ieeOKJtGrVqtpn/vjjjxk4cCADBw5k0KBB5Ofno6pBjyM66aSTmDhxIt26deOWW27hxRdfZNiwYWRlZbF161YA3n77bYYPH86gQYM45ZRT2L17d5V4p0yZwoIFCyrup06dWrHp85FAmjeP4sSWIbkt7TWRo3QfW7+wDReLpSai6zu7d2+BXVU3Oq4XR2fB6XdV6+TNN99k/Pjx9OjRg8zMTFasWMGQIUMAs+/lunXr6Nq1Kzk5OWzevJnZs2czcuRIpk2bxj//+U+uueYapk6dykcffUSPHj249NJLefzxx5k+fToAmZmZFftouvE/QicxMZE77riD5cuX8+ij5sSkP/3pT5x88sk8/fTT5ObmMmzYME455RQAli1bxrp160hNTSU7O5sJEyaEfBTOfffdx2OPPcbIkSMpKCggOTmZ119/PehxRKtXr2bjxo20atWKbt26ccUVV7Bs2TIeeughHnnkER588EFGjRrF0qVLERGeeuop7rnnHu6///5K8ZYf3zNhwgRKSkr46KOPePzxx0OSORZo5stjZ3L1DZFy+vzsInJX/o1D/3sKhk9oZMkslugmpnp2iuL1leHThj39e+7cuUyZMgUwPQ/3UOawYcPo2rVrxX2nTp0YOXIkABdffDFLlixh8+bNdO3atWJ/zMsuu4zFixdX+Jk8eXLAeAMdoePPBx98wF133cXAgQMZM2YMRUVFbNu2DYBTTz2VzMxMUlJSOOecc1iyZEnIzzxy5Eiuv/56Hn74YXJzc4mPj6/2OKLs7GzatWtHUlISxx57LOPGjQMqH9+zY8cOTjvtNLKysrj33nsDHt9z+umns3DhQoqLi3n33Xc58cQTSUlJCVnuaKaouJjmcghSM0Ny3yyjGevaTKB37scc2PVdI0tnsUQ30dWzq6EH5vOWEbd7LQVJbUnPDO0A0prYv38///3vf1m7di0igtfrRUS4916zb6H/cT11OTIn2JE/oRyho6q89tprVU4W+Pzzz+t1fM8tt9zChAkTeOeddxg5cmTFRtDBCOX4nmuvvZbrr7+es846i0WLFgXcwSU5OZkxY8bw/vvvM2/evIpGxpHAgb27aQd40luH7Kfj+Onw/GtsffU2hl7zbKPJZrFEO9Gl7GrAI05HVRtuwv7VV1/lkksu4YknnqgwO+mkk/jkk08Cut+2bRufffYZxx9/PP/6178YNWoUPXv2JCcnh6+//prjjjuO559/npNOOqnGuMuP0Bk+fDjvvvsu27dvr3J8z2mnncYjjzzCI488goiwcuVKBg0aBMB//vMf9u/fT0pKCvPnz+fpp58O+bm3bt1KVlYWWVlZfPHFF2zatInRo0fzxBNPcNlll7F//34WL17MvffeW+0KVTd5eXl06GD2fHz22eAV8+TJk3nqqadYvnw5c+bMCVnmaCd//y7aAQkZoSu7Lsf1ZWmbiQzZ8yZfLvuUwcNGhuxXVTl4qJCDu3Mo3LudQ/l5+EoPE+8rAfGgnjjwJIAnDk/5Ly4eT1wcnrg4xBOPeOJQiUM8HlTiQOIA8G9Xld+XG4ufebnJT+60krsqstfCPL3l0bRu1zl4QliOCGJK2YnHg08FGnAYc+7cudx8882VzCZNmsTcuXMDDj/27NmTxx57jGnTptGnTx+uvvpqkpOTeeaZZzjvvPMoKysjOzubq666qsa4b7zxRrZs2YKq8rOf/YwBAwZwzDHHVAxb/vGPf+TWW29l+vTp9O/fH5/PR9euXfn3v/8NmCHWSZMmsWPHDi6++OKK+boLLriARYsWsXfvXjp27Mjtt9/OL3/5y4qjf6666ioefPBBFi5ciMfjoW/fvpx++ukkJiby2WefMWDAAESk4jiiUJXdjBkzOO+882jZsiUnn3xyxRl/y5cvZ+bMmTz11FOAOX/vkksuYeLEiSQmJoYUdixQlGfOqEtsdlSt/A246C7yH/4vzd/9NbnHLqRFZpuA7nw+ZVPONnK+eI+EbYs57tCXdNadNJfY3lD6sCZy8MZvaJaeEW5RLGEk5o74KfthNcXxzUg7qmvNjmOYOXPmVFrIciQSbUf8rHh3DkM+/z3fnvcBXfsOr5Xfb5ctoMOCS9ge14lDpz1A3+yxxHmEvXv3snXlQg5t/i9H7/ucXr5v8IhymGRyMgZRmJkFLY4hvkUH0pq1JD45FZ8nCdSLer3gK0O9Zfh8XnzeMufnrbhHvaA+RL3g8yKqqNM9869bfrpV19+q9lrFfWACjcqLX1/Qt/W/ZO+dz45pq+h4zJFdJ0QyTXHET0z17AB8eBq0Z2exNBXeQ+ZQ4NQWgXtm1dF12ATWFs6iw6LpHPvu2ex/J4My4skkl+GilBLHdyl92dTpN7QbPJ6W3Y+nd1xCQz9CxLHynRLYO5+Swtxwi2IJMzGn7BRBrLJj6tSpTJ06NdxiWGqBrzAPgPTmoc/ZuckaM4mCQWNYvfA5ynasRNTH9mYdyDjueLoNPpnjUpo1oLTRQVyyeeaSQ7nhFcQSdqJC2alqyCsJ1fbsLFQdQosGfMX5lKmH1NT0OoeR3jyTAb+4rgGlim7iHAVfVngwzJJYwk3Ef2eXnJzMvn37Qq68VDwVK7ksRyaqyr59+0hOTg63KLWjOJ9DklrjJtCW0ElIbQGA93BeeAWxhJ2I79l17NiRHTt2sGfPnpDcl+TtRvCRkGsV3pFMcnIyHTsGPwA1EokryeewpFLzzpiWUElMM6npPWx7dkc6Ea/sEhISKu1QUhPL772Ftoe30Om2DY0olcXS8MSVFlDkSQ23GDFFSobZZ9RXlF+DS0usE3PjJb6EVBJ9ReEWw2KpNYllBRTHBd5Nx1I3UtNNz06LbM/uSCcmlV0KVtlZoo9E7yHK4uu+OMVSlbSUFA5rIpTYnt2RTswpOxJSSdaiqFyNZzmySfEVUpZglV1D4vEIh0jBU2x7dkc6safsEtNIFG/FeXEWSzSgqqRoIZpolV1DUyipxJUWhFsMS5iJOWXnSTKVRWGBbclZooeiUh/pHIYku39jQ3PYk0q8VXZHPDGo7MwE/+FDVtlZooe8Q4dJlWIk+cjb5aSxKYpLJ8F7KNxiWMJMzCm7uBSz+upwQW54BbFYasGh/AMAeKyya3BK4tJIssruiCfmlF18it0LzxJ9lDfO4lOtsmtoSuPTSLbK7oin3spORK4VkU0isl5E7nGZ9xeRzxzztSLSJHs3JaS1AKC00G4PZIkeSpw55vgjcLPmxsabkE6KFoZbDEuYqdcOKiIyFpgIDFDVYhE5yjGPB14ALlHV1SKSCZTWW9oQSHKUXZk90sMSRZQfQVO+l6Ol4fAlZpBGoTkgL8QN5S2xR317dlcDd6lqMYCq/uiYjwPWqOpqx3yfqnrrGVdIJKe3AMBnN361RBHlu/InpdmdMRsaTcwgHh9aant3RzL1VXY9gNEi8rmIfCwi2S5zFZH3ReRLEbkpWAAicqWILBeR5aFu9lwd5Xvhqd0LzxJF+IpM46y8sWZpQJLN5xzFh2wD+EimxmFMEfkQODqA1Z8d/62AEUA28LKIdHPMRzlmhcBHzrHrH/kHoqpPAk8CDB06tN7bnqSmN8enAnYvPEsU4XXKa0pGi/AKEoPEJZvecmF+Lskt24dZGku4qFHZqeopwexE5GrgdTV7cy0TER/QGtgBLFbVvY67d4DBQBVl19AkJsSTTzJSant2lijCGYmww5gNj8dZ9FOUnxteQSxhpb7DmPOBsQAi0gNIBPYC7wNZIpLqLFY5CWiyM3cKJA1PsVV2luhBnI2KJdHuoNLQJKSaBkSx/RzpiKa+59k9DTwtIuuAEuAyp5d3QET+AXwBKPCOqi6oZ1whU2T3wrNEGVJSwCFSSLOnlDc45fOgxQUHwiuIJazUS9mpaglwcRC7FzCfHzQ5RXFpJNhhTEsUEV9aQKGkYk+za3jSmrUAoNh+e3tEE5PNyJL4NLsXniWqSCizp5Q3FunNWgFQYldjHtHEpLIrTcggxWuHMS3RQ0LZIXtKeSPRvIVRdt7DdoX2kUxMKjtfQobdHsgSVST5DlFilV2jkJycQpEmoPYA1yOamFR2mpRBuh6yp5VbooZkXyGl8fbg1saiUFIR++3tEU1MKjtSWpIspRQeskOZluggVQvxJlhl11gc8qQTX2Ln7I5kYlTZmTH6gtwfa3BosUQGaVqIL9Equ8aiIK4FyaX204MjmZhUdvHpmQAU5tZ/r02LpbEpKS0jjSJ89oPyRqMosQVpZbZndyQTk8ouMaM1AEV5VtlZIp/DBQfxiKJJVtk1FiWJrWjms8ruSCYmlV1Ss6MAKMm3ys4S+Rx2trESq+wajbLkVjTXg6ivSU4as0QgMansUlu0AaCsYF+YJbFYaqa4wPQ4PMn2lPLGQlMziRcfRfl23u5IJSaVXcvWbQHwHtofZkkslpopLbTKrrGJSzdTG/kHdoVZEku4qO9G0BFJakoKhzQZLWyYnp36fOSs+5R9S18ife8qWpd+T7qazxqKSaLIk0JRXAZF8c0pS2qOJrfEk9qShLRWxKW1wpPWkoT0VsSntyYpvRXJGa2IS0hCRMwPgfJrcbc/FFXFp6Dqw6fg8/kA8KniU2Ovqgg4YSkiYEI13xl6TPDGDThhlvs3YfpUUUB94ANq+kJR6mFfrd8aApZq7KvzqoCquVBcP+dbTJ/qT3YKijr/cdKYCneVzMvDreT+Jz/l4RAoXEze5m3P4TggPsUe79NYJGSY0Z6Cfbs4qku/eofnLSnim09fIW/9h7TM20CG9wApvkJKJYFSSeSQpxkFCa0oSmxFaXIm3tQ2xKW1Ij6tJUnp5n9CagsSk5NJSkwiKSmZpORkPHEJIB7nXS0vsKYAiZhrVf2pMAPqUxSfY2fkK39/y8uouaaSZaB3XPwuyt+3cnNTx7jsPHGkpkVHIy0mlZ2IcNCTgaeo/kMW2zYs5dD8G+hdspb2Gs+3CcexpdnxeJOaA4KUHYaSQySUHCS5OI/Uw3topgU0p4AkKav/swBx9Q7FEg2kNc8MtwgxS1pLc/70oQO76xVOaWkpn79yP32+eozuHOSgppKT2J2dKZ3xJaTj0TI8ZYdJKcsjvWQ/bYu20io3lwSJzbnCL3y9yL7j83CLERIxqewADsU1J7G4fsOYn798H4PW/x8FkspnPW6k57gr6dX6qBr9FZV62VtQzL7cPIoP7qXs0H4zpHr4AHo4l7jiXMRbWt4uc3U5fmp6KU4Lyun5iem6YYyEiltXT/CnHoM4vRQTjtvOCQCPOywTkat3SM3dpLpb191fHXfEUdwtVlfL1Pnjfn4qesUVzl1uK5u7k0gq0hM/v1LhvyIswRWDuY9La0W3PkPq9HyWmmnR2ii7ory6K7s9u3bww+wLGVW6mo1J/dky9Fr6jZpI/5Sk6j2qUlqYS/6BHzmUt5/DB/fiLczDdzgXb2kx3rISvGUl+EpLEF8ZFT22irEZqXiPQdBKBdfdBXN+/r0xtywiVc38xXXJ7W+ufo4Kk2uuDyOF2FV2CZmkl9R9NebS529jxNaHWJOSTYdfPs/xbdqF7Dc5IY4OLVPp0DIVCN2fxWJpHFod1R6AsoN122hix/ZtlD59Bj19u1g95G/0//k1SKhnD4qQkNaSVmktadWxTtFbGoCYVXZFyUfR8fDmOvld8vo/GbX1IZZnnMyA380jISGxgaWzWCxNSVJKOnmkIYdqv0DlwIEDFD9zJu11Nz9MeIEBw8Y3goSWxiYmV2MCeNOOoqXm4SsrrZW/b9Z9zpDVf2VjUn8GWUVnscQM+zxtSC6s3TCmz+tj46zL6er9jm2nPEk3q+iilphVdpreDo8oB/f+ELKfwsOH4fVfUSBpHDXtX8RZRWexxAz5iW3IKKndMOanrz/CCYULWdPjt/QcdXYjSWZpCmJW2cW3MHNleXu2h+xn+dw76Ob7jr0n/R+ZbTs1lmgWiyUMFCa3pWVZ6PP4O3Zso9+6e9iS1JcBF9zRiJJZmoKYVXbNWncAIO/H0JTdru+/Y9h3s1iVfiK9x17QmKJZLJYwUJbenlbk4SspCsn9jpeuJ43DtJj8OOKxHwBFOzGr7Fq16wxA0b7QlN2m1/5GPF7aTrqrMcWyWCxhIq6FWQq5b2dOjW5XLV/CiIL/sPaYS2jTbUAjS2ZpCmJW2bU+ujMlGo8e+K5Gtxu3fM3wfW+ysc142nXt2wTSWSyWpia1bTcA9n//VbXuVJXD7/+NfFLpe95tTSGapQmIWWUXFxfHTk9bkgq21ej2u7fvIlFK6XqOLdgWS6zSolNvAAp3Vv9J0tIlH3J86VK29fwlyc3srjaxQswqO4B9ie1pdvj7at1s3voNJ+a9xZY240lv37uJJLNYLE1N+w5dOaRJePcE79mpKgkf/x95ZNBz4o1NKJ2lsYlpZXc4rRNHle2sdpupbQvuIZkSOpxle3UWSyyTmBDHD3EdSMr7NqibZYsXMLRsBdt6X0l8qt2YO5aIaWXnyexGOoXk7t0Z0P677ds4Yd/rbGx9Khmd+jSxdBaLpak5mNaF1odzAtqpKsmf3MV+aUHvidc3rWCWRiemlV1KB7PYZNeWFQHtv3nrLlIo4egzb21KsSwWS5gobpNFO/ZQsL9qA/iLhfMZULaWbX2uJj45PQzSWRqTmFZ2bbpnA1D43coqdj/8sIPsH19jfcuTyezSv6lFs1gsYSCp8zAAfli/pJK51+sj49P/x4+SSb+zfhcO0SyNTEwru3btOrKLTGT3mip2m+ffRboU2V6dxXIE0a3/SMrUw4HNn1Yy/+K95+jt/Yqdg6YTn5QaJuksjUlMKzuPR/ghtRdt89ZUWqSy84dtDNv9MmtbnEybYweFUUKLxdKUtGzZkq8Se9N258IKs+LiItotv5dtno5knXF1GKWzNCYxrewA8juMpr3uZv936yvMvnnj7yRTwlFn3R5GySwWSzjY02k8Xbw57Nq6CoDl/5pBZ91B3qi/4IlPCK9wlkYj5pVdh2ETAfhmyTwAtq77guwfX2Vlq9Np283O1VksRxo9fjaVw5rIntdvYcVbjzM85wlWZIwl62S7J24sU29lJyLXisgmEVkvIvc4Zgki8qyIrBWRjSLyx/qLWjeO696HNfFZdN76Inu3b0LeuIJCSeW4C+8Pl0gWiyWMtOtwDJ93/S1Zhz5jyJe38E3CcfT61TPhFsvSyNTrpHIRGQtMBAaoarGIHOVYnQckqWqWiKQCG0Rkrqrm1E/cuuH72W20eG8KCbOH01zjWD92FgPbtA+HKBaLJQI46bK/smrJEEoP7ibr5AtJTrGLUmKdeik74GrgLlUtBlDV8pMRFUgTkXggBSgBDtYzrjoz8PhxLPf+i0Pr3qN19iQGDhkdLlEsFksEICIMHH1muMWwNCGi1WylVaNnkVXAm8B4oAi4QVW/EJEE4HngZ0AqcJ2qPhkkjCuBKwGOOeaYId99V/MpBRaLxWKJHURkhaoObcw4auzZiciHwNEBrP7s+G8FjACygZdFpBswDPAC7YGWwCci8qGqfuMfiKMEnwQYOnRo3TWvxWKxWCxBqFHZqeopwexE5GrgdTXdw2Ui4gNaAxcC76lqKfCjiHwKDAWqKDuLxWKxWBqb+s7ZzQfGAgtFpAeQCOwFtgEnA8+LSBqm5/dgTYGtWLFir4g0xDhma0eOaCCaZIXoktfK2nhEk7zRJCtEl7wNJWvnBgijWuo7Z5cIPA0MxCxCuUFV/ysi6cAzQB9AgGdU9d76ixuyXMsbe/y3oYgmWSG65LWyNh7RJG80yQrRJW80yVqvnp2qlgAXBzAvwHx+YLFYLBZL2In5HVQsFovFYolVZRfwM4cIJZpkheiS18raeESTvNEkK0SXvFEja73m7CwWi8ViiQZitWdnsVgsFksFVtlZLBaLJeaJKWUnIuNFZLOIfC0it4RbHn9EpJOILBSRDc4pEb93zGeIyPcissr5nRFuWQFEJMc5uWKViCx3zFqJyH9EZIvzv2UEyNnTlXarROSgiEyPpHQVkadF5EcRWecyC5iWYnjYKcdrRGRwBMh6r3O6yRoReUNEWjjmXUTksCuNZzalrNXIGzTvReSPTtpuFpHTIkDWeS45c5xtGCMlbYPVWRFZdqtFVWPiB8QBW4FumI/bVwN9wi2Xn4ztgMHOdQbwFeZbxBmYbxTDLqOfvDlAaz+ze4BbnOtbgLvDLWeAcrAL85FqxKQrcCIwGFhXU1oCZwDvYr5RHQF8HgGyjgPineu7XbJ2cbuLoLQNmPfO+7YaSAK6OnVGXDhl9bO/H7gtgtI2WJ0VkWW3ul8s9eyGAV+r6jdqvv97CXP8UMSgqjtV9UvnOh/YCHQIr1S1ZiLwrHP9LPCL8IkSkJ8BW1U1onYUV9XFwH4/42BpORF4Tg1LgRYi0q5JBCWwrKr6gaqWObdLgY5NJU9NBEnbYEwEXlLVYlX9FvgaU3c0CdXJKiICnA/MbSp5aqKaOisiy251xJKy6wBsd93vIIIViYh0AQYBnztG1zjd/qcjYWjQQYEPRGSFmNMpANqq6k7nehfQNjyiBWUKlSuLSEzXcoKlZaSX5WmY1ns5XUVkpYh8LCKRdH5WoLyP5LQdDexW1S0us4hJW786K+rKbiwpu6hBzHZqrwHTVfUg8DhwLGbbtZ2YoYxIYJSqDgZOB34rIie6LdWMW0TMtytitq87C3jFMYrUdK1CpKVlMETkz0AZ8KJjtBM4RlUHAdcD/xKRZuGSz0XU5L2LC6jcUIuYtA1QZ1UQLWU3lpTd90An131HxyyiEHPW32vAi6r6OoCq7lZVr6r6gFk04bBKdajq987/H4E3MHLtLh+WcP7/GDyEJud04EtV3Q2Rm64ugqVlRJZlEZkK/By4yKngcIYD9znXKzBzYD3CJqRDNXkfqWkbD5wDzCs3i5S0DVRnEWVlF2JL2X0BdBeRrk4LfwrwVphlqoQzJj8b2Kiq/3CZu8e0zwbW+fttakQkTUQyyq8xCxTWYdL0MsfZZZjDeyOFSi3jSExXP4Kl5VvApc7KthFAnmvIKCyIyHjgJuAsVS10mbcRkTjnuhvQnQg4yquavH8LmCIiSSLSFSPvsqaWLwCnAJtUdUe5QSSkbbA6iygquxWEe4VMQ/4wK4G+wrSA/hxueQLINwrT3V8DrHJ+Z2BOdV/rmL8FtIsAWbthVq2tBtaXpyeQCXwEbAE+BFqFW1ZHrjRgH9DcZRYx6YpRwjuBUsw8xi+DpSVmJdtjTjleCwyNAFm/xszFlJfbmY7bSU75WAV8CZwZIWkbNO8xB09vBTYDp4dbVsd8DnCVn9tISNtgdVZElt3qfna7MIvFYrHEPLE0jGmxWCwWS0CssrNYLBZLzGOVncVisVhiHqvsLBaLxRLzWGVnsVgslpjHKjuLxWKxxDxW2VksFosl5rHKzmKxWCwxj1V2FovFYol5rLKzWCwWS8xjlZ3FYrFYYh6r7CwWi8US80SkshORLiKizhlPlihFRK4VkR9EZHUY4p4hIi80QTxTRWRJNfaLROSKxpbD8hPV1R9NWbc48RwXxK7acmOpjIhMFpE8EfmfiLSvSxgRqewstUdEZopIgfMrEZFS1/27YRJrBvAbVR3gknOGiMwIkzwRhVPx5tTS/UIRKRSRTSJySjVuk0TkaRE5KCK7ROR6v3DUVT4KROTWUPw69j9z4i905OlcC7+pIvJPEdnrVF6La/H8R8wRLU4jaUyIbkVE7haRfc7vbuccumDuLxSR70TkkIjMF5FWfvEWucrFZj+/14rIt07+LheRUS67sU55yAtUrkXkBBFZJiL5IrLGz+8EEVkiIrlOuXlKnPM0AVR1HtDauT0/lHTxp1GUne2RNT2qepWqpqtqOvD/gHnl96p6erm7Js6bVkTegam1JoLK81xgJeYssT8Dr4pImyBuZ2AO++wMjAVuEnMAq5sWrjLyt1D8ikhr4HXgVkz+Lsd1unYI8T7p+Ovt/L8uxGePOCKoXFwJ/AIYAPQHzgR+HcihiPQFngAuAdoChcA//Zxd4yoXPV1+hwN3AecCzTGHur4hzgGzwCHgaeDGAPG2At4G7gVaAPcAb4tIS8dJc+DvQHtM2ejguK1AVUsx55VmVpcYwWgwZSciOSJys4isAQ6JSLyIjHC6nbkistrdUnFaEP/naPqDIvKmu4XhF/blIrLRaRF8IyK/9rOfKCKrnHC2ul7M5iIyW0R2isj3IvJ3V8YEe45jReS/Tgtpr4i8KCItXHb7RWSwc99eRPaUP5eInCUi653nXSQivf3S5wanRZMnIvNEJLn2KV17guRNpSEWEZkjIn933f/cSdNcJw/71zLO8nT21eDuJid/fhCRK9xyOTI9JiILnLz/XESOdfl9SES2O/m+QkRG+wWf7KRzvoh8KSLuHuYtTlnJF5ENInK2y26qiHwqIg+IyD5MBV7T894nIgfEtHpP97Pu7ISXLyIfOAqjVohID2Aw8FdVPayqr2EOx5wUxMtlwN9U9YCqbgRmAVNDjK46v+cA61X1FVUtwqTNABHpVZNfx81ZwJWqukdVvaq6IkSZKiEiXUVksZOmHzrlJOCwtYhMct6Bfi7jaU6Z2ykiN7jcDhORz5xyv1NEHhWRRJe9ishvRWQL5uDSmjhFRLY44T0mUrnHVUO5CZXLgPtVdYeqfg/cT/C8vgh4W1UXq2oBptFyjrh6UdXQBZP3K9QchPocprd1FICqLlPV5wl8mvoJwC6n3HhV9QVgD6Y8oar/UtX3VLVQVQ9gys3IAOH4gLo1MhrwRNsczCm2nYAUjGbehznV1gOc6ty3cdwvAr4H+mFOmX4NeMGx64I5HTfeuZ8AHIs5BfckTGtksGM3DMhzwvc48fZy7N7AtGLSMBmyDPh1Dc9xnBNWEtAGWAw86LL/FbABSAXeB+5zzHtgWjanAgnATZjTnRNd6bMM03JpBWzE72Riv9OBc6v5jarhGWaUp2WgvHHMFDjO5WYO8HfnehDwIzAciMO8TDlAUi3Kw3igCEirwc0uoK+Tni+45XJk2ufkcTzwIvCSy//FmFZePPAHJ6xkVxqUYlqhCcANwLdAgmN/npMXHmCyk3ftHLupQBlwrRN2SjXPMNWJ51dOWl0N/AAVByMvwpza3APzXiwC7goS1j+BfwaxOxvY6Gf2KPBIALctnXRs6zI7F1jr9359jzkt+xmgdYh+HwIe94tvHUbp1uT3UoyCfgDY61xPqmN98xlwH5CIeV8OEqD+AC7HvIfH+dnNxdQLWZhK9xTHfggwwvHbBfOeTnfFq8B/MO9w0HLhcvtvTE/mGCee8aGUm0D1QTXx5AHDXfdDgfwgbt8EbvYzKwCGuMrrHid/PgXGuNw1A1bwU71wLWakQfzCOwXI8TP7ObDBz2wL8EAQOR/E9a67zG8HPqaaeiVoOtWloAURLgeY5rq/GXjez837wGWuRL3LZdcHKHESsaKwBolrPvB75/qJQAmG6aIXuwskcAGwsJbP9QtgpZ/ZW5gXdQ2OAsC0kF52ufFgKpMxrvS52GV/DzCzodLfT74ZVFV20/zcVKfsHse0zt3uNwMnhRj/cif839Xg7mng/1z3x1FV2T3lsj8D2FRNeAeAAa40WOqXHzuB0UH8rgImOtdTgW0hPutU4GvXfarzDEe7yvlfXPa/Ad6rQ55e4n4ex+xOYE4At50cGZJdZqfiVEBAOqZCjHfek1eB90P0Oxs/ZY2pFKeG4PdPjv0MjJI6CVPR9q5lWhyDaYykusxeoKqyuwHTMO3ocldu18tldg8wO0hc04E3/N6bk0OUU3E1TIGXgVtCKTe1TA+v3/N0d8IKpDg/wq+RTeV6ajiQgWnsXwbkA8c6duLkYamT/nuB7ABxBFJ2mZiG+gWYxudlmF7aEwH8n4p5l3sEsGuJGcr0AufUJp0aes5uu+u6M3Ce033PFZFcTAulXRD33zmJUGWIR0ROF5GlzhBiLqbSK3fXCdNy9qezE95OV/xP4HS5gyEibUXkJWfY8yDmJfKXaRamR/qIqhY7Zu2dZwBAVX3O83Vw+dvlui7EVDpNxfaanVTQGfiDX951wjxjKGQDU4AZIpJQjbv2fnIFkjFomjnDwhudYeFczLi/O68qwnPyY0f5M4jIpa5h2lxMfgb0GwIVMqpqoXOZHsje/xlqQQGmZe2mGaYyCuS23L6KW1UtUNXlqlqmqruBa4BxzlBWtX5rkKMmv4cxFeXfVbVEVT8GFgLjAjxDdbQH9rvSGgLn143AY6q6I4Cdf91TXi56iMi/xSySOIiZ//Z//+tUNqia9zWVm1Dxz5NmQIE62qEGt+Xuy8vG56qar6rFqvospiFzhuPul5iecl9MY+Vi4N8SwupIVd0HTASuB3ZjRnU+xLyTFYjICOBfwLmq+lWAoC7H9OJbqerrNcXrpqGVnTtxt2N6di1cvzRVvcvlppPr+hjMi7DXHaCIJGGGOO/DDI+0AN7BtDLK4zmWqmzH9Oxau+Jvpqp9a3iG/+c8R5aqNsNkaMU4u4ikY7rYszGVefk84w8YJVHuTpzn+76G+KogIqOl8ko5/5//3FQo+Bf8QkxrspyjXdfbgTv98i5VVeeGFJF5yeZjWmHtqnG6E+jouu8UzKE/ThrchFmZ1dIpF3m48sodnoh4nLh+ELN6cBamks90/K7z8xuooggn64FufnMrAxzzSqiZ89jp2FfrttyL898Tgt/1bjsRScO8f+tD8Lummrhrw06glYi4y2+gsjMO+IuIBJrX9K97fnCuHwc2Ad2d9/9PVC4XdZW5MamUJ1Sf1/751w3TiwukWMDpITrXA4F/q+pXqupT1fcweXFCKEKq6seqmq2qrTAjFb0wUzvlsgzCjJpNU9WPggTTGzM6lxdKnG4a89ODF4AzReQ0EYkTkWQRGSMi7srtYhHp4xTaO4BXVdXrF04iJjP2AGXOJK67JTgbuFzMcmiPiHQQkV6quhP4ALhfRJo5dseKyEk1yF3eus0TkQ5UXVn0ELBcVa8AFgAzHfOXgQmOHAmYOaRi4H81JZQ/qvqJ/rQaKtDvk9qGGYBVwIVO3ozHDCmVMwu4SkSGiyFNzNLgDKhYODKnhmco7/EmVuPsZUze9XbKwK3VuPUnAzOUsgeIF5HbqNpiHSIi54hZNTcdkx9LMXM16vhFRC7H9OwiFqeVuwr4q/MunY1ZefdaEC/PYSr6lmIWhvwKMyyMk689nXciE3gYWOSqQIL6xcyD9xOz6CMZuA1Yo6qbQvC7GNgG/FHMIqmRmBWb7ztyTZUQPsVQ1e8wQ+UzRCRRRI7HrED0Zz2mB/GYiJzlZ3ermM8g+mJ6C+UrSjMwPYcCR/6ra5InAngOuN6p+9pj6p45Qdy+iKmXRzsNlTuA11U1X0RaOPV1spM/FwEnAu85fr/A1HHdnHrhVMxc9DowDUqnTCSYW0mWyot7BolIgog0w3Retqtqed73c+K5VlXfruZZEzDvca1pNGWnqtsx3dY/YSqV7RjF4Y7zeUym7AKSgd8FCCffMX8ZM457IUb7l9svwxTWBzAt+4/5qYd1Kaay3eD4fZXqexpgJkAHO2EtwCyzBsyqT8zLU/4CXA8MFpGLVHUzphf4CKZ3eiZwpqqW1BBfuPg9RsZczAqt+eUWqrocU0k9ikm3r6m8uqsTZnijJpRqypiqvoupaBc6cSx1rEIpzO9jXo6vMMNQRVQdXnoTs/jkAKYleY6qlqrqBsyKtc8wQypZIT5PoyLmW8mZ1TiZgplrO4CzBFxVyxX2RSLibs3/FTO8/x3mnbjXaYkDdMOkXT6moirGzKXU6NeJbxJmvvAAZo5nSoh+SzF1whmY92sWcKlLUYZarsCU2eMxC5j+jlFWVcqNqq7GLI6YJZVXO36MKXMfYRaZfeCY34CpY/Id+dyfVYSF8pGeapw8gVnWvxaTnwscs3L/FaNBqroeuAqj9H7EKPffOE4TMGlZvkDlWuAXruHE54CXMPPQBzHv7q9d+XciZqj6HUxv+TCmw1HOTU642zH18Nkuuz9gFgTOdo1gBeqdxlHDCu9glK8Ya3JEZBFmQvmpsAhgqRNOS2010N+pvKpz+wNwk5plxqGE3Rvzsiapalm9hbVEFSLyAWbh2cY6+J2HWbz014aXzBIJiEgKsASzmMj/28AasTuoWGqFs7Cgd02KzuEWzLBb0G+pRORsMbtutATuxnwDZBXdEYiqjgtV0YlItjMt4XGG4SfiGp2wxBYicj5mtGA3ZpSv1hyRyk4qb63l/lU3hGSpJar6nKp2V9Uh1Tj7NWY4ZStmOXHEzZHY8hKRHI0ZTivADKddraorm1IAqWYhWVPKcSSgqi+r6lGqeoaq7q3ZR1XCNoxpsVgsFktTcUT27CwWi8VyZBEpG5kC0Lp1a+3SpUu4xbBYLBZLE7JixYq9qhpsU/MGIaKUXZcuXVi+fHm4xbBYLBZLEyIi39Xsqn7YYUyLxWKxxDxW2VksEczXP+az4YeD4RbDYol6rLKzWCKYC5/8jLMfDrZNoMViCZWImrMLRGlpKTt27KCoqCjcoliiiOTkZDp27EhCQnWHLkQ+fy2+lxFJG6m8s5LFYqktEa/sduzYQUZGBl26dEEqH/JrsQREVdm3bx87duyga9eu4RanXkyIczaFVwVb/i2WOhPxw5hFRUVkZmZaRWcJGREhMzMzpkYDfKV12ujdYrE4NLqyE5HxIrJZRL4WkVvqGEZDi2WJcWKtzBQV2kUqFkt9aFRlJyJxwGPA6UAf4AIR6dOYcVossUhxYaADyS0WS6g0ds9uGPC1qn7jnOv2EmZ38qhCRPjDH/5QcX/fffcxY8aM8AlUA4sWLeJ//6v1mbEVrFq1iuOPP56+ffvSv39/5s0L+5FeRzxFVtlZLPWisZVdByofqLnDMatARK4UkeUisnzPnj2NLE7dSEpK4vXXX2fv3jptth0UVcXnq9M5hNVSX2WXmprKc889x/r163nvvfeYPn06ubm5DSegpdaUHLbKzmKpD2FfoKKqT6rqUFUd2qZNo26NVmfi4+O58soreeCBB6rY7dmzh0mTJpGdnU12djaffmoOWp4xYwb33Xdfhbt+/fqRk5NDTk4OPXv25NJLL6Vfv35s376dG2+8kX79+pGVlVXRi1q0aBFjxozh3HPPpVevXlx00UUEOqHi4Ycfpk+fPvTv358pU6aQk5PDzJkzeeCBBxg4cCCffPJJtTJecsklHH/88XTv3p1Zs2YB0KNHD7p37w5A+/btOeqoowjUEHnllVfo168fAwYM4MQTTwTMgqLLL7+crKwsBg0axMKFCwGYM2cOv/jFLzj11FPp0qULjz76KP/4xz8YNGgQI0aMYP/+/QDMmjWL7OxsBgwYwKRJkygsLKwS74gRI1i//qdDjMeMGROT28y589t7+FAYJbFYop/G/vTge6CT676jY1Ynbn97fYPvJtGnfTP+embfGt399re/pX///tx0002VzH//+99z3XXXMWrUKLZt28Zpp53Gxo3Vnz+5ZcsWnn32WUaMGMFrr73GqlWrWL16NXv37iU7O7tCcaxcuZL169fTvn17Ro4cyaeffsqoUaMqhXXXXXfx7bffkpSURG5uLi1atOCqq64iPT2dG264AYALL7wwqIxr1qxh6dKlHDp0iEGDBjFhwgTat29fEf6yZcsoKSnh2GOPrfIcd9xxB++//z4dOnSo6Pk99thjiAhr165l06ZNjBs3jq+++gqAdevWsXLlSoqKijjuuOO4++67WblyJddddx3PPfcc06dP55xzzuFXv/oVAH/5y1+YPXs21157baV4J0+ezMsvv8ztt9/Ozp072blzJ0OHDq02zaMRr08rXlBvse3ZWSz1obF7dl8A3UWkq4gkAlOAtxo5zkahWbNmXHrppTz88MOVzD/88EOuueYaBg4cyFlnncXBgwcpKKj+7MbOnTszYsQIAJYsWcIFF1xAXFwcbdu25aSTTuKLL74AYNiwYXTs2BGPx8PAgQPJycmpElb//v256KKLeOGFF4iPD9x2qU7GiRMnkpKSQuvWrRk7dizLli2r8Ldz504uueQSnnnmGTyeqkVl5MiRTJ06lVmzZuH1eiue5+KLLwagV69edO7cuULZjR07loyMDNq0aUPz5s0588wzAcjKyqp4tnXr1jF69GiysrJ48cUXK/Xgyjn//PN59dVXAXj55Zc599xzq03vaKXU6+rZ2U8PLJZ60ag9O1UtE5FrgPeBOOBpVa1ae4VIKD2wxmT69OkMHjyYyy+/vMLM5/OxdOlSkpOTK7mNj4+vNB/n/uYrLS0tpPiSkpIqruPi4igrK6viZsGCBSxevJi3336bO++8k7Vr11ZxE0xGqLpEv/z+4MGDTJgwgTvvvLNCMfszc+ZMPv/8cxYsWMCQIUNYsWJFyM/j8Xgq7j0eT8WzTZ06lfnz5zNgwADmzJnDokWLqoTToUMHMjMzWbNmDfPmzWPmzNg8MLzE6yPFufaWHA6rLBZLtNPoc3aq+o6q9lDVY1X1zsaOrzFp1aoV559/PrNnz64wGzduHI888kjF/apVqwBzXNGXX34JwJdffsm3334bMMzRo0czb948vF4ve/bsYfHixQwbNiwkeXw+H9u3b2fs2LHcfffd5OXlUVBQQEZGBvn5Pw17BZMR4M0336SoqIh9+/axaNEisrOzKSkp4eyzz+bSSy+ttte0detWhg8fzh133EGbNm3Yvn07o0eP5sUXXwTgq6++Ytu2bfTs2TOk5wHIz8+nXbt2lJaWVoQTiMmTJ3PPPfeQl5dH//79Qw4/migt81Zc+0pi5wN5iyUchH2BSrTxhz/8odKqzIcffpjly5fTv39/+vTpU9HLmDRpEvv376dv3748+uij9OjRI2B4Z599Nv3792fAgAGcfPLJ3HPPPRx99NEhyeL1ern44osrFoP87ne/o0WLFpx55pm88cYbFQtUgskIZhh07NixjBgxgltvvZX27dvz8ssvs3jxYubMmcPAgQMZOHBghYK87bbbeOstMxJ94403kpWVRb9+/TjhhBMYMGAAv/nNb/D5fGRlZTF58mTmzJlTqUdXE3/7298YPnw4I0eOpFevXhXmb731FrfddlvF/bnnnstLL73E+eefH3LY0Uapa+jSW2p7dhZLfZBAK/zCxdChQ9V/Vd3GjRvp3bt3mCSKbWbMmFFpIUusEe1lZ/vOPXR64jgAVva6gUFTbg2zRBZL4yAiK1S1UVeZ2Z6dxRKhlLp7c2W2Z2ex1IeIP/XA0nhE8i4wFvCW/DSMqaV2zs5iqQ+2Z2exRChl7s8NyuynBxZLfbDKzmKJULzu3lyZ7dlZLPXBKjuLJUIpKympuBav7dlZLPXBKjuLJULxuYYuPVbZWSz1wiq7EJk/fz4iwqZNm4K6ycnJoV+/fo0qx6pVq3jnnXfq7L/8I/Q+ffrQt29fHnrooQaUztKQuLcIsz07i6V+WGUXInPnzmXUqFHMnTs3oH2grbxqS/n+ktVRX2UXHx/P/fffz4YNG1i6dCmPPfYYGzZsqHN4lsbD3bOLs8rOYqkXVtmFQEFBAUuWLGH27Nm89NJLFeaLFi1i9OjRnHXWWfTpYw5gLysr46KLLqJ3796ce+65FUfUfPTRRwwaNIisrCymTZtGcbGpvLp06cLNN9/M4MGDeeWVVyrF63+ETklJCbfddhvz5s1j4MCBzJs3j0OHDjFt2jSGDRvGoEGDePPNNwFzpM7EiRMZM2YM3bt35/bbbwegXbt2DB48GICMjAx69+7N999XPYji448/rtg9ZdCgQeTn56OqQY8jOumkk5g4cSLdunXjlltu4cUXX2TYsGFkZWWxdetWAN5++22GDx/OoEGDOOWUU9i9e3eVeKdMmcKCBQsq7qdOnVqx6fORhq/spzk7j6+kGpcWi6Umous7u3dvgV1VNzquF0dnwel3VevkzTffZPz48fTo0YPMzExWrFjBkCFDALPv5bp16+jatSs5OTls3ryZ2bNnM3LkSKZNm8Y///lPrrnmGqZOncpHH31Ejx49uPTSS3n88ceZPn06AJmZmRX7aLrxP0InMTGRO+64g+XLl/Poo48C8Kc//YmTTz6Zp59+mtzcXIYNG8Ypp5wCmON51q1bR2pqKtnZ2UyYMKHSUTg5OTmsXLmS4cOHV4n7vvvu47HHHmPkyJEUFBSQnJzM66+/HvQ4otWrV7Nx40ZatWpFt27duOKKK1i2bBkPPfQQjzzyCA8++CCjRo1i6dKliAhPPfUU99xzD/fff3+leMuP75kwYQIlJSV89NFHPP744yFmZmzhc4Yx80klzmd7dhZLfbA9uxCYO3cuU6ZMAUzPwz2UOWzYMLp27Vpx36lTJ0aOHAnAxRdfzJIlS9i8eTNdu3at2B/zsssuY/HixRV+Jk+eHDDeQEfo+PPBBx9w1113MXDgQMaMGUNRURHbtm0D4NRTTyUzM5OUlBTOOecclixZUuGvoKCASZMm8eCDD9KsWbOAcV9//fU8/PDD5ObmEh8fX+1xRNnZ2bRr146kpCSOPfZYxo0bB1Q+vmfHjh2cdtppZGVlce+99wY8vuf0009n4cKFFBcX8+6773LiiSeSkpJSxd2RgDo9u8OSQrzt2Vks9SK6enY19MAag/379/Pf//6XtWvXIiJ4vV5EhHvvvReoelxPsCNzqiPYkT+hHKGjqrz22mtVThb4/PPPg8pSWlrKpEmTuOiiizjnnHMCxn3LLbcwYcIE3nnnHUaOHMn7779f7TOEcnzPtddey/XXX89ZZ53FokWLAu7gkpyczJgxY3j//feZN29eRSPjSESdObtCSbPKzmKpJ7ZnVwOvvvoql1xyCd999x05OTls376drl278sknnwR0v23bNj777DMA/vWvfzFq1Ch69uxJTk4OX3/9NQDPP/88J510Uo1xBzpCx//4ntNOO41HHnmE8g29V65cWWH3n//8h/3793P48GHmz5/PyJEjUVV++ctf0rt3b66//vpq487KyuLmm28mOzubTZs21es4IoC8vDw6dOgAwLPPPhvU3eTJk3nmmWf45JNPGD9+fMjhxxrlC1SK49KIV6vsLJb6YJVdDcydO5ezzz67ktmkSZOCrsrs2bMnjz32GL179+bAgQNcffXVJCcn88wzz3DeeeeRlZWFx+PhqquuqjHuQEfojB07lg0bNlQsULn11lspLS2lf//+9O3bl1tv/Wln/GHDhjFp0iT69+/PpEmTGDp0KJ9++inPP/88//3vfysWoJSv7pw5c2bF8T8PPvgg/fr1o3///iQkJHD66afX6zgiMHtxnnfeeQwZMoTWrVtXmC9fvpwrrrii4n7cuHF8/PHHnHLKKSQmJoYcfqyhZaUAlMSlkWCVncVSL+wRPzHKnDlzKi1kORKJ9rKz8Lk7GfvNPazMGEvX/OW0mLEj3CJZLI2CPeLHYjmScb6tK01IJ5HSMAtjsUQ39VJ2InKviGwSkTUi8oaItHDMu4jIYRFZ5fxm1hCUpYGZOnXqEd2riwm8RsGVxaeRRDFE0CiMxRJt1Ldn9x+gn6r2B74C/uiy26qqA51fzRNU1RBJQ62W6CAmyozXzNN5E9KJQ8FX/116LJYjlXopO1X9QFXL38ClQMf6i1SZ5ORk9u3bFxuVl6VJUFX27dtHcnJyuEWpH95iyvDgS0gFQEvtaeUWS11pyO/spgHzXPddRWQlcBD4i6oGXKsvIlcCVwIcc8wxVew7duzIjh072LNnTwOKaol1kpOT6dixwdteTYp4SykjHok3Sruk+DBJyVU3ALBYLDVTo7ITkQ+BQOvL/6yqbzpu/gyUAS86djuBY1R1n4gMAeaLSF9VPegfiKo+CTwJZjWmv31CQkKlHUosliMF8ZVSSgIkGGVXXHSYpOZhFspiiVJqVHaqekp19iIyFfg58DN1xhpVtRgodq5XiMhWoAewPFg4FoulMuItwSvxeBLMdmmlxYVhlshiiV7quxpzPHATcJaqFrrM24hInHPdDegOfFOfuCyWI404XzElkojH6dmVFtk5O4ulrtR3zu5RIAn4j7Pv4lJn5eWJwB0iUgr4gKtUdX8947JYjijivMWUSBKeREfZFVtlZ7HUlXopO1U9Loj5a8Br9QnbYjnSifcVUSpJxDnDmGUldhjTYqkrdgcViyVCSfAVU+ZJIs7p2ZWVFIVZIoslerHKzmKJUOK1hDJPEvGJTs/ODmNaLHXGKjuLJUJJdHp2CUlG2XlLbc/OYqkrVtlZLBFKvBbji0sm3lF2vhLbs7NY6opVdhZLhJKoJWh8ckXPzmd7dhZLnbHKzmKJUBK1GI1PItEqO4ul3lhlZ7FEIGVeH0mUIAkpJCTbjaAtlvpilZ3FEoEUlpSSThGamE5SsunZYXt2FkudscrOYolADucfxCMKyc1JTkyiVOOgrDjcYlksUYtVdhZLBHK4wOyuJ8nNSIgTikiEMtuzs1jqilV2FksEUlKQB4AnpTkiQgkJiNf27CyWumKVncUSgRTmm55dUnoLAErEKjuLpT5YZWexRCCHDxpll9YsE4BSEhE7Z2ex1Bmr7CyWCKTs4C4AMlp3AKBUEvH4rLKzWOqKVXYWSwQiBTsByMh0KTs7jGmx1Bmr7CyWCCTu0I/kklFxcGuZJ5E4X0mYpbJYoher7CyWCCTp8I8ciMusuLfKzmKpH1bZWSwRSGrxjxxOal1x7/UkEW/n7CyWOlMvZSciM0TkexFZ5fzOcNn9UUS+FpHNInJa/UW1WI4MfF4f7b0/UJR+TIWZ15NIvNqencVSV+IbIIwHVPU+t4GI9AGmAH2B9sCHItJDVb0NEJ/FEtPs3rWNdlKIN7NHhZnPk0SCHca0WOpMYw1jTgReUtViVf0W+BoY1khxWSwxxbZNKwFoeUy/CjNfXBIJWGVnsdSVhlB214jIGhF5WkRaOmYdgO0uNzscsyqIyJUislxElu/Zs6cBxLFYopv8b74A4Jg+P7UPNS6JBC0Nl0gWS9RTo7ITkQ9FZF2A30TgceBYYCCwE7i/tgKo6pOqOlRVh7Zp06a23i2WmKP5j8v4Pq4jic3bVpj54pNJwi5QsVjqSo1zdqp6SigBicgs4N/O7fdAJ5d1R8fMYrFUQ2FRMT1L1vNt21MrD4XEJ5FMKaiCSLjEs1iilvquxmznuj0bWOdcvwVMEZEkEekKdAeW1Scui+VI4Ku1y2gmhSR0G13JXOPNx+Vq98e0WOpEfVdj3iMiAwEFcoBfA6jqehF5GdgAlAG/tSsxLZaaydv0MQAdB/yskrnEJwFQVnKYhITkJpfLYol26qXsVPWSauzuBO6sT/gWy5FGys7P2S1taNuuW2ULp2dXUnyYhLSWAXxaLJbqsDuoWCwRgtfro+uhNfzQYnAVu/I9MksOFza1WBZLTGCVncUSIXy7ZS1tJBftNKKKncfVs7NYLLXHKjuLJULYtf4TANr1G1PFzpOQAkBpse3ZWSx1wSo7iyVC8O1YQSHJHH1s/yp25cOYpcVFTS2WxRITNMTemBaLpQFonbeOHck96BFX9bWMKz/XrqTuw5iHDxeRs/4z8nduIa4oF6/EEZeQQnxKOgkpzUhKa05yWnOS05uTltGCpLRmgKCqoIri/Pd5ATXmKOrTijgUc61aOe7y+2D2YD4fFMT8d18DIuL8N9e1Ij4Z4hJq58cSc1hlZ7FEAHn5hzjW+y0bWk8OaB+faIYxvXWYs/tq/Zf8+P59DMr7iN5S+55htH/Cvp/mJN6wjvT0ZuEWxRJGrLKzWCKAbzZ8wSApJaVL4P3S45McZVcaurI7XFTM/56+idG7n6eTxLEx81Tie55Giy5ZJKZnIngpLjxEcWE+RYfyKC08SFnRQbyH8/EW5eMpPYSgqOlTOd0qj3PPT2YV//2Q8n8SyLiyFlXzsa6WX+D8Kzd3btTPPS4/Fff6k7ukg98xOu8tNqz7H31GjA857Syxh1V2FksEkPf15wC07zMyoH2C07MrKwmtZ/bjj7vY8eRkfla2irWtx9P5ggcY3Lp9wwgbRezeuQOeeIvCrUvBKrsjmphTdj6vF09cXLjFsFhqRfyuVeSSQYt2xwa2T0oFwBeCstuxZz/7Z/6CLO9XbBpxF1mnX92gskYTRx3dgR20JWHXl+EWxRJmYmo15p7d2/nq/0ayZuEr4RbFYqkVRxes5/vU3kE3eU4oV3al1Su7PQeL2DDzMvr7NrJ97EP0OoIVHZjFLD+k96NdwbqaHVtimphSdulpzYjXYo5ddA2blr0fbnEslpAoyM+jq28bh1pX/eSgnMRkM4yppcG/sysu87LwiesY513MziE30m1M0N38jijKOmRzlO7jh63rwy2KJYzE1DBmSnpzmk17nX1PnUG3BReydP0V9DvnJtKbZwb1U1rmZf/+/eTt2UHB/h8oOrALb/4uPIf2kFi8H4+3GPGWIL4SPL4S4nw/HaCpP83Ag3vS3mXvbqhrgHVtVVdgB3LjbyZVbgOs5K6eajxUF1agJeOBfNcvjCDyBPAXOKjKptXFF9CqWvfBLUMNy98oxVfIEFESOg0JGna5siPIqQeqyuvP3M8Fh/7F9mPOptPP/xw0rCONziPOgc13sePTubQ/9u+19l9WVsb332wgb/s6Cn/MwZe7ncSifcSVFhBfdogk32HEWV4DVCpwKqY/oQiKBxVQPJS/wz4x1+WLgFQ8Tijl12bxj/ov84mQJbK7Ertw+vSZ4RYjJGJK2QEc1aEredcsYt3TVzDiu5mU/OMpNiX2oCC1E764RDzeEhJKDpBUkkeG9wCZeoC2Ukpbv3C8KuRJOsUkUSaJlEkCZZKAVxJMQatUY1UUzypm5Uig74qqVHuBVF/NmiEUN6ES8B2q5YtV1XloAQRcpVen+Kp3GNi9BLysMc4GknVrwmB6DAu+gCI52QxjapBhzAVvv8qkHXexrfkQjrn0SXvmnYsOXXuyKb4X7XJex1c2A0989dVeWZmX9Ss/o2DNW7Tc/RnHFG+hs/y0CrZYE9gvLSjypFESl0JxXBo+cdYJiLvRa75LFEfVVb72IYAHRdRb2Y3jzqhF81/UF7CxHG72+jLCLULIxJyyA2ie2ZbBN77N5pWfcGDpi2TsX0OHvC9JoJQyEiiIa0ZxQgt+zOjCrrTWSHpb4pu3JblFOzIyO9CsTXvSWrSllccudLFEBonxcRRrApRVVXbLln/ByBXT2ZfYgY6/fg3iE8MgYWRzcNBV9PpiOivefJghk66vYl9YWMCGTxdQvGEB3Q4sYQD7ANgSdxzr25xOXIdBpHXK4qhO3WnVpj3tPDE1A1RnAi+nikxiUtmV03PQaBg0umaHFkuE4/EIh0gmrrSgkvm327fR9t8XIx4PzX/5Bh57/E9Ahoy/lLWr55C15k6+KMrnqEHjKSzI5+A3X5D03SJ6FK5kqBRzmCS+Ts9mb8/xdDvhHLpndqg5cEtUENPKzmKJJfbRgpSSfT/d5+aR/8z59GQfeee+RoujjwujdJFNXFwc7X81jw2zLiB7yz9gyz8q7L6XtqxvcwZpWT+n+4gzyHJWvlpiC6vsLJYo4YCnJW2K9wJwuKiEr/45heN9G/nmpEfo1vekMEsX+WS2OZpWt3zElvXLydu+jvikVNoeO5D2nXvSwc5xxjxW2VksUUJxcibpxes4XFTMFw9fzIkl/2PjgD/Re+yl4RYtahCPh+5ZwyAr8LZsltilXspOROYBPZ3bFkCuqg4UkS7ARmCzY7dUVa+qT1wWy5FOfovetNm5kC33nsCJ3q9Z3+O39D375nCLZbFEBfVSdqpasUW7iNwP5Lmst6rqwPqEb7FYfqLtiMkcfP0ZOpZtY/3gGfSdeF24RbJYooYGGcYUc8DU+cDJDRGexWKpypABA9neZiXNkzz0zfT/MtRisVRHQ30sMhrYrapbXGZdRWSliHwsIkHX/4vIlSKyXESW79mzp4HEsVhik07t29HMKjqLpdbU2LMTkQ+BowNY/VlV33SuLwDmuux2Aseo6j4RGQLMF5G+qnrQPxBVfRJ4EmDo0KENtxWIxWKxWCwONSo7VT2lOnsRiQfOASo29lPVYqDYuV4hIluBHsDyeklrsVgsFksdaIg5u1OATaq6o9xARNoA+1XVKyLdgO7ANzUFtGLFir0i8l0DyNQa2NsA4TQF0SQrRJe8VtbGI5rkjSZZIbrkbShZOzdAGNXSEMpuCpWHMAFOBO4QkVLAB1ylqvtrCkhV2zSAPIjIclUd2hBhNTbRJCtEl7xW1sYjmuSNJlkhuuSNJlnrrexUdWoAs9eA1+obtsVisVgsDYHduttisVgsMU+sKrsnwy1ALYgmWSG65LWyNh7RJG80yQrRJW/UyCpa22OjLRaLxWKJMmK1Z2exWCwWSwVW2VksFosl5okpZSci40Vks4h8LSK3hFsef0Skk4gsFJENIrJeRH7vmM8Qke9FZJXzOyPcsgKISI6IrHVkWu6YtRKR/4jIFud/2I/GFpGerrRbJSIHRWR6JKWriDwtIj+KyDqXWcC0FMPDTjleIyKDI0DWe0VkkyPPGyLSwjHvIiKHXWk8syllrUbeoHkvIn900naziJwWAbLOc8mZIyKrHPNISNtgdVZElt1qUdWY+AFxwFagG5AIrAb6hFsuPxnbAYOd6wzgK6APMAO4IdzyBZA3B2jtZ3YPcItzfQtwd7jlDFAOdmE+Uo2YdMV8ezoYWFdTWgJnAO8CAowAPo8AWccB8c713S5Zu7jdRVDaBsx7531bDSQBXZ06Iy6csvrZ3w/cFkFpG6zOisiyW90vlnp2w4CvVfUbVS0BXgImhlmmSqjqTlX90rnOx5z51yG8UtWaicCzzvWzwC/CJ0pAfoY5XqohduJpMFR1MeC/sUKwtJwIPKeGpUALEWnXJIISWFZV/UBVy5zbpUDHppKnJoKkbTAmAi+parGqfgt8jak7moTqZBWpOD3Gf5OOsFFNnRWRZbc6YknZdQC2u+53EMGKRMwBt4OAzx2ja5xu/9ORMDTooMAHIrJCRK50zNqq6k7nehcQaVvw++/oE4npWk6wtIz0sjwN03ovp6uEcMJJGAiU95GctnU+PaYp8Kuzoq7sxpKyixpEJB2zw8x0NSdBPA4cCwzEnBhxf/ikq8QoVR0MnA78VkROdFuqGbeImG9XRCQROAt4xTGK1HStQqSlZTBE5M9AGfCiY1R+wskg4HrgXyLSLFzyuYiavHcR7PSYsKdtgDqrgmgpu7Gk7L4HOrnuOzpmEYWIJGAKzYuq+jqAqu5WVa+q+oBZNOGwSnWo6vfO/x+BNzBy7S4flnD+/xg+CatwOvClqu6GyE1XF8HSMiLLsohMBX4OXORUcDjDgfuc6xWYObAeYRPSoZq8j9S0LT89Zl65WaSkbaA6iygruxBbyu4LoLuIdHVa+FOAt8IsUyWcMfnZwEZV/YfL3D2mfTawzt9vUyMiaSKSUX6NWaCwDpOmlznOLgPeDBxCWKjUMo7EdPUjWFq+BVzqrGwbAeS5hozCgoiMB24CzlLVQpd5GxGJc65DPuGksakm798CpohIkoh0xci7rKnlC0DA02PCnbbB6iyiqOxWEO4VMg35w6wE+grTAvpzuOUJIN8oTHd/DbDK+Z0BPA+sdczfAtpFgKzdMKvWVgPry9MTyAQ+ArYAHwKtwi2rI1casA9o7jKLmHTFKOGdQClmHuOXwdISs5LtMaccrwWGRoCsX2PmYsrL7UzH7SSnfKwCvgTOjJC0DZr3wJ+dtN0MnB5uWR3zOZjTYdxuIyFtg9VZEVl2q/vZ7cIsFovFEvPE0jCmxWKxWCwBscrOYrFYLDGPVXYWi8ViiXmssrNYLBZLzGOVncVisVhiHqvsLBaLxRLzWGVnsVgslpjn/wMCdrqv0LOsUAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 7)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiUElEQVR4nO2deXhVxfn4P+/NHggEwr4GlJ2EgARRQMGiiFRQUaFFEan1a6vWrVa76A+ttq4VUSstorig4r7UBeuCilURZF8FjRBkhwRC9tz5/TEn4eTm3uSGLPcmeT/Pc5977sycmffMmTvvzDvvOSPGGBRFURSlqeAJtQCKoiiKUp+o4lMURVGaFKr4FEVRlCaFKj5FURSlSaGKT1EURWlSqOJTFEVRmhRho/hEJFlEjIhEhlqWxo6IzBCRpfVUVpyIvCsih0TkD/VRpk/5GSIyth7KWSIiVwSI07YdIpx6P7G6cbUsQ8A2KCKjRSSzrmVoLIhIJxE5IiKbReSM480nbBSfcnyIyCwRKRKRHNen3hVMJYwFUoGuxpj7SgOdziA5ZFKFEc49nFWN9L8UkR9F5KiIvCEirStJmyYiK0Qk1/lOc8XFiMhcEdkjIgdF5G0R6ewnj14iki8iz7nCJojIUhHJEpHdIvKEiCS44luLyCIROSAi+0VkoYi0cMVniEieq81+UI3rbzJtR0QWiMiMaqS/wbkfh0XkSRGJqSTtz0Rkk9M2PhGR7n7StBaRfe6BsohEi8grzn0wIjLa55z3fPqjQhFZ64pPE5HPRSRbRDJF5Daf8y8WkY2OgtsgIueVxhljfjLGJABvA78Ltl58qTXFp6PZkLLIGNPc9bmv6lPqjdZAhjEmJ9SC1ASxhHygKCIDgH8BlwLtgVzgnwHSRgNvAs8BrYCngTedcIDrgFOwA5NOwCHgET9ZPQZ84xPWErjLOa8f0Bm43xV/l1NmD+AER9ZZPnmc62qzZ1V23eFMuPR9IjIOuBX4GdAd6AncESBtG+A14Dbsf3Q5sMhP0nuBjX7ClwKXALt9I4wx4939EfA/4GVXkueBz5xyTwd+KyITHbk6Y9vrjUAL4GbgeRFp51PMOiDJ37UFQ43+yI7Gv0VE1gBHRSRSRIaLyP+ckeBq92hArDno7yKyzBmRvBlotCoil7u0/vci8n8+8ZNEZJWTzzYROdsJbyki80Vkl4jsFJG7RCSiius4QUQ+9hmdJrriDorIEOd3J2cENNr5PVFE1jvXu0RE+vnUz+9FZI0zulkkIrHVr+nqIyK3OvVSOmo6P0A6EZGHRGSvU5drRWSgExcjIg+IyHaxs4K5IhJXTVEiAW8VsiaJnW0cFpFvnHvmHmEaEblKRL5z6vkxEREnLuC9c5Hu1MEhEXmq9B6ISCsR+Y9zPw85x11c5S4RkbtF5AusgulZxbV2F5EvnDr/wOlc3Exz6nK/iPy5irwCMQ142xjzmTOYuA24QFyzLRejsfU/2xhTYIyZAwhQaiLqASw2xuwxxuRjO74B7gxEZCqQBXzkDjfGPG+Med8Yk2uMOQTMA0a4kvQA3jDGHDbGZAOv++ZdG1TVdnzSjhSRHVJ+hnKO07/sF5H7xRncVNWuxE/fV4WoaZX1AyJyk/Mf3CUilx9PXQCXAfONMeude/JXYEaAtBcA640xLzv3fhYwSET6umQ6FRgIPOU+0RhTaIyZbYxZCpRUJpDYmfko4BlXcDKw0BhTYozZhlWipW2jC5BljHnPWN4BjmIHT2682LZ9fBhjjvsDZACrgK5AHHbUdwA4B6tUz3R+t3XSLwF2YiuzGfAq8JwTlwwYINL5PcG5WMGOCnKBIU7cMCDbyd/jlNvXiXsdOyJuBrQDlgH/V8V1nOjkFQO0xY5GZrvifw1sAOKBxcADTnhv7E05E4gC/gBsBaJd9bMMOypujR05XRVAhpHYDibQZ2SA82aV1qFP+EVOuR5giiNnRyduBrDUOR4HrAASnbru50r3EPCWI3upeeHv1WgfUcCz/uTzSfei84kH+gM7SuVz4g3wH0fGbsA+4Owg710GdnTY1bmOL4C7nLgkYLJTbgJ2VPqG69wlwHbsnzISiKrkGpYA25w2Eef8vsenbc9z4gYBBUC/AHlVdr/fBG7xCcsBTvKT9gbgPZ+w/wA3OcdDnfro5NTB8z511wLYgu2M/LYzV9rZwIuu3z8H3sXO+loBHwPX+9yXPc69/AAYdJx9UDBt50TgbCdumE/cJ0676OZc6xXVaFernHYVF0Q/6bcfwA5OioE7sf+Xc7B9XSs/+XRz2ka3AOWsBqa4frdxrjHJT9qHgcd9wtYBk53jCOBb4CRc/YWffDKB0ZVc++3AEp+wvwH3ONfbx8kj3VXup8BE5/g8J76ZTx5jsBYKv3VRZbs5npN8buhM1+9bgGd90iwGLnOOl+B0Bs7v/kChc4HJuBSfn7LeAK5zjv8FPOQnTXtshxLnCvsF8Ek1r+s8YKVP2FvAWmANEOOE3Qa85ErjwSr20a76ucQVfx8wtyZ17kfWWU4dZrk+nfykWwVMco7LGjJ29L8FGA54XOkFZ6TlCjsF+CFIudKAImzndmIl6SKcdH1cYXdRsfMa6fr9EnBrMPfOuQdXuX6fA2yrROZDrt9LgDuDvN4lwF9cv38LvO8cl7btLq74ZcDU47jfH+EzeHK3OZ/w23ApIydsITDLOW6JVRoG2/muBFq70j6Mo2SpRPFhFcQhoLcrrBPwIXZk7gX+izMgdOJHYAcB8cAfsSazxGrWRbBt54/Aj8BAn/MNzgDKdc8+qka7mhmknBkE6Aewii8PV78H7AWGH0fb2OZzPVHONSb7STsfV1/shH0BzHCOb8BRjNRM8W0tzdMVdqoTXuzId4dP/K+wg7li7CBgQoC8X3bOn13duqqNNYsdruPuwEWOOSpLRLKwM5mOAdL/iL05viYhRGS8iHzlmBmzsB1Wabqu2JvsS3cnv12u8v+FnfkFRETai8iLYk2jh7E2Zl+Z5mFnqo8YYwqcsE7ONQBgjPE61+d2EHDbwHOB5pXJcpy8ZIxJdH1+EpHpYk3BpfUwED/1bIz5GHgUu46zV0T+LdYJoS22U1rhyuN9J7xKjDGrsLOoL4HrK0naFjubcreLHX7S+a3HIO+db5vr5JwbLyL/Eusochg7qk+U8qZxf7IEoqp7XRttIQc7E3PTAjhyHGkfw85okrAWkteA98A6IGAdkx6qTBgRGY6dKV5ojNniinoJO6BKcMrchr03ABhjvjDG5BlrKv07dsA2qrKy/BBs27ke+x9Z5ycuUNuobruqisru/QFjTHEl8cHie79Lj6vVNkSkE9Zx5HjN8YA1LQMdgFdcYa2x/cidQCy2Lx8nIr914sdiBwajgWiste8JcTllOemGYHVCX2PM9dWVrTYUn3Ed78DO+NydcDNjzD2uNF1dx92wI7b97gzFeiK9CjwAtDfGJGLNJuIqx9fmWxpeALRxld/CGFPV2sLfnOtIMca0wC7alpaFiDTHmnLmA7Pk2LrkT1hlW5pOnOvbWUV5FRCRUVLeE8r3E3SnINY7ax5wDdbMkYg1Y4i/9MaYOcaYk7Az8N7YBeX92JHoAFddtjR2sToojF07eM/JNxD7sCO7Lq6wrgHS+qPSe+cnv27Y+wZwE9bUcrJz7mlOuPt8d/sOB9ZjTaUAiEhPrPLaEiBtaul6qEOqEw52hrvAGHPQGcw9Agxz1iZHY2eq20VkN/B7YLKIfOsqezDWEjLTGFNuDdDJ+1/GmKPGrkXOxXZUgTAEaJ+VEGzbuQg4T0Su8xMXqG0E067Cum04x3uMMQeqSisizbB96nrsUlJHYINz7x/GtovdUoW/hA+XAa+Z8o5tPYESY8wzxphiY0wm1upQ2jbSgM+MMcuNMV5jzDfA19hBmJt+wAZjzOZqyFNGbXupPQecKyLjRCRCRGLFPqfibpiXiEh/EYnHav1XjDG+C6TR2D/zPqBYRMYDbq+v+cDlYt1xPSLSWUT6GmN2YdcLHhSRFk7cCSJyehVyJ2BHQNlivYpu9ol/GFhujLkCeAf7JwY7qp3gyBGF7UgLsF5M1cIY87kp75np+/m8Gtk1w/4p94F1FMLO+CogIukicrIj/1EgH/A6s9d5wEPieFQ59TzOdW4FV2Y/FGDvp1+ce/8adkAR7yyuTw/qKi1V3TuAq0WkizNg+TPHvNcSsMo9y4n7f9UoN1QsxP7HRjmd1Z3YzsXfqH4J1vngd2Idla5xwj92vr8Bpot1CIvCmvp+MsbsB/6N7QjTnM9cbNsfByDWAep94FpjzNt+yv4GuELsc5xxwJXYZQJEpJuIjBDrFh8rIjdjZ1NfOPGjRaRKpVKNtvMT1tPxOhH5jU/czWKdnLpivVzdbaOqdhVuPAP8yulfE4G/AAsCpH0dGCgik8U62twOrDHGbMIOVpM5du9vx5rB00r7aqc9lTrolN5H92QhDrjYT/lbbLT80umfO2B9ENY48d8Ao0pneM7gapQrvpQobN9yXNSq4jPG7AAmAX/Cdro7sA3GXc6z2MrYjZ3qVngWw/kT/w6rWA4Bv8SOLEvjlwGXY80w2djF0NKZ13RsR7vBOfcVypta/XEHMMTJ6x3snwmw3qPYhfHSP8yNwBARmeaMNi7BjpT3A+diXbQLqyivTjHGbAAexJoZ9wApOJ2KH1pgFdwhrKnnAMfc0m/B2uK/csw9H2JnSDgdxRHsumdleKm6nV2DXW/ajW0fLxB8ow5471w8jx0QfY81ud3lhM/GrjPtB77CduQhp7IZvjFmPXAVVgHuxXbQv3Wd+56I/MlJW4hdm5qONSXOBM5ztc/fYwc632H/r+cA5zvn5hpjdpd+sEog3xizzzn3Jqypcb7LKlE6k8QpKxm7BrQTO9K/zIlLAB7Htrmd2P/XeNfMpCvBDx6DajvGmO1Y5XerlH/RwJtY565V2PYz3wkPpl3VK86AIUdEuvmLN8a8jzUTfoJ1yvoR12BOrPf5NCftPqxj193Y+3AyMNWJK/C599lAkXNcymbsoLEz1o8jD5f1C9vushxZ3DIexnqU3uCUuwprjbrLif8Uu578iogcwVr+/maM8X3OM4IqvMUrQ5xFwnpBRJZgF8ifqLdClTpBRC7BmkH/WEW6s7CWgL7GmINB5n0v0MEYc1mViZVGh4g8AbxsjFl8HOdq22nkiH3kZA7Qzhhz8fHkERYPXioND2PMc1WnAqy57b/AehF50BjzgG8Cx0QVjZ09pmO9uvy+/ktp/DhLCkGhbadpIdbxZi3wA3D18ebTZBSfiMzFmiV9ec4Yc1V9y9NUcMxq06pIloA1UXXCmmYfxJqgwgoRCfT2mfHVXINVao+Qtx3H9LghQHR/x8yq1ALGmJ+owRtbSqlXU6eiKIqihJqQv3tQURRFUeqTsDJ1tmnTxiQnJ4daDEVRFKUeWbFixX5jTFAvx6gNwkrxJScns3z58lCLoSiKotQjIvJj1alqDzV1KoqiKE0KVXyKEsao85mi1D6q+BQlTNmTdZS7/3Y781/190YwRVGOl7Ba4/NHUVERmZmZ5Ofnh1oUpQERGxtLly5diIqKCrUox83/Ft7FX4r+yZE1caxK+Yq03smhFklRGgVhr/gyMzNJSEggOTmZ8i+ZVxT/GGM4cOAAmZmZ9OjRI9TiHBfFJV4G7n2bYokkQfLY8/XL0LshvCdZUcKfsDd15ufnk5SUpEpPCRoRISkpqUFbCbZsXkcv2cGmlJs55GlFs8xPQy2SojQawl7xAar0lGrT0NvMT+vtZhqdB53BrlbpnJC/noJi3927FEU5HhqE4lOUpoZn92oKiaRV8iC8HVLpKAfJzMwMtViK0ihQxRcEIsJNN91U9vuBBx5g1qxZoROoCpYsWcL//lftvXDLcfbZZ5OYmMjPf/7zWpJKqQ5JhzeQGdUDImOI7zYYgIPb9OUOilIbqOILgpiYGF577TX2799fq/kaY/B6j3svxYDUhuK7+eabefbZZ2tJIqU6GGPoULid7IReALQ/MQ2AvF2bQiiVojQeVPEFQWRkJFdeeSUPPfRQhbh9+/YxefJk0tPTSU9P54sv7NrMrFmzeOCBY1vPDRw4kIyMDDIyMujTpw/Tp09n4MCB7Nixg5tvvpmBAweSkpLCokWLAKu8Ro8ezYUXXkjfvn2ZNm2a34eZ58yZQ//+/UlNTWXq1KlkZGQwd+5cHnroIdLS0vj8888rlfHSSy/llFNOoVevXsybN68s35/97GckJCRUWi8vv/wyAwcOZNCgQZx22mmAdUa6/PLLSUlJYfDgwXzyid2AecGCBZx33nmceeaZJCcn8+ijj/KPf/yDwYMHM3z4cA4etHvUzps3j/T0dAYNGsTkyZPJzc2tUO7w4cNZv/7YZt+jR49uVK+623XgEO3lENLaeqQ2a92ZXGLh4PchlkxRGgdh/ziDmzveXs+Gnw7Xap79O7Xg/507oMp0V199NampqfzhD38oF37ddddxww03MHLkSLZv3864cePYuHFjpXl99913PP300wwfPpxXX32VVatWsXr1avbv3096enqZElm5ciXr16+nU6dOjBgxgi+++IKRI0eWy+uee+7hhx9+ICYmhqysLBITE7nqqqto3rw5v//97wH45S9/GVDGNWvW8NVXX3H06FEGDx7MhAkT6NSpU1B1d+edd7J48WI6d+5MVlYWAI899hgiwtq1a9m0aRNnnXUWW7ZsAWDdunWsXLmS/Px8TjzxRO69915WrlzJDTfcwDPPPMP111/PBRdcwK9//WsA/vKXvzB//nyuvfbacuVOmTKFl156iTvuuINdu3axa9cuhg4dGpTMDYE9P26mExDX7kQbIMLeyE7E59Tr6wwVpdGiM74gadGiBdOnT2fOnDnlwj/88EOuueYa0tLSmDhxIocPHyYnJ9B+pZbu3bszfPhwAJYuXcovfvELIiIiaN++PaeffjrffPMNAMOGDaNLly54PB7S0tLIyMiokFdqairTpk3jueeeIzLS/zimMhknTZpEXFwcbdq0YcyYMSxbtizoOhkxYgQzZsxg3rx5lJSUlF3PJZfY/X779u1L9+7dyxTfmDFjSEhIoG3btrRs2ZJzzz0XgJSUlLJrW7duHaNGjSIlJYWFCxeWm9mVcvHFF/PKK68A8NJLL3HhhRcGLXND4OjurQAkdOpVFnakWTfaFKpzi6LUBg1qxhfMzKwuuf766xkyZAiXX355WZjX6+Wrr74iNja2XNrIyMhy63fuZ8qaNWsWVHkxMTFlxxERERQXF1dI88477/DZZ5/x9ttvc/fdd7N27doKaQLJCBXd/qvzGMDcuXP5+uuveeeddzjppJNYsWJFpend1+PxeMp+ezyesmubMWMGb7zxBoMGDWLBggUsWbKkQj6dO3cmKSmJNWvWsGjRIubOnRu0zA2Bkv3WpNm6a5+ysOKWPeic9TlHcvNIiI8LlWiK0ijQGV81aN26NRdffDHz588vCzvrrLN45JFHyn6vWrUKsFssffvttwB8++23/PDDD37zHDVqFIsWLaKkpIR9+/bx2WefMWzYsKDk8Xq97NixgzFjxnDvvfeSnZ1NTk4OCQkJHDlypEoZAd58803y8/M5cOAAS5YsIT09PaiyAbZt28bJJ5/MnXfeSdu2bdmxYwejRo1i4cKFAGzZsoXt27fTp0+fKnI6xpEjR+jYsSNFRUVl+fhjypQp3HfffWRnZ5Oamhp0/g2ByOwfySGO2BbHtifztE4mSkrYt2t7CCVTlMaBKr5qctNNN5Xz7pwzZw7Lly8nNTWV/v37l80+Jk+ezMGDBxkwYACPPvoovXv39pvf+eefT2pqKoMGDeKMM87gvvvuo0OHDkHJUlJSwiWXXFLmSPK73/2OxMREzj33XF5//fUy55ZAMoI1lY4ZM4bhw4dz2223la3vjRo1iosuuoiPPvqILl26sHjxYgBuv/123nrrLcB6fqakpDBw4EBOPfVUBg0axG9/+1u8Xi8pKSlMmTKFBQsWlJvpVcVf//pXTj75ZEaMGEHfvn3Lwt966y1uv/32st8XXnghL774IhdffHHQeTcU4nIz2RfRAVyz7/i23QHI2qUOLopSUySctj0ZOnSo8fXO27hxI/369QuRRI2bWbNmlXOCaWw01Laz5c4hFMa2YeAfPigL2/f9Kto+czpLB93DyPN/E0LpFKX2EZEVxph681Cr8YxPRK4VkU0isl5E7nPCzhSRFSKy1vk+o+aiKkrjxxhDYskBiuLblwtv3bEnACWHdoRCLEVpVNTIuUVExgCTgEHGmAIRaedE7QfONcb8JCIDgcVA55qJqtQ24fz2mabKkbx8kshmR/Pyii8irgWHaY7nyE8hkkxRGg819er8DXCPMaYAwBiz1/le6UqzHogTkZjSdIqi+Ofg3p20EENEi44V4yLbEZerik9RakpNTZ29gVEi8rWIfCoi/lwCJwPfBlJ6InKliCwXkeX79u2roTiK0rA5vNeaMmNaVTSQ5MR2oGXhnvoWSVEaHVXO+ETkQ8Cfm+GfnfNbA8OBdOAlEelpHI8ZERkA3AucFSh/Y8y/gX+DdW6p7gUoSmMi74B9SL1Zmy4V4gqadaLLkdWUeA0Rnoa97ZKihJIqFZ8xZmygOBH5DfCao+iWiYgXaAPsE5EuwOvAdGPMttoSWFEaM0VZuwBo2a5bxciWXUjcc5Q9Bw7Qvm2bepZMURoPNTV1vgGMARCR3kA0sF9EEoF3gFuNMV/UsIyw4I033kBE2LQp8BvyMzIyGDhwYJ3KsWrVKt59990a5TFz5kzatWtX57Iqx8GR3ZQYoUWbimt8MUlWGR74SZ/lU5SaUFPF9yTQU0TWAS8Clzmzv2uAE4HbRWSV82lXWUbhzgsvvMDIkSN54YUX/Mb7e51YdSl932Vl1IbimzFjBu+//36N8lDqBk/ePrIlAYmIqhCX0N7u1nBkjyo+RakJNVJ8xphCY8wlxpiBxpghxpiPnfC7jDHNjDFprs/e2hG5/snJyWHp0qXMnz+fF198sSx8yZIljBo1iokTJ9K/f3/AKsBp06bRr18/LrzwwrJtdT766CMGDx5MSkoKM2fOpKDA+vokJydzyy23MGTIEF5++eVy5fpu+1NYWMjtt9/OokWLSEtLY9GiRRw9epSZM2cybNgwBg8ezJtvvgnYbYAmTZrE6NGj6dWrF3fccUdZvqeddhqtW7eu9Jo//fRT0tLSSEtLY/DgwRw5cgRjTMAtlE4//XQmTZpEz549ufXWW1m4cCHDhg0jJSWFbduspfvtt9/m5JNPZvDgwYwdO5Y9eyo6akydOpV33nmn7PeMGTPKXkjdFIgqyOJIRKLfuNadTgCg8IDu0qAoNaFBvaSa926F3RVfwlwjOqTA+HsqTfLmm29y9tln07t3b5KSklixYgUnnXQSYN/DuW7dOnr06EFGRgabN29m/vz5jBgxgpkzZ/LPf/6Ta665hhkzZvDRRx/Ru3dvpk+fzuOPP871118PQFJSUtl7Pd34bvsTHR3NnXfeyfLly3n00UcB+NOf/sQZZ5zBk08+SVZWFsOGDWPsWLssu2zZMtatW0d8fDzp6elMmDAh6O17HnjgAR577DFGjBhBTk4OsbGxvPbaawG3UFq9ejUbN26kdevW9OzZkyuuuIJly5bx8MMP88gjjzB79mxGjhzJV199hYjwxBNPcN999/Hggw+WK7d0y6EJEyZQWFjIRx99xOOPPx6UzI2B2KIs8iJb+I1LaNOFIhMBWbpLg6LUBH1XZxC88MILTJ06FbAzEre5c9iwYfTo0aPsd9euXRkxYgQAl1xyCUuXLmXz5s306NGj7H2dl112GZ999lnZOVOmTPFbrr9tf3z54IMPuOeee0hLS2P06NHk5+ezfbt9kfGZZ55JUlIScXFxXHDBBSxdujToax4xYgQ33ngjc+bMISsri8jIyEq3UEpPT6djx47ExMRwwgkncNZZ1pHXveVQZmYm48aNIyUlhfvvv9/vlkPjx4/nk08+oaCggPfee4/TTjuNuLimsxtBs+IsCqJa+Y/0RHDAk0TU0Z31K5SiNDIa1oyviplZXXDw4EE+/vhj1q5di4hQUlKCiHD//fcDFbcYOp5tfgJtUxTMtj/GGF599dUKOyB8/fXXNdpy6NZbb2XChAm8++67jBgxouwl1YEIZsuha6+9lhtvvJGJEyeyZMkSv2+OiY2NZfTo0SxevJhFixaVDTiaCgnmMAdjAig+ICu6A83zd9WjRIrS+NAZXxW88sorXHrppfz4449kZGSwY8cOevToweeff+43/fbt2/nyyy8BeP755xk5ciR9+vQhIyODrVvtBqPPPvssp59+epVl+9v2x3fLoXHjxvHII49Q+rLxlSuPvTTnv//9LwcPHiQvL4833nijbCYaDNu2bSMlJYVbbrmF9PR0Nm3aVKMtlACys7Pp3Nk+mP30008HTDdlyhSeeuopPv/8c84+++yg82/oFBWXkGiO4I0LvP6aF9+RpGJ9iF1RaoIqvip44YUXOP/888uFTZ48OaB3Z58+fXjsscfo168fhw4d4je/+Q2xsbE89dRTXHTRRaSkpODxeLjqqquqLNvftj9jxoxhw4YNZc4tt912G0VFRaSmpjJgwABuu+22svOHDRvG5MmTSU1NZfLkyWXre7/4xS845ZRT2Lx5M126dCnbX3Du3LllWxbNnj2bgQMHkpqaSlRUFOPHj6/RFkpg3w160UUXcdJJJ9GmzbHn0JYvX84VV1xR9vuss87i008/ZezYsURHRwedf0MnO+sgUVKCNEsKmKY4oQvtzEFy8/LqUTJFaVzotkSNlAULFpRzgmmKNLS288N36+ixcAQrh/ydwRN/6zfNyjceZvCq28m49GuST+jrN42iNDQa3LZEiqLUDkcP2Sd+Ylw7r/sS18ZuSJu9S1+GpCjHS8NyblGCZsaMGcyYMSPUYijVID/bKr7YxMCKL7GT3Zcvb19GfYikKI2SBjHjCydzrNIwaIhtpujIfgCat2ofME2So/iKD22vF5kUpTES9oovNjaWAwcONMiOTAkNxhgOHDhAbGxsqEWpFiU5VvG1aB3YYSgqtjkHaUHEYX2WT1GOl7A3dXbp0oXMzEx0rz6lOsTGxtKlS8WtfcIZyTtAkYkgtnlipekORrYnPk83pFWU4yXsFV9UVFS5N6MoSmMlMj+LI9Kc1lW8aOBIbCfaHN1ST1IpSuMj7E2ditJUiCg6zFFP8yrTFbY6gY7ePeTn67N8inI8qOJTlDAhuiiHfI//19e5iWrXh0jxkrltw3GVU1hUzMED+8jTh+CVJkrYmzoVpakQXZJDQWTVM75W3QfACji0fR0MOCmovE1JMWvemUvM2oX0KPyO1lIEwG7asDc2maOt+hLdeRCteg6hfY+BNItrWI5BilIdVPEpSpgQW5LDodjAjzKU0rFnCgAFuzcFle/BXRkcemoKgwo38b10Y1XHi/C06EBJ/lEis76n9dGt9P3pBaJ3PQfLId9E8Z10JC8qkcKoRCQyBhHwGoPxesEUg7cEjzn2iaD8t4cSIkwJ4OuNXXH90pSuaZrSr9I0peeWP8dU+F0R41onzY7uxKAbXycqUrs7xaItQVHChGbmKPujE6pMF9s8kX3SmqhDW6tMuz9zM8w/mw7eXD5P/TunnncVPSMqrnAUFuSzdcsqjmSsRPasIzr7B2IKsmiV/z1iijEGRAARvETilYiyTwnHjgsk2h47YQahnK+OMVZRGcr0mZRTXVLu97FTK6o38Qnz5xLUsmA3Q3M/46c9P9Gpc7eqqktpItRY8YnItcDVQAnwjjHmD664bsAGYJYx5oGalqUojZlmJhdvtP9NaH3ZHXsC7XIq9+zMPrCbvCfPJ8FbwLZzX2XU0JEB00bHxHJiynBIGV4tmcOdlf+ZC8tvIf/IIUAVn2KpkXOLiIwBJgGDjDEDAF/l9g/gvZqUoShNgfz8fOKlABMbnOLLbpVCt5IfKcg97DfeeL38+MR02pXsZefZT5JaidJrzETEtwSgMDcrtIIoYUVNvTp/A9xjjCkAMMbsLY0QkfOAH4CK22wrilKOI4cPAuCJbRlU+rjuQ4kQw/b1X/uN/3LRfaTmfc23fW5kwClNZ09DXyLj7aa+RTmHQiyJEk7UVPH1BkaJyNci8qmIpAOISHPgFuCOqjIQkStFZLmILNe3syhNlVxH8ZXOUKqiS8ooALI3fVoh7seNKxiy6QHWxqUzfOqttSdkAyS6uVV8xbnZIZZECSeqXOMTkQ8Bfy8P/LNzfmtgOJAOvCQiPYFZwEPGmByp4i0Uxph/A/8Gux9fdYRXlMZC3mE7I4mKTwwqfftO3dji6UlC5pJy4UWF+RS/+mvyJJZOM55EPE37Ud2YZokAePOyQiqHEl5UqfiMMWMDxYnIb4DXjH2D9DIR8QJtgJOBC0XkPiAR8IpIvjGm6e6KqiiVUHDUKr5op6MOht3tRnHqrmc5evAnmrXuBMC3T9/CycXbWD78UYa2V2eOuAS7m73JzwqtIEpYUdPh4BvAGAAR6Q1EA/uNMaOMMcnGmGRgNvA3VXqKEpjCo1kAxCa0DvqcpBGXESletr0zG4Atn73E0MynWZZ4DkPPvrQOpGx4xCe0oMQI5B8JtShKGFHTxxmeBJ4UkXVAIXCZ0f2DFKXalDheh3EJrYI+p//AIXz5n1MZsu1J1s87yIk732BrRE/6/2puHUnZ8IiLjuIwcXgKdI1POUaNFJ8xphC4pIo0s2pShqI0BUoc54tmLYKf8YkI7X/5OFufvogBO1/m68ihdPvV0zRPCM5BpikgIhyhGRGFOuNTjqFvblGUcKDAPo8Xn5BYrdN6dk+m4I9f8uOBbIa1b01VzmRNkVxPMyKLVPEpx2jaLl+KEiZ4Co6Qa2KQyOhqnxsTFUn3Dkmq9AKQ62lOdLH/B/2VpokqPkUJAyKLDpMjVW9JpFSffE9zYopzQi2GEkao4lOUMCCyKIc8iQ+1GI2SgsjmxHpV8SnHUMWnKGFAZEkuBZ64UIvRKCmKTCDeezTUYihhhCo+RQkDooqPUhihM766oCi6BfEmF7zeUIuihAmNSvFlH9jD+r+NYsW7T4RaFEWpFjHePIpU8dUJ3pgEPBjQRxoUh0al+Jq3TKJXwQaKdqwKtSiKUi1ivLkURapzS10gMfa5RpOvD7Erlkal+CIiI/kpoiMxh78PtSiKUi1iTR4lUar46oII58XfBTlZIZVDCR8aleIDOBTbjVZ520MthqJUi3jy8EY1D7UYjZJIR/EdzT4QWkGUsKHRKb78lj3oVLILb3FxqEVRlKAwJUXEUoSJVsVXF5TuyZd3RDejVSyNTvF52vQiWorZk7k11KIoSlAUHHXeKhKtps66INZ5DVxBzsHQCqKEDY1O8SV07gfA3u/XhFgSRQmOvBzrdOGJSQixJI2T+BZ2T74iZ+snRWl0iq9rv3QAcrd/G2JJFCU48o86ii9WFV9d0NzZ8aLY2fpJURqd4kto2Zod0omYfetCLYqiBEVBrjV1RqriqxNaNo8n18Rg8vRxBsXSKLcl2tOsD52Orq9RHnl5+WRuXUPO/kzyjhxAEDwREURGxxEb35y4Zs2Jj29Os+YJNGuWgCc6DqLiISIa9C35SjUodPbii4xvEWJJGicJsVHsIx5quBntym+WkvPlk3TIWkmSdx+xFJIr8Rz2JHIwpgsFLZKJansCiR170r5rL1q0747oum1Y0igVX2HbFDrlfEL2gd20TOoQ9Hm5R4+w8r2naPnda5yYv45eUlTtskvwUEg0BRJDgcRQKNEUSgwQWBmWblkvpUdV7mFf9Sb34pMm0BnBl1m1DJWpe3dqX9kCUeEaApwWTH7BDkWCla02STR5AETF6YyvLojwCEeJx1NwfFsTHTiwj/VPXs1pRxeTTxTfx6WwtdkgSjzRUHCE+ML9tM//nvZH/0f07hJYe+zcbNOMoxJHvsSRL7GUSDQeAY/TIA1OmzOm7BsMghcxlB2DQQx4sK9dE4x9G00I2qub7yJOZOxf3gqpDMdDjRWfiFwLXA2UAO8YY/7ghKcC/wJaAF4g3RiTX9PygiGx96nwwxy+X/Ehg8+qdIN4ALwlXr5+85/0XPMgIzjITunAqvYXEJc8lPi2yTRPbItgKCkppiA/j9yjR8jPPUpB/lGK8nIoys+lpDAXb2EuESX5RHrziSwpINKbT5Q3nyhvgZ9SA3TFQfXQQXbjQc88g5Wl8vwE+zcNrpjjlC3Az0rLDbLMmnQhNe1+vo9uyaD+Q2uYixKIXE9zoo9jM9od23+g6KmJjPDuYHXyDPpMvo3+Ldr4TVtSXMzOHdvYs+M7snf/QGTOT8Tm7yWy+CgRxblEleQSXVJIiRFKjFV5IrbtGPEAAgIGj7O3orjCxbZx59u2d+c4hBamkuhuISu7JtRI8YnIGGASMMgYUyAi7ZzwSOA54FJjzGoRSQKqP306Tk4cMobc92Mo3PIRVKH49mYdZt28Kznj6Ht8F9WHrDFz6HPKz+ms5kpFaTQURCYQX03Fl33oIEVPTaSj2cP3Zz/LoFPOrTR9RGQknXv0oXOPPjURVakHajrj+w1wjzGmAMAYs9cJPwtYY4xZ7YTX6ysTomNi2Rg/iM4HvrSmgwBKbNuP28la8AvOMOtYd8IVDJh2H+KJqE9RFUWpB0qiE4jN+yno9N4SL1vmTWeIdwdbxz1DnyqUntKwqKlXZ29glIh8LSKfiki6K9yIyGIR+VZE/hAoAxG5UkSWi8jyffv21VCcY+T2OJsuZhdbV3/uN37tqm+IemosA81mdoyezcBLH1SlpyiNFBPTgthq7Mn3v7efID33c1b1/h19Tp1Yh5IpoaBKxSciH4rIOj+fSdgZY2tgOHAz8JJY43QkMBKY5nyfLyI/85e/Mebfxpihxpihbdu2ra3rov/YyygwURz6fF6FuG8+fJnur0+kueSTddFrdB19ea2VqyhKGBLXihYmh5KSkiqTHty/h76r7mJbVC+GTL29HoRT6psqFZ8xZqwxZqCfz5tAJvCasSzDOrG0ccI/M8bsN8bkAu8CQ+ryQnxp2boNK1pPIG3/O2zfbB9mN14vXz77/xj8+ZUcjGqP59ef0H7AafUplqIooSChI1FSQtb+qs2dqxfdSWtzmKhJjyARjdLxvclTU1PnG8AYABHpDUQD+4HFQIqIxDuOLqcDG2pYVrXpfdGdHJFmxLx4Ecuf/TOb7xnJKdtmszZhJB1u+JTETifUt0iKooSAyMTOABze+2Ol6TJ37+Wkva+xsdUYug08pT5EU0JATRXfk0BPEVkHvAhc5sz+DgH/AL4BVgHfGmPeqWFZ1aZNp+7s+vmz5BHD0G2Pkli4hy/7386gG94ktlnL+hZHUZQQEZfUBYDc/TsqTbf6jdm0kFw6nBPQLUFpBNRoHm+MKQT8Pi9gjHkO+0hDSBkwdDTFaWvZd+gAbVol0SFSHVgUpanRvK193qzw4M6AaTL3Z3HSrhf4IWEIPXrrbK8x0+je1emPyMgI2rZtR6QqPUVpkrTt0IVi46EkO/Aa38p3nqCDHKTF2JvrUTIlFDQJxacoStMmPjaG/dIKOex/xnc0v5B+PzxFZnRPkgaNr2fplPpGFZ+iKE2C/VGdaJ7rf43v68UvcCKZFA3/nb5kvgmgik9RlCZBVnwy7Qu3Vwj3eg1t1sxlj6cdyadNC4FkSn2jik9RlCZBUasTSeQIBYf3lgtf+eUHpJZsYE//XyGR0SGSTqlPVPEpitIkiO/UD4CdW1aVCzdLHyab5vQ95+oQSKWEAlV8iqI0CTr2ti+Pyv5+RVlYxsYVDMn9H5u7TiU6XvdDbCqo4lMUpUnQpduJ7DRtidz5VVnYvnf/Rj7R9JqkjzA0JVTxKYrSJPB4hB8TBtM9ezmmKJ+MDV8z5PBHrOk8hVZtOoRaPKUeUcWnKEqTobj/ZFqQw9Z3HqLktavJlub0ueDPoRZLqWdU8SmK0mQY9rMLWOPpS69V99CjaCtbhv1NZ3tNEN1zQ1GUJkNsTDSJM19l8eJ5tOw9guGjzgq1SEoIUMWnKEqToluXLnT71R2hFkMJIWrqVBRFUZoUqvgURVGUJoUYY0ItQxkisg+ofIvk4GiD3Qm+IdCQZIWGJa/KWnc0JHkbkqzQsOStLVm7G2Pa1kI+QRFWiq+2EJHlxpihoZYjGBqSrNCw5FVZ646GJG9DkhUalrwNSVY3aupUFEVRmhSq+BRFUZQmRWNVfP8OtQDVoCHJCg1LXpW17mhI8jYkWaFhyduQZC2jUa7xKYqiKEogGuuMT1EURVH8oopPURRFaVI0KsUnImeLyGYR2Soit4ZaHl9EpKuIfCIiG0RkvYhc54TPEpGdIrLK+ZwTalkBRCRDRNY6Mi13wlqLyH9F5Dvnu1UYyNnHVXerROSwiFwfTvUqIk+KyF4RWecK81uXYpnjtOM1IjIkDGS9X0Q2OfK8LiKJTniyiOS56nhufcpaibwB772I/NGp280iMi4MZF3kkjNDRFY54eFQt4H6rLBsu0FjjGkUHyAC2Ab0BKKB1UD/UMvlI2NHYIhznABsAfoDs4Dfh1o+P/JmAG18wu4DbnWObwXuDbWcftrBbqB7ONUrcBowBFhXVV0C5wDvAQIMB74OA1nPAiKd43tdsia704VR3fq9987/bTUQA/Rw+oyIUMrqE/8gcHsY1W2gPiss226wn8Y04xsGbDXGfG+MKQReBCaFWKZyGGN2GWO+dY6PABuBzqGVqtpMAp52jp8GzgudKH75GbDNGFMbbwCqNYwxnwEHfYID1eUk4Blj+QpIFJGO9SIo/mU1xnxgjCl2fn4FdKkveaoiQN0GYhLwojGmwBjzA7AV23fUC5XJKiICXAy8UF/yVEUlfVZYtt1gaUyKrzOww/U7kzBWKiKSDAwGvnaCrnFMA0+Gg/nQwQAfiMgKEbnSCWtvjNnlHO8G2odGtIBMpXzHEY71Wkqgugz3tjwTO6ovpYeIrBSRT0VkVKiE8oO/ex/OdTsK2GOM+c4VFjZ169NnNdS2CzQuxddgEJHmwKvA9caYw8DjwAlAGrALa+4IB0YaY4YA44GrReQ0d6Sxto2weR5GRKKBicDLTlC41msFwq0uAyEifwaKgYVO0C6gmzFmMHAj8LyItAiVfC4azL138QvKD9rCpm799FllNJS266YxKb6dQFfX7y5OWFghIlHYBrTQGPMagDFmjzGmxBjjBeZRj6aXyjDG7HS+9wKvY+XaU2q6cL73hk7CCowHvjXG7IHwrVcXgeoyLNuyiMwAfg5Mczo7HJPhAed4BXbNrHfIhHSo5N6Ha91GAhcAi0rDwqVu/fVZNLC260tjUnzfAL1EpIcz8p8KvBVimcrh2PDnAxuNMf9whbtt4OcD63zPrW9EpJmIJJQeY50b1mHr9DIn2WXAm6GR0C/lRszhWK8+BKrLt4DpjofccCDbZVYKCSJyNvAHYKIxJtcV3lZEIpzjnkAv4PvQSHmMSu79W8BUEYkRkR5YeZfVt3x+GAtsMsZklgaEQ90G6rNoQG3XL6H2rqnND9ajaAt2ZPTnUMvjR76RWJPAGmCV8zkHeBZY64S/BXQMA1l7Yr3fVgPrS+sTSAI+Ar4DPgRah1pWR65mwAGgpSssbOoVq5B3AUXYdY9fBapLrEfcY047XgsMDQNZt2LXbkrb7Vwn7WSnfawCvgXODZO6DXjvgT87dbsZGB9qWZ3wBcBVPmnDoW4D9Vlh2XaD/egryxRFUZQmRWMydSqKoihKlajiUxRFUZoUqvgURVGUJoUqPkVRFKVJoYpPURRFaVKo4lMURVGaFKr4FEVRlCaFKj5FURSlSaGKT1EURWlSqOJTFEVRmhSq+BRFUZQmhSo+RVEUpUkRNopPRJJFxDj7Uil1iIjMEJGl9VRWnIi8KyKHROQP9VGmT/kZIjK2HspZIiJXBIjTth0inHo/sbpxtSxDwDYoIqNFJNNfnFIREekkIkdEZLOInHG8+YSN4lOODxGZJSJFIpLj+tS7gqmEsUAq0NUYc19poNMZJIdMqjDCuYezqpH+lyLyo4gcFZE3RKR1JWnTRGSFiOQ632muuBgRmSsie0TkoIi8LSKd/eTRS0TyReQ5V9gEEVkqIlkisltEnijdv9GJby0ii0TkgIjsF5GF7t3Dnfuf52qzH1Tj+ptM2xGRBc4GwMGmv8G5H4dF5EkRiakk7c9EZJPTNj4Rke5+0rQWkX3ugbKIRIvIK859MCIy2uec93z6o0IRWeuKTxORz0UkW0QyReQ2n/MvFpGNjoLbICLnlcYZY34yxiQAbwO/C7ZefKk1xaej2ZCyyBjT3PW5r+pT6o3WQIYxJifUgtQEZ2PNkA8URWQA8C/gUqA9kAv8M0DaaOwGoc8BrYCngTedcIDrgFOwA5NOwCHgET9ZPYbd6NlNS+Au57x+QGfgflf8XU6ZPYATHFln+eRxrqvNnlXZdYcz4dL3icg44FbgZ0B37J6adwRI2wZ4DbgN+x9djmv3dxf3Ahv9hC8FLgF2+0YYY8a7+yPgf8DLriTPA5855Z4O/FZEJjpydca21xuBFsDNwPMi0s6nmHXYPQGPixr9kR2Nf4uIrAGOikikiAwXkf85I8HV7tGAWHPQ30VkmTMieTPQaFVELndp/e9F5P984ieJyConn21id4hGRFqKyHwR2SUiO0XkLnF2Ma7kOk4QkY99RqeJrriDIjLE+d3JGQGNdn5PFJH1zvUuEZF+PvXzexFZ44xuFolIbPVruvqIyK1OvZSOms4PkE5E5CER2evU5VoRGejExYjIAyKyXeysYK6IxFVTlEjAW4WsSWJnG4dF5BvnnrlHmEZErhKR75x6fkxExIkLeO9cpDt1cEhEniq9ByLSSkT+49zPQ85xF1e5S0TkbhH5AqtgelZxrd1F5Aunzj9wOhc305y63C8if64ir0BMA942xnzmDCZuAy4Q12zLxWhs/c82xhQYY+ZgNwotNRH1ABYbY/YYY/KxHd8AdwYiMhXIwm46WoYx5nljzPvGmFxjzCFgHjDClaQH8IYx5rAxJht43Tfv2qCqtuOTdqSI7JDyM5RznP5lv4jcL87gpqp2JX76vipETausHxCRm5z/4C4Rufx46gK7E/p8Y8x65578FZgRIO0FwHpjzMvOvZ8FDBKRvi6ZTgUGAk+5TzTGFBpjZhtjlgIllQkkdmY+CnjGFZwMLDTGlBhjtmGVaGnb6AJkGWPeM5Z3gKPYwZMbL7ZtHx813J03A7sjb1cgDjvqO4DdodcDnOn8buukXwLsxFZmM+BV4DknLhm702+k83uCc7GCHRXkAkOcuGFAtpO/xym3rxP3OnZE3AxoBywD/q+K6zjRySsGaIsdjcx2xf8a2ADEA4uBB5zw3tibciYQBfwBu1N1tKt+lmFHxa2xI6erAsgwEtvBBPqMDHDerNI69Am/yCnXA0xx5OzoxM0AljrH44AVQKJT1/1c6R7C7l7dGig1L/y9Gu0jCrsTdgX5fNK96Hzigf7Ynb6XuuIN8B9Hxm7APuDsIO9dBnZ02NW5ji+Au5y4JOwu1/HO9b2M7axLz10CbMf+KSOBqEquYQl21+ne2P/CEuAen7Y9z4kbBBQA/QLkVdn9fhO4xScsBzjJT9obgPd8wv4D3OQcD3Xqo5NTB8/71F0LYAu2M/LbzlxpZwMvun7/HHgXO+trBXwMXO9zX/Y49/IDYNBx9kHBtJ0TgbOduGE+cZ847aKbc61XVKNdrXLaVVwQ/aTffgA7OCkG7sT+X87B9nWt/OTTzWkb3QKUsxqY4vrdxrnGJD9pHwYe9wlbB0x2jiOwu76fhKu/8JNPJjC6kmu/HVjiE/Y34B7nevs4eaS7yv0UmOgcn+fEN/PJYwzWQuG3LqpsN8dzks8Nnen6fQvwrE+axcBlzvESnM7A+d0fKHQuMBmX4vNT1hvAdc7xv4CH/KRpj+1Q4lxhvwA+qeZ1nQes9Al7C1gLrAFinLDbgJdcaTxYxT7aVT+XuOLvA+bWpM79yDrLqcMs16eTn3SrgEnOcVlDxo7+twDDAY8rveCMtFxhpwA/BClXGlCE7dxOrCRdhJOujyvsLip2XiNdv18Cbg3m3jn34CrX73OAbZXIfMj1ewlwZ5DXuwT4i+v3b4H3nePStt3FFb8MmHoc9/sjfAZP7jbnE34bLmXkhC0EZjnHLbFKw2A735VAa1fah3GULJUoPqyCOAT0doV1Aj7Ejsy9wH9xBoRO/AjsICAe+CPWZJZYzboItu38EfgRGOhzvsEZQLnu2UfVaFczg5QzgwD9AFbx5eHq94C9wPDjaBvbfK4nyrnGZD9p5+Pqi52wL4AZzvENOIqRmim+raV5usJOdcKLHfnu8In/FXYwV4wdBEwIkPfLzvmzq1tXtbFmscN13B24yDFHZYlIFnYm0zFA+h+xN8fXJISIjBeRrxwzYxa2wypN1xV7k33p7uS3y1X+v7Azv4CISHsReVGsafQw1sbsK9M87Ez1EWNMgRPWybkGAIwxXuf63A4Cbht4LtC8MlmOk5eMMYmuz08iMl2sKbi0Hgbip56NMR8Dj2LXcfaKyL/FOiG0xXZKK1x5vO+EV4kxZhV2FvUlcH0lSdtiZ1PudrHDTzq/9RjkvfNtc52cc+NF5F9iHUUOY0f1iVLeNO5PlkBUda9roy3kYGdibloAR44j7WPYGU0S1kLyGvAeWAcErGPSQ5UJIyLDsTPFC40xW1xRL2EHVAlOmduw9wYAY8wXxpg8Y02lf8cO2EZVVpYfgm0712P/I+v8xAVqG9VtV1VR2b0/YIwpriQ+WHzvd+lxtdqGiHTCOo4crzkesKZloAPwiiusNbYfuROIxfbl40Tkt078WOzAYDQQjbX2PSEupywn3RCsTuhrjLm+urLVhuIzruMd2BmfuxNuZoy5x5Wmq+u4G3bEtt+doVhPpFeBB4D2xphErNlEXOX42nxLwwuANq7yWxhjqlpb+JtzHSnGmBbYRdvSshCR5lhTznxglhxbl/wJq2xL04lzfTurKK8CIjJKyntC+X6C7hTEemfNA67BmjkSsWYM8ZfeGDPHGHMSdgbeG7ugvB87Eh3gqsuWxi5WB4WxawfvOfkGYh92ZNfFFdY1QFp/VHrv/OTXDXvfAG7CmlpOds49zQl3n+9u3+HAeqypFAAR6YlVXlsCpE0tXQ91SHXCwc5wFxhjDjqDuUeAYc7a5GjsTHW7iOwGfg9MFpFvXWUPxlpCZhpjyq0BOnn/yxhz1Ni1yLnYjioQhgDtsxKCbTsXAeeJyHV+4gK1jWDaVVi3Ded4jzHmQFVpRaQZtk9dj11K6ghscO79w9h2sVuq8Jfw4TLgNVPesa0nUGKMecYYU2yMycRaHUrbRhrwmTFmuTHGa4z5BvgaOwhz0w/YYIzZXA15yqhtL7XngHNFZJyIRIhIrNjnVNwN8xIR6S8i8Vit/4oxxneBNBr7Z94HFIvIeMDt9TUfuFysO65HRDqLSF9jzC7sesGDItLCiTtBRE6vQu4E7AgoW6xX0c0+8Q8Dy40xVwDvYP/EYEe1Exw5orAdaQHWi6laGGM+N+U9M30/n1cju2bYP+U+sI5C2BlfBUQkXUROduQ/CuQDXmf2Og94SByPKqeex7nOreDK7IcC7P30i3PvX8MOKOKdxfXpQV2lpap7B3C1iHRxBix/5pj3WgJWuWc5cf+vGuWGioXY/9gop7O6E9u5+BvVL8E6H/xOrKPSNU74x873N8B0sQ5hUVhT30/GmP3Av7EdYZrzmYtt++MAxDpAvQ9ca4x520/Z3wBXiH2OMw64ErtMgIh0E5ERYt3iY0XkZuxs6gsnfrSIVKlUqtF2fsJ6Ol4nIr/xibtZrJNTV6yXq7ttVNWuwo1ngF85/Wsi8BdgQYC0rwMDRWSyWEeb24E1xphN2MFqMsfu/e1YM3haaV/ttKdSB53S++ieLMQBF/spf4uNll86/XMHrA/CGif+G2BU6QzPGVyNcsWXEoXtW46LWlV8xpgdwCTgT9hOdwe2wbjLeRZbGbuxU90Kz2I4f+LfYRXLIeCX2JFlafwy4HKsGSYbuxhaOvOaju1oNzjnvkJ5U6s/7gCGOHm9g/0zAdZ7FLswXvqHuREYIiLTnNHGJdiR8n7gXKyLdmEV5dUpxpgNwINYM+MeIAWnU/FDC6yCO4Q19RzgmFv6LVhb/FeOuedD7AwJp6M4gl33rAwvVbeza7DrTbux7eMFgm/UAe+di+exA6LvsSa3u5zw2dh1pv3AV9iOPORUNsM3xqwHrsIqwL3YDvq3rnPfE5E/OWkLsWtT07GmxJnAea72+XvsQOc77P/1HOB859xcY8zu0g9WCeQbY/Y5596ENTXOd1klSmeSOGUlY9eAdmJH+pc5cQnA49g2txP7/xrvmpl0JfjBY1BtxxizHav8bpXyLxp4E+vctQrbfuY74cG0q3rFGTDkiEg3f/HGmPexZsJPsE5ZP+IazIn1Pp/mpN2Hdey6G3sfTgamOnEFPvc+GyhyjkvZjB00dsb6ceThsn5h212WI4tbxsNYj9IbnHJXYa1Rdznxn2LXk18RkSNYy9/fjDG+z3lGUIW3eGWIs0hYL4jIEuwC+RP1VqhSJ4jIJVgz6B+rSHcW1hLQ1xhzMMi87wU6GGMuqzKx0ugQkSeAl40xi4/jXG07jRyxj5zMAdoZYy4+njzC4sFLpeFhjHmu6lSANbf9F1gvIg8aYx7wTeCYqKKxs8d0rFeX39d/KY0fZ0khKLTtNC3EOt6sBX4Arj7efJqM4hORuVizpC/PGWOuqm95mgqOWW1aFckSsCaqTljT7INYE1RYISKB3j4zvpprsErtEfK245geNwSI7u+YWZVawBjzEzV4Y0sp9WrqVBRFUZRQE/J3DyqKoihKfRJWps42bdqY5OTkUIuhKIqi1CMrVqzYb4wJ6uUYtUFYKb7k5GSWL18eajEURVGUekREfqw6Ve2hpk5FURSlSaGKT1HCjG8yDrIzKy/UYihKo0UVn6KEGQXzf84ns2eGWgxFabSE1RqfP4qKisjMzCQ/Pz/UoigNiNjYWLp06UJUVFSoRakWxhhGRqxnJOurTqwoynER9oovMzOThIQEkpOTKf+SeUXxjzGGAwcOkJmZSY8ePUItTrUo8Zrw/1MqSgMn7E2d+fn5JCUlqdJTgkZESEpKapBWgmKvvlBCUeqasFd8gCo9pdo01Dbj1TcpKUqd0yAUn6I0FXTGpyh1jyq+IBARbrrpprLfDzzwALNmzQqdQFWwZMkS/ve/au+FW8aqVas45ZRTGDBgAKmpqSxatKjqk5RaoaTEpfi8vvszK4pSG6jiC4KYmBhee+019u/fX6v5GmPweo97L8WA1FTxxcfH88wzz7B+/Xref/99rr/+erKysmpPQCUg7hlfcb6/TdUVRakpqviCIDIykiuvvJKHHnqoQty+ffuYPHky6enppKen88UXdqPzWbNm8cADx7aeGzhwIBkZGWRkZNCnTx+mT5/OwIED2bFjBzfffDMDBw4kJSWlbHa1ZMkSRo8ezYUXXkjfvn2ZNm0a/nbSmDNnDv379yc1NZWpU6eSkZHB3Llzeeihh0hLS+Pzzz+vVMZLL72UU045hV69ejFv3jwAevfuTa9evQDo1KkT7dq1Y9++fRXKfvnllxk4cCCDBg3itNNOA6wz0uWXX05KSgqDBw/mk0/sBswLFizgvPPO48wzzyQ5OZlHH32Uf/zjHwwePJjhw4dz8KDdo3bevHmkp6czaNAgJk+eTG5uboVyhw8fzvr1x9z9R48e3WhedVfiUnx5uar4FKUuaFCe03e8vZ4NPx2u1Tz7d2rB/zt3QJXprr76alJTU/nDH/5QLvy6667jhhtuYOTIkWzfvp1x48axcePGSvP67rvvePrppxk+fDivvvoqq1atYvXq1ezfv5/09PQyJbJy5UrWr19Pp06dGDFiBF988QUjR44sl9c999zDDz/8QExMDFlZWSQmJnLVVVfRvHlzfv/73wPwy1/+MqCMa9as4auvvuLo0aMMHjyYCRMm0KlTp7L8ly1bRmFhISeccEKF67jzzjtZvHgxnTt3LpsRPvbYY4gIa9euZdOmTZx11lls2bIFgHXr1rFy5Ury8/M58cQTuffee1m5ciU33HADzzzzDNdffz0XXHABv/71rwH4y1/+wvz587n22mvLlTtlyhReeukl7rjjDnbt2sWuXbsYOnRopXXeUChxDW4KjuaQ0CaEwihKI0VnfEHSokULpk+fzpw5c8qFf/jhh1xzzTWkpaUxceJEDh8+TE5OoP1KLd27d2f48OEALF26lF/84hdERETQvn17Tj/9dL755hsAhg0bRpcuXfB4PKSlpZGRkVEhr9TUVKZNm8Zzzz1HZKT/cUxlMk6aNIm4uDjatGnDmDFjWLZsWdl5u3bt4tJLL+Wpp57C46nYVEaMGMGMGTOYN28eJSUlZddzySV2v9++ffvSvXv3MsU3ZswYEhISaNu2LS1btuTcc88FICUlpeza1q1bx6hRo0hJSWHhwoXlZnalXHzxxbzyyisAvPTSS1x44YWV1ndDoqT4mOm7ILd2B3mKolga1IwvmJlZXXL99dczZMgQLr/88rIwr9fLV199RWxsbLm0kZGR5dbv3M+UNWvWLKjyYmJiyo4jIiIoLi6ukOadd97hs88+4+233+buu+9m7dq1FdIEkhEquv2X/j58+DATJkzg7rvvLlPSvsydO5evv/6ad955h5NOOokVK1YEfT0ej6fst8fjKbu2GTNm8MYbbzBo0CAWLFjAkiVLKuTTuXNnkpKSWLNmDYsWLWLu3LmVltuQKC4pKjsuyFNTp6LUBTrjqwatW7fm4osvZv78+WVhZ511Fo888kjZ71WrVgF2i6Vvv/0WgG+//ZYffvjBb56jRo1i0aJFlJSUsG/fPj777DOGDRsWlDxer5cdO3YwZswY7r33XrKzs8nJySEhIYEjR451moFkBHjzzTfJz8/nwIEDLFmyhPT0dAoLCzn//POZPn16pbOpbdu2cfLJJ3PnnXfStm1bduzYwahRo1i4cCEAW7ZsYfv27fTp0yeo6wE4cuQIHTt2pKioqCwff0yZMoX77ruP7OxsUlNTg84/3PGWHBvcFOVVbjlQFOX4UMVXTW666aZy3p1z5sxh+fLlpKam0r9//7LZx+TJkzl48CADBgzg0UcfpXfv3n7zO//880lNTWXQoEGcccYZ3HfffXTo0CEoWUpKSrjkkkvKHEl+97vfkZiYyLnnnsvrr79e5twSSEawptIxY8YwfPhwbrvtNjp16sRLL73EZ599xoIFC0hLSyMtLa1MWd5+++289dZbANx8882kpKQwcOBATj31VAYNGsRvf/tbvF4vKSkpTJkyhQULFpSb6VXFX//6V04++WRGjBhB3759y8Lfeustbr/99rLfF154IS+++CIXX3xx0Hk3BNyz+pJ8VXyKUheIP0/BUDF06FDj6523ceNG+vXrFyKJGjezZs0q5wTT2GiIbWfDDzvo//RAANYMu4/Uc/4vxBIpSt0jIiuMMfXmoaYzPkUJI7yuGZ+34GgIJVGUxkuDcm5RapdwfvtMU6XEtcbnLaz4DKOiKDVHZ3yKEka4nVuMKj5FqRNU8SlKGFHiepzBFOWFUBJFabyo4lOUMMK41vhEZ3yKUieo4lOUMMK4d2Qo1hmfotQFqviC5I033kBE2LRpU8A0GRkZDBw4sE7lWLVqFe++++5xn1/6wHv//v0ZMGAADz/8cC1Kp9QU4zJ1elTxKUqdoIovSF544QVGjhzJCy+84Dfe3+vEqkvp+y4ro6aKLzIykgcffJANGzbw1Vdf8dhjj7Fhw4bjzk+pXYz3WDuKKFHFpyh1gSq+IMjJyWHp0qXMnz+fF198sSx8yZIljBo1iokTJ9K/f3/AKsBp06bRr18/LrzwwrJtdT766CMGDx5MSkoKM2fOpKCgALCvNrvlllsYMmQIL7/8crlyfbf9KSws5Pbbb2fRokWkpaWxaNEijh49ysyZMxk2bBiDBw/mzTffBOw2QJMmTWL06NH06tWLO+64A4COHTsyZMgQABISEujXrx87d+6scM2ffvpp2VtbBg8ezJEjRzDGBNxC6fTTT2fSpEn07NmTW2+9lYULFzJs2DBSUlLYtm0bAG+//TYnn3wygwcPZuzYsezZs6dCuVOnTuWdd94p+z1jxoyyF1I3BYzLqzNCZ3yKUic0rOf43rsVdld8CXON6JAC4++pNMmbb77J2WefTe/evUlKSmLFihWcdNJJgH0P57p16+jRowcZGRls3ryZ+fPnM2LECGbOnMk///lPrrnmGmbMmMFHH31E7969mT59Oo8//jjXX389AElJSWXv9XTju+1PdHQ0d955J8uXL+fRRx8F4E9/+hNnnHEGTz75JFlZWQwbNoyxY8cCdkuhdevWER8fT3p6OhMmTCi3fU9GRgYrV67k5JNPrlD2Aw88wGOPPcaIESPIyckhNjaW1157LeAWSqtXr2bjxo20bt2anj17csUVV7Bs2TIefvhhHnnkEWbPns3IkSP56quvEBGeeOIJ7rvvPh588MFy5ZZuOTRhwgQKCwv56KOPePzxx4O8mQ0f94wv0ptfSUpFUY6XOp/xicjZIrJZRLaKyK11XV5d8MILLzB16lTAzkjc5s5hw4bRo0ePst9du3ZlxIgRAFxyySUsXbqUzZs306NHj7L3dV522WV89tlnZedMmTLFb7n+tv3x5YMPPuCee+4hLS2N0aNHk5+fz/bt2wE488wzSUpKIi4ujgsuuIClS5eWnZeTk8PkyZOZPXs2LVq08Fv2jTfeyJw5c8jKyiIyMrLSLZTS09Pp2LEjMTExnHDCCZx11llA+S2HMjMzGTduHCkpKdx///1+txwaP348n3zyCQUFBbz33nucdtppxMXF+b32Ronj3FKMh6gSVXyKUhfU6YxPRCKAx4AzgUzgGxF5yxhzfItKVczM6oKDBw/y8ccfs3btWkSEkpISRIT7778fqLjFUKBtfioj0DZFwWz7Y4zh1VdfrbADwtdffx1QlqKiIiZPnsy0adO44IIL/JZ96623MmHCBN59911GjBjB4sWLK72GYLYcuvbaa7nxxhuZOHEiS5Ys8fvmmNjYWEaPHs3ixYtZtGhR2YCjqVBq6swlniid8SlKnVDXM75hwFZjzPfGmELgRWBSHZdZq7zyyitceuml/Pjjj2RkZLBjxw569OjB559/7jf99u3b+fLLLwF4/vnnGTlyJH369CEjI4OtW7cC8Oyzz3L66adXWba/bX98txwaN24cjzzyCKUvG1+5cmVZ3H//+18OHjxIXl4eb7zxBiNGjMAYw69+9Sv69evHjTfeWGnZKSkp3HLLLaSnp7Np06YabaEEkJ2dTefOnQF4+umnA6abMmUKTz31FJ9//jlnn3120Pk3BkpNnXmeeKKNKj5FqQvqWvF1Bna4fmc6YWWIyJUislxElu/bt6+Oxak+L7zwAueff365sMmTJwf07uzTpw+PPfYY/fr149ChQ/zmN78hNjaWp556iosuuoiUlBQ8Hg9XXXVVlWX72/ZnzJgxbNiwocy55bbbbqOoqIjU1FQGDBjAbbfdVnb+sGHDmDx5MqmpqUyePJmhQ4fyxRdf8Oyzz/Lxxx+XOa+UeonOnTu3bMui2bNnM3DgQFJTU4mKimL8+PE12kIJ7LtBL7roIk466STatGlTFr58+XKuuOKKst9nnXUWn376KWPHjiU6Ojro/BsDpc/x5XviiTEFIZZGURondbotkYhcCJxtjLnC+X0pcLIx5hp/6XVbotpjwYIF5ZxgmiINse18/t6LjPr6/9gSM4CuBd8RNyv8BoOKUts0tm2JdgJdXb+7OGGKovjDWeMrimhOHIXg9YZYIEVpfNS14vsG6CUiPUQkGpgKvFXHZSrY59+a8myvoWKM49UZZR2edGsiRal96lTxGWOKgWuAxcBG4CVjTEUf9qrzqW3RlEZOg20zjnNLSVQCAHl5OaGURlEaJXX+ALsx5l3guN+xFRsby4EDB0hKSgrq0QBFMcZw4MABYmNjQy1K9XEUnzfaKr6C3ByatQqlQIrS+Aj7N7d06dKFzMxMwtHjUwlfYmNj6dKlS6jFqDZlryyLaQ5AQe6RSlIrinI8hL3ii4qKKvdmFEVp1BjrzCIx9m06hflHQymNojRK9CXVihJOOKZOT5w1dRblqeJTlNpGFZ+ihBOO4ouISwSgKF+dWxSltlHFpyjhhKP4ouKtqbOkQGd8ilLbqOJTlDBCnDW+6PiWABQX6HN8ilLbqOJTlHDCmfHFNE8EoEQVn6LUOqr4FCWccBRfbHM74zOFusanKLWNKj5FCSPE2Z0hzpnxmcK8EEqjKI0TVXyKEk447+qMjWtOkYmAIlV8ilLbqOJTlHDCmfFFRESSRwwUqVenotQ2qvgUJYzwmGK8RsDjIV9i8BSrc4ui1Daq+BQlnPAWU+L8LQskFo+aOhWl1lHFpyjhhNdLsUQAVvFFlKjiU5TaRhWfooQRxltECVbxFXpiiVLFpyi1jio+RQkjPN5CiogCoMgTS6QqPkWpdVTxKUoY4SkppEgcxRcRT5RXFZ+i1Daq+BQljPB4Cyl2ZnwlEXHEePNDLJGiND5U8SlKGBHhPTbj80bGEWNU8SlKbaOKT1HCiAhvIcWO4iuJjCeWghBLpCiND1V8ihJGWMUXDYCJiiPWFIAxIZZKURoXqvgUJYyIMEUUe+yMj6hmeMRg9CF2RalVVPEpShgR6S2kxJnxEd0MgII83ZpIUWoTVXyKEkZEmCJKnBmfJyYegPyjR0IpkqI0OlTxKUoYEWkKMRExAHhi7IwvP/dwKEVSlEaHKj5FCSMivUUQYU2dHsfUWaimTkWpVVTxKUoYEUkhRNoZX1Rsc0AVn6LUNqr4FCVMMMbQzOThjbIKLzLOfhfnq+JTlNpEFZ+ihAmFRYU0l3xKYloCEB2XAEBxvu7Crii1iSo+RQkT8rIPAmBiE4Fjps4SnfEpSq1SI8UnIrNEZKeIrHI+57ji/igiW0Vks4iMq7moitK4yc7aD0Bks0QAYuMdxVegMz5FqU0iayGPh4wxD7gDRKQ/MBUYAHQCPhSR3saYklooT1EaJUcO7QMgLiEJgJhm1tRJoSo+RalN6srUOQl40RhTYIz5AdgKDKujshSlUZB3aA8A8a3a2+/45niNYApzQymWojQ6akPxXSMia0TkSRFp5YR1Bna40mQ6YRUQkStFZLmILN+3b18tiKMoDZPirEwAWrZPBiA2KpI8oqFIZ3yKUptUqfhE5EMRWefnMwl4HDgBSAN2AQ9WVwBjzL+NMUONMUPbtm1b3dMVpdHgzd5JsfHQsm0XADweIY9YRF9SrSi1SpVrfMaYscFkJCLzgP84P3cCXV3RXZwwRVECEHl4O/s8begYeexvmS8xeIrV1KkotUlNvTo7un6eD6xzjt8CpopIjIj0AHoBy2pSlqI0dpJyv2d/XI9yYQUSq4pPUWqZmnp13iciaYABMoD/AzDGrBeRl4ANQDFwtXp0KkpgCguL6FqSyZqWI8qHe2KJKMkPkVSK0jipkeIzxlxaSdzdwN01yV9Rmgq7MjbQXYqIaN+3XHihJ464kprN+IzXy9ZNK8nKWIvHFNG2W1+69DsFT2RtPM2kKA0PbfmKEgYcyFhLd6BFt9Ry4UWeWFqU7D+uPHOOHuXb1x+ix7bn6GV2HYv4Bg7Sgu+TRtP8pIvpPexsPJFR5c4tPJrFgZ9+4MjeH8k7sIPcI1mI8RLhAU9kNBGR0URGxxAZHUN0dAyR0XF4PVEUSyQlRFJEBN6SEvB6EbxgvIix39ZA5EZch1L+2yfeHVoBESI8gkdARIhwvpsldabdCWnBV5zS6FHFpyhhQOFPGwDoeGJ5xVccEU/0cXh1rlzyOkmf/pHTzC6+i+7H8t5X0K7vqRQRwb5tq4j47l36719Msw/e4vAHzdgd1YUioon25tK2ZA+J5NAR6FhlSeFPoYlg/9XradOuMVyNUhuo4lOUMCDq4BZ204YOLVqVCy+OjCPGBL/GV1BYyNJ5N/Gzfc+w09OR785cQK9Tzy+X5oSBJwP/R07OYZZ9+iol331E89wdROAlPzqJTXEDKWrRjYjErsS16UqLdt1ISmpHRGQkhSWGwsICCvLzKSjIJz8/n4KCPIoKCoikmChTRCTFRFKCeDxIRCTgwYiAeDASQfl527HZnzjHxrhmhOWOvQGv2wBeY5N7jcHrNRgMuZlrGbXlHnZt+II27S4Muh6Vxo0qPkUJA1od3cae2GQ6+ISXRDYjNkjFdzArm4x/TuZnhd+wpu1E+sx8nBhnayN/NG/egmETLgcuP37Bw5yDB0/Bu/leCn/8BlDFp1h0dwZFCTGmpJhOxTs42uLEinFR8cSRX37m44fdBw6x7ZGJpBUsZ3XaLFKvfrZSpddUaN06iR+kM/H7VoVaFCWMaFQzPm9JCStnX4i3x2h6j5lGy1ZtapSfMYaCwkIK8nPBWztPY9g1+0qX6IPLp3yGx59PudNrmFfgjKuXT4VTjy8v8XfeccgV+JSa30eAgzu/o5MUQbt+FeJMVDMi8EJxPkTF+T1/76EsdvzzPE4qXs2Po+5n0Nhf14pcjYWfmg8g5eiXdvBQw/+L8XopyDtCXk42efkFGK8XwVinH0AiBI9E4PF48HgiEI9theKJcMoWxOOx32LjQUDEdeypsZwV5K583FQDhNi4+LrKvM5oVIpv/+7ttMvZRNc1H+Nd/f/IiOhKdmwnCqJagceDGAOmmIiSAjwlBUR4C4j0FhLhLSTKFBJpCok2BURTRLQpJIYiYsVLbKgvTGnUdHK+E7qmVogz0c0A8BYcxeNH8e3Pyibj0fMZWryajJH30VOVXgWk80kkbl7MvswttO3aJ6hzfsrMYNe6zync/g3R2T/QMn8nSSV7STBHy/qEVlXm0vj5xtuX9Du/DrUY1aZRKb52nXtgblvPphUfk7X2A2L3raZ5/h465H6HYPDiwSseiiSGIomm2BNNsSeGwshmHPXE4I2wHxMRg4mMxUTGIpExEBmL8UTUWL7SUZdUcOeuUa61eOrx51XRQf348vI3Mj2evAKdIdUc+tbenao8J4ltSfrQ0yuEe6LtaLog9zBxzctbMA5mH+H7Ry9gWMm3bD31Hk4888pak7Yx0SH1DNj8N7Z/+Rptu/7Rb5qSEi/rViwhe/kr9Nj3CV3NT3TCeoTuiejAoZjOHIhPwRvbCm9MCyS2BVGRUYh4KH1Aw+stdczxYrxejDEY4wVjbBt2jm1q64kjpY93lKWxcYKX2rIo1CW5sb6r0g2DRqX4AMTjoW/6WEgP6hWjihLWSIxdp8vPPYJ7vpd1+AhbHz2fYcXL+e7ku+k17jehEbABcEL/oWzxnEi7jc9QkH8dMbF2MOEtKWHzt0s4+M0rJO/9kEHspchEsDl+CLu6/oJWvUfQdcBwusY1K/fiYaXh0+gUn6I0JjyOqbMw90hZ2OEjh9n6yPkMK1rO5vQ76TP+mlCJ1yAQEfJG/ZHen/6KjQ+N40iX0cjBbSQf+h/9OEShiWBzs6Hs73sdvU+fysCWNfMNUMIfVXyKEsZExtld2AvzcgDYd2A/mXMnM6RwNRvT/0q/Cb8LpXgNhkFjLmTp3gz6b3yYftvmcNg0Y2vCULb3Hk+f0y8mpWVSqEVU6hFVfIoSxkS3sHtU5h/cyeb1q4h+5RJSvDvZNPwe+o+/KsTSNSxGTvk9xcXXk51zmISERIZE6NNcTRVVfIoSxrRP7k+hiaDNF7OIMQUUSjTbJyyk/7BzQi1agyQyMpKWia1DLYYSYnTIoyhhTKfWLVgZmUYrDvN9wknIVZ/TU5WeotQInfEpShjj8Qipv3+Xn/ZmMrB7xTe7KIpSfVTxKUqYExcXS5wqPUWpNdTUqSiKojQpVPEpiqIoTQoxdff20mojIvuAH2shqzbA8W1bXf80JFmhYcmrstYdDUnehiQrNCx5a0vW7saYtrWQT1CEleKrLURkuTFmaKjlCIaGJCs0LHlV1rqjIcnbkGSFhiVvQ5LVjZo6FUVRlCaFKj5FURSlSdFYFd+/Qy1ANWhIskLDkldlrTsakrwNSVZoWPI2JFnLaJRrfIqiKIoSiMY641MURVEUv6jiUxRFUZoUjUrxicjZIrJZRLaKyK2hlscXEekqIp+IyAYRWS8i1znhs0Rkp4iscj5h8RZiEckQkbWOTMudsNYi8l8R+c75bhUGcvZx1d0qETksIteHU72KyJMisldE1rnC/NalWOY47XiNiAwJA1nvF5FNjjyvi0iiE54sInmuOp5bn7JWIm/Aey8if3TqdrOIjAsDWRe55MwQkVVOeDjUbaA+KyzbbtAYYxrFB4gAtgE9gWhgNdA/1HL5yNgRGOIcJwBbgP7ALOD3oZbPj7wZQBufsPuAW53jW4F7Qy2nn3awG+geTvUKnAYMAdZVVZfAOcB7gADDga/DQNazgEjn+F6XrMnudGFUt37vvfN/Ww3EAD2cPiMilLL6xD8I3B5GdRuozwrLthvspzHN+IYBW40x3xtjCoEXgUkhlqkcxphdxphvneMjwEagc2ilqjaTgKed46eB80Inil9+BmwzxtTGG4BqDWPMZ8BBn+BAdTkJeMZYvgISRaRjvQiKf1mNMR8YY4qdn18BXepLnqoIULeBmAS8aIwpMMb8AGzF9h31QmWyiogAFwMv1Jc8VVFJnxWWbTdYGpPi6wzscP3OJIyViogkA4OBr52gaxzTwJPhYD50MMAHIrJCRK50wtobY3Y5x7uB9qERLSBTKd9xhGO9lhKoLsO9Lc/EjupL6SEiK0XkUxEZFSqh/ODv3odz3Y4C9hhjvnOFhU3d+vRZDbXtAo1L8TUYRKQ58CpwvTHmMPA4cAKQBuzCmjvCgZHGmCHAeOBqETnNHWmsbSNsnocRkWhgIvCyExSu9VqBcKvLQIjIn4FiYKETtAvoZowZDNwIPC8iLUIln4sGc+9d/ILyg7awqVs/fVYZDaXtumlMim8n0NX1u4sTFlaISBS2AS00xrwGYIzZY4wpMcZ4gXnUo+mlMowxO53vvcDrWLn2lJounO+9oZOwAuOBb40xeyB869VFoLoMy7YsIjOAnwPTnM4Ox2R4wDlegV0z6x0yIR0quffhWreRwAXAotKwcKlbf30WDazt+tKYFN83QC8R6eGM/KcCb4VYpnI4Nvz5wEZjzD9c4W4b+PnAOt9z6xsRaSYiCaXHWOeGddg6vcxJdhnwZmgk9Eu5EXM41qsPgeryLWC64yE3HMh2mZVCgoicDfwBmGiMyXWFtxWRCOe4J9AL+D40Uh6jknv/FjBVRGJEpAdW3mX1LZ8fxgKbjDGZpQHhULeB+iwaUNv1S6i9a2rzg/Uo2oIdGf051PL4kW8k1iSwBljlfM4BngXWOuFvAR3DQNaeWO+31cD60voEkoCPgO+AD4HWoZbVkasZcABo6QoLm3rFKuRdQBF23eNXgeoS6xH3mNOO1wJDw0DWrdi1m9J2O9dJO9lpH6uAb4Fzw6RuA9574M9O3W4GxodaVid8AXCVT9pwqNtAfVZYtt1gP/rKMkVRFKVJ0ZhMnYqiKIpSJar4FEVRlCaFKj5FURSlSaGKT1EURWlSqOJTFEVRmhSq+BRFUZQmhSo+RVEUpUnx/wGo2xUYicTgkgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 8)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABkvElEQVR4nO2deXyUxf3435/dzUnCFZBbDrkhIdwooGAVD6qoqNiqiFatVq1XPX5ttWjbbz2rolZbquKJWA/UImJFUVEBueQGQcIlNwQSyLn7+f0xz4bNZjfZkITdLPN+seR5ZuaZ+TzzzDOf+czMMyOqisVisVgs8Ywr2gJYLBaLxVLXWGVnsVgslrjHKjuLxWKxxD1W2VksFosl7rHKzmKxWCxxj1V2FovFYol7Yk7ZiUgHEVER8URbFsvRIyK3iMhPIvJ9FNKeKCKvHYN0JojI3Er854jItXUth6U8IjJFRP5SXb9alqHSMigiOSJyRl3LES+IyIcisltEHj3aOGJO2Vmqj4g8LyL5zq9YREoCzmdGSayJwG9UtU+AnBNFZGKU5IkpnEZdTjXDfy4ih0VkTWUVpYgkiciLInJQRHaIyB1B/peKyGoRyRORVSJyQZh4Zgc2PEXkBBGZ6jRiDojI1yIyOOiaW0Rko5P2QhEZFuA3Mahs5otIpwjv/7gpOyIyQkTmVCN8togscsrGIhHJriRsUxF5T0QOicgmEfllmHAvOs++c4Dbzc4zLRKRKUHhLw96roed6/s7/klOPbVTRPY5yqtNwPUdROQjEdnvlNlnAg0eVT0PGAn8TkQaR5o3gdS6srMW2bFHVW9Q1TRVTQP+D5jmP1fVc/zhjvGzaQqsOIbp1QkxVJ6nAkuADOAPwNsi0jxM2IlAF6A9poK4W0TOBnAqmNeAO4CGwF3AGyJyQmAEInI5kBAUbxrwHdAf83xfBmaISJpzzWDgIeBioBHwAvCeiLgD4ggsm2mq+mN1MyJWiIWyISKJwPuYZ9oE80zed9xD8SxQDLQALgeeE5FeQXEOA04Kce1PwF+AF4M9VPX1wOcK/Ab4EVjsBLkVOBnIAloD+4GnA6L4B7ALaAVkA6c5cQSm4a9PMsLcW6XUirJzTPJ7RGQZcEhEPCIyRES+EZFcEfleREYEhJ8jIn8TkQVOC/B9EWkaJu6rA1qhP4rIr4P8x4jIUieeDQEvdSMReUFEtovINhH5S9BLFyqtk0TkMxHZKyJ7ROR1fyvC8dsnIv2c89ZizOoRzvn5IrLSud85ItIjKH9+JyLLnBbxNBFJrn5OV58wzya4xVaua0dEfu7kaa7zDLOqmaY/n31VhLvbeT4/ici1gXI5Mj0rIjOcZz9fRE4KuPYpEdniPPdFIjI8KPpkJ5/zRGSxiARamPc6ZcVv2VwY4DdBjMXyhIjsxSiOqu73MadFulFEzgnybu/Elycin4hIs6riCxF/V6Af8CdVLVDVd4DlwNgwl1wF/FlV96vqamAyMMHxawvkqupMNcwADhFQuYlII+BPwN2Bkarqj6r6d1XdrqpeVf0XkAh0c4J0AFaq6iI1SzO9AjQDyinS2qCyshMULl2MRTxJRMRxbiYi/3OeyRci0j4gfNhyJca6fFtEXhORgxzJ03AkisgrTjorRWRAkH92LdQJIwAP8KSqFqnqJECA04MDikgDTJm5T1XzVXUu8AFwZUAYD0YJ3RJ8vaq+q6rTgb0RyHUV8IoeWaKrIzBLVXeqaiEwDQhUsh2Bt1S1UFV3AB8H+ZeJ4dxv9VHVGv+AHGAp0A5IAdpgMuRcjEI90zlv7oSfA2wDegMNgHeA1xy/Dv4bcs5HY15EwWj7w0A/x28QcMCJ3+Wk293xew/4pxP/CcAC4NdV3EdnJ64koDnwJaYQ+f2vA1YBqcAs4DHHvSumwjgT0xq+G1gPJAbkzwJMi6YpsBq4IYwMw4DcSn7DqriHif68DPVsHDcFOgeEmQL8xTnui2lhDQbcmEKbAyRVozycDRQCDaoIswNToFMxLdMyuRyZ9jrP2AO8DrwZcP0VmBaeB7jTiSs5IA9KMBZGAvA7YCOQ4Phf4jwLFzDOeXatHL8JQCnmZff48yzMPUxw0rnOyasbMa1fCSjnG5zykeKcPxQmrn8A/wjjdyGwOsjtGeDpEGGbOPnYIsDtYmC5c+wGvgDOd44vALYGPitM6/92gt7FEGllO8+5kXPeEFgUUHZuwVij/vyYiHlf9wErgRuPsr6JpOz8xSkfC3DKdoBfHnAq5j1/CphbzXJ1gVN2KisbE528OdfJi78B84Ley0jrhP8C94bxux2YGSL8nSHC9gUOB7n9Dvgw4Pwu4KlQ9URAmL8AUyq59/aAF+gY4DYA+Nq531TgDcrXrb/GNI5SMfX4CuDCEHFvAm7yl6lqlZujKWwhBMgBrgk4vwd4NSjMLOAq53gOAS890BNjWrup+gWbDtzqHP8TeCJEmBZAUWBhBH4BfF7N+7oAWBLk9gGmVb0MRwEA92FaJf4wLowyHxGQP1cE+D8CPF8beR9C5olUVHbXBIWpTNk9h7EKAsOvBU6LMP2FTvy/rSLci8DfAs47U7HC+neA/7nAmkri2w/0CciDwIrFBWwHhoe5dikwxjmeAGyO8F4nAOsDzlOde2gZUM7/GOD/G+Djo3imVwbej+P2V0JUOJhGjeJU0I7bmUBOwPmvgHyMUj8MjA7wG+Dkh4dK3kWMYlsO/L8ANwF+j1EIpcAeYGCAf09MZecGTnGeyS+OIj8iKTsvYirMu4KunUL5RlMapmJuF2G5+jJCGScCnwbde0HAeQ61UCdg6p43g9xeByaGCDsc2BHkdh0wJ6DsrOdI4+Vold19/jgD3BoBbzpxlmIaQU0D/HtgGkqlTpgphFBomIZfMaZ3olp5VZtjdlsCjtsDlzjdYLkikouxWFqFCb8J0wKv0MUjIueIyDynCzEXU+n5w7XDtJyDae/Etz0g/X9SRXeKiLQQkTfFdHsexLQYg2WajLFIn1bVIsettXMPAKiqz7m/NgHX7Qg4Pox5yY4VW6oOUkZ74M6gZ9cOc4+RMBC4DJgoIsFjPoG0DpIrlIxh88zpFl7tdAHlYl6mwGdVFp/zPLb670FExgd00+ZinmfIayOgTEZVPewcpoXyD76HapCPUS6BNMRYKKHC+v0rhBUzseURTPdXIqa35N9iJjm4MBbmrapaGk4YEUkBPsQo4L8FeP0KuBpjcSVirKT/ikhrAFVdpao/qekC/QZjVV1cxb2HIpKyMxpjTT8fwi+wbORjLE1/2Yi4XEVA8LNPlvLjfNEoG5WFfRJ4UFUPHIUcgYzHjB0G8izGks7A9La9C8wEcMrdx45bA0x+NwEeDhH3A5iGRMhhr8qoTWWnAcdbMJZd44BfA1V9KCBMu4DjEzGtwT2BEYpIEqaL8zFMt0xj4CNMC9KfTqiB1C0Yy65ZQPoNVTVUH3Ag/+fcR6aqNsS8rP60EDMQ/yRm4H2iHBln/AmjJPzhxLm/bVWkVwERGS7lZzUF/4LHpiJBg84PY6wQPy0DjrcAfw16dqmqOjWihEzzazqmsLaqJOh2zPiRn3bhAgbj5MHdwKVAE6dcHCDgWQXG57xMbYGfnPGZycDNQIZz7Yqga4PzK9qsBDqJSHqAWx/HvRyquh+Tt33ChM3GWCcLVdWnqt8B84EzMBXfAGCaiOzATEYB2Oovd847OR3TeCg3fu7E/V9VXefE/bEjyylh7kspn++REknZmYypQD9yxqoIFd55p5tiykYk5SoWy0ZWwHgkmEkgFcoGsA7wiEiXALfAsvEz4FExsyH9ivhbCTNjMxQiMhTTcHg7yCsbYw3uc4yEp4FBzhh2U4wOeEbNuONe4CWMYRNMD+B9pwFbLerq04PXgPNE5CwRcYtIspjptIEF9AoR6SkiqcCDwNuq6g2KJxHTGtgNlDqD/6MC/F8ArhaRn4mIS0TaiEh3Vd0OfAI8LiINHb+TROS0KuROx7R+DoiZtXZXkP9TwEJVvRaYwZFW41vAaEeOBExffxHwTVUZFYyqfqXlZ6sF/76qbpwhWAr80nk2Z2Na934mAzeIyGAxNBCR0f6KVszEkSlV3IPf4g03IwxMnl0tIj2cMnBfNeRPx3R37Ma8vPdTscXaX0QuclrSt2GexzxMy1GdaxGRqzGWXcyiquswz+xPzrt0IaZCeyfMJa8AfxSRJiLSHdNVNcXx+w4YLs70dBHpi+neWoap2FtjKqZsjlQ2/YH5Ttl+GyjADEkEVzjfYd6DTk7ZORMzXrnCSWuMI5OIyCDgt5iZhDj+OSIyIYIsibTs3Izpgv/QsUb9nCsiw8TMWPwzxkLdQmTlKtaYg+mG/a2Y6f03O+6fBQdU1UMY6+lB570eCowBXnWCdMUov2znB3AeZv4DYia3JWO6of31evBkkauAd1Q12LL8DhgvZuJgAqZL/ydV3aOqezBj6jc6aTR24lkW4n49mHe52tSJsnMKzhhM//1ujLVwV1B6r2JewB1AMqbgB8eT57i/hek7/yVmzMzvvwDTbfIE5kX9giMW1nhMZbvKufZtKrc0wJjI/Zy4ZmAKBmBeVMzA+I2O0x1APxG5XFXXYqzApzHW6XnAeapaXEV60eJWjIy5mOnH0/0eqroQUzk+g8m39ZSfddYOM9BcFUol5UtVZwKTgM+dNOY5XpEU5FmYVvs6TPdxIRW7l97HTD7ZjxnzukhVS1R1FfA48C2wE8iM8H7qFDHfIIXqcvNzGcbq2o8zvV9V/Qr7chEJbMn/CdO9vwnzTjzqWFmo6heYbqC3RSQPozD/T1U/UcMO/w+nQQDsdMryKcDPMQ3O3BC9Da9gxmXmAAcxz/fXqrom4B7WY7rNXgEeVtWXnXtIxHRx+ctBWCItO04vw/UYK/R9OTLb8Q0nj/ZhFPkVjnsk5eqYIyIzReT3ofyc53IBpr7LBa4BLvDXPSLyeyn/re1vMN27uzCfs9yoqiuduHYFPX+APapa4Bz/EdPQuReTZwWOm1/OZIxVHNyFCWYiTCHwA6ZcnYsZf/NzEaZ+3Y15piWYyTeB+RDRLO9w+GdJHVPEfDD5mqr++5gnbjlqnArpeyBLVUuqCPsTcLeqRrSSiZhPNVZgJv2EHS+yxCdivu26SVV/cRTX2rJzHOD0BnwLNA5hOVaJXUHFEjGqWqyqPapSdA73YrrdFoULICIXOl0v/sHoD21ldXyiqnOro+hs2Tm+EJHpmN65+45G0cFxqOyk/NJagb/KupAs1URVX1HVLqrav5Jgv8Z0p2zAjDvcWEnYqGDLS8wS9bLjdC+GKhshuxwtR4+qXqCqJ6rq/x1tHFHpxrRYLBaL5Vhy3Fl2FovFYjn+iPpCpoE0a9ZMO3ToEG0xLBaLxXIMWbRo0R5VDbewea0QU8quQ4cOLFy4MNpiWCwWi+UYIiKbqg5VM2w3psVisVjiHqvsLJYYx04is1hqjlV2Fksso8qsZ25hxV9OZseab6MtjcVSb4mpMbtQlJSUsHXrVgoLC6MtiqUekZycTNu2bUlIqGzjhdhn3dy3OXuvWbpwy5sTOHj3UhqmplRxlcViCSbmld3WrVtJT0+nQ4cOiBzNAumW4w1VZe/evWzdupWOHTtGW5wakT/3n2ynGfuH3kfPr2/l69lTGXreNdEWy2Kpd8R8N2ZhYSEZGRlW0VkiRkTIyMio970B23fupHfhYna2O4cep19BLg1h1QdVX2ixWCpQY2UnIreIyBoRWSkijzhuZ4rIIhFZ7vw9vYZp1FRMy3FGPJSZzYs+JlG8NOxzPuL2kJMxnMzD8+u9ErdYokGNlJ2IjMRs5dPH2Rj1McdrD2aLm0zMvkSvhonCYrGEoXDjfErUTfsss4OOu9soGsph1n0f9R2JLJZ6R00tuxuBh/ybdarqLufvElX9yQmzEkgRs8NxvUREuPPOO8vOH3vsMSZOnBg9gapgzpw5fPNNtfeNLcfZZ59N48aN+fnPf15LUlmqS5N937M5qQvuRDMhpUNf00GSu6Y29u+1WI4vaqrsumJ2PZ4vIl+IyMAQYcYCiwN2r653JCUl8e6777Jnz55ajVdV8fmOah/CSqkNZXfXXXfx6qvWII8WJaWlnFT6A/ubHNlEPb35iWyXE2iwy64yZLFUlyqVnYh8KiIrQvzGYGZzNgWGYHYif0sCBktEpBdmr6lfVxL/9SKyUEQW7t69O1ywqOLxeLj++ut54oknKvjt3r2bsWPHMnDgQAYOHMjXX5supokTJ/LYY4+Vhevduzc5OTnk5OTQrVs3xo8fT+/evdmyZQt33XUXvXv3JjMzk2nTpgFGYY0YMYKLL76Y7t27c/nll4f8uHjSpEn07NmTrKwsLrvsMnJycnj++ed54oknyM7O5quvvqpUxiuvvJKTTz6ZLl26MHny5LJ4f/azn5Genl5pvvznP/+hd+/e9OnTh1NPPRUwE4quvvpqMjMz6du3L59//jkAU6ZM4YILLuDMM8+kQ4cOPPPMM/z973+nb9++DBkyhH379gEwefJkBg4cSJ8+fRg7diyHDx+ukO6QIUNYufLIxtwjRoyIu2Xmtm36gQZShLtFr/Lu6Vm0P7Q8SlJZLPWXKj89UNUzwvmJyI3Au2pq4QUi4gOaAbtFpC3wHjBeVTdUEv+/gH8BDBgwoNKlIh74cCWrfjpYlcjVomfrhvzpvF5VhrvpppvIysri7rvvLud+6623cvvttzNs2DA2b97MWWedxerVqyuN64cffuDll19myJAhvPPOOyxdupTvv/+ePXv2MHDgwDLFsWTJElauXEnr1q0ZOnQoX3/9NcOGDSsX10MPPcTGjRtJSkoiNzeXxo0bc8MNN5CWlsbvfvc7AH75y1+GlXHZsmXMmzePQ4cO0bdvX0aPHk3r1q0jyrsHH3yQWbNm0aZNG3JzcwF49tlnERGWL1/OmjVrGDVqFOvWrQNgxYoVLFmyhMLCQjp37szDDz/MkiVLuP3223nllVe47bbbuOiii7juuusA+OMf/8gLL7zALbfcUi7dcePG8dZbb/HAAw+wfft2tm/fzoABAyKSub6wa8NyOgCNTuxdzr24RV+aHfyUfTs307TFiVGRzWKpj9S0G3M6MBJARLoCicAeEWkMzADuVdW4GE1v2LAh48ePZ9KkSeXcP/30U26++Ways7M5//zzOXjwIPn5+ZXG1b59e4YMGQLA3Llz+cUvfoHb7aZFixacdtppfPfddwAMGjSItm3b4nK5yM7OJicnp0JcWVlZXH755bz22mt4PKHbLpXJOGbMGFJSUmjWrBkjR45kwYIFEefJ0KFDmTBhApMnT8br9ZbdzxVXXAFA9+7dad++fZmyGzlyJOnp6TRv3pxGjRpx3nnnAZCZmVl2bytWrGD48OFkZmby+uuvl7Pg/Fx66aW8/fbbALz11ltcfPHFEctcXzj80yoAWnfuU869Ycd+AGxbHflzslgsNf+o/EXgRRFZARQDV6mqisjNQGfgfhG53wk7yj+B5WiJxAKrS2677Tb69evH1VdfXebm8/mYN28eycnJ5cJ6PJ5y43GB08UbNGgQUXpJSUfm9LjdbkpLSyuEmTFjBl9++SUffvghf/3rX1m+vGIXVzgZoeIU/epM2X/++eeZP38+M2bMoH///ixatKjS8IH343K5ys5dLlfZvU2YMIHp06fTp08fpkyZwpw5cyrE06ZNGzIyMli2bBnTpk3j+efjb9PwhP0/kEs6jRu3KOferudg+AQObVoMxJ+St1jqihpZdqparKpXqGpvVe2nqp857n9R1Qaqmh3wq5GiiwWaNm3KpZdeygsvvFDmNmrUKJ5++umy86VLlwJmu6LFixcDsHjxYjZu3BgyzuHDhzNt2jS8Xi+7d+/myy+/ZNCgQRHJ4/P52LJlCyNHjuThhx/mwIED5Ofnk56eTl5eXpUyArz//vsUFhayd+9e5syZw8CBoeYYhWbDhg0MHjyYBx98kObNm7NlyxaGDx/O66+/DsC6devYvHkz3bp1izjOvLw8WrVqRUlJSVk8oRg3bhyPPPIIBw4cICsrK+L46wuND29kR2LFbspGjTPYJi1I3L0iClJZLPWXmF9BJda48847y83KnDRpEgsXLiQrK4uePXuWWRljx45l37599OrVi2eeeYauXbuGjO/CCy8kKyuLPn36cPrpp/PII4/QsmXLiGTxer1cccUVZZNBfvvb39K4cWPOO+883nvvvbIJKuFkBNMNOnLkSIYMGcJ9991XNl43fPhwLrnkEmbPnk3btm2ZNWsWAPfffz8ffGBW8bjrrrvIzMykd+/enHLKKfTp04ff/OY3+Hw+MjMzGTduHFOmTCln0VXFn//8ZwYPHszQoUPp3r17mfsHH3zA/fffX3Z+8cUX8+abb3LppZdGHHd9onnJdvIbhB6T25XaleaHfjjGElks9RuJpe1DBgwYoMGz6lavXk2PHj2iJFF8M3HixHITWeKN+lp28g8fJvXh1izqcB0Dr360gv+3L93DyZueJ/+OHNIaNomChBZL7SIii1S1TmeZWcvOYokxdmxej0uUhIz2If1T2vUFYOua746lWBZLvSbmdz2w1B2xvArM8cz+7eZLnfSWoXdsaNFtIMyFAzlLYNCoYymaxVJvsZadxRJjFO7OAaBJ65NC+rds05H9pOPaYT8ut1gixSo7iyXWyN2CT4UmYSw7cbnYmngSjQ+uPcaCWSz1F6vsLJYYIyF/G3tdTRBP+FmseY27065kI77SkmMomcVSf7HKzmKJMdIKt7PP06LSMK5WWSRLCds3VlxhxmKxVMQquwiZPn06IsKaNWvChsnJyaF3795h/WuDpUuX8tFHH9UojmuuuYYTTjihzmW1HB2NS3ZyKLnyby2bdDLLhu35wc7ItFgiwSq7CJk6dSrDhg1j6tSpIf1DLeVVXfzrS1ZGbSi7CRMm8PHHH9coDkvd4PP6aOrbT2mDyi279t2yKVIPxduWHSPJLJb6jVV2EZCfn8/cuXN54YUXePPNN8vc58yZw/Dhwzn//PPp2bMnYJTe5ZdfTo8ePbj44ovLtqiZPXs2ffv2JTMzk2uuuYaiIrO9X4cOHbjnnnvo168f//nPf8qlG7yFTnFxMffffz/Tpk0jOzubadOmcejQIa655hoGDRpE3759ef/99wGzpc6YMWMYMWIEXbp04YEHHiiL99RTT6Vp06aV3vMXX3xBdnY22dnZ9O3bl7y8PFQ17HZEp512GmPGjKFTp07ce++9vP766wwaNIjMzEw2bDBT6T/88EMGDx5M3759OeOMM9i5c2eFdC+77DJmzJhRdj5hwoSyRZ+PB/Yf2E+qFCHplVt2yckpbHafSOq+VcdIMoulflO/vrObeS/U9nTrlplwzkOVBnn//fc5++yz6dq1KxkZGSxatIj+/fsDZt3LFStW0LFjR3Jycli7di0vvPACQ4cO5ZprruEf//gHN998MxMmTGD27Nl07dqV8ePH89xzz3HbbbcBkJGRUbaOZiDBW+gkJiby4IMPsnDhQp555hkAfv/733P66afz4osvkpuby6BBgzjjDLMr04IFC1ixYgWpqakMHDiQ0aNHR7wVzmOPPcazzz7L0KFDyc/PJzk5mXfffTfsdkTff/89q1evpmnTpnTq1Ilrr72WBQsW8NRTT/H000/z5JNPMmzYMObNm4eI8O9//5tHHnmExx9/vFy6/u17Ro8eTXFxMbNnz+a5556LSOZ4YN+OzWQAiY2r3mZpT1pXuh6cV/dCWSxxgLXsImDq1KlcdtllgLE8ArsyBw0aRMeOR6aIt2vXjqFDhwJwxRVXMHfuXNauXUvHjh3L1se86qqr+PLLL8uuGTduXMh0Q22hE8wnn3zCQw89RHZ2NiNGjKCwsJDNmzcDcOaZZ5KRkUFKSgoXXXQRc+fOjfiehw4dyh133MGkSZPIzc3F4/FUuh3RwIEDadWqFUlJSZx00kmMGmU+dg7cvmfr1q2cddZZZGZm8uijj4bcvuecc87h888/p6ioiJkzZ3LqqaeSkpISsdz1nUP7fgIguUmrKsOWNu9FBrnk79la12JZLPWe+mXZVWGB1QX79u3js88+Y/ny5YgIXq8XEeHRR82ahcHb9RzNljnhtvyJZAsdVeWdd96psLPA/Pnza7R9z7333svo0aP56KOPGDp0aNlC0OGIZPueW265hTvuuIPzzz+fOXPmhFzBJTk5mREjRjBr1iymTZtW1sg4XihylF1aRtsqwzZo3xc2wLY139FtWNXhLZbjGWvZVcHbb7/NlVdeyaZNm8jJyWHLli107NiRr776KmT4zZs38+233wLwxhtvMGzYMLp160ZOTg7r168H4NVXX+W0006rMu1QW+gEb99z1lln8fTTT+Nf0HvJkiVlfv/73//Yt28fBQUFTJ8+vczijIQNGzaQmZnJPffcw8CBA1mzZk2NtiMCOHDgAG3atAHg5ZdfDhtu3LhxvPTSS3z11VecffbZEccfD5Qe3AFAoxOqVl6tuprtmMzedhaLpTKssquCqVOncuGFF5ZzGzt2bNhZmd26dePZZ5+lR48e7N+/nxtvvJHk5GReeuklLrnkEjIzM3G5XNxwww1Vph1qC52RI0eyatWqsgkq9913HyUlJWRlZdGrVy/uu+++susHDRrE2LFjycrKYuzYsWXjdb/4xS84+eSTWbt2LW3bti3bn+/5558v2/7nySefpHfv3mRlZZGQkMA555xTo+2IwKzFeckll9C/f3+aNWtW5r5w4UKuvfbasvNRo0bxxRdfcMYZZ5CYmBhx/PGA5O+kWN00aNSsyrAtW7RgG81x77Lf2lksVWG3+IlTpkyZUm4iy/FIfSw7C54YR/uDC2nxpw0Rhf/u4dG0LfyBVn9aV8eSWSx1h93ix2I5zkgu2s0Bd+WfhQRS2GogrXQnB3ZurkOpLJb6j1V2ccqECROOa6uuvpJWvJdDiVV3Yfpp0t18+rFp6ey6EsliiQvqxWxMVa3WTEKLJZa656tDQ18uu5OzIg7fOesUDs9IovjHr4GrjypNVWV1zlZ2rPqa0r054CshLSWZpCZtSTuhPS3bd6dRk8itTYslFol5ZZecnMzevXvJyMiwCs8SEarK3r17SU5OjrYo1cLr9dFQ8yAlcsWSnJzMsqQeNN+zoNrplXh9fP7xOzRc9A/6e7+np4Rfrm4fjdib1Iai9Pa4m51EWquuNGjVmZSGzUlMScOdmIq63BQWlVBQWEhBUTFFxUUUFRdTXFxCSUkxxSUleEuKcakXl5biUi+iXlx4EQQBRJxPZARAEBFcZcdGFhGXc+z4A6UKXp+PEq9S4lVcLiE9JYFGyQk0adGOlJZdq50/lvgi5pVd27Zt2bp1K7t37462KJZ6RHJyMm3b1q9vz/bl7qe5eHE3qJ4VtaflqWRtnsShnT/SoEWniK7ZvGUzOa/8hlElX7Hf1YT1nSeQkXUWzU7sgSSkkJuXz74dm8jflUPBzg3ovg2k5m+m+e4FtN4zE0Kshy5AivOLJYo0gfy7fiQtrWG0RbFEkZhXdgkJCeVWKLFY4pUD+3bRHEhIq56ya9pvDGyeRM43b9PrwrurDP/j6kWkTruEk8llXa9b6TLmXpokppYL0yStOU1aVXzvSrw+1m3fy45NaynZswEKD0BJAZQcJgEvbk8inoQEPAkJJHgScHsS8CQk4vEYN48nAXUl4BMXKh584kbFhaqgKM4/fOozByiqiqqx2P2d0+rzOd6KD8UtQoJb8LgEj9uFz+fjYGEpeSs+ZtiuN9i1e7tVdsc5NVZ2InILcBPgBWao6t0BficCq4CJqvpYTdOyWOKZQ7l7AEiqprLrndmPH6e3IeGHmUDlym7tojmc8OEV+HCz45L/0rXXKdVKK8Htomvb5nRt2xwYVq1ro8GSwjzY9QaFB/dGWxRLlKnRbEwRGQmMAfqoai8gWKH9HZhZkzQsluOFwoNG2SU3jHw2JoDH7SKnxZl0PrSEvB3rw4ZbMfcD2n4wjkJJoXj8R7SrpqKrjySkZQBQlLcnypJYok1NPz24EXhIVYsAVHWX30NELgA2AnZ5B4slAorzjPXRoEnzal/bYuQN+BByZk4K6b/0k1fp+r+r2e0+gYTr/kerTr1qJGt9ISndKDvvoX1RlsQSbWqq7LoCw0Vkvoh8ISIDAUQkDbgHeKDSq03Y60VkoYgstJNQLMczpU6FnN64+squZ7fuzEs5lS6bpnJo18ZyfovfeZzMr2/hx4TONLnpU5q17lAb4tYLkq2yszhUqexE5FMRWRHiNwYz5tcUGALcBbwl5vuAicATqppfVfyq+i9VHaCqA5o3r/5LbrHEC3rYVMjV7cYEM12/0Xl/xqvC7hfGUbh3C3t2bGbBU7+k3/IH+T55IG1v/YRGGZXvgB5vpDYyyk4P74+yJJZoU+UEFVU9I5yfiNwIvKvmC94FIuIDmgGDgYtF5BGgMeATkUJVtUt6WCzhKMyliESSEo5u8n5mryw+6fMwp35/F8lP9yYZaKLC/DZX0f/qx/AkHF+LagM0bNiQAk1EC6yyO96p6WzM6cBI4HMR6QokAntUdbg/gIhMBPKtorNYKsdTlEuepJFUddCwjLroahZ16M2e+dNo3CCZjIGXMLhHn1qTsb6R4HaxlzRchbnRFsUSZWqq7F4EXhSRFUAxcJXW13WaLJYok1BygAJ3zb8F699vIPQbWAsSxQf5rnQ8xbnRFsMSZWqk7FS1GLiiijATa5KGxXK8kFx6kKJE++FzbXPYnU5SyYFoi2GJMnbXA4slRkj15lGc0CjaYsQdhZ5GJJcejLYYlihjlZ3FEgN4fUq65uFLbhxtUeKO4oRGpHrzoi2GJcpYZWexxAAHC0pozCE0uUm0RYk7vEmNSFer7I53rLKzWGKA3IMHSZUiXKlW2dU2vuQmJFOMFh+OtiiWKGKVncUSAxxyFip2V3MRaEvViNOAKMyzq6gcz1hlZ7HEAAUHzELFCdXcy85SNX5r+VCuXY7weMYqO4slBih2rI6ko1gqzFI5iWkmTw8dsMrueMYqO4slBig5ZLoxUxpmRFmS+MO/80GR3dPuuMYqO4slBvCvyt+gkV0MvbZJbWwsu+J8q+yOZ+JK2R3M3cO3z9/Iym8+irYoFkv1KMgFICndjtnVNv4GhN3m5/gmrpRdUnIqA7ZPI2/lrGiLYrFUC1fhfkpxIcl2BZXapmGjRhSr227zc5wTd8pui7stqftXR1sUi6VauItyyScNRKItStyRnpzAAdKg0Cq745m4UnYAexp0ocXh9dEWw2KpFonFBzjkTo+2GHGJiJAn6Xabn+OcuFN2vhN60YK97N+zM9qiWCwRk1R6sFa297GEpsCdjqfI7nxwPBN3yi69fV8ANq+aH2VJLJbISfUepCjBKru6oiihEUmlVtkdz8SdsmvXeygABT/Oi7IkFkvkNPDlUWK396kzShMbkeq12/wcz8SdsmvY9ARypC2puxZGWxSLJSJUlXQ9RGlS42iLErf4UprQ0Gd3PjieiTtlB7CjUR9OPLwS9XmjLYrFUiVFxSU0kkN2L7s6RBucQAMp5FBebrRFsUSJuFR27hMH05h8ctYui7YoFkuV+Hc8IKVxVOWIZ1wNWwJwYNfWKEtiiRZxqeza9hkJwI5ln0ZZEoulavw7HkiKXT2lrkhq3AaAvD1b6iT+vfv2kbNhLT+uW8FPO7ZTWlpaJ+lYjh5PtAWoC1p1ymQ7zUnd/BlwV63Fq6rsPpDPwT3bKCo4hPhKEZeLpNRGJDVoRGpaIxokJ5Loics2hKWOKHQsO4/dy67OSMkwyq5o30+1FueKZd+xZ85kOu77kvZsJ3AJ70JNYJO7LftSO1DapDMprbrTrENvWp2UiTupQa3JYImcuFR2iLCxyVD67p9JSdFhEpJSjzqqLZs2svGrN0jc+g3tC1bTgn2cIBo2fL4ms49UDkkqh6UBha5UijxpFLvTKPGkIQlJeDwePG4Pbo8Hj8eD4kL9K2cERK2hHUKdVBKuvJOgaAX/8g6V+x85FtVQSVUarwS4VXo7wWlWmlA10vEHiCCeqq5RjqQTNsqqYybl0FY6A54GdseDuqJh83YAlByoubLLPZDL0pduZ/j+9/DhYl36IBadcBGuhi0Qtwff4VxK928l+eAGWh9aTcu8Obi3KCww12+X5uxKaEtRUga+1GZoagZeTwNwJYA7ATxJuATc+PCID5f6UF8p6ivF5/WCz4tPfajXi6oP9flQnzkW9SH4QNU5VkK9paa8SsjXTiU4HCYWPRJe1dQjuUmtuOi6P9Y4T48F8ansgKRe55Iydzor539Mr1Mvqvb1y7+bQ9Hsh+hbMI92oux0ncDOJv3Y2bQTrkZtcCenoS4P4ivFW5iHrzAPLTqIFOXjKj6IuySfpJJ80krzSfLuIbnkEKm+Q3goxYUPVxVqwlJzfBp+6a1yuR/4clPZNZEs5XV0y33tk8a07NjjqK61VE2zZs0p0ET04PYaxZOz8QdKXr2EU705LGs1lm7j/kqvJi0rvaaw4BAbfljJnpzllO5aQ+rBH2lUsJVm+StofDCXBlJYI5mC8ao4NYw4v4qEK6XlQkuwe8Wrlrt6AMeJshORW4CbAC8wQ1XvdtyzgH8CDQEfMFBVa/epVkLPk0eT91UKBYvehGoou9zd21n/8o0MyP+cA6Sx5MQJtB95NS069aFFbQro8+H1llJUUoz4fGXOIZdGDHAs7y8IYfxEKhRNKQsgAf8HXBuYTvDVYddsrKRyr81rjmLNyPrUmWw7MOuWBI+bHdIU96GjX1lp25Yc5OXzacV+Npz5AtnDxkZ0XXJKA7pmDaJr1qAKfqpKYcEhvEWH8XmL8BUX4y0pwqtQiuBVF15cuN0JeDxu3G4Pbk8Cbo8bj9uNx+M2vUQuN7jcIIIbcB/1XVaPfscondqgRspOREYCY4A+qlokIic47h7gNeBKVf1eRDKAkhpLWw1SGqQxP+NMsvZ+zMED+2jYqOrqZPmct2k1506yNI8F7a8j69I/MCCtSd0I6HLhdiWSmpBYN/FbLJZyHEzIIKnw6HYrP3Awj/yXLqIde9lzwVS6ZP+sVmQSEZJT0yA1rVbis4Snpo3fG4GHVLUIQFV3Oe6jgGWq+r3jvldVj/lHb02HX0eKFPPDjKcqDVeQf4Dvnh5P5pxfkedqxOaxMxh0zWMk15Wis1gsx5zDSSfQqLj6lp2qsnzy9XTzbWDb6U9zYi0pOsuxpabKriswXETmi8gXIjIwwF1FZJaILBaRu8NFICLXi8hCEVm4e/fRtbrC0Tl7OIsT+9N53b85nLsrZJgNiz9j7+OD6b/nA75p8Uta3fUtnbNOrlU5LBZL9ClMa8cJvt2ot3qdTF9++DLD8j5iSfur6XLquDqSzlLXVKnsRORTEVkR4jcG0w3aFBiCmeP/lpiBIQ8wDLjc+XuhiIRsDqnqv1R1gKoOaN68eW3dl192ks5+kBQtIOffV6GlxWV+RYcPsHjyb+j4/kW4tZQVZ77OKTc+R3KKnRZsscQj2qQDCeLl4I6ciK/ZvWcX3RdPZLOnI32ueLjuhLPUOVWO2anqGeH8RORG4F1VVWCBiPiAZsBW4EtV3eOE+wgzljm7VqSuBr36DWP28jv42cZH2fDoqRzqch6+3G102PoB/cjjq8bnkznhSbKa2GnfFks8k3LCSbAa9mxdS6M2XSK6Zs1rd3GK5rL9gtdwJSTVsYSWuqSm3ZjTgZEAItIVSAT2ALOATBFJdSarnAasqmFaR83p4//A7B5/IbVwF1krHqHHlmmsS+rF4lH/Yfjtr9LYKjqLJe5p2rY7APnbI9vcee2KhZy8/wOWtRxL297D6lI0yzGgpp8evAi8KCIrgGLgKsfK2y8ifwe+w3zS9JGqzqhhWkeNiPCzcbdQWHwjP27fRuPGTRnUyO4KbbEcT7Rq15FidVO6Z0NE4Q/N+COFkkSXcX+pY8ksx4IaKTtVLQauCOP3Gubzg5ghOdFDp/btoy2GxWKJAqnJSWySFngObKoy7MpvZ9Kv4Fu+63QzA5u2OgbSWeqa+vTdrcVisdSI3SkdaHqocstOfT4SZ/+JnWSQefG9x0gyS11jlZ3FYjluKGjSgzbebZQUhN/IdcXs1+lSupYNvW8lOdUOd8QLVtlZLJbjhqS2fXCJsm3d4pD+vtJSGn37MJukLQPOv/EYS2epS6yys1gsxw3NugwAIHfDgpD+y2b+ixN9W9gx4E4SE+1SfvGEVXYWi+W44cSO3dmuTfFs/raCX3FhAS0XP8E6d2cGnD3h2AtnqVOssrNYLMcNHo+bDWn9aXNgIQTsNgKw9J2Haam7ODzs97jdtmqMN+wTtVgsxxUlHUbQRA+wa+XnZW4Hd26m1w/PsTh5MH1GVH//S0vsY5WdxWI5ruh62mXkazK7vvi3cfD5+OnVa/Gol/QLHg/Y99EST8TtTuUWi8USijYnNOPTRucwcs909i16h11LZtI9fz6fnnQ3Z3TPjLZ4ljrCWnYWi+W4o+PFf2aTtqbph9fQfet/+LjRpZz2S/sBeTxjLTuLxXLccdKJ7Vh51f94+8v/0KBlZ84481wS7KSUuMYqO4vFclzSq1MbenW6LdpiWI4RtiljsVgslrjHKjuLxWKxxD1itp+LDURkN1D1/htV0wyziWx9oD7JCvVLXitr3VGf5K1PskL9kre2ZG2vqs1rIZ6wxJSyqy1EZKGqDoi2HJFQn2SF+iWvlbXuqE/y1idZoX7JW59ktd2YFovFYol7rLKzWCwWS9wTr8ruX9EWoBrUJ1mhfslrZa076pO89UlWqF/y1htZ43LMzmKxWCyWQOLVsrNYLBaLpQyr7CwWi8US98SVshORs0VkrYisF5GYW9VVRNqJyOciskpEVorIrY77RBHZJiJLnd+50ZYVQERyRGS5I9NCx62piPxPRH5w/jaJATm7BeTdUhE5KCK3xVK+isiLIrJLRFYEuIXMSzFMcsrxMhHpFwOyPioiaxx53hORxo57BxEpCMjj54+lrJXIG/bZi8j/c/J2rYicFQOyTguQM0dEljrusZC34eqsmCy7laKqcfED3MAGoBOQCHwP9Iy2XEEytgL6OcfpwDqgJzAR+F205Qshbw7QLMjtEeBe5/he4OFoyxmiHOwA2sdSvgKnAv2AFVXlJXAuMBMQYAgwPwZkHQV4nOOHA2TtEBguhvI25LN33rfvgSSgo1NnuKMpa5D/48D9MZS34eqsmCy7lf3iybIbBKxX1R9VtRh4ExgTZZnKoarbVXWxc5wHrAbaRFeqajMGeNk5fhm4IHqihORnwAZVrY2VeGoNVf0S2BfkHC4vxwCvqGEe0FhEWh0TQQktq6p+oqqlzuk8oO2xkqcqwuRtOMYAb6pqkapuBNZj6o5jQmWyitk19lJg6rGSpyoqqbNisuxWRjwpuzbAloDzrcSwIhGRDkBfYL7jdLNj9r8YC12DDgp8IiKLROR6x62Fqm53jncALaIjWlguo3xlEYv56idcXsZ6Wb4G03r301FElojIFyIyPFpChSDUs4/lvB0O7FTVHwLcYiZvg+qseld240nZ1RtEJA14B7hNVQ8CzwEnAdnAdkxXRiwwTFX7AecAN4nIqYGeavotYubbFRFJBM4H/uM4xWq+ViDW8jIcIvIHoBR43XHaDpyoqn2BO4A3RKRhtOQLoN48+wB+QfmGWszkbYg6q4z6UnbjSdltA9oFnLd13GIKEUnAFJrXVfVdAFXdqapeVfUBkzmG3SqVoarbnL+7gPcwcu30d0s4f3dFT8IKnAMsVtWdELv5GkC4vIzJsiwiE4CfA5c7FRxOd+Be53gRZgysa9SEdKjk2cdq3nqAi4BpfrdYydtQdRb1rOxCfCm774AuItLRaeFfBnwQZZnK4fTJvwCsVtW/B7gH9mlfCKwIvvZYIyINRCTdf4yZoLACk6dXOcGuAt6PjoQhKdcyjsV8DSJcXn4AjHdmtg0BDgR0GUUFETkbuBs4X1UPB7g3FxG3c9wJ6AL8GB0pj1DJs/8AuExEkkSkI0beBcdavhCcAaxR1a1+h1jI23B1FvWo7JYR7RkytfnDzARah2kB/SHa8oSQbxjG3F8GLHV+5wKvAssd9w+AVjEgayfMrLXvgZX+/AQygNnAD8CnQNNoy+rI1QDYCzQKcIuZfMUo4e1ACWYc41fh8hIzk+1ZpxwvBwbEgKzrMWMx/nL7vBN2rFM+lgKLgfNiJG/DPnvgD07ergXOibasjvsU4IagsLGQt+HqrJgsu5X97HJhFovFYol74qkb02KxWCyWkFhlZ7FYLJa4xyo7i8ViscQ9VtlZLBaLJe6xys5isVgscY9VdhaLxWKJe6yys1gsFkvcY5WdxWKxWOIeq+wsFovFEvdYZWexWCyWuMcqO4vFYrHEPVbZWSwWiyXuiTllJyIdRESd/Z0s9RQRuUVEfhKR76OQ9kQRee0YpDNBROZW4j9HRK6tazks5RGRKSLyl+r61bIMlZZBEckRkTPqWo54QUQ+FJHdIvLo0cYRc8rOUn1E5HkRyXd+xSJSEnA+M0piTQR+o6p9AuScKCIToyRPTOE06nKqGf5zETksImsqqyidvdpeFJGDIrJDRO4I8r9URFaLSJ6IrBKRC8LEMzuw4SkiJ4jIVKcRc0BEvhaRwUHX3CIiG520F4rIsAC/iUFlM9/Zpy2S+z9uyo6IjBCROdUIny0ii5yysUhEsisJ21RE3hORQyKySUR+GSbci86z7xzgdrPzTItEZEpQ+MuDnuth5/r+jn+SU0/tFJF9jvJqE3B9BxH5SET2O2X2mUCDR1XPA0YCvxORxpHmTSC1ruysRXbsUdUbVDVNVdOA/wOm+c9V9Rx/uGP8bJoSe5ulVpsYKs9TgSWYfcT+ALwtIs3DhJ2I2eizPaaCuFvM5qs4FcxrwB1AQ+Au4A0ROSEwAhG5HEgIijcNs0lyf8zzfRmYISJpzjWDgYeAi4FGmE0/3xNnA1KHwLKZpqpR3+j1aImFsiFmo+r3Mc+0CeaZvO+4h+JZoBhoAVwOPCcivYLiHAacFOLan4C/AC8Ge6jq64HPFfgNZqPZxU6QW4GTgSygNbAfeDogin9gdjtvBWQDpzlxBKbhr08ywtxbpdSKsnNM8ntEZBlwSEQ8IjJERL4RkVwR+V5ERgSEnyMifxORBU4L8H0RaRom7qsDWqE/isivg/zHiMhSJ54NAS91IxF5QUS2i8g2EflL0EsXKq2TROQzEdkrIntE5HV/K8Lx2yci/Zzz1mLM6hHO+fkistK53zki0iMof34nIsucFvE0EUmufk5XnzDPJrjFVq5rR0R+7uRprvMMs6qZpj+ffVWEu9t5Pj+JyLWBcjkyPSsiM5xnP19ETgq49ikR2eI890UiMjwo+mQnn/NEZLGIBFqY9zplxW/ZXBjgN0GMxfKEiOzFKI6q7vcxp0W6UUTOCfJu78SXJyKfiEizquILEX9XoB/wJ1UtUNV3MBtjjg1zyVXAn1V1v6quBiYDExy/tkCuqs5UwwzgEAGVm4g0Av6E2Zm8DFX9UVX/rqrbVdWrqv8CEoFuTpAOwEpVXaRmo8xXgGZAOUVaG1RWdoLCpYuxiCeJiDjOzUTkf84z+UJE2geED1uuxFiXb4vIayJykCN5Go5EEXnFSWeliAwI8s+uhTphBOABnlTVIlWdhNlA9fTggCLSAFNm7lPVfFWdi9nY9sqAMB6MErol+HpVfVdVp2M2Sa6Kq4BX9MiGqR2BWaq6U1ULgWlAoJLtCLylqoWqugP4OMi/TAznfqtPLe1mm4PZwbYdkAK0wWTIuRiFeqZz3twJPwfYBvTG7DD9DvCa49fBf0PO+WjMiygYbX8Y6Of4DQIOOPG7nHS7O37vAf904j8BWAD8uor76OzElQQ0B77EFCK//3XAKiAVmAU85rh3xVQYZ2Jaw3djdnZODMifBZgWTVNgNUG7EgftDJxbyW9YFfcw0Z+XoZ6N46ZA54AwU4C/OMd9MS2swYAbU2hzgKRqlIezgUKgQRVhdmAKdCqmZVomlyPTXucZe4DXgTcDrr8C08LzAHc6cSUH5EEJxsJIAH4HbAQSHP9LnGfhAsY5z66V4zcBKMW87B5/noW5hwlOOtc5eXUjpvXr3xR5DmbH5q6Y92IO8FCYuP4B/COM34XA6iC3Z4CnQ4Rt4uRjiwC3i4HlzrEb+AI43zm+ALNjdoOA8M8CtxP0LoZIK9t5zo2c84bAooCycwvGGvXnx0TM+7oPswP3jUdZ30RSdv7ilI8FOGU7wC8POBXznj8FzK1mubrAKTuVlY2JTt6c6+TF34B5Qe9lpHXCf4F7w/jdDswMEf7OEGH7AoeD3H4HfBhwfhfwVKh6IiDMX4Apldx7e8ALdAxwGwB87dxvKvAG5evWX2MaR6mYenwFcGGIuDcBN/nLVLXKzdEUthAC5ADXBJzfA7waFGYWcJVzPIeAlx7oiTGt3VT9gk0HbnWO/wk8ESJMC6AosDACvwA+r+Z9XQAsCXL7ANOqXoajAID7MK0SfxgXRpmPCMifKwL8HwGer428DyHzRCoqu2uCwlSm7J7DWAWB4dcCp0WY/kIn/t9WEe5F4G8B552pWGH9O8D/XGBNJfHtB/oE5EFgxeICtgPDw1y7FBjjHE8ANkd4rxOA9QHnqc49tAwo538M8P8N8PFRPNMrA+/HcfsrISocTKNGcSpox+1MICfg/FdAPkapHwZGB/gNcPLDQyXvIkaxLQf+X4CbAL/HKIRSYA8wMMC/J6aycwOnOM/kF0eRH5GUnRcxFeZdQddOoXyjKQ1TMbeLsFx9GaGME4FPg+69IOA8h1qoEzB1z5tBbq8DE0OEHQ7sCHK7DpgTUHbWc6TxcrTK7j5/nAFujYA3nThLMY2gpgH+PTANpVInzBRCKDRMw68Y0ztRrbyqzTG7LQHH7YFLnG6wXBHJxVgsrcKE34RpgVfo4hGRc0RkntOFmIup9Pzh2mFazsG0d+LbHpD+P6miO0VEWojIm2K6PQ9iWozBMk3GWKRPq2qR49bauQcAVNXn3F+bgOt2BBwfxrxkx4otVQcpoz1wZ9Cza4e5x0gYCFwGTBSR4DGfQFoHyRVKxrB55nQLr3a6gHIxL1PgsyqLz3keW/33ICLjA7ppczHPM+S1EVAmo6oedg7TQvkH30M1yMcol0AaYiyUUGH9/hXCipnY8gim+ysR01vybzGTHFwYC/NWVS0NJ4yIpAAfYhTw3wK8fgVcjbG4EjFW0n9FpDWAqq5S1Z/UdIF+g7GqLq7i3kMRSdkZjbGmnw/hF1g28jGWpr9sRFyuIiD42SdL+XG+aJSNysI+CTyoqgeOQo5AxmPGDgN5FmNJZ2B6294FZgI45e5jx60BJr+bAA+HiPsBTEMi5LBXZdSmstOA4y0Yy65xwK+Bqj4UEKZdwPGJmNbgnsAIRSQJ08X5GKZbpjHwEaYF6U8n1EDqFoxl1ywg/YaqGqoPOJD/c+4jU1UbYl5Wf1qIGYh/EjPwPlGOjDP+hFES/nDi3N+2KtKrgIgMl/KzmoJ/wWNTkaBB54cxVoiflgHHW4C/Bj27VFWdGlFCpvk1HVNYW1USdDtm/MhPu3ABg3Hy4G7gUqCJUy4OEPCsAuNzXqa2wE/O+Mxk4GYgw7l2RdC1wfkVbVYCnUQkPcCtj+NeDlXdj8nbPmHCZmOsk4Wq6lPV74D5wBmYim8AME1EdmAmowBs9Zc7552cjmk8lBs/d+L+r6quc+L+2JHllDD3pZTP90iJpOxMxlSgHzljVYQK77zTTTFlI5JyFYtlIytgPBLMJJAKZQNYB3hEpEuAW2DZ+BnwqJjZkH5F/K2EmbEZChEZimk4vB3klY2xBvc5RsLTwCBnDLspRgc8o2bccS/wEsawCaYH8L7TgK0WdfXpwWvAeSJyloi4RSRZzHTawAJ6hYj0FJFU4EHgbVX1BsWTiGkN7AZKncH/UQH+LwBXi8jPRMQlIm1EpLuqbgc+AR4XkYaO30kicloVcqdjWj8HxMxauyvI/ylgoapeC8zgSKvxLWC0I0cCpq+/CPimqowKRlW/0vKz1YJ/X1U3zhAsBX7pPJuzMa17P5OBG0RksBgaiMhof0UrZuLIlCruwW/xhpsRBibPrhaRHk4ZuK8a8qdjujt2Y17e+6nYYu0vIhc5LenbMM9jHqblqM61iMjVGMsuZlHVdZhn9ifnXboQU6G9E+aSV4A/ikgTEemO6aqa4vh9BwwXZ3q6iPTFdG8tw1TsrTEVUzZHKpv+wHynbL8NFGCGJIIrnO8w70Enp+yciRmvXOGkNcaRSURkEPBbzExCHP8cEZkQQZZEWnZuxnTBf+hYo37OFZFhYmYs/hljoW4hsnIVa8zBdMP+Vsz0/psd98+CA6rqIYz19KDzXg8FxgCvOkG6YpRftvMDOA8z/wExk9uSMd3Q/no9eLLIVcA7qhpsWX4HjBczcTAB06X/k6ruUdU9mDH1G500GjvxLAtxvx7Mu1xt6kTZOQVnDKb/fjfGWrgrKL1XMS/gDiAZU/CD48lz3N/C9J3/EjNm5vdfgOk2eQLzon7BEQtrPKayXeVc+zaVWxpgTOR+TlwzMAUDMC8qZmD8RsfpDqCfiFyuqmsxVuDTGOv0POA8VS2uIr1ocStGxlzM9OPpfg9VXYipHJ/B5Nt6ys86a4cZaK4KpZLypaozgUnA504a8xyvSAryLEyrfR2m+7iQit1L72Mmn+zHjHldpKolqroKeBz4FtgJZEZ4P3WKmG+QQnW5+bkMY3Xtx5ner6p+hX25iAS25P+E6d7fhHknHnWsLFT1C0w30NsikodRmP+nqp+oYYf/h9MgAHY6ZfkU4OeYBmduiN6GVzDjMnOAg5jn+2tVXRNwD+sx3WavAA+r6svOPSRiurj85SAskZYdp5fheowV+r4cme34hpNH+zCK/ArHPZJydcwRkZki8vtQfs5zuQBT3+UC1wAX+OseEfm9lP/W9jeY7t1dmM9ZblTVlU5cu4KeP8AeVS1wjv+Iaejci8mzAsfNL2cyxioO7sIEMxGmEPgBU67OxYy/+bkIU7/uxjzTEszkm8B8iGiWdzj8s6SOKWI+mHxNVf99zBO3HDVOhfQ9kKWqJVWE/Qm4W1UjWslEzKcaKzCTfsKOF1niEzHfdt2kqr84imtt2TkOcHoDvgUah7Acq8SuoGKJGFUtVtUeVSk6h3sx3W6LwgUQkQudrhf/YPSHtrI6PlHVudVRdLbsHF+IyHRM79x9R6Po4DhUdlJ+aa3AX2VdSJZqoqqvqGoXVe1fSbBfY7pTNmDGHW6sJGxUsOUlZol62XG6F0OVjZBdjpajR1UvUNUTVfX/jjaOqHRjWiwWi8VyLDnuLDuLxWKxHH9EfSHTQJo1a6YdOnSIthgWi8ViOYYsWrRoj6qGW9i8VogpZdehQwcWLlwYbTEsFovFcgwRkU1Vh6oZthvTYrFYLHGPVXYWSwyyZd9hFm3aF20xLJa4wSo7iyUGuffpKbz0z79HWwyLJW6IqTG7UJSUlLB161YKCwujLYqlHpGcnEzbtm1JSKhs44XY5Snf32iWeJCSot+TkJRa9QUWi6VSYl7Zbd26lfT0dDp06IDI0SyQbjneUFX27t3L1q1b6dixY7TFOSqayUEACg7uJ6G5VXYWS02J+W7MwsJCMjIyrKKzRIyIkJGRERe9AQWHarq1mMVigXqg7ACr6CzVJl7KTJFVdhZLrVAvlJ3FcrxSfPio1ry1WCxBWGUXASLCnXfeWXb+2GOPMXHixOgJVAVz5szhm2+qvW9sGUuXLuXkk0+mV69eZGVlMW3atFqUzlIdigusZWex1AZW2UVAUlIS7777Lnv27KnVeFUVn++o9iGslJoqu9TUVF555RVWrlzJxx9/zG233UZubm7tCWiJGK+17CyWWsEquwjweDxcf/31PPHEExX8du/ezdixYxk4cCADBw7k66/NptcTJ07kscceKwvXu3dvcnJyyMnJoVu3bowfP57evXuzZcsW7rrrLnr37k1mZmaZFTVnzhxGjBjBxRdfTPfu3bn88ssJtUPFpEmT6NmzJ1lZWVx22WXk5OTw/PPP88QTT5Cdnc1XX31VqYxXXnklJ598Ml26dGHy5MkAdO3alS5dugDQunVrTjjhBHbv3l0h7f/85z/07t2bPn36cOqppwJmQtHVV19NZmYmffv25fPPPwdgypQpXHDBBZx55pl06NCBZ555hr///e/07duXIUOGsG+f+YB68uTJDBw4kD59+jB27FgOHz5cId0hQ4awcuWRjblHjBgRd8vMFan5ZKK00Co7i6U2iPlPDwJ54MOVrPrpYK3G2bN1Q/50Xq8qw910001kZWVx9913l3O/9dZbuf322xk2bBibN2/mrLPOYvXq1ZXG9cMPP/Dyyy8zZMgQ3nnnHZYuXcr333/Pnj17GDhwYJniWLJkCStXrqR169YMHTqUr7/+mmHDhpWL66GHHmLjxo0kJSWRm5tL48aNueGGG0hLS+N3v/sdAL/85S/Dyrhs2TLmzZvHoUOH6Nu3L6NHj6Z169Zl8S9YsIDi4mJOOumkCvfx4IMPMmvWLNq0aVNm+T377LOICMuXL2fNmjWMGjWKdevWAbBixQqWLFlCYWEhnTt35uGHH2bJkiXcfvvtvPLKK9x2221cdNFFXHfddQD88Y9/5IUXXuCWW24pl+64ceN46623eOCBB9i+fTvbt29nwIABleZ5faMYD0mUoMUVlb3FYqk+1rKLkIYNGzJ+/HgmTZpUzv3TTz/l5ptvJjs7m/PPP5+DBw+Sn59faVzt27dnyJAhAMydO5df/OIXuN1uWrRowWmnncZ3330HwKBBg2jbti0ul4vs7GxycnIqxJWVlcXll1/Oa6+9hscTuu1SmYxjxowhJSWFZs2aMXLkSBYsWFB23fbt27nyyit56aWXcLkqFpWhQ4cyYcIEJk+ejNfrLbufK664AoDu3bvTvn37MmU3cuRI0tPTad68OY0aNeK8884DIDMzs+zeVqxYwfDhw8nMzOT1118vZ8H5ufTSS3n77bcBeOutt7j44osrze/6SImYZ2mVncVSO9Qryy4SC6wuue222+jXrx9XX311mZvP52PevHkkJyeXC+vxeMqNxwV+89WgQYOI0ktKSio7drvdlJaWVggzY8YMvvzySz788EP++te/snz58gphwskIFafo+88PHjzI6NGj+etf/1qmmIN5/vnnmT9/PjNmzKB///4sWrQo4vtxuVxl5y6Xq+zeJkyYwPTp0+nTpw9Tpkxhzpw5FeJp06YNGRkZLFu2jGnTpvH88/G3abjXeTW1pCDKklgs8YG17KpB06ZNufTSS3nhhRfK3EaNGsXTTz9ddr506VLAbFe0ePFiABYvXszGjRtDxjl8+HCmTZuG1+tl9+7dfPnllwwaNCgieXw+H1u2bGHkyJE8/PDDHDhwgPz8fNLT08nLOzLWE05GgPfff5/CwkL27t3LnDlzGDhwIMXFxVx44YWMHz++Uqtpw4YNDB48mAcffJDmzZuzZcsWhg8fzuuvvw7AunXr2Lx5M926dYvofgDy8vJo1aoVJSUlZfGEYty4cTzyyCMcOHCArKysiOOvL7hxGkol1rKzWGoDq+yqyZ133lluVuakSZNYuHAhWVlZ9OzZs8zKGDt2LPv27aNXr14888wzdO3aNWR8F154IVlZWfTp04fTTz+dRx55hJYtW0Yki9fr5YorriibDPLb3/6Wxo0bc9555/Hee++VTVAJJyOYbtCRI0cyZMgQ7rvvPlq3bs1bb73Fl19+yZQpU8jOziY7O7tMQd5///188MEHANx1111kZmbSu3dvTjnlFPr06cNvfvMbfD4fmZmZjBs3jilTppSz6Kriz3/+M4MHD2bo0KF07969zP2DDz7g/vvvLzu/+OKLefPNN7n00ksjjrs+4XKUnVjLzmKpFSTUDL9oMWDAAA2eVbd69Wp69OgRJYnim4kTJ5abyBJv1OeykzexFekcZkmTs+l7q/3O0RLfiMgiVa3TWWbWsrNYYpAyy67UWnYWS21QryaoWGqXWF4F5njHrV4Q8Hjr/2LWFkssYC07iyUG8Vt2bqvsLJZawSo7iyUG8TjKLsFnlZ3FUhtYZWexxBo+Hy4xE8essrNYager7CyWGMPnPbJ4QKJVdhZLrWCVXYRMnz4dEWHNmjVhw+Tk5NC7d+86lWPp0qV89NFHR329/yP0nj170qtXL5566qlalM5SG3h9AcpOi6IoicUSP1hlFyFTp05l2LBhTJ06NaR/qKW8qot/fcnKqKmy83g8PP7446xatYp58+bx7LPPsmrVqqOOz1L7eEtLyo6TsMrOYqkN6lzZicjZIrJWRNaLyL11nV5dkJ+fz9y5c3nhhRd48803y9znzJnD8OHDOf/88+nZsydglN7ll19Ojx49uPjii8u2qJk9ezZ9+/YlMzOTa665hqIiU4l16NCBe+65h379+vGf//ynXLrBW+gUFxdz//33M23aNLKzs5k2bRqHDh3immuuYdCgQfTt25f3338fMFvqjBkzhhEjRtClSxceeOABAFq1akW/fv0ASE9Pp0ePHmzbtq3CPX/xxRdlq6f07duXvLw8VDXsdkSnnXYaY8aMoVOnTtx77728/vrrDBo0iMzMTDZs2ADAhx9+yODBg+nbty9nnHEGO3furJDuZZddxowZM8rOJ0yYULbo8/FCaalp9BRoIslaBDG08IPFUl+p0+/sRMQNPAucCWwFvhORD1T16EyJmffCjooLHdeIlplwzkOVBnn//fc5++yz6dq1KxkZGSxatIj+/fsDZt3LFStW0LFjR3Jycli7di0vvPACQ4cO5ZprruEf//gHN998MxMmTGD27Nl07dqV8ePH89xzz3HbbbcBkJGRUbaOZiDBW+gkJiby4IMPsnDhQp555hkAfv/733P66afz4osvkpuby6BBgzjjjDMAsz3PihUrSE1NZeDAgYwePbrcVjg5OTksWbKEwYMHV0j7scce49lnn2Xo0KHk5+eTnJzMu+++G3Y7ou+//57Vq1fTtGlTOnXqxLXXXsuCBQt46qmnePrpp3nyyScZNmwY8+bNQ0T497//zSOPPMLjjz9eLl3/9j2jR4+muLiY2bNn89xzz0X4MOMDn9NLcIgUmskBtLQISai4iLfFYomcurbsBgHrVfVHVS0G3gTG1HGatc7UqVO57LLLAGN5BHZlDho0iI4dO5adt2vXjqFDhwJwxRVXMHfuXNauXUvHjh3L1se86qqr+PLLL8uuGTduXMh0Q22hE8wnn3zCQw89RHZ2NiNGjKCwsJDNmzcDcOaZZ5KRkUFKSgoXXXQRc+fOLbsuPz+fsWPH8uSTT9KwYcOQad9xxx1MmjSJ3NxcPB5PpdsRDRw4kFatWpGUlMRJJ53EqFGjgPLb92zdupWzzjqLzMxMHn300ZDb95xzzjl8/vnnFBUVMXPmTE499VRSUlJC3nu8UlpaDECBpAJQVHAomuJYLHFBXa+g0gbYEnC+FShnRojI9cD1ACeeeGLlsVVhgdUF+/bt47PPPmP58uWICF6vFxHh0UcfBSpu1xNuy5zKCLflTyRb6Kgq77zzToWdBebPnx9WlpKSEsaOHcvll1/ORRddFDLte++9l9GjR/PRRx8xdOhQZs2aVek9RLJ9zy233MIdd9zB+eefz5w5c0Ku4JKcnMyIESOYNWsW06ZNK2tkHE/4nIZNgSsVfFBUkE9yw4woS2Wx1G+iPkFFVf+lqgNUdUDz5s2jLU4F3n77ba688ko2bdpETk4OW7ZsoWPHjnz11Vchw2/evJlvv/0WgDfeeINhw4bRrVs3cnJyWL9+PQCvvvoqp512WpVph9pCJ3j7nrPOOounn34a/4LeS5YsKfP73//+x759+ygoKGD69OkMHToUVeVXv/oVPXr04I477qg07czMTO655x4GDhzImjVrarQdEcCBAwdo06YNAC+//HLYcOPGjeOll17iq6++4uyzz444/nih1GsmqBS5TSOoqKDyzYAtFkvV1LWy2wa0Czhv67jVG6ZOncqFF15Yzm3s2LFhZ2V269aNZ599lh49erB//35uvPFGkpOTeemll7jkkkvIzMzE5XJxww03VJl2qC10Ro4cyapVq8omqNx3332UlJSQlZVFr169uO+++8quHzRoEGPHjiUrK4uxY8cyYMAAvv76a1599VU+++yzsgko/tmdzz//fNn2P08++SS9e/cmKyuLhIQEzjnnnBptRwRmLc5LLrmE/v3706xZszL3hQsXcu2115adjxo1ii+++IIzzjiDxMTEiOOPF/yWXbGj7IqtsrNYakydbvEjIh5gHfAzjJL7DvilqlYcrMFu8VObTJkypdxEluOR+lp2tqxfQbvXhrIg/QwG5X3KhvPf46R+p0dbLIulzjgWW/zU6ZidqpaKyM3ALMANvBhO0VksFoN/BZXShDTzt9BadhZLTanzLX5U9SPg6L+CthwVEyZMYMKECdEWw3IUeJ0xO01IB6C0yM7GtFhqStQnqERCLO2mbqkf1Ocy43NWUNFkR9kVHo6mOBZLXBDzyi45OZm9e/fW68rLcmxRVfbu3Utycv38ENv/Ubkkme8ffcXWsrNYakrM71Tetm1btm7dyu7du6MtiqUekZycTNu2baMtxlHhc7oxXSmOsiuylp3FUlNiXtklJCSUW6HEYol3/MrOk9oYAC22ys5iqSkx341psRxv+JVdQqqx7LTEKjuLpaZYZWexxBjqfHqQlJjEYU2CkoIoS2Sx1H+ssrNYYgz/bEyX20MhiYi17CyWGmOVncUSY/i7Md0JiRRJElJaGGWJLJb6j1V2FkuMoX5l50mgSJJwl1rLzmKpKVbZWSwxhtf5zs7lTqRYUnB7rWVnsdQUq+wslhjDP0HFk+ChxJVklZ3FUgtYZWexxBjqNTuVuz0JlLiT8fissrNYaopVdhZLjFFm2XkSKXUlk2iVncVSY6yys1hijMAJKl53CglW2VksNcYqO4slxlCff8wuAZ8nhSQtirJEFkv9xyo7iyXGONKNmYTPk0IyVtlZLDXFKjuLJdbwLwSd4EGtZWex1ApW2VksMYb6vAB4EhIhMYUE8aKlxVGWymKp31hlZ7HEGj5j2YkrARJSASgqsBu4Wiw1wSo7iyXGEF8JXhVwuZBEo+wKD+dFWSqLpX5jlZ3FEmO4SgspJAkAd1IDwCo7i6WmWGVnscQYUlpIoRhlJ0lpABRbZWex1Air7CyWGMPtLaDIUXbu5HQASg4fjKZIFku9xyo7iyXGcJUWUOwou4SUhgCUFFhlZ7HUBKvsLJYYw+0tpNRllF1iirHsSgvzoymSxVLvscrOYokxPL5CSlzJACQ1MJadt9BadhZLTbDKzmKJMRJ8hZQGKTuftewslhphlZ3FEmMk+ooodRtl1yDNUXZFVtlZLDXBKjuLJcZI8h1GPeZj8tSUVIrUA8VW2VksNcEqO4slhlBVGmoepSlNAUj0uDhEMhTb5cIslppglZ3FEkMUFhSQJoWoo+wACiQFV4lVdhZLTbDKzmKJIQ7s2wmANMgocyuSZNxW2VksNaJGyk5EJorINhFZ6vzODfD7fyKyXkTWishZNRfVYol/8hxll5DWrMyt0JWKx3s4WiJZLHGBpxbieEJVHwt0EJGewGVAL6A18KmIdFVVby2kZ7HELQd2bgKg4QknlrkVu1JILbXKzmKpCXXVjTkGeFNVi1R1I7AeGFRHaVkscUPR7h8ByGjTucytxJ1Kks8qO4ulJtSGsrtZRJaJyIsi0sRxawNsCQiz1XGrgIhcLyILRWTh7t27a0Eci6X+Irk5FGkCjZofeV1K3akk+gqiKJXFUv+pUtmJyKcisiLEbwzwHHASkA1sBx6vrgCq+i9VHaCqA5o3b17dyy2WuCItdw1bEtojLneZmzehAcm+wihKZbHUf6ocs1PVMyKJSEQmA/91TrcB7QK82zpuFoslDEUlpZxY9AMbm/+snLs3oQEpWMvOYqkJNZ2N2Srg9EJghXP8AXCZiCSJSEegC7CgJmlZLPHOunWraSyHSGzXt7xHQirJFIO3NDqCWSxxQE1nYz4iItmAAjnArwFUdaWIvAWsAkqBm+xMTIulcnaumksm0LrHyeXcNdFs8+MryseV2rjG6ZSUFFOQl0taemNcCYk1js9iqQ/USNmp6pWV+P0V+GtN4rdYjic8W77hMMk0OWlAOXdXUgMACg4doMFRKrtD+Xks+fA5mmyYTueSdTSUEorVw8akrhzufjE9z7qGpAZNqo7IYqmn1MZ3dhaLpYaoKu0OLmZzgyy6uxPK+bmS0gAoPHSQBtWcw+Xz+vjm3WfosvIJhrGPTe72fN/6ErxpbdC87bTY9RV9lz3I4WWP8H2Lczlh5I206jYQRMriyD2Yx7ZNP7B/2w8U7N4I+zeRVvATTUp24tZiwIW63Hjdyfjcyfg8yeBJRRNSkIRkvO4Uil1JlEgSqgrqBZ8X9fkCjr2gPkR9CF5EFUHLxFCcgzK5JOAuy/v5g3hEcLtdeJq0JevCu8rdk+X4wyo7iyUG2Lx1CyexlaVtxlbwczu7lRceyqtWnD9t28z2V65lWNF81id25+DP/kGXQWfTPqDS93l9LJn/GYe++RcDdnxI8pvvcoA09rmboao08uXSRA/SWLTsmlLc7HE1Z29CS4rcjRCfF/WV4i4twlOcR4qviEQtJIliUigmhSLcAdeHwqeCV1woghcXPlxlCk7Qcn8JiKqCXxAufCRu8bKx+8/o2LN/tfLPEl9YZWexxADbln5Ke6Bpr9Mr+LmTjbIrPnwg4vhWLP6ajA/G01sPsLT3PfQZe0+5zxn8uNwu+p5yBpxyBtt+2kbO3Gm4ti8hsWgfblF2J/XB07AVySd0pFHrLjRv14WkJm1p6XLTsgoZSrw+Dhd5yVfFRQlubxFut+B2uXG7PYjLA+IClxuXSK2vcKGqbPpxLR1eHcze72dYZXecY5WdxRIL5HxFAUm07XlKBa+kVKPsSgois+y+mTWNrG9+S4Erld2Xfkh2z5Orvgho07oNbS69I3KZqyDB7aJRql+FJQINai3uSBAR2nfqxgY5kQabPgPuP6bpW2ILu+uBxRIDtNy/iA3JvULOjkxIiVzZfTvrTfp/8xt2J7Qh8YY5tI1Q0cUrIsK2ZsPoXLCMwvz90RbHEkXiyrLzeb2sfOQMDjfLIqnzqbTrPoCmLdohrlrQ6arg84KvBF9JESWlxXhLiykt8eL1+Sj1KRpi2CB4TLzCEHlQAKkYImwcGuGAe7BcilaUpEKYSuJw0tWgUBXTiUSWqjlyTeh0I4k3pCxVxHEkhIQNE/aSck6V51Px4Vx6+zbxbYtzCUVyg0YAeAsrV3bzP32Hft/czE8J7Wl5y/9IaZRRafjjhfSsc0mY/Qarv/mQrFHjayXOkpJi9u/6iYL8XIoL8igqOIR4iwCXqW/E/MTlQsq6bd24PR7cbjfi8uB2JyBu4+dy/rrdHtTtdO+Gw1fZW6NBfwO9KiuHoePUENeVw+WhSUb9WPkqrpTd3t3bSPAV0H/rK3i2TYEvIE9TyHU1ocCdTpErBZEjVaZLvbi1xPlbikdLcKsXD/6/pXgoJYFSPOrF5Qyyu4Ck6N2mJU5J7z4ypHtSg4YA+Arzw1773ZwPyPrqBnYktOGEm2ZaRRdAr0Gj2DW7Ka7FL0E1ld3+/fvYtvxL8jYvxbV7NU0O/UiT0t001VxOqGLSzfHAd77uDHxwfrTFiIi4UnbNW55I8z/MI//gfrYs/4r9m1eSsH89roK9JBQfNIvpqtMwEsErbkpcafjEg9eVgIoHnysBn8v8pexvAupKQN0JiCsBnzsBcRt3cblxu1y4XKbLpBwhLapAh6CWVqibCvs+adn/oey7Si1I1ZDXBDtWjAOqer9DGZsBdlHlF5eLJ9ji1aDzUBcFn/rnrR+5tkpjONhfKzpFYlBHYnMHxuNKaUKvwWeGDJfqV3ZFoZXd4q9m0vPza9njaUHGjTNp0KRFBKkfPyQmJbGuwy8ZlvMMq77+kJ5Dzwsb9mB+Hmu/m83htZ/TfPc8upauo7f4ANhDY3YkdWRjWmc2pLXE1bAVrtTGJCQ1wJPcAHUnYSoYH+ADVdRbik+94PXic2at+rxe8JWiXvPJharz6YXPhHGpF1Ff5W9LpYVQwgYJfvOlEr/ySYX2K0iuH1YdxJmy85PWsAk9hp4PQ8+PtigWS41JTUmiQBOR4orKbum3n9D106vZ725GoxtmkpbROgoSxj79L7mXzY+9S8v/3cTahES6DRwFIhQcPsymFXPZt/JzGmz/lm5FKxgoJXhV2JjUjaVtJpDc5TTadB9Ms+ataFZ1UpYYJS6VncUSTyR53OwlGYoPlXNf9M2ndJ01noPuxqT/eiYNm7cLE4MlpUE6peOmUvTmWLp9dCn7PmpICQk00310d7orctwdWNF6LGndf0bH/mfSOc2uKBNPWGVnsdQDCiQZV8kRZbdwzod0/fx68t2NSL1uJo1atI+idPWDTt2zyb9zEd9+NBnZvhQ3XjamtSbxxH507HcGHZq1pEO0hbTUGVbZWSz1gDxJJ7l4L6rK59OeYtjqB9npaUWj6/5Lw5Ydoy1evSEtvTEnj7sr2mJYooBVdhZLPWBHg+4My5/FokdGc3rB16xN7cuJN7xjZ11aLBFiPyq3WOoBknUpoj56Hf6OxSfdRNff2e/oLJbqYC07i6UeMGLUBeR07U2TRo3p18TOCbRYqotVdhZLPaFDh87RFsFiqbfYbkyLxWKxxD1W2VksFosl7hGtbJHPY4yI7AY21UJUzYA9tRDPsaA+yQr1S14ra91Rn+StT7JC/ZK3tmRtr6p1uvZYTCm72kJEFqrqgGjLEQn1SVaoX/JaWeuO+iRvfZIV6pe89UlW241psVgslrjHKjuLxWKxxD3xquz+FW0BqkF9khXql7xW1rqjPslbn2SF+iVvvZE1LsfsLBaLxWIJJF4tO4vFYrFYyrDKzmKxWCxxT1wpOxE5W0TWish6Ebk32vIEIyLtRORzEVklIitF5FbHfaKIbBORpc7v3GjLCiAiOSKy3JFpoePWVET+JyI/OH+jvsOliHQLyLulInJQRG6LpXwVkRdFZJeIrAhwC5mXYpjklONlItIvBmR9VETWOPK8JyKNHfcOIlIQkMfPH0tZK5E37LMXkf/n5O1aETkrBmSdFiBnjogsddxjIW/D1VkxWXYrRVXj4ge4gQ1AJyAR+B7oGW25gmRsBfRzjtOBdUBPYCLwu2jLF0LeHKBZkNsjwL3O8b3Aw9GWM0Q52AG0j6V8BU4F+gErqspL4FxgJiDAEGB+DMg6CvA4xw8HyNohMFwM5W3IZ++8b98DSUBHp85wR1PWIP/HgftjKG/D1VkxWXYr+8WTZTcIWK+qP6pqMfAmMCbKMpVDVber6mLnOA9YDbSJrlTVZgzwsnP8MnBB9EQJyc+ADapaGyvx1Bqq+iWwL8g5XF6OAV5RwzygsYi0OiaCElpWVf1EVUud03lA22MlT1WEydtwjAHeVNUiVd0IrMfUHceEymQVEQEuBaYeK3mqopI6KybLbmXEk7JrA2wJON9KDCsSEekA9AXmO043O2b/i7HQNeigwCciskhErnfcWqjqdud4B9AiOqKF5TLKVxaxmK9+wuVlrJflazCtdz8dRWSJiHwhIsOjJVQIQj37WM7b4cBOVf0hwC1m8jaozqp3ZTeelF29QUTSgHeA21T1IPAccBKQDWzHdGXEAsNUtR9wDnCTiJwa6Kmm3yJmvl0RkUTgfOA/jlOs5msFYi0vwyEifwBKgdcdp+3AiaraF7gDeENEGkZLvgDqzbMP4BeUb6jFTN6GqLPKqC9lN56U3TagXcB5W8ctphCRBEyheV1V3wVQ1Z2q6lVVHzCZY9itUhmqus35uwt4DyPXTn+3hPN3V/QkrMA5wGJV3Qmxm68BhMvLmCzLIjIB+DlwuVPB4XQH7nWOF2HGwLpGTUiHSp59rOatB7gImOZ3i5W8DVVnUc/KLsSXsvsO6CIiHZ0W/mXAB1GWqRxOn/wLwGpV/XuAe2Cf9oXAiuBrjzUi0kBE0v3HmAkKKzB5epUT7Crg/ehIGJJyLeNYzNcgwuXlB8B4Z2bbEOBAQJdRVBCRs4G7gfNV9XCAe3MRcTvHnYAuwI/RkfIIlTz7D4DLRCRJRDpi5F1wrOULwRnAGlXd6neIhbwNV2dRj8puGdGeIVObP8xMoHWYFtAfoi1PCPmGYcz9ZcBS53cu8Cqw3HH/AGgVA7J2wsxa+x5Y6c9PIAOYDfwAfAo0jbasjlwNgL1AowC3mMlXjBLeDpRgxjF+FS4vMTPZnnXK8XJgQAzIuh4zFuMvt887Ycc65WMpsBg4L0byNuyzB/7g5O1a4Jxoy+q4TwFuCAobC3kbrs6KybJb2c8uF2axWCyWuCeeujEtFovFYgmJVXYWi8ViiXussrNYLBZL3GOVncVisVjiHqvsLBaLxRL3WGVnsVgslrjHKjuLxWKxxD3/H1lwDiVnJhN3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 8)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACFtElEQVR4nO2dd5xVxfXAv+f1t293KUuRJkXpLEUBUUBRsUdRUcGOxhiTmF/UxGiKBk1MrNFYoomi2MVeYm+oqIgoSBUUXSlSF3bZ/sqd3x9z3+Pu7tv69m1h5/v5LLw3M3fmvHvn3jNz5tw5opTCYDAYDIb2gqulBTAYDAaDoTkxis9gMBgM7Qqj+AwGg8HQrjCKz2AwGAztCqP4DAaDwdCuMIrPYDAYDO2KVqP4RKSfiCgR8bS0LHs7IjJLRBY0U1tBEXlNRHaJyO+bo80q7eeJyNRmaGe+iFxUQ57p2y1EHdelxrwmlmGuiPytlnwlIvunW469ARE5WER2i8hSEcltbD2tRvEZGoeIzBaRiIgUO/6aXcHUwlRgJNBHKXVzPNFWSP1aTKpWhH0NZzeg/Fki8oOIlIjIiyLSuZay/xWRNSJiicisJPmXi8gW+2HyoIj4HXmjReQjESkUkY0ick2VY88QkdUiUiQiq0TkZEfefVX6ZIWIFDnyi6v8xUTkrnr+/rnJfsveiD1InduA8keKyNciUioi74tI31rK9rPLlNrHTHXknS8iX9j9YqOI3BwfuImIX0Tm2H2wyFZCx1WpV1W5vtc48v12X9tt970rHHnDRGSxPVDeJSLviMiweL5S6lOgI7AW+Gl9z0tVmkzxmdFsizJPKZXp+Lu57kOajc5AnlKquKUFSQXRtPhAUUSGA/8BzgW6A6XAv2s55Cvgl8CXSeo6BrgaOBLoCwwArnMUeQL4EH0NDwN+KSIn2cf2Ah4DrgCygSuBJ0SkG4BS6hJnnwSeBJ6JV1wlbx+gzJnf1hARdyuQoQvwPHAN+potBubVcsiTwBIgB/gT8KyIdLXzMoDLgC7AQeg+8js7zwNsQPeJDsCfgaeTDGQ7Oq7zXx3ps4GB6D53OPB7ETnWzvsROM2WvwvwMvCUs1KllAWssuVuFCndyPao/SoRWQaUiIhHRCaIyCciUiAiX4nIFEf5+SLyDxFZZGv7l2oarYrIBY7R5Hci8vMq+dPskcZuEVkXP3Ei0sEejWwWkU0i8re6OqWI7Cci74lIvojsEJHHRaSjI2+niBxgf+8pItvjv0tEThKRlfbvnS8iQ6ucn9+JyDLRo+Z5IhJo+JluOCJytX1e4qPxU2ooJyJyu4hss8/lchEZYef5ReRWEVkvIltFj+KDDRTFA1h1yJojIq/Y7X9uX7MFjnwlIpeIyDf2eb5HRMTOq/HaORhnn4NdIvJQ/BqISCcR+Z99PXfZn3s72p0vIjeIyMdoBTOgjt/aV0Q+ts/5W/aDyMnZ9rncISJ/qqOumjgbeEUp9aE9mLgGOFVEspIVVkrdo5R6FyhPkn0+MEcptVIptQv4KzDLkd8PeFwpFVNKrQMWAMPtvN5AgVLqdaV5FSgB9qvaiIiEgOnAwzX8punANuCjWn53UkTELSK32ef0exG5VGowK4tID/tevNKRvF9NzyMReUb0jKRQRD4UPeiI580VkXtFm/FL0A/w2ugkIq/afeMzEal6nqYm698N5FRgpVLqGaVUOVrBjBKRIVULisgg4ADgL0qpMqXUc8By9LVAKXWvUuojpVRYKbUJeByYaOeVKKVmK6XylFKWUup/wPfAgfWU83zgr0qpXUqp1cD92P1OKVVg16sAAWJAMjOwhX62NA6lVKP/gDxgKdAHCAK9gHzgeLRSPcr+3tUuPx/YBIwAQsBzwGN2Xj9AAR77+wnom0jQI4tS4AA7bzxQaNfvstsdYue9gB4Rh4BuwCLg53X8jv3tuvxAV/Qo9w5H/s/QI4wM4E3gVjt9EPpmPwrwAr8HvgV8jvOzCOiJHsGsBi6pQYZJQEEtf5NqOG52/BxWST/dbtcFzLDl7GHnzQIW2J+PAb5Amw8EGOoodzt6xNUZyAJeAf7RgP7hBR5NJl+Vck/ZfxnAMPRocoEjXwH/s2XcF9gOHFvPa5cHrED30c7Ax8Df7Lwc9I2eYf++Z4AXHcfOB9ajH/YewFvLb5gPrLP7RND+fmOVvn2/nTcKqACG1lBXbdf7JeCqKmnFwIF1nOMFwKwqaV8BMxzfu9hy5tjf/w7caF/HwcBGYJyd5wY+AE6yP59s54eStH0e8B0gNcj2HjC7kc+gS9D3Zm+gE/AOlZ8j84GLgP5o89jFVa5Z0ueRnX+h3S/8wB3AUkfeXPQzaCL6HgvUIuNc9HNwvN2PHgeeqk//TlLXMuCsGvL+BdxbJW0FMD1J2VOA1VXS7gbuqqHuF+P9OUled/TAKv4Mjvf3TXafeAjoYud1svO6O44/DVie5B6IohXcn5O0eYF9PXMa1W8ac5Cj8TzgQsf3q4BHq5R5Ezjf0dFudOQNA8LoGyd+sjy1nPjf2J//A9xewwWoAIKOtDOB9xv4u04GllRJexk9IloG+O20a4CnHWVc9sWe4jg/5zjybwbuS+WcJ5F1tn0OCxx/PZOUWwpMsz/PYo/iO8LuQBMAl6O8YI/gHWkHA9/XU67RQATYCuxfSzm3XW6wI+1vVFd8kxzfnwaurs+1s6/BJY7vxwPrapF5l+P7fOD6ev7e+ThuULR58Q37c7xv93bkLwJmNuJ6v0uVwZOzz9VyXDLFtw7HAxat4BTQz/5+CHogF7XTr6ty/E/RSjeKHpieUIvMs2vI64se1fdvZP9/D8fAFr2mXFXx/dPuB2cmuWZJn0dJ2ulo19vB/j4XeKSeMs4FHqjSB79uTP+uo505VFFO6IHerCRlzwUWVkm7AZibpOyFaAXWJUmeFz3Y+I8jLRMYi1by3YFngTftvD727w04yh+FXg6pWnfIvo+q9Su73U/sui5r6LlqijWLDY7PfYHT7el6gYgUoGcyPWoo/4P9A6qahBCR40RkoW1mLEB3lni5Puibtip97fo2O9r/D3rmVyMi0l1EnhJtGt2NXruoKtP96JHhXUqpCjutp/0bgITteQN6Bhpni+NzKbpTNDVPK6U6Ov5+FJHzRJuC4+dhBEnOs1LqPfRI7x5gm2hniGz07CkD+MJRxxt2ep0opZaiR8ufotcKaqIre9YM4mxIUi7peazntava53rax2aIyH9EL9LvRs8WO0pl03gyWWqirmvdFH2hGL2m5iQbKEpStqF1xT8X2Sa/N4DrgQD6njtGRH4JINoR4mZgCuBDW2UeEJHRzgZEZF+7zCM1yHAuepDzfSPkB30t6+o7Z6MHB88myUv6PLJNqDeKXi7YjVacULlvteW+Ua+yoh2W/gEcp5TaUSXPhbbohIFL4+lKqWKl1GKlVFQptdXOO9o2x8fX+qv2u2oyKqVKgPuAR8ReO3ZwIrpP9lRK3ZHk99VKUyg+5fi8AT3jcz6EQ0qpGx1l+jg+74se7Vc9oX602eFW9JS4I/AaehYSb6faWoKdXoEemcTbz1ZKDU9S1snf7d+Rq5TKBs5xtIWIZKJNHXOA2Y51gB/RyjZeTuzft6mO9qohIpOluqeb829yA+rqi1bUl6JNAR3RJo+k6wZKqTuVUgeiR7yD0I4KO9AOB8Md57KD0s4I9ULpdYbX7XprYjt6xtDbkdanhrLJqPXaJalvX/R1A/gt2oR3kH3soXa683hn/24NrESbSgEQkQFoU9zaVOuyP29VSuWj1zNjSqlH7AfYRrQ5+ni77GjgQ/sBZymlPgc+Q8+4nJwLfKyU+q4GGc6j5rW/+rCZuvvObHR/fkKqr/fX9Dw6C5iG/j0d0LN2aFt9I4R+Tq6soeyAKmvDo5xlRftN3A+cqJRa7jzYftbNQc/opiulIrXIFT9PLqXXkjdTvd8lkxG0jsqg8mQC9JLMQqXU5lrarZGm9lJ7DDhRRI6xR0wBEZnidBgAzhHtspqBHk0+q5SKVanHh76ZtwNR0a6yRzvy5wAXiHbddYlILxEZYp+Et4DbRCTbzttPRA6rQ+74SKRQtLfalVXy/wUsVkpdBLyKHoWANkmcYMvhRT9IK9BT8Aah9EJyZi1/DVn4D6E723bQjkLoGV81RGSciBxky1+CttVb9uz1fuD2+GjLPs/HOI5V4nBeqoEK9PVMin3tn0cPKDLshfjz6vUrNXVdO4BfiUhve8DyJ/Z4umWhlXuBnfeXBrTbUjyOvscm2w+264HnlVJJZ3wi4hPtzCOA174n4/f9I8BP7fuxI9o7b66dt1YfLmfZ99E+6LXiZXb+58Dk+AxPRMYAkx35cc5z1FlVtkPQD7Rq3pz17Fug78Hf2H2zI3q5pSoR9Jp3CD17cD73anoeZaH7bj76wfv3esjS0rwAjBCR6fY1vxZYppT6umpBpdRa9PLHX+w+cQr6taPnAETkCHRfm66UWpSkrXvRyudEpVSZM8N+ngy2+00OcCcwXylVaBd5BPizaOeyIWgfirn2sUeJyBhbf2SjzdS70P4RTrzo69MomlTxKaU2oEdJf0Q/dDegH0TOdh5F/8gtaBPK/yWpp8hOfxr9o89Cr7HF8xehFzdvRy8wf8Cemdd56AftKvvYZ6lsak3GdWgPp0K0Yns+niEi04BjgV/YSVcAB4jI2UqpNegZxl3oUeKJ6I4QrqO9tKKUWgXchjYzbgVy0bb+ZGSjFdwutKknH7jFzrsKvcaz0Db3vIOeISEifdDmieVVK6yCRd397FL0qHoLun88Sf07dY3XzsET6AHRd2gTefxl4jvQziY7gIVo016LU9sMXym1Eu3Q8TjaEzILvQ4SP/Z1Efmj45C30Mr9EOC/9udD7breQJsr30c78fyArfyVUrvRXoKXo/vGUrTV4G92/gfomdSzot/Pew74u1LqLYcsB6NnYzW9pnA+SZR2A/oW6L77FlrhLkFbhqLodcME9j15KnqG8qBD+dX0PHrEPh+b0M+ShfWQJe2I9iA/O1meUmo72lnrBvQ1OwiY6Tj2PhG5z3HITPRa3C60E9Npdh2g/Rc6AK85rE6v2/X0BX6OnvVvceTH5RqAvpeK0H2mAu1rEecv6PvwB/Sz+xa7L4JeS30SfT+vQ89Yj7WtR07c1OEtXhtiLxQ2CyIyH+019UCzNWpICyJyDtoM+oc6yh2NtgQMUUrtrGfdNwH7KKXOT11SQ1ujvn2rhmOPQzuQ9a2zsKFNIvpVlefRDkKN2qyjxV/INbRNlFKP1fPBNB94G1gpIr9LVkBEhojISNGMR3sLvtB00hraEg3oW4jeEu940e8Q90LPJkzf2UsRkQno2XlHtAWjUbSb3VbsKf45SbIeU0pd0tzytBdsE1NS04yDLLR5oyfaNHsb+n21VoWI1LT7zHENXIM1NB2CNnfPQ5txX0WvbTWvECIrcTi6Ofi5Uurx5pZnb0UptZAk3ukNpVlNnQaDwWAwtDTG1GkwGAyGdkWrMnV26dJF9evXr6XFMBgMBkMz8sUXX+xQStVrc4ymoFUpvn79+rF48eKWFsNgMBgMzYiI/FB3qabDmDoNBoPB0K4wis9gaMUY5zODoelp94pvzZYi/vqP2Wz8fk1Li2IwVOKH7YXMueZMlq5c1dKiGAx7Fa1qjS8ZkUiEjRs3Ul6eLI5m6hSVRzhtysEUbt1AUXmjd8AxtDICgQC9e/fG6/W2tCiNZtmiD7jI8zrfvb4Vhr/fLG1u3FXKJ99s54zxzbfxyWff5dM55GNg96SxdA2GJqfVK76NGzeSlZVFv379kEYFJa6dnbtL6Fxsb+vXc2jthQ1tAqUU+fn5bNy4kf79+7e0OI0my6vNnBnh/GZr8+X/vcQv111Cftb/yBla74AgKXHnA/dzsftVBs5+D9xtd6BiaDu0elNneXk5OTk5aVF6AG6qBoYwtHVEhJycnLRZCZoLX3Q3AMpqRkvEj0sAkK+ab7ORh703cZh7GRQ1KsKMwdBgWr3iA9Km9DTGeWBvJL19ppmI6RBnXqusjoJNR8TfUTddWlh7wSZCKUUxQf2ltPlmtob2TZtQfGnF6D1DK0VZUQCCVmmztenz+QGwKhoT0L3hWAqKVIb+YhSfoZkwis+p+WpwHRcRfvvb3ya+33rrrcyePTvNcjWe+fPn88knDY6FW4ljjz2Wjh078pOf/KSJpDI0FGVpM3yI5lN8IXvVX5pJ8UUti91oxRct3tEsbRoMRvHVQ/H5/X6ef/55duxo2htTKYWVhvWbplB8V155JY8++mgTSWRoFFbzrz8HbMXnjjTTjM8iYeos321mfIbmod0rvkq6TiV/0Hg8Hi6++GJuv/32annbt29n+vTpjBs3jnHjxvHxxzrQ+ezZs7n11lsT5UaMGEFeXh55eXkMHjyY8847jxEjRrBhwwauvPJKRowYQW5uLvPmzQO08poyZQqnnXYaQ4YM4eyzz076MvOdd97JsGHDGDlyJDNnziQvL4/77ruP22+/ndGjR/PRRx/VKuO5557LwQcfzMCBA7n//vsT9R555JFkZdXuXv7MM88wYsQIRo0axaGHHgpoZ6QLLriA3NxcxowZw/vvazf8uXPncvLJJ3PUUUfRr18/7r77bv75z38yZswYJkyYwM6dOkbt/fffz7hx4xg1ahTTp0+ntLT6bGfChAmsXLky8X3KlCl75VZ3qgUUn8d29vJEmmeWGbUsypUPgHBJ86wrGgyt/nUGJ9e9spJVP+5u0jr3y/Hx90Ns/a9qnn396le/YuTIkfz+95UD/v7mN7/h8ssvZ9KkSaxfv55jjjmG1atX19rmN998w8MPP8yECRN47rnnWLp0KV999RU7duxg3LhxCSWyZMkSVq5cSc+ePZk4cSIff/wxkyZNqlTXjTfeyPfff4/f76egoICOHTtyySWXkJmZye9+p+O+nnXWWTXKuGzZMhYuXEhJSQljxozhhBNOoGfPnvU6d9dffz1vvvkmvXr1oqCgAIB77rkHEWH58uV8/fXXHH300axduxaAFStWsGTJEsrLy9l///256aabWLJkCZdffjmPPPIIl112Gaeeeio/+9nPAPjzn//MnDlz+PWvf12p3RkzZvD0009z3XXXsXnzZjZv3szYsWPrJXNbopI3pxUDlzv9jdrK1mVVpL8t9IwvZo+/Y+XNM8s0GNr9jI96zPgAsrOzOe+887jzzjsrpb/zzjtceumljB49mpNOOondu3dTXFxTvFJN3759mTBhAgALFizgzDPPxO120717dw477DA+//xzAMaPH0/v3r1xuVyMHj2avLy8anWNHDmSs88+m8ceewyPJ/k4pjYZp02bRjAYpEuXLhx++OEsWrSoVtmdTJw4kVmzZnH//fcTi8USv+ecc3S83yFDhtC3b9+E4jv88MPJysqia9eudOjQgRNPPBGA3NzcxG9bsWIFkydPJjc3l8cff7zSzC7OGWecwbPPPgvA008/zWmnnVZvmdsUzhlfuPY+1XRtaocaTzMpvqhlJWaZRvEZmos2NeP7y4nDm7zOgl35ULYe0CPs2pzgL7vsMg444AAuuOCCRJplWSxcuJBAIFCprMfjqbR+53ynLBQK1Us2v9+f+Ox2u4lGo9XKvPrqq3z44Ye88sor3HDDDSxfvrxamZpkhOpu/w15DeC+++7js88+49VXX+XAAw/kiy++qLW88/e4XK7Ed5fLlfhts2bN4sUXX2TUqFHMnTuX+fPnV6unV69e5OTksGzZMubNm8d9991Xb5nbFI6BWEXpbvyBDulvM6H4wulvC4hZCjf6PlHN5FBjMJgZn2PdrK41lc6dO3PGGWcwZ86cRNrRRx/NXXfdlfi+dOlSQIdY+vLLLwH48ssv+f7775PWOXnyZObNm0csFmP79u18+OGHjB8/vl6iW5bFhg0bOPzww7npppsoLCykuLiYrKwsior2PERqkhHgpZdeory8nPz8fObPn8+4cePq1TbAunXrOOigg7j++uvp2rUrGzZsYPLkyTz+uH75ee3ataxfv57BgwfXu86ioiJ69OhBJBJJ1JOMGTNmcPPNN1NYWMjIkSPrXX9bwtkfy4qb1sRfE2IrWy+RZmkvphQe0W2qimaa1RraPUbxUX/FB/Db3/62knfnnXfeyeLFixk5ciTDhg1LzD6mT5/Ozp07GT58OHfffTeDBg1KWt8pp5zCyJEjGTVqFEcccQQ333wz++yzT70kj8VinHPOOQlHkv/7v/+jY8eOnHjiibzwwgsJ55aaZARtKj388MOZMGEC11xzTWJ9b/LkyZx++um8++679O7dmzfffBOAa6+9lpdffhnQnp+5ubmMGDGCQw45hFGjRvHLX/4Sy7LIzc1lxowZzJ07t9JMry7++te/ctBBBzFx4kSGDBmSSH/55Ze59tprE99PO+00nnrqKc4444x6193mcPTHiuZy/LAcVoVmiAwRjamEqVMiJWlvz2AAkNYU9mTs2LGqqnfe6tWrGTo0fXto7tq5nU7lGwGIZvXGk9VsQYBbnNmzZ1dygtnbSHffSTfz585mSp72JM474Sn6jTsu7W2+eNeVnJz/X/3lj5vBl5HW9n7IL2HXvyYx2vUdW7Nz6X7FgrS2Z2idiMgXSqlm81AzM74GmDoNhuZEHGt8kbJmmvEpx4yvGRxqopbCY6/xuaNmxmdoHtqUc0u6adbNgFsBrXn3GUPlgViktHkcP6SaJ2m3tLannVvsdcVo8+1QY2jfmBmfc8ZXy+sMBkOz4+iP0eZy9XfM+JrDyzJmKbxxxRczMz5D82AUn/NFvnY24zO0bpymTquZFJ9zxhcuaR7FF5/x+WOlzeJQYzAYxefEzPgMrQnHQKzZFJ/jHigvTf8rFDHnGh8xiDXP+4OG9o1RfPYIM6ZctW5ZZjA0OyqGpYQiFUSaaecWcZg6m+MViqilcItjwGne5TM0A0bx2cRwVRrtVuXFF19ERPj6669rLJOXl8eIESPSIV6CpUuX8tprr6VUx4UXXki3bt3SLqshRawoMXFRSgCJNI9CcFVyqGmeGZ+XGGFl70MaNru3GNKPUXz2Gl+M2md8Tz75JJMmTeLJJ59Mmp9sO7GGEt/vsjaaQvHNmjWLN954I6U6DM2AsrBwUSZBXM0ULUFUjKjSj4VIM5hX42t8u8WOBGJmfIZmwCg+29RpiQupQfEVFxezYMEC5syZw1NPPZVInz9/PpMnT+akk05i2LBhgFaAZ599NkOHDuW0005LhNV59913GTNmDLm5uVx44YVUVOhNgPv168dVV13FAQccwDPPPFOp3aphf8LhMNdeey3z5s1j9OjRzJs3j5KSEi688ELGjx/PmDFjeOmllwAdBmjatGlMmTKFgQMHct111yXqPfTQQ+ncuXOtp+WDDz5g9OjRjB49mjFjxlBUVIRSqsYQSocddhjTpk1jwIABXH311Tz++OOMHz+e3Nxc1q1bB8Arr7zCQQcdxJgxY5g6dSpbt26t1u7MmTN59dVXE99nzZqV2JC6vSFWjBhuKlxB3M20q4moKEWSCTTPumJ8ja/EbrPZNuM2tGva1nt8r18NW6pvwpwKwQ79YcJPsXBXWt9w8tJLL3HssccyaNAgcnJy+OKLLzjwwAMBvQ/nihUr6N+/P3l5eaxZs4Y5c+YwceJELrzwQv79739z6aWXMmvWLN59910GDRrEeeedx7333stll10GQE5OTmJfTydVw/74fD6uv/56Fi9ezN133w3AH//4R4444ggefPBBCgoKGD9+PFOnTgVg0aJFrFixgoyMDMaNG8cJJ5xQ7/A9t956K/fccw8TJ06kuLiYQCDA888/X2MIpa+++orVq1fTuXNnBgwYwEUXXcSiRYv417/+xV133cUdd9zBpEmTWLhwISLCAw88wM0338xtt91Wqd14yKETTjiBcDjMu+++y7333lsvmfc6VAwLFxWuDALN9HK3S8WIiJcKy0usPP1KKKb0jK/MnQlRzIzP0CyYGZ9t6lTiQkg+43vyySeZOXMmoGckTnPn+PHj6d+/f+J7nz59mDhxIgDnnHMOCxYsYM2aNfTv3z+xX+f555/Phx9+mDhmxowZSdtNFvanKm+99RY33ngjo0ePZsqUKZSXl7N+vY42cdRRR5GTk0MwGOTUU09lwYL6bwc1ceJErrjiCu68804KCgrweDy1hlAaN24cPXr0wO/3s99++3H00UcDlUMObdy4kWOOOYbc3FxuueWWpCGHjjvuON5//30qKip4/fXXOfTQQwkGg/WWe29CbMUXdmfgjTWPqdOlYijxUIK/md7js/BgUeHRpk4TocHQHLStGd9xNzZ5lWXbNhKIbkeJG5eytOnTEZpn586dvPfeeyxfvhwRIRaLISLccsstQPUQQ40J81NTmKL6hP1RSvHcc89Vi4Dw2WefpRRy6Oqrr+aEE07gtddeY+LEiYlNqmuiPiGHfv3rX3PFFVdw0kknMX/+/KQ7xwQCAaZMmcKbb77JvHnzEgOO9ojYa3xRTwh/ZH3zNKpiKJebkmjzeJLGLHBhEfZmQzmES3dT/y3NDYbGkfYZn4gcKyJrRORbEbk63e01GBWf8bl1LL4q63zPPvss5557Lj/88AN5eXls2LCB/v3789FHHyWtbv369Xz66acAPPHEE0yaNInBgweTl5fHt99+C8Cjjz7KYYcdVqdoycL+VA05dMwxx3DXXXcR32x8yZIliby3336bnTt3UlZWxosvvpiYidaHdevWkZuby1VXXcW4ceP4+uuvUwqhBFBYWEivXr0AePjhh2ssN2PGDB566CE++ugjjj322HrXv9ehYliiFV/Aar4ZHy4PxQQgnH7zqqV0PL6oLxuAcGlB2ts0GNKq+ETEDdwDHAcMA84UkWHpbLOxKLFPRRXF9+STT3LKKadUSps+fXqN3p2DBw/mnnvuYejQoezatYtf/OIXBAIBHnroIU4//XRyc3NxuVxccskldcqULOzP4YcfzqpVqxLOLddccw2RSISRI0cyfPhwrrnmmsTx48ePZ/r06YwcOZLp06cn1vfOPPNMDj74YNasWUPv3r0T8QXvu+++RMiiO+64gxEjRjBy5Ei8Xi/HHXdcSiGUQO8Nevrpp3PggQfSpUuXRPrixYu56KKLEt+PPvpoPvjgA6ZOnYrP56t3/Xsb8Rmf5cskg7JmaVObOt2US/M41FixGC5RWP6OQPO8QmEwpDUskYgcDMxWSh1jf/8DgFLqH8nKt0hYoq3r6RTLZ6d3HzpHtkC3oeCpHqm8rTF37txKTjDtkbYeluiT285g/+IvWN3zVA7b9F+4Jh/c6V2d+Oj6qQzwFbC+IoNewSj7/v6TtLb36tIfOOHFkXzW7xeM+v4Bdo+8kG7Tb05rm4bWx94WlqgXsMHxfaOdlkBELhaRxSKyePv27WkWJwlxve+yX6A1+3UaWgsqhiVu8GnHj2hZ+mdDYs/4Iq4MPM3gSWrZTlt+n5digljlZsZnSD8t7tWplPqvUmqsUmps164tEQRWoQBtld17YvLNmjWrXc/29gbE0qZOCWrFV1pUkPY23bayDXsy8DWDJ6myI777vF6KVdB4dRqahXQrvk1AH8f33nZag0hvlHi7brdWfNZeovjaO+ntM82DYKHEhTugHT/KSgrS3qYLPeOLukP4rfSvK1oxbWHx+3yUEACj+AzNQLoV3+fAQBHpLyI+YCbwckMqCAQC5Ofnp+1BJoBCEFd8xpf61mOGlkUpRX5+PoFA216rjb/H5wlqxVdRXJD2Nt32e3wxb4igaoYwQTF9v/l9PooJIs3gSWowpHWlXCkVFZFLgTcBN/CgUqr6W8u10Lt3bzZu3Ei61v9KC3cQVGWUB4Vg2TZigQjuQAusNRqalEAgQO/evVtajJQQZaHEjTfDVnzNEC3BRQzl0p6kHmIQrQBv+gYQlj3QDPi1qdMdMTM+Q/pJ+wvsSqnXgEbvquz1eivtjNLUvHzT+RxV/hafn7aQA148lI0H/p7eJ/4pbe0ZDPUlPuPzhToCEClNv+KLz/gsX3zT6KI0Kz7bucXrpZQAnqgZdBrST4s7t7Q0Yr8kHAplElUurGbwnDMY6oOe8bkIZHYEINYMfdOFnmXijyu+9LaZWFpweyh3h/BGm+dFfUP7xig++yXhUCDuTm1MLYbWgdgelgF7xhdLs6u/sndRUS4P4tfm1XS/QqHsNT6Xy03EHcIXM2t8hvRjFJ+KocRFpt9DMUHjVWZoNbiwULgIZXUAQKVZ8cVj4yFu3LZDTXnRrrS2GX9vVlweIp4QPlWRcHgxGNKFUXzKwsJNpt9DkQqaCNCGVkN8UBYK+ChWASTNg7KopfAQQ7k8exxq0ryuGDd1istFzGtv1m7uQUOaMYov/nDxeyghiNsEwjS0Ely2V6fP46KEYNqDtOoZnwUuN56MjgCE0/zuYFzxudxeLK8djNbE5DOkGaP44i7jbhelBHFHzU1naB3EX2AHKJUM3JE0Kz6l8Iie8flC2rya7k2j4zslidvpUGNmfIb0YhSf7TIO2F5lZnHd0DqIR0oAKHNl4Em34ovZMz7xODxJ0/wKhb1Xp8vlAZ894zNWF0OaMYqPWGJUHXaH8BnFZ2gluBwzvgpXRtoHZfE1PtweMoIhKpQn7Q41lrIVn9uDy3aoMTM+Q7oxis82dQKEPSH8llF8htaBS8WwRO8xEW4GV/89Xp0usgKeZnm9R+KvM7g9uAPa1Gk2qjakG6P41J5RdcwTIqDKwWxUbWgFCBbYfTPiCeFPcxT2SMzCg4W4PIT8HopVEEmzh6WyZ3yIG09QryuGm2GHGkP7xig+xzqK5TWL64bWg8thjYh6Mwk2g+JzYSFuDyG/m2KCuNK83pYIA+ZyJV6hCDfDnqSG9k27V3xuHIrPbxbXDa0H5xqf5c0ig/RGS3Cu8fk9bkoI4kr3ptEJxechkKkVX8RsG2hIM0bxKe2+DRh3akOrwkMU5fICoHyZeLAgkr4YedrUGUPsNstcITyR9K4rJvbqFDcZgQwqlJdoml+hMBiM4iOacCBw+Y1XmaH14GaPc0t8UJbO/Tqj0RgesRC3VnwV7hC+NL/XasW3J3O5yQx4KCaAZe4/Q5pp14rPSmzRpG90l+1VFk33u0sGQz3wqGjCGhF39S9LYzDaWLTCbtgHaE/SdHs5W7E9zi2ZtkON2SjekG7ateKLWgofUSxb8bkztFdZc0S6NhjqIr5vJoArkH7FF42EdVv2jC/qCRGIpdehxjnji28bmO49SQ2Gdq74rEoPF28wvjGvWWMwtDxOa4Qn4fFYkLb2LFvxiT3ji/ky8RGGaDhtbUosPssM6I3iCSLGucyQZtq54rO92OyHS3x/wqhxpza0MDFL4SUKbq2EfMG4NSJ9fTMWraL44q/3pFERSbRcf/D4E6bOdO9JajC0a8UXi+mHS3zG548rvjRv02Qw1EU4auEhmnA08YXirv7pMwPGZ3wuj18nNEMUdpdjxhfw6igUHrNtoCHNtGvFF7EsW/Hph0tmMECZ8hEzi+uGFqYiEsUnsYTiC8QHZWl8x82ynVtcHt1mQvGlcSDosmzF5w0iIlS4078nqcHQrhVfRcTCLxHwBAD0Nk0E0r4xr8FQF+GKPSZAgIx4tIQ0Dsr2KD7dptgONVYa7wd3wpNUt9kce5IaDO1a8ZVFYgSpAF8GAJl+DyUqiDKBMA0tTKTc7oNe3TdDmVnElKDSqPii5dqD0xvQkdDje2eWp9GhJjHjswefEU8In6qAuLenwZAG2rXiKw9HyaAC8ekbXc/4jFeZoeVJKL543wx4KCEAadw0OlqhZ1o+v1a2nmD69850xyqI4gGX3jYw5olvG2iWGwzpo30rvvIyvVOFPeML+d2UEDBeZYYWJ1qulVC8b/o9bkrTPCiLhvWMz5ehlW3cyzmcxtd7XLFyIi5/4nssHozWvMtnSCPtWvFFKvSN7vbrGz3+cHGneX9Cg6Eu4jM+V3zjdKBU0hstwarQ+4DGZ3yBkHZuiZSl8XWGWAVRl29Pgs/sl2tIP+1a8YVL4w+XUCKtvBkiXRsMdREu1Q9+X3CP4it3BXFH07iTiv3aQtypJWi/NB8rT5/ic8fKiTlmfHteoTBWF0P6aNeKL35DewJ7Hi4VxqvM0AoI27Os+KwLoCLNgzJ3hb2WF+wEQCjoo1T507YxtlIKv1VG1J2RSJOAmfEZ0k+7VnylJfqGDjoeLlFPRtojXRsMdRE3LwYy9vTNiDuEL417Z7oqCrAQ8Ou1vSy/lxL8qIr0KNuySIxOUkSFv/MeGezZpjKKz5BGUlJ8IjJbRDaJyFL773hH3h9E5FsRWSMix6QuatMTLt4JQChrz40X9WQad2pDixMrKwAgo1LfTO+gzFVeSKmEwKUfCyG/m1IVQKVpXTG/OExnirCCe35jPAq7iZBiSCeeJqjjdqXUrc4EERkGzASGAz2Bd0RkkFIq1gTtNR3FWwFwd+iRSIp5He7UtsnHYGh27L4Z6rynb0Y9IQJpVHzecCGlnmzihv/MgIdtBPCnSfFtK6qgn+ymPJSzRwZb8VWUFOJNS6sGQ/pMndOAp5RSFUqp74FvgfFpaqvRuEu26Q+Z3RNpKuFObRbXDS2Hq3grhWTi9gUSaZY3kyDpi8DeIbqNUl+XxHe/x00JQVyR9CjbHYVFdKQYb3a3RJrPDg0WMRFSDGmkKRTfpSKyTEQeFJH4FKkXsMFRZqOd1qpwFW+hQvx7PMlwKD7zEruhBfGVb2e3u4rFwZeJj2hawgQVlkXoqbZSnrlvpfQKVwB3mhxqdm/+Drcogt32S6SFAn7tUJPGPUkNhjoVn4i8IyIrkvxNA+4F9gNGA5uB2xoqgIhcLCKLRWTx9u3bG3p4o1FKkVP+PTsD+4JIIj3xakPYOLgYWo6c8vUUBPpUTrTf6UtHhPLvNm1jH3bh7TKgUnrYlYEnlp5ZZvGmVQBk9RqaSMv06x1qYsa5xZBG6lzjU0pNrU9FInI/8D/76ybAedf2ttOS1f9f4L8AY8eOVfVpqynYuLOUwSqPwo6HVkp327M/FS5Ckh1oMKSZwuISels/siLnyErpYiu+spJCQpk5yQ5tNNvWfIJLFNn7VV6RiHgy0vZ6T2DbUixcuLrtUXwhv5sSFSCQJk9SgwFS9+rs4fh6CrDC/vwyMFNE/CLSHxgILEqlraZmxZJP6CqFZA6qovjsF4bjL7cbDM1N3pL38UkMX9+DKqXHXywvLy5o8jbVmjeJ4KHL0EmV0qPuDHxW08/4tu0uZ0TpZ2zLGlZpqSHT76GUAISN4jOkj1TX+G4WkeUisgw4HLgcQCm1EngaWAW8AfyqNXl0KqWwFs8ljIfu406ulOe1X2avSGPAT4OhNnYvf42ocrHf+OMqpXvsl7vLm9jxY8PWfA4ofJsfOk5AqngyxzwZBNKg+N565w1yXXm4R51RKT3D76EEv1ljN6SVlF5nUEqdW0veDcANqdSfLt5751WOLnudvD7TGJjZrVKeN2jvT1hqFJ+h+dldtJthW19hVeYERmZVVkKehDWi6fqmUoqVT/6RY6UA91G/rZZveUN44w41Hl+SGhrOxh0FjPjqBord2XSdeH6lvJBPvzuYLk9SgwHa2c4tSik+fPVJxi64mHxPNwbMvLVaGZ+t+KImCruhBfjyievIkd1kHn55tTyfHSYo0kTWCKUUrz16K8cWPMWqHqeQM/yIamUsb9zZq2lmYNsKilh93/mMlrWUH3UTBDtWys/waeeWdHmSGgzQNC+wtwnyvl3Flhf+zKEl77Le24+cn72AO4mDgD8UV3zG1GJoXj57/xUm/vgQyztPJXfs0dXyfaH4riapK76CwkK+nPs7Ttj1NN9kjmfIrH8nL+h37J2Z0Tl5mXry+bJVqBcu4Sj1FRtG/5Y+B59VrYzP46JcAniaYDNuy1I89+FiCr56jT4HT+foscNxuYzLmqEdKL4f16/juxf/xvj8l+iOmyV9L2Dk2X/H7c9IWj4jEKBCeYg1wwvs5eEo332zgvy1n2FtW4OnZDPB8E4EsNw+Ytm9cXcfxr5jptJ13yGVXrsw7F1s+mEd+33wK7Z59mHQTx9IWia+b2eqg7LFn7xL57f+jyPYyLIep5F74T2IN5C8cBO811oWjvHyk/dy1Hf/ICRhNky6kT5Tf1Fj+bAriDfFPUnX7yjmzUduZEbhHLKllOJX/80T751K359cyaTh/RFzL7Vr9lrFt2XDOvJe/BsH7HiZriiWdf0JA6Zfz5ge/Wo9LsOnvcpUGhRfzFKs+XoFW778H6ENHzCkfBnDRJt0LCXscnVkt7sTFoI3XE634k8JbI7A0j+zQzqzudN4vIMOp9+44wjk9K1Xm2XhGDsKdlO4cxslBVsoLdhBpGg7lO7EV7ELX6QAV6wCC0FcHlxuN+L2gieAy+PH7Qvg9vrx+IJ4/QG8/iAubwDl9qHcfvvPh3L5UCgsyyIWi9n/W1hWjJgVw7I/W5bS360YoiwEBUohKPt75bQ4Cqn8sHJ8jqcrBEGSFdmTVsN5qlR1DemV63HIpkCh/7ToSn9P/K/LWfYHyy6D47h9lv6LTpQTmfkS/szkW+UF7MCwViP7ZnFpKZ/N/QOHbX2EXa5O5B37GCMPOrHWY1y2Q020bHejHhZLv/2BrU/9hhnR99kUGkLGOXPp03NorcdEUvAktSzFy++8R5+P/8DPZA1bu4wndOzVFL53H+dsfoL8Z17hiXfOYtLMq+i7TwNeCVGKaPEOtuStYueG1VRsXYcq2Y67fBe+cAHuWDn2xSfm8lLhziTizSbqy0L5OyIZnfCEOuPLzCHYoQuhDl3I7JiD1+0Bl+ASQcSFZUWJRqPEolGi0QixWJRoJIIVixGNRbHstFg0ihWLYsX0dysWIxbT5bCiuJSFS5S+N8QF4kLEhbhciAiK+Gc3CIjLre9BAVEKlAVKoezfBBZYSvdb9P9KKWL+joybUnsfao3sdYqvsCCflU/+ibFbniEHxdIuJ9B32p84cN8h9To+HoVdNdEL7EopVq1azo8LHqff5tcYxnqGAdtcXfm+21Q8fQ6ky6AJdN9vFDneAM5bMRKN8e2apfz41Tv4NixgUP7HdF74Biy8iq3SjZ2B3pT4u4E3SAwP7lgZrnAR7nARgWghmbHddKCIPlJOnxrkKyFAOX7cWLiwcCkLL1H8EmmS32+oH5YSlk26m9EDx9RYJmSb4Ruj+JZ9+SmBV37Jkeo7lnc9jkGz/k3XzLpNl25b8VUUFzboYRGOWjz3wjwOXfFnRshONoz8NX2m/QXcde/AGfNk4KmINNih5odtBSx65I9MK3qKsDuDXUfeQfdDZoEIvQYeSeSHz6l46U+cvfM/bLn3Geb3PJk+B51C38GjtcesFYOynZTu3MSOvJWU/Pg17PiGYNH35FRsJIsSeqNfSraUUCiZFLmyKXV3wPJm6FGSCD4rQmZ0B8HI94SKiwmpMlzSbK8oNyufqaFgFF/L8u1XC+j0wllMULv5otPx9D7lL4zrO7hBdWT4PBQoP74U3yPaUVjM4tfm0uObxxllrWI4sC4wnOX7X0XvcSfRbd/hdKvD3OL1uNl/+IHsP/xA4CrKKiJ8vuRTdq96l9COpWRXbKZ32WK8KoyXGGXip0wyCHsyCQe7sMM/kO3BHNyhznizuuDP7kqoYzcyO3cn2KELkpFDyOMnVKVdpRSRmEVZRTllpWWUlpVSXlZKeXkpFWVlWJFyXFYYVyyMy6pIfFYiuF1uxOXC7XLZ/7sRlxu324XL/u5yu3C53HokiqAco1KF2Gkuna4F2jOdAj0adchqf9pTViQxy3LkJLKroudlUmN+1XQVr9FuR4/W7SR0cANBpwl6Rpr4X3R5+/BEuq9Dd0bvU3nXlKpkBLyUKD/SgL4ZjkT58LG/MTnvbkolg28Pv4/cw86s9/Ge+KbRpYXV+klNfLt5B0vm/p4Z5c+z09+Tipmv02fAhHq3GfWEoAKIlNRL8SmleOmd+ey/4ApOl+/4ofcJ7Hvmv5DMrpXKefuOo+f/vcWuFe+w+7UbOPTHh3C9+GAi30JwocgA4hu3/ahy+NHTm++zjsTqNIDAPgPJ6TOE3gOG0ikUol7b2Fsxyot3sXvXNop27aC0cDsVRTuJlOwCK1ZpFoW4cbnciNu2vri8iNuNy+2x/9y43F5cbjdujxeXy4Pb48Ft53s8XsTlRolb206UQikLpSywLCzLQindprJ0Wjw/bp1QuBJKHLGtKC637tOuuOVFwOUix1vfXtG62KsUX6/9R7E6czS7pl7JuNGTG1VHyO9mE378kcYpvm/Xb2Dd/25n9NbnOVZ2scXdg+WD/4/+h5/Pfvvs36g64wT9XsZNOBQmHJo0Pzul2vcgIng9bryeENmhttmx90a8bhcFBLRCqAd5ed+y6/GLmBpZwtfZB9PnggfZv3PPBrXpiXuS1uPdQaUUr737HgM+upzT5Qc27jeD3jP+mdhqrb5YvhCUoF9iryNCSn5ROW889Fem5/+HiDvIruPn0HfsabUe02nEVDqNmEr+5vWs+/Jdin9cQyxciqUgFsjBld2NrJ6D6dZvOH26d6Gn190g+avhchPI7kIguwvd6rdCYUgze5XiC4ayOOB3L6dUR8DjppQAXRroVbZx8xZWPHcjh2yfx/5Sytrs8cQm/4qeY09iH1e7emvEkEbKJICrDsWnlGLBKw+R+8U1dJcwK8fMZvhJlzXKOcqXUb9XKHYVl/P2Q7OZtuMByt0hCk58hN5jpjW4PQASr1DU/jsXLluF9cIvOVstYWOXifQ6fw6S3aPWY5zk9NiXnBMuaJyMhjbNXqX4mgKXSwhLAHekfusoO3btYukzNzJ206McKyWs7XwonDibQQMOTLOkhvZIhQRx16L4CgoLWDbnVxy6+3+s8w2iw9kPMbzfiEa3l3CoqSUw7BfLVmC98AvOUMv4oeuh9Dl/Dq6sbjWWrwupw5M0HLV4/um5HLnmL2RLOZsn/pXeU39tvJ4N9cYoviSUu0L4optrLVNUWs4nz9/NqG/uYars5OvsQ4ieOJtBgw6q9TiDIRWKXR3oEClImrd08QI6/O/nHMpGlu57PiPPvQWX159SexnBIBXKmzRaQkUkyhtP3c2Ub2/CJxabJt9I3yMuSVkBqfi7g6W7quWt27KTr+ZewczyF9gSHIA691F69Gq8Yje0T4ziS0KBJ4fs6MKEo4ST0ooIH7z6OAOX3coxbCAvMIRNx9/PkFH1CmJhMKREgbcLfSLLK6UVl5ay6LFrmbhpLsWuTL4/7nFGj/9Jk7SX6fewg2xcdkT4OKvXfsuuZ37FtMhC1oeG0+XcufTqMahJ2oxl6XVIq3BTYmupaMzi1Tf+x+BFf+JUWc/6/c5i35n/BG+wSdo0tC+M4ktCeaA73qIIlO1K7FZRXB7m01cfoefyezmOb9ni6ckPh/2bfpPOMiYWQ7MRDnanY/l8sCxiCha99STdF/2DI9QGlnc6gv3Ov5ecTvs0WXs9Owb5QnVn393rAdi2q4Avn7mJgzfNZYBEWDvySgad/AdwpegA4iC7275YSijZnkemUixesYqt//sbJ5a/ToEnh10/eYR9G7t+aDBgFF9SXB17QRFEt3/Dip3C9k+fZPDWVzlKtrLV3YO88TfQb+rP6/VOksHQpOTsj2dXjC8f+BWhLZ9xsLWOza59+ObIB8mdNL3Jm/N5XGz39eaAovl8cM8vGLrtNY6VAtZ2OJieZ9zGoN7Dm7zNft06sl51I7D0BRZ9tYKJZe8zRizW7382fU//OxLo0ORtGtoXRvElIXPw4VSs9+B/6GhGo19WXZc5hu/H/Yn+k88Gtzlthpah/+TT2f7NvzjgxydY7+7LV2OuJ/f4X9DD2zSRE5JROvxsWPoek7c9yZrsCVhHXsGg0dX3Em0qxvXrzP2BE/hVxYNks5n1fU6i77Q/069r7e85Ggz1RVRNb+y2AGPHjlWLFy9uaTGIxixee/5h9tn6IaF9R9Lv4FMJdTUv4BhaB1u2bcMqyadnv+bZv1UpxYaNG+iSnUFGhy5pbw/0VnvbNn7Lvr17Iz7zLunejoh8oZQa22ztGcVnMBgMhpakuRWfebPaYDAYDO0Ko/gMBoPB0K5oVaZOEdkO/NAEVXUBdjRBPc2BkTV9tCV525Ks0LbkbUuyQtuSt6lk7auU6lp3saahVSm+pkJEFjenvTgVjKzpoy3J25ZkhbYlb1uSFdqWvG1JVifG1GkwGAyGdoVRfAaDwWBoV+ytiu+/LS1AAzCypo+2JG9bkhXalrxtSVZoW/K2JVkT7JVrfAaDwWAw1MTeOuMzGAwGgyEpRvEZDAaDoV2xVyk+ETlWRNaIyLcicnVLy+NERPqIyPsiskpEVorIb+z02SKySUSW2n/Ht7SscUQkT0SW23ItttM6i8jbIvKN/X+nViDnYMf5Wyoiu0XkstZ0bkXkQRHZJiIrHGlJz6Vo7rT78TIROaAVyHqLiHxty/OCiHS00/uJSJnjHN/XnLLWIm+N115E/mCf2zUickwrkHWeQ848EVlqp7eGc1vTc6tV9t16o5TaK/4AN7AOGAD4gK+AYS0tl0O+HsAB9ucsYC0wDJgN/K6l5atB5jygS5W0m4Gr7c9XAze1tJxJ+sEWoG9rOrfAocABwIq6ziVwPPA6IMAE4LNWIOvRgMf+fJND1n7Ocq3o3Ca99vY99xXgB/rbzwx3S8paJf824NpWdG5rem61yr5b37+9acY3HvhWKfWdUioMPAW0mmiVSqnNSqkv7c9FwGqgV8tK1SimAQ/bnx8GTm45UZJyJLBOKdUUOwA1GUqpD4GdVZJrOpfTgEeUZiHQUUR6NIugJJdVKfWWUipqf10I9G4ueeqihnNbE9OAp5RSFUqp74Fv0c+OZqE2WUVEgDOAJ5tLnrqo5bnVKvtufdmbFF8vYIPj+0ZaqWIRkX7AGOAzO+lS2yzwYGswHTpQwFsi8oWIXGyndVdKbbY/bwG6t4xoNTKTyg+O1npuoeZz2dr78oXoUX2c/iKyREQ+EJHJLSVUEpJd+9Z8bicDW5VS3zjSWs25rfLcaqt9F9i7FF+bQEQygeeAy5RSu4F7gf2A0cBmtKmjtTBJKXUAcBzwKxE51JmptG2j1bwPIyI+4CTgGTupNZ/bSrS2c1kTIvInIAo8bidtBvZVSo0BrgCeEJHslpLPQZu59g7OpPKgrdWc2yTPrQRtpe862ZsU3yagj+N7bzut1SAiXnTneVwp9TyAUmqrUiqmlLKA+2lGs0tdKKU22f9vA15Ay7Y1brqw/9/WchJW4zjgS6XUVmjd59ampnPZKvuyiMwCfgKcbT/ssE2G+fbnL9BrZoNaTEibWq59az23HuBUYF48rbWc22TPLdpY363K3qT4PgcGikh/e+Q/E3i5hWVKYNvv5wCrlVL/dKQ77d+nACuqHtsSiEhIRLLin9HODSvQ5/R8u9j5wEstI2FSKo2YW+u5dVDTuXwZOM/2kJsAFDrMSi2CiBwL/B44SSlV6kjvKiJu+/MAYCDwXctIuYdarv3LwEwR8YtIf7S8i5pbviRMBb5WSm2MJ7SGc1vTc4s21HeT0tLeNU35h/YoWoseGf2ppeWpItsktDlgGbDU/jseeBRYbqe/DPRoaVlteQegvd++AlbGzyeQA7wLfAO8A3RuaVltuUJAPtDBkdZqzi1aIW8GIuh1j5/WdC7RHnH32P14OTC2Fcj6LXrtJt5377PLTrf7x1LgS+DEVnJua7z2wJ/sc7sGOK6lZbXT5wKXVCnbGs5tTc+tVtl36/tntiwzGAwGQ7tibzJ1GgwGg8FQJ0bxGQwGg6FdYRSfwWAwGNoVRvEZDAaDoV1hFJ/BYDAY2hVG8RkMBoOhXWEUn8FgMBjaFUbxGQwGg6FdYRSfwWAwGNoVRvEZDAaDoV1hFJ/BYDAY2hVG8RkMBoOhXdFqFJ+I9BMRZcelMqQREZklIguaqa2giLwmIrtE5PfN0WaV9vNEZGoztDNfRC6qIc/07RaijutSY14TyzBXRP5WS74Skf3TLcfegIgcLCK7RWSpiOQ2tp5Wo/gMjUNEZotIRESKHX/NrmBqYSowEuijlLo5nmgrpH4tJlUrwr6GsxtQ/iwR+UFESkTkRRHpXEvZ/4rIGhGx7ECyVfMvF5Et9sPkQRHxO/JGi8hHIlIoIhtF5Joqx54hIqtFpEhEVonIyY68+6r0yQoRKXLkF1f5i4nIXfX8/XOT/Za9EXuQOrcB5Y8Uka9FpFRE3heRvrWU7WeXKbWPmerIO19EvrD7xUYRuTk+cLNjGc6x+2CRrYSOq1KvqnJ9r3Hk++2+ttvue1c48oaJyGJ7oLxLRN4RkWHxfKXUp0BHdPi5n9b3vFSlyRSfGc22KPOUUpmOv5vrPqTZ6AzkKaWKW1qQVLADa7b4QFFEhgP/Ac4FugOlwL9rOeQr4JfoeG5V6zoGuBo4EuiLjsF4naPIE8CH6Gt4GPBLETnJPrYX8BhwBZANXAk8ISLdAJRSlzj7JDoO3TPxiqvk7QOUOfPbGmIHjG1hGboAzwPXoK/ZYhwR3ZPwJLAEHVvvT8CzItLVzssALgO6AAeh+8jv7DwPOjbjYUAH4M/A00kGsh0d1/mvjvTZ6KC6fYHDgd+LDnQM8CNwmi1/F3QsxaeclSqlLGCVLXejSOlGtkftV4nIMqBERDwiMkFEPhGRAhH5SkSmOMrPF5F/iMgiW9u/VNNoVUQucIwmvxORn1fJn2aPNHaLyLr4iRORDvZoZLOIbBKRv9XVKUVkPxF5T0TyRWSHiDwuIh0deTtF5AD7e08R2R7/XSJykoistH/vfBEZWuX8/E5ElokeNc8TkUDDz3TDEZGr7fMSH42fUkM5EZHbRWSbfS6Xi8gIO88vIreKyHoR2Sp6FB9soCgewKpD1hwRecVu/3P7mi1w5CsRuUREvrHP8z0iInZejdfOwTj7HOwSkYfi10BEOonI/+zrucv+3NvR7nwRuUFEPkYrmAF1/Na+IvKxfc7fsh9ETs62z+UOEflTHXXVxNnAK0qpD+3BxDXAqSKSlaywUuoepdS7QHmS7POBOUqplUqpXcBfgVmO/H7A40qpmFJqHbAAGG7n9QYKlFKvK82rQAmwX9VGRCSEDqr6cA2/aTqwDfiolt+dFBFxi8ht9jn9XkQulRrMyiLSw74Xr3Qk71fT80hEnhE9IykUkQ9FDzrieXNF5F7RZvwS9AO8NjqJyKt23/hMRKqep6nJ+ncDORVYqZR6RilVjlYwo0RkSNWCIjIIOAD4i1KqTCn1HDpw7HQApdS9SqmPlFJhpdQm4HFgop1XopSarZTKU0pZSqn/Ad8DB9ZTzvOBvyqldimlVgP3Y/c7pVSBXa9CB7WNAcnMwBb62dI4UozOm4eOyNsHCAK90FGwj0cr1aPs713t8vOBTcAIdMTs54DH7Lx+6Ei/Hvv7CeibSNAji1LgADtvPFBo1++y2x1i572AHhGHgG7AIuDndfyO/e26/EBX9Cj3Dkf+z9AjjAzgTeBWO30Q+mY/CvACv0dHqvY5zs8ioCd6BLOaKlGWq0Q6Lqjlb1INx82On8Mq6afb7bqAGbacPey8WcAC+/MxwBdo84EAQx3lbkePuDoDWcArwD8a0D+86EjY1eSrUu4p+y8DGIYeTS5w5Cvgf7aM+wLbgWPree3ygBXoPtoZ+Bj4m52Xg77RM+zf9wzwouPY+cB69MPeA3hr+Q3z0VGnB6HvhfnAjVX69v123iigAhhaQ121Xe+XgKuqpBUDB9ZxjhcAs6qkfQXMcHzvYsuZY3//O3CjfR0HoyOGj7Pz3MAHwEn255Pt/FCSts8DvgMd+DpJ/nvA7EY+gy5B35u9gU7oaODO58h84CKgP9o8dnGVa5b0eWTnX2j3Cz9wB7DUkTcX/QyaiL7HArXIOBf9HBxv96PHgafq07+T1LUMOKuGvH8B91ZJWwFMT1L2FGB1lbS7gbtqqPvFeH9OktcdPbCKP4Pj/X2T3SceArrYeZ3svO6O408Dlie5B6JoBffnJG1eYF/PnEb1m8Yc5Gg8D7jQ8f0q4NEqZd4Eznd0tBsdecOAMPrGiZ8sTy0n/jf25/8At9dwASqAoCPtTOD9Bv6uk4ElVdJeRo+IlgF+O+0a4GlHGZd9sac4zs85jvybgftSOedJZJ1tn8MCx1/PJOWWAtPsz7PYo/iOsDvQBMDlKC/YI3hH2sHA9/WUazQQAbYC+9dSzm2XG+xI+xvVFd8kx/engavrc+3sa3CJ4/vxwLpaZN7l+D4fuL6ev3c+jhsUbV58w/4c79u9HfmLgJmNuN7vUmXw5OxztRyXTPGtw/GARSs4BfSzvx+CHshF7fTrqhz/U7TSjaIHpifUIvPsGvL6okf1/RvZ/9/DMbBFrylXVXz/tPvBmUmuWdLnUZJ2Otr1drC/zwUeqaeMc4EHqvTBrxvTv+toZw5VlBN6oDcrSdlzgYVV0m4A5iYpeyFagXVJkudFDzb+40jLBMailXx34FngTTuvj/17A47yR6GXQ6rWHbLvo2r9ym73E7uuyxp6rppizWKD43Nf4HR7ul4gIgXomUyPGsr/YP+AqiYhROQ4EVlomxkL0J0lXq4P+qatSl+7vs2O9v+DnvnViIh0F5GnRJtGd6PXLqrKdD96ZHiXUqrCTutp/wYgYXvegJ6Bxtni+FyK7hRNzdNKqY6Ovx9F5DzRpuD4eRhBkvOslHoPPdK7B9gm2hkiGz17ygC+cNTxhp1eJ0qppejR8qfotYKa6MqeNYM4G5KUS3oe63ntqva5nvaxGSLyH9GL9LvRs8WOUtk0nkyWmqjrWjdFXyhGr6k5yQaKkpRtaF3xz0W2ye8N4HoggL7njhGRXwKIdoS4GZgC+NBWmQdEZLSzARHZ1y7zSA0ynIse5HzfCPlBX8u6+s7Z6MHBs0nykj6PbBPqjaKXC3ajFSdU7lttuW/Uq6xoh6V/AMcppXZUyXOhLTph4NJ4ulKqWCm1WCkVVUpttfOOts3x8bX+qv2umoxKqRLgPuARsdeOHZyI7pM9lVJ3JPl9tdIUik85Pm9Az/icD+GQUupGR5k+js/7okf7VU+oH212uBU9Je4IvIaehcTbqbaWYKdXoEcm8fazlVLDk5R18nf7d+QqpbKBcxxtISKZaFPHHGC2Yx3gR7SyjZcT+/dtqqO9aojIZKnu6eb8m9yAuvqiFfWlaFNAR7TJI+m6gVLqTqXUgegR7yC0o8IOtMPBcMe57KC0M0K9UHqd4XW73prYjp4x9Hak9amhbDJqvXZJ6tsXfd0Afos24R1kH3uone483tm/WwMr0aZSAERkANoUtzbVuuzPW5VS+ej1zJhS6hH7AbYRbY4+3i47GvjQfsBZSqnPgc/QMy4n5wIfK6W+q0GG86h57a8+bKbuvjMb3Z+fkOrr/TU9j84CpqF/Twf0rB3aVt8IoZ+TK2soO6DK2vAoZ1nRfhP3AycqpZY7D7afdXPQM7rpSqlILXLFz5NL6bXkzVTvd8lkBK2jMqg8mQC9JLNQKbW5lnZrpKm91B4DThSRY+wRU0BEpjgdBoBzRLusZqBHk88qpWJV6vGhb+btQFS0q+zRjvw5wAWiXXddItJLRIbYJ+Et4DYRybbz9hORw+qQOz4SKRTtrXZllfx/AYuVUhcBr6JHIaBNEifYcnjRD9IK9BS8QSi9kJxZy19DFv5D6M62HbSjEHrGVw0RGSciB9nyl6Bt9ZY9e70fuD0+2rLP8zGOY5U4nJdqoAJ9PZNiX/vn0QOKDHsh/rx6/UpNXdcO4Fci0tsesPyJPZ5uWWjlXmDn/aUB7bYUj6Pvscn2g+164HmlVNIZn4j4RDvzCOC178n4ff8I8FP7fuyI9s6ba+et1YfLWfZ9tA96rXiZnf85MDk+wxORMcBkR36c8xx1VpXtEPQDrZo3Zz37Fuh78Dd23+yIXm6pSgS95h1Czx6cz72ankdZ6L6bj37w/r0esrQ0LwAjRGS6fc2vBZYppb6uWlAptRa9/PEXu0+cgn7t6DkAETkC3demK6UWJWnrXrTyOVEpVebMsJ8ng+1+kwPcCcxXShXaRR4B/izauWwI2odirn3sUSIyxtYf2Wgz9S60f4QTL/r6NIomVXxKqQ3oUdIf0Q/dDegHkbOdR9E/cgvahPJ/SeopstOfRv/os9BrbPH8RejFzdvRC8wfsGfmdR76QbvKPvZZKptak3Ed2sOpEK3Yno9niMg04FjgF3bSFcABInK2UmoNeoZxF3qUeCK6I4TraC+tKKVWAbehzYxbgVy0rT8Z2WgFtwtt6skHbrHzrkKv8Sy0zT3voGdIiEgftHliedUKq2BRdz+7FD2q3oLuH09S/05d47Vz8AR6QPQd2kQef5n4DrSzyQ5gIdq01+LUNsNXSq1EO3Q8jvaEzEKvg8SPfV1E/ug45C20cj8E+K/9+VC7rjfQ5sr30U48P2Arf6XUbrSX4OXovrEUbTX4m53/AXom9azo9/OeA/6ulHrLIcvB6NlYTa8pnE8Spd2AvgW6776FVrhL0JahKHrdMIF9T56KnqE86FB+NT2PHrHPxyb0s2RhPWRJO6I9yM9OlqeU2o521roBfc0OAmY6jr1PRO5zHDITvRa3C+3EdJpdB2j/hQ7Aaw6r0+t2PX2Bn6Nn/Vsc+XG5BqDvpSJ0n6lA+1rE+Qv6PvwB/ey+xe6LoNdSn0Tfz+vQM9ZjbeuREzd1eIvXhtgLhc2CiMxHe0090GyNGtKCiJyDNoP+oY5yR6MtAUOUUjvrWfdNwD5KqfNTl9TQ1qhv36rh2OPQDmR96yxsaJOIflXlebSDUKM262jxF3INbROl1GP1fDDNB94GVorI75IVEJEhIjJSNOPR3oIvNJ20hrZEA/oWorfEO170O8S90LMJ03f2UkRkAnp23hFtwWgU7Wa3FXuKf06SrMeUUpc0tzztBdvElNQ04yALbd7oiTbN3oZ+X61VISI17T5zXAPXYA1Nh6DN3fPQZtxX0WtbzSuEyEocjm4Ofq6Uery55dlbUUotJIl3ekNpVlOnwWAwGAwtjTF1GgwGg6Fd0apMnV26dFH9+vVraTEMBoPB0Ix88cUXO5RS9docoyloVYqvX79+LF68uKXFMBgMBkMzIiI/1F2q6TCmToPBYDC0K4ziMxhaET8WlPHpuvyWFsNg2Ksxis9gaEW89/gtHPzoACrK2nTcXoOhVdOq1viSEYlE2LhxI+XlyeJopk40ZlFcUkxWRgZuT6s/HYZ6EggE6N27N16vt6VFaRDTtv0bBHZu/oEeA+raW91gMDSGVv+k37hxI1lZWfTr1w9pVFDi2tm+u4yuxV8TFReeHkPrPsDQ6lFKkZ+fz8aNG+nfv39Li9MgyiVAFmUU7/wRjOIzGNJCqzd1lpeXk5OTkxalB+C29zn1tOy+0oYmRETIyclJm5Ugnex2dQCgfNePdZQ0GAyNpdUrPiBtSg/ATdWISIa9gXT2mXRS6tbxOSO7t7WwJAbD3kubUHzpxWzZZmg9RNwZAFhlu1tYEoNh78UovnroPRHht7/9beL7rbfeyuzZs9MnU4rMnz+fTz5pcCzcBEuXLuXggw9m+PDhjBw5knnz5tV9kKFJUC7bGafcKD6DIV0YxefUfDVs2O33+3n++efZsWNH07asFJbV6FiKNZKq4svIyOCRRx5h5cqVvPHGG1x22WUUFBQ0nYCGGomb3iWcNKC6wWBoAoziq4fi83g8XHzxxdx+++3V8rZv38706dMZN24c48aN4+OPdaDz2bNnc+uttybKjRgxgry8PPLy8hg8eDDnnXceI0aMYMOGDVx55ZWMGDGC3NzcxOxq/vz5TJkyhdNOO40hQ4Zw9tlnkyySxp133smwYcMYOXIkM2fOJC8vj/vuu4/bb7+d0aNH89FHH9Uq47nnnsvBBx/MwIEDuf/++wEYNGgQAwcOBKBnz55069aN7du3V2v7mWeeYcSIEYwaNYpDDz0U0M5IF1xwAbm5uYwZM4b3338fgLlz53LyySdz1FFH0a9fP+6++27++c9/MmbMGCZMmMDOnTpG7f3338+4ceMYNWoU06dPp7S0tFq7EyZMYOXKlYnvU6ZM2Wu2uhOlB0KuJlJ8f/nPEzz/1nsp16OU4pnFG9hUUNYkdT3/5UYqoqmvr5eGozz7xcak94bBUBOt/nUGJ9e9spJVPzatCWi/HD9/P8R2hFAxahoL/OpXv2LkyJH8/veVA/7+5je/4fLLL2fSpEmsX7+eY445htWrV9fa5jfffMPDDz/MhAkTeO6551i6dClfffUVO3bsYNy4cQklsmTJElauXEnPnj2ZOHEiH3/8MZMmTapU14033sj333+P3++noKCAjh07cskll5CZmcnvfqfjvp511lk1yrhs2TIWLlxISUkJY8aM4YQTTqBnz56J+hctWkQ4HGa//far9juuv/563nzzTXr16pWYEd5zzz2ICMuXL+frr7/m6KOPZu3atQCsWLGCJUuWUF5ezv77789NN93EkiVLuPzyy3nkkUe47LLLOPXUU/nZz34GwJ///GfmzJnDr3/960rtzpgxg6effprrrruOzZs3s3nzZsaOHVvrOW8riNLKwB1J/QV2y1Jct/kXsBk4ujClunaWhNn04rUs6JTFjN/emVJdC7/byYbnr+HNLwdw0kXXpFTXLW+uYehnf2BN/kkMOfqilOoytB/MjK/SjK9ms2N2djbnnXced95Z+aZ/5513uPTSSxk9ejQnnXQSu3fvpri49odW3759mTBhAgALFizgzDPPxO120717dw477DA+//xzAMaPH0/v3r1xuVyMHj2avLy8anWNHDmSs88+m8ceewxPDS/g1ybjtGnTCAaDdOnShcMPP5xFixYljtu8eTPnnnsuDz30EC5X9a4yceJEZs2axf33308sFkv8nnPO0fF+hwwZQt++fROK7/DDDycrK4uuXbvSoUMHTjzxRAByc3MTv23FihVMnjyZ3NxcHn/88UozuzhnnHEGzz77LABPP/00p512Wq3nuy0h9us1vmjqii8cazozeiSmuMzzPDOKHk65Lo9b+I3neU7aeGvdhetgw84yzvB8wJBPflt3YYPBpk3N+P5yYtO/0FuwKx/K1usvVu2ml8suu4wDDjiACy64IJFmWRYLFy4kEAhUKuvxeCqt3znfKQuFQvWSze/3Jz673W6i0Wi1Mq+++ioffvghr7zyCjfccAPLly+vVqYmGaG623/8++7duznhhBO44YYbEkq6Kvfddx+fffYZr776KgceeCBffPFFvX+Py+VKfHe5XInfNmvWLF588UVGjRrF3LlzmT9/frV6evXqRU5ODsuWLWPevHncd999tbbbloibOn2xkpTrCscsEldcKUjhFY9IEypRVxO+ahL0uZusLkP7wcz4HChVu+Lr3LkzZ5xxBnPmzEmkHX300dx1112J70uXLgV0iKUvv/wSgC+//JLvv/8+aZ2TJ09m3rx5xGIxtm/fzocffsj48ePrJa9lWWzYsIHDDz+cm266icLCQoqLi8nKyqKoaM8aUU0yArz00kuUl5eTn5/P/PnzGTduHOFwmFNOOYXzzjuv1tnUunXrOOigg7j++uvp2rUrGzZsYPLkyTz++OMArF27lvXr1zN48OB6/R6AoqIievToQSQSSdSTjBkzZnDzzTdTWFjIyJEj611/aydu6gxY1dc2G0ok6lBW4dQUacxyWEbqGCDWRbQJlWiWzzzCDA3H9BrHoriqh4flb3/720renXfeeSeLFy9m5MiRDBs2LDH7mD59Ojt37mT48OHcfffdDBo0KGl9p5xyCiNHjmTUqFEcccQR3Hzzzeyzzz71Ej0Wi3HOOeckHEn+7//+j44dO3LiiSfywgsvJJxbapIRtKn08MMPZ8KECVxzzTX07NmTp59+mg8//JC5c+cyevRoRo8enVCW1157LS+//DIAV155Jbm5uYwYMYJDDjmEUaNG8ctf/hLLssjNzWXGjBnMnTu30kyvLv76179y0EEHMXHiRIYMGZJIf/nll7n22msT30877TSeeuopzjjjjHrX3RaIz/iCVtPM+BKUp7bGF7Wasi6HEo1Vt2I0hJDHOLUYGo60Jm+osWPHqqreeatXr2bo0PTtoVmwczsdyzcCEOvQF3eoc9raam3Mnj27khPM3ka6+046+PqGgxkSWUVYefBdl1p4ovU7Stj3bu2oVPGzBfh75Ta6rtWbdzP0P330l19/CTnVnZ3qy/w125jypPYa5srvIJTT6Lr+/sLn/PGrqfrLNTvA3bY2JTdoROQLpVSzeaiZGZ/TgpOiCcdgSJW4qdMnUVQktb1Gw9E9+8+WFe1Mqa5Kps6K1DyroxHHLK+8IKW6YrGIo67UZqKG9kObcm5JBwqnqbN9Kb7WvPtMe8Xl8CwuLdpFqHOPRtcVCe9RChXFqSkFp3OLVV6U0og5FnUoq4rU3ldUVesKdUmpPkP7wMz4aLpFe4MhVeKvMwCUp6isog6lEC5NrS7njK8ixbqiMUcklHBqr20o5xphinUZ2g9G8VV6ja/ptw8zGBqCy+FZXFpckFJdkcgexRcpTc08GXGYJ1OdPVoRh+JLdcZnNV1dhvaDUXyVNJ+Z8RlaFsGiUOn3PFNVMFGHgomWpaisYk03e7QcM1Erxc24lfPd1goz4zPUD6P4bJTCKD5Di+NWMYpFK75UFUzUYQa0ylObDcWiTiWaYl1NqESV5VzjMxEtDPXDKD77dY4YLqjF1Pniiy8iInz99dc1lsnLy2PEiBFNLqKTpUuX8tprrzX6+PgL78OGDWP48OH861//akLpDKniwqLElQWkPksj5pxZpar49tQVbcIZX7ik6X6jWeMz1Bej+Nij+KSWvTqffPJJJk2axJNPPpk0P9l2Yg0lvt9lbaSq+DweD7fddhurVq1i4cKF3HPPPaxatarR9RmaFsGi3GMrvtLUlJXlmPFJikrBaeq0UlxLs5pw9ojlNHWaNT5D/TCKz8bCXaOps7i4mAULFjBnzhyeeuqpRPr8+fOZPHkyJ510EsOGDQO0Ajz77LMZOnQop512WiKszrvvvsuYMWPIzc3lwgsvpKKiAtBbm1111VUccMABPPPMM5XarRr2JxwOc+211zJv3jxGjx7NvHnzKCkp4cILL2T8+PGMGTOGl156CdBhgKZNm8aUKVMYOHAg1113HQA9evTggAMOACArK4uhQ4eyadOmar/5gw8+SOzaMmbMGIqKilBK1RhC6bDDDmPatGkMGDCAq6++mscff5zx48eTm5vLunXrAHjllVc46KCDGDNmDFOnTmXr1q3V2p05cyavvvpq4vusWbMSG1K3B1wqRtiTDaS+/lVZ8aU443M4yqgU19KccqU6q3WaOpUJ3muoJ23rPb7Xr4Yt1TdhToVgh/4w4adY4sJD8lnbSy+9xLHHHsugQYPIycnhiy++4MADDwT0PpwrVqygf//+5OXlsWbNGubMmcPEiRO58MIL+fe//82ll17KrFmzePfddxk0aBDnnXce9957L5dddhkAOTk5iX09nVQN++Pz+bj++utZvHgxd999NwB//OMfOeKII3jwwQcpKChg/PjxTJ2qd7JYtGgRK1asICMjg3HjxnHCCSdUCt+Tl5fHkiVLOOigg6q1feutt3LPPfcwceJEiouLCQQCPP/88zWGUPrqq69YvXo1nTt3ZsCAAVx00UUsWrSIf/3rX9x1113ccccdTJo0iYULFyIiPPDAA9x8883cdtttldqNhxw64YQTCIfDvPvuu9x7770NvKptFxcWMW+ImBJUimtWTld/dyS1LdCU4xUESdUTswlNsM4tzyJlRfhSq83QTjAzPhsLV6WXh508+eSTzJw5E9AzEqe5c/z48fTv3z/xvU+fPkycOBGAc845hwULFrBmzRr69++f2K/z/PPP58MPP0wcM2PGjKTtJgv7U5W33nqLG2+8kdGjRzNlyhTKy8tZv15HmzjqqKPIyckhGAxy6qmnsmDBgsRxxcXFTJ8+nTvuuIPs7OykbV9xxRXceeedFBQU4PF4ag2hNG7cOHr06IHf72e//fbj6KOPBiqHHNq4cSPHHHMMubm53HLLLUlDDh133HG8//77VFRU8Prrr3PooYcSDAaT/va9ETcWLreHEoKpmycdsyFPimGOnGt8rhRjBVpN+AK7OEydsVTXRA3thrY14zvuxiavsmzbRgLR7VjiTrrGt3PnTt577z2WL1+OiBCLxRARbrnlFqB6iKGawvzURk1hiuoT9kcpxXPPPVctAsJnn31WoyyRSITp06dz9tlnc+qppyZt++qrr+aEE07gtddeY+LEibz55pu1/ob6hBz69a9/zRVXXMFJJ53E/Pnzk+4cEwgEmDJlCm+++Sbz5s1LDDjaCy4slMtNiaSu+JyzIW80tRmfc40v1SC5zrpSXpdz1BVLdfZoaDeYGZ/t1anEjQtVKVoDwLPPPsu5557LDz/8QF5eHhs2bKB///589NFHSatbv349n376KQBPPPEEkyZNYvDgweTl5fHtt98C8Oijj3LYYYfVKVqysD9VQw4dc8wx3HXXXcQ3G1+yZEki7+2332bnzp2UlZXx4osvMnHiRJRS/PSnP2Xo0KFcccUVtbadm5vLVVddxbhx4/j6669TCqEEUFhYSK9evQB4+OGaA5rOmDGDhx56iI8++ohjjz223vXvDbiwQNyUSwaelBWMVnyFZKYc389pnvSkqESddblSNME6nVuUUXyGepJ2xScix4rIGhH5VkSuTnd7jUWJHdCyioPLk08+ySmnnFIpbfr06TV6dw4ePJh77rmHoUOHsmvXLn7xi18QCAR46KGHOP3008nNzcXlcnHJJZfUKVOysD+HH344q1atSji3XHPNNUQiEUaOHMnw4cO55pprEsePHz+e6dOnM3LkSKZPn87YsWP5+OOPefTRR3nvvfcSzitxL9H77rsvEbLojjvuYMSIEYwcORKv18txxx2XUggl0HuDnn766Rx44IF06bJnT8XFixdz0UUXJb4fffTRfPDBB0ydOhWfr32t2riUhRI35a6MJlAwWikUSyYBqyyluix71l6oQviaSK5dKjPl2aNL6bp2qwyU8eo01JO0hiUSETewFjgK2Ah8DpyplErqP98SYYl2bV1Pp1g+Oz3d6BzdBt2Gg6ftP2znzp1byQmmPdIWwxKV/KU7K/c5Gf+utQRVGYP+tLDRdb39+osc9dn5fOsZSN/o93j/sqPRUdhf+t/LTFt8LhtlHzpJMaFrq3sC15eHH32Q89ddTp7ah85+i+w/ftPouq676R/8pexGfrC60blTJ7IuX9Tougwtx94Wlmg88K1S6julVBh4CpiW5jYbh8te7jS7txhakPgaX9gTIpBiMFplmwHLPdl4iUK0otF1xdflStzZBK3SaksCDatrz0zUG00t0nzcuaWATNwpvrJhaD+kW/H1AjY4vm+00xKIyMUislhEFm/fvj3N4iQhfgO7tKlzbwlNNGvWrHY922urxNf4op5M/FZqSiG+lhb2ddAJKTjLxOsq92RrGSMpmE7tuord2fo3pqBERe0xwbpTNMEa2g8t7tyilPqvUmqsUmps165dayqTXhkA2csUX3sn3X0mHSilcGOBy43lDZGhUlR8dl+O2YrPKmv8e4EJJeq1lWgq62n2LK3MHVeijf+dLruuXWTpNdE2eN0NzU+6Fd8moI/je287rd4EAgHy8/PT+CBTgCC2c4uJwt72UUqRn59PIBBoaVEaRMxSeETP+JQvkwxVltqD3H6Pzwp0BKA8hT0244ov0hSzR2vP7BFISYm6lK6rkBBulZo519B+SPd7fJ8DA0WkP1rhzQTOakgFvXv3ZuPGjaTLDFpamE9QlVIehGDZNmKBCO5AVlraMjQfgUCA3r17t7QYDSJmxfCgrQ/Kn4FbFNHyYjzBxvVHZW96IMFOAJQVFZDRSNni64VRX0edkMquMvYaX9jXEUrRii+r/t7BTsReky91O5Sot20NeAzNT1oVn1IqKiKXAm8CbuBBpVT17Tpqwev1VtoZpal56aZZHFP+Op9OW8ABb57BjwddS8/jfpu29gyGmrCi+iGuxI3LHnyVFheQ3UjFF5/xuTK04qtIJRKCrazis8dYeRHuRlYlVnz2qOtKbcZnO/C4syGGVsiZyZdMDIY4ad+5RSn1GtD4cAJpxqVixHDjD+kRY8qhYAyGRhK1oxaIy4U7oPtjWVEB2V371HZYzdhme29mZyDF2Hfxl86DcSWayuzRXnu0lWhTKL4Kb0et+ExoIkM9aHHnlpZGVAwlLrKCAUqUP+Ud8Q2GxmLF92N1eXAHbcWXShR22zzpsxVfpDQF5xa7LsnQdVWUNL6u+IyPgFaiqSgrty1XxN8ETjeGdkO7V3woCws3mQEPxQRNFGdDi5FwrHK58WZoxZdKoNa4svJl5QApbuJsz/jcttk0korZNKFEdV2pBLZ12Wt8MX9HnZBiyCRD+6DdKz6XPePL9HsoVkEzYjS0GDF7WzBxufGF9AwmnIqyshVMMEsrGCsVpWDX5cnSW81FUng1whVfewzZJtgUlKgLe120CcymhvZDu1d8goUlLrICHoqaIBSMwdBYYrE9ii+Y2RGAaArmyfiuJsFAkCIVTC1Qq11XINSRmBJiKSi+hBIN6ZlouJF1KaVwqygx8eCy10Qxu7cY6oFRfCqGwo3f46KEDNxG8RlaCKfiC2TqGV8q5sm4E0lGwEcJgZTW0uLrchnBACUEUwogm1DImR2IKHejTZ2WAg8xLPHseeXDzPgM9aDdKz4sCyUuRIRyVwbeFAN2GgyNxXIovowmME+Krfj8Ph8lBHGlMqiLK75AgCKCqBRmVvHdVjICfkoINDqOXsxStuJz4wtmYSlJbVZraDe0e8UnWImQRBWuEN4U45YZDI0lFn/h3OUhMyNEWLkhhZlV3LkFl4cyyUgpBFBciYaCAUpUAEllvVBFieEmM+ClOIXZY0LxubxkBvWsNmpi8hnqgVF8tnMLQMQTwm8Un6GFSJg63W7cbhelBJFwCmt8as/rESnH97O9OkPBAMUEcaWgRF2WXpfLCngoSsGhLGpZeIiixEPIr72yU/EQNbQf2r3iczkVnzcz5ZArBkNjiQd7ddkbppdIRmoRyh0zvrA7A18KZvz4upzP56OUYEqzR5ftkJLp91JCEGmk2TRmKbz2Gl+W7ZXdWLOpoX3R7hWfqD2mzpg3M+Xd4g2GxmJF9axK3F4Ayl2pmSfja2mIm0iqYY5UlChuEKHcFUpp9ihKK6uQ302xavzaY8xSuEXHLwz5PZQQQBnFZ6gH7V7xudgz47N8xjPM0HLEYvaWZR6t+CpSdLZyWRWE8YDLRdQTIpCC4hMrimUPECOeDHwpKD6XFUWJm5DPQzGBRsfR0zO+KMrlIdOvzaapON0Y2g/tXvG5VQxLfPqL3yg+Q8uhEmt8tuJzh/DFUohVFwsTQdcV82YSTCHMkcuKELW39g27Q/hSUKIuFSHm8uFyiXYoa6Ryj1gKPxFiLj+Zfo/2XDU7txjqQbtXfB57xAggccVnXKINLcAeU6fujxFPiEAKzlZihYmKVnzKl4mHGETLG1WXR4WJuvwARL2hRq+FK6XwqjAxlx5shlNQ7uGohY8oyu1PbDnoiphBq6Fu2rXisyyFmxiWrfjiuz/EjOIztACW7TnpcmulEPNmpmSedMX2KL491ozGzYg8VpiobRmxEmvhZQ2uJxafpbm1Eo14MvRvtKwG1xWOWviJoDx+e8vBAO5UnIEM7YZ2rfiiltIjRpd+OLiDereMipKCFpTK0F6JK764qdPyZRGi8YrPbYWJ2MpK/JkARBq5E4ye8em6lLfxSwKRmFZ8VmL2aNfVCAeXimgMv4TB7SfLnvF5oyXGK9tQJ+1a8ekXYKNYomd83lB8R/yCFpTK0F5R8QgIDsUXpAJlx+lrKG4rTMye8cWtGeXFBY2qy2tV7FF8thJtjLIKx+xZmnvP7LGxdVXYpk48/sSWg42diRraF+1a8ekXYGNgP2i8GR0BiBjFZ2gBVHyNz/bqFDsKe0UjN6p2O2Zpnox4fL+CRtXltR1SgER0+MaE8ApHLXwSwbIVHz5b8TVi9hg3deIJICJEPaFG12VoX7RrxRerYuoM2DO+SJm5cQzNT9yr0+Wxna0C2vReuntno+rzWBFitqnTGzfjN1KJegkTs82TLr+9Ft6I+ySSmPEFAFAprD1WRGP4CSNeXVfUays+s9G8oQ7ateKLxPRef3GvzlBGiArlTWnneYOhsVi2x6Xbox/knmBqszS3ihCzB3U+e8bX2ACyHiuCsh1S3HZd5Y2wjCQUn8euK9j42WNFxMIvEcSuSyVmj8Y5zVA77VrxlUdi+CUC9o0T8rspJoBlvDoNLYAV1orPGwgC4LFN7xWNVHweFcayzZOBLF1XYwLIRmIWPsIJxeezFXJjZo8VUQu/oy63vfaoGmM2jek1Ppc941NmAwpDPWnXiq8iGiODCrBNJPEo7Mq8BGtoAWIRrfj8gQwAvBmpeRl7VTjhRBIIxeP7NVzBlEViibU0IBEdvjGzx5KKKD6J4vbGlbsdab4xSjSiZ49xxRf3XG3sKxuG9kO7VnxlYYsgFYjPofgIImbEaGgBLFvx+WzFF8jUMfkaG4XdoxzWjMwOjY5XVx62FZ9X1+W3g+Q2ZvZYatflsuuKm2DDjVCi8TU+l08r0UQUdnP/GuqgXSu+8vIyvBJD/FrxxUObpLIxsMHQWFSkAoCAbeoMZnYEIFZW0OC6wlGLTEqJ2e/JZQa9ehPnRsyGSsMxglIBHi1XRkYmMSWNmj0Wl0fIoAK3Xyt3fwozvtLSYtyi8AX1TM9tm2Ax+3Ua6qBdK75IuX4IuOwZn9+jY6C5TRR2Q0sQ1e+feXxaKQSz7SjsjZpZRcmmFMv2DNUbQgcb5fFYUhGhAyWoQEcAMgM6ontjnMAqyorxSwR3qDMAGRkZVChPo5RopFh7u3oy9HnyBs2Mz1A/2rXiC5fph4A7oBWfiFDuysBrtj0ytADuSBFlygf2Xp2ZoUwiyt0ox4/ikhKCEga/Vnxul1BKoFEhgIp2F+CVGO5QDqCdwIpoXADZSImtrGwzbnyPzcY4lMVKdgEgwY4A+INZRJXLeGUb6qRdK76orfg8gcxEWoU7hDeFHfENhsbiiRRTIhmJ736vVjCNWXMuLswHwBXqlEhrbHy/Ersuf5aepWX5vZSoQON2W7HfSQxmdwH2OJQ1RlmpuAk4qH9jyFaikdKCBtdlaF+0a8VXWqJHmcFQViJNxy0zMz5D8+MJ76ZUQonvIkKpZOBqxJrV7gKtrIK2sgKt+BoTQLZs9w5dl62s9Gs/jQsgW27X5bVNnfFwQo2ZPaoy+8V+e8YX368z1sj9SA3th5QUn4jMFpFNIrLU/jvekfcHEflWRNaIyDGpi9r0hO01gozsnERa1BPCpyrA3kXDYGguPJFiyt2ZldJKJdSoWVpp/o8AZHTaJ5HW2BBAkcJtdl3dtJxuF2USxNMIuazi7fpDhr7nMgMeigg2SrlTvM2uKz579FKkMhq1XmhoX3iaoI7blVK3OhNEZBgwExgO9ATeEZFBSqlYE7TXdBRvBcCT3SORFEvsFl+UMKEYDM2BL1ZM2FNZ8VW4Q/ga4WwV2/UDAFn7DEikRd0Z+CsaPuOzduVp+XL6JdLKXSE8sa0NrstfvEF/6LgvQCJyuruBcfSUUoTKfiQmbtxZ+v7NDHjYTQaUmxmfoXbSZeqcBjyllKpQSn0PfAuMT1NbjcZdvEV/yOqeSFM+s9GtoWUIxXYT8WZXStNR2Buu+KL5WvGFuvTdk+bNJKAaHrnAvXs9ETyQtWeAGHZn6BBADUAphb94I6XuLLC9Tf0eFyWSgaeBDmWFZRG6W9soCeyzxxnIVqLm3jXURVMovktFZJmIPCgi8SlSL2CDo8xGO61V4S7ZTJkE9wTpBDC7PxhaAGVZ5Fg7qQh2q5Qe8WQ2Kgp7duHXbHX3AHtXE9AhgIKqrEHx6pRSdCn+hnx/H3C5HXKF8DcwSG5+SZi+1nqKMvsn0kSEClfDZ7VfbylisGwg0mn/RFp8ja9RZlNDu6JOxSci74jIiiR/04B7gf2A0cBm4LaGCiAiF4vIYhFZvH379oYe3miUUnQt+56dwX6V5Ykrvojx7DQ0H9t3bCdDKvB0rDw+jHozCVgNm6WFoxb9KtawLXtEpXTLl4mXKEQr6l3Xxp2ljFBrKeo6prJcnhBBq7RBSnT5+u2MkO+x9hlVKb3Ck4k/VtygulbnbWKgbCTY98BEmp7xZeAxis9QB3UqPqXUVKXUiCR/LymltiqlYkopC7ifPebMTUAfRzW97bRk9f9XKTVWKTW2a9euqf6eevPd9iKGkEdZ56GV0t224rPKzYzP0Hxs3rAOgFCXPpXSLW+IjAZGYV+5Ygk9JB9P34MqZ9iWDdUAU+CyLz6io5SQNXBiFbkyGxz0df2X7xKSCnJyK/u6RTyZeIiCHZ2iPhSueBO3KDKGTE2kaUeZDDzRhilRQ/sjVa/OHo6vpwAr7M8vAzNFxC8i/YGBwKJU2mpqVi16j05STIehR1RK99hhUiImQoOhGdm9aQ0AnfoMqZSufJl6n0w7Ont92P7JYwD0OeT0Sulxa0ZDtgezls4jgofuY0+pnN7ASAjhqEXHdS9QIQF8gyrfc7EG1rW5sIyhO96k1NMB+uxR7iGfnvG5VcOUqKH9keoa380islxElgGHA5cDKKVWAk8Dq4A3gF+1Jo/OmKUILX2AUoJ0OeDESnnxl9krSo25xNB8RLevBaBrv+GV0sVWCtF6uujn7yrggK3PsTZzHJnd+lXKi+9lWVq8q151LVnzHYeXvMb6bkcgoZzKmfElgXq+y/fGp19wrPUR2/efDr5QpTwr7kldz8HmC29/wFGymMiYWQnHFtC704TdGQ2qy9A+SUnxKaXOVUrlKqVGKqVOUkptduTdoJTaTyk1WCn1euqiNh2vPXUPR0Q/YvPgcxPbHcVJ7BZvFJ+hGfEXrGOHdMJtR0pPENBKobSooF71fPXktXSRQjKm/qFaXjywbXlx3UohGrPY+uKfCEqYniddWy1fAvUPIFtUHsH/3l8QEXodd2W1fOWP77FZ92sI324tYsSyvxN2B+lw2KXV8sNeE5PPUDftaueW8oowb93/R45dcy3fZYxkwPTrqpWJb3QbNfv9GZqRjqV57PDvWy3dbSuYsnqE7fly0YdM3voYy3KOpffoI6vlJwLI1qOu/730FMeWvcb3+51LsHdudblsZRUtq/0+UUrx7CN3cYz6mPzRv0Q6969WRuq5uXQkZvH2YzdzqOsroof+ATK7VSuzxwRr3uUz1Ey7UHxWzOKz1x9h840HcvSme1jb6VD6/vp/iC+jWtlAhjbhxMrNtmWG5sGKWfSObqAka0C1PG9G/ZTV9u3byHntYopcWQw89+6kZRIBZEtrr2vl6lVM/uoqtvj2Zf8Z/0haxpMRnz0W1FrX6x98wmmbbmZzVi49TrwmaZlEHL06zJNznn2ZC3ffy7Zuh5B56K+SlklEYTemTkMtNMXOLa0WK2ax5N2nCH12OwfF1rLB1YvVk+5i+BHngkjSYzICfsqUj1iaZ3zl4QhrVy5h93efIZu/Irj7OzpEttPBKkQEInjZ5e1OaYf9Yd+D6XvgVLr0GphWmQwtw7Yfv2cfKSXWdWi1vESE8lqisEejUdbPOZeRahtbpj1N547JvaP9dny/aC2Kb9uuAuTpcwhIBO+586qtxyXkcsweM5OWgNXrt9Lv/V8iLjfdLngc3N6k5dz2ckOsrBB30hLw6udfc9TKqwn7O9DtvEcqvVPoRALZUEjaTZ3l4SjffbOS/G8WEd26msyi7/BV7CLDKgKEqCeDsmAPXN2G0GH/CfQZeRieQPJzaWh+9krFZ8VifPX2o2R9/i8OjH3HZunG0jHXM/KEX+LyJL/54uhNcwOoRmztVBtKKb774QfWf/Yy3h/mM6RkMSNFP4DK8LPZ04eS0L4U+DtjiRsipWSUbmLg9rfJ3vESfAmbpTs/dh6HZ7/D6Df6SDrs0x9c1SftyrLYXVjArvytFO3cQmnhdioKt+n4ZaU7kLJd+COFZMYKCVlFiIphIYgIiAtLPMRcPpTLi3L7UG4f4vaBx4fL40O5/VjixXLF/3zEXF5i4kUphVIxlBVDWdae/1UMLAtlWaBioCxExRAULmUhWLiUpX+A6H8UIPb/iKAQBFBIpYHLnu+y57tNDeMbakiuXq6mChIS2jIo9DcFyk5X9udEniMt/hkgWLaFfYBg75HV2vAn1pxrnsEsePBqppQvZMmIPzBmzNQaywXtUEA1beIcjsRY/p+fcaRax/qjH2DfPsNqrMsfnz3WUFd+UTkb517IkfIDu09+FHfnvknLQWXlHkyS//WPu8j83yX0dW2DM1+CzJpfe3LF1+wbEcqpNpRSrF6Xx5bPX8C3/iP2K13KMNF7/VpK2OrqRpE3hzJfF0DhjpbQs2Ax+xS8CWv/ReRVN2v8Q9jdfTzZ/Q+g6/7j6NRzAOLxV27HsigpLmT3zm2UFmyjbPd2wrvziRXvQJXmI2W78FTswhcuQGIViIrhxsJNDAsXEfERdfmJufzE3H4sdwDl8YPbDx4/eAKIV/8p8STuTaUssCxQFlgxlIohlr5PUTGwYojzvrXzCgK9OeZnf2vSc90c7HWKb/Vnb+F+64+MiX3DBunJl2NuYNTxF9PD66vX8Rk+N6XKj2rEzvPJ2Lh5C2vmP0H2upcZE/mK/cRil3RgQ85BbB0whW5DD6ZLv1wG1DAajkYirF31OdtWvEdw4yfsv+N9OuT/DxZBBDf5kkNYfMTEg98qJ6hKyFSldJAYHZLUZyEUSybFrmxK3B0o8XVBuby4sLCU0h3ciuKyIrijxXisCG4VwaMieIjiI4qXKD4i+n9puLNuDMHCja3uHP+7bGW3R6kk+18qqbbK3+P5qqpqS9NrXdXa0UI0mG2uruw77KBq6XEFE6thLe2jVx/n0E0P8FXOMYw57apa2whlZhNVLlQNe1m+9vDfObn8LdYOvoRBVV6FqEmuaBKFHI5avPnfqzjLWsDmsb+nx6gTq5VxEghp5R4pLaym+ApLI3z50OWcJUvYfeTNZA+YXGtdcSXaVKbOb7//gbwPHqHz+jcYFVvJMFHslI5s7nwgO/tNJGfwRLoPyKWHL0SPKscqpdjw449sWv4Bke8+omv+YsasfxjPhofgQ12mmAzKCCBYiLLIooRMidU4iy5UIYpcWZS4sol5AiBewriJ4UKw8FphMmLFeKL5eFUYr6rAqyL4VAQf4cbdr0qI2fenhYuYxD+7WeYaUncFrZC9SvF9vehthr5+OtvpzOLRNzDmJ5fQx9Ownxjye9hGgGAKwWijMYuFH79H+NP/cEjp+/SWCFvd+7B6wAXsM+EMug4cT6ckM7VkeLxeBo06hEGjDgEgHI6wavmnbP/6Uyj4gWD5NlxWGJeKEnUHUb5MlD8byeiMNzOHQIduhDp2JTtnH7I7d8ed0Ylsl5vsOtpNRsxSlIajRGOKMBAGipWCWBisCBKtwO124XZ7cLtdeNwe3G434vKAuPSfy4UbajRptVequ2loMjLjiq/6g3zFsi8ZuehK1vsGMOziB2ue3tpkBr0UkYEkmQ299cZLHL/hdtZ1PJhBM/5ep7wZoSwqlAertPqrEfMe+w9n736Yjb2Pp/cJf6yzrlAwSInyVzPBRmIWjz1wC7+KvMC2wefQbfLP66zLm5G6V+fusjAfv/08weWPcXD4U/aXKBu9/Viz38X0OOgMOu93IJ3rONegrQV9evWiT6+zgLMAKNxdxDcrP6di41fECn7EU7ETd7QMXG5cbg+WLwsr0AlPqDPuzBwC2V3J6NiVUMduZHfuSgefP+mAtr5Eo1HKy8uoKC9FYmFcdrsutxu3y2X/H0/T961bpMb79bAUZGlJ9irFN3jskXz2wzXkHvczxmY2rnuE/G5K8ZPRCMVXHo7ywauP03PZPUxSayjDz7qeJ9Jl8k/pPnQi3etxs9SFz+dl2IGHwoGHplxXQ3G7hKxAspmpP0maoSkI2utyVpUH+ZYtm8h+/kyUuOk0ax7eQE1zBEddXjc7kgS2/WLJF4z99Ffs9Han38VP1rh+5iQz4GUXWVCaXyn95Xfe4+Tvr2Nr5mB6nz+nTmWs67J3XIkHlkXPlu5/6lkuyv8n23LG0u2MO+qsByDLVqKB8prXC2siv6icd19+lGFr/81x8h27JYt1fWewz5Sf0XvAmLorqAcdsrMYe/ARwBF1lk0HHo+HzMwsMjOz6i68F7NXKT5xuTjo9N+lVIfP7aKUAO4G7NUZjsRY8PoT7LPkdo5R69jm7s6a3D+y/9EXMzzDhDYyNJ5QRoBy5a00g9ldXMyOB05noMpn6ylPs289nZ5EtJnbGy5IpK1bv4HOL52DxwW+C1/AHapff830e9ilssgq35lIW/DlVxz40c+w3AG6/ew5SOI1nbwuN0Uqgw6O3/js2x9x+trfUhboQrefzqvRMaYqWXElWlJQb8W3q7iCd195jEFf38MZso4dvh5snHALvQ89j2GOTb4New97leJrCvRu8UE80Z11lo1Zik/efo6cz/7BEda3bHN357uDbmTAkRfRrZ43qsFQG36Pm61k4rEVTHl5OavunsGE6EpWTbydYaMbNnPId+WwX4WOo7dh8zZKHprOULZRMP0Zuvas/3pNh6CX71UWHe0o6EvWfE+3l86mk5SgznsFd8fe9a4r0++lmCAd7XW5Vz5ZyvgFPyXogYyfvgShLvWuKyvgpVgFySrbjR+499WFrFz2Obf89pcEfZVVYWFpmHdeeYL9V93NafIN+d7ubJ10K90nz6q3ojW0TYziS0KpK5tA9Lsa85VSfLLgffzzr2dybAnbXF1ZM/4GBh19Md089XOiMRjqy1Z3d4IlGykpLWX5XTOZUL6A5SOuIvfoCxtcV6GvB50qVrHhxy3k338KI9Q3bJ56D31GNEyBhvwedrlzCJWu5IuVXxN8eib9ZDNlpz9Fh37jGlRXpwwv61UH+pds5vUFixj21nl0dxci572Cq9vgBtXVs2OQfLLpWrCRB158m18sPQ2AxasmM3b0aEArvPdee5r+K/7FdNaS7+3GlkNuZJ9Dfwrm/m0XGMWXhEJPF7LCO/XGwI6Rn2UpPl74CbH3b2RK5EMKyWJ17u8ZfOIVdPMlc8Q2GFJnd7API0re4et/HsGE6Gq+GvpbRp1Wt9NIMsId9yO45RU6/PcA9qGcH4+4k30nndWourZlDSW76EMGPz0Fj8QomvYwOcOPanA9XbP8rPPsz1El85j49jQ8buDsZ/H3q+7lWhcDu2fygjWAg3a8xhnbz0t42G788FG8nXrz7YLn2H/t/Zwi37DT3ZXNB/+dHlMu0q7+hnaDUXxJiGT2wLVTQfFW6NCbkvIwi+a/QmDxf5gc/YxyfKze/2cMPOVPDK3nmojB0FhK+h2Na+XbDIyuZcWEfzLq2J82uq5+h53Dj089isflomTaw+w7uuGKKk6vQ2ay/vXn8foChGbcT87AgxtVj4jgGzODzV+8DcFOdDl3Lt5e1d9prA9dMv1s7ncy+RsWEM3uQ9b5D7Ph0Uv4Sf6DlD74BKOklB3effjxoBvoefjPjMJrp4hqRXGrxo4dqxYvXtzSYvDwE49x/tpfsbrfeWzZXcHg/HfpKTvYLVlsGnQuA0+4HE92TQ7oBkPTErMUX376Nv0HDKJLj34p11dWHibg8yD1fKWmNioiUfwed728N+uiPBwl4Et9LK6UIhaz8Hj0mp4q2srm124kXF5Cp9xj6TDqRLOG18oQkS+UUmObrT2j+Krz1Q/5BB48jMGygTAevss8EN8BZ9J/4ul7IrQbDAaDoUlobsVnTJ1JGNU3hx9//SF5W75h34G5DPHXzy3bYDAYDK0fo/hqoGeXztCl4YvrBoPBYGjdtIuwRAaDwWAwxDGKz2AwGAztilbl3CIi24EfmqCqLsCOJqinOTCypo+2JG9bkhXalrxtSVZoW/I2lax9lVI1x5tqYlqV4msqRGRxc3oIpYKRNX20JXnbkqzQtuRtS7JC25K3LcnqxJg6DQaDwdCuMIrPYDAYDO2KvVXx/belBWgARtb00ZbkbUuyQtuSty3JCm1L3rYka4K9co3PYDAYDIaa2FtnfAaDwWAwJMUoPoPBYDC0K/YqxScix4rIGhH5VkSubml5nIhIHxF5X0RWichKEfmNnT5bRDaJyFL77/iWljWOiOSJyHJbrsV2WmcReVtEvrH/b/G4TCIy2HH+lorIbhG5rDWdWxF5UES2icgKR1rScymaO+1+vExEDmgFst4iIl/b8rwgIh3t9H4iUuY4x/c1p6y1yFvjtReRP9jndo2IHNMKZJ3nkDNPRJba6a3h3Nb03GqVfbfeKKX2ij/ADawDBgA+4CtgWEvL5ZCvB3CA/TkLWAsMA2YDv2tp+WqQOQ/oUiXtZuBq+/PVwE0tLWeSfrAF6Nuazi1wKHAAsKKucwkcD7yODqM6AfisFch6NOCxP9/kkLWfs1wrOrdJr719z30F+IH+9jPD3ZKyVsm/Dbi2FZ3bmp5brbLv1vdvb5rxjQe+VUp9p5QKA08B01pYpgRKqc1KqS/tz0XAaqBXy0rVKKYBD9ufHwZObjlRknIksE4p1RQ7ADUZSqkPgZ1Vkms6l9OAR5RmIdBRRHo0i6Akl1Up9ZZSKmp/XQj0bi556qKGc1sT04CnlFIVSqnvgW/Rz45moTZZRUSAM4Anm0ueuqjludUq+2592ZsUXy9gg+P7RlqpYhGRfsAY4DM76VLbLPBgazAdOlDAWyLyhYhcbKd1V0pttj9vAbq3jGg1MpPKD47Wem6h5nPZ2vvyhehRfZz+IrJERD4QkcktJVQSkl371nxuJwNblVLfONJazbmt8txqq30X2LsUX5tARDKB54DLlFK7gXuB/YDRwGa0qaO1MEkpdQBwHPArETnUmam0baPVvA8jIj7gJOAZO6k1n9tKtLZzWRMi8icgCjxuJ20G9lVKjQGuAJ4QkeyWks9Bm7n2Ds6k8qCt1ZzbJM+tBG2l7zrZmxTfJqCP43tvO63VICJedOd5XCn1PIBSaqtSKqaUsoD7aUazS10opTbZ/28DXkDLtjVuurD/39ZyElbjOOBLpdRWaN3n1qamc9kq+7KIzAJ+ApxtP+ywTYb59ucv0Gtmg1pMSJtarn1rPbce4FRgXjyttZzbZM8t2ljfrcrepPg+BwaKSH975D8TeLmFZUpg2+/nAKuVUv90pDvt36cAK6oe2xKISEhEsuKf0c4NK9Dn9Hy72PnASy0jYVIqjZhb67l1UNO5fBk4z/aQmwAUOsxKLYKIHAv8HjhJKVXqSO8qIm778wBgIPBdy0i5h1qu/cvATBHxi0h/tLyLmlu+JEwFvlZKbYwntIZzW9NzizbUd5PS0t41TfmH9ihaix4Z/aml5aki2yS0OWAZsNT+Ox54FFhup78M9GhpWW15B6C9374CVsbPJ5ADvAt8A7wDdG5pWW25QkA+0MGR1mrOLVohbwYi6HWPn9Z0LtEecffY/Xg5MLYVyPoteu0m3nfvs8tOt/vHUuBL4MRWcm5rvPbAn+xzuwY4rqVltdPnApdUKdsazm1Nz61W2Xfr+2e2LDMYDAZDu2JvMnUaDAaDwVAnRvEZDAaDoV1hFJ/BYDAY2hVG8RkMBoOhXWEUn8FgMBjaFUbxGQwGg6FdYRSfwWAwGNoV/w9YZ8wFH30o2wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, False, 9)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB9q0lEQVR4nO2dd5hU1dnAf++dupWFpUgHlc4uRZoBFKwoUVRUrIjGJMZo7NEUDZr4xRqNlcSo2IIYC2LUaCyoaBBBkA6CLHXpLFunn++Pe2eYnZ3ts7Ozy/k9zzwz95xzz3nvuWfOe95TRSmFRqPRaDStGaO5BdBoNBqNpqnRyk6j0Wg0rR6t7DQajUbT6tHKTqPRaDStHq3sNBqNRtPq0cpOo9FoNK2elFN2ItJLRJSI2JtbFk3DEZHrRWSniHzXDGnPFJGXk5DODBFZWIP/AhG5uqnl0FSmpvdS2ztLoAwTRGR7Df6zReRPTS1Ha0FEvhORQhG5qaFxpJyy09QfEZklIqXWxyci/qjr95tJrJnAtUqpIVFyzhSRmc0kT0phNeoK6hn+UxEpF5F1InJKDWEvFJGvrLAL4vgPFZGllv9SERka5eeyytNuETkgIu+ISNcYOd4TkYMisktEngg3TEVkfFS5C3+UiEy1/GfF+HlFpKSOzz8h3rO0VkSkzgugRaSdiLwlImUiskVELqkhrIjI/SKy3/rcLyJi+fUVkbdFZK/17j8QkX5R915hlZdiEdkuIg9EGyVW484T9X7Xx6R9iSVfmYjME5F2UX4vW8qsWEQ2xDYSrXrkp8Af6povsSRc2WmLLPkopa5RSmUqpTKB/wPmhq+VUmeEwyX53bQDViUxvSYhhcrzHGAZkAv8DnhdRDpUE/YA8ChwX6yHiDiBt4GXgbbAC8DbljvADcDxQD7QBTgIPB4VxVPAHqAzMBQ4EbgWQCn1RVS5ywR+DJQC/7H8r4nxnwP8q945kSKkUNl4EvABnYBLgadFZFA1YX8GnAMMwXzHZwE/t/xygPlAPyuuxZhlJUw6cCPQHhgNnAzcGhP/dVHvOFpRDgL+BlxuxV2OWZbC/BnopZTKBs4G/iQix8XEvQpoIyK2ap6tRhKi7ESkQERuF5EVQJmI2EVkjNW6LLJM0AlR4ReIyJ9FZLGlyd+O1vIxcV8pImtFpEREfhCRn8f4TxGR5VY8m0RkkuXeRkSetVoLO0TkT7VlkogcIyKfWC2efSLyiojkRPkdEJHh1nUXqwU0wbo+W0RWW8+7QEQGxOTPrSKyQkQOichcEXHXP6frTzXvRonIsVFhKnWpiMiPrTwtst5hfj3TDOdzqJZwv7bez04RuTpaLkumJ0XkXevdfy0ix0Td+1cR2Wa996UiMj4mereVzyUi8q2IRFuYd1hlpURE1ojIuVF+M0TkSxF5RET2Y1qotT3vQ2JaOptF5IwY755WfCUi8qGItK8tvjjx9wWGA39QSlUopd4AVgJT44VXSn2klHoN2BnHewJgBx5VSnmVUo8BApxk+fcGPlBK7VZKeYC5QHTF2Rt4TSnlUUrtwlRk1VWsVwCvK6XK4jxThiX/CzU8erWIyGkist76Pz0lIp9JNV3GIvKgiCwUkTaHneQJ6951InJyVNhq6xuxuiat/9Mu4Pk6yHmLiOyxyvmVMd5tqyvf9ciHcD7eqZQqVUotxFRYl1dzyxXAw0qp7UqpHcDDwAwApdRipdSzSqkDSik/8AjQT0RyLf+nrQaNz7r3FWBsHUW9FHhHKfW5UqoUuBM4T0SyrLhXK6W8VlhlfWLzI1yfNKyRoZRq9AcoAJYD3YE0oCuwHzgTU6Geal13sMIvAHYAg4EM4A3gZcuvl/Wgdut6svXQgtmKLAeGW36jgENW/IaVbn/L7y3MlkQG0BGzlfLzWp7jWCsuF9AB+ByzUgj7/xRYg9nC+QB4yHLvC5RZ9zqAXwMbAWdU/izGbCm3A9YC11QjwzigqIbPuFqeYWY4L+O9G8tNAcdGhZkN/Mn6PQyz5T4asGH+OQoAVz3KwyTAA2TUEmYXZkWZjmlpROSyZNpvvWM75h/r1aj7L8O0cuzALVZc7qg88APnW+/jVmAz4LD8L7DehQFMs95dZ8tvBhAArrfiTqvhGWZY6fzUyqtfYCoYiSrnm6zykWZd31dNXE8BT1Xjdy6wNsbtCeDxWt7D1cCCGLebgPdj3P4N3GL9HgF8aeVPOvBPKv8Hfg68aPl1xWxtnxsn7QygBJhQjWzTgR/CeVXP+qY9UAycZ72jG6z3cHXUe1lovd9nMP+r6THv9yarbEzDrEPa1aG+mWDdez9mHVFT2QiHvcdK50wrrrZ1Kd8xcd0B/Lsav2FAeYzbrZiKJV74Q8DoqOsRQEk1Yc8BCmt4xnnR5dkq33uBfVYZmhDl9zZwe8z9pcBxMf+Bcsx64FsgMyZ8GlAB/Li+ZUYplVBld1XU9e3ASzFhPgCuiMqU6EwaiGmG24hRdtVk8A3W778Bj8QJ0wnwRhdG4GLg03o+1znAshi3+Zit6hVYCgCzlfJaVBgDU5lPiMqfy6L8HwBmJSLv48g8k6rK7qqYMDUpu6eBP8aEXw+cWMf0l1jx/6qWcM8Bf466Ppaqyu4fUf5nAutqiO8gMCQqDxbFvI9CYHw19y4Hpli/ZwBb6/isM4CNUdfp1jMcFVXOfx/lfy3wnwa808ujn8dyuxeYXct98ZTdncRUqpgV7UzrdxvgVes5Aphdp+2iwg4Allp+ynpPVRSWJfPmeH6W/8fhNBuQH9OB/0VdC7CNysrua0yr9A2sRmeU385ouTAbopdXk9Y8Dtc3EzDrKXcdZJyAWTHbo9z2AGMaUr5rSGc8sCvG7aex7z3KL4hlEFjXfaz3KDHhumHWYRdXE89VwHagfZTbaCALsyFwBWZj55io931NTByROjLKzYbZ4P89VuM0xv96TAtveX3zKpFjdtuifvcELrC6wYpEpMh6gM7VhN+C2fqp0sUjImeIyCKrC7EIs1CEw3XHbDnH0tOKrzAq/b9hWnjVIiKdRORVMbs9izGtjViZnsG0SB9Xh83uLtYzAKCUClnP1zXqvl1Rv8uBzJpkSTDbag8SoSdwS8y76475jHVhJHARMFNEHDWE6xIjVzwZq80zq1t4rdUVVYRZSUe/q0h81vvYHn4GEZke1U1bhPk+495bByIyKqXKrZ+Z8fxjn6EelALZMW7ZmJVJouN6ErOyysW0zt4E3gcQEQOz2/JNy6895rjf/XHSuQJ4UVk1VDQi0gNTGbzYAPkhpuxYacTOfDwWmALcrZTyxfjtiJFrC4fLRk31DcBeZXbv1oX9SqlA1HXs+2+OshEbPhsojc4PMceCP8TsaZgTG4GInIM5xnaGUmpf2F0p9bVSqkSZ3eMvYFp3Z9ZHTqVUUJldsd0we0qi07UDd2M2pIZV83zVkkhlF114tmFadjlRnwylVPSAefeo3z0wuyH2RbkhIi7MltlDQCelVA7wHmZLLpxOvH7ubZiWXfuo9LOVUtWNLYT5P+s58pQ5UHpZVFqISCbmwP+zmJV5eJxxJ6aSCIcT6/l21JJeFST+jLboT+zYVF2IrXDKMa2QMEdF/d4G3Bvz7tLjFfq4CZl/mnmYlWDnGoIWYhboMN2rCxiLlQe/Bi7E7BbKweyekahg3aPCG1ZaO0WkJ2aD5Tog17p3Vcy9VSroZmY1cHR4fMNiiOXekLjyrTIaJj8qrqGYFuMBqzH3ODDKGmtsh/lffcKq0PZjjludGRUXItKdmpXZ5cCXSqkfGiA/xJQd61m6xYRZC1wJvC9RMwotusY8fw/MslFbfQOpVzY2AHYR6RPlVlPZWG35xw0rIm0xFd18pdS9sTeLOSfiGeAspdTKWmRTHM67SumKyNGYjaoN1dxrp2rd3gmzXpkXrxFVG0219OBl4CwROV1EbCLitgZ3owvkZSIyUETSMfu1X1dKBWPicWJmyF4gYA3+nxbl/yxwpYicLCKGiHQVkf5KqULMF/awiGRbfseIyIm1yJ2F2QI5JOZ069ti/P8KLFFKXQ28C8yy3F8DJltyODDHkLzAV7VlVCwqZkZbnM8X9Y0zDsuBS6x3MwlzbCLMM8A1IjJaTDJEZHK4ohVz4sjsWp4hbPE6awj2Gua7G2CVgTvrIX8WZjfaXsw/+l1UbTUeJyLnWa3BGzHfxyJMi0RZ92JNGhhcj7STjlJqA+Y7+4P1XzoXU0G9ES98+D+HWWEY1j1hK3sBZlfWr8RcZnCd5f6J9f0NMF3MCV4OzK7XnUqpfVYrfjPwCzEnOuVgWnArYkS4HPhKKRWv1wXMbsjZceSutWxZvAvkicg51vv9JZUbbABYDbTfAh/FTP7oiPn8DhG5ALNr9j1qr29SDmVO/nkTuMf6r47FtGhfquaWF4GbrbqyC2ZdNRtARLIxh5u+VErdEXujiJyE2eU9VSm1OMYvx6rv3VbZuBQ4AWsmrnXfWVZjPgOzzn9TKVUiIh1F5CIRybTK7umYw04fx4gQLsNeGkCTKDul1DbMDP8tZsHZhqk4otN7CTOTdwFu4Fdx4imx3F/DHJO5BHPMLOy/GLP19ghmy/4zDltY0zEL7xrr3tep2dIA00QebsX1LmYhAsxZn5iTKsKm9c3AcBG5VCm1HtMKfBzTOj0Ls+UT232SKtyAKWMR5iypeWEPpdQSzD7/JzDzbSPWbC2L7pjdE7WhqKF8KaXeBx4DPrXSWGR51aUgf4D5J9qA2QXloWrX49uYkw8OYla+5yml/EqpNZgz0P4H7Aby6vg8TYqYa9Bm1RDkIszJBAcxlxScr5QKK+xLRSS6JX855njR05hjOhWYjRisMnkO5v+jCHPs5ZyosnorZn5+j/nfPRNzgkyY8zD/B3sx35sfc7JHNNOpZpaliByPaYXFW3JQp7JlKd0LMMe+92OO+S8hTtmxutPuAT4RkV6W89eYY1X7MMc+z1dK7a+tvmkuROS3UvN62WsxJ2/swVzO8Qul1Grr3vEiUhoV9m/AO5jzDlZh1nN/s/zOxRyGuDKmN6mH5X8n5nDBe1J1Ha8D+BOHJ6hcj1muNoA52xK4BlPp7cFssF5r3asw69XtmPn+EHCjUio27+s0y7s6wrPGkoqYi0NfVkr9I+mJaxqMmGuxvgPylTk1uaawO4FfK6XqtJOJmEs1VmFO+gnUFl7TuqhP2Ypzr4FZUV6qlPq0KeTTND8iciFmF3qNcy+qQ++goqkzylxfM6COldEdmN1uS6sLICLnWl1p4UkO72hFd2RSz7KF1WWWY42z/RZzbGhRLbdpWihWPfJ/mDP9G8QRp+yk6pZF4U9NXUiaeqKUelEp1UcpFbsLQjQ/x+zS2IQ5jvSLGsI2C7q8pCzHY5ab8LDBOUqpimQKYHUvxisbzbVFX6tFKXWcUupYpdTzDY2jWboxNRqNRqNJJkecZafRaDSaI49U2cgUgPbt26tevXo1txgajUajSSJLly7dp5SqbmPzhJBSyq5Xr14sWbKkucXQaDQaTRIRkS21h2ocuhtTo9FoNK0erew0Go1G0+rRyk6jaQG8uXgjv/nj3fj8sTvqaTSaupBSY3bx8Pv9bN++HY+nrhuNazTgdrvp1q0bDkdNBy+0HBz/uY0/hz5h5/en0WXg8UlP/6/vf0dh4Xbuu2py0tNWSnH18//j3AFZ/Pj4vKSnr2kdpLyy2759O1lZWfTq1QuptFG5RhMfpRT79+9n+/bt9O7du7nFSQhdQoUAVBwsbJb023z5J26wfwgVBZDWNqlpF3sC/LLgevpv2QbH70lq2prWQ8p3Y3o8HnJzc7Wi09QZESE3N7dV9QZ4jAwAvCX7myX9c20LAfAfrM9Rf4nBHwwx3NhIunghqHeT0zSMlFd2gFZ0mnrT2spMwJYGgK+sqFnS91mdQKVFe5OediAYtctTxcGkp69pHbQIZafRHOkEbS4AQp7iZkk/YCk7b3HyLctAKOpEl4oDSU9f0zrQyq4OiAi33HJL5Pqhhx5i5syZzSdQLSxYsICvvqr3ubGVmDRpEjk5Ofz4xz9OkFSaRmFYw+vekmZJvlyZyjZQmnxlEwxFWXblWtlpGoZWdnXA5XLx5ptvsm/fvoTGq5QiFGrQOYQ1kghld9ttt/HSS9UddqxJNnYxK3xpJmVXgtmNGihvDsvusLJTuhtT00C0sqsDdrudn/3sZzzyyCNV/Pbu3cvUqVMZOXIkI0eO5MsvzYOWZ86cyUMPPRQJN3jwYAoKCigoKKBfv35Mnz6dwYMHs23bNm677TYGDx5MXl4ec+fOBUyFNWHCBM4//3z69+/PpZdeSrwTKh577DEGDhxIfn4+F110EQUFBcyaNYtHHnmEoUOH8sUXX9Qo4+WXX87xxx9Pnz59eOaZZyLxnnzyyWRlZdWYL//6178YPHgwQ4YM4YQTTgDMCUVXXnkleXl5DBs2jE8/Nc/SnD17Nueccw6nnnoqvXr14oknnuAvf/kLw4YNY8yYMRw4YLbYn3nmGUaOHMmQIUOYOnUq5eXlVdIdM2YMq1cfPph7woQJrX6bOVHm+jrD3zzKzm91Y4Yqkp9+tGXnryitIaRGUz0pv/QgmrvfWc2anYkdsxjYJZs/nDWo1nC//OUvyc/P59e//nUl9xtuuIGbbrqJcePGsXXrVk4//XTWrl1bY1zff/89L7zwAmPGjOGNN95g+fLlfPfdd+zbt4+RI0dGFMeyZctYvXo1Xbp0YezYsXz55ZeMGzeuUlz33XcfmzdvxuVyUVRURE5ODtdccw2ZmZnceuutAFxyySXVyrhixQoWLVpEWVkZw4YNY/LkyXTp0qVOeXfPPffwwQcf0LVrV4qKigB48sknERFWrlzJunXrOO2009iwYQMAq1atYtmyZXg8Ho499ljuv/9+li1bxk033cSLL77IjTfeyHnnncdPf/pTAH7/+9/z7LPPcv3111dKd9q0abz22mvcfffdFBYWUlhYyIgRI+okc0vFsM60tTeTsrNh9kCoZhgzjJ6g4q0oxpl0CTStAW3Z1ZHs7GymT5/OY489Vsn9o48+4rrrrmPo0KGcffbZFBcXU1pac+uzZ8+ejBkzBoCFCxdy8cUXY7PZ6NSpEyeeeCLffPMNAKNGjaJbt24YhsHQoUMpKCioEld+fj6XXnopL7/8MnZ7/LZLTTJOmTKFtLQ02rdvz8SJE1m8eHGd82Ts2LHMmDGDZ555hmAwGHmeyy67DID+/fvTs2fPiLKbOHEiWVlZdOjQgTZt2nDWWWcBkJeXF3m2VatWMX78ePLy8njllVcqWXBhLrzwQl5//XUAXnvtNc4///w6y9xSCVt2jkBZs6RvWMoOX/Itq2jLLlDePMpe0/JpUZZdXSywpuTGG29k+PDhXHnllRG3UCjEokWLcLvdlcLa7fZK43HRa74yMjLqlJ7L5Yr8ttlsBAJV1xi9++67fP7557zzzjvce++9rFy5skqY6mSEqlP06zNlf9asWXz99de8++67HHfccSxdurTG8NHPYxhG5NowjMizzZgxg3nz5jFkyBBmz57NggULqsTTtWtXcnNzWbFiBXPnzmXWrNZ/aLhhKTtnMyk7ezMqO38oREgJhigCHq3sNA1DW3b1oF27dlx44YU8++yzEbfTTjuNxx9/PHK9fPlywDyu6NtvvwXg22+/ZfPmzXHjHD9+PHPnziUYDLJ3714+//xzRo0aVSd5QqEQ27ZtY+LEidx///0cOnSI0tJSsrKyKCk5XClUJyPA22+/jcfjYf/+/SxYsICRI0fWKW2ATZs2MXr0aO655x46dOjAtm3bGD9+PK+88goAGzZsYOvWrfTr16/OcZaUlNC5c2f8fn8knnhMmzaNBx54gEOHDpGfn1/n+Fsq4W5MVyj5yk4phQ1T2dqa2bILevSYnaZhaGVXT2655ZZKszIfe+wxlixZQn5+PgMHDoxYGVOnTuXAgQMMGjSIJ554gr59+8aN79xzzyU/P58hQ4Zw0kkn8cADD3DUUUfVSZZgMMhll10WmQzyq1/9ipycHM466yzeeuutyASV6mQEsxt04sSJjBkzhjvvvDMyXjd+/HguuOACPv74Y7p168YHH3wAwF133cX8+fMBc8ZmXl4egwcP5kc/+hFDhgzh2muvJRQKkZeXx7Rp05g9e3Yli642/vjHPzJ69GjGjh1L//79I+7z58/nrrvuilyff/75vPrqq1x44YV1jrslE+7GdIcqkp52SB0es7MFkq9sAoEghjUbNejVyk7TMCTeDL/mYsSIESp2Vt3atWsZMGBAM0nUupk5c2aliSytjdZUdpb+6USOCyzHgxP3zOTuYuINBNl+zyCOMQrZ5erNUb9ZntT0v1xfyNg5ZsNne48pdLvqxaSmr2l6RGSpUqpJZ5lpy06jaQGEx+zc+CCU3GN+QiGwW92YzmDVpSBNTTDgj/wWX/OMWWpaPi1qgoomsaTyLjCaythUlILzlYK7TdLSDoRC2MTsxmyOMcNQMErZ+XU3pqZhaMtOo2kBGBxWdv6K5K51C4ZUZMzOHSqHJA99hJe1ABj+5FuWmtaBVnYaTQvAiLLsPKXJVXaBkIp0Y9oIQSC5RycFo5bc2AJa2WkahlZ2Gk0LwEaQoDLXQFaUHUpq2qZlF9WNmuT9OUNBX+S3XSs7TQPRyk6jaQHYVJBiyQTAW9Ycll2IImVthpB0ZWcqWr+y4WiGCTKa1oFWdnVk3rx5iAjr1q2rNkxBQQGDBw9uUjmWL1/Oe++916g4rrrqKjp27NjksmoSh0GQMjGVjb88yZZdUGEQotRStsneRSVknU5eSjrOZlhnqGkdaGVXR+bMmcO4ceOYM2dOXP94W3nVl+iB+OpIhLKbMWMG//nPfxoVhya52AhSbpinUCR75/9AKISdIGWGqeyCSd6yS4WVnWTgVN6kL73QtA60sqsDpaWlLFy4kGeffZZXX3014r5gwQLGjx/P2WefzcCBAwFT6V166aUMGDCA888/P3JEzccff8ywYcPIy8vjqquuwuv1Aua2YrfffjvDhw/nX//6V6V0Y4/Q8fl83HXXXcydO5ehQ4cyd+5cysrKuOqqqxg1ahTDhg3j7bffBswjdaZMmcKECRPo06cPd999dyTeE044gXbt2tX4zJ999hlDhw5l6NChDBs2jJKSEpRS1R5HdOKJJzJlyhSOPvpo7rjjDl555RVGjRpFXl4emzZtAuCdd95h9OjRDBs2jFNOOYXdu3dXSfeiiy7i3XffjVzPmDEjsunzkYxNBfHYTWUXSPJszJAyZ2NW2Mz0vWVFSU0/GDKVXblhdaM2w5ZlmpZPy1pn9/4dsKvqRseN4qg8OOO+GoO8/fbbTJo0ib59+5Kbm8vSpUs57rjjAHPfy1WrVtG7d28KCgpYv349zz77LGPHjuWqq67iqaee4rrrrmPGjBl8/PHH9O3bl+nTp/P0009z4403ApCbmxvZRzOa2CN0nE4n99xzD0uWLOGJJ54A4Le//S0nnXQSzz33HEVFRYwaNYpTTjkFgMWLF7Nq1SrS09MZOXIkkydPrvNROA899BBPPvkkY8eOpbS0FLfbzZtvvlntcUTfffcda9eupV27dhx99NFcffXVLF68mL/+9a88/vjjPProo4wbN45FixYhIvzjH//ggQce4OGHH66Ubvj4nsmTJ+Pz+fj44495+umn6yRza8ZGEJ8jG7wQSvKYWSCkcEgQrz0b/OAvT66yVdaico8tC0KAryyp6ww1rYMmt+xEZJKIrBeRjSJyR1On1xTMmTOHiy66CDAtj+iuzFGjRtG7d+/Idffu3Rk7diwAl112GQsXLmT9+vX07t07sj/mFVdcweeffx65Z9q0aXHTjXeETiwffvgh9913H0OHDmXChAl4PB62bt0KwKmnnkpubi5paWmcd955LFy4sM7PPHbsWG6++WYee+wxioqKsNvtNR5HNHLkSDp37ozL5eKYY47htNNOAyof37N9+3ZOP/108vLyePDBB+Me33PGGWfw6aef4vV6ef/99znhhBNIS0urs9ytFRshQg6zG1EluRsxELAmiDizAfAmW9lZ3Zg+y7JF76KiaQBNatmJiA14EjgV2A58IyLzlVJrGhRhLRZYU3DgwAE++eQTVq5ciYgQDAYRER588EGg6nE9DTkyp7ojf+pyhI5SijfeeKPKyQJff/11o47vueOOO5g8eTLvvfceY8eOjWwEXR11Ob7n+uuv5+abb+bss89mwYIFcXdwcbvdTJgwgQ8++IC5c+dGGhlHMuFTBwyHk1LlRiW5sg9ZllXAlQNAMMnKLhgKK9ssqEB3Y2oaRFNbdqOAjUqpH5RSPuBVYEoTp5lQXn/9dS6//HK2bNlCQUEB27Zto3fv3nzxxRdxw2/dupX//e9/APzzn/9k3Lhx9OvXj4KCAjZu3AjASy+9xIknnlhr2vGO0Ik9vuf000/n8ccfJ7yh97JlyyJ+//3vfzlw4AAVFRXMmzcvYnHWhU2bNpGXl8ftt9/OyJEjWbduXaOOIwI4dOgQXbt2BeCFF16oNty0adN4/vnn+eKLL5g0aVKd42+thJS5N6XN5qQMN5Lkyj5gWVa4TMsukOzTyq30Q05t2WkaTlMru67Atqjr7ZZbi2HOnDmce+65ldymTp1a7azMfv368eSTTzJgwAAOHjzIL37xC9xuN88//zwXXHABeXl5GIbBNddcU2va8Y7QmThxImvWrIlMULnzzjvx+/3k5+czaNAg7rzzzsj9o0aNYurUqeTn5zN16tTIeN3FF1/M8ccfz/r16+nWrVvkfL5Zs2ZFjv959NFHGTx4MPn5+TgcDs4444xGHUcE5l6cF1xwAccddxzt27ePuC9ZsoSrr746cn3aaafx2Wefccopp+B0Ouscf2slEAphI4TYbJSThpHk/SHDU/+dThelyk0oyd2o4XV2ymWO0yl9zI+mATTpET8icj4wSSl1tXV9OTBaKXVdVJifAT8D6NGjx3FbtmypFEdrOqYlmcyePbvSRJYjkdZSdsp9AYx7j2Jtz0tI2/YFKqMjA26tuVs5kXy9ZhOjXxvOkgG/pvuav+PpdTI9r3wuaem/+vpcLlr1Mz4/9jZO2PggvnOewTn0yDjH8EihNRzxswPoHnXdzXKLoJT6u1JqhFJqRIcOHZpYHI2m5RHeiFkMOx4jHXuSdxFR1qkDLqeTUpUGSbaswhNUcOcA4Evydmma1kFTK7tvgD4i0ltEnMBFwPwmTlODuT7tSLbqWhPBYAiHBFGGDZ+RnvQts8LdmG6nk9Jm6EbFWmdnpLcFwF+e3G5UTeugSZWdUioAXAd8AKwFXlNKVZ1vXns8iRZN08ppTWUmYI1ZiWHHb0/HlXRlZ6bvcjopU24Mf5Jng1rK1p6eA4C/Qlt2mvrT5IvKlVLvAQ3e38rtdrN//35yc3PrNXVec+SilGL//v243e7mFiUhRE7qNuwE7Om4PMndHzJodWPa7A7KjXTs/qKkph+27NzutGaZIKNpHaT8DirdunVj+/bt7N27t7lF0bQg3G433bp1a24xEkLkpG7DTsieiVslV9mFx8wMW7gbdUctdyQ4/bCyc5lLL0LJXvqgaRWkvLJzOByVdijRaI40Dlt2DkLODNLxQCgERnK2tg2nLzYHPls6ziR3o4ql7NJcLkpVGu4kb5emaR3ojaA1mhQn4A8rGzvKmfxjdsJjdobNjs+WmfQxw7Bll5bmppS0pC+q17QOtLLTaFKccDem2OyIpewCSRy3CoXM9A2bnaAjHQd+CPhquStxRCw7t2nZGVrZaRqAVnYaTYoTDITHzOwYbnPLLE8S15qFx+xsNjtBR/Ity/A6v3SXizLc2JI8G1TTOtDKTqNJcaLH7AyXpexKk6/sDJsDFVZ2yRw3szaCttmd5qL6gLbsNPUn5SeoaDRHOuGp/4bNjs3aDNlbnjxlFwoetiyVqzmU3eHZqF5bRtInyGhaB9qy02hSnFBUN6YzPazsktmNaKVvtyOu8MkDyUs/PGaHYSNgS8cZ0spOU3+0stNoUpzDU//tONPNnf8DyTxTLrKo3BkZM1TN0I2JYSfgyMSh/BDwJi99TatAKzuNJsWJHjNzpVtnylUkT9mFJ4gYDidGmpm+P4ndqOEdVLA5CNrD3ah63E5TP7Sy02hSnGDU0gN3pmnZBZNY2UvIXGZgs7twWsrOl0TL0oh0Y9oJOTPM3169i4qmfugJKhpNihOKmvqfkWkqG5XEdXYRy87uxJ7mAMCfzG5UdVjZhU9LT+aYoaZ1oJWdRpPiKGt8yrA7SXc7KVMuVDIniARNy07sLtwZ5snxyexGlVCQIAY2EcTdDLNBNa0C3Y2p0aQ4YWUnDhfpDhtlyd4yK7wRtc1BepqbCuVMrrJTAUJiA8BwW5adHrPT1BOt7DSaVMdSdja7C8MQyklDfMnbRSQ8ZofNSabLTinJPWbHCAUIYSo7uzUbVJ9pp6kvWtlpNClOpBvTkQaA10juAaoSseycZLkdlKk0QknsRhQVJCjmiIvDmo3qK9MTVDT1Qys7jSbVscbMDKcLAK+Rjj2QxP0hg2HLzkG2226ePJBUZXe4G9NhrTP0JXPpg6ZVoJWdRpPqWMrG5rCUnS0TVzL3h4y17HAntRvVFqXs0jKbYZ2fplWglZ1Gk+r4rTE7h9u8dGTiCjWDZWc4cDsMykjDlkRla1d+gmIuechwuyhTrqSOGWpaB1rZaTQpTsgas3O5zTG7gCOLtCQqOxX0EcAGhoGI4DPScSRxzNAR8hCwmc+e6bJTQjohPUFFU0+0stNoUpxYZRdyZpFBOSiVlPQl6CcQtSTXZ8/AEUyOslNK4VRegjbTqs102SlR6XoHFU290cpOo0l1ApW7MZUrCwdB8FckJ/2gj4DVjQgQsGfgCiUnbX9Q4VY+gmHLzm2nmHQMr7bsNPVDKzuNJsVRAS8BZYBhTtIQtzkj0VN6MCnpGyEfITls2QUdGbiU5/BpBE2IJxDELT5CdlPZZViWnc2nx+w09UMrO40m1Qn48EdZVjZrF5Hy4uQoO2ewAo+RFrkOOawz7ZKw/MDjC+LGi7LWGGY47ZSQht2vd1DR1A+t7DSaFEeCHvxEKTtrrVlFkiw7V6gMry0jysHanzIJW5Z5/CHS8KEsy85mCOVGJs6Atuw09UMrO40mxXEEyiiX9MPX6TkAeEqLkpK+O1SO33Y4fSN8WnkS9qf0BIKkiRcchy1Ljy0TV1Bbdpr6oZWdRpPiOPzFVNgyI9euzBwAfGVFSUnfHSon6Dicvi0tfFp508+ILPH4ScOHzXXYsvTbM7ErP/g9TZ6+pvWglZ1Gk+K4AqV4o5SdO6sdAIEkKDtfIES6KifkzIq42awDXD1lTT8jsqjUQyYV2K00AfyRMUO9/EBTd7Sy02hSHHewFJ/jsLJJz8oBIJiEhdUlHj+Z4jk8Tgc408OzQZs+/fJD+zBE4czuEHELOizF59HLDzR1Rys7jSbFSVelBByHLZusrLYAhDxNb9kcKvfShlIkrW3EzZVhyuJNgmXnK94DgLtNp4hbKDxmmITn17QeGqXsRGSmiOwQkeXW58wov9+IyEYRWS8ipzdeVI3myMMfCJKjSlDunIhbZrqLEpWWlMp+/56dOCWIPadrxM2VYcqSjJMHfCV7AXC36XjY0VpniF5YrqkH9tqD1MojSqmHoh1EZCBwETAI6AJ8JCJ9lVJNvwpVo2lF7N1TSBfxIjndI242QyglHfE1vbIr3r0VgIz2PSJuaZmmsglUNP30f+/BHQAYWYctO3HrbkxN/WmqbswpwKtKKa9SajOwERjVRGlpNK2Wg4WbAXC171nJvcJIx56EXUQ8+woAyDmqV8QtKyMDn7IRTMLJA65DZvq0PZy+LS3HEk53Y2rqTiKU3XUiskJEnhORcMd+V2BbVJjtlptGo6kHRdvXAtC267GV3CuMDOxJOGYntMdM33VU/4ibeaZdGqqJlY1SiqyyAoocHcF5eJ1feFF9oKKoSdPXtC5qVXYi8pGIrIrzmQI8DRwDDAUKgYfrK4CI/ExElojIkr1799b3do2mVRPY8R1+bHQ+Zmgld68tA2cSlF3bolXscXStNBszy22nVKWhmnhR+eZ9ZQwIbaS03aBK7q70bEJK8CdpnaGmdVDrmJ1S6pS6RCQizwD/ti53AN2jvLtZbvHi/zvwd4ARI0Yk58wSjaaF0HH/N2xxHMux1okHYXz2LFzeXU2a9ra9RQwNrGBb18lETQ8h3WljG25sTbxd2IpV33GOUcjeo39SyT3D7aSUNCQJs0E1rYfGzsbsHHV5LrDK+j0fuEhEXCLSG+gDLG5MWhrNkcb2LRvpF9hAUbeTqvgFHJmkN/EBris+eZVM8ZA7/OxK7iJChZGOrYk3Y/YsmQNA+5HnV3LPso75ScY6Q03robGzMR8QkaGAAgqAnwMopVaLyGvAGiAA/FLPxNRo6kfBe3+hM9D9xCuq+IUcWaSr8iZLu6ikjD5rn2Kv/Sg6Dj+rir/XSMcWaDpl+79V3zOp9E22tR9H93a9K/mFj/nJ8BQ1Wfqa1kejlJ1S6vIa/O4F7m1M/BrNkcr3a5czYtdrrMw5iaG9BlTxV64s3Pgg4AO7M6FpB4Ihvv7HjZzOFrZO+FvkHL1ofLYMnMH9CU03zJ6iUoJv/JwM8ZJ+3p+r+Ge6TMvuKD0bU1MP9A4qGk2KsWd3IY7XLsUrLnpe8mjcMOG1Zt7yooSmXerxseCJazj90Gus7XYhPcZOixsuYE/HGUy8ZbmlcC/rHp/KOLWUfWNn4uyaXyVMpstOsUrH0Ae4aupBIhaVt3g8vgDlHg8BJeSku3E6qrZkNZpk8MMP3xN86Xx6hnbxw6SX6N+pR9xwYq01Kys+gCu7Y9ww9eXrb5ch/76BU0LfsbrrBQy6ahaIxA0bdGSSVpG4bkylFF9+NI8eX97OCexm26i76H7q9XHDZrrtlJCOzbc7YelrWj9HlLJTSrH9hzXsWPEZ/u3LaFu8jnb+QnLVQdpJAIBilcYPRmd2ZQ7CfuyJ9P/R2bTv0KmWmDWaxrPy20W0n38J2ZSx84zn6D/mzGrD2tOsA1wTcFr5oTIPC176E6cU/h0RYcvx9zLotF9Wq+gAQs5M3HhAqRrD1YXthbvY8MrNnFT6LoW2zhSe9Trdh55abfgst4NilY7d3/yWnddbgbe0CH95MUFspKW5ychuj+F0136zJqm0emVXUVbC+i/nUbH2Q7of/Jru7KY74MHBNsfR7MoZxq6szuDMxEYIyvfjOvQDo0r+S/qydwh8+2tWOwdR3usUeo+dSvuegxv95w7j8Xgo2r8Hb+kB/J4yfF4Pfm8FoYAXAwU2B2I4wG7HZneaH6cLh9ON3eHG5nTjcLpxuNw4HS4cdgObIUiC5KsWpcxPLLHpNrUcjURFPUP046h4/pXuC7vFvz9+nKradADWfjqHAf+7Fa+RRsm0+fTqP7pG2R0Z4ZMHGqfsFv3vCzI/vIkp6ns2tT2erpf9jZ4xu7XExZlpllFfWaU1ePUhGFJ8/PaL5C+fyYkcZFWvKxhwyZ8rnV0XjwynjVLScQbKEqJsa0MpxY7CQnatWYh3yxLsBzeSU7GVzsGdZFOGK849B8mmyNGRsrQuBNr0xNH+GNp07UuHHv1x5fYEW2KqXqUU3kCICm8An68C8VcgAQ8S9Jr+hg3E+tgMbIYdm82O2GzYbOZvw+bAZrNhJKPuaEZapbLzeytY9dkbBFa8zsCSrxgqXspw80PGcAp7XkXHwSfRve8w+tgd1cahAj62rPyC3Uvfof3OTxn0/SPw/SPssnVmZ8cTMXqMJrvzseQe1Q2XOwO7w4nPW463vJSy0mLKDhTiObgLX/EuKNmDUbEPp2c/bn8R6cFDZIVKyJZyjkrQM4eU4MdOOXb8OMyP2FEYGKKwEUIwvw0VQghhEMJAWb8VoKzr6A9I5N7ELoMMqcp/rNjYzdRruq45PFWum454KdUn9ZHiZ6OjD+2vfp3cqK25qsMZ3oy5gQurDxaXsejF33Hy3hcpNzLYOuGvHHPiFXVWHOI6fICrNEDZbfhhM4Vzb+A072dsc/Zm/9RXGNz/R3VLWwS/IxNDBRulbGti695iNi35ANv6d+lR9DW92Ek3zDK72+jAflc31rQ9DZV5FMrVBuXMwKYUAV8Fqnw/Rkkh7opC2hVvosuhr3BtC8AyM+4ANvbZOnLA2YWStK4oZyYhw0nIcCCAEfKhAl5UwIsEvBjBCoygF0fQgz3kwRny4FReXMqLEx9peGmDD0Ma9/8MKiFo1QpBbJHfITEIYpiyESJSTyjFd9KfE2Z+0sjcTg6tStnt27WV79++n/6F8xlGMUVksbb9JNxDp9Jv9CTynPHaYPERu5Oew06m57CTASjYtI4fvnqLzK0fk7/zDdyFr1a5xw6kA21j3H3KxgHJodjWlnJ7Gw6l9WB7WltIa4eRkYukt8XuysDudON0ujAcLoIIBP2oYAAV8KOCfoIBLyG/j1DACwGv9e1DBc1vCXohaH5L0IcR8qNCQYLKIKBAiQ3EUnES/pjjkwoDxAARlJgqDiTiFv6tEPNaJFKZiwiCAiRSV0oVU6fytcRRVTW+j2rii9TNSiFR6kVq+eNLlR9Uuj+Od63aS+JcVac7Yp1VWjsGTLkFd3rdKm63daZdQ3YRWfjlAtr/90bOYDPrOpzO0dOfJCfqvLi6YFiHqVaUHiI9u0ud7/MHQ3z4+t85fs2f6C0VrBtwHf2m3oXY6/7fBMwjj3yYm0EnQNmFQoqVW3az8X9vk/HDfxjtX8xEKcWDk40Zw1nWZSpZxx5Pt0E/onNmWzrXHmWE4govP2zZxP5t66nYvRF1sICMsq209+6kT8X3uJQXF37sEgLAr2z4xWq0igOfuPEZbgKGm6DTRcDWBp/NTbE9DWVPA0ca4khDOdII2tII2NyEDKf5n1AhhCCigqhQCEIBCAVBhVChIKgghIJIKIhS5jfK/IR/i3Vt1hGmygvXCZ607jU+eyrRqpSdt7yE43bOYXXm8WwZPp1B489hRD0UXE30OqY/vY75DfAbykpL2PDDaop3fk/Fob3gr0AFfIjTjTgzsLszSGvTiczcLrTp0JW27TpwlM1ImBWn0WSETyuvqPv0+0OlFXzxwp2ctuc5yo1Mtp3yd/pXM9uyNuxu07IrLzlEei1hw/ywdStbX7meyd4FbHX3xXbxP+jfa0iD0g85LWXnLaah2+4GgiGWrC9g+9dvkbv1Q0aHljFEvJRJJoVdTqQifwqdh09mcCOVaXaai+z+A6H/wJoDBgMgBg7DoPo+J01DaVXKruvRgyi6fi3D2jfthJKMzCz65o+B/DFNmo5GUx0Z2Wb/gaqjsvvmm/+R/t71/Fh9z/ftT6bXFbPIacQsTkfktPKiWsOGQooP336RYcv/wFgpZsPA6+k79Q9ga3iVrtxZUEq9Tz6o8AVZsmo1e76ZR5fC/zJCrWaMBCmy5bKr5zl0GnUBGf0mcGwjZGswCRrH08Sn1eVuThMrOo0mFchMT8ejHKhaDjAt93j5/MW7mbjj73gNN1smPkGfE6vdC6LOODNzAPCWHqgx3PbC3ax/8VdMqvgPO5y9KJ32L/oeO7LR6RuRY35qfv5NW7ay7L+vEPJVkFa8mWPLlzPeMM/o2+PsxvbeV9J5zAXk9BxFjqGXHbdmWp2y02iOBOw2gyLSMbzVT79fuWIpzLuWSaF1rG97Aj2v+Bs929Z9fK0mHG27ARA6FHd/d5RSfPr+6/T7+jdMYB/r+vyEftP+D3EkZkq+LXJaeXzLzuML8Om/nmDMhgc5X8w9PL3iYlfOIH44+iK6jz6HjkcNTPkZw5rEoZWdRtNCKZFM7L6iKu4er5cvX76HsVv/hl+cfD/2L/Q75aqEVuxp2R3xKgdSsrOK3/Zde1nz0k2cVvYOhY6uHDhvPv0HnpCwtAGy2uYC5gSd2A7HJavW4Zn3K84IfM3m9EEY5z1Mm6N648roSE9tvR2xaGWn0bRQdtm70aOiIHKtlGLpVx+R+fEdnBzayJo24+k5/Wn6tE/8jLl2mS62q/bYiw6n7/UH+Pzt5xmw8n5OYR9re19Gv4sfwKhl3VxDOKpjZwLKoGTPZtpZbnuKSvlszoOcsusfpIuXTcPu4Jizfh13b0/NkYdWdhpNC6U4pz+d9n1DoHg3a9eupmLBXxhV8QUHpA1rxj3GwJOnN1k3XYcsF0vsfRl3YCkVZSUs/vRt2nz7JKeG1rDd2YsDU/7OgMFVjyZKFH265rJG9aTLD1+w+0ARS957jn7fP8sFsp1tbY4j7aInOKZLLbMfNUcUWtlpNC2UjOOmIf95EfVwf/IkRBlulva+hrzzf8tAa4eVpmR/7ylkbfoMHuzGicA+yeX7kffQZ9Ivm3xmYf+jsng6bSLXFj1H6K+9mCyKQldP9pzyLN1HTtVjcZoqiIq3z1EzMWLECLVkyZLmFkOjaREopVjw7qs4N39EWrc8Bp56Be7M2C0Nmo4KX5BP3phF7qHVtOv3I/qMvxBJ8HFDNVGwp5jV/36MTqG9dD1uEp2HTtJKroUiIkuVUiOaNA2t7DQajUbTnCRD2empSRqNRqNp9Whlp9FoNJpWT0p1Y4rIXmBLAqJqD+xLQDzJQMvadLQkeVuSrNCy5G1JskLLkjdRsvZUStVvN/J6klLKLlGIyJKm7v9NFFrWpqMlyduSZIWWJW9LkhValrwtSVbdjanRaDSaVo9WdhqNRqNp9bRWZff35hagHmhZm46WJG9LkhValrwtSVZoWfK2GFlb5ZidRqPRaDTRtFbLTqPRaDSaCFrZaTQajabV06qUnYhMEpH1IrJRRO5obnmiEZHuIvKpiKwRkdUicoPlPlNEdojIcutzZnPLGkZECkRkpSXXEsutnYj8V0S+t76Ttxlj9XL2i8q/5SJSLCI3plLeishzIrJHRFZFucXNSzF5zCrHK0RkeArI+qCIrLPkeUtEciz3XiJSEZXHs5Ipaw3yVvvuReQ3Vt6uF5HTU0DWuVFyFojIcss9FfK2unorJctujSilWsUHsAGbgKMBJ/AdMLC55YqSrzMw3PqdBWwABgIzgVubW75qZC4A2se4PQDcYf2+A7i/ueWMUw52AT1TKW+BE4DhwKra8hI4E3gfEGAM8HUKyHoaYLd+3x8la6/ocCmUt3HfvfWf+w5wAb2tOsPWnLLG+D8M3JVCeVtdvZWSZbemT2uy7EYBG5VSPyilfMCrwJRmlimCUqpQKfWt9bsEWAt0bV6pGsQU4AXr9wvAOc0nSlxOBjYppRKxE0/CUEp9DhyIca4uL6cALyqTRUCOiHROiqDEl1Up9aFSKmBdLgK6JUue2qgmb6tjCvCqUsqrlNoMbMSsO5JCTbKKiAAXAnOSJU9t1FBvpWTZrYnWpOy6AtuirreTospERHoBw4CvLafrLJP/uVToFoxCAR+KyFIR+Znl1kkpVWj93gV0ah7RquUiKlcWqZq3UH1epnpZvgqz9R6mt4gsE5HPRGR8cwkVh3jvPpXzdjywWyn1fZRbyuRtTL3V4spua1J2LQIRyQTeAG5UShUDTwPHAEOBQsxujFRhnFJqOHAG8EsROSHaU5n9FimzdkVEnMDZwL8sp1TO20qkWl5Wh4j8DggAr1hOhUAPpdQw4GbgnyKS3VzyRdFi3n0UF1O5oZYyeRun3orQUspua1J2O4DuUdfdLLeUQUQcmAXmFaXUmwBKqd1KqaBSKgQ8QxK7VGpDKbXD+t4DvIUp2+5wt4T1vaf5JKzCGcC3SqndkNp5a1FdXqZkWRaRGcCPgUutCg6rO3C/9Xsp5hhY32YT0qKGd5+qeWsHzgPmht1SJW/j1Vu0sLILrUvZfQP0EZHeVgv/ImB+M8sUweqPfxZYq5T6S5R7dH/2ucCq2HubAxHJEJGs8G/MCQqrMPP0CivYFcDbzSNhXCq1jFM1b6OoLi/nA9OtmW1jgENRXUbNgohMAn4NnK2UKo9y7yAiNuv30UAf4IfmkfIwNbz7+cBFIuISkd6Y8i5OtnxxOAVYp5TaHnZIhbytrt6iBZXdCM09QyaRH8yZQBswW0C/a255YmQbh2nqrwCWW58zgZeAlZb7fKBzc8tqyXs05qy174DV4fwEcoGPge+Bj4B2zS2rJVcGsB9oE+WWMnmLqYQLAT/mOMZPqstLzJlsT1rleCUwIgVk3Yg5FhMuu7OssFOt8rEc+BY4K0Xyttp3D/zOytv1wBnNLavlPhu4JiZsKuRtdfVWSpbdmj56uzCNRqPRtHpaUzemRqPRaDRx0cpOo9FoNK0erew0Go1G0+rRyk6j0Wg0rR6t7DQajUbT6tHKTqPRaDStHq3sNBqNRtPq0cpOo9FoNK0erew0Go1G0+rRyk6j0Wg0rR6t7DQajUbT6tHKTqPRaDStnpRTdiLSS0SUdb6TpoUiIteLyE4R+a4Z0p4pIi8nIZ0ZIrKwBv8FInJ1U8uhqUxN76W2d5ZAGSaIyPYa/GeLyJ+aWo7Wgoh8JyKFInJTQ+NIOWWnqT8iMktESq2PT0T8UdfvN5NYM4FrlVJDouScKSIzm0melMJq1BXUM/ynIlIuIutE5JQawl4oIl9ZYRfE8R8qIkst/6UiMjTKz2WVp90ickBE3hGRrjFyvCciB0Vkl4g8EW6Yisj4qHIX/igRmWr5z4rx84pISR2ff0K8Z2mtiEidj6MRkXYi8paIlInIFhG5pIawIiL3i8h+63O/dWYdItJXRN4Wkb3Wu/9ARPpF3XuFVV6KRWS7iDwQbZRYjTtP1PtdH5P2JZZ8ZSIyT0TaRfm9bCmzYhHZENtItOqRnwJ/qGu+xJJwZactsuSjlLpGKZWplMoE/g+YG75WSp0RDpfkd9OO1Dsstd6kUHmeAyzDPEfsd8DrItKhmrAHgEeB+2I9xDzY+G3gZaAt8ALwtuUOcANwPJAPdAEOAo9HRfEU5qnUnYGhwInAtQBKqS+iyl0m5qnmpcB/LP9rYvznAP+qd06kCClUNp4EfEAn4FLgaREZVE3YnwHnAEMw3/FZwM8tvxzMs//6WXEtpvLhzOnAjUB7YDRwMnBrTPzXRb3jaEU5CPgbcLkVdzlmWQrzZ6CXUiobOBv4k4gcFxP3KqCNWAfa1peEKDsRKRCR20VkBVAmInYRGWO1LossE3RCVPgFIvJnEVlsafK3o7V8TNxXishaESkRkR9E5Ocx/lNEZLkVzyYxT1RGRNqIyLNWa2GHiPyptkwSkWNE5BOrxbNPRF4RkZwovwMiMty67mK1gCZY12eLyGrreReIyICY/LlVRFaIyCERmSsi7vrndP2p5t0oETk2KkylLhUR+bGVp0XWO8yvZ5rhfA7VEu7X1vvZKSJXR8tlyfSkiLxrvfuvReSYqHv/KiLbrPe+VETGx0TvtvK5RES+FZFoC/MOq6yUiMgaETk3ym+GiHwpIo+IyH5MC7W2531ITEtns4icEePd04qvREQ+FJH2tcUXJ/6+wHDgD0qpCqXUG5gHY06NF14p9ZFS6jVgZxzvCYAdeFQp5VVKPYZ54OZJln9v4AOl1G6llAeYC0RXnL2B15RSHqXULkxFVl3FegXwulKqLM4zZVjyv1DDo1eLiJwmIuut/9NTIvKZVNNlLCIPishCEWlz2EmesO5dJyInR4Wttr4Rq2vS+j/tAp6vg5y3iMgeq5xfGePdtrryXY98COfjnUqpUqXUQkyFdXk1t1wBPKyU2q6U2gE8DMwAUEotVko9q5Q6oJTyA48A/UQk1/J/2mrQ+Kx7XwHG1lHUS4F3lFKfK6VKgTuB80Qky4p7tVLKa4VV1ic2P8L1ScMaGQk6zbYA8wTb7kAa0BXz1OgzMRXqqdZ1Byv8AmAHMBjzhOk3gJctv17Wg9qt68nWQwtmK7IcGG75jQIOWfEbVrr9Lb+3MFsSGUBHzFbKz2t5jmOtuFxAB+BzzEoh7P9TYA1mC+cD4CHLvS9QZt3rAH6NebKzMyp/FmO2lNsBa4k5lTjmZOCiGj7janmGmeG8jPduLDcFHBsVZjbwJ+v3MMyW+2jAhvnnKABc9SgPkwAPkFFLmF2YFWU6pqURkcuSab/1ju2Yf6xXo+6/DNPKsQO3WHG5o/LAD5xvvY9bgc2Aw/K/wHoXBjDNenedLb8ZQAC43oo7rYZnmGGl81Mrr36BqWDChyIvwDyxuS/m/2IBcF81cT0FPFWN37nA2hi3J4DHa3kPVwMLYtxuAt6Pcfs3cIv1ewTwpZU/6cA/qfwf+DnwouXXFbO1fW6ctDOAEmBCNbJNB34I51U965v2QDFwnvWObrDew9VR72Wh9X6fwfyvpse835ussjENsw4Jn7RdU30zwbr3fsw6oqayEQ57j5XOmVZcbetSvmPiugP4dzV+w4DyGLdbMRVLvPCHgNFR1yOAkmrCngMU1vCM86LLs1W+9wL7rDI0IcrvbeD2mPtLgeNi/gPlmPXAt0BmTPg0oAL4cX3LjFIqocruqqjr24GXYsJ8AFwRlSnRmTQQ0wy3EaPsqsngG6zffwMeiROmE+CNLozAxcCn9Xyuc4BlMW7zMVvVK7AUAGYr5bWoMAamMp8QlT+XRfk/AMxKRN7HkXkmVZXdVTFhalJ2TwN/jAm/HjixjukvseL/VS3hngP+HHV9LFWV3T+i/M8E1tUQ30FgSFQeLIp5H4XA+GruXQ5MsX7PALbW8VlnABujrtOtZzgqqpz/Psr/WuA/DXinl0c/j+V2LzC7lvviKbs7ialUMSvamdbvNsCr1nMEMLtO20WFHQAstfyU9Z6qKCxL5s3x/Cz/j8NpNiA/pgP/i7oWYBuVld3XmFbpG1iNzii/ndFyYTZEL68mrXkcrm8mYNZT7jrIOAGzYrZHue0BxjSkfNeQznhgV4zbT2Pfe5RfEMsgsK77WO9RYsJ1w6zDLq4mnquA7UD7KLfRQBZmQ+AKzMbOMVHv+5qYOCJ1ZJSbDbPB/3usxmmM//WYFt7y+uZVIsfstkX97glcYHWDFYlIkfUAnasJvwWz9VOli0dEzhCRRVYXYhFmoQiH647Zco6lpxVfYVT6f8O08KpFRDqJyKtidnsWY1obsTI9g2mRPq4Om91drGcAQCkVsp6va9R9u6J+lwOZNcmSYLbVHiRCT+CWmHfXHfMZ68JI4CJgpog4agjXJUaueDJWm2dWt/BaqyuqCLOSjn5Xkfis97E9/AwiMj2qm7YI833GvbcORGRUSpVbPzPj+cc+Qz0oBbJj3LIxK5NEx/UkZmWVi2mdvQm8DyAiBma35ZuWX3vMcb/746RzBfCismqoaESkB6YyeLEB8kNM2bHSiJ35eCwwBbhbKeWL8dsRI9cWDpeNmuobgL3K7N6tC/uVUoGo69j33xxlIzZ8NlAanR9ijgV/iNnTMCc2AhE5B3OM7Qyl1L6wu1Lqa6VUiTK7x1/AtO7OrI+cSqmgMrtiu2H2lESnawfuxmxIDavm+aolkcouuvBsw7TscqI+GUqp6AHz7lG/e2B2Q+yLckNEXJgts4eATkqpHOA9zJZcOJ14/dzbMC279lHpZyulqhtbCPN/1nPkKXOg9LKotBCRTMyB/2cxK/PwOONOTCURDifW8+2oJb0qSPwZbdGf2LGpuhBb4ZRjWiFhjor6vQ24N+bdpccr9HETMv808zArwc41BC3ELNBhulcXMBYrD34NXIjZLZSD2T0jUcG6R4U3rLR2ikhPzAbLdUCude+qmHurVNDNzGrg6PD4hsUQy70hceVbZTRMflRcQzEtxgNWY+5xYJQ11tgO87/6hFWh7ccctzozKi5EpDs1K7PLgS+VUj80QH6IKTvWs3SLCbMWuBJ4X6JmFFp0jXn+Hphlo7b6BlKvbGwA7CLSJ8qtprKx2vKPG1ZE2mIquvlKqXtjbxZzTsQzwFlKqZW1yKY4nHeV0hWRozEbVRuquddO1bq9E2a9Mi9eI6o2mmrpwcvAWSJyuojYRMRtDe5GF8jLRGSgiKRj9mu/rpQKxsTjxMyQvUDAGvw/Lcr/WeBKETlZRAwR6Soi/ZVShZgv7GERybb8jhGRE2uROwuzBXJIzOnWt8X4/xVYopS6GngXmGW5vwZMtuRwYI4heYGvasuoWFTMjLY4ny/qG2cclgOXWO9mEubYRJhngGtEZLSYZIjI5HBFK+bEkdm1PEPY4nXWEOw1zHc3wCoDd9ZD/izMbrS9mH/0u6jaajxORM6zWoM3Yr6PRZgWibLuxZo0MLgeaScdpdQGzHf2B+u/dC6mgnojXvjwfw6zwjCse8JW9gLMrqxfibnM4DrL/RPr+xtgupgTvByYXa87lVL7rFb8ZuAXYk50ysG04FbEiHA58JVSKl6vC5jdkLPjyF1r2bJ4F8gTkXOs9/tLKjfYALAaaL8FPoqZ/NER8/kdInIBZtfse9Re36Qcypz88yZwj/VfHYtp0b5UzS0vAjdbdWUXzLpqNoCIZGMON32plLoj9kYROQmzy3uqUmpxjF+OVd+7rbJxKXAC1kxc676zrMZ8Bmad/6ZSqkREOorIRSKSaZXd0zGHnT6OESFchr00gCZRdkqpbZgZ/lvMgrMNU3FEp/cSZibvAtzAr+LEU2K5v4Y5JnMJ5phZ2H8xZuvtEcyW/WcctrCmYxbeNda9r1OzpQGmiTzciutdzEIEmLM+MSdVhE3rm4HhInKpUmo9phX4OKZ1ehZmyye2+yRVuAFTxiLMWVLzwh5KqSWYff5PYObbRqzZWhbdMbsnakNRQ/lSSr0PPAZ8aqWxyPKqS0H+APNPtAGzC8pD1a7HtzEnHxzErHzPU0r5lVJrMGeg/Q/YDeTV8XmaFDHXoM2qIchFmJMJDmIuKThfKRVW2JeKSHRL/nLM8aKnMcd0KjAbMVhl8hzM/0cR5tjLOVFl9VbM/Pwe8797JuYEmTDnYf4P9mK+Nz/mZI9oplPNLEsROR7TCou35KBOZctSuhdgjn3vxxzzX0KcsmN1p90DfCIivSznrzHHqvZhjn2er5TaX1t901yIyG+l5vWy12JO3tiDuZzjF0qp1da940WkNCrs34B3MOcdrMKs5/5m+Z2LOQxxZUxvUg/L/07M4YL3pOo6XgfwJw5PULkes1xtAHO2JXANptLbg9lgvda6V2HWq9sx8/0h4EalVGze12mWd3WEZ40lFTEXh76slPpH0hPXNBgx12J9B+Qrc2pyTWF3Ar9WStVpJxMxl2qswpz0E6gtvKZ1UZ+yFedeA7OivFQp9WlTyKdpfkTkQswu9BrnXlSH3kFFU2eUub5mQB0rozswu92WVhdARM61utLCkxze0YruyKSeZQuryyzHGmf7LebY0KJabtO0UKx65P8wZ/o3iCNO2UnVLYvCn5q6kDT1RCn1olKqj1IqdheEaH6O2aWxCXMc6Rc1hG0WdHlJWY7HLDfhYYNzlFIVyRTA6l6MVzaaa4u+VotS6jil1LFKqecbGkezdGNqNBqNRpNMjjjLTqPRaDRHHqmykSkA7du3V7169WpuMTQajUaTRJYuXbpPKVXdxuYJIaWUXa9evViyZElzi6HRaDSaJCIiW2oP1Th0N6ZGo9FoWj1a2Wk0KcbOogoWbz7Q3GJoNK0Krew0mhTjlVn/h+v5kwkFG7RRhEajiUNKjdnFw+/3s337djyeum40rtGA2+2mW7duOBw1HbyQmtzmeQwM2LdrM+271vs8T41GE4eUV3bbt28nKyuLXr16IZU2Ktdo4qOUYv/+/Wzfvp3evXs3tzgN5tD+XVrZaTQJIuW7MT0eD7m5uVrRaeqMiJCbm9tiewP8ytzv1lu8r5aQGo2mrqS8sgO0otPUm5ZcZkpJAyBQur+ZJdFoWg8tQtlpNEcSZWKeqxss08pOo0kUWtnVARHhlltuiVw/9NBDzJw5s/kEqoUFCxbw1Vf1Pjc2wvLlyzn++OMZNGgQ+fn5zJ07N4HSaWqjQkzLLlRR1LyCaDStCK3s6oDL5eLNN99k377EjqEopQiFEj+9vLHKLj09nRdffJHVq1fzn//8hxtvvJGioqLECaipGTHH7EKe0loCajSauqKVXR2w2+387Gc/45FHHqnit3fvXqZOncrIkSMZOXIkX35pHrQ8c+ZMHnrooUi4wYMHU1BQQEFBAf369WP69OkMHjyYbdu2cdtttzF48GDy8vIiVtSCBQuYMGEC559/Pv379+fSSy8l3gkVjz32GAMHDiQ/P5+LLrqIgoICZs2axSOPPMLQoUP54osvapTx8ssv5/jjj6dPnz4888wzAPTt25c+ffoA0KVLFzp27MjevXurpP2vf/2LwYMHM2TIEE444QTAnFB05ZVXkpeXx7Bhw/j0U/MszdmzZ3POOedw6qmn0qtXL5544gn+8pe/MGzYMMaMGcOBA+Yi6meeeYaRI0cyZMgQpk6dSnl5eZV0x4wZw+rVhw/mnjBhQqvaZs4IH8TsLUlYnKu2F/HMf5clLD6AXYc8cctkQ6nwBanwBRMWn1KKonJf7QE1RwQpv/QgmrvfWc2ancUJjXNgl2z+cNagWsP98pe/JD8/n1//+teV3G+44QZuuukmxo0bx9atWzn99NNZu3ZtjXF9//33vPDCC4wZM4Y33niD5cuX891337Fv3z5GjhwZURzLli1j9erVdOnShbFjx/Lll18ybty4SnHdd999bN68GZfLRVFRETk5OVxzzTVkZmZy6623AnDJJZdUK+OKFStYtGgRZWVlDBs2jMmTJ9OlS5dI/IsXL8bn83HMMVWnwN9zzz188MEHdO3aNWL5Pfnkk4gIK1euZN26dZx22mls2LABgFWrVrFs2TI8Hg/HHnss999/P8uWLeOmm27ixRdf5MYbb+S8887jpz/9KQC///3vefbZZ7n++usrpTtt2jRee+017r77bgoLCyksLGTEiBE15nlLwlBmhW/4yxIW52evPsgvS5+gaMBicrr1a3R8hYcqePKB3zBi2HDOOX96AiSEaQ/MZWBwHff94Z6ExDdrwSYCH/+Ry2ZcR9tjRyYkTk3LRVt2dSQ7O5vp06fz2GOPVXL/6KOPuO666xg6dChnn302xcXFlJbW3P3Us2dPxowZA8DChQu5+OKLsdlsdOrUiRNPPJFvvvkGgFGjRtGtWzcMw2Do0KEUFBRUiSs/P59LL72Ul19+Gbs9ftulJhmnTJlCWloa7du3Z+LEiSxevDhyX2FhIZdffjnPP/88hlG1qIwdO5YZM2bwzDPPEAwGI89z2WWXAdC/f3969uwZUXYTJ04kKyuLDh060KZNG8466ywA8vLyIs+2atUqxo8fT15eHq+88kolCy7MhRdeyOuvvw7Aa6+9xvnnn19jfrc0wpadEUicshtSvACAsu2rEhLf9gNl/MnxPOesur72wHVkuncO96m/wv5NCYnv/aXruN4+jzZzJickPk3LpkVZdnWxwJqSG2+8keHDh3PllVdG3EKhEIsWLcLtdlcKa7fbK43HRa/5ysjIqFN6Lpcr8ttmsxEIBKqEeffdd/n888955513uPfee1m5cmWVMNXJCFWn6Ievi4uLmTx5Mvfee29EMccya9Ysvv76a959912OO+44li5dWufnMQwjcm0YRuTZZsyYwbx58xgyZAizZ89mwYIFVeLp2rUrubm5rFixgrlz5zJrVus6NDxs2TkSqOyChhMAT9mhhMRXXJzYHhaAQVJg/ijdA7mNX0zf3VYEgBH0NjouTctHW3b1oF27dlx44YU8++yzEbfTTjuNxx9/PHK9fPlywDyu6NtvvwXg22+/ZfPmzXHjHD9+PHPnziUYDLJ3714+//xzRo0aVSd5QqEQ27ZtY+LEidx///0cOnSI0tJSsrKyKCk5PN5TnYwAb7/9Nh6Ph/3797NgwQJGjhyJz+fj3HPPZfr06TVaTZs2bWL06NHcc889dOjQgW3btjF+/HheeeUVADZs2MDWrVvp16/u3WYlJSV07twZv98fiSce06ZN44EHHuDQoUPk5+fXOf6WgA1L2QWrjlc2FL9hNnT8pQcTEl/An/ixsDIsGRO05KKNI3Hjf5qWj1Z29eSWW26pNCvzscceY8mSJeTn5zNw4MCIlTF16lQOHDjAoEGDeOKJJ+jbt2/c+M4991zy8/MZMmQIJ510Eg888ABHHXVUnWQJBoNcdtllkckgv/rVr8jJyeGss87irbfeikxQqU5GMLtBJ06cyJgxY7jzzjvp0qULr732Gp9//jmzZ89m6NChDB06NKIg77rrLubPnw/AbbfdRl5eHoMHD+ZHP/oRQ4YM4dprryUUCpGXl8e0adOYPXt2JYuuNv74xz8yevRoxo4dS//+/SPu8+fP56677opcn3/++bz66qtceOGFdY67pRDuxnQlUNkFLGUXKC9KSHyhYGKVXTCkKFOmjN7ixCg7ty1xk2c0LR9J5GyqxjJixAgVO6tu7dq1DBgwoJkkat3MnDmz0kSW1kZLLTt7Z/akA0XsogNHzdyYkDj/++epnOr9iJU9ryDvysdqv6EW/r1wKT/+6CTz4g9F0Mgdazz+IB/fM4nJtsUcHPcH2p5yc6NlvH/Ws9y+y4pnZmK6bzVNg4gsVUo16SwzbdlpNCmGzRqzSyNxlp1TrEkv3sSMtalA1DiYv6LR8QVCCh/mCRXBssSc5Schf0Li0bQOWtQEFU1iSeVdYI5kwt2Y6cqDCoWQODNh64tdmROADF9ilF0wENWN6S0BZ3rj4gsqHNZYZdCToPWFwShlFwyATVd3RzLastNoUgybpewcEqTCkxjrTixlZ/MnZleWUCBKkSRg8bs/FMKBKWPIkyDrM1rZJXDNoqZlopWdRpNCKKWwEcJrdemVFRclJF7DUnb2BC1nUFETVFQCukYDQYXdsuwStXNMKFrZ+bSyO9LRyk6jSSGCIYWNIKWSCUB5aWImVtgsZecIJMZSjLbsfAlYu+cPHrbsxJcY61MFtLLTHEYrO40mhQiETAun3DCVnSdByi5s2blCian0o62migSs3QuEFE6xxhUT1NUqKrFdrZqWjVZ2dWTevHmICOvWras2TEFBAYMHD25SOZYvX857773X4PvDi9AHDhzIoEGD+Otf/5pA6TSNJRgMYROF154FgLc8MeNXtoiya/zMSQCiJqj4EyBjIMqysyVofM0IRe04pC27Ix6t7OrInDlzGDduHHPmzInrH28rr/oS3l+yJhqr7Ox2Ow8//DBr1qxh0aJFPPnkk6xZs6bB8WkSS9CqoH32bPM7Qdt7RZYzqMR0Y0ZP/kiEsvNHjdk5Agmy7LSy00ShlV0dKC0tZeHChTz77LO8+uqrEfcFCxYwfvx4zj77bAYOHAiYSu/SSy9lwIABnH/++ZEjaj7++GOGDRtGXl4eV111FV6vuU6pV69e3H777QwfPpx//etfldKNPULH5/Nx1113MXfuXIYOHcrcuXMpKyvjqquuYtSoUQwbNoy3334bMI/UmTJlChMmTKBPnz7cfffdAHTu3Jnhw4cDkJWVxYABA9ixY0eVZ/7ss88iu6cMGzaMkpISlFLVHkd04oknMmXKFI4++mjuuOMOXnnlFUaNGkVeXh6bNpkb+77zzjuMHj2aYcOGccopp7B79+4q6V500UW8++67kesZM2ZENn0+Egj6TSUScJnKLpCgafhhy85JoJJV1lCilV2gIgGWXShkygY4EzSJxojuxkzQOKCm5dKyFp68fwfsqrrRcaM4Kg/OuK/GIG+//TaTJk2ib9++5ObmsnTpUo477jjA3Pdy1apV9O7dm4KCAtavX8+zzz7L2LFjueqqq3jqqae47rrrmDFjBh9//DF9+/Zl+vTpPP3009x4440A5ObmRvbRjCb2CB2n08k999zDkiVLeOKJJwD47W9/y0knncRzzz1HUVERo0aN4pRTTgHM43lWrVpFeno6I0eOZPLkyZWOwikoKGDZsmWMHj26StoPPfQQTz75JGPHjqW0tBS3282bb75Z7XFE3333HWvXrqVdu3YcffTRXH311SxevJi//vWvPP744zz66KOMGzeORYsWISL84x//4IEHHuDhhx+ulG74+J7Jkyfj8/n4+OOPefrpp+v4Mls+waA1/d6VY14nQJEA2Ii2ckrB3q5xEUbNxgwlYulBUJEeVnahclCq0buyhBU8oJWdRlt2dWHOnDlcdNFFgGl5RHdljho1it69e0euu3fvztixYwG47LLLWLhwIevXr6d3796R/TGvuOIKPv/888g906ZNi5tuvCN0Yvnwww+57777GDp0KBMmTMDj8bB161YATj31VHJzc0lLS+O8885j4cKFkftKS0uZOnUqjz76KNnZ2XHTvvnmm3nssccoKirCbrfXeBzRyJEj6dy5My6Xi2OOOYbTTjsNqHx8z/bt2zn99NPJy8vjwQcfjHt8zxlnnMGnn36K1+vl/fff54QTTiAtLS3us7dGlKXscOcAiVtzZo+q+BPRNRpt2SXiRPXoMTsDlZBuR4l65oA+9f2Ip8ktOxGZBPwVsAH/UErVbEbVRC0WWFNw4MABPvnkE1auXImIEAwGEREefPBBoOpxPdUdmVMT1R35U5cjdJRSvPHGG1VOFvj666+rlcXv9zN16lQuvfRSzjvvvLhp33HHHUyePJn33nuPsWPH8sEHH9T4DHU5vuf666/n5ptv5uyzz2bBggVxd3Bxu91MmDCBDz74gLlz50YaGUcKQUuJhKxuTLyJqaRtBPEpO04J4CktwtmhkREGEzvTMRBS2CWqQecrBVdmo+I0QgGw/gL+8pIW1o2lSTRNatmJiA14EjgDGAhcLCIDmzLNRPP6669z+eWXs2XLFgoKCti2bRu9e/fmiy++iBt+69at/O9//wPgn//8J+PGjaNfv34UFBSwcaO5qe9LL73EiSeeWGva8Y7QiT2+5/TTT+fxxx8nvKH3smXLIn7//e9/OXDgABUVFcybN4+xY8eilOInP/kJAwYM4Oabq99sd9OmTeTl5XH77bczcuRI1q1b16jjiAAOHTpE165dAXjhhReqDTdt2jSef/55vvjiCyZNmlTn+FsDobAFb3PhwYn4EjNmZyfAITFneFYkwLIL7ztZrlwJWRfnD5pjdqXKsuIToEDD3Zhe5cCfoO5gTculqbsxRwEblVI/KKV8wKvAlCZOM6HMmTOHc889t5Lb1KlTq52V2a9fP5588kkGDBjAwYMH+cUvfoHb7eb555/nggsuIC8vD8MwuOaaa2pNO94ROhMnTmTNmjWRCSp33nknfr+f/Px8Bg0axJ133hm5f9SoUUydOpX8/HymTp3KiBEj+PLLL3nppZf45JNPIhNQwrM7Z82aFTn+59FHH2Xw4MHk5+fjcDg444wzGnUcEZh7cV5wwQUcd9xxtG/fPuK+ZMkSrr766sj1aaedxmeffcYpp5yC0+msc/ytARWe1WuzUybpGAmYhh+y1u6VGaayS8QBruFuzINkJkTGQFDhIMAhI2zRNl45GSpAABuluBO336amxdKkR/yIyPnAJKXU1db15cBopdR18cLrI34Sx+zZsytNZDkSaYllZ+vm9fR4YRTLhv6RjiueYntaf0bfNq9RcXoDQUr+2Iu9rh4M8K1i44mPc+zE6Y2Kc84Tv+fifY+zTvUgI6sN3W9dWPtNNfCfVYWM/9cQdth70Df4PUyfD0fX3vtRHUopnrnzUq6wf8SeUDbpfcaRe/nsRsmoaTqOiCN+RORnIrJERJbs3bu3ucXRaJqVUHiCimHHa2QkZC/LsNXkc7Qxr8sbb+WIZdmVGlnYE7AFmd+S0WM3ZWxsN2ZIgYMAAbFThhuVoLFPTculqZXdDqB71HU3yy2CUurvSqkRSqkRHTo0dtRcE2bGjBlHtFXXUgkFDis7vz0dVzAxys5OEL/TUnaJmOFpjYeVGtk4EyJjEKcE8ThzzOgbqewCoRB2goQMU9npReWaplZ23wB9RKS3iDiBi4D59Y0klU5T17QMWmqZCVt2YrPht2fiCiXAarKOz1GR5QyNt+wMa4JKhS0bZ7DxMgYC4cX0OUDjd2UJK3gldsqUG9HK7oinSZWdUioAXAd8AKwFXlNKVV1cVQNut5v9+/e32MpLk3yUUuzfvx+3293cotQbZW1xJYaNoCODtAQou0AghFOC2FwZeJSj0VYTHN6Ky+fIxp2A/TZDfnOResjd1oy3vHGTaAIhhUOCYDgox42RoF1ZNC2XJl96opR6D2jwZo7dunVj+/bt6PE8TX1wu91069atucWoN9FjdkFHFmmq8YrEb1lNTqeLUtISsnbPCPkJYCPgyMCB39yCzN6ImbPWjiw2dxZ+ZWv0FmTBkMJOAGVzUIYrYZtLa1ouKb/O0uFwVNqhRKNpzYQtO8NmJ+jMJIMKvIEgLrutwXEG/OY+rGKzU0FaQo7QERUgKHZCDmvhdyO3IAuGFbIrnVLSCDVS2QWC5pgdhvnM9gR0tWpaNs0+G1Oj0RwmvM5ODDu4snCLn7JyT6PiDCsSsTspN9KxJUDZ2UJ+gmIHp6XsGtk1qgKmQna53ZSqtEaPKwZCCicBQoYDvy0dRzBBRxtpWixa2Wk0KUT4UFSx2THc5iLw8pKiRsUZsMbDxHDgNdISslTAUAGCmAoZaPRGyyHrJIY0t4tS3I1eVB60FtIrw0HAno5D+SpvcaY54tDKTqNJIZR17pzY7NjSzN1Eyht5EngwrOzsDny2jIScF2eEAgTFgWHtX9nYSS/Ksj7T09LMccVGKk9/VDdm0G7tPatPPjii0cpOo0khVGTpgR2Hpew8pY2bmRi0rCaxOQjY0hOynMGmAoQMO4YlY2NPVFfWBBW3202ZSsNopGIKhhQOgijDTsiRbjrq5QdHNFrZaTQpRGSdndhxpJuLwBt7JE94zM6wOQg4MnAlYKmAoQIExYY9zezG9DZSxpCl7FwuN6WkNXpc0TxFIQCGA+UMW3Za2R3JpPxsTI3miMJarG3Y7bgsq6mxO/aHIt2YLoKOzIQsZzBUgJA4cKabMvoauwVZ4LCyK1Fpjd4mzdwiLYiyOcBujSvqLcOOaLRlp9GkECoYAsylB2kZOUDjdxMJd2PaHA6UI5N0PBCKfxhwXbErPyGx47Qsu8bKGJ48YrM78RrpOBqr7KxdYzAch2eM6jG7Ixqt7DSaFOLwDioO0rNygMZv7xWejWmzOyOzJxs7ocRm7TvpzkjQfpshnxWxE58twxxXDIUaHF14NiY2Bza37sbUaGWn0aQUhxeV23BnmopENVKRRCw7uwPDbVo5jT3Tzq78hAwH6ekZ+JSt8fttWuOK2JwEIhNKGm6J+a29MTHs2N2JUfCalo1WdhpNCqGsk8oNmx1xJnYNm93hjFq71zhl51B+goaLDJeNMtIaf4ROeA2czUHA3viF6uZszIBp2Vljn4EKreyOZLSy02hSidDhpQfY7FTgwvA1coKKtTuJzZmGPc20Fisaadk58KMMJxku6widxiq7SDemg1AClLw/FDI3grY5cYZntZYXNU5GTYtGKzuNJoUIr7Oz2RwAlEkGtkZadsp/WNmF1+55G7F2LxhSOPETtLnIdNkpVY1fBC7Bw92YidiCzBcI4cKHONJwpWcRVEKgkScpaFo2WtlpNClEeLswh8NUdhVGBo5AI3cn8Zt7a9od7shSAX8jKn5/MIQLPyHDSYbTtOwauwg8vOQCI2oLskZsGeYNmDIaDjeZbjulpBFs5BIOTctGr7PTaFKIkNWNaXeYf02PLQtXY5Vd0LTs7C437kwBwN+I8StfMIRTAgTsTgxDKDcysfsbJ6NhyYjdjS2t8evivL4AbnwEnG4yXHZKSMft0ZbdkYy27DSaFCJknXrgdJhnw/nsmbiDjZwyH7bsXGmRGZ6NOS/O4wviwgd283BcTwKsTyNgLXR3pOFIzwFANcKy8/l92ERhc1jKTqU3elarpmWjlZ1Gk0KEtwuz281uTL8ji/RQI8fDrAkqdmca6Zk5ZjqNGA/z+EO4CCB2FwA+exbuRm4uLUHrGCNHGo6Mxs+eDPrM+GzONDJddopJx2jkSQqalo1WdhpNChFWTA5XGgBBZxbpqpEbN1tdhGJ3k5mZSUAZ0Ih1cZ5AEBd+xGEpO0cWaaEyUKrBcdqCXoIYYHNEdo7xlhU1OL5oZWdado3fXFrTstHKTqNJIcQ6ZNTmNJVdyJlNFmUEQw1XJBKwrCa7G5fDThlp4GuEsvMFcIkfw+rGDDqzceCHQMMPmbUFK/AZZnyZGel4laNRW5AF/WYDwe5MI9NptzaX1uvsjmS0stNoUggj4KFCOUHMiSS4s3FJgLLyhlslKuAjhIC1nKFUMrA1Rtl5TIVsOEzlpFzZlkfDJ4DYg14CYlqKWW47JaQ1alxRWZad4XCT4bJRotJxaGV3RKOVnUaTQhhBD15xRq7FnQNA+aEDDY5TBTz4cUQUaJlk4vA3YvJHpIvQVE64zUkvjVJ2IS8Bm6k8s90OypSbUCOUXcgfHgN0Y7cZeGwZOIOljepq1bRstLLTaFIII+jBy2FlZ1i7f1SUNOK08oAHnzgil+W2zEZZOX6POTvUZp0TZ6TlAKAaqeyChqk826SZ3Y6N2YIs4LNmd1pdrX57FjYVBH/jjzfStEy0stNoUggj4MVndecB2K1p+J7Shlt29kAZPnFHrr22TNKCDVd2IWvbLcPaesxmLVT3NFAhK6VwKi9By7LLcjsobeS4YiA8AcfaVDroCK/d012ZRypa2Wk0KYQRrMAf1Y3pDJ9p14iZia5AKeW2rMi1OXuy4VZTsMK04OzW8T7OjHYAVJQ0TCF7/CHS8RK0m5Nyst0OSlVao8YVJWxlWlZnKLIFmV5+cKSilZ1Gk0IYQS8B47Bl58o0FUmgEcouLViCN0rZ+R1tyAg1fKG6z5IlI8uUzZnRtpJ7fSmq8JEjpYSs8Um3w6Bc0rA14gDXyJq68HhiZFxRK7sjFa3sNJoUwhb0ELClRa7dWaYiCVYUNTjOtFApPvthZRd0ZpOG5/CxOvUkbGW6rQXqadltLfeGdWMeLPOTI6XgNuMREXy2jEadVm73WZadpUDFbc0Y9eotw45UtLLTaFIIR8gTGbsCSM82radQRcMqaaUU6aFSQmHLhuilAg2zcoLWJtJidRFmZGThUzaC5Q1TdkUVPtpSgljdoQA+ewauYMO7Wp3+EkIYkRMUwuOLeszuyEUrO40mhcgIleB1ZEeuMzPbmDueNHCsqdgToA2lSJSyC3fpBcoaNsZmq9hn/kjPBSA7zUExGQ1eKlBcXIxb/Dgy20fcAo5snMoH1o4y9SEYUrj8RXjsWWCYVZwjI3zqu7bsjlS0stNoUog2qhi/MydybbMZlJKOrYHdbwcO7CdbKlDZXSJuYYvM08AJJWme3ZQY2eAwu1uz3A6KVfrhSSH1pGTvDjPetkdF3ALOhi9U31/qpRP78aQdjs+ZbnW16jPtjlgapexEZKaI7BCR5dbnzCi/34jIRhFZLyKnN15UjaZ14/VWkEkFYllMYcokvcEzEw8WbgbA0bZ7xM1mVfwNnT2Z7tlNsbNj5Nrc8SS9wSeql+/9AYDMTkdH3JSr4QvVCw956CIHCGYeVvDh0x58pUUNklHT8kmEZfeIUmqo9XkPQEQGAhcBg4BJwFMiYktAWhpNq+XAvj0A2DMrK7vGnBdXtPN7AHK7HRtxs1vLGXwNmFDi8Qc5KliINz1KkThslJKBrYHKTh3cAoC07XnY0d1wy277gXK6yR6Mtj0iblnpLkqVW1t2RzBN1Y05BXhVKeVVSm0GNgKjmigtjaZVULxnKwDOnM6V3D22DJwNPEJHFa4EILf3kIibM9Pq0mvAQvVNhfvpLbsIdhhQyb2iEbuyZB7aYC6kz+4WcZM0U0Y8RfWOb+e2jWRLBdk98iNuWW4HJaRH1ghqjjwSoeyuE5EVIvKciFgllK7Atqgw2y23KojIz0RkiYgs2bt3bwLE0WhaJhW7NgCQ1qlPJXePLQt3A3c8yTiwmp22LpUmqLit9XFBayeU+rB19SIcEqTdMcdVcvfaMnA1QCHvK/XS07ueA1l9wWaPuNuttXuBBsjoLVgMgKPrYQWf7TaP+WnorFZNy6dWZSciH4nIqjifKcDTwDHAUKAQeLi+Aiil/q6UGqGUGtGhQ4f63q7RtBo8uzcBcFSv/pXc/Y6GnVZe7vHS17OCAzn5ldwzMrIJKKNBFb9/46cAtBt4UiX3hu7KsmzDFobJRuh1QiV3R/hMu3qOK/oCITru/QqPkQFdhkbcs9NMy07voHLkYq8tgFLqlLpEJCLPAP+2LncA3aO8u1luGo2mGqRoM/vIoX12TiX3gCObDFV/ZfftwvcZJyXsGzi5knuG28EhMuo9Hlbs8XPMvk/YkdGfrpmVG6ZBRzauCmuhus1RTQxVKVz8FnYJkTvsx5XcwzvH+EoPkFEPGT9fu4OJfENxl7G4o+TIctvZrtIwGrEFmaZl09jZmNGDC+cCq6zf84GLRMQlIr2BPsDixqSl0bR22peso9DVu4p7yJlFOhUQCtUrPtuSf1BCBseOPbeSe6bbbi4VqOdyhq8++TeDpIBg/iVV/IINWKheWFTOkMK57HX1wNFzTGUZMzLxKnu99wRd/+krdJBicsdfXck92xqza8x+m5qWTWPH7B4QkZUisgKYCNwEoJRaDbwGrAH+A/xSKRVsZFoaTaulrOQQvQKbKe0wvIpfyNUGA4Wqh3Ja9s0XjKpYyA89L8BwZ1Xyy3DaKSajXmv3yr1+On7zAAeNtnSf+JOqASLKrqjOcX701nMMkU3YfvTLyOLvMFlpDopJJ1SPbdIWbSjkzH3PcTC9N7Y+p1bycztslEk6jgZO9NG0fGrtxqwJpdTlNfjdC9zbmPg1miOFH1YsJE8UGUePruIX3tfRW3oId3iWYg1UeLw43r+VYsmi39Q7q/jbDKFMMsitx+zJj155iLPVGgpG/5G2rsyqMqbVb13c8g0FnFTwCHvSetNx3NVV/LPdDopVBul1HFf0+IOse/1uxhi78Z01t4ryBPNoo4bOatW0fPQOKhpNCnDo+68A6DXkxCp+4R1Pyov31ymuxbNvZ3BoHXt/9Afc2e3jhim3ZeIM1E3Zfb30G07e8gg/ZB1Hr9OuixvGllb3HUoOlfvYP/eXdJIDZFzwdKVZmGGy00zrU+poKb782lwu977Knl7n4BwwKW6YgCMLp/I2eANsTcumUZZdS6bC42PnD6s4uH0DZQcLEV8JAezY0tqQflQfuvcfwVHt29UekUaTADJ3LWab0ZXuuUdV8Tt8gGvti8C/+vBfjC+czbL2ZzLstKoWUxiPLQtXHZTdlp27yH3nSkKGg85XPB/XYjJlNC07T8l+apqeEgop3nlmJpcFF7J9+G10O+b4uOGy3A42qXS61mGh+vyF3zJ5w+8odneh40WPVxsu6MgEH+Zm0On6v32kccQou4MH9rFh8X8IbVpAuwPL6RHYwjHiix94FXj/a2eFvT9FXcfT6bgp9M0bjVTzR9doGkMw4OfYipWsbn96pSnMYRyWsvPVouw2rP2OAV/eyA5Hdwb95O81hvXZs0jz1NylV1rhZedzlzOSHRw451U6tu9ZbdjwQnVv6UGyqg0Fb73+IhcfeIptnSbS/ce/rTZclstOMenYfTtrlPHbTYX0+vBq2trKsU+fd3jnlTiEXFlQhtnVmgRlV+ENsPH71ez9fglqzzoyijfi9u4jO1hEmioniI2Q4aDEkYs/syvSoT9ZvUfQbeDxOLO0Mk40rVrZFWxcw86vXqXdtg/p41vHaFFUKCeb3f1Z03EqRud8srv1p8NR3UnLaouhgpQc2M2+LWso2/Ql2Tu/JH/r07D1aXa91Z5tHU4gO38yvUecgTOtHhOigwHKi/dyaN8uSg/uwXNoN77ivQRL90H5AfPPF/RgC/mxh7zYQn4UipD1Z8CwoQw7SuwomxNlc6BsLsTmBJsLsTvA7sKwuzDsTrC7UIaTkM1BSOyICoEKISoISlnfQVAhCIVQKoSEAiilQCkUClQI8zJ8bflFwtQ0M1BiLqWqWxwXJVLVDTFvj3WrISYV/VsRF1XNVd3CV+Ouqv6sLr7owLaK/YyXCqT3+LghnVnh8+KKqouMA/v34njtEgyBjCtew5lek8qBkCsbZ4UP/B5wuKv6hxRf/O0GzggsZtPImRwzpObtbV1Z5hZnNR3g+umXCzl19R3sTjuabj95qVorEcAwhIpaulp3FVWw5+WrmWRsouycF3BHLSKPL2T4mJ+mWWvnC4RYvXIZe797H/fOr+nnXUGeFEX8d0sHip0dKXX34IA9E0Gh/B4yvHvovO9/dNr/HqwD3odC4yj2Z/VHdcojq/dx5HQfSJtOPRBHWrXpA/gDAUpLiikvKaKi9BCe8mJ8ZYfwVZQQqCgm5Ckh5C1FeUsRXymOYDmuUIUpCwZKDPNoJDEQw0AZDpTNCTYnGA6wOxGbw6x77C78mV0Ye+ZlTZKfiabVKbsDe3ay4b//oP0P8zg2uIlewEbbMXzT/Spy80+j95ATGeiqvsDkZHcip1c+nHgRAIf2bOX7L9/C+P4DBu55l4yP38T3kY1tts4ccHcn5M4hYM9ADAMj6CcU8GD3lZDmP0hG8BBZwSKyVBnpokiPk16pclMqmQQMJwFx4BcnQXGACIbyYgQCGCqIoQLYVQC78mMngMP6dhLAIXqia0unlDR6jzwjrp87s+bdRDxeL1v+No3BoUK2Tf4nR3cfEDdcNGIdaornUFxl9/6cx5hcNIe1Xc9nwJk31hpfRmY2ISXV7sry3feb6f3hT1A2B7lXv4m4albGAF5bNu5gqdliiGnxePxB/vv327hcLWTv6DvoMOScWuOLHOCawNPKiyt8LPnyIypWzqdf0RcMk+0A7Dfas6fDKA70+BEd+42mXc/BdHJn06maeIIhxZYd2ylctwjPlqWk7VtF56K19Di0ADYcDneITCokjYA4CGLDUEGcyosTHy7lI128tAVqn8YEFbiowE2FuFEYCCFMVacQpTAIYiOIQwVwEMAlVcc6vw4NBK3sks+GbxfQ6+3zGCNBNtj68PWxN3H0CRdzbI9+HFv77XFp07EHI869AbiB0rIyvvnfe/g2fobr0A+09ezAXb6RTFWOoPDhICh2yo0MSm05HHIdjc/VDpXWDtLbY89qjzO7I+k5HcludxRt2nciIz2DzFjTpR6EQooKfwCvtwKf14vPW4Hf50GCPiTkR0J+EBtKbIghKLFZrTYbhmFDrI9hGGAYGGIgIhiGgYiBISAIYhMMMTAM8xsRJI7cKtaUiWvaqKrOYQuyTuEqhwknEy1OtGSV3aWKG7WERamIe+V4JSpsNXHU8d1m2t1k2l1x/dIjp5VXnfyhlGLRrF8wwbeUFcPvIX9U/MkZsRhW1yieQ5BVuQr++L/vcsqGP7IpYyj9r3y6+syKIivNRQlpcZXdtr2H8PzzcgbIPjzT5uFq36tOMvocWdg9fvBXgPNwUzEUUsx+9nGuKX+JnT3OosukO+oUny09MQe4hkKKr1esZNfnLzBk/7ucJIUEMNiaNZR1x1xOtzHnkntUX3Lr8b+2GULP7t3p2b07cEEknc07C9m9YQm+fT+gindiL9uNPViBEfJhhAJgcxC0uVF28yPODMSVhc2diT0tC0daG5zpWbgy2pCWmU1GVhvcGW0QZyZpho2a7cTKqFAIfyCAz1tBwOfF7/PQQzW87ko2rUrZ9R58PEu+uZTO46fTd+DIhMefmZHByFMugFMuSHjcDcUwhDSXgzRX3Xet0LQs2rfJpFy5CMTpIvzk5fs5+eAbLO96CUOn3FDnOJ3WqeCe0v24ozZDWbpsKUMWXsMhey49fvE6YnfWKb7sNDvFKqPKOrviCh8rnvkpk9VKdp/0CJ36xe+qjUfQmQ0eTIUcpexeeP1Nphf+H3vaDKbL5f+okzIGcFrKLlBe1KCK72CZj88+eZf2y5/iR4FvMERRkDWUgiE30XPsBRyd4HFAwxB6d+tC725nJzTehiKGgdPpxOmsW5lINVqVsnM4XRz/8+pnY2k0LZEMl53dpKMqKk9Q+erfzzNh432szRrDkKseq1ecbstaLDm4D7e1acumzZtp//YlOA2FcdVbOLLqvldt+0wXK2hH15LDE0o8/iD/feompvo+YNugX9D9hKvqJWPQ3RaKgbK9kG1u1jTvo884e/UNeF3t6PDTN+J2wVZHZL/N0vopu+0Hyvjvu3Pp//0/OMdYTYlk8X2/n9HrlJ/Rq2ND+4w0yaZVKTuNprWy39aB9PLD28su+vgtjvvmNn5w9eeYa19H6rEfJYC7gzmzsmz3JjoABdt34H1xKl05wKHz36BT14H1i89hY6+tM30q1gDgD4Z4c9YfuKTkZTZ3P4/e5/+5XvEB2NsfA3sgtH8TRud8/v3FYoZ/8ROcNoO0q+cjWVWXadQoY1YOYJ7jV5fpZVv2lfDZ/BcYWvAsVxo/cMjZnt0j76TThGvoF2dhvSa10cpOo2kB7Hf3YIBnGQCLP5zLkC+vY4+jM12vnV/rzMt4HNO7D4dUOt7tK9iwaRPq5an0UdvYe8Y/6DLohNojiENxRk/alH6G59Be3nvhPi458A+2dpxI7xnP1LmrMZrsrv1hDZRsWcEXe3IZ9tmVtDXKsV0xH3vHvvWOLys9g70qG6NoW43hNu06yNfz/8bIHS8yXXaw392VovEPkXP8dNpUM66qSX20stNoWgCBjvm0L/iIJY9dyrD977PN0YuOv/g36TkdGxRfpzZuPrcNZvSOdyh98SMypYLCM5+nx6iGjw+poydirHiB4kdHc57azw9HncHRP30p7g4pdeG4Pt1Y8kFf+n8ziwnqKUI2F8aMd3H1qLp/aF3IcjvYpjrS+9CWuP4rN+9kzXtPMXbPHC6RfexOP4aiibPIPe6CBj+DJnXQq6Q1mhZAzxOns19lM+LAv1nd5kS63PAxmbldGhyfiBA68Q4K6cA+d0/Kpn/YKEUHcNqpZzDffRYeSWPj8N9z9M/+Wa/jfmI5tmMmKwfewh5pR2HuGNKvW4i7gYoOoFduOj+oLrj3r42cIBEMKb5atoJ5D19D99kjmLb3cSSrM4fOfZlOv15KzqiLtaJrJUiVqeLNyIgRI9SSJUuaWwyNJiXZsauQQOkBeh47qLlFabHc++eZ/M77CBsG3UjBoRBtdyzguNBKENjSfgIdJ91GxrFjm1vMIw4RWaqUGtGUaegmi0bTQuh6VGegc63hNNUz9PQZLJn3LiNWP0pfYJe9K9/3u5ZeJ11Fbz2zslWjlZ1GozlimDy8Fzt6fcqGHWvo3qULR+V2o35zOjUtFa3sNBrNEUXXdpnQblRzi6FJMnqCikaj0WhaPVrZaTQajabVk1KzMUVkLxB/EUz9aA/sS0A8yUDL2nS0JHlbkqzQsuRtSbJCy5I3UbL2VErVfX+6BpBSyi5RiMiSpp7Gmii0rE1HS5K3JckKLUveliQrtCx5W5KsuhtTo9FoNK0erew0Go1G0+pprcru780tQD3QsjYdLUneliQrtCx5W5Ks0LLkbTGytsoxO41Go9Foommtlp1Go9FoNBG0stNoNBpNq6dVKTsRmSQi60Vko4jc0dzyRCMi3UXkUxFZIyKrReQGy32miOwQkeXW58zmljWMiBSIyEpLriWWWzsR+a+IfG99t00BOftF5d9yESkWkRtTKW9F5DkR2SMiq6Lc4ualmDxmleMVItLwc20SJ+uDIrLOkuctEcmx3HuJSEVUHs9Kpqw1yFvtuxeR31h5u15ETk8BWedGyVkgIsst91TI2+rqrZQsuzWilGoVH8AGbAKOBpzAd8DA5pYrSr7OwHDrdxawARgIzARubW75qpG5AGgf4/YAcIf1+w7g/uaWM0452AX0TKW8BU4AhgOrastL4EzgfUCAMcDXKSDraYDd+n1/lKy9osOlUN7GfffWf+47wAX0tuoMW3PKGuP/MHBXCuVtdfVWSpbdmj6tybIbBWxUSv2glPIBrwJTmlmmCEqpQqXUt9bvEmAt0LV5pWoQU4AXrN8vAOc0nyhxORnYpJRKxE48CUMp9TlwIMa5urycAryoTBYBOSKStLN94smqlPpQKRWwLhcB3ZIlT21Uk7fVMQV4VSnlVUptBjZi1h1JoSZZRUSAC4E5yZKnNmqot1Ky7NZEa1J2XYFtUdfbSVFlIiK9gGHA15bTdZbJ/1wqdAtGoYAPRWSpiPzMcuuklCq0fu8COjWPaNVyEZUri1TNW6g+L1O9LF+F2XoP01tElonIZyIyvrmEikO8d5/KeTse2K2U+j7KLWXyNqbeanFltzUpuxaBiGQCbwA3KqWKgaeBY4ChQCFmN0aqME4pNRw4A/iliJwQ7anMfouUWbsiIk7gbOBfllMq520lUi0vq0NEfgcEgFcsp0Kgh1JqGHAz8E8RyW4u+aJoMe8+ioup3FBLmbyNU29FaClltzUpux1A96jrbpZbyiAiDswC84pS6k0ApdRupVRQKRUCniGJXSq1oZTaYX3vAd7ClG13uFvC+t7TfBJW4QzgW6XUbkjtvLWoLi9TsiyLyAzgx8ClVgWH1R243/q9FHMMrG+zCWlRw7tP1by1A+cBc8NuqZK38eotWljZhdal7L4B+ohIb6uFfxEwv5llimD1xz8LrFVK/SXKPbo/+1xgVey9zYGIZIhIVvg35gSFVZh5eoUV7Arg7eaRMC6VWsapmrdRVJeX84Hp1sy2McChqC6jZkFEJgG/Bs5WSpVHuXcQEZv1+2igD/BD80h5mBre/XzgIhFxiUhvTHkXJ1u+OJwCrFNKbQ87pELeVldv0YLKboTmniGTyA/mTKANmC2g3zW3PDGyjcM09VcAy63PmcBLwErLfT7QubllteQ9GnPW2nfA6nB+ArnAx8D3wEdAu+aW1ZIrA9gPtIlyS5m8xVTChYAfcxzjJ9XlJeZMtietcrwSGJECsm7EHIsJl91ZVtipVvlYDnwLnJUieVvtuwd+Z+XteuCM5pbVcp8NXBMTNhXytrp6KyXLbk0fvV2YRqPRaFo9rakbU6PRaDSauGhlp9FoNJpWj1Z2Go1Go2n1aGWn0Wg0mlaPVnYajUajafVoZafRaDSaVo9WdhqNRqNp9fw/MOr48PYyY68AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses, nrn_responses, True, 9)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The voltage traces look mostly very similar between Arbor and Neuron with the exception of the last spike in `step2` with the configuration axon replacement `False` and parameter index `3`. We can perform spike time analysis to understand this quantitatively. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Spike time cross-validation\n", - "\n", - "To compare Arbor and Neuron voltage traces further, we analyze the spike counts and times with the eFEL library and Arbor's built-in spike detector. Note that while eFEL measures the `peak_time`, Arbor's spike detector as configured above will measure the time when the voltage passes a threshold of -10 mV." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Falsestep10.1000.030Spikecount1.0001.0001.0000.0000.0000.0000.000
time_to_first_spike4.7004.8004.4170.1002.1280.3838.670
time_to_last_spike4.7004.8004.4170.1002.1280.3838.670
step20.1000.030Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike1.7001.8001.4560.1005.8820.34423.596
....................................
Truestep10.1090.023time_to_last_spike41.60041.80041.4370.2000.4810.3630.876
step20.1090.023Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike2.2002.2001.8130.0000.0000.38721.330
time_to_second_spike14.30014.40013.9670.1000.6990.4333.100
time_to_last_spike49.40049.70049.2740.3000.6070.4260.865
\n", - "

120 rows × 7 columns

\n", - "
" - ], - "text/plain": [ - " Neuron Arbor \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 1.000 1.000 \n", - " time_to_first_spike 4.700 4.800 \n", - " time_to_last_spike 4.700 4.800 \n", - " step2 0.100 0.030 Spikecount 5.000 5.000 \n", - " time_to_first_spike 1.700 1.800 \n", - "... ... ... \n", - "True step1 0.109 0.023 time_to_last_spike 41.600 41.800 \n", - " step2 0.109 0.023 Spikecount 5.000 5.000 \n", - " time_to_first_spike 2.200 2.200 \n", - " time_to_second_spike 14.300 14.400 \n", - " time_to_last_spike 49.400 49.700 \n", - "\n", - " Arbor_int \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 1.000 \n", - " time_to_first_spike 4.417 \n", - " time_to_last_spike 4.417 \n", - " step2 0.100 0.030 Spikecount 5.000 \n", - " time_to_first_spike 1.456 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 41.437 \n", - " step2 0.109 0.023 Spikecount 5.000 \n", - " time_to_first_spike 1.813 \n", - " time_to_second_spike 13.967 \n", - " time_to_last_spike 49.274 \n", - "\n", - " abs_diff Arbor to Neuron \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.100 \n", - " time_to_last_spike 0.100 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.100 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.200 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - " time_to_second_spike 0.100 \n", - " time_to_last_spike 0.300 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 2.128 \n", - " time_to_last_spike 2.128 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 5.882 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.481 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - " time_to_second_spike 0.699 \n", - " time_to_last_spike 0.607 \n", - "\n", - " abs_diff eFEL to Arbor-internal \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.383 \n", - " time_to_last_spike 0.383 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.344 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.363 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 0.387 \n", - " time_to_second_spike 0.433 \n", - " time_to_last_spike 0.426 \n", - "\n", - " rel_abs_diff eFEL to Arbor-internal [%] \n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 8.670 \n", - " time_to_last_spike 8.670 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 23.596 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.876 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 21.330 \n", - " time_to_second_spike 3.100 \n", - " time_to_last_spike 0.865 \n", - "\n", - "[120 rows x 7 columns]" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "efel_features = ['Spikecount',\n", - " 'time_to_first_spike',\n", - " 'time_to_second_spike',\n", - " 'time_to_last_spike']\n", - "\n", - "\n", - "# Extract spike observables from protocol simulation responses\n", - "def get_spike_data(protocols, do_replace_axon, param_values,\n", - " arb_resp, nrn_resp):\n", - " spike_res = []\n", - "\n", - " for step in protocols:\n", - " recording_name = step['recording_name']\n", - " stim_start = step['delay']\n", - " stim_end = stim_start + step['duration']\n", - " \n", - " for efel_feature_name in efel_features:\n", - " # Calculate spike observables with eFEL\n", - " feature_name = '%s.%s' % (step['name'], efel_feature_name)\n", - " feature = ephys.efeatures.eFELFeature(\n", - " feature_name,\n", - " efel_feature_name=efel_feature_name,\n", - " recording_names={'': recording_name},\n", - " stim_start=stim_start,\n", - " stim_end=stim_end)\n", - "\n", - " # Calculate spike observables with Arbor\n", - " try:\n", - " if efel_feature_name == 'Spikecount':\n", - " arbor_int = len(arb_resp[recording_name]['spikes'])\n", - " elif efel_feature_name == 'time_to_first_spike':\n", - " arbor_int = arb_resp[recording_name]['spikes'][0]-stim_start\n", - " elif efel_feature_name == 'time_to_second_spike':\n", - " arbor_int = arb_resp[recording_name]['spikes'][1]-stim_start\n", - " elif efel_feature_name == 'time_to_last_spike':\n", - " arbor_int = arb_resp[recording_name]['spikes'][-1]-stim_start\n", - " except Exception:\n", - " arbor_int = numpy.nan\n", - "\n", - " spike_res.append(dict(\n", - " replace_axon=do_replace_axon,\n", - " protocol=step['name'],\n", - " **param_values,\n", - " efel=efel_feature_name,\n", - " Neuron=feature.calculate_feature(nrn_resp),\n", - " Arbor=feature.calculate_feature(arb_resp),\n", - " Arbor_int=arbor_int))\n", - " return spike_res\n", - "\n", - "\n", - "# Compare spike observables between Arbor and Neuron\n", - "def analyze_spikes(spike_res):\n", - " spike_res_df = pandas.DataFrame(spike_res)\n", - " spike_res_df.set_index(\n", - " ['replace_axon', 'protocol',\n", - " 'gnabar_hh', 'gkbar_hh', 'efel'], inplace=True)\n", - " spike_res_df.dropna(how='all', inplace=True) # drop all-NaN rows\n", - "\n", - " # Arbor to Neuron cross-validation with eFEL\n", - " spike_res_df['abs_diff Arbor to Neuron'] = \\\n", - " spike_res_df.apply(\n", - " lambda r: abs(r['Arbor']-r['Neuron']), axis=1)\n", - " spike_res_df['rel_abs_diff Arbor to Neuron [%]'] = \\\n", - " spike_res_df.apply(\n", - " lambda r: 100.*abs(r['Arbor']-r['Neuron'])/r['Neuron']\n", - " if r['Neuron'] != 0 else numpy.nan, axis=1)\n", - "\n", - " # Cross-validation of eFEL's spike detection with Arbor's\n", - " spike_res_df['abs_diff eFEL to Arbor-internal'] = \\\n", - " spike_res_df.apply(\n", - " lambda r: abs(r['Arbor']-r['Arbor_int']), axis=1)\n", - " spike_res_df['rel_abs_diff eFEL to Arbor-internal [%]'] = \\\n", - " spike_res_df.apply(\n", - " lambda r: 100.*abs(r['Arbor']-r['Arbor_int'])/r['Arbor_int']\n", - " if r['Arbor_int'] != 0 else numpy.nan, axis=1)\n", - " return spike_res_df\n", - "\n", - "\n", - "# Aggregate all simulations into a single data frame \n", - "def joint_spike_analysis(arb_resp, nrn_resp, replace_axon_policies, param_list):\n", - " return pandas.concat(\n", - " [analyze_spikes(get_spike_data(protocol_steps,\n", - " replace_axon_policies[key[0]],\n", - " param_list[key[1]],\n", - " arb_resp[key],\n", - " nrn_resp[key]))\n", - " for key in arb_responses], axis=0)\n", - "\n", - "\n", - "pandas.options.display.float_format = '{:,.3f}'.format\n", - "# pandas.options.display.max_rows = None # uncomment for full view\n", - "spike_results = joint_spike_analysis(arb_responses, nrn_responses, replace_axon, params)\n", - "spike_results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To understand the deviations over the entire parameter set and different axon replacement policies, we explore the per eFEL-observable statistics. `Spikecount`s are fully consistent between Arbor and Neuron, whereas `time_to_last_spike` shows a max 1.8 ms." - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.0680.0610.0000.0000.1000.1000.20028.0001.8272.160-0.2160.0001.3503.0056.250
time_to_last_spike40.0000.1470.2950.0000.0000.1000.2001.80028.0001.5601.7330.0000.4800.7192.4585.556
time_to_second_spike12.0000.1170.0390.1000.1000.1000.1000.20012.0001.3261.6750.4270.6590.6990.7756.250
\n", - "
" - ], - "text/plain": [ - " abs_diff Arbor to Neuron \\\n", - " count mean std min 25% 50% \n", - "efel \n", - "Spikecount 40.000 0.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike 28.000 0.068 0.061 0.000 0.000 0.100 \n", - "time_to_last_spike 40.000 0.147 0.295 0.000 0.000 0.100 \n", - "time_to_second_spike 12.000 0.117 0.039 0.100 0.100 0.100 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - " 75% max count mean std \n", - "efel \n", - "Spikecount 0.000 0.000 28.000 0.000 0.000 \n", - "time_to_first_spike 0.100 0.200 28.000 1.827 2.160 \n", - "time_to_last_spike 0.200 1.800 28.000 1.560 1.733 \n", - "time_to_second_spike 0.100 0.200 12.000 1.326 1.675 \n", - "\n", - " \n", - " min 25% 50% 75% max \n", - "efel \n", - "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike -0.216 0.000 1.350 3.005 6.250 \n", - "time_to_last_spike 0.000 0.480 0.719 2.458 5.556 \n", - "time_to_second_spike 0.427 0.659 0.699 0.775 6.250 " - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spike_results[['abs_diff Arbor to Neuron',\n", - " 'rel_abs_diff Arbor to Neuron [%]']].groupby('efel').describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we inspect the traces with highest difference in `time_to_last_spike`, we find that there is a single outlier, consistent with the plot above (axon replacement `False`, parameter index `3`)." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Falsestep20.1230.035time_to_last_spike51.00052.80052.5001.8003.5290.3000.572
Truestep10.1200.030time_to_last_spike48.10048.50048.0860.4000.8320.4140.861
Falsestep20.1000.030time_to_last_spike50.60051.00050.6220.4000.7910.3780.747
Truestep20.1090.023time_to_last_spike49.40049.70049.2740.3000.6070.4260.865
Falsestep10.1200.030time_to_last_spike41.70042.00041.7020.3000.7190.2980.716
\n", - "
" - ], - "text/plain": [ - " Neuron Arbor \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step2 0.123 0.035 time_to_last_spike 51.000 52.800 \n", - "True step1 0.120 0.030 time_to_last_spike 48.100 48.500 \n", - "False step2 0.100 0.030 time_to_last_spike 50.600 51.000 \n", - "True step2 0.109 0.023 time_to_last_spike 49.400 49.700 \n", - "False step1 0.120 0.030 time_to_last_spike 41.700 42.000 \n", - "\n", - " Arbor_int \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step2 0.123 0.035 time_to_last_spike 52.500 \n", - "True step1 0.120 0.030 time_to_last_spike 48.086 \n", - "False step2 0.100 0.030 time_to_last_spike 50.622 \n", - "True step2 0.109 0.023 time_to_last_spike 49.274 \n", - "False step1 0.120 0.030 time_to_last_spike 41.702 \n", - "\n", - " abs_diff Arbor to Neuron \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step2 0.123 0.035 time_to_last_spike 1.800 \n", - "True step1 0.120 0.030 time_to_last_spike 0.400 \n", - "False step2 0.100 0.030 time_to_last_spike 0.400 \n", - "True step2 0.109 0.023 time_to_last_spike 0.300 \n", - "False step1 0.120 0.030 time_to_last_spike 0.300 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step2 0.123 0.035 time_to_last_spike 3.529 \n", - "True step1 0.120 0.030 time_to_last_spike 0.832 \n", - "False step2 0.100 0.030 time_to_last_spike 0.791 \n", - "True step2 0.109 0.023 time_to_last_spike 0.607 \n", - "False step1 0.120 0.030 time_to_last_spike 0.719 \n", - "\n", - " abs_diff eFEL to Arbor-internal \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step2 0.123 0.035 time_to_last_spike 0.300 \n", - "True step1 0.120 0.030 time_to_last_spike 0.414 \n", - "False step2 0.100 0.030 time_to_last_spike 0.378 \n", - "True step2 0.109 0.023 time_to_last_spike 0.426 \n", - "False step1 0.120 0.030 time_to_last_spike 0.298 \n", - "\n", - " rel_abs_diff eFEL to Arbor-internal [%] \n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step2 0.123 0.035 time_to_last_spike 0.572 \n", - "True step1 0.120 0.030 time_to_last_spike 0.861 \n", - "False step2 0.100 0.030 time_to_last_spike 0.747 \n", - "True step2 0.109 0.023 time_to_last_spike 0.865 \n", - "False step1 0.120 0.030 time_to_last_spike 0.716 " - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spike_results[ [el[spike_results.index.names.index('efel')] == 'time_to_last_spike'\n", - " for el in spike_results.index] ].sort_values(\n", - " by='abs_diff Arbor to Neuron', ascending=False).head(5)" + "efel_feature_means = {'step1': {'Spikecount': 1}, 'step2': {'Spikecount': 5}}\n", + "\n", + "objectives = []\n", + "\n", + "for protocol in sweep_protocols:\n", + " stim_start = protocol.stimuli[0].step_delay\n", + " stim_end = stim_start + protocol.stimuli[0].step_duration\n", + " for efel_feature_name, mean in efel_feature_means[protocol.name].items():\n", + " feature_name = '%s.%s' % (protocol.name, efel_feature_name)\n", + " feature = ephys.efeatures.eFELFeature(\n", + " feature_name,\n", + " efel_feature_name=efel_feature_name,\n", + " recording_names={'': '%s.soma.v' % protocol.name},\n", + " stim_start=stim_start,\n", + " stim_end=stim_end,\n", + " exp_mean=mean,\n", + " exp_std=0.05 * mean)\n", + " objective = ephys.objectives.SingletonObjective(\n", + " feature_name,\n", + " feature)\n", + " objectives.append(objective)" ] }, { "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the spike times, we find the anticipated bias between eFEL and Arbor's internal spike detector." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.3470.0380.2650.3270.3500.3740.44328.00013.6026.836-0.3818.55114.25519.16224.861
time_to_last_spike28.0000.3490.0440.2650.3080.3500.3790.42628.0007.8147.1850.5720.8646.78314.18121.150
time_to_second_spike12.0000.3730.0390.2920.3580.3740.3870.43412.0005.1967.7451.2862.1932.5542.92828.464
\n", - "
" - ], - "text/plain": [ - " abs_diff eFEL to Arbor-internal \\\n", - " count mean std min 25% \n", - "efel \n", - "Spikecount 40.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike 28.000 0.347 0.038 0.265 0.327 \n", - "time_to_last_spike 28.000 0.349 0.044 0.265 0.308 \n", - "time_to_second_spike 12.000 0.373 0.039 0.292 0.358 \n", - "\n", - " \\\n", - " 50% 75% max \n", - "efel \n", - "Spikecount 0.000 0.000 0.000 \n", - "time_to_first_spike 0.350 0.374 0.443 \n", - "time_to_last_spike 0.350 0.379 0.426 \n", - "time_to_second_spike 0.374 0.387 0.434 \n", - "\n", - " rel_abs_diff eFEL to Arbor-internal [%] \\\n", - " count mean std \n", - "efel \n", - "Spikecount 28.000 0.000 0.000 \n", - "time_to_first_spike 28.000 13.602 6.836 \n", - "time_to_last_spike 28.000 7.814 7.185 \n", - "time_to_second_spike 12.000 5.196 7.745 \n", - "\n", - " \n", - " min 25% 50% 75% max \n", - "efel \n", - "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike -0.381 8.551 14.255 19.162 24.861 \n", - "time_to_last_spike 0.572 0.864 6.783 14.181 21.150 \n", - "time_to_second_spike 1.286 2.193 2.554 2.928 28.464 " - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], - "source": [ - "spike_results[['abs_diff eFEL to Arbor-internal',\n", - " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, + }, "source": [ - "### Running protocols with a finer time step\n", + "### Creating the cell evaluator\n", "\n", - "To rule out the discretization as a possible source of the above error in `time_to_last_spike`, we can re-run the simulations at a smaller `dt` of 0.001 ms (default is 0.025 ms)." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "arb_responses_fine_dt, nrn_responses_fine_dt = run_all_simulations(replace_axon, params, dt=0.001)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABkBklEQVR4nO2deXwURdr4v8/cSQggAZRLLrlJSJAEFFBwFQ9WEVHBRVl03V131fVe2UNfdPX3eq6uyoq6KK66CJ7o67miEVERQe5T0HCJyBUg51z1+6N7hkkyk0ySTmaS1PfzmaS7qvrpp6u66+k6uh5RSqHRaDQaTbJhS7QCGo1Go9FEQxsojUaj0SQl2kBpNBqNJinRBkqj0Wg0SYk2UBqNRqNJSrSB0mg0Gk1Sog1UJUSkh4goEXEkWpfmjohMF5EljXSuFBF5V0QOicgfG+Oclc5fICJnNsJ58kXk6hhxzf7eNq/vpNrGWaxDzLIWkTEisquhdbAaEXlbRPaJyIONeV5toDSWICIzRcQnIkURv0Y3BNVwJpAFdFNKPRAKNCuTHgnTKokwy3BmLdL/QkS2i0ixiLwpIu2qSfu0iGwWkaCITK+lXi2mjERkbm3yR0RuEpEfReSIiDwrIu5q0v5MRDaJSImIfCIi3SPiHhCRnaac7SLy58hjlVLnA2OBW0Wkbe2vrG40OwPVnN8OmwDzlVKtIn4P1HxIo9EOKFBKFSVakfogBgl/bkVkEPAUcAVwPFAC/LOaQ1YDvwe+aXjtGpZkqWNE5GxgBvAzoDvQC7grRtr2wOvAHRjPwnJgfkSSOUB/pVRr4FRgqohcFClDKbXO3Myw8DKqJeE3uhWYb1i3i8gaoFhEHCIyQkS+EJFCEVktImMi0ueLyP+KyDLzjWFhrLc/EblSRDaKyFER+U5EflspfoKIrDLlbBORc8zwNiIyR0T2iMhuEblHROw1XEdvEflYRA6IyH4ReSn0tmLGHRSRoeZ+Z7PJPcbcv0BE1pvXmy8iAyrlz60iskZEDovIfBHx1D6na4+IzDDz5aiIbBCRiTHSiYg8IiI/mXm5VkQGm3FuEXlIRHaIyF4RmS0iKbVUxQEEa9A1Q4yujCMi8rVZZksi4pWIXCMi35r5PEtExIyLWXYR5Jp5cEhEnguVgYgcJyL/Z5bnIXO7a8R580XkXhH5HMMQ9KrhWruLyOdmnn9oVk6RTDXzcr+I/KUGWbGYCrytlFpsGv07gItEJD1aYqXULKXUIqCsjucDai6jSmlHidEqGBMRfJ75HO8XkQfFNPY1lZ9EqWNqUDW7uudNRG4x7/U9InJlXfIC+CUwRym1Xil1CPgbMD1G2ouA9UqpV5RSZcBMYIiI9AdQSm1WShVHpA8C0bpDFcaz1DgopZr8DygAVgHdgBSgC3AAOA/DCJ9l7ncw0+cDu4HBQBrwGvCiGdcDsxDM/fFAb0CA0zEqiKFmXB5w2JRvM8/b34x7A+MNMw3oCCwDflvDdZxkynIDHYDFwKMR8b8GNgCpwAfAQ2Z4X6DYPNYJ/BHYCrgi8mcZ0Bnj7WkjcE0MHUYBhdX8RsU4bmYoDyuFX2Ke1wZMNvXsZMZNB5aY22cDK4C2Zl4PiEj3CPCWqXs68Dbwv7W4P5zAC9H0q5TuZfOXCgwEdob0M+MV8H+mjicC+4Bz4iy7AmAdxj3aDvgcuMeMywAmmedNB14B3ow4Nh/YAQzCqByc1VxDPrDNvCdSzP37Kt3bz5hxQ4ByYEAMWdWV90Lg9kphRcDJNeTxEmB6PZ71eMroJOAcMy6vUtwnZv6fCGwBrq5F+a0yyy8ljvoo6vMGjAH8wN3mfXkeRp1yXBQ5J5plcGKM86wGJkfstzevMSNK2n8AT1YKWwdMitifYZahAr4DukaRsx24FpC6lmGtyrsxTtLgF2HcEFdF7N8OvFApzQfAL83t8ENr7g8EvICdSgYqyrneBG4wt58CHomS5njzwU+JCLsM+KSW13UhsLJS2FvAWmAN4DbD7gAWRKSxYRjgMRH5c3lE/APAbIvLYKaZh4URv85R0q0CJpjb0zlmoM7AqDBGALaI9IJh1HpHhJ0CfB+nXtmAD9gLnFRNOruZrl9E2D1UrfxGRewvAGbEU3ZmGVwTsX8esK0anQ9F7OcDd8d5vfnAXyP2fw+8b26H7u2uEfHLgCl1KO9FVHrJibznqjmuzgaqFmX0J4yKdHCl4xXmC0VE3iyqRfldFaeeMZ83DANVSkT9AvwEjKhDfmyrdD1O8xp7REk7h4g6zwz7vHJZmM9bDkZXYXoUORMxn/O6lGFtf82ii89kZ8R2d+ASsxumUEQKMVoGnWKk345RuJW7QhCRc0Vkqdm9VohRsYTSdcO4SSrT3ZS3J+L8T2G0pGIiIseLyMtidAkeAV6MotMzGC2/x5VS5WZYZ/MaAFBKBc3r6xJx3I8R2yVAq+p0qSMLlFJtI34/iMg0MbpAQ/kwmCj5rJT6GHgCmAX8JMagemuMt9lUYEWEjPfN8BpRSq3CaJV8CdxYTdIOGK2TyPtiZ5R0UfMxzrKrfM91No9NFZGnxBicPoLx9t5WKnYJR9MlFjWVtRX3QhHQulJYa+BoHWTFS7xldCPGvbguSlysMqht+dVEdXl8QCnlryY+XiqXQWg7WhnEVV7KYCWGEY02nnUXxstozAkxVtKcDFTksuw7MVpQkZVlmlLqvog03SK2T8R4M9sfKVCMGTGvAQ8Bxyul2gLvYrxlhM7TO4ouOzFaUO0jzt9aKTWohmv4f+Z1ZCpjsPLyiHMhIq2ARzHehmbKsXGzHzCMYiidmNe3u4bzVUFERkvFmXiVf6NrIas7hkG9DqPboS1Gt4JES6+UekwpdTJGi7YvcBtGmZQCgyLyso1SKu4HWhl97u+ZcmOxD6PrpWtEWLcYaaNRbdlFkXciRrkB3AL0A4abx55mhkceH3l/JwPrMboIARCRXhjdY1sa8JzxltElwIUickOUuFhlEE/5JXUZmNt7lVIHakorImkYddf6GLIdRK/bBgALzZfgBqc5GahIXgTOF5GzRcQuIh4xvj+IvLEvF5GBIpKK0R/8qlIqUEmOC+Oh2wf4ReRcYFxE/BzgSjGmb9pEpIuI9FdK7QE+BB4WkdZmXG8ROb0GvdMx3nQOi0gXjAo6kn8Ay5VSVwPvALPN8AXAeFMPJ0aFVw58UVNGVUYp9ZmqOBOv8u+zWohLw3io94Ex4QSjBVUFEckVkeGm/sUYg+lB80F4BnhERDqaabuIMYMpdKyqNBAejXKM8oyKWfavYxj+VHPweFpcV2lQU9kBXCsiXc0Xi79wbBZVOoYRLjTj/qcW500UL2E8Y6PNyu5u4HWlVNQWlIi4zIkCAjjNZzI0QWGMiNRY+deijH7AmNl2g4j8rlLcbWJMSukG3EDFMqip/JKNfwO/MuuxtsBfgbkx0r4BDBaRSWY53AmsUUptMuun35r5IiKShzHOtCiKHAfGs9QoNEsDpZTaCUwA/oxROe7EuOEir/cFjML8EfAAf4gi56gZvgA4BPwCYwwoFL8MuBJjEP8w8CnHWjLTMCrEDeaxr1KxizEadwFDTVnvYDyMgDFbEGPgN/TA3QwMFZGpSqnNGG98j2O0OM4HzldKeWs4X4OilNoAPIzRvbYXyMTo945GawxDdAij6+UAEPoo8HaMSR9Lze6XjzBaHJgVzVGMcbnqCFLz/X4d0AbjnngBmEf8D2PMsovgPxgvLt9hdA3fY4Y/ijFpYT+wFKMLM+FU12JWSq0HrsEwVD9hVPC/jzj2Pan4Lc2HGEb4VOBpczvUUuxG/C9TcZWRUmoHhpGaIRU/XF6IMRlnFUY5zTHD4ym/RkVETjTL4MRo8Uqp9zHGtz7BmESznYiXGzFm9U410+7DmIhzL8YzNhyYEiFuIsY9eRTjBf9x8xepT6jLuVFaT2DOxGhpiEg+xoyufyVaF039EJHLMbr//lRDunEYD15/pdTBOGXfD5yglPpl/TXVxEJE/gW8opT6oA7H6jJqJMyW1ZdA21gtZatJig/ONJq6opR6Mc6k+cB/gfUi8rBS6qHKCcwuIxdGaywX+BUQddkgjXWYXdZxocsoMYjImxgtzDsayziBNlCNjojMxuiOq8yLSqlrGlufloLZ3Tm1hmTpGF1GnTG6JB/G6BJKKkQk1moY59ZyjLApkvAyMrvcNsSIHmh2LzYrlFIXJuK8LbKLT6PRaDTJT7OcJKHRaDSapk9SdfG1b99e9ejRI9FqaDQajaYRWbFixX6lVJWP75PKQPXo0YPly5cnWg2NRqPRNCIisj1auO7i02g0Gk1Sog2URtME0JOZNC0RbaA0miRn2/ffs31mfzas/irRqmg0jUpSjUFFw+fzsWvXLsrK6uXnTNPC8Hg8dO3aFafTmWhV6s3uLxdwmvzIqiWPw5DhiVZHo2k0kt5A7dq1i/T0dHr06IGxSLdGUz1KKQ4cOMCuXbvo2bNnotWpNx6bsYZxebBah8waTbMj6bv4ysrKyMjI0MZJEzciQkZGRrNpdYsrDQC7v7iGlBpN8yLpDRSgjZOm1jSneyY0QcLli7XCkUbTPGkSBkqjackEg0YXnyugDZSmZaENVByICLfcckt4/6GHHmLmzJmJU6gG8vPz+eKLWvsqrMA555xD27Zt+fnPf26RVpo6YxooR7B5dFlqNPGiDVQcuN1uXn/9dfbv319z4lqglCIYtN73lxUG6rbbbuOFF16wSCNNfVBhA5VQ/5MaTaOjDVQcOBwOfvOb3/DII49Uidu3bx+TJk0iNzeX3NxcPv/ccBg7c+ZMHnromMuhwYMHU1BQQEFBAf369WPatGkMHjyYnTt3cttttzF48GAyMzOZP9/wQJ2fn8+YMWO4+OKL6d+/P1OnTo36seZjjz3GwIEDycrKYsqUKRQUFDB79mweeeQRsrOz+eyzz6rV8YorruCUU06hT58+PPPMM2G5P/vZz0hPT682X1555RUGDx7MkCFDOO00wzlqWVkZV155JZmZmeTk5PDJJ58AMHfuXC688ELOOussevTowRNPPMHf//53cnJyGDFiBAcPGj4En3nmGXJzcxkyZAiTJk2ipKSkynlHjBjB+vXrw/tjxoxp1ktkhQ1UYh0kazSNTtJPM4/krrfXs+GHI5bKHNi5Nf9z/qAa01177bVkZWXxxz/+sUL4DTfcwE033cSoUaPYsWMHZ599Nhs3bqxW1rfffsvzzz/PiBEjeO2111i1ahWrV69m//795Obmhiv7lStXsn79ejp37szIkSP5/PPPGTVqVAVZ9913H99//z1ut5vCwkLatm3LNddcQ6tWrbj11lsB+MUvfhFTxzVr1rB06VKKi4vJyclh/PjxdO7cOa68u/vuu/nggw/o0qULhYWFAMyaNQsRYe3atWzatIlx48axZcsWANatW8fKlSspKyvjpJNO4v7772flypXcdNNN/Pvf/+bGG2/koosu4te//jUAf/3rX5kzZw7XX399hfNOnjyZBQsWcNddd7Fnzx727NnDsGHD4tK5KRIyUC5toDQtDN2CipPWrVszbdo0HnvssQrhH330Eddddx3Z2dlccMEFHDlyhKKi6gezu3fvzogRIwBYsmQJl112GXa7neOPP57TTz+dr7/+GoC8vDy6du2KzWYjOzubgoKCKrKysrKYOnUqL774Ig5H9PeN6nScMGECKSkptG/fnrFjx7Js2bK482TkyJFMnz6dZ555hkAgEL6eyy83/DH279+f7t27hw3U2LFjSU9Pp0OHDrRp04bzzz8fgMzMzPC1rVu3jtGjR5OZmclLL71UoaUU4tJLL+XVV18FYMGCBVx88cVx69wUEaUNlKZl0qRaUPG0dBqSG2+8kaFDh3LllVeGw4LBIEuXLsXj8VRI63A4KowvRX6Tk5aWFtf53G53eNtut+P3+6ukeeedd1i8eDFvv/029957L2vXrq2SJpaOUHU6dm2mZ8+ePZuvvvqKd955h5NPPpkVK1ZUmz7yemw2W3jfZrOFr2369Om8+eabDBkyhLlz55Kfn19FTpcuXcjIyGDNmjXMnz+f2bNnx61zU0SZxt+FNlCaloVuQdWCdu3acemllzJnzpxw2Lhx43j88cfD+6tWrQIM1yHffPMNAN988w3ff/99VJmjR49m/vz5BAIB9u3bx+LFi8nLy4tLn2AwyM6dOxk7diz3338/hw8fpqioiPT0dI4ePVqjjgALFy6krKyMAwcOkJ+fT25ublznBti2bRvDhw/n7rvvpkOHDuzcuZPRo0fz0ksvAbBlyxZ27NhBv3794pZ59OhROnXqhM/nC8uJxuTJk3nggQc4fPgwWVlZcctviihlGG+3bkFpWhjaQNWSW265pcJsvscee4zly5eTlZXFwIEDw2/zkyZN4uDBgwwaNIgnnniCvn37RpU3ceJEsrKyGDJkCGeccQYPPPAAJ5xwQly6BAIBLr/88vCEhD/84Q+0bduW888/nzfeeCM8SSKWjmB0EY4dO5YRI0Zwxx13hMefRo8ezSWXXMKiRYvo2rUrH3zwAQB33nknb731FmDM9MvMzGTw4MGceuqpDBkyhN///vcEg0EyMzOZPHkyc+fOrdByqom//e1vDB8+nJEjR9K/f/9w+FtvvcWdd94Z3r/44ot5+eWXufTSS+OW3WQxx6DsoghEaUVrNM0VSaZl/IcNG6Yqz8bauHEjAwYMSJBGzZuZM2dWmEzR3Ggu986SZ25m1G6j1X70pu9Jb9MuwRppNNYiIiuUUlVmOukWlEaT7JgtKICyYmtnsWo0yUyTmiShsZZkXg1DcwwVaaBKjlaTUqNpXugWlEaT5ISmmQOUawOlaUFoA6XRJDkqwkB5tYHStCC0gdJokhyJ6OLzlekVzTUtB22gNJpkJ8JA+bWB0rQgtIGKkzfffBMRYdOmTTHTFBQUMHjw4AbVY9WqVbz77rv1knHVVVfRsWPHBtdVYw2RY1CBMt3Fp2k5aAMVJ/PmzWPUqFHMmzcvany0ZYhqS2g9u+qwwkBNnz6d999/v14yNI2IChLEWIIqWF51dXeNprmiDVQcFBUVsWTJEubMmcPLL78cDs/Pz2f06NFccMEFDBw4EDAM1dSpUxkwYAAXX3xx2F3EokWLyMnJITMzk6uuuory8nLAWBLp9ttvZ+jQobzyyisVzlvZnYXX6+XOO+9k/vz5ZGdnM3/+fIqLi7nqqqvIy8sjJyeHhQsXAoZ7iwkTJjBmzBj69OnDXXfdFZZ72mmn0a5d9R97fvrpp2RnZ5OdnU1OTg5Hjx5FKRXTNcjpp5/OhAkT6NWrFzNmzOCll14iLy+PzMxMtm3bBsDbb7/N8OHDycnJ4cwzz2Tv3r1VzjtlyhTeeeed8P706dPDC8O2VEQFKCIVgGB5cYK10Wgaj6b1HdR7M+DHqouh1osTMuHc+6pNsnDhQs455xz69u1LRkYGK1as4OSTTwaMdfbWrVtHz549KSgoYPPmzcyZM4eRI0dy1VVX8c9//pPrrruO6dOns2jRIvr27cu0adN48sknufHGGwHIyMgIr9sXSWV3Fi6Xi7vvvpvly5fzxBNPAPDnP/+ZM844g2effZbCwkLy8vI488wzAVi2bBnr1q0jNTWV3Nxcxo8fH7dbioceeohZs2YxcuRIioqK8Hg8vP766zFdg6xevZqNGzfSrl07evXqxdVXX82yZcv4xz/+weOPP86jjz7KqFGjWLp0KSLCv/71Lx544AEefvjhCucNudIYP348Xq+XRYsW8eSTT8alc3NFVJAy8dBaFYNXj0FpWg4N3oISkXNEZLOIbBWRGQ19voZg3rx5TJkyBTDe8CO7+fLy8ujZs2d4v1u3bowcORKAyy+/nCVLlrB582Z69uwZXo/vl7/8JYsXLw4fM3ny5KjnjebOojIffvgh9913H9nZ2YwZM4aysjJ27NgBwFlnnUVGRgYpKSlcdNFFLFmyJO5rHjlyJDfffDOPPfYYhYWFOByOal2D5Obm0qlTJ9xuN71792bcuHFARVcau3bt4uyzzyYzM5MHH3wwqiuNc889l08++YTy8nLee+89TjvtNFJSUuLWuzkiKkAAByXKDT7dxadpOTRoC0pE7MAs4CxgF/C1iLyllNpQJ4E1tHQagoMHD/Lxxx+zdu1aRIRAIICI8OCDDwJVXWfUxX1FLPcb8bizUErx2muvVVkx/KuvvqqXK40ZM2Ywfvx43n33XUaOHBleLDYW8bjSuP7667n55pu54IILyM/Pj7qShcfjYcyYMXzwwQfMnz8//GLQkhEVJCg2ysSNza8NlKbl0NAtqDxgq1LqO6WUF3gZmNDA57SUV199lSuuuILt27dTUFDAzp076dmzJ5999lnU9Dt27ODLL78E4D//+Q+jRo2iX79+FBQUsHXrVgBeeOEFTj/99BrPHc2dRWVXGmeffTaPP/542B38ypUrw3H//e9/OXjwIKWlpbz55pvhll08bNu2jczMTG6//XZyc3PZtGlTvVyDABw+fJguXboA8Pzzz8dMN3nyZJ577jk+++wzzjnnnLjlN1dEBQhip1w82HQLStOCaGgD1QXYGbG/ywwLIyK/EZHlIrJ83759DaxO7Zk3bx4TJ06sEDZp0qSYs/n69evHrFmzGDBgAIcOHeJ3v/sdHo+H5557jksuuYTMzExsNhvXXHNNjeeO5s5i7NixbNiwITxJ4o477sDn85GVlcWgQYO44447wsfn5eUxadIksrKymDRpUnj86bLLLuOUU05h8+bNdO3aNezfavbs2WFXHI8++iiDBw8mKysLp9PJueeeWy/XIGCs/XfJJZdw8skn0759+3D48uXLufrqq8P748aN49NPP+XMM8/E5XLFLb+5IgRRYqNcUrD7SxOtjkbTaDSouw0RuRg4Ryl1tbl/BTBcKXVdtPTa3YZ1zJ07t8JkipZIc7l3lt9/Lu29P1Bu81BuSyPrTx8nWiWNxlIS5W5jN9AtYr+rGabRaOIkNAbls6fiCOgWlKbl0NAG6mugj4j0FBEXMAV4q4HPqcH4fqglt56aE6ICKOz47Sm4g9pAaVoODTqLTynlF5HrgA8AO/CsUqrq3OKa5dRqBppGk0yeouuLTRljUAFHKm6lDZSm5dDgH+oqpd4F6rw2j8fj4cCBA2RkZGgjpYkLpRQHDhzA4/EkWhVLEIwuvoAjFY82UJoWRNKvJNG1a1d27dpFMs7w0yQvHo+Hrl27JloNS7CpAErsKGcaKaos0epoNI1G0hsop9NZYaUGjaalISpI0GZDOdNIk3L8fj8OR9I/uhpNvdGLxWo0SY7xHZQdcbcCoER71dW0ELSB0miSHJsKoLCFDVR5sTZQmpaBNlAaTZJjJ4ASGza3sWZjadHhBGuk0TQO2kBpNEmO8aGuHbsnHQBvqW5BaVoG2kBpNEmOzRyDcoQMlB6D0rQQtIHSaJIc40NdO85UYwzKp1tQmhaCNlAaTZIjBEBsuFNbAxAo0wZK0zLQBkqjSXJCXXwhA+Uv027fNS0DbaA0miQntBafJ9UYg1Ll2kBpWgbaQGk0SU6oBZWa3gYAVV6cYI00msZBGyiNJskJfQfldqfgVzbw6RaUpmWgDZRGk+Q4CBC0ORGbjRI84NUtKE3LQBsojSbJcSg/2JwAlIkHu08bKE3LQBsojSbJsRMAu7F6eZl4sPlLEqyRRtM4aAOl0SQxSimcBBCzBVVuS8GhDZSmhaANlEaTxASCCgd+sBsGymdLwRHQXnU1LQNtoDSaJMbr92MXFTZQXnsqrqA2UJqWgTZQGk0S4yv3AiCmgfI7UnFrA6VpIWgDpdEkMV5fOQDiMAxUQBsoTQtCGyiNJonxl5sTIhweAIKONFIoS6BGGk3joQ2URpPE+MtMA+VMBSDoSiVFlYFSCdRKo2kctIHSaJKYYGhhWNNAiasVTgng9+pWlKb5ow2URpPE+M2FYcWVZgSY/0tLjiRKJY2m0dAGSqNJYspN9+5Oj+FN1+Y2/pcWaQOlaf5oA6XRJDE+0zmhK8VoOYUMVHmxNlCa5o82UBpNEuMtM7r4UtIMZ4UOsyXlLdVu3zXNH22gNJokJmC2oDymgXKabt+9egxK0wLQBkqjSWKCpYYhSkk/DgBHitGC8pdpp4Wa5k+9DJSIzBSR3SKyyvydFxH3JxHZKiKbReTs+quq0bRAin/Cq+y0atMeAHeK0YLyl2oDpWn+OCyQ8YhS6qHIABEZCEwBBgGdgY9EpK9SKmDB+TSaFoO9+CcO2dpyvM0OgDvV6OoLlOsxKE3zp6G6+CYALyulypVS3wNbgbwGOpdG02xxl+3jqL1deD8lzWhBqXLdgtI0f6wwUNeJyBoReVZEjjPDugA7I9LsMsOqICK/EZHlIrJ83759Fqij0TQf2nt3c9TTKbyf2so0UF7t9l3T/KnRQInIRyKyLspvAvAk0BvIBvYAD9dWAaXU00qpYUqpYR06dKjt4RpNs6Wk+Cidgj/ibdcvHOZ2OSlVLqRcGyhN86fGMSil1JnxCBKRZ4D/M3d3A90ioruaYRqNJk6+XbmYIaJIPXFoOExEKMGD+LSB0jR/6juLr1PE7kRgnbn9FjBFRNwi0hPoAyyrz7k0mpZG8dq38Sk7vfMqToItEw82vzZQmuZPfWfxPSAi2YACCoDfAiil1ovIAmAD4Aeu1TP4NJr4KT5yiP57/4/1rU4lu3VGhbgyWwp2f0mCNNNoGo96GSil1BXVxN0L3Fsf+RpNS2XtS39iBEfZf8bNVeLKJQWnNlCaFoBeSUKjSTJWvfF3Ruydx1cZF9L35DOqxPvsKTi023dNC8CKD3U1Go1FrPv4ZTJX3c1KTy5Dfv1U1DReeyptvIca5PxlpcV8v/YLjvywhWDRfmx2B/Y2nTn+pBy69M7CZtfvtJrGQxsojSZJ+HbFJ/T+9Hq2OXrT+9pX8Hg8UdMF7Km4LWxB7fvpB779+AVaf/cOfco3MEB8VRMtg72047vWefh7jKHr0LPp0b0nIhJTbsDv4/CBHzlyYA/FB3+k/PBefEd+IuArN44TQcSGOFzYHW7sTjd2pwu7043D6cbpcuNwuXG5PWB3oWwulM0OSqGCQSAIKgjBIKgAqCBKBUEpCAYQAqAUKRkn0q77IMvyS9N4aAOl0SQBu7/bSPu3p3HQdhzHXf0GrVsfFzNtwJGKR9XfQG1fv5QDHz7I4MJPOFUCbLd1Y3XnS3D2HMnxvbJIb98Jv8/PgR+2cfDbZbi25zPoyGe0XvM+rJnBbjpyyN0Fr7M1QXFiDxTj8R8lxX+YNsHDtFFHaSeKdjWr0qAElbBq9Gyyz5ySYE00taXZGSifz8uOzSs5sPVrAgcKsB39AXfZPhzBchzBcuwofDY3Ppsbv91D0JGCcqSgnKmIMw1xp2Fzp2JzpRFwpIDYEUAEbCiUUgAoFdpW5ptbaFsdi6scRtCY72gRsd9dq6KqSSy1khTHuWLsxLr0mOmVip4m5rGxM1fF2I6pX4XwmvWI6zorRUTKPem7F2lFgOAvXqFDpxNjnQWAgDONFMqqTVMdW1Z/Sel7dzCk7GvaKw8rOl5El7FX033AcLpHaREd16ETDBkF3IwK+Plh0zJ+WvMBgR/WkF66i3TfPhzKT5kthVJ7aw6m9ORHTztUSnukVUccrTviaduRVu06kd7uBNLS0lBBRUApAoEAPm853vIyvN4yvOXl+Lxl+Lzl+MP/y7EpHxL0YQ/6UWIzHkixhX8q8j8CNjtKbNiCPk5Yeg99PruBjWltGHDKuXHnk9fnZ/f2bzmyayPlhT/iKzqArawQu7+YYDBgtOJUEJsACErs5s8GNnuEbuZ2OMxutATFhtjMfbGDzW60KEWMy6N2z7jUWLlYWPmYeN3HMern0y2XG6JZGaitqz+n6+sT6C0+emO8OR2Qthy2t8NnT8HvSMWrBEewnFR/IS5vGU5VjkeV4VHlpEp5oi9B00Ipx8m3P5vD4D5DakyrnKl48EIwYFR6cbJvzw62zZ9B7qF3KZI0vuhxLQPPv4lTMuJfwUXsDjoPOpXOg06N+5hEs29QLvv/NZ5e71/B0k2/otd5f6Dj8cdWXjt86AA/fL+eIzs34PtpC+7CbRxXup0ugd30FG8VecXKTQDDECnTLNgIYiOIXQXNbYWNIA4JNuKVNj5rVS/QBio+Tug5kJWdLsHZJZsOffLo1HMgHdxu4n38vD4/JSVFlBQdwVtajM1fjAoa77lBjO5ubIKIYBPj/UZEEFto24bNJoAtHG68DcmxNyME85WrftTmZSjOlkV9UITe9gyJFa5QIjeP7YhESRIRGClDYsggZprahRNDr9jya7gOqDA+U9O1uN2tGOxpE/3ElXEZPqGC5UXYUmo+RgWDLF34FANW38NQVcqKTlMYMPluTj2uY3zna+J06NyDwt99xLq5v2HE9tkE//kUe6UdPhy0opi2FBHKxYASfrQdz8GU7qxvMwJ7x36kdu5Hq/Yn0qZdR9JatyPNXstq02xpqaCfYDBAMBD6HyQY9KMCfoLBICoUh6CUIhjjuVXVtauqGRM0E9RO9xroaHNaKq8yzcpAtWp9HKdc82Sdj3c5HbjatKVtm7bWKaXRWIy40wAoKz5Cag0G6qcfdrDjhd9ySukXbHH2J+WSp8jrm90IWiYXbTt04uTb3mbHhq/4Ydkb2Au/x6aC7HGmEWhzIinHn0S7EwfRqedAurhToq9sXVdsNsCG2B3YgfjbvJpmZaA0mpaAmC2osuKjpLaPnW7Fu3PovexOMlU5K/rfRM4lf8XmaNmP/IkDh3PiwOGJVkMTJy37btVomiA2j2GgyksOR40vPPATW5//HcOOfMQWR19SLnmak/vlNKaKGo0laAOl0TQxnGEDVdWr7spF8+n82QyyVSFfdv8tuVfcg8PpamwVNRpL0AZKo2lieEyvuqVHj7Wgtn+7loOv30ZO6ZfssHVj+4TnOWXIaYlSUaOxBG2gNJomRrtOPQAo3buFTV9/RNHif5Jz5GM64GJp7z8wdPJfjNUXNJomjjZQGk0T44SuvfiBDgzd+ABshGLlYVmny+h74Z8YcUL1H/lqNE0JbaA0miaGw27jwLgn2LliHvZuufQbcxmntM2o+UCNpomhDZRG0wTJPPUcOPWcRKuh0TQoeu18jUaj0SQl2kBpNBqNJikRVc06bY2NiOwDtlsgqj2w3wI5jYHWteFoSvo2JV2haenblHSFpqWvVbp2V0pVWTY1qQyUVYjIcqXUsETrEQ9a14ajKenblHSFpqVvU9IVmpa+Da2r7uLTaDQaTVKiDZRGo9FokpLmaqCeTrQCtUDr2nA0JX2bkq7QtPRtSrpC09K3QXVtlmNQGo1Go2n6NNcWlEaj0WiaONpAaTQajSYpaVYGSkTOEZHNIrJVRGYkWp9IRKSbiHwiIhtEZL2I3GCGzxSR3SKyyvydl2hdQ4hIgYisNfVaboa1E5H/isi35v/jkkDPfhH5t0pEjojIjcmUtyLyrIj8JCLrIsKi5qUYPGbex2tEZGgS6PqgiGwy9XlDRNqa4T1EpDQij2c3pq7V6Buz7EXkT2bebhaRs5NA1/kRehaIyCozPBnyNla91Tj3rlKqWfwAO7AN6AW4gNXAwETrFaFfJ2CouZ0ObAEGAjOBWxOtXwydC4D2lcIeAGaY2zOA+xOtZ5T74EegezLlLXAaMBRYV1NeAucB7wECjAC+SgJdxwEOc/v+CF17RKZLoryNWvbmM7cacAM9zTrDnkhdK8U/DNyZRHkbq95qlHu3ObWg8oCtSqnvlFJe4GVgQoJ1CqOU2qOU+sbcPgpsBLokVqs6MQF43tx+HrgwcapE5WfANqWUFSuSWIZSajFwsFJwrLycAPxbGSwF2opIp0ZRlOi6KqU+VEr5zd2lQNfG0qcmYuRtLCYALyulypVS3wNbMeqORqE6XUVEgEuBeY2lT01UU281yr3bnAxUF2BnxP4uktQAiEgPIAf4ygy6zmwOP5sMXWYRKOBDEVkhIr8xw45XSu0xt38Ejk+MajGZQsUHPFnzFmLnZbLfy1dhvCWH6CkiK0XkUxEZnSilohCt7JM5b0cDe5VS30aEJU3eVqq3GuXebU4GqkkgIq2A14AblVJHgCeB3kA2sAejiZ8sjFJKDQXOBa4VkQo+xJXRpk+a7xRExAVcALxiBiVz3lYg2fIyFiLyF8APvGQG7QFOVErlADcD/xGR1onSL4ImU/YRXEbFl6ukydso9VaYhrx3m5OB2g10i9jvaoYlDSLixCjkl5RSrwMopfYqpQJKqSDwDI3Y3VATSqnd5v+fgDcwdNsbarKb/39KnIZVOBf4Rim1F5I7b01i5WVS3ssiMh34OTDVrJQwu8oOmNsrMMZ0+iZMSZNqyj5Z89YBXATMD4UlS95Gq7dopHu3ORmor4E+ItLTfJOeAryVYJ3CmP3Lc4CNSqm/R4RH9s9OBNZVPjYRiEiaiKSHtjEGyddh5OkvzWS/BBYmRsOoVHgDTda8jSBWXr4FTDNnRI0ADkd0pyQEETkH+CNwgVKqJCK8g4jYze1eQB/gu8RoeYxqyv4tYIqIuEWkJ4a+yxpbvyicCWxSSu0KBSRD3saqt2isezeRM0Ss/mHMINmC8abxl0TrU0m3URjN4DXAKvN3HvACsNYMfwvolGhdTX17Ycx2Wg2sD+UnkAEsAr4FPgLaJVpXU6804ADQJiIsafIWw3DuAXwY/fK/ipWXGDOgZpn38VpgWBLouhVjbCF07842004y749VwDfA+UmStzHLHviLmbebgXMTrasZPhe4plLaZMjbWPVWo9y7eqkjjUaj0SQlzamLT6PRaDTNCG2gNBqNRpOUaAOl0Wg0mqREGyiNRqPRJCXaQGk0Go0mKdEGSqPRaDRJiTZQGo1Go0lKtIHSaDQaTVKiDZRGo9FokhJtoDQajUaTlGgDpdFoNJqkRBsojUaj0SQl2kBVQkR6iIgy/bNoGhARmS4iSxrpXCki8q6IHBKRPzbGOSudv0BEzmyE8+SLyNUx4pr9vW1e30m1jbNYh5hlLSJjRGRXtLhkRkTeFpF9IvJgY55XGyiNJYjITBHxiUhRxK/RDUE1nAlkAd2UUg+EAs3KpEfCtEoizDKcWYv0vxCR7SJSLCJviki7atI+LSKbRSRoOj6sjV4tpoxEZG5t8kdEbhKRH0XkiOna3l1N2p+JyCYRKRGRT0Ske0TcAyKy05SzXUT+HHmsUup8YCxwq4i0rf2V1Y1mZ6Ca89thE2C+UqpVxO+Bmg9pNNoBBUqpokQrUh9MR3AJf25FZBDwFHAFcDxQAvyzmkNWA7/H8GvUpEmWOkZEzgZmAD8DumP4cLsrRtr2wOvAHRjPwnIivPdiOCXsr5RqDZwKTBWRiyJlKKVCTh8zLLyMakn4jW4F5hvW7SKyBigWEYeIjBCRL0SkUERWi8iYiPT5IvK/IrLMfGNYGOvtT0SuFJGNInJURL4Tkd9Wip8gIqtMOdtMz6OISBsRmSMie0Rkt4jcE/KOWc119BaRj0XkgIjsF5GXQm8rZtxBERlq7nc2m9xjzP0LRGS9eb35IjKgUv7cKiJrROSwiMwXEU/tc7r2iMgMM1+OisgGEZkYI52IyCMi8pOZl2tFZLAZ5xaRh0Rkh4jsFZHZIpJSS1UcQLAGXTPE6Mo4IiJfm2W2JCJeicg1IvKtmc+zRETMuJhlF0GumQeHROS5UBmIyHEi8n9meR4yt7tGnDdfRO4Vkc8xDEGvGq61u4h8bub5h2blFMlUMy/3i8hfapAVi6nA20qpxabRvwO4SEwvzJVRSs1SSi0Cyup4PqDmMqqUdpQYrYIxEcHnmc/xfhF5UExjX1P5SZQ6pgZVs6t73kTkFvNe3yMiV9YlLzA82c5RSq1XSh0C/gZMj5H2ImC9UuoVpVQZMBMYIiL9AZRSm5VSxRHpg0C07lCF8Sw1Do3tobGBvD4WYHh67AakAF0wvKueh2GEzzL3O5jp84HdwGAMT6yvAS+acT0wC8HcHw/0xvAUeTpGBTHUjMsDDpvybeZ5+5txb2C8YaYBHTHcSv+2hus4yZTlBjoAi4FHI+J/DWwAUoEPgIfM8L5AsXmsE8M191bAFZE/y4DOGG9PG6nkvbOSB83Can6jYhw3M5SHlcIvMc9rAyabenYy46YDS8zts4EVQFszrwdEpHsEwytqOyAdeBv431rcH04MD6tV9KuU7mXzlwoMxPAguyQiXgH/Z+p4IrAPOCfOsivAcDvezbyOz4F7zLgMDO+pqeb1vQK8GXFsPrADGIRROTiruYZ8DG+mfTGehXzgvkr39jNm3BCgHBgQQ1Z15b0QuL1SWBFwcg15vASYXo9nPZ4yOgk4x4zLqxT3iZn/J2J43766FuW3yiy/lDjqo6jPGzAG8AN3m/fleRh1ynFR5JxolsGJMc6zGpgcsd/evMaMKGn/ATxZKWwdMClif4ZZhgrDtXzXKHK2A9eC4ey2oX8NfoJGuQjjhrgqYv924IVKaT4Afmluhx9ac38g4AXsVDJQUc71JnCDuf0U8EiUNMebD35KRNhlwCe1vK4LgZWVwt7imCtrtxl2B7AgIo0NwwCPicifyyPiH8B02W1hGcw087Aw4tc5SrpVwARzezrHDNQZGBXGCMAWkV4wjFrviLBTgO/j1Csbw732XuCkatLZzXT9IsLuoWrlNypifwEwI56yM8vgmoj984Bt1eh8KGI/H7g7zuvNB/4asf974H1zO3Rvd42IXwZMqUN5L6Kqi/LwPVfNcXU2ULUooz9hVKSDKx2vMF8oIvJmUS3K76o49Yz5vGEYqFIi6hfgJ2BEHfJjW6XrcZrX2CNK2jlE1Hlm2OeVy8J83nIwugrTo8iZiPmc16UMa/trFl18JjsjtrsDl5jdMIUiUojRMugUI/12jMKt3BWCiJwrIkvN7rVCjIollK4bxk1Sme6mvD0R538KoyUVExE5XkReFqNL8AjwYhSdnsFo+T2ulCo3wzqb1wCAUipoXl+XiON+jNguAVpVp0sdWaCUahvx+0FEponRBRrKh8FEyWel1MfAE8As4CcxBtVbY7zNpgIrImS8b4bXiFJqFUar5EvgxmqSdsBonUTeFzujpIuaj3GWXeV7rrN5bKqIPCXG4PQRjLf3tlKxSziaLrGoqaytuBeKgNaVwloDR+sgK17iLaMbMe7FdVHiYpVBbcuvJqrL4wNKKX818fFSuQxC29HKIK7yUgYrMYxotPGsuzBeRmNOiLGS5mSgVMT2TowWVGRlmaaUui8iTbeI7RMx3sz2RwoUY0bMa8BDwPFKqbbAuxhvGaHz9I6iy06MFlT7iPO3VkoNquEa/p95HZnKGKy8POJciEgr4FGMt6GZcmzc7AcMoxhKJ+b17a7hfFUQkdFScSZe5d/oWsjqjmFQr8PodmiL0a0g0dIrpR5TSp2M0aLtC9yGUSalwKCIvGyjlIr7gVZGn/t7ptxY7MPoeukaEdYtRtpoVFt2UeSdiFFuALcA/YDh5rGnmeGRx0fe38nAeowuQgBEpBdG99iWBjxnvGV0CXChiNwQJS5WGcRTfkldBub2XqXUgZrSikgaRt21PoZsB9HrtgHAQvMluMFpTgYqkheB80XkbBGxi4hHjO8PIm/sy0VkoIikYvQHv6qUClSS48J46PYBfhE5FxgXET8HuFKM6Zs2EekiIv2VUnuAD4GHRaS1GddbRE6vQe90jDedwyLSBaOCjuQfwHKl1NXAO8BsM3wBMN7Uw4lR4ZUDX9SUUZVRSn2mKs7Eq/z7rBbi0jAe6n1gTDjBaEFVQURyRWS4qX8xxmB60HwQngEeEZGOZtouYsxgCh2rKg2ER6McozyjYpb96xiGP9UcPJ4W11Ua1FR2ANeKSFfzxeIvHJtFlY5hhAvNuP+pxXkTxUsYz9hos7K7G3hdKRW1BSUiLnOigABO85kMTVAYIyI1Vv61KKMfMGa23SAiv6sUd5sYk1K6ATdQsQxqKr9k49/Ar8x6rC3wV2BujLRvAINFZJJZDncCa5RSm8z66bdmvoiI5GGMMy2KIseB8Sw1Cs3SQCmldgITgD9jVI47MW64yOt9AaMwfwQ8wB+iyDlqhi8ADgG/wBgDCsUvA67EGMQ/DHzKsZbMNIwKcYN57KtU7GKMxl3AUFPWOxgPI2DMFsQY+A09cDcDQ0VkqlJqM8Yb3+MYLY7zgfOVUt4aztegKKU2AA9jdK/tBTIx+r2j0RrDEB3C6Ho5AIQ+CrwdY9LHUrP75SOMFgdmRXMUY1yuOoLUfL9fB7TBuCdeAOYR/8MYs+wi+A/Gi8t3GF3D95jhj2JMWtgPLMXowkw41bWYlVLrgWswDNVPGBX87yOOfU8qfkvzIYYRPhV42twOtRS7Ef/LVFxlpJTagWGkZkjFD5cXYkzGWYVRTnPM8HjKr1ERkRPNMjgxWrxS6n2M8a1PMCbRbCfi5UaMWb1TzbT7MCbi3IvxjA0HpkSIm4hxTx7FeMF/3PxF6hPqcm6U1hOYMzFaGiKSjzGj61+J1kVTP0Tkcozuvz/VkG4cxoPXXyl1ME7Z9wMnKKV+WX9NNbEQkX8BryilPqjDsbqMGgmzZfUl0DZWS9lqkuKDM42mriilXowzaT7wX2C9iDyslHqocgKzy8iF0RrLBX4FRF02SGMdZpd1XOgySgwi8iZGC/OOxjJOoA1UoyMiszG64yrzolLqmsbWp6VgdndOrSFZOkaXUWeMLsmHMbqEkgoRibUaxrm1HCNsiiS8jMwutw0xogea3YvNCqXUhYk4b4vs4tNoNBpN8tMsJ0loNBqNpumTVF187du3Vz169Ei0GhqNRqNpRFasWLFfKVXl4/ukMlA9evRg+fLliVZDo9FoNI2IiGyPFq67+DQajUaTlGgDpdEkEWW+AP9d9R168pJGow2URpNUfPLGvzjrzRxWfB1rwQ2NpuWQVGNQ0fD5fOzatYuysnr5OdO0MDweD127dsXpdCZalVpx3O58AGw7v4K8UYlVRqNJMElvoHbt2kV6ejo9evTAWKRbo6kepRQHDhxg165d9OzZM9Hq1Iqgpy0cBn/p4USrotEknKTv4isrKyMjI0MbJ03ciAgZGRlNstWtXKbH9LIjiVVEo0kCkt5AAdo4aWpNU71nlCMFALuv0ZY702iSliZhoDSalkLIJZndqw2URqMNVByICLfcckt4/6GHHmLmzJmJU6gG8vPz+eKLWvsqDLNq1SpOOeUUBg0aRFZWFvPnz6/5II01BA0DZfOXJFgRjSbxaAMVB263m9dff539+/fXnLgWKKUIBq33/VVfA5Wamsq///1v1q9fz/vvv8+NN95IYWGhdQpqYqNCBqrpjZ9pNFajDVQcOBwOfvOb3/DII49Uidu3bx+TJk0iNzeX3NxcPv/c+H5l5syZPPTQMZdDgwcPpqCggIKCAvr168e0adMYPHgwO3fu5LbbbmPw4MFkZmaGWyv5+fmMGTOGiy++mP79+zN16tSoH28+9thjDBw4kKysLKZMmUJBQQGzZ8/mkUceITs7m88++6xaHa+44gpOOeUU+vTpwzPPPANA37596dOnDwCdO3emY8eO7Nu3r8q5X3nlFQYPHsyQIUM47TTDOWpZWRlXXnklmZmZ5OTk8MknnwAwd+5cLrzwQs466yx69OjBE088wd///ndycnIYMWIEBw8aPgSfeeYZcnNzGTJkCJMmTaKkpGpLYsSIEaxfvz68P2bMmOazRJb5wmILNJpXbY0maUn6aeaR3PX2ejb8YO3spoGdW/M/5w+qMd21115LVlYWf/zjHyuE33DDDdx0002MGjWKHTt2cPbZZ7Nx48ZqZX377bc8//zzjBgxgtdee41Vq1axevVq9u/fT25ubriyX7lyJevXr6dz586MHDmSzz//nFGjKn4bc9999/H999/jdrspLCykbdu2XHPNNbRq1Ypbb70VgF/84hcxdVyzZg1Lly6luLiYnJwcxo8fT+fOncPyly1bhtfrpXfv3lWu4+677+aDDz6gS5cu4RbWrFmzEBHWrl3Lpk2bGDduHFu2bAFg3bp1rFy5krKyMk466STuv/9+Vq5cyU033cS///1vbrzxRi666CJ+/etfA/DXv/6VOXPmcP3111c47+TJk1mwYAF33XUXe/bsYc+ePQwbNqzaPG8qiNmCcgR1C0qj0S2oOGndujXTpk3jscceqxD+0Ucfcd1115Gdnc0FF1zAkSNHKCqK5U/OoHv37owYMQKAJUuWcNlll2G32zn++OM5/fTT+frrrwHIy8uja9eu2Gw2srOzKSgoqCIrKyuLqVOn8uKLL+JwRH/fqE7HCRMmkJKSQvv27Rk7dizLli0LH7dnzx6uuOIKnnvuOWy2qrfKyJEjmT59Os888wyBQCB8PZdfbvhj7N+/P927dw8bqLFjx5Kenk6HDh1o06YN559/PgCZmZnha1u3bh2jR48mMzOTl156qUJLKcSll17Kq6++CsCCBQu4+OKLq83vJoU5BuUKWDsGVVRcRMG2TZbK1GgamibVgoqnpdOQ3HjjjQwdOpQrr7wyHBYMBlm6dCkej6dCWofDUWF8KfKbnLS0tLjO53a7w9t2ux2/318lzTvvvMPixYt5++23uffee1m7dm2VNLF0hKrTsUP7R44cYfz48dx7771hY1qZ2bNn89VXX/HOO+9w8skns2LFirivx2azhfdtNlv42qZPn86bb77JkCFDmDt3Lvn5+VXkdOnShYyMDNasWcP8+fOZPXt2tedtUpgtKI+ytgW1YdZl5JUsxv/nn3C43DUfEI/MtSvY+9WrjLnqXiTKC0xd2LZ1Cz8snc/oqX+FJvqpgMY6dAuqFrRr145LL72UOXPmhMPGjRvH448/Ht5ftWoVYLgO+eabbwD45ptv+P7776PKHD16NPPnzycQCLBv3z4WL15MXl5eXPoEg0F27tzJ2LFjuf/++zl8+DBFRUWkp6dz9OixacqxdARYuHAhZWVlHDhwgPz8fHJzc/F6vUycOJFp06ZV2zrZtm0bw4cP5+6776ZDhw7s3LmT0aNH89JLLwGwZcsWduzYQb9+/eK6HoCjR4/SqVMnfD5fWE40Jk+ezAMPPMDhw4fJysqKW37SYxqoFFVqqdi8ksUAHNy70zKZ7jevZuyuf3LoxwLLZJa9cjWjtz7EoZ3Vd5PXhq07drHwhX+gGmBCkqZh0Qaqltxyyy0VZvM99thjLF++nKysLAYOHBh+m580aRIHDx5k0KBBPPHEE/Tt2zeqvIkTJ5KVlcWQIUM444wzeOCBBzjhhBPi0iUQCHD55ZeHJyT84Q9/oG3btpx//vm88cYb4UkSsXQEo4tw7NixjBgxgjvuuIPOnTuzYMECFi9ezNy5c8nOziY7Ozts1O68807eeustAG677TYyMzMZPHgwp556KkOGDOH3v/89wWCQzMxMJk+ezNy5cyu0nGrib3/7G8OHD2fkyJH0798/HP7WW29x5513hvcvvvhiXn75ZS699NK4ZTcFxOziS6GMYNC6Fc19yg5ASeFey2Tag8ZEjsMWGigpM5Z4Orx/t2Uyd71yOxO23cne9Z9aJlPTOEgyLes/bNgwVXk21saNGxkwYECCNGrezJw5s8JkiuZGU7x3vnj8Kk498BoAxX/cQ1pqqiVyi//neNKkjM3nzqPf8PMskbnzrgF0Uz+w+cy59Bs10RKZm2YOoT8FbPnZHPqOtmZs8bN7zmG0/0u+G/M4vcZMs0SmxlpEZIVSqspMJ92C0miSCbOLD6CkyLoFY73iMv4XWzcLNijGELav1LpVLwJirD7vK7FOz9AEn/ImuDZjS6dJTZLQWEsyr4bRYlHHxklKi48AnSwR68Ws+Eurn2FaG3w2FwStNVA+mxsC4Cu1zkCJzeje9FsoU9M46BaURpNESEQLqtzC1o7PbEEFLFwl3Sduy2X6bYbMYJmFrTKbce1BbaCaHNpAaTRJhETMNPOWWNgyCRso62T67YYxUeXWtcqCIWNioZ7YjI4iVa4NVFNDGyiNJqk41oLyWth15jcrflVebJlMEaPrTFloTGxiTtryWqen02bIFG2gmhzaQGk0SURkC8pvoYESzEraa11rx6b81ss0p9mLz0qZ1uupaRy0gYqTN998ExFh06bYy8UUFBQwePDgBtVj1apVvPvuu3U+PvRh78CBAxk0aBD/+Mc/LNROU18ix6D8VrZMTGNis7DiD+lq91vX2gnpafdZ2NIL66ldmDQ1tIGKk3nz5jFq1CjmzZsXNT7aMkS1JbSeXXXU10A5HA4efvhhNmzYwNKlS5k1axYbNmyoszyNtQgBijC+fQqWWWdM7CE3Hj7rKulQy8RKY2IzuzitNVCmntpANTm0gYqDoqIilixZwpw5c3j55ZfD4fn5+YwePZoLLriAgQMHAoahmjp1KgMGDODiiy8Ou4tYtGgROTk5ZGZmctVVV1FebnyF36NHD26//XaGDh3KK6+8UuG8ld1ZeL1e7rzzTubPn092djbz58+nuLiYq666iry8PHJycli4cCFguLeYMGECY8aMoU+fPtx1110AdOrUiaFDhwKQnp7OgAED2L276lf7n376aXgViZycHI4ePYpSKqZrkNNPP50JEybQq1cvZsyYwUsvvUReXh6ZmZls27YNgLfffpvhw4eTk5PDmWeeyd69VVc1mDJlCu+88054f/r06eGFYVsCooKUiGmgLJx8YAutkm5la8c0Js4GaEE5AxbKDIZkagPV1Gha30G9NwN+rLoYar04IRPOva/aJAsXLuScc86hb9++ZGRksGLFCk4++WTAWGdv3bp19OzZk4KCAjZv3sycOXMYOXIkV111Ff/85z+57rrrmD59OosWLaJv375MmzaNJ598khtvvBGAjIyM8Lp9kVR2Z+Fyubj77rtZvnw5TzzxBAB//vOfOeOMM3j22WcpLCwkLy+PM888EzBcZaxbt47U1FRyc3MZP358BbcUBQUFrFy5kuHDh1c590MPPcSsWbMYOXIkRUVFeDweXn/99ZiuQVavXs3GjRtp164dvXr14uqrr2bZsmX84x//4PHHH+fRRx9l1KhRLF26FBHhX//6Fw888AAPP/xwhfOGXGmMHz8er9fLokWLePLJJ+MszKaPqCAltjQI7Ld0ooDdNCYOCyvpsNELWLduYEimlcZEwjKtXd9Q0/DoFlQczJs3jylTpgDGG35kN19eXh49e/YM73fr1o2RI0cCcPnll7NkyRI2b95Mz549w+vx/fKXv2Tx4sXhYyZPnhz1vNHcWVTmww8/5L777iM7O5sxY8ZQVlbGjh07ADjrrLPIyMggJSWFiy66iCVLloSPKyoqYtKkSTz66KO0bt066rlvvvlmHnvsMQoLC3E4HNW6BsnNzaVTp0643W569+7NuHHjgIquNHbt2sXZZ59NZmYmDz74YFRXGueeey6ffPIJ5eXlvPfee5x22mmkpKREvfbmiKgAQXFQisviCQ3Wu/EItXZcQetk2sMyrTMmoS4+t4UyNY1D02pB1dDSaQgOHjzIxx9/zNq1axERAoEAIsKDDz4IVHWdEct9RXXEcr8RjzsLpRSvvfZalRXDv/rqq5i6+Hw+Jk2axNSpU7nooouinnvGjBmMHz+ed999l5EjR/LBBx9Uew3xuNK4/vrrufnmm7ngggvIz8+PupKFx+NhzJgxfPDBB8yfPz/8YtBSEBUkiI1SUrBZ2HXmwPqKP2T0rKz4G0JmyOi5LV4hXtPwNHgLSkTOEZHNIrJVRGY09Pms5tVXX+WKK65g+/btFBQUsHPnTnr27Mlnn30WNf2OHTv48ssvAfjPf/7DqFGj6NevHwUFBWzduhWAF154gdNPP73Gc0dzZ1HZlcbZZ5/N448/HnYHv3LlynDcf//7Xw4ePEhpaSlvvvkmI0eORCnFr371KwYMGMDNN99c7bkzMzO5/fbbyc3NZdOmTfVyDQJw+PBhunTpAsDzzz8fM93kyZN57rnn+OyzzzjnnHPilt8csKkAQbFTZku1dKKAHWP6usdCT722BvBdFeqKtFKmhF2Y6LX4mhoNaqDE+JJvFnAuMBC4TEQGNuQ5rWbevHlMnFhxpeZJkybFnM3Xr18/Zs2axYABAzh06BC/+93v8Hg8PPfcc1xyySVkZmZis9m45pprajx3NHcWY8eOZcOGDeFJEnfccQc+n4+srCwGDRrEHXfcET4+Ly+PSZMmkZWVxaRJkxg2bBiff/45L7zwAh9//HF4EkRoVuDs2bPDrjgeffRRBg8eTFZWFk6nk3PPPbderkHAWPvvkksu4eSTT6Z9+/bh8OXLl3P11VeH98eNG8enn37KmWeeicvlilt+c8BGACV2ym0pOCycdWY3W1AeLGyZEHINYmVr55i7ESzytBBuleGFQP1n22oajwZ1tyEipwAzlVJnm/t/AlBK/W+09NrdhnXMnTu3wmSKlkhTvHfW3TsKhw1EKbzKRuZforfUa0vJ/3QkVcrxKgeuuw5YIvPHmb05AcM3mrpjP2J31lvmzpl96YYxu1P9ZS/irOoFurZsuvtk+geN3gt1+3YkpW29ZWqsJVHuNroAkS48d5lhkYr9RkSWi8jyffv2NbA6Gk1yY4xB2fE5Ui2dfOAwWzsu8eMtt6arKzSuBeC1aJV0e8RST+UWrUUYGoMCa5eP0jQ8CZ/Fp5R6Wik1TCk1rEOHDolWp9kwffr0Ft16aqoYXXw2fI40aycKEKBYGa2RUov8TNkJHPPUW2TNOncOFcCvjGrJKj1tEUavrFgbqKZEQxuo3UC3iP2uZlitSCavv5qmQVO9Z0QFUWIn6EgjxaJZZ8FAALsojkorwDpHiHYV5IgYM1DLiq0zekWmzHKLnBbaVYBSZYxlllnoCFHT8DS0gfoa6CMiPUXEBUwB3qqNAI/Hw4EDB5pshaNpfJRSHDhwAI+n/uMXjY2NIEpsBF1ppFpkoHx+LwCldsNAWdZ1RoCSsDGxTmaRzdDTKmMSafSsdGGiaXga9DsopZRfRK4DPgDswLNKqapfZ1ZD165d2bVrF3p8SlMbPB4PXbt2TbQatcamjC4+XK1IpQyvL4DLaa+XzIAvZKDSIWBdy8RBgBJbKwiA1wKZwaDCQYAyWysIWiMTjBZUsS2NDuqQNlBNjAb/UFcp9S5Q59VNnU5nhZUaNJrmjBBEYQdXK6NbruQorjZt6yXTZ34o7XWkg9eaVoRSCjsByh2G0bNi8oE/qHASoMzRGvzgK7Fu4kWZPd2QaaUjRE2Dk/BJEhqN5hg2FUTZbNjcRjdXqQWTDwJeY2Fin6uN8d+CStofCOKQID6nsUyWFb6r/MEgDvx4QzItMiaGITXy00ofW5qGRxsojSaJsJktKFtKOgBlxYX1lhn0+4z/bsNAWVFJ+3yG0fObRs8KF+0+vzGZI6RnwAJ3I0oZ3YYhQ2qFTE3joQ2URpNE2AiibHYcHsNAlVswO84fMAwUHtOYWOD23ec1xrWsNCY+s6UXkmmFuxFfQOHEj99CmZrGQxsojSaJMJblseFMMd74vRaMw4QmSYRWULDCEWJIJqZMZYFrkIDPMKQhPZUFxsToNgwgrlbGN1va7XuTQhsojSaJCLWgnKmGgfKV1n8Mym8aE3vqcUaA14LxInPqut2dRrlyWFLxh7oNnU43xcptibsRnz+IW/w4XG5KcINXOy1sSmgDpdEkEXaMD3U9qaHJBxYYKHMMyuZ0Gx+sWtDaCRk9m91JKR7EihaUuZCrOByUigexYDX38LU7XJSQgs2nW1BNCW2gNJokwkYAxI67lWGgrJh8EJokYbM7KZEUbBZU/OHuOIeTUvFYJNNoQYndZfjD8tW/tRMa18LmpEw8lsjUNB7aQGk0SYQxzdxOaqu2gEXjMKHWjsNJmaRgs8CNR8BnLDhrszspt1kl0zR6pky7BQ4bQ9cuDhdlthTsFrow0TQ82kBpNEmEjSCInZQ0owVlhYEKBkLdXE7KbR5L/EyFxqDE4aZMUi2RGQjJtDvx2lJwWOCe3m+2ymwO62RqGg9toDSaJMJBAGWzIw4X5cppyUSBUBef3eHCa7PGmPh9IZkOvPYUnBa4Bgn4jxlSrz0FZ6D+axGGWlDYXfhs1sjUNB7aQGk0SYSDAEoMx38lkmLJRIFQy8TmcOK3p+CywI3HMZku/PZU3BZU/AF/qLVjyLREz1ALyu603MeWpuHRBkqjSSJCLSiAUrFmHCZozo6zhytpKyp+c5q5w4XfkWqJ76pQS0/sTgIWyQzpaXO6CDhS8QStcdaoaRy0gdJokgQVNNa3w2as4VxuS8FhQQsqGPpmyek0K2nrWlB2p4ugIxWPBa5BghEtvYDTGn9YYQPlcBFwpOFW2kA1JbSB0miShNB3QMo0UF5bKk4LBvWDEd8CBZ2tLKn4I8e1gi5rjEmkTOW0xh9WuCvS7kI5U0mhFLRvuSaDNlAaTZIQqkxDLSivPRV3wLouPofDaVT8lNXbAWggwpjgTCNFvCjzPHXX89j3WsqVhlMCKHNcqq74Q+NaThfK1Qo7Cvy6FdVU0AZKo0kSfObMOOzGJAm/I82ScRjlPzZehLsVbvFRVla/ij+y21CZrkHK67lKergF5XQhrpC7kfotlhvZKhOX9qrb1NAGSqNJEkIrhNvsRgsq4EzDoyzo4jNbJnaXCzGNSUlRYf1kmgbK4XBhCxmTo/U1JsfGi8Rczb20uH5LPQXNWXx2x7FrL6unTE3joQ2URpMk+HzHxksAAs5WlozDhFZ5cLjSsLlDFX/9jEmoVeZwe7CFjEk9WzvKV2rKTMFuyiyrp0xvudGd5/Z4sIcMlEWu5DUNjzZQGk2SEFo3TswuPuUyx4uCwfoJNlfwdqW2wuExu+Pq6alXzDXt7K60sO+q+lb8QXPBWU9K+jE9S+pnoAKm7ytXajr2FEOmVxuoJoM2UBpNkuA3DYk4PUaAKx27KEpL67mahFnxp6SmYw/5marnKunKXOHCndYaR6phoOrrGkSZxsSdlo4zxXRPX89xLWUutpuS1hZn2OjpMaimgjZQGk2S4C83x0ucbgDErFCLjxbWS67ylVKmnIjNjst0JV/fVkTIQaEnNT3sXNFXz4o/5LLDndIKZ6pFrZ2QIY3U0wIXJprGQRsojSZJ8IdWCHcZLajQeFG9u+P8JZSJIdOVFvIzVb9WmXiL8Sk7Nqcbl+m7KlBWXz2NMShxpuJONV3J11PPkCEVdyvcZkuvvteuaTy0gdJokoSA1zRQzhQAHOYbf1k9JzTYfccMVKjir68jRPGVUCKGnh7T6NXXmOArphQ32GxhmcHyerbKfMX4sYHDgzukpwUrxGsaB22gNJokIeA1WhChLj6H2R3nq2c3ly1QRrlpoFJbhVo79av4bb4SysXQ05PWFoBgPV3Ji6+EUgw9U1oZhjRYVj9jYvcVGzJFwi5MgtpANRm0gdJokoRQqyZkmEJdZ/UdM3EESvHZDGOSmt4WqL+fKZu/hHKzBZXaytCXesoUbwlem2lI01oRUBIeQ6ordl8RZZX0tMLHlqZx0AZKo0kSQgYqpdVxALjTrOmOS/EVUupoC4DLk2ZJxe/yHabMYVT4HpeLEuUOzxasK25fIaUOwyi7nQ5K8NRbT4/3IMXmtae6nBRboKem8dAGSqNJEoKlxlhTauuKBqq+3XHpgUN4PRnGjgilkhKePFBnmf6DlLoMmTabUIKn3s4VWwcOUuzMCO+XSAq2eq7m3sp/iBJnOwAcdpuhpwUrxGsaB22gNJokIWjOgkszDZQV4zDBQJDj1GECKe3DYaXiwe6rnzE5LngIX0qHCJn1812llKJNoBCv55ieZZKCvZ7GpHWwqsz6Gj1N41EvAyUiM0Vkt4isMn/nRcT9SUS2ishmETm7/qpqNM2c8iOUKyduTyoAqWYLinrMZCs8fIgU8ULaMWNSJqnYfHVf4+9IcTHt5CgqUqYtBXs9ZB4uLqUdh7G16hihZ/2M3uGiMjJUYaVr92Dza7fvTQWHBTIeUUo9FBkgIgOBKcAgoDPwkYj0VUoFLDifRtMssXmPUiSpuM19l8tpju3UvbWzt2A97QB3x97hMK89BWc93Hjs/m4DrQF3x5PCYeW2+sn8ace3tJUg9g7HZHrtqbjq4Q9r944tDBQ/zo59Kujp8Gu3702FhurimwC8rJQqV0p9D2wF8hroXBpNs8BTsodCe0aFsBKp35jJkR3rADiu++BwmK+eFf+h7YbMtt0zw2FeW1q9nCv+9N1qQ+aJg47JtEjP1l0HVpBphRNITeNghYG6TkTWiMizInKcGdYF2BmRZpcZVgUR+Y2ILBeR5fv27bNAHY2madKubBeHU7pVCCsXT3g18rqgdn5FMR669DpmoPyONFyBundz+bd/Rbly0umk7AiZKfXyXRXY8RU+ZadLv9xjMu2p9ZLp/24JPmWnU//hETJT6nXtmsalRgMlIh+JyLoovwnAk0BvIBvYAzxcWwWUUk8rpYYppYZ16NCh5gM0mmaIz+flhOBevG16VAgvlxTsdTRQKhiky8Gv2JqShd3pCocHHKl19jMVDAQ5cf9ivksZhMOdGg73O9LwBOsus+u+T/neMwCbO+2Yns403HV0NxIMKjrt/4ICT//wd2VQf6OnaVxqHINSSp0ZjyAReQb4P3N3NxD5KtjVDNNoNFHYu+NbukoAe/uTKoT7bB4cdRzU3/D1IgapPezr85sK4UFXKzyqbm7PV335AUPVblb1rygz4Eirs8w1yz4iW+1kVb8rK8p0ptXZH9bqZfnkqO9Z2/dPVWTW1ehpGp/6zuLrFLE7EVhnbr8FTBERt4j0BPoAy+pzLo2mOXNgx0YAWnXuVyHca0/BWYc3fhUMEvj4/3GENPqfVbHiF1caaZRS7q/dnKWA348r/x4O0poB4yrKNHxXlYJStZLp9/mwL7qbQ7RmwNm/qijTmUYK5RCsnZ7BQBAW3cUR0ugzrpJxdqSSQt0Mqabxqe8Y1AMislZE1gBjgZsAlFLrgQXABuB94Fo9g0+jiU3pj1sA6NB9YIXwQB3HTL56+V6yyr9hc7/fk5p+XMVIVyvSpJyiUm/8ApVi3ZzfMdi/ju05t4UXnQ0RdLbChkLVZqq5Umx47loy/WvZkXMrbnNNv0g9ofaLu34x5xZyfCspyLoRT3q7SjLTcOODgK9WMjWJoV7TzJVSV1QTdy9wb33kazQthoPfUaw8ZHSsOJco4EjFVcuus2/en0ve5odZ0Wo0Qy/9U5X4kIv2kqIiMtJT4pK5esHfGLJnAZ+0m8yYC66vEi/uY84APa60KvHR2PT6/yPrh/ksOu5SzrjgDzFllhYdplVKmyrx0Vjy8oOM+uFZVrT7OUMvvLVqAlO3QHkR9tTjqsZrkgq9koRGkwSkHC1gj6MLYqv4SAadabhrYaA2LfsvA7+8lS3O/gy69mXsdnuVNPaQgSo+FJfMdR8+y5CND7M05XRG/u6fiEiVNKHJDaVFhXHJ/D7/3/Rf+wBL3KNjyzQdNpYVx7cW4bIPXuKUjfeyLjWP7N89VyUvDT1DRk87LWwKaAOl0SQBGeVVp5gDKGcKKXEaqB3fruH4d69kv609x//2DTymV9rKOM1ZbfFU0luWvU/fz29jnWMQg6/7Dy5n9E6XkCv5sqKaV73YufK/dMm/idW2gfT/3Ut4XM6o6RymIY3HH9barz5m8Bc3UeA8iZOufbXCrMVIQgaqrL6eejWNgjZQGk2C8XnLzSnmPatGOtNIpRxfDRMaDvy0G9t/LgEEufxVjuvQKWbakIEqr8FF+87N33DCu1exx3YCJ/zmdVqlRTd4AE7TmJSWVG9M9n63mjYLf8kPdCTjV6/Svm3srruQ0fMWV6/nts2r6fLeNAptx9HhtwvxpFUjs5atMk1isWKpo6SntLiIktJifOVlOCWI052K05OGy5OK3a5ttCax/LjjW7pJEHv73lXixJ2GTRRHi4tp06Z11ONLio+w/+mJdA8eYMcFC+jbe3DUdCFCrs+91bQi9v+wHefLl+LFif2K12jf8YRqZbpSQ84VYxuTQ3t3oF64GC8O/Je9Qo8uUb/dPybTNHreatyN7PlhB655l2ID7NNeo3WH6mUecwJZvxXi48Xn81J0+BDBgA+nw4nd4cTpcuF0pyC2qt2vmoo0KwN1+NB+tn65kPJda0g7tIG25XtoF9hPupQSbSg4qIQSXJSJi3I8eG3Gz2fzELB78Ns8KBFQYP4BZWwJClCIUmacQsCcZqsi4jkWH56CW7upuLGI0m1fLaaGjYfCyL/KwTVeftUEqvroGo6OM22NcmshWUXdjEpa0Jilll5pijkcG9spKT4c1UD5fT42zbqMbN8W1ox8nOyTz6hRtZAbD19p9Er66OGDFM6ZSOfgEXZd+Bp9e/WPW2YsY1J85BAHnr6QzsHDfP/zBQzqV70RBXClVe/9t7DwIEf+NZETOcjeia/Qo2ccMuMwerVFBYP8ULCJ3WsXE9y1nJSjBRxXvov2wYOkSjmxpmJ4lYNyceHFhVdc+G0ufOImYHMTsLvxiREeEEeFOkjCdVGU+iSyrgrVQ5XCDBlUkRX5qIbCQ3XWsSgFciz8J1c3fnbLv+PKp7rQrAzUwT0FnLzsZnzKzi57Nw6k9ODH1OGoVsdjd6UiDjd+JSh/OeIrBX8J4itBfKWIvxR7oBS7vxRnsAy3t5D0Cn3/RhFVqORFIm4ZIVysUt2+hUbCGjvXYBx7OKpLU4cIqSa6BllW5H6NMmKeL9aRbja5TqVX1ilVYuyhMZMo3VwqGGTF7KsZXrKErwf8kdxxMSfVViClGrfv5eWlFPzzIgb4v2fDmKfIyhkdl0xPWuyWSXl5Kd/Pmkh///esPW02Oblj4pLpNmX6oxjSsrJSCv55MYMD37F17FP0HxKfTGdYZv3cjXi9XjZ++Q7Fa96i54HFdGE/XYAS5eZHRxcOtOrLntROKHcb8LQGm5Ng0A9BPwS84C9H+crAX4bNX4YEyrEFyrAHyrEHy3F4y3BzlNaqHDsBotY/RL4AVo0Pb0uMY6uYqVC6ivHH5GC+oB8Lb+iV4ZuVgerWJ4utE9+hW78cenrSiNKjr9E0KRyhMZMoFf9Xz/+JEQfe5MtOV3DKlL/ELTPFbJlU9jMVDARY88Tl5JavZHn2PQwbe2ktZJq+qyp9sxQIBFj7xC8YVr6SZdn3kPezyXHL9JjfRQUrGdJAIMCqJy5nhHcFa06+h6wx8evpSTWu3V9HJ5A7tm1g+39n0+/HtxjCIUqViy2tctnZ/bd0HHg6J/YfSi9H9EkfzZGa29b1o1kZKIfTxUlDRiVaDY3GMkIGylupFfHlK3/nlO2z+brN2Qy/+rFayRS30YoIRviZUsEgS5+6llOPfsTSntcxYmLVb52qIzU95Fyxoswvnvwdo49+zNJe19depmlIVYS7EaUUn8++jtOKPmJF72s5Oco3WdXhDnUbltduhfg1K5ZQ+tH95JZ8RhdgQ6sR7BkylX6jLmRIanqNx2vqRrMyUBpNc8MVntBwrOJf8daT5K27m7WpuWRf+wK22k70MVdosJUb4zAqGGTJMzcx+qd5fN3xYoZf8bda65mWkka5cmArKwzL/OypGzht/3y+OeFSRtRJppti5UbKDodlfvr0zYzZ9x++OX4SJ19e+3UAUs0uPhXn6hRrv/6UskX3kVv2BUWksuLE6fQ89w9kdu5V63Nrao82UBpNEuNqczwAUvQjYLSchq+7mw3uIfS57nWcLnd1h0fH7mS/tKNV2R4CgQBLn76e0XtfYkXG+Qy75umoH7jWhM1u40fpgLt4N4FAgC+fupbTfprHivYTGPqb2bWf0QM47DZ2SAecRbvx+/18/vQNjPnpRVa1P5+c3z5TJ5mpKamUKwd4q29BrVv2Md6P72No2VccIY1vel3DwAv/SG7rjGqP01iLNlAaTRKT1tF8U9//LV/989ec8tMC1qUO46TrF8b8EDce9jlOoEvxBlY/fD4jSz7n6w4XMex3/6rX1OdDzhPofGQNqx76OaNKv2B5x4s5+Zqn6yXzoKsTPY+uZeXDEzi9dAnfdJxIzjVz6izT5bBxkBRs5VW/11JKserz97F99iBDyldQSCuW976OwRNvZWgrvSxSItAGSqNJYo5r05o9tGfYjjkAfNlxMrm/fgJHjJUS4uVA20xG7ZtPt+KdfNX/jwyf8uc6tUgiOdx+KNl7VpJR8iVfD5xB7qUz6i8zI4eMPV9zXMnnfDPwNoZe+pd6y/zBdgJpxcf8qR49eoT1H71A+roXyAls5CCt+eqkGxky8WaGVfPRr6bhEVXL5fEbkmHDhqnly5cnWg2NJqlY8d5zuFb9m+Dw3zLkjCmWyDxceJBN//cYxw8dT4+BuTUfEAfFRUdY/+6TdBpyFt36DbVEZlFxEeveeZKuQ35GV4tkfnb/RWSXfsn6QbfiLPiUvkXLSJdSdtk6s7//FQw8/w+4UureOtXUHhFZoZQaViVcGyiNRtOS+OydFxm57DpsothPWwrajaZ13mX0yTu3TuNvmvoTy0DpLj6NRtOiGD3+cgpOysRpFzr3GkR7veRQ0qINlEajaXH06Dck0Spo4kC3ZzUajUaTlGgDpdFoNJqkJKkmSYjIPmC7BaLaA/stkNMYaF0bjqakb1PSFZqWvk1JV2ha+lqla3elVIfKgUlloKxCRJZHmxGSjGhdG46mpG9T0hWalr5NSVdoWvo2tK66i0+j0Wg0SYk2UBqNRqNJSpqrgXo60QrUAq1rw9GU9G1KukLT0rcp6QpNS98G1bVZjkFpNBqNpunTXFtQGo1Go2niaAOl0Wg0mqSkWRkoETlHRDaLyFYRmZFofSIRkW4i8omIbBCR9SJygxk+U0R2i8gq83deonUNISIFIrLW1Gu5GdZORP4rIt+a/xPuKEdE+kXk3yoROSIiNyZT3orIsyLyk4isiwiLmpdi8Jh5H68REWuW8a6frg+KyCZTnzdEpK0Z3kNESiPyeHZj6lqNvjHLXkT+ZObtZhE5Owl0nR+hZ4GIrDLDkyFvY9VbjXPvKqWaxQ+wA9uAXoALWA0MTLReEfp1Aoaa2+nAFmAgMBO4NdH6xdC5AGhfKewBYIa5PQO4P9F6RrkPfgS6J1PeAqcBQ4F1NeUlcB7wHiDACOCrJNB1HOAwt++P0LVHZLokytuoZW8+c6sBN9DTrDPsidS1UvzDwJ1JlLex6q1GuXebUwsqD9iqlPpOKeUFXgYmJFinMEqpPUqpb8zto8BGoEtitaoTE4Dnze3ngQsTp0pUfgZsU0pZsSKJZSilFgMHKwXHyssJwL+VwVKgrYh0ahRFia6rUupDpZTf3F0KdG0sfWoiRt7GYgLwslKqXCn1PbAVo+5oFKrTVUQEuBSY11j61EQ19Vaj3LvNyUB1AXZG7O8iSQ2AiPQAcoCvzKDrzObws8nQZRaBAj4UkRUi8hsz7Hil1B5z+0fg+MSoFpMpVHzAkzVvIXZeJvu9fBXGW3KIniKyUkQ+FZHRiVIqCtHKPpnzdjSwVyn1bURY0uRtpXqrUe7d5mSgmgQi0gp4DbhRKXUEeBLoDWQDezCa+MnCKKXUUOBc4FoROS0yUhlt+qT5TkFEXMAFwCtmUDLnbQWSLS9jISJ/AfzAS2bQHuBEpVQOcDPwHxFpnSj9ImgyZR/BZVR8uUqavI1Sb4VpyHu3ORmo3UC3iP2uZljSICJOjEJ+SSn1OoBSaq9SKqCUCgLP0IjdDTWhlNpt/v8JeANDt72hJrv5/6fEaViFc4FvlFJ7Ibnz1iRWXiblvSwi04GfA1PNSgmzq+yAub0CY0ynb8KUNKmm7JM1bx3ARcD8UFiy5G20eotGunebk4H6GugjIj3NN+kpwFsJ1imM2b88B9iolPp7RHhk/+xEYF3lYxOBiKSJSHpoG2OQfB1Gnv7STPZLYGFiNIxKhTfQZM3bCGLl5VvANHNG1AjgcER3SkIQkXOAPwIXKKVKIsI7iIjd3O4F9AG+S4yWx6im7N8CpoiIW0R6Yui7rLH1i8KZwCal1K5QQDLkbax6i8a6dxM5Q8TqH8YMki0Ybxp/SbQ+lXQbhdEMXgOsMn/nAS8Aa83wt4BOidbV1LcXxmyn1cD6UH4CGcAi4FvgI6BdonU19UoDDgBtIsKSJm8xDOcewIfRL/+rWHmJMQNqlnkfrwWGJYGuWzHGFkL37mwz7STz/lgFfAOcnyR5G7Psgb+YebsZODfRuprhc4FrKqVNhryNVW81yr2rlzrSaDQaTVLSnLr4NBqNRtOM0AZKo9FoNEmJNlAajUajSUq0gdJoNBpNUqINlEaj0WiSEm2gNBqNRpOUaAOl0Wg0mqTk/wP26FHTsQ1iwgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiv0lEQVR4nO2deXwURdr4v8/cubgCIpeAyE1COBJwAQXXGxURFLwQ/anrueut7+7qoru+67kq6soui+KBCJ7o67keiKiIIPcpSLhE5Arknqt+f3TPMEkmyYR0MpOhvp/PfKa7qrr66arqfrqqnq5HlFJoNBqNRpNo2OItgEaj0Wg00dAKSqPRaDQJiVZQGo1Go0lItILSaDQaTUKiFZRGo9FoEhKtoDQajUaTkGgFVQMi0kVElIg44i2L5sgRkZtF5GcRWRGHc08RkVca4TyTRWRhDfHzReTqhpYjXojITBH5W13jLJahxroWkXwRObWh5bASEZkgIgdF5BsRad/Y59cKSmMpIjJNRIrMn1dEfBH7H8ZJrCnADUqp/hFyThGRKXGSJ6EwX8Ty65j+CxEpEZH1NT10ReQi8+FWIiLz6yjXUVNHIjKyLuUjIjkistQs16UiklND2lYi8raIFIvIVhG5JCJulIisEpECEdlnpusQildKzQFam7sX1f3K6kdSKyjd82l8lFLXKaXSlVLpwP8Cc0L7SqmzQukauW5aAasb8XwNQgK159nAMiAT+BPwhoi0qSbtfuBJ4KHGEa1hSYQ6EBEXMA94BWgJvAjMM8Oj8SzgBdoClwLPiUhfM24tcIZSqgXQHvgReC7yYKWUD9iIUd+NStIpKLMbfbeIrASKRcQhIkPNt7gCEVkhIiMj0s8Xkb+LyGIROSQi80SkVTV5Xyki60SkUER+EpHfVYofIyLLzXw2i8iZZnhzEZkhIrtEZKeI/E1E7LVcRzcR+dx8q9krIrNEpEVE3H4RGWjutxeRPaHrEpHzRGSNeb3zRaR3pfK5Q0RWml33OSLiqXtJ151q6kaJyAkRaSoMx4jIOWaZFph1mF3Hc4bKOVhLurvM+vlZRK6OlMuU6VkRed+s++9EpFvEsU+JyHaz3peKyIhK2XvMci4UkR9EJLInd4/ZVgpFZK2IjI2ImywiX4vIEyKyD6MnWNv1PiYiB0Rki4icVSm6s5lfoYh8IiKto2ZSc/49gIHAX5RSpUqpN4FVwLho6ZVSnyql5gI/1/VcUc5dbR1VSpchRg9vqoiIGdxaRP5rXvuXItI5In219SdGL+4NEXlFRA4Bk2sR0yUiL5nnWSMigyvF51hw740EHMCTSqlypdRUQIBTKicUkTSMurlXKVWklFoIvAtcDqCU2q2UiqybAFClTDHun8ZXzkqppPoB+cByoBOQAnQA9gFnYyjk08z9Nmb6+cBOoB+QBrwJvGLGdQEU4DD3RwPdMBrDyUAJMNCMywMOmvnbzPP2MuPeBv5l5n8MsBj4XS3XcYKZlxtoAyzAaJCh+Gsw3n5SgY+Bx8zwHkCxeawTuAvYBLgiymcxxttSK2AdcF01MgwHCmr4Da/lGqaEyjJa3ZhhCjghIs1M4G/m9gDgV2AIYAeuMPNw16E9nAmUAWm1pPkF6GuW5yuRcpky7TPr2AHMAl6LOP4yjLdLB3C7mZcnogx8wHizPu4AtgBOM/5Csy5swASz7tqZcZMBP3CzmXdKDdcw2TzPNWZZXY+hFCSinW8220eKuf9QNXn9E/hnNXFjgXWVwp4Bnq6lHq4G5tfjvo6ljv5m1sPiUBuKiCsETsK4n54CFtax/s4366imOphitrWzzTr4O7CoUvuP9d77P+CeauJuBT6Mkv72KGkHACWVwu4A3ovYPw7jfg6a1zo5Sj73A19Sw33UEL9GO1GjXZDRCK6K2L8beLlSmo+BK8ztCjcq0AejO2ynkoKKcq53gD+Y2/8CnoiSpi1QHtmwgYuBL+p4XecDyyqFvYvx9roS86EN3AvMjUhjw1DAIyPK57KI+EeAaQ1UF1OoqqCuqpSmJgX1HPDXSuk3ACfHeP4lZv6/ryXd88DfI/ZPoOrD7z8R8WcD62vI7wDQP6IMIh9SNmAXMKKaY5cDY8ztycC2GK91MrApYj/VvIZjI9r5nyPibwA+OoI6vTzyesywB4GZtRxXXwUVSx09jzGUe2elY2dS8YUiHaOn0CnG+ltQh/b+acR+H6C0Uvuv972HcY+/VilsFjAlStoRwC+Vwq6JVhcYSvNuYGiUuJYYw3wB4IIjrce6/pJuiM9ke8R2Z+BCc4ioQEQKMHoG7apJvxXjTbfK8IeInCUii8zhtQKMB1UoXSeMN9TKdDbz2xVx/n9h9KSqRUTaishr5pDgIYw3xsoyTcfo+T2tlCo3w9qb1wCAUipoXl+HiON+idguwbhhG4vttScJ0xm4vVLddcK4xljIBSYCU0TEWUO69pXkiiZjtWVmDpmuM4dtCoDmVKyrcH5mfewIXYOITIoYwizAqM+ox8ZAWEalVIm5mR4tvvI11IEioFmlsGYYPZSGJJY6Go3RO5wWJS6yDoow5sZCdRBz/cVA5TL2SMV5q8aug5jTKqX2c3g+q/Jw3pXAIaCVUuqtI5D5iEhWBRW5RPt2jB5Ui4hfmlIqctK2U8T2cRjd3L2RGYqIG2P47zGgrTImFT/AGO4LnacbVdmO0YNqHXH+ZkqpvlHSRvK/5nVkKaWaYQxDhM6FiKRjTD7PwHgAh+bNfsZ4sIfSiXl9O2s5XxVEZIQctsCL9qs81xILlZfPL8F42w9xbMT2duDBSnWXqpSaHdOJjFe/dzDe/trVkHQX0DFiv1N1CStjlsFdGBZOLc12cZCIuorMT0Rs5rl+NudBpgM3AZnmsasrHVu5vOLNGuB4EcmICOtvhjcksdTRdOAj4ANz7oVo6c17pxVGHcRSf4lYB9kR82sA2USvg42AQ0S6R4TVVF8OjJfnykqtN8aoz8EjE/nISFYFFckrwLkicoaI2EXEI4ZJZ2Rjv0xE+ohIKvAA8IZSKlApHxfG+PUewG9OQJ8eET8DuFJEfisiNhHpICK9lFK7gE+Ax0WkmRnXTUROrkXuDIy3n4NimH3eWSn+KWCJUupq4H0OvzXOBUabcjgxxtTLgW9qK6jKKKW+Uoct8KL9vqprnlFYDlxi1s2ZGHN7IaYD14nIEDFIE5HRoYejGMYLM2u5hlDPsjoLJzDK7EoR6W22gXvrIH8GxjzRHowHwX1UvbkHicgF5lvpLRj1sQhjTlKZxyIiV2L0oBIWpdRGjDr7i3kvjcV4OL4ZLX3onsN48NnMY5wR8fkiMjmGU8daRzdhDAO/JyIpEeFni8hwMSzd/ooxTLmd2Oov0ZiPMdT2exFxi8hNZvjnlRMqpYqBt4AHzPtnGDAGeBnAbJc9zedSG+AfGFMJ+ytl5cRot41K0isosxGOAf6I0Qi3YzzsI6/9ZYxx6l8AD/D7KPkUmuFzMcaoL8GYAwrFL8boBj+B8Qb2JYd7MpMwHpBrzWPfoOY3ejAmJQeaeb2P0cgAw1oQY9L4ejPoNmCgiFyqlNqA0dt6GqMXeC5wrlLKW8v54sUfMGQswDCBfScUoZRagjFe/gxGuW2iohVVJ+DrGM6hqKGtK6U+BKYCX5jnWGRGxXJDfozx1r4RY2i1jKpDQvMwDCAOYMzhXKCU8iml1gKPA98Cu4GsGK+nQRHjW7Zow2QhJgKDMa7nIWC8UiqkZC8Vkci388uBUoz5xBHm9nQzrQvDOGERtRBrHZm95msxhlHnyWEruVeBv2AM7Q3CuEcgtvprdETkQxH5Y7Q4814+H+O5UgBcBZwfusdF5I9S8ZvDGzCGPn/F+ETgeqVUqI46YFx/IcZ8dhDDEKYydmqxhG0IQhY+Ry1ifBz3ilLqP/GWRRM75sNtBZCtjO80akr7M3CXUiqmFR3EMMtfjWF44q+3sJqoiMhw4Eal1MVHcKyuo0bC7IkuBGYopf7ZmOdO+h6UJjlRSnmVUr1rU04m92AMSS2tLoGIjDWHS1oCD2OY4eoHXwOilFpYF+Wk66jxEZGLMHqWuzFGjxoVraDiiFRcFijyV9PwiqaOKKVeUkp1V0oNqiHZ7zCGQDZjjO9fX0PauKDbS/zryBx6i1YHUYfjmjpKqblKqWOUUmcrpfbWfoS1HPVDfBqNRqNJTHQPSqPRaDQJSdwXPoykdevWqkuXLvEWQ6PRaDSNyNKlS/cqpaosOJxQCqpLly4sWbIk3mJoNBqNphERka3RwvUQn0aj0WgSEq2gNJomjDZy0iQzWkFpNE2Ubz54he0P9MFbXhZvUTSaBiGh5qCi4fP52LFjB2Vl+ibUxI7H46Fjx444nTUtYt606fb9X2ir9rJz+0Y6nFAnP44aTZMg4RXUjh07yMjIoEuXLlRcvFejiY5Sin379rFjxw66du0ab3EajACGs+DSA79grNeq0SQXCT/EV1ZWRmZmplZOmpgRETIzM5O+163EuH29JYfiLIlG0zAkvIICtHLS1Jmjoc34xPAg4i1taF+BGk18aBIKSqPRVCVgMxRUoKwozpJoNA2DVlAxICLcfvvt4f3HHnuMKVOmxE+gWpg/fz7ffFNn/4QVOPPMM2nRogXnnHOORVJprEYrKE2yoxVUDLjdbt566y327rV2MV+lFMGg9T7ArFBQd955Jy+//LJFEmkagoA5xBco1wpKk5xoBRUDDoeDa6+9lieeeKJK3J49exg3bhy5ubnk5uby9deGQ9QpU6bw2GOPhdP169eP/Px88vPz6dmzJ5MmTaJfv35s376dO++8k379+pGVlcWcOXMAQ8mMHDmS8ePH06tXLy699NKoH2VOnTqVPn36kJ2dzcSJE8nPz2fatGk88cQT5OTk8NVXX9Uo4+WXX86JJ55I9+7dmT59ejjf3/72t2RkZNRYLq+//jr9+vWjf//+nHTSSYBh1HLllVeSlZXFgAED+OKLLwCYOXMm559/PqeddhpdunThmWee4R//+AcDBgxg6NCh7N9veJiePn06ubm59O/fn3HjxlFSUlLlvEOHDmXNmsNOW0eOHHlULpGlbIYVH97i+Aqi0TQQCW9mHsn9761h7c/WWiz1ad+Mv5zbt9Z0N954I9nZ2dx1110Vwv/whz9w6623Mnz4cLZt28YZZ5zBunXraszrxx9/5MUXX2To0KG8+eabLF++nBUrVrB3715yc3PDD/tly5axZs0a2rdvz7Bhw/j6668ZPnx4hbweeughtmzZgtvtpqCggBYtWnDdddeRnp7OHXfcAcAll1xSrYwrV65k0aJFFBcXM2DAAEaPHk379u1jKrsHHniAjz/+mA4dOlBQUADAs88+i4iwatUq1q9fz+mnn87GjRsBWL16NcuWLaOsrIwTTjiBhx9+mGXLlnHrrbfy0ksvccstt3DBBRdwzTXXAPDnP/+ZGTNmcPPNN1c474QJE5g7dy73338/u3btYteuXQwePDgmmZMJCQaMf59WUJrkRPegYqRZs2ZMmjSJqVOnVgj/9NNPuemmm8jJyeG8887j0KFDFBXVPOTSuXNnhg4dCsDChQu5+OKLsdvttG3blpNPPpnvv/8egLy8PDp27IjNZiMnJ4f8/PwqeWVnZ3PppZfyyiuv4HBEf9+oScYxY8aQkpJC69atGTVqFIsXL465TIYNG8bkyZOZPn06gUAgfD2XXXYZAL169aJz585hBTVq1CgyMjJo06YNzZs359xzzwUgKysrfG2rV69mxIgRZGVlMWvWrAo9pRAXXXQRb7zxBgBz585l/PjxMcucTNiUUeZ2raA0SUqT6kHF0tNpSG655RYGDhzIlVdeGQ4LBoMsWrQIj8dTIa3D4agwvxT5TU5aWlpM53O73eFtu92O31/Vu/X777/PggULeO+993jwwQdZtWpVlTTVyQhVzbHrYp49bdo0vvvuO95//30GDRrE0qXVelQHKl6PzWYL79tstvC1TZ48mXfeeYf+/fszc+ZM5s+fXyWfDh06kJmZycqVK5kzZw7Tph0tDmUrYjO9ndv9VYdBNZpkQPeg6kCrVq246KKLmDFjRjjs9NNP5+mnnw7vL1++HDBch/zwww8A/PDDD2zZsiVqniNGjGDOnDkEAgH27NnDggULyMvLi0meYDDI9u3bGTVqFA8//DAHDx6kqKiIjIwMCgsPfxtTnYwA8+bNo6ysjH379jF//nxyc3NjOjfA5s2bGTJkCA888ABt2rRh+/btjBgxglmzZgGwceNGtm3bRs+ePWPOs7CwkHbt2uHz+cL5RGPChAk88sgjHDx4kOzso3MVhcMKqjTOkmg0DYNWUHXk9ttvr2DNN3XqVJYsWUJ2djZ9+vQJv82PGzeO/fv307dvX5555hl69OgRNb+xY8eSnZ1N//79OeWUU3jkkUc49thjY5IlEAhw2WWXhQ0Sfv/739OiRQvOPfdc3n777bCRRHUygjFEOGrUKIYOHcq9994bnn8aMWIEF154IZ999hkdO3bk448/BuC+++7j3XffBQxLv6ysLPr168dvfvMb+vfvzw033EAwGCQrK4sJEyYwc+bMCj2n2vjrX//KkCFDGDZsGL169QqHv/vuu9x3333h/fHjx/Paa69x0UUXxZx3siHmEJ8zoHtQmuREEmm5/sGDB6vK1ljr1q2jd+/ecZIouZkyZUoFY4pkI9nbTv5f+9MlkM+Pju50//PRZ8WoSR5EZKlSqoqlk+5BaTRNFDvGEJ8rmNxrDmqOXpqUkYTGWhJ5NQxN7YSs+FxKKyhNcqJ7UBpNE8VuKiiPKo+zJBpNw6AVlEbTRLETUlC6B6VJTrSC0miaKKEhvhTxosxVJTSaZEIrKI2miRLqQQGUlegFYzXJR4MrKBE5U0Q2iMgmEbmnoc/XULzzzjuICOvXr682TX5+Pv369WtQOZYvX84HH3xQrzyuuuoqjjnmmAaXVdOwOAjgVabb92LtVVeTfDSoghIRO/AscBbQB7hYRPo05DkbitmzZzN8+HBmz54dNT7aMkR1JbSeXU1YoaAmT57MRx99VK88NPHHToAiUgHdg9IkJw3dg8oDNimlflJKeYHXgDENfE7LKSoqYuHChcyYMYPXXnstHD5//nxGjBjBeeedR58+ht71+/1ceuml9O7dm/Hjx4fdRXz22WcMGDCArKwsrrrqKsrLDcurLl26cPfddzNw4EBef/31Cuet7M7C6/Vy3333MWfOHHJycpgzZw7FxcVcddVV5OXlMWDAAObNmwcY7i3GjBnDyJEj6d69O/fff38435NOOolWrVrVeM1ffvklOTk55OTkMGDAAAoLC1FKVesa5OSTT2bMmDEcf/zx3HPPPcyaNYu8vDyysrLYvHkzAO+99x5DhgxhwIABnHrqqezevbvKeSdOnMj7778f3p88eXJ4YVhNRewEKBZjXcfyEu32XZN8NPR3UB2A7RH7O4AhkQlE5FrgWoDjjjuu5tw+vAd+qboYar04NgvOeqjGJPPmzePMM8+kR48eZGZmsnTpUgYNGgQY6+ytXr2arl27kp+fz4YNG5gxYwbDhg3jqquu4p///Cc33XQTkydP5rPPPqNHjx5MmjSJ5557jltuuQWAzMzM8Lp9kVR2Z+FyuXjggQdYsmQJzzzzDAB//OMfOeWUU3j++ecpKCggLy+PU089FYDFixezevVqUlNTyc3NZfTo0TG7pXjsscd49tlnGTZsGEVFRXg8Ht56661qXYOsWLGCdevW0apVK44//niuvvpqFi9ezFNPPcXTTz/Nk08+yfDhw1m0aBEiwn/+8x8eeeQRHn/88QrnDbnSGD16NF6vl88++4znnnsuJpmPNuwqQKk9DYLgLdUKSpN8xN1IQin1b6XUYKXU4DZt2sRbnKjMnj2biRMnAsYbfuQwX15eHl27dg3vd+rUiWHDhgFw2WWXsXDhQjZs2EDXrl3D6/FdccUVLFiwIHzMhAkTop43mjuLynzyySc89NBD5OTkMHLkSMrKyti2bRsAp512GpmZmaSkpHDBBRewcOHCmK952LBh3HbbbUydOpWCggIcDkeNrkFyc3Np164dbrebbt26cfrppwMVXWns2LGDM844g6ysLB599NGorjTOOussvvjiC8rLy/nwww856aSTSElJiVnuo4ZgELsoyu1GD8pXpl1uaJKPhu5B7QQ6Rex3NMOOjFp6Og3B/v37+fzzz1m1ahUiQiAQQER49NFHgaquM47EfUV17jdicWehlOLNN9+ssmL4d999Vy9XGvfccw+jR4/mgw8+YNiwYeHFYqsjFlcaN998M7fddhvnnXce8+fPj7qShcfjYeTIkXz88cfMmTMn/GKgqYRpYu51ZIAP/FpBaZKQhu5BfQ90F5GuIuICJgLvNvA5LeWNN97g8ssvZ+vWreTn57N9+3a6du3KV199FTX9tm3b+PbbbwF49dVXGT58OD179iQ/P59NmzYB8PLLL3PyySfXeu5o7iwqu9I444wzePrpp8Pu4JctWxaO++9//8v+/fspLS3lnXfeCffsYmHz5s1kZWVx9913k5uby/r16+vlGgTg4MGDdOjQAYAXX3yx2nQTJkzghRde4KuvvuLMM8+MOf+jiaDfB4DfmW78l2kjCU3y0aAKSinlB24CPgbWAXOVUlXHdRKY2bNnM3bs2Aph48aNq9aar2fPnjz77LP07t2bAwcOcP311+PxeHjhhRe48MILycrKwmazcd1119V67mjuLEaNGsXatWvDRhL33nsvPp+P7Oxs+vbty7333hs+Pi8vj3HjxpGdnc24cePC808XX3wxJ554Ihs2bKBjx45h/1bTpk0Lu+J48skn6devH9nZ2TidTs4666x6uQYBY+2/Cy+8kEGDBtG6detw+JIlS7j66qvD+6effjpffvklp556Ki6XK+b8jyb8poIKuDIACJbrHpQm+dDuNpKUmTNnVjCmOBpJ5rZTcnAvqU904+v2VzLs5xdY1OMuhl7yp3iLpdEcEdrdhkaTRAQCxryeeJoBoHy6B6VJPrS7jSRl8uTJTJ48Od5iaBoIv88Y4hNXGkEl4NVedTXJR5PoQSXSMKSmaZDsbSZgzkGJ3UkpbvBpBaVJPhJeQXk8Hvbt25f0DxyNdSil2LdvHx6PJ96iNBiHFZSDMvFg0wpKk4Qk/BBfx44d2bFjB3v27Im3KJomhMfjoWPHjvEWo8EImN+Wid1pKCh/aZwl0misJ+EVlNPprLBSg0ajgUDA6EHZ7A68Ng/2gFZQmuQj4Yf4NBpNVcJDfDY7XpsHh1ZQmiREKyiNpgkSOcTns6Xg1ApKk4RoBaXRNEGCEUN8AbsHV7AszhJpNNajFZRG0wTxmx/q2h1OAo4UXEorKE3yoRWURtMECc1B2ewOgo5UPFpBaZIQraA0miZIaDVzu8OpFZQmadEKSqNpggRNIwmb3YFypZJCOcFAMM5SaTTWohWURtME8QcO96DEmYpDgpSWaUs+TXKhFZRG0wRRZg/K4XQiLsMjc2lxYU2HaDRNDq2gNJomSGglCbvdgc1tKKjyUu1VV5NcaAWl0TRBQkYSDocLe0hBlRyKp0gajeVoBaXRNEX8htWe3Z2KzWO4fdc9KE2yoRWURtMUCZQD4HB5cKWkA+Ar0QpKk1xoBaXRNEV8hsWe3ZWCM8XoQfnLtJGEJrnQCkqjaYKI3+hBOd0p4R5UoFwrKE1yoRWURtMEkdAQnzsFd6rRgwqUFcdTJI3GcrSC0miaIMpXhk/ZcTiceFKbGWHlWkFpkgutoDSapoi/FK84ERE8aaaC8moFpUkutILSaJoi/nK8uABweVIJKgGfVlCa5EIrKI2mKeIvxydOY1uEEvEgvpL4yqTRWIxWUBpNE0QCZfjEHd4vxYNN96A0SYZWUBpNE8TpL8Fr84T3y8WD3a97UJrkQisojaYJkho4RIm9WXi/3JaC3a/dbWiSC62gNJomSEqgkHJn8/C+z+bBGdA9KE1yoRWURtMESVeFBN0twvteeyquoO5BaZILraA0miaG1xcgQxVDSotwWMCeohWUJunQCkqjaWIUHNiDW/xIeptwmN+RijtYFkepNBrrqZeCEpEpIrJTRJabv7Mj4v5HRDaJyAYROaP+omo0GoADOzcB4GjVORwWdKTiQSsoTXLhsCCPJ5RSj0UGiEgfYCLQF2gPfCoiPZRSAQvOp9Ec1ezb+SMAmR27h8OUM5UUpRWUJrloqCG+McBrSqlypdQWYBOQ10Dn0miOKoK7VhNUwrFd+4bDlCsNj/gI+P1xlEyjsRYrFNRNIrJSRJ4XkZZmWAdge0SaHWZYFUTkWhFZIiJL9uzZY4E4Gk1yk75nGTscnXCkHP4OClcaAKUlh+IklUZjPbUqKBH5VERWR/mNAZ4DugE5wC7g8boKoJT6t1JqsFJqcJs2bWo/QKM5ijl4YD99ylfwS5vhFcLFZTgtLCvWCkqTPNQ6B6WUOjWWjERkOvB/5u5OoFNEdEczTKPR1INVHzzHcPHTeshFFcLtbqMHVVakFZQmeaivFV+7iN2xwGpz+11gooi4RaQr0B1YXJ9zaTRHO7t25tN343Osd2dx/IBRFeLsHqMH5S0tiodoGk2DUF8rvkdEJAdQQD7wOwCl1BoRmQusBfzAjdqCT6M5cg7s2UXR8xfQgnKaX/hMlXiHqaB8pboHpUke6qWglFKX1xD3IPBgffLXaDSwbuE7tPn0FjqrQn485V/0PSGnShpHSgYAvjLdg9IkD1Z8B6XRaBoAb1kpy1+8jbxdr5IvHdl3/iz65gyLmtaVYvSg/FpBaZIIraA0mgRk2/qlBF6/irxAPt9mXkD2lU+Rlt6s2vTuNGNl80BpYYPKFQwE2Jb/IwU71uMtLkBESGvdkQ7H96N5ZtsGPbfm6EMrKI0mgVDBIItff5T+ax+lRFL4Ydg0Tjzt4lqPc6cZykuVW6+gCvbtYf3nL+PM/4ITipfSheiee3+ydWZP6yGk9TmD7kPOwG0OO1qBCgZRCpQINgERsSxvTeKiFZRGkyAc3L+XzTMmM6T4K1ak5NJ+8vMMPPa4mI71mD0oyq0Z4lNKsfrbjyn/ZhpZhQsZKj52SyYbW5yM7bhc0tv3JKVZa1QwyMHd+ZTuXE3az9/Qf/fbeH6dS/kXTtamZFHUcQSpHfvRvH0PUjNa4k5Jo6yslPLig5QWFVB6cC9lh/biL9pLoHg/lB7AUXYAl68Aj+8gacFCmqlCmlOMTRR+ZcOLHT82fOKkDA9l4qFcPJTbPPhsKXjtKfhtKfjtKfgdqUh6a4aOv430Zi1rv3BNQnH0KCilKPeWU1JSgvJ7UUEf2Jxgd+JweXA6XTjsdpx20W9nmkZny5rvcL1xOVnBvXzX/VZyL74Pmz32r0BSU1IpV07w1q8HpYJBfvh8LimLniLLv5YC0llxzBgyh19Bt+wRtI12b/Q7MbxZUlzI8sWfULz2Y9rv/YY+m54yFjqLIL2G8xfjoVCaUWJvRrmnOQddndjvbkm5sxmIDZsKgAqgAn4kUI7NX4LDX4IjUIo7UEZG8AAu7y5cqgxPsBQP5Tj3+9n65NscuHgWnbr3r1f5aBqXpFJQBw/sZdO371H+6484C/JJKf2ZFN8BmgcLaKEO4ZYg7hqO9yo7JTjw4sSHAz8OfOLEjwO/GNsBnARsDhQ2bIIx3IAytlHhvEQpQCFmWChGItIoVTUsOopak9RK9RnUO+tYJWisE1V3fkszs/ZiugS2UiypbDnvDYYMOqXOxzvsNg6Sgs175D2odT8sIPjh/zDIt5pd0obv+/wPWefcSF5q7EN1qWkZ5IwaB6PGAbD/153s3Lya8j0/4S8rIugrxe50Y3NnYPc0I6VZJmktjyGj5TE0b3UMaU43aUd8BdFZsWAex31+Iymv/JZvOk2i7/l30Lx1+1qP83q97N2VT8Ev+ZTs2YrvwHbk0E5cxbtx+Q/hDhSTEiwmRZXgUl4EEIIIYCNo3v1CEBtBERQ2cz9iW2wEzW2FDSWV/hGU2CK2zfzM/SPh8LMo1pTRQ0TBLmcnRt39+hHJEQtJpaAKfsln0OJbANhLC/Y52lKU0p597iz87pbY3GnYnW6UzYWy2bGpABLwoYI+JOBFAl4IeJHQftCHLejDFvBiC/pwKB/uoLENiqASVOhfRaojwo2TiIYUevkMN6xqWogIURqf1LgbY9QRUH1ulp6nEa6ntnyq7zg3fI96k/M3HHvho/ToeMIR51EiKdh9dVdQBft+ZcNLv2fIwQ/ZTzOW9ruX/ufdTDtXTa9zsdHqmA60OibqMpyNRv+TxrC7WxZbXrud3+yYgffpmazx9KOoRW+Cqa2xOZwobylSVoCzeBdpZbtp6f+VTHWA9qKIVGWFpLDP1poSe3NKXJkcdHQm4EwHhxvEBqZiQTDeK1UQwj8VsW38JLRNaFtVCBcOH2OoqaCh4pSxHSvVte3alFxtLT/oSIlZhiMhqRRU+2792DTuIzp07UPr9Oa0jrdAGk0jUiqpOPx1U1DLPptLh6/uZpAq4PsOl9Fnwl8Z1LxVA0kYP9p2OJ62t7/N5jXfs+er52m153uyf3mLFPGG05QoN3ttmRxyHcO29Dy2ZLTH3qITnszjaHZsF1q1P56MZq2wzvSj6dOvgfNPKgXldHk4IevE2hNqNElImS0Vty+6hV1lDhbsY/3MmxlS8D5bbcexbcxL5PYf0cASxp9ufXPp1jcXMAxBykqLKC/3kZKWTqrLRWwmKZrGIqkUlEZzNON3pJHu31druhVfvk3bL+5gsNrH4o6TyLn8YVye1EaQMLEQETypGRyFl95k0ApKo0kSAs503N5t1cYXHtzPmhdvYej+eWyzdWDLOW+RN7DuBhkaTWOhFZRGkySUp7Qhs2ifMdFeaVZ82RdvceyXd5Kn9rG43USyJz2OJ7Umg2+NJv5oBaXRJAmB5l3w7PFRtG8H6a0Nd2y7t/3I1tfvIa/wU7bbOrDprDfIy43JxZtGE3e0gtJokoRmHXvBJti+9jvS2hWw4+OnGLjnHfoDiztdSc6lD+JKsforI42m4dAKSqNJEroNPo2CL9Lp/tk1OCRIO2VnZcvTaD/2r+R17hFv8TSaOqMVlEaTJDRLz2D12S9R9N2LSGY3uo26gkHtu8RbLI3miNEKSqNJIvoN+S0M+W28xdBoLCH21Sg1Go1Go2lEtILSaDQaTUIiKt5LTEcgInuArRZk1RrYa0E+jYGWteFoSvI2JVmhacnblGSFpiWvVbJ2Vkq1qRyYUArKKkRkiVJqcLzliAUta8PRlORtSrJC05K3KckKTUvehpZVD/FpNBqNJiHRCkqj0Wg0CUmyKqh/x1uAOqBlbTiakrxNSVZoWvI2JVmhacnboLIm5RyURqPRaJo+ydqD0mg0Gk0TRysojUaj0SQkSaWgRORMEdkgIptE5J54yxOJiHQSkS9EZK2IrBGRP5jhU0Rkp4gsN39nx1vWECKSLyKrTLmWmGGtROS/IvKj+d8yAeTsGVF+y0XkkIjckkhlKyLPi8ivIrI6IixqWYrBVLMdrxSRgQkg66Mist6U520RaWGGdxGR0ogyntaYstYgb7V1LyL/Y5btBhE5IwFknRMhZ76ILDfDE6Fsq3tuNU7bVUolxQ+wA5uB4wEXsALoE2+5IuRrBww0tzOAjUAfYApwR7zlq0bmfKB1pbBHgHvM7XuAh+MtZ5R28AvQOZHKFjgJGAisrq0sgbOBDwEBhgLfJYCspwMOc/vhCFm7RKZLoLKNWvfmPbcCcANdzWeGPZ6yVop/HLgvgcq2uudWo7TdZOpB5QGblFI/KaW8wGvAmDjLFEYptUsp9YO5XQisAzrEV6ojYgzworn9InB+/ESJym+BzUopK1YksQyl1AJgf6Xg6spyDPCSMlgEtBCRdo0iKNFlVUp9opTym7uLgI6NJU9tVFO21TEGeE0pVa6U2gJswnh2NAo1ySoiAlwEzG4seWqjhudWo7TdZFJQHYDtEfs7SFAFICJdgAHAd2bQTWZ3+PlEGDKLQAGfiMhSEbnWDGurlNplbv8CtI2PaNUykYo3eKKWLVRflonelq/CeEsO0VVElonIlyIyIl5CRSFa3Sdy2Y4AdiulfowIS5iyrfTcapS2m0wKqkkgIunAm8AtSqlDwHNANyAH2IXRxU8UhiulBgJnATeKyEmRkcro0yfMdwoi4gLOA143gxK5bCuQaGVZHSLyJ8APzDKDdgHHKaUGALcBr4pIs3jJF0GTqfsILqbiy1XClG2U51aYhmy7yaSgdgKdIvY7mmEJg4g4MSp5llLqLQCl1G6lVEApFQSm04jDDbWhlNpp/v8KvI0h2+5Ql938/zV+ElbhLOAHpdRuSOyyNamuLBOyLYvIZOAc4FLzoYQ5VLbP3F6KMacTd/e9NdR9opatA7gAmBMKS5SyjfbcopHabjIpqO+B7iLS1XyTngi8G2eZwpjjyzOAdUqpf0SER47PjgVWVz42HohImohkhLYxJslXY5TpFWayK4B58ZEwKhXeQBO1bCOorizfBSaZFlFDgYMRwylxQUTOBO4CzlNKlUSEtxERu7l9PNAd+Ck+Uh6mhrp/F5goIm4R6Yoh7+LGli8KpwLrlVI7QgGJULbVPbdorLYbTwsRq38YFiQbMd40/hRveSrJNhyjG7wSWG7+zgZeBlaZ4e8C7eItqynv8RjWTiuANaHyBDKBz4AfgU+BVvGW1ZQrDdgHNI8IS5iyxVCcuwAfxrj8/6uuLDEsoJ412/EqYHACyLoJY24h1HanmWnHme1jOfADcG6ClG21dQ/8ySzbDcBZ8ZbVDJ8JXFcpbSKUbXXPrUZpu3qpI41Go9EkJMk0xKfRaDSaJEIrKI1Go9EkJFpBaTQajSYh0QpKo9FoNAmJVlAajUajSUi0gtJoNBpNQqIVlEaj0WgSEq2gNBqNRpOQaAWl0Wg0moREKyiNRqPRJCRaQWk0Go0mIdEKSqPRaDQJiVZQNSAiXUREmb5aNE0UEblZRH4WkRVxOPcUEXmlEc4zWUQW1hA/X0Submg54oWIzBSRv9U1zmIZaqxrEckXkVMbWg4rEZEJInJQRL4RkfaNfX6toDSWIiLTRKTI/HlFxBex/2HtOTQIU4AblFL9I+ScIiJT4iRPQmG+iOXXMf0XIlIiIutreuiKyEXmw61ERObXUa6jpo5EZGRdykdEckRkqVmuS0Ukp4a0rUTkbREpFpGtInJJRNwoEVklIgUiss9MF3bRrpSaA7Q2dy+q+5XVj6RWULrn0/gopa5TSqUrpdKB/wXmhPaVUmeF0jVy3bQi8ZwV1pkEas+zgWUYPoH+BLwhIm2qSbsfeBJ4qHFEa1gSoQ5Mh6zzgFeAlsCLwDwzPBrPAl6gLXAp8JyI9DXj1gJnKKVaAO0x/Ds9F3mwUsqH4Wcv09orqZ2kU1BmN/puEVkJFIuIQ0SGmm9xBSKyQkRGRqSfLyJ/F5HFInJIROaJSKtq8r5SRNaJSKGI/CQiv6sUP0ZElpv5bDa9kCIizUVkhojsEpGdIvK3kKfMGq6jm4h8br7V7BWRWSLSIiJuv4gMNPfbi8ie0HWJyHkissa83vki0rtS+dwhIivNrvscEfHUvaTrTjV1o0TkhIg0FYZjROQcs0wLzDrMruM5Q+UcrCXdXWb9/CwiV0fKZcr0rIi8b9b9dyLSLeLYp0Rku1nvS0VkRKXsPWY5F4rIDyIS2ZO7x2wrhSKyVkTGRsRNFpGvReQJEdmH0ROs7XofE5EDIrJFRM6qFN3ZzK9QRD4RkdZRM6k5/x7AQOAvSqlSpdSbGI7pxkVLr5T6VCk1F/i5rueKcu5q66hSugwxenhTRUTM4NYi8l/z2r8Ukc4R6autPzF6cW+IyCsicgiYXIuYLhF5yTzPGhEZXCk+x4J7byTgAJ5Uhlv4qRiOAk+pnFAMb9jjgHuVUkVKqYUYDhwvB1BK7VZKRdZNAKhSphj3T+Mr58b20NgIHiDzMbw+dgJSgA4YnlbPxlDIp5n7bcz084GdQD8Mr6xvAq+YcV0wvEk6zP3RQDeMxnAyUAIMNOPygINm/jbzvL3MuLeBf5n5H4PhYvp3tVzHCWZebqANsACjQYbir8F4+0kFPgYeM8N7AMXmsU4MN92bAFdE+SzGeFtqBayjkifPSt40C2r4Da/lGqaEyjJa3ZhhCjghIs1M4G/m9gDgV2AIYMdwLZ0PuOvQHs4EyoC0WtL8AvQ1y/OVSLlMmfaZdewAZgGvRRx/GcbbpQO43czLE1EGPmC8WR93AFsApxl/oVkXNmCCWXftzLjJgB+42cw7pYZrmGye5xqzrK7HUAohp6TzMbyc9sC4L+YDD1WT1z+Bf1YTNxbD/Xdk2DPA07XUw9XA/Hrc17HU0d/MelgcakMRcYXASRj301PAwjrW3/lmHdVUB1PMtna2WQd/BxZVav+x3nv/B9xTTdytwIdR0t8eJe0AoKRS2B3AexH7x2Hcz0HzWidHyed+4EtquI8a4tdoJ2q0CzIawVUR+3cDL1dK8zFwhbld4UYF+mB0h+1UUlBRzvUO8Adz+1/AE1HStAXKIxs2cDHwRR2v63xgWaWwdzns1tptht0LzI1IY8NQwCMjyueyiPhHMN13N0BdTKGqgrqqUpqaFNRzwF8rpd8AnBzj+ZeY+f++lnTPA3+P2D+Bqg+//0TEnw2sryG/A0D/iDKIfEjZMFx+j6jm2OXAGHN7MrAtxmudDGyK2E81r+HYiHb+54j4G4CPjqBOL4+8HjPsQWBmLcfVV0HFUkfPYwzl3lnp2JlUfKFIx+gpdIqx/hbUob1/GrHfByit1P7rfe9h3OOvVQqbBUyJknYE8EulsGui1QWG0rwbGBolriXGMF8AuOBI67Guv6Qb4jPZHrHdGbjQHCIqEJECjJ5Bu2rSb8V4060y/CEiZ4nIInN4rQDjQRVK1wnjDbUync38dkWc/18YPalqEZG2IvKaOSR4COONsbJM0zF6fk8rpcrNsPbmNQCglAqa19ch4rhfIrZLMG7YxmJ77UnCdAZur1R3nTCuMRZygYnAFBFx1pCufSW5oslYbZmZQ6brzGGbAqA5FesqnJ9ZHztC1yAikyKGMAsw6jPqsTEQllEpVWJupkeLr3wNdaAIaFYprBlGD6UhiaWORmP0DqdFiYusgyKMubFQHcRcfzFQuYw9UnHeqrHrIOa0Sqn9HJ7PqjycdyVwCGillHrrCGQ+IpJVQamI7e0YPagWEb80pVTkpG2niO3jMLq5eyMzFBE3xvDfY0BbZUwqfoAx3Bc6Tzeqsh2jB9U64vzNlFJ9o6SN5H/N68hSSjXDGIYInQsRSceYfJ6B8QAOzZv9jPFgD6UT8/p21nK+KojICDlsgRftV3muJRZUpf0SjLf9EMdGbG8HHqxUd6lKqdkxnch49XsH4+2vXQ1JdwEdI/Y7VZewMmYZ3IVh4dTSbBcHiairyPxExGae62dzHmQ6cBOQaR67utKxlcsr3qwBjheRjIiw/mZ4QxJLHU0HPgI+MOdeiJbevHdaYdRBLPWXiHWQHTG/BpBN9DrYCDhEpHtEWE315cB4ea6s1HpjjPocPDKRj4xkVVCRvAKcKyJniIhdRDximHRGNvbLRKSPiKQCDwBvKKUClfJxYYxf7wH85gT06RHxM4ArReS3ImITkQ4i0ksptQv4BHhcRJqZcd1E5ORa5M7AePs5KIbZ552V4p8Cliilrgbe5/Bb41xgtCmHE2NMvRz4praCqoxS6it12AIv2u+ruuYZheXAJWbdnIkxtxdiOnCdiAwRgzQRGR16OIphvDCzlmsI9Syrs3ACo8yuFJHeZhu4tw7yZ2DME+3BeBDcR9Wbe5CIXGC+ld6CUR+LMOYklXksInIlRg8qYVFKbcSos7+Y99JYjIfjm9HSh+45jAefzTzGGRGfLyKTYzh1rHV0E8Yw8HsikhIRfraIDBfD0u2vGMOU24mt/hKN+RhDbb8XEbeI3GSGf145oVKqGHgLeMC8f4YBY4CXAcx22dN8LrUB/oExlbC/UlZOjHbbqCS9gjIb4RjgjxiNcDvGwz7y2l/GGKf+BfAAv4+ST6EZPhdjjPoSjDmgUPxijG7wExhvYF9yuCczCeMBudY89g1qfqMHY1JyoJnX+xiNDDCsBTEmja83g24DBorIpUqpDRi9racxeoHnAucqpby1nC9e/AFDxgIME9h3QhFKqSUY4+XPYJTbJipaUXUCvo7hHIoa2rpS6kNgKvCFeY5FZlQsN+THGG/tGzGGVsuoOiQ0D8MA4gDGHM4FSimfUmot8DjwLbAbyIrxehoUMb5lizZMFmIiMBjjeh4CxiulQkr2UhGJfDu/HCjFmE8cYW5PN9O6MIwTFlELsdaR2Wu+FmMYdZ4ctpJ7FfgLxtDeIIx7BGKrv0ZHRD4UkT9GizPv5fMxnisFwFXA+aF7XET+KBW/ObwBY+jzV4xPBK5XSoXqqAPG9RdizGcHMQxhKmOnFkvYhiBk4XPUIsbHca8opf4Tb1k0sWM+3FYA2cr4TqOmtD8DdymlYlrRQQyz/NUYhif+eguriYqIDAduVEpdfATH6jpqJMye6EJghlLqn4157qTvQWmSE6WUVynVuzblZHIPxpDU0uoSiMhYc7ikJfAwhhmufvA1IEqphXVRTrqOGh8RuQijZ7kbY/SoUdEKKo5IxWWBIn81Da9o6ohS6iWlVHel1KAakv0OYwhkM8b4/vU1pI0Lur3Ev47MobdodRB1OK6po5Saq5Q6Ril1tlJqb+1HWMtRP8Sn0Wg0msRE96A0Go1Gk5DEfeHDSFq3bq26dOkSbzE0Go1G04gsXbp0r1KqyoLDCaWgunTpwpIlS+Ithkaj0WgaERHZGi1cD/FpNBqNJiHRCkqjSTCCQcWHK3cQCGoDJs3RjVZQGk2CsXD+h5z1Vl8++vDd2hNrNElMQs1BRcPn87Fjxw7KysriLYqmCeHxeOjYsSNOZ02LmCcmnnxjSbWWOz/HWKVLozk6SXgFtWPHDjIyMujSpQsVF+/VaKKjlGLfvn3s2LGDrl27xlucuuM01zgNJOryiRpN45DwQ3xlZWVkZmZq5aSJGREhMzOz6fa67cbC68pbUktCjSa5SXgFBWjlpKkzTbrNBI3lBe2BJqpgNRqLaBIKSqM5mhBzaE8rKM3RjlZQMSAi3H777eH9xx57jClTpsRPoFqYP38+33xTZ/+EYZYvX86JJ55I3759yc7OZs6cORZKp6kNCRgujpyB0jhLotHEF62gYsDtdvPWW2+xd6+1i/kqpQgGrfcBVl8FlZqayksvvcSaNWv46KOPuOWWWygoKLBOQE2NiDnE5wrqOSjN0Y1WUDHgcDi49tpreeKJJ6rE7dmzh3HjxpGbm0tubi5ff204RJ0yZQqPPfZYOF2/fv3Iz88nPz+fnj17MmnSJPr168f27du588476devH1lZWeHeyvz58xk5ciTjx4+nV69eXHrppURbeX7q1Kn06dOH7OxsJk6cSH5+PtOmTeOJJ54gJyeHr776qkYZL7/8ck488US6d+/O9OnTAejRowfdu3cHoH379hxzzDHs2bOnyrlff/11+vXrR//+/TnppJMAw6jlyiuvJCsriwEDBvDFF18AMHPmTM4//3xOO+00unTpwjPPPMM//vEPBgwYwNChQ9m/3/AwPX36dHJzc+nfvz/jxo2jpKTqQ3ro0KGsWXPYaevIkSOTaoksFQwA4ArqHpTm6Cbhzcwjuf+9Naz9+ZClefZp34y/nNu31nQ33ngj2dnZ3HXXXRXC//CHP3DrrbcyfPhwtm3bxhlnnMG6detqzOvHH3/kxRdfZOjQobz55pssX76cFStWsHfvXnJzc8MP+2XLlrFmzRrat2/PsGHD+Prrrxk+fHiFvB566CG2bNmC2+2moKCAFi1acN1115Gens4dd9wBwCWXXFKtjCtXrmTRokUUFxczYMAARo8eTfv27cP5L168GK/XS7du3apcxwMPPMDHH39Mhw4dwj2sZ599FhFh1apVrF+/ntNPP52NGzcCsHr1apYtW0ZZWRknnHACDz/8MMuWLePWW2/lpZde4pZbbuGCCy7gmmuuAeDPf/4zM2bM4Oabb65w3gkTJjB37lzuv/9+du3axa5duxg8eHCNZd6kMBWUR/egNEc5ugcVI82aNWPSpElMnTq1Qvinn37KTTfdRE5ODueddx6HDh2iqKioxrw6d+7M0KFDAVi4cCEXX3wxdrudtm3bcvLJJ/P9998DkJeXR8eOHbHZbOTk5JCfn18lr+zsbC699FJeeeUVHI7o7xs1yThmzBhSUlJo3bo1o0aNYvHixeHjdu3axeWXX84LL7yAzVa1qQwbNozJkyczffp0AoFA+Houu+wyAHr16kXnzp3DCmrUqFFkZGTQpk0bmjdvzrnnngtAVlZW+NpWr17NiBEjyMrKYtasWRV6SiEuuugi3njjDQDmzp3L+PHjayzvpoYoY9jXo3tQmqOcJtWDiqWn05DccsstDBw4kCuvvDIcFgwGWbRoER6Pp0Jah8NRYX4p8puctLS0mM7ndrvD23a7Hb+/qnfr999/nwULFvDee+/x4IMPsmrVqippqpMRqppjh/YPHTrE6NGjefDBB8PKtDLTpk3ju+++4/3332fQoEEsXVqtR/Uq12Oz2cL7NpstfG2TJ0/mnXfeoX///sycOZP58+dXyadDhw5kZmaycuVK5syZw7RpSeZQ1uxBpdAwCmrLniJaZ7jJ8DS9VTY0Rxe6B1UHWrVqxUUXXcSMGTPCYaeffjpPP/10eH/58uWA4Trkhx9+AOCHH35gy5YtUfMcMWIEc+bMIRAIsGfPHhYsWEBeXl5M8gSDQbZv386oUaN4+OGHOXjwIEVFRWRkZFBYWFirjADz5s2jrKyMffv2MX/+fHJzc/F6vYwdO5ZJkybV2DvZvHkzQ4YM4YEHHqBNmzZs376dESNGMGvWLAA2btzItm3b6NmzZ0zXA1BYWEi7du3w+XzhfKIxYcIEHnnkEQ4ePEh2dnbM+TcFlNmDSlHlYLERTSAQpM0z3fj6uRsszRfgYHEp/31jOoGA9YY/Kzb8yLoNGyzPV5PYaAVVR26//fYK1nxTp05lyZIlZGdn06dPn/Db/Lhx49i/fz99+/blmWeeoUePHlHzGzt2LNnZ2fTv359TTjmFRx55hGOPPTYmWQKBAJdddlnYIOH3v/89LVq04Nxzz+Xtt98OG0lUJyMYQ4SjRo1i6NCh3HvvvbRv3565c+eyYMECZs6cSU5ODjk5OWGldt999/Huu8YipnfeeSdZWVn069eP3/zmN/Tv358bbriBYDBIVlYWEyZMYObMmRV6TrXx17/+lSFDhjBs2DB69eoVDn/33Xe57777wvvjx4/ntdde46KLLoo57yaDMnpQNlH4ymseLq4rB/btJl3KOPPgXEvzBfj+5T9z2uo7WDPf+rz7zx5M79mxvbhpkgeJZhkWLwYPHqwqW2OtW7eO3r17x0mi5GbKlCkVjCmSjabadpY8dTGDD3wAwKEb19CsTUfL8v5560bav5Br7Ew5aFm+AIseu4ChRZ+xctD/kn3ujZbmzZTm5r+1MmsSAxFZqpSqYumke1AaTYIRMpIAKC2y9oEcKG84y8CAw5hb9ZYVN9g5SKAXak3D06SMJDTWksirYRzVmEN8AN4Saz+rCDbkArQOYyjXX2btsGQkAW8JdndsRkaapo/uQWk0CYYEG05BBcobrncTFPN919tw5ygu1EN8RxNaQWk0CcfhIT5fqcU9KL8vvG31/LMEjU8FxGttDypSzmKLhzw1iY1WUBpNgiHBAEFlfI/mLyusJXXdCPgPO0G03F+WuYagzWdtDyrSbL3c4h6lJrHRCkqjSTBEBThEKgCBUmsVVGQPqqTY4od9yI+V31oF5Yv4QN1rtcyahEYrqBh55513EBHWr19fbZr8/Hz69evXoHIsX76cDz744IiPD33Y26dPH/r27ctTTz1loXQaS1BBisUwBAha/B1UIEJBWW0haAsYeTv81hpieL2He3reEmsVtiax0QoqRmbPns3w4cOZPXt21PhoyxDVldB6djVRXwXlcDh4/PHHWbt2LYsWLeLZZ59l7dq1R5yfxnpEBSixGT0oZbGCUoHDCqqs2NqHfchNiDNgrYLy+w4PS1o95KlJbLSCioGioiIWLlzIjBkzeO2118Lh8+fPZ8SIEZx33nn06dMHMBTVpZdeSu/evRk/fnzYXcRnn33GgAEDyMrK4qqrrqK83HBK16VLF+6++24GDhzI66+/XuG8ld1ZeL1e7rvvPubMmUNOTg5z5syhuLiYq666iry8PAYMGMC8efMAw73FmDFjGDlyJN27d+f+++8HoF27dgwcOBCAjIwMevfuzc6dO6tc85dffhleRWLAgAEUFhailKrWNcjJJ5/MmDFjOP7447nnnnuYNWsWeXl5ZGVlsXnzZgDee+89hgwZwoABAzj11FPZvXt3lfNOnDiR999/P7w/efLk8MKwRwtCkIDNTblyWm4RF4yYg/JabIARMpKw2tGiP6IH5bd4yFOT2DSt76A+vAd+qboYar04NgvOeqjGJPPmzePMM8+kR48eZGZmsnTpUgYNGgQY6+ytXr2arl27kp+fz4YNG5gxYwbDhg3jqquu4p///Cc33XQTkydP5rPPPqNHjx5MmjSJ5557jltuuQWAzMzM8Lp9kVR2Z+FyuXjggQdYsmQJzzzzDAB//OMfOeWUU3j++ecpKCggLy+PU089FTBcZaxevZrU1FRyc3MZPXp0BbcU+fn5LFu2jCFDhlQ592OPPcazzz7LsGHDKCoqwuPx8NZbb1XrGmTFihWsW7eOVq1acfzxx3P11VezePFinnrqKZ5++mmefPJJhg8fzqJFixAR/vOf//DII4/w+OOPVzhvyJXG6NGj8Xq9fPbZZzz33HMxVmZyIMEAiJ1i3JZbxAUjelDlFg+X2ZSRt9tiNyF+72GlavWQpyax0T2oGJg9ezYTJ04EjDf8yGG+vLw8unbtGt7v1KkTw4YNA+Cyyy5j4cKFbNiwga5du4bX47viiitYsGBB+JgJEyZEPW80dxaV+eSTT3jooYfIyclh5MiRlJWVsW3bNgBOO+00MjMzSUlJ4YILLmDhwoXh44qKihg3bhxPPvkkzZo1i3ru2267jalTp1JQUIDD4ajRNUhubi7t2rXD7XbTrVs3Tj/9dKCiK40dO3ZwxhlnkJWVxaOPPhrVlcZZZ53FF198QXl5OR9++CEnnXQSKSkpUa89WRGCKLFRKinYfFYP8R0eivZbraDMHpRHWdyD8msFdbTS4D0oETkTeAqwA/9RStXcXamJWno6DcH+/fv5/PPPWbVqFSJCIBBARHj00UeBqq4zqnNfURPVud+IxZ2FUoo333yzyorh3333XbWy+Hw+xo0bx6WXXsoFF1wQ9dz33HMPo0eP5oMPPmDYsGF8/PHHNV5DLK40br75Zm677TbOO+885s+fH3UlC4/Hw8iRI/n444+ZM2dO+MXgaMKmggTFRqmkYvdZ2xuJtOKzesUHu9mDSlHWmq/7feXhbSnXQ3xHEw3agxIRO/AscBbQB7hYRPo05Dmt5o033uDyyy9n69at5Ofns337drp27cpXX30VNf22bdv49ttvAXj11VcZPnw4PXv2JD8/n02bNgHw8ssvc/LJJ9d67mjuLCq70jjjjDN4+umnwx8zLlu2LBz33//+l/3791NaWso777zDsGHDUErx//7f/6N3797cdtttNZ47KyuLu+++m9zcXNavX18v1yAABw8epEOHDgC8+OKL1aabMGECL7zwAl999RVnnnlmzPknC0IAJXbKxYMjYO0clAoeVlABix/2NhXqQZVZumZeIGKID4sVtiaxaeghvjxgk1LqJ6WUF3gNGNPA57SU2bNnM3bs2Aph48aNq9aar2fPnjz77LP07t2bAwcOcP311+PxeHjhhRe48MILycrKwmazcd1119V67mjuLEaNGsXatWvDRhL33nsvPp+P7Oxs+vbty7333hs+Pi8vj3HjxpGdnc24ceMYPHgwX3/9NS+//DKff/552AgiZBU4bdq0sCuOJ598kn79+pGdnY3T6eSss86ql2sQMNb+u/DCCxk0aBCtW7cOhy9ZsoSrr746vH/66afz5Zdfcuqpp+JyuWLOP1mwKWOIr9yehtNik20VMVxmtYWgw1RQDgkS9FnXi/L7D/egrP4IWJPYNKi7DREZD5yplLra3L8cGKKUuikizbXAtQDHHXfcoK1bt1bIo6m6TIg3M2fOrGBMcTTSVNvOxr8OptzVghLlor1/O53+bJ1h0Hev/IUhm54EYEHHaznp6kcty3v9/QPopX4CoOSWjaS2aGtJvqu/+4x+HxpD0UszRjHo9ncsyVeTOCSsuw2l1L+VUoOVUoPbtGkTb3E0mrgjBAliw2dPxR201uAg9B1UUAlisQm7XR02wCgtss6EPdI03uqPgDWJTUMbSewEOkXsdzTDNA3M5MmTmTx5crzF0BwBNhUEsRNwpOGxWEFhKqhCSUMsHi5z4ieoBJsoS9fMi1w/0GHxR8CaxKahe1DfA91FpKuIuICJwLt1zSSRvP5qmgZNuc0YZuZ2As40UrB+QdeAEtNC0OIeFAEOSToA5RauUhE056AOko4zYHF5aBKaBlVQSik/cBPwMbAOmKuUqvrxSw14PB727dvXpB84msZFKcW+ffvweDzxFuWIsKkASmwoZxpO/BBhJFBfVCCAHwdeWwp2i1d8cCg/xTZDQVm5SkXQXOqo2JZh+ZCnJrFp8O+glFIfAEe8eFzHjh3ZsWMHe/bssVAqTbLj8Xjo2LFjvMU4Imzmh7rKZTzs8RaHvdXWFwn6CGDDa0/BYbWCwk+BvTUEd+Ertc5CMBgwFFSJPYMM3z7L8tUkPgm/1JHT6aywUoNGk+zYzCE+8WQAhlddV2orazIP+vCLA589FZfF7t+d+ClzNAMfBCz8CDj0cXG5oxltvHoK+2gi7lZ8Go2mIiEjCXEZK4yUFRdYlrcE/QSw43dYayEYCCqc+PE5mwPWrlKhzCFOv6sZqZShgsFajtAkC1pBaTQJhp0AymbDbvagrDQ4IODDh4OgIxW3hWvm+QJBHATwuw0FpbzWyazMHlTA3QKnBCgt0/NQRwtaQWk0CYadAEocOMJDfNY5FrQpY4gv6EyzdM08fyCIW/zgMRVUuXUWgqFvt5SnBQAlFn5jpUlstILSaBIMOwGCNieOFENB+Sz0gWQM8TnAmUoqZXj91gyXBcwFgW1OD6XKZakfK2UaSdjMebgy7fb9qEErKI0mwXDgR4kDZ6rhBsVnocm2LeDDL05wp5Em5RSXeWs/KAZ85tp7YndSgsfaVSrMHpQ9rSUAZcXWuqrXJC5aQWk0CYZdBVE2O+40Q0EFLDTZtikfAXFgM03Yi4us6Z0FfOYq6XYXZeLB5rdSQRlK1JFm9KC82qvuUYNWUBpNguHAj7I58ZgKykonfbagn6A4sJnzW2UWLUkUcssudidlthTsfusMGcTsQTnMHlR5iXZaeLSgFZRGk0gohUsCKJuDlJR0AkpQFvptsikfAZsTh8foQVk1nxMwLe3E4cRrS7F0UVcV8OHDjjvNNGG3sEepSWy0gtJoEgllGC0om4M0t5NiUsBr3QPZrnwE5LABhteiHlTA9HordhdeWypOKxd1DXrx4cSdasgcKNNDfEcLWkFpNAlEyGJN2RykuOwU40EsVFA25UfZHLhCCsqi3kjAXC9PHC789hRcVq6ZF/Dhx47H7EFZ7QlYk7hoBaXRJBChZX0QJy6HzbCIs9DNuV35CYgTd9hC0CIjCf/hHpTfkWqpgrIFyvGJi9R0Q2Yrv7HSJDZaQWk0CUToeyJlN5bJLJMU7D7relAO5SNoc+JOM+agrFozT/nNj36dboLOVDwWrlJhD5Tjwxnu9SkLe5SaxEYrKI0mgfCZczk2m6Ggym2p2C00OLArw0Iw1eLhskC5oZDszlSCDmv9WNmD5fhsLrDZKcVluSdgTeKiFZRGk0D4w3M5TgB89hScFiooR2gOyjQ4UBaZsPvLDRnt7hRwpZGCFxXw13JUbNiCPnziAqDM4iFPTWKjFZRGk0D4IqzhAHz2NFxBCxWU+Y2VmB/qWjWfE/oOyun2gLkKe7lFBhj2YDn+kIKSFOxWfgSsSWi0gtJoEgifuSKD3ZyD8jvTLHWL4cCPsrvAmUIQscxCMOgzZHS60xC3ofxKLfrGyqG8+G2Gw0avzWPpR8CaxEYrKI0mgQgtGWRzGD0Gqw0OXMprKCgRSrCuNxL0hhRUyuFVKoqsWTPPEfQSsBnlUW5PxRXQPaijBa2gNJoEwm+aa9vMOSjlSieFcggG6p13MBAkBS9Bp+kI0ZaKwyILwaC5WKzbk4ozxTAHLy08YEneTuUlEOpB2dNxWfkRsCah0QpKo0kg/KEelDnEF5orsmI1ibKyImyiEGeqsW9LxWlVD8pUUC5PKs7UFgCUW+QJ2Km8BM05Ob8jjZSg7kEdLWgFpdEkECErPrvTeCCL2/Sqa8GSRKWmoz9xmz0oe7p1w2XmHJQnJRVXegsjyCJHi07lBYcHAL8znVSle1BHC1pBaTQJRGhNO7vDGNKym4u6llrgRTa0CriYVnY+Rxoei3ojyhyadLhSSMloAYDfIj9WLuUFszwCrgzStII6atAKSqNJIELfJYmpmBwWGhyUm8sahZSe35FOikUm7DZvEaUYH9Ommj0oKxSUzx8gnRKUy1zmyJVBmpSFh0I1yY1WUBpNAuE3V+p2morJaX5QW2rBcJm3xMjbYZqBB1zWDZfZyg9RhJFvejPDb5Mqq7+CKi4uwi1+lMdY+QJzyLNYu30/KtAKSqNJIAJlxpBbyFmhy1zU1Vtc/yWJyk0F5Uo1FEnQmUEapfgDwXrn7fAdpMRu5OvxeChTTrDALUZJ4X5jw1RQ4jHKoywUrklqtILSaBKIgDnE50kzegruVOPB7LNguKyscB8A6c0zjQB3BulSRnGZt955u/2FlNoNmUWEYknF5q2/zCUHDUVkNy0DbaYJe7lF31hpEhutoDSaBCI0B5VmupbwmP9+C3ojgcI9AKS3amcEmMNlpcX1f9h7/IV4HRnh/RJJxWbBN1aFBXsBSG1mKFVHiqGwrTJh1yQ2WkFpNAmE8hYTUEJKimFpl2YaHAQs8Nukio2HfbNWbYHDvZGywoJ6550ePITP1Ty8b9VHwKUFuwHIaNkGAGeoR2mRCbsmsdEKSqNJJLzFlOJBbMatmZYRctJXfwVlK91LAenhb6wcIQVVzx5UWbmXNmo/wfT24bBye5ol31gFDu4EoMWxXQBwmQrKKhN2TWKjFZRGk0A4yw5wyHZ4qCzF7aJEuS1ZddxVvIsCe2Z4324Ol3nrOVz2665tOCSIvWXHcJjXno7bAgUlh3biU3ZSWxrDkq50Q+Zgqe5BHQ3US0GJyBQR2Skiy83f2RFx/yMim0Rkg4icUX9RNZrkx12+l0J7y/C+iFAqHsSC4bJWZds56OkU3nelWTNcVrBzEwApbbqEw/zOdDwWfGPlPLSNffbWYLMDkJrRCoCgBXNymsTHYUEeTyilHosMEJE+wESgL9Ae+FREeiil6r/ipUaTxKT6DnDI075CWKmkYKunF1lveTntgr+wp9nIcJg7rQUAgXoOl5VsXQpAmxMGh8OCznRSLPjG6pjSzexJO4Fjzf2UtAyCSiz5xkqT+DTUEN8Y4DWlVLlSaguwCchroHNpNElDi+B+fJ7MCmFlklpvtxhb1i7GLX7snQaGwzwht+/1fNjbflnBPlrQul3ncFjQnUG6KgGljjjfvXt+5bjgTspb9w2HpbpdFOFBvLoHdTRghYK6SURWisjzIhIam+gAbI9Is8MMq4KIXCsiS0RkyZ49eywQR6NpmpQU7qcVh/A161wh3GtPwVFPFxP7Vv0XgE79R4bDUjLqv+JDIBCg86Hv2ZGeBSLhcHFn4JQAZaVHrlg3L34fuyha9js9HGa3CcWkYtMK6qigVgUlIp+KyOoovzHAc0A3IAfYBTxeVwGUUv9WSg1WSg1u06ZNXQ/XaJKGnzevAcBzbM8K4T57ar19IGVu/YBNjhNo06FbOCzF7EFRfuTzW2u++y9t2U+g5+gK4TZzxYfieviEsq95gwIy6Nr/5ArhJZJimR8rTWJT6xyUUurUWDISkenA/5m7O4FOEdEdzTCNRlMNBdvXAtCqc58K4QFHKi7vriPOd82iT+gb+JHvet3NCRHhNoeDEuWu13CZ/6snKSCdPqdcUiE8pKBKCgvIbNsp2qE1smXjKgYUf80PnS4n1zSLD1FqS9MK6iihvlZ87SJ2xwKrze13gYki4haRrkB3YHF9zqXRJDv+n1fiVQ7ada2koOphERfw+3F8+mf204zsc26qEl8sqdiPUEEt/WwuA0u/ZUOXSeH5rBAOcw3BsqKCOuergkEK3rqNMnHT7Zw7qsSX2dJwarfvRwX1nYN6RERWichKYBRwK4BSag0wF1gLfATcqC34NJqaabH3B35ydsftSa0QrpxppKiyI8pz8ay/0NO/gU0D/0SKuWxSJKWSiuMIDDDWrVvFcQvuZLutIzkT/1wl3pVmzG8dyZJES1+6iwFli1nX62ZaHdu5SrzXkWbJN1aaxKdeZuZKqctriHsQeLA++Ws0RwvlZSV09f7ID+0urBKn3OmkUUogEMRuj/2d8ruPXmHIT8+yNGMkuedcGzWN4fa9bsNlO3bsIGXORXjEh+3yWbg9aVXSuNNCHwHX7Rur9e9PZXD+dL5tdiZDL/pj1DQ+exop9TS71zQN9EoSGk0CsGXVN7jFh+f431SJE1cadlEUl8Q+FLfiu/lkfXsbP7m60/eGV8JLJ1Wm3J6Gqw49qAMFBRx8/gLasYeDY18hs2tO1HQhr7qBOnwEvOmruXRffB/fOweRfd3MamX2OTMsc7SoSWy0gtJoEoAD678CoHMlizUAu+m8sKQwtof9j+tX0uGDSRTamnHMNW/jSc2oNq3XkY47RrfvZeXlbP7nhfQKbGTbqKfp2P+UatOmhBe5jc2EffuK+XT47EY22k+gy/VvkJaaUm3aoDOdVEohqGcNkh2toDSaBMC963t2SDtatT2uSpzdtIgrjcEH0s87tpLy2nicEkAuf4tmx3SsMb3fkRaTAUYgEGTJM1cw2LuY9QPuo/vJF9eYPi3kVbe8dgW1+6dVZLx9GXtoRbOr3qJNq1Y1pg+6TIXrrX1ocv4r/8vq+3MpjlG5axILraA0mjgTDATpUrKSXc1zosaH3b7X4ua84MA+ip8/n1YUUDD2VY45PrvWcwectbt9V0rx1fTbGV74Icu7XkPf82+rNV+3JxWvckAtq7Af2L2N4MsXEEDwTnydDh2rKuiqmRvlUdsHxt++/U9GbnqYfmoj6756q/Z8NQmHFWvxJRxFhQfZu+NHDv2yhZKCX1El+5HS/eAtRgV82JQfm2lUGLA5CYgLZXeh7E6U3Q02FziciN2J2F3Gz2Fs25wubHYXdrsdhw1sokAZN7GgMHcAdThMKaIt+BIOjYg0VoapmFpVTVYhlxrThcOqpoueS9Xz1nYOVfUAohxaTRlEk0lVCatUItXKWtu1RZM1WlC0Gosua03nrXoBFWQxd2ylezmbQjYfN7RqJoAz5EW2BgVVVlrCtufG0juwlU2n/ofeUYYKoxFwZZAWWpIoYiWISL5+7RFG/vI8y1ufQ86kR2PKFwwT9pq+sSo+tJ8D08fQNniQ/HPm0rdX7QoVAHPI01tcgLtF9G+sln72BoOX/5m1nv4cU74V+8pX4ewrY5a9Og4ePMCeLasp2bWR0oJd+At/xVW2H7u/xHi2BP3YJEjA5iZgcxG0uQja3eBwoxwesLsRpwecHmzOFGxODzanB7vLg83hPlwHKkqrDT1HlIqID6KUqnifq2BEOvN485lkPJci8oxClVZQTbsACLibkztqbO0Fd4QklYL6ae1ims29kNYUkF4pzq9slOImIA4C2PFjQwAXPhz4ceHDhT8eYms0BJRw3KAzo8Z50gwF5avGSCLg97PmmQkM8q5gee4j5Iy4IObzKlcz7KIIlhdj81S+a2Dxhy9x4vq/syp9KNnXzazxYVWZEknBXs0wnLe8jC3PXkBP31ZWnfQvBuaOjDlfuyfkVfcg7ijxa5d8Qa8FN7Dd0ZkuN77D6rceIi//X2xc8Q09+lc1QqmO8tIiNi3/ioMbF5K6exntSjfQVu0l8osvn7JTIM0oEw8BcRAUB0EEh/LhVF5cyocT49+D13ihTSJWqeNBK6jYaNWmExtbDmdzi87YW3clrU0XWrRuT1qrY0jPaEWG3V5zBkpBwIfyl+Hz+fD7yvF7vfh85QR85QTMsICvnEAwiC8QRCGAGK8dEtoWwIZCEBuYkYffTCLXLKsaZKaUKK8y0dJVCpOK+UbuSNWgiltRj41F1ujPrWj5SNWgqGHRMpJaZA3LUo0QEqUgostQVQiJJkM0UWMt/0rlYUtpTtsW0Ye3wgqqrOo8igoG+X7aNQwtXsDiHreTd87vouZRHWIqpbLiAlIrKag1335E9qLb+MnVg+43vI7N4axT3qW2dBxRTNiDgQArnrmU3PJlfJfzIEN+W9W0viYcptPC0sICKn/Z9dP6FRz7f5dzyNacltfOI7VZK3qNuYOCp14l+N4tlPWYjycltWqmQNDvZ8vqb9i/8iPSd35Ft7I19BVjpGW7tGdreg5bWvfEfWxPUtv1onW7zrTKbEMbWy3PlRBKEfD7KC8rxltWSnl5Cb6yUnzlJfjKSwn4yiq0r4o3gzkbE3q8IIjYwulEJKJ9ixlmHoDNDAodHBlXScQoMlcTA0Cq3RPbtR8hSaWgWrRpR94fZh15BiLgcCEOFy4PuGo/QqNpcFLSQ15kqz7sv3vxfxi69y0WtbuUoZfcV+e8xW0aYBQeIDXzsEHF5tWL6fjxVeyxH8Mxv5sXVpJ1wWtPw11JQalgkG//dSPDCj/lu643MmRs1dUtaiOjuWGAUXhoP20jwn/evhn3a+MRBLn8LVqaBifNWh7DihMfpP+3v2fNP06H0x6ga99cfOWl7M5fy/6Ni3Dt+JpuRT/QjSK6AT/aurK47QRSu4/ghAGj6NS6HXVfsKkSItidLlKdLlIzWtaeXpNcCkqjSUZSTZPtym7fv331b5y4dRrfNz+DvKufPqK8Q72RksIDhJx8bN24guZvXIgXF45Jb9G8dbvqM6gBryON9PLdFWV+4W6G/Tqb748ZT97lfzuifFu0NCQtObQ/HPbrL9vxPX8erTnE3gveoPPxWRWO6X/GFSwtL6HnD/eT/sFY+MAIDw3X7SaT9c1HQLdRdM09m+7tOtH9iKTTWIlWUBpNgmMPDb1FWK1999rfOXHjoyxPG86AG1/GVtvwdTW0aGV4EDiwZxedgO2bVpPy6vnYCFJ88bt06tLriOX2OpvTvGQDYPScFr74J0Zs/zeLW5zN4N/9u9oPcWujVaYhs7dwHwB7ftlO4b/PoX3wV7ad/Qo9s0dEPW7QeddTfNKF/LDwLbz78lGOFFJad+aYXifS/rgTaFuH+TVN46AVlEaT6Djc/Eor0ou3EQwE+fb5Oxi2cwY/pA6j3+/fxOGKZioQG6279gegfOcq1i3O5NgPrgQUB8a/yfE9B9RL7LIW3Wlz8CMO7d3J6tfuY8TeN/ih+akMvunIFSpAyxYt2aUyce5dy0/rl+GeM4H2wQNsO+M/9BxyRo3HprVozcBqln3SJB5aQWk0TYBdnm4cf/BbVj96OsPKvmdJy7Ppf/0LOF31m6TObN2GrdKRvpv/jWvTs/xiOwZ1yVyO796/3jI37zEMtj6N45kB/IZyFre7hMFXP1Mv5QTGZP+2tCyGFHxK2ewvKZUUfh4zl54DR9VbZk1ioT/U1WiaAOXZl9GKQ5xQupJFPe9m0M2z6q2cwHjY7xn2F3ZLW5a2Ppdmf1hIJwuUE0DW0DNYmDmerY7jWTZ0Knm/e67eyilE5jn3s9bRh9UtRhK4ZgHdtHJKSkRF+8IwTgwePFgtWbIk3mJoNAnJtk2rad7qGJq3Oibeomg0liIiS5VSgyuH6yE+jaaJcNwJ/eItgkbTqOghPo1Go9EkJFpBaTQajSYhSag5KBHZA2y1IKvWwF4L8mkMtKwNR1OStynJCk1L3qYkKzQtea2StbNSqk3lwIRSUFYhIkuiTbglIlrWhqMpyduUZIWmJW9TkhWalrwNLase4tNoNBpNQqIVlEaj0WgSkmRVUP+OtwB1QMvacDQleZuSrNC05G1KskLTkrdBZU3KOSiNRqPRNH2StQel0Wg0miaOVlAajUajSUiSSkGJyJkiskFENonIPfGWJxIR6SQiX4jIWhFZIyJ/MMOniMhOEVlu/s6Ot6whRCRfRFaZci0xw1qJyH9F5EfzP+6uQUWkZ0T5LReRQyJySyKVrYg8LyK/isjqiLCoZSkGU812vFJEBiaArI+KyHpTnrdFpIUZ3kVESiPKeFpjylqDvNXWvYj8j1m2G0SkZv8cjSPrnAg580VkuRmeCGVb3XOrcdquUiopfoAd2Awcj+GtfQXQJ95yRcjXDhhobmcAG4E+wBTgjnjLV43M+UDrSmGPAPeY2/cAD8dbzijt4BegcyKVLXASMBBYXVtZAmcDHwICDAW+SwBZTwcc5vbDEbJ2iUyXQGUbte7Ne24F4Aa6ms8MezxlrRT/OHBfApVtdc+tRmm7ydSDygM2KaV+Ukp5gdeAMXGWKYxSapdS6gdzuxBYB3SIr1RHxBjgRXP7ReD8+IkSld8Cm5VSVqxIYhlKqQXA/krB1ZXlGOAlZbAIaCEiR+Z3/QiIJqtS6hOllN/cXQR0bCx5aqOasq2OMcBrSqlypdQWYBPGs6NRqElWERHgImB2Y8lTGzU8txql7SaTguoAbI/Y30GCKgAR6QIMAL4zg24yu8PPJ8KQWQQK+ERElopIyA1pW6XULnP7F6BtfESrlolUvMETtWyh+rJM9LZ8FcZbcoiuIrJMRL4Ukej+1uNDtLpP5LIdAexWSv0YEZYwZVvpudUobTeZFFSTQETSgTeBW5RSh4DngG5ADrALo4ufKAxXSg0EzgJuFJGTIiOV0adPmO8URMQFnAe8bgYlctlWINHKsjpE5E+AH5hlBu0CjlNKDQBuA14VkWbxki+CJlP3EVxMxZerhCnbKM+tMA3ZdpNJQe0EOkXsdzTDEgYRcWJU8iyl1FsASqndSqmAUioITKcRhxtqQym10/z/FXgbQ7bdoS67+f9r/CSswlnAD0qp3ZDYZWtSXVkmZFsWkcnAOcCl5kMJc6hsn7m9FGNOp0fchDSpoe4TtWwdwAXAnFBYopRttOcWjdR2k0lBfQ90F5Gu5pv0RODdOMsUxhxfngGsU0r9IyI8cnx2LLC68rHxQETSRCQjtI0xSb4ao0yvMJNdAcyLj4RRqfAGmqhlG0F1ZfkuMMm0iBoKHIwYTokLInImcBdwnlKqJCK8jYjYze3jge7AT/GR8jA11P27wEQRcYtIVwx5Fze2fFE4FVivlNoRCkiEsq3uuUVjtd14WohY/cOwINmI8abxp3jLU0m24Rjd4JXAcvN3NvAysMoMfxdoF29ZTXmPx7B2WgGsCZUnkAl8BvwIfAq0iresplxpwD6geURYwpQthuLcBfgwxuX/X3VliWEB9azZjlcBgxNA1k0YcwuhtjvNTDvObB/LgR+AcxOkbKute+BPZtluAM6Kt6xm+EzgukppE6Fsq3tuNUrb1UsdaTQajSYhSaYhPo1Go9EkEVpBaTQajSYh0QpKo9FoNAmJVlAajUajSUi0gtJoNBpNQqIVlEaj0WgSEq2gNBqNRpOQ/H8ponYMtTDCsQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABcQElEQVR4nO2deZwUxfn/38/M7M0ux3IfcsnNLguyiAEUjOJBFBUVFA80xmjUxCMe3yQYNPEXRY2KEkkMilcQvFDjQRRdERURBOVGkZVDRK4FFvacqd8f1bvOzs7swR5z7PN+udJdVV316arqfvqprukSYwyKoiiKEmm4wi1AURRFUYKhBkpRFEWJSNRAKYqiKBGJGihFURQlIlEDpSiKokQkaqAURVGUiEQNFCAi3UTEiIgn3FpiHRGZIiJLGqmsJBF5S0T2i8htjVFmQPm5InJKI5STIyJXhYhr0n1bROaIyF9rG1fPGqaJyHNVxDdKP6lPROQ257paKCLJDVWOGijlqHEuvBIRyff7a3RDUAWnAJlAF2PM9LJA54bQLWyqIginDafVIv3FIvKdiBwWkQUi0qqKtFkiskJEjjj/ZgWUG9h3ejSE5mhGREaLSE4t0oes8yBpW4nIq05bficiFweU6wton8vL4p3rqTPQFxh7VCdXA2LCQDXVp8MIYZ4xppnf3/TqD2k0WgG5xpj8cAupC2IJ+7UqIgOAfwKXAu2AI8A/QqSNB14DngNaAk8DrznhZQT2nW8b9AQakEi4B9Wwzv2ZCRRj23Iy8LjTxmV8H9A+T/sfbIw5DGwB0uv5VMoJe6c/Wpyn4NtF5CvgsIh4RGS4iHwiInki8qWIjPZLnyMifxORZSJyUEReC/X0JyJXiMh6ETkkIt+KyK8D4seLyConn80icroT3lxEZovIThHZISJ/FRF3NefRU0TeF5G9IrJHRJ4XkRZ+cftEZIiz31FEdpedl4icLSJrnfPNEZF+AfXzexH5SkQOiMg8EUmsfU3XHhG5w6mXQyKyTkTODZFOROQhEfnRqcvVIjLQiUsQkQdEZKuI7BKRWSKSVEspHsBXjdZ0EXnDKf9zp82W+MUbEblGRL526nmmiIgTF7Lt/Mh26mC/iDxV1gYi0lJE/uu0535nu7NfuTkico+IfIw1BNV5F11F5GOnzv8nIq0D4ic7dblHRP5YTV6hmAy8YYxZ7Bj9qcB5IpIaJO1obP0/bIwpMsbMAAQ4+SjLDonY4aadIvK9iFzltNmxQdKlisgHIjKjrA2B1iLyrlNvH4pIV7/0j4jINqdvrBCRUX5x00TkJRF5TkQOAlOqkRkvIs845awVkaEB8Vn1cK2OpoZ1LiIpwARgqjEm3xizBHgd+/BRG3xOmQ2DMSYq/4BcYBXQBUgCOgF7gTOxhvdUZ7+Nkz4H2AEMBFKAl4HnnLhugAE8zv44oCe2cU/C3iCGOHHDgANO/i6n3L5O3KvYJ8wUoC2wDPh1NedxrJNXAtAGWIztYGXxvwLWAcnAQuABJ7w3cNg5Ng64DfgGiPern2VAR6wnsR64JoSGkUBeFX8jQxw3rawOA8IvcMp1ARMdnR2cuCnAEmf7NGAF0MKp635+6R7CXjCtgFTgDeBvtegfccCzwfQFpHvB+UsG+gPbyvQ58Qb4r6PxGGA3cHoN2y4XWIPto62Aj4G/OnHp2BtEsnN+LwIL/I7NAbYCA7A3gLgqziEH2Oz0iSRn/96Avv2EEzcIKAL6hcirqvZ+Dbg9ICwfOC5I2puAtwPC/gvc4td3DgD7gLXAtUd5Hzgd+MGpp2Ss92CAY534OcBfnfpeVlb/fnGHgBOdNnwkoO0vcY7zALc45ST66S8BzsH286QqNE4DCrH3JjfwN2BpQD+p6bX6X+COEHFV1nlA+GDgSEDY77EPIGCNXTGwC+slPQSkBMnnaWAuzn2nvv/qPcPG+nMa9Uq//duBZwPSLAQud7bLL1pnv7/TAG4CDFSQshYAv3O2/wk8FCRNO+yFn+QXdhHwQS3P6xxgZUDY68Bq4CsgwQmbCsz3S+PCGuDRfvVziV/8dGBWPbfBNKcO8/z+OgZJtwoY72xP4ScDdTKwCRgOuPzSC9ao9fQLOwHYUkNdWdibxy6cG1WIdG4nXR+/sL9S2UCN9NufT+gbRIW2c9rgGr/9M4HNVWje77efA9xdw/PNAf7kt/8b4B1nu6xvd/aLXwZMOor2XkTAjdO/zwWETwVeCAh7HpjmbPfH3pDdwM+AncBFR6HpSfweXLAPDYEG6knsg8KtAcfO8dcINAO82HeWwcraDwzy6/uLa3GdvOe33x8oCOgndb5Wq6vzgPBRwA8BYb8Ccpzt9o5OF9Ad+/D1zyD59MQa7hJgaG01V/cXtUN8Dtv8trsCFzjDMHkikof1DDqESP8d9ik7cCgEETlDRJY6w2t52BtLWbou2KfVQLo6+e30K/+fWE8qJCLSTkReEDskeBD7BBio6Qms5/eoMabICevonAMAxhifc36d/I77wW/7CPYCrG/mG2Na+P19LyKXiR0CLauHgQSpZ2PM+8Bj2LHwH0XkXyKShvVGkoEVfnm844RXizFmFdYr+RS4sYqkbbBPx/79YluQdEHrsYZtF9jnOjrHJovIP8W+nD6IvQG0kIpDwsG0hKK6tq6PvpAPpAWEpWG9kFqlNcasM8Z8b4zxGmM+wXov5x+Fpo5U337jsN7jrCBx5emNHbbcx09t9HuxQ/0HnD7YnIrtW5f2SZSK760irX1+cNrIZ4zZgh2hmRAkn98BnwNpxpjlR6G5SqLdQPl/in0b1oPyv1mmGGPu9UvTxW/7GKzV3+OfoYgkYIf/HgDaGWNaAG9hn+rLyukZRMs2rAfV2q/8NGPMgCBp/fl/znlkGGPSsMMKZWUhIs2Ah4HZwDT56b3Z91ijWJZOnPPbUU15lRCRUVJxtk7g36jqcynPqyvWoF4PpDv1t8b/nPwxxswwxhyHfVrrDdyKbZMCYIBfXTY3xtT4ojXGFAJvO/mGYjdQip2NVEaXEGmDUWXbBcnvGGy7gR0y6gMc7xx7ohPuf7x//44E1mKHCAEQO+suAesFB0ub6feuB+yMyrUh8jaE6CPVsJPq2+8J7APOW867F4Kld661VsD3Tp+/DbgQaOn04wNEfvvUtM43AR4R6eUXNihEWrDnGsxe9MN66wVHobdaot1A+fMccJaInCYibhFJFDtV0r/zXiIi/cXO278beMkY4w3IJx570e0GSkXkDCpOo5wNXCEiPxcRl4h0EpG+xpidwP+AB0UkzYnrKSInVaM7Ffs0c0BEOmFv0P48Aiw3xlwFvMlPT4HzgXGOjjjsDa8I+KS6igrEGPORqThbJ/Dvo1pkl4LtzLvBTjjBelCVEJFsETne0X8YO07vc7zBJ4CHRKStk7aTiJzmd6wRv0kwISjCtmdQnLZ/BWv4k0WkL3BZjc7SUl3bAVwnIp2dB4s/AvP8ji0A8py4P9ei3HDxPPYaG+Xc6O8GXjHGBHtCz8EOl/1W7ISX653w96F8olFLsQwDfot9x4UTnysiU2qgaT72euznXNdTQ6S7HtgIvCEVJ9ucKSIjxc50+wv23dA2bPuUYvuxR0TupLLHEWnkUEWd+2PsDLxXgLtFJEVERgDjse9tEZExItLVaZ8uwL34tY8fcdjrrEGIGQPldKrxwB+wnWob9obhf47PYsedfwASsRdFYD6HnPD52DHni7HvgMrilwFXYF8aHgA+5CdP5jLsDXGdc+xLVBxiDMZdwBAnrzexnQawFzH2JfC1TtDNwBARmWyM2Yh9Yn8U63GcBZxljCmuprwGxRizDngQO7y2C8jATg4IRhrWEO3HDn/tBe534m7HTvpY6gyBvYf1OHAumEPY93JV4aP6Pn49dujmB2z/mEvNL7iQbefHf7APLt9ih4bLfhj6MHbYaQ+wFPuEH3aq8piNMWuBa7CG6kfsTfw3fse+LSJ/cNIWY9/JXYZ9N3klcI5f/5yEbd9DwDPAfcaZxuwYi3RsvVSJMeZtYAbwgZNf2TFFAekMcDWwHTv1umyW3H+wDwf7gOOw1xTY99fvYD2N77APT7UZ0msQ/Os4kOrqXET+ICJv+x3yG2wf/BHb76912hjsJIpPsA+On2CvtUr3S+w7xCpnytYFcV50xTxif+z2nDHm3+HWotQNEbkEO/z3f9WkG4v1rPsaY/bVMO/7gPbGmMvrrlQ5GkRkJHCdMeaiozi2H3ZIOcEYU1rv4pRyxP6kYh1wlTHmrYYoI2Y8KKXpYIx5rjrj5JADvAusFZHfB0sgIn1FJNNvqOmX2J8LKGHCGLOkNsZJRM51hrRaAvdhp0qrcWpAnOtpA3YEaVFDlaMGqhEQ+yPTYJMPgs0qUuoJY0yxMWayMaaDMeaBEMlSsUNzh7Hvhx4k+Fh7WAnRf2o1gSWG+TV2mGoz9h3MtVUnr3+cobdg7RN0OC7aMcY8YIxpb4y5yG9mcb3TZIb4FEVRlOhCPShFURQlIgn7Bw79ad26tenWrVu4ZSiKoiiNyIoVK/YYYyr9ED+iDFS3bt1Yvrzef4ysKIqiRDAi8l2wcB3iUxRFUSISNVCKoihKRKIGSlEikO/e/Qf50zrw1YK/h1uKooSNiHoHFYySkhK2b99OYWFhuKUoUURiYiKdO3cmLi4u3FJqja+kiLSP/0YzjtBj1XQKfn4lSaktwi1LURqdiDdQ27dvJzU1lW7duiFyNB87Vpoaxhj27t3L9u3b6d69e7jl1Jrt6z7hGA6yuOX5nLj/JT7/6FWyz7wi3LIUpdGJ+CG+wsJC0tPT1TgpNUZESE9Pj1qve+96u+J8l7NuZz+puL5eGGZFihIeIt5AAWqclFoTzX1Gdq5kJ63p1r0XW5IzaZe3KtySFCUsRIWBUpSmREp+LrsT7ZB2ScdsOpud/Lgz7Cs9KEqjowaqBogIt9xyS/n+Aw88wLRp08InqBpycnL45JNar1tYgdNPP50WLVrwi1/8op5UKTXCGNp7v+dIM7vEWPPeIwDYuWZxOFUpSlhQA1UDEhISeOWVV9izZ0/1iWuBMQafr/7X+qoPA3Xrrbfy7LPP1pMipaYc3v8DqRRQ2rIHAJ37HY/PCAXbVoVXmKKEATVQNcDj8XD11Vfz0EMPVYrbvXs3EyZMIDs7m+zsbD7+2C4eO23aNB544KcVHgYOHEhubi65ubn06dOHyy67jIEDB7Jt2zZuvfVWBg4cSEZGBvPm2RXBc3JyGD16NOeffz59+/Zl8uTJBPvy/IwZM+jfvz+ZmZlMmjSJ3NxcZs2axUMPPURWVhYfffRRlRovvfRSTjjhBHr16sUTTzxRnu/Pf/5zUlNTq6yXF198kYEDBzJo0CBOPPFEwE5queKKK8jIyGDw4MF88MEHAMyZM4dzzjmHU089lW7duvHYY4/x97//ncGDBzN8+HD27bPrCT7xxBNkZ2czaNAgJkyYwJEjRyqVO3z4cNauXVu+P3r06Jj5RNbeHd8AENfKelDNUpuz3dWBhL3rwilLUcJCxE8z9+euN9ay7vuD9Zpn/45p/PmsAdWmu+6668jMzOS2226rEP673/2Om266iZEjR7J161ZOO+001q9fX2VeX3/9NU8//TTDhw/n5ZdfZtWqVXz55Zfs2bOH7Ozs8pv9ypUrWbt2LR07dmTEiBF8/PHHjBw5skJe9957L1u2bCEhIYG8vDxatGjBNddcQ7Nmzfj97+0afRdffHFIjV999RVLly7l8OHDDB48mHHjxtGxY8ca1d3dd9/NwoUL6dSpE3l5eQDMnDkTEWH16tVs2LCBsWPHsmnTJgDWrFnDypUrKSws5Nhjj+W+++5j5cqV3HTTTTzzzDPceOONnHfeefzqV78C4E9/+hOzZ8/mhhtuqFDuxIkTmT9/PnfddRc7d+5k586dDB06tEaaI52Du7cDkNqmS3nYnpRetDu8IVySFCVsqAdVQ9LS0rjsssuYMWNGhfD33nuP66+/nqysLM4++2wOHjxIfn5+lXl17dqV4cOHA7BkyRIuuugi3G437dq146STTuLzzz8HYNiwYXTu3BmXy0VWVha5ubmV8srMzGTy5Mk899xzeDzBnzeq0jh+/HiSkpJo3bo1Y8aMYdmyZTWukxEjRjBlyhSeeOIJvF5v+flccsklAPTt25euXbuWG6gxY8aQmppKmzZtaN68OWeddRYAGRkZ5ee2Zs0aRo0aRUZGBs8//3wFT6mMCy+8kJdeegmA+fPnc/7559dYc6RTsHcHAC3bH1MeVtx6AJ3MLg4eqNGq9YoSM0SVB1UTT6chufHGGxkyZAhXXPHTjyZ9Ph9Lly4lMTGxQlqPx1Ph/ZL/b3JSUlJqVF5CQkL5ttvtprS08irWb775JosXL+aNN97gnnvuYfXq1ZXShNIIladj12Z69qxZs/jss8948803Oe6441ixYkWV6f3Px+Vyle+7XK7yc5syZQoLFixg0KBBzJkzh5ycnEr5dOrUifT0dL766ivmzZvHrFmxszBx6YGd+IzQpl3n8rDkYwZBLmzfsJz+x48NnzhFaWTUg6oFrVq14sILL2T27NnlYWPHjuXRRx8t31+1ahVglw754osvAPjiiy/YsmVL0DxHjRrFvHnz8Hq97N69m8WLFzNs2LAa6fH5fGzbto0xY8Zw3333ceDAAfLz80lNTeXQoUPVagR47bXXKCwsZO/eveTk5JCdnV2jsgE2b97M8ccfz913302bNm3Ytm0bo0aN4vnnnwdg06ZNbN26lT59+tQ4z0OHDtGhQwdKSkrK8wnGxIkTmT59OgcOHCAzM7PG+Uc8+bvYL83xxMWXB3XsY/vDwS1VPwAoSqyhBqqW3HLLLRVm882YMYPly5eTmZlJ//79y5/mJ0yYwL59+xgwYACPPfYYvXv3DprfueeeS2ZmJoMGDeLkk09m+vTptG/fvkZavF4vl1xySfmEhN/+9re0aNGCs846i1dffbV8kkQojWCHCMeMGcPw4cOZOnVq+funUaNGccEFF7Bo0SI6d+7MwoX2awZ33nknr7/+OmBn+mVkZDBw4EB+9rOfMWjQIH7zm9/g8/nIyMhg4sSJzJkzp4LnVB1/+ctfOP744xkxYgR9+/YtD3/99de58847y/fPP/98XnjhBS688MIa5x0NJBX+yAF3qwph6R26kUczZFfl4U5FiWUk2MywcDF06FATOBtr/fr19OvXL0yKYptp06ZVmEwRa0Rj3/nmL0M4EteKzDveqxC+7m8n4ik9Qu+psTFbUVH8EZEVxphKM53Ug1KUCCLVm0dhQutK4Yda9ueY0lxKSorDoEpRwkNUTZJQ6pdI/hpGUyXV5ONLbFEp3NNxEIk/zOXbr7+iR//YmFKvKNWhHpSiRAhHjuSTLEVIcqtKcW16HQfAnq91iE9pOqiBUpQIIW/fbgDcKZUNVKdjsygycZR+/2Vjy1KUsFFnAyUiN4jIBhFZKyLTA+KOEZF8EYnNt/CKUo8cybMGyhPEQLnj4tkW15XU/VV/pURRYok6vYMSkTHAeGCQMaZIRNoGJPk78HZdylCUpkLRob0AxDVLDxq/P60vx+77EOPzIS4d/FBin7r28muBe40xRQDGmB/LIkTkHGALEBM/3liwYAEiwoYNob+Jlpuby8CBAxtUx6pVq3jrrbfqlMeVV15J27ZtG1yrUjtK8u2njOJTgxso0y6Tlhzihx3Bf/StKLFGXQ1Ub2CUiHwmIh+KSDaAiDQDbgfuqqvASGHu3LmMHDmSuXPnBo0P9hmi2lL2PbuqqA8DNWXKFN5555065aHUP97D1kAlpVWeZg7QvIedKPHD+k8bTZOihJNqDZSIvCcia4L8jccOEbYChgO3AvPFfsxtGvCQMabqr6ba/K8WkeUisnz37t11O5sGIj8/nyVLljB79mxeeOGF8vCcnBxGjRrF2WefTf/+/QFrqCZPnky/fv04//zzy5eLWLRoEYMHDyYjI4Mrr7ySoqIiwH4S6fbbb2fIkCG8+OKLFcoNXM6iuLiYO++8k3nz5pGVlcW8efM4fPgwV155JcOGDWPw4MG89tprgF3eYvz48YwePZpevXpx110/PSuceOKJtGpV+T2HPx9++CFZWVlkZWUxePBgDh06hDEm5NIgJ510EuPHj6dHjx7ccccdPP/88wwbNoyMjAw2b94MwBtvvMHxxx/P4MGDOeWUU9i1a1elcidNmsSbb75Zvj9lypTyD8PGOj7HQCU3D26gjhlwAsXGQ/EWNVBK06Dad1DGmFNCxYnItcArxn6OYpmI+IDWwPHA+c6kiRaAT0QKjTGPBcn/X8C/wH5Jokoxb98BP1T+GGqdaJ8BZ9xbZZLXXnuN008/nd69e5Oens6KFSs47jj7NPvFF1+wZs0aunfvTm5uLhs3bmT27NmMGDGCK6+8kn/84x9cf/31TJkyhUWLFtG7d28uu+wyHn/8cW688UYA0tPTy7/b50/gchbx8fHcfffdLF++nMces1X5hz/8gZNPPpknn3ySvLw8hg0bximn2CZbtmwZa9asITk5mezsbMaNG1fjZSkeeOABZs6cyYgRI8jPzycxMZFXXnkl5NIgX375JevXr6dVq1b06NGDq666imXLlvHII4/w6KOP8vDDDzNy5EiWLl2KiPDvf/+b6dOn8+CDD1Yot2wpjXHjxlFcXMyiRYt4/PHHa6Q56incT6lx0SytZdDopOQU1sX1puUenWquNA3qOsS3ABgDICK9gXhgjzFmlDGmmzGmG/Aw8P+CGadoYe7cuUyaNAmwT/j+w3zDhg2je/fu5ftdunRhxAi7TPcll1zCkiVL2LhxI927dy//Ht/ll1/O4sU/LeE9ceLEoOUGW84ikP/973/ce++9ZGVlMXr0aAoLC9m6dSsAp556Kunp6SQlJXHeeeexZMmSGp/ziBEjuPnmm5kxYwZ5eXl4PJ4qlwbJzs6mQ4cOJCQk0LNnT8aOtV/d9l9KY/v27Zx22mlkZGRw//33B11K44wzzuCDDz6gqKiIt99+mxNPPJGkpKQa645mXEUHOUQK8XHukGny2hxHt+KvKTxyKGQaRYkV6voliSeBJ0VkDVAMXG4a8uN+1Xg6DcG+fft4//33Wb16NSKC1+tFRLj//vuByktnHM3yFaGW36jJchbGGF5++eVKXwz/7LPP6rSUxh133MG4ceN46623GDFiRPnHYkNRk6U0brjhBm6++WbOPvtscnJygn7JIjExkdGjR7Nw4ULmzZtX/mDQFJDifI5IEsH9J0tSz5HE73yWdasW0/9n4xpNm6KEgzp5UMaYYmPMJcaYgcaYIcaY94OkmWaMeSDY8dHASy+9xKWXXsp3331Hbm4u27Zto3v37nz00UdB02/dupVPP7XvCP7zn/8wcuRI+vTpQ25uLt98Y5fzfvbZZznppJOqLTvYchaBS2mcdtppPProo+XLwa9cubI87t1332Xfvn0UFBSwYMGCcs+uJmzevJmMjAxuv/12srOz2bBhQ52WBgE4cOAAnTp1AuDpp58OmW7ixIk89dRTfPTRR5x++uk1zj/acZUcpshVtbfYbcgplBg3BeuqfmBQlFhAf0xRDXPnzuXcc8+tEDZhwoSQs/n69OnDzJkz6devH/v37+faa68lMTGRp556igsuuICMjAxcLhfXXHNNtWUHW85izJgxrFu3rnySxNSpUykpKSEzM5MBAwYwderU8uOHDRvGhAkTyMzMZMKECeXvny666CJOOOEENm7cSOfOncvXt5o1a1b5UhwPP/wwAwcOJDMzk7i4OM4444w6LQ0C9tt/F1xwAccddxytW/80EWD58uVcddVV5ftjx47lww8/5JRTTiE+Pj5YVjGJp/QwRa7kKtO0bNWatfEZtN1Z6VlQUWIOXW4jRpkzZ06FyRRNkWjrO5v+mk2hJ43MOxZVmW7xs3/hxM0PsGfKElp3y2gkdYrScOhyG4oS4cT7jlDqCf4+0p8uoyZTYtzsWBQ7S90rSjB0uY0YZcqUKUyZMiXcMpRakOQrwBdXvYHq3q0HnySNYOC2BZQe+X94kptXe4wxhoP793Bk3w6KDuymoOAIpT4vbgwCiLhwud143G48HjdutwvEhcEFCEbEbouAuPz+bLjNBTxuFwkeId7tRgS8PoPXGEq9PnwGSn0Gn8+U/+tzRnBM+f/K/wHA7YI4twufAa/Ph9dn8/D6fLhEcLsEt/OvyyV4nH+NsefsNYZmLdrSruMxtWoLJTKICgNljKnVDDRFiaSh65qSZArwxafWKK2MuIG0RRewdv6dDJjySNA0327exI5P55O6LYeORd/Qlv1Ub8pijyITx8GbN5HWvOofpyuRR8QbqMTERPbu3Ut6eroaKaVGGGPYu3cviYmJ4ZZSY4pLvKRQAPHNapR++MhTef/T0zk5dw65C3vRbex1IMLu3HV8u2Q+ablv0690Az2Ara7ObGt5PFvS+2FSO+Bulk5CUjPiPG58RvAZMMaH1+ejtLQUr9fr/O7OIMZnPSx8zrbPujjGB8aHYBDjpezS9PoMxaU+Srw+AFyOh+MS69m4XeAWFy6xcdZ7KzsrwXHEEGwxZd6Wqywvv/wM1gPzGpvO53hrZV6ZSwTvtx8xbM+r7N2/Ww1UFBLxBqpz585s376dSP0MkhKZJCYm0rlz53DLqDGH8w/SUgySWDMDJSIMvGoWyx8bz9BP/0je0un4ENqYPNoAm909WNHzOo4ZeRHHdM+gqQ5wrXjTB3tepbjwcLilKEdBxBuouLi4Cl9qUJRYpODwAVoCroSaDfEBtG3VksTfL+SdBf8iaccnuAS8bQfS/Wfn0fPYAQ0nNopwx9t3eiVqoKKSiDdQitIUKDp8AABXYs0NFEBachKnX/w74HcNoCr6cSeUGagjYVaiHA06zVxRIoDiIwcB8CSmhVlJbBGXYL/M4S1SDyoaiSkDZXxe8vb8wOFDeeGWoii1osQxUO6k2nlQStV4Eq0HVVqkHlQ0ElMG6tDB/bR4rA+rXw8+7VZRIpWSAvt9xfga/KZJqTlxjoHyFquBikZiykAlpzjDI+rOK1GGt9B6UHHJOsRXn8Qn2m8bGvWgopKYMlCeuHgKTRyUVLuQr6JEFL5C60ElNlMDVZ/EJ9lp+76SgjArUY6GmDJQAEckCSlWD0qJLnyO15+YokN89UlikvPpqBL1oKKRmDNQhZKEp0QNlBJdGOcdSXJyzX6oq9SMRKc+TUlhmJUoR0NMGih3qRooJbrwlRRSalzExSdUn1ipMW632xn21yG+aCTmDFSRO5k4r7rzSnQhJUcoFDVODUGRxCOlaqCikZgzUCXuZOLVQClRhngLKabprB7cmBSSgEsNVFQSmwbKp51RiS5cpYUUqQfVIBRLAi6vvoOKRmLOQHk9ySQa9aCU6MLjLaBYDVSDUCwJuNVARSWxZ6DimpFs1INSogu3t4gSlxqohqDElagGKkqJOQPli08hyRRCFK6oqjRdPL5CStSDahC87gTc3qJwy1COgpgzUK6EZnjER5Gu/6JEER5fEaXu6FkBOJoodScRp++lo5IYNFD2a9D5hw6EWYmi1Jw4XyFelxqohsDrSSHRp++lo5GYM1BxznIFhw/mhVeIotSCeFOE16MGqiHwxjUjSSdORSV1NlAicoOIbBCRtSIy3S88U0Q+dcJXi0ijXH3u5BYAFBza1xjFKUq9EG+K8OkQX4Pgi0sh2egkiWikTku+i8gYYDwwyBhTJCJtnXAP8BxwqTHmSxFJB0rqrLYGJKS2AqA4Xw2UEj0kUoTPkxRuGbFJfDOSpYiSkhLi4uLCrUapBXX1oK4F7jXGFAEYY350wscCXxljvnTC9xpjvHUsq0YkpKYDaqCU6CLBFGPUQDUMznvpw/n6XjraqKuB6g2MEpHPRORDEcn2CzcislBEvhCR20JlICJXi8hyEVm+e/fuOsqBpLTWAHgP769zXorSGHi9XhKlBPQdVIPgTrQGquBQXniFKLWm2iE+EXkPaB8k6o/O8a2A4UA2MF9EejjhI52wI8AiEVlhjFkUmIkx5l/AvwCGDh1a5x8vpTS3HpQpUAOlRAeFBYdJAYhTD6ohcCXZRSALDx8MsxKltlRroIwxp4SKE5FrgVeMMQZYJiI+oDWwHVhsjNnjpHsLGAJUMlD1TUpKGsXGDQXqzivRQdGRfFIAiVcD1RC4nZm9RYfzwitEqTV1HeJbAIwBEJHeQDywB1gIZIhIsjNh4iRgXR3LqhEut4tD0gxXUV5jFKcodabsR+WuuOQwK4lN4pOtB1VyRD2oaKNOs/iAJ4EnRWQNUAxc7nhT+0Xk78DngAHeMsa8Wceyaky+NMNTrB6UEh0UF1gDpR5UwxCf1ByAkgI1UNFGnQyUMaYYuCRE3HPYqeaNToE7VQ2UEjWUOB6UOyElzEpik6Rm1kCVFhwKsxKltsTclyQAiuPSSCjVzqhEByVF9isHHvWgGoTEFDvE5yus53uCz6cfpW5g6jrEF5GUxLekdcGWoz7e+LxsXL6IvC8WkLx/Pa2KfyDBFODBS7HEUyLxlEgCJa4ESl2JeN3OnycJnzuRUnciPvEgLheCIC4BBBEXIoKIgEjFMiuJqFZlpYujrpeKVJ+kQkk1T191ARIiwmBw/qtwqqbsTEOcsAnYMFRdT/77LkdPWfOICAaDz2fwGfCasm2DMeByCS4Blwgul+D2O9bvBKs8V/fBbfbfRPWgGoLktJYAmKKjH+Lzer18lfMS3rWvkX5gLeneH2nmLOtTRBzFEk+hJFHoSqLYlUSJO4lSdzJeTzLeuBRMXArGnQAiGOz9AOSnvlceHgybyhh7lPELK09hAtJXczMQCZagYvlSVmAVqY4ktOHkS/+v6sLqQGwaqOTWtMrLw/h8iKt2TuI3n76B+72p9PVuodh4+C6uG7tSelMa14xSXLi8xbi8xbh9RXh8hcR5C0kozSfeV0i8KSKBIpJMER5Ky7tgWddzBe0U0YnP1No8xQZV30OOmoOSQnrnXnXLRAlKYlIKhSYOCvKO6vj1yxcR99YtDPZt4aBJYXPSAH5sNZTS+DTbHUqLoKQAV+kRPKVH8HiPEFdaQFLxThJ9hSRSQJIpJJHiqLsXVHedr6U7oAaqVpiUdiRKCYcO7ie1RXrNjvF5Wf7kTWRvf5rttOfTjL+Qeeql9HKevuqsyRi8Brw+g8/nw97Rqm78wCfxSk/fUvlpPViOUumRPri+oOEh04cID3FEbUdCjLHnL453ItjzKDsTfw+noTCOlwTWUzraPH7a9gsPSJfmEtKOqgSlJhySVNyFtf9t5NJXHmXIl39mn7Ri5dDpZIy9nMHxtf9BtTHWAy/rRb6KkZSPiIToz+X9ncqjL1UeUEeqe7zPqJdSQhOTBkpS2wFwcM/2Ghko4/Ox4vFfkr37VT5t8QsG/vJxOqfW7+1CRHALuF1CZL76a6IeURVIkAeAo8njp+06ClKOmnx3GnHFebU6Ztl//82wL6eyLmkwXa+Zz+AWbY66/LLrP0TsUecb60TinbLOJLToAED+3u9rlP6z5/7M0N2vsqTdJQz/7bOk1rNxUhQlvBxxp5FQUvN3UF+v/oxBn9/BpoT+9PrdG6TWwTgpR09MGqjU1h0BOFIDA7Xps7fJ3vwoy5uNYcSvH631OytFUSKf4vgWJHtr9tOTwoIjuF69msOSTPurXiQhqVkDq1NCEZN349btjgGgcP/OKtMVHskn6Z2b2OlqR69fPaXGSVFilNKEFjTz1cyDWvHiffT05fL9idNp0bZTAytTqiIm78jNW7Wh2Hgwh6o2UBvm/5kuZif7T55O8+b1MxlCUZTIw5fYkuYmH6/XV2W63bt2kLH5X6xOHsbAkyc1kjolFDFpoMTlYperLYn5W0OmObxnG31zn+Hj5JPJGDW+EdUpitLYSHIr4sTLwYN5VabbsGA6zSig1fj7GkeYUiUxaaAA9iZ0onnhjpDx37w8Dbfx0mrcXY2oSlGUcOBOsbN5D+3bFTLNnryD9Pv+VdalnkCnPkMaS5pSBTFroA6nHEO70u+D/gBn/46v6f/9q3za/Ez6DcgMgzpFURqTuLS2ABzeH3ri1Bdvz6G1HKDl6OsaS5ZSDTFroKRVD5pRQN7uyh0y95U/48NFl3PuDIMyRVEam8T0LgAU7d0eNN7rM3TY9Bw7PZ3oNOTMxpSmVEHMGqhmHexnY3ZuWVMh/IdvV5O55y2WtT6X7j16h0OaoiiNTKsO3QEo2rctaPyKTz8gw2xkf//LQWfzRgwx2xKte2UDcDh3eYXwHxbcSSHx9JowNRyyFEUJA+mt21Fo4jB5wT2ook//SQEJ9Drt6kZWplRFzBqoDp278yOtkB0ry8O2rvmUrIPvs7LjRbTveEwY1SmK0piIy8VuVxs8h3+oFLdjx3ayDy1iU7sziUvRn5tEEjFroESEbc0y6Xrwc4zPi/H52P/fqRwwKQw4/0/hlqcoSiNzKL4NKYWVDdTXCx8nUUpof+pvw6BKqYqYNVAAJceeQWvy2LT0LVa+/W8GFX7Oxj7X0DJdv6ulKE2NgqQOpJdWnGZeXFzCsVvnszExk3bH6tTySCOmDVTmqRfzIy1J/9/19Fv2R9Z7+jLkgoZbu0RRlMiluFVv2rKPA/t2l4et+mA+nfmRkuN+GUZlSihi2kAlp6Tx/SkzyZcU1idmkX7VS3ji4sItS1GUMJB2jP3NY+76FeVh8Stms4eW9Bt9cbhkKVUQk+tB+ZM1chyMHEe3cAtRFCWsdO47FHLg4JbPYcTprF31KVnFK1jR4zpax8WHW54ShJj2oBRFUcpo3r47O6QdKTs+BuDAew9SQAL9zr4xvMKUkKiBUhSlybCr7Uj6HVnBR/99luGH3mNtxwkkt2gbbllKCNRAKYrSZGh/ym+Jp4RRy69ntyud/pPuCbckpQrUQCmK0mTo2CuLbWOf4MsOF+K58i2S01qFW5JSBXWeJCEiNwDXAV7gTWPMbSISB/wbGOKU8Ywx5m91LUtRFKWudBtxAYy4INwylBpQJwMlImOA8cAgY0yRiJQN5l4AJBhjMkQkGVgnInONMbl1k6soiqI0Feo6xHctcK8xpgjAGPOjE26AFBHxAElAMXCwjmUpiqIoTYi6DvH1BkaJyD1AIfB7Y8znwEtYz2onkAzcZIzZFywDEbkaKPuEcL6IbKyjJoDWwJ56yKcxiCatEF16VWvDEU16o0krRJfe+tLaNVhgtQZKRN4D2geJ+qNzfCtgOJANzBeRHsAw7DupjkBL4CMRec8Y821gJsaYfwH/quFJ1AgRWW6MGVqfeTYU0aQVokuvam04oklvNGmF6NLb0FqrNVDGmFNCxYnItcArxhgDLBMRH9aiXgy8Y4wpAX4UkY+BoUAlA6UoiqIowajrO6gFwBgAEekNxGPdva3AyU54CtbD2lDHshRFUZQmRF0N1JNADxFZA7wAXO54UzOBZiKyFvgceMoY81Udy6oN9Tpk2MBEk1aILr2qteGIJr3RpBWiS2+DahVrTxRFURQlstAvSSiKoigRiRooRVEUJSKJKQMlIqeLyEYR+UZE7gi3nkBEpIuIfCAi60RkrYj8zgmfJiI7RGSV83dmuLUCiEiuiKx2NC13wlqJyLsi8rXzb8sI0NnHr+5WichBEbkxkupVRJ4UkR+d97VlYUHrUiwznH78lYg06lrkIbTeLyIbHD2vikgLJ7ybiBT41fGsxtRahd6QbS8i/+fU7UYROS0CtM7z05krIquc8Eio21D3rMbpu8aYmPgD3MBmoAd2NuGXQP9w6wrQ2AEY4mynApuA/sA07I+cw64xQG8u0DogbDpwh7N9B3BfuHUG6Qc/YH/4FzH1CpyI/TblmurqEjgTeBsQ7AzYzyJA61jA42zf56e1m3+6CKrboG3vXG9fAglAd+ee4Q6n1oD4B4E7I6huQ92zGqXvxpIHNQz4xhjzrTGmGDurcHyYNVXAGLPTGPOFs30IWA90Cq+qWjMeeNrZfho4J3xSgvJzYLMx5rtwC/HHGLMYCPyaSqi6HI/9wLIxxiwFWohIh0YRSnCtxpj/GWNKnd2lQOfG0lMdIeo2FOOBF4wxRcaYLcA32HtHo1CVVhER4EJgbmPpqY4q7lmN0ndjyUB1Arb57W8ngm/+ItINGAx85gRd77jET0bCsJmDAf4nIivEfpIKoJ0xZqez/QPQLjzSQjKJihd4JNZrGaHqMtL78pXYp+QyuovIShH5UERGhUtUEIK1fSTX7ShglzHma7+wiKnbgHtWo/TdWDJQUYOINANeBm40xhwEHgd6AlnY7xc+GD51FRhpjBkCnAFcJyIn+kca69NHzO8URCQeOBt40QmK1HqtRKTVZShE5I9AKfC8E7QTOMYYMxi4GfiPiKSFS58fUdP2flxExYeriKnbIPeschqy78aSgdoBdPHb7+yERRRi18p6GXjeGPMKgDFmlzHGa4zxAU/QiEMOVWGM2eH8+yPwKlbXrjKX3fn3x9A5NDpnAF8YY3ZB5NarH6HqMiL7sohMAX4BTHZuSjhDZXud7RXYdzq9wybSoYq2j9S69QDnAfPKwiKlboPds2ikvhtLBupzoJeIdHeepCcBr4dZUwWcMebZwHpjzN/9wv3HaM8F1gQe29iISIqIpJZtY1+Sr8HW6eVOssuB18KjMCgVnkAjsV4DCFWXrwOXOTOihgMH/IZTwoKInA7cBpxtjDniF95GRNzOdg+gFxHwzc0q2v51YJKIJIhId6zeZY2tLwinABuMMdvLAiKhbkPds2isvhvOGSL1/YedQbIJ+6Txx3DrCaJvJNYV/gpY5fydCTwLrHbCXwc6RIDWHtjZTl8Ca8vqE0gHFgFfA+8BrcKt1dGVAuwFmvuFRUy9Yg3nTqAEOy7/y1B1iZ0BNdPpx6uBoRGg9Rvsu4WyfjvLSTvB6R+rgC+AsyKkbkO2PXYlhs3ARuCMcGt1wucA1wSkjYS6DXXPapS+q586UhRFUSKSWBriUxRFUWIINVCKoihKRKIGSlEURYlI1EApiqIoEYkaKEVRFCUiUQOlKIqiRCRqoBRFUZSIRA2UoiiKEpGogVIURVEiEjVQiqIoSkSiBkpRFEWJSNRAKYqiKBGJGijsSpEiYpw1WZQGRESmiMiSRiorSUTeEpH9InJbY5QZUH6uiJzSCOXkiMhVIeKadN8WkTki8tfaxtWzhmki8lwV8Y3ST+oTEbnNua4WikhyQ5WjBko5apwLr0RE8v3+Gt0QVMEpQCbQxRgzvSzQuSF0C5uqCMJpw2m1SH+xiHwnIodFZIGItKoibZaIrBCRI86/WQHlBvadHg2hOZoRkdEiklOL9CHrPEjaViLyqtOW34nIxQHl+gLap2z9J5zrqTPQF7tWXIMQEwaqqT4dRgjzjDHN/P6mV39Io9EKyDXG5IdbSF1wFn8L+7UqIgOAfwKXAu2AI8A/QqSNxy5i9xzQEngaeM0JLyOw74R9ocOjJRLuQTWsc39mAsXYtpwMPO60cRnfB7TP0/4HG2MOA1uwa0M1CGHv9EeL8xR8u4h8BRwWEY+IDBeRT0QkT0S+FJHRfulzRORvIrJMRA6KyGuhnv5E5AoRWS8ih0TkWxH5dUD8eBFZ5eSzWexqo4hIcxGZLSI7RWSHiPxVnBUxqziPniLyvojsFZE9IvK8iLTwi9snIkOc/Y4isrvsvETkbBFZ65xvjoj0C6if34vIVyJyQETmiUhi7Wu69ojIHU69HBKRdSJyboh0IiIPiciPTl2uFpGBTlyCiDwgIltFZJeIzBKRpFpK8QC+arSmi8gbTvmfO222xC/eiMg1IvK1U88zRUScuJBt50e2Uwf7ReSpsjYQkZYi8l+nPfc72539ys0RkXtE5GOsIajOu+gqIh87df4/EWkdED/Zqcs9IvLHavIKxWTgDWPMYsfoTwXOE2fl5QBGY+v/YWOXLp+BXczu5KMsOyRih5t2isj3InKV02bHBkmXKiIfiMiMsjYEWovIu069fSgiXf3SPyIi25y+sUJERvnFTRORl0TkORE5CEypRma8iDzjlLNWRIYGxGfVw7U6mhrWudhVsicAU40x+caYJdiFHS+tZZk+p8yGobFXaKzHlR5zsas7dgGSgE7YFVXPxBreU539Nk76HGAHMBC7+urLwHNOXDfsqpEeZ38c0BPbuCdhbxBDnLhhwAEnf5dTbl8n7lXsE2YK0Ba7lPSvqzmPY528EoA2wGJsByuL/xWwDkgGFgIPOOG9gcPOsXHY5bi/AeL96mcZ0BHrSawnYMXOgFUz86r4GxniuGlldRgQfoFTrguY6Ojs4MRNAZY426cBK4AWTl3380v3EPaCaQWkAm8Af6tF/4jDrqpaSV9Auhecv2SgP3bV2CV+8Qb4r6PxGGA3cHoN2y4Xu9R4F+c8Pgb+6sSlY28Qyc75vQgs8Ds2B9gKDMDeAOKqOIcc7AqmvbHXQg5wb0DffsKJGwQUAf1C5FVVe78G3B4Qlg8cFyTtTcDbAWH/BW7x6zsHgH3YVWOvPcr7wOnAD049JWO9BwMc68TPAf7q1Peysvr3izsEnOi04SMBbX+Jc5wHuMUpJ9FPfwlwDrafJ1WhcRpQiL03uYG/AUsD+klNr9X/AneEiKuyzgPCBwNHAsJ+j30AAWvsioFdWC/pISAlSD5PY1cJjj+a9qu2fRsi08b4cxr1Sr/924FnA9IsBC53tssvWme/v9MAbgIMVJCyFgC/c7b/CTwUJE077IWf5Bd2EfBBLc/rHGBlQNjr/LR8dYITNhWY75fGhTXAo/3q5xK/+Ok4y3TXYxtMc+owz++vY5B0q4DxzvYUfjJQJwObgOGAyy+9YI1aT7+wE4AtNdSVhb157MK5UYVI53bS9fEL+yuVDdRIv/35hL5BVGg7pw2u8ds/E9hcheb9fvs5wN01PN8c4E9++78B3nG2y/p2Z7/4ZcCko2jvRVRelry8zwWETwVeCAh7HpjmbPfH3pDdwM+wy6BfdBSansTvwQX70BBooJ7EPijcGnDsHH+NQDPAi31nGays/cAgv76/uBbXyXt++/2BgoB+Uudrtbo6DwgfBfwQEPYrIMfZbu/odAHdsQ9f/wyST0+s4S6hjsu7B/uL2iE+h21+212BC5xhmDwRycN6Bh1CpP8O+5QdOBSCiJwhIkud4bU87I2lLF0X7NNqIF2d/Hb6lf9PrCcVEhFpJyIviB0SPIh9AgzU9ATW83vUGFPkhHV0zgEAY4zPOb9Ofsf94Ld9BHsB1jfzjTEt/P6+F5HLxA6BltXDQILUszHmfeAx7Fj4jyLyLxFJw3ojycAKvzzeccKrxRizCuuVfArcWEXSNtinY/9+sS1IuqD1WMO2C+xzHZ1jk0Xkn2JfTh/E3gBaSMUh4WBaQlFdW9dHX8gH0gLC0rBeSK3SGmPWGWO+N8Z4jTGfYL2X849CU0eqb79xWO9xVpC48vTGDlvu46c2+r3Yof4DTh9sTsX2rUv7JErF91aR1j4/OG3kM8ZswY7QTAiSz++Az4E0Y8zyo9BcJdFuoIzf9jasB+V/s0wxxtzrl6aL3/YxWKu/xz9DEUnADv89ALQzxrQA3sI+1ZeV0zOIlm1YD6q1X/lpxpgBQdL68/+c88gwxqRhhxXKykJEmgEPA7OBafLTe7PvsUaxLJ0457ejmvIqISKjpOJsncC/UdXnUp5XV6xBvR5Id+pvjf85+WOMmWGMOQ77tNYbuBXbJgXAAL+6bG6MqfFFa4wpBN528g3FbqAUOxupjC4h0gajyrYLkt8x2HYDO2TUBzjeOfZEJ9z/eP/+HQmsxQ4RAiB21l0C1gsOljbT710P2BmVa0PkbQjRR6phJ9W33xPYB5y3nHcvBEvvXGutgO+dPn8bcCHQ0unHB4j89qlpnW8CPCLSyy9sUIi0YM81mL3oh/XWC45Cb7VEu4Hy5zngLBE5TUTcIpIodqqkf+e9RET6i523fzfwkjHGG5BPPPai2w2UisgZVJxGORu4QkR+LiIuEekkIn2NMTuB/wEPikiaE9dTRE6qRncq9mnmgIh0wt6g/XkEWG6MuQp4k5+eAucD4xwdcdgbXhHwSXUVFYgx5iNTcbZO4N9HtcguBduZd4OdcIL1oCohItkicryj/zB2nN7neINPAA+JSFsnbScROc3vWCN+k2BCUIRtz6A4bf8K1vAni0hf4LIanaWlurYDuE5EOjsPFn8E5vkdWwDkOXF/rkW54eJ57DU2yrnR3w28YowJ9oSegx0u+63YCS/XO+HvQ/lEo5ZiGQb8FvuOCyc+V0Sm1EDTfOz12M+5rqeGSHc9sBF4QypOtjlTREaKnen2F+y7oW3Y9inF9mOPiNxJZY8j0sihijr3x9gZeK8Ad4tIioiMAMZj39siImNEpKvTPl2Ae/FrHz/isNdZgxAzBsrpVOOBP2A71TbsDcP/HJ/Fjjv/ACRiL4rAfA454fOxY84XY98BlcUvA67AvjQ8AHzIT57MZdgb4jrn2JeoOMQYjLuAIU5eb2I7DWAvYuxL4GudoJuBISIy2RizEfvE/ijW4zgLOMsYU1xNeQ2KMWYd8CB2eG0XkIGdHBCMNKwh2o8d/toL3O/E3Y6d9LHUGQJ7D+tx4Fwwh7Dv5arCR/V9/Hrs0M0P2P4xl5pfcCHbzo//YB9cvsUODZf9MPRh7LDTHmAp9gk/7FTlMRtj1gLXYA3Vj9ib+G/8jn1bRP7gpC3GvpO7DPtu8krgHL/+OQnbvoeAZ4D7jDON2TEW6dh6qRJjzNvADOADJ7+yY4oC0hngamA7dup12Sy5/2AfDvYBx2GvKbDvr9/BehrfYR+eajOk1yD413Eg1dW5iPxBRN72O+Q32D74I7bfX+u0MdhJFJ9gHxw/wV5rle6X2HeIVc6UrQvivOiKecT+2O05Y8y/w61FqRsicgl2+O//qkk3FutZ9zXG7Kth3vcB7Y0xl9ddqXI0iMhI4DpjzEVHcWw/7JBygjGmtN7FKeWI/UnFOuAqY8xbDVFGzHhQStPBGPNcdcbJIQd4F1grIr8PlkBE+opIpt9Q0y+xPxdQwoQxZkltjJOInOsMabUE7sNOlVbj1IA419MG7AjSooYqRw1UIyD2R6bBJh8Em1Wk1BPGmGJjzGRjTAdjzAMhkqVih+YOY98PPUjwsfawEqL/1GoCSwzza+ww1WbsO5hrq05e/zhDb8HaJ+hwXLRjjHnAGNPeGHOR38zieqfJDPEpiqIo0YV6UIqiKEpEEvYPHPrTunVr061bt3DLUBRFURqRFStW7DHGVPohfkQZqG7durF8eb3/GFlRFEWJYETku2DhOsSnKIqiRCRqoBQlAnlv3S725jfY5ChFiQrUQClKhHHw8BEOzb2Cl+Y/G24pihJWIuodVDBKSkrYvn07hYWF4ZaiRBGJiYl07tyZuLi4cEupNSX7t3Ou+2M25eYCV4VbjqKEjYg3UNu3byc1NZVu3bohcjQfO1aaGsYY9u7dy/bt2+nevXu45dQaX6n9CEJX2RVmJYoSXiJ+iK+wsJD09HQ1TkqNERHS09Oj1usuLbXfU40j8EP7itK0iHgDBahxUmpNNPeZMg/KJfqVF6VpExUGSlGaEl5vSbglKEpEoAaqBogIt9xyS/n+Aw88wLRp08InqBpycnL45JNar1tYzqpVqzjhhBMYMGAAmZmZzJs3r/qDlHrDpwZKUQA1UDUiISGBV155hT179lSfuBYYY/D56n+tr7oaqOTkZJ555hnWrl3LO++8w4033kheXl79CVSqxFuqK0UoCqiBqhEej4err76ahx56qFLc7t27mTBhAtnZ2WRnZ/Pxx3bx2GnTpvHAAz+t8DBw4EByc3PJzc2lT58+XHbZZQwcOJBt27Zx6623MnDgQDIyMsq9lZycHEaPHs35559P3759mTx5MsG+PD9jxgz69+9PZmYmkyZNIjc3l1mzZvHQQw+RlZXFRx99VKXGSy+9lBNOOIFevXrxxBNPANC7d2969eoFQMeOHWnbti27d++uVPaLL77IwIEDGTRoECeeeCJgJ7VcccUVZGRkMHjwYD744AMA5syZwznnnMOpp55Kt27deOyxx/j73//O4MGDGT58OPv22fUEn3jiCbKzsxk0aBATJkzgyJEjlcodPnw4a9euLd8fPXp0TH0iy+dVA6UoEAXTzP256421rPv+YL3m2b9jGn8+a0C16a677joyMzO57bbbKoT/7ne/46abbmLkyJFs3bqV0047jfXr11eZ19dff83TTz/N8OHDefnll1m1ahVffvkle/bsITs7u/xmv3LlStauXUvHjh0ZMWIEH3/8MSNHjqyQ17333suWLVtISEggLy+PFi1acM0119CsWTN+/3u7Rt/FF18cUuNXX33F0qVLOXz4MIMHD2bcuHF07NixPP9ly5ZRXFxMz549K53H3XffzcKFC+nUqVO5hzVz5kxEhNWrV7NhwwbGjh3Lpk2bAFizZg0rV66ksLCQY489lvvuu4+VK1dy00038cwzz3DjjTdy3nnn8atf/QqAP/3pT8yePZsbbrihQrkTJ05k/vz53HXXXezcuZOdO3cydOjQKus8mvCVFlefSFGaAOpB1ZC0tDQuu+wyZsyYUSH8vffe4/rrrycrK4uzzz6bgwcPkp+fX2VeXbt2Zfjw4QAsWbKEiy66CLfbTbt27TjppJP4/PPPARg2bBidO3fG5XKRlZVFbm5upbwyMzOZPHkyzz33HB5P8OeNqjSOHz+epKQkWrduzZgxY1i2bFn5cTt37uTSSy/lqaeewuWq3FVGjBjBlClTeOKJJ/B6veXnc8kllwDQt29funbtWm6gxowZQ2pqKm3atKF58+acddZZAGRkZJSf25o1axg1ahQZGRk8//zzFTylMi688EJeeuklAObPn8/5559fZX1HG+pBKYolqjyomng6DcmNN97IkCFDuOKKK8rDfD4fS5cuJTExsUJaj8dT4f2S/29yUlJSalReQkJC+bbb7aY0yLuJN998k8WLF/PGG29wzz33sHr16kppQmmEytOxy/YPHjzIuHHjuOeee8qNaSCzZs3is88+48033+S4445jxYoVNT4fl8tVvu9yucrPbcqUKSxYsIBBgwYxZ84ccnJyKuXTqVMn0tPT+eqrr5g3bx6zZsXWwsS+Up0koSigHlStaNWqFRdeeCGzZ88uDxs7diyPPvpo+f6qVasAu3TIF198AcAXX3zBli1bguY5atQo5s2bh9frZffu3SxevJhhw4bVSI/P52Pbtm2MGTOG++67jwMHDpCfn09qaiqHDh2qViPAa6+9RmFhIXv37iUnJ4fs7GyKi4s599xzueyyy6r0TjZv3szxxx/P3XffTZs2bdi2bRujRo3i+eefB2DTpk1s3bqVPn361Oh8AA4dOkSHDh0oKSkpzycYEydOZPr06Rw4cIDMzMwa5x8NqAelKBY1ULXklltuqTCbb8aMGSxfvpzMzEz69+9f/jQ/YcIE9u3bx4ABA3jsscfo3bt30PzOPfdcMjMzGTRoECeffDLTp0+nffv2NdLi9Xq55JJLyick/Pa3v6VFixacddZZvPrqq+WTJEJpBDtEOGbMGIYPH87UqVPp2LEj8+fPZ/HixcyZM4esrCyysrLKjdqdd97J66+/DsCtt95KRkYGAwcO5Gc/+xmDBg3iN7/5DT6fj4yMDCZOnMicOXMqeE7V8Ze//IXjjz+eESNG0Ldv3/Lw119/nTvvvLN8//zzz+eFF17gwgsvrHHe0YL/NPOSEvWmlKaLBJsZFi6GDh1qAmdjrV+/nn79+oVJUWwzbdq0CpMpYo1o7Tur3n6SrM9uAiD/lq00S20eZkWK0rCIyApjTKWZTupBKUqE4fP9NMRXVFh5mr2iNBUafJKEiJwOPAK4gX8bY+5t6DKVmhHJX8No0njVQCkKNLAHJSJuYCZwBtAfuEhE+jdkmYoS7Rj/d1BFBWFUoijhpaGH+IYB3xhjvjXGFAMvAOMbuExFiWoqGCj1oJQmTEMbqE7ANr/97U5YOSJytYgsF5HlwT6noyhNDeP7aR0o9aCUpkzYJ0kYY/5ljBlqjBnapk2bcMtRlLBj/N5BlRargVKaLg1toHYAXfz2OzthUceCBQsQETZs2BAyTW5uLgMHDmxQHatWreKtt9466uPLftjbv39/BgwYwCOPPFKP6pT6wPjN4vOqB6U0YRraQH0O9BKR7iISD0wCXm/gMhuEuXPnMnLkSObOnRs0PthniGpL2ffsqqKuBsrj8fDggw+ybt06li5dysyZM1m3bt1R56fUP/4elFc9KKUJ06AGyhhTClwPLATWA/ONMZW//hnh5Ofns2TJEmbPns0LL7xQHp6Tk8OoUaM4++yz6d/fTk4sLS1l8uTJ9OvXj/PPP798uYhFixYxePBgMjIyuPLKKykqKgLsJ5Fuv/12hgwZwosvvlih3MDlLIqLi7nzzjuZN28eWVlZzJs3j8OHD3PllVcybNgwBg8ezGuvvQbY5S3Gjx/P6NGj6dWrF3fddRcAHTp0YMiQIQCkpqbSr18/duyo7NR++OGH5V+RGDx4MIcOHcIYE3JpkJNOOonx48fTo0cP7rjjDp5//nmGDRtGRkYGmzdvBuCNN97g+OOPZ/DgwZxyyins2rWrUrmTJk3izTffLN+fMmVK+Ydhmwz+HlRJYRUJFSW2afDfQRlj3gKO/pHfn7fvgB8qfwy1TrTPgDOq/mnWa6+9xumnn07v3r1JT09nxYoVHHfccYD9zt6aNWvo3r07ubm5bNy4kdmzZzNixAiuvPJK/vGPf3D99dczZcoUFi1aRO/evbnssst4/PHHufHGGwFIT08v/26fP4HLWcTHx3P33XezfPlyHnvsMQD+8Ic/cPLJJ/Pkk0+Sl5fHsGHDOOWUUwC7VMaaNWtITk4mOzubcePGVViWIjc3l5UrV3L88cdXKvuBBx5g5syZjBgxgvz8fBITE3nllVdCLg3y5Zdfsn79elq1akWPHj246qqrWLZsGY888giPPvooDz/8MCNHjmTp0qWICP/+97+ZPn06Dz74YIVyy5bSGDduHMXFxSxatIjHH3+8ho0ZI/jUg1IUiIBJEtHA3LlzmTRpEmCf8P2H+YYNG0b37t3L97t06cKIESMAuOSSS1iyZAkbN26ke/fu5d/ju/zyy1m8eHH5MRMnTgxabrDlLAL53//+x7333ktWVhajR4+msLCQrVu3AnDqqaeSnp5OUlIS5513HkuWLCk/Lj8/nwkTJvDwww+TlpYWtOybb76ZGTNmkJeXh8fjqXJpkOzsbDp06EBCQgI9e/Zk7NixQMWlNLZv385pp51GRkYG999/f9ClNM444ww++OADioqKePvttznxxBNJSkoKeu4xi++naeZGPSilCRNVy21U5+k0BPv27eP9999n9erViAherxcR4f777wcqL50RavmKqgi1/EZNlrMwxvDyyy9X+mL4Z599FlJLSUkJEyZMYPLkyZx33nlBy77jjjsYN24cb731FiNGjGDhwoVVnkNNltK44YYbuPnmmzn77LPJyckJ+iWLxMRERo8ezcKFC5k3b175g0GTwm+auU8NlNKEUQ+qGl566SUuvfRSvvvuO3Jzc9m2bRvdu3fno48+Cpp+69atfPrppwD85z//YeTIkfTp04fc3Fy++eYbAJ599llOOumkassOtpxF4FIap512Go8++mj5cvArV64sj3v33XfZt28fBQUFLFiwgBEjRmCM4Ze//CX9+vXj5ptvrrLsjIwMbr/9drKzs9mwYUOdlgYBOHDgAJ062Z/BPf300yHTTZw4kaeeeoqPPvqI008/vcb5xwx+Q3zqQSlNGTVQ1TB37lzOPffcCmETJkwIOZuvT58+zJw5k379+rF//36uvfZaEhMTeeqpp7jgggvIyMjA5XJxzTXXVFt2sOUsxowZw7p168onSUydOpWSkhIyMzMZMGAAU6dOLT9+2LBhTJgwgczMTCZMmMDQoUP5+OOPefbZZ3n//ffLJ0GUzQqcNWtW+VIcDz/8MAMHDiQzM5O4uDjOOOOMOi0NAvbbfxdccAHHHXccrVu3Lg9fvnw5V111Vfn+2LFj+fDDDznllFOIj4+vcf4xg6+UI8bxSEvVQClNF11uI0aZM2dOhckUTZFo7TufPXYFvfe8SzNzhKUdLmHUNTPCLUlRGhRdbkNRogWfFy9uiiUO8aoHpTRdomuShFJjpkyZwpQpU8ItQzkKxJTiw0Ux8UhpUbjlKErYiAoDZYyp0Ww4RSkjkoaua43Pi1fcgOBSD0ppwkT8EF9iYiJ79+6N7huO0qgYY9i7dy+JiYnhlnJUuHyl+HBTIvG4vMXhlqMoYSPiPajOnTuzfft2dCkOpTYkJibSuXPncMs4KsSUUCoeEDcunw7xKU2XiDdQcXFxFb7UoCixjstXilc8+FzxuL1qoJSmS8QP8SlKU8NlSvCKB68rAY/RIT6l6aIGSlEiDPsOyoPXFY/bpwZKabqogVKUCMNlSvC64vC5E4g3OsSnNF3UQClKhOE2XnziwedOwKMelNKEUQOlKBGGy5RaA+VKIB41UErTJeJn8SlKU8PtDPHhSSTOlFR/gKLEKOpBKUqE4TalGPFgPAkkUKw/UleaLGqgFCXCcBsvxuUBTyIJlFBU6gu3JEUJC2qgFCXC8FCCzxUHngQSpYSiEm/1BylKDKIGSlEijDIPyhVnvyVYVHgkzIoUJTyogVKUCMNDKcYVh3isgSouKgizIkUJD2qgFCXCKDdQ8UkAFKsHpTRR1EApSoThMV5weXDFOQaq4HCYFSlKeFADpSgRhodScMfhTrAGqrRIPSilaaIGSlEiiNKSEuLFi3gScCck2zA1UEoTRQ2UokQQR44cshvxzfDEq4FSmjZqoBQlgig+kg+AxCfjSWwGgLdYDZTSNFEDpSgRRKHjQbkSUohzhvh86kEpTRQ1UIoSQRQXWA/KlZBCXFIKAEY9KKWJogZKUSKIYseDciemEp9gDZSvRH+oqzRN1EApSgRRWmg9KE9CCvFlHlSJelBK00QNlKJEEMUF1oNKSE4lwTFQoh6U0kRRA6UoEUTx4f0ApLZIR5wvSVBaGEZFihI+1EApSgThy98DQFqr9iBCAfHqQSlNFjVQihJByJE9FJk4kpo1B6CIBFxe9aCUpkmdDJSITBORHSKyyvk70y/u/0TkGxHZKCKn1V2qosQ+nsJ9HJBUEAGgSOJxlaoHpTRNPPWQx0PGmAf8A0SkPzAJGAB0BN4Tkd7GGF0aVFGqIL7gRw55WtHW2S+WRNzqQSlNlIYa4hsPvGCMKTLGbAG+AYY1UFmKEjO0KdrGgeRu5fslEq8GSmmy1IeBul5EvhKRJ0WkpRPWCdjml2a7E6YoSggOHTpAe7Ob0lY9y8NKXIl4fGqglKZJtQZKRN4TkTVB/sYDjwM9gSxgJ/BgbQWIyNUislxElu/evbu2hytKzLDz2zW4xBDXvl95mDVQRWFUpSjho9p3UMaYU2qSkYg8AfzX2d0BdPGL7uyEBcv/X8C/AIYOHWpqUpaixCJ5W9cCkN51QHmY15VAYunBcElSlLBS11l8Hfx2zwXWONuvA5NEJEFEugO9gGV1KUtRYp3SXRvxGaF994E/hbkTiTc6xKc0Teo6i2+6iGQBBsgFfg1gjFkrIvOBdUApcJ3O4FOUqonP28xOVzs6JSaXh3ndicSb4jCqUpTwUScDZYy5tIq4e4B76pK/ojQlWh3Zwt7EYyrMJvJ5Ekkw+g5KaZrolyQUJQLwlpbS0buDI82PrRDu8ySRgBoopWmiBkpRIoAftn5DopTgbtO7YoQnkURTDEbnDylNDzVQihIB7MldDUBq5/4Vwo0nCZcYvCU6UUJpetTHp44URakjBTvXA9CuR0bFiDg7YaK44AhJ8Uk1zs8Yw+Y1n7F76TxS96wkrXgXzUw+PlwUE0epxFEi8ZRKHKXOvz5XHCJS9hlA/8wq5V8pSXl4ME+vZt6fhNi2O1KpTAkiRPyPFrtVnNSWgdc8jcsTVyMdSuSgBkpRIgDZv4WDJNMivX3F8LhEAIoK8klqnl6jvL5e9THFb/0fA4q/pJtxkevpzp5mffjek4bbZXD7ihFvEW5fMS5vMW5TQpKvGJfvsLVFhko3flPJPIQmeNqqjw9uwkzQkc1KQeanMBOQrpnvEH0Pf86WTV/Svf/QKjUokYcaKEWJAJLyt7LL3ZE0V8VRd4l3PChnKfiq8Hm9fPrsnzl+y0wOSTM+O/Ymep/2a45t06HaY2OVb1YuhtfOYv+29WqgohA1UIoSAbQq2s6uZv0qhbscA1VSeKTK40tKS1k542JGHFzIyrTR9PzlbI5v0bpBtEYT7brbr3IU7toUZiXK0RBTkySMz8vSJ2/jh61fh1uKotSYkuIi2vt+pDitW6W4cgNVdDjk8UUlpeTM+BXDDi7k866/IuumV0lT4wRAaot09tICz169J0QjMeVB7fzua/p/9ywHn3qdHZcuoFOPvrXOw1taQmHBYYoKCygpLgDjqxDf0LN9K72grhhb6/z89ZoQEZXOyRERGG4IfkyFcX//fEPoIEQ+IeRVLjtEutDlhUpfvQ4bd/TnFFrrTztHducyUny4W/ckEHeCNVDewuAGyuczvDvrVn5x8BXWd51M9pT7q+tETY5tiX1od2hN9QlrQGFhAYcPHcBXfJjSkmJ8Ph+lPhO6A4n/tA0pD5PyNgr8126K+B8lFdpUqmvfwIkjAekrTTapUHQt+47LQ9sOXapPd5TElIHq2L0vG37xLB3fvBT30yfxWdtfEH/siSQ0b4cxhuJDeyk9tJvSQz8ih3fjKdhDYvE+mpXuo7kvj1RzGI/4SAFSwn0ySpOjZZfKQ3wex4MqLQo+xLdwzl/5xd4n2dhuHP0uf0yNUxCOtB1M1tbPOLBvN81btak2feHhA2xe9REHvl1Owp61JB/ZQYuSH0k3+0mUUhIbQXO0sNrXg7Z3r2yw/GPKQAH0zT6FH9p9yLYX72Dwj68Sv/uloOkOkswBaUG+pyX7k7vzY2I6pfHNwZOIxCXgiktEPAkg7kY+g1DU3HULnIQV8pYlQTZN6HucBEsfsFeT+2MFbZXnE1eZz9GUGyqqwvmE0BEyNERdhDyfasTFJTXn2CFjKkW7ne/ylRZXNlDvvziT0757kI0tRtL7V3PAFVMj9vVGeuapsHUWmz56kezxvwmaZveevazOmU+zb94gs2AZA6QEgB9ozZ74juxoPpgtSW1xJabhTmyGLy4Z3HG4RRBxVfB4yr1jv0tW/OYZljlbZWH+HrqUHV3B3Q6cmxgiqgaYOh4fSHFCy+oT1YGYM1AA7Y/pTftbXqHgcD7fbPqCgvz9CIbEtDaktGxLyzYdSUtKIS3cQhWlGjwJ1pf3FRVUCF+6cC6j1kxlc3IGvX7zIuKJD4e8qKD3kJP5/s22pK2eg+8X1+ByW0N+8GAea3Jewr1+AZlHPuNkKWaftOSrducQ1/c0emaOpH3rDrSvJn+l4YhJA1VGUkozjh18YrhlKMpRE5/oGKiSnzyo1Z++w6BPfsu2uG50+c3ruBKSQx2uAOJysT3ztwz78k988eBZFLXJIGn3KvocXsHPpJi90oKNHcbTevgkOmeOYZgrUkZNlJg2UIoS7cQ5Bso4Q3wbPn+PHu9czh53G1r/+r8kpjbsEEuskD3+Oj7N286g3KdIPrKE76Uta9r+gpbZF9LzuFNJd+utMBLRVlGUCCa1mR2ILik8wtolr3HMu79mv6sl8b98k7Q2HcOsLnoQl4sTrrgPX+k9FBYX0DE5Fa29yEcNlKJEMM1Tk9lPKtnfzqRk8yx2uDuS8svXaNOpe7ilRSUuj4dET2q4ZSg1RKf9KEqEs6n5SADWpBxPq99+SJtOlX8vpSixiHpQihLhDL3+ab7bspGsYwciOpVcaUKogVKUCMcdl0DX3pnhlqEojY4+jimKoigRiRooRVEUJSIR09BfP60FIrIb+K4esmoN7KmHfBqDaNIK0aVXtTYc0aQ3mrRCdOmtL61djTGVPpQYUQaqvhCR5caYqFidLJq0QnTpVa0NRzTpjSatEF16G1qrDvEpiqIoEYkaKEVRFCUiiVUD9a9wC6gF0aQVokuvam04oklvNGmF6NLboFpj8h2UoiiKEv3EqgelKIqiRDlqoBRFUZSIJKYMlIicLiIbReQbEbkj3HoCEZEuIvKBiKwTkbUi8jsnfJqI7BCRVc7fmeHWCiAiuSKy2tG03AlrJSLvisjXzr9hX5BIRPr41d0qETkoIjdGUr2KyJMi8qOIrPELC1qXYpnh9OOvRGRIBGi9X0Q2OHpeFZEWTng3ESnwq+NZjam1Cr0h215E/s+p240icloEaJ3npzNXRFY54ZFQt6HuWY3Td40xMfEHuIHNQA8gHvgS6B9uXQEaOwBDnO1UYBPQH5gG/D7c+oLozQVaB4RNB+5wtu8A7gu3ziD94AegayTVK3AiMARYU11dAmcCbwMCDAc+iwCtYwGPs32fn9Zu/ukiqG6Dtr1zvX0JJADdnXuGO5xaA+IfBO6MoLoNdc9qlL4bSx7UMOAbY8y3xphi4AVgfJg1VcAYs9MY84WzfQhYD3QKr6paMx542tl+GjgnfFKC8nNgszGmPr5IUm8YYxYD+wKCQ9XleOAZY1kKtBCRDo0ilOBajTH/M8aUOrtLgc6Npac6QtRtKMYDLxhjiowxW4BvsPeORqEqrSIiwIXA3MbSUx1V3LMape/GkoHqBGzz299OBN/8RaQbMBj4zAm63nGJn4yEYTMHA/xPRFaIyNVOWDtjzE5n+wegXXikhWQSFS/wSKzXMkLVZaT35SuxT8lldBeRlSLyoYiMCpeoIARr+0iu21HALmPM135hEVO3AfesRum7sWSgogYRaQa8DNxojDkIPA70BLKAnVg3PxIYaYwZApwBXCciJ/pHGuvTR8zvFEQkHjgbeNEJitR6rUSk1WUoROSPQCnwvBO0EzjGGDMYuBn4j4ikhUufH1HT9n5cRMWHq4ip2yD3rHIasu/GkoHaAXTx2+/shEUUIhKHbejnjTGvABhjdhljvMYYH/AEjTjkUBXGmB3Ovz8Cr2J17Spz2Z1/fwyfwkqcAXxhjNkFkVuvfoSqy4jsyyIyBfgFMNm5KeEMle11tldg3+n0DptIhyraPlLr1gOcB8wrC4uUug12z6KR+m4sGajPgV4i0t15kp4EvB5mTRVwxphnA+uNMX/3C/cfoz0XWBN4bGMjIikiklq2jX1JvgZbp5c7yS4HXguPwqBUeAKNxHoNIFRdvg5c5syIGg4c8BtOCQsicjpwG3C2MeaIX3gbEXE72z2AXsC34VH5E1W0/evAJBFJEJHuWL3LGltfEE4BNhhjtpcFRELdhrpn0Vh9N5wzROr7DzuDZBP2SeOP4dYTRN9IrCv8FbDK+TsTeBZY7YS/DnSIAK09sLOdvgTWltUnkA4sAr4G3gNahVuroysF2As09wuLmHrFGs6dQAl2XP6XoeoSOwNqptOPVwNDI0DrN9h3C2X9dpaTdoLTP1YBXwBnRUjdhmx74I9O3W4Ezgi3Vid8DnBNQNpIqNtQ96xG6bv6qSNFURQlIomlIT5FURQlhlADpSiKokQkaqAURVGUiEQNlKIoihKRqIFSFEVRIhI1UIqiKEpEogZKURRFiUj+PxXcMAYBwNbgAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABep0lEQVR4nO2deXxVxdnHv8+9WW4SEgJhkU0IyE7CIgEsIOAGFBUVFCqIiK3VVluqVemiRdu+da2KWnmrKG5FcNfXfUPFCsi+gyARgoBsCVnIep/3j3Nyubm5NwtZ7pL5fj43OWdmzszvzMw5z5k5c2ZEVTEYDAaDIdRwBFuAwWAwGAz+MAbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgDAaDwRCSGAPlhYh0EREVkahgazGcOiJyk4j8ICLrg5D2XBF5oRHSmSkiy6rwXyoiP29oHaGIiIwWkaza+tWzhirvJY1VT+oTEWkvIrkisl1EzmmMNI2BMtQJEZkvInn2r1hESrz23wuSrLnAr1S1v5fOuSIyN0h6Qgr75plZy/CfiUiBiGwTkfOqCBsrIk+LyHEROSAiN/vEo171I09E7mgIzeGOiGSKSJcahg2Y5wHC/84Od9w+LtYn3RNe5fNhuZ+q/qCqicDbwG9O8dRqRUQZKNPyaXxU9XpVbaaqzYD/ARaX76vq+PJwjVw2LYFNjZhegxBC9XkRsBZIAf4EvCIirQOEnQt0BzoDY4DbRGScT5hkrzry1wbS3OCEUPnMpfo8B0BExgJzgHPt8F2Bu3yCXeRVPhf4iWYTVl1ocMLeQNkW/3YR2QDki0iUiAwTkf+KSLaIrBeR0V7hl4rIP0Rkpf0E8aaItAwQ9zUistVu1n4nIr/08Z8oIuvseHaVVwoRaS4iC0Rkv4jsE5G/iYizmvPoJiKfisgRETksIi+KSLKX31ERGWTvtxeRQ+XnJSIXi8hm+3yXikhvn/z5vYhsEJEcEVksIq7a53TtCVA2KiJneIVZKCJ/89q/0M7TbLsM02uZZnk+u6sJd5tdPj+IyM+9ddmaHheRd+yyXyEi3byOfURE9trlvlpERvpE77LzOVdE1oiId0tujl1XckVki4hc6uU3U0S+EpGHROQI1o2nuvN9QESOichuERnv493Zji9XRD4UkVbVxecn/h7AIOAvqnpCVV8FNgKTAhxyNfBXVT2mqluBJ4GZtU23BroGicha+9xetvP7bwHC/sbO645ebn+0r7NMEZnm5T7Bjve4XcZzvfzKW4DXisge4NMaSJ0mInvstP7k4xcjIs/Z57BZRAbXLhc81CbPrwYWqOpmVT0G/LWKsIFwA41jnFU1rH9AJrAO6ATEAR2AI8BPsQzw+fZ+azv8UmAf0A9IAF4FXrD9ugAKRNn7E4BugACjgAJgkO03BMix43fY6fay/V4H/teOvw2wEvhlNedxhh1XLNAa+AJ42Mv/F8AWIB74AHjAdu8B5NvHRgO3ATuBGK/8WQm0x2pZbAWuD6BhBJBdxW9ENecwtzwv/ZWN7abAGV5hFgJ/s7cHAj8CQwEn1sWUCcTWoj6MAwqBhGrCHAD62vn5grcuW9MRu4yjgBeBl7yOn471BBkF3GLH5fLKgxJgsl0evwd2A9G2/+V2WTiAKXbZtbP9ZgKlwE123HFVnMNMO51f2Hl1A/ADIF71fJddP+Ls/XsCxPUv4F8B/C4Ftvq4PQY86idsCzsf23q5TQY2+lxf+4As4Bmg1Slc8zHA98Bv7Ty+DCj2qkejgSx7+05gDSev/9F2Hv8T61obZZdBTy//NLt80oGDwCU++p/DurarKp/ysE/a+d8fKAJ6e9WTQqz7lBP4B7A8QFxXAhsC+FWZ537CrwemeO23so9P8bpmDwKHgA+B/n7iGAMcA06vbdnVuqwbOoEGPwErQ2d57d8OPO8T5gPganu7woUK9LErtxMfA+UnrTeA39rb/ws85CdMW7sixnm5/Qz4rJbndQmw1sftLayn1w3YN23gDmCJVxgH1g1gtFf+TPfyvw+Y30BlMZfKBmqWT5iqDNQTWE+C3uG3A6NqmP4qO/7fVBPuaeAfXvtnUNlAPeXl/1NgWxXxHSu/kO08WO7l5wD2AyMDHLsOmGhvzwT21PBcZwI7vfbj7XM4zaue/9nL/1fA+6dQplfhc+ME/g4s9BO2k63B5eV2PpBpbzcDBmMZ37bAK8AHp6DpbLuOi5fbMioaqH1YRmgZ0Nwr3GgsA5Xg5bYEuCNAWg9jX+ecvD90rYHG8rAdvdxWAlO96snHXn59gBOnkBdV5rmf8LuAcV770fbxXez94VgGNR74A9bDV7KfeF62j3u4tppr8wv7Lj6bvV7bnYHL7S6ibBHJxmoZtAsQ/nusQqrU/SEi40Vkud29lo11oyoP1wmrsH3pbMe33yv9/8VqSQVERNqKyEt2l+BxrKd6X01PYrX8HlXVItutvX0OAKiq2z6/Dl7HHfDaLsC6UTQWe6sP4qEzcItP2XXCOseakAFMBeaKSHQV4dr76PKnMWCe2V2mW+0u02ygORXLyhOfXR5Z5ecgIjO8ujCzscrT77E1wKNRVQvszWb+/H3PoRbkAUk+bklAboCw5f6VwqpqnqquUtVSVT0I3AhcICKJtdTUHtin9p3SxjffkoHrsB5Ecnz8jqlqvtf+95wsn6FiDQg5JCI5wPVUvg5PqYyoXAa+fi6p/XutKvM8QHjfsHCyjL5Sqyu3QFX/gdVzUqELW6xXDT/F6jGaXUu9tSJSDJRvRX1eVZO9fgmqeo9XmE5e26djdZUc9o5QrJEtrwIPYDWfk4F3sbr7ytPpRmX2YrWgWnmln6Sqfas5h/+xzyNNVZOwupHK00JEmmE9zS3AugGXvzf7AevGXh5O7PPbV016lRCRkVJxhJXvz/ddS01Qn/0CrKezck7z2t4L/N2n7OJVdVGNErJuWG9gdXu0qyLofqCj136nQAF9sfPgNuAKoIVdL3LwKivv+ETEYaf1g4h0xnrIuBGrSyUZ64Wz97G++RVsNgNdfYxIf9u9Amq909hv+1cZtvwQ+39t70P7gQ52XS/HtwyPARcCz4jIcB+/FiKS4LV/OtZ1BPAfrJ6KTqraHJhPxfLx1h10TiHPN/sJe1BVjwRKgsrn3xvYoqrba6+4dkSKgfLmBeAiERkrIk4RcYn17YP3DWm6iPQRkXjgbuAVVS3ziScGq4/6EFBqv4D2HtGyALhGRM4VEYeIdBCRXqq6H6vv9kERSbL9uonIqGp0J2I93eSISAfgVh//R4BVqvpz4B2sCwes7okJto5orHciRcB/q8soX1T1Sz05esff78vaxumHdcCVdtmMw3oHUM6TwPX2U6yISIL90joRPIMXFlZzDuUty5gqgi3BKrvedh2o0VBnm0SsLqJDQJSI3EnlFsaZInKZ/TQ8G6s8lmO9t1D7WETkGqwWVMiiqjuwyuwv9rV0Kda7mVcDHPIc8GcRaSEivbDekS0ET+ukp31NpADzgKXlLRyxPgVYWgNZXwNlwI1iDbyZiPW+0Ff7UmAa8JqI+PrfJSIx9gPHhVhdVmCV71FVLbSPubIGeoJNwDwPEPZa+/6XDPyZk+VzuogMt/PFJSK3YrUev/KJIxqrTjc4EWegVHUvMBH4I9aNYC/Wzd77XJ/HKpQDgAs/Y/pVNdd2X4L1NHYl1pNVuf9K4BrgIawn6M852ZKZgXWD3GIf+wpVP9GDNdRzkB3XO8Br5R72BTgO60U4wM3AIBGZZj/FTAcexWoFXoQ1TLS4mvSCxW+xNGZj3TzeKPdQ1VVYF9djWPm2k4ojjDpR+WLxh1JF3VbV97Bujp/ZaSy3vWpy0X0AvA/swOoaKqRyl8+bWAMgjmG9w7lMVUtUdQvwINYN9iDWy/ianE+DIta3bPOrCDIV693RMeAeYLKqlhvZaSLi/bT+F6yu7++xron7VfV9268rVt7lYrUci7Dez5ZTo/K16/ZlwLVY9Wg68H/4KT9V/QiYBbxtd02Bdd0fw2o1vYg1aGib7fcr4G4RycUaYLGkOj0NjZ889iVgnttGJ09ETgew3e/Dqvt77GP+YseTiPUe+BhWD8w4YLyf1pWTakbJ1hflI36aDPYT2guq+lSwtRhqjojEYI1ASlfVkmrC/gDcpqo1+lJfrGH5m7AGnpTWWazhlBCRdcC5VXQ3VXXsCqzBP8/UuzCDB7vLeh7QRlWvaOj0Iq4FZYhMVLVYVXtXZ5xs5mB1Sa0OFEBELhXrC/wWwL3A28Y4BRdVHVBT4yQio0TkNLuL72qsbsf3qzvOcOqISHusXqlhWD0BDY4xUI2IVJwWyPtXVfeKoZao6nOq2l1Vz6wi2C+xvrnahfU+44YqwgYFU1+qpCdWizob673rZPv9b6Nhd735K5+quuPCFrWmOkpR1cGquqIx0mxyXXwGg8FgCA9MC8pgMBgMIUmoTHYIQKtWrbRLly7BlmEwGAyGRmT16tWHVbXSBMQhZaC6dOnCqlWrgi3DYDAYDI2IiHzvz9108RkMBoMhJDEGymAIYbwm5zQYmhzGQBkMIYqWFrHu/gkcvLsH275+N9hyDIZGJ6TeQfmjpKSErKwsCgsLgy3FEEa4XC46duxIdHRVk5qHNt+8No8hBV+RRxzywY0UDVhPbFxtJ/42GMKXkDdQWVlZJCYm0qVLFypOXmww+EdVOXLkCFlZWaSmpgZbzimTsv0/fBvVnROj7iT9k6tY+f4zDLm00rSRBkPEEvJdfIWFhaSkpBjjZKgxIkJKSkpYt7qPH9xDt7LvONhxLGnDL2SvowMJm18KtiyDoVEJeQMFGONkqDXhXmd2r/0YgOZ9z0ccDn44/SL6lm7m0P49QVZmMDQeYWGgDIamRt7uVRRrFD3ShwLQZvAlAOz67+tBVGUwNC7GQNUAEeGWW27x7D/wwAPMnTs3eIKqYenSpfz3v7Ver7AC48aNIzk5mQsvvLCeVBlqQ+KxLeyJTiU2Ng6ALn2G8iMpRO/6KMjKDIbGwxioGhAbG8trr73G4cOHqw9cC1QVt7v+1/2qDwN166238vzzz9eTIkNt6VS8k6NJPT374nDwfYthnJG/htJSsyqIoWlgDFQNiIqK4rrrruOhhx6q5Hfo0CEmTZpERkYGGRkZfPWVtSDo3LlzeeCBBzzh+vXrR2ZmJpmZmfTs2ZMZM2bQr18/9u7dy6233kq/fv1IS0tj8eLFgGVkRo8ezeTJk+nVqxfTpk3z+8HmvHnz6NOnD+np6UydOpXMzEzmz5/PQw89xIABA/jyyy+r1HjVVVdx1lln0b17d5588klPvOeeey6JiVUPaX755Zfp168f/fv35+yzzwasQS3XXHMNaWlpDBw4kM8++wyAhQsXcskll3D++efTpUsXHnvsMf75z38ycOBAhg0bxtGjRwF48sknycjIoH///kyaNImCgoJK6Q4bNozNm0+uaDB69OiImiLr6OGDtCAXbdm9gruz60iaSz67Nq0MkjKDoXEJ+WHm3tz19ma2/HC8XuPs0z6Jv1zUt9pwv/71r0lPT+e2226r4P7b3/6W3/3ud4wYMYI9e/YwduxYtm7dWmVc3377Lc8++yzDhg3j1VdfZd26daxfv57Dhw+TkZHhudmvXbuWzZs30759e4YPH85XX33FiBEjKsR1zz33sHv3bmJjY8nOziY5OZnrr7+eZs2a8fvf/x6AK6+8MqDGDRs2sHz5cvLz8xk4cCATJkygffv2Ncq7u+++mw8++IAOHTqQnZ0NwOOPP46IsHHjRrZt28YFF1zAjh07ANi0aRNr166lsLCQM844g3vvvZe1a9fyu9/9jueee47Zs2dz2WWX8Ytf/AKAP//5zyxYsICbbrqpQrpTpkxhyZIl3HXXXezfv5/9+/czePDgGmkOB/bt3kpLIOG0Myq4nz7ofFg9h8ObPqHngJ8ER5zB0IiYFlQNSUpKYsaMGcybN6+C+8cff8yNN97IgAEDuPjiizl+/Dh5eXlVxtW5c2eGDRsGwLJly/jZz36G0+mkbdu2jBo1im+++QaAIUOG0LFjRxwOBwMGDCAzM7NSXOnp6UybNo0XXniBqCj/zxtVaZw4cSJxcXG0atWKMWPGsHJlzZ/Ohw8fzsyZM3nyyScpKyvznM/06dMB6NWrF507d/YYqDFjxpCYmEjr1q1p3rw5F110EQBpaWmec9u0aRMjR44kLS2NF198sUJLqZwrrriCV155BYAlS5YwefLkGmsOB/IP7AQguWPPCu6tOpzBD3Iarn1fB0OWwdDohFULqiYtnYZk9uzZDBo0iGuuucbj5na7Wb58OS6Xq0LYqKioCu+XvL/JSUhIqFF6sbGxnm2n0+n33cM777zDF198wdtvv83f//53Nm7cWClMII1QeTh2bYZnz58/nxUrVvDOO+9w5plnsnp1wBXWgYrn43A4PPsOh8NzbjNnzuSNN96gf//+LFy4kKVLl1aKp0OHDqSkpLBhwwYWL17M/PmRtcBs6eHvAGjdqXslv/0tBnPGkc8oKS0lOsADicEQKZgWVC1o2bIlV1xxBQsWLPC4XXDBBTz66KOe/XXr1gHW0iFr1qwBYM2aNezevdtvnCNHjmTx4sWUlZVx6NAhvvjiC4YMGVIjPW63m7179zJmzBjuvfdecnJyyMvLIzExkdzc3Go1Arz55psUFhZy5MgRli5dSkZGRo3SBti1axdDhw7l7rvvpnXr1uzdu5eRI0fy4osvArBjxw727NlDz549q4npJLm5ubRr146SkhJPPP6YMmUK9913Hzk5OaSnp9c4/nAgKud7jtKc2ITkSn7l76G+3dgoK24bDEHFGKhacsstt1QYzTdv3jxWrVpFeno6ffr08TzNT5o0iaNHj9K3b18ee+wxevTo4Te+Sy+9lPT0dPr3788555zDfffdx2mnnVYjLWVlZUyfPt0zIOE3v/kNycnJXHTRRbz++uueQRKBNILVRThmzBiGDRvGHXfc4Xn/NHLkSC6//HI++eQTOnbsyAcffADAnXfeyVtvvQVYI/3S0tLo168fP/nJT+jfvz+/+tWvcLvdpKWlMWXKFBYuXFih5VQdf/3rXxk6dCjDhw+nV69eHve33nqLO++807M/efJkXnrpJa644ooaxx0uJBRkcSja/3vALmdeAMCRTZ80piSDIShIKE3lP3jwYPUdjbV161Z69+4dJEWRzdy5cysMpog0wrXuZN3Vi4PNenPmLf4/yv3h7l7sj+nCmXPeb2RlBkPDICKrVbXSSKc6t6BE5CYR2SYim0XkPh+/00UkT0Qi8w5oMNQ3qrR0H6Ukvk3AID+0HEKPE+soKi5qRGEGQ+NTp7esIjIGmAj0V9UiEfG9qv4JvFeXNAwNRyjPhtFUyc89RoIUoc3aBgwTfcZoEg+/yeZ1X9F3yDmNqM5gaFzq2oK6AbhHVYsAVPXHcg8RuQTYDVQeJ2wwGPxy7OBeAJxJ7QKGST1zLADZm817KENkU1cD1QMYKSIrRORzEckAEJFmwO3AXdVFICLXicgqEVl16NChOsoxGMKbvMP7AIhtEfhj6aTWHch0diZx/1eNJctgCArVdvGJyMeAv2Flf7KPbwkMAzKAJSLSFZgLPKSqedV9V6Oq/wb+DdYgidqINxgijcJjloFKSOlQZbiDKUPpf/B1Ck8U4IqLbwxpBkOjU62BUtXzAvmJyA3Aa2oNBVwpIm6gFTAUmGwPmkgG3CJSqKqP1Y9sgyEyKcnZD0Bym05VhnP1GIPrxyVsXvURfUdObAxpBkOjU9cuvjeAMQAi0gOIAQ6r6khV7aKqXYCHgf8Jd+P0xhtvICJs27YtYJjMzEz69evXoDrWrVvHu+++W6c4Zs2aRZs2bRpcq+EUyD1IoUbTomXrKoOlDvkphRrNic3/10jCDIbGp64G6mmgq4hsAl4CrtZQ+rCqHlm0aBEjRoxg0aJFfv3rYwmE8vnsqqI+DNTMmTN5/33zDU0oElVwkMPSAqez6kszKSmZzXFn0ungZxCZl5zBUDcDparFqjpdVfup6iBV/dRPmLmq+oC/48OFvLw8li1bxoIFC3jppZc87kuXLmXkyJFcfPHF9OnTB7AM1bRp0+jduzeTJ0/2LBfxySefMHDgQNLS0pg1axZFRdY3LF26dOH2229n0KBBvPzyyxXS9V3Oori4mDvvvJPFixczYMAAFi9eTH5+PrNmzWLIkCEMHDiQN998E7CWt5g4cSKjR4+me/fu3HXXyfEqZ599Ni1btqzynD///HMGDBjAgAEDGDhwILm5uahqwKVBRo0axcSJE+natStz5szhxRdfZMiQIaSlpbFr1y4A3n77bYYOHcrAgQM577zzOHjwYKV0p06dyjvvvOPZnzlzpmdi2KZAdNFR8pwtahT2RNdxtNVD7N1qpj0yRCbhNdvke3PgQOXJUOvEaWkw/p4qg7z55puMGzeOHj16kJKSwurVqznzzDMBa569TZs2kZqaSmZmJtu3b2fBggUMHz6cWbNm8a9//Ysbb7yRmTNn8sknn9CjRw9mzJjBE088wezZswFISUnxzNvnje9yFjExMdx9992sWrWKxx6zekz/+Mc/cs455/D000+TnZ3NkCFDOO8867XhypUr2bRpE/Hx8WRkZDBhwoQaL0vxwAMP8PjjjzN8+HDy8vJwuVy89tprAZcGWb9+PVu3bqVly5Z07dqVn//856xcuZJHHnmERx99lIcffpgRI0awfPlyRISnnnqK++67jwcffLBCuuVLaUyYMIHi4mI++eQTnnjiiRppjgRcxdnkRbeqUdgzRkymbPNdHPzvf+jUZ1gDKzMYGh8zF18NWLRoEVOnTgWsJ3zvbr4hQ4aQmprq2e/UqRPDhw8HYPr06Sxbtozt27eTmprqmY/v6quv5osvvvAcM2XKFL/p+lvOwpcPP/yQe+65hwEDBjB69GgKCwvZs2cPAOeffz4pKSnExcVx2WWXsWzZshqf8/Dhw7n55puZN28e2dnZREVFVbk0SEZGBu3atSM2NpZu3bpxwQXWnHHeS2lkZWUxduxY0tLSuP/++/0upTF+/Hg+++wzioqKeO+99zj77LOJi4urse5wJ6HsOCWxyTUKe1r7TqyLG0pq1lu4S4obVpjBEATCqwVVTUunITh69CiffvopGzduREQoKytDRLj//vuByktnnMryFYGW36jJchaqyquvvlppxvAVK1bUaSmNOXPmMGHCBN59912GDx/umSw2EDVZSuOmm27i5ptv5uKLL2bp0qV+Z7JwuVyMHj2aDz74gMWLF3seDJoCqkqi5qKumnXxAZSkTydl5Y1s/fJlep8zrQHVGQyNj2lBVcMrr7zCVVddxffff09mZiZ79+4lNTWVL7/80m/4PXv28PXX1oJy//nPfxgxYgQ9e/YkMzOTnTutheief/55Ro0aVW3a/paz8F1KY+zYsTz66KOe5eDXrl3r8fvoo484evQoJ06c4I033vC07GrCrl27SEtL4/bbbycjI4Nt27bVaWkQgJycHDp0sL7vefbZZwOGmzJlCs888wxffvkl48aNq3H84U5BQQHNpBDiU2p8zIBzr+AHWhP99SNmsIQh4givFlQQWLRoEbfffnsFt0mTJrFo0SK/XXM9e/bk8ccfZ9asWfTp04cbbrgBl8vFM888w+WXX05paSkZGRlcf/311aZ966238u2336KqnHvuufTv35/TTz/d06X3hz/8gTvuuIPZs2eTnp6O2+0mNTWV//s/a+jxkCFDmDRpEllZWUyfPt3z/ulnP/sZS5cu5fDhw3Ts2JG77rqLa6+91rMMx/XXX8/DDz/MZ599hsPhoG/fvowfP56YmBi+/vpr+vfvj4h4lgapaui9N3PnzuXyyy+nRYsWnHPOOZ41slatWsX8+fN56qmnAGv9qquuuoqJEycSExNTo7gjgePHfiQBcCRUPYDFG1dsLDt63sDo7Xez/fPF9Bxd8xbniaIS9u7awrHMdZRmZ0HBUaKKj+NAERQEECc4nDic0YgjCofTiTijcDijcTijwOFEJQoV58mf7eYWJ+rdaNcK/yrZU0E9bkplY1sxfPXGWICYKAdJrTrRdUjTedCJJMxyGxHKwoULKwymaIqEW93ZuXE5Z7w6lrXDHmbguGuqP8Cm4MQJDt43mGacIGH2CuKbB/6G6odDR9j8xevE7fw/+hcsJ1FOVPDP1TjcODy3fweKkzKcuHHiJlqq/xQiFMm5cRvNWwWe39AQXAItt2FaUAZDiFB43JqLMiax6o90fYmPiyN77GN0eG8Sex6/kHbXv05Cy5Nz+RXkHmPj0lfRLW+QXrCS86WIHElkd5vzkNOH0bxLf1q270ZCcmsSndGV4ldVisvcFJa6OV5SRnFpKcUlJZQUl4CWgpYh7jJwlyJaBu4yREsRd+VvA8Vnq/y1qHjtVHCrdHy5Z/XvU92q7P36Vc767hFysw8bAxWGGAMVocycOZOZM2cGW4ahFpQct1ZqjquiBRSIgcPG8MWhfzJ01S2UzDuTdck/oSy6GfG5uznjxCaGShlHSGZnuwtpO2wKbdPOJd1Zs8tfRIiNchIb5QRXZQMWyvz43Ub4DooKjgdbiuEUCAsDpaq1GoFmMIRS13VNKc07AkB8cuDFCqvi7Itmsun0vuR9dA+nH1tHHEX86GzD8rZTSBl4Mb0yziclKiwu+XojOq4ZACXGQIUlIV9bXS4XR44cISUlxRgpQ41QVY4cOYLL5Qq2lFqhBZaBSmp5agYKoF//DOj/qme/BdAzcPCIJyo+EYCSE3lBVmI4FULeQHXs2JGsrCzMWlGG2uByuejYsWOwZdSOE9nkayzxZvmMeiMmLgmA0sLcakIaQpGQN1DR0dEVZmowGCIVKcohTxJIMD0F9UZsgmWg3MZAhSUR9aFuSXERW1d+xIG9O4MtxWCoNVHFxznh8D+riOHUcMU3B6CsyHTxhSMRZaAKT+TT+93J7P78hWBLMRhqTXRpLkXOZsGWEVE0S7IMlBoDFZZElIFKaJZMmQpSmB1sKQZDrYkpzac4yhio+iQ21kWxRhkDFaZElIFyOB3kSgKOIjOk1BB+uNx5lEYnBltGRCEi5EscUmwMVDgSUQYKIF8ScBYbA2UIPxK0wBioBqBQXDhK8oMtw3AKRJ6BciQSbQyUIcxQVZppAe7YpGBLiTiKJA5HSUGwZRhOgYgzUIXOZsSUmiGlhvCi8EQBsVICxkDVO8XOeKLKjIEKRyLOQJVEJxJXZgyUIbzIO27NIoGreXCFRCAlznhiykwXXzgScQaqLKY58W7zQtQQXhTmHgPAGWdaUPVNSVQz4tzGQIUjEWeg3K7mNNP8sJws1NB0KczLBiAqPjmoOiKRkpgk4o2BCksizkCJqzlxUkzhiRPVBzYYQoRi20BFJyQHVUck4o5JopkaAxWORJyBcsYlA5CTfTi4QgyGWlBSkA1ArDFQ9Y47Nol4KaK4qCjYUgy1JOIMVHSzFgDkZpvZzw3hQ2lBDgCuxBZBVhJ5iCsZgILjR4MrxFBrIs5AxSRZa+kUZv8YZCUGQ83RE9kAxCe2DK6QCETirJGRJ3KNgQo3Is5AxSW3BaA4xxgoQxhhT8+VkJQcXB0RSPnAE2Ogwo+IM1AJLSwDVZpnuvgMYUTRcfI0jtiYmGAriThi7G7/QmOgwo6IM1BJKacBoPlHgqzEYKg5juI88iUu2DIiEpfdbVqcfyzISgy1JeIMVKwrnjyNQwrMKD5D+OAoyadQzFLvDUGz5paBKskzBircqLOBEpGbRGSbiGwWkfu83NNF5GvbfaOIuOqaVk3JkSSiC01z3hA+RJUWUOQwLaiGICm5FQCl9lB+Q/gQVZeDRWQMMBHor6pFItLGdo8CXgCuUtX1IpIClNRZbQ3Ji0omptgYKEP4EFVWQLHTGKiGIL5Zc8pU0MKcYEsx1JK6tqBuAO5R1SIAVS0fOncBsEFV19vuR1S1rI5p1ZjC6GTiSrIbKzmDoc5El52g1Gm6+BoCcTjIkwQoNMvwhBt1NVA9gJEiskJEPheRDC93FZEPRGSNiNwWKAIRuU5EVonIqkOH6mfkXYmrJc3KsuslLoOhMYh1n6AsyhiohqJAEnAWmRZUuFFtF5+IfAyc5sfrT/bxLYFhQAawRES62u4jbLcC4BMRWa2qn/hGoqr/Bv4NMHjw4HqZ4VXjUkg+epyyMjdOZ8SNAzFEIC49gTs6IdgyIpZ8ZxKuEjNIItyo1kCp6nmB/ETkBuA1taYOXykibqAVkAV8oaqH7XDvAoOASgaqQWjWhlgp5cixQ6S0atsoSRoMdSFOC1FjoBqME9EtiC82n56EG3VtXrwBjAEQkR5ADHAY+ABIE5F4e8DEKGBLHdOqMVHJHQHIOfh9YyVpMJwypaVlxFOIxhgD1VAUxbQgscx08YUbdTVQTwNdRWQT8BJwtVocA/4JfAOsA9ao6jt1TKvGuFIsA5V/aG9jJWkwnDIFJ/JwiEJMs2BLiVhKXC1J1hww68SFFXUaZq6qxcD0AH4vYA01b3QSW58OQNGxfcFI3mCoFUV51pO9xJoWVEOh8a1xSQmFBcdxJTQPthxDDYnIEQQt2loGyp3zQ5CVGAzVcyLfGv7siDUtqAYjwfpYN/fogSALMdSGiDRQCQkJHNVEHHnGQBlCn+KCXACcrsQgK4lcYpJaA5B7xBiocKJOXXyhzFFna2IK6q8yZh85xLYV7+Leuwrn8SxcZcfB7QaHg5KoJEpiknDHNsftSkbiWuCIb0FUs5bENGuJK7EV8c1TaNYskcS4GKLN0Pcmg6qiCmWqlLkVd/l/t+WmqhzLtoY/R8WZFlRDkdDSGs2bV18tKFX2b/2aff9dTNzhDbQsysKlhThwc0LiOeFMoNCZRFFsS8pcLdH4FBzNWhOT1AZX8zY0a3kazVPaEde8NTj934bVfl8mIvWjOQyJWAOVF9uaxKK6f/i7c9t6Dv/f3QzKXcowKaVYnRx2tCbPmQTigFI3LYt+oFleHomaR5S4q4yvVB0U4qRUoighijIcCCCUv7xVa1/Vy83yF9sPqn/R2+BVuroEGvlddGMkJ5U2AouoSo8ATvsHkEYZCLjizbuRhqJ5SnugfhYy3b95Gcff+gM9izbQSp1850xlb7N03DHNcOPAUZxHVEkucaU5tMjdQVJODi0kL2B8RRpNKQ5KiaIUB2U4KfPq3Cq/7sXaqXC/8K6K5W5ajT+eUFS4n1Ss1lrpGPE6vNx9m6Ry5tzlAc+trkSsgSqKb0fqiU2nfnxJCd889yeG7FlAO4lifZuJpAydyunpZ9M+JsC8t6qUnMghP/sIBccPUXT8KMV5RyjNP4a74CilRScoLSmmtKQILSvBqaU4tQzkpOkB20SJ/bOro7VZXjU91dW/jGpu16p2VLWgfPCT9d9OQSveiMXzp/yfeC4oT5gGtJxSndWswruqI0+eq+JW+8lWwW3ngwAOu4xETv532BGf9LP98f5vl3Bcc3r2H1mb0zXUgpat2wFQklsHA6XK+sVz6bt1HlEksbTb7+k19uf0bNuumsOUvMIijh0+QO7RAxQcPUDx8R8pzT2EFBwhSotwqhsHpTjVbZmn8vuCfY2V1zu3gpuT2xZe9wM/F5tWuDJOhit31/L7S+UIrOPF//Eg5MW2qUHGnToRa6Dcyak0P5LP8aM/ktSydpl4Ij+XrY9OZkThctY0P4+u0x4mo22n6g8UITo+meT4ZJLbdztF5QaDob5xJTTnBDGQd4oGSpW1C25kYNYLLI8fRddZTzG6dc3uKyJCszgXzTp1gU5dTi39JkrEGqjY07rDLjiYublWBio39zi7H72I/kXrWdPvjwyafFvDPvYbDIaGR4QjjlbEnuJ76fWL7mBg1gt8kXwpZ924gOgoZ/UHGepMxL6tb9GxNwC5+7bX+Bh3mZvtT1xJv6L1bBj8Pwy6/HZjnAyGCCE7ug3Nig7W+rhdX71K2vbH+Cr+HIbf9LQxTo1IxBqo0zr3okyF0kM7a3zM18/9mcEFX7Km5+8YeNGvGlCdwWBobApcp9GytHZdfPnHDtDyo9nsdKTS95cLzeTTjUzE5nZcfDwHpTXO7O9qFH7tV+9zVua/WJN0LmdOvaOB1RkMhsamJKEdKXoULav52qnfPX8TCZpP8cVPkNzcjLJsbCLWQAEcietMi7xd1YbLzT1Oy49/x4+O1vT55TOII6KzxWBomjTviFOUYwf31Cj47hVvk3b0Q744bSb9Bg5rYHEGf0T0nTivZV86le2l8ER+leHWPnc7nfUH8i74p5mny2CIUOJbdwbgx6zqe1XU7cb98V3sow0Z0+9uaGmGAES0gYrpOIhoKSNr66qAYTau+JThPy5iTauJnHHWRY2ozmAwNCYp7VMByD1YvYHa8tl/6FbyLZn9bqR5opnhI1hEtIFq38dqlh/e8V+//icKCmj2/m844mhJ7xmPNKY0g8HQyLQ5vSdAtQOn3KWlNPvvvXwvHci4+IbGkGYIQEQbqHan92C/tMa190u//que+wOpupcjY+4jLqlFI6szGAyNiSs+kR9oQ2x21QZqw/tP0blsD/sH3UJMTEwjqTP4I6INFCJ8nzyMM/LXUFhYWMFrw4pPOWv/c6xpMZ7eZ08OkkCDwdCY/BjbmeT83QH9S4uLaLP6IXY6Usn46czGE2bwS2QbKCAp/SKacYL1ny3xuOXm5pD4/m845mhBr2seD6I6g8HQmBS36E770iyKiov9+q976zHa6wFyfjIHp9N8kBtsIt5A9Rp5GT9KCglrnsRd5qa0tJSt82fQ2Z3FsfMfIj4pJdgSDQZDIxHXsS8uKeG77esr+RUW5NF502NsjerNoHOuCII6gy8Rb6AcUdF83+sX9CvZwLJHZ7H+gQkMyV/Kmh6/ocdPJgZbnsFgaETa9j0bgKPbllXyW//6g7TmKKWj/2y+hQwRInayWG8GT76VdU9s5uzDr1NALGt6/Z7BU/4cbFkGg6GRad25Hzk0w5m1soJ7Xs4Ren37bzbEnkn6iAuDpM7gS5MwUOKMYsCNL1CcvZ+omAQGxScFW5LBYAgC4nDwXXw6qTkrKCsr87xn2rx4LhmaT+z4vwZZocGbJtWOjUluR4wxTgZDk0b7XkpbjrD2y3cB2LJ+OQP3vcjq5PPpOWB4kNUZvGlSBspgMBjSzplKHvFE/fchsrL24HrjF+RLAr2unhdsaQYfjIEyGAxNiui4JLb0/g0DilfT8ak0Orp/4ODY+SS2rHrpdkPj0yTeQRkMBoM3Q66Yw46P23D8u5V0GHUtvXoNCbYkgx+MgTIYDE0PEXqcfy1wbbCVGKrAdPEZDAaDISQxBspgMBgMIYmoarA1eBCRQ8D39RBVK+BwPcTTGISTVggvvUZrwxFOesNJK4SX3vrS2llVW/s6hpSBqi9EZJWqDg62jpoQTlohvPQarQ1HOOkNJ60QXnobWqvp4jMYDAZDSGIMlMFgMBhCkkg1UP8OtoBaEE5aIbz0Gq0NRzjpDSetEF56G1RrRL6DMhgMBkP4E6ktKIPBYDCEOcZAGQwGgyEkiSgDJSLjRGS7iOwUkTnB1uOLiHQSkc9EZIuIbBaR39ruc0Vkn4iss38/DbZWABHJFJGNtqZVtltLEflIRL61/7cIAZ09vfJunYgcF5HZoZSvIvK0iPwoIpu83PzmpVjMs+vxBhEZFAJa7xeRbbae10Uk2XbvIiInvPJ4fmNqrUJvwLIXkT/YebtdRMaGgNbFXjozRWSd7R4KeRvontU4dVdVI+IHOIFdQFcgBlgP9Am2Lh+N7YBB9nYisAPoA8wFfh9sfX70ZgKtfNzuA+bY23OAe4Ot0089OAB0DqV8Bc4GBgGbqstL4KfAe4AAw4AVIaD1AiDK3r7XS2sX73AhlLd+y96+3tYDsUCqfc9wBlOrj/+DwJ0hlLeB7lmNUncjqQU1BNipqt+pajHwEjAxyJoqoKr7VXWNvZ0LbAU6BFdVrZkIPGtvPwtcEjwpfjkX2KWq9TEjSb2hql8AR32cA+XlROA5tVgOJItIo60F4U+rqn6oqqX27nKgY2PpqY4AeRuIicBLqlqkqruBnVj3jkahKq0iIsAVwKLG0lMdVdyzGqXuRpKB6gDs9drPIoRv/iLSBRgIrLCdbrSbxE+HQreZjQIfishqEbnOdmurqvvt7QNA2+BIC8hUKl7goZiv5QTKy1Cvy7OwnpLLSRWRtSLyuYiMDJYoP/gr+1DO25HAQVX91sstZPLW557VKHU3kgxU2CAizYBXgdmqehx4AugGDAD2YzXzQ4ERqjoIGA/8WkTO9vZUq00fMt8piEgMcDHwsu0UqvlaiVDLy0CIyJ+AUuBF22k/cLqqDgRuBv4jIknB0udF2JS9Fz+j4sNVyOStn3uWh4asu5FkoPYBnbz2O9puIYWIRGMV9Iuq+hqAqh5U1TJVdQNP0ohdDlWhqvvs/z8Cr2PpOljeZLf//xg8hZUYD6xR1YMQuvnqRaC8DMm6LCIzgQuBafZNCbur7Ii9vRrrnU6PoIm0qaLsQzVvo4DLgMXlbqGSt/7uWTRS3Y0kA/UN0F1EUu0n6anAW0HWVAG7j3kBsFVV/+nl7t1HeymwyffYxkZEEkQksXwb6yX5Jqw8vdoOdjXwZnAU+qXCE2go5qsPgfLyLWCGPSJqGJDj1Z0SFERkHHAbcLGqFni5txYRp73dFegOfBcclSepouzfAqaKSKyIpGLpXdnY+vxwHrBNVbPKHUIhbwPds2isuhvMESL1/cMaQbID60njT8HW40ffCKym8AZgnf37KfA8sNF2fwtoFwJau2KNdloPbC7PTyAF+AT4FvgYaBlsrbauBOAI0NzLLWTyFctw7gdKsPrlrw2Ul1gjoB636/FGYHAIaN2J9W6hvN7Ot8NOsuvHOmANcFGI5G3Asgf+ZOftdmB8sLXa7guB633ChkLeBrpnNUrdNVMdGQwGgyEkiaQuPoPBYDBEEMZAGQwGgyEkMQbKYDAYDCGJMVAGg8FgCEmMgTIYDAZDSGIMlMFgMBhCEmOgDAaDwRCSGANlMBgMhpDEGCiDwWAwhCTGQBkMBoMhJDEGymAwGAwhiTFQBoPBYAhJjIHyQkS6iIjaa7MYwhQRuUlEfhCR9UFIe66IvNAI6cwUkWVV+C8VkZ83tI5QRERGi0hWbf3qWUOV95LGqif1iYi0F5FcEdkuIuc0RprGQBnqhIjMF5E8+1csIiVe++9VH0ODMBf4lar299I5V0TmBklPSGHfPDNrGf4zESkQkW0icl4VYWPtJdaPi8gBEbnZJx71qh95InJHQ2gOd0Qk015ivSZhA+Z5gPC/s8Mdt4+L9Un3hFf5fFjup6o/qGoi8Dbwm1M8tVoRUQbKtHwaH1W9XlWbqWoz4H+AxeX7qjq+PFwjl01LQm9xwloTQvV5EbAWaw2gPwGviEjrAGHnYi2s1xkYA9xmL3boTbJXHflrA2lucEKofOZSfZ4DICJjgTnAuXb4rsBdPsEu8iqfC/xEswmrLjQ4YW+gbIt/u4hsAPJFJEpEhonIf0UkW0TWi8hor/BLReQfIrLSfoJ4U0RaBoj7GhHZajdrvxORX/r4TxSRdXY8u8orhYg0F5EFIrJfRPaJyN/KV8as4jy6icinInJERA6LyIsikuzld1REBtn77UXkUPl5icjFIrLZPt+lItLbJ39+LyIbRCRHRBaLiKv2OV17ApSNisgZXmEWisjfvPYvtPM02y7D9FqmWZ7P7mrC3WaXzw8i8nNvXbamx0XkHbvsV4hIN69jHxGRvXa5rxaRkT7Ru+x8zhWRNSLi3ZKbY9eVXBHZIiKXevnNFJGvROQhETmCdeOp7nwfEJFjIrJbRMb7eHe248sVkQ9FpFV18fmJvwcwCPiLqp5Q1VexFqKbFOCQq4G/quoxVd2Ktdz6zNqmWwNdg0RkrX1uL9v5/bcAYX9j53VHL7c/2tdZpohM83KfYMd73C7juV5+5S3Aa0VkD/BpDaROE5E9dlp/8vGLEZHn7HPYLCKDa5cLHmqT51cDC1R1s6oeA/5aRdhAuIHGMc6NvUJjA6z4mIm1ymMnIA7ogLWy6k+xDPD59n5rO/xSYB/QD2sV1leBF2y/LlirR0bZ+xOAblirRI4CCoBBtt8QIMeO32Gn28v2ex34Xzv+NlhLSv+ymvM4w44rFmgNfAE87OX/C2ALEA98ADxgu/cA8u1jo7GW5d4JxHjlz0qgPVbLYis+K3f6rJ6ZXcVvRDXnMLc8L/2Vje2mwBleYRYCf7O3BwI/AkMBJ9bFlAnE1qI+jAMKgYRqwhwA+tr5+YK3LlvTEbuMo4AXgZe8jp+O9QQZBdxix+XyyoMSYLJdHr8HdgPRtv/ldlk4gCl22bWz/WYCpcBNdtxxVZzDTDudX9h5dQPwA3gWIV2KtappD6zrYilwT4C4/gX8K4DfpVjLfXu7PQY86idsCzsf23q5TQY2+lxf+7BWk30GaHUK13wM8D3wWzuPLwOKverRaCDL3r4TazXa1l5+pcA/sa61UXYZ9PTyT7PLJx04CFzio/85rGu7qvIpD/uknf/9gSKgt1c9KcS6TzmBfwDLA8R1JbAhgF+Vee4n/Hpgitd+K/v4FK9r9iBwCPgQ6O8njjHAMeD02pZdrcu6oRNo8BOwMnSW1/7twPM+YT4Arra3K1yoQB+7cjvxMVB+0noD+K29/b/AQ37CtLUrYpyX28+Az2p5XpcAa33c3uLkMtaxttsdwBKvMA6sG8Bor/yZ7uV/H/Zy3Q1QFnOpbKBm+YSpykA9gfUk6B1+OzCqhumvsuP/TTXhngb+4bV/BpUN1FNe/j8FtlUR37HyC9nOg+Vefg6sJb5HBjh2HTDR3p4J7Knhuc4Ednrtx9vncJpXPf+zl/+vgPdPoUyvwufGCfwdWOgnbCdbg8vL7Xwg095uBgzGMr5tgVeAD05B09l2HRcvt2VUNFD7sIzQMqC5V7jRWAYqwcttCXBHgLQexr7OOXl/6FoDjeVhO3q5rQSmetWTj738+gAnTiEvqsxzP+F3AeO89qPt47vY+8OxDGo88Aesh69kP/G8bB/3cG011+YX9l18Nnu9tjsDl9tdRNkiko3VMmgXIPz3WIVUqftDRMaLyHK7ey0b60ZVHq4TVmH70tmOb79X+v+L1ZIKiIi0FZGX7C7B41hP9b6ansRq+T2qqkW2W3v7HABQVbd9fh28jjvgtV2AdaNoLPZWH8RDZ+AWn7LrhHWONSEDmArMFZHoKsK199HlT2PAPLO7TLfaXabZQHMqlpUnPrs8ssrPQURmeHVhZmOVp99ja4BHo6oW2JvN/Pn7nkMtyAOSfNySgNwAYcv9K4VV1TxVXaWqpap6ELgRuEBEEmupqT2wT+07pY1vviUD12E9iOT4+B1T1Xyv/e85WT5DxRoQckhEcoDrqXwdnlIZUbkMfP1cUvv3WlXmeYDwvmHhZBl9pVZXboGq/gOr56RCF7ZYrxp+itVjNLuWemtFpBgo34r6vKome/0SVPUerzCdvLZPx+oqOewdoVgjW14FHsBqPicD72J195Wn043K7MVqQbXySj9JVftWcw7/Y59HmqomYXUjlaeFiDTDeppbgHUDLn9v9gPWjb08nNjnt6+a9CohIiOl4ggr35/vu5aaoD77BVhPZ+Wc5rW9F/i7T9nFq+qiGiVk3bDewOr2aFdF0P1AR6/9ToEC+mLnwW3AFUALu17k4FVW3vGJiMNO6wcR6Yz1kHEjVpdKMtYLZ+9jffMr2GwGuvoYkf62ewXUeqex3/avMmz5Ifb/2t6H9gMd7Lpejm8ZHgMuBJ4RkeE+fi1EJMFr/3Ss6wjgP1g9FZ1UtTkwn4rl46076JxCnm/2E/agqh4JlASVz783sEVVt9dece2IFAPlzQvARSIyVkScIuIS69sH7xvSdBHpIyLxwN3AK6pa5hNPDFYf9SGg1H4B7T2iZQFwjYicKyIOEekgIr1UdT9W3+2DIpJk+3UTkVHV6E7EerrJEZEOwK0+/o8Aq1T158A7WBcOWN0TE2wd0VjvRIqA/1aXUb6o6pd6cvSOv9+XtY3TD+uAK+2yGYf1DqCcJ4Hr7adYEZEE+6V1IngGLyys5hzKW5YxVQRbglV2ve06UKOhzjaJWF1Eh4AoEbmTyi2MM0XkMvtpeDZWeSzHem+h9rGIyDVYLaiQRVV3YJXZX+xr6VKsdzOvBjjkOeDPItJCRHphvSNbCJ7WSU/7mkgB5gFLy1s4Yn0KsLQGsr4GyoAbxRp4MxHrfaGv9qXANOA1EfH1v0tEYuwHjguxuqzAKt+jqlpoH3NlDfQEm4B5HiDstfb9Lxn4MyfL53QRGW7ni0tEbsVqPX7lE0c0Vp1ucCLOQKnqXmAi8EesG8FerJu997k+j1UoBwAXfsb0q2qu7b4E62nsSqwnq3L/lcA1wENYT9Cfc7IlMwPrBrnFPvYVqn6iB2uo5yA7rneA18o97AtwHNaLcICbgUEiMs1+ipkOPIrVCrwIa5hocTXpBYvfYmnMxrp5vFHuoaqrsC6ux7DybScVRxh1ovLF4g+lirqtqu9h3Rw/s9NYbnvV5KL7AHgf2IHVNVRI5S6fN7EGQBzDeodzmaqWqOoW4EGsG+xBrJfxNTmfBkWsb9nmVxFkKta7o2PAPcBkVS03stNExPtp/S9YXd/fY10T96vq+7ZfV6y8y8VqORZhvZ8tp0bla9fty4BrserRdOD/8FN+qvoRMAt42+6aAuu6P4bVanoRa9DQNtvvV8DdIpKLNcBiSXV6Gho/eexLwDy3jU6eiJwOYLvfh1X399jH/MWOJxHrPfAxrB6YccB4P60rJ9WMkq0vykf8NBnsJ7QXVPWpYGsx1BwRicEagZSuqiXVhP0BuE1Va/SlvljD8jdhDTwprbNYwykhIuuAc6vobqrq2BVYg3+eqXdhBg92l/U8oI2qXtHQ6UVcC8oQmahqsar2rs442czB6pJaHSiAiFwq1hf4LYB7gbeNcQouqjqgpsZJREaJyGl2F9/VWN2O71d3nOHUEZH2WL1Sw7B6AhocY6AaEak4LZD3r6ruFUMtUdXnVLW7qp5ZRbBfYn1ztQvrfcYNVYQNCqa+VElPrBZ1NtZ718n2+99Gw+5681c+VXXHhS1qTXWUoqqDVXVFY6TZ5Lr4DAaDwRAemBaUwWAwGEKSUJnsEIBWrVpply5dgi3DYDAYDI3I6tWrD6tqpQmIQ8pAdenShVWrVgVbhsFgMBgaERH53p+76eIzGAwGQ0hiDJTBEKKoKl9/9RmFxWb0u6FpYgyUwRCibPr6fc766BL+u+h/gi3FYAgKIfUOyh8lJSVkZWVRWFgYbCmGMMLlctGxY0eio6ua1Dy00fxDALQ4EPTZkAyGoBDyBiorK4vExES6dOlCxcmLDQb/qCpHjhwhKyuL1NTUYMs5ZUSt6c7K1HR0GJomIV/zCwsLSUlJMcbJUGNEhJSUlLBvdUuxtdRPaehfpgZDgxAWNd8YJ0NtiYQ6o6X2tIPaKBNHGwwhR1gYKIOhKaJl1oopDrcZxWdomhgDVQNEhFtuucWz/8ADDzB37tzgCaqGpUuX8t//1nq9Qg/r1q3jrLPOom/fvqSnp7N48eJ6VGeoKe4yqwXlMJOsG5ooxkDVgNjYWF577TUOHz5cfeBaoKq43fXffVNXAxUfH89zzz3H5s2bef/995k9ezbZ2dn1J9BQI8q7+JzGQBmaKA1uoERknIhsF5GdIjKnodNrCKKiorjuuut46KGHKvkdOnSISZMmkZGRQUZGBl99ZQ0Jnjt3Lg888IAnXL9+/cjMzCQzM5OePXsyY8YM+vXrx969e7n11lvp168faWlpntbK0qVLGT16NJMnT6ZXr15MmzYNfzPPz5s3jz59+pCens7UqVPJzMxk/vz5PPTQQwwYMIAvv/yySo1XXXUVZ511Ft27d+fJJ58EoEePHnTv3h2A9u3b06ZNGw4dOlQp7Zdffpl+/frRv39/zj77bMAa1HLNNdeQlpbGwIED+eyzzwBYuHAhl1xyCeeffz5dunThscce45///CcDBw5k2LBhHD16FIAnn3ySjIwM+vfvz6RJkygoKKiU7rBhw9i8+eSKBqNHj47MKbLctoHCGChD06RBh5mLiBN4HDgfyAK+EZG37KWva81db29myw/H61Mifdon8ZeL+lYb7te//jXp6encdtttFdx/+9vf8rvf/Y4RI0awZ88exo4dy9atW6uM69tvv+XZZ59l2LBhvPrqq6xbt47169dz+PBhMjIyPDf7tWvXsnnzZtq3b8/w4cP56quvGDFiRIW47rnnHnbv3k1sbCzZ2dkkJydz/fXX06xZM37/+98DcOWVVwbUuGHDBpYvX05+fj4DBw5kwoQJtG/f3hP/ypUrKS4uplu3bpXO4+677+aDDz6gQ4cOnhbW448/joiwceNGtm3bxgUXXMCOHTsA2LRpE2vXrqWwsJAzzjiDe++9l7Vr1/K73/2O5557jtmzZ3PZZZfxi1/8AoA///nPLFiwgJtuuqlCulOmTGHJkiXcdddd7N+/n/379zN48OAq8zwcUbuLL8q0oAxNlIZuQQ0Bdqrqd6paDLwETGzgNBuEpKQkZsyYwbx58yq4f/zxx9x4440MGDCAiy++mOPHj5OXl1dlXJ07d2bYsGEALFu2jJ/97Gc4nU7atm3LqFGj+OabbwAYMmQIHTt2xOFwMGDAADIzMyvFlZ6ezrRp03jhhReIivL/vFGVxokTJxIXF0erVq0YM2YMK1eu9By3f/9+rrrqKp555hkcjspVZfjw4cycOZMnn3ySsrIyz/lMnz4dgF69etG5c2ePgRozZgyJiYm0bt2a5s2bc9FFFwGQlpbmObdNmzYxcuRI0tLSePHFFyu0lMq54ooreOWVVwBYsmQJkydPrjK/wxbbQMVocZCFGAzBoaE/1O0A7PXazwKGegcQkeuA6wBOP/30KiOrSUunIZk9ezaDBg3immuu8bi53W6WL1+Oy+WqEDYqKqrC+yXvb3ISEhJqlF5sbKxn2+l0Ulpa+Un6nXfe4YsvvuDtt9/m73//Oxs3bqwUJpBGqDwcu3z/+PHjTJgwgb///e8eY+rL/PnzWbFiBe+88w5nnnkmq1cHXGG90vk4HA7PvsPh8JzbzJkzeeONN+jfvz8LFy5k6dKlleLp0KEDKSkpbNiwgcWLFzN/fmQuMKtlVp7EYAyUoWkS9EESqvpvewnhwa1bV1oOJKRo2bIlV1xxBQsWLPC4XXDBBTz66KOe/XXr1gHW0iFr1qwBYM2aNezevdtvnCNHjmTx4sWUlZVx6NAhvvjiC4YMGVIjPW63m7179zJmzBjuvfdecnJyyMvLIzExkdzc3Go1Arz55psUFhZy5MgRli5dSkZGBsXFxVx66aXMmDGjytbJrl27GDp0KHfffTetW7dm7969jBw5khdffBGAHTt2sGfPHnr27Fmj8wHIzc2lXbt2lJSUeOLxx5QpU7jvvvvIyckhPT29xvGHFfY7qGjTgjI0URraQO0DOnntd7TdwpZbbrmlwmi+efPmsWrVKtLT0+nTp4/naX7SpEkcPXqUvn378thjj9GjRw+/8V166aWkp6fTv39/zjnnHO677z5OO+20GmkpKytj+vTpngEJv/nNb0hOTuaiiy7i9ddf9wySCKQRrC7CMWPGMGzYMO644w7at2/PkiVL+OKLL1i4cCEDBgxgwIABHqN255138tZbbwFw6623kpaWRr9+/fjJT35C//79+dWvfoXb7SYtLY0pU6awcOHCCi2n6vjrX//K0KFDGT58OL169fK4v/XWW9x5552e/cmTJ/PSSy9xxRVX1DjusKO8i4+SIAsxGIKD+BsZVm+Ri0QBO4BzsQzTN8CVqlr5xQIwePBg9R2NtXXrVnr37t1gGpsyc+fOrTCYItII97qz5rEZDDr8JrkaR+JdB4Itx2BoMERktapWGunUoO+gVLVURG4EPgCcwNOBjJPBYPDBfbIFpaoRMX2TwVAbGnw2c1V9F3i3odMx1J5Qng3DAGJPcRQrpRSXlhETHfKLDxgM9UrQB0kYDAb/iPvku6eiwsofLBsMkY4xUAZDiCJek8QWFZ4IohKDITgYA2UwhCjek8QWF5kWlKHpYQyUwRCieLegik0LytAEMQaqhrzxxhuICNu2bQsYJjMzk379+jWojnXr1vHuu6c+5qT8w94+ffrQt29fHnnkkXpUZ6hPHHryHVSJaUEZmiDGQNWQRYsWMWLECBYtWuTX3980RLWlfD67qqirgYqKiuLBBx9ky5YtLF++nMcff5wtW05p7l5DA+O9UGFJkWlBGZoexkDVgLy8PJYtW8aCBQt46aWXPO5Lly5l5MiRXHzxxfTp0wewDNW0adPo3bs3kydP9iwX8cknnzBw4EDS0tKYNWsWRUVFgDUl0u23386gQYN4+eWXK6Tru5xFcXExd955J4sXL2bAgAEsXryY/Px8Zs2axZAhQxg4cCBvvvkmYC1vMXHiREaPHk337t256667AGjXrh2DBg0CIDExkd69e7NvX+XJPT7//HPPLBIDBw4kNzcXVQ24NMioUaOYOHEiXbt2Zc6cObz44osMGTKEtLQ0du3aBcDbb7/N0KFDGThwIOeddx4HDx6slO7UqVN55513PPszZ870TAzb1PB+B1VabAyUoekRXh9WvDcHDlSeDLVOnJYG4++pMsibb77JuHHj6NGjBykpKaxevZozzzwTsObZ27RpE6mpqWRmZrJ9+3YWLFjA8OHDmTVrFv/617+48cYbmTlzJp988gk9evRgxowZPPHEE8yePRuAlJQUz7x93vguZxETE8Pdd9/NqlWreOyxxwD44x//yDnnnMPTTz9NdnY2Q4YM4bzzzgOspTI2bdpEfHw8GRkZTJgwocKyFJmZmaxdu5ahQ4dWSvuBBx7g8ccfZ/jw4eTl5eFyuXjttdcCLg2yfv16tm7dSsuWLenatSs///nPWblyJY888giPPvooDz/8MCNGjGD58uWICE899RT33XcfDz74YIV0y5fSmDBhAsXFxXzyySc88cQTNSzMyMKhpRRoLPFSRFlRYfUHGAwRhmlB1YBFixYxdepUwHrC9+7mGzJkCKmpqZ79Tp06MXz4cACmT5/OsmXL2L59O6mpqZ75+K6++mq++OILzzFTpkzxm66/5Sx8+fDDD7nnnnsYMGAAo0ePprCwkD179gBw/vnnk5KSQlxcHJdddhnLli3zHJeXl8ekSZN4+OGHSUpK8pv2zTffzLx588jOziYqKqrKpUEyMjJo164dsbGxdOvWjQsuuACouJRGVlYWY8eOJS0tjfvvv9/vUhrjx4/ns88+o6ioiPfee4+zzz6buLg4v+ce6Ti1jAKxzr3MtKAMTZDwakFV09JpCI4ePcqnn37Kxo0bERHKysoQEe6//36g8tIZgZavqIpAy2/UZDkLVeXVV1+tNGP4ihUrAmopKSlh0qRJTJs2jcsuu8xv2nPmzGHChAm8++67DB8+nA8++KDKc6jJUho33XQTN998MxdffDFLly71O5OFy+Vi9OjRfPDBByxevNjzYNAUcWgphY54cGdTVmxaUIamh2lBVcMrr7zCVVddxffff09mZiZ79+4lNTWVL7/80m/4PXv28PXXXwPwn//8hxEjRtCzZ08yMzPZuXMnAM8//zyjRo2qNm1/y1n4LqUxduxYHn30Uc9y8GvXrvX4ffTRRxw9epQTJ07wxhtvMHz4cFSVa6+9lt69e3PzzTdXmXZaWhq33347GRkZbNu2rU5LgwDk5OTQoUMHAJ599tmA4aZMmcIzzzzDl19+ybhx42ocf6Th1FKKHPEAuEtMC8rQ9DAGqhoWLVrEpZdeWsFt0qRJAUfz9ezZk8cff5zevXtz7NgxbrjhBlwuF8888wyXX345aWlpOBwOrr/++mrT9recxZgxY9iyZYtnkMQdd9xBSUkJ6enp9O3blzvuuMNz/JAhQ5g0aRLp6elMmjSJwYMH89VXX/H888/z6aefegZBlI8KnD9/vmcpjocffph+/fqRnp5OdHQ048ePr9PSIGDN/Xf55Zdz5pln0qpVK4/7qlWr+PnPf+7Zv+CCC/j8888577zziImJqXH8kYaTUoqd5QbKtKAMTY8GXW6jtpjlNuqPhQsXVhhM0RQJ97pzaG4qBxJ6kpb/NV/2+AMjr5wTbEkGQ4MQaLkN04IyGEIUJ6WURlnvJ7XUtKAMTY/wGiRhqDEzZ85k5syZwZZhqAPRlFAanWjtGANlaIKERQsqlLohDeFBJNSZaC2lLMp6B0VJUXDFGAxBIOQNlMvl4siRIxFxwzE0DqrKkSNHcLlcwZZSJ6Ipxe2MoZAYKDMtKEPTo05dfCJyP3ARUAzsAq5R1WwR6QJsBbbbQZeravXD1vzQsWNHsrKyOHToUF2kGpoYLpeLjh07BlvGKVNWWoJTFHHGUkw0UmpaUIamR13fQX0E/EFVS0XkXuAPwO223y5VHVDH+ImOjq4wU4PB0BQoKS7ECRAVTYnEIGXFwZZkMDQ6deriU9UPVT0zWi4HwveR1WAIIconE8YZS4lE4zBdfIYmSH2+g5oFvOe1nyoia0XkcxEZGeggEblORFaJyCrTjWcwWJTaUxs5omIokVicbtOCMjQ9qu3iE5GPAX/TBfxJVd+0w/wJKAVetP32A6er6hERORN4Q0T6qupx30hU9d/Av8H6UPfUTsNgiCxKbAMlUTGUSgyOMvMOytD0qNZAqep5VfmLyEzgQuBctYfaqWoRUGRvrxaRXUAPYFWgeAwGw0nK7GHljqgYyhwxRJkWlKEJUqcuPhEZB9wGXKyqBV7urUXEaW93BboD39UlLYOhKVFSbBkoiYqlzBGD021aUIamR11H8T0GxAIf2Us5lA8nPxu4W0RKADdwvaoerWNaBkOTwfMOKjqWMmcs0cUF1RxhMEQedTJQqnpGAPdXgVfrErfB0JQp7+JzRsXgdsTiUtPFZ2h6hPxMEgZDU6TU7uJzRLtwO2OINgbK0AQxBspgCEHc5YMkomNRp4sYY6AMTRBjoAyGEMRdlAdAtCsBjYolhpIgKzIYGh9joAyGEKTUNlAxcYmo0zJQpWXuIKsyGBoXY6AMhhDEXWgbqPhEiHYRSzGFpcZAGZoWxkAZDCGIuygfgLj4RCTKRYyUUVRk3kMZmhbGQBkMIYiWWN89uRISkehYAIqKTgRTksHQ6BgDZTCEIsX5FKuT2FgXEhVnORWaj3UNTQtjoAyGEERKCijEhYjgjLFaUMWFpgVlaFoYA2UwhCBSnEeBWC0nR7T1v8R08RmaGMZAGQwhSExxNvnOJAAcMS7AGChD08MYKIMhBHGV5HAiqjkATrsFVVpsDJShaWEMlMEQgsSXHaco2jJQUbGWgSozBsrQxDAGymAIQRL1OKWxyQBExZgWlKFpYgyUwRBiFBWdoAW5uBPaABDjKm9BFQZTlsHQ6BgDZTCEGIf3fQ9AVHJH639sPADuEtOCMjQt6rrk+1wR2Sci6+zfT738/iAiO0Vku4iMrbtUg6FpcPTAbgDiW3cGTragtMQs+25oWtR1yXeAh1T1AW8HEekDTAX6Au2Bj0Wkh6qW1UN6BkNEU3jwWwCS2nUDIMa0oAxNlIbq4psIvKSqRaq6G9gJDGmgtAyGiKL4wDaKNYrTOvcEIDrWtKAMTZP6MFA3isgGEXlaRFrYbh2AvV5hsmy3SojIdSKySkRWHTp0qB7kGAzhTfSxbzkQ3ZHo6BgAJMr6UFdLzSAJQ9OiWgMlIh+LyCY/v4nAE0A3YACwH3iwtgJU9d+qOlhVB7du3bq2hxsMEUVhSRmdinaS17z7SUfbQIkxUIYmRrXvoFT1vJpEJCJPAv9n7+4DOnl5d7TdDAZDFezYsZV0OUp2p6EnHZ3RuBEoNV18hqZFXUfxtfPavRTYZG+/BUwVkVgRSQW6AyvrkpbB0BQ4vOVzANr2G33SUYRiopEy04IyNC3qOorvPhEZACiQCfwSQFU3i8gSYAtQCvzajOAzGKrHmbWCAly0TB1Ywb1EYnCYFpShiVEnA6WqV1Xh93fg73WJ32BoarQ7vp7v4/vR21nx0iySWJymBWVoYpiZJAyGEOHgjz/Szf09J04bXMmvRGJxuo2BMjQtjIEyGEKEPeuX4hQlqefISn4lDhdRpgVlaGIYA2UwhAiFu5dTpsLp/fwZqFii3OYdlKFpUR9THRkMhnog6fAavo9OpWtC80p+ZY5Yous4SKK4uIT9320k98h+xF1MdHwysc1akNzqNBKTW+NwOusUv8FQ3xgDZTCEACUlJXQr2sa2NuPp6se/1Okixp17SnFv/+Yjjn/xL/oe/4rO4t/IuVXIlmbkOpLIdzanVKIQQERAFUEB9WyX74va7oADN6j6FyGC+HP2s1M5nH2sVArqm4Tf4064WtP1168RFePyr80QshgDZTCEAJlbV9NdTuDoPMyvv9vpIlZr14LKPrSfXc9ez5l5SzlOAhtTxuLofBZxKR1RZwxlBTmU5h+jJO8Imn8YOXGMqKJjxJVm49AyUPXYG0VQcdhWwDJRSMX/5dv+zMdJu6WoX3cvX0+aXv9P2sEKMXgfr5U2oJk7h7Sir/h28wq6DxxVo3wzhA7GQBkMIcCx7csAaNvnbL/+ZU4XMVpc4/h2rl9GwutX009zWNH5OvpdcQdDmyXVi9ZwYt93W+G5YWTvWgXGQIUdxkAZDCGA44dVHCWJ9l16+vXXKBcuataC2rT8Q7q8N4M8SWDvpa8xdIB/o9cUaNe5J8dJwP3DumBLMZwCETeK78Ceb9FA/eAGQ4iSfHwHWa7uiMP/JalRccRSTJm76rq9a+1Surw3g2xnCxy/+JgzmrBxAnA4HeyOS6P9sVXBlmI4BSLKQP2QuZ2EBSNZNW8aJ/KOB1uOwVAjiouKOL30e0606B04UJSLOIopKg08Y9jBPTto8eYMciQJ17Xv0qZDagOoDT9OdBpBJ/2BA3t2BFuKoZZEVBffaR27sbzjVH6y7xkOPjCADT2vpduYGbQ6rVOVxxWXlJGdm01+zlHyc45yIvcYRXnHKC3IwVmci7MkF2dJPrhLcbvdXi00r9FNeMYaeVAqvi7WSsOMJMB2uZNvfOI3vgpuntjEs1VVEtVSg8ao1iRQ/SRVf/HUQ2I1Ou8aBHEUHWe4lBLVvl/gaKLjiJYy8oqKiY+pfNnm5hylYOHlpGgJxVPfpIMxTh7aDboQdjxA5rIlnHbln08pDnW7OXJwL4ezviX3wHe4cw+ihceh6DiOknzE7QbclI9sVPvqFxGUk4NLEHtQiTisa9Tb3zMIxWEFtd3VDu8ZnHJKF3LDkB/bmnOv+kODxR9RBsoRFcVPfvEwW74eS9Qnf2Ho9vtg+33spxXHo1tT5EzAoWVEuQuJKiskzl1AgubTjALaiLvKuN0qlOHwmCK1K4k92NazX4743Jkq71Olv++drfrw1adhCF1yJZ6O/c8N6C/R1rLvRSfyIDG+gl9pSQk7n/gZaWV72HbuM/TrPdBfFE2Wzr0GssPZnbY7X0bdfwzYjepNUWE+O5a/T96Oz2l2ZAOdi3bQinxa+YQr0FgKJI4ynJ77gNqjGgXFodZ9xYH1/+R4R0WsRVQQr6H7DvuO4qgQ7qSfoDhFcWtoXN2bSQWMgaoVfc4ajw4bx+4tKzmw+h1iDm8muvAIcaXHKcVJqdNFUXQyOdGJuGMSEVcSEtecqPhkouOTcTVLJi6xBXGJLYiKTyYqvjnRcUlEOyOqR9QQQiTav4DENgOgpCAHaFPBa+WC2fykcDmr+v6RwWdf0kAKw5ucfjPIWH8Hq955ksEX/dJvmMP7v2f3f18n6rsP6Zm3ijQpokSdfB/VhW0tz8Hdui/xbbuS3P4Mklp1pFnzFsRHxxDvN7aGJVTuRGkNHH9EGiiwPjBM7TuU1L5Dqw9sMIQ4GpcCQGneYazl1SxWvPEYPznwAt+0upSMK24PkrrQZ9BFv2LH5ufps+oOvhEnfUdPpqS4mH3bV3N884ekHPiC7qU7aQUcoBUbW43H1XcCPYeN54z4Kh8dDA1IxBoogyGScCZanUuF2Qc9btu++ZiBa//CZld/Bl73v8GSFhY4o6JIvuYV9j99CRmrboFVtwDQHChTYUdMb77ucgNtB19Kap8MTqtBN6Ch4TEGymAIA5qnnAZAQfYhAPbuWEfrd2ZxyJFCx+uWEBUTG0x5YUGbDp1pMWcFG758nfy9GxBnNHHte9FlwDn0btmm+ggMjY4xUAZDGNCirTUStfTYHn7YvY2Y/1yGoJT9bInHeBmqJzo6hvRzpgBTgi3FUAPqZKBEZDFQ/ul7MpCtqgNEpAuwFdhu+y1X1evrkpbB0JRJSm5FFm05/btFxOx6lihKOTzpNbr1GBBsaQZDg1HXJd89jyEi8iCQ4+W9S1UH1CV+g8FgISJ83+FChu9bwF5pj3vqIrr1HBBsWQZDg1IvXXwiIsAVwDn1EZ/BYKjMT659gN3bp9Ohax9iYs3SEYbIp76GqowEDqrqt15uqSKyVkQ+F5HKS4TaiMh1IrJKRFYdOnSonuQYDJGHOByk9h5kjJOhyVBtC0pEPgb8vYX9k6q+aW//DFjk5bcfOF1Vj4jImcAbItJXVStNkKeq/wb+DTB48GAzy6vBYDAYgBoYKFU9ryp/EYkCLgPO9DqmCKy1AVR1tYjsAnoAZkphg8FgMNSI+ngHdR6wTVWzyh1EpDVwVFXLRKQr1qfv31UX0erVqw+LyPf1oKkVcLge4mkMwkkrhJdeo7XhCCe94aQVwktvfWnt7M+xPgzUVCp27wGcDdwtIiVYU/xer6pHq4tIVVvXgx5EZJWqDq6PuBqacNIK4aXXaG04wklvOGmF8NLb0FrrbKBUdaYft1eBV+sat8FgMBiaLmbCKYPBYDCEJJFqoP4dbAG1IJy0QnjpNVobjnDSG05aIbz0NqhWObk6rMFgMBgMoUOktqAMBoPBEOYYA2UwGAyGkCSiDJSIjBOR7SKyU0TmBFuPLyLSSUQ+E5EtIrJZRH5ru88VkX0iss7+/TTYWgFEJFNENtqaVtluLUXkIxH51v7fIgR09vTKu3UiclxEZodSvorI0yLyo4hs8nLzm5diMc+uxxtEZFAIaL1fRLbZel4XkWTbvYuInPDK4/mNqbUKvQHLXkT+YOftdhEZGwJaF3vpzBSRdbZ7KORtoHtW49RdVY2IH+AEdgFdgRhgPdAn2Lp8NLYDBtnbicAOoA8wF/h9sPX50ZsJtPJxuw+YY2/PAe4Ntk4/9eAA1od/IZOvWN8GDgI2VZeXwE+B9wABhgErQkDrBUCUvX2vl9Yu3uFCKG/9lr19va0HYoFU+57hDKZWH/8HgTtDKG8D3bMape5GUgtqCLBTVb9T1WLgJWBikDVVQFX3q+oaezsXa82sDsFVVWsmAs/a288ClwRPil/OxVrqpT5mJKk3VPULwPdj9UB5ORF4Ti2WA8ki0q5RhOJfq6p+qKql9u5yoGNj6amOAHkbiInAS6papKq7gZ1Y945GoSqtIp5VIXwnPggaVdyzGqXuRpKB6gDs9drPIoRv/mIt6jgQWGE73Wg3iZ8OhW4zGwU+FJHVInKd7dZWVffb2weAtsGRFhDfmU1CMV/LCZSXoV6XZ2E9JZeTKjVYuSAI+Cv7UM7bU14VojHwuWc1St2NJAMVNohIM6yZNmarNcP7E0A3YADWTPAPBk9dBUao6iBgPPBrETnb21OtNn3IfKcgIjHAxcDLtlOo5mslQi0vAyEifwJKgRdtp/KVCwYCNwP/EZGkYOnzImzK3otAq0IEPW/93LM8NGTdjSQDtQ/o5LXf0XYLKUQkGqugX1TV1wBU9aCqlqmqG3iSRuxyqApV3Wf//xF4HUvXwfImu/3/x+AprMR4YI2qHoTQzVcvAuVlSNZlEZkJXAhMs29K2F1lR+zt1VjvdHoETaRNFWUfqnlbvirE4nK3UMlbf/csGqnuRpKB+gboLiKp9pP0VOCtIGuqgN3HvADYqqr/9HL37qO9FNjke2xjIyIJIpJYvo31knwTVp5ebQe7GnjTfwxBocITaCjmqw+B8vItYIY9ImoYkOPVnRIURGQccBtwsaoWeLm3FhGnvV3jlQsamirK/i1gqojEikgqlt6Vja3PD35XhQh23ga6Z9FYdTeYI0Tq+4c1gmQH1pPGn4Ktx4++EVhN4Q3AOvv3U+B5YKPt/hbQLgS0dsUa7bQe2Fyen0AK8AnwLfAx0DLYWm1dCcARoLmXW8jkK5bh3A+UYPXLXxsoL7FGQD1u1+ONwOAQ0LoT691Ceb2db4edZNePdcAa4KIQyduAZQ/8yc7b7cD4YGu13RdirfrgHTYU8jbQPatR6q6Z6shgMBgMIUkkdfEZDAaDIYIwBspgMBgMIYkxUAaDwWAISYyBMhgMBkNIYgyUwWAwGEISY6AMBoPBEJIYA2UwGAyGkOT/Aac4Ii+5NFCQAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAEYCAYAAADBFIhjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABzCklEQVR4nO2dd5xU1fm4n3f6zu7SFqQrRfouvSmgaBQ1RFFRwY5GE1sSozGaokGT/KKoXyuRxBAxioq9xBoLKioiTToKulIEpC1sm512fn+cO7Ozu7ONmd2ZWc7z+QzMPefcc9859+557/ue8opSCoPBYDAYWiK2VAtgMBgMBkNTYZScwWAwGFosRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLGmr5ESkh4goEXGkWpaWjojMEJFFzXStLBF5Q0T2i8hvm+Oa1a5fKCInNcN1ForIFbXkmWe7iajr/pp7n3mIyDQROSAin4pIl0OpI22VnOHQEJGZIhIQkZKYT7Mrkzo4CRgMdFdKzYokWh1Qj5RJlUZY93BmI8pfICLfiUipiLwsIu3qKPtPEdkoImERmVEt71IRWSYiB0Vkm4jMiu2MRaSdiLxkXec7EbmgsXKISB8R8YnIk434fQtFZGJDy2cyTXzvh1r3t8z6f2hM3k0iskZEikXkWxG5qdq5x4rIEit/lYiMr5bfQUSeshTSfhGZH5M3T0T81foku5UXUfqxebdGzlVKLQDaW4fnNbRdYmkyJWfeVFLKAqVUTsxnVv2nNBvtgEKlVEmqBUkE0aT8JVFEBgH/AC4GOgJlwN/rOOVL4BpgeZw8L3A9ulMZA/wI+E1M/mzAb13nQuAR6/qNkWM28EWDflyakon3XkRcwCvAk0Bb4HHgFSsdQIBLrLxTgetEZLp1bjvgNeBuoA0wC3hNRNrGXOJFYCdwJHAEcE81EWZV65NC1fLbxOT9OTZDKRUAvgLy6m+VmiT1Rllv4zeLyCqgVEQcIjLWMjWLROTL2Dcy6w3tb9YbwkEReaW2NxERuUxE1ltvEt+IyM+r5U8RkZVWPZtF5FQrvbWIzBWRHSKyXUT+EnmLqON39BaR90Vkr4jsEZH5ItImJm+fiAy3jruIyO7I7xKRM0RkrfV7F4rIgGrt8xvrTeiAiCwQEU/jW7rxiMgtVrsUi8g6ETmrlnIiIveJyA9WW64WkXwrzy0i94jIFhHZJSJzRCSrkaI4gHA9suaJyGvW9b+w7tmimHwlIleJyNdWO88WEbHyar13MYyy2mC/iDwWuQci0lZE/mvdz/3W924x110oIn8VkU/QHUqven7rUSLyidXm74hI+2r5F1ptuUdE/lBPXbVxIfCaUuoj68XhVuBsEcmNV1gpNVsp9R7gi5P3iFLqY6WUXym1HZgPjAMQkWxgKnCrUqpEKbUIeBXdwTZIDqvTLALeO8TfGnF3P27dn/Ui8lsR2VZL2QGirZLzY5IP13s/Ef23d79SqkIp9SBasZ0IoJSapZRarpQKKqU2ohXiOOvcY4GdSqnnlFIhpdSTwG7gbAARmQR0B25SSh1QSgWUUisO8TfVRtiSv/EopZL2AQqBlegfnAV0BfYCP0Yr1JOt4w5W+YXAdiAfyAZeAJ608noACnBYx5OB3ugbczz6QRtu5Y0GDlj126zr9rfyXkK/7WSj3zCWAD+v53ccbdXlBjoAH6Efjkj+lcA69Jvv28A9VnpfoNQ61wn8FtgEuGLaZwnQBW3RrAeuqkWG8egOobbP+FrOmxlpw2rp51rXtQHTLDk7W3kzgEXW91OAZeg3NgEGxJS7D92xtQNy0W93f2vE8+EEnognX7Vyz1gfLzAQ2BqRz8pXwH8tGY9E/8Gd2sB7VwisQT+j7YBPgL9YeXnojtxr/b7ngJdjzl0IbAEGof/gnHX8hoXAZuuZyLKO76z2bD9q5Q0BKoABtdRV1/1+Bbi5WloJMKKeNl4EzKinzMsxMg8Dyqrl/wbdydYrB9AK/TberbZntIHP0J3Ah2iLoxuwCthW7f6eBAy37tVPzL1XAL8G3qyW9l/gxjhlBViB1TcBPwHWVSvzNXCf9f02dD/4JLp//wI4PqbsPGCf9VkGTI3Ji7THdmAb8BjQPo5Mt1v3PbvRz8yhPGh13NxC4PKY45uBJ6qVeRu4NOZhuDMmbyDaHWKnmpKr5Q/wV9b3f0QavFqZjtYDlBWTdj7wQSN/15nAimpprwKr0X9kbivtVuDZmDI26+ZNjGmfi2LyZwFzknwPZlptWBTz6RKn3EpgivV9BpVK7kR0ZzQWsFV78EuB3jFpxwDfNlCuoUAA2AUcXUc5u1WuX0zaX6ip5MbHHD8L3NKQe2fdg6tijn8MbK5D5v0xxwuBOxr4excCf4w5vgZ4y/oeeba7xeQvAaYfwv1+j2ovSrHPXB3n1ankgMvRnU5763gC+m0+tsyVwMKGyAE8gNUhk5iS+wY4Jeb4Cmoqudst2SdWO/ewvffovumZamnzgZlxyt6OdmtH+rU8dD9yPvpF9VK0ZfUPK/+f1m/6qZUfsdgjz85wqw6H1ebFwDgrLwcYaeV1BJ4H3o4jU1t0vxQCzm5MOzWFX3lrzPejgHMtl1KRiBShLZTOtZT/Dt1I1U17ROQ0EVlsuQqL0I0VKdcd/eZUnaOs+nbEXP8faIuuVkSko4g8I9q9eRD9hlJdpkfRFuhDSqkKK62L9RsAUEqFrd/XNea8nTHfy9A3Odk8q5RqE/P5XkQuEe3OjbRDPnHaWSn1PvAweuzkB9ETFVqhrSIvsCymjres9HpRSq1EvyF/hh73qY0O6Ac+9rnYGqdc3HZs4L2r/sx1sc71isg/RA/kH0RbgW2kqns7niy1Ud+9TsazUIK2kmJphe5IDgkRORP4G3CaUmpPA69Ta77oCQ4noT0BidKF+p+Nq4BPlVIL4+Qdrve+QWVF5Dr02NzkSL+mlNoLTAFuQL+kngq8i36RAChHj7PPVdpV+Qy6rcZZ5y9XSu1V2hX6Blq5nm3llSilllp5u4DrgElxXK6XAQeBdkqpF+trmFiaQsmpmO9b0ZZcbIebrZS6M6ZM95jvR6Lf4vfEpCEibrQr8x6go1KqDfAG2rqIXKd3HFm2oi259jHXb6WUGlTPb/h/1u8oUEq1Ai6KuRYikgPcD8wFZkrlOOL3aMUaKSfW79tez/VqICITpOqMo+qfCY2o6yi0Ur4OyLPab03sb4pFKfWgUmoE2rLuC9yEviflwKCYtmytlGrwH6dSyge8adVbG7uBINoVFaF7LWXjUee9i1Pfkej7BnAj0A8YY517nJUee37s850OrEW7vAAQkV5oV+1Xh1KZ6LHsR4HTlVKrY7K+Ahwi0icmbYh1/frkmIi2YLaIyE60m3OqiMSb/FIfO6j/2bgKOFJE4inVw/XerwUGW31ShMFU3j9E5HLgFuBHSqkq45xKqQ+VUqOUUu3Q47D90RYoaG9W9bapq60UtfQ9MedV100D0B64A3XUG5emniH0JHC6iJwiInYR8YjIxNgBXeAiERkoIl7gDuB5VXPmjQt983YDQRE5DZgUkz8XuExEfiQiNhHpKiL9lVI7gHeAe0WklZXXW0SOr0fuXPSbzwER6Yru5GN5AFiqlLoCeB2YY6U/C0y25HCi/3AqgE/ra6jqKD0BIKeOz8eNqC4b/fDsBj2JB23J1UBERonIGEv+UvQEhbBllT4K3CciR1hlu4rIKTHnKql/qncF+n7Gxbr3L6JfHrwi0h/9ZtlQ6rt3ANeKSDfr5eQPwIKYc8uBIivvT424bqqYj/4bmyB6csgdwItKqbiWnIi4rMkWAjitv0mblXeiVd9UpdSS2POUUqXo+3KHiGSLyDj02/0TDZDjn+iX0KHWZw767+YU67qRaeQ9GvB7nwV+J3qiSFf0i1t1itHWxnEicme1vMP13i9Eu/p+KXoCWaTd3gcQkQvRL4gnK6W+qX6yiAwTEafl1bkH2KqUetvKfgloK3oJil1EzkG/iHxinXuOiORY/e8k9Ivnq1beGBHpZ+XlAQ+iXeDVlZkT3Xc0miZVckqpreg/hN+jO9it6E4n9rpPoAcmdwIe4Jdx6im20p8F9gMXYDWSlb8Ebc7eh56A8iGVFtUl6E51nXXu81R1l8bjdrQf+QD6jzFqHovIFPQf0NVW0g3AcBG5UOlZSRcBD6Etn9PRb8T+eq7XpCil1gH3ol2Fu4ACrAcwDq3Qymw/2p2zFz11GPQY6yZgseXSeRf99ouIdEd3LqurV1iNMPU/d9cBrdHPxBPA0zT8Aa/13sXwFPrl5xu0m/svVvr96MkAe4DFaHdsyqnLcldKrUVbLvOBH9Cd9TUx574pIr+POeUddGd+LFr5lFNptdyKbvc3YjwGb8acew26fX5A35OrrevXKYdSqkwptTPyQb+E+JRSu616u6OftYZ4PO5Au8m+RT9/zxPn2VBKFaEnIJ0mIrFT0g/Le2/1QWei+8Mi9JjrmTF901/Q42ZfxNz7yMs76El0e9B9eGcgOjtbKbUPOANtoR9AW4NTYlzdv0Lf2yJ0X3JljCu5F7qti9HepQr02F917NQzK7s2xBrUSwkishA9AP2vlAlhSAoichHalfm7espNQlv4/a0/jobUfRfQSSl1aeKSGtINEfkjsFsp9Y9DOPdq9KSN+rwzhgxF9DKlRcBcpVRda0DjkvIFjYaWgVLqyfoUnMVC4H/AWhH5TbwCItJfRAaLZjR61tZLyZPWkE4opf7SUAUnIp1FZJzl3uqHHhIwz0YLRUTOQ1v5u9CevEZz2O5KYpniF8XJelIpdVVzy3O4YLlHLqynWC7aHdYF/XDfi14TlFaISG27tpzWyDFTQ8NxoWdI90S7v56h7h1emgRz75sHpdSzHKJyi5BSd6XBYDAYDE2JcVcaDAaDocWSVu7K9u3bqx49eqRaDIPBYDA0I8uWLdujlGrQxhKNJa2UXI8ePVi6dGmqxTAYDAZDMyIi39Vf6tAw7kqDwWAwtFiMkjMY0hwzOcxgOHSMkjMY0pjP/nUjpTPr26DHYDDURlqNycUjEAiwbds2fL4aMR4NhlrxeDx069YNp9OZalES4pht/wKBgK8Upyc71eIYDBlH2iu5bdu2kZubS48ePai6gbbBEB+lFHv37mXbtm307Nkz1eIkhF/ZcUmIvbu20umo/imRYfe+/QSK99DlqD71F24i9pf6cdmFbE9mv7QYmp+0d1f6fD7y8vKMgjM0GBEhLy+vRVj/ZXgAKD3QoG0+m4TNs8+my2MjIYVjg5/c+RPKZ6VGyRsym7RXcoBRcIZG01KeGZ9k6f9LilImw4jglwCo4h0pk+En9s9pH96TUkVryEwyQskZDIcrPtGWXKC0KGUyFKHHAkv276mnZDPgr23LSIMhPkbJNQAR4cYbb4we33PPPcycOTN1AtXDwoUL+fTTRsdprcKpp55KmzZt+MlPfpIkqQyHgt+mlVywbH/KZPApNwDlJalzmUbxNTowtOEwxyi5BuB2u3nxxRfZsye5b7JKKcLhQ4oDWCfJUHI33XQTTzzxRP0FDU1Khc0LQKg8dZ17GVrJVZSmXsGEU6jsDZmJUXINwOFw8LOf/Yz77ruvRt7u3buZOnUqo0aNYtSoUXzyiQ64PXPmTO65555oufz8fAoLCyksLKRfv35ccskl5Ofns3XrVm666Sby8/MpKChgwYIFgFZUEydO5JxzzqF///5ceOGFcRcFP/jggwwcOJDBgwczffp0CgsLmTNnDvfddx9Dhw7l448/rlPGiy++mGOOOYY+ffrw6KOPRuv90Y9+RG5ubp3t8txzz5Gfn8+QIUM47jgdXNrn83HZZZdRUFDAsGHD+OCDDwCYN28eZ555JieffDI9evTg4Ycf5v/+7/8YNmwYY8eOZd8+bSU8+uijjBo1iiFDhjB16lTKyspqXHfs2LGsXbs2ejxx4sQWux1c0K7H5FQKlVw5LgD8KRwXjOArTgNr0pBRpP0Sglhuf20t674/mNQ6B3ZpxZ9OH1RvuWuvvZbBgwfz29/+tkr6r371K379618zfvx4tmzZwimnnML69evrrOvrr7/m8ccfZ+zYsbzwwgusXLmSL7/8kj179jBq1KiowlixYgVr166lS5cujBs3jk8++YTx48dXqevOO+/k22+/xe12U1RURJs2bbjqqqvIycnhN7/RMUkvuOCCWmVctWoVixcvprS0lGHDhjF58mS6dOnSoLa74447ePvtt+natStFRUUAzJ49GxFh9erVbNiwgUmTJvHVV18BsGbNGlasWIHP5+Poo4/mrrvuYsWKFfz617/mP//5D9dffz1nn302V155JQB//OMfmTt3Lr/4xS+qXHfatGk8++yz3H777ezYsYMdO3YwcuTIBsmcsVQk97lvDOXKGhdMoaKNUFGyD2+qhTBkFMaSayCtWrXikksu4cEHH6yS/u6773LdddcxdOhQzjjjDA4ePEhJSd2D40cddRRjx44FYNGiRZx//vnY7XY6duzI8ccfzxdffAHA6NGj6datGzabjaFDh1JYWFijrsGDB3PhhRfy5JNP4nDEf2epS8YpU6aQlZVF+/btOeGEE1iyZEmD22TcuHHMmDGDRx99lFAoFP09F12kY9H279+fo446KqrkTjjhBHJzc+nQoQOtW7fm9NNPB6CgoCD629asWcOECRMoKChg/vz5VSy2COeddx7PP/88AM8++yznnHNOg2XONATtznb4U6fkIu7KUHnqZIiQDi5TQ2aRUZZcQyyupuT6669n+PDhXHbZZdG0cDjM4sWL8Xg8Vco6HI4q422xa7aysxu2c4Xb7Y5+t9vtBIPBGmVef/11PvroI1577TX++te/snr16hplapMRak61b8zU+zlz5vD555/z+uuvM2LECJYtW1Zn+djfY7PZosc2my3622bMmMHLL7/MkCFDmDdvHgsXLqxRT9euXcnLy2PVqlUsWLCAOXPmNFjmTEPC+uXBHihNmQwBq5tQKZr0oZQi8lT6y4tTIoMhczGWXCNo164d5513HnPnzo2mTZo0iYceeih6vHLlSkCHDVq+fDkAy5cv59tvv41b54QJE1iwYAGhUIjdu3fz0UcfMXr06AbJEw6H2bp1KyeccAJ33XUXBw4coKSkhNzcXIqLKzuD2mQEeOWVV/D5fOzdu5eFCxcyatSoBl0bYPPmzYwZM4Y77riDDh06sHXrViZMmMD8+fMB+Oqrr9iyZQv9+vVrcJ3FxcV07tyZQCAQrSce06ZNY9asWRw4cIDBgwc3uP5Mw4al5II1xyabC0ekl/ClRsGEFZQrPS4YNErO0EiMkmskN954Y5VZlg8++CBLly5l8ODBDBw4MGpVTJ06lX379jFo0CAefvhh+vbtG7e+s846i8GDBzNkyBBOPPFEZs2aRadOnRokSygU4qKLLopO8vjlL39JmzZtOP3003nppZeiE09qkxG0u/OEE05g7Nix3HrrrdHxuAkTJnDuuefy3nvv0a1bN95++20AbrvtNl599VVAz8AsKCggPz+fY489liFDhnDNNdcQDocpKChg2rRpzJs3r4oFVx9//vOfGTNmDOPGjaN//8odLl599VVuu+226PE555zDM888w3nnndfgujMRm9JKzhlKnSXnFO2RkBSNC4bCCr9lTYZSpGgNmYukUxiPkSNHquqz5NavX8+AAQNSJFHLZubMmVUmqLQ0WsKzs+4vxzAwuI7N9t70vnV5SmT4eOZEJrCC9W0mMuD6V5r9+uX+EIG/dqOVlPFVz0voe+lD9Z9kyChEZJlSqklmjxlLzmBIYyLuSrdKnbvSriIu09RYkyGlsFkTcJTZ8cTQSDJq4okhuaTzri0GTcRd6QmXp04GS9E6UjQuGAopXJaSE3/q3LaGzMRYcgZDGhNRcl5SqOQsGVwpGheMteRsKZxlashMjJIzGNKYSOfupQJlLSdoTlSMgnGFU2PJBcNh7JYMqXKZGjIXo+QMhjQmYkUBVJQ1/8zCsAJHZFwwnJr4fOEw2NAT5FLlMjVkLkbJGQxpTMSKAigraf4p/KGwwm4puawUTX4JhkLYRCs5Z8goOUPjMEqugbz88suICBs2bKi1TGFhIfn5+U0qx8qVK3njjTcSquPyyy/niCOOaHJZDYljVyHCSu/34Stp/h1HwkrhiLgrCULQ3+wyhEKVO/2kymVqyFyMkmsgTz/9NOPHj+fpp5+Omx9vy63GEtn/sS6SoeRmzJjBW2+9lVAdhuZBCFMsektiX1lqLLlYazIVQUtjlZw7hbNMDZmJUXINoKSkhEWLFjF37lyeeeaZaPrChQuZMGECZ5xxBgMHDgS0srvwwgsZMGAA55xzTjRUzHvvvcewYcMoKCjg8ssvp6KiAtDbf918880MHz6c5557rsp1q4ey8fv93HbbbSxYsIChQ4eyYMECSktLufzyyxk9ejTDhg3jlVf0Yt158+YxZcoUJk6cSJ8+fbj99tuj9R533HG0a9euzt/84YcfMnToUIYOHcqwYcMoLi5GKVVrWKDjjz+eKVOm0KtXL2655Rbmz5/P6NGjKSgoYPPmzQC89tprjBkzhmHDhnHSSSexa9euGtedPn06r7/+evR4xowZ0c2YD0fshCiVHAD8Zamy5CpfvlKxTi0c1NevUA48ygdptIGFIf3JrHVyb94CO2tuQJwQnQrgtDvrLPLKK69w6qmn0rdvX/Ly8li2bBkjRowA9L6Ua9asoWfPnhQWFrJx40bmzp3LuHHjuPzyy/n73//Oddddx4wZM3jvvffo27cvl1xyCY888gjXX389AHl5edF9LmOpHsrG5XJxxx13sHTpUh5++GEAfv/733PiiSfy73//m6KiIkaPHs1JJ50EwJIlS1izZg1er5dRo0YxefLkBoekueeee5g9ezbjxo2jpKQEj8fDiy++WGtYoC+//JL169fTrl07evXqxRVXXMGSJUt44IEHeOihh7j//vsZP348ixcvRkT417/+xaxZs7j33nurXDcSRmfy5Mn4/X7ee+89HnnkkQbJ3BKxEabYlgOhXfhTMfEkDHbCBHDgJIiv9CBZbZpbBm3JleAlj4MQKAeXCbhjaBjGkmsATz/9NNOnTwe0pRHrshw9ejQ9e/aMHnfv3p1x48YBcNFFF7Fo0SI2btxIz549o/tXXnrppXz00UfRc6ZNmxb3uvFC2VTnnXfe4c4772To0KFMnDgRn8/Hli1bADj55JPJy8sjKyuLs88+m0WLFjX4N48bN44bbriBBx98kKKiIhwOR51hgUaNGkXnzp1xu9307t2bSZMmAVXD6Gzbto1TTjmFgoIC7r777rhhdE477TQ++OADKioqePPNNznuuOPIyspqsNwtDTshKuzakkvFvo0hpXBIiBLRkTNSMS4YGQoos9y2qXCZGjKXzLLk6rG4moJ9+/bx/vvvs3r1akSEUCiEiHD33XcDNcPmHEromtpC7zQklI1SihdeeKHGTv+ff/55QmF0brnlFiZPnswbb7zBuHHjohs010ZDwuj84he/4IYbbuCMM85g4cKFcXdc8Xg8TJw4kbfffpsFCxZEXy4OV+wqjN+ZC34IpkLJhRV2wpTbsmkbOkBFCsYFI+sDy2w5EMZSckc0uxyGzKTJLTkROVVENorIJhG5pamvl2yef/55Lr74Yr777jsKCwvZunUrPXv25OOPP45bfsuWLXz22WcAPPXUU4wfP55+/fpRWFjIpk2bAHjiiSc4/vjj6712vFA21cPonHLKKTz00ENENtpesWJFNO9///sf+/bto7y8nJdffjlqYTaEzZs3U1BQwM0338yoUaPYsGFDQmGBAA4cOEDXrl0BePzxx2stN23aNB577DE+/vhjTj311AbX3xKxEybgbAVAOAVKTilLydlzAfCnYvKLNfGkwqEt2kAK3LaGzKVJlZyI2IHZwGnAQOB8ERnYlNdMNk8//TRnnXVWlbSpU6fWOsuyX79+zJ49mwEDBrB//36uvvpqPB4Pjz32GOeeey4FBQXYbDauuuqqeq8dL5TNCSecwLp166ITT2699VYCgQCDBw9m0KBB3HrrrdHzR48ezdSpUxk8eDBTp06Njsedf/75HHPMMWzcuJFu3bpF4+PNmTMnGobn/vvvJz8/n8GDB+N0OjnttNMSCgsEeq/Mc889lxEjRtC+ffto+tKlS7niiiuix5MmTeLDDz/kpJNOwuVyNbj+loiNMGGXVjCkYN/GkNLr5CocWoZACuK5KctVH5HBl4IJOIbMpUlD7YjIMcBMpdQp1vHvAJRSf4tX3oTaSR7z5s2rMkHlcKQlPDsVf8pjZdcLGLL9ab7sMo0xP5/drNfftr+M3Pt7U9hmLEMOvM/GkTPp95NfN6sMy1evYfgL4/is9Y855sAb7J4ynw7DftKsMhialkwOtdMV2BpzvM1KiyIiPxORpSKydPfu3U0sjsGQOURchcrmoEyysAVSMH3fml0ZcrXWx6lwmVruyrBby5AKa9KQuaR8dqVS6p9KqZFKqZEdOnRItTgthhkzZhzWVlxLIBxWOCSM2OyUSxYSaP7dPsKWosWdQ1gJype6xeDKrccmUzEuaMhcmlrJbQe6xxx3s9IaRTpFLzdkBi3hmQlGdvqw2fFJFo4UhJmJjMk5nC5K8RCuSIU1qcfkxKOVXMhYcoZG0NRK7gugj4j0FBEXMB14tTEVeDwe9u7d2yI6LUPzoJRi7969eDyeVIuSEOHIVnFix2/LwpGCzYnDYb13pdPppBQPkgqXqaXsHd42QGrWCxoylyZdJ6eUCorIdcDbgB34t1Kq5grgOujWrRvbtm3DjNcZGoPH46Fbt26pFiMhgqGA/mJzELBn4wmlYu9KHQHAbndQSha2FMzwjKyTc3my8St7SqxJQ+bS5IvBlVJvAIe8o7DT6ayyo4jBcLgQ2bMRm52AI4vWgZp7fTa9DBGXqQOfeHCmIGhp2FpC4HG7KMNjdjwxNIqUTzwxGAzxiezZKDYHIUc2HtX8O/BHo5Hb7FTYvCmJzB2ZXZnldlFCFioF1qQhczFKzmBIU4KR2G02O2FnapRcOKhdpmJz4Ldl4UxBZO6Isne7nJQpN3aj5AyNwCg5gyFNUSEdx01sDsKuHLwpCDMTUTDYHfjt3pQELY3seGK3OygXL7YUWJOGzMUoOYMhTQlZlpzY7IgzG6eECPh9zStE2LLkxE7AkZ2SoKURl6nYrFmmKVhKYchcjJIzGNKUyIQLZXOAW+/bWF7cvPs2hi1rEpuTkMOLJwVKLrKEwGZ34LenZimFIXMxSs5gSFMirkKbzY7do8MxlZU2s5KzxuSw2wk7c8jCp/f6akaU1Q72iMvUKDlDIzBKzmBIUyoVjAN7lt7tw9fMSk7FzPBUkWjczewujOx4YnfYCdq9KXGZGjIXo+QMhjQl4q602ew4PNpd2dxBS8PWgnSx2yES8qeZF2OrqLvSSShFs0wNmYtRcgZDmhKK2fHE6dWWXLMHDA1XLgYXa1ww0MzbakUtObsD5czGjR8i+3oaDPVglJzBkKZEJ1w4HLiyUhO0NDqz0e7E5tbjgr6SZnaZhirH5MIuLUNzu0wNmYtRcgZDmhIKVk488WTrWGqh8uZ2V0ZkcOCwxgWb3WUateTsiCtHJ5r9Kw0NxCg5gyFNiXTuNocTT44VZiZF42HY7Tgsa9Jf2swbRUfawe5A3FrJBU0kAkMDMUrOYEhTIrMrbTY73hxtyalmVnIhSwaH3YHLaym5ZrYmY/fPtFkTcJp7lqkhczFKzmBIU0LRMTknWVnZhJQ0+w78kbV6docTp1cr2mCKxgWxOaKzTH3NbU0aMhaj5AyGNEVZsyvtNgdis1FKFtLMmxOHApWTPrKyLZdpM7sKI2v1EFt0XLDZXaaGjMUoOYMhTYlacnY7AD7xYGtuS87aP9Ph8uCxljE0d9DSWHel26vH5PxmTM7QQIySMxjSFBUZk3N6ACiXFMRzC+oNoe1ONzlZbsqVC9Xslpyl5MQeXS8YbOYZnobMxSg5gyFNUSFtRdkcLgAqbF4czRzPLeoydbrwuh2U4Gn2NWo2qx1wuMmyllIEfWYJgaFhOFItgMFgiI+yXIV2p1ZyfnsWzmbenDjWXel02tmrPEgzu0wlbCk5u4usbN0WzT3L1JC5GEvOYEhXLAvG7tLuyoDdi7u5g5ZaMjicHmw2oVyysAWaVwYJVugvDjfZWS7KlJtwhRmTMzQMo+QMhjQl4q60W+7KUCqClloKJmJN6nHBZraiQpWWXLbLQSluaOZZpobMxSg5gyFNibgrHU43QGp24I9xFYJ2mTqCzSuDhPwEcIAIXpedUrKafZapIXMxSs5gSFNCAW1FZXm0uzLs9JKlfM0qgwSs6zmzAPDbvLhCzWtFSaiCgGglKyL48DS7y9SQuRglZzCkKSqgLSZ3lrXzvisXr1QQDjZjmJmIMnFoJRd0eHE38+QXe7iCgLijxz5bVvMvpTBkLEbJGQxpivjLCCob4rA6eCvUTWlz7vYRKMePA+x6InbA4cXdzC5TV6iMCntW9DgVSykMmYtRcgZDuhIsxyduEAHAZgUtbc54brZgGRXiiR6HndlkqXJQqtlkcIbKCdgqlZzfloWruWeZGjIWo+QMhjTFFiyngkoFY/foLa3Km3EHflewBJ/NGz0OO7OxE47OumwWGcJlhB2VSi4lSykMGYtRcgZDmuIKFFMWo2DsKdicOCtYRKm9TYxQVtDSZprdGAorWoWL8bvaRtOCDi/ucPNOwDFkLgkpORGZKSLbRWSl9flxTN7vRGSTiGwUkVMSF9VgOLzwBIsosbeOHjuztIKpKGu+hdBZwYNUuCpliETmVs20GLvYFyBPDhDMyoumBR3ZZKmyZnWZGjKXZFhy9ymlhlqfNwBEZCAwHRgEnAr8XUTsSbiWwXDY4A0UUeFsEz12ZWllE2imoKXhsKJV+AAhd7toWiRoaXMp2v2lftpSjPJWKrlQClymhsylqdyVU4BnlFIVSqlvgU3A6Ca6lsHQIskJHyTgrnTTua14bsFmigJQVOanHQdR3lglpy255orMvXPXLlwSwtO6YzRNOS0XrlkQbmgAyVBy14nIKhH5t4hE/iK7Altjymyz0gwGQwMIBYO0UQeqWDCeHCtoaTNF5t61Yys54kPa9YymOaKWXPNYkwe//wqAnE69omlhZ/OOCxoym3qVnIi8KyJr4nymAI8AvYGhwA7g3sYKICI/E5GlIrJ09+7djT3dYGiR7Nq2GZeEoG2lgomEmVHN1Lnv/nY1AG26D4imuayF6f6y5pGhYud6S4ZB0TSx1gs217igIbOpN9SOUuqkhlQkIo8C/7UOtwPdY7K7WWnx6v8n8E+AkSNHmpFkgwH44ds1dAFade0fTcvOsZRcM4WZ8X37GQAd+o6JpjktSy7QTPHcXDuWUi4esjr0iaaJtV4wUF6Mq1mkMGQyic6u7BxzeBawxvr+KjBdRNwi0hPoAyxJ5FoGw+FE+eZPCSmhy4BKBWN3OChXLqQZduAPhRXddr7HFldvnK0qx8M82c2n5HbuL2FI2Wd832YU2J3RdHFrd2WgGWeZGjKXRMfkZonIahFZBZwA/BpAKbUWeBZYB7wFXKuUCiV4LYPhsKHtzk/Y7OxDqzZ5VdLLJAtboOkVzMfvvMhAtYni/tOqpHu8WsGEfE2/GPvzl2fTWfaRc+zlVdId1uSXChMd3NAAEooMrpS6uI68vwJ/TaR+g+FwZNPaZfQPrueL3tfVyPOJB3ugaS25dWtWMGjxDey0d6L/5KoyZHm1JRdqYmvy/bdf5qTCeynMGUyPEWdWyXNYY3KBcqPkDPWTkJIzGAzJp+T1P1Cm3PQ79doaeT7x4miiKADlFUEWvfR3xq7/f4TEQej8Z7BbCiVCtjcLv7KjKppGyR0sPsDn8+9g4o7H2OPsRKefPgO2qg6nyKL4oLHkDA3AKDmDIY34/IUHGFP2GZ8dfT3HdOhSI7/CloUzyTvwh8KKD//3Ckcs/gsnq6/Z7BlA64v+Q6fufWuUzXbbKccNSbYmy8rLWPriAwz4eg4nU8S6difS6/K5eHLb1SjrtNyVoSZStIaWhVFyBkOasPaztxi26nbWZA1n1PQ/xC3jt3vJCSdnjZpSiqWfvQfv/5UTg8vZY8vjm2PvofePLgdb/A2KXHYb+/GAPzmKtsLv5/NX/kGvtQ9yHD+w0V3AwZP/xcCRJ9d6TmRcMFxhNmk21M9hoeSUUhQVFVG673t8FRU4bQpPTms8rTvSKicHsUKZGAypYvs3G+j89pXssnWk+8+fxeGMPzk+aPfiDuxM+HobvvyM4jduZ1TFZxwglw35v6HfGTfQ3pVd53kigk/cSCCxmHKhUJhP35xPl2WzOE5t4VtHbzZOnEW/cWdGQwvVhsfjwa/shJtpKYUhs2mRSm7H1s1s/eJ1wtuW0e7AWjoHt9FWymkbp2yJ8rDP1paDjvaUuTvgz+oIuR2xt+6Cp10Xclu1xW63I2JDiY1wKEQ4FCQUCkS/q1CQUChYeRwORv9XoRDhcAhCQcLhIIRDqHAImwohhBH037TC+sMWm/4W/TsXBAERBFBJVshCGixNVHUe1n5atQ16G3xezYoacK0G1NOQa9WS2H3zfHIIwQULaN22Q631JRq0dOeu7yl86kbGHniDYrysOPpa8s/+Lf29bRpch1882BJwma745G0c79/OhNBattu7sP6YB+h/4sVILdZjdbJdDspxE06SNRmPPT/spHDl+/i3fYmj6Btal31HbqgIryrFq3wEsRPAgV/cFNtbU+poi8/VjoAnD7LaYve2xuFti8PbGpxZ2Gx2bDYbNpuNsEL3DWEF4SBKhSAcRqkQKhRCqTCEQ6BCqHAYVCjab2DlKaW/K1X5bFZ5rKr0E5XfFXHSE+hT/O62HHfmlYd8fnPQopTct+u+gOd/Ss/wd3QGDuJlq7sP69pNRlp1xpbbEafLQ0AJ4fKDSPleKN2No/QHvBW76Vq2jrySj/HsDqT6pxgOM8qVi80nzyW/z+A6y4UcVtDSRuLzB3n/xUcZtf5vjKSYz7tezKDzZjKsTftG1+W3eXCEGi/D1u938M1T13N8yVvspQ1rhs1k0ORr6epo3JLubLdWciqJSi4QDLHq8/coW/4c3fd/Ro/wViIts0vy2OPqzvfeIwm7WxF2ZmvFEwog/lJcFfvwBvbTrmQ7bYuL8HL4bBy9WvUCo+Saj7wuvdjibMvn3c6i44jJHNlvBIPsjQx+oBS+kv3s3/kdxXu2UlJSjAqF9RsUYWw2O2JzYLPbsdkdMR99bLc7Y77rdIfTpf+3O7BZ+Uqsj76o/jesQIEiHD1WgFJh638VlTGRt6+apN5dW/3nxJMonlu5ekq8ZpF4tVW/Xv1FapWhQedVS61ejcOTTb4VL64uws5ssvA16hlYs34dB1/4FT8OLuE7T19CZ7/AmH6jGnRuPAK2LDyNmOEZDis+eO0/5C//E+M4wMqjZjBg+p/J99b/e+OR43awQ7khkJiSCwZDrF72CUVLn6Hv7ncYwW78ysFX3mEs6XwGbftNoHv+sXTMbk3H+qurrNfv42DRXooP7KWiuAiCZYTDYUIhpa00FGJzIJZ1R6RPsUk0XWw2q5+xIVLZ52Cza6vQbscmNsRmwybVn7kYm66KCyJeek23QnUPSV10taW/Ckl/CRtBqzZ55P/uw8QqEcGT247Oue3o3GdYcgQzGJKEcmXjIAxBHziz6izr8wdY+NRdjPv2YZwSYtPQWzj69JvAntiffdCehTO4r0Flt23bxrdPXsePfB+wxdWT/ec8zdB+xyR0fY/TRjlu3Ieg5ALBEGtXLWXf58/Qa9dbDON7gsrG1zkjKRp4I0cfP438nJozOhuDw+Wh3RFdaXeE2ZM+HWhRSs5gaPFYQUv9ZcW4Wteu5Nat+oLQK7/k1NA6vs4dSaeL5nB0pz61lm8MIYcHp7/uyNzhsOKjl/9F/pd/ZiwlrOl7DYOmzUQc7oSvLyJU2Dxk1TMu6Kvws3j+7bTe/iF72gzBEThIz4NfMJQdhJXwtXcoa/r/jKMnXsiA1kckLJchPTFKzmDIICL7NvpKD+CK0zH7fOV8/uSfGLt1LhXiYcPYu+h/ys+T6t4OO7y4w7Urua1bC9k+/1om+hbxrbsP6ryXyD96RNKuDxAQD/Zg7TKsWb0c9fI1TAytpxwPrr1r8eFhW/Yg1va9kp7jp9Evr1tSZTKkJ0bJGQwZhM3agd9XepDqI1rrP38L99u/5fjwd6xqcyI9L3mY/nnJd5mFnNlkU1ZjXDAQDPLpc//H0A33cwR+Vg34NQXn/gGJ2Vw5WZTZc8kKflsj/UBxKUueup0J3/+bgDjZcMw99J90BShFtgj9zHKhww6j5AyGDMJp7R1ZXlIUTdv+zQa2v3wrow++w07pwPrj/8HgE6Y3mQy+rE548EPZPsjOQynF8o/+i+ejv3B8aAMbs4bQbtrfGdwzv8lkOOjqSJuyJVFF6w+EWPzWE3Rddjcns421bSfS46KH6N/+SH2CUW6HLUbJGQwZRLv2nQDYt6OQ0vI3KFn8GMMPvEsHbCzuNoOC6XfQKbd1k8oQaKVDRf7wzUo2f7OJ7NX/YURwDXukLatH/Y2CH1/d5EollNsFV5mf3Vs2sO6z1+m4cT7HqW/YYe/CdyfNZdAx5zTp9Q2Zg1FyBkMG0bnfKIpVFsOW3ABAqfKwtOO59JryO8Z27VnP2cmhW79RhFYLR7xwNkcAO+UIlg+4iYIpv6a9p+4dU5KFs/sI2AUdHhvL8cBWx5GsH/E3+k+6sknco4bMxSg5gyGDyPFmsXT8AwQ3voWzx7H0P/48xjax5VadgvzBfLT5bjw/rKJtwSn0GXManRq4W0mymHTqGbxX9Ada+XfRZdQZdM8/zrgkDXGRxiz8a2pGjhypli5dmmoxDAaDwdCMiMgypdTIpqg70cjgBoPBYDCkLUbJGQwGg6HFklbuShHZDXyXhKraA3uSUE9zYGRtOjJJ3kySFTJL3kySFTJL3mTJepRSqvbwGwmQVkouWYjI0qby7yYbI2vTkUnyZpKskFnyZpKskFnyZoKsxl1pMBgMhhaLUXIGg8FgaLG0VCX3z1QL0AiMrE1HJsmbSbJCZsmbSbJCZsmb9rK2yDE5g8FgMBig5VpyBoPBYDAYJWcwGAyGlkuLUnIicqqIbBSRTSJyS6rliUVEuovIByKyTkTWisivrPSZIrJdRFZanx+nWtYIIlIoIqstuZZaae1E5H8i8rX1f9s0kLNfTPutFJGDInJ9OrWtiPxbRH4QkTUxaXHbUjQPWs/xKhEZngay3i0iGyx5XhKRNlZ6DxEpj2njOc0pax3y1nrvReR3VttuFJFT0kDWBTFyForISis9Hdq2tn4rLZ/duCilWsQHsAObgV6AC/gSGJhquWLk6wwMt77nAl8BA4GZwG9SLV8tMhcC7aulzQJusb7fAtyVajnjPAc7gaPSqW2B44DhwJr62hL4MfAmIMBY4PM0kHUS4LC+3xUja4/YcmnUtnHvvfU39yXgBnpafYY9lbJWy78XuC2N2ra2fistn914n5ZkyY0GNimlvlFK+YFngCkplimKUmqHUmq59b0YWA8kP2xz0zMFeNz6/jhwZupEicuPgM1KqWTsnJM0lFIfAfuqJdfWllOA/yjNYqCNiHRuFkGJL6tS6h2lVNA6XAx0ay556qOWtq2NKcAzSqkKpdS3wCZ039Es1CWriAhwHvB0c8lTH3X0W2n57MajJSm5rsDWmONtpKkSEZEewDDgcyvpOsu0/3c6uP9iUMA7IrJMRH5mpXVUSu2wvu8EOqZGtFqZTtVOIl3bFmpvy3R/li9Hv61H6CkiK0TkQxGZkCqh4hDv3qdz204Adimlvo5JS5u2rdZvZcyz25KUXEYgIjnAC8D1SqmDwCNAb2AosAPtrkgXxiulhgOnAdeKyHGxmUr7J9JmDYqIuIAzgOespHRu2yqkW1vWhoj8AQgC862kHcCRSqlhwA3AUyLSKlXyxZAx9z6G86n6gpY2bRun34qS7s9uS1Jy24HuMcfdrLS0QUSc6AdlvlLqRQCl1C6lVEgpFQYepRldJ/WhlNpu/f8D8BJatl0R94P1/w+pk7AGpwHLlVK7IL3b1qK2tkzLZ1lEZgA/AS60OjYst99e6/sy9BhX35QJaVHHvU/XtnUAZwMLImnp0rbx+i0y6NltSUruC6CPiPS03uinA6+mWKYolr99LrBeKfV/Memx/uqzgDXVz00FIpItIrmR7+iJB2vQbXqpVexS4JXUSBiXKm/C6dq2MdTWlq8Cl1gz1cYCB2JcQylBRE4FfgucoZQqi0nvICJ263svoA/wTWqkrKSOe/8qMF1E3CLSEy3vkuaWLw4nARuUUtsiCenQtrX1W2TQs5vSWS/J/qBn9nyFfuP5Q6rlqSbbeLRJvwpYaX1+DDwBrLbSXwU6p1pWS95e6FloXwJrI+0J5AHvAV8D7wLtUi2rJVc2sBdoHZOWNm2LVr47gAB6nOKntbUlembabOs5Xg2MTANZN6HHWiLP7hyr7FTr+VgJLAdOT5O2rfXeA3+w2nYjcFqqZbXS5wFXVSubDm1bW7+Vls9uvI/Z1stgMBgMLZaW5K40GAwGg6EKRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLEbJGQwGg6HFYpScwWAwGFosRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLEbJGQwGg6HFkrZKTkR6iIiy4iwZmhARmSEii5rpWlki8oaI7BeR3zbHNatdv1BETmqG6ywUkStqyTPPdhNR1/019z7zEJFpInJARD4VkS6HUkfaKjnDoSEiM0UkICIlMZ9mVyZ1cBIwGOiulJoVSbQ6oB4pkyqNsO7hzEaUv0BEvhORUhF5WUTa1VH2nyKyUUTCVhDU2LxLRWSZiBwUkW0iMiu2MxaRdiLyknWd70TkgsbKISJ9RMQnIk824vctFJGJDS2fyTTxvR9q3d8y6/+hMXk3icgaESkWkW9F5KZq5x4rIkus/FUiMr5afgcRecpSSPtFZH5M3jwR8VfrkyJx8iJKPzbv1si5SqkFQHvr8LyGtkssTabkzJtKSlmglMqJ+cyq/5Rmox1QqJQqSbUgiWAFhUz5S6KIDAL+AVwMdATKgL/XccqXwDXo+GTV8QLXozuVMcCPgN/E5M8G/NZ1LgQesa7fGDlmowMcZyyZeO9FB5J+BXgSaAs8DrxipYOOA3eJlXcqcJ2ITLfObQe8BtwNtAFmAa+JSNuYS7wI7ASOBI4A7qkmwqxqfVKoWn6bmLw/x2YopQLoOKF59bdKTZJ6o6y38ZtFZBVQKiIOERlrmZpFIvJl7BuZ9Yb2N+sN4aCIvFLbm4iIXCYi6603iW9E5OfV8qeIyEqrns2iIxkjIq1FZK6I7BCR7SLyl8hbRB2/o7eIvC8ie0Vkj4jMF5E2MXn7RGS4ddxFRHZHfpeInCEia63fu1BEBlRrn99Yb0IHRGSBiHga39KNR0RusdqlWETWichZtZQTEblPRH6w2nK1iORbeW4RuUdEtojILhGZIyJZjRTFAYTrkTVPRF6zrv+Fdc8WxeQrEblKRL622nm2iIiVV+u9i2GU1Qb7ReSxyD0QkbYi8l/rfu63vneLue5CEfmriHyC7lB61fNbjxKRT6w2f0dE2lfLv9Bqyz0i8od66qqNC4HXlFIfWS8OtwJnixXVvTpKqdlKqfcAX5y8R5RSHyul/Eqp7cB8YBxEo8NPBW5VSpUopRahg5Fe3FA5rE6zCB1s85AQ7e5+3Lo/60XktyKyrZayA0RbJefHJB+u934i+m/vfqVUhVLqQbRiOxFAKTVLKbVcKRVUSm1EK8Rx1rnHAjuVUs8ppUJKqSeB3cDZACIyCegO3KSUOqCUCiilVhzib6qNsCV/40lyFNlCdOTY7kAW0BUdrfnHaIV6snXcwSq/ENgO5KMjO78APGnl9UBHpHVYx5OB3ugbczz6QRtu5Y0GDlj126zr9rfyXkK/7WSj3zCWAD+v53ccbdXlBjoAH6Efjkj+lcA69Jvv28A9VnpfoNQ61wn8Fh1R2RXTPkuALmiLZj3VogFXi8hbVMdnfC3nzYy0YbX0c63r2oBplpydrbwZwCLr+ynAMvQbmwADYsrdh+7Y2gG56Le7vzXi+XCiIzbXkK9auWesjxcYiI5IvSgmXwH/tWQ8Ev0Hd2oD710hsAb9jLYDPgH+YuXloTtyr/X7ngNejjl3IbAFGIT+g3PW8RsWoqMj90X/LSwE7qz2bD9q5Q0BKoABtdRV1/1+Bbi5WloJMKKeNl4EzKinzMsxMg8Dyqrl/wbdydYrB9AK/TberbZntIHP0J3Ah2iLoxs6YvW2avf3JGC4da9+Yu69Avg18Ga1tP8CN8YpK8AKrL4J+AmwrlqZr4H7rO+3ofvBJ9H9+xfA8TFl5wH7rM8yYGpMXqQ9tqMjpT8GtI8j0+3Wfc9u9DNzKA9aHTe3ELg85vhm4IlqZd4GLo15GO6MyRuIdofYqabkavkD/JX1/R+RBq9WpqP1AGXFpJ0PfNDI33UmsKJa2qvo8O6rALeVdivwbEwZm3XzJsa0z0Ux+bOAOUm+BzOtNiyK+XSJU24lMMX6PoNKJXciujMaC9iqPfilQO+YtGOAbxso11AgAOwCjq6jnN0q1y8m7S/UVHLjY46fBW5pyL2z7sFVMcc/BjbXIfP+mOOFwB0N/L0LgT/GHF8DvGV9jzzb3WLylwDTD+F+v0e1F6XYZ66O8+pUcsDl6E6nvXU8Af02H1vmSmBhQ+QAHsDqkElMyX0DnBJzfAU1ldztluwTq5172N57dN/0TLW0+cDMOGVvR7u1I/1aHrofOR/9onop2rL6h5X/T+s3/dTKj1jskWdnuFWHw2rzYmCclZcDjLTyOgLPA2/Hkaktul8KAWc3pp2awq+8Neb7UcC5lkupSESK0BZK51rKf4dupOqmPSJymogstlyFRejGipTrjn5zqs5RVn07Yq7/D7RFVysi0lFEnhHt3jyIfkOpLtOjaAv0IaVUhZXWxfoNACilwtbv6xpz3s6Y72Xom5xsnlVKtYn5fC8il4h250baIZ847ayUeh94GD128oPoiQqt0FaRF1gWU8dbVnq9KKVWot+QP0OP+9RGB/QDH/tcbI1TLm47NvDeVX/muljnekXkH6IH8g+ircA2UtW9HU+W2qjvXifjWShBW0mxtEJ3JIeEiJwJ/A04TSm1p4HXqTVf9ASHk9CegETpQv3PxlXAp0qphXHyDtd736CyInIdemxucqRfU0rtBaYAN6BfUk8F3kW/SACUo8fZ5yrtqnwG3VbjrPOXK6X2Ku0KfQOtXM+28kqUUkutvF3AdcCkOC7Xy4CDQDul1Iv1NUwsTaHkVMz3rWhLLrbDzVZK3RlTpnvM9yPRb/F7YtIQETfalXkP0FEp1QZ4A21dRK7TO44sW9GWXPuY67dSSg2q5zf8P+t3FCilWgEXxVwLEckB7gfmAjOlchzxe7RijZQT6/dtr+d6NRCRCVJ1xlH1z4RG1HUUWilfB+RZ7bcm9jfFopR6UCk1Am1Z9wVuQt+TcmBQTFu2Vko1+I9TKeUD3rTqrY3dQBDtiorQvZay8ajz3sWp70j0fQO4EegHjLHOPc5Kjz0/9vlOB9aiXV4AiEgvtKv2q0OpTPRY9qPA6Uqp1TFZXwEOEekTkzbEun59ckxEWzBbRGQn2s05VUTiTX6pjx3U/2xcBRwpIvGU6uF679cCg60+KcJgKu8fInI5cAvwI6VUlXFOpdSHSqlRSql26HHY/mgLFLQ3q3rb1NVWilr6npjzquumAWgP3IE66o1LU88QehI4XUROERG7iHhEZGLsgC5wkYgMFBEvcAfwvKo588aFvnm7gaCInAZMismfC1wmIj8SEZuIdBWR/kqpHcA7wL0i0srK6y0ix9cjdy76zeeAiHRFd/KxPAAsVUpdAbwOzLHSnwUmW3I40X84FcCn9TVUdZSeAJBTx+fjRlSXjX54doOexIO25GogIqNEZIwlfyl6gkLYskofBe4TkSOssl1F5JSYc5XUP9W7An0/42Ld+xfRLw9eEemPfrNsKPXdO4BrRaSb9XLyB2BBzLnlQJGV96dGXDdVzEf/jU0QPTnkDuBFpVRcS05EXNZkCwGc1t+kzco70apvqlJqSex5SqlS9H25Q0SyRWQc+u3+iQbI8U/0S+hQ6zMH/XdzinXdyDTyHg34vc8CvxM9UaQr+sWtOsVoa+M4EbmzWt7heu8Xol19vxQ9gSzSbu8DiMiF6BfEk5VS31Q/WUSGiYjT8urcA2xVSr1tZb8EtBW9BMUuIuegX0Q+sc49R0RyrP53EvrF81Urb4yI9LPy8oAH0S7w6srMie47Gk2TKjml1Fb0H8Lv0R3sVnSnE3vdJ9ADkzsBD/DLOPUUW+nPAvuBC7AaycpfgjZn70NPQPmQSovqEnSnus4693mqukvjcTvaj3wA/ccYNY9FZAr6D+hqK+kGYLiIXKj0rKSLgIfQls/p6Ddifz3Xa1KUUuuAe9Guwl1AAdYDGIdWaGW2H+3O2YueOgx6jHUTsNhy6byLfvtFRLqjO5fV1SusRpj6n7vrgNboZ+IJ4Gka/oDXeu9ieAr98vMN2s39Fyv9fvRkgD3AYrQ7NuXUZbkrpdaiLZf5wA/ozvqamHPfFJHfx5zyDrozPxatfMqptFpuRbf7GzEegzdjzr0G3T4/oO/J1db165RDKVWmlNoZ+aBfQnxKqd1Wvd3Rz1pDPB53oN1k36Kfv+eJ82wopYrQE5BOE5HYKemH5b23+qAz0f1hEXrM9cyYvukv6HGzL2LufeTlHfQkuj3oPrwzEJ2drZTaB5yBttAPoK3BKTGu7l+h720Rui+5MsaV3Avd1sVo71IFeuyvOnbqmZVdG2IN6qUEEVmIHoD+V8qEMCQFEbkI7cr8XT3lJqEt/P7WH0dD6r4L6KSUujRxSQ3phoj8EditlPrHIZx7NXrSRn3eGUOGInqZ0iJgrlKqrjWgcUn5gkZDy0Ap9WR9Cs5iIfA/YK2I/CZeARHpLyKDRTMaPWvrpeRJa0gnlFJ/aaiCE5HOIjLOcm/1Qw8JmGejhSIi56Gt/F1oT16jOWx3JbFM8YviZD2plLqqueU5XLDcIxfWUywX7Q7rgn6470WvCUorRKS2XVtOa+SYqaHhuNAzpHui3V/PUPcOL02CuffNg1LqWQ5RuUVIqbvSYDAYDIamxLgrDQaDwdBiSSt3Zfv27VWPHj1SLYbBYDAYmpFly5btUUo1aGOJxpJWSq5Hjx4sXbo01WIYDAaDoRkRke/qL3VoGHelwWAwGFosRskZDGnErr37WLxqbf0FDQZDgzBKzmBIIzbNvYKxLx5LeWlGx5Q1GNKGtBqTi0cgEGDbtm34fDViPBoMteLxeOjWrRtOpzPVojSKIaWfgsAP2zdzVN8h9Z9gMBjqJO2V3LZt28jNzaVHjx5U3UDbYIiPUoq9e/eybds2evbsmWpxGkWxLYccVU7p/l2pFsVgaBGkvbvS5/ORl5dnFJyhwYgIeXl5GWn9l9p0yK+KAz+kWBKDoWWQ9koOMArO0Ggy9Znx2XWsyGDJnnpKGgyGhpARSs5gOFyocGglFy5tUIAGg8FQD0bJNQAR4cYbb4we33PPPcycOTN1AtXDwoUL+fTTRsdpjbJy5UqOOeYYBg0axODBg1mwYEH9JxmSgrLreLIh38EUS2IwtAyMkmsAbrebF198kT17kutCUkoRDh9SHMA6SVTJeb1e/vOf/7B27Vreeustrr/+eoqKipInoKFWxIoLafMndwlBKGw2Yjccnhgl1wAcDgc/+9nPuO+++2rk7d69m6lTpzJq1ChGjRrFJ5/ogNszZ87knnvuiZbLz8+nsLCQwsJC+vXrxyWXXEJ+fj5bt27lpptuIj8/n4KCgqjVtHDhQiZOnMg555xD//79ufDCC4kXMeLBBx9k4MCBDB48mOnTp1NYWMicOXO47777GDp0KB9//HGdMl588cUcc8wx9OnTh0cffRSAvn370qdPHwC6dOnCEUccwe7du2tc+7nnniM/P58hQ4Zw3HE6uLTP5+Oyyy6joKCAYcOG8cEHHwAwb948zjzzTE4++WR69OjBww8/zP/93/8xbNgwxo4dy7592j336KOPMmrUKIYMGcLUqVMpKyurcd2xY8eydm3lgumJEye2mO3gRIUAsAVKk1bn08/8h6f+MiNp9a3fsovn5v8j7vN4KOwpLucfL79HRTCUlPqKy8p5+7E7OHCwOCn1GTKbtF9CEMvtr61l3ffJdeMM7NKKP50+qN5y1157LYMHD+a3v/1tlfRf/epX/PrXv2b8+PFs2bKFU045hfXr19dZ19dff83jjz/O2LFjeeGFF1i5ciVffvkle/bsYdSoUVGFsWLFCtauXUuXLl0YN24cn3zyCePHj69S15133sm3336L2+2mqKiINm3acNVVV5GTk8NvfqNjkl5wwQW1yrhq1SoWL15MaWkpw4YNY/LkyXTp0iVa/5IlS/D7/fTu3bvG77jjjjt4++236dq1a9TSmz17NiLC6tWr2bBhA5MmTeKrr74CYM2aNaxYsQKfz8fRRx/NXXfdxYoVK/j1r3/Nf/7zH66//nrOPvtsrrzySgD++Mc/MnfuXH7xi19Uue60adN49tlnuf3229mxYwc7duxg5MiRdbZ5piBKW3L2QPIsufM36PYLhULY7faE69s//3LOrVjEru+Oo2OPAQnX9/5zf+fnW+5gWZsnGDHxjITrW/G/Zzjlu3tZ+exOhl7R7KHmDGmGseQaSKtWrbjkkkt48MEHq6S/++67XHfddQwdOpQzzjiDgwcPUlJSdwd11FFHMXbsWAAWLVrE+eefj91up2PHjhx//PF88cUXAIwePZpu3bphs9kYOnQohYWFNeoaPHgwF154IU8++SQOR/x3lrpknDJlCllZWbRv354TTjiBJUuWRM/bsWMHF198MY899hg2W81HZdy4ccyYMYNHH32UUCgU/T0XXaRj0fbv35+jjjoqquROOOEEcnNz6dChA61bt+b0008HoKCgIPrb1qxZw4QJEygoKGD+/PlVLLYI5513Hs8//zwAzz77LOecc06d7Z1RWErOGUqeJRehuGhvUuo5quJrAA7sS84yhw4HVgPg3puc7cyU6GfVfeCbpNRnyGwyypJriMXVlFx//fUMHz6cyy67LJoWDodZvHgxHo+nSlmHw1FlvC12zVZ2dnaDrud2u6Pf7XY7wWCwRpnXX3+djz76iNdee42//vWvrF69ukaZ2mSEmlPtI8cHDx5k8uTJ/PWvf40q5OrMmTOHzz//nNdff50RI0awbNmyBv8em80WPbbZbNHfNmPGDF5++WWGDBnCvHnzWLhwYY16unbtSl5eHqtWrWLBggXMmTOnzutmEhFLzhWs6aZNlLKDe2mTd0Ti9di8EAZ/SXJmgCqn/nsIVyTHes2y6xcuFar592I4/DCWXCNo164d5513HnPnzo2mTZo0iYceeih6vHLlSkCHDVq+fDkAy5cv59tvv41b54QJE1iwYAGhUIjdu3fz0UcfMXr06AbJEw6H2bp1KyeccAJ33XUXBw4coKSkhNzcXIqLK8cjapMR4JVXXsHn87F3714WLlzIqFGj8Pv9nHXWWVxyySV1WkmbN29mzJgx3HHHHXTo0IGtW7cyYcIE5s+fD8BXX33Fli1b6NevX4N+D0BxcTGdO3cmEAhE64nHtGnTmDVrFgcOHGDw4MENrj/diYzJecLJt+TKD9YcVz0UKmxeAIIlybEMw05dn6pIzm92hMqtio2SMxgl12huvPHGKrMsH3zwQZYuXcrgwYMZOHBg1KqYOnUq+/btY9CgQTz88MP07ds3bn1nnXUWgwcPZsiQIZx44onMmjWLTp06NUiWUCjERRddFJ3k8ctf/pI2bdpw+umn89JLL0UnntQmI2h35wknnMDYsWO59dZb6dKlC88++ywfffQR8+bNY+jQoQwdOjSqGG+77TZeffVVAG666SYKCgrIz8/n2GOPZciQIVxzzTWEw2EKCgqYNm0a8+bNq2LB1cef//xnxowZw7hx4+jfv380/dVXX+W2226LHp9zzjk888wznHfeeQ2uOxOIzK70hMuTXre/ODmWV4VdW16h0v1Jqc9u1w4l5U+SYg9or4kt7E9OfYaMRpI1QyoZjBw5UlWfJbd+/XoGDEh8cNtQk5kzZ1aZoNLSyMRnZ83fjie/YiUHyabVzO+TUqfvT+3xSIDVxz5AwaQZCde3+K4zGFv+IUt7XcvIS/5fwvV9+OhNHL/9n3yZN5khv3gq4fqWPXcXI9b+PzY7etP7j8sTrs/Q9IjIMqVUk8weM5acwZBGRMbkvKoclaQ1lD70AvNAWZJmJtssy6siSVP0I27FYHKsV2XV5wknf1zTkHlk1MQTQ3JJ511bDlciSs4hYXy+Ujze3ITrrMAFlBLyJUcp2VVAf0mSe1HCuj57MDn1qbAe13Qq4640GEvOYEgrbFQuiC4tLkpKnX7RllyyZi8mfcF6RCklaUZpZFalW1UkpT5DZmOUnMGQRkQsOQBfSVFS6gxH/syTrOSSZXnZLEvOlay1gZbSdGEsOYNRcgZDWmGLVXKlB5JSp92yDiVJ+2FK1PJKllLSlpcrSTNKI+7KLPyQRhPrDKnBKDmDIY0QwpQqveTCX5qciSL2iOWVJPeizRqTc4aS4160qchEkSQtm4hZH6eCxmV5uGOUXAN5+eWXERE2bNhQa5nCwkLy8/ObVI6VK1fyxhtvHPL5kcXjAwcOZNCgQTzwwANJlM6QKDYVokT0OrRkzYa0W2vv7MHkWHI2S2m6kzV70VJKXpJryQH4y03IosMdo+QayNNPP8348eN5+umn4+bH23KrsUT2f6yLRJWcw+Hg3nvvZd26dSxevJjZs2ezbt26Q67PkFyEMGW2HAAC5UmaDUlyJ3bYoruyJNeSy6IiOp6WEDGWXHmJUXKHO0bJNYCSkhIWLVrE3LlzeeaZZ6LpCxcuZMKECZxxxhkMHDgQ0MruwgsvZMCAAZxzzjnRUDHvvfcew4YNo6CggMsvv5yKCu1G6dGjBzfffDPDhw/nueeeq3Ld6qFs/H4/t912GwsWLGDo0KEsWLCA0tJSLr/8ckaPHs2wYcN45ZVXAB3aZsqUKUycOJE+ffpw++23A9C5c2eGDx8OQG5uLgMGDGD79u01fvOHH34Y3e1k2LBhFBcXo5SqNSzQ8ccfz5QpU+jVqxe33HIL8+fPZ/To0RQUFLB582YAXnvtNcaMGcOwYcM46aST2LVrV43rTp8+nddffz16PGPGjOhmzIcDNsKU2/WygZAv8TE5pRQ2Ips+J0kpWUozSyXH8rLFKKVAMpY5qEpF6UuSy9eQuWTWOrk3b4GdNTcgTohOBXDanXUWeeWVVzj11FPp27cveXl5LFu2jBEjRgB6X8o1a9bQs2dPCgsL2bhxI3PnzmXcuHFcfvnl/P3vf+e6665jxowZvPfee/Tt25dLLrmERx55hOuvvx6AvLy86D6XsVQPZeNyubjjjjtYunQpDz/8MAC///3vOfHEE/n3v/9NUVERo0eP5qSTTgJ0mJw1a9bg9XoZNWoUkydPrhKSprCwkBUrVjBmzJga177nnnuYPXs248aNo6SkBI/Hw4svvlhrWKAvv/yS9evX065dO3r16sUVV1zBkiVLeOCBB3jooYe4//77GT9+PIsXL0ZE+Ne//sWsWbO49957q1w3EkZn8uTJ+P1+3nvvPR555JEG3szMx6bC+B25EADlS9y9GAqrqCWXLPei3bK8vKpcT+yotsl3Y4lYcgBlxQdo7W2TUH3EboxekpzJO4bMxVhyDeDpp59m+vTpgLY0Yl2Wo0ePpmfPntHj7t27M27cOAAuuugiFi1axMaNG+nZs2d0/8pLL72Ujz76KHrOtGnT4l43Xiib6rzzzjvceeedDB06lIkTJ+Lz+diyZQsAJ598Mnl5eWRlZXH22WezaNGi6HklJSVMnTqV+++/n1atWsW99g033MCDDz5IUVERDoejzrBAo0aNonPnzrjdbnr37s2kSZOAqmF0tm3bximnnEJBQQF333133DA6p512Gh988AEVFRW8+eabHHfccWRlZcX97S0RGyGCDu2uTMaOIiGlcET2w1TJdVc6JEzIn7g1F6vkypMxozTGMjRjcobMsuTqsbiagn379vH++++zevVqRIRQKISIcPfddwM1w+bUFrqmLmoLvdOQUDZKKV544YUaO/1//vnntcoSCASYOnUqF154IWeffXbca99yyy1MnjyZN954g3HjxvH222/X+RsaEkbnF7/4BTfccANnnHEGCxcujLvjisfjYeLEibz99tssWLAg+nJxuGBTYZTNTqnyQBKm/Mdact4kuRftMQvWy0qKyHV7E6pPYtyLFclwL8bUl6xxTUPmYiy5enj++ee5+OKL+e677ygsLGTr1q307NmTjz/+OG75LVu28NlnnwHw1FNPMX78ePr160dhYSGbNm0C4IknnuD444+v99rxQtlUD6Nzyimn8NBDDxHZaHvFihXRvP/973/s27eP8vJyXn75ZcaNG4dSip/+9KcMGDCAG264oc5rFxQUcPPNNzNq1Cg2bNiQUFgggAMHDtC1a1cAHn/88VrLTZs2jccee4yPP/6YU089tcH1twRshEHslIoXuz8JllxY4YhVcklYN2aLUSLlSXAHxo7JVZQlw5KrlC9olNxhT5MrORE5VUQ2isgmEbmlqa+XbJ5++mnOOuusKmlTp06tdZZlv379mD17NgMGDGD//v1cffXVeDweHnvsMc4991wKCgqw2WxcddVV9V47XiibE044gXXr1kUnntx6660EAgEGDx7MoEGDuPXWW6Pnjx49mqlTpzJ48GCmTp3KyJEj+eSTT3jiiSd4//33oxNLIrM158yZEw3Dc//995Ofn8/gwYNxOp2cdtppCYUFAr1X5rnnnsuIESNo3759NH3p0qVcccUV0eNJkybx4YcfctJJJ+FyuRpcf0vARhhls+GTLOxJmA0ZDoWxi8KHC7soAhWJ1+kgRBnaUk/GgnWbClFmrQ1MxrIJCYcIKt21BZMwrmnIbJo01I6I2IGvgJOBbcAXwPlKqbhz1k2oneQxb968KhNUDkcy8dnZO/NINudNpE3ROnzONgy+5d3E6jtQQt59XdkrbclT+zlw7Tpad+iaUJ07ZvbGhqIje/l68nP0GTUpofrW/vVY2gd20JF9fDn6bob8+GcJ1ff5fdPpW7SItlLM0qN/xciL7kioPkPTk8mhdkYDm5RS3yil/MAzwJQmvqbBkLHYCKPEjt/uTcqU/1BI704SWXtXlgz3IqHKtXxJcC/aVGV9wfLELS9RIXziIawElaStzAyZS1Mrua7A1pjjbVZaFBH5mYgsFZGlu3fvbmJxDh9mzJhxWFtxmYqdMIiNgN2LO5z4NlzKmpXrs9beJWNih12F8Tl0fcmY2GFToejawKTEqFMhwmKnDE/S9us0ZC4pn3iilPqnUmqkUmpkhw4daivTzFIZMp1MfWZsSltyQWdOUvZyDFqWXIUjouQSt7wchKhw6GUnIV/iStOmwgQceoZxMsIBSdhScuJBkhUOyJCxNLWS2w50jznuZqU1GI/Hw969ezO20zI0P0op9u7di8fjSbUojUYIIzYbIWd2UnYUUdbyjYBLKyV/EiZ22AlF6wsnYWKHjRDK5qJUuZNieYllyfkkC1vARAc/3GnqdXJfAH1EpCdauU0HLmhMBd26dWPbtm0YV6ahMXg8Hrp165ZqMRqN3RqTU66cpKxrC1sBREOu1gAEk7A42k44Wp9KwjZcNhUCm50yyUqOe1GFCWMnYHPhSFY4IEPG0qRKTikVFJHrgLcBO/BvpVTNbS7qwOl0VtlRxGBoydisMTnl8OKWAEG/D4fr0C3SUEgHDlWeNvo4QfeiUnpxuc3pwaecSVmwbieEEjvlSbK8bCqIEht+yUrafp2GzKXJdzxRSr0BHPq2+QbDYYSdMNjs2Dx6DK2s+ACt8g5dyYWDVsBUb1t9nKDlFV1cbnNQShbiT9xSsimt5CokC0cSwgGJCqOsyTtZwT0J12fIbFI+8cRgMGgiC7eRSiVXWlKUYJ164oktqw0AKsGJHaFwSMtoc1iWVzLG5MIom4OKJC2b0GNyDoIOL+5kBWI1ZCxGyRkMaULQmu4vNjv2LD2xI9Fd9JU1JudwZ+FTzoTHvCKWITY7Pps3KWNedvSYXCCJSk6JjZDDm7xo44aMxSg5gyFNCEf2cLTZcVhKLtEp/5GJJ2J36IkdCU6pDwb9lowOKmxeHEnYekyPyTkI2LOTYnnZVAiFnbAzh6wkRRs3ZC5GyRkMaUI0urzYcXkjU/4TVXLaXSlR92JiSi4ckdHmwG/34golwZJTYbDZCDu9ZCUh5p1dBQnZHChXNlmqokp8OcPhh1FyBkOaEIpYXTY7bkvJJbqLfsRdabM58EkWjgSVXGSbMGwOgo4kWV6EQRyEkmR52VWQsDgQVw42UVQkI9q4IWMxSs5gSBPCocrxLk9OGwBCCa5ri9Zpj+yHmRwlp2x6YkcyArHaCaFsDpQrJymWl50gyuYEt94Ps7zYBE49nDFKzmBIE0LBSkvOaym5cIJ7OaqwNbvS5sBvS3xih4osSbBbY14JLlhXqnJJgriyk2J52a3ZlXaPpeSSEYjVkLEYJWcwpAmx7kpvbhsg8R1FlLUYXBwuAo5sPAmOeUUWl4s4rF1ZfAkFYtWRy/XaQHFXrg1MBLsKomwOHB5rhmoyArEaMhaj5AyGNCEcrlxC4HK7qVBOSDQ6eNAaQ3O4CDmzE55SH11CYHeAW495BRNQxMGwwimhKmsDfQlaXg6ChG1OHF5dn99Ycoc1RskZDGlCOFg5qQPQu+gnuKNIxJKzOdyEndkJT+wIhyoAPVtTXDpyQCKWV0SxY3PgyIoouQQtOYJgc+KylKY/CTHqDJmLUXIGQ5oQXdMWVXJe7AnOhlTBSndlxL2oEpjYEZERuyNqeZUnoJSCEcVud+DMSs6yCYfSE1lc2ZEZqsaSO5wxSs5gSBPCltWF3QmAT7wJ7+UYseTsDje4cvXEjgSWJQQD1pIEuwO7J/EF66FAZB2fHWfEvViW2G92WLM1s7KTswzDkNkYJWcwpAkhy6oRu7bkKuzZOBPcNisc0O5Fp8uNRKbUJ7BVWCgYUZpOnN4kKLmYxeWVawMTH5PD5iQrSTNUDZmNUXIGQ5pQuQWXtuQCDi/uBNe1RS05lzspEzsi7kW7wxndlSVQduhKJBTjos3K1jHqQglYXuGwwkkQZXfizdXyqQoTU+5wxig5gyFNiI6fWWNyAUdOwjuKqIgl53RH98NMZNPniJJz2J3RMa9AApZXMGD9ZruDLGvZRCgByysQCuGSkJ544vLgV/akxLwzZC5GyRkMaULsZsoAIUcO3gR3FFHWDiVOlyc6e7EigYkdQWsMze50JsXyClRoJS4OD94crTRJIBxQdP9PuxMRSV60cUPGYpScwZAmVHdXhlxJUHKWdehyuXFZEzsCZYdueYUsy9DhcidlzCtguRJtrizcLhflypWQ5RX0V5u8Q3KijRsyF6PkDIY0IVxt4gmuHLLEX7l+7lCwxuScLjduy/JKZLah8muFYXfn4M3R9SUSiDUUo+QAy/I69DE0v6WEI23os2UlJeadIXMxSs5gSBMisysdDm2FiDVFP5Ho4CrkJ6hsOJxOPF7LvZjADiXKsooc7mw8Lgelyp2Y5WW5K+2WkiuXrITWBvorfLo+pweAClsW9iQEYjVkLkbJGQxpQiigO2in2wuAuLWSKy8uOuQ6JeQngLZqIhM7wokoOb9WSg5PdnTMy5aAkgtZ9dndeveUCsnCnoDl5YsoOetFIWD34jJK7rDGKDmDIU2IdPgOt7ZCbJFtrhKw5AgFCIhWcpUTOxJYN2ZZck6PVkqJBmINVUQsQ63YKxIMxBqwXLF2a01gwOHFFTLRwQ9njJIzGNKEkN+y5Fy6w4+sQ0toL8egjyDaqnG7XJQpNySyVVhAKwyXpeT0riyHXl/YGuNzurW7Use8O3SlFJlUE1kTGHJ48SQYDsiQ2RglZzCkCWHLXeny6A7faY2hBRKY8u8IlFAm2dHjMvEk5F6MTDzxei33YoKBWAM+XV+WNfMzaPfiTiAcUGQ5Q2TLsZAjh6wkBHY1ZC5GyRkMaYKKKDl3xJKzlFwClpwzWEy5vVLJlSe46XPYX0YZbsSmu45Ex7wClrsyO1vLGHIkFg4oEkk9sg+mcmWTpXyHXJ8h8zFKzmBIFyKuwCyt5KI7gCQwUcQdKqUiRsn5EpzYQaAMP67KQ3t2QpZX2Fp+kGWNF4YSDAdUYbkrs1u1AUBc2XgkgD+yfs5w2GGUnMGQJtj8BwkpwWVtvxVdbO079MXbWaFiKhy50WPtXjx0peT0H6DEVllfooFYHeV7CWCPziTV4YDKDznauN+y5Fq1aqsTkrAptSGzMUrOYEgTbBUHKcGLza7/LLMtS04lYMl5wqWEXa2ix8EE3YvewD5K7G2ix2GnF28ClpezYh9FtAYRneDKxi4Kv+/QrE1VVgSAJ7cdAHa3VshlRskdtiSk5ERkpohsF5GV1ufHMXm/E5FNIrJRRE5JXFSDoWVj8x+g1FbpWnS7nNZi60NTcsFgiNaqGLLaRtMCCU7syA7sx+fOix4rVw5ZVEAkwncjcVbso8TRJnosllI6VMvLWbaLYrxgRS1PRuQFQ2aTDEvuPqXUUOvzBoCIDASmA4OAU4G/i4g9CdcyGFosjkAJ5bac6HGii633796ORwKo1t2jaYm4F5VStA7vJ5xVqeTEFQl0emhKxOvfh8/VLnpcGW380Opzl+1kv7199NiZpdvTKLnDl6ZyV04BnlFKVSilvgU2AaOb6FoGQ4vAFSiuMkkE9ESRQ91geN/3m3W97Y6MpoWcOYfsXizav5d2Ukyo9VHRtGgg1kOYAarCYTqHvqc0u1I+u0fXd6iBWHP8uyh1d4weR8Y3EwkHZMhskqHkrhORVSLybxGJ+EW6Altjymyz0mogIj8TkaUisnT37t1JEMdgyExaB3dT7sqrkpbIbMiiLesA6HDUgGiacuXgxQfhcKPr2/71lwC4O1fWZ7PWo5Ufwq4s27ZvpbWUYmt/dDTNmRWJNt54peSr8NMjtIWy1r0r64sEdk1gU2pDZlOvkhORd0VkTZzPFOARoDcwFNgB3NtYAZRS/1RKjVRKjezQoUNjTzcYWgQBv49O4R/wt+5ZJd1vzzrk2ZDh7SsoU2469SqoTHRZ210dwozNg5sWA9Cl38hoWjRGXUnj69u59kMAWveudPJEArseSjigTeuWkSV+3N2GRNM8VmDXRCIvGDIbR30FlFInNaQiEXkU+K91uB3oHpPdzUozGAxx2PXdRrqJwh5j1YCeKJIdPATXnVJ02/sJ32Tlk++I+TOPTOwoPojT26ZRVXq2LGSHHEHnbn2iaQ5vJBBr45WS/6v3KcfNkYMnVIoXiXl3CEp438rXAeg2/LRKma1wQKEEwgEZMptEZ1d2jjk8C1hjfX8VmC4ibhHpCfQBliRyLYOhJbN3y3oAcrv2q5IetHtxHcJEkY0rF9FdfU9Zr6oTmyNjXuWlRY2qb8f27yjwLWNLp0lV0qO7sjRSyZWUljJg37t8lTsGp8sTTXfnHFq08VAoTLctr/Ct82jadK60hiObUieyDMOQ2dRrydXDLBEZCiigEPg5gFJqrYg8C6wDgsC1SqlDm2NsMBwGlO/8CoCOPQZWSQ85vIe092LJu7MoVlkMmHRFlXR71qFt+vzty3+hA4oek66uku72RgKxNk7JrXjxXiZQzL7xV1VJz7KUXLiRltfit55knNrCl0PurCqf5U4lgUCshswmISWnlLq4jry/An9NpH6D4XBB9n3DQby0bd+5SnrImY2nkXsvfvnB84wo/YglPX7G6DZVJ7JEJ3Y0wvLasPR9Rv/wPCvzJjOyZ36VPE924wOxbv1mA0M2PcJa7wgGjf5xlTxvduOjje/Zs4deX9zOVnt3Bp96eZU8sTsox40ksCm1IbMxO54YDGlAdkkhOx3dohsfR1BOa4PhBm5z9f13X9Htwxv4ztadoeffUSM/OtuwgUpu567vyf7v1eyWPPpd8kCN/Miek6qBMeqKS4opmX8JIoojLnikcqcTC2+WhwrlRBpYXygYYPuj59Fe7Sd0+kOIw12jTDkeJJHwQoaMxig5gyENyPNv42DWkTXSlSsbp4QIByrqraO0+ADlj5+HCz+2aU9EQ/bE4vY2fLZhcUkxe/45lY5qDxVT/kluNasQIDunFSElDXIvBoJB1s8+nwGhjWwdfzcduverUUZEKMXToJh3KhxmxZwrGFKxjJWDb6PH0BPilitPYK2hIfMxSs5gSDEVvlI6hvcQaNOzRp64IhNF6ra8QsEgGx+5gB6hQgonPkz3fsPilsuyptTXN7EjopDyQ+vYNP5eegw7MW45t9NOGZ563YFKKT575GpGl3/MygE3MfCkWkc6GhxtfPH8Oxi552U+6XQxo6ZeX2s5vy2xmHeGzCbRiSdpzcGD+9my7gvKtq/DX/Q9jvI9qFAAERvidBPwtEdyjsDZugtZeV3JPaI77dp3ItfjRKq5UQyGpmJn4QaOEoWjw9E18ip3FCkiu+0Rcc9X4TBfPHIlY8sWsaT/bxk98ZxarxUJ31OXe1EpxedzrmZ8+ces6P8bhp08o9aylVuP1a1EPn7iDo7b+yzLO09n+Hl/qLOsz5aFox4lt+SNxxmz6X6W5x7PMVfWdKPG4rdn4UhgU+qG4POVs6NwI0XbNhA4uItQWRG2kA+xO8HhBndrHK074WrdCW+7zuS260zrbA8uh7EzmpoWpeR8ZSVsXPwG5evfodPexRwZ2ka+VI5lFOMlgBMFeFQF2VJzQL9COdlGW/bZ2lHubIPd6cJmdxESBzYVxB72W58AduXHFg5iVwHsKlj5IYjD+t+GIowQRlDYUEAYGyqaJtZ3nRdLdTWrj2uOzdSnjpOmrjNZ79czpFX/iFf8Eqru7AbVlEUABFp1rem+q9zmqnal9Ol/bmXc3hf5vNMFjDm/bgWSbY2hhetQcp8+eQfj9zzL0k7TGDntj3XWB5blVceuLItfm8v4zfexqtVxDLtido1xuOpU2Lx1KqUvF79Lwee/YbOrH4OufQqbve5tcQN2L25/UZ1lGkvR3h/4+rNXCXz7CUcUraRHsJCe0rhdZA4oLzvJpdjWigpHDja7E7HZCWMjjMT0LQEc1v92FbS+B3EQRJSi8olSCCAxT5jE5KjYFImUrvyfmLJVz6lZJsK3th6Mu/V/jfrdzU2LUnLbvl7JkI+uxKecfJ01hCVH/JjsHsPI6zmMI7ocSa4VcTlCqKKUA7u3c3D3Nsr3biVQ9D3q4A7spTvJLt9F28AuKA9gU0EchAhiJyhOAjgJipOgzUVIsgjbcwmLk7DNibI5UDH/i82mHzwVjqozUdbjoyrVn35Yw1TXJPEeruqdZJWHtx7qmr+gYmuus1yqaPyVJaZdpMaXOK0mNdMlTtvW1k9XT5c4F4v38rLL04aBg8fVqM9uWXK1zYb8/OXZjCt8mOWtTmT0zx6OL1QMbqeDElW7e3HZG//mmE33sTL3OIZf8fd6FRKAT7y1Wl6rPn2LYUtv5mv3APpf8wxir7/L8du9eGtxL25at4Ij35zBfnseHX/+Eu6snLjlYgk6vGT7dtRbrj727t7JV+/Nw7v5TQb6VzNKQpTh5lv3AJZ1ugRnx37kdOlHqyO6k9M6D4criwp/BUG/j4ri/ZTv34GvaAehgztRJbuhbB82336c/iJaB4pRwWIIh7CL7h+C4iSEg5A48ds8hCSXkM1F2OYgLE6wOUBsiE2inielBCWCUkLkLzqiCBVQ+Y+K+V75TMZTa7Fp1Z/eMleXhNu1qWlRSq53wTGsPvAf+ow6iYKs7HrL293ZtOvWl3bd+jaDdAZD46lr78WVC19k+IpbWecZQsG1TyG2+gN91OVeXP3pm+R//lu+cg2g/zVPY3M0rHvw27Nwx1FK36xfzpFv/5Qf7EfQ5eqXcTXgbxL0Anh3sOY+tt9v/Qbvs+eixIbj0pdo1b5hHWzImdPoZRgRVDjMms/epPTTuQwr+YhjJMAWWzdWdLuINsOmcPTQ4xjkcNZ6vseK8k6HzsDAWssZmo4WpeTEZqfguCmpFsNgSBpOazFzoLyq5fXVsg/o88HVbHN058hrXsbprjmTsjb0xI6q9W1Y/iE93r6MH+xH0Pmql/B467eQIgTs2eQGd1ZJ27JpLdkLphISB65LXyS3bcdazq5J0JGNu7zqLi97dv+A77Ez6Ugxe855iaNiNp2uD+X06mjjjSAYDPLF2/Npu/xhCkJfcZBsVneaQvsJP6NH/hhqzoM1pCstSskZDC0Nd7ZWcqGYHUW+XvEhnV87n/22NuRe8Qo5rdvVdnpcKsSLI2YMbfOaz+n06gWU2HLJ+ulrtM7r1Kj6gg4vnorKMbTvv/sax5Nn4sbPwWmvcORR/RtVX8iZQ7aqlG/3DzvYN+cn9Axt45tJ8+iff2yj6sOKvBAIhnA66rZ2gwE/y974N0esfJhj1Fa+t3ViacFt5J/2c0Y2QvEb0gej5AyGNMYT2TbL2lFk9cevctS7P6fY1gr7Zf+lfeceja6zwu7FaSm5tZ+9Rbe3L6cCN+qSV2nftXc9Z9ck6MzGY1lKm9d+QfZz08mmlB/Oeo7eA0bWc3ZN/NmdyN1bRrCsiN379lH677PpGdrKNz/6B/3HndHo+nDl4JQQRWWltGnVKv41/X6Wv/4vuqx6iDHqewptR7Fq9D3knzyDLnW4Iw3pj1FyBkMa06HDEYSU4N+/ncVP/z9GbLiH7fauZM14kY5H9qm/gjj4sjrR5eASFj9zF8PW380u+xG4Ln2RLo20uCKonM603lfMshfvp8+Xd+EXF3vPeZne+WMPqT5X+56wBVa+9gg91s+hMz6+Oelf9J9w1iHVZ4sswyg5UEPJ+XzlfPHff3Hk2r8zVn3PN/aerBzzMENOuqBBY5yG9McoOYMhjXF5vGyy9+CY7Y8B8KV3DL1+/nTc3UcaSkWn4eQdfIe8Df+PNVkj6H7lU412UVaRseex2Lb+gxGr/sTXzr60uvhJehxVczlEQ2nfazgsh5Hr72S7dKJs2gv07994izBCOFf/Nv/e76CLjgC27ZsNfPfeo/Tb/jwTKOJbRy9Wj51N/onnG+XWwjBKzmBIc/aN+BVrVz5K2YBpjDzzFzX2t2wsQ8+4lkVP7cbTsTcjTr8q4U59xPFnsOj7G3E53Qw763qcrpr7RzaGfvnDWbzhT0j5fgafdVN0f8xDxdFJz2rc/9Ectn/+Ih12fEif0Ca6AV9mjWbPsVfRb9yZRrm1UEQ1cOPX5mDkyJFq6dKlqRbDYDC0ICr8frb+bSRHq+8IKWGzqx97jzyFo4+7gA6H6KI1JBcRWaaUOnRzvQ6MJWcwGFo0bpeLI274mE2bvqRz7wL6tmqbapEMzYhRcgaDocXTKrc1rYYdl2oxDCnA7A5qMBgMhhaLUXIGg8FgaLGk1cQTEdkNfJeEqtoDe5JQT3NgZG06MkneTJIVMkveTJIVMkveZMl6lFKqQxLqqUFaKblkISJLm2qmTrIxsjYdmSRvJskKmSVvJskKmSVvJshq3JUGg8FgaLEYJWcwGAyGFktLVXL/TLUAjcDI2nRkkryZJCtklryZJCtklrxpL2uLHJMzGAwGgwFariVnMBgMBoNRcgaDwWBoubQoJScip4rIRhHZJCK3pFqeWESku4h8ICLrRGStiPzKSp8pIttFZKX1+XGqZY0gIoUistqSa6mV1k5E/iciX1v/p3wjQBHpF9N+K0XkoIhcn05tKyL/FpEfRGRNTFrcthTNg9ZzvEpEhqeBrHeLyAZLnpdEpI2V3kNEymPaeE5zylqHvLXeexH5ndW2G0XklDSQdUGMnIUistJKT4e2ra3fSstnNy5KqRbxAezAZqAX4AK+BAamWq4Y+ToDw63vucBXwEBgJvCbVMtXi8yFQPtqabOAW6zvtwB3pVrOOM/BTuCodGpb4DhgOLCmvrYEfgy8CQgwFvg8DWSdBDis73fFyNojtlwatW3ce2/9zX0JuIGeVp9hT6Ws1fLvBW5Lo7atrd9Ky2c33qclWXKjgU1KqW+UUn7gGWBKimWKopTaoZRabn0vBtYDXVMr1SExBXjc+v44cGbqRInLj4DNSqlk7JyTNJRSHwH7qiXX1pZTgP8ozWKgjYh0bhZBiS+rUuodpVTQOlwMdGsueeqjlratjSnAM0qpCqXUt8AmdN/RLNQlq4gIcB7wdHPJUx919Ftp+ezGoyUpua7A1pjjbaSpEhGRHsAw4HMr6TrLtP93Orj/YlDAOyKyTER+ZqV1VErtsL7vBDqmRrRamU7VTiJd2xZqb8t0f5YvR7+tR+gpIitE5EMRmZAqoeIQ796nc9tOAHYppb6OSUubtq3Wb2XMs9uSlFxGICI5wAvA9Uqpg8AjQG9gKLAD7a5IF8YrpYYDpwHXikiVWCVK+yfSZg2KiLiAM4DnrKR0btsqpFtb1oaI/AEIAvOtpB3AkUqpYcANwFMiklgo7+SQMfc+hvOp+oKWNm0bp9+Kku7PbktSctuB7jHH3ay0tEFEnOgHZb5S6kUApdQupVRIKRUGHqUZXSf1oZTabv3/A/ASWrZdEfeD9f8PqZOwBqcBy5VSuyC929aitrZMy2dZRGYAPwEutDo2LLffXuv7MvQYV9+UCWlRx71P17Z1AGcDCyJp6dK28fotMujZbUlK7gugj4j0tN7opwOvplimKJa/fS6wXin1fzHpsf7qs4A11c9NBSKSLSK5ke/oiQdr0G16qVXsUuCV1EgYlypvwunatjHU1pavApdYM9XGAgdiXEMpQUROBX4LnKGUKotJ7yAidut7L6AP8E1qpKykjnv/KjBdRNwi0hMt75Lmli8OJwEblFLbIgnp0La19Vtk0LOb0lkvyf6gZ/Z8hX7j+UOq5akm23i0Sb8KWGl9fgw8Aay20l8FOqdaVkveXuhZaF8CayPtCeQB7wFfA+8C7VItqyVXNrAXaB2TljZti1a+O4AAepzip7W1JXpm2mzrOV4NjEwDWTehx1oiz+4cq+xU6/lYCSwHTk+Ttq313gN/sNp2I3BaqmW10ucBV1Urmw5tW1u/lZbPbryP2dbLYDAYDC2WluSuNBgMBoOhCkbJGQwGg6HFYpScwWAwGFosRskZDAaDocVilJzBYDAYWixGyRkMBoOhxWKUnMFgMBhaLP8fiBexU+FQxkcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABxX0lEQVR4nO2dd5hVxfn4P++5dRsd6dKks/SmgEJiDUGCqGBQg8YkJlGDGksSNWjiN9ZoLJHEoBgLYi8/NRiN2AFBQDqCrID0srB9b5nfHzP3crfvsnf33t2dz/Pc594zM2fOe2bOnffMO+/MiFIKi8VisVgaE06iBbBYLBaLJd5Y5WaxWCyWRodVbhaLxWJpdFjlZrFYLJZGh1VuFovFYml0WOVmsVgslkZH0is3EekmIkpE3ImWxXL8iMjVIrJLRFYn4NpzROSZerjOLBH5pJL4xSJyRV3L0dSorH5t3TdMROSwiHwrIjOON4+kV26WmiMic0Uk13yKRSQQc/xOgsSaA/xKKTU4Rs45IjInQfIkFeYlLquG6T8QkXwR2Sgip1eS9kIR+cykXVwqrreIvC4i+0XkkIgsEpE+pdJcKyJ7ROSoiDwhIr6ayiEi79fkJdUoi/nVSdvQqeO695k6O2rq8LqYuDEi8l9T7/tF5EUR6RAT30JEnhKRfeYzp5z8fyMi20QkT0Q2iEhvEz5BRMIx7U6uiPwk5rzFIlIYE7cpNl+lVEvgXuDm6pZLaepcudkeV/2jlLpSKZWulEoH/g9YGDlWSp0TSVfPddMKWFuP16sTkuh5XgCsBFoDfwBeEpG2FaQ9BDwI3FVOXAvgDaAP0A5YBrweiRSRs9ANzPeBrkAP4PaayCEiMwFPTW4uGWmgdT8H6IWuu4nAjSJytolrCfwT6Gbic4AnY859AEg18aOAS0Tkskik6Yn+FJgEpAM/BA7EnL8rpt1JV0o9VUq2q2Li+lCWteYej4s6UW4ikiUiN4nIV0CeiLjNW8JnIpItIqtFZEJM+sUi8hcRWWbeMF4XkVYV5H2ZeUPIEZFvROQXpeKniMgqk8/WSEWKSHMRmSciu0XkOxH5s4i4qriPniLyPxE5KCIHRORZEWkRE3dIRIaZ447m7WeCOT5XRNaZ+10sIv1Klc9vReQrETkiIgtFxF/zkq45FdSNEpGTYtLMF5E/xxz/0JRptqnDQTW8ZqScw1Wku9HUzy4RuSJWLiPToyLylqn7pSLSM+bcv4nIDlPvK0RkfKns/aacc0TkSxGJ7UHebJ6VHBFZLyJTY+JmicinIvKAiBxENxZV3e99os0q20TknFLRXU1+OSLyroi0qSq/cvLvDQwD/qiUKlBKvQysAaaVl14p9Z5S6gVgVzlxy5RS85RSh5RSAXSD1kdEIo3KT4B5Sql1SqnDwJ+AWdWVQ0SaA38EbqzpfZa650tFm6kOisit5jku02MREY+ILBCRl0XEa4KbbN2j6+9PSqnDSqkNwOOY+lNKvaOUelEpdVQplQ88AoyNOXcycI9SKl8plQXMAy43cjjoer1WKbVeabYqpQ7V9J4qIQwc/wuFUiruHyALWAV0AVKATsBB4AdohXqGOW5r0i8GvgMGAmnAy8AzJq4boAC3OZ4E9AQEOA3IB4aZuFHAEZO/Y67b18S9CvzD5H8C+g31F1Xcx0kmLx/QFvgIeDAm/mfAevTbzSLgPhPeG8gz53rQf+wtgDemfJYBHdE9mg3AlRXIMA7IruQzrop7mBMpy/LqxoQp4KSYNPOBP5vfQ4F9wGjAhf6zZAG+GjwPZwOFQFoVafYAA0x5PhMrl5HpoKljN/As8HzM+Rej3/LcwPUmL39MGQSA8019/BbYBnhM/AWmLhxguqm7DiZuFhAErjZ5p1RyD7PMdX5myuqXaIUiMc/5VvN8pJjjuyrI6+/A3yuImwpsKBX2CPBwFfVwBbC4ijQ/AnbHHK8GpscctzH10ro6cgCPAtdS6n9cw/akP5CL/i94gftMOZ8e+4ybMn3LPCuupl736J6ZAtrFhJ0PrKkg79nAkpjjA8ComOM/AIfN7xNN3r8BdpgyvR1wTPwEoBjYa+IeIOb/b+5/v7nGp8CEcuTpYcp/SE2fGaVUnSq3y2OObwKeLpVmEfCTmBu9KyauvykYF1X8KYDXgN+Y3/8AHignTTugKPbhBC4CPqjhff0IWFkq7A30m9NXmAYfuBV4ISaNg1beE2LK5+KY+HuAuXVUF3Moq9wuL5WmMuX2GPrNLzb9JuC0al5/ucn/mirSPQH8Jeb4JMoqt3/FxP8A2FhJfoeBwTFlEPundYDdwPgKzl0FTDG/ZwHbq3mvs4AtMcep5h7axzznt8TE/wr4z3HU6SWx92PC7gTmV3FepcoN6Gye04tiwrYCZ8cce8w9datKDmCEKUs3tVNutwELSpVrMSWV2xvAh8BDGIXS1Ose/QKrMC95JuwMIKuctIPQ5uvxMWHPAK8AGej/41agyMSdYvJ+C23a7gZsBn5m4tuj23EH6I7uGPwjJu/RJl8f+oU5B+hZjlz3meu8VtOyqssxtx0xv7sCFxizVraIZKPfwjpUkP5b9J+oTLddRM4RkSXGJJiNbuQi6bqgK6A0XU1+u2Ou/w90D65CRKSdiDwv2ox5FF3ZpWV6HN3jfFgpVWTCOpp7AEApFTb31ynmvD0xv/PRNuv6YkfVSaJ0Ba4vVXdd0PdYHUYCM4A5IlLZuEvHUnKVJ2OFZWbMvBuMmTcbaE7JuormZ+pjZ+QejMlrVcz9Dazo3GoQlVFpUw+UrNt41Hsu0KxUWDN0A3FciB6zeRfdY1hQybUiv3Mqk8OYrf6OfvEMHq9chhLPhinXg6XSjEE30Hcp0yrG0FTrPjcmvsK0xvT/DrquPo6JugYoAL5Gj8MuQJcdJhy02TJbabPlP9DtMUqpPUqbK8NKqW1o61XUdKqUWqqUylFKFSk9Fvdp5NwYuU4wMpyqlPpROfdXKXWp3GIfsB3onluLmE+aUip2gLtLzO8T0V382MFJRHtpvYzW5u2UUi2At9Emysh1elKWHeieW5uY6zdTSg2o4h7+z9xHplKqGdr0FbkWIpKOHqifh268I+OEu9BKIZJOzP19V8X1yiAi46Wkx1HpT+mxpepQ+s+fj37TjNA+5vcO4M5SdZdaqgGs+EK6oXkNbSLpUEnS3eieQ4QuFSUsjSmDG4ELgZbmuThCTF3F5mca3s7ALhHpin5BuQpobc5dW+rc0uWVaNYBPUQkIyZssAmvMSLSEq3Y3lBK3VnOtQaXus5epdTBKuRohu65LRSRPcAXJn7ncTyzJZ4NEUmhrKPBu8BfgPdFpF2puCZZ90qPke6mbP1F05oyeA9tnXm61PmHlFIzlVLtTVvpoIdTQFtviilZPpWVlaJyfaMoWe6gHWGOlFK41aa+pgI8A0wWkbNExCUiftGuorGN2cUi0l9EUoE7gJeUUqFS+XjR3dj9QNAM2J4ZEz8PuExEvi8ijoh0EpG+Sqnd6If/fhFpZuJ6ishpVcidgX77OSIinYAbSsX/DViulLoC3T2fa8JfACYZOTzoMaAi4LOqCqo0SqmPVUmPo9Kf46r4UqwCfmzq5mz0WGaEx4ErRWS0aNJEZFLkzyXa0WN+FfcQ6dF6K0n2Arru+pln4NYayJ+Bts3vB9wichtl326Hi8h5oj3eZqPrYwl6DFaZcxHtDTawBteud5RSm9F19kfzX5qK7rW8XF76yH8ObR50zDkeE9cMPUTwqVKqPLfrfwM/Nf/NFsAtaBNxVXIcQfeOhphP5K18OLDUXHuxVG8qyEvo9uMU0U4icyjbEKKUugd4Dq3gYntfTbbu0fV3i4i0FJG+6DHB+QCmTfsf8IhSam7pE00b2do8P+cAPwf+bOTIBxaivS8zTFv+c+D/mXMnikhX02Z0QXvqvm7iWhhd4Bft0DYTOBX4TykRPOi6Oi7qRbkppXYAU4Dfox+kHWhFEXv9p9GFvgfwo7ujpfPJMeEvoMdUfoy2tUfilwGXoQcvj6Bt8JEe1KXoxnW9OfclKu9JgB4gHWbyegttfwa0VybaCeKXJug6YJiIzFRKbUL38h5G9z4nA5OVUsVVXC9R/AYtYzYwE93TAkAptRz9h3gEXW5bMN5Whi5ok0JVVPrmppR6Bz1e8oG5xhITVZ2HexH6j7EZbQ4upKw56XW0w8Bh9LjFeUqpgFJqPXA/8Dl68DuzmvdTp4ieq1imwYlhBrpndBjdcJyvlIo00jNFJPZN/hK0GekxYLz5/biJm4o2HV9WyiJwIoBS6j/oMeEPgO3o8v1jVXIozZ7IB6NA0L2+yP+gWs+OUmod2qnjeXRPJBft5FTm2VBK/Qn9/L4XY0lpynX/R/RQzbfo9vBeU6egx2B7oK1O0bqPOXc42p8gB90rnmnqIsJV6LrYhS7D59Bj56Ad0T5DO+h8ZvKJtOketJKMOJRcDfzIKO5YXFThYV0ZEU+ehCJ6YukzSql/JVoWS/Uxb9GrgUFKu5FXlnYXcKNSqlqrRYieOrEW7aRT2zEbS5Jh3vRfUEqdchznpqNfxHqZ8RxLI0REbkQr7lHHc75docRy3CilipVS/apSbIab0aaUFRUlEJGpoldUaAncDbxpFVvjRCm1syaKTUQmi0iqiKShx9zXoD1/LY0QEdmP9qK8vaq0FdHklZuUXKoq9lOZWcBSQ5RS/1ZK9VJKDa8k2S/Q5qatQIhjJt+kwT4vCWMK2vy1C+1oMKMcr8g6xdZ9/aGUaquUGqCUeut480gKs6TFYrFYLPGkyffcLBaLxdL4SJaFQAFo06aN6tatW6LFsFgsFks9smLFigNKqYoWfz4ukkq5devWjeXLlydaDIvFYrHUIyLybdWpaoY1S1osFoul0WGVm8XSgLAOYBZL9bDKzWJpIGzfsZ3X/jiZ5es2VZ3YYmniJNWYW3kEAgF27txJYWFhokWxNCD8fj+dO3fG42nwG0BH2b70NaY6H/PF+3+CAdVa6MViabIkvXLbuXMnGRkZdOvWDZEya6VaLGVQSnHw4EF27txJ9+7dEy1O3HAcvaG5O2Rf9CyWqkh6s2RhYSGtW7e2is1SbUSE1q1bN7revhu9SYYKJc/62x+u3MDrt57D/r27Ey1KlH+9s5QH/v5oosWwJJikV26AVWyWGtMYnxknaPaHTCLlVvzenUxxfcbhLxYmWpQo/T+bzbX7fg9Hk0fhWuqfBqHcLBYLiDFHupLILOmY3mQwVHrrxcQx0MkCIJC7v/KElkaNVW7VQES4/vrro8f33Xcfc+bMSZxAVbB48WI++6zG+6KW4Oyzz6ZFixb88Ic/jJNUltqijALxhvITLMkxwm69gXtxQW4VKeuPIrQTUd6RgwmWxJJIrHKrBj6fj1deeYUDBw7ENV+lFOHwce/FVyHxUG433HADTz/9dNUJLfWH2Zjeq457c+L4404BIFyYk2BBjhFRbsU5Vrk1ZaxyqwZut5uf//znPPDAA2Xi9u/fz7Rp0xg5ciQjR47k00/1Rr5z5szhvvvui6YbOHAgWVlZZGVl0adPHy699FIGDhzIjh07uOGGGxg4cCCZmZksXKjHLhYvXsyECRM4//zz6du3LzNnzix3Au9DDz1E//79GTRoEDNmzCArK4u5c+fywAMPMGTIED7++ONKZbzkkks4+eST6dWrF48//ng03+9///tkZGRUWi4vvvgiAwcOZPDgwZx66qmAdgC67LLLyMzMZOjQoXzwwQcAzJ8/nx/96EecccYZdOvWjUceeYS//vWvDB06lDFjxnDo0CEAHn/8cUaOHMngwYOZNm0a+flleyljxoxh3bpjGwJPmDChSSzbpsLJp9w8omVyirITK0gMxUo7gQfyDidYEksiSfqpALHc/uY61u86Gtc8+3dsxh8nD6gy3a9//WsGDRrEjTfeWCL8N7/5Dddeey3jxo1j+/btnHXWWWzYsKHSvL7++mueeuopxowZw8svv8yqVatYvXo1Bw4cYOTIkVFFsXLlStatW0fHjh0ZO3Ysn376KePGjSuR11133cW2bdvw+XxkZ2fTokULrrzyStLT0/ntb38LwI9//OMKZfzqq69YsmQJeXl5DB06lEmTJtGxY8dqld0dd9zBokWL6NSpE9nZ2QA8+uijiAhr1qxh48aNnHnmmWzerHePX7t2LStXrqSwsJCTTjqJu+++m5UrV3Lttdfy73//m9mzZ3Peeefxs5/9DIBbbrmFefPmcfXVV5e47vTp03nhhRe4/fbb2b17N7t372bEiBHVkrlBY5SbL4mUm9vsU+sqTh6zZCE+AEL5Vrk1ZWzPrZo0a9aMSy+9lIceeqhE+HvvvcdVV13FkCFDOPfcczl69Ci5uZX/0bt27cqYMWMA+OSTT7joootwuVy0a9eO0047jS+++AKAUaNG0blzZxzHYciQIWRlZZXJa9CgQcycOZNnnnkGt7v8d5XKZJwyZQopKSm0adOGiRMnsmzZsmqXydixY5k1axaPP/44ITMe9Mknn3DxxRcD0LdvX7p27RpVbhMnTiQjI4O2bdvSvHlzJk+eDEBmZmb03tauXcv48ePJzMzk2WefLdFDi3DhhRfy0ksvAfDCCy9w/vnnV1vmBk1Yb0qeQkGCBTmGE9aK1gnmJViSYxQas2QoiUyllvqnQfXcqtPDqktmz57NsGHDuOyyy6Jh4XCYJUuW4Pf7S6R1u90lxtNi51ylpaVV63o+ny/62+VyEQwGy6R56623+Oijj3jzzTe58847WbNmTZk0FckIZV3ma+JCP3fuXJYuXcpbb73F8OHDWbFiRaXpY+/HcZzoseM40XubNWsWr732GoMHD2b+/PksXry4TD6dOnWidevWfPXVVyxcuJC5c5vIRshmzC1VFYJSkATTHcQoXHcSKbdIqYQLk0cmS/1je241oFWrVlx44YXMmzcvGnbmmWfy8MMPR49XrVoF6O17vvzySwC+/PJLtm3bVm6e48ePZ+HChYRCIfbv389HH33EqFGjqiVPOBxmx44dTJw4kbvvvpsjR46Qm5tLRkYGOTnH3lorkhHg9ddfp7CwkIMHD7J48WJGjhxZrWsDbN26ldGjR3PHHXfQtm1bduzYwfjx43n22WcB2Lx5M9u3b6dPnz7VzjMnJ4cOHToQCASi+ZTH9OnTueeeezhy5AiDBg2qdv4NGmOWdIkiXJwkHpNKv8C5g0kiD+AWLZMqsj23poxVbjXk+uuvL+E1+dBDD7F8+XIGDRpE//79o72IadOmcejQIQYMGMAjjzxC7969y81v6tSpDBo0iMGDB/O9732Pe+65h/bt21dLllAoxMUXXxx13rjmmmto0aIFkydP5tVXX406lFQkI2iz5sSJExkzZgy33nprdLxt/PjxXHDBBbz//vt07tyZRYsWAXDbbbfxxhtvANqjMjMzk4EDB3LKKacwePBgfvWrXxEOh8nMzGT69OnMnz+/RI+tKv70pz8xevRoxo4dS9++faPhb7zxBrfddlv0+Pzzz+f555/nwgsvrHbeDR51zBJQkHckgYLEEE6+6QkR5UbA9tyaMpJMW2iMGDFClfZ627BhA/369UuQRI2bOXPmlHA8aWw0tmfni7k/Z+Qe7U178KdLad2lbxVn1D1L7/0Ro/M+YJ/TlhNu25JocQD4ek4mvdjON61Po8fVbyRaHEs1EJEVSqm4eoXZnpvF0lAIH1sFpChZem6mN+lXybNqigstkxNInt6kpf5pUA4llviSzKusWMohRrkV58V3SszxIsbJJUUlkQenWRLMlUROLpb6x/bcLJaGQsyYW6AguZSbhyAEk2NB50jPzZNE44CW+scqN4ulgSDq2FSQQEFyeAJGlBsASTKR21FWuVmscrNYGgwSDhFWehZXskxQliTsTUbMkr5w8phKLfWPVW4WS0NBhTmKXoU/WRYqdmJ6boW5iVduSqmoWdIqt6aNVW7V5LXXXkNE2LhxY4VpsrKyGDhwYJ3KsWrVKt5+++1a5XH55Zdzwgkn1LmsljijQuQa5aaKksMEGGuWLEwCD86wAicy5pZE44CW+scqt2qyYMECxo0bx4IFC8qNL29prJoSqsaGj/FQbrNmzeI///lPrfKw1D+iwgTFS5HyoJJkfEtUmIByAVCcBGbJQCiMm+QbB7TUP1a5VYPc3Fw++eQT5s2bx/PPPx8NX7x4MePHj+fcc8+lf//+gFZyM2fOpF+/fpx//vnRLVvef/99hg4dSmZmJpdffjlFRXrB2W7dunHTTTcxbNgwXnzxxRLXLb2lTHFxMbfddhsLFy5kyJAhLFy4kLy8PC6//HJGjRrF0KFDef311wG9xcyUKVOYMGECvXr14vbbb4/me+qpp9KqVatK7/nDDz9kyJAhDBkyhKFDh5KTk4NSqsLteU477TSmTJlCjx49uPnmm3n22WcZNWoUmZmZbN26FYA333yT0aNHM3ToUE4//XT27t1b5rozZszgrbfeih7PmjUrukhyU0dUCByHXPxIkvTcHBUix/QmA/mJV27BsMIhzFGl95mzyq3p0rDmub1zM+wpuzBwrWifCefcVWmS119/nbPPPpvevXvTunVrVqxYwfDhwwG9buTatWvp3r07WVlZbNq0iXnz5jF27Fguv/xy/v73v3PVVVcxa9Ys3n//fXr37s2ll17KY489xuzZswFo3bp1dB3KWEpvKeP1ernjjjtYvnw5jzzyCAC///3v+d73vscTTzxBdnY2o0aN4vTTTwdg2bJlrF27ltTUVEaOHMmkSZOqvTXMfffdx6OPPsrYsWPJzc3F7/fzyiuvVLg9z+rVq9mwYQOtWrWiR48eXHHFFSxbtoy//e1vPPzwwzz44IOMGzeOJUuWICL861//4p577uH+++8vcd3IdjaTJk2iuLiY999/n8cee6xaMjd2RIUI4yKfFJwkWVpKCJMvabQiJykcSkIhhYcwh8mgGQVQnBzlZKl/6rznJiJni8gmEdkiIjfX9fXqggULFjBjxgxA9yxiTZOjRo2ie/fu0eMuXbowduxYAC6++GI++eQTNm3aRPfu3aPrS/7kJz/ho48+ip4zffr0cq9b3pYypXn33Xe56667GDJkCBMmTKCwsJDt27cDcMYZZ9C6dWtSUlI477zz+OSTT6p9z2PHjuW6667joYceIjs7G7fbXen2PCNHjqRDhw74fD569uzJmWeeCZTczmbnzp2cddZZZGZmcu+995a7nc0555zDBx98QFFREe+88w6nnnoqKSkp1Za7UaPCKHEoFH/STFB2VIh8VzoAoYLE95IC4TAuwuSJ3nkjXJh4mSyJoU57biLiAh4FzgB2Al+IyBtKqfXHlWEVPay64NChQ/zvf/9jzZo1iAihUAgR4d577wXKbl9zPFvIVLQFTnW2lFFK8fLLL5dZeX/p0qW12s7m5ptvZtKkSbz99tuMHTs2unByRVRnO5urr76a6667jnPPPZfFixeXu0KK3+9nwoQJLFq0iIULF0ZfKizHem5FjjdptphxEaLQ1RxCEE6CVfiDIYWLEAVOOoShKP8I9tWoaVLXPbdRwBal1DdKqWLgeWBKHV8zrrz00ktccsklfPvtt2RlZbFjxw66d+/Oxx9/XG767du38/nnnwPw3HPPMW7cOPr06UNWVhZbtuiFZZ9++mlOO+20Kq9d3pYypbezOeuss3j44YeJLIC9cuXKaNx///tfDh06REFBAa+99lq0R1kdtm7dSmZmJjfddBMjR45k48aNtdqeB+DIkSN06tQJgKeeeqrCdNOnT+fJJ5/k448/5uyzz652/o0dR4UIi0ORKxVvkmwxIypM0JVKSElSeHAGgiHcEqbIrXuTRUkwDmhJDHWt3DoBO2KOd5qwKCLycxFZLiLL9+/fX8fi1JwFCxYwderUEmHTpk2r0GuyT58+PProo/Tr14/Dhw/zy1/+Er/fz5NPPskFF1xAZmYmjuNw5ZVXVnnt8raUmThxIuvXr486lNx6660EAgEGDRrEgAEDuPXWW6Pnjxo1imnTpjFo0CCmTZsWHW+76KKLOPnkk9m0aROdO3eO7k83d+7c6HY4Dz74IAMHDmTQoEF4PB7OOeecWm3PA3otywsuuIDhw4fTpk2baPjy5cu54oorosdnnnkmH374Iaeffjper7fa+Td2RIVQ4iLgSsUTTg7l5hDGcbvJIyUplFvEfF/szgAgkASmUktiqNMtb0TkfOBspdQV5vgSYLRS6qry0tstb+LH/PnzSzieNEUa27Oz7v/GI4Q55O1E7/wvk2KLmW1z+pHboi+tD6/icLuxDPjVMwmVZ8vug5z0jx4sbjGVCdmvsmvcnXQ8vdzmxpJENMQtb74DusQcdzZhFoulhogKo3AIutNISZaemwojjosC/DhJYCoNBvT4btjXHEieZcos9U9dK7cvgF4i0l1EvMAMwO4eWA/MmjWrSffaGiOCNksqbxopFEASbDTsEEaJmwJJxRVIvAkwHNLKzfGlE1ZCyHpLNlnqVLkppYLAVcAiYAPwglKqrP931fnEWzRLI6cxPjOOmQqgPGm4CUOwKNEi4UJPLC9y/LiToecWDADg8frIx4eyPbcmS51P4lZKvQ0c93pRfr+fgwcP0rp16xq5sluaLkopDh48iN/vT7QocUVUGMQFPu0sES7MwfEk9h4dtEzFThqe0IGEygIQMj03n9dDHn6UncTdZEn6FUo6d+7Mzp07SUZPSkvy4vf76dy5c6LFiCsOIULiRnzazb0g7whpGW0TJk84rFfgV46b4iSZnhCZU+n3eslTfsQuv9VkSXrl5vF4SqwAYrE0VVwqiBIXLr9WboV5Ryh/+n/9EFJ6wjTiIuhOxVec+C1mwiG9C4DP5yMfP+lJskyZpf6xCydbLA0ElwqhHDcufzMACvMSO0E5ZHpuOA4hdxp+lfieW9h4S3q9XvLw4wQSL5MlMVjlZrE0EBxChMWNJ0Urt+JkUW7iJuxJw08xhGq/9VOtZDL7tzkuD0VOStIsU2apf6xys1gaCG4VQjkuvKnaoSTR+6eFlMJDCOXyEPYaA2mCzYAqpL0lHbeHYiclKTw4LYnBKjeLpYHgEEKJG2+q7rmFChLr5h4KKdwEwXGDV48DkuAluEIR5ebyUJREy5RZ6h+r3CyWBoILPebmT4+svpHYnlswFMIlChwPjvHgDCZ4Xlk4YpZ0ewm60vCFrHJrqljlZrE0ENxob8kUo9wSvVdZRJEolwfxa1NpYf6RRIpE2EwFcLndhNwp+FVhUqzkYql/rHKzWBoIkTllaampFCsXKsFzuCLOGzge3Ea5FecmtjcZHXNzeQl50vUk82BhQmWyJAar3CyWBoJLhcBxk+pxkUcKJFi5qYhyc3lwpWjlVpTgcUBl5rk5Hi/Kk6oDk2ArHkv9Y5WbxdJAcJsxN7fLIR8/ToKVW2QdR3F58JrpCcEEbw4aMjK53V6Uxzi52FVKmiRWuVksDQGl8EgIHA+AXoU/wXO4wmbhZuW48aRGNgdNDrOk2+MFX0S52bluTRGr3CyWBoAK6x2mcVwAFDopuBK8+oYyzhvi8uBPjXhwJtpUqmVyu495cKoiuzNAU8QqN4ulAXDMeUMvB1vspOIJJbZHEooZc0tJN3PvEjw9IbK2pMvjia7BGUjwOKAlMVjlZrE0ACLjWyqi3FypeBM8hysYMIrE7SXN7yFP+RJuAlShSG/Se2wNzgSPA1oSg1VuFksDIBxx3jDKLehOxRtO7Cr8gWI95ubyeEnzubUHZ6I9E0PHeriRccBiq9yaJFa5WSwNgGBAKzdc2qEk5E4jJcHKLRTTc0v1uMhTvoTvn6bCZuFmx40v4uSSb70lmyJWuVksDYDi4ogiMcrNk0YKiVVuweAx5eZ2OeRLCk6iPTgjuxK4PHiNk0uilwSzJAar3CyWBkBxQJsAHZc2SypvOh6CYNzxE0HEocTj9QJQJCm4Er05qJkKgOMhNSWVoHIIWeXWJLHKzWJpAER6bm63ViSRVfhVAse4QsZU6jIyFTmpuBPs5CLhiPnWTbrfQx7+hJaRJXFY5WaxNAACRXp9RMfjA0DMHK6iBG5YGja9yUjPLRk8OJ2AMdV6Ukn1uqxya8JY5WaxNACCRdrc5/j0eomOWag4Pzc7USKhzCTy6HwyV2rCt5hxQvkEcIPLQ7rPTb7yIwGr3JoiVrlZLA2AkOl9OMYc6TYKpSiRbu7GM9Jj5pOFPGn4VGKdXNzBfIrED0Caz00ufsQuv9UkscrNYmkAhEzPzeVPA8BtFipOpHJTZqmt1Ayzv5wnLeH7p7mCBRQ5KQB43Q4FpCR8DU5LYrDKzWJpAISNcov02DypWrkFEqncjLkvspdb2JOGg0roKiWecAEBV0r0uMjx4w7a3bibIla5WSwNgMiCxJGJyb40M4crkavwF+Xp8a2oB6fuVSZUuYUKCLhSo8fFTlrCPTgticEqN4ulARAs1AojLU0rt5S0yELFiXOWcAK55HOsl0QSrMLvUwWEYnpuAXdKwj04LYnBKjeLpQEQUWLpZnzLZ5RbOIETlF2BPIocf/TY8Zm1HBO0Cn8gFCYlnE/YkxYNC7pS8SV4mTJLYrDKzWJpCBQdIaBceI1DSXpqGgHlSmwvKXCYPFfz6LE7RSu3gtwjCZHncF4xbeQIobQTomGhiJNLOJwQmSyJwyo3i6UB4Ck4wCFpDo7+y6b5PeST2C1mmgUOku9rGz2ObDFTnJcY5XYwp4DWHIX0dtEwFenFJXpZMEu9UyvlJiJzROQ7EVllPj+IifudiGwRkU0iclbtRbVYmi7ewgPkuFpGjz0uhzxSErYKv1KKluFDFKcc6yV5U/SYW6LMkocP7sUtYTzNjim3qInSznVrcrjjkMcDSqn7YgNEpD8wAxgAdATeE5HeSqlQHK5nsTQ50ooPUuBrUyKsIIELFe86eJgOHGV3847RMK/x4AwkyIPz8M7NALTo0D0aFlmmzCq3pkddmSWnAM8rpYqUUtuALcCoOrqWxdKoUeEw7UK7KUzrWCK8SBI3QXn316txRJHSaUA0LLrFTKIcSvasB6D5iZnRsKhyS+DYpCUxxEO5XSUiX4nIEyISsZt0AnbEpNlpwsogIj8XkeUisnz//v1xEMdiaVzs2plFM8lHTuhbIrzIlbhV+I9uXQLACb1GRMNSoh6ciTGVpuz9knxJRVp2i4a5jHILJEjhWhJHlcpNRN4TkbXlfKYAjwE9gSHAbuD+mgqglPqnUmqEUmpE27Ztqz7BYmli7F3/EQDNewwvEV7sJG4V/vTtH7DXaUfzTscUblqqnyLlSYgH5/6jBWQWLue7VqPBcUXDXcaDszCRa3BaEkKVY25KqdOrk5GIPA78P3P4HdAlJrqzCbNYLDWkeNN75JJC18xTS4QH3Gn4CutfuW3evJ6hRctZ13kG7USi4WleN3n4UAlwcvn8Pws4Vw6yZ+jUEuGeyBqceUfJqHepLImktt6SHWIOpwJrze83gBki4hOR7kAvYFltrmWxNEWOHs2m/+H/sbnZyXh9vhJxIXcqflW/yq24OEDOS9cQFoce595QIi7N5yZP1b8H5zfbtzNs3f+xz92R9if/uEScx/TcEjUOaEkctfWWvEdEhgAKyAJ+AaCUWiciLwDrgSDwa+spabHUnDXPz2EseTSbcE2ZuOgE5Xri6JFDbPrnLEYWf8GawbeQ2a57iXiv2yFP/DiB+lO469auxPPyLDrLYY6c9yq4PCXiIyu52DG3pketlJtS6pJK4u4E7qxN/hZLU2bV+wsZ8918lrc8ixHDJpZN4E3HRwBCgTKNejwJBEMse+cpuq/4C8PUflb0mc3wqTeUm7ZIUkivh+kJe/YfYO0rd3PKrqcIiZu9k56iS/9Ty6RLMQtNhxK4TJklMcRjnpvFYokzX739T/ou/T3b3D3o+9N/lp/Ipycoq6IcJLVV3GUIBEN8/u5C2n1xL2PVN+xwdWbr2S8yfOQZFZ5T6KTSog6nJ+w+cJBVrz7AqJ1PcbocZX3zcXSe+Xe6tOtabvrU1FSKlJtwkd2Nu6lhlZvFkkSEgwFWPnENw3c9x1rPQLpc+SLpGS3KTSu+yIalOfjjqNyCwSBL//Msrb58mFPDX7PHace6kXfR/6wrkCp6iAFXCp7Q4bjJEmH33r2sfe1+hu1awDlylK8zRhA8Zw79B4yv9Lx0n5s8/AmbnmBJHFa5WSxJwtEDe9j5r+kML1zFJ63OY8TPH8Pv91eY3mU2Ls3PycbfpvyeS00IBYMsf3sebVc+wli1nd1Oe9YP/xP9zvkF7d2+qjMAAq40vHEcc9u7ewcbXruXYXte5AzJZ1Oz0YTOupleA79XrfPTfG7y8UOxNUs2NZqEcivMz+HAd9+QfWgfxTmHCBUcIRQK4oiDxyWINxXH3wzHn4EvvQWpGS1JTW9BekYzPG5X1RewWGrJN2uXkvLyxZwUPsRnmXcwdto1SIybfXlEFiouquVCxeFQmFWL5nPCF/cyWu1iu6sLa0fcx4AzZ9GhhmN5IU8a/qLaK7dDB/ax/qU/MWz3Qk6lmHUtTuOEH/yOPn3G1CifNJ+L/cqPu56WKTty9Ai7t64le+dGQoe2IQWHkcIjeMKFhMUFjhvxpaNS2+Ckt8HbvD1pLdvTvG1HWrTtFN1p3VJ7GpVyKy4qZNu6ZRze+gXOntWk53xDm+LvOIFDdEZPtqsJISUcIZV8SaHASaPISSXgSkUcF2EEJQ5EvxUoZb5BCINSCAqU2W7DHEfiAESF9TkoJJLe5KXTRj46T/1t0tfgXmqStjxUrU6u/tm1uk5t847jxctmVXnmndVeciSdrZNf4pQR5TiPlEPEzb2wFsptzSf/D+8HcxgW+pptTldWjv4bQ868BHGO76UuHPHgVAqqUM7lkZ+fyxcL72Fw1jxOIY9VLb5Ph8m3kXnS4OOSx+d2kU8KLepobcl9e3ez5fM3CH/7Oe2OrKJHKIu+cqyui5WbHEmnSHw4hHGpIKkqnzQpKje/PPwccVqS425Jvrs5YccHLh9hx01I3IgK46gQjgohKoCEQ4gK4qggEg7hqKCJ198uzLcK4lIhHEIIYZQS80QKSiTamoQxbVokDkFJzO+Y1kiJ8J37RE773et1Ura1pVEpt283LKfPG5MBOKrS+M7ble0tR/NN8244LbuS1vIE/Bmt8aa1wOPxEAqHCQTDBIvydW+uIIdA/hH9u/AoqjAHKc5BinNxB3JwB/Pwh3JRwTCCwiGMKP2tEKNBdIwCEP078iAA+lhEx4mAOdbn67QI5qFyYtRZ5EGL5BPJuxrNaLwabSn3Z4Uh1Y+tKu+aUeb8SgJqfK0qTjjeF47N3qF0Ou/P9OtQffOiN9VsMXMcbu6Hdmex49mrGJz7MXulNcuH/JmhP/wl3d21axKUNx03IQgWgadik2p5rFr8Cm0/vJnT1F7WpY3i6A//xLD+NeuplUeR48cVjJ+p9Jtvvmb7R8/Qeuf79Aus4xQJk4efb1P682Xb7+PrNJCWXfrR9sS++NOa07qUkldKkZN7lJyDezh6cDd5h/dQlL2HUM5enLz9uAsOkFp8iBZFu3GpAK5wEDcBPAQJ4xDETQgXYXEIiZsw+lv/dhESNwHxE3a5CYsLJW7C4kY5+ltEcMSosOiLZxitk1XMCzfRF/NjafVLeCQ+6E3eVaUalXLr1n8EK3b/jY79xtD+xN70c+x2dZbGiz/dLFRcg6WlVDjEly//lT7r7qe3CvFxt18xcvofaJcaH3OYeGO2mKmmctu/dyffPDOb0Tn/ZYfTiY2nP82AsefGRR7Qy5S5Q7VbtzYnN5fV7z9HyrqFDClaQQ9RZLm7s6rrZbQZPoWuA0+hfzVNuCJCRkZzMjKa07Fbn1rJZamYRqXcPF4/w8+ZlWgxLJZ6wW8mKFd3Dtf2jSsoePkqhgfW85V3KM0ueJjxvTKrPrEGiE+bSgMFR/Gkta40bTgUZunrf6fvV3cxVOWz9MQrGDLzDnxmt/F4Uew6/jU4d+zex/o3H2TId88xTg6zT9rwVfef0vV7V9DtxH50i6uklnjSqJSbxdKUSDU9t1AVbu5FhXmsfPZWhm2fT56k8vng/2P0ub/EccXfshFZqLggJxtPm4rTZW3+iqMvXc3JxavY5OlPyrRHGN13eMUn1IKgOxVfYc3G3NZ/vZVv3/krpxx8hbMkn6/ThpEz7gF6jp7MCS7bbDYEbC1ZLA2UtLQMQkoIV7IK/4bP/h/p/72BMWoXS5udQY+LH+TkdjV1rao+br9Wbvm52TQrJ76wsIDlz93OiG//RWtxs2LgLQw777rjdmCpDoW+1mQU5ECwGNzeStOu+mo1+9+9j/E579CXIJtbnUbg7Jvp1efkOpPPUjdY5WaxNFBSfW6OkkooP7tM3L7dO9i24HpGH13Ed9KOVROeYPSEaXUuU0ZrvW3jkf07aB8TrpRi+Ydv0vbD3zFO7WR1xql0mfkwwzt0q3OZwukdIBvI3QstupSJV0rx5bKPyP/gAU4u+BAlDls6TOLEyTfTt1P/OpfPUjdY5WaxNFBEhL3uDqTnbIuGHT64n02v/oVBO55hGEGWdp5F5o//TKe0+tnwpW3XfgAU7dkMaMWx7stPKX73dkYWLWO3nMDaCY8zeMKF9SIPgLdFR9gJhYd24I9RboVFxXzx/kukr/wHwwOryMPPxq4z6XnujfRrc2K9yWepG6xys1gaMAfTezPgyGJWLXqK4o3vMvDQfxkjRaxIP40OU//M6JMG1as8HU5ow3bVjvSsRXz+Qkuaff0yAwPrOEIaX/a6hsxpN9Ghnicqp3XJhLWwb8OnnNBxGBtWfMiRla/R/8A7jOcwB6QVK/tcS//J1zAwPf5rdFoSg6gaTLCta0aMGKGWL1+eaDEslgbDmiX/pd87F+KWMAXKy5qWp9PujN/QdUDt54cdL+/O/xNnZt0HwE6nA3tPmkG/H15NarPKvSfriqOFAXb8ZSR9yaIYDylSTFA5bMgYg2fYTPqcegFSzeXFLHWDiKxQSo2Ia55WuVksDZtvN68m58AuThoyHn+c5qvVBqUUW9atINXnpmPPQUgSzDddvWY1uYsfwuv1ktJjDCeNnoS/WSXunJZ6xSo3i8VisTQ66kK5Jf6VymKxWCyWOGOVm8VisVgaHUlllhSR/cC3cciqDXAgDvnUB1bWuqMhyduQZIWGJW9DkhUalrzxkrWrUiquqzAnlXKLFyKyPN7227rCylp3NCR5G5Ks0LDkbUiyQsOSN5lltWZJi8VisTQ6rHKzWCwWS6OjsSq3fyZagBpgZa07GpK8DUlWaFjyNiRZoWHJm7SyNsoxN4vFYrE0bRprz81isVgsTRir3CwWi8XS6GhUyk1EzhaRTSKyRURuTrQ8sYhIFxH5QETWi8g6EfmNCZ8jIt+JyCrz+UGiZY0gIlkissbItdyEtRKR/4rI1+a7ZRLI2Sem/FaJyFERmZ1MZSsiT4jIPhFZGxNWblmK5iHzHH8lIsOSQNZ7RWSjkedVEWlhwruJSEFMGc+tT1krkbfCuheR35my3SQiZyWBrAtj5MwSkVUmPBnKtqJ2Kymf3RIopRrFB3ABW4EegBdYDfRPtFwx8nUAhpnfGcBmoD8wB/htouWrQOYsoE2psHuAm83vm4G7Ey1nOc/BHqBrMpUtcCowDFhbVVkCPwDeAQQYAyxNAlnPBNzm990xsnaLTZdEZVtu3Zv/3GrAB3Q3bYYrkbKWir8fuC2Jyraidispn93YT2PquY0CtiilvlFKFQPPA1MSLFMUpdRupdSX5ncOsAHolFipjospwFPm91PAjxInSrl8H9iqlIrHSjdxQyn1EXCoVHBFZTkF+LfSLAFaiEiHehGU8mVVSr2rlAqawyVA5/qSpyoqKNuKmAI8r5QqUkptA7ag2456oTJZRUSAC4EF9SVPVVTSbiXlsxtLY1JunYAdMcc7SVLlISLdgKHAUhN0lenCP5EMZr4YFPCuiKwQkZ+bsHZKqd3m9x6gXWJEq5AZlGwckrVsoeKyTPZn+XL023mE7iKyUkQ+FJHxiRKqHMqr+2Qu2/HAXqXU1zFhSVO2pdqtpH92G5NyaxCISDrwMjBbKXUUeAzoCQwBdqPNEsnCOKXUMOAc4NcicmpspNJ2iKSZSyIiXuBc4EUTlMxlW4JkK8uKEJE/AEHgWRO0GzhRKTUUuA54TkSaJUq+GBpM3cdwESVfzJKmbMtpt6Ik67PbmJTbd0CXmOPOJixpEBEP+gF5Vin1CoBSaq9SKqSUCgOPU48mkqpQSn1nvvcBr6Jl2xsxM5jvfYmTsAznAF8qpfZCcpetoaKyTMpnWURmAT8EZpoGDWPeO2h+r0CPYfVOmJCGSuo+WcvWDZwHLIyEJUvZltdu0QCe3cak3L4AeolId/MGPwN4I8EyRTH29HnABqXUX2PCY+3RU4G1pc9NBCKSJiIZkd9oh4K16DL9iUn2E+D1xEhYLiXefJO1bGOoqCzfAC41nmdjgCMxJqCEICJnAzcC5yql8mPC24qIy/zuAfQCvkmMlMeopO7fAGaIiE9EuqPlXVbf8pXD6cBGpdTOSEAylG1F7RYN4dlNlCdLXXzQnjqb0W84f0i0PKVkG4fuun8FrDKfHwBPA2tM+BtAh0TLauTtgfYqWw2si5Qn0Bp4H/gaeA9olWhZjVxpwEGgeUxY0pQtWunuBgLocYifVlSWaE+zR81zvAYYkQSybkGPpUSe3bkm7TTzfKwCvgQmJ0nZVlj3wB9M2W4Czkm0rCZ8PnBlqbTJULYVtVtJ+ezGfuzyWxaLxWJpdDQms6TFYrFYLIBVbhaLxWJphFjlZrFYLJZGh1VuFovFYml0WOVmsVgslkaHVW4Wi8ViaXRY5WaxWCyWRodVbhaLxWJpdFjlZrFYLJZGh1VuFovFYml0WOVmsVgslkaHVW4Wi8ViaXQkvXITkW4iosx+R5YGiohcLSK7RGR1Aq49R0SeqYfrzBKRTyqJXywiV9S1HE2NyurX1n3DREQOi8i3IjLjePNIeuVmqTkiMldEcs2nWEQCMcfvJEisOcCvlFKDY+ScIyJzEiRPUmFe4rJqmP4DEckXkY0icnolaS8Ukc9M2sWl4nqLyOsisl9EDonIIhHpUyrNtSKyR0SOisgTIuKrqRwi8n5NXlKNsphfnbQNnTque5+ps6OmDq+LiRsjIv819b5fRF6M3QdPRFqIyFMiss985pST/29EZJuI5InIBhHpbcIniEg4pt3JFZGfxJy3WEQKY+I2xearlGoJ3AvcXN1yKU2dKzfb46p/lFJXKqXSlVLpwP8BCyPHSqlzIunquW5akXybhdaYJHqeFwAr0ftq/QF4SUTaVpD2EPAgcFc5cS3Q+531AdqhN+6MbkArImehG5jvA13R+/zdXhM5RGQm4KnJzSUjDbTu56A3Oe0KTARuFL3xLEBL4J9ANxOfAzwZc+4DQKqJHwVcIiKXRSJNT/SnwCQgHb1L+4GY83fFtDvpSqmnSsl2VUxcH8qy1tzjcVEnyk1EskTkJhH5CsgTEbd5S/hMRLJFZLWITIhJv1hE/iIiy8wbxusi0qqCvC8zbwg5IvKNiPyiVPwUEVll8tkaqUgRaS4i80Rkt4h8JyJ/FrPLbSX30VNE/iciB0XkgIg8KyItYuIOicgwc9zRvP1MMMfnisg6c7+LRaRfqfL5rYh8JSJHRGShiPhrXtI1p4K6USJyUkya+SLy55jjH5oyzTZ1OKiG14yUc7iKdDea+tklIlfEymVkelRE3jJ1v1REesac+zcR2WHqfYWIjC+Vvd+Uc46IfCkisT3Im82zkiMi60VkakzcLBH5VEQeEJGD6Maiqvu9T7RZZZuInFMquqvJL0dE3hWRNlXlV07+vYFhwB+VUgVKqZfRG0NOKy+9Uuo9pdQLwK5y4pYppeYppQ4ppQLoBq2PiEQalZ8A85RS65RSh4E/AbOqK4eINAf+iN7F+7gRkUtFm6kOisit5jku02MREY+ILBCRl0XEa4KbbN2j6+9PSqnDSqkNwOOY+lNKvaOUelEpdVTp3dUfAcbGnDsZuEcpla+UykLvyH25kcNB1+u1Sqn1SrNVKXWopvdUCWHg+F8o6mj31iz0jq1dgBSgE3qX5B+gFeoZ5ritSb8Y+A4YiN5R+WXgGRPXDb0TrNscTwJ6ond8PQ3IB4aZuFHAEZO/Y67b18S9CvzD5H8C+g31F1Xcx0kmLx/QFvgIeDAm/mfAevTbzSLgPhPeG8gz53rQf+wtgDemfJYBHdE9mg2U2oW31E642ZV8xlVxD3MiZVle3ZgwBZwUk2Y+8GfzeyiwDxgNuNB/lizAV4Pn4WygEEirIs0eYIApz2di5TIyHTR17AaeBZ6POf9i9FueG7je5OWPKYMAcL6pj98C2wCPib/A1IUDTDd118HEzQKCwNUm75RK7mGWuc7PTFn9Eq1QIpsCL0bvUNwb/b9YDNxVQV5/B/5eQdxUYEOpsEeAh6uohyuAxVWk+RGwO+Z4NTA95riNqZfW1ZEDvSvztZT6H9ewPekP5KL/C17gPlPOp8c+46ZM3zLPiqup1z26Z6aAdjFh5wNrKsh7NrAk5vgAMCrm+A/AYfP7RJP3b9A7tG9D9+gdEz8BKAb2mrgHiPn/m/vfb67xKTChHHl6mPIfUtNnRilVp8rt8pjjm4CnS6VZBPwk5kbvionrbwrGRRV/CuA14Dfm9z+AB8pJ0w4oin04gYuAD2p4Xz8CVpYKe4Nj29n7TNitwAsxaRy08p4QUz4Xx8TfA8yto7qYQ1nldnmpNJUpt8fQb36x6TcBp1Xz+stN/tdUke4J4C8xxydRVrn9Kyb+B8DGSvI7DAyOKYPYP60D7AbGV3DuKmCK+T0L2F7Ne50FbIk5TjX30D7mOb8lJv5XwH+Oo04vib0fE3YnML+K8ypVbkBn85xeFBO2FTg75thj7qlbVXIAI0xZuqmdcrsNWFCqXIspqdzeAD4EHsIolKZe9+gXWIV5yTNhZwBZ5aQdhDZfj48JewZ4BchA/x+3AkUm7hST91to03Y3YDPwMxPfHt2OO0B3dMfgHzF5jzb5+tAvzDlAz3Lkus9c57WallVdjrntiPndFbjAmLWyRSQb/RbWoYL036L/RGW67SJyjogsMSbBbHQjF0nXBV0Bpelq8tsdc/1/oHtwFSIi7UTkedFmzKPoyi4t0+PoHufDSqkiE9bR3AMASqmwub9OMeftifmdj7ZZ1xc7qk4SpStwfam664K+x+owEpgBzBGRysZdOpaSqzwZKywzY+bdYMy82UBzStZVND9THzsj92BMXqti7m9gRedWg6iMSpt6oGTdxqPec4FmpcKaoRuI40L0mM276B7DgkquFfmdU5kcxmz1d/SLZ/B45TKUeDZMuR4slWYMuoG+S5lWMYamWve5MfEVpjWm/3fQdfVxTNQ1QAHwNXocdgG67DDhoM2W2UqbLf+Bbo9RSu1R2lwZVkptQ1uvoqZTpdRSpVSOUqpI6bG4TyPnxsh1gpHhVKXUj8q5v0qpS+UW+4DtQPfcWsR80pRSsQPcXWJ+n4ju4scOTiLaS+tltDZvp5RqAbyNNlFGrtOTsuxA99zaxFy/mVJqQBX38H/mPjKVUs3Qpq/ItRCRdPRA/Tx04x0ZJ9yFVgqRdGLu77sqrlcGERkvJT2OSn9Kjy1Vh9J//nz0m2aE9jG/dwB3lqq71FINYMUX0g3Na2gTSYdKku5G9xwidKkoYWlMGdwIXAi0NM/FEWLqKjY/0/B2BnaJSFf0C8pVQGtz7tpS55Yur0SzDughIhkxYYNNeI0RkZZoxfaGUurOcq41uNR19iqlDlYhRzN0z22hiOwBvjDxO4/jmS3xbIhICmUdDd4F/gK8LyLtSsU1ybpXeox0N2XrL5rWlMF7aOvM06XOP6SUmqmUam/aSgc9nALaelNMyfKprKwUlesbRclyB+0Ic6SUwq029TUV4BlgsoicJSIuEfGLdhWNbcwuFpH+IpIK3AG8pJQKlcrHi+7G7geCZsD2zJj4ecBlIvJ9EXFEpJOI9FVK7UY//PeLSDMT11NETqtC7gz0288REekE3FAq/m/AcqXUFeju+VwT/gIwycjhQY8BFQGfVVVQpVFKfaxKehyV/hxXxZdiFfBjUzdno8cyIzwOXCkio0WTJiKTIn8u0Y4e86u4h0iP1ltJshfQddfPPAO31kD+DLRtfj/gFpHbKPt2O1xEzhPt8TYbXR9L0GOwypyLaG+wgTW4dr2jlNqMrrM/mv/SVHSv5eXy0kf+c2jzoGPO8Zi4Zughgk+VUuW5Xf8b+Kn5b7YAbkGbiKuS4wi6dzTEfCJv5cOBpebai6V6U0FeQrcfp4h2EplD2YYQpdQ9wHNoBRfb+2qydY+uv1tEpKWI9EWPCc4HMG3a/4BHlFJzS59o2sjW5vk5B/g58GcjRz6wEO19mWHa8p8D/8+cO1FEupo2owvaU/d1E9fC6AK/aIe2mcCpwH9KieBB19VxUS/KTSm1A5gC/B79IO1AK4rY6z+NLvQ9gB/dHS2dT44JfwE9pvJjtK09Er8MuAw9eHkEbYOP9KAuRTeu6825L1F5TwL0AOkwk9dbaPszoL0y0U4QvzRB1wHDRGSmUmoTupf3MLr3ORmYrJQqruJ6ieI3aBmzgZnonhYASqnl6D/EI+hy24LxtjJ0QZsUqqLSNzel1Dvo8ZIPzDWWmKjqPNyL0H+MzWhzcCFlzUmvox0GDqPHLc5TSgWUUuuB+4HP0YPfmdW8nzpF9FzFMg1ODDPQPaPD6IbjfKVUpJGeKSKxb/KXoM1IjwHjze/HTdxUtOn4slIWgRMBlFL/QY8JfwBsR5fvH6uSQ2n2RD4YBYLu9UX+B9V6dpRS69BOHc+jeyK5aCenMs+GUupP6Of3vRhLSlOu+z+ih2q+RbeH95o6BT0G2wNtdYrWfcy5w9H+BDnoXvFMUxcRrkLXxS50GT6HHjsH7Yj2GdpB5zOTT6RN96CVZMSh5GrgR0Zxx+KiCg/ryoh48iQU0RNLn1FK/SvRsliqj3mLXg0MUtqNvLK0u4AblVLVWi1C9NSJtWgnndqO2ViSDPOm/4JS6pTjODcd/SLWy4znWBohInIjWnGPOp7z7QolluNGKVWslOpXlWIz3Iw2payoKIGITBW9okJL4G7gTavYGidKqZ01UWwiMllEUkUkDT3mvgbt+WtphIjIfrQX5e1Vpa2IJq/cpORSVbGfyswClhqilPq3UqqXUmp4Jcl+gTY3bQVCHDP5Jg32eUkYU9Dmr11oR4MZ5XhF1im27usPpVRbpdQApdRbx5tHUpglLRaLxWKJJ02+52axWCyWxkeyLAQKQJs2bVS3bt0SLYbFYrFY6pEVK1YcUEpVtPjzcZFUyq1bt24sX7480WJYLBaLpR4RkW+rTlUzrFnSYrFYLI0Oq9wsliRj3769rFj6UaLFsFgaNElllrRYLJA9bxrDi9ZQOHgvfn+9bPNnsTQ6kl65BQIBdu7cSWFhYaJFsTQg/H4/nTt3xuNpeBtA9y5aA8C+nVs48aSkXurQYklakl657dy5k4yMDLp164ZImbVSLZYyKKU4ePAgO3fupHv37okWp8aElOASRf6RA1Untlgs5ZL0Y26FhYW0bt3aKjZLtRERWrdu3WB7+4XiA6Aop/SWZRaLpbokvXIDrGKz1JiG/Mzki95aL5CXnVhBLJYGTINQbhZLU6JQUgAI5R1OsCQWS8PFKrdqICJcf/310eP77ruPOXPmJE6gKli8eDGffVbjfVGjrFq1ipNPPpkBAwYwaNAgFi5cGEfpLFVR6KQBEC6wys1iOV6scqsGPp+PV155hQMH4jvAr5QiHD7uvfgqpLbKLTU1lX//+9+sW7eO//znP8yePZvs7Oz4CWiplJBoPy9VlJNgSSyWhotVbtXA7Xbz85//nAceeKBM3P79+5k2bRojR45k5MiRfPqp3sh3zpw53HfffdF0AwcOJCsri6ysLPr06cOll17KwIED2bFjBzfccAMDBw4kMzMz2ktavHgxEyZM4Pzzz6dv377MnDmT8nZweOihh+jfvz+DBg1ixowZZGVlMXfuXB544AGGDBnCxx9/XKmMl1xyCSeffDK9evXi8cf15sy9e/emV69eAHTs2JETTjiB/fv3l7n2iy++yMCBAxk8eDCnnnoqoB2ALrvsMjIzMxk6dCgffPABAPPnz+dHP/oRZ5xxBt26deORRx7hr3/9K0OHDmXMmDEcOnQIgMcff5yRI0cyePBgpk2bRn5+fpnrjhkzhnXrjm0IPGHChEa1bJuYzYed4twqUtaMYDDEu4vepDgY3xcqpRSBUPxf0sJhu2OJ5fhJ+qkAsdz+5jrW7zoa1zz7d2zGHycPqDLdr3/9awYNGsSNN95YIvw3v/kN1157LePGjWP79u2cddZZbNiwodK8vv76a5566inGjBnDyy+/zKpVq1i9ejUHDhxg5MiRUUWxcuVK1q1bR8eOHRk7diyffvop48aNK5HXXXfdxbZt2/D5fGRnZ9OiRQuuvPJK0tPT+e1vfwvAj3/84wpl/Oqrr1iyZAl5eXkMHTqUSZMm0bFjx2j+y5Yto7i4mJ49e5a5jzvuuINFixbRqVOnaM/u0UcfRURYs2YNGzdu5Mwzz2TzZr17/Nq1a1m5ciWFhYWcdNJJ3H333axcuZJrr72Wf//738yePZvzzjuPn/3sZwDccsstzJs3j6uvvrrEdadPn84LL7zA7bffzu7du9m9ezcjRoyotMwbEqK0onAF4qvcVi6az5lfXMd7h27n9Itmxy3fhU8/Rtr2xUy+5YW45ZlfFCDrzuEcHPJLxp+XdNv6WRoAtudWTZo1a8all17KQw89VCL8vffe46qrrmLIkCGce+65HD16lNzcyhulrl27MmbMGAA++eQTLrroIlwuF+3ateO0007jiy++AGDUqFF07twZx3EYMmQIWVlZZfIaNGgQM2fO5JlnnsHtLv9dpTIZp0yZQkpKCm3atGHixIksW7Yset7u3bu55JJLePLJJ3Gcso/K2LFjmTVrFo8//jihUCh6PxdffDEAffv2pWvXrlHlNnHiRDIyMmjbti3Nmzdn8uTJAGRmZkbvbe3atYwfP57MzEyeffbZEj20CBdeeCEvvfQSAC+88ALnn39+peXd0HCULkt3MC+u+RZn7wag2cHVcc13xje/Y3JwEcWB+G2anr0ni/7Ot5y8+vdxy9PStGhQPbfq9LDqktmzZzNs2DAuu+yyaFg4HGbJkiVllklyu90lxtNi51ylpaVV63o+ny/62+VyEQyWbTzeeustPvroI958803uvPNO1qxZUyZNRTJCWZf5yPHRo0eZNGkSd955Z1QRl2bu3LksXbqUt956i+HDh7NixYpq34/jONFjx3Gi9zZr1ixee+01Bg8ezPz581m8eHGZfDp16kTr1q356quvWLhwIXPnNq6NkCM9N0+orEm2Nrhd+gUlXEcbFOcePUyr1vHZtUQZZxq3xN/caWka2J5bDWjVqhUXXngh8+bNi4adeeaZPPzww9HjVatWAXr7ni+//BKAL7/8km3btpWb5/jx41m4cCGhUIj9+/fz0UcfMWrUqGrJEw6H2bFjBxMnTuTuu+/myJEj5ObmkpGRQU7OMWeEimQEeP311yksLOTgwYMsXryYkSNHUlxczNSpU7n00ksr7RVt3bqV0aNHc8cdd9C2bVt27NjB+PHjefbZZwHYvHkz27dvp0+fPtW6H4CcnBw6dOhAIBCI5lMe06dP55577uHIkSMMGjSo2vk3BBwz5uYNxbfnJqFiAMLhUFzzjZAXxxVVQoHiuOVlaZpY5VZDrr/++hJekw899BDLly9n0KBB9O/fP9qLmDZtGocOHWLAgAE88sgj9O7du9z8pk6dyqBBgxg8eDDf+973uOeee2jfvn21ZAmFQlx88cVR541rrrmGFi1aMHnyZF599dWoQ0lFMoI2a06cOJExY8Zw66230rFjR1544QU++ugj5s+fz5AhQxgyZEhUId5222288cYbANxwww1kZmYycOBATjnlFAYPHsyvfvUrwuEwmZmZTJ8+nfnz55fosVXFn/70J0aPHs3YsWPp27dvNPyNN97gtttuix6ff/75PP/881x44YXVzruhIMYs6Y9zz41QAABXsCC++RriuVxYKBiIW16WpomU54GXKEaMGKFKe71t2LCBfv36JUiixs2cOXNKOJ40Nhrqs7Pj9r50UbvZJ6054Y/fxC3fpfNvYnTWXFakjmf4jf8vbvkypzkAX02cz6DTpsYlyy3L3+Wk/3eByf9IXPK0JC8iskIpFVevMNtzs1iSDMeMuaWoOPewQnpc0xuOr7kzQrAgfkooHLA9N0vtaFAOJZb4ksyrrDRlIvPcUlUBKAXxWiczrJWbL97mTkOwIH6TzsNBO+ZmqR2252axJBkRhxKXKEJFcexlhSM9t7oZcwsXxlG5hY55Bqs6WMXH0vixys1iSTIiyg2gMC+O401GufnjrNwCuABQRfGbdB4OHeu5FRXWTU/T0rixys1iSTJcKkye0nMSC3Pjp9wkotziPJYXNs2IiuNyYeGYOZ15Odlxy9fSdLDKzWJJMhzC5Iie6F8XPbfUOCs3pw7WwlQxPbfCPLuAtKXmWOVWTV577TVEhI0bN1aYJisri4EDB9apHKtWreLtt98+7vMjk7779+/PgAED+Nvf/hZH6SzxwCFMnpMOQHE8lZsyY24SJBwoilOeCg96Xp4TiN/4YDh0zFuyKN9OBbDUHKvcqsmCBQsYN24cCxYsKDe+vKWxakpkfcbKqK1yc7vd3H///axfv54lS5bw6KOPsn79+uPOzxJ/XIQpNMotUBC/hcIlZmWSgrw45auOjQ+64rgWpopxKImrgrc0Gaxyqwa5ubl88sknzJs3j+effz4avnjxYsaPH8+5555L//79Aa3kZs6cSb9+/Tj//POjW7a8//77DB06lMzMTC6//HKKivSbc7du3bjpppsYNmwYL774Yonrlt5Spri4mNtuu42FCxcyZMgQFi5cSF5eHpdffjmjRo1i6NChvP7664DeYmbKlClMmDCBXr16cfvttwPQoUMHhg0bBkBGRgb9+vXju+++K3PPH374YXR1kqFDh5KTk4NSqsLteU477TSmTJlCjx49uPnmm3n22WcZNWoUmZmZbN26FYA333yT0aNHM3ToUE4//XT27t1b5rozZszgrbfeih7PmjUrukhyU8EhTKE7A4i3cjvWGyqI11he+JgS8gTj5/gR23MrjuMUA0vToWHNc3vnZthTdmHgWtE+E865q9Ikr7/+OmeffTa9e/emdevWrFixguHDhwN63ci1a9fSvXt3srKy2LRpE/PmzWPs2LFcfvnl/P3vf+eqq65i1qxZvP/++/Tu3ZtLL72Uxx57jNmzZwPQunXr6DqUsZTeUsbr9XLHHXewfPlyHnnkEQB+//vf873vfY8nnniC7OxsRo0axemnnw7o7WrWrl1LamoqI0eOZNKkSSW2hsnKymLlypWMHj26zLXvu+8+Hn30UcaOHUtubi5+v59XXnmlwu15Vq9ezYYNG2jVqhU9evTgiiuuYNmyZfztb3/j4Ycf5sEHH2TcuHEsWbIEEeFf//oX99xzD/fff3+J60a2s5k0aRLFxcW8//77PPbYY9WszMaBizABo9zCcWzYI8t6ARTGqecWDgaib8hxXQszRrmFrHKzHAe251YNFixYwIwZMwDds4g1TY4aNYru3btHj7t06cLYsWMBuPjii/nkk0/YtGkT3bt3j64v+ZOf/ISPPvooes706dPLvW55W8qU5t133+Wuu+5iyJAhTJgwgcLCQrZv3w7AGWecQevWrUlJSeG8887jk08+iZ6Xm5vLtGnTePDBB2nWrFm5177uuut46KGHyM7Oxu12V7o9z8iRI+nQoQM+n4+ePXty5plnAiW3s9m5cydnnXUWmZmZ3HvvveVuZ3POOefwwQcfUFRUxDvvvMOpp55KSkpKuffeGFFK4RAm4NV1Ei6qG7NkUX588g3GrAEZz/lzsWbJYBznz1maDg2r51ZFD6suOHToEP/73/9Ys2YNIkIoFEJEuPfee4Gy29dUtIVMZVS0BU51tpRRSvHyyy+XWXl/6dKlFcoSCASYNm0aM2fO5Lzzziv32jfffDOTJk3i7bffZuzYsSxatKjSe6jOdjZXX3011113Heeeey6LFy8ud4UUv9/PhAkTWLRoEQsXLoy+VDQVQmGFizB4MwgrQRXGzwNRVPzHsYKhIF7zO57z51RMzy0cx/lzlqZDnffcRORsEdkkIltE5Oa6vl68eemll7jkkkv49ttvycrKYseOHXTv3p2PP/643PTbt2/n888/B+C5555j3Lhx9OnTh6ysLLZs2QLA008/zWmnnVbltcvbUqb0djZnnXUWDz/8MJEFsFeuXBmN++9//8uhQ4coKCjgtddeY+zYsSil+OlPf0q/fv247rrrKr12ZmYmN910EyNHjmTjxo212p4H4MiRI3Tq1AmAp556qsJ006dP58knn+Tjjz/m7LPPrnb+jYFQOIQjCrfHQx5+iKN7vYSDhJR+wQnGSWkGY9aAjOdamFa5WWpLnSo3EXEBjwLnAP2Bi0Skf11eM94sWLCAqVNLrnQ+bdq0Cr0m+/Tpw6OPPkq/fv04fPgwv/zlL/H7/Tz55JNccMEFZGZm4jgOV155ZZXXLm9LmYkTJ7J+/fqoQ8mtt95KIBBg0KBBDBgwgFtvvTV6/qhRo5g2bRqDBg1i2rRpjBgxgk8//ZSnn36a//3vf1GHkYj35dy5c6Pb4Tz44IMMHDiQQYMG4fF4OOecc2q1PQ/otSwvuOAChg8fTps2baLhy5cv54orrogen3nmmXz44YecfvrpeL3e8rJqtISDxq3e5SGPFJzi+JnkHBXiqGgvzGBhfMySIWM+PEIaqRQQt11GjKNKSAkSRwVvaTrU6ZY3InIyMEcpdZY5/h2AUuov5aW3W97Ej/nz55dwPGmKNMRnJy8vl7R7O7Gsx1W0+eZV8lv0YeDsV+OS95r/O40Wgb10UbtZPvAWRpx/Q63zPLBzC23+NZxd0o6Oai/5N+0mNSW11vku+de1jNrxJDmksvGEcxj963lVn2RpsDTELW86ATtijneasCgi8nMRWS4iy/fv31/H4lgsyU2kJ4TjolBScMVxYrSjghSY+XMqTk4aEXnzTb55OfGbYhDARYGkIAG7tqSl5iTcW1Ip9U+l1Ail1Ii2bdsmWpxGw6xZs5p0r62hEo54xYqLIicVTyh+JjmXClHkStOOKsXxUZohM+ZW6NbenYW58TF3SjhICBdFTgruOE4OtzQd6lq5fQd0iTnubMJqRDLtFm5pGDTUZyYc03MrdqXhjePea44Kolxe8vHHbRwraBw/ij1GucVrNZFwkGBUudmem6Xm1LVy+wLoJSLdRcQLzADeqEkGfr+fgwcPNtjGylL/KKU4ePAgfr8/0aLUmGjPzXERcKfFdWNRhxBKHArEj8TJ3BlZSSRk5uXFa/4c4SBBcVHspOKpo81VLY2bOp3nppQKishVwCLABTyhlCo7c7cSOnfuzM6dO7HjcZaa4Pf76dy5c6LFqDEqspyVOIQ8afgL4tewu1QIJW4K4jiWFzKTuMO+5gAE4qTcJBwgjIuAO5WUot1xydPStKjzSdxKqbeB417p1+PxlFgBxGJpzERWohHHRdiTFtftaVwqSNjxUCQpuOJk6guZCfqS0gKI31qYEg4SxE3InYq/oG52Drc0bhLuUGKxWI4RO+YW9mbgIQjB+GxP4xAiLG6KXKlxWwcysqmoK7UlEL+lsiQcJCwuQp40fKowLnlamhZWuVksSYQK6y1kRNyIz7jtF8VHYbhVEOW4CLhS8YTi0xuKjLm507RyC8dLuSntLancqXHfXNXSNLDKzWJJIsKRMTfHQXx6Z4B4eSC6CKEcNwFXKr5wfMyS4aDeMduT3hoAFaelsiQcJCRulDeDVCmK9hAtlupilZvFkkREzJLiuHD82gOxICc7Lnm70A4lYU8q/jj1hsLGocTxpxNUDhIv5aaChMSF+PSi4vn5dmcAS82wys1iSSJU+JhDiTvFKLc4bSzqJgSOm5AnPW6LHEd6bi6PL65TDJxwkJB4oqbZwnhtrmppMljlZrEkEZHV8MVx40nVyq04Tu71buMtqTxppKgiMON7tUGFtHJzXF4KJAUnEJ+em0sFCIkbl1+bZgviNTnc0mSwys1iSSIik7iV48YbVW7xGnMLg+MGXzqOKIJxMCFGHEpcHi+FTmrclspyVJCwuHEb5VZkzZKWGmKVm8WSRISNWdJxXKSktwAgFKe5Y26C4LgRrx7HKsirfb7KmCXdHq9eCzNO8+dc4SAhx4M7RZsli+Mgq6VpYZWbxZJERMfcXA7+dL3qRzz2XlPhEC5RKMeDEzX1xUO5mZ6b20MwjlMMXCpAWDx4Us3KJ3Haf87SdLDKzWJJIiLLb4m4SUnXZslwHHbNjiyThXNsHCseK/irsJnn5vUTcKfiU3HquakgynHjT9WyBgvshqWWmmGVm8WSRKjICiUuNxkpKRQoL8RhEncwoM2HOG7cKVphFMfB3BkxS7rcHkKedPxxmj/nQpslfWlawYfiNDnc0nSwys1iSSIi+6M5bg9+j0MuKXGZOxbpuYnLjccfR0eVqEOJj7AnjZQ4LZWlV1PxRMcdw3GaP2dpOljlZrEkEdF5Y24vIkJ+nNzrj5klj/WG4mLqM2ZJj9eL8qSRRgHBUO2nGLhUECVuUtN0LzNeK59Ymg5WuVksSUTUtd7tBaAwTtvThIzSxOU+ZuoriIOpL7K2pNsHvnT8EiCvoPYLPbvRG6t6vD6KlAfitLmqpelglZvFkkSEYrwPAYqcVNzB2jfsgWKt3MTlJTXqhVl75aZCAcJK8HjcOGYtzLzc7Frn60GbJQHdey2Oz/w5S9PBKjeLJYmIrPjh9uieW5ErDW8cdqIuNsrN7XaTntECiI8XpoQCBHAjItEpBoVxmGLgVkGU65hyi4eCtzQtrHKzWJKI6ELExiwZcKfhjYMHYqBYmwpdHi9+vzb1qXiY+sIBgrgA8KREphjU3lFFTzjXyq1A0nDHaVkvS9PBKjeLJYmIrC3p9uiGPehOi4t7faBQm/Ucb6pxVPEjcVBuKhQgKFq5RRZ6rq0XpgqH8UoIXDG9V9tzs9QQq9wsliQiuvmnMUuG3WmkxmFidLBY5+Eyq+zHbZHjUDFBtCL2mgnXgVou9FwcODY+CFDsTo/bzuGWpoNVbhZLMhHU5kO3xw9A2JuOn2II1W6zzqDpubl9qYBxVImDcnMFCygULWvECzNQyykGBQVaETtGwQc96aSErXKz1Ayr3CyWJEKCehK0y68XN8Z4IKri2nk2hoq0cnCZzT8LnTQ8cTD1uUP5FDlauaWkaS/MUC3XgSzM0/cqXt3LDHoySFVWuVlqhlVuFksSIUG98LA3qtx0A19US1OfMmZJj8m32J2OPw6mPk+ogGInBeDYaiK1nGJQZPZuc4ysypdBmioApWqVr6VpYZWbxZJESKCAQuXB63YDHNusMye7VvmGzTwxb4pWGEFPBinh2vfcPOECih1t6oyYJWu7mkix2bvNZZYJw9cMj4QoisPUBUvTwSo3iyWZCORTiA/HEQBcfm3qK6zlTtSqWPcIIz23kDcjLo4qvlABAZfuuYknlRBSay/MgFnQ2e3XvVbHeGHmHjlcq3wtTQur3CyWJEKCBRSKL3rsNh6IRbVUbkEz5paRYbbR8WaQrvJR4dqtA+lTBQTdxoQqQgEpSC2XCwtGlJvZidxllFtBjlVulupjlZvFkkQ4wQICMcrNF9mss5ZjbuHCHILKwW/Mkvhb4JEQBbX0bPSpAsSbGj2OxxSDYrPmZYpRbu6UFjpvq9wsNcAqN4sliXCChRTHKDevaeCDtVRunsKDHJFmINrcKWY8K68Wpr5wKESGykf5mkfD9FqYtduNu9j0Upu1aAWAz3hh1rb3amlaWOVmsSQRrlAhAZc/euw3Hoi1XeTYW3SYo84xJeQyPcL8nEPHnWdu9gE8EkKltY2GFTspeGrphaly9wLQrHUHAHzpWskF8mzPzVJ9rHKzWJIIfyiHIlda9DjFrOBfW/d6f+Awee4W0WNPqv5dWAtTX/b+nQA4zdpFw4pdqbVe6Nmdt5ds0nF5zfw5s9BzMB6bq1qaDLVSbiIyR0S+E5FV5vODmLjficgWEdkkImfVXlSLpfGTHsqm2NsqepyWlkaxckFR7cyS6YFDBPyto8e+tBYAFOdlH3ee2fu+AyCjdadoWNCdhq+Wa2F6Cg6Q7cSUQTP9u7aTwy1NC3cc8nhAKXVfbICI9AdmAAOAjsB7ItJbKRWKw/UslkZL8/BRslKOKaE0r4ujpNRqs87ioiLaq3181+ycaJgvo6WOq8U4VsG+rQC06tgjGhbypOFXtRtzyyjcRa7vWG8wvZmWVVnlZqkBdWWWnAI8r5QqUkptA7YAo+roWhZLo6AgL4dUKYK0NtEwt8shn5RazR3bu2MzbgkjrXtGw1KMcgsVZB93vuH9myhUHtp0OikaprxppKoC1HGuJhIKhegc2kles2Oyutxu8pUPqWXv1dK0iIdyu0pEvhKRJ0SkpQnrBOyISbPThJVBRH4uIstFZPn+/fvjII7F0jA5uGsbAK5m7UuEF0gKrlrMHduz4TMA2vQcFg1LNaa+cMHx99yaHV7LTk9XXO5jBiDlTSeNQoqCxzd/LmvTSlKkGHeHgSXCcyUNp5bra1qaFlUqNxF5T0TWlvOZAjwG9ASGALuB+2sqgFLqn0qpEUqpEW3btq36BIulkXJoxwYAMjr2LRFe6KTiDh6/cgtlfU6e8tO1/zHjSXp6c8JK4DhNfYUFeZxUtJF9rUaUCBdvOilSTG5B4XHle2DNewC0H/T9EuEFThouq9wsNaDKMTel1OnVyUhEHgf+nzn8DugSE93ZhFkslgoo2LMJgBO69S8RXuRKI+04V/APh0J0O/gxW1IHM9jtiYY7Lj2WJ8XHp9w2fPQyQyVAs/5nlAh3zELP+blHoVlaeadWSso3i9gl7ejYrayC99RCwVuaHrX1luwQczgVWGt+vwHMEBGfiHQHegHLanMti6WxIwe3cJQ0WrUpaZYM1MK9/qvFL9GeAwQHXFAmLk9Sj8vUp5TCWfEE+2hFn7HnlohzzOTwgtyamzu3bVrNwMKVbO98LuKUbJqK3en4QnbhZEv1qe2Y2z0iskZEvgImAtcCKKXWAS8A64H/AL+2npIWS+W0yF7HDl+vMg170J2G/zjc60PBIGmf3cMuOYFBZ15SJr7AScMdqLlyW/vJGwwuXsmOXpfgMRuKRnCnRNbCrFmPUCnFoTf+QCFe+k6eXSY+4E7Hfxwblh7cv4fl7z5X4/MsDZ9aTQVQSpX9xxyLuxO4szb5WyxNhZycI3QPbuPLDpeWiQt50kg5jhX8ly34EyeHtrBixL109PrLxBe60vHWcB3Io9kHafm/G9kl7Rhw3k1l4j1mubCi/Owa5fvl2/MYnvcxS3v8itEndC4TH/Kkk1JDBR8KBsl/9DRGsIct7btx0qBTanS+pWFjVyixWJKAras/wyMh0nuOKRMX9maQQmGNNutc+9k7DN/yCCvTxjLsB1eUm6ampr5wKMzXj8+ifXgfOec8cmwR5hh8ZheDQA0WZN781TJ6L7uFze7eDP/x7eVf25tBWg134/78X9fRhT0AHPjg7zU619LwscrNYkkCcr7+GICuQyaUjfSm46CguHqN+7ebV9P53SvY42pHj58+VcbMGSHgTielBqa+z/81m+F5H7G81zX0GXVmuWkiixxHtq2pil07vqHZKxdRJH5aXfY87lJmzmMZNyNNiggEiquV78cvPsS4PU/xZZvJfNF6CkMP/Yd9u7ZX61xL48AqN4slCcjYu4ztThfSW7YvEyfGA7E6pr79+3YhC6ajcHBf/BLNW1U8vaYmG5YuXXg3Y3c/xRetz2X0j/9YYTq/UW7hgqrH8o4cOUzek9NoRg555y+gTaeeFaaN7GKQezS7yny/fP9Fxqydw/qUYQz+xTw6T7oRD0G+fvO+Ks+1NB6apHILBYPkFxYSCBSjQsEamXsslngTDAToWbCWvS2HlRvv8mtTX35O5R6I+fm57P3n+bQP7+fgD5+gY4/+laYPe5tpU18Vz/+qd59m5Pq/sDL1FIb98okKe4IQs9BzUeXKrbi4mK1/v5AeoW1kfe9Rug48udL0TorON+9o5bsYfL3yQ/p89Gt2uLvS7Vcv4/L46NBjIKubnUrmrhc5cvj4d0GoLuGwoigQIByyPnSJJB5rSyYd2Qf2sGvTMnJ2rid44BtS83bQrGgPaaGjZKhc0qSQ1Jj0AeUiV1LJJ4V8J40iJ41idxpBdxpBTzrKkwG+dPBl4PJn4Ha7QJySHxQohYp+QiWOUWH9Oxw24eYbBeGw/o5Np/SxqDCgEHQDJCqMiImrrBCk0sMaU6b5q+J9oGx0yZCq3ieqfN1QlR7G9XpVv/uoSo7KBpSOdxdlM0EKcLqPKzd3t2nYCytxrw8Fg2x4ZDrDg+tYc/JfyRxxRoVpo/ia4ZUQRYV5+FLSy02yceki+n16LZs9fen76xdwxcyVK1dWs9uAFFYsqwqHWfnoTxhdtIyVg29j6KllpymUzVeXQUFOdoVpdmxZS+vXL+aI05xmV7xGasaxxZebn34DzV79IZ+9+SCnXHpHlderTPZ9321l75aV5O9cixzcgr9wL+nFB2kRPkSKKsRDEJ9oxVas3BTipUh8FIqfIieFIieFgCuNoDuVkDuNsCcV5U0HbzriS8flT8flcse0JSXbECJtSzgEKhRtUzDHmDRKhSEcRlQIIu2Iil05RqL7++nf5jvSWsTGmS+FIKY1EoF8fzu+f9F1x12edUmjUm7frF1K6kszac9+WpiwfHzsddpzxNeBw/4+hL3NCXszcNwewuEwoXAYCRbiDuTiCebgDuThCeaQGjyAv3g7/nA+qeTjJ5DIW7M0cnJIo/vIs8uNcxsPxMIKFjlW4TAr5l7BqPxP+KLPDYw8+6fVumZ0w9Kjh8pVbtvWr6DjO5ex1zmBE37xKilpGVVn6kmhEC9OJZPDl8y7lpOPvM3SLlcw+rzrqyWrNzWi4Mvfomf/nh3Is9MQFMGLXqRjh64l4nsMHs+6d4bS+5unOHLo6krNtbGEQyG+Wb+M/Wv+h2/nZ3TPX007cogs63yAFhx2tyXX355D/oGEvemI2wcuHyGlcIKFOMECJFiIE8zHHczDHSogPXgIX/F3+MMF+CkgTRXiSN1ZkMJKCCPR12StwswLc/SbGsvwleoJWOVW57Tu1IOvMzLJOiGT1K7D6HDSUNq070L3Sswo1UUFi8nPPUJezhGKA0GUCus3J8KoUBgEHBEcx8FxXBD5LYI4DiKR3y797RIccRDHMd/62HFcOA5ItEcYebsS00uUY2Fy/PdVemFbpWJe1AxSOsBSZ2QgUMFz6ou411eg3JY+9TvGHHiVz9vP5OSLbqn2NV2mR5h/9DCt2p1YIm739i2kvHAhxXhw/+RVWrXtUF4W5ZIj6XiLs8uN+/y5Ozn5u/ksbTmZUZfdW+08fel62dpAOVv0HD16mMOPT6VL+BA7zn2B3r2HlJuH/6zbaf7aVNY9fjF9r3kVf0pqmTThYJBvNy5j31fv49v5Gd3yv+IkcjkJ2CXt2NJiHKGOw8joMojOfYbRptUJtCl7qZqjFEWFueTnHKEg9yiBYOBY+xFtH3QbgcuF47gRR3A5LsTlNu2Gg+NyRX+7XG7E0VYmR+T4xqBMOxG1NClA25lAKfon8ZBOo1JuzVu2ZcT1r9ZJ3uL2ktaiLWktGsf6l6XVllVjyUtkN+5AOR6In7/4V07+di5fND+T0T97uEb5us2eboWlTH2H9++mcP5U2pLH/vNfpXu3PjXKN8/JwBsoK+uyN//J6E33sip9LCN+/WSlY3el8ZsNSwOlNiwtLMhj2yPnMSC4lY0T5jJw+MQK8+g59DS++PomRq7/P7bdO4Z9vabja9OVUGEOgX1bSdu/km6F6+hOAd2B76Qdm1ucitN9HF2GnkHHE3vTsdoS1xARfCkZ+FIyaHlCXV3kODAvuCIu/Z1IWWpIo1JuFktjJMUot2B+SYWx4s3HGL32DtakjmTIr5/BcblqlK/XKLeivGOmviOH9nFo7iQ6hXaTdfZ8+lbh6FEe+a5mpARLKqFV7z7N0OU3s9k3gH5XVT12V5rU6BY9x/ItKipg00NTGVz8JV8Ou5NhE6dXmc/IC29i9X870+LzvzB60z2w6VjcNudE1rU8E6fbyXQZejqdTuxV/lYmlgaBVW4WS5LTvLkxycX0Wpa+9igjV/6Bdb7B9Lr6VTxeX43zjZr6zBSDQ/u+Y/8/ptA9+C3rJ8xlyMk/PC5583zt6Jy7Onr8xdvzGbL0OrZ6etH5129W6LxSGenNtXNIZMPSwvxc1j18AcMLlrKk/y2MmXJVtfMafMZM1Ok/Zs/Ob8g5uAdvSiptOp1E9/QMutdYMkuyYpWbxZLkNG/enBxSUNnbCYfCLPv37xjz7VzW+YfQ85o38adWw9GjHNJa6NGi4uy9fLtpFa7nZ9A1fIDNpz3KkIlVezBWRKBFD9odfZ/C/FxWvXo/Izc/wBZvXzpd9XZUSdUUjy+NbJWO72gW+3dv5+ATFzK0eCMrBv6OMRfcUOP8RIT2XXrSvkvFc+ssDRur3CyWZEeEbz0n0f3gx6y793TGFK5gabOzGPKr+fj8ZZ0iqkuHTt3ZQxt6bPg7aevvo0h8fDPpeQaOqtYuVxWS0nU4zo5/kn3vEMao/axIH0//Xz5HSnqz489UhKzUgQw4+C5F//iQ7qqQVSc/yPCzZ9VKVkvjpUlO4rZYGhp5/WdwAgfpUbCOpf1+z6jZz9dKsQGI45CVeQ0eFWBD+miKfvYx/Wup2AAGnjaNlSljCCthSd/fMez612un2AzOab/lsDRnp68nu2csYphVbJZKkNIu4YlkxIgRavny5YkWw2JJSr7dvJoWbTvTvGXrRItiscQVEVmhlBpRdcrqY82SFksDoWvvwYkWwWJpMFizpMVisVgaHVa5WSwWi6XRkVRjbiKyH/g2Dlm1AQ7EIZ/6wMpadzQkeRuSrNCw5G1IskLDkjdesnZVSsV1+aekUm7xQkSWx3twsq6wstYdDUnehiQrNCx5G5Ks0LDkTWZZrVnSYrFYLI0Oq9wsFovF0uhorMrtn4kWoAZYWeuOhiRvQ5IVGpa8DUlWaFjyJq2sjXLMzWKxWCxNm8bac7NYLBZLE8YqN4vFYrE0OhqVchORs0Vkk4hsEZGbEy1PLCLSRUQ+EJH1IrJORH5jwueIyHcissp8fpBoWSOISJaIrDFyLTdhrUTkvyLytflumQRy9okpv1UiclREZidT2YrIEyKyT0TWxoSVW5aiecg8x1+JyLAkkPVeEdlo5HlVRFqY8G4iUhBTxnPrU9ZK5K2w7kXkd6ZsN4nIWUkg68IYObNEZJUJT4ayrajdSspntwRKqUbxAVzAVqAH4AVWA/0TLVeMfB2AYeZ3BrAZ6A/MAX6baPkqkDkLaFMq7B7gZvP7ZuDuRMtZznOwB+iaTGULnAoMA9ZWVZbAD4B3AAHGAEuTQNYzAbf5fXeMrN1i0yVR2ZZb9+Y/txrwAd1Nm+FKpKyl4u8Hbkuisq2o3UrKZzf205h6bqOALUqpb5RSxcDzwJQEyxRFKbVbKfWl+Z0DbIAGuYv9FOAp8/sp4EeJE6Vcvg9sVUrFY6WbuKGU+gg4VCq4orKcAvxbaZYALUSkQ70ISvmyKqXeVUoFzeESoHN9yVMVFZRtRUwBnldKFSmltgFb0G1HvVCZrCIiwIXAgvqSpyoqabeS8tmNpTEpt07AjpjjnSSp8hCRbsBQYKkJusp04Z9IBjNfDAp4V0RWiMjPTVg7pdRu83sP0C4xolXIDEo2DslatlBxWSb7s3w5+u08QncRWSkiH4rI+EQJVQ7l1X0yl+14YK9S6uuYsKQp21LtVtI/u41JuTUIRCQdeBmYrZQ6CjwG9ASGALvRZolkYZxSahhwDvBrETk1NlJpO0TSzCURES9wLvCiCUrmsi1BspVlRYjIH4Ag8KwJ2g2cqJQaClwHPCcitd+ZtPY0mLqP4SJKvpglTdmW025FSdZntzEpt++ALjHHnU1Y0iAiHvQD8qxS6hUApdRepVRIKRUGHqceTSRVoZT6znzvA15Fy7Y3YmYw3/sSJ2EZzgG+VErtheQuW0NFZZmUz7KIzAJ+CMw0DRrGvHfQ/F6BHsPqnTAhDZXUfbKWrRs4D1gYCUuWsi2v3aIBPLuNSbl9AfQSke7mDX4G8EaCZYpi7OnzgA1Kqb/GhMfao6cCa0ufmwhEJE1EMiK/0Q4Fa9Fl+hOT7CfA64mRsFxKvPkma9nGUFFZvgFcajzPxgBHYkxACUFEzgZuBM5VSuXHhLcVEZf53QPoBXyTGCmPUUndvwHMEBGfiHRHy7usvuUrh9OBjUqpnZGAZCjbitotGsKzmyhPlrr4oD11NqPfcP6QaHlKyTYO3XX/ClhlPj8AngbWmPA3gA6JltXI2wPtVbYaWBcpT6A18D7wNfAe0CrRshq50oCDQPOYsKQpW7TS3Q0E0OMQP62oLNGeZo+a53gNMCIJZN2CHkuJPLtzTdpp5vlYBXwJTE6Ssq2w7oE/mLLdBJyTaFlN+HzgylJpk6FsK2q3kvLZjf3Y5bcsFovF0uhoTGZJi8VisVgAq9wsFovF0gixys1isVgsjQ6r3CwWi8XS6LDKzWKxWCyNDqvcLBaLxdLosMrNYrFYLI2O/w+k9cZmYSDdjQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtoElEQVR4nO2deZgUxfn4P+9cO7vLJYfIJYdys9yXAgpGRSWKigoRVDTGGDXeRnPoF038RVGjokQSo+KBilc84n0hYoIIAnKJiq4cInItsPfOTP3+qJqhd3Zmz4ad2a3P88wz3VXV1W9XV9dbx1tVopTCYrFYLJbGgqe+BbBYLBaL5WBiFZ/FYrFYGhVW8VksFoulUWEVn8VisVgaFVbxWSwWi6VRYRWfxWKxWBoVKaP4RKSLiCgR8dW3LA0dEZkuIosO0r0yReQNEdktIr87GPeMu3+uiBx/EO6zQEQuTuJn83Y9ISJzReQvNfVzWYYZIvJUJf4HJY82FExZ8r2ITKltHCmj+Cy1w3xUZSKS7/gddAVTCccD/YFOSqmZUUfzsXepN6lSCPMOZ9Qg/Lnmwy8QkZdFpGUlYf8pIutFJCIi0+P8LhCRZSKyV0Q2i8jMqHIWkQwRecTcZ5+IrBCRk+OuP0dE1hn/tSJyusNPROQvIrJFRPaYikFfh/9MEdlk7v29iPyhBs9fo/RKZ0RkrIgsqEH4geadFpr/gZWEbSki/zb56HsROdfhN05EVolInojsNOE6JIlju7MiLSJT48qjQlPxG2L8rxGRb827/0FE7o2vFIrIVSLynZFtnYj0iPoppQ4B7gJuqm66xOOa4rO12XplvlKqieM3s+pLDhotgVylVH59C1IXTEFe7xVFozz+AZwHtAUKgb9XcslK4DLg8wR+WcDVQGtgBPAz4Hrj5wM2AccCzYE/Ac9FKyumEHwKuBZoBtwAPC0ih5rrzwYuAsag88D/gCcd934E6KWUagYcDUwVkTOrkQQpSSqUfyISAF5Bv5dDgMeBV4x7ImYDpeh8NBV4yFE5WQuMV0q1ANoDXwMPJYjjTmCd00EpNc9ZHqHz37fsz4OvAoPNu+8HDACudDzHxcAvgQlAE+DnwI64+64GWiVNjCqo04dsau03isgXQIGI+ERkpIj819QUVorIWEf4BSLyVxFZYrT9K8lqqyJyoaM2+a2I/DrOf6Kphe4VkQ0icpJxb25qqltNbfMvIuKt4jmOEJEPTM1mh4jME5EWDr9dIjLYnLc3NZyx5vw0EVljnneBiPSOS5/rReQLU+udLyLBmqd0zRGRm0y6RGvjZyQJJ6bG9ZNJy1Ui0s/4ZYjI3SKyUUS2icgcEcmsoSg+IFKFrK1E5DVz/8/MO3PWIJWIXCoiX5t0ni0iYvySvjsHw0wa7BaRx6LvQEQOEZH/mPe52xx3dNx3gYjcLiKfoBVMtyqetbOIfGLS/B0RaR3nP9Wk5Q4R+WMVcSVjKvCaUmqhqUzcDJwpIk0TBVZKzVZKvQ8UJ/B7SCn1sVKqVCm1BZgHjDJ+BUqpGUqpXKVURCn1H+A7YIi5vCOQp5R6U2leBwqAI4x/V2CRUupbpVQYXRj3cdx7vVKqwCFOBDiyNgkiIr8z3/sPInKxyS8V4hKRpiLyoYjMiuYfoLWIvGve2Uci0tkR/n7Z3ypdJiJjHH4zROQFEXlKRPYC06sQMyAiT5j7rBGRoXH+A10oJ8aiv7f7lFIlSqlZgADHxQcUkWxgEnCzUipfKbUIrZDOA1BKbVNK/eC4JEzc+xGRo9GK67Eq5LoAeEKZZcKUUhuUUnnRaHC8e9GVy/8DrlFKrTV5a4NSaldcnBHzrLVDKVXrH5ALrAA6AZlAB2AncApaqZ5gztuY8AuALejEygZeBJ4yfl0ABfjM+QT0RyToWmchupYAMBzYY+L3mPv2Mn7/RteIs4FDgSXAr6t4jiNNXBlAG2AhOvNE/X+FrgFlAW8Ddxv3HuiP/QTAD/wO+AYIONJnCbrG1BJdM7o0iQyjgbxKfqOTXDcjmoZx7meb+3qAyUbOdsZvOrpQAhgPLANamLTu7Qh3L/pjaAk0BV4D/lqD/OFH1/IryBcX7lnzy0IXjpui8kW/FeA/RsbDge3ASdV8d7no2mEn8xyfAH8xfq3QH3+Web7ngZcd1y4ANgJ90R+Zv5JnWABsMHki05zfEZe3HzZ+A4ASoHeSuCp7368AN8a55QNDqkjjRcD0KsK8HJU5gV9btPKMfmde4CPgNHN8OrAZyDb+nU2+6mHywUxn2powNxnZFbpF0LEWZdBJwI/mHWWhFawCjjT+c4G/mHe9JPruHX77gGNM/rk/Lt9NM9f5gOvMfYKO767MPLcHyKxExhkm7U4xafVXYHFcHq1uOfEf4KYkftcAbyYIf12CsIOAwji369GVquj54SYvRsyzTnf4edEtuCE4ypME9+mMVppd49zPBfaad7UdGOC4pwKuQpcD3wG3Ap6467sBIWBgTfOMUsoVxXeR4/xG4Mm4MG8DF5jjBTg+LHQhV2oSsQsOxZfko7zKHP8DuDfJx1nizITAL4APa/hcpwPL49xeBVYBXwAZxu1m4DlHGA9asY91pM80h/9MYE5d0jyBrDNMGuY5fu0ThFsBTDTHsYyKrg1+BYx0Zi60EiwAjnC4HQV8V025BpqPZRumEEoSzmvC9XS4/YWKim+04/w5kn/85d6deQeXOs5PATZUIvNux/kC4LZqPu8C4E+O88uAt8xxNG93dPgvAabU4n2/T1yh6MxzlVxXqeJDd0tuBlon8PMD7wH/iHP/JVpxhdAV0wkOvwBakSjj/x1xhZ8jnw1CF25Na5Eej+KojKErQvGK71F05eeGuGvnAs86zpugC+lOSe61m/0F9AxgYTVlnAG85zjvAxTF5dE6lxPo8ujZOLd5wIwEYccAP8a5/QpYkCBsS3TZPtLhdg3wkDmeTnLFd3OiOB3+3YE/A4eZ86PN+3sdXdHtgi6ffpXg2rtN2JdrmlZujFlschx3Bs423VF5IpKHbsm0SxL+e/RHFd8lhIicLCKLTTdjHrrAiobrhK5dx9PZxLfVcf9/oFt+SRGRtiLyrOiu0b3oWmO8TA+jW6oPKKVKjFt78wwAKKUi5vmcg8A/Oo4L0R+X2zynlGrh+P0gIueL7gqOpkM/EqSzUuoD4EF0f/9Poo0hmqFbT1nAMkccbxn3KlFKrUC3ov6HHkdKRhv2jydF2ZQgXMJ0rOa7i89z7c21WSLyD9ED+3vRrcUWUr5rPJEsyajqXbuRF/LRY2pOmqFbLrVCtFHKX4GTlVI74vw86FZ7KXCFw/14dAE9Fq3kjgX+JfuNKW4BhqG/1SBasX0gIlnO+JVmOVBkwtSU9lSddyagW9pzEvjFwivddbyL/fnjetHDLXtM/m9O+bxVl7wRlPLjggc7b1Q7rNLdjNHxQp+ItEePyVWnu/58c21ClFJfA2vYP05dZP5nKqXylFK56DL8FOd1oseSrwSOUUqdXg05yuGG4lOO403oFp+zEM5WSt3hCNPJcXw4urYf/7FloLtB7wbaKj3A+ga6dhi9zxFUZBO6xdfacf9mSqm+CcI6+X/mOXKUHnCd5rgXItIEuA89ID9D9o9L/oBWttFwYp5vSxX3q4CIjJHyllDxvzFVxxKLqzNaUV8BtDLpt9r5TE6UUrOUUkPQNdEeaEOFHehM2NeRls2VHqyuFkqpYuBNHGM7CdiObhF0dLh1ShI2EZW+uwTxHY5+b6C7r3oCI8y1xxh35/XO/J0KrEF3lQIgIt3Q3XRf1SYy0WPjDwOnKqVWxfkJOs+3BSYppcoc3gPRLZ6lSo8BfgZ8irbijfrPV0ptVkqFlFJz0QYXyfKCj8TfdFVspeq88zC60vaGGdsiUXjznbcEfjDf2++Ac4BDzDe0h9TPG/0d45egLarXJAj7FeATke4OtwFJwoJ+P4eileNwdGNmrYj8iG7ZDxeRH52VRhEZha5EvFCF3M53vx5dyXKmbaJ07g7sUUp9XEXcCXHbSu0p4FQRGS8iXhEJijbHdWbMaSLSx9T8bgNeUHrw20kA/TFvB0KizahPdPg/AlwoIj8TEY+IdBCRXkqprcA7wD0i0sz4HSEix1Yhd1N0DWiPaGu1G+L87weWKqUuRjfBozXH54AJRg4/uiAtAf5bVULFo7SRQZNKfjV5wdns7ztHRC5Et/gqICLDRGSEkb8APRYRMa3Xh4F7Te0Kk87jHdcqcRgvJaEE/T4TYt79S+gKRZaI9ELXEqtLVe8O4HIR6WgqLH8E5juuLQLyjN//1eC+9cU89Dc2xhTitwEvKaUStvhEJGAMJQTwm2/SY/yOM/FNUkotSXD5Q+gx31OVUkVxfp8BY6ItPBEZhO4++8Lhf7ZpkXtE5Dx0b8w35vzXoo2LRESGA5eju3GjcudK3PSLJDyHLgt6mzLl5iThrkAXqq9JeQOtU0RktGjLxz+jx942ofNGCP0N+UTkFiq2kFKNBeiu2itFG6ZFW+gfxAdU2rDoJeA2Eck2SmoixvJWRM4UkZ7mXbUB/oYeQtiFrsx2QVduBqJb98vR423OsvwC4MX4vCnaAClapvQBfo9590qpQvT3+TvRxkgdgUvQY5VO/OiypVa4qvhMhpkI/AGdYTahCyLnfZ5E963/iO4CuZI4TEJdic7Uu9EDoa86/JcAF6KNL/agB9mjLa/z0QXtWnPtC5Tvak3ErcBgE9fr6AwBaOtR9AD6b4zTtcBgEZmqlFqPbmE8gG4hnYouJEqruN8BRSm1FrgH3c24DchBG3Ukohlawe1GdwPuRM+RAd2v/w2w2HQFvoduISEindDdIqviI4wjQtX57Ap0N9KP6PzxDNXP1EnfnYOn0RWib9Fd5NFJy/ehu8B2AIvRrYJ6p7IWvlJqDXApWmH9hC6gL3Nc+6aUnxP3Dlq5Hw380xxHW7Y3o9P9DUfPwpsmns7Ar9EF248O/6lGjo/QY1cviMg+dA/N/1NKvWPivhM9lWIFetz5GrSCzTP+Z6DfxT50hfkB84ua5bdCv5NKUUq9CcwCPsTkVeNVEhdOoQvQzeguu6jV5NPoCs8utKHGNOP+Njo/fIX+LoqpWdfmASHB+41hyp3T0WVgHnrc9vRoeSQif4i+X8Nl6Pz/E/qb+43JX6CHa95i/zceQb8zlLYY/TH6Q397ZeY4KmcQ3VpO1M05ClglIgXonrw30DojyhXoyuwP6DLsafQ4rRMvVViLV4aYQcKDguiJmE8ppf510G5qOSCIyDR0N+jvqwh3Irpg66UqmiQnu+ZO9GD3BXWX1JJuiMho4HKl1C9qcW1vdLd+hlIq5LpwlpRA9CIdZymlhtfm+nqfdGlJT5RSSZdgimMB8C6wRkTuUUrdHR/AdG8G0DXLYWhrwYTLf1kaPkrPKav2knqi56i+gTbGuhNtkm+VXgNFRLajW6m1XqGq3leiOFiInnydyGgkkaWXxSWUnhw9VSnVLpHSMzRFd1EWoPv370HPV0spkuSfGhkeWQ4Iv0YXhBvQY1y/qTy4+5guyER5o9pLsVmqh1KqjVKqr9KLJtSKg9rVabFYLBZLfdNoWnwWi8VisUCKjfG1bt1adenSpb7FsFgsFstBZNmyZTuUUtVaHMMNUkrxdenShaVLl9a3GBaLxWI5iIjI91WHcg/b1WmxWCyWRoVVfBZLimMN0CwWd7GKz2JJcb7+yzCWPWSnNVosbpFSY3yJKCsrY/PmzRQXV9hH02JJSjAYpGPHjvj9/voWpc70CH8N274G7IJHFosbpLzi27x5M02bNqVLly5IuUXHLZbEKKXYuXMnmzdvpmvXrvUtjsViSTFSvquzuLiYVq1aWaVnqTYiQqtWrWwvgcViSUjKKz7AKj1LjWkweSbsWHLSGrlYLK6QForPYmm0hPa3WosKar3JusVicWAVXzUQEa677rrY+d13382MGTPqT6AqWLBgAf/9b433wi3HSSedRIsWLfj5z3/uklSWWhHZ3+Ir3LuzHgWxWBoOVvFVg4yMDF566SV27NjharxKKSKRWu+lmBQ3FN8NN9zAk08+6ZJEllqj9uePkvzd9SiIxdJwsIqvGvh8Pi655BLuvffeCn7bt29n0qRJDBs2jGHDhvHJJ3qj8xkzZnD33ft34enXrx+5ubnk5ubSs2dPzj//fPr168emTZu44YYb6NevHzk5OcyfPx/Qymvs2LGcddZZ9OrVi6lTpyacyDxr1iz69OlD//79mTJlCrm5ucyZM4d7772XgQMH8vHHH1cq43nnncdRRx1F9+7defjhh2Px/uxnP6Np06aVpsvzzz9Pv379GDBgAMccozf1Li4u5sILLyQnJ4dBgwbx4YcfAjB37lxOP/10TjjhBLp06cKDDz7I3/72NwYNGsTIkSPZtUvvUfvwww8zbNgwBgwYwKRJkygsLKxw35EjR7JmzZrY+dixYxvsUneRcDh2XFxouzotFjdI+ekMTm59bQ1rf9jrapx92jfj/07tW2W4yy+/nP79+/O735Xf+/Cqq67immuuYfTo0WzcuJHx48ezbt26SuP6+uuvefzxxxk5ciQvvvgiK1asYOXKlezYsYNhw4bFlMjy5ctZs2YN7du3Z9SoUXzyySeMHj26XFx33HEH3333HRkZGeTl5dGiRQsuvfRSmjRpwvXXXw/Aueeem1TGL774gsWLF1NQUMCgQYOYMGEC7du3r1ba3Xbbbbz99tt06NCBvLw8AGbPno2IsGrVKr788ktOPPFEvvrqKwBWr17N8uXLKS4u5sgjj+TOO+9k+fLlXHPNNTzxxBNcffXVnHnmmfzqV78C4E9/+hOPPPIIv/3tb8vdd/LkyTz33HPceuutbN26la1btzJ06NBqyZxuhCPhWO20tMgqPovFDWyLr5o0a9aM888/n1mzZpVzf++997jiiisYOHAgp512Gnv37iU/P7/SuDp37szIkSMBWLRoEb/4xS/wer20bduWY489ls8++wyA4cOH07FjRzweDwMHDiQ3N7dCXP3792fq1Kk89dRT+HyJ6zGVyThx4kQyMzNp3bo148aNY8mSJdVOk1GjRjF9+nQefvhhwqZlsmjRIqZNmwZAr1696Ny5c0zxjRs3jqZNm9KmTRuaN2/OqaeeCkBOTk7s2VavXs2YMWPIyclh3rx55Vp2Uc455xxeeOEFAJ577jnOOuusasucboQdVp1lVvFZLK6QVi2+6rTMDiRXX301gwcP5sILL4y5RSIRFi9eTDAYLBfW5/OVG79zzinLzs6u1v0yMjJix16vl1AoVCHM66+/zsKFC3nttde4/fbbWbVqVYUwyWSEimb/NZkGMGfOHD799FNef/11hgwZwrJlyyoN73wej8cTO/d4PLFnmz59Oi+//DIDBgxg7ty5LFiwoEI8HTp0oFWrVnzxxRfMnz+fOXPmVFvmdENF9nd1hoorr1BZLJbqYVt8NaBly5acc845PPLIIzG3E088kQceeCB2vmLFCkBvsfT5558D8Pnnn/Pdd98ljHPMmDHMnz+fcDjM9u3bWbhwIcOHD6+WPJFIhE2bNjFu3DjuvPNO9uzZQ35+Pk2bNmXfvv2tg2QyArzyyisUFxezc+dOFixYwLBhw6p1b4ANGzYwYsQIbrvtNtq0acOmTZsYM2YM8+bNA+Crr75i48aN9OzZs9px7tu3j3bt2lFWVhaLJxGTJ09m5syZ7Nmzh/79+1c7/nQjHN5feQoXWcVnsbiBVXw15Lrrritn3Tlr1iyWLl1K//796dOnT6z1MWnSJHbt2kXfvn158MEH6dGjR8L4zjjjDPr378+AAQM47rjjmDlzJocddli1ZAmHw0ybNi1mSHLllVfSokULTj31VP7973/HjFuSyQi6q3TcuHGMHDmSm2++OTa+N2bMGM4++2zef/99OnbsyNtvvw3ALbfcwquvvgpoy8+cnBz69evH0UcfzYABA7jsssuIRCLk5OQwefJk5s6dW66lVxV//vOfGTFiBKNGjaJXr14x91dffZVbbrkldn7WWWfx7LPPcs4551Q77nTEadyiSq3is1jcQFJpy5OhQ4eqeOu8devW0bt373qSqGEzY8aMckYwDY2GkHd2b/6SQ/41AoBPu1zKiOl31rNEFov7iMgypdRBs1CzLT6LJYVxtviktKAeJbFYGg5pZdxicZdUXn3GonEaSEmZVXwWixvYFp/FksJEHFadUlZxMr/FYqk5VvFZLCmMcnR1ekNW8VksbmAVn8WSwoQdLT6fVXwWiytYxWexpDBO4xZ/2Co+i8UNrOKrJi+//DIiwpdffpk0TG5uLv369TugcqxYsYI33nijTnFcdNFFHHrooQdcVkvdiY7xhZUQiBTVszQWS8PAKr5q8swzzzB69GieeeaZhP6JlhOrKWFH7T4Zbii+6dOn89Zbb9UpDsvBIar48skiwyo+i8UVrOKrBvn5+SxatIhHHnmEZ599Nua+YMECxowZw2mnnUafPn0ArQCnTp1K7969Oeuss2Lb6rz//vsMGjSInJwcLrroIkpKSgC9tNmNN97I4MGDef7558vdN37bn9LSUm655Rbmz5/PwIEDmT9/PgUFBVx00UUMHz6cQYMG8corrwB6G6CJEycyduxYunfvzq233hqL95hjjqFly5aVPvNHH33EwIEDGThwIIMGDWLfvn0opZJuoXTssccyceJEunXrxk033cS8efMYPnw4OTk5bNiwAYDXXnuNESNGMGjQII4//ni2bdtW4b5Tpkzh9ddfj51Pnz49tiB1YyTa1VkomQRVcRWhLRZLdUiveXxv3gQ/VlyEuU4clgMn31FpkFdeeYWTTjqJHj160KpVK5YtW8aQIUMAvQ7n6tWr6dq1K7m5uaxfv55HHnmEUaNGcdFFF/H3v/+dK664gunTp/P+++/To0cPzj//fB566CGuvvpqAFq1ahVb19NJ/LY/gUCA2267jaVLl/Lggw8C8Ic//IHjjjuORx99lLy8PIYPH87xxx8PwJIlS1i9ejVZWVkMGzaMCRMmVHv7nrvvvpvZs2czatQo8vPzCQaDvPTSS0m3UFq5ciXr1q2jZcuWdOvWjYsvvpglS5Zw//3388ADD3DfffcxevRoFi9ejIjwr3/9i5kzZ3LPPfeUu290y6EJEyZQWlrK+++/z0MPPVQtmRsi0UWqCyWb5pEf61kai6VhYFt81eCZZ55hypQpgG6ROLs7hw8fTteuXWPnnTp1YtSoUQBMmzaNRYsWsX79erp27Rpbr/OCCy5g4cKFsWsmT56c8L6Jtv2J55133uGOO+5g4MCBjB07luLiYjZu3AjACSecQKtWrcjMzOTMM89k0aJF1X7mUaNGce211zJr1izy8vLw+XyVbqE0bNgw2rVrR0ZGBkcccQQnnngiUH7Loc2bNzN+/HhycnK46667Em45dPLJJ/Phhx9SUlLCm2++yTHHHENmZma15W5oRLs6S7zZBCktt1uDxWKpHenV4quiZXYg2LVrFx988AGrVq1CRAiHw4gId911F1Bxi6HabPOTbJui6mz7o5TixRdfrLADwqefflqnLYduuukmJkyYwBtvvMGoUaNii1QnozpbDv32t7/l2muv5bTTTmPBggUJV44JBoOMHTuWt99+m/nz58cqHI0VZXZnKPVl4wkpigoLyGzSrJ6lsljSmwPe4hORk0RkvYh8IyI3Hej7uc0LL7zAeeedx/fff09ubi6bNm2ia9eufPzxxwnDb9y4kf/9738APP3004wePZqePXuSm5vLN998A8CTTz7JscceW+W9E237E7/l0Pjx43nggQeILja+fPnymN+7777Lrl27KCoq4uWXX461RKvDhg0byMnJ4cYbb2TYsGF8+eWXddpCCWDPnj106NABgMcffzxpuMmTJ/PYY4/x8ccfc9JJJ1U7/oZItMVX5msCQEH+nvoUx2JpEBxQxSciXmA2cDLQB/iFiPQ5kPd0m2eeeYYzzjijnNukSZOSWnf27NmT2bNn07t3b3bv3s1vfvMbgsEgjz32GGeffTY5OTl4PB4uvfTSKu+daNufcePGsXbt2phxy80330xZWRn9+/enb9++3HzzzbHrhw8fzqRJk+jfvz+TJk2Kje/94he/4KijjmL9+vV07Ngxtr/gnDlzYlsW3XffffTr14/+/fvj9/s5+eST67SFEui1Qc8++2yGDBlC69atY+5Lly7l4osvjp2feOKJfPTRRxx//PEEAoFqx98QiU1n8GvFV1K4tz7FsVgaBAd0WyIROQqYoZQab85/D6CU+mui8HZbIveYO3duOSOYxkhDyDurP3qJfh9eyH/bTuXobfP4ZtJbHJlzVH2LZbG4SkPblqgDsMlxvtm4xRCRS0RkqYgs3b59+wEWx2JJL2LGLBlNASgr3FdJaIvFUh3q3apTKfVPpdRQpdTQNm3a1Lc4DYbp06c36tZeQyGq+DyZ2qCltMgqPoulrhxoxbcF6OQ472jcakQq7RJvSQ8aSp6J7sfnM4ovVJRfn+JYLA2CA634PgO6i0hXEQkAU4BXaxJBMBhk586dDaYgsxx4lFLs3LmTYDBY36LUmahxiy+zOQChYtvis1jqygGdx6eUConIFcDbgBd4VClVcdZyJXTs2JHNmzdjx/8sNSEYDNKxY8f6FqPuKK34Ak1aABApsS0+i6WuHPAJ7EqpN4Bar6rs9/vLrYxisTQmomt1ZmS3AECVFNSjNBZLw6DejVssFkslKD3G589sSkQJqtS2+CyWumIVn8WSwkRbfB6Pl0IJIqW2xWex1BWr+CyWFEaZMT6v10sxQaTM7sJusdQVq/gslhRGmekMXp+XYk8mvpBt8VksdcUqPoslhYlNYPd4KfFk4g3bFp/FUles4rNYUhhljFu8Xh9lnkz8oaJ6lshiSX+s4rNYUhjlMG4p82YRiNgWn8VSV6zis1hSmGhXp9fnI+zLIiNiW3wWS12xis9iSWWU3r3e6wsQ9mcRVMX1LJDFkv5YxWexpDJhrfg8Pi/Kn01Q2RafxVJXrOKzWFKZiFZ8Pl8AFWhCFsWEwpF6FspiSW+s4rNYUpnodAavDwLZBCRMYbFt9VksdcEqPoslhRHT4hOPH09GEwAK8/fUp0gWS9pjFZ/FksqoEBEl4PHEFF9xvt2Tz2KpC1bxWSypTCRMyHymvqBWfCWFtsVnsdQFq/gslhRGIiHCeAHwZTYFoLTQbk1ksdQFq/gslhRGVIiwaMUXMIqvrGhvfYpksaQ9VvFZLKlMJEzEfKaBrGYAlBXbFp/FUhes4rNYUhgJl1GGD4CMbN3iCxdZ4xaLpS5YxWexpDASKSEkfgCCpsUXLrEtPoulLljFZ7GkMJ7wfsWXZVp8WMVnsdQJq/gslhTGEymLKT5fUCs+VWp3YbdY6oJVfBZLCuOJlFImGfrE66OYAFJmFZ/FUhes4rNYUhhvpJSwxx87LyKIxyo+i6VOWMVnsaQwvkgJYU8gdl4iQbxldhd2i6UuWMVnsaQwGZEiSj1ZsfMSTybesFV8FktdsIrPYklhgpEiQv4msfNSbxZ+q/gsljphFZ/FksIEVRH497f4yryZBMJ2Pz6LpS7USfGJyAwR2SIiK8zvFIff70XkGxFZLyLj6y6qxdK4KAuFaE4+kcyWMbeQN4uMiFV8Fktd8LkQx71KqbudDiLSB5gC9AXaA++JSA+lVNiF+1ksjYJ9u36ipURQWa1jbmF/NhnKKj6LpS4cqK7OicCzSqkSpdR3wDfA8AN0L4ulQbJv11YAvE0PjbkpfxaZqri+RLJYGgRuKL4rROQLEXlURA4xbh2ATY4wm41bBUTkEhFZKiJLt2/f7oI4FkvDYPdPWwBo2qpdzC3izyaLYsIRVV9iWSxpT5WKT0TeE5HVCX4TgYeAI4CBwFbgnpoKoJT6p1JqqFJqaJs2bWp6ucXSYCne9jUAh3TsGXOTQBMypZTC4pL6EstiSXuqHONTSh1fnYhE5GHgP+Z0C9DJ4d3RuFkslmoS2baWQpVB6/bd9jsGsgEoLthH06xgPUlmsaQ3dbXqbOc4PQNYbY5fBaaISIaIdAW6A0vqci+LpbHRdtcycoO98Hi9MTcJ6Dl9xQV2F3aLpbbU1apzpogMBBSQC/waQCm1RkSeA9YCIeBya9FpsVSfzblfcUTkOxa3/205d29QK76SQrsZrcVSW+qk+JRS51Xidztwe13it1gaKxvf/BvtlNBt3LRy7h6j+EqLbIvPYqktduUWiyXF+OaL/zH0x+dY0fIkDj28Vzk/f6beky9UZDejtVhqixsT2C0Wi0ts3fg1TV86lz3SjK5T7q7g7zctvlDxgevqLAuF2PTNGvbt3IqKlNGkVSc6d++D3x+o+mKLJQ2wis9iSRH27PqJkrln0Ioidp7zCl3adqwQJpCprTpDJe4uVL31+/V8+/FzNNv4HkeUrKOblJ8usYdsvm46HE/v0+hz7FkEs5vV7AaRCPm7trBjx3bKSkrwqDLEl4EnszmZTZqT3ewQsjIy8HjExaeyWBJjFZ/FkgIUFxWw5aEzODK8lW/GP06fPiMShguYrs5wad0VX1lpCSvee5qMFY/Tv3Q57YDvvYez6tBTCXQcQGbrzojHS+H2jYS+/ZhueZ/QasmHFH16I180G0mk16m0OmIwTQ5pS0QpCvJ+onDHZgp3bCK0eyPevZvJLNpKi9IfaR3ZThNCNKlEniIVIJ8sCiSbYk8Wxd5sIt4M/KJAhREVBhXBEwnhVWV4VQivCuMlhE+FzH8YHyFEIIyXCB52+g/jkAvn06Z9lzqnmaVh0OAUn4pEKCrcR/6eXRTu3Ulx/h7CoTKUUhAJoSJhFCDiQTyCRzyIeHRN0+NFRPB4tFvU3ePxQuzYY871MQgKAfGA6P/K1tRQSTyTuVcvbMWLE0UX76YS3DThddW5X8xJkoZK/Iy1k0FVKkNyEoWpfVxVy17d91r89q0MK1vNsuF3M+TonycNF8zSLb5wHVp8pcVFfP7qgxy+9h8MYzvbpDWfdrmUTmPOp/MRfemc8KrLCIdCrP70bfYse4Huuz7k0M8Wwmf7Q7RyhI4oYYe0YKevLZsye/Ft9nGoFp3IbNYafyCDED484RIo3Ue4eB+qeB9Ssg8p3YevdB/+0D6yQwV4Q/sIKQ9KPCjxosRDxJtBqScb5fGjxEfE49PHHj/K4yMiPsIKiIQhUsaA3e+y+ZGzCFzxNs0PaRX/YFVSUpDHtq1bKNrzE6F9OykpLSZUVoaHsDaS8AbAl4H4g3h8GXgCQbyBID5fAJ/PF/v5fX58fn+s/ACTP0wm2Z9V1P68peJzp4rLU46TiIpzdZwrp6vaf09V/gqn4/78HX9PR1CPnw6Hd0vsmcI0KMX37epP6fT8yWRJmKyqg1ssKcXiLr9h5IRfVRommKVbfJQW1Dj+SDjCZ2/NpcvS2xmpdvCVvycrR/6ZnGPPpq2v6qLA6/PRb9QEGDWBkrIyvlq9mN2bvkQV7UYB/uxD8B/SgRZtO9OmQ1cOzczi0CpjPfCsfP9Zei+8jM0PHMeuSf+ka9+KrWkVibBz67ds/3YVhVvWIjvWk73vW9qWfE8L9nJ4PcidDqxS3ehw6/L6FqPGNCjF1+LQjiztMA0JNkcyW+DLboE/sxkenx8RL+LxxCYDq4hCqQgRFYkdq0gElCISiehzpXQLUUX9FUqVP/cQARRialFCxEhT87GKZFdINaJKFCTxdVKNMImuqjqgSMVqYXWir63siS5MfD+pMkz106HqGyYWvXIZ/E3bMOKoM6q8fyCoW3yqrGYtvg1ff8nO569kROmnbPB2Y+uYmQw45gzEUzvD7gy/nx6DxsCgMbW6/mAy4GdTWOPPoP0Hv6X5c+P5MtCbvOyueDxevCW7OaR4M4eFfqC1lBDdB2O3asIPvk6saTaG8CFdyTrkMALNDsXXpDXBYCb+gJ8IXhSgQiVEykqIlBYRLitBlRUTDpUQCZUSCYeJhEOEwyEi5icqkkBKnSOi2UQhjiwTn1skzslx4shnYuIp71UxbNRFOb/yuPyqJK4EMP5lgRYJniX1aVCKr+WhHTjqkln1LYbFcsAQX4Ay5YWy6m1NVFxSyn+f+X+M+O7vtBf4os8N9DvzRjw+/wGWNLXoe8wZ5PU5msWv3kOrHxbQPe8TFFDkyWZnoAPbWg6FVj3I6tCHNt36c9hhHTnEa2d7NVQalOKzWBoDxZKBVEPxffHZQjLevJrjIhtY13QE7c79O/3bH3kQJExNWrRuy9EXzazg3ilBWEvDxio+iyXNKJEMPKHkXZ179+ax8skbOfqn+eRJc74cdT+9j7+g+v25FksDxyo+iyXN2CfNCJblVXBXkQgr3nmCdov/zBh2sPzQ0+k17W/0al5zS0aLpSFjFZ/Fkmbk+VrRvKz8ps1fLnmX0vf+wqDSFWzwdOXrU+YwaOgJ9SShxZLaWMVnsaQZRRmH0jE/l7zdO/j6w3lkr5tPn7I17KYZS3vfxMAzr8NnlxezWJJiFZ/FkmaoNr1os+8tuP8IhgGbpD2fdr+OfqddxdCmzetbPIsl5bGKz2JJM3LOuJZP5u3E6wvQevDPOWLgWDrVcj6exdIYsYrPYkkzmjVtzqhLH6xvMSyWtMVWEy0Wi8XSqLCKz2KxWCyNCkm0wnx9ISLbge9diKo1sMOFeA4GVtYDRzrJm06yQnrJm06yQnrJ65asnZVSbVyIp1qklOJzCxFZqpQaWt9yVAcr64EjneRNJ1khveRNJ1khveRNJ1md2K5Oi8VisTQqrOKzWCwWS6OioSq+f9a3ADXAynrgSCd500lWSC9500lWSC9500nWGA1yjM9isVgslmQ01BafxWKxWCwJsYrPYrFYLI2KBqX4ROQkEVkvIt+IyE31LY8TEekkIh+KyFoRWSMiVxn3GSKyRURWmN8p9S1rFBHJFZFVRq6lxq2liLwrIl+b/0NSQM6ejvRbISJ7ReTqVEpbEXlURH4SkdUOt4RpKZpZJh9/ISKDU0DWu0TkSyPPv0WkhXHvIiJFjjSeczBlrUTepO9eRH5v0na9iIxPAVnnO+TMFZEVxj0V0jZZuZWSebfaKKUaxA/wAhuAbkAAWAn0qW+5HPK1Awab46bAV0AfYAZwfX3Ll0TmXKB1nNtM4CZzfBNwZ33LmSAf/Ah0TqW0BY4BBgOrq0pL4BTgTUCAkcCnKSDriYDPHN/pkLWLM1wKpW3Cd2++uZVABtDVlBne+pQ1zv8e4JYUSttk5VZK5t3q/hpSi2848I1S6lulVCnwLDCxnmWKoZTaqpT63BzvA9YBHepXqloxEXjcHD8OnF5/oiTkZ8AGpZQbKwC5hlJqIbArzjlZWk4EnlCaxUALEWl3UAQlsaxKqXeUUiFzuhjoeLDkqYokaZuMicCzSqkSpdR3wDfosuOgUJmsIiLAOcAzB0ueqqik3ErJvFtdGpLi6wBscpxvJkUVi4h0AQYBnxqnK0y3wKOp0HXoQAHviMgyEbnEuLVVSm01xz8CbetHtKRMoXzBkappC8nTMtXz8kXoWn2UriKyXEQ+EpEx9SVUAhK9+1RO2zHANqXU1w63lEnbuHIrXfMu0LAUX1ogIk2AF4GrlVJ7gYeAI4CBwFZ0V0eqMFopNRg4GbhcRI5xeirdt5Ey82FEJACcBjxvnFI5bcuRammZDBH5IxAC5hmnrcDhSqlBwLXA0yLSrL7kc5A2797BLyhfaUuZtE1QbsVIl7zrpCEpvi1AJ8d5R+OWMoiIH5155imlXgJQSm1TSoWVUhHgYQ5it0tVKKW2mP+fgH+jZdsW7bow/z/Vn4QVOBn4XCm1DVI7bQ3J0jIl87KITAd+Dkw1hR2my3CnOV6GHjPrUW9CGip596matj7gTGB+1C1V0jZRuUWa5d14GpLi+wzoLiJdTc1/CvBqPcsUw/TfPwKsU0r9zeHu7P8+A1gdf219ICLZItI0eow2bliNTtMLTLALgFfqR8KElKsxp2raOkiWlq8C5xsLuZHAHke3Ur0gIicBvwNOU0oVOtzbiIjXHHcDugPf1o+U+6nk3b8KTBGRDBHpipZ3ycGWLwHHA18qpTZHHVIhbZOVW6RR3k1IfVvXuPlDWxR9ha4Z/bG+5YmTbTS6O+ALYIX5nQI8Cawy7q8C7epbViNvN7T120pgTTQ9gVbA+8DXwHtAy/qW1ciVDewEmjvcUiZt0Qp5K1CGHvf4ZbK0RFvEzTb5eBUwNAVk/QY9dhPNu3NM2Ekmf6wAPgdOTZG0TfrugT+atF0PnFzfshr3ucClcWFTIW2TlVspmXer+7NLllksFoulUdGQujotFovFYqkSq/gsFovF0qiwis9isVgsjQqr+CwWi8XSqLCKz2KxWCyNCqv4LBaLxdKosIrPYrFYLI0Kq/gsFovF0qiwis9isVgsjQqr+CwWi8XSqLCKz2KxWCyNCqv4LBaLxdKoSBnFJyJdRESZfaksBxARmS4iiw7SvTJF5A0R2S0ivzsY94y7f66IHH8Q7rNARC5O4mfzdj0hInNF5C819XNZhhki8lQl/gcljzYUTFnyvYhMqW0cKaP4LLXDfFRlIpLv+B10BVMJxwP9gU5KqZlRR/Oxd6k3qVII8w5n1CD8uebDLxCRl0WkZSVh/yki60UkYjaSdfpdICLLRGSviGwWkZlR5Wz2q3vE3GefiKwQkZPjrj9HRNYZ/7UicrrDT0TkLyKyRUT2mIpBX4f/TBHZZO79vYj8oQbPX6P0SmdEZKyILKhB+IHmnRaa/4GVhG0pIv82+eh7ETnX4TdORFaJSJ6I7DThOiSJY7uzIi0iU+PKo0JT8Rti/K8RkW/Nu/9BRO6NrxSKyFUi8p2RbZ2IxDbgVUodAtwF3FTddInHNcVna7P1ynylVBPHb2bVlxw0WgK5Sqn8+hakLpiCvN4rikZ5/AM4D2gLFAJ/r+SSlcBl6P3c4skCrgZaAyOAnwHXGz8fev+9Y4HmwJ+A56KVFVMIPgVcCzQDbgCeFpFDzfVnAxcBY9B54H/oPfKiPAL0Uko1A44GporImdVIgpQkFco/0Rtwv4J+L4cAjwOvGPdEzAZK0floKvCQo3KyFhivlGoBtEfvu/dQgjjuBNY5HZRS85zlETr/fcv+PPgqMNi8+37AAOBKx3NcjN5TcQLQBPg5sCPuvqvRewLWijp9yKbWfqOIfAEUiIhPREaKyH9NTWGliIx1hF8gIn8VkSVG27+SrLYqIhc6apPfisiv4/wnmlroXhHZIHqHaESkuampbjW1zb+I2cW4kuc4QkQ+MDWbHSIyT0RaOPx2ichgc97e1HDGmvPTRGSNed4FItI7Ln2uF5EvTK13vogEa57SNUdEbjLpEq2Nn5EknJga108mLVeJSD/jlyEid4vIRhHZJiJzRCSzhqL4gEgVsrYSkdfM/T8z78xZg1QicqmIfG3SebaIiPFL+u4cDDNpsFtEHou+AxE5RET+Y97nbnPc0XHfBSJyu4h8glYw3ap41s4i8olJ83dEpHWc/1STljtE5I9VxJWMqcBrSqmFpjJxM3CmiDRNFFgpNVsp9T5QnMDvIaXUx0qpUqXUFmAeMMr4FSilZiilcpVSEaXUf4DvgCHm8o5AnlLqTaV5HSgAjjD+XYFFSqlvlVJhdGHcx3Hv9UqpAoc4EeDI2iSIiPzOfO8/iMjFJr9UiEtEmorIhyIyK5p/gNYi8q55Zx+JSGdH+Ptlf6t0mYiMcfjNEJEXROQpEdkLTK9CzICIPGHus0ZEhsb5D3ShnBiL/t7uU0qVKKVmoTeGPS4+oIhkoze6vVkpla+UWoRWSOcBKKW2KaV+cFwSJu79iMjRaMX1WBVyXQA8oczmr0qpDUqpvGg0ON696Mrl/wHXKKXWmry1QSm1Ky7OiHnW2lHH3Xlz0TvydgIygQ7oXbBPQSvVE8x5GxN+AbAFnVjZwIvAU8avC3qnX585n4D+iARd6yxE1xIAhgN7TPwec99exu/f6BpxNnAosAT4dRXPcaSJKwNoAyxEZ56o/6/QNaAs4G3gbuPeA/2xnwD4gd+hd6oOONJnCbrG1BJdM7o0iQyjgbxKfqOTXDcjmoZx7meb+3qAyUbOdsZvOrpQAhgPLANamLTu7Qh3L/pjaAk0BV4D/lqD/OFH1/IryBcX7lnzy0IXjpui8kW/FeA/RsbDge3ASdV8d7no2mEn8xyfAH8xfq3QH3+Web7ngZcd1y4ANgJ90R+Zv5JnWIDedboH+ltYANwRl7cfNn4DgBKgd5K4KnvfrwA3xrnlA0OqSONFwPQqwrwclTmBX1u08ox+Z17gI+A0c3w6ekfxbOPf2eSrHiYfzHSmrQlzk5FdoVsEHWtRBp0E/GjeURZawSrgSOM/F/iLeddLou/e4bcPOMbkn/vj8t00c50PuM7cJ+j47srMc3uAzEpknGHS7hSTVn8FFsfl0eqWE/8Bbkridw3wZoLw1yUIOwgojHO7Hl2pip4fbvJixDzrdIefF92CG4KjPElwn85opdk1zv1cYK95V9uBAY57KuAqdDnwHXAr4Im7vhsQAgbWNM8opVxRfBc5zm8EnowL8zZwgTlegOPDQhdypSYRu+BQfEk+yqvM8T+Ae5N8nCXOTAj8Aviwhs91OrA8zu1VYBXwBZBh3G4GnnOE8aAV+1hH+kxz+M8E5tQlzRPIOsOkYZ7j1z5BuBXARHMcy6jo2uBXwEhn5kIrwQLgCIfbUcB31ZRroPlYtmEKoSThvCZcT4fbX6io+EY7zp8j+cdf7t2Zd3Cp4/wUYEMlMu92nC8Abqvm8y4A/uQ4vwx4yxxH83ZHh/8SYEot3vf7xBWKzjxXyXWVKj50t+RmoHUCPz/wHvCPOPdfohVXCF0xneDwC6AViTL+3xFX+Dny2SB04da0FunxKI7KGLoiFK/4HkVXfm6Iu3Yu8KzjvAm6kO6U5F672V9AzwAWVlPGGcB7jvM+QFFcHq1zOYEuj56Nc5sHzEgQdgzwY5zbr4AFCcK2RJftIx1u1wAPmePpJFd8NyeK0+HfHfgzcJg5P9q8v9fRFd0u6PLpVwmuvduEfbmmaeXGmMUmx3Fn4GzTHZUnInnolky7JOG/R39U8V1CiMjJIrLYdDPmoQusaLhO6Np1PJ1NfFsd9/8HuuWXFBFpKyLPiu4a3YuuNcbL9DC6pfqAUqrEuLU3zwCAUipins85CPyj47gQ/XG5zXNKqRaO3w8icr7oruBoOvQjQTorpT4AHkT39/8k2hiiGbr1lAUsc8TxlnGvEqXUCnQr6n/ocaRktGH/eFKUTQnCJUzHar67+DzX3lybJSL/ED2wvxfdWmwh5bvGE8mSjKretRt5IR89puakGbrlUitEG6X8FThZKbUjzs+DbrWXAlc43I9HF9Bj0UruWOBfst+Y4hZgGPpbDaIV2wcikuWMX2mWA0UmTE1pT9V5ZwK6pT0ngV8svNJdx7vYnz+uFz3cssfk/+aUz1t1yRtBKT8ueLDzRrXDKt3NGB0v9IlIe/SYXHW668831yZEKfU1sIb949RF5n+mUipPKZWLLsNPcV4neiz5SuAYpdTp1ZCjHG4oPuU43oRu8TkL4Wyl1B2OMJ0cx4eja/vxH1sGuhv0bqCt0gOsb6Brh9H7HEFFNqFbfK0d92+mlOqbIKyT/2eeI0fpAddpjnshIk2A+9AD8jNk/7jkD2hlGw0n5vm2VHG/CojIGClvCRX/G1N1LLG4OqMV9RVAK5N+q53P5EQpNUspNQRdE+2BNlTYgc6EfR1p2VzpwepqoZQqBt7EMbaTgO3oFkFHh1unJGETUem7SxDf4ej3Brr7qicwwlx7jHF3Xu/M36nAGnRXKQAi0g3dTfdVbSITPTb+MHCqUmpVnJ+g83xbYJJSqszhPRDd4lmq9BjgZ8CnaCveqP98pdRmpVRIKTUXbXCRLC/4SPxNV8VWqs47D6MrbW+YsS0ShTffeUvgB/O9/Q44BzjEfEN7SP280d8xfgnaonpNgrBfAT4R6e5wG5AkLOj3cyhaOQ5HN2bWisiP6Jb9cBH50VlpFJFR6ErEC1XI7Xz369GVLGfaJkrn7sAepdTHVcSdELet1J4CThWR8SLiFZGgaHNcZ8acJiJ9TM3vNuAFpQe/nQTQH/N2ICTajPpEh/8jwIUi8jMR8YhIBxHppZTaCrwD3CMizYzfESJybBVyN0XXgPaItla7Ic7/fmCpUupidBM8WnN8Dphg5PCjC9IS4L9VJVQ8ShsZNKnkV5MXnM3+vnNE5EJ0i68CIjJMREYY+QvQYxER03p9GLjX1K4w6Tzeca0Sh/FSEkrQ7zMh5t2/hK5QZIlIL3QtsbpU9e4ALheRjqbC8kdgvuPaIiDP+P1fDe5bX8xDf2NjTCF+G/CSUiphi09EAsZQQgC/+SY9xu84E98kpdSSBJc/hB7zPVUpVRTn9xkwJtrCE5FB6O6zLxz+Z5sWuUdEzkP3xnxjzn8t2rhIRGQ4cDm6Gzcqd67ETb9IwnPosqC3KVNuThLuCnSh+pqUN9A6RURGi7Z8/DN67G0TOm+E0N+QT0RuoWILKdVYgO6qvVK0YVq0hf5BfEClDYteAm4TkWyjpCZiLG9F5EwR6WneVRvgb+ghhF3oymwXdOVmILp1vxw93uYsyy8AXozPm6INkKJlSh/g95h3r5QqRH+fvxNtjNQRuAQ9VunEjy5baoWris9kmInAH9AZZhO6IHLe50l03/qP6C6QK4nDJNSV6Ey9Gz0Q+qrDfwlwIdr4Yg96kD3a8jofXdCuNde+QPmu1kTcCgw2cb2OzhCAth5FD6D/xjhdCwwWkalKqfXoFsYD6BbSqehCorSK+x1QlFJrgXvQ3YzbgBy0UUcimqEV3G50N+BO9BwZ0P363wCLTVfge+gWEiLSCd0tsio+wjgiVJ3PrkB3I/2Izh/PUP1MnfTdOXgaXSH6Ft1FHp20fB+6C2wHsBjdKqh3KmvhK6XWAJeiFdZP6AL6Mse1b0r5OXHvoJX70cA/zXG0ZXszOt3fcPQsvGni6Qz8Gl2w/ejwn2rk+Ag9dvWCiOxD99D8P6XUOybuO9FTKVagx52vQSvYPON/Bvpd7ENXmB8wv6hZfiv0O6kUpdSbwCzgQ0xeNV4lceEUugDdjO6yi1pNPo2u8OxCG2pMM+5vo/PDV+jvopiadW0eEBK83xim3DkdXQbmocdtT4+WRyLyh+j7NVyGzv8/ob+535j8BXq45i32f+MR9DtDaYvRH6M/9LdXZo6jcgbRreVE3ZyjgFUiUoDuyXsDrTOiXIGuzP6ALsOeRo/TOvFShbV4ZYgZJDwoiJ6I+ZRS6l8H7aaWA4KITEN3g/6+inAnogu2XqqiSXKya+5ED3ZfUHdJLemGiIwGLldK/aIW1/ZGd+tnKKVCrgtnSQlEL9JxllJqeG2ur/dJl5b0RCmVdAmmOBYA7wJrROQepdTd8QFM92YAXbMchrYWTLj8l6Xho/ScsmovqSd6juobaGOsO9Em+VbpNVBEZDu6lVrrFarqfSWKg4XoydeJjEYSWXpZXELpydFTlVLtEik9Q1N0F2UBun//HvR8tZQiSf6pkeGR5YDwa3RBuAE9xvWbyoO7j+mCTJQ3qr0Um6V6KKXaKKX6Kr1oQq04qF2dFovFYrHUN42mxWexWCwWC6TYGF/r1q1Vly5d6lsMi8VisRxEli1btkMpVa3FMdwgpRRfly5dWLp0aX2LYbFYLJaDiIh8X3Uo97BdnRaLxWJpVFjFZ7GkENv3FrFo2cr6FsNiadBYxWexpBCfz72e0a8dw65tG+tbFIulwZJSY3yJKCsrY/PmzRQXV9hH02JJSjAYpGPHjvj9/voWpUYM3q1XTdu+dRMt2x5ez9JYLA2TlFd8mzdvpmnTpnTp0gUpt+i4xZIYpRQ7d+5k8+bNdO3atb7FqRGF3iYQ2kHJnp/qWxSLpcGS8l2dxcXFtGrVyio9S7UREVq1apWWvQTFvuYAlO3dVs+SWCwNl5RXfIBVepYak655psSvFV84f0cVIS0WS21JC8VnsTQWIn69QXm4aE89S2KxNFys4qsGIsJ1110XO7/77ruZMWNG/QlUBQsWLOC//63xXrgxVqxYwVFHHUXfvn3p378/8+fPr/oii0uYlmpJfv2KYbE0YKziqwYZGRm89NJL7NjhbveTUopIpNZ7KSalroovKyuLJ554gjVr1vDWW29x9dVXk5eX556AlqSI2cDaU1ZQz5JYLA0Xq/iqgc/n45JLLuHee++t4Ld9+3YmTZrEsGHDGDZsGJ98ojc6nzFjBnffvX8Xnn79+pGbm0tubi49e/bk/PPPp1+/fmzatIkbbriBfv36kZOTE2tdLViwgLFjx3LWWWfRq1cvpk6dSqKdNGbNmkWfPn3o378/U6ZMITc3lzlz5nDvvfcycOBAPv7440plPO+88zjqqKPo3r07Dz/8MAA9evSge/fuALRv355DDz2U7du3V7j3888/T79+/RgwYADHHKM39S4uLubCCy8kJyeHQYMG8eGHHwIwd+5cTj/9dE444QS6dOnCgw8+yN/+9jcGDRrEyJEj2bVL71H78MMPM2zYMAYMGMCkSZMoLCyscN+RI0eyZs2a2PnYsWMbzlJ3SleEvGXutvg2bVjL/164z9U4Abbt3ud6nPuKShPmdYvFLVJ+OoOTW19bw9of9roaZ5/2zfi/U/tWGe7yyy+nf//+/O535fc+vOqqq7jmmmsYPXo0GzduZPz48axbt67SuL7++msef/xxRo4cyYsvvsiKFStYuXIlO3bsYNiwYTElsnz5ctasWUP79u0ZNWoUn3zyCaNHjy4X1x133MF3331HRkYGeXl5tGjRgksvvZQmTZpw/fXXA3DuuecmlfGLL75g8eLFFBQUMGjQICZMmED79u1j8S9ZsoTS0lKOOOKICs9x22238fbbb9OhQ4dYi3D27NmICKtWreLLL7/kxBNP5KuvvgJg9erVLF++nOLiYo488kjuvPNOli9fzjXXXMMTTzzB1VdfzZlnnsmvfvUrAP70pz/xyCOP8Nvf/rbcfSdPnsxzzz3HrbfeytatW9m6dStDhw6tNM3TBqP4fCF3W3zy1Jkcpbay74Tzadq8pStxLl/4GoM+mMbqk1+g34gTXIkzb/cuWtzflY+6Xc+x59/sSpwWSzy2xVdNmjVrxvnnn8+sWbPKub/33ntcccUVDBw4kNNOO429e/eSn195bb1z586MHDkSgEWLFvGLX/wCr9dL27ZtOfbYY/nss88AGD58OB07dsTj8TBw4EByc3MrxNW/f3+mTp3KU089hc+XuB5TmYwTJ04kMzOT1q1bM27cOJYsWRK7buvWrZx33nk89thjeDwVs8qoUaOYPn06Dz/8MOFwOPY806ZNA6BXr1507tw5pvjGjRtH06ZNadOmDc2bN+fUU08FICcnJ/Zsq1evZsyYMeTk5DBv3rxyLbso55xzDi+88AIAzz33HGeddVal6Z1ORLs6/WF3FV+zSB4AeT/muhbnrq8XAxD54gXX4iwy8xeHfDvbtTgBXnv5WRbef6GrcVrSl7Rq8VWnZXYgufrqqxk8eDAXXrj/A4pEIixevJhgMFgurM/nKzd+55xTlp2dXa37ZWRkxI69Xi+hUKhCmNdff52FCxfy2muvcfvtt7Nq1aoKYZLJCBXN/qPne/fuZcKECdx+++0xJR3PnDlz+PTTT3n99dcZMmQIy5Ytq/bzeDye2LnH44k92/Tp03n55ZcZMGAAc+fOZcGCBRXi6dChA61ateKLL75g/vz5zJkzp9L7phNRxZcRrtjFW6d4zX/Rvt2uxakyWgDujkeqUh1XQJW5FifAScsvwy9hVPF9SLC5q3Fb0g/b4qsBLVu25JxzzuGRRx6JuZ144ok88MADsfMVK1YAeoulzz//HIDPP/+c7777LmGcY8aMYf78+YTDYbZv387ChQsZPnx4teSJRCJs2rSJcePGceedd7Jnzx7y8/Np2rQp+/btH3tJJiPAK6+8QnFxMTt37mTBggUMGzaM0tJSzjjjDM4///xKW1MbNmxgxIgR3HbbbbRp04ZNmzYxZswY5s2bB8BXX33Fxo0b6dmzZ7WeB2Dfvn20a9eOsrKyWDyJmDx5MjNnzmTPnj3079+/2vGnPGZsKyNS5Gq0pRLQ/wXuTZOQQKb+D7kna8RYs3pw1+grjyYAlO7e4mq8lvTEKr4act1115Wz7pw1axZLly6lf//+9OnTJ9b6mDRpErt27aJv3748+OCD9OjRI2F8Z5xxBv3792fAgAEcd9xxzJw5k8MOO6xasoTDYaZNmxYzJLnyyitp0aIFp556Kv/+979jxi3JZATdVTpu3DhGjhzJzTffTPv27XnuuedYuHAhc+fOZeDAgQwcODCmLG+55RZeffVVAG644QZycnLo168fRx99NAMGDOCyyy4jEomQk5PD5MmTmTt3brmWXlX8+c9/ZsSIEYwaNYpevXrF3F999VVuueWW2PlZZ53Fs88+yznnnFPtuNOBaIsvU7nb4osqvjIX5wd60Era66LiU6U6Lp+4q/iKlX7+wn12fqQFJJWsp4YOHarirfPWrVtH796960mihs2MGTPKGcE0NNIx76yZeQJ9C5dQqDLIutW99Tq/v60fnSOb+GzAXxh2xm+rvqAavP/M3/jZ+lv5OnsI3W/4wJU4c5e8Rpc39BgxM9xTUt/c0psjPT+w9bRnaDf4FNfitbiDiCxTSh00CzXb4rNYUglj1ZklJUSMwZAblHp0qztS7KJVdETL5wu72NUZcndsL0oxusVXUuiuVbglPUkr4xaLu6Ty6jONFXGMbRUW7KFJM3emHoREKz7louJT4VLAZcUXrmjA5QZRxVdqFZ8F2+KzWFIKj9rfyitycTwqIuZTL3XRAtO0SL2RUtfiPFCKrxS9L2Oo0I7xWazis1hSClGOKTD5ea7FG1WoUureSisqrLsl/cpNxefo3g2VuBZvqUS7eu0aqBar+CyW1MKh+EoK3VNSElsKzcWJ8RHdOvO5qfgi+xVf2EUlpUyLV5XYrk6LVXwWS0rhIUKJ0t1yJS7OufOaFp+bS6Epo/gCbio+h3FLkYst3gwxCtXuemHBKr5q8/LLLyMifPnll0nD5Obm0q9fvwMqx4oVK3jjjTdqfX10wnufPn3o27cv999/v4vSWeqKqDB70XvyhYrca50I0aXQ3JsfKKar003FpxwtvmIXDVH8Zl6gx+XFvy3piVV81eSZZ55h9OjRPPPMMwn9Ey0nVlPC1TBfr6vi8/l83HPPPaxdu5bFixcze/Zs1q5dW+v4LO4iSlEoekm7kIsWmB7lvuKLTmfwSxjl0nic07jFzRZv9Pk9pVbxWaziqxb5+fksWrSIRx55hGeffTbmvmDBAsaMGcNpp51Gnz59AK0Ap06dSu/evTnrrLNi2+q8//77DBo0iJycHC666CJKSnRB0aVLF2688UYGDx7M888/X+6+8dv+lJaWcssttzB//nwGDhzI/PnzKSgo4KKLLmL48OEMGjSIV155BdDbAE2cOJGxY8fSvXt3br31VgDatWvH4MGDAWjatCm9e/dmy5aKyzh99NFHsVVbBg0axL59+1BKJd1C6dhjj2XixIl069aNm266iXnz5jF8+HBycnLYsGEDAK+99hojRoxg0KBBHH/88Wzbtq3CfadMmcLrr78eO58+fXpsQerGgBCm0KOX1woXuVdIRwt+N5dCE7VfSRUXuDMeGe0+BSh1KU4Ar5HVG3J3RRxLepJe8/jevAl+rLgIc504LAdOvqPSIK+88gonnXQSPXr0oFWrVixbtowhQ4YAeh3O1atX07VrV3Jzc1m/fj2PPPIIo0aN4qKLLuLvf/87V1xxBdOnT+f999+nR48enH/++Tz00ENcffXVALRq1Sq2rqeT+G1/AoEAt912G0uXLuXBBx8E4A9/+APHHXccjz76KHl5eQwfPpzjjz8e0FsKrV69mqysLIYNG8aECRPKbd+Tm5vL8uXLGTFiRIV733333cyePZtRo0aRn59PMBjkpZdeSrqF0sqVK1m3bh0tW7akW7duXHzxxSxZsoT777+fBx54gPvuu4/Ro0ezePFiRIR//etfzJw5k3vuuafcfaNbDk2YMIHS0lLef/99HnrooWq+zPTHoyKUeLMhAqrEvYI/uvalq4rPoaQK8/eQ2bx1neN0WnWWutjV68UY4ri8+LclPbEtvmrwzDPPMGXKFEC3SJzdncOHD6dr166x806dOjFq1CgApk2bxqJFi1i/fj1du3aNrdd5wQUXsHDhwtg1kydPTnjfRNv+xPPOO+9wxx13MHDgQMaOHUtxcTEbN24E4IQTTqBVq1ZkZmZy5plnsmjRoth1+fn5TJo0ifvuu49mzZolvPe1117LrFmzyMvLw+fzVbqF0rBhw2jXrh0ZGRkcccQRnHjiiUD5LYc2b97M+PHjycnJ4a677kq45dDJJ5/Mhx9+SElJCW+++SbHHHMMmZmZCZ+9IeIhQpkvm4gSlIuGGFHjlkwOTIvPrW5JFdlv3BIudlHxH4iuXkvakl4tvipaZgeCXbt28cEHH7Bq1SpEhHA4jIhw1113ARW3GEq2zU9lJNumqDrb/iilePHFFyvsgPDpp58mlaWsrIxJkyYxdepUzjzzzIT3vummm5gwYQJvvPEGo0aN4u233670Gaqz5dBvf/tbrr32Wk477TQWLFiQcOWYYDDI2LFjefvtt5k/f36swtFoUBHweCgkiLg4HhVdESZLFesdIKqRL6vCU66r0y3Ft7+CF3JR8flwv6vXkr4c8BafiJwkIutF5BsRuelA389tXnjhBc477zy+//57cnNz2bRpE127duXjjz9OGH7jxo3873//A+Dpp59m9OjR9OzZk9zcXL755hsAnnzySY499tgq751o25/4LYfGjx/PAw88QHSx8eXLl8f83n33XXbt2kVRUREvv/wyo0aNQinFL3/5S3r37s21115b6b1zcnK48cYbGTZsGF9++WWdtlAC2LNnDx06dADg8ccfTxpu8uTJPPbYY3z88cecdNJJ1Y6/IeAhgsJLoWS6aoHoZb8hSmlJcRWhq4c4lFSpS3MOlcO4xc3J5tGuTqv4LHCAFZ+IeIHZwMlAH+AXItLnQN7TbZ555hnOOOOMcm6TJk1Kat3Zs2dPZs+eTe/evdm9eze/+c1vCAaDPPbYY5x99tnk5OTg8Xi49NJLq7x3om1/xo0bx9q1a2PGLTfffDNlZWX079+fvn37cvPNN8euHz58OJMmTaJ///5MmjSJoUOH8sknn/Dkk0/ywQcfxIxXolaic+bMiW1ZdN9999GvXz/69++P3+/n5JNPrtMWSqDXBj377LMZMmQIrVvvHw9aunQpF198cez8xBNP5KOPPuL4448nEAhUO/6GgEdFUOKlWDJdNcRw7m9X5FLrTBzLq5W5NB7nbPG5NedOKYXPyBpUVvFZDvC2RCJyFDBDKTXenP8eQCn110Th7bZE7jF37txyRjCNkXTMOz/e2p3cpgNpWfAdxYFD6H/ju67Eu+v/OpJFMUEpY+uFS2jXufqbAyfj45mTGFP4HgDLh97BoJ//ps5xfvrEHxnx7YOUKD9rO5zFoEvmVH1RFYTCEX68rTsdxeyjefMO8PrrHK/FPRratkQdgE2O883GzWKxJECPxXko9Wbhd3GVFQ8RCsz8wJICd1pnHhUi30y2j7g19cJYiu4ly7Wu3lBExcb4AFcX6rakJ/Vu1Skil4jIUhFZun379voWp8Ewffr0Rt3aS1c8REC8lHkzyYi419XpIxKbH1ji0g4FHhWiwMQZcWnqRXTHhwLJwuPSuqJRxVemvIC71qKW9ORAK74tQCfHeUfjFkMp9U+l1FCl1NA2bdokjCSVdom3pAfpmmf0GJ+HkC/bVUMMDxGKvVpJlRW605LyqDAlnizCSsAtC1QVIqyEIk82PrcUXziCjzD5psVb7FKL15K+HGjF9xnQXUS6ikgAmAK8WpMIgsEgO3fuTNuCzHLwUUqxc+dOgsFgfYtSY4QIyuMl7G/imiFGJKLwEqbE1xSAMpdaPB4VJix+Cgm6pvhUJEwYD6WeTNcmm5eFdYsv2jotsoqv0XNA5/EppUIicgXwNuAFHlVKVZy1XAkdO3Zk8+bN2G5QS00IBoN07NixvsWoMR4iiHiI+IJkuaT4wkrhJUKZvykUQdglC0yvChERL0USRNwaN4uECeOl1JNF8/AOV6IMRxR+whR5m0HkB0rsLuyNngM+gV0p9QZQ61WV/X5/uZVRLJaGjBfd1UmgCZlSSiRUhsdXNwvEcDhCUCKEA3qFnrBL0wREhYl4fBRJFl63DHEiISLiocyXRaDEHcVfFo7gI6RbvGVQZhVfo6fejVssFst+osYtkqG75Qpd6JaLLnenMrTiUy5NDPeqMBHxUuLJxOfWnMNIhAh6jDPoknFPOBzGK4qQUfylRda4pbFjFZ/FkkIICsQTU3xubMYaMpu7SkZTIi4aongIocRLiScLf9ilFp8KEcZLxJdFULmzwkwopPcLDAea63+r+Bo9VvFZLCmEV0XA48Ub1K2T4vy6Tz2ImIJfeaOGKO4oKa/p6gx5M/GHXbJAjYSJ4EEFmpBFMUQiVV9TBWGj+FXQKD47naHRYxWfxZJCeNBLlvkytQVmiQt70kULfjx+iiTo2vw4L2EieClzsVsSFSYiHlTALNzugqzR55fMFgBESuwE9saOVXwWSwrhIYJ4PPizdIvPjcnmkbBu8eH1mzVA3Sn4PSqM8vgI+7LIiLjTLemJhAjjQwK6q7fUBUOUUJl+/kAwiyIVQNld2Bs9VvFZLKmCUnhFIeIlYBRfyIWpB2GzLZR43DVE8RImIj4i/iZk4U6cnkgZIfHFxjjdWF5NmRZfRiBAAS5OvbCkLVbxWSwpQmz3cY+HYHZU8dW9q1OFoi2+AKXeLNcmhntVCOXxmvG4ElfG48S0+Lymq7fIjRafUXweX4Ail/c5tKQnVvFZLClC2CzQjHgJZrcAIOKCIUZsjMvr12uAuqX4iKDEh5jxODemCXhUiLD48AW14it1YQulSEzx+SmSTDwubvdkSU+s4rNYUoRwrMXnJbOJmXPnwuLPkbCxavT6XF0D1EsYJT7IMK0zFyxQteLz4s+MjnG6oPjNGKd4/aar13Z1Nnas4rNYUoTYWJx4yM5uRlgJERdWWYm1eDw+Ir4sMlyaH+czXZ3eYHQNzLorPm+kjLD4XR3jjBjjFq/P7+oaoJb0xSo+iyVFCJkWn3i8eLweCl0aj3JadUb82a6tAeolgvL48JpuSTfWwPSoEBHxORRf3Z8/WqHw+vyUebNc6+q1pC9W8VksKYIK77e+BPR4lAvz2FS0Jen1xyaGKxcMUXyEUB6fY86hS4rP44t19YZLXGjxhfe3+Mp8WQRc3O7Jkp5YxWexpAj7W3z6s3Rrzl10jE+8Pgg0wSOKIhdaUl6zrmiGsUB1Y/HnaIsvNsZZ7MIE9lhXZ4CIL5ugS3MOLemLVXwWS4oQiVp1evSmKcWeLPwuKD7lsOoUMx5XsC+vTnFG9/jD68dvWnxuTL3wqBDK4yc7GKRY+d0x7jHTObyBIBF/FpnYFl9jxyo+iyVFiFp1ekxXZ6nXHcUXXaTZ6wvgjU4Mz69b66w0FCZDQuD1k9lEr4EZcmHqhc8ovqyAl3wyXVmyjDLdwvMGMon4m+AnBNG5jZZGiVV8FkuKELU+VF69/16ZN4sMF9bAjCo+nz+A10wTKK6jBWZpqeku9AUJZmnF50brTE+K9yEiFBHE48IqKyqkZfUFgrEVYdyQ1ZK+WMVnsaQI0S458QYAXJtzF53A7vP5Y/Pj6joeV1ZsFLIvSHZTrfjcWPzZi17/E9wb49yv+DKRDD3ZvqTQrt7SmLGKz2JJEZzbBwGE/dkEXZh6EC7Tii8QCMTG48rqOD8uVKrlEl+QYEaAIhVwZeqFT4XAo5+/xOOO4pNQiY47IzPW1evGnENL+uKrbwEsFotmf4tPF/wRfxNX5tyFTbz+QAYR0Z98XSeGh6ItPn8QETFzDuuupHyEYoq/xJtFpgvLi0nYjPH5M/GYOYfFLky9sKQvtsVnsaQI0e1zvP4M7ZDRhKCUxVZeqS1Rher3Bwg2iW7GWrfWWVm0xecPAtE5hy60+Njf4gt5swi4sc+fafHhy8CfaYx7XFgKzZK+WMVnsaQIoTJdQHt9uuAXswZmQX5eneJVRkn5g03IzI6Ox9Wt4A+VaIUk/kwAV9bADIUj+MwUCYAyt9YVjSm+IIHoGKcLS6FZ0her+CyWFCFUasaiTCsqqviK9tVtPErMlAB/VpPY1APquAZouHT/FAGAEk/dtzsqC4XJlhIivix9D5c2uFVlUQvUDPxZZtcHF+YcWtIXq/gslhQhbFp8voC26owu/lzXqQfRZc8CwaYEAu4YopQWR+PUSqrUm0mgjoqvMDruZhS+8mcRxAXFFyqmFD+IEMx2p6vXkt5YxWexpAhh0yXpC2qT+/1rYNa9xVeoMvD5dRdioWTWWfGVFGkll2EUX8ibRSBct27Jon27AWIGKASyyaAMwnUb46SsmDLRzx40i19HrOJr1FjFZ7GkCKpMKxNfQCuT6Jy70joaYkhpPkUSjJ0XuTA/rtRYdWZlaSUd9mURqON2R9EpBt6gfm7MBrd13ZopENpHoUe3nrPNGqBubPdkSV+s4rNYUgRlDEaiLb4M0y1XV0MMKS2g2KH4iqXuhiiqSLfOgk1b6XN/JsE6Kr4Ss5Gtzyh8j5lzV1jH5dUyw3sp9Oo4szJ1Vy8uzDm0pC9W8VksKULUUjIrSxf40V0P6jrnzhsqpMSTFTsv8Wbhr+P8OE/RLgAyW7QGQPmy6qz4Ss1qMgGj8L1R4546zrnLLMujNHAIABk+L4UEoczuydeYsYrPYkkRVLFu8WQ304V0pktz7oKhPZR4m8bOSz3ZdTZEoXAnhSqDjMz943FBKYtt+lobivZqZdq0eUsAvLE5d7VXfLsLSmkW2Ytkt9p/H3FnDVBL+lInxSciM0Rki4isML9THH6/F5FvRGS9iIyvu6gWS8PGU5JHgQriC+huyawmLYC6L6jcIrSDguChsfOQC5uxeop3sdfTLHYuZlyysA6ts/CeLQC0OKwzQGx5tbpscPvtT3m0ld0EWhwWcyuWTDwuLIVmSV/cWLLsXqXU3U4HEekDTAH6Au2B90Skh1Iq7ML9LJYGia8kj73ShGxznpWVTUh5oA6KLxyO0Cqyi83ZbWNuIV8WQVW3Fl9m8XbyfYfEzqPjccWF+bEWW03x7PuBEvwEm7UB9iu+usy52/ntSjKllMzDh8bc9GR729XZmDlQXZ0TgWeVUiVKqe+Ab4DhB+heFkuDwFe6hwLP/i5J8XgooG5TD3Zs20yGlOFp0SHmFvY3IbOOa4C2Kd3E3qzOsXOfmXNYlxafP38LOz2tQQTYP/WgrA67xUc2fwbAIT1HxdzKPJn46zj1wpLeuKH4rhCRL0TkURGJVgE7AJscYTYbtwqIyCUislRElm7fvt0FcSyW9MRfkkdZoEU5t2LJwFNW+0L6pw3LAQi27+e4URZZqhiUqlWcO3ftpK3aiWp5RMwtOtm+tKD2Suqwom/YmbU/zgxj5FOXMc4m21eQJ83wteoacyvzZuGv6xinJa2pUvGJyHsisjrBbyLwEHAEMBDYCtxTUwGUUv9USg1VSg1t06ZNTS+3WBoEkYiiTehHSrLbl3MvkSCeOhTS+d8sBuDw3vs7XFSgCR5RREprp1A3r/wQjygyuh0dc/ObKRjFteyW3LJlM50iP1B6aE7MLStq3FPLrl4VidA5fwU/NOkXa0WC7up1ZQ1QS9pS5RifUur46kQkIg8D/zGnW4BODu+Oxs1isSTgp507OEx2s8XRigIo9WTiDdW+kG6x5UO+8R3Jka3bxdw8ZjPWwsK9NMnISnZpUgrWvEWp8nLkkONibgEzHheqpeL7bvG/6SCKQwf/POaWaSabq1pucLt65RJy2Mbyrr8u5x7xZbmyz6ElfamrVWc7x+kZwGpz/CowRUQyRKQr0B1YUpd7WSwNmW3f6U8n47Ce5dzLPMFaj0d9u24ZvUPr2NmpvFF11BClqBYTw/ft3U2f7W+yptkYgln7xyMz6rD4cyQcocXaeWz1tKVjn6Ni7pnBTEqUD0prp0zzFv6DMuWl57GTy9/Pn0WQklrFaWkY1HWMb6aIrBKRL4BxwDUASqk1wHPAWuAt4HJr0WmxJKfgh/UAtDy8Tzn3Um8W/lp0y6lIhL2v/p5ClUGvCb8t5+c1Lb6SwpqPna16+mZaSD7Nxl1dzn3/eFzNW2eLX3+MfuF1/NTvEsTj3S+nRygiiJTWvKv3q9XLGLHrFda0OZmsVh3L+Ukgi0xKaj3GaUl/6jSdQSl1XiV+twO31yV+i6WxEP7pKyJKaNO5d3l3byaB0m01jm/pC3cxrOhTFve4jpGt25Xzi1pg1nRi+KfvPs/IrU+xtOUpDB08rpxfplllJlzDieHfr1lMzrI/8q3/CHJOu6qCf7EEkRqusrJv11aCL06jSDLpNnlmBX/xmx0ligsImEnylsaFXbnFYkkBAnu+Y5unTWx/uyhhX2aNF39e/c5chqz5K58HRzJ88h8q+Mfmx9Vg8etln31Cj0VXs9nfmb6//EcF/0zT1RmpwXjcD9+upcnzkymQbILnzcdjNuB1UixBvDWYc1e0L4+f/n4qh0a2s+WkR2nWpqIxuZgWb1GB3ZOvsWIVn8WSArQs+p6dwcMruEd8mWTWQPF9uehlenxyLWv9feh++fN4fBU7dQJGSZVVc5rAmtXLOfw/5xL2BGjxyxdiRidOoq1Iqtni27H1e3jydDyEKZz8PO07d08YrsSTWW3FV1pcyLcPTqRz2QZWHj2LPiMTLxjlMwY9RXXc9cKSvljFZ7HUM5FwhPbhLRQ27VrBT/mzq73484blCzj83UvY6D2c9pe+TNOmFRUUEFtfM1QNxffthvUc8sJZ+CWCXPAyzdolVlD4ApThq5bi27NrO/sePo0WkTy2nfoU3XoPThpWTzavWvGFyspY88A59C1ZwdKBf2HE+HOTho2OcRbXYozT0jCwis9iqWd+2vo92VIMrSoqFeXPIlNKCYcrtw3buP5zWr0ylV2eQ2jyy1do2frQpGEzsk23ZBWKb8vm7/E+eTrNKKR4yvO06jKg0vCFZMZ2e08apmAvPzx0Gh3Cm9nws4fpNWRspeHLvJn4I5Ur/kg4wtK/X8iggo/5X/frGXnG5ZWGj805tC2+Rosba3WmDHt2bmP9wueIFO1BFe9BSvYipflIJISgIBJGiJjQYia1Cko8iAiIB4Ug4nDDo8MJ+tjjAUcY7aGPFWi3SozFampHViG8qsI/YRy1uMgZvBrhKwYp76IU5SYR1+Y+1bpHFVQZpMqkSuBSY7nLEyzaxmFAZrteFfyiiz8XFe6jSdMWCa//ceNXBJ+ZRAgfatq/OaxD54ThomQZxReuZDPWHT/9SPGjp9Genfw08Rk69xpZxVNAsSdY6Qa3pSUlrH/gLAaUrmPlUfcy6JiJVcYZ8mURKN2c1F8pxaJ/XsUxu1/j044XctTUm6uM0x9dZabQ/YWqf9j8PVvX/Y/QlhVI3vdkFm6haWgXgUgJGZQiKErxUyIZlEkGpZ4gIW8mZd4swr5Mwr4sIv5s8GdBIAuvz48HpfOYiuhvOWL+VdyxMmWbiiBKoYiYzKn9JWFOlEpOE32vUs65MONQfnb+H+uSZPVCg1J8eT9tZvjKP8XOC1SQQskkjBclHiIIEbS5tM4ECqOuEBUxKiz6r/YfG79oeHH8Ep1bDOI8tOlSGbulBZ37jKjgLoGoIcbehIpv509bKHtsIs0pZvuklzniiD4VwsQTtcCMJOmW3LtnFzv/cSpdw5vJPWkuPQb9rFrPUCJZSRd/DpWVsfKByQwr/pSl/W9h6EkXVivOsC+LYCXTORY99keO2fYEy1pPZPhFf6tWnFFLztI6bvcEUFxcxOpFr1Gy7m067/qEjmor0bV3fqIlef5DycvsQtiXSZknA4XgV6V4wyV4wsX4wkUEw/k0K9tOUBWRoUrIVEUEpazOsoWVxJVOFRVZ8u+yonsiNbiWroBVfPVKu259+eGCT8ludoj++QOxle4tllTmkCTu0VVWShKsgbln9w52/eM0OkW2k3vKPHrlVFSciQhkBClV3oTjcYUF+9g4eyK9Qt+w7pjZ5Bx1arWfodSbRSBcMc5IOMJnsy/gqPwP+ezIqxg26bpqxxnxZREkcVfnoqf/ypiNs1nR/GcM/s2jiKd6IzdBM+ewOmOciVCRCKuWLGDfkifou/Ndhko+RQT4OnMQP3Q6l5ZHjqBtz2Ec2rwlyTucq7hHOERJ0T6KSsoAwePxIB797xV9LB4PHvFoP9NDJRLtoRK8Vd6l7lTe+Z26NCjFF8gI0r5rxe4iiyVd8UUVX9yKKPl7d/Pj3yfQNfQdXx77EP1H1GzLy6IE8+OKCgtYP+tMBpSsYsXwmQz+WXIDkUSUebMIxHWfqkiE/z30a0blvc5nh/+SYdNuq1GcKpCtrVqVKtdV/t+XHmT0V3ewKvtocq54FvFWvygLmq7eUA2XQguFQix7Zx7Nls2mf3g9xcrPuubH4B88hV4jJ9A/6F41W7w+gk0OIWinGR4QGpTis1gaGtFdD5xb8+zds4vND/6c7qVf88VR9zPkuMnJLk9KMUE8DsVXVLCPrx+YyKCSZawYdCuDJ1xS4zhDviyyin+KnUfCYT6d82tG7XiepYedw7ALa7yGPRLIxicRykqL8JtpCJ+8cD8jV/0fazMH0fO3L+L1B2oUZ2a2TtNISfWmSRQVFfH56/+kw5p/MEJt4Qc5jM/7/Yk+43/JoKa123vQUr9YxWexpDD+6HiUafFt27yBgsfOpHtoE6uPuochJyVdPKlSCj1NCJTtAWDHti1s+9fZ9Ctdy2cD/8yw06+sVZylgUNor1YCUFxUyMqHpnPU3rdZ0nYywy55qErjpkREMloAULT7J7xtDufjJ/6PY7+fxZrMIRx55csEgjVfZDszK7r4deVWnXvydrPy1Vn0+PZxRrGT73zd+GLo3+h3/Pm0TzDZ3pI+WMVnsaQwma30JiehXbl88eELtP/oOg5VJawd9y8GjT2z1vHuDLSnTfFmVi9+m9ZvXc4RKo9VR/2NYSddVOs487M70WrnXjatXUzRi1cwIvw1S7pcyvAL7qiV0gOQ1t1gPWxd91/2PnkVxxYsYGWzcfS+7BkCwcyqI0gUZ0ZTClUGGUWJ9//cumUjG/5zDzk/PM8xUsCXGTnsGXMPPY6eWO1xREtqYxWfxZLCtOvcg2LlZ/CK/wPgO8/h5J/1CAP6DK/iysopbt6Nztv+B2+dw4/Shk2n/5sBA8fUKc6Mtj1gI3R6bjz7yGTV6L8z/PipdYqzTed+8An0/Og3hJWwpPtVDDt3Rt0UkAjbpRVZxfvXQC0uKWXVJ/8h8vlTDNy3kLaEWNV0NM1/dh29Bo2rJDJLOmIVn8WSwmQEAnzW8kR67fqANZ2mMHDq7QQz625E0enEK1g7/wv2tBrEgKl/5rAmLeocZ7+xZ/Hf9W8S8HrofNbt5HToVuc4u3fvyYftLqbl3nU0P/lmhvc7quqLqsFOb2s65a/ik2fvIrD5E47Yt5Rhso+9ZLPmsNNoP/4aBnTLqToiS1oiKoW25hg6dKhaunRpfYthsVgaOK89dgenfv9XAHZwCBtbDCez3ykcOeacmBGN5eAhIsuUUkMP1v1si89isTQ6JlxwI1+vOY7mzZtxaKeetK7lGKQlPbGKz2KxNDo8HqF7Tt3GSS3pizVRslgsFkujwio+i8VisTQqUsq4RUS2A9+7EFVrYIcL8RwMrKwHjnSSN51khfSSN51khfSS1y1ZOyul2rgQT7VIKcXnFiKy9GBaCNUFK+uBI53kTSdZIb3kTSdZIb3kTSdZndiuTovFYrE0Kqzis1gsFkujoqEqvn/WtwA1wMp64EgnedNJVkgvedNJVkgvedNJ1hgNcozPYrFYLJZkNNQWn8VisVgsCbGKz2KxWCyNigal+ETkJBFZLyLfiMhN9S2PExHpJCIfishaEVkjIlcZ9xkiskVEVpjfKfUtaxQRyRWRVUaupcatpYi8KyJfm/9DUkDOno70WyEie0Xk6lRKWxF5VER+EpHVDreEaSmaWSYffyEig1NA1rtE5Esjz79FpIVx7yIiRY40nnMwZa1E3qTvXkR+b9J2vYiMTwFZ5zvkzBWRFcY9FdI2WbmVknm32iilGsQP8AIbgG5AAFgJ9KlvuRzytQMGm+OmwFdAH2AGcH19y5dE5lygdZzbTOAmc3wTcGd9y5kgH/wIdE6ltAWOAQYDq6tKS+AU4E1AgJHApykg64mAzxzf6ZC1izNcCqVtwndvvrmVQAbQ1ZQZ3vqUNc7/HuCWFErbZOVWSubd6v4aUotvOPCNUupbpVQp8CwwsZ5liqGU2qqU+twc7wPWAR3qV6paMRF43Bw/Dpxef6Ik5GfABqWUGysAuYZSaiGwK845WVpOBJ5QmsVACxFpd1AEJbGsSql3lFIhc7oY6Hiw5KmKJGmbjInAs0qpEqXUd8A36LLjoFCZrCIiwDnAMwdLnqqopNxKybxbXRqS4usAbHKcbyZFFYuIdAEGAZ8apytMt8CjqdB16EAB74jIMhG5xLi1VUptNcc/Am3rR7SkTKF8wZGqaQvJ0zLV8/JF6Fp9lK4islxEPhKRum3j7i6J3n0qp+0YYJtS6muHW8qkbVy5la55F2hYii8tEJEmwIvA1UqpvcBDwBHAQGAruqsjVRitlBoMnAxcLiLHOD2V7ttImfkwIhIATgOeN06pnLblSLW0TIaI/BEIAfOM01bgcKXUIOBa4GkRaVZf8jlIm3fv4BeUr7SlTNomKLdipEveddKQFN8WoJPjvKNxSxlExI/OPPOUUi8BKKW2KaXCSqkI8DAHsdulKpRSW8z/T8C/0bJti3ZdmP+f6k/CCpwMfK6U2gapnbaGZGmZknlZRKYDPwemmsIO02W40xwvQ4+Z9ag3IQ2VvPtUTVsfcCYwP+qWKmmbqNwizfJuPA1J8X0GdBeRrqbmPwV4tZ5limH67x8B1iml/uZwd/Z/nwGsjr+2PhCRbBFpGj1GGzesRqfpBSbYBcAr9SNhQsrVmFM1bR0kS8tXgfONhdxIYI+jW6leEJGTgN8BpymlCh3ubUTEa467Ad2Bb+tHyv1U8u5fBaaISIaIdEXLu+Rgy5eA44EvlVKbow6pkLbJyi3SKO8mpL6ta9z8oS2KvkLXjP5Y3/LEyTYa3R3wBbDC/E4BngRWGfdXgXb1LauRtxva+m0lsCaankAr4H3ga+A9oGV9y2rkygZ2As0dbimTtmiFvBUoQ497/DJZWqIt4mabfLwKGJoCsn6DHruJ5t05Juwkkz9WAJ8Dp6ZI2iZ998AfTdquB06ub1mN+1zg0riwqZC2ycqtlMy71f3ZJcssFovF0qhoSF2dFovFYrFUiVV8FovFYmlUWMVnsVgslkaFVXwWi8ViaVRYxWexWCyWRoVVfBaLxWJpVFjFZ7FYLJZGxf8HUpTvLrzGm/gAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABrwUlEQVR4nO2dd3yURfrAv8+WZFOoAZUmRQEpCb0ooGABPVREUFAsyHmeerbTs1zRQ++8s56KevI7RbEdgg311MOzoKIi0qsoaKSISAuE1M3u/P6Y2eXNZjfZhA3ZhPl+WPK+M/PO+7zzzjvPlGdmRCmFxWKxWCwNGVddC2CxWCwWS21jlZ3FYrFYGjxW2VksFoulwWOVncVisVgaPFbZWSwWi6XBY5WdxWKxWBo8SafsRKSDiCgR8dS1LJaaIyLXisiPIrKiDu49VUReOAT3mSwiCyrxny8il9e2HJbyiMhwEdlSXb8Ey1BpOXao8mhDQUQeE5HdIvKiiNRIbyWdsrNUHxGZLiL7za9URPyO83frSKypwNVKqV4OOaeKyNQ6kiepMIVhbjXDfyQihSLytYicWknY80XkcxN2foRfFxF5Q0R2mMJjnoh0dfhfKiJLRGSfiGwRkfucBbaR4x0R2SMiP5lCyOl/sogsNdd/JyJXOPxGiMgqEckTkV0i8rqItKnG8+fGl1r1HxHJFZEOcYZNFZGnTZr/JCI3VhH+tybcPnNdqsPvI5M39onIChEZEyOOp40yP9bhtj/iFxCRR41fdxFZbPLNHhF5X0S6R8TZV0Q+MdduF5HrQ35KqWuArsBYICeedIkk4crOtsgOPUqpK5VSmUqpTOBvwOzQuVLqjFC4Q/xumgOrD+H9aoUkys+zgGVAFvBH4BURaRkj7G7gYeCeKH5NgTfRBceRwCLgDYd/OnAD0AIYBJwC/M7h/0/gZ6AV0Bs4CbgaQES8wOvA/wFNgAnAP0QkVOFZC4xSSjUFWgPfAk9U9eDJShLljalAZ6A9MAK4RUROjxZQREYBt6Hfa3ugE3CnI8j1QCulVGPgCuAFEWkVEcdQ4JjIuB1lTiZwFFAEvGy8fwTGo8uFFug8+JIjzhbAf9F5Jws4FngvIv4d6LyXVWlqxCAhys7UQm4VkZVAgYh4RGSwqV3mmRrCcEf4+SLydxFZZGoQb4hI8xhxXyYi60Qk39QUfx3hP0ZElpt4NoZesog0EZEZIrJNRLaKyF9FxF3FcxwjIh+aWudO0U3mpg6/3SLS15y3NjWg4eb8bBFZY553voh0i0if34nIShHZKyKzRcRX/ZSuPjHeTWSNbKaI/NVxfqZJ0zzzDqtVk3Kkc7CKcLeY9/OjiFzulMvI9LiIvG3e/Zcicozj2kdEZLN570tEZFhE9D6TzvmiWxrOFuZtJq/ki8haERnr8JssIp+JyEMisgtdkFT1vA+Y2ur3InJGhHd7E1++iLxnPupqISJdgL7An5VSRUqpV4FVwLho4ZVS7yul5qALmEi/RUqpGUqp3UopP/AQ0FVEsoz/E0qpT5VSpUqprcCLwBBHFB2BOUqpYqXUT+gCqofxaw40Bp5Xmq+AdUB3E/d2pZRTpgC6UKs2olsBy0y6vmze9V9jhL3OvOe2Drc/mG88V0QmOdxHm3j3mfw11eEX6pr8pYhsAj6MQ9RJIrLJ3OuPEX4pIvKceYY1ItK/eqkQ5lLgL0qpPUqpdcCTwORKws5QSq1RSu0B/uIMq5RaqZQqC50CXqBdyF+0gn8UuLYKmcahFdOnJt48pVSu0kt2CRXf/Y3APKXUi0qpEqVUvnmWSIJAzSoZSqmD/gG5wHJ0oqQBbYBdwC/QCvU0c97ShJ8PbAV6AhnAq8ALxq8DOpE95nw0uhYh6FpkIdDX+A0E9pr4Xea+xxm/UA0zAzgCXYP9dRXPcayJKxVoCXwCPOzw/xW6dpoOzAMeMO5dgAJzrRe4BdgApDjSZxG6NtscXQBcGUOGoUBeJb+hVTzD1FBaRns3xk0BxzrCzAT+ao77oDPpIMCN/jhygdRq5IfTgWIgo4owP6ELynTgBadcRqZd5h170IXuS47rL0LX8DzATSYunyMN/OiapBfdMvke8Br/88y7cKFbHwXo2izoD78M/TF7QmkW4xkmm/v8yqTVVWgFI458vtHkjzRzfk+MuP4J/DOG31hgXYTbY8CjVbyHy4H5VYQ5B9hWif9cp8zAr4HnzDtrg269j3X4/xv4jUmP401eaufwPxqdj4Mm7SbXoLxJAX5At0K8wLlAqSMPDwe2mOM7gKUcKHuGm/f7D/R3fpJ5/10d/tkmb+QA24FzIsqm59DlSmV5IxT2SfPuewElQDdHHi1Gl5Fu4O/AwhhxXQisjOHXzNznSIfbeGBVjPArgAmO8xbm+iyH23+MbApdmXE5/G4GHolWjkTc50NgahT3PJP+QeBPEeEfAT43eeYt4Ogo138M3Ae4q51vqntBjAfLBaY4zm9F1+6cYeYBl5rj+ZT/gLqbzOomQtnF+PiuN8f/BzwUJcyRJmOlOdwuAD6q5nOdAyyLcHsTXateiVEAwO3o2m4ojAutzIc70ucih/99wPREpH0UmadSUdlNiQhTmbJ7Al1LdIZfD5wU5/0Xm/ivqyLc08DfHefHUlHZPeXw/wXwdSXx7QF6OdJgocPPBWwDhsW4djkwxhxPBjbF+ayTgQ2O83TzDEc58rnzg74a+G8N3unFRBSEwN3AzCquq1TZAW1NPr0ghv8UYAvQwuHWDViCLrCUeU/i8D8LrSDKzO9XMeJuji4nBtcgPU40cjvvu4Dyym4rWqEtAJo4wg03cmU43OYAt8e418OYMoYDZVOnOGQMhW3rcFsETHTk0fcdft2BohqkRTtzH5/D7TQgN0b4jcDpjnOvub5DRDgvcAZwY8S9NoTSkxjKDt09GgA6xpAhw3wLox1u36AV4QDAB0wDPoty7fFAPrp8P6I6aZXIMbvNjuP2wHmmGyxPRPLQLZZWMcL/gE7cCl08InKGiCw0XYh56EIvFK4d+uVF0t7Et81x//9Dt/BiIiJHishLpttzH7q1ESnTk+gW6aNKqRLj1to8AwBKqaB5Pufg+0+O40IgszJZEszmqoOEaQ/cFPHu2qGfMR4GABOBqaLHcGLROkKuaDLGTDPTLbzOdAvnoceInO8qHJ95H1tCzyAilzi6afPQ7zPqtXEQllEpVWgOM6P5Rz5DNdiP7h500hj90dcI0eN976Fbk7Oi+J+Dbm2coZTaadxc6Jr+a+gCqwW6ZXGv8T8OPQ5zCbr11QM9fjQ6Mn6l1G7gWeANqf7YV2tgqzKlnyHynTVFjzn9XSm1N8Jvj1KqwHH+AwfyxiA5YKSxF7iSimVAjfIHFd9/pJ+vBmmx3/x15o/K8kZkXgodlwuvlPIrpd4FRorI2cb5YeCuKOkZycXAAqXU99E8TdpPB54TkVCZXAS8rpT6SilVjB5HPEFEmkRc/nt0L0+GUurnKuQoRyKVXWTGe14p1dTxy1BKOQfM2zmOj0Z3aex0RijaSuhV4AF0M70p8A66SzN0nwoDpca9BF0jDd2/sVKqR5SwTv5mniNb6QHaixz3QkQy0S98BrowD40z/ohWEqFwYp5vaxX3q4CIDJOKVk3OX+TYVDyoiPNCdCskxFGO483A3RHvLj1agRj1RroAmosuBFtVEnQbumURol2sgJGYNLgFOB9oZvLFXhzvivLjDC5zrx9FpD26wnINuuumKborznltZHrVNWuATiLSyOHWy7hXGxFphlZ0byql7o7ifzo6jc5SSq1yeDVHf6uPKT2usgt4Bl0BBV1p+EYpNU8pFVRKrQfeRrcQouFBV0AjFXlVbAPamO8sRGT+2QOcCTwjIkMi/JqJSIbj/GgOjG/+G917004p1QRdKEvE9UmTP5Qed9uGzg8hKssba6KE3W7eZTQ8HChjTwHuF23JGVLUX4jIhRHXXIKuyFSGiwNd4aB7ypzpGiuNuwFvqQPjinFTW1MPXgDOEpFRIuIWEZ/o+S3Owu0i0eao6cBdwCtKqUBEPCnofvUdQJkZ/B/p8J8BXCYip4iIS0TaiMhxSqlt6I/5QRFpbPyOEZGTqpC7Ebrms1e0SfTNEf6PAIuVUpejP+Lpxn0OMNrI4UWPIZWg+5+rhdLGAZmV/D6tbpxRWA5caN7N6ehxixBPAleaGq6ISIYZtG8EYcORmVU8Q6jFm1JJsDnod9fN5IHbqyF/I3RX1A7AIyJ3ULHA7Cci55qa8g3o97EQ3SJR5lpE5DJ0IZ20KKW+Qb+zP5tvKWR+/Wq08KFvDl1Qucw1XuPXGD2k8JlS6rYo156MrjmPU0otipBjJ3rs8yrRhk5N0WO6K02QZUBn0dMPRLRB0Zkhf/M+uprvsSW6m3GZaeWFpqbMjyNJvkB3k11j5BiDHtuNTLf5wCTgNRGJ9L9TRFJMxelMDlgNNgJ2K6WKzTWRBXky8hzwJxFpZlrXv0J3L8cK+0tT9jYF/hQKKyLHie5JSxMRr4hchO4y/thc2wWtHHubH+hu69dDkYvICWgFFkrPkPtpItLH5M3G6He/B22/ALrSNFZEepu8eju6dRjZivSiv+VqUyvKTim1GRgD/AFdqGxGKw7n/Z5HJ/JP6D7a66LEk2/c56AT5kJ0rSvkvwi4DG1Rthf9UkItrFBXylpz7StU3tIA3XTua+J6G91dA2irT7RRxVXG6Uagr4hMMjXYi9BWSjvRGeAspVRpFferK65Hy5iHLgzmhjyUUovRH8tj6HTbQHnLrnbAZ3HcQ1FJ/jJdJNOAj8w9FhqveDLyPHR32jfoLqhiKnYtvYE2PtmD7lY513TNrAUeRBeY29HGCPE8T60ieq7k9EqCTAT6o5/nHmC80qbYiMgkEXHW5C9Gdws9AQwzx08av7HorubLInoMjjb+t6O7hN+R6HM1z0V/BzvQ780P/BZAKbURPc43DdiH/h5fBZ4y17ZBv7d89Lh30MgTIq68Zb6rc4FfovPwRWijigp5Ryn1PyPTW2IsqdFlzh50a+5FtLHY18bvauAuEclHG7fMqUqe2ibK+43kz+jhnB/QaX6/Uuq/5tqjne/XuN+H/u42mWv+HLoVeizxZ/T7vR5tzLLUXPuzUuqn0M9cs1MpVeSQ5VLgNVN2O2mKnj6z18h6DHrssNjE/SFaX7xt7n8s0Ssabqqw8o5FyGrskGJqby8opZ6qKqwleRCRFLQ1V47SZuuVhf0RuEUpFdcqEaKnaqxGG/1Uu4vCUv8RkeXAKZV0qVV27Zdoo69nEi6YJSkQkZCBTB9Taa0WdgUVS9woPfeqW1WKznAbutttSawAIjJW9OoPISOHGvXFWxoGSqne8So6ETlJRI4y3ZiXort1/1u7ElrqChGZhu79+VdNFB0chspOyi+t5fxV1oVkqSZKqeeUUp2VUv0qCfZrdJfFRvQYzFWVhK0TbH5JWrqiexny0GPk481Y/SHDdC9Gyxs1MhyyxEYpdZ1Sqo1SqqrJ7DGpk25Mi8VisVgOJYddy85isVgshx/JspApAC1atFAdOnSoazEsFovFcghZsmTJTqVUrIXNE0JSKbsOHTqwePHiuhbDYrFYLIcQEfmh6lAHh+3GtFgsFkuDxyo7i6UeYg3LLJbqYZWdxVLPWPLFh2ydeiw/b6+wXZ3FYolBUo3ZRcPv97NlyxaKi4vrWhRLPcLn89G2bVu83so2XqifBBc8QlvZydql/+GIM66oa3EslnpB0iu7LVu20KhRIzp06IBI5OLjFktFlFLs2rWLLVu20LFjx7oWJ+EUm03ug35bAbRY4iXpuzGLi4vJysqyis4SNyJCVlZWg+0N8Lj1Z1viT9Z1xi2W5CPplR1gFZ2l2jTkPCMevXNSoGhfHUtisdQf6oWys1gsDtxa2aniGm9UbrEcdlhlFwciwk033RQ+f+CBB5g6dWrdCVQF8+fP5/PPq71vbDlOP/10mjZtyplnnpkgqSyJQpTezktKbcvOYokXq+ziIDU1lddee42dO3cmNF6lFMFgjfYhrJREKLubb76Z559/PkESWRKKUXYe//46FsRiqT9YZRcHHo+HK664goceeqiC344dOxg3bhwDBgxgwIABfPaZ3mh56tSpPPDAA+FwPXv2JDc3l9zcXLp27coll1xCz5492bx5MzfffDM9e/YkOzub2bNnA1phDR8+nPHjx3PccccxadKkqBOJp02bRvfu3cnJyWHixInk5uYyffp0HnroIXr37s2nn35aqYwXX3wxxx9/PJ07d+bJJ58Mx3vKKafQqFGjStPl5ZdfpmfPnvTq1YsTTzwR0AZFl112GdnZ2fTp04ePPvoIgJkzZ3LOOedw2mmn0aFDBx577DH+8Y9/0KdPHwYPHszu3bsBePLJJxkwYAC9evVi3LhxFBYWVrjv4MGDWbPmwC4qw4cPP6yWmZOg3vLPKjuLJX6SfuqBkzvfWsPaHxPbddO9dWP+fFaPKsP95je/IScnh1tuuaWc+/XXX89vf/tbhg4dyqZNmxg1ahTr1q2rNK5vv/2WZ599lsGDB/Pqq6+yfPlyVqxYwc6dOxkwYEBYcSxbtow1a9bQunVrhgwZwmeffcbQoUPLxXXPPffw/fffk5qaSl5eHk2bNuXKK68kMzOT3/3udwBceOGFMWVcuXIlCxcupKCggD59+jB69Ghat24dV9rdddddzJs3jzZt2pCXlwfA448/joiwatUqvv76a0aOHMk333wDwOrVq1m2bBnFxcUce+yx3HvvvSxbtozf/va3PPfcc9xwww2ce+65/OpXvwLgT3/6EzNmzODaa8tvYTVhwgTmzJnDnXfeybZt29i2bRv9+/ePS+aGgKgAAJ5AUR1LYrHUH2zLLk4aN27MJZdcwrRp08q5v//++1xzzTX07t2bs88+m3379rF/f+U17vbt2zN48GAAFixYwAUXXIDb7ebII4/kpJNO4quvvgJg4MCBtG3bFpfLRe/evcnNza0QV05ODpMmTeKFF17A44led6lMxjFjxpCWlkaLFi0YMWIEixYtijtNhgwZwuTJk3nyyScJBALh57nooosAOO6442jfvn1Y2Y0YMYJGjRrRsmVLmjRpwllnnQVAdnZ2+NlWr17NsGHDyM7O5sUXXyzXggtx/vnn88orrwAwZ84cxo8fH7fMDQLTjem1ys5iiZt61bKLpwVWm9xwww307duXyy67LOwWDAZZuHAhPp+vXFiPx1NuPM455ysjIyOu+6WmpoaP3W43ZWVlFcK8/fbbfPLJJ7z11lvcfffdrFq1qkKYWDJCRRP96pjsT58+nS+//JK3336bfv36sWTJkkrDO5/H5XKFz10uV/jZJk+ezNy5c+nVqxczZ85k/vz5FeJp06YNWVlZrFy5ktmzZzN9+uG1aXioG9MbtMrOYokX27KrBs2bN+f8889nxowZYbeRI0fy6KOPhs+XL18O6O2Kli5dCsDSpUv5/vvvo8Y5bNgwZs+eTSAQYMeOHXzyyScMHDgwLnmCwSCbN29mxIgR3Hvvvezdu5f9+/fTqFEj8vMPmKXHkhHgjTfeoLi4mF27djF//nwGDBgQ170BNm7cyKBBg7jrrrto2bIlmzdvZtiwYbz44osAfPPNN2zatImuXbvGHWd+fj6tWrXC7/eH44nGhAkTuO+++9i7dy85OTlxx98gMC27VKvsLJa4scqumtx0003lrDKnTZvG4sWLycnJoXv37uFWxrhx49i9ezc9evTgscceo0uXLlHjGzt2LDk5OfTq1YuTTz6Z++67j6OOOiouWQKBABdddFHYGOS6666jadOmnHXWWbz++uthA5VYMoLuBh0xYgSDBw/m9ttvD4/XDRs2jPPOO48PPviAtm3bMm/ePADuuOMO3nzzTUBbbGZnZ9OzZ09OOOEEevXqxdVXX00wGCQ7O5sJEyYwc+bMci26qvjLX/7CoEGDGDJkCMcdd1zY/c033+SOO+4In48fP56XXnqJ888/P+64GwqhMTur7CyW+JFk2iqkf//+KtKqbt26dXTr1q2OJGrYTJ06tZwhS0OjoeadpfefSd+CTynER/rU7XUtjsVy0IjIEqVUrVqZ2ZadxVLPCLXs0imGWpinabE0ROqVgYolsSTzKjCW2IRWUAFQ/gIktfL5kBaLxbbsLJZ6h6gDVrklhXZiucUSD1bZWSz1DGfLrqTAro9pscSDVXYWSz3DqeyKi+zOBxZLPFhlZ7HUM1zGQAWgtNAqO4slHqyyi5O5c+ciInz99dcxw+Tm5tKzZ89alWP58uW88847BxXHlClTOOKII2pdVkvtICpAifICVtlZLPFilV2czJo1i6FDhzJr1qyo/tGW8qouofUlKyMRym7y5Mn897//Pag4LHWHiyD5pANQZjdwtVjiwiq7ONi/fz8LFixgxowZvPTSS2H3+fPnM2zYMM4++2y6d+8OaKU3adIkunXrxvjx48Nb1HzwwQf06dOH7OxspkyZQklJCaCXFbv11lvp27cvL7/8crn7Rm6hU1payh133MHs2bPp3bs3s2fPpqCggClTpjBw4ED69OnDG2+8AegtdcaMGcPw4cPp3Lkzd955ZzjeE088kebNm1f6zB9//DG9e/emd+/e9OnTh/z8fJRSMbcjOumkkxgzZgydOnXitttu48UXX2TgwIFkZ2ezceNGAN566y0GDRpEnz59OPXUU9m+veKE6IkTJ/L222+HzydPnhxe9NmiERWgQLSyCxRba0yLJR5qfZ6diJwOPAK4gaeUUvfUOLJ3b4OfKi50fFAclQ1nVC7SG2+8wemnn06XLl3IyspiyZIl9OvXD9DrXq5evZqOHTuSm5vL+vXrmTFjBkOGDGHKlCn885//5JprrmHy5Ml88MEHdOnShUsuuYQnnniCG264AYCsrKzwOppOIrfQSUlJ4a677mLx4sU89thjAPzhD3/g5JNP5umnnyYvL4+BAwdy6qmnArBo0SJWr15Neno6AwYMYPTo0XFvhfPAAw/w+OOPM2TIEPbv34/P5+O1116LuR3RihUrWLduHc2bN6dTp05cfvnlLFq0iEceeYRHH32Uhx9+mKFDh7Jw4UJEhKeeeor77ruPBx98sNx9Q9v3jB49mtLSUj744AOeeOKJuGQ+XHCpAEWuDAhCoMQqO4slHmq1ZScibuBx4AygO3CBiHSvzXvWBrNmzWLixImAbnk4uzIHDhxIx44dw+ft2rVjyJAhAFx00UUsWLCA9evX07Fjx/D6mJdeeimffPJJ+JoJEyZEvW+0LXQiee+997jnnnvo3bs3w4cPp7i4mE2bNgFw2mmnkZWVRVpaGueeey4LFiyI+5mHDBnCjTfeyLRp08jLy8Pj8VS6HdGAAQNo1aoVqampHHPMMYwcORIov33Pli1bGDVqFNnZ2dx///1Rt+8544wz+OijjygpKeHdd9/lxBNPJC0tLW65DwdcBClxZwIQtMrOYomL2m7ZDQQ2KKW+AxCRl4AxwNoaxVZFC6w22L17Nx9++CGrVq1CRAgEAogI999/P1Bxu56abJkTa8ufeLbQUUrx6quvVthZ4Msvvzyo7Xtuu+02Ro8ezTvvvMOQIUPCC0HHIp7te6699lpuvPFGzj77bObPnx91BRefz8fw4cOZN28es2fPDlcyLAdwqSClngzwgyopqGtxLJZ6QW2P2bUBNjvOtxi3MCJyhYgsFpHFO3bsqGVxqs8rr7zCxRdfzA8//EBubi6bN2+mY8eOfPrpp1HDb9q0iS+++AKAf//73wwdOpSuXbuSm5vLhg0bAHj++ec56aSTqrx3tC10IrfvGTVqFI8++iihBb2XLVsW9vvf//7H7t27KSoqYu7cueEWZzxs3LiR7Oxsbr31VgYMGMDXX399UNsRAezdu5c2bfTrf/bZZ2OGmzBhAs888wyffvopp59+etzxHy64COByeylUqVBqlZ3FEg91bqCilPqXUqq/Uqp/y5Yt61qcCsyaNYuxY8eWcxs3blxMq8yuXbvy+OOP061bN/bs2cNVV12Fz+fjmWee4bzzziM7OxuXy8WVV15Z5b2jbaEzYsQI1q5dGzZQuf322/H7/eTk5NCjRw9uv/328PUDBw5k3Lhx5OTkMG7cuPB43QUXXMDxxx/P+vXradu2bXh/vunTp4e3/3n44Yfp2bMnOTk5eL1ezjjjjIPajgj0WpznnXce/fr1o0WLFmH3xYsXc/nll4fPR44cyccff8ypp55KSkpK3PEfLrgIIm4PRaSCv7CuxbFY6gW1usWPiBwPTFVKjTLnvwdQSv09Wni7xU/imDlzZjlDlsORhpp3tk7tzPamfTgibxm7mveh13Vz6loki+WgaAhb/HwFdBaRjiKSAkwE3qzle1osDRo3QZS4KZY03LZlZ7HERa0aqCilykTkGmAeeurB00qpiiZ4loQzefJkJk+eXNdiWGoBFwFwuSkRH+6A3a3cYomHWp9np5R6BzioJT+UUtWyJLRYarN7vq5xqyBKPPjdaWQEbMvOYomHOjdQqQqfz8euXbsadOFlSSxKKXbt2oXP56trUWoFN2Uol5tSdzopVtlZLHGR9DuVt23bli1btpCM0xIsyYvP56Nt27Z1LUat4CEILg8BdxoppcV1LY7FUi9IemXn9XrLrVBisRzuuAmAeAh40klVdszOYomHpO/GtFgsB1BK4SaAcrkJejNIU7ZlZ7HEQ9K37CwWywECQRXuxsTrJo0SCAbBZeutFktl2C/EYqlHlAUCuEShXB5I0WuqBu2SYRZLlVhlZ7HUI4IBPwDi8kCq3vmguHBfXYpksdQLrLKzWOoRZWVa2eH24E7VLbuiArtbucVSFVbZWSz1iIBfb5eEy4M71LIrsC07i6UqrLKzWOoRgbJQN6Ybt68RACW2G9NiqRKr7CyWekQwaLoxXV5S0nTLzl9kdyu3WKrCKjuLpR4RMLu+i9uDN1237EqL7JidxVIVVtlZLPWIYMhAxeXBl94YgIBt2VksVWKVncVSjzgwZuch1bTsAiVW2VksVWGVncVSjwgGDnRjpmXqll3QKjuLpUqssrNY6hHhSeVuD+kZumWHXUHFYqkSq+wslnpEyEAFl4dUr4dClYqyys5iqRKr7CyWekRozM7t8SIiFIkPl99u4GqxVIVVdhZLPcJvlJ3HozcsKcKH+G3LzmKpCqvsLJZ6RMBfCoDH6wWg1OXDXWY3cLVYqsIqO4ulHhEo1V2WnpR0AEpcaXgCthvTYqkKq+wslnpEsEQrNrdP73jgd6fjDdiWncVSFVbZWSz1CGWMUTxme58ydxopQavsLJaqsMrOYqlHKNON6fXpRaDLPOmkWmVnsVSJVXYWSz0ipOxSTDdm0JOOTxXXpUgWS73AKjuLpR4R6sb0mdVTlNcqO4slHqyys1jqESEDlVSftsZU3gzSpQQVDNSlWBZL0mOVncVSjwiWFlJEKuIyn26K7s4ssdv8WCyVYpWdxVKPcJXupwjfgfNUbahSuH9vXYlksdQLrLKzWOoRvtLd7HM3DZ+LmYJQUmB3K7dYKsMqO4ulHpFetpsCT7PwucenDVWKC62ys1gq46CUnYhMFZGtIrLc/H7h8Pu9iGwQkfUiMurgRbVYLJn+PZSmZoXPPWYKQmmRVXYWS2V4EhDHQ0qpB5wOItIdmAj0AFoD74tIF6WUNRmzWGpIqb+MLLWHHZlHhN1S0vVu5X7bsrNYKqW2ujHHAC8ppUqUUt8DG4CBtXQvi+Ww4OetG/U0g6xjw27eNN2N6S+21pgWS2UkQtldIyIrReRpEQkNJrQBNjvCbDFuFRCRK0RksYgs3rFjRwLEsVgaJj9+sxSAZkdnh9186VrZBYpty85iqYwqlZ2IvC8iq6P8xgBPAMcAvYFtwIPVFUAp9S+lVH+lVP+WLVtW93KL5bCh5LvP8Ss37XqeEHZLNSupBEtsy85iqYwqx+yUUqfGE5GIPAn8x5xuBdo5vNsaN4vFUgMCgSAdfnqPDWnZdDNdlwDpGU0ACJbY3cotlso4WGvMVo7TscBqc/wmMFFEUkWkI9AZWHQw97JYDmcWv/cC7fiJkp4XlHNPS9eTyim1ys5iqYyDtca8T0R6AwrIBX4NoJRaIyJzgLVAGfAba4lpsdSMn7b+QMcv/8wmdztyRk0p5+dyuylUqVbZWSxVcFDKTil1cSV+dwN3H0z8FsvhzsYN6/G+OJaWaj9F587C5U2pEKZQ0pCywjqQzmKpP9gVVCyWJEQpxcdvPkvz50+hudpN7i+ep32PwVHDlkgqbr9t2VkslZGISeUWiyWB7N23lxUzruGkvW+Sm3IsjSc9S7cOPWOGL5E03LXYsgsEAqxf/hn71vwP18+raVb0A75AAYiw19uS/CZdSe8+kq6DfoEvNIZosSQZVtlZLEnE1yu+IHXurzhRbWZ524vJueQBXCm+Sq8pdafjCRQlVA4VDLJ++Wfs+vxZjtv5Ht3RuypskyPY5WvH/pROBIMBMou30efnufh2vEzh/FSWNzme1OyxdB4yFk96k7jvFwgqdu0rYNf2rezduZXi3T/iKtyOt3gXwUAAERculxvxeBGPD3dqGp6UNNyp6XhT0/H60klNTcOXnkFqWga+tAw8Keng9YEnDVy2E+twxyo7iyUJUMEgC1/6O33XP0S+ZPLNyOfofcKYuK71u3ykBBLTsisuLmLFf5+m5aonOS7wPaXKw5pGJ7DpuNG07/8LWh11NK0iryncz4pF8yhaMZdj93xMi8/mU/LZ71ib3o/CI/rgbnY0qWmZBHChivdSmr+TQP4OXAU7SC3ZQaZ/F82Du2lBPkeISshzOMmjMT+c9BC9RoxPeNyW+oMolfjMVVP69++vFi9eXOPriwv3s3XDCooL8vEX7ydYUoAqLUT5iwgGyggGAwQCQYQgLhSCQgARQURABOHAMYj5EzoWEJc+BURc5cPp2ECEA6kaOjd3C12M/qvM9SHiex2VB4oniprcximbivAM+akIh2j3UREHFc9jXxsZb2R6qYpBHecqZtjIa2okU+S1EfeJ/m614xFb32dAwXxWpA+m45SZNG4RqVJis+z+0TQt2kzHO1bGfU0kpaV+lr7+EB3XPcGR7CbX1Y7tXS+hx6gpZDZtEXc8xSWlLP/iPYpXzKVz3ie0UdujhvMrN3tcTcn3ZFGU2oJAektodBTeJkeR1qwNjVq2IaVpa1KbHkmKN4VgMEipv4zSkhJKSwooLiykpLiA0uJCSooK8JcUUlZSSFlpEcGSIgKlRVBWBP4SOm57mw6BH/iq5ViOu/B+mjSP/3lCKKXYvWcPO7f9QMGOHwju+5GywnwCJQVIWRHuQDGoAEEEZUoXRBCXGyUecLnNz6N/4kbcnrCbhP66PYhL/1wuF+ISXOgS4kD2URHfwYH8J5HfZbDcFxEOpwlGelUIG9XTkZEDKU0YdNrBVyJEZIlSqv9BR1QJDaplt+37NRzz2i+qDmixJBlBJXzR6RoGX/yXA7uQx0mZJ51UVVyz+wYV8z98hzaf/YnB6jvWpvRk15D76DZsHB1q0PXnS01h8PAzYfiZAOzL38u+n36goLAAN0E86U1olnUUjZs24wiXmyOqiC+E2w1p3lTS0jOA5tWSqbjgNr589ncM3D6H4kfe4csWp+M77jSat+9Jk6xWBIJB/KXF7Nu5lf07t1K850eCe7fiyt+Gr+gnGpf+TFZwF1lSQFaMe5QoD0FcDlWncBHEXQst1WRileoECVB2h4IGpexatuvC0uMfIyUtk5S0TDy+TDy+DDypGXi9XrweD26PG5e40e07QSlFUIFSQYLBIEopAsEgKIWq4gdBVFChFASVQiRU49IZXMLHB9wFcdSMlAkTgVR0qm4QiSOOeG4UbsVGiTfyajEukfcud405kQMXRb02mmSx44+Is1w85SOsEH+U5znwt+rnIYbckTKVT7eKT+dKbcTxjeNvzTlRnnR8qvpjdmu//Y6tr97KacXvsUuyWDvkEbqdckm1lW1lNG7UhMaNchIWX03wZTTm+Kv/xcaVk9nzwT/otfNtfJ/Nhc/Kh3Mq3qAS9kgT9nhakJ/ejt0ZA6FxK1KatSW9xdH4mrchrXFzMjMbkerLJNUdoyhVClSQYJmfQLCMQJmfQFkZwUDob/ljZcKoUE+UEl22EDvjHuh9CuUtKZ+vI/0cl0f7Nh0uTs/yj2X8GrkrH09OJhqUssts3Iy+o2JO/bNYGiTBlAzSq6Hs9hUWM3/W/Zy46Qm6SDHfHjuFY8ffSZavcS1KWfcck3MC5JxAcVEha1cuoOCnjZTt34W4XIgnBW/jI8nIak2zI9rS/Kj2ZKX4Yrbk4kYExI0rxY0L8CbgOSw1o0EpO4vlcCSQ2gyf+Ckr3o/HV7np/xefzKPpR7/nbLWR7xv1xTPxUTq3jT2toSHiS0un+6CRdS2G5RBjlZ3FUs8JpOkxrMK8n2l8VHRlt/2nrax/8WaG7nuHPa5mbBoxjY4nXhJvf7fFUu+xys5iqed4G+mtsfbt2kbjozqV8/P7S1n86j/otu5RTqCQVUdPovsFd5OV3rQOJLVY6g6r7CyWek7jLG3YkrdjK22NWzAQYNkHL5H1xd84Xm1hra8XTcc9RK8u/epOUIulDrHKzmKp5zRvr8fcSjcvY/f2E/hm/r9ptf45+gU3s0VasWLI4+SccmFCrSwtlvqGVXYWSz3nqCOPYp2rC703PIHa8ASDRbHR3YnF/e6j96jJtE1JrWsRLZY6xyo7i6WeIyKkTZzBonn/gIyWHDlwHMf0GGSNTywWB1bZWSwNgA5dcujQZWZdi2GxJC22E99isVgsDR6r7CwWi8XS4EmqXQ9EZAfwQwKiagHsTEA8hwIra+1Rn+StT7JC/ZK3PskK9UveRMnaXinVMgHxxCSplF2iEJHFtb1dRKKwstYe9Une+iQr1C9565OsUL/krU+y2m5Mi8VisTR4rLKzWCwWS4OnoSq7f9W1ANXAylp71Cd565OsUL/krU+yQv2St97I2iDH7CwWi8VicdJQW3YWi8VisYSxys5isVgsDZ4GpexE5HQRWS8iG0TktrqWx4mItBORj0RkrYisEZHrjftUEdkqIsvN7xd1LWsIEckVkVVGrsXGrbmI/E9EvjV/myWBnF0d6bdcRPaJyA3JlLYi8rSI/Cwiqx1uUdNSNNNMPl4pIn2TQNb7ReRrI8/rItLUuHcQkSJHGk8/lLJWIm/Mdy8ivzdpu15ERiWBrLMdcuaKyHLjngxpG6vcSsq8WylKqQbxA9zARqATkAKsALrXtVwO+VoBfc1xI+AboDswFfhdXcsXQ+ZcoEWE233Abeb4NuDeupYzSj74CWifTGkLnAj0BVZXlZbAL4B3AQEGA18mgawjAY85vtchawdnuCRK26jv3nxzK4BUoKMpM9x1KWuE/4PAHUmUtrHKraTMu5X9GlLLbiCwQSn1nVKqFHgJGFPHMoVRSm1TSi01x/nAOqBN3UpVI8YAz5rjZ4Fz6k6UqJwCbFRKJWIlnoShlPoE2B3hHCstxwDPKc1CoKmItDokghJdVqXUe0qpMnO6EML7xNY5MdI2FmOAl5RSJUqp74EN6LLjkFCZrCIiwPnArEMlT1VUUm4lZd6tjIak7NoAmx3nW0hSZSIiHYA+wJfG6RrT5H86GboFHSjgPRFZIiJXGLcjlVLbzPFPwJF1I1pMJlK+sEjWtIXYaZnseXkKuvYeoqOILBORj0VkWF0JFYVo7z6Z03YYsF0p9a3DLWnSNqLcqnd5tyEpu3qBiGQCrwI3KKX2AU8AxwC9gW3oboxkYahSqi9wBvAbETnR6al0v0XSzF0RkRTgbOBl45TMaVuOZEvLWIjIH4Ey4EXjtA04WinVB7gR+LeINK4r+RzUm3fv4ALKV9SSJm2jlFth6kvebUjKbivQznHe1rglDSLiRWeYF5VSrwEopbYrpQJKqSDwJIewS6UqlFJbzd+fgdfRsm0PdUuYvz/XnYQVOANYqpTaDsmdtoZYaZmUeVlEJgNnApNMAYfpDtxljpegx8C61JmQhkrefbKmrQc4F5gdckuWtI1WblHP8i40LGX3FdBZRDqaGv5E4M06limM6Y+fAaxTSv3D4e7szx4LrI68ti4QkQwRaRQ6RhsorEan6aUm2KXAG3UjYVTK1YyTNW0dxErLN4FLjGXbYGCvo8uoThCR04FbgLOVUoUO95Yi4jbHnYDOwHd1I+UBKnn3bwITRSRVRDqi5V10qOWLwqnA10qpLSGHZEjbWOUW9SjvhqlrC5lE/tCWQN+ga0B/rGt5ImQbim7qrwSWm98vgOeBVcb9TaBVXctq5O2EtlpbAawJpSeQBXwAfAu8DzSva1mNXBnALqCJwy1p0hathLcBfvQ4xi9jpSXaku1xk49XAf2TQNYN6LGYUN6dbsKOM/ljObAUOCtJ0jbmuwf+aNJ2PXBGXctq3GcCV0aETYa0jVVuJWXerexnlwuzWCwWS4OnIXVjWiwWi8USFavsLBaLxdLgscrOYrFYLA0eq+wsFovF0uCxys5isVgsDR6r7CwWi8XS4LHKzmKxWCwNHqvsLBaLxdLgscrOYrFYLA0eq+wsFovF0uCxys5isVgsDR6r7CwWi8XS4Ek6ZSciHUREmf2dLPUUEblWRH4UkRV1cO+pIvLCIbjPZBFZUIn/fBG5vLblsJRHRIaLyJbq+iVYhkrLsUOVRxsKIvKYiOwWkRdFpEZ6K+mUnaX6iMh0EdlvfqUi4necv1tHYk0FrlZK9XLIOVVEptaRPEmFKQxzqxn+IxEpFJGvReTUSsKeLyKfm7DzI/y6iMgbIrLDFB7zRKSrw/9SEVkiIvtEZIuI3OcssI0c74jIHhH5yRRCTv+TRWSpuf47EbnC4TdCRFaJSJ6I7BKR10WkTTWePze+1Kr/iEiuiHSIM2yqiDxt0vwnEbmxivC/NeH2metSHX4fmbyxT0RWiMiYGHE8bZT5sQ63/RG/gIg8avy6i8hik2/2iMj7ItI9Is6+IvKJuXa7iFwf8lNKXQN0Re9NmBNPukSScGVnW2SHHqXUlUqpTKVUJvA3YHboXCl1RijcIX43zUm+zVKrTRLl51nAMvQ+Yn8EXhGRljHC7gYeBu6J4tcUvb9bV+BI9Malzg1404EbgBbAIOAU4HcO/3+id6VuBfQGTgKuhvCO1q8D/wc0ASYA/xCRUIVnLTBKKdUUaI3eC+2Jqh48WUmivDEVvbFre2AEcIvozXYrICKjgNvQ77U9et/KOx1Brkfv/dcYuAJ4QcpvhIuIDAWOiYzbUeZkAkcBRcDLxvtHYDy6XGiBzoMvOeJsAfwXnXeygGOB9yLi34HOe1mVpkYMEqLsTC3kVhFZCRSIiEdEBpvaZZ6pIQx3hJ8vIn8XkUWmBvGGiDSPEfdlIrJORPJNTfHXEf5jRGS5iWdj6CWLSBMRmSEi20Rkq4j8Vcyuv5U8xzEi8qGpde4U3WRu6vDbLSJ9zXlrUwMabs7PFpE15nnni0i3iPT5nYisFJG9IjJbRHzVT+nqE+PdRNbIZorIXx3nZ5o0zTPvsFo1KUc6B6sId4t5Pz+KyOVOuYxMj4vI2+bdfykixziufURENpv3vkREhkVE7zPpnC+6peFsYd5m8kq+iKwVkbEOv8ki8pmIPCQiu9AFSVXP+4CprX4vImdEeLc38eWLyHvmo64WItIF6Av8WSlVpJR6Fb0x5rho4ZVS7yul5qALmEi/RUqpGUqp3UopP/AQ0FVEsoz/E0qpT5VSpUqprcCLwBBHFB2BOUqpYqXUT+gCqofxaw40Bp5Xmq+AdUB3E/d2pZRTpgC6UKs2olsBy0y6vmze9V9jhL3OvOe2Drc/mG88V0QmOdxHm3j3mfw11eEX6pr8pYhsAj6MQ9RJIrLJ3OuPEX4pIvKceYY1ItK/eqkQ5lLgL0qpPUqpdcCTwORKws5QSq1RSu0B/uIMq5RaqZQqC50CXqBdyF+0gn8UuLYKmcahFdOnJt48pVSu0huoChXf/Y3APKXUi0qpEqVUvnmWSIJAzSoZCdrNNhe9g207IA1og941+hdohXqaOW9pws8HtgI90TtMvwq8YPw6oBPZY85Ho2sRgq5FFgJ9jd9AYK+J32Xue5zxC9UwM4Aj0DXYX1fxHMeauFKBlsAnwMMO/1+ha6fpwDzgAePeBSgw13qBW9A7O6c40mcRujbbHF0AXBlDhqFAXiW/oVU8w9RQWkZ7N8ZNAcc6wswE/mqO+6Az6SDAjf44coHUauSH04FiIKOKMD+hC8p04AWnXEamXeYde9CF7kuO6y9C1/A8wE0mLp8jDfzomqQX3TL5HvAa//PMu3ChWx8FmJ2s0R9+Gfpj9oTSLMYzTDb3+ZVJq6vQCia0KfJ89I7NXdDfxXzgnhhx/RP4Zwy/scC6CLfHgEereA+XA/OrCHMOsK0S/7lOmYFfA8+Zd9YG3Xof6/D/N/Abkx7Hm7zUzuF/NDofB03aTa5BeZMC/IBuhXiBc4FSRx4eDmwxx3egd/lu6fArA/6B/s5PMu+/q8M/2+SNHGA7cE5E2fQculypLG+Ewj5p3n0voATo5sijxegy0g38HVgYI64LgZUx/JqZ+xzpcBsPrIoRfgUwwXHewlyf5XD7j5FNoSszLoffzcAj0cqRiPt8CEyN4p5n0j8I/Cki/CPA5ybPvAUcHeX6j4H7AHe18011L4jxYLnAFMf5rejanTPMPOBSczyf8h9Qd5NZ3UQouxgf3/Xm+P+Ah6KEOdJkrDSH2wXAR9V8rnOAZRFub6Jr1SsxCgC4HV3bDYVxoZX5cEf6XOTwvw+Ynoi0jyLzVCoquykRYSpTdk+ga4nO8OuBk+K8/2IT/3VVhHsa+Lvj/FgqKrunHP6/AL6uJL49QC9HGix0+LmAbcCwGNcuB8aY48nApjifdTKwwXGebp7hKEc+d37QVwP/rcE7vZiIghC4G5hZxXWVKjugrcmnF8TwnwJsAVo43LoBS9AFljLvSRz+Z6EVRJn5/SpG3M3R5cTgGqTHiUZu530XUF7ZbUUrtAVAE0e44UauDIfbHOD2GPd6GFPGcKBs6hSHjKGwbR1ui4CJjjz6vsOvO1BUg7RoZ+7jc7idBuTGCL8RON1x7jXXd4gI5wXOAG6MuNeGUHoSQ9mhu0cDQMcYMmSYb2G0w+0btCIcAPiAacBnUa49HshHl+9HVCetEjlmt9lx3B44z3SD5YlIHrrF0ipG+B/QiVuhi0dEzhCRhaYLMQ9d6IXCtUO/vEjam/i2Oe7/f+gWXkxE5EgRecl0e+5DtzYiZXoS3SJ9VClVYtxam2cAQCkVNM/nHHz/yXFcCGRWJkuC2Vx1kDDtgZsi3l079DPGwwBgIjBV9BhOLFpHyBVNxphpZrqF15lu4Tz0GJHzXYXjM+9jS+gZROQSRzdtHvp9Rr02DsIyKqUKzWFmNP/IZ6gG+9Hdg04aoz/6GiF6vO89dGtyVhT/c9CtjTOUUjuNmwtd038NXWC1QLcs7jX+x6HHYS5Bt756oMePRkfGr5TaDTwLvCHVH/tqDWxVpvQzRL6zpugxp78rpfZG+O1RShU4zn/gQN4YJAeMNPYCV1KxDKhR/qDi+4/089UgLfabv878UVneiMxLoeNy4ZVSfqXUu8BIETnbOD8M3BUlPSO5GFiglPo+mqdJ++nAcyISKpOLgNeVUl8ppYrR44gniEiTiMt/j+7lyVBK/VyFHOVIpLKLzHjPK6WaOn4ZSinngHk7x/HR6C6Nnc4IRVsJvQo8gG6mNwXeQXdphu5TYaDUuJega6Sh+zdWSvWIEtbJ38xzZCs9QHuR416ISCb6hc9AF+ahccYf0UoiFE7M822t4n4VEJFhUtGqyfmLHJuKBxVxXohuhYQ4ynG8Gbg74t2lRysQo95IF0Bz0YVgq0qCbkO3LEK0ixUwEpMGtwDnA81MvtiL411RfpzBZe71o4i0R1dYrkF33TRFd8U5r41Mr7pmDdBJRBo53HoZ92ojIs3Qiu5NpdTdUfxPR6fRWUqpVQ6v5uhv9TGlx1V2Ac+gK6CgKw3fKKXmKaWCSqn1wNvoFkI0POgKaKQir4ptQBvznYWIzD97gDOBZ0RkSIRfMxHJcJwfzYHxzX+je2/aKaWaoAtlibg+afKH0uNu29D5IURleWNNlLDbzbuMhocDZewpwP2iLTlDivoLEbkw4ppL0BWZynBxoCscdE+ZM11jpXE34C11YFwxbmpr6sELwFkiMkpE3CLiEz2/xVm4XSTaHDUduAt4RSkViIgnBd2vvgMoM4P/Ix3+M4DLROQUEXGJSBsROU4ptQ39MT8oIo2N3zEiclIVcjdC13z2ijaJvjnC/xFgsVLqcvRHPN24zwFGGzm86DGkEnT/c7VQ2jggs5Lfp9WNMwrLgQvNuzkdPW4R4kngSlPDFRHJMIP2jSBsODKzimcItXhTKgk2B/3uupk8cHs15G+E7oraAXhE5A4qFpj9RORcU1O+Af0+FqJbJMpci4hchi6kkxal1Dfod/Zn8y2FzK9fjRY+9M2hCyqXucZr/BqjhxQ+U0rdFuXak9E153FKqUURcuxEj31eJdrQqSl6THelCbIM6Cx6+oGINig6M+Rv3kdX8z22RHczLjOtvNDUlPlxJMkX6G6ya4wcY9Bju5HpNh+YBLwmIpH+d4pIiqk4nckBq8FGwG6lVLG5JrIgT0aeA/4kIs1M6/pX6O7lWGF/acrepsCfQmFF5DjRPWlpIuIVkYvQXcYfm2u7oJVjb/MD3W39eihyETkBrcBC6RlyP01E+pi82Rj97veg7RdAV5rGikhvk1dvR7cOI1uRXvS3XG1qRdkppTYDY4A/oAuVzWjF4bzf8+hE/gndR3tdlHjyjfscdMJciK51hfwXAZehLcr2ol9KqIUV6kpZa659hcpbGqCbzn1NXG+ju2sAbfWJNqq4yjjdCPQVkUmmBnsR2kppJzoDnKWUKq3ifnXF9WgZ89CFwdyQh1JqMfpjeQydbhsob9nVDvgsjnsoKslfpotkGvCRucdC4xVPRp6H7k77Bt0FVUzFrqU30MYne9DdKuearpm1wIPoAnM72hghnuepVUTPlZxeSZCJQH/089wDjFfaFBsRmSQizpr8xehuoSeAYeb4SeM3Ft3VfFlEj8HRxv92dJfwOxJ9rua56O9gB/q9+YHfAiilNqLH+aYB+9Df46vAU+baNuj3lo8e9w4aeULElbfMd3Uu8Et0Hr4IbVRRIe8opf5nZHpLjCU1uszZg27NvYg2Fvva+F0N3CUi+WjjljlVyVPbRHm/kfwZPZzzAzrN71dK/ddce7Tz/Rr3+9Df3SZzzZ9Dt0KPJf6Mfr/Xo41Zlpprf1ZK/RT6mWt2KqWKHLJcCrxmym4nTdHTZ/YaWY9Bjx0Wm7g/ROuLt839jyV6RcNNFVbesQhZjR1STO3tBaXUU1WFtSQPIpKCtubKUdpsvbKwPwK3KKXiWiVC9FSN1Wijn2p3UVjqPyKyHDilki61yq79Em309UzCBbMkBSISMpDpYyqt1cKuoGKJG6XnXnWrStEZbkN3uy2JFUBExope/SFk5FCjvnhLw0Ap1TteRSciJ4nIUaYb81J0t+5/a1dCS10hItPQvT//qomig8NQ2Un5pbWcv8q6kCzVRCn1nFKqs1KqXyXBfo3ustiIHoO5qpKwdYLNL0lLV3QvQx56jHy8Gas/ZJjuxWh5o0aGQ5bYKKWuU0q1UUpVNZk9JnXSjWmxWCwWy6HksGvZWSwWi+XwI1kWMgWgRYsWqkOHDnUthsVisVgOIUuWLNmplIq1sHlCSCpl16FDBxYvXlzXYlgsFovlECIiP1Qd6uCw3ZgWi8ViafBYZWexJBl5haV8sG57XYthsTQorLKzWJKMd1/6J51mDePHn36qOrDFYomLpBqzi4bf72fLli0UFxfXtSiWeoTP56Nt27Z4vZVtvJCcDNnyL452bWfd1vW0Puqoqi+wWCxVkvTKbsuWLTRq1IgOHTogErn4uMVSEaUUu3btYsuWLXTs2LGuxak2xa4MCEJxfrVXzbJYLDFI+m7M4uJisrKyrKKzxI2IkJWVVW97A0pcevelsv2761gSi6XhkPTKDrCKzlJt6nOeKfXo/T2DBVbZWSyJol4oO4vlcKLMo/cVVUVW2VksicIquzgQEW666abw+QMPPMDUqVPrTqAqmD9/Pp9/Xu19Y8MsX76c448/nh49epCTk8Ps2bMTKJ2lSkR/lqpkfx0LYrE0HKyyi4PU1FRee+01du7cmdB4lVIEgzXah7BSDlbZpaen89xzz7FmzRr++9//csMNN5CXl5c4AS2VIiqgD0oL6lYQi6UBYZVdHHg8Hq644goeeuihCn47duxg3LhxDBgwgAEDBvDZZ3qj5alTp/LAAw+Ew/Xs2ZPc3Fxyc3Pp2rUrl1xyCT179mTz5s3cfPPN9OzZk+zs7HArav78+QwfPpzx48dz3HHHMWnSJKLtUDFt2jS6d+9OTk4OEydOJDc3l+nTp/PQQw/Ru3dvPv3000plvPjiizn++OPp3LkzTz6pN7Pu0qULnTt3BqB169YcccQR7Nixo8K9X375ZXr27EmvXr048cQTAW1QdNlll5GdnU2fPn346KOPAJg5cybnnHMOp512Gh06dOCxxx7jH//4B3369GHw4MHs3q277J588kkGDBhAr169GDduHIWFhRXuO3jwYNasObCLyvDhwxvUMnNitvRz+62ys1gSRdJPPXBy51trWPvjvoTG2b11Y/58Vo8qw/3mN78hJyeHW265pZz79ddfz29/+1uGDh3Kpk2bGDVqFOvWras0rm+//ZZnn32WwYMH8+qrr7J8+XJWrFjBzp07GTBgQFhxLFu2jDVr1tC6dWuGDBnCZ599xtChQ8vFdc899/D999+TmppKXl4eTZs25corryQzM5Pf/e53AFx44YUxZVy5ciULFy6koKCAPn36MHr0aFq3bh2Of9GiRZSWlnLMMcdUeI677rqLefPm0aZNm3DL7/HHH0dEWLVqFV9//TUjR47km2++AWD16tUsW7aM4uJijj32WO69916WLVvGb3/7W5577jluuOEGzj33XH71q18B8Kc//YkZM2Zw7bXlt7CaMGECc+bM4c4772Tbtm1s27aN/v37V5rm9QlXULfs3IGKiv5gKSktZeFDE2k24jpyBg5PaNz7iv18vmEXo3ocmXADoe82bcJNkPZHd0hovJbDB9uyi5PGjRtzySWXMG3atHLu77//Ptdccw29e/fm7LPPZt++fezfX/lYS/v27Rk8eDAACxYs4IILLsDtdnPkkUdy0kkn8dVXXwEwcOBA2rZti8vlonfv3uTm5laIKycnh0mTJvHCCy/g8USvu1Qm45gxY0hLS6NFixaMGDGCRYsWha/btm0bF198Mc888wwuV8WsMmTIECZPnsyTTz5JIBAIP89FF10EwHHHHUf79u3Dym7EiBE0atSIli1b0qRJE8466ywAsrOzw8+2evVqhg0bRnZ2Ni+++GK5FlyI888/n1deeQWAOXPmMH78+ErTu74R6sb0lhUlPO7dm9dzUtEHHPHfKxIe9/9eeYp+Lw9gw4b1CY+71Yx+tH+6V8LjtRw+1KuWXTwtsNrkhhtuoG/fvlx22WVht2AwyMKFC/H5fOXCejyecuNxzjlfGRkZcd0vNTU1fOx2uykrK6sQ5u233+aTTz7hrbfe4u6772bVqlUVwsSSESqa6IfO9+3bx+jRo7n77rvDijmS6dOn8+WXX/L222/Tr18/lixZEvfzuFyu8LnL5Qo/2+TJk5k7dy69evVi5syZzJ8/v0I8bdq0ISsri5UrVzJ79mymT29Ym4aHlV0w8S07VajHnVWgYl46WDpuepmWso/tP30NnY9LaNxpUprQ+CyHH7ZlVw2aN2/O+eefz4wZM8JuI0eO5NFHHw2fL1++HNDbFS1duhSApUuX8v3330eNc9iwYcyePZtAIMCOHTv45JNPGDhwYFzyBINBNm/ezIgRI7j33nvZu3cv+/fvp1GjRuTn51cpI8Abb7xBcXExu3btYv78+QwYMIDS0lLGjh3LJZdcUmmraePGjQwaNIi77rqLli1bsnnzZoYNG8aLL74IwDfffMOmTZvo2rVrXM8DkJ+fT6tWrfD7/eF4ojFhwgTuu+8+9u7dS05OTtzx1wfcZswuJZD4ll2gtETfg0Di4xa9NFtpYX4VIQ+CWjDoshweWGVXTW666aZyVpnTpk1j8eLF5OTk0L1793ArY9y4cezevZsePXrw2GOP0aVLl6jxjR07lpycHHr16sXJJ5/Mfffdx1FxrocYCAS46KKLwsYg1113HU2bNuWss87i9ddfDxuoxJIRdDfoiBEjGDx4MLfffjutW7dmzpw5fPLJJ8ycOZPevXvTu3fvsIK84447ePPNNwG4+eabyc7OpmfPnpxwwgn06tWLq6++mmAwSHZ2NhMmTGDmzJnlWnRV8Ze//IVBgwYxZMgQjjvuQOvgzTff5I477gifjx8/npdeeonzzz8/7rjrCy6j7FJVLSi7Mt1CSiXxLaUyt1n5pTAv4XGH8NvpGJYaItEs/OqK/v37q0irunXr1tGtW7c6kqhhM3Xq1HKGLA2N+pp31vxtGD1KV7KTprSYmtg9Lb/77FU6/W8KxcqL787ETqX59MELGZb/Ngu7/I7BF96e0LiZ2gSAvVevpskR7RIbt6XOEZElSqlatTKzLTuLJclwmTG7tFpo2QUDfgB84k943MqjW/BSvDfhcYcoKkisNbbl8KFeGahYEksyrwJzOOMy42kZUkIgEMDtdics7mBZ4pVcGKXH06Sk9hRSiVV2lhpiW3YWS5IRatkBFCXY2EPVorJzBfVYo6sWJ8OXFNZeq9HSsLHKzmJJMpzKrnh/YlsywcABw5REj9dLLSk75bDA9NempaelQWOVncWSZLidLbsEd9s5uzFLShNrkRla5syT4JVfQgsWAPiLrLKz1Ayr7CyWJMNFgFKlx+lKChOr7FTwwGTyooLEKg5XUCtST4JXfikrO6CUA0V2zM5SM6yyi5O5c+ciInz99dcxw+Tm5tKzZ89alWP58uW88847Nb4+NAm9e/fu9OjRg0ceeSSB0lkSgYsA+0WvsuMvSuy8sqBDcRTl5yU07lDLLiXBK7/4/QdkDtp5dpYaYpVdnMyaNYuhQ4cya9asqP7RlvKqLs7umlgcrLLzeDw8+OCDrF27loULF/L444+zdu3aGsdnSTxuFaDAKLvSRHfbBQ50YxYnuNUYWvklNZjYll3Af0BmVWqVnaVmWGUXB/v372fBggXMmDGDl156Kew+f/58hg0bxtlnn0337t0BrfQmTZpEt27dGD9+fHiLmg8++IA+ffqQnZ3NlClTKCnRyzZ16NCBW2+9lb59+/Lyyy+Xu2/kFjqlpaXccccdzJ49m969ezN79mwKCgqYMmUKAwcOpE+fPrzxxhuA3lJnzJgxDB8+nM6dO3PnnXcC0KpVK/r27QtAo0aN6NatG1u3bq3wzB9//HF49ZQ+ffqQn5+PUirmdkQnnXQSY8aMoVOnTtx22228+OKLDBw4kOzsbDZu3AjAW2+9xaBBg+jTpw+nnnoq27dvr3DfiRMn8vbbb4fPJ0+eHF70+XDBTYAiVyYAgeIEW2MGHWN2CVZ2oTU9fQlWdn5Ha9Tu8WepKfVrnt27t8FPFRc6PiiOyoYz7qk0yBtvvMHpp59Oly5dyMrKYsmSJfTr1w/Q616uXr2ajh07kpuby/r165kxYwZDhgxhypQp/POf/+Saa65h8uTJfPDBB3Tp0oVLLrmEJ554ghtuuAGArKys8DqaTiK30ElJSeGuu+5i8eLFPPbYYwD84Q9/4OSTT+bpp58mLy+PgQMHcuqppwJ6e57Vq1eTnp7OgAEDGD16dLmtcHJzc1m2bBmDBg2qcO8HHniAxx9/nCFDhrB//358Ph+vvfZazO2IVqxYwbp162jevDmdOnXi8ssvZ9GiRTzyyCM8+uijPPzwwwwdOpSFCxciIjz11FPcd999PPjgg+XuG9q+Z/To0ZSWlvLBBx/wxBNPxPkyGwYuFaTYnQGBWlB2jgWgE72GZWiZszRqr2UnVtlZaoht2cXBrFmzmDhxIqBbHs6uzIEDB9KxY8fwebt27RgyZAgAF110EQsWLGD9+vV07NgxvD7mpZdeyieffBK+ZsKECVHvG20LnUjee+897rnnHnr37s3w4cMpLi5m06ZNAJx22mlkZWWRlpbGueeey4IFC8LX7d+/n3HjxvHwww/TuHHjqPe+8cYbmTZtGnl5eXg8nkq3IxowYACtWrUiNTWVY445hpEjRwLlt+/ZsmULo0aNIjs7m/vvvz/q9j1nnHEGH330ESUlJbz77ruceOKJpKWlRX32hoqLIH6PbtkFixPcbefoxky0ZaPbGL+kq+Jy0wUOloDDgtRVZpWdpWbUr5ZdFS2w2mD37t18+OGHrFq1ChEhEAggItx///1Axe16Ym2ZUxmxtvyJZwsdpRSvvvpqhZ0Fvvzyy5iy+P1+xo0bx6RJkzj33HOj3vu2225j9OjRvPPOOwwZMoR58+ZV+gzxbN9z7bXXcuONN3L22Wczf/78qCu4+Hw+hg8fzrx585g9e3a4knE44SJImVdXQFSCDTKcLbuyBCvSUMvOJYri4gJ86Y0SEq/TGtNdlvhtjyyHB7XeshOR00VkvYhsEJHbavt+ieaVV17h4osv5ocffiA3N5fNmzfTsWNHPv3006jhN23axBdffAHAv//9b4YOHUrXrl3Jzc1lw4YNADz//POcdNJJVd472hY6kdv3jBo1ikcffTQ8QXjZsmVhv//973/s3r2boqIi5s6dy5AhQ1BK8ctf/pJu3bpx4403Vnrv7Oxsbr31VgYMGMDXX399UNsRAezdu5c2bdoA8Oyzz8YMN2HCBJ555hk+/fRTTj/99Ljjbyi4CBLwplOmXJBogwzHmF0gwcrOuW1Q0f7ErXQScBh/JXpag+XwoVaVnYi4gceBM4DuwAUi0r0275loZs2axdixY8u5jRs3LqZVZteuXXn88cfp1q0be/bs4aqrrsLn8/HMM89w3nnnkZ2djcvl4sorr6zy3tG20BkxYgRr164NG6jcfvvt+P1+cnJy6NGjB7fffmC1+YEDBzJu3DhycnIYN24c/fv357PPPuP555/nww8/DBughKw7p0+fHt7+5+GHH6Znz57k5OTg9Xo544wzDmo7ItBrcZ533nn069ePFi1ahN0XL17M5ZdfHj4fOXIkH3/8MaeeeiopKSlxx99QcBFExEUhaUiilV2g9iwbQ9aYAEUJXPkl4Jh64E3whHXL4UOtbvEjIscDU5VSo8z57wGUUn+PFt5u8ZM4Zs6cWc6Q5XCkvuadwj8fwfKjzuWY7e+xqelABtzwUtUXxcny6ZdzzLb/0EiK+LTdlQz75b0Ji3vjnT3pqLbgQvH9+Hl07Bl9h/vqsn7ZArq+MRqA79yd6HT7siqusNQ3GsIWP22AzY7zLcYtjIhcISKLRWTxjh07alkciyX5cRMEcVPsSkv4GJUKllFMCn7cCTfjd6sA+ejx50Qu2BzalihfpZGa4AnrlsOHOrfGVEr9SynVXynVv2XLlnUtToNh8uTJh3Wrrj7jMsquxJWOJ8HWhxIsI4Bbd5EmeMFmD2UUuLRhTSIXbA5ZY+6XTHyqOGHxWg4valvZbQWc2wq3NW7VIpl2U7fUD+pznnETBJeLUnc6KYkeowqWERA3xeLD7U9s3B4VoMitp0yUJXBaQ9AYqBS6MxM+h89y+FDbyu4roLOIdBSRFGAi8GZ1IvD5fOzatateF16WQ4tSil27duHz+epalOoTDOIShRIPfnd6wteZJFhGEDclrjTcCW41uimj1KunG5QlcMpEaFuiYncj0imBBM7hsxw+1Oo8O6VUmYhcA8wD3MDTSqmKM4kroW3btmzZsgU7nmepDj6fj7Zt29a1GNVGBcsQAJebgCcdX1FiWzISDBDATZkrDW8gsXG7CeD3NgEgmMCVX4JmbmCptzGUQmnxflLSKy6EYLFURq1PKldKvQPUeOVir9dbboUSi6UhEwwGcAOIm4A3E59KsLJTfgLixu9Ox5tA4xelFB4ClKVqZZfIyfChnRpCE+2LC/KtsrNUmzo3ULFYLAcIT6B2uVDeDNITreyCAYLipsyTTkowccYegaDCSwDlzcSv3KgEWnqGWnYBo0gTvaGt5fDAKjuLJYkImIJdXB5IycQnfsr8idtRXFQZATwEPOkJ3YqnLKhbdrg9FIkPVwInrKvQRHifVnaJ3q3BcnhglZ3FkkSEF/x2uSBVWzYW5CeucBelW3bKm0FaAs34A4EgXgmAy0MRPiSBlp4ha0xXWlPAKjtLzbDKzmJJIkJddogbt09bNhYWJG6CtitYhhI3QW8GaRQTCCbGyrkstA2PK4ViV1pC5weqoG7ZujOaAonfrcFyeGCVncWSRATD3Zhu3D7dsitJpLJTAQIuD5KSQQbFFJb4q74oDsrK9GbEuD1mMnwCjV/MpHJvRnN9ryK7W7ml+lhlZ7EkEcFgqBvTjSctZH2YOGUnqgyFG0nNwCWKgoLEKI5gaM85txe/Ky2hCzaHxuzSGhtll+ANbS2HB1bZWSxJRLhlJ25SzH5widxR3KUCKJcHV6qOuzhBlo2hPefE5cHvSSclgcYvoZ0a0pro5QQTvqGt5bDAKjuLJYkIj9m53KSka+vDsqLEGWS4VBlB8YS7SBOl7AL+Ay27Mk9GQi09Q8ouM6TsEryhreXwwCo7iyWJCFljisuNL0MrO38Cx6hcxhrTExoPTJBlYyDUsnN7CXrSEzoZXpnlwjKbNCOoJOG7NVgOD6yys1iSCBWeeuDBl6HH7ILFiWvZudHTA1LSQl2kCRqzM60vcXtRKRmkJVDZidld3eP1UYgPErxbg+XwwCo7iyWJCAbNmJ3bTXqjxC+95VJlKJcnvNyWP0HGHqFuTHF7UN4MMqTkwJzBg6WsFL9yg8tFkSR2Dp/l8MEqO4sliXDOs0tNyySoJKHKzq10yy41w+xOkKAu0mC4GzMVMcYvhfsTY0UqQT9lopfx1VsT2ZadpfpYZWexJBHKTD1wudyIy02RpCIJXHor1I3pywy1GhOjkJTfdFt6U5HUkPFLYlqNEizFT0jZJXbCuuXwwSo7iyWJCDrXxgSKSMOVwJZMSNmlpYe24klUy04vPSYeH25fBgBFCZofKEE/ZUbZlbrT8SR4ayLL4YFVdhZLEhEoMy07txuAIld6QlsybqUXa/YYZUeCWo1lJXoFFU9qGh6fHg8sSdC0Bgn48ZtuzBJ3BqkB27KzVB+r7CyWJKLMWDW6PaZwT/A6k6mUotyp4EnFjwdXaaIMVHRry5Piw5MWmtaQmLhdQT8BvAD4PZn4glbZWapPrW/earFY4ie0oLLbowv3UncG3gS1ZAKBAD7xo9xpABSQlrCteAKlIWWXBioIJG4yvMthoFLmySAtaK0xLdXHtuwsliQi6NdjX+4UHwB+dzqpCRqj8pdoJRH06rgT2UUa9OtuzBRfGqmhaQ0J2p3ApfwEjLILpGSSjh2zs1Qfq+wsliQiYJSG2yikMk8GPpWYlkxI2eHRcZe40vGWJchAxShpb0paeOWXRC3rJUE/AdEtXZWSiY9SKEvchraWwwOr7CyWJEKVlVd2AW/iViPxF2tlpzy6G7PEnUFKgrpIg2bMLiU1DV9maOWXBCm7QCnKpZUdKTruRK4Xajk8sMrOYkkigkbZeVJSAd2SSU+Qsisp0orNlZIOgN+dQWqCtuJRpkWampZORmgOX4LGA1OCxfjdWvmLL7ET1i2HD1bZWSxJRNCvu+c8pmVHSiZpUkpp6cF32xWbdTC9qUbZJbCLlLLQmF06bm8qpcqTsGkNvmABfreeu+cy0xqK9+clJG7L4YNVdhZLEhHqxvSmHlB2AEUJaMmEWnZen1Z2QW8m6QlTdkUEleD2pABQKD5cCdqdIE0VUebV6eBOC83hy0tI3JbDB6vsLJZkokRbMKaYQt0V7rbLO/ioi7XySTUrnARMF6lS6qDjlpJ8CiQNRAC9rFeiVn5JV0UEvVpmr5kMX5rA3dsthwdW2VksyYTp+stoZJSd2YonEauRlJlJ3l6zAzopjciQEkpK/Qcdt6d0L/slM3yeqDUsVTBIBkUETcvOmxYyULHKzlI9rLKzWJKJ0v0UqFQ8ZgUVjyncixPQkgkU7gYgtZHe8ZvUxHWRev37KHQ1Cp+XuNMTMhl+f8F+PBIEs5NCamZTwFpjWqqPVXYWSxLhKt1PkaSFz0MtGX8CdhRXBbsAyGimlZ0YY4+iBHSRppblU+w5oOz87nRSEmDpuWePVtCh/fd8RtkFrbKzVBOr7CyWJMLtL6BI0sPniVyNJFCwi1LlpkmTZvpe4VZj3kHHnRbIp9TbOHxe6skkNQHLeu3ftQWAlKatAEjPbGT2+EvM6iyWwwer7CyWJMJdVkCx60DLLrTvXCABLRlX0S72SWPEpT/7UBfpwRp7KKVoFthNWVrLsFsgQWtYFu3aCoCveRsAMn0p7McXNuSxWOLloJSdiEwVka0istz8fuHw+72IbBCR9SIy6uBFtVgaPill+yk1c8oAUsNLbx184Z5RtI09ngMKKSVBXaR79uymiRSgmrQLuwW9GaQlYA3L4t1a2TU5Used5nWzn7SE7dZgOXxIxK4HDymlHnA6iEh3YCLQA2gNvC8iXZRSgQTcz2JpsDQq28X2zO7h8wwzRqUSsPRW89KtbMvsET5PMYq0rPDgWna7Nn9LcyAl6+iwWzClERmqCBUMhluSNSG4ayN+5SbryPYAiIje0DaBu7dbDg9qqxtzDPCSUqpEKfU9sAEYWEv3slgaBCoYpHlwD/70I8JuvrR0ypQLDrIlU7B/H0cFfybYtFPYLTWjKQCB4oOLe9d3SwHI6tgr7KZSMnGLorTk4CwyM/Z+y1ZPW8RMVgcodKXjSdAC1pbDh0Qou2tEZKWIPC0izYxbG2CzI8wW41YBEblCRBaLyOIdO3YkQByLpX6yPz+PdClBZR4VdhOXi0LSkINsyeSu+hy3KFKO7hd2SzPjgcGDVHZqy2KKVAptjj2g7FxmqkDhvrwax1tWVkbHorXsbtytnHuJKwNvAje0tRweVKnsROR9EVkd5TcGeAI4BugNbAMerK4ASql/KaX6K6X6t2zZsuoLLJYGyvbv1wDga9mhnHthAlYj2bf6XcqUi2P6nxJ2S2/UFABVUvMxOxUM0m7XAr5N74PLbDgLID49h+9g5gd+s3wBzSQfOo0o557I3Roshw9VjtkppU6NJyIReRL4jzndCrRzeLc1bhaLJQZ7N68GoFmHXuXci10HtxpJsKyMo398l699OfRsdmTYPTU1lSKVghyE8cvarz6gB9vZ3vmqcu6eNN1qPBhlt+eL5yhVHroMHVvOvdSdQepBdo9aDj8O1hqzleN0LLDaHL8JTBSRVBHpCHQGFh3MvSyWho7/p3X4lZtWHbuXcy85yB3FF7/7NG3Udkp6X1bOXUQOqtWogkHKPryHfWTQfeSUcn7haQ01tPT88Ydv6LvzLVY3P4VMh4IGKPNk4kvQtkeWw4eDtca8T0R6AwrIBX4NoJRaIyJzgLVAGfAba4lpsVRO+s5VbPYcTafQjgeGEld6jfed27v7Zzou+RvfuTvRZ+TFFfwLJR23v2bjgV+99S8GlixmUZebGGjG/0KkmPU3/TVo2QUDAX6adQ3NgLbn3l3BP5CSoXdrUCq88LTFUhUHpeyUUhW/ngN+dwMVc6rFYqlAaWkpxxSvZc0Ro+kU4VfmyaBR8e5qxxkoLWLr/42ns9pH3lkv4HK7K4QpknQ8NVB23676kp5L72BtSk/6nXdbBf+UsKVn9Vt2n8/8PUOLv2Rp91vp265zBf+gNxMXCkoLwut7WixVYVdQsViSgI2rvyRDiknpeEIFvzJPerU3WVUBP+sfO4/uJStY3PsvdO49NGq4Elf1F2z+8bu1NH11AoWSzpFTZuH2plQI4wvN4SuqniL9ZPaDDN38fyxtchp9oihRILwotF1FxVIdrLKzWJKA3es+BqBdr5Mr+AW9GaSp4rjjUsEgK5+YTPd9n/K/9jdy/NjfxAxb6s4gtRrKbvuWDcjzZ+OhjPzzXyWr1dFRw4WWOaMalp6fz53O0LV/YU36AHKufj7mZHSVqscDgzVoNVoOX6yys1iSgNStC9kmR5DVJrITE4Jmk9V4Wfr0dfTa+R8+OvIyTp18R6Vh/Z4MfHGuYbnzp82UzjiLzOB+dp4zi47d+8UMm5FpFFKcra9F7z7PwGW/5xtfTzpfOxdPalrMsKENbePZrUEpxb6CBO3GbqnXWGVnsdQxwUCQToUr2Nq4T/QAKZmkSBllpVW37r564Q76bXmeBc3GctIV/0CqMOAo82bgC1atSPfu2k7+v84kK7iLLaOfp3PvYZWGT/V6yFfxTYZf+uGr9F54A9+ndKbDtf8hJa3ycbjQbuVVKbtgIMhHD02m9L6u5O3cXqUcloZNItbGTBqKC/ez+ZtllBTux1+0n2BpAfiLUKWFBINlBANBAsEAKIULhYugLgxEEDhwLK6wldeBYzH/QmEk7C7mGoWjYBEx5wfCKQQlaLdKUCox6aFITEQV5VGV+ld21yrDVnWvasVd+c3CpyGFoGLfq6p3EuldWXgV6Vm0m5PZx8b2FcfrAMQYYRTu30vj5r6oYQC+evUfDNjwCIsyT2bwb57C5a66LhvwZpJO5S2f/L272f7EmbQPbOWbU2eQPfC0KuPV0xp8uEor7yJd9fm7dPv4SrZ42nHUb94O71dXGaHFsYsrUXYqGOTz//sNJ++bCwILP3qBwefdVGXcleEvLWHzN8vZ++M3lO7Mhb2bcRXtxlNWQEqgEFfQTxAXiAslLoIuL0FXKkF3CsqdCp4UcPvAk4J4UhGvD7fXh8ubijtFHwfdKQRcKQQkhaB4QCkUCqUUQaX0eegvcOC/ICrspsIZUKkgwoE8JyhH5lSIqHDmFWcJ5sijldWXylKbMvi08w4qXQ8VDUrZbft+LZ3nnlnXYlgs1SaghHb9To/qJ8Ygoyg/j8bNj4waZsl/nqTfyrtYkTaAXtf+O7zTeVWolExS8UNZqS6MIygs2Mfmx86is38ja4Y9Tu9hY+J8IiiuYlrDusXz6TjvMna6W9L812/TqGl8Kyj5jKVnSYxpDUopFjx9K8N+/jeLjziXlrsWc8S6ZwkGbohqkRqLn3/cRO5Xb8MPn9F871qOLvuBTlIW9i9Uqex1NaHIlU6JK52geLXCUGVIMIi7LB+38uNVpXiVH4/yk0opKZSRKv645UhmVqlOYJXdoeeIdp1ZNnQ6Kb50UtIa4fVl4EpJx+PLwOv1kuLx4HG7EZeLIC6CgAqia0wogsEgQRUkGFQoFQzXooLBUC1JoYJBU9MyNSkVBAXBoKkl6YCg23Hh43BNSakq2nWaRE0fiiee+OSpPFSkt0TEWtnlVV17sPeSmCcgEY2sqtIrMh0igzu9KzxH5Knj3JPWhKOaR10+1rHJavTCfcX/XqTXV7ewLqUnXa59ndRKxrsqYBRpoDgfd2ZWOa/iokI2PDqWHqVrWD7wAfqdekH88WKmNcSYDL9h1UJa/+dC9rkak/bLt2l6RPRnj0ZGY70Eb6x9+D557k5O2vIvljY7g35XPsWyd56i7+Jb+OLVhzn+/Nitu/35e/l20TyK17/PkTsX0in4A0cAe8lgU2oXlracgKdtb5q07UZW62No1uIo0qu5o4NSCn9Asbe0jJLiIopLiigtLqa0uJDSkiLcQT9uVYorUIJLlYEILnGhO5JCvVAu01lkepWgXC8TCOJy9DqF/MMZTh/rIsnZ83QgnlCwqnpiGrtTq/X8dUmDUnYZjZvRp5ofpMWS7HjTtEIqibIayepP59JtwXVs9Hbm6GveJC2jUfUiN5aNRfv3kOlQdqUlxax9dDx9ixfzVe+/MGD05dWWu8SdTloUS8/v1i2l2avnU0IqcumbtGjTsVrxZjZuCkBZUUVl9+kLf+Wk7x9iZeOT6P2b5xGXmz6/uJzVq2bRd83f+XyOos+ZV5OWnk7enl1s/XoR+9Z9SONtX9C5dC19JECJ8rLB15NFbcfQImcUHXoeT3Y1WoSVISKkeIQUTwqkpwBNqrzGkhgalLKzWBoiIWUXucnqyvmv0vmjK9nibsuRV/2HRk2aVztut7FsLMjPI7TZQnFRAeumjaNv0Rd8edxtDBp7XY3k9rvTaVz2Uzm3jau/pOkr5yFA6aTXadvhuGrH2zgzgxLlRUXs1vD5v//GsA33syJzKD2vfTm8MLW43LS/cg7fTz+XE9b+Bf+av7EfL02lmKZAUAnfeTqxrPUFZHY/jWP6nUqPdDtZvaFhlZ3FkuRkNm0BQNHeA1tgLX33GXouvInNnvY0u+ItmmYdEevySmncRHcJ7t69kyPRxijf/3M8fUqW8GX3PzHo/JtrLHfQ14zGeevC5+u++oBWb1+CnxSt6Dr3rlG8jXxe8kgjUKSVvwoGWfD0LQzb8iQrMobQ47pXcXvLd681anYEXW/9hLUL5pL/zSeIv4hgxhGkt+1O+14nc2zWkRxb4ye11AessrNYkpwj2nUlqITAzo0EyspY/OytDNr8FGtTetDmqjdo0rzmW2M1baXn9RVu+5ZN3xyFeukiuge2srjPXxl0zrUHJXdps2PJynuH4n27WPn+v+m14k52u5oRvHgubTr1qDqCGLhdwl53Mzz5W9i3dzdfP3UFw/L/x9Jmo8i56jk8KdEtVsXlovuJ58KJ59b43pb6i1V2FkuSk5aRyTZpwVGb3+Hbez5hUNk6FjU5nZxfz8B3kN1tR3XqwT6VTrvlD9Fk2Z0Uio+vRz5H/yFnHbTcGUf3hu9hz0ODGKh2sCa1F22vmE2TFq2qvLYqtjXqyZC9b/PTQwPor3axqNNVDLj4bzFXXbFYbM6wWOoBG9qOpX1wMy3LfmRx378z4PpZB63oAFK9XlZ2voo0VciqxicSuGIBPROg6AB6DDmbpb5BoBQLO9/Ecbd8kBBFB5B1yg1s4UjyvC35dvQcBl56j1V0lkqRChNc65D+/furxYsX17UYFkvSoYJBcr9eylHtjyMtwxpPWBoWIrJEKdW/Nu9huzEtlnqAuFx07F6rZYHF0qCx7X6LxWKxNHissrNYLBZLgyepxuxEZAfwQwKiagHsTEA8hwIra+1Rn+StT7JC/ZK3PskK9UveRMnaXilV8zk0cZBUyi5RiMji2h7sTBRW1tqjPslbn2SF+iVvfZIV6pe89UlW241psVgslgaPVXYWi8ViafA0VGX3r7oWoBpYWWuP+iRvfZIV6pe89UlWqF/y1htZG+SYncVisVgsThpqy85isVgsljBW2VksFoulwdOglJ2InC4i60Vkg4jcVtfyOBGRdiLykYisFZE1InK9cZ8qIltFZLn5/aKuZQ0hIrkissrItdi4NReR/4nIt+ZvsySQs6sj/ZaLyD4RuSGZ0lZEnhaRn0VktcMtalqKZprJxytFpG8SyHq/iHxt5HldRJoa9w4iUuRI4+mHUtZK5I357kXk9yZt14vIqCSQdbZDzlwRWW7ckyFtY5VbSZl3K0Up1SB+gBvYCHQCUoAVQPe6lsshXyugrzluBHwDdAemAr+ra/liyJwLtIhwuw+4zRzfBtxb13JGyQc/Ae2TKW2BE4G+wOqq0hL4BfAuIMBg4MskkHUk4DHH9zpk7eAMl0RpG/Xdm29uBZAKdDRlhrsuZY3wfxC4I4nSNla5lZR5t7JfQ2rZDQQ2KKW+U0qVAi8BY+pYpjBKqW1KqaXmOB9YB7SpW6lqxBjgWXP8LHBO3YkSlVOAjUqpRKzEkzCUUp8AuyOcY6XlGOA5pVkINBWRxOyNEwfRZFVKvaeUKjOnC4G2h0qeqoiRtrEYA7yklCpRSn0PbECXHYeEymQVEQHOB2YdKnmqopJyKynzbmU0JGXXBtjsON9CkioTEekA9AG+NE7XmCb/08nQLehAAe+JyBIRucK4HamU2maOfwKOrBvRYjKR8oVFsqYtxE7LZM/LU9C19xAdRWSZiHwsIsPqSqgoRHv3yZy2w4DtSqlvHW5Jk7YR5Va9y7sNSdnVC0QkE3gVuEEptQ94AjgG6A1sQ3djJAtDlVJ9gTOA34jIiU5PpfstkmbuioikAGcDLxunZE7bciRbWsZCRP4IlAEvGqdtwNFKqT7AjcC/RaRxXcnnoN68ewcXUL6iljRpG6XcClNf8m5DUnZbgXaO87bGLWkQES86w7yolHoNQCm1XSkVUEoFgSc5hF0qVaGU2mr+/gy8jpZte6hbwvz9ue4krMAZwFKl1HZI7rQ1xErLpMzLIjIZOBOYZAo4THfgLnO8BD0G1qXOhDRU8u6TNW09wLnA7JBbsqRttHKLepZ3oWEpu6+AziLS0dTwJwJv1rFMYUx//AxgnVLqHw53Z3/2WGB15LV1gYhkiEij0DHaQGE1Ok0vNcEuBd6oGwmjUq5mnKxp6yBWWr4JXGIs2wYDex1dRnWCiJwO3AKcrZQqdLi3FBG3Oe4EdAa+qxspD1DJu38TmCgiqSLSES3vokMtXxROBb5WSm0JOSRD2sYqt6hHeTdMXVvIJPKHtgT6Bl0D+mNdyxMh21B0U38lsNz8fgE8D6wy7m8CrepaViNvJ7TV2gpgTSg9gSzgA+Bb4H2geV3LauTKAHYBTRxuSZO2aCW8DfCjxzF+GSst0ZZsj5t8vAronwSybkCPxYTy7nQTdpzJH8uBpcBZSZK2Md898EeTtuuBM+paVuM+E7gyImwypG2scisp825lP7tcmMVisVgaPA2pG9NisVgslqhYZWexWCyWBo9VdhaLxWJp8FhlZ7FYLJYGj1V2FovFYmnwWGVnsVgslgaPVXYWi8ViafD8P0lW1woyCkTLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEYCAYAAAAqIzNgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiPElEQVR4nO2dd3xVRdqAn/fmpkIgNJEmTekJAWkuIGChyKeoqFgRWddVV9detuiHbvmsq6KurCyKBRUr2HUtqLgigoAUQUEiAekQSAJp9873x5wbTm7uTSHl3lze5/e7yTkzc2beM2fOvFPeMyPGGBRFURQlVvFEWgBFURRFqUtU0SmKoigxjSo6RVEUJaZRRacoiqLENKroFEVRlJhGFZ2iKIoS00StohORTiJiRMQbaVliHRGZIiIL6ymtZBF5V0T2isit9ZFmUPpZInJKPaSzQEQuD+OnZbuOEJHZIvLX6vrVsgzTROT5CvzrpQzGCiKyQkS2isgNhxtH1Co65fBwXrJiEclz/epdoVTAKUAG0MEYc1/A0Xn5O0VMqijCeYbTqhH+QhH5WUTyRWSeiDSvIGymiCwVkQPO/0yX33tB5aZIRFa6/D8VkZ0ist+pfCa4/MaLyEIRyRGRbSLybxFJdfmvDoq7RETeqov8aMiIyEgRWVCN8GGfZ4iwzUXkDaec/CwiF4YJ95TTEDvW5dbJ1UDdJiKPuRtqInK6iKxynu1/RaRXUJw3ONftd+JPDLqHL0Rkn4hsFpE73NcaY/oCvwH+t6r5EkydKTptrUaUucaYxq7ffZVfUm80B7KMMXmRFqQmiCXiDUUR6Q38C7gEaA0cAP4ZJmwCMB94HmgGPAPMd9wxxoxzlxvgv8ArriiuA9oYY5oAVwDPi0gbx68p8FegLdATaAfcH7jQGNPbFW8qkB0Ud4MiGuq3yp5nCB4HirDl5CLgCaf8uOMcBnQNce0/gR1AGyATGAFc7VxzHDAHuBJIA94C3gzkkYiMAW4HTgY6Al2Au1xxvwB8jq0bRgBXi8gZQemvApqKSFy4/KiIWn1RnVb5bSLyHZAvIl4RGeJo+BynFTjSFX6BiPyfiCx2NP38cK1REblMRL4XkVwR+UlEfhvkP0FEljvxbBCRsY57UxGZJbbru0VE/lpZZolIVxH5RER2i8guEZkjImkuvz0i0t85b+u0ckc652c4rdcc5/56BuXPzSLyndN6mSsiSdXP6eojIrc7+ZIrImtE5Kww4UREHhKRHU5erhSRPo5foog8ICKbRGS7iMwQkeRqiuIF/JXI2kJE3nLS/8Z5Zgtd/kZErhSRH518flxExPEL++xcDHTyYK+IPB14BiLSTETedp7nXue4vSvdBSLyNxH5EqtQulRyrx1F5Esnzz8UkZZB/hc5eblLRP5USVzhuAh4yxjzudN4uAM4W1y9KRcjsfn/sDGm0BgzHRDgpOCAYnvXw4FnA27GmO+MMSWBUyAe6OD4vWCMed8Yc8AYsxeYCQwNI/OJQEvgtererCPbrc77/IuIXC5BvQ9XuFSxvdDpgfIBtBSR/zjP5DMR6egK/4iIZDvlbqmIDHf5TRORV0XkeRHZD0ypRMwEEXnWSWe1iAwI8s+shXpgJFV/no2AicAdxpg8Y8xC4E1sAykQxgs8ClwbIq3OwMvGmAJjzDbgfSCgJMcAXxhjFjrl415sQ2eE438pMMsYs9opG3+hbP51AuYYY3zGmA3AQlfcAQJ1xuE1MIwxtfYDsoDl2MKf7NzsbuA0rFI91Tlv5YRfAGwB+gCNsAX/ecevE/Zl8jrn47EtDXEy8ADQ3/EbBOxz4vc46fZw/N7AtngbAUcBi4HfVnIfxzpxJQKtsK2Nh13+vwHWACnAB8ADjns3IN+5Nh64FVgPJLjyZzG21dsc+B64MowMw4CcCn7Dwlw3LZCHQe7nOul6gEmOnG0cvynAQud4DLAU2zITbOs8EO4h7MvRHNsqfwv4v2qUj3jguVDyBYV7yfmlAL2wrf+FLn8DvO3IeAywExhbxWeXhW0ddnDu40vgr45fC2xlkOLc3yvAPNe1C4BN2JfQC8RXcA8LgA1OmUh2zu8JKtszHb++QCHQM0xcFT3v+cBtQW55wPEhwt4AvBfk9jZwU4iwdwILQri/DRQ48r8PeMLI9TDwUhi/p4DZh1nHjAW2Oc8gBdubMcCxjv9sbM+yBfZd+6vr2tlALlbRJgKPBJWri53rvMBNTjpJrveqGDgT+w4lVyDjNCePTgPigP8DFgWVwarWA28Dt4fxq87z7AccCHK7GdtICpzfAjzieseOdfn9FtvoScHWr6uAsxy/a4B3XWHjnPu/zjlfAUxy+bd04m/hnP8duAdbP3QHNgMDg2RNBg4C/3NY5eZwLqrgAWcBU13ntwHPBYX5ALjUOV6A8/I7572wXes4ghRdiLTmuTLyX8BDIcK0xlYgyS63C4BPq3lfZwLLgtzeBFYC3wGJjtsd2FZPIIwHq8hHuvLnYpf/fcCMWn4G05w8zHH92oYItxyY4BxP4ZCiOwn4ARiCqxLDKr18oKvL7QRgYxXlysRWFNvdL1CIcHFOuO4ut79SXtENc52/TPjKoMyzc57Bla7z04ANFci813W+ALi7ive7APiz6/xq4H3nOFC227v8FwPnH8bz/pigStJd5oLc7yBI+WCHnKaFCLsemBImzXhgHHBjGP9Tgb1AtxB+KcD+UPJV8X6fwtW4wjZsghXdU9iK+Jaga2e77x9oDPiw88Wh0toL9DWH3qvPqyjjNOAj13kv4GBQGaxxPVDN5zkc2Bbk9hucxgy24bceaOqcByu6ntgGcInjNxsQx68Htm4YCSQ4cvmBPzj+G3Aaoq7yY4BOzvmvnLQDcd8V5n6vdeJdXt28qos5hmzXcUfgXGd4KUdEcrA9lTZhwv/sZELwEA8iMk5EFjnDhjnYCioQrgM2M4Pp6MS31ZX+v7A9u7CISGsReUnsUOd+bKsxWKaZ2J7oo8aYQsetrXMPABhj/M79tXNdt811fAD7stU2Lxtj0ly/X0Rkstih3UA+9CFEPhtjPgEew47n7xCRJ0WkCbZ3lAIsdcXxvuNeKcaY5dhe0lfA9RUEbYVtUbvLRXaIcCHzsYrPLrjMtXWuTRGRf4mdqN+P7Q2mSdmh7lCyhKOyZ10bZSEPaBLk1gTbczmssGLnaY4GXg2VoDGm2BjzHjBaguZSRGQIds7lHGPMDyEuPxvYA3wW8m4qpy2Vl43x2B7AjBB+peGNHerdw6Hnf7PY6ZF9TvluStmyU5NnnyRl5/Wi7dk/jG3E7Qu+UOxc9PvA69iRsZbYOcF7AYwxa7HDk48BWx3/NdieWai0A8e5Yqeq3gfuBpKwdfkYEbk6SAYvdl7vEmzvtFrUhaIzruNsbI/OXek2Msbc4wrTwXV8DLY1v8sdoVgLndeAB4DWxpg04F1sLyOQTqgJ1Gxsj66lK/0mxpjg8d9g/u7cR7qxE+8Xu9JCRBpjC8YsYJocmlf8BatcA+HEub8tlaRXDhEZLmWt1IJ/wyuPpTSujljFfA12uCAN2+KVUOGNMdONMcdjW6LdsEMau7BDB71dednUWOOCKmGMKQDec+INx05sy669y61DmLChqPDZhYjvGOxzAztc1R0Y7Fx7ouPuvt5dvqOB1dihTwBEpAt2WC6UklkNZLjmq8BawK4OCncp8Lqp3GDIi+u9E5F+2JGOqcaYj8NccynwrHGa6IfBViovGzOxlee7ztwUocI773Fz4BfnfboVOA9o5rwj+4j+Z1+V5wm2PHjFGo4E6OsKezJwv1jLyIAS/kqsZWZz7HvymLFzgbuBp7GdDQCMMa8aY/oYY1pgrSM7Ad+45Cwto87xdieeLoDPGPOsMabEGLMZO21xGmVpjVWu8w6n7NS11djzwOkiMkZE4kQkSaz5rLugXiwivUQkBavVXzXG+ILiScC+vDuBEhEZB4x2+c8CLhORk0XEIyLtRKSHMWYr8CHwoIg0cfy6isiISuROxbZC9olIO2xF7+YRYIkx5nLgHQ61HF8GxjtyxGMrzkKs9Vq1MMZ8YcpaTgb/vqhGdI2wL+lOsIY92B5dOURkoIgMduTPx461+53e6UzgIRE5ygnbTqxFVeBaIy5jozAUYp9nSJxn/zq2AZEiIj2AyVW6S0tlzw7gdyLS3mmg/AmY67r2IJDj+P1vNdKNFHOw79hwp1K/G6ukQrXqF2CH6n4v1rDoGsf9k0AAscZF52GHpnC593BGVZJFJF5ELsY2BD5z/Ptglcu1xpiQnw047/0orHVgsF+WiEypwv2+jH3Xezp1xh1hwl0DrAPekrIGU6eJyDCxlol/wc6dZWOffQn2HfGKyJ2U7wFFGwuo5HkGMMbkY9+ru0WkkYgMBSZg58zBNmj7YofrMx2304E3jDG7gI3AVWINDNOwDZbvAvGLyPFOHd8KeBJ40+npgZ3b+7VTz6cBf+ZQ+frBXi4XOvXz0VgbgtK4HeKd/4UcBnWq6JwCNAH4I7YAZWMrHne6z2Fvehu26/r7EPHkOu4vY8fNL8S2HAP+i4HLsMYS+7AvX6BnNRlbsa5xrn2VskOnobgL6O/E9Q62gADWuhM7IX6V43Qj0F9ELjLGrMP2IB7F9oBOB043xhRVkl6dYoxZAzyIHTbcDqRjjTBC0QSr0PZih/V2c8hM/DbsWPoiZ2jvI2wPCBHpgB0GWRkcYRB+Ki9312CHjbZhy8eLVL2Ah312Ll7ANoB+wg55Bz4ifhg75LULWIStuCNORT14Y8xqrFn3HKz5dyqO2bdz7Xsi8kcnbBF2znIydu52KnBmUPk80/H7NFgM7NzTDuy7fB3WwOBbx/8m7LDzLNeoQ3DP4hLgK2Mt69z3l4A1AllUQTYE7vc9YLoj33rXNYVB4Qz2E4jNWJP7gFXjC9gGzB7geOz7CtZ24H1sxfsztoFXnaHKOsH9/IKp7HmKyB9F5D3XJVdjy/cO7Dt1lVN+MMbsMMZsC/yc8LuMMQed47Ox9d5ObL4XY41hAjziyLAOW3f8xiXn+9h5yE+xxlw/4zQijTH7nbhvcK5bjh1tCv6wPzB9UKHFdjgCk4kRQeyHkc8bY/4dMSGUWsFp4fc2xvyhknCjsT39HsaYPVWM+17gaGPMpTWXVIk2xM4J/s4Yc8FhXNsTWzEmmkOfPigxhoichx06rdC+IhwR/+hRiQ2MMWGXPApiAfAfYLWIPGiMeSA4gDNcmYDtHQ4Efg2EXE5LafgY+01XlZegE/sN6LtY46h7sSbyquRiFBFZih3hue1w4zhiFZ2IzODQsIWb540xV9a3PEcKzrDKRZUES8UOrbTFDrU+iP1eLKoQkXDGGuOqOYeqVI/fYqc7fNhpiqsrDF0HOEOCoYaT/26M+Xt9yxPLOIZxNSKiQ5eKoiiKUtfU2BhFRK4VkbVil7m5z3E7VewSOiud/+WWpFEURVGU+qBGQ5ciMgprVdnXGFMYMDvHsTh0PlTug7VoahcungAtW7Y0nTp1qolIiqIoSgNj6dKlu4wxVVp84nCo6RzdVdglvArBmqg6/5e5wqwGkkUk0bWCSEg6derEkiVLaiiSoiiK0pAQkZ8rD3X41HToshswXES+FrsS+MAQYSYC31am5BRFURSlLqi0RyciH2HXvQvmT871zbELAA8EXhaRLoElWsTudXQvZVcxCY7/CuyHnRxzzDHVlV9RFEVRKqRSRWeMCbvlu4hchV1uyACLRcSPXdBzp7PczxvA5OCVEILifxK7ZAwDBgxQE1BFAfZs20Tek2NJatKKo675ELyJlV+kKEpIajpHNw+7dt2nItIN+5HvLmc9s3ewW6eEW2qqShQXF7N582YKCgpqKKpyJJGUlET79u2Jj4+vPHAU8sPbDzHEvwVytrD2o9n0GPvbyi9SFCUkNVV0TwFPicgq7B5olxpjjLO46LHAnc7iqACjA8Yq1WHz5s2kpqbSqVMnpMwi3YoSGmMMu3fvZvPmzXTu3DnS4hwWbX75D98lZNKy+BeKVrwKqugU5bCpkaJzVrkot7qIMeavlF+U87AoKChQJadUCxGhRYsW7Ny5M9KiHBZ5+3bT0Z/Nf48eT37+DvruegdfSQlx3iN2ISNFqRF1vU1PraBKTqkuDbnMbFppl31M6TqEhM5DSJFCflr9TSVXKYoSjgah6BTlSCJnk93dpkOP42nT2+79uveHGk11K8oRjSq6KiAi3HTTTaXnDzzwANOmTYucQJWwYMEC/vvfau/1WoaxY8eSlpbG//zP/9SSVEpVkb0/cYBEmrdqT5uO3dlnGsG24H0oFUWpKqroqkBiYiKvv/46u3btqtV4jTH4/Ye1j2CF1Iaiu+WWW3juuecqD6jUOil5P7Mtri3i8SAeD78kdCJ1//pIi6UoDRZVdFXA6/VyxRVX8NBDD5Xz27lzJxMnTmTgwIEMHDiQL7+0Q0zTpk3jgQcObbXWp08fsrKyyMrKonv37kyePJk+ffqQnZ3NLbfcQp8+fUhPT2fu3LmAVVYjR47knHPOoUePHlx00UWE2mli+vTp9OrVi4yMDM4//3yysrKYMWMGDz30EJmZmXzxxRcVynjJJZdwwgkncNxxxzFz5szSeE8++WRSU1MrzJdXXnmFPn360LdvX0480Q6xFRQUcNlll5Genk6/fv349FO7UfXs2bM588wzOfXUU+nUqROPPfYY//jHP+jXrx9Dhgxhzx67B+vMmTMZOHAgffv2ZeLEiRw4cKBcukOGDGH16kObV48cOTKmlo5rXrCZvUkdSs/zmhxL26IsTB00ihTlSKBBmXHd9dZq1vyyv1bj7NW2Cf97eu9Kw/3ud78jIyODW2+9tYz7ddddxw033MCwYcPYtGkTY8aM4fvvv68wrh9//JFnnnmGIUOG8Nprr7F8+XJWrFjBrl27GDhwYKnSWLZsGatXr6Zt27YMHTqUL7/8kmHDhpWJ65577mHjxo0kJiaSk5NDWloaV155JY0bN+bmm28G4MILLwwr43fffceiRYvIz8+nX79+jB8/nrZt21Yp7+6++24++OAD2rVrR05ODgCPP/44IsLKlStZu3Yto0eP5ocffgBg1apVLFu2jIKCAo499ljuvfdeli1bxg033MCzzz7L9ddfz9lnn81vfvMbAP785z8za9Ysrr322jLpTpo0iZdffpm77rqLrVu3snXrVgYMGFAlmaMdv89Ha/92spucXOpmWvWg6e757NiazVHtOkZQOkVpmGiProo0adKEyZMnM3369DLuH330Eddccw2ZmZmcccYZ7N+/n7y8cPtxWjp27MiQIUMAWLhwIRdccAFxcXG0bt2aESNG8M031sJu0KBBtG/fHo/HQ2ZmJllZWeXiysjI4KKLLuL555/HG8b8vCIZJ0yYQHJyMi1btmTUqFEsXry4ynkydOhQpkyZwsyZM/H5fKX3c/HF9ouTHj160LFjx1JFN2rUKFJTU2nVqhVNmzbl9NNPByA9Pb303latWsXw4cNJT09nzpw5ZXpuAc477zxeffVVAF5++WXOOeecKssc7ezesYUE8eFtemizj5R2tiG286flEZJKURo2DapHV5WeV11y/fXX079/fy677LJSN7/fz6JFi0hKSioT1uv1lpl/c6/s0qhRoyqll5h4aNmnuLg4SkpKyoV55513+Pzzz3nrrbf429/+xsqVK8uFCScjlDfDr45Z/owZM/j666955513OP7441m6dGmF4d334/F4Ss89Hk/pvU2ZMoV58+bRt29fZs+ezYIFC8rF065dO1q0aMF3333H3LlzmTFjRpVljnZydmymFZDQ7FCv+qiu/eBjOLBlFXZXLEVRqoP26KpB8+bNOe+885g1a1ap2+jRo3n00UdLz5cvXw7YLYe+/fZbAL799ls2btwYMs7hw4czd+5cfD4fO3fu5PPPP2fQoEFVksfv95Odnc2oUaO499572bdvH3l5eaSmppKbm1upjADz58+noKCA3bt3s2DBAgYODLUBRWg2bNjA4MGDufvuu2nVqhXZ2dkMHz6cOXPmAPDDDz+wadMmunfvXuU4c3NzadOmDcXFxaXxhGLSpEncd9997Nu3j4yMjCrHH+0c2J0NQHKLQz26Vke3Z79JwexSgxRFORxU0VWTm266qYz15fTp01myZAkZGRn06tWrtHcxceJE9uzZQ+/evXnsscfo1q1byPjOOussMjIy6Nu3LyeddBL33XcfRx8darOI8vh8Pi6++OJSw4/f//73pKWlcfrpp/PGG2+UGqOEkxHs0OeoUaMYMmQId9xxR+n83PDhwzn33HP5+OOPad++PR988AEAd955J2+++SZgLTPT09Pp06cPv/rVr+jbty9XX301fr+f9PR0Jk2axOzZs8v05CrjL3/5C4MHD2bo0KH06NGj1P3NN9/kzjvvLD0/55xzeOmllzjvvPOqHHdDoHDvVgCatDpkjCIeD7/Ed6BR7k+REktRGjQSypIvUgwYMMAEW899//339OzZM0ISxTbTpk0rY7QSazTEsrPo6dsY8vMMCm/fSmJSSqn74n+cR+f939BqWuiRAUVpyIjIUmNMnVmUaY9OUaIIydtODo3LKDmAkubH0Yo9HMjdEyHJFKXh0qCMUZTaJZpXdzlSSSjYyV5Pc9KC3BOP7gFZsHXDKrpmnhgByRSl4aI9OkWJIhKLcjjoTSvn3qyjtTjel13+cwtFUSpGFZ2iRBEpvn0UJTQt5962cy+KTRzF29dFQCpFadioolOUKKKxfz8lic3KuSclJfGL52gSc/QTA0WpLqroFCVKKCnx0cTkYZLSQvrvTupIswM/169QihIDqKKrIvPmzUNEWLt2bdgwWVlZ9OnTp07lWL58Oe+++26N4pg6dSpHHXVUncuqVI99+3NIEB+S0iKk/8GmXWnj24K/pLieJVOUho0quiry4osvMmzYMF588cWQ/qGW56ougfUiK6I2FN2UKVN4//33axSHUvvk7tkBQFzj5iH9Pa26kSA+tmf/UJ9iKUqDRxVdFcjLy2PhwoXMmjWLl156qdR9wYIFDB8+nDPOOINevXoBVuFddNFF9OzZk3POOad0m5mPP/6Yfv36kZ6eztSpUyksLATsUmG33XYb/fv355VXXimTbvA2OEVFRdx5553MnTuXzMxM5s6dS35+PlOnTmXQoEH069eP+fPnA3ZbnAkTJjBy5EiOO+447rrrrtJ4TzzxRJo3D12ZBvjss8/IzMwkMzOTfv36kZubizEm7JZCI0aMYMKECXTp0oXbb7+dOXPmMGjQINLT09mwYQMAb731FoMHD6Zfv36ccsopbN++vVy6559/Pu+8807p+ZQpU0oXcI51Du63K+54G7cM6d+kvS1ju7NW1ZtMihILNKzv6N67HbaVX7S4RhydDuPuqTDI/PnzGTt2LN26daNFixYsXbqU448/HrDrWK5atYrOnTuTlZXFunXrmDVrFkOHDmXq1Kn885//5JprrmHKlCl8/PHHdOvWjcmTJ/PEE09w/fXXA9CiRYvSdTHdBG+Dk5CQwN13382SJUt47LHHAPjjH//ISSedxFNPPUVOTg6DBg3ilFNOAWDx4sWsWrWKlJQUBg4cyPjx46u8nc0DDzzA448/ztChQ8nLyyMpKYnXX3897JZCK1as4Pvvv6d58+Z06dKFyy+/nMWLF/PII4/w6KOP8vDDDzNs2DAWLVqEiPDvf/+b++67jwcffLBMuoEteMaPH09RUREff/wxTzzxRJVkbugU7t8JQEJq6KHL1l3SATj4S8XbQCmKUhbt0VWBF198kfPPPx+wPQ738OWgQYPo3Llz6XmHDh0YOnQoABdffDELFy5k3bp1dO7cuXS9y0svvZTPP/+89JpJkyaFTDfUNjjBfPjhh9xzzz1kZmYycuRICgoK2LRpEwCnnnoqLVq0IDk5mbPPPpuFCxdW+Z6HDh3KjTfeyPTp08nJycHr9Va4pdDAgQNp06YNiYmJdO3aldGjRwNlt+DZvHkzY8aMIT09nfvvvz/kFjzjxo3j008/pbCwkPfee48TTzyR5OTkKsvdkCnJ2w1AUpNWIf1btDyKXTRFdv9Yn2IpSoOnxj06EbkW+B3gA94xxtzq8jsGWANMM8Y8ECaKqlNJz6su2LNnD5988gkrV65ERPD5fIgI999/P1B+y53D2fYm3LY9VdkGxxjDa6+9Vm6HgK+//rpGW/DcfvvtjB8/nnfffZehQ4eWLuocjqpswXPttddy4403csYZZ7BgwYKQK7MkJSUxcuRIPvjgA+bOnVvawDgS8OVbRdcoLbSiExG2xR9Dap6ud6ko1aFGPToRGYXdIKuvMaY3EKzM/gG8V5M0Is2rr77KJZdcws8//0xWVhbZ2dl07tyZL774ImT4TZs28dVXXwHwwgsvMGzYMLp3705WVhbr19tvoJ577jlGjBhRadqhtsEJ3oJnzJgxPProowQW5162bFmp33/+8x/27NnDwYMHmTdvXmlPsyps2LCB9PR0brvtNgYOHMjatWtrtKUQwL59+2jXzm4/88wzz4QNN2nSJJ5++mm++OILxo4dW+X4GzwH9wKQ2iy0ogPY37gzrYs21ZdEihIT1HTo8irgHmNMIYAxZkfAQ0TOBDYCDXrNohdffJGzzjqrjNvEiRPDWl92796dxx9/nJ49e7J3716uuuoqkpKSePrppzn33HNJT0/H4/Fw5ZVXVpp2qG1wRo0axZo1a0qNUe644w6Ki4vJyMigd+/e3HHHHaXXDxo0iIkTJ5KRkcHEiRNL5+cuuOACTjjhBNatW0f79u1L99ebMWNG6RY+Dz/8MH369CEjI4P4+HjGjRtXoy2FwK6tee6553L88cfTsuUhg4slS5Zw+eWXl56PHj2azz77jFNOOYWEhIQqx9/QkYM55JlkEhPLb5AbwN/8ONLIJW/P1nqUTFEaNjXapkdElgPzgbFAAXCzMeYbEWkM/Ac4FbgZyKvK0KVu01N7zJ49u4zRypFIQys73zxyIcfsXUTraeH3nVu+YB6ZCy7l+1OeoeewM+tPOEWpQyK+TY+IfCQiq0L8JmDn+JoDQ4BbgJfFTgRNAx4yxuRVIf4rRGSJiCzZuXNnze5GURowccW5HPSkVBimY8Yw/EbYv35RPUmlKA2fSo1RjDGnhPMTkauA143tFi4WET/QEhgMnCMi9wFpgF9ECowx5boXxpgngSfB9ugO6y6UckyZMoUpU6ZEWgylGniL8ymMC22YFKBZ85ZkedqRtH1ZheEURTlETa0u5wGjgE9FpBuQAOwyxgwPBBCRadihy8MeQzPGVMtiUFFqMiQfKRJ8+RR7K+7RAexs0oeu+/6L8fsRj34hpCiVUdO35Cmgi4isAl4CLjW1XMMkJSWxe/fuBllxKZHBGMPu3btJSgpv1BGNJPryKfE2rjScr8NgmrOfreuX171QihID1KhHZ4wpAi6uJMy0mqTRvn17Nm/ejM7fKdUhKSmJ9u3bR1qMapFsDrA7vnJF1zJzPKy6ix3fvk3bbv0rDV9S4mPVsq/Ys/ojEvb8QELRXuL9hRiPF583BX98I0x8I0xCI0hojCexEZ7ExsQlNQZxqggBSkdVyo6ulG2DBjVIzaGDck1VcyhACN9aI6V5O3oPOrnO4lein6hfAiw+Pr7MyiOKEqukmIP4EypXdF27dmO9dCQp6yPgzrDhCouK+O/8Jzlm9QwyyQZgH6nkeFtQLIlIiY/EomyS/AdIMoWkUIBHYm/kxG+EnC7rSGvZOtKiKBEi6hWdohwJlJT4aMxB/AmplYYVEba0HsWwrc+wb9tGmh5dviG4ZtUyfK9fySj/WrLjO7E6fRpdhp5L0xbtKb9/ucX4/Rw8mM+BvH0U5OdSeGC/nQfEYPA7gQzGgIjB3bMT93HwfHppR1DKhCv1qsP5963fzGNI1hPk79+tiu4IRhWdokQB+fn7aSoGSWxSpfDtRv0GeeEZNrz7CP2nPlzq7vf5+e/c+zh+3YMUSzxrh9xPj9GXQxWMVsTjIblRKsmNKle2DYXdm76HLCg6mFtpWCV2UZMtRYkCDubmACBJVVMyx3bvw9eNRtJr0/NsW28/Ndj5y8+seOA0hv3wf2xI6QtXLaLH2CuqpORilbgkOxRceDA/wpIokUR7dIoSBRTk5QDgSa5ajw6g7bn3k/fMySQ/N55vE3vQs3AlvfHzTY9bGDDpD4gnro6kbTh4E+13iSUFla5docQwR25TT1GiiML8HADiq6HoOnY+jtwL3mJLs0E08+1mbaux7Jj8OQMv+LMqOYd4p0dXUnggwpIokUR7dIoSBRTl7wfAmxzOVCQ0nbv3he7z6kCi2CAx2fbofNqjO6LRHp2iRAElB/cBkNAoLbKCxBjxybZH5yvSHt2RjCo6RYkCfI6iS25cvR6dUjFJKVbRmUI1RjmSiSlFdzBvP4v+fQPff13xbtiKEm34C6z5e1IjVXS1SZLzqYTRHt0RTUwpOvEIQzY/Rc7azyMtiqJUC5/T42jUuOrGKErlJCU5u0EUq6I7kokpRZeY1Igi40UK9kVaFEWpFqboAH4jJCVXvnuBUnU8cXEcMIlQfDDSoigRJKYUnXg87JfGeApzIi2KolSP4gMUSIJuu1MHFEoCoj26I5qYe6vypTHeov2RFkNRqoWUHKSAhrWtUEOhgCQ8Pu3RHcnEnKI7GJdKYrEqOqVhEVdykEJJjLQYMUmRJ5G4ElV0RzIxp+gKvKkk+nQBV6Vh4Sk5SKFoj64uKJRk4rRHd0QTc4quKL4JKT5dBUFpWMT7DlLsUUVXF5R4kohXRXdEE3OKriShKY2MKjqlYeH1F1Acp4quLij2JquiO8KJOUVnEpuQavLB74+0KIpSZRL8BZR4kiMtRkxS4m1Mol+tLo9kYk7RkZyGRwwHnW1PFKUhEO8voMSriq4u8MU3JsWoojuSiTlF501pBkDOnh0RlkRRqk6iKcCvQ5d1gj8hlRSjQ5dHMjGn6BJSWwCQl7MzwpIoStVJpBC/V1dFqQtMYiopUkhxcVGkRVEiRMwpupSmzQHI37c7wpIoStVJNoX443Xosi6QRLuw84HcnMgKokSMGis6EblWRNaKyGoRuc/lniEiXznuK0Xq5yOhRk2PAqBgvyo6pWHg8/lIliJEe3R1gsfZtT1//94IS6JEihrtMC4io4AJQF9jTKGIHOW4e4HngUuMMStEpAVQXGNpq0CTlm0A8OVur4/kFKXGFBzMpxFAgvbo6gKvo+gK1EDtiKWmPbqrgHuMMYUAxpiABcho4DtjzArHfbcxxlfDtKpEarPW+IxAnhqjKA2DggN2JR+J1x5dXRCfYvf4K8zPiawgSsSoqaLrBgwXka9F5DMRGehyNyLygYh8KyK3hotARK4QkSUismTnzpobkEiclxxpgvfgrhrHpSj1QeEBu8CBJDaKsCSxSYKj6IrydfuuI5VKhy5F5CPg6BBef3Kubw4MAQYCL4tIF8d9mON2APhYRJYaYz4OjsQY8yTwJMCAAQPMYd5HGfZ7mpFQqIpOaRgUHbSKzpOoPbq6ILFxGgDFB1XRHalUquiMMaeE8xORq4DXjTEGWCwifqAlsBn43Bizywn3LtAfKKfo6oK8+GakFO2pj6QUpcYUHbS7i3sTG0dYktgkOTUNAN8B3dXkSKVGxijAPGAU8KmIdAMSgF3AB8CtIpICFAEjgIdqmFaVKUhoQcu8LTWKY8P3y9jy7Xuw8wcSC3Zi/D48IhR5G1Gc0BST2BSSmxGfkkpCShpJjZrgTW6CJKXi9Sbg9XrxeuPwxsXh9XoRTxwAxtVnNRw6MS4PE8INf+jObqmrMUHxhY7n0KFxnRtEQBA8IoiAR2woj0fwYBCRMgkaTGlcpkxcZe8xSMoKKX9dpVdU94Jqp3E4Qwymmons27IOgDjt0dUJKal2EQlTUIMenTH89O3H7F3yCo12r6RJ8S7iTAlFxFPkSabAm0pxfColpXVDGnEpacQ3bk5S42YkN2lJUmozJCkNifOUzhn5/Aaf34/P58NnDD6f3767ThkS532EsvNMxpR5221Y5yzwrgqm1O2Qb1XLZhXf2bh42nc8ropxRo6aKrqngKdEZBVWoV3q9O72isg/gG+wOfauMeadGqZVZXwprUjbn4Px+6u9Y/PKL99BPv0rfUrW0BXIJYV9cS3xe7zg95NcnE+j/FxSKKgb4ZUjjmOc/0nOYgdK7dK4cVOKTRzmMIcut2V9z76Xfkv3ghUUmHg2xHdjS+M+iDcRj78IT/EBEor30+TgZlLy19LY5NNYjoz6YaW/C+3vXhZpMSqlRorOGFMEXBzG73nsJwb1jqdpW5K3F7F79w5atAo1vVie4uJils78HUN2zGWbtOKb7jdx7PBJNGvfndRQF/hK8B3MIXffXnL37yE/NwffwVwozMVXUozfaaX5/T78Ph9ifKXtKznUzHK1uMp6SFmfUIHLH0nZawK9tHDXiiucQWwr0ekJ+o3TU3Pc/O70QkZZtkEhQeKYUPcTgqqFCrrmcC6qbhrVlKy6MnlTmpKefkL1LlKqhHg87JNUPAXVn874acmHHPX2ZFKM8FnXm+l7xjX0TmtW4TXGGHIPHGR/zm5yc3ZxYN9uCvL24MvfS3xJHhgfxg9GAiMoQpzHg4jg8QggrgJ0aLTE3W+r7P06NOIiIfpmVXwXqxCsOKHivIgWatqji0oSW3aCH2D35vVVUnRFhYWseuRshhxYyNetziFjysMc3SikejtEnJe4xi1Ja9yStHa1I7eiKHVDnieV+MLqfTC+ZfVCjn77YnZIS/wXv86IY3tU6ToRIbVRCqmNUqBdh8MRV6llYm4JMIDU1l0AyN2+sdKwxu/n2yem0v/AQhb3uJXBv5tFcmVKTlGUBsWBuDQSi3OqHD5/7w7iX72UvTQh/tfv0aWKSk6JTmJS0bXsYCdHi3ZnVRp20asPMSTnbb5uP5VB5/+pjiVTFCUSFCY0pVFJ1efoNjx7NU39Oewc+yTt2nesQ8mU+iAmFV2TZkeRb5KQnE0VhtuY9RO9Vj/ImsRMBk19sJ6kUxSlvilKaEZjf9U+L9i4+F0y9v6H/7aZTOaQk+pYMqU+iElFhwg74lqTlJ8dNogxhs1zbyRZCml94ePVts5UFKXh4E9uTlOTi/H7Kwxn/D7kwz+ymdb0v/CuepJOqWtitnbfk9yJVgfDz9F99dFrDD/4KWu7/poWHfvUo2SKotQ3ktKcePGRW8lWPas/eYFOJRv5OeM6mjZpUj/CKXVOzCq6opY9aWe2kReiYOfl59H+yz/zi6cNvSdpq01RYh1Po5YA5O7eGjaM8ftptOgfbJI2DPyf39SXaEo9ELOKrlGHDAA2rV1azm/ZnDs5hq0cOPU+4nRrFEWJeRLT7GdGubt+CRtm7X/fpHPJT2T3upKEhIT6Ek2pB2JW0bXpbjdS2LfhmzLum35cweAtz7Cs6Skce8IZkRBNUZR6pnErazlZsOvnsGEK/vsv9tKE47U3F3PErKJr2e5YfqEVjTZ/Uepm/H5yX72OAhLocEG9Lb2pKEqEadamMwDFe0MbqG3f9CMZ+V+xtu1ZJCXrdkmxRswqOvF42Jg2hC55S/EVFwKw5p3H6V24jJU9rqPl0cdUEoOiKLFCWrMW5JpkZH/oxd43fvAYAB3HXFOfYin1RMwqOoDE9DNpzEHWfDCTHeu/pePSv7Hcm8HAc26OtGiKotQjHo+wK64V3rzyc3RFBQfptuV1VqScQNuO3SIgnVLXxLSiyxxxFms9x9FtyTQaPT+OAyaJphf8m4T4mFziU1GUCshNaE1KwfZy7qs+fo7m7Mcz6PIISKXUBzGt6LzeOOIvnMPixF/xbeJgci6YT+eu3SMtlqIoEaCwcXtal2wt99F48opnyJY2pJ94ZmQEU+qcmO/adD22O13/8GakxVAUJcKUtOxO011vsHvbJlq07QTAz2u+oWfRKv7b5Xo6xMVFVkClzojpHp2iKEqA1GPst7Wbfzj0be22T56g0MTTY+xvIyWWUg+oolMU5YigU6/B+I2Q/9PXAOzbu4veO99lZdMRND+qbYSlU+oSVXSKohwRNE5ryU/ezqRt+wqANW/cS2M5SLNTb4mwZEpdo4pOUZQjht1tRtC9cCXLPptP35+fYVnKULqmD4m0WEodo4pOUZQjho5jrqUEL/0+nYxf4mhz/iORFkmpB1TRKYpyxHB0h65kjXuGb1qdzc5z53H0McdFWiSlHoj5zwsURVHcdB8yHoaMj7QYSj2iPTpFURQlplFFpyiKosQ0YoyJtAyliMhOIPyGUVWnJbCrFuKpDxqSrNCw5FVZ646GJG9DkhUalry1JWtHY0yrWognJFGl6GoLEVlijBkQaTmqQkOSFRqWvCpr3dGQ5G1IskLDkrehyKpDl4qiKEpMo4pOURRFiWliVdE9GWkBqkFDkhUalrwqa93RkORtSLJCw5K3Qcgak3N0iqIoihIgVnt0iqIoigKoolMURVFinJhSdCIyVkTWich6Ebk90vIEIyIdRORTEVkjIqtF5DrHfZqIbBGR5c7vtEjLCiAiWSKy0pFpiePWXET+IyI/Ov+bRYGc3V15t1xE9ovI9dGUryLylIjsEJFVLreQeSmW6U45/k5E+keBrPeLyFpHnjdEJM1x7yQiB115PKM+Za1A3rDPXkT+4OTtOhEZEwWyznXJmSUiyx33aMjbcHVWVJbdsBhjYuIHxAEbgC5AArAC6BVpuYJkbAP0d45TgR+AXsA04OZIyxdC3iygZZDbfcDtzvHtwL2RljNEOdgGdIymfAVOBPoDqyrLS+A04D1AgCHA11Eg62jA6xzf65K1kztcFOVtyGfvvG8rgESgs1NnxEVS1iD/B4E7oyhvw9VZUVl2w/1iqUc3CFhvjPnJGFMEvARMiLBMZTDGbDXGfOsc5wLfA+0iK1W1mQA84xw/A5wZOVFCcjKwwRhTGyvs1BrGmM+BPUHO4fJyAvCssSwC0kSkTb0ISmhZjTEfGmNKnNNFQPv6kqcywuRtOCYALxljCo0xG4H12LqjXqhIVhER4DzgxfqSpzIqqLOisuyGI5YUXTsg23W+mShWIiLSCegHfO04XeN09Z+KhuFABwN8KCJLReQKx621MWarc7wNaB0Z0cJyPmUrimjM1wDh8jLay/JUbKs9QGcRWSYin4nI8EgJFYJQzz6a83Y4sN0Y86PLLWryNqjOalBlN5YUXYNBRBoDrwHXG2P2A08AXYFMYCt2+CIaGGaM6Q+MA34nIie6PY0dq4ia71NEJAE4A3jFcYrWfC1HtOVlOETkT0AJMMdx2gocY4zpB9wIvCAiTSIln4sG8+xdXEDZRlrU5G2IOquUhlB2Y0nRbQE6uM7bO25RhYjEYwvMHGPM6wDGmO3GGJ8xxg/MpB6HUirCGLPF+b8DeAMr1/bAUITzf0fkJCzHOOBbY8x2iN58dREuL6OyLIvIFOB/gIucyg1nCHC3c7wUO+fVLWJCOlTw7KM1b73A2cDcgFu05G2oOosGVnZjSdF9AxwnIp2dlv35wJsRlqkMzhj8LOB7Y8w/XO7uMeyzgFXB19Y3ItJIRFIDx1hjhFXYPL3UCXYpMD8yEoakTIs4GvM1iHB5+SYw2bFgGwLscw0TRQQRGQvcCpxhjDngcm8lInHOcRfgOOCnyEh5iAqe/ZvA+SKSKCKdsfIurm/5QnAKsNYYszngEA15G67OogGVXSB2rC7NIYufH7Atnz9FWp4Q8g3DdvG/A5Y7v9OA54CVjvubQJsokLUL1jptBbA6kJ9AC+Bj4EfgI6B5pGV15GoE7AaautyiJl+xCngrUIydt/h1uLzEWqw97pTjlcCAKJB1PXbuJVBuZzhhJzrlYznwLXB6lORt2GcP/MnJ23XAuEjL6rjPBq4MChsNeRuuzorKshvup0uAKYqiKDFNLA1dKoqiKEo5VNEpiqIoMY0qOkVRFCWmUUWnKIqixDSq6BRFUZSYRhWdoiiKEtOoolMURVFiGlV0iqIoSkyjik5RFEWJaVTRKYqiKDGNKjpFURQlplFFpyiKosQ0UavoRKSTiBhnnyalDhGRKSKysJ7SShaRd0Vkr4jcWh9pBqWfJSKn1EM6C0Tk8jB+WrbrCBGZLSJ/ra5fLcswTUSer8C/XspgrCAiK0Rkq4jccLhxRK2iUw4P5yUrFpE816/eFUoFnAJkAB2MMfcFHJ2Xv1PEpIoinGc4rRrhLxSRn0UkX0TmiUjzCsJmishSETng/M90+b0XVG6KRGSly/9TEdkpIvudymeCy2+8iCwUkRwR2SYi/w7sZ+j4rw6Ku0RE3qqL/GjIiMhIEVlQjfBhn2eIsM1F5A2nnPwsIheGCfeU0xA71uXWydVA3SYij7kbaiJyuoiscp7tf0WkV1CcNzjX7XfiTwy6hy9EZJ+IbBaRO9zXGmP6Ar8B/req+RJMnSk6ba1GlLnGmMau332VX1JvNAeyjDF5kRakJjgbS0a8oSgivYF/AZcArYEDwD/DhE3AbpD5PNAMeAaY77hjjBnnLjfAf4FXXFFch93XrQlwBfC8HNrgtCnwV6At0BNoB9wfuNAY09sVbyp2bzt33A2KaKjfKnueIXgcKMKWk4uAJ5zy445zGNA1xLX/xO4i3gbIBEYAVzvXHAfMAa4E0oC3gDcDeSQiY4DbgZOBjti9Lu9yxf0C8Dm2bhgBXC0iZwSlvwpoKs5GtNWlVl9Up1V+m4h8B+SLiFdEhjgaPsdpBY50hV8gIv8nIosdTT8/XGtURC4Tke9FJFdEfhKR3wb5TxCR5U48G8TuiIyINBWRWWK7vltE5K+VZZaIdBWRT0Rkt4jsEpE5IpLm8tsjIv2d87ZOK3ekc36G03rNce6vZ1D+3Cwi3zmtl7kiklT9nK4+InK7ky+5IrJGRM4KE05E5CER2eHk5UoR6eP4JYrIAyKySUS2i8gMEUmupihewF+JrC1E5C0n/W+cZ7bQ5W9E5EoR+dHJ58dFRBy/sM/OxUAnD/aKyNOBZyAizUTkbed57nWO27vSXSAifxORL7EKpUsl99pRRL508vxDEWkZ5H+Rk5e7RORPlcQVjouAt4wxnzuNhzuAs8XVm3IxEpv/DxtjCo0x07EbZZ4UHFBs73o48GzAzRjznTGmJHAKxAMdHL8XjDHvG2MOGGP2AjOBoWFkPhFoCbxW3Zt1ZLvVeZ9/EZHLJaj34QqXKrYXOj1QPoCWIvIf55l8JiIdXeEfEZFsp9wtFZHhLr9pIvKqiDwvIvuBKZWImSAizzrprBaRAUH+mbVQD4yk6s+zEXYj1zuMMXnGmIXYDWkvcYXxAo8C14ZIqzPwsjGmwBizDXgfCCjJMcAXxpiFTvm4F9vQGeH4XwrMMsasdsrGXyibf52AOcYYnzFmA7DQFXeAQJ1xeA2MWt6NNgu7A20HINm52d3YHWk9wKnOeSsn/AJgC9AHu0P0a8Dzjl8n7Mvkdc7HY1sa4mTgAaC/4zcI2OfE73HS7eH4vYFt8TYCjgIWA7+t5D6OdeJKBFphWxsPu/x/A6wBUoAPgAcc925AvnNtPHArdmfmBFf+LMa2epsD3xO0q3DQzr45FfyGhbluWiAPg9zPddL1AJMcOds4flOAhc7xGGAptmUm2NZ5INxD2JejObZV/hbwf9UoH/HYnZ/LyRcU7iXnlwL0wrb+F7r8DfC2I+MxwE5gbBWfXRa2ddjBuY8vgb86fi2wlUGKc3+vAPNc1y4ANmFfQi8QX8E9LMDustwN+y4sAO4JKtszHb++QCHQM0xcFT3v+cBtQW55wPEhwt4AvBfk9jZwU4iwdwILQri/DRQ48r8PeMLI9TDwUhi/p4DZh1nHjAW2Oc8gBdubMcCxjv9sbM+yBfZd+6vr2tlALlbRJgKPBJWri53rvMBNTjpJrveqGDgT+w4lVyDjNCePTgPigP8DFgWVwarWA28Dt4fxq87z7AccCHK7GdtICpzfAjzieseOdfn9FtvoScHWr6uAsxy/a4B3XWHjnPu/zjlfAUxy+bd04m/hnP8duAdbP3TH7rw+MEjWZOAg8D+HVW4O56IKHnAWMNV1fhvwXFCYD4BLneMFOC+/c94L27WOI0jRhUhrnisj/wU8FCJMa2wFkuxyuwD4tJr3dSawLMjtTexW8d8BiY7bHdhWTyCMB6vIR7ry52KX/33AjFp+BtOcPMxx/dqGCLccmOAcT+GQojsJ+AEYgqsSwyq9fKCry+0EYGMV5crEVhTb3S9QiHBxTrjuLre/Ul7RDXOdv0z4yqDMs3OewZWu89OADRXIvNd1vgC4u4r3uwD4s+v8auB95zhQttu7/BcD5x/G8/6YoErSXeaC3O8gSPlgh5ymhQi7HpgSJs14YBxwYxj/U4G9QLcQfinA/lDyVfF+n8LVuMI2bIIV3VPYiviWoGtnu+8faAz4sPPFodLaC/Q1h96rz6so4zTgI9d5L+BgUBmscT1Qzec5HNgW5PYbnMYMtuG3HmjqnAcrup7YBnCJ4zcbEMevB7ZuGAkkOHL5gT84/htwGqKu8mOATs75r5y0A3HfFeZ+r3XiXV7dvKqLOYZs13FH4FxneClHRHKwPZU2YcL/7GRC8BAPIjJORBY5w4Y52AoqEK4DNjOD6ejEt9WV/r+wPbuwiEhrEXlJ7FDnfmyrMVimmdie6KPGmELHra1zDwAYY/zO/bVzXbfNdXwA+7LVNi8bY9Jcv19EZLLYod1APvQhRD4bYz4BHsOO5+8QkSdFpAm2d5QCLHXF8b7jXinGmOXYXtJXwPUVBG2FbVG7y0V2iHAh87GKzy64zLV1rk0RkX+Jnajfj+0NpknZoe5QsoSjsmddG2UhD2gS5NYE23M5rLBi52mOBl4NlaAxptgY8x4wWoLmUkRkCHbO5RxjzA8hLj8b2AN8FvJuKqctlZeN8dgewIwQfqXhjR3q3cOh53+z2OmRfU75bkrZslOTZ58kZef1ou3ZP4xtxO0LvlDsXPT7wOvYkbGW2DnBewGMMWuxw5OPAVsd/zXYnlmotAPHuWKnqt4H7gaSsHX5GBG5OkgGL3Ze7xJs77Ra1IWiM67jbGyPzl3pNjLG3OMK08F1fAy2Nb/LHaFYC53XgAeA1saYNOBdbC8jkE6oCdRsbI+upSv9JsaY4PHfYP7u3Ee6sRPvF7vSQkQaYwvGLGCaHJpX/AWrXAPhxLm/LZWkVw4RGS5lrdSCf8Mrj6U0ro5YxXwNdrggDdvilVDhjTHTjTHHY1ui3bBDGruwQwe9XXnZ1FjjgiphjCkA3nPiDcdObMuuvcutQ5iwoajw2YWI7xjscwM7XNUdGOxce6Lj7r7eXb6jgdXYoU8ARKQLdlgulJJZDWS45qvAWsCuDgp3KfC6qdxgyIvrvRORftiRjqnGmI/DXHMp8KxxmuiHwVYqLxszsZXnu87cFKHCO+9xc+AX5326FTgPaOa8I/uI/mdflecJtjx4xRqOBOjrCnsycL9Yy8iAEv5KrGVmc+x78pixc4G7gaexnQ0AjDGvGmP6GGNaYK0jOwHfuOQsLaPO8XYnni6AzxjzrDGmxBizGTttcRplaY1VrvMOp+zUtdXY88DpIjJGROJEJEms+ay7oF4sIr1EJAWr1V81xviC4knAvrw7gRIRGQeMdvnPAi4TkZNFxCMi7USkhzFmK/Ah8KCINHH8uorIiErkTsW2QvaJSDtsRe/mEWCJMeZy4B0OtRxfBsY7csRjK85CrPVatTDGfGHKWk4G/76oRnSNsC/pTrCGPdgeXTlEZKCIDHbkz8eOtfud3ulM4CEROcoJ206sRVXgWiMuY6MwFGKfZ0icZ/86tgGRIiI9gMlVuktLZc8O4Hci0t5poPwJmOu69iCQ4/j9bzXSjRRzsO/YcKdSvxurpEK16hdgh+p+L9aw6BrH/ZNAALHGRedhh6ZwufdwRlWSRSReRC7GNgQ+c/z7YJXLtcaYkJ8NOO/9KKx1YLBflohMqcL9vox913s6dcYdYcJdA6wD3pKyBlOnicgwsZaJf8HOnWVjn30J9h3xisidlO8BRRsLqOR5BjDG5GPfq7tFpJGIDAUmYOfMwTZo+2KH6zMdt9OBN4wxu4CNwFViDQzTsA2W7wLxi8jxTh3fCngSeNPp6YGd2/u1U8+nAX/mUPn6wV4uFzr189FYG4LSuB3inf+FHAZ1quicAjQB+CO2AGVjKx53us9hb3obtuv6+xDx5DruL2PHzS/EthwD/ouBy7DGEvuwL1+gZzUZW7Guca59lbJDp6G4C+jvxPUOtoAA1roTOyF+leN0I9BfRC4yxqzD9iAexfaATgdON8YUVZJenWKMWQM8iB023A6kY40wQtEEq9D2Yof1dnPITPw27Fj6Imdo7yNsDwgR6YAdBlkZHGEQfiovd9dgh422YcvHi1S9gId9di5ewDaAfsIOeQc+In4YO+S1C1iErbgjTkU9eGPMaqxZ9xys+Xcqjtm3c+17IvJHJ2wRds5yMnbudipwZlD5PNPx+zRYDOzc0w7su3wd1sDgW8f/Juyw8yzXqENwz+IS4CtjLevc95eANQJZVEE2BO73PWC6I9961zWFQeEM9hOIzViT+4BV4wvYBswe4Hjs+wrWduB9bMX7M7aBV52hyjrB/fyCqex5isgfReQ91yVXY8v3Duw7dZVTfjDG7DDGbAv8nPC7jDEHneOzsfXeTmy+F2ONYQI84siwDlt3/MYl5/vYechPscZcP+M0Io0x+524b3CuW44dbQr+sD8wfVChxXY4ApOJEUHsh5HPG2P+HTEhlFrBaeH3Nsb8oZJwo7E9/R7GmD1VjPte4GhjzKU1l1SJNsTOCf7OGHPBYVzbE1sxJppDnz4oMYaInIcdOq3QviIcEf/oUYkNjDFhlzwKYgHwH2C1iDxojHkgOIAzXJmA7R0OBH4NhFxOS2n4GPtNV5WXoBP7Dei7WOOoe7Em8qrkYhQRWYod4bntcOM4YhWdiMzg0LCFm+eNMVfWtzxHCs6wykWVBEvFDq20xQ61Poj9XiyqEJFwxhrjqjmHqlSP32KnO3zYaYqrKwxdBzhDgqGGk/9ujPl7fcsTyziGcTUiokOXiqIoilLXRHytPkVRFEWpS6Jq6LJly5amU6dOkRZDURRFqUeWLl26yxhTpcUnDoeoUnSdOnViyZIlkRZDURRFqUdE5OfKQx0+OnSpKIqixDSq6BQlysj+aR3fLT7cpSAVRQkmqoYuFUWBds8OpgMGBpVbX1dRlMMg6hVdcXExmzdvpqCgINKiKA2IpKQk2rdvT3x8fOWBowyPs3awv6QEjzfqX1FFiXqi/i3avHkzqampdOrUibKLdCtKaIwx7N69m82bN9O5c+dIi3PYHDywn0ZNmlceUFGUCon6ObqCggJatGihSk6pMiJCixYtGvwowMEDle2SoyhKVYh6RQeoklOqTSyUmcIDByItgqLEBA1C0SnKkUhhQagt5RRFqS6q6KqAiHDTTTeVnj/wwANMmzYtcgJVwoIFC/jvf6u912spy5cv54QTTqB3795kZGQwd+7cyi9Sap3CA/mRFkFRYgJVdFUgMTGR119/nV27dtVqvMYY/P7D2kewQmqq6FJSUnj22WdZvXo177//Ptdffz05OTm1J6BSJYoLVNEpSm2giq4KeL1errjiCh566KFyfjt37mTixIkMHDiQgQMH8uWXduPuadOm8cADh7Za69OnD1lZWWRlZdG9e3cmT55Mnz59yM7O5pZbbqFPnz6kp6eX9p4WLFjAyJEjOeecc+jRowcXXXQRoXaamD59Or169SIjI4Pzzz+frKwsZsyYwUMPPURmZiZffPFFhTJecsklnHDCCRx33HHMnDkTgG7dunHccccB0LZtW4466ih27txZLu1XXnmFPn360LdvX0488UTAGg9ddtllpKen069fPz791G5UPXv2bM4880xOPfVUOnXqxGOPPcY//vEP+vXrx5AhQ9izx+7BOnPmTAYOHEjfvn2ZOHEiB0LMUw0ZMoTVqw9tXj1y5MiYXDqupECNURSlNoj6zwvc3PXWatb8sr9W4+zVtgn/e3rvSsP97ne/IyMjg1tvvbWM+3XXXccNN9zAsGHD2LRpE2PGjOH777+vMK4ff/yRZ555hiFDhvDaa6+xfPlyVqxYwa5duxg4cGCp0li2bBmrV6+mbdu2DB06lC+//JJhw4aVieuee+5h48aNJCYmkpOTQ1paGldeeSWNGzfm5ptvBuDCCy8MK+N3333HokWLyM/Pp1+/fowfP562bduWxr948WKKioro2rVrufu4++67+eCDD2jXrl1pj+/xxx9HRFi5ciVr165l9OjR/PDDDwCsWrWKZcuWUVBQwLHHHsu9997LsmXLuOGGG3j22We5/vrrOfvss/nNb34DwJ///GdmzZrFtddeWybdSZMm8fLLL3PXXXexdetWtm7dyoABAyrM84aIr+hgpEVQlJhAe3RVpEmTJkyePJnp06eXcf/oo4+45ppryMzM5IwzzmD//v3k5VXcEu/YsSNDhgwBYOHChVxwwQXExcXRunVrRowYwTfffAPAoEGDaN++PR6Ph8zMTLKyssrFlZGRwUUXXcTzzz+PN8zHxRXJOGHCBJKTk2nZsiWjRo1i8eLFpddt3bqVSy65hKeffhqPp3xRGTp0KFOmTGHmzJn4fL7S+7n4YrufbY8ePejYsWOpohs1ahSpqam0atWKpk2bcvrppwOQnp5eem+rVq1i+PDhpKenM2fOnDI9twDnnXcer776KgAvv/wy55xzToX53VDxF+nQpaLUBg2qR1eVnlddcv3119O/f38uu+yyUje/38+iRYtISkoqE9br9ZaZf3N/09WoUaMqpZeYmFh6HBcXR0lJSbkw77zzDp9//jlvvfUWf/vb31i5cmW5MOFkhPJm+IHz/fv3M378eP72t7+VKuVgZsyYwddff80777zD8ccfz9KlS6t8Px6Pp/Tc4/GU3tuUKVOYN28effv2Zfbs2SxYsKBcPO3ataNFixZ89913zJ07lxkzZlSYbkPFrz06RakVtEdXDZo3b855553HrFmzSt1Gjx7No48+Wnq+fPlywG459O233wLw7bffsnHjxpBxDh8+nLlz5+Lz+di5cyeff/45gwYNqpI8fr+f7OxsRo0axb333su+ffvIy8sjNTWV3NxDpunhZASYP38+BQUF7N69mwULFjBw4ECKioo466yzmDx5coW9pQ0bNjB48GDuvvtuWrVqRXZ2NsOHD2fOnDkA/PDDD2zatInu3btX6X4AcnNzadOmDcXFxaXxhGLSpEncd9997Nu3j4yMjCrH3xAoxC5bZor0OzpFqQ1U0VWTm266qYz15fTp01myZAkZGRn06tWrtHcxceJE9uzZQ+/evXnsscfo1q1byPjOOussMjIy6Nu3LyeddBL33XcfRx99dJVk8fl8XHzxxaWGH7///e9JS0vj9NNP54033ig1RgknI9ihz1GjRjFkyBDuuOMO2rZty8svv8znn3/O7NmzyczMJDMzs1Q53nnnnbz55psA3HLLLaSnp9OnTx9+9atf0bdvX66++mr8fj/p6elMmjSJ2bNnl+nJVcZf/vIXBg8ezNChQ+nRo0ep+5tvvsmdd95Zen7OOefw0ksvcd5551U57oZCsaPoKNYenaLUBhLKki9SDBgwwARbz33//ff07NkzQhLFNtOmTStjtBJrNNSys29aO5qSx5dtL2PoFQ9HWhxFqXNEZKkxps4syrRHpyhRhgc7t+sp0aFLRakNGpQxilK7RPPqLkcycVgLVilp2ItSK0q0oD06RYkyPCbQo1NFpyi1gSo6RYkySocufaroFKU2UEWnKFFGnKPovKroFKVWUEWnKNGEMcSJtYSO8xdGWBhFiQ1U0VWRefPmISKsXbs2bJisrCz69OlTp3IsX76cd99997CvD3xg3qtXL3r37s0jjzxSi9IpNcXvLKUGEO/XHp2i1Aaq6KrIiy++yLBhw3jxxRdD+odanqu6+FyVXDhqqui8Xi8PPvgga9asYdGiRTz++OOsWbPmsONTahef/1A5itcenaLUCnWu6ERkrIisE5H1InJ7XadXF+Tl5bFw4UJmzZrFSy+9VOq+YMEChg8fzhlnnEGvXr0Aq/AuuugievbsyTnnnFO6zczHH39Mv379SE9PZ+rUqRQW2kqsU6dO3HbbbfTv359XXnmlTLrB2+AUFRVx5513MnfuXDIzM5k7dy75+flMnTqVQYMG0a9fP+bPnw/YbXEmTJjAyJEjOe6447jrrrsAaNOmDf379wcgNTWVnj17smXLlnL3/Nlnn5WuitKvXz9yc3MxxoTdUmjEiBFMmDCBLl26cPvttzNnzhwGDRpEeno6GzZsAOCtt95i8ODB9OvXj1NOOYXt27eXS/f888/nnXfeKT2fMmVK6QLORwK+kuLS43ijik5RaoM6/Y5OROKAx4FTgc3ANyLypjHm8LoQ790O28ovWlwjjk6HcfdUGGT+/PmMHTuWbt260aJFC5YuXcrxxx8P2HUsV61aRefOncnKymLdunXMmjWLoUOHMnXqVP75z39yzTXXMGXKFD7++GO6devG5MmTeeKJJ7j++usBaNGiRem6mG6Ct8FJSEjg7rvvZsmSJTz22GMA/PGPf+Skk07iqaeeIicnh0GDBnHKKacAdoudVatWkZKSwsCBAxk/fnyZ7WyysrJYtmwZgwcPLpf2Aw88wOOPP87QoUPJy8sjKSmJ119/PeyWQitWrOD777+nefPmdOnShcsvv5zFixfzyCOP8Oijj/Lwww8zbNgwFi1ahIjw73//m/vuu48HH3ywTLqBLXjGjx9PUVERH3/8MU888UQVH2bDx+871KNLUEWnKLVCXffoBgHrjTE/GWOKgJeACXWcZq3z4osvcv755wO2x+Eevhw0aBCdO3cuPe/QoQNDhw4F4OKLL2bhwoWsW7eOzp07l653eemll/L555+XXjNp0qSQ6YbaBieYDz/8kHvuuYfMzExGjhxJQUEBmzZtAuDUU0+lRYsWJCcnc/bZZ7Nw4cLS6/Ly8pg4cSIPP/wwTZo0CZn2jTfeyPTp08nJycHr9Va4pdDAgQNp06YNiYmJdO3aldGjRwNlt+DZvHkzY8aMIT09nfvvvz/kFjzjxo3j008/pbCwkPfee48TTzyR5OTkkPcei7ifc6IpiqAkihI71PXKKO2AbNf5ZqBM90FErgCuADjmmGMqjq2SnlddsGfPHj755BNWrlyJiODz+RAR7r//fqD8ljvhtr2piHDb9lRlGxxjDK+99lq5HQK+/vrrsLIUFxczceJELrroIs4+++yQad9+++2MHz+ed999l6FDh/LBBx9UeA9V2YLn2muv5cYbb+SMM85gwYIFIVdmSUpKYuTIkXzwwQfMnTu3tIFxpGAcRVdkvCShPTpFqQ0iboxijHnSGDPAGDOgVatWkRanHK+++iqXXHIJP//8M1lZWWRnZ9O5c2e++OKLkOE3bdrEV199BcALL7zAsGHD6N69O1lZWaxfvx6A5557jhEjRlSadqhtcIK34BkzZgyPPvoogcW5ly1bVur3n//8hz179nDw4EHmzZvH0KFDMcbw61//mp49e3LjjTdWmHZ6ejq33XYbAwcOZO3atTXaUghg3759tGvXDoBnnnkmbLhJkybx9NNP88UXXzB27Ngqxx8LlDhzdAckmWQporikcgMlRVEqpq4V3Ragg+u8vePWYHjxxRc566yzyrhNnDgxrPVl9+7defzxx+nZsyd79+7lqquuIikpiaeffppzzz2X9PR0PB4PV155ZaVph9oGZ9SoUaxZs6bUGOWOO+6guLiYjIwMevfuzR133FF6/aBBg5g4cSIZGRlMnDiRAQMG8OWXX/Lcc8/xySeflBqbBKw4Z8yYUbqFz8MPP0yfPn3IyMggPj6ecePG1WhLIbBra5577rkcf/zxtGzZstR9yZIlXH755aXno0eP5rPPPuOUU04hISGhyvHHAn6/VWwFYodrDx7UXcYVpabU6TY9IuIFfgBOxiq4b4ALjTHlJ2fQbXpqk9mzZ5cxWjkSaYhlZ8fmnzjq3/3IiutIJ9/P7Lx6La2OahNpsRSlTqnrbXrqdI7OGFMiItcAHwBxwFPhlJyiKOB3vqMr8iSDD4q0R6coNabOt+kxxrwLHP4XzsphMWXKFKZMmRJpMZRq4ncMd4riGkExFKqiU5QaE3FjlKoQTbugKw2DhlpmAt/RlXitJW5xoW6+qig1JeoVXVJSErt3726wFZdS/xhj2L17N0lJSZEWpdoEjFF83hQAigu0R6coNSXqdxhv3749mzdvZufOnZEWRWlAJCUl0b59+0iLUW2M06Pzx2uPTlFqi6hXdPHx8WVWHlGUWCbQozMJVtH5C7VHpyg1JeqHLhXlSMLn9OgksTEAJUXao1OUmqKKTlGiCOP06AKKzl94MJLiKEpMoIpOUaKIgNWlJzHVnhepolOUmqKKTlGiiECPzpvsKLpiVXSKUlNU0SlKFBGwuoxzenQU6xydotQUVXSKEkX4fQGry2T8RhDt0SlKjVFFpyhRhDGOMYrEUSCJUKKKTlFqiio6RYkiAkOXnjgvhSTgKSmIsESK0vBRRacoUUTp5wVxcRRJIh6fKjpFqSmq6BQliggourg4L0WeROJ06FJRaowqOkWJIgJLgIknjiJJwuvXHp2i1BRVdIoSRZR+XhDnpcSThFeHLhWlxqiiU5QowldSDIDXG09xXBLx/sIIS6QoDR9VdIoSRZgSq9i8icn44pKIN9qjU5SaoopOUaIIU2wVW3xCMv64JBK1R6coNUYVnaJEEz6r2OKTkvF5k0lAFZ2i1BRVdIoSRZhiZ+gyIQnjTSbJqKJTlJqiik5RogjxHRq6NN5kkijEGBNhqRSlYaOKTlGiCCkppMjEER/vhfgUEsRHYaH26hSlJqiiU5RowldEEQmICBKfDMDBA/kRFkpRGjaq6BQlihBfIUV47XFCCgCFB/MiKZKiNHhU0SlKFCElBRRJAgCeRKvoilTRKUqNUEWnKNFESSElAUXn9OiKCnToUlFqgio6RYkixFdIiScegLjERgAUF2iPTlFqgio6RYki4kvyKPRYBed1FF1JwYFIiqQoDR5VdIoSRaT4cin0pgIQn+QoukIdulSUmqCKTlGiiBR/HkXxTQCIT7JzdL5C7dEpSk2okaITkWkiskVElju/01x+fxCR9SKyTkTG1FxURYl9Gps8iuObAhCf1BgAf5H26BSlJnhrIY6HjDEPuB1EpBdwPtAbaAt8JCLdjDG+WkhPUWKS4uJimpCPpKQBkJgSUHTao1OUmlBXQ5cTgJeMMYXGmI3AemBQHaWlKDHBnp2/AOBNPQqAxGSr6EzRwYjJpCixQG0oumtE5DsReUpEmjlu7YBsV5jNjpuiKGHYty0LAG+zYwBISrbGKBRrj05RakKlik5EPhKRVSF+E4AngK5AJrAVeLC6AojIFSKyRESW7Ny5s7qXK0rMkLdjIwCNj+oIgDchkWITB8Xao1OUmlDpHJ0x5pSqRCQiM4G3ndMtQAeXd3vHLVT8TwJPAgwYMED3I1GOWA5u+xGAdp17lroVSAJSoopOUWpCTa0u27hOzwJWOcdvAueLSKKIdAaOAxbXJC1FiXW8u9exQ1qQ3KR5qVshiXhU0SlKjaip1eV9IpIJGCAL+C2AMWa1iLwMrAFKgN+pxaWiVEyLAxvYkdiJo1xuhaKKTlFqSo0UnTHmkgr8/gb8rSbxK8qRQklxMe1LslnRanAZ9yJJIs7ZdVxRlMNDV0ZRlCjgl6y1JEkxca17lXEv9iSqolOUGlIbH4wrilJDdm1cwTFA02PSy7gXe5Lw+g9f0Rm/j42rFrFrwzJ8uTvwxMXhSU4jLq0djVp0oGnrdrRo3or4hMTyF/v9+P0+fH4fvpISfD4ffn/4GQgRCeVo/5V1DPZ2HQRCSGl8IoFz8IggAbdQ6YXCEw9xWtUdyejTV5QooHDrGgDaHNe3jHtJXBKNivdUO76cXdtZPf8BumW/Qhf20qWS8AUmHj8evPjw4McrfsAO+XiA+GpLED3kkIr3xu9o7DLyUY4sVNEpShQQt2cDO2jOUUGVcYkniXh/YdUjMobFb87g2GV/Yyi5rEgexE/dJtCuz4k0P7oDxSV+8nN2cmBXNgd2Z1O0bxuF+fvwFucBBj9xGPGAeMATBxKHiAc8Hud/XLneVyDdCoSqOFwIN+P8PeR16Ni4LzGmNHa3u3H84nM3MWzf26z9fjE9Bo+tQEYlllFFpyhRQNP8jexMPKaMxSWA35tMgqna0GVhQT4r/3U5g/a+yw/xPdg34WH69jmhfFrNWkDnHrUgdfTzy88/wtNvk7tpJaiiO2KJOWOUXduyKw+kKFGE8ftpU5xNXmr5AUZfXDKJpvIe3b49O9j4wMkM2PsuC9tdTtfb/0vnEEruSOPo9l3Zb1Jgx+pIi6JEkJjq0W3LXk/SrBEsPmocfadOJ9HZz0s5cjChhsGCnIJDBF9T3j/4elOhf+Xpl3XYs20z7eUAtDyu/LXeJBJNUYXx7921nV1PjKNLSRbfnvAIw8ZOqVigIwhPnIctCZ1onLM20qIoESSmFF3L1h345qjxnLBjLtvuWcDGDmfRqOsQUpodjUfg4IE8ivbvxJe7A3/eTjwHduEpyCGuOBdvcR6JvnySTT5eU4IHP3H48Bjnf7nqL4gqGoAFMNW9oMK4gg9qEldtynU4cYW+idqSq07yvYY0wQ8Cjdv2LOdn4pNJotBqyxBzY3t2/MKef43nmJJs1o38F/1HnVtLUsUO+1oeT/9fXuBA7l5SUptVfgGwa9smNq/6koJta/Hs2UDygV9ILtlHii+XFJNPnPERhx8vPuIob4nqLmfBZa5suQn2k7LhJLRf+evChQsRZ5j0K5IzXJzrpRMD/3dhuVijjZhSdN6ERE64+km++2wc8V8+wOBNM/FkPxk2fK5JZr+kctDTmCJvI/KTWrM3rhH+uAQ7Ce+JA48XIx77K1vqCHUSsvIzZQ+ldKq9cv1YmQV1davtkOEl8M+EDFXumirJFF4NlL88KL3gACaEeqqqaXm5FEwYGSqLPtQVFVVZVYnTRUJqSGMJ8SYTJ4biogLiE5PL+OXs2s7eGafR3reZ9SfPJP3EsyqR4Mikca9TSdj6HCu+mM/A06aEDFNwMJ81C+fjW/M27XKW0tZso6Xjt4cm7PIeTb63GXuTO+FLTEU8CRiPF7/EWQMd7CcQxqklDjU+3XWDQVzGMoIJOQLhWNKUxmLAdZ1xvaflkXLxHTqXoHqqwngqMCBy++1PaB02jmgiphRdgIwRZ8GIs8jZtY0tPy6nOHcnPuMhMSmZpLSjSEk7miYt29A4JYXUalaYilKvJNjh94KDeWUU3b69u9j5xGl09GXzw8n/po8qubD0OuE0dnzSgkbf/gvfmEuIi7OKqeBALmu/eA3/qnl03/8V/aWA/aSwPqUfP7e9gLRuQ2l7bF+aNz8K/TChYROTii5AWsujSWupllZKw0UcRVd0IB/SWgGQu28PWx8fT5eSjawd8QQZquQqxOONZ1OfaxmwchrLHziNgpbpJO75nu5535ApheymKatajCYl40x6/Go8/ROSIi2yUsvEtKJTlIaOJ9CjO7AfgB1bssiddSZdfZtYPfQRMk+aFEnxGgwDzr6er/N20mPjbJpmL2KLtGZVizEk9TuXnkPGMjg+IdIiKnWIKjpFiWKSmtmdsPbvyCYvZwdN3v4tbUwua0/6N5kjzo6wdA0IEQZf+nf8vr9S5CuhXUIC7SItk1JvqKJTlCgmtZ21xGz5n2tp5t/Ldk8rtp79OukZwyIsWcPEE+chIU57b0caqugUJYpp37Er22jF0WYni5udRvcpj9EurUWkxVKUBoUqOkWJYuK9XpKvW8wv+3YyqFP3SIujKA0SVXSKEuU0bdacps3UwF1RDpeYW+tSURRFUdyoolMURVFiGgm5BE2EEJGdwM+1EFVLYFctxFMfNCRZoWHJq7LWHQ1J3oYkKzQseWtL1o7GmFa1EE9IokrR1RYissQYMyDSclSFhiQrNCx5Vda6oyHJ25BkhYYlb0ORVYcuFUVRlJhGFZ2iKIoS08Sqogu/N0/00ZBkhYYlr8padzQkeRuSrNCw5G0QssbkHJ2iKIqiBIjVHp2iKIqiAKroFEVRlBgnphSdiIwVkXUisl5Ebo+0PMGISAcR+VRE1ojIahG5znGfJiJbRGS58zst0rICiEiWiKx0ZFriuDUXkf+IyI/O/2ZRIGd3V94tF5H9InJ9NOWriDwlIjtEZJXLLWReimW6U46/E5H+USDr/SKy1pHnDRFJc9w7ichBVx7PqE9ZK5A37LMXkT84ebtORMZEgaxzXXJmichyxz0a8jZcnRWVZTcsxpiY+AFxwAagC5AArAB6RVquIBnbAP2d41TgB6AXMA24OdLyhZA3C2gZ5HYfcLtzfDtwb6TlDFEOtgEdoylfgROB/sCqyvISOA14DxBgCPB1FMg6GvA6x/e6ZO3kDhdFeRvy2Tvv2wogEejs1BlxkZQ1yP9B4M4oyttwdVZUlt1wv1jq0Q0C1htjfjLGFAEvARMiLFMZjDFbjTHfOse5wPfQ4PZ/nAA84xw/A5wZOVFCcjKwwRhTGyvs1BrGmM+BPUHO4fJyAvCssSwC0kSkTb0ISmhZjTEfGmNKnNNFQPv6kqcywuRtOCYALxljCo0xG4H12LqjXqhIVhER4DzgxfqSpzIqqLOisuyGI5YUXTsg23W+mShWIiLSCegHfO04XeN09Z+KhuFABwN8KCJLReQKx621MWarc7wNaB0Z0cJyPmUrimjM1wDh8jLay/JUbKs9QGcRWSYin4nI8EgJFYJQzz6a83Y4sN0Y86PLLWryNqjOalBlN5YUXYNBRBoDrwHXG2P2A08AXYFMYCt2+CIaGGaM6Q+MA34nIie6PY0dq4ia71NEJAE4A3jFcYrWfC1HtOVlOETkT0AJMMdx2gocY4zpB9wIvCAiTSIln4sG8+xdXEDZRlrU5G2IOquUhlB2Y0nRbQE6uM7bO25RhYjEYwvMHGPM6wDGmO3GGJ8xxg/MpB6HUirCGLPF+b8DeAMr1/bAUITzf0fkJCzHOOBbY8x2iN58dREuL6OyLIvIFOB/gIucyg1nCHC3c7wUO+fVLWJCOlTw7KM1b73A2cDcgFu05G2oOosGVnZjSdF9AxwnIp2dlv35wJsRlqkMzhj8LOB7Y8w/XO7uMeyzgFXB19Y3ItJIRFIDx1hjhFXYPL3UCXYpMD8yEoakTIs4GvM1iHB5+SYw2bFgGwLscw0TRQQRGQvcCpxhjDngcm8lInHOcRfgOOCnyEh5iAqe/ZvA+SKSKCKdsfIurm/5QnAKsNYYszngEA15G67OogGVXSB2rC7NIYufH7Atnz9FWp4Q8g3DdvG/A5Y7v9OA54CVjvubQJsokLUL1jptBbA6kJ9AC+Bj4EfgI6B5pGV15GoE7AaautyiJl+xCngrUIydt/h1uLzEWqw97pTjlcCAKJB1PXbuJVBuZzhhJzrlYznwLXB6lORt2GcP/MnJ23XAuEjL6rjPBq4MChsNeRuuzorKshvup0uAKYqiKDFNLA1dKoqiKEo5VNEpiqIoMY0qOkVRFCWmUUWnKIqixDSq6BRFUZSYRhWdoiiKEtOoolMURVFimv8Hu4BfHlL81TQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 4)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAEYCAYAAADf3bjQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjkUlEQVR4nO2dd5xU1fm4n3dmK1tYWHov0tmlSFNAIbGjoqJiRBGNJprYNcYUDZpmi92EXwyKhShW0K8FExVbRKR3VGTpICzswsLWmff3x7mz3J2d2QK7O7Oz5/kw7L2nvvecc8972j1HVBWLxWKxWGIJT6QFsFgsFoulrrHKzWKxWCwxh1VuFovFYok5rHKzWCwWS8xhlZvFYrFYYg6r3CwWi8USc0S9chORbiKiIhIXaVksR4+I3CAiO0RkRQTini4iLzZAPNNE5PMq7BeIyNX1LUdTQ0TGici22trVsQxV1lMNVQZjBRG5Q0T2i8h8EWl2NGFEvXKz1B4RmSEiBc6vRERKXffvRUis6cAvVHWQS87pIjI9QvJEFU7lmFNL9x+LyGERWS8ip1ThNlFEnhGRAyKyS0RuddlNcZWNAic8FZHjHftbROR7x+8OEXkkUIGLSBsReckxzxeRL0RkpCvs3waFXSgifhFpVdfp0dgRkRwR6VZDt2HzM4z7Wxx3Bxx/iSHcnOzk+59cZiIifxKR7U7+LhCRAS77jiIyT0T2icg2Ebk2KMzBIrLEKVNLRGRw0DPMEJHdjv+3RaRjwF5VHwA6AX2B02qSLsHUu3KzPa6GR1WvVdVUVU0F/gLMCdyr6pkBdw2cNy2B1Q0YX70QReX5JWAZkAn8DnhNRFqHcTsd6AV0BcYDd4jIGQCqOttVNlKBXwDfA0sdv28BQ1U1HRgIDAJudOxSga+B4zH5+xzwjoikOmH/JSjs+4EFqrq3rhKhIYmivJ9OmPwMRkROB+4Efuy47wHcE+QmHngM+CrI+0XAVcBYTP5+Cbzgsn8R2AS0BSYAfxGR8U6YCcA8x00LTNmY55gD3AScAGQDHYD9wBPuyFX1kBN+ZtXJEZp6UW5OK+TXIrISOCQicSIySkT+JyJ5IrJCRMa53C8Qkb+KyCKndTFPRFqGCftKEVknIgedFuXPg+wnishyJ5yNgUwXkeYiMlNEdjotkT+JiLea5+gpIh+JSK6I7BWR2SKS4bLbJyJDnfsOIrIn8Fwicq6IrHGed4GI9AtKn9tFZKXTIpojIkm1T+naEyZvVESOc7mZFdSCO9tJ0zwnD7NrGWcgnf3VuLvDyZ8dInK1Wy5HpqdE5B0n778SkZ4uv4+JyFYn35eIyNig4JOcdD4oIktFxN2DvNMpKwdFZK2InO+ymyamR/KIiORiKpbqnvchMUMqm0TkzCDrrk54B0XkA6lBLyZE+L2BocAfVLVQVV8HVgGTwni5Avijqu5X1XXA08C0Ktw+r87WRaq6UVXzAlFj8vA4x+57VX1YVXeqqk9V/wkkAH1CyCzAVEwlV2tEZKiILHPS7VUnL/8Uxu2NTj52cpn91nmHc0Rkist8ghPuAaf8THfZBYYafyoiW4CPaiDqFBHZ4sT1uyC7BBF53nmGNSIyrHapUE5t83Omqq5R1f3AH0O4vQ34AFgfZN4d+NzJZx9GUfUHENOAGQf8WVVLVXUF8BpGGeLYxQGPqmqxqj6OKT8/coU9X1V3q2oRMAco7xW68Dvh1B5VrfMfkAMsBzoDyUBHIBc4C6NQT3XuWzvuFwDbMS3DFOB14EXHrhugQJxzPwHo6STUycBhTMsSYASQ74TvceLt69i9Cfw/J/w2wCLg59U8x3FOWIlAa+BTTGYF7K8B1gLNgPnAQ455b+CQ4zceuAP4Dkhwpc8iTIulJbAOuDaMDGOAvCp+Y6p5humBtAyVN4E6DDjO5WYW8CfnegjwAzAS8GJelhwgsRbl4QygCEipxs0uTAFvhnmRyuVyZMp18jgOmA287PJ/GaaFF4d5WXcBSa40KAUudPLjdkyLMN6xv8jJCw8w2cm79o7dNKAMuMEJO7mKZ5jmxHONk1bXATsAcZXzjU75SHbu7wsT1t+Bv4exOx9YF2T2JPBECLctnHRs6zK7EFgVwm1XwAd0DzK/FDjghLMHGBRGrsFOPjcPYXcSUACkHkV9kgBsxrT244ELgBJXGR0HbHOu78b0Olu77MqAhzHv8clO/vZx2Wc5eZ8N7AbOC6p7nsfUG1XlfcDt007eDgKKgX6uMliEqQO9wF+BhWHCuhRYGcauxvnp2K0AJrvuWzn+M115/g2mFz4rkKYuuyVOeY0HHgDmOnZpTjhtXO6fBpY517cA7wXJ8n/Abc71MOALzHvXDPg3rrrV5ec5zChFQq3LTW091LAw5gBXue5/DbwQ5GY+cIVzvQDXS45pHZQ4hSBQaOLCxDUXuMm5/n/AIyHctHUKWrLL7CfAx7V8rvMCmecyewvTal6JU+EDdwGvuNx4MMp7nCt9LnPZPwDMqKe8mE5l5XZVkJuqlNs/MK1Et/sNwMk1jH+xE/6N1bh7Bvir6/44Kiu3f7nszwLWVxHefpxK2EmDhS47D7ATGBvG73JgonM9DdhSw2edBnznum/mPEM7Vzn/vcv+F8D7R5GnlxNUMQJ/BmaFcNvZkSHJZXYqkBPC7V2YYcNw8fbCtPzbhbBLd96D34TxOzOUfDV83pOc90dcZp9TUbltxyiwz3EpV44otxSX2SvAXWHiehSnDuFI3dOjBjIG3HZymS0CLnGVwf+67PoDhUeRFjXOT8duI3CG6z7e8d/NuZ+Ho/yorNwSMMOV6qThJlwNHyetnwCSMCMJ+4ANrrL0cpAss4HpznVz4GVX2MuAliHk74lpqJYCw2qTVvU557bVdd0VuMgZ1soTkTxMj6R9GPebMZlQachGRM4UkYXOkGAeppILuOuMycxgujrh7XTF//8wPbiwiEhbEXnZGcY8gOlNBMv0NKbH+YSqFjtmHZxnAEBV/c7zdXT52+W6PoxpOTUUW6t3Uk5X4LagvOuMecaaMBy4BJguZmw/HB2C5AolY9g0c4Z51znDvHmYl8edV+XhOfmxLfAMIjLVNeyah8nPkH5rQLmMqnrYuUwNZR/8DLWgAKNM3KQDB8O4DdhX57bKYUNV/RZYg+lVliMiycDbGIX712B/Yla7XVRV2NXQAdiuTm3nEJwnGcDPMA2k/CC7/WrmbwJs5kjejxSzMGePiOQD11L5HT+q/Kdy/gbbJUnt5/Fqk58B98FuAQ6KyDlAmqrOCeP3bsz72xmjwO4BPpIjqxenYIYXt2IawS9i3qtQ8QbL+RSmJ52J6RW/AYRa7HYTZl43XVUXh5EzJPWp3IIL4guqmuH6pajqfS43nV3XXTCausLEs5hVPq8DD2G65RnAu5ghykA8PanMVkzPrZUr/nRVDTXG6+YvznNkqZlQv8wVV2Dc+VFMq3S6HJkn3IFRCgF34jzf9mriq4SIjJWKK86Cf8FzSzVBg+4PY3oZAdq5rrdixtXdeddMVV+qUUSmQpqLGU5pX4XTnZjVUQE6h3MYjJMGdwAXAy2ccpGPK6/c4YmIx4lrh4h0xTRQrscM1WRgFr64/QanV6RZA/QQkTSX2SDHvAJq5ll2OvZh3YrIaEyF/1o1ccfhesecd3IuplL7eRg/52Na9QuqCTscO4GOznsUILh87AfOBp51nsVNCxFJcd13wbyjYIbD3gI6q2pzYAYV8x6iKP9rmp8u1oRwu1tVczGLTIaJWUm5CzMkf7OIzHPcDsYsRtumqmWqOgvzHvd3ZNmsqmeramtVHYlpFCxyxZsdlGfZLjkHY3ry+5xOwRPAiBBz0P0woxuFVSZMCBrqU4AXgXNE5HQR8YpIkpjvT9yV2WUi0t9pFdwLvKZmEtNNAkbb7wHKnMl69zLRmcCVIvJjEfGIWaraV1V3YiZM/yYi6Y5dTxE5uRq50zAtkHwxy1R/FWT/GLBYVa8G3sG8GGCGPSY4csRj5oCKgf9Vl1DBqOpn6lpxFuL3WW3DDMFy4FInb87AzEsEeBq41mnhioikOJPwaVC+0GNWNc8Q6NEmVOHsFUze9XPKwF21kD8NM7SxB4gTkbup3Go8XkQucFrKN2PyYyGm1aiOX0TkSkzPLWpR1W8wefYH5106H1NxvB7Gy/PA70WkhYj0xcwJzgpycwXwuqpW6AGIWdjTxrnuD/wG+NC5j8cow0LMFEO4BUNX4Fqk4gp7uogsqP6J+RIzF3i9mAVQEzFzrxVQ1QWY3sQbIhJsf4+IJDgNobOBVx3zNGCfqhY5fi6tgTyRpib56Xb7U6duzQB+73J7F2Y+bbDzewvzvl/p2H+NGXFr69SZl2NGwL4DcN7VNCddL8PUxQ87fhdg8uxGMcv+r3fMP3KFPVXMQr94zBD9Dq28kjYe867WmgZRbqq6FZgI/BZTiWzFKAp3/C9gEn0Xpgt8I0E4L96NmIpwP6YgvuWyX4TJmEcwLfdPONKDmoqpXNc6fl+j6p4EmG74UCesdzBdZ8CsysQsgrjOMboVGCoiU1R1A6aX9wSm93kOcI6qllQTX6S4CSNjHqZymBuwcIYCrsEsWNiPKdjTXH47YyaGq0Oporyp6nvA48DHThwLHauaFOz5wPuYifHNmIn74KGkeZiW6X7MnNUFalZ5rQX+hqlAd2MWF9TkeeoVMd8AzajCySWYSfn9wH3AhaoaUNBTRMTdkv8DZrh+M+adeFBV33fFlYTp9YYaNhwNrBKRQ5hRkncx7zHAiRhFcRqQF2o0wWkU/ghTyQZTo7LjvDcXAD/FlNHLMIsTKpUNVf0PZsXe2+KsZMbUKfsxvbXZmMVbgZWBvwDuFZGDmGG4V6qTp74JkX/BhM1PEeni5EEXAMf8Acx7tcXx8wfH7qCq7gr8MI2UQ6q6z4nnfsyClOWYdL8FmKRHVs+ejvlsZD9mOPeMQBl08uw8TL2bh8mT81x14O2Y9/RbjE44C9PDD8ZLNauswyFBjamI4LTeXlTVf0VaFkvNEfPNygogW1VLq3G7A7hDVWu0S4OYTydWYxbplB2zsJaoQ0SWAz92hshq6/crzCKsZ+tcMEtU4PQ01wJXq+q7tfVvdyixHDWqWqKq/apTbA53YobRloRzICLnO0MYLTCtxretYotdVHVwTRWbmB002jnDkldghmHfr86fpXEiIrdjvrv7BGcYvLY0eeUmFbeqcv+qGhKy1BJVfV5Ve6nq8VU4+znmm7qNmPH666pwGxFseYkYfTCjBHmYOewLnbn0BkMqb1UW+FU1hGg5ClT1IVVtp6o/cc3Z14qoGJa0WCwWi6UuafI9N4vFYrHEHtGyESgArVq10m7dukVaDIvFYrE0IEuWLNmrquE2/j4qokq5devWjcWLa/URusVisVgaOSKyuXpXtcMOS1osFosl5rDKzWKJcny+o/qG1WJp0ljlZrFEMQue/T2+e1vxySNTUb9VchZLTYmqObdQlJaWsm3bNoqKiiItiqURkZSURKdOnYiPr+oggujmh20bOTHn7xRKMifnz+Prj95g+CkXRlosi6VREPXKbdu2baSlpdGtWzdEgjfrtlgqo6rk5uaybds2unfvHmlxjpoN//kXY8XHD1Peo+Tf56GL/h9Y5Wax1IioH5YsKioiMzPTKjZLjRERMjMzG31vP3PnZ3zv7UGnXtls7TiBIcVL2L2r1qcmWSxNkqhXboBVbJZa09jLTPHhfHoVr2Vna3M0WauRk4kXH9/+b25kBbNYGgmNQrlZLE2N71cvIl58JPc8EYDOA04gnzRk44LICmaxNBKscqsBIsJtt91Wfv/QQw8xffr0yAlUDQsWLOB//6v1uagVOOOMM8jIyODss8+uI6kstWHfRnN4QvcBowAQj5ec9GH0PLTErpq0WGqAVW41IDExkTfeeIO9e4MPiT02VBV/PVRUdaHcfvWrX/HCCy/UkUSW2uL9YTV5pNKi/ZEFMSVdxtCOXLZuXB1BySyWxoFVbjUgLi6On/3sZzzyyCOV7Pbs2cOkSZMYPnw4w4cP54svzMHC06dP56GHHip3N3DgQHJycsjJyaFPnz5MnTqVgQMHsnXrVn71q18xcOBAsrKymDNnDmAU1Lhx47jwwgvp27cvU6ZMIdQJDo8//jj9+/cnOzubSy65hJycHGbMmMEjjzzC4MGD+eyzz6qU8fLLL+eEE06gV69ePP300+Xh/vjHPyYtLa3KdHn11VcZOHAggwYN4qSTTgLMAqArr7ySrKwshgwZwscffwzArFmzOO+88zj11FPp1q0bTz75JA8//DBDhgxh1KhR7NtnDv99+umnGT58OIMGDWLSpEkcPny4UryjRo1izZojp4yMGzcu5rZtyzj4LdsTeoBr7rBN/5MB2Lnms0iJZbE0GqL+UwA397y9hrU7DtRpmP07pPOHcwZU6+6Xv/wl2dnZ3HHHHRXMb7rpJm655RbGjBnDli1bOP3001m3bl2VYX377bc899xzjBo1itdff53ly5ezYsUK9u7dy/Dhw8sVxbJly1izZg0dOnRg9OjRfPHFF4wZM6ZCWPfddx+bNm0iMTGRvLw8MjIyuPbaa0lNTeX2228H4NJLLw0r48qVK1m4cCGHDh1iyJAhTJgwgQ4dOtQo7e69917mz59Px44dycvLA+Cpp55CRFi1ahXr16/ntNNO45tvvgFg9erVLFu2jKKiIo477jjuv/9+li1bxi233MLzzz/PzTffzAUXXMA111wDwO9//3tmzpzJDTfcUCHeyZMn88orr3DPPfewc+dOdu7cybBhw2okc2OhTdkONmaOq2DWufcQCkhGty4CfhkRuSyWxoLtudWQ9PR0pk6dyuOPP17B/L///S/XX389gwcP5txzz+XAgQMUFBRUGVbXrl0ZNcrMpXz++ef85Cc/wev10rZtW04++WS+/vprAEaMGEGnTp3weDwMHjyYnJycSmFlZ2czZcoUXnzxReLiQrdVqpJx4sSJJCcn06pVK8aPH8+iRYtqnCajR49m2rRpPP300/h8vvLnueyyywDo27cvXbt2LVdu48ePJy0tjdatW9O8eXPOOeccALKyssqfbfXq1YwdO5asrCxmz55doYcW4OKLL+a1114D4JVXXuHCC2Pr26/8vH205AC+5t0qmHvi4shJ6kfm/pWREcxiaUQ0qp5bTXpY9cnNN9/M0KFDufLKK8vN/H4/CxcuJCkpqYLbuLi4CvNp7m+uUlJSahRfYmJi+bXX66WsrKySm3feeYdPP/2Ut99+mz//+c+sWrWqkptwMkLlJfO1WUI/Y8YMvvrqK9555x2OP/54lixZUqV79/N4PJ7ye4/HU/5s06ZNY+7cuQwaNIhZs2axYMGCSuF07NiRzMxMVq5cyZw5c5gxI7YOwd67ZT3NgYTWPSrZHW49hL5bnuXAgTzS0zMaXDaLpbFge261oGXLllx88cXMnDmz3Oy0007jiSeeKL9fvnw5YI7vWbp0KQBLly5l06ZNIcMcO3Ysc+bMwefzsWfPHj799FNGjBhRI3n8fj9bt25l/Pjx3H///eTn51NQUEBaWhoHDx6sVkaAefPmUVRURG5uLgsWLGD48OE1ihtg48aNjBw5knvvvZfWrVuzdetWxo4dy+zZswH45ptv2LJlC3369KlxmAcPHqR9+/aUlpaWhxOKyZMn88ADD5Cfn092dnaNw28MHNj5HQBp7XtVskvpeQJx4mfTis8bWiyLpVFhlVstue222yqsmnz88cdZvHgx2dnZ9O/fv7wXMWnSJPbt28eAAQN48skn6d27d8jwzj//fLKzsxk0aBA/+tGPeOCBB2jXrl2NZPH5fFx22WXlizduvPFGMjIyOOecc3jzzTfLF5SEkxHMsOb48eMZNWoUd911V/l829ixY7nooov48MMP6dSpE/Pnzwfg7rvv5q233gLMisqsrCwGDhzIiSeeyKBBg/jFL36B3+8nKyuLyZMnM2vWrAo9tur44x//yMiRIxk9ejR9+/YtN3/rrbe4++67y+8vvPBCXn75ZS6++OIah91YKNmzEYDWnSs3CroOMotKDn53bKthLZZYR0KtwIsUw4YN0+BVb+vWraNfv34Rkii2mT59eoWFJ7FGYy07Xz85jV57/kPz6dtCDhNvu7cfuxO7cfyv34uAdBZL3SMiS1S1TleF2Z6bxRJlJBzaQa63ddj5zx/Ss+hauMZ+zG2xVEGjWlBiqVuieZeVpkxKyR4OJbYOa+/vOJxWefPZsmk9XXr2b0DJLJbGg+25WSxRRoZvH8XJbcPaZ/Yz3zruWvNpQ4lksTQ6rHKzWKKI0pJiWmo+vpTwyq1L32Ec1kR8W75uQMkslsaFVW4WSxSx74dteESR9PC7xHjj4tmU2IdW+1c0oGQWS+PCKjeLJYo48MNWAOIzqt4C7UCrwXQr+56iw1XvhmOxNFWscqshc+fORURYv359WDc5OTkMHDiwXuVYvnw577777jGFcdVVV9GmTZt6l9VSew7nbgMgpVWnKt0ldh9FvPjIWfVFQ4hlsTQ6jlm5icgNIrJeRNaIyANBdl1EpEBEGv2HVC+99BJjxozhpZdeCmkfamus2hLYn7Eq6kK5TZs2jffff/+YwrDUDyV5OwBo3qZLle66ZJuPufd/Y5WbxRKKY1JuIjIemAgMUtUBwENBTh4GGv2XpgUFBXz++efMnDmTl19+udx8wYIFjB07lnPPPZf+/c2S7LKyMqZMmUK/fv248MILy49s+fDDDxkyZAhZWVlcddVVFBcXA2abrl//+tcMHTqUV199tUK8wUfKlJSUcPfddzNnzhwGDx7MnDlzOHToEFdddRUjRoxgyJAhzJs3DzBHzEycOJFx48bRq1cv7rnnnvJwTzrpJFq2bFnlM3/yyScMHjyYwYMHM2TIEA4ePIiqhj2e5+STT2bixIn06NGDO++8k9mzZzNixAiysrLYuNHsuPH2228zcuRIhgwZwimnnMLu3bsrxXvJJZfwzjvvlN9PmzatfJPkpoAe2IlPhZatqx6WbNW2EzukHQk7YuuoH4ulrjjW79yuA+5T1WIAVf0hYCEi5wGbgEPHGMcR3rsTdlXeGPiYaJcFZ95XpZN58+Zxxhln0Lt3bzIzM1myZAnHH388YPaNXL16Nd27dycnJ4cNGzYwc+ZMRo8ezVVXXcXf//53rr/+eqZNm8aHH35I7969mTp1Kv/4xz+4+eabAcjMzCzfh9JN8JEyCQkJ3HvvvSxevJgnn3wSgN/+9rf86Ec/4plnniEvL48RI0ZwyimnALBo0SJWr15Ns2bNGD58OBMmTKjx0TAPPfQQTz31FKNHj6agoICkpCTeeOONsMfzrFixgnXr1tGyZUt69OjB1VdfzaJFi3jsscd44oknePTRRxkzZgwLFy5ERPjXv/7FAw88wN/+9rcK8QaOs5kwYQIlJSV8+OGH/OMf/6iRzDHB4VzyJY2WCfHVOt2RMZRe+z7BV1aGN8yJEBZLU+VYhyV7A2NF5CsR+UREhgOISCrwa+CeKn0btz8TkcUisnjPnj3HKE798NJLL3HJJZcApmfhHpocMWIE3bsfOS25c+fOjB49GoDLLruMzz//nA0bNtC9e/fy/SWvuOIKPv30yDdKkydPDhlvqCNlgvnggw+47777GDx4MOPGjaOoqIgtW7YAcOqpp5KZmUlycjIXXHABn39e8812R48eza233srjjz9OXl4ecXFxVR7PM3z4cNq3b09iYiI9e/bktNNOAyoeZ7Nt2zZOP/10srKyePDBB0MeZ3PmmWfy8ccfU1xczHvvvcdJJ51EcnJyjeVu7MQV7uOAp3nNHPccT3M5xPcr7SbKFksw1Tb3ROS/QKidfH/n+G8JjAKGA6+ISA9gOvCIqhZUd4SKqv4T+CeYvSWrdFxND6s+2LdvHx999BGrVq1CRPD5fIgIDz74IFD5+JqjOUIm3BE4NTlSRlV5/fXXK+28/9VXXx3TcTZ33nknEyZM4N1332X06NHlGyeHoybH2dxwww3ceuutnHvuuSxYsCDkDilJSUmMGzeO+fPnM2fOnPJGRVMhsXQ/hXEZNXLbbfjZ+L++g9wV79Fr6Lh6lctiaWxU23NT1VNUdWCI3zxgG/CGGhYBfqAVMBJ4QERygJuB34rI9fX3GPXHa6+9xuWXX87mzZvJyclh69atdO/enc8++yyk+y1btvDll18C8O9//5sxY8bQp08fcnJy+O47c5TJCy+8wMknn1xt3KGOlAk+zub000/niSeeILAB9rJly8rt/vOf/7Bv3z4KCwuZO3dueY+yJmzcuJGsrCx+/etfM3z4cNavX39Mx/MA5Ofn07FjRwCee+65sO4mT57Ms88+y2effcYZZ5xR4/BjgRRfPkXxGTVy26ptBzbG9yR9R+iyaLE0ZY51WHIuMB5ARHoDCcBeVR2rqt1UtRvwKPAXVX3yGOOKCC+99BLnn39+BbNJkyaFXTXZp08fnnrqKfr168f+/fu57rrrSEpK4tlnn+Wiiy4iKysLj8fDtddeW23coY6UGT9+PGvXri1fUHLXXXdRWlpKdnY2AwYM4K677ir3P2LECCZNmkR2djaTJk0qn2/7yU9+wgknnMCGDRvo1KlT+fl0M2bMKD8O59FHH2XgwIFkZ2cTHx/PmWeeeUzH84DZy/Kiiy7i+OOPp1WrVuXmixcv5uqrry6/P+200/jkk0845ZRTSEhIqHH4sUCa/wClSVUv9nGT2+4kepesI++H7fUolcXS+DimI29EJAF4BhgMlAC3q+pHQW6mAwWqGrySshL2yJu6Y9asWRUWnjRFGlvZ8ft8+O9txdedruCEax6tkZ9vVy2i1+unsrj/bxh28Z31K6DFUk/Ux5E3x7TESlVLgMuqcTP9WOKwWJoKBXm5pIsfmmXW2M9xA4fz/ZtdSfv2TaD2ym1TziZ2rPwvJbs2kFiwDU9ZIV4tQ70J+OJS8MWn4k9IhcR0SErDk5iOt1k68c2aE5fcnKSkZJIT42iWGE9CXByKh8BBPOpXVBVFUQXFb/6qY67g9yt+Vfx+P34FVT8eERK8QkKcB6+AX8GvfjQoTL9fAXX8gWLC8/kVP85fv5KS0YYeXav+btASe9j1wzHKtGnTmDZtWqTFsNSCA/t2kQ54U8MfdxOMiLCr23mc+P1jbF6zkK4DRlXr5+DBAyx952nafPsy/XzfEFjrmystKJZkyiSOOC0lyX+YZApJpuToHihKKNZ48m/+huYtaj7ca2n8NArlpqq1WulnsUTTCfM15XCe+Uw0Ib1VNS4r0m/CDRQ8/k/2vX8fXQfMDeuutLSURXOfpNeaxzmZfWzxdmVZrxtoM+gMOvQeSmZCs9AefWWUFh6g8GAeRQX7KTmcR8mhfMoO5VFSWkJJaRklZT7KfD5E/XhQEDnyzgoIHsytIAEz8eARo6ADP4+ATwWf30+JDxRFxGP8IIjLPbj8OmF6AI9HEASPB4o3fsHQH95gz76dVrk1MaJeuSUlJZGbm0tmZqZVcJYaoark5uaSlJQUaVFqRXG+UW6JzdvUyl+LzNZ80XEyo3fM4puv3qH3yAmV3Kz67C1SPv49o/2b+Ta+LwdOeYrjRpxJl5q8U9444lNbEp/akvRaSRZ5ls5Pgh/eoPhQXqRFsTQwUa/cOnXqxLZt24jWD7wt0UlSUhKdOlW9+XC0UXLQlPHUjPBnuYUj+yf3svXh+WS+9wt2tpxL+15DANj17VJ2zP0DQw99yk5pw8oTHiXr1CsQT9PYMz2+WRoAJYcORFgSS0MT9cotPj6+wg4gFkus4j+UC0BaZu2VW1pac7Zf8ALNXp9E5ounsCZpAMllB+jh20S6JrKw27UMnnwX7Zul1rXYUU18M9PXLC20yq2pEfXKzWJpMhzOpUjjSU+r4fZbQfTNGs7mtI9ZM+/PtD24msPxLfik4wT6nPULRrXrWMfCNg4Sm2UAUGaVW5PDKjeLJUqQojwOSCptPEc/t9y1W0+63vRMHUrVuElMNT03X5FVbk2NpjHwbrE0ArwlBzjsaVrDhvVNSloLAPyFB6txaYk1rHKzWKKE+NIDFHmtcqtLUp0hXn+xVW5NDavcLJYoIbGsgJK4tEiLEVN4vV4OaRJY5dbksMrNYokSkv0FlMY3ti/Jop/D0gxPSUGkxbA0MDGl3A7m72PFfaew9P1ZkRbFYqk1Kf5D+BKscqtrijzJeEsPRVoMSwMTU8otMSmFQUVfU7JjbaRFsVhqhd/nJ41D+JOO7jMAS3iKPCnEldmeW1MjppRbQmIi+ZqCpzA30qJYLLWioCCPOPFDUkakRYk5SuOakeA7HGkxLA1MTCk3gAOedOKK90VaDIulVhw+YMqsJ9n23Oqa0rg0kn2259bUiDnlVuDNIKF4f6TFsFhqReEBM9rgdXbUsNQdpQnpNFOr3JoaMafciuJb0KzMKjdL46K4wJTZ+JQWEZYk9vAlNCdN7YKSpkbMKbfSpBak+fIjLYbFUitKHOWWkGqVW12jSRk0k2KKigojLYqlAYk55eZPzqS5HsDv81fv2GKJEkqd88aS0+yBmnWNOPOYh/L3RlgSS0MSc8pNUlqTID7y8+yKSUvjwV+YB0ByulVudY3HmccMzGtamgYxp9zi01sDkL93R4QlsVhqjhaaofRUq9zqnLhmJk2LrHJrUsScckts0QGAgtxtEZbEYqk5UpzPIU0kOSkp0qLEHIlpmQAUHbQLzZoSMafcUlp1BqB43/YIS2Kx1BxP8QEOSTNEjv4sN0toUpoHlJvtuTUlYk65NW/TFQBfvh2WtDQePKUFFEqzSIsRk6RmtAKg7JDtuTUlYk65ZWS04JAmwoGdkRbFYqkxcWWHKPZY5VYfNG9hlJv/sFVuTYmYU27i8ZDryST+8K5Ii2Kx1Jj4skOUeK1yqw/iEpI4TCIU5UVaFEsDEnPKDeBgfCuSi36ItBgWS41J8B2mNC4l0mLELAWSiqfYbu7QlDhm5SYiN4jIehFZIyIPuMyzReRLx3yViDTYMrDCpDakl9kPNi2Nh0QtxGeVW71xyJNOQklepMWwNCBxx+JZRMYDE4FBqlosIm0c8zjgReByVV0hIplA6TFLW0PKUtrRKn8Bfp8fjzcmO6eWGCNZD+NPSI20GDHLofgWJJfaObemxLHW/NcB96lqMYCqBsYCTwNWquoKxzxXVX3HGFeN8aR3IEHK2LfXzrtZoh9VJUWL0Hir3OqL4oSWpPnyIi2GpQE5VuXWGxgrIl+JyCciMtxlriIyX0SWisgd4QIQkZ+JyGIRWbxnz55jFMeQ0LIjAPt35dRJeBZLfVJcXESilKKJVrnVF6VJLcnw2zm3pkS1w5Ii8l+gXQir3zn+WwKjgOHAKyLSwzEf45gdBj4UkSWq+mFwIKr6T+CfAMOGDdOjfI4KpLTtCUDB7o3AiXURpMVSbxw+mEcS4ElMi7QoMYsmtyJVCikpPERCsp3bbApUq9xU9ZRwdiJyHfCGqiqwSET8QCtgG/Cpqu513L0LDAUqKbf6oE2XPgCU/LCxIaKzWI6JwoIDAIjtudUfqWbP2QO5O2nV6bgIC2NpCI5pQQkwFxgPfCwivYEEYC8wH7hDRJoBJcDJwCPHGFeNad6yDfmkwP5NDRWlxXLUFDvH3cQlp0dWkBgmoXlbAPJzd9S5csvLz2PrxnVoyWEQoXmrdrRt35mkZrYnHkmOVbk9AzwjIqsxSuwKpxe3X0QeBr4GFHhXVd85xrhqxZ64DiQVbKmTsHw+P+uWfUHu8ndI2r+e9KIdJGkRoj6KJJnSuGaUxKdTltgCf1IG0iwTb0omiemZJKW3JiWjNemZbUlt3grxxteJTKFQVfzOwK4AIlTaq1BV8fmNO0XxiOAVCem2ITHFJrIyNAR+v+JTdfJH8AiUHDY9N2+yrQzri5QWZmalYF/dLDLL37eXdW8/TObmd+nl30RGCDcHaUautzUFiW0pTukA6R1JaNmF1DZdSW/bjWatupCUbPcTrS+OSbmpaglwWRi7FzGfA0SEg8060+rA2mMKo6zMxxfz/kmn1X9noBpFucvThn0Jncj3tsYvXhL9hSSUFpBemEPqoVWk60HiJfzC0AKaUYYXRfDhRUXw40HxoDgVvKN4gtSSsUPRcgUW8GGuzd8jCFrhWquxD+U/cH/k/XP50cp+joZQE61hw6xtZHUyi3sUBMupFf5UoCs+EEhMyahnoZou6a3MaSFFece2uYP6/Sya+yT9VvyVUXKYb+L7sajLz0lt3wdvcjp+v3I4bzfFebvg4A4SD+8kvWg3HQ6to+WegxA0U1Ks8RSTQInEU0ICZeLFg5a/e+a9DLpW8OCvbB7iWvC7zAMPUcXzBd1X97ptkO4Mnb6w2nSLBMfac4tafBndaJf/CYcKi0hJrv3345s3fcve2ddwctkytsZ1YcXAezjupMm0a9k+5OqaAOr3c/BgHgdyf6Ag7weK8vdQfGAPZYdy8R/ahxTlIepH1AfqN9f4wNVzEXPhKBQpb+VTyQ5EPE7hxdFAUl4iVQPFPKANPZX8qzqvgxrVp4rz2igo+B0zUPyOLO44AvIFAiwPvzxWDfw7kkbOX48Y3x454h9VRx7HXeC+PCgttwt+8cI1gKWCvAGzMPdBF6F11JEGhla2dDU5KuL1ePB6nOeFimEkpjNo0JjQD2A5Zlq2Mcqt9MDuow6jqLiEpTOu5sT981iXmMWesx+kd/YJNfKrquzNy2fvjk3k78qhbP9W4gp2IiUH0bIiKCsmzl+Mx19m3jkoV0uBUqjO+63iMWblBV4CwzTlas24E5c7qfiOOu9E5cZr+Rsdshyry0iBgsQ2NXr+SBCzyi2+TW/it/jI2biaXgOH1crv8q8/o/3/TaWfHGLN4Lvpf+7NdPZ4a+RXPB7SmrckrXlLoO9RSG6xWOqapGbpFJKIFBydcvP7/Cx76nJOPPA+X3ecytArH8EbV/PqU0Ro1SKDVi2GwIAhRyWDpXbE7PYdad1MATqweXmt/C1b+DHH/d9FeDweDl76LgPOuw2poWKzWCxRigh7PK1JOnx0p4V8Pus3nHDgfZZ0+znDr3miVorNEhliNofa98imVL2U7VxVYz85G1bQ5b2pHPKkkfDz/9CiXbf6E9BisTQo+fFtSCuu/YKShR++yUlbZ7A84zSGTr2vHiSz1Acx23NLbtaMbd5OJOWuq5H7fbl78L48GRHQqXOtYrNYYoxDSe1pWVa7XZDy8/bR5bNfsd3TgYE/fwbxxGyVGXPEdE7tS+1Nu8Jvq3Xn8/n59ukraO/fTe7Zz9Cu+4AGkM5isTQkZWkdaMV+SosLa+xn5ezf0Fb3UnT234mzn2o0KmJauZV1OJ627GPn5g1Vuvv8xXsZWfQFawfcRq9hpzaQdBaLpSFJaNkVgB+2f18j9yvXrmXED6+zutVZ9Bw6vj5Fs9QDMa3c2mT9CIBtyz4I62bNog858fvHWZU6huyLftdQolkslgYm3Zlq2Lu9Ztvy/fB/9+IRpdfFf6pHqSz1RUwrt659h7GfNHTjgpD2+3N/oOW7P2OvJ5Pu1zwf/kMpi8XS6GndMbChevXb8i1d+jXjDs3n284X0axtj/oWzVIPxLRy83i9fN/yJPof+IIDBQcr2Pl8fjb+6woydT+Hzp1JavPMCElpsVgagpYdj6NUvfj3flelO1Xl8Pw/Uirx9LjgDw0knaWuiWnlBpAxfDKpUsjq/86uYP7F83cxrPB/rO5/K8cNOSlC0lksloZC4hLY6e1ASn7Vym3xV58ypvgTvutxOUkt2jeQdJa6JuaVW48RE9js6UyHFU9w0Om9ffXmE5y0+UlWpI9n6MV2ns1iaSrkJnejdVFOWHtVhQ//yAFS6XPB7xtOMEudE7MfcQcQbxxF4/5An4+uZuVjEyhMas3Ig/9lTeJg+lw3286zWSxNiMKM42hf8AUlRYUkJCVXsv/6s/cYUfo1K/veQnZqiwhIaKkrYr7nBtDnpItYknU33Uu/JevgZ3zd/lJ63TqfJHsir8XSpEjsmE2c+Nm6/utKdn6fn+RP/kSutKD/ebdHQDpLXRLzPbcAx0+6DT3/ZgCG270iLZYmSfsBJ8Ei2L/hMxhcca79qw9f5QTfGlZk30Vmkj0VvbHTZJQbYDdAtliaOO279GQnrZAtX1UwLystpc3Cv7BT2pJ1zg0Rks5SlzSJYUmLxWIBc/TMzhbDOa5gMYcLD5ebL3v77/T057B75J144hMjKKGlrrDKzWKxNCmSBk+iuRxi3advArB39zZ6rPwbG+L6Mui0aZEVzlJnWOVmsViaFL1POIc9tKDZosfYuy+XHc9cTpoeInnSk3bX/xjC5qTFYmlSxCUk8cOo39LPt4GMx44ju3gpq4ZMp0u/4ZEWzVKHNKkFJRaLxQIw4IyfsVIS0O8XkJB1HsePOS/SIlnqGKvcLBZLkyT79GnAtAhLYakv7LCkxWKxWGIOq9wsFovFEnOIqkZahnJEZA+wuQ6CagXsrYNwGoLGJCs0LnmtrPVHY5K3MckKjUveupK1q6q2roNwyokq5VZXiMhiVR0WaTlqQmOSFRqXvFbW+qMxyduYZIXGJW80y2qHJS0Wi8USc1jlZrFYLJaYI1aV2z8jLUAtaEyyQuOS18pafzQmeRuTrNC45I1aWWNyzs1isVgsTZtY7blZLBaLpQljlZvFYrFYYo6YUm4icoaIbBCR70TkzkjLE4yIdBaRj0VkrYisEZGbHPPpIrJdRJY7v7MiLSuAiOSIyCpHpsWOWUsR+Y+IfOv8bREFcvZxpd1yETkgIjdHU7qKyDMi8oOIrHaZhUxLMTzulOOVIjI0CmR9UETWO/K8KSIZjnk3ESl0pfGMhpS1CnnD5r2I/MZJ2w0icnoUyDrHJWeOiCx3zKMhbcPVWVFZdiugqjHxA7zARqAHkACsAPpHWq4gGdsDQ53rNOAboD8wHbg90vKFkDcHaBVk9gBwp3N9J3B/pOUMUQ52AV2jKV2Bk4ChwOrq0hI4C3gPEGAU8FUUyHoaEOdc3++StZvbXRSlbci8d963FUAi0N2pM7yRlDXI/m/A3VGUtuHqrKgsu+5fLPXcRgDfqer3qloCvAxMjLBMFVDVnaq61Lk+CKwDOkZWqlozEXjOuX4OOC9yooTkx8BGVa2LnW7qDFX9FNgXZBwuLScCz6thIZAhIu0bRFBCy6qqH6hqmXO7EOjUUPJUR5i0DcdE4GVVLVbVTcB3mLqjQahKVhER4GLgpYaSpzqqqLOisuy6iSXl1hHY6rrfRhQrDhHpBgwBvnKMrne68c9Ew1CfgwIfiMgSEfmZY9ZWVXc617uAtpERLSyXULFyiMZ0DRAuLaO9LF+FaZ0H6C4iy0TkExEZGymhQhAq76M5bccCu1X1W5dZ1KRtUJ0V9WU3lpRbo0FEUoHXgZtV9QDwD6AnMBjYiRmaiAbGqOpQ4EzglyJykttSzThE1HxLIiIJwLnAq45RtKZrJaItLcMhIr8DyoDZjtFOoIuqDgFuBf4tIumRks9Fo8l7Fz+hYsMsatI2RJ1VTrSW3VhSbtuBzq77To5ZVCEi8ZhCMltV3wBQ1d2q6lNVP/A0DThMUhWqut35+wPwJkau3YFhBufvD5GTsBJnAktVdTdEb7q6CJeWUVmWRWQacDYwxanQcIb3cp3rJZg5rN4RE9KhiryP1rSNAy4A5gTMoiVtQ9VZNIKyG0vK7Wugl4h0d1rwlwBvRVimCjhj6jOBdar6sMvcPSZ9PrA62G9DIyIpIpIWuMYsKFiNSdMrHGdXAPMiI2FIKrR8ozFdgwiXlm8BU52VZ6OAfNcQUEQQkTOAO4BzVfWwy7y1iHid6x5AL+D7yEh5hCry/i3gEhFJFJHuGHkXNbR8ITgFWK+q2wIG0ZC24eosGkPZjdRKlvr4YVbqfINp4fwu0vKEkG8Mpvu+Elju/M4CXgBWOeZvAe2jQNYemFVlK4A1gfQEMoEPgW+B/wItIy2rI1cKkAs0d5lFTbpilO5OoBQzD/HTcGmJWWn2lFOOVwHDokDW7zBzKYFyO8NxO8kpH8uBpcA5UZK2YfMe+J2TthuAMyMtq2M+C7g2yG00pG24Oisqy677Z7ffslgsFkvMEUvDkhaLxWKxAFa5WSwWiyUGscrNYrFYLDGHVW4Wi8ViiTmscrNYLBZLzGGVm8VisVhiDqvcLBaLxRJzWOVmsVgslpjDKjeLxWKxxBxWuVksFosl5rDKzWKxWCwxh1VuFovFYok5ol65iUg3EVHnvCNLI0VEbhCRHSKyIgJxTxeRFxsgnmki8nkV9gtE5Or6lqOpISLjRGRbbe3qWIYq66mGKoOxgojcISL7RWS+iDQ7mjCiXrlZao+IzBCRAudXIiKlrvv3IiTWdOAXqjrIJed0EZkeIXmiCqdyzKml+49F5LCIrBeRU6pwmygiz4jIARHZJSK3uuymuMpGgROeisjxjv0tIvK943eHiDwSqMBFpI2IvOSY54vIFyIy0hX2b4PCLhQRv4i0quv0aOyISI6IdKuh27D5Gcb9LY67A46/xBBuTnby/U8uMxGRP4nIdid/F4jIAJd9RxGZJyL7RGSbiFwbFOZgEVnilKklIjI46BlmiMhux//bItIxYK+qD2AOOu2LOUuy1tS7crM9roZHVa9V1VRVTQX+AswJ3KvqmQF3DZw3LYm+w0JrTRSV55eAZZhztX4HvCYircO4nY456LIrMB64Q8zho6jqbFfZSAV+gTkQc6nj9y1gqKqmAwOBQcCNjl0q5pDg4zH5+xzwjoikOmH/JSjs+4EFqrq3rhKhIYmivJ9OmPwMRkROB+4Efuy47wHcE+QmHngM+CrI+0XAVcBYTP5+iTknL8CLwCagLTAB+IuIjHfCTMAcYPoi0AJTNuY55gA3AScA2UAHYD/whDtyVT3khJ9ZdXKEpl6Um9MK+bWIrAQOiUiciIwSkf+JSJ6IrBCRcS73C0TkryKyyGldzBORlmHCvlJE1onIQadF+fMg+4kistwJZ2Mg00WkuYjMFJGdTkvkT+KcclvFc/QUkY9EJFdE9orIbBHJcNntE5Ghzn0HEdkTeC4ROVdE1jjPu0BE+gWlz+0istJpEc0RkaTap3TtCZM3KiLHudzMCmrBne2kaZ6Th9m1jDOQzv5q3N3h5M8OEbnaLZcj01Mi8o6T91+JSE+X38dEZKuT70tEZGxQ8ElOOh8UkaUi4u5B3umUlYMislZEznfZTRPTI3lERHIxFUt1z/uQmCGVTSJyZpB1Vye8gyLygdSgFxMi/N7AUOAPqlqoqq9jDoacFMbLFcAfVXW/qq4DngamVeH2eXUOelTVjaqaF4gak4fHOXbfq+rDqrpTVX2q+k8gAegTQmYBpmIquVojIkNFZJmTbq86efmnMG5vdPKxk8vst847nCMiU1zmE5xwDzjlZ7rLLjDU+FMR2QJ8VANRp4jIFieu3wXZJYjI884zrBGRYbVLhXJqm58zVXWNqu4H/hjC7W3AB8D6IPPuwOdOPvswiqo/gJgGzDjgz6paqqorgNcwyhDHLg54VFWLVfVxTPn5kSvs+aq6W1WLgDlAea/Qhd8Jp/bU0+mtOZgTWzsDyUBHzCnJZ2EU6qnOfWvH/QJgO6ZlmAK8Drzo2HXDnAQb59xPAHo6CXUycBjTsgQYAeQ74XucePs6dm8C/88Jvw3maPmfV/McxzlhJQKtgU8xmRWwvwZYCzQD5gMPOea9gUOO33jgDsxJxgmu9FmEabG0BNYRdApv0Em4eVX8xlTzDNMDaRkqbwJ1GHCcy80s4E/O9RDgB2Ak4MW8LDlAYi3KwxlAEZBSjZtdmALeDPMilcvlyJTr5HEcMBt42eX/MkwLLw7zsu4CklxpUApc6OTH7ZgWYbxjf5GTFx5gspN37R27aUAZcIMTdnIVzzDNiecaJ62uA3ZA+aHACzAnFPfGvBcLgPvChPV34O9h7M4H1gWZPQk8EcJtCycd27rMLgRWhXDbFfAB3YPMLwUOOOHsAQaFkWuwk8/NQ9idBBQAqUdRnyQAmzGt/XjgAqDEVUbHAduc67sxvc7WLrsy4GHMe3yyk799XPZZTt5nA7uB84Lqnucx9UZVeR9w+7STt4OAYqCfqwwWYepAL/BXYGGYsC4FVoaxq3F+OnYrgMmu+1aO/0xXnn+D6YXPCqSpy26JU17jgQeAuY5dmhNOG5f7p4FlzvUtwHtBsvwfcJtzPQz4AvPeNQP+jatudfl5DjNKkVDrclNbDzUsjDnAVa77XwMvBLmZD1zhXC/A9ZJjWgclTiEIFJq4MHHNBW5yrv8f8EgIN22dgpbsMvsJ8HEtn+u8QOa5zN7iyHH2iY7ZXcArLjcejPIe50qfy1z2DwAz6ikvplNZuV0V5KYq5fYPTCvR7X4DcHIN41/shH9jNe6eAf7quj+OysrtXy77s4D1VYS3H6cSdtJgocvOA+wExobxuxyY6FxPA7bU8FmnAd+57ps5z9DOVc5/77L/BfD+UeTp5QRVjMCfgVkh3HZ2ZEhymZ0K5IRwexdm2DBcvL0wLf92IezSnffgN2H8zgwlXw2f9yTn/RGX2edUVG7bMQrsc1zKlSPKLcVl9gpwV5i4HsWpQzhS9/SogYwBt51cZouAS1xl8L8uu/5A4VGkRY3z07HbCJzhuo93/Hdz7ufhKD8qK7cEzHClOmm4CVfDx0nrJ4AkzEjCPmCDqyy9HCTLbGC6c90ceNkV9jKgZQj5e2IaqqXAsNqkVX3OuW11XXcFLnKGtfJEJA/TI2kfxv1mTCZUGrIRkTNFZKEzJJiHqeQC7jpjMjOYrk54O13x/z9MDy4sItJWRF52hjEPYHoTwTI9jelxPqGqxY5ZB+cZAFBVv/N8HV3+drmuD2NaTg3F1uqdlNMVuC0o7zpjnrEmDAcuAaaLGdsPR4cguULJGDbNnGHedc4wbx7m5XHnVXl4Tn5sCzyDiEx1DbvmYfIzpN8aUC6jqh52LlND2Qc/Qy0owCgTN+nAwTBuA/bVua1y2FBVvwXWYHqV5YhIMvA2RuH+NdifmNVuF1UVdjV0ALarU9s5BOdJBvAzTAMpP8huv5r5mwCbOZL3I8UszNkjIvnAtVR+x48q/6mcv8F2SVL7ebza5GfAfbBbgIMicg6Qpqpzwvi9G/P+dsYosHuAj+TI6sUpmOHFrZhG8IuY9ypUvMFyPoXpSWdiesVvAKEWu92EmddNV9XFYeQMSX0qt+CC+IKqZrh+Kap6n8tNZ9d1F4ymrjDxLGaVz+vAQ5hueQbwLmaIMhBPTyqzFdNza+WKP11VQ43xuvmL8xxZaibUL3PFFRh3fhTTKp0uR+YJd2CUQsCdOM+3vZr4KiEiY6XiirPgX/DcUk3QoPvDmF5GgHau662YcXV33jVT1ZdqFJGpkOZihlPaV+F0J2Z1VIDO4RwG46TBHcDFQAunXOTjyit3eCLiceLaISJdMQ2U6zFDNRmYhS9uv8HpFWnWAD1EJM1lNsgxr4CaeZadjn1YtyIyGlPhv1ZN3HG43jHnnZyLqdR+HsbP+ZhW/YJqwg7HTqCj8x4FCC4f+4GzgWedZ3HTQkRSXPddMO8omOGwt4DOqtocmEHFvIcoyv+a5qeLNSHc7lbVXMwik2FiVlLuwgzJ3ywi8xy3gzGL0bapapmqzsK8x/0dWTar6tmq2lpVR2IaBYtc8WYH5Vm2S87BmJ78PqdT8AQwIsQcdD/M6EZhlQkTgob6FOBF4BwROV1EvCKSJOb7E3dldpmI9HdaBfcCr6mZxHSTgNH2e4AyZ7LevUx0JnCliPxYRDxilqr2VdWdmAnTv4lIumPXU0ROrkbuNEwLJF/MMtVfBdk/BixW1auBdzAvBphhjwmOHPGYOaBi4H/VJVQwqvqZulachfh9VtswQ7AcuNTJmzMw8xIBngaudVq4IiIpziR8GpQv9JhVzTMEerQJVTh7BZN3/ZwycFct5E/DDG3sAeJE5G4qtxqPF5ELnJbyzZj8WIhpNarjFxG5EtNzi1pU9RtMnv3BeZfOx1Qcr4fx8jzwexFpISJ9MXOCs4LcXAG8rqoVegBiFva0ca77A78BPnTu4zHKsBAzxRBuwdAVuBapuMKeLiILqn9ivsTMBV4vZgHURMzcawVUdQGmN/GGiATb3yMiCU5D6GzgVcc8DdinqkWOn0trIE+kqUl+ut3+1KlbM4Dfu9zehZlPG+z83sK871c69l9jRtzaOnXm5ZgRsO8AnHc1zUnXyzB18cOO3wWYPLtRzLL/6x3zj1xhTxWz0C8eM0S/QyuvpI3HvKu1pkGUm6puBSYCv8VUIlsxisId/wuYRN+F6QLfSBDOi3cjpiLcjymIb7nsF2Ey5hFMy/0TjvSgpmIq17WO39eouicBphs+1AnrHUzXGTCrMjGLIK5zjG4FhorIFFXdgOnlPYHpfZ4DnKOqJdXEFyluwsiYh6kc5gYsnKGAazALFvZjCvY0l9/OmInh6lCqKG+q+h7wOPCxE8dCx6omBXs+8D5mYnwzZuI+eChpHqZluh8zZ3WBmlVea4G/YSrQ3ZjFBTV5nnpFzDdAM6pwcglmUn4/cB9woaoGFPQUEXG35P+AGa7fjHknHlTV911xJWF6vaGGDUcDq0TkEGaU5F3MewxwIkZRnAbkhRpNcBqFP8JUssHUqOw4780FwE8xZfQyzOKESmVDVf+DWbH3tjgrmTF1yn5Mb202ZvFWYGXgL4B7ReQgZhjulerkqW9C5F8wYfNTRLo4edAFwDF/APNebXH8/MGxO6iquwI/TCPlkKruc+K5H7MgZTkm3W8BJumR1bOnYz4b2Y8Zzj0jUAadPDsPU+/mYfLkPFcdeDvmPf0WoxPOwvTwg/FSzSrrcEhQYyoiOK23F1X1X5GWxVJzxHyzsgLIVtXSatzuAO5Q1Rrt0iDm04nVmEU6ZccsrCXqEJHlwI+dIbLa+v0Kswjr2ToXzBIVOD3NtcDVqvpubf3bHUosR42qlqhqv+oUm8OdmGG0JeEciMj5zhBGC0yr8W2r2GIXVR1cU8UmZgeNds6w5BWYYdj3q/NnaZyIyO2Y7+4+wRkGry1NXrlJxa2q3L+qhoQstURVn1fVXqp6fBXOfo75pm4jZrz+uircRgRbXiJGH8woQR5mDvtCZy69wZDKW5UFflUNIVqOAlV9SFXbqepPXHP2tSIqhiUtFovFYqlLmnzPzWKxWCyxR7RsBApAq1attFu3bpEWw2KxWCwNyJIlS/aqariNv4+KqFJu3bp1Y/HiWn2EbrFYLJZGjohsrt5V7bDDkhaLxWKJOaxys1iiEFXl3VU7KS4L3qTHYrHUBKvcLJYoZPmqVRz36o+Z88Yb1Tu2WCyViKo5t1CUlpaybds2ioqKIi2KpRGRlJREp06diI+v6iCCKGbHUnp7tnMg5znMhvoWi6U2RL1y27ZtG2lpaXTr1g2R4M26LZbKqCq5ubls27aN7t27R1qco8LrMYMq4fcitlgsVRH1w5JFRUVkZmZaxWapMSJCZmZmo+7tq9/Zdcxv59wslqMh6pUbYBWbpdY0+jJTao6vkkqnPlkslprQKJSbxdLk8Dnb6dnt8SyWo8IqtxogItx2223l9w899BDTp0+PnEDVsGDBAv73v1qfi1rO8uXLOeGEExgwYADZ2dnMmRPuFHpLvVFmjr3y1ujABYvFEoxVbjUgMTGRN954g717gw+JPTZUFb+/7hcMHKtya9asGc8//zxr1qzh/fff5+abbyYvL6/uBLRUS2DOzSo3i+XosMqtBsTFxfGzn/2MRx55pJLdnj17mDRpEsOHD2f48OF88YU5WHj69Ok89NBD5e4GDhxITk4OOTk59OnTh6lTpzJw4EC2bt3Kr371KwYOHEhWVlZ5L2nBggWMGzeOCy+8kL59+zJlyhRCneDw+OOP079/f7Kzs7nkkkvIyclhxowZPPLIIwwePJjPPvusShkvv/xyTjjhBHr16sXTTz8NQO/evenVqxcAHTp0oE2bNuzZs6dS3K+++ioDBw5k0KBBnHTSSYBZAHTllVeSlZXFkCFD+PjjjwGYNWsW5513HqeeeirdunXjySef5OGHH2bIkCGMGjWKffvM4b9PP/00w4cPZ9CgQUyaNInDhw9XinfUqFGsWXPklJFx48bF3LZt6iwkifdH6+HtFkt0E/WfAri55+01rN1xoE7D7N8hnT+cM6Bad7/85S/Jzs7mjjvuqGB+0003ccsttzBmzBi2bNnC6aefzrp166oM69tvv+W5555j1KhRvP766yxfvpwVK1awd+9ehg8fXq4oli1bxpo1a+jQoQOjR4/miy++YMyYMRXCuu+++9i0aROJiYnk5eWRkZHBtddeS2pqKrfffjsAl156aVgZV65cycKFCzl06BBDhgxhwoQJdOjQoTz8RYsWUVJSQs+ePSs9x7333sv8+fPp2LFjec/uqaeeQkRYtWoV69ev57TTTuObb74BYPXq1SxbtoyioiKOO+447r//fpYtW8Ytt9zC888/z80338wFF1zANddcA8Dvf/97Zs6cyQ033FAh3smTJ/PKK69wzz33sHPnTnbu3MmwYcOqTPNGh8/03OKwPTeL5WiwPbcakp6eztSpU3n88ccrmP/3v//l+uuvZ/DgwZx77rkcOHCAgoKCKsPq2rUro0aNAuDzzz/nJz/5CV6vl7Zt23LyySfz9ddfAzBixAg6deqEx+Nh8ODB5OTkVAorOzubKVOm8OKLLxIXF7qtUpWMEydOJDk5mVatWjF+/HgWLVpU7m/nzp1cfvnlPPvss3g8lYvK6NGjmTZtGk8//TQ+n6/8eS677DIA+vbtS9euXcuV2/jx40lLS6N169Y0b96cc845B4CsrKzyZ1u9ejVjx44lKyuL2bNnV+ihBbj44ot57bXXAHjllVe48MILq0zvxkig5xZnDyK3WI6KRtVzq0kPqz65+eabGTp0KFdeeWW5md/vZ+HChSQlJVVwGxcXV2E+zf3NVUpKSo3iS0xMLL/2er2UlVWu6N555x0+/fRT3n77bf785z+zatWqSm7CyQiVl8wH7g8cOMCECRP485//XK6Ig5kxYwZfffUV77zzDscffzxLliyp8fN4PJ7ye4/HU/5s06ZNY+7cuQwaNIhZs2axYMGCSuF07NiRzMxMVq5cyZw5c5gxIwYPwfYHem5WuVksR4PtudWCli1bcvHFFzNz5sxys9NOO40nnnii/H758uWAOb5n6dKlACxdupRNmzaFDHPs2LHMmTMHn8/Hnj17+PTTTxkxYkSN5PH7/WzdupXx48dz//33k5+fT0FBAWlpaRw8eLBaGQHmzZtHUVERubm5LFiwgOHDh1NSUsL555/P1KlTq+wVbdy4kZEjR3LvvffSunVrtm7dytixY5k9ezYA33zzDVu2bKFPnz41eh6AgwcP0r59e0pLS8vDCcXkyZN54IEHyM/PJzs7u8bhNxYCPbdEtXNuFsvRYJVbLbntttsqrJp8/PHHWbx4MdnZ2fTv37+8FzFp0iT27dvHgAEDePLJJ+ndu3fI8M4//3yys7MZNGgQP/rRj3jggQdo165djWTx+Xxcdtll5Ys3brzxRjIyMjjnnHN48803yxeUhJMRzLDm+PHjGTVqFHfddRcdOnTglVde4dNPP2XWrFkMHjyYwYMHlyvEu+++m7feeguAX/3qV2RlZTFw4EBOPPFEBg0axC9+8Qv8fj9ZWVlMnjyZWbNmVeixVccf//hHRo4cyejRo+nbt2+5+VtvvcXdd99dfn/hhRfy8ssvc/HFF9c47EaF03NLojjCglgsjRMJtQIvUgwbNkyDV72tW7eOfv36RUii2Gb69OkVFp7EGo257Cx++nqGbX+BYo0j8Z7cSItjsdQrIrJEVet0VZjtuVksUYg4PbdEKaO01K6YtFhqS6NaUGKpW6J5l5Umj2tPyaLCQ8THZ0ROFoulEWJ7bhZLNOI6DaC4sPKH7BaLpWqscrNYohH/kU8ASooORVAQi6VxUu/KTUTOEJENIvKdiNxZ3/FZLDGBa1iypMj23CyW2lKvyk1EvMBTwJlAf+AnItK/PuO0WGIBcQ1LllrlZrHUmvruuY0AvlPV71W1BHgZmFjPcdYLc+fORURYv359WDc5OTkMHDiwXuVYvnw577777lH7D3z03b9/fwYMGMBjjz1Wh9JZ6gxXz6202A5LWiy1pb6VW0dgq+t+m2PW6HjppZcYM2YML730Ukj7UFtj1ZbA/oxVcazKLS4ujr/97W+sXbuWhQsX8tRTT7F27dqjDs9SP7h7bmXFtudmsdSWiC8oEZGfichiEVkc6liVaKCgoIDPP/+cmTNn8vLLL5ebL1iwgLFjx3LuuefSv78ZbS0rK2PKlCn069ePCy+8sPzIlg8//JAhQ4aQlZXFVVddRXGx2XmiW7du/PrXv2bo0KG8+uqrFeINPlKmpKSEu+++mzlz5jB48GDmzJnDoUOHuOqqqxgxYgRDhgxh3rx5gDliZuLEiYwbN45evXpxzz33ANC+fXuGDh0KQFpaGv369WP79u2VnvmTTz4p351kyJAhHDx4EFUNezzPySefzMSJE+nRowd33nkns2fPZsSIEWRlZbFx40YA3n77bUaOHMmQIUM45ZRT2L17d6V4L7nkEt55553y+2nTppVvktykUKvcLJZjob6/c9sOdHbdd3LMylHVfwL/BLNDSZWhvXcn7Kq8MfAx0S4LzryvSifz5s3jjDPOoHfv3mRmZrJkyRKOP/54wOwbuXr1arp3705OTg4bNmxg5syZjB49mquuuoq///3vXH/99UybNo0PP/yQ3r17M3XqVP7xj39w8803A5CZmVm+D6Wb4CNlEhISuPfee1m8eDFPPvkkAL/97W/50Y9+xDPPPENeXh4jRozglFNOAcxxNatXr6ZZs2YMHz6cCRMmVDgaJicnh2XLljFy5MhKcT/00EM89dRTjB49moKCApKSknjjjTfCHs+zYsUK1q1bR8uWLenRowdXX301ixYt4rHHHuOJJ57g0UcfZcyYMSxcuBAR4V//+hcPPPAAf/vb3yrEGzjOZsKECZSUlPDhhx/yj3/8o4aZGTuI+vCr4BHFV1IYaXEslkZHfffcvgZ6iUh3EUkALgHequc465yXXnqJSy65BDA9C/fQ5IgRI+jevXv5fefOnRk9ejQAl112GZ9//jkbNmyge/fu5ftLXnHFFXz66aflfiZPnhwy3lBHygTzwQcfcN999zF48GDGjRtHUVERW7ZsAeDUU08lMzOT5ORkLrjgAj7//PNyfwUFBUyaNIlHH32U9PT0kHHfeuutPP744+Tl5REXF1fl8TzDhw+nffv2JCYm0rNnT0477TSg4nE227Zt4/TTTycrK4sHH3ww5HE2Z555Jh9//DHFxcW89957nHTSSSQnJ4d89lhG1MdhzCkO/hLbc7NYaku99txUtUxErgfmA17gGVWtXKPVlGp6WPXBvn37+Oijj1i1ahUigs/nQ0R48MEHgcrH14Q7QqYqwh2BU5MjZVSV119/vdLO+1999VVYWUpLS5k0aRJTpkzhggsuCBn3nXfeyYQJE3j33XcZPXo08+fPr/IZanKczQ033MCtt97Kueeey4IFC0LukJKUlMS4ceOYP38+c+bMKW9UNDXE7+OwJJNKIX7bc7NYak29z7mp6ruq2ltVe6rqn+s7vrrmtdde4/LLL2fz5s3k5OSwdetWunfvzmeffRbS/ZYtW/jyyy8B+Pe//82YMWPo06cPOTk5fPfddwC88MILnHzyydXGHepImeDjbE4//XSeeOIJAhtgL1u2rNzuP//5D/v27aOwsJC5c+cyevRoVJWf/vSn9OvXj1tvvbXKuLOysvj1r3/N8OHDWb9+/TEdzwOQn59Px45mPdFzzz0X1t3kyZN59tln+eyzzzjjjDNqHH4sIeqjWEzPTUutcrNYakvEF5REOy+99BLnn39+BbNJkyaFXTXZp08fnnrqKfr168f+/fu57rrrSEpK4tlnn+Wiiy4iKysLj8fDtddeW23coY6UGT9+PGvXri1fUHLXXXdRWlpKdnY2AwYM4K677ir3P2LECCZNmkR2djaTJk1i2LBhfPHFF7zwwgt89NFH5QtGAqsvZ8yYUX4czqOPPsrAgQPJzs4mPj6eM88885iO5wGzl+VFF13E8ccfT6tWrcrNFy9ezNVXX11+f9ppp/HJJ59wyimnkJCQUOPwYwlRH0WeZgBoaVE1ri0WSzD2yJsYZdasWRUWnjRFGnPZWfOXsYj66V+6mv91vIoTr3kk0iJZLPWGPfLGYmkieNSHX+Io1AQosz03i6W22CNvYpRp06Yxbdq0SIthOUo86qPUk0SxJCBWuVkstaZR9NyiaejU0jho7GXGgw+/J44SEvFY5Wax1JqoV25JSUnk5uY2+srK0nCoKrm5uSQlJUValKPGo2WoeCnxJODxWeVmsdSWqB+W7NSpE9u2bSNat+ayRCdJSUl06tQp0mIcNXFahl/iKJVEPL7iSItjsTQ6ol65xcfHV9gBxGJpCnjUDEuWeRKJ89uem8VSW6J+WNJiaYrEUYZKvKPcbM/NYqktVrlZLFGIR32ox2uVm8VylFjlZrFEIXH4UE88fm8SCWqVm8VSW6xys1iiEC9lqMTh8yYSb3tuFkutifoFJRZLUyQOH3jj8GsyiZREWhyLpdFhe24WSxTiVR8qcWhcEglqlZvFUltsz81iiULMnFsciIckSlDVGp0NaLFYDLbnZrFEG6rEiw+88Wh8MolSSnFpWaSlslgaFVa5WSxRhvpKzV9PPBKfDEBR4aFIimSxNDqscrNYooyyMqPcxOMtV27FhYcjKZLF0uiwys1iiTJ8Zc4CEm88ngSz+XNJYUEEJbJYGh9WuVksUUZpqVFu4onHk9AMgJJi23OzWGqDVW4WS5RRVuIoN2883gQzLFlqe24WS62wys1iiTKKHeXmjU/Am5QKQFmRXVBisdQGq9wsliijtLgQAG98It5ER7kV256bxVIbrHKzWKKMUqeXJgnNiHd6bn7bc7NYaoVVbhZLlFFadBAAb2Iq8cmOciuxys1iqQ1WuVksUYbPWRnpSWxGYrM0x8wqN4ulNljlZrFEGQFFFpeYUq7c1PbcLJZaYZWbxRJl+J2emzcphWYpAeVmv3OzWGqDVW4WS5RR5vTckpulEp+QSIl6wSo3i6VWWOVmsUQZgQ+2U5xeW5Ek4Sm1w5IWS22wys1iiTL8Ts8tNa05AEUkImWFkRTJYml0WOVmsUQZUrSfIo0nIcnsK1ksSXjL7LCkxVIbrHKzWKKM+OL95Es6OCdvl3iS8fpsz81iqQ1WuVksUUZ88X4OetLL70s8ScRb5Wax1IpjUm4iMl1EtovIcud3lsvuNyLynYhsEJHTj11Ui6VpkFCaR1F88/L7Mm8y8b6iCEpksTQ+4uogjEdU9SG3gYj0By4BBgAdgP+KSG9V9dVBfBZLTNOidC/bmw8uvy/zJpNWsjtyAlksjZD6GpacCLysqsWqugn4DhhRT3FZLDGDv7SYNrqXwtQu5Wa+uGYk+m3PzWKpDXWh3K4XkZUi8oyItHDMOgJbXW62OWYWi6UKdm3+Bo8o8a16lJv545NJxCo3i6U2VKvcROS/IrI6xG8i8A+gJzAY2An8rbYCiMjPRGSxiCzes2dPbb1bLDHF7s3rAGjesXe5mcY1I1mLIyWSxdIoqXbOTVVPqUlAIvI08H/O7Xags8u6k2MWKvx/Av8EGDZsmNYkLoslVinduhS/Cu17DTlimJBCspRQVlZGXFxdTJNbLLHPsa6WbO+6PR9Y7Vy/BVwiIoki0h3oBSw6lrgslqZA2g9f872nC81btC43kwTzMffhwwcjJZbF0ug41mbgAyIyGFAgB/g5gKquEZFXgLVAGfBLu1LSYqka9ZXS5fBqlmacwXEuc0lIAaD40EFIbxHas8ViqcAxKTdVvbwKuz8Dfz6W8C2WpsSODYvpSBHSdVQFc2+iUW5FhwsiIZbF0iixO5RYLFHCD6s/AqDjoB9XMPeUKzc7LGmx1BQ7O22xRAnerQvZThu6de9VwTwuKRU4chTOsZD7ww727/iOsrIyUlu0o1XHHiQlJR1zuBZLtGGVm8USDajS+eByNqSOpKOzYXKA+GTTcystOjrltnPbJja98zDddn1AB91FpsvOp8J2Txv2JnTicGo3/C17kpTRBk98MuKNQ8qKzHE7pUWIrxjKSlB/GfhKwV8Kfh+qfvwKflX8Kpgp+ACuwaEKj+W6kYrXErATtysBBBFQ5687HHH/F/AnJu645u0YOOH6ivFYYh6r3CyWKGD3ptW05QC+zqMq2SUkm0NLy2qp3IoKD7PshTsZsv3ftMbHmuTjyel4KUltexIXF09J/g/49uUQl7+J5oc30zP3XVJza75Bs1+FMjxohdmNI4pNKlxXRGroziN183XQll6j6dJnaJ2EZWkcWOVmsUQBO1Z+TFugzcBxlewCys1XC+W29ZvllL08lRP8m/k64zQ6nX8vg7r1q9qTKvl7t7Mvdw++kkL8ZaVIfDISn4QnIRlPfBLeuCQ88fHExcXjjYsjziN4PUKcx4PXufZIeXBHgq4QjVYw8ysoWtF9kJk6/gJO1HgiYBKwU1Uov4ZdOWvIevMUfli9wCq3JoZVbhZLFFC2+SvySKVH38oVcGIzM+fmc07oro71X75Dh/nXUIaXVeNmMnzchTUTQoTmrTvRvHWnGstdTXDhbOok/JqQOfB49r6ZgW75ssHitEQHMbdacu2X71FaYrcqsjQuWuWvZHNyf7zeyq9kUjNztpuWVK/clnwwmx7vX84+T0sKp35AVk0VW4zi8XrYkjaEHvlf4S8ri7Q4lgYkpnpuO3I20Ov9Kez8Tzt2Z/+CfqdMJTU1vXqP4VDFV1rM4aIiysp8oD78vjLU7wNfGf4QXirPLYQwkMAkeEXbqua7JciyUjx12Uo+qon38H60qmmTOo6rJvHUbhan/tPv8MF8uvq28nXbs0LaJ6eYYUktOVxlOCs+mkPWFzeQE9+TNte9S0Zm6yrdNxV8fc8m8+uPWf3V+wwcfXadhFlSUsrhvB84fLiAoqJCKCtCfCWICCoeEC94vIjzw+PF6/Ei4sHjEcTjxePxOtcePB4vXvGA14OIB7MqpnblSKGal60Kv0fpD/HQPKPl0fmtZ2JKubXv0ovlY56kxZd/Yfjy31G8bDprE/txMLU7vtR2eBOSKVMP4i/BW3oIT/EBvKUFxJUVEFd2mHjfYRJ9h0nSwyRrIclaRJz4SYv0g1limhYAAik9Twxp741PwqcCVfTcVn86l76f/JItcd1od/17pGe0qh9hGyFZ4y7m0Ne/o2jhM1Ab5aZK4c51bFn9JXmbVxK//ztaFG8j3befFnqADFEy6k3qxsEqfw+y7l0WaTFCElPKTTwehpx6KfrjS9jw9fvsWzKPzH1L6bPvIzL2VfwAtkw9FNCMQ9KMIk8yxZ5mHPKmkhfflrK4FPzxKWhCKsQ3Iz4+HvHGgXhNq8zjNS0zqdj3Cm77aLBJVY2joJaT1tQuRDDlDb6jao3V3o8chZ+j9nfUi+cqeqxRo/goW7NH0xf1JKUx9MQwFa8IhZKElIbuua378l16fngN270daXWdVWzBJKWk82XbCxix6yW+W/k/jssO3YhAlQNbV7Fz6Xuw+Qva5i0nQ/Ppg6kvdng7kJvYiT3J2WhKG7RZKzxJKcQlJCFxifgkHgBRP6jP/PWXoepHAp9M+BXUD+rH7/c714qqzyySwdwLfkQVbaiRDTiqUZTihOjstUGMKbcA4vHQZ+RZMPLIME9pcSGFxUXEC8TFx+ONb0aG19PkW16WxkERSXjKKiu3b77+D13fn8Zub1vSf/4uGa3aRkC66GfAxX8g94n3SXljKuuL/k6fYaegCjs3r2PX2v8h339El/0LaaX7SAe2aBuWJw+nqMMIMvuOoe+AwXRJSaFLtTFZooWYVG6hiE9MJj4xOdJiWCxHRbEnEW9ZxW/Q1i3+mM7/dzl7PZk0u/pdWrW15wGHIz2zHXvOf57mb15G33cvovCdBLz46ShldATyNYX1zY5nRaeTaJl1Ov36DaBLvDfSYluOgSaj3CyWxkyJJOP1HVFu6/73f3SafzX5nnQSfvoObTrYPkV19Bw0loLuy/nqP8+jP6xDPV48rY6jZc9hdBswipHx8ZEW0VKHWOVmsTQCDnvTSCndD8BXbz7BkOV/YLu3IylXzaVNpx4Rlq7xkJregpGTboq0GJYGwCo3i6URcKB5X07Y8wrLHzyLkYe+YG3SIDr+/HWat7TL/S2WUMTcR9wWSyySOnQSZeqhX8Ei/tflWnrf/qFVbBZLFdiem8XSCMg64Qx2dFhEYnIKJ7bpEGlxLJaoxyo3i6WR0KFrr+odWSwWwA5LWiwWiyUGscrNYrFYLDGHHPWGmfWAiOwBNtdBUK2AvXUQTkPQmGSFxiWvlbX+aEzyNiZZoXHJW1eydlXVOl0hFVXKra4QkcWqOizSctSExiQrNC55raz1R2OStzHJCo1L3miW1Q5LWiwWiyXmsMrNYrFYLDFHrCq3f0ZagFrQmGSFxiWvlbX+aEzyNiZZoXHJG7WyxuScm8VisViaNrHac7NYLBZLE8YqN4vFYrHEHDGl3ETkDBHZICLficidkZYnGBHpLCIfi8haEVkjIjc55tNFZLuILHd+Z1UXVkMgIjkissqRabFj1lJE/iMi3zp/W0SBnH1cabdcRA6IyM3RlK4i8oyI/CAiq11mIdNSDI875XiliAyNAlkfFJH1jjxvikiGY95NRApdaTyjIWWtQt6weS8iv3HSdoOInB4Fss5xyZkjIssd82hI23B1VlSW3Qqoakz8AC+wEegBJAArgP6RlitIxvbAUOc6DfgG6A9MB26PtHwh5M0BWgWZPQDc6VzfCdwfaTlDlINdQNdoSlfgJGAosLq6tATOAt4DBBgFfBUFsp4GxDnX97tk7eZ2F0VpGzLvnfdtBZAIdHfqDG8kZQ2y/xtwdxSlbbg6KyrLrvsXSz23EcB3qvq9qpYALwMTIyxTBVR1p6ouda4PAuuAjpGVqtZMBJ5zrp8DzoucKCH5MbBRVetip5s6Q1U/BfYFGYdLy4nA82pYCGSISPsGEZTQsqrqB6pa5twuBDo1lDzVESZtwzEReFlVi1V1E/Adpu5oEKqSVUQEuBh4qaHkqY4q6qyoLLtuYkm5dQS2uu63EcWKQ0S6AUOArxyj651u/DPRMNTnoMAHIrJERH7mmLVV1Z3O9S6gbWREC8slVKwcojFdA4RLy2gvy1dhWucBuovIMhH5RETGRkqoEITK+2hO27HAblX91mUWNWkbVGdFfdmNJeXWaBCRVOB14GZVPQD8A+gJDAZ2YoYmooExqjoUOBP4pYic5LZUMw4RNd+SiEgCcC7wqmMUrelaiWhLy3CIyO+AMmC2Y7QT6KKqQ4BbgX+LSHqk5HPRaPLexU+o2DCLmrQNUWeVE61lN5aU23ags+u+k2MWVYhIPKaQzFbVNwBUdbeq+lTVDzxNAw6TVIWqbnf+/gC8iZFrd2CYwfn7Q+QkrMSZwFJV3Q3Rm64uwqVlVJZlEZkGnA1McSo0nOG9XOd6CWYOq3fEhHSoIu+jNW3jgAuAOQGzaEnbUHUWjaDsxpJy+xroJSLdnRb8JcBbEZapAs6Y+kxgnao+7DJ3j0mfD6wO9tvQiEiKiKQFrjELClZj0vQKx9kVwLzISBiSCi3faEzXIMKl5VvAVGfl2Sgg3zUEFBFE5AzgDuBcVT3sMm8tIl7nugfQC/g+MlIeoYq8fwu4REQSRaQ7Rt5FDS1fCE4B1qvqtoBBNKRtuDqLxlB2I7WSpT5+mJU632BaOL+LtDwh5BuD6b6vBJY7v7OAF4BVjvlbQPsokLUHZlXZCmBNID2BTOBD4Fvgv0DLSMvqyJUC5ALNXWZRk64YpbsTKMXMQ/w0XFpiVpo95ZTjVcCwKJD1O8xcSqDcznDcTnLKx3JgKXBOlKRt2LwHfuek7QbgzEjL6pjPAq4NchsNaRuuzorKsuv+2e23LBaLxRJzxNKwpMVisVgsgFVuFovFYolBrHKzWCwWS8xhlZvFYrFYYg6r3CwWi8USc1jlZrFYLJaYwyo3i8ViscQc/x8urf4jXQ2PhQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 4)" + "We will need an object that can use these objective definitions to calculate the scores from a protocol response. This is called a ScoreCalculator." ] }, { "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjpklEQVR4nO2deXxVxdn4v8/NHkhYwr6DspOwBlBAwSJIraLiQosi+rO+WrWlVqtdtGhrX0WtK69Ui+JCFVfEuouiYkUEQXZQNCwCyhayb/fO74+ZxJube7OQkHuTPN8Pl5wzM2fmOTPPmWe2c0aMMSiKoihKU8ATbgEURVEUpb5Qo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJkUKOnKIqiNBkixuiJSA8RMSISHW5ZGjsiMktEVtRTWgki8oaIHBGR39dHmgHpZ4jIxHpIZ7mIXBHCT3U7DFSW7/VZJi6dE0P41duz2BgQkd+7uuRtEUk8ljgixugpx4aIzBGRYhHJ8fvVu3GphIlAGtDVGDO31NEZox5hkyqCcGU4pwbhfyEiO0UkV0SWiEjrSsIOEZE1IpLn/g7x82spIk+KyA/uNyfItR+LyFER2SMitwT4/0REtrq4PxCR7kHSby0iB/wrdhEZLSLvishh5/eCiHSswf03mZeLXWNqfDXDiojcJSKH3O8uEZFKwlepRyLSW0QKROQZP7c/BtQ3+SLiE5E2zv8eEflKRLKdfswMiPMsEdnorv2viAwI8O8lIv9x1x8UkbJ6w9UhXYB+wKTq5EsgdWb0tBUbVhYbY5r7/eZWfUm90RrIMMbkhFuQ2uAqlLA3EkVkIPBP4BKgPZAH/F+IsLHAq8AzQCvgSeBV5w5wH5AI9ABGApeIyGV+Ufwb+AhbhqcCvxKRs13cbYCXgVuc/2pgcRAx7gK2BLi1Ah516XYHsoEnqnH7EUkE1X1XAucAg7ENzbOA/wkWsAZ6NA/43N/BGPN3//oGW8bLjTEHXZBcl3YL4FLgARE52aXbG1gEXAW0BF4DlpbmodPNd4H3gQ5YA1dmcF36ucC3QEo18qQCtXqIXWv9JhFZD+SKSLRrxf1XRDJF5Ev/VoprtfyviKwSkSwReTVUK1VELhORLc7afyMi/xPgP1VE1rl4dojIGc69hYgsEJF9IvKdiPxNRKKquI8TROR91zo6KCKLRKSln99hERnmzju51ul4d362iGxy97tcRPoH5M8NIrJebGt5sYjE1zyna46I3OzyJVtENovIuSHCiYjcJ7alnyUiG0RkkPOLc622XSLyvYjMF5GEGooSDfiqkDVFRF5z6X/uysy/Z2BE5CrXeswUkXkitgVbWdn5ke7y4IiIPFFaBiLSyrUoDzi//4hIF790l4vIHSLyCbZS6FXFvXYXkU9cnr/jDIM/M1xeHhSRP1URVyhmAK8ZYz5yDYlbgPNEJClI2PHY/L/fGFNojHkQEOA0538WMNcYk2eMyQAWAJf7Xd8DWGSM8RpjdgArgIHO7zxgkzHmBWNMATAHGCwi/UovdhXdIAIMmjHmTXddljEmD3gYGHMsmSEiPUXkI5fn7zndeCZE2GnumRzk53y5iOx19cUNfmFHisinTt/2icjD8mNjoVQnrxGRr4CvqiHqxGD66xffPU4HvxWRKTXMhlIuBe41xuwxxnwH3AvMChG2Sj0SkelAJrAsVILuPmZiG1QAGGP+YozZaozxGWM+Az4GTnLek4GPjTErjDElWIPZGduowsm71xjzD2NMrjGmwBizPkjSPqxu1xxjzDH/gAxgHdAVSHDCHwJ+ijWop7vzti78cuA77IPQDHgJeMb59QAMEO3OzwROwD6kp2IrnWHObyRw1MXvcen2c36vYFswzYB2wCrgf6q4jxNdXHFAW2zr9n4//18Cm7Gt4reBe5x7H2yr5nQgBvg98DUQ65c/q4BO2NbwFuCqEDKMxSpYqN/YENfNKc3DAPcLXLoe4CInZ0fnNwtY4Y4nA2uwrS4B+vuFuw9Y6mRPwrbK/rcG+hEDPB1MvoBwz7lfIjAA2F0qn/M3wH+cjN2AA8AZ1Sy7DGAjVkdbA58Af3N+KcA0l24S8AKwxO/a5cAubEUfDcRUcg/LgR1OJxLc+Z0Buv2Y8xsMFAL9Q8RVWXm/CtwU4JYDDA8S9rfAmwFu/wF+544PAiP9/P4EHPE7/ztwpyvHvsAeIN35PQA8EhD3RmCaO44CvgCG++tbiHuaDaw8xjroU+AeIBb7DGURpE4BLsM+mycG+D2LrStSnV5NdP7DgdHu2h7YZ3d2gE6+63QqoQoZK9PfWUAxto6JAq4G9gISqo6oJJ2jwCi/8xFA9rHoEZAMbMf2tOYQ4hkGTnHXNQ/hnwDs87vfa4E3/PyjgALgN+78cWyd8abTz+VAapB4n3RlF1tjnTkWRfNLOAO43O/8JuDpgDBvA5e64+W4isCdDwCK3I2XKWiItJb4Zcw/gfuChGmPrUwS/Nx+DnxQw/s6B1gb4LYU2ACsB+Kc2y3A835hPFijPt4vfy72858LzK9NngeRdY7Lw0y/X6cg4dYBU93xLH40eqc55R4NePzCC9ZQnuDndhLwbTXlGoJ9mL/HVTQhwkW5cH393P5GRaM31u/8eeDm6pSdK4Or/M5/CuyoROYjfufLgdureb/LgT/7nf8KeMsdl+p2Fz//VcD0YyjvZQQ0nPx1LsD9FuC5ALdFwBx3/Ax2iDIJ23jYART6hT0ZayhKnPy3+fktwO9Zdm6fALPc8W9xRpFKjB52GO4wMO4Y8qKbky3Rz+0ZKhq9G7CNVv/8L/Xr5+c2F1gQIq3ZwCsBOnlaNeUMqb8ub77280t04TscQ354A+6nt4srmAGtVI+wjZqb3PEcQhu9BcDCSmR6EnirVAbsXFwudhQi1umoD/iD838HWx9Mcf43At8QYNywHaL9LuyImuRTXcxR7PY77g5c4LrwmSKSiW2ddAwRfie2FRk4DISITBGRlW5oMRNbWZWG64p9QAPp7uLb55f+P7E9vpCISHsReU7scGgW9sEJlOkxbA/1IWNMoXPr5O4BAGOMz91fZ7/r9vsd5wHNK5PlGHneGNPS77dXRGaKHf4tzYdBBMlnY8z72OGlecAPIvKoiCRje02JwBq/ON5y7lVijFmHrUw/xVYYoWiLbU3768XuIOGC5mM1yy5Q5zq5axNF5J9iJ/OzsL3EllJ+ODyYLKGoqqzrQhdysK1wf5Kx82I1DftrIB87PPcqtuW8B+wCFGx53w7EY5+5ySLyq6riFpFOLu5Kh3DFrmh8E9uY/biysCHoBBw2doi0lGDldSMwzxizJ4hfKN3o44a79zvd+DuV61VVVFb2ZX5+91IXupEM5BhnJaoIWxo+W+xip4nYkZ6QiF09eQF+Q5sB/ndj650LS2UwxmzFDsM+jO0BtsE2SErLJh/bQHrTGFOE7cWnYEeg/PkNdq4x2RizujI5A6kLo+efobuxPT3/CriZMeZOvzBd/Y67YS31QT83RCQOO/R5D9DeGNMSeAPb+yhN54QgsuzG9vTa+KWfbIwZGCSsP39395FqjEkGLvZLCxFpDtyPbdXMkR/nIfdiDW1pOHH3910V6VVARMZJ+RVRgb9xNYirO9ZIXwukuPzb6H9P/hhjHjTGDMf2vPtgK4mDWAUc6JeXLYyduK4Wxs71vOniDcUBbGu9i59b1xBhg1Fp2QWJrxu23AB+hx22G+WuPcW5+18frMIIJ5uww6OAXemGHdrdHiJsWsD8UZpzxxhz2BgzwxjTwT0jHmwPFOz8pdcY85QxpsQZjOewjc9gcjTDPpObsNMPHYHNIrIf22sY6QxIlAvfHXgP+Ksx5uljzIt9QGspv3Q9mO5MAv4sItOC+IXSjUeArUBvpxt/pKJeRbRuuONN1QkboEfjsT3hXa78bgCmicgXAXGci+2lLw+MXERuw/bWJhljsvz9jDEvGmMGGWNSgL+4tEoXy6ynevnaHzuSkl+NsOWo69VozwBnichkEYkSkXgRGe+/OAC4WEQGOEW9HXjRGOMNiCcWWwAHgBI3seu/PHUBcJnYJdMeEeksIv2MMfuw3eN7RSTZ+Z0gIqdWIXcStuVzVEQ6Yyt9fx4AVhtjrgBeB+Y79+eBM50cMdhKtBD4b1UZFYgx5mNTfgVm4K8mLeFmWMU5AHZRELbFVQERSReRUU7+XOz4us/1Wh8D7hORdi5sZxGZ7HetkaqXUxdiyzMoruxfxjYmEsUuhJgZKnwQqio7gGtEpItrrPyJH1cZJmENe6bz+0sN0g0Xi7DP2DhnaG4HXjbGBOvpLccOef1a7KKka537+1C2CCjFPatTsKv//ubCbLdB5BfuOeqAnRsuXVTwCjBI7OKQeOBWYL1ryb+JrciGuN+twFpgiDHG68rpfeBhY0zps1SG2HfXMqrKCGPMTuyq0TkiEisiJ2EX5wSyCTgDmCdu9akftzi9G4id9/PXjSwgx+nk1VXJEwE8BVzvntNO2PpoYYiwlenRo9gGzBD3m4+t9yYHxHEp8FRgT1JE/gD8Ajs/eigwYREZ7nSurUtrqdMbsDZktIhMdA2k2dgGeOAK4Bhs3VJj6tToGWN2A1OxraID2J7XjQHpPI0tiP3YYZNfB4kn27k/DxzBZuBSP/9VWAW9Dzt5+yE/9rhmYivZze7aFyk/vBqM24BhLq7XsZUwYFeJYh+YUqW/HhgmIjOMMduwPYuHsAVzFnCW65aHDWPMZuzKrU+xc2qp2PmWYCRjjdsR7PDOIeBu53cTdk5npRvieQ/bM0JEumKHyTZUIY6PqvXsWuzy5v1Y/XiW6it0yLLz49/YxtA32GHx0or9fuxE+0FgJXY4L+xU1rM3xmzCLvdeBPyArZx/5XftmyLyRxe2CDvHORM713s5cI6ffg7Hll828L/ADBc/rnV+HnZu7gh2TngjLu+MMQewi4DucP6jgOnOr9AYs7/0hy2bYncMcAW2JznHfzTD7za7ElpfA5mBnWs+5GRbTBDdMcZ8CfwMeEzKr478EKvjy7AL1N5x7jdg651s7PMR7HWMeqV0NKiSIP/ELjbbgC2r151b6fVlelWZHhm7mte//HKAAlfmpXF1xq4HeCqIHH/H9pq/9ivfP/r5P4DVx21Y3fllqYdfnTrf+U0Fzg5Sp0ZRxarwUIgJOtx7fBCR5dgJ0X/VW6LKcUFELsYOff6hinCTsK23fsaYw9WM+y7sRP6ltZdUaWiIyDvYeb7A1n11rl0MbDXGNIReu3IMiH0laTNwhTHmjZpeH/aXbZWGiTHmmaoMnmM5dmn3JvF7D8ofEeknImliGQn8P+zwmdIEMcZMqq7Bc8PzJ7gh2DOwPYMlx1VAJWy4OmQrtoce8v3ByoiULwkcd0RkPrbbHMgzxpir6luepoIblphRRbAk7JBmJ+xw7L3Y1YQRRSVDS1OOcfWhUns6YIe0U7ArAK82xqytTwHckOGbwfxqsvBLqRpjzD3YBY7HTL0ObyqKoihKONHhTUVRFKXJEFHDm23atDE9evQItxiKoihKPbJmzZqDxphqffiitkSU0evRowerV9fo5XpFURSlgSMiO6sOVTfo8KaiKIrSZFCjpygRjM+nC80UpS5Ro6coEcqGjV/y4e0TWfpUpd/9VRSlBkTUnF4wiouL2bNnDwUFBeEWRWlAxMfH06VLF2JiYsItyjGT9fqtTGA1hTvWsWfvRXTp1CncIilKgyfijd6ePXtISkqiR48elP9YvKIExxjDoUOH2LNnDz179gy3OMdEVlYmw/M+YWdCP7oXbCXj05foMu26cIulKA2eiB/eLCgoICUlRQ2eUm1EhJSUlAY9OrBz46fESzFZ6bPJJhF2rQy3SIrSKIh4oweowVNqTEPXmewdnwHQJfUUdiYMpFN2VZtZKIpSHRqE0VOUpkbs92vZJ21p1a4zOa3608W7h6KisO5YpSiNAjV61UBE+N3vfld2fs899zBnzpzwCVQFy5cv57//rfE+tuU444wzaNmyJT/72c/qSCqlJrTJ/ZofEvsAENO+L7HiZe+3Nd5pR1GUANToVYO4uDhefvllDh48WKfxGmPw+Y5pH8RKqQujd+ONN/L000/XkURKTSguLqajbz9FLewinBZd7ab3hzI2hlMsRWkUqNGrBtHR0Vx55ZXcd1/F96UOHDjAtGnTSE9PJz09nU8+sRs+z5kzh3vu+XEHjEGDBpGRkUFGRgZ9+/Zl5syZDBo0iN27d3PjjTcyaNAgUlNTWbzYbtC8fPlyxo8fz/nnn0+/fv2YMWMGwXbEePDBBxkwYABpaWlMnz6djIwM5s+fz3333ceQIUP4+OOPK5Xxkksu4aSTTqJ379489thjZfH+5Cc/ISkpqdJ8eeGFFxg0aBCDBw/mlFNOAezCo8suu4zU1FSGDh3KBx98AMDChQs555xzOP300+nRowcPP/ww//jHPxg6dCijR4/m8GG7v+xjjz1Geno6gwcPZtq0aeTl5VVId/To0WzatKnsfPz48Y3q83U/7PmGOClBUk4EoNOJqQDk79OenqLUloh/ZcGf217bxOa9WXUa54BOyfzlrIFVhrvmmmtIS0vj97//fTn33/zmN/z2t79l7Nix7Nq1i8mTJ7NlS+WV01dffcWTTz7J6NGjeemll1i3bh1ffvklBw8eJD09vcyArF27lk2bNtGpUyfGjBnDJ598wtixY8vFdeedd/Ltt98SFxdHZmYmLVu25KqrrqJ58+bccIPds/UXv/hFSBnXr1/PypUryc3NZejQoZx55pl0qub7YLfffjtvv/02nTt3JjMzE4B58+YhImzYsIGtW7cyadIktm/fDsDGjRtZu3YtBQUFnHjiidx1112sXbuW3/72tzz11FPMnj2b8847j1/+8pcA/PnPf2bBggVcd135pfoXXXQRzz//PLfddhv79u1j3759jBgxoloyNwQO795KZyChgx3eTExO4TDJRGV+G17BFKURUOuenohcJyJbRWSTiMx1bqeLyBoR2eD+nlZ7UcNLcnIyM2fO5MEHHyzn/t5773HttdcyZMgQzj77bLKyssjJCbXXqKV79+6MHj0agBUrVvDzn/+cqKgo2rdvz6mnnsrnn38OwMiRI+nSpQsej4chQ4aQkZFRIa60tDRmzJjBM888Q3R08DZMZTJOnTqVhIQE2rRpw4QJE1i1alW182TMmDHMmjWLxx57DK/XW3Y/F19s9+rt168f3bt3LzN6EyZMICkpibZt29KiRQvOOussAFJTU8vubePGjYwbN47U1FQWLVpUrkdXyoUXXsiLL74IwPPPP8/5559fbZkbAvn7bX617tavzO1wdHsS8veFSyRFaTTUqqcnIhOAqcBgY0yhiLRzXgeBs4wxe0VkEPA20Ll2olKtHtnxZPbs2QwbNozLLruszM3n87Fy5Uri4+PLhY2Oji43X+f/zlizZs2qlV5cXFzZcVRUFCUlJRXCvP7663z00Ue89tpr3HHHHWzYUHFpeygZoeLS/pos9Z8/fz6fffYZr7/+OsOHD2fNmjWVhve/H4/HU3bu8XjK7m3WrFksWbKEwYMHs3DhQpYvX14hns6dO5OSksL69etZvHgx8+fPr7bMDQFf5i6KTBTtOvUoc8uJ70jL3B3hE0pRGgm17eldDdxpjCkEMMb84P6uNcbsdWE2AQkiEhcijgZD69atufDCC1mwYEGZ26RJk3jooYfKztetWwfYbZK++OILAL744gu+/Tb40NS4ceNYvHgxXq+XAwcO8NFHHzFy5MhqyePz+di9ezcTJkzgrrvu4ujRo+Tk5JCUlER2dnaVMgK8+uqrFBQUcOjQIZYvX056enq10gbYsWMHo0aN4vbbb6dt27bs3r2bcePGsWjRIgC2b9/Orl276Nu3b7XjzM7OpmPHjhQXF5fFE4yLLrqIuXPncvToUdLS0qodf0PAk72PQ54UoqKiytyKmnehve8AXm/dL3xSlKZEbY1eH2CciHwmIh+KSLAacxrwRalhDERErhSR1SKy+sCBA7UU5/jzu9/9rtwqzgcffJDVq1eTlpbGgAEDynod06ZN4/DhwwwcOJCHH36YPn36BI3v3HPPJS0tjcGDB3Paaacxd+5cOnToUC1ZvF4vF198cdmikV//+te0bNmSs846i1deeaVsIUsoGcEOj06YMIHRo0dzyy23lM3njRs3jgsuuIBly5bRpUsX3n77bQBuvfVWli5dCtgVnqmpqQwaNIiTTz6ZwYMH86tf/Qqfz0dqaioXXXQRCxcuLNfDq4q//vWvjBo1ijFjxtCv34/De0uXLuXWW28tOz///PN57rnnuPDCC6sdd0MhoeB7smLK76cpLbuQIEUcOqhDnIpSGyTYisByAUTeA4LVwn8C7gA+AH4NpAOLgV7GRSoiA4GlwCRjTJVjMyNGjDCBq/C2bNlC//79q74TpcbMmTOn3IKXxkZD1Z1dt/XjUFJ/hl7/Spnb+veeIW3FNWw5+zX6DzsljNIpSt0jImuMMfWyGq3KOT1jzMRQfiJyNfCyM3KrRMQHtAEOiEgX4BVgZnUMnqIoYHw+2voOsT+xfDszqUMvAHK//wZQo6cox0ptX1lYAkwAPhCRPkAscFBEWgKvAzcbYz6pZRrKcSKSvyrTVDl65CAtpQiT1LGce5vOJwBQdGhXOMRSlEZDbef0Hgd6ichG4DngUtfruxY4EbhVRNa5X7vKIlIUBY7szwAgulX5xc5JLduRb2Ih67swSKUojYda9fSMMUXAxUHc/wb8rTZxK0pTJPeg7cklpHQr7yHCwai2xOXuDXKVoijVRT9DpigRRMERuzozuU3F11qPxrSjeeH39S2SojQq1OgpSgRRlGVf22ndrmMFv/yEjrQqifzXehQlklGjV02WLFmCiLB169aQYTIyMhg0aNBxlWPdunW88cYbtYrj8ssvp127dsddVqXmmJyDFJoYEpu3rODnTepEG3OEosKgr7wqilIN1OhVk2effZaxY8fy7LPPBvUP9omwmlL6/crKqAujN2vWLN56661axaEcH6IKDnHUkwxBPgfnadkFjxgOucUuiqLUHDV61SAnJ4cVK1awYMECnnvuuTL35cuXM27cOM4++2wGDBgAWOM3Y8YM+vfvz/nnn1+2Nc6yZcsYOnQoqampXH755RS61nqPHj246aabGDZsGC+88EK5dAO37ikqKuLWW29l8eLFDBkyhMWLF5Obm8vll1/OyJEjGTp0KK+++ipgt/KZOnUq48ePp3fv3tx2221l8Z5yyim0bt260nv+8MMPGTJkCEOGDGHo0KFkZ2djjAm5DdKpp57K1KlT6dWrFzfffDOLFi1i5MiRpKamsmOHfU3ztddeY9SoUQwdOpSJEyfy/fcV56emT5/O66+/XnY+a9asso9LNwXiio6QE9UyqF+8W9xyVI2eohwzDWprId68GfZX/KByreiQClPurDTIq6++yhlnnEGfPn1ISUlhzZo1DB8+HLDf1dy4cSM9e/YkIyODbdu2sWDBAsaMGcPll1/O//3f/3Httdcya9Ysli1bRp8+fZg5cyaPPPIIs2fPBiAlJaXsO53+BG7dExsby+23387q1at5+OGHAfjjH//IaaedxuOPP05mZiYjR45k4kT7PYFVq1axceNGEhMTSU9P58wzz6z2Fjz33HMP8+bNY8yYMeTk5BAfH8/LL78cchukL7/8ki1bttC6dWt69erFFVdcwapVq3jggQd46KGHuP/++xk7diwrV65ERPjXv/7F3Llzuffee8ulW7pt0JlnnklRURHLli3jkUceqZbMjYGE4kzyYlsG9Utu3wOA3AP6rp6iHCva06sGzz77LNOnTwdsT8R/iHPkyJH07Nmz7Lxr166MGTMGgIsvvpgVK1awbds2evbsWfb9zUsvvZSPPvqo7JqLLrooaLrBtu4J5J133uHOO+9kyJAhjB8/noKCAnbtspXi6aefTkpKCgkJCZx33nmsWLGi2vc8ZswYrr/+eh588EEyMzOJjo6udBuk9PR0OnbsSFxcHCeccAKTJk0Cym8btGfPHiZPnkxqaip333130G2DpkyZwgcffEBhYSFvvvkmp5xyCgkJCdWWu6GT5M2kKLZVUL+UTlbPSo6o0VOUY6Vh9fSq6JEdDw4fPsz777/Phg0bEBG8Xi8iwt133w1U3CboWLbqCbXVUHW27jHG8NJLL1XYyeCzzz6r1bZBN998M2eeeSZvvPEGY8aMKfvgdCiqs23Qddddx/XXX8/ZZ5/N8uXLg34RJj4+nvHjx/P222+zePHissZGU6GFyeK7+JSgfkktWpNlEiFL39VTlGNFe3pV8OKLL3LJJZewc+dOMjIy2L17Nz179uTjjz8OGn7Xrl18+umnAPz73/9m7Nix9O3bl4yMDL7++msAnn76aU499dQq0w62dU/gtkGTJ0/moYceovTD4WvXri3ze/fddzl8+DD5+fksWbKkrAdaHXbs2EFqaio33XQT6enpbN26tVbbIAEcPXqUzp3t+2dPPvlkyHAXXXQRTzzxBB9//DFnnHFGteNv6OTn5dFc8jGJwY0ewKGotsTl6k4LinKsqNGrgmeffZZzzz23nNu0adNCruLs27cv8+bNo3///hw5coSrr76a+Ph4nnjiCS644AJSU1PxeDxcddVVVaYdbOueCRMmsHnz5rKFLLfccgvFxcWkpaUxcOBAbrnllrLrR44cybRp00hLS2PatGll83k///nPOemkk9i2bRtdunQp2x9w/vz5ZdsO3X///QwaNIi0tDRiYmKYMmVKrbZBAvutzwsuuIDhw4fTpk2bMvfVq1dzxRVXlJ1PmjSJDz/8kIkTJxIbG1vt+Bs6mYesMfM0bxMyTFZsO5oX6QvqinKsVLm1UH2iWwvVHQsXLiy34KUp0tB05+v1/+XEl6ew9uSHGTrpkqBhVj5wMX2PfEirObvrWTpFOX7U59ZC2tNTlAghP9P24OJbtA0ZxpvUmVZkUVyQW19iKUqjQo1eI2XWrFlNupfXECk8+gMAiS1DDxlHtewCwKG939aLTIrS2GgQRi+ShmCVhkFD1JmS3MMAJLcK3dNLaNMdgKPfZ9SHSIrS6Ih4oxcfH8+hQ4caZCWmhAdjDIcOHSI+Pj7cotQIb95RAJJbhl69mdzeGr08fUFdUY6JiH9Pr0uXLuzZs4cDB/Tr8kr1iY+Pp0uXLuEWo0ZI4VHyTSwJsaGNdZuyF9R1IYuiHAsRb/RiYmLKffFEURornsIscqUZlX1/JikpmcMmCU+27qCuKMdCrYc3ReQ6EdkqIptEZG6AXzcRyRGRG2qbjqI0dmKKs8j1NK8y3KGotsTqC+qKckzUqqcnIhOAqcBgY0yhiLQLCPIP4M3apKEoTYWY4mwKoqo2ernxHWhRsKceJFKUxkdthzevBu40xhQCGGN+KPUQkXOAbwF9oUhRqkG8N4eCEB+b9qcwuQedcj/HW1JCVHT1H+GMrzdxaM2reA9+TUKUD09SB6I69KdZz9G07XIC8bERP9uhKLWmtlreBxgnIncABcANxpjPRaQ5cBNwOlDp0KaIXAlcCdCtW7daiqMoDZcEXw7ZMVU/A562fYnbX8zeXdvp1GtAleGPHDnM9qd/w4hDr9FDDJmmGSVE0XpfNp6vDHwMB0wLNsScSG6rfsR3Gkh8q85Et2hPVGwzoqI9RHmiifYY8BVTUuLFW1KM11uCt8SLr6SYEl8JvpJi+0F2XwlivIjxIaYEIfTKa0Ooj6Bb94rfSA8RvpKPqTdr3Ym+w04JnUFKk6JKoyci7wHB3pb9k7u+NTAaSAeeF5FewBzgPmNMTlVf9jfGPAo8CvYzZDURXlEaE81MDt7Y5CrDNe86EDbAoYz1VRq9H/bvIeufZ5Lu28nq9hfQ+Yzr6dSzH0VeH3sOZ5GZsQ7v7tXE7F9Lu8wtdDrwHDEHgm9j1VDxGiGz2zZatmkfblGUCKBKo2eMmRjKT0SuBl429iW6VSLiA9oAo4Dz3cKWloBPRAqMMfqJEEUJgvH5aG7y8MW1qDJsu15pAOTv3VJpuCOZmWQ/+jO6+L5jx+SFjDz5nDK/uOgourVrRbd2E2DkhDJ3X3Eh32VsIe/wPkqyf8BXXIDP58V4vZQYAU8Unqho94vC44nBEx1FVFSMdYuORiQKPFEYiQaPB/Bg/Bu/psJBQGYYTFA/ExgMCNn3A+DA2tcZvXM+OZkH1OgpQO2HN5cAE4APRKQPEAscNMaMKw0gInOAHDV4ihKa3LwcmosXia+6p9c6pR0HaInn0PaQYbw+w6rHrmOy71s2/2QBA/wMXmV4YuLo3HsIMKRa4SOdrB92wU4odC/+K0ptjd7jwOMishEoAi41+ukURakxuUcP0RyQhJZVhhUR9sf1pFXWtpBh3lr6HGfmLmV7j4sZcMr5dSdoAyM6IQmAorysMEuiRAq1MnrGmCLg4irCzKlNGorSFMg7ar+7GZ1Y9epNgKOtB9N/71MU5B4lvln5IdHde/czdO2f2Bfbld6/uLvOZW1IxCTannOxGj3FEfHf3lSUpkBBjjV6Mc1bVit8sxNPJlp87Fj3cTl3YwzfPnMt7ThC7PmPIrGJdS1qgyIuwRo9b0FOmCVRIgU1eooSARQ5oxfXvHW1wp8w/DRKjIecze+Wc//kPws5Je9dNp94BSl9T65zORsacc1KjZ729BSLGj1FiQCKczMBSEiq3vBmcsu2bIpNpfO+d8uWMe7/bif9V9/KtzEnMGj6346XqA2KBNdzNoXa01MsavQUJQLw5mUCkJBUvZ4eQF7vs+ni+46vVr1Ffn4+B5+8hEQKiLvgX3hi4o6TpA2LhOa2p+dTo6c41OgpSgTgK8wGoHlyy2pfk/rT/+F7WpH01nXsuPc0BhV9yaaht9Kpz7DjJGXDIy42lgITgxSp0VMsavQUJRIozMVrhLj4ZtW+pHnzJPafsYBin4cOxd/x5bA7GHHOdcdRyIaHiJBHPJ4i/QSwYmlUX5j1eb0c2JdBfEJzWqTo1xeUBkRxLnkST5KnZu3QwaN/QnH6VoyBNtHahg1GviTgKVGjp1ga1VOSffQw7f81jC1v/TPcoihKjfAU51JQ6faxoYmJ8hCrBi8kBZ5EoorV6CmWRvWkJLdModDEQM7+cIuiKDUiqiSPAokPtxiNkiJPAjFeNXqKpVEZPfF4OORpRXTuD1UHVpQIIrokl0LPsfX0lMopjmpGdEleuMVQIoRGZfQAsqJSSCg8EG4xFKVGxHjzKIpq2l9POV6UxCQS58sPtxhKhNDojF5ubBuaFx8KtxiKUiNivfkUq9E7LvhimhHv056eYml0Rq8ooS2tfIfDLYai1Ig4Xz4l0Wr0jgcmtjnxpiDcYigRQqMzer5m7Ukml+ICnbhWGg7xJh+fGr3jQ2wSzcmjqLgk3JIoEUCjM3pRyR0BOPz97jBLoijVJ8Hk442p/ovpSvWRxJZEiSEn60i4RVEigEZn9BLbdAbU6CkNB+PzkUgBxKrROx54EuxHvHOP6ly/0giNXqv23QDI+mFXmCVRlOpRkJ9HlBiITQq3KI2S6GbW6OUfPRhmSZRIoNEZvbZdewNQcvDbMEuiKNUjLycTAInTnt7xILZ5CvDjRr1K06bWRk9ErhORrSKySUTm+rmnicinzn2DSP18biK+eSuOkEzUUe3pKQ2Dgly7w4InrnmYJWmcxCdZo1esRk+hlh+cFpEJwFRgsDGmUETaOfdo4BngEmPMlyKSAhTXWtpqciC6A83ydE5PaRgU5tldvaPj1egdDxJa2D0Kvbl1aPR8PhCxP6VBUdtdFq4G7jTGFAIYY0q//zUJWG+M+dK51+sMclZCFzrmbD7m643Px46Nn3Fw23+JOvINpigPDz5MbBImoRWexNbEJrchvkU7mrdqT3KbDjRLboNENapNK5R64kejp3N6x4PmLdoAYPKPffVmQX4u6974F82/XkqX/G20JBuvEXKkGUei23EkoRuFyT2QlBNIbH8CrTt0p22nHsQmaEMm0qhtLd0HGCcidwAFwA3GmM+duxGRt4G2wHPGmLnBIhCRK4ErAbp161ZLcSxFSd1ol/Uh3pJioqJjqn1dcXERny+ZR9fNj3Ki2cuJQKGJIU/iMQjNTB5xEvxdH58RsiSRImLxSjReovBJFF6iAkKaH48MCMbPxXqL/a+MCm1JU3qN++v+EwT3D8EgrhVael6RYG7+6Vb0F2MCwlQdZ2A8gdcEl62BIOX+APiVSTCPijnUwRSDQExii+MhYZMnsXkLik0U5B89puu3rFpG8zevYbTZxy7pxOYWp+Jr3h4xXsg/QmLeXtrkbKNj1kdEf+crd222SSBfEijyxFEkcZQQgwcfHgz2mTV4sNeI8fk9q+bHMCbg3P0qEIbHaIenB6Nv/aD+E64FVRo9EXkP6BDE60/u+tbAaCAdeF5Eejn3sc4tD1gmImuMMcsCIzHGPAo8CjBixIg6KbbolJ7E7PXy3a6v6dyrf7Wu2bljC/n/vpSTvdv4Oro3q/vPofPwKbTv2ptWUdZw+bw+juZmk3P4B3IyfyAv83sKjx6gJOcg5B0muvAIeIsQXzHiK8HjK0FMiTVHQplRckf8eCqlLgg/6q5/Zhg/f5EfrxEBj9irfVhDagz4MPhM+XP/GrjsyM8w2v/KT/MGLxAJCBNgxoIM+QQzhZXGUY0YIgHDj3lsjG1o2DL50R9j/3pKy/5HNUAQPAImLpm0tJPDcxONHPF4yJZmSGFmja9d/c6/Sf3k1xz2tGLT+AUMOOU8uoXY87CkqJD9e77i8N4d5BzcTUnmXqLzDkBxLlKcT7SvgChT4mfyPNZ8iTN1IuDn5x50EHfuwhjkRz8oX5f86FJjKr0qhGdWbDDTENlUafSMMRND+YnI1cDLxhgDrBIRH9AG2AN8ZIw56MK9AQwDKhi940HLrv1hA+z/5stqGb0taz6k42u/oDU+vhx5L2lnXI4EUWxPlIcWyS1okdwC6H0cJFcU5XiQ40kiqoZGb+Nny0j75Dp2xfSk3dX/oWNK5RV8dGwcHXoNokOvQbWQVDne1Hb15hJgAoCI9AFigYPA20CqiCS6RS2nAsc+yVZDOvdNB6Bw95dVht25aSWdX5tOgSSSM/M9Bv/0iqAGT1GUhktudCsSiqq/kCXr4H7avXkFBz0ptPvV6yRXYfCUhkNta/fHgV4ishF4DrjUWI4A/wA+B9YBXxhjXq9lWtWmWYvW7JN2xB7aUmm4H77fR8wLl5BPPGbW63TsNbCeJFQUpT7Ji02heUn1jd72Z35DK3OUvHOeILl1++MomVLf1GohizGmCLg4hN8z2NcWwsL3CSfSPndbSP+SkhL2LLiYVHOI3ee+TK/ufepROkVR6pPi+Da0yvm8WmE3ffI6IzLf4pPOsxgzeMxxlkypbxrtOF5e++F0NXs58sOeoP6fLbyZYUWr2TzkT/QaMr5+hVMUpV7xNmtHEnkUF1axr54xxHwwh/20YdiMO+pHOKVeabRGr+XAnwCwc83bFfw2fPACJ+3+F2tansHgc66vb9EURalnPEl2iPLoge8qDff1x4vpU7KdbwZeQ0IzfceuMdJojd6JaWPIohklW8sbve93bqXbh7P5NqoHA375L/2igqI0AWKTS43e3tCBjCF2xd3spCNDzvpVPUmm1DeN1ujFxsaysdVPGJj5ATluS5HC3CMUPnUBGEP0L54hoZl+AUNRmgLN23QBIOdg8OkOgH3rl9Gt6Gu29rqMxPh6+VSwEgYardEDSDnlShKkiK3P3kze4b3sfPBndCrZw7ZT59H9RH2XRlGaCikduwNQcDj0N3kzl93PEZPE0J9dWV9iKWGgURu9vkPHsaLVuYzY/zyJD/ane8FWVg69i5GnnRtu0RRFqUdat+tKvolFjuwM6p+5Zxt9j67gi3bn0q51q3qWTqlPGv0Xkkdd8y8+fGkIvsPf0ubkixk7OD3cIimKUs94ojzs87QnPie40ct44x8MwEPPKb+uZ8mU+qbRG72Y6GhOvWh2uMVQFCXMZMZ1pnV+xdWbBdlH6L13CaubT+DkXvp5wcZOox7eVBRFKaUwqSvtSvZhfOV3Qtj8xjyaUUCzU68Nk2RKfaJGT1GUJoGk9CZRCjm495syN19JCR23PsnG6IGkpY8Pn3BKvaFGT1GUJkHzniMA2Lfl0zK3jR88S0fzA3lDf1m2/6TSuFGjpyhKk6DXoJEUmyjyv7Xf4DQ+H7Gr/o99tGXopBlhlk6pL9ToKYrSJEhslsT22H60/f4jADZ8+BL9ijezq/+VxMTEhlk6pb5Qo6coSpPhaLfJ9PJ+y9ZP36D1R3/mO2nP0HP0NYWmhBo9RVGaDP3PvIbDJNHv7Z/TwfcDOWc8SGycfnKsKdHo39NTFEUppVXrNmw/dzE7/ruQFsOn0XfkGeEWSaln1OgpitKk6DN4DOjmsE0WHd5UFEVRmgxq9BRFUZQmgxhjwi1DGSJyAAj+Rdia0QY4WAfx1AcNSVZoWPKqrMePhiRvQ5IVGpa8dSVrd2NM2zqIp0oiyujVFSKy2hgzItxyVIeGJCs0LHlV1uNHQ5K3IckKDUvehiRrKTq8qSiKojQZ1OgpiqIoTYbGavQeDbcANaAhyQoNS16V9fjRkORtSLJCw5K3IckKNNI5PUVRFEUJRmPt6SmKoihKBdToKYqiKE2GRmX0ROQMEdkmIl+LyM3hlicQEekqIh+IyGYR2SQiv3Huc0TkOxFZ534/DbesACKSISIbnEyrnVtrEXlXRL5yf1tFgJx9/fJunYhkicjsSMpXEXlcRH4QkY1+bkHzUiwPOj1eLyLDIkDWu0Vkq5PnFRFp6dx7iEi+Xx7Pr09ZK5E3ZNmLyB9c3m4TkckRIOtiPzkzRGSdc4+EvA1VZ0Wk7lYLY0yj+AFRwA6gFxALfAkMCLdcATJ2BIa54yRgOzAAmAPcEG75gsibAbQJcJsL3OyObwbuCrecQfRgP9A9kvIVOAUYBmysKi+BnwJvAgKMBj6LAFknAdHu+C4/WXv4h4ugvA1a9u55+xKIA3q6OiMqnLIG+N8L3BpBeRuqzopI3a3OrzH19EYCXxtjvjHGFAHPAVPDLFM5jDH7jDFfuONsYAvQObxS1ZipwJPu+EngnPCJEpSfADuMMXXxZZ86wxjzEXA4wDlUXk4FnjKWlUBLEelYL4ISXFZjzDvGmBJ3uhLoUl/yVEWIvA3FVOA5Y0yhMeZb4Gts3VEvVCariAhwIfBsfclTFZXUWRGpu9WhMRm9zsBuv/M9RLBBEZEewFDgM+d0rRsOeDwShgwdBnhHRNaIyJXOrb0xZp873g+0D49oIZlO+UojEvO1lFB5Gem6fDm2NV9KTxFZKyIfisi4cAkVhGBlH8l5Ow743hjzlZ9bxORtQJ3VUHW3URm9BoOINAdeAmYbY7KAR4ATgCHAPuwQRyQw1hgzDJgCXCMip/h7GjueETHvvIhILHA28IJzitR8rUCk5WUoRORPQAmwyDntA7oZY4YC1wP/FpHkcMnnR4Mpez9+TvkGW8TkbZA6q4yGorulNCaj9x3Q1e+8i3OLKEQkBqs8i4wxLwMYY743xniNMT7gMepxuKUyjDHfub8/AK9g5fq+dLjC/f0hfBJWYArwhTHme4jcfPUjVF5GpC6LyCzgZ8AMV9HhhgkPueM12DmyPmET0lFJ2Udq3kYD5wGLS90iJW+D1Vk0MN31pzEZvc+B3iLS07X4pwNLwyxTOdyY/QJgizHmH37u/mPe5wIbA6+tb0SkmYgklR5jFzJsxObppS7YpcCr4ZEwKOVaypGYrwGEysulwEy3Em40cNRvKCksiMgZwO+Bs40xeX7ubUUkyh33AnoD34RHyh+ppOyXAtNFJE5EemLlXVXf8gVhIrDVGLOn1CES8jZUnUUD0t0KhHslTV3+sCuHtmNbRH8KtzxB5BuLHQZYD6xzv58CTwMbnPtSoGMEyNoLu8rtS2BTaX4CKcAy4CvgPaB1uGV1cjUDDgEt/NwiJl+xxngfUIyd5/h/ofISu/JtntPjDcCICJD1a+xcTanezndhpzn9WAd8AZwVIXkbsuyBP7m83QZMCbeszn0hcFVA2EjI21B1VkTqbnV++hkyRVEUpcnQmIY3FUVRFKVS1OgpiqIoTQY1eoqiKEqTQY2eoiiK0mRQo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJkUKOnKIqiNBnU6CmKoihNBjV6iqIoSpNBjZ6iKIrSZIgYoyciPUTEuH2llOOIiMwSkRX1lFaCiLwhIkdE5Pf1kWZA+hkiMrEe0lkuIleE8FPdDgOV5Xt9lolL58QQfvX2LDYGROT3ri55W0QSjyWOiDF6yrEhInNEpFhEcvx+9W5cKmEikAZ0NcbMLXV0xqhH2KSKIFwZzqlB+F+IyE4RyRWRJSLSupKwQ0RkjYjkub9D/PxaisiTIvKD+80Jcu3HInJURPaIyC0B/j8Rka0u7g9EpHuQ9FuLyAH/il1ERovIuyJy2Pm9ELD/XVX332S2hnGNqfHVDCsicpeIHHK/u9x+eKHCV6lHItJbRApE5Bk/tz8G1Df5IuITkTbO/x4R+UpEsp1+zAyI8ywR2eiu/a+IDAjw7yUi/3HXHxSRsnrD1SFdgH7YPT5rTJ0ZPW3FhpXFxpjmfr+5VV9Sb7QGMowxOeEWpDa4CiXsjUQRGQj8E7gEaA/kAf8XImwsdnPPZ4BWwJPAq84d4D4gEeiB3Vn8EhG5zC+KfwMfYcvwVOBXInK2i7sN8DJwi/Nfjd+u337cBWwJcGsFPOrS7Q5kA09U4/Yjkgiq+64EzgEGYxuaZwH/EyxgDfRoHnaD7jKMMX/3r2+wZbzcGHPQBcl1abfAbjD7gIic7NLtDSwCrgJaAq8BS0vz0Onmu8D7QAesgSszuC79XOBb7J5+NaZWD7Frrd8kIuuBXBGJdq24/4pIpoh86d9Kca2W/xWRVSKSJSKvhmqlishlIrLFWftvROR/Avynisg6F88OsTs7IyItRGSBiOwTke9E5G/idh+u5D5OEJH3XevooIgsEpGWfn6HRWSYO+/kWqfj3fnZIrLJ3e9yEekfkD83iMh6sa3lxSISX/OcrjkicrPLl2wR2Swi54YIJyJyn9iWfpaIbBCRQc4vzrXadonI9yIyX0QSaihKNOCrQtYUEXnNpf+5KzP/noERkatc6zFTROaJ2BZsZWXnR7rLgyMi8kRpGYhIK9eiPOD8/iMiXfzSXS4id4jIJ9hKoVcV99pdRD5xef6OMwz+zHB5eVBE/lRFXKGYAbxmjPnINSRuAc4Tt8t9AOOx+X+/MabQGPMgdpPP05z/WcBcY0yeMSYDu0P25X7X9wAWGWO8xpgdwApgoPM7D9hkjHnBGFMAzAEGi0i/0otdRTeIAINmjHnTXZdl7C7sDwNjjiUzRKSniHzk8vw9pxvPhAg7zT2Tg/ycLxeRva6+uMEv7EgR+dTp2z4ReVh+bCyU6uQ1IvIVdiPVqpgYTH/94rvH6eC3IjKlhtlQyqXAvcaYPcaY74B7gVkhwlapRyIyHcjEbhYbFHcfM7ENKgCMMX8xxmw1xviMMZ8BHwMnOe/JwMfGmBXGmBKsweyMbVTh5N1rjPmHMSbXGFNgjFkfJGkfVrdrTi131c3A7qTbFUhwwh/C7qzrAU53521d+OXAd9gHoRnwEvCM8+uB3aE32p2fCZyAfUhPxVY6w5zfSOCoi9/j0u3n/F7BtmCaAe2AVcD/VHEfJ7q44oC22Nbt/X7+vwQ2Y1vFbwP3OPc+2FbN6UAM8HvsDtOxfvmzCuiEbQ1vIWB35IAdijMr+Y0Ncd2c0jwMcL/ApesBLnJydnR+s4AV7ngysAbb6hKgv1+4+7C7TrcGkrCtsv+tgX7EYHewriBfQLjn3C8RGIDdoXuFn78B/uNk7AYcAM6oZtllABuxOtoa+AT4m/NLwe5Oneju7wVgid+1y4Fd2Io+Goip5B6WY3eL7oN9FpYDdwbo9mPObzBQCPQPEVdl5f0qcFOAWw4wPEjY3wJvBrj9B/idOz4IjPTz+xNwxO/878Cdrhz7Ynf6Tnd+DwCPBMS9EZjmjqOwu30P99e3EPc0G1h5jHXQp8A9QCz2GcoiSJ0CXIZ9Nk8M8HsWW1ekOr2a6PyHA6PdtT2wz+7sAJ181+lUQhUyVqa/s7C7qP/S5dnVwF6wG3wHqyMqSecoMMrvfASQfSx6BCQD27E9rTmEeIaBU9x1zUP4J2B3ii+932uBN/z8o4AC4Dfu/HFsnfGm08/lQGqQeJ90ZRdbY505FkXzSzgDuNzv/Cbg6YAwbwOXuuPluIrAnQ8AityNlyloiLSW+GXMP4H7goRpj61MEvzcfg58UMP7OgdYG+C2FNgArAfinNstwPN+YTxYoz7eL38u9vOfC8yvTZ4HkXWOy8NMv1+nIOHWAVPd8Sx+NHqnOeUeDXj8wgvWUJ7g53YS8G015RqCfZi/x1U0IcJFuXB9/dz+RkWjN9bv/Hng5uqUnSuDq/zOfwrsqETmI37ny4Hbq3m/y4E/+53/CnjLHZfqdhc//1XA9GMo72UENJz8dS7A/RbguQC3RcAcd/wMdogyCdt42AEU+oU9GWsoSpz8t/n5LcDvWXZunwCz3PFvcUaRSowedhjuMDDuGPKim5Mt0c/tGSoavRuwjVb//C/16+fnNhdYECKt2cArATp5WjXlDKm/Lm++9vNLdOE7HEN+eAPup7eLK5gBrVSPsI2am9zxHEIbvQXAwkpkehJ4q1QG7FxcLnYUItbpqA/4g/N/B1sfTHH+NwLfEGDcsB2i/S7siJrkU13MUez2O+4OXOC68JkikoltnXQMEX4nthUZOAyEiEwRkZVuaDETW1mVhuuKfUAD6e7i2+eX/j+xPb6QiEh7EXlO7HBoFvbBCZTpMWwP9SFjTKFz6+TuAQBjjM/dX2e/6/b7HecBzSuT5Rh53hjT0u+3V0Rmih3+Lc2HQQTJZ2PM+9jhpXnADyLyqIgkY3tNicAavzjecu5VYoxZh61MP8VWGKFoi21N++vF7iDhguZjNcsuUOc6uWsTReSfYifzs7C9xJZSfjg8mCyhqKqs60IXcrCtcH+SsfNiNQ37ayAfOzz3KrblvAfsAhRsed8OxGOfucki8quq4haRTi7uSodwxa5ofBPbmP24srAh6AQcNnaItJRg5XUjMM8YsyeIXyjd6OOGu/c73fg7letVVVRW9mV+fvdSF7qRDOQYZyWqCFsaPlvsYqeJ2JGekIhdPXkBfkObAf53Y+udC0tlMMZsxQ7DPoztAbbBNkhKyyYf20B60xhThO3Fp2BHoPz5DXauMdkYs7oyOQOpC6Pnn6G7sT09/wq4mTHmTr8wXf2Ou2Et9UE/N0QkDjv0eQ/Q3hjTEngD2/soTeeEILLsxvb02viln2yMGRgkrD9/d/eRaoxJBi72SwsRaQ7cj23VzJEf5yH3Yg1taThx9/ddFelVQETGSfkVUYG/cTWIqzvWSF8LpLj82+h/T/4YYx40xgzH9rz7YCuJg1gFHOiXly2MnbiuFsbO9bzp4g3FAWxrvYufW9cQYYNRadkFia8bttwAfocdthvlrj3FuftfH6zCCCebsMOjgF3phh3a3R4ibFrA/FGac8cYc9gYM8MY08E9Ix5sDxTs/KXXGPOUMabEGYznsI3PYHI0wz6Tm7DTDx2BzSKyH9trGOkMSJQL3x14D/irMebpY8yLfUBrKb90PZjuTAL+LCLTgviF0o1HgK1Ab6cbf6SiXkW0brjjTdUJG6BH47E94V2u/G4AponIFwFxnIvtpS8PjFxEbsP21iYZY7L8/YwxLxpjBhljUoC/uLRKF8usp3r52h87kpJfjbDlqOvVaM8AZ4nIZBGJEpF4ERnvvzgAuFhEBjhFvR140RjjDYgnFlsAB4ASN7Hrvzx1AXCZ2CXTHhHpLCL9jDH7sN3je0Uk2fmdICKnViF3Erblc1REOmMrfX8eAFYbY64AXgfmO/fngTOdHDHYSrQQ+G9VGRWIMeZjU34FZuCvJi3hZljFOQB2URC2xVUBEUkXkVFO/lzs+LrP9VofA+4TkXYubGcRmex3rZGql1MXYsszKK7sX8Y2JhLFLoSYGSp8EKoqO4BrRKSLa6z8iR9XGSZhDXum8/tLDdINF4uwz9g4Z2huB142xgTr6S3HDnn9WuyipGud+/tQtggoxT2rU7Cr//7mwmy3QeQX7jnqgJ0bLl1U8AowSOzikHjgVmC9a8m/ia3IhrjfrcBaYIgxxuvK6X3gYWNM6bNUhth31zKqyghjzE7sqtE5IhIrIidhF+cEsgk4A5gnbvWpH7c4vRuInffz140sIMfp5NVVyRMBPAVc757TTtj6aGGIsJXp0aPYBswQ95uPrfcmB8RxKfBUYE9SRP4A/AI7P3ooMGERGe50rq1La6nTG7A2ZLSITHQNpNnYBnjgCuAYbN1SY+rU6BljdgNTsa2iA9ie140B6TyNLYj92GGTXweJJ9u5Pw8cwWbgUj//VVgFvQ87efshP/a4ZmIr2c3u2hcpP7wajNuAYS6u17GVMGBXiWIfmFKlvx4YJiIzjDHbsD2Lh7AFcxZwluuWhw1jzGbsyq1PsXNqqdj5lmAkY43bEezwziHgbud3E3ZOZ6Ub4nkP2zNCRLpih8k2VCGOj6r17Frs8ub9WP14luordMiy8+Pf2MbQN9hh8dKK/X7sRPtBYCV2OC/sVNazN8Zswi73XgT8gK2cf+V37Zsi8kcXtgg7xzkTO9d7OXCOn34Ox5ZfNvC/wAwXP651fh52bu4Idk54Iy7vjDEHsIuA7nD+o4Dpzq/QGLO/9Ictm2J3DHAFtic5x380w+82uxJaXwOZgZ1rPuRkW0wQ3THGfAn8DHhMyq+O/BCr48uwC9Tece43YOudbOzzEex1jHqldDSokiD/xC4224Atq9edW+n1ZXpVmR4Zu5rXv/xygAJX5qVxdcauB3gqiBx/x/aav/Yr3z/6+T+A1cdtWN35ZamHX5063/lNBc4OUqdGUcWq8FCICTrce3wQkeXYCdF/1VuiynFBRC7GDn3+oYpwk7Ctt37GmMPVjPsu7ET+pbWXVGloiMg72Hm+wNZ9da5dDGw1xjSEXrtyDIh9JWkzcIUx5o2aXh/2l22Vhokx5pmqDJ5jOXZp9ybxew/KHxHpJyJpYhkJ/D/s8JnSBDHGTKquwXPD8ye4IdgzsD2DJcdVQCVsuDpkK7aHHvL9wcqIlC8JHHdEZD622xzIM8aYq+pbnqaCG5aYUUWwJOyQZifscOy92NWEEUUlQ0tTjnH1oVJ7OmCHtFOwKwCvNsasrU8B3JDhm8H8arLwS6kaY8w92AWOx0y9Dm8qiqIoSjjR4U1FURSlyRBRw5tt2rQxPXr0CLcYiqIoSj2yZs2ag8aYan34orZElNHr0aMHq1fX6OV6RVEUpYEjIjurDlU36PCmoiiK0mRQo6coEcb6/77F4QP7wi2GojRK1OgpSgSRX1hM2jsXkT0/8ItPiqLUBRE1pxeM4uJi9uzZQ0FBQbhFURoQ8fHxdOnShZiYmHCLUiPy87JJALp7622KQ1GaFBFv9Pbs2UNSUhI9evSg/MfiFSU4xhgOHTrEnj176NmzZ7jFqRG+wso+ragoSm2J+OHNgoICUlJS1OAp1UZESElJaZCjA6ZAjZ6iHE8i3ugBavCUGtNQdcZX0vAMtaI0JBqE0VOUpoLxHdNuKYqiVBM1etVARPjd735Xdn7PPfcwZ86c8AlUBcuXL+e//63xPrZlrFu3jpNOOomBAweSlpbG4sVh30qsyeDzloRbBEVp1KjRqwZxcXG8/PLLHDx4sE7jNcbgOw4t+9oavcTERJ566ik2bdrEW2+9xezZs8nMzKw7AZWQ+HzecIugKI0aNXrVIDo6miuvvJL77ruvgt+BAweYNm0a6enppKen88kndsPnOXPmcM89P+6AMWjQIDIyMsjIyKBv377MnDmTQYMGsXv3bm688UYGDRpEampqWa9q+fLljB8/nvPPP59+/foxY8YMgu2I8eCDDzJgwADS0tKYPn06GRkZzJ8/n/vuu48hQ4bw8ccfVyrjJZdcwkknnUTv3r157LHHAOjTpw+9e/cGoFOnTrRr144DBw5USPuFF15g0KBBDB48mFNOOQWwC48uu+wyUlNTGTp0KB988AEACxcu5JxzzuH000+nR48ePPzww/zjH/9g6NChjB49msOH7f6yjz32GOnp6QwePJhp06aRl5dXId3Ro0ezadOmsvPx48c3ms/X+ff0dAcURal7Iv6VBX9ue20Tm/dm1WmcAzol85ezBlYZ7pprriEtLY3f//735dx/85vf8Nvf/paxY8eya9cuJk+ezJYtle9/+dVXX/Hkk08yevRoXnrpJdatW8eXX37JwYMHSU9PLzMga9euZdOmTXTq1IkxY8bwySefMHbs2HJx3XnnnXz77bfExcWRmZlJy5Ytueqqq2jevDk33GD3bP3FL34RUsb169ezcuVKcnNzGTp0KGeeeSadOnUqi3/VqlUUFRVxwgknVLiP22+/nbfffpvOnTuX9QTnzZuHiLBhwwa2bt3KpEmT2L59OwAbN25k7dq1FBQUcOKJJ3LXXXexdu1afvvb3/LUU08xe/ZszjvvPH75y18C8Oc//5kFCxZw3XXXlUv3oosu4vnnn+e2225j37597Nu3jxEjRlSa5w0F/55/UVEBcXEJYZRGURof2tOrJsnJycycOZMHH3ywnPt7773Htddey5AhQzj77LPJysoiJ6fyZefdu3dn9OjRAKxYsYKf//znREVF0b59e0499VQ+//xzAEaOHEmXLl3weDwMGTKEjIyMCnGlpaUxY8YMnnnmGaKjg7dhKpNx6tSpJCQk0KZNGyZMmMCqVavKrtu3bx+XXHIJTzzxBB5PRVUZM2YMs2bN4rHHHsPr9Zbdz8UX2716+/XrR/fu3cuM3oQJE0hKSqJt27a0aNGCs846C4DU1NSye9u4cSPjxo0jNTWVRYsWlevRlXLhhRfy4osvAvD8889z/vnnV5rfDQnj+7Gnl59dtw08RVEaWE+vOj2y48ns2bMZNmwYl112WZmbz+dj5cqVxMfHlwsbHR1drtXu/85Ys2bNqpVeXFxc2XFUVBQlJRUXObz++ut89NFHvPbaa9xxxx1s2LChQphQMkLFpf2l51lZWZx55pnccccdZQY6kPnz5/PZZ5/x+uuvM3z4cNasWVPt+/F4PGXnHo+n7N5mzZrFkiVLGDx4MAsXLmT58uUV4uncuTMpKSmsX7+exYsXM3/+/ErTbUgYr5/O5GUB7cMnjKI0QrSnVwNat27NhRdeyIIFC8rcJk2axEMPPVR2vm7dOsBuk/TFF18A8MUXX/Dtt98GjXPcuHEsXrwYr9fLgQMH+Oijjxg5cmS15PH5fOzevZsJEyZw1113cfToUXJyckhKSiI7O7tKGQFeffVVCgoKOHToEMuXLyc9PZ2ioiLOPfdcZs6cWWkvaseOHYwaNYrbb7+dtm3bsnv3bsaNG8eiRYsA2L59O7t27aJv377Vuh+A7OxsOnbsSHFxcVk8wbjooouYO3cuR48eJS0trdrxRzo+v55eYZ729BSlrlGjV0N+97vflVvF+eCDD7J69WrS0tIYMGBAWa9j2rRpHD58mIEDB/Lwww/Tp0+foPGde+65pKWlMXjwYE477TTmzp1Lhw4dqiWL1+vl4osvLls08utf/5qWLVty1lln8corr5QtZAklI9jh0QkTJjB69GhuueUWOnXqxPPPP89HH33EwoULGTJkCEOGDCkzlLfeeitLly4F4MYbbyQ1NZVBgwZx8sknM3jwYH71q1/h8/lITU3loosuYuHCheV6eFXx17/+lVGjRjFmzBj69etX5r506VJuvfXWsvPzzz+f5557jgsvvLDacTcE/EcHCvOyKwmpKMqxIJG0QmzEiBEmcBXeli1b6N+/f5gkatzMmTOn3IKXxkZD1J1tn7xC33dnAbB50r8ZcPKZ4RVIUeoBEVljjKmX1Wja01OUCMJ4f3xPr0S/w6kodU6DWsii1C2R/FWZporx+Ru93DBKoiiNE+3pKUoE4f9FFm+RGj1FqWvU6ClKBOHf0/MVqtFTlLpGjZ6iRBD+Rs+o0VOUOkeNnqJEEP5Gj+L88AmiKI0UNXrVZMmSJYgIW7duDRkmIyODQYMGHVc51q1bxxtvvHHM15e+zD5gwAAGDhzIAw88UIfSKbWlvNGr+LFtRVFqhxq9avLss88yduxYnn322aD+wT4RVlO83qq3lamt0YuOjubee+9l8+bNrFy5knnz5rF58+Zjjk+pW/w3kRU1eopS56jRqwY5OTmsWLGCBQsW8Nxzz5W5L1++nHHjxnH22WczYMAAwBq/GTNm0L9/f84///yyrXGWLVvG0KFDSU1N5fLLL6ewsBCwnyu76aabGDZsGC+88EK5dAO37ikqKuLWW29l8eLFDBkyhMWLF5Obm8vll1/OyJEjGTp0KK+++ipgt/KZOnUq48ePp3fv3tx2220AdOzYkWHDhgGQlJRE//79+e677yrc84cfflj2NZahQ4eSnZ2NMSbkNkinnnoqU6dOpVevXtx8880sWrSIkSNHkpqayo4dOwB47bXXGDVqFEOHDmXixIl8//33FdKdPn06r7/+etn5rFmzyj4u3RTw7+l5SnR4U1Hqmob1nt6bN8P+ih9UrhUdUmHKnZUGefXVVznjjDPo06cPKSkprFmzhuHDhwP2u5obN26kZ8+eZGRksG3bNhYsWMCYMWO4/PLL+b//+z+uvfZaZs2axbJly+jTpw8zZ87kkUceYfbs2QCkpKSUfafTn8Cte2JjY7n99ttZvXo1Dz/8MAB//OMfOe2003j88cfJzMxk5MiRTJw4EbDbAm3cuJHExETS09M588wzy23Bk5GRwdq1axk1alSFtO+55x7mzZvHmDFjyMnJIT4+npdffjnkNkhffvklW7ZsoXXr1vTq1YsrrriCVatW8cADD/DQQw9x//33M3bsWFauXImI8K9//Yu5c+dy7733lku3dNugM888k6KiIpYtW8YjjzxSzcJsBDijl2viiPKq0VOUukZ7etXg2WefZfr06YDtifgPcY4cOZKePXuWnXft2pUxY8YAcPHFF7NixQq2bdtGz549y76/eemll/LRRx+VXXPRRRcFTTfY1j2BvPPOO9x5550MGTKE8ePHU1BQwK5duwA4/fTTSUlJISEhgfPOO48VK1aUXZeTk8O0adO4//77SU5ODpr29ddfz4MPPkhmZibR0dGVboOUnp5Ox44diYuL44QTTmDSpElA+W2D9uzZw+TJk0lNTeXuu+8Oum3QlClT+OCDDygsLOTNN9/klFNOISGh6ewpV7q1UK4kEl2iw5uKUtcc956eiJwBPABEAf8yxlTeraqMKnpkx4PDhw/z/vvvs2HDBkQEr9eLiHD33XcDFbcJCrVVT2WE2mqoOlv3GGN46aWXKuxk8Nlnn4WUpbi4mGnTpjFjxgzOO++8oGnffPPNnHnmmbzxxhuMGTOGt99+u9J7qM62Qddddx3XX389Z599NsuXLw/6RZj4+HjGjx/P22+/zeLFi8saG02F0uHNfEkgyldQRWhFUWrKce3piUgUMA+YAgwAfi4iA45nmnXNiy++yCWXXMLOnTvJyMhg9+7d9OzZk48//jho+F27dvHpp58C8O9//5uxY8fSt29fMjIy+PrrrwF4+umnOfXUU6tMO9jWPYHbBk2ePJmHHnqI0g+Hr127tszv3Xff5fDhw+Tn57NkyRLGjBmDMYb/9//+H/379+f666+vNO3U1FRuuukm0tPT2bp1a622QQI4evQonTt3BuDJJ58MGe6iiy7iiSee4OOPP+aMM86odvyNAmMXshR6EolVo6codc7xHt4cCXxtjPnGGFMEPAdMPc5p1inPPvss5557bjm3adOmhVzF2bdvX+bNm0f//v05cuQIV199NfHx8TzxxBNccMEFpKam4vF4uOqqq6pMO9jWPRMmTGDz5s1lC1luueUWiouLSUtLY+DAgdxyyy1l148cOZJp06aRlpbGtGnTGDFiBJ988glPP/0077//ftlCldLVoPPnzy/bduj+++9n0KBBpKWlERMTw5QpU2q1DRLYb31ecMEFDB8+nDZt2pS5r169miuuuKLsfNKkSXz44YdMnDiR2NjYasffGChdvalGT1GOD8d1ayEROR84wxhzhTu/BBhljLnWL8yVwJUA3bp1G75z585ycTTE7WEigYULF5Zb8NIUaYi6s/q5vzFi6918kXASHfO/puOcr8MtkqIcd5rU1kLGmEeNMSOMMSPatm0bbnEUJby4Ob3i6GbEUxhmYRSl8XG8F7J8B3T1O+/i3JTjzKxZs5g1a1a4xVBqSOlCFm9Mc+KNDm8qSl1zvHt6nwO9RaSniMQC04GlNY0kknZ3VxoGDVZnjDV6JiaJBCnCV42v9CiKUn2Oq9EzxpQA1wJvA1uA540xFV/OqoT4+HgOHTrUcCsxpd4xxnDo0CHi4+PDLUqNKV3IYuLsaywF+bp7uqLUJcf9PT1jzBvAMX8sskuXLuzZs4cDBw7UoVRKYyc+Pp4uXbqEW4ya43p6njj7wYCC3GwSm7cIp0SK0qiI+M+QxcTElPviiaI0atxwpie+OQAF+bqnnqLUJWFfvakoih/GS4nxEBNvhzeL8rOruEBRlJqgRk9RIgnjxYuHaNfTK9I5PUWpU9ToKUokYXwYpMzoFevwpqLUKWr0FCWS8Pnw8uPwZkmhDm8qSl2iRk9RIglTgg8PsQm2p1dSoD09RalL1OgpSiTh8zmjlwSAt1D31FOUukSNnqJEEGK8eMVDfKId3jRF2tNTlLpEjZ6iRBDG2J5efDPb0zOFavQUpS5Ro6coEYQYHwYP8W540xTnh1kiRWlcqNFTlEjC58WHB09UFAUmBinWOT1FqUvU6ClKBCHGGj2AAolHinV4U1HqEjV6ihJBiPHhE2f0iMdTosObilKXqNFTlIjCh48oAAo88USp0VOUOkWNnqJEEj4vBgGgyJNAtFeNnqLUJWr0FCWC8B/eLPbEE+1To6codYkaPUWJIMR4MW54syQqgTjt6SlKnaJGT1EiCPGV4BVr9IqjE4nVnp6i1Clq9BQlgvCYYryeWAB8UQnEmYIwS6QojQs1eooSQUT5ivBKDAC+mETiKQyzRIrSuFCjpygRRJQpwespNXrNSNCenqLUKWr0FCWCiDZF+JzRIyaRGPHiLdbenqLUFWr0FCWCiDIl+NycnsTa7YXycrPCKZKiNCrU6ClKBBFtijGup1dq9Apzs8MpkqI0KtToKUoEkWDyKYlKAMAT54xenvb0FKWuUKOnKBFEIvmUxDQHICre/i3MywmnSIrSqFCjpygRgvF5SaQQYq2xi463G8kWF+jwpqLUFWr0FCVCyM89CoDEWWMXk2CHN4vzdU89Rakr1OgpSoSQl2WNnsf18GLc3xLt6SlKnVEroycic0TkOxFZ534/9fP7g4h8LSLbRGRy7UVVlMZNnuvpRSVYYxeXaP/6CrWnpyh1RXQdxHGfMeYefwcRGQBMBwYCnYD3RKSPMcZbB+kpSqMkL+swALGJLYAfjZ5XjZ6i1BnHa3hzKvCcMabQGPMt8DUw8jilpSiNgrzDewFIbN0JgPhm1uiZQl29qSh1RV0YvWtFZL2IPC4irZxbZ2C3X5g9zq0CInKliKwWkdUHDhyoA3EUpWFSlGmNXst2XQFITLSrOE2xbi+kKHVFlUZPRN4TkY1BflOBR4ATgCHAPuDemgpgjHnUGDPCGDOibdu2Nb1cURoNJms/PiO0amfbhzHRUeSbWFCjpyh1RpVzesaYidWJSEQeA/7jTr8Duvp5d3FuiqKEICZrFwekNe2jY8rcCiQOKVGjpyh1RW1Xb3b0Oz0X2OiOlwLTRSRORHoCvYFVtUlLURo7ybkZ/BDXvZxbIXF41OgpSp1R29Wbc0VkCGCADOB/AIwxm0TkeWAzUAJcoys3FSU0Pq+PziW72dj6Z+XcC0WNnqLUJbUyesaYSyrxuwO4ozbxK0pTYf/eb+kkBUjbPuXciz1xRHl1I1lFqSvq4j09RVFqyYFv1tMJSOo8oJx7kcQTXQujV5Cfy5dvPUHsttfoUrCNRJPHIU8Ke1sMJar/zxgw9myaNWse8npjDNk5WZTkZlLs9eH1GWJj44iNiyc2Lp64uHjEE3XM8ilKfaNGT1EigLzvNgHQ/sTB5dxLouKJ89V8eNP4vKxe8hA919/HKDL5Tjqwq+UovHHJxOZ8x8DM90n69HVy/vtbVjdLp6RNfyQuCW9hLjG5+0jI3UOLov209B4mWSpPv9hEUSzRFBFDCTF4JQqMQTB48OHBZ49N6XGArBXO/UNI2Z/y4QJjCeZiyYxOod31nxDvXvZXmjZq9BQlApCD28mkOa3bdS3nXuKJp3nJkRrFtXfndrIXzSK9aBNbYwbw/akPMuDks+js+XHdWklRAVs/e5Pc9UvofPAT2u9cgUesWTlMMgei2vNDwgnsbTYGad4OX3xLojweBPB6SzAlBZiSQkxJMXgLkZJC8NrjKFOCEQ8iHox4INivFPOjKTOAONNmj/0wvjL30kuM33/GOD+/eA2QkP896QWfsHXTZ/RLr9ZCdKWRo0ZPUSKA5Owd7IvpTksp31/xRsUTawqrHc/mj16m0/vXkWy8/Df1r4w+91o8URUXaUfHxtNv3Lkw7lwAigryyc3Lo3mzRFrHJdC6drcTMezN2AYLR5KdsQ7U6Ck0QqNnfD7Eo5tHKA0H4/PRqTiD7a1Pq+Dni04g1lc9o/fpkn+SvvZmdkZ1I/HiRZzca1C1ZYiNTyA2PqHa4RsKHbr2Jsskwvcbqw6sNAkaldEryM9l972ncviEcxl63u+IjYsPt0hKNTHGBJwH+FcVvoJ/4PWVx19RnppdX5l8VcmWeWAv3cnBtO1bQQ5fdAJxVG30lj37DyZsvZ2t8Wl0ueZVkpNbVXlNU8AT5WFPbC+SMzfXWZzG58Pn8+H1luDzFuMtKQFAPIIgiIg79uDxCCJ2WFjcMQiI8ON8Zem5Uh80KqOXc/QQBVFJjNo2l8P/O5+vWo7FtE8lNrktxhONKcrDV5iHryALCo8ihdlEFWURXZxDbEkO8d4cEn05JJJPtLGKXDrxLpiy+QZ/Kptc95+Qr2yy3oScgq9+uHBQhd1QHIGlFnjeFh8INOtSsWdmohOIr2J4c/kzf+cnX9/F1ubp9L5uCTHxoVdjNkWy2o9kxO6FHM08RIuWKdW6JvPAPnatX07O7o3EZO6gee4umpVk0txkk2xyiBYfx2PNqs9Y7bDzk1L2zPv/DfQjyHl9sU16MnzOp/Webm1oVEavTYdupNy0jA0fL6H484X0yfyYVplvBA1bYjzkSCJ50ow8T3MKo5qRFd+JwzFJeGOTMJ4YjNiWmxFxk+8BLbJyTXZT7k/5k8BuQajrgnQfyhavBTcxVal5Bf8qHKqMr4bPVcXkKo+gtunX6G6k0tOqgtf4+gqX+99MXBL9R0+pGCgmnjgpxnhLkKiKj+vHT/6F8d/ez8bmY+j/65eJitXRjUCSB04ies/jfLXiZUb87JdBw/hKivlq9TtkffEybQ+upIdvDy2d3wFacSCmMwebncj+uJb44ltiouLBE2V/4mf+jLGjAsb93CIbytx85cO541L/H6+115SaOAAJcBO/uiNU/XC8yY5rF5Z0a0OjMnoA4vGQeup5cOp5GJ+Pgz98R3bmQcRbRHR8c2Lim9E8uRWJzZJo6fGUKbaiRCQxiQAUFuQS36xFmbPx+fh04R8Yt2s+65LHk3rdC0TFxIZLyoimX/rp7HunHUnrHsM35XI8UdZIlRQVsH3lf8hf9wonHP6QvmSTb2LZnjiETzucQ3KfsfQYOIq2ya3RT+E3Hhqd0fNHPB7adOhKmw5dqw6sKBGIxNjFJYV5OWVGz+f1sfKfv+LkH55ldYvJDL1uEVF+H6lWyuOJjmZ32q8Z+eWfWXfPT8lvN4SYQ9vpk/MZA8gl2ySwJelkGHA2/caew+DkluEWWTmONGqjpygNHYl1Pb18u5FsQX4uG+ZfxslH32ZV2/MZcdWjZT0XJTTpU69hZdZ+BnzzBMk7V/I9KWxrMRYZeA4Dxk5lZGKzcIuo1BNq9BQlgolp1hKA7CM/UFBYQMFzl5Pu/ZrPul/JyEvv0tdzqol4PIy+9A683tspLC6gfXwz2odbKCUsqNFTlAimeZeBACS+egUp3oMUSBzrx81n1E9+HmbJGiZRUVFERWmvrimjRk9RIphuJ6ayl7Z08u1ndctJ9Jh+L2kdu4VbLEVpsKjRU5QIJiE+jvxrP2FfQS4juvQKtziK0uBRo6coEU7rNjr7pCh1hc6CK4qiKE0GNXqKoihKk0ECP9wbTkTkALCzDqJqAxysg3jqg4YkKzQseVXW40dDkrchyQoNS966krW7MaZePnwTUUavrhCR1caYEeGWozo0JFmhYcmrsh4/GpK8DUlWaFjyNiRZS9HhTUVRFKXJoEZPURRFaTI0VqP3aLgFqAENSVZoWPKqrMePhiRvQ5IVGpa8DUlWoJHO6SmKoihKMBprT09RFEVRKqBGT1EURWkyNCqjJyJniMg2EflaRG4OtzyBiEhXEflARDaLyCYR+Y1znyMi34nIOvf7abhlBRCRDBHZ4GRa7dxai8i7IvKV+9sqAuTs65d360QkS0RmR1K+isjjIvKDiGz0cwual2J50OnxehEZFgGy3i0iW508r4hIS+feQ0Ty/fJ4fn3KWom8IcteRP7g8nabiEyOAFkX+8mZISLrnHsk5G2oOisidbdaGGMaxQ+IAnYAvYBY4EtgQLjlCpCxIzDMHScB24EBwBzghnDLF0TeDKBNgNtc4GZ3fDNwV7jlDKIH+4HukZSvwCnAMGBjVXkJ/BR4ExBgNPBZBMg6CYh2x3f5ydrDP1wE5W3QsnfP25dAHNDT1RlR4ZQ1wP9e4NYIyttQdVZE6m51fo2ppzcS+NoY840xpgh4DpgaZpnKYYzZZ4z5wh1nA1uAzuGVqsZMBZ50x08C54RPlKD8BNhhjKmLL/vUGcaYj4DDAc6h8nIq8JSxrARaikjHehGU4LIaY94xxpS405VAl/qSpypC5G0opgLPGWMKjTHfAl9j6456oTJZRUSAC4Fn60ueqqikzopI3a0OjcnodQZ2+53vIYINioj0AIYCnzmna91wwOORMGToMMA7IrJGRK50bu2NMfvc8X6IuA2op1O+0ojEfC0lVF5Gui5fjm3Nl9JTRNaKyIciMi5cQgUhWNlHct6OA743xnzl5xYxeRtQZzVU3W1URq/BICLNgZeA2caYLOAR4ARgCLAPO8QRCYw1xgwDpgDXiMgp/p7GjmdEzDsvIhILnA284JwiNV8rEGl5GQoR+RNQAixyTvuAbsaYocD1wL9FJDlc8vnRYMrej59TvsEWMXkbpM4qo6HobimNyeh9B3T1O+/i3CIKEYnBKs8iY8zLAMaY740xXmOMD3iMehxuqQxjzHfu7w/AK1i5vi8drnB/fwifhBWYAnxhjPkeIjdf/QiVlxGpyyIyC/gZMMNVdLhhwkPueA12jqxP2IR0VFL2kZq30cB5wOJSt0jJ22B1Fg1Md/1pTEbvc6C3iPR0Lf7pwNIwy1QON2a/ANhijPmHn7v/mPe5wMbAa+sbEWkmIkmlx9iFDBuxeXqpC3Yp8Gp4JAxKuZZyJOZrAKHycikw062EGw0c9RtKCgsicgbwe+BsY0yen3tbEYlyx72A3sA34ZHyRyop+6XAdBGJE5GeWHlX1bd8QZgIbDXG7Cl1iIS8DVVn0YB0twLhXklTlz/syqHt2BbRn8ItTxD5xmKHAdYD69zvp8DTwAbnvhToGAGy9sKucvsS2FSan0AKsAz4CngPaB1uWZ1czYBDQAs/t4jJV6wx3gcUY+c5/l+ovMSufJvn9HgDMCICZP0aO1dTqrfzXdhpTj/WAV8AZ0VI3oYse+BPLm+3AVPCLatzXwhcFRA2EvI2VJ0VkbpbnZ9+hkxRFEVpMjSm4U1FURRFqRQ1eoqiKEqTQY2eoiiK0mRQo6coiqI0GdToKYqiKE0GNXqKoihKk0GNnqIoitJk+P8Rr3lbP1PkOgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "execution_count": 18, + "metadata": { + "pycharm": { + "name": "#%%\n" } - ], + }, + "outputs": [], "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 5)" + "score_calc = ephys.objectivescalculators.ObjectivesCalculator(objectives) " ] }, { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABlGklEQVR4nO2dd5hU1dnAf+/MdnbpiPTe2aUXAygYrKhEQUGxIJ8xmmgk9i+JBk3MZ42VSEJQ7IJdY8FYEDEi0jsIstJhWdhlC9tm3u+Pc3eZnZ2Z3WV3mdnh/J5nnrn31Peec+55T7vniKpisVgsFks04wq3ABaLxWKx1DVW2VksFosl6rHKzmKxWCxRj1V2FovFYol6rLKzWCwWS9RjlZ3FYrFYop6IU3Yi0lFEVERiwi2L5fgRkZtFZI+IrA5D3DNE5OUTEM9UEVkcwn6hiFxX13JYyhMq3U9UnojIXBH5Swh7FZGudS1HNCAirUUkR0Q2i8iZxxtOxCk7S/URkVkikuv8ikSk2Of+4zCJNQP4tar285FzhojMCJM8EYXTqEuvpvsvRSRfRDaJyNgQbuNF5DkROSIi+0TkVj/760Rkq1M+PhGR1n5+Z4nIfhE5JCIfiEgbH/umIvKOiOSJyE8ickUQGZ7zrdCdcOc4fnJEZJWInFeN558rIlOr6r4+4zSi5lbD/c+dMpHvlJEOIdxWqRyJyOe+nQ4Rae9Tp5T+VERuc+zHichiEclyyty/RCTFJ7w2IvKeU6Z2icgNfvG5ReQvTgM5R0RWikhjAFXdo6opwAfAb6uaLv7UurKzPbITj6reoKrJqpoM/BWYV3qvqmUVygnOm6bAuhMYX50QQeX5NWAl0Az4A/CmiLQI4nYG0A3oAIwB7hSRcwFEZDSmjIzH5NF2J+xSbgFOA9KA1sBh4Gkf+5lAEdASmAI8KyJ9fCMXkZFAFz+ZYoCdwBlAI+CPwHwR6Vj5o0cmIuKOABmaA28D92DycxkwL4SXSsuRiEwBYn3NVHWHT52SDKQCXuAtx0kj4C+YMtMLaAM84hPEy5iy1hIYB/xVRMb42N8H/AxT9hoCVwEFfrKvc+Q+LmpF2YlIuojcJSJrgDwRiRGR4SLyX0fTr3ZeslL3C0Xk/0RkqdP6fE9EmgYJ+1oR2eho+x9F5Fd+9uOdVuIREdnm81I3clqSe0Vkt9NqCFk4RaSLiHwhIpkiclBEXiltXTh2h0RkoHPfWkQySp9LRC4SkfXO8y4UkV5+6XO7iKwRkWwRmSciCdVP6eoTJG/KDaGI35CLiFzgpGmWk4dp1YyzNJ29lbi708mfPWJ6G749gbkiMlNEPnTy/jsR6eLj90kR2enk+3IRGeUXfIKTzjkiskJEfHuYdztlJUdENojIxT52U0XkGxF5XEQyMYqjsud9VEQOi8h2qdhb6eCElyMinzqVU7UQke7AQOBPqnpUVd8C1gITgni5Bvizqh5W1Y3AbGCqY3cB8IaqrlfVIuDPwOk+adsJWKCq+1W1AFNx9nHkaODEeY+q5qrqYuB9TMVUKmsMRjne7CuQquap6gxVTVdVr6r+G1P5DTqO9HCLyGPOO7pdRG6SIFMfItLKee/u8DHuEqzuEZE3xPRMskVkkfgocqdMPisiH4lIHqYhEYomwcqvw1gR+cF5z2aKiFQ3LYBLgPWq+oaTXzOAfiLS099hVcqRiDQC/gTcWUm8VwOLVDUdQFVfVdVPVDVfVQ9jytwIJ8xkYDTwgKoWq+pq4E1gmmPfBJgO/FJVf1LDOud5fPFiGk3Hh6rW+AekA6uAdkAiRqtnAudjFOpZzn0Lx/1CYDfQF2iAaR287Nh1BBSIce7HYVqJgmkV5gMDHbuhQLYTvsuJt6dj9w7wDyf8U4ClwK8qeY6uTljxQAtgEfCEj/0vgQ1AErAAeNQx7w7kOX5jMQVlKxDnkz5LMa2epsBG4IYgMowEskL8RlbyDDNK0zJQ3jhmCnT1cTMX+ItzPQA4AAwD3JiKMx2Ir0Z5OBfTKmtQiZt9mIo0CdPyK5PLkSnTyeMY4BXgdR//V2JaeTHAbU5YCT5pUAxMdPLjdkzFGuvYX+rkhQuY5ORdK8duKlCCqaxjStMsyDNMdeL5pZNWNwJ7APEp59uc8pHo3D8YJKy/A38PYncxsNHP7Bng6QBumzjp2NLHbCKw1rl+1DcezDujwHjnfjDwjZM+ScCrOO+AUzby/eK7HfjA5/4O4MlA5czPX0unjPQ8jvrmBsx72NZ53s8oX2csBK7DKO4twPU+fhcSpO5x7KcBKZg64Algld97ko2pxF2l5S2IjHMJXX4V+DfQGGgPZADnBglrDXBFELsngWf9zNYBE46nHGF67r/Drx728yOYcj01xPM/Ufq8TnoqcIqP/WxgpXN9OqZuuwvzHm8BfhMgzDGYkYb21S0zqlqrym6az/1dwEt+bhYA1/gUuAd97HpjhkbcoRLZcfsucItz/Q/g8SAvUiE+FRVwOfBlNZ/rF6UZ4mP2PqY1tAZHAWCGEOb7uHFhXqjRPulzpY/9w8Cs2kj7ADLPoKKym+bnJpSyexbTK/B1vxk4o4rxL3PC/20l7p4D/s/nvisVld2/fOzPBzaFCO8w0M8nDZb45cdeYFQQv6s4VtlPBXZU8VmnAlt97pOcZzjVp5z/0cf+18Anx5GnV/k+j2P2ADA3gNt2jgwJPmZnAenO9VjgIGaYMtF5h7zA5Y59I+B1J4wSzJBXU8duFLDPL75fAgt94t4KNApUznz8xGIU1D+Os4x/gU/D1Xkmf2X3N6fsX+7ndyFB6p4A8TR2wi19nrnAi1WUMWT5dcId6XM/H7j7ONJiDn4NKExjZWp1yxGmobMKo5w7ElzZjQJygeQgMp2FeR+7+5gtxvT4EzC9y0PAZsfuCieuOU6ZTMMo/7MChP2G4/aJ6qZVbc7Z7fS57gBc6nTPs0QkC9NjaRXE/U+YF6DCEI+InCciS5whxCxMoSl11w7TwvCngxPeXp/4/4Hp4QVFRFqKyOtihj2PYHob/jLNxrQKn1bVQsestfMMAKiq13m+Nj7+9vlc5wPJoWSpZXZW7qSMDsBtfnnXDvOMVWEIMBmYISKxIdy19pMrkIxB08wZFt7oDDdlYSpp37wqC8/Jj12lzyAiV/sM02Zh8jOg3ypQJqOq5juXyYHs/Z+hGuRi5jF8aQjkBHFbal/Brap+hhmmegujDNIdu12O25mYXk0zTM/nbaB0kVNlcjwB3K+q2cEeRERcwEsYBXNTMHeVUJWyMwXT4HwzgF3AuscZHn3QGeI+gkkbqIWyQeC8D0fZCOjWyZe/YzoSJZXEeQ3wlqrm+luIyHDMaMBEVd3iYzUF09PeiWlQv8yxMnfU+b9fzfDqGkyD63y/sAc6Zj1VdXolMlagNpWd+lzvxPTsGvv8Gqjqgz5u2vlct8cMBx30DVBE4jEv5aOYYZnGwEeYbnRpPP7j4KXmhUBzn/gbqmqfAG59+avzHKmq2hAzVFY2ju6MPT+BaYHM8Bnr34NREqXuxHm+3ZXEVwERGSUVVz35/vznpqqC+t3nY3ohpZzqc70TM7bum3dJqvoaVUBN8+tdzPBSqxBO92KGoUppF8yhP04a3AlcBjRxykU2PnnlG57zIrcF9ohZqTYbU9E2c/yu8/Prn17hZj3QWXxWtwH9HPNyqJkv2evYB3SrqjNVtZuqtsS8XzEcW0zUH9PSP+Q05p4GhjpzjVuAGBHpFiTsnwOPOHNepRX5t+Ks2HTeizmYkZcJqlpczXQopSplZwamPnlVKs7VB6t7rsAs3BmLaTx1dNxEetkoy2tnXrULAcoGoctRQ0zPbp6Td9879rt86xwRScRMA7zgH7iIDMCMfE1T1c997dTMxV2gqi1UdRimAbHUsV5T6szXSwD5ewEbVHVzALtKqatPD14GLhSRc5zWUoKIjBYR3wJ6pYj0FpEk4H7gTVX1+IUTh2llZgAlzuT/2T72c4BrxSy9dYlZ3tpTVfcCnwKPiUhDx66LiJxRidwpmNZPtpjl1nf42T8JLFPV64APgVmO+XxgnCNHLGYOqRD4b2UJ5Y+qfq0+q54C/L6ubpgBWAVc4eTNuZi50FJmAzeIyDAxNBCzrDgFyibp51byDKU93rgQzuZj8q6XUwbuqYb8KZghtgxM5XsvFVusg0TkEjGLFqZj8mMJpreijl9E5FpMzy5icVrIq4A/Oe/SxZihnreCeHkR+KOINHEWKvwSM6yG47+vk7ftgX9i5tgOO36/B64Ws8ArFjP0ukdVD6pqHqand79TLkZglMNLjt/umMqzv/MDuBAzfw6mRd8LuFBVS1vzZYhZZDK6CkkyH7jFed8bY6ZN/CnGVMoNgBedBk8pweqeFEw5ycQ0Bv9aBVnCzTtAXxGZIGbR273AGlXd5O+wknKUjekx93d+pb2qQcB3PsFcjBmi/NI3bBHpC3wC3KyqH/jH7bznKSISJyJXYurxvzlybQO+Bv4g5hOVXpjRoX/7BROLyZ/jok6UnaruxLwEv8dUKjsxisM3vpcwL+A+zDhuhe8nVDXHMZ+PSeArMC2HUvulwLXA45jM+opjPayrMZXtBsfvm4TuaYBZ/jrQCetDzIsNmFWfmEUVNzpGtwIDRWSK09K4EtMKPoh5wS9Us9otErkFI2MWZnjh3VILVV2GqRyfwaTbVo6t5APTKv6mCnEoIcqXqn4MPIV5abZiFBFUrTAvwLxYWzDDUAVUHF56D7P45DBmruISNSvBNgCPAd8C+zFLqKvyPHWKmG/bZoVwMhnT8j4MPIgZJipV2FNExLcl/yfM8P5PmHfiEVX9xLFLwAwz5WJa1t9SvqFxOyY9f8C8u+djKrhSfo2ZVzmAWcZ+o6quB1DVA6q6r/TnuD+oqkedHvWvMBXpPp+RiinOM7TDDL2trTy1mI1pzK7BzCl+hGn8lGssO+/fJZie5HM+Ci9Y3fOik2a7MfXGEiIAMau8pwSyc8rABMzc22HMwrLJPn79y1XAcqQG37zLcNzv96vHrsGM2vn3vG7DLOqb45O3vmXyHOBHJ94bMItxMnzsL8fU3ZmYuvce/94hZk1HyBXeoZCKMtc9IrIQs4jiXyc8cstxIyJxwGogrbIhKBHZA9ypqlXaycRpza3DLPqpbM7AEmU4rf0+qvq/x+H3PMyCrw6VOrbUS5yGylOYFZ2XHU8YdgcVS5VR1SJV7VXFuZa7McMly4M5EJGLnWGLJsBDmCXsVtGdhKjqy1VVdCKSKCLni/lmtA2mJ/tOZf4s9RMxO/xkAMMxozLHxUmn7KT81lq+v1BDSJZqoqovOosgQn00/CvMcNg2zBDUjSHchgVbXiISwUw5HMYMY27EzFWdWCHM8GKgshFwyNFyfKjZLqyZqg5W1e8q9xGYsAxjWiwWi8VyIjnpenYWi8ViOfmIlE1uAWjevLl27Ngx3GJYLBaL5QSyfPnyg6oabGPzWiGilF3Hjh1ZtmxZuMWwWCwWywlERH6q3FXNqPEwpphDOjc5k7UPO2ZnidmJfq3zf9wH7lksFovFUlNq1LMTcx7ReMwGvIUiUrr35EHMR9V7nC/rF1B+n0iLxVINVBU5rhNgLBYL1LxndyNmx+1CMDsoOP8rVXWP42Y9kChmn0uLxVINtLiALTMvZfV9Q1m7ZmW4xbFY6i01nbPrDowSkQcwWwzdrqrf+7mZAKzw2S+xWhQXF7Nr1y4KCvzP8bNYgpOQkEDbtm2JjQ118ELks+jV/+OMjE8BWPredLx9F+Jy2R6exVJdKlV2IvIZ5XfFL+UPjv+mmC/bhwDzRaRz6b5pYk75fYjymzf7h389cD1A+/btK9jv2rWLlJQUOnbsaIdxLFVCVcnMzGTXrl106tQp3OIcN+r10iX9dTbFp+LpchZDN/yNNau/J23A0HCLZrHUOyodxlTVsaraN8DvPcx5RG87m4guxWzS2RxAzAkH7wBXO7taBwv/n86X8YNbtKi48rSgoIBmzZpZRWepMiJCs2bN6v1owNZNq2mr+8jrOp5OZ07Dq8LB714Pt1gWS72kpnN272KOSkdEumNOGTjoHLvxIebk3RrvKG8VnaW6REOZ2b/yIwA6Dr+IpObtSE/oQfMD1T41ymKxUHNl9xzmMMB1mJNlr3GGMG8CugL3ijkRepXPSk2LxVIFEvYuY5+0oFm7HgAcaTmcnp4tHDh0KMySWSz1jxopO2cX/CudYc2BqvqFY/4XNSeT9/f5HagdkU88IsJtt91Wdv/oo48yY8aM8AlUCQsXLuS//61ZD+Dcc8+lcePGXHDBBbUklaW6nJK3iX1JPcruk3uOJk48bF+5MHxCWSz1FLs3ZhWIj4/n7bff5uDBg7Uarqri9R73WYRBqQ1ld8cdd/DSSy9V7tBSJ2QfPkR73UNhi7Qysw5ppwOQ+6PdZchiqS5W2VWBmJgYrr/+eh5//PEKdhkZGUyYMIEhQ4YwZMgQvvnGTFHOmDGDRx99tMxd3759SU9PJz09nR49enD11VfTt29fdu7cyR133EHfvn1JTU1l3rx5gFFYo0ePZuLEifTs2ZMpU6YQ6ISKp556it69e5OWlsbkyZNJT09n1qxZPP744/Tv35+vv/46pIxXXXUVp512Gt26dWP27Nll4f785z8nJSUlZLq88cYb9O3bl379+nH66aYiLigo4NprryU1NZUBAwbw5ZdfAjB37lx+8YtfcNZZZ9GxY0eeeeYZ/va3vzFgwACGDx/OIWdobvbs2QwZMoR+/foxYcIE8vPzK8Q7fPhw1q8/dgjy6NGjo26buV2blgKQ1GFAmVlscjP2uVrS4FBVDvO2WCy+RNTemJVx3wfr2bDnSK2G2bt1Q/50YZ9K3f3mN78hLS2NO++8s5z5Lbfcwu9+9ztGjhzJjh07OOecc9i4cWPIsH744QdeeOEFhg8fzltvvcWqVatYvXo1Bw8eZMiQIWWKY+XKlaxfv57WrVszYsQIvvnmG0aOHFkurAcffJDt27cTHx9PVlYWjRs35oYbbiA5OZnbb78dgCuuuCKojGvWrGHJkiXk5eUxYMAAxo0bR+vWrauUdvfffz8LFiygTZs2ZGVlATBz5kxEhLVr17Jp0ybOPvtstmzZAsC6detYuXIlBQUFdO3alYceeoiVK1fyu9/9jhdffJHp06dzySWX8Mtf/hKAP/7xj8yZM4ebb765XLyTJk1i/vz53Hfffezdu5e9e/cyePDgKslcX8jbswmAZh1Ty5lnJPek9ZHNdkcVi6Wa2J5dFWnYsCFXX301Tz31VDnzzz77jJtuuon+/ftz0UUXceTIEXJzc0OG1aFDB4YPHw7A4sWLufzyy3G73bRs2ZIzzjiD77833+UPHTqUtm3b4nK56N+/P+np6RXCSktLY8qUKbz88svExARuu4SScfz48SQmJtK8eXPGjBnD0qVLq5wmI0aMYOrUqcyePRuPx1P2PFdeeSUAPXv2pEOHDmXKbsyYMaSkpNCiRQsaNWrEhRdeCEBqamrZs61bt45Ro0aRmprKK6+8Uq4HV8pll13Gm2++CcD8+fOZOHFilWWuL3gObqVI3bRs162cedEpqbRnHxkHM8IkmcVSP6lXPbuq9MDqkunTpzNw4ECuvfbaMjOv18uSJUtISEgo5zYmJqbcfJzvN18NGjSoUnzx8cd2WHO73ZSUlFRw8+GHH7Jo0SI++OADHnjgAdaurTjEFUxGqLhEvzq9hVmzZvHdd9/x4YcfMmjQIJYvXx7Sve/zuFyusnuXy1X2bFOnTuXdd9+lX79+zJ07l4ULF1YIp02bNjRr1ow1a9Ywb948Zs2KvkPD47O3s9fdig5+DZgGHQbDVti9cQmntLgoTNJZLPUP27OrBk2bNuWyyy5jzpw5ZWZnn302Tz/9dNn9qlWrAHNc0YoVKwBYsWIF27dvDxjmqFGjmDdvHh6Ph4yMDBYtWsTQoVXbIcPr9bJz507GjBnDQw89RHZ2Nrm5uaSkpJCTk1OpjADvvfceBQUFZGZmsnDhQoYMGVKluAG2bdvGsGHDuP/++2nRogU7d+5k1KhRvPLKKwBs2bKFHTt20KNHj0pCOkZOTg6tWrWiuLi4LJxATJo0iYcffpjs7GzS0tKCuquvNCnYyeGEijsKte41DIC8n+w+mRZLdbDKrprcdttt5VZlPvXUUyxbtoy0tDR69+5d1suYMGEChw4dok+fPjzzzDN07949YHgXX3wxaWlp9OvXjzPPPJOHH36YU08NtDtbRTweD1deeWXZYpDf/va3NG7cmAsvvJB33nmnbIFKMBnBDIOOGTOG4cOHc88995TN140aNYpLL72Uzz//nLZt27JgwQIA7r33Xt5//33ArNhMTU2lb9++/OxnP6Nfv378+te/xuv1kpqayqRJk5g7d265Hl1l/PnPf2bYsGGMGDGCnj17lpm///773HvvvWX3EydO5PXXX+eyyy6rctj1Ba/HQyvPHgoadqxg17B5aw7ShJiMisO7FoslOBJohV+4GDx4sPqvqtu4cSO9evUKk0TRzYwZM8otZIk26mvZ2bvjB1o9N5ilfe5h6KUV82bdQ2OJLzxIt3tXnXjhLJY6QESWq2qdrjKzPTuLJcI4vNcMeSe26BjQ/mjTXrT37OTo0fq996fFciKpVwtULLVLJO8CczKTl7EDgEYtOwS0j22dSvzuErb8sJruacNOpGgWS73F9uwslgij+NBOAJq27hLQvmmXQQAc/jH06leLxXIMq+wslgjDlbObXBJJbtQ0oH2brmkUaizevXYnFYulqlhlZ7FEGHF5e8l0NQ9q746JZWdMe5KzNp1AqSyW+o1VdhZLhJFcuJ8jcaFPxMpM6U7rwqBnIlssFj+ssqsi7777LiLCpk3BW9Pp6en07du3TuVYtWoVH330UY3CmDZtGqecckqdy2o5Ppp6MihIDP2tpadFH5qRTdb+nSdIKoulfmOVXRV57bXXGDlyJK+99lpA+0BbeVWX0v0lQ1Ebym7q1Kl88sknNQrDUjcUFh6lqWbjSWkT0l1S+/4A7NkSXac9WCx1hVV2VSA3N5fFixczZ84cXn/99TLzhQsXMmrUKC666CJ69+4NGKU3ZcoUevXqxcSJE8uOqPn8888ZMGAAqampTJs2jcLCQsBsK3bXXXcxcOBA3njjjXLx+h+hU1RUxL333su8efPo378/8+bNIy8vj2nTpjF06FAGDBjAe++9B5gjdcaPH8/o0aPp1q0b9913X1m4p59+Ok2bBl78UMpXX31F//796d+/PwMGDCAnJwdVDXoc0RlnnMH48ePp3Lkzd999N6+88gpDhw4lNTWVbdvMcNsHH3zAsGHDGDBgAGPHjmX//v0V4p08eTIffvhh2f3UqVPLNn0+GcjcuwOXKO5GoZVd6x5mW7f8HatOgFQWS/2nfn1n9/HdsK+WV6CdmgrnPRjSyXvvvce5555L9+7dadasGcuXL2fQILP8e8WKFaxbt45OnTqRnp7O5s2bmTNnDiNGjGDatGn8/e9/56abbmLq1Kl8/vnndO/enauvvppnn32W6dOnA9CsWbOyfTR98T9CJy4ujvvvv59ly5bxzDPPAPD73/+eM888k+eee46srCyGDh3K2LFjAVi6dCnr1q0jKSmJIUOGMG7cuCofhfPoo48yc+ZMRowYQW5uLgkJCbz99ttBjyNavXo1GzdupGnTpnTu3JnrrruOpUuX8uSTT/L000/zxBNPMHLkSJYsWYKI8K9//YuHH36Yxx57rFy8pcf3jBs3jqKiIj7//HOeffbZKskcDeQcNMOScU1CK7sWLVqyl2Z22zCLpYrYnl0VeO2115g8eTJgeh6+Q5lDhw6lU6dOZfft2rVjxIgRAFx55ZUsXryYzZs306lTp7L9Ma+55hoWLVpU5mfSpEkB4w10hI4/n376KQ8++CD9+/dn9OjRFBQUsGOH+Sj5rLPOolmzZiQmJnLJJZewePHiKj/ziBEjuPXWW3nqqafIysoiJiYm5HFEQ4YMoVWrVsTHx9OlSxfOPvtsoPzxPbt27eKcc84hNTWVRx55JODxPeeddx5ffvklhYWFfPzxx5x++ukkJiZWWe76Tv6hfQA0aNYqpDsRYU98V5rmbDkRYlks9Z761bOrpAdWFxw6dIgvvviCtWvXIiJ4PB5EhEceeQSoeFzP8RyZE+zIn6ocoaOqvPXWWxVOFvjuu+9qdHzP3Xffzbhx4/joo48YMWJE2UbQwajK8T0333wzt956KxdddBELFy4MuINLQkICo0ePZsGCBcybN6+skXGyUJRtlF3D5qF7dgC5jXvSb9/3aPFRJPbkaRBYLMeD7dlVwptvvslVV13FTz/9RHp6Ojt37qRTp058/fXXAd3v2LGDb7/9FoBXX32VkSNH0qNHD9LT09m6dSsAL730EmeccUalcQc6Qsf/+J5zzjmHp59+mtINvVeuPHb0y3/+8x8OHTrE0aNHeffdd8t6nFVh27ZtpKamctdddzFkyBA2bdpUo+OIALKzs2nTxlTiL7zwQlB3kyZN4vnnn+frr7/m3HPPrXL40YA3x8xjNmkRumcH4GqVSox4OfDj6roWy2Kp91hlVwmvvfYaF198cTmzCRMmBF2V2aNHD2bOnEmvXr04fPgwN954IwkJCTz//PNceumlpKam4nK5uOGGGyqNO9AROmPGjGHDhg1lC1TuueceiouLSUtLo0+fPtxzzz1l/ocOHcqECRNIS0tjwoQJZfN1l19+OaeddhqbN2+mbdu2ZefzzZo1q+z4nyeeeIK+ffuSlpZGbGws5513Xo2OIwKzF+ell17KoEGDaN782EfTy5Yt47rrriu7P/vss/nqq68YO3YscXFxVQ4/GpD8DLJpQGxcxYN2/WnSeQAAB7dWnO+1WCzlsUf8RClz584tt5DlZKQ+lp0Vj1xI86M/0v7eyhee5BcUwv+1Y1PrXzDwV/88AdJZLHWDPeLHYjnJSCjKJDcm9GchpSQlxPNTTEcSD22sY6kslvpPjZWdiNwsIptEZL2IPOxn115EckUkOk8HjWCmTp16Uvfq6ispJYcpiG9WZfdHGvWgTeE21OutQ6kslvpPjZSdiIwBxgP9VLUP8Kifk78BH9ckDoBIGmq11A/qa5lp7D1McULwTaD9cbVKpSF57Eq3nyBYLKGo6acHNwIPqmohgKoeKLUQkV8A24G8mkSQkJBAZmYmzZo1q9bSecvJi6qSmZlJQkLlizwiifz8XFLkKCS3qLKfln3OgPUPsHvVf2jXuWe149y7by8//OdfpOxeRKuCH0nRHDy4yXWlcDC2NdkNOuJt1o3EVr1o0bEPbdp3JS7WXe14LJZwU1Nl1x0YJSIPAAXA7ar6vYgkA3cBZwEhhzBF5HrgeoD27dtXsG/bti27du0iIyOjhqJaTiYSEhJo27ZtuMWoFtkZu0kCXMmhTzzwpV3PwRyiIe70r4Cbq+wvLy+P7165j+G753K6FLLD1ZbdjQfhiW+CqhfX0UM0LthJl8Of0ODwO7AV+BpyNYF0dxvy4ppTGNuI4rjGuGLjcbkErwqqgHrA6wH1gpaA1+vcm594vYh6EDy48OJSr8+/MQP/nnn5hq5Wcg/mu1KXQHGDU+n3q+dxxdSvz4ottUuluS8inwGB1pf/wfHfFBgODAHmi0hnYAbwuKrmVtYbU9V/Av8EsxrT3z42NrbcDiUWS7SSd8h8YxfTsOrKTlxufkwZTKcj36NeL+KqfGZi9759ZM3+BWd6NrKu0Rm0uOCPtO8+lIpNTUCV/Myd7PtxHUd2bcSbsZn47O00LDpIcuGPJGsOMepB8CKAoHilVGX5/tx4xVyruPCU3buPuZFj7rXCDEvFYWnxM/O/V4VkTxZt8peyb8+PnNq+e6VpY4leKlV2qjo2mJ2I3Ai8rWaCZKmIeIHmwDBgorNgpTHgFZECVbUrJiyWIBzNNrMACY2qruwAtOMZNF/7BT+sW0q3tOEh3a7dvJXY1ybSnR1s/NkT9D372tCBi5DUvD2dm7eHoedXS65IYMXHz9Pmu+kU5BwOtyiWMFPT1ZjvAmMARKQ7EAccVNVRqtpRVTsCTwB/tYrOYglNUc5BAJIaVX3ODqDrqEspUReZ3wXe6KCUTVs2k/TqRXRiNwcvmEuvyhRdFBCT1BiAwlyr7E52aqrsngM6i8g64HXgGq2vy+AsljBTnHsIgIZNq9eza3JKG9YlDKTDng/xBtkw/Mct62nw6oW0kkyOTHydVoMvqrG89YG45MYAFOZlhVUOS/ipkbJT1SJVvVJV+6rqQFX9IoCbGarq/0mCxWLxQ/MyAWjYpHo9O4CStCtopRms/ezlCna7tqwi+dULaEge2Ze+RYu+P6+xrPWFhAZNACjJzw6zJJZwY3dQsVgihYIsckjCHRNbba/9z76adGlDk+8eoaggv8x824ovaPDqhbjwknXZO7TqM7I2JY54EhsaZeexyu6kxyo7iyVCiCk8TI40PD6/sbFkjvgT7b072TzzMnav+5qlL/wvbd+7jFxpQO7l79Ohd9VPqIgWGjQ0W695C6yyO9mxH55YLBFCbFE2+e6U4/Y/aOwkvty9mdN//BvuN7+mDbA0cQQdr53NKS0rPx8vGmmQ1IAidaMFR8ItiiXMWGVnsUQIiSXZFMQ1rlEYY665l40bL+HApiV06jWAoT0H1Y5w9RRxuciTBkihVXYnO1bZWSwRQpInh4y4DjUOp1evvvTq1bcWJIoO8iUJV5FVdic7ds7OYokQGmoOnvjG4RYj6ihwJxNbnBtuMSxhxio7iyUCKC4uppHk4U1oEm5Roo5CdzJxJVbZnexYZWexRABHDjsbnSdaZVfbFMU1JNGTE24xLGEmKpWdPcjSUt/IzzbKzt2g6ge3WqpGcVwTUtTO2Z3sRJWyy87cR9aMNnw3/+HKHVssEUSpsotNtsquttGExjTSXLwe2wg+mYkqZZfSuAVJWgDZu8ItisVSLYpyzL6YcQ2tsqttNLEpseIh50hWuEWxhJGoUnYut5sDrubE5e0OtygWS7Uozi098aB5mCWJPlwNzC4quYcPhFkSSziJKmUHkBXbkqSj+8IthsVSLTx55giapIbV3wTaEprYZNOAyM+2yu5kJuqUXX5iK5oU7w+3GBZLtdCjZu/GlMZNwyxJ9BHX0Ci7giMZYZbEEk6iTtl5G7aluR6isLAg3KJYLFWnIJs8jSchPj7ckkQdic5huMW5mWGWxBJOok7ZxTZtj1uUA7vTwy2KxVJlpCiHPGkQbjGikgaNjbLzWGV3UhN1yi6pZVcADu3aFGZJLJaq4y7O4ajLKru6oPQwXM0/FGZJLOEk6pRd0/Y9ASjYtyXMklgsVSe2OIcCt1V2dUFCfDzZ2gCOWmV3MhN1yq5Fq47kazySuS3colgsVSa+JI8id3K4xYhaclwpuAsOh1sMSxiJOmXncrvZ625FfE56uEWxWKpMgjeXktjjP7jVEpp8d0Nii7LCLYYljESdsgPISmxHk4Kd4RbDYqkySZqHJ84qu7qiMLYRCcXZ4RbDEkaiUtkVN+pEK88+iouLwi2KxVIpqkqy5uO1yq7OKIpvRkNPVrjFsISRqFR2sad0I1Y87EnfHG5RLJZKOVpwlAQphoRG4RYlailOOoWmethuBn0SU2NlJyI3i8gmEVkvIg/7mKeJyLeO+VoRSahpXFWlYftUADJ/XH2iorRYjpu8bGeVoFV2dUfyKcSJh5wsu2XYyUpMTTyLyBhgPNBPVQtF5BTHPAZ4GbhKVVeLSDOguMbSVpFW3QfhUaFk9yrgyhMVrcVyXOTnmFWC7kSr7OoKd8NWAGRn7KZRs1NrL2BVMnduImfvVkqOZuNxJ5HStCVN2/ciIcVu/RZJ1EjZATcCD6pqIYCqljabzgbWqOpqx/yEbl2QnNyQdFdr4jM31FqYe/fs5KdVX1Kydy3kHiTem4dXYvC44tGkprhSTiWucWuSmrWiUfM2ND2lDQlJdim5pXIKc7MAiEmyyq6uiG/cGoDcg7uAQTUO7+D+PaR/+Agddr5LCz1EoIOZDtKE/fEdyG/UFdcpPUlpn0qrrv1JaVqLytZSZWqq7LoDo0TkAaAAuF1Vv3fMVUQWAC2A11U14ImqInI9cD1A+/btayjOMQ406EH7vLU1CsPr8bL08zdIWDaL1MKVtBIF4AgNyJMkYtRDHEU0OpQb0H+uJpIljTgS04RidwM87gRK3PFGQbricLkEl4BgwkXNv7lXRJ1/FNT8l9k5ZqXujpkDKKVBVoWKTrU6t9VCg95U4raGcVcv3spj0QBOAsWhQSL09Z9YkgVAbFLjSuO1HB8pLdoAcPTQnhqHteSDOfRcdi8DyGNV4jC2dByL+9RexCY1wlWcT37WfvTgD8Qe2kLj3B/ptf9Dkg+8CeuM/8M0JNPdnLyYJhTENYX4hmhMPF5XHOqOwyXgUi+oB/GWmH/1gNcD6kUcO3PtQbxeoNT82H+wkiwcqykC2wazElTBqyZcVSUjtjXjbp1dk+Q8YVSq7ETkMyBQU+QPjv+mwHBgCDBfRDo75iMds3zgcxFZrqqf+weiqv8E/gkwePDgmtSj5Shu0YdTc7/gSOYBGjY7pdr+t21eQ/4bv2Z4yVr2S3NWdbiWJv0voH3vYTRMSKahj1tPcRHZB3eTdWAXeZm7KMjah+dIBq6jGcQezSShKJMGJdnEFGcQq4XEUUSsmlFdM10uvmrKuRa8ZepNHLcu1Me9cevyUX9Szr5SQpXraqRVdalW2FLetdRI1R6nDFUISCoJNaCNj+HW+N607VnzHoclMM1PbQdAUfbe4w5DVfnmubsYufMfbInryZFLnmFQryGV+vN4vOzcsZWM7WvI372e2EM/kFCYQVLRIVrm7iAxJ59YLSGOYmLk2AKaYnXjxUUJLry48Dj/XnH+caEIXtzm3zFXcZXVB6HLefl3qSpuS92ImLA9Wpc1Re1SqbJT1bHB7ETkRuBtVVVgqYh4gebALmCRqh503H0EDAQqKLu6onHnwbAdtq/9mn6jJ1TL77fvziJt5b14xc2qtD+SeuFvaRkbfDd6d2wcTVt1ommrTjUV22Kx1AEpjZqSTzx65PjPuvzmxRmM3PkPljc+h/6/eQl3iDrBF7fbRbtO3WnXqTswMbRjrwevgoqLGDFKJZLPwai9sbi6p6arMd8FxgCISHcgDjgILABSRSTJWaxyBlB7E2hVoGP/0ZSoi4KtX1fZj3q9LHrubk5bdRc7E7pR8qv/0v+SO6pcqC0WS+Ry2NUUd/7xrcZctuAVRm5/glUpoxlw06t1Vye43LjcbtwuQaT+9JrqAzWds3sOeE5E1gFFwDVOL++wiPwN+B7T//1IVT+sYVzVokFKYzbGdKPx/u+q5F5VWTz7Vk7f+zyrGp9F3xtfIiY+sY6ltFgsJ4ojsaeQXFj9g5337viBrv+9k22xXej1m1dxxdS02rSEgxrlmqoWEWRtv6q+jPn8IGxknTKMwXteISf7ECmNQi8DXvziDEbtfZ4VzS5kwG9eQFzuEyOkxWI5IeQltaHD4W+r5UdV2f3qzfSmmMTLXyQ+wZ5MUV+Jyh1USmmYdj6x4uHHb94K6W7JG48xavsTrGw4hv43zrWKzmKJQkoatqcFhynID7x6OhArv/mEwQXfsqnrdbTu0rcOpbPUNVGt7LoPOYv9NEXWB1d2Kz78F0PX/ZnViUPpe9PrdojCYolS3E07ApCxa2uV3Hs9XhK+nMFBaULfCf9bh5JZTgRRrexiY2LY1vJceuUuJXN3xfPtNnw5j9Sld7Ixrg/db3qH2LgTtqOZxWI5wSSc0gWAnL0/VMn9sgUv0duziV39phOXZDfpru9EtbIDaHPOdBT46e17y5lv+OJVuiz8DT/GdKbtrz8gsYHd7cRiiWaatesGQO6+Hyt1W1RURMvvH2KHqy1pF/ymrkWznACiXtl16NyDJadMYmDmv1n3xp8p3P8DK567hZ5f/ZrtMZ1ofsMHNGpi97CzWKKdVq07cFTjKDlYcZTHn+XvPkkH3U32iD/giok9AdJZ6pqTYoJq8LTHWPr4NoaufxTWP8pA4L+NzqX3//yDxo0ah1s8i8VyAhCXiz2x7WhwJPQwZl5ONt02PMOm2N70HTP5BElnqWtOCmWXlJjEgDs/YuF/3qb44Haa9zqd0wYNtx9tWiwnGVkp3Wh/eAmqGvT9X/vmXxlOFplnz0FcUT/4ddJwUig7MItVRp93WbjFsFgsYcTTog8tDn9CxoFdtGjZroL94QO7SU2fy4oGIxk4JOhOiZZ6iG22WCyWk4YG7foBsH/zsoD2P7z5J+IpoulFD5xIsSwnAKvsLBbLSUOrvqOC7pm7L30j/fe/zfdNL6Bjz/4nXjhLnWKVncViOWlo2qQpP8R0JWXfkgp2B966kxJi6DTxz2GQzFLXWGVnsVhOKjKaD6dL4UbyDh072+6H7z4iLWcR37e9hlPbdAyfcJY6wyo7i8VyUtFk2BRixMvWz54DoCj/CIkLbmcPLRh0+b2V+LbUV6yys1gsJxV9+g9jrbs37Tb+k/w9G9j898tp7dnDrtMfJTnZbgsWrVhlZ7FYTipcLqFw7F+J9x4l6Z+nkZq7mK+73s7QM38RbtEsdchJ852dxWKxlDL4tDF8536PjBXvk9JtFKefeV64RbLUMVbZWSyWk5JhQ0+DoaeFWwzLCcIOY1osFosl6rHKzmKxWCxRj6hquGUoQ0QygJ9qIajmwMFaCOdEUJ9khfolr5W17qhP8tYnWaF+yVtbsnZQ1Ra1EE5QIkrZ1RYiskxVB4dbjqpQn2SF+iWvlbXuqE/y1idZoX7JW59ktcOYFovFYol6rLKzWCwWS9QTrcrun+EWoBrUJ1mhfslrZa076pO89UlWqF/y1htZo3LOzmKxWCwWX6K1Z2exWCwWSxlW2VksFosl6okqZSci54rIZhHZKiJ3h1sef0SknYh8KSIbRGS9iNzimM8Qkd0issr5nR9uWQFEJF1E1joyLXPMmorIf0TkB+e/SQTI2cMn7VaJyBERmR5J6Soiz4nIARFZ52MWMC3F8JRTjteIyMAIkPUREdnkyPOOiDR2zDuKyFGfNJ51ImUNIW/QvBeR/3XSdrOInBMBss7zkTNdRFY55pGQtsHqrIgsuyFR1aj4AW5gG9AZiANWA73DLZefjK2Agc51CrAF6A3MAG4Pt3wB5E0HmvuZPQzc7VzfDTwUbjkDlIN9QIdISlfgdGAgsK6ytATOBz4GBBgOfBcBsp4NxDjXD/nI2tHXXQSlbcC8d9631UA80MmpM9zhlNXP/jHg3ghK22B1VkSW3VC/aOrZDQW2quqPqloEvA6MD7NM5VDVvaq6wrnOATYCbcIrVbUZD7zgXL8A/CJ8ogTk58A2Va2NnXhqDVVdBBzyMw6WluOBF9WwBGgsIq1OiKAEllVVP1XVEud2CdD2RMlTGUHSNhjjgddVtVBVtwNbMXXHCSGUrCIiwGXAaydKnsoIUWdFZNkNRTQpuzbATp/7XUSwIhGRjsAA4DvH6Can2/9cJAwNOijwqYgsF5HrHbOWqrrXud4HtAyPaEGZTPnKIhLTtZRgaRnpZXkapvVeSicRWSkiX4nIqHAJFYBAeR/JaTsK2K+qP/iYRUza+tVZ9a7sRpOyqzeISDLwFjBdVY8AzwJdgP7AXsxQRiQwUlUHAucBvxGR030t1YxbRMy3KyISB1wEvOEYRWq6ViDS0jIYIvIHoAR4xTHaC7RX1QHArcCrItIwXPL5UG/y3ofLKd9Qi5i0DVBnlVFfym40KbvdQDuf+7aOWUQhIrGYQvOKqr4NoKr7VdWjql5gNidwWCUUqrrb+T8AvIORa3/psITzfyB8ElbgPGCFqu6HyE1XH4KlZUSWZRGZClwATHEqOJzhwEznejlmDqx72IR0CJH3kZq2McAlwLxSs0hJ20B1FvWs7EJ0KbvvgW4i0slp4U8G3g+zTOVwxuTnABtV9W8+5r5j2hcD6/z9nmhEpIGIpJReYxYorMOk6TWOs2uA98IjYUDKtYwjMV39CJaW7wNXOyvbhgPZPkNGYUFEzgXuBC5S1Xwf8xYi4nauOwPdgB/DI+UxQuT9+8BkEYkXkU4YeZeeaPkCMBbYpKq7Sg0iIW2D1VnUo7JbRrhXyNTmD7MSaAumBfSHcMsTQL6RmO7+GmCV8zsfeAlY65i/D7SKAFk7Y1atrQbWl6Yn0Az4HPgB+AxoGm5ZHbkaAJlAIx+ziElXjBLeCxRj5jH+J1haYlayzXTK8VpgcATIuhUzF1Nabmc5bic45WMVsAK4MELSNmjeA39w0nYzcF64ZXXM5wI3+LmNhLQNVmdFZNkN9bPbhVksFosl6ommYUyLxWKxWAJilZ3FYrFYoh6r7CwWi8US9VhlZ7FYLJaoxyo7i8VisUQ9VtlZLBaLJeqxys5isVgsUY9VdhaLxWKJeqyys1gsFkvUY5WdxWKxWKIeq+wsFovFEvVYZWexWCyWqCfilJ2IdBQRdc53stRTRORmEdkjIqvDEPcMEXn5BMQzVUQWh7BfKCLX1bUclvKESvcTlSciMldE/hLCXkWka13LEQ2ISGsRyRGRzSJy5vGGE3HKzlJ9RGSWiOQ6vyIRKfa5/zhMYs0Afq2q/XzknCEiM8IkT0ThNOrSq+n+SxHJF5FNIjI2hNt4EXlORI6IyD4RudXP/joR2eqUj09EpLWf31kisl9EDonIByLSxse+qYi8IyJ5IvKTiFwRRIbnfCt0J9w5jp8cEVklIudV4/nnOofHRj1OI2puNdz/3CkT+U4Z6RDCbZXKkYh87tvpEJH2PnVK6U9F5DbHfpyILBaRLKfM/av0PEzHvo2IvOeUqV0icoNffG4R+YvTQM4RkZUi0hhAVfeoagrwAfDbqqaLP7Wu7GyP7MSjqjeoarKqJgN/BeaV3qtqWYVygvOmKZF3WGq1iaDy/BqwEnOO2B+AN0WkRRC3MzAHfXYAxgB3ijl8FREZjSkj4zF5tB2fA2+BW4DTgDSgNXAYeNrHfiZQBLQEpgDPikgf38hFZCTQxU+mGMx5eGcAjYA/AvNFpGPljx6ZiHOwaphlaA68DdyDyc9l+Jx2HoBKy5GITAFifc1UdYdPnZIMpAJezAnmYPL0L5gy0wtoAzziE8TLmLLWEhgH/FVExvjY3wf8DFP2GgJXAQV+sq9z5D4uakXZiUi6iNwlImuAPBGJEZHhIvJfR9Ovdl6yUvcLReT/RGSp0/p8T0SaBgn7WhHZ6Gj7H0XkV372451W4hER2ebzUjdyWpJ7RWS302oIWThFpIuIfCEimSJyUEReKW1dOHaHRGSgc99aRDJKn0tELhKR9c7zLhSRXn7pc7uIrBGRbBGZJyIJ1U/p6hMkb8oNoYjfkIuIXOCkaZaTh2nVjLM0nb2VuLvTyZ89Ynobvj2BuSIyU0Q+dPL+OxHp4uP3SRHZ6eT7chEZ5Rd8gpPOOSKyQkR8e5h3O2UlR0Q2iMjFPnZTReQbEXlcRDIxiqOy531URA6LyHap2Fvp4ISXIyKfOpVTtRCR7sBA4E+qelRV38IcjDkhiJdrgD+r6mFV3QjMBqY6dhcAb6jqelUtAv4MnO6Ttp2ABaq6X1ULMBVnH0eOBk6c96hqrqouxhyMepWPrDEY5Xizr0CqmqeqM1Q1XVW9qvpvTOU36DjSwy0ijznv6HYRuUmCTH2ISCvnvbvDx7hLsLpHRN4Q0zPJFpFF4qPInTL5rIh8JCJ5mIZEKJoEK78OY0XkB+c9mykiUt20AC4B1qvqG05+zQD6iUhPf4dVKUci0gj4E+ZU+lBcDSxS1XQAVX1VVT9R1XxVPYwpcyOcMJOB0cADqlqsqquBN4Fpjn0TYDrwS1X9SQ3rnOfxxYtpNB0ftXSabTrmBNt2QCJGq2diTrR1AWc59y0c9wuB3UBfzAnTbwEvO3YdMSfjxjj34zCtRMG0CvOBgY7dUCDbCd/lxNvTsXsH+IcT/inAUuBXlTxHVyeseKAFsAh4wsf+l8AGIAlYADzqmHcH8hy/sZiCshWI80mfpZhWT1NgI36nEvudDJwV4jeykmeYUZqWgfLGMVOgq4+bucBfnOsBwAFgGODGVJzpQHw1ysO5mFZZg0rc7MNUpEmYll+ZXI5MmU4exwCvAK/7+L8S08qLAW5zwkrwSYNiYKKTH7djKtZYx/5SJy9cwCQn71o5dlOBEkxlHVOaZkGeYaoTzy+dtLoR2ANlhyIvxJzY3B3zXiwEHgwS1t+BvwexuxjY6Gf2DPB0ALdNnHRs6WM2EVjrXD/qGw/mnVFgvHM/GPjGSZ8k4FWcd8ApG/l+8d0OfOBzfwfwZKBy5uevpVNGeh5HfXMD5j1s6zzvZ5SvMxYC12EU9xbgeh+/CwlS9zj204AUTB3wBLDK7z3JxlTirtLyFkTGuYQuvwr8G2gMtAcygHODhLUGuCKI3ZPAs35m64AJx1OOMD333+FXD/v5EUy5nhri+Z8ofV4nPRU4xcd+NrDSuT4dU7fdhXmPtwC/CRDmGMxIQ/vqlhlVrVVlN83n/i7gJT83C4BrfArcgz52vTFDI+5Qiey4fRe4xbn+B/B4kBepEJ+KCrgc+LKaz/WL0gzxMXsf0xpag6MAMEMI833cuDAv1Gif9LnSx/5hYFZtpH0AmWdQUdlN83MTStk9i+kV+LrfDJxRxfiXOeH/thJ3zwH/53PflYrK7l8+9ucDm0KEdxjo55MGS/zyYy8wKojfVRyr7KcCO6r4rFOBrT73Sc4znOpTzv/oY/9r4JPjyNOrfJ/HMXsAmBvAbTtHhgQfs7OAdOd6LHAQM0yZ6LxDXuByx74R8LoTRglmyKupYzcK2OcX3y+BhT5xbwUaBSpnPn5iMQrqH8dZxr/Ap+HqPJO/svubU/Yv9/O7kCB1T4B4Gjvhlj7PXODFKsoYsvw64Y70uZ8P3H0caTEHvwYUprEytbrlCNPQWYVRzh0JruxGAblAchCZzsK8j919zBZjevwJmN7lIWCzY3eFE9ccp0ymYZT/WQHCfsNx+0R106o25+x2+lx3AC51uudZIpKF6bG0CuL+J8wLUGGIR0TOE5ElzhBiFqbQlLprh2lh+NPBCW+vT/z/wPTwgiIiLUXkdTHDnkcwvQ1/mWZjWoVPq2qhY9baeQYAVNXrPF8bH3/7fK7zgeRQstQyOyt3UkYH4Da/vGuHecaqMASYDMwQkdgQ7lr7yRVIxqBp5gwLb3SGm7IwlbRvXpWF5+THrtJnEJGrfYZpszD5GdBvFSiTUVXzncvkQPb+z1ANcjHzGL40BHKCuC21r+BWVT/DDFO9hVEG6Y7dLsftTEyvphmm5/M2ULrIqTI5ngDuV9XsYA8iIi7gJYyCuSmYu0qoStmZgmlwvhnALmDd4wyPPugMcR/BpA3UQtkgcN6Ho2wEdOvky98xHYmSSuK8BnhLVXP9LURkOGY0YKKqbvGxmoLpae/ENKhf5liZO+r8369meHUNpsF1vl/YAx2znqo6vRIZK1Cbyk59rndienaNfX4NVPVBHzftfK7bY4aDDvoGKCLxmJfyUcywTGPgI0w3ujQe/3HwUvNCoLlP/A1VtU8At7781XmOVFVtiBkqKxtHd8aen8C0QGb4jPXvwSiJUnfiPN/uSuKrgIiMkoqrnnx//nNTVUH97vMxvZBSTvW53okZW/fNuyRVfY0qoKb59S5meKlVCKd7McNQpbQL5tAfJw3uBC4DmjjlIhufvPINz3mR2wJ7xKxUm42paJs5ftf5+fVPr3CzHugsPqvbgH6OeTnUzJfsdewDulXVmaraTVVbYt6vGI4tJuqPaekfchpzTwNDnbnGLUCMiHQLEvbPgUecOa/SivxbcVZsOu/FHMzIywRVLa5mOpRSlbIzA1OfvCoV5+qD1T1XYBbujMU0njo6biK9bJTltTOv2oUAZYPQ5aghpmc3z8m77x37Xb51jogkYqYBXvAPXEQGYEa+pqnq5752aubiLlDVFqo6DNOAWOpYryl15uslgPy9gA2qujmAXaXU1acHLwMXisg5TmspQURGi4hvAb1SRHqLSBJwP/Cmqnr8wonDtDIzgBJn8v9sH/s5wLVilt66xCxv7amqe4FPgcdEpKFj10VEzqhE7hRM6ydbzHLrO/zsnwSWqep1wIfALMd8PjDOkSMWM4dUCPy3soTyR1W/Vp9VTwF+X1c3zACsAq5w8uZczFxoKbOBG0RkmBgaiFlWnAJlk/RzK3mG0h5vXAhn8zF518spA/dUQ/4UzBBbBqbyvZeKLdZBInKJmEUL0zH5sQTTW1HHLyJyLaZnF7E4LeRVwJ+cd+lizFDPW0G8vAj8UUSaOAsVfokZVsPx39fJ2/bAPzFzbIcdv98DV4tZ4BWLGXrdo6oHVTUP09O73ykXIzDK4SXHb3dM5dnf+QFciJk/B9Oi7wVcqKqlrfkyxCwyGV2FJJkP3OK8740x0yb+FGMq5QbAi06Dp5RgdU8KppxkYhqDf62CLOHmHaCviEwQs+jtXmCNqm7yd1hJOcrG9Jj7O7/SXtUg4DufYC7GDFF+6Ru2iPQFPgFuVtUP/ON23vMUEYkTkSsx9fjfHLm2AV8DfxDziUovzOjQv/2CicXkz3FRJ8pOVXdiXoLfYyqVnRjF4RvfS5gXcB9mHLfC9xOqmuOYz8ck8BWYlkOp/VLgWuBxTGZ9xbEe1tWYynaD4/dNQvc0wCx/HeiE9SHmxQbMqk/MooobHaNbgYEiMsVpaVyJaQUfxLzgF6pZ7RaJ3IKRMQszvPBuqYWqLsNUjs9g0m0rx1bygWkVf1OFOJQQ5UtVPwaewrw0WzGKCKpWmBdgXqwtmGGoAioOL72HWXxyGDNXcYmalWAbgMeAb4H9mCXUVXmeOkXMt22zQjiZjGl5HwYexAwTlSrsKSLi25L/E2Z4/yfMO/GIqn7i2CVghplyMS3rbynf0Lgdk54/YN7d8zEVXCm/xsyrHMAsY79RVdcDqOoBVd1X+nPcH1TVo06P+leYinSfz0jFFOcZ2mGG3tZWnlrMxjRm12DmFD/CNH7KNZad9+8STE/yOR+FF6zuedFJs92YemMJEYCYVd5TAtk5ZWACZu7tMGZh2WQfv/7lKmA5UoNv3mU47vf71WPXYEbt/Htet2EW9c3xyVvfMnkO8KMT7w2YxTgZPvaXY+ruTEzde49/7xCzpiPkCu9QSEWZ6x4RWYhZRPGvEx655bgRkThgNZBW2RCUiOwB7lTVKu1k4rTm1mEW/VQ2Z2CJMpzWfh9V/d/j8HseZsFXh0odW+olTkPlKcyKzsuOJwy7g4qlyqhqkar2quJcy92Y4ZLlwRyIyMXOsEUT4CHMEnar6E5CVPXlqio6EUkUkfPFfDPaBtOTfacyf5b6iZgdfjKA4ZhRmePipFN2Un5rLd9fqCEkSzVR1RedRRChPhr+FWY4bBtmCOrGEG7Dgi0vEYlgphwOY4YxN2Lmqk6sEGZ4MVDZCDjkaDk+1GwX1kxVB6vqd5X7CExYhjEtFovFYjmRnHQ9O4vFYrGcfETKJrcANG/eXDt27BhuMSwWi8VyAlm+fPlBVQ22sXmtEFHKrmPHjixbtizcYlgsFovlBCIiP1XuqmbYYUyLxWKxRD1W2VksEcjWHzby47YtlTu0WCxVIqKGMS0Wi6HrK8PNxYygeypbLJZqEPHKrri4mF27dlFQ4H+On8USnISEBNq2bUtsbKiDFywWy8lCxCu7Xbt2kZKSQseOHZHjOsjXcrKhqmRmZrJr1y46deoUbnEsFksEEPFzdgUFBTRr1swqOkuVERGaNWsWFaMBdtMHi6V2iHhlB1hFZ6k20VJmCguP+0QTi8XiQ71QdhbLycrRvEAHTlsslupilV0VEBFuu+22svtHH32UGTNmhE+gSli4cCH//W+1z40tY9WqVZx22mn06dOHtLQ05s2bV4vSWarD0bwj4RbBYokKrLKrAvHx8bz99tscPHiwVsNVVbze4z6LMCg1VXZJSUm8+OKLrF+/nk8++YTp06eTlZVVewJaQuMzT1d4NDeMglgs0YNVdlUgJiaG66+/nscff7yCXUZGBhMmTGDIkCEMGTKEb74xh17PmDGDRx99tMxd3759SU9PJz09nR49enD11VfTt29fdu7cyR133EHfvn1JTU0t60UtXLiQ0aNHM3HiRHr27MmUKVMCLlZ46qmn6N27N2lpaUyePJn09HRmzZrF448/Tv/+/fn6669DynjVVVdx2mmn0a1bN2bPng1A9+7d6datGwCtW7fmlFNOISMjo0Lcb7zxBn379qVfv36cfvrpgFlQdO2115KamsqAAQP48ssvAZg7dy6/+MUvOOuss+jYsSPPPPMMf/vb3xgwYADDhw/n0KFDAMyePZshQ4bQr18/JkyYQH5+foV4hw8fzvr1xw5BHj16dHRtM6fHGkBF+XYY02KpDSL+0wNf7vtgPRv21O6wTu/WDfnThX0qdfeb3/yGtLQ07rzzznLmt9xyC7/73e8YOXIkO3bs4JxzzmHjxo0hw/rhhx944YUXGD58OG+99RarVq1i9erVHDx4kCFDhpQpjpUrV7J+/Xpat27NiBEj+Oabbxg5cmS5sB588EG2b99OfHw8WVlZNG7cmBtuuIHk5GRuv/12AK644oqgMq5Zs4YlS5aQl5fHgAEDGDduHK1bty4Lf+nSpRQVFdGlS5cKz3H//fezYMEC2rRpU9bzmzlzJiLC2rVr2bRpE2effTZbtpidQNatW8fKlSspKCiga9euPPTQQ6xcuZLf/e53vPjii0yfPp1LLrmEX/7ylwD88Y9/ZM6cOdx8883l4p00aRLz58/nvvvuY+/evezdu5fBgweHTPN6hddTdllke3YWS61ge3ZVpGHDhlx99dU89dRT5cw/++wzbrrpJvr3789FF13EkSNHyM0NXUF16NCB4cPNDhmLFy/m8ssvx+1207JlS8444wy+//57AIYOHUrbtm1xuVz079+f9PT0CmGlpaUxZcoUXn75ZWJiArddQsk4fvx4EhMTad68OWPGjGHp0qVl/vbu3ctVV13F888/j8tVsaiMGDGCqVOnMnv2bDweT9nzXHnllQD07NmTDh06lCm7MWPGkJKSQosWLWjUqBEXXnghAKmpqWXPtm7dOkaNGkVqaiqvvPJKuR5cKZdddhlvvvkmAPPnz2fixIkh07veoceUXXGBVXYWS21Qr3p2VemB1SXTp09n4MCBXHvttWVmXq+XJUuWkJCQUM5tTExMufk432++GjRoUKX44uPjy67dbjclJSUV3Hz44YcsWrSIDz74gAceeIC1a9dWcBNMRqi4RL/0/siRI4wbN44HHnigTDH7M2vWLL777js+/PBDBg0axPLly6v8PC6Xq+ze5XKVPdvUqVN599136devH3PnzmXhwoUVwmnTpg3NmjVjzZo1zJs3j1mzouzQcJ+enccqO4ulVrA9u2rQtGlTLrvsMubMmVNmdvbZZ/P000+X3a9atQowxxWtWLECgBUrVrB9+/aAYY4aNYp58+bh8XjIyMhg0aJFDB06tEryeL1edu7cyZgxY3jooYfIzs4mNzeXlJQUcnKOzfUEkxHgvffeo6CggMzMTBYuXMiQIUMoKiri4osv5uqrrw7Za9q2bRvDhg3j/vvvp0WLFuzcuZNRo0bxyiuvALBlyxZ27NhBjx49qvQ8ADk5ObRq1Yri4uKycAIxadIkHn74YbKzs0lLS6ty+PUCn56dt9AqO4ulNrDKrprcdttt5VZlPvXUUyxbtoy0tDR69+5d1suYMGEChw4dok+fPjzzzDN07949YHgXX3wxaWlp9OvXjzPPPJOHH36YU089tUqyeDwerrzyyrLFIL/97W9p3LgxF154Ie+8807ZApVgMoIZBh0zZgzDhw/nnnvuoXXr1syfP59FixYxd+5c+vfvT//+/csU5L333sv7778PwB133EFqaip9+/blZz/7Gf369ePXv/41Xq+X1NRUJk2axNy5c8v16Crjz3/+M8OGDWPEiBH07NmzzPz999/n3nvvLbufOHEir7/+OpdddlmVw643+PTstKjiAh2LxVJ9JJK2Ixo8eLD6r6rbuHEjvXr1CpNE0c2MGTPKLWSJNupt2cnNgEe7AvDfLr/jZ1fNCK88FksdIyLLVbVOV5nZnp3FEmGo99jcrBbbnp3FUhvUqwUqltolkneBOZnxeEqOvZh2GNNiqRVsz85iiTBKPMfm7FwlR8MoicUSPVhlZ7FEGF6fT0zEKjuLpVawys5iiTA8nuKya7dVdhZLrWCVncUSYXh8hjHdnvp/AK3FEglYZVdF3n33XUSETZs2BXWTnp5O375961SOVatW8dFHHx23/9KP0Hv37k2fPn148skna1E6S23g27OL8diencVSG1hlV0Vee+01Ro4cyWuvvRbQPtBWXtXFt0UfjJoqu5iYGB577DE2bNjAkiVLmDlzJhs2bDju8Cy1j9enHMR6bc/OYqkNrLKrArm5uSxevJg5c+bw+uuvl5kvXLiQUaNGcdFFF9G7d2/AKL0pU6bQq1cvJk6cWHZEzeeff86AAQNITU1l2rRpFBYWAmZbsbvuuouBAwfyxhtvlIvX/widoqIi7r33XubNm0f//v2ZN28eeXl5TJs2jaFDhzJgwADee+89wBypM378eEaPHk23bt247777AGjVqhUDBw4EICUlhV69erF79+4Kz/zVV1+V7Z4yYMAAcnJyUNWgxxGdccYZjB8/ns6dO3P33XfzyiuvMHToUFJTU9m2bRsAH3zwAcOGDWPAgAGMHTuW/fv3V4h38uTJfPjhh2X3U6dOLdv0+WTB49NwssrOYqkd6vw7OxE5F3gScAP/UtUHjzuwj++GfRU3Oq4Rp6bCeaFFeu+99zj33HPp3r07zZo1Y/ny5QwaNAgw+16uW7eOTp06kZ6ezubNm5kzZw4jRoxg2rRp/P3vf+emm25i6tSpfP7553Tv3p2rr76aZ599lunTpwPQrFmzsn00ffE/QicuLo7777+fZcuW8cwzzwDw+9//njPPPJPnnnuOrKwshg4dytixYwFzPM+6detISkpiyJAhjBs3rtxROOnp6axcuZJhw4ZViPvRRx9l5syZjBgxgtzcXBISEnj77beDHke0evVqNm7cSNOmTencuTPXXXcdS5cu5cknn+Tpp5/miSeeYOTIkSxZsgQR4V//+hcPP/wwjz32WLl4S4/vGTduHEVFRXz++ec8++yzVczM6MDrMcouRxOJ08IwS2OxRAd12rMTETcwEzgP6A1cLiK96zLOuuC1115j8uTJgOl5+A5lDh06lE6dOpXdt2vXjhEjRgBw5ZVXsnjxYjZv3kynTp3K9se85pprWLRoUZmfSZMmBYw30BE6/nz66ac8+OCD9O/fn9GjR1NQUMCOHTsAOOuss2jWrBmJiYlccsklLF68uMxfbm4uEyZM4IknnqBhw4YB47711lt56qmnyMrKIiYmJuRxREOGDKFVq1bEx8fTpUsXzj77bKD88T27du3inHPOITU1lUceeSTg8T3nnXceX375JYWFhXz88cecfvrpJCYmBnz2aKVU2eVLIvFqe3YWS21Q1z27ocBWVf0RQEReB8YDxzdJVEkPrC44dOgQX3zxBWvXrkVE8Hg8iAiPPPIIUPG4nmBH5oQi2JE/VTlCR1V56623Kpws8N133wWVpbi4mAkTJjBlyhQuueSSgHHffffdjBs3jo8++ogRI0awYMGCkM9QleN7br75Zm699VYuuugiFi5cGHAHl4SEBEaPHs2CBQuYN29eWSPjZKJ0zu6oJNLEmxVeYSyWKKGu5+zaADt97nc5ZmWIyPUiskxElmVkZNSxONXnzTff5KqrruKnn34iPT2dnTt30qlTJ77++uuA7nfs2MG3334LwKuvvsrIkSPp0aMH6enpbN26FYCXXnqJM844o9K4Ax2h4398zznnnMPTTz9N6YbeK1euLLP7z3/+w6FDhzh69CjvvvsuI0aMQFX5n//5H3r16sWtt94aMu7U1FTuuusuhgwZwqZNm2p0HBFAdnY2bdqY7H/hhReCups0aRLPP/88X3/9Neeee26Vw48WPE7PrtCVRAJFRNJm7RZLfSXsC1RU9Z+qOlhVB7do0SLc4lTgtdde4+KLLy5nNmHChKCrMnv06MHMmTPp1asXhw8f5sYbbyQhIYHnn3+eSy+9lNTUVFwuFzfccEOlcQc6QmfMmDFs2LChbIHKPffcQ3FxMWlpafTp04d77rmnzP/QoUOZMGECaWlpTJgwgcGDB/PNN9/w0ksv8cUXX5QtQCld3Tlr1qyy43+eeOIJ+vbtS1paGrGxsZx33nk1Oo4IzF6cl156KYMGDaJ58+Zl5suWLeO6664ruz/77LP56quvGDt2LHFxcVUOP1rwOhtBF7mTiJdiCouKK/FhsVgqo06P+BGR04AZqnqOc/+/AKr6f4Hc2yN+ao+5c+eWW8hyMlJfy84P375PtwVXsTxxBIOOfsPhW7bTpEnTcItlsdQZ0XDEz/dANxHpJCJxwGTg/TqO02Kp16gzjFkSmwxAQb49rdxiqSl1ukBFVUtE5CZgAebTg+dUteISPEutM3XqVKZOnRpuMSzHQemcnTfWLFwqPGqVncVSU+r8OztV/Qg4/i0/TBhVWtVosZRSnxd1lPbsND4FgCKr7CyWGhP2BSqVkZCQQGZmZr2uvCwnFlUlMzOThISEcItyXHhL98aMM8qu2Co7i6XGRPxJ5W3btmXXrl1E4mcJlsglISGBtm3bhluM46K0Z+dKbARAcWFeOMWxWKKCiFd2sbGx5XYosViiHW+ZsjM725QUWGVnsdSUiB/GtFhOOpzv7GKcnp2nyCo7i6WmWGVnsUQYpT27uAaNAfDYnp3FUmOssrNYIg2nZ5eQbHp2WpQfTmkslqjAKjuLJcIoXaCSkNzE3BfZ08otlppilZ3FEml4zacHsUlmgYoW256dxVJTrLKzWCIMdYYxXbEJFBGDWGVnsdQYq+wslkjDGcaMiYmjgHikxA5jWiw1xSo7iyXCKOvZxcRSKPG4rLKzWGqMVXYWS6RR+ulBTAyFkoDbKjuLpcZYZWexRBjqLaFY3cTGuCh2JRDjscrOYqkpVtlZLJGGpwQPLtwuMcrOa5WdxVJTrLKzWCIM9XoowY2IUOxKJM5TEG6RLJZ6j1V2FkuEod4SPLgBKIlJJE6tsrNYaopVdhZLhCHeYjxiXk2PO5F4r1V2FktNscrOYok0vCV4nZ6dNzaJBKyys1hqilV2Fkuk4fVQ4hw1qTFJJNhhTIulxlhlZ7FEGOItwSumZ6exSSRSREmJJ8xSWSz1G6vsLJYIw+UtKlugQlwSLlHyj+aGVyiLpZ5jlZ3FEmHEeAsodCUAIHENACjIywmnSBZLvccqO4slwoj1FlAkRtm5442yK8q3PTuLpSZYZWexRBgxngKKnJ6dy1F2hfm2Z2ex1ASr7CyWCCPWW4DHnQiAOyEZgKICq+wslppglZ3FEmHEeQvwxpieXayj7IrtAhWLpUZYZWexRBhxWog3xvTsSpVdSUFeOEWyWOo9VtlZLBFGAgVoTBIAsYlG2XkKrbKzWGqCVXYWSwShXi8JWgSxZhgzIckoO69VdhZLjbDKzmKJII7mZRErHrwJTQBISGoIWGVnsdQUq+wslggiK2MfADHJLQCIb2B6dhRbZWex1IQaKTsRmSEiu0VklfM738fuf0Vkq4hsFpFzai6qxRL95B02yi62oVF2cfEN8KqgRVbZWSw1IaYWwnhcVR/1NRCR3sBkoA/QGvhMRLqrqt3N1mIJwdGs/QAkNmkJgLhcHCUOKc4Pp1gWS72nroYxxwOvq2qhqm4HtgJD6yguiyVqOHrwJwCatep0zEwScJUcDZdIFktUUBvK7iYRWSMiz4lIE8esDbDTx80ux6wCInK9iCwTkWUZGRm1II7FUo/J3EaextP81PZlRoWSgMv27CyWGlGpshORz0RkXYDfeOBZoAvQH9gLPFZdAVT1n6o6WFUHt2jRorreLZaoIjHnJ/a5WyOuY69moSQQ47E9O4ulJlQ6Z6eqY6sSkIjMBv7t3O4G2vlYt3XMLBZLEFSVZke3cyCldznzYpdVdhZLTanpasxWPrcXA+uc6/eBySISLyKdgG7A0prEZbFEO7t3bqcNB/C0HlzOvMidSKzXKjuLpSbUdDXmwyLSH1AgHfgVgKquF5H5wAagBPiNXYlpsYRm1+ovaAs07zOmnHmJO5HE4uzwCGWxRAk1UnaqelUIuweAB2oSvsVyMuHd/g15JNC+97By5iXuJBK05j07b0kJm5d/QdaGz5HcfXhjk4lr259uP/sFjZra+XJLdFMb39lZLJZaoGXWcn5M6EtqTGw5c09MEvFacNzhFhUWsPK9p2i3YTa9OABAFskkaQFx+16m6Pu7WJ08nJj+k+h5+qW445MChuMtKSFjz49k7N7O0UO70KNZlJSUEOMCiUvGldgId1Ij4ho0JiEpmYTEZBokp+CKjcdb4sFTUoi3pBhP6c/rwespwevx4vGWoB4PqBeXC1wiuMSFiOB2ibl3OT8Rx9x1zLzcvwuXgIgzS5PYBJJPOe70s0QHVtlZLBHAwQP76OL9iaWtxlWw09gGJB6nstvy/WfEfHwrw7w/sTm2J8v63UnPURNo3KgpnpISNq9ayKGl8+l64FNafPNbcr+5mx+ajKKwUWdUFTmaRXzODpoW7qCVZx8tpYSWNX3YE0wRMRz9zWoatWgbblEsYcQqO4slAvhp5ec0Bxr1HF3RMq4BiRTi9Xhwud1VCs/r8fDtC3/gtJ9mcUCasWbULFLHTCr3SYM7JoYeg8fC4LEUFhWx9Ot/U7Tydfoe/obGhxcAkK/xZLhP4VBiR/Y0HIM060xyiw6ktGhLQsPmJMTFUeRVivNyKMzPoigvi+L8bIoL8ig5mkdJYT4ubyGIG9yx5ueKxeV2Iy434opB3G5EXIjLDeLCo4AqXlW8Xi8KeL2Kqvl5VVGvY69+5qp4vaBq/EnOHsbtncn67z9hwPnX1TSbLPUYq+wslgig8MfFFGkMnfqNqmCn8cm4RMk/mktScqNKwzqae4Qf/n4ZI/K/ZUWjn9P1ujmkNWwS0k98XBxDf34J/PwSVJXCwqO4XS4SY+PpIEKH436y8FJcXETOX56jeNsiwCq7k5moO/XAU1ISbhEslmrTNHM52+J6EJdQcb7MFWdOPsjPrXxFZmbmQbY/cQ598pbwbfc7GDD9TRpWouj8ERHiE5KIiUtARKrlN9KIjY1jW4P+tMv8Bq/HG25xLGEkqnp2BUfzOPTwAHY2PY2UIZfTfeAYYuLiayVsj1fxekrAW4wqgKkEtKwucC6cykFwHbv2qS9KL8smz33Mytw6E/DVQY1QPvc+15W5rWDvaxc83Ioy+N1X4lfL2VVdJn/LuorHP9xKbquVbr63Rfm5dCneyoo2VxIIV4JRdgW5RwLal5JxYC+Zsy6km+dH1v3sCU47Z2pI9ycLJT0upNXK37Np5Zf0HPzzWgu3ID+X/NxsigvyKSrIo7ikCMGNy+3G7XbjcseYRTQxMbjdMbhcjllMLG63G3dMDG5XDC53DLjc5SsKS60TVcouPyeLXQ0H0O/ghyR88i65HyeyK64TRxp0RBOboLHJIILLW4KnpAgtKYCSAqT4KG5PAS5PAbHeAmK9hcRpIfFq/hMoIoFC4iVye40CeDXwy+Jval+pyMIlCgJJ3UYGtHcnpABQmB9c2R3Yt4sj/7yAzp6dbDtzFv3OuKxOZK2PdD9jMgUr/sSRxf+Caiq77EMH2b3xW3J2rIGMTSTn/kRKyUGaeg6RLEdJqEU5vSp4cKEh39Dgrc1QviSEv8rsQ4W7nk6k3rcyZNiRQlQpu6antGHo7+aRl32IZf99H922kKTsH+ic9S0NDueRKEVlbos0hmKJoZB4iiSeIlcCJa54SmISKHE14qg7gbyYBDzuRDQmAY1JxONOwCtOkglIWfnQcv+CBuwCaQX3fvaAaIX+RPkAAvQSA9kZ++DFtIJNBb8hOFHx+HsN0fKtLJxQjeaKMoYOLWSlUokgEuROEpLpM/IXAf3EJpqeXdHRnID2+3enc/Rf42jjPcD2s+fQc0TgcE5WGjZuxpJTxjPowDv8tHE5HXoNCur2SOY+ti9bQMG2xTTPXEanku30dl70LJLZF9uOjKSu7Ek8BU0+BVd8ChKbiCsuEVdMHKiiXg/qLcHr9YDXg9frQZ1r9XpAPeApAfWgXi84doIHUW+liilUIStVlIFc+CtR/2ACKVkJcOVLXnz9+T4zqpRdKQ0aNWXweVOBqWVmqkpJSbEpRuImLsZNHNAgLBJaLFUnNqkhAEX5FZXd7vQteF+4iFO8h9hx/ov0GHbeiRavXtB1wp/ImfUprvlXsn3C83TqOxyAI1kZpK9eTN6mz2lx4L90LvmRfqLkazw/JvRiaZvrSew8nFbdBtGiVTsau6JumcNJQ1Qqu0CICDGxceEWw2KpNvGOsispKK/sftq8ioTXLiGJo+y56DV6DKq9+ahoo/mp7dl0/hxO/ehaGr95DgffbIwLL005QhpQrG5+iOvNkg7X07DPWXTtN4q+CbU5SGkJNyeNsrNY6iuJyY0B8OQdLjPb8N2nnPrx/6AIBye+Q1enp2IJTs+hZ5PVeTnfLpiN++BGVNx4G3ckuX1/ugz+Ob2ddLZEJ1bZWSwRTrNWHSlSNxz6Ea/Hw9L5DzJo02MccLXAc8UbdOqWFm4R6w2Nm5/KaVPuCbcYljBglZ3FEuHExsaS7mpFu72fsuXBkQwv3sCqpOF0uv4VGjVpHm7xLJZ6gZ1ttVjqATvbjqOV7qdl8S6Wpv2Ffnd8bBWdxVINbM/OYqkHjJj6ID9uvpRWHXszNMmuIbZYqotVdhZLPcDldtG595Bwi2Gx1FvsMKbFYrFYoh6r7CwWi8US9Yj/xrjhREQygJ9qIajmwMFaCOdEUJ9khfolr5W17qhP8tYnWaF+yVtbsnZQ1TrdeyyilF1tISLLVHVwuOWoCvVJVqhf8lpZ6476JG99khXql7z1SVY7jGmxWCyWqMcqO4vFYrFEPdGq7P4ZbgGqQX2SFeqXvFbWuqM+yVufZIX6JW+9kTUq5+wsFovFYvElWnt2FovFYrGUYZWdxWKxWKKeqFJ2InKuiGwWka0icne45fFHRNqJyJciskFE1ovILY75DBHZLSKrnN/54ZYVQETSRWStI9Myx6ypiPxHRH5w/ptEgJw9fNJulYgcEZHpkZSuIvKciBwQkXU+ZgHTUgxPOeV4jYgMjABZHxGRTY4874hIY8e8o4gc9UnjWSdS1hDyBs17EflfJ203i8g5ESDrPB8500VklWMeCWkbrM6KyLIbElWNih/gBrYBnYE4YDXQO9xy+cnYChjoXKcAW4DewAzg9nDLF0DedKC5n9nDwN3O9d3AQ+GWM0A52Ad0iKR0BU4HBgLrKktL4HzgY0CA4cB3ESDr2UCMc/2Qj6wdfd1FUNoGzHvnfVsNxAOdnDrDHU5Z/ewfA+6NoLQNVmdFZNkN9Yumnt1QYKuq/qiqRcDrwPgwy1QOVd2rqiuc6xxgI9AmvFJVm/HAC871C8AvwidKQH4ObFPV2tiJp9ZQ1UXAIT/jYGk5HnhRDUuAxiLS6oQISmBZVfVTVS1xbpcAbU+UPJURJG2DMR54XVULVXU7sBVTd5wQQskqIgJcBrx2ouSpjBB1VkSW3VBEk7JrA+z0ud9FBCsSEekIDAC+c4xucrr9z0XC0KCDAp+KyHIRud4xa6mqe53rfUDL8IgWlMmUrywiMV1LCZaWkV6Wp2Fa76V0EpGVIvKViIwKl1ABCJT3kZy2o4D9qvqDj1nEpK1fnVXvym40Kbt6g4gkA28B01X1CPAs0AXoD+zFDGVEAiNVdSBwHvAbETnd11LNuEXEfLsiInHARcAbjlGkpmsFIi0tgyEifwBKgFcco71Ae1UdANwKvCoiDcMlnw/1Ju99uJzyDbWISdsAdVYZ9aXsRpOy2w2087lv65hFFCISiyk0r6jq2wCqul9VParqBWZzAodVQqGqu53/A8A7GLn2lw5LOP8HwidhBc4DVqjqfojcdPUhWFpGZFkWkanABcAUp4LDGQ7MdK6XY+bAuodNSIcQeR+paRsDXALMKzWLlLQNVGdRz8ouRJey+x7oJiKdnBb+ZOD9MMtUDmdMfg6wUVX/5mPuO6Z9MbDO3++JRkQaiEhK6TVmgcI6TJpe4zi7BngvPBIGpFzLOBLT1Y9gafk+cLWzsm04kO0zZBQWRORc4E7gIlXN9zFvISJu57oz0A34MTxSHiNE3r8PTBaReBHphJF36YmWLwBjgU2quqvUIBLSNlidRT0qu2WEe4VMbf4wK4G2YFpAfwi3PAHkG4np7q8BVjm/84GXgLWO+ftAqwiQtTNm1dpqYH1pegLNgM+BH4DPgKbhltWRqwGQCTTyMYuYdMUo4b1AMWYe43+CpSVmJdtMpxyvBQZHgKxbMXMxpeV2luN2glM+VgErgAsjJG2D5j3wBydtNwPnhVtWx3wucIOf20hI22B1VkSW3VA/u12YxWKxWKKeaBrGtFgsFoslIFbZWSwWiyXqscrOYrFYLFGPVXYWi8ViiXqssrNYLBZL1GOVncVisViiHqvsLBaLxRL1/D+LnIMBsMnnNQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 5)" + "Combining everything together we have a CellEvaluator. The CellEvaluator constructor has a field 'parameter_names' which contains the (ordered) list of names of the parameters that are used as input (and will be fitted later on)." ] }, { "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEYCAYAAADPvfYMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmlUlEQVR4nO2dd5yUxf3435+9fnBw9C5NOgcH0hRQMAgYoqioaFBEo0YTE0tiSdGgKT9rrHwlGhS7YNdo1EhExAgIgjRB2lEU5CjH9bqf3x8ze+7t7e7dcQe7dzfv12tf+zxTP8/MPPOZ9syIquJwOBwOR2PFE2kBHA6Hw+GIJE4ROhwOh6NR4xShw+FwOBo1ThE6HA6Ho1HjFKHD4XA4GjVOETocDoejURPVilBEuomIikhspGVp6IjILBFZepziShKR90TksIjccjziDIg/Q0QmHId4FovIlSHsXNmOAOHS/XjmiY3nxBB2x+1dbAiIyC22LvlARJKPJoyoVoSOo0NEZotIiYjk+v2Ou8IJwwRgENBFVe/1GVoF1S1iUkURNg9n18D9T0Vkp4jkicibItIyjNsnRGSziHhFZFYQ+xtFZJ+IZIvIUyKS4GeXLiKfisgREdkjIreHiOMOW9lP8DPrJCJvicgh6/eaAD9q5feV2X/W4PkbzQfRtoE1rppuRUTuEZGD9nePiEgY91WWIxHpJSKFIvJ8gHkbEXnRlo3DIvKCn939IrJFRHJEZJOIzAzwe5aIrLf5/j8R6e9nNzegLisSkRyfva1DOgN9gYnVSZdAjqkidK3diLJAVZv6/e6t2stxoyWQoaq5kRakNthKJuKNSREZAPwDuBRoB+QD/xfGy1fAL4Avg4Q1CbgN+BHQFegB3Onn5EVgCSYPTwN+ISJnB4TRE7gA2BsQ/PPADivjFOBvIjI+wM1gvzIbtDddH4iiuu9q4BxgMKbxeRbw82AOa1CO5gBfBDF/HdgHnAC0Be73s8uzcTcHLgMeFpFTbLy9gBeAa4BU4B3gbV8aquo1/nUZ8BLwin/EqpqHKVutQqZEGOr8Jbat+ltFZC2QJyKxIjLKavksEfnKvzVjWzf/T0RW2BboW6FasyJyuYh8bVsV20Xk5wH2U0VkjQ1nm4hMtubNRWSeiOwVkW9F5C8iElPFc/QUkf/aVtQBEXlBRFL97A6JyFB731FEMn3PJSJni8gG+7yLRaRfQPr8VkTW2pbTAhFJrHlK1xwRuc2mS46IbBSRc0O4ExF5UET227RcJyIDrV2Cbd3tEpHvbWstqYaixALeKmRtJSLv2Pi/sHm21M9eReQa28rMEpE5IqalGy7v/Bhu0+CwiDztywMRaSEi/7L5edhed/aLd7GI/FVEPsNUFD2qeNauIvKZTfMPRaR1gP0Mm5YHROQPVYQVihnAO6q6xDYubgfOE5GUYI5VdY6qLgIKg1hfBsxT1Q2qehj4MzDLz74b8IKqlqnqNmApMCAgjDnArUCxz0BEmgLjgL+qaomqfgW8ClxR04etChHpLiJLbJp/ZMvG8yHcTrPv5EA/4ytE5DtbX/zWz+0IEfnclre9IvKYiMT72auI/FJEtgBbqiHqhGDl1y+8+20Z3CEiZ9YwGXxcBjygqntU9VvgASrmpz9VliMRuQjIAhYFyDoR6ALcrKpHbB6v9tmr6p9UdZOqelV1OfApcLK1ngR8qqpLVbUUuAfohGloVUBEmgDTgGeCyO/F1C01R1Xr9AdkAGtsoiTZBzoI/BijeM+w922s+8XAt8BAoAnwGvC8tesGKBBr76cAPQGxiZQPDLV2I4AjNnyPjbevtXsD09JpgmmprAB+XsVznGjDSgDaYFrBD/nZXwVsBJKBD4D7rXlvTOvnDCAOuAXYCsT7pc8KoCOmVf01cE0IGcZgCl2o35gQ/mb70jDA/AIbrweYbuXsYO1mAUvt9SRgFaZ1JkA/P3cPAm9b2VMwrbf/V4PyEQc8F0y+AHcv218y0B/Y7ZPP2ivwLyvjCUAmMLmaeZcBrMeU0ZbAZ8BfrF0rzIuWbJ/vFeBNP7+LgV2Yyj8WiAvzDIuBbbZMJNn7uwPK9pPWbjBQBPQLEVa4/H4LuDXALBc4qYo0XgrMCjD7Cpjud9/aytnK3v8NuNvmYx9gDzA8oIy95ZfOE+x1ig2nrZ/bJ4HVAXn6HaZX8TrQ7SjroM8xvZF4zDuUTZA6Bbgc826eGGD3EqauSLPlyvcMJwGjrN9umHf3hgD5/2PLVFIVMoYrv7OAEkwdEwNca9NFQtURYeI5Aoz0ux8G5BxNOQKaAd9ghiFn4/cOA3dg6sHnMfX7F8BpIeJJwowW+J73OuA9P/sYTCPt+iB+ZwLbQ6TFMzbv4mtcZo6moFWRwRnAFX73twLPBbj5ALjMXi/GVg72vj+mJRlDgCIMEtebvsTCKLoHg7hph6lgkvzMLgY+ruFznYPfS2vN3gbWAWuBBGt2O7DQz40Ho+jH+aXPJX729wJz6zgPZts0zPL7dQzibg0w1V7P4gdFeLot8KMAj597wSjPnn5mJwM7qilXOuYF/x5b+YRwF2Pd9fEz+wuVFeEYv/uFwG3VyTubB9f43f8Y2BZG5sN+94uBu6r5vIuBP/rd/wJ43177ynZnP/sVwEVHkd+LCGhM+Ze5MP6CKcJt2ArK3sdZObvZ+1MwyqPUmt/p5zYF0xPyuc3AKhG/+B4FEoGhwCFgs5/9qRjllQo8hmmsBH33wzzTCVa2ZD+z56msCH+Lacj6p7/Prq+f2b2YHnKwuG4A3ggok6dXU86Q5RfzLm71s0u27tsfRdkoC3ieXjasYIokbDkCHsYqSiorwidsuD+zZcbXc2wdJJ5ngPd9MmDm9vIwIwbxmDrUC/wuhIyzQzxrT0wjqgQYVpN0OlbzG7v9rrsCF9juf5aIZGFaMR1CuN+JScjAISRE5EwRWWaHJbMwFZjPXRfMSxxIVxveXr/4/4HpGYZERNqJyMtihlKzMS9ToExPYnqyj6pqkTXraJ8BAFX12ufr5Odvn991PtA0nCxHyUJVTfX7fSciM8UMHfvSYSBB0llV/4upiOYA+8UsrmiG6V0lA6v8wnjfmleJqq7BVJafYyqRULTBtLr9y8XuIO6CpmM18y6wzHW0fpNF5B9iFgxkY3qTqVJxKD2YLKGoKq/roizkYlrr/jQDcoK4rWlYvuscMVMW7wN3YZRZF2CSiPzCupmNafRmhAh7BtAdk36PY/Jlj89SzZBcsapmAddbt/2ChBOOjsAhVc33MwuWXzcDc1R1TxC7UGWjtx0q32fLxt8IX66qIlzel9v5PUtdlI1mQK5azVGFW5/7HBFJxyxyezBEPAWYef95aoZFX8akxWh/RyJyH6beudAng6puwgzhPobpKbbGNFL2BPg9AaMsnw0hw/WYnmgzVV0Zwk1QjpUi9E/k3ZiXw79SbqKqd/u56eJ3fQJGox/wD1DMyrXXMEMe7VQ1FXgP00vxxdMziCy7MT3C1n7xN1PVwHmNQP5mnyNNVZsBl/jF5ZvzeAiYB8yWH+Y1v8MoX587sc/3bRXxVUJExkrF1VKBv7E1CKsrRnFfhxnmSsW0uIOuIFPVR1T1JEwPvTem4jiAKfAD/NKyuZoJ7GqhqoXAv224ocjEtOo7+5l1CeE2GGHzLkh4J2DyDeA3mCG/kdbvqdbc33+wSiSSbMAMrQIgIj0ww8Lf1DYse/29qh7EzIeWqeqzqlpqlcjLmAYpmAU2v7aKYh8mjReKyK0AqrpTVX+iqm1UdSSmwlsRRhYlRPkMw16gpVRcRh+s7EwE/igi04LYhSobjwObgF62bPw+iHxRXTbs9YbquA0oR+MwPeZdNm9/C0wTEd+Cq7VUfvYK9yJyJ3AmMFFVsys4VH1VVQeqaivgTzauwAU5lwKfqer2EPL3w4y4FISwD8nxWPH2PHCWiEwSkRgRSRSRcf4LEIBLRKS/Lbx3Aa+qallAOPGYTMkESu3ksf9S2XnA5SLyIxHxiFmq3VdV9wIfAg+ISDNr11NETqtC7hRMC+mIiHTCKAJ/HgZWqlnZ9i4w15ovBKZYOeIwFWsR8L+qEioQVf1UK678DPx9WoPgmmAKZiaYhUeYllklRGS4iIy08udhxuu9tnf7JPCgiLS1bjuJWWno86tS9dLuIkx+BsXm/euYBkayiPTFzA1Ul6ryDuCXItLZNmD+ACzw81sAZFm7P9Ug3kjxAuYdG2sXE9wFvK6qQXuEIhIvZnGQAHH2nfTVBc8CP7PvYyrwR2C+tfvGeJef2veoPWauea21/xGmTKXb33eYFYpzbLz9RCTFxn8J5v39u7UbIObTjBjbyHwA03j82trPEpGMqhJCVXcCKzFlJ15ETsasVgxkAzAZmCMBq16B2225G4CZR/QvG9lAri2T11YlTxTwLHCTfU87Yuqj+SHchitHT2A6Gun2NxdT7/ne/TeAFiJymc3D8zEN2c8AROR3wE8xQ+UHAyMWkZOsvzY2rrdtT9GfmWFkBzPyVxTGPiTHXBGq6m5gKqb1lInpod0cEPdzmAfchxly+XWQcHKs+ULgMCZR3/azX4EptA9iJog/4Yee2UxMxbvR+n2VikOzwbgTM49xBJPhr/ssRGQq5iXyvQg3AUNFZIaqbsb0QB7F9KDOAs5S1WIiiKpuxFQun2Pm6NKwhTQIzTAK7zBmaOggcJ+1uxUzR7TMDg99hOlBISJdMMNx66oQx0vVZe86zFLrfZjy8RLVL+Qh886PFzENpO2YIfW/WPOHMJP5B4BlmKHAiBNuBEBVN2CWnr8A7MdU2L/w8/tvEfm9n5cPMcr+FEylU4Dt+arq+5h5sY8xi4J2YhsDthV/HnAjpmyswYwq/MXaH1TVfb4fZn7qsP7wmcwkTHoftvJOVtVMa9cOo3CyrZtuwE9UtcTadyF0eQ1kBmbu+qCVbQFByo6alas/AZ6UiqsyP8GU8UWYRXAfWvPfYuqdHMz7sYAI4xs1CuPkH5gFbeswefWuNfP5Ly9X4cqRquYH5G0uUOjLP1U9BJyNSaMjmE9wpqqqb2Tvb5je9Va/ES3/MvkwZk5xM6Z8XBXwnCdjFGuFzyYCiKGK1eih8E1WRgwRWYyZdK32x7OO6MS28geo6u+qcDcRM1LQ175A1Qn7HsxigctqL6mjviEiH2IWxn19FH4XAJtUtT707h1HgR292Ahcqarv1dR/xD8GdjQcVPX5qpSgZTFmmfkG8ftOyx8R6Ssig8QwArMa7Y26k9ZRn1DVidVVgnZov6cdvp2MGZF685gK6IgYtg7ZhOnJL6rCeVCiZfeDiCAiczHDmIE8r6rXBDF31AF2mHhGFc5SMMOhHTFDuQ9gvnOKKsIMS51ZwzlcR93RHjMc3gqz8vBa9fu4+3hghxv/HcyuJovLHFWjqvdTcRebGhPxoVGHw+FwOCJJnQyNisivxGykukFE/DdR/p2IbBWzwe+kEH67i8hy626B+G1Z5HA4HA7HsabWPUIxm+b+AZiiqkUi0lZV94vZPfwlzNZnHTGrC3sHfhYhIgsxS3RftkOVX6nq4+HibN26tXbr1q1WcjscDocjOli1atUBVa3WxhzHgrqYI7wWs0VaEYCq7rfmU4GXrfkOEdmKUYqf+zyKiGC28/qpNXoGsztFWEXYrVs3Vq6s0cYBDofD4YhSRGRn1a6OHXUxNNobGGuHNz8RkeHWvBMVtxvaQ8VtxsBMZmep2XE8lBsARORqEVkpIiszMzODOXE4HA6Ho8ZUq0coIh9hVmIF8gcbRkvMBs3DMVsqVXU0TY1R1ScwH/8ybNgwt8LH0WjxTWdI6PNVHQ5HDaiWIlTVCaHsRORazByfAitExIvZQ/BbKu7Z15nK+20exGxoHGt7hcHcOBwOS05BEYsemEm8KKdc/wypTWt6FKTD4QikLuYI3wTGAx+LSG/MVmYHMNufvSgif8cslulFwAa7qqoi8jFwPmbz3ss4ym/FSkpK2LNnD4WFwc4adTiCk5iYSOfOnYmLi4u0KNVi5YcvcU6p2fVt8UcvMe6cOj/X1uFodNSFInwKeEpE1mPOwLvM9g432BWhGzEnCfzSt2JURN7DbIXzHWbvypdF5C/Aaszm2TVmz549pKSk0K1bNzdk5KgWqsrBgwfZs2cP3bt3j7Q41aLpljc4TDPiKUG3fMgxOODd4Wh01FoR2l1Cgu3Ogqr+FfhrEPMf+11vx6wmrRWFhYVOCTpqhIjQqlUr6sviK/V66Zn7JVubjyLFm03XnLWoqivzDkctaVB7jboKwVFT6lOZ+S5jEy3JpqzzKArapNODb8k8dDjSYjkc9Z4GpQgdjobM7k3mnNJ2vYfRpJM513jX1lBnrDocjuriFGEdIiL85je/Kb+///77mT17duQEqoLFixfzv//V+LzgCkyePJnU1FR+8pOf1JFUjlCU7V2PV4VOvYaS2qUfAAV7N0dYKoej/uMUYR2SkJDA66+/zoEDB6p2XANUFa/3qM6bDEtdKMKbb76Z5557ro4kcoQj+fAmvvV0ID45hZZWEXJoa2SFcjgaAE4R1iGxsbFcffXVPPjgg5XsMjMzmTZtGsOHD2f48OF89pk5bHv27Nncf/8PJ4gMHDiQjIwMMjIy6NOnDzNnzmTgwIHs3r2bm2++mYEDB5KWlsaCBeZw7MWLFzNu3DjOP/98+vbty4wZMwi2f+wjjzxC//79GTRoEBdddBEZGRnMnTuXBx98kPT0dD799NOwMl566aWcfPLJ9OrViyeffLI83B/96EekpKSETZdXXnmFgQMHMnjwYE499VTALG66/PLLSUtLY8iQIXz88ccAzJ8/n3POOYczzjiDbt268dhjj/H3v/+dIUOGMGrUKA4dMuf4PvnkkwwfPpzBgwczbdo08vPzK8U7atQoNmz4Yehw3Lhx9XprvhYFuziQYD7NjU1KIYsUPDl7IyyVw1H/aZDnEd75zgY2fpddp2H279iMP501oEp3v/zlLxk0aBC33HJLBfPrr7+eG2+8kTFjxrBr1y4mTZrE11+HP2d0y5YtPPPMM4waNYrXXnuNNWvW8NVXX3HgwAGGDx9erlRWr17Nhg0b6NixI6NHj+azzz5jzJgxFcK6++672bFjBwkJCWRlZZGamso111xD06ZN+e1vzdm4P/3pT0PKuHbtWpYtW0ZeXh5DhgxhypQpdOzYsVppd9ddd/HBBx/QqVMnsrKyAJgzZw4iwrp169i0aRMTJ07km2++AWD9+vWsXr2awsJCTjzxRO655x5Wr17NjTfeyLPPPssNN9zAeeedx1VXXQXAH//4R+bNm8evfvWrCvFOnz6dhQsXcuedd7J371727t3LsGHDqiVztKFeL23L9vJdi+HlZodjW5NYsC+CUjkcDQPXI6xjmjVrxsyZM3nkkUcqmH/00Udcd911pKenc/bZZ5OdnU1ubqgzXQ1du3Zl1KhRACxdupSLL76YmJgY2rVrx2mnncYXX5jFEyNGjKBz5854PB7S09PJyMioFNagQYOYMWMGzz//PLGxwds/4WScOnUqSUlJtG7dmvHjx7NixYqgYQRj9OjRzJo1iyeffJKysrLy57nkEvPVTd++fenatWu5Ihw/fjwpKSm0adOG5s2bc9ZZZwGQlpZW/mzr169n7NixpKWl8cILL1To+fm48MILefXVVwFYuHAh559/frVljjaOHNhLMkVIy27lZnnxbWlWvD+0J4fDUS0aZI+wOj23Y8kNN9zA0KFDufzyy8vNvF4vy5YtIzExsYLb2NjYCvN//jvjNGnSpFrxJSQklF/HxMRQWlpayc27777LkiVLeOedd/jrX//KunXrKrkJJSNU/sygJp8dzJ07l+XLl/Puu+9y0kknsWrVqrDu/Z/H4/GU33s8nvJnmzVrFm+++SaDBw9m/vz5LF68uFI4nTp1olWrVqxdu5YFCxYwd+7casscbezbtYlUIKndieVmxcntaZ+3yX1L6HDUEtcjPAa0bNmSCy+8kHnzftgkZ+LEiTz66KPl92vWrAHMkVJffvklAF9++SU7duwIGubYsWNZsGABZWVlZGZmsmTJEkaMqN4+BF6vl927dzN+/Hjuuecejhw5Qm5uLikpKeTk5FQpI8Bbb71FYWEhBw8eZPHixQwfPpzqsm3bNkaOHMldd91FmzZt2L17N2PHjuWFF14A4JtvvmHXrl306dOn2mHm5OTQoUMHSkpKysMJxvTp07n33ns5cuQIgwYNqnb40UbO3i0AtOjUu9xMUzrQWo5wJCf8yILD4QiPU4THiN/85jcVVo8+8sgjrFy5kkGDBtG/f//y3sm0adM4dOgQAwYM4LHHHqN3795Bwzv33HMZNGgQgwcP5vTTT+fee++lfftgB4JUpqysjEsuuaR8Ycqvf/1rUlNTOeuss3jjjTfKF8uEkhHM0Or48eMZNWoUt99+e/n84NixY7ngggtYtGgRnTt35oMPPgDgjjvu4O233wbMytK0tDQGDhzIKaecwuDBg/nFL36B1+slLS2N6dOnM3/+/Ao9war485//zMiRIxk9ejR9+/YtN3/77be54447yu/PP/98Xn75ZS688MJqhx2NFGeaBlL7rj+Uj7iWZuFM5ncRPcrN4aj31PqE+kgwbNgwDVz99/XXX9OvX78ISdSwmT17doVFNQ2N+lB2lj/0U3pmfUbr2T8ovS1LX6PXR1ew+oyFDBk9KYLSORy1Q0RWqWrEVrK5HqHDUQ9ILNxPVmzrCmbJLToAUHjk+0iI5HA0GBrkYhlH3RLNu+M0FpoWZ5Kb2KGCWUprc1+a7VaOOhy1wfUIHY56QAvvQYqT21UwS2lh7r15dbuTkcPR2HCK0OGIcvLz82hJDt6mFXuEEp9MHkl48uvHMVIOR7TiFKHDEeUc2LsLgNjUyjv5HPGkEl948HiL5HA0KJwidDiinCP7zUrRpJadK9nlxbYgodidSehw1AanCOuYN998ExFh06ZNId1kZGQwcODAYyrHmjVreO+992oVxhVXXEHbtm2PuayO8OQf/BaAlLZdKtkVxLegaWnWcZbI4WhYOEVYx7z00kuMGTOGl156Kah9sO3Paopvv85w1IUinDVrFu+//36twnDUnrIjRhE2b9e1kl1pYiuae7OOs0QOR8PCKcI6JDc3l6VLlzJv3jxefvnlcvPFixczduxYzj77bPr3NyeLl5aWMmPGDPr168f5559ffozQokWLGDJkCGlpaVxxxRUUFRUBZiu2W2+9laFDh/LKK69UiDfwmKPi4mLuuOMOFixYQHp6OgsWLCAvL48rrriCESNGMGTIEN566y3AHHs0depUxo0bR69evbjzzjvLwz311FNp2bJl2Gf+5JNPSE9PJz09nSFDhpCTk4Oqhjwy6rTTTmPq1Kn06NGD2267jRdeeIERI0aQlpbGtm3bAHjnnXcYOXIkQ4YMYcKECXz/feXv5C666CLefffd8vtZs2aVb7Dd0PDk7qNI40hp3rqSnTe5NS3IprC4JAKSORwNg1p/RygivwJ+CZQB76rqLSJyBnA3EA8UAzer6n+D+J0NXAX4lr39XlVr140B+PdtsK/yptK1on0anHl3WCdvvfUWkydPpnfv3rRq1YpVq1Zx0kknAWYf0fXr19O9e3cyMjLYvHkz8+bNY/To0VxxxRX83//9H9dddx2zZs1i0aJF9O7dm5kzZ/L4449zww03ANCqVavyfUn9CTzmKD4+nrvuuouVK1fy2GOPAfD73/+e008/naeeeoqsrCxGjBjBhAkTAFixYgXr168nOTmZ4cOHM2XKlGofV3T//fczZ84cRo8eTW5uLomJibz++ushj4z66quv+Prrr2nZsiU9evTgyiuvZMWKFTz88MM8+uijPPTQQ4wZM4Zly5YhIvzzn//k3nvv5YEHHqgQr++IpSlTplBcXMyiRYt4/PHHqyVzfSMuP5NDkkoHT+V2qzRpQ6x4yTyUSYf21TsWy+FwVKRWPUIRGQ9MBQar6gDAd8LsAeAsVU0DLgPCHWH+oKqm21/tlWAEeemll7jooosA02PxHx4dMWIE3bt3L7/v0qULo0ePBuCSSy5h6dKlbN68me7du5fvN3rZZZexZMmScj/Tp08PGm+wY44C+fDDD7n77rtJT09n3LhxFBYWsmuXWY14xhln0KpVK5KSkjjvvPNYunRptZ959OjR3HTTTTzyyCNkZWURGxsb9sio4cOH06FDBxISEujZsycTJ04EKh6xtGfPHiZNmkRaWhr33Xdf0COWzjzzTD7++GOKior497//zamnnkpSUlK15a5PxBcdIjsmNahdXLO2AOQccAf0OhxHS217hNcCd6tqEYCq7rf/q/3cbACSRCTB5+6YU0XP7Vhw6NAh/vvf/7Ju3TpEhLKyMkSE++67D6h8pNLRHGsU6lim6hxzpKq89tprlU54WL58ea2OWLrtttuYMmUK7733HqNHjy7fdDsU1Tli6Ve/+hU33XQTZ599NosXLw66s01iYiLjxo3jgw8+YMGCBeUNkIZIUslhcuNaBbVLTDUf1ecddorQ4ThaajtH2BsYKyLLReQTEQl2Ns804MswSvA6EVkrIk+JSItQEYnI1SKyUkRWZmZG3wfEr776Kpdeeik7d+4kIyOD3bt30717dz799NOg7nft2sXnn38OwIsvvsiYMWPo06cPGRkZbN26FYDnnnuO0047rcq4gx1zFHjE0qRJk3j00UfxbbK+evUPbZX//Oc/HDp0iIKCAt58883ynmp12LZtG2lpadx6660MHz6cTZs21erIKIAjR47QqVMnAJ555pmQ7qZPn87TTz/Np59+yuTJk6sdfn2jadkRihOCz9U2sfuNFmW5/UYdjqOlSkUoIh+JyPogv6mYHmVLYBRwM7BQ/LoTIjIAuAf4eYjgHwd6AunAXuCBEO5Q1SdUdZiqDmvTpk01H+/48dJLL3HuuedWMJs2bVrI1aN9+vRhzpw59OvXj8OHD3PttdeSmJjI008/zQUXXEBaWhoej4drrrmmyriDHXM0fvx4Nm7cWL5Y5vbbb6ekpIRBgwYxYMAAbr/99nL/I0aMYNq0aQwaNIhp06aVzw9efPHFnHzyyWzevJnOnTuXn684d+7c8iOaHnroIQYOHMigQYOIi4vjzDPPrNWRUWD2Nr3gggs46aSTaN36hwUiK1eu5Morryy/nzhxIp988gkTJkwgPj6+2uHXK1RJ1SOUJQZXhM3aGEVYluP2G3U4jpZaHcMkIu8D96jqx/Z+GzBKVTNFpDPwX+ByVf2sGmF1A/6lqlV+tOaOYao75s+fX2FRTWMkmstOfs5hkh/oxuc9rufkmXdVsteyUvSu1vyv8xWMuervEZDQ4ag99f0YpjeB8QAi0huzSvSAiKQC7wK3hVOCIuK/eeK5wPpayuNwNCiyDuwDIKZp8FEQiYklS1KIcfuNOhxHTW0V4VNADxFZD7wMXKami3kdcCJwh4issb+2ACLyTxHxaf57RWSdiKzFKNQbaymPo4bMmjWrUfcGo53cQ0YRxjcPPR2QHdPC7TfqcNSCWq0aVdVi4JIg5n8B/hLCz5V+15fWJv4gYddoxaPDUZupgeNBgV0Ek5TaLqSbvNiWJJccOl4iORwNjgazs0xiYiIHDx6M+orNET2oKgcPHiQxMTHSooSkyB66m9KyQ2g3CS1JKXMbbzscR0uDOaG+c+fO7Nmzh2j8tMIRvSQmJtK5c+VTHaKFshxTnlPbhF51W5rUhtQjWW5ExOE4ShqMIoyLi6uwc4vD0RCQvEwKNJ7kJs1DutEmbWgqheTkZpOSEtqdw+EIToMZGnU4GiIxhYc5Is0gTE8v1m6zdiTT7S7jcBwNThE6HFFMbEk2+Z6mYd3ENzfDpjn23EKHw1EznCJ0OKKYhJJsCmJTwrpJamEUYf7hfcdDJIejweEUocMRxSSV5VAc2yysm+atzfFLJUfcfqMOx9HgFKHDEcU08eZQEh9+AUxqG6MIvbluv1GH42hoMKtGHY6GSFPNoywhvCKMS0gmh2Qkr2afDpWWlvL5O/OI3fwOScWHyI9vhXQbTZ/TL6Vl2061EdvhqFc4RehwRCklxYUkSxEkVv1JxBFPKrEFB6od9pFDB9j5+HmMLfmKTGlNVmInOhZupO2mJZR8fS9fNjkZHXQRA8adT2Jiwzzw2OHw4RShwxGlZB/OpBUgSSGP6SwnJ641yUXV6xEW5uey9/+m0LdkC6uH3EX62dfRxhMDwPaNK8hc8jQn7nuXVsuWkvX5baxqMpKyziNo2bkvHTufQMumSRQVl3DoSDaHjxwhOyeb3Jxs8nOzKSvKx1NWgKe0gNiyAuK1iHhvIbGUAWI/AxEQQHwzMwLiQcvtBPFzq+WfjkjYz0iqQ7P0cxg4ekqtwnA0PJwidDiilLwjB2kFxDapWhEWJHWgY9aqaoW75qlfM6p0E2tOeZQhk2ZWsOvRfwQ9+o+grLSEdUvfwvvVy/TPWkGLbxbBNz+4SwA62F8oiomjSBIoIoFSiQEFQREUUIxKM/ei5tqDF6CCmx/8hKPqrRWTtZCNS7aAU4SOAJwidDiilPxsc6JEXJPgh/L6U5LSiTaHP6S4qIj4hISQ7jYt/4BRB15jedvpjAxQgv7ExMaRNu58GHc+qHLou618m7GFzH17OJRXRNPEOFKaptAspRnNmzenZYtUmjRJQeKbQFwSxCYRHxNLPBD+44/jx9q7f0RiaXakxXBEIU4ROhxRSlGOOVEiIaVqRehJPYGY3cr+fRl06NonqBtvWRkx//kD+2lJ2sz7qi+ICC079aJlp17V9xOFlMY2IaHYfWvpqIz7fMLhiFJKco0iTGrWqkq38a26AnBk77aQbtZ/9Cy9SreQkX4zyU0b356kpXFNSfLmR1oMRxTiFKHDEaWU5ZujlZqktq7SbWrHngDkfZ8R3IEqTb94jF3SkaFTrqorEesV3rimJGtBpMVwRCFOETocUYrXKsKU1Kp7hO26nAhA8aGdQe23r3iXHqVb2dnnZ8TGxdWdkPUIjU+hqRSg3rJIi+KIMpwidDiiFCk8Qr4mkJBQ9Xd8iUlNyKQlsVnbg9oXf/Ig+7UFg39yTV2LWX9IMMt28nOPRFgQR7ThFKHDEaV4io6QK02q7X5vYnda5FaeI8zc8gV981eyrvPFNGsa/iSLhowkWUWYkxVZQRxRh1OEDkeUEluSS76n+oowr3lvOpfuoqy0tIL59+/fT64m0ucnv65rEesVMXaHngLXI3QE4BShwxGlxJblUeRJrrb7mHYDSJQS9u7YUG6Wn7mTPgf/w4oWU+jcIdzn7w2fWNsjLMrLiqwgjqij1opQRH4lIptEZIOI3GvNuolIgYissb+5Ify2FJH/iMgW+1/1FhoORyMhvjSf4pjqK8IWvUYAsH/DknKzLf/6Ox710vaMG+pavHpHXLLpERbnuR6hoyK1UoQiMh6YCgxW1QHA/X7W21Q13f5CzdDfBixS1V7AInvvcDiARG8eJbHVn9Pr0X84B2iO7PgEgMIj++m5cyFfJI9h4IBBx0rMekNCk1QASvKdInRUpLY9wmuBu1W1CEBVa3og2lTgGXv9DHBOLeWpFmvumcTnT954PKJyOI6aRG8+ZbHVnyOMifGwtelwehz5nNLCPLa98keStIDECX88hlLWHxKbpgJQVui2WXNUpLaKsDcwVkSWi8gnIjLcz667iKy25mND+G+nqnvt9T6gXaiIRORqEVkpIiszM2t27logTYszST64rlZhOBzHmiQK8MZVXxECxJw0k+bksuPRnzBgzwI+TjmLwUNHHiMJ6xdJdjcdb4FThI6KVLnXqIh8BLQPYvUH678lMAoYDiwUkR7AXuAEVT0oIicBb4rIAFUNWQJVVUUk5BbyqvoE8ATAsGHDqt5qPgzZiR1pVZBRmyAcjmOKer0kayHe+Jp97jD01LP4zxdTOCPvXZZ7hjDg8oeRWh5d1FBo1twsQShzitARQJWKUFUnhLITkWuB11VVgRUi4gVaq2om4BsuXSUi2zC9x5UBQXwvIh1Uda+IdABqOrR6VBQ16Uzb3OWo14t43MJZR/RRVJhPopSVfwReXWJiPJx603Os3r6b/l06kpIUf4wkrH/EJyRSqHF4C3MiLYojyqitFngTGA8gIr2BeOCAiLQRkRhr3gPoBQTb8uJt4DJ7fRnwVi3lqR6pJ5AkxRw5sLdqtw5HBMizH317Emt+iFFCbAxDendzSjAIudIET7HrEToqUltF+BTQQ0TWAy8Dl9ne4anAWhFZA7wKXKOqhwBE5J8iMsz6vxs4Q0S2ABPs/TEnvnU3AA5+u/V4ROdw1BjfR9+eGvYIHeHJ9TQjrigr0mI4ooxanUeoqsXAJUHMXwNeC+HnSr/rg8CPaiPD0dCsfQ8AjuzbDpx2vKN3OKqk0H7rFpPULMKSNCzyY5uTWJIVaTEcUUajnCDr1L03AIX7XY/QEZ34PvqOc4qwTimKa0ZymRsadVSkUSrC5JSWHKAFMYdCH2LqcESSkgKjCBMa4QG6x5KS+FSaep0idFSkUSpCgO8TupKa5xShIzopKTArGxOSXY+wLilLbEFzzQGt1RdYjgZGreYI6zO5zU5k4P5/1eoTitysTL7dsob8A3soKS0hLj6RuKatiG/WhmYt29OiTTsS4hPqWHJHY8BrFWGi6xHWKZrYkngppTA/m8QmNU9bVWXd8kXkLn+WNkfW0dybhSIciW1FQVIHSpp3I6HtibQ8oR/tuvYjtnlHcJ9oRT2NVhHSpi9NMl/l+++2067zidX2VlJcyJp35pK66UV6lWymTxi3XhUO05RsT3PyYlMpjG8B8U1QTyxeicMrsagnxjhWUBRVUADVH+4rNV7DtWaD2FkjsReBLiRseKEJ6S9MaztcXOE/+w7uL3x4YZ4rhFX4tDjKuI7CT2reDgCS7LZgjrpBmrQEIOdwZo0VYeb+vWybfw2j8hdTQALbkgayI6EvMXiJL8gkNXcLHbKXEr+nDL40fgqJZ39cJ7ISO1OY2A5i4yE2EfXEoV4vaCl4y0DLwFuGeEtBvfZnX371oiiiXkARVQT9ofyUvzhS4R0SfiixaioYlB9ezx/qG+PPf98FERuWmFB91141frxexYuiXogZ91tGjTi5RmkZbTRaRZjSZSBshH3frK62Ity04gOa/vt6hutetnm681mXn5Pc7SSate1GQmICRQX5FOUcoCTnAKXZ+/HmHYD8A8QWHCKx+BCtCjKIyyskllJiKSNWy4ihDPUV30qaILRqCFWF+sIK9KlhwwpuF75qD+Xn6GWubhwAGsIq0s8ZXo3W7DnXJQxlQEpqmBAdNSW2aSsA8rIyaVODBvDujK2UPjOVod59rOpxDQOm/Y6BQRop+YVFbN+xhf07N5K39xtiszJoXrCbNrk76Jr9JXGUkkAxMXYTrTIVTC3goYwYvOKhDA8/qDrfz2MUER6jzOx/JbRyGQzcWEj86ptyZVrxLzDIHxrT/lWVmP/tDWCnnkarCLsNGIn3fSFvx3Lggirdr1hwN8M23s0+T1tWj32S9PHn09MNeTiOIR0jLUADJLFZGwDysqq/idWBQwcpemYa7fUg3/7kBU4aPjmk2+TEBPr2G0jffgNDuinzKkWlJcTFxBIT4yGm+uJHJcH236xvNFpFmNysJdtju9I088sq3W568RZGfPMPViefQs9rX6RjM3dsosNRH2nWsi0A+VnV27jf61W2/PNnjPDuJGPys/QMowSrS4xHiIl3u/5EE426S5OZmk6Pgo14S0tDutn8xt30/eYffJw8mX43vEUzpwQdjnpLi9am/1KcXb0e4f/ee46T8z9mba9r6Xny2cdSNEcEadSKMKbryTSVArau/Syo/Zb/zKPPV/+P/8WPZvivniUxwbXiHI76TErL9pRoDORUvc9wbm42vVb+iYyYbqRfNPvYC+eIGI1aEZ54yjmUqofDqyrvBrd92Vt0W3oza2LS6PfLl2ma5D6DcDjqO+KJ4ZCnBbF531fpdtmrD9GOQxRPugeJde9/Q6ZRK8LU1u3ZmDSErt++S1lJUbn57vVLaf/+1WR4utDh56/Torn7qNnhaChkxbYmuTD80OiBI7n02/EM25LS6D2i9vOCjuimUStCgJJhP6c9B1j9+gMAbF/9X1Jenc5hmpEw6w3atW0bYQkdDkddkh/fhmal4RfLrHjnCTrJAZJPv/k4SeWIJI1eEQ49/QK+SjiJ9I33sfHucZzw5jRyaErJjDc4oWuPSIvncDjqmKLkdrT0Hgxpn11QRO+t8/g2vgcdhrkFMo2BRq8IxeOh6zUL+SJ1MglFh1je+jyaXvcJ3XqF/g7I4XDUY1I6kkIB2UcOBbVe+u5znMgevKNvqPw1uqNB0mi/I/QntUVrTr7xJQB6RlgWh8NxbEls2x22w94dm2iWfkoFu6KSUrpsmMv+mPZ0GTMjQhI6jjeNvkfocDgaFy1PGADAkT0bKtn9b9FbpOkWsof+AmJcP6Gx4BShw+FoVLTvPgCvCqXfb65g7vUqTb94lMOSSs8zroqQdI5I4BShw+FoVMQnNWW/pzVxhyueR7pq+WKGl63mu76zkPjkCEnniAROETocjkbH/sTutMnfUsGs9JO/k0syvX9yQ2SEckSMWitCEfmViGwSkQ0icq81myEia/x+XhFJD+J3toh86+fux7WVx+FwOKoir+1JdPPuJvug+bB+09oVjCz4lC1dpxPXxO0n3NiolSIUkfHAVGCwqg4A7gdQ1RdUNV1V04FLgR2quiZEMA/63Krqe7WRx+FwOKpDat/TANiy/F1Ulaz37iJfEjnxnN9FWDJHJKjtsqhrgbtVtQhAVYPtW3Qx8HIt43E4HI46o/fwM8j8oAUxq59hcQmML/yU1T2uZUiLdpEWzREBajs02hsYKyLLReQTERkexM104KUwYVwnImtF5CkRcWMSDofjmBMTG8v3A64kvWQ141ffQEZcL9Km/ynSYjkiRJU9QhH5iOCHEP/B+m8JjAKGAwtFpIeqqvU7EshX1fUhgn8c+DOg9v8B4IoQclwNXA1wwgknVCW2w+FwhGXAebfxVVkZscVZdD/7d8QmJEVaJEeEEKuzjs6zyPvAPar6sb3fBoxS1Ux7/yCQqap/q0ZY3YB/qWqVe5sNGzZMV65cedRyOxwOhyN6EJFVqjosUvHXdmj0TWA8gIj0BuKBA/beA1xImPlBEengd3suEKrn6HA4HA7HMaG2i2WeAp4SkfVAMXCZ/tDFPBXYrarb/T2IyD+Buaq6ErjXflahQAbw81rK43A4HA5HjajV0GikEJFMYGctg2mN7b1GOfVFTqg/sjo56576IquTs+6pC1m7qmqbuhDmaKiXirAuEJGVkRyTri71RU6oP7I6Oeue+iKrk7PuqU+yhsJtseZwOByORo1ThA6Hw+Fo1DRmRfhEpAWoJvVFTqg/sjo56576IquTs+6pT7IGpdHOETocDofDAY27R+hwOBwOh1OEDofD4WjcNDpFKCKTRWSziGwVkdsiLY8/ItJFRD4WkY32fMfrrXnUndsoIhkiss7Ks9KatRSR/4jIFvsf0U3URaRPwLmY2SJyQ7Skp91ofr/dkMJnFjQNxfCILbdrRWRohOW8z55DulZE3hCRVGveTUQK/NJ27vGSM4ysIfNbRH5n03SziEyKsJwL/GTMEJE11jxiaRqmToq6clorVLXR/IAYYBvQA7Md3FdA/0jL5SdfB2CovU4BvgH6A7OB30ZavgBZM4DWAWb3ArfZ69sw+9BGXFa/vN8HdI2W9MTsvjQUWF9VGgI/Bv4NCGaT++URlnMiEGuv7/GTs5u/uyhJ06D5bd+tr4AEoLutG2IiJWeA/QPAHZFO0zB1UtSV09r8GluPcASwVVW3q2oxZh/UqRGWqRxV3auqX9rrHOBroFNkpaoRU4Fn7PUzwDmRE6USPwK2qWptdySqM1R1CXAowDhUGk4FnlXDMiA1YK/e4yqnqn6oqqX2dhnQ+XjIUhUh0jQUU4GXVbVIVXcAWzF1xDEnnJwiIph9msMdX3dcCFMnRV05rQ2NTRF2Anb73e8hShWNPY1jCLDcGkXbuY0KfCgiq8QckQXQTlX32ut9QDSdcnoRFSuWaEtPH6HSMJrL7hWYXoCP7iKyWswZpWMjJVQAwfI7WtN0LPC9qm7xM4t4mgbUSfWxnIaksSnCeoGINAVeA25Q1WzMuY09gXRgL2bYJNKMUdWhwJnAL0XkVH9LNeMkUfFtjojEA2cDr1ijaEzPSkRTGoZCRP4AlAIvWKO9wAmqOgS4CXhRRJpFSj5LvchvPy6mYqMt4mkapE4qpz6U06pobIrwW6CL331naxY1iEgcpsC9oKqvA6jq96papqpe4EmO0/BNOFT1W/u/H3gDI9P3vmEQ+78/chJW4EzgS1X9HqIzPf0IlYZRV3ZFZBbwE2CGrQyxw4wH7fUqzLxb74gJSdj8jsY0jQXOAxb4zCKdpsHqJOpROa0OjU0RfgH0EpHutpdwEfB2hGUqx84NzAO+VtW/+5lH1bmNItJERFJ815iFE+sxaXmZdXYZ8FZkJKxEhRZ2tKVnAKHS8G1gpl2VNwo44jc0ddwRkcnALcDZqprvZ95GRGLsdQ+gF7A9eCjHhzD5/TZwkYgkiEh3jKwrjrd8AUwANqnqHp9BJNM0VJ1EPSmn1SbSq3WO9w+zqukbTKvqD5GWJ0C2MZghhrXAGvv7MfAcsM6avw10iLCcPTCr7b4CNvjSEWgFLAK2AB8BLaMgTZsAB4HmfmZRkZ4Y5bwXKMHMpfwsVBpiVuHNseV2HTAswnJuxcwF+crpXOt2mi0Ta4AvgbOiIE1D5jfwB5umm4EzIymnNZ8PXBPgNmJpGqZOirpyWpuf22LN4XA4HI2axjY06nA4HA5HBZwidDgcDkejxilCh8PhcDRqnCJ0OBwOR6PGKUKHw+FwNGqcInQ4HA5Ho8YpQofD4XA0apwidDgcDkejxilCh8PhcDRqnCJ0OBwOR6PGKUKHw+FwNGqcInQ4HA5HoyaqFaGIdBMRtWd0OY4hIjJLRJYep7iSROQ9ETksIrccjzgD4s8QkQnHIZ7FInJlCDtXtiNAuHQ/nnli4zkxhN1xexcbAiJyi61LPhCR5KMJI6oVoePoEJHZIlIiIrl+v+OucMIwARgEdFHVe32GVkF1i5hUUYTNw9k1cP9TEdkpInki8qaItAzj9gkR2SwiXnu4bqD9jSKyT0SyReQpEUnws0sXkU9F5IiI7BGR20PEcYet7Cf4mXUSkbdE5JD1e02AH7Xy+8rsP2vw/I3mGB3bwBpXTbciIveIyEH7u8eeMRjKfZXlSER6iUihiDwfYN5GRF60ZeOwiLzgZ3e/iGwRkRwR2SQiMwP8niUi622+/09E+vvZzQ2oy4pEJMdnb+uQzkBfzNmoNeaYKkLX2o0oC1S1qd/v3qq9HDdaAhmqmhtpQWqDrWQi3pgUkQHAP4BLgXZAPvB/Ybx8BfwCc7ZdYFiTgNuAHwFdMWdP3unn5EVgCSYPTwN+ISJnB4TRE7gAc96eP88DO6yMU4C/icj4ADeD/cps0N50fSCK6r6rgXOAwZjG51nAz4M5rEE5moM55DyQ14F9wAlAW+B+P7s8G3dzzEG+D4vIKTbeXsALwDVAKvAO8LYvDVX1Gv+6DHOW4yv+EatqHqZstQqZEmGo85fYtupvFZG1QJ6IxIrIKKvls0TkK//WjG3d/D8RWWFboG+Fas2KyOUi8rVtVWwXkZ8H2E8VkTU2nG1iTtFGRJqLyDwR2Ssi34rIX8Se+BzmOXqKyH9tK+qAiLwgIql+dodEZKi97ygimb7nEpGzRWSDfd7FItIvIH1+KyJrbctpgYgk1jyla46I3GbTJUdENorIuSHciYg8KCL7bVquE5GB1i7Btu52icj3trWWVENRYgFvFbK2EpF3bPxf2Dxb6mevInKNbWVmicgcEdPSDZd3fgy3aXBYRJ725YGItBCRf9n8PGyvO/vFu1hE/ioin2Eqih5VPGtXEfnMpvmHItI6wH6GTcsDIvKHKsIKxQzgHVVdYhsXtwPniUhKMMeqOkdVFwGFQawvA+ap6gZVPQz8GZjlZ98NeEFVy1R1G7AUGBAQxhzgVqDYZyAiTYFxwF9VtURVvwJeBa6o6cNWhYh0F5ElNs0/smXj+RBup9l3cqCf8RUi8p2tL37r53aEiHxuy9teEXlMROL97FVEfikiWzAH1lbFhGDl1y+8+20Z3CEiZ9YwGXxcBjygqntU9VvgASrmpz9VliMRuQjIwhzK6y/rRKALcLOqHrF5vNpnr6p/UtVNqupV1eXAp8DJ1noS8KmqLlXVUuAeoBOmoVUBEWmCOaj4mSDyezF1S805BicaZ2BOMe4CJNkHOog51dgDnGHv21j3i4FvgYGY08RfA563dt0wpyPH2vspQE/MKcinYSqiodZuBHDEhu+x8fa1dm9gWjpNMC2VFcDPq3iOE21YCUAbTCv4IT/7q4CNQDLwAXC/Ne+Naf2cAcQBt2BO8473S58VQEdMq/prAk6kDjgdOivMb0wIf7N9aRhgfoGN1wNMt3J2sHazgKX2ehKwCtM6E6Cfn7sHMad8twRSMK23/1eD8hGHOTG8knwB7l62v2SgP+Y09KV+9gr8y8p4ApAJTK5m3mUA6zFltCXwGfAXa9cK86Il2+d7BXjTz+9iYBem8o8F4sI8w2LMSd29Me/CYuDugLL9pLUbDBQB/UKEFS6/3wJuDTDLBU6qIo2XArMCzL4Cpvvdt7ZytrL3fwPutvnYB3O6+vCAMvaWXzpPsNcpNpy2fm6fBFYH5Ol3mF7F60C3o6yDPsf0RuIx71A2QeoU4HLMu3ligN1LmLoizZYr3zOcBIyyfrth3t0bAuT/jy1TSVXIGK78zsKcXH8VEANca9NFQtURYeI5Aoz0ux8G5BxNOQKaAd9ghiFn4/cOA3dg6sHnMfX7F8BpIeJJwowW+J73OuA9P/sYTCPt+iB+ZwLbQ6TFMzbv4mtcZo6moFWRwRnAFX73twLPBbj5ALjMXi/GVg72vj+mJRlDgCIMEtebvsTCKLoHg7hph6lgkvzMLgY+ruFznYPfS2vN3gbWAWuBBGt2O7DQz40Ho+jH+aXPJX729wJz6zgPZts0zPL7dQzibg0w1V7P4gdFeLot8KMAj597wSjPnn5mJwM7qilXOuYF/x5b+YRwF2Pd9fEz+wuVFeEYv/uFwG3VyTubB9f43f8Y2BZG5sN+94uBu6r5vIuBP/rd/wJ43177ynZnP/sVwEVHkd+LCGhM+Ze5MP6CKcJt2ArK3sdZObvZ+1MwyqPUmt/p5zYF0xPyuc3AKhG/+B4FEoGhwCFgs5/9qRjllQo8hmmsBH33wzzTCVa2ZD+z56msCH+Lacj6p7/Prq+f2b2YHnKwuG4A3ggok6dXU86Q5RfzLm71s0u27tsfRdkoC3ieXjasYIokbDkCHsYqSiorwidsuD+zZcbXc2wdJJ5ngPd9MmDm9vIwIwbxmDrUC/wuhIyzQzxrT0wjqgQYVpN0OlbzG7v9rrsCF9juf5aIZGFaMR1CuN+JScjAISRE5EwRWWaHJbMwFZjPXRfMSxxIVxveXr/4/4HpGYZERNqJyMtihlKzMS9ToExPYnqyj6pqkTXraJ8BAFX12ufr5Odvn991PtA0nCxHyUJVTfX7fSciM8UMHfvSYSBB0llV/4upiOYA+8UsrmiG6V0lA6v8wnjfmleJqq7BVJafYyqRULTBtLr9y8XuIO6CpmM18y6wzHW0fpNF5B9iFgxkY3qTqVJxKD2YLKGoKq/roizkYlrr/jQDcoK4rWlYvuscMVMW7wN3YZRZF2CSiPzCupmNafRmhAh7BtAdk36PY/Jlj89SzZBcsapmAddbt/2ChBOOjsAhVc33MwuWXzcDc1R1TxC7UGWjtx0q32fLxt8IX66qIlzel9v5PUtdlI1mQK5azVGFW5/7HBFJxyxyezBEPAWYef95aoZFX8akxWh/RyJyH6beudAng6puwgzhPobpKbbGNFL2BPg9AaMsnw0hw/WYnmgzVV0Zwk1QjpUi9E/k3ZiXw79SbqKqd/u56eJ3fQJGox/wD1DMyrXXMEMe7VQ1FXgP00vxxdMziCy7MT3C1n7xN1PVwHmNQP5mnyNNVZsBl/jF5ZvzeAiYB8yWH+Y1v8MoX587sc/3bRXxVUJExkrF1VKBv7E1CKsrRnFfhxnmSsW0uIOuIFPVR1T1JEwPvTem4jiAKfAD/NKyuZoJ7GqhqoXAv224ocjEtOo7+5l1CeE2GGHzLkh4J2DyDeA3mCG/kdbvqdbc33+wSiSSbMAMrQIgIj0ww8Lf1DYse/29qh7EzIeWqeqzqlpqlcjLmAYpmAU2v7aKYh8mjReKyK0AqrpTVX+iqm1UdSSmwlsRRhYlRPkMw16gpVRcRh+s7EwE/igi04LYhSobjwObgF62bPw+iHxRXTbs9YbquA0oR+MwPeZdNm9/C0wTEd+Cq7VUfvYK9yJyJ3AmMFFVsys4VH1VVQeqaivgTzauwAU5lwKfqer2EPL3w4y4FISwD8nxWPH2PHCWiEwSkRgRSRSRcf4LEIBLRKS/Lbx3Aa+qallAOPGYTMkESu3ksf9S2XnA5SLyIxHxiFmq3VdV9wIfAg+ISDNr11NETqtC7hRMC+mIiHTCKAJ/HgZWqlnZ9i4w15ovBKZYOeIwFWsR8L+qEioQVf1UK678DPx9WoPgmmAKZiaYhUeYllklRGS4iIy08udhxuu9tnf7JPCgiLS1bjuJWWno86tS9dLuIkx+BsXm/euYBkayiPTFzA1Ul6ryDuCXItLZNmD+ACzw81sAZFm7P9Ug3kjxAuYdG2sXE9wFvK6qQXuEIhIvZnGQAHH2nfTVBc8CP7PvYyrwR2C+tfvGeJef2veoPWauea21/xGmTKXb33eYFYpzbLz9RCTFxn8J5v39u7UbIObTjBjbyHwA03j82trPEpGMqhJCVXcCKzFlJ15ETsasVgxkAzAZmCMBq16B2225G4CZR/QvG9lAri2T11YlTxTwLHCTfU87Yuqj+SHchitHT2A6Gun2NxdT7/ne/TeAFiJymc3D8zEN2c8AROR3wE8xQ+UHAyMWkZOsvzY2rrdtT9GfmWFkBzPyVxTGPiTHXBGq6m5gKqb1lInpod0cEPdzmAfchxly+XWQcHKs+ULgMCZR3/azX4EptA9iJog/4Yee2UxMxbvR+n2VikOzwbgTM49xBJPhr/ssRGQq5iXyvQg3AUNFZIaqbsb0QB7F9KDOAs5S1WIiiKpuxFQun2Pm6NKwhTQIzTAK7zBmaOggcJ+1uxUzR7TMDg99hOlBISJdMMNx66oQx0vVZe86zFLrfZjy8RLVL+Qh886PFzENpO2YIfW/WPOHMJP5B4BlmKHAiBNuBEBVN2CWnr8A7MdU2L/w8/tvEfm9n5cPMcr+FEylU4Dt+arq+5h5sY8xi4J2YhsDthV/HnAjpmyswYwq/MXaH1TVfb4fZn7qsP7wmcwkTHoftvJOVtVMa9cOo3CyrZtuwE9UtcTadyF0eQ1kBmbu+qCVbQFByo6alas/AZ6UiqsyP8GU8UWYRXAfWvPfYuqdHMz7sYAI4xs1CuPkH5gFbeswefWuNfP5Ly9X4cqRquYH5G0uUOjLP1U9BJyNSaMjmE9wpqqqb2Tvb5je9Va/ES3/MvkwZk5xM6Z8XBXwnCdjFGuFzyYCiKGK1eih8E1WRgwRWYyZdK32x7OO6MS28geo6u+qcDcRM1LQ175A1Qn7HsxigctqL6mjviEiH2IWxn19FH4XAJtUtT707h1HgR292Ahcqarv1dR/xD8GdjQcVPX5qpSgZTFmmfkG8ftOyx8R6Ssig8QwArMa7Y26k9ZRn1DVidVVgnZov6cdvp2MGZF685gK6IgYtg7ZhOnJL6rCeVCiZfeDiCAiczHDmIE8r6rXBDF31AF2mHhGFc5SMMOhHTFDuQ9gvnOKKsIMS51ZwzlcR93RHjMc3gqz8vBa9fu4+3hghxv/HcyuJovLHFWjqvdTcRebGhPxoVGHw+FwOCKJGxp1OBwOR6OmXg6Ntm7dWrt16xZpMRwOh8NRB6xateqAqlZrY45jQb1UhN26dWPlyhptHOBwOByOKEVEdlbt6tjhhkYdDofD0ahxitDhiHLyC/JZ8vky3MI2h+PY4BShwxHlrJp/K6d+MIntW0JtEelwOGpDvZwjDEZJSQl79uyhsDDYWaMOR3ASExPp3LkzcXFxkRYlJE2PmL2z83atgd5Bt4d1OBy1oMEowj179pCSkkK3bt0QqemG9Y7GiKpy8OBB9uzZQ/fu3SMtTkhK45pAIZQUHM2pSg6HoyoazNBoYWEhrVq1ckrQUW1EhFatWkX9KEJZrDlRSIvyq3DpcDiOhgajCAGnBB01pj6UmdIYqwiL8yIsicPRMGlQitDhaIh4Y5PMv1OEDscxwSnCOkRE+M1vflN+f//99zN79uzICVQFixcv5n//q/F5weWsWbOGk08+mQEDBjBo0CAWLIj48WwNEvXYqXynCB2OY4JThHVIQkICr7/+OgcOHKjacQ1QVbzeozpvMiy1VYTJyck8++yzbNiwgffff58bbriBrKysuhPQYfCWAeApDnf+qsPhOFqcIqxDYmNjufrqq3nwwQcr2WVmZjJt2jSGDx/O8OHD+ewzc9j27Nmzuf/+H04QGThwIBkZGWRkZNCnTx9mzpzJwIED2b17NzfffDMDBw4kLS2tvPe1ePFixo0bx/nnn0/fvn2ZMWNG0A+vH3nkEfr378+gQYO46KKLyMjIYO7cuTz44IOkp6fz6aefhpXx0ksv5eSTT6ZXr148+eSTAPTu3ZtevXoB0LFjR9q2bUtmZmaluF955RUGDhzI4MGDOfXUUwGzuOnyyy8nLS2NIUOG8PHHHwMwf/58zjnnHM444wy6devGY489xt///neGDBnCqFGjOHTInOP75JNPMnz4cAYPHsy0adPIz6+8kGTUqFFs2PDDt3fjxo2rl1vzqZYCICVusYzDcSxoMJ9P+HPnOxvY+F12nYbZv2Mz/nTWgCrd/fKXv2TQoEHccsstFcyvv/56brzxRsaMGcOuXbuYNGkSX38d/pzRLVu28MwzzzBq1Chee+011qxZw1dffcWBAwcYPnx4uVJZvXo1GzZsoGPHjowePZrPPvuMMWPGVAjr7rvvZseOHSQkJJCVlUVqairXXHMNTZs25be/NWfj/vSnPw0p49q1a1m2bBl5eXkMGTKEKVOm0LFjx/LwV6xYQXFxMT179qz0HHfddRcffPABnTp1Ku8xzpkzBxFh3bp1bNq0iYkTJ/LNN+Z7ufXr17N69WoKCws58cQTueeee1i9ejU33ngjzz77LDfccAPnnXceV111FQB//OMfmTdvHr/61a8qxDt9+nQWLlzInXfeyd69e9m7dy/Dhg0Lm+ZRiR0N8JQVRFgQh6Nh4nqEdUyzZs2YOXMmjzzySAXzjz76iOuuu4709HTOPvtssrOzyc0NP9TVtWtXRo0aBcDSpUu5+OKLiYmJoV27dpx22ml88cUXAIwYMYLOnTvj8XhIT08nIyOjUliDBg1ixowZPP/888TGBm//hJNx6tSpJCUl0bp1a8aPH8+KFSvK/e3du5dLL72Up59+Go+ncpEaPXo0s2bN4sknn6SsrKz8eS65xJyJ3LdvX7p27VquCMePH09KSgpt2rShefPmnHXWWQCkpaWVP9v69esZO3YsaWlpvPDCCxV6fj4uvPBCXn31VQAWLlzI+eefHza9oxW1Q6OxpU4ROhzHggbZI6xOz+1YcsMNNzB06FAuv/zycjOv18uyZctITEys4DY2NrbC/J//N21NmjSpVnwJCQnl1zExMZSWllZy8+6777JkyRLeeecd/vrXv7Ju3bpKbkLJCJU/M/DdZ2dnM2XKFP7617+WK+1A5s6dy/Lly3n33Xc56aSTWLVqVbWfx+PxlN97PJ7yZ5s1axZvvvkmgwcPZv78+SxevLhSOJ06daJVq1asXbuWBQsWMHfu3LDxRi0+RVgW3d87Ohz1FdcjPAa0bNmSCy+8kHnz5pWbTZw4kUcffbT8fs2aNYA5UurLL78E4Msvv2THjh1Bwxw7diwLFiygrKyMzMxMlixZwogRI6olj9frZffu3YwfP5577rmHI0eOkJubS0pKCjk5P+xWEkpGgLfeeovCwkIOHjzI4sWLGT58OMXFxZx77rnMnDkzbG9r27ZtjBw5krvuuos2bdqwe/duxo4dywsvvADAN998w65du+jTp0+1ngcgJyeHDh06UFJSUh5OMKZPn869997LkSNHGDRoULXDjyZETUMpzut6hA7HscApwmPEb37zmwqrRx955BFWrlzJoEGD6N+/f3nvZNq0aRw6dIgBAwbw2GOP0bt376DhnXvuuQwaNIjBgwdz+umnc++999K+fftqyVJWVsYll1xSvjDl17/+NampqZx11lm88cYb5YtlQskIZmh1/PjxjBo1ittvv52OHTuycOFClixZwvz580lPTyc9Pb1ced5xxx28/fbbANx8882kpaUxcOBATjnlFAYPHswvfvELvF4vaWlpTJ8+nfnz51foCVbFn//8Z0aOHMno0aPp27dvufnbb7/NHXfcUX5//vnn8/LLL3PhhRdWO+xoQ9T0COO9rkfocBwLpD4e7TJs2DANXP339ddf069fvwhJ1LCZPXt2hUU1DY1oLztLHryEU4+8wz5a0372tkiL43DUOSKySlUjtpLN9QgdjihH7BxyIq5H6HAcCxrkYhlH3RLNu+M0BgQzNJqkRRGWxOFomLgeocMR5YidvkiQEkpKSiIsjcPR8HCK0OGIcnyLZQDy89yZhA5HXeMUocMR7egP35kW5bv9Rh2OusYpQocjyvH49QgL8+t260CHw+EUYZ3z5ptvIiJs2rQppJuMjAwGDhx4TOVYs2YN77333lH7932A379/fwYMGMDDDz9ch9I5aoLgeoQOx7HEKcI65qWXXmLMmDG89NJLQe2DbX9WU3z7dYajtoowNjaWBx54gI0bN7Js2TLmzJnDxo0bjzo8x9EjfkOjJYVOETocdY1ThHVIbm4uS5cuZd68ebz88svl5osXL2bs2LGcffbZ9O/fHzAKccaMGfTr14/zzz+//BihRYsWMWTIENLS0rjiiisoKjJL5rt168att97K0KFDeeWVVyrEG3jMUXFxMXfccQcLFiwgPT2dBQsWkJeXxxVXXMGIESMYMmQIb731FmCOPZo6dSrjxo2jV69e3HnnnQB06NCBoUOHApCSkkK/fv349ttvKz3zJ598Ur6rzJAhQ8jJyUFVQx4ZddpppzF16lR69OjBbbfdxgsvvMCIESNIS0tj2zbzsfg777zDyJEjGTJkCBMmTOD777+vFO9FF13Eu+++W34/a9as8g22Gxoefmj4OEXocNQ9DfM7wn/fBvsqbypdK9qnwZl3h3Xy1ltvMXnyZHr37k2rVq1YtWoVJ510EmD2EV2/fj3du3cnIyODzZs3M2/ePEaPHs0VV1zB//3f/3Hdddcxa9YsFi1aRO/evZk5cyaPP/44N9xwAwCtWrUq35fUn8BjjuLj47nrrrtYuXIljz32GAC///3vOf3003nqqafIyspixIgRTJgwATBHKK1fv57k5GSGDx/OlClTKhxXlJGRwerVqxk5cmSluO+//37mzJnD6NGjyc3NJTExkddffz3kkVFfffUVX3/9NS1btqRHjx5ceeWVrFixgocffphHH32Uhx56iDFjxrBs2TJEhH/+85/ce++9PPDAAxXi9R2xNGXKFIqLi1m0aBGPP/54NTOzfiHqxYvgQSlzitDhqHNcj7AOeemll7jooosA02PxHx4dMWIE3bt3L7/v0qULo0ePBuCSSy5h6dKlbN68me7du5fvN3rZZZexZMmScj/Tp08PGm+wY44C+fDDD7n77rtJT09n3LhxFBYWsmvXLgDOOOMMWrVqRVJSEueddx5Lly4t95ebm8u0adN46KGHaNasWdC4b7rpJh555BGysrKIjY0Ne2TU8OHD6dChAwkJCfTs2ZOJEycCFY9Y2rNnD5MmTSItLY377rsv6BFLZ555Jh9//DFFRUX8+9//5tRTTyUpKSnos9d3POolD/NspYV5EZbG4Wh4REWPUEQmAw8DMcA/VTV816sqqui5HQsOHTrEf//7X9atW4eIUFZWhohw3333AZWPVAp1rFE4Qh3LVJ1jjlSV1157rdIJD8uXLw8pS0lJCdOmTWPGjBmcd955QeO+7bbbmDJlCu+99x6jR4/mgw8+CPsM1Tli6Ve/+hU33XQTZ599NosXLw66s01iYiLjxo3jgw8+YMGCBeUNkIaIaBkFkkyK5uMtcorQ4ahrIt4jFJEYYA5wJtAfuFhE+kdWqprz6quvcumll7Jz504yMjLYvXs33bt359NPPw3qfteuXXz++ecAvPjii4wZM4Y+ffqQkZHB1q1bAXjuuec47bTTqow72DFHgUcsTZo0iUcffRTfJuurV68ut/vPf/7DoUOHKCgo4M0332T06NGoKj/72c/o168fN910U9i409LSuPXWWxk+fDibNm2q1ZFRAEeOHKFTp04APPPMMyHdTZ8+naeffppPP/2UyZMnVzv8+oagFHqSAfAW50dYGoej4RFxRQiMALaq6nZVLQZeBqZGWKYa89JLL3HuuedWMJs2bVrI1aN9+vRhzpw59OvXj8OHD3PttdeSmJjI008/zQUXXEBaWhoej4drrrmmyriDHXM0fvx4Nm7cWL5Y5vbbb6ekpIRBgwYxYMAAbr/99nL/I0aMYNq0aQwaNIhp06YxbNgwPvvsM5577jn++9//li+G8a1CnTt3bvkRTQ899BADBw5k0KBBxMXFceaZZ9bqyCgwe5tecMEFnHTSSbRu3brcfOXKlVx55ZXl9xMnTuSTTz5hwoQJxMfHVzv8+oZQRlGMHQ0odj1Ch6OuifgxTCJyPjBZVa+095cCI1X1ulB+3DFMdcf8+fMrLKppjER72Vn/l1OIiY2jV8Falne6lNFXPxJpkRyOOsUdw1RNRORqEVkpIiszMzMjLY7DcdzwqBfFQ4Ek4ClxQ6MOR10TDYrwW6CL331na1YBVX1CVYep6rA2bdocN+EaOrNmzWrUvcH6gOBFxUMhiUhJQaTFcTgaHNGgCL8AeolIdxGJBy4C3j6agCI9zOuof9SHMuOhDBUPRZJITJlThA5HXRNxRaiqpcB1wAfA18BCVa384VgVJCYmcvDgwXpRsTmiA1Xl4MGDJCYmRlqUsHjUi0oMxZ5EYkqdInQ46pqo+I5QVd8Djn5jTKBz587s2bMHN3/oqAmJiYl07tw50mKExYMXLx5KPInEuh6hw1HnRIUirAvi4uIq7NzicDQUPJgeYUlMEnGlbrGMw1HXRHxo1OFwhMcMjXooi0ki3lsYaXEcjgaHU4QOR5TjWzVaFpNEgjpF6HDUNQ1maNThaKj4hka9sU4ROhzHAtcjdDiiHI96QTxobDKJWhRpcRyOBodThA5HlOOxQ6Man0wSRZSVeav25HA4qo1ThA5HlOPBixKDxCURK14KCt0nFA5HXeIUocMR5XjwgseDxJsTKArysiMskcPRsHCK0OGIcmIoQyUGj1WERfk5VfhwOBw1wSlChyPK8a0ajUn0KcLcCEvkcDQsnCJ0OKIc3wf1MQlNASgqcIfzOhx1iVOEDkeUE4MXPLHEJRlFWFroeoQOR13iFKHDEeXEUmYUYaJRhCWFbo7Q4ahLnCJ0OKIYVSXGKsL4JDNHWFbohkYdjrrEKUKHI4opLSsjRhTxxJKQnAJAWZFThA5HXeIUocMRxZSWlJiLmFgSk4wi9BY7Rehw1CVOETocUUxJaTEAEhNHYhOjCHE9QoejTnGK0OGIYkpLSs2FJ5Z4u2pUS9zhvA5HXeIUocMRxZSVmNMmxBMLnhgKiQOnCB2OOsUpQocjiiktNT1CiYkDoJBEPCVu022Hoy5xitDhiGLKSm2PMMacoV0kCXhKXY/Q4ahLnCJ0OKKYsmJ7In1cIgBFkkhMmVOEDkdd4hShwxHFeIut0otNAqDEk0RsaWEEJXI4Gh5OETocUYy3yCrCOKsIYxKJ87o5QoejLnGK0OGIYkqtIoxNSAagJCaJOK/rETocdYlThA5HFFNi9xWNt2cRlsUkEe8UocNRpzhF6HBEMSV2Fxnfx/RlsckkqFOEDkdd4hShwxHFlNmh0QR78oTGJpHoFKHDUac4RehwRDGlRWZhTGKy6RESl0wSRXi9GkGpHI6GxXFRhCIyW0S+FZE19vdjP7vfichWEdksIpOOhzwOR31B7UkTSfYIJuKTSZJiCn2nUjgcjloTexzjelBV7/c3EJH+wEXAAKAj8JGI9FbVsuMol8MRtUjBIUrVQ1LT5uY+3gyR5uflkJzQKpKiORwNhkgPjU4FXlbVIlXdAWwFRkRYJocjavAUHCRLmuGJiQF+UIRF+e4oJoejrjieivA6EVkrIk+JSAtr1gnY7edmjzVzOBxAXOEhcjyp5feeBJ8izImQRA5Hw6POFKGIfCQi64P8pgKPAz2BdGAv8MBRhH+1iKwUkZWZmZl1JbbDEdUklhwiPy61/D7Wfk9YVOAUocNRV9TZHKGqTqiOOxF5EviXvf0W6OJn3dmaBQv/CeAJgGHDhrklc45GQeuSfexIPbn8Ptb2CEsKciMlksPR4Dheq0Y7+N2eC6y3128DF4lIgoh0B3oBK46HTA5HtJOXk0UbDlPWonu5WZz9sN4pQoej7jheq0bvFZF0QIEM4OcAqrpBRBYCG4FS4JduxajDYdi7YyMnAglte5Wb+XaYKS1yi2UcjrriuChCVb00jN1fgb8eDzkcjvrE4T2bAGjRpW+5WflWa7VUhAcz9/LNR/OJ/XY5sWUFFLQexIlTfk3b9l2q9uxwNDCO53eEDoejBpR8/w0AHbr3LzdL9CnC4qM7nDc/5zAbXr6d/nsWcrIUsU/aUCjJDNq1nLy5z/PlqP/H0MmzQvovLCpi86rFFOxcRVnOPkQ8kNiCxE4DaH/iENp36o4nJvSMS1FxEVkH91NakI14YpHYeGLj4klISiYxsQlxcXGIyFE9m8NxtDhF6HBEKXGHtrCP1rRv0rzcLMFutVZ+TmENWPPRy3Rc+jtO0sOsbD6BtpNvplv/kQDs2bKG/AVXMXTZ9Szf9CF9L/07zVu1R71evt22nm+/fJ+4nYvplfclg8Vs+1aqHgQlRhS2AUsgR5PYG3cCBfEtKfPEE1eaR1LpEZLKckjRbJqRT7swMpZoDMXEUSTxlNrqyYMXAEHNT80/KBLE3uNzB+B/L8rq9hcy7Jonapx2joaNU4QOR5SSmr+DzMSutPczK998u6T6h/OWlZaw/Mlfc8r3L7LD040Dk//JiBE/quCmc690Sm75lBXP3MywPc9R9sgH7IppT4o3m85k0xnYK234pvUZJPSdQPu08bRq2wkRD9mHvmfv1tXk7FxL2f5NNMneRpOi74n1FlPsSSI3tjmHk07Am9gCklriadoKiW+Kqhe8JWhJMd7SIvNMpYWI71dWDOIBEdtLlPJ7MGYqHmPns/epQsHvWlCFtvsW0/77JbXKE0fDxClChyMK8ZaV0bl0N1+1GlbBXOLMAb1Uc2i0pCCb7Y9O5ZT8L1nR+jwGXzmHhMTkoG7j4hMZcdWjbN9wKfuWzCchdxd745qhHYfSacgZdO6ZRgdP5WHPZq3a06zVmTDyzJo95HHmf0/dwqidT1CYl01ik2aRFscRRThF6HBEIft2b6WjFONp26eihSeGIuKgtOoeYVHeYXY/8hN6Fm7kv31nc/rFN1Yr7h4DRtBjQMPb6TC+0yA8u5Q9m1dz4tDTIi2OI4polIrwi4cuprRZZ/pP/S3NW4WbsagCVbxeLyWlJXjLvKDeym4CJv4rLASotCgg4D6cvUiAdWi/EmgXhOqsT6juEobqLHaoflh1E19NUFX7b773UVW03A4URdXf/Q9m6heGWjtjEN5NeQzWfufmL+kIpHQZUEm+IhKQKhRhQfYhvn3sx3Qt+oalg+/l9POuqmkyNDg69DoJPoeDW5fXWhGqKgX5OZTm51LiLaWstIyyslJTrsWDx+NBxIN4zHCuiODxxCAI4okBj+ARc11uJ4JYf+X+7XvuFhAdWxqdIiwpLiK2JJvhu56g+JF5rE9MIye1HzRtCzEJeMqK0aJsKMrFU5xDbEkOcaW5JJTlkejNpYnm00TziaOUGFE8QEKkH6qGeLX+vFTV2ULoWG4z5Jt5Ot60E/NUHXoMrmRXJIl4wijC3KxMvp9zJicUb2f5sL8z7qxZx0rMekXHbn3YS2sSdy0BbqmWn7zcbLav/oSCjBVw4Bua5WXQsjSTZppNshyfo7C8Kse0jNeW/4x8ikk/Pi/SYtSKRqcI4+ITGHLzu2xfv5z9nz1Dm/2f03PfayRJcbkbrwp5kkgeTSjwNKEopglF8S3IjevC/vgUSmKbojHxiMSAJwbxeEBi/CbsfQQUX79uROWiHdptoL0E9EgqV9Rh4qkUbjUVSTXfxLp8YbU6oR2rGkJ8f/LDrVSwMms3kIpepHJ++FrzUsEsMKzKbuLa9KBvG/9NmQzFngRiQyjC7AP7ODD3TDqX7OLLkx9lzOQZQd01RsTjYWfqKAZkLaKoqICEhKSg7r7dvpGdS1+m5e7/0KN4M2li9vjIpAWZCV3IaDIcb3IrSGqJN64JnpgY26MzJ4QoCuo1IwvqtV1+LwSYi6pZMKRabkcIP5FpjlWPLt16Ve0oyml0itBHj4Ej6THQLB33lpWRX5BLaVERxMXRtElzUmI8pERYRocjGCWeRGLKCiuZH/p+D0eemELH0m9Zf+pcRv3ogghIF90kp59HyuJ/seJf/2DEtBvKzffu3MzOT56n9c53ObFsG52ArTE9WdVxBk17j6VT2mm0ad2ONhGT3HEsabSK0B9PTAzJTZtD00hL4nBUTaknkdgARbh/91aKnj6b9mWZbP7RPE46dWqEpItuBo49l82f3cuAtf+Pzw/vQrSM1P3L6VvyNR2Ab2J7s/zEG+k69iJO7NqXEyMtsOO44BShw1HPKItJJK7khy3Wtm9cQfLCi0nVPLZPfo7BJ0+OoHTRjSfGQ+plL5Lx7CxO3jOPUvWwPbYny7r9ki6nXkrvHv0iLaIjAjhF6HDUM4rjUmiW/x3q9bL8zTkM+urP5EsS+6e9xoBBoyMtXtTTrnNP2v3+Uwpys4mJi6d3QmKkRXJEGKcIHY56xuHk7qQdWcymu0czqngjmxIG0mrWi/Ts2DXSotUrkpq6j+odhuNyHqHD4ag7mvQeB0Cn4gyW9fsDvW/5hDZOCTocR43rEToc9YyTxp/DrhOW0aptR0alNK/ag8PhCItThA5HPeSEnm5Rh8NRV7ihUYfD4XA0apwidDgcDkejRjTIllvRjohkAjtrGUxr4EAdiHOsqS9yQv2R1clZ99QXWZ2cdU9dyNpVVSO2cU+9VIR1gYisVNVhVbuMLPVFTqg/sjo56576IquTs+6pT7KGwg2NOhwOh6NR4xShw+FwOBo1jVkRPhFpAapJfZET6o+sTs66p77I6uSse+qTrEFptHOEDofD4XBA4+4ROhwOh8PhFKHD4XA4GjeNThGKyGQR2SwiW0XktkjL44+IdBGRj0Vko4hsEJHrrflsEflWRNbY34+jQNYMEVln5VlpzVqKyH9EZIv9bxFhGfv4pdkaEckWkRuiJT1F5CkR2S8i6/3MgqahGB6x5XatiAyNsJz3icgmK8sbIpJqzbuJSIFf2s49XnKGkTVkfovI72yabhaRSRGWc4GfjBkissaaRyxNw9RJUVdOa4WqNpofEANsA3oA8cBXQP9Iy+UnXwdgqL1OAb4B+gOzgd9GWr4AWTOA1gFm9wK32evbgHsiLWdA3u8DukZLegKnAkOB9VWlIfBj4N+AAKOA5RGWcyIQa6/v8ZOzm7+7KEnToPlt362vgASgu60bYiIlZ4D9A8AdkU7TMHVS1JXT2vwaW49wBLBVVberajHwMjA1wjKVo6p7VfVLe50DfA10iqxUNWIq8Iy9fgY4J3KiVOJHwDZVre2ORHWGqi4BDgUYh0rDqcCzalgGpIpIh0jJqaofqmqpvV0GdD4eslRFiDQNxVTgZVUtUtUdwFZMHXHMCSeniAhwIfDS8ZAlHGHqpKgrp7WhsSnCTsBuv/s9RKmiEZFuwBBguTW6zg41PBXpIUeLAh+KyCoRudqatVPVvfZ6H9AuMqIF5SIqVizRlp4+QqVhNJfdKzC9AB/dRWS1iHwiImMjJVQAwfI7WtN0LPC9qm7xM4t4mgbUSfWxnIaksSnCeoGINAVeA25Q1WzgcaAnkA7sxQybRJoxqjoUOBP4pYic6m+pZpwkKr7NEZF44GzgFWsUjelZiWhKw1CIyB+AUuAFa7QXOEFVhwA3AS+KSKSPgq8X+e3HxVRstEU8TYPUSeXUh3JaFY1NEX4LdPG772zNogYRicMUuBdU9XUAVf1eVctU1Qs8yXEavgmHqn5r//cDb2Bk+t43DGL/90dOwgqcCXypqt9DdKanH6HSMOrKrojMAn4CzLCVIXaY8aC9XoWZd+sdMSEJm9/RmKaxwHnAAp9ZpNM0WJ1EPSqn1aGxKcIvgF4i0t32Ei4C3o6wTOXYuYF5wNeq+nc/c/8x9nOB9YF+jyci0kREUnzXmIUT6zFpeZl1dhnwVmQkrESFFna0pWcAodLwbWCmXZU3CjjiNzR13BGRycAtwNmqmu9n3kZEYux1D6AXsD0yUpbLFCq/3wYuEpEEEemOkXXF8ZYvgAnAJlXd4zOIZJqGqpOoJ+W02kR6tc7x/mFWNX2DaVX9IdLyBMg2BjPEsBZYY38/Bp4D1lnzt4EOEZazB2a13VfABl86Aq2ARcAW4COgZRSkaRPgINDczywq0hOjnPcCJZi5lJ+FSkPMKrw5ttyuA4ZFWM6tmLkgXzmda91Os2ViDfAlcFYUpGnI/Ab+YNN0M3BmJOW05vOBawLcRixNw9RJUVdOa/NzW6w5HA6Ho1HT2IZGHQ6Hw+GogFOEDofD4WjUOEXocDgcjkaNU4QOh8PhaNQ4RehwOByORo1ThA6Hw+Fo1DhF6HA4HI5Gzf8HJxTZjr/rX8YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "execution_count": 19, + "metadata": { + "pycharm": { + "name": "#%%\n" } - ], + }, + "outputs": [], "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 6)" + "cell_evaluator = ephys.evaluators.CellEvaluator(\n", + " cell_model=simple_cell,\n", + " param_names=['gnabar_hh', 'gkbar_hh'],\n", + " fitness_protocols={twostep_protocol.name: twostep_protocol},\n", + " fitness_calculator=score_calc,\n", + " sim=sim)\n" ] }, { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmQklEQVR4nO2dd5xU1fn/38/M9kZZei/S2WVBmgEUEsVCFBUUDIpIjF+TaOwl30RDTMzPGrsSCYotCpZYvmpMLKgYAekdAVlh6bAs29g28/z+OHfX2dmZ7cvMDuf9Yth7zzn33M8999zznHbvEVXFYrFYLJZIxhVqARaLxWKxNDXW2FksFosl4rHGzmKxWCwRjzV2FovFYol4rLGzWCwWS8RjjZ3FYrFYIp6wM3Yi0kNEVESiQq3FUn9E5HoR2Ssia0Nw7jki8vIJOM8sEVlSjf9iEbm6qXVYKlNdup+oeyIiC0Tkz9X4q4ic0tQ6IgER6SQieSKyVUR+XN94ws7YWeqOiMwVkXznVyIipT77H4ZI1hzgV6o6xEfnHBGZEyI9YYVTqcusY/jPRKRQRLaIyJnVhL1URP7rhF0cwD9DRFY6/itFJMPHL9bJTwdEJFtE3hORzgHi6CMiRb6VCjH8TkR2iUiuiLwmIik+/guc/Jnv83PX8voXiMis2oRt7jiVqAV1CP8TJ08UOnmkezVha5WPROSTQI0OEblBRHaKSIGIbBaRvo77JBFZIiI5IrJfRP4uIsk+x3UWkXecPJUlItf6+I3zyxP5zrmnAKjqXlVNBt4DflPbdPGn0Y2dbZGdeFT1WlVNUtUk4C/AwvJ9VT23PNwJvjetgQ0n8HxNQhjl51eB1UAq8DvgDRFpGyRsNvAocJ+/h4jEAO8ALwOtgBeAdxx3gBuA04B0oBNwFHgiwDmeAr7xc5sJXAGMcY6ND3DsAz55M0lVPcEuONypraFuYg1tgLeAuzDP3ApgYTWH1JiPRGQGEB3gXFcDPwcmAUnAT4HDjncL4M+Y+z4A6Aw86HP4y8BOoL1z/F9EZAKAqn7pmyecePOBf/lJ2ODorheNYuxEJFNE7hCRdUCBiESJyGindpkjImtFZLxP+MUi8v9EZLlTA3xHRFoHifsqpwaRJyLficj/+PlPFpE1Tjw7ROQcx72FiMwXkX0iskdE/lxT5hSR3iLyqYgcEZHDIvKKiLT08csWkWHOficROVR+XSJygYhsdK53sYgM8EufW0VknYgcE5GFIhJX95SuO0HuTaUuFPHrchGRnzppmuPcw/Q6nrM8nb01hLvduT97ReRqX12OpqdE5H3n3i8Tkd4+xz4mIrud+75SRMb5RR/npHOeiKwSEd8W5p1OXskTkU0icpGP3ywR+UpEHhGRI5gWak3X+5CIHBVT4z3Xz7u7E1+eiPzbKZzqhJja8zDgD6p6XFXfBNYDUwKFV9WPVXURsDeA93ggCnhUVYtV9XFAgPLuoZ7AR6p6QFWLMAXnID8904Ec4BO/uM8H5qvqblXNB+4HpolIQl2vuTpExC0iDzvP6E4RuU6CDH2ISEfnubvNx7l3sLJHRF4X0zI5JiJfiMggH78FIvKMiHwgIgXAhBqktgqWfx3OFJFtznP2lIhIPZLjYmCjqr7u3K85wBAR6e8fsDb5SERaAH8Abvc71uW436Sqm9SwQ1WzAVT1H6r6L1UtVNWjwDxMpQcRScLku3tVtVRV1wJvALODXNOVwBuqWuDn7sXk3fqhqg3+AZnAGqArpjbXGTgCnIcxqGc5+22d8IuBPcBgIBF4E3jZ8esBKBDl7E8CemMeyDOAQmCY4zcSOObE73LO29/x+yfwNyf+dsBy4H9quI5TnLhigbbAF5hCodz/F8AmIAH4CHjIce8LFDjHRmMyynYgxid9lmNqPa2BzcC1QTSMxRQkwX5ja7iGOeVpGejeOG4KnOITZgHwZ2d7KHAQGAW4MRkvE4itQ344BygCEmsIsx9TkCZgan4VuhxNR5x7HAW8Arzmc/zlmFpeFHCLE1ecTxqUAlOd+3ErplYZ7fhf4twLFzDNuXcdHb9ZQBlwvRN3fDXXMMs5zy+ctPolxsCITz7f4eSPeGf/viBxPQ08HcTvImCzn9uTwBM13IergcV+bjcBH/q5/R9wi7M9HPjKSZ8E4B9UfgZSgG+BLgHy2hvA7T77Y5x7OsTnnmY7v5XAlHqWN9dinsMumNbpx1QuMxY7197T0XqNz7GLCVL2OP6zgWRMGfAosMbvOTnmXJerPL8F0biA6vOvOuneEugGHALOCRLXOuBnQfweA57xc9sQKG1rk48wLfabqFoOd3P2bwB2Y56nPwKuILoeLb9eJz0VaOfjPw9YHeC4RCAPGB/AbwKmp6FbvfJNfQ4KICITmO2zfwfwkl+Yj4ArfTLcfT5+A4ESTIFRKZEDnOtt4AZn+2/AIwHCtAeK8SmogMuAz+p4XRf63xDgXUxtaB2OAcB0ISzyCePCPFDjfdLnch//B4C5jZH2ATTPoaqxm+0Xpjpj9wzwJ7/wW4Ezann+FU78v6kh3HPA//PZP4Wqxu7vPv7nAVuqie8oPxSqc4ClfvdjHzAuyLFrgMnO9ixgVy2vdRaw3Wc/wbmGDj75/Pc+/r8C/lWPe3qF7/U4bvcCC2o4LpCxuwufQtdxewWY42y3AF5zrqMM0+XV2ifsY8AdQfLa1Rjj0sOJ510nntMc/2H8UEE5D1OojalHenyKT8UVOJOqxu6vTt6/zO/YxQQpewKcp6UTbwufPPliLTVWm3+deMf67C8C7qxHWszHrwKFqazMqms+wlR01jj3p4dfmv7I2X/fSZcezr3+RYDznIV5Hvv6uC3BdGnHOfkgG9gaRONOnApjAP/XHR2P1jWtGnPMbrfPdnfgEqd5niMiOZgWS8cg4b/H1MCrdPGIyLkistTpQszBZJrycF0xNWd/ujvx7fM5/98wLbygiEh7MYPqe0QkF9Pa8Nc0D1MrfEJVix23Ts41AKCqXuf6fAf29/tsF2L6vE8Uu2sOUkF34Ba/e9cVc421YQQwHZgjIlX6/X3o5KcrkMagaeZ0C292uptyMIWr772qiM+5H1nl1yAiM326aXMw9zPgsbWgQqOqFjqbSYH8/a+hDuRjWlS+pGCMRWPH9RSmVZOKqWW/BXwIZmILxrA8EiTu5zBjQouBjcBnjnsWgKquUtUjqlqmqh9gjOzF9biG2uSdGZgK5xsB/AKWPU736H1OF3cuxlhCI+QNAt/7E503goZ1uimfxjQkygIce9z5+4Cq5qhqJqZMPc83kIiMxvQGTFXVb328ZmBa2rsxFeqXcfKFH1diKhTq7yFmCOk8TO/djQGOrZbGNHa+4nZjWnYtfX6Jquo7YN7VZ7sbpjvosI8bIhKL6WZ4CGivqi2BDzBdmuXn8e8HL3cvBtr4nD9FVQcFCOvLX5zrSFPVFExXWUU/utP3/CimNjXHp69/L8ZIlIcT5/r21HC+KkjgmUm+P/+xqdrgn3EKMa2Qcjr4bO/G9K373rsEVX21VicymfRtTPdSx2qC7sN0Q5XTNVhAf5w0uB24FGjl5Itj+Nwr3/icB7kLsFfMTLV5wHVAqnPsBr9jqzxoIWYj0Et8ZrcBQxz3+sSV7jc+lO4TVwampp/tVOaeAEY6Y43jMTX6XSKyH9M9PEVEVoGpVKjqH1S1h6p2ceLcQ/DnQKmc7rWlNnlnDqY8+YdUHasPVvb8DJiMMegtMNcK4Z83hpTviEgipkwMlDeqy0cpmJbdQufelk8+ynKet62YFrDv9VdKCxEZimnNz1bVSuO5qvq9qv5UVduq6ihMBWK53/FdMXnsxSDXOgDYpKpbg/hXS1O9evAycL6InO3UluJEZLyI+GbQy0VkoDN4fQ9mQNJ/ZlYMppZ5CChzBv8n+vjPB64SM/XWJWZ6a39V3Qf8G3hYRFIcv94ickYNupMxtZ9jYqZb3+bn/xiwQlWvxjTn5zrui4BJjo5ozBhSMfDfmhLKH/WbmRTg92Vd4wzAGuBnzr05BzMWWs484FoRGSWGRDHTipOhYpB+QQ3XUN7ijakm2CLMvRvg5IG76qA/GdPFdgiIEpG7qVpjPVVELhYzaeFGzP1YimmtqHMsInIVpmUXtjg15DXAH5xn6SKMgXozUPjyZw7THeVyjilvZS8GPMBvxLxmcJ3j/qnz9xtgppgJXtGYrte9qnoYeBZTkGY4v7mY5+Bs57ytnedMRGQgpivxHqdljYhMFZEk53mciKlMvuujW8VnIls1LAJucJ73lphhE39KMWOzicCLToWnnGBlTzImnxzBVAb/UgstoeafwGARmeLc87uBdaq6xT9gDfnoGKbFnOH8yltspwLLnF6LhcDtIpLslOXXYMYdEZHBmNmT16vqe/7ndp7zZBGJEZHLMeX4X/2CXQH8V1UD9daBaYEXB/GrkSYxdqq6G1ND+l9MobIbYzh8z/cSpl97P6Yft8r7E6qa57gvwvQB/wyfh0NVlwNXYbpVjgGf80MLayamsN3kHPsG1bc0wAy4DnPieh/ThQOYWZ+YSRW/dJxuBoaJyAynpnE5phZ8GDMr7XxVLanhfKHiBozGHEz3wtvlHqq6AjPh4klMum3HjE2V0xUzJlATSjX5S1U/BB7HdHVtxxgiqF1m/gjzYH2L6YYqomr30juYySdHMQ/RxWpmgm0CHga+Bg4AabW8niZFzLttc6sJMh1T8z6KeaVgqqqWG+wZIuJbk78C0+30DDDO2Z4H4OTJCzHPRw5mQsaFPnn1Vkx6bsM8u+dhJjagZqbd/vIfpmJYVK4DU1v/ADPh50PgOVV91kfXDZhWXg5mWvovVHWxcw1dMV1v62tOLeZhKrPrMGOKH2AqP5Uqy841XYwZw3/Ox+AFK3texOSnPZhyYylhgJhZ3jMC+TlpPwUz9nYUM7Fsus+x/vkqYD5Sg++9Lb+nB3zyxnWYe74X8/z8A9N1DaaC3xaY79ML5Zsnzwa+c857LWYyziEqMxPzKkww3NQww7s6ymeNnVDEvOj6sqr+/YSf3FJvxLyLtRZIV9XSGsLuxczMq9WXTMS8qrEBM+kn0JiBJYJxavuDVPW39Tj2XMyEr+41BrY0S5yKyuOYGZ2X1icO+wUVS61R1RJVHVCToXO4E9NdsjJYABG5yOlKa4V5J+s9a+hOTlT15doaOhGJF5HzxLwz2hnz/tc/m1ahJVSISCdMS3M0plemXpx0xk4qf1rL91ddF5Kljqjqi6raR1VPrSbY/2De6duB6YL6ZTVhQ4LNL2GJYIYcjmK6MTdjxqpOrAjTvRgobwTscrTUDzWfC0tV1eGquqy+8YSkG9NisVgslhPJSdeys1gsFsvJR7h85BaANm3aaI8ePUItw2KxWCwnkJUrVx5W1WAfNm8UwsrY9ejRgxUrVoRahsVisVhOICLyfc2hGobtxrRYLBZLxGONncXSDPB4Kz6Ea7FY6oE1dhZLmPPu26/y6Zyf8Ozz80ItxWJptoTVmF0gSktLycrKoqioKNRSLM2IuLg4unTpQnR0dQsvhD9Z+w5wxupbaOEqIO/7TSzfOIGRg/qEWpbF0uwIe2OXlZVFcnIyPXr0QOq1kK/lZENVOXLkCFlZWfTs2TPUchrE9o/nMV4KOHzmI7T5+CYOfv53GHR/qGVZLM2OsO/GLCoqIjU11Ro6S60REVJTUyOiN6Dlro/Z5e5Gm7Gz2RXXj+4HP6bMU+9v4VosJy1hb+wAa+gsdSYS8kzOsRwGlGzgcPuxABT2PItBuoMtmXVZP9RisUAjGDsRuV5EtjjfiXvAcTtLRFaKyHrn748bLtViObnI2rCEWCklpq95fFIHjsclyv4NjbGkocVyctEgYyciEzDr1g1xVgF/yPE6jFnPLQ2zzPpLDVIZYkSEW265pWL/oYceYs6cOaETVAOLFy/mv/+t87qxlTjnnHNo2bIlP/3pTxtJlaWuFGSuAqDDgNMAaNP3NMpw4d31dShlWSzNkoa27H4J3Fe+MrWqHnT+rlbVvU6YjUC8iMQ28FwhIzY2lrfeeovDhw83aryqitfb+OMvjWHsbrvtNl56qVnXUZo90QfXcYDWtGnfBQCJTWJvTC9a5WwIsTKLpfnRUGPXFxgnIstE5HMRGREgzBRgVblB9EdErhGRFSKy4tAh/4Vrw4OoqCiuueYaHnnkkSp+hw4dYsqUKYwYMYIRI0bw1Vdm0es5c+bw0EMPVYQbPHgwmZmZZGZm0q9fP2bOnMngwYPZvXs3t912G4MHDyYtLY2FCxcCxmCNHz+eqVOn0r9/f2bMmBHwpeLHH3+cgQMHkp6ezvTp08nMzGTu3Lk88sgjZGRk8OWXX1ar8YorruC0006jT58+zJv3w3tcP/nJT0hOTq42XV5//XUGDx7MkCFDOP300wEzoeiqq64iLS2NoUOH8tlnnwGwYMECLrzwQs466yx69OjBk08+yV//+leGDh3K6NGjyc7OBmDevHmMGDGCIUOGMGXKFAoLC6ucd/To0Wzc+MMiyOPHj4/Iz8y1yd/KnrjKrxnktuhP97JMiko9QY6yWCyBqPHVAxH5GOgQwOt3zvGtMYvqjQAWiUgvdUplERmEWZRzYrD4VfVZ4FmA4cOHV/uJiD++t5FNe3NrklwnBnZK4Q/nD6ox3K9//WvS09O5/fbbK7nfcMMN3HTTTYwdO5Zdu3Zx9tlns3nz5mrj2rZtGy+88AKjR4/mzTffZM2aNaxdu5bDhw8zYsSICsOxevVqNm7cSKdOnRgzZgxfffUVY8eOrRTXfffdx86dO4mNjSUnJ4eWLVty7bXXkpSUxK233grAz372s6Aa161bx9KlSykoKGDo0KFMmjSJTp061Srt7rnnHj766CM6d+5MTk4OAE899RQiwvr169myZQsTJ07k22+/BWDDhg2sXr2aoqIiTjnlFO6//35Wr17NTTfdxIsvvsiNN97IxRdfzC9+8QsAfv/73zN//nyuv/76SuedNm0aixYt4o9//CP79u1j3759DB8+vFaamwue4kI6l+3m+3Y/qezRYRDtDv0f3+7+nr69eoVGnMXSDKmxZaeqZ6rq4AC/d4As4C01LAe8QBsAEemCWT14pqruaMqLOBGkpKQwc+ZMHn/88UruH3/8Mddddx0ZGRlccMEF5Obmkp+fX21c3bt3Z/To0QAsWbKEyy67DLfbTfv27TnjjDP45ptvABg5ciRdunTB5XKRkZFBZmZmlbjS09OZMWMGL7/8MlFRgesu1WmcPHky8fHxtGnThgkTJrB8+fJap8mYMWOYNWsW8+bNw+PxVFzP5ZdfDkD//v3p3r17hbGbMGECycnJtG3blhYtWnD++ecDkJaWVnFtGzZsYNy4caSlpfHKK69UasGVc+mll/LGG28AsGjRIqZOnVprzc2FPTs24BYlpmPlilhytwwADu9YFQJVFkvzpaEvlb8NTAA+E5G+QAxwWERaAu8Dd6rqVw08RwW1aYE1JTfeeCPDhg3jqquuqnDzer0sXbqUuLi4SmGjoqIqjcf5vvOVmJhYq/PFxv4wzOl2uykrK6sS5v333+eLL77gvffe495772X9+vVVwgTTCFWn6Ndlyv7cuXNZtmwZ77//PqeeeiorV66sNrzv9bhcrop9l8tVcW2zZs3i7bffZsiQISxYsIDFixdXiadz586kpqaybt06Fi5cyNy5kbdo+MHvN9ENaNNjYCX39n3Mwu+lWeuAyDPyFktT0dAxu+eAXiKyAXgNuNLpwrwOOAW4W0TWOL92DTxXyGndujWXXnop8+fPr3CbOHEiTzzxRMX+mjVrALNc0apVpva9atUqdu7cGTDOcePGsXDhQjweD4cOHeKLL75g5MiRtdLj9XrZvXs3EyZM4P777+fYsWPk5+eTnJxMXl5ejRoB3nnnHYqKijhy5AiLFy9mxIhAw66B2bFjB6NGjeKee+6hbdu27N69m3HjxvHKK68A8O2337Jr1y769etX6zjz8vLo2LEjpaWlFfEEYtq0aTzwwAMcO3aM9PT0WsffXDi+fysAXXpXruDFtWxPtrQg6ui2UMiyWJotDTJ2qlqiqpc73ZrDVPVTx/3Pqpqoqhk+v4ONIzm03HLLLZVmZT7++OOsWLGC9PR0Bg4cWNHKmDJlCtnZ2QwaNIgnn3ySvn37BozvoosuIj09nSFDhvDjH/+YBx54gA4dAg2RVsXj8XD55ZdXTAb5zW9+Q8uWLTn//PP55z//WTFBJZhGMN2gEyZMYPTo0dx1110V43Xjxo3jkksu4ZNPPqFLly589NFHANx99928++67gJmxmZaWxuDBg/nRj37EkCFD+NWvfoXX6yUtLY1p06axYMGCSi26mvjTn/7EqFGjGDNmDP37969wf/fdd7n77rsr9qdOncprr73GpZdeWuu4mxMxOTs5TEtiE1tW8Tsc242UgswTrsliac5IOC0bMnz4cPWfVbd582YGDBgQIkWRzZw5cypNZIk0mnPe2Xzvj1BxMfB/l1TxW/v0TLoc+IyUu78n2t0sPoJksVSLiKxU1SadZWafFIslDGlXuofchG4B/Vxt+5Aquezek3WCVVkszZewX/XA0nSE81dgTmZKjheQSg5bUgIbu+ROA2AjHPhuA726BQ5jsVgqY1t2FkuYcXDPdwBEte4a0L9trzQACvdtOWGaLJbmjjV2FkuYcXSfMXbJ7XoE9E9s15tSouDw9hOoymJp3lhjZ7GEGQWHvgegVacgX0hxR3EwqiOJ+YFfZ7FYLFWxxs5iCTPKsnfhVaFtxx5BwxxL6EHb4l0nTpTF0syxxq6WvP3224gIW7YEHyfJzMxk8ODBTapjzZo1fPDBBw2KY/bs2bRr167JtVrqR1TeXrKlJVGx8UHDlLbqTRfdT3Ze1Q9lWyyWqlhjV0teffVVxo4dy6uvvhrQP9CnvOpK+fclq6MxjN2sWbP417/+1aA4LE1HQtE+sqOq/+BQTPt+xEoZezPtJBWLpTZYY1cL8vPzWbJkCfPnz+e1116rcF+8eDHjxo3jggsuYOBA8w3DsrIyZsyYwYABA5g6dWrFEjWffPIJQ4cOJS0tjdmzZ1NcbFY86tGjB3fccQfDhg3j9ddfr3Re/yV0SkpKuPvuu1m4cCEZGRksXLiQgoICZs+ezciRIxk6dCjvvPMOYJbUmTx5MuPHj6dPnz788Y9/rIj39NNPp3Xr1tVe8+eff05GRgYZGRkMHTqUvLw8VDXockRnnHEGkydPplevXtx555288sorjBw5krS0NHbsMN8Bf++99xg1ahRDhw7lzDPP5MCBA1XOO336dN5///2K/VmzZlV89PlkoUXpQfLj2lcfpptplR/dVfVD2RaLpSrN6z27D++E/VU/dNwgOqTBufdVG+Sdd97hnHPOoW/fvqSmprJy5UpOPdV8kHfVqlVs2LCBnj17kpmZydatW5k/fz5jxoxh9uzZPP3001x33XXMmjWLTz75hL59+zJz5kyeeeYZbrzxRgBSU1MrvqPpi/8SOjExMdxzzz2sWLGCJ598EoD//d//5cc//jHPPfccOTk5jBw5kjPPPBOA5cuXs2HDBhISEhgxYgSTJk2q9VI4Dz30EE899RRjxowhPz+fuLg43nrrraDLEa1du5bNmzfTunVrevXqxdVXX83y5ct57LHHeOKJJ3j00UcZO3YsS5cuRUT4+9//zgMPPMDDDz9c6bzly/dMmjSJkpISPvnkE5555plaaY4IVGnrOcTehDHVBmvX07x+UHbAtuwsltpgW3a14NVXX2X69OmAaXn4dmWOHDmSnj17Vux37dqVMWNMQXX55ZezZMkStm7dSs+ePSu+j3nllVfyxRdfVBwzbdq0gOcNtISOP//+97+57777yMjIYPz48RQVFbFrl5m4cNZZZ5Gamkp8fDwXX3wxS5ZU/fRUMMaMGcPNN9/M448/Tk5ODlFRUdUuRzRixAg6duxIbGwsvXv3ZuJEs4Sh7/I9WVlZnH322aSlpfHggw8GXL7n3HPP5bPPPqO4uJgPP/yQ008/nfj44GNXkUZ+3lESpBhNrn5NwajEVhyRVsTaD0JbLLWiebXsamiBNQXZ2dl8+umnrF+/HhHB4/EgIjz44INA1eV66rNkTrAlf2qzhI6q8uabb1ZZWWDZsmUNWr7nzjvvZNKkSXzwwQeMGTOm4kPQwajN8j3XX389N998MxdccAGLFy8O+AWXuLg4xo8fz0cffcTChQsrKhknC9kHdpMExLSo+WPgB2O706rQvn5gsdQG27KrgTfeeIMrrriC77//nszMTHbv3k3Pnj358ssvA4bftWsXX3/9NQD/+Mc/GDt2LP369SMzM5Pt281LwC+99BJnnHFGjecOtISO//I9Z599Nk888QTlH/RevXp1hd9//vMfsrOzOX78OG+//XZFi7M27Nixg7S0NO644w5GjBjBli1bGrQcEcCxY8fo3LkzAC+88ELQcNOmTeP555/nyy+/5Jxzzql1/JFA7sE9AMS37lhj2MKU3nQp243H460xrMVysmONXQ28+uqrXHTRRZXcpkyZEnRWZr9+/XjqqacYMGAAR48e5Ze//CVxcXE8//zzXHLJJaSlpeFyubj22mtrPHegJXQmTJjApk2bKiao3HXXXZSWlpKens6gQYO46667Ko4fOXIkU6ZMIT09nSlTplSM11122WWcdtppbN26lS5dulSszzd37tyK5X8effRRBg8eTHp6OtHR0Zx77rkNWo4IzLc4L7nkEk499VTatGlT4b5ixQquvvrqiv2JEyfy+eefc+aZZxITE1Pr+COBwqN7AUhp07nmwG36kizH2Z+V2bSiLJYIwC7xE6EsWLCg0kSWk5HmmHeWvPJnxm57kPwbviWpVfUzMrd89S79/3MFaya8SMYZk0+QQoul8bFL/FgsJxmSf4BSdZPUom2NYdv1Miu0F+7d1NSyLJZmT/OaoGKpNbNmzWLWrFmhlmGpI1GFhzgqLWnnqrke2qp9N/KJRw9tPQHKLJbmTbNo2YVTV6uledBc80xc8WFyo1rVKqy4XByI6UZi7o4mVmWxNH/C3tjFxcVx5MiRZlt4WU48qsqRI0eIi4sLtZQ6k1iaTUF0aq3D57foS7fS7ygprflTcxbLyUzYd2N26dKFrKwsDh06FGoplmZEXFwcXbp0CbWMOtPCk012XP9ah5dOGbQ+9B7bvttKn34D633evJzDrF66mPzDu/HiIqZND9r3HkLf7l2Jj3HXO16LJVxosLETkeuBXwMe4H1Vvd3HrxuwCZijqg/VJ/7o6OhKXyixWCIV9ZTRSo+xLaH6j0D70uqUkbAWDm1bVi9jl/XdZo68dxcDsj/jdPH5mPl28H4tbKE7O5OGoj3G0n3oWQzs1Q23q/YfJ7BYwoUGGTsRmQBMBoaoarGI+D+lfwU+bMg5LJaThbyjB0kRLyTW3th16jucMnXhyVoNXFWn833z9tOkrb6b1rhYlnoBHUZcTM/e/XHj4XDWNo7tWEbCrv9yVt7/EbPxn3g3CN9KNw6kpONq04f4Dn1IbNmeqPhkYuPiiHV5KSstoej4cUqKCigpKqSsqICy4kK8JYV4So6jJYVo6XHcnuNEeYsRQMWFIj/8xY2KgLhQcQHi/Cv/a6j4K2K2nTDihCl3j2rZkSEX3VKntLFEHg1t2f0SuE9ViwFU9WC5h4hcCOwEChp4DovlpCD3UBYpQFRK9e/X+eKOTWBndHeSj26o07m+fvH3nPbdE2yMHULbmQsY16Xyquht2/Wn7bDzzU5pETnbl7J/3ce4d/2XYbmfkpz7HnxXp1NW4jgxFBODF8GFYsycFzdeBMWlisvZjhIvXq1fa9IlCt/D4VFTaNOpR/0FW5o9DTV2fYFxInIvUATcqqrfiEgScAdwFnBrdRGIyDXANQDdunVroByLpfmSf9QseRTbovbGDuBIymD6HPmUstJSoqKjawz/6dvP8+PvnmBl8gTSr19IdExs9QdEx9FywHhaDhhv9lUpyDnI/p2bKMw9gqcoF09pMcVeN+6oWKJiY4mJTSQ6PoHYuETiEpKIjTd/4+ISccXEEy9CXT7vXZuZdKqKV8GrilcVVVj70QJGrbiZ/JxD1tid5NRo7ETkYyDQN6F+5xzfGhgNjAAWiUgvYA7wiKrm1/TxYVV9FngWzBdU6iLeYokkio6ZjpHEVrXvxgSQXqfTIvs9tm1cSp+McdWG/eab/zJy9Z3sjO1LxnX/wF2ToQt4QiGxVXt61/CFlxONiOAWcPNDmROfbNZtLMrPDpUsS5hQo7FT1TOD+YnIL4G31LwXsFxEvEAbYBQwVUQeAFoCXhEpUtWT99tVFksNlOQdBqBFau2/NwrQfdjZsOI2std/DNUYuwMH9tP+/asodcXR4Zo3cMcmNEhvcyAmybyzWJJ3NMRKLKGmod2YbwMTgM9EpC8QAxxW1YonTkTmAPnW0Fks1ePJPwJAi9Z1azG16dSd711dSMz6PGiYstJS9s6fwWA9xIGL3qBVm+4N0tpciE82xq600Bq7k52GvlT+HNBLRDYArwFXqn3722KpH8ezySOemNi6dy3u6fAT+hetJffQ3oD+K5+/maElK9iY8Xu6DPlxQ5U2G+JTzAv6nsJjIVZiCTUNMnaqWqKql6vqYFUdpqqfBghT73fsLJaTiaiibPKkRb2ObTXqZ0SJl22LX6zit+k/Cxi190WWtppMxkU3N1RmsyKlpTF23uM5oRViCTlh/7kwi+VkIbokh4Ko+hm7/umj2Oo+hY6bF6Ce0gr3fesX0+urW9ngHsiQa/7WSEqbD3Fx8RRqLFhjd9JjjZ3FEiYklB2jqJ7GTkQ4POxGOnn3seG1uwE4vGkxCW9ezkFSSZ61kPj4ukz2jxzyJREpzg21DEuIscbOYgkTkjy5lMTUbsWDQJx2zgy+jJ9A2ranOXDvIFovupCjmsSxqQvp3vXkfYe10JWEu8Qau5Mda+wsljChheZSFtey3se73C4yrvsH77W7lu2edrzfcgbeqz8mbXBGo2lsjhRFJRFTlhdqGZYQE/arHlgsJwNFxwtJlCI0vvbL+wQiOTGB8391fyOpigxKo1KILzpYc0BLRGNbdhZLGJB/1BTGktA6xEoij5LYliR5bTfmyY41dhZLGJCfY76LGZXcJsRKIg9PXGtaaJ5dAPokxxo7iyUMOJ5jPhUWk9w2xEoiD41PJUGKKSyw43YnMxFl7IoK81nxf8+SuXlFqKVYLHWiJNd0Y8amWGPX2LgSzThobvaBECuxhJKIMnYeTxnDV9zG/mVvhVqKxVInygrMdzETW1pj19hEOa3lgqN2ksrJTEQZu8TklhykNe6cBqwqabGEAK/zoeLk1tbYNTblreWiY4dCrMQSSiLK2AEciu5McsH3oZZhsdQJPX6MYo0mOTEp1FIijviWZn3Akjxr7E5mIs7Y5Sf1oF1pVqhlWCx1QoqPkSeJ1LTYsaXuJDmL4XryD4dYiSWURJyxI7U3rcnl6BHbP29pPriKcymUxFDLiEhatGqHVwV1xkUtJycRZ+wSOvUHYN/2dSFWYrHUnuiyPI67bRdmUxATE80xSYJCa+xOZiLO2LXpPQyAvF1rQivEYqkDsWV5FEelhFpGxJInKbiLskMtwxJCIs7Yte/Sh1xNwHVgQ6ilWCy1Jt6TT1lMcqhlRCyFUS2ILckJtQxLCIk4Y+dyu8iK6UXysa2hlmKx1JokzccTU7+17Cw1UxTdioSyo6GWYQkhEWfsAPJa9KVLyU48Hm+opVgsNeL1eEnSAjTWdmM2FcXxbWnltcbuZCYijZ27YxpJcpzdO7eEWorFUiP5hXnEiAfibMuuqShLbE8rcikrKQq1FEuIiEhjl9p3JACHtvw3xEoslpopOGYmTki8NXZNhTu5AwDZB5rmHdyCggKyD+2n6HhBk8RvaTgNXrxVRK4Hfg14gPdV9XbHPR34G5ACeIERqnpCqlVd+42gUGPx7loGXN2oceccO0bBkT2UFh+nxAvx8Ukkte5ASkoKbpd9IdhSd47nminx7oRWIVYSucS27gxAzsFdtOt6SoPjU1VWLfmQ4m9eoHvuSjpziPK3JHNJZH9UZw4n9aO07WCSug+lc/9TaZ+aaj8aEEIaZOxEZAIwGRiiqsUi0s5xjwJeBq5Q1bUikgqUNlhtLYmKiWVLTD9Ss1c1OK7jhYWs+/RVZMv7dM1fS0cO0zJAuHyNI0dakBfViuMxqZTFt0ET2yFJ7XAltyMmqTWx8Ym4YxKQ6Dhc0XG4RXCL4nIBqqBe1KuoevB6FVUvqBevesELXvWg6kW9XlCMu3p93BSvKqpqoiuPFrMPIAKCUP7MuQTE8fDdFsBlAuPCiYvy/8rjVh83rQijFf+Vhz3xD3iNhUoTFTq+aVKe7uqbZk6YcgevKoV7NtALiE5o2SSaLJDUpisABYcb3rLbm/U9e176H0YUf00+8XyXMoo9qQMgOhFvSSGat4+UvO8YnPMpKTnvwTbw/kfIlI7sizuF4636k9CuB8ltuxHTqgvxyS1JTEohKTEJXFF4vR48njK8njI8njLKyjx4ykopKyvF4/PzlpVS5ikFTxmiHsRbBuV//amS36WSV9Vn1G+/0vE/bGtMIv2HnFavdDzRNLRl90vgPlUtBlDV8s+WTATWqepax/2Ev82Z2+5U+me9QGH+MRKS6t49VHS8kG/eeIhBO+YxilyO0JLdKUPZ02YgktIRiUnELV48Rfl4Cw4jBYdwFR4mtvgwrYt206JwPa2O2NWRLbUnpV2XUEuIWFp2MMau9OieBsWzadUSUt+9gsHks7rPbxg85Q7S44J8DECV3APfsX/rNxTuWkPUoY30yv+WDvu+gH0NkhE2rPf2giGrQy2jVjTU2PUFxonIvUARcKuqfuO4q4h8BLQFXlPVBwJFICLXANcAdOvWrYFyfiDplDFE7XmeTSs/Jf2Mi+p07NY1XxHzzrWM011sihvKgbE30v+0n5LqrltyFRcXcezwfgqP7uN4bjbFRQVQVoyUHYeyYrwKHgWPCiCmRSUuxCUgbsfJ/YO7+IQRV8U2LuNXHqZSS83ZL6+Y/dDiU7zlLTKtaLDhVafl4bRMvE7LpPx4kR/qdcIPO/7nca4oJNS8HnUTrVitUJ4kldJCpFK6gbk35S1oAeKSWtJ9wMim0WWhdZtOlKobb97+esexfcNyOr4znRJXLIcveY+hA0dXf4AIKR16k9KhNzC9wtlblM++rB3k7N+FN3cvpcfzKSsuwFtcgBsPKi7z/LvcIG5cbje4oxFXFC53FFK+HRWNuKPAFY263Ki4UVcUiKtSS03887vPrullqOxfNbzvfmU/b3Tz+epPjaW3iHwMdAjg9Tvn+NbAaGAEsEhEejnuYx23QuATEVmpqp/4R6KqzwLPAgwfPrzRSqHeI86maHE0xzd+AHUwdt+8+VeGrPszuZLCpvF/Z+D4S+qtITY2jnade0DnHvWOw2KxNBy3281haYm7oH4LuB7cn0XyG9Mpkyi48j269hhYby2uuCQ6nzKEzqcMqXcclrpTo7FT1TOD+YnIL4G31FQPlouIF2gDZAFfqOphJ9wHwDCgirFrKhKTUlibMJQuhz5HvV7EVf3EU6/Hw1d/+w3jDr7MuvjhdLv6FQa2CWTjLRZLcyQnqi3xhXXvP/R4POx/fib9NJd9U9+lRwMMnSV0NPTVg7eBCQAi0heIAQ4DHwFpIpLgTFY5A9jUwHPVmaJeZ9NZD7Bj3VfVhistKWbVY5cy7uDLrGx7IYNu/RctraGzWCKKvIQutCqtu7H7+rX7SC9eybr039Ij7UdNoMxyImiosXsO6CUiG4DXgCvVcBT4K/ANsAZYparvN/Bcdab/T2ZxXGM4+uW8oGGKCvPZ9Mj5DM/9mKU9f82pv1qAOyr6BKq0WCwngrKUbrT3HqKkuLjWx+z9fhtDv32cDfEjGH7RTU2oztLUNGiCiqqWAJcH8XsZ8/pByGjRug3LWv2EtMP/4vC+TNp07FHJ/2j2EfY8M5m0kg0sG/g7Rk+7PTRCLRZLkxOV2ouoLC+7dm+j2ymDa3XM/oU30BKl7fSnahwKsYQ3EX/3Op9/F248fP/qzeZdNIe9OzZy9MkJ9C/ZyNoRDzDKGjqLJaJJ6tgbgOys2n0kfv1XHzCs8CvW97qa9t37NaU0ywmgwV9QCXe69B7E191nc9quZ1n+1CwShk0nf+ti0r5/gQSJYvvEBQwdMznUMi0WSxPTpqtZ2Lno4I4aw6rXS8xnczhIa4Zc8tumlmY5AUS8sQMYeeV9/Pdvufzo4Gvwn3cAWJ1wGu2nPUb/HrbGZrGcDKR27E6xRqNHvqsx7Nr/vEhG2VaWp9/DyAS7zmAkcFIYO7fbzY9+9TcOZd3K3m1r6HjKEIZ27RtqWRaL5QQiLjdZ7i4kHdtWbThPaQltl93HTlc3hp3/qxOkztLUnBTGrpy2XfrQtkufUMuwWCwh4khSX3rlLqs2zNr3nmSYdx/LT3uantF2ZnakEPETVCwWi6UcT7tBtCGHowcDfyOz5HgBXdY/yeao/gw/87ITrM7SlFhjZ7FYThqSewwFYM/mrwP6r3v7YdrpEYpO/z0uty0eIwl7Ny0Wy0lD17RxlKqb49u+qOJXmHeU3lvnsTZmGBnjfhoCdZamxBo7i8Vy0tCiRSu2R/cl5UDVcbuNr/+JVuQSPfFuu8hqBGKNncViOak42mEMp5RsJffArgq3fd9tZMj3L7As6ScMHD4hhOosTYU1dhaL5aSizY+uwC3Kt/9+FgD1lJGz6JeUEE33y/4aYnWWpsIaO4vFclLRd2AGa6Mz6LPjeXKzNrN+3jUMKFrLqkF30sGuPRmxWGNnsVhOOmLPfxCXekj5+2jS97/Jp62nM+6SG0Ity9KEnFQvlVssFgtA//SRbOB99n69iLhuQxl/9jQ7KSXCscbOYrGclAxOP5XB6aeGWoblBGG7MS0Wi8US8VhjZ7FYLJaIR1Q11BoqEJFDwPeNEFUb4HAjxHMiaE5aoXnptVqbjuaktzlphealt7G0dlfVto0QT1DCytg1FiKyQlWHh1pHbWhOWqF56bVam47mpLc5aYXmpbc5abXdmBaLxWKJeKyxs1gsFkvEE6nG7tlQC6gDzUkrNC+9VmvT0Zz0Niet0Lz0NhutETlmZ7FYLBaLL5HasrNYLBaLpQJr7CwWi8US8USUsRORc0Rkq4hsF5E7Q63HHxHpKiKficgmEdkoIjc47nNEZI+IrHF+54VaK4CIZIrIekfTCsettYj8R0S2OX9bhYHOfj5pt0ZEckXkxnBKVxF5TkQOisgGH7eAaSmGx518vE5EhoWB1gdFZIuj558i0tJx7yEix33SeO6J1FqN3qD3XkR+66TtVhE5Owy0LvTRmSkiaxz3cEjbYGVWWObdalHViPgBbmAH0AuIAdYCA0Oty09jR2CYs50MfAsMBOYAt4ZaXwC9mUAbP7cHgDud7TuB+0OtM0A+2A90D6d0BU4HhgEbakpL4DzgQ0CA0cCyMNA6EYhytu/30drDN1wYpW3Ae+88b2uBWKCnU2a4Q6nVz/9h4O4wSttgZVZY5t3qfpHUshsJbFfV71S1BHgNmBxiTZVQ1X2qusrZzgM2A51Dq6rOTAZecLZfAC4MnZSA/ATYoaqN8SWeRkNVvwCy/ZyDpeVk4EU1LAVaikjHEyKUwFpV9d+qWubsLgW6nCg9NREkbYMxGXhNVYtVdSewHVN2nBCq0ypm2YVLgVdPlJ6aqKbMCsu8Wx2RZOw6A7t99rMIY0MiIj2AocAyx+k6p9n/XDh0DToo8G8RWSki1zhu7VV1n7O9H2gfGmlBmU7lwiIc07WcYGkZ7nl5Nqb2Xk5PEVktIp+LyLhQiQpAoHsfzmk7Djigqtt83MImbf3KrGaXdyPJ2DUbRCQJeBO4UVVzgWeA3kAGsA/TlREOjFXVYcC5wK9F5HRfTzX9FmHz7oqIxAAXAK87TuGarlUIt7QMhoj8DigDXnGc9gHdVHUocDPwDxFJCZU+H5rNvffhMipX1MImbQOUWRU0l7wbScZuD9DVZ7+L4xZWiEg0JtO8oqpvAajqAVX1qKoXmMcJ7FapDlXd4/w9CPwTo+tAebeE8/dg6BRW4VxglaoegPBNVx+CpWVY5mURmQX8FJjhFHA43YFHnO2VmDGwviET6VDNvQ/XtI0CLgYWlruFS9oGKrNoZnkXIsvYfQP0EZGeTg1/OvBuiDVVwumTnw9sVtW/+rj79mlfBGzwP/ZEIyKJIpJcvo2ZoLABk6ZXOsGuBN4JjcKAVKoZh2O6+hEsLd8FZjoz20YDx3y6jEKCiJwD3A5coKqFPu5tRcTtbPcC+gDfhUblD1Rz798FpotIrIj0xOhdfqL1BeBMYIuqZpU7hEPaBiuzaEZ5t4JQz5BpzB9mJtC3mBrQ70KtJ4C+sZjm/jpgjfM7D3gJWO+4vwt0DAOtvTCz1tYCG8vTE0gFPgG2AR8DrUOt1dGVCBwBWvi4hU26YozwPqAUM47x82BpiZnJ9pSTj9cDw8NA63bMWEx5vp3rhJ3i5I81wCrg/DBJ26D3Hvidk7ZbgXNDrdVxXwBc6xc2HNI2WJkVlnm3up/9XJjFYrFYIp5I6sa0WCwWiyUg1thZLBaLJeKxxs5isVgsEY81dhaLxWKJeKyxs1gsFkvEY42dxWKxWCIea+wsFovFEvFYY2exWCyWiMcaO4vFYrFEPNbYWSwWiyXiscbOYrFYLBGPNXYWi8ViiXjCztiJSA8RUWd9J0szRUSuF5G9IrI2BOeeIyIvn4DzzBKRJdX4LxaRq5tah6Uy1aX7ibonIrJARP5cjb+KyClNrSMSEJFOIpInIltF5Mf1jSfsjJ2l7ojIXBHJd34lIlLqs/9hiGTNAX6lqkN8dM4RkTkh0hNWOJW6zDqG/0xECkVki4icWU3YS0Xkv07YxQH8M0RkpeO/UkQyfPxinfx0QESyReQ9EekcII4+IlLkW6lw1jD7nYjsEpFcEXnNd2VtxwCU+OTN/PL12mpx/QucxWMjHqcStaAO4X/i5IlCJ490ryZsrfKRiHwSqNEhIjeIyE4RKRCRzSLS13GfJCJLRCRHRPaLyN/L18N0/DuLyDtOnsoSkWt9/Mb55Yl859xTAFR1r6omA+8Bv6ltuvjT6MbOtshOPKp6raomqWoS8BdgYfm+qp5bHu4E35vWhN9iqXUmjPLzq8BqzDpivwPeEJG2QcJmA48C9/l7iFnY+B3gZaAV8ALwjuMOcANwGpAOdAKOAk8EOMdTmAWTfZkJXAGMcY6ND3DsAz55M0lVPcEuONypraFuYg1tgLeAuzDP3Ap8VjsPQI35SERmANEBznU1Zq3ASUASZtX6w453C+DPmPs+AOgMPOhz+MvATqC9c/xfRGQCgKp+6ZsnnHjzgX/5Sdjg6K4XjWLsRCRTRO4QkXVAgYhEichop3aZIyJrRWS8T/jFIvL/RGS5UwN8R0RaB4n7KqcGkSci34nI//j5TxaRNU48O8SsqIyItBCR+SKyT0T2iMifa8qcItJbRD4VkSMiclhEXhGRlj5+2SIyzNnvJCKHyq9LRC4QkY3O9S4WkQF+6XOriKwTkWMislBE4uqe0nUnyL2p1IUifl0uIvJTJ01znHuYXsdzlqezt4Zwtzv3Z6+IXO2ry9H0lIi879z7ZSLS2+fYx0Rkt3PfV4rIOL/o45x0zhORVSLi28K808kreSKySUQu8vGbJSJficgjInIE00Kt6XofEpGjYmq85/p5d3fiyxORfzuFU50QU3seBvxBVY+r6puYhTGnBAqvqh+r6iJgbwDv8UAU8KiqFqvq45gFN8u7h3oCH6nqAVUtwhScg/z0TAdyMIt3+nI+MF9Vd6tqPnA/ME1EEup6zdUhIm4Redh5RneKyHUSZOhDRDo6z91tPs69g5U9IvK6mJbJMRH5QkQG+fgtEJFnROQDESkAJtQgtVWw/Otwpohsc56zp0RE6pEcFwMbVfV1537NAYaISH//gLXJRyLSAvgDZlV632NdjvtNqrpJDTtUNRtAVf+hqv9S1UJVPQrMw1R6EJEkTL67V1VLVXUt8AYwO8g1XQm8oaoFfu5eTN6tH420mm0mZgXbrpjaXGfMqtHnYQzqWc5+Wyf8YmAPMBizwvSbwMuOXw/MyrhRzv4koDfmgTwDKASGOX4jgWNO/C7nvP0dv38Cf3PibwcsB/6nhus4xYkrFmgLfIEpFMr9fwFsAhKAj4CHHPe+QIFzbDQmo2wHYnzSZzmm1tMa2IzfqsR+KwPnVPMbW8M1zClPy0D3xnFT4BSfMAuAPzvbQ4GDwCjAjcl4mUBsHfLDOUARkFhDmP2YgjQBU/Or0OVoOuLc4yjgFeA1n+Mvx9TyooBbnLjifNKgFJjq3I9bMbXKaMf/EudeuIBpzr3r6PjNAsqA652446u5hlnOeX7hpNUvMQamfFHkxZgVm/tinovFwH1B4noaeDqI30XAZj+3J4EnargPVwOL/dxuAj70c/s/4BZnezjwlZM+CcA/qPwMpADfAl0C5LU3gNt99sc493SIzz3Ndn4rgSn1LG+uxTyHXTCt04+pXGYsdq69p6P1Gp9jFxOk7HH8ZwPJmDLgUWCN33NyzLkuV3l+C6JxAdXnX3XSvSXQDTgEnBMkrnXAz4L4PQY84+e2IVDa1iYfYVrsN1G1HO7m7N+AWbF+J/BHwBVE16Pl1+ukpwLtfPznAasDHJcI5AHjA/hNwPQ0dKtXvqnPQQFEZAKzffbvAF7yC/MRcKVPhrvPx28gUIIpMColcoBzvQ3c4Gz/DXgkQJj2QDE+BRVwGfBZHa/rQv8bAryLqQ2twzEAmC6ERT5hXJgHarxP+lzu4/8AMLcx0j6A5jlUNXaz/cJUZ+yeAf7kF34rcEYtz7/Cif83NYR7Dvh/PvunUNXY/d3H/zxgSzXxHeWHQnUOsNTvfuwDxgU5dg0w2dmeBeyq5bXOArb77Cc419DBJ5//3sf/V8C/6nFPr/C9HsftXmBBDccFMnZ34VPoOm6vAHOc7RbAa851lGG6vFr7hH0MuCNIXrsaY1x6OPG868RzmuM/jB8qKOdhCrUx9UiPT/GpuAJnUtXY/dXJ+5f5HbuYIGVPgPO0dOJt4ZMnX6ylxmrzrxPvWJ/9RcCd9UiL+fhVoDCVlVl1zUeYis4a5/708EvTHzn77zvp0sO5178IcJ6zMM9jXx+3JZgu7TgnH2QDW4No3IlTYQzg/7qj49G6plVjjtnt9tnuDlziNM9zRCQH02LpGCT895gaeJUuHhE5V0SWOl2IOZhMUx6uK6bm7E93J759Puf/G6aFFxQRaS9mUH2PiORiWhv+muZhaoVPqGqx49bJuQYAVNXrXJ/vwP5+n+1CTJ/3iWJ3zUEq6A7c4nfvumKusTaMAKYDc0SkSr+/D538dAXSGDTNnG7hzU53Uw6mcPW9VxXxOfcjq/waRGSmTzdtDuZ+Bjy2FlRoVNVCZzMpkL//NdSBfEyLypcUjLFo7LiewrRqUjG17LeAD8FMbMEYlkeCxP0cZkxoMbAR+MxxzwJQ1VWqekRVy1T1A4yRvbge11CbvDMDU+F8I4BfwLLH6R69z+nizsUYS2iEvEHge3+i80bQsE435dOYhkRZgGOPO38fUNUcVc3ElKnn+QYSkdGY3oCpqvqtj9cMTEt7N6ZC/TJOvvDjSkyFQv09xAwhnYfpvbsxwLHV0pjGzlfcbkzLrqXPL1FVfQfMu/psd8N0Bx32cUNEYjHdDA8B7VW1JfABpkuz/Dz+/eDl7sVAG5/zp6jqoABhffmLcx1pqpqC6Sqr6Ed3+p4fxdSm5vj09e/FGInycOJc354azlcFCTwzyffnPzZVG/wzTiGmFVJOB5/t3Zi+dd97l6Cqr9bqRCaTvo3pXupYTdB9mG6ocroGC+iPkwa3A5cCrZx8cQyfe+Ubn/MgdwH2ipmpNg+4Dkh1jt3gd2yVBy3EbAR6ic/sNmCI416fuNL9xofSfeLKwNT0s53K3BPASGescTymRr9LRPZjuoeniMgqMJUKVf2DqvZQ1S5OnHsI/hwoldO9ttQm78zBlCf/kKpj9cHKnp8BkzEGvQXmWiH888aQ8h0RScSUiYHyRnX5KAXTslvo3NvyyUdZzvO2FdMC9r3+SmkhIkMxrfnZqlppPFdVv1fVn6pqW1UdhalALPc7vismj70Y5FoHAJtUdWsQ/2ppqlcPXgbOF5GzndpSnIiMFxHfDHq5iAx0Bq/vwQxI+s/MisHUMg8BZc7g/0Qf//nAVWKm3rrETG/tr6r7gH8DD4tIiuPXW0TOqEF3Mqb2c0zMdOvb/PwfA1ao6tWY5vxcx30RMMnREY0ZQyoG/ltTQvmjfjOTAvy+rGucAVgD/My5N+dgxkLLmQdcKyKjxJAoZlpxMlQM0i+o4RrKW7wx1QRbhLl3A5w8cFcd9CdjutgOAVEicjdVa6ynisjFYiYt3Ii5H0sxrRV1jkVErsK07MIWp4a8BviD8yxdhDFQbwYKX/7MYbqjXM4x5a3sxYAH+I2Y1wyuc9w/df5+A8wUM8ErGtP1uldVDwPPYgrSDOc3F/McnO2ct7XznImIDMR0Jd7jtKwRkakikuQ8jxMxlcl3fXSr+Exkq4ZFwA3O894SM2ziTylmbDYReNGp8JQTrOxJxuSTI5jK4F9qoSXU/BMYLCJTnHt+N7BOVbf4B6whHx3DtJgznF95i+1UYJnTa7EQuF1Ekp2y/BrMuCMiMhgze/J6VX3P/9zOc54sIjEicjmmHP+rX7ArgP+qaqDeOjAt8OIgfjXSJMZOVXdjakj/iylUdmMMh+/5XsL0a+/H9ONWeX9CVfMc90WYPuCf4fNwqOpy4CpMt8ox4HN+aGHNxBS2m5xj36D6lgaYAddhTlzvY7pwADPrEzOp4peO083AMBGZ4dQ0LsfUgg9jZqWdr6olNZwvVNyA0ZiD6V54u9xDVVdgJlw8iUm37ZixqXK6YsYEakKpJn+p6ofA45iuru0YQwS1y8wfYR6sbzHdUEVU7V56BzP55CjmIbpYzUywTcDDwNfAASCtltfTpIh5t21uNUGmY2reRzGvFExV1XKDPUNEfGvyV2C6nZ4Bxjnb8wCcPHkh5vnIwUzIuNAnr96KSc9tmGf3PMzEBtTMtNtf/sNUDIvKdWBq6x9gJvx8CDynqs/66LoB08rLwUxL/4WqLnauoSum6219zanFPExldh1mTPEDTOWnUmXZuaaLMWP4z/kYvGBlz4uY/LQHU24sJQwQM8t7RiA/J+2nYMbejmImlk33OdY/XwXMR2rwvbfl9/SAT964DnPP92Ken39guq7BVPDbAvN9eqF88+TZwHfOea/FTMY5RGVmYl6FCYabGmZ4V0f5rLETipgXXV9W1b+f8JNb6o2Yd7HWAumqWlpD2L2YmXm1+pKJmFc1NmAm/QQaM7BEME5tf5Cq/rYex56LmfDVvcbAlmaJU1F5HDOj89L6xGG/oGKpNapaoqoDajJ0DndiuktWBgsgIhc5XWmtMO9kvWcN3cmJqr5cW0MnIvEicp6Yd0Y7Y97/+mfTKrSEChHphGlpjsb0ytSLk87YSeVPa/n+qutCstQRVX1RVfuo6qnVBPsfzDt9OzBdUL+sJmxIsPklLBHMkMNRTDfmZsxY1YkVYboXA+WNgF2Olvqh5nNhqao6XFWX1TeekHRjWiwWi8VyIjnpWnYWi8ViOfkIl4/cAtCmTRvt0aNHqGVYLBaL5QSycuXKw6oa7MPmjUJYGbsePXqwYsWKUMuwWCwWywlERL6vOVTDsN2YFovFYol4rLGzWMKQ1Su/5sCBA6GWYbFEDNbYWSxhhqoy9L1zKJj7k1BLsVgihrAaswtEaWkpWVlZFBUVhVqKpRkRFxdHly5diI6ubuGF8CSvsJAUoJfW5QP7FoulOsLe2GVlZZGcnEyPHj2Qei3kaznZUFWOHDlCVlYWPXv2DLWcOuMpyAm1BIsl4gj7bsyioiJSU1OtobPUGhEhNTW12fYGeEsKaw5ksVjqRNgbO8AaOkudac55xuvxX+nKYrE0lGZh7CyWkwmPJ1xXhrJYmi/W2NUCEeGWW26p2H/ooYeYM2dO6ATVwOLFi/nvf+u8bmwFa9as4bTTTmPQoEGkp6ezcOHCRlRnqQnbsrNYGh9r7GpBbGwsb731FocPH27UeFUVr7feaxEGpaHGLiEhgRdffJGNGzfyr3/9ixtvvJGcnJzGE2ipFo+nzGe78fOHxXIyYo1dLYiKiuKaa67hkUceqeJ36NAhpkyZwogRIxgxYgRffWUWvZ4zZw4PPfRQRbjBgweTmZlJZmYm/fr1Y+bMmQwePJjdu3dz2223MXjwYNLS0ipaUYsXL2b8+PFMnTqV/v37M2PGDAKtUPH4448zcOBA0tPTmT59OpmZmcydO5dHHnmEjIwMvvzyy2o1XnHFFZx22mn06dOHefPmAdC3b1/69OkDQKdOnWjXrh2HDvkvKgyvv/46gwcPZsiQIZx++umAmVB01VVXkZaWxtChQ/nss88AWLBgARdeeCFnnXUWPXr04Mknn+Svf/0rQ4cOZfTo0WRnZwMwb948RowYwZAhQ5gyZQqFhVUna4wePZqNG39YBHn8+PER9Zk59f7QsisqspNVLJbGIOxfPfDlj+9tZNPe3EaNc2CnFP5w/qAaw/36178mPT2d22+/vZL7DTfcwE033cTYsWPZtWsXZ599Nps3b642rm3btvHCCy8wevRo3nzzTdasWcPatWs5fPgwI0aMqDAcq1evZuPGjXTq1IkxY8bw1VdfMXbs2Epx3XfffezcuZPY2FhycnJo2bIl1157LUlJSdx6660A/OxnPwuqcd26dSxdupSCggKGDh3KpEmT6NSpU0X8y5cvp6SkhN69e1e5jnvuuYePPvqIzp07V7T8nnrqKUSE9evXs2XLFiZOnMi3334LwIYNG1i9ejVFRUWccsop3H///axevZqbbrqJF198kRtvvJGLL76YX/ziFwD8/ve/Z/78+Vx//fWVzjtt2jQWLVrEH//4R/bt28e+ffsYPnx4tWnenPBt2RUV5pGYmBRCNRZLZGBbdrUkJSWFmTNn8vjjj1dy//jjj7nuuuvIyMjgggsuIDc3l/z8/Grj6t69O6NHjwZgyZIlXHbZZbjdbtq3b88ZZ5zBN998A8DIkSPp0qULLpeLjIwMMjMzq8SVnp7OjBkzePnll4mKClx3qU7j5MmTiY+Pp02bNkyYMIHly5dXHLdv3z6uuOIKnn/+eVyuqlllzJgxzJo1i3nz5uFxxpmWLFnC5ZdfDkD//v3p3r17hbGbMGECycnJtG3blhYtWnD++ecDkJaWVnFtGzZsYNy4caSlpfHKK69UasGVc+mll/LGG28AsGjRIqZOnVptejc31GfMrrigcSt3FsvJSrNq2dWmBdaU3HjjjQwbNoyrrrqqws3r9bJ06VLi4uIqhY2Kiqo0Huf7zldiYmKtzhcbG1ux7Xa7KSsrqxLm/fff54svvuC9997j3nvvZf369VXCBNMIVafol+/n5uYyadIk7r333grD7M/cuXNZtmwZ77//PqeeeiorV66s9fW4XK6KfZfLVXFts2bN4u2332bIkCEsWLCAxYsXV4mnc+fOpKamsm7dOhYuXMjcuZG1aLjXp2VXcjwvhEoslsjBtuzqQOvWrbn00kuZP39+hdvEiRN54oknKvbXrFkDmOWKVq1aBcCqVavYuXNnwDjHjRvHwoUL8Xg8HDp0iC+++IKRI0fWSo/X62X37t1MmDCB+++/n2PHjpGfn09ycjJ5eT8UksE0ArzzzjsUFRVx5MgRFi9ezIgRIygpKeGiiy5i5syZ1baaduzYwahRo7jnnnto27Ytu3fvZty4cbzyyisAfPvtt+zatYt+/frV6noA8vLy6NixI6WlpRXxBGLatGk88MADHDt2jPT09FrH3xzw+LTsSgutsbNYGgNr7OrILbfcUmlW5uOPP86KFStIT09n4MCBFa2MKVOmkJ2dzaBBg3jyySfp27dvwPguuugi0tPTGTJkCD/+8Y954IEH6NChQ620eDweLr/88orJIL/5zW9o2bIl559/Pv/85z8rJqgE0wimG3TChAmMHj2au+66i06dOrFo0SK++OILFixYQEZGBhkZGRUG8u677+bdd98F4LbbbiMtLY3Bgwfzox/9iCFDhvCrX/0Kr9dLWloa06ZNY8GCBZVadDXxpz/9iVGjRjFmzBj69+9f4f7uu+9y9913V+xPnTqV1157jUsvvbTWcTcX1PtDy660yBo7i6UxkEAz/ELF8OHD1X9W3ebNmxkwYECIFEU2c+bMqTSRJdJornln01fvMfA/Ztxz3bi5pP/kshArsliaFhFZqapNOsvMtuwsljBDfd+zKy4IoRKLJXJoVhNULI1LOH8F5mTG6/OendcaO4ulUbAtO4slzPAds7PGzmJpHKyxs1jCDN/37LTEGjuLpTGwxs5iCTN8uzEpPR46IRZLBGGNncUSZvh+G1NK7bcxLZbGwBq7WvL2228jImzZsiVomMzMTAYPHtykOtasWcMHH3xQ7+PLX0IfOHAggwYN4rHHHmtEdZbGwOszZidl1thZLI2BNXa15NVXX2Xs2LG8+uqrAf0DfcqrrnhqsY5ZQ41dVFQUDz/8MJs2bWLp0qU89dRTbNq0qd7xWZoAn3zgsi07i6VRsMauFuTn57NkyRLmz5/Pa6+9VuG+ePFixo0bxwUXXMDAgQMBY/RmzJjBgAEDmDp1asUSNZ988glDhw4lLS2N2bNnU1xcDJjPit1xxx0MGzaM119/vdJ5/ZfQKSkp4e6772bhwoVkZGSwcOFCCgoKmD17NiNHjmTo0KG88847gFlSZ/LkyYwfP54+ffrwxz/+EYCOHTsybNgwAJKTkxkwYAB79uypcs2ff/55xddThg4dSl5eHqoadDmiM844g8mTJ9OrVy/uvPNOXnnlFUaOHElaWho7duwA4L333mPUqFEMHTqUM888kwMHDlQ57/Tp03n//fcr9mfNmlXx0eeThfIxuwKNxe0pqiG0xWKpDc3rPbsP74T9VT903CA6pMG591Ub5J133uGcc86hb9++pKamsnLlSk499VTAfPdyw4YN9OzZk8zMTLZu3cr8+fMZM2YMs2fP5umnn+a6665j1qxZfPLJJ/Tt25eZM2fyzDPPcOONNwKQmppa8R1NX/yX0ImJieGee+5hxYoVPPnkkwD87//+Lz/+8Y957rnnyMnJYeTIkZx55pmAWZ5nw4YNJCQkMGLECCZNmlRpKZzMzExWr17NqFGjqpz7oYce4qmnnmLMmDHk5+cTFxfHW2+9FXQ5orVr17J582Zat25Nr169uPrqq1m+fDmPPfYYTzzxBI8++ihjx45l6dKliAh///vfeeCBB3j44Ycrnbd8+Z5JkyZRUlLCJ598wjPPPFPLmxkhlBs7ScDtsRNULJbGoMlbdiJyjohsFZHtInJnU5+vKXj11VeZPn06YFoevl2ZI0eOpGfPnhX7Xbt2ZcyYMQBcfvnlLFmyhK1bt9KzZ8+K72NeeeWVfPHFFxXHTJs2LeB5Ay2h48+///1v7rvvPjIyMhg/fjxFRUXs2rULgLPOOovU1FTi4+O5+OKLWbJkScVx+fn5TJkyhUcffZSUlJSA57755pt5/PHHycnJISoqqtrliEaMGEHHjh2JjY2ld+/eTJw4Eai8fE9WVhZnn302aWlpPPjggwGX7zn33HP57LPPKC4u5sMPP+T0008nPj4+4LVHKuXv2RVJPNHW2FksjUKTtuxExA08BZwFZAHfiMi7qlq/QaIaWmBNQXZ2Np9++inr169HRPB4PIgIDz74IFB1uZ5gS+ZUR7Alf2qzhI6q8uabb1ZZWWDZsmVBtZSWljJlyhRmzJjBxRdfHPDcd955J5MmTeKDDz5gzJgxfPTRR9VeQ22W77n++uu5+eabueCCC1i8eHHAL7jExcUxfvx4PvroIxYuXFhRyTiZKJ+NWeRKINprjZ3F0hg0dctuJLBdVb9T1RLgNWByE5+zUXnjjTe44oor+P7778nMzGT37t307NmTL7/8MmD4Xbt28fXXXwPwj3/8g7Fjx9KvXz8yMzPZvn07AC+99BJnnHFGjecOtISO//I9Z599Nk888QTlH/RevXp1hd9//vMfsrOzOX78OG+//TZjxoxBVfn5z3/OgAEDuPnmm6s9d1paGnfccQcjRoxgy5YtDVqOCODYsWN07twZgBdeeCFouGnTpvH888/z5Zdfcs4559Q6/ojBadkVuxOJ8doxO4ulMWhqY9cZ2O2zn+W4VSAi14jIChFZcejQoSaWU3deffVVLrrookpuU6ZMCTors1+/fjz11FMMGDCAo0eP8stf/pK4uDief/55LrnkEtLS0nC5XFx77bU1njvQEjoTJkxg06ZNFRNU7rrrLkpLS0lPT2fQoEHcddddFcePHDmSKVOmkJ6ezpQpUxg+fDhfffUVL730Ep9++mnFBJTy2Z1z586tWP7n0UcfZfDgwaSnpxMdHc25557boOWIwHyL85JLLuHUU0+lTZs2Fe4rVqzg6quvrtifOHEin3/+OWeeeSYxMTG1jj9SUGfR39KoJGK0OMRqLJbIoEmX+BGRqcA5qnq1s38FMEpVrwsU3i7x03gsWLCg0kSWk5Hmmne+fvkeTtv+MMtTJtI/9ytS5uwNtSSLpUmJhCV+9gBdffa7OG4WiyUYasbsPNFJxKvtxrRYGoOmNnbfAH1EpKeIxADTgXeb+JwWzPtpJ3OrrjlTPkFFY5KIFg9aVhJiRRZL86dJjZ2qlgHXAR8Bm4FFqlp1vnnN8TS2NEuE06zzjGPsJM68ElJUaFc+sFgaSpO/VK6qHwD1/r5VXFwcR44cITU1tVbT+C0WVeXIkSPExcWFWkr9KP82ZqwxdscLc4lPaRVCQRZL8yfsv6DSpUsXsrKyCMeZmpbwJS4uji5duoRaRr0Q9eBVwRWXDEBxYV4NR1gslpoIe2MXHR1d6QslFkvE4y2jDBdRseZjA8WF+SEWZLE0f+yHoC2WMEO0DA9uouKSACg5blt2FktDscbOYgk3vB7H2JmWXUmRnaBisTQUa+wsljBDvGV4cBETb8bsyopsN6bF0lCssbNYwgxRDx5xExNvWnYea+wslgZjjZ3FEmaUj9nFJZqWnafYdmNaLA3FGjuLJcwQZ8wuLsG8Z+e1xs5iaTDW2FksYYaoMXbxTstOSwtDrMhiaf5YY2exhBni9eARFzGxcZSqG0qssbNYGoo1dhZLmOHSMry4ASiSGMS27CyWBmONncUSZpR3YwIUEYerzBo7i6WhWGNnsYQZoh68YoxdscThKjseYkUWS/PHGjuLJcxwaRmecmPnisdtjZ3F0mCssbNYwgzxeirG7EpdcUR7bDemxdJQrLGzWMIMUQ/qMsauxJ1AtNe27CyWhmKNncUSZoiWoWJW3yqLSiDWGjuLpcFYY2exhBkunwkqHnc8sd6iECuyWJo/1thZLGGGqAd1jJ03OpE4rLGzWBqKNXYWS5jhUg/qMt2YGh1PglpjZ7E0FGvsLJYww62lFWN2Gp1ErJRSVloSYlUWS/PGGjuLJcyI0yLK3PEASKxZ066wIC+UkiyWZo81dhZLmBGrxXjccQBIjDF2xYXW2FksDcEaO4slzIijmLIo07JzxyYBUFRwLJSSLJZmjzV2Fks4oUqcFiPRCQC444yxKy7MD6Uqi6XZY42dxRJGlJYcxyUKTvdllGPsSotsN6bF0hCssbNYwojj+caouWJMyy463jF2dszOYmkQ1thZLGFEoWPU3M4szJj4ZAA8RbYb02JpCNbYWSxhRFFBZWMXm9ACAE+xNXYWS0Owxs5iCSOK8w4D4E5sDUBsounG9BQXhEyTxRIJNMjYicgcEdkjImuc33k+fr8Vke0islVEzm64VIsl8jl+dD8ACS3bAxCfmAKAWmNnsTSIqEaI4xFVfcjXQUQGAtOBQUAn4GMR6auqnkY4n8USsZTkHgQguW0nAOLjk/CqQIntxrRYGkJTdWNOBl5T1WJV3QlsB0Y20bkslojBk2eMXavUDgC43C6OE4uU2tXKLZaG0BjG7joRWSciz4lIK8etM7DbJ0yW41YFEblGRFaIyIpDhw41ghyLpfkSlbubw7QkLj6hwu24xOEqtd2YFktDqNHYicjHIrIhwG8y8AzQG8gA9gEP11WAqj6rqsNVdXjbtm3rerjFElEk5WdyILpLJbciicNVZlcrt1gaQo1jdqp6Zm0iEpF5wP85u3uArj7eXRw3i8VSDe1Ks9jeclwltxKJw11muzEtlobQ0NmYHX12LwI2ONvvAtNFJFZEegJ9gOUNOZfFEukc2LuLVI5B236V3Etc8UR5bMvOYmkIDZ2N+YCIZAAKZAL/A6CqG0VkEbAJKAN+bWdiWizV8/3qj2kPtBl4eiX3Uncc0d7GW6382NFstn/zL0qys3C16MiAsReQktyi0eK3WMKRBhk7Vb2iGr97gXsbEr/FcjLh2fkVhRpLj8E/quRe5o4nsexog+P/ftt6Drz3J4Yc+5RTpbTCPXvpb/l66O8YPflaRKTB57FYwpHGeM/OYrE0Au2yV/Jd/CAGR8dUcvdGxRN7vP4tu7zcHDa9cgen7l9EO6JY1+58UoZdQrseAzmcuR799F5OW3Mn3+z8jLRr5hGXWE0rz+sl+7tV7Fv9AWVZq4kp2EuUtwSvRJEb046ylj2Ibd+P1t3T6HDKEOKSWweMprT4OMeOHqLg6CHycw5RlJcNnhIQN7jcuKOjiYqOIyrG/GJi44iOTSA6No6YmHhwR4F6QT3g9YCq2VYPol7HzfhHJ7YiLrVbvdPPEhlYY2exhAE5Rw7R05PJNx2qfmzIExVPjBbXK96ty/5F0r9+wyg9wNLWF9Bn+r2MaP9Dwd+qYw+8I85l6Yu/ZeT389jz8I/QqfPpNnB0RZjcA7vIXPkBuu0TuuUso7UeozWwm/bkxXagKLYVLk8JHYozab93KTH7ymCNOfYILcl1tcDjiibKW0KiN59ECkigmDZAm3pdVd0oVTfZv1pD6/bW4J3MWGNnsYQB363+hGGitOh/RhU/jUogTuvWslOvl/++8idGbX+U/a52bD13IaNHnRMwrCsqitGzH2TV4rF0/ew3tF10NjvdvTgelUKrkn101AOkA0c0hc2JwynqPp6OGefQt09f3K7K3Z6lpaXs3LmZg9+tp3jfZmJzthNVmofbW4q6YzgQnYInJgXiW+JKaE10Umtik9sQl9KaqJhY1OtBPR7KSksoKymirKQIT2kRZaXFeEuO4y0tRsuKcakHr7gBwStuVFzmhwv12ffm7ufM7x8hc8W/aD3pmjqloSWysMbOYgkDirZ/SYm66Tnk9Cp+Gp1APMWo14u4ap5A7S0tZsMzlzMm+9+sSRpHr1+8QJeWqTUeN2z8ZI4MHM6S958kaf8yYj2FZCX0Y1u7y2g96Cf0HfIjfhRdfZERHR1Nz77p9OybXuP5TgRlpaUc+/OzlO34HLDG7mTGGjuLJQxofXgF38X0o7+zWKsvEpNAlHgpKikmLi6+2njKjuex48mLSC/4hk87XcP4n9+Py137N4xS23Vm7FX/r876w5Wo6Gh2Jg+jR/Z/8ZSV4Y6yRd7JSkTd+bLSEnbcP46j7UbSYsj59B4yjpgaCoda4fVSVnKc4jJnIBwwb1sAqgSawCbi8tkWX4+A7oJU+Jk/zrbfMSDlZ65wr5AE6A++ldx9qW1431318azsHviAYPH6S6pNvErgCILqqOX5K527jmlV63iDavxhp7SokFNKt7Gq8+UBNUiMWdvueEFetcauOO8we548n1OKNvPvPndx1oxb7OxKoGzAhbT75ku2fPMR/U+b1ChxqtfLsWNHOX7sIKXH8ykpKaG0tAS3enC5XYg7GldUTMXPHWX23W43bncUbnc07ig3UW437qgootxRiCsKatFyD5Zvq3u2gmbwKkfVMSwQ5TehKlyJKGOXc2Q/xVFJnLrnFaL3vkjJB1F85+5CblxHimNaI1GxeFzRiLcMt7cEl6cYl6cIt6eYKG8RUd4ior3FRGsxsd5iYighTouJlVKiiLDEsoQXAol9xwX0cpUbu/xcWqW2Cxim8Oh+Dj99Dp1LsvhsyMNMvPjnTSa1udH/jEspWP47cr9eAHU0dnkFheze+F8KdnyN5+A2kgp20rZ0Ly29x2gppbRsAr0erVpBCVZlcUkww3RiWO/tRdo9q0OqobZEVPndpkM32tz5CbnZB1m3/CPKvl9KbM4OUor3kVy4lSgtJUZKKcNNCTEUE0OZRFPiiqPUFctxVxJ5UW3wumPxuOPxRsWhUfEQFQfRcbhdLkRAy7OeiFMJ8s+KgWtUGsTdxKAVzhXbgKjPts/x4l/LClKDlyB71VX4Jch2sCdOgnhUe46gcdUcqLq2Sq3i9d2T6sIF01VzvLVtUJUHc8UlM2jchQHDuOKMsSsuCvwx6NzDe8h55lzale1l6einOPPcabU7+UlCUlIKy9pPZviBRezc9A09B44IGraoqIgtqz4nZ9NnpBxYRv+SjQwUMxP2KMkciO5KZvKpeBPb4kpsiyS2xhWTSFS0ab15JQqv14N6SsFTinrKUE8JeMvMvteDestQjwdVL16veXVCvR5EPbjUC3gJnBMDZzzx/RBWtfkusKcGcg+Sgf1N6/HYEzGftnGIKGNXTkrrdpx6zhVA0HfeLZZmQ3SsY+wKcqv4Hdm3i4J559LGc4i1p8/jjJ9cdKLlNQtOmfoHjj39IVGvz+S7S16kl2Pwjhfk8d3aL8nd+iUJ+5fRp2gDGY5x2xXVg62dJhPVaxztB0+gbYcutLLdws2WiDR2Fksk4Uo0Myk9+ZWXwNq7czOeFy8m1XuEb896nlFjG2c8KhJJbdeZLefOp8OHV9Fy0Znspw2CkqpHGSReADJd3dnY/nzi+55Br1Mn0q1VB+ybeZGDNXYWS5iT2MYsBVl8dG+F2+ZvPqH9+7Nw4WXXpFfIGHlWqOQ1G/qPmsjh7ktZ+p95uA9vRnGzM7kT8b1G0iP9DHq06UiPUIu0NBnW2FksYU67Tt0BKM7Zi9fjYfnCvzBs66MccrXBe9lCBvTNCK3AZkSbDl1pc8U9oZZhCQHW2FksYU5CYgpHaEHHXf/Htvs+YXTpFlYnnEavnz9PizYda47AYrE0bD07i8VyYtjc/qf08HxPq9KDLB/yZzJu+8AaOoulDtiWncXSDDjtmifYsfkqOvcexMj4hFDLsViaHdbYWSzNALfbTe/Bwd8Ps1gs1WO7MS0Wi8US8VhjZ7FYLJaIRzToRz9PPCJyCPi+EaJqAxxuhHhOBM1JKzQvvVZr09Gc9DYnrdC89DaW1u6q2rYR4glKWBm7xkJEVqjq8FDrqA3NSSs0L71Wa9PRnPQ2J63QvPQ2J622G9NisVgsEY81dhaLxWKJeCLV2D0bagF1oDlpheal12ptOpqT3uakFZqX3majNSLH7CwWi8Vi8SVSW3YWi8VisVRgjZ3FYrFYIp6IMnYico6IbBWR7SJyZ6j1+CMiXUXkMxHZJCIbReQGx32OiOwRkTXO77xQawUQkUwRWe9oWuG4tRaR/4jINudvqzDQ2c8n7daISK6I3BhO6Soiz4nIQRHZ4OMWMC3F8LiTj9eJyLAw0PqgiGxx9PxTRFo67j1E5LhPGs89kVqr0Rv03ovIb5203SoiZ4eB1oU+OjNFZI3jHg5pG6zMCsu8Wy2qGhE/wA3sAHoBMcBaYGCodflp7AgMc7aTgW+BgcAc4NZQ6wugNxNo4+f2AHCns30ncH+odQbIB/uB7uGUrsDpwDBgQ01pCZwHfAgIMBpYFgZaJwJRzvb9Plp7+IYLo7QNeO+d520tEAv0dMoMdyi1+vk/DNwdRmkbrMwKy7xb3S+SWnYjge2q+p2qlgCvAZNDrKkSqrpPVVc523nAZqBzaFXVmcnAC872C8CFoZMSkJ8AO1S1Mb7E02io6hdAtp9zsLScDLyohqVASxE5Yev5BNKqqv9W1TJndynQ5UTpqYkgaRuMycBrqlqsqjuB7Ziy44RQnVYREeBS4NUTpacmqimzwjLvVkckGbvOwG6f/SzC2JCISA9gKLDMcbrOafY/Fw5dgw4K/FtEVorINY5be1Xd52zvB9qHRlpQplO5sAjHdC0nWFqGe16ejam9l9NTRFaLyOciMi5UogIQ6N6Hc9qOAw6o6jYft7BJW78yq9nl3Ugyds0GEUkC3gRuVNVc4BmgN5AB7MN0ZYQDY1V1GHAu8GsROd3XU02/Rdi8uyIiMcAFwOuOU7imaxXCLS2DISK/A8qAVxynfUA3VR0K3Az8Q0RSQqXPh2Zz7324jMoVtbBJ2wBlVgXNJe9GkrHbA3T12e/iuIUVIhKNyTSvqOpbAKp6QFU9quoF5nECu1WqQ1X3OH8PAv/E6DpQ3i3h/D0YOoVVOBdYpaoHIHzT1YdgaRmWeVlEZgE/BWY4BRxOd+ARZ3slZgysb8hEOlRz78M1baOAi4GF5W7hkraByiyaWd6FyDJ23wB9RKSnU8OfDrwbYk2VcPrk5wObVfWvPu6+fdoXARv8jz3RiEiiiCSXb2MmKGzApOmVTrArgXdCozAglWrG4ZiufgRLy3eBmc7MttHAMZ8uo5AgIucAtwMXqGqhj3tbEXE7272APsB3oVH5A9Xc+3eB6SISKyI9MXqXn2h9ATgT2KKqWeUO4ZC2wcosmlHerSDUM2Qa84eZCfQtpgb0u1DrCaBvLKa5vw5Y4/zOA14C1jvu7wIdw0BrL8ystbXAxvL0BFKBT4BtwMdA61BrdXQlAkeAFj5uYZOuGCO8DyjFjGP8PFhaYmayPeXk4/XA8DDQuh0zFlOeb+c6Yac4+WMNsAo4P0zSNui9B37npO1W4NxQa3XcFwDX+oUNh7QNVmaFZd6t7mc/F2axWCyWiCeSujEtFovFYgmINXYWi8ViiXissbNYLBZLxGONncVisVgiHmvsLBaLxRLxWGNnsVgslojHGjuLxWKxRDz/H7yU/NvzKLIoAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 6)" + "### Evaluating the cell\n", + "\n", + "The cell can now be evaluate for a certain set of parameter values." ] }, { "cell_type": "code", - "execution_count": 54, - "metadata": {}, + "execution_count": 20, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAEYCAYAAADI/ygZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABg/klEQVR4nO2deZhUxfWw39M9KzBsAyKbLMrODItsCigYBA1RVFQ0KCIxRhNNjInRLBo08fe5RkVNMAbFLQhuiHGNCypGVBBkR0WHTWRfZoDZus/3R90Zema6Z3qYpXtmzvs8/fS9tdw6t6punapTdW+JqmIYhmEYDQFfrAUwDMMwjNrClJ5hGIbRYDClZxiGYTQYTOkZhmEYDQZTeoZhGEaDwZSeYRiG0WCIG6UnIp1FREUkIday1HdEZKqILKqltFJF5DUR2Ssiv6uNNEulnyUiY2ohnYUickUEP6vbMUBEpovI05X1q2YZyn3Wyqs3RllE5BUR2Skidx/tNeJG6RlHh/fwFohITsiv1pVLOYwBMoGOqnpXkaOnjDrHTKo4wivD6ZUI/2MR2SgiB0Vkvoi0LCdsfxFZKiKHvP/+pdItXXe6RhlXROROEdnt/e4UEYkmruc/UEQ+8NLcLiK/ivLep4rI7GjC1nW8zlJWJcO/5+X5uvI6eyKSLCKPicgBEfleRK4vdR0tVS9uDvFvKSJzvXLfJSLPiEjTEP+/iMhKESksXa+9evNHEdnkpf1sqbj3iMhXIpLt3cOU0PiqehYwGvitiDSPNm9CqTalZ73YmDJXVZuE/O6qOEqt0RLIUtWcWAtSFbyHNeadRBHpAzwCXAq0AQ4Bf48QNgl4GXgaaAE8AbzsuRdRuu58E2XcK4FzgH64Ts1ZwM+iiSsirYA3vPtIB04A3qpSxsSQOGr75gDLcHn6R+B5EWkdIex0oBvQCadEficiZ5QK0zykXvwlxP2vuHLtAhyPq4fTQ/y/Bn4HvBom3Sm4ujscaAekAg+G+B/E1aVmwGXAAyJycugFVHWVd5ge4d7KpUoPsddbv1FEVgAHRSRBRIaJyP9EZJ+IfCEio0LCLxSR/ycin3pa/uVIvVQRuVxE1noa/xsR+Vkp/wkisty7zoaiAhORZiIyS0S2ichWEfmriPgruI/jReTdUj2X5iF+e0RkoHfeTtzwepR3fraIrPbud6GI9CqVP78VkRUist/rHaVUPqcrj4jc5OVLtoisEZFzI4QTEblPRHZ4eblSRPp6fslez2uTuN74TBFJraQoCUCwAlnTxZktDojIZ16ZLQrxVxG5yusB7hORh0XcqKK8sgthsJcHe0Xk8aIyEJEWIvIfrzz3escdQtJdKCK3i8hHOOXSlfLpJCIfeXn+lte4hzLZy8tdIvLHCq4VicnAK6r6gdeRuBk4T0TSwoQdhcv/+1U1T1VnAAKcFkU6FcW9DLhXVbeo6lbgXmBqlHGvB95U1Wc8/2xVXRt9FhxBRKaIG/XuFpGbJYI5W0QSRWSOiLwgRxR3ivdMZovI5yLSLyR8xOdH3GjzI++52U3JBj+SnPd4dexbETmzlHdF9SaafOgODAT+rKqHVfUFYCUwMUKUy4C/qOpeL+8f5Uj5VUQXYL6qHlDV/cBLQJ8iT1V9QlVfB7LDxD0LmKWqm736eycwSUQaeXH/rKrrVDWoqp8AHwInhbmO4upYpamOnuvFwHigOU7jv4rrCbQEfgu8ICV7G1OAaUBboBCYEeG6O4AfAU2By4H7QhTPEOBJ4AYv3VOALC/ebO+6JwADgLFARTZzAf4frufRC+iIV5FVdQNwI/C0VzCPA0+o6kKvos0BrgNaA68Br0jJnvSFwBm4ipJJhIolIiO8Bj3Sb0QF91CaDcBIXI/pVk/+tmHCjcXlX3cv7IXAbs/vDs+9Py4/2wO3RCuAiCTiGsBNpf1UtbOqZnmnD+N6eMfiHsbLwlzuR8BgXB5eCIwrSoYIZRfCZC/88d79/Mlz9+HKsxNwHHAYeKhU3Etxo5o0YGN59wv8GFdXjwGScPU/lBFAD+AHwC1FHSRVna6qxTJXUN59gC+KTrz6me/dV7iwK7TktwZXENJAAWeJ69StFpGrKxG3hBzecZ8o4w4D9ojrHO/wOjzHRbjfEqjqbFWdCiAivXGj3Mm49qQZro6WwOuozQfygAtVNd/zmgA8h2ur/g3M9+osVPz8DAW+wbV5t1cg9lBgPdAKuAuYVdRp8whbb1Q1S1U7h9zH30Uk7Kgel7ffqGqoogktk2JEpAUuvyKVXxEbRWSL11EMVcQPAz/yOo0tcIr19QhyhUNKHSfjRp2l5UzFPfOrw1xjMzCmVD5Gh6oe9Q+naKaFnN8IPFUqzJvAZd7xQuCOEL/euAfWD3TG094R0poP/Mo7fgS4L0yYNriKnRridjHwXiXv6xxgWSm3Bbie0wog2XO7GZgXEsYHbAVGheTPJSH+dwEzq5LnYWSd7uXhvpBfuzDhlgMTvOOpwCLv+DTgS1xD5AsJLzhFdHyI20nAt1HK1R8oALYDJ5QTzu+F6xHi9tci+bxzBUaEnM8Dboqm7LwyuCrk/IfAhnJk3htyvhC4Lcr7XQj8KeT858Ab3nFR3e4Q4v8pcNFRlPc7offjuRXXuVLuNwPPlnJ7BpjuHffGdRb8wMnANuDiKOMGgJ4hft28e5Qo4n7p1dPBQAqu4/vRUeTFLcCckPNGuGdhTMizsQB430tDSj03i0POfd79j4yQ1nJKPj+bopRxKvB1KRkVOLaielPJvLg09H48t9uB2WHCdvRkSAlxOx03DQHQBBiEG0m1AZ7HjcyLwrYD3sZZcILAf4GkMOk8XVTmIW5XeOXfGdehWODJclKY+E/gzOASxu9cr6z3VTavqmOktznkuBNwQegIBde7bRsh/EYgEdcDKoGInCkii71e6D5cY1UUriOuJ1aaTt71toWk/wiuBxUREWkjbkJ1q4gcwBVWaZkeBfoCD6pqnufWjpDev6oGvfsL7W1+H3J8CFehqpt5qto85PedZ/ZZHpIPfQmTz6r6Lm508zCwQ0T+KW5iuTXuAV0aco03PPcKUdXluNHRx7iRcCRa4x6u0HqxOUy4sPkYZdmVrnPtvLiNROQRzzx2APgAaC4lzeHhZIlERWVdHXUhB2f9CKUp4U1J5YZV1TWq+p2qBlT1f8ADwPlRplPavymQo65FqijuYeAlVf1MVXNxI6mTRaRZmHsoj3aElI+qHuKIlaKIYTjrwB2ebKGExg0CWzhSNyp6fo6qXngyQsmyj0W9KPIvE1ZVc1R1iaoWqup24BpgbIgJfR5OcaV58TbgnrtoeAxnHVuIG8G957lvCQ0kbnVmX9zIPNyuCLfiOi4RF3FFojqUXqhAm3EjvdAGuLGq3hESpmPI8XG4Xv6u0AuKSDLwAnAP0EZVm+NMh0VD2c04U1VpNuNGeq1C0m+qqmWG+KX4P+8+MlS1KXBJSFqISBPgfmAWMF2OzEN+h1O0ReHEu7+tFaRXBhEZKSVXS5X+jazEtTrhlPQ1QLqXf6soaVYoRlVnqOqJuJ5/d5zZeBeuceoTkpfNVDXqB9Jr0F73rhuJnThzdIcQt44Rwoaj3LILc73jcOUG8BucuXGoF/cUzz00frxtQ7Iat3gEAHGrLZNxjVC4sJmlTECZhDcXwZGRWjRxS8jhHa+OMu4KSubr0ebxNkLqjWcOK7244S2c+fsdEWlTyq+4XohbpNQB+C7K5yce60VXKTm3G1omxajqXlzeRSq/MlG8/yJ90R94RFUPqpuXm4kblFSIurm6P6ub3ujgpbmVkDZTRG4FzgTGquqBCJfqBbzsdVYqRXWvRnsaN0cwTkT8IpIiIqMkZHEAcImI9Pbmx24DnlfVQKnrJOEe5J1AoTfxOzbEfxZwuYj8QER8ItJeRHqq6jZcJb9XRJp6fseLyKkVyJ2G6/3sF5H2uEY/lAeAJap6BW7OcqbnPg8Y78mRiGtE84D/VZRRpVHVD7XkKrrSvw8rcbnGuIq6E9yiIFyvqQwiMlhEhnryHwRygaBXmR7FzaUe44VtLyLjQuKqhCxUikAerjzD4pX9i7jORCMR6Ymb942WisoO4Bci0sHrrPwRmBsS9zCwz/P7cyXSjRXP4J6xkSLSGPcMvagl53KKWIgzQ/5S3KKkazz3d6F4MVgLcQwBfolbdVlhXNyc+vVenWiHq/uzo4z7OHCuuNcaEnHm0EXqFkUULSCaHkVePO/lxcni5tGnE6Zjp241879xii90tHaiiJwnbvXldbi6uphKPD/xgqp+iTPB/tlrd8/FdTReiBDlSeBPXvn3BH6KV35ee9DDaz/TcabhhUXlA3wGXCHuHdxU3Jz3iqILi1s0lILTLwmePH7Pr6XXJou4Odm/4aYQgp7/73FznGNUtfSoPZQEXHlVmmpVeqq6GTc5/AdchdmMa4RC03kKl7nf4+z5vwxznWzPfR6wF5cJC0L8P8Vb3ALsx9nsi0ZcU3CN7Bov7vOUNK+G41bcyqf9OKX2YpGHiEzALUQpmuS/HhgoIpNVdT1uZPEgbmR0FnCWHpkojwmquga3mu5j3JxaBvBRhOBNccptL870txsoevHzRtzy48We+e9t3MgIEemIM4esrECcIBXXs2tw9v3vcfVjDtFX6IhlF8K/cZ2hb3CmmL967vfjlkzvwjV2b0SZZo1S3sheVVcDV+GU3w6c4v55SNzXReQPXth83BznFNwc2jTgnJD6eRGufLNxjeCdqvpElHEfAV7Blf8qXN4/Ek1cz6T+By/ODtwiqR+H3GZHItfX0nlxLfAsbuSS412vTN1Rt+R+PvB2iKXmZWASru5fCpynqgWVfH5qDXGrp2eWE+Qi3FzcXtwitPNVtUhxTxaR0JHcn3HPwkZc+3m3qhbV/664ZyEbV7Z5uLURRUzDzcltwY3QulJy8dmjuM7kxbhO5mFc/oIzEb+G62C/Djymqv8Mift/OGvM1yFWrj+Uyoei6YdKj/LAmyCsLURkIfC0qv6r1hI1agQRuQRn+vx9BeHG4iwAPVV1T5TXvhM30R9uFadRj/GsQvNU9eQKA5eN2wSnZLup6rfVLZsRH3hWiY9x7xGGs3CUS8xftjXqJqr6dEUKz2MhbnXXahEpvYQfABHpKSKZIWa2n+De/TEaGOre+4ta4YnIWZ5ZvDFuDcBKjry+ZNQzRGQ+znp389EoPDjKl/vqIp5Z4JIwXk+r6lW1LU9DwTNpTa4gWBrOpNkOZ066lyNzS3GDiET6qsyZlZxzNaqPCTiTuABLcK+B1OoiE2tbag9VPaeq16hV86ZhGIZhxBIzbxqGYRgNhrgyb7Zq1Uo7d+4cazEMwzCMWmTp0qW7VDWqD19UlbhSep07d2bJkiWxFsMwDMOoRUSkou/aVhtm3jQMwzAaDKb0DMMwjAaDKT3DiEO2PnUle2/rzNdL3461KIZRr4irOb1wFBQUsGXLFnJzc2MtilGHSElJoUOHDiQmJlYcOM7Y/NUKOm5wnwfd/d/pcGKZPVENwzhK4l7pbdmyhbS0NDp37owcxX6BRsNDVdm9ezdbtmyhS5cusRan0uz+4nU6Agsbn8Gog2+w97sNtGgXblMRwzAqS9ybN3Nzc0lPTzeFZ0SNiJCenl5nrQOJWxazRVvT4Ye/A2D9R/NjK5Bh1CPiXukBpvCMSlOX60xazga+Szme43sNYDfNSNj8caxFMox6Q51QeobRUAgUFtC2YAt5zU5AfD6+bdyPDtnLYy2WYdQbTOlFgYjwm9/8pvj8nnvuYfr06bETqAIWLlzI//5X6X1sS3DGGWfQvHlzfvSjH1WTVEY0fPftGhIlQHLbngDkHTuIY3Une7ZvjrFkhlE/MKUXBcnJybz44ovs2rWrWq+rqgSDR7UPYrlUh9K74YYbeOqpp6pJIiNa9m7LAiDtWLdwpcXxgwHYuGpxrEQyjHqFKb0oSEhI4Morr+S+++4r47dz504mTpzI4MGDGTx4MB995DZYnj59Ovfcc09xuL59+5KVlUVWVhY9evRgypQp9O3bl82bN3PDDTfQt29fMjIymDvXLVVfuHAho0aN4vzzz6dnz55MnjyZcDtizJgxg969e5OZmclFF11EVlYWM2fO5L777qN///58+OGH5cp46aWXctJJJ9GtWzceffTR4uv+4Ac/IC0trdx8ee655+jbty/9+vXjlFNOAdzCo8svv5yMjAwGDBjAe++9B8Ds2bM555xzOP300+ncuTMPPfQQf/vb3xgwYADDhg1jzx63v+yjjz7K4MGD6devHxMnTuTQoUNl0h02bBirVx/ZBHrUqFH15vN1h/dsAaBZ644AdOl7EgAHN34eM5kMoz5R5VcWRORa4BdAAHhVVX8X4nccsAaYrqr3RLhE1Nz6ymrWfHegqpcpQe92TfnzWX0qDPeLX/yCzMxMfve735Vw/9WvfsWvf/1rRowYwaZNmxg3bhxr164t91pfffUVTzzxBMOGDeOFF15g+fLlfPHFF+zatYvBgwcXK5Bly5axevVq2rVrx/Dhw/noo48YMWJEiWvdcccdfPvttyQnJ7Nv3z6aN2/OVVddRZMmTfjtb92erT/+8Y8jyrhixQoWL17MwYMHGTBgAOPHj6ddu3ZR5d1tt93Gm2++Sfv27dm3bx8ADz/8MCLCypUrWbduHWPHjuXLL78EYNWqVSxbtozc3FxOOOEE7rzzTpYtW8avf/1rnnzySa677jrOO+88fvrTnwLwpz/9iVmzZnHttdeWSHfSpEnMmzePW2+9lW3btrFt2zYGDRoUlczxTuG+7wBo2bYTAKlNW7DF15aUXStjKZZh1BuqpPREZDRuE8d+qponIseUCvI34PWqpBEvNG3alClTpjBjxgxSU1OL3d9++23WrFlTfH7gwAFyciLtNero1KkTw4YNA2DRokVcfPHF+P1+2rRpw6mnnspnn31G06ZNGTJkCB06dACgf//+ZGVllVF6mZmZTJ48mXPOOYdzzjknbHrlyThhwgRSU1NJTU1l9OjRfPrppxGvU5rhw4czdepULrzwQs4777zi+ylSUj179qRTp07FSm/06NGkpaWRlpZGs2bNOOusswDIyMhgxYoVgFOMf/rTn9i3bx85OTmMGzeuTLoXXnghY8eO5dZbb2XevHmcf/75UclbF/BlbyObRqQ1blrstrNxT9pmryknlmEY0VLVkd7VwB2qmgegqjuKPETkHOBb4GAV0ygmmhFZTXLdddcxcOBALr/88mK3YDDI4sWLSUlJKRE2ISGhxHxd6DtjjRs3jiq95OTk4mO/309hYWGZMK+++ioffPABr7zyCrfffjsrV5YdEUSSEcou7a/MUv+ZM2fyySef8Oqrr3LiiSeydOnScsOH3o/P5ys+9/l8xfc2depU5s+fT79+/Zg9ezYLFy4sc5327duTnp7OihUrmDt3LjNnzoxa5ngn6fB29vhaEWpYLjgmg/bZ77Fn13ZatmoTM9kMoz5Q1Tm97sBIEflERN4XkcEAItIEuBG4taILiMiVIrJERJbs3LmziuLULC1btuTCCy9k1qxZxW5jx47lwQcfLD5fvnw54LZJ+vxzNw/z+eef8+2334a95siRI5k7dy6BQICdO3fywQcfMGTIkKjkCQaDbN68mdGjR3PnnXeyf/9+cnJySEtLIzs7u0IZAV5++WVyc3PZvXs3CxcuZPDgwVGlDbBhwwaGDh3KbbfdRuvWrdm8eTMjR47kmWeeAeDLL79k06ZN9OjRI+prZmdn07ZtWwoKCoqvE45JkyZx1113sX//fjIzM6O+frzTJH8H2UmtSrg17nwiAFvW2GIWw6gqFSo9EXlbRFaF+U3AjRRbAsOAG4B54oYK04H7VLV8Ox+gqv9U1UGqOqh161rZQ7BK/OY3vymxinPGjBksWbKEzMxMevfuXTzqmDhxInv27KFPnz489NBDdO/ePez1zj33XDIzM+nXrx+nnXYad911F8cee2xUsgQCAS655JLiRSO//OUvad68OWeddRYvvfRS8UKWSDKCM4+OHj2aYcOGcfPNNxfP540cOZILLriAd955hw4dOvDmm28CcMstt7BgwQLArfDMyMigb9++nHzyyfTr14+f//znBINBMjIymDRpErNnzy4xwquIv/zlLwwdOpThw4fTs2fPYvcFCxZwyy23FJ+ff/75PPvss1x44YVRX7su0KxwD4eTSyq9jr2cKTwnq/yRtGEYFSPhVgRGHVnkDeBOVX3PO9+AU4AvAh29YM2BIHCLqj5U3vUGDRqkpVfhrV27ll69eh21jEZkpk+fXmLBS32jLtadg39uw8pjz2HY1Y+UcP/+1hPY0iSDQb95KUaSGUbNISJLVbVWVqNVdU5vPjAaeE9EugNJwC5VHVkUQESmAzkVKTzDaOjk5h6mseRCaosyftsa9aBNzroYSGUY9YuqKr3HgMdEZBWQD1ymVRk6GrVKPH9VpiFyYM9OUgBfo7JKL7dVXzpuXET2/j2kNWtZ+8IZRj2hSkpPVfOBSyoIM70qaRhGQyF73w6OARKbtCrj16jTibDRLWbpddIPa184w6gn2BdZDCNOOLTPrV5OSksv49fOW8xy4Jv68eUZw4gVpvQMI07Iy94NQKNmZVcxt257HDtoScKOFbUtlmHUK0zpGUacUJDjlF6T5uFf3fkutTuts8v/xJ1hGOVjSi9K5s+fj4iwbl3kFXRZWVn07du3RuVYvnw5r732WpWuMW3aNI455pgal9WoHHrQfXS7SYvSX/Nz5LTqR4fAVg7tj++POBhGPGNKL0rmzJnDiBEjmDNnTlj/cJ8IqyyBQKDCMNWh9KZOncobb7xRpWsY1Y8vby8F6icl5LuboTTufgo+UbKWvl3LkhlG/cGUXhTk5OSwaNEiZs2axbPPPlvsvnDhQkaOHMnZZ59N7969Aaf8Jk+eTK9evTj//POLt8Z55513GDBgABkZGUybNo28vDzAfa7sxhtvZODAgTz33HMl0i29dU9+fj633HILc+fOpX///sydO5eDBw8ybdo0hgwZwoABA3j55ZcBt5XPhAkTGDVqFN26dePWW498Ee6UU06hZcvyl72///779O/fn/79+zNgwACys7NR1YjbIJ166qlMmDCBrl27ctNNN/HMM88wZMgQMjIy2LBhAwCvvPIKQ4cOZcCAAYwZM4bt27eXSfeiiy7i1VdfLT6fOnUqzz//fHQFVcfx5R0gRxohvvCPZbeBo8jTRA599X4tS2YY9Ycqby1Uq7x+E3xfzVusHJsBZ95RbpCXX36ZM844g+7du5Oens7SpUs58UT3PcTPP/+cVatW0aVLF7Kysli/fj2zZs1i+PDhTJs2jb///e9cc801TJ06lXfeeYfu3bszZcoU/vGPf3DdddcBkJ6eXvydzlBKb92TlJTEbbfdxpIlS3joIfeu/x/+8AdOO+00HnvsMfbt28eQIUMYM2YMAJ9++imrVq2iUaNGDB48mPHjx0e9Bc8999zDww8/zPDhw8nJySElJYUXX3wx4jZIX3zxBWvXrqVly5Z07dqVK664gk8//ZQHHniABx98kPvvv58RI0awePFiRIR//etf3HXXXdx7770l0i3aNmj8+PHk5+fzzjvv8I9//CMqmes6vvwcDksqZd/SczRp3IRVST1psfOzWpXLMOoTNtKLgjlz5nDRRRcBbiQSauIcMmQIXbp0KT7v2LEjw4cPB+CSSy5h0aJFrF+/ni5duhR/f/Oyyy7jgw8+KI4zadKksOkWbd3z6KOPRjR9vvXWW9xxxx3079+fUaNGkZuby6ZNmwA4/fTTSU9PJzU1lfPOO49FixZFfc/Dhw/n+uuvZ8aMGezbt4+EhISI2yABDB48mLZt25KcnMzxxx/P2LFjAbdtUFZWFgBbtmxh3LhxZGRkcPfdd5fYCLaIM888k/fee4+8vDxef/11TjnllBJbOdVn/IUHyfM1KjfMvjbD6FKwgYN7ttWSVIZRv6hbI70KRmQ1wZ49e3j33XdZuXIlIkIgEEBEuPvuu4Gy2wQdzVY9kbYaimbrHlXlhRdeKLOTwSeffFKlbYNuuukmxo8fz2uvvcbw4cOLPzgdiWi2Dbr22mu5/vrrOfvss1m4cGHYL8KkpKQwatQo3nzzTebOnVvc2WgIJBYeqlDppfU7C9+WR9mw6Dkyz/5lLUlmGPUHG+lVwPPPP8+ll17Kxo0bycrKYvPmzXTp0oUPP/wwbPhNmzbx8ccfA/Dvf/+bESNG0KNHD7Kysvj6668BeOqppzj11FMrTDvc1j2ltw0aN24cDz74IEVff1u2bFmx33//+1/27NnD4cOHmT9/fvEINBo2bNhARkYGN954I4MHD2bdunVV2gYJYP/+/bRv3x6AJ554ImK4SZMm8fjjj/Phhx9yxhlnRH39uk5i8BAF/vKVXt+BI/mO1vjWvVJLUhlG/cKUXgXMmTOHc889t4TbxIkTI67i7NGjBw8//DC9evVi7969XH311aSkpPD4449zwQUXkJGRgc/n46qrrqow7XBb94wePZo1a9YUL2S5+eabKSgoIDMzkz59+nDzzTcXxx8yZAgTJ04kMzOTiRMnFs/nXXzxxZx00kmsX7+eDh06FO8POHPmzOJth+6//3769u1LZmYmiYmJnHnmmVXaBgnctz4vuOACTjzxRFq1OvKprSVLlnDFFVcUn48dO5b333+fMWPGkJSUFPX16zrJgUMUJpa/wbDf7+ObNuPoeXAJ2Tuyakcww6hHVGlroeqmqlsLBQoLYcdqDqccQ5OWbWtCxDrD7NmzSyx4aYjUta2Fvp/ela0thnLir8J3qIpYs2YlPeaOZGXny+l/+X21JJ1h1Bx1aWuhuEJ8go8gBCt+380w4o1GephgUpMKw/XuncHiRiPot/EZDu74FY2P6RzV9XNz9nFg704OH8zGV3AQggFUfKgIiA8Q73UJwScg4iMIBIJKIAhBhYDXR/b7BL/fh098+H2CiBBUJaBCIKAEVAmq4hchKcFHol9ITPCR5PcDUBAIUlAYpCAYpKBQKdQgPtycs08E8bl/nzcNHW46OvIMdUmftOatad66YXeCjSPUL6UnPlSBOBq9xoqpU6cyderUWIthREleQSGNOYwkp0UVPu2sO9C5p7HtsUvoct0b+FNClKUqe77bwOYv3qXw2//RbO9KWhVso7kcJKWG5I9n8jSR7Ou/tC2ZDKCOKD1VjWrloYgQRECDtSCVEc/Ek9k+Gg4ezKGlKEQx0gPo07svb/edzmmr/sCOu07k++N+hPoSYPfXtD+wjGN0Ny2BbE3l2+SefH1MJvlNOuBr3Ap/SmOCCakgfkQUNOjGRhoEDXp9RkU1iCD4feATN/Lyi8vXQFDRYJCAKqpKMKj4xI0A3QjNjdICqhQGlMJAkIKg+wdI8LsRYoJPSPQLPnHLCxRF1ZVfUf81WIWyDHy7iKF7FrB7705TegZQB5ReSkoKu3fvJj09PSrFFxRBqFsNnlG9qCq7d+8mJaXujGtyc/YDRD3SA/jB+VezqNkxNF98F5nfzsInynZasrFxBl+2G0rLXqdyfN8hZDagxUClWfIfH+xZQEHuwViLYsQJca/0OnTowJYtW9i5M7qP7Ab27aTQd4Dk3YdrWDIjnklJSaFDhw6xFiNq8g45pedLjW6kB86yMXLs+ejpE9m5PwefwDFNm9CmEu9j1nd8Se7DBgV5h2IsiREvxL3SS0xMLPHFk4rYcus5bE/rS6/rX6hBqQyjesk/eAAAf0r0I70iRIRjmlc+XkMgIdm991iYa0rPcNS79/QKJAl/IDfWYhhGpSg4XKT0wu+wYBwd/iSn9AryzPJjOOqh0kvGF8yPtRiGUSkKDjmll9TIlF51kpjiXvYP5NmcnuGod0qv0JdMQtBGekbdIpDnPi1nSq96SfTMm4ECM28ajnqn9AK+JBKCebEWwzAqheY6pZfcuFmMJalfJKa6kV4w38ybhqPeKT030jPzplG3KDK/pTa2BSnVSXKKG+mZ0jOKqHdKL+BPIVFN6Rl1Cy1wjXJqI1N61UlS0Zdq8s28aTjqndIL+pNJUjNvGnULzT9EUIWk5LrzQn1dIDnVjfS00Ob5DUe9VHo20jPqHAW55EpS+C8rG0dNcnIyBeqHAjNvGo4qKz0RuVZE1onIahG5K8Q9U0Q+9txXikitdGE1IYVkTOkZdQsJ5JJHcsUBjUohIuSRhBSa0jMcVfoii4iMBiYA/VQ1T0SO8dwTgKeBS1X1CxFJBwqqLG0UqD+FZBvpGXUMX2Eu+dJwv5FZk+RJEmLmTcOjqiO9q4E7VN0kmqru8NzHAitU9QvPfbeq1somd5qYQoIECRbWio41jGrBH8glX2ykVxPkkYzPlJ7hUVWl1x0YKSKfiMj7IjI4xF1F5E0R+VxEflfFdKLGl+g+MJt7OKe2kjSMKuMP5FJgI70aIV+S8Nm7u4ZHheZNEXkbODaM1x+9+C2BYcBgYJ6IdPXcR3huh4B3vO3g3wlz/SuBKwGOO+64o7yNI/gS3dTh4UMHaZTWosrXM4zawB/Mo8BnKzdrggJfMn6b0zM8KlR6qjomkp+IXA28qG7Hzk9FJAi0ArYAH6jqLi/ca8BAoIzSU9V/Av8EGDRoUJU3wivaSiT3sL2XY9QdEoJ5FPrMvFkTBHzJ+AM20jMcVTVvzgdGA4hIdyAJ2AW8CWSISCNvUcupwJoqphUVCcnus0N5h7NrIznDqBYSg7mm9GqIQn+KfY/XKKaq++k9BjwmIquAfOAyb9S3V0T+BnwGKPCaqr5axbSiwu9twplvc3pGHSIxmEfAb+bNmqDQn0qj/N2xFsOIE6qk9FQ1H7gkgt/TuNcWapVEbxPOgkM20jPqDkmaT9CUXo1QmNCElKDN6RmOevdFlsRUtzVLYa4pPaPukEwewQRTejVBMLExqZjSMxz1T+l5+5EFTOkZdYhkzUdtpFcjBJOa0FhN6RmOeqf0UrytWYK5Nqdn1A1UlWTyUe8dU6N60aTGJEkh+Xm2mMWoj0qvkduEM5hnSs+oGxTk55MoATDzZo0gSa4jfDhnX2wFMeKCeqf0Ups486bkm9Iz6ga5uW4DWbGRXo3g8xa3HcrZH2NJjHig3im9pKQkcjUR8g/GWhTDiIq8otdrkkzp1QT+VKf08g6a0jPqodIDOCQp+ApM6Rl1g4Jct8jCZyO9GiEhxVl/8g8eiLEkRjxQL5VeLqn4Cu0zZEbdIN8zb/pspFcjJHgjvYLDpvSM+qr0fKn4baRn1BEKPKXnT2ocY0nqJ0mN3eI2U3oGVP0zZHFJvq8R/sJqVnrBIAQL3XGCbQFjVB+Fec4q4U+2kV5NkOopvcLq/kpTMAgi7mfUGeql0itMSCWxiubN7Wv/x5YPnyJ91xLS87eSxhElWqB+DkkKh0nlsKSQK6kUSiIBSaTQl0RQEgn6Egj6EkF8+ES8n4sfbisJ1dJ+WiKcIN6/e8Y0xFPDHFWMhDnyzqvxGdYq7ptR/r2VL2hlbiOW7VZK7k4AEpIbxU6IekyTps0BKMw9+pFeMDeHr99/hsNr3qB19jqaB3fTCLdzQ1CFfEkkn0QKJIkCSaRAkimUJAI+9yv0pxDwJVEgSQRIQPHqp4jTm2HSLHrWBVf7Vd07ncXHpcKWiV+JOh02qIQelg0hAvuS2nLa1fdHn1AcUC+VXiChMY3ydh1V3O2bvmLvvF/QM+cTmmsiaxJ6srHZ6QQbpePzJwCCv/AQCYFDJBQeIiFwmKTAQZKC+fiCBfj1MP5AAQmFBfjV7d6uXstfrADC1DAp/le0gua6+IGpIY5OddYvqrzHVSXZ4O9Cmy59aznVhkGR0gsejXlTla/feoT0xf9Hd93P96SzMbU3WU1GEkxuiqgSDBaigXykMA8J5OML5OIP5uP3/hMK8knI30Oy5pNMPokUlqxfESqbQom2QEIOKvPcRV2Xj6LSH/J1qnykGFM/lV5SUxrnVP49vXVL3qXdfy6hiRbyVodr6HfOrxnQulUNSGgYRm2RkJTCIU3Gl7uvUvG0MJ8vHplG/52vsMLXi9UjHmTQyPEcm1Qvm82jol2sBTgK6mXpBVOa01RzCAYVny+6PlHWqsV0eOXH7PM1IzD5ecZ2y6hhKQ3DqC0OSFP8eXujj6DKykcup//O//Bum6mcNO0eUpMTa05Ao9aol6s3NbUFqZJPzsHoJq4P7NtF4gtTOCiNSPjJ63QyhWcY9YocfxrJBfuiDv/pnL+QufM/vNvmckZfdb8pvHpEvVR6vtQWAGTvjW5e78snruGY4C72/eifHNuha02KZhhGDDjkb0ZKQXRfZPnuq2X0Wz+DZaknM+rKvyG2OrNeUS+Vnr9xSwAO7a9Y6a355G0G7X2dJe0m02PQmJoWzTCMGJCX2IxGgYoXsmgwSPZz13CIFNpf+gg+f71sIhs09bJEk9LSAcjLLl/paTBIwtt/YAct6T/5r7UhmmEYMaAguQVNghVPdyz577P0yF/F+t6/5Jh2x9WCZEZtUy+VXnJTp/Tys3eXG275B/PpXrCerD6/ILVJs9oQzTCMWJDagjTNIRgIRAwSKCyk1Sd3sNXXlsHnXVd7shm1Sr1Ueo2atQag8OCecsMl/u8+dtKSAWf/vDbEMgwjRvgap+MX5UA58/zL3n2OLsGN7Bh4Pf5E++pSfaVeKr0mzZ3SCx6KrPS+Wv4RffNXsKHbVBLtSxiGUa9JSnPv2+7f833EMLL0MXbTgsxxl9WWWEYMqJ9KL605BepHyxnpbX//n+RpIr3H2yjPMOo7yc3bApCza2tY/y/Xr2JA7mds6jwRf2JybYpm1DL1UumJz8duaUHCoe1h/Q9kHyBzz1usbTGKpt6o0DCM+kuj1u5zWXm7N4X13/Lfv6PA8WdeW4tSGbGgXio9gH0JrWmUG17prfzv0zSVQ6SddHktS2UYRixo2bYLAIG9m8v47TuQTb+dr7C+2Qiatulcy5IZtU29VXo5ycfQrGBnWL+0tXPYJm3oOviMWpbKMIxY0LRpU/ZqGhzYUsZv2ZtPki4HaDLyZzGQzKht6q3Sy2t0LOnBXWX2tvn2y5VkFqxga5eJiM8fI+kMw6hNRITdCceQdPC7Eu6qSqt1T7PN35bjThwfI+mM2qTeKj1p1p5U8sgu9VWWre/9i4AKx59+ZYwkMwwjFuQkt6FpXskpj5Wf/4+MwBp2dP8x+Optc2iEUOVSFpFrRWSdiKwWkbs8t0QReUJEVorIWhH5fdVFrRwp6e5rCjs2f1Pslp9fQLdtC1jTeDAtPBu/YRgNg9y0TrQLfEdhQX6x24EPHyGPRLqPuzqGkhm1SZWUnoiMBiYA/VS1D3CP53UBkKyqGcCJwM9EpHNV0qosTdueAMD+rWuL3b5Y+Dxt2IMMvLQ2RTEMIw5IaJdBshSw+auVAOzdvZMBe99gbcvTSbVV3A2Gqo70rgbuUNU8AFXd4bkr0FhEEoBUIB84im2Lj54O3QcQUOHw5pXFbv7PZ7Ob5vQ69aLaFMUwjDig1QmDANj51WcArH397zSWPJqPttcUGhJVVXrdgZEi8omIvC8igz3354GDwDZgE3CPqoZ9U1xErhSRJSKyZOfO8Kstj4aURk34PqEdibvWAPDdxq/od/gTNnQ41z4xZBgNkI49BrKfxvDNexw6lEPXr59kXVIfOmecHGvRjFqkwp3TReRt4NgwXn/04rcEhgGDgXki0hUYAgRwu8m3AD4UkbdV9ZvSF1HVfwL/BBg0aJCW9q8Ku5pl0G33RxQUFPDNq/dxLNB57FXVmYRhGHUEf0IiXzc7mR77PmTpzJ8xkl3sP21GrMUyapkKR3qqOkZV+4b5vQxsAV5Ux6dAEGgF/Bh4Q1ULPJPnR8CgmryRsLJ3O50Wks0Hz81g4Pbn+aLFGI45rmdti2EYRpzQauwNNOYwIw/8h89bnEmPYfaaQkOjqubN+cBoABHpDiQBu3AmzdM898a4keC6KqZVaXqfOokdks4PvryNoPjpeP7ttS2CYRhxRKc+Q9l2/nzWnvw3+v/iqViLY8SACs2bFfAY8JiIrMItVrlMVVVEHgYeF5HVgACPq+qKKqZVaZIapRG48BlWffgvWpw8lfYdetS2CIZhxBkdM06FjFNjLYYRI0S1WqfRqsSgQYN0yZIlsRbDMAzDqEVEZKmq1soUmH2CwDAMw2gwmNIzDMMwGgxxZd4UkZ3Axmq4VCvcgpq6QF2SFeqWvCZrzVGX5K1LskLdkre6ZO2kqrXyWZy4UnrVhYgsqS37cFWpS7JC3ZLXZK056pK8dUlWqFvy1iVZizDzpmEYhtFgMKVnGIZhNBjqq9L7Z6wFqAR1SVaoW/KarDVHXZK3LskKdUveuiQrUE/n9AzDMAwjHPV1pGcYhmEYZTClZxiGYTQY6pXSE5EzRGS9iHwtIjfFWp7SiEhHEXlPRNaIyGoR+ZXnPl1EtorIcu/3w1jLCiAiWSKy0pNpiefWUkT+KyJfef8t4kDOHiF5t1xEDojIdfGUryLymIjs8L5TW+QWNi/FMcOrxytEZGAcyHq3iKzz5HlJRJp77p1F5HBIHs+sTVnLkTdi2YvI7728XS8i4+JA1rkhcmaJyHLPPR7yNlKbFZd1NypUtV78AD+wAeiK2+3hC6B3rOUqJWNbYKB3nAZ8CfQGpgO/jbV8YeTNAlqVcrsLuMk7vgm4M9ZyhqkH3wOd4ilfgVOAgcCqivIS+CHwOu5j7cOAT+JA1rFAgnd8Z4isnUPDxVHehi1773n7AkgGunhthj+Wspbyvxe4JY7yNlKbFZd1N5pffRrpDQG+VtVvVDUfeBaYEGOZSqCq21T1c+84G1gLtI+tVJVmAvCEd/wEcE7sRAnLD4ANqlodX/apNlT1A2BPKedIeTkBeFIdi4HmItK2VgQlvKyq+paqFnqni4EOtSVPRUTI20hMAJ5V1TxV/Rb4Gtd21ArlySoiAlwIzKkteSqinDYrLutuNNQnpdce2BxyvoU4Vigi0hkYAHziOV3jmQMeiweToYcCb4nIUhG50nNro6rbvOPvgTaxES0iF1Gy0YjHfC0iUl7Ge12ehuvNF9FFRJaJyPsiMjJWQoUhXNnHc96OBLar6lchbnGTt6XarLpad+uV0qsziEgT4AXgOlU9APwDOB7oD2zDmTjigRGqOhA4E/iFiJwS6qnOnhE377yISBJwNvCc5xSv+VqGeMvLSIjIH4FC4BnPaRtwnKoOAK4H/i0iTWMlXwh1puxDuJiSHba4ydswbVYxdaXuFlGflN5WoGPIeQfPLa4QkURc5XlGVV8EUNXtqhpQ1SDwKLVobikPVd3q/e8AXsLJtb3IXOH974idhGU4E/hcVbdD/OZrCJHyMi7rsohMBX4ETPYaOjwz4W7veClujqx7zIT0KKfs4zVvE4DzgLlFbvGSt+HaLOpY3Q2lPim9z4BuItLF6/FfBCyIsUwl8Gz2s4C1qvq3EPdQm/e5wKrScWsbEWksImlFx7iFDKtweXqZF+wy4OXYSBiWEj3leMzXUkTKywXAFG8l3DBgf4gpKSaIyBnA74CzVfVQiHtrEfF7x12BbsA3sZHyCOWU/QLgIhFJFpEuOHk/rW35wjAGWKeqW4oc4iFvI7VZ1KG6W4ZYr6Spzh9u5dCXuB7RH2MtTxj5RuDMACuA5d7vh8BTwErPfQHQNg5k7Ypb5fYFsLooP4F04B3gK+BtoGWsZfXkagzsBpqFuMVNvuKU8TagADfP8ZNIeYlb+fawV49XAoPiQNavcXM1RfV2phd2olc/lgOfA2fFSd5GLHvgj17ergfOjLWsnvts4KpSYeMhbyO1WXFZd6P52WfIDMMwjAZDfTJvGoZhGEa5mNIzDMMwGgym9AzDMIwGgyk9wzAMo8FgSs8wDMNoMJjSMwzDMBoMpvQMwzCMBoMpPcMwDKPBYErPMAzDaDCY0jMMwzAaDKb0DMMwjAaDKT3DMAyjwRA3Sk9EOouIevtKGTWIiEwVkUW1lFaqiLwmIntF5He1kWap9LNEZEwtpLNQRK6I4Gd1OwaIyHQRebqyftUsQ7nPWnn1xiiLiLwiIjtF5O6jvUbcKD3j6PAe3gIRyQn51bpyKYcxQCbQUVXvKnL0lFHnmEkVR3hlOL0S4X8sIhtF5KCIzBeRluWE7S8iS0XkkPffv1S6petO1yjjiojcKSK7vd+d3t5rFcb1/AeKyAdemttF5FdR3vtUEZkdTdi6jtdZyqpk+Pe8PF9XXmfP20/wMRE5ICLfi8j1pa6jperFzSH+LUVkrlfuu0TkGQnZ0V1E/iIiK0WksHS99urNH0Vkk5f2s6Xi3iMiX4lItncPU0Ljq+pZwGjgtyLSPNq8CaXalJ71YmPKXFVtEvK7q+IotUZLIEtVc2ItSFXwHtaYdxJFpA/wCHAp0AY4BPw9Qtgk3OaeTwMtgCeAlz33IkrXnW+ijHslcA7QD9epOQv4WTRxRaQV8IZ3H+nACcBbVcqYGBJHbd8cYBkuT/8IPC8irSOEnY7blLYTTon8TtxGwaE0D6kXfwlx/yuuXLsAx+Pq4fQQ/69xGw6/GibdKbi6OxxoB6QCD4b4H8TVpWa4zWkfEJGTQy+gqkUbAqdHuLdyqdJD7PXWbxSRFcBBEUkQkWEi8j8R2SciX4jIqJDwC0Xk/4nIp56WfzlSL1VELheRtZ7G/0ZEflbKf4KILPeus6GowESkmYjMEpFtIrJVRP4q3u7D5dzH8SLybqmeS/MQvz0iMtA7bydueD3KOz9bRFZ797tQRHqVyp/fisgKEdnv9Y5SKp/TlUdEbvLyJVtE1ojIuRHCiYjcJyI7vLxcKSJ9Pb9kr+e1SVxvfKaIpFZSlAQgWIGs6eLMFgdE5DOvzBaF+KuIXOX1APeJyMMiblRRXtmFMNjLg70i8nhRGYhICxH5j1eee73jDiHpLhSR20XkI5xy6Ur5dBKRj7w8f8tr3EOZ7OXlLhH5YwXXisRk4BVV/cDrSNwMnCfeLvelGIXL//tVNU9VZ+A2+TwtinQqinsZcK+qblHVrcC9wNQo414PvKmqz3j+2aq6NvosOIKITBE36t0tIjdLBHO2iCSKyBwReUGOKO4U75nMFpHPRaRfSPiIz4+40eZH3nOzm5INfiQ57/Hq2LcicmYp74rqTTT50B0YCPxZVQ+r6gu4TVwnRohyGfAXVd3r5f2jHCm/iugCzFfVA6q6H3gJ6FPkqapPqOrrQHaYuGcBs1R1s1d/7wQmiUgjL+6fVXWdqgZV9RPgQ+CkMNdRXB2rNNXRc70YGA80x2n8V3E9gZbAb4EXpGRvYwowDWgLFAIzIlx3B/AjoClwOXBfiOIZAjwJ3OClewqQ5cWb7V33BGAAMBaoyGYuwP/D9Tx6AR3xKrKqbgBuBJ72CuZx4AlVXehVtDnAdUBr4DXgFSnZk74QOANXUTKJULFEZITXoEf6jajgHkqzARiJ6zHd6snfNky4sbj86+6FvRC3AznAHZ57f1x+tgduiVYAEUnENYCbSvupamdVzfJOH8b18I7FPYyXhbncj4DBuDy8EBhXlAwRyi6EyV744737+ZPn7sOVZyfgOOAw8FCpuJfiRjVpwMby7hf4Ma6uHgMk4ep/KCOAHsAPgFuKOkiqOl1Vi2WuoLz74Hazx4u7Acj37itc2BVacqfoFYQ0UMBZ4jp1q0Xk6krELSGHd9wnyrjDgD3iOsc7vA7PcRHutwSqOltVpwKISG/cKHcyrj1phqujJfA6avOBPOBCVc33vCYAz+Haqn8D8706CxU/P0OBb3Bt3u0ViD0Ut0t7K+AuYFZRp80jbL1R1SxV7RxyH38XkbCjelzefqOqoYomtEyKEZEWuPyKVH5FbBSRLV5HMVQRPwz8yOs0tsAp1tcjyBUOKXWcjBt1lpYzFffMrw5zjc3AmFL5GB1V3Eo+C5gWcn4j8FSpMG8Cl3nHC4E7Qvx64x5YP9AZT3tHSGs+8Cvv+BHgvjBh2uAqdmqI28XAe5W8r3OAZaXcFuB6TiuAZM/tZmBeSBgfsBUYFZI/l4T43wXMrEqeh5F1upeH+0J+7cKEWw5M8I6nAou849OAL3ENkS8kvOAU0fEhbicB30YpV3+gANgOnFBOOL8XrkeI21+L5PPOFRgRcj4PuCmasvPK4KqQ8x8CG8qReW/I+ULgtijvdyHwp5DznwNveMdFdbtDiP+nwEVHUd7vhN6P51Zc50q53ww8W8rtGWC6d9wb11nwAycD24CLo4wbAHqG+HXz7lGiiPulV08HAym4ju9HR5EXtwBzQs4b4Z6FMSHPxgLgfS8NKfXcLA4593n3PzJCWssp+fxsilLGqcDXpWRU4NiK6k0l8+LS0Pvx3G4HZocJ29GTISXE7XTcNARAE2AQbiTVBngeNzIvCtsOeBtnwQkC/wWSwqTzdFGZh7hd4ZV/Z1yHYoEny0lh4j+BM4NLGL9zvbLeV9m8qo6R3uaQ407ABaEjFFzvtm2E8BuBRFwPqAQicqaILPZ6oftwjVVRuI64nlhpOnnX2xaS/iO4HlRERKSNuAnVrSJyAFdYpWV6FOgLPKiqeZ5bO0J6/6oa9O4vtLf5fcjxIVyFqm7mqWrzkN93ntlneUg+9CVMPqvqu7jRzcPADhH5p7iJ5da4B3RpyDXe8NwrRFWX40ZHH+NGwpFojXu4QuvF5jDhwuZjlGVXus618+I2EpFHPPPYAeADoLmUNIeHkyUSFZV1ddSFHJz1I5SmhDcllRtWVdeo6neqGlDV/wEPAOdHmU5p/6ZAjroWqaK4h4GXVPUzVc3FjaROFpFmYe6hPNoRUj6qeogjVooihuGsA3d4soUSGjcIbOFI3ajo+TmqeuHJCCXLPhb1osi/TFhVzVHVJapaqKrbgWuAsSEm9Hk4xZXmxduAe+6i4TGcdWwhbgT3nue+JTSQuNWZfXEj89LlBq7OTMeN0itFdSi9UIE240Z6oQ1wY1W9IyRMx5Dj43C9/F2hFxSRZOAF4B6gjao2x5kOi4aym3GmqtJsxo30WoWk31RVywzxS/F/3n1kqGpT4JKQtBCRJsD9wCxguhyZh/wOp2iLwol3f1srSK8MIjJSSq6WKv0bWYlrdcIp6WuAdC//VlHSrFCMqs5Q1RNxPf/uOLPxLlzj1CckL5upatQPpNegve5dNxI7ceboDiFuHSOEDUe5ZRfmesfhyg3gNzhz41Av7imee2j8cA9cLFmNWzwCgLjVlsm4Rihc2MxSJqBMwpuL4MhILZq4JeTwjldHGXcFJfP1aPN4GyH1xjOHlV7c8BbO/P2OiLQp5VdcL8QtUuoAfBfl8xOP9aKrlJzbDS2TYlR1Ly7vIpVfmSjef5G+6A88oqoH1c3LzcQNSipE3Vzdn9VNb3Tw0txKSJspIrcCZwJjVfVAhEv1Al72OiuVorpXoz2NmyMYJyJ+EUkRkVESsjgAuEREenvzY7cBz6tqoNR1knAP8k6g0Jv4HRviPwu4XER+ICI+EWkvIj1VdRuukt8rIk09v+NF5NQK5E7D9X72i0h7XKMfygPAElW9AjdnOdNznweM9+RIxDWiecD/Ksqo0qjqh1pyFV3p34eVuFxjXEXdCW5REK7XVAYRGSwiQz35DwK5QNCrTI/i5lKP8cK2F5FxIXFVQhYqRSAPV55h8cr+RVxnopGI9MTN+0ZLRWUH8AsR6eB1Vv4IzA2JexjY5/n9uRLpxopncM/YSBFpjHuGXtSSczlFLMSZIX8pblHSNZ77u1C8GKyFOIYAv8StuqwwLm5O/XqvTrTD1f3ZUcZ9HDhX3GsNiThz6CJ1iyKKFhBNjyIvnvfy4mRx8+jTCdOxU7ea+d84xRc6WjtRRM4Tt/ryOlxdXUwlnp94QVW/xJlg/+y1u+fiOhovRIjyJPAnr/x7Aj/FKz+vPejhtZ/pONPwwqLyAT4DrhD3Dm4qbs57RdGFxS0aSsHplwRPHr/n19Jrk0XcnOzfcFMIQc//97g5zjGqWnrUHkoCrrwqTbUqPVXdjJsc/gOuwmzGNUKh6TyFy9zvcfb8X4a5TrbnPg/Yi8uEBSH+n+ItbgH242z2RSOuKbhGdo0X93lKmlfDcStu5dN+nFJ7schDRCbgFqIUTfJfDwwUkcmquh43sngQNzI6CzhLj0yUxwRVXYNbTfcxbk4tA/goQvCmOOW2F2f62w0Uvfh5I2758WLP/Pc2bmSEiHTEmUNWViBOkIrr2TU4+/73uPoxh+grdMSyC+HfuM7QNzhTzF899/txS6Z34Rq7N6JMs0Ypb2SvqquBq3DKbwdOcf88JO7rIvIHL2w+bo5zCm4ObRpwTkj9vAhXvtm4RvBOVX0iyriPAK/gyn8VLu8fiSauZ1L/gxdnB26R1I9DbrMjketr6by4FngWN3LJ8a5Xpu6oW3I/H3g7xFLzMjAJV/cvBc5T1YJKPj+1hrjV0zPLCXIRbi5uL24R2vmqWqS4J4tI6Ejuz7hnYSOu/bxbVYvqf1fcs5CNK9s83NqIIqbh5uS24EZoXSm5+OxRXGfyYlwn8zAuf8GZiF/DdbBfBx5T1X+GxP0/nDXm6xAr1x9K5UPR9EOlR3ngTRDWFiKyEHhaVf9Va4kaNYKIXIIzff6+gnBjcRaAnqq6J8pr34mb6A+3itOox3hWoXmqenKFgcvGbYJTst1U9dvqls2IDzyrxMe49wjDWTjKJeYv2xp1E1V9uiKF57EQt7prtYiUXsIPgIj0FJHMEDPbT3Dv/hgNDHXv/UWt8ETkLM8s3hi3BmAlR15fMuoZIjIfZ727+WgUHhzly311Ec8scEkYr6dV9aralqeh4Jm0JlcQLA1n0myHMyfdy5G5pbhBRCJ9VebMSs65GtXHBJxJXIAluNdAanWRibUttYeqnlPVa9SqedMwDMMwYomZNw3DMIwGQ1yZN1u1aqWdO3eOtRiGYRhGLbJ06dJdqhrVhy+qSlwpvc6dO7NkyZJYi2EYhmHUIiJS0Xdtqw0zbxqGYRgNBlN6hhGHrNi0k407I32ByTCMo8WUnmHEIZ1nZZD34LBYi2EY9Y64mtMLR0FBAVu2bCE3NzfWohh1iJSUFDp06EBiYmLFgeOQpnKYplLp75YbhlEBca/0tmzZQlpaGp07d0aOYr9Ao+GhquzevZstW7bQpUuXWItjGEYcEffmzdzcXNLT003hGVEjIqSnp5t1wDCMMsS90gNM4RmVxuqMYRjhqBNKzzAaFMGj2jHFMIwoMKUXBSLCb37zm+Lze+65h+nTp8dOoApYuHAh//tfpfexLWb58uWcdNJJ9OnTh8zMTObOnVtxJKP6KLOnsmEY1YUpvShITk7mxRdfZNeuXdV6XVUlWAO9+qoqvUaNGvHkk0+yevVq3njjDa677jr27dtXfQIa5RMoKD7UoClAw6hOTOlFQUJCAldeeSX33XdfGb+dO3cyceJEBg8ezODBg/noI7fB8vTp07nnnnuKw/Xt25esrCyysrLo0aMHU6ZMoW/fvmzevJkbbriBvn37kpGRUTyqWrhwIaNGjeL888+nZ8+eTJ48mXA7YsyYMYPevXuTmZnJRRddRFZWFjNnzuS+++6jf//+fPjhh+XKeOmll3LSSSfRrVs3Hn30UQC6d+9Ot27dAGjXrh3HHHMMO3fuLJP2c889R9++fenXrx+nnHIK4BYeXX755WRkZDBgwADee+89AGbPns0555zD6aefTufOnXnooYf429/+xoABAxg2bBh79rj9ZR999FEGDx5Mv379mDhxIocOHSqT7rBhw1i9+sgm0KNGjapXn6/T4BGll59X9v4Nwzh64v6VhVBufWU1a76r3q9U9G7XlD+f1afCcL/4xS/IzMzkd7/7XQn3X/3qV/z6179mxIgRbNq0iXHjxrF27dpyr/XVV1/xxBNPMGzYMF544QWWL1/OF198wa5duxg8eHCxAlm2bBmrV6+mXbt2DB8+nI8++ogRI0aUuNYdd9zBt99+S3JyMvv27aN58+ZcddVVNGnShN/+1u3Z+uMf/ziijCtWrGDx4sUcPHiQAQMGMH78eNq1a1d8/U8//ZT8/HyOP/74Mvdx22238eabb9K+ffvikeDDDz+MiLBy5UrWrVvH2LFj+fLLLwFYtWoVy5YtIzc3lxNOOIE777yTZcuW8etf/5onn3yS6667jvPOO4+f/vSnAPzpT39i1qxZXHvttSXSnTRpEvPmzePWW29l27ZtbNu2jUGDBpWb53WJYCCA3zvOP3yQ5NS0mMpjGPUJG+lFSdOmTZkyZQozZswo4f72229zzTXX0L9/f84++2wOHDhATk6kvUYdnTp1Ytgw97WNRYsWcfHFF+P3+2nTpg2nnnoqn332GQBDhgyhQ4cO+Hw++vfvT1ZWVplrZWZmMnnyZJ5++mkSEsL3YcqTccKECaSmptKqVStGjx7Np59+Whxv27ZtXHrppTz++OP4fGWryvDhw5k6dSqPPvoogUCg+H4uucTtp9mzZ086depUrPRGjx5NWloarVu3plmzZpx11lkAZGRkFN/bqlWrGDlyJBkZGTzzzDMlRnRFXHjhhTz//PMAzJs3j/PPP7/c/K5rFBTkHznOOxxDSQyj/lGnRnrRjMhqkuuuu46BAwdy+eWXF7sFg0EWL15MSkpKibAJCQkl5utC3xlr3LhxVOklJycXH/v9fgoLC8uEefXVV/nggw945ZVXuP3221m5cmWZMJFkhLJL+4vODxw4wPjx47n99tuLFXRpZs6cySeffMKrr77KiSeeyNKlS6O+H5/PV3zu8/mK723q1KnMnz+ffv36MXv2bBYuXFjmOu3btyc9PZ0VK1Ywd+5cZs6cWW66dY1AYah505SeYVQnNtKrBC1btuTCCy9k1qxZxW5jx47lwQcfLD5fvnw54LZJ+vzzzwH4/PPP+fbbb8Nec+TIkcydO5dAIMDOnTv54IMPGDJkSFTyBINBNm/ezOjRo7nzzjvZv38/OTk5pKWlkZ2dXaGMAC+//DK5ubns3r2bhQsXMnjwYPLz8zn33HOZMmVKuaOoDRs2MHToUG677TZat27N5s2bGTlyJM888wwAX375JZs2baJHjx5R3Q9AdnY2bdu2paCgoPg64Zg0aRJ33XUX+/fvJzMzM+rr1wUCIZ2bwjx7wd4wqhNTepXkN7/5TYlVnDNmzGDJkiVkZmbSu3fv4lHHxIkT2bNnD3369OGhhx6ie/fuYa937rnnkpmZSb9+/TjttNO46667OPbYY6OSJRAIcMkllxQvGvnlL39J8+bNOeuss3jppZeKF7JEkhGceXT06NEMGzaMm2++mXbt2jFv3jw++OADZs+eTf/+/enfv3+xorzllltYsGABADfccAMZGRn07duXk08+mX79+vHzn/+cYDBIRkYGkyZNYvbs2SVGeBXxl7/8haFDhzJ8+HB69uxZ7L5gwQJuueWW4vPzzz+fZ599lgsvvDDqa9cVCgtDzJv5tpDFMKoTCbcisFoTEDkDeADwA/9S1TsihR00aJCWXoW3du1aevXqVaMyNlSmT59eYsFLfaOu1p1dG1fT6vGTAfj6R89zwqDTYyyRYdQsIrJUVWtlNVqNjvRExA88DJwJ9AYuFpHeNZmmYdR1CkMWshTmm3nTMKqTml7IMgT4WlW/ARCRZ4EJwJoaTteIgnj+qkxDJnROL2BKzzCqlZqe02sPbA453+K5FSMiV4rIEhFZEu4FaMNoaAQDR5ResMBWbxpGdRLzhSyq+k9VHaSqg1q3bh1rcQwj5gRCFrIEbaRnGNVKTSu9rUDHkPMOnpthGBEIlBjpmdIzjOqkppXeZ0A3EekiIknARcCCGk7TMOo0wZA5PTWlZxjVSo0qPVUtBK4B3gTWAvNUtex3peoA8+fPR0RYt25dxDBZWVn07du3RuVYvnw5r7322lHHL3qZvXfv3vTp04cHHnigGqUzqoNgyC4LgUJTeoZRndT4nJ6qvqaq3VX1eFW9vabTqynmzJnDiBEjmDNnTlj/cJ8IqyxF368sj6oqvYSEBO69917WrFnD4sWLefjhh1mzxhbTxhOhC1kozIudIIZRD4n5Qpa6QE5ODosWLWLWrFk8++yzxe4LFy5k5MiRnH322fTu7V4/LCwsZPLkyfTq1Yvzzz+/eGucd955hwEDBpCRkcG0adPIy3ONWefOnbnxxhsZOHAgzz33XIl0S2/dk5+fzy233MLcuXPp378/c+fO5eDBg0ybNo0hQ4YwYMAAXn75ZcBt5TNhwgRGjRpFt27duPXWWwFo27YtAwcOBCAtLY1evXqxdWvZadb333+/+GssAwYMIDs7G1WNuA3SqaeeyoQJE+jatSs33XQTzzzzDEOGDCEjI4MNGzYA8MorrzB06FAGDBjAmDFj2L59e5l0L7roIl599dXi86lTpxZ/XLqhEAz59iZm3jSMaqVOfXCa12+C78t+ULlKHJsBZ0b8SAzgvk95xhln0L17d9LT01m6dCknnngi4L6ruWrVKrp06UJWVhbr169n1qxZDB8+nGnTpvH3v/+da665hqlTp/LOO+/QvXt3pkyZwj/+8Q+uu+46ANLT04u/0xlK6a17kpKSuO2221iyZAkPPfQQAH/4wx847bTTeOyxx9i3bx9DhgxhzJgxgNsWaNWqVTRq1IjBgwczfvz4ElvwZGVlsWzZMoYOHVom7XvuuYeHH36Y4cOHk5OTQ0pKCi+++GLEbZC++OIL1q5dS8uWLenatStXXHEFn376KQ888AAPPvgg999/PyNGjGDx4sWICP/617+46667uPfee0ukW7Rt0Pjx48nPz+edd97hH//4R5SFWT8IlBjpmdIzjOrERnpRMGfOHC666CLAjURCTZxDhgyhS5cuxecdO3Zk+PDhAFxyySUsWrSI9evX06VLl+Lvb1522WV88MEHxXEmTZoUNt1wW/eU5q233uKOO+6gf//+jBo1itzcXDZt2gTA6aefTnp6OqmpqZx33nksWrSoOF5OTg4TJ07k/vvvp2nTpmHTvv7665kxYwb79u0jISGh3G2QBg8eTNu2bUlOTub4449n7NixQMltg7Zs2cK4cePIyMjg7rvvDrtt0Jlnnsl7771HXl4er7/+Oqeccgqpqalh772+oiFzehIw86ZhVCd1a6RXwYisJtizZw/vvvsuK1euREQIBAKICHfffTdQdpugSFv1lEekrYai2bpHVXnhhRfK7GTwySefRJSloKCAiRMnMnnyZM4777ywad90002MHz+e1157jeHDh/Pmm2+Wew/RbBt07bXXcv3113P22WezcOHCsF+ESUlJYdSoUbz55pvMnTu3uLPRkFCb0zOMGsNGehXw/PPPc+mll7Jx40aysrLYvHkzXbp04cMPPwwbftOmTXz88ccA/Pvf/2bEiBH06NGDrKwsvv76awCeeuopTj311ArTDrd1T+ltg8aNG8eDDz5I0YfDly1bVuz33//+lz179nD48GHmz5/P8OHDUVV+8pOf0KtXL66//vpy087IyODGG29k8ODBrFu3rkrbIAHs37+f9u3dB3meeOKJiOEmTZrE448/zocffsgZZ5wR9fXrC8HgEaXns5GeYVQrpvQqYM6cOZx77rkl3CZOnBhxFWePHj14+OGH6dWrF3v37uXqq68mJSWFxx9/nAsuuICMjAx8Ph9XXXVVhWmH27pn9OjRrFmzpnghy80330xBQQGZmZn06dOHm2++uTj+kCFDmDhxIpmZmUycOJFBgwbx0Ucf8dRTT/Huu+8WL1QpWg06c+bM4m2H7r//fvr27UtmZiaJiYmceeaZVdoGCdy3Pi+44AJOPPFEWrVqVey+ZMkSrrjiiuLzsWPH8v777zNmzBiSkpKivn59Qb2RcZ4mmtIzjGqmxrcWqgy2tVD1MXv27BILXhoidbXufPbiAwxecQv7tAkbm2TS74bXYy2SYdQo9WZrIcMwjgLPvHlYUvDbSM8wqpW6tZDFiJqpU6cyderUWIthHAVFc3q5koo/mF9BaMMwKkOdGOnFkwnWqBvU5TpTtHoz35dKgik9w6hW4l7ppaSksHv37jrdiBm1i6qye/duUlJSYi3K0eGN9PL9qSSoKT3DqE7i3rzZoUMHtmzZgm0wa1SGlJQUOnToEGsxjoqikV6hP5WEwl0xlsYw6hdxr/QSExNLfPHEMOo9QfdFloKEJiTm2kjPMKqTuDdvGkZDQ7zPkAUTGpNk5k3DqFZM6RlGvBHIJ1/9aEISiRRUHN4wjKgxpWcYcYYECyggAU1IIUlN6RlGdWJKzzDijUAhhSSAP5lkKUCDwVhLZBj1BlN6hhFnSDCfAkmEBPfKRaFtJGsY1YYpPcOIMyRQQCEJSKJTermHD8VYIsOoP5jSM4w4Q4IFFEoCvgS3J2F+nik9w6guTOkZRpzhC+YTkCMjvYLcwzGWyDDqD6b0DCPOkGABAUnAl+QpvTxTeoZRXZjSM4w4wxcsICCJ+IpGevm2kMUwqgtTeoYRZ/iChQQkEX9iKgAFuTanZxjVhSk9w4gzfFpA0JeI3zNvFtpIzzCqDVN6hhFn+LWQoCSQkOxGeoF8G+kZRnVhSs8w4gx/sICgL4GEpCKlZyM9w6guTOkZRpyRSD4BXzKJ3kgvmG+rNw2jujClZxhxRkowlwJ/YxJTGgMQLDClZxjVhSk9w4gzUjlMILERiSneSM+UnmFUG6b0DCPOSNXDkNiY5NQmzsHMm4ZRbZjSM4w4Ii/vMEkSgOTGpKQ0AkBtpGcY1YYpPcOIIw5lHwDAl9yExMQkAipoYV6MpTKM+oMpPcOIIw4f3A+ALzkN8fnIIwkptFcWDKO6MKVnGHHE4ex9ACSmpgGQJ0lIoZk3DaO6MKVnGHFE3oEdACSktQYgnyR8ATNvGkZ1YUrPMOKIQ3u3A5CW3haAfElGTOkZRrVhSs8w4oj8/U7ptWjVDoACXxL+gM3pGUZ1USWlJyLTRWSriCz3fj8M8fu9iHwtIutFZFzVRTWM+o/mbCegQlrLYwAolCT8NtIzjGojoRqucZ+q3hPqICK9gYuAPkA74G0R6a6qgWpIzzDqLY2zv+U737F09LtHs9CXQkLQlJ5hVBc1Zd6cADyrqnmq+i3wNTCkhtIyjHpD+uFv+T6pc/F5wJ9sSs8wqpHqUHrXiMgKEXlMRFp4bu2BzSFhtnhuZRCRK0VkiYgs2blzZzWIYxh1Ey3M59jCreQ0PaHYLeBLJlHzYyiVYdQvKlR6IvK2iKwK85sA/AM4HugPbAPurawAqvpPVR2kqoNat25d2eiGUW/Ys2UdiQTwH9Oj2C3oTyZRbaRnGNVFhXN6qjommguJyKPAf7zTrUDHEO8OnpthGBHY+c1K0oGmx/Utdgv4U0iykZ5hVBtVXb3ZNuT0XGCVd7wAuEhEkkWkC9AN+LQqaRlGfefQ1tUAtDshs9hNE0zpGUZ1UtXVm3eJSH9AgSzgZwCqulpE5gFrgELgF7Zy0zDKx797PVtpTbuWLYvdNCGFZEzpGUZ1USWlp6qXluN3O3B7Va5vGA2JZjnfsD25M+1FjjgmpJAq+QQCQfx++5aEYVQVe4oMIw7QQCFtCzdzqOnxJdwlIQWA3NxDsRDLMOodpvQMIw7YueVLkinAd0zPEu6SlApA3mFTeoZRHZjSM4w4YPuGLwBodlxGCXdJLBrpHax1mQyjPlIdnyEzDKOKHNy6FoD2J/Qr4e5LdCO9/KMY6eUePsi6j18l9+sPScjeTGrebkSDCEEUHypFPz9B8aPih9DzetAnTvAJpLWl37QHEJ8/1uIYcYApPcOIA2TPt+wjjebpJT/Q4E9uBEBBJUZ6h3MO8MXcW+mxeS79ySZf/ezwHUN2QkuCkkBQEhBVhAD+YCGiAXwaxEcA8f7deRBFKk4wjknRw7Tev5eNX11Bpx79Yy2OEQeY0jOMOKDRwc3sSGhL81Lufm9OrzA/ut3TV/3vNVq99UuGsZPljU5my5Cf0G3IODo0SqtegesI65a8Q+v/nMeezWtN6RlAPVR6B7P306hxGuKr+6YZo+HQsuA7vk/rW8Y9wVN6BXkVK73F8+7hxNX/x/e+NqweN4/+w2xHr7Zd+gCQ9/2XMZbEiBfqlWbYtnE92fcO5LOXH461KIYRNfl5ebQJ7qSgaacyfgmeeTOQV/6c3qfP/41ha/7C2kYn0vxXi+hjCg+AZunHsp/GyJ6vYy2KESfUq5Femw4nsC7xWHp+8f/Ymjma9seX7TlXRGFhIYcPHkAL8ggEAwQDAYLBQgIBdxw7ws+tSDVNuUS+TvQJVOvsT3XdWOUTrvUUd3/3Db0liL/V8WX8ipReYTkjvaWvzWLQytv4InUwva57haTklBqTtS6yKakb6ftXV/1CquTnHiT3UA65uXkUFuZBwM2JlqFM/S15XmauNCS8O4zsXzapIr/o41QX4k+kTbuynbV4pl4pPZ/fT9NJjxB4+gwSnzqLZSfdSo+RE2nUqDEaDLJ7+xZ2bfmK7O+/IX/PRnwHtpJy6Dua5m0nLbifRnqYRuSSJhrrWzEaEG28/7T2Pcv4JaV4I72C8EpvxcIXyPjkBtYn9ab7tS+ZwgvDgVYD6LX1CQ7l7KdRk2YVht+1YxvfrXiXQxuX4d/7NS1zN5NWuIemmk2KFJAENK15sesEK4NdaXPbsliLUSnqldID6HBCX745/3n8L/6EAR9fS+B/vySHFJLIp5UEaBUSdj9N2O1vTXZyG3Yn9yKYlAbJaZDchKA/BRFxy5x9fnw+P4i/mnpPlVSqEYLXhmoWjS4VrWZppFbuLn7wpzRl4ImnlXEvUnrB/LLmzXWf/pcT3ruazQmdaPfzBaQ2bpiLVSqiee/RJHz3OCsWvcTAM6aW8VdVNqxdxvcfPUX7be/QJbiRVkBQhW2+Y9iV1JFdTbpDaksCKc2RxMb4E5MQfwLqS0Dxo6EjtTLPTPnnoXVdwwQv+yxomcMyYSI8t9X9VOUnt6g4UJxR75QeQNe+w8jvtpQvFr1EbtYSJP+AU2JN25F6TFeatzueYzqcQLMmzam432cYsSPJM29qQW4J9w0rP6Hda5ex25dOs58uoFmLVuGiG0CPoT9k19vNSf58Fjp2SvEit+82fkXW+0/ROusVugW/oasKa5Mz+bT9j2jS41SO63sy7Zukhd/92qiz1EulB5CUnEK/H1wMXBxrUQzjqElKbQyAhpg3N65fTvMXLiCXZBKmzqfVsR0jRTeAhMRENvT6OUPX/h/L7hlPXlonWuz+nB6F62kHfJnQg8+6/44TRl9KnzbHxVpco4apt0rPMOoDyaklR3qbN6whZc65ABy++CU6deoRMa5xhCEX3MDHs3fRe9MzpBz8jI2JXfi4yzV0GvFjuh/fJ9biGbWIKT3DiGMkIYVC9eHPz+bLZR/S8uVLSCDAvgtforO9bB014vNx0rS7gbvRYJDu9h5vg8VK3jDiGRE2+jpw8vdP0WH+RAokkX2T5tO59+BYS1ZnsQ9XNGys9A0jztmePgSAb1J6kXzVe3TuNSjGEhlG3cXMm4YR5wz92T/Y/O219Dkh00YphlFFTOkZRpzjT0yiY/f+sRbDMOoF1m00DMMwGgym9AzDMIwGg2iUn5mqDURkJ7CxGi7VCthVDdepDeqSrFC35DVZa466JG9dkhXqlrzVJWsnVW1dcbCqE1dKr7oQkSWqWieWuNUlWaFuyWuy1hx1Sd66JCvULXnrkqxFmHnTMAzDaDCY0jMMwzAaDPVV6f0z1gJUgrokK9QteU3WmqMuyVuXZIW6JW9dkhWop3N6hmEYhhGO+jrSMwzDMIwymNIzDMMwGgz1SumJyBkisl5EvhaRm2ItT2lEpKOIvCcia0RktYj8ynOfLiJbRWS59/thrGUFEJEsEVnpybTEc2spIv8Vka+8/xZxIGePkLxbLiIHROS6eMpXEXlMRHaIyKoQt7B5KY4ZXj1eISID40DWu0VknSfPSyLS3HPvLCKHQ/J4Zm3KWo68EcteRH7v5e16ERkXB7LODZEzS0SWe+7xkLeR2qy4rLtRoar14gf4gQ1AVyAJ+ALoHWu5SsnYFhjoHacBXwK9genAb2MtXxh5s4BWpdzuAm7yjm8C7oy1nGHqwfdAp3jKV+AUYCCwqqK8BH4IvA4IMAz4JA5kHQskeMd3hsjaOTRcHOVt2LL3nrcvgGSgi9dm+GMpayn/e4Fb4ihvI7VZcVl3o/nVp5HeEOBrVf1GVfOBZ4EJMZapBKq6TVU/946zgbVA+9hKVWkmAE94x08A58ROlLD8ANigqtXxZZ9qQ1U/APaUco6UlxOAJ9WxGGguIm1rRVDCy6qqb6lqoXe6GOhQW/JURIS8jcQE4FlVzVPVb4GvcW1HrVCerCIiwIXAnNqSpyLKabPisu5GQ31Seu2BzSHnW4hjhSIinYEBwCee0zWeOeCxeDAZeijwlogsFZErPbc2qrrNO/4eaBMb0SJyESUbjXjM1yIi5WW81+VpuN58EV1EZJmIvC8iI2MlVBjClX085+1IYLuqfhXiFjd5W6rNqqt1t14pvTqDiDQBXgCuU9UDwD+A44H+wDaciSMeGKGqA4EzgV+IyCmhnursGXHzzouIJAFnA895TvGar2WIt7yMhIj8ESgEnvGctgHHqeoA4Hrg3yLSNFbyhVBnyj6EiynZYYubvA3TZhVTV+puEfVJ6W0FOoacd/Dc4goRScRVnmdU9UUAVd2uqgFVDQKPUovmlvJQ1a3e/w7gJZxc24vMFd7/jthJWIYzgc9VdTvEb76GECkv47Iui8hU4EfAZK+hwzMT7vaOl+LmyLrHTEiPcso+XvM2ATgPmFvkFi95G67Noo7V3VDqk9L7DOgmIl28Hv9FwIIYy1QCz2Y/C1irqn8LcQ+1eZ8LrCodt7YRkcYiklZ0jFvIsAqXp5d5wS4DXo6NhGEp0VOOx3wtRaS8XABM8VbCDQP2h5iSYoKInAH8DjhbVQ+FuLcWEb933BXoBnwTGymPUE7ZLwAuEpFkEemCk/fT2pYvDGOAdaq6pcghHvI2UptFHaq7ZYj1Sprq/OFWDn2J6xH9MdbyhJFvBM4MsAJY7v1+CDwFrPTcFwBt40DWrrhVbl8Aq4vyE0gH3gG+At4GWsZaVk+uxsBuoFmIW9zkK04ZbwMKcPMcP4mUl7iVbw979XglMCgOZP0aN1dTVG9nemEnevVjOfA5cFac5G3Esgf+6OXteuDMWMvquc8GrioVNh7yNlKbFZd1N5qffYbMMAzDaDDUJ/OmYRiGYZSLKT3DMAyjwWBKzzAMw2gwmNIzDMMwGgym9AzDMIwGgyk9wzAMo8FgSs8wDMNoMPx/hcQ8dqc12x0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "{'step1.Spikecount': 0.0, 'step2.Spikecount': 0.0}\n" + ] } ], "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 7)" + "print(cell_evaluator.evaluate_with_dicts(default_params))" ] }, { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABl4ElEQVR4nO2deXhU1fn4P+9kTwgEArLvshP2ABZQsIgoVVRUtKIiVauttNS9ixZt/X1dq1WptIjiVsR9qQtWFFErIvsioCCRgMiekJA98/7+ODdhMpmZTNaZTM7neeaZe8/63nPOPe/Z7jmiqlgsFovFEsm4Qi2AxWKxWCz1jVV2FovFYol4rLKzWCwWS8RjlZ3FYrFYIh6r7CwWi8US8VhlZ7FYLJaIJyyVnYh0ExEVkehQy2KpOSIyW0R+EJENIYh7rog83wDxzBSRzwLYLxeRq+tbDssJAtUfDVm3OPGc7McuYLmxVEREpotItoj8T0Q61CSMsFR2luojIvNFJNf5FYlIscf9eyESay7wK1Ud7CHnXBGZGyJ5wgqn4s2opvuPRSRPRLaJyMQAbuNE5CkROSYiP4rIjV7hqEf5yBWRO4Lx69j/1Ik/z5GnazX8JorIP0TkkFN5rajG8zeZj4KdRtL4IN2KiNwnIoed330iIgHc/1xEvheR4yLyhoi08oq3wKNcbPfyO1tEdjn5u1pExnrYTXDKQ7avci0iPxGRVSKSIyIbvfxOEZHPRCTLKTdPikhymb2qLgFaO7cXB5Mu3tSLsrM9soZHVa9T1Waq2gz4f8CSsntVPavMXQPnTStgcwPGVy+EUXleDKwDUoE/Aq+ISBs/bucCvYCuwATgVhGZ7OUmxaOM/CUYvyLSGngNuAOTv6uBJdWI91+Ov37O/++CfPawI4zKxbXAecBgYBBwDvBLXw5FZADwT+ByoC2QB/zDy9kNHuWij4ffUcC9wIVAC2Ah8LqIRDlOjgNPAbf4iLcV8DbwAJAC3A+8LSItHSctgL8CHTBlo6PjthxVLQa+wZT/alNnyk5EMkTkNhHZCBwXkWgRGe10O7NEZINnS8VpQfyfo+mPicibni0Mr7CvEpGtTovgOxH5pZf9VBFZ74Sz0+PFbCEiC0Vkn4jsFZG/emSMv+foKSIfOS2kQyLygoikeNgdEZFhzn0HETlY9lwicq6IbHGed7mI9PNKn5udFk22iCwRkfjqp3T18ZM3FYZYRGSRiPzV4/5nTppmOXk4qJpxlqWzuwp3tzr584OIXO0plyPTPBF5x8n7L0Wkp4ffv4tIppPva0RknFfw8U4654jIWhHx7GHe7pSVHBH5WkTO97CbKSKfi8jDInIYU4FX9bwPishRMa3es7ysuzrh5YjIB47CqBYi0hsYBvxZVfNV9VVgEzDNj5crgb+o6lFV3QosAGYGGV0gvxcAW1T1ZVUtwKTNYBHpW5Vfx825wLWqelBVS1V1TZAyVUBEuovICidNP3TKic9haxGZ5rwDAz2MZzllbp+I3OzhdqSIfOGU+30i8riIxHrYq4j8WkS+Bb4NQtSJIvKtE948kYo9rirKTbBcCTykqntUdS/wEP7z+jLgbVVdoaq5mEbLBeLRiwpAN0zer1Gz9dazmN7WSQCqukpVnwO+8+H3J8CPTrkpVdXngYOY8oSq/ltV31fVPFU9iik3Y3yE4wZq1shQ1Tr5ARnAeqAzkIDRzIeBszFK9Qznvo3jfjmwFxgIJAGvAs87dt0ABaKd+ylAT0CA0zCtkWGO3Ugg2wnf5cTb17F7HdOKScJkyCrgl1U8x8lOWHFAG2AF8IiH/TXA10AisBR40DHvjWnZnAHEALcCO4BYj/RZhWm5tAK2Atf5kWEskBXgN7aKZ5hblpa+8sYxU+BkDzeLgL8610OBA8AoIArzMmUAcdUoD5OBAiCpCjc/AgOc9HzeUy5HpsNOHkcDLwAvevifgWnlRQM3OWHFe6RBMaYVGgPcDOwCYhz7i5y8cAHTnbxr79jNBEqA2U7YCQGeYaYTzzVOWl0P/ACIRznf6ZSPBOf+Xj9h/QP4hx+784GtXmaPA4/5cNvSSce2HmYXApu83q+9wB7gaaB1kH7/DjzhFd9mjNKtyu8VGAX9MHDIuZ5Ww/rmC+BBIBbzvhzDR/0BXIV5D0/2sluMqRfSMJXuRMd+ODDa8dsN857O8YhXgf9i3mG/5cLD7X8wPZkuTjyTgyk3vuqDAPFkA6M87kcAOX7cvgnc5mWWCwz3KK8Hnfz5HBjv4a45sIYT9cJszEiDeIU3EcjwMvsZ8LWX2bfAw37kfASPd93D/C7gEwLUK37TqSYFzY9wGcAsj/vbgOe83CwFrvRI1Hs97PoDRU4ilhdWP3G9AfzWuf6nrwTDdNELPQskcCnwcTWf6zxgnZfZW5gXdSOOAsC0kF7ycOPCVCbjPdJnhof9/cD8ukp/L/nmUlnZzfJyE0jZPYFpnXu63w6cFmT8q53wf1OFu6eA//O4P5nKyu5JD/uzgW0BwjsKDPZIg5Ve+bEPGOfH73pgqnM9E9gd5LPOBHZ43Cc6z9DOo5z/ycP+V8D7NcjTyz2fxzG7B1jkw21nR4Z4D7MzcCogoBmmQox23pNXgKVB+l2Il7LGVIozg/D7B8d+LkZJnYapaPtVMy26YBojiR5mz1NZ2d2MaZh28nBXZtfXw+x+YKGfuOYAr3u9N6cHKafi0TAFXgJuD6bcVDM9Sr2ep5cTli/FuQyvRjYV66lRQDKmsX8lkAP0dOzEycNiJ/0PAek+4vCl7FIxDfVLMY3PKzG9tH/68H8G5l3u7cOuJWYosxS4oDrpVNdzdpke112Bi5zue5aIZGFaKO39uP/eSYRKQzwicpaIrHSGELMwlV6Zu86YlrM3XZ3w9nnE/0+cLrc/RKStiLzoDHsew7xE3jItwPRIH1PVQsesg/MMAKiq23m+jh7+fvS4zsNUOg1FZtVOyukK3OSVd50xzxgM6cAlwFwRiQngroOXXL5k9JtmzrDwVmdYOAsz7u+ZV+XhOfmxp+wZROQKj2HaLEx++vQbBOUyqmqec9nMl733M1SDXEzL2pPmmMrIl9sy+0puVTVXVVeraomq7gduACY5Q1kB/VYhR1V+8zEV5V9VtUhVPwE+Bib5eIZAdACOeKQ1+M6vW4B5qrrHh5133VNWLnqLyH/ELJI4hpn/9n7/a1Q2qJz3VZWbYPHOk+ZArjraoQq3Ze7LysaXqpqjqoWq+gymIXO24+4XmJ7yAExjZQbwHwlidaSqHgamAjcC+zGjOh9i3slyRGQ08G/gQlX9xkdQV2F68a1U9bWq4vWkrpWdZ+JmYnp2KR6/JFW918NNZ4/rLpgX4ZBngCIShxnifBAzPJICvItpZZTF05PKZGJ6dq094m+uqgOqeIb/5zxHmqo2x2Ro+Ti7iDTDdLEXYirzsnnGHzBKosydOM+3t4r4KiEi46TiSjnvn/fcVDB4F/w8TGuyjHYe15nAPV55l6iqi4OKyLxkb2BaYe0DON0HdPK47+zPoTdOGtyKWZnV0ikX2XjklWd4IuJy4vpBzOrBBZhKPtXxu9nLr6+KIpRsAXp4za0MdswroGbOY59jH9BtmRfn3xWE3y2ediKShHn/tgThd2OAuKvDPqCViHiWX19lZxLwJxHxNa/pXff84Fw/AWwDejnv/x+oWC5qKnN9UiFPCJzX3vnXA9OL86VYwOkhOtdDgP+o6jeq6lbV9zF58ZNghFTVT1Q1XVVbYUYq+mKmdspkGYoZNZulqsv8BNMPMzqXHUycntTnpwfPA+eIyJkiEiUi8SIyXkQ8K7cZItLfKbR3A6+oaqlXOLGYzDgIlDiTuJ4twYXAVWKWQ7tEpKOI9FXVfcAHwEMi0tyx6ykip1Uhd1nrNltEOlJ5ZdHfgdWqejXwDjDfMX8JmOLIEYOZQyoE/ldVQnmjqp/qidVQvn6fVjdMH6wHfu7kzWTMkFIZC4DrRGSUGJLELA1OhvKFI4uqeIayHm9sAGcvYfKun1MG7gjg1ptkzFDKQSBaRO6kcot1uIhcIGbV3BxMfqzEzNWo4xcRuQrTswtbnFbueuDPzrt0Pmbl3at+vDyLqehbilkYcg1mWBgnX/s470Qq8Ciw3KMC8esXMw8+UMyij3jgTmCjqm4Lwu8KYDfwezGLpMZgVmwudeSaKUF8iqGq32OGyueKSKyInIJZgejNFkwPYp6InOtld4eYzyAGYHoLZStKkzE9h1xH/uurkicMeBa40an7OmDqnkV+3L6AqZfHOQ2Vu4HXVDVHRFKc+jreyZ/LgFOB9x2/X2HquB5OvXAGZi56M5gGpVMmYsytxEvFxT1DRSRGRJpjOi+ZqlqW9wOdeGar6tsBnjUG8x5Xm3pTdqqaiem2/gFTqWRiFIdnnM9hMuVHIB74jY9wchzzlzDjuD/HaP8y+1WYwvowpmX/CSd6WFdgKtuvHb+vELinAWYCdJgT1juYZdaAWfWJeXnKXoAbgWEicpmqbsf0Ah/D9E7PAc5R1aIq4gsVv8XImIVZofVGmYWqrsZUUo9j0m0HFVd3dcYMb1SFEqCMqep7mIr2YyeOlY5VMIV5Kebl+AYzDFVA5eGlNzGLT45iWpIXqGqxqn6NWbH2BWZIJS3I56lXxHwrOT+Ak0swc21HcZaAq2qZwr5MRDxb83/GDO9/j3knHnBa4gA9MGmXg6moCjFzKVX6deKbhpkvPIqZ47kkSL/FmDrhbMz7tQC4wkNRBluuwJTZUzALmP6KUVaVyo2qbsAsjlggFVc7foIpc8swi8w+cMxvxtQxOY58np9VhISykZ4ATv6JWda/CZOf7zhmZf7LR4NUdQtwHUbpHcAo9185TmMwaVm2QGU2cJ7HcOKzwIuYeehjmHf3lx75dypmqPpdTG85H9PhKONWJ9xMTD18vofdTZgFgQs9RrB89U6jqGKFtz/KVow1OCKyHDOh/GRIBLDUCKeltgEY5FRegdz+ANyqZplxMGH3w7yscapaUmthLY0KEfkAs/Bsaw38LsEsXvpz3UtmCQdEJAH4DLOYyPvbwCqxO6hYqoWzsKBfVYrO4XbMsJvfb6lE5Hwxu260BO7DfANkFV0TRFUnBavoRCTdmZZwOcPwU/EYnbBEFiJyMWa0YD9mlK/aNEllJxW31vL8BRpCslQTVX1WVXup6vAAzn6JGU7ZiVlOHHZzJLa8hCXtMMNpuZjhtOtVdV1DCiABFpI1pBxNAVV9SVVPUtWzVfVQ1T4qE7JhTIvFYrFYGoom2bOzWCwWS9MiXDYyBaB169barVu3UIthsVgslgZkzZo1h1TV36bmdUJYKbtu3bqxevXqUIthsVgslgZERL6v2lXtsMOYFovFYol4rLKzWMIZVfOzWCy1IqyGMS0Wywm+376epCUXUKCxcOVbdOrWO9QiWSyNlrBXdsXFxezZs4eCgoJQi2JpRMTHx9OpUydiYgIduhDe5Lz9B9qVHiMJ4duXZtPp1qWhFsliabSEvbLbs2cPycnJdOvWDal4yK/F4hNV5fDhw+zZs4fu3buHWpwacezIfvrl/I9P284gLiGJU76fz7ebV9Nr4IhQi2axNEpqPWcnIrNFZJuIbBGR+73sujg7Ctzsz39VFBQUkJqaahWdJWhEhNTU1EY9GrB1xWtEidJ+9EX0/9lsSlU48L+gthi1WCw+qFXPTkQmYPakG6yqhSLifTDq34D3ahOHE09tg7A0MRp7mXFnfkUecfQaNAZXdDSb4ofSdd/7qGqjfzaLJRTUtmd3PXBv2dllqnqgzEJEzgN24f8QQYvF4ocW2V+zO/ZkXNGmPVrQ8yw66T52bvd1/qnFYqmK2iq73sA4EflSRD4RkXQoP837NszZcAERkWtFZLWIrD548GAtxakfRISbbrqp/P7BBx9k7ty5oROoCpYvX87//lftM2MrMHnyZFJSUvjZz35WR1JZgqWoqJhuxd+R0+rEebLdR5uzR39c859QiWWxNGqqVHYi8qGIbPbxm4oZBm0FjMYczPqSmDGWucDDqlrl7t+q+i9VHaGqI9q0qdfdYmpMXFwcr732GocO1Wizbb+oKm53jc4hDEhdKLtbbrmF5557ro4kslSHH7/fSqIUQru0crPWXfqy19WepMxPQiiZxdJ4qVLZqepEVR3o4/cmsAdzpLs6J4a7gdaY04vvF5EMYA7wBxG5of4eo36Jjo7m2muv5eGHH65kd/DgQaZNm0Z6ejrp6el8/rk5aHnu3Lk8+OCD5e4GDhxIRkYGGRkZ9OnThyuuuIKBAweSmZnJLbfcwsCBA0lLS2PJEnMw8vLlyxk/fjwXXnghffv25bLLLsPXCRWPPvoo/fv3Z9CgQVxyySVkZGQwf/58Hn74YYYMGcKnn34aUMbLL7+cU045hV69erFgwYLycH/605+SnJwcMF1efvllBg4cyODBgzn11FMBs6DoqquuIi0tjaFDh/Lxxx8DsGjRIs477zzOOOMMunXrxuOPP87f/vY3hg4dyujRozly5AgACxYsID09ncGDBzNt2jTy8vIqxTt69Gi2bDkxOj5+/PiI2mbuSKY5+Dm5Q98K5ntTx9Anfz0F+ZXTxGKxBKa2nx68AUwAPhaR3kAscEhVx5U5EJG5QK6qPl7LuLjr7S18/cOx2gZTgf4dmvPncwZU6e7Xv/41gwYN4tZbb61g/tvf/pbf/e53jB07lt27d3PmmWeydWvg8ye//fZbnnnmGUaPHs2rr77K+vXr2bBhA4cOHSI9Pb1ccaxbt44tW7bQoUMHxowZw+eff87YsWMrhHXvvfeya9cu4uLiyMrKIiUlheuuu45mzZpx881mEezPf/5zvzJu3LiRlStXcvz4cYYOHcqUKVPo0KFDUGl39913s3TpUjp27EhWVhYA8+bNQ0TYtGkT27ZtY9KkSXzzzTcAbN68mXXr1lFQUMDJJ5/Mfffdx7p16/jd737Hs88+y5w5c7jgggu45pprAPjTn/7EwoULmT17doV4p0+fzksvvcRdd93Fvn372LdvHyNGRM6S/LwfdwDQtmtFZRfX56ckHnyFzWs+YuBYO7xssVSH2s7ZPQX0EJHNwIvAlRqhB+Q1b96cK664gkcffbSC+YcffsgNN9zAkCFDOPfcczl27Bi5uYFHb7t27cro0aMB+Oyzz7j00kuJioqibdu2nHbaaXz11VcAjBw5kk6dOuFyuRgyZAgZGRmVwho0aBCXXXYZzz//PNHRvtsugWScOnUqCQkJtG7dmgkTJrBq1aqg02TMmDHMnDmTBQsWUFpaWv48M2bMAKBv37507dq1XNlNmDCB5ORk2rRpQ4sWLTjnnHMASEtLK3+2zZs3M27cONLS0njhhRcq9ODKuPjii3nllVcAeOmll7jwwguDlrkxoEd3kUccKW06VjDvmT6ZEnVxbOuHIZLMYmm81Kpnp6pFwIwq3MytTRyeBNMDq0/mzJnDsGHDuOqqq8rN3G43K1euJD4+voLb6OjoCvNxnt98JSUlBRVfXFxc+XVUVBQlJSWV3LzzzjusWLGCt99+m3vuuYdNmzZVcuNPRqi8RL86y9rnz5/Pl19+yTvvvMPw4cNZs2ZNQPeez+NyucrvXS5X+bPNnDmTN954g8GDB7No0SKWL19eKZyOHTuSmprKxo0bWbJkCfPnR9aB4Ym5u9kf1Z7uropt0WYtWrEtti+p+z8PkWQWS+PFbgRdDVq1asXFF1/MwoULy80mTZrEY489Vn6/fv16wBxXtHbtWgDWrl3Lrl27fIY5btw4lixZQmlpKQcPHmTFihWMHDkyKHncbjeZmZlMmDCB++67j+zsbHJzc0lOTiYnJ6dKGQHefPNNCgoKOHz4MMuXLyc9PT2ouAF27tzJqFGjuPvuu2nTpg2ZmZmMGzeOF154AYBvvvmG3bt306dPn6DDzMnJoX379hQXF5eH44vp06dz//33k52dzaBBg4IOvzGQUriPrDjfQ8lZ7X7CycXfkn3kgE97i8XiG6vsqslNN91UYVXmo48+yurVqxk0aBD9+/cv72VMmzaNI0eOMGDAAB5//HF69/a9ie/555/PoEGDGDx4MKeffjr3338/7dq1C0qW0tJSZsyYUb4Y5De/+Q0pKSmcc845vP766+ULVPzJCGYYdMKECYwePZo77rijfL5u3LhxXHTRRSxbtoxOnTqxdKnZl/HOO+/krbfeAsyKzbS0NAYOHMhPfvITBg8ezK9+9SvcbjdpaWlMnz6dRYsWVejRVcVf/vIXRo0axZgxY+jb98Sc1VtvvcWdd95Zfn/hhRfy4osvcvHFFwcddmOhpfswRYm+y0BK2iSiRNmxqtZ7NVgsTQoJpym2ESNGqPequq1bt9KvX78QSRTZzJ07t8JClkijMZad48dzSXqgI192/xWjrvy/SvbFRYUU3dOFza0nM2r2MyGQ0GKpe0RkjarW6yoz27OzWMKIg/t2AxDTwvcwZkxsHDsSh9DxyJcNKZbF0ugJ+1MPLPVHOO8C01TJPpAJQEJqJ79uCrqcSqft97N313Y6dg9+PtRiacrYnp3FEkYUHt0LQFJqR79u2g2dDMCete82iEwWSyRglZ3FEkaUZu8DoMVJnf266dJ7KAdoRfSu5Q0klcXS+LHKzmIJIyT3R4o0iuSWbf27cbn4vkU6PXLX4HY+5rdYLIGxys5iCSNi8g5wWFriigr8akrPCbQkh52bvmggySyWxo1VdkHyxhtvICJs27bNr5uMjAwGDhzo174uWL9+Pe++W7u5mlmzZnHSSSfVu6yW6hNXeJhjUS2rdNdt5BTcKhxa+2YDSGWxNH6ssguSxYsXM3bsWBYvXuzT3tdWXtWlNIghqbpQdjNnzuT999+vVRiW+iG+OIv8mJQq3bVu14WtcWl0yvwPWg/HRFkskYZVdkGQm5vLZ599xsKFC3nxxRfLzZcvX864ceM499xz6d+/P2CU3mWXXUa/fv248MILy4+oWbZsGUOHDiUtLY1Zs2ZRWFgImG3FbrvtNoYNG8bLL79cIV7vI3SKioq48847WbJkCUOGDGHJkiUcP36cWbNmMXLkSIYOHcqbb5qW/qJFi5g6dSrjx4+nV69e3HXXiXN0Tz31VFq1ahXwmT/55BOGDBnCkCFDGDp0KDk5Oaiq3+OITjvtNKZOnUqPHj24/fbbeeGFFxg5ciRpaWns3LkTgLfffptRo0YxdOhQJk6cyP79+yvFe8kll/DOO++U38+cObN80+emQGLpMYpjU4Jym9N7Gp31B77b+Fn9CmWxRACN6zu7926HHytvdFwr2qXBWfcGdPLmm28yefJkevfuTWpqKmvWrGH48OGA2fdy8+bNdO/enYyMDLZv387ChQsZM2YMs2bN4h//+Ac33HADM2fOZNmyZfTu3ZsrrriCJ554gjlz5gCQmppavo+mJ95H6MTGxnL33XezevVqHn/cnJj0hz/8gdNPP52nnnqKrKwsRo4cycSJEwFYtWoVmzdvJjExkfT0dKZMmRL0UTgPPvgg8+bNY8yYMeTm5hIfH89rr73m9ziiDRs2sHXrVlq1akWPHj24+uqrWbVqFX//+9957LHHeOSRRxg7diwrV65ERHjyySe5//77eeihhyrEW3Z8z5QpUygqKmLZsmU88cQTQckcCTR3H2N3fNXDmAB9J1xG0aa/cOizp+k55NR6lsxiadxEVM9OUdzuUlTrdlhn8eLFXHLJJYDpeXgOZY4cOZLu3buX33fu3JkxY8YAMGPGDD777DO2b99O9+7dy/fHvPLKK1mxYkW5n+nTp/uM19cROt588MEH3HvvvQwZMoTx48dTUFDA7t1mF44zzjiD1NRUEhISuOCCC/jss+B7AGPGjOHGG2/k0UcfJSsri+jo6IDHEaWnp9O+fXvi4uLo2bMnkyZNAioe37Nnzx7OPPNM0tLSeOCBB3we33PWWWfx8ccfU1hYyHvvvcepp55KQkJC0HI3ZgoK8mkm+ZAQuNddRkpqGzam/JS0g+9w7HDlXrLFYjlB4+rZVdEDc5eUEHVgE7lxbWmWGtwBpFVx5MgRPvroIzZt2oSIUFpaiojwwAMPAJWP66nJkTn+jvwJ5ggdVeXVV1+tdLLAl19+Wavje26//XamTJnCu+++y5gxY8o3gvZHMMf3zJ49mxtvvJFzzz2X5cuX+9zBJT4+nvHjx7N06VKWLFlS3shoCmQdPkA7IKpZ66D9tDzjFhJfWcrnr93PmGseqtqDxdJEaVzKrgpcZed/1WHP7pVXXuHyyy/nn//8Z7nZaaedxqeffurT/e7du/niiy845ZRT+Pe//83YsWPp06cPGRkZ7Nixg5NPPpnnnnuO0047rcq4y47QGTVqFO+99x6ZmZmVju8588wzeeyxx3jssccQEdatW8fQoUMB+O9//8uRI0dISEjgjTfe4Kmnngr6uXfu3ElaWhppaWl89dVXbNu2jXHjxvHPf/6TK6+8kiNHjrBixQoeeOCBgCtUPcnOzqZjR7MzyDPP+N/EePr06Tz55JOsXr2aRYsWBS1zYyfnyH7aATHJqUH76TkwnQ1LT2PYnmfZsOlKBqdV77ijkuJisg7vI+fwjxzPOkBpcSEuFEERnAaSK4qoKBcuVxQulwtXVDRRzjUuF8iJn4gLdf6NmTjmUY65GDOHsssyE6lk7ruBpvjewN7XvvYJLVJpnhJ8A8ISmUSUshOXC7dKnSq7xYsXc9ttt1UwmzZtGosXL/Y5/NinTx/mzZvHrFmz6N+/P9dffz3x8fE8/fTTXHTRRZSUlJCens51111XZdy33HIL3377LarKT3/6UwYPHkyXLl3Khy1///vfc8cddzBnzhwGDRqE2+2me/fu/Oc//wHMEOu0adPYs2cPM2bMKJ+vu/TSS1m+fDmHDh2iU6dO3HXXXfziF78oP/rnuuuu45FHHuHjjz/G5XIxYMAAzjrrLGJjY/niiy8YPHgwIlJ+HFGwym7u3LlcdNFFtGzZktNPP738jL/Vq1czf/58nnzyScCcv3f55ZczdepUYmNjgwo7Eig4dhCAuOQ21fLXc8bf0SdG43rtao51X0bzZsl+3WZ+v4tdq/5D9O4VtM79li7uPbSWYiJZFeRrLLk3fUOz5sHNhVoik4g74qfkhw0URjcn6aTuVTuOYBYtWlRhIUtTpLEd8bPm/WcYvvI3fHfhUnoMHF0tvzuXP0/P5b9mc/RAos+fR5/+pkFy/PhxdqxZRs6W92l38H+c7DYNjKO0YF9ib/JSelPaoivRyW2Ia96a6NgEENO3c6sZJndrKVrqxu0uPfErdeN2u0FLQd0ICm43gttpbLrBrebe7QbUceeu3PvSsj/1ZYxqhc5gOUENymeuYtTRt9l7xZd07NG3aveWkNAQR/xEVM8OQHHVac/OYmko3LnmUODEFtXr2QH0HD+DDXl59F71RxJePo1M2qEI7fQAg6WUYo1iZ/wA1nb5De2H/4z2vdNp6Yqo9Wk+WfPeIvjybYrys0MtiiXERJyycyOIVXbMnDmTmTNnhloMSzVw5x0BoFnLk2rkf/DZ15I1fDLblz0J+zeBKj8mTyKh5yn0GnkWfZul1KG0jYPoeDOkW5SfU4VLS6TTKJSdqga9ktD07MJnaNYSGsJpeD5YXPlHyNdYkpKa1TiMlLZdGPLzu+tQqsZNVIJJy5L83BBLYgk1YT+OER8fz+HDh4OuvFRcZp7A0mRRVQ4fPkx8fHyoRakWUniMXEmq1icilsDEJpieXYnt2TV5wr5n16lTJ/bs2cPBgweDcl+UvR/BTUxW42vZW+qO+Ph4OnXyf9p3OBJVlEOe+P7m0lIzYhMdZVdge3ZNnbBXdjExMRV2KKmKNQ/cxkn5O+h859f1KJXFUvdEl+RSEGWVXV2SkNQCAHeh7dk1dcJ+GLO6lMQkEusuCLUYFku1iS3JpTC65vN1lsokNGsOgNv27Jo8EafsNDqRBKyyszQ+4t3HKbHKrk5JSkrGrYIWWmXX1Ik4ZUdsEvFqlZ2l8ZHoPk5pjP/dTyzVJyoqinzioPh4qEWxhJiIU3YSm0islFJYaBWepfGgqiRpHu44q+zqmnyJR4qssmvqRKCyMxP8ebl2QtrSeCgsLCRRCpH45qEWJeIokARcJVbZNXUiTtm54sycR36u3R7I0ng4lm12T5H4FiGWJPIociUQXZIXajEsISbilF10vKPsjh8LsSQWS/Dk5RwFICrBKru6pjAqkeiS/FCLYQkxkafsEk1lUXQ8K7SCWCzVoDA3CzhRfi11R0lUInFuO4zZ1Km1shOR2SKyTUS2iMj9HuaDROQLx3yTiDTI3k0xiSmAVXaWxkVZebXKru4pjmlGvFV2TZ5a7aAiIhOAqcBgVS0UkZMc82jgeeByVd0gIqlAca2lDYJYZ2f3knw7jGlpPJQpu9iklJDKEYmUxDYnSe2cXVOnttuFXQ/cq6qFAKp6wDGfBGxU1Q2O+eFaxhM0cU5l4bbnV1kaEe48U17jm9nTtOsad2xzkvU46nYjTeAMP4tvapvzvYFxIvKliHwiIuke5ioiS0VkrYjc6i8AEblWRFaLyOpgN3sORGKyqSyssrM0JtwFjrJLtsqurtG45sRKCYUFtnfXlKmyZyciHwLtfFj90fHfChgNpAMviUgPx3ysY5YHLHOOXV/mHYiq/gv4F8CIESNqfVRBmbKj0A5jWhoRTnlNSm4VYkEij7LPOY7nHCE+0W7H1lSpUtmp6kR/diJyPfCamsPmVomIG2gN7AFWqOohx927wDCgkrKra2JjY8jVeKTIflRuaTxI4TEKNYb4hIRQixJxiPM5R8GxI9C2S4ilsYSK2g5jvgFMABCR3kAscAhYCqSJSKKzWOU0oMHO3MmTRFxW2VkaEa6iXI5Lgj24tR6ISkgBoMD5vMPSNKntApWngKdEZDNQBFzp9PKOisjfgK8ABd5V1XdqGVfQ5EkiUVbZWRoRUnycfGyvrj6Icxb9FOYcCbEkllBSK2WnqkXADD92z2M+P2hwCqKaEV1ij/SwNB6iivMocFllVx8ktjDzoIW5R0MsiSWUROQ63KLoZsRZZWdpRESX5lFslV290MxRdnajiaZNRCq7kugk4kvtjgmWxkNMaT7FUVbZ1QctUloDUJqfFVpBLCElIpVdaWxzEuyOCZZGRKw7n5LoxFCLEZHEJyZToi7UfnvbpIlIZadxySRpHmatjMUS/sRqAaXRSaEWIzIRIVeSkEKr7JoyEansiGtBohSSX2CP9bA0DhI0H42xw5j1RZ6rGVF2o4kmTWQqu8RUAHKO1n77MYulIUjQAtwxtmdXXxyPak5ccVaoxbCEkIhUdlHNzIT08az9IZbEYqmaoqJiEqQIrLKrN/JjUkgqyQq1GJYQEpHKLjbZ9OwKsw+FWBKLpWryjzsbIMTZfRvri6LYVjR32zm7pkxEKru45m0AKMqxys4S/hTkmbkkV6zt2dUXJfGtSNFjYBetNVkiUtklpbQFoCTHztlZwp/CMmUXb5VdfeFObE2cFJOfa3t3TZWIVHYtWhtlV5pre3aW8Kcwz+z244pLDrEkkYskmXn8nCM/hlgSS6io7UbQYUlSYiK5moDm1d0B6bs3fcr+Va/S7MAaWhXtI1GPIygFxJMXlUx+dAsKYltSEt8KTWxNVLM2xLY4iZjkNkQ1O4nYZinExycQn5BIYkIiUTHx4OvU5LJhlvLhFvWwUtwKqm7cCm7HjSqI404EBEFEEUBEcDlmlcM68VM14ZTfV5EeVe3NH2j3/kB+q9r0XwL4DuRXFRTnOTHPr445znN7myvGsee9SX+tkE0V3XmE4+W3LI3LrsHEe3DvXnoB0fFW2dUXsc7URs6RHzmpa99ah+cuLmTX/14ha/N/ST72Dc2LDxOthSguilzx5EalkBedQlFcK1MnJLQiqllropu1Jq55a6KapRIXn0hsXALx8QnExSUQFx+Py6kTzHtsOPFf9r57/Ve4PlEnoB7X5XYeZbfsYTyGdsvjEqc+cUw8362ya2MnxMY3jk9mIlLZiQjZruZE5dd+l/O921aR8/qN9C3cRHuNYkf0yexKGkJpXAtUXESV5BFTlEVcUTbNc3fR/Nh6UsghSqqeG3CrKTWuINyCKYhRtXkYH2HVVXiW2pPUPCXUIkQsiS3N+dPHa9mzKy0p5quXH6T39ifoSTa5msCumJP5Lr4f7uhERN1ElxwnsSSLlgWZNM/bTHPNIVrcQYXvVgm6PggHNrl7kHb3ulCLERQRqewAjke1IKaodrucr375fgZvvpc4mvF5r5vpdeYv6dfmpKrjzi/kyOH9HDu8j6JjByD3EKUFOZQWF+AuysddXIS4i3BpCYqYXoE47bayaz3RSytr5pl2lJiWldO8Krsv60WYIMp6GuLclzXe1JiJGb82vS850VITp61W2yPVAryrtXmNA/oNGKc66ejVWnZuXOVpSQU3iHi0dD39nrjxtj/Ro5WK4Xn694zP8Rud0ILuaWMCPaGlFrRo3QGAguyaf450aP8e9j85ndHFm9kSO5itw65n4LjzSEuqomejSkHuUXKOHOB41n4Ksg/izjtCaVG+qROKi3AXF6AlhVA+qnLi3TX/UsEcrzLkaVZ+689dhfJbMR7vOD0NfI335MWmBnrysCJilV1BTAoJtVB2q5+9nRHfPcG6hFF0uuoZxrRtH7TfpIQ4kjp1gU72VGSLJRxIPcm8v8XHDtTI/97MXehTk+npPsyaYf+PYedcj/iahvCFCPHJrYhPbkWbOhhCtdSMiFV2xXEtaZ2/q0Z+V73yN0Z+9wQrkycxbPYLxMbG1rF0FoulIYlLbE4eccjx6iu77KOHKXr6XNrqUTLPeZHhIybWg4SW+iYiV2MClCScRGs9irs0uLHyMjI2r2TIpr+yMX4EI2Y/bxWdxRIhHHa1Ji6venN26naz/V9X0rl0DxlnPEkvq+gaLRGr7DS5PbFSwrFqTEjnH89FXruabGlOh6ueIzo2rh4ltFgsDUl2zEkkFVavZ7fy5YcYmf8pG/r8hv5jzq0nySwNQcQqu6iUjgBkH9gdtJ91L86lqzuTH8c/ROu2HepLNIvFEgLy4tvSqiT4jSb2Zu5i4NcPsSV+KMMuubMeJbM0BBGr7Jq16QzAsf0ZQbnfn/ktQ3c/w5pm40kbP60eJbNYLKGguFkHUvUI7pLioNz/sORG4iim9fR5iMt+pNPYiVhl16p9NwDyDu8Jyv0PL98GQPuLHqgvkSwWSwhxpXQiSpRDP1Y92rN55VLScz9iXderaNt9QANIZ6lvIlbZtW7XhVIVSrOqVnbfbv6KwdkfsbbDpXTo2rsBpLNYLA1NYptuABze+21Ad6pK6Yd/5QgtGDzdDl9GChGr7KKiYzjkSiUmZ2+Vbg+/938USCxpF/6hASSzWCyhIKWT+cYt74ftAd2t+eRtBpdsZHf/64hPat4QolkagIhVdgAHYjrRIj/wkMWObRtIz/2IrR0vpnlquwaSzGKxNDTtu/SmUGMoOfCNXzfqdhP/2b0clFYMPPe3DSidpb6JaGWXm9SFk4oDD2MefO9eSojm5Km3NZBUFoslFMTGxrAvqj2xWTv9ulmz/HUGlmxhz4DribZHLkUUEa3sSD2ZFHLJPuz7W7vMXdsZkbWUTW2n0uKkzg0snMViaWiyEruRWpDh007dbpI+v4/90pq0c2Y3rGCWeieilV1Se7PY5IedW3zaZ759Lwp0O/f3DSiVxWIJFUWp/ejk/pGc7Monoqz96GX6lW5nT9oNRMc1jmNrLMET0cqudc9hAORkrK1k98OeXQw//DYbU8+idaeTG1o0i8USAmK6jcIlyt4tn1cwLy110/x/9/KDtGPwz34VIuks9UlEK7t2nXtxmOa49q2pZPfdG/9HFKV0PvdPIZDMYrGEgm6DTgXg8LbPKpivef8Zerm/Y/+w39ptAiOUiFZ2rigXmQn9aJ29uYL5jz/sZvjB19nYahJtu/ULkXQWi6WhaZnahu+ie9Dqh0/KzYoK8mm7+gF2uzox+KxrQyidpT6JaGUHkN8unW7uTA7v/a7c7LvX/0IcxXQ8x/bqLJamxo+dzqJfyVb2fW++t1v977l01b1kjfszruiIPfWsyRPxyu6kURcBsPOTFwDYsWU16QdeZXXqObTtkRZK0SwWSwjoPuFKijWKzFf+yKr3niH9+wWsTZ7AoAkXh1o0Sz1Sa2UnIrNFZJuIbBGR+x2zGBF5RkQ2ichWEQnZcseefYewI6onHb59gYP7M5HXriFPEuh96X2hEslisYSQ9l37sKbzlYzM+S8jv/wNmdFd6X3NU6EWy1LP1KrPLiITgKnAYFUtFJGTHKuLgDhVTRORROBrEVmsqhm1E7dm5J/6R3p89AtcTwykpbrYcto/GdzGHuFjsTRVRs16iC0fDaMo9wj9zrjKbgvWBKjtAPX1wL2qWgigqmUnIyqQJCLRQAJQBByrZVw1Ju20aWwoLSF/639JGXExg0dNCpUoFoslDBCXiwETLw+1GJYGRFS15p5F1gNvApOBAuBmVf1KRGKA54CfAonA71T1X37CuBa4FqBLly7Dv//++xrLY7FYLJbGh4isUdUR9RlHlT07EfkQ8LVD8h8d/62A0UA68JKI9ABGAqVAB6Al8KmIfKiq33kH4ijBfwGMGDGi5prXYrFYLBY/VKnsVHWiPzsRuR54TU33cJWIuIHWwM+B91W1GDggIp8DI4BKys5isVgslvqmtnN2bwATgI9FpDcQCxwCdgOnA8+JSBKm5/dIVYGtWbPmkIjUxThma0eOxkBjkhUal7xW1vqjMcnbmGSFxiVvXcnatQ7CCEht5+xigaeAIZhFKDer6kci0gx4GugPCPC0qj5Qe3GDlmt1fY//1hWNSVZoXPJaWeuPxiRvY5IVGpe8jUnWWvXsVLUImOHDPBfz+YHFYrFYLCEn4ndQsVgsFoslUpWdz88cwpTGJCs0LnmtrPVHY5K3MckKjUveRiNrrebsLBaLxWJpDERqz85isVgslnKssrNYLBZLxBNRyk5EJovIdhHZISK3h1oeb0Sks4h8LCJfO6dE/NYxnysie0VkvfM7O9SyAohIhnNyxXoRWe2YtRKR/4rIt85/yzCQs49H2q0XkWMiMiec0lVEnhKRAyKy2cPMZ1qK4VGnHG8UkWFhIOsDzukmG0XkdRFJccy7iUi+RxrPb0hZA8jrN+9F5PdO2m4XkTPDQNYlHnJmONswhkva+quzwrLsBkRVI+IHRAE7gR6Yj9s3AP1DLZeXjO2BYc51MvAN5lvEuZhvFEMuo5e8GUBrL7P7gdud69uB+0Itp49y8CPmI9WwSVfgVGAYsLmqtATOBt7DfKM6GvgyDGSdBEQ71/d5yNrN010Ypa3PvHfetw1AHNDdqTOiQimrl/1DwJ1hlLb+6qywLLuBfpHUsxsJ7FDV79R8//ci5vihsEFV96nqWuc6B9gKdAytVNVmKvCMc/0McF7oRPHJT4GdqhpWO4qr6grgiJexv7ScCjyrhpVAioi0bxBB8S2rqn6gqiXO7UqgU0PJUxV+0tYfU4EXVbVQVXcBOzB1R4MQSFYREeBiYHFDyVMVAeqssCy7gYgkZdcRyPS430MYKxIR6QYMBb50jG5wuv1PhcPQoIMCH4jIGjGnUwC0VdV9zvWPQNvQiOaXS6hYWYRjupbhLy3DvSzPwrTey+guIutE5BMRGRcqoXzgK+/DOW3HAftV9VsPs7BJW686q9GV3UhSdo0GMdupvQrMUdVjwBNAT8y2a/swQxnhwFhVHQacBfxaRE71tFQzbhE2366I2b7uXOBlxyhc07US4ZaW/hCRPwIlwAuO0T6gi6oOBW4E/i0i4XASaqPJew8upWJDLWzS1kedVU5jKbuRpOz2Ap097js5ZmGFmLP+XgVeUNXXAFR1v6qWqqobWEADDqsEQlX3Ov8HgNcxcu0vG5Zw/g/4D6HBOQtYq6r7IXzT1QN/aRmWZVlEZgI/Ay5zKjic4cDDzvUazBxY75AJ6RAg78M1baOBC4AlZWbhkra+6iwaWdmFyFJ2XwG9RKS708K/BHgrxDJVwBmTXwhsVdW/eZh7jmmfD2z29tvQiEiSiCSXXWMWKGzGpOmVjrMrMYf3hgsVWsbhmK5e+EvLt4ArnJVto4FsjyGjkCAik4FbgXNVNc/DvI2IRDnXPYBehMFRXgHy/i3gEhGJE5HuGHlXNbR8PpgIbFPVPWUG4ZC2/uosGlHZLSfUK2Tq8odZCfQNpgX0x1DL40O+sZju/kZgvfM7G3Oq+ybH/C2gfRjI2gOzam0DsKUsPYFUYBnwLfAh0CrUsjpyJQGHgRYeZmGTrhglvA8oxsxj/MJfWmJWss1zyvEmYEQYyLoDMxdTVm7nO26nOeVjPbAWOCdM0tZv3mMOnt4JbAfOCrWsjvki4Dovt+GQtv7qrLAsu4F+drswi8VisUQ8kTSMabFYLBaLT6yys1gsFkvEY5WdxWKxWCIeq+wsFovFEvFYZWexWCyWiMcqO4vFYrFEPFbZWSwWiyXiscrOYrFYLBGPVXYWi8ViiXissrNYLBZLxGOVncVisVgiHqvsLBaLxRLxhKWyE5FuIqLOGU+WRoqIzBaRH0RkQwjinisizzdAPDNF5LMA9stF5Or6lsNygkD1R0PWLU48J/uxC1huLBURkekiki0i/xORDjUJIyyVnaX6iMh8Ecl1fkUiUuxx/16IxJoL/EpVB3vIOVdE5oZInrDCqXgzqun+YxHJE5FtIjIxgNs4EXlKRI6JyI8icqNXOOpRPnJF5I5g/Dr2P3Xiz3Pk6VoNv4ki8g8ROeRUXiuq8fxN5ogWp5E0Pki3IiL3ichh53efcw6dP/c/F5HvReS4iLwhIq284i3wKBfbvfzOFpFdTv6uFpGxHnYTnPKQ7atci8hPRGSViOSIyEYvv1NE5DMRyXLKzZPinKcJoKpLgNbO7cXBpIs39aLsbI+s4VHV61S1mao2A/4fsKTsXlXPKnPXwHnTivA7MLXahFF5Xgysw5wl9kfgFRFp48ftXMxhn12BCcCtYg5g9STFo4z8JRi/ItIaeA24A5O/q/E4XTuIeP/l+Ovn/P8uyGcPO8KoXFwLnAcMBgYB5wC/9OVQRAYA/wQuB9oCecA/vJzd4FEu+nj4HQXcC1wItMAc6vq6OAfMAseBp4BbfMTbCngbeABIAe4H3haRlo6TFsBfgQ6YstHRcVuOqhZjzitNDZQY/qgzZSciGSJym4hsBI6LSLSIjHa6nVkissGzpeK0IP7P0fTHRORNzxaGV9hXichWp0XwnYj80st+qoisd8LZ6fFithCRhSKyT0T2ishfPTLG33P0FJGPnBbSIRF5QURSPOyOiMgw576DiBwsey4ROVdEtjjPu1xE+nmlz81OiyZbRJaISHz1U7r6+MmbCkMsIrJIRP7qcf8zJ02znDwcVM04y9LZXYW7W538+UFErvaUy5Fpnoi84+T9lyLS08Pv30Uk08n3NSIyziv4eCedc0RkrYh49jBvd8pKjoh8LSLne9jNFJHPReRhETmMqcCret4HReSomFbvWV7WXZ3wckTkA0dhVAsR6Q0MA/6sqvmq+irmcMxpfrxcCfxFVY+q6lZgATAzyOgC+b0A2KKqL6tqASZtBotI36r8Om7OBa5V1YOqWqqqa4KUqQIi0l1EVjhp+qFTTnwOW4vINOcdGOhhPMspc/tE5GYPtyNF5Aun3O8TkcdFJNbDXkXk1yLyLebg0qqYKCLfOuHNE6nY46qi3ATLlcBDqrpHVfcCD+E/ry8D3lbVFaqai2m0XCAevagAdMPk/Ro1B6E+i+ltnQSgqqtU9Tl8n6b+E+BHp9yUqurzwEFMeUJV/62q76tqnqoexZSbMT7CcQM1a2TU4Ym2GZhTbDsDCRjNfBhzqq0LOMO5b+O4Xw7sBQZiTpl+FXjeseuGOR032rmfAvTEnIJ7GqY1MsyxGwlkO+G7nHj7OnavY1oxSZgMWQX8sornONkJKw5oA6wAHvGwvwb4GkgElgIPOua9MS2bM4AY4FbM6c6xHumzCtNyaQVsxetkYq/TgbMC/MZW8Qxzy9LSV944Zgqc7OFmEfBX53oocAAYBURhXqYMIK4a5WEyUAAkVeHmR2CAk57Pe8rlyHTYyeNo4AXgRQ//MzCtvGjgJieseI80KMa0QmOAm4FdQIxjf5GTFy5gupN37R27mUAJMNsJOyHAM8x04rnGSavrgR+g/GDk5ZhTm3tj3ovlwL1+wvoH8A8/ducDW73MHgce8+G2pZOObT3MLgQ2eb1fezGnZT8NtA7S79+BJ7zi24xRulX5vQKjoB8GDjnX02pY33wBPAjEYt6XY/ioP4CrMO/hyV52izH1Qhqm0p3o2A8HRjt+u2He0zke8SrwX8w77LdceLj9D6Yn08WJZ3Iw5cZXfRAgnmxglMf9CCDHj9s3gdu8zHKB4R7l9aCTP58D4z3cNQfWcKJemI0ZaRCv8CYCGV5mPwO+9jL7FnjYj5yP4PGue5jfBXxCgHrFbzrVpKD5ES4DmOVxfxvwnJebpcCVHol6r4ddf6DIScTywuonrjeA3zrX//SVYJgueqFngQQuBT6u5nOdB6zzMnsL86JuxFEAmBbSSx5uXJjKZLxH+szwsL8fmF9X6e8l31wqK7tZXm4CKbsnMK1zT/fbgdOCjH+1E/5vqnD3FPB/HvcnU1nZPelhfzawLUB4R4HBHmmw0is/9gHj/PhdD0x1rmcCu4N81pnADo/7ROcZ2nmU8z952P8KeL8GeXq55/M4ZvcAi3y47ezIEO9hdgZOBQQ0w1SI0c578gqwNEi/C/FS1phKcWYQfv/g2M/FKKnTMBVtv2qmRRdMYyTRw+x5Kiu7mzEN004e7srs+nqY3Q8s9BPXHOB1r/fm9CDlVDwapsBLwO3BlJtqpkep1/P0csLypTiX4dXIpmI9NQpIxjT2rwRygJ6OnTh5WOyk/yEg3UccvpRdKqahfimm8Xklppf2Tx/+z8C8y7192LXEDGWWAhdUJ53qes4u0+O6K3CR033PEpEsTAulvR/33zuJUGmIR0TOEpGVzhBiFqbSK3PXGdNy9qarE94+j/j/idPl9oeItBWRF51hz2OYl8hbpgWYHuljqlromHVwngEAVXU7z9fRw9+PHtd5mEqnocis2kk5XYGbvPKuM+YZgyEduASYKyIxAdx18JLLl4x+08wZFt7qDAtnYcb9PfOqPDwnP/aUPYOIXOExTJuFyU+ffoOgXEZVzXMum/my936GapCLaVl70hxTGflyW2Zfya2q5qrqalUtUdX9wA3AJGcoK6DfKuSoym8+pqL8q6oWqeonwMfAJB/PEIgOwBGPtAbf+XULME9V9/iw8657yspFbxH5j5hFEscw89/e73+NygaV876qchMs3nnSHMhVRztU4bbMfVnZ+FJVc1S1UFWfwTRkznbc/QLTUx6AaazMAP4jQayOVNXDwFTgRmA/ZlTnQ8w7WY6IjAb+DVyoqt/4COoqTC++laq+VlW8ntS1svNM3ExMzy7F45ekqvd6uOnscd0F8yIc8gxQROIwQ5wPYoZHUoB3Ma2Msnh6UplMTM+utUf8zVV1QBXP8P+c50hT1eaYDC0fZxeRZpgu9kJMZV42z/gDRkmUuRPn+fZWEV8lRGScVFwp5/3znpsKBu+Cn4dpTZbRzuM6E7jHK+8SVXVxUBGZl+wNTCusfQCn+4BOHved/Tn0xkmDWzErs1o65SIbj7zyDE9EXE5cP4hZPbgAU8mnOn43e/n1VVGEki1AD6+5lcGOeQXUzHnsc+wDui3z4vy7gvC7xdNORJIw79+WIPxuDBB3ddgHtBIRz/Lrq+xMAv4kIr7mNb3rnh+c6yeAbUAv5/3/AxXLRU1lrk8q5AmB89o7/3pgenG+FAs4PUTnegjwH1X9RlXdqvo+Ji9+EoyQqvqJqqaraivMSEVfzNROmSxDMaNms1R1mZ9g+mFG57KDidOT+vz04HngHBE5U0SiRCReRMaLiGflNkNE+juF9m7gFVUt9QonFpMZB4ESZxLXsyW4ELhKzHJol4h0FJG+qroP+AB4SESaO3Y9ReS0KuQua91mi0hHKq8s+juwWlWvBt4B5jvmLwFTHDliMHNIhcD/qkoob1T1Uz2xGsrX79PqhumD9cDPnbyZjBlSKmMBcJ2IjBJDkpilwclQvnBkURXPUNbjjQ3g7CVM3vVzysAdAdx6k4wZSjkIRIvInVRusQ4XkQvErJqbg8mPlZi5GnX8IiJXYXp2YYvTyl0P/Nl5l87HrLx71Y+XZzEVfUsxC0OuwQwL4+RrH+edSAUeBZZ7VCB+/WLmwQeKWfQRD9wJbFTVbUH4XQHsBn4vZpHUGMyKzaWOXDMliE8xVPV7zFD5XBGJFZFTMCsQvdmC6UHME5FzvezuEPMZxABMb6FsRWkypueQ68h/fVXyhAHPAjc6dV8HTN2zyI/bFzD18jinoXI38Jqq5ohIilNfxzv5cxlwKvC+4/crTB3Xw6kXzsDMRW8G06B0ykSMuZV4qbi4Z6iIxIhIc0znJVNVy/J+oBPPbFV9O8CzxmDe42pTb8pOVTMx3dY/YCqVTIzi8IzzOUym/AjEA7/xEU6OY/4SZhz35xjtX2a/ClNYH8a07D/hRA/rCkxl+7Xj9xUC9zTATIAOc8J6B7PMGjCrPjEvT9kLcCMwTEQuU9XtmF7gY5je6TnAOapaVEV8oeK3GBmzMCu03iizUNXVmErqcUy67aDi6q7OmOGNqlAClDFVfQ9T0X7sxLHSsQqmMC/FvBzfYIahCqg8vPQmZvHJUUxL8gJVLVbVrzEr1r7ADKmkBfk89YqYbyXnB3ByCWau7SjOEnBVLVPYl4mIZ2v+z5jh/e8x78QDTkscoAcm7XIwFVUhZi6lSr9OfNMw84VHMXM8lwTptxhTJ5yNeb8WAFd4KMpgyxWYMnsKZgHTXzHKqlK5UdUNmMURC6TiasdPMGVuGWaR2QeO+c2YOibHkc/zs4qQUDbSE8DJPzHL+jdh8vMdx6zMf/lokKpuAa7DKL0DGOX+K8dpDCYtyxaozAbO8xhOfBZ4ETMPfQzz7v7SI/9OxQxVv4vpLedjOhxl3OqEm4mph8/3sLsJsyBwoccIlq/eaRRVrPD2R9mKsQZHRJZjJpSfDIkAlhrhtNQ2AIOcyiuQ2x+AW9UsMw4m7H6YlzVOVUtqLaylUSEiH2AWnm2tgd8lmMVLf657ySzhgIgkAJ9hFhN5fxtYJXYHFUu1cBYW9KtK0Tncjhl28/stlYicL2bXjZbAfZhvgKyia4Ko6qRgFZ2IpDvTEi5nGH4qHqMTlshCRC7GjBbsx4zyVZsmqeyk4tZanr9AQ0iWaqKqz6pqL1UdHsDZLzHDKTsxy4nDbo7ElpewpB1mOC0XM5x2vaqua0gBJMBCsoaUoymgqi+p6kmqeraqHqraR2VCNoxpsVgsFktD0SR7dhaLxWJpWoTLRqYAtG7dWrt16xZqMSwWi8XSgKxZs+aQqvrb1LxOCCtl161bN1avXh1qMSwWi8XSgIjI91W7qh12GNNisVgsEY9VdhZLGPPd7ky27/R1YorFYqkOYTWMabFYKtL+qeEkUAhzq70VoMVi8SDslV1xcTF79uyhoKAg1KJYGhHx8fF06tSJmJhAhy6EPwk12wbQYrF4EfbKbs+ePSQnJ9OtWzek4iG/FotPVJXDhw+zZ88eunfvHmpxLBZLGBD2c3YFBQWkpqZaRWcJGhEhNTU1okYD3CXB7M5msVj8Ue/KTkQmi8h2EdkhIrfXMIy6FssS4URamSkoyKvakcVi8Uu9KjsRiQLmAWcB/YFLRaR/fcZpsUQiBflW2VkstaG+e3YjgR2q+p1zrtuLmN3JGxUiwk033VR+/+CDDzJ37tzQCVQFy5cv53//q/aZseWsX7+eU045hQEDBjBo0CCWLAn5kV5NnoK846EWwWJp1NS3sutIxQM19zhm5YjItSKyWkRWHzx4sJ7FqRlxcXG89tprHDpUo822/aKquN01OocwILVVdomJiTz77LNs2bKF999/nzlz5pCVlVV3AlqCw2OT9sJC27OzWGpDyBeoqOq/VHWEqo5o06Zet0arMdHR0Vx77bU8/PDDlewOHjzItGnTSE9PJz09nc8/Nwctz507lwcffLDc3cCBA8nIyCAjI4M+ffpwxRVXMHDgQDIzM7nlllsYOHAgaWlp5b2o5cuXM378eC688EL69u3LZZddhq8TKh599FH69+/PoEGDuOSSS8jIyGD+/Pk8/PDDDBkyhE8//TSgjJdffjmnnHIKvXr1YsGCBQD07t2bXr16AdChQwdOOukkfDVEXn75ZQYOHMjgwYM59dRTAbOg6KqrriItLY2hQ4fy8ccfA7Bo0SLOO+88zjjjDLp168bjjz/O3/72N4YOHcro0aM5cuQIAAsWLCA9PZ3Bgwczbdo08vIqV/KjR49my5YThxiPHz8+IreZU/eJY/2KI2ixjcUSCur704O9QGeP+06OWY246+0tfP3DsVoL5Un/Ds358zkDqnT361//mkGDBnHrrbdWMP/tb3/L7373O8aOHcvu3bs588wz2bo18PmT3377Lc888wyjR4/m1VdfZf369WzYsIFDhw6Rnp5erjjWrVvHli1b6NChA2PGjOHzzz9n7NixFcK699572bVrF3FxcWRlZZGSksJ1111Hs2bNuPnmmwH4+c9/7lfGjRs3snLlSo4fP87QoUOZMmUKHTp0KA9/1apVFBUV0bNnz0rPcffdd7N06VI6duxY3vObN28eIsKmTZvYtm0bkyZN4ptvvgFg8+bNrFu3joKCAk4++WTuu+8+1q1bx+9+9zueffZZ5syZwwUXXMA111wDwJ/+9CcWLlzI7NmzK8Q7ffp0XnrpJe666y727dvHvn37GDFiRMA0b4yUFheWv6AlRbZnZ7HUhvru2X0F9BKR7iISC1wCvFXPcdYLzZs354orruDRRx+tYP7hhx9yww03MGTIEM4991yOHTtGbm7gsxu7du3K6NGjAfjss8+49NJLiYqKom3btpx22ml89dVXAIwcOZJOnTrhcrkYMmQIGRkZlcIaNGgQl112Gc8//zzR0b7bLoFknDp1KgkJCbRu3ZoJEyawatWqcn/79u3j8ssv5+mnn8blqlxUxowZw8yZM1mwYAGlpaXlzzNjxgwA+vbtS9euXcuV3YQJE0hOTqZNmza0aNGCc845B4C0tLTyZ9u8eTPjxo0jLS2NF154oUIProyLL76YV155BYCXXnqJCy+8MGB6N1aKi4rKr0uKbM/OYqkN9dqzU9USEbkBWApEAU+pauXaK0iC6YHVJ3PmzGHYsGFcddVV5WZut5uVK1cSHx9fwW10dHSF+TjPb76SkpKCii8uLq78OioqipKSkkpu3nnnHVasWMHbb7/NPffcw6ZNmyq58ScjVF6iX3Z/7NgxpkyZwj333FOumL2ZP38+X375Je+88w7Dhw9nzZo1QT+Py+Uqv3e5XOXPNnPmTN544w0GDx7MokWLWL58eaVwOnbsSGpqKhs3bmTJkiXMnx+ZB4YXFxWQ4FyX2p6dxVIr6n3OTlXfVdXeqtpTVe+p7/jqk1atWnHxxRezcOHCcrNJkybx2GOPld+vX78eMMcVrV27FoC1a9eya9cun2GOGzeOJUuWUFpaysGDB1mxYgUjR44MSh63201mZiYTJkzgvvvuIzs7m9zcXJKTk8nJyalSRoA333yTgoICDh8+zPLly0lPT6eoqIjzzz+fK664ImCvaefOnYwaNYq7776bNm3akJmZybhx43jhhRcA+Oabb9i9ezd9+vQJ6nkAcnJyaN++PcXFxeXh+GL69Oncf//9ZGdnM2jQoKDDb0yUFJ/o2ZXanp3FUitCvkClsXHTTTdVWJX56KOPsnr1agYNGkT//v3LexnTpk3jyJEjDBgwgMcff5zevXv7DO/8889n0KBBDB48mNNPP53777+fdu3aBSVLaWkpM2bMKF8M8pvf/IaUlBTOOeccXn/99fIFKv5kBDMMOmHCBEaPHs0dd9xBhw4deOmll1ixYgWLFi1iyJAhDBkypFxB3nnnnbz1lhmJvuWWW0hLS2PgwIH85Cc/YfDgwfzqV7/C7XaTlpbG9OnTWbRoUYUeXVX85S9/YdSoUYwZM4a+ffuWm7/11lvceeed5fcXXnghL774IhdffHHQYTc2SopPKLjS4vwQSmKxNH7E1wq/UDFixAj1XlW3detW+vXrFyKJIpu5c+dWWMgSaTT2svPDjo10eH4cAF8M/n+ccv6vQyyRxVI/iMgaVa3XVWa2Z2exhCklxSdOPNBie/qBxVIbwv7UA0v9Ec67wFjMpwdlqB3GtFhqhe3ZWSxhSgVlV2IXqFgstcEqO4slTCktObEaE6vsLJZaYZWdxRKmlHp8eoCds7NYaoVVdhZLmFJB2ZUW+XdosViqxCq7IHnjjTcQEbZt2+bXTUZGBgMHDqxXOdavX8+7775bY/9lH6H379+fAQMG8Pe//70OpbPUJe6SE705KbXDmBZLbbDKLkgWL17M2LFjWbx4sU97X1t5VZey/SUDUVtlFx0dzUMPPcTXX3/NypUrmTdvHl9//XWNw7PUH+oxZ+cqtcOYFkttsMouCHJzc/nss89YuHAhL774Yrn58uXLGTduHOeeey79+5sD2EtKSrjsssvo168fF154YfkRNcuWLWPo0KGkpaUxa9YsCgtN5dWtWzduu+02hg0bxssvv1whXu8jdIqKirjzzjtZsmQJQ4YMYcmSJRw/fpxZs2YxcuRIhg4dyptvvgmYI3WmTp3K+PHj6dWrF3fddRcA7du3Z9iwYQAkJyfTr18/9u6tfBDFJ598Ur57ytChQ8nJyUFV/R5HdNpppzF16lR69OjB7bffzgsvvMDIkSNJS0tj586dALz99tuMGjWKoUOHMnHiRPbv318p3ksuuYR33nmn/H7mzJnlmz43Ndweyk7sMKbFUisa13d2790OP1be6LhWtEuDs+4N6OTNN99k8uTJ9O7dm9TUVNasWcPw4cMBs+/l5s2b6d69OxkZGWzfvp2FCxcyZswYZs2axT/+8Q9uuOEGZs6cybJly+jduzdXXHEFTzzxBHPmzAEgNTW1fB9NT7yP0ImNjeXuu+9m9erVPP744wD84Q9/4PTTT+epp54iKyuLkSNHMnHiRMAcz7N582YSExNJT09nypQpFY7CycjIYN26dYwaNapS3A8++CDz5s1jzJgx5ObmEh8fz2uvveb3OKINGzawdetWWrVqRY8ePbj66qtZtWoVf//733nsscd45JFHGDt2LCtXrkREePLJJ7n//vt56KGHKsRbdnzPlClTKCoqYtmyZTzxxBNBZmZk4S4pBiCfOKLctmdnsdQG27MLgsWLF3PJJZcApufhOZQ5cuRIunfvXn7fuXNnxowZA8CMGTP47LPP2L59O927dy/fH/PKK69kxYoV5X6mT5/uM15fR+h488EHH3DvvfcyZMgQxo8fT0FBAbt37wbgjDPOIDU1lYSEBC644AI+++yzcn+5ublMmzaNRx55hObNm/uM+8Ybb+TRRx8lKyuL6OjogMcRpaen0759e+Li4ujZsyeTJk0CKh7fs2fPHs4880zS0tJ44IEHfB7fc9ZZZ/Hxxx9TWFjIe++9x6mnnkpCQkIld00BdYYu80jEVVocYmkslsZN4+rZVdEDqw+OHDnCRx99xKZNmxARSktLEREeeOABoPJxPf6OzAmEvyN/gjlCR1V59dVXK50s8OWXX/qVpbi4mGnTpnHZZZdxwQUX+Iz79ttvZ8qUKbz77ruMGTOGpUuXBnyGYI7vmT17NjfeeCPnnnsuy5cv97mDS3x8POPHj2fp0qUsWbKkvJHRFCmbsytwJdiencVSS2zPrgpeeeUVLr/8cr7//nsyMjLIzMyke/fufPrppz7d7969my+++AKAf//734wdO5Y+ffqQkZHBjh07AHjuuec47bTTqozb1xE63sf3nHnmmTz22GOUbei9bt26crv//ve/HDlyhPz8fN544w3GjBmDqvKLX/yCfv36ceONNwaMOy0tjdtuu4309HS2bdtWq+OIALKzs+nYsSMAzzzzjF9306dP5+mnn+bTTz9l8uTJQYcfaZxQdklEq52zs1hqg1V2VbB48WLOP//8CmbTpk3zuyqzT58+zJs3j379+nH06FGuv/564uPjefrpp7noootIS0vD5XJx3XXXVRm3ryN0JkyYwNdff12+QOWOO+6guLiYQYMGMWDAAO64445y/yNHjmTatGkMGjSIadOmMWLECD7//HOee+45Pvroo/IFKGWrO+fPn19+/M8jjzzCwIEDGTRoEDExMZx11lm1Oo4IzF6cF110EcOHD6d169bl5qtXr+bqq68uv580aRKffPIJEydOJDY2NujwIw11hi6LopOIctthTIulNtgjfiKURYsWVVjI0hRp7GVn5VO3MHr3v9jUbAwJx/dy8p83hFoki6VesEf8WCxNmdIiijUKd1Q8MXYY02KpFbVSdiLygIhsE5GNIvK6iKQ45t1EJF9E1ju/+VUEZaljZs6c2aR7dRFBaTHFRKNRcURjhzEtltpQ257df4GBqjoI+Ab4vYfdTlUd4vyqnqAKQDgNtVoaBxFRZkqLKJFoNDqWWNuzs1hqRa2Unap+oKpl+2StBDrVXqSKxMfHc/jw4ciovCwNgqpy+PBh4uPjQy1KrRD3iZ5dLMX2HbBYakFdfmc3C1jicd9dRNYBx4A/qarPtfoici1wLUCXLl0q2Xfq1Ik9e/Zw8ODBOhTVEunEx8fTqVOdt70altIiSoiG6HjiKKao1E1cdFSopbJYGiVVKjsR+RDwtb78j6r6puPmj0AJ8IJjtw/ooqqHRWQ48IaIDFDVY96BqOq/gH+BWY3pbR8TE1NhhxKLpangchdTItEQFUu8FJNdVGqVncVSQ6pUdqo6MZC9iMwEfgb8VJ1xFlUtBAqd6zUishPoDaz2F47FYqmIuIsplRgkxgzHFhYVQGLT/e7QYqkNtV2NORm4FThXVfM8zNuISJRz3QPoBXxXm7gslqaGy11MqUTjijZbrxXl54dYIoul8VLbObvHgTjgv86+iyudlZenAneLSDHgBq5T1SO1jMtiaVKYYcwYJNb07IqK7AGuFktNqZWyU9WT/Zi/Crxam7AtlqaOy12MW6JxOcOYxYV5VfiwWCz+sDuoWCxhSowWUuyKJyraKLuSQjuMabHUFKvsLJYwJcZdSIkrHldsWc/OKjuLpaZYZWexhClxWkBJVDzRsebw2hI7Z2ex1Bir7CyWMCVWC3FHJxDt9OxKimzPzmKpKVbZWSxhilF28UTHmZ5dabHt2VksNcUqO4slTInXQohJKB/GdNthTIulxlhlZ7GEISUlJSRIERKTSEycGca0PTuLpeZYZWexhCF5+ccBkNhEYuNNz06LC0MpksXSqLHKzmIJQ/JzcwBwxSYSG1um7GzPzmKpKVbZWSxhSGGu2V1PEloQ4yxQcZdYZWex1BSr7CyWMKQo5ygAroSW5aceUGKHMS2WmmKVncUShuQfOwRAfPNUiDKnHlhlZ7HUHKvsLJYwpCDHDGMmtUiFaKvsLJbaYpWdxRKGFB03yq5Fy9YgQiExSKlVdhZLTbHKzmIJQyR3P24Vklu2A6CEGLDKzmKpMVbZWSxhSPTx/RyRFrhiYgEoklhcVtlZLDXGKjuLJQyJKzhAVlRq+X2JxBJVWhRCiSyWxo1VdhZLGJJcuJ/j8W3L70skBpfbKjuLpabUStmJyFwR2Ssi653f2R52vxeRHSKyXUTOrL2oFkvTwF1SQsfSH8hv3r3crMQVi8tthzEtlpoSXQdhPKyqD3oaiEh/4BJgANAB+FBEeqtqaR3EZ7FENAf27qSdFENqz3KzUlcsUaXFIZTKYmnc1Ncw5lTgRVUtVNVdwA5gZD3FZbFEFJnfrAcgtXP/crNSVyzRtmdnsdSYulB2N4jIRhF5SkRaOmYdgUwPN3scs0qIyLUislpEVh88eLAOxLFYGjf5331BqQpdB55SbuZ2xRGjds7OYqkpVSo7EflQRDb7+E0FngB6AkOAfcBD1RVAVf+lqiNUdUSbNm2q691iiThSDq3m+5iexCallJu5o2KJVjuMabHUlCrn7FR1YjABicgC4D/O7V6gs4d1J8fMYrEEIC8/j15F29nS/nx6eJi7o2zPzmKpDbVdjdne4/Z8YLNz/RZwiYjEiUh3oBewqjZxWSxNgR0bPidBiojvObaCuUbFEaPFqGqIJLNYGje1XY15v4gMARTIAH4JoKpbROQl4GugBPi1XYlpsVTNse2fAtBlyE8rmGtULLFSTIlbiYmSUIhmsTRqaqXsVPXyAHb3APfUJnyLpamR+OMq9rg60KmN13qu6DjiKKawxE1MlN0LwmKpLvatsVjChNLSUnrkbeLHlKGV7CQ6jlhKKCy2AyQWS02wys5iCRMytq8jRXKRLqdUtoyOJ44iCkvcDS+YxRIBWGVnsYQJBzcvB6B92umV7CQmnlgppaDIfn5gsdQEq+wsljDBtWcVh0mhffd+le2c08qLCvMbWiyLJSKoi70xLRZLHdAuZzOZif1JdVVug0pMPADFtVB2+XnH+X7z/8jZ/x1SmEOpRBMVE09MQjLRCc2Jb9aC+ETzn5ScQlxiMwDUrYA6nz0o6nZ73Z/4HEIx195fSJTd+7MHEAFBzL/nNSAizr+5rhbR8RAVUz0/lojDKjuLJQzIPnKQLrqXvW3P82nvik0EoLggr9ph71j/KUc//BuDcj6lr1R/GLSxf+hwjGa4freJZi1ahVoUSwixys5iCQMyN31KC6BZj9E+7aPiEgAoKTwedJj5ucdY//RvGHXoDY5LPOvbnEN8n4m07NKf2KQUREsoyj9OQV4OhcezKcrLobTgGKX5OZQW5iBFeYiAmj6V6VY5/77MKiFlf+LLuKIWVfOxrpZd4PyVmTs36uUeDz/l93rCXeyx3Zya/SZbv15Jv1PKTyCzNEGssrNYwoC871biVqHLwLE+7aNikwAoKQhO2R3c+x1ZC6cxqnQXq9tdRJ9L72NUStPr2RzY+z0seJNjGevAKrsmTcQpO3dpKa6oqFCLYbFUi9iDm8l0daRrS98KKSrODGOWFlU9jLl3315KnvwZ7dxH2DJ+ASMnXFSnsjYm2rTvzGFa4PpxQ6hFsYSYiFqNefDH3Xz7fz9h48cvh1oUi6VatM7fyeGknn7to+NMz85dhbI7mJXD/gUX017388OUZ0lrwooOQFwuvk8aROdja32virE0GSJK2TVr1oJodyHdl89m26oPQi2OxRIUuTnZdHDvpzi1r1830fFG2WkAZVdYXMLm+TMZ5t7MvvEP0WfkpDqXtTFS0GkM7fQge3dtC7UolhASUcOYCc1akDzrVbIW/ozu7/ycL76+hrTzbwm4Cqu41M2RI0fJPrSHnMP7KDi6j9Kc/cjxA8QVHiGqJB8pLQJ3MS53MS4txqUndrFQnLXRmEl7KTMrsy+bwK8GWi33Uq3gtdJFADe+7KpsHGsdhOFHHh/+fAdV0TRQfD6tArr3bxlsWN5G8e58RogS1zHNb9gxVSg7VeXjBbcyueBDtve7gT7jZ/oNq6nRLf1nsP1eMv+3hI495lbbf0lxMXu/20LWnm0U7v+W0uy9RBVkEVOcTWxJDlHuEgQ3LtxO3VCWw2KunMU7ZYt6yusJj3rjxGoex49XvUL5giCPcDkRbsWwTrjxDFvLw647Dsd0YOLvnqrjUOuHiFJ2ACd16kn2rz9iy9PXcErGPyj42wK2xvYmN7ET7qg4okoLiS7KJq7oKMmlR2ml2bSVQtr6COsoyeSTQIlEUyoxlDr/bnEBinjUwieK34niJM53SNWh7otj9cL2qTerufa8svPgAvC5Sq9G8QV26Nu9+LysMs46knVX9BB6pfvvicUlON+8Ffn+zu7jV/7B5AML+brNWfS/+K/VEyrC6XByGtui+9Duu1dwl96Jq4qNtEuKi9m2+iOOb36X5ENr6Vawna5SSFfHPk/jOCbJ5LmaURDVjJKoeNziQnGhElWuzMrWl5YtKxWve3DeyfLWmOPGYxmq8eNGnBWm5fWMqqP7FNETavREOGWqz6M+qoe65VhpXJ2HWV9EnLIDaNG6PcNu+Q/b164g68vnaX5kE52y15q9BYnleFRzimKacyi5C/sT2+BKPono5u2IT2lHs9QOtGjdgcSW7WgZFUPLUD+MxcKJnh3FlVdjrvv8fcZsvpNvEgbR95pFvj8DaOIcH3QVfdfezldvzyP9vNmV7PNys9j2+duUfP0fTs7+nIHkUKxRfBfdg40nnUNUx2Ekd+xLm679aNW6HYk+PvxvivifZQ4/IlLZldFn2Kkw7NRQi2Gx1BpXoml2xRRmVTD/fsdmuv73ag5GnUTHX76KKzY+BNKFP0OmXMu2Tc+Stu4uVhbk0n7wJPJysji26yviM5bRN28dw6SYYyTxbfNT2N3vbE7+yfn0sR+iRwwRrewsloghKoZsTSKu6Gi50ZEDPyAvXIwLJXrGyyS1PCmEAoY3UVFRtLnmVb578mJGb7sXtt1bbrdH2rG27QUkD/oZfUaeyfDYxjM0Zwkeq+wslkZClqsFMQWHAbM7ysF/nUc39wEyzn6ePj0Ghli68Cf1pA60un0FOzb9j+zMrUTHJ3FSr+F07NyLTnZYMuKxys5iaSTkx7QktuAg+bnH+Pbx8xhQ/A0bfvIYw0ZNDrVojQZxuTh58FgY7HunGkvkUqvmjIgsEZH1zi9DRNY75t1EJN/Dbn6dSGuxNGGOJPdlQPFmfnh4PAPy17J2yF8YdubloRbLYmkU1Kpnp6rTy65F5CEg28N6p6oOqU34FovlBMkjLqbk/ddpU7KPDT95lPQzrwi1SBZLo6FOhjHFHDB1MVD5iGWLxVInpJ0ymb0dVtMsuTnDWrUJtTgWS6OirmZlxwH7VfVbD7PuIrJORD4RkXH+PIrItSKyWkRWHzx4sI7EsVgik45de9LCKjqLpdpU2bMTkQ+Bdj6s/qiqbzrXlwKLPez2AV1U9bCIDAfeEJEBqnrMOxBV/RfwL4ARI0bYnVotFovFUudUqexUdWIgexGJBi4Ahnv4KQQKnes1IrIT6A2srpW0FovFYrHUgLqYs5sIbFPVPWUGItIGOKKqpSLSA+gFfFdVQGvWrDkkIt/XgUytgUN1EE5D0JhkhcYlr5W1/mhM8jYmWaFxyVtXsnat2kntqAtldwkVhzABTgXuFpFiwA1cp6pHqgpIVetkMkJEVqvqiLoIq75pTLJC45LXylp/NCZ5G5Os0LjkbUyy1lrZqepMH2avAq/WNmyLxWKxWOoCu0eOxWKxWCKeSFV2/wq1ANWgMckKjUteK2v90ZjkbUyyQuOSt9HIKlrdY6MtFovFYmlkRGrPzmKxWCyWcqyys1gsFkvEE1HKTkQmi8h2EdkhIreHWh5vRKSziHwsIl+LyBYR+a1jPldE9nqcEnF2qGUFcE6y2OTItNoxayUi/xWRb53/lmEgZx+PtFsvIsdEZE44pauIPCUiB0Rks4eZz7QUw6NOOd4oIsPCQNYHRGSbI8/rIpLimIf8hBM/8vrNexH5vZO220XkzDCQNWxPjwlQZ4Vl2Q2IqkbED4gCdgI9gFhgA9A/1HJ5ydgeGOZcJwPfAP2BucDNoZbPh7wZQGsvs/uB253r24H7Qi2nj3LwI+Yj1bBJV8y3p8OAzVWlJXA28B4gwGjgyzCQdRIQ7Vzf5yFrN093YZS2PvPeed82AHFAd6fOiAqlrF72DwF3hlHa+quzwrLsBvpFUs9uJLBDVb9T1SLgRWBqiGWqgKruU9W1znUOsBXoGFqpqs1U4Bnn+hngvNCJ4pOfYo6XqoudeOoMVV0BeG+s4C8tpwLPqmElkCIi7RtEUHzLqqofqGqJc7sS6NRQ8lSFn7T1x1TgRVUtVNVdwA5M3dEgBJJVpPz0GO9NOkJGgDorLMtuICJJ2XUEMj3u9xDGikREugFDgS8doxucbv9T4TA06KDAByKyRkSudczaquo+5/pHoG1oRPOL944+4ZiuZfhLy3Avy7MwrfcyuksQJ5yEAF95H85pW+PTYxoCrzqr0ZXdSFJ2jQYRaYbZYWaOmpMgngB6AkMwJ0Y8FDrpKjBWVYcBZwG/FpFTPS3VjFuEzbcrIhILnAu87BiFa7pWItzS0h8i8kegBHjBMSo74WQocCPwbxFpHir5PGg0ee+Bv9NjQp62PuqschpL2Y0kZbcX6Oxx38kxCytEJAZTaF5Q1dcAVHW/qpaqqhtYQAMOqwRCVfc6/weA1zFy7S8blnD+D4ROwkqcBaxV1f0Qvunqgb+0DMuyLCIzgZ8BlzkVHM5w4GHneg1mDqx3yIR0CJD34Zq2ZafHLCkzC5e09VVn0cjKLkSWsvsK6CUi3Z0W/iXAWyGWqQLOmPxCYKuq/s3D3HNM+3xgs7ffhkZEkkQkuewas0BhMyZNr3ScXQm86TuEkFChZRyO6eqFv7R8C7jCWdk2Gsj2GDIKCSIyGbgVOFdV8zzM24hIlHMd9Akn9U2AvH8LuERE4kSkO0beVQ0tnw98nh4T6rT1V2fRiMpuOaFeIVOXP8xKoG8wLaA/hloeH/KNxXT3NwLrnd/ZwHPAJsf8LaB9GMjaA7NqbQOwpSw9gVRgGfAt8CHQKtSyOnIlAYeBFh5mYZOuGCW8DyjGzGP8wl9aYlayzXPK8SZgRBjIugMzF1NWbuc7bqc55WM9sBY4J0zS1m/eA3900nY7cFaoZXXMF2FOh/F0Gw5p66/OCsuyG+hntwuzWCwWS8QTScOYFovFYrH4xCo7i8VisUQ8VtlZLBaLJeKxys5isVgsEY9VdhaLxWKJeKyys1gsFkvEY5WdxWKxWCKe/w9SCLvAb5pwdwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 7)" + "## Setting up and running an optimisation\n", + "\n", + "Now that we have a cell template and an evaluator for this cell, we can set up an optimisation." ] }, { "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABiRklEQVR4nO2deXxVxdn4v8/NHghbWGRflJ2EsASwgIJFUKmiomJFEa3ta6u2qLXaRX9o7fu6VkWtWEVxQcUdrWtdULFFFtlXQcK+hC2QPbl3fn/MSTi5uTe5Icu9SZ7v53OTc2bmzDxnZs48M8/MOSPGGBRFURSlseAJtwCKoiiKUpeo4lMURVEaFar4FEVRlEaFKj5FURSlUaGKT1EURWlUqOJTFEVRGhURo/hEpJuIGBGJDrcsDR0RmS4ii+oorQQR+VBEjojIH+oiTb/0M0RkXB2ks1BErgvip3U7TDj5flpV/WpYhqB1UETGiMiu2pahoSAiHUTkuIhsEpGzTjaeiFF8yskhIjNFpEhEsl2/OlcwFTAOSAU6G2MeKHF0GoNuYZMqgnDKcGYVwl8hIttFJEdE3hWRVhWETROR5SKS6/xPc/nFichsEdkvIodF5H0R6Rggjp4iki8iL7vcJorIIhE5KiL7RORZEUly+bcSkfkickhEDorIPBFp5vLPEJE8V539tAr332jqjojMFZHpVQh/s1Mex0TkORGJqyDsT0Vko1M3vhSRrgHCtBKRTHdHWURiReRNpxyMiIzxu+Yjv/aoUETWuPzTROQbEckSkV0icqff9ZeJyAZHwa0XkQtL/Iwxe4wxScD7wG9DzRd/akzxaW82rMw3xjR1/R6o/JI6oxWQYYzJDrcg1UEsYe8oikh/4GngKqAdkAv8I0jYWGAB8DLQEngBWOC4A/wOOB3bMekAHAEeDxDVk8BSP7fmwL3OdX2BjsCDLv97nTS7A6c6ss70i+N8V50dX9F9RzKR0vaJyATgDuCnQFegB3B3kLCtgbeBO7HP6DJgfoCg9wMbArgvAq4E9vl7GGPOdbdHwH+AN1xBXgG+dtI9E/iNiFzgyNURW19vAZoBtwGviEhbv2TWAsmB7i0UqvUgOxr/dhFZDeSISLSIjBCR/zg9wVXu3oBYc9D/icgSp0eyIFhvVUSucWn9H0Xkf/z8J4nISieerSJyjuPeXETmiMheEdktIveKSFQl93GqiHzh1ztt4fI7LCKDnfMOTg9ojHN+gYisc+53oYj09cuf34vIaqd3M19E4que01VHRO5w8qWk13RRkHAiIo+IyAEnL9eIyADHL05EHhKRHWJHBbNFJKGKokQDvkpkTRY72jgmIkudMnP3MI2IXC8iPzj5/KSIiOMXtOxcpDt5cEREni8pAxFpKSL/csrziHPcyZXuQhH5m4h8i1UwPSq5164i8q2T5586jYubqU5eHhSRP1cSVzCmAu8bY752OhN3AheLa7TlYgw2/x81xhQYY2YBApSYiLoDnxhj9htj8rENX393BCJyOXAU+Nztbox5xRjzsTEm1xhzBHgGGOkK0h141xhzzBiTBbzjH3dNUFnd8Qs7SkR2StkRynlO+3JQRB4Up3NTWb2SAG1fJaKmVdQOiMitzjO4V0SuOZm8AK4G5hhj1jll8ldgepCwFwPrjDFvOGU/ExgoIn1cMv0EGAA8777QGFNojHnUGLMI8FYkkNiR+WjgRZdzN2CeMcZrjNmKVaIldaMTcNQY85GxfADkYDtPbnzYun1yGGNO+gdkACuBzkACttd3CDgPq1TPds7bOOEXAruxmdkEeAt42fHrBhgg2jmf6NysYHsFucBgx28YkOXE73HS7eP4vYPtETcB2gJLgP+p5D5Oc+KKA9pgeyOPuvx/CawHEoFPgIcc917YQjkbiAH+AGwBYl35swTbK26F7TldH0SGUdgGJthvVJDrZpbkoZ/7pU66HmCKI2d7x286sMg5ngAsB1o4ed3XFe4R4D1H9hLzwv9VoX7EAC8Fks8v3GvOLxHoB+wskc/xN8C/HBm7AJnAOSGWXQa2d9jZuY9vgXsdv2RgspNuErZX+q7r2oXADuxDGQ3EVHAPC4GtTp1IcM7v86vbzzh+A4ECoG+QuCoq7wXA7X5u2cCQAGFvBj7yc/sXcKtzPNTJjw5OHrzil3fNgM3YxihgPXOFfRR4zXX+M+BD7KivJfAFMMOvXPY7ZfkpMPAk26BQ6s5pwDmO3zA/vy+detHFudfrqlCvVjr1KiGEdjJgO4DtnBQD92Cfl/OwbV3LAPF0cepGlyDprAKmuM5bO/eYHCDsY8BTfm5rgcnOcRTwPTAEV3sRIJ5dwJgK7v0uYKGf2/8C9zn329uJI92V7lfABc7xhY5/E784xmItFAHzotJ6czIX+RXota7z24GX/MJ8AlztHC/EaQyc835AoXOD3XApvgBpvQv8zjl+GngkQJh22AYlweX2c+DLKt7XhcAKP7f3gDXAaiDOcbsTeN0VxoNV7GNc+XOly/8BYHZ18jyArDOdPDzq+nUIEG4lMMk5Lq3I2N7/ZmAE4HGFF5yelsvtdGBbiHKlAUXYxu20CsJFOeF6u9zupXzjNcp1/jpwRyhl55TB9a7z84CtFch8xHW+ELgnxPtdCPzFdf4b4GPnuKRud3L5LwEuP4ny/hy/zpO7zvm534lLGTlu84CZznFzrNIw2MZ3BdDKFfYxHCVLBYoPqyCOAL1cbh2Az7A9cx/wb5wOoeM/EtsJSAT+iDWZtahiXoRad/4IbAcG+F1vcDpQrjL7vAr16toQ5cwgSDuAVXx5uNo94AAw4iTqxla/+4lx7rFbgLBzcLXFjtu3wHTn+GYcxUj1FN+Wkjhdbj9x3Isd+e728/8FtjNXjO0ETAwS9xvO9Y9WNa9qYs5ip+u4K3CpY446KiJHsSOZ9kHCb8cWjr9JCBE5V0QWO2bGo9gGqyRcZ2wh+9PViW+vK/2nsSO/oIhIOxF5Taxp9BjWxuwv0zPYkerjxpgCx62Dcw8AGGN8zv25Fwi4beC5QNOKZDlJXjfGtHD99ojINLGm4JJ8GECAfDbGfAE8gZ3HOSAi/xS7CKENtlFa7orjY8e9UowxK7GjqP8CMyoI2gY7mnLXi50BwgXMxxDLzr/OdXCuTRSRp8UuFDmG7dW3kLKm8UCyBKOysq6JupCNHYm5aQYcP4mwT2JHNMlYC8nbwEdgFyBgFyY9UpEwIjICO1K8xBiz2eX1OrZDleSkuRVbNgAYY741xuQZayr9P2yHbXRFaQUg1LozA/uMrA3gF6xuVLVeVUZFZX/IGFNcgX+o+Jd3yXGV6oaIdMAuHDlZczxgTcvAKcCbLrdW2HbkHiAe25ZPEJHfOP7jsB2DMUAs1tr3rLgWZTnhBmN1Qh9jzIyqylYTis+4jndiR3zuRriJMeY+V5jOruMu2B7bQXeEYlcivQU8BLQzxrTAmk3ElY6/zbfEvQBo7Uq/mTGmsrmF/3XuI8UY0ww7aVuSFiLSFGvKmQPMlBPzknuwyrYknDj3t7uS9MohIqOl7Eoo/1/IjYLY1VnPADdizRwtsGYMCRTeGDPLGDMEOwLvhZ1QPojtifZ35WVzYyerQ8LYuYOPnHiDkYnt2XVyuXUOEjYQFZZdgPi6YMsN4FasqWW4c+0Zjrv7enf9jgTWYU2lAIhID6zy2hwkbGrJfKhDquMOdoQ71xhz2OnMPQ4Mc+Ymx2BHqjtEZB/we2CyiHzvSnsQ1hJyrTGmzBygE/fTxpgcY+ciZ2MbqmAYgtTPCgi17lwKXCgivwvgF6xuhFKvIrpuOMf7jTGHKgsrIk2wbeo67FRSe2C9U/aPYevFPqlkvYQfVwNvm7IL23oAXmPMi8aYYmPMLqzVoaRupAFfG2OWGWN8xpilwHfYTpibvsB6Y8ymKshTSk2vUnsZOF9EJohIlIjEi31PxV0xrxSRfiKSiNX6bxpj/CdIY7EPcyZQLCLnAu5VX3OAa8Qux/WISEcR6WOM2YudL3hYRJo5fqeKyJmVyJ2E7QFliV1VdJuf/2PAMmPMdcAH2IcYbK92oiNHDLYhLcCuYqoSxphvTNmVmf6/b6oQXRPsQ5kJdqEQdsRXDhFJF5Hhjvw5QD7gc0avzwCPiLOiysnnCa5ryy1lDkABtjwD4pT929gORaIzuT4tpLu0VFZ2ADeISCenw/JnTqxeS8Iq96OO3/+rQrrhYh72GRvtNFb3YBuXQL36hdjFB78Vu1DpRsf9C+f/UmCa2AVhMVhT3x5jzEHgn9iGMM35zcbW/QkAYhdAfQzcZIx5P0DaS4HrxL7HmQD8CjtNgIh0EZGRYpfFx4vIbdjR1LeO/xgRqVSpVKHu7MGudPydiPzaz+82sYucOmNXubrrRmX1KtJ4EfiF0762AP4CzA0S9h1ggIhMFrvQ5i5gtTFmI7az2o0TZX8X1gyeVtJWO/WpZIFOSTm6BwsJwGUB0t9sveUKp30+BbsGYbXjvxQYXTLCczpXo13+JcRg25aTokYVnzFmJzAJ+BO20d2JrTDudF7CZsY+7FC33LsYzkP8W6xiOQJcge1ZlvgvAa7BmmGysJOhJSOvadiGdr1z7ZuUNbUG4m5gsBPXB9iHCbCrR7ET4yUPzC3AYBGZ6vQ2rsT2lA8C52OXaBdWkl6tYoxZDzyMNTPuB1JwGpUANMMquCNYU88hTixLvx1ri1/smHs+w46QcBqK49h5z4rwUXk9uxE737QPWz9eJfRKHbTsXLyC7RD9iDW53eu4P4qdZzoILMY25GGnohG+MWYdcD1WAR7ANtC/cV37kYj8yQlbiJ2bmoY1JV4LXOiqn7/HdnR+wD6v5wEXOdfmGmP2lfywSiDfGJPpXHsr1tQ4x2WVKBlJ4qTVDTsHtBvb07/a8UsCnsLWud3Y5+tc18ikM6F3HkOqO8aYHVjld4eU/dDAAuzirpXY+jPHcQ+lXtUpTochW0S6BPI3xnyMNRN+iV2UtR1XZ07s6vOpTthM7MKuv2HLYThwueNX4Ff2WUCRc1zCJmynsSN2HUceLusXtt4ddWRxy3gMu6L0ZifdlVhr1L2O/1fY+eQ3ReQ41vL3v8YY//c8o6hktXhFiDNJWCeIyELsBPmzdZaoUiuIyJVYM+gfKwk3HmsJ6GOMORxi3PcDpxhjrq40sNLgEJFngTeMMZ+cxLVadxo4Yl85mQW0NcZcdjJxRMSLl0r9wxjzcuWhAGtu+zewTkQeNsY85B/AMVHFYkeP6dhVXQE//6U0fJwphZDQutO4ELvwZg2wDbjhZONpNIpPRGZjzZL+vGyMub6u5WksOGa1qZUES8KaqDpgTbMPY01QEYWIBPv6zLlVnINVao6w1x3H9Lg+iHc/x8yq1ADGmD1U44stJdSpqVNRFEVRwk3Yvz2oKIqiKHVJRJk6W7dubbp16xZuMRRFUZQ6ZPny5QeNMSF9HKMmiCjF161bN5YtWxZuMRRFUZQ6RES2Vx6q5lBTp6IoitKoUMWnKBGMLj5TlJpHFZ+iRCgH9u/hw3svZsFLj4VbFEVpUETUHF8gioqK2LVrF/n5+eEWRalHxMfH06lTJ2JiYsItykmz4dU/M9H7Bb4tX7J6/ThS+9X4Pq6K0iiJeMW3a9cukpKS6NatG2U/Mq8ogTHGcOjQIXbt2kX37t3DLc5JUVxUyIAjn7EjviddCn7g4NK3QBWfotQIEW/qzM/PJzk5WZWeEjIiQnJycr22Emxdt5RkOcbBlF+xz3MKiburvOGHoihBiHjFB6jSU6pMfa8z+zdYRdc1dTSZrYZwasF6Cor9d+9SFOVkqBeKT1EaGzH7V3GMJiR37oO060cbyWLXrl3hFktRGgSq+EJARLj11ltLzx966CFmzpwZPoEqYeHChfznP9UzjZ1zzjm0aNGCn/3sZzUklVIVkrM3sSOuJ4iQ2DkFgIPbVoZXKEVpIKjiC4G4uDjefvttDh48WKPxGmPw+U56L8Wg1ITiu+2223jppZdqSCKlKhifj1OKdpGb1AOAdqcNAiB/97qKLlMUJURU8YVAdHQ0v/rVr3jkkUfK+WVmZjJ58mTS09NJT0/n22/tRuczZ87koYdObD03YMAAMjIyyMjIoHfv3kybNo0BAwawc+dObrvtNgYMGEBKSgrz588HrPIaM2YMl1xyCX369GHq1KkBX2aeNWsW/fr1IzU1lcsvv5yMjAxmz57NI488QlpaGt98802FMl511VWcfvrp9OzZk2eeeaY03p/+9KckJSVVmC9vvPEGAwYMYODAgZxxxhmAXYx0zTXXkJKSwqBBg/jyS7sB89y5c7nwwgs5++yz6datG0888QR///vfGTRoECNGjODwYbtH7TPPPEN6ejoDBw5k8uTJ5Obmlkt3xIgRrFt3QgmMGTOmQX3qbv/+PTSTXDzJVvE1Se5MNolEHdocZskUpWEQ8a8zuLn7/XWs33OsRuPs16EZ/+/8ypeJ33DDDaSmpvKHP/yhjPvvfvc7br75ZkaNGsWOHTuYMGECGzZsqDCuH374gRdeeIERI0bw1ltvsXLlSlatWsXBgwdJT08vVSIrVqxg3bp1dOjQgZEjR/Ltt98yatSoMnHdd999bNu2jbi4OI4ePUqLFi24/vrradq0Kb///e8BuOKKK4LKuHr1ahYvXkxOTg6DBg1i4sSJdOjQIaS8u+eee/jkk0/o2LEjR48eBeDJJ59ERFizZg0bN25k/PjxbN5sG+y1a9eyYsUK8vPzOe2007j//vtZsWIFN998My+++CIzZszg4osv5pe//CUAf/nLX5gzZw433XRTmXSnTJnC66+/zt13383evXvZu3cvQ4cODUnm+sCB7es5BUg4pbd1EOFg9CnE5+gcn6LUBDriC5FmzZoxbdo0Zs2aVcb9s88+48YbbyQtLY0LLriAY8eOkZ0dbL9SS9euXRkxYgQAixYt4uc//zlRUVG0a9eOM888k6VLlwIwbNgwOnXqhMfjIS0tjYyMjHJxpaamMnXqVF5++WWiowP3YyqScdKkSSQkJNC6dWvGjh3LkiVLQs6TkSNHMn36dJ555hm8Xm/p/Vx5pd3vt0+fPnTt2rVU8Y0dO5akpCTatGlD8+bNOf/88wFISUkpvbe1a9cyevRoUlJSmDdvXpmRXQmXXXYZb775JgCvv/46l1xyScgy1wfy9v0AQPNOvUvdchM70rJwb7hEUpQGRb0a8YUyMqtNZsyYweDBg7nmmmtK3Xw+H4sXLyY+Pr5M2Ojo6DLzd+53ypo0aRJSenFxcaXHUVFRFBcXlwvzwQcf8PXXX/P+++/zt7/9jTVr1pQLE0xGKL/svyqvAcyePZvvvvuODz74gCFDhrB8+fIKw7vvx+PxlJ57PJ7Se5s+fTrvvvsuAwcOZO7cuSxcuLBcPB07diQ5OZnVq1czf/58Zs+eHbLM9QFzOAOA1p16lroVN+tCt6wlHM8rJCkhNkySKUrDQEd8VaBVq1ZcdtllzJkzp9Rt/PjxPP7446XnK1euBOwWS99//z0A33//Pdu2bQsY5+jRo5k/fz5er5fMzEy+/vprhg0bFpI8Pp+PnTt3MnbsWO6//36ysrLIzs4mKSmJ48ePVyojwIIFC8jPz+fQoUMsXLiQ9PT0kNIG2Lp1K8OHD+eee+6hTZs27Ny5k9GjRzNv3jwANm/ezI4dO+jdu3clMZ3g+PHjtG/fnqKiotJ4AjFlyhQeeOABsrKySE1NDTn++oAc38shWhCfkHjCrVU3EqWAA/vU3Kko1UUVXxW59dZby6zunDVrFsuWLSM1NZV+/fqVjj4mT57M4cOH6d+/P0888QS9evUKGN9FF11EamoqAwcO5KyzzuKBBx7glFNOCUkWr9fLlVdeWbqQ5Le//S0tWrTg/PPP55133ild3BJMRrCm0rFjxzJixAjuvPPO0vm90aNHc+mll/L555/TqVMnPvnkEwDuuusu3nvvPcCu/ExJSWHAgAH85Cc/YeDAgfzmN7/B5/ORkpLClClTmDt3bpmRXmX89a9/Zfjw4YwcOZI+ffqUur/33nvcddddpeeXXHIJr732GpdddlnIcdcX4vL2cSS6dRm3hDbdADi6Z0sYJFKUhoVE0rYnQ4cONf6r8zZs2EDfvn3DJFHDZubMmWUWwTQ06mvd2XrPQHISOpB620elbplbv6fNS2NZNPB+Rl10fRilU5SaR0SWG2PqbIVatUd8InKTiGwUkXUi8oDjdraILBeRNc7/s6ovqqI0fIwxJHsPUphYdtTfqqOd7/MeqdONqhWlQVKtxS0iMhaYBAw0xhSISFvH6yBwvjFmj4gMAD4BOlZPVKWmieSvzzRWjmcfp4Vk40tqX8Y9Kj6JLJoSdWx3mCRTlIZDdVd1/hq4zxhTAGCMOeD8X+EKsw5IEJG4knCKogTmyL7tNAOimpfvJx6Kbkdi3p66F0pRGhjVNXX2AkaLyHci8pWIBFoSOBn4PpjSE5FficgyEVmWmZlZTXEUpX6TnbkTgLhWncr55cSfQovCfXUtkqI0OCod8YnIZ0CgZYZ/dq5vBYwA0oHXRaSHcVbMiEh/4H5gfLD4jTH/BP4JdnFLVW9AURoSeYft6wpN23Qu51fQtCPdjy/H6/URFaULshXlZKlU8RljxgXzE5FfA287im6JiPiA1kCmiHQC3gGmGWO21pTAitKQKco6AEDLNgE+G9e8C0335bP/4AHatQvtlRdFUcpT3W7ju8BYABHpBcQCB0WkBfABcIcx5ttqphERvPvuu4gIGzduDBomIyODAQMG1KocK1eu5MMPP6xWHNdeey1t27atdVmVquPLOYjXCM1atinnF9e6CwCH9V0+RakW1VV8zwE9RGQt8BpwtTP6uxE4DbhLRFY6v7YVRRTpvPrqq4waNYpXX301oH+gz4lVlZLvXVZETSi+6dOn8/HHH1crDqV2kLxDZEkS4okq55fUrjsA2fsz6lgqRWlYVEvxGWMKjTFXGmMGGGMGG2O+cNzvNcY0McakuX4Hakbkuic7O5tFixYxZ84cXnvttVL3hQsXMnr0aC644AL69esHWAU4depU+vbtyyWXXFK6rc7nn3/OoEGDSElJ4dprr6WgwK716datG7fffjuDBw/mjTfeKJOu/7Y/hYWF3HXXXcyfP5+0tDTmz59PTk4O1157LcOGDWPQoEEsWLAAsNsATZo0iTFjxtCzZ0/uvvvu0njPOOMMWrVqVeE9f/XVV6SlpZGWlsagQYM4fvw4xpigWyideeaZTJo0iR49enDHHXcwb948hg0bRkpKClu3Wkv3+++/z/Dhwxk0aBDjxo1j//795dK9/PLL+eCDD0rPp0+fXvpB6sZAbMFhjke1COiX3PE0AAoP6bt8ilId6tVHqvnoDthX/iPM1eKUFDj3vgqDLFiwgHPOOYdevXqRnJzM8uXLGTJkCGC/w7l27Vq6d+9ORkYGmzZtYs6cOYwcOZJrr72Wf/zjH9x4441Mnz6dzz//nF69ejFt2jSeeuopZsyYAUBycnLpdz3d+G/7Exsbyz333MOyZct44oknAPjTn/7EWWedxXPPPcfRo0cZNmwY48bZadklS5awdu1aEhMTSU9PZ+LEiSFv3/PQQw/x5JNPMnLkSLKzs4mPj+ftt98OuoXSqlWr2LBhA61ataJHjx5cd911LFmyhMcee4zHH3+cRx99lFGjRrF48WJEhGeffZYHHniAhx9+uEy6JVsOTZw4kcLCQj7//HOeeuqpkGRuCCQUHSE3ukVAv6RW7ck3MUjWzroVSlEaGLo0LAReffVVLr/8csCOSNzmzmHDhtG9e/fS886dOzNy5EgArrzyShYtWsSmTZvo3r176fc6r776ar7++uvSa6ZMmRIw3UDb/vjz6aefct9995GWlsaYMWPIz89nx44dAJx99tkkJyeTkJDAxRdfzKJFi0K+55EjR3LLLbcwa9Ysjh49SnR0dIVbKKWnp9O+fXvi4uI49dRTGT/eLuR1bzm0a9cuJkyYQEpKCg8++GDALYfOPfdcvvzySwoKCvjoo48444wzSEhICFnu+k7T4izyY1oG9hQhM6otsTn6Lp+iVIf6NeKrZGRWGxw+fJgvvviCNWvWICJ4vV5EhAcffBAov8XQyWzzE2ybolC2/THG8NZbb5XbAeG7776r1pZDd9xxBxMnTuTDDz9k5MiRpR+pDkYoWw7ddNNN3HLLLVxwwQUsXLgw4Jdj4uPjGTNmDJ988gnz588v7XA0FpqZLPbHBzdDH4ttR1K+7sunKNVBR3yV8Oabb3LVVVexfft2MjIy2LlzJ927d+ebb74JGH7Hjh3897//BeCVV15h1KhR9O7dm4yMDLZssavxXnrpJc4888xK0w607Y//lkMTJkzg8ccfp+Rj4ytWnPhozr///W8OHz5MXl4e7777bulINBS2bt1KSkoKt99+O+np6WzcuLFaWygBZGVl0bGj/SLJCy+8EDTclClTeP755/nmm28455xzQo6/vlNUVERzk40vITlomLzEDrTy1tvpckWJCFTxVcKrr77KRRddVMZt8uTJQVd39u7dmyeffJK+ffty5MgRfv3rXxMfH8/zzz/PpZdeSkpKCh6Ph+uvr/wL+4G2/Rk7dizr168vXdxy5513UlRURGpqKv379+fOO+8svX7YsGFMnjyZ1NRUJk+eXDq/9/Of/5zTTz+dTZs20alTp9L9BWfPnl26ZdGjjz7KgAEDSE1NJSYmhnPPPbdaWyiB/TbopZdeypAhQ2jd+sS2O8uWLeO6664rPR8/fjxfffUV48aNIza28Wy6mnV4Px4xSJPWQcN4m3WiDUfJzc2uQ8kUpWGh2xI1UObOnVtmEUxjpL7Vne0bltN1/lksT3+IIRN/GTDM8gVPMmTFn9h+xTd07dWwNuBVGi/1blsiRVFqhpwj9vWOuGbBX3lNbGsXUmXt21YnMilKQ6R+LW5RQmb69OlMnz493GIoVaDgmFV88S3aBQ3Ton0PAPIyM+pCJEVpkNSLEV8kmWOV+kF9rDNF2YcASGoVfMTXukM3fEbwHdlRV2IpSoMj4hVffHw8hw4dqpcNmRIejDEcOnSI+Pj4cItSJYpzjgLQPMB3OkuIiY3noLQk6rhuSKsoJ0vEmzo7derErl270L36lKoQHx9Pp07l97SLZEzeUQpNFPEJTSsMdzimHU10Q1pFOWkiXvHFxMSU+TKKojRUPIXHyJYmtKrkQwM58e05Jbv8V28URQmNiDd1KkpjIbrwGLmeikd7AL7mnWjjO0h+YVEdSKUoDQ9VfIoSIcQWHScvBMUXl9yVWPGyY/vJvdJQWFjI4YMHyMsvPKnrFaW+E/GmTkVpLMR5symIrlzxtejQE1ZB5o6N9OrZK6S4TVEe6//1OAnr5tO1aCutxOA1wj5pzc6EXuQkpxDfOY3Wpw6ifadTaRIfU93bUZSIRRWfokQICd5sDiVU/gm4tqelAZC/ew1wQaXhj2SsJmfelfQv2s56T08Wd7ya2KTWmNyjRGf9SIfsjXTc9S3sAv4Lx0wim6QteTEtKIxpQVR0DCLgMwbj84EpBp8Xj3H98BFlvHiw51HOf8GuxjZAycylETlxDCd8jOufnDi3buXnPf3XeZuAc6NCdmwbBsx4l5jYuAD+SmNEFZ+iRAhNTDYHYpIqDRffqgvHaULcoQ2Vhj28ZSlR8y4izufhsyFPMvZnU4nylFcQhdlH2L1pKcd3rMaTuYGo43toUnCENvmbMcaHMeARg5EofEThE9cPD17HrUjiyvgbHCUnAqZECZpSTSjl1JeUcysfhhDUoL0uqeAAg3L/w96922nfNbTRsdLwqbbiE5GbgBsAL/CBMeYPLr8uwHpgpjHmoeqmpSgNmaYmB29c88oDirAn7lRaZm+pMFjWof14500h3xfL/ovfZNzAwUHDxjZtSfch42HI+KqKHdEs/3AOLLmF/Jxj4RZFiSCqpfhEZCwwCRhojCkQEf9PTvwd+Kg6aShKYyA/L4d4KYJQFB+Q3bwXvfd/QEFREXEx5efjjM/Hljm/IMV3lE0/e5tBFSi9hkx0QjMACnKzwiyJEklUd1Xnr4H7jDEFAMaY0o3CRORCYBugLxwpSiUcz7KfK5PE0BRfbKc0mkoeP25cGdB/0RuPMCT3G1b2vImU9DE1JGX9I8ZRfEW5xysJqTQmqqv4egGjReQ7EflKRNIBRKQpcDtwd2URiMivRGSZiCzTr7MojZW8Y4cBiEpoEVL4dgN/CsDhdV+W88vYuIIh6+9nffxg0q+4q8ZkrI/EJdo506I8VXzKCSpVfCLymYisDfCbhDWVtgJGALcBr4uIADOBR4wxle6WaYz5pzFmqDFmaJs2wb9RqCgNmRLFF9OkZUjh23bpS6YkE7NjURn3ooI8vG/+ggKJ5ZTpcxFPVI3LWp+Ia2JH0L58neNTTlDpHJ8xZlwwPxH5NfC2sV+QXiIiPqA1MBy4REQeAFoAPhHJN8Y03l1RFaUCCrOPAHaRSUiIsKPVSPof/ITs40dpmtQCgFVzb2Fo8VaWjvgH6ad0rSVp6w/xTa3i8+briE85QXVNne8CYwFEpBcQCxw0xow2xnQzxnQDHgX+V5WeogSnMNcqvoSkViFf03T4VTSRAtZ8/BwAPyycx9C9r/Btq4tIP2dqrchZ30hsauf4TEFOmCVRIonqvs7wHPCciKwFCoGrje4fpChVxpt7FICEZiGO+IBeQ8ex+dNe9F73CMuzd5OyfS7rPb0Y+Isna0nK+kdCQlO8RqBQR3zKCaql+IwxhcCVlYSZWZ00FKUx4HUWXzRtFvqITzwe4i79J0WvXcKQ7c+yInog7a57jaZNmtSWmPUO8XjIIQEp1BGfcgL9couiRAIFdh1YYpPKv9zipmvvQRT8cT079+4mrXM3xKPfnfcnTxLwqOJTXOhToiiRQGEOuSbupFZhxsXG0blrD1V6Qcj3JBBVXOkCc6URoU+KokQAnuIcciUh3GI0SAokkeji3HCLoUQQqvgUJQKIKsohXxVfrVAYlUisV02dyglU8SlKBBBVnEuBRxVfbVAUlUCsLy/cYigRhCo+RYkAYry5FEQlhluMBklxdBPiVPEpLhqU4ss6tJ91/zua5R8+G25RFKVKxHlzKVbFVyv4YpuSYHSOTzlBg1J8TZsn07NgHUU7V4ZbFEWpErEmj+IoNXXWBia2KU1MHvptDaWEBqX4oqKj2RvVgbhjP4ZbFEWpEvG+PLzRTcMtRsMkviVxUkR+ri5wUSwNSvEBHI7vTMu8HeEWQ1GqRAJ5+GLV1FkbeBJbAHD86MHwCqJEDA1O8eU3604H7158xcXhFkVRQsL4fCSafEyMfmqsNohqkgxATpbu96lYGpzi87TpRawUs3/XlnCLoighUVCQR7T4IFYVX20Q6+x4kZ+lIz7F0uAUX1LHPgAc+HFNmCVRlNDIPX4UAImr2nc6ldCIS7IjvoLsQ2GWRIkUGpzi69x7MAA5O1aGVxBFCZH8HLszgydeF7fUBonNWwNQ5Gz2qygNTvEltWzLHmlHXObqcIuiKCFRkJsFQHScKr7aoGmLNgCY3MNhlkSJFBrktkT7mvShfc7GasWRl5vLrh/XkX0gg9yc40T5ijAxCUTFJ5HQpDnxTZvRpGkLmjRvSVLT5niiG2RWKnVAQc4xAKISmoVZkoZJUrOWFBsPJq96I75V331B9ncv0vboSpJ9h4iliBxpwjFPS47HtaW4aUdiWnWh2SndaNPxNJLadUOatgPdNSPiaJCtdUGbFDpkf0XW4QM0b9U25Otyc46z+oOnSdr6Pj3z19BTvCFfm0ccuSSQJwkUSxQggAdEMOLBAAYpDS+4XqZ1Hbrdy4Qp4142vAkQXqr8sm71Xu6tkVeDqxhJTb+OLJUHqRVamnwAYhN0jq82iIrycIimePKPntT1hzL3svn5X3N67pfkEcuPCSlsaTIQn8TiKcgiofAQrfJ30iZnOU0O5IOrz11oojggyeRLAsUSg1di8Hmi8WCfV8GHGIMHL2JKzn2lfiUY498eWPzdytfh2n1pf3tUF874y8e1mkZtUG3FJyI3ATcAXuADY8wfHPdU4GmgGeAD0o1xnvBapkXP02HbE2xd/hmDz76i0vA+r5el78yi59q/M4JjbPd0YtkpU2jSdRAJbXvQrFkLjEThK8qnMPcY+TlZFOYcoyjvGN68Y/jyj2MKs/EU5RBbnAPGC8ZgjM/WWKdyWyXlVE0p/QOUVYpl3U+4GAkWRkrPylRzCRZ/YMqFqMShyooiwAVVjSNcyqkyqtu8bI9JImXA6TUii1KeHE9ToguOVvm6Xds24X3xIob49vN9j/+h38V/pH9Sy4BhvV4fO/fvZ8+OzRzds42o7N0k5O6lacF+PN48PN4ixFdIrK8IrwFDFD6JweB0jsUDeFzHUvoMi4AEVH3g/1T4P+tl242apTCmQ63FXZtUS/GJyFhgEjDQGFMgIm0d92jgZeAqY8wqEUkGiqotbYicOvin5H4SR+Gmz6ASxZeZuY99z17O8IIVrI9N4cBZf6bP8HPoWouVRVGUuiU3qhnRRVlVuibrcCa+Fy+kpcli28RXGDxsQoXho6I8dO7Qns4d2gNnVkNapbap7ojv18B9xpgCAGPMAcd9PLDaGLPKca/TdcSx8QlsSBxIx0P/rTDcth/WIa9cSm/ffr4bcBfDJt+su1grSgOkMKYZCYWhN0M+r4/t//w5fXz7+fG8V+hTidJT6hfVbeV7AaNF5DsR+UpE0l3uRkQ+EZHvReQPwSIQkV+JyDIRWZaZWXNfVsjvehadzR5+WLMkoP/6pV/QbN65tDRZ7Dr/VYZfeqsqPUVpoBTFtaKZ92jI4Ze+8yip+UtZ0e8P9Bl+Tu0JpoSFSlt6EflMRNYG+E3CjhhbASOA24DXRUQc91HAVOf/RSLy00DxG2P+aYwZaowZ2qZNm5q6L/qOu4ZCE83Br54u57f845fo/q8pFEg8uVd+SI+h42ssXUVRIo/ixHa0MkfxeitfsHZ4/y76rX2AtbEDGXbpbXUgnVLXVKr4jDHjjDEDAvwWALuAt41lCXYRS2vH/WtjzEFjTC7wITC4Nm/En2atT2FVy3EMzlzA9i1r7b34fHz34p8Z9N+b2BnTnYRff0n70wbWpViKooSDZqcQI16OHtpXadCNr99Jgimg6cWzEE9UHQin1DXVte29C4wFEJFeQCxwEPgESBGRRGehy5nA+mqmVWW6X3ofhRJN1LxLWDLvbjbcdwbDf3yC75uNpcstn9Oybce6FklRlDAQ3bw9AMcO7Kww3J4f15N+cAEr21xAtz5pdSCZEg6qq/ieA3qIyFrgNeBqZ/R3BPg7sBRYCXxvjPmgmmlVmdYdu7PrvJfw4GXYD3+nTeEuFve7k8Ez3iI+Ud+ZUpTGQkKrTgDkHNpVYbjd79+LFw9dL76nLsRSwkS1VnUaYwqBK4P4vYx9pSGs9B12NsWD1pN5cC8t23RghH5hRVEaHU1bW+tOwZG9QcPs2bWNgYc/YVWb80nv0LWuRFPCQKNYxhgdE0Ob9l2IVqWnKI2S1u27AFB0dE/QMNs+eIRovHT5WdBF6EoDoVEoPkVRGjeJiU05TDM8WTsC+uccO0LK3jdYlTSadt361bF0Sl2jik9RlEbB/phONM0JrPjWf/gPmpFL/Jib61gqJRyo4lMUpVGQldCFtkXlV3X6iovpsOlFNkb3oc+QsWGQTKlrVPEpitIoKGrRndbmSOn+hyWs/eoNOpp9HEv7JaLf6G0UqOJTFKVRkHhKLwB2/rCmjHvUktnsozVp46eFQywlDKjiUxSlUdC21zAAjm458f3ejPXf0b9gJVu7/ZzY2NhwiabUMar4FEVpFHTs3o/DJgnZtbTU7fBH/0eOiaffz24Ko2RKXaOKT1GURoEnysO2pml0PfIfjLeYjHXfMfj4l6zq9HNatm4XbvGUOkQVn6IojYbC3hfQmqOs/+wFit+5gSMk0ffiP4dbLKWOUcWnKEqjYdD4q9gmnen/31voUbSFzel/o2VyzW2HptQP9BteiqI0GuLjE4ie9jbffPokCT3HMPysi8ItkhIGVPEpitKo6Ny9F53/57Fwi6GEETV1KoqiKI0KVXyKoihKo0KMMeGWoRQRyQS210BUrbE7wdcH6pOsUL/kVVlrj/okb32SFeqXvDUla1djTJ2tMoooxVdTiMgyY8zQcMsRCvVJVqhf8qqstUd9krc+yQr1S976JKsbNXUqiqIojQpVfIqiKEqjoqEqvn+GW4AqUJ9khfolr8pae9QneeuTrFC/5K1PspbSIOf4FEVRFCUYDXXEpyiKoigBUcWnKIqiNCoalOITkXNEZJOIbBGRO8Itjz8i0llEvhSR9SKyTkR+57jPFJHdIrLS+Z0XblkBRCRDRNY4Mi1z3FqJyL9F5Afnf8sIkLO3K+9WisgxEZkRSfkqIs+JyAERWetyC5iXYpnl1OPVIjI4AmR9UEQ2OvK8IyItHPduIpLnyuPZdSlrBfIGLXsR+aOTt5tEZEIEyDrfJWeGiKx03CMhb4O1WRFZd0PGGNMgfkAUsBXoAcQCq4B+4ZbLT8b2wGDnOAnYDPQDZgK/D7d8AeTNAFr7uT0A3OEc3wHcH245A9SDfUDXSMpX4AxgMLC2srwEzgM+AgQYAXwXAbKOB6Kd4/tdsnZzh4ugvA1Y9s7ztgqIA7o7bUZUOGX1838YuCuC8jZYmxWRdTfUX0Ma8Q0DthhjfjTGFAKvAZPCLFMZjDF7jTHfO8fHgQ1Ax/BKVWUmAS84xy8AF4ZPlID8FNhqjKmJLwDVGMaYr4HDfs7B8nIS8KKxLAZaiEj7OhGUwLIaYz41xhQ7p4uBTnUlT2UEydtgTAJeM8YUGGO2AVuwbUedUJGsIiLAZcCrdSVPZVTQZkVk3Q2VhqT4OgI7Xee7iGClIiLdgEHAd47TjY5p4LlIMB86GOBTEVkuIr9y3NoZY/Y6x/uASNu6+nLKNhyRmK8lBMvLSK/L12J79SV0F5EVIvKViIwOl1ABCFT2kZy3o4H9xpgfXG4Rk7d+bVZ9rbtAw1J89QYRaQq8BcwwxhwDngJOBdKAvVhzRyQwyhgzGDgXuEFEznB7GmvbiJj3YUQkFrgAeMNxitR8LUek5WUwROTPQDEwz3HaC3QxxgwCbgFeEZFm4ZLPRb0pexc/p2ynLWLyNkCbVUp9qbtuGpLi2w10dp13ctwiChGJwVagecaYtwGMMfuNMV5jjA94hjo0vVSEMWa38/8A8A5Wrv0lpgvn/4HwSViOc4HvjTH7IXLz1UWwvIzIuiwi04GfAVOdxg7HZHjIOV6OnTPrFTYhHSoo+0jN22jgYmB+iVuk5G2gNot6Vnf9aUiKbynQU0S6Oz3/y4H3wixTGRwb/hxggzHm7y53tw38ImCt/7V1jYg0EZGkkmPs4oa12Dy92gl2NbAgPBIGpEyPORLz1Y9gefkeMM1ZITcCyHKZlcKCiJwD/AG4wBiT63JvIyJRznEPoCfwY3ikPEEFZf8ecLmIxIlId6y8S+pavgCMAzYaY3aVOERC3gZrs6hHdTcg4V5dU5M/7Iqizdie0Z/DLU8A+UZhTQKrgZXO7zzgJWCN4/4e0D4CZO2BXf22ClhXkp9AMvA58APwGdAq3LI6cjUBDgHNXW4Rk69YhbwXKMLOe/wiWF5iV8Q96dTjNcDQCJB1C3bupqTeznbCTnbqx0rge+D8CMnboGUP/NnJ203AueGW1XGfC1zvFzYS8jZYmxWRdTfUn36yTFEURWlUNCRTp6IoiqJUiio+RVEUpVGhik9RFEVpVKjiUxRFURoVqvgURVGURoUqPkVRFKVRoYpPURRFaVSo4lMURVEaFar4FEVRlEaFKj5FURSlUaGKT1EURWlUqOJTFEVRGhURo/hEpJuIGGdfKqUWEZHpIrKojtJKEJEPReSIiPyhLtL0Sz9DRMbVQToLReS6IH5at8OEk++nVdWvhmUIWgdFZIyI7Arkp5RHRDqIyHER2SQiZ51sPBGj+JSTQ0RmikiRiGS7fnWuYCpgHJAKdDbGPFDi6DQG3cImVQThlOHMKoS/QkS2i0iOiLwrIq0qCJsmIstFJNf5n+byixOR2SKyX0QOi8j7ItIxQBw9RSRfRF52uU0UkUUiclRE9onIsyX7Nzr+rURkvogcEpGDIjLPvXu4U/55rjr7aRXuv9HUHRGZ62wAHGr4m53yOCYiz4lIXAVhfyoiG5268aWIdA0QppWIZLo7yiISKyJvOuVgRGSM3zUf+bVHhSKyxuWfJiLfiEiWiOwSkTv9rr9MRDY4Cm69iFxY4meM2WOMSQLeB34bar74U2OKT3uzYWW+Maap6/dA5ZfUGa2ADGNMdrgFqQ7Oxpph7yiKSH/gaeAqoB2QC/wjSNhY7AahLwMtgReABY47wO+A07Edkw7AEeDxAFE9id3o2U1z4F7nur5AR+BBl/+9TprdgVMdWWf6xXG+q86Or+i+I5lIaftEZAJwB/BToCt2T827g4RtDbwN3Il9Rpfh2v3dxf3AhgDui4ArgX3+HsaYc93tEfAf4A1XkFeAr510zwR+IyIXOHJ1xNbXW4BmwG3AKyLS1i+Ztdg9AU+Kaj3Ijsa/XURWAzkiEi0iI0TkP05PcJW7NyDWHPR/IrLE6ZEsCNZbFZFrXFr/RxH5Hz//SSKy0olnq9gdohGR5iIyR0T2ishuEblXnF2MK7iPU0XkC7/eaQuX32ERGeycd3B6QGOc8wtEZJ1zvwtFpK9f/vxeRFY7vZv5IhJf9ZyuOiJyh5MvJb2mi4KEExF5REQOOHm5RkQGOH5xIvKQiOwQOyqYLSIJVRQlGvBVImuy2NHGMRFZ6pSZu4dpROR6EfnByecnRUQcv6Bl5yLdyYMjIvJ8SRmISEsR+ZdTnkec406udBeKyN9E5FusgulRyb12FZFvnTz/1Glc3Ex18vKgiPy5kriCMRV43xjztdOZuBO4WFyjLRdjsPn/qDGmwBgzC7tRaImJqDvwiTFmvzEmH9vw9XdHICKXA0exm46WYox5xRjzsTEm1xhzBHgGGOkK0h141xhzzBiTBbzjH3dNUFnd8Qs7SkR2StkRynlO+3JQRB4Up3NTWb2SAG1fJaKmVdQOiMitzjO4V0SuOZm8wO6EPscYs84pk78C04OEvRhYZ4x5wyn7mcBAEenjkuknwADgefeFxphCY8yjxphFgLcigcSOzEcDL7qcuwHzjDFeY8xWrBItqRudgKPGmI+M5QMgB9t5cuPD1u2To5q782Zgd+TtDCRge32HsDv0eoCznfM2TviFwG5sZjYB3gJedvy6YXf6jXbOJzo3K9heQS4w2PEbBmQ58XucdPs4fu9ge8RNgLbAEuB/KrmP05y44oA22N7Ioy7/XwLrgUTgE+Ahx70XtlDOBmKAP2B3qo515c8SbK+4FbbndH0QGUZhG5hgv1FBrptZkod+7pc66XqAKY6c7R2/6cAi53gCsBxo4eR1X1e4R7C7V7cCSswL/1eF+hGD3Qm7nHx+4V5zfolAP+xO34tc/gb4lyNjFyATOCfEssvA9g47O/fxLXCv45eM3eU60bm/N7CNdcm1C4Ed2IcyGoip4B4WYned7oV9FhYC9/nV7Wccv4FAAdA3SFwVlfcC4HY/t2xgSICwNwMf+bn9C7jVOR7q5EcHJw9e8cu7ZsBmbGMUsJ65wj4KvOY6/xnwIXbU1xL4ApjhVy77nbL8FBh4km1QKHXnNOAcx2+Yn9+XTr3o4tzrdVWoVyudepUQQjsZsB3Adk6KgXuwz8t52LauZYB4ujh1o0uQdFYBU1znrZ17TA4Q9jHgKT+3tcBk5zgKu+v7EFztRYB4dgFjKrj3u4CFfm7/C9zn3G9vJ450V7pfARc4xxc6/k384hiLtVAEzItK683JXORXoNe6zm8HXvIL8wlwtXO8EKcxcM77AYXODXbDpfgCpPUu8Dvn+GngkQBh2mEblASX28+BL6t4XxcCK/zc3gPWAKuBOMftTuB1VxgPVrGPceXPlS7/B4DZ1cnzALLOdPLwqOvXIUC4lcAk57i0ImN7/5uBEYDHFV5welout9OBbSHKlQYUYRu30yoIF+WE6+1yu5fyjdco1/nrwB2hlJ1TBte7zs8DtlYg8xHX+ULgnhDvdyHwF9f5b4CPneOSut3J5b8EuPwkyvtz/DpP7jrn534nLmXkuM0DZjrHzbFKw2Ab3xVAK1fYx3CULBUoPqyCOAL0crl1AD7D9sx9wL9xOoSO/0hsJyAR+CPWZNaiinkRat35I7AdGOB3vcHpQLnK7PMq1KtrQ5QzgyDtAFbx5eFq94ADwIiTqBtb/e4nxrnHbgHCzsHVFjtu3wLTneObcRQj1VN8W0ridLn9xHEvduS728//F9jOXDG2EzAxSNxvONc/WtW8qok5i52u467ApY456qiIHMWOZNoHCb8dWzj+JiFE5FwRWeyYGY9iG6yScJ2xhexPVye+va70n8aO/IIiIu1E5DWxptFjWBuzv0zPYEeqjxtjChy3Ds49AGCM8Tn3514g4LaB5wJNK5LlJHndGNPC9dsjItPEmoJL8mEAAfLZGPMF8AR2HueAiPxT7CKENthGabkrjo8d90oxxqzEjqL+C8yoIGgb7GjKXS92BggXMB9DLDv/OtfBuTZRRJ4Wu1DkGLZX30LKmsYDyRKMysq6JupCNnYk5qYZcPwkwj6JHdEkYy0kbwMfgV2AgF2Y9EhFwojICOxI8RJjzGaX1+vYDlWSk+ZWbNkAYIz51hiTZ6yp9P+wHbbRFaUVgFDrzgzsM7I2gF+wulHVelUZFZX9IWNMcQX+oeJf3iXHVaobItIBu3DkZM3xgDUtA6cAb7rcWmHbkXuAeGxbPkFEfuP4j8N2DMYAsVhr37PiWpTlhBuM1Ql9jDEzqipbTSg+4zreiR3xuRvhJsaY+1xhOruOu2B7bAfdEYpdifQW8BDQzhjTAms2EVc6/jbfEvcCoLUr/WbGmMrmFv7XuY8UY0wz7KRtSVqISFOsKWcOMFNOzEvuwSrbknDi3N/uStIrh4iMlrIrofx/ITcKYldnPQPciDVztMCaMSRQeGPMLGPMEOwIvBd2Qvkgtifa35WXzY2drA4JY+cOPnLiDUYmtmfXyeXWOUjYQFRYdgHi64ItN4BbsaaW4c61Zzju7uvd9TsSWIc1lQIgIj2wymtzkLCpJfOhDqmOO9gR7lxjzGGnM/c4MMyZmxyDHanuEJF9wO+BySLyvSvtQVhLyLXGmDJzgE7cTxtjcoydi5yNbaiCYQhSPysg1LpzKXChiPwugF+wuhFKvYrouuEc7zfGHKosrIg0wbap67BTSe2B9U7ZP4atF/ukkvUSflwNvG3KLmzrAXiNMS8aY4qNMbuwVoeSupEGfG2MWWaM8RljlgLfYTthbvoC640xm6ogTyk1vUrtZeB8EZkgIlEiEi/2PRV3xbxSRPqJSCJW679pjPGfII3FPsyZQLGInAu4V33NAa4RuxzXIyIdRaSPMWYvdr7gYRFp5vidKiJnViJ3ErYHlCV2VdFtfv6PAcuMMdcBH2AfYrC92omOHDHYhrQAu4qpShhjvjFlV2b6/76pQnRNsA9lJtiFQtgRXzlEJF1Ehjvy5wD5gM8ZvT4DPCLOiionnye4ri23lDkABdjyDIhT9m9jOxSJzuT6tJDu0lJZ2QHcICKdnA7Lnzmxei0Jq9yPOn7/rwrphot52GdstNNY3YNtXAL16hdiFx/8VuxCpRsd9y+c/0uBaWIXhMVgTX17jDEHgX9iG8I05zcbW/cnAIhdAPUxcJMx5v0AaS8FrhP7HmcC8CvsNAEi0kVERopdFh8vIrdhR1PfOv5jRKRSpVKFurMHu9LxdyLyaz+/28QucuqMXeXqrhuV1atI40XgF0772gL4CzA3SNh3gAEiMlnsQpu7gNXGmI3Yzmo3TpT9XVgzeFpJW+3Up5IFOiXl6B4sJACXBUh/s/WWK5z2+RTsGoTVjv9SYHTJCM/pXI12+ZcQg21bTooaVXzGmJ3AJOBP2EZ3J7bCuNN5CZsZ+7BD3XLvYjgP8W+xiuUIcAW2Z1nivwS4BmuGycJOhpaMvKZhG9r1zrVvUtbUGoi7gcFOXB9gHybArh7FToyXPDC3AINFZKrT27gS21M+CJyPXaJdWEl6tYoxZj3wMNbMuB9IwWlUAtAMq+COYE09hzixLP12rC1+sWPu+Qw7QsJpKI5j5z0rwkfl9exG7HzTPmz9eJXQK3XQsnPxCrZD9CPW5Hav4/4odp7pILAY25CHnYpG+MaYdcD1WAV4ANtA/8Z17Uci8icnbCF2bmoa1pR4LXChq37+HtvR+QH7vJ4HXORcm2uM2VfywyqBfGNMpnPtrVhT4xyXVaJkJImTVjfsHNBubE//ascvCXgKW+d2Y5+vc10jk86E3nkMqe4YY3Zgld8dUvZDAwuwi7tWYuvPHMc9lHpVpzgdhmwR6RLI3xjzMdZM+CV2UdZ2XJ05savPpzphM7ELu/6GLYfhwOWOX4Ff2WcBRc5xCZuwncaO2HUcebisX9h6d9SRxS3jMeyK0puddFdirVH3Ov5fYeeT3xSR41jL3/8aY/zf84yiktXiFSHOJGGdICILsRPkz9ZZokqtICJXYs2gf6wk3HisJaCPMeZwiHHfD5xijLm60sBKg0NEngXeMMZ8chLXat1p4Ih95WQW0NYYc9nJxBERL14q9Q9jzMuVhwKsue3fwDoRedgY85B/AMdEFYsdPaZjV3UF/PyX0vBxphRCQutO40Lswps1wDbghpONp9EoPhGZjTVL+vOyMeb6upanseCY1aZWEiwJa6LqgDXNPow1QUUUIhLs6zPnVnEOVqk5wl53HNPj+iDe/Rwzq1IDGGP2UI0vtpRQp6ZORVEURQk3Yf/2oKIoiqLUJRFl6mzdurXp1q1buMVQFEVR6pDly5cfNMaE9HGMmiCiFF+3bt1YtmxZuMVQFEVR6hAR2V55qJpDTZ2KoihKo0IVn6JEGEszDrP7aF64xVCUBosqPkWJMHbMuYrnH72z8oCKopwUETXHF4iioiJ27dpFfn5+uEVR6hHx8fF06tSJmJiYcItSJYzPx+SoRdi9Ocu9668oSg0Q8Ypv165dJCUl0a1bN8p+ZF5RAmOM4dChQ+zatYvu3buHW5wq4fV6I/+hVJR6TsSbOvPz80lOTlalp4SMiJCcnFwvrQTF3uLKAymKUi0iXvEBqvSUKlNf64xPFZ+i1Dr1QvEpSmNBR3yKUvuo4gsBEeHWW28tPX/ooYeYOXNm+ASqhIULF/Kf/1R5L9xSVq5cyemnn07//v1JTU1l/vz5lV+k1AjeYteezPodXUWpFVTxhUBcXBxvv/02Bw8erNF4jTH4fCe9l2JQqqv4EhMTefHFF1m3bh0ff/wxM2bM4OjRozUnoBIUb/GJEV9xQW4YJVGUhosqvhCIjo7mV7/6FY888kg5v8zMTCZPnkx6ejrp6el8+63d6HzmzJk89NCJ5egDBgwgIyODjIwMevfuzbRp0xgwYAA7d+7ktttuY8CAAaSkpJSOrhYuXMiYMWO45JJL6NOnD1OnTiXQThqzZs2iX79+pKamcvnll5ORkcHs2bN55JFHSEtL45tvvqlQxquuuorTTz+dnj178swzzwDQq1cvevbsCUCHDh1o27YtmZmZ5dJ+4403GDBgAAMHDuSMM84A7GKka665hpSUFAYNGsSXX9oNmOfOncuFF17I2WefTbdu3XjiiSf4+9//zqBBgxgxYgSHD9s9ap955hnS09MZOHAgkydPJje3fOM/YsQI1q07sdn3mDFjGsyn7rwuU2deXrBdkBRFqQ71auX03e+vY/2eYzUaZ78Ozfh/5/evNNwNN9xAamoqf/jDH8q4/+53v+Pmm29m1KhR7NixgwkTJrBhw4YK4/rhhx944YUXGDFiBG+99RYrV65k1apVHDx4kPT09FIlsmLFCtatW0eHDh0YOXIk3377LaNGjSoT13333ce2bduIi4vj6NGjtGjRguuvv56mTZvy+9//HoArrrgiqIyrV69m8eLF5OTkMGjQICZOnEiHDh1K41+yZAmFhYWceuqp5e7jnnvu4ZNPPqFjx46lI8Inn3wSEWHNmjVs3LiR8ePHs3nzZgDWrl3LihUryM/P57TTTuP+++9nxYoV3Hzzzbz44ovMmDGDiy++mF/+8pcA/OUvf2HOnDncdNNNZdKdMmUKr7/+OnfffTd79+5l7969DB06tMI8ry/4fCdMnfm52SS1bBdGaRSlYaIjvhBp1qwZ06ZNY9asWWXcP/vsM2688UbS0tK44IILOHbsGNnZFffUu3btyogRIwBYtGgRP//5z4mKiqJdu3aceeaZLF26FIBhw4bRqVMnPB4PaWlpZGRklIsrNTWVqVOn8vLLLxMdHbgfU5GMkyZNIiEhgdatWzN27FiWLFlSet3evXu56qqreP755/F4yleVkSNHMn36dJ555hm8Xm/p/Vx5pd3vt0+fPnTt2rVU8Y0dO5akpCTatGlD8+bNOf/88wFISUkpvbe1a9cyevRoUlJSmDdvXpmRXQmXXXYZb775JgCvv/46l1xySYX5XZ/wuUydBbnHwyiJojRc6tWIL5SRWW0yY8YMBg8ezDXXXFPq5vP5WLx4MfHx8WXCRkdHl5m/c79T1qRJk5DSi4uLKz2OioqiuLj8ir8PPviAr7/+mvfff5+//e1vrFmzplyYYDJC+WX/JefHjh1j4sSJ/O1vfytV0v7Mnj2b7777jg8++IAhQ4awfPnykO/H4/GUnns8ntJ7mz59Ou+++y4DBw5k7ty5LFy4sFw8HTt2JDk5mdWrVzN//nxmz55dYbr1CfeqzgI1dSpKraAjvirQqlUrLrvsMubMmVPqNn78eB5//PHS85UrVwJ2i6Xvv/8egO+//55t27YFjHP06NHMnz8fr9dLZmYmX3/9NcOGDQtJHp/Px86dOxk7diz3338/WVlZZGdnk5SUxPHjJ0YLwWQEWLBgAfn5+Rw6dIiFCxeSnp5OYWEhF110EdOmTatwNLV161aGDx/OPffcQ5s2bdi5cyejR49m3rx5AGzevJkdO3bQu3fvkO4H4Pjx47Rv356ioqLSeAIxZcoUHnjgAbKyskhNTQ05/kjH5y0qPS5UxacotYIqvipy6623llndOWvWLJYtW0Zqair9+vUrHX1MnjyZw4cP079/f5544gl69eoVML6LLrqI1NRUBg4cyFlnncUDDzzAKaecEpIsXq+XK6+8snQhyW9/+1tatGjB+eefzzvvvFO6uCWYjGBNpWPHjmXEiBHceeeddOjQgddff52vv/6auXPnkpaWRlpaWqmyvOuuu3jvvfcAuO2220hJSWHAgAH85Cc/YeDAgfzmN7/B5/ORkpLClClTmDt3bpmRXmX89a9/Zfjw4YwcOZI+ffqUur/33nvcddddpeeXXHIJr732GpdddlnIcdcHSkzGAN58VXyKUhtIoJWC4WLo0KHGf3Xehg0b6Nu3b5gkatjMnDmzzCKYhkZ9rDub1y2n1xtnAbDi9McZNGFamCVSlNpHRJYbY+pshZqO+BQlgvC5Rny+gpwwSqIoDZd6tbhFqVki+eszjRX3tzq9har4FKU20BGfokQQ7hGf0S+3KEqtoIpPUSIIr+/Eqk5TpIpPUWoDVXyKEkEY74l3P6VQFZ+i1Aaq+BQlgjCuT5ZRnBc+QRSlAaOKL0TeffddRISNGzcGDZORkcGAAQNqVY6VK1fy4YcfnvT1JS+89+vXj/79+/PYY4/VoHRKdTGuxS0eNXUqSq2gii9EXn31VUaNGsWrr74a0D/Q58Sqivvl5WBUV/FFR0fz8MMPs379ehYvXsyTTz7J+vXrTzo+pWYx5kQd8Hh1xKcotYEqvhDIzs5m0aJFzJkzh9dee63UfeHChYwePZoLLriAfv36AVYBTp06lb59+3LJJZeUbqvz+eefM2jQIFJSUrj22mspKCgA7KfNbr/9dgYPHswbb7xRJl3/bX8KCwu56667mD9/PmlpacyfP5+cnByuvfZahg0bxqBBg1iwYAFgtwGaNGkSY8aMoWfPntx9990AtG/fnsGDBwOQlJRE37592b17d7l7/uqrr0q/2jJo0CCOHz+OMSboFkpnnnkmkyZNokePHtxxxx3MmzePYcOGkZKSwtatWwF4//33GT58OIMGDWLcuHHs37+/XLqXX345H3zwQen59OnTSz9I3Rgwrs5PlJo6FaVWqF/v8X10B+wr/xHmanFKCpx7X4VBFixYwDnnnEOvXr1ITk5m+fLlDBkyBLDf4Vy7di3du3cnIyODTZs2MWfOHEaOHMm1117LP/7xD2688UamT5/O559/Tq9evZg2bRpPPfUUM2bMACA5Obn0u55u/Lf9iY2N5Z577mHZsmU88cQTAPzpT3/irLPO4rnnnuPo0aMMGzaMcePGAXZLobVr15KYmEh6ejoTJ04ss31PRkYGK1asYPjw4eXSfuihh3jyyScZOXIk2dnZxMfH8/bbbwfdQmnVqlVs2LCBVq1a0aNHD6677jqWLFnCY489xuOPP86jjz7KqFGjWLx4MSLCs88+ywMPPMDDDz9cJt2SLYcmTpxIYWEhn3/+OU899VSIhdkAcK3qjPblVxBQUZSTpdZHfCJyjohsEpEtInJHbadXG7z66qtcfvnlgB2RuM2dw4YNo3v37qXnnTt3ZuTIkQBceeWVLFq0iE2bNtG9e/fS73VeffXVfP3116XXTJkyJWC6gbb98efTTz/lvvvuIy0tjTFjxpCfn8+OHTsAOPvss0lOTiYhIYGLL76YRYsWlV6XnZ3N5MmTefTRR2nWrFnAtG+55RZmzZrF0aNHiY6OrnALpfT0dNq3b09cXBynnnoq48ePB8puObRr1y4mTJhASkoKDz74YMAth84991y+/PJLCgoK+OijjzjjjDNISEgIeO8NEePs6JFNIjFq6lSUWqFWR3wiEgU8CZwN7AKWish7xpiTm1SqZGRWGxw+fJgvvviCNWvWICJ4vV5EhAcffBAov8VQsG1+KiLYNkWhbPtjjOGtt94qtwPCd999F1SWoqIiJk+ezNSpU7n44osDpn3HHXcwceJEPvzwQ0aOHMknn3xS4T2EsuXQTTfdxC233MIFF1zAwoULA345Jj4+njFjxvDJJ58wf/780g5HY6FkVWeuJBCjIz5FqRVqe8Q3DNhijPnRGFMIvAZMquU0a5Q333yTq666iu3bt5ORkcHOnTvp3r0733zzTcDwO3bs4L///S8Ar7zyCqNGjaJ3795kZGSwZcsWAF566SXOPPPMStMOtO2P/5ZDEyZM4PHHH6fkY+MrVqwo9fv3v//N4cOHycvL491332XkyJEYY/jFL35B3759ueWWWypMOyUlhdtvv5309HQ2btxYrS2UALKysujYsSMAL7zwQtBwU6ZM4fnnn+ebb77hnHPOCTn+hoDx2U5CviQSq4pPUWqF2lZ8HYGdrvNdjlspIvIrEVkmIssyMzNrWZyq8+qrr3LRRReVcZs8eXLQ1Z29e/fmySefpG/fvhw5coRf//rXxMfH8/zzz3PppZeSkpKCx+Ph+uuvrzTtQNv+jB07lvXr15cubrnzzjspKioiNTWV/v37c+edd5ZeP2zYMCZPnkxqaiqTJ09m6NChfPvtt7z00kt88cUXpYtXSlaJzp49u3TLokcffZQBAwaQmppKTEwM5557brW2UAL7bdBLL72UIUOG0Lp161L3ZcuWcd1115Wejx8/nq+++opx48YRGxsbcvwNgZIRX0FUInGmIMzSKErDpFa3JRKRS4BzjDHXOedXAcONMTcGCq/bEtUcc+fOLbMIpjFSH+vO4vefZcTyW1kbP5iu+RtJmrk33CIpSq3T0LYl2g10dp13ctwURQlAyesMxdFNdMSnKLVEbSu+pUBPEekuIrHA5cB7tZymgn3/rTGP9uotxs7xeaObECtefEWFYRZIURoetar4jDHFwI3AJ8AG4HVjTPk17JXHU9OiKQ2c+lpnSub4vLFNAcjLzQ6nOIrSIKn1F9iNMR8CJ/2Nrfj4eA4dOkRycnJIrwYoijGGQ4cOER8fH25Rqo6j+ExsEgAFecdp0rxVOCVSlAZHxH+5pVOnTuzatYtIXPGpRC7x8fF06tQp3GJUmZIRnzgjvgId8SlKjRPxii8mJqbMl1EUpUFj7JdbJN5+TacgTxWfotQ0+pFqRYkgxHmB3ZNgTZ1FqvgUpcZRxacoEUSJqTM6oTkARfmq+BSlplHFpyiRhLMfX0yiNXV683PCKY2iNEhU8SlKBCHOHF9soh3xFReo4lOUmkYVn6JEECWmzrgmVvF5VfEpSo2jik9RIglH8SUktQDAFKriU5SaRhWfokQQ4szxJTgjPlOYG05xFKVBoopPUSIJR/HFJybhM4Ip0l3YFaWmUcWnKJGEz0ux8RAV5SGPOKRITZ2KUtOo4lOUCEJMMcVEAZAvcYiO+BSlxlHFpygRhPiK8ZYoPuLxFKviU5SaRhWfokQQ4iumWKziK/TE4fGq4lOUmkYVn6JEEr4iip1vxxd64onWEZ+i1Diq+BQlghBfMT7H1FnkiSfalx9miRSl4aGKT1EiCLeps9iTQIwqPkWpcVTxKUok4SvC65g6vVHxxKriU5QaRxWfokQQ4vPic0Z83ugE4owqPkWpaVTxKUoEIb5ivGJHfL7oBOJMQZglUpSGhyo+RYkgok0hXokBwBedSLyO+BSlxlHFpygRRJSvkCKJBUBiEoiXotKtihRFqRlU8SlKBBFtCin2WMVHbBMACvKywyiRojQ8VPEpSgQR7SvE64kDQGITAcjLUcWnKDWJKj5FiSCiTSEmyo74PHF2xJefezycIilKg0MVn6JEEDG+QnxR8QB4nBFfoZo6FaVGUcWnKBFEE3LwxjQFIDpe5/gUpTZQxacoEYLx+Whi8vDGJgEnFF9xvm5Gqyg1iSo+RYkQCgtyiBEvJq4ZALEJVgEW5+uIT1FqElV8ihIh5B07Yg/irMKL0RGfotQK1VJ8IjJTRHaLyErnd57L748iskVENonIhOqLqigNm2NZhwGIadIcgLiSEV+BKj5FqUmiayCOR4wxD7kdRKQfcDnQH+gAfCYivYwx+gkKRQnC8SMHAUhISgYgLtGO+EyhKj5FqUlqy9Q5CXjNGFNgjNkGbAGG1VJaitIgyDu8B4DE5I4AJDSxIz5TmBs2mRSlIVITiu9GEVktIs+JSEvHrSOw0xVml+NWDhH5lYgsE5FlmZmZNSCOotRPvFm7AWjetjMA8fH2tQZVfIpSs1Sq+ETkMxFZG+A3CXgKOBVIA/YCD1dVAGPMP40xQ40xQ9u0aVPVyxWlweDL2kORiaJF6w4AeKKjyTcxUKSKT1Fqkkrn+Iwx40KJSESeAf7lnO4GOru8OzluiqIEIeZYBvuj2tEpKqrULV/ikGJVfIpSk1R3VWd71+lFwFrn+D3gchGJE5HuQE9gSXXSUpSGTqu87RyO71rGLZ94PEV5YZJIURom1V3V+YCIpAEGyAD+B8AYs05EXgfWA8XADbqiU1GCU1hYREfvbla1OKOsuyeOKK8qPkWpSaql+IwxV1Xg9zfgb9WJX1EaC3u3b6CrFBPdtncZ90KJJ8pbvV3Yjc/H1vXLOLJjPQK06T6Azr0G44nS71cojZOaeI9PUZRqcnDbWroCzTv3L+Ne5Ikn5iRHfNnHs1j99kN0y3iN08yBEx5LIJOWZCSfQbO0C+k5/Dw8sfFlri3Mz+XgngyOHdhO7qFdFB7dC8Yg0TF4ouPwxCYSFZdAdFwisXGJRMcn4vPE4TXg9fko9vrw+XxgjI3QGMAgmNJjjEGsZzl/kVDu0JQ5EwSPR4gSEBE8HvAgNGl1Cm1PG3xSeag0TFTxKUoEULB3AwCnnDawjHtxVAKxxceqHN/qz1+h/Td/4iccYV1cGrt63cApvYdT5IPDW77Ds/Uz+h38mCafLyD78wT2xHSlmGgSvcdo4TtCC47TAfv1ifqO1wgHf72a1qd0CbcoSoSgik9RIoDow5vJpCVtmieXcfdGxRNbeCDIVeUpyM9l1dO/ZNiRf7HV051D5/yT/sPGlwlzaurpwAyyc7JZ/M17+DZ9RNPcXcSYIg7Hd2Ff/CB8TdsT1aIj8a06kdS2C63adSEqKoqiwgIKCwsoyM+hMC+XwvwcCvNz8BbkEm0KiRLwiAePR/B4PIhHAOcn9r9BrFM5N9dxAIwJ4CilY0aMMfh84MPg8xmMgdzdaxi9+T72blyqik8pRRWfokQAzXN+5EBcV/zfZC2OTiTWFIQUx5HMvez752SGFa3jvx2uZvDV9xMXlxA0fNMmTRlxzhVwzhXVkDyyOXIwHTbfR+6u1cDkcIujRAiq+BQlzBifj45FO1nf8rzyftEJxJvKF7cc2L2d/GfPpbvvAMuGPczpE6+rDVHrHS1bt+MArYjK3BBuUZQIokEpPp/Xy4pHL8HXfQy9zrqS5i2SK72mIozPR0FBPgUFeUHsLCHgN0sf0px9CDP7IcUTUlISUnqhSFBj91YuyMndrUjNrFo8qeypAof27qCj5GHa9C7n54tOIL6SEd/BfTvIe/Y82vgOknHeywwdfk5tiVov2ZtwGm2Or6uRuIzPR0FOFnm52eTlF2B8XsR4ifKAR+ziGhFxzL0exFloI+IBEWv09ZRUKI/r+RPnX1mzMARzo6xbaSUN/DyfbPNVOUJ8QmJtRV5rNCjFd3DfDtpmb6Tz6i/wrfp/bIvqQlZ8BwpjW9pKZwziK8LjK8TjLSDal0+Ur5BoXyExpoAYU0iMKSKOAmJNEXEUES+G+MqTVpSTpuQjtk07DijvGZNIAgX4vL6Arx8c2r+T7H+eR1tfJtvPfYG+qvTKkddxJAO3PELm7q206XhqSNfs2fkj+9YupGDnKmKzttIqfyfNvYdpZrKJFx/xQMtKY2n4rPH1IOWeFeEWo8o0KMXXtmN3zJ3r2Lj8C46u+YSEzFU0zd9Hs9zNCAYvHnzioUjiKJJYij1xFHtiKYxOwuuJwxcVhy86DhMVj4mOg6h4iIlHomIxnqjKBfDnpLpZJ9c1k5NI62Q7gYHSMiHEJiGEqbmeaQ1FVGPRVByRJ74ZQ4cH2LYyNhGPGHILcklMbFrG60jmXo49PZF23gNsmzCX/iPOrRlhGxit086DLY+w7b/v0OaS3wcM4y0uZsN3H5O94i06HfoPncw+OgDFxsPeqPYciutMZuJAvPEt8ca1JCoukeiYGMQTjRcPxoDPgDH2FQ5jfM55yWsbxtaB0gruHBuwy3FOPFf2OXGOjeu4pA458VGyDMgVZyjPWE2SH9e6TtOrKRqU4gMQj4c+6eMgPaRPjCpKRCOx1oyUl3O8jOLLOpzJwdkT6eLdw+Zxc0j5Sfn5QcVyar+hbPN0pc36FygouJG4OGvD8RUX88PSTzm2/HV6HPyCAWSRZ2LZ2GQoezpNpUWfM+nSbxid4xPKfHhYqf80OMWnKA0Jj6P4CnKzS92OZR1mzz9+xqnFGWwc8zSpoyeFS7x6gXg8ZJ9+Gynf3siqRyaS32k0nkOb6XbkP/TmCLkmjvVJp5PR70L6nTGZQU2bhVtkpZZRxacoEUxUnB3lFebal9gP7ttB1jMX0rN4G+tHzSJ17KXhFK/ekHL2VSzOzKDf5n/QbMsyskwTtjUdTEbfC+l75qUMTWoebhGVOkQVn6JEMJ4W1siWl5nBlrxsEt+/jva+LNae+TRpZ10WZunqFyOuuJPiotvJyj5GUrOWpEWdxLy90iBQxacoEUybrn0AaPXFbbQyRzkoLdlz4ZukDTqjkiuVQETHxNK8Zf1ckKHUHPp5dkWJYE5p34Wd0oF2HGJV87NI/O1/OU2VnqJUCx3xKUoE44ny0PqW/7Ln0H6Gdiv/gruiKFVHFZ+iRDgJSS1ISGoRbjEUpcGgpk5FURSlUaGKT1EURWlUiKm9r5dWGRHJBLbXQFStgYM1EE9dUJ9khfolr8pae9QneeuTrFC/5K0pWbsaY/x35ao1Ikrx1RQisswYMzTccoRCfZIV6pe8KmvtUZ/krU+yQv2Stz7J6kZNnYqiKEqjQhWfoiiK0qhoqIrvn+EWoArUJ1mhfsmrstYe9Une+iQr1C9565OspTTIOT5FURRFCUZDHfEpiqIoSkBU8SmKoiiNigal+ETkHBHZJCJbROSOcMvjj4h0FpEvRWS9iKwTkd857jNFZLeIrHR+EbGdtohkiMgaR6ZljlsrEfm3iPzg/G8ZAXL2duXdShE5JiIzIilfReQ5ETkgImtdbgHzUiyznHq8WkQGR4CsD4rIRkeed0SkhePeTUTyXHk8uy5lrUDeoGUvIn908naTiEyIAFnnu+TMEJGVjnsk5G2wNisi627IGGMaxA+IArYCPYBYYBXQL9xy+cnYHhjsHCcBm4F+wEzg9+GWL4C8GUBrP7cHgDuc4zuA+8MtZ4B6sA/oGkn5CpwBDAbWVpaXwHnAR4AAI4DvIkDW8UC0c3y/S9Zu7nARlLcBy9553lYBcUB3p82ICqesfv4PA3dFUN4Ga7Misu6G+mtII75hwBZjzI/GmELgNWBSmGUqgzFmrzHme+f4OLAB6BheqarMJOAF5/gF4MLwiRKQnwJbjTE18QWgGsMY8zVw2M85WF5OAl40lsVACxFpXyeCElhWY8ynxphi53Qx0Kmu5KmMIHkbjEnAa8aYAmPMNmALtu2oEyqSVUQEuAx4ta7kqYwK2qyIrLuh0pAUX0dgp+t8FxGsVESkGzAI+M5xutExDTwXCeZDBwN8KiLLReRXjls7Y8xe53gf0C48ogXlcso2HJGYryUEy8tIr8vXYnv1JXQXkRUi8pWIjA6XUAEIVPaRnLejgf3GmB9cbhGTt35tVn2tu0DDUnz1BhFpCrwFzDDGHAOeAk4F0oC9WHNHJDDKGDMYOBe4QUTK7IBqrG0jYt6HEZFY4ALgDccpUvO1HJGWl8EQkT8DxcA8x2kv0MUYMwi4BXhFRJqFSz4X9absXfycsp22iMnbAG1WKfWl7rppSIpvN9DZdd7JcYsoRCQGW4HmGWPeBjDG7DfGeI0xPuAZ6tD0UhHGmN3O/wPAO1i59peYLpz/B8InYTnOBb43xuyHyM1XF8HyMiLrsohMB34GTHUaOxyT4SHneDl2zqxX2IR0qKDsIzVvo4GLgfklbpGSt4HaLOpZ3fWnISm+pUBPEenu9PwvB94Ls0xlcGz4c4ANxpi/u9zdNvCLgLX+19Y1ItJERJJKjrGLG9Zi8/RqJ9jVwILwSBiQMj3mSMxXP4Ll5XvANGeF3Aggy2VWCgsicg7wB+ACY0yuy72NiEQ5xz2AnsCP4ZHyBBWU/XvA5SISJyLdsfIuqWv5AjAO2GiM2VXiEAl5G6zNoh7V3YCEe3VNTf6wK4o2Y3tGfw63PAHkG4U1CawGVjq/84CXgDWO+3tA+wiQtQd29dsqYF1JfgLJwOfAD8BnQKtwy+rI1QQ4BDR3uUVMvmIV8l6gCDvv8YtgeYldEfekU4/XAEMjQNYt2Lmbkno72wk72akfK4HvgfMjJG+Dlj3wZydvNwHnhltWx30ucL1f2EjI22BtVkTW3VB/+skyRVEUpVHRkEydiqIoilIpqvgURVGURoUqPkVRFKVRoYpPURRFaVSo4lMURVEaFar4FEVRlEaFKj5FURSlUfH/AeS8PnVFq60MAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "execution_count": 21, + "metadata": { + "pycharm": { + "name": "#%%\n" } - ], + }, + "outputs": [], "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 8)" + "optimisation = bpop.optimisations.DEAPOptimisation(\n", + " evaluator=cell_evaluator,\n", + " offspring_size = 10)" ] }, { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABk1ElEQVR4nO2deXyUxfnAv8/u5k44wiWXHMpNQrhRQMB6lioqKFo80FqrVVtv7aFFq/15td6Vlqp4IGLVghYV64E3Ish9g4b7hhBC7t3n98e8iZvNbrIhCbvZzPfDkvedmXfmeed93nnmemdEVbFYLBaLJZZxRVoAi8VisVjqG2vsLBaLxRLzWGNnsVgslpjHGjuLxWKxxDzW2FksFosl5rHGzmKxWCwxT9QZOxHpLCIqIp5Iy2I5ekTkRhHZISLLIpD2FBF55RikM1lEvqjCf76IXF3fclgqIiLTReT+mvrVsQxV6qCIZIvIafUtR6wgIu+IyF4ReeRo44g6Y2epOSIyVUTynF+xiJT4nb8XIbGmAL9W1X5+ck4RkSkRkieqcCp12TUM/4mI5IvI2qoKShFJEJHnRSRXRHaJyC0B/heJyBoROSwiq0XkvBDxfORf8RSR1iIy06nEHBKRL0VkaMA1N4rID07ai0RkhJ/flADdzBORrmHef6PRHREZLSLzaxA+S0QWO7qxWESyqgibLiL/EZEjIrJZRH4eItzzzrM/0c/tBueZFonI9IDwkwKea75z/UDHP8Epp3aLyAHHeLX3u76ziLwrIgcdnX3av8GjqucAY4DbRKRZuHnjT50bO9siO/ao6rWqmqqqqcBfgFll56p6dlm4Y/xs0oGVxzC9eiGK9HkmsARoAfwBeENEWoUIOwXoBnTCFBB3iMhZAE4B8wpwC9AEuB14VURa+0cgIpOAuIB4U4FvgYGY5/siMFdEUp1rhgIPAhOApsBzwH9ExO0Xh79upqrq9zXNiGghGnRDROKBOZhn2hzzTOY47sF4BigG2gCTgGdFpE9AnCOAE4JcuwO4H3g+0ENVZ/g/V+DXwPfAd06Q3wInAZlAO+Ag8JRfFH8H9gBtgSxglBOHfxpl5UmLEPdWJXVi7Jwm+Z0ishw4IiIeERkmIl+JSI6ILBOR0X7h54vI/4nIQqcGOEdE0kPEfaVfLfR7EflVgP84EVnqxLPJ76VuKiLPichOEdkuIvcHvHTB0jpBRD4Wkf0isk9EZpTVIhy/AyIywDlvJ6ZZPdo5P1dEVjn3O19EegXkz20istypEc8SkcSa53TNCfFsAmtsFbp2RORnTp7mOM8ws4ZpluWzr5pwdzjPZ4eIXO0vlyPTMyIy13n234jICX7XPiEiW53nvlhERgZEn+jk82ER+U5E/FuYdzm6UtayOd/Pb7KYFstjIrIfYziqu99HnRrpDyJydoB3Jye+wyLygYi0rC6+IPF3BwYAf1LVAlV9E1gBjA9xyRXAn1X1oKquAaYBkx2/DkCOqr6nhrnAEfwKNxFpCvwJuMM/UlX9XlX/pqo7VdWrqv8E4oEeTpDOwCpVXaxmaaaXgJZABUNaF1SlOwHh0sS0iJ8UEXGcW4rI/5xn8qmIdPILH1KvxLQu3xCRV0Qklx/zNBTxIvKSk84qERkU4J9VB2XCaMADPK6qRar6JCDAqYEBRSQFozN3q2qeqn4BvA1c5hfGgzFCNwZer6pvqepsYH8Ycl0BvKQ/LtHVBZinqrtVtRCYBfgb2S7A66paqKq7gPcD/MvFcO635qhqrX9ANrAU6AgkAe0xGfJTjEE93Tlv5YSfD2wH+gIpwJvAK45f57Ibcs7HYl5EwVj7fGCA4zcEOOTE73LS7en4/Qf4hxN/a2Ah8Ktq7uNEJ64EoBXwGUaJyvx/CawGkoF5wKOOe3dMgXE6pjZ8B7ARiPfLn4WYGk06sAa4NoQMI4CcKn4jqrmHKWV5GezZOG4KnOgXZjpwv3PcH1PDGgq4MUqbDSTUQB/OAgqBlGrC7MIodDKmZloulyPTfucZe4AZwGt+11+KqeF5gFuduBL98qAE08KIA24DfgDiHP8LnWfhAiY6z66t4zcZKMW87J6yPAtxD5OddH7p5NV1mNqv+On5Jkc/kpzzB0PE9Xfg7yH8zgfWBLg9DTwVJGxzJx/b+LlNAFY4x27gU+Bc5/g8YJv/s8LU/m8m4F0MklaW85ybOudNgMV+unMjpjValh9TMO/rAWAVcN1Rljfh6M79jn4sxNFtP7/DwCmY9/wJ4Isa6tV5ju5UpRtTnLz5qZMX/wcsCHgvwy0T/gvcFcLvZuC9IOFvDRK2P5Af4HYb8I7f+e3AE8HKCb8w9wPTq7j3ToAX6OLnNgj40rnfZOBVKpatv8JUjpIx5fhK4PwgcW8Gri/TqRrpzdEoWxABsoGr/M7vBF4OCDMPuMI5no/fSw/0xjSt3VT/gs0Gfusc/wN4LEiYNkCRvzIClwCf1PC+zgOWBLi9jalVL8cxAMDdmFpJWRgXxpiP9sufS/38Hwam1kXeB5F5CpWN3VUBYaoyds9iWgX+4dcBo8JMf5ET/2+qCfc88H9+5ydSucD6l5//T4G1VcR3EOjnlwf+BYsL2AmMDHHtUmCcczwZ2BLmvU4GNvqdJzv3cJyfnv/Rz//XwPtH8Uwv878fx+0BghQ4mEqN4hTQjtvpQLbf+S+APIxRzwfG+vkNcvLDQxXvIsawrQB+5+cmwO8xBqEU2AcM9vPvjSns3MDJzjO55CjyIxzdeR5TYN4ecO10KlaaUjEFc8cw9eqzMGWcAnwYcO8FfufZ1EGZgCl7XgtwmwFMCRJ2JLArwO2XwHw/3dnIj5WXozV2d5fF6efWFHjNibMUUwlK9/PvhakolTphphPEoGEqfsWY3oka5VVdjtlt9TvuBFzodIPliEgOpsXSNkT4zZgaeKUuHhE5W0QWOF2IOZhCryxcR0zNOZBOTnw7/dL/B9V0p4hIGxF5TUy3Zy6mxhgo0zRMi/QpVS1y3No59wCAqvqc+2vvd90uv+N8zEt2rNhafZByOgG3Bjy7jph7DIfBwMXAFBEJHPPxp12AXMFkDJlnTrfwGqcLKAfzMvk/q/L4nOexreweRORyv27aHMzzDHptGJTLqKr5zmFqMP/Ae6gBeRjj4k8TTAslWNgy/0phxUxseRjT/RWP6S35l5hJDi5MC/O3qloaShgRSQLewRjg//Pz+gVwJabFFY9pJf1XRNoBqOpqVd2hpgv0K0yrakI19x6McHRnLKY1PTWIn79u5GFammW6EbZehUHgs0+UiuN8kdCNqsI+DtynqoeOQg5/LseMHfrzDKYl3QLT2/YW8B6Ao3fvO24pmPxuDjwUJO57MRWJoMNeVVGXxk79jrdiWnbN/H4pqvqgX5iOfsfHY2qD+/wjFJEETBfno5humWbAu5gaZFk6wQZSt2Jadi390m+iqsH6gP35i3MfGaraBPOylqWFmIH4xzED71Pkx3HGHRgjURZOnPvbXk16lRCRkVJxVlPgL3BsKhw04Dwf0wop4zi/463AAwHPLllVZ4aVkKl+zcYoa9sqgu7EjB+V0TFUwECcPLgDuAho7ujFIfyelX98zsvUAdjhjM9MA24AWjjXrgy4NjC/Is0qoKuIpPm59XPcK6CqBzF52y9E2CxM62SRqvpU9VvgG+A0TME3CJglIrswk1EAtpXpnfNOzsZUHiqMnztx/1dV1ztxv+/IcnKI+1Iq5nu4hKM70zAF6LvOWBXBwjvvdDpGN8LRq2jUjUy/8Ugwk0Aq6QawHvCISDc/N3/d+AnwiJjZkGWG+GsJMWMzGCIyHFNxeCPAKwvTGjzgNBKeAoY4Y9jpGBvwtJpxx/3AC5iGTSC9gDlOBbZG1NenB68A54jImSLiFpFEMdNp/RX0UhHpLSLJwH3AG6rqDYgnHlMb2AuUOoP/Z/j5PwdcKSI/ERGXiLQXkZ6quhP4APiriDRx/E4QkVHVyJ2Gqf0cEjNr7fYA/yeARap6NTCXH2uNrwNjHTniMH39RcBX1WVUIKr6uVacrRb4+7ymcQZhKfBz59mchandlzENuFZEhoohRUTGlhW0YiaOTK/mHspavKFmhIHJsytFpJejA3fXQP40THfHXszLew+Va6wDReQCpyZ9E+Z5LMDUHNW5FhG5EtOyi1pUdT3mmf3JeZfOxxRob4a45CXgjyLSXER6Yrqqpjt+3wIjxZmeLiL9Md1byzEFeztMwZTFj4XNQOAbR7ffAAowQxKBBc63mPegq6M7p2PGK1c6aY1zZBIRGQL8BjOTEMc/W0Qmh5El4erODZgu+Hec1mgZPxWREWJmLP4Z00LdSnh6FW3Mx3TD/kbM9P4bHPePAwOq6hFM6+k+570eDowDXnaCdMcYvyznB3AOZv4DYia3JWK6ocvK9cDJIlcAb6pqYMvyW+ByMRMH4zBd+jtUdZ+q7sOMqV/npNHMiWd5kPv1YN7lGlMvxs5RnHGY/vu9mNbC7QHpvYx5AXcBiRjFD4znsOP+Oqbv/OeYMbMy/4WYbpPHMC/qp/zYwrocU9iudq59g6pbGmCayAOcuOZiFAMwLypmYPw6x+kWYICITFLVdZhW4FOY1uk5wDmqWlxNepHitxgZczDTj2eXeajqIkzh+DQm3zZScdZZR8xAc3UoVeiXqr4HPAl84qSxwPEKR5HnYWrt6zHdx4VU7l6ag5l8chAz5nWBqpao6mrgr8DXwG4gI8z7qVfEfIMUrMutjIsxra6DONP7VbXMYE8SEf+a/J8w3fubMe/EI04rC1X9FNMN9IaIHMYYzL+o6gdq2FX2w6kQALsdXT4Z+BmmwpkTpLfhJcy4zHwgF/N8f6Wqa/3uYSOm2+wl4CFVfdG5h3hMF1eZHoQkXN1xehmuwbRC58iPsx1fdfLoAMaQX+q4h6NXxxwReU9Efh/Mz3ku52HKuxzgKuC8srJHRH4vFb+1/TWme3cP5nOW61R1lRPXnoDnD7BPVQuc4z9iKjp3YfKswHErkzMR0yoO7MIEMxGmENiA0aufYsbfyrgAU77uxTzTEszkG/98CGuWdyjKZkkdU8R8MPmKqv7rmCduOWqcAmkZkKmqJdWE3QHcoaphrWQi5lONlZhJPyHHiyyxiZhvu65X1UuO4lqrO40Apzfga6BZkJZjtdgVVCxho6rFqtqrOkPncBem221xqAAicr7T9VI2GP2OLawaJ6r6RU0MndWdxoWIzMb0zt19NIYOGqGxk4pLa/n/qupCstQQVX1JVbup6sAqgv0K052yCTPucF0VYSOC1ZeoJeK643QvBtONoF2OlqNHVc9T1eNV9S9HG0dEujEtFovFYjmWNLqWncVisVgaHxFfyNSfli1baufOnSMthsVisViOIYsXL96nqqEWNq8TosrYde7cmUWLFkVaDIvFYrEcQ0Rkc/WhaoftxrRYLBZLzGONncUS5dhJZBZL7bHGzmKJZrylfPe389lz74nsWfp+pKWxWBosUTVmF4ySkhK2bdtGYWFhpEWxNCASExPp0KEDcXFVbbwQ/Xz/8fMMPPwJBRrPodnXk3viMpqkHssNMyyW2CDqjd22bdtIS0ujc+fOiBzNAumWxoaqsn//frZt20aXLl0iLU6tKF34HBs4nsIxfyJj/i/46uOZnHzuLyMtlsXS4Ij6bszCwkJatGhhDZ0lbESEFi1aNPjegF3bt3Bi8ToOdhlL35HncUCa4lrzTqTFslgaJLU2diJyo4isFZFVIvKw43a6iCwWkRXO31NrmUZtxbQ0MmJBZ7YvnotLlPSsnyFuD9ktRtM3/xsKi45qhxOLpVFTK2MnImMwW/n0czZGfdTx2ofZ4iYDsy/RyyGisFgsISjasoh8TaBLn2EAxHcbRaoUsm5ZjbdJtFgaPbVt2V0HPFi2Waeq7nH+LlHVHU6YVUCSmB2OGyQiwq233lp+/uijjzJlypTICVQN8+fP56uvalcgnnXWWTRr1oyf/exndSSVpaY0PbiKrYndcHvM0Hqn/qcBkLOmLvbvtVgaF7U1dt0xux5/IyKfisjgIGHGA9/57V7d4EhISOCtt95i3759dRqvquLzHdU+hFVSF8bu9ttv5+WXbYM8UpSUlNCl9Htym/cpd0tr3Ymd0prUPQsjKJnF0jCp1tiJyIcisjLIbxxmNmc6MAyzE/nr4jdYIiJ9MHtN/aqK+K8RkUUismjv3r2hgkUUj8fDNddcw2OPPVbJb+/evYwfP57BgwczePBgvvzSbHo9ZcoUHn300fJwffv2JTs7m+zsbHr06MHll19O37592bp1K7fffjt9+/YlIyODWbNmAcZgjR49mgkTJtCzZ08mTZoU9OPiJ598kt69e5OZmcnFF19MdnY2U6dO5bHHHiMrK4vPP/+8Shkvu+wyTjrpJLp168a0adPK4/3JT35CWlpalfny73//m759+9KvXz9OOeUUwEwouvLKK8nIyKB///588sknAEyfPp3zzjuP008/nc6dO/P000/zt7/9jf79+zNs2DAOHDgAwLRp0xg8eDD9+vVj/Pjx5OfnV0p32LBhrFr148bco0ePjrll5nZsWk6yFCFt+1Vw356WSYcjqyMklcXScKn20wNVPS2Un4hcB7ylphReKCI+oCWwV0Q6AP8BLlfVTVXE/0/gnwCDBg2qcqmIe99ZxeodudWJXCN6t2vCn87pU22466+/nszMTO64444K7r/97W+5+eabGTFiBFu2bOHMM89kzZo1Vca1YcMGXnzxRYYNG8abb77J0qVLWbZsGfv27WPw4MHlhmPJkiWsWrWKdu3aMXz4cL788ktGjBhRIa4HH3yQH374gYSEBHJycmjWrBnXXnstqamp3HbbbQD8/Oc/Dynj8uXLWbBgAUeOHKF///6MHTuWdu3ahZV39913H/PmzaN9+/bk5OQA8MwzzyAirFixgrVr13LGGWewfv16AFauXMmSJUsoLCzkxBNP5KGHHmLJkiXcfPPNvPTSS9x0001ccMEF/PKXZmr9H//4R5577jluvPHGCulOnDiR119/nXvvvZedO3eyc+dOBg0aFJbMDYV93y+nE9CsS/8K7qWtM2iT+yEH9uwgvXV4z8lisdS+G3M2MAZARLoD8cA+EWkGzAXuUtUva5lGVNCkSRMuv/xynnzyyQruH374ITfccANZWVmce+655ObmkpeXV2VcnTp1YtgwM+ngiy++4JJLLsHtdtOmTRtGjRrFt99+C8CQIUPo0KEDLpeLrKwssrOzK8WVmZnJpEmTeOWVV/B4gtddqpJx3LhxJCUl0bJlS8aMGcPCheF3kQ0fPpzJkyczbdo0vF5v+f1ceumlAPTs2ZNOnTqVG7sxY8aQlpZGq1ataNq0Keeccw4AGRkZ5fe2cuVKRo4cSUZGBjNmzKjQgivjoosu4o033gDg9ddfZ8KECWHL3FAo2GXyrMMJFStiaZ2N8du21nZlWiw1obYflT8PPC8iK4Fi4ApVVRG5ATgRuEdE7nHCnlE2geVoCacFVp/cdNNNDBgwgCuvvLLczefzsWDBAhITEyuE9Xg8Fcbj/L/5SklJCSu9hIQf5/S43W5KS0srhZk7dy6fffYZ77zzDg888AArVqyoFCaUjFB5in5NpuxPnTqVb775hrlz5zJw4EAWL15cZXj/+3G5XOXnLper/N4mT57M7Nmz6devH9OnT2f+/PmV4mnfvj0tWrRg+fLlzJo1i6lTY2/TcE/O9+yjOS1TmlZw79h7GHwIednfwSnnRUY4i6UBUquWnaoWq+qlqtpXVQeo6seO+/2qmqKqWX6/Whm6aCA9PZ2LLrqI5557rtztjDPO4Kmnnio/X7p0KWC2K/ruu+8A+O677/jhhx+Cxjly5EhmzZqF1+tl7969fPbZZwwZMiQseXw+H1u3bmXMmDE89NBDHDp0iLy8PNLS0jh8+HC1MgLMmTOHwsJC9u/fz/z58xk8ONgco+Bs2rSJoUOHct9999GqVSu2bt3KyJEjmTFjBgDr169ny5Yt9OjRI+w4Dx8+TNu2bSkpKSmPJxgTJ07k4Ycf5tChQ2RmZoYdf0OhSf4W9sZ3qOye3obd0pK4PZUrNRaLJTRRv4JKtHHrrbdWmJX55JNPsmjRIjIzM+ndu3d5K2P8+PEcOHCAPn368PTTT9O9e/eg8Z1//vlkZmbSr18/Tj31VB5++GGOO+64sGTxer1ceuml5ZNBfvOb39CsWTPOOecc/vOf/5RPUAklI5hu0DFjxjBs2DDuvvvu8vG6kSNHcuGFF/LRRx/RoUMH5s2bB8A999zD22+/DZgZmxkZGfTt25eTTz6Zfv368etf/xqfz0dGRgYTJ05k+vTpFVp01fHnP/+ZoUOHMnz4cHr27Fnu/vbbb3PPPfeUn0+YMIHXXnuNiy66KOy4GxJtSreTl3J8UL9dyd1pfWT9MZbIYmnYSDRtHzJo0CANnFW3Zs0aevXqFSGJYpspU6ZUmMgSazRU3cnLPUDq37rwddcbOeny+yv5L3z+NgZt/hf5t20mNa1pkBgsloaFiCxW1XqdZWZbdhZLlLFni2m1xbfsGtQ/oUM/XKJsXRdbn1tYLPVJ1O96YKk/onkVmMbMwV3ZADQ9rnNQ/zY9BsNXcOiHpTDoJ8dMLoulIWNbdhZLlFG0bwsA6W2Dt+zadOxGHkmwy05SsVjCxRo7iyXK0EPbKFUXzVtXno0JIC432+K60DR33TGWzGJpuFhjZ7FEGZ4ju9jvSkfcoUcZcpv2pGPxD/icj/ktFkvVWGNnsUQZKYW7OOhpXWUYaduXVClg52bburNYwsEauzCZPXs2IsLatWtDhsnOzqZv3771KsfSpUt59913axXHVVddRevWretdVsvR0bRkD/mJbaoM06zzAAB2b7AzMi2WcLDGLkxmzpzJiBEjmDlzZlD/YEt51RRvGF1SdWHsJk+ezPvvv1+rOCz1g8/ro5VvHyUpbasM17HnQHwqFG1bfowks1gaNtbYhUFeXh5ffPEFzz33HK+99lq5+/z58xk5ciTnnnsuvXv3BozRmzRpEr169WLChAnlW9R89NFH9O/fn4yMDK666iqKisz2fp07d+bOO+9kwIAB/Pvf/66QbuAWOsXFxdxzzz3MmjWLrKwsZs2axZEjR7jqqqsYMmQI/fv3Z86cOYDZUmfcuHGMHj2abt26ce+995bHe8opp5Cenl7lPX/66adkZWWRlZVF//79OXz4MKoacjuiUaNGMW7cOLp27cpdd93FjBkzGDJkCBkZGWzaZDa9eOeddxg6dCj9+/fntNNOY/fu3ZXSvfjii5k7d275+eTJk8sXfW4MHNy/i0QpgabtqwyXmNKE7a62JO632/1YLOHQsL6ze++uup9ufVwGnP1glUHmzJnDWWedRffu3WnRogWLFy9m4MCBgFn3cuXKlXTp0oXs7GzWrVvHc889x/Dhw7nqqqv4+9//zg033MDkyZP56KOP6N69O5dffjnPPvssN910EwAtWrQoX0fTn8AtdOLj47nvvvtYtGgRTz/9NAC///3vOfXUU3n++efJyclhyJAhnHaa2ZVp4cKFrFy5kuTkZAYPHszYsWPD3grn0Ucf5ZlnnmH48OHk5eWRmJjIW2+9FXI7omXLlrFmzRrS09Pp2rUrV199NQsXLuSJJ57gqaee4vHHH2fEiBEsWLAAEeFf//oXDz/8MH/9618rpFu2fc/YsWMpLi7mo48+4tlnnw1L5ljg4O7NtADim1Vt7AD2pnTjuCOhu9UtFsuP2JZdGMycOZOLL74YMC0P/67MIUOG0KVLl/Lzjh07Mnz4cAAuvfRSvvjiC9atW0eXLl3K18e84oor+Oyzz8qvmThxYtB0g22hE8gHH3zAgw8+SFZWFqNHj6awsJAtW8x3WqeffjotWrQgKSmJCy64gC+++CLsex4+fDi33HILTz75JDk5OXg8niq3Ixo8eDBt27YlISGBE044gTPOOAOouH3Ptm3bOPPMM8nIyOCRRx4Jun3P2WefzSeffEJRURHvvfcep5xyCklJSWHL3dDJP7ATgKT06veqK27Zh3a6m8OHDtS3WBZLg6dhteyqaYHVBwcOHODjjz9mxYoViAherxcR4ZFHHgEqb9dzNFvmhNryJ5wtdFSVN998s9LOAt98802ttu+56667GDt2LO+++y7Dhw8vXwg6FOFs33PjjTdyyy23cO655zJ//vygK7gkJiYyevRo5s2bx6xZs8orGY2FooO7AEhtUb2xS+rYD7Jh29pv6TX0zHqWzGJp2NiWXTW88cYbXHbZZWzevJns7Gy2bt1Kly5d+Pzzz4OG37JlC19//TUAr776KiNGjKBHjx5kZ2ezceNGAF5++WVGjRpVbdrBttAJ3L7nzDPP5KmnnqJsQe8lS5aU+/3vf//jwIEDFBQUMHv27PIWZzhs2rSJjIwM7rzzTgYPHszatWtrtR0RwKFDh2jf3nTPvfjiiyHDTZw4kRdeeIHPP/+cs846K+z4Y4HSw2Ycs1nr6rsx23Q32zHlZi+pJqTFYrHGrhpmzpzJ+eefX8Ft/PjxIWdl9ujRg2eeeYZevXpx8OBBrrvuOhITE3nhhRe48MILycjIwOVyce2111abdrAtdMaMGcPq1avLJ6jcfffdlJSUkJmZSZ8+fbj77rvLrx8yZAjjx48nMzOT8ePHl4/XXXLJJZx00kmsW7eODh06lO/PN3Xq1PLtfx5//HH69u1LZmYmcXFxnH322bXajgjMWpwXXnghAwcOpGXLluXuixYt4uqrry4/P+OMM/j000857bTTiI+PDzv+mODIHgo1jpTUZtUGbdO+CzmkIrvtsmEWS3XYLX5ilOnTp1eYyNIYaYi68+1jF9Ihdwlt/7QxrPDLHjyNpsW76XyPNXiWhovd4sdiaWQkFu7jsLt52OEL2gyks28Lhw7sqUepLJaGjzV2McrkyZMbdauuoZJScoD8+BZhh2/aYyQA3y/5pL5EslhiggYxG1NVazST0GKJpu75mtDEl8O+xPCXcevS7xRK57nI3/gl/CT4JyzVoaqs3fQDu9d8RenBzajPR0pSIvHpx5PapgttO/WgaVO7I7qlYRP1xi4xMZH9+/fTokULa/AsYaGq7N+/n8TExEiLUiO8paU010P4kluFfU1iShM2xHWj5d5vapxeSamXz9+dQfOlU+nnXU0vCV1B2Es6+xPaU9SkM3Etu5Latjup7bqRlJZOfGIq7oRkFKGwqISCoiIKioopKi6iqLiY4uJiSkqKKSkuobS0BJd6can5K+rFhQ9BEEDE+URGAAQRwVV+bGQRcTnHjj9QquD1+SjxKiVexeUS0pLiaJoYR/PW7Ulq27PG+WOJLaLe2HXo0IFt27axd+/eSItiaUAkJibSoUPw/eCilYP7d9FSFEmteseDQHYfdwonb/0XeQd3kdo8vNmxW7M3sPuVazi19Dv2uFqzpvu1tMw8g1bH90Q88eQcOsSBXdnk78mmYPdG9MD3pORt4bg9n9Nm7zuwpnKcAiQ5v2iiVF3k3byB1GYtqw9siVmi3tjFxcVVWKHEYolVDu/bTkvA06TqHQ8CadrvZ7i2TWPjl7PJ+ln1n7RkL/+MZm/9nJYUszrrD/T62U209lT8xKN5Skuatzuh0rUlXh/rd+xhz+a1lOz7Hl/RYSguQErzcQMejwdPXByeuDjiPHG4PfHm3BOHJy4ejycOdXnwiQufxKEuN4qgKiiK8w+f+swBiqqialrsZW1P9fkcb8WH4hYhzi14XILH7cLn85FbWErOqg8ZtfslcvZut8aukVNrYyciNwLXA15grqre4ed3PLAamKKqj9Y2LYsllsnPMb0XCU1q1rLr1X8Ee+c2h3VzoRpjt+Gbd2n33pXk0IRDl/yX3j2yapRWnNtF947H0b3jccDoGl0bCb4ryofdL1F4OCfSolgiTK2MnYiMAcYB/VS1SEQC39K/Ae/VJg2LpbFQdHgfAElNa2bsPB4P61qezpC9b3J4/w7SQiw1tmb+LLp+cj07XMcRf+XbdDq+a61ljnbiU5oBUHTkYGQFsUSc2n56cB3woKoWAahq+cc+InIe8ANQebVfi8VSiZLD+wFIbV7z7rYWo64hXrysf+/vQf1XvPsPun1yLdmezqRe+wHtG4GhA0hINd8slubnRFYQS8SprbHrDowUkW9E5FMRGQwgIqnAncC9VV5twl4jIotEZJGdhGJpzPjyjbFrml6zMTuAnn0HsTR+ICdufIG8g34fmKuy7PX7yVh4B6vj+9Lmhg9o1ab6RaZjhcS0MmN3KMKSWCJNtcZORD4UkZVBfuMw3aDpwDDgduB1Md8HTAEeU9W86uJX1X+q6iBVHdSqVfhTri2WmCP/IAUaT2Jyao0vFRHizr6fJC1g6z8nUnj4APt2bWHRExPpt/oRvkkcSdeb3qNZ86o37Y01UpqY+/UWWGPX2Kl2zE5VTwvlJyLXAW+p+YJ3oYj4gJbAUGCCiDwMNAN8IlKoqnZJD4slBO6iHA5L6lFP3e/T/2Q+3XAPw1fdiz56Iun4aIqLrzpezZDJD+HxRP3k6zonrWlzfCqoNXaNntpq/2xgDPCJiHQH4oF9qjqyLICITAHyrKGzWKomruggee4m1Gx6SkVGXXQTSxf2J+fbWaSkNqH54Is5uXdWXYnY4IjzeDhMIhTlRloUS4SprbF7HnheRFYCxcAV2lDXabJYIkxCaS4Fntovy5U1ZBQMqX6/xMbCEUlBrLFr9NTK2KlqMXBpNWGm1CYNi6WxkFx6iIMpjWOW5LGkwJ2Kp+Rw9QEtMY3d9cBiiRLS9DClCc0iLUbMUeROIa6k2rlylhjHGjuLJQrwen000Tx8iY1rtuSxoNiTRpLXdmM2dqyxs1iigNxDB4kTLySHv3GrJTxK4puR6rPdmI0da+wslijgsPMhuCcl/I1bLeFRmticJnq4we5xaKkbrLGzWKKAglyzLmZcqu3GrGs0KZ1kKaKwID/SolgiiDV2FksUUJRrlsqLT7Pb0NQ1kmwqEIf9l1GzNDqssbNYooCSPLMuZmJTu2ReXeNJNV3DR3KssWvMWGNnsUQB3iMHAEhpalt2dU18qsnTwkN2ofnGjDV2FksU4HPWbky1xq7OKWstFzv7BVoaJzFl7HJz9vP11OtY9dW7kRbFYqkZhYco0jgSk452GWhLKFKaGWNX1lVsaZzElLFLSExi0M5ZHF41L9KiWCw1wlWUS54kY3bIstQlqelmaW3NPxBhSSyRJMaMXTLb3O1JOrgu0qJYLDXCVXKYfEmJtBgxSVpKKvmaANbYNWpiytgB7E85kdb5GyMthsVSI+JKDlPgrvmmrZbqERFyJQ1XgTV2jZmYM3beVn1oy14OHrCD0ZaGQ0JpHsUea+zqizx3EzxFOZEWwxJBYs7YpXUeAMCWVV9FWBKLJXwSvXmUWGNXbxR6mpJQYncrb8zEnLFrn2E2Sc//fkGEJbFYwidZ8/HGp0VajJilOL4ZKd6cSIthiSAxZ+yaNm/FZmlP0u4lkRbFYgkLVSVFj+CLr/0u5ZbglCS1It13MNJiWCJIzBk7gN1NMjg+fyXq80VaFIulWoqKi0mRIjTBtuzqC1/qcaRIIUcO50RaFEuEiElj5z5+MOnk8sOGVZEWxWKpliO5ZpagJNmWXX3hatIGgEN7tkdYEkukiElj167f6QDsXvp+hCWxWKqnINd0r7kSm0RYktgloWlbAHL314+x239gP9kb17Bpwxp27NpJaam3XtKxHD2eSAtQH7Q9IZNdtCJxy3zg9jqLV1XZm5NL7r4dFBfkgSriEhKSm5CQ2pzklKakJMYR74nJOoSlnig4bIydJ7lZZAWJYZJbtAeg6EDdGbtVS7/m4Kf/oNPBr+nILvy33T2iCfzgbk9OcidKm59IYttetOrSl7ZdM3AnJNeZDJbwiUljhwjZzYfR9+CHlBQXERefcNRRbc3eQPbnM0nY/jWdCtbSRg7QOkRYrwqHSWY3yeRLMgWSTKE7hSJ3CiXuFErjUnF74nC7PXg8cbg9HtyeOFT8jKMGHlZyILiDhvYKPNWqr616Q+cqxkEDLvQ/E7SKeDWkvFL5pn/000o5FJBwFddWzl2/ACEErSJjNEBWreZ5+JNwZCfdgDhr7OqNJq06AFByaGet48o5eIDV029gWM67lOBhfdpQdreZgLtJG1wieAsO4T24hcRD39P+yGqOOzwf11aFheBTYYerNbvjOlCckI4vuSUkt8DrSQZXHLjjwJOAS8CND4/4cKkX9XnBW4LPZ47V58Pn86FqjtXnQ9WHqA/BZyri6jPvXbD3QCHo26WgEhjO6LPqj+FVzfucG9+K866ZUus8PRbEprEDEnqeQerX77By4Tz6jji3xtevWjCPkvmPklW4kI7AdldbdqUPYnv6iXiatMWdlAoIqA9v4WG04BAU5SJFubiKD+MuySO1JI907yHivTtILMknMb8AN17ceHFVVfpZjgm+src6yHKUVT0dDXZBCP/AkKGuPUQabbr2qTJey9HTotVxlKgbb+7uWsWzedNqfK9cxBDfdr5r/3P6TLyPjGp2qijMz2PrhpXs27yC0t1rScn9nqaFW0nJ20qT3EMkS1GtZArEq4IPF4o4v8qE0uAKoSXQvfJV611dgSlHL+wxpNbGTkRuBK4HvMBcVb3Dcc8E/gE0wTQHBqtqYW3TC5eeI84n76s7OLJoJtTA2OXs38P66dcx5PCHHKQJC4//JZ1PnUz7zn1pX5cC+nx4vaUUlRQjPi9lihR0HWA/x0B/8Rt2rewXeK0E+FcRr1TRFVvlYsVV+B3tddVde5SLJ0dTZ7OdmlK/xHk87JZmuI4cvbHbsXkDcS+PI4V8vj/rZQad9LOwrktMTqVbv2F06zeskp+qUliQh7coH19pEb6SYrwlxXgVShG8uPDixu02PUEetweXx4PH48HjduPxuPG4PbhdLhAXiOAG3Ed9lzWjIVXPamXsRGQMMA7op6pFItLacfcArwCXqeoyEWkBlNRa2hqQlJLGovQx9DnwCbm5OTRp0qzaa5Z/+hZtPrmV/nqIhZ1+SebFf2JIcj1NB3e5cLviSY6Lr5/4LRZLBQ55WpBYcHTG7lDOQYpevICWHObAhDfp3nd4ncgkIiQmp0F9lTOWcmpbub0OeFBViwBUtWzf+zOA5aq6zHHfr6rHfHpSsxFXkyoFrJv7VJXhCvJyWfj0ZDI/uZJCVwqbz5/DkKseNUposVhigtyEdjQvqfmYnfp8rP3X1Rzv3cqOM6bRqY4MneXYUltj1x0YKSLfiMinIjLYz11FZJ6IfCcid4SKQESuEZFFIrJo7969tRSnIicMOJUVcZl0Wfcv8nODb9y46buPOPDXwQzaO5uvW19Cm9sWcGLWyDqVw2KxRJ7C1A608e5BvaU1uu6rOf9kaN6HfNf1OnqcfE49SWepb6o1diLyoYisDPIbh+kGTQeGYeb4vy5mYMgDjAAmOX/PF5GfBItfVf+pqoNUdVCrVq3q6r7KZMd95v0001w2/OsXFZS8KP8QS/55LZ3njEfUx8rTZ3DSr6eSmGwX47VYYpJmnYgTL4f2bA37kr17dtBz2QNsiOvJwEl/rkfhLPVNtWN2qnpaKD8RuQ54S1UVWCgiPqAlsA34TFX3OeHeBQYAH9WJ1DWg96BRfLriekZtfoq1j5xKYbefoQe30HnbHPrpYb5sfi4ZVzxOZvP0Yy2axWI5hiS17gLrYN+2DTRr2yWsa76fcQsD9Aj545/G5YnZyeuNgtp2Y84GxgCISHcgHtgHzAMyRCTZmawyClhdy7SOmlMm/5n5Pe6mZUE2WSseoO/WV9kU35OlZ77OyJteopk1dBZLzNO8fXcAcneFt7nz+mVfMTjnfZa0v4SOPQdXf4ElqqltVeV54HkRWQkUA1c4rbyDIvI34FvMJ0vvqurcWqZ11IgIoy+5jcKi3/DDzq00bdaSQc3sZG+LpTFx3PEn4lOhZN8PYYUvfO9uciWFXhfdW8+SWY4FtTJ2qloMXBrC7xXM5wdRQ2JCPF06nxBpMSwWSwRITk5hh7Qk7uCmasOu/vJtMgsXseDEWxjWrOqPxi0Ng2j6rtZisVjqld2JXUnPq7obU31eEj65lx20Imt83a2ta4ks1thZLJZGQ0HzHrT3bqOkOPRiTqs/fIkTSjfyQ+bNJCbZRZtjBWvsLBZLoyG+XV/ixMu2DcuC+vtKimm24GE2SScGn/OrYyydpT6xxs5isTQaWnQbAsDBDQuC+q9491na+3awZ/BtxMfZTw1iCWvsLBZLo6HjiZns1ya4tnxdya+4MJ+2S59gtbsHQ84MOu/O0oCxxs5isTQaPB43m5L70fbgokr7Ey5740Fa636KTvkjbrctGmMN+0QtFkujoqjTaNroXnat/bF1l7srmz4bp/Jd4jCyTrHrX8Yi1thZLJZGRddRP6dIPWyf/7xx8PnY/so1iCpp5/+t0r6PltjAGjuLxdKoaN+2HYvSfkLf3bPZv+ojVr/wa3rlfcOXXW+iW4+GtB2ppSZYY2exWBodbS/4Cwe1CS3+fQG9t87kf00uYNSkuyItlqUesXNrLRZLo6Nr1xNZfen/WPTZqyQc15PRZ15AnMcdabEs9Yg1dhaLpVHSu9sJ9O52d6TFsBwjbDemxWKxWGIea+wsFovFEvOIBnxYGUlEZC+wuQ6iaonZRLYh0JBkhYYlr5W1/mhI8jYkWaFhyVtXsnZS1VZ1EE9IosrY1RUiskhVB0VajnBoSLJCw5LXylp/NCR5G5Ks0LDkbUiy2m5Mi8ViscQ81thZLBaLJeaJVWP3z0gLUAMakqzQsOS1stYfDUnehiQrNCx5G4ysMTlmZ7FYLBaLP7HasrNYLBaLpRxr7CwWi8US88SUsRORs0RknYhsFJGoW9VVRDqKyCcislpEVonIbx33KSKyXUSWOr+fRlpWABHJFpEVjkyLHLd0EfmfiGxw/jaPAjl7+OXdUhHJFZGboilfReR5EdkjIiv93ILmpRiedPR4uYgMiAJZHxGRtY48/xGRZo57ZxEp8MvjqcdS1irkDfnsReR3Tt6uE5Ezo0DWWX5yZovIUsc9GvI2VJkVlbpbJaoaEz/ADWwCugLxwDKgd6TlCpCxLTDAOU4D1gO9gSnAbZGWL4i82UDLALeHgbuc47uAhyItZxA92AV0iqZ8BU4BBgArq8tL4KfAe4AAw4BvokDWMwCPc/yQn6yd/cNFUd4GffbO+7YMSAC6OGWGO5KyBvj/FbgnivI2VJkVlbpb1S+WWnZDgI2q+r2qFgOvAeMiLFMFVHWnqn7nHB8G1gDtIytVjRkHvOgcvwicFzlRgvITYJOq1sVKPHWGqn4GHAhwDpWX44CX1LAAaCYibY+JoASXVVU/UNVS53QB0OFYyVMdIfI2FOOA11S1SFV/ADZiyo5jQlWyitk19iJg5rGSpzqqKLOiUnerIpaMXXtgq9/5NqLYkIhIZ6A/8I3jdIPT7H8+GroGHRT4QEQWi8g1jlsbVd3pHO8C2kRGtJBcTMXCIhrztYxQeRntunwVpvZeRhcRWSIin4rIyEgJFYRgzz6a83YksFtVN/i5RU3eBpRZDU53Y8nYNRhEJBV4E7hJVXOBZ4ETgCxgJ6YrIxoYoaoDgLOB60XkFH9PNf0WUfPtiojEA+cC/3acojVfKxFteRkKEfkDUArMcJx2Aseran/gFuBVEWkSKfn8aDDP3o9LqFhRi5q8DVJmldNQdDeWjN12oKPfeQfHLaoQkTiM0sxQ1bcAVHW3qnpV1QdM4xh2q1SFqm53/u4B/oORa3dZt4Tzd0/kJKzE2cB3qrobojdf/QiVl1GpyyIyGfgZMMkp4HC6A/c7x4sxY2DdIyakQxXPPlrz1gNcAMwqc4uWvA1WZtHAdBdiy9h9C3QTkS5ODf9i4O0Iy1QBp0/+OWCNqv7Nz92/T/t8YGXgtccaEUkRkbSyY8wEhZWYPL3CCXYFMCcyEgalQs04GvM1gFB5+TZwuTOzbRhwyK/LKCKIyFnAHcC5qprv595KRNzOcVegG/B9ZKT8kSqe/dvAxSKSICJdMPIuPNbyBeE0YK2qbitziIa8DVVm0YB0t5xIz5Cpyx9mJtB6TA3oD5GWJ4h8IzDN/eXAUuf3U+BlYIXj/jbQNgpk7YqZtbYMWFWWn0AL4CNgA/AhkB5pWR25UoD9QFM/t6jJV4wR3gmUYMYxfhEqLzEz2Z5x9HgFMCgKZN2IGYsp09upTtjxjn4sBb4DzomSvA357IE/OHm7Djg70rI67tOBawPCRkPehiqzolJ3q/rZ5cIsFovFEvPEUjemxWKxWCxBscbOYrFYLDGPNXYWi8ViiXmssbNYLBZLzGONncVisVhiHmvsLBaLxRLzWGNnsVgslpjHGjuLxWKxxDzW2FksFosl5rHGzmKxWCwxjzV2FovFYol5rLGzWCwWS8wTdcZORDqLiDr7O1kaKCJyo4jsEJFlEUh7ioi8cgzSmSwiX1ThP19Erq5vOSwVEZHpInJ/Tf3qWIYqdVBEskXktPqWI1YQkXdEZK+IPHK0cUSdsbPUHBGZKiJ5zq9YREr8zt+LkFhTgF+raj8/OaeIyJQIyRNVOJW67BqG/0RE8kVkbVUFpbNX2/Mikisiu0TklgD/i0RkjYgcFpHVInJeiHg+8q94ikhrEZnpVGIOiciXIjI04JobReQHJ+1FIjLCz29KgG7mOfu0hXP/jUZ3RGS0iMyvQfgsEVns6MZiEcmqImy6iPxHRI6IyGYR+XmIcM87z/5EP7cbnGdaJCLTA8JPCniu+c71Ax3/BKec2i0iBxzj1d7v+s4i8q6IHHR09mn/Bo+qngOMAW4TkWbh5o0/dW7sbIvs2KOq16pqqqqmAn8BZpWdq+rZZeGO8bNJJ/o2S60xUaTPM4ElmH3E/gC8ISKtQoSdgtnosxOmgLhDzOarOAXMK8AtQBPgduBVEWntH4GITALiAuJNxWySPBDzfF8E5opIqnPNUOBBYALQFLPp53/E2YDUwV83U1U14hu9Hi3RoBtiNqqeg3mmzTHPZI7jHoxngGKgDTAJeFZE+gTEOQI4Ici1O4D7gecDPVR1hv9zBX6N2Wj2OyfIb4GTgEygHXAQeMovir9jdjtvC2QBo5w4/NMoK09ahLi3KqkTY+c0ye8UkeXAERHxiMgwEflKRHJEZJmIjPYLP19E/k9EFjo1wDkikh4i7iv9aqHfi8ivAvzHichSJ55Nfi91UxF5TkR2ish2Ebk/4KULltYJIvKxiOwXkX0iMqOsFuH4HRCRAc55OzHN6tHO+bkissq53/ki0isgf24TkeVOjXiWiCTWPKdrTohnE1hjq9C1IyI/c/I0x3mGmTVMsyyffdWEu8N5PjtE5Gp/uRyZnhGRuc6z/0ZETvC79gkR2eo898UiMjIg+kQnnw+LyHci4t/CvMvRlbKWzfl+fpPFtFgeE5H9GMNR3f0+6tRIfxCRswO8OznxHRaRD0SkZXXxBYm/OzAA+JOqFqjqm5iNMceHuOQK4M+qelBV1wDTgMmOXwcgR1XfU8Nc4Ah+hZuINAX+hNmZvBxV/V5V/6aqO1XVq6r/BOKBHk6QzsAqVV2sZqPMl4CWQAVDWhdUpTsB4dLEtIifFBFxnFuKyP+cZ/KpiHTyCx9Sr8S0Lt8QkVdEJJcf8zQU8SLykpPOKhEZFOCfVQdlwmjAAzyuqkWq+iRmA9VTAwOKSApGZ+5W1TxV/QKzse1lfmE8GCN0Y+D1qvqWqs7GbJJcHVcAL+mPG6Z2Aeap6m5VLQRmAf5GtgvwuqoWquou4P0A/3IxnPutOXW0m202ZgfbjkAS0B6TIT/FGNTTnfNWTvj5wHagL2aH6TeBVxy/zmU35JyPxbyIgrH2+cAAx28IcMiJ3+Wk29Px+w/wDyf+1sBC4FfV3MeJTlwJQCvgM4wSlfn/ElgNJAPzgEcd9+6YAuN0TG34DszOzvF++bMQU6NJB9YQsCtxwM7AOVX8RlRzD1PK8jLYs3HcFDjRL8x04H7nuD+mhjUUcGOUNhtIqIE+nAUUAinVhNmFUehkTM20XC5Hpv3OM/YAM4DX/K6/FFPD8wC3OnEl+uVBCaaFEQfcBvwAxDn+FzrPwgVMdJ5dW8dvMlCKedk9ZXkW4h4mO+n80smr6zC137JNkedjdmzujnkv5gMPhojr78DfQ/idD6wJcHsaeCpI2OZOPrbxc5sArHCO3cCnwLnO8XmYHbNT/MI/A9xMwLsYJK0s5zk3dc6bAIv9dOdGTGu0LD+mYN7XA5gduK87yvImHN2539GPhTi67ed3GDgF854/AXxRQ706z9GdqnRjipM3P3Xy4v+ABQHvZbhlwn+Bu0L43Qy8FyT8rUHC9gfyA9xuA97xO78deCJYOeEX5n5gehX33gnwAl383AYBXzr3mwy8SsWy9VeYylEyphxfCZwfJO7NwPVlOlUjvTkaZQsiQDZwld/5ncDLAWHmAVc4x/Pxe+mB3pimtZvqX7DZwG+d438AjwUJ0wYo8ldG4BLgkxre13nAkgC3tzG16uU4BgC4G1MrKQvjwhjz0X75c6mf/8PA1LrI+yAyT6GysbsqIExVxu5ZTKvAP/w6YFSY6S9y4v9NNeGeB/7P7/xEKhdY//Lz/ymwtor4DgL9/PLAv2BxATuBkSGuXQqMc44nA1vCvNfJwEa/82TnHo7z0/M/+vn/Gnj/KJ7pZf7347g9QJACB1OpUZwC2nE7Hcj2O/8FkIcx6vnAWD+/QU5+eKjiXcQYthXA7/zcBPg9xiCUAvuAwX7+vTGFnRs42XkmlxxFfoSjO89jCszbA66dTsVKUyqmYO4Ypl59FqaMU4APA+69wO88mzooEzBlz2sBbjOAKUHCjgR2Bbj9Epjvpzsb+bHycrTG7u6yOP3cmgKvOXGWYipB6X7+vTAVpVInzHSCGDRMxa8Y0ztRo7yqyzG7rX7HnYALnW6wHBHJwbRY2oYIvxlTA6/UxSMiZ4vIAqcLMQdT6JWF64ipOQfSyYlvp1/6/6Ca7hQRaSMir4np9szF1BgDZZqGaZE+papFjls75x4AUFWfc3/t/a7b5Xecj3nJjhVbqw9STifg1oBn1xFzj+EwGLgYmCIigWM+/rQLkCuYjCHzzOkWXuN0AeVgXib/Z1Uen/M8tpXdg4hc7tdNm4N5nkGvDYNyGVU13zlMDeYfeA81IA9jXPxpgmmhBAtb5l8prJiJLQ9jur/iMb0l/xIzycGFaWH+VlVLQwkjIknAOxgD/H9+Xr8ArsS0uOIxraT/ikg7AFVdrao71HSBfoVpVU2o5t6DEY7ujMW0pqcG8fPXjTxMS7NMN8LWqzAIfPaJUnGcLxK6UVXYx4H7VPXQUcjhz+WYsUN/nsG0pFtgetveAt4DcPTufcctBZPfzYGHgsR9L6YiEXTYqyrq0tip3/FWTMuumd8vRVUf9AvT0e/4eExtcJ9/hCKSgOnifBTTLdMMeBdTgyxLJ9hA6lZMy66lX/pNVDVYH7A/f3HuI0NVm2Be1rK0EDMQ/zhm4H2K/DjOuANjJMrCiXN/26tJrxIiMlIqzmoK/AWOTYWDBpznY1ohZRznd7wVeCDg2SWr6sywEjLVr9kYZW1bRdCdmPGjMjqGChiIkwd3ABcBzR29OITfs/KPz3mZOgA7nPGZacANQAvn2pUB1wbmV6RZBXQVkTQ/t36OewVU9SAmb/uFCJuFaZ0sUlWfqn4LfAOchin4BgGzRGQXZjIKwLYyvXPeydmYykOF8XMn7v+q6non7vcdWU4OcV9KxXwPl3B0ZxqmAH3XGasiWHjnnU7H6EY4ehWNupHpNx4JZhJIJd0A1gMeEenm5+avGz8BHhEzG7LMEH8tIWZsBkNEhmMqDm8EeGVhWoMHnEbCU8AQZww7HWMDnlYz7rgfeAHTsAmkFzDHqcDWiPr69OAV4BwROVNE3CKSKGY6rb+CXioivUUkGbgPeENVvQHxxGNqA3uBUmfw/ww//+eAK0XkJyLiEpH2ItJTVXcCHwB/FZEmjt8JIjKqGrnTMLWfQ2Jmrd0e4P8EsEhVrwbm8mOt8XVgrCNHHKavvwj4qrqMCkRVP9eKs9UCf5/XNM4gLAV+7jybszC1+zKmAdeKyFAxpIjI2LKCVszEkenV3ENZizfUjDAweXaliPRydODuGsifhunu2It5ee+hco11oIhc4NSkb8I8jwWYmqM61yIiV2JadlGLqq7HPLM/Oe/S+ZgC7c0Ql7wE/FFEmotIT0xX1XTH71tgpDjT00WkP6Z7azmmYG+HKZiy+LGwGQh84+j2G0ABZkgisMD5FvMedHV053TMeOVKJ61xjkwiIkOA32BmEuL4Z4vI5DCyJFzduQHTBf+O0xot46ciMkLMjMU/Y1qoWwlPr6KN+Zhu2N+Imd5/g+P+cWBAVT2CaT3d57zXw4FxwMtOkO4Y45fl/ADOwcx/QMzktkRMN3RZuR44WeQK4E1VDWxZfgtcLmbiYBymS3+Hqu5T1X2YMfXrnDSaOfEsD3K/Hsy7XGPqxdg5ijMO03+/F9NauD0gvZcxL+AuIBGj+IHxHHbcX8f0nf8cM2ZW5r8Q023yGOZF/ZQfW1iXYwrb1c61b1B1SwNME3mAE9dcjGIA5kXFDIxf5zjdAgwQkUmqug7TCnwK0zo9BzhHVYurSS9S/BYjYw5m+vHsMg9VXYQpHJ/G5NtGKs4664gZaK4OpQr9UtX3gCeBT5w0Fjhe4SjyPEytfT2m+7iQyt1LczCTTw5ixrwuUNUSVV0N/BX4GtgNZIR5P/WKmG+QgnW5lXExptV1EGd6v6qWGexJIuJfk/8Tpnt/M+adeMRpZaGqn2K6gd4QkcMYg/kXVf1ADbvKfjgVAmC3o8snAz/DVDhzgvQ2vIQZl5kP5GKe769Uda3fPWzEdJu9BDykqi869xCP6eIq04OQhKs7Ti/DNZhW6Bz5cbbjq04eHcAY8ksd93D06pgjIu+JyO+D+TnP5TxMeZcDXAWcV1b2iMjvpeK3tr/GdO/uwXzOcp2qrnLi2hPw/AH2qWqBc/xHTEXnLkyeFThuZXImYlrFgV2YYCbCFAIbMHr1U8z4WxkXYMrXvZhnWoKZfOOfD2HN8g5F2SypY4qYDyZfUdV/HfPELUeNUyAtAzJVtaSasDuAO1Q1rJVMxHyqsRIz6SfkeJElNhHzbdf1qnrJUVxrdacR4PQGfA00C9JyrBa7goolbFS1WFV7VWfoHO7CdLstDhVARM53ul7KBqPfsYVV40RVv6iJobO607gQkdmY3rm7j8bQQSM0dlJxaS3/X1VdSJYaoqovqWo3VR1YRbBfYbpTNmHGHa6rImxEsPoStURcd5zuxWC6EbTL0XL0qOp5qnq8qv7laOOISDemxWKxWCzHkkbXsrNYLBZL4yPiC5n607JlS+3cuXOkxbBYLBbLMWTx4sX7VDXUwuZ1QlQZu86dO7No0aJIi2GxWCyWY4iIbK4+VO2w3ZgWi8ViiXmssbNYopBtu/awfFWD3w7QYokaoqob02KxGIqmjiGTbdCntmvyWiwWaADGrqSkhG3btlFYWBhpUSwNiMTERDp06EBcXFUbL0QvJ7ANgJLSUuI8Uf+aWixRT9S/Rdu2bSMtLY3OnTsjcjQLpFsaG6rK/v372bZtG126dIm0OLWi4NAB4lrU+UbfFkujI+rH7AoLC2nRooU1dJawERFatGgRE70B+fm5kRbBYokJot7YAdbQWWpMrOhMUf5RLQNosVgCaBDGzmJprBTl51UfyGKxVIs1dmEgItx6663l548++ihTpkyJnEDVMH/+fL76qsb7xpazdOlSTjrpJPr06UNmZiazZs2qQ+ksNaGo8EikRbBYYgJr7MIgISGBt956i3379tVpvKqKz3dU+xBWSW2NXXJyMi+99BKrVq3i/fff56abbiInJ6fuBLSETUmBbdlZLHWBNXZh4PF4uOaaa3jssccq+e3du5fx48czePBgBg8ezJdfmk2vp0yZwqOPPloerm/fvmRnZ5OdnU2PHj24/PLL6du3L1u3buX222+nb9++ZGRklLei5s+fz+jRo5kwYQI9e/Zk0qRJBNuh4sknn6R3795kZmZy8cUXk52dzdSpU3nsscfIysri888/r1LGyy67jJNOOolu3boxbdo0ALp37063bt0AaNeuHa1bt2bv3r2V0v73v/9N37596devH6eccgpgJhRdeeWVZGRk0L9/fz755BMApk+fznnnncfpp59O586defrpp/nb3/5G//79GTZsGAcOHABg2rRpDB48mH79+jF+/Hjy8/MrpTts2DBWrfpxY+7Ro0fH7DJzpbZlZ7HUCVH/6YE/976zitU76nZ2Wu92TfjTOX2qDXf99deTmZnJHXfcUcH9t7/9LTfffDMjRoxgy5YtnHnmmaxZs6bKuDZs2MCLL77IsGHDePPNN1m6dCnLli1j3759DB48uNxwLFmyhFWrVtGuXTuGDx/Ol19+yYgRIyrE9eCDD/LDDz+QkJBATk4OzZo149prryU1NZXbbrsNgJ///OchZVy+fDkLFizgyJEj9O/fn7Fjx9KuXbvy+BcuXEhxcTEnnHBCpfu47777mDdvHu3bty9v+T3zzDOICCtWrGDt2rWcccYZrF+/HoCVK1eyZMkSCgsLOfHEE3nooYdYsmQJN998My+99BI33XQTF1xwAb/85S8B+OMf/8hzzz3HjTfeWCHdiRMn8vrrr3Pvvfeyc+dOdu7cyaBBg6rM84aKr9gaO4ulLrAtuzBp0qQJl19+OU8++WQF9w8//JAbbriBrKwszj33XHJzc8nLq7rrqVOnTgwbNgyAL774gksuuQS3202bNm0YNWoU3377LQBDhgyhQ4cOuFwusrKyyM7OrhRXZmYmkyZN4pVXXsET4uPjqmQcN24cSUlJtGzZkjFjxrBw4cLy63bu3Mlll13GCy+8gMtVWVWGDx/O5MmTmTZtGl6vt/x+Lr30UgB69uxJp06dyo3dmDFjSEtLo1WrVjRt2pRzzjkHgIyMjPJ7W7lyJSNHjiQjI4MZM2ZUaMGVcdFFF/HGG28A8PrrrzNhwoQq87sh4yuyxs5iqQsaVMsunBZYfXLTTTcxYMAArrzyynI3n8/HggULSExMrBDW4/FUGI/z/+YrJSUlrPQSEhLKj91uN6WlpZXCzJ07l88++4x33nmHBx54gBUrVlQKE0pGqDxFv+w8NzeXsWPH8sADD5Qb5kCmTp3KN998w9y5cxk4cCCLFy8O+35cLlf5ucvlKr+3yZMnM3v2bPr168f06dOZP39+pXjat29PixYtWL58ObNmzWLq1NjbNLwYD/GUosUFkRbFYokJbMuuBqSnp3PRRRfx3HPPlbudccYZPPXUU+XnS5cuBcx2Rd999x0A3333HT/88EPQOEeOHMmsWbPwer3s3buXzz77jCFDhoQlj8/nY+vWrYwZM4aHHnqIQ4cOkZeXR1paGocP//h9VigZAebMmUNhYSH79+9n/vz5DB48mOLiYs4//3wuv/zyKltNmzZtYujQodx33320atWKrVu3MnLkSGbMmAHA+vXr2bJlCz169AjrfgAOHz5M27ZtKSkpKY8nGBMnTuThhx/m0KFDZGZmhh1/Q6EEs8yZllQes7RYLDXHGrsacuutt1aYlfnkk0+yaNEiMjMz6d27d3krY/z48Rw4cIA+ffrw9NNP071796DxnX/++WRmZtKvXz9OPfVUHn74YY477riwZPF6vVx66aXlk0F+85vf0KxZM8455xz+85//lE9QCSUjmG7QMWPGMGzYMO6++27atWvH66+/zmeffcb06dPJysoiKyur3EDec889vP322wDcfvvtZGRk0LdvX04++WT69evHr3/9a3w+HxkZGUycOJHp06dXaNFVx5///GeGDh3K8OHD6dmzZ7n722+/zT333FN+PmHCBF577TUuuuiisONuSPgwLWyxxs5iqRMk2Ay/SDFo0CANnFW3Zs0aevXqFSGJYpspU6ZUmMgSazRk3TkypQ0pFPJlq4sYfv20SItjsdQrIrJYVet1lplt2VksUYgbM+HHZVt2Fkud0KAmqFjqlmheBaax41YfCLi8DX8xa4slGrAtO4slCnFjZvK6rbGzWOoEa+wslmjD58MlZizd47WfHlgsdYE1dhZLtKHe8sM427KzWOoEa+wslijDV1pSfhynRRGUxGKJHayxC5PZs2cjIqxduzZkmOzsbPr27VuvcixdupR33333qK8v+wi9d+/e9OnThyeeeKIOpbPUBV7vj8Yu3mdbdhZLXWCNXZjMnDmTESNGMHPmzKD+wZbyqill60tWRW2Nncfj4a9//SurV69mwYIFPPPMM6xevfqo47PUPf56EG9bdhZLnVDvxk5EzhKRdSKyUUTuqu/06oO8vDy++OILnnvuOV577bVy9/nz5zNy5EjOPfdcevfuDRijN2nSJHr16sWECRPKt6j56KOP6N+/PxkZGVx11VUUFZlCrHPnztx5550MGDCAf//73xXSDdxCp7i4mHvuuYdZs2aRlZXFrFmzOHLkCFdddRVDhgyhf//+zJkzBzBb6owbN47Ro0fTrVs37r33XgDatm3LgAEDAEhLS6NXr15s37690j1/+umn5aun9O/fn8OHD6OqIbcjGjVqFOPGjaNr167cddddzJgxgyFDhpCRkcGmTZsAeOeddxg6dCj9+/fntNNOY/fu3ZXSvfjii5k7d275+eTJk8sXfW4slPp1YyZYY2ex1An1+p2diLiBZ4DTgW3AtyLytqoeXVPivbtgV+WFjmvFcRlw9oNVBpkzZw5nnXUW3bt3p0WLFixevJiBAwcCZt3LlStX0qVLF7Kzs1m3bh3PPfccw4cP56qrruLvf/87N9xwA5MnT+ajjz6ie/fuXH755Tz77LPcdNNNALRo0aJ8HU1/ArfQiY+P57777mPRokU8/fTTAPz+97/n1FNP5fnnnycnJ4chQ4Zw2mmnAWZ7npUrV5KcnMzgwYMZO3Zsha1wsrOzWbJkCUOHDq2U9qOPPsozzzzD8OHDycvLIzExkbfeeivkdkTLli1jzZo1pKen07VrV66++moWLlzIE088wVNPPcXjjz/OiBEjWLBgASLCv/71Lx5++GH++te/Vki3bPuesWPHUlxczEcffcSzzz4b5sOMDXwlxtjlawKJFKGqlRbstlgsNaO+W3ZDgI2q+r2qFgOvAePqOc06Z+bMmVx88cWAaXn4d2UOGTKELl26lJ937NiR4cOHA3DppZfyxRdfsG7dOrp06VK+PuYVV1zBZ599Vn7NxIkTg6YbbAudQD744AMefPBBsrKyGD16NIWFhWzZsgWA008/nRYtWpCUlMQFF1zAF198UX5dXl4e48eP5/HHH6dJkyZB077lllt48sknycnJwePxVLkd0eDBg2nbti0JCQmccMIJnHHGGUDF7Xu2bdvGmWeeSUZGBo888kjQ7XvOPvtsPvnkE4qKinjvvfc45ZRTSEpKCnrvsYrXa7rE8yWJJIopKqm+e9tisVRNfa+g0h7Y6ne+DajQjBCRa4BrAI4//viqY6umBVYfHDhwgI8//pgVK1YgIni9XkSERx55BKi8XU+oLXOqItSWP+FsoaOqvPnmm5V2Fvjmm29CylJSUsL48eOZNGkSF1xwQdC077rrLsaOHcu7777L8OHDmTdvXpX3EM72PTfeeCO33HIL5557LvPnzw+6gktiYiKjR49m3rx5zJo1q7yS0Zgom6BS4ErB5cuhsDCfxPjKFRKLxRI+EZ+goqr/VNVBqjqoVatWkRanEm+88QaXXXYZmzdvJjs7m61bt9KlSxc+//zzoOG3bNnC119/DcCrr77KiBEj6NGjB9nZ2WzcuBGAl19+mVGjRlWbdrAtdAK37znzzDN56qmnKFvQe8mSJeV+//vf/zhw4AAFBQXMnj2b4cOHo6r84he/oFevXtxyyy1Vpp2RkcGdd97J4MGDWbt2ba22IwI4dOgQ7du3B+DFF18MGW7ixIm88MILfP7555x11llhxx8reJ3KQZHLtGgLC6reDNhisVRPfRu77UBHv/MOjluDYebMmZx//vkV3MaPHx9yVmaPHj145pln6NWrFwcPHuS6664jMTGRF154gQsvvJCMjAxcLhfXXntttWkH20JnzJgxrF69unyCyt13301JSQmZmZn06dOHu+++u/z6IUOGMH78eDIzMxk/fjyDBg3iyy+/5OWXX+bjjz8un4BSNrtz6tSp5dv/PP744/Tt25fMzEzi4uI4++yza7UdEZi1OC+88EIGDhxIy5Yty90XLVrE1VdfXX5+xhln8Omnn3LaaacRHx8fdvyxgs/pxix2mxZ/0ZHDVQW3WCxhUK9b/IiIB1gP/ARj5L4Ffq6qlQdrsFv81CXTp0+vMJGlMdJQdWfb+iV0eHU0y1KG0+/Il6y/8BO69xkQabEslnrjWGzxU69jdqpaKiI3APMAN/B8KENnsVgMvtJiAEo9pmVXUngkkuJYLDFBvW/xo6rvAkf/FbTlqJg8eTKTJ0+OtBiWo8DrM7MvffGpAJRaY2ex1JqIT1AJh2jaTd3SMGjIOuNzJqhofBoAJUXW2FkstSXqjV1iYiL79+9v0IWX5diiquzfv5/ExMRIi3JUlC0ELYnG2HmtsbNYak3U71TeoUMHtm3bxt69eyMtiqUBkZiYSIcOHSItxlFR1o3pSigzdvmRFMdiiQmi3tjFxcVVWKHEYol11Pn0wJ3UFABfsTV2FkttifpuTIulseFzVlDxJFtjZ7HUFdbYWSxRRtlH5Z5kZ4kwa+wsllpjjZ3FEmWUdWNKXLJxKCmIoDQWS2xgjZ3FEmV4ndmY7rgECkhASm3LzmKpLdbYWSxRhjpjdq64eApJwGVbdhZLrbHGzmKJMrTU7E7u9sRTLAm4vIURlshiafhYY2exRBllLTt3XALFrgTcXtuys1hqizV2FkuUoV6zELQ7Lp4SScRtW3YWS62xxs5iiTLUWRvT44mnxJ1InM8aO4ultlhjZ7FEG14zZueJS8DrssbOYqkLrLGzWKINn7NcWFwcpZ4kEnx2zM5iqS3W2FksUYY639nFxSXi9SSToEURlshiafhYY2exRBnic9bGjIvD50kmUW03psVSW6yxs1iiDW8xxerG43ahcSkkU2j3c7RYaok1dhZLtOEroRQPIoIvPoUkKaaouCTSUlksDRpr7CyWKEN8JZSUbTUZlwJAwZHDEZTIYmn4WGNnsUQZ4i2lFDcArgRj7AoLrLGzWGqDNXYWS5Sh3hJKxbTsxDF2xUdyIymSxdLgscbOYok2fMV4HWPnSkgDoDjftuwsltpgjZ3FEmW4SgsplXgA4pKMsSspsC07i6U2WGNnsUQZcd4CCl1ml/K4JNONWVJ4JJIiWSwNHmvsLJYoI957hGLH2CUkNwGgtNB2Y1ostcEaO4slyoj3FVDiTgJ+NHbegrxIimSxNHissbNYooxEXwHFbtN9mZxqjJ2vyBo7i6U2WGNnsUQZiVqAOh+TJ6U4xq7YGjuLpTZYY2exRBGqahZ+TkwFID4xBZ8KFNsJKhZLbbDGzmKJIgoLCkiWIiShqXEQIV8SEWvsLJZaYY2dxRJF5O7bbg7SWpe7FZCIlORHSCKLJTaolbETkSkisl1Eljq/n/r5/U5ENorIOhE5s/aiWiyxT97+HQB40o4rdytyJeEutcbOYqkNnjqI4zFVfdTfQUR6AxcDfYB2wIci0l1VvXWQnsUSs+Ts3QZAs9bty92KXYm4vdbYWSy1ob66MccBr6lqkar+AGwEhtRTWhZLzFC893sAWrQ74Uc3VxJxpQWREsliiQnqwtjdICLLReR5EWnuuLUHtvqF2ea4VUJErhGRRSKyaO/evXUgjsXScPEc3MQhTaFpy7blbiXuZOJ9tmVnsdSGao2diHwoIiuD/MYBzwInAFnATuCvNRVAVf+pqoNUdVCrVq1qernFElMk5X7PrrgOiOvHV7PUk0y8rzCCUlksDZ9qx+xU9bRwIhKRacB/ndPtQEc/7w6Om8ViCUFRSSntir5na6tTKrj7PMkkqu3GtFhqQ21nY7b1Oz0fWOkcvw1cLCIJItIF6AYsrE1aFkuss3H1EtLlMK5OJ1Vw93mSSVLbsrNYakNtZ2M+LCJZgALZwK8AVHWViLwOrAZKgevtTEyLpWr2r/4EgPaZP6noEZ9CEoX4fIrLJbVOp6S4iPz8I6SlNsHlqYsJ2RZL9FMrTVfVy6rwewB4oDbxWyyNifjt33CApqQf3yvAI5UEKSWvsJDU5KSjivtI7gGW//fvpH//Nl1KNtFUSjmiCWxK7EtR34vIPP0yEhJT6uAuLJboxFbrLJYoQFU5Pm8ZW9KySJeKrTdJMEaoIC+3xsbOV1rKt288Qve1f+ckctnoPoEl7S6GlFa4crfSfu/ntFt8JwcXP8DydufS/tRraXdCX/CTISfnIDs2ryNn+waK9v4AOVtIK9hO09J9qPoQBHV58LoT8boTUU8ieJLQuCQkzriVuBIokQRUfeDzoj4fqBd83gp/RX2IehHUufnAkRZHLhG07NjPze8PHhHcbhdxTduSMf6uCvdkaXxYY2exRAFbs9dzPHvZ0eGkSn7uMmOXnwu0CTvOnZvXcXDGLxhavIKVCVnsOeNeegwczYl+YXxeL8u/fIeSBdPov/1VPK+8wgGacMidjku9NPMdpBl5NPO7poAE9rqPIyeuFbjc4POBrxR3SRHxRYeI0yLitIhEist/HvGFlNOnghcXPnHhw4UXl2PIjMH70aQ556rl15a7oQTDhY948ZLd81Q69x0adt5ZYg9r7CyWKGDnso85HmjVZ3QlP1diGgCFR3LDjm/NN/M47r1fcLyW8m3/Bxh07q8rfM5QHrfbTeYp58Ep57Fjyya2fPU6smsFccU5iLjYkTgYd9N2JLXuSrP23Wh9fHeSmrTheBGOr0aGEq+P/CIvRwCXluD2FeJ2uXC7PbjdHsTlAZcbl0i9rG6hqmz+fh2dXx7KnlUfW2PXyLHGzmKJAnxbFpBHEh17Dq7kF5dkjF1xmLuVL/rvP8n89nfscrWGSbMY3C0zrOvaHX8C7Y7/XfhCV0Oc20XT5DIzFgck11nc4SAidOrag520wr3ly2OatiX6sLseWCxRQOucZWQn9go6OzLO2duuJL/6lt3id55lwLd3sCGhF01vmM/xYRq6WEVE2JY+jB55iygssKvQNGZiqmXn83pZ+cjp5LfMJPGEkXTsOZj0Nh2Cdt8cFarg8+IrLaaktAhvSQmlJUV4S0sp9SkaZNjAjIn/ODBeaYg8YCq5VAghFf5UcK1irF0DPCvIJYIGG9/QipFWCCES9N4qxVP1qSOLBpwHCVTpmmrSDRqmav/wwtQ8neBZW/U9Fxceppc3m0Wtg6/fkJBsWnYlBYeD+pex5N3nyFr0O1Yl9OPE384lKSW1yvCNhfiM80j99B2WfjmHrNMuqZM4S0qKObhnBwV5ORQXHKao4AjiLQJxg7gQEXC5EXEhTtetuD243W5cbg8ulxu3Ow5xu3G7Pbg8pmvX7fKgbneQiTl++Kp6aTTgr79XVXoYPE4Ncl0FXB6at2gYK1/FlLHbv3c78aX59N76Ip5tL8CnkKvJHHI1I9/ThGJJLDc+guLSUlxairv8rxe3luKmFI96cVNKHKV48OLRUuLEfCroAhIieaOW2EMgrfvIoF7xjrHzFobuxlw67yUyvrmNdfF96Hrj29bQ+dHr5HPY/2lTZPHzUENjl7N/L9tWfk7elqW4966hWf4PNC/dS7oeorWEUVOLcVb4utL8viWRFiMsYsrYtTrueFr9cQF5uQfYuuJLDm5ZSdzBjbgKDhBXnEO8rxBVU1ERAa94KHUl4xUPKh58LvNTiUNdHnwu85eyv+648mNxx4E7DnXFOTU1MbU5f7T8P+c0jKZPuV/wGppSceZZ2b0Exlmp4ScV46rkHxhPebiqX+jg6QQ61XzKd6As4aUThku1olQfSzgz2MO5Y/943IlN6HXyz4KGS0wxu5Z7i4LvVr78o5n0+eomNsb1oOMN75CS1jSM1BsP8QkJrOv0c07e/Cyrvn6fPiedFTJs7uFc1n/7EQXrPqbVvgV0K91AX8eo7SWdXQmd+D61GxtT2+Jq2hZXYhPiElPxJKag7gTAZ2anqg9Q1FuKT33g9eLzlaLeUtTnNT+v81fNXxw/wYto0P6XH6lSCSVkkMBeH6nCr2JSwf2K4psHdY9GYsrYlZHaJJ1ew8+B4edEWhSLpdYkpTYBQIsqt+xWzv83PT+7gR88XWl7w1zSmqYfa/EaBP0n3MX2v71Fq3nXsTb+eXoOHANAQX4+m1d+wYFVH5O28yu6F61mkJRQqi6+T+jJd+1/QVL3UbTvOYRWLY+jYXTYWYIRk8bOYoklEpzZmL7iii27ZfPfpOcn17HZ04k2179L02YtIiFegyAprRnFF84g7vWL6PnOeex9pzle3LTS/fR0Wm4/uLuwot0EUnv9hC4DT6d7SrPICm2pU6yxs1iiHXc8JbiR4h9bdkv/9wq9vriJbZ6OtLruPZqmt46ggA2DLr0Hk3fLYr55dyquXcsR9ZGd1p74jgPpMvA0urQ8ji6RFtJSb1hjZ7FEOyIcoBnJBbtQn48FM+5l6MYn2BDXnbbXvUOTFuGvqtLYSW2SztCLfx9pMSwRwBo7i6UBsDOpG91zv2LVwz/hpMLvWJJ2Cj2vm2lnXVosYWI/KrdYGgBFvS6gCUfoUrCar3v+jqxb5lhDZ7HUANuys1gaAEPP/RWbe51Ms1btOamZnXFpsdQUa+wslgZCp24ZkRbBYmmw2G5Mi8ViscQ81thZLBaLJeaRwIV5I4mI7AU210FULYF9dRDPsaAhyQoNS14ra/3RkORtSLJCw5K3rmTtpKr1ukBNVBm7ukJEFqnqoEjLEQ4NSVZoWPJaWeuPhiRvQ5IVGpa8DUlW241psVgslpjHGjuLxWKxxDyxauz+GWkBakBDkhUalrxW1vqjIcnbkGSFhiVvg5E1JsfsLBaLxWLxJ1ZbdhaLxWKxlGONncVisVhinpgydiJyloisE5GNInJXpOUJREQ6isgnIrJaRFaJyG8d9ykisl1Eljq/n0ZaVgARyRaRFY5Mixy3dBH5n4hscP42jwI5e/jl3VIRyRWRm6IpX0XkeRHZIyIr/dyC5qUYnnT0eLmIDIgCWR8RkbWOPP8RkWaOe2cRKfDL46nHUtYq5A357EXkd07erhORM6NA1ll+cmaLyFLHPRryNlSZFZW6WyWqGhM/wA1sAroC8cAyoHek5QqQsS0wwDlOA9YDvYEpwG2Rli+IvNlAywC3h4G7nOO7gIciLWcQPdgFdIqmfAVOAQYAK6vLS+CnwHuAAMOAb6JA1jMAj3P8kJ+snf3DRVHeBn32zvu2DEgAujhlhjuSsgb4/xW4J4ryNlSZFZW6W9Uvllp2Q4CNqvq9qhYDrwHjIixTBVR1p6p+5xwfBtYA7SMrVY0ZB7zoHL8InBc5UYLyE2CTqtbFSjx1hqp+BhwIcA6Vl+OAl9SwAGgmIm2PiaAEl1VVP1DVUud0AdDhWMlTHSHyNhTjgNdUtUhVfwA2YsqOY0JVsoqIABcBM4+VPNVRRZkVlbpbFbFk7NoDW/3OtxHFhkREOgP9gW8cpxucZv/z0dA16KDAByKyWESucdzaqOpO53gXEG3bZF9MxcIiGvO1jFB5Ge26fBWm9l5GFxFZIiKfisjISAkVhGDPPprzdiSwW1U3+LlFTd4GlFkNTndjydg1GEQkFXgTuElVc4FngROALGAnpisjGhihqgOAs4HrReQUf081/RZR8+2KiMQD5wL/dpyiNV8rEW15GQoR+QNQCsxwnHYCx6tqf+AW4FURaRIp+fxoMM/ej0uoWFGLmrwNUmaV01B0N5aM3Xago995B8ctqhCROIzSzFDVtwBUdbeqelXVB0zjGHarVIWqbnf+7gH+g5Frd1m3hPN3T+QkrMTZwHequhuiN1/9CJWXUanLIjIZ+BkwySngcLoD9zvHizFjYN0jJqRDFc8+WvPWA1wAzCpzi5a8DVZm0cB0F2LL2H0LdBORLk4N/2Lg7QjLVAGnT/45YI2q/s3P3b9P+3xgZeC1xxoRSRGRtLJjzASFlZg8vcIJdgUwJzISBqVCzTga8zWAUHn5NnC5M7NtGHDIr8soIojIWcAdwLmqmu/n3kpE3M5xV6Ab8H1kpPyRKp7928DFIpIgIl0w8i481vIF4TRgrapuK3OIhrwNVWbRgHS3nEjPkKnLH2Ym0HpMDegPkZYniHwjMM395cBS5/dT4GVgheP+NtA2CmTtipm1tgxYVZafQAvgI2AD8CGQHmlZHblSgP1AUz+3qMlXjBHeCZRgxjF+ESovMTPZnnH0eAUwKApk3YgZiynT26lO2PGOfiwFvgPOiZK8DfnsgT84ebsOODvSsjru04FrA8JGQ96GKrOiUner+tnlwiwWi8US88RSN6bFYrFYLEGxxs5isVgsMY81dhaLxWKJeayxs1gsFkvMY42dxWKxWGIea+wsFovFEvNYY2exWCyWmOf/AcqdCmj2LgHDAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 8)" + "And this optimisation can be run for a certain number of generations" ] }, { "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACFQklEQVR4nO2dd5xVxfm4n/fce/febbA0qUpR6UtvCigau1FUbIkNTTOJSYwm0W8SDZryM0aj0RhJDIpdbLFEjcaCNYggSFMUZGnSYdm+t5z5/TFzL2d379a7dws7z+ezcO/MnDnvPWfOeed9550ZUUphsVgsFktHwWltASwWi8ViaUms4rNYLBZLh8IqPovFYrF0KKzis1gsFkuHwio+i8VisXQorOKzWCwWS4eizSg+ERkgIkpE/K0ty8GOiMwWkfda6FyZIvKyiOwTkV+0xDmrnb9ARE5ogfMsFJFv15Jn23YrUc99qTWvmWWYLyK/qyNficgR6ZbjYEBEjhKRIhFZLiL5Ta2nzSg+S9MQkTkiEhGREs9fiyuYOjgBGAUcqpS6NZ5oFNKAVpOqDWHu4ZxGlP+miGwUkVIReU5EutZR9h8islZEXBGZnST/pyKy3bxM7heRoCdvjIi8KyL7RWSLiNxQ7djzReRTESkWkTUicpYnb261NlkpIsWe/JJqfzERubuBv39+st9yMGI6qfMbUf5rIvKZiJSJyFsi0r+OsgNMmTJzzAmevMtEZKlpF1tE5NZ4x01EgiIyz7TBYqOETq1Wr6p2f2/w5AdNWysybe8aT95wEVliOsr7ROR1ERkez1dK/Q/IAz4HvtXQ61KdZlN8tjfbqixQSuV4/m6t/5AWoytQoJQqaW1BUkE0rd5RFJERwN+BS4CeQBnwtzoO+QT4AfBxkrpOBq4Hvgb0BwYBN3mKPAa8g76HxwI/EJEzzbF9gUeAa4BOwM+Bx0TkEACl1JXeNgk8DjwVr7haXi+g3Jvf3hARXxuQoTvwLHAD+p4tARbUccjjwDKgG/Ar4GkR6WHysoCrge7AZHQb+ZnJ8wOb0W2iM/Br4MkkHdk8z33+rSd9DnAkus0dB/xCRE4xeV8B5xr5uwMvAE94K1VKucAaI3eTSOlBNr3260RkBVAqIn4RmSIiH4hIoYh8IiIzPOUXisj/E5HFRts/X1tvVUQu9/QmvxSR71XLn2l6GkUisj5+4USks+mNbBORrSLyu/oapYgcLiJvisgeEdktIo+KSJ4nb6+IjDPf+4jIrvjvEpEzRWS1+b0LRWRYtevzMxFZIbrXvEBEQo2/0o1HRK431yXeGz+7lnIiIneIyE5zLVeKyEiTFxSR20Rkk4jsEN2Lz2ykKH7ArUfWbiLyojn/R+aevefJVyJypYh8Ya7zPSIiJq/We+dhorkG+0Tkgfg9EJEuIvJvcz/3mc/9POddKCK/F5H30QpmUD2/tb+IvG+u+WvmReTlInMtd4vIr+qpqzYuAl5USr1jOhM3AOeISG6ywkqpe5RSbwAVSbIvA+YppVYrpfYBvwVme/IHAI8qpWJKqfXAe8AIk9cPKFRKvaI0LwGlwOHVTyIi2cAs4MFaftMsYCfwbh2/Oyki4hOR28013SAiV0ktbmUR6W2exZ97kg+v7X0kIk+Jtkj2i8g7ojsd8bz5InKvaDd+KfoFXhddROQl0zY+FJHq1+mEZO27kZwDrFZKPaWUqkArmNEiMrR6QREZDIwDfqOUKldKPQOsRN8LlFL3KqXeVUqFlVJbgUeBqSavVCk1RylVoJRylVL/BjYA4xso52XAb5VS+5RSnwL3YdqdUqrQ1KsAAWJAMjewi363NA2lVJP/gAJgOXAokAn0BfYAp6GV6onmew9TfiGwFRgJZAPPAI+YvAGAAvzm++noh0jQPYsyYJzJmwTsN/U75rxDTd6/0D3ibOAQYDHwvXp+xxGmriDQA93LvdOT/x10DyMLeBW4zaQPRj/sJwIB4BfAOiDDc30WA33QPZhPgStrkWEaUFjH37RajpsTv4bV0s8z53WAC4ycvU3ebOA98/lkYCnafSDAME+5O9A9rq5ALvAi8P8a0T4CwMPJ5KtW7gnzlwUMR/cm3/PkK+DfRsbDgF3AKQ28dwXAKnQb7Qq8D/zO5HVDP+hZ5vc9BTznOXYhsAn9svcDgTp+w0JgvWkTmeb7LdXa9n0mbzRQCQyrpa667vfzwHXV0kqA8fVc4/eA2dXSPgEu8HzvbuTsZr7/AbjF3MchwBZgosnzAW8DZ5rPZ5n87CTnvhT4EpBaZHsTmNPEd9CV6GezH9AFeJ2q75GFwLeBgWj32Her3bOk7yOTf4VpF0HgTmC5J28++h00Ff2MheqQcT76PTjJtKNHgSca0r6T1LUC+GYteX8B7q2WtgqYlaTs2cCn1dL+CtxdS93Pxdtzkrye6I5V/B0cb+9bTZt4AOhu8rqYvJ6e488FViZ5BqJoBffrJOe83NzPbk1qN005yHPyAuAKz/frgIerlXkVuMzT0G7x5A0HwugHJ36x/HVc+J+Yz38H7qjlBlQCmZ60bwBvNfJ3nQUsq5b2ArpHtAIImrQbgCc9ZRxzs2d4rs/FnvxbgbmpXPMkss4x17DQ89cnSbnlwEzzeTYHFN/xpgFNARxPecH04D1pRwEbGijXGCAC7ACOqKOcz5Qb4kn7HTUV3zTP9yeB6xty78w9uNLz/TRgfR0y7/N8Xwjc3MDfuxDPA4p2L/7HfI637X6e/MXAhU24329QrfPkbXN1HJdM8a3H84JFKzgFDDDfj0Z35KIm/aZqx38LrXSj6I7p6XXIPKeWvP7oXv3AJrb/N/F0bNFjytUV359NO/hGknuW9H2U5Dx5pt7O5vt84KEGyjgf+Ge1NvhZU9p3PeeZRzXlhO7ozU5S9hJgUbW03wPzk5S9Aq3AuifJC6A7G3/3pOUAE9BKvifwNPCqyTvU/N6Qp/yJ6OGQ6nVnm+eoRrsy5/3A1HV1Y69Vc4xZbPZ87g+cZ8z1QhEpRFsyvWspv9H8gOouIUTkVBFZZNyMhejGEi93KPqhrU5/U982z/n/jrb8akVEeorIE6Jdo0XosYvqMt2H7hnerZSqNGl9zG8AEr7nzWgLNM52z+cydKNobp5USuV5/r4SkUtFu4Lj12EkSa6zUupNdE/vHmCn6GCITmjrKQtY6qnjPya9XpRSy9G95f+hxwpqowcHxgzibE5SLul1bOC9q97m+phjs0Tk76IH6YvQ1mKeVHWNJ5OlNuq7183RFkrQY2peOgHFSco2tq7452Lj8vsPcDMQQj9zJ4vIDwBEB0LcCswAMtBemX+KyBjvCUTkMFPmoVpkuATdydnQBPlB38v62s5F6M7B00nykr6PjAv1FtHDBUVoxQlV21Z7bhsNKis6YOn/AacqpXZXy3PQHp0wcFU8XSlVopRaopSKKqV2mLyTjDs+PtZfvd3VkFEpVQrMBR4SM3bs4Qx0m+yjlLozye+rk+ZQfMrzeTPa4vO+hLOVUrd4yhzq+XwYurdf/YIG0W6H29AmcR7wMtoKiZ+nxliCSa9E90zi5++klBqRpKyXP5jfka+U6gRc7DkXIpKDdnXMA+Z4xgG+QivbeDkxv29rPeergYhMl5qRbt6/6Y2oqz9aUV+FdgXkoV0eSccNlFJ3KaXGo3u8g9GBCrvRAQcjPNeys9LBCA1C6XGGV0y9tbELbTH086QdWkvZZNR575LUdxj6vgFci3bhTTbHHmPSvcd723dbYDXaVQqAiAxCu+I+T7Uu83mHUmoPejwzppR6yLzAtqDd0aeZsmOAd8wLzlVKfQR8iLa4vFwCvK+U+rIWGS6l9rG/hrCN+tvOHHR7fkxqjvfX9j76JjAT/Xs6o612aF9tIxv9nlxdS9lB1caGR3vLio6buA84Qym10nuwedfNQ1t0s5RSkTrkil8nR+mx5G3UbHfJZASto7KoakyAHpJZpJTaVsd5a6W5o9QeAc4QkZNNjykkIjO8AQPAxaJDVrPQvcmnlVKxavVkoB/mXUBUdKjsSZ78ecDlokN3HRHpKyJDzUV4DbhdRDqZvMNF5Nh65I73RPaLjlb7ebX8vwBLlFLfBl5C90JAuyRON3IE0C/SSrQJ3iiUHkjOqeOvMQP/2ejGtgt0oBDa4quBiEwUkclG/lK0r9411ut9wB3x3pa5zid7jlXiCV6qhUr0/UyKuffPojsUWWYg/tIG/UpNffcO4Ici0s90WH7FgUi3XLRyLzR5v2nEeVuLR9HP2HTzYrsZeFYpldTiE5EM0cE8AgTMMxl/7h8CvmWexzx0dN58k/e5Ply+aZ6jXuix4hUm/yNgetzCE5GxwHRPfpxLPXVWl+1o9AutRjRnA9sW6GfwJ6Zt5qGHW6oTQY95Z6OtB+97r7b3US667e5Bv3j/0ABZWpt/ASNFZJa55zcCK5RSn1UvqJT6HD388RvTJs5GTzt6BkBEjke3tVlKqcVJznUvWvmcoZQq92aY98kQ0266AXcBC5VS+02Rh4Bfiw4uG4qOoZhvjj1RRMYa/dEJ7abeh46P8BJA358m0ayKTym1Gd1L+iX6pbsZ/SLynudh9I/cjnah/DhJPcUm/Un0j/4meowtnr8YPbh5B3qA+W0OWF6Xol+0a8yxT1PV1ZqMm9ARTvvRiu3ZeIaIzAROAb5vkq4BxonIRUqptWgL4250L/EMdEMI13O+tKKUWgPcjnYz7gDy0b7+ZHRCK7h9aFfPHuBPJu869BjPIuPueR1tISEih6LdEyurV1gNl/rb2VXoXvV2dPt4nIY36lrvnYfH0B2iL9Eu8vhk4jvRwSa7gUVo116rU5eFr5RajQ7oeBQdCZmLHgeJH/uKiPzSc8hraOV+NPAP8/kYU9d/0O7Kt9BBPBsxyl8pVYSOEvwpum0sR3sNfmfy30ZbUk+Lnp/3DPAHpdRrHlmOQltjtU1TuIwkSrsRbQt0230NrXCXoT1DUfS4YQLzTJ6DtlDu9yi/2t5HD5nrsRX9LlnUAFnSjugI8ouS5SmldqGDtX6PvmeTgQs9x84VkbmeQy5Ej8XtQwcxnWvqAB2/0Bl42eN1esXU0x/4Htrq3+7Jj8s1CP0sFaPbTCU61iLOb9DP4Ub0u/tPpi2CHkt9HP08r0dbrKcY75EXH/VEi9eFmIHCFkFEFqKjpv7ZYie1pAURuRjtBv2/esqdhPYEDFVK7W1g3X8EeimlLktdUkt7o6Ftq5ZjT0UHkPWvt7ClXSJ6qsqz6AChJi3W0eoTci3tE6XUIw18MS0E/gusFpGfJSsgIkNFZJRoJqGjBf/VfNJa2hONaFuIXhLvNNFziPuirQnbdg5SRGQK2jrPQ3swmkSHWW3FmPgXJ8l6RCl1ZUvL01EwLqakrhkPuWj3Rh+0a/Z29Hy1NoWI1Lb6zKmNHIO1NB+CdncvQLtxX0KPbbWsECKr8QS6efieUurRlpbnYEUptYgk0emNpUVdnRaLxWKxtDbW1WmxWCyWDkWbcnV2795dDRgwoLXFsFgsFksLsnTp0t1KqQYtjtEctCnFN2DAAJYsWdLaYlgsFoulBRGRjfWXaj6sq9NisVgsHQqr+CyWNowNPrNYmp8Or/g+37KTt397MlvXfdLaolgsVdhS8Dmf/GY8K1Ysa21RLJaDijY1xpeMSCTCli1bqKhIto9m6pSXFnPICdewd08hRZHqy8FZ2iuhUIh+/foRCARaW5QmU/Dhi0xz1vPxwlth1OMtcs6t27dRsPgVpp55RYucD2Dp6rV0yfIzaGCydectluanzSu+LVu2kJuby4ABA5AmbUpcN0X7dtGpPEC5k01mr8HNXr+l5VFKsWfPHrZs2cLAgQNbW5wmE8jUC+c7kdIWO+fex69k6v6F7Bo1hR4D6tpUo/kY/9Qk/WHO/roLWizNRJt3dVZUVNCtW7e0KD0Ax1Tr1NggwtJeERG6deuWNi9BSxFvk060vJ6SzUeoRG8xV7x7S4ud02Jpadq84gPSpvS8WMV3cNESbSbdSFQrbl8LKj4c7QSqKNpdT8HmwQbvWFqDdqH40op58KTpO1xYLGlBYlrxBdyWU3xRXxYAlSWFLXI+16v3YnXtZWqxNB9W8Rmkjs2URYRrr7028f22225jzpw5LSBV01i4cCEffNDovXCrcMopp5CXl8fXv/71ZpLK0mhcrQgCbpP322w0Mb9WfOHSfS1yvqh7oMMZKWkZK9Ni6fCKL+5qceqw+ILBIM8++yy7dzfvg6mUwnWb39JsDsX385//nIcffriZJLI0CVe73zNUyym+qFF8VLRMoIm3+Zfsb9B2jRZLynR4xQdxV2ft+P1+vvvd73LHHXfUyNu1axezZs1i4sSJTJw4kfff1xudz5kzh9tuuy1RbuTIkRQUFFBQUMCQIUO49NJLGTlyJJs3b+bnP/85I0eOJD8/nwULFgBaec2YMYNzzz2XoUOHctFFFyUdD7nrrrsYPnw4o0aN4sILL6SgoIC5c+dyxx13MGbMGN599906Zbzkkks46qijOPLII7nvvvsS9X7ta18jNze3ziv31FNPMXLkSEaPHs0xxxwD6GCkyy+/nPz8fMaOHctbb70FwPz58znrrLM48cQTGTBgAH/961/585//zNixY5kyZQp79+qX3n333cfEiRMZPXo0s2bNoqysrMZ5p0yZwurVqxPfZ8yYcXAudWe0QqjG5tPpIz42KuHieko2D16Lr7S4sEXOabG0+ekMXm56cTVrvipq1jqP7Ornd1Prvww//OEPGTVqFL/4RdUNf3/yk5/w05/+lGnTprFp0yZOPvlkPv207vmAX3zxBQ8++CBTpkzhmWeeYfny5XzyySfs3r2biRMnJpTIsmXLWL16NX369GHq1Km8//77TJs2rUpdt9xyCxs2bCAYDFJYWEheXh5XXnklOTk5/Oxnet/Xb37zm7XKuGLFChYtWkRpaSljx47l9NNPp0+fPg26djfffDOvvvoqffv2pbCwEIB77rkHEWHlypV89tlnnHTSSXz++ecArFq1imXLllFRUcERRxzBH//4R5YtW8ZPf/pTHnroIa6++mrOOeccvvOd7wDw61//mnnz5vGjH/2oynkvuOACnnzySW666Sa2bdvGtm3bmDBhQoNkbk8oE3AVouUsPjHn9IWb9zmrDa/FFylrmXNaLNbi847tqdrdjp06deLSSy/lrrvuqpL++uuvc9VVVzFmzBjOPPNMioqKKCmpbb9STf/+/ZkyZQoA7733Ht/4xjfw+Xz07NmTY489lo8++giASZMm0a9fPxzHYcyYMRQUFNSoa9SoUVx00UU88sgj+P3JFXhdMs6cOZPMzEy6d+/Occcdx+LFi+uU3cvUqVOZPXs29913H7FYLPF7Lr5Y7/c7dOhQ+vfvn1B8xx13HLm5ufTo0YPOnTtzxhlnAJCfn5/4batWrWL69Onk5+fz6KOPVrHs4px//vk8/fTTADz55JOce+65DZa5XWFcnZmEE0FYLXVOf0tZfLED0dRhq/gsLUS7svh+c8aIZq+zeM82qNwOgHJdxFd7X+Dqq69m3LhxXH755Yk013VZtGgRoVCoSlm/319l/M47pyw7O7tBsgWDwcRnn89HNBqtUeall17inXfe4cUXX+T3v/89K1eurFGmNhmhZth/Y6YBzJ07lw8//JCXXnqJ8ePHs3Tp0jrLe3+P4ziJ747jJH7b7Nmzee655xg9ejTz589n4cKFNerp27cv3bp1Y8WKFSxYsIC5c+c2WOZ2RXwenygqK0oJZuak/ZRxiy8QbRnFF4sdaNPW4rO0FNbi8/SklVv3XL6uXbty/vnnM2/evETaSSedxN133534vnz5ckBvsfTxxx8D8PHHH7Nhw4akdU6fPp0FCxYQi8XYtWsX77zzDpMmTWqQ6K7rsnnzZo477jj++Mc/sn//fkpKSsjNzaW4+MCLqzYZAZ5//nkqKirYs2cPCxcuZOLEiQ06N8D69euZPHkyN998Mz169GDz5s1Mnz6dRx99FIDPP/+cTZs2MWTIkAbXWVxcTO/evYlEIol6knHBBRdw6623sn//fkaNGtXg+tsTytNxKitumWATMV6PYLRlVovxKr5YhVV8lpbBKj4PrlvToqrOtddeWyW686677mLJkiWMGjWK4cOHJ6yPWbNmsXfvXkaMGMFf//pXBg9Ovhza2WefzahRoxg9ejTHH388t956K7169WqQvLFYjIsvvjgRSPLjH/+YvLw8zjjjDP71r38lgltqkxG0q/S4445jypQp3HDDDYnxvenTp3Peeefxxhtv0K9fP1599VUAbrzxRl544QVAR37m5+czcuRIjj76aEaPHs0PfvADXNclPz+fCy64gPnz51ex9Orjt7/9LZMnT2bq1KkMHTo0kf7CCy9w4403Jr6fe+65PPHEE5x//vkNrrvd4XG9l5e00HJexuLLcGsGFaWDmMeL4Va23NJslo6NtKWVEyZMmKCqR+d9+umnDBs2LG3nLN69ldzwTgAieYcTyOqUtnO1NebMmVMlCOZgI91tJ918dN+PmLj1IQC+POcVBo06Ou3nXH3riYwoW8xu6Ur33yT3UjQnm7bt4LC/607hxwO/y7jL/pT2c1raHiKyVCnVYhFq1uLzKH63HlenxdKieCy+yrKWcnWagBrVMqvFeF2dVNYdFGaxNBftKrgl3dQ3xnew0ZZXn7GQiLCElgv8iI/xZVKhO4VpXvPU6+qUsFV8lpbBWnze6QwdTPFZ2jiehdOj5S2l+EwkKQrVAorI9Vh8vhYKqLFYrOLz0NEsPksbx+PqjFW0zPQC8ZyzogUCaqoovhbcd9DSsbGKTzVsArvF0uIol0qlRyNaTPFxoPPXEpGkrmcCe8BafJYWwio+9NYoMSXW4rO0KUTFKMEsGt1CgR/efSlbwuLzBrcEYi0zhcJisYoPPYDv4lRx81TnueeeQ0T47LPPai1TUFDAyJEj0yFkguXLl/Pyyy+nVMcVV1zBIYccknZZLSnixoiJn1IVbLFFo0W5lCi9wk9laWHaz+d1dYZaaO6gxWIVn3F1ujhVggmq8/jjjzNt2jQef/zxpPnJlhNrLLFY/RZncyi+2bNn85///CelOiwtgHJxEcols8UiHh3lUmyszJaIJI27OkvIIqis4rO0DFbxAQrBldotvpKSEt577z3mzZvHE088kUhfuHAh06dP58wzz2T48OGAVoAXXXQRw4YN49xzz01sq/PGG28wduxY8vPzueKKK6is1CvuDxgwgOuuu45x48bx1FNPVTlv9W1/wuEwN954IwsWLGDMmDEsWLCA0tJSrrjiCiZNmsTYsWN5/vnnAb0N0MyZM5kxYwZHHnkkN910U6LeY445hq5du9Z5Td5++23GjBnDmDFjGDt2LMXFxSilat1C6dhjj2XmzJkMGjSI66+/nkcffZRJkyaRn5/P+vXrAXjxxReZPHkyY8eO5YQTTmDHjh01znvhhRfy0ksvJb7Pnj07sSB1R0OUi4tDuWS1WOCHEKNE9JqgkRZYQiy+WlKJ5JDVQnMHLZb2NY/vlethe81FmFMh2OkwOOpKXBz8tSi+559/nlNOOYXBgwfTrVs3li5dyvjx4wG9DueqVasYOHAgBQUFrF27lnnz5jF16lSuuOIK/va3v3HVVVcxe/Zs3njjDQYPHsyll17Kvffey9VXXw1At27dEut6eqm+7U9GRgY333wzS5Ys4a9//SsAv/zlLzn++OO5//77KSwsZNKkSZxwwgkALF68mFWrVpGVlcXEiRM5/fTTG7x9z2233cY999zD1KlTKSkpIRQK8eyzz9a6hdInn3zCp59+SteuXRk0aBDf/va3Wbx4MX/5y1+4++67ufPOO5k2bRqLFi1CRPjnP//Jrbfeyu23317lvPEth04//XTC4TBvvPEG9957b4NkPuhQMRQOFU4W/hYK/HCUS5mTCy5Ey9PvXo2Pq5c5OfSK7YRYFHzt67VkaX9Yiw89k0+Jg9SyC/vjjz/OhRdeCGiLxOvunDRpEgMHDkx8P/TQQ5k6dSoAF198Me+99x5r165l4MCBifU6L7vsMt55553EMRdccEHS8ybb9qc6r732GrfccgtjxoxhxowZVFRUsGnTJgBOPPFEunXrRmZmJueccw7vvfdeA6+IPvc111zDXXfdRWFhIX6/v84tlCZOnEjv3r0JBoMcfvjhnHTSSUDVLYe2bNnCySefTH5+Pn/605+Sbjl06qmn8tZbb1FZWckrr7zCMcccQ2ZmZoPlPpgQFcMVh7Avi4xYS1l8LpV+vQGx2wJzB91YBIBKv7YyVQuNZVo6Nu2ra3XqLc1eZeX2L8l0S1A4icm7Xvbu3cubb77JypUrERFisRgiwp/+pNcUrL7FUFO2+altm6KGbPujlOKZZ56psQPChx9+mNKWQ9dffz2nn346L7/8MlOnTk0sUl0bDdly6Ec/+hHXXHMNZ555JgsXLky6ckwoFGLGjBm8+uqrLFiwINHh6IhoV6ePsC+bTuGabuF04KgYUX82sUppkUhSZTp0YX8uVEJ5SRFZmV3Sfl5LxybtFp+InCIia0VknYhcn+7zNRVt8dVcsPvpp5/mkksuYePGjRQUFLB582YGDhzIu+++m7SeTZs28b///Q+Axx57jGnTpjFkyBAKCgpYt24dAA8//DDHHntsvTIl2/an+pZDJ598MnfffTfxxcaXLVuWyPvvf//L3r17KS8v57nnnktYog1h/fr15Ofnc9111zFx4kQ+++yzlLZQAti/fz99+/YF4MEHH6y13AUXXMADDzzAu+++yymnnNLg+g824hZf1J9NyG0hVycuPr+fUjKhBayvuKszktEZgPLifWk/p8WSVsUnIj7gHuBUYDjwDREZns5zNh6FQkB8OElcnY8//jhnn312lbRZs2bVGt05ZMgQ7rnnHoYNG8a+ffv4/ve/TygU4oEHHuC8884jPz8fx3G48sor65Us2bY/xx13HGvWrEkEt9xwww1EIhFGjRrFiBEjuOGGGxLHT5o0iVmzZjFq1ChmzZqVGN/7xje+wVFHHcXatWvp169fYn/BuXPnJrYsuvPOOxk5ciSjRo0iEAhw6qmnprSFEui1Qc877zzGjx9P9+7dE+lLlizh29/+duL7SSedxNtvv80JJ5xARkZGg+s/2IgHt7gZOS22aLSDC+KjlJaJJFUmuMUNGsVX2kLbL1k6NGndlkhEjgLmKKVONt//D0Ap9f+SlW+NbYlKtq8n6JZR5s+jc3Q39B4N0v6HPufPn18lCKYj0t63JVpx68lkVe5k1yFHM/arBYRu2l3/QSmya85Avsw7mh6FyyntfDj5P30href74M3nOfqdS/lwwJVMLpjLl6c8zKApZ6b1nJa2x8G2LVFfYLPn+xaTlkBEvisiS0Rkya5du9IsTjIUIOD49FfXLltmaRvEx/hUIIeQRIiGK9N+TocYOD4dSRpJ/7y6+Bifk5kHQLiFdqGwdGxa3bRRSv1DKTVBKTWhR48erSCA2Z/BWHkHy7Jls2fP7tDW3sFAfIxPQnpz5LLi9LsBfbgocaj0ZRFogUjS+PPmz8oDWm4XCkvHJt2KbytwqOd7P5PWKNK7S7yuW4zFZzejPThIb5tpGUS5KBx8IR3qX1aS/sAPBxccHxGnZaZQxBVfIEcvqBCzis/SAqRb8X0EHCkiA0UkA7gQaNSgQSgUYs+ePWl+kYlH8aW+9JildVFKsWfPHkKhUGuLkhKCiysOvkxt8VW0QOCHo3RwSySQ0yJrZ8YVX9AoPreFdqGwdGzSOo9PKRUVkauAVwEfcL9Squas5Tro168fW7ZsIV3jf5X7d+DDJRasJFixi+hOF38wKy3nsrQcoVCIfv36tbYYKaFdnT78ccXXArslxC2+mD+bkNsCkaSmo5mVnUOlCqAqreKzpJ+0T2BXSr0MNHlV5UAgUGVllOZm8R9+wiFqNztPvJsxr57Pl8fezaDjLk3b+SyWhiLKRYmfjCwd6h8pa5kxPsSHm5FDFuV6EfdGLHzQWOIWX2ZGgBJCLbYYt6Vj0+rBLa2NqBhKHELZ5uVixxgsbQSHGEp8BHN022yJtTPjFp/KyMFPDKIVaT1fXPGJz0eZZOFErOKzpB+r+JSLEh8h83Kxg+uWtoJumwc6ZdHy9Fp8Silj8TmQkWvOmebnwSg+xxegQjLxWYvP0gJ0eMXnoCPnsozis4PrlraCYzplWTl67cp0t81YzMURhTg+xESSlqd7CoUZ43PicwdbaBcKS8emwys+7er0kZMZokwFUS2wMK/F0hAE7YbPytWdMtIc+BGN74bu+BMBNeXp3oXd4+oM+7LJiNnNaC3pp8MrPse4k7KDfkoJIXZbFEsbwVEuCh8ZGRmUqwxUmt2AsWhc8fkSUygq0zyFQpkdUXw+PxFfFsEWWozb0rHp8IpP0O6kgM9psYV5LZaG4OCiHP2IlkoWTroVn9kbTxwfgSyj+NK8hJg3uCUayCbYElMoLB2eDq/4HBPVCVAuWfgitsdpaRvEA68AHfiR5ojHWNQoIfERNFMoouleO9ONW3wBYoEcspR1dVrST4dXfGLmLQFUOJn4o9bis7QNHGKJNWTLnSz8ae6UxeJjfD4fwRaKJI0Ht/h8flRGDllU2IXiLWmnwys+x9OrDrfQwrwWS0Nw8LTNFlg7M674RHxk5eTptDTPHRSllZzj80NQT6FQdpzdkmY6vOITYmDGUcK+HII2qszSRqjSKfOnP+IxaoJbHJ8/EUma9iXE3AMBNWIUX0VJYXrPaenwdHjF53256PUJreKztA2c+GRyIOrPJpTmiMdoVAe3OD4f2aEApSoI6Q72Sii+AE5IK76W2H7J0rGxis8zxhfLyCZT2agyS9tAR3WathnIIZTmthkzm8KK4yPo91HSAlHOouLjioEDi3G3wC4Ulo5Nh1d8fmIoR6/V7WbkEiQMJqzbYmlNvJ0yN5BDVpoVXzSid3gXfxCAcslM+xQK8UyaD7TQ3EGLxSo+ognFJxl6maZ0r5BhsTQEn8fVSTCHTAkTi4TTdj7X1O34AgBUtMT0HjdCFAdEyMjOAyDcArtQWDo2HVrxua4yFp9+0AlqxWd3aLC0BbzjzxLU1lBZGq2hWFQrPvEbxefLJhBL/xhf1OyOFszWvzHtcwctHZ4OrfiiriJAFGV6uBIy6xPaqDJLGyC+RRCQCPwoL96XtvPFEsEtGQBEfFkE0h3lHIsSQ//GkJlCEa2wis+SXjq44nMJEANj8flD8XBq62qxtD4+XCSu+DLT3zaVsfh8AaP4/Nnpn97jRhIWX3zuoLI7pFjSTAdXfKpKcIu/hdYntFjqIxZzCUoEfDrQJCOxW0JLuDq14ov6s9MeSSpuFNeMY+ZkZ1Op/HaHFEva6dCKLxZT+IkmLL54VFnYKj5LKxMO6whLjBIKmLUzI6Xpa5uucXX6zDndFlg7U9wIUdHPXyjg6B1SbHCZJc10aMUXicXIkBiYMb6QiSqzg+uW1qayUltaYsbb4oEfkTSunRl3dTomuEVl5BAkktbpPX63grBoq1ZEKJMsnIhVfJb00qEVX2VFBXBg3lLI7MIes1GdllYmUlmtbcY7ZeXpcwOqqD6nE8jUCSbKOZ07vwfcCsISSnwvl0y7Q4ol7XRsxWcW4HWC2QBkxhWfdbVYWplwXPEFtOLLys0DwE1jxGPMWJnBzCwAHLN2ZlkaA2oCbiURJ5j4XuFkE7A7pFjSTIdWfBHTe5aAftCzs7KoVH47gd3S6kQjxvryxxVf+heNjoX1eF4opDuCTgtEOQfcCiLOAYsv7MsiELXr5VrSS4dWfOFy7VLxGZdOdlCvT4iNKrO0MlHTNsW4HYPBEJUqkNa26UaMxZelFV/ATKEoLy1M2zkDbgUxn1fxZRNM82LcFkuHVnxR8xLxhbTFF/T7KGuBhXktlvqIVmgry8nsnEgrlUwkjXvVqbBRfOZ5CGRpxVdZlr7nIcOtxPVnJr5H/Tl2hxRL2unYii9u8YVyEmllkokvYhWfpXUJm/l6GdkHFF+6Az+ccBExJYk1azPiUyjSuHZmUFWiPIovFrA7pFjST4dWfDFj8QUyDyi+CsnCH7WuFkvrEjFTaoI5BxRfhWThS2Pb9If3UyzZiY2Zg9na4oukaRd2pRRBKiFwQPGpjFyyqAA3lpZzWizQwRVfZZl+oHNyOh1I82URsIrP0srEjJWVaaYxAFT6sslIs+IrlQOdwKzsLlqWNE3vKQ9HyKEclXHgnMqMt6tKO6XIkj5SUnwiMkdEtorIcvN3mifv/0RknYisFZGTUxe1+Ym7cHI6dT2Q5ssmw44xWFqZ+JSarFxP2/RnkRFLp+IrotyXm/ieaTqEbpoCavbt3klAYkjOIYk0CcbHFa3is6SP5rD47lBKjTF/LwOIyHDgQmAEcArwNxGzv0obwindAYC/U69EWsSfZQfXLa2OW7YPVwk5nQ64OqP+7LS2zVC0iHDggPcjJyeHmJK0rZ1ZuHsbABmdeybSfIldKArTck6LBdLn6pwJPKGUqlRKbQDWAZPSdK4mEyjbSTHZEDgQTh0L2KgyS+vjK9nGHsnDZ5YPAxPxmMbAj66x3VRkHlBCwYCfUjIhTZGkpXu2ApDdtXcizQlpRV9hFZ8ljTSH4rtKRFaIyP0i0sWk9QU2e8psMWltiozyHRT5u1VJcwM5ZnDdbSWpLBbIKt/OPn+PKmkqI32LRu8vLqYne4l0OqxKeplkIuH0nLNidwEAnXoNTKT5zRSKCuvqtKSRehWfiLwuIquS/M0E7gUOB8YA24DbGyuAiHxXRJaIyJJdu3Y19vAmo5TikPAmirL6V03P0JN3iVirz9J6dA5vozTUq0qaysghWypxY80f8bhl/RoAsnseUSW9QkJpm97j7vyMSgJ07XNkIi2YGY8ktVOKLOnDX18BpdQJDalIRO4D/m2+bgUO9WT3M2nJ6v8H8A+ACRMmqIacqznYunMP/dU2Vnc/rUq6GMWnwiVIMCfZoRZLWtm/fx/93O1s735m1QzTHstK91cJyGqWc37xAQDdjqw6IlHppG96T5fC1XwV6M9A34HXUNBYfBG7Ga0ljaQa1dnb8/VsYJX5/AJwoYgERWQgcCSwOJVzNTfrP/oPfnHpOmxGlXTHvFwqS+2DZ2kdNn7yNo4oMvtPqJIej3isKG7+CeXBDa+zhy70GjSySnrYycQfa/5xxV27djI08imFPadUSQ+ZuYOxCjulyJI+6rX46uFWERkDKKAA+B6AUmq1iDwJrAGiwA+VUm1mRqpSiuCKh9lPLv3GfK1Kns8s0FteVkQo2cEWS5opW/kiFSrAEZNOrZKeiHhs5l3Yt278kpGlH7Ky19l0c6oGX0d9mWRFdzfr+QBWvTyX4yRC9ykXVUkPmZVq0jWFwmKBFBWfUuqSOvJ+D/w+lfrTxXsvP8r08CJWHH4lozyrRsCBBautxWdpDYqK9jFs5yusyT2acdm5VfL8Zmm95pzjplyXrU9dSw9c+p92bY38qD+LjHBFs50P4KstBYz98u98njmawSOOqpKXZX6zVXyWdNKhVm5RSvG/5//B+MXXUOAfxIjzf1OjjN/0qsNpWqbJYqmLdQ/+iFzK6Py1a2rk+TP1HLtwWfO0TeW6vDfvF0wqeZNPBn6HHv2H1igT82cRcpvP1bl7WwHF959DBhFyz/kLiFTJzwoFqVABVNi6Oi3pI1VXZ7th4+cr2P3c/3FU2Xt8HhxG3yufxRfMqlEuviJ9utYntFhq45OX72Pcnhd5p9elHDN2Ro38jCyt+CLNsIRYYeFe1jzwQ6bvf5mPu5zC+Ev+kLScCmQRonksvs/efJTe7/yCw1SYTV+7hyGDx9Yok+F32EuoWaZQuDGXxU/fRtaGVykZ/wOmfO0cHEfqP9By0HPQK76vNn5BwXO/Y+LeF+lOgMWDfsD4b96EL5CRtHzQLFgdqUi/q6WiopyCtcvZs24J7FyLr2wnwUghrviI+TKJdj4Mf++RDBh/Mof0PrT+Ci3tlq/Wr+KIxb9mjX84k791W9IyQaP4oimG+n/8zksc8uZPmaJ28tFhVzDh8tsQJ/nCSiqQTaaqAKVqWGcNpbykiDUP/JDxe15grXM46uz7GJo/vtbyFRJCUowk3bJpA7se/Q5TKj+ijCBZ71/Bkg/vQZ0whwmTpyNN/C2Wg4ODVvFt37yOjc/9lrG7X6Q7sPyQmRx+7s1M6lm3Aon3qmNpUHyxmMu6lf9j1yf/IXfruwypXMVQiQAQVj72OV0o9XVClCLoltGz+E18WxUsuZYvnQHs7DGF7KEncOSkkxJBAPVRHo6xZ98+9u/dSWnhDsr27yFcvBvK9hKoLCQYKcQXKyeGA04A8QcQXwbiD0IgE19GCF9GFv5gJoFgFhnBTJyMTJQvhPKHcH1BQCFuFNwIKhYhFo2iYhHcqP7uujFc1zV/MVxX4boxBBdRrj4e/SJSiOf9eiAN4u9dk+l5ccVfYgdqMeU85cVbdz0vvQOnlyo1VinjkVGh3ej6f/2PAlwtFPGlEJRSKMWB8onP0Hf5HWThJ++ShwhmBJOeM5hYO7NpFl9JSTEfz/8Z03YtYLuvJwWnPcnECSfVfVBGNn5xiYQrCAQz6y6bhM8+fpvsF69krLuNd3tdwoTZfyIzs+569NzBpll8rqt4+/l5jFk+h+5UsHTkLxlz5o9Y9cKfGbL6b2S/cibvvnMiAy/4I4f2H9SouqOV5Xy1YQ17N66iYvtaKNmBv3wPofAeMmLliIrh4BKTAJW+bCL+HCIZubjBPMjqii+rK4HcboQ69SA7rzs5eT3whTqBCI4oHISYcolFwsQiEaLRMLFomGgkioqFiUbCuLEobjRMLBrBNc+YG4sknjc3FgU3hoijd9kQ8+c4iDiI+MzuGw5i0uJ5iIOIadHKRSmlG6dyATfRtuN5SiliGblMPO6sJt2r1uSgU3z7C/ew5rFfMn7HU3QFlnc/g/5n/ZqJhx5Z77EAmfFw6srmGWNQrsva5e+za9HjDNr5X4awkyHARl9/VvU6m0D/SRwyeCK9Bo6gpy9Q5dhIZTkbP13MrhWvkb31PcZuf4bgjieILPSx0deHwlA/whldIJCJAvzRUpxIKf5wEZnR/eTEiuhMMf0kQr9a5CsjSDmZ+IjhI4pfxQgQxS925ZqWxFXCiml/Y0z/2ttpltmpwW1CqP/KJe+S89L3OUZt5uOe5zBi9p0Es+rvPDlmXmt5SVGjFF84HOF/j9zI0Rv/zl7JY81JjzB96tcbdGylk4kv2njFt2nbdtY/dBXHlf+XDcEjiVx4P+MHjQJg5Hm/JnzK91n91BymbHyMyP1TeL/XufScejEDhk3AH/cAKUVJ4Q52rF9J0ZY1xHauJVi4nq4VBfSK7eAwUcTXtikim/3SmRJ/Fyoz8lDiQ4kPx40QiJaQW7GJrLJSclUxmRJu9O9pD6xUg8AqvtZl3Sfv0eVf32SyKmJJ19M49Kw5TOo/uFF1ZJoxvlQX5t2zZxerXv47h335BEPVZg5XPj7PnsDOIT+m/+SZ9O91GP3rqSMQzGTQmGMZNOZYAMpLS1i+5HXK1r5Fxr4v6FaxheyytQRUBEFRJplUOFmEfdmUZvahKDSCrzK74svuRiC3G8FOPcjJ60FOl0PI7NwdyexKViBE9ZFOpRSRaITy8lLKy8ooLyuhsrycyooSKsvLcCMV+GKVOLFKHLcCcFCOD1f8OD5tNTo+P+IL4Pj0Z7/PwXF8+Bwfjvks4qBEDlh06F5kQg4tDAf+U6bcAaWsXJUoXeVIlShucuL1JBI9pT1HqgOpVa9JlW9V0sUYl/p/0Z1sBMf0nuMWqWMszri16DjanhSEjM49GNPrcOoiK8dEeVY2fPw5HIny3sNzmLbxbxQ7nfj8xPmMm3p2g493gkbxlRbRqVvPekprCtavpejxKzg2uopPOh/HoCvuY2Rej/oPNEScTIKNmDuolOLVV/5F/oc/5xj2sGbw9xh2we8Qf9XhjIzcbuRfcTd7Nv6AzU9fx+Ttj+N/9lEqVYBCyQaEzhSRQ4z40hUVKsBWX1++yhzKhrzTCfQcQpdDR9DniHw65XamUw1pklNRVsL+fbso3reTssJdVBTtIVqyB1+kBNe0f1eBIwKJZ8cPvozEZ/1cmT9/AJ/57gtkmM8Z+AMB7bZW2quC0p4W3ChKuShXodwYroqBq0xaTHsp3Kh5UhzTSB1wxLRpB8z/uj0LIkJmfKWrdsZBpfj6HjGaNTlj2XfCz5g0ZnqT6sjOzKBMBVFNtPjWb1jPthd/z9g9/+ZYqWRdYDBLhs5hyPHfZESXhr04aiMzO4cxx54Fx56VND8vpdoPICIEAhkEAhl06tSl/gMsLUIgEKBMBaGBu7AXfLmW/Y99m+OjK1jV+RgGXv5PBjeyDfrMFIqK0vrdq0op3n/+PvKXzaGHxFg18RZGn3Zlo8cGI75McqM7G1R2T2ERH97/M07Z/yS7Ar3ZN+tFhg+r+9nv1n8Y3a59gd3bN7Pxo39TuWUlTrgIpVyiwa6QcwiZvYfStf9I+vQ/ksMzAtTdJamfUFYOoawcevYdWH9hS9o5qBRfZnYu43/2fEp1hPw+9tLwl0ucrV9t5bNnfsfRu5/mMGKs7HoSPY6/iiPyp6Ukj8XipVxCSLhub4RSig+ev4+Ry+ZwiERZOf535H/9qiYFp8TnDlbUE1Czb99ePr3/e0wrfo11waF0uWg+I/sPa/T5AKK+LDLC9Vt8Sz96n9yXfsBpFLC23zkMvvSuxOo2DaF7r0Ppfsb3mySjpX1zUCm+5sBxhHJCOA0cXN+zdw+fPPX/mPjVIxxHBWu6n8yhZ9/MuH5D0iyppSNSLpn46uiUFe7bw2fzvsfUkv+yLjiUvIvmk99EBQQQiC8aXVb7ajErF71Ol//8gMlqJx8P/A5jLvoDTi1R0w3BDWQRKq19CkU4EuXth3/LMRvvoczJYtOJ8xhy9LlNPp+l42EVXxIqJYRTz+B6cUkxS565nVFfzuN4KWJ15+n0nHkzIw8f10JSWjoilZKJv5a2ueqDl+j62tVMVLtYOvC7jL3o9ykpIIBAJ707ultc0/VYGa7kwwd/xdFb5rHb6c7GM55i3PgTUzofQCTQiRxKkk6hKPhyLYWPfYcTo5/waeepDLj8frp06VVLTRZLcqziS0Kpk0N2pDBpXll5GUue+yuD187lOPbwWdY4yk+7iRH5x7SskJYOSaUvi4xoVbdjSUkRqx76GVN2LmCL9KbgzGcZP+74ZjlfMK8PAG7x9irpX3zyAbxwFcfE1rOsy0kMvvzv9OrcPDtGhLN6EiSCW7oHJ6c7ANFolA+f/jOjP/0zh4jL6vG/Y0QT3bcWi1V8SSjM6E2fypVV0kpKivn4xb9zxNq5HMMu1mUM5cuv3cXQyQ0L0bZYmoOSUG/6lywHIBaLseyl++j38Z+Ywm7+130Wo2ffQVZOw+Z4NoRePXtRqQJECrcBsGv7Jr54+mYm7XqGQunEJ0fdxdiTL2u28wEEuvSDjbBn2wa6H9GNVYtexXl9DlNjn7I6cyw9vzmXEYfVXF7NYmkoVvElIZLTl6673yJSUcraTz6gcPEC8ne/zDFSyvqMIXx+zK0Mnnq27W1aWpxwl8H0LH6dD+f9jD5bXmKC+oovfIez/6S/cdTkk5v9fBkBH+udPvTZ/iaL7r6MUbtfYRIRPun+dY68+HZGdzmk2c/Zuc9gWA5bX7qFbWW7GBX+hN3ksXL87xl5+g9MaL3F0nSs4kuCf+DR+HY/hO+WPowEIsrHms7HkHX0dzhy8mlW4VlajT5HnUv5xn8yefN9fO4fzMdjb2PMKVfg+JIvOdYcbB54HjO+vI2uu19mdZfj6fX1XzP+iPy0nW/42Kl8+p8jGVP4OtukB0sH/5QRZ11LflbDIzYtlroQVXVmbqsyYcIEtWTJktYWg2g0xgeP/Y5QUQHBQUdz+NFnkdOICbgWSzrZsXUDsUiYPgNaJnJYKcXWLz+l6yG9ycptmXmd5WWl7N66jn6Hj6x1HVHLwYOILFVKTai/ZDOdzyo+i8VisbQmLa34rLPcYrFYLB0Kq/gsFovF0qFoU65OEdkFbGyGqroDu5uhnpbAypo+2pO87UlWaF/ytidZoX3J21yy9ldKtVggRZtSfM2FiCxpSX9xKlhZ00d7krc9yQrtS972JCu0L3nbk6xerKvTYrFYLB0Kq/gsFovF0qE4WBXfP1pbgEZgZU0f7Une9iQrtC9525Os0L7kbU+yJjgox/gsFovFYqmNg9Xis1gsFoslKVbxWSwWi6VDcVApPhE5RUTWisg6Ebm+teXxIiKHishbIrJGRFaLyE9M+hwR2Soiy83faa0taxwRKRCRlUauJSatq4j8V0S+MP+3zOKNdcs5xHP9lotIkYhc3ZaurYjcLyI7RWSVJy3ptRTNXaYdrxCRFt3duBZZ/yQinxl5/iUieSZ9gIiUe67x3JaUtQ55a733IvJ/5tquFZHm39Ki8bIu8MhZICLLTXpbuLa1vbfaZNttMEqpg+IP8AHrgUFABvAJMLy15fLI1xsYZz7nAp8Dw4E5wM9aW75aZC4AuldLuxW43ny+Hvhja8uZpB1sB/q3pWsLHAOMA1bVdy2B04BXAAGmAB+2AVlPAvzm8x89sg7wlmtD1zbpvTfP3CdAEBho3hm+1pS1Wv7twI1t6NrW9t5qk223oX8Hk8U3CVinlPpSKRUGngBmtrJMCZRS25RSH5vPxcCnQN/WlapJzAQeNJ8fBM5qPVGS8jVgvVKqOVYAajaUUu8Ae6sl13YtZwIPKc0iIE9EereIoCSXVSn1mlIqar4uAvq1lDz1Ucu1rY2ZwBNKqUql1AZgHfrd0SLUJauICHA+8HhLyVMfdby32mTbbSgHk+LrC2z2fN9CG1UsIjIAGAt8aJKuMm6B+9uC69CDAl4TkaUi8l2T1lMptc183g70bB3RauVCqr442uq1hdqvZVtvy1ege/VxBorIMhF5W0Smt5ZQSUh279vytZ0O7FBKfeFJazPXttp7q722XeDgUnztAhHJAZ4BrlZKFQH3AocDY4BtaFdHW2GaUmoccCrwQxE5xpuptG+jzcyHEZEM4EzgKZPUlq9tFdratawNEfkVEAUeNUnbgMOUUmOBa4DHRKRTa8nnod3cew/foGqnrc1c2yTvrQTtpe16OZgU31bgUM/3fiatzSAiAXTjeVQp9SyAUmqHUiqmlHKB+2hBt0t9KKW2mv93Av9Cy7Yj7row/+9sPQlrcCrwsVJqB7Tta2uo7Vq2ybYsIrOBrwMXmZcdxmW4x3xeih4zG9xqQhrquPdt9dr6gXOABfG0tnJtk723aGdttzoHk+L7CDhSRAaanv+FwAutLFMC47+fB3yqlPqzJ93r/z4bWFX92NZARLJFJDf+GR3csAp9TS8zxS4Dnm8dCZNSpcfcVq+th9qu5QvApSZCbgqw3+NWahVE5BTgF8CZSqkyT3oPEfGZz4OAI4EvW0fKA9Rx718ALhSRoIgMRMu7uKXlS8IJwGdKqS3xhLZwbWt7b9GO2m5SWju6pjn/0BFFn6N7Rr9qbXmqyTYN7Q5YASw3f6cBDwMrTfoLQO/WltXIOwgd/fYJsDp+PYFuwBvAF8DrQNfWltXIlQ3sATp70trMtUUr5G1ABD3u8a3ariU6Iu4e045XAhPagKzr0GM38bY715SdZdrHcuBj4Iw2cm1rvffAr8y1XQuc2tqymvT5wJXVyraFa1vbe6tNtt2G/tklyywWi8XSoTiYXJ0Wi8VisdSLVXwWi8Vi6VBYxWexWCyWDoVVfBaLxWLpUFjFZ7FYLJYOhVV8FovFYulQWMVnsVgslg6FVXwWi8Vi6VBYxWexWCyWDoVVfBaLxWLpUFjFZ7FYLJYOhVV8FovFYulQtBnFJyIDRESZfaksaUREZovIey10rkwReVlE9onIL1rinNXOXyAiJ7TAeRaKyLdrybNtu5Wo577UmtfMMswXkd/Vka9E5Ih0y3EwICJHiUiRiCwXkfym1tNmFJ+laYjIHBGJiEiJ56/FFUwdnACMAg5VSt0aTzQKaUCrSdWGMPdwTiPKf1NENopIqYg8JyJd6yj7DxFZKyKu2Ui2ev5PRWS7eZncLyJBT94YEXlXRPaLyBYRuaHaseeLyKciUiwia0TkLE/e3GptslJEij35JdX+YiJydwN///xkv+VgxHRS5zei/NdE5DMRKRORt0Skfx1lB5gyZeaYEzx5l4nIUtMutojIrfGOm9nLcJ5pg8VGCZ1arV5V7f7e4MkPmrZWZNreNZ684SKyxHSU94nI6yIyPJ6vlPofkIfefu5bDb0u1Wk2xWd7s63KAqVUjufv1voPaTG6AgVKqZLWFiQVzMaard5RFJERwN+BS4CeQBnwtzoO+QT4AXo/t+p1nQxcD3wN6I/eg/EmT5HHgHfQ9/BY4AcicqY5ti/wCHAN0An4OfCYiBwCoJS60tsm0fvQPRWvuFpeL6Dcm9/eELNhbCvL0B14FrgBfc+W4NnRPQmPA8vQe+v9CnhaRHqYvCzgaqA7MBndRn5m8vzovRmPBToDvwaeTNKRzfPc59960uegN9XtDxwH/EL0RscAXwHnGvm7o/dSfMJbqVLKBdYYuZtESg+y6bVfJyIrgFIR8YvIFBH5QEQKReQTEZnhKb9QRP6fiCw22v752nqrInK5pzf5pYh8r1r+TNPTKBKR9fELJyKdTW9km4hsFZHf1dcoReRwEXlTRPaIyG4ReVRE8jx5e0VknPneR0R2xX+XiJwpIqvN710oIsOqXZ+ficgK0b3mBSISavyVbjwicr25LvHe+Nm1lBMRuUNEdppruVJERpq8oIjcJiKbRGSH6F58ZiNF8QNuPbJ2E5EXzfk/MvfsPU++EpErReQLc53vERExebXeOw8TzTXYJyIPxO+BiHQRkX+b+7nPfO7nOe9CEfm9iLyPVjCD6vmt/UXkfXPNXzMvIi8XmWu5W0R+VU9dtXER8KJS6h3TmbgBOEdEcpMVVkrdo5R6A6hIkn0ZME8ptVoptQ/4LTDbkz8AeFQpFVNKrQfeA0aYvH5AoVLqFaV5CSgFDq9+EhHJRm+q+mAtv2kWsBN4t47fnRQR8YnI7eaabhCRq6QWt7KI9DbP4s89yYfX9j4SkadEWyT7ReQd0Z2OeN58EblXtBu/FP0Cr4suIvKSaRsfikj163RCsvbdSM4BViulnlJKVaAVzGgRGVq9oIgMBsYBv1FKlSulnkFvHDsLQCl1r1LqXaVUWCm1FXgUmGrySpVSc5RSBUopVyn1b2ADML6Bcl4G/FYptU8p9SlwH6bdKaUKTb0KvaltDEjmBnbR75amkeLuvAXoHXkPBTKBvuhdsE9DK9UTzfcepvxCYCswEr1j9jPAIyZvAHqnX7/5fjr6IRJ0z6IMGGfyJgH7Tf2OOe9Qk/cvdI84GzgEWAx8r57fcYSpKwj0QPdy7/Tkfwfdw8gCXgVuM+mD0Q/7iUAA+AV6p+oMz/VZDPRB92A+pdouy9V2Oi6s429aLcfNiV/DaunnmfM6wAVGzt4mbzbwnvl8MrAU7T4QYJin3B3oHldXIBd4Efh/jWgfAfRO2DXkq1buCfOXBQxH9ybf8+Qr4N9GxsOAXcApDbx3BcAqdBvtCrwP/M7kdUM/6Fnm9z0FPOc5diGwCf2y9wOBOn7DQvSu04PRz8JC4JZqbfs+kzcaqASG1VJXXff7eeC6amklwPh6rvF7wOxqaZ8AF3i+dzdydjPf/wDcYu7jEPSO4RNNng94GzjTfD7L5GcnOfelwJegN75Okv8mMKeJ76Ar0c9mP6ALejdw73tkIfBtYCDaPfbdavcs6fvI5F9h2kUQuBNY7smbj34HTUU/Y6E6ZJyPfg9OMu3oUeCJhrTvJHWtAL5ZS95fgHurpa0CZiUpezbwabW0vwJ311L3c/H2nCSvJ7pjFX8Hx9v7VtMmHgC6m7wuJq+n5/hzgZVJnoEoWsH9Osk5Lzf3s1uT2k1TDvKcvAC4wvP9OuDhamVeBS7zNLRbPHnDgTD6wYlfLH8dF/4n5vPfgTtquQGVQKYn7RvAW438XWcBy6qlvYDuEa0AgibtBuBJTxnH3OwZnutzsSf/VmBuKtc8iaxzzDUs9Pz1SVJuOTDTfJ7NAcV3vGlAUwDHU14wPXhP2lHAhgbKNQaIADuAI+oo5zPlhnjSfkdNxTfN8/1J4PqG3DtzD670fD8NWF+HzPs83xcCNzfw9y7E84Ci3Yv/MZ/jbbufJ38xcGET7vcbVOs8edtcHcclU3zr8bxg0QpOAQPM96PRHbmoSb+p2vHfQivdKLpjenodMs+pJa8/ulc/sInt/008HVv0mHJ1xfdn0w6+keSeJX0fJTlPnqm3s/k+H3iogTLOB/5ZrQ1+1pT2Xc955lFNOaE7erOTlL0EWFQt7ffA/CRlr0ArsO5J8gLozsbfPWk5wAS0ku8JPA28avIONb835Cl/Ino4pHrd2eY5qtGuzHk/MHVd3dhr1RxjFps9n/sD5xlzvVBECtGWTO9aym80P6C6SwgROVVEFhk3YyG6scTLHYp+aKvT39S3zXP+v6Mtv1oRkZ4i8oRo12gReuyiukz3oXuGdyulKk1aH/MbgITveTPaAo2z3fO5DN0ompsnlVJ5nr+vRORS0a7g+HUYSZLrrJR6E93TuwfYKToYohPaesoClnrq+I9Jrxel1HJ0b/l/6LGC2ujBgTGDOJuTlEt6HRt476q3uT7m2CwR+bvoQfoitLWYJ1Vd48lkqY367nVztIUS9Jial05AcZKyja0r/rnYuPz+A9wMhNDP3Mki8gMA0YEQtwIzgAy0V+afIjLGewIROcyUeagWGS5Bd3I2NEF+0PeyvrZzEbpz8HSSvKTvI+NCvUX0cEERWnFC1bbVnttGg8qKDlj6f8CpSqnd1fIctEcnDFwVT1dKlSilliilokqpHSbvJOOOj4/1V293NWRUSpUCc4GHxIwdezgD3Sb7KKXuTPL76qQ5FJ/yfN6Mtvi8L+FspdQtnjKHej4fhu7tV7+gQbTb4Ta0SZwHvIy2QuLnqTGWYNIr0T2T+Pk7KaVGJCnr5Q/md+QrpToBF3vOhYjkoF0d84A5nnGAr9DKNl5OzO/bWs/5aiAi06VmpJv3b3oj6uqPVtRXoV0BeWiXR9JxA6XUXUqp8ege72B0oMJudMDBCM+17Kx0MEKDUHqc4RVTb23sQlsM/Txph9ZSNhl13rsk9R2Gvm8A16JdeJPNsceYdO/x3vbdFliNdpUCICKD0K64z1Oty3zeoZTagx7PjCmlHjIvsC1od/RppuwY4B3zgnOVUh8BH6ItLi+XAO8rpb6sRYZLqX3sryFso/62Mwfdnh+TmuP9tb2PvgnMRP+ezmirHdpX28hGvydX11J2ULWx4dHesqLjJu4DzlBKrfQebN5189AW3SylVKQOueLXyVF6LHkbNdtdMhlB66gsqhoToIdkFimlttVx3lpp7ii1R4AzRORk02MKicgMb8AAcLHokNUsdG/yaaVUrFo9GeiHeRcQFR0qe5Infx5wuejQXUdE+orIUHMRXgNuF5FOJu9wETm2HrnjPZH9oqPVfl4t/y/AEqXUt4GX0L0Q0C6J040cAfSLtBJtgjcKpQeSc+r4a8zAfza6se0CHSiEtvhqICITRWSykb8U7at3jfV6H3BHvLdlrvPJnmOVeIKXaqESfT+TYu79s+gORZYZiL+0Qb9SU9+9A/ihiPQzHZZfcSDSLRet3AtN3m8acd7W4lH0MzbdvNhuBp5VSiW1+EQkQ3QwjwAB80zGn/uHgG+Z5zEPHZ033+R9rg+Xb5rnqBd6rHiFyf8ImB638ERkLDDdkx/nUk+d1WU7Gv1CqxHN2cC2BfoZ/Ilpm3no4ZbqRNBj3tlo68H73qvtfZSLbrt70C/ePzRAltbmX8BIEZll7vmNwAql1GfVCyqlPkcPf/zGtImz0dOOngEQkePRbW2WUmpxknPdi1Y+Zyilyr0Z5n0yxLSbbsBdwEKl1H5T5CHg16KDy4aiYyjmm2NPFJGxRn90Qrup96HjI7wE0PenSTSr4lNKbUb3kn6JfuluRr+IvOd5GP0jt6NdKD9OUk+xSX8S/aO/iR5ji+cvRg9u3oEeYH6bA5bXpegX7Rpz7NNUdbUm4yZ0hNN+tGJ7Np4hIjOBU4Dvm6RrgHEicpFSai3awrgb3Us8A90QwvWcL60opdYAt6PdjDuAfLSvPxmd0ApuH9rVswf4k8m7Dj3Gs8i4e15HW0iIyKFo98TK6hVWw6X+dnYVule9Hd0+HqfhjbrWe+fhMXSH6Eu0izw+mfhOdLDJbmAR2rXX6tRl4SulVqMDOh5FR0LmosdB4se+IiK/9BzyGlq5Hw38w3w+xtT1H7S78i10EM9GjPJXShWhowR/im4by9Feg9+Z/LfRltTToufnPQP8QSn1mkeWo9DWWG3TFC4jidJuRNsC3XZfQyvcZWjPUBQ9bpjAPJPnoC2U+z3Kr7b30UPmemxFv0sWNUCWtCM6gvyiZHlKqV3oYK3fo+/ZZOBCz7FzRWSu55AL0WNx+9BBTOeaOkDHL3QGXvZ4nV4x9fQHvoe2+rd78uNyDUI/S8XoNlOJjrWI8xv0c7gR/e7+k2mLoMdSH0c/z+vRFuspxnvkxUc90eJ1IWagsEUQkYXoqKl/tthJLWlBRC5Gu0H/r55yJ6E9AUOVUnsbWPcfgV5KqctSl9TS3mho26rl2FPRAWT96y1saZeInqryLDpAqEmLdbT6hFxL+0Qp9UgDX0wLgf8Cq0XkZ8kKiMhQERklmknoaMF/NZ+0lvZEI9oWopfEO030HOK+aGvCtp2DFBGZgrbO89AejCbRYVZbMSb+xUmyHlFKXdnS8nQUjIspqWvGQy7avdEH7Zq9HT1frU0hIrWtPnNqI8dgLc2HoN3dC9Bu3JfQY1stK4TIajyBbh6+p5R6tKXlOVhRSi0iSXR6Y2lRV6fFYrFYLK2NdXVaLBaLpUPRplyd3bt3VwMGDGhtMSwWi8XSgixdunS3UqpBi2M0B21K8Q0YMIAlS5a0thgWi8ViaUFEZGP9pZoP6+q0WCwWS4fCKj6LpQ2xfetGVnz4ZmuLYbEc1LQpV6fF0tGJPngWo8JfUjlmB8Fgi2zdaLF0ONq84otEImzZsoWKimT7aKZONOYSKdlDRnYePn8gLeewtDyhUIh+/foRCLSve9ovrNdy3vPVBvoMHFZPaYvF0hTavOLbsmULubm5DBgwAGnSpsR1U7hvN3nlYSp8WYR6Jtvo19LeUEqxZ88etmzZwsCBA1tbnEZRSYAgEUr27QSr+CyWtNDmx/gqKiro1q1bWpQegGN2zNCbEVgOBkSEbt26pc1LkE7CZiOLssIdrSyJxXLw0uYVH5A2pQfgmKodq/gOKtLZZtJJpaPH9cJFu+spabFYmkq7UHwtgaOirS2CxUK5o/f5VWVW8Vks6cIqPrNWqdSxtZOIcO211ya+33bbbcyZMyfdkjWZhQsX8sEHjd4LN8Hy5cs56qijGDFiBKNGjWLBggX1H2RpFiK+LABURdJ9ZS0WSzNgFZ9BqH2x7mAwyLPPPsvu3c3bC1dK4brN72JNVfFlZWXx0EMPsXr1av7zn/9w9dVXU1hY2HwCWmol3g4lbBWfxZIuOrzii+9O4dRh8fn9fr773e9yxx131MjbtWsXs2bNYuLEiUycOJH339cbnc+ZM4fbbrstUW7kyJEUFBRQUFDAkCFDuPTSSxk5ciSbN2/m5z//OSNHjiQ/Pz9hXS1cuJAZM2Zw7rnnMnToUC666CKS7aRx1113MXz4cEaNGsWFF15IQUEBc+fO5Y477mDMmDG8++67dcp4ySWXcNRRR3HkkUdy3333ATB48GCOPPJIAPr06cMhhxzCrl27apz7qaeeYuTIkYwePZpjjjkG0MFIl19+Ofn5+YwdO5a33noLgPnz53PWWWdx4oknMmDAAP7617/y5z//mbFjxzJlyhT27tV71N53331MnDiR0aNHM2vWLMrKymqcd8qUKaxevTrxfcaMGQfPUndmrFnCte2A1Dj+d+vZvL/gTynXo5Ti/X8/yLbN65ulrjfffJXKSOrDC2WVYd75z5OoNHQgLQcvbX46g5ebXlzNmq+KmrXOI7v6+d1UP/WFQvzwhz9k1KhR/OIXVTf8/clPfsJPf/pTpk2bxqZNmzj55JP59NNP66zriy++4MEHH2TKlCk888wzLF++nE8++YTdu3czceLEhBJZtmwZq1evpk+fPkydOpX333+fadOmVanrlltuYcOGDQSDQQoLC8nLy+PKK68kJyeHn/1M7/v6zW9+s1YZV6xYwaJFiygtLWXs2LGcfvrp9OnTJ1H/4sWLCYfDHH744TV+x80338yrr75K3759ExbhPffcg4iwcuVKPvvsM0466SQ+//xzAFatWsWyZcuoqKjgiCOO4I9//CPLli3jpz/9KQ899BBXX30155xzDt/5zncA+PWvf828efP40Y9+VOW8F1xwAU8++SQ33XQT27ZtY9u2bUyYMKHOa95eiHfAfJHUFZ/rKo4qexM+fRP4eUp17d1fzNQlP2bHsl5ww9qU6lq1+C2Of+d8Xv/8O5xw5W31H1AHbz1yC6dvvp1PAxUM+9qlKdVl6Th0eIuvoXTq1IlLL72Uu+66q0r666+/zlVXXcWYMWM488wzKSoqoqSk7pdW//79mTJlCgDvvfce3/jGN/D5fPTs2ZNjjz2Wjz76CIBJkybRr18/HMdhzJgxFBQU1Khr1KhRXHTRRTzyyCP4/cn7MXXJOHPmTDIzM+nevTvHHXccixcvThy3bds2LrnkEh544AEcp2ZTmTp1KrNnz+a+++4jFoslfs/FF+v9focOHUr//v0Tiu+4444jNzeXHj160LlzZ8444wwA8vPzE79t1apVTJ8+nfz8fB599NEqll2c888/n6effhqAJ598knPPPbfO692eEGPx+ZtB8YVjzWcFuUXbAegZ255yXRkx7cbtuefDlOvKLtRtSxVtS7kuS8ehXVl8vzljRLPXWbxnG1Sah1m5ILX3Ba6++mrGjRvH5ZdfnkhzXZdFixYRClVdXsrv91cZv/POKcvOzm6QbMFgMPHZ5/MRjdZ0Db300ku88847vPjii/z+979n5cqVNcrUJiPUDPuPfy8qKuL000/n97//fUJJV2fu3Ll8+OGHvPTSS4wfP56lS5c2+Pc4jpP47jhO4rfNnj2b5557jtGjRzN//nwWLlxYo56+ffvSrVs3VqxYwYIFC5g7d26d521PiNIdiECspou3sYRjLs216Fm0srSZagJfrBIAx42kXFckoKNg3WaUz3LwYy0+D8qN1ZnftWtXzj//fObNm5dIO+mkk7j77rsT35cvXw7oLZY+/vhjAD7++GM2bNiQtM7p06ezYMECYrEYu3bt4p133mHSpEkNktd1XTZv3sxxxx3HH//4R/bv309JSQm5ubkUFx8IjqhNRoDnn3+eiooK9uzZw8KFC5k4cSLhcJizzz6bSy+9tE5rav369UyePJmbb76ZHj16sHnzZqZPn86jjz4KwOeff86mTZsYMmRIg34PQHFxMb179yYSiSTqScYFF1zArbfeyv79+xk1alSD62/rxINbQrHUX+SRSN3tuTGoaLj56gprpd4cU4gkkAlApMIqPkvDsYrPEzBSn+IDuPbaa6tEd951110sWbKEUaNGMXz48IT1MWvWLPbu3cuIESP461//yuDBg5PWd/bZZzNq1ChGjx7N8ccfz6233kqvXr0aJHosFuPiiy9OBJL8+Mc/Ji8vjzPOOIN//etfieCW2mQE7So97rjjmDJlCjfccAN9+vThySef5J133mH+/PmMGTOGMWPGJJTljTfeyAsvvADAz3/+c/Lz8xk5ciRHH300o0eP5gc/+AGu65Kfn88FF1zA/Pnzq1h69fHb3/6WyZMnM3XqVIYOHZpIf+GFF7jxxhsT388991yeeOIJzj///AbX3R5wjMUXcpvB4ot6LKokgVGNIRZL3TpLECkHwO9WplyV37jgY+HylOuydBwkWaRgazFhwgRVPTrv008/Zdiw9K1ZWLx7K7nhnQBEuw7GH2qYG/JgYM6cOVWCYA420t120sG23w6ld2wb+1QuXW7aklJdm3fs4dB7BwFQ8fPNhLI7NbmuDcsXMvC5mfrLnP0pybX2pbsY8tENbFI9Oeymz1Oq6+25P+HY7fNZ0v0sJlz1YEp1WVoPEVmqlGqxCDVr8XlwG2DxWSzpRExHNJuylEP0w5ED7smyor0p1aWa0eJTMe3izKIZrDQjly9iXZ2WhtOuglvSQhVXZ8datqwtrz7TUXHQna8MiVFaXkZ2dk6T64qEDyi+8pLClOSKedymbjSKU0sEcUNwjbIKkfq4oZjOqj/aPPMeLR0Da/F5aMgYn8WSTryLpZcVF6ZUV8wTkFJRmtr8V6/FV5ZiXXHPSiapj/GhtFwBq/gsjcAqPhoX3GKxpBMHl0qlN88tS9FKi0QOKKvK0tTqinmm0pQV70uprrir0ycq5aCbuMUXbIbpH5aOg1V83ufOLntkaWUElyL0QtWVqVp8njG+SGlqASlxZQVQkaJC9tblphiNKWYuYMi1Y3yWhmMVHwoV73gqa/FZWhdHuZSKjiyuLEvNpegdl4uWp7botXc6Q0VJihafx7OSqlUbn/Cf2QzTPywdB6v4UCgghlOnxffcc88hInz22We1likoKGDkyJFpkPEAy5cv5+WXX27y8fEJ78OHD2fEiBH85S9/aUbpLKni4FLmywUgUlaYUl3ecblYRYrjch4rLZzyeKHHbZqq4jMBaZnNESFq6TBYxQcggotTp8X3+OOPM23aNB5//PGk+cmWE2ss8fUu6yJVxef3+7n99ttZs2YNixYt4p577mHNmjVNrs/SvDi4VBrFF03R4vMqPlWZ4jZHMY/btDxFuVyv2zQ1F2x89ZcgkcTUBoulPqziU9ric5HEljDVKSkp4b333mPevHk88cQTifSFCxcyffp0zjzzTIYPHw5oBXjRRRcxbNgwzj333MS2Om+88QZjx44lPz+fK664gspKHdE2YMAArrvuOsaNG8dTTz1V5bzVt/0Jh8PceOONLFiwgDFjxrBgwQJKS0u54oormDRpEmPHjuX5558H9DZAM2fOZMaMGRx55JHcdNNNAPTu3Ztx48YBkJuby7Bhw9i6dWuN3/z2228nVm0ZO3YsxcXFKKVq3ULp2GOPZebMmQwaNIjrr7+eRx99lEmTJpGfn8/69XormxdffJHJkyczduxYTjjhBHbs2FHjvBdeeCEvvfRS4vvs2bMTC1J3BBxcwgGt+GIpbkbrtdJoxrpSdZt6XZ2VzeTqBHDt5r2WBtK+5vG9cj1sr7kIcyoEO/WHo76HK05iuajqPP/885xyyikMHjyYbt26sXTpUsaPHw/odThXrVrFwIEDKSgoYO3atcybN4+pU6dyxRVX8Le//Y2rrrqK2bNn88YbbzB48GAuvfRS7r33Xq6++moAunXrlljX00v1bX8yMjK4+eabWbJkCX/9618B+OUvf8nxxx/P/fffT2FhIZMmTeKEE04A9JZCq1atIisri4kTJ3L66adX2b6noKCAZcuWMXny5Brnvu2227jnnnuYOnUqJSUlhEIhnn322Vq3UPrkk0/49NNP6dq1K4MGDeLb3/42ixcv5i9/+Qt33303d955J9OmTWPRokWICP/85z+59dZbuf3226ucN77l0Omnn044HOaNN97g3nvvbeRdbb8IimhAr7CSqpWmPItAS4q7PVQJSEnRbYrH4gunaNU6nrrKS/eTnd01pfosHQNr8ZmwToWT2BKmOo8//jgXXnghoC0Sr7tz0qRJDBw4MPH90EMPZerUqQBcfPHFvPfee6xdu5aBAwcm1uu87LLLeOeddxLHXHDBBUnPm2zbn+q89tpr3HLLLYwZM4YZM2ZQUVHBpk2bADjxxBPp1q0bmZmZnHPOObz33nuJ40pKSpg1axZ33nknnTrVXMpq6tSpXHPNNdx1110UFhbi9/vr3EJp4sSJ9O7dm2AwyOGHH85JJ50EVN1yaMuWLZx88snk5+fzpz/9KemWQ6eeeipvvfUWlZWVvPLKKxxzzDFkZmYm/e0HIz5cooEcXCVQmaJL0RPc4qS4sa3X4lOVKSpRj8UXKUvN1em1+FKdpG/pOLQvi+/UW5q9ysodX5IZK0GJD1E1V5LYu3cvb775JitXrkREiMViiAh/+pPe1br6FkO1bfNTF7VtU9SQbX+UUjzzzDM1dkD48MMPa5UlEokwa9YsLrroIs4555yk577++us5/fTTefnll5k6dSqvvvpqnb+hIVsO/ehHP+Kaa67hzDPPZOHChUlXjgmFQsyYMYNXX32VBQsWJDocHQWHGDh+SiWEpKhgvJZVqiubVFnVKNXd4T11perO9Xl2eKhMccqGpeNgLT4zj0+Jk9j92svTTz/NJZdcwsaNGykoKGDz5s0MHDiQd999N2l1mzZt4n//+x8Ajz32GNOmTWPIkCEUFBSwbt06AB5++GGOPfbYekVLtu1P9S2HTj75ZO6++27ii40vW7Yskfff//6XvXv3Ul5eznPPPcfUqVNRSvGtb32LYcOGcc0119R57vz8fK677jomTpzIZ599ltIWSgD79++nb9++ADz4YO0LCl9wwQU88MADvPvuu5xyyikNrr/doxQ+FEp8lEkWToruSdcT7BGIpjjPzdTlKkFSVHziRqkwk/RTdZuKimrrGAiX2jE+S8NIu+ITkVNEZK2IrBOR69N9vsajg1sUDpJE8T3++OOcffbZVdJmzZpVa3TnkCFDuOeeexg2bBj79u3j+9//PqFQiAceeIDzzjuP/Px8HMfhyiuvrFeyZNv+HHfccaxZsyYR3HLDDTcQiUQYNWoUI0aM4IYbbkgcP2nSJGbNmsWoUaOYNWsWEyZM4P333+fhhx/mzTffTASvxKNE586dm9iy6M4772TkyJGMGjWKQCDAqaeemtIWSqDXBj3vvPMYP3483bt3T6QvWbKEb3/724nvJ510Em+//TYnnHACGRkZDa6/3RN3tTsOFZKd+vqTRlkVkZPyxrbxMb795KSskJUbo5gsXCWoitTq8qkY+0WvZxpO0W1q6TikdVsiEfEBnwMnAluAj4BvKKWSxs+3xrZEJdvXE3TLKPN3plN0D9J7DDTAPdnWmT9/fpUgmI5Iu9uWKBaB33bn7b7fpffOd6hwshj1f281ubq3X3iQYz/+Mdt8vYkoh8NubPq0lcUP38Ck9XexWXqzO3MQY3/R9Ck1S++6iH57PyBLlfNZrzOZ+P1/NLmu1b+dTCd3P4eqbayeeAsjTv9+k+uytB4H27ZEk4B1SqkvlVJh4AlgZprP2UiM4hcHgVqnNFgsaSce9OH4CPuyyEh1F3YT1Vnu60zITW2Cd3yMr9zJwZ+i21RUlBg+yiQz5WhTR8Uod7TFl+okfUvHId2Kry+w2fN9i0lLICLfFZElIrJk165daRYnOQoB8enPB8myZbNnz+7Q1l67JN72xEfEn5PyLuxx92RloBPZKsUlvYziqwh0IiPV5cHcGC4+yiULX4qKz6eilPt1VHLK0ywsHYZWD25RSv1DKTVBKTWhR48etZVJpwAAiKMvhWrA6imWtk9a20yaSEROOj5igZzU15809UUy8siWCtxU2nYsSkwJUX9O6jshqBiuOFQ6WfhT3EDWRwzXn0Wl8qc8zcLScUi34tsKHOr53s+kNZhQKMSePXvS/CITcLTFZ3dhb/8opdizZw+hUKi1RWkUsahue+L4cDNyyErVSjPLjMVCeQCUpRLu70aJ4scNZJOpUlwX043hio/KZnDnOiqG4/NTSijlaFNLxyHd8/g+Ao4UkYFohXch8M3GVNCvXz+2bNlCutyglft34iNKNKOCUOVuYrsUvoyOM2H6YCUUCtGvX7/WFqNRxNyYfiAdHyojl2wqiEZj+P2+plUY78TFFV9RITmdmriyiRslioMbyElZ8TlmjC/iz6FTRWo7PfiIoRy/Hi+0is/SQNKq+JRSURG5CngV8AH3K6VqLtdRB4FAoMrKKM3N4j9cTU+1k20z/szY/57PxhPuo/+089N2PoulNhKuSHGQYC6OKIpLi+jcuUsTK9TBLZLVDUhxZRNXKysVzCGbcmIxF5+vaQ4jcWMo8RHzZxNK0arVis9HhWThS9Ftauk4pH3lFqXUy0DTY5/TjKgYCh8ZWXph4HCKW8FYLE0lvued4/hwzHqdZcWFKSg+rUgDOdrKS2VlE3GjRMWHZOTgE0VRWTGdcjs3rTKlXZ2xZrAefbggfiqdzJSjTS0dh1YPbmltBBdXHEI5+uWS6srzFktTcWPxCew+fJla8VWksAu7GEXqz9EWX2Uq++i5UVx8OCHdQSwvbroSdVQMJQ4qI0dHm6Ywfu9XUZT4qPRlE0h1+oelw2AVn3kIs0zv1YZEW1qLxELQ4sOfZRRfaWHTK1Ra8WUYxRctb3pdYlydvrjiS8FtKiqKK34I5uIXl3BF092dPlyU4yfqyyIj1WhTS4ehwys+R7ko8ZGdlUNE+VBW8VlaiZhxTYrPR0aW7oiltG2Pmc4Q6hRXfE33ZoiKERV/QiGXp+A29RnFJyE98bysuOkBLvHglqg/m2CKk/QtHYcOr/gEFyUOuZkBSsi0c4EsrUY8uEXERygnD4BICgrGqab4YinsnC5KuzozjAs2nILb1DGKzwkZJdrEXdiVUvjMbhaxQDaZqU7/sHQYOrzi0+MNPoJ+x8wFsmN8ltbBG9wSNIovVpHa3LuI8pGVq+tKZWNbcaO44pCRrZVVJAVL1KdiuOInkBlXfIVNqsdV4McFx4/KyCGL8pTGCy0dhw6v+ERpi09EKLMh0ZZWJGHxOT6ycsyYcyruSTdKTByCoSzCyg8peDP0+pp+QtlarmgK1qNPRXGdAH7jzm1qtGnMPWDxkZGjt3SKWKvPUj8dXvE5uIl1OiuaYe1Ai6WpxExwi/h8ZOfqKONUrbSombGkF4ROpS49BSEzYYk2vS6t+PwEs1KzHmMxF7+44PiQRNCN3ZrIUj8dXvGJCW4BqPRl2ZBoS6sRM9MZHMeHLyNkrLRUAlJ0JCagvRkprGyix+UOWKKpKGQfUZT4D4xjNtF6jEb1kmyIHwlaxWdpOB1e8TnEQPRliPiyCVrFZ2kl4tMZHJ9WVqWShZOSlXZA8VWkOMFbj/H5yTBWWipBYH4VRTmBA9ZjExVfLGp2mPf5CWRaxWdpOFbxKRdlFqiO+LNT3grGYmkq8TE+x9HuyXLJTNlKi7s6K51sAikoPscEpOD4KCeY0rqYPmLg85OZ4tzZuGsYnx+/CZRJZXUaS8fBKj7PGF80kPoeaBZLU4lHdYovbqVl4Y+mEJDiavck6E5dKt4Mx6yQAnq80EkhCExbfBlkZ3fGVdLkoBs3bvE5/uaZ92jpMHR4xecjijI9bB0SXQGu3YXd0vLE94KMuzr1MlxN74g5sTARCQBG8aXQqXNULOEZSTUIzG8sPsenpxDRxClE0bjiEz9BE20aKbMWn6V+Orzi85uVHwBUhh4nwG5vYmkF4iu3OF7XeypWmhsmIhkAuIHU9vdLuDqBCl/T3aZKKfxEwdEKuVwycZr4vEUiWvH5AoFEoEzMrrxkaQAdWvG5rjKKTz+EEtRLKNmHx9IaVB/ji/pzCLkpuBTdMFFj8bkZqe2E4Hg8I2FfdpM3kI2ZZw6fUXwpuHMTis8XINNM0o/ZReYtDaBDK76oq3ufCcUXSm0lCYslFVy3qqszmpGbkpXmU5VEnaD+kpFDtlQmlEVjia9wBKkFgUWiMfziIkbxVTpZ+KNNrCtcCYDP7yc3V48XqkrbabXUT4dWfDFXkeFRfPHIsAobEm1pBVR8yTKfcb0HcslW5agmLsPlcyPEjMVHULft0ia27fgUBEjNEg0bZYVPu2DDvmwymug2jYS1BesEMgkGfJSQiaQwv9DScejQii/quviJIeZFk9gDzYZEW1oBFdVKQfzGSgvlEpQIlRVNc1EGVJiYsfgS2wk1cSeEDMK4Pl2Xm6EVclOIKz7Hl3rQjVupFaYvmIWIUJrCeKGlY9GhFV+s2hhfYhd2q/gsrYFZicTJ0AomvhpJaRM3o/WrCDHTtn2Zqe2EEKKSqC8T0EFg2ZQRjcYaXU80on9j3NUZ9WeT2UTrMVqpFaYTzALskoOWhtOhFV8k6hKIL3ILBLPju7DbcQJLy+NG42NWxkqLK6smKr6AOmClJSZ4N1XxqTDKn2m+5JIhMUrLG2+pRcMVAIjfRJtm5JJJ06xH1yg+f4ZRfE4WgRTmPVo6Dh1a8VVUVuCIQgIhAIJmy5VoubX4LC1PzFhDGUHdHn2Zem5aU3dhD6gIrqMVTEZ2fIJ349t2JBIhKBEIaAXjmPHCpmwgGzWLW6uMnMT/2aoc1YS5syqiFabfWHyVvmwCTQyUsXQsOrTii5jQZ8f0GOMh0W6F7TVaWp5YRFtDGUFtWQXMaiRNDbYKEEYZ6zExwbsJ3ozyMv2ciHlOUrFE40uKxdfWJJiLX1zKyxvv7nTDxuILabn0eKFda9dSPx1a8VWah00ysgHIycomrHwoO4/P0gq4ZowvGNKKL74ZbVNXIwmoCI5fW4+ZZleFpiwIXVmmO4KSoeXyZzU9+jlSruvyG8XnxMcxixpvPcYtvoCZfxtJcd6jpePQoRVf3OLzmQcnO+inhEy7coulVYi/yEPGggll5wEQLS9sdF3hSJQQ4YQbP8ssCN2UffTiHcS4ZySQWBezCXKZtTTjuzzEo03LmqBEoyaqMztH1+Fm5JCVwiR9S8ehQyu+qHFp+oLa4gv6HUrJRJq4dqDFkgoSKcNVkhizyuyUBzTNSisrKcQnCjekA7aycuIb2za+U1dhXJ3++HMSV8hNWBA6rnjjm9DGLb+m7KoQM8EtwUx9vVRGrlZ8dq1dSz10aMUXqTDzgEL6gRYRs2GndZdYWh4nUkoFGSACkNiF3W2ClVa+fzcAkpkHgC8jRET5mrSxbZkZy4sHf4XiQWBNcMHGO5shY6UFjAIMlzZeiUrFfiL4kUBc8XXCEUUshb0CLR2DDq34YuYhDGTmJNIqJDOlrWAslqbiRMspl1DiezCUTVQ5SBPGnMuKtOLzmyk6oLcTkiZ06ir37wIgM68nAFkJhdwEi8+4R3M7dQUOBN1UNsGqzQjvY7/kJjoKEkpt3qOl49ChFV+lceHkmPEPSH0rGIulqfgixZRLVuK7OA6l0jTXe0nhHgCyOndPpJVLFr4mdOqixTsAyO7aW9dpop9VE6xHKdlJGD/BHK34QkbxNcVtGqzcS7GTl/h+YJJ+01ansXQcUlJ8IjJHRLaKyHLzd5on7/9EZJ2IrBWRk1MXtfmJmN5njul9AkRSWHneYkmFYLiQMl+nKmllTVyNpLxwJwC5XXom0iqcTHxN2EBWlWiLr1O3XoCeNxdRviatixko38k+6ZKw0uLRpk1x54Yi+6jIOGDRJtbatRafpR78zVDHHUqp27wJIjIcuBAYAfQBXheRwUqpxq9xlEZ8pbon6+/UK5EW8WcTiliLz9LyZEaLKM3oViWtwslukuJThRsB6Nx7YCIt7MtqkjdDFW+nhCxy4kMCZl1MaUL0c6hyN/v93Yir47jbtLHRpkopukR3s6vzgd8XjzatbOKEf0vHIV2uzpnAE0qpSqXUBmAdMClN52oy/rKdFJEDgQPjKrFANpkp7FRtsTSVHLeIcEZelbQKp4m7F+zbRCG55HQ6YBFpb0bj23ZOaQHb/X2rpJVLFk4jFbJSiu7hLZRnHagrmNW0zZ/3FxXRW/YQzjug+IKJ1WnsPFxL3TSH4rtKRFaIyP0iEn/K+gKbPWW2mLQ2RUbZDooCVXvYbiCHTCrAbVPGqeUgR7kuuW4RsWCXKulhf9Nc752L17Ezo1+VtGgT9tFTStGzchNF2f2rpDdlXcw9+/bRl11Euw1JpInPTzlBaGQk5qYvVgCQ2etAXYld2O1au5Z6qFfxicjrIrIqyd9M4F7gcGAMsA24vbECiMh3RWSJiCzZtWtXYw9vMkopeoc3UpQ9sGq6WUMQ6+60tCC7dm4lWypxulZVME3Z+y5cWcmgyOfsyRtVJT0WyCbUyI1tv9q8gV7sRvUaUyW9wskm0EhLdPOKtwHIOmxclfQyMhvtzt3/xQcA9B5+dCLtwC7sVvFZ6qbeMT6l1AkNqUhE7gP+bb5uBQ71ZPczacnq/wfwD4AJEyY0bcfNJlCwdRv92c6q7mdXSRczSdetKEksp2SxpJtdG1ZzCFUtGIBoIKfRu7B/vmwhIyVC5qCjqqSrjByyVAVKKcQEl9THxsUv0hfonv+1KukRfzahcOOiJ0s/fZ2I8jFwwolV0iucTJxGBt1kbnyLndKNQ/oOTqRlJ9batYrPUjepRnX29nw9G1hlPr8AXCgiQREZCBwJLE7lXM1NwYcv4IiiR35Vve6Y5cuaMq/IYmkqJV+tBaD7YcOqpKtAdqOX4Spa/AQVKsDhR82sWldGDtmUUxlpuBs/5/N/8ZX05LDhU6qkN3ZdzHA4zBE7XuHzrHEJl2ScSicLfyOsx+3bt5JfvoRNPb+WiA4FyM7MpFxlNGmSvqVjkeoY360islJEVgDHAT8FUEqtBp4E1gD/AX7YliI6YzGXrmseYqfTg14jj6mSF1+3s6LEPjyWliO2ex0R5eOQwwZXzQjmkiWVRCORBtWzd+dXjN7zEmu6HEdu565V8pxgDn5xKSltmFtxzdJ3GBVextaB5yFO1VdFrJGW6NKX76cXe3AnXFEjL+zLalTQzefP30ZQIvT92g+qpPscsUsOWhpESopPKXWJUipfKTVKKXWmUmqbJ+/3SqnDlVJDlFKvpC5q87Hwkd8zOraaXaOuTOwEHccfMorPRoZZWpBg0Qa2Oz3x+au2x/jOIaUN7Ih9/sT/ESJMt1P+r0aeE18Qurj+pcai0Sjyn+soJIcRZ11bI98N5jbYEi0u2seg5bey3n84I2ecX/Nc/myCDQy6KVi3hglfPcqK3GPofeTYGvllkoVjF5m31EOHWrmloqKCd+/9EV/bcBtrco5i+Jk/rVEmvmhuuNz2Gi0tR5fyzewNHVYjPaGsGrCI84r3XmTK3udY3OtC+g8dVyPfFzITvBswz+2DJ25hWGQNX477JVmdutYskKEt0Ui4ss56lFKsuP9H9GQPsZNvRXw1wwpiDVR8kUiEoie/jxKh74V/SVqm3MkiELHPrqVuOoTic2MuH700j91/HMP0HQ+xtNsZDPnRs4jjq1E2vkFmxCo+SwvhxmL0jn1FeacBNfJ8pj3Wt/fd7m2b6PX6j9nq9GbMpX9KWibetivqWRD68yVvMOWLP7MqewrjzvhB8kKhhu3Cvuj5fzC18EWW9ruMwROTx8k1dDuh/827llHh5Xwx9pd06zsoaZlKX06jo00tHY/mWLmlzeLGYix//TFyP7yDie56CpzDWHXsfYxP4m6JE98nLJpmxVdRUcH6lYso2vARzvYVZBZvpHN0NzluCUr0Ytl7A70o6TIM34CpDJpwIj169Kq/Yku7Y+dXBfSSMNLtiBp5cQ9EXa73aLiSXQ98g/6qlF3nPkFmdvJo5Iz4BO86rMfd2zeR9+9vs8vpzqHferhK8IgXydR1le7fS+duydvlutVLGbXsRtYGRzBmdu0zndyMXLIpJxpz8fuS98U/fOUhjtn+IB93O4NxM39Sa12V/lw6hzfXmt9cVFSUs3HNR+zdsBy1Yw2h0i1khAsJumWECRIO5FKa0x9/r5F0HXYMg4aMwu+v2dG2tA4HpeJzYzE++e9D5C2+k3FuAVulF8vG/YHRp30Px1/3T86Mb7lS0by9RqUUBetW89VHLxLa9DZDy5cxQioA2E822wOHsS/nCHaZCcy+cBE5ZVsYuv0pMnY8jrtI+MI3kJ3dJxM68lgOH3sced16Jn0xKTdG8b7d7Nu9jeJ9Oykv3Ell0S5iJbtRZXvxVewlFCkkJ7afoCpHKVCIrkscYhIg5mSgnAD4AihfBhL/82eAPwNXArhOgJgEUD79vyt+XPRkbOXGwI3hujFQscR3XBelXFAxHOXiEEOUQvDsoSai5dFfqv4vJM8T/X+NvCqX58CXBkbzN7icUgf+V3g/q6Rp3mNC5TvoBWT3rhbYAmRkxrftqV1ZffzPHzIpvIpF425lyvDJtZbLMHvyRWvZQDZcWcmOed9gkCrhq1n/pm/XQ2qty2+2O6osTW7x7d29g+DTF1EpQbrNfqTG2KUXZQJ49pdX0Dknq0b++s+WM3zRL1gfOJL87/6j1noAIoFcMiuaf4xPuS7rVi5m9/IXyf7qfxxRsYohot28lSrAdl8vyv2dKc/oTkCFyYvsYuju5WTufhJWwS6Vx/qs0UR6jaHLERPpdcRYuvXoXcPrpGIRSov2ULx3J2X7d1GxfyeR4j3ESvagyvYiFfsIVO4jEClCxSKIiuHg4qCIip+IBIlIENcXJOYLoXz6M/6QeXZDSCCI4w+COCg3hnJd84y6YJ5NzHMrJg8VQ5R+dkXFEDcGyqU42JMTvvvHZr/e6eagU3yffvga/tf+j7GxdWySviwZdwtjT/s2fet48LyEsnRwi9tMe3p9tWk9Xy58mO4b/83Q2BcMBLZJTz7tcSqBI2fQe9gUevQbTGcneU83WlnGupXvsXf1m+R+9QETdjxNcOfj8D6UEmKfdCEmfhRCpionS5WSrcrpJIpOSeoL46dIOlHq60yJrzP7fV1wRBAUrlLgxnDciP6LVuBzI/hUFJ+K4FdRMiRCgCgBYmQQJSgNizYEcJUQk/hjKsQf2RgOcaUlKOJq4oAKU57/a887oKNUlTxPUtoRr3CNYI/TjcNGTKmRHkzsfZfc4vvwuXuYvPMpPjjkQo6e+b06z5FpFF+sFsX30X0/ZGpkFR9P/BPj8mtXoAD++C7sJTXrCofDbP7HhQxzd7LpjAUc0Se5WzKOE9J1lRXvraH49u/biyy4hJj46Tz7cQLBmorRSyyQS7Zqvk5rwar/seODx+iz7b8cqbZxJFDgHMbqnmfgHzSNXoMn0qv/UPonGbtUboytX65i16o3kY0fMLBwGT03vA0bgP9CVDkUSQ4KB1AEVZgcKScHyKlRG0SUj/3kUOx0oszJBX8AJUGiOLgIPhUlqMJkx0oIRCsJuJVkqDABImSoMBlEcaTxD0JUHXhOXRxcEf0/PtZK3fe2rXJQKb7PFv+XYa+cx066smTsHxh7+vc4rB4LrzpZ2bm4Spq0U3WcaDTKx289i7Pkn4yrWEwfUaz3H8HSwdfQ7+jz6D1gOL3rrwbQK+EfMeEkmHASAOHyUtYuf4vd65bC/s1kVOzBUVFQLhF/Fm5GJwjmIlndCOR2J9T5EHK6HEKnbr3o3K0XGcEcuovQvZ7zJiPmKsrCUaIxRRSIAqVK6R5hLIzEwjiO4Pf58Pl8+H1+fH4/4vhBHByRjjGo3ASCtaSHjOs9ksSKWbP0XUYv+w2rg6OZ+J276z1HZqf4Pno1rccPn76Dqbuf4qNeFzDx69+tt64MMxcvksTiW/yPq5gW/phl437L2GqT1ZPhGOuxvGgf9D6wzFokEuHLv19AvruF9Sc/yJB+R9ZblxvsRDYVEItCEmXUEIr272XlK/Po8cUTDI6to6/y8VnmaHYe+R36Tz2PAb0OY0AD6hHHR98jRtP3iNGYmV4U7d7GhlUfULF9LdGiHfgrC4m5Lj4RlD9ILJiHCuXhz+6KP7c7mZ16kJnXg9y8Q+iU14XuAX+Tnl0AlCIaqaSioozK8jIEcBwf4vfjc/Qz6/gcfI4Px/Hj+PzgOHUqiZpdtfbBQaX4hkz4Gh9uvIH8U7/DhJzO9R+QhOyQn1JCqCZs2FlRWcmHz93LwM/mMkltYy+d+bj/5fQ99goOPzy/SfJUJyMzmyFHfZ0hR329WeprDD5HyA3VZjnX3RO3NI3E+pPVViPZsWUdPV68hEInj77feYJAIKPeuuIWH9XqWvXei4xb+VtWZE5g3LfvaZBc8f30ouVVlegHT/+FabsXaAU688cNqssf34y2ZG8iTSnFon9cxfSKxSzN/zXjjz6zQXURygP0lmOB3MapiL17drHq2VsYs+UxpkoZBb4BfDj0Og4//nLyD2loV7VuOnXvzegZs5qlrkYjgj8jRE5GqMpWbB2Rg0rxieMw+byfpVRHhs+hkCDSiCWUwpEoi/49j8M+uZNj+YovA0ewctztDP/axUzICNVfgcVSC1m5xmHtUVZF+/dS9sAsuqsK9pz/Ir169GlQXRIIUUkAx7OyScHaTzj09e/xla8PA658ss6xOC+ZZjshVV6YSFu28FkmrLyJ1ZnjGqxAAQJZeUDVccz3n/wz03c9wdKe5zH+3J83uC7HBN2U7d9D5wYqvn1797Dq2VsYtflRjpFSVuROI/u4azl83HEMaOggr6VdcVApvuZARKiQEE4DFqmOxVwWv/oIPT66nWNUAZv8/fli2lyOPPbChkdFWCx1EMzKo1QFCZTrjWUrykrYeM/ZDItuYvVx8xg9fGKj6ttLHqFKXdfWDWvJfPxsXHwEL32KTnnd6jn6AJ3MqjBRMydwzZK3GPzWlWz1H8ZhVz7VYAUKkNFZW1OqSK9/sejFf3LUmt+yOmsiY79zb4PrAfAZJVq6fw+d+8GbD/2ObgX/ZvDP3iAzK7tK2f2Fe1n57K2M3Pgw06WEFblTyTv1RkYlGWu1HFxYxZeESql7p2rluix56zlyPvh/HBX7nK1Ob9ZMuZ1hJ8xOOkHXYmkyIux2uhMo2UZpSRFf3j2TEZWfsHz8Hxg345xGV7cr0Jvc8q1s/fJT1MNnkUkFu855msMHDKv/YA/ZmSG20Q3//gJWLXqVw165nP1OHp2+8wK5eY1zMWb31DukuHs3sOjf8xi/5BesC47g8KuexWmEAgXI6aEXASjc9gXrPnyR4zf9DYCVy94mf+ppgFZ4q567neEFDzKNYlZmT6HwlBsYNWpao85lab/Yt3QSCp0u9IzsrpHuxlyWvP0CmR/8iYnRVeyQ7qwY91tGnnolfRswxmKxNIXiYE+OKFnMtjtmMCL6JUvG/JZJZ9YysbweynL6M2rfixQ9dDwKYdfMxzh81NH1H5iEbRkDGVf4GhWvvMVuXw8Clz1Ht141V5+pjx5dOrON7oxePxffl4q1GcM59KoXCWUni0uumz6DxxJ9yWHIuz9huChWZU9mWMliyv/3T9Zm57H7o6cYuWUBU6WUlZmT2Hfyr8kfc2yjz2Np39gguySUZPYhL7w98b20tJT/Pf931vxhKpPeuYxesa/4eMQv6Xb9Kkad+WMcq/QsaWRfvxPIpZxesa9YcczfmXT2j5pcV+5Rl1Omgux1elB80SscPnZGk+uKjrmUShXgi8zR5Fz5Oj37D6n/oCSICJ8NvAyApV1OY+C1byRfJq0BdM/rzPudTyOGw0eHfYsR177Csn4XM6nkDYY8dypTt97PhtxxrD/rRfKv+y+DrNLrkIhSLTTBqQFMmDBBLVmypLXF4L/3/ZITt97DkmHXE/1qBYML36WrFLNNerJz5LcY8fUf4a9nPpHF0lzEYi4r3n2OfkMn0KMJFlV1ykuLCWVm19hxoSlUVpYTDGamXA/o1YxCodSDwZRSxCJh/Bl6kohyY3z63r+oLNrNYeNOplufgfXUYGlpRGSpUmpCi53PKr6arFmzisMWfI0cqaCYLNZ1OorsyZdy5FFnJF3f02KxWCxNp6UVnx3jS8Lw4SPZ/t3F7N63ncOGjGWsdWVaLBbLQYNVfLXQq29/6Nu/tcWwWCwWSzNjg1ssFovF0qGwis9isVgsHYo2FdwiIruAjc1QVXeg5kS8tomVNX20J3nbk6zQvuRtT7JC+5K3uWTtr5Tq0Qz1NIg2pfiaCxFZ0pIRQqlgZU0f7Une9iQrtC9525Os0L7kbU+yerGuTovFYrF0KKzis1gsFkuH4mBVfP9obQEagZU1fbQneduTrNC+5G1PskL7krc9yZrgoBzjs1gsFoulNg5Wi89isVgslqRYxWexWCyWDsVBpfhE5BQRWSsi60Tk+taWx4uIHCoib4nIGhFZLSI/MelzRGSriCw3f6e1tqxxRKRARFYauZaYtK4i8l8R+cL836UNyDnEc/2Wi0iRiFzdlq6tiNwvIjtFZJUnLem1FM1dph2vEJFxbUDWP4nIZ0aef4lInkkfICLlnms8tyVlrUPeWu+9iPyfubZrReTkNiDrAo+cBSKy3KS3hWtb23urTbbdBqOUOij+AB+wHhgEZACfAMNbWy6PfL2BceZzLvA5MByYA/ysteWrReYCoHu1tFuB683n64E/tracSdrBdqB/W7q2wDHAOGBVfdcSOA14BRBgCvBhG5D1JMBvPv/RI+sAb7k2dG2T3nvzzH0CBIGB5p3ha01Zq+XfDtzYhq5tbe+tNtl2G/p3MFl8k4B1SqkvlVJh4AlgZivLlEAptU0p9bH5XAx8CvRtXamaxEzgQfP5QeCs1hMlKV8D1iulmmMFoGZDKfUOsLdacm3XcibwkNIsAvJEpHeLCEpyWZVSrymloubrIqBfS8lTH7Vc29qYCTyhlKpUSm0A1qHfHS1CXbKKiADnA4+3lDz1Ucd7q0223YZyMCm+vsBmz/cttFHFIiIDgLHAhybpKuMWuL8tuA49KOA1EVkqIt81aT2VUtvM5+1Az9YRrVYupOqLo61eW6j9Wrb1tnwFulcfZ6CILBORt0VkemsJlYRk974tX9vpwA6l1BeetDZzbau9t9pr2wUOLsXXLhCRHOAZ4GqlVBFwL3A4MAbYhnZ1tBWmKaXGAacCPxSRY7yZSvs22sx8GBHJAM4EnjJJbfnaVqGtXcvaEJFfAVHgUZO0DThMKTUWuAZ4TEQ6tZZ8HtrNvffwDap22trMtU3y3krQXtqul4NJ8W0FDvV872fS2gwiEkA3nkeVUs8CKKV2KKViSikXuI8WdLvUh1Jqq/l/J/AvtGw74q4L8//O1pOwBqcCHyuldkDbvraG2q5lm2zLIjIb+DpwkXnZYVyGe8znpegxs8GtJqShjnvfVq+tHzgHWBBPayvXNtl7i3bWdqtzMCm+j4AjRWSg6flfCLzQyjIlMP77ecCnSqk/e9K9/u+zgVXVj20NRCRbRHLjn9HBDavQ1/QyU+wy4PnWkTApVXrMbfXaeqjtWr4AXGoi5KYA+z1upVZBRE4BfgGcqZQq86T3EBGf+TwIOBL4snWkPEAd9/4F4EIRCYrIQLS8i1taviScAHymlNoST2gL17a29xbtqO0mpbWja5rzDx1R9Dm6Z/Sr1panmmzT0O6AFcBy83ca8DCw0qS/APRubVmNvIPQ0W+fAKvj1xPoBrwBfAG8DnRtbVmNXNnAHqCzJ63NXFu0Qt4GRNDjHt+q7VqiI+LuMe14JTChDci6Dj12E2+7c03ZWaZ9LAc+Bs5oI9e21nsP/Mpc27XAqa0tq0mfD1xZrWxbuLa1vbfaZNtt6J9dssxisVgsHYqDydVpsVgsFku9WMVnsVgslg6FVXwWi8Vi6VBYxWexWCyWDoVVfBaLxWLpUFjFZ7FYLJYOhVV8FovFYulQ/H9z7LUAIEZfOAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "execution_count": 22, + "metadata": { + "pycharm": { + "name": "#%%\n" } - ], + }, + "outputs": [], "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, False, 9)" + "final_pop, hall_of_fame, logs, hist = optimisation.run(max_ngen=5)" ] }, { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEYCAYAAADF4VheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8JElEQVR4nO2dd5yUxf3435/te42DA+lVOtxxdAygaBRbFBULiiD6NYlJNNZEf0k0xG+SrxqNxhJJDBFbFDsYNRoLKioiSK+C9M7BHde2z++P59llb2/36t7e3jHv12vv9pmZZ+bzzDM7nymfmRGlFBqNRqPRtGYszS2ARqPRaDRNjVZ2Go1Go2n1aGWn0Wg0mlaPVnYajUajafVoZafRaDSaVo9WdhqNRqNp9aSdshORXiKiRMTW3LJoGo6I3CQie0VkVTOkPVtEnk9BOrNEZHEN/otE5PqmlkNTlZreS23vLIkyTBKR3TX4zxOR3ze1HK0FEVklIvtE5NaGxpF2yk5Tf0RkjoiUmR+fiPijrt9tJrFmAz9VSg2LknO2iMxuJnnSCrNRt72e4T8WkQoR2SgiZ9YQ9nIR+cIMuyiOf6GILDf9l4tIYZSf0yxPB0TkiIi8JSJdY+R4R0SOish+EXk83DAVkYlR5S78USIy1fSfE+PnFZHSOj7/pHjP0loRkTovgBaRdiLyhoiUi8gOEbmqhrAiIveLSJH5uV9ExPTrLyILROSQ+e7fE5EBUfdeY5aXYyKyW0QeiO6UmI07T9T73RST9lWmfOUi8qaItIvye95UZsdEZHNsI9GsR34I/Lau+RJL0pWd7pGlHqXUDUqpLKVUFvBHYH74Wil1bjhcit9NO2BtCtNrEtKoPL8IrADygF8Dr4pIhwRhjwCPAPfFeoiIA1gAPA+0BZ4BFpjuADcDpwAFQBfgKPBYVBR/BQ4CnYFC4DTgpwBKqc+iyl0W8AOgDPiP6X9DjP+LwCv1zok0IY3KxhOAD+gITAeeFJEhCcL+CLgIGIbxji8Afmz65QILgQFmXEsxykqYDOAWoD0wFvg+cEdM/DdGveNoRTkE+Bsww4y7AqMshfk/oJdSKge4EPi9iIyMiXst0EZErAmerUaSouxEZLuI3Ckiq4FyEbGJyDizdVlsdkEnRYVfJCL/JyJLTU2+IFrLx8R9rYhsEJFSEflORH4c4z9FRFaa8WwVkXNM9zYiMtdsLewRkd/XlkkicrKIfGS2eA6LyAsikhvld0RERpjXXcwW0CTz+kIRWWc+7yIRGRSTP3eIyGoRKRGR+SLiqn9O158E70aJSN+oMFWGVETkB2aeFpvvsKCeaYbzOVRLuF+a72eviFwfLZcp0xMi8rb57r8SkZOj7v2LiOwy3/tyEZkYE73LzOdSEflGRKJ7mHeZZaVURNaLyMVRfrNE5HMReVhEijB6qLU974Ni9HS2ici5Md49zfhKReR9EWlfW3xx4u8PjAB+q5SqVEq9BqwBpsYLr5T6QCn1MrA3jvckwAY8opTyKqUeBQQ4w/TvDbynlDqglPIA84HoirM38LJSyqOU2o+hyBJVrNcAryqlyuM8U6Yp/zM1PHpCRGSyiGwyf09/FZFPJMGQsYj8SUQWi0ib407yuHnvRhH5flTYhPWNmEOT5u9pP/B0HeS8XUQOmuX82hjvtonKdz3yIZyPdyulypRSizEU1owEt1wDPKSU2q2U2gM8BMwCUEotVUrNVUodUUr5gYeBASKSZ/o/aTZofOa9LwDj6yjqdOAtpdSnSqky4G7gEhHJNuNep5TymmGV+YnNj3B90rBGhlKq0R9gO7AS6A64ga5AEXAehkI9y7zuYIZfBOwBhgKZwGvA86ZfL/NBbeb1+eZDC0YrsgIYYfqNAUrM+C1mugNNvzcwWhKZwEkYrZQf1/Icfc24nEAH4FOMSiHs/0NgPUYL5z3gQdO9P1Bu3msHfglsARxR+bMUo6XcDtgA3JBAhglAcQ2fCbU8w+xwXsZ7N6abAvpGhZkH/N78Phyj5T4WsGL8OLYDznqUh3MAD5BZS5j9GBVlBkZPIyKXKVOR+Y5tGD+sl6Luvxqjl2MDbjfjckXlgR+41HwfdwDbALvpf5n5LizAFea762z6zQICwE1m3O4anmGWmc4Pzbz6CYaCkahyvtUsH27z+r4Ecf0V+GsCv4uBDTFujwOP1fIergcWxbjdCrwb4/Zv4Hbz+yjgczN/MoB/UfU38GPgWdOvK0Zr++I4aWcCpcCkBLLNBL4L51U965v2wDHgEvMd3Wy+h+uj3sti8/0+hfFbzYh5v7eaZeMKjDqkXR3qm0nmvfdj1BE1lY1w2HvNdM4z42pbl/IdE9ddwL8T+A0HKmLc7sBQLPHClwBjo65HAaUJwl4E7KvhGd+MLs9m+T4EHDbL0KQovwXAnTH3lwEjY34DFRj1wDdAVkx4N1AJ/KC+ZUYplVRld13U9Z3AczFh3gOuicqU6EwajNENtxKj7BJk8M3m978BD8cJ0xHwRhdG4Erg43o+10XAihi3hRit6tWYCgCjlfJyVBgLhjKfFJU/V0f5PwDMSUbex5F5NtWV3XUxYWpSdk8C/xsTfhNwWh3TX2bG//Nawv0T+L+o675UV3b/iPI/D9hYQ3xHgWFRebAk5n3sAyYmuHclMMX8PgvYWcdnnQVsibrOMJ+hU1Q5/02U/0+B/zTgnc6Ifh7T7Q/AvFrui6fs7iamUsWoaGeb39sAL5nPEcAYOm0XFXYQsNz0U+Z7qqawTJm3xfMz/T8Mp9mA/JgJfBl1LcAuqiq7rzB6pa9hNjqj/PZGy4XREJ2RIK03OV7fTMKop1x1kHESRsVsi3I7CIxrSPmuIZ2JwP4Ytx/GvvcovyBmh8C87me+R4kJ1w2jDrsyQTzXAbuB9lFuY4FsjIbANRiNnZOj3vcNMXFE6sgoNytGg/83mI3TGP+bMHp4K+ubV8mcs9sV9b0ncJk5DFYsIsXmA3ROEH4HRuun2hCPiJwrIkvMIcRijEIRDtcdo+UcS08zvn1R6f8No4eXEBHpKCIviTHseQyjtxEr01MYPdLH1PFudxfzGQBQSoXM5+sadd/+qO8VQFZNsiSZXbUHidATuD3m3XXHeMa6MBqYBswWEXsN4brEyBVPxoR5Zg4LbzCHoooxKunodxWJz3wfu8PPICIzo4ZpizHeZ9x760BERqVUhfk1K55/7DPUgzIgJ8YtB6MySXZcT2BUVnkYvbPXgXcBRMSCMWz5uunXHmPe7/446VwDPKvMGioaEemBoQyebYD8EFN2zDRiLR/7AlOA3ymlfDF+e2Lk2sHxslFTfQNwSBnDu3WhSCkViLqOff/NUTZiw+cAZdH5IcZc8PsYIw0vxkYgIhdhzLGdq5Q6HHZXSn2llCpVxvD4Mxi9u/PqI6dSKqiModhuGCMl0enagN9hNKSGJ3i+hCRT2UUXnl0YPbvcqE+mUip6wrx71PceGMMQh6PcEBEnRsvsQaCjUioXeAejJRdOJ9449y6Mnl37qPRzlFKJ5hbC/NF8jnxlTJReHZUWIpKFMfE/F6MyD88z7sVQEuFwYj7fnlrSq4bEt2iL/sTOTdWF2AqnAqMXEqZT1PddwB9i3l1GvEIfNyHjR/MmRiXYuYag+zAKdJjuiQLGYubBL4HLMYaFcjGGZyQqWPeo8BYzrb0i0hOjwXIjkGfeuzbm3moVdDOzDugTnt8wGWa6NySuArOMhimIiqsQo8d4xGzMPQaMMeca22H8Vh83K7QijHmr86LiQkS6U7MymwF8rpT6rgHyQ0zZMZ+lW0yYDcC1wLsSZVFo0jXm+XtglI3a6htIv7KxGbCJSL8ot5rKxjrTP25YEWmLoegWKqX+EHuzGDYRTwEXKKXW1CKb4njeVUlXRPpgNKo2J7jXRvW6vSNGvfJmvEZUbTTV0oPngQtE5GwRsYqIy5zcjS6QV4vIYBHJwBjXflUpFYyJx4GRIYeAgDn5PznKfy5wrYh8X0QsItJVRAYqpfZhvLCHRCTH9DtZRE6rRe5sjBZIiRjm1r+I8f8LsEwpdT3wNjDHdH8ZON+Uw44xh+QFvqgto2JRMRZtcT6f1TfOOKwErjLfzTkYcxNhngJuEJGxYpApIueHK1oxDEfm1fIM4R6vo4ZgL2O8u0FmGbi7HvJnYwyjHcL4od9D9VbjSBG5xGwN3oLxPpZg9EiUeS+m0cDQeqSdcpRSmzHe2W/N39LFGArqtXjhw785jArDYt4T7mUvwhjK+rkYywxuNN0/Mv9/DcwUw8DLjjH0ulcpddhsxW8DfiKGoVMuRg9udYwIM4AvlFLxRl3AGIacF0fuWsuWydtAvohcZL7fn1G1wQaA2UD7FfBBjPHHSRjPbxeRyzCGZt+h9vom7VCG8c/rwL3mb3U8Ro/2uQS3PAvcZtaVXTDqqnkAIpKDMd30uVLqrtgbReQMjCHvqUqppTF+uWZ97zLLxnTgVExLXPO+C8zGfCZGnf+6UqpURE4SkWkikmWW3bMxpp0+jBEhXIa9NIAmUXZKqV0YGf4rjIKzC0NxRKf3HEYm7wdcwM/jxFNqur+MMSdzFcacWdh/KUbr7WGMlv0nHO9hzcQovOvNe1+l5p4GGF3kEWZcb2MUIsCw+sQwqgh3rW8DRojIdKXUJoxe4GMYvdMLMFo+scMn6cLNGDIWY1hJvRn2UEotwxjzfxwj37ZgWmuZdMcYnqgNRQ3lSyn1LvAo8LGZxhLTqy4F+T2MH9FmjCEoD9WHHhdgGB8cxah8L1FK+ZVS6zEs0L4EDgD5dXyeJkWMNWhzaggyDcOY4CjGkoJLlVJhhT1dRKJb8jMw5ouexJjTqcRoxGCWyYswfh/FGHMvF0WV1Tsw8vNbjN/ueRgGMmEuwfgdHMJ4b34MY49oZpLAylJETsHohcVbclCnsmUq3csw5r6LMOb8lxGn7JjDafcCH4lIL9P5K4y5qsMYc5+XKqWKaqtvmgsR+ZXUvF72pxjGGwcxlnP8RCm1zrx3ooiURYX9G/AWht3BWox67m+m38UY0xDXxowm9TD978aYLnhHqq/jtQO/57iByk0Y5WozGNaWwA0YSu8gRoP1p+a9CqNe3Y2R7w8CtyilYvO+TlbeiQhbjaUUMRaHPq+U+kfKE9c0GDHWYq0CCpRhmlxT2L3AL5VSddrJRIylGmsxjH4CtYXXtC7qU7bi3GvBqCinK6U+bgr5NM2PiFyOMYReo+1FIvQOKpo6o4z1NYPqWBndhTHstjxRABG52BxKCxs5vKUV3YlJPcsW5pBZrjnP9iuMuaEltdymaaGY9cgfMSz9G8QJp+yk+pZF4U9NQ0iaeqKUelYp1U8pFbsLQjQ/xhjS2Ioxj/STGsI2C7q8pC2nYJSb8LTBRUqpylQKYA4vxisbzbVFX6tFKTVSKdVXKfV0Q+NolmFMjUaj0WhSyQnXs9NoNBrNiUe6bGQKQPv27VWvXr2aWwyNRqPRpJDly5cfVkol2tg8KaSVsuvVqxfLli1rbjE0Go1Gk0JEZEftoRqHHsbUaDQaTatHKzuNRqPRtHq0stNoWgBfLZjD/tkn4/PVa721RqMxSas5u3j4/X52796Nx1PXjcY1GnC5XHTr1g27vaaDF1oOQ1fMJpNKdu/6lm4nD055+v999o+Ejmzj7FueSnnaSileePTX9Bw4nIlnX5by9DWtg7RXdrt37yY7O5tevXohVTYq12jio5SiqKiI3bt307t37+YWJyn4sJEJlB/di7EVZGo567vwKT6pV3bHyiu4+ugTxm6mWtlpGkjaD2N6PB7y8vK0otPUGREhLy+vVY0G+M0DJDzHjjavHN6K2gMlmUDlsZSnqWl9pL2yA7Si09Sb1lZmvBa38b+sqFnlKDlyKOVpBn2tp9GiaT5ahLLTaE50vBYXAKqypFnlqDx2JOVpBn0p3fJS00rRyq4OiAi333575PrBBx9k9uzZzSdQLSxatIgvvqj3ubFVOOecc8jNzeUHP/hBkqTSNAa/2bPD07zKzleW+mFU5dc9O03j0cquDjidTl5//XUOHz6c1HiVUoRCDTqHsEaSoex+8Ytf8NxziQ471qSakBjnVlqaWdl5y5uhZxel7FSgQYdUazRa2dUFm83Gj370Ix5++OFqfocOHWLq1KmMHj2a0aNH8/nnxkHLs2fP5sEHH4yEGzp0KNu3b2f79u0MGDCAmTNnMnToUHbt2sUvfvELhg4dSn5+PvPnzwcMhTVp0iQuvfRSBg4cyPTp04l3QsWjjz7K4MGDKSgoYNq0aWzfvp05c+bw8MMPU1hYyGeffVajjDNmzOCUU06hX79+PPXUcUu773//+2RnZ9eYL6+88gpDhw5l2LBhnHrqqYBhUHTttdeSn5/P8OHD+fhj4yzNefPmcdFFF3HWWWfRq1cvHn/8cf785z8zfPhwxo0bx5EjRiX61FNPMXr0aIYNG8bUqVOpqKhuEDFu3DjWrTt+MPekSZNa/TZzFhUEQPxltYRsWoLlxSlPM1rBecq0sYqmYaT90oNofvfWOtbvTW5hH9wlh99eMKTWcD/72c8oKCjgl7/8ZRX3m2++mVtvvZUJEyawc+dOzj77bDZs2FBjXN9++y3PPPMM48aN47XXXmPlypWsWrWKw4cPM3r06IjiWLFiBevWraNLly6MHz+ezz//nAkTJlSJ67777mPbtm04nU6Ki4vJzc3lhhtuICsrizvuuAOAq666KqGMq1evZsmSJZSXlzN8+HDOP/98unTpUqe8u/fee3nvvffo2rUrxcXFADzxxBOICGvWrGHjxo1MnjyZzZs3A7B27VpWrFiBx+Ohb9++3H///axYsYJbb72VZ599lltuuYVLLrmEH/7whwD85je/Ye7cudx0001V0r3iiit4+eWX+d3vfse+ffvYt28fo0aNqpPMLZWwsrM0t7LzpF7ZhALHz/OtLC/Bnduk+wVrWim6Z1dHcnJymDlzJo8++mgV9w8++IAbb7yRwsJCLrzwQo4dO0ZZWc0VUs+ePRk3bhwAixcv5sorr8RqtdKxY0dOO+00vv76awDGjBlDt27dsFgsFBYWsn379mpxFRQUMH36dJ5//nlstvhtl5pknDJlCm63m/bt23P66aezdOnSOufJ+PHjmTVrFk899RTBYDDyPFdffTUAAwcOpGfPnhFld/rpp5OdnU2HDh1o06YNF1xwAQD5+fmRZ1u7di0TJ04kPz+fF154oUoPLszll1/Oq6++CsDLL7/MpZdeWmeZWyqCkb+2QHmzyhH0lKY8zVDwuLLzlqc+fU3roEX17OrSA2tKbrnlFkaMGMG1114bcQuFQixZsgSXy1UlrM1mqzIfF73mKzMzs07pOZ3OyHer1UogqoUb5u233+bTTz/lrbfe4g9/+ANr1qypFiaRjFDdRL8+Jvtz5szhq6++4u2332bkyJEsX768xvDRz2OxWCLXFosl8myzZs3izTffZNiwYcybN49FixZVi6dr167k5eWxevVq5s+fz5w5rf/Q8HDPzhZI/To3AJ+y4pAgypt6ZROMUnaeCj2MqWkYumdXD9q1a8fll1/O3LlzI26TJ0/msccei1yvXLkSMI4r+uabbwD45ptv2LZtW9w4J06cyPz58wkGgxw6dIhPP/2UMWPG1EmeUCjErl27OP3007n//vspKSmhrKyM7OxsSkuPV0qJZARYsGABHo+HoqIiFi1axOjRo+uUNsDWrVsZO3Ys9957Lx06dGDXrl1MnDiRF154AYDNmzezc+dOBgwYUOc4S0tL6dy5M36/PxJPPK644goeeOABSkpKKCgoqHP8LZWwsnMGU6/slFJYMOeLvakfRg2Fjis7fzMvvdC0XLSyqye33357FavMRx99lGXLllFQUMDgwYMjvYypU6dy5MgRhgwZwuOPP07//v3jxnfxxRdTUFDAsGHDOOOMM3jggQfo1KlTnWQJBoNcffXVEWOQn//85+Tm5nLBBRfwxhtvRAxUEskIxjDo6aefzrhx47j77rsj83UTJ07ksssu48MPP6Rbt2689957ANxzzz0sXLgQMCw28/PzGTp0KN/73vcYNmwYP/3pTwmFQuTn53PFFVcwb968Kj262vjf//1fxo4dy/jx4xk4cGDEfeHChdxzzz2R60svvZSXXnqJyy+/vM5xt2Qs5jCmM5T6YcxQSGETY5SiOeYMo+fsfBXNO2epablIPAu/5mLUqFEq1qpuw4YNDBo0qJkkat3Mnj27iiFLa6M1lZ1d9w6me2gPRbQlb/b2lKbt9Xlx/vEkAFa2OYPCW99IafrrP36JwZ/8GIBVox9g2Pk/Tmn6mqZHRJYrpZrUykz37DSaFkB4GNNN6ncTie5Z2fzN0LOMmrMLenTPTtMwWpSBiia5pPMuMJqqWDGGETPwQCgEltS1UwMBX+S7vTnmDEPB49+bwUBG0zrQPTuNpgUQnrMD8Kd4rVt0z84RbN6enWoGAxlN60ArO42mBWBVQULKWBZSWZpai8RA4Pjp6M5QMwyjBo8renzNu85Q03LRyk6jaQFYCVKCsT6zMsVbdkX3rNyh5hjGPJ6+NMOcoaZ1oJWdRtMCsBKkVAxl5y1rnp5dicpsFgOZsLLzKStWrew0DUQruzry5ptvIiJs3LgxYZjt27czdOjQJpVj5cqVvPPOO42K47rrruOkk05qclk1ycNKkHKLsTG3N8W7iITn7EolExc+CFbfyacpUeYwZhkZWJtpBxlNy0cruzry4osvMmHCBF588cW4/vG28qovwei5iQQkQ9nNmjWL//znP42KQ5NarISoNJWdP8XKLmhaY1aY6ad6f8ywNWa5ZGJrBmtQTetAK7s6UFZWxuLFi5k7dy4vvfRSxH3RokVMnDiRCy+8kMGDBwOG0ps+fTqDBg3i0ksvjRxR8+GHHzJ8+HDy8/O57rrr8HqNY0t69erFnXfeyYgRI3jllVeqpBt7hI7P5+Oee+5h/vz5FBYWMn/+fMrLy7nuuusYM2YMw4cPZ8GCBYBxpM6UKVOYNGkS/fr143e/+10k3lNPPZV27drV+MyffPIJhYWFFBYWMnz4cEpLS1FKJTyO6LTTTmPKlCn06dOHu+66ixdeeIExY8aQn5/P1q1bAXjrrbcYO3Ysw4cP58wzz+TAgQPV0p02bRpvv/125HrWrFmRTZ9PZKwqiNduKJtAZWqVXXgYsdKaZfwvK26W9Cssmc2y9EHTOmhZ6+zevQv2V9/ouFF0yodz76sxyIIFCzjnnHPo378/eXl5LF++nJEjRwLGvpdr166ld+/ebN++nU2bNjF37lzGjx/Pddddx1//+lduvPFGZs2axYcffkj//v2ZOXMmTz75JLfccgsAeXl5kX00o4k9QsfhcHDvvfeybNkyHn/8cQB+9atfccYZZ/DPf/6T4uJixowZw5lnngnA0qVLWbt2LRkZGYwePZrzzz+/zkfhPPjggzzxxBOMHz+esrIyXC4Xr7/+esLjiFatWsWGDRto164dffr04frrr2fp0qX85S9/4bHHHuORRx5hwoQJLFmyBBHhH//4Bw888AAPPfRQlXTDx/ecf/75+Hw+PvzwQ5588sk6ydxqUcZ2XX57G6iEUIqXHgSDxpyd15YDfvCUl5CVwvTDys5jzaZdKLkHKGtOHJq8Zyci54jIJhHZIiJ3NXV6TcGLL77ItGnTAKPnET2UOWbMGHr37h257t69O+PHjwfg6quvZvHixWzatInevXtH9se85ppr+PTTTyP3XHHFFXHTjXeETizvv/8+9913H4WFhUyaNAmPx8POnTsBOOuss8jLy8PtdnPJJZewePHiOj/z+PHjue2223j00UcpLi7GZrPVeBzR6NGj6dy5M06nk5NPPpnJkycDVY/v2b17N2effTb5+fn86U9/int8z7nnnsvHH3+M1+vl3Xff5dRTT8XtdtdZ7laJMhaUBx05AIRSPIwYnrPzmel7ylNrIBMexvTZsnE1w9IHTeugSXt2ImIFngDOAnYDX4vIQqXU+gZFWEsPrCk4cuQIH330EWvWrEFECAaDiAh/+tOfgOrH9TTkyJxER/7U5QgdpRSvvfZatZMFvvrqq0Yd33PXXXdx/vnn88477zB+/PjIRtCJqMvxPTfddBO33XYbF154IYsWLYq7g4vL5WLSpEm89957zJ8/P9LIOJFRQT8C4MwiqCTlC6vDyi7oaAOAvzzVw6iGsvM7snFXamWnaRhN3bMbA2xRSn2nlPIBLwFTmjjNpPLqq68yY8YMduzYwfbt29m1axe9e/fms88+ixt+586dfPnllwD861//YsKECQwYMIDt27ezZcsWAJ577jlOO+20WtOOd4RO7PE9Z599No899hjhDb1XrFgR8fvvf//LkSNHqKys5M0334z0OOvC1q1byc/P584772T06NFs3LixUccRAZSUlNC1a1cAnnnmmYThrrjiCp5++mk+++wzzjnnnDrH31oJr3Oz2x2U4UZ8KVZ25jCmcuUC4EvxnCGh48rWTSWk0eb1mpZDUyu7rsCuqOvdpluL4cUXX+Tiiy+u4jZ16tSEVpkDBgzgiSeeYNCgQRw9epSf/OQnuFwunn76aS677DLy8/OxWCzccMMNtaYd7wid008/nfXr10cMVO6++278fj8FBQUMGTKEu+++O3L/mDFjmDp1KgUFBUydOjUyX3fllVdyyimnsGnTJrp16xY5n2/OnDmR438eeeQRhg4dSkFBAXa7nXPPPbdRxxGBsRfnZZddxsiRI2nfvn3EfdmyZVx//fWR68mTJ/PJJ59w5pln4nA46hx/ayVgKhssNipwp/yYnbCyFXeuIU+qDWTMIXzlaoMVhdK7qGgaQJMe8SMilwLnKKWuN69nAGOVUjdGhfkR8COAHj16jNyxY0eVOFrTMS2pZN68eVUMWU5EWkvZqSg5RMbDffm87x103voS5dl9yL/trZSlv/aLtxn6/lUsLnyACSt/yeqCX1NwyS9Tlv4Xc+/ge7ue4pO+d3Lalvvx3LwBV9suKUtf0/S0hiN+9gDdo667mW4RlFJ/V0qNUkqN6tChQxOLo9G0PEKB4z07j2RgS/HCamX27KyZxnKVUKqP2QkFCClBnMbSi8oU7yCjaR00tbL7GugnIr1FxAFMAxY2cZoajPVpJ3KvrjURDA8jWm34rBnYA6kdxgsPY7ozcvArK6T6mJ1QiCAWbG7TGlQrO00DaFJlp5QKADcC7wEbgJeVUtXtzWuPJ9miaVo5ranMBE1rSLFY8VozcaR4M2Zlzhm6XQ7KcYEv9TuohLBgcxs9u1QvfdC0Dpp8UblS6h2gwftbuVwuioqKyMvLq5fpvObERSlFUVERLperuUVJCuGeHRYbAVsmLm9qlV3INP232e2GgUyKDUQkFCAoFhwZ5tKHFG+XpmkdpP0OKt26dWP37t0cOnSouUXRtCBcLhfdunVrbjGSQsQa0mIlaMvErZppzs5qp1LcWAOpnbNTKkgIK45MYxjTn+qlD5pWQdorO7vdXmWHEo3mRCPaQCXkyDq+1ixFIx3hdXZiteOxZGBL8TE7EgoSxILbVHaByhTPGWpaBXojaI0mzQnvQGOxGsrORggCnpSlf7xnZ8VryUj5yQOiAgSw4c7OBVK/XZqmdaCVnUaT5kQPY+IwtmBO5cLu8EbMVpsdnzUDZ7A55uysZGQZc3Za2WkaglZ2Gk2aE1Z2Fpsdi8tca1ZenLL0wzuYWG12/LYMnCnejFlCfoJYyXQ5qVBOVIq3S9O0DrSy02jSnPDSA4vFisWZ+rVmkZ6d1U7QloUrxUsfLCpAUGxYLUIFrpTvDappHaS9gYpGc6ITNhCx2OzY3FYAvKlcaxaes7PZCNkzU24gIyHDGhOgQtxYU2wgo2kd6J6dRpPmBEPHDVTs5lozXwqP2Tk+Z9c8BjLhnh2A15KBNcU7yGhaB1rZaTRpTihqB5WwskvpWrPQ8Tk7zP0pVQq3DDOUndmjtaR+uzRN60ArO40mzQlFGYg4Mw1l1zzWmDbEaViD+lK4i4mEAoTMnp3PmoE9xUsfNK0Drew0mjQnMmdnteIyF1an1Pw+vF2YzXHcGrSsOGXJW1SQkNmz89sycabYQEbTOtDKTqNJc44v6naQaa41UylVdsetQa0uQ9l6U2gNalEBQmI3RLFn4k7x0gdN60ArO40mzQlFGahkuJ2Up3itmTJ7dmKxYTdPHkjlMKah7IyeXdCeiRvds9PUH63sNJo05/iicisZdivluFO61kxCAYJKwGKJbMacSmVnJYiymKukHNlk4IVQKGXpa1oHWtlpNGlO9KJui0XMY3ZSO4wZNNe5OSPWoKkbxrSq4wYqmAYy3gp9pp2mfmhlp9GkOeGlB1arUeF7LG4sqVxYHQoSFKOqyDA3Y07lyQNWFSBk9uzE3EGmsrQ4ZelrWgda2Wk06U7QB4DV7gCMtWa2FK41k5CPgLnZUla20bMLptBAxkIQzJ6dxW2kX1l6NGXpa1oHWtlpNGmOmLuVWB0ZAPismTgCqTPSsAS9eDEUbXaGm0rlSKk1qE0FIz07mzmMWll2JGXpa1oHWtlpNOlORNm5jUtbJs5Q6np2lqAHnzgBcNktlOGGFBrIWAlEDFTsmbkA+FO5N6imVaCVnUaT5ii/oeycbqNnF7Rn4krhWjNr0INfjJ6diFApbiy+1ClbqwoiVmOdncNUdoGK4pSlr2kdaGWn0aQ5KuAhpASn0+jZhRxZxskDKcIa9OG3OCPXHsnA4k9Nz04phQM/WA1l68rKBSCQQmtQTetAKzuNJs2RgAcvdqxW8+fqzMaFL3L0TlNjDXkJmD07AK81dQYy/kAIN16UPROAjJy2ACit7DT1RCs7jSbNkYAXH/bj1+bJA54UzVvZQ16CUT07vzUDR4o2Y/Z4K7FLEOzGEG5GZg4BZUF5Unjqg6ZVoJWdRpPmSMCDV44rG6vLWFhdniLze5vyErAeTz+VBjLecsPqU5mWqJlOO6VkIF6t7DT1Qys7jSbNsQS9+OV4z87mNhZWV6RoYbU95CNodUWuU2kg46s05gbFYSh4q0UoIwNrKneQ0bQKtLLTaNKcaNN/ALup7DwpOnnArryoqJ6dcmSRkSIDGZ/HUHYWZ2bErUIysfm1stPUD63sNJo0xxKorDJn5jAPcPWmaDNmt/JE5swMAbIMo5EUGMh4yo1ndLizIm6VlkxsgdSt89O0DrSy02jSHFfwGB5bzvFrc62ZLwWbIfv8AXIoI+RqG3ET8wDX8rKmV7YVZUYPzp2ZHXHzWDNxamWnqSda2Wk0aU5m8BheR27k2m0e4BpIQc+urPgwVlGQ0S7iZg0ruxQYyPhKiwDIyMk77mbLwhlM4UbYmlaBVnYaTZqTo0rxRym7LPPkgWAKzO/Lig8CYMlsH3ELG8hUpmDOMFhmpJ/ZrmvEzW/PJkNpZaepH41SdiIyW0T2iMhK83NelN//E5EtIrJJRM5uvKgazYmH3+8nh3JU1DBiZk4uACFP0w/lFRcdAMDd5riys0c2Yy5u8vQpM9LPatcp4hS0Z+NWFaBU06evaTXYkhDHw0qpB6MdRGQwMA0YAnQBPhCR/kqpYBLS02hOGA7t30UXwN6mY8TN6nDhUzbwNr2yqzi0E4A2HXtG3BwZRs/OW54CA5myg5SQRRv78R1cQs5sbITAVx45zFWjqY2mGsacAryklPIqpbYBW4AxTZSWRtNqKdm7GQBHh5OruFeIG0nBWrNg0XcA5HXrH3Fzm9agvhTMGWZV7OKwvUsVN2Ue4IpeWK6pB8lQdjeKyGoR+aeIhMdaugK7osLsNt00Gk09OLbHUHZ53fpVca8Ud0o2Y5YjWzlCm8gGzADuyGnlTatslFJ09O2gJLNXVZlMZecr1we4aupOrcpORD4QkbVxPlOAJ4GTgUJgH/BQfQUQkR+JyDIRWXbo0KH63q7RtGqCe1dRgZMuvQdVcU/VaeWdStexN2NAFbeMFJ1WvnPndjpThKXT0CruVvO0ck+KdpDRtA5qnbNTSp1Zl4hE5Cng3+blHqB7lHc30y1e/H8H/g4watQoPeOs0URx0tFv2OHozyCrvYq735qBvYk3Y967Ywt91E6WdrqwinuGufQh1MTKbvfyd+kJtBs8qYq7xTSQ8ZQdJaf6bRpNXBprjdk56vJiYK35fSEwTUScItIb6AcsbUxaGs2Jxp7vNtA3+B0lPaq3N322rCY/eeC7Rc8A0PV7l1dxF3sGQQS8TavsMja+ygFpT/ehE6q4hw9w9ZUXN2n6mtZFY60xHxCRQkAB24EfAyil1onIy8B6IAD8TFtiajT1Y8d/HqGjstD71Kuq+QXtmWRUxB0sSQrFR4sYtO0Z1ruGM7jvsKqeIlTgRnxNN2e48ov3GO5bzvI+P6WjxVrFL6zs/Pq0ck09aJSyU0rNqMHvD8AfGhO/RnOismXtUkYdeIWVbSczqkf/av7KnkWGapqeXSAQYMs/ZlGoSik+5964YTySgdXfNHOGhw7socP7N7JPOjB06i+r+buyDDu4YAq2S9O0HvQOKhpNmnHwwB4cr82iTDI5efojccMoZxYZePAGkjtgUlZexoq/XM6o8k9Z0f9mTi48NW44rzUDaxMYyOzatomyOeeQp47iufApnJltq4UJH+Aa8mhlp6k7yVhU3uLx+PxUVJQTwEJuZiYOu7X2mzSaJmDb1k0Enr+c7qGDbDvvBQZ16Bw3nDizycTDkUo/zuzklNeVn79H7ge3Mlrt4as+NzJ2+uyEYb3WDOxJVHYqFGTVgr/Qd9UDCIod5z7LgOGnxw2b5bZThlufVq6pFyeUslOhELu/W8feNZ/g372Cdsc20s6/jzxVTDsxWsjlysl2S2f2Zw3B0vd0Bn7vQtp36FhLzBpN41m7fDEd3rqaTDzsP+9pBo1NvMuexZWNRRRlpcdon+1KGK4ulJQUs+bZ2/je4dc5ZGnPt5OfYez3LqrxnoAtE0eS1vnt/W49xfNvoNC7ilX2QtpNe5IBJw9OGD7bZeeoSo/Tyr3eSjwV5fi9FYRC4MrOJSsjC4tVD5qlG61e2VWWl7Jp8Rt4N7xH9+Kv6M4hugMVONlpP5ndbcewJ6sTypmDlSBUFOEq2cqI0o/JWvE2gW9+yVpnPhW9zqTP+Mto33NQrWnWFU9lBcVFB/CWHcXvrcDvrcTnrSTk92IRC1htiMWOWK1Y7Q4sNidWuwO7w4Ut/LG7sDtdOBwu7DYLVosgIkmTMS417UnY1GknERX1HNGPpOL5V7kv7Bb//vhxqoTpAKxfNJ/BX9xGhSWTsiv/Ta/+o2qU3eYyTysvOwqcVGPYmvjm49fp9MmdTOAgyztdypAZD9ExagF5IoK2TFyhgw1OFyAYCLBs/h8p2PwY2Vj5YshvGTv1Fqy1KIpMh5WdZGBPkbJToRD7dm1l36aleHetwFW0kRzvXtoFD9GOYzhjwnuVjSJLO4rsXajI7EGobW+cHfvRrvtAOvUaiCsjO246DZXN6/PiKS/D7y2HhHaAglgsWCxWrFYrFqsVi8WG1Wox/1uxWCyIxQZiAUvrU9atUtn5fR7WLnqVwOpXGVz6BYXipRQ332WOZHfPH3FSwZn06FvAQFvix1dBPzvWfMbBZQtpv/cjhm5+CDY/xG5rd/Z1nIStx2hyuvSnfccuON1Z2Gw2fN4KvOWllJeVUH5kH56j+/Ed2w+lB7FUHsbhOYLTf5SsYAk5oWNkSSWdEkpQf3zKigc7fuz4sBEQO0GsWERhJYSFEBYUFhXCQtC8Nt0IIaioDwgKoq4tNH4ZZEhVVYaxMRopJb6Od09Y0qalZiUez7c+an+M+Nlq70veD98gt2OPWsPbzArTU9qweaviokNsfPZmxpW8zW5LF7ac9wojR02u8/0hRxZuVYlSqkGNq63rvibwxs8YG9jEioxxdJr+JN/r1qdO94oIFZYM8prQGnTPtk3sXvEelu2f0fPYMrpwhC4Y5XePtQtHHV04mjuEzVldwJmF2JwIAp4SQp4SbKV7yKncRfejH5N7dCF8B3xpxH2APIocXah0tCPoyCbkyCFkdSJKIaKMRlbAi8VfjjVQgS1QgS1YiSNkfpQXp/LiUl6c+HBJiMb17eMTVGLUEGLUDqFILWH8tyjFJunN6NmfN0HqyadVKbvD+3fy7YL7GbBvIcM5xlFyWN/+HNzDL2XA2HMYFrWZbG2I1U7PwjPoWXgGANu3rGP7F6/TZtcHFO75F/a9z1W7xwZkALFT6j5l5YjkUmrNpcKWS4m7Bzvd7SAjD0tme8Sdi93pxuZwYXe6sdqdhEIKFfITCgZRwQAq6CcY8BDy+1ABr/Hxe1FBLwR8EPQiAR8q6EPMjyXkQ0J+gkoIKAtKLCgx1F74uxJD1RnXFkDM3pn5XwAsxj+xGMpHQMRo+Yn5RzheuR+v+qqqoOoqqWYVJXF7kInjlGj1IrGyJEijSgCJ8y0qjVoikzhXifRANWdXGwZOuQNXZt2WSTvNzZg9DVhrtuy/8+nx+V2MVkf5uttMhl19Hw53Zv0icWSRiYcKX5BMZ92rEb/fx9IXfsfobXOoEDfLRz3IiPP+B6lnT8JrzcIeSN52YaFgiM1rllD09at03vcBfUI76AocIYdtWSPY3v0Uck8eRY9Bo+me2abKjhm1caz4EAe2baBkzyZ8B7dgK95GTuUuOlRsxV1WTpYqx45x6rsyS5tPHFTiwiNuvBY3Pqsbj60NZbZOBK0ulM1tfOxusGdgsRvflSR6F0EIKVAhVCgIKogKhVAqCKEQSoUgFDJ6huZ3FfUdFTTVnYo0kJVYKHXGn1NOR1qVsvNWlDFy74usyzqFnSOvYcjEixhdDwVXE736DqFX3yHA3ZSXFrNt61pK931L5bEi8FeiAj6wu7E4M7C5snG16UhWXhfadOhK23Yd6GS1JLUXpzmxCZvfeyvqvrC75OgR1s27ie+V/Jvt1h6UXfgso4dNbFD64swmi0qKKv11VnY7Nq+i8uUfMT6wkZXZp9Jr5hxGntSwLXN91iwcwV21B6yBQCDA+q8/4tiK1+l18CMGcoCgEjY7h/JVr9vpVHguPQaOpF0jh/RycjuQM7wDDI9v2RoPB6DPc0gurUrZde0zmOKbNjC8fdMalGRm59K/cAIUTqg9sEbTBEROK6/jZsyrPltIhw9vZ6w6xLLu1zBsxv3Yne6GC5DRDrsEjdPKc2uOJxQM8tX8/6Nw01/wiZ0VYx5k+LnXN2p+12/Pwl1Rf2vQyspKNn75Np41Czn56KcUcBSfsrI5cyQH+/2UvhMuZ1CHLrVHpGlxtCplB5DbxIpOo0kH3KYRSaiWXUQqyo+x6unbOOXwK+y2dGbb+a8yamSdtrutEcnqAEBl8QHonlg57N2+iSP/up5TfKtZkzGGLjP/wfDOPROGryshRw4Z5eWGxU8NSnP38nfYv/g5gsEgWRW7Odm/meHipwInm7PHsX/QD+g34TKG5lRfz6dpXbQ6ZafRnAjYcg0FY6s4kDDMhqUfkPXuTZyi9rL0pMsouObPdZ4TrA17tmEB6iuJn74Khfj69UcYvOYB2qBYVngvI6fcVO+5uUSEnNlYCYG/AhzV5xs95cfY+NxtFO5/hfbKTomlDSW2DqzpfCnu/pPof8oFFNZ3nlLTotHKTqNpiTgyKSELV+X+al6eygq+efZOxu59jkOW9qw783nGTLggqcnbc4wRlOCx6unv3fEth//1Y8Z4l7PONYy8q55iVM8B1cI1hvDOKp6yo7jaVVVaa7/8D23fv5lCtZ9P2l3G0Bl/omPbtugxnxMbrew0mhZKkaU9WZV7I9dKKVYveo22n93D90J7+DrvAgbNepROOe2SnnZWZ2O/Tin6NuLm9Vay4pUHGPLtk+QSYumQXzFq6h1YrMnfkSirXSfYCof2bKN7u24AHNq/m29fvJNxxW+z33ISK7//AqdN/EHS09a0TLSy02haKIdyBjOw+FMCPg+bvv6A4GcPM8yzjF3ShTWT5jJ60qVNlnb79u3ZTSdc+76msryM1f+ZS5e1TzJO7WONexQnXfkEY3oObLL02/UbC1/D4XWLcLXvybdvP8LQXS8yGi8rulzB4Kvup4t5orpGAyCqpt0wUsyoUaPUsmXLmlsMjaZFsPyD+Yxc/CO8yo5T/BTRhi19r2P4ZXfhcDbFMuOqfPrkTZx64Fn8yopdgnxn7UX5xLvJb0IlG0aFQmz8/RgGhYyeZUgJa7K+R/spf6Rr/8ImT1+TXERkuVKq5m2DGonu2Wk0LZQRZ1zGkuL9sPcbrD3Hkj/5Gsam0Ohi9DX3s3h+NlZfCbn55zJw3HlJM0CpDbFYyJrxL774z8OIK4fuE65iWL9htd+oOWHRPTuNRqPRNCup6Nm1vt0+NRqNRqOJQSs7jUaj0bR60moYU0QOATuSEFV74HAS4kkFWtamoyXJ25JkhZYlb0uSFVqWvMmStadSqkMS4klIWim7ZCEiy5p6/DdZaFmbjpYkb0uSFVqWvC1JVmhZ8rYkWfUwpkaj0WhaPVrZaTQajabV01qV3d+bW4B6oGVtOlqSvC1JVmhZ8rYkWaFlydtiZG2Vc3YajUaj0UTTWnt2Go1Go9FE0MpOo9FoNK2eVqXsROQcEdkkIltE5K7mlicaEekuIh+LyHoRWSciN5vus0Vkj4isND/nNbesYURku4isMeVaZrq1E5H/isi35v9mP+JZRAZE5d9KETkmIrekU96KyD9F5KCIrI1yi5uXYvCoWY5Xi8iINJD1TyKy0ZTnDRHJNd17iUhlVB7PSaWsNcib8N2LyP8z83aTiJydBrLOj5Jzu4isNN3TIW8T1VtpWXZrRCnVKj6AFdgK9AEcwCpgcHPLFSVfZ2CE+T0b2AwMBmYDdzS3fAlk3g60j3F7ALjL/H4XcH9zyxmnHOwHeqZT3gKnAiOAtbXlJXAe8C4gwDjgqzSQdTJgM7/fHyVrr+hwaZS3cd+9+ZtbBTiB3madYW1OWWP8HwLuSaO8TVRvpWXZrenTmnp2Y4AtSqnvlFI+4CVgSjPLFEEptU8p9Y35vRTYAHRtXqkaxBTgGfP7M8BFzSdKXL4PbFVKJWMnnqShlPoUOBLjnCgvpwDPKoMlQK6IdE6JoMSXVSn1vlIqYF4uAbqlSp7aSJC3iZgCvKSU8iqltgFbMOqOlFCTrCIiwOXAi6mSpzZqqLfSsuzWRGtSdl2BXVHXu0lTZSIivYDhwFem041ml/+f6TAsGIUC3heR5SLyI9Oto1Jqn/l9P9CxeURLyDSqVhbpmreQOC/TvSxfh9F6D9NbRFaIyCciMrG5hIpDvHefznk7ETiglPo2yi1t8jam3mpxZbc1KbsWgYhkAa8BtyiljgFPAicDhcA+jGGMdGGCUmoEcC7wMxE5NdpTGeMWabN2RUQcwIXAK6ZTOudtFdItLxMhIr8GAsALptM+oIdSajhwG/AvEclpLvmiaDHvPoorqdpQS5u8jVNvRWgpZbc1Kbs9QPeo626mW9ogInaMAvOCUup1AKXUAaVUUCkVAp4ihUMqtaGU2mP+Pwi8gSHbgfCwhPn/YPNJWI1zgW+UUgcgvfPWJFFepmVZFpFZwA+A6WYFhzkcWGR+X44xB9a/2YQ0qeHdp2ve2oBLgPlht3TJ23j1Fi2s7ELrUnZfA/1EpLfZwp8GLGxmmSKY4/FzgQ1KqT9HuUePZ18MrI29tzkQkUwRyQ5/xzBQWIuRp9eYwa4BFjSPhHGp0jJO17yNIlFeLgRmmpZt44CSqCGjZkFEzgF+CVyolKqIcu8gIlbzex+gH/Bd80h5nBre/UJgmog4RaQ3hrxLUy1fHM4ENiqldocd0iFvE9VbtKCyG6G5LWSS+cGwBNqM0QL6dXPLEyPbBIyu/mpgpfk5D3gOWGO6LwQ6N7esprx9MKzWVgHrwvkJ5AEfAt8CHwDtmltWU65MoAhoE+WWNnmLoYT3AX6MeYz/SZSXGJZsT5jleA0wKg1k3YIxFxMuu3PMsFPN8rES+Aa4IE3yNuG7B35t5u0m4NzmltV0nwfcEBM2HfI2Ub2VlmW3po/eLkyj0Wg0rZ7WNIyp0Wg0Gk1ctLLTaDQaTatHKzuNRqPRtHq0stNoNBpNq0crO41Go9G0erSy02g0Gk2rRys7jUaj0bR6tLLTaDQaTatHKzuNRqPRtHq0stNoNBpNq0crO41Go9G0erSy02g0Gk2rJ+2UnYj0EhFlnu+kaaGIyE0isldEVjVD2rNF5PkUpDNLRBbX4L9IRK5vajk0VanpvdT2zpIowyQR2V2D/zwR+X1Ty9FaEJFVIrJPRG5taBxpp+w09UdE5ohImfnxiYg/6vrdZhJrNvBTpdSwKDlni8jsZpInrTAbddvrGf5jEakQkY0icmYNYS8XkS/MsIvi+BeKyHLTf7mIFEb5Oc3ydEBEjojIWyLSNUaOd0TkqIjsF5HHww1TEZkYVe7CHyUiU03/OTF+XhEprePzT4r3LK0VEanzcTQi0k5E3hCRchHZISJX1RBWROR+ESkyP/ebZ9YhIv1FZIGIHDLf/XsiMiDq3mvM8nJMRHaLyAPRnRKzceeJer+bYtK+ypSvXETeFJF2UX7Pm8rsmIhsjm0kmvXID4Hf1jVfYkm6stM9stSjlLpBKZWllMoC/gjMD18rpc4Nh0vxu2lH+h2WWm/SqDy/CKzAOEfs18CrItIhQdgjwCPAfbEeYhxsvAB4HmgLPAMsMN0BbgZOAQqALsBR4LGoKP6KcSp1Z6AQOA34KYBS6rOocpeFcap5GfAf0/+GGP8XgVfqnRNpQhqVjScAH9ARmA48KSJDEoT9EXARMAzjHV8A/Nj0y8U4+2+AGddSqh7OnAHcArQHxgLfB+6Iif/GqHccrSiHAH8DZphxV2CUpTD/B/RSSuUAFwK/F5GRMXGvBdqIeaBtfUmKshOR7SJyp4isBspFxCYi48zWZbHZBZ0UFX6RiPyfiCw1NfmCaC0fE/e1IrJBREpF5DsR+XGM/xQRWWnGs1WME5URkTYiMtdsLewRkd/XlkkicrKIfGS2eA6LyAsikhvld0RERpjXXcwW0CTz+kIRWWc+7yIRGRSTP3eIyGoRKRGR+SLiqn9O158E70aJSN+oMFWGVETkB2aeFpvvsKCeaYbzOVRLuF+a72eviFwfLZcp0xMi8rb57r8SkZOj7v2LiOwy3/tyEZkYE73LzOdSEflGRKJ7mHeZZaVURNaLyMVRfrNE5HMReVhEijB6qLU974Ni9HS2ici5Md49zfhKReR9EWlfW3xx4u8PjAB+q5SqVEq9hnEw5tR44ZVSHyilXgb2xvGeBNiAR5RSXqXUoxgHbp5h+vcG3lNKHVBKeYD5QHTF2Rt4WSnlUUrtx1BkiSrWa4BXlVLlcZ4p05T/mRoePSEiMllENpm/p7+KyCeSYMhYRP4kIotFpM1xJ3ncvHejiHw/KmzC+kbMoUnz97QfeLoOct4uIgfNcn5tjHfbROW7HvkQzse7lVJlSqnFGAprRoJbrgEeUkrtVkrtAR4CZgEopZYqpeYqpY4opfzAw8AAEckz/Z80GzQ+894XgPF1FHU68JZS6lOlVBlwN3CJiGSbca9TSnnNsMr8xOZHuD5pWCMjSafZbsc4wbY74Aa6YpwafR6GQj3LvO5ghl8E7AGGYpww/RrwvOnXy3xQm3l9vvnQgtGKrABGmH5jgBIzfouZ7kDT7w2MlkQmcBJGK+XHtTxHXzMuJ9AB+BSjUgj7/xBYj9HCeQ940HTvD5Sb99qBX2Kc7OyIyp+lGC3ldsAGYk4ljjkZuLiGz4RanmF2OC/jvRvTTQF9o8LMA35vfh+O0XIfC1gxfhzbAWc9ysM5gAfIrCXMfoyKMgOjpxGRy5SpyHzHNowf1ktR91+N0cuxAbebcbmi8sAPXGq+jzuAbYDd9L/MfBcW4Arz3XU2/WYBAeAmM253Dc8wy0znh2Ze/QRDwYQPRV6EcWJzf4zfxSLgvgRx/RX4awK/i4ENMW6PA4/V8h6uBxbFuN0KvBvj9m/gdvP7KOBzM38ygH9R9TfwY+BZ068rRmv74jhpZwKlwKQEss0EvgvnVT3rm/bAMeAS8x3dbL6H66Pey2Lz/T6F8VvNiHm/t5pl4wqMOiR80nZN9c0k8977MeqImspGOOy9ZjrnmXG1rUv5jonrLuDfCfyGAxUxbndgKJZ44UuAsVHXo4DSBGEvAvbV8IxvRpdns3wfAg6bZWhSlN8C4M6Y+8uAkTG/gQqMeuAbICsmvBuoBH5Q3zKjlEqqsrsu6vpO4LmYMO8B10RlSnQmDcbohluJUXYJMvhm8/vfgIfjhOkIeKMLI3Al8HE9n+siYEWM20KMVvVqTAWA0Up5OSqMBUOZT4rKn6uj/B8A5iQj7+PIPJvqyu66mDA1Kbsngf+NCb8JOK2O6S8z4/95LeH+Cfxf1HVfqiu7f0T5nwdsrCG+o8CwqDxYEvM+9gETE9y7Ephifp8F7Kzjs84CtkRdZ5jP0CmqnP8myv+nwH8a8E5nRD+P6fYHYF4t98VTdncTU6liVLSzze9tgJfM5whgDJ22iwo7CFhu+inzPVVTWKbM2+L5mf4fhtNsQH7MBL6MuhZgF1WV3VcYvdLXMBudUX57o+XCaIjOSJDWmxyvbyZh1FOuOsg4CaNitkW5HQTGNaR815DORGB/jNsPY997lF8Qs0NgXvcz36PEhOuGUYddmSCe64DdQPsot7FANkZD4BqMxs7JUe/7hpg4InVklJsVo8H/G8zGaYz/TRg9vJX1zatkztntivreE7jMHAYrFpFi8wE6Jwi/A6P1U22IR0TOFZEl5hBiMUahCIfrjtFyjqWnGd++qPT/htHDS4iIdBSRl8QY9jyG0duIlekpjB7pY+p4t7uL+QwAKKVC5vN1jbpvf9T3CiCrJlmSzK7ag0ToCdwe8+66YzxjXRgNTANmi4i9hnBdYuSKJ2PCPDOHhTeYQ1HFGJV09LuKxGe+j93hZxCRmVHDtMUY7zPuvXUgIqNSqsL8mhXPP/YZ6kEZkBPjloNRmSQ7ricwKqs8jN7Z68C7ACJiwRi2fN30a48x73d/nHSuAZ5VZg0VjYj0wFAGzzZAfogpO2YasZaPfYEpwO+UUr4Yvz0xcu3geNmoqb4BOKSM4d26UKSUCkRdx77/5igbseFzgLLo/BBjLvh9jJGGF2MjEJGLMObYzlVKHQ67K6W+UkqVKmN4/BmM3t159ZFTKRVUxlBsN4yRkuh0bcDvMBpSwxM8X0KSqeyiC88ujJ5dbtQnUykVPWHePep7D4xhiMNRboiIE6Nl9iDQUSmVC7yD0ZILpxNvnHsXRs+ufVT6OUqpRHMLYf5oPke+MiZKr45KCxHJwpj4n4tRmYfnGfdiKIlwODGfb08t6VVD4lu0RX9i56bqQmyFU4HRCwnTKer7LuAPMe8uI16hj5uQ8aN5E6MS7FxD0H0YBTpM90QBYzHz4JfA5RjDQrkYwzMSFax7VHiLmdZeEemJ0WC5Ecgz710bc2+1CrqZWQf0Cc9vmAwz3RsSV4FZRsMURMVViNFjPGI25h4Dxphzje0wfquPmxVaEca81XlRcSEi3alZmc0APldKfdcA+SGm7JjP0i0mzAbgWuBdibIoNOka8/w9MMpGbfUNpF/Z2AzYRKRflFtNZWOd6R83rIi0xVB0C5VSf4i9WQybiKeAC5RSa2qRTXE876qkKyJ9MBpVmxPca6N63d4Ro155M14jqjaaaunB88AFInK2iFhFxGVO7kYXyKtFZLCIZGCMa7+qlArGxOPAyJBDQMCc/J8c5T8XuFZEvi8iFhHpKiIDlVL7MF7YQyKSY/qdLCKn1SJ3NkYLpEQMc+tfxPj/BVimlLoeeBuYY7q/DJxvymHHmEPyAl/UllGxqBiLtjifz+obZxxWAleZ7+YcjLmJME8BN4jIWDHIFJHzwxWtGIYj82p5hnCP11FDsJcx3t0gswzcXQ/5szGG0Q5h/NDvoXqrcaSIXGK2Bm/BeB9LMHokyrwX02hgaD3STjlKqc0Y7+y35m/pYgwF9Vq88OHfHEaFYTHvCfeyF2EMZf1cjGUGN5ruH5n/vwZmimHgZccYet2rlDpstuK3AT8Rw9ApF6MHtzpGhBnAF0qpeKMuYAxDzosjd61ly+RtIF9ELjLf78+o2mADwGyg/Qr4IMb44ySM57eLyGUYQ7PvUHt9k3Yow/jndeBe87c6HqNH+1yCW54FbjPryi4YddU8ABHJwZhu+lwpdVfsjSJyBsaQ91Sl1NIYv1yzvneZZWM6cCqmJa553wVmYz4To85/XSlVKiInicg0Eckyy+7ZGNNOH8aIEC7DXhpAkyg7pdQujAz/FUbB2YWhOKLTew4jk/cDLuDnceIpNd1fxpiTuQpjzizsvxSj9fYwRsv+E473sGZiFN715r2vUnNPA4wu8ggzrrcxChFgWH1iGFWEu9a3ASNEZLpSahNGL/AxjN7pBRgtn9jhk3ThZgwZizGspN4MeyillmGM+T+OkW9bMK21TLpjDE/UhqKG8qWUehd4FPjYTGOJ6VWXgvwexo9oM8YQlIfqQ48LMIwPjmJUvpcopfxKqfUYFmhfAgeA/Do+T5Mixhq0OTUEmYZhTHAUY0nBpUqpsMKeLiLRLfkZGPNFT2LM6VRiNGIwy+RFGL+PYoy5l4uiyuodGPn5LcZv9zwMA5kwl2D8Dg5hvDc/hrFHNDNJYGUpIqdg9MLiLTmoU9kyle5lGHPfRRhz/suIU3bM4bR7gY9EpJfp/BXGXNVhjLnPS5VSRbXVN82FiPxKal4v+1MM442DGMs5fqKUWmfeO1FEyqLC/g14C8PuYC1GPfc30+9ijGmIa2NGk3qY/ndjTBe8I9XX8dqB33PcQOUmjHK1GQxrS+AGDKV3EKPB+lPzXoVRr+7GyPcHgVuUUrF5Xycr70SErcZSihiLQ59XSv0j5YlrGowYa7FWAQXKME2uKexe4JdKqTrtZCLGUo21GEY/gdrCa1oX9Slbce61YFSU05VSHzeFfJrmR0QuxxhCr9H2IhF6BxVNnVHG+ppBdayM7sIYdlueKICIXGwOpYWNHN7Siu7EpJ5lC3PILNecZ/sVxtzQklpu07RQzHrkjxiW/g3ihFN2Un3LovCnpiEkTT1RSj2rlOqnlIrdBSGaH2MMaWzFmEf6SQ1hmwVdXtKWUzDKTXja4CKlVGUqBTCHF+OVjebaoq/VopQaqZTqq5R6uqFxNMswpkaj0Wg0qeSE69lpNBqN5sQjXTYyBaB9+/aqV69ezS2GRqPRaFLI8uXLDyulEm1snhTSStn16tWLZcuWNbcYGo1Go0khIrKj9lCNQw9jajQajabVo5WdRpNm7C0q4Zv1m2oPqNFo6oxWdhpNmrHryYsZ8fIYQsEGbRSh0WjikFZzdvHw+/3s3r0bj6euG41rNOByuejWrRt2e00HL6QnYwPGOvyio0V0aN+kc/YazQlD2iu73bt3k52dTa9evZAqG5VrNPFRSlFUVMTu3bvp3bt3c4vTYIoP7dHKTqNJEmk/jOnxeMjLy9OKTlNnRIS8vLwWPxrgLTnQ3CJoNK2GtFd2gFZ0mnrTkstMmXIDECg91MySaDSthxah7DSaEwmPGMcA+stLmlkSjab1oJVdHRARbr/99sj1gw8+yOzZs5tPoFpYtGgRX3xR73NjI6xcuZJTTjmFIUOGUFBQwPz585MonaY2vLgACFYea2ZJNJrWg1Z2dcDpdPL6669z+PDhpMarlCIUSr55eWOVXUZGBs8++yzr1q3jP//5D7fccgvFxcXJE1BTIz6LE4CQRys7jSZZaGVXB2w2Gz/60Y94+OGHq/kdOnSIqVOnMnr0aEaPHs3nnxsHLc+ePZsHH3wwEm7o0KFs376d7du3M2DAAGbOnMnQoUPZtWsXv/jFLxg6dCj5+fmRXtSiRYuYNGkSl156KQMHDmT69OnEO6Hi0UcfZfDgwRQUFDBt2jS2b9/OnDlzePjhhyksLOSzzz6rUcYZM2Zwyimn0K9fP5566ikA+vfvT79+/QDo0qULJ510EocOVZ8/euWVVxg6dCjDhg3j1FNPBQyDomuvvZb8/HyGDx/Oxx8bZ2nOmzePiy66iLPOOotevXrx+OOP8+c//5nhw4czbtw4jhw5AsBTTz3F6NGjGTZsGFOnTqWioqJauuPGjWPduuMHc0+aNKlVbTMXMn+WyluatDg3bVzHf196NGnxAewvroxbJhtKpS9IpS+YtPiUUhRX+GoPqDkhSPulB9H87q11rN+b3Nbu4C45/PaCIbWG+9nPfkZBQQG//OUvq7jffPPN3HrrrUyYMIGdO3dy9tlns2HDhhrj+vbbb3nmmWcYN24cr732GitXrmTVqlUcPnyY0aNHRxTHihUrWLduHV26dGH8+PF8/vnnTJgwoUpc9913H9u2bcPpdFJcXExubi433HADWVlZ3HHHHQBcddVVCWVcvXo1S5Ysoby8nOHDh3P++efTpUuXSPxLly7F5/Nx8sknV3uOe++9l/fee4+uXbtGen5PPPEEIsKaNWvYuHEjkydPZvPmzQCsXbuWFStW4PF46Nu3L/fffz8rVqzg1ltv5dlnn+WWW27hkksu4Yc//CEAv/nNb5g7dy433XRTlXSvuOIKXn75ZX73u9+xb98+9u3bx6hRo2rM85aEKKO3b/GVJS3OrFcu46zgHo4cmU67dnmNju/A3h10+nsB7wy8j/OmJecYwrfum05ZyMF1s59NSnxvLnydzGVPMOLml2nfvn1S4tS0XHTPro7k5OQwc+ZMHn20auv4gw8+4MYbb6SwsJALL7yQY8eOUVZWcyXVs2dPxo0bB8DixYu58sorsVqtdOzYkdNOO42vv/4agDFjxtCtWzcsFguFhYVs3769WlwFBQVMnz6d559/HpstftulJhmnTJmC2+2mffv2nH766SxdujRy3759+5gxYwZPP/00Fkv1ojJ+/HhmzZrFU089RTAYjDzP1VdfDcDAgQPp2bNnRNmdfvrpZGdn06FDB9q0acMFF1wAQH5+fuTZ1q5dy8SJE8nPz+eFF16o0oMLc/nll/Pqq68C8PLLL3PppZfWmN8tDStGXlr8yVN2nQN7ATi2f2tS4juyayMAg75N3hm2l4fe5ToWJC2+7qsfZbJ1OUe2rUhanJqWS4vq2dWlB9aU3HLLLYwYMYJrr7024hYKhViyZAkul6tKWJvNVmU+LnrNV2ZmZp3Sczqdke9Wq5VAIFAtzNtvv82nn37KW2+9xR/+8AfWrFlTLUwiGaG6iX74+tixY5x//vn84Q9/iCjmWObMmcNXX33F22+/zciRI1m+fHmdn8disUSuLRZL5NlmzZrFm2++ybBhw5g3bx6LFi2qFk/Xrl3Jy8tj9erVzJ8/nzlzWteh4RazZ2cLlCctTq/YceOjsvRoUuKrLC0GQJG+SzwyxfjNVR4ramZJNOmA7tnVg3bt2nH55Zczd+7ciNvkyZN57LHHItcrV64EjOOKvvnmGwC++eYbtm3bFjfOiRMnMn/+fILBIIcOHeLTTz9lzJgxdZInFAqxa9cuTj/9dO6//35KSkooKysjOzub0tLj8z2JZARYsGABHo+HoqIiFi1axOjRo/H5fFx88cXMnDmzxl7T1q1bGTt2LPfeey8dOnRg165dTJw4kRdeeAGAzZs3s3PnTgYMGFCn5wEoLS2lc+fO+P3+SDzxuOKKK3jggQcoKSmhoKCgzvG3BCxmz84eTKKyw2hYeJKk7AgPsarkG1h5vcnZDEBZjK3ivKVa2Wm0sqs3t99+exWrzEcffZRly5ZRUFDA4MGDI72MqVOncuTIEYYMGcLjjz9O//7948Z38cUXU1BQwLBhwzjjjDN44IEH6NSpU51kCQaDXH311RFjkJ///Ofk5uZywQUX8MYbb0QMVBLJCMYw6Omnn864ceO4++676dKlCy+//DKffvop8+bNo7CwkMLCwoiCvOeee1i4cCEAv/jFL8jPz2fo0KF873vfY9iwYfz0pz8lFAqRn5/PFVdcwbx586r06Grjf//3fxk7dizjx49n4MCBEfeFCxdyzz33RK4vvfRSXnrpJS6//PI6x91SCA9jOpOo7Hzm2j1fRXLW7qmgYfjhVMlRTMGoUYvy4uRYPQdNZUfFkaTEp2nZSDKtqRrLqFGjVKxV3YYNGxg0aFAzSdS6mT17dhVDltZGSy07h2b3pAPF7JCu9Pzt+qTEuefeQXQN7eWLQb/he1f8otHxff3GY4xe9RuOkEO72bsaHZ+nsgLX/Z0B2Hv1Z3Tp2/je+or7z2F45Zd83eN/GH3dnxsdn6bpEJHlSqkmtTLTPTuNJs0Iz9m5VfVlFw3FZzHma1WS1u6poB+ADFWZlPgCgeNLBLxlyRlqFYyGvPiSt4RD03JpUQYqmuSSzrvAnMiEhzEzlLGOLRn7fAbCP/Ukrd0LKzuX+JMSX9B/PJ5kDbVKyIjTmsQlHJqWi+7ZaTRphhWjZ5clHiq9yVkUbVGGAk1WLyes7JJFdM/Onyxlp8JLOJI396lpuWhlp9GkEUqpiLIDKC9NzrCjVRkGINZkKbvQcYOSZCi+6J5doDI5MlpMGZO5hEPTctHKTqNJI4IhhZUgx8gGoLysOCnxWjEqfnsgSUN6UQrOU9545RTds0vWnqDhnp0jmLy5T03LRSs7jSaNCIQUNoKUW7MA8CRL2ZkVvz1JvZzo3lx5aeNN+4OB4/Ela0/QcG82mUs4NC0XrezqyJtvvomIsHHjxoRhtm/fztChQ5tUjpUrV/LOO+80+P7wIvTBgwczZMgQ/vKXvyRROk1jCQZDWEXhtRo9O295koYxwz27YHKsJwkd37DZU9Z4GaOHMZNlRBNenO8M6Z6dRiu7OvPiiy8yYcIEXnzxxbj+8bbyqi/h/SVrorHKzmaz8dBDD7F+/XqWLFnCE088wfr1yVnLpWk8QXOeyWtPsrIL93KSVfGHjisnbxIOmQ1GDWNKkqwnw8/sTtLyCE3LRiu7OlBWVsbixYuZO3cuL730UsR90aJFTJw4kQsvvJDBgwcDhtKbPn06gwYN4tJLL40cUfPhhx8yfPhw8vPzue666/B6vYCxrdidd97JiBEjeOWVV6qkG3uEjs/n45577mH+/PkUFhYyf/58ysvLue666xgzZgzDhw9nwQJjI9158+YxZcoUJk2aRL9+/fjd734HQOfOnRkxYgQA2dnZDBo0iD179lR75k8++SSye8rw4cMpLS1FKZXwOKLTTjuNKVOm0KdPH+666y5eeOEFxowZQ35+Plu3GpsPv/XWW4wdO5bhw4dz5plncuDAgWrpTps2jbfffjtyPWvWrMimzycC4R5OwNHG+J+kA1xtZi8naRV/1DBmMqwno5WdxZecYcewBaqbSkijzTM0zUPLWmf37l2wv/pGx42iUz6ce1+NQRYsWMA555xD//79ycvLY/ny5YwcORIw9r1cu3YtvXv3Zvv27WzatIm5c+cyfvx4rrvuOv76179y4403MmvWLD788EP69+/PzJkzefLJJ7nlllsAyMvLi+yjGU3sEToOh4N7772XZcuW8fjjjwPwq1/9ijPOOIN//vOfFBcXM2bMGM4880zAOJ5n7dq1ZGRkMHr0aM4///wqR+Fs376dFStWMHbs2GppP/jggzzxxBOMHz+esrIyXC4Xr7/+esLjiFatWsWGDRto164dffr04frrr2fp0qX85S9/4bHHHuORRx5hwoQJLFmyBBHhH//4Bw888AAPPfRQlXTDx/ecf/75+Hw+PvzwQ5588sk6vsyWT9BUIiFncpVdeBgzacouyhrTnwQZo7cLsybJiCas4O0EIeABuzsp8WpaJrpnVwdefPFFpk2bBhg9j+ihzDFjxtC7d+/Idffu3Rk/fjwAV199NYsXL2bTpk307t07sj/mNddcw6effhq554orroibbrwjdGJ5//33ue+++ygsLGTSpEl4PB527twJwFlnnUVeXh5ut5tLLrmExYsXR+4rKytj6tSpPPLII+Tk5MRN+7bbbuPRRx+luLgYm81W43FEo0ePpnPnzjidTk4++WQmT54MVD2+Z/fu3Zx99tnk5+fzpz/9Ke7xPeeeey4ff/wxXq+Xd999l1NPPRW3+8SppJRZ6StXrvHfm6SendnLyaQSn7/xB6RKlLJLxlKBUFTPLllGNOHF+QC+Cn3q+4lOk/fsROQc4C+AFfiHUqrmblRN1NIDawqOHDnCRx99xJo1axARgsEgIsKf/vQnoPpxPYmOzKmJREf+1OUIHaUUr732WrWTBb766quEsvj9fqZOncr06dO55JJL4qZ91113cf755/POO+8wfvx43nvvvRqfoS7H99x0003cdtttXHjhhSxatCjuDi4ul4tJkybx3nvvMX/+/Egj40QhPGcX7tkpb5LmrwgSUoJNQhwtL8OR26ZR8UnIj19ZsUswKUsFQkFzrlLZcSRL2akAXmw4JUBlaTGONh2TEq+mZdKkPTsRsQJPAOcCg4ErRWRwU6aZbF599VVmzJjBjh072L59O7t27aJ379589tlnccPv3LmTL7/8EoB//etfTJgwgQEDBrB9+3a2bNkCwHPPPcdpp51Wa9rxjtCJPb7n7LPP5rHHHiO8ofeKFccPqvzvf//LkSNHqKys5M0332T8+PEopfif//kfBg0axG233VZj2vn5+dx5552MHj2ajRs3Nuo4IoCSkhK6du0KwDPPPJMw3BVXXMHTTz/NZ599xjnnnFPn+FsDIbNhELRlEcQCyVgErhQOCXJMjOUMFWVJ2KEkdDw+5Wm8jOE5uxKycCTJiMZKiFJTxsokGNFoWjZNPYw5BtiilPpOKeUDXgKmNHGaSeXFF1/k4osvruI2derUhFaZAwYM4IknnmDQoEEcPXqUn/zkJ7hcLp5++mkuu+wy8vPzsVgs3HDDDbWmHe8IndNPP53169dHDFTuvvtu/H4/BQUFDBkyhLvvvjty/5gxY5g6dSoFBQVMnTqVUaNG8fnnn/Pcc8/x0UcfRQxQwtadc+bMiRz/88gjjzB06FAKCgqw2+2ce+65jTqOCIy9OC+77DJGjhxJ+/btI+7Lli3j+uuvj1xPnjyZTz75hDPPPBOHw1Hn+FsDyuzhiNVKBa6kGGuEe03llrCyK250nBLy4xMnXmU7frZdIwjLWGbJwp0kZWcjQJmp7LzlxUmJU9NyadIjfkTkUuAcpdT15vUMYKxS6sZ44fURP8lj3rx5VQxZTkRaYtnZuW0TPZ4ZwzeF/0u31Y/ybcYIxt/xcqPi9FaW4by/K1vs/enr38zaC99m6IgJjYpz6YMX0aViExnBUrZ1PIuRP326UfEtf/9fjPziJ6y1DaF3YCuZs6tb6tYHpRTlszux096HwYH1fHvmXPpNSHwQsaZ5OSGO+BGRH4nIMhFZdujQoeYWR6NpVkLhnUSsNrwWN7YkWCYG/MYQodduzNP5krB2zxIKEBQbFeJOykbLIdMK1WPLIRMPhBp3AnpIGdaYHrthfBWo0Mf8nOg0tbLbA3SPuu5mukVQSv1dKTVKKTWqQ4cOTSzOicOsWbNO6F5dSyVkWt2K2PBZM7AHGj+kF7t2LxmWiaKChLDisWRg9SdvGNNvyqgaOVcZCIWwEcRvKvhAkvbb1LRcmlrZfQ30E5HeIuIApgEL6xtJOp2mrmkZtNQyE+7hiNVKwJqZlB1P/AFjA4OgMxdIzto9iwoQEhseS3IUcnivzYApo6eRvc9AIIRNQgRMq9ZgEoxoNC2bJlV2SqkAcCPwHrABeFkpVX1xVQ24XC6KiopabOWlST1KKYqKinC5XM0tSr1R4T0nLTYC9qykKLvIvpPutsZ1Eip+YxjTis+SiSMJGy2HDXOUy5CxsrS4UfEFwsPBprJD9+xOeJp8nZ1S6h2gwZs5duvWjd27d6Pn8zT1weVy0a1bt+YWo96oQLhnZyNkzyJDNV7ZhefsJKMdAKEkbLRsUQGU2PDbMnB69zU6PoJhGQ1l52nkUoHwKQp2h4ty5UyKxaimZZP224XZ7fYqO5RoNK2ZkLmo3GKxohxZZFKJNxDEabM2OM6g3xjGDDnNnXKSsFDdooIELXYCtkxclY1XyOG5SqupkBu7VCBoKnir3UE5bq3sNM1vjanRaI5zfJ2dDRyZZOKh3NO4EzWCZpzYM/BiT8qpAlYVIGSxErJn4U5C75OQoZzs2XkA+BtpRBMIz31abFSKO2mbS2taLlrZaTRpRNgqUSx2xJWDTUKUlzdOOYV7OWJ1GBV/EpYKWAiixEbIkZWUpQJhJe8ylV1jjWgiSzhsdiolIylLODQtG63sNJo0QoWO9+ysLmPYsbyRO56E568sNhveJCk7q2mNicPcMqyRvcWwssvMNZYfNXZz6cg8pcWG15KRtM2lNS0Xrew0mjRChdfZWa3YMowDXD2NtEwMnyhgsdrxWpNT8VtVAGWxgcuUsbHbcZmHwWa0MbaRa+x+m6GIoY/dWK8Y1KeVn+hoZafRpBEqaq7J7jZ6dt5Gzl8d79nZ8VszcCSh4g8PY1qchrKrKG3kRstmzy4juw0+ZW300UbB4HFl57dl4NTK7oRHKzuNJo0wlqYalbQz01B2jTXWCEWUnQO/LTkL1W0qQMhqx+YO9+wauY4t5CeohExncqwnQ/7jSzgCtixcyTCi0bRotLLTaNKI8DCm1WrDlWksiG68sjOGMW12B0FbJq4knFZux0/I4sDmDu+32bienYT8+MWG1SJU4MbSyO3Cwj07i9VG0J5FRrJOaNe0WLSy02jSiMjSA4sNd3YuAMFG7v4RMJWd1WZHObJwq8pG70hkJ4Cy2HFkGL1PX0XjlV0AOwAV4sbaSCMaZW6RJjYHypGJE19kqFRzYqKVnUaTRihl9OwsUT27UCONNcK7stjsjshC9Up/sFFx2lWAkMWBw5Qx2MilApagD5+5x4XHkoGtkUY0IX9Y2TlRYYvRJOwco2m5aGWn0aQTZu/DYrMhLnNfx0Yaa4SC4WFMJ+I01sWVVfobFacdP8pqx2XOKwYaqZAtIR9+s2fntWY22mJUmb1ZsbkQZ9jQR59WfiKjlZ1Gk06Ejg9j4sgiiAVLY5VduGdns2NxZmEVRVljFqorhUOCYHHgModaQ40carWE/ATEUHbJsBgNmcOYFrsDiys5Szg0LRut7DSaNCK8g4rVagMRKiQDm69xikSFe3YONxZzoXpl6dEGxxfea1NZHWRlZBFQFpSncdaT1pDvuLKzZeEKNa5nF/R7ALA5XFiTZTGqadFoZafRpBFhZWe3m8YalqxGb3WlzIrf7nRjyzCGRr2NsJ70+4z4lNVOptNOOS5o5HyYJeTHbyq7oD0TdyOtJ8NzdnaHK2q9oh7GPJHRyk6jSSPCVoQ2hxMAjyUTR6BxikQCZi/H5caemQuAr7zhPTt/lPGHxSKUS0ajN5eO7tkpRzaZVDZqv81wz87ucGPPCC/h0MruREYrO40mnTCVnd3pBsBry8YdbOQmxoFwzy4DZ6ZxXpy/Edt7eSuNXpfFZipkcWPxN05GS8hPyFR24mz8fpsq3LNzuo4vzk/CCe2alotWdhpNOhEMV9IZAPjt2bhCjVMkEvQSUBZsNjuubPO08kb0crxeQ0ar2fv0WjIavS7OonyELKayMw1KGrNNWriH7HC4cWXlAhBs5ObSmpaNVnYaTToR8BJSgt3uMC7t2WQ10ljDEvAa59iJ4M4xTyv3FDc4Pp/X6NlZ7aays2ZiDzZORmvIT8hqPLMtfNrDsYYPtYZ3jbE73bizkrNeUdOy0cpOo0kjJGgoJqvV+GkGHTlkUkEw1PAdTyTowYuhSJzmnB2NWCoQNlCxmcOYAVtmozdatio/ymLIaDd3ZWnU5tLm0K3D5SLLnYFX2RttRKNp2Whlp9GkEWFlF8GVQ45UUu7xNjzSgBefGIoERzYhBGnE2j2fx+jZ2RwuAEL2zEZvtGxTfpTZs7Obu7I06tigyBZpTjKdVspwgVcf4Hoio5WdRpNGWALeiAk+AOYuKuXHihscpwS9BMLKzmKhHDfWRqzdC5hKw+bKBCDkyMbdSGXnUF5CVqOnGN4mrTHLIwh68SsrWCzYrBYqknCSgqZlo5WdRpNGSMiHzxxyBLC4cwGoLD3S4DgtAQ9+izNyXWHJxOZv+JBeeO7LYq5fU84cMlUlKtTw/TYzVSUBu2GYkmHuytKYpQIWfznl4o5ceyyNtxjVtGy0stNo0ghLsGrPLrwI3NMIZWcNeo737IBKSxb2RixUDyu78GJtXG2wiqK8rGHKSYVCZFFJyG4sOQgru0AjrCetvlIqJDNy7bVkYNPK7oRGKzuNJp0I+AhGKSaHuS7O14j5K2ewHK8tK3LttWbhaoSyU6ayc5gm/eHeZ3lxUYPi81SUYhFFyGH07LLDFqOVDe/Z2QKleCwZkWufNRO7Pq38hEYrO40mjbCEvAQsUcouy1B2gUYou4xQKV5bduTa2Huy4couYFpy5uTkAmDLMP43dKj1WMkRMx6jp+gKW082wmLUESjHaz2u4AO2zEZvLq1p2Whlp9GkEdZgJUGrK3LtyjZ6OcHK4gbHmRUqxW/PiVz77Tm4G7F2L1R5jJASMsydSeymQm6osistMdbTOcwhWxGhVDKx+Bres3MFy/Dbjg9jBpNgMapp2Whlp9GkERnBsipDjhmRIb3iBsWnQiGyVBnK1TbiFnRkk6UasQjcU0KZZCAWo/pwZoW3IGvYIvCKY8bwp8Nc/A1QIZlYfQ2fs3OHyiMGLwDKkUWGVnYnNFrZaTRpRGaoDJ/9eKWfaW7vpRo4pHes9BgOCWI1hxoBlDObLCoJBBpmPenyHuKopV3k2m32Pv1lxQ2Kz1+834gnt0vErdKahcPfsGcOBkO0U8UEMzocd3Rmk4mnURajmpaNVnYaTRqRTRkBx3FlZ7U7qFDOBh/gWnJwJwCWnE4RN+Vsg01ClJc1LM5M32FKbXmR64wc43uosmE9O9/R3QDkdOwecfNYs3A0cAPsI0UHcYsPiXpmcRq9vEp9pt0JS6OUnYjMFpE9IrLS/JwX5ff/RGSLiGwSkbMbL6pG07rxeipw441YN4YplcwGLwI/tn8bAM68nhE3i9tQpuHhw/qS4z+M132815TVxuh9NtR6MlCyl4Cy0K5D14ib356Dq6HKbt8OABxtu0XcrObm0mXH9DE/Jyq2JMTxsFLqwWgHERkMTAOGAF2AD0Skv1JKjyFoNAk4cvgAnQF7Vl4V98pGLAIv3b8VgI49+kbcrKayqyyrf0/MU1lOR3WY3W16RdxcTidlyo14G6ZIXKU7OGg9iS4Wa8QtYM8ms4FGNKX7vgUg86Q+EbewpWd5aXGD4tS0fJpqGHMK8JJSyquU2gZsAcY0UVoaTaug9KDRI7FH9UjAWATe0ANcLQfXUaGcdOh6XNmFlwp4GzDHtuvbNVhFYes4oIp7mWQ2eKi1feU2Drl6V3ELOts02IjGs3cdAF37F0bcwge4ehqg4DWtg2QouxtFZLWI/FNEwiZfXYFdUWF2m27VEJEficgyEVl26NChJIij0bRMyg8aQ44ZJ1Wt+L22LJwNXASeW7yObY6+iPX4II7dXAzeEOvJoo2fAdBl0Lgq7uUN7H0WFR2iR3AX/g5Dq7iLKwen+PF7629BmXFoJXulE66s4xaoLrNn59FzdicstSo7EflARNbG+UwBngROBgqBfcBD9RVAKfV3pdQopdSoDh061H6DRtNKqTxgDDl2ihpyBPDZsnE3YBF4RVkxvXxbKMsbVsU9rAQCDdh70rbzcw7Sjo69hlRx91iycDRA2W1f9j5WUeQMPqOqh7kBdlk9d2Xx+fz0rVjJ3rajq0ZnbkHma8R+m5qWTa1zdkqpM+sSkYg8BfzbvNwDdI/y7ma6aTSaBGQdXsUuOtE9t30Vd789h4wGzF+t++RVRoufrIILqrhHFqrXs+I/VnKEQaVfsLH9WZxkqdpO9tqyaROo/8hMYN0CSnHTa9ikKu7hpRIVx4po27F79RsTsHbxAkZIBc5Bk6u4Z5hr+Pz6tPITlsZaY3aOurwYWGt+XwhMExGniPQG+gFLG5OWRtOqUYquZWvZkTG4mlfIkUUW5aDqd4Br5qp5HJD2DBpzVhX3jJzw2r3iesW3/r1/kClessZdW83Pb8/GXU/ryQN7d1BQ8jGb8ibjcGVU8bNnhndlqd9Qqyz9O8VkMejUy6q4h9cr1lfBa1oPjZ2ze0BE1ojIauB04FYApdQ64GVgPfAf4GfaElOjSUzF4Z3kqSP4Og6v5hdytsFOEOWv+/zV2sULGexbw7a+M7HY7FX8MjOyjbPe6rFQvaL8GH3WP8lm+wD6jzyjmn/AkUNmPQ1Ktr42GzsBup5/ZzW/8J6g3rK6b0G2Zsl/Ge75is19rsHmdFfxC5+RF9IHuJ6wNGrpgVJqRg1+fwD+0Jj4NZoThZ2rP2Ug0Kbf96p7OsOWhMW422VW94+hsqKCnA/vYrd0ovDi26v5W60WSsjAUo/tuFY9cwencISiM5+MbBMWTciZY1hPhkIQxz+WjUv/y9jDb/BNh4sY3WdINX9XlrkrSx2NaDyV5WS/fyuHaEvB1OrKE7ubIBbw6mHMExW9g4pGkwaUf7cEr7LTt+CUan6WjPotAl/7z5/SQ+2h5PT/w5WRFTdMuWRiq+NC9dWLXuWUg/P5qsOlDBp7TvxATuNMO19l7XGWFB8h690bOWDpwMAZf44bJqONOa9Yx9MevvnnLfQK7eLA6X+O9OKqIEKlPq38hCYZi8pbJJWVHvZ9t5qju7+l4ug+xFeKHxtWdxvcnfrTY+BoOnbIqz0ijSYJZB1eyVZbHwZnVe+5Wc0dVTx1mL9avvBJRh9+g887Tmf8qZckDFdpycRWh7V7u77bRLdFt7LN0pP8WY8kDCfhM+1KinBk5iYMFwoE+O5vV5IfOsiW816kS5t2ccNlmluQ1eW0hyUL5vC9Qy+z9KTLGHNaTc+sD3A9kTlhlN3RokN8u/RdQt99Qt6RFfQI7KCPBOIHXge+D6ystg2iuOtEOo68mP75o+MO32g0jSXo99HTs4llHS6O62+PLAKvWdl9u3oJg5ffwzpHPqP/55Eaw1Zas3DVUvGXlRbje/5ycgnguuo5MjKzE4a1Rawnj9C2y8kJwy17+jbGVC7hq8G/YmyiXiKQnZmFV9nAU7NByYZlHzP8m9+wwZnPiOsfrzGs15KBNdCI0x7qSWVFOds3fM2RLcuxHt6AvXwfWd4DZIbKsKggCiiztqHc3g5Pmz5YOw2lXe/h9Bw0EofTVWv8mvrRqpXd9m/XsvfL+bTf9R4n+zYzRhQVysl3rkGs6TgNS+d82nQbRIfOPXDntMUSCnLsyAEO71hL+bef02bvZxTsfBJ2PsneN09iV/vTaFN4AX1GTsbhctcuQJhQkIqSQ5Qc3kfZ0QN4Sg7iO3aQUNlhqCgCTwkS8GIN+bAoH7aQHwUEsaIstqiPnZDFgbI6IPyxORGrA7E5EZsTi92J2ByELA5CVgcKC6KCoEKICiIqBCoEphsh83vI+PGhFEqFzP8KVMj4j4pxi/+oSkCir80riXJVEnarAYnjW8Ut0d1CtGgJ5UxwldjgUUWeJWE8qvrXmuILY608wkTx4+g5Om5Iex2O0DlyYBdZr19NmWTR6fp/4XA4EoYFCNiycPl2JfQPBYNsefJKhgZ3sun7/2RI32EJwwLYTOtJTw1n2q34998Ys+cZlrS9kLGX/aLG+CxWS627shzcs432/76WI5a2dPnRK9gcNSsIvy0Du7/plJ3PU8G3yz+iZP0HtD3wJX393zJIDLu8cuXikPUkypwdOGDvgRIbFhQO31FyfQfpsv8bXAdehFXge8PKFlsvitsMQjoXknvySNr1GEJuuw41N7iVwu8tp7zkKJXlJVSWFuMtL8FfWYK/ooRg5TFCnjLwHkN8ZVj85ahQiPCvNPzLUWIhKHaU1Q4WG8riAJsDLHbEZtQ7Rp3jIJDRgfHnz2yyPE0mrU7ZHTm4l83//QcdvnuTk4Nb6QV8a+3H0h7X075gMr2HncrQGn4UbbPyaNtjMEy8HICSAzvZ8vmr2L59j2EH38T131fwvm9nm60rxa5uhFy5BGxZWEUhoQAhvwe7rwS3v5jMYDFZwRJyVBkZosiIk16pclMmWQQsDvxiJyAOgmJHBBzKiyUQwKICWFUQq/JjUwHs+LGb/x34sUr9TNI16UclTvqMnBzXz2XueJJoEbinspxD/7iUHqqE3Re/Tr+OPWpNL+jIwVWZuOL/+p+3MrbiC74ccCennBq/xxlN+Ew7X4Le58ZlHzH461+zzpHP8BueqtMoSXkNG2B7KsooefoyuqhKDl3+Cp3bd44bLpqALRNnkg1Ujh07yvpPXsO68S2GlH3JEPESUBa+c/Tnm25X4+o5iq4Dx5DXrR+9ovb+jCUY8LN72zoObv4a7+6VZB1Zx8lFn9D2yL/B2P0Mv7JSLG3wiYOQWAlhwab8OJUHNx5cyotdFLlAbg0y+5WVcnHjwUVIjssUrkUshLCpIDYCxkcFsBPAJqFqca1SJ4NWdqln8zeL6LXgEsZJkM3WfnzV91b6nHoV/Xr0p18D42zTsQcjL7kNuI2ysmMs/+ItfN99jrtkK20rd+AuX0eWqiSE4MdGQOyUWbIps7ahxNkHv7MtIXc7yOiALbs9zpwOuHM7ktOuM23adyQrI4PseL2YOhIKKSp9frzeCnxeDz6vl4CvEgl6kZAfQkGjdSZWxCIosYJYEYsFi8WKmB+LxQIiWMSCWML/rVhEEBHDzWIxPmKErSa2UjE9mThK2AwQL5wKh1fxelqqauiYLpNSqoo8VfqAVdylmhu1hDW+qzjxRvsniKOO79ZtdeK2x2+EhQ9wDVYUV/NToRDrnpzBSP9Glo/7CyMLJ9YpPeXKIbM4/lKGr958grF7nmFJ2ymMm3ZXneILL1T3xel97t25lbx/X0eRpR1dfvQKzjoO0SXaADsUDLHmr1cz0r+FVROeYPjg+D3iWIL2LNyh/XUKWxOhYJA1n7+Nd+nTFJR+xjjxc4Q2rGt/NtaB59FvzNn0TzAXmQirzU63foV061cYlU6IHTu+5fC3X+Mv2kao9BDWysNYgl5QQSwqgLI4CNgyCNoyUPYMxJGJuHKwunKwZeTgyGiDI7MNrqxc3Nm5ZGXn4nZnktuAKRkVDOD3+/D5PAR8PgI+Lye1oHZ2q1J2vYeewrKvp9N54kz61/EHUB+ysnIYOXk6ML3GcCclPeXEWCyC2+XA7ap52ErTcsnLzcWnrATiKLsl8+7klGMf8mXvn3HKubPqHKe425IllVRUVpDhPj7msOaLdxm+4h7WuYYx8id164FBlPVkjIzHiouonDeVNlRSdMVrtO1Qew8sjMeajTuOEc2Xc29lfNnHLO17E2POqvm3GE3Q2ZY8SvEFQjhs9a/si4sOsentv9Bt28sMUwcoIYvVJ11Im1GX03/UmYy2Jrc6tVgt9OwzgJ59BtQeOAWI1YbDaqu2AUBLoVUpO7vDySk/fqy5xdBokkqmy84RMqpZJi5741FO2fl3lrU5m3Ezfl+vOCXHOBW8eP8OMnoPAmD7+qX0fP869ls70uOGV7A7nHWOL6+dscWZP2oRuKeygp1PXsKA4E42nflPhg4cWS8ZffYc8iqr9sS+mv8A4/fOY1nehYyefm+94gu682hLKSWVXvKy6z7nvnfPTjYvfICR+19lrFSy1lHAvvzbyT/rasa4al/3qEkPWpWy02haKxWWLCTqcNTl785j+Mp7WO0aScFPnqm3pbDdPMy1ZN93dOk9iJ1b1pHx8hV4cGGb+QbZbTvWKz6X08kB2mEtMY4p8vu8rH18GqO8K1k64j7GTLyoXvEB+LK7c1LZZ4QCfiw2O18ufIqx6//IyoxxFN4wt/7W0Zl52CREWUkRedndag2+e8cWti28j5GHF3IqPtblnkbWWXcydGichf+atEcrO42mBXDE0ZW2ldsBWPH2U+QvvZMtjoH0vemN+lkGm3TpMwQ+hpIdq9na5iRyXrkMO35KLn+Dnr0aNmy239GLtuVb8VSUsf7xKxhVsZivB9zOmCk/aVB8lg79cewPsnfbenauXsSY1b/lW+cQBt74CjZ7/YftLVnGBIOneD90S6zsdmxZx95//x8jjr5LJ0KszZtMlx/8ivw+NVukatIbrew0mhZAZfuhDNn9DF8/NpPRRQtY5xhKj58tiOzmX186dD2ZPXSk76Y5ZGx8mApxc+SyN+gzuOFnLJd3Gs2wnX9j75+GM0Id5KuBdzJ22q8aHF/ngu/DmruRF6YyjkOsdY/g5BsX4MrMaVB8lrZGbzZwaCswqpr/5tVLOPrfPzHy2Ed0xsLqky6g54X/j8Lu6TFnpmkcepW0RtMC6DjxWnzYGV20gK9yf8DJt71PdsxRQPVBLBb2jPkVgmJTxkj44SL6DGm4ogMY8INbWG8bhFcyWD1pbqMUHUCvfkNY3GkmFkIs6XYdA2/7D+6shik6gA69CwCo2L064hYMBFi16HVW3HcW/V8/m/zSz1jR+QrKfvINo342jw5a0bUaRNXz2JCmZNSoUWrZsmXNLYZGk5bs3fUdfm8FPfsOrT2wJi5b7i3EgZ+i0Xfg2f4VvQ/8l04c5ig5fNv7agZdeCvZbVNpT60BEJHlSqnq3e0koocxNZoWQpfufZpbhBbPkdG3M3zJzfT46ha8ys4mdyG7839F/venacvKVo5WdhqN5oRhzLkz2FdwKmWHdtKt33AKMuOfCqFpfWhlp9FoTig6d+0JXXs2txiaFKMNVDQajUbT6tHKTqPRaDStnrSyxhSRQ8COJETVHjichHhSgZa16WhJ8rYkWaFlyduSZIWWJW+yZO2plOqQhHgSklbKLlmIyLKmNmNNFlrWpqMlyduSZIWWJW9LkhValrwtSVY9jKnRaDSaVo9WdhqNRqNp9bRWZff35hagHmhZm46WJG9LkhValrwtSVZoWfK2GFlb5ZydRqPRaDTRtNaenUaj0Wg0EbSy02g0Gk2rp1UpOxE5R0Q2icgWEbmrueWJRkS6i8jHIrJeRNaJyM2m+2wR2SMiK83Pec0taxgR2S4ia0y5lplu7UTkvyLyrfm/bRrIOSAq/1aKyDERuSWd8lZE/ikiB0VkbZRb3LwUg0fNcrxaREakgax/EpGNpjxviEiu6d5LRCqj8nhOKmWtQd6E715E/p+Zt5tE5Ow0kHV+lJzbRWSl6Z4OeZuo3krLslsjSqlW8QGswFagD+AAVgGDm1uuKPk6AyPM79nAZmAwMBu4o7nlSyDzdqB9jNsDwF3m97uA+5tbzjjlYD/QM53yFjgVGAGsrS0vgfOAdwEBxgFfpYGskwGb+f3+KFl7RYdLo7yN++7N39wqwAn0NusMa3PKGuP/EHBPGuVtonorLctuTZ/W1LMbA2xRSn2nlPIBLwFTmlmmCEqpfUqpb8zvpcAGoGvzStUgpgDPmN+fAS5qPlHi8n1gq1IqGTvxJA2l1KfAkRjnRHk5BXhWGSwBckWkc0oEJb6sSqn3lVIB83IJ0C1V8tRGgrxNxBTgJaWUVym1DdiCUXekhJpkFREBLgdeTJU8tVFDvZWWZbcmWpOy6wrsirreTZoqExHpBQwHvjKdbjS7/P9Mh2HBKBTwvogsF5EfmW4dlVL7zO/7gY7NI1pCplG1skjXvIXEeZnuZfk6jNZ7mN4iskJEPhGRic0lVBzivft0ztuJwAGl1LdRbmmTtzH1Vosru61J2bUIRCQLeA24RSl1DHgSOBkoBPZhDGOkCxOUUiOAc4Gficip0Z7KGLdIm7UrIuIALgReMZ3SOW+rkG55mQgR+TUQAF4wnfYBPZRSw4HbgH+JSE5zyRdFi3n3UVxJ1YZa2uRtnHorQkspu61J2e0BukdddzPd0gYRsWMUmBeUUq8DKKUOKKWCSqkQ8BQpHFKpDaXUHvP/QeANDNkOhIclzP8Hm0/CapwLfKOUOgDpnbcmifIyLcuyiMwCfgBMNys4zOHAIvP7cow5sP7NJqRJDe8+XfPWBlwCzA+7pUvexqu3aGFlF1qXsvsa6Ccivc0W/jRgYTPLFMEcj58LbFBK/TnKPXo8+2Jgbey9zYGIZIpIdvg7hoHCWow8vcYMdg2woHkkjEuVlnG65m0UifJyITDTtGwbB5REDRk1CyJyDvBL4EKlVEWUewcRsZrf+wD9gO+aR8rj1PDuFwLTRMQpIr0x5F2aavnicCawUSm1O+yQDnmbqN6iBZXdCM1tIZPMD4Yl0GaMFtCvm1ueGNkmYHT1VwMrzc95wHPAGtN9IdC5uWU15e2DYbW2ClgXzk8gD/gQ+Bb4AGjX3LKacmUCRUCbKLe0yVsMJbwP8GPMY/xPorzEsGR7wizHa4BRaSDrFoy5mHDZnWOGnWqWj5XAN8AFaZK3Cd898GszbzcB5za3rKb7POCGmLDpkLeJ6q20LLs1ffR2YRqNRqNp9bSmYUyNRqPRaOKilZ1Go9FoWj1a2Wk0Go2m1aOVnUaj0WhaPVrZaTQajabVo5WdRqPRaFo9WtlpNBqNptXz/wFESzWNwXqeigAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" } - ], + }, "source": [ - "plot_response_comparison_for(arb_responses_fine_dt, nrn_responses_fine_dt, True, 9)" + "The optimisation has return us 4 objects: final population, hall of fame, statistical logs and history. \n", + "\n", + "The final population contains a list of tuples, with each tuple representing the two parameters of the model" ] }, { "cell_type": "code", - "execution_count": 60, - "metadata": {}, + "execution_count": 23, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Falsestep10.1000.030Spikecount1.0001.0001.0000.0000.0000.0000.000
time_to_first_spike4.7004.7004.3720.0000.0000.3287.510
time_to_last_spike4.7004.7004.3720.0000.0000.3287.510
step20.1000.030Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike1.7001.7001.4420.0000.0000.25817.878
....................................
Truestep10.1090.023time_to_last_spike41.60041.70041.2900.1000.2400.4100.994
step20.1090.023Spikecount5.0005.0005.0000.0000.0000.0000.000
time_to_first_spike2.2002.2001.8000.0000.0000.40022.246
time_to_second_spike14.30014.30013.9030.0000.0000.3972.859
time_to_last_spike49.40049.40049.0570.0000.0000.3430.700
\n", - "

120 rows × 7 columns

\n", - "
" - ], - "text/plain": [ - " Neuron Arbor \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 1.000 1.000 \n", - " time_to_first_spike 4.700 4.700 \n", - " time_to_last_spike 4.700 4.700 \n", - " step2 0.100 0.030 Spikecount 5.000 5.000 \n", - " time_to_first_spike 1.700 1.700 \n", - "... ... ... \n", - "True step1 0.109 0.023 time_to_last_spike 41.600 41.700 \n", - " step2 0.109 0.023 Spikecount 5.000 5.000 \n", - " time_to_first_spike 2.200 2.200 \n", - " time_to_second_spike 14.300 14.300 \n", - " time_to_last_spike 49.400 49.400 \n", - "\n", - " Arbor_int \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 1.000 \n", - " time_to_first_spike 4.372 \n", - " time_to_last_spike 4.372 \n", - " step2 0.100 0.030 Spikecount 5.000 \n", - " time_to_first_spike 1.442 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 41.290 \n", - " step2 0.109 0.023 Spikecount 5.000 \n", - " time_to_first_spike 1.800 \n", - " time_to_second_spike 13.903 \n", - " time_to_last_spike 49.057 \n", - "\n", - " abs_diff Arbor to Neuron \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - " time_to_last_spike 0.000 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.100 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - " time_to_second_spike 0.000 \n", - " time_to_last_spike 0.000 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - " time_to_last_spike 0.000 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.240 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 0.000 \n", - " time_to_second_spike 0.000 \n", - " time_to_last_spike 0.000 \n", - "\n", - " abs_diff eFEL to Arbor-internal \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.328 \n", - " time_to_last_spike 0.328 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 0.258 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.410 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 0.400 \n", - " time_to_second_spike 0.397 \n", - " time_to_last_spike 0.343 \n", - "\n", - " rel_abs_diff eFEL to Arbor-internal [%] \n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "False step1 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 7.510 \n", - " time_to_last_spike 7.510 \n", - " step2 0.100 0.030 Spikecount 0.000 \n", - " time_to_first_spike 17.878 \n", - "... ... \n", - "True step1 0.109 0.023 time_to_last_spike 0.994 \n", - " step2 0.109 0.023 Spikecount 0.000 \n", - " time_to_first_spike 22.246 \n", - " time_to_second_spike 2.859 \n", - " time_to_last_spike 0.700 \n", - "\n", - "[120 rows x 7 columns]" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Final population: [[0.10724858027620049, 0.030384510486737674], [0.10724858027620049, 0.030384510486737674], [0.10724858027620049, 0.030384510486737674], [0.10724858027620049, 0.030384510486737674], [0.10724858027620049, 0.030384510486737674], [0.08869789340527853, 0.02498056382291062], [0.09897779748630668, 0.02669588721168879], [0.1057605282594995, 0.030384510486737674], [0.1076294309890433, 0.030384510486737674], [0.09181168257196179, 0.02498056382291062], [0.09319078965060591, 0.03367988191444934], [0.09315627382586422, 0.030727169741078426], [0.09319078965060591, 0.03367988191444934], [0.09319078965060591, 0.03367988191444934], [0.10887316587433475, 0.03367988191444934], [0.09058616618750419, 0.033619209959752636], [0.09450057314084677, 0.030406932859913336], [0.09315627382586422, 0.030704747367902765], [0.09161282398694515, 0.029920395084114818], [0.09319078965060591, 0.03457319907176254]]\n" + ] } ], "source": [ - "spike_results_fine_dt = joint_spike_analysis(arb_responses_fine_dt, nrn_responses_fine_dt, replace_axon, params)\n", - "spike_results_fine_dt" + "print('Final population: ', final_pop)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "The best individual found during the optimisation is the first individual of the hall of fame" ] }, { "cell_type": "code", - "execution_count": 61, - "metadata": {}, + "execution_count": 24, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.0140.0360.0000.0000.0000.0000.10028.0000.3291.248-0.1080.0000.0000.0005.263
time_to_last_spike40.0000.0250.0490.0000.0000.0000.0000.20028.0000.4021.2330.0000.0000.0000.2255.263
time_to_second_spike12.0000.0170.0390.0000.0000.0000.0000.10012.0000.0670.1580.0000.0000.0000.0000.439
\n", - "
" - ], - "text/plain": [ - " abs_diff Arbor to Neuron \\\n", - " count mean std min 25% 50% \n", - "efel \n", - "Spikecount 40.000 0.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike 28.000 0.014 0.036 0.000 0.000 0.000 \n", - "time_to_last_spike 40.000 0.025 0.049 0.000 0.000 0.000 \n", - "time_to_second_spike 12.000 0.017 0.039 0.000 0.000 0.000 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - " 75% max count mean std \n", - "efel \n", - "Spikecount 0.000 0.000 28.000 0.000 0.000 \n", - "time_to_first_spike 0.000 0.100 28.000 0.329 1.248 \n", - "time_to_last_spike 0.000 0.200 28.000 0.402 1.233 \n", - "time_to_second_spike 0.000 0.100 12.000 0.067 0.158 \n", - "\n", - " \n", - " min 25% 50% 75% max \n", - "efel \n", - "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike -0.108 0.000 0.000 0.000 5.263 \n", - "time_to_last_spike 0.000 0.000 0.000 0.225 5.263 \n", - "time_to_second_spike 0.000 0.000 0.000 0.000 0.439 " - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Best individual: [0.09181168257196179, 0.02498056382291062]\n", + "Fitness values: (0.0, 0.0)\n" + ] } ], "source": [ - "spike_results_fine_dt[['abs_diff Arbor to Neuron',\n", - " 'rel_abs_diff Arbor to Neuron [%]']].groupby('efel').describe()" + "best_ind = hall_of_fame[0]\n", + "print('Best individual: ', best_ind)\n", + "print('Fitness values: ', best_ind.fitness.values)" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "The outlier in `time_to_last_spike` is gone now, both visually and quantitatively." + "We can evaluate this individual and make use of a convenience function of the cell evaluator to return us a dict of the parameters" ] }, { "cell_type": "code", - "execution_count": 62, - "metadata": {}, + "execution_count": 25, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NeuronArborArbor_intabs_diff Arbor to Neuronrel_abs_diff Arbor to Neuron [%]abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
replace_axonprotocolgnabar_hhgkbar_hhefel
Truestep10.1200.030time_to_last_spike48.10048.30047.8920.2000.4160.4080.853
0.1090.023time_to_last_spike41.60041.70041.2900.1000.2400.4100.994
Falsestep20.0500.050time_to_last_spike2.4002.5002.1420.1004.1670.35816.694
step10.1200.030time_to_last_spike41.70041.80041.5240.1000.2400.2760.664
Truestep20.1000.030time_to_last_spike41.70041.80041.3980.1000.2400.4020.970
\n", - "
" - ], - "text/plain": [ - " Neuron Arbor \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "True step1 0.120 0.030 time_to_last_spike 48.100 48.300 \n", - " 0.109 0.023 time_to_last_spike 41.600 41.700 \n", - "False step2 0.050 0.050 time_to_last_spike 2.400 2.500 \n", - " step1 0.120 0.030 time_to_last_spike 41.700 41.800 \n", - "True step2 0.100 0.030 time_to_last_spike 41.700 41.800 \n", - "\n", - " Arbor_int \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "True step1 0.120 0.030 time_to_last_spike 47.892 \n", - " 0.109 0.023 time_to_last_spike 41.290 \n", - "False step2 0.050 0.050 time_to_last_spike 2.142 \n", - " step1 0.120 0.030 time_to_last_spike 41.524 \n", - "True step2 0.100 0.030 time_to_last_spike 41.398 \n", - "\n", - " abs_diff Arbor to Neuron \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "True step1 0.120 0.030 time_to_last_spike 0.200 \n", - " 0.109 0.023 time_to_last_spike 0.100 \n", - "False step2 0.050 0.050 time_to_last_spike 0.100 \n", - " step1 0.120 0.030 time_to_last_spike 0.100 \n", - "True step2 0.100 0.030 time_to_last_spike 0.100 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "True step1 0.120 0.030 time_to_last_spike 0.416 \n", - " 0.109 0.023 time_to_last_spike 0.240 \n", - "False step2 0.050 0.050 time_to_last_spike 4.167 \n", - " step1 0.120 0.030 time_to_last_spike 0.240 \n", - "True step2 0.100 0.030 time_to_last_spike 0.240 \n", - "\n", - " abs_diff eFEL to Arbor-internal \\\n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "True step1 0.120 0.030 time_to_last_spike 0.408 \n", - " 0.109 0.023 time_to_last_spike 0.410 \n", - "False step2 0.050 0.050 time_to_last_spike 0.358 \n", - " step1 0.120 0.030 time_to_last_spike 0.276 \n", - "True step2 0.100 0.030 time_to_last_spike 0.402 \n", - "\n", - " rel_abs_diff eFEL to Arbor-internal [%] \n", - "replace_axon protocol gnabar_hh gkbar_hh efel \n", - "True step1 0.120 0.030 time_to_last_spike 0.853 \n", - " 0.109 0.023 time_to_last_spike 0.994 \n", - "False step2 0.050 0.050 time_to_last_spike 16.694 \n", - " step1 0.120 0.030 time_to_last_spike 0.664 \n", - "True step2 0.100 0.030 time_to_last_spike 0.970 " - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "{'step1.Spikecount': 0.0, 'step2.Spikecount': 0.0}\n" + ] } ], "source": [ - "spike_results_fine_dt[ [el[spike_results_fine_dt.index.names.index('efel')] == 'time_to_last_spike'\n", - " for el in spike_results_fine_dt.index] ].sort_values(\n", - " by='abs_diff Arbor to Neuron', ascending=False).head(5)" + "best_ind_dict = cell_evaluator.param_dict(best_ind)\n", + "print(cell_evaluator.evaluate_with_dicts(best_ind_dict))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "As you can see the evaluation returns the same values as the fitness values provided by the optimisation output. \n", + "We can have a look at the responses now." ] }, { "cell_type": "code", - "execution_count": 63, - "metadata": {}, + "execution_count": 26, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abs_diff eFEL to Arbor-internalrel_abs_diff eFEL to Arbor-internal [%]
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
efel
Spikecount40.0000.0000.0000.0000.0000.0000.0000.00028.0000.0000.0000.0000.0000.0000.0000.000
time_to_first_spike28.0000.3250.0420.2480.2990.3270.3480.40028.00012.9136.573-0.3587.82014.73718.01822.566
time_to_last_spike28.0000.3320.0430.2480.3010.3280.3610.41028.0007.5076.9180.5940.8845.85214.58920.832
time_to_second_spike12.0000.3440.0430.2790.3050.3470.3750.40512.0004.3825.9041.3182.0522.3802.71222.101
\n", - "
" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8dUlEQVR4nO3de3xcdZ34/9d77rk1vaSUXkmhLbbQ0pYuFwEVAS2gIH4FW/D284KssoLuFlFYUBd3F13Rn7uKXxC5eIF6Aa3cBLQqsBRIS+mVQnqjadM2Tds018nMnM/3j3NmcpJM2iRzkjmTeT8fjzw6c2bmzDsn0/Oez+fzPp+PGGNQSiml/CaQ7wCUUkqpbDRBKaWU8iVNUEoppXxJE5RSSilf0gSllFLKl0L5DsCtqqrKVFdX5zsMpZRSw2j16tUHjDHje273VYKqrq6mpqYm32EopZQaRiKyM9t27eJTSinlS5qglFJK+ZImKKV8rjWeZGtDS77DUGrY+WoMSinV27/+YQOPrtnN67e/j8qScL7DUTlKJBLU1dXR0dGR71CGXSwWY8qUKYTD/fsca4JSyude33UYgF0H26icXJnfYFTO6urqqKiooLq6GhHJdzjDxhhDY2MjdXV1TJ8+vV+v0S4+pXyuNGJ/j2yJJ/McifJCR0cH48aNK6rkBCAijBs3bkAtR01QSvlcSSQI2GNRamQotuSUNtDfWxOUUj5XErYTlLagVLHRBKWUz6UTVHOHJig1NH7wgx/Q1tY26Nf//e9/Z+HChYRCIX772996FlfOCUpEporIShHZJCIbReQGZ/s3RGS3iKx1fi7JPVylio928amhlmuCmjZtGg888ABXX321h1F5U8WXBP7ZGLNGRCqA1SLyrPPY940x/+XBeyhVtKIh+3ukdvEpL7S2tnLVVVdRV1dHKpXiyiuvZM+ePZx//vlUVVWxcuVKnnnmGW6//Xbi8TgnnXQS999/P+Xl5VRXV3PVVVfx1FNPUVJSwq9+9StmzJhBeg7VQMDbTrmcE5Qxph6od243i8hmYHKu+1VK2SxjAGjrTOU5EuW1b/5xI5v2HPF0n3MmjeL2D57S5+NPP/00kyZN4oknngCgqamJ+++/n5UrV1JVVcWBAwe44447eO655ygrK+POO+/krrvu4rbbbgOgsrKS9evX89BDD3HjjTfy+OOPexq/m6fpTkSqgQXAy86m60VknYj8TETGePleShWLlGX/257QBKVyN3fuXJ599lm++tWv8vzzz1NZ2f3aulWrVrFp0ybOOecc5s+fz4MPPsjOnV1zuS5dujTz70svvTSksXp2oa6IlAO/A240xhwRkbuBfwOM8+/3gE9ned21wLVg92MqpbpLWXaGatcW1IhztJbOUJk1axZr1qzhySef5NZbb+WCCy7o9rgxhosuuoiHH3446+vdpeJDXS7vSQtKRMLYyemXxphHAYwx+4wxKWOMBdwLnJHttcaYe4wxi4wxi8aP77UciFJFL2X38NHWqWNQKnd79uyhtLSUj33sYyxbtow1a9ZQUVFBc3MzAGeddRYvvvgitbW1gD1m9eabb2Zev3z58sy/Z5999pDGmnMLSuwUeh+w2Rhzl2v7RGd8CuAKYEOu76VUMbIsO0O1J6w8R6JGgvXr17Ns2TICgQDhcJi7776bl156icWLFzNp0iRWrlzJAw88wNKlS4nH4wDccccdzJo1C4BDhw4xb948otFoppX16quvcsUVV3Do0CH++Mc/cvvtt7Nx48acYxXjDMAOegci5wLPA+uB9P+grwNLgfnYXXw7gM+7ElZWixYtMrpgoVLdXffz1Ty9cS//UD2G31z3znyHo3K0efNmZs+ene8wBiW9qGxVVdWg95Ht9xeR1caYRT2f60UV3wtAto7IJ3Pdt1IKUlrFp4qUzmaulM+lMl18mqBUfu3YsWNY30+nOlLK5zIJSltQI0auQyuFaqC/tyYopXxOL9QdWWKxGI2NjUWXpNLrQcVisX6/Rrv4lPI57eIbWaZMmUJdXR0NDQ35DmXYpVfU7S9NUEr5XNJJUJ1Ji5RlCAaKcy2hkSIcDvd7Rdlip118Svlc+joo0FaUKi6aoJTyuZRrrEJnk1DFRBOUUj7XrQWlhRKqiGiCUsrnktrFp4qUJiilfC5lGSJB+7+qlpqrYqIJSimfs4yhPGYX3GoXnyommqCU8rmUZSiPaoJSxUcTlFI+505QbToGpYqIJiilfC7VrYtPy8xV8RjyBCUii0Vki4jUisjNQ/1+So00lgUV2sWnitCQJigRCQI/Ai4G5gBLRWTOUL6nUiNNyupqQWkXnyomQ92COgOoNcZsM8Z0Ao8Alw/xeyo1oiQtQ2kkiAh0aAtKFZGhTlCTgV2u+3XOtgwRuVZEakSkphhn91XqWCxjTxBbEg7qdVCqqOS9SMIYc48xZpExZtH48ePzHY5SvpOyDEERSiNB7eJTRWWoE9RuYKrr/hRnm1KqnyzLEAgIsXBQu/hUURnqBPUqMFNEpotIBFgCrBji91RqRElahlDAaUFpglJFZEgXLDTGJEXkeuBPQBD4mTFm41C+p1IjTcrYLaiSSEi7+FRRGfIVdY0xTwJPDvX7KDVSWc4YVEk4oF18qqjkvUhCKXV0KaeKrzQSoi2hM0mo4qEJSikfsyyDMdhl5joGpYqMJiilfCy93LvdxadVfKq4aIJSysdSzmq6gYBeB6WKjyYopXzMSregnJkkdLJYVUw0QSnlY+kWVMgZg4onrcw2pUY6TVBK+Vimi8+Z6gigXbv5VJHQBKWUj6UTVLqLD3RNKFU8hvxCXaXU4KWr+AKaoFQR0haUUj5mWfa/6bn4AL1YVxUNTVBK+VjSyVDp66BAW1CqeGiCUsrH0i2ogFPFB5qgVPHQBKWUj2VmkgjQ1cWnCUoVCU1QSvlYVxVfoKuLT8vMVZHIKUGJyHdF5A0RWScij4nIaGd7tYi0i8ha5+cnnkSrVJHJJCjRLj5VfHJtQT0LnGqMmQe8CXzN9dhWY8x85+e6HN9HqaLU1YKC0oh9VYi2oFSxyClBGWOeMcaka15XAVNyD0kplZaeiy/gquLTMShVLLwcg/o08JTr/nQReU1E/iYi5/X1IhG5VkRqRKSmoaHBw3CUKnzJ9Fx8QSEWDiAC7Z16HZQqDsecSUJEngOOz/LQLcaYPzjPuQVIAr90HqsHphljGkXkdOD3InKKMeZIz50YY+4B7gFYtGiRzoKplEsiZdeZh4MBxGlFaRefKhbHTFDGmAuP9riIfAr4AHCBMXZ/hDEmDsSd26tFZCswC6jJNWClikki2ZWgAErCuqquKh65VvEtBm4CLjPGtLm2jxeRoHP7RGAmsC2X91KqGHU6LahIyElQEV0TShWPXCeL/R8gCjwrIgCrnIq9dwHfEpEEYAHXGWMO5vheShWdRMru9Y64WlDaxaeKRU4Jyhgzo4/tvwN+l8u+lVLdx6DAnk1Cu/hUsdCZJJTysa4EJYB28anioglKKR+LZymS0C4+VSw0QSnlY4keRRKlkRBteh2UKhKaoJTysV5l5pEgHQkrnyEpNWw0QSnlY5kqvpD7OihtQanioAlKKR/r7FEkoVV8qphoglLKxzJVfIGuLr540sKydFYwNfJpglLKxxIpi1BACAScMnNdtFAVEU1QSvlYZ9Ii5HTvgS77roqLJiilfKy1M0VZpGvClxLndoe2oFQR0ASllI+1dCSpiLkSlC5aqIqIJiilfKy5I0FFLJy539XFp6XmauTTBKWUjzX3bEFFtEhCFQ9NUEr5WEs8exefThirikGuCxZ+Q0R2i8ha5+cS12NfE5FaEdkiIu/PPVSlik9zR5LyaO8uPm1BqWKQ64KFAN83xvyXe4OIzAGWAKcAk4DnRGSWMUb/VynVT8YYGlriVFVEMttKtMxcFZGh6uK7HHjEGBM3xmwHaoEzhui9lBqRDrZ20pm0mDgqltmmXXyqmHiRoK4XkXUi8jMRGeNsmwzscj2nztnWi4hcKyI1IlLT0NDgQThKjQz1TR0AHF9ZktlW6lwHpV18qhgcM0GJyHMisiHLz+XA3cBJwHygHvjeQAMwxtxjjFlkjFk0fvz4gb5cqRFr+4FWAKaO7UpQUWdWc+3iU8XgmGNQxpgL+7MjEbkXeNy5uxuY6np4irNNKdVPb+w9QjAgzDiuPLMtEBB7VV29DkoVgVyr+Ca67l4BbHBurwCWiEhURKYDM4FXcnkvpYrNq9sPMXtiBdFQsNv20ogu+66KQ65VfN8RkfmAAXYAnwcwxmwUkV8Dm4Ak8EWt4FOq/5raE6x5+xDXvuvEXo/FwromlCoOOSUoY8zHj/LYt4Fv57J/pYrVo2vqSFqGi0+d2Oux0khQq/hUUdCZJJTymeaOBD99fjvzp45m7pTKXo8PZxdfazzJnsPtOnu6ygsvLtRVSnnoW3/cRH1TOz9cOj/r40PZxWeMYfXOQzyxvp4/b97P2wfbAIgEA7z75PEse//JzJpQMSTvrVRPmqCU8pGnN+zlN6vruP78GZx+wtiszymNBGls7fT0fTuTFr9fu5sHXtzBpvojREMBzp1RxUf/YSpjyyJs3d/Cr2t28YH/foE7PnQqVy2aeuydHkVHIkVDc5xEyiIcDDC+IkosHDz2C1VR0QSllE/sb+7g64+t59TJo/jSBTP7fF5pJMSuQ+2evGfKMjz22m5+8Nyb1B1q5+QJFfzHh+dy2WmTKIt2Pz1c956TuOGR17jpt+vYsreZr18ym2BA+thzF2MMb+5r4YXaA7xYe4BNe46w90hHr+dVlUc5dfIoTp1UyeyJozj5+Aqqx5USCmYfibAsw+H2BAda4hxs7eRwWyeH2hIcauukvTOFZQyWgbJIkE+8s5pRrmVLVGEoqgSVTFm0xlMkLYuyaEi/sSnfMMbw1d+uozWe5PtXzScS6nt4OBb2pkjif2sPcPuKjby1v4VTJ4/i3z50Ku+ZNR6R7EmnqjzKg//fGdzxxGbue2E7tftb+OGSBVSW9j7x723q4MXaA7zg/DQ0xwGYXlXGO08axwnjyphYGSMSCtCZsmhojrOtoZWNe5p4/q0DpCwDQCQU4PhRMUaXhomFgnSmLDoSKQ62dnKwtZOk87yeRCAogggkUobN9c38z9UL+vzdlD+N6AS1s7GVP2/ez6ptjWzee4Q9hzsyH3yAiliIqWNKecfxFZzs/Jw0vpxJo0v69c1QKa/86pW3Wbmlgds/OIeZxxjjybVIoqE5zref2MTv1+5h2thS7r5mIYtPPb5fJ+9QMMA3LjuFWRMquO0PGzjvO3/h0nmTOLGqjM6UxbaGVlbvPMiORnvsalxZhHfOqOK8GVW8c8Y4powpPeZ7dCRS1O5v4Y29zWzZe4T9zXEOtyWIJ1OMioSpKo8yb0olVeVR+6ciyriyCKNLw4wpjTCmNJKZVBfgRytr+e6ftnDWqrF8/OzqQR83gHjS7pps60zR3pkinrQICISDAUJBIRIMEA0FiYYDREMBIiH7vp5PBmfEJahkyuLxdfU89NIO1rx9GIBpY0tZMHUMl59WypiyCEGB1s4U+490sL2xjRe3HuDR17omuggHhaljS6kqjzIqFqI8GkJEsIzBGEgZQyJpkUhZJFKGzlT6tkUiaUikLNc2+7np++n8mD4XCGRODOmPsAgIridknpe+La7npV+TeQU9XqoKQEs8yXkzq/hkP06gpZHgoFfU/csb+1j2m3U0dyT50ntn8IXzZwyqJ+HqM6dx2tRKfrxyK4+/vofmuB1PVXmUBdNGc82ZJ/DOGeOYffwoAgM8OcfCQU6dXMmpk3tXMA7GP777JNbsPMQ3/7iJSaNLuGD2hGO+pr0zxab6I2zY3cT63U28sfcI9Yc7Bj32FwoI0VCAaDhINBQgHAxgsM8nxuB0Rxrntt2itoyhZ/vQZGkwmmwbh9Gf//k9jK+IDsm+R1SCqm9qZ8k9q9jZ2MZJ48v46uJ38IF5E5k69tjf2g61dvLmvmZ2NLay/UAbOxtbOdjayZ7DHbQ4//nSCSEQsL8pRZwPWjgolEdDRILO/ZC9LX0/5LodCEjmU2bo+sClP4rGkPlQdnssczv9mHE9nn0/qnCURIJ85tzp/TqZx8JBOhIWlmX6ffKPJ1P8+xObefClncyeOIpHrp1/zJbasZwyqZIfXbMQyzK0diYJBQLdWi5+EQgI318yn6vvXcW1P1/NF95zElefOY2JziS8Te0JtuxtZnP9EdbvbmLD7ibe2t+S6W2pKo8we+Io5k4ezcTKGBNGRSmPhomF7daRwflSmv5ymrSIJy3iSbuFFU903e50tncmLftLpUBAhIDzpTQQsL9sZu5n+fP6rZsyFh66q5VGVII6flSMhdPG8PVLZnPR7AkD+uY2pizCmSeO48wTxw1hhErlLr1oYUcylZnd/GgOtMT5/M9Xs3rnIT5z7nRuWnxyr+mTchEICBU+L0AYFQuz/NqzueWx9fz3X2r577/UUhoJkrIM8aSVeV5VeYRTJ1dy0ZwJnDq5knlTKjl+VMx3SaFYjKgEJSJ8/6Pz8x2GUkOq1LVo4bES1Ob6I3z2wRoaW+P8+JqFXDK398wUxaIsGuIHSxZw/Xtn8tct+9lzuINQUBhbFuHkCRXMnjiKCaOimox8ZEQlKKWKQayfixY+t2kfNzzyGuWxEL/5/DuzzkpRjGYcV95thnjlX5qglCowx1q00BjDvc9v4z+eeoO5kyu59xOLmOBalVepQqEJSqkCUxLpe9HCzqTFv/5+A8trdnHp3In815Wn+bJwQan+0ASlVIEpCTstqB4JqrElzvW/eo2XtjXyT++dwZcvnDXgEm+l/CSnBCUiy4GTnbujgcPGmPkiUg1sBrY4j60yxlyXy3sppWzpIon2RNe1UC/WHuDG5Wtpak/w/Y+exhULpuQrPKU8k+t6UB9N3xaR7wFNroe3GmPm57J/pVRvZVE7QR1uS9DQHOc7T7/Bb1bXMeO4ch769BnMnjgqzxEq5Q1PuvjErsu8CnivF/tTSvWtelwZFbEQdzyxmbbO9aQsw+fffSI3XDCzX9dFKVUovLoE+DxgnzHmLde26SLymoj8TUTO6+uFInKtiNSISE1DQ4NH4Sg1coWCAf7lfSczKhbi8tMm86cb38XXLp6tyUmNOHKseZxE5Dng+CwP3WKM+YPznLuBWmPM95z7UaDcGNMoIqcDvwdOMcYcOdp7LVq0yNTU1Az8t1BKKVWwRGS1MWZRz+3H/MpljLnwGDsOAR8GTne9Jg7EndurRWQrMAvQ7KOUUqpfvOjiuxB4wxhTl94gIuNFJOjcPhGYCWzz4L2UUkoVCS86rZcAD/fY9i7gWyKSACzgOmPMQQ/eSymlVJE45hjUcBKRBmCnB7uqAg54sJ/hUEixQmHFW0ixQmHFW0ixQmHFW0ixgjfxnmCMGd9zo68SlFdEpCbbgJsfFVKsUFjxFlKsUFjxFlKsUFjxFlKsMLTxDt1KU0oppVQONEEppZTypZGaoO7JdwADUEixQmHFW0ixQmHFW0ixQmHFW0ixwhDGOyLHoJRSShW+kdqCUkopVeA0QSmllPKlEZWgRGSxiGwRkVoRuTnf8fQkIlNFZKWIbBKRjSJyg7P9GyKyW0TWOj+X5DtWABHZISLrnZhqnG1jReRZEXnL+XdMvuMEEJGTXcdvrYgcEZEb/XJsReRnIrJfRDa4tmU9lmL7ofM5XiciC30S73dF5A0npsdEZLSzvVpE2l3H+Cc+iLXPv7uIfM05tltE5P3DGetR4l3uinWHiKx1tuf72PZ1zhqez64xZkT8AEFgK3AiEAFeB+bkO64eMU4EFjq3K4A3gTnAN4B/yXd8WeLdAVT12PYd4Gbn9s3AnfmOs4/Pwl7gBL8cW+zZVRYCG451LIFLgKcAAc4CXvZJvO8DQs7tO13xVruf55NYs/7dnf9vrwNRYLpzzgjmO94ej38PuM0nx7avc9awfHZHUgvqDOwZ1bcZYzqBR4DL8xxTN8aYemPMGud2M/aqw5PzG9WAXQ486Nx+EPhQ/kLp0wXYC2Z6MSuJJ4wxfwd6TvfV17G8HHjI2FYBo0Vk4rAE6sgWrzHmGWNMehnfVYAvlu3t49j25XLgEWNM3BizHajFPncMm6PFK5JZW6/n9HF5cZRz1rB8dkdSgpoM7HLdr8PHJ38RqQYWAC87m653msQ/80u3GWCAZ0RktYhc62ybYIypd27vBSbkJ7Sj6jk/pB+PLfR9LAvhs/xp7G/KadOlH+u/DbNsf3e/H9tBr6031Hqcs4blszuSElTBEJFy4HfAjcZeI+tu4CRgPlCP3cT3g3ONMQuBi4Evisi73A8au03vq+sURCQCXAb8xtnk12PbjR+PZV9E5BYgCfzS2VQPTDPGLAC+AvxKRPK97nxB/N2zWEr3L1e+OLZZzlkZQ/nZHUkJajcw1XV/irPNV0QkjP2H/qUx5lEAY8w+Y0zKGGMB9zLMXQ59Mcbsdv7dDzyGHde+dJPd+Xd//iLM6mJgjTFmH/j32Dr6Opa+/SyLyKeADwDXOCcmnO6yRuf2auxxnVl5C5Kj/t39fGzTa+stT2/zw7HNds5imD67IylBvQrMFJHpzrfoJcCKPMfUjdO/fB+w2Rhzl2u7u4/2CmBDz9cONxEpE5GK9G3sAfIN2Mf0k87TPgn8IT8R9qnbN1A/HluXvo7lCuATTkXUWUCTqzslb0RkMXATcJkxps213Xfrvx3l774CWCIiURGZjh3rK8MdXx98t7ZeX+cshuuzm6/qkKH4wa4geRP7W8Yt+Y4nS3znYjeF1wFrnZ9LgJ8D653tK4CJPoj1ROxqp9eBjenjCYwD/gy8BTwHjM13rK6Yy4BGoNK1zRfHFjtp1gMJ7H75z/R1LLEroH7kfI7XA4t8Em8t9vhC+rP7E+e5/8f5jKwF1gAf9EGsff7dgVucY7sFuNgPx9bZ/gD22nnu5+b72PZ1zhqWz65OdaSUUsqXRlIXn1JKqRFEE5RSSilf0gSllFLKlzRBKaWU8iVNUEoppXxJE5RSSilf0gSllFLKlzRBKaWU8iVNUEoppXxJE5RSSilf0gSllFLKl0L5DsCtqqrKVFdX5zsMpZRSw2j16tUHjDHje273VYKqrq6mpqYm32EopZQaRiKyM9t27eJTSinlS5qglFJK+ZImKKV8xBjDnU+/web6I/kORam889UYlFLFrqk9wd1/3crDr7zN2tvel+9w1BBIJBLU1dXR0dGR71CGXSwWY8qUKYTD4X49XxOUUj5ypD0JwOG2RJ4jUUOlrq6OiooKqqurEZF8hzNsjDE0NjZSV1fH9OnT+/Ua7eJTykeOdGhiGuk6OjoYN25cUSUnABFh3LhxA2o5aoJSykcSKSvfIahhUGzJKW2gv7cmKKV8xDIm3yEo5RuaoJTyEUvzk8qDH/zgB7S1tQ369XfddRdz5sxh3rx5XHDBBezcmfW62wHTBKWUj6Q0Q6k8yDVBLViwgJqaGtatW8dHPvIRbrrpJk/i0gSllI9YmqDUEGttbeXSSy/ltNNO49RTT+Wb3/wme/bs4fzzz+f8888H4JlnnuHss89m4cKFXHnllbS0tAD2dHQ33XQTc+fO5YwzzqC2thaA888/n9LSUgDOOuss6urqPIlVy8yV8hF3fjLGFO1gerH45h83smmPtxdlz5k0its/eEqfjz/99NNMmjSJJ554AoCmpibuv/9+Vq5cSVVVFQcOHOCOO+7gueeeo6ysjDvvvJO77rqL2267DYDKykrWr1/PQw89xI033sjjjz/ebf/33XcfF198sSe/i7aglPKRlKtIIp7Uij7lvblz5/Lss8/y1a9+leeff57Kyspuj69atYpNmzZxzjnnMH/+fB588MFuY0pLly7N/PvSSy91e+0vfvELampqWLZsmSexagtKKR9xd/G1xpPEwsE8RqOG2tFaOkNl1qxZrFmzhieffJJbb72VCy64oNvjxhguuugiHn744ayvd7fq3befe+45vv3tb/O3v/2NaDTqSazaglLKR9xl5q3xVB4jUSPVnj17KC0t5WMf+xjLli1jzZo1VFRU0NzcDNhjSC+++GJmfKm1tZU333wz8/rly5dn/j377LMBeO211/j85z/PihUrOO644zyLVVtQSvmIu4qvtTPp2X73HG5nYmVMx7QU69evZ9myZQQCAcLhMHfffTcvvfQSixcvZtKkSaxcuZIHHniApUuXEo/HAbjjjjuYNWsWAIcOHWLevHlEo9FMK2vZsmW0tLRw5ZVXAjBt2jRWrFiRc6xifHRh4KJFi4wuWKiK2dMb6rnuF2sA+N0/vpPTTxiT8z5r97dw4V1/49ZLZ/PZ807MeX8Aq7Y1MuO4cqrKvenK2dnYyoRRMc+6NNs7UwQDQiTkv06izZs3M3v27HyHMSjpRWWrqqoGvY9sv7+IrDbGLOr5XP/99ZQqYu4qvo6EN118Dc32t+An1td7sr/OpMWSe1bxifte8WR/xhje/d2/8vH7XvZkfwCzb3uaa366yrP9qfzQLj6lfMTdxdfW6U2Ciift/XjVWbK3yZ7sc5NHa1Z1JOxqxVd3HPJkf2le70/Bjh07hvX9tAWllI+4iyTaPBqDaonb+/Fq+Kndo5ZdWjo+rxTCxc5+GloZTgP9vTVBKeUj7gTV7lELKt0q6/Touqqk5e31Wa0eJ6ikzxNULBajsbGx6JJUej2oWCzW79doF59SPuJebcOrLr5kyj4RejWmld6fVzo9XmLE6wTqtSlTplBXV0dDQ0O+Qxl26RV1+0sTlFI+0q0F5VFCSbegvJqZwusWitcJzx2fH6eLCofD/V5RtthpF59SPuIeP/Gqiy99wk4XI+TK6xnXvd6fO+F5PV6mhpcmKKV8JGW8r+JLOV1ecc+6+LztQku4uuS82Le7i8+rJK/yQxOUUj6SbkyIQHvCm+KBdAsq7lFi8bqLr1tpvQdJ1N2C8irJq/zQBKWUj6S7+MqjIQ9bUN5W8bkTihfdc+6E0uHB7+yOSbv4CpsmKKV8JDWECcorCVdLzIsE4PXFyd3i0xZUQdMEpZSPpKv4yqMhz4skoPvJe7BSHhdydBsz8mHCU/mjCUopH0knqLJoyPMyc/DmhJ30OEF534JydRlqF19B0wSllI+kGzhedvF5nVDcLZ42Dwo5/J7wVP5oglLKR7p38XlTxZfyuAvN6yo5r4sa3GXrXs1nqPJDE5RSPpKp4osNTQvKixO2O6F4UXU3pPFpF19B0wSllI+kz61eFkmkUl538XndgvK26s5dCKJdfIVtyBOUiCwWkS0iUisiNw/1+ylVyNIzSZRGgrQlUp7MeJ30uAvNPduD1xfWel3Fp9dBFbYhTVAiEgR+BFwMzAGWisicoXxPpQqZZRkCYieolGW6VaQN1lBW8XnfxedxwtMWVEEb6hbUGUCtMWabMaYTeAS4fIjfU6mCZRlDMCCUROyFBrzukvO+Ss5/VXxeJzyVP0OdoCYDu1z365xtGSJyrYjUiEhNMa6PopRbylkeojQSBLwp4/a8iq9bF5oHF/56PGaU9HimC5U/eS+SMMbcY4xZZIxZNH78+HyHo1ReWZYh6E5QHrUoKmIh7/bXrQvNuxZUNBTwPoFqC6qgDXWC2g1Mdd2f4mxTSmVhGewuvrCdoLw4wVqWYVQs7OzPmxaZOONkXhY1VMTCHiU8uwVV7uFsHCo/hjpBvQrMFJHpIhIBlgArhvg9lSpYKcs4J38PWzyWIRoOEAyIRxfCGkJOEvWy6GKUR9d+pVt4FbGQXqhb4IZ0yXdjTFJErgf+BASBnxljNg7leypVyLqKJOzvjl61UMKBAKUeJZSUZQgFApR43IIqj3nT4ulqkXl3LZnKjyFNUADGmCeBJ4f6fZQaCSxjCIhQEk5X8XkzxmMnvaA3VXKprhaUl1V3Xl2cnMi0yMIc6UjkvD+VP3kvklBKdUlZEPC4SCJlGUJB8azFk7QsgkHxbAwqmbIIBez9efL7OlV8FR5OF6XyQxOUUj5ijCEYwPMqvqDHY0ahgBDzssswaO/Pi7nzkq6iC52Lr7BpglLKR1KW08UX8a6KL2V1tVA82V/KHoPyan8J1/68LLrQFlThG/IxKKVU/6UyY1AetqBS9j4jEW+uM0pYVteYlidFDfb+SiPeVN0lM118Ydqd+QxFJOf9quGnLSilfMQ410GFggEiQW8SSmYMKuxNi8K9P6+KJMKZLr7cZ6Zwt6CMgXgy932q/NAEpZSPpJzJYgGn6s6rKr50l5w3+ws5pfBeLYAYdLogO1NWt6mKBru/gECZh+N4Kj80QSnlIyljCDgZyrOqNieheFt1F/CuS87qGoOC3JfwSFqGUDDQNY6nhRIFSxOUUj5ijD0XH9gtKE/WW3Kq+Lyqukum3FV3VmYV4MHHZ2X2B7kv4ZEuW++aEV5nkyhUmqCU8pF0FR/gWZWc5W5BeXQhbCjY1eLpSHrQ4gl4d+1X0jUVkxf7U/mjCUopH0lZZLr47OuWvJk8NT3Gk7RMtyXRB7W/lEUk6N2Etu6ydfAiQVndEqhOd1S4NEEp5SPGuIskQp6st+S+sBZyTwAJZwyqxMOEEnTFl+uYUSpTxOHNmJbKH01QSvlIypksFqA07E3VXSJpEQ4GMjOk59qiSKTSZeZOF58HRQ3hoHgbn6uLz4tl6VV+aIJSykcsQ7cxKC/GTzpThnDI1eWVc0KxiAQ97JJzlZnb+8stKad6jJHpGFTh0gSllI9Yva6D8mZy10gw4Oriyy0BJJLdW1BeJLyQK75c95dIV/GFtYuv0GmCUspH0idrwLPJXe0uPvGsaCDhxOjVfIHp5Tu8ii/lWl4EtIuvkGmCUspH0idr6FpSPdfrjBIp44xBedTiSRkiQS+LJHp28eW2v86kRSQU0DLzEUATlFI+kp4FAchcaJrLXHLGGDpTdpGEt1V8Qml6UUUPqu7CHnbxdabsBOXlfIYqPzRBKeUj6RJpwJOigfTEqZGQd9cF2VV8AWLpZelzHdNK2WXm0VCAgOQeXzxpj7mBd/MZqvzQBKWUj6RP1oAnXWjpi3K7lXF7UsUnlDn7y7VFlnLKzEW8WVQx3cUH3lVCqvzQBKWUj7hbUF5UySWSdgsq7OGYUSLpFEmEg4hAazy3Fkp6tnVIX5yce4KKhroKTbSLr3BpglLKR1KuMSgvigY6My2ogGtqohy75Jz1oAIBoTQcpCWeY5dcIpVJKF4sCRJPpjItKK9K9VV+aIJSykeS7haUB2NQ7i6+SChAKCAeVPF1jfGURXNfcqMjaRELe1da35myiIaCmf1pC6pwaYJSykeSrjEoL6b+SbhaUOAs4ZHD/lKWwTIQCnQlqJYcu/g6Eili6YTiwZpVnT2KJHQMqnBpglLKR5JZq/g8TFDh3Lq8MvsL2TGWRXNLAMYYO0E53Y9eLAnSs0hCu/gKlyYopXwkfQ0P4MlyFp2uIgnIvaot/drSTELJrQWVSNktsnQXX2kkRKuHCUq7+AqbJiilfMTdPeXFdVDpIolMVVsklGOCSjqx2d2P5TmOQaWTR7oFZbfIci2ScCWoHH9flV+aoJTykc6kRdTVmoDcJjtNl4Cnk509fVIOCcU52Ze49teaQxVf3Pndoq4WWS77syxD0jLdysxzXQ5E5Y8mKKV8IuWcXCNB+2QdCweQHGdWSHe/lUXtZJfrmEy6+60sasdYnmORRIezIGPMSShlkWBO11Wll59PV/HZXZpJjMltPkOVH5qglPKJTmfOvXT3lIh9nZEXXXLlToLKtYw7vb8SZx6+smiINg8SSlcXn32hbmqQE+Q2d9ixVMSc3zcSxDK5zWeo8kcTlFI+0TNBQe5jKOmLaEuj7i6+we8v3fpKdxmWRYK0dg5+xvVMl6FrDAoGP3tGc0cCcCUoj1b9VfmhCUopn2h1Widlzskfcp9ZId1dlmlB5Vwk0b2LL911ONiE0tRuJ5TRpWHANe42yFbZEacFNSqW3p8uuVHINEEp5ROtPcaLIPey8NZ4koB0tSRyHYNKd6FlxrScfwc7bnSorRPoSlDpRDrYca1sXXyQ+wS5Kj80QSnlEy09WjuQ+8wKR9oTlEVDiHRNQJtL0cDB1jgAY8siTqx2AhjstUtdLSh7f7m2eLq6+OyE58W1ZCp/NEEp5RPp8movW1AHWjoZXxHN3M+1aOBASycVsZCrSi63FtThNjuhVJbYCaUs1xZZq90iG9Ozy1ATVEHSBKWUT7TE7ZN1txZUOLcxo4bmOOPLuxJUrosWHmiJU+XaX3mOCaWxJU5FLJSZ6SKdoAb7O+890kEoIIxzYixJL6qoXXwFKacEJSLfEJHdIrLW+bnE9djXRKRWRLaIyPtzD1WpkS1dcVfeowWVS5HE/uYOjhsV67Y/GPzFv/uPdE94mRbPIGOsO9TOlDGlXftz4hvsGFR9UwfHVUS7Fn1ML0uvq+oWJC9aUN83xsx3fp4EEJE5wBLgFGAx8GMRCR5tJ0oVu/T4SXnMmy6+lGXYc7iDSZVdCaokktsJe0djKyeMy5ZQBhdj3aF2Jo8uydwvzbSgBhff7kPtTHTtT4skCttQdfFdDjxijIkbY7YDtcAZQ/ReSo0IjS2dBAOSGY+B3BbcqzvURmfK4qTx5Zlt6UleB5P0WuJJ9jfHqa4qy2zLdMkNosWTTFnsaGyl2pXwyjNjWoP7nd/a38LM41y/r5aZFzQvEtT1IrJORH4mImOcbZOBXa7n1DnbehGRa0WkRkRqGhoaPAhHqcJ0oCXO2LJIpnsKnBZUIjWoqrtNe44AMHOCNyfsdbsOA3DKpFGZbWWRwZeFb21oJZ60OGVy1/5yWaSxvqmdg62dzJpQ0Wt/WsVXmI6ZoETkORHZkOXncuBu4CRgPlAPfG+gARhj7jHGLDLGLBo/fvxAX67UiNHQ3L0AAewqtJRlMrOSD8TL2w9SEg5yyqTKzLZcTtg1Ow8hAgumjclsS89QMZiE99LWAwCcPm1sZlskFCASDAyqy/ClrY0AnHli1/60zLywhY71BGPMhf3ZkYjcCzzu3N0NTHU9PMXZppTqw75me4DfzX2CTZd294cxhr+/1cDpJ4zpNnVSLmXXf968j1MnVXbrggwHA0RCgUFV8f1lSwPTq8qY5uriAzvpDaYF9Zc39jO2LMLs47taZOFggHBQcpoRXuVPrlV8E113rwA2OLdXAEtEJCoi04GZwCu5vJdSI93bjW1MG9vjZD3ILrm1uw6zraGVD542sdv2wa4x9ea+Zl6va+ID8yb2eqw8GhpwFd+ug208/1YDl87tvb+yQSy5cbitk2c27uOy0yYRcHWRgj0RrbagCtMxW1DH8B0RmQ8YYAfweQBjzEYR+TWwCUgCXzTG6CdEqT40tSU40pHslaBKBpmgfvrCdkojQS7ukQDS+xvo5Kk/XllLaSTIVYum9npsMGtC3ffCdgRYeua0Xo+VRQe+5MZPn99OZ8piyRnZ49MEVZhySlDGmI8f5bFvA9/OZf9KFYu3D7YBMLVXCypdFt7/E+z6uiaeWFfPP713RmbS1K79DTzhvbytkT+8vodrzzuRMc4UR24DXRNqa0MLv1i1kyVnTOtWYt4V48BaZPVN7fz0hW1cdtok3uHq3nPvT7v4CpPOJKGUD6QTVN9dfP07YXckUnzl12s5riLKZ887sdfjsdDAEtSRjgRf+fXrnDC2lC9dMDPrc8oGsOx7ImXxleVrKYuGuPHC7Puzl5HvX3yWZVj2m3UALHv/yVmfo118hUsTlFI+kElQ47J38fX3QtP/fOoN3trfwveuOq1bMUNaICCUhPs/Ae3tf9jI3iMdfP+j87vNEehWGgn2u+ru+8++yet1Tfznh+dyXEUs63NKB7Cq7n0vbOeF2gPc9oFTerU+3fvLZZl7lT+aoJTygbcPtjG2LNJtmiMYWJn0X7fs54H/3cGnz5nOeTP7vmSjJNK/KrkVr+/hsdd286X3zuxWWt5TeT9X1f3frQe4+29bWfIPU3uNjbmV9bPoYsPuJr7zpzd4/ykTWJpl7CmtRFtQBUsTlFI+sONA9ymE0vo7ZtTYEmfZb9dx8oQKblqcvasrrT/Lvu8+3M4tj61nwbTRfPH8k4763NJI6JgtnsNtnXxl+etMH1fGbR+cc9TnlkWDtB2jRdbWmeRLj7zGuLIo//nheZnlRLIpyXFGeJU/uVbxFYS2ziSb65upb2q3p+MXIRoMcHxljEmjS5gypoRYWKcKVPmzo7GVs08a12t7ST8mdzXG8LVH19PUluChT59xzM+y3eLpe3+WZfjnX6/Fsgw/+Oh8QsGjf48tjwaPuh6UMYabf7eextY4937inEzhR1/K+lEk8W+Pb2L7gVZ++ZkzsxZuuJVGgrrke4EasQmqdn8zK16v5y9v7GNzfTMpq++pYkRgUmUJ06vKqK4qpXpcmXO7jNElYaLhIJFgAIOhM2nZPykrczue7X7SojOVIpkyiAjivI8IBJxve922I5lYMnG54uu59ShfGFWBSVmG+qYOpo8r6/VYaT8md13+6i6e2bSPWy+dzeyJvavYeiqLBo9adffTF7axattBvvOReZyQJaZeMUbtFpQxJmtLZvmru3h6416+dvE7mDulMsseeuwvEqIjYZGyTLdpn9KeWl/Pw6/s4h/fcxLvnFF1zP31p8U4WC3xJOvrmli/+zC1+1uob+pg35EO4kmLRNJCRCiPhiiPhSiPhqgsCXf/Ke26XRoJIkjm/7YIGGP/WMY4P3bCt9zbrK7bXc/FuZ9+Te/Ys51Dem7Kfp7pvvE9J48fsi/4IypBGWP465YG/u/ft7Jq20FE4B+qx/KF95zEaVNGM2VsSWYl0HjCor6pg92H29hxoI0dja3sONDKirV7ONKhA6pq+M2Z1Du5dI1BZZ/qaPuBVr75x02cM2Mcnz5ner/epywayiyN3tOmPUf47p+2sPiU47ny9Cn92l95NETSMsSTVq8T1daGlkx8n8tSVZg9vvQqvcleZfL1Te3c/Oh65k2p5MsXzurX/nKZcDeb3YfbeWp9PX/evJ9Xdxwk6Xz5HV8RZdJo+4tuSThIOBjAMvZaWS3xJIfbOtnZ2Mrh9gRH2hMc5TtzQXnllgs0QfXH3iMdfPahGo6riPL1S97Bh+ZP7rYWTk921c/YbtuMMRxqS7D9QCs7G1tp7kgST6aIJyxEuuYKi4SCREIBoiF7qpdIKEDUmfYl6jwWCQUIOd8A099uDF3fgKBrm/3erjicrd22me6Ppbdpa6rwRUNBThrfu7USDAiRUIC2LFVoiZTFjcvXEgkF+K8rT+s1g0JfKmIh6ps6em1v70xxwyOvMaY0wr9/eO5Rx3Xc3ONk7hNVZ9LihkdeIxYO8L0r5/c7vq4Z0lPdElTKMnx5+VoSKYv/f8mCblM4Hc1Aqhb7krIMz27ax8OvvM3f32rAGDh5QgWfe9eJnDF9LPMmV2YWSewPyzK0dCZpakvQ1G7/tHemMucH+18IOD0ugYDd4xIQyWxL98YERAge4/Gef8psLSr3eaXP52TZNqb06F2suRhRCWpiZQkPf+4s5k8d3e8Pb08iwtiyCGPLIpx+Qt+VS0oNl75mQvjhn9/i9V2H+dHVC5lY2fuC176U9VHU8K3HN1Lb0MJDnz4j09PQr/25VtV1v+57z2xhw+4j3PPx0zm+su8vij2lE17Pcah0z8h3PjKP6VXH7np07y9p2d3zAz0vJFMWf1i7hx+trGXbgVYmVsb4p/fO5CMLp/S6JGAgAgFhVCzMqFiYvusP1YhKUABnTB977CcpVUBKs4yh/P3NBv5nZS1Xnj6FS7PMj3c0ZdEQLT26+P74+h4efmUXX3jPSUctUc+mPMuquiu37Oee57dx9ZnTeN8pxw8svkhXwkur2XGQu555k0vnTex312NaZpHGRGpACerPm/dxxxOb2X6gldkTR3H3NQt53ynHZx0XU0NjxCUopUaaUSVhmtoTmfv7jnTw5eVrmXlcOd+6/NSB7y8WoqUzmSlC2HGgla89up6F00bz5Yv6N67jlmnxOAll18E2vrx8Le84fhT/eunRS8qz6WqR2Um5oTnOF3+1hsljSvj3K/rf9ZjmvpYs28XLPW0/0Mq3/riRlVsamHFcOfd8/HQumjNhwO+rcqcJSimfG18RZX9zHLCnMrruF6tpT6T48TULM2XoAzGhMoYxdqIri4b4zIOvEgoKP1y6gPAxSsqzKXcllLbOJF/45RpSKcPdg4yvLNo1vVNn0uL6X62hqT3B/Z86o18Jpqf+ThfV3pnif1a+xb1/304kFODWS2fzyXdWD+qYKG9oglLK58ZXRNm6v4WUZbjhkddYu+swd1+zkBnHVRz7xVmkJ2jd1tDK3X+rZWdjG7/47JlMGTO4MZV0Kfyhtk6+8Ms1bNzTxP/9+KJuS8MPRLowYn9znK/8ei0vbz/I9z96WtYqx37tr8SO77CrFdrTX7fs51//sIFdB9v58ILJ3HzJO/qcikkNH01QSvnchFEx9jR18LmHavjLG/u57QNzWHzqwMad3Kqda5s+dt/LiMB3P3IaZ53Y+yLh/po2rpRwULjhkbUA/PsVc7lozoTB729sKaNiIb726HoAbr74HVyxYGDjTm7pRLP/SO/Kxb1NHfzbE5t4Yl09J44v4+HPnZX1gmmVH9p2VcrnzptpX4z6lzf2c8sls/n0uf273qkv1VVlXDRnAmWRIHdddRofGWDRQU/l0RBXnzGNUbEQ//HhuVydZY2ngQgEhE+dM51RsRC3Xjqb69599KmWjiVdQbjXVVrf1JbgP596g3d/dyXPbtrHVy6axVM3nKfJyWfEZCtsz5NFixaZmpqafIehlO88t2kfY8sjLDzKpK0DYYwhZZljTmM0EliW4ZTb/8Tl8ydxzZknsLzmbR5ds5v2RIoPzZ/MVy6a1edM6Gp4iMhqY8yintu1i0+pAnBhDl1m2YgIoWBxVKUFAsKFcybwyKu7eOTVXURCAS47bRKfOXd6v6aGUvmjCUopNeLdcfmpzJtcydiyCO99x3HHnGBW+YMmKKXUiFdZGuZz7+rfXIDKP0Z+B7RSSqmCpAlKKaWUL2mCUkop5Uu+KjMXkQZgpwe7qgIOeLCf4VBIsUJhxVtIsUJhxVtIsUJhxVtIsYI38Z5gjOk1S7GvEpRXRKQmW029HxVSrFBY8RZSrFBY8RZSrFBY8RZSrDC08WoXn1JKKV/SBKWUUsqXRmqCuiffAQxAIcUKhRVvIcUKhRVvIcUKhRVvIcUKQxjviByDUkopVfhGagtKKaVUgdMEpZRSypdGVIISkcUiskVEakXk5nzH05OITBWRlSKySUQ2isgNzvZviMhuEVnr/FyS71gBRGSHiKx3Yqpxto0VkWdF5C3nX2/Wf8iRiJzsOn5rReSIiNzol2MrIj8Tkf0issG1LeuxFNsPnc/xOhFZ6JN4vysibzgxPSYio53t1SLS7jrGP/FBrH3+3UXka86x3SIi7x/OWI8S73JXrDtEZK2zPd/Htq9z1vB8do0xI+IHCAJbgROBCPA6MCffcfWIcSKw0LldAbwJzAG+AfxLvuPLEu8OoKrHtu8ANzu3bwbuzHecfXwW9gIn+OXYAu8CFgIbjnUsgUuApwABzgJe9km87wNCzu07XfFWu5/nk1iz/t2d/2+vA1FgunPOCOY73h6Pfw+4zSfHtq9z1rB8dkdSC+oMoNYYs80Y0wk8Alye55i6McbUG2PWOLebgc3A5PxGNWCXAw86tx8EPpS/UPp0AbDVGOPFrCSeMMb8HTjYY3Nfx/Jy4CFjWwWMFpHBr/E+CNniNcY8Y4xJOndXAbktxeuRPo5tXy4HHjHGxI0x24Fa7HPHsDlavCIiwFXAw8MZU1+Ocs4als/uSEpQk4Fdrvt1+PjkLyLVwALgZWfT9U6T+Gd+6TYDDPCMiKwWkWudbROMMfXO7b2AtyvpeWMJ3f+D+/HYQt/HshA+y5/G/qacNl1EXhORv4nIefkKqodsf3e/H9vzgH3GmLdc23xxbHucs4blszuSElTBEJFy4HfAjcaYI8DdwEnAfKAeu4nvB+caYxYCFwNfFJF3uR80dpveV9cpiEgEuAz4jbPJr8e2Gz8ey76IyC1AEvils6kemGaMWQB8BfiViOR7qdqC+LtnsZTuX658cWyznLMyhvKzO5IS1G5gquv+FGebr4hIGPsP/UtjzKMAxph9xpiUMcYC7mWYuxz6YozZ7fy7H3gMO6596Sa78+/+/EWY1cXAGmPMPvDvsXX0dSx9+1kWkU8BHwCucU5MON1ljc7t1djjOrPyFiRH/bv7+diGgA8Dy9Pb/HBss52zGKbP7khKUK8CM0VkuvMtegmwIs8xdeP0L98HbDbG3OXa7u6jvQLY0PO1w01EykSkIn0be4B8A/Yx/aTztE8Cf8hPhH3q9g3Uj8fWpa9juQL4hFMRdRbQ5OpOyRsRWQzcBFxmjGlzbR8vIkHn9onATGBbfqLMxNTX330FsEREoiIyHTvWV4Y7vj5cCLxhjKlLb8j3se3rnMVwfXbzVR0yFD/YFSRvYn/LuCXf8WSJ71zspvA6YK3zcwnwc2C9s30FMNEHsZ6IXe30OrAxfTyBccCfgbeA54Cx+Y7VFXMZ0AhUurb54thiJ816IIHdL/+Zvo4ldgXUj5zP8XpgkU/ircUeX0h/dn/iPPf/OJ+RtcAa4IM+iLXPvztwi3NstwAX++HYOtsfAK7r8dx8H9u+zlnD8tnVqY6UUkr50kjq4lNKKTWCaIJSSinlS5qglFJK+ZImKKWUUr6kCUoppZQvaYJSSinlS5qglFJK+dL/A8cJVIdYiW9JAAAAAElFTkSuQmCC\n", "text/plain": [ - " abs_diff eFEL to Arbor-internal \\\n", - " count mean std min 25% \n", - "efel \n", - "Spikecount 40.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike 28.000 0.325 0.042 0.248 0.299 \n", - "time_to_last_spike 28.000 0.332 0.043 0.248 0.301 \n", - "time_to_second_spike 12.000 0.344 0.043 0.279 0.305 \n", - "\n", - " \\\n", - " 50% 75% max \n", - "efel \n", - "Spikecount 0.000 0.000 0.000 \n", - "time_to_first_spike 0.327 0.348 0.400 \n", - "time_to_last_spike 0.328 0.361 0.410 \n", - "time_to_second_spike 0.347 0.375 0.405 \n", - "\n", - " rel_abs_diff eFEL to Arbor-internal [%] \\\n", - " count mean std \n", - "efel \n", - "Spikecount 28.000 0.000 0.000 \n", - "time_to_first_spike 28.000 12.913 6.573 \n", - "time_to_last_spike 28.000 7.507 6.918 \n", - "time_to_second_spike 12.000 4.382 5.904 \n", - "\n", - " \n", - " min 25% 50% 75% max \n", - "efel \n", - "Spikecount 0.000 0.000 0.000 0.000 0.000 \n", - "time_to_first_spike -0.358 7.820 14.737 18.018 22.566 \n", - "time_to_last_spike 0.594 0.884 5.852 14.589 20.832 \n", - "time_to_second_spike 1.318 2.052 2.380 2.712 22.101 " + "
" ] }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "spike_results_fine_dt[['abs_diff eFEL to Arbor-internal',\n", - " 'rel_abs_diff eFEL to Arbor-internal [%]']].groupby('efel').describe()" + "plot_responses(twostep_protocol.run(cell_model=simple_cell, param_values=best_ind_dict, sim=sim))\n", + " " ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ - "Furthermore, the mean deviation between Arbor and Neuron for eFEL spike times is significantly reduced." + "Let's have a look at the optimisation statistics.\n", + "We can plot the minimal score (sum of all objective scores) found in every optimisation. \n", + "The optimisation algorithm uses negative fitness scores, so we actually have to look at the maximum values log." ] }, { "cell_type": "code", - "execution_count": 64, - "metadata": {}, + "execution_count": 27, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt
efel
SpikecountNaN
time_to_first_spike0.211
time_to_last_spike0.169
time_to_second_spike0.143
\n", - "
" - ], "text/plain": [ - " ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt\n", - "efel \n", - "Spikecount NaN \n", - "time_to_first_spike 0.211 \n", - "time_to_last_spike 0.169 \n", - "time_to_second_spike 0.143 " + "(0.0, 4.4)" ] }, - "execution_count": 64, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkm0lEQVR4nO3deZRU9Z338fenF2jZlS4UAQWUasUNFY1CpBjzxCUadBIzY6KTkEWPk8V4nJjEyUxmzJwnyTxzZpzHZKIh6qiZrBrHkGhMNJFtjAsacEFBRFQIkQbZkaW7v88fdemnbXsp6L59u6s/r3PqdN1bv3vrU63Nt+69v/v7KSIwMzMDqMg6gJmZ9R4uCmZm1sxFwczMmrkomJlZMxcFMzNrVpV1gP1VW1sb48ePzzqGmVmf8tRTT22IiFxn7fpcURg/fjyLFy/OOoaZWZ8i6dVS2vn0kZmZNXNRMDOzZi4KZmbWrM9dUzCzvmnv3r2sWbOGXbt2ZR2lrNXU1DB27Fiqq6sPaHsXBTPrEWvWrGHo0KGMHz8eSVnHKUsRwcaNG1mzZg0TJkw4oH349JGZ9Yhdu3YxcuRIF4QUSWLkyJFdOhpzUTCzHuOCkL6u/o5dFMzMrJmLgplZC3PnzuWb3/zmfm1z0003ceyxx3LZZZe9bfv77ruPZcuWpREzNb7QbGbWwqxZs5g1a9Z+bfOd73yHhx9+mLFjxzbvA4pF4cILL2Ty5MndnjMtPlIws35h9erVHHPMMcyePZt8Ps9ll13Gww8/zPTp05k0aRJPPPEEAHfccQef/exnAZg9ezZXX30106ZNY+LEidxzzz3v2O9VV13FqlWrOP/887nxxhubt3/00UeZO3cu1113HVOmTOHll19m5syZfOlLX+L0008nn8+zcOFCABobG7nuuus47bTTOPHEE/nud78LwLp165gxYwZTpkzh+OOPZ+HChTQ2NjJ79myOP/54TjjhBG688cZu/T35SMHMetwNv3ieZX/c2q37nHz4MP7h/cd12GblypXcfffd3H777Zx22mn88Ic/ZNGiRcydO5evf/3r3Hfffe/YZt26dSxatIgXX3yRWbNmcckll7zt9VtuuYUHH3yQRx55hNraWu644w4Apk2bxqxZs7jwwgvftk1DQwNPPPEEDzzwADfccAMPP/wwt912G8OHD+fJJ59k9+7dTJ8+nXPOOYd7772Xc889l6985Ss0Njayc+dOlixZwtq1a3nuuecA2Lx5c5d+b625KJhZvzFhwgROOOEEAI477jje8573IIkTTjiB1atXt7nNxRdfTEVFBZMnT+aNN97ocoYPfOADAJx66qnN7/mb3/yGZ555pvlIZMuWLbz00kucdtppfOITn2Dv3r1cfPHFTJkyhYkTJ7Jq1So+97nPccEFF3DOOed0OVNLLgpm1uM6+0afloEDBzY/r6ioaF6uqKigoaGh020iotsyVFZWNr9nRPCtb32Lc8899x3tFyxYwP3338/s2bO59tpr+ehHP8rSpUv59a9/zS233MJPf/pTbr/99i7n2sdFwcwsJUOHDmXbtm2dtjv33HO5+eabOfvss6murmbFihWMGTOGDRs2MHbsWK644gp2797N008/zfve9z4GDBjABz/4Qerq6rj88su7NXPqRUFSJbAYWBsRF7Z6bSBwF3AqsBH4y4hYnXYmM7OecOmll3LFFVdw0003tXmRep9PfepTrF69mlNOOYWIIJfLcd999zFv3jz+5V/+herqaoYMGcJdd93F2rVr+fjHP05TUxMA3/jGN7o1s7rjcKjDN5CuBaYCw9ooCp8GToyIqyRdCvx5RPxlR/ubOnVqeJIds77nhRde4Nhjj806Rr/Q1u9a0lMRMbWzbVM9UpA0FrgA+N/AtW00uQj4x+T5PcC3JSnSrlS91HfmrWRV/Y6sY6RGwOVnHMlJ40ZkHcXM2pH26aN/B74IDG3n9THA6wAR0SBpCzAS2NCykaQrgSsBjjjiiLSyZu75P25lyWubs46Rmvptu9ny1l7mfLTTLytmlpHUioKkC4H1EfGUpJld2VdEzAHmQPH0UdfT9U7/8ZFTso6QquvvfZa5S9ayp6GJAVW+b7I/iggPipeyrp5oSfMvczowS9Jq4MfA2ZL+q1WbtcA4AElVwHCKF5ytDM2sy7FjTyNPvbop6yiWgZqaGjZu3Ngt3TqtbfvmU6ipqTngfaR2pBAR1wPXAyRHCl+IiNZ9p+YCHwN+D1wC/K6/Xk/oD6YdNZKqCjF/RT1nHjUy6zjWw8aOHcuaNWuor6/POkpZ2zfz2oHq8fsUJH0NWBwRc4HbgO9LWgm8CVza03ms5wytqebUIw9m/op6vnz+MVnHsR5WXV19wLOBWc/pkaIQEfOAecnzr7ZYvwv4UE9ksN6hUJfj/zy4nDe27uLQYQd+iGtm6fDVPutRM/OjAJi/wqcQzHojFwXrUceOHkpu6EAXBbNeykXBepQkCvkcC1fU09DYlHUcM2vFRcF6XCGfY+uuBpau2Zx1FDNrxUXBetxZk2qpEMxf7lNIZr2Ni4L1uBGDBjBl3AhfVzDrhVwULBOF/CieWbuFjdt3Zx3FzFpwUbBMFOpyRMDClzZ03tjMeoyLgmXixDHDOWTwAJ9CMutlXBQsExUV4qxJtSxYUU9Tk4e7MustXBQsM4V8jo079vDcH7dkHcXMEi4KlpkZ+RzgrqlmvYmLgmWmdshAThgz3NcVzHoRFwXLVCGf4+nXNrFl596so5gZLgqWsUJdjqaARSvdNdWsN3BRsEydPG4EQ2uqmL9ifdZRzIwUi4KkGklPSFoq6XlJN7TRZrakeklLksen0spjvVNVZQVnTapl/op6z91r1gukeaSwGzg7Ik4CpgDnSTqjjXY/iYgpyePWFPNYL1XI53hj626Wv7Et6yhm/V5qRSGKtieL1cnDXwXtHfZ1TZ3nrqlmmUv1moKkSklLgPXAQxHxeBvNPijpGUn3SBrXzn6ulLRY0uL6ev/DUW5GDz+IYw4b6vsVzHqBVItCRDRGxBRgLHC6pONbNfkFMD4iTgQeAu5sZz9zImJqREzN5XJpRraMFPI5Fr/6Jtt3N2Qdxaxf65HeRxGxGXgEOK/V+o0RsW/s5FuBU3sij/U+hXyOvY3B71/emHUUs34tzd5HOUkjkucHAe8FXmzVZnSLxVnAC2nlsd5t6vhDGDSgknnL3TXVLEtVKe57NHCnpEqKxeenEfFLSV8DFkfEXOBqSbOABuBNYHaKeawXG1BVwbSj/n/XVElZRzLrl1IrChHxDHByG+u/2uL59cD1aWWwvqVQl+PhF95g1YYdHJUbknUcs37JdzRbrzHTXVPNMueiYL3GuEMGMTE32KOmmmXIRcF6lUI+x+OrNrJrb2PWUcz6JRcF61UK+Ry7G5p4bJW7ppplwUXBepUzJo5kYFWFryuYZcRFwXqVmupKzpg4kgW+rmCWCRcF63UK+RyrNuzgtY07s45i1u+4KFivU6grdk2d/5KPFsx6mouC9ToTawcz7pCDmO8hL8x6nIuC9TqSKORzPPryRnY3uGuqWU9yUbBeqZAfxc49jTy1elPWUcz6FRcF65XOPGok1ZXy3c1mPcxFwXqlIQOrOG38Ib5fwayHuShYr1XI51j+xjbWbXkr6yhm/YaLgvVa+7qm+kY2s56T5sxrNZKekLRU0vOSbmijzUBJP5G0UtLjksanlcf6nrpDh3LYsBpfVzDrQWkeKewGzo6Ik4ApwHmSzmjV5pPApog4GrgR+OcU81gfs69r6sKXNtDQ2JR1HLN+IbWiEEXbk8Xq5BGtml0E3Jk8vwd4jzwPo7VQqMuxbVcDf3h9c9ZRzPqFVK8pSKqUtARYDzwUEY+3ajIGeB0gIhqALcDINDNZ3zL96FoqK8R890Iy6xGpFoWIaIyIKcBY4HRJxx/IfiRdKWmxpMX19f7HoT8ZflA1J48bwbwVHvLCrCf0SO+jiNgMPAKc1+qltcA4AElVwHDgHbOrRMSciJgaEVNzuVzKaa23mVmX47m1W6nftjvrKGZlL83eRzlJI5LnBwHvBV5s1Wwu8LHk+SXA7yKi9XUH6+cK+VEALPSoqWapS/NIYTTwiKRngCcpXlP4paSvSZqVtLkNGClpJXAt8OUU81gfddzhw6gdMsBdU816QFVaO46IZ4CT21j/1RbPdwEfSiuDlYeKCjFjUo5Hlq+nsSmorHAHNbO0+I5m6xMKdTk27dzLs2u3ZB3FrKy5KFif8O6ja5Fw11SzlLkoWJ8wcshAThwznPnummqWKhcF6zMKdaNY8vpmNu/ck3UUs7LVaVGQNFbSFyT9XNKTkhZI+o6kCyS5qFiPKeRzNAUsfGlD1lHMylaH/6hL+k/gdmAPxcHqPgx8GniY4o1oiyTNSDukGcBJY4cz/KBqd001S1FnXVL/NSKea2P9c8C9kgYAR3R/LLN3qqqs4N2Tapm/op6IwGMnmnW/Do8U2ikILV/fExEruzeSWftm5nPUb9vNsnVbs45iVpY6PFKQ9CzvHO66WUSc2O2JzDpQyBfHvpq/op7jDh+ecRqz8tPZ6aMLk5+fSX5+P/l5WTpxzDo2algNx44exvzl9Xx65tFZxzErO52dPno1Il4F3hsRX4yIZ5PHl4Fzeiai2dvNrMvx1Kub2LZrb9ZRzMpOqV1KJWl6i4Vp+7GtWbcq5HM0NAX/s/Ido6ybWReVOiDeJ4HbJe07ibsZ+EQqicw6ccoRBzNkYBXzV9Rz3vGHZR3HrKyUWhTejIiT9hWFiNgiaUKKuczaNaCqgmlHjWSBu6aadbtSTwH9DIrFICL2DVN5TzqRzDo3s24Uaze/xcr127OOYlZWOuuSegxwHDBc0gdavDQMqEkzmFlHZuRrgWLX1EmHDs04jVn56OxIoY5it9QRwPtbPE4BruhoQ0njJD0iaZmk5yV9vo02MyVtkbQkeXy1rX2ZtTb24EEcPWqIh7ww62YdHilExM+Bn0s6MyJ+v5/7bgD+JiKeljQUeErSQxGxrFW7hRFxYRvbm3WokM/x/d+/ys49DQwakNokgmb9SqnXFP5c0jBJ1ZJ+K6le0uUdbRAR6yLi6eT5NuAFYEwX85o1m1mXY09jE4+tctdUs+5SalE4JyK2UjyVtBo4Griu1DeRNJ7ifM2Pt/HymZKWSvqVpOPa2f5KSYslLa6v9+kCKzpt/CHUVFd4NjazblRqUahOfl4A3N2iB1KnJA2h2HvpmqSwtPQ0cGREnAR8C7ivrX1ExJyImBoRU3O5XKlvbWWuprqSMyeO9HUFs25UalH4haQXgVOB30rKAbs620hSNcWC8IOIuLf16xGxNSK2J88fAKol1Zac3vq9mXWjWL1xJ6s37Mg6illZKKkoJGMdTQOmRsReYCdwUUfbqHhH0W3ACxHxb+20OSxph6TTkzw+QWwlazlqqpl1XcldNiLizRbPdwCdfTWbDvwV8KykJcm6vyWZlCcibgEuAf5aUgPwFnBpRLQ7VLdZa+NrB3PkyEHMX1HPx6aNzzqOWZ+XWj++iFgEdDj+QER8G/h2Whmsfyjkc9y9eA279jZSU12ZdRyzPs0jnVqfN7Mux1t7G1m8elPWUcz6vJKKgqTz0g5idqDOmDiSAZUVzFu+PusoZn1eh0VB0rskVQJfb7Hu+x1sYtbjBg2o4vQJh/his1k36OxI4VJgPjBR0j9LuoziuEdmvUohn+Ol9dtZu/mtrKOY9WmdFYUvRcS7gdeAXwIHA4dJekzST1JPZ1aimXXFrqkLfLRg1iWdFYUHJT0E5IBa4FfAqxFxBvA3aYczK9XRo4Zw+PAaX1cw66IOi0JEnA3MArYDE4F/Ao6WdB/FU0tmvYIkCnU5/mflRvY2NmUdx6zP6rT3UUS8BbweEf8aER8BXqY4l8IraYcz2x+FfI7tuxt4+lV3TTU7UKUOc3F2i8VvR0R9RPwspUxmB2Ta0bVUVci9kMy6YL9vXouI29IIYtZVw2qqOeXIg5nnobTNDlhn9yn8QtL7k9FOW782UdLXJH0ivXhm+6eQz7Fs3VbWb+10EF8za0NnRwpXAGcBL0p6UtIDkn4naRXwXeCpiLg99ZRmJWrumvrShoyTmPVNnc3R/Cfgi8AXk9nTRlMczXRFROxMP57Z/pk8ehi5oQOZt3w9l5w6Nus4Zn3O/gydvZriVJxmvZYkZkzK8fALb9DYFFRWdDhQr5m14lFSrewU6nJseWsvS9dszjqKWZ/jomBl56yja6kQzHcvJLP9VnJRkHSQpLr9aD9O0iOSlkl6XtLn22gjSTdJWinpGUkebM+67ODBAzhp3Ajm+X4Fs/1W6nwK7weWAA8my1Mkze1kswbgbyJiMnAG8BlJk1u1OR+YlDyuBG4uPbpZ+wr5HM+s2cybO/ZkHcWsTyn1SOEfgdOBzQARsQSY0NEGEbEuIp5Onm8DXgDGtGp2EXBXFD0GjJA0utTwZu0p5HNEwMKXfLRgtj9KLQp7I2JLq3VR6psk3VlPBh5v9dIY4PUWy2t4Z+FA0pWSFktaXF/vP3Lr3IljR3DwoGoPeWG2n0otCs9L+ghQKWmSpG8Bj5ayoaQhwM+AayJi64GEjIg5ETE1IqbmcrkD2YX1M5UV4qxJORasqKepqeTvL2b9XqlF4XPAccBu4IfAFuCazjZKhsf4GfCDiLi3jSZrgXEtlscm68y6rJDPsWH7HpatO6DvImb9Uqc3ryVzNN8fEX8GfKXUHUsScBvwQkT8WzvN5gKflfRj4F3AlohYV+p7mHVkRr54VDl/RT3HjxmecRqzvqGU+RQagSZJ+/tXNR34K+BsSUuSx/skXSXpqqTNA8AqYCXwPeDT+/keZu3KDR3I8WOG+X4Fs/1Q6jAX24Fnk6k5d+xbGRFXt7dBRCwCOhxjICIC+EyJGcz2WyGf45b5q9jy1l6GH/SOwX7NrJVSryncC/w9sAB4qsXDrFcr5EfR2BQ8utKjppqVoqQjhYi4U9IAIJ+sWh4Re9OLZdY9TjliBENrqpi/op7zT/AtMGadKakoSJoJ3ElxlFQB4yR9LCIWpJbMrBtUVVbw7qNrmb+inoig2P/BzNpT6umjfwXOiYhCRMwAzgVuTC+WWfcp5HOs27KLFW9szzqKWa9XalGojojl+xYiYgXgq3bWJxTq9nVNXZ9xErPer9SisFjSrZJmJo/vAYvTDGbWXUYPP4i6Q4d6yAuzEpRaFP4aWAZcnTyWJevM+oRCXY4nX9nEjt0NWUcx69VKLQpVwP+NiA9ExAeAm4DK9GKZda9CPseexiZ+//LGrKOY9WqlFoXfAge1WD4IeLj745ilY+r4gxk0oNKnkMw6UWpRqImI5q4byfNB6UQy634DqyqZdtRI5q1YT/FGejNrS6lFYUfLqTIlnQq8lU4ks3QU8jlef/MtXtmwo/PGZv1UqWMfXQPcLemPFG9eOwz4y7RCmaWhkB8FPM/8FfVMzA3JOo5Zr1TqMBdPSjoGqEtWeZgL63OOGDmIibWDmb+ino9P73A2WbN+q6TTR5I+RPG6wnPAxcBPWp5OMusrZuRzPLZqI7v2NmYdxaxXKvWawt9HxDZJ7wbeQ3HynJvTi2WWjkJdjl17m3j8lTezjmLWK5VaFPZ9rboA+F5E3A8MSCeSWXrOmDCSAVUVnnjHrB2lFoW1kr5L8eLyA5IGdratpNslrZf0XDuvz5S0pcWsbF/dv+hm+++gAZWcMXGkx0Eya0epReEvgF8D50bEZuAQ4LpOtrkDOK+TNgsjYkry+FqJWcy6pJDP8XL9Dl5/c2fWUcx6nZKKQkTsjIh7I+KlZHldRPymk20WAD5xa71OIb9v1FSfQjJrrdQjhbScKWmppF9JOq69RpKulLRY0uL6ev8hW9cclRvMmBEHuSiYtSHLovA0cGREnAR8C7ivvYYRMScipkbE1Fwu11P5rExJYmZdjkdXbmBPQ1PWccx6lcyKQkRs3TeeUkQ8AFRLqs0qj/UvhXyOHXsaeerVTVlHMetVMisKkg5TMmGupNOTLB7X2HrEtKNrqa4U89wLyextUisKkn4E/B6ok7RG0iclXSXpqqTJJcBzkpZSnJ/h0vDwldZDhgysYuqRh/h+BbNWSh0Qb79FxIc7ef3bwLfTen+zzhTqcnzzVy/yxtZdHDqsJus4Zr1C1r2PzDLT3DXVRwtmzVwUrN865rChHDpsoLummrXgomD9liQK+RwLX6qnodFdU83ARcH6uUJ+FFt3NbB0zeaso5j1Ci4K1q+9++haKgTzfF3BDHBRsH5u+KBqTj7iYF9XMEu4KFi/NzOf45k1W9iwfXfWUcwy56Jg/V6hrtg1ddFLGzJOYpY9FwXr944/fDgjBw9g3nIPeWHmomD9XkWFmJHPseClDTQ1eaQV699cFMwo3t385o49PPfHLVlHMcuUi4IZcNakWiQPeWHmomAGjBwykBPGDGeeu6ZaP+eiYJaYmc/xh9c2sWXn3qyjmGXGRcEsUajL0RSwaKW7plr/leYkO7dLWi/puXZel6SbJK2U9IykU9LKYlaKk8aOYFhNFfM9G5v1Y2keKdwBnNfB6+cDk5LHlcDNKWYx61RVZQVnTcoxf0U9ngTQ+qvUikJELADe7KDJRcBdUfQYMELS6LTymJWiUJfjja27efFP27KOYpaJLK8pjAFeb7G8Jln3DpKulLRY0uL6evcOsfQ0z8bmXkjWT/WJC80RMScipkbE1Fwul3UcK2OHDqvhmMOG+n4F67eyLAprgXEtlscm68wyNbNuFItffZPtuxuyjmLW47IsCnOBjya9kM4AtkTEugzzmAHFU0h7G4NH3TXV+qGqtHYs6UfATKBW0hrgH4BqgIi4BXgAeB+wEtgJfDytLGb749QjD2bwgErmr6jnnOMOyzqOWY9KrShExIc7eT2Az6T1/mYHakBVBdOOrmXe8mLXVElZRzLrMX3iQrNZT5tZl2Pt5rd4uX5H1lHMepSLglkbZkxy11Trn1wUzNow7pBBHJUb7KJg/Y6Lglk7CvlRPLZqI2/tacw6ilmPcVEwa8fMuhx7Gpp47JWNWUcx6zEuCmbtOH3CIdRUV/juZutXXBTM2lFTXckZE0eywNcVrB9xUTDrQCGfY9WGHby2cWfWUcx6hIuCWQdm1o0C8MQ71m+4KJh1YPzIQRxxyCB3TbV+w0XBrAOSKORzPPryRnY3uGuqlT8XBbNOzKzLsXNPI4tXb8o6ilnqXBTMOnHGxJEMqKzwKSTrF1wUzDoxeGAVp0042PcrWL/gomBWgkI+x/I3trFuy1tZRzFLlYuCWQmau6b6aMHKXKpFQdJ5kpZLWinpy228PltSvaQlyeNTaeYxO1CTRg1h9PAaX1ewspfmdJyVwH8A7wXWAE9KmhsRy1o1/UlEfDatHGbdYV/X1PufWcfexiaqK32QbeUpzf+zTwdWRsSqiNgD/Bi4KMX3M0tVIZ9j2+4G/vDa5qyjmKUmzaIwBni9xfKaZF1rH5T0jKR7JI1ra0eSrpS0WNLi+nofvls2pk+qpbJCHvLCylrWx8C/AMZHxInAQ8CdbTWKiDkRMTUipuZyuR4NaLbPsJpqTj3iYF9XsLKWZlFYC7T85j82WdcsIjZGxO5k8Vbg1BTzmHVZoS7Hc2u3Ur9td+eNzfqgNIvCk8AkSRMkDQAuBea2bCBpdIvFWcALKeYx67JCvnik6jkWrFylVhQiogH4LPBriv/Y/zQinpf0NUmzkmZXS3pe0lLgamB2WnnMusPk0cOoHTLQp5CsbKXWJRUgIh4AHmi17qstnl8PXJ9mBrPuVFEhZuRreeTF9TQ2BZUVyjqSWbfK+kKzWZ9TyOfYtHMvz67dknUUs27nomC2n2ZMyiHBvOXummrlx0XBbD8dPHgAJ40d4esKVpZcFMwOQCGfY+nrm9m0Y0/WUcy6lYuC2QEo1OVoCli0ckPWUcy6lYuC2QE4aewIRgyqZp6H0rYy46JgdgAqK8RZk3LMX1FPU1NkHces27gomB2gQj7Hhu27eeFPW7OOYtZtXBTMDtCMfC2AeyFZWXFRMDtAo4bWcNzhw3xdwcqKi4JZFxTyOZ5+dRNbd+3NOopZt3BRMOuCQj5HQ1Pw6MqNWUcx6xYuCmZdcMqRBzN0YJVnY7Oy4aJg1gXVlRVMP7qW+cvriXDXVOv7XBTMuqhQl+OPW3axcv32rKOYdZmLglkX7ZuNzV1TrRykWhQknSdpuaSVkr7cxusDJf0kef1xSePTzGOWhsNHHET+0CHummplIbWiIKkS+A/gfGAy8GFJk1s1+ySwKSKOBm4E/jmtPGZpKuRzPPHKm+zc05B1FLMuSXM6ztOBlRGxCkDSj4GLgGUt2lwE/GPy/B7g25IUvmJnfUwhP4rvLXyFU/7pISrlKTr7okEDq3jyK/8r6xiZS7MojAFeb7G8BnhXe20iokHSFmAk8LbxiCVdCVyZLO6W9FwqiXuHWlp9/jLjz9d3lfNnA6jV35X156srpVGaRaHbRMQcYA6ApMURMTXjSKnx5+vbyvnzlfNng/7x+Uppl+aF5rXAuBbLY5N1bbaRVAUMB3xrqJlZRtIsCk8CkyRNkDQAuBSY26rNXOBjyfNLgN/5eoKZWXZSO32UXCP4LPBroBK4PSKel/Q1YHFEzAVuA74vaSXwJsXC0Zk5aWXuJfz5+rZy/nzl/NnAnw8A+Yu5mZnt4zuazcysmYuCmZk161NFobNhM/oySbdLWl+O92BIGifpEUnLJD0v6fNZZ+pOkmokPSFpafL5bsg6UxokVUr6g6RfZp2lu0laLelZSUtK7brZl0gaIekeSS9KekHSme227SvXFJJhM1YA76V4I9yTwIcjYlmHG/YRkmYA24G7IuL4rPN0J0mjgdER8bSkocBTwMVl9N9OwOCI2C6pGlgEfD4iHss4WreSdC0wFRgWERdmnac7SVoNTI2Isrx5TdKdwMKIuDXpDTooIja31bYvHSk0D5sREXuAfcNmlIWIWECxB1bZiYh1EfF08nwb8ALFu9nLQhTtGze7Onn0jW9bJZI0FrgAuDXrLLZ/JA0HZlDs7UlE7GmvIEDfKgptDZtRNv+w9BfJSLgnA49nHKVbJadWlgDrgYcioqw+H/DvwBeBpoxzpCWA30h6KhlWp5xMAOqB/0xO/90qaXB7jftSUbA+TtIQ4GfANRGxNes83SkiGiNiCsU790+XVDanACVdCKyPiKeyzpKid0fEKRRHdf5Mcjq3XFQBpwA3R8TJwA6g3WuyfakolDJshvVSybn2nwE/iIh7s86TluSw/BHgvIyjdKfpwKzkvPuPgbMl/Ve2kbpXRKxNfq4H/pvi6epysQZY0+Lo9R6KRaJNfakolDJshvVCyYXY24AXIuLfss7T3STlJI1Inh9EsTPEi5mG6kYRcX1EjI2I8RT/7n4XEZdnHKvbSBqcdIAgOa1yDlA2vQAj4k/A65L2jZL6Ht4+hcHb9IlRUqH9YTMyjtVtJP0ImAnUSloD/ENE3JZtqm4zHfgr4NnkvDvA30bEA9lF6lajgTuTHnIVwE8jouy6bZaxQ4H/Ln53oQr4YUQ8mG2kbvc54AfJF+pVwMfba9hnuqSamVn6+tLpIzMzS5mLgpmZNXNRMDOzZi4KZmbWzEXBzMyauSiYpUTSNZIGtVh+YN/9DN20/8GSHk6eL0rmOTfrEhcFswOkoo7+hq4BmotCRLyvo4HIDsCZwO8lHQzsiIiGbty39VMuClZWJP19MufGIkk/kvSFZP1Rkh5MBjxbKOmYZP0dkm6S9KikVZIuabGv6yQ9KemZfXMkSBqf7P8uine9jpN0s6TFLedSkHQ1cDjwiKRHknWrJdUmz6+V9FzyuKbFvl+Q9L1kX79J7pBu/RmPSm4C/C/gIxSHIj8pmQtgVDq/Wes3IsIPP8riAZwGLAFqgKHAS8AXktd+C0xKnr+L4lANAHcAd1P8gjSZ4vDsUBzqYA6g5LVfUhx+eDzFkULPaPG+hyQ/K4F5wInJ8mqgtkW71UAtcCrwLDAYGAI8T3Hk2PFAAzAlaf9T4PIOPu/9wEjgH4ALsv79+1EeD5+DtHIyHfh5ROwCdkn6BTSPzjoNuDsZygBgYIvt7ouIJmCZpEOTdeckjz8ky0OAScBrwKvx9gl0/iIZbrmK4pAXk4FnOsj5buC/I2JHku9e4CyKY3m9EhFLknZPUSwU7RkVERslnUgyVr5ZV7koWH9QAWyO4tDWbdnd4rla/PxGRHy3ZcNkPogdLZYnAF8ATouITZLuoHikcqBaZmkE2jp9dAvFwjI2OY00CfilpDsj4sYuvLeZrylYWfkf4P0qzpk8BLgQIIpzN7wi6UPQfIH4pE729WvgE8l+kDSmnfP1wygWiS3JUcb5LV7bRvE0VmsLgYslDUpG5fzzZF1JIuIq4Abgn4CLgfsjYooLgnUHHylY2YiIJyXNpXjq5g2K5+23JC9fBtws6e8oTpf5Y2BpB/v6jaRjKfbugeL82ZdT/Pbest1SSX+gOFT26xQL0z5zgAcl/TEi/qzFNk8nRxRPJKtujYg/JEchpSoAd1E87TR/P7Yz65BHSbWyImlIRGxP7g9YAFwZyfzQZtY5HylYuZkjaTLF8/p3uiCY7R8fKZiZWTNfaDYzs2YuCmZm1sxFwczMmrkomJlZMxcFMzNr9v8AWGePNRAbq54AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "(spike_results_fine_dt[['abs_diff Arbor to Neuron']].groupby('efel').mean()/\\\n", - " spike_results[['abs_diff Arbor to Neuron']].groupby('efel').mean()).rename(\n", - " columns={'abs_diff Arbor to Neuron': \n", - " 'ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt'})\n" + "import numpy\n", + "gen_numbers = logs.select('gen')\n", + "min_fitness = logs.select('min')\n", + "max_fitness = logs.select('max')\n", + "plt.plot(gen_numbers, min_fitness, label='min fitness')\n", + "plt.xlabel('generation #')\n", + "plt.ylabel('score (# std)')\n", + "plt.legend()\n", + "plt.xlim(min(gen_numbers) - 1, max(gen_numbers) + 1) \n", + "plt.ylim(0.9*min(min_fitness), 1.1 * max(min_fitness)) " ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + }, + "tags": [] + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/examples/simplecell/simplecell_model.py b/examples/simplecell/simplecell_model.py index 4e5a5f04..cea4f093 100644 --- a/examples/simplecell/simplecell_model.py +++ b/examples/simplecell/simplecell_model.py @@ -23,17 +23,23 @@ import bluepyopt.ephys as ephys -def create(do_replace_axon): - """Create cell model (identical to simplecell.ipynb)""" +def define_morphology(do_replace_axon): - morph = ephys.morphologies.NrnFileMorphology('simple.swc', + return ephys.morphologies.NrnFileMorphology('simple.swc', do_replace_axon=do_replace_axon) + +def define_mechanisms(): somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic') hh_mech = ephys.mechanisms.NrnMODMechanism( name='hh', suffix='hh', locations=[somatic_loc]) + return [hh_mech] + + +def define_parameters(): + somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic') cm_param = ephys.parameters.NrnSectionParameter( name='cm', @@ -54,11 +60,16 @@ def create(do_replace_axon): bounds=[0.01, 0.075], locations=[somatic_loc], frozen=False) - + return [cm_param, gnabar_param, gkbar_param] + + +def create(do_replace_axon): + """Create cell model (identical to simplecell.ipynb)""" + cell = ephys.models.CellModel( 'simple_cell', - morph=morph, - mechs=[hh_mech], - params=[cm_param, gnabar_param, gkbar_param]) + morph=define_morphology(do_replace_axon), + mechs=define_mechanisms(), + params=define_parameters()) return cell From cde9b969a06da8d9cdecaeb4bd1ee7f84abf94df Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 3 Oct 2022 20:27:01 +0200 Subject: [PATCH 22/42] Using all segments of Neuron sections in axon replacement --- bluepyopt/ephys/models.py | 20 +++++++++++++------- bluepyopt/ephys/morphologies.py | 12 ++++++++---- 2 files changed, 21 insertions(+), 11 deletions(-) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 21cdd9bb..b97b3919 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -334,13 +334,19 @@ def _create_sim_desc(self, param_values, replace_axon = [] for sec in ['axon', 'myelin']: if sec in self.icell_existing_secs: - replace_axon += \ - [dict(nseg=section.nseg, - length=section.L, - radius=0.5 * section.diam, - tag=morphologies. - ArbFileMorphology.tags[sec]) - for section in getattr(self.icell, sec)] + for section in getattr(self.icell, sec): + seg_bounds = [seg for seg + in section.allseg()] + replace_axon += \ + [dict( + length=(dist.x - prox.x) * section.L, + prox_radius=0.5 * prox.diam, + dist_radius=0.5 * dist.diam, + tag=morphologies. + ArbFileMorphology.tags[sec]) + for prox, dist + in zip(seg_bounds[:-1], + seg_bounds[1:])] else: replace_axon = None else: diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 0b695483..36988c26 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -374,11 +374,14 @@ def _find_ais_centers(st, axon_parent=None): elif len(axon_roots) == 1: axon_root = axon_roots[0] pruned_st, axon_st = st.split_at(axon_root) + logger.debug('Pruned %s of segment tree %s.', + axon_st, st) else: pruned_st = st if replacement is not None: - ar_radius = [r['radius'] for r in replacement] + ar_radius = [(r['prox_radius'], r['dist_radius']) + for r in replacement] else: if len(axon_roots) > 1: ValueError('Please specify axon replacement explicitly ' @@ -389,6 +392,7 @@ def _find_ais_centers(st, axon_parent=None): if len(axon_roots) == 1: axon_root = axon_roots[0] axon_parent = st.parents[axon_root] + ar_prox = st.segments[axon_root].prox ar_prox_center = _mpt_to_coord(ar_prox) ar_dist = st.segments[axon_root].dist @@ -405,7 +409,7 @@ def _find_ais_centers(st, axon_parent=None): ' of radii %s.', axon_root, str(ar_radius)) else: if ar_radius is None: - ar_radius = [0.5, 0.5] + ar_radius = [(0.5, 0.5), (0.5, 0.5)] ar_prox_center, ar_dist_center = _find_ais_centers(st) @@ -434,8 +438,8 @@ def _find_ais_centers(st, axon_parent=None): ar_tags): axon_parent = pruned_st.append( axon_parent, - arbor.mpoint(*prox, radius), - arbor.mpoint(*dist, radius), + arbor.mpoint(*prox, radius[0]), + arbor.mpoint(*dist, radius[1]), tag) return arbor.morphology(pruned_st) From 6d76ed10f06a3b827c001019fb7fffd79ce25062 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Tue, 4 Oct 2022 12:07:43 +0200 Subject: [PATCH 23/42] L5PC optimization with Arbor --- bluepyopt/ephys/locations.py | 75 ++++++++++++++++-- bluepyopt/ephys/morphologies.py | 2 - examples/l5pc/L5PC_arbor.ipynb | 130 +++++++++++++++++++++++++------- examples/l5pc/l5pc_analysis.py | 34 ++++++--- examples/l5pc/l5pc_evaluator.py | 32 ++++---- examples/l5pc/l5pc_model.py | 1 - examples/l5pc/opt_l5pc.py | 11 ++- 7 files changed, 220 insertions(+), 65 deletions(-) diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index 02766f86..0e9a8725 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -112,7 +112,7 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 def acc_label(self): """Arbor label""" raise EPhysLocAccException( - '%s not supported in Arbor' % type(self) + + '%s not supported in Arbor' % type(self).__name__ + ' (uses branches instead of NEURON sections).' ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' ' instead (consider using the Arbor GUI to identify the' @@ -167,7 +167,7 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 def acc_label(self): """Arbor label""" raise EPhysLocAccException( - '%s not supported in Arbor' % type(self) + + '%s not supported in Arbor' % type(self).__name__ + ' (uses branches instead of NEURON sections).' ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' ' instead (consider using the Arbor GUI to identify the' @@ -283,7 +283,7 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 def acc_label(self): """Arbor label""" raise EPhysLocAccException( - '%s not supported in Arbor' % type(self) + + '%s not supported in Arbor' % type(self).__name__ + ' (uses branches instead of NEURON sections).' ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' ' instead (consider using the Arbor GUI to identify the' @@ -458,7 +458,8 @@ def instantiate(self, sim=None, icell=None): def acc_label(self): """Arbor label""" - raise EPhysLocAccException('%s not supported in Arbor.' % type(self)) + raise EPhysLocAccException('%s not supported in Arbor.' % + type(self).__name__) class NrnTrunkSomaDistanceCompLocation(NrnSecSomaDistanceCompLocation): @@ -530,7 +531,8 @@ def instantiate(self, sim=None, icell=None): def acc_label(self): """Arbor label""" - raise EPhysLocAccException('%s not supported in Arbor.' % type(self)) + raise EPhysLocAccException('%s not supported in Arbor.' % + type(self).__name__) class ArbLocation(Location): @@ -547,10 +549,19 @@ def __init__(self, name, segment, comment=''): super().__init__(name, comment) self.segment = segment + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('region', self.name, '(segment %s)' % (self.segment)) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class ArbBranchLocation(ArbLocation): """Branch in an Arbor morphology. @@ -562,10 +573,19 @@ def __init__(self, name, branch, comment=''): super().__init__(name, comment) self.branch = branch + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('region', self.name, '(branch %s)' % (self.branch)) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class ArbSegmentRelLocation(ArbLocation): """Relative position on a segment in an Arbor morphology. @@ -576,12 +596,21 @@ def __init__(self, name, segment, pos, comment=''): self.segment = segment self.pos = pos + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('locset', self.name, '(on-components %s (segment %s))' % (format_float(self.pos), self.segment)) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class ArbBranchRelLocation(ArbLocation): """Relative position on a branch in an Arbor morphology. @@ -594,12 +623,21 @@ def __init__(self, name, branch, pos, comment=''): self.branch = branch self.pos = pos + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('locset', self.name, '(location %s %s)' % (self.branch, format_float(self.pos))) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class ArbLocsetLocation(ArbLocation): """Arbor location set defined by a user-supplied string. @@ -609,10 +647,19 @@ def __init__(self, name, locset, comment=''): super().__init__(name, comment) self.locset = locset + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('locset', self.name, self.locset) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class ArbRegionLocation(ArbLocation): """Arbor region defined by a user-supplied string. @@ -622,10 +669,19 @@ def __init__(self, name, region, comment=''): super().__init__(name, comment) self.region = region + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('region', self.name, self.region) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class ArbIexprLocation(ArbLocation): """Arbor iexpr location defined by a user-supplied string. @@ -635,10 +691,19 @@ def __init__(self, name, iexpr, comment=''): super().__init__(name, comment) self.iexpr = iexpr + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + def acc_label(self): """Arbor label""" return ArbLabel('iexpr', self.name, self.iexpr) + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + class EPhysLocInstantiateException(Exception): diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 36988c26..dae857d3 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -374,8 +374,6 @@ def _find_ais_centers(st, axon_parent=None): elif len(axon_roots) == 1: axon_root = axon_roots[0] pruned_st, axon_st = st.split_at(axon_root) - logger.debug('Pruned %s of segment tree %s.', - axon_st, st) else: pruned_st = st diff --git a/examples/l5pc/L5PC_arbor.ipynb b/examples/l5pc/L5PC_arbor.ipynb index 0562ab04..9da5db69 100644 --- a/examples/l5pc/L5PC_arbor.ipynb +++ b/examples/l5pc/L5PC_arbor.ipynb @@ -54,9 +54,83 @@ "/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc\n", "Mod files: \"mechanisms/CaDynamics_E2.mod\" \"mechanisms/Ca_HVA.mod\" \"mechanisms/Ca_LVAst.mod\" \"mechanisms/Ih.mod\" \"mechanisms/Im.mod\" \"mechanisms/K_Pst.mod\" \"mechanisms/K_Tst.mod\" \"mechanisms/Nap_Et2.mod\" \"mechanisms/NaTa_t.mod\" \"mechanisms/NaTs2_t.mod\" \"mechanisms/SK_E2.mod\" \"mechanisms/SKv3_1.mod\"\n", "\n", + "Creating x86_64 directory for .o files.\n", + "\n", "COBJS=''\n", " -> \u001b[32mCompiling\u001b[0m mod_func.c\n", "x86_64-linux-gnu-gcc -O2 -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c mod_func.c -o mod_func.o\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_HVA.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_HVA.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_LVAst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_LVAst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/CaDynamics_E2.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl CaDynamics_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Ca_LVAst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_LVAst.c\n", + "Translating CaDynamics_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/CaDynamics_E2.c\n", + "Thread Safe\n", + "Translating Ca_HVA.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_HVA.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ih.mod\n", + "Thread Safe\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ih.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Im.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Im.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Ih.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ih.c\n", + "Translating Im.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Im.c\n", + "Thread Safe\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Pst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Pst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Nap_Et2.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Nap_Et2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating K_Pst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Pst.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Tst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Tst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Nap_Et2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Nap_Et2.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTa_t.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTa_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating NaTa_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTa_t.c\n", + "Thread Safe\n", + "Translating K_Tst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Tst.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTs2_t.mod\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SK_E2.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTs2_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SKv3_1.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SK_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SKv3_1.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating NaTs2_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTs2_t.c\n", + "Translating SKv3_1.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SKv3_1.c\n", + "Thread Safe\n", + "Translating SK_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SK_E2.c\n", + "Thread Safe\n", + "Thread Safe\n", + " -> \u001b[32mCompiling\u001b[0m CaDynamics_E2.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c CaDynamics_E2.c -o CaDynamics_E2.o\n", + " -> \u001b[32mCompiling\u001b[0m Ca_HVA.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_HVA.c -o Ca_HVA.o\n", + " -> \u001b[32mCompiling\u001b[0m Ca_LVAst.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_LVAst.c -o Ca_LVAst.o\n", + " -> \u001b[32mCompiling\u001b[0m Ih.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ih.c -o Ih.o\n", + " -> \u001b[32mCompiling\u001b[0m Im.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Im.c -o Im.o\n", + " -> \u001b[32mCompiling\u001b[0m K_Pst.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c K_Pst.c -o K_Pst.o\n", + " -> \u001b[32mCompiling\u001b[0m K_Tst.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c K_Tst.c -o K_Tst.o\n", + " -> \u001b[32mCompiling\u001b[0m Nap_Et2.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Nap_Et2.c -o Nap_Et2.o\n", + " -> \u001b[32mCompiling\u001b[0m NaTa_t.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c NaTa_t.c -o NaTa_t.o\n", + " -> \u001b[32mCompiling\u001b[0m NaTs2_t.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c NaTs2_t.c -o NaTs2_t.o\n", + " -> \u001b[32mCompiling\u001b[0m SK_E2.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c SK_E2.c -o SK_E2.o\n", + " -> \u001b[32mCompiling\u001b[0m SKv3_1.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c SKv3_1.c -o SKv3_1.o\n", " => \u001b[32mLINKING\u001b[0m shared library ./libnrnmech.so\n", "x86_64-linux-gnu-g++ -O2 -DVERSION_INFO='8.0.2' -std=c++11 -shared -fPIC -I /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -o ./libnrnmech.so -Wl,-soname,libnrnmech.so \\\n", " ./mod_func.o ./CaDynamics_E2.o ./Ca_HVA.o ./Ca_LVAst.o ./Ih.o ./Im.o ./K_Pst.o ./K_Tst.o ./Nap_Et2.o ./NaTa_t.o ./NaTs2_t.o ./SK_E2.o ./SKv3_1.o -L/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib -lnrniv -Wl,-rpath,/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib \n", @@ -137,21 +211,21 @@ "output_type": "stream", "text": [ "Requirement already satisfied: neurom in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (3.2.2)\n", - "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", - "Requirement already satisfied: pandas>=1.0.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.4.1)\n", "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", - "Requirement already satisfied: click>=7.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (8.1.3)\n", + "Requirement already satisfied: pandas>=1.0.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.4.1)\n", "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", + "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", "Requirement already satisfied: tqdm>=4.8.4 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (4.63.1)\n", - "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", - "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", + "Requirement already satisfied: click>=7.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (8.1.3)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", + "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", + "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", "Requirement already satisfied: pyparsing>=2.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (3.0.7)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", "Requirement already satisfied: pytz>=2020.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from pandas>=1.0.5->neurom) (2022.1)\n", "Requirement already satisfied: six>=1.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib>=3.2.1->neurom) (1.16.0)\n" ] @@ -160,7 +234,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_986325/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", + "/tmp/ipykernel_1079827/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", " neurom.viewer.draw(neurom.load_neuron('morphology/C060114A7.asc'));\n" ] }, @@ -562,39 +636,39 @@ "text": [ "bAP:\n", " stimuli:\n", - " Square pulse amp 1.900000 delay 295.000000 duration 5.000000 totdur 600.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp 1.900000 delay 295.000000 duration 5.000000 totdur 600.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " bAP.soma.v: v at ArbBranchRelLocation: soma ()\n", - " bAP.dend1.v: v at ArbLocsetLocation: dend1 ()\n", - " bAP.dend2.v: v at ArbLocsetLocation: dend2 ()\n", + " bAP.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", + " bAP.dend1.v: v at '(locset-def \"dend1\" (restrict (distal-translate (proximal (region \"apic\")) 660) (proximal-interval (distal (branch 123)))))'\n", + " bAP.dend2.v: v at '(locset-def \"dend2\" (restrict (distal-translate (proximal (region \"apic\")) 800) (proximal-interval (distal (branch 123)))))'\n", "\n", "Step3:\n", " stimuli:\n", - " Square pulse amp 0.950000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", - " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp 0.950000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " Step3.soma.v: v at ArbBranchRelLocation: soma ()\n", + " Step3.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", "\n", "Step2:\n", " stimuli:\n", - " Square pulse amp 0.562000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", - " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp 0.562000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " Step2.soma.v: v at ArbBranchRelLocation: soma ()\n", + " Step2.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", "\n", "Step1:\n", " stimuli:\n", - " Square pulse amp 0.458000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", - " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation: soma ()\n", + " Square pulse amp 0.458000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " Step1.soma.v: v at ArbBranchRelLocation: soma ()\n", + " Step1.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", "\n" ] } ], "source": [ "import l5pc_evaluator\n", - "fitness_protocols = l5pc_evaluator.define_protocols_arb(do_replace_axon=morphology.do_replace_axon)\n", + "fitness_protocols = l5pc_evaluator.define_protocols(do_replace_axon=morphology.do_replace_axon, sim='arb')\n", "print('\\n'.join('%s' % protocol for protocol in fitness_protocols.values()))" ] }, @@ -861,7 +935,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 18, "metadata": { "collapsed": false, "jupyter": { @@ -905,7 +979,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 19, "metadata": { "collapsed": false, "jupyter": { @@ -929,7 +1003,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 20, "metadata": { "collapsed": false, "jupyter": { @@ -959,7 +1033,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 21, "metadata": { "collapsed": false, "jupyter": { @@ -1009,7 +1083,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 22, "metadata": { "collapsed": false, "jupyter": { @@ -1032,7 +1106,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 23, "metadata": { "collapsed": false, "jupyter": { diff --git a/examples/l5pc/l5pc_analysis.py b/examples/l5pc/l5pc_analysis.py index 607e107d..3b7e9374 100644 --- a/examples/l5pc/l5pc_analysis.py +++ b/examples/l5pc/l5pc_analysis.py @@ -68,7 +68,7 @@ def get_responses(cell_evaluator, individuals, filename): responses = [] if filename and os.path.exists(filename): - with open(filename) as fd: + with open(filename, 'rb') as fd: return pickle.load(fd) for individual in individuals: @@ -79,19 +79,19 @@ def get_responses(cell_evaluator, individuals, filename): param_values=individual_dict)) if filename: - with open(filename, 'w') as fd: + with open(filename, 'wb') as fd: pickle.dump(responses, fd) return responses @set_rcoptions -def analyse_cp(opt, cp_filename, responses_filename, figs): +def analyse_cp(opt, cp_filename, responses_filename, figs, sim='nrn'): """Analyse optimisation results""" (model_fig, model_box), (objectives_fig, objectives_box), ( evol_fig, evol_box) = figs - cp = pickle.load(open(cp_filename, "r")) + cp = pickle.load(open(cp_filename, "rb")) hof = cp['halloffame'] responses = get_responses(opt.evaluator, hof, responses_filename) @@ -102,13 +102,18 @@ def analyse_cp(opt, cp_filename, responses_filename, figs): fitness_protocols = opt.evaluator.fitness_protocols responses = {} - nrn = ephys.simulators.NrnSimulator() + if sim == 'nrn': + simulator = ephys.simulators.NrnSimulator() + elif sim == 'arb': + simulator = ephys.simulators.ArbSimulator() + else: + raise ValueError('sim must be either \'nrn\' or \'arb\'.') for protocol in fitness_protocols.values(): response = protocol.run( cell_model=opt.evaluator.cell_model, param_values=parameter_values, - sim=nrn) + sim=simulator) responses.update(response) objectives = opt.evaluator.fitness_calculator.calculate_scores(responses) @@ -349,9 +354,9 @@ def plot_validation(opt, parameters): [validation_protocol], param_values=paramset) - pickle.dump(validation_responses, open('validation_response.pkl', 'w')) + pickle.dump(validation_responses, open('validation_response.pkl', 'wb')) else: - validation_responses = pickle.load(open('validation_response.pkl')) + validation_responses = pickle.load(open('validation_response.pkl', 'rb')) # print validation_responses['validation.soma.v']['time'] peaktimes = {} @@ -445,21 +450,26 @@ def plot_validation(opt, parameters): @set_rcoptions -def analyse_releasecircuit_model(opt, figs, box=None): +def analyse_releasecircuit_model(opt, figs, box=None, sim='nrn'): """Analyse L5PC model from release circuit""" (release_responses_fig, response_box), ( release_objectives_fig, objectives_box) = figs fitness_protocols = opt.evaluator.fitness_protocols - nrn = ephys.simulators.NrnSimulator() + if sim == 'nrn': + simulator = ephys.simulators.NrnSimulator() + elif sim == 'arb': + simulator = ephys.simulators.ArbSimulator() + else: + raise ValueError('sim must be either \'nrn\' or \'arb\'.') responses = {} for protocol in fitness_protocols.values(): response = protocol.run( cell_model=opt.evaluator.cell_model, param_values=release_params, - sim=nrn) + sim=simulator) responses.update(response) plot_multiple_responses([responses], fig=release_responses_fig) @@ -555,7 +565,7 @@ def plot_diversity(opt, checkpoint_file, fig, param_names): from a unpickled checkpoint ''' import matplotlib.pyplot as plt - checkpoint = pickle.load(open(checkpoint_file, "r")) + checkpoint = pickle.load(open(checkpoint_file, "rb")) ax = fig.add_subplot(1, 1, 1) diff --git a/examples/l5pc/l5pc_evaluator.py b/examples/l5pc/l5pc_evaluator.py index 448abad3..b7b10ff3 100644 --- a/examples/l5pc/l5pc_evaluator.py +++ b/examples/l5pc/l5pc_evaluator.py @@ -22,6 +22,7 @@ import os import json +from xmlrpc.server import DocXMLRPCRequestHandler import l5pc_model # NOQA @@ -35,16 +36,10 @@ # TODO add functionality to read settings of every object from config format -def define_protocols(): - """Define protocols for Neuron""" +def define_protocols(do_replace_axon=True, sim='nrn'): + """Define protocols""" protocol_definitions = load_protocols() - return create_protocols(protocol_definitions) - - -def define_protocols_arb(do_replace_axon): - """Define protocols for Arbor""" - protocol_definitions = load_protocols() - return create_protocols(protocol_definitions, do_replace_axon, sim='arb') + return create_protocols(protocol_definitions, do_replace_axon, sim=sim) def load_protocols(): @@ -187,23 +182,32 @@ def define_fitness_calculator(protocols): return fitcalc -def create(): +def create(do_replace_axon=True, sim='nrn'): """Setup""" - l5pc_cell = l5pc_model.create() + l5pc_cell = l5pc_model.create(do_replace_axon=do_replace_axon) - fitness_protocols = define_protocols() + fitness_protocols = define_protocols( + do_replace_axon=do_replace_axon, sim=sim) fitness_calculator = define_fitness_calculator(fitness_protocols) param_names = [param.name for param in l5pc_cell.params.values() if not param.frozen] - sim = ephys.simulators.NrnSimulator() + if sim == 'nrn': + simulator = ephys.simulators.NrnSimulator() + elif sim == 'arb': + simulator = ephys.simulators.ArbSimulator() + if do_replace_axon: + nrn_sim = ephys.simulators.NrnSimulator() + l5pc_cell.instantiate_morphology(nrn_sim) + else: + raise ValueError('Simulator must be either \'nrn\' or \'arb\'.') return ephys.evaluators.CellEvaluator( cell_model=l5pc_cell, param_names=param_names, fitness_protocols=fitness_protocols, fitness_calculator=fitness_calculator, - sim=sim) + sim=simulator) diff --git a/examples/l5pc/l5pc_model.py b/examples/l5pc/l5pc_model.py index 5c2b8e8d..97773852 100644 --- a/examples/l5pc/l5pc_model.py +++ b/examples/l5pc/l5pc_model.py @@ -49,7 +49,6 @@ def load_mechanisms(): 'mechanisms.json'))) - def create_mechanisms(mech_definitions): mechanisms = [] diff --git a/examples/l5pc/opt_l5pc.py b/examples/l5pc/opt_l5pc.py index 9e2508b4..4bf621e0 100755 --- a/examples/l5pc/opt_l5pc.py +++ b/examples/l5pc/opt_l5pc.py @@ -63,7 +63,7 @@ def mapper(func, it): else: map_function = None - evaluator = l5pc_evaluator.create() + evaluator = l5pc_evaluator.create(sim=args.sim) seed = os.getenv('BLUEPYOPT_SEED', args.seed) opt = bluepyopt.optimisations.DEAPOptimisation( evaluator=evaluator, @@ -83,6 +83,7 @@ def get_parser(): IPYTHON_PROFILE: if set, used as the path to the ipython profile BLUEPYOPT_SEED: The seed used for initial randomization ''')) + parser.add_argument('--sim', default='nrn', choices=['nrn', 'arb']) parser.add_argument('--start', action="store_true") parser.add_argument('--continu', action="store_false", default=False) parser.add_argument('--checkpoint', required=False, default=None, @@ -128,6 +129,9 @@ def main(): # pylint: disable=too-many-statements commands.getstatusoutput('cd mechanisms/; nrnivmodl; cd ..') if args.hocanalyse: + if args.sim != 'nrn': + raise argparse.ArgumentError( + 'Simulator must be \'nrn\' with option --hocanalyse.') logger.debug('Doing hocanalyse') try: import bglibpy # NOQA @@ -159,7 +163,7 @@ def main(): # pylint: disable=too-many-statements l5pc_analysis.analyse_releasecircuit_model( opt=opt, figs=( (release_responses_fig, box), - (release_objectives_fig, box), ), box=box) + (release_objectives_fig, box), ), box=box, sim=args.sim) release_objectives_fig.savefig('figures/l5pc_release_objectives.eps') release_responses_fig.savefig('figures/l5pc_release_responses.eps') @@ -173,7 +177,8 @@ def main(): # pylint: disable=too-many-statements responses_filename=args.responses, figs=((responses_fig, box), (objectives_fig, box), - (evol_fig, box),)) + (evol_fig, box),), + sim=args.sim) responses_fig.savefig('figures/l5pc_responses.eps') objectives_fig.savefig('figures/l5pc_objectives.eps') From 3978d31e3016929738e060c1f5ebeb13db550959 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Wed, 12 Oct 2022 21:24:53 +0200 Subject: [PATCH 24/42] Axon replacement with Arbor morphologies, split_at/join_at and Neuron's define_shape for stylized geometry instantiation, Arbor support for synapse stimuli (incl. bugfix for NrnNetStimStimulus) with event generators, updated simplecell/l5pc/expsyn examples --- bluepyopt/ephys/create_acc.py | 120 +- bluepyopt/ephys/locations.py | 10 +- bluepyopt/ephys/models.py | 125 +- bluepyopt/ephys/morphologies.py | 208 +- bluepyopt/ephys/protocols.py | 57 +- bluepyopt/ephys/stimuli.py | 58 +- .../ephys/templates/acc/_json_template.jinja2 | 2 +- bluepyopt/tests/test_ephys/test_create_acc.py | 56 +- examples/expsyn/ExpSyn_arbor.ipynb | 39 +- examples/expsyn/expsyn.py | 29 +- examples/l5pc/L5PC_arbor.ipynb | 96 +- examples/l5pc/generate_acc.py | 2 +- examples/l5pc/l5pc_evaluator.py | 3 +- examples/l5pc/l5pc_soma_arbor.ipynb | 2537 ++++++++--------- examples/simplecell/generate_acc.py | 2 +- examples/simplecell/simplecell_arbor.ipynb | 4 +- 16 files changed, 1774 insertions(+), 1574 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index a34efcbf..19b842ea 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -3,6 +3,7 @@ # pylint: disable=R0914 import os +import io import logging import pathlib from collections import namedtuple @@ -556,8 +557,10 @@ def _read_templates(template_dir, template_filename): def create_acc(mechs, parameters, morphology=None, + morphology_dir=None, ignored_globals=(), replace_axon=None, + replace_axon_create_mod_acc=False, template_name='CCell', template_filename='acc/*_template.jinja2', disable_banner=None, @@ -569,9 +572,10 @@ def create_acc(mechs, mechs (): All the mechs for the decor template parameters (): All the parameters in the decor/label-dict template morphology (str): Name of morphology + morphology_dir (str): Directory of morphology ignored_globals (iterable str): Skipped NrnGlobalParameter in decor - replace_axon (str): String replacement for the 'replace_axon' command. - Only False is supported at the moment. + replace_axon (): Axon replacement morphology + replace_axon_create_mod_acc (): Create ACC with axon replacement template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) template_dir (str): dir name of the jinja2 templates @@ -585,18 +589,37 @@ def create_acc(mechs, % morphology) if replace_axon is not None: + if not hasattr(arbor.segment_tree, 'tag_roots'): + raise NotImplementedError("Need a newer version of Arbor" + " for axon replacement.") logger.debug("Obtain axon replacement by applying " "ArbFileMorphology.replace_axon after loading " "morphology in Arbor.") - replace_axon_json = json.dumps(replace_axon) - if hasattr(arbor.segment_tree, 'tag_roots'): - modified_morphology = \ + replace_axon_path = \ + pathlib.Path(morphology).stem + '_axon_replacement.acc' + replace_axon_acc = io.StringIO() + arbor.write_component(replace_axon, replace_axon_acc) + replace_axon_acc.seek(0) + + if replace_axon_create_mod_acc: + modified_morphology_path = \ pathlib.Path(morphology).stem + '_modified.acc' + modified_morpho = ArbFileMorphology.load( + os.path.join(morphology_dir, morphology), replace_axon_acc) + replace_axon_acc.seek(0) + modified_morphology_acc = io.StringIO() + arbor.write_component( + modified_morpho, modified_morphology_acc) + modified_morphology_acc.seek(0) + modified_morphology_acc = modified_morphology_acc.read() else: - modified_morphology = None + modified_morphology_path = None + modified_morphology_acc = None + + replace_axon_acc = replace_axon_acc.read() else: - replace_axon_json = None - modified_morphology = None + replace_axon_path = None + modified_morphology_path = None templates = _read_templates(template_dir, template_filename) @@ -675,52 +698,28 @@ def create_acc(mechs, section_scaled_mechs = {loc: _arb_project_scaled_mechs(mechs) for loc, mechs in section_mechs.items()} - return {filenames[name]: - template.render(template_name=template_name, - banner=banner, - morphology=morphology, - replace_axon=replace_axon_json, - modified_morphology=modified_morphology, - filenames=filenames, - regions=ArbFileMorphology.region_labels, - global_mechs=global_mechs, - global_scaled_mechs=global_scaled_mechs, - section_mechs=section_mechs, - section_scaled_mechs=section_scaled_mechs, - pprocess_mechs=pprocess_mechs, - **custom_jinja_params) - for name, template in templates.items()} - - -def _instantiate_morphology(morpho_filename, replace_axon): - '''Load morphology and optionally perform axon replacement - Args: - morpho_filename (str): Path to file with original morphology. - replace_axon (): list of segments to replace axon with (if not None). - ''' + ret = {filenames[name]: + template.render(template_name=template_name, + banner=banner, + morphology=morphology, + replace_axon=replace_axon_path, + modified_morphology=modified_morphology_path, + filenames=filenames, + regions=ArbFileMorphology.region_labels, + global_mechs=global_mechs, + global_scaled_mechs=global_scaled_mechs, + section_mechs=section_mechs, + section_scaled_mechs=section_scaled_mechs, + pprocess_mechs=pprocess_mechs, + **custom_jinja_params) + for name, template in templates.items()} - morpho_suffix = pathlib.Path(morpho_filename).suffix - - if morpho_suffix == '.acc': - morpho = arbor.load_component(morpho_filename).component - if replace_axon is not None: - morpho = ArbFileMorphology.replace_axon(morpho, replace_axon) - elif morpho_suffix == '.swc': - morpho = arbor.load_swc_arbor(morpho_filename) - if replace_axon is not None: - morpho = ArbFileMorphology.replace_axon(morpho, replace_axon) - elif morpho_suffix == '.asc': - morpho = arbor.load_asc(morpho_filename) - if replace_axon is not None: - morpho = \ - ArbFileMorphology.replace_axon(morpho.morphology, replace_axon) - else: - morpho = morpho.morphology - else: - raise RuntimeError( - 'Unsupported morphology {} (only .swc and .asc supported)'.format( - morpho_filename)) - return morpho + if replace_axon is not None: + ret[replace_axon_path] = replace_axon_acc + if modified_morphology_path is not None: # TODO: make optional + ret[modified_morphology_path] = modified_morphology_acc + + return ret def output_acc(output_dir, cell, parameters, @@ -760,14 +759,6 @@ def output_acc(output_dir, cell, parameters, raise RuntimeError("%s already exists!" % morpho_filename) shutil.copy2(cell.morphology.morphology_path, morpho_filename) - if 'replace_axon' in cell_json['morphology']: - if hasattr(arbor.segment_tree, 'tag_roots'): - morpho = _instantiate_morphology( - morpho_filename, cell_json['morphology']['replace_axon']) - arbor.write_component( - morpho, - os.path.join(output_dir, cell_json['morphology']['modified'])) - # Read the mixed JSON/ACC-output, to be moved to Arbor in future release def read_acc(cell_json_filename): @@ -785,9 +776,10 @@ def read_acc(cell_json_filename): morpho_filename = os.path.join(cell_json_dir, cell_json['morphology']['original']) - morpho = _instantiate_morphology( - morpho_filename, - cell_json['morphology'].get('replace_axon', None)) + replace_axon = cell_json['morphology'].get('replace_axon', None) + if replace_axon is not None: + replace_axon = os.path.join(cell_json_dir, replace_axon) + morpho = ArbFileMorphology.load(morpho_filename, replace_axon) labels = arbor.load_component( os.path.join(cell_json_dir, cell_json['label_dict'])).component diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index 0e9a8725..be13e522 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -676,7 +676,10 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 def acc_label(self): """Arbor label""" - return ArbLabel('region', self.name, self.region) + raise EPhysLocAccException( + 'Support for %s not yet implemented in create_acc.' % + type(self).__name__) + # return ArbLabel('region', self.name, self.region) def __str__(self): """String representation""" @@ -698,7 +701,10 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 def acc_label(self): """Arbor label""" - return ArbLabel('iexpr', self.name, self.iexpr) + raise EPhysLocAccException( + 'Support for %s not yet implemented in create_acc.' % + type(self).__name__) + # return ArbLabel('iexpr', self.name, self.iexpr) def __str__(self): """String representation""" diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index b97b3919..43b836e6 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -225,7 +225,7 @@ def create_empty_cell( return template_function() def instantiate_morphology(self, sim=None): - """Instantiate model in simulator""" + """Instantiate morphology in simulator""" # TODO replace this with the real template name if not hasattr(sim.neuron.h, self.name): @@ -245,6 +245,12 @@ def instantiate_morphology(self, sim=None): sec for sec in self.secarray_names if sim.neuron.h.section_exists(sec, self.icell)] + def instantiate_morphology_3d(self, sim=None): + """Instantiate morphology and fill in 3d pts for stylized geometry""" + + self.instantiate_morphology(sim=sim) + sim.neuron.h.define_shape() + def instantiate(self, sim=None): """Instantiate model in simulator""" @@ -307,6 +313,7 @@ def _create_sim_desc(self, param_values, template_name = self.name morphology = os.path.basename(self.morphology.morphology_path) + morphology_dir = os.path.dirname(self.morphology.morphology_path) if sim_desc_creator is create_hoc.create_hoc: if self.morphology.do_replace_axon: @@ -331,22 +338,97 @@ def _create_sim_desc(self, param_values, replace_axon += morph_modifier_hoc elif sim_desc_creator is create_acc.create_acc: if self.morphology.do_replace_axon: - replace_axon = [] - for sec in ['axon', 'myelin']: - if sec in self.icell_existing_secs: - for section in getattr(self.icell, sec): - seg_bounds = [seg for seg - in section.allseg()] - replace_axon += \ - [dict( - length=(dist.x - prox.x) * section.L, - prox_radius=0.5 * prox.diam, - dist_radius=0.5 * dist.diam, - tag=morphologies. - ArbFileMorphology.tags[sec]) - for prox, dist - in zip(seg_bounds[:-1], - seg_bounds[1:])] + + replace_axon = morphologies.\ + ArbFileMorphology.extract_nrn_seclists( + self.icell, [sl for sl in ['axon', 'myelin'] + if sl in self.icell_existing_secs]) +# FIXME +# # replace_axon = [] +# # for sec in ['axon', 'myelin']: +# # if sec in self.icell_existing_secs: +# # for section in getattr(self.icell, sec): +# # seg_bounds = [seg for seg +# # in section.allseg()] +# # replace_axon += \ +# # [dict( +# # length=(dist.x - prox.x) * section.L, +# # prox_radius=0.5 * prox.diam, +# # dist_radius=0.5 * dist.diam, +# # tag=morphologies. +# # ArbFileMorphology.tags[sec]) +# # for prox, dist +# # in zip(seg_bounds[:-1], +# # seg_bounds[1:])] +# import arbor +# import bisect +# import numpy + +# replace_axon = arbor.segment_tree() +# nrn_seg_to_dist = dict() +# nrn_seg_to_arb_seg = dict() +# for sec in ['axon', 'myelin']: +# if sec in self.icell_existing_secs: +# for section in getattr(self.icell, sec): + +# if replace_axon.size == 0: +# arb_parent_seg = arbor.mnpos +# else: +# parent_seg = section.parentseg() +# parent_sec = parent_seg.sec.name() +# parent_x = parent_seg.x +# parent_seg_id = bisect.bisect_left( +# nrn_seg_to_dist[parent_sec], +# parent_x) +# arb_parent_seg = \ +# nrn_seg_to_arb_seg[parent_sec][parent_seg_id] + +# pts3d = section.psection()['morphology']['pts3d'] +# if len(pts3d) == 0: +# # stylized geometry, infer it from original geometry +# raise ValueError( +# 'Embed stylized geometry using define_shape()') + +# pts3d = numpy.array(pts3d) +# dist_x = numpy.cumsum( +# numpy.linalg.norm( +# pts3d[1:,:3]-pts3d[:-1,:3], axis=1))/\ +# section.psection()['morphology']['L'] +# assert abs(1.-dist_x[-1]) < 1e-4 +# dist_x[-1] = 1. +# nrn_seg_to_dist[section.name()] = dist_x + +# arb_seg_ids = [] +# for i in range(1,len(pts3d)): +# prox = pts3d[i-1] +# dist = pts3d[i] +# arb_parent_seg = replace_axon.append( +# arb_parent_seg, +# arbor.mpoint(*prox[:3], 0.5 * prox[3]), +# arbor.mpoint(*dist[:3], 0.5 * dist[3]), +# morphologies.ArbFileMorphology.tags[sec]) +# arb_seg_ids.append(arb_parent_seg) +# nrn_seg_to_arb_seg[section.name()] = arb_seg_ids +# # dist, arb_seg_id pairs + +# # allseg = [seg for seg +# # in section.allseg()] +# # nseg = len(allseg) +# # for i, seg in enumerate(allseg): +# # prox_seg = allseg[max(i-1, 0)] +# # dist_seg = allseg[min(i+1, nseg)] +# # prox_x = 0.5 * (prox_seg.x + seg.x) +# # dist_x = 0.5 * (dist_seg.x + seg.x) +# # prox_radius = 0.25 * (prox_seg.diam + seg.diam) +# # dist_radius = 0.25 * (dist_seg.diam + seg.diam) +# # arb_parent_seg = replace_axon.append( +# # arb_parent_seg, +# # # FIXME: geometry +# # arbor.mpoint(prox_x * section.L, 0, 0, prox_radius), +# # arbor.mpoint(dist_x * section.L, 0, 0, dist_radius), +# # morphologies.ArbFileMorphology.tags[sec]) +# # nrn_seg_to_arb_seg[seg.sec()] = arb_parent_seg +# replace_axon = arbor.morphology(replace_axon) else: replace_axon = None else: @@ -354,6 +436,10 @@ def _create_sim_desc(self, param_values, '(choose either create_hoc.create_hoc or ' 'create_acc.create_acc)', str(sim_desc_creator)) + extra_params = dict() + if sim_desc_creator is create_acc.create_acc: + extra_params['morphology_dir'] = morphology_dir + ret = sim_desc_creator(mechs=self.mechanisms, parameters=self.params.values(), morphology=morphology, @@ -362,7 +448,8 @@ def _create_sim_desc(self, param_values, template_name=template_name, template_filename=template, template_dir=template_dir, - disable_banner=disable_banner) + disable_banner=disable_banner, + **extra_params) self.unfreeze(to_unfreeze) @@ -393,7 +480,7 @@ def create_acc(self, param_values, ' to instantiate morphology in order to' ' create JSON/ACC-description with' ' axon replacement.') - self.instantiate_morphology(sim=sim) + self.instantiate_morphology_3d(sim=sim) destroy_cell = True ret = self._create_sim_desc(param_values, diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index dae857d3..e5ec4f84 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -28,8 +28,10 @@ from bluepyopt.ephys.serializer import DictMixin try: - import arbor + import pathlib + import bisect import numpy + import arbor except ImportError as e: class arbor: def __getattribute__(self, _): @@ -320,42 +322,113 @@ class ArbFileMorphology(Morphology, DictMixin): ) @staticmethod - def replace_axon(morphology, replacement=None): - '''return a morphology with the axon replaced by two 30 um segments + def load(morpho_filename, replace_axon): + '''Load morphology and optionally perform axon replacement Args: - morphology (arbor.morphology): An Arbor morphology - replacement (): A list of dictionaries containing Arbor segment - parameters including nseg, length, radius and tag of the axon - replacement (derived from Neuron's stylized specification of - geometry, cf. Neuron topology/geometry docs). Each of these is - interpreted so that the axon replacement is formed from a single - branch of stacked cylindrical segments. + morpho_filename (str): Path to file with original morphology. + replace_axon (): Path to/ACC string for morphology to replace + axon with (if not None). ''' - def _mpt_to_coord(mpt): - '''Convert arbor.mpoint 3d center coordinates to numpy array''' - return numpy.array([mpt.x, mpt.y, mpt.z]) - - def _find_ais_centers(st, axon_parent=None): - if axon_parent is None or axon_parent == arbor.mnpos: - soma_segs = [i for i, s in enumerate(st.segments) - if s.tag == ArbFileMorphology.tags['soma']] - soma_terminals = [i for i in soma_segs if st.is_terminal(i)] - if len(soma_terminals) > 0: - axon_parent = soma_terminals[-1] - elif len(soma_segs) > 0: - axon_parent = soma_segs[-1] + morpho_suffix = pathlib.Path(morpho_filename).suffix + + if morpho_suffix == '.acc': + morpho = arbor.load_component(morpho_filename).component + elif morpho_suffix == '.swc': + morpho = arbor.load_swc_arbor(morpho_filename) + elif morpho_suffix == '.asc': + morpho = arbor.load_asc(morpho_filename).morphology + else: + raise RuntimeError( + 'Unsupported morphology %s' % morpho_filename + + ' (only .swc and .asc supported)') + + if replace_axon is not None: + replacement = arbor.load_component(replace_axon).component + morpho = ArbFileMorphology.replace_axon(morpho, replacement) + + return morpho + + @staticmethod + def extract_nrn_seclists(icell, seclists): + '''Extract section lists from an instantiated cell (axon replacement) + + Args: + icell (): Instantiated cell model in the NEURON simulator. + seclists (): List of section lists to extract + (typically ['axon'] or ['axon', 'myelin']). + ''' + replace_axon = arbor.segment_tree() + nrn_seg_to_dist = dict() + nrn_seg_to_arb_seg = dict() + for sec in seclists: + for section in getattr(icell, sec): + + if replace_axon.size == 0: # root + arb_parent_seg = arbor.mnpos else: - raise ValueError('Morphology without soma,' - ' cannot replace axon.') + parent_seg = section.parentseg() + parent_sec = parent_seg.sec.name() + parent_x = parent_seg.x + parent_seg_id = bisect.bisect_left( + nrn_seg_to_dist[parent_sec], + parent_x) + arb_parent_seg = \ + nrn_seg_to_arb_seg[parent_sec][parent_seg_id] + + pts3d = section.psection()['morphology']['pts3d'] + if len(pts3d) == 0: + # stylized geometry, must use sim.neuron.h.define_shape() + raise ValueError('Before exporting to ACC, embed' + ' stylized geometry in 3d' + ' by instantiating morphology with' + ' cell_model.instantiate_morphology_3d.') + + pts3d = numpy.array(pts3d) + dist_x = numpy.cumsum( + numpy.linalg.norm( + pts3d[1:, :3] - pts3d[:-1, :3], axis=1)) /\ + section.psection()['morphology']['L'] + relative_length_err = abs(1. - dist_x[-1]) + if relative_length_err > 1e-4: + logger.warn('pts3d length does not add up to' + ' section length, relative error = %s' % + relative_length_err) + if relative_length_err > 1e-2: + raise ValueError('pts3d length inconsistent' + ' with section length, relative' + ' error = %s' % + relative_length_err) + + dist_x[-1] = 1. + nrn_seg_to_dist[section.name()] = dist_x + + arb_seg_ids = [] + for i in range(1, len(pts3d)): + prox = pts3d[i - 1] + dist = pts3d[i] + arb_parent_seg = replace_axon.append( + arb_parent_seg, + arbor.mpoint(*prox[:3], 0.5 * prox[3]), + arbor.mpoint(*dist[:3], 0.5 * dist[3]), + ArbFileMorphology.tags[sec]) + arb_seg_ids.append(arb_parent_seg) + # dist, arb_seg_id pairs + nrn_seg_to_arb_seg[section.name()] = arb_seg_ids + + replace_axon = arbor.morphology(replace_axon) + + return replace_axon - ar_prox = st.segments[axon_parent].dist - ar_prox_center = _mpt_to_coord(ar_prox) - ar_dist = st.segments[axon_parent].prox - ar_dist_center = 2 * ar_prox_center - _mpt_to_coord(ar_dist) + @staticmethod + def replace_axon(morphology, replacement=None): + '''return a morphology with the axon replaced by another morphology - return ar_prox_center, ar_dist_center + Args: + morphology (arbor.morphology): The original Arbor morphology + replacement (): An Arbor morphology to replace the axon with + ''' # Check if tag_roots is available if not hasattr(arbor.segment_tree, 'tag_roots'): @@ -365,7 +438,7 @@ def _find_ais_centers(st, axon_parent=None): # Arbor tags axon_tag = ArbFileMorphology.tags['axon'] - # Prune morphology at axon root + # prune morphology at axon root st = morphology.to_segment_tree() axon_roots = st.tag_roots(axon_tag) if len(axon_roots) > 1: @@ -373,71 +446,20 @@ def _find_ais_centers(st, axon_parent=None): "morphologies with a single axon root.") elif len(axon_roots) == 1: axon_root = axon_roots[0] + logger.debug('Axon replacement: splitting segment tree' + ' at segment %d.', axon_root) pruned_st, axon_st = st.split_at(axon_root) - else: - pruned_st = st - - if replacement is not None: - ar_radius = [(r['prox_radius'], r['dist_radius']) - for r in replacement] - else: - if len(axon_roots) > 1: - ValueError('Please specify axon replacement explicitly ' - 'for morphology with pre-existing axon.') - ar_radius = None - - # Create axon replacement building on the pruned root - if len(axon_roots) == 1: - axon_root = axon_roots[0] axon_parent = st.parents[axon_root] - - ar_prox = st.segments[axon_root].prox - ar_prox_center = _mpt_to_coord(ar_prox) - ar_dist = st.segments[axon_root].dist - ar_dist_center = _mpt_to_coord(ar_dist) - - if all(ar_prox_center == ar_dist_center): - ar_prox_center, ar_dist_center = \ - _find_ais_centers(st, axon_parent) - - # Could approximate ar_radius based on original morphology - # here if it is None (caught above) - - logger.debug('Replacing axon with root %d with AIS' - ' of radii %s.', axon_root, str(ar_radius)) else: - if ar_radius is None: - ar_radius = [(0.5, 0.5), (0.5, 0.5)] + pruned_st = st + axon_parent = arbor.mnpos - ar_prox_center, ar_dist_center = _find_ais_centers(st) + # join pruned segment tree and replacement at axon parent + axon_replacement_st = replacement.to_segment_tree() - # create new branch for replaced axon not to break - # existing location expressions - axon_parent = arbor.mnpos - logger.debug('Replacing non-existent axon with AIS' - ' of radii %s.', str(ar_radius)) + logger.debug('Axon replacement: joining replacement onto' + 'pruned tree at parent segment %d.', axon_parent) + joined_st = pruned_st.join_at( + axon_parent, axon_replacement_st) - if replacement is not None: - ar_seg_scaling = numpy.cumsum([0] + - [r['length'] for r in replacement]) - else: - ar_seg_scaling = numpy.cumsum([0, 30, 30]) - ar_seg_scaling /= numpy.linalg.norm(ar_dist_center - ar_prox_center) - - ar_centers = [ar_prox_center + - scale * (ar_dist_center - ar_prox_center) - for scale in ar_seg_scaling] - - ar_tags = [r['tag'] for r in replacement] - - for prox, dist, radius, tag in zip(ar_centers[:-1], - ar_centers[1:], - ar_radius, - ar_tags): - axon_parent = pruned_st.append( - axon_parent, - arbor.mpoint(*prox, radius[0]), - arbor.mpoint(*dist, radius[1]), - tag) - - return arbor.morphology(pruned_st) + return arbor.morphology(joined_st) diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index 93bb5bca..46777b4a 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -413,12 +413,17 @@ def _run_func(self, cell_json, param_values, sim=None): labels = self.instantiate_locations(labels) # Adding stimuli to decor (could also be written/loaded from ACC) - decor = self.instantiate_stimuli( + decor = self.instantiate_iclamp_stimuli( decor, use_labels=self.use_labels) arb_cell_model = sim.instantiate(morph, labels, decor) + # Adding synaptic stimuli to cell model (no representation in ACC) + arb_cell_model = self.instantiate_synaptic_stimuli( + arb_cell_model, + use_labels=self.use_labels) + # Adding recordings to cell model (no representation in ACC) arb_cell_model = self.instantiate_recordings( arb_cell_model, @@ -468,7 +473,7 @@ def run( cell_json = os.path.join(acc_dir, cell_model.name + '.json') # protocols are directly instantiated on Arbor cell - # (serialization would require representation for probes) + # (serialization would require representation for probes, events) if isolate is None: isolate = True @@ -550,25 +555,38 @@ def instantiate_locations(self, label_dict): return label_dict - def instantiate_stimuli(self, decor, use_labels=False): - """Instantiate stimuli""" + def instantiate_iclamp_stimuli(self, decor, use_labels=False): + """Instantiate iclamp stimuli""" for i, stim in enumerate(self.stimuli): - if hasattr(stim, 'envelope'): - arb_iclamp = arbor.iclamp(stim.envelope()) - else: - raise ValueError('Stimulus must provide envelope method ' - ' to be supported in Arbor.') + if not isinstance(stim, stimuli.SynapticStimulus): + if hasattr(stim, 'envelope'): + arb_iclamp = arbor.iclamp(stim.envelope()) + else: + raise ValueError('Stimulus must provide envelope method ' + ' or be of type NrnNetStimStimulus to be' + ' supported in Arbor.') - arb_loc = stim.location.acc_label() - for loc in (arb_loc if isinstance(arb_loc, list) - else [arb_loc]): - decor.place(loc.ref if use_labels else loc.loc, - arb_iclamp, - '%s.iclamp.%d.%s' % (self.name, i, loc.name)) + arb_loc = stim.location.acc_label() + for loc in (arb_loc if isinstance(arb_loc, list) + else [arb_loc]): + decor.place(loc.ref if use_labels else loc.loc, + arb_iclamp, + '%s.iclamp.%d.%s' % (self.name, i, loc.name)) return decor + def instantiate_synaptic_stimuli(self, cell_model, use_labels=False): + """Instantiate synaptic stimuli""" + + for i, stim in enumerate(self.stimuli): + if isinstance(stim, stimuli.SynapticStimulus): + for acc_events in stim.acc_events(): + # cell_model.spike_source(**acc_stim, delay=delay) + cell_model.event_generator(acc_events) + + return cell_model + def instantiate_recordings(self, cell_model, use_labels=False): """Instantiate recordings""" @@ -577,6 +595,15 @@ def instantiate_recordings(self, cell_model, use_labels=False): # alternatively arbor.cable_probe_membrane_voltage arb_loc = rec.location.acc_label() assert not isinstance(arb_loc, list) or len(arb_loc) == 1 + + if hasattr(cell_model, 'cable_cell'): + rec_locations = cell_model.cable_cell.locations(arb_loc.loc) + if len(rec_locations) != 1: + raise ValueError( + 'Recording %s\'s' % rec.name + + ' location "%s"' % arb_loc.loc + + ' is non-unique in Arbor: %s.' % rec_locations) + cell_model.probe('voltage', arb_loc.ref if use_labels else arb_loc.loc, frequency=10) # could be a parameter diff --git a/bluepyopt/ephys/stimuli.py b/bluepyopt/ephys/stimuli.py index a86be5d2..6ae98fa3 100644 --- a/bluepyopt/ephys/stimuli.py +++ b/bluepyopt/ephys/stimuli.py @@ -24,6 +24,17 @@ import logging logger = logging.getLogger(__name__) +try: + import arbor +except ImportError as e: + class arbor: + def __getattribute__(self, _): + raise ImportError("Loading an ACC/JSON-exported cell model into an" + " Arbor morphology and cable cell components" + " requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") + class Stimulus(object): @@ -31,6 +42,12 @@ class Stimulus(object): pass +class SynapticStimulus(Stimulus): + + """Synaptic stimulus protocol""" + pass + + class NrnCurrentPlayStimulus(Stimulus): """Current stimulus based on current amplitude and time series""" @@ -96,7 +113,7 @@ def __str__(self): return "Current play at %s" % (self.location) -class NrnNetStimStimulus(Stimulus): +class NrnNetStimStimulus(SynapticStimulus): """Current stimulus based on current amplitude and time series""" @@ -116,7 +133,7 @@ def __init__(self, number: average number of spikes start: most likely start time of first spike (ms) noise: fractional randomness (0 deterministic, - 1 negexp interval distrubtion) + 1 negexp interval distribution) """ super(NrnNetStimStimulus, self).__init__() @@ -153,7 +170,42 @@ def instantiate(self, sim=None, icell=None): def destroy(self, sim=None): """Destroy stimulus""" - self.connections = None + self.connections = {} + + def acc_events(self): + # spike_sources = [] + event_generators = [] + + for loc in self.locations: + if self.noise == 0.: + schedule = arbor.explicit_schedule( + [self.start + i * self.interval + for i in range(self.number)]) + elif self.noise == 1.: + schedule = arbor.poisson_schedule( + tstart=self.start, + freq=1. / self.interval, + seed=0, + tstop=self.start + self.number * self.interval) + else: + raise ValueError( + 'Only noise = 0 or 1 for NrnNetStimStimulus' + ' supported in Arbor.') + # spike_cell = arbor.spike_source_cell( + # loc.name, schedule) + # spike_sources.append(dict( + # source=spike_cell, + # synapse=loc.pprocess_mech.name, + # weight=self.weight + # )) + event_generators.append( + arbor.event_generator(target=loc.pprocess_mech.name, + weight=self.weight, + sched=schedule)) + + return event_generators + + # return spike_sources def __str__(self): """String representation""" diff --git a/bluepyopt/ephys/templates/acc/_json_template.jinja2 b/bluepyopt/ephys/templates/acc/_json_template.jinja2 index ffb4a163..67956693 100644 --- a/bluepyopt/ephys/templates/acc/_json_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/_json_template.jinja2 @@ -7,7 +7,7 @@ {%- if replace_axon is not none %} "morphology": { "original": "{{morphology}}", - "replace_axon": {{replace_axon}}{%- if modified_morphology is not none %}, + "replace_axon": "{{replace_axon}}"{%- if modified_morphology is not none %}, "modified": "{{modified_morphology}}"{%- endif %} }, {%- else %} diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index c0465763..00709962 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -7,6 +7,8 @@ import json import tempfile +from bluepyopt.ephys.morphologies import ArbFileMorphology + from . import utils from bluepyopt import ephys @@ -159,21 +161,42 @@ def test_create_acc_replace_axon(): """ephys.create_acc: Test create_acc with axon replacement""" mech = utils.make_mech() parameters = utils.make_parameters() - replace_axon = [dict(nseg=1, L=30., diam=1.0), - dict(nseg=1, L=30., diam=1.0)] - acc = create_acc.create_acc([mech, ], parameters, - morphology='CCell.swc', - template_name='CCell', - replace_axon=replace_axon) + replace_axon_st = arbor.segment_tree() + latest_seg = arbor.mnpos + + for prox_x, dist_x in [(5, 35), (35, 65)]: + latest_seg = replace_axon_st.append( + latest_seg, + arbor.mpoint(prox_x, 0, 0, 0.5), + arbor.mpoint(dist_x, 0, 0, 0.5), + ArbFileMorphology.tags['axon'] + ) + + replace_axon = arbor.morphology(replace_axon_st) + + try: + acc = create_acc.create_acc([mech, ], parameters, + morphology_dir=testdata_dir, + morphology='simple.swc', + template_name='CCell', + replace_axon=replace_axon) + except Exception as e: # fail with an older Arbor version + assert isinstance(e, NotImplementedError) + assert len(e.args) == 1 and e.args[0] == \ + "Need a newer version of Arbor for axon replacement." + return cell_json = "CCell.json" cell_json_dict = json.loads(acc[cell_json]) assert 'replace_axon' in cell_json_dict['morphology'] - assert 'nseg' in cell_json_dict['morphology']['replace_axon'][0] - assert 'L' in cell_json_dict['morphology']['replace_axon'][0] - assert 'diam' in cell_json_dict['morphology']['replace_axon'][0] - assert cell_json_dict['morphology']['replace_axon'] == replace_axon + + with open(os.path.join(testdata_dir, + 'acc/CCell/simple_axon_replacement.acc')) as f: + replace_axon_ref = f.read() + + assert acc[cell_json_dict['morphology']['replace_axon']] == \ + replace_axon_ref def make_cell(replace_axon): @@ -250,19 +273,20 @@ def test_cell_model_output_and_read_acc_replace_axon(): 'gkbar_hh': 0.03} with tempfile.TemporaryDirectory() as acc_dir: - create_acc.output_acc(acc_dir, cell, param_values, - sim=ephys.simulators.NrnSimulator()) try: - cell_json, arb_morph, arb_labels, arb_decor = \ - create_acc.read_acc( - os.path.join(acc_dir, cell.name + '.json')) + create_acc.output_acc(acc_dir, cell, param_values, + sim=ephys.simulators.NrnSimulator()) except Exception as e: # fail with an older Arbor version assert isinstance(e, NotImplementedError) assert len(e.args) == 1 and e.args[0] == \ "Need a newer version of Arbor for axon replacement." return - # Axon replacement implemented in installed Arbor version + # Axon replacement implemented in installed Arbor version + cell_json, arb_morph, arb_labels, arb_decor = \ + create_acc.read_acc( + os.path.join(acc_dir, cell.name + '.json')) + assert 'replace_axon' in cell_json['morphology'] cable_cell = arbor.cable_cell(arb_morph, arb_labels, arb_decor) assert isinstance(cable_cell, arbor.cable_cell) diff --git a/examples/expsyn/ExpSyn_arbor.ipynb b/examples/expsyn/ExpSyn_arbor.ipynb index 2f5ecdf0..76644685 100644 --- a/examples/expsyn/ExpSyn_arbor.ipynb +++ b/examples/expsyn/ExpSyn_arbor.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Optimising synaptic parameters " + "# Optimising synaptic parameters in Arbor" ] }, { @@ -51,8 +51,8 @@ "metadata": {}, "outputs": [], "source": [ - "# NEURON simulator\n", - "nrn_sim = ephys.simulators.ArbSimulator()\n", + "# Arbor simulator\n", + "arb_sim = ephys.simulators.ArbSimulator()\n", "\n", "# Single compartment\n", "morph = ephys.morphologies.NrnFileMorphology('simple.swc')\n", @@ -184,13 +184,13 @@ "number = 5\n", "interval = 5\n", "\n", - "netstim = [\n", - " ephys.stimuli.NrnSquarePulse(\n", - " step_amplitude=5e-4,\n", - " step_delay=stim_start + i*interval,\n", - " step_duration=1,\n", - " location=expsyn_loc,\n", - " total_duration=200) for i in range(number)]\n", + "netstim = ephys.stimuli.NrnNetStimStimulus( \n", + " total_duration=200, \n", + " number=5, \n", + " interval=5, \n", + " start=stim_start, \n", + " weight=5e-4, \n", + " locations=[expsyn_loc])\n", "\n", "stim_end = stim_start + interval * number\n", "\n", @@ -199,7 +199,7 @@ " location=somacenter_loc,\n", " variable='v')\n", "\n", - "protocol = ephys.protocols.ArbSweepProtocol('netstim_protocol', netstim, [rec])" + "protocol = ephys.protocols.ArbSweepProtocol('netstim_protocol', [netstim], [rec])" ] }, { @@ -236,7 +236,7 @@ " param_names=['expsyn_tau'], \n", " fitness_protocols={protocol.name: protocol}, \n", " fitness_calculator=score_calc, \n", - " sim=nrn_sim) " + " sim=arb_sim) " ] }, { @@ -255,7 +255,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'maximum_voltage': 142.04225284539575}\n" + "{'maximum_voltage': 497.76464958177615}\n" ] } ], @@ -301,13 +301,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Best individual: [1.4173738261003155]\n", - "Fitness values: (142.04225284539575,)\n" + "Best individual: [0.331650919141091]\n", + "Fitness values: (5.578722836445564,)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvdUlEQVR4nO3df1RUdeI//ue93IERQwQHNDItHTrq8taVBM1Skx1bz7pv8bhptMFuvY9pibmR/eK90dcjS7BLLtUitmvWm9R3NLtW8D4dgsj3ip9UELMfYOx7obIfIDjyG5wZx7nfP8hZCWaYH9yZAZ6Pczoyc++dec6FePK6PwVZlmUQERF5QPR1ACIiGv1YJkRE5DGWCREReYxlQkREHmOZEBGRx1gmRETkMcnXAXypqanJreU0Gg0MBsMIp/Ecc7mGuVzDXK7z12ye5IqKihryeY5MiIjIYywTIiLyGMuEiIg8xjIhIiKP+cUO+NLSUpSVlUEURcTGxiI5Odk2zWAwIC0tDRs2bMDatWsHLfvSSy+hsbERkiRh9uzZ2Lx5MyTJLz4WEdG44fPfurW1taipqUFubi5UKhU6OzsHTC8sLMTChQvtLn/HHXfgkUceAQC8+OKLOHLkCO666y5FMxMR0UA+L5Py8nIkJiZCpVIBAEJDQ23TqqurERkZiaCgILvLx8bG2r7WarW4ePGicmGJiGhIPi+T5uZm1NfXo6ioCCqVCikpKdBqtTAajSguLkZGRgZKSkqGfR2LxYJjx47h/vvvtztPRUUFKioqAAA5OTnQaDRuZZYkye1llaRkLlmWcan0MKwd7S4v2yeKUFutCqTyDHO5hrlc56/ZhMSkEf9d4ZUyyczMREdHx6Dnk5KSYLVa0dPTg6ysLDQ2NiIvLw/5+fnQ6/VYs2YN1Gq1U+/xyiuvYO7cuZg7d67deXQ6HXQ6ne2xuyftjMUTkYYjf3cO1n1/7H8gCIq8BxF5h3r5KnRcMrm1rL2TFr1SJhkZGXanlZeXIz4+HoIgQKvVQhRFdHd3o6GhAVVVVTh06BB6e3shCAICAwOxevXqQa/x17/+FV1dXdi8ebOSH2N8a+svKfHpP0CYPcelRcdj+XqCuVzjr7kA/80maTTACOfy+WauuLg41NXVISYmBk1NTbBYLAgJCcGuXbts8+j1eqjV6iGL5IMPPsAnn3yCZ599FqLII50VY/7+r5gg50aKRDS++Py3b0JCAlpaWrBjxw68+OKLSE1NhTDMZpTs7Gy0tbUBAPbt24fOzk789re/xRNPPIG//e1v3og97shXyyTQ/sEQRDR++XxkIkkStm/f7nCejRs3Dnicnp5u+7qoqEiRXPQDLBMicsDnIxMaJVgmROQAy4ScwzIhIgdYJuQcswkQRQi8VA0RDYFlQs4xmzgqISK7WCbkHLOZZUJEdrFMyDkcmRCRAywTcorMMiEiB1gm5ByWCRE5wDIh55hNQGCgr1MQkZ9imZBzODIhIgdYJuQclgkROcAyIedcNkNgmRCRHSwTcg5HJkTkAMuEnMMyISIHWCbkHJYJETnAMqFhyRYLcOUKoOKhwUQ0NL+4BGxpaSnKysogiiJiY2ORnJxsm2YwGJCWloYNGzZg7dq1g5bdu3cvvvjiC8iyjOuvvx6pqalQq3lr2RHFy88T0TB8Xia1tbWoqalBbm4uVCoVOjs7B0wvLCzEwoUL7S7/61//GsHBwbZ533vvPaxbt07JyOMPy4SIhuHzMikvL0diYiJUKhUAIDQ01DaturoakZGRCAqy/0vsapHIsgyz2axs2PGKZUJEw/B5mTQ3N6O+vh5FRUVQqVRISUmBVquF0WhEcXExMjIyUFJS4vA1CgoKcObMGUyfPh2/+tWv7M5XUVGBiooKAEBOTg40Go1bmSVJcntZJSmVy9LbiYsAJmk0ULvx+uNtfXmKuVzjr7kA/82mRC6vlElmZiY6OjoGPZ+UlASr1Yqenh5kZWWhsbEReXl5yM/Ph16vx5o1a5za/7F161ZYrVa8+uqrOH78OFauXDnkfDqdDjqdzvbYYDC49Xk0Go3byypJqVxyawsAoNtkRo8brz/e1penmMs1/poL8N9snuSKiooa8nmvlElGRobdaeXl5YiPj4cgCNBqtRBFEd3d3WhoaEBVVRUOHTqE3t5eCIKAwMBArF69esjXEUURS5cuRUlJid0yITdd3czFo7mIyA6fb+aKi4tDXV0dYmJi0NTUBIvFgpCQEOzatcs2j16vh1qtHlQksiyjpaUF06ZNgyzLqKmpsdua5AHuMyGiYfi8TBISElBQUIAdO3ZAkiSkpqZCEASHy2RnZ2PLli2YPHky9uzZg76+PgDAzJkzsWnTJm/EHl9sZcKRCRENzedlIkkStm/f7nCejRs3Dnicnp5u+zozM1ORXPQvssnY/0Ugz98hoqHxDHga3tWRSRDLhIiGxjKh4Zmulgn3mRDR0FgmNDzbZi6WCRENjWVCwzMbAUkFQQzwdRIi8lMsExqe2cT9JUTkEMuEhmcycX8JETnEMqHhmYw8LJiIHGKZ0LBk3mWRiIbBMqHhmbmZi4gc8/kZ8OQ/rG/8BXLle4MnWCxAzK3eD0REowbLhGzk2o+AqTdAmL9o0DRhwWIfJCKi0YJlQv/S1wNh0R0Q1//a10mIaJThPhP6F+5oJyI3sUwIQP+9YVgmROQulgn1u2zu/5f3LCEiN7BMqB/vpkhEHvCLMiktLcWjjz6Kxx57DAcPHhwwzWAwICUlBSUlJQ5f49VXX0VKSoqSMcc289WRCcuEiFzn86O5amtrUVNTg9zcXKhUKnR2dg6YXlhYiIULFzp8jcbGRvT29ioZc+zjyISIPODzkUl5eTkSExOhUqkAAKGhobZp1dXViIyMxPTp0+0ub7VacfDgQSQnJyuedUz7vkwElgkRucHnI5Pm5mbU19ejqKgIKpUKKSkp0Gq1MBqNKC4uRkZGhsNNXO+99x5uvfVWhIWFDfteFRUVqKioAADk5ORAo9G4lVmSJLeXVZInucyGZrQDmBQRgaAR/mxjcX0piblc46+5AP/NpkQur5RJZmYmOjo6Bj2flJQEq9WKnp4eZGVlobGxEXl5ecjPz4der8eaNWugVtu/Wm1bWxtOnDiBnTt3OpVDp9NBp9PZHhsMBlc/CgBAo9G4vaySPMklt7YAALoumSCM8Gcbi+tLSczlGn/NBfhvNk9yRUVFDfm8V8okIyPD7rTy8nLEx8dDEARotVqIooju7m40NDSgqqoKhw4dQm9vLwRBQGBgIFavXm1b9quvvsL58+exfft2AIDZbMYjjzyCP/3pT4p/pjHHts+EhwYTket8vpkrLi4OdXV1iImJQVNTEywWC0JCQrBr1y7bPHq9Hmq1ekCRAEBsbCz27dtne5ySksIicZPMHfBE5AGf74BPSEhAS0sLduzYgRdffBGpqakQBMHhMtnZ2Whra/NSwnHiMg8NJiL3+XxkIkmSbTOVPRs3bhzwOD09fcj5Dhw4MGK5xh2OTIjIAz4fmZCfYJkQkQdYJtTP9H2ZqLgDnohcxzKhfmYTIKkgiPyRICLX8TcH9ePl54nIAywT6scyISIPsEyoH8uEiDzAMiEAgHzZzDIhIrc5dZ6JwWDAuXPn0Nvbi4kTJ2LmzJl+efEy8oDZBASxTIjIPXbLxGKxoKKiAu+//z5aW1sxbdo0qNVqGI1GnD9/HpGRkVi1ahV0Oh0kyefnPpKnzCYeFkxEbrPbAk888QRiYmKwefNmREdHQ7zmkFGr1YqGhgYcO3YMTz75JP74xz96JSwpyGwCgq/zdQoiGqXslsnOnTsH3KjqWqIo4pZbbsEtt9yCrq4uxcKRF5lNvDEWEbnN7g740NBQlJWVDXs73EmTJo14KPIBHs1FRB5wuLPjyJEjeP3117Fw4ULceeediI2NHbC5i8YQlgkRecBhmfz+97/H119/jcrKSuzfvx9//vOfsXTpUqxYsQKzZs3yVkbyBrOJN8YiIrcNexjWjBkzkJycjPvuuw+fffYZKisrsXPnTkRERGDFihVYu3atN3KSgmSrFTCbgUD7t0gmInLE6W1WgiBg/vz52LZtG5566ikYjUYcOnRIyWzkLVdvjMXzTIjITU6fINLW1obKykpUVlbi4sWLWLx4Me68884RCVFaWoqysjKIoojY2FgkJyfbphkMBqSlpWHDhg1DjoL27NmDs2fPIjg4GACQmpqKm266aURyjRsmY/+/QRyZEJF7HJaJyWTCyZMnUVlZibNnz2LevHlYt24dFi9ejKAR+iu2trYWNTU1yM3NhUqlQmdn54DphYWFWLhwocPXSElJwZIlS0Ykz7h0tUy4A56I3OSwTDZt2gSNRoPly5dj69atmDJlyogHKC8vR2JiIlQqFQAMOLeluroakZGRI1ZcZIftLoscmRCRexyWybPPPovo6GhFAzQ3N6O+vh5FRUVQqVRISUmBVquF0WhEcXExMjIyUFJS4vA13njjDfztb39DTEwM7rvvPlsx/VBFRQUqKioAADk5OW5fX0ySJL+8Npm7uS63taINQGhEBIIU+FxjbX0pjblc46+5AP/NpkQuh2VybZF8/vnn+PLLL2E0GgfMs379+mHfJDMzEx0dHYOeT0pKgtVqRU9PD7KystDY2Ii8vDzk5+dDr9djzZo1UKsd/7X8y1/+EpMnT4bFYsGf//xnFBcX4+677x5yXp1OB51OZ3tsMBiGzT4UjUbj9rJKcjeX3HoeANBlMkNQ4HONtfWlNOZyjb/mAvw3mye5oqKihnzeqR3wr776Kk6cOIE5c+Yg8JpzEQRBcOrNMzIy7E4rLy9HfHw8BEGAVquFKIro7u5GQ0MDqqqqcOjQIfT29kIQBAQGBmL16tUDlg8LCwMAqFQqrFy5Ev/zP//jVCa6hombuYjIM06VybFjx7B7926Eh4ePeIC4uDjU1dUhJiYGTU1NsFgsCAkJwa5du2zz6PV6qNXqQUUCAO3t7QgLC4Msyzh16hRuvPHGEc841sm2fSbcN0VE7nGqTDQajd39EJ5KSEhAQUEBduzYAUmSkJqaOuyIJzs7G1u2bEF4eDheeukl28UmZ86cic2bNyuScyyQTUbIJ44AlssDJ3zZ0P8vD3QgIjcJsizLw83U2NiIt99+G7fffvugKwnPmzdPsXBKa2pqcmu50bod1Pr/3odc+KehJwZPhPiH1yAocK7JaF1fvsJcrvHXXID/ZvPZPpMvvvgCZ86cweeffz5gnwkA7N27161A5AMXWwFBgJh3EPjh6E8VBEGh0ScRjX1Olckbb7yBp556CvPnz1c6DynJZAQC1RAmhvg6CRGNMU5dmysoKGhUb86i7/HKwESkEKfK5J577sF//dd/oaOjA1ardcB/NIqYzTxii4gU4dRmrqv7Rd5///1B0958882RTUTK4Q2wiEghTpVJfn6+0jnIC2SWCREpxKkyiYiIUDoHeQP3mRCRQuzuMyksLBzyelrX6ujoQGFh4UhnIqVwZEJECrE7MomKikJ6ejqmT5+OuXPnIioqChMmTMClS5fQ3NyMs2fPoqmpyakLPZKfMJuA0JG/JA4Rkd0yWbVqFVauXImamhqcOXMGp06dQl9fHyZOnIgZM2Zg1apVuPXWWxEQEODNvOQJswkCRyZEpACH+0wkScKSJUt4F8Ox4rKZ198iIkU4dZ4JjRHcZ0JECmGZjCc8mouIFMIyGSfkK1cAi4UjEyJSBMtkvLj8/Q2wVCwTIhp5Tp20CADfffcdTpw4gY6ODmzatAnfffcdLBYLZs6c6XGI0tJSlJWVQRRFxMbGIjk52TbNYDAgLS0NGzZswNq1awctK8syioqKcPLkSYiiiFWrVuFnP/uZx5nGHN5NkYgU5FSZnDhxAvv370d8fDw+/PBDbNq0CUajEf/93//t8P7uzqitrUVNTQ1yc3OhUqnQ2dk5YHphYSEWLlxod/m///3vuHjxIvLy8iCK4qDl6XsmlgkRKcepMtHr9XjmmWdw00034cSJEwD6b5H71VdfeRygvLwciYmJttsCX3snx+rqakRGRiLIweGs5eXl+M1vfgNRFActT9cwm/v/ZZkQkQKcKpPOzs5Bm7MEQRj2Xu3OaG5uRn19PYqKiqBSqZCSkgKtVguj0Yji4mJkZGSgpKTE7vItLS04fvw4qqurMWnSJDzwwAO4/vrrPc415ny/z4QnLRKREpwqk1mzZqGyshIrVqywPffhhx9Cq9U69SaZmZlDXucrKSkJVqsVPT09yMrKQmNjI/Ly8pCfnw+9Xo81a9ZArXZ8T/LLly9DpVIhJycHVVVV2Lt3L3bt2jXkvBUVFaioqAAA5OTkQKPROJX/hyRJcntZJTnKZW75Bu0AQiMiEOjl7KNxffkSc7nGX3MB/ptNiVxOlckDDzyA3/3udzhy5AhMJhOysrLQ1NSEZ555xqk3cbRfpby8HPHx8RAEAVqtFqIooru7Gw0NDaiqqsKhQ4fQ29sLQRAQGBiI1atXD1h+ypQpWLx4MQAgPj4eBQUFdt9Lp9NBp9PZHhsMBqfy/5BGo3F7WSU5yiVfaAUAdF4yQvBy9tG4vnyJuVzjr7kA/83mSa6oqKghn3eqTG644Qa88MILOH36NG699VZMmTIFt95667CjBmfExcWhrq4OMTExaGpqgsViQUhIyIDRhV6vh1qtHlQkV5evra1FQkICzp49a/eDjns8mouIFOT0ocFBQUFYunTpiAdISEhAQUEBduzYAUmSkJqaOuy+mOzsbGzZsgXh4eFYt24dXnrpJbz77rtQq9XYsmXLiGccC2SWCREpyKkyefbZZ4f8BS9JEqZMmYL4+HgsWrTIvQCShO3btzucZ+PGjQMep6en276eOHHigMdkB8uEiBTk1Bnw8+bNQ2trK+bOnYtly5Zh7ty5uHDhAmbPno3Q0FDs3bsXxcXFSmclT7BMiEhBTo1MPv30U/z2t7/F9OnTbc8tW7YMe/bswXPPPYfFixfjxRdfRGJiomJByUM8z4SIFOTUyOS7777D1KlTBzwXERGBpqYmAIBWqx32Fr/kY2YTIIiA5PRuMiIipzlVJnPnzkVBQQHOnz8Ps9mM8+fP4+WXX8acOXMAAF9//TXCwsIUDUoe+v7y8yNxoikR0Q859Wfqtm3b8MorryAtLQ1WqxUBAQGIj4/H1q1b+19EkvCb3/xG0aDkIRNvjEVEynGqTK677jo8+uijsFqt6OrqwqRJk2zXwgLsn8RCfsRsZJkQkWJc2oBuMplgNptx4cIF23M/3JdC/kk2m4Agz08yJSIailNl8u233+Kll17CuXPnBk178803RzwUKcBkZJkQkWKc2gH/yiuv4Ec/+hFeffVVBAcH47XXXsOqVauQmpqqdD4aKdxnQkQKcqpMzp07h/vuuw8TJ06ELMsIDg5GcnIyRyWjCfeZEJGCnCoTlUqFK1euAABCQkJgMBggyzJ6enoUDUcjyGyCwM1cRKQQp/aZzJkzBydOnMCdd96JJUuW4LnnnoNKpcKPfvQjpfPRSDGZAAd3rCQi8oRTZfLYY4/Zvr733ntx4403wmg0DrhZFvk5kxEI5MiEiJTh1Gaua2+bK4oili9fjrvuugvvv/++YsFohJm5A56IlOPUyOTw4cNYu3btkM///Oc/H/FQ5L4rL/x/wLdfDZ5gucxDg4lIMQ7LpLa2FgBgtVptX1/V0tKCCRMmKJeMXGbt7gLqzgDaeRCibhw4URQhLF7um2BENOY5LJO9e/cCAMxms+1rABAEAZMnT8Z//Md/jEiI0tJSlJWVQRRFxMbGIjk52TbNYDAgLS0NGzZsGHJ09Oyzz+LSpUsAgK6uLsyePRtPPvnkiOQabaw9XQAAYcVPIS5Z6eM0RDSeOCyTPXv2AADy8/Oxbds2RQLU1taipqYGubm5UKlU6OzsHDC9sLAQCxcutLv8tfeKf/755xEXF6dIztFANhkBAAL3jRCRlzm1A16pIgGA8vJyJCYmQqVSAQBCQ0Nt06qrqxEZGTngplz29PX1oa6ujmUCcEc7EXmd3ZHJww8/7NQLXLv5yx3Nzc2or69HUVERVCoVUlJSoNVqYTQaUVxcjIyMjAFHk9lz6tQpxMTEIDg42O48FRUVqKioAADk5ORAo9G4lVmSJLeXVdKVlm8AAKERkQj0o3z+ur6YyzXM5Tp/zaZELrtl8sgjj4zYm2RmZg55J8akpCRYrVb09PQgKysLjY2NyMvLQ35+PvR6PdasWQO12rkjkD788EMkJCQ4nEen00Gn09keGwwGlz7HVRqNxu1llRTS1wcA6LxkhOBH+fx1fTGXa5jLdf6azZNc9m45YrdM5s2b59YbDSUjI8PutPLycsTHx0MQBGi1WoiiiO7ubjQ0NKCqqgqHDh1Cb28vBEFAYGAgVq9ePeg1urq60NDQgMcff3zEMo9Gsvn7zVwqbuYiIu9y6jwTi8WCt956C5WVlWhvb0dYWBiWL1+O9evXQ/LwnuJxcXGoq6tDTEwMmpqaYLFYEBISMmDHul6vh1qtHrJIAODkyZOIjY1FYGCgR1lGu3/tMxnf64GIvM+pJjh48CAaGxvx4IMPIiIiAhcuXMDhw4fR19eH+++/36MACQkJKCgowI4dOyBJElJTU4e9T3l2dja2bNmC8PBwAMDx48exbt06j3KMBbLZ1P8Fr8FFRF7mVJmcPHkSubm5CAkJAdC/zezmm2/GE0884XGZSJKE7du3O5xn48aNAx6np6cPeLxz506PMowVPJqLiHzFqUODZVlWOgeNANn0/ciE+0yIyMucGpncdttt+P3vf4+7777bdhTA4cOHcdtttymdj1wgm4yAJEEICPB1FCIaZxyWidVqhSiKSE5OxuHDh7F//360t7cjPDwcS5cuxS9+8Qtv5SQnyCbeTZGIfMNhmTz00ENYvnw5li9fjnvuuQf33HOPt3KRO0xGbuIiIp9wWCYPPvggjh07hvT0dEyfPh0rVqzAHXfcgUmTJnkrH7lANpt4WDAR+YTDMomLi0NcXBx6e3tx/PhxVFZW4uDBg1iwYAFWrFiBRYsWeXyeCY0cbuYiIl9xqgkmTpyIVatWYdWqVWhpacGxY8dQWFiIffv2Yf/+/UpnJCfJvJsiEfmIU4cGX2WxWNDY2Ih//vOf6OzsxIwZM5TKRW7gyISIfMWpkUl9fT2OHj2KkydPYtKkSVi2bBk2bdqEiIgIpfORC2STCQi+ztcxiGgcclgmer0ex44dQ09PD5YsWYKnnnoKc+bM8VY2cpFsMgKTw30dg4jGIYdl0tDQgKSkJMTFxY37iyiOBrLJyLssEpFPOCyT//zP//RWDhoB3GdCRL7i0g548nM8mouIfIRlMkbIssxDg4nIZ1gmY4XFAlitLBMi8gmWyVhx9cZYLBMi8gG/uBZKaWkpysrKIIoiYmNjkZycbJtmMBiQlpaGDRs2YO3atYOW/eyzz3Dw4EFYrVao1WqkpqZi2rRp3ozvH2xlwqPuiMj7fF4mtbW1qKmpQW5uLlQqFTo7OwdMLywsxMKFC+0u/8orr+CJJ57A9OnTUVZWhsOHDyM1NVXp2P6HIxMi8iGfl0l5eTkSExOhUqkAAKGhobZp1dXViIyMRNAw9zS/dOkSAKCvrw9hYWHKhfVn35eJwEvQE5EP+LxMmpubUV9fj6KiIqhUKqSkpECr1cJoNKK4uBgZGRkoKSmxu/xDDz2E7OxsBAYGYsKECcjKyrI7b0VFBSoqKgAAOTk50Gg0bmWWJMntZZViNjSjHcCkiEgE+Vk2f1xfAHO5irlc56/ZlMjllTLJzMxER0fHoOeTkpJgtVrR09ODrKwsNDY2Ii8vD/n5+dDr9VizZg3UarXD13733XeRnp6O6OholJSU4PXXX8dDDz005Lw6nQ46nc722GAwuPV5rt662J/IrecBAF1GEwQ/y+aP6wtgLlcxl+v8NZsnuaKiooZ83itlkpGRYXdaeXk54uPjIQgCtFotRFFEd3c3GhoaUFVVhUOHDqG3txeCICAwMBCrV6+2LdvV1YVz584hOjoaALB06VKHI5Mx7eo+kyDH5UtEpASfb+aKi4tDXV0dYmJi0NTUBIvFgpCQEOzatcs2j16vh1qtHlAkQP99Vvr6+tDU1ISoqCh8+umnuOGGG7z9EfyCbLpaJtxnQkTe5/MySUhIQEFBAXbs2AFJkpCamgpBEBwuk52djS1btiA8PBxbtmzB7t27IYoiJk6ciIcffthLyf2Mydj/L4/mIiIf8HmZSJKE7du3O5xn48aNAx6np6fbvo6Pj0d8fLwi2UYVbuYiIh/iGfBjhW1kwjIhIu9jmYwVZhMgBgCSzwebRDQOsUzGCpMRglo97P4mIiIl8M/YUUbuaodc9zEgywOf//YriNxfQkQ+wjIZZeSSNyAffW/IaWL0PMhDTiEiUhbLZJSRW5uBGbMgPvT0oGnhs7S42N3jg1RENN6xTEYbswm4bhKEiMGX2ReC1ADLhIh8gDvgRxsTb81LRP6HZTLamE0QWCZE5GdYJqONmSMTIvI/LJPR5rIZUPHWvETkX1gmow1HJkTkh1gmo4hstfaPTFgmRORnWCajyWVz/7+8ZwkR+RmWyWhy9TLzHJkQkZ9hmYwmLBMi8lN+cQZ8aWkpysrKIIoiYmNjkZycbJtmMBiQlpaGDRs2YO3atYOWra2txYEDB2CxWHDzzTfj4YcfRkBAgDfjew/LhIj8lM/LpLa2FjU1NcjNzYVKpUJnZ+eA6YWFhVi4cOGQy1qtVuzZswcZGRmIiorCm2++iaNHjyIhIcEb0b3v+zLhSYtE5G98vpmrvLwciYmJUKlUAIDQ0FDbtOrqakRGRmL69OlDLtvT0wNJkhAVFQUAmD9/PqqqqpQP7Svm73fA8zwTIvIzPh+ZNDc3o76+HkVFRVCpVEhJSYFWq4XRaERxcTEyMjJQUlIy5LIhISG4cuUKGhsbMXv2bJw8eRIGg8Hue1VUVKCiogIAkJOTA41G41ZmSZLcXtYTpm+D0AEgNHIqAod4f1/lGg5zuYa5XOOvuQD/zaZELq+USWZmJjo6OgY9n5SUBKvVip6eHmRlZaGxsRF5eXnIz8+HXq/HmjVroFbbv+GTIAh49NFHUVhYiMuXL2PBggUQRfuDLZ1OB51OZ3vsqHgc0Wg0bi/rCfnCBQBAZ98lCEO8v69yDYe5XMNcrvHXXID/ZvMk19UtQT/klTLJyMiwO628vBzx8fEQBAFarRaiKKK7uxsNDQ2oqqrCoUOH0NvbC0EQEBgYiNWrVw9Y/pZbbsGuXbsAAJ988gmampoU/Sy+JHMHPBH5KZ9v5oqLi0NdXR1iYmLQ1NQEi8WCkJAQW0EAgF6vh1qtHlQkANDZ2YnQ0FBcvnwZxcXFWL9+vTfjexfLhIj8lM/LJCEhAQUFBdixYwckSUJqaioEQXC4THZ2NrZs2YLw8HCUlJTgo48+gtVqxV133YWYmBgvJfeBq2XCM+CJyM/4vEwkScL27dsdzrNx48YBj9PT021fp6SkICUlRZFsfocjEyLyUz4/NJhcYDYDggBIKl8nISIagGUymphNgCpw2M2ARETexjIZTXgvEyLyUyyT0YRlQkR+imUymrBMiMhPsUxGEZllQkR+imUymrBMiMhPsUxGE97/nYj8FMtkNDEZgUBefp6I/A/LZDQxGSEE2r+KMhGRr7BMRhOzidflIiK/xDIZTcwmIIgjEyLyPyyTUUKW5e/3mbBMiMj/sExGC4sFsFq5A56I/BLLZLSw3cuEIxMi8j8sk9HCZOz/l2VCRH7I5zfHAoDS0lKUlZVBFEXExsYiOTkZra2tSEtLs928Pjo6Gps3bx60bE9PD/Ly8nDhwgVEREQgLS0N1113nbc/gvLM35cJT1okIj/k8zKpra1FTU0NcnNzoVKp0NnZaZs2bdo05ObmOlz+nXfewb/9279h3bp1eOedd/DOO+8gOTlZ6djeZ+rfzCVwZEJEfsjnZVJeXo7ExESoVP13DwwNDXVp+VOnTmHnzp0AgBUrVmDnzp2Klon1YAEMX/wDVywWxd5jSLxlLxH5MZ+XSXNzM+rr61FUVASVSoWUlBRotVoAQGtrK5588klMmDABSUlJmDt37qDlOzs7ERYWBgCYPHnygJHND1VUVKCiogIAkJOTA41G43Le3htvgsVihmSVXV7WU8KEOITcugTixKE340mS5NZnUhpzuYa5XOOvuQD/zaZELq+USWZmJjo6OgY9n5SUBKvVip6eHmRlZaGxsRF5eXnIz89HWFgYCgoKEBISgi+++AK5ubnYvXs3goOD7b6PIAgOb2mr0+mg0+lsjw0Gg+sfZsXPoPnFr9xbdgS0XTICl4xDTtNoND7L5QhzuYa5XOOvuQD/zeZJrqv7sX/IK2WSkZFhd1p5eTni4+MhCAK0Wi1EUUR3dzcmTZpk2/Q1a9YsTJ06Fc3NzZg9e/aA5UNDQ9He3o6wsDC0t7dj0qRJin4WIiIazOeHBsfFxaGurg4A0NTUBIvFgpCQEHR1dcFqtQIAWlpa0NzcjKlTpw5aftGiRTh69CgA4OjRo4iLi/NeeCIiAuAH+0wSEhJQUFCAHTt2QJIkpKamQhAEnD17Fnq9HgEBARBFEQ8++KDtkN+XX34Zq1atwuzZs7Fu3Trk5eXhyJEjtkODiYjIuwRZlr2/J9lPNDU1ubXcWNwOqiTmcg1zucZfcwH+m02JfSY+38xFRESjH8uEiIg8xjIhIiKPsUyIiMhj43oHPBERjQyOTNzw9NNP+zrCkJjLNczlGuZynb9mUyIXy4SIiDzGMiEiIo+xTNxw7cUi/QlzuYa5XMNcrvPXbErk4g54IiLyGEcmRETkMZYJERF5zOdXDR5tPv74Y7z22muwWq34yU9+gnXr1nk9g8FgwJ49e9DR0QFBEKDT6fCzn/0Mer0eH3zwge2eLvfeey9iY2O9ni81NRVqtRqiKCIgIAA5OTno6elBXl4eLly4YLu689WrQHtDU1MT8vLybI9bW1uxceNG9Pb2en2dFRQU4KOPPkJoaCh2794NAHbXjyzLeO2113DmzBkEBQVh69atmDVrltdyHThwAKdPn4YkSZg6dSq2bt2KiRMnorW1FWlpabaL/kVHR2Pz5s1ey+XoZ/3tt9/GkSNHIIoiHnjgAfz4xz/2Wq68vDzbBWT7+voQHByM3Nxcr64ve78fFP8Zk8lpV65ckbdt2yafP39evnz5svz444/L33zzjddztLW1yY2NjbIsy3JfX5+8fft2+ZtvvpHffPNNubi42Ot5fmjr1q1yZ2fngOcOHDggv/3227Isy/Lbb78tHzhwwAfJ+l25ckXetGmT3Nra6pN1VldXJzc2NsqPPfaY7Tl76+f06dNyVlaWbLVa5X/84x9yenq6V3N9/PHHssVisWW8mqulpWXAfEoaKpe979s333wjP/7447LZbJZbWlrkbdu2yVeuXPFarmsVFhbKf/3rX2VZ9u76svf7QemfMW7mckFDQwOmTZuGqVOnQpIkLF26FKdOnfJ6jrCwMNtfDhMmTMANN9yAtrY2r+dwxalTp7BixQoAwIoVK3yy3q767LPPMG3aNERERPjk/efNmzdoVGZv/dTU1GD58uUQBAG33HILent70d7e7rVcCxYsQEBAAADglltu8cnP2VC57Dl16hSWLl0KlUqFyMhITJs2DQ0NDV7PJcsyTpw4gdtvv12R93bE3u8HpX/GuJnLBW1tbZgyZYrt8ZQpU/DPf/7Th4n6N9d8+eWX0Gq1qK+vR1lZGSorKzFr1iz86le/8uqmpGtlZWUBAFatWgWdTofOzk6EhYUBACZPnozOzk6f5AKADz/8cMD/5P6wzuytn7a2Nmg0Gtt8U6ZMQVtbm21ebzpy5AiWLl1qe9za2oonn3wSEyZMQFJSEubOnevVPEN939ra2hAdHW2bJzw83CcF+PnnnyM0NBTXX3+97TlfrK9rfz8o/TPGMhnFjEYjdu/ejfvvvx/BwcG46667cPfddwMA3nzzTbz++uvYunWr13NlZmYiPDwcnZ2d+N3vfjfoZjqCIEAQBK/nAgCLxYLTp0/jl7/8JQD4zTq7li/Xjz1vvfUWAgICsGzZMgD9f/0WFBQgJCQEX3zxBXJzc7F7924EBwd7JY8/ft+u9cM/WHyxvn74++FaSvyMcTOXC8LDw3Hx4kXb44sXLyI8PNwnWSwWC3bv3o1ly5Zh8eLFAPr/2hBFEaIo4ic/+QkaGxt9ku3qOgkNDUVcXBwaGhoQGhpqGzq3t7fbdpx625kzZ3DzzTdj8uTJAPxnndlbP+Hh4QPuiOeLn7m///3vOH36NLZv3277BaRSqRASEgIAmDVrFqZOnYrm5mavZbL3ffvh/6NtbW1eX19XrlxBdXX1gFGct9fXUL8flP4ZY5m4YPbs2WhubkZrayssFguOHz+ORYsWeT2HLMt4+eWXccMNN+DnP/+57flrt3NWV1fjxhtv9Ho2o9GIS5cu2b7+9NNPMWPGDCxatAhHjx4FABw9ehRxcXFezwYM/ovRH9YZALvrZ9GiRaisrIQsy/i///s/BAcHe3UT18cff4zi4mI89dRTCAoKsj3f1dUFq9UKAGhpaUFzczOmTp3qtVz2vm+LFi3C8ePHcfnyZbS2tqK5uRlardZruYD+fXJRUVEDNol7c33Z+/2g9M8Yz4B30UcffYTCwkJYrVasXLkS69ev93qG+vp6PPvss5gxY4btL8V7770XH374Ib766isIgoCIiAhs3rzZ69vWW1pa8PzzzwPo/wvtjjvuwPr169Hd3Y28vDwYDAafHBoM9Jfb1q1bkZ+fbxv2/+lPf/L6OnvhhRdw9uxZdHd3IzQ0FBs3bkRcXNyQ60eWZezfvx+ffPIJAgMDsXXrVsyePdtrud5++21YLBbb9+rqIa0nT56EXq9HQEAARFHEhg0bFPvDaqhcdXV1dr9vb731Fv73f/8Xoiji/vvvx8KFC72WKyEhAXv27EF0dDTuuusu27zeXF/2fj9ER0cr+jPGMiEiIo9xMxcREXmMZUJERB5jmRARkcdYJkRE5DGWCREReYxlQuSmxx57DHV1dV55r2+//RZPP/00Rvrgy+effx5nzpwZ0dek8YmXUyGyIyUlxfa12WyGJEkQxf6/vzZv3ow//vGPXstSVFSEf//3fx/xS2CsW7cO+/btU+xcDBo/WCZEdhw4cMD2dWpqKrZs2YL58+d7PUd7ezvq6uqwffv2EX9trVaLS5cuobGxUbGTIWl8YJkQuenagtHr9fj2228hSRJqamoQERGBHTt2oKqqCu+++y5UKhUeeughLFiwAED/jZMKCwtx5swZCIKAlStXYuPGjbaRz7U+/fRTzJo1C4GBgQPe+6c//SkqKyvR0tKCpUuX4t5770VBQQHq6+sRHR1tO8PZbDbj5Zdfxscffwyr1Yrrr78eTz31lO36ZPPmzcNHH33EMiGPcJ8J0Qg5ffo0li9fjtdeew0333wzsrKybNdJ+sUvfoG//OUvtnn37NmDgIAAvPTSS/jDH/6ATz75BB988MGQr/v1118PuJT5VVVVVXjmmWfw4osv4vTp08jOzsa9996LV155BVarFaWlpQD6r8PU19eHvXv34tVXX8WDDz44oJimT5+Oc+fOjfDaoPGGZUI0QubMmYMf//jHCAgIwJIlS9DV1YV169ZBkiTcfvvtuHDhAnp7e9HR0YEzZ87g/vvvh1qtRmhoKNasWYPjx48P+bq9vb2YMGHCoOdXr16NyZMnIzw8HHPmzIFWq8XNN9+MwMBAxMfH48svvwQABAQEoKenB+fPn4coipg1a9aAS5Kr1Wr09vYqs1Jo3OBmLqIREhoaavs6MDAQkyZNsm22ujoSMBqNaG9vx5UrVwbcA1yW5QFXmb3WddddZ7sSs6P3++Fjk8kEAFi+fDkuXryIF154AX19fVi2bBmSkpIgSZIt08SJE9392EQAWCZEXjdlyhRIkoT9+/fbbonryIwZM2yXDneHJEnYsGEDNmzYgNbWVmRnZyMqKgoJCQkA+g87njlzptuvTwRwMxeR14WFhWHBggV4/fXX0dfXB6vVivPnz+Ps2bNDzj9//nx8+eWXMJvNbr1fbW0tvv76a1itVgQHB0OSpAGHGH/++ec8NJg8xpEJkQ9s27YNhw4dwmOPPYZLly5h6tSpSExMHHLeyZMnIyYmBjU1NQPu3uesjo4O7Nu3D21tbVCr1bjtttuwfPlyAEBDQwPUarXXbyBFYw/vZ0I0Cnz77bfYs2cPnnvuuRE9cfH5559HQkICYmNjR+w1aXximRARkce4z4SIiDzGMiEiIo+xTIiIyGMsEyIi8hjLhIiIPMYyISIij7FMiIjIY/8/uCnNBDKQPsAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApnklEQVR4nO3de2BU9YH28e+ZTEK4JIGQAEaDEhMEZAUiIMYSFALru+mKC6jBCtWtsjYgXbEtWsH2NUVDAVELeK8FoZVU5YX3bS000DWu3BEvIHRNCgImEHMFAslkZs77R8gUhAwzSWbOJHk+/0zmeh5Ownnm/M7NME3TREREpAk2qwOIiEhoU1GIiIhXKgoREfFKRSEiIl6pKERExCsVhYiIeGW3OkAgFBcXN/u9cXFxlJWVtWKa1qFc/lEu/yiXf9pjroSEhCaf0xqFiIh4paIQERGvVBQiIuKVikJERLxSUYiIiFcqChER8UpFISIiXrXL4yjEf2Z5Kebne6DmFLic4OPZ50937oL77JkAp/OfcvlHufwTqrlqBwyG64a0+ueqKATz6yO4n/0x1NX+40HD8Om9NQHK1FLK5R/l8k+o5qqtKldRSGCY7/8BwsKw/e9l0OsKCLNj+FgU7fEI1UBSLv8ol3+6ByiXiqKDM00T82+fY1yfipHQ1+o4IhKCtDG7o6uuhKoKuHag1UlEJERZvkaRl5fH5s2biY6OBmDq1KmkpqYCsG7dOrZs2YLNZuOBBx5g6NChFiZtp6orADB6xlkcRERCleVFAZCZmckdd9xxwWPHjh1j69atPPfcc1RWVpKTk8MLL7yAzaaVoFZV1VAUxMRam0NEQlbILnV37dpFWloa4eHh9OrViz59+lBYWGh1rHbHrFZRiIh3IbFGsXHjRgoKCkhKSmL69Ol069aNiooKUlJSPK+JjY2loqLiku/Pz88nPz8fgNzcXOLimj+MYrfbW/T+QAlUrtOOWmoMg7ikZAy7/38OHW1+tZRy+Ue5/BOoXEEpipycHKqqqi56PCsriwkTJjBlyhQA1q5dy6pVq8jOzvbr8zMyMsjIyPDcb8nuYaG621ugcrnLyyCyM+WX+P34oqPNr5ZSLv8ol38CdeGioBTF/PnzfXrduHHjWLhwIdCwBlFeXu55rqKigthYDY+0urpaiOhkdQoRCWGWb6OorKz0/Lxz504SExMBGD58OFu3bqW+vp7S0lJKSkpITk62Kmb75ahTUYiIV5Zvo1i9ejWHDx/GMAzi4+OZMWMGAImJidx8883MmTMHm83GD37wA+3xFACmikJELsPyonjkkUeafG7SpElMmjQpiGk6IBWFiFyGvqJ3dHUqChHxTkXR0TnqoFOk1SlEJISpKDo6Rx2G1ihExAsVRUfn0O6xIuKdiqKj08ZsEbkMFUVH56iDTioKEWmaiqIDM00THA4Ij7A6ioiEMBVFR+ZyNdyGWX44jYiEMBVFR+ZuLIowa3OISEhTUXRkLhWFiFyeiqIjczkbbjX0JCJeqCg6Mq1RiIgPVBQdmTZmi4gPVBQdWePQk01rFCLSNBVFR6ahJxHxgYqiI9PQk4j4QEXRkZ07jsLQGoWIeGH5V8m8vDw2b95MdHQ0AFOnTiU1NZXPPvuMNWvW4HQ6sdvtTJs2jcGDB1uctp3R7rEi4oOQWEJkZmZyxx13XPBYVFQUc+fOJTY2liNHjrBgwQJeeeUVixK2U56hJ61YikjTQqIoLqVfv36enxMTE3E4HNTX1xMeHm5hqnZGaxQi4oOQWEJs3LiRgoICkpKSmD59Ot26dbvg+R07dpCUlNRkSeTn55Ofnw9Abm4ucXFxzc5it9tb9P5ACUSuuuJuVAExsbFENPOzO9L8ag3K5R/l8k+gchmmaZqt/qnfkpOTQ1VV1UWPZ2VlkZKS4tk+sXbtWiorK8nOzva85ujRo/zqV7/iySefpE+fPj5Nr7i4uNlZ4+LiKCsra/b7A6U1cpn19VBZBs56cLsxCw9grnkJ2+O/wrh2gGW5AkG5/KNc/mmPuRISEpp8LihrFPPnz/fpdePGjWPhwoWe++Xl5SxevJiZM2f6XBJyae6//gnzD7+BesfFT0Z2Dn4gEWkzLB96qqyspEePHgDs3LmTxMREAGpqasjNzeXee+9lwIDmfduVBmZ5Keba1yDleoxRt0FEBEbj0didu0BCX2sDikhIs7woVq9ezeHDhzEMg/j4eGbMmAHAn//8Z44fP84777zDO++8A8C8efOIiYmxMm6bZO77GFwubN/7IUafK62OIyJtjOVF8cgjj1zy8cmTJzN58uQgp2mnig5AdHfo3fQYpIhIU7QDfQdgfnMCrkjEMAyro4hIG6Si6AhOVmJEd7c6hYi0USqKjqC6CmJ6WJ1CRNooFUU7Z9aehbqzEK2iEJHmUVG0dyerGm419CQizaSiaO/qagEwOuugOhFpHhVFe+eoa7iN6GRtDhFps1QU7V1jUYSrKESkeVQU7Z3j3LmdtEYhIs2komjnTA09iUgLqSjaO09RRFibQ0TaLBVFe1evNQoRaRkVRXunoScRaSEVRXvn2etJQ08i0jwqivbO4YCwMAy75WeUF5E2SkXR3jnqNOwkIi1i+dfMvLw8Nm/eTHR0NABTp04lNTXV83xZWRmPPvood911F3fccYdVMdsuR52GnUSkRSwvCoDMzMwmS2DlypUMGzYsyInaEZcL7OFWpxCRNiwkiqIpO3fupFevXnTqpKGTZnM5ISzM6hQi0oaFRFFs3LiRgoICkpKSmD59Ot26daO2tpb169czf/58NmzY4PX9+fn55OfnA5Cbm0tcXFyzs9jt9ha9P1Cam6sq3I4zIiJg/6b2Nr8CTbn8o1z+CVSuoBRFTk4OVVVVFz2elZXFhAkTmDJlCgBr165l1apVZGdnk5eXR2ZmJpGRkZf9/IyMDDIyMjz3y8rKmp01Li6uRe8PlObmcp05A2bL5ok37W1+BZpy+Ue5/NOSXAkJCU0+F5SimD9/vk+vGzduHAsXLgSgsLCQHTt2sGbNGmpqajAMg4iICG6//fZARm1/XC4NPYlIi1g+9FRZWUmPHg2X6dy5cyeJiYkAPP30057X5OXlERkZqZJoDpcLbCoKEWk+n4qirKyMr776ipqaGrp27crVV1/dauNgq1ev5vDhwxiGQXx8PDNmzGiVz5VzXE7QwXYi0gJNLkGcTif5+fn85S9/obS0lD59+hAZGUltbS3Hjx+nV69ejB8/noyMDOwtWBA98sgjl33N3Xff3ezP7/DcbrDpuEoRab4ml/A/+clPGDx4MDNmzCAlJQXbeQsbt9tNYWEhH374IT/96U957rnnghJWmsHl1HEUItIiTRbFL37xC2JiYi75nM1mo3///vTv35+TJ08GLJy0ApcLOl1+zzERkaY0OSYRExPDxo0bqamp8foBjafekBCljdki0kJeNy5s2bKFVatWMWzYMG699VZSU1MvGIKSNsDlhDBtzBaR5vO6BFm4cCFHjhyhoKCAN954g1deeYW0tDTGjBlDUlJSsDJKS7jdEKZyF5Hmu+xXzb59+3Lffffxve99j88//5yCggJ+8YtfEB8fz5gxY3RG11DncmJojUJEWsDnr5qGYXDDDTcwa9Ys5s6dS21tLWvWrAlkNmkN2kYhIi3k81fNiooKCgoKKCgooLy8nJtuuolbb701gNGkVegUHiLSQl6Loq6uju3bt1NQUMAXX3zBoEGDuPPOO7npppt06u8QY9bXY/5xLeYXn0Dt2YaN2KYJ1ZUqChFpEa9F8eCDDxIXF0d6ejrZ2dn07NkzWLnET+b/exvzT3+A/tdDbFzDdgnDgGsHYKSNszqeiLRhXoviqaeeIiUlJVhZpJlM08Qs2AipaYT98HGr44hIO+O1KM4viQMHDnDo0CFqa2sveM2kSZMCk0x8V1oCp09iXD/U6iQi0g75tDH7N7/5Ddu2bWPAgAFERER4HjcMI2DBxA9fHwbAuDrZ2hwi0i75VBQffvghS5YsITY2NtB5pBnM6qqGH7prG5KItD6fjqOIi4sjPFxnIA1ZJ6saNlx303m3RKT1+bRG8fDDD/PKK69wyy23XHRG2UGDBgUkmPjhZBV0i8bQbrAiEgA+FcXf//539u7dy4EDBy7YRgHw0ksvtShAXl4emzdv9pyFdurUqaSmpgLw1Vdf8eqrr3L27FkMw+DZZ5+9aPoC5skqiO5udQwRaad8Korf//73zJ07lxtuuCEgITIzMy86Z5TL5eLXv/41s2bN4pprruHUqVMtupJeu3a6WsNOIhIwPm2j6NSpU9CHmD799FP69u3LNddcA0BUVJROcd4URx1E6Eh5EQkMn76i33PPPfz2t79lypQpF12oqDUW3hs3bqSgoICkpCSmT59Ot27dKCkpwTAMFixYwMmTJ0lLS2PixIktnla75HBgqChEJEAM0zTNy73onnvuafK5tWvXXnYiOTk5VFVVXfR4VlYWKSkpnvJZu3YtlZWVZGdns2HDBjZu3Mizzz5Lp06dePrpp8nKyuKf/umfLvqc/Px88vPzAcjNzcXhcFw2U1PsdjtOp7PZ7w8Ub7m+mTGJiOuHEfOj+UFO1Tbnl5WUyz/K5Z+W5PK2/denNYply5Y1a8KN5s/3bQE2btw4Fi5cCEDPnj0ZOHCgp0SGDRvGoUOHLlkUGRkZZGRkeO6XlZU1O2tcXFyL3h8o3nK5a89S5zYtyd0W55eVlMs/yuWfluRKSEho8jmfiiI+Pr5ZE/ZFZWUlPXr0AGDnzp0kJiYCMGTIEDZs2EBdXR12u50DBw6QmZkZsBxtmsMB2htMRAKkyaJYuXIlEydOpHv37k2+uaqqivXr1/P973+/2QFWr17N4cOHMQyD+Ph4ZsyYAUC3bt3IzMzkiSeewDAMhg0b5tltVr6lvg7CVRQiEhhNFkVCQgJPPPEEV111FQMHDiQhIYHOnTtz9uxZSkpK+OKLLyguLm7xSQEfeeSRJp9LT08nPT29RZ/f3plOZ8N1sbUxW0QCpMmiGD9+PLfddhu7d+9m79697Nq1izNnztC1a1f69u3L+PHjufHGGwnT0cDWqj+34V5DTyISIF63UdjtdkaNGsWoUaOClUf8VV/XcBuuNQoRCQwdwdbWObRGISKBpaJo6xyNaxQqChEJDBVFW3duG4WOzBaRQFFRtHX19Q23dl0vREQCw+fTsX799dds27aNqqoqHnzwQb7++mucTidXX311IPPJ5bhdDbfa+0xEAsSnNYpt27bx85//nIqKCj788EMAamtrWbVqVUDDiQ9cKgoRCSyf1ijy8vKYN28e11xzDdu2bQPg6quv5vDhw4HMJr5oLAqbikJEAsOnNYrq6uqLhpgMw8AwjICEEj94hp50UScRCQyfiiIpKYmCgoILHvvoo49ITk4OSCjxg2foSfsliEhg+PQ19IEHHuCXv/wlW7Zsoa6ujgULFlBcXMy8efMCnU8ux62hJxEJLJ+K4sorr+T5559nz5493HjjjfTs2ZMbb7yRyMjIQOeTyzBdGnoSkcDyeenSqVMn0tLSAplFmkNDTyISYD4VxVNPPXXJDdd2u52ePXsycuRIhg8f3urhxAcaehKRAPPpa+igQYMoLS1l4MCBjB49moEDB/LNN99w7bXXEhMTw0svvcT69esDnVUuRUNPIhJgPi1dPvvsM5588kmuuuoqz2OjR49m+fLlPPPMM9x000288MILTJw4MWBBpQkaehKRAPOpKL7++mt69+59wWPx8fEUFxcDkJycTFVVVbMC5OXlsXnzZqKjowGYOnUqqampOJ1OXn75ZQ4dOoTb7SY9PZ1/+7d/a9Y02jUNPYlIgPlUFAMHDmTFihXcc889xMbGUlFRQV5eHgMGDADgyJEj9OjRo9khMjMzueOOOy54bPv27TidTpYsWUJdXR1z5szhlltuoVevXs2eTrukoScRCTCfli6zZs3i9ddf59FHH8XtdhMWFsbIkSPJzs5u+BC7nR/96EetHq62thaXy4XD4cBut9OlS5dWn0abpzUKEQkwwzRN09cXu91uTp48SXR0NDZb64yJ5+Xl8cEHH9C5c2eSkpKYPn063bp1w+l0smzZMj7//HMcDgff//73ycjIuORn5Ofnk5+fD0Bubi6Oxqu+NYPdbsfpdDb7/YHSVK7Tf/gtNb97lV55H2CEB/9U421tfllNufyjXP5pSa4IL1fJ9Ksozp49y6lTpzj/Ld/ednEpOTk5l9yGkZWVRUpKimf7xNq1a6msrCQ7O5uDBw+yadMmsrOzqamp4amnnuJnP/uZT9Nr3HbSHHFxcZSVlTX7/YHSVC73ht9j/t/fY3vl/2C0Unm3Ri6rKZd/lMs/7TFXQkJCk8/5NPR07NgxXnzxRb766quLnlu7du1l3z9//nxfJsO4ceNYuHAhAP/93//N0KFDsdvtxMTEcN1111FUVORTUbRXZr0D9u/FrKrwXNnOLDoAhs2SkhCRjsGnonj99de5/vrr+fnPf86sWbNYvnw5v/vd7+jfv3+LA1RWVno2hO/cuZPExESgoRn37dtHeno6tbW1fPnll2RmZrZ4em2VWV+PO3cuHCm6+MleVwQ/kIh0GD4VxVdffcW8efOw2+2YpkmXLl247777eOyxx0hPT29RgNWrV3P48GEMwyA+Pp4ZM2YAcPvtt7NixQrmzJmDaZrcdtttHfpqerUFG+FIEca0mRg3jICICODc0fK6XraIBJBPRREeHo7L5cJutxMVFUVZWRldu3bl9OnTLQ7wyCOPXPLxyMhI5syZ0+LPby8c+z6GmB4YoyfoOiAiElQ+FcWAAQPYtm0bt956K6NGjeKZZ54hPDyc66+/PtD55Jz6L7+Afv1VEiISdD4Vxfnf7KdOnUpiYiK1tbWMGTMmYMHkH0zTxH2iBGPwjVZHEZEOyKddZTZs2PCPN9hspKenM2HCBP7yl78ELJic5+wZcNZDdHerk4hIB+RTUbz77rt+PS6t7HR1w21Ud0tjiEjH5HXoad++fUDDEdmNPzc6ceIEnTt3Dlwy+YeTDUVhREVbHEREOiKvRfHSSy8B4HA4PD8DGIZB9+7d+fd///fAppMGp7RGISLW8VoUy5cvB2DZsmXMmjUrKIHkYmbNqYYfukVZG0REOiSftlGoJCx27nQdOrBORKzQ5BrFD3/4Q58+4PwhKQmQxrPhWnB2WBGRJouiqSOmxQL1dQ234VqjEJHga7IoBg0aFMwc4k19PYSFYYTp4kQiEnw+HZntdDp57733KCgo8JztNT09nUmTJmG36xKcAedwYGhtQkQs4tNSfvXq1RQVFfHQQw8RHx/PN998w7vvvsuZM2e4//77AxxRqK87d7ZYEZHg86kotm/fzqJFi4iKatg9MyEhgX79+vGTn/xERREM9fUYnbRGISLW8Gn3WD+uliqBUK+hJxGxjk9rFDfffDMLFy5kypQpnmuyvvvuu9x8882BzieA6ajDiOiE6lpErOC1KNxuNzabjfvuu493332XN954g8rKSmJjY0lLS2Py5MmtEuL9999n48aN2Gw2UlNTue+++wBYt24dW7ZswWaz8cADDzB06NBWmV6bU1+PERGhohARS3gtiocffpj09HTS09O55557uOeee1o9wL59+9i9ezeLFi0iPDyc6uqG8xodO3aMrVu38txzz1FZWUlOTg4vvPACNptPo2XtS30ddIq0OoWIdFBel7oPPfQQpaWlPPHEE8ydO5c//elPnDx5slUDbNq0iYkTJxJ+7qjjmJgYAHbt2kVaWhrh4eH06tWLPn36UFhY2KrTbjMcDgydvkNELOJ1jWLEiBGMGDGCmpoatm7dSkFBAatXr2bIkCGMGTOG4cOHt/g4ipKSEg4ePMjbb79NeHg406ZNIzk5mYqKClJSUjyvi42NpaKi4pKfkZ+fT35+PgC5ubnExcU1O4/dbm/R+wOh3HRj69SJHiGWC0JzfoFy+Uu5/NPRcvm0lO/atSvjx49n/PjxnDhxgg8//JCVK1fy2muv8cYbb1z2/Tk5OVRVVV30eFZWFm63m9OnT7NgwQKKiopYunQpy5Yt8+sfkZGRQUZGhud+WVmZX+8/X+PG+lDictQRFhYWcrkgNOcXKJe/lMs/7TFXQkJCk8/5tTrgdDopKiriyy+/pLq6muuuu86n982fP7/J5zZt2sTIkSMxDIPk5GRsNhunTp0iNjaW8vJyz+sqKiqIjY31J2774XJh2HT6DhGxhk9FcfDgQT744AO2b99OdHQ0o0eP5sEHHyQ+Pr7FAUaMGMH+/fsZPHgwxcXFOJ1OoqKiGD58OC+++CLf/e53qayspKSkhOTk5BZPr01yuSBMp0oREWt4Xfrk5eXx4Ycfcvr0aUaNGsXcuXMZMGBAqwYYO3YsK1as4LHHHsNutzNz5kwMwyAxMZGbb76ZOXPmYLPZ+MEPftAx93gCcLtAJwQUEYt4LYrCwkKysrIYMWIEEQE615Ddbmf27NmXfG7SpElMmjQpINNtU1wuDK1RiIhFvC59fvaznwUrh3jjdmuNQkQs00HHctoYt0vXohARy6go2gKXC7TXk4hYREXRFmhjtohYSEXRFrjcGnoSEcuoKEKc6XaDqY3ZImIdFUWoc7sbbrWNQkQsoqIIdW4XgIaeRMQyKopQd64oNPQkIlZRUYQ6V8PQk04KKCJWUVGEOpez4Van8BARi6goQp2GnkTEYiqKUNc49KQ1ChGxiJY+IcQ8ewbz/63FPPwl1J5tOH7CeW7oqaOeYl1ELKeiCCHulS/Cx9vh2usgpoenHIyEvkQMHkaNxflEpGNSUYQIs7oS9mzF+F9TsE2aftHzYXFxEILX6BWR9k/jGaHicCEAxuAbLQ4iInKhkFijeP/999m4cSM2m43U1FTuu+8+PvvsM9asWYPT6cRutzNt2jQGDx5sddSAMY8WgWFA335WRxERuYDlRbFv3z52797NokWLCA8Pp7q6GoCoqCjmzp1LbGwsR44cYcGCBbzyyisWpw2gynLoFo0R2cXqJCIiF7C8KDZt2sTEiRMJDw8HICYmBoB+/f7xzToxMRGHw0F9fb3nde2NefokdIu2OoaIyEUsL4qSkhIOHjzI22+/TXh4ONOmTSM5OfmC1+zYsYOkpKQmSyI/P5/8/HwAcnNziYuLa3Yeu93eovc3V0XtGYiNI7aJaVuV63KUyz/K5R/l8k+gcgWlKHJycqiqqrro8aysLNxuN6dPn2bBggUUFRWxdOlSli1bhmEYABw9epQ1a9bw5JNPNvn5GRkZZGRkeO6XtWDvoLi4uBa9v7lclRWQkNjktK3KdTnK5R/l8o9y+acluRISEpp8LihFMX/+/Caf27RpEyNHjsQwDJKTk7HZbJw6dYro6GjKy8tZvHgxM2fOpE+fPsGIap1T1Rjdrrc6hYjIRSzfPXbEiBHs378fgOLiYpxOJ1FRUdTU1JCbm8u9997LgAEDLE4ZWKZpQs1p6KptFCISeizfRjF27FhWrFjBY489ht1uZ+bMmRiGwZ///GeOHz/OO++8wzvvvAPAvHnzPBu72xWXs+F0HRERVicREbmI5UVht9uZPXv2RY9PnjyZyZMnW5DIAg5Hw21EJ2tziIhcguVDTwI4zxVFO931V0TaNhVFKKivb7gN19CTiIQeFUUoqD+3RmHXGoWIhB4VRSg4t0ZhaI1CREKQiiIUOOoablUUIhKCVBShwHluG4V2jxWREKSiCAXaRiEiIUxFEQq015OIhDAVRQgwG9coVBQiEoJUFKGgXgfciUjoUlGEAq1RiEgIU1GEAs82Cq1RiEjoUVGEApez4TbM8nM0iohcREURClyuhltbmLU5REQuQUURCkx3w22Yfh0iEnq0ZAoFrnNFYejXISKhJySWTO+//z7/+Z//yZw5c1i9evUFz5WVlTFt2jQ2bNhgUbogcLsgLAzDMKxOIiJyEcu3nu7bt4/du3ezaNEiwsPDqa6uvuD5lStXMmzYMIvSBYnLpe0TIhKyLC+KTZs2MXHiRMLP7Rp6/jWxd+7cSa9evejUqZ1fItStohCR0GV5UZSUlHDw4EHefvttwsPDmTZtGsnJydTW1rJ+/Xrmz59/2WGn/Px88vPzAcjNzSUuLq7Zeex2e4ve3xwnIyKoDQvzOl0rcvlCufyjXP5RLv8EKldQiiInJ4eqqqqLHs/KysLtdnP69GkWLFhAUVERS5cuZdmyZeTl5ZGZmUlkZORlPz8jI4OMjAzP/bKysmZnjYuLa9H7m8N9pgbTZnidrhW5fKFc/lEu/yiXf1qSKyEhocnnglIU8+fPb/K5TZs2MXLkSAzDIDk5GZvNxqlTpygsLGTHjh2sWbOGmpoaDMMgIiKC22+/PRiRg8vl1tCTiIQsy4eeRowYwf79+xk8eDDFxcU4nU6ioqJ4+umnPa/Jy8sjMjKyfZYEaBuFiIQ0y4ti7NixrFixgsceewy73c7MmTM73m6irobdY0VEQpHlRWG325k9e7bX19x9991BSmMRtwtsIXFIi4jIRbR0CgVut9YoRCRkqShCgOly6fQdIhKytHQKBVqjEJEQpqIIBdrrSURCmIoiFLi115OIhC4VRShwaa8nEQldlu8eGyrMY4dxv7qIMrsdl9MZ3ImXl8LV1wZ3miIiPlJRNIqIgIRE7BGdcDnqgjvthESMG78T3GmKiPhIRXGO0SuBsIcfp3uInuxLRMQqGhgXERGvVBQiIuKVikJERLxSUYiIiFcqChER8UpFISIiXqkoRETEKxWFiIh4ZZimaVodQkREQpfWKL7l8ccftzrCJSmXf5TLP8rln46WS0UhIiJeqShERMQrFcW3ZGRkWB3hkpTLP8rlH+XyT0fLpY3ZIiLildYoRETEKxWFiIh4pQsXnfPJJ5/w5ptv4na7GTduHHfeeaclOcrKyli+fDlVVVUYhkFGRgb/8i//Ql5eHps3byY6OhqAqVOnkpqaGtRsM2fOJDIyEpvNRlhYGLm5uZw+fZqlS5fyzTffEB8fz6OPPkq3bt2Clqm4uJilS5d67peWlnL33XdTU1NjyfxasWIFH3/8MTExMSxZsgSgyXlkmiZvvvkme/fupVOnTmRnZ5OUlBSUTG+99RZ79uzBbrfTu3dvsrOz6dq1K6WlpTz66KMkJCQAkJKSwowZM1o9k7ds3v7W161bx5YtW7DZbDzwwAMMHTo0aLmWLl1KcXExAGfOnKFLly4sWrQoaPOsqWVDUP6+TDFdLpc5a9Ys8/jx42Z9fb354x//2Dx69KglWSoqKsyioiLTNE3zzJkz5uzZs82jR4+aa9euNdevX29JpkbZ2dlmdXX1BY+99dZb5rp160zTNM1169aZb731lgXJGrhcLvPBBx80S0tLLZtf+/fvN4uKisw5c+Z4HmtqHu3Zs8dcsGCB6Xa7zb/97W/mE088EbRMn3zyiel0Oj35GjOdOHHigtcF2qWyNfW7O3r0qPnjH//YdDgc5okTJ8xZs2aZLpcraLnOt3LlSvMPf/iDaZrBm2dNLRuC8feloSegsLCQPn360Lt3b+x2O2lpaezatcuSLD169PC0fufOnbnyyiupqKiwJIsvdu3axZgxYwAYM2aMZfMN4PPPP6dPnz7Ex8dblmHQoEEXrVE1NY92795Neno6hmHQv39/ampqqKysDEqmIUOGEBYWBkD//v0t+xu7VLam7Nq1i7S0NMLDw+nVqxd9+vShsLAw6LlM02Tbtm3ccsstAZl2U5paNgTj70tDT0BFRQU9e/b03O/ZsydffvmlhYkalJaWcujQIZKTkzl48CAbN26koKCApKQkpk+fHtQhnkYLFiwAYPz48WRkZFBdXU2PHj0A6N69O9XV1UHP1Oijjz664D9vKMwvoMl5VFFRQVxcnOd1PXv2pKKiwvPaYNmyZQtpaWme+6Wlpfz0pz+lc+fOZGVlMXDgwKDmgUv/7ioqKkhJSfG8JjY21pKCO3DgADExMVxxxRWex4I9z85fNgTj70tFEaJqa2tZsmQJ999/P126dGHChAlMmTIFgLVr17Jq1Sqys7ODmiknJ4fY2Fiqq6v55S9/6RmTbWQYBoZhBDVTI6fTyZ49e7j33nsBQmJ+XYqV8+hS3nvvPcLCwhg9ejTQ8K11xYoVREVF8fe//51FixaxZMkSunTpErRMofq7a/TtLyTBnmffXjacL1B/Xxp6ouGbSXl5ued+eXk5sbGxluVxOp0sWbKE0aNHc9NNNwEN3xRsNhs2m41x48ZRVFQU9FyN8yQmJoYRI0ZQWFhITEyMZ3W2srLSswEy2Pbu3Uu/fv3o3r07EBrzq1FT8yg2NpaysjLP64L9d/df//Vf7Nmzh9mzZ3sWLuHh4URFRQGQlJRE7969KSkpCVomaPp39+3/pxUVFUH/f+pyudi5c+cFa2DBnGeXWjYE4+9LRQFce+21lJSUUFpaitPpZOvWrQwfPtySLKZp8vLLL3PllVfy3e9+1/P4+WOLO3fuJDExMai5amtrOXv2rOfnzz77jL59+zJ8+HA++OADAD744ANGjBgR1FyNvv0tz+r5db6m5tHw4cMpKCjANE3+53/+hy5dugRt2OmTTz5h/fr1zJ07l06dOnkeP3nyJG63G4ATJ05QUlJC7969g5KpUVO/u+HDh7N161bq6+spLS2lpKSE5OTkoGb7/PPPSUhIuGCoOljzrKllQzD+vnRk9jkff/wxK1euxO12c9tttzFp0iRLchw8eJCnnnqKvn37er7lTZ06lY8++ojDhw9jGAbx8fHMmDEjqGPZJ06cYPHixUDDt6rvfOc7TJo0iVOnTrF06VLKysos2T0WGoorOzubZcuWeVbFf/3rX1syv55//nm++OILTp06RUxMDHfffTcjRoy45DwyTZM33niDTz/9lIiICLKzs7n22muDkmndunU4nU7P76pxl87t27eTl5dHWFgYNpuNu+66K6Bfmi6Vbf/+/U3+7t577z3++te/YrPZuP/++xk2bFjQco0dO5bly5eTkpLChAkTPK8N1jxratmQkpIS8L8vFYWIiHiloScREfFKRSEiIl6pKERExCsVhYiIeKWiEBERr1QUIt8yZ84c9u/fH5RpHTt2jMcff5zW3vlw8eLF7N27t1U/UzouncJDOpxp06Z5fnY4HNjtdmy2hu9MM2bM4Lnnngtalrfffpt//dd/bfXTLtx555289tprATvOQDoWFYV0OG+99Zbn55kzZ/If//Ef3HDDDUHPUVlZyf79+5k9e3arf3ZycjJnz56lqKgoIAfxSceiohD5lvPLIy8vj2PHjmG329m9ezfx8fE89thj7Nixgz/+8Y+Eh4fz8MMPM2TIEKDhgjYrV65k7969GIbBbbfdxt133+1ZYznfZ599RlJSEhERERdM+5//+Z8pKCjgxIkTpKWlMXXqVFasWMHBgwdJSUnxHHnrcDh4+eWX+eSTT3C73VxxxRXMnTvXc76rQYMG8fHHH6sopMW0jULkMvbs2UN6ejpvvvkm/fr1Y8GCBZ7z7kyePJlXX33V89rly5cTFhbGiy++yK9+9Ss+/fRTNm/efMnPPXLkyAWnqm60Y8cO5s2bxwsvvMCePXt49tlnmTp1Kq+//jput5v3338faDivz5kzZ3jppZf4zW9+w0MPPXRB6Vx11VV89dVXrTw3pCNSUYhcxoABAxg6dChhYWGMGjWKkydPcuedd2K327nlllv45ptvqKmpoaqqir1793L//fcTGRlJTEwMmZmZbN269ZKfW1NTQ+fOnS96/Pbbb6d79+7ExsYyYMAAkpOT6devHxEREYwcOZJDhw4BEBYWxunTpzl+/Dg2m42kpKQLTjsdGRlJTU1NYGaKdCgaehK5jJiYGM/PERERREdHe4aSGr/B19bWUllZicvluuB6yaZpXnCm0fN169bNc0Zeb9P79v26ujoA0tPTKS8v5/nnn+fMmTOMHj2arKws7Ha7J1PXrl2b+88W8VBRiLSSnj17YrfbeeONNzyXGfWmb9++ntNDN4fdbueuu+7irrvuorS0lGeffZaEhATGjh0LNOx6e/XVVzf780UaaehJpJX06NGDIUOGsGrVKs6cOYPb7eb48eN88cUXl3z9DTfcwKFDh3A4HM2a3r59+zhy5Ahut5suXbpgt9sv2M32wIED2j1WWoXWKERa0axZs1izZg1z5szh7Nmz9O7dm4kTJ17ytd27d2fw4MHs3r37gium+aqqqorXXnuNiooKIiMjufnmm0lPTwegsLCQyMjIoF/YR9onXY9CxELHjh1j+fLlPPPMM6160N3ixYsZO3YsqamprfaZ0nGpKERExCttoxAREa9UFCIi4pWKQkREvFJRiIiIVyoKERHxSkUhIiJeqShERMSr/w9ijy0e2/+1RgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -326,7 +326,7 @@ "responses = protocol.run( \n", " cell_model=cell, \n", " param_values=best_ind_dict, \n", - " sim=nrn_sim) \n", + " sim=arb_sim) \n", "\n", "time = responses['soma.v']['time'] \n", "voltage = responses['soma.v']['voltage'] \n", @@ -364,6 +364,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "581988038cf9ce8838e7faf3da7c29f4ff88d898cd43cb17e0086e389d8deda2" + } } }, "nbformat": 4, diff --git a/examples/expsyn/expsyn.py b/examples/expsyn/expsyn.py index 1d791639..a40ef0fc 100644 --- a/examples/expsyn/expsyn.py +++ b/examples/expsyn/expsyn.py @@ -62,26 +62,15 @@ def main(args): number = 5 interval = 5 - stim_end = stim_start + interval * number - - if args.sim == 'nrn': - netstim = ephys.stimuli.NrnNetStimStimulus( - total_duration=200, - number=5, - interval=5, - start=stim_start, - weight=5e-4, - locations=[expsyn_loc]) - else: - # emulating NrnNetStimStimulus as not yet supported in Arbor - netstim = [ - ephys.stimuli.NrnSquarePulse( - step_amplitude=5e-4, - step_delay=stim_start + i*interval, - step_duration=1, - location=expsyn_loc, - total_duration=200) for i in range(number)] + netstim = ephys.stimuli.NrnNetStimStimulus( + total_duration=200, + number=5, + interval=5, + start=stim_start, + weight=5e-4, + locations=[expsyn_loc]) + stim_end = stim_start + interval * number cm_param = ephys.parameters.NrnSectionParameter( name='cm', @@ -109,7 +98,7 @@ def main(args): else: protocol = ephys.protocols.ArbSweepProtocol( 'netstim_protocol', - netstim, + [netstim], [rec]) max_volt_feature = ephys.efeatures.eFELFeature( diff --git a/examples/l5pc/L5PC_arbor.ipynb b/examples/l5pc/L5PC_arbor.ipynb index 9da5db69..b843776e 100644 --- a/examples/l5pc/L5PC_arbor.ipynb +++ b/examples/l5pc/L5PC_arbor.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This notebook shows you how to optimise the maximal conductance of Neocortical Layer 5 Pyramidal Cell as used in Markram et al. 2015.\n", + "This notebook shows you how to optimise the maximal conductance of Neocortical Layer 5 Pyramidal Cell as used in Markram et al. 2015 using Arbor as the simulator.\n", "\n", "Author of this script: Werner Van Geit @ Blue Brain Project\n", "\n", @@ -54,65 +54,63 @@ "/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc\n", "Mod files: \"mechanisms/CaDynamics_E2.mod\" \"mechanisms/Ca_HVA.mod\" \"mechanisms/Ca_LVAst.mod\" \"mechanisms/Ih.mod\" \"mechanisms/Im.mod\" \"mechanisms/K_Pst.mod\" \"mechanisms/K_Tst.mod\" \"mechanisms/Nap_Et2.mod\" \"mechanisms/NaTa_t.mod\" \"mechanisms/NaTs2_t.mod\" \"mechanisms/SK_E2.mod\" \"mechanisms/SKv3_1.mod\"\n", "\n", - "Creating x86_64 directory for .o files.\n", - "\n", "COBJS=''\n", " -> \u001b[32mCompiling\u001b[0m mod_func.c\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/CaDynamics_E2.mod\n", "x86_64-linux-gnu-gcc -O2 -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c mod_func.c -o mod_func.o\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_HVA.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_HVA.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_LVAst.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_LVAst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/CaDynamics_E2.mod\n", "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl CaDynamics_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating Ca_LVAst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_LVAst.c\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_HVA.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", "Translating CaDynamics_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/CaDynamics_E2.c\n", "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_LVAst.mod\n", "Translating Ca_HVA.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_HVA.c\n", "Thread Safe\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_LVAst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ih.mod\n", - "Thread Safe\n", "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ih.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Ca_LVAst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_LVAst.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Pst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Pst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Ih.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ih.c\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Im.mod\n", "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Im.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating Ih.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ih.c\n", - "Translating Im.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Im.c\n", "Thread Safe\n", + "Translating Im.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Im.c\n", "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Pst.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Pst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Tst.mod\n", + "Translating K_Pst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Pst.c\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Tst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Nap_Et2.mod\n", "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Nap_Et2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating K_Pst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Pst.c\n", "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Tst.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Tst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating Nap_Et2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Nap_Et2.c\n", + "Translating K_Tst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Tst.c\n", "Thread Safe\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTa_t.mod\n", + "Translating Nap_Et2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Nap_Et2.c\n", "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTa_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating NaTa_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTa_t.c\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTs2_t.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTs2_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", "Thread Safe\n", - "Translating K_Tst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Tst.c\n", + "Translating NaTa_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTa_t.c\n", + "Translating NaTs2_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTs2_t.c\n", "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTs2_t.mod\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SK_E2.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTs2_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SKv3_1.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SK_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SKv3_1.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating NaTs2_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTs2_t.c\n", "Translating SKv3_1.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SKv3_1.c\n", "Thread Safe\n", - "Translating SK_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SK_E2.c\n", - "Thread Safe\n", "Thread Safe\n", " -> \u001b[32mCompiling\u001b[0m CaDynamics_E2.c\n", "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c CaDynamics_E2.c -o CaDynamics_E2.o\n", " -> \u001b[32mCompiling\u001b[0m Ca_HVA.c\n", "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_HVA.c -o Ca_HVA.o\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SK_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", " -> \u001b[32mCompiling\u001b[0m Ca_LVAst.c\n", "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_LVAst.c -o Ca_LVAst.o\n", + "Translating SK_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SK_E2.c\n", + "Thread Safe\n", " -> \u001b[32mCompiling\u001b[0m Ih.c\n", "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ih.c -o Ih.o\n", " -> \u001b[32mCompiling\u001b[0m Im.c\n", @@ -211,21 +209,21 @@ "output_type": "stream", "text": [ "Requirement already satisfied: neurom in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (3.2.2)\n", - "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", "Requirement already satisfied: pandas>=1.0.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.4.1)\n", - "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", - "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", + "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", - "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", "Requirement already satisfied: tqdm>=4.8.4 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (4.63.1)\n", "Requirement already satisfied: click>=7.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (8.1.3)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", - "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", + "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", + "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", + "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", "Requirement already satisfied: pyparsing>=2.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (3.0.7)\n", + "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", "Requirement already satisfied: pytz>=2020.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from pandas>=1.0.5->neurom) (2022.1)\n", "Requirement already satisfied: six>=1.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib>=3.2.1->neurom) (1.16.0)\n" ] @@ -234,7 +232,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_1079827/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", + "/tmp/ipykernel_111225/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", " neurom.viewer.draw(neurom.load_neuron('morphology/C060114A7.asc'));\n" ] }, @@ -636,32 +634,32 @@ "text": [ "bAP:\n", " stimuli:\n", - " Square pulse amp 1.900000 delay 295.000000 duration 5.000000 totdur 600.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp 1.900000 delay 295.000000 duration 5.000000 totdur 600.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " bAP.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", - " bAP.dend1.v: v at '(locset-def \"dend1\" (restrict (distal-translate (proximal (region \"apic\")) 660) (proximal-interval (distal (branch 123)))))'\n", - " bAP.dend2.v: v at '(locset-def \"dend2\" (restrict (distal-translate (proximal (region \"apic\")) 800) (proximal-interval (distal (branch 123)))))'\n", + " bAP.soma.v: v at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", + " bAP.dend1.v: v at ArbLocsetLocation '(locset-def \"dend1\" (restrict (distal-translate (proximal (region \"apic\")) 660) (proximal-interval (distal (branch 123)))))'\n", + " bAP.dend2.v: v at ArbLocsetLocation '(locset-def \"dend2\" (restrict (distal-translate (proximal (region \"apic\")) 800) (proximal-interval (distal (branch 123)))))'\n", "\n", "Step3:\n", " stimuli:\n", - " Square pulse amp 0.950000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", - " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp 0.950000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " Step3.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", + " Step3.soma.v: v at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", "\n", "Step2:\n", " stimuli:\n", - " Square pulse amp 0.562000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", - " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp 0.562000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " Step2.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", + " Step2.soma.v: v at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", "\n", "Step1:\n", " stimuli:\n", - " Square pulse amp 0.458000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", - " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp 0.458000 delay 700.000000 duration 2000.000000 totdur 3000.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", + " Square pulse amp -0.126000 delay 0.000000 duration 3000.000000 totdur 3000.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", - " Step1.soma.v: v at '(locset-def \"soma\" (location 0 0.5))'\n", + " Step1.soma.v: v at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", "\n" ] } @@ -920,7 +918,7 @@ "nrn_sim = ephys.simulators.NrnSimulator()\n", "\n", "if morphology.do_replace_axon:\n", - " l5pc_cell.instantiate_morphology(nrn_sim)\n", + " l5pc_cell.instantiate_morphology_3d(nrn_sim)\n", " # l5pc_cell.destroy(sim=nrn_sim) # not run as Neuron not used\n", "\n", "release_responses = evaluator.run_protocols(protocols=fitness_protocols.values(), param_values=release_params)" @@ -945,7 +943,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADKGUlEQVR4nOzdd5wcd33/8ddnr3eVO0mnYnVZltwRtgEbGwwYG4OBBGIIJRUScEISkvxskhAIJCH0kADGBBOKC6Y47gVj4W7Zkq1eT72crvd+u9/fHzN7t5JO0u3e7s7c6v18SI/dm93Z73e+3ymf+c53vmPOOURERERExBMJOgMiIiIiImGiAFlEREREJIECZBERERGRBAqQRUREREQSKEAWEREREUmgAFlEREREJIECZBERERGRBAqQRUTGwcwuN7PnzazDzFrN7Dkze62Z/YGZPZvGdN5kZqv9dPal63dFRGT8FCCLiJyGmVUCDwL/BUwD5gCfBwYykFwPcDvwdxn4bRERGQcFyCIip7cMwDl3l3Mu6pzrc849DgwBtwKvM7NuM2sHMLMiM/uqmR0wswYzu9XMSvzPrjKzQ2b2GTNrNrN9Zvb78YSccy85534C7Dldpsys2sweNLN2v1X7GTOL+J+dY2a/9T/bYmbvSpjvf83sO2b2iJ/v58xslpl908zazGy7mV2U8P2bzWy3mXWZ2VYze89J8nOpmR01s7yEae8xs41JlbaISMAUIIuInN5OIGpmPzKza81sKoBzbhvwZ8ALzrly59wU//tfwguqLwSW4LU4fzbh92YB1f70jwK3mdnZKeTr08AhoAaYCXwGcGZWADwAPA7MAP4CuOO4NN4P/KOfjwHgBeAV/+9fAF9P+O5u4AqgCq/l/KdmVnt8Zpxza/BawN+cMPmDwJ0pLJuISGAUIIuInIZzrhO4HHDA94EmM7vfzGYe/10zM+BjwF8751qdc13AvwE3HvfVf3LODTjnngIewgtYkzUE1ALznXNDzrlnnHMOuAwoB77knBt0zj2J10XkAwnz3uucW+ec6wfuBfqdcz92zkWBnwEjLcjOuZ87544452LOuZ8Bu4BLTpKnu+LpmFkFcJ0/TURk0lCALCIyDs65bc65P3DOzQXOBWYD3xzjqzVAKbDO797QDjzqT49rc871JPy93/+9ZH0FqAMeN7M9ZnazP302cNA5FzsujTkJfzckvO8b4+/y+B9m9hEzW5+wPOfitTSP5U7gvWZWBLwXeMU5tz/5RRMRCY4CZBGRJDnntgP/ixcouuM+bsYLMFc656b4/6ucc+UJ35lqZmUJf58FHEkhH13OuU875xYB7wL+xsyu9n9rXrw/ckIah5NNw8zm47Wa3wRM97uRbAbsJHnaiheMX4u6V4jIJKUAWUTkNMxsuZl92szm+n/Pw+tG8CJey+tcMysE8Fttvw98w8xm+N+fY2bXHPeznzezQjO7Arge+Ln/3YiZFQMF3p9WHP/tMfJ1vZkt8bt1dABRIAasAXqBvzezAjO7CngncHcKi1+GdxLQ5Kf5h3gnBqdyJ/Ap4I3x5RIRmUwUIIuInF4XcCmwxsx68ALjzXg3yT0JbAGOmlmz//3/h9f14UUz6wSeABJvkDsKtOG19N4B/JnfKg1eUNkHPIzX6tuHd7MdAP6IFPFRL5b6v92Nd5Pdd5xzq51zg3gB8bV4LdrfAT6SkMa4+S3CX/N/vwE4D3guIT9XmFn3cbPdBVwJPOmca0ZEZJIx734OERHJBr8196d+X2YREQkhtSCLiIiIiCRQgCwiIiIikkBdLEREREREEqgFWUREREQkQX7QGUhUXV3tFixYEHQ2REREROQMsG7dumbnXM3x00MVIC9YsIC1a9cGnQ0REREROQOY2ZhP+lQXCxERERGRBAqQRTLgQ/+zhpvufCXobIiIiEgKFCCLZMCzdc08uLE+5fmPtPfRPTCcxhxN3Et7WxkYjgadjVDqGRhGIwKNcs5xpL0v6GyExgMbjvCzlw8EnQ3xxWKOrzy2ncau/kDzcd/6w9y5RutFWClAFgmh13/pSX7nO88HnY0Ruxq6eP/3XuALD24NOisARGOO//rNrlCcRLR0D7Dynx/j26vrgs4Kh9v7eHJ7Q9DZ4PvP7OH1X3qSXQ1dgebjF+sOseDmhxgcjgWaj7+461X+3y83BZoHgDvW7Ke1ZzDQPHzxwa2c97nHAs3Dy/ta+fbq3fztzzcGmo9P3b2ez9wb/HohY1OALBJSOwIOLhK19Q4BsL0+HHl6eFM9X/v1Tr70yLags0JD5wDAhK4YpMvbv/k0f/S/wd/o/MLuFgAOtPYGmo/4+tHeF2xQGAY7jnbxD/du5lN3vxpoPv7n2b109Qd7Yhv1r/YMDOmKmJycAmQROS0z7zUsnQgG/BbB3oHgD3AjZROCwgk68Igzv1CCL5OQrbgBireiB92CHAbmrxdaLeRUFCCLyGlZ0Bk4TpjyE4kHgzrcjghL/YTtxC5IFpZKCQGVhYyHAmQRGbew3YgWhtyEqQU5bIIukojq5gQqiwQqCzkFBcgiclpha4kbDUrDkqPwlE0YhKWFbvRSumonTiURniscEm4KkEVkHMJ1SAlLAAajJROmYD0swlImIclGoMK0zYSFTpzkVBQgi8i4hS3QCEN2wta6Hg7huAlKdXOisJy0BCk8N5FKmClAFpHTClugYaFq0Q5TXiSRWvdHhWubCZZa02U8FCCLyGmF9XgShrhn5GAbgrzEKSD0qKVQTkWrhZyKAmQRGb+QRBphatGOx8exkJQNBF9NGtkjfFQno3RlQcZDAbKInNZIS1zA+QijMJZN0HkJyxUHBYWj1K1glMpCxkMBsoicVliPJ2FoARptjQo0G8cIQ7l4gs3H6JWGsJRH8FQWo1QScioZD5DN7O1mtsPM6szs5kynJyKZE5a4K0yttmFsjQq6XMJSJroxbdTImNBBrxyhoLKQ08togGxmecC3gWuBFcAHzGxFJtMUkfQLW0tcmMKeMD6MIiz9oYPOhrpYjArLSUsYqCxkPDLdgnwJUOec2+OcGwTuBm7IcJoikmahbYkLQeATP9jGYsHmI1HQAaGFZRxk/zUsJwxhoJIYpbKQU8l0gDwHOJjw9yF/mohMImELAtUCFG5habkNU1ecoGmTGTVSFkGvoBJqgd+kZ2YfM7O1Zra2qakp6OyIyBjCNKwajLZQhqFlMIzBetDlEpYuOWG8gTIoIye5KoyREyeRU8l0gHwYmJfw91x/2gjn3G3OuVXOuVU1NTUZzo6IpGL0Bp9wHFwjIWmhhNGDbZgCj6CzEhkpk2DzkdBUGGQuQsHCdpYbAioKOZVMB8gvA0vNbKGZFQI3AvdnOE0RSbOIv6cIOvCKC1NrWBhbKYMul9En2AWbj4iepDcibP2xg1w3wrjNSvjkZ/LHnXPDZnYT8BiQB9zunNuSyTRFJP0iIWslDVPf0jAF63FBt9yGpYU/no9o0BkJgUiIthnw1o2gejqEpQuQhFtGA2QA59zDwMOZTkdEMidsrU+RkLRQennwXoMOSsELCGMu+HIJywnVSD5CcnNpkMJ2IhdzjkhAtw5qvZDxCPwmPREJvzC12EJiwB5oNo4RdFAK4en7G5b6CWP/8KCE7UEhQa4bYTmBk3BTgCwipxWWYbviRvtEB5+heA7CcLANy4E/LH2QNVbBiUKwmgLBrqNh259JOClAFpFxCzrwihsd5i3gjCQIRVZGxqsOOkD2XkOyugij/W3Dsg0HmY2wnEhKuClAFpFxC8vxJEz9KeOtpEEHpRCerg2RkNwEpeFuTxSGbQaCzUckRPsPCS8FyCIybtGgIy9fGIfvClFWAj/wh6UvdFyY1pOghOlmUgh+HQWtF3JqCpBF5LTiB5Kg+5TGhekS6WjZBJsPCE/LeljyERd0S3YYxEsgJFUSikA9BFmQEFOALCLjFrYDSpguoYfl5AGCD4IsJC388fUjLFc+ghSm9RPCkR+tF3IqCpBFZNzC0iIYRmE61gZdT6MPCgl6FItwdfUIUtjKIMj8hGnkGQkvBcgiMm5hO8iGwWjfzuALJywBYWjyEZJAPQzCVgZh2F5CkAUJMQXIInJa8YOrDignF6aiCTr4iPf5DUsXmKAD9TAIWxkEvY5C+E4aJFwUIIvIacUPrmEJeMJ001U8L2E42FpIxkGOC3p1Cdsj0oMUtjIIMjthG9FDwkkBsoiclg6upxeGPIVlHOSwCdv6G4SwlUGQ+QlbWUg4KUAWkdMK293eYTrAhakPclyY8hIGKo7EMghHYQS5Swnb/kzCSQGyiJxW/OAa9CXzuDCNPRwXpmOuAmSf3+ckLAFRkN1wwrbNBNkNaGR/FpIdWhi6Z8mJFCCLyGmFLeAKU37Ck5PwjD8cFmHrgxxknB6WMogLMjvxsghLkYTk/E2OowBZRE4rGpYjiS9k2QmdoIOhsNTP6DBvweYjTv1uRwWZn7Dtz8JWN+JRgCwipxW/BBiWS5JhOqCE8fKoWqSOFZb1JdgAObCkxxRkkKr9mYyHAmSRkFHAdXphyk+IshK6LgVBC9uoHrFYcGmHbb8SZH6iAdbDWIJcL+TkFCCLhExYDuaJwnKTU1yYHlwStsADwjMOcliE5YRBLcij1B97VNjyIx4FyCIhE8adZTxPFpJxLMJ0sB8OU2biDwoJUZbCICwnMeqDPEplMSps+RGPAmSRkAlbay2E7xJgmA4ow9Hw5CUsXSxGbo4LNBejo3qE5ZJ6GFpNg66TuCD3KeHbnwWdAxmLAmSRDEql5SpULZK+oAOu44UpP6E8oQnJKBZBV1NYThjiAu36Eo4iGKEW5FHqEhVOCpBFMiiV/V40RC2ScSNdLMLRwyLwwCtR/IQmLGUD4SmfoAMRG+lyEo4CUR/kUUFWiYZ5k/GYUIBsZp8zs8Nmtt7/f13CZ7eYWZ2Z7TCzayaeVZHJJ5XWxeGwXf8jfDvwMOUnnpdICCLkeJeCsJRPWIKykBRHKLpYhEWQ+RkZ5i2wHBwrLNuJHCs/Db/xDefcVxMnmNkK4EZgJTAbeMLMljnnomlIT2TSSOUgEMpL9iGL2cNURPE+yJGwHG0JT/kEfXNc/KbSsASHgQ5tNjLySzjKItDW9JDtz8JSJ3KsTHWxuAG42zk34JzbC9QBl2QoLZHQSmW/F+Y+yGGJAcMS8MDoCY2FoAU5Lix9GsNSTyEpjkAv7cdCtp4GWScjJwvBZeEYYevyIZ50BMg3mdlGM7vdzKb60+YABxO+c8ifdgIz+5iZrTWztU1NTWnIjkiwElsDUgkQwjQqQlxYAp24+MHeheAQF+8SE46wwxOW+go6MI2vHyqP0RPvsFzpCLLVdPSqTzgKI+jtRMZ22gDZzJ4ws81j/L8B+C6wGLgQqAe+lmwGnHO3OedWOedW1dTUJDu7SOgk7vdTaRnoHhhOY27So613CIC8vHAcUFp6BgEoys8LOCfQ7pdNfsCRh3OOjj4vL0F304mXSZD5cM7R6q8nQbao9w6Obs9B5iNeFnkBrqfDCePtBblutPQMAFCYH9w4BT0D4Vgv5ORO2wfZOfeW8fyQmX0feND/8zAwL+Hjuf40kZzXk3BA7OgdorK44LTzDEdjbDrcweNbG7j3ldFNJRZzRAI4oA1FY2yr72Td/jbW7GnlN9sbACgvOv2yZEL/UJRNhztYf6Cd53c389RO72pTEA1Ag8MJZbO3hSe3NwIws6o4q/lwztHUPcCGgx28tLeF1TtGr8Bl+ySrpXuAbfVdrNnbwtO7mtlwsB2Azv6hrOXBOUdD5wDb6jt5cU8LT+1sYndTD5Dd8hiKxtjX3MPW+k6eq2vmye2j9dI7mL3bcDr6hthW38nmwx08tbOJF3a3ADC9rChreYjGHPtaethW38maPa0j2wpAZ3/26qStZ5Bt9Z1sOtzBb3c0sWZvvCwKs5aHweEYuxq72HKkk7X7Wnli22hZ9A3p9qwwmtBNemZW65yr9/98D7DZf38/cKeZfR3vJr2lwEsTSUtksrjt6T0j74+09zFvWukJ3xmKxth8uIMX97Ty4p4W1u5rpWcwSl7EeMOSal67cBoPbDhCS88gNRWZO6B19A6xu7mb3Y3d7G7qYXdTN7ubujnQ0jtySba2qpgPXTaf7fVd7G/pyVhewGvl2t3UzZ4mLz/x1wOtvSMtTmdNK+XjVy7m+bpmmroGMpaXjr4hrzwau6lr6mZ3o5ef/Ql5mTOlhA9dNp/dTT1sPdKRkXzEYo7D7X3UNXZT19jNrsaukffxIKMwP8KF86bwhRtW8k/3bclIuTjnaOkZZFdDN3WNXexs6GZnQxe7GrtHWicjBufNncI/vuMcvvvb3TR3DaY9H7GYo6Grn92NPX76o3np8sujIM+4aN5U/v295/FP/7eZxgyUR/9QlIOtvexr6aWusZsdRzvZfrSLPU09DPotpZXF+bxhSTXn1Fby9V/vpLGrn7NnVaQtD845mrsH2dfSw96mHva29LCroYtt9V0cbu8b+d7imjL++IqFbK/31p10Gxj2ymJvcy/7mnvY1djF9qNd7DjaxcCwVxYlBXm8Ycl0/vSKhXzuga00d6e3TpxzNHUNsLe5h30tPexp7mHH0S621XfS0Dma1tkzK/jEVUtYf7D9mDJKl+6BYfY197A34f+uxi52Hu0eWS8qivJ58zkzWDqjnK8+vpPGzgGWzUzfeiHpMdFRLL5sZhfi9XXfB3wcwDm3xczuAbYCw8AnNYKFnAme393Mf6+u4+rlM3h6VxOfvW8LH3vjIpbNrKC5Z4CtRzpZs7eVtftaR1qTls4o570Xz+WyRdN5/eLpTC0rZM2eFh7YcITf7mjkfavmnSbVU4sHWLubEoJgPyBOPEgV5kVYUF3K2TMruO7cWpbXVnDxWVOZPaUEgO89tZt/f6SFbfWdnFNbmXJ+hqIxDrT2sichL3uavffxS/PgBX0Lp5dxTm0F159fy/lzp3DhvCkjJwz/9vA2fvjcXg629o55EjIe/UNRDrX1sq+5l/2tvacvm1kVvOP8Ws6eVcGq+dOY5bca/88ze3h6ZxOvHGjj4rOmniy5k4rFHI1dA+xr6WF/Sw/7Wnq91+Ze9jR30z80emm6uryQxTXlvOvC2SypKWfF7CrOn1tFcUEezjn+e3UdT25v5A/esCDpLijxVun9LV6gsy8hL/ube+lKaImtKMpn6cxy3rZiJktmlHP2rAounDeFCv+KyVM7m3hxTwutPYNMS7KlLhZzHO3s99Jv9ssi/r6155jymFpawNKZFdxw4WyWzaxg6QwvHyWF3rL/+IX9PL2ziU++aQlVJcldAYkHfvuae70gtHk0H0c6+o7pTjW7qphlsyq48uwazp5ZwdmzKjh7ZgX5eREau/r5xhM7eWhjPa9bNJ38vPFf2o93nYmnvbe513vv/0+sk/yIsaC6jIvnT+VDl83nnNoKVtRWMqPSW0+/vbqOp3Y2sWZPC5cump5UWQwOx7xtxc/DvpH89HCkve+YfrTTywpZXlvBhy+bz/LaSpbPqmDpzHKK8vMYisb42uM7eWTzUW64cDalheMPQ+InaftHyqGbfX557G/poSehhb4gz1hcU87rF1dzTm0F59RWsnxW5cj+4xu/3snzu5t5aW8rlyycllRZ9AwMc6itz8/Hsf+PPxmbM6WERTVl/OHlC1g5u4qVsytZML2MvIjR2NnP1369k/9bf5hLFk4LtMuHnMjCNLzIqlWr3Nq1a4POhkhKGrv6ue4/n6WqJJ8H/uJynt7ZxL89vJ0Drb3HfG/pjHIuWzSdyxZN55KF08ZsIY7FHO/+znPsaerh1g+9hsuXVp8y7eFojPqOfj/A8gOall4v0GnpGWnFAZhSWsCSmnIW15SzeEaZ91pTztypJac8cDd1DXDtfz4NGP/9wYu47BQH2K7+IQ609nKgxQs8R9/3cKS9/5j+hzUVRSyqLmPxjPKR18XV5cyZWnLK/pL7W3q4/r+epSg/j397z7m85ZyZJ3RHGY7GaOoeoL6jn/r2fva3eoHe/tYeDrT0Ut/Zf0yQU1VSwJIZ5Syu8crFe3/6smnpHuCd//Usrb2DfPqtZ/N7l8w7pmtNLOYd2Os7+jjS3u+/9o3U0fFBX37EOGtaKWdNLx3Jx5IZ5SypKWfqaYLNn764n3/8v80sn1XB311zNq9fXD0SLPYPRenoG/LLo4/D7V5+jrT3caC194QgIy9izJtawvzpZSysLmO+n59lMyuYWVl0yhERnq9r5g9++DKVJfl86uqlvGXFTGrKvXm6+odo7x2isWuAI34+4mVzqM0rk8R1tjA/wvxppX4+vNdF1WUsnVlBdXnhKfPx8KZ6/uKuV5leVshNb17CG5fWUO1vcx19Q7T1DNLcPeCXRR+H20bLpb7j2MCvqqSABdVlLJxeOlImC6q919MF3/9832Z+9MJ+Vs6u5ONXLuaieVMoL8pnOOZo7x2kpWeQlu5BDrf3cqjNy8chPy+JXUTMYO7UEhb4ZRBPf2F1GXOmnHo9bezq573feZ7D7X387sVzec9Fc1hQXUZ+ntE3GKWlZ5DW7kGOdvZzOKEsDrf10dB17LZSUZzvLf/0eB5KWVhdzsLpZVSVnros/ueZPXzxoW3MmVLCn16xkNcunMaU0kKcc7T3DtHWGy+L0TI43NbLkfb+Y7ojxNfPBX4+4vWxqLqM2VNOvf842tHP73zXK4v3XDSHd104mwXTy8iPGAPDUZq7vTw0dfVzpMNbLw+29nGorXfknoy46WWFI3WwsKaMhdO91wXTyyguOPVJ6r88sJXbn9vLopoy/ugNC7lw3hQWVJdRXpSOUXhlPMxsnXNu1QnTFSCLTJxzjg//4CXW7m/l/psuH7lcFo05ttV3cqS9j6qSApbPqjztwSPuaEc/H739JXY0dHHV2TVc6B9QB4ZjtPcOcrRzgIaOfo52egFO4vBwRfkR5vsH8QV+ULPYD/aSbc1LtKuhiz/+0VoOtPayoraSJTPKyc8zBoZitPYM0tDVT0NH/zFBFnitfGdNL2P+tFLOmlbKguoyFteUsaimPOlWvUQ7G7r4xB2vUNfYzbSyQub5QXXvYJS23kGaugZOuEO8uryQ+fG8TC9lwfQyzppeyvxppUwrO3WwdSqNXf38/S828tsdTZjBjIoiCvIi9AwM09k/fMJNSUX5Ec6aNlpH86u91wXTy6itKk6qlfF4T25v4B/u3Ux9Rz9m3uXtaMwdE3TGlRbmMXtKyUjQFQ+EF0wvY87UEgomkI/tRzv5zK828cqB9tN+d2ppAbOnlDBnymjAEy+X2sriCfXF33Sog3/8v01sOHTqbjD5EWNWVbFXHlNKmDutdCQgXzi97LQnJ6finOPhTUf5t4e3nfbSfkVxPnOnljLHr5d4mSysLmXetNIJ3Zza1T/EN5/YxU9f3D/m+hAXLwsvD6XMmVrCvKlea+iC6WUT2lYAXtrbyhcf2srG09TJtLJC5vjrxZyRsvDWz3nTSie0fnYPDPNfT+7ix8/vP2U/4KL8CHOnjpZD/P28qSUsqi4f9z79ZFZvb+TfH9nGzgav+8vMyiJevOXq0AzJl+sUIItk0H3rD/Opu9fzhXefy4cvm5+23+0ZGOZ7T+3m/9YfOaYlujA/wqzKYmZVFjOzqthv5YsHW2XMqCjK2M19fYNR7liznye3N3KorY9ozFFUEGFqaSEzK4uYWVnMzMpi5k0tZf50Lwgdz42KqRqKxnh4Uz3P1TVztHOAaCxGWWE+VSUF1FYVM6uqhFlVRcyqLOGs6aUZb5l59UAbT+1s4mhHPwPDMcqL8qkozmdGRRG1/oG+tqp4wgHG6QwOx3hmVxObD3fS1T9EJGJUlRRQWVLArMpiZk/xgp+qkoKM5sM5x5Yjnbx6oI223iGiMUdVSQFVJQXUVBQxe0oJs6cUJ3WpPdV8bD/axaZDHbT3DeKc1yI8tayQ6WWFzJlawoyK4oyP8hCNOdYfbKOusZu+wSiRiDGl1MvDtLJCZvt1kmmd/UO8eqCdI+3eNlxckMf0skKmlhUyo8LbjrMx4sXupm621XfSMzCMYVSVFjCtrJCppYVZWS/AG2lk/cF26tv7ASjIj1BdVsj08iKml3t1k+lg1TnH7qZuPnf/Vp6ta2bdP76F6eXZu6HyTKYA+ST6BqP89c/W8+ZzZvD+Cfb1lDNT/1CUK768mtlVxfzqE2/I2EFlcDhG31CU4oIIhXkRtS6IiOSY53c388Hvr+HWD72Gt587K+jsnBFOFiCf8T3Ciwsi7Gjo4scv7DtmjEaR8br7pQM0dQ3wD+9YkdEWl8L8CFUlBRTl5yk4FhHJQa9dMI2ppQXcv0Ej4wbtjA+QzYy/fusyNh/u5CuP7wg6OzLJDEVjfO/pPVyyYFrSd0KLiIgkKsiL8P7XzuPRzUc50NJ7+hkkY874ABngnefX8qHLzuJ7T+3h1qd2B/oITJlcntzeSH1HPx9746KgsyIiIjngD1+/kPxIhK/9Wo12QVKAjNeK/Ll3ruT682v50iPb+cy9m495PKjIyfx87SFqKoq46mw9Jl1ERCZuVlUxf3blIu5bf2TkqaGSfQqQffl5Eb5140X82ZWLueulA1z7n8/w0MZ6PSNdTqq9d5DVOxp570VzJjQkl4iISKJPvGkJy2aW86m7X834E0xlbDqqJ4hEjJuvXc5df3oZhXkRPnnnK7z1G0/xvad2cyQDj6SUye2pnU1EY053GouISFoVF+Rx24dX4RzceNuL7GroCjpLZ5wzfpi3k4nGHA9uPMKPX9jPuv1tgPc8+8sWTWfF7ErOqa2c8IMFZHK75VebeGjjEV797NuyMl6oiIicWbbVd/LhH6yhZyDKLdct5wOXnDWhh6PIiTQO8gTsaermye2NPLOrmVf2t9GV8NjPwrwIM6uKmFZaSGlhPmVFeZQV5VOQFyFiYBiRCIARMXDgP67T4Zz33uGIJbz3/+Gcw4H/mfce/ztjzTvym2PMC6Pfj88bG+s3j5uXbKwfGT7ByNSv723uYcH0Uu676fIMpSAiIme6ox39/O3PN/BsXTPzp5fywUvO4voLZjNnSknG0x6OxugfjtE3GKV/yPvfNxSlb9B77R+KHTMtGnNEnSMac8T89zHH6PuYG/mOc4y8rywu4OZrl2d8ecaiADlNnHMcautj+9EuDrX1crSzn6Md/bT3DtE7OEzPQJSewWGGhmN+kOn8YNSb14sFDTMvcDODiJn/3gvlzPz/flBt/ueMzGPHzMtx0xLnJXF6wvci/oTRz+yYec2O/c3MlmkGfztzP41zjhsunMPvvmZuBlMREZEznXOO32xr5Nu/reNV/9Htc6aUcO6cSuZNLWVWlffUwZLCCHmRCEPDMYZjMQajjoGheHDrPWyqbyhK/2CU/uHRQLdvKHbCtP6hKEPR9BxFIwZ5ESNiRl7EyDMvzsiLeH/XVpXwwF8E09ikAFlERERkktvb3MPq7Y2s3d/KzoZuDrX10j90+gedRQxKC/MpLohQXJBHSUEeJYV5FOfnUVyYR0lBhJKCPIr9/yWFef7fo9NHp+Ud+xsFEYrz88jPszED4TB3RT1ZgJz5h5yLiIiISFosrC5j4eUL+aPLFwJe63Jn//BIy280FqMgL0JBXoT8PKMozwtiC/Is1IFq2ChAFhEREZmkzIyqkgKqSgqCzkpO0a2QIiIiIiIJQtUH2cyagP0BJV8NNAeUtoxNdRJOqpfwUZ2Ek+olnFQv4RNkncx3zp3wONxQBchBMrO1Y3XSluCoTsJJ9RI+qpNwUr2Ek+olfMJYJ+piISIiIiKSQAGyiIiIiEgCBcijbgs6A3IC1Uk4qV7CR3USTqqXcFK9hE/o6kR9kEVEREREEqgFWUREREQkgQJkEREREZEEZ3yAbGZvN7MdZlZnZjcHnZ8zjZntM7NNZrbezNb606aZ2a/NbJf/OtWfbmb2Lb+uNprZxcHmPjeY2e1m1mhmmxOmJV0HZvZR//u7zOyjQSxLLjlJvXzOzA7728t6M7su4bNb/HrZYWbXJEzXPi5NzGyema02s61mtsXMPuVP1/YSoFPUi7aXgJhZsZm9ZGYb/Dr5vD99oZmt8cv3Z2ZW6E8v8v+u8z9fkPBbY9ZVxjnnztj/QB6wG1gEFAIbgBVB5+tM+g/sA6qPm/Zl4Gb//c3Af/jvrwMeAQy4DFgTdP5z4T/wRuBiYHOqdQBMA/b4r1P991ODXrbJ/P8k9fI54G/H+O4Kf/9VBCz092t52selvU5qgYv99xXATr/stb2Es160vQRXJwaU++8LgDX+NnAPcKM//Vbgz/33nwBu9d/fCPzsVHWVjWU401uQLwHqnHN7nHODwN3ADQHnSbw6+JH//kfAuxOm/9h5XgSmmFltAPnLKc65p4HW4yYnWwfXAL92zrU659qAXwNvz3jmc9hJ6uVkbgDuds4NOOf2AnV4+zft49LIOVfvnHvFf98FbAPmoO0lUKeol5PR9pJh/jrf7f9Z4P93wJuBX/jTj99W4tvQL4Crzcw4eV1l3JkeIM8BDib8fYhTb1SSfg543MzWmdnH/GkznXP1/vujwEz/veore5KtA9VN9tzkX66/PX4pH9VL1vmXgC/CaxnT9hISx9ULaHsJjJnlmdl6oBHvJHA30O6cG/a/kli+I2Xvf94BTCfAOjnTA2QJ3uXOuYuBa4FPmtkbEz903jUWjUUYINVBqHwXWAxcCNQDXws0N2coMysHfgn8lXOuM/EzbS/BGaNetL0EyDkXdc5dCMzFa/VdHmyOknOmB8iHgXkJf8/1p0mWOOcO+6+NwL14G1FDvOuE/9rof131lT3J1oHqJguccw3+QScGfJ/RS42qlywxswK8IOwO59yv/MnaXgI2Vr1oewkH51w7sBp4HV43o3z/o8TyHSl7//MqoIUA6+RMD5BfBpb6d1UW4nUMvz/gPJ0xzKzMzCri74G3AZvx6iB+V/dHgfv89/cDH/HvDL8M6Ei4rCnplWwdPAa8zcym+pcx3+ZPkzQ6rs/9e/C2F/Dq5Ub/TvCFwFLgJbSPSyu/T+QPgG3Oua8nfKTtJUAnqxdtL8Exsxozm+K/LwHeitc3fDXwu/7Xjt9W4tvQ7wJP+ldjTlZXGZd/+q/kLufcsJndhLdjygNud85tCThbZ5KZwL3evo184E7n3KNm9jJwj5n9MbAfeL///Yfx7gqvA3qBP8x+lnOPmd0FXAVUm9kh4J+BL5FEHTjnWs3sC3gHGIB/cc6N9wYzGcNJ6uUqM7sQ7xL+PuDjAM65LWZ2D7AVGAY+6ZyL+r+jfVz6vAH4MLDJ71sJ8Bm0vQTtZPXyAW0vgakFfmRmeXiNsfc45x40s63A3Wb2ReBVvBMb/NefmFkd3s3JN8Kp6yrT9KhpEREREZEEZ3oXCxERERGRYyhAFhERERFJoABZRERERCSBAmQRERERkQQKkEVEREREEihAFhERERFJoABZRERERCSBAmQRERERkQQKkEVEREREEihAFhERERFJoABZRERERCSBAmQRERERkQQKkEVExsHMLjez582sw8xazew5M3utmf2BmT2bxnT+zsw2m1mXme01s79L12+LiMj45AedARGRsDOzSuBB4M+Be4BC4ApgIBPJAR8BNgKLgcfN7KBz7u4MpCUiImNQC7KIyOktA3DO3eWcizrn+pxzjwNDwK3A68ys28zaAcysyMy+amYHzKzBzG41sxL/s6vM7JCZfcbMms1sn5n9fjwh59yXnXOvOOeGnXM7gPuAN4yVKTOrNrMHzazdb9V+xswi/mfnmNlv/c+2mNm7Eub7XzP7jpk94uf7OTObZWbfNLM2M9tuZhclfP9mM9vtt2pvNbP3nCQ/l5rZUTPLS5j2HjPbmGrBi4gEQQGyiMjp7QSiZvYjM7vWzKYCOOe2AX8GvOCcK3fOTfG//yW8oPpCYAkwB/hswu/NAqr96R8FbjOzs49P1MwMr6V6y0ny9WngEFADzAQ+AzgzKwAeAB4HZgB/AdxxXBrvB/7Rz8cA8ALwiv/3L4CvJ3x3t5+PKuDzwE/NrPb4zDjn1gA9wJsTJn8QuPMk+RcRCSUFyCIip+Gc6wQuBxzwfaDJzO43s5nHf9cPaj8G/LVzrtU51wX8G3DjcV/9J+fcgHPuKeAhvID1eJ/D20//8CRZGwJqgfnOuSHn3DPOOQdcBpQDX3LODTrnnsTrIvKBhHnvdc6tc871A/cC/c65HzvnosDPgJEWZOfcz51zR5xzMefcz4BdwCUnydNd8XTMrAK4zp8mIjJpKEAWERkH59w259wfOOfmAucCs4FvjvHVGqAUWOd3b2gHHvWnx7U553oS/t7v/94IM7sJry/yO5xzJ+vr/BWgDq+f8h4zu9mfPhs46JyLHZfGnIS/GxLe943xd3lCXj5iZusTludcvJbmsdwJvNfMioD3Aq845/af5LsiIqGkAFlEJEnOue3A/+IFiu64j5vxAsyVzrkp/v8q51x5wnemmllZwt9nAUfif5jZHwE3A1c75w6dIh9dzrlPO+cWAe8C/sbMrvZ/a168P3JCGoeTXVYzm4/Xan4TMN3vRrIZ72bCsfK0FS8YvxZ1rxCRSUoBsojIaZjZcjP7tJnN9f+eh9eN4EW8lte5ZlYI4Lfafh/4hpnN8L8/x8yuOe5nP29mhWZ2BXA98HP/u7+P1yXjrc65PafJ1/VmtsTv1tEBRIEYsAboBf7ezArM7CrgnUAqI2GU4Z0ENPlp/iHeicGp3Al8CnhjfLlERCYTBcgiIqfXBVwKrDGzHrzAeDPeTXJP4t1Ed9TMmv3v/z+8rg8vmlkn8ASQeIPcUaANr6X3DuDP/FZpgC8C04GX/REmus3s1viM/ogU8VEvlvq/3Y13k913nHOrnXODeAHxtXgt2t8BPpKQxrj5LcJf83+/ATgPeC4hP1eYWfdxs90FXAk86ZxrRkRkkjHvfg4REckGvzX3p35fZhERCSG1IIuIiIiIJFCALCIiIiKSQF0sREREREQSqAVZRERERCSBAmQRERERkQT5QWcgUXV1tVuwYEHQ2RARERGRM8C6deuanXM1x08PVYC8YMEC1q5dG3Q2REREROQMYGb7x5quLhYiafSVx7bz7C49F0FERGQyU4AskkbfXr2bD/1gTdDZEBERkQlQgCwSgCPtfdy55kBW09x8uIN3/tez9A4OZy3NI+19vOc7z9HaM5i1NN936/Pc9VJ2yrajb4irv/Zbth/tzEp66w+2s/VIdtJas6eF1Tsas5LWP/7fJn7ywr6MpxOLOW57ejdd/UMZTyub9rf0EItlfsjWhzbW8+DGIxlP52BrL59/YEtWlilbegaG6R+KBp0NSYICZJEAfOT2l/jMvZtoy2Lg+MWHtrLpcAfrD7RnLc3bnt7DqwfauffVw1lL8+V9bdzyq01ZSevZXc3sburhP5/YlZX03v3t57juW89kJa3fu+1F/vCHL2clrZ++eIB/um9LxtNZvaORf3t4O198cFvG07r1qd28/9YXMp7O7qZurvzKb/nWk5lfBz955yvcdOerGU/npjtf4YfP7WNLhk8GnXN86ZHtHGrrzWg6ACv/+TGu/tpTGU9H0kcBskgA4i2q0Sw+qMcwALLZJmNekuTqA4niyyeTQ/9QDIDOLLQgf+mR7by0rzXj6Rzt6AdgzZ7Mp5Ut8YZjl+G91bb6Lm59ajefvOOVjKYTd7i9LyvpSHooQBYJQDyuymbcGEQwZ5wZEWSOxv85JxdPaHJwkRJOrDObTsxPYDCqDVhOpABZJABBHqgVzKVPLgYnZ4Jc3AYy3doahEwvUS6eMEn6KEAWCVA2D2qBtCBnqSUoaLkYnOSinIyHcnAby3Y95WoXMJkYBcgigQjuUJ3VoDyANLNJLVCTUy6tj7ncjSnTgWsul51MnAJkkSBlsw9y/Ca9HO/3HAQ1QE0OuXxFI6cWybJ/Q7HI8RQgiwRg5EAdQJpByMWAxHOGnAHkjNyrr1w8Cc3WIuVi2Un6KEAWCUCQ++XsBuVnRktQri9frsnJ+srBhcrWiXXunsDLRChAFglQEDvmbN6QkusNNGqBmlxysb5ycJGyVk+5uD5I+ihAFgnAaBeLbI5iEeCNgTneQpPry5drcrG+cunGw1HZWabcLDuZKAXIIgEI4u7p0RElsp9orh6ARmsxN5cv1+Rig2GQJ76ZkrU+yAHcuCyThwJkkQAFMqJEACNn5L4zZTlzRe5FRLkY5GV6mXLw3ELSKOMBspm93cx2mFmdmd2c6fREJoMgRrGIC6I1NxcP3jL5jNw0mkPrY5D7kkzJ9s29uVR2kj4ZDZDNLA/4NnAtsAL4gJmtyGSaIpNBEA0XIw3IWTwaRM6YFhodYieDXFwdtUzhT0cmp0y3IF8C1Dnn9jjnBoG7gRsynKbIpJHVESUCuJ44+mAGBZASHrm4NubiNpa9Yd5yr+xk4jIdIM8BDib8fcifNsLMPmZma81sbVNTU4azIxIOQV7qPVPSzIZcvGSfy3LxhC0X+9Fme5i33FkbJJ0Cv0nPOXebc26Vc25VTU1N0NkRyYqIv+XFcnxM4pG7xANIOxsCGRlEUpbLAVFOLlPG9485eHYhaZPpAPkwMC/h77n+NJEzWiTIFuQspjXaYpfFRLMoF1skc1lujqqSe8uUrXrK9f2TTEymA+SXgaVmttDMCoEbgfsznKZI6MUD5Ky2IAeRZtZSCkYut0jmslwMiHJymTL8+6MNFTlYeDJh+Zn8cefcsJndBDwG5AG3O+e2ZDJNkckgHjjGAhgHObtjL3uJRnP0AKQHDUwuuXhCk8vLlOmT+SD2wzJ5ZDRABnDOPQw8nOl0RCaT0ZtQsrdnjgTQHSDnW2hyMDjJZZaD62MkB/sJZKsL2ujJRe6UnaRP4DfpiZyJRrs7ZC/NSCBpeq85dOw+xujY0jm6gDkmkqWWyUSZXjfiy5RLV2niNzFnPED2t+BYLLPpyOSkAFkkAEEEjiOtMtlstY5kv99zNgUxtrSkbuQkMYsBUaZX/SCWKdOydY9GfF+Yq/snmRgFyCIBCOYmPe81msUm5NG+hFlLMquCeDqhpC6IS+oZ70ebg918sn1DsbZfGYsCZJEAZTNADmJouVzvg6w+jJNLEN2MMt31IRe3sWydeMZ/Xy3IMhYFyCIBCCZY9V6z2sUigD6f2aRRLCaXIILJbN1olkvbWLb3G7lTcpJOCpBFApCtm1ASWQB9FUdugsnRI1AODiCQ0yIBdPnJdJem0VbQjCaTVdlq6Y//fC61vkv6KEAWCcBo4BhEf+DcTjObRh81nZvLl2uCeFhOttLKpW1MfZAlDBQgi6RJMq0QQdxYkxdAt468SG53QRhtgQo0GzJOQdw0mq20cmkdzNYoP/F9di6dXEj6KEAWSZNU9rG53po7+qSq3DwAxRcrN5cud2Xzknosa10scmctzHZf8VzqniLpowBZJE1SOUBl+uCZKJAHheT4OMgxRciTkrpYhFv8Ho1s9UHOpbKT9FGALJImqezMsxmsBtH/MttPDMz2zTY6rE4uI62tWbxRNfNBnt9NIIceFJL1ezS0IcsYFCCLpEkyO/Mguh5EAuj3PNqXMDePQPHl0k16k0s2ayt7N5rlzjqYre5gudg9RdJHAbJImoS9D/LoI2mz2Qc5tx/FfCbcpJdLgRcjra2508UiF4d5y/bNvTlUdJJGCpBF0iSVA2EQDwoJorUkawe6bC/aGdAFOZcCr7js9kHOTjq5dBUj21fY1IIsY1GALJImKd2kF0B/4Ow+nISsp5lN8aAkt1pZj5WLwUNWu1hkKUKO5lAf5Kw9KCTeRSr3VnFJAwXIImmSyj42qyNKBHGTnv+aS61bic6EQSxyKUCOb2+5NIpFMFeEMptmtm4ojubQui3ppwBZJE1cCi04uRR8jMWy3AU52+U5EiDncDXm0rLFH/uczdUy04+aHlmmLC5Uxh/gQXbqKZdG/pD0U4Askiap9UHOXvQxctDJ4pE0fpNethZzOMsdZt1xr7kol07iYrHsbwOZXiWDqJ9spZnpeoovR7ZP5GVyUIAskiapPSgkAxk5iXj2gjgWZOsQnv0W5NxvQs6lm/Til9SzuQ1k+iQ43vc4q63imW9CzorRKwqKkOVECpBF0iS1B4XkUPQxhmxdKo3L9OXs46kFeXLJ9voBmQ8mc3FUmtHhE7PTB1ktyDIWBcgiaZLKzjybx2sXwMEg3roVyVKi2e5TeAY0IKfUtz6sgriknul1MptjOo+kmfGxnV1W0xEZiwJkkTRJ5TiV3T7I2ZftFprhrN91k/tP0sutFmTvNZuX1LM1EkNWg/4srRKZTieI7ikyeUwoQDazz5nZYTNb7/+/LuGzW8yszsx2mNk1E8+qSLilNg5yBjISojSj/hEoWwfvbA/bFFQLcjZPrHKpFS+ILhYZD5AD6Eeb6XKM/3rWyk59LGQM+Wn4jW84576aOMHMVgA3AiuB2cATZrbMORdNQ3oioZTUrjyAMYlHg7ksBiQjSeVoF4t4ulmOu2IO8rJ0TM98K172g/1cam3NxXGQR8erzmgyOXV1RNIvU10sbgDuds4NOOf2AnXAJRlKSyQUUukLmNUAmez060sU9SPWSM63IGc33eyeWOXOwxpyswXZe82loH8knQwnlLVHWefSUDBnkHQEyDeZ2UYzu93MpvrT5gAHE75zyJ92AjP7mJmtNbO1TU1NaciOSDCS2ddm6yaURPEDaTYfSTsUzXIf5Cw/b3dg2Lsolp+F5tzEQDW7T4LL7O8PDmevzuJpZeumUch8cJStZcrm+hc/sc50OgNDXjp5GT6DH8yl54CfQU7bxcLMngBmjfHRPwDfBb6Ad6XxC8DXgD9KJgPOuduA2wBWrVql0yyZtMa7M69r7GbjoQ4AhoYzv8o3dQ3w2JajPLjxCJCd4Kqjb4hfb23gzjUHACjIy+z9wAPDUdbta+O7T+3OaDpxnf1DrN7eyLdX1wFQXV6UsbSGozHW7W/jzpcOJExzFKWjg9xxYjHHqwfb+MW6QyPThjJ0cB+Kxniurpmfvrg/I7+fqK1nkEe3HOV7/voxszIz9RWNObYc6eCXCeWXqfi4qWuA1dsbR9b5OVNKMpJO/1CUVw60ccea0fUvE0G/c45djd08vKmehzcd9dLJUNk1dPbz1I4mbvXLbt60zJRd32CUZ3Y18dOEsnPOqc/zJHHaXaxz7i3j+SEz+z7woP/nYWBewsdz/WkiOaurf/iUn2842M4Pn9vLgxvryY8YwzFHa+9gWvMwMBxlV0M3W+s72Xy4gxf3tLCzoRuAc+dUsvlwJ+1pTnM4GmNvcw9b6zvZcLCDNXtb2FrfiXOwuKYMgI7eobSl55zjcHsfW490srW+k1cOtPPS3hb6h2JUFnu7tLLCvLQdiGIxx96WHjYcbGfDwXbWH+pg65EOhqJuJCjpH0rf7RUNnf1sPNTBpkPtbDzcwasH2unoG6IwP8LU0gLaeodo7xuiLA0Rckv3ABsOtbP+YIe3fIfaae8doiDPqK0qpr6jn46+oWN25qmIxbw623y4g1cPtrP+QDsbD7fTPxSjvCifiqJ8ugaG6R0cprRwYsvVNxilrrGbrfUdvLK/nXUH2qhr9LaBJTPKgfQ8cTG+Hu442sW2+k5e3tfGK/vb6BoYpjAvwpIZ5dQ1dtMzeOr9wnh0Dwyz42gX2492svlwJy/tbWF3Uw8AS/1lSofhaIx9LT1sq/eW6dUD7bxyoI2BYa+e5kwp4XB7H539w8yoTD0d5xwNnQNsO9rJtvpOthzuZM3eFpq7vX3T5Uuqebaume7T7FPHo7N/iO3+8mw90nnC+pCu1uPB4Rh7mrvZcbRrpNy2HulkOOaYVlbIzMoiGjoH6Owbpqq0IC1pSmZNaE9kZrXOuXr/z/cAm/339wN3mtnX8W7SWwq8NJG0RMLu/g2j54B9g1FKCvNo6R7g8a0N/HztQV450E55UT4fumw+n3zTEt745dUc7ehPKS3nHE1dA+xq7B7Z8W+t76SusXvk4F9amMdr5k/lPRfN5fIl1Zw7p5Irv/Jb6lNME6C9d3Dk4LmtvpNtRzvZ2dA9cpm3KD/CxWdN5a+uXsblS6dz8VlTec93nudoZ2ppdg8MU9fYTV1jN9vrO9niL2dHnxdwm8GSmnJufO1ZvH7xdC5fWs2daw7wxYe20dE3xJTSwnGnFYs5jnT0sauhm50NXexq7GZXQ5cf5HgBcFlhHufOqeKPL1/EW1fM4KJ5U/nEHa+wq7Er6WVr6fbqb1djN7sbu9nV2MXOhm6augYAr9/2spkVXLNyJledPYMrllazZk8rf/LjtTR1DYy7xdA5R0vPILsavDTir3WN3SMByUhaK2bx+iXTedPyGexq6OZ3vvv8SH7G4/gy3JmQVq9fhoV5EVbOqeQDl5zF6xdXc8XSah7cWM/f/nwDDZ0DLKwe32FpcNg7MdvR0MXOo13saOhiV0MX+1t7R7o7TSkt8NbBi+bwxqU1nDunko//ZB17m3vGvUzOOZq6B9jT1MMOP50dR700uwZGA7ilM8q5/oLZXLJwKlctm0HvUJQ3fOnJpLbx3sFh9jT1sKe5h7qGLrb5QfHB1r6R71QU57Nq/lTet2oer1s0nfPnVvGXd69nw8H2caczHI1xqK2PPc3d7GnqYWdDF9vqu9jZ0MWAvy3nR4yzZ1Xwocvm87pF03nd4ulsONTOB7+/hobO/pGTjdOWXdcAu5t62NPcze7GHrbVd7L9aCdtCSfNc6aUcMXSGl63aDpvWFrNnCklvOYLv+ZoZ98pfv1YHX1D7Gnq9suvm10N3Ww7ruymlRVy3pwq3veaubxhSTUrZ1fy97/YyFM7x9+9cygaY39LDzsbvGA4vt3ua+4Z2feWFORxwbwqPvbGRVy6aDqvXzydhzbW81c/W09Td78C5Eliok0QXzazC/G6WOwDPg7gnNtiZvcAW4Fh4JMawUJyWd9glJ+9fJCywjx6BqOs/OdHKSvKH2lVXlRTxmevX8H7Vs2lotjbOV501hQe2VzPx69cRG3V2MFOvOWtrnE00Ij/70xoXZlZWcSK2krevHwGK2ZXsqK2kvnTy05oHblw3hSe3N7I5sMdnDun6qRpHunw0tzd1OO/drOnaTSgAqguL+Sc2ko++rr5nFNbyTm1lSyuKacw/9juFOfPreLulw7y2x2NXHX2jBPSc87R3D3oLVeTFyzGlzExsC7Kj7C8tpLrzqtlxexKVs6uZPmsihNaHFfM9pq2vvb4Tv7+7WePlHfcwHCUAy297G3uYW+zd6Cra/QC4ngQB1BTUcSymeW8b9U8VtRWcuFZU1hcc2KL03lzq3h0y1F+8Oxefv/SsyguyBv5bCga43BbH/tbe73lauqmzg8aEwOEssI8lswo54ql1Zw7u4oL5lWxoraKksK8Y9JaOacSM/jqYzv4zHXncE5txUgr+cBwlIOtvexr7mVfSzzIOjGtiuJ8ls4o5+rlM1k6s5zz5lRx7pyqE1qkl8zw6vKbv9lFUUGESxZMIz8vgnOOzv5h9rf0jJThPv/1+DKcUVHEspkVvH/VPJbNrGDF7ErOqa2gKP/Y5Tp3jldn/3z/Fv7izUu4cN4UCvIi9A9Faeoa4EBrL3uae9jb1MPe5m72NvdwsK1v5Ka7vIixsLqMlbOrePdFczh7ZgVnz6pgYXXZCVcRVs6u4vGtDfz7w9v4ndfMZUmNF+g19wzQ0DHglZ2fTjzNxEC4sjif5bMqvXRmVbB8VgVLZ1ZQVXLselYRjTG9rJBbn9pNXsS4alkNU8sK6RuK0tDRz+H2Pj+dnpFANfHkNWKwqKacC+ZO4cbXnsXyWd4yzZlScsIynTu7kgc2HOEf7t3Eey+ey9KZ5UTMaOke4Eh7Pwfber3Asclbpv0tPSP3BwBML/O25Y/42/LyWZUj9Z/o7JkV5EeMLz60jT+9YiGXLZpOWVE+vYPDHGnv50h7n7c8TWOXXXFBhLNnVXLNylkj+4yzZ51YduBtxw9sqGdGRTFvXTGT2VNKGI7GaOgc4HB7Hwdbe72gu8mrr+bu0RO5vIgxf1op5/tlt8JPa2Zl0RjrQyU/X3eIv7lnPe++0KtTM2jpHqShs599zT3s8/cX+1p6OJSw3pnB/GmlLPVPZJfNrGDZzAqWzign/7huZfF1/O9+sZGPvm4BF86bQmlRHh29QyPr+L6WXva39DCzspjPvWvlCWUi2WVhepLMqlWr3Nq1a4POhkjS7n7pADf/ahM/+9hl7GocbU2YPaWY1y/2WiqO3zG/eqCND/3PGvLzIrx/1VwW15QzGI1xpL2fQ/EDWnM3/UOjfUCrywtZMqPc+19TzpIZFSyvrRh3H9h9zT28/3sv0NY7yNvPreVcP5hs6vIOOgdavXT7EroMTCkt8NMqZ3FNOctmVXBObQUzKorHlWZDZz+//z9rqGvs5oK5VayYXeUfgAY41OYd6BKD/bLCPBb7y7c4vqwzypk/rfSEg85YnHP8032b+emLBygrzOOCeVMoLcyns2+IIx19HGnvO6ZvYzwQXjqjgqUzy0cOcONtfe7sH+KTd7zCM7uaKSnIY/GMMgyjrXeQ+o7+Y0ZOqCopYOmMcpbO9OpuyYxyls4op7aqeNzdQX743F6+8tgOegejTC8rpLKkgM6+IVp7B4+5UXRKqZfWkhne8iyb6S3fjIoTg4ST+dUrh/jiQ9to7RmkKD9CRXE+nf3Dx9xYZwazq0pYUF2achkC3PrUbr79ZB1dA8PkRYzCvMgx6yF4LXMLq8tYWFPGwullI2ktqik7Ieg+ma7+IW751SYe2Xz0mEAnseziy7SopoxF1WUsrC5jUY2X1lhB1sk8vbOJzz+wZaQ7xFgqivNZVFPO4uoyFtWUsbC63H8tO+Zk61R6B4f55/u2cN+GIye96bEgz5g/3VueRTVeGotrylhUXc7UsvHX033rD/PVx3cc0zJ7vDlTRssuntaimnJqK4uJjLNLw97mHj5732aerWs+6Q3QU0sLWJzw+/H0zppWekJwfzL9Q1H+9aFt/PKVQ8ec3CUqK8xjQXUZC6q99W5RTRnLZlawuKb8hJPYU/npi/v5zuo6jpzkqkJBnlFSkEdn/zA7vvj2ca/TMjFmts45t+qE6QqQRSbGOcd133oW5xyPfOqKpPq97m7q5t8f3s7qHY0jB2uv/2cJC6vL/ABn9H8yAcfJtPUM8p+/2cX9G47Q2uO1CBcXRJgzpYS5U0tZXFPO4hllI0HxtLLCCfflHRiO8tMXD/DgxiPsb+klYjCltJB5U700F1aXjSxjMsHiqWw81M7dLx9kW30nfYNRppQWMKOi2DvIVZeyYLoXhKSjTJ1zrNnbyqObj7KvpQcDKksKmDe1lLOme2ktqC6lpnz8wdWptPUM8tCmejYd6qBncJjKkgJqyotYkOblAu/qyG+2N7DhYDvdA8NUFhcwvbyQs6Z56cyfXjruQO50ugeGWb29ke1HOxkYilFVUsCMyiLmTStlUXV5UsHp6Rzt6OfpXU0cau0FoLqiyF8/vDJM1zI551jv91/vHhimMD/CrKoSaquKWTC9jOryiW9fcR29Qzy/u5mDbV43k+nlRdRWFfvbdsm4TjDHIxZzrD/UPrJtlRTmMbuqhNopxcyfVpZU0Hg69R19rNvfRlPXAPl5EWZUFDG7ylueZAL70+kZGGbd/jYOtPbinGNaWREzKouYPz192y2M3si5/ajXnaWyOJ+acm8dnz2lhF+uO8Tf/3Ijv/3bq1hQXZaWNOXUFCCLZMirB9p4z3ee51/fcy6/f+n8lH5jYDhKc/cgBXnG9LKijA87FNc9MIzh9VfWndUiIsHaVt/Jtf/5DF/53fN536qJ3h4r43GyADmzYy9NAv1DUb786HZ+s60h6KzIJHX3SwcpLczjhgvHHOp7XIry85gzpYQZFcVZC44ByovyKSvKV3AsIhICy2dVMKOiiF9vVUwStDM+QC7Kj/DLVw7xw+f2Zf1pWDL59QwM88DGI1x/fi3lmRiYVkREzhhmxg0XzubJ7Y20dI9/BBlJvzM+QDYz/vSKRTxb13zMQOgi4/H0ziZ6B6O8+6LUW49FRETi3r9qHsMxp5gkYGd8gAzwh29YyFVn1/DP92/h0c1Hg86OTCK/3tZAVUkBlyyYFnRWREQkByydWcFbV8zk+8/sSetDliQ5CpDxxkz87w9ezHlzqvjEHev4wbN7M/IoTcktw9EYT25v5M3LZ6Tt7nAREZG/eesyegaG+deHtwadlTOWjuq+8qJ87vzTS3nz8pl84cGtfPj2NWyr7ww6WxJi24920d47xFVn1wSdFRERySHn1Fby8SsXc8/aQzyw4UjQ2TkjKUBOUFqYz/c/8hr+7T3nsfFgB9d96xk+9uO1PLm9geHo2IOvy5nrpb2tAFyyUN0rREQkvf7qLUt57YKpfPqeDTy5XaNaZJtuuz+OmfHBS8/iuvNm8T/P7OWulw7w+NYGKovzef3iai5bNI0Vs6tYXltBZbGep34m21bfSU1F0UkfEy0iIpKqovw8vv+RVfz+/6zhT360lr9+yzI+fuXicT8lUCZGDwo5jcHhGKt3NPLktkae2dV0zCMip5UVMrOymNqqYqaWFlJWlEdZUT5lhXkU5keI+GPLRsww816dczi8x5p6r85/7xKmJfztTjH9+GlAzH9z7G970+NVffy8MRd/zGr8t4+fnlmZHoI3Uz//XF0z1RVF3H/T5RlKQUREznQ9A8P8v19u5MGN9SyqLuOPr1jIOy+YndVGuqFojIHhGMPRGIPRGMNRx1A0xpD/Ohx1/nR/WixGNOqIOkcs5r867ymM0djo9JiDqHOUFuTxO6+Zm7XlSaQn6aWBc46jnf1sr+9i29FODrX10dDRT31HPx19Q/QMDtMzMMxQNDtlauYFf2aG4QXgjEwDYzQwN0j4zEbmjQfvYAm/NzrPZH+ARCbXbwfc+Nqz+NRblmYsDREREYDfbGvgG0/sZPPhTvIjxmvmT+W8OVUsnVnOjIpippcXUlyQR8S8Y3c05ugbjNI7GKV/KErfkPe+d3CYnoHR176hY//uHRz2vxelZ3CY3oEogxnuZjq7qpjnb7k6o2mcjALkLBoYjjIUdTj/jAnnteDGnBsJZkcC2MixQW5iYHvM++O/M8kDVxEREUmOc45XDrTz+NajPF/Xws6GLgaGUwteIwZlhfmUFHpXv0sL8ygrzKe0KI/SwjxKC70r4qVF+ZQW5FFckEd+nlGQF6HAf83Pi1CYZ+RHIuTnGYX+tPw8oyASwcwbKSwvYkTMe80zIxJh5O+IGQV5xpTSwjSX1vicLEBWH+QMKMrPQw9VExERkXQy81qOXzN/KuANN3qkvZ/mngFauwcZGI6NNMjlRyKUFEYoLvCC3ZKCeODrBcRF+RE1tp2CwjgRERGRSSg/L8JZ00s5a3pp0FnJOboVUkREREQkQaj6IJtZE7A/oOSrgeaA0paxqU7CSfUSPqqTcFK9hJPqJXyCrJP5zrkTnvgVqgA5SGa2dqxO2hIc1Uk4qV7CR3USTqqXcFK9hE8Y60RdLEREREREEihAFhERERFJoAB51G1BZ0BOoDoJJ9VL+KhOwkn1Ek6ql/AJXZ2oD7KIiIiISAK1IIuIiIiIJFCALCIiIiKS4IwPkM3s7Wa2w8zqzOzmoPNzpjGzfWa2yczWm9laf9o0M/u1me3yX6f6083MvuXX1UYzuzjY3OcGM7vdzBrNbHPCtKTrwMw+6n9/l5l9NIhlySUnqZfPmdlhf3tZb2bXJXx2i18vO8zsmoTp2seliZnNM7PVZrbVzLaY2af86dpeAnSKetH2EhAzKzazl8xsg18nn/enLzSzNX75/szMCv3pRf7fdf7nCxJ+a8y6yjjn3Bn7H8gDdgOLgEJgA7Ai6HydSf+BfUD1cdO+DNzsv78Z+A///XXAI4ABlwFrgs5/LvwH3ghcDGxOtQ6AacAe/3Wq/35q0Ms2mf+fpF4+B/ztGN9d4e+/ioCF/n4tT/u4tNdJLXCx/74C2OmXvbaXcNaLtpfg6sSAcv99AbDG3wbuAW70p98K/Ln//hPArf77G4GfnaqusrEMZ3oL8iVAnXNuj3NuELgbuCHgPIlXBz/y3/8IeHfC9B87z4vAFDOrDSB/OcU59zTQetzkZOvgGuDXzrlW51wb8Gvg7RnPfA47Sb2czA3A3c65AefcXqAOb/+mfVwaOefqnXOv+O+7gG3AHLS9BOoU9XIy2l4yzF/nu/0/C/z/Dngz8At/+vHbSnwb+gVwtZkZJ6+rjDvTA+Q5wMGEvw9x6o1K0s8Bj5vZOjP7mD9tpnOu3n9/FJjpv1d9ZU+ydaC6yZ6b/Mv1t8cv5aN6yTr/EvBFeC1j2l5C4rh6AW0vgTGzPDNbDzTinQTuBtqdc8P+VxLLd6Ts/c87gOkEWCdneoAswbvcOXcxcC3wSTN7Y+KHzrvGorEIA6Q6CJXvAouBC4F64GuB5uYMZWblwC+Bv3LOdSZ+pu0lOGPUi7aXADnnos65C4G5eK2+y4PNUXLO9AD5MDAv4e+5/jTJEufcYf+1EbgXbyNqiHed8F8b/a+rvrIn2TpQ3WSBc67BP+jEgO8zeqlR9ZIlZlaAF4Td4Zz7lT9Z20vAxqoXbS/h4JxrB1YDr8PrZpTvf5RYviNl739eBbQQYJ2c6QHyy8BS/67KQryO4fcHnKczhpmVmVlF/D3wNmAzXh3E7+r+KHCf//5+4CP+neGXAR0JlzUlvZKtg8eAt5nZVP8y5tv8aZJGx/W5fw/e9gJevdzo3wm+EFgKvIT2cWnl94n8AbDNOff1hI+0vQToZPWi7SU4ZlZjZlP89yXAW/H6hq8Gftf/2vHbSnwb+l3gSf9qzMnqKuPyT/+V3OWcGzazm/B2THnA7c65LQFn60wyE7jX27eRD9zpnHvUzF4G7jGzPwb2A+/3v/8w3l3hdUAv8IfZz3LuMbO7gKuAajM7BPwz8CWSqAPnXKuZfQHvAAPwL8658d5gJmM4Sb1cZWYX4l3C3wd8HMA5t8XM7gG2AsPAJ51zUf93tI9LnzcAHwY2+X0rAT6DtpegnaxePqDtJTC1wI/MLA+vMfYe59yDZrYVuNvMvgi8indig//6EzOrw7s5+UY4dV1lmh41LSIiIiKS4EzvYiEiIiIicgwFyCIiIiIiCRQgi4iIiIgkUIAsIiIiIpJAAbKIiIiISAIFyCIiIiIiCRQgi4iIiIgkUIAsIiIiIpJAAbKIiIiISAIFyCIiIiIiCRQgi4iIiIgkUIAsIiIiIpJAAbKIiIiISAIFyCIi42Bml5vZ82bWYWatZvacmb3WzP7AzJ5NYzp/bWZ7zKzTzI6Y2TfMLD9dvy8iIqenAFlE5DTMrBJ4EPgvYBowB/g8MJCB5O4HLnbOVQLnAhcAf5mBdERE5CQUIIuInN4yAOfcXc65qHOuzzn3ODAE3Aq8zsy6zawdwMyKzOyrZnbAzBrM7FYzK/E/u8rMDpnZZ8ys2cz2mdnvxxNyzu12zrX7fxoQA5aMlSkzqzazB82s3W/VfsbMIv5n55jZb/3PtpjZuxLm+18z+46ZPeLn+zkzm2Vm3zSzNjPbbmYXJXz/ZjPbbWZdZrbVzN5zkvxcamZHzSwvYdp7zGxj8kUuIhIcBcgiIqe3E4ia2Y/M7FozmwrgnNsG/BnwgnOu3Dk3xf/+l/CC6gvxgts5wGcTfm8WUO1P/yhwm5mdHf/QzD5oZp1AM14L8vdOkq9PA4eAGmAm8BnAmVkB8ADwODAD+AvgjsQ0gPcD/+jnYwB4AXjF//sXwNcTvrsbuAKowms5/6mZ1R6fGefcGqAHeHPC5A8Cd54k/yIioaQAWUTkNJxzncDlgAO+DzSZ2f1mNvP475qZAR8D/to51+qc6wL+DbjxuK/+k3NuwDn3FPAQXsAaT+9Ov4vFMrwW6oaTZG0IqAXmO+eGnHPPOOcccBlQDnzJOTfonHsSr4vIBxLmvdc5t8451w/cC/Q7537snIsCPwNGWpCdcz93zh1xzsWccz8DdgGXnCRPd8XTMbMK4Dp/mojIpKEAWURkHJxz25xzf+Ccm4vXN3g28M0xvloDlALr/O4N7cCj/vS4NudcT8Lf+/3fOz7NXcAW4DsnydZXgDrgcf/Gvpv96bOBg8652HFpzEn4OzHo7hvj7/L4H2b2ETNbn7A85+K1NI/lTuC9ZlYEvBd4xTm3/yTfFREJJQXIIiJJcs5tB/4XL1B0x33cjBdgrnTOTfH/VznnyhO+M9XMyhL+Pgs4cpLk8oHFJ8lHl3Pu0865RcC7gL8xs6v935oX74+ckMbh8S3hKDObj9dqfhMw3e9Gshmvf/RYedqKF4xfi7pXiMgkpQBZROQ0zGy5mX3azOb6f8/D60bwIl7L61wzKwTwW22/D3zDzGb4359jZtcc97OfN7NCM7sCuB74uf/dP0mYbwVwC/Cbk+TrejNb4nfr6ACieDf1rQF6gb83swIzuwp4J3B3CotfhncS0OSn+Yd4JwancifwKeCN8eUSEZlMFCCLiJxeF3ApsMbMevAC4814N8k9idcN4qiZNfvf/394XR9e9G+2ewJIvEHuKNCG19J7B/Bnfqs0wBuATX46D/v/PxOf0R+RIj7qxVL/t7vxbrL7jnNutXNuEC8gvhavRfs7wEcS0hg3v0X4a/7vNwDnAc8l5OcKM+s+bra7gCuBJ51zzYiITDLm3c8hIiLZ4Lfm/tTvyywiIiGkFmQRERERkQQKkEVEREREEqiLhYiIiIhIArUgi4iIiIgkyA86A4mqq6vdggULgs6GiIiIiJwB1q1b1+ycqzl+eqgC5AULFrB27dqgsyEiIiIiZwAzG/NJn+piITJBu5u6eWhjfdDZEBERkTQJVQuyyGR09deeAuAd578j4JyIiIhIOqgFWUREREQkgQJkEREREZEECpBFRERERBIoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFMmDToQ5aewaDzoaIiIikQAGySAa887+f5V3//ewpvzMwHGVbfWeWcjS2xq5+WroHAs2DiIhI2ChAFsmQQ219p/z8H+/dzLX/+QyNnf0p/f7+lh62HOlIad64S/71N7zmi0+kPH8s5mjqSj3A3nCwndue3p3SvB29Qyy4+SH+97m9Kc2/4OaH+I9Htyc9X3P3AAtufoi7XzqQ9LzD0RgdfUNJzzcR3/rNLu5ZezDp+f7lga186u5Xk55vZ0MXmw8nv14ebO2lOUsna42d/fzV3a/SPxRNar7f7mhMqSxT0dQ1wJo9LUnPd/uze9nX3JPUPM3dA2w42J7UPM45vr26LukrZZsPd/DKgbak5knVr145xMHW3qykJblHAbJIQNb5B4nO/uGU5r/yK7/lHd86dSt1pn391zt57b8+kXKQf8O3n+PfHk4+SAWo7/ROQO5MIVCN++5vkw/O97d4B9y7X04+UPqHezdzwecfZzgaS2q+/qEoi255iPvWH046za//eid//4uNSc93+3N7uW/9kaTne9s3nub6/0p+vbziy6tZleTJ2nA0xoKbH+InL+5Par5/f2Q7/7f+SNKPiP+DH76cdFkORWO8/3svsHZfa1Lzvfvbz/F7t72Y1Dy9g8P8y4Nb+b3bXkhqvnd86xlu+PZzSc3z8r42vvLYjqTL4/r/epb3fuf5pObpGRjmR8/vwzmX1Hx/c8+GpJfrYz9ey/mfeyypefoGo/zqlUNJ5+/bq+uoa+xKah7JHgXIIgGxkXfJ7VTD5IltDQA0d2e/v7X5JZjkMWni6drpv3My977qBbjDseQy3dQ1QMzBlx/dkXriOajXbwH+j0eSO8maQBUmbX9LDy/tbeXvf5lcIHm4/dRXoMYS3xY6+5I76W7oTL7lPn6S1z2Q+SsiX3xoK/98/xZ+u7Mp6XmTbeF+fGtD0o0W//rwVv7mng28sHv8Lf59g1G+8tgOfue7yZ3MSPYoQBYJiFkwAV4muACC/Higmu2U48FVSulmMzI7A0y0OLOx7lgWV9SJnLwln5j3ko39V1uPF4T3DSbXJSZb4icYqVwNHBgO5zKJAmSRwEwo0AqJIIP8oGLN0YBnMtdcbkn20vZocJf5Ooyvp7GspOVvj1nYq4ymlXlZDfxTMJGrgdqNhJcCZJGATeYdZBiOW9kIcsZMN4V5Rk6Kko3nwlDQITRygpbsfFkN7rIfSGZjkwj7OpnN/UIkhYaCoK6AyfgpQBYJyOgOUrvIVATexSKFhFMNKkZb6rWuJEo1RstmcBcJ4IJDVoLxbCYWTyqkq3/Ej6SSvLVAQi7jAbKZvd3MdphZnZndnOn0RIKSbPAS1E1muSOYJqx0BFepnhRpVRlbij0sstMveILdHpLZr4x8NSstyFnszpFCY0I296up1LH2++GX0QDZzPKAbwPXAiuAD5jZikymKRKUVC+bT+YdZZCXWUfSDqj8UgkMUj0pCvnV7MAlWxfZvHoz0e08lVbJybBcSaUV9i1gImUxiff/uS7TLciXAHXOuT3OuUHgbuCGDKcpEohUb8JRF4vUBBUfp+NgrRpPj4mWY1a7PaSYVlItyH6JZCdojacZTtnMV7wPcjLHgJG6Cm0JSqYD5DlA4mj6h/xpI8zsY2a21szWNjUlP8ahSFgk29KTyo0dYRXkMmS7X+5EWs7i86Z8MpUD60o6pVr32WyRHF1fUstrai3I2aN+8ald4VGxhV/gN+k5525zzq1yzq2qqakJOjsiKUs26FEXi1GpHGSzOTrAWFIKkFOcVzd0nlrq5Zl5kQmup2Ht1xrE9hfWfeVE9uVhXSbJfIB8GJiX8Pdcf5pIzkl1Rxf24ZLGY6KBWzaDzXSZULJJ90HOgZUkA1K9J22iLfnZTCuV2bK7XBlParSPbxKzZLNlO5WxrrN4P6WkKNMB8svAUjNbaGaFwI3A/RlOUyQQZ+Jl83QFbqmUXVAnFhO9ZA4TGdEg5SRzW9Llkr3uTRMdrSaZ+UaCrlRvCEwi2o1k8RJY2E8PU3lgkrqmhF9+Jn/cOTdsZjcBjwF5wO3OuS2ZTFMkKKl2scgFE21Fmkzjh07kpGD0Zp4k09RDBcYU3+SS3fYiaTjJGa+JtrRms1tNzDki41y/I9lsQfYld8Ni9kzkKkE2WvslNRkNkAGccw8DD2c6HZGgJR30kPydz2GTrkAjpRbkLD5WN110k16auWNexi3VE5VUTLTOoklkcuLb4fi/m8rIDakK+w3NqeRvoq39knmB36QnkiuSflBIDrQKputGnYl0sYjFJph4qummkOeIf0aRzKXsRJP5ZCqTUm1BzkZ5jg69lr1RLFKVWgtoBjJynLA/KCQS8vxJahQgi6RJ8nfST/7HB6evBTn1ebNdfhNpzYrPG01y5lS7EuS6VMf9tQBakFMO4rMYISeTx0gW91+TpQU5qaoK6bLIKAXIImmSeitWBjKTJekKNJK5jHy8bJdfXiSebgotyH6dp7q82QyWJoNUA6ZsBnepjlaQysnURJcmmfUyMoHtIFmp9OPOZterVK4qTaauYWcqBcgiaZJ8H2RPbrQgT+x3JlIGybbGTlzqJwWp3O0O2X1C2mSSanCW1S4WfhrJntxMtDtOKlLrg5yhzIyZVjg3gFQaCkK6KJJAAbJImiQb5E30AQJhYGk6cKXSohpPMpXgOh0nJdlsQVYXi7GlWhojwWcWu1gkW3Uj60oyrZITHU0miQJJZezfVIW9MSEymsFxzxPOJZFECpBFJijVYZwsgD6G6Zaug2Rqj9NNvVU1HcfZVIL6VPsgx03iVSUjJvpwnmyecCTfBSt7QXxcSg+6yGILcnLjDGcoM2NIpa7CGuzLKAXIIhOUapCYzRuFMiWSpqE4JhKoZL+LReqBeap9X+PfVgvysVLtx5nNm75GWpCTnC/PUuhiMdF7AUI6ju9of+eMJ5WSVLqAhHRRJIECZJE0SflhBZN4V5muA1cqB9mRbgepdM9Ieo4x0p3A0HTRJIemiwfUio+Pk2oLcnz2lMejTv5mrFQfJJTUOMhZfOR7Nrv9pKsrVzJS2a+oD3JuUYAsMkGp3ng10UfQxgV5qS5dDzuZTKNYxKWS5zz/rCjlUSx0VD1GqqUx0ackpxIIJVvlI+tKEpnM5mgy2VwXUzmhmfA+KYn5U3n8/GRuGDlTKEAWSZOkW5D9rW/CN9YEuJ+daF/OiTzsYyLdDiZyUjGabvLzptodRzfpjS3lPsgjT2FMTXKtuv5rqn2Qs/okveRvCMxqH+Qk5pn4fnX8PzDS1SwJ2pTDTwGyyASNBj3JzTfRG7biJtL6OlETHYkjHcM3BbX8qY1iMbHlDWsfzKCk3gfZnz/lFuTkg9bkH2bivWazBTmZE9VYisuVilQemjLhG4eTKItUhg1UgBx+CpBF0iT1oCd7rT7pNtEn6cVPLlI5SZhIv9zg+yDr6JgOKRfjyIldaj+QSgty8utLvAV5/HNM9LJ9WK9QpDTO8ATTTKYsUstfOMtaRilAFkmT0YBtfDu+VC6hjiXIg9rIgSGFLhIwsSeaxedILbhOepYTpFJvqd5sFGQdh3k4qomemKW6aKmMTZzyMJBZaJVMZczlWJL7u4lIqSxS3CfFpdIHWS3IuUUBskiaxA+A493xpas1MdA+yP5ryt1EUhzVASZ2gJlI6006Li0nW2dB1nGqaWflMc6prnYTHJ0wueBrYt1AkmqtTrk8kj9RTXX4ulSk1Md3oiN6JNXFIoVxmpPMj2SfAmSRNEn20nu6HgQQ5OV6m2Ar+EQeNJJsi32iVFu8YWKtuSMnFEmWV5AtyLnYXzp+k16qEWU2nm4Xz2MqrbrJp+VJ5kR1oieKmX5q34T3q0ndpOe9JneCEeINRAAFyCITdvzltfHumFO5sWMsQT6JL5UbiRKN3KiY4TFHT5w39Zkn0nKW6tMTgzyYhnlIuom2IKe6DqXSBzlZqawrE04rqWHK4q+ZXz/ijwZPbpzm7HVdGx3ucvy/r/g4/BQgi6TJaIA83j1fesYQDsNNeqkGGhMZjzYepKSSdFCjZqRyIE3l++mUcj/dLGR6wpfRsxDcTbD3UZJdLFJsQU7hRHWiD69Jqo+v/5rMKjXxET2Sb0EO602OkhoFyCITdPwDP8a7j0ylj+FYsv+o5VETvdFwIkPdTeQSbzq6WEykhSrZ5Q3ywJvq+pWNLE/0prRsBP+pBuEpjYwwwWA8mzeZJTO/pTDqyMRH9Bj/d1N5WJRi6fBTgCySJsm2IKdjDGAIdkc7kS4SMNE+yCklmXJ66Zg31S4WEwnoJyrV5c3GiVvqXQqy+KCQibZkZqO1OoUrQSM3JaeWZJIP4vDTymIAmlwf5BRuctRteqGnAFlkoo47uIy7g8UEniKXKNAxddP2JL3UW5BTMbF5vdeJlPqkukkvxH2Qgzq5zGbQmo3HP4/cEJjNLhZJdWFIPn/ZvLcjtWHyks2RZJsCZJE0SbUFeaItbekIRFLuLuAmlof4XKkcLCZSbhOZN37gzGYLdpBXCVI9kGfj5tGUR08ZGeYtxdbxJNJN9QQ2XudJjZiRUkqJ9wKkEuClegKVzHe9L8cD0fHIZst9fFmSGY5ODwsKvwkFyGb2OTM7bGbr/f/XJXx2i5nVmdkOM7tm4lkVCafRhw74gVOSLcITflBIGi6/p3wQ9w+OqYxjDKPLntIoFhMot4mUWTxgScdYyuM1HGAfi9RHsUhzRsYwFE0xwPXny08m4kqQzLINpVh38f1JMuv54HBqaQ1Hk98OB/2NPpUxiiG55Ypvc5ZEWqmWRVwydRz16zib+ZPMy0/Db3zDOffVxAlmtgK4EVgJzAaeMLNlzrloGtITCaX4DrV/eHyr+aH2PiC11szeweGR96kGT83dAyPvh6KO/Lzk5nfOcbA19WUYjsboGfTKKpUgbGdDNwAVxcnvxnY0dCU9T9zWI50ATC0tTGq+geEoO/10kz2heOVAOwBlhclV0sZD7SPvYzE3MlzW6exv6Rl5P5REZnc3dY+8H05ivud3N4/7u4l+u7MRGG0BHY+B4SjP724BIC+JGesaR9eZ8Z7gOOd4fEsDAFNLC8ad1tGOfo509APj3zacczy0qX7cacQdbO0dCXbHe8IxHI3x0MYjANRUFI07rZf2to68Hxzn+tHRN8RTO5qA8bdwO+f4v/WHx52vuMTtZbzrfUffEKv9/I33fCsac9z76iEg9ZM0ybx0BMhjuQG42zk3AOw1szrgEuCFDKUnErh4i8gzu059sB8YjvKfT+xiw8F2ALr6h0/5/UQ9A8M8tuUo//Vk3ci0ZOYH6BuM8n/rD/Pfx/zGECXjDL6cc6zb38Z/r65j0+EOILnWkOFojKd2NvGt3+wamdY9MP5l2Nfcw/8+v4871uwHYNnMinHPe7C1lztfOsDtz+4Fxh9cO+fYeKiDH72wj1+94h14F0wvG9e8/UNR7l9/hO89vXvkJGowevqTKOccrxxo5/bn9vLQRi/wWTLOZd3b3MOPnt/HXS8dGJk2GI1RHDl1HR9o6eWOl/bz0xf2j0wbT93saermJy/u5+6XDo5M6+wfZkblyedxzrHpcAf/+9w+7t9wZDSfwzEK809+cXNgOMozO5v5wbN7eWGPF+gurD59XbR0D/DAhiN8/5m9HPZPTrtOs2zOObbWd3LHmgP8Yt2hY/J4Kt0Dw/xmWwM/eHYvGw9528hZ00pPm9aOhi5+ue4Qd6w5tt5Ol9YTWxv44XN72eCnNX/66dPacqSTn718kHvWjtZZV//QKedr6R7g4c1Huf3Zvext9k6iyopOvQ0NR2O8uKeVO9bs59EtR49Ja2Zl8Unn293UzX2vHuZHL+wfyVff0Km3m47eIR7dUs+PX9jPFv9EdmblqQP44WiMl/a2ctfLB0eCfoDOvlOXxa6GLu5bf4Qfv7CPXv9E/3T5a+ke4OFNXv52NXonk3OnlpxyHglOOgLkm8zsI8Ba4NPOuTZgDvBiwncO+dNOYGYfAz4GcNZZZ6UhOyLZldiPdldDF//ywBYACvMjOOeOeYzrb7Y18oWHtrK/pZffWzWPe9YdpK138JS/3z8UZfX2Rh7YeIQntzfSPxRjyYxy/uotS/nmE7toP82OHLwDx2+2N/DYlqM8tbOJ/qEY58+t4m0rZ/LD5/bR0TfEjFMcrGIxx7oDbTyy6SiPbq7nSEc/U0oLuPna5fzHo9tp6zn1MgxHY7ywp4WHNtbz2JajtPUOMWdKCX//9rP58qM76Og79fwHW3t5aFM9D248wubDneRFjPe9Zi77W3ppSmgJH0tT1wC/3trAfesPs2ZvK2Zw/fmzAXh8y9Fj6iiRc466xm4e3XyUhzcfZVt9JyUFefzpFQvZcqST1lMsc99glKd2NvHI5nqe3NZI18AwZ8+s4Ju/dyF/9bP1tPaMXWfxQPzhzfU8sukoB1p7qSjO55NvWkxdYzfbj5685XtPUzcPb6rnoU1eXgvyjHddMIezppXyjSd20tozyOwpJx6M42X70MZ6Nh3uIOKXz2sXTOWf7tty0qBpT1M3j2w+yiOb69l82EvvHefVcumi6dzyq010jLFexoPihzaNLl9pYR4fft18qsuL+MpjO2jtGWRW1bHr4lA0xrN1zTy4oZ7Htx6lq3+Ymooi/un6FWyv72T1jsYx89jaM8hjW47y0MZ6XtjTQjTmuPisKfz7e8/j//1y45gnl/Hg8eFN9Ty8qZ59Lb0U5kf4nYvn8vrF0/mLu16lZYy67x+K8uT2Rh7ceITfbGtkYDjGWdNK+fLvnM9zu5tZt79tzDzWNXbz4MYjPLixnrrGbiIG77xgNr9/6Xze/70XaOk+Ma2+wdG0ntzupTVvWglfeu95bDjUwWMJgejxy/WQv1z7W3opyDPee9Fcfuc1c3n/914Ys87ae70yfHBjPc/v9spwRW0lt37oYn6x7vDIyUai4WiMNXtbedDf3lt7BqkozuemNy1h6cwK/vKuV8dM60CLty4+sOEIW+s7MYOrl8/gr96yjD/44ctjbnOd/UP8dkcTD2w4wlM7mhiMxlhUXcZX33cBW450cM/LB0+YJxpzvLS3lYc2HeHRzUdp7h6kvCifj71xMZcumsYf/vDlMfMXX+cf2HCE7Ue7iBhcfc5M/uotS/nj/11L6xh11dozyJPbG3lgwxGerWsmGnMsn1XBf3/wItbsaeXBhKBcwuW0AbKZPQHMGuOjfwC+C3wBL0b4AvA14I+SyYBz7jbgNoBVq1ap17pMPv5ae7Ctl0/fs57C/Dw+eOls7lxzgN7BKGVF+Ww81M5XH9/J0zubWDKjnJ/88SVcsbSGZ+uaOdR24gFmcDjGM7u8nf6vtzbQMxiluryQ31s1j+svmM1rzprKgdZevvnELo6McYACaOzq59dbG3h081Fe2N3CcMwxs7KI96+ax3Xn1XLpwmk8V9fCD5/bx9HOfpYe1zoZb1l5ZPNRHt1ylKauAQrzI7xxaTWfftvZXHPuLMqL8vnBs3s52tl/Qvr9Q1Fe2NPC41uO8uhmLyguK8zj6nNmct15tbx5+QyGojG+/OgOGjqPDXKdc+xu6uGJbQ08svnoSGv7BfOm8I/vOIfrzqtl9pQSPnvfZjYf7jih+8CBll4e23KUx7YcZd2BNpzzWhn/9m3LeM/Fc5kzpYTvP72HBzYcoa13iGllXneJWMyx+UgHj/rLvKfJayW7+Kwp/MsNK3n3RXOoLC7gll9tYmt95zHpdvQO8dSuJh7dXM/q7U30DUWZWlrAtefN4j0XzeWyRdMA+LtfbKA+oc4Gh2O8eqCNx/26OtzeR37EeP2Saj5x1WLeecFsyory+fwDW3h6Z/NIC2s8r6u3e4F4PHi++CyvjK4/fzazqop5Yqt3if9QWx+zp5QQi3mtor/d0cjjWxtGWjgvmDeFz1y3nOvOq2Xu1FI2+1cHDrb28Zr53vqw4VAHT+9s4tHNR0e6qVw4bwq3XLuc91w8hxkVxSOXqQ+29vKa+VPpGRhm7f42nt7ZxGNbjnKozVu+Nyyp5pNvWszbV9ZSVVowEtTtaepmZmUR9R39vLyvldXbG/ntzibae4eoKM7nmpWzeMf5tVy+pJqCvAhffWwHbb1DNHT2U1lcwJ7mbp6va2H1jkbW7G0lGnMsmF7Kn125iOvOq2VFbSVmRk1FEXWN3XT2D9E/GGVLfSdP72ziye2N7G/pJS9ivH7xdD5+5WKuWTmLaWWFI11PNh/uYOXsSho6+3n1QDurtzfy3O5m+odiVJcXcuNrR7fTSMTY3dRNY+cAu5u6KcyLUNfYzXN1zTy5o5E9TT2YwSULpvHRd5/LtefOorq8iGjMkRcxNh3u4GBrLy09g2w42M7qHY28sLuFgeEY1eVF3Pjaebzzgtlc7Kd1tHMnbb2DvHqgjbKifHY3dvPc7mae2tnEwda+keX6xFWLeduKWUwtK6RvMErEYP3Bdi6eP5WmrgHWH2znqR1NrDvQRjTmOGtaKR9/4yKuP38259RWYGY8vauZF3Y3s+lQB1Hn2Hm0i2frmnlmVxNtvUOU+tv7O86bxVVnz6C4IG9kvXq+roXCvDwOt/eybn8bq3c0Uee3ql501hQ+e/0KrjuvduRkaUZFEVuOdLLhYDud/UNsPtzJM7uaeGlvK8Mxx6zKYj7yuvm868LZnDenCjOjtWeAnsEoT25voLyogLrGbl7Y08Izu7z1qaQgjzefM4Prz6vlqrNnUFKYN7I/fa6uhcqSAuo7+nn1QBurtzeyr6UXgFXzp/L5d63k2vNmMaPCz19lEZuPdPLS3lY6+4bYcsTL3ysH2og5mDOlhI+9cRHvumA2y2d55benqYe23iF+s62BAn+9eGlvK6VFeXz9/ReOsVeXbLJ0PcLUzBYADzrnzjWzWwCcc//uf/YY8Dnn3Cm7WKxatcqtXbs2LfkRyZal//DwSN+9yuJ87vrYZTR2DvCH//syb10xk/beQV7e18aU0gL+4s1L+cjr5lOQ511CvuVXG/nFukN89voVnFNbyZ6mHp7a1cTTO5roGhhmSmkB1547i3eeP5tLF00nLyEIdM5x+X+sprggwrc+cBFzp5Syu7mb53Y189ud3o7ZOVgwvZRrzp3F21fO4oK5U44JJLv6h3jNF5/ggrlV3HLdORTn57GtvpOndzXx9E7vIFdSkMebltfw9nO9oLb8uEuqn7hjHU/taOKW687hrGml7GmKH4SavROE+EHy/FquXFZDccGxl/nf8a1naOwa4ONvXERJYR7b672DbPwS7nlzqnjH+bW847xa5h13mfr+DUf4y7te5W0rZnLunCrqO/p5aW8Lu/3AdkVtJW9bOZNrVs4aOSjFrT/Yzru//RwXzK3ignlTaOwc4OV9rbT0DJIXMS5bNI23r5zFW1fMOqFF8771h/nU3eu5cN4U5kwp4UBrL1uOdBBzXp/Ma1bO5NpzvZOQ/Lxjuwt8+AdreHFPCxefNZWhaIztR7voHYxSmBfhiqXVXHteLW89ZyZVx/VZ/c22Bv74R2uprSpmWlkhB1p7R1pAV82fynXn1XLtebOorTq2lbitZ5DXf+lJwLvc3Ng1MHJJ+IK5Xtlee+6JZTscjfH6Lz1Jc/cA08qK6OgbZCjqMIPXLpjGtefO4pqVs05olR6Kxrj8P56koXOAssK8kX7mhfkR3rB4OtedV8tbV8xkynF9uDt6h3jDfzxJ98AwZqOjEEwvK+TKs2u47txarlhWTdFxneVfOdDGe7/zPMc7e2YFV58zg3ecPxoUJ/qv3+zia7/eecy0ovwIly2aztv9ZYufOMU557j2P585oSV/3rQS3nz2DN62chaXHbedAqzd18r7vvfCMSMrFOZFuHTRNK5ePoNrz6sds7vBn/90HY9sPrY1eMH0Ut60fAZvPWfmCfsEgC1HOrjhv59jOKHvcmlhHq9fXM1bzvHyePxyAfzJj9byxLaGY6atnF3Jm86ewdtWzhwJOhM9u6uZD9++5pjlqi4v4splNbzlnBkjQWeiaMzxtm88NbKNJpbFm86ewVtXzDxhXQT47m938x+Pbj9m2rKZ5Vx9zkyuXj5j5AQh0Z6mbq771jP0D412U4nn783LZ/Cm5TWUFp7YTvi+W5/n5X2jLf6F+RFev3g6b14+g6vPmcmcMa7E/ODZvXzhwa3HTDt3TiVXL5/J1efMGLP8djV0cf1/PcvAGF12dv/bdSfUrWSGma1zzq06YfpEAmQzq3XO1fvv/xq41Dl3o5mtBO7E63c8G/gNsPR0N+kpQJbJaMHND428v+NPLuUNS6qJxhy3/GojT2xrZFZlMe+8YDYfuuwsKoqPDXpaewb50x+vPebya01FkXcgWzGLNyypPmV/zOfrmvn4T9ad0JfyvDlVvOWcmbz93Fksm1l+yrurf/XKIW751aZjdtLV5YW8cVkNb1sxkyuXnXiQS3SwtZeP/2QdW+s7R6bVVhVz9TneweR1i6afEBQn2ny4g7/9+YaRoKO8KJ+L50/lrefM4C0rZp4Q8CWKxhxffXwHP3v54Mhl3FXzp/KGJdVcs3LWmAfaRHes2c9PXtjPkfY+ppcXcdG8Kbx+STVXL5/B1DGCiLhYzHHbM3t4dPNROvuGmFVVzGsXTOOKpdVcdNbUUx7YGjr7+a8nd7HjaBf5kQhLZpRz+dJqXr94+gnrRyLnHL965TBP7mikd2CY2VNKeO2CaVy+tJrq8lP3s1x/sJ1fvXKI1p5BaiqKOG9OFW9cVnPa+fY29/DLdYdo7h5galkh58+p4nWLp58Q3B7vQEsv9284TGvPENPLCzl3ThWXLpx2yvUAvBvhHt/aQM/AMLMqizlv7hTOn1N12psL1+1v4+V9XmvxvGmlvHbB1FOuN+CtO7/Z1sCBVq8LxZKaci6eP/W0eWzvHeSJbY30Dg4ztdRbtgXTS087gsGWIx0jracLppdx3tyqMYOzRP1DUZ7e2URH3xCVJQWsqK087ToNXmC46XAHZsZZ00pZUVt5yv1IPK0X9rTQMzDMlJJCltdWnHb9AK/O6hq7yY9EWFhTxsLpZaetr67+Idbub2M46phRUcTZsypOW+7x7kfN3QOUFOaxfFblmIH+8Ro6+9lW30nEjAXTy5g7teS0+esfirL+YDtD0RjTy4pYMqP8tOUHsP1oJ01dA5QW5rNsZvkpt+e4xs5+6pq88lswvZQHN9bzLw9uZf1n33ra7UzSI1MB8k+AC/EuMu8DPp4QMP8DXneLYeCvnHOPnO73FCDLZNM7OMyKzz4GwJ9duZibr12e9G/E+wY2dw8wd2opi6pPf4BJ1NI9wG+2NdLZP8TcqV7QNH0cB7ZErT2DvORfjl48o4xlMyqSyoPXJaKb9t4hZk8pobaqOKkhj8AbVWMoGmNGRXFKLSenu7lLRCTsfrnuEJ/++QZW/+1V47r5VCbuZAHyhG7Sc859+BSf/SvwrxP5fZGwi7d6fu/Dr+GalWN11T89M+PcOVUp52F6eRHvf+28lOcHmFZWyNvPTS3/4C3DkhnjH01iLONprToVBcciMtktqPauEOxu7FaAHDAdUUQmID6U0MrZpxjPSkREZBzOnuUdS7YldFmTYChAFpmArUc6qCopGPOmDRERkWSUF+WzZEY5L59kWEDJnjM+QO4bjPLJO185ZhB4kfHaeqSTlbNPvENeREQkFZcvqealvS30n+bBI5JZZ3yAXFwQYduRTn7w7N6kHqkqMuwP0bWiVt0rREQkPd64rJr+oRgv+k+KlGCc8QGymfF315zNtvpOPnvf5nE/613kYFsfA8Mxls2a2M1pIiIica9fXE1VScHIY+0lGGd8gAxw7Xm1fOKqxdz10kE+e98WhtWSLOOwz3+QxeIa3WksIiLpUVyQxw0Xzh55TLcEQwGy7++uOZuPvXERP3lxPx/6wRoO+I+UFDmZPX6AvGC6AmQREUmfj7xuPoPRGN97anfQWTljKUD2mRmfue4cvvK757P5cCdv++ZTfOHBrTR09gedNQmpAy09VBTlj+tpTiIiIuO1ZEYF775wDj98fh91jV2nn0HSTgHycd63ah6//ps3ct25tfzv8/t4/Zee5KO3v8Q9Lx/kYKtalWVUe5/3GF2NYCEiIul2y3XLKSvM4y/vWk/3wHDQ2TnjTOhR0+kWtkdN72/p4WcvH+S+9Uc43N4HwOyqYpbXVrJkRjkLppcxo6KImooiqiuKKCvMo7ggj6L8SFqCJucczkHMORz+q8P7jyPmvO/EHDDm9/zvJHw3U9Wd7hgxE0Fnun/xb3++ga7+YR74i8vT/MsiIiKwensjf/LjtbzmrKnc+uHX6IplBpzsUdMKkMfBOceuxm5e2N3C2v1t7GroYk9TD4MnuZnPDIrz88iLjIZkxwdn4wp6JfTeuKyGH//RJUFnQ0REctQDG47w6Z9vYFppITdfu5zrz68lPy/YDgDOOQaGY/QPRekdjNI3FGUoGmNw2P/vvx+KOv/vKEPDjoFojKFjPvdey4ry+curlwayLAqQ02w4GqOha4DmrgEauwZo6R6gb8hbSfr9lSUe5B5fxA5HxIyIeS2lZmDE/4aImTed+HtO+V2O+Z7/nfjvJ3w3/pvplpE1KAM/6tL8o87BJQunsaimPK2/KyIikmjToQ5uuXcjmw93MqOiiLefO4tVC6axpKacOVNKqCzJP+bKq3POC06jMXoHh+kb9ALZ3sEofX6Mkjg9/nf88/g07/1wwndG54+moSXPDArzIsybVsoTf3PlhH8vtTwoQBYRERGZlGIxx6+3NfDztYd4fnczvYPHPmmvMD9CYV7Ea5WNxpLuUhkxKC3Mp6Qwj9LCPEoKvNfjp8Xflxbmj3ynuCBvJP3C/AgF/mv8b2+aUZgfoSgvj4J8ozAvQl7EAr+P52QBcn4QmRERERGR8YtEjGtWzuKalbNGnuR6oLWXI+19dPYPMzAcZXA4NhKUFvmBaUlCIFtSmEdpwbFBb3x6YV567p/KFQqQRURERCaR/LwI586p4tw5VUFnJWdpmDcRERERkQSh6oNsZk3A/oCSrwaaA0pbxqY6CSfVS/ioTsJJ9RJOqpfwCbJO5jvnao6fGKoAOUhmtnasTtoSHNVJOKlewkd1Ek6ql3BSvYRPGOtEXSxERERERBIoQBYRERERSaAAedRtQWdATqA6CSfVS/ioTsJJ9RJOqpfwCV2dqA+yiIiIiEgCtSCLiIiIiCRQgCwiIiIikuCMD5DN7O1mtsPM6szs5qDzc6Yxs31mtsnM1pvZWn/aNDP7tZnt8l+n+tPNzL7l19VGM7s42NznBjO73cwazWxzwrSk68DMPup/f5eZfTSIZcklJ6mXz5nZYX97WW9m1yV8dotfLzvM7JqE6drHpYmZzTOz1Wa21cy2mNmn/OnaXgJ0inrR9hIQMys2s5fMbINfJ5/3py80szV++f7MzAr96UX+33X+5wsSfmvMuso459wZ+x/IA3YDi4BCYAOwIuh8nUn/gX1A9XHTvgzc7L+/GfgP//11wCOAAZcBa4LOfy78B94IXAxsTrUOgGnAHv91qv9+atDLNpn/n6RePgf87RjfXeHvv4qAhf5+LU/7uLTXSS1wsf++Atjpl722l3DWi7aX4OrEgHL/fQGwxt8G7gFu9KffCvy5//4TwK3++xuBn52qrrKxDGd6C/IlQJ1zbo9zbhC4G7gh4DyJVwc/8t//CHh3wvQfO8+LwBQzqw0gfznFOfc00Hrc5GTr4Brg1865VudcG/Br4O0Zz3wOO0m9nMwNwN3OuQHn3F6gDm//pn1cGjnn6p1zr/jvu4BtwBy0vQTqFPVyMtpeMsxf57v9Pwv8/w54M/ALf/rx20p8G/oFcLWZGSevq4w70wPkOcDBhL8PceqNStLPAY+b2Toz+5g/baZzrt5/fxSY6b9XfWVPsnWgusmem/zL9bfHL+Wjesk6/xLwRXgtY9peQuK4egFtL4ExszwzWw804p0E7gbanXPD/lcSy3ek7P3PO4DpBFgnZ3qALMG73Dl3MXAt8Ekze2Pih867xqKxCAOkOgiV7wKLgQuBeuBrgebmDGVm5cAvgb9yznUmfqbtJThj1Iu2lwA556LOuQuBuXitvsuDzVFyzvQA+TAwL+Hvuf40yRLn3GH/tRG4F28jaoh3nfBfG/2vq76yJ9k6UN1kgXOuwT/oxIDvM3qpUfWSJWZWgBeE3eGc+5U/WdtLwMaqF20v4eCcawdWA6/D62aU73+UWL4jZe9/XgW0EGCdnOkB8svAUv+uykK8juH3B5ynM4aZlZlZRfw98DZgM14dxO/q/ihwn//+fuAj/p3hlwEdCZc1Jb2SrYPHgLeZ2VT/Mubb/GmSRsf1uX8P3vYCXr3c6N8JvhBYCryE9nFp5feJ/AGwzTn39YSPtL0E6GT1ou0lOGZWY2ZT/PclwFvx+oavBn7X/9rx20p8G/pd4En/aszJ6irj8k//ldzlnBs2s5vwdkx5wO3OuS0BZ+tMMhO419u3kQ/c6Zx71MxeBu4xsz8G9gPv97//MN5d4XVAL/CH2c9y7jGzu4CrgGozOwT8M/AlkqgD51yrmX0B7wAD8C/OufHeYCZjOEm9XGVmF+Jdwt8HfBzAObfFzO4BtgLDwCedc1H/d7SPS583AB8GNvl9KwE+g7aXoJ2sXj6g7SUwtcCPzCwPrzH2Hufcg2a2FbjbzL4IvIp3YoP/+hMzq8O7OflGOHVdZZoeNS0iIiIikuBM72IhIiIiInIMBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiEgKzGyfmb0li+n91sz+JAO/u8DMnJnlp/u3RUQmKwXIIiIZYGYLzSxmZt8d4zNnZj1m1m1mh83s62aWF0Q+j2dm7zez582s18x+G3R+RESCoABZRCQzPgK0Ab9nZkVjfH6Bc64cuBr4IPCn2czcKbQC3wS+FHA+REQCowBZRCR1rzWzrWbWZmY/NLNiADMzvAD5H4Eh4J0n+wHn3HbgGeDcxOlm9lYz225mHWb234Ad9/kfmdk2P+3HzGx+wmfOzP7MzHaZWbuZfdvPE2aWZ2ZfNbNmM9sDvOO4/DzhnLsHOHKqBTezIv+3z02YVmNmfWY241TzioiEnQJkEZHU/T5wDbAYWIYXEANcDswF7gbuAT56sh8wsxXAFcCrCdOqgV/5v1cN7AbekPD5DcBngPcCNXgB9l3H/fT1wGuB84H3+/kEr6X6euAiYBXwu0ktsc85N+Dn8QMJk98PPOWca0zlN0VEwkIBsohI6v7bOXfQOdcK/CujweJHgUecc23AncDbx2hVfcXM2oAHgP8Bfpjw2XXAFufcL5xzQ3hdHo4mfP5nwL8757Y554aBfwMuTGxFBr7knGt3zh0AVgMX+tPfD3wzId//PoHlvxO4MeHvD/rTREQmNQXIIiKpO5jwfj8w28xKgPcBdwA4514ADuAFj4kuds5Ndc4tds79o3MulvDZ7MTfds6549KaD/yn38WhHa/fsAFzEr6TGFD3AuVj/baf71StBkrN7FIzW4AXhN87gd8TEQkFBcgiIqmbl/D+LLx+u+8BKoHvmNlRMzuKF7ietJvFGOoTf9vvP5yY1kHg4865KQn/S5xzzyf7236+U+Kci+J1IfmA//9B51xXqr8nIhIWCpBFRFL3STOba2bTgH8AfoYXCN8OnIfXonohXv/hC8zsvHH+7kPASjN7rz8+8V8CsxI+vxW4xcxWAphZlZm9b5y/fQ/wl36+pwI3J37o38RXDOQDETMrNrOCU/zencDv4fXHVvcKEckJCpBFRFJ3J/A4sAfvRrpv4w3b9k3n3NGE/+uARzn1zXq3mtmtAM65ZrxuGl8CWoClwHPx7zrn7gX+A7jbzDqBzcC148zz94HHgA3AK3g32iX6MNAHfBfv5sE+f554PrvN7IqEvKwBevC6bjwyzjyIiISaeV3bREREREQE1IIsIiIiInIMBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSID/oDCSqrq52CxYsCDobIiIiInIGWLduXbNzrub46aEKkBcsWMDatWuDzoaIiIiInAHMbMyniaqLhYhIDnHO8fzuZlp7BoPOiojIpKUAWUQkh9z+3D4++P01fPT2l9A49yIiqVGALCKSI2Ixx/88sweATYc72HKkM+AciYhMTgqQRURyxNr9bdR39PP5d60EYPX2xoBzJCIyOSlAFhHJEWv3twLw7gvnsHRGOa8caAs4RyIik5MCZBGRHLHhYDuLqsuoKi3gorOm8OrBdvVDFhFJgQJkEZEcsauhm+W1FQBcMG8K7b1DHGrrCzhXIiKTjwJkEZEc4JzjcHsfc6aUAHBObSUA2+p1o56ISLIUIIuI5IDWnkEGhmPM9gPks2d6Lcnbj3YFmS0RkUlpQgGymX3OzA6b2Xr//3UJn91iZnVmtsPMrpl4VkVE5GTqO/oBqK3yAuSyonzmTy9l+1G1IIuIJCsdj5r+hnPuq4kTzGwFcCOwEpgNPGFmy5xz0TSkJyIix+noGwJgSmnByLRzZlWyvV4tyCIiycpUF4sbgLudcwPOub1AHXBJhtISETnjdfV7AXJF8Wi7x/LaCva29NA3qLYJEZFkpCNAvsnMNprZ7WY21Z82BziY8J1D/rQTmNnHzGytma1tampKQ3ZERM48nf3DAFQWj7YgL59ViXOws0GtyCIiyThtgGxmT5jZ5jH+3wB8F1gMXAjUA19LNgPOuducc6ucc6tqamqSnV1ERIBuP0BObEE+xx/yTSNZiIgk57R9kJ1zbxnPD5nZ94EH/T8PA/MSPp7rTxMRkQzo8gPksqLR3fq8qaWUF+UrQBYRSdJER7GoTfjzPcBm//39wI1mVmRmC4GlwEsTSUtERE6uq3+IkoI8CvJGd+uRiHFObQVbjihAFhFJxkRHsfiymV0IOGAf8HEA59wWM7sH2AoMA5/UCBYiIpnT1T98TPeKuJWzq7hn7UFiMUckYgHkTERk8plQgOyc+/ApPvtX4F8n8vsiIjI+XQNDYwbIK2ZX0jsYZW9LD4trygPImYjI5KMn6YmI5ICu/mHKE0awiFs523vktLpZiIiMnwJkEZEc0NU/TOUYLchLZ1RQmBdhy5GOAHIlIjI5KUAWEckBXf1jd7EozI+wbFY5W9WCLCIybgqQRURyQFf/MBVFJ3axAFhZW8WWI50457KcKxGRyUkBsohIDugeGHsUC4Dz51XR2jPIgdbeLOdKRGRyUoAsIjLJDUdj9A5GKT9JgPzaBdMAeHlfWzazJSIyaSlAFhGZ5LoH4o+ZHruLxZKaciqL81m7rzWb2RIRmbQUIIuITHLxx0yfrItFJGKsWjCNtfvVgiwiMh4KkEVEJrnO/iGAMYd5i1u1YCp1jd209gxmK1siIpOWAmQRkUmu229BLj/JKBYAly70+iG/sLslK3kSEZnMFCCLiExyp+tiAXDB3ClUFOfz9M6mbGVLRGTSUoAsIjLJdQ14XSxOFSDn50W4Ymk1T+1s0njIIiKnoQBZRGSSG21BPnkXC4Arl9VwtLOfHQ1d2ciWiMikpQBZRGSSG08XC4Arl80A4DfbGjOeJxGRyUwBsojIJNfZP0RhXoSi/FPv0mdVFXPxWVN4cGN9lnImIjI5KUAWEZnkuvq9x0yb2Wm/+84LZrOtvpO6RnWzEBE5GQXIIiKTXDxAHo93nFeLGdy/Qa3IIiInowBZRGSS6+ofOu0NenEzKou5fEk1v1h7kGhMo1mIiIxFAbKIyCSXTAsywO9fOp8jHf38ZltDBnMlIjJ5KUAWEZnkvBbk8QfIbzlnBrMqi/nJi/szmCsRkclLAbKIyCTntSCPr4sFeA8N+dBlZ/HMrma2HOnIYM5ERCYnBcgiIpNcsl0sAD78ugVUFOfzrd/sylCuREQmLwXIIiKTWDTm6B4YpjKJFmSAqpIC/ugNC3lsS4NakUVEjqMAWURkEuseGN9T9MbyR5cvZEppAV94cCvOaUQLEZE4BcgiIpNYV/8QQNItyOC1Iv/t287mxT2terqeiEgCBcgiIpNYZ1/qLcgAH7jkLFbOruSLD22lvXcwnVkTEZm0Jhwgm9lfmNl2M9tiZl9OmH6LmdWZ2Q4zu2ai6YiIyIniLcjJjGKRKC9i/MfvnE9L9yD/cO9mdbUQEWGCAbKZvQm4AbjAObcS+Ko/fQVwI7ASeDvwHTPLm2BeRUTkOF39E2tBBjh3ThV//dZlPLSpnl++cjhdWRMRmbQm2oL858CXnHMDAM65Rn/6DcDdzrkB59xeoA64ZIJpiYjIcboG4i3IqQfIAH925WIuXTiNf7h3ExsPtachZyIik9dEA+RlwBVmtsbMnjKz1/rT5wAHE753yJ92AjP7mJmtNbO1TU1NE8yOiMiZZbQFObUuFnF5EePbv38x1eVFfOzH62js7E9H9kREJqXTBshm9oSZbR7j/w1APjANuAz4O+AeM7NkMuCcu805t8o5t6qmpialhRAROVN19vmjWJRMrAUZoLq8iO9/ZBWd/UN8+Acv0dajm/ZE5Mx02gDZOfcW59y5Y/y/D69l+FfO8xIQA6qBw8C8hJ+Z608TEZE0ausdorQwj6L89NzmsWJ2Jd//yCr2tvTw0R++NHIToIjImWSiXSz+D3gTgJktAwqBZuB+4EYzKzKzhcBS4KUJpiUiIsdp6x1kamlhWn/zDUuq+e7vX8zWI5186H/W0NI9kNbfFxEJu4kGyLcDi8xsM3A38FG/NXkLcA+wFXgU+KRzLjrBtERE5DjtvUNMLZtY/+OxXH3OTG790GvYfrSL9936Agdbe9OehohIWE0oQHbODTrnPuR3ubjYOfdkwmf/6pxb7Jw72zn3yMSzKiIix2vtSX8LctxbVszkjj+5lObuAd773edZu681I+mIiISNnqQnIjKJtWegi0WiVQum8cs/fz1lhXnceNuL/PiFfXqYiIjkPAXIIiKTmNeCnP4uFomWzqzgvpsu58plNXz2vi385d3r6ejVzXsikrsUIIuITFLD0Rid/cNMLctcC3JcVUkB3//IKv72bct4ZFM913zzaZ7ZpbHrRSQ3KUAWEZmk2vxW3GlZCJABIhHjpjcv5d5PvIGyojw+/IOX+PtfbKBV4yWLSI5RgCwiMkk1+E+7m1lZnNV0z5tbxUN/eQUfv3IRv3rl/7d353F2lvX9/1+fs81klmSSzJCQBRIggIAmhLBYFmVR4xr1RymIlVr7pVqrtrWLWB9fW78/2mpbtX5RKCJoWxEoglJbNwSFYgUS1kBAkpCQhOzbZNazfb5/3PeZuefMmWyz3OfMeT8fj/M4933d133dn3OuzJ3Puc5132cLF//Dz/n2oxspFDU3WUQmByXIIiI1auv+IEE+dtrEJsgAjekk1731NfzXJy7k1Nmt/OW9q3n7Vx7mZ2u26yI+Eal5SpBFRGrUtv29AMyOIUEuOXlWK3dcex5fuepMenMFPvStlVx+0//wy3W7lCiLSM1SgiwiUqO2dfaRShjtzQ2xxmFmvGvxHO7/kzfwN+95LZv39vC+rz/Kiq8+wn88/Sr5QjHW+EREjlQq7gBqXaHo9GTz9OYK9GWL9OYKZPPBfwZm4QPDDBpSCaZkkjSmkkzJJGlIJTCzmF+BiNSqDbt6mDt9ColEdZxH0skE7zv3ON67dC7ffWIztzz8Mh/7zpPMmz6Fq845jsvPmjfh86VFRI6GEuRD6O7Ps35nN+t3dbFuRxcbdvew40Afu7uy7OrqH7iK/GhNSQfJcktDitbGFFMb08HzlPSw9akD62mmTknRGm5LJ/VFgEg9WrOtk1NmtcYdxjCN6SRXn3s8V519HPev2c43/vtl/v7HL/LFn/6ai0/p4DeXzecNJ3fQmE7GHaqISEVKkIFnN+8nVyyytzvLht09bNjVzbqdXazf2c228CpxgITBvOlNzJrawEnHtHDuCTOY2dxAa2OKxnSSKekkjekkmVSQsLo7wUXdwXM2H4ww9+UK4Yhzgb58kZ5sngN9waOzN8fG3T109uU40Jenqz9/yPinpJMVk+pSIj21MUiuyxPrUr3mTKpqRqBE5PDs68myYVc371o8J+5QRpRIGG8+fTZvPn02L+/q5q6Vm7h71WbuX7OD5kySi089hreecSxvPKWD5gb9dyQi1UNnJODym35Jf35wjlxrY4oTOlr4jZNmcmJHCyd2NHNCRwvHz2yiITWxIx6FotPVl6ezLxc8evMc6MvR2Rc+h+sHwjoH+vLs7cnyyp6ege3ZQ8z/MwuS7KZMMJodjGqnaCorC5ZTNGWC5YZ0kkzSyKQSZJLBB4N0uN5QoSyTStCQTJJOGcmEkUokSBiaZiJyhIpF5+aH1lN0uPiUY+IO57AsbG/mL5afyiffdDK/XLebH67exk+e28YPntlKJplg6fFtXLiogwtOaueMudNI6kO7iMTIqukq42XLlvnKlSsn/LgPvrgDHKY1pVkws5npTelJlbT15QoDyXNplPpAKcEOy3uzBXpyheA5m6cnGyz3DpQVBuZa5wpj+28mmTCSFiTNyYSRMEglEyTMSCUGywceYd1EYnB+twGYYTCwbkPWg8Ih6wyfJ86w/Yaq9MrL/4TK6xzO39jwNobvM6zO0ewzrEKFWMoKj+T1+UBZhbph4fA6Xl5l2P6V3sPy/aNVyvfz8g0Hq3OQtit1Zfn+Q+Mo279CHUasM/L7Wig6Xf153nPmXL70W0uGB1UjCkXnsZf38OCLO3j4pV2s2doJBIMUi+e1sWR+G2ceFzzPbIn3QkSpP+5OoRh8A1x0xz34mw6eI98SVygPnsNzwED50HrF4uDf/kj7M6R8sF4pniPeP4z5YHGV9g8aH3oei56nouc+j+wwtM5A6UD7RPYttduYTrL8jNmj6a6jZmar3H3ZsHIlyHKkcoXBqSK5gpPNFwcfhQLZvJMtDJblwuX+SFkxPPHki06x9OxOvhA+F4sUigzdNlA33OZediKK/MFG/+DL/vip8Adb3g6R9fLPShU/OpVVKq9T6fPW8DoHb6NSO1Ze67COc4g2KtU5xD4VX19YaBXq2WHUIfIhZuR2yupEKg3EWHH/ocetfIyy2MqOWfn1HKROeUNHun9ZXIvnT2PF4rmTanrUrq5+Hlm7i0df3sNTr+zjxe0HBn58pL2lgZNntXDyrFZOOqaFk45pYW7bFI6d1khK12EctWIxOF/3R87VpfN2f75ItlAkV3oOt+eL4fm7MHgeL7hTKES2DXkuDjnXD5QXhm4vRB7R9VIyWHQPH5Hl4mCyWPAKdYtD9ysliBXbLasrE2fOtEZ+ed2lsRxbCbKIiNSUnmye1Vs6eWbzPl7cdoBf7+hi7fYDdGcLA3WSCWP21Ebmtk1hTlsjM1samNGcYWZzJnhuyTBtSobmhiTNDcHUsYlOqEtJaK5QJFfwwUS0MDQpHTqw4OGAQ5FsZCAium/0uVI7uUJ0OWijv6yNifj1w9K3f6khz4nB9eTQbxFTyWB70oJ9zYLtiQQkLFhPGCQjy4nI9kSkbKBuoqyuBXPky+smy44RrRv9xtLCbTD8W0ezkb7ZHCxPWPRbzUidg36jaeFxgSGxDN+/YtsEr4WyWKLxWlnb0RiItMNA3crl0Q/70Q/5pfYH9wmkkwnmz2gaxb+yozdSgqw5yCIiUpWaMinOWTiDcxbOGChzd17d38f6nV1s2dvLln29bNnby+Z9vazcuJc93Vl6Igl0JQ2pBM0NKaaEF1WXkrZSYpaKJHMDo4leeSTSCUZSR0p+c+Eo61hKGOH1HaXrPRKkw+dSeSZ8jW3J4eUNkWtDSmWZsueB8rJt6WSw78B1JAlIJQbfw2QymgjrOhOpXUqQRUSkZpgZc9umMLdtyoh1+nIFdndn2dOVZXd3P/t7c/RkC3T3B9dbdIfXVHT3F8iFo6j5YpF8+JV/aTlXKA6MniUSRjoccSyNLpZGAhMJiySQFiaRpUQ0fKQskmBGLl5ODk1Go/sNlhkNkYueNaVEZPwpQRYRkUmlMZ08ZBItInIw+hgqIiIiIhJRVRfpmdlOYGNMh28HdsV0bKlMfVKd1C/VSf1SfdQn1Un9Un3i7JPj3b2jvLCqEuQ4mdnKSlcxSnzUJ9VJ/VKd1C/VR31SndQv1aca+0RTLEREREREIpQgi4iIiIhEKEEedHPcAcgw6pPqpH6pTuqX6qM+qU7ql+pTdX2iOcgiIiIiIhEaQRYRERERiVCCLCIiIiISUfcJspktN7MXzWytmX0q7njqiZndamY7zGx1pGyGmf3UzF4Kn6eH5WZmXwn76RkzWxpf5JOXmc03swfN7Hkze87MPhGWq19iZGaNZvaYmT0d9stfh+ULzezR8P2/08wyYXlDuL423L4g1hcwiZlZ0syeNLMfhOvqk5iZ2QYze9bMnjKzlWGZzmExM7M2M7vbzF4wszVm9vpq7pe6TpDNLAl8FXgrcBpwlZmdFm9UdeWbwPKysk8BP3P3RcDPwnUI+mhR+LgWuHGCYqw3eeCT7n4acB7w0fBvQv0Sr37gEndfDCwBlpvZecDngS+5+0nAXuBDYf0PAXvD8i+F9WR8fAJYE1lXn1SHi919SeTeujqHxe+fgB+5+6nAYoK/m6rtl7pOkIFzgLXuvt7ds8AdwIqYY6ob7v4QsKeseAXwrXD5W8C7I+X/4oFfAW1mduyEBFpH3H2ruz8RLh8gOIHNRf0Sq/D97QpX0+HDgUuAu8Py8n4p9dfdwKVmZhMTbf0ws3nA24FbwnVDfVKtdA6LkZlNAy4CvgHg7ll330cV90u9J8hzgU2R9c1hmcRnlrtvDZe3AbPCZfXVBAu/Aj4TeBT1S+zCr/KfAnYAPwXWAfvcPR9Wib73A/0Sbt8PzJzQgOvDl4E/B4rh+kzUJ9XAgZ+Y2SozuzYs0zksXguBncBt4ZSkW8ysmSrul3pPkKWKeXAPQt2HMAZm1gJ8F/gjd++MblO/xMPdC+6+BJhH8O3XqfFGVN/M7B3ADndfFXcsMswF7r6U4Gv6j5rZRdGNOofFIgUsBW509zOBbganUwDV1y/1niBvAeZH1ueFZRKf7aWvUcLnHWG5+mqCmFmaIDn+trvfExarX6pE+LXkg8DrCb52TIWbou/9QL+E26cBuyc20knvfOBdZraBYHreJQRzLNUnMXP3LeHzDuBegg+UOofFazOw2d0fDdfvJkiYq7Zf6j1BfhxYFF51nAGuBO6LOaZ6dx9wTbh8DfD9SPkHwitbzwP2R76WkTESzon8BrDG3b8Y2aR+iZGZdZhZW7g8BXgTwfzwB4HLw2rl/VLqr8uBB1y/CjWm3P06d5/n7gsI/u94wN2vRn0SKzNrNrPW0jLwZmA1OofFyt23AZvM7JSw6FLgeaq4X+r+l/TM7G0E88iSwK3ufn28EdUPM/sO8EagHdgOfBb4HnAXcBywEbjC3feEidsNBHe96AE+6O4rYwh7UjOzC4CHgWcZnFf5aYJ5yOqXmJjZ6wguYEkSDGzc5e6fM7MTCEYvZwBPAu93934zawT+lWAO+R7gSndfH0/0k5+ZvRH4U3d/h/okXuH7f2+4mgJud/frzWwmOofFysyWEFzQmgHWAx8kPJ9Rhf1S9wmyiIiIiEhUvU+xEBEREREZQgmyiIiIiEiEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRI6CmW0ws8sm8Hg/N7PfG4d2F5iZm1lqrNsWEalVSpBFRMaBmS00s6KZ3Vhhm5tZt5l1mdkWM/uimSXjiLOcmf2Dmb1kZgfM7AUz+0DcMYmITDQlyCIi4+MDwF7gt8ysocL2xe7eAlwKvA/4XxMZ3EF0A+8EpgHXAP9kZr8Rb0giIhNLCbKIyNE728yeN7O9ZnabmTUCmJkRJMifAXIECWdF7v4C8DBwRrTczN4UjuDuN7MbACvb/rtmtiY89o/N7PjINjezD4cjwfvM7KthTJhZMhwl3mVm64G3l8XzWXd/wd2L7v5oGNvry+M2s4aw7TMiZR1m1mtmxxze2yciUp2UIIuIHL2rgbcAJwInEyTEABcA84A7gLsIRmIrMrPTgAuBJyNl7cA9YXvtwDrg/Mj2FcCngfcCHQRJ7HfKmn4HcDbwOuCKME4IRqrfAZwJLAMuP0hsU8I2nivf5u79YYxXRYqvAH7h7jtGalNEpBYoQRYROXo3uPsmd98DXM9gsngN8EN33wvcDiyvMKr6hJntBf4DuAW4LbLtbcBz7n63u+eALwPbIts/DPytu69x9zzwN8CS6Cgy8Hfuvs/dXwEeBJaE5VcAX47E/bcHeX03AU8DPx5h++3AlZH194VlIiI1TQmyiMjR2xRZ3gjMCUddfxP4NoC7/w/wCkHyGLXU3ae7+4nu/hl3L0a2zYm27e5edqzjCeYG7zOzfcAegikYcyN1ogl1D9BSqe0w7mHM7O8Jpn1cER6/kgeBJjM718wWECTh945QV0SkZihBFhE5evMjy8cBrwLvAaYCXzOzbWa2jSBxHXGaRQVbo22H84ejx9oE/L67t0UeU9z9l0fadhj3EGb218BbgTe7e+dIDbl7gWAKyVXh4wfufuAwYhARqWpKkEVEjt5HzWyemc0A/hK4kyARvhV4LcGI6hKC+cOLzey1h9nufwKnm9l7w/sTfxyYHdl+E3CdmZ0OYGbTzOw3D7Ptu4CPh3FPBz4V3Whm1xGMdl/m7rsPo73bgd8imI+t6RUiMikoQRYROXq3Az8B1hNcSPdVgtu2fdndt0Ueq4AfcfCL9W4ys5sA3H0XwTSNvwN2A4uAR0p13f1e4PPAHWbWCawmGPE9HF8nmFP8NPAEwYV2UX9DMKq8NrxPc5eZfToSZ5eZXRiJ5VGCW8PNAX54mDGIiFQ1G3lqmYiIiIhI/dEIsoiIiIhIhBJkEREREZEIJcgiIiIiIhFKkEVEREREIlJxBxDV3t7uCxYsiDsMEREREakDq1at2uXuHeXlVZUgL1iwgJUrV8YdhoiIiIjUATOr+GuimmIhIjIJ9ecL7OnOxh2GiEhNUoIsIjLJ9OUKrLjhEc6+/n7+69mtcYcjIlJzlCCLiEwy//nMVl7YdoBMMsFn73uOnmw+7pBERGqKEmQRkUnmh6u3MrdtCrd98Gx2Hujne0++GndIIiI1RQmyiMgk4u48vmEvFy5q59yFMzhlVit3rtwUd1giIjVFCbKIyCSyaU8v+3tzvG5eG2bGFWfP5+lN+3hx24G4QxMRqRlKkEVEJpGnN+8D4HXzpgHw7iVzSCWMe57cHGNUIiK1ZVQJspn9lZltMbOnwsfbwvIFZtYbKb9pbMIVEZGDWbO1k1TCOHlWKwAzWxp4w8kdfP/JVykUPeboRERqw1j8UMiX3P0fKpSvc/clY9C+iIgcpg27u5k/o4lManD84z1L5/KzF3bwq/W7Of+k9hijExGpDZpiISIyiby8q4cFM5uGlF32mlm0NqS454ktMUUlIlJbxiJB/kMze8bMbjWz6ZHyhWb2pJn9wswuHGlnM7vWzFaa2cqdO3eOQTgiIvXJ3dm4u5sF7c1DyhvTSd722mP50eqt9GYLMUUnIlI7Dpkgm9n9Zra6wmMFcCNwIrAE2Ar8Y7jbVuA4dz8T+BPgdjObWql9d7/Z3Ze5+7KOjo6xeE0iInVpx4F+erIFFpYlyBBMs+jOFvjJ89tiiExEpLYccg6yu192OA2Z2deBH4T79AP94fIqM1sHnAysPPpQRUTkYDbv7QFg/oymYdvOWTCDuW1TuOeJLaxYMneiQxMRqSmjvYvFsZHV9wCrw/IOM0uGyycAi4D1ozmWiIgc3PbOfgBmT20cti2RMN595hwefmknOw70TXRoIiI1ZbRzkL9gZs+a2TPAxcAfh+UXAc+Y2VPA3cCH3X3PKI8lIiIHsb0zSHxnVUiQAd5z5jyKDvc9pZ+eFhE5mFHd5s3df3uE8u8C3x1N2yIicmS2dfaRThrTm9IVt590TAuvmzeNe5/cwu9deMIERyciUjt0mzcRkUliR2c/x7Q2YmYj1nnPmXN57tVOfr1dPz0tIjISJcgiIpPE9s4+Zk1tOGiddy6eQzJhuieyiMhBKEEWEZkkdnX1095y8AS5vaWBixa18/2ntlDUT0+LiFSkBFlEZJLY35ujbYT5x1HvXTqPrfv7+O+1uyYgKhGR2qMEWURkktjfm2PalEMnyG8+fRbtLRm++csN4x+UiEgNUoIsIjIJ9OcL9OWKh5UgN6SSXH3u8Tzwwg5e3tU9AdGJiNQWJcgiIpPA/t4cANOaModV/+rzjiOdNL6lUWQRkWGUIIuITAL7e8IE+TBGkAGOaW3kna+bw7+v3ERnX248QxMRqTlKkEVEJoGBEeTDTJABfveChXRnC9z+6CvjFZaISE1SgiwiMgkcTYJ8xtxpXLionVseXk9vtjBeoYmI1BwlyCIik8DRJMgAf3jxSezqyvKdxzSKLCJSogRZRGQSKCXIbUeYIJ97wkzOWTiDf35oHX05jSKLiIASZBGRSaGUIE89wgQZ4OOXLGJ7Zz//vmrzWIclIlKTlCCLiEwC+3pytDakSCbsiPc9/6SZnHX8dG544CXNRRYRQQmyiMik0NmbO6rRYwAz4y+Wn8r2zn5ufeTlMY5MRKT2KEEWEZkEDvdnpkdyzsIZXPaaY7jp5+vY050dw8hERGqPEmQRkUlgf2+OtqajT5AB/mL5qXRn8/zfB14ao6hERGqTEmQRkUlgtCPIAItmtXLFsvn82682snZH1xhFJiJSe5Qgi4hMAvvGIEEG+OSbT6ExneSv7nsOdx+DyEREao8SZBGRSWB/b45po5xiAdDR2sCfvvkU/nvtLv7r2W1jEJmISO0ZdYJsZh8zsxfM7Dkz+0Kk/DozW2tmL5rZW0Z7HBERqawvVyCbL47JCDLA+887ntPnTOX//OB5uvvzY9KmiEgtGVWCbGYXAyuAxe5+OvAPYflpwJXA6cBy4GtmlhxlrCIiUsG+ntKv6GXGpL1kwvjcijPY1tnH3//4xTFpU0Sklox2BPkjwN+5ez+Au+8Iy1cAd7h7v7u/DKwFzhnlsUREpILSr+iN1QgywFnHT+d3fmMB3/zlBh5dv3vM2hURqQWjTZBPBi40s0fN7BdmdnZYPhfYFKm3OSwbxsyuNbOVZrZy586dowxHRKT+7OsJ7ls82tu8lfvz5adw/Mwm/uzuZ+jJaqqFiNSPQybIZna/ma2u8FgBpIAZwHnAnwF3mdkR/c6pu9/s7svcfVlHR8dRvQgRkXo2HiPIAE2ZFF/4/17HK3t6+PwPXxjTtkVEqlnqUBXc/bKRtpnZR4B7PLgX0GNmVgTagS3A/EjVeWGZiIiMsX3jlCADnHvCTD54/gJue2QDF53cwaWvmTXmxxARqTajnWLxPeBiADM7GcgAu4D7gCvNrMHMFgKLgMdGeSwREalgf3iR3ljc5q2Sv1h+KqcdO5VP/vvTvLqvd1yOISJSTUabIN8KnGBmq4E7gGs88BxwF/A88CPgo+5eGOWxRESkgv29OZIJo7XhkF8KHpXGdJKvXr2UXL7Ix7/zJLlCcVyOIyJSLUaVILt71t3f7+5nuPtSd38gsu16dz/R3U9x9x+OPlQREalkX2+WqY0pjvASkCOysL2Zv3nva1m5ca9u/SYik974DDeIiMiE2d+bp61pbO6BfDArlszl8Q17uPmh9Zw8q5XLz5o37scUEYmDfmpaRKTG7evJMnUcLtCr5LPvPJ3XnzCTT9/zLKs27pmQY4qITDQlyCIiNW5fT47p43SBXrl0MsHXrl7KsW2N/P6/rmLTnp4JOa6IyERSgiwiUuN2dfXT3tIwYceb3pzhG9csI1dw3v+NR9lxoG/Cji0iMhGUIIuI1DB3Z3dXlpkt4z8HOeqkY1q57YNns6Ozn2tufXzgx0pERCYDJcgiIjXsQH+ebKFIe/PEjSCXLD1uOjd/4CzW7jjA737zcQ70KUkWkclBCbKISA3b3ZUFoL11YkeQSy5c1MFXrjyTpzft4/3feGzgR0tERGqZEmQRkRq2q6sfgJkxjCCXvPW1x/K1q5ey5tVOrvr6r9gdxiQiUquUIIuI1LBSMjrRc5DLvfn02Xz9mmWs29nF5Tf9Dy/v6o41HhGR0VCCLCJSw3aVplhM4F0sRvKGkzv4t987l309Wd7ztUd47GXdJ1lEapMSZBGRGrajs4+EwYzmeEeQS85eMIN7/+B8ZjRluPqWX3HHY6/g7nGHJSJyRJQgi4jUsM37epk1tZF0snpO5wvam7n3D87n3IUz+dQ9z/LJu56muz8fd1giIoetes6oIiJyxLbs7WXe9ClxhzHMtKY03/rdc/jjy07m3qe28K4b/pvVW/bHHZaIyGFJxR3AZOXu9OeLdPfn6e4v0JcvYIAZmBlJM5oakjRnUjRlkphZ3CGLSA3avLeXsxdMjzuMipIJ4xOXLeLsBdP5xJ1PseKrj/CRN5zIxy49iYZUMu7wRERGpAR5lDr7cjy3pZPnXt3Pi9sOsGVfL6/u62Xr/j7688XDasMMmjMpWhpSzGjOMLMlw8zmDDNbGpjZkqG9OXxuaaCjtYH2lgYyKQ3+i9S7/nyBbZ19zJ/RFHcoB/UbJ7Xz0z++iP/zgzXc8OBafvzcNj634gxef+LMuEMTEalICfIRcnee2byf+9ds56GXdvHM5n2Urj9pb2nguBlTOGPuNN502izamjK0NKRobkjRmE7gDh62USg63dlCOMKcp6s/z4G+PHu7s+zqzvLyrm72dGfpyRYqxjFtSpqO1gY6wqS5lDiXljtaGmhvzTCzuYFkQqPTIpPR2h1dFIrOKbNb4w7lkNqaMvzjFYt5x+Jj+cy9q7nq67/iLafP4tNvew3Hz2yOOzwRkSGUIB+mvd1Zbn/sFb77xGbW7+wmYbBkfhsfu2QRS49r4/Q50+hoHfvbLPVk8+zuyrK7O8uuA/3s7Opn54HgsStcfnrzPnYe6K+YTAdXt5cS6MyQBLo8wZ42Ja2pHiI15LktnQCcOntqzJEcvotPOYafffINfP2h9dz4i3W86YsPccXZ8/jwG05k3vTqHgkXkfqhBPkQtnf2cePP13Hn45vozRU4Z+EMrr3wBN56xrFMa0qP+/GbMimaZqQO6yvU7v78QNK8M0ymy5Pq9Tu72Xmgn2xh+PSPdNIGR6HD57amDK2NKaZOSTO1MUVrY4rWxjRTG9PhcormTIqERqlFJtyDL+7gmNYGTuyorRHYxnSSj126iCvOns+X73+JOx/fxB2PbeK9S+dy7UUncNIx1T8iLiKTmxLkEfTlCtzy8Hq+9vN1ZPNFViyZy++/4QROnlW9J+7mcDrHob6udHc6e/Ps7Opj54FsxVHprfv7eGbLfvb1ZMkVDn4P04RBS0OKpkyKKZkkU9LJgefGdJKmaNlAeYJUIkE6lSCTNNLJROQxuJ5JBcupRLCcsMgjQWQdEokRlq1sOcZkvvx+sOW3h/WD1R3WVnTbwdsdHsfh73u0MZVvPNhxhrcz8nGGxzdywAeN7yhiGrLdB/ePTp8q7TtY1we2R/crbS9vZ8jzsH0HI37u1U5+/Nw2Pnj+wpr95mfW1Eb+9r2v5WOXnMTND63nO4+9wl0rN3Puwhm8/7zjecvps3W9hYjEwqrpBu7Lli3zlStXxh0Gqzbu5ZN3PcWG3T0sP302173t1LqdI1e6G0dnX47O3jwH+nIc6AvmS3f25QbWO3tz9OYK9OaK9GbzwXJ2+Hpfrlhx9FpEjtzS49q49XfOpq2pOn4kZLR2dfXz7ys3c/tjG9m0p5e2pjTLT5/N2193LK8/YSapKrrXs1SvYtEphNf6FMLl4pBlhpW5O0UPPpwW3SmGH4hLH2CDbYPPHh7HCerjUAz3HVrmkTYBhh6n9MF6sN7gh/HScQdjGXrc8g/mMPQDuDPSB/CRt3u44BXairZP5NgHHwAYbCt49UOPXRpAmNaU5rq3vmYs/xkcNjNb5e7LhpWPNkE2s48BHwUKwH+6+5+b2QJgDfBiWO1X7v7hQ7UVd4KczRf5p5/9mht/vo5jp03hC5e/jvNPao8tnskqVyjSny+SLwTJcq7g5AtFcoUi2byTC5dzhehykWzBB04khWLppBGcQArFoculE0oheuIZOBFO7Ot1IDq+Vz7YZwwtiG4vHxcctu9BRg7H9DiRGocarIzGdOh2K+93qLrlGw92nIO97iPdFxusb2YDt24s7VeqP1hmA8co3z7YTnik0j6RtgfqDmyzgRhmNGd47dxpNTt6fDDFovPQSzv53pNb+Onz2+nOFpjelObCRR1cuKidCxd1MHtaY9xhTkqlQZH+XJH+fCFYzgeDG6Xl8u3Z8HyeKzi5YpF86Zxe9MHyQlA+sL0YnO/z4XquUCRf9IFzf6EYrBejSW002Q0T4GJZ0lsoVs+gXy0rnaOi57mBs5INPadF64abI3Uqb4+e9wyYPa2R+/7wgol8iQNGSpBHNcXCzC4GVgCL3b3fzI6JbF7n7ktG0/5EWr+zi0/c8RTPbtnPb541j//9ztNobRz/Ocb1qDR9QkSkkkTCeOMpx/DGU46hL1fg5y/u5MfPbePhl3Zx39OvAnBCezOL57exeN40Fs9v49TZU5mSmdz3VnZ3soUivdkCPeEjWM4PrPeE39j1ZAv09IfluUr1CkGCW5b4Zg/z9qSHI520YCpdOG0uNWw9EdYxUskEjekErY0pUokEqYSRTAa/GZAMp8wlE0SWB5+HbA+n0ZWeU4mhdUvbkuEUvdL+NmRKHkDwXCq3geUgTUyUEr8wSSxN7YsmhZXqJsq2DbYfPjO0bqXjDEtah3yIHr59yIf+Cknt0A/6k+8D99Ea7RzkjwB/5+79AO6+Y/QhTay+XIF//sV6/vmhdWRSCW56/1ksP2N23GGJiAjBBX3Lz5jN8jNm4+68sO0AD7+0k5Ub9vLI2l3c++QWIPgPfm7bFE7saOHEjhaOn9nErKmNzJ7WyOypjXS0TvwtL4tFpycXJKpd4Y9GdWeDW3tGb/NZKu/qz4d1g2S2dAvQnmyBrv48vdkC+SMcIZ2STtLcEFz/0ZQOrhNpyiSZ3pSmMZ2kIZWkIZ2gIZUIllOJcD1cTiVoSEeWI/Ubw/JMJNkNrhkZTDpFatWopliY2VPA94HlQB/wp+7+eDjF4jng10An8Bl3f3iENq4FrgU47rjjztq4ceNRx3M0+vMFLv3HX3DGnGl89l2ncey06vvJVhERGc7d2dbZx9Ob9vHr7V2s2xk+dnTTmxt628uEEdyBZ0qK1obwuTFIEtNJI51IkE4NXiBcPn2rEK4Xi042X6QvnHbQlyuEj6CsPywrjeIeroZUYuC++U2Z5MByc/iLq6XypkySKZnB5aZwuZT4NmcGk+DGVFJ3GBI5hKOeg2xm9wOVhlT/ErgeeBD4OHA2cCdwApABWtx9t5mdBXwPON3dOw92rLjmIHf25Ziq6RQiIpNCsejs7s6yvbOPbfv72NbZx47OPvb35ujsCy427uwNLjTO5kvXQgRzYUvLRmkUdPBr/dLX75lw9LQxnaAxlRxYbkgnw/Vge3NDiuZM8NwSSXybGlK0NCTDpDeoowsQReJx1HOQ3f2ygzT6EeAeD7Lsx8ysCLS7+06gNO1ilZmtA04G4r9FRQVKjkVEJo9EwgZ+AOmMudPiDkdEatBoP7J+D7gYwMxOJhg53mVmHWaWDMtPABYB60d5LBERERGRcTfai/RuBW41s9VAFrjG3d3MLgI+Z2Y5oAh82N33jPJYIiIiIiLjrqp+KMTMdgITe5XeoHZgV0zHlsrUJ9VJ/VKd1C/VR31SndQv1SfOPjne3TvKC6sqQY6Tma2sNElb4qM+qU7ql+qkfqk+6pPqpH6pPtXYJ7psVkREREQkQgmyiIiIiEiEEuRBN8cdgAyjPqlO6pfqpH6pPuqT6qR+qT5V1yeagywiIiIiEqERZBERERGRiLpPkM1suZm9aGZrzexTccdTT8zsVjPbEd5Hu1Q2w8x+amYvhc/Tw3Izs6+E/fSMmS2NL/LJy8zmm9mDZva8mT1nZp8Iy9UvMTKzRjN7zMyeDvvlr8PyhWb2aPj+32lmmbC8IVxfG25fEOsLmMTMLGlmT5rZD8J19UnMzGyDmT1rZk+Z2cqwTOewmJlZm5ndbWYvmNkaM3t9NfdLXSfI4a/9fRV4K3AacJWZnRZvVHXlm8DysrJPAT9z90XAz8J1CPpoUfi4FrhxgmKsN3ngk+5+GnAe8NHwb0L9Eq9+4BJ3XwwsAZab2XnA54EvuftJwF7gQ2H9DwF7w/IvhfVkfHwCWBNZV59Uh4vdfUnk1mE6h8Xvn4AfufupwGKCv5uq7Ze6TpCBc4C17r7e3bPAHcCKmGOqG+7+EFD+C4srgG+Fy98C3h0p/xcP/ApoM7NjJyTQOuLuW939iXD5AMEJbC7ql1iF729XuJoOHw5cAtwdlpf3S6m/7gYuNTObmGjrh5nNA94O3BKuG+qTaqVzWIzMbBpwEfANAHfPuvs+qrhf6j1BngtsiqxvDsskPrPcfWu4vA2YFS6rryZY+BXwmcCjqF9iF36V/xSwA/gpsA7Y5+75sEr0vR/ol3D7fmDmhAZcH74M/DlQDNdnoj6pBg78xMxWmdm1YZnOYfFaCOwEbgunJN1iZs1Ucb/Ue4IsVcyDW6zoNisxMLMW4LvAH7l7Z3Sb+iUe7l5w9yXAPIJvv06NN6L6ZmbvAHa4+6q4Y5FhLnD3pQRf03/UzC6KbtQ5LBYpYClwo7ufCXQzOJ0CqL5+qfcEeQswP7I+LyyT+GwvfY0SPu8Iy9VXE8TM0gTJ8bfd/Z6wWP1SJcKvJR8EXk/wtWMq3BR97wf6Jdw+Ddg9sZFOeucD7zKzDQTT8y4hmGOpPomZu28Jn3cA9xJ8oNQ5LF6bgc3u/mi4fjdBwly1/VLvCfLjwKLwquMMcCVwX8wx1bv7gGvC5WuA70fKPxBe2XoesD/ytYyMkXBO5DeANe7+xcgm9UuMzKzDzNrC5SnAmwjmhz8IXB5WK++XUn9dDjzguun9mHL369x9nrsvIPi/4wF3vxr1SazMrNnMWkvLwJuB1egcFit33wZsMrNTwqJLgeep4n6p+x8KMbO3EcwjSwK3uvv18UZUP8zsO8AbgXZgO/BZ4HvAXcBxwEbgCnffEyZuNxDc9aIH+KC7r4wh7EnNzC4AHgaeZXBe5acJ5iGrX2JiZq8juIAlSTCwcZe7f87MTiAYvZwBPAm83937zawR+FeCOeR7gCvdfX080U9+ZvZG4E/d/R3qk3iF7/+94WoKuN3drzezmegcFiszW0JwQWsGWA98kPB8RhX2S90nyCIiIiIiUfU+xUJEREREZAglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRERERCKUIIuIiIiIRChBFhEZBTPbYGaXxR2HiIiMHSXIIiLjyMwWmlnRzG6ssM3NrNvMusxsi5l90cySccQpIiKDlCCLiIyvDwB7gd8ys4YK2xe7ewtwKfA+4H9NZHAiIjKcEmQRkdE728yeN7O9ZnabmTUCmJkRJMifAXLAO0dqwN1fAB4GziiVWeBLZrbDzDrN7FkzOyPcNs3M/sXMdprZRjP7jJklwm2/Y2aPhPvuM7P1ZvYbYfmmsL1rIsd5u5k9GR5jk5n9VaUYzawhbC8aY4eZ9ZrZMaN4/0REqooSZBGR0bsaeAtwInAyQUIMcAEwD7gDuAu4puLegJmdBlwIPBkpfjNwUdjmNOAKYHe47f+GZScAbyBIxD8Y2fdc4BlgJnB7GMPZwEnA+4EbzKwlrNsd7t8GvB34iJm9uzxGd+8H7gGuihRfAfzC3XeM9NpERGqNEmQRkdG7wd03ufse4HoGE8hrgB+6+16CJHV5hZHWJ8xsL/AfwC3AbZFtOaAVOBUwd1/j7lvDecpXAte5+wF33wD8I/DbkX1fdvfb3L0A3AnMBz7n7v3u/hMgS5As4+4/d/dn3b3o7s8A3yFIuiu5PTx2yfvCMhGRSUMJsojI6G2KLG8E5pjZFOA3gW8DuPv/AK8QJJRRS919uruf6O6fcfdiaYO7PwDcAHwV2GFmN5vZVKAdSIfHih53bmR9e2S5N2yvvKwFwMzONbMHw+ka+4EPh8eo5EGgKdxnAbAEuHeEuiIiNUkJsojI6M2PLB8HvAq8B5gKfM3MtpnZNoIEdsRpFpW4+1fc/SzgNIKpFn8G7CIYXT6+7LhbjjL+24H7gPnuPg24CbAR4ikQTBe5Knz8wN0PHOVxRUSqkhJkEZHR+6iZzTOzGcBfEkxpuAa4FXgtwSjrEuB8YLGZvfZwGjWzs8OR2jTBPOE+oBhJUq83s1YzOx74E+DfjjL+VmCPu/eZ2TkMH+UudzvwWwRzrzW9QkQmHSXIIiKjdzvwE2A9sI5gSsSlwJfdfVvksQr4EQe/WO8mM7spXJ0KfJ3gNnEbCS7Q+/tw28cIkub1wH+HMdx6lPH/AfA5MzsA/G+C5DsaU5eZXVhad/dHw2PPAX54lMcUEala5u5xxyAiIiIiUjU0giwiIiIiEqEEWUREREQkQgmyiIiIiEiEEmQRERERkYhU3AFEtbe3+4IFC+IOQ0RERETqwKpVq3a5e0d5eVUlyAsWLGDlypVxhyEiIiIidcDMNlYq1xQLEREREZEIJcgiIjXoqpt/xR/f+VTcYYiITEpKkEVEatD/rN/NvU9uiTsMEZFJSQmyiIiIiEiEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISoQRZRERERCRCCbKIiIiISIQSZBERERGRCCXIIiIiIiIRSpBFRGqYu8cdgojIpKMEWUSkhuWLSpBFRMaaEmQRkRqWKxTjDkFEZNJRgiwiUsOyeSXIIiJjTQmyiEgNy2oEWURkzClBFhGpYbmC5iCLiIw1JcgiIjUspykWIiJjTgmyiEgN00V6IiJjb9wTZDNbbmYvmtlaM/vUeB9PRKSeaA6yiMjYG9cE2cySwFeBtwKnAVeZ2WnjeUwRkXqiOcgiImNvvEeQzwHWuvt6d88CdwArxvmYIiJ1Q1MsRETG3ngnyHOBTZH1zWHZADO71sxWmtnKnTt3jnM4IiKTiy7SExEZe7FfpOfuN7v7Mndf1tHREXc4IiI1RXOQRUTG3ngnyFuA+ZH1eWGZiIiMAc1BFhEZe+OdID8OLDKzhWaWAa4E7hvnY4qI1A3NQRYRGXup8Wzc3fNm9ofAj4EkcKu7PzeexxQRqSdKkEVExt64JsgA7v5fwH+N93FEROpRVhfpiYiMudgv0hMRkaOnOcgiImNPCbKISA3TFAsRkbGnBFlEpIYpQRYRGXtKkEVEapjugywiMvaUIIuI1LBcXnOQRUTGmhJkEZEapikWIiJjTwmyiEiNcR8cNVaCLCIy9pQgi4jUmEh+rDnIIiLjQAmyiEiNKWgEWURkXClBFhGpMcVogqyL9ERExpwSZBGRGlOMDBprBFlEZOwpQRYRqTHRKRaagywiMvaUIIuI1JjoFItsXgmyiMhYU4IsIlJjikVdpCciMp6UIIuI1JhIfkyuoIv0RETGmhJkEZEaUyhqDrKIyHhSgiwiUmP0S3oiIuNLCbKISI3Jaw6yiMi4UoIsIlJjoneu0A+FiIiMPSXIIiI1pj9MkJMJ0wiyiMg4UIIsIlJj+vMFAFoaUrpIT0RkHChBFhGpMaUR5JaGlEaQRUTGwagSZDP7KzPbYmZPhY+3RbZdZ2ZrzexFM3vL6EMVERGAvlwwgtzamBpIlkVEZOykxqCNL7n7P0QLzOw04ErgdGAOcL+ZnezuhTE4nohIXevPBUlxR2sDa3d04e6YWcxRiYhMHuM1xWIFcIe797v7y8Ba4JxxOpaISF0pjRp3tDSQLzq9OY09iIiMpbFIkP/QzJ4xs1vNbHpYNhfYFKmzOSwbxsyuNbOVZrZy586dYxCOiMjkVrpIr6O1AYADffk4wxERmXQOmSCb2f1mtrrCYwVwI3AisATYCvzjkQbg7je7+zJ3X9bR0XGku4uI1J3SCHJ7SylBzsUZjojIpHPIOcjuftnhNGRmXwd+EK5uAeZHNs8Ly0REZJTW7+wik0pw4jHNAGzb389Jx7TGHJWIyOQx2rtYHBtZfQ+wOly+D7jSzBrMbCGwCHhsNMcSEZHAr9bvYelxbZy9YAbppPHFn75Id7+mWYiIjJXRzkH+gpk9a2bPABcDfwzg7s8BdwHPAz8CPqo7WIiIjN7+3hzPvbqfcxfOpLUxzfvPO54nXtnHYxv2xB2aiMikMarbvLn7bx9k2/XA9aNpX0REhlq5YQ9Fh/NOmAnAhy5YyG2PbGDb/r6YIxMRmTz0S3oiIjXksQ17yCQTnHlcGwCzpzbS3tLAHY9vYm93Nt7gREQmCSXIIiI15OlN+3jNnKk0ppMApJIJ/vc7T2P1lv1c8PkH+JM7n+JHq7eyr0fJsojI0RqLX9KreT9avY1506cwf0YTUxtT+kUqEalKxaKzeksn7zlz6G3l37V4DqfObuWWh9fzw9XbuOfJLZjB6XOmcv6J7Zy9YAZnHT+d6c2ZmCIXEaktdZ8g5wpFPn7Hk2TD+4q2NKSY09bInLYpzJ7ayMyWDDOaG2hvyTCzuYGZLRlmtmSY3pQhndQAvIhMnD09Wbr685x0TMuwbSfPauULly/m/3/3a3lm8z4eWbubX67bxW2PbOCfH1oPwAkdzZx13HSWHNfGKbNaWXRMK9Oa0hP9MkREql7dJ8iphPGTP7qI57d2smVvL1v29fLqvl5e3d/L8692srs7S6HoFfdtTCdoaUgztTFFa2OK1sY0LQ2Dy1MyCaakkzSmkzSkk+HyYFljOhE+J8kkE2RSCVIJI51KkE4kSCeNZMI0oi0iAOzq6gcGfyCkkkwqwbIFM1i2YAafuGwRfbkCz2zez8qNe3hi417uX7Odf1+1eaB+R2sDC9ubmds2hWOnNXJs2xTmTGtkZksD05vStDVl9M2aiNSduk+QzYwF7c0saG+uuL1YdDr7cuzqyrK7q5/d3cHzvp4cB/rzHOjL0dmX50Bfnq6+HNs7+zjQF5T35gqMkFsfkUwyQSpppJNB0pyOricSpFNG0oxEInw2I5GAZCJYTiaGbg+SboaVJxJGMsHAcmnfhAX1DcJnIxGulJeZMfAfqRnBvpE6pe2DZcH6QdsjqBhtq3JfViijcuUj+b9+pMSgUumIsVWoPXLdw2+3cm2ZrH69/QAAM1sOf6pEYzrJOQtncM7CGQC4O5v39vLSjgO8tL2LX2/v4pU93Tz28h62d/aRr3DSSiWMtkiy3NyQoqUh+pykuSFFc6ZUlhz48N+YTtKQSgwMCjSkwsGBVJJEQv9+ReLi7riDl5YhXA/KKVsvrzfYUHTRI+1XrIKHG6JlCTNmVNkUsLpPkA8lkTDamjK0NWUqfq15MO5OruD05Qv0ZQv05Yr05Qv0Zgv05Qr05sKyXIFsoUi+4OQKxfDh5EvLRSeXL5IvOtlCcchyPqxbKDpFH3wuFoPpI9Hy6LI7FEr1ix4uU9ZGUF4sHsYfiIhMCDOYP6NpFPsb82c0MX9GE5ecOmvItkLR2dXVz6v7etnbk2VPd459PVn2dGfZ25Njb3eWA/3BoMDW/X109+fp6s/T3Z8/qsGATDJBQypBw0DynCCTSpJOGqmEkUomBgYIUomyAYLE0IGDVDJBOmEkEwkSFpy7Sx/Skza4PLgtXLbSh3Eb3B7Wr8QPkQwcKikoL2dYAjJ0nWjiMiSJiSQaB2mjdOzDar9CG0TP+wdrf4Q2KK0fTvtlr83L35+DtT9CG8Pen2Gvf+T/30Z8fw75/kdjH+H9OZL3rrze4bR/iNdWbeZMa+SX110adxhDKEEeR2ZGJmVkUgmmNk7OeX7ln0CLw06cQdJd8Q+87I+26NGTZdBOMVKXUp2KcVQoO0jMFcsPs92Rao9U90ja9SNptwpPcjL+WhtTzG2bMi5tJxPGrKmNzJraeET7uTv9+eJAstzVn6cvV6Q/V6AvX6A/HBwoDQj054PnvlyR/rC8VDebd/LFwQGDnmyefNGHDhoUhtYprecK+qM4GtFv86Lf4lH2zWF5PaLrFdqA4d8+RusNHPtw2i9rg/LysjaGfiN5kNeWACMxrI1h7R/uaxv23lVug2GveWgbh/3eldc7nPaHvT/D2xix/bL3Z+DfUNm/p8rlNqxOqaQpU33paPVFJDWldGIM1+IMRURiYmYD0ykONj96vA18SA+fix5+G1b6oF4cWlZezweWg9H0w/qPfkh5qWx4IlBuSNsjJCvDk5wKSd4hk8iDtHEkc81E6owSZBERmRTMjGQpsxQRGQXdp0xEREREJMJGmo8ZBzPbCWyM6fDtwK6Yji2VqU+qk/qlOqlfqo/6pDqpX6pPnH1yvLt3lBdWVYIcJzNb6e7L4o5DBqlPqpP6pTqpX6qP+qQ6qV+qTzX2iaZYiIiIiIhEKEEWEREREYlQgjzo5rgDkGHUJ9VJ/VKd1C/VR31SndQv1afq+kRzkEVEREREIjSCLCIiIiISoQRZRERERCSi7hNkM1tuZi+a2Voz+1Tc8dQTM7vVzHaY2epI2Qwz+6mZvRQ+Tw/Lzcy+EvbTM2a2NL7IJy8zm29mD5rZ82b2nJl9IixXv8TIzBrN7DEzezrsl78Oyxea2aPh+3+nmWXC8oZwfW24fUGsL2ASM7OkmT1pZj8I19UnMTOzDWb2rJk9ZWYrwzKdw2JmZm1mdreZvWBma8zs9dXcL3WdIJtZEvgq8FbgNOAqMzst3qjqyjeB5WVlnwJ+5u6LgJ+F6xD00aLwcS1w4wTFWG/ywCfd/TTgPOCj4d+E+iVe/cAl7r4YWAIsN7PzgM8DX3L3k4C9wIfC+h8C9oblXwrryfj4BLAmsq4+qQ4Xu/uSyL11dQ6L3z8BP3L3U4HFBH83VdsvdZ0gA+cAa919vbtngTuAFTHHVDfc/SFgT1nxCuBb4fK3gHdHyv/FA78C2szs2AkJtI64+1Z3fyJcPkBwApuL+iVW4fvbFa6mw4cDlwB3h+Xl/VLqr7uBS83MJiba+mFm84C3A7eE64b6pFrpHBYjM5sGXAR8A8Dds+6+jyrul3pPkOcCmyLrm8Myic8sd98aLm8DZoXL6qsJFn4FfCbwKOqX2IVf5T8F7AB+CqwD9rl7PqwSfe8H+iXcvh+YOaEB14cvA38OFMP1mahPqoEDPzGzVWZ2bVimc1i8FgI7gdvCKUm3mFkzVdwv9Z4gSxXz4B6Eug9hDMysBfgu8Efu3hndpn6Jh7sX3H0JMI/g269T442ovpnZO4Ad7r4q7lhkmAvcfSnB1/QfNbOLoht1DotFClgK3OjuZwLdDE6nAKqvX+o9Qd4CzI+szwvLJD7bS1+jhM87wnL11QQxszRBcvxtd78nLFa/VInwa8kHgdcTfO2YCjdF3/uBfgm3TwN2T2ykk975wLvMbAPB9LxLCOZYqk9i5u5bwucdwL0EHyh1DovXZmCzuz8art9NkDBXbb/Ue4L8OLAovOo4A1wJ3BdzTPXuPuCacPka4PuR8g+EV7aeB+yPfC0jYyScE/kNYI27fzGySf0SIzPrMLO2cHkK8CaC+eEPApeH1cr7pdRflwMPuH4Vaky5+3XuPs/dFxD83/GAu1+N+iRWZtZsZq2lZeDNwGp0DouVu28DNpnZKWHRpcDzVHG/1P0v6ZnZ2wjmkSWBW939+ngjqh9m9h3gjUA7sB34LPA94C7gOGAjcIW77wkTtxsI7nrRA3zQ3VfGEPakZmYXAA8DzzI4r/LTBPOQ1S8xMbPXEVzAkiQY2LjL3T9nZicQjF7OAJ4E3u/u/WbWCPwrwRzyPcCV7r4+nugnPzN7I/Cn7v4O9Um8wvf/3nA1Bdzu7teb2Ux0DouVmS0huKA1A6wHPkh4PqMK+6XuE2QRERERkah6n2IhIiIiIjKEEmQRERERkQglyCIiIiIiEUqQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiIS8f8AUtT1rHzW82cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADKGElEQVR4nOzdd5wcd33/8ddnr3eVO0mnYnVZltwRtgEbGwwYG4OBBGIIJRUScEISkvxskhAIJCH0kADGBBOKC6Y47gVj4W7Zkq1eT72crvd+u9/fHzN7t5JO0u3e7s7c6v18SI/dm93Z73e+3ymf+c53vmPOOURERERExBMJOgMiIiIiImGiAFlEREREJIECZBERERGRBAqQRUREREQSKEAWEREREUmgAFlEREREJIECZBERERGRBAqQRUTGwcwuN7PnzazDzFrN7Dkze62Z/YGZPZvGdN5kZqv9dPal63dFRGT8FCCLiJyGmVUCDwL/BUwD5gCfBwYykFwPcDvwdxn4bRERGQcFyCIip7cMwDl3l3Mu6pzrc849DgwBtwKvM7NuM2sHMLMiM/uqmR0wswYzu9XMSvzPrjKzQ2b2GTNrNrN9Zvb78YSccy85534C7Dldpsys2sweNLN2v1X7GTOL+J+dY2a/9T/bYmbvSpjvf83sO2b2iJ/v58xslpl908zazGy7mV2U8P2bzWy3mXWZ2VYze89J8nOpmR01s7yEae8xs41JlbaISMAUIIuInN5OIGpmPzKza81sKoBzbhvwZ8ALzrly59wU//tfwguqLwSW4LU4fzbh92YB1f70jwK3mdnZKeTr08AhoAaYCXwGcGZWADwAPA7MAP4CuOO4NN4P/KOfjwHgBeAV/+9fAF9P+O5u4AqgCq/l/KdmVnt8Zpxza/BawN+cMPmDwJ0pLJuISGAUIIuInIZzrhO4HHDA94EmM7vfzGYe/10zM+BjwF8751qdc13AvwE3HvfVf3LODTjnngIewgtYkzUE1ALznXNDzrlnnHMOuAwoB77knBt0zj2J10XkAwnz3uucW+ec6wfuBfqdcz92zkWBnwEjLcjOuZ87544452LOuZ8Bu4BLTpKnu+LpmFkFcJ0/TURk0lCALCIyDs65bc65P3DOzQXOBWYD3xzjqzVAKbDO797QDjzqT49rc871JPy93/+9ZH0FqAMeN7M9ZnazP302cNA5FzsujTkJfzckvO8b4+/y+B9m9hEzW5+wPOfitTSP5U7gvWZWBLwXeMU5tz/5RRMRCY4CZBGRJDnntgP/ixcouuM+bsYLMFc656b4/6ucc+UJ35lqZmUJf58FHEkhH13OuU875xYB7wL+xsyu9n9rXrw/ckIah5NNw8zm47Wa3wRM97uRbAbsJHnaiheMX4u6V4jIJKUAWUTkNMxsuZl92szm+n/Pw+tG8CJey+tcMysE8Fttvw98w8xm+N+fY2bXHPeznzezQjO7Arge+Ln/3YiZFQMF3p9WHP/tMfJ1vZkt8bt1dABRIAasAXqBvzezAjO7CngncHcKi1+GdxLQ5Kf5h3gnBqdyJ/Ap4I3x5RIRmUwUIIuInF4XcCmwxsx68ALjzXg3yT0JbAGOmlmz//3/h9f14UUz6wSeABJvkDsKtOG19N4B/JnfKg1eUNkHPIzX6tuHd7MdAP6IFPFRL5b6v92Nd5Pdd5xzq51zg3gB8bV4LdrfAT6SkMa4+S3CX/N/vwE4D3guIT9XmFn3cbPdBVwJPOmca0ZEZJIx734OERHJBr8196d+X2YREQkhtSCLiIiIiCRQgCwiIiIikkBdLEREREREEqgFWUREREQkQX7QGUhUXV3tFixYEHQ2REREROQMsG7dumbnXM3x00MVIC9YsIC1a9cGnQ0REREROQOY2ZhP+lQXCxERERGRBAqQRTLgQ/+zhpvufCXobIiIiEgKFCCLZMCzdc08uLE+5fmPtPfRPTCcxhxN3Et7WxkYjgadjVDqGRhGIwKNcs5xuL0v6GyExgMbjvCzlw8EnQ3xxWKOrzy2ncau/kDzcd/6w9y5RutFWClAFgmh13/pSX7nO88HnY0Ruxq6eP/3XuALD24NOisARGOO//rNrlCcRLR0D7Dynx/j26vrgs4Kh9v7eHJ7Q9DZ4PvP7OENX3qSXQ1dgebjF+sOseDmhxgcjgWaj7+461X+3y83BZoHgDvW7Ke1ZzDQPHzxwa2c97nHAs3Dy/ta+fbq3fztzzcGmo9P3b2ez9wb/HohY1OALBJSOwIOLhK19Q4BsL0+HHl6eFM9X/v1Tr70yLags0JD5wDAhK4YpMvbv/k0f/S/wd/o/MLuFgAOtPYGmo/4+tHeF2xQGAY7jnbxD/du5lN3vxpoPv7n2b109Qd7Yhv1r/YMDOmKmJycAmQROS0z7zUsnQgG/BbB3oHgD3AjZROCwgk68Igzv1CCL5OQrbgBireiB92CHAbmrxdaLeRUFCCLyGlZ0Bk4TpjyE4kHgzrcjghL/YTtxC5IFpZKCQGVhYyHAmQRGbew3YgWhtyEqQU5bIIukojq5gQqiwQqCzkFBcgiclpha4kbDUrDkqPwlE0YhKWFbvRSumonTiURniscEm4KkEVkHMJ1SAlLAAajJROmYD0swlImIclGoMK0zYSFTpzkVBQgi8i4hS3QCEN2wta6Hg7huAlKdXOisJy0BCk8N5FKmClAFpHTClugYaFq0Q5TXiSRWvdHhWubCZZa02U8FCCLyGmF9XgShrhn5GAbgrzEKSD0qKVQTkWrhZyKAmQRGb+QRBphatGOx8exkJQNBF9NGtkjfFQno3RlQcZDAbKInNZIS1zA+QijMJZN0HkJyxUHBYWj1K1glMpCxkMBsoicVliPJ2FoARptjQo0G8cIQ7l4gs3H6JWGsJRH8FQWo1QScioZD5DN7O1mtsPM6szs5kynJyKZE5a4K0yttmFsjQq6XMJSJroxbdTImNBBrxyhoLKQ08togGxmecC3gWuBFcAHzGxFJtMUkfQLW0tcmMKeMD6MIiz9oYPOhrpYjArLSUsYqCxkPDLdgnwJUOec2+OcGwTuBm7IcJoikmahbYkLQeATP9jGYsHmI1HQAaGFZRxk/zUsJwxhoJIYpbKQU8l0gDwHOJjw9yF/mohMImELAtUCFG5habkNU1ecoGmTGTVSFkGvoBJqgd+kZ2YfM7O1Zra2qakp6OyIyBjCNKwajLZQhqFlMIzBetDlEpYuOWG8gTIoIye5KoyREyeRU8l0gHwYmJfw91x/2gjn3G3OuVXOuVU1NTUZzo6IpGL0Bp9wHFwjIWmhhNGDbZgCj6CzEhkpk2DzkdBUGGQuQsHCdpYbAioKOZVMB8gvA0vNbKGZFQI3AvdnOE0RSbOIv6cIOvCKC1NrWBhbKYMul9En2AWbj4iepDcibP2xg1w3wrjNSvjkZ/LHnXPDZnYT8BiQB9zunNuSyTRFJP0iIWslDVPf0jAF63FBt9yGpYU/no9o0BkJgUiIthnw1o2gejqEpQuQhFtGA2QA59zDwMOZTkdEMidsrU+RkLRQennwXoMOSsELCGMu+HIJywnVSD5CcnNpkMJ2IhdzjkhAtw5qvZDxCPwmPREJvzC12EJiwB5oNo4RdFAK4en7G5b6CWP/8KCE7UEhQa4bYTmBk3BTgCwipxWWYbviRvtEB5+heA7CcLANy4E/LH2QNVbBiUKwmgLBrqNh259JOClAFpFxCzrwihsd5i3gjCQIRVZGxqsOOkD2XkOyugij/W3Dsg0HmY2wnEhKuClAFpFxC8vxJEz9KeOtpEEHpRCerg2RkNwEpeFuTxSGbQaCzUckRPsPCS8FyCIybtGgIy9fGIfvClFWAj/wh6UvdFyY1pOghOlmUgh+HQWtF3JqCpBF5LTiB5Kg+5TGhekS6WjZBJsPCE/LeljyERd0S3YYxEsgJFUSikA9BFmQEFOALCLjFrYDSpguoYfl5AGCD4IsJC388fUjLFc+ghSm9RPCkR+tF3IqCpBFZNzC0iIYRmE61gZdT6MPCgl6FItwdfUIUtjKIMj8hGnkGQkvBcgiMm5hO8iGwWjfzuALJywBYWjyEZJAPQzCVgZh2F5CkAUJMQXIInJa8YOrDignF6aiCTr4iPf5DUsXmKAD9TAIWxkEvY5C+E4aJFwUIIvIacUPrmEJeMJ001U8L2E42FpIxkGOC3p1Cdsj0oMUtjIIMjthG9FDwkkBsoiclg6upxeGPIVlHOSwCdv6G4SwlUGQ+QlbWUg4KUAWkdMK293eYTrAhakPclyY8hIGKo7EMghHYQS5Swnb/kzCSQGyiJxW/OAa9CXzuDCNPRwXpmOuAmSf3+ckLAFRkN1wwrbNBNkNaGR/FpIdWhi6Z8mJFCCLyGmFLeAKU37Ck5PwjD8cFmHrgxxknB6WMogLMjvxsghLkYTk/E2OowBZRE4rGpYjiS9k2QmdoIOhsNTP6DBvweYjTv1uRwWZn7Dtz8JWN+JRgCwipxW/BBiWS5JhOqCE8fKoWqSOFZb1JdgAObCkxxRkkKr9mYyHAmSRkFHAdXphyk+IshK6LgVBC9uoHrFYcGmHbb8SZH6iAdbDWIJcL+TkFCCLhExYDuaJwnKTU1yYHlwStsADwjMOcliE5YRBLcij1B97VNjyIx4FyCIhE8adZTxPFpJxLMJ0sB8OU2biDwoJUZbCICwnMWHogxyOkghHWYRF2PIjHgXIIiETttZaCN8lwDAdUIaj4clLWLpYjNwcF2guRkf1CMsldbWajgpynxK+/VnQOZCxKEAWyaBUWq5C1SLpC93BNUT5CeUJTUhGsQi6msJywhAXaNeXcBTBCLUgj1KXqHBSgCySQans96IhapGMG+liEY4eFoEHXoniJzRhKRsIT/kEHYjYSJeTcBSI+iCPCrJKNMybjMeEAmQz+5yZHTaz9f7/6xI+u8XM6sxsh5ldM/Gsikw+qbQuDoft+h/h24GHKT/xvERCECHHuxSEpXzCEpSFpDjUxSJBkPkZGeYtsBwcKyzbiRwrPw2/8Q3n3FcTJ5jZCuBGYCUwG3jCzJY556JpSE9k0kjlIBDKS/Yhi9nDVETxPsiRsBxtCU/5BH1zXPym0rAEh4EObTYy8ks4yiLQ1vSQ7c/CUidyrEx1sbgBuNs5N+Cc2wvUAZdkKC2R0EplvxfmPshhiQHDEvDA6AmNhaAFOS4sfRrDUk8hKY5AL+3HQraeBlknIycLwWXhGGHr8iGedATIN5nZRjO73cym+tPmAAcTvnPIn3YCM/uYma01s7VNTU1pyI5IsBJbA1IJEMI0KkJcWAKduPjB3oXgEBfvEhOOsMMTlvoKOjCNrx8qj9ET77Bc6Qiy1XT0qk84CiPo7UTGdtoA2cyeMLPNY/y/AfgusBi4EKgHvpZsBpxztznnVjnnVtXU1CQ7u0joJO73U2kZ6B4YTmNu0qOtdwiAvLxwHFBaegYBKMrPCzgn0O6XTX7AkYdzjo4+Ly9Bd9OJl0mQ+XDO0eqvJ0G2qPcOjm7PQeYjXhZ5Aa6nwwnj7QW5brT0DABQmB/cOAU9A+FYL+TkTtsH2Tn3lvH8kJl9H3jQ//MwMC/h47n+NJGc15NwQOzoHaKyuOC08wxHY2w63MHjWxu495XRTSUWc0QCOKANRWNsq+9k3f421uxp5TfbGwAoLzr9smRC/1CUTYc7WH+gned3N/PUTu9qUxANQIPDCWWzt4UntzcCMLOqOKv5cM7R1D3AhoMdvLS3hdU7Rq/AZfskq6V7gG31XazZ28LTu5rZcLAdgM7+oazlwTlHQ+cA2+o7eXFPC0/tbGJ3Uw+Q3fIYisbY19zD1vpOnqtr5snto/XSO5i923A6+obYVt/J5sMdPLWziRd2twAwvawoa3mIxhz7WnrYVt/Jmj2tI9sKQGd/9uqkrWeQbfWdbDrcwW93NLFmb7wsCrOWh8HhGLsau9hypJO1+1p5YttoWfQN6fasMJrQTXpmVuucq/f/fA+w2X9/P3CnmX0d7ya9pcBLE0lLZLK47ek9I++PtPcxb1rpCd8ZisbYfLiDF/e08uKeFtbua6VnMEpexHjDkmpeu3AaD2w4QkvPIDUVmTugdfQOsbu5m92N3exu6mF3Uze7m7o50NI7ckm2tqqYD102n+31Xexv6clYXsBr5drd1M2eJi8/8dcDrb0jLU5nTSvl41cu5vm6Zpq6BjKWl46+Ia88Grupa+pmd6OXn/0JeZkzpYQPXTaf3U09bD3SkZF8xGKOw+191DV2U9fYza7GrpH38SCjMD/ChfOm8IUbVvJP923JSLk452jpGWRXQzd1jV3sbOhmZ0MXuxq7R1onIwbnzZ3CP77jHL772900dw2mPR+xmKOhq5/djT1++qN56fLLoyDPuGjeVP79vefxT/+3mcYMlEf/UJSDrb3sa+mlrrGbHUc72X60iz1NPQz6LaWVxfm8YUk159RW8vVf76Sxq5+zZ1WkLQ/OOZq7B9nX0sPeph72tvSwq6GLbfVdHG7vG/ne4poy/viKhWyv99addBsY9spib3Mv+5p72NXYxfajXew42sXAsFcWJQV5vGHJdP70ioV87oGtNHent06cczR1DbC3uYd9LT3sae5hx9EuttV30tA5mtbZMyv4xFVLWH+w/ZgySpfugWH2NfewN+H/rsYudh7tHlkvKoryefM5M1g6o5yvPr6Txs4Bls1M33oh6THRUSy+bGYX4vV13wd8HMA5t8XM7gG2AsPAJzWChZwJnt/dzH+vruPq5TN4elcTn71vCx974yKWzayguWeArUc6WbO3lbX7Wkdak5bOKOe9F8/lskXTef3i6UwtK2TNnhYe2HCE3+5o5H2r5p0m1VOLB1i7mxKCYD8gTjxIFeZFWFBdytkzK7ju3FqW11Zw8VlTmT2lBIDvPbWbf3+khW31nZxTW5lyfoaiMQ609rInIS97mr338Uvz4AV9C6eXcU5tBdefX8v5c6dw4bwpIycM//bwNn743F4OtvaOeRIyHv1DUQ619bKvuZf9rb2nL5tZFbzj/FrOnlXBqvnTmOW3Gv/PM3t4emcTrxxo4+Kzpp4suZOKxRyNXQPsa+lhf0sP+1p6vdfmXvY0d9M/NHppurq8kMU15bzrwtksqSlnxewqzp9bRXFBHs45/nt1HU9ub+QP3rAg6S4o8Vbp/S1eoLMvIS/7m3vpSmiJrSjKZ+nMct62YiZLZpRz9qwKLpw3hQr/islTO5t4cU8LrT2DTEuypS4Wcxzt7PfSb/bLIv6+teeY8phaWsDSmRXccOFsls2sYOkMLx8lhd6y//iF/Ty9s4lPvmkJVSXJXQGJB377mnu9ILR5NB9HOvqO6U41u6qYZbMquPLsGs6eWcHZsyo4e2YF+XkRGrv6+cYTO3loYz2vWzSd/LzxX9qPd52Jp723udd77/9PrJP8iLGguoyL50/lQ5fN55zaClbUVjKj0ltPv726jqd2NrFmTwuXLpqeVFkMDse8bcXPw76R/PRwpL3vmH6008sKWV5bwYcvm8/y2kqWz6pg6cxyivLzGIrG+NrjO3lk81FuuHA2pYXjD0PiJ2n7R8qhm31+eexv6aEnoYW+IM9YXFPO6xdXc05tBefUVrJ8VuXI/uMbv97J87ubeWlvK5csnJZUWfQMDHOorc/Px7H/jz8ZmzOlhEU1Zfzh5QtYObuKlbMrWTC9jLyI0djZz9d+vZP/W3+YSxZOC7TLh5zIwjS8yKpVq9zatWuDzoZIShq7+rnuP5+lqiSfB/7icp7e2cS/PbydA629x3xv6YxyLls0ncsWTeeShdPGbCGOxRzv/s5z7Gnq4dYPvYbLl1afMu3haIz6jn4/wPIDmpZeL9Bp6RlpxQGYUlrAkppyFteUs3hGmfdaU87cqSWnPHA3dQ1w7X8+DRj//cGLuOwUB9iu/iEOtPZyoMULPEff93Ckvf+Y/oc1FUUsqi5j8YzykdfF1eXMmVpyyv6S+1t6uP6/nqUoP49/e8+5vOWcmSd0RxmOxmjqHqC+o5/69n72t3qB3v7WHg609FLf2X9MkFNVUsCSGeUsrvHKxXt/+rJp6R7gnf/1LK29g3z6rWfze5fMO6ZrTSzmHdjrO/o40t7vv/aN1NHxQV9+xDhrWilnTS8dyceSGeUsqSln6mmCzZ++uJ9//L/NLJ9Vwd9dczavX1w9Eiz2D0Xp6Bvyy6OPw+1efo6093GgtfeEICMvYsybWsL86WUsrC5jvp+fZTMrmFlZdMoREZ6va+YPfvgylSX5fOrqpbxlxUxqyr15uvqHaO8dorFrgCN+PuJlc6jNK5PEdbYwP8L8aaV+PrzXRdVlLJ1ZQXV54Snz8fCmev7irleZXlbITW9ewhuX1lDtb3MdfUO09QzS3D3gl0Ufh9tGy6W+49jAr6qkgAXVZSycXjpSJguqvdfTBd//fN9mfvTCflbOruTjVy7monlTKC/KZzjmaO8dpKVnkJbuQQ6393KozcvHIT8viV1EzGDu1BIW+GUQT39hdRlzppx6PW3s6ue933mew+19/O7Fc3nPRXNYUF1Gfp7RNxilpWeQ1u5Bjnb2czihLA639dHQdey2UlGc7y3/9HgeSllYXc7C6WVUlZ66LP7nmT188aFtzJlSwp9esZDXLpzGlNJCnHO09w7R1hsvi9EyONzWy5H2/mO6I8TXzwV+PuL1sai6jNlTTr3/ONrRz+981yuL91w0h3ddOJsF08vIjxgDw1Gau708NHX1c6TDWy8PtvZxqK135J6MuOllhSN1sLCmjIXTvdcF08soLjj1Seq/PLCV25/by6KaMv7oDQu5cN4UFlSXUV6UjlF4ZTzMbJ1zbtUJ0xUgi0ycc44P/+Al1u5v5f6bLh+5XBaNObbVd3KkvY+qkgKWz6o87cEj7mhHPx+9/SV2NHRx1dk1XOgfUAeGY7T3DnK0c4CGjn6OdnoBTuLwcEX5Eeb7B/EFflCz2A/2km3NS7SroYs//tFaDrT2sqK2kiUzysnPMwaGYrT2DNLQ1U9DR/8xQRZ4rXxnTS9j/rRSzppWyoLqMhbXlLGopjzpVr1EOxu6+MQdr1DX2M20skLm+UF172CUtt5BmroGTrhDvLq8kPnxvEwvZcH0Ms6aXsr8aaVMKzt1sHUqjV39/P0vNvLbHU2YwYyKIgryIvQMDNPZP3zCTUlF+RHOmjZaR/OrvdcF08uorSpOqpXxeE9ub+Af7t1MfUc/Zt7l7WjMHRN0xpUW5jF7SslI0BUPhBdML2PO1BIKJpCP7Uc7+cyvNvHKgfbTfndqaQGzp5QwZ8powBMvl9rK4gn1xd90qIN//L9NbDh06m4w+RFjVlWxVx5TSpg7rXQkIF84vey0Jyen4pzj4U1H+beHt5320n5FcT5zp5Yyx6+XeJksrC5l3rTSCd2c2tU/xDef2MVPX9w/5voQFy8LLw+lzJlawrypXmvogullE9pWAF7a28oXH9rKxtPUybSyQub468WckbLw1s9500ontH52DwzzX0/u4sfP7z9lP+Ci/Ahzp46WQ/z9vKklLKouH/c+/WRWb2/k3x/Zxs4Gr/vLzMoiXrzl6tAMyZfrFCCLZNB96w/zqbvX84V3n8uHL5uftt/tGRjme0/t5v/WHzmmJbowP8KsymJmVRYzs6rYb+WLB1tlzKgoytjNfX2DUe5Ys58ntzdyqK2PaMxRVBBhamkhMyuLmFlZzMzKYuZNLWX+dC8IHc+NiqkaisZ4eFM9z9U1c7RzgGgsRllhPlUlBdRWFTOrqoRZVUXMqizhrOmlGW+ZefVAG0/tbOJoRz8DwzHKi/KpKM5nRkURtf6BvraqeMIBxukMDsd4ZlcTmw930tU/RCRiVJUUUFlSwKzKYmZP8YKfqpKCjObDOceWI528eqCNtt4hojFHVUkBVSUF1FQUMXtKCbOnFCd1qT3VfGw/2sWmQx209w3inNciPLWskOllhcyZWsKMiuKMj/IQjTnWH2yjrrGbvsEokYgxpdTLw7SyQmb7dZJpnf1DvHqgnSPt3jZcXJDH9LJCppYVMqPC246zMeLF7qZuttV30jMwjGFUlRYwrayQqaWFWVkvwBtpZP3Bdurb+wEoyI9QXVbI9PIippd7dZPpYNU5x+6mbj53/1aerWtm3T++henl2buh8kymAPkk+gaj/PXP1vPmc2bw/gn29ZQzU/9QlCu+vJrZVcX86hNvyNhBZXA4Rt9QlOKCCIV5EbUuiIjkmOd3N/PB76/h1g+9hrefOyvo7JwRThYgn/E9wosLIuxo6OLHL+w7ZoxGkfG6+6UDNHUN8A/vWJHRFpfC/AhVJQUU5ecpOBYRyUGvXTCNqaUF3L9BI+MG7YwPkM2Mv37rMjYf7uQrj+8IOjsyyQxFY3zv6T1csmBa0ndCi4iIJCrIi/D+187j0c1HOdDSe/oZJGPO+AAZ4J3n1/Khy87ie0/t4dandgf6CEyZXJ7c3kh9Rz8fe+OioLMiIiI54A9fv5D8SISv/VqNdkFSgIzXivy5d67k+vNr+dIj2/nMvZuPeTyoyMn8fO0haiqKuOpsPSZdREQmblZVMX925SLuW39k5Kmhkn0KkH35eRG+deNF/NmVi7nrpQNc+5/P8NDGej0jXU6qvXeQ1Tsaee9FcyY0JJeIiEiiT7xpCctmlvOpu1/N+BNMZWw6qieIRIybr13OXX96GYV5ET555yu89RtP8b2ndnMkA4+klMntqZ1NRGNOdxqLiEhaFRfkcduHV+Ec3Hjbi+xq6Ao6S2ecM36Yt5OJxhwPbjzCj1/Yz7r9bYD3PPvLFk1nxexKzqmtnPCDBWRyu+VXm3ho4xFe/ezbsjJeqIiInFm21Xfy4R+soWcgyi3XLecDl5w1oYejyIk0DvIE7Gnq5sntjTyzq5lX9rfRlfDYz8K8CDOriphWWkhpYT5lRXmUFeVTkBchYmAYkQiAETFw4D+u0+Gc997hiCW89//hnMOB/5n3Hv87Y8078ptjzAuj34/PGxvrN4+bl2ysHxk+wcjUr+9t7mHB9FLuu+nyDKUgIiJnuqMd/fztzzfwbF0z86eX8sFLzuL6C2YzZ0pJxtMejsboH47RNxilf8j73zcUpW/Qe+0fih0zLRpzRJ0jGnPE/Pcxx+j7mBv5jnOMvK8sLuDma5dnfHnGogA5TZxzHGrrY/vRLg619XK0s5+jHf209w7ROzhMz0CUnsFhhoZjfpDp/GDUm9eLBQ0zL3Azg4iZ/94L5cz8/35Qbf7njMxjx8zLcdMS5yVxesL3Iv6E0c/smHnNjv3NzJZpBn87cz+Nc44bLpzD775mbgZTERGRM51zjt9sa+Tbv63jVf/R7XOmlHDunErmTS1lVpX31MGSwgh5kQhDwzGGYzEGo46BoXhw6z1sqm8oSv9glP7h0UC3byh2wrT+oShD0fQcRSMGeREjYkZexMgzL87Ii3h/11aV8MBfBNPYpABZREREZJLb29zD6u2NrN3fys6Gbg619dI/dPoHnUUMSgvzKS6IUFyQR0lBHiWFeRTn51FcmEdJQYSSgjyK/f8lhXn+36PTR6flHfsbBRGK8/PIz7MxA+Ewd0U9WYCc+Yeci4iIiEhaLKwuY+HlC/mjyxcCXutyZ//wSMtvNBajIC9CQV6E/DyjKM8LYgvyLNSBatgoQBYRERGZpMyMqpICqkoKgs5KTtGtkCIiIiIiCULVB9nMmoD9ASVfDTQHlLaMTXUSTqqX8FGdhJPqJZxUL+ETZJ3Md86d8DjcUAXIQTKztWN10pbgqE7CSfUSPqqTcFK9hJPqJXzCWCfqYiEiIiIikkABsoiIiIhIAgXIo24LOgNyAtVJOKlewkd1Ek6ql3BSvYRP6OpEfZBFRERERBKoBVlEREREJIECZBERERGRBGd8gGxmbzezHWZWZ2Y3B52fM42Z7TOzTWa23szW+tOmmdmvzWyX/zrVn25m9i2/rjaa2cXB5j43mNntZtZoZpsTpiVdB2b2Uf/7u8zso0EsSy45Sb18zswO+9vLejO7LuGzW/x62WFm1yRM1z4uTcxsnpmtNrOtZrbFzD7lT9f2EqBT1Iu2l4CYWbGZvWRmG/w6+bw/faGZrfHL92dmVuhPL/L/rvM/X5DwW2PWVcY5587Y/0AesBtYBBQCG4AVQefrTPoP7AOqj5v2ZeBm//3NwH/4768DHgEMuAxYE3T+c+E/8EbgYmBzqnUATAP2+K9T/fdTg162yfz/JPXyOeBvx/juCn//VQQs9PdredrHpb1OaoGL/fcVwE6/7LW9hLNetL0EVycGlPvvC4A1/jZwD3CjP/1W4M/9958AbvXf3wj87FR1lY1lONNbkC8B6pxze5xzg8DdwA0B50m8OviR//5HwLsTpv/YeV4EpphZbQD5yynOuaeB1uMmJ1sH1wC/ds61OufagF8Db8945nPYSerlZG4A7nbODTjn9gJ1ePs37ePSyDlX75x7xX/fBWwD5qDtJVCnqJeT0faSYf463+3/WeD/d8CbgV/404/fVuLb0C+Aq83MOHldZdyZHiDPAQ4m/H2IU29Ukn4OeNzM1pnZx/xpM51z9f77o8BM/73qK3uSrQPVTfbc5F+uvz1+KR/VS9b5l4AvwmsZ0/YSEsfVC2h7CYyZ5ZnZeqAR7yRwN9DunBv2v5JYviNl73/eAUwnwDo50wNkCd7lzrmLgWuBT5rZGxM/dN41Fo1FGCDVQah8F1gMXAjUA18LNDdnKDMrB34J/JVzrjPxM20vwRmjXrS9BMg5F3XOXQjMxWv1XR5sjpJzpgfIh4F5CX/P9adJljjnDvuvjcC9eBtRQ7zrhP/a6H9d9ZU9ydaB6iYLnHMN/kEnBnyf0UuNqpcsMbMCvCDsDufcr/zJ2l4CNla9aHsJB+dcO7AaeB1eN6N8/6PE8h0pe//zKqCFAOvkTA+QXwaW+ndVFuJ1DL8/4DydMcyszMwq4u+BtwGb8eogflf3R4H7/Pf3Ax/x7wy/DOhIuKwp6ZVsHTwGvM3MpvqXMd/mT5M0Oq7P/Xvwthfw6uVG/07whcBS4CW0j0srv0/kD4BtzrmvJ3yk7SVAJ6sXbS/BMbMaM5vivy8B3orXN3w18Lv+147fVuLb0O8CT/pXY05WVxmXf/qv5C7n3LCZ3YS3Y8oDbnfObQk4W2eSmcC93r6NfOBO59yjZvYycI+Z/TGwH3i///2H8e4KrwN6gT/MfpZzj5ndBVwFVJvZIeCfgS+RRB0451rN7At4BxiAf3HOjfcGMxnDSerlKjO7EO8S/j7g4wDOuS1mdg+wFRgGPumci/q/o31c+rwB+DCwye9bCfAZtL0E7WT18gFtL4GpBX5kZnl4jbH3OOceNLOtwN1m9kXgVbwTG/zXn5hZHd7NyTfCqesq0/SoaRERERGRBGd6FwsRERERkWMoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFRERERBIoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFRERERBIoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFRMbBzC43s+fNrMPMWs3sOTN7rZn9gZk9m8Z0/s7MNptZl5ntNbO/S9dvi4jI+OQHnQERkbAzs0rgQeDPgXuAQuAKYCATyQEfATYCi4HHzeygc+7uDKQlIiJjUAuyiMjpLQNwzt3lnIs65/qcc48DQ8CtwOvMrNvM2gHMrMjMvmpmB8yswcxuNbMS/7OrzOyQmX3GzJrNbJ+Z/X48Iefcl51zrzjnhp1zO4D7gDeMlSkzqzazB82s3W/VfsbMIv5n55jZb/3PtpjZuxLm+18z+46ZPeLn+zkzm2Vm3zSzNjPbbmYXJXz/ZjPb7bdqbzWz95wkP5ea2VEzy0uY9h4z25hqwYuIBEEBsojI6e0Eomb2IzO71symAjjntgF/BrzgnCt3zk3xv/8lvKD6QmAJMAf4bMLvzQKq/ekfBW4zs7OPT9TMDK+lestJ8vVp4BBQA8wEPgM4MysAHgAeB2YAfwHccVwa7wf+0c/HAPAC8Ir/9y+Aryd8d7efjyrg88BPzaz2+Mw459YAPcCbEyZ/ELjzJPkXEQklBcgiIqfhnOsELgcc8H2gyczuN7OZx3/XD2o/Bvy1c67VOdcF/Btw43Ff/Sfn3IBz7ingIbyA9Xifw9tP//AkWRsCaoH5zrkh59wzzjkHXAaUA19yzg06557E6yLygYR573XOrXPO9QP3Av3OuR8756LAz4CRFmTn3M+dc0ecczHn3M+AXcAlJ8nTXfF0zKwCuM6fJiIyaShAFhEZB+fcNufcHzjn5gLnArOBb47x1RqgFFjnd29oBx71p8e1Oed6Ev7e7//eCDO7Ca8v8juccyfr6/wVoA6vn/IeM7vZnz4bOOicix2XxpyEvxsS3veN8Xd5Ql4+YmbrE5bnXLyW5rHcCbzXzIqA9wKvOOf2n+S7IiKhpABZRCRJzrntwP/iBYruuI+b8QLMlc65Kf7/KudcecJ3pppZWcLfZwFH4n+Y2R8BNwNXO+cOnSIfXc65TzvnFgHvAv7GzK72f2tevD9yQhqHk11WM5uP12p+EzDd70ayGe9mwrHytBUvGL8Wda8QkUlKAbKIyGmY2XIz+7SZzfX/nofXjeBFvJbXuWZWCOC32n4f+IaZzfC/P8fMrjnuZz9vZoVmdgVwPfBz/7u/j9cl463OuT2nydf1ZrbE79bRAUSBGLAG6AX+3swKzOwq4J1AKiNhlOGdBDT5af4h3onBqdwJfAp4Y3y5REQmEwXIIiKn1wVcCqwxsx68wHgz3k1yT+LdRHfUzJr97/8/vK4PL5pZJ/AEkHiD3FGgDa+l9w7gz/xWaYAvAtOBl/0RJrrN7Nb4jP6IFPFRL5b6v92Nd5Pdd5xzq51zg3gB8bV4LdrfAT6SkMa4+S3CX/N/vwE4D3guIT9XmFn3cbPdBVwJPOmca0ZEZJIx734OERHJBr8196d+X2YREQkhtSCLiIiIiCRQgCwiIiIikkBdLEREREREEqgFWUREREQkgQJkEREREZEE+UFnIFF1dbVbsGBB0NkQERERkTPAunXrmp1zNcdPD1WAvGDBAtauXRt0NkRERETkDGBm+8eari4WImn0lce28+wuPRdBRERkMlOALJJG3169mw/9YE3Q2RAREZEJUIAsEoAj7X3cueZAVtPcfLiDd/7Xs/QODmctzSPtfbznO8/R2jOYtTTfd+vz3PVSdsq2o2+Iq7/2W7Yf7cxKeusPtrP1SHbSWrOnhdU7GrOS1j/+3yZ+8sK+jKcTizlue3o3Xf1DGU8rm/a39BCLZX7I1oc21vPgxiMZT+dgay+ff2BLVpYpW3oGhukfigadDUmCAmSRAHzk9pf4zL2baMti4PjFh7ay6XAH6w+0Zy3N257ew6sH2rn31cNZS/PlfW3c8qtNWUnr2V3N7G7q4T+f2JWV9N797ee47lvPZCWt37vtRf7why9nJa2fvniAf7pvS8bTWb2jkX97eDtffHBbxtO69andvP/WFzKezu6mbq78ym/51pOZXwc/eecr3HTnqxlP56Y7X+GHz+1jS4ZPBp1zfOmR7Rxq681oOgAr//kxrv7aUxlPR9JHAbJIAOItqtEsPqjHMACy2SZjXpLk6gOJ4ssnk0P/UAyAziy0IH/pke28tK814+kc7egHYM2ezKeVLfGGY5fhvdW2+i5ufWo3n7zjlYymE3e4vS8r6Uh6KEAWCUA8rspm3BhEMGecGRFkjsb/OScXT2hycJESTqwzm07MT2Awqg1YTqQAWSQAQR6oFcylTy4GJ2eCXNwGMt3aGoRML1EunjBJ+ihAFglQNg9qgbQgZ6klKGi5GJzkopyMh3JwG8t2PeVqFzCZGAXIIoEI7lCd1aA8gDSzSS1Qk1MurY+53I0p04FrLpedTJwCZJEgZbMPcvwmvRzv9xwENUBNDrl8RSOnFsmyf0OxyPEUIIsEYORAHUCaQcjFgMRzhpwB5Izcq69cPAnN1iLlYtlJ+ihAFglAkPvl7AblZ0ZLUK4vX67JyfrKwYXK1ol17p7Ay0QoQBYJUBA75mzekJLrDTRqgZpccrG+cnCRslZPubg+SPooQBYJwGgXi2yOYhHgjYE53kKT68uXa3KxvnLpxsNR2Vmm3Cw7mSgFyCIBCOLu6dERJbKfaK4egEZrMTeXL9fkYoNhkCe+mZK1PsgB3Lgsk4cCZJEABTKiRAAjZ+S+M2U5c0XuRUS5GORleply8NxC0ijjAbKZvd3MdphZnZndnOn0RCaDIEaxiAuiNTcXD94y+YzcNJpD62OQ+5JMyfbNvblUdpI+GQ2QzSwP+DZwLbAC+ICZrchkmiKTQRANFyMNyFk8GkTOmBYaHWIng1xcHbVM4U9HJqdMtyBfAtQ55/Y45waBu4EbMpymyKSR1RElArieOPpgBgWQEh65uDbm4jaWvWHecq/sZOIyHSDPAQ4m/H3InzbCzD5mZmvNbG1TU1OGsyMSDkFe6j1T0syGXLxkn8ty8YQtF/vRZnuYt9xZGySdAr9Jzzl3m3NulXNuVU1NTdDZEcmKiL/lxXJ8TOKRu8QDSDsbAhkZRFKWywFRTi5TxvePOXh2IWmT6QD5MDAv4e+5/jSRM1okyBbkLKY12mKXxUSzKBdbJHNZbo6qknvLlK16yvX9k0xMpgPkl4GlZrbQzAqBG4H7M5ymSOjFA+SstiAHkWbWUgpGLrdI5rJcDIhycpky/PujDRU5WHgyYfmZ/HHn3LCZ3QQ8BuQBtzvntmQyTZHJIB44xgIYBzm7Yy97iUZz9ACkBw1MLrl4QpPLy5Tpk/kg9sMyeWQ0QAZwzj0MPJzpdEQmk9GbULK3Z44E0B0g51tocjA4yWWWg+tjJAf7CWSrC9royUXulJ2kT+A36YmciUa7O2QvzUggaXqvOXTsPsbo2NI5uoA5JpKllslEmV434suUS1dp4jcxZzxA9rfgWCyz6cjkpABZJABBBI4jrTLZbLWOZL/fczYFMba0pG7kJDGLAVGmV/0glinTsnWPRnxfmKv7J5kYBcgiAQjmJj3vNZrFJuTRvoRZSzKrgng6oaQuiEvqGe9Hm4PdfLJ9Q7G2XxmLAmSRAGUzQA5iaLlc74OsPoyTSxDdjDLd9SEXt7FsnXjGf18tyDIWBcgiAQgmWPVes9rFIoA+n9mkUSwmlyCCyWzdaJZL21i29xu5U3KSTgqQRQKQrZtQElkAfRVHboLJ0SNQDg4gkNMiAXT5yXSXptFW0Iwmk1XZaumP/3wutb5L+ihAFgnAaOAYRH/g3E4zm0YfNZ2by5drgnhYTrbSyqVtTH2QJQwUIIukSTKtEEHcWJMXQLeOvEhud0EYbYEKNBsyTkHcNJqttHJpHczWKD/xfXYunVxI+ihAFkmTVPaxud6aO/qkqtw8AMUXKzeXLndl85J6LGtdLHJnLcx2X/Fc6p4i6aMAWSRNUjlAZfrgmSiQB4Xk+DjIMUXIk5K6WIRb/B6NbPVBzqWyk/RRgCySJqnszLMZrAbR/zLbTwzM9s02OqxOLiOtrVm8UTXzQZ7fTSCHHhSS9Xs0tCHLGBQgi6RJMjvzILoeRALo9zzalzA3j0Dx5dJNepNLNmsrezea5c46mK3uYLnYPUXSRwGySJqEvQ/y6CNps9kHObcfxXwm3KSXS4EXI62tudPFIheHecv2zb05VHSSRgqQRdIklQNhEA8KCaK1JGsHumwv2hnQBTmXAq+47PZBzk46uXQVI9tX2NSCLGNRgCySJindpBdAf+DsPpyErKeZTfGgJLdaWY+Vi8FDVrtYZClCjuZQH+SsPSgk3kUq91ZxSQMFyCJpkso+NqsjSgRxk57/mkutW4nOhEEscilAjm9vuTSKRTBXhDKbZrZuKI7m0Lot6acAWSRNXAotOLkUfIzFstwFOdvlORIg53A15tKyxR/7nM3VMtOPmh5ZpiwuVMYf4EF26imXRv6Q9FOALJImqfVBzl70MXLQyeKRNH6TXrYWczjLHWbdca+5KJdO4mKx7G8DmV4lg6ifbKWZ6XqKL0e2T+RlclCALJImqT0oJAMZOYl49oI4FmTrEJ79FuTcb0LOpZv04pfUs7kNZPokON73OKut4plvQs6K0SsKipDlRAqQRdIktQeF5FD0MYZsXSqNy/Tl7OOpBXlyyfb6AZkPJnNxVJrR4ROz0wdZLcgyFgXIImmSys48m8drF8DBIN66FclSotnuU3gGNCCn1Lc+rIK4pJ7pdTKbYzqPpJnxsZ1dVtMRGYsCZJE0SeU4ld0+yNmX7Raa4azfdZP7T9LLrRZk7zWbl9SzNRJDVoP+LK0SmU4niO4pMnlMKEA2s8+Z2WEzW+//vy7hs1vMrM7MdpjZNRPPqki4pTYOcgYyEqI0o/4RKFsH72wP2xRUC3I2T6xyqRUviC4WGQ+QA+hHm+lyjP961spOfSxkDPlp+I1vOOe+mjjBzFYANwIrgdnAE2a2zDkXTUN6IqGU1K48gDGJR4O5LAYkI0nlaBeLeLpZjrtiDvKydEzPfCte9oP9XGptzcVxkEfHq85oMjl1dUTSL1NdLG4A7nbODTjn9gJ1wCUZSkskFFLpC5jVAJns9OtLFPUj1kjOtyBnN93snljlzsMacrMF2XvNpaB/JJ0MJ5S1R1nn0lAwZ5B0BMg3mdlGM7vdzKb60+YABxO+c8ifdgIz+5iZrTWztU1NTWnIjkgwktnXZusmlETxA2k2H0k7FM1yH+QsP293YNi7KJafhebcxEA1u0+Cy+zvDw5nr87iaWXrplHIfHCUrWXK5voXP7HOdDoDQ146eRk+gx/MpeeAn0FO28XCzJ4AZo3x0T8A3wW+gHel8QvA14A/SiYDzrnbgNsAVq1apdMsmbTGuzOva+xm46EOAIaGM7/KN3UN8NiWozy48QiQneCqo2+IX29t4M41BwAoyMvs/cADw1HW7Wvju0/tzmg6cZ39Q6ze3si3V9cBUF1elLG0hqMx1u1v486XDiRMcxSlo4PccWIxx6sH2/jFukMj04YydHAfisZ4rq6Zn764PyO/n6itZ5BHtxzle/76MbMyM/UVjTm2HOnglwnll6n4uKlrgNXbG0fW+TlTSjKSTv9QlFcOtHHHmtH1LxNBv3OOXY3dPLypnoc3HfXSyVDZNXT289SOJm71y27etMyUXd9glGd2NfHThLJzzqnP8yRx2l2sc+4t4/khM/s+8KD/52FgXsLHc/1pIjmrq3/4lJ9vONjOD5/by4Mb68mPGMMxR2vvYFrzMDAcZVdDN1vrO9l8uIMX97Sws6EbgHPnVLL5cCftaU5zOBpjb3MPW+s72XCwgzV7W9ha34lzsLimDICO3qG0peec43B7H1uPdLK1vpNXDrTz0t4W+odiVBZ7u7Sywry0HYhiMcfelh42HGxnw8F21h/qYOuRDoaibiQo6R9K3+0VDZ39bDzUwaZD7Ww83MGrB9rp6BuiMD/C1NIC2nqHaO8boiwNEXJL9wAbDrWz/mCHt3yH2mnvHaIgz6itKqa+o5+OvqFjduapiMW8Ott8uINXD7az/kA7Gw+30z8Uo7won4qifLoGhukdHKa0cGLL1TcYpa6xm631Hbyyv511B9qoa/S2gSUzyoH0PHExvh7uONrFtvpOXt7Xxiv72+gaGKYwL8KSGeXUNXbTM3jq/cJ4dA8Ms+NoF9uPdrL5cCcv7W1hd1MPAEv9ZUqH4WiMfS09bKv3lunVA+28cqCNgWGvnuZMKeFwex+d/cPMqEw9HeccDZ0DbDvaybb6TrYc7mTN3haau7190+VLqnm2rpnu0+xTx6Ozf4jt/vJsPdJ5wvqQrtbjweEYe5q72XG0a6Tcth7pZDjmmFZWyMzKIho6B+jsG6aqtCAtaUpmTWhPZGa1zrl6/8/3AJv99/cDd5rZ1/Fu0lsKvDSRtETC7v4No+eAfYNRSgrzaOke4PGtDfx87UFeOdBOeVE+H7psPp980xLe+OXVHO3oTykt5xxNXQPsauwe2fFvre+krrF75OBfWpjHa+ZP5T0XzeXyJdWcO6eSK7/yW+pTTBOgvXdw5OC5rb6TbUc72dnQPXKZtyg/wsVnTeWvrl7G5Uunc/FZU3nPd57naGdqaXYPDFPX2E1dYzfb6zvZ4i9nR58XcJvBkppybnztWbx+8XQuX1rNnWsO8MWHttHRN8SU0sJxpxWLOY509LGroZudDV3sauxmV0OXH+R4AXBZYR7nzqnijy9fxFtXzOCieVP5xB2vsKuxK+lla+n26m9XYze7G7vZ1djFzoZumroGAK/f9rKZFVyzciZXnT2DK5ZWs2ZPK3/y47U0dQ2Mu8XQOUdLzyC7Grw04q91jd0jAclIWitm8fol03nT8hnsaujmd777/Eh+xuP4MtyZkFavX4aFeRFWzqnkA5ecxesXV3PF0moe3FjP3/58Aw2dAyysHt9haXDYOzHb0dDFzqNd7GjoYldDF/tbe0e6O00pLfDWwYvm8MalNZw7p5KP/2Qde5t7xr1MzjmaugfY09TDDj+dHUe9NLsGRgO4pTPKuf6C2VyycCpXLZtB71CUN3zpyaS28d7BYfY09bCnuYe6hi62+UHxwda+ke9UFOezav5U3rdqHq9bNJ3z51bxl3evZ8PB9nGnMxyNcaitjz3N3exp6mFnQxfb6rvY2dDFgL8t50eMs2dV8KHL5vO6RdN53eLpbDjUzge/v4aGzv6Rk43Tll3XALubetjT3M3uxh621Xey/WgnbQknzXOmlHDF0hpet2g6b1hazZwpJbzmC7/maGffKX79WB19Q+xp6vbLr5tdDd1sO67sppUVct6cKt73mrm8YUk1K2dX8ve/2MhTO8ffvXMoGmN/Sw87G7xgOL7d7mvuGdn3lhTkccG8Kj72xkVcumg6r188nYc21vNXP1tPU3e/AuRJYqJNEF82swvxuljsAz4O4JzbYmb3AFuBYeCTGsFCclnfYJSfvXyQssI8egajrPznRykryh9pVV5UU8Znr1/B+1bNpaLY2zledNYUHtlcz8evXERt1djBTrzlra5xNNCI/+9MaF2ZWVnEitpK3rx8BitmV7KitpL508tOaB25cN4UntzeyObDHZw7p+qkaR7p8NLc3dTjv3azp2k0oAKoLi/knNpKPvq6+ZxTW8k5tZUsrimnMP/Y7hTnz63i7pcO8tsdjVx19owT0nPO0dw96C1XkxcsxpcxMbAuyo+wvLaS686rZcXsSlbOrmT5rIoTWhxXzPaatr72+E7+/u1nj5R33MBwlAMtvext7mFvs3egq2v0AuJ4EAdQU1HEspnlvG/VPFbUVnLhWVNYXHNii9N5c6t4dMtRfvDsXn7/0rMoLsgb+WwoGuNwWx/7W3u95Wrqps4PGhMDhLLCPJbMKOeKpdWcO7uKC+ZVsaK2ipLCvGPSWjmnEjP46mM7+Mx153BObcVIK/nAcJSDrb3sa+5lX0s8yDoxrYrifJbOKOfq5TNZOrOc8+ZUce6cqhNapJfM8Orym7/ZRVFBhEsWTCM/L4Jzjs7+Yfa39IyU4T7/9fgynFFRxLKZFbx/1TyWzaxgxexKzqmtoCj/2OU6d45XZ/98/xb+4s1LuHDeFAryIvQPRWnqGuBAay97mnvY29TD3uZu9jb3cLCtb+Smu7yIsbC6jJWzq3j3RXM4e2YFZ8+qYGF12QlXEVbOruLxrQ38+8Pb+J3XzGVJjRfoNfcM0NAx4JWdn048zcRAuLI4n+WzKr10ZlWwfFYFS2dWUFVy7HpWEY0xvayQW5/aTV7EuGpZDVPLCukbitLQ0c/h9j4/nZ6RQDXx5DVisKimnAvmTuHG157F8lneMs2ZUnLCMp07u5IHNhzhH+7dxHsvnsvSmeVEzGjpHuBIez8H23q9wLHJW6b9LT0j9wcATC/ztuWP+Nvy8lmVI/Wf6OyZFeRHjC8+tI0/vWIhly2aTllRPr2Dwxxp7+dIe5+3PE1jl11xQYSzZ1VyzcpZI/uMs2edWHbgbccPbKhnRkUxb10xk9lTShiOxmjoHOBwex8HW3u9oLvJq6/m7tETubyIMX9aKef7ZbfCT2tmZdEY60MlP193iL+5Zz3vvtCrUzNo6R6kobOffc097PP3F/taejiUsN6ZwfxppSz1T2SXzaxg2cwKls4oJ/+4bmXxdfzvfrGRj75uARfOm0JpUR4dvUMj6/i+ll72t/Qws7KYz71r5QllItllYXqSzKpVq9zatWuDzoZI0u5+6QA3/2oTP/vYZexqHG1NmD2lmNcv9loqjt8xv3qgjQ/9zxry8yK8f9VcFteUMxiNcaS9n0PxA1pzN/1Do31Aq8sLWTKj3PtfU86SGRUsr60Ydx/Yfc09vP97L9DWO8jbz63lXD+YbOryDjoHWr10+xK6DEwpLfDTKmdxTTnLZlVwTm0FMyqKx5VmQ2c/v/8/a6hr7OaCuVWsmF3lH4AGONTmHegSg/2ywjwW+8u3OL6sM8qZP630hIPOWJxz/NN9m/npiwcoK8zjgnlTKC3Mp7NviCMdfRxp7zumb2M8EF46o4KlM8tHDnDjbX3u7B/ik3e8wjO7mikpyGPxjDIMo613kPqO/mNGTqgqKWDpjHKWzvTqbsmMcpbOKKe2qnjc3UF++NxevvLYDnoHo0wvK6SypIDOviFaewePuVF0SqmX1pIZ3vIsm+kt34yKE4OEk/nVK4f44kPbaO0ZpCg/QkVxPp39w8fcWGcGs6tKWFBdmnIZAtz61G6+/WQdXQPD5EWMwrzIMesheC1zC6vLWFhTxsLpZSNpLaopOyHoPpmu/iFu+dUmHtl89JhAJ7Hs4su0qKaMRdVlLKwuY1GNl9ZYQdbJPL2zic8/sGWkO8RYKorzWVRTzuLqMhbVlLGwutx/LTvmZOtUegeH+ef7tnDfhiMnvemxIM+YP91bnkU1XhqLa8pYVF3O1LLx19N96w/z1cd3HNMye7w5U0bLLp7WoppyaiuLiYyzS8Pe5h4+e99mnq1rPukN0FNLC1ic8Pvx9M6aVnpCcH8y/UNR/vWhbfzylUPHnNwlKivMY0F1GQuqvfVuUU0Zy2ZWsLim/IST2FP56Yv7+c7qOo6c5KpCQZ5RUpBHZ/8wO7749nGv0zIxZrbOObfqhOkKkEUmxjnHdd96Fuccj3zqiqT6ve5u6ubfH97O6h2NIwdrr/9nCQury/wAZ/R/MgHHybT1DPKfv9nF/RuO0NrjtQgXF0SYM6WEuVNLWVxTzuIZZSNB8bSywgn35R0YjvLTFw/w4MYj7G/pJWIwpbSQeVO9NBdWl40sYzLB4qlsPNTO3S8fZFt9J32DUaaUFjCjotg7yFWXsmC6F4Sko0ydc6zZ28qjm4+yr6UHAypLCpg3tZSzpntpLagupaZ8/MHVqbT1DPLQpno2HeqgZ3CYypICasqLWJDm5QLv6shvtjew4WA73QPDVBYXML28kLOmeenMn1467kDudLoHhlm9vZHtRzsZGIpRVVLAjMoi5k0rZVF1eVLB6ekc7ejn6V1NHGrtBaC6oshfP7wyTNcyOedY7/df7x4YpjA/wqyqEmqrilkwvYzq8olvX3EdvUM8v7uZg21eN5Pp5UXUVhX723bJuE4wxyMWc6w/1D6ybZUU5jG7qoTaKcXMn1aWVNB4OvUdfazb30ZT1wD5eRFmVBQxu8pbnmQC+9PpGRhm3f42DrT24pxjWlkRMyqLmD89fdstjN7Iuf2o152lsjifmnJvHZ89pYRfrjvE3/9yI7/926tYUF2WljTl1BQgi2TIqwfaeM93nudf33Muv3/p/JR+Y2A4SnP3IAV5xvSyoowPOxTXPTCM4fVX1p3VIiLB2lbfybX/+Qxf+d3zed+qid4eK+NxsgA5s2MvTQL9Q1G+/Oh2frOtIeisyCR190sHKS3M44YLxxzqe1yK8vOYM6WEGRXFWQuOAcqL8ikryldwLCISAstnVTCjoohfb1VMErQzPkAuyo/wy1cO8cPn9mX9aVgy+fUMDPPAxiNcf34t5ZkYmFZERM4YZsYNF87mye2NtHSPfwQZSb8zPkA2M/70ikU8W9d8zEDoIuPx9M4megejvPui1FuPRURE4t6/ah7DMaeYJGBnfIAM8IdvWMhVZ9fwz/dv4dHNR4POjkwiv97WQFVJAZcsmBZ0VkREJAcsnVnBW1fM5PvP7EnrQ5YkOQqQ8cZM/O8PXsx5c6r4xB3r+MGzezPyKE3JLcPRGE9ub+TNy2ek7e5wERGRv3nrMnoGhvnXh7cGnZUzlo7qvvKifO7800t58/KZfOHBrXz49jVsq+8MOlsSYtuPdtHeO8RVZ9cEnRUREckh59RW8vErF3PP2kM8sOFI0Nk5IylATlBamM/3P/Ia/u0957HxYAfXfesZPvbjtTy5vYHh6NiDr8uZ66W9rQBcslDdK0REJL3+6i1Lee2CqXz6ng08uV2jWmSbbrs/jpnxwUvP4rrzZvE/z+zlrpcO8PjWBiqL83n94mouWzSNFbOrWF5bQWWxnqd+JttW30lNRdFJHxMtIiKSqqL8PL7/kVX8/v+s4U9+tJa/fssyPn7l4nE/JVAmRg8KOY3B4RirdzTy5LZGntnVdMwjIqeVFTKzspjaqmKmlhZSVpRHWVE+ZYV5FOZHiPhjy0bMMPNenXM4vMeaeq/Of+8SpiX87U4x/fhpQMx/c+xve9PjVX38vDEXf8xq/LePn55ZmR6CN1M//1xdM9UVRdx/0+UZSkFERM50PQPD/L9fbuTBjfUsqi7jj69YyDsvmJ3VRrqhaIyB4RjD0RiD0RjDUcdQNMaQ/zocdf50f1osRjTqiDpHLOa/Ou8pjNHY6PSYg6hzlBbk8TuvmZu15UmkJ+mlgXOOo539bK/vYtvRTg619dHQ0U99Rz8dfUP0DA7TMzDMUDQ7ZWrmBX9mhuEF4IxMA2M0MDdI+MxG5o0H72AJvzc6z2R/gEQm128H3Pjas/jUW5ZmLA0RERGA32xr4BtP7GTz4U7yI8Zr5k/lvDlVLJ1ZzoyKYqaXF1JckEfEvGN3NOboG4zSOxilfyhK35D3vndwmJ6B0de+oWP/7h0c9r8XpWdwmN6BKIMZ7mY6u6qY52+5OqNpnIwC5CwaGI4yFHU4/4wJ57XgxpwbCWZHAtjIsUFuYmB7zPvjvzPJA1cRERFJjnOOVw608/jWozxf18LOhi4GhlMLXiMGZYX5lBR6V79LC/MoK8yntCiP0sI8Sgu9K+KlRfmUFuRRXJBHfp5RkBehwH/Nz4tQmGfkRyLk5xmF/rT8PKMgEsHMGyksL2JEzHvNMyMSYeTviBkFecaU0sI0l9b4nCxAVh/kDCjKz0MPVRMREZF0MvNajl8zfyrgDTd6pL2f5p4BWrsHGRiOjTTI5UcilBRGKC7wgt2Sgnjg6wXERfkRNbadgsI4ERERkUkoPy/CWdNLOWt6adBZyTm6FVJEREREJEGo+iCbWROwP6Dkq4HmgNKWsalOwkn1Ej6qk3BSvYST6iV8gqyT+c65E574FaoAOUhmtnasTtoSHNVJOKlewkd1Ek6ql3BSvYRPGOtEXSxERERERBIoQBYRERERSaAAedRtQWdATqA6CSfVS/ioTsJJ9RJOqpfwCV2dqA+yiIiIiEgCtSCLiIiIiCRQgCwiIiIikuCMD5DN7O1mtsPM6szs5qDzc6Yxs31mtsnM1pvZWn/aNDP7tZnt8l+n+tPNzL7l19VGM7s42NznBjO73cwazWxzwrSk68DMPup/f5eZfTSIZcklJ6mXz5nZYX97WW9m1yV8dotfLzvM7JqE6drHpYmZzTOz1Wa21cy2mNmn/OnaXgJ0inrR9hIQMys2s5fMbINfJ5/3py80szV++f7MzAr96UX+33X+5wsSfmvMuso459wZ+x/IA3YDi4BCYAOwIuh8nUn/gX1A9XHTvgzc7L+/GfgP//11wCOAAZcBa4LOfy78B94IXAxsTrUOgGnAHv91qv9+atDLNpn/n6RePgf87RjfXeHvv4qAhf5+LU/7uLTXSS1wsf++Atjpl722l3DWi7aX4OrEgHL/fQGwxt8G7gFu9KffCvy5//4TwK3++xuBn52qrrKxDGd6C/IlQJ1zbo9zbhC4G7gh4DyJVwc/8t//CHh3wvQfO8+LwBQzqw0gfznFOfc00Hrc5GTr4Brg1865VudcG/Br4O0Zz3wOO0m9nMwNwN3OuQHn3F6gDm//pn1cGjnn6p1zr/jvu4BtwBy0vQTqFPVyMtpeMsxf57v9Pwv8/w54M/ALf/rx20p8G/oFcLWZGSevq4w70wPkOcDBhL8PceqNStLPAY+b2Toz+5g/baZzrt5/fxSY6b9XfWVPsnWgusmem/zL9bfHL+Wjesk6/xLwRXgtY9peQuK4egFtL4ExszwzWw804p0E7gbanXPD/lcSy3ek7P3PO4DpBFgnZ3qALMG73Dl3MXAt8Ekze2Pih867xqKxCAOkOgiV7wKLgQuBeuBrgebmDGVm5cAvgb9yznUmfqbtJThj1Iu2lwA556LOuQuBuXitvsuDzVFyzvQA+TAwL+Hvuf40yRLn3GH/tRG4F28jaoh3nfBfG/2vq76yJ9k6UN1kgXOuwT/oxIDvM3qpUfWSJWZWgBeE3eGc+5U/WdtLwMaqF20v4eCcawdWA6/D62aU73+UWL4jZe9/XgW0EGCdnOkB8svAUv+uykK8juH3B5ynM4aZlZlZRfw98DZgM14dxO/q/ihwn//+fuAj/p3hlwEdCZc1Jb2SrYPHgLeZ2VT/Mubb/GmSRsf1uX8P3vYCXr3c6N8JvhBYCryE9nFp5feJ/AGwzTn39YSPtL0E6GT1ou0lOGZWY2ZT/PclwFvx+oavBn7X/9rx20p8G/pd4En/aszJ6irj8k//ldzlnBs2s5vwdkx5wO3OuS0BZ+tMMhO419u3kQ/c6Zx71MxeBu4xsz8G9gPv97//MN5d4XVAL/CH2c9y7jGzu4CrgGozOwT8M/AlkqgD51yrmX0B7wAD8C/OufHeYCZjOEm9XGVmF+Jdwt8HfBzAObfFzO4BtgLDwCedc1H/d7SPS583AB8GNvl9KwE+g7aXoJ2sXj6g7SUwtcCPzCwPrzH2Hufcg2a2FbjbzL4IvIp3YoP/+hMzq8O7OflGOHVdZZoeNS0iIiIikuBM72IhIiIiInIMBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIiIiIgkUIIuIiIiIJFCALCIiIiKSQAGyiIiIiEgCBcgiIuNgZpeb2fNm1mFmrWb2nJm91sz+wMyeTWM6f21me8ys08yOmNk3zCw/Xb8vIiKnpwBZROQ0zKwSeBD4L2AaMAf4PDCQgeTuBy52zlUC5wIXAH+ZgXREROQkFCCLiJzeMgDn3F3Ouahzrs859zgwBNwKvM7Mus2sHcDMiszsq2Z2wMwazOxWMyvxP7vKzA6Z2WfMrNnM9pnZ78cTcs7tds61+38aEAOWjJUpM6s2swfNrN1v1X7GzCL+Z+eY2W/9z7aY2bsS5vtfM/uOmT3i5/s5M5tlZt80szYz225mFyV8/2Yz221mXWa21czec5L8XGpmR80sL2Hae8xsY/JFLiISHAXIIiKntxOImtmPzOxaM5sK4JzbBvwZ8IJzrtw5N8X//pfwguoL8YLbOcBnE35vFlDtT/8ocJuZnR3/0Mw+aGadQDNeC/L3TpKvTwOHgBpgJvAZwJlZAfAA8DgwA/gL4I7ENID3A//o52MAeAF4xf/7F8DXE767G7gCqMJrOf+pmdUenxnn3BqgB3hzwuQPAneeJP8iIqGkAFlE5DScc53A5YADvg80mdn9Zjbz+O+amQEfA/7aOdfqnOsC/g248biv/pNzbsA59xTwEF7AGk/vTr+LxTK8FuqGk2RtCKgF5jvnhpxzzzjnHHAZUA58yTk36Jx7Eq+LyAcS5r3XObfOOdcP3Av0O+d+7JyLAj8DRlqQnXM/d84dcc7FnHM/A3YBl5wkT3fF0zGzCuA6f5qIyKShAFlEZBycc9ucc3/gnJuL1zd4NvDNMb5aA5QC6/zuDe3Ao/70uDbnXE/C3/v93zs+zV3AFuA7J8nWV4A64HH/xr6b/emzgYPOudhxacxJ+Dsx6O4b4+/y+B9m9hEzW5+wPOfitTSP5U7gvWZWBLwXeMU5t/8k3xURCSUFyCIiSXLObQf+Fy9QdMd93IwXYK50zk3x/1c558oTvjPVzMoS/j4LOHKS5PKBxSfJR5dz7tPOuUXAu4C/MbOr/d+aF++PnJDG4fEt4Sgzm4/Xan4TMN3vRrIZr3/0WHnaiheMX4u6V4jIJKUAWUTkNMxsuZl92szm+n/Pw+tG8CJey+tcMysE8Fttvw98w8xm+N+fY2bXHPeznzezQjO7Arge+Ln/3T9JmG8FcAvwm5Pk63ozW+J36+gAong39a0BeoG/N7MCM7sKeCdwdwqLX4Z3EtDkp/mHeCcGp3In8CngjfHlEhGZTBQgi4icXhdwKbDGzHrwAuPNeDfJPYnXDeKomTX73/9/eF0fXvRvtnsCSLxB7ijQhtfSewfwZ36rNMAbgE1+Og/7/z8Tn9EfkSI+6sVS/7e78W6y+45zbrVzbhAvIL4Wr0X7O8BHEtIYN79F+Gv+7zcA5wHPJeTnCjPrPm62u4ArgSedc82IiEwy5t3PISIi2eC35v7U78ssIiIhpBZkEREREZEECpBFRERERBKoi4WIiIiISAK1IIuIiIiIJMgPOgOJqqur3YIFC4LOhoiIiIicAdatW9fsnKs5fnqoAuQFCxawdu3aoLMhIiIiImcAMxvzSZ/qYiEyQbubunloY33Q2RAREZE0CVULsshkdPXXngLgHee/I+CciIiISDqoBVlEREREJIECZBERERGRBAqQRUREREQSKEAWEREREUmgAFlEREREJIECZBERERGRBAqQRTJg06EOWnsGg86GiIiIpEABskgGvPO/n+Vd//3sKb8zMBxlW31nlnI0tsauflq6BwLNg4iISNgoQBbJkENtfaf8/B/v3cy1//kMjZ39Kf3+/pYethzpSGneuEv+9Te85otPpDx/LOZo6ko9wN5wsJ3bnt6d0rwdvUMsuPkh/ve5vSnNv+Dmh/iPR7cnPV9z9wALbn6Iu186kPS8w9EYHX1DSc83Ed/6zS7uWXsw6fn+5YGt/NXdryY9386GLjYfTn69PNjaS3OWTtYaO/v5q7tfpX8omtR8v93RmFJZpqKpa4A1e1qSnu/2Z/eyr7knqXmauwfYcLA9qXmcc3x7dV3SV8o2H+7glQNtSc2Tql+9coiDrb1ZSUtyjwJkkYCs8w8Snf3DKc1/5Vd+yzu+depW6kz7+q938tp/fSLlIP+Gbz/Hvz2cfJAKUN/pnYDcmUKgGvfd3yYfnO9v8Q64d7+cfKD0D/du5oLPP85wNJbUfP1DURbd8hD3rT+cdJpf//VO/v4XG5Oe7/bn9vJ/648kPd/bvvE01/9X8uvlFV9ezaokT9aGozEW3PwQP3lxf1Lz/fsj2/m/9UeSfkT8H/zw5aTLciga4/3fe4G1+1qTmu/d336O37vtxaTm6R0c5l8e3Mrv3fZCUvNd/61nueHbzyU1z8v72vjKYzuSLo/r/+tZ3vud55Oap2dgmB89vw/nXFLz/c09G5Jero/9eC3nf+6xpObpG4zyq1cOJZ2/b6+uo66xK6l5JHsUIIsExEbeJbdTDZMntjUA0Nyd/f7W5pdgksekiadrp//Oydz7qhfgDseSy3RT1wAxB19+dEfqieegXr8F+D8eSe4kawJVmLT9LT28tLeVv/9lcoHk4fZTX4EaS3xb6OxL7qT7aAonuPGTvO6BzF8R+eJDW/nn+7fw251NSc+bbAv341sbkm60+NeHt/I392zghd3jb/HvG4zylcd28DvfTe5kRrJHAbJIQMyCCfAywQUQ5McD1WynHA+uUko3m5HZGWCixZmNdceyuKJO5OQt+cS8l2zsv9p6vCC8bzC5LjHZ0tDpdQ1K5WrgwHA4l0kUIIsEZkKBVkgEGeQHFWuOBjyTueZyS7KXtkeDu8zXYXw9jWUlLX97zMJeZTStzMtq4J+CiVwN1G4kvBQgiwRsMu8gw3DcykaQM2a6KcwzclKUbDwXhoIOoZETtGTny2pwl/1AMhubRNjXyWzuFyIpNBQEdQVMxk8BskhARneQ2kWmIvAuFikknGpQMdpSr3UlUaoxWjaDu0gAFxyyEoxnM7F4UiFd/SN+JJXkrQUSchkPkM3s7Wa2w8zqzOzmTKcnEpRkg5egbjLLHcE0YaUjuEr1pEirythS7GGRnX7BE+z2kMx+ZeSrWWlBzmJ3jhQaE7K5X02ljrXfD7+MBshmlgd8G7gWWAF8wMxWZDJNkaCketl8Mu8og7zMOpJ2QOWXSmCQ6klRyK9mBy7Zusjm1ZuJbueptEpOhuVKKq2wbwETKYtJvP/PdZluQb4EqHPO7XHODQJ3AzdkOE2RQKR6E466WKQmqPg4HQdr1Xh6TLQcs9rtIcW0kmpB9kskO0FrPM1wyma+4n2QkzkGjNRVaEtQMh0gzwESR9M/5E8bYWYfM7O1Zra2qSn5MQ5FwiLZlp5UbuwIqyCXIdv9cifSchafN+WTqRxYV9Ip1brPZovk6PqSWl5Ta0HOHvWLT+0Kj4ot/AK/Sc85d5tzbpVzblVNTU3Q2RFJWbJBj7pYjErlIJvN0QHGklKAnOK8uqHz1FIvz8yLTHA9DWu/1iC2v7DuKyeyLw/rMknmA+TDwLyEv+f600RyTqo7urAPlzQeEw3cshlspsuEkk26D3IOrCQZkOo9aRNtyc9mWqnMlt3lynhSo318k5glmy3bqYx1ncX7KSVFmQ6QXwaWmtlCMysEbgTuz3CaIoE4Ey+bpytwS6XsgjqxmOglc5jIiAYpJ5nbki6X7HVvmuhoNcnMNxJ0pXpDYBLRbiSLl8DCfnqYygOT1DUl/PIz+ePOuWEzuwl4DMgDbnfObclkmiJBSbWLRS6YaCvSZBo/dCInBaM38ySZph4qMKb4JpfsthdJw0nOeE20pTWb3WpizhEZ5/odyWYLsi+5GxazZyJXCbLR2i+pyWiADOCcexh4ONPpiAQt6aCH5O98Dpt0BRoptSBn8bG66aKb9NLMHfMybqmeqKRionUWTSKTE98Ox//dVEZuSFXYb2hOJX8Tbe2XzAv8Jj2RXJH0g0JyoFUwXTfqTKSLRSw2wcRTTTeFPEf8M4pkLmUnmswnU5mUagtyNspzdOi17I1ikarUWkAzkJHjhP1BIZGQ509SowBZJE2Sv5N+8j8+OH0tyKnPm+3ym0hrVnzeaJIzp9qVINelOu6vBdCCnHIQn8UIOZk8RrK4/5osLchJVVVIl0VGKUAWSZPUW7EykJksSVegkcxl5ONlu/zyIvF0U2hB9us81eXNZrA0GaQaMGUzuEt1tIJUTqYmujTJrJeRCWwHyUqlH3c2u16lclVpMnUNO1MpQBZJk+T7IHtyowV5Yr8zkTJItjV24lI/KUjlbnfI7hPSJpNUg7OsdrHw00j25Gai3XFSkVof5AxlZsy0wrkBpNJQENJFkQQKkEXSJNkgb6IPEAgDS9OBK5UW1XiSqQTX6TgpyWYLsrpYjC3V0hgJPrPYxSLZqhtZV5JplZzoaDJJFEgqY/+mKuyNCZHRDI57nnAuiSRSgCwyQakO42QB9DFMt3QdJFN7nG7qrarpOM6mEtSn2gc5bhKvKhkx0YfzZPOEI/kuWNkL4uNSetBFFluQkxtnOEOZGUMqdRXWYF9GKUAWmaBUg8Rs3iiUKZE0DcUxkUAl+10sUg/MU+37Gv+2WpCPlWo/zmze9DXSgpzkfHmWQheLid4LENJxfEf7O2c8qZSk0gUkpIsiCRQgi6RJyg8rmMS7ynQduFI5yI50O0ile0bSc4yR7gSGposmOTRdPKBWfHycVFuQ47OnPB518jdjpfogoaTGQc7iI9+z2e0nXV25kpHKfkV9kHOLAmSRCUr1xquJPoI2LshLdel62MlkGsUiLpU85/lnRSmPYqGj6jFSLY2JPiU5lUAo2SofWVeSyGQ2R5PJ5rqYygnNhPdJScyfyuPnJ3PDyJlCAbJImiTdguxvfRO+sSbA/exE+3JO5GEfE+l2MJGTitF0k5831e44uklvbCn3QR55CmNqkmvV9V9T7YOc1SfpJX9DYFb7ICcxz8T3q+P/gZGuZknQphx+CpBFJmg06EluvonesBU3kdbXiZroSBzpGL4pqOVPbRSLiS1vWPtgBiX1Psj+/Cm3ICcftCb/MBPvNZstyMmcqMZSXK5UpPLQlAnfOJxEWaQybKAC5PBTgCySJqkHPdlr9Um3iT5JL35ykcpJwkT65QbfB1lHx3RIuRhHTuxS+4FUWpCTX1/iLcjjn2Oil+3DeoUipXGGJ5hmMmWRWv7CWdYySgGySJqMBmzj2/Glcgl1LEEe1EYODCl0kYCJPdEsPkdqwXXSs5wglXpL9WajIOs4zMNRTfTELNVFS2Vs4pSHgcxCq2QqYy7HktzfTURKZZHiPikulT7IakHOLQqQRdIkfgAc744vXa2JgfZB9l9T7iaS4qgOMLEDzERab9JxaTnZOguyjlNNOyuPcU51tZvg6ITJBV8T6waSVGt1yuWR/IlqqsPXpSKlPr4THdEjqS4WKYzTnGR+JPsUIIukSbKX3tP1IIAgL9fbBFvBJ/KgkWRb7BOl2uINE2vNHTmhSLK8gmxBzsX+0vGb9FKNKLPxdLt4HlNp1U0+LU8yJ6oTPVHM9FP7JrxfTeomPe81uROMEG8gAihAFpmw4y+vjXfHnMqNHWMJ8kl8qdxIlGjkRsUMjzl64rypzzyRlrNUn54Y5ME0zEPSTbQFOdV1KJU+yMlKZV2ZcFpJDVMWf838+hF/NHhy4zRnr+va6HCX4/99xcfhpwBZJE1GA+Tx7vnSM4ZwGG7SSzXQmMh4tPEgJZWkgxo1I5UDaSrfT6eU++lmIdMTvoyeheBugr2PkuxikWILcgonqhN9eE1SfXz912RWqYmP6JF8C3JYb3KU1ChAFpmg4x/4Md59ZCp9DMeS/Uctj5rojYYTGepuIpd409HFYiItVMkub5AH3lTXr2xkeaI3pWUj+E81CE9pZIQJBuPZvMksmfkthVFHJj6ix/i/m8rDohRLh58CZJE0SbYFOR1jAEOwO9qJdJGAifZBTinJlNNLx7ypdrGYSEA/UakubzZO3FLvUpDFB4VMtCUzG63VKVwJGrkpObUkk3wQh59WFgPQ5Pogp3CTo27TCz0FyCITddzBZdwdLCbwFLlEgY6pm7Yn6aXegpyKic3rvU6k1CfVTXoh7oMc1MllNoPWbDz+eeSGwGx2sUiqC0Py+cvmvR2pDZOXbI4k2xQgi6RJqi3IE21pS0cgknJ3ATexPMTnSuVgMZFym8i88QNnNluwg7xKkOqBPBs3j6Y8esrIMG8pto4nkW6qJ7DxOk9qxIyUUkq8FyCVAC/VE6hkvut9OR6Ijkc2W+7jy5LMcHR6WFD4TShANrPPmdlhM1vv/78u4bNbzKzOzHaY2TUTz6pIOI0+dMAPnJJsEZ7wg0LScPk95YO4f3BMZRxjGF32lEaxmEC5TaTM4gFLOsZSHq/hAPtYpD6KRZozMoahaIoBrj9ffjIRV4Jklm0oxbqL70+SWc8Hh1NLazia/HY46G/0qYxRDMktV3ybsyTSSrUs4pKp46hfx9nMn2Refhp+4xvOua8mTjCzFcCNwEpgNvCEmS1zzkXTkJ5IKMV3qP3D41vND7X3Aam1ZvYODo+8TzV4au4eGHk/FHXk5yU3v3OOg62pL8NwNEbPoFdWqQRhOxu6AagoTn43tqOhK+l54rYe6QRgamlhUvMNDEfZ6aeb7AnFKwfaASgrTK6SNh5qH3kfi7mR4bJOZ39Lz8j7oSQyu7upe+T9cBLzPb+7edzfTfTbnY3AaAvoeAwMR3l+dwsAeUnMWNc4us6M9wTHOcfjWxoAmFpaMO60jnb0c6SjHxj/tuGc46FN9eNOI+5ga+9IsDveE47haIyHNh4BoKaiaNxpvbS3deT94DjXj46+IZ7a0QSMv4XbOcf/rT887nzFJW4v413vO/qGWO3nb7znW9GY495XDwGpn6RJ5qUjQB7LDcDdzrkBYK+Z1QGXAC9kKD2RwMVbRJ7ZdeqD/cBwlP98YhcbDrYD0NU/fMrvJ+oZGOaxLUf5ryfrRqYlMz9A32CU/1t/mP8+5jeGKBln8OWcY93+Nv57dR2bDncAybWGDEdjPLWziW/9ZtfItO6B8S/DvuYe/vf5fdyxZj8Ay2ZWjHveg6293PnSAW5/di8w/uDaOcfGQx386IV9/OoV78C7YHrZuObtH4py//ojfO/p3SMnUYPR059EOed45UA7tz+3l4c2eoHPknEu697mHn70/D7ueunAyLTBaIziyKnr+EBLL3e8tJ+fvrB/ZNp46mZPUzc/eXE/d790cGRaZ/8wMypPPo9zjk2HO/jf5/Zx/4Yjo/kcjlGYf/KLmwPDUZ7Z2cwPnt3LC3u8QHdh9enroqV7gAc2HOH7z+zlsH9y2nWaZXPOsbW+kzvWHOAX6w4dk8dT6R4Y5jfbGvjBs3vZeMjbRs6aVnratHY0dPHLdYe4Y82x9Xa6tJ7Y2sAPn9vLBj+t+dNPn9aWI5387OWD3LN2tM66+odOOV9L9wAPbz7K7c/uZW+zdxJVVnTqbWg4GuPFPa3csWY/j245ekxaMyuLTzrf7qZu7nv1MD96Yf9IvvqGTr3ddPQO8eiWen78wn62+CeyMytPHcAPR2O8tLeVu14+OBL0A3T2nbosdjV0cd/6I/z4hX30+if6p8tfS/cAD2/y8rer0TuZnDu15JTzSHDSESDfZGYfAdYCn3bOtQFzgBcTvnPIn3YCM/sY8DGAs846Kw3ZEcmuxH60uxq6+JcHtgBQmB/BOXfMY1x/s62RLzy0lf0tvfzeqnncs+4gbb2Dp/z9/qEoq7c38sDGIzy5vZH+oRhLZpTzV29Zyjef2EX7aXbk4B04frO9gce2HOWpnU30D8U4f24Vb1s5kx8+t4+OviFmnOJgFYs51h1o45FNR3l0cz1HOvqZUlrAzdcu5z8e3U5bz6mXYTga44U9LTy0sZ7HthylrXeIOVNK+Pu3n82XH91BR9+p5z/Y2stDm+p5cOMRNh/uJC9ivO81c9nf0ktTQkv4WJq6Bvj11gbuW3+YNXtbMYPrz58NwONbjh5TR4mcc9Q1dvPo5qM8vPko2+o7KSnI40+vWMiWI520nmKZ+wajPLWziUc21/Pktka6BoY5e2YF3/y9C/mrn62ntWfsOosH4g9vrueRTUc50NpLRXE+n3zTYuoau9l+9OQt33uaunl4Uz0PbfLyWpBnvOuCOZw1rZRvPLGT1p5BZk858WAcL9uHNtaz6XAHEb98XrtgKv9035aTBk17mrp5ZPNRHtlcz+bDXnrvOK+WSxdN55ZfbaJjjPUyHhQ/tGl0+UoL8/jw6+ZTXV7EVx7bQWvPILOqjl0Xh6Ixnq1r5sEN9Ty+9Shd/cPUVBTxT9evYHt9J6t3NI6Zx9aeQR7bcpSHNtbzwp4WojHHxWdN4d/fex7/75cbxzy5jAePD2+q5+FN9exr6aUwP8LvXDyX1y+ezl/c9SotY9R9/1CUJ7c38uDGI/xmWyMDwzHOmlbKl3/nfJ7b3cy6/W1j5rGusZsHNx7hwY311DV2EzF45wWz+f1L5/P+771AS/eJafUNjqb15HYvrXnTSvjSe89jw6EOHksIRI9frof85drf0ktBnvHei+byO6+Zy/u/98KYddbe65XhgxvreX63V4Yraiu59UMX84t1h0dONhINR2Os2dvKg/723tozSEVxPje9aQlLZ1bwl3e9OmZaB1q8dfGBDUfYWt+JGVy9fAZ/9ZZl/MEPXx5zm+vsH+K3O5p4YMMRntrRxGA0xqLqMr76vgvYcqSDe14+eMI80Zjjpb2tPLTpCI9uPkpz9yDlRfl87I2LuXTRNP7why+Pmb/4Ov/AhiNsP9pFxODqc2byV29Zyh//71pax6ir1p5BntzeyAMbjvBsXTPRmGP5rAr++4MXsWZPKw8mBOUSLqcNkM3sCWDWGB/9A/Bd4At4McIXgK8Bf5RMBpxztwG3AaxatUq91mXy8dfag229fPqe9RTm5/HBS2dz55oD9A5GKSvKZ+Ohdr76+E6e3tnEkhnl/OSPL+GKpTU8W9fMobYTDzCDwzGe2eXt9H+9tYGewSjV5YX83qp5XH/BbF5z1lQOtPbyzSd2cWSMAxRAY1c/v97awKObj/LC7haGY46ZlUW8f9U8rjuvlksXTuO5uhZ++Nw+jnb2s/S41sl4y8ojm4/y6JajNHUNUJgf4Y1Lq/n0287mmnNnUV6Uzw+e3cvRzv4T0u8fivLCnhYe33KURzd7QXFZYR5XnzOT686r5c3LZzAUjfHlR3fQ0HlskOucY3dTD09sa+CRzUdHWtsvmDeFf3zHOVx3Xi2zp5Tw2fs2s/lwxwndBw609PLYlqM8tuUo6w604ZzXyvi3b1vGey6ey5wpJXz/6T08sOEIbb1DTCvzukvEYo7NRzp41F/mPU1eK9nFZ03hX25YybsvmkNlcQG3/GoTW+s7j0m3o3eIp3Y18ejmelZvb6JvKMrU0gKuPW8W77loLpctmgbA3/1iA/UJdTY4HOPVA2087tfV4fY+8iPG65dU84mrFvPOC2ZTVpTP5x/YwtM7m0daWON5Xb3dC8TjwfPFZ3lldP35s5lVVcwTW71L/Ifa+pg9pYRYzGsV/e2ORh7f2jDSwnnBvCl85rrlXHdeLXOnlrLZvzpwsLWP18z31ocNhzp4emcTj24+OtJN5cJ5U7jl2uW85+I5zKgoHrlMfbC1l9fMn0rPwDBr97fx9M4mHttylENt3vK9YUk1n3zTYt6+spaq0oKRoG5PUzczK4uo7+jn5X2trN7eyG93NtHeO0RFcT7XrJzFO86v5fIl1RTkRfjqYzto6x2iobOfyuIC9jR383xdC6t3NLJmbyvRmGPB9FL+7MpFXHdeLStqKzEzaiqKqGvsprN/iP7BKFvqO3l6ZxNPbm9kf0sveRHj9Yun8/ErF3PNyllMKysc6Xqy+XAHK2dX0tDZz6sH2lm9vZHndjfTPxSjuryQG187up1GIsbupm4aOwfY3dRNYV6EusZunqtr5skdjexp6sEMLlkwjY+++1yuPXcW1eVFRGOOvIix6XAHB1t7aekZZMPBdlbvaOSF3S0MDMeoLi/ixtfO450XzOZiP62jnTtp6x3k1QNtlBXls7uxm+d2N/PUziYOtvaNLNcnrlrM21bMYmpZIX2DUSIG6w+2c/H8qTR1DbD+YDtP7Whi3YE2ojHHWdNK+fgbF3H9+bM5p7YCM+PpXc28sLuZTYc6iDrHzqNdPFvXzDO7mmjrHaLU397fcd4srjp7BsUFeSPr1fN1LRTm5XG4vZd1+9tYvaOJOr9V9aKzpvDZ61dw3Xm1IydLMyqK2HKkkw0H2+nsH2Lz4U6e2dXES3tbGY45ZlUW85HXzeddF87mvDlVmBmtPQP0DEZ5cnsD5UUF1DV288KeFp7Z5a1PJQV5vPmcGVx/Xi1XnT2DksK8kf3pc3UtVJYUUN/Rz6sH2li9vZF9Lb0ArJo/lc+/ayXXnjeLGRV+/iqL2Hykk5f2ttLZN8SWI17+XjnQRszBnCklfOyNi3jXBbNZPssrvz1NPbT1DvGbbQ0U+OvFS3tbKS3K4+vvv3CMvbpkk6XrEaZmtgB40Dl3rpndAuCc+3f/s8eAzznnTtnFYtWqVW7t2rVpyY9Itiz9h4dH+u5VFudz18cuo7FzgD/835d564qZtPcO8vK+NqaUFvAXb17KR143n4I87xLyLb/ayC/WHeKz16/gnNpK9jT18NSuJp7e0UTXwDBTSgu49txZvPP82Vy6aDp5CUGgc47L/2M1xQURvvWBi5g7pZTdzd08t6uZ3+70dszOwYLppVxz7izevnIWF8ydckwg2dU/xGu++AQXzK3iluvOoTg/j231nTy9q4mnd3oHuZKCPN60vIa3n+sFteXHXVL9xB3reGpHE7dcdw5nTStlT1P8INTsnSDED5Ln13LlshqKC469zP+Obz1DY9cAH3/jIkoK89he7x1k45dwz5tTxTvOr+Ud59Uy77jL1PdvOMJf3vUqb1sxk3PnVFHf0c9Le1vY7Qe2K2oredvKmVyzctbIQSlu/cF23v3t57hgbhUXzJtCY+cAL+9rpaVnkLyIcdmiabx95SzeumLWCS2a960/zKfuXs+F86YwZ0oJB1p72XKkg5jz+mRes3Im157rnYTk5x3bXeDDP1jDi3tauPisqQxFY2w/2kXvYJTCvAhXLK3m2vNqees5M6k6rs/qb7Y18Mc/WkttVTHTygo50No70gK6av5UrjuvlmvPm0Vt1bGtxG09g7z+S08C3uXmxq6BkUvCF8z1yvbac08s2+FojNd/6UmauweYVlZER98gQ1GHGbx2wTSuPXcW16ycdUKr9FA0xuX/8SQNnQOUFeaN9DMvzI/whsXTue68Wt66YiZTjuvD3dE7xBv+40m6B4YxGx2FYHpZIVeeXcN159ZyxbJqio7rLP/KgTbe+53nOd7ZMyu4+pwZvOP80aA40X/9Zhdf+/XOY6YV5Ue4bNF03u4vW/zEKc45x7X/+cwJLfnzppXw5rNn8LaVs7jsuO0UYO2+Vt73vReOGVmhMC/CpYumcfXyGVx7Xu2Y3Q3+/KfreGTzsa3BC6aX8qblM3jrOTNP2CcAbDnSwQ3//RzDCX2XSwvzeP3iat5yjpfH45cL4E9+tJYntjUcM23l7EredPYM3rZy5kjQmejZXc18+PY1xyxXdXkRVy6r4S3nzBgJOhNFY463feOpkW00sSzedPYM3rpi5gnrIsB3f7ub/3h0+zHTls0s5+pzZnL18hkjJwiJ9jR1c923nqF/aLSbSjx/b14+gzctr6G08MR2wvfd+jwv7xtt8S/Mj/D6xdN58/IZXH3OTOaMcSXmB8/u5QsPbj1m2rlzKrl6+UyuPmfGmOW3q6GL6//rWQbG6LKz+9+uO6FuJTPMbJ1zbtUJ0ycSIJtZrXOu3n//18ClzrkbzWwlcCdev+PZwG+Apae7SU8BskxGC25+aOT9HX9yKW9YUk005rjlVxt5YlsjsyqLeecFs/nQZWdRUXxs0NPaM8if/njtMZdfayqKvAPZilm8YUn1KftjPl/XzMd/su6EvpTnzaniLefM5O3nzmLZzPJT3l39q1cOccuvNh2zk64uL+SNy2p424qZXLnsxINcooOtvXz8J+vYWt85Mq22qpirz/EOJq9bNP2EoDjR5sMd/O3PN4wEHeVF+Vw8fypvPWcGb1kx84SAL1E05vjq4zv42csHRy7jrpo/lTcsqeaalbPGPNAmumPNfn7ywn6OtPcxvbyIi+ZN4fVLqrl6+QymjhFExMVijtue2cOjm4/S2TfErKpiXrtgGlcsreais6ae8sDW0NnPfz25ix1Hu8iPRFgyo5zLl1bz+sXTT1g/Ejnn+NUrh3lyRyO9A8PMnlLCaxdM4/Kl1VSXn7qf5fqD7fzqlUO09gxSU1HEeXOqeOOymtPOt7e5h1+uO0Rz9wBTywo5f04Vr1s8/YTg9ngHWnq5f8NhWnuGmF5eyLlzqrh04bRTrgfg3Qj3+NYGegaGmVVZzHlzp3D+nKrT3ly4bn8bL+/zWovnTSvltQumnnK9AW/d+c22Bg60el0oltSUc/H8qafNY3vvIE9sa6R3cJippd6yLZheetoRDLYc6RhpPV0wvYzz5laNGZwl6h+K8vTOJjr6hqgsKWBFbeVp12nwAsNNhzswM86aVsqK2spT7kfiab2wp4WegWGmlBSyvLbitOsHeHVW19hNfiTCwpoyFk4vO219dfUPsXZ/G8NRx4yKIs6eVXHaco93P2ruHqCkMI/lsyrHDPSP19DZz7b6TiJmLJhextypJafNX/9QlPUH2xmKxpheVsSSGeWnLT+A7Uc7aeoaoLQwn2Uzy0+5Pcc1dvZT1+SV34LppTy4sZ5/eXAr6z/71tNuZ5IemQqQfwJciHeReR/w8YSA+R/wulsMA3/lnHvkdL+nAFkmm97BYVZ89jEA/uzKxdx87fKkfyPeN7C5e4C5U0tZVH36A0yilu4BfrOtkc7+IeZO9YKm6eM4sCVq7RnkJf9y9OIZZSybUZFUHrwuEd209w4xe0oJtVXFSQ15BN6oGkPRGDMqilNqOTndzV0iImH3y3WH+PTPN7D6b68a182nMnEnC5AndJOec+7Dp/jsX4F/ncjvi4RdvNXzex9+DdesHKur/umZGefOqUo5D9PLi3j/a+elPD/AtLJC3n5uavkHbxmWzBj/aBJjGU9r1akoOBaRyW5BtXeFYHdjtwLkgOmIIjIB8aGEVs4+xXhWIiIi43D2LO9Ysi2hy5oEQwGyyARsPdJBVUnBmDdtiIiIJKO8KJ8lM8p5+STDAkr2nPEBct9glE/e+coxg8CLjNfWI52snH3iHfIiIiKpuHxJNS/tbaH/NA8ekcw64wPk4oII24508oNn9yb1SFWRYX+IrhW16l4hIiLp8cZl1fQPxXjRf1KkBOOMD5DNjL+75my21Xfy2fs2j/tZ7yIH2/oYGI6xbNbEbk4TERGJe/3iaqpKCkYeay/BOOMDZIBrz6vlE1ct5q6XDvLZ+7YwrJZkGYd9/oMsFtfoTmMREUmP4oI8brhw9shjuiUYCpB9f3fN2XzsjYv4yYv7+dAP1nDAf6SkyMns8QPkBdMVIIuISPp85HXzGYzG+N5Tu4POyhlLAbLPzPjMdefwld89n82HO3nbN5/iCw9upaGzP+isSUgdaOmhoih/XE9zEhERGa8lMyp494Vz+OHz+6hr7Dr9DJJ2CpCP875V8/j137yR686t5X+f38frv/QkH739Je55+SAHW9WqLKPa+7zH6GoECxERSbdbrltOWWEef3nXeroHhoPOzhlnQo+aTrewPWp6f0sPP3v5IPetP8Lh9j4AZlcVs7y2kiUzylkwvYwZFUXUVBRRXVFEWWEexQV5FOVH0hI0OedwDmLO4fBfHd5/HDHnfSfmgDG/538n4buZqu50x4iZCDrT/Yt/+/MNdPUP88BfXJ7mXxYREYHV2xv5kx+v5TVnTeXWD79GVywz4GSPmlaAPA7OOXY1dvPC7hbW7m9jV0MXe5p6GDzJzXxmUJyfR15kNCQ7PjgbV9AroffGZTX8+I8uCTobIiKSox7YcIRP/3wD00oLufna5Vx/fi35ecF2AHDOMTAco38oSu9glL6hKEPRGIPD/n///VDU+X9HGRp2DERjDB3zufdaVpTPX169NJBlUYCcZsPRGA1dAzR3DdDYNUBL9wB9Q95K0u+vLPEg9/gidjgiZkTMayk1AyP+N0TMvOnE33PK73LM9/zvxH8/4bvx30y3jKxBGfhRl+YfdQ4uWTiNRTXlaf1dERGRRJsOdXDLvRvZfLiTGRVFvP3cWaxaMI0lNeXMmVJCZUn+MVdenXNecBqN0Ts4TN+gF8j2Dkbp82OUxOnxv+Ofx6d574cTvjM6fzQNLXlmUJgXYd60Up74mysn/Hup5UEBsoiIiMikFIs5fr2tgZ+vPcTzu5vpHTz2SXuF+REK8yJeq2w0lnSXyohBaWE+JYV5lBbmUVLgvR4/Lf6+tDB/5DvFBXkj6RfmRyjwX+N/e9OMwvwIRXl5FOQbhXkR8iIW+H08JwuQ84PIjIiIiIiMXyRiXLNyFtesnDXyJNcDrb0cae+js3+YgeEog8OxkaC0yA9MSxIC2ZLCPEoLjg1649ML89Jz/1SuUIAsIiIiMonk50U4d04V586pCjorOUvDvImIiIiIJAhVH2QzawL2B5R8NdAcUNoyNtVJOKlewkd1Ek6ql3BSvYRPkHUy3zlXc/zEUAXIQTKztWN10pbgqE7CSfUSPqqTcFK9hJPqJXzCWCfqYiEiIiIikkABsoiIiIhIAgXIo24LOgNyAtVJOKlewkd1Ek6ql3BSvYRP6OpEfZBFRERERBKoBVlEREREJIECZBERERGRBGd8gGxmbzezHWZWZ2Y3B52fM42Z7TOzTWa23szW+tOmmdmvzWyX/zrVn25m9i2/rjaa2cXB5j43mNntZtZoZpsTpiVdB2b2Uf/7u8zso0EsSy45Sb18zswO+9vLejO7LuGzW/x62WFm1yRM1z4uTcxsnpmtNrOtZrbFzD7lT9f2EqBT1Iu2l4CYWbGZvWRmG/w6+bw/faGZrfHL92dmVuhPL/L/rvM/X5DwW2PWVcY5587Y/0AesBtYBBQCG4AVQefrTPoP7AOqj5v2ZeBm//3NwH/4768DHgEMuAxYE3T+c+E/8EbgYmBzqnUATAP2+K9T/fdTg162yfz/JPXyOeBvx/juCn//VQQs9PdredrHpb1OaoGL/fcVwE6/7LW9hLNetL0EVycGlPvvC4A1/jZwD3CjP/1W4M/9958AbvXf3wj87FR1lY1lONNbkC8B6pxze5xzg8DdwA0B50m8OviR//5HwLsTpv/YeV4EpphZbQD5yynOuaeB1uMmJ1sH1wC/ds61OufagF8Db8945nPYSerlZG4A7nbODTjn9gJ1ePs37ePSyDlX75x7xX/fBWwD5qDtJVCnqJeT0faSYf463+3/WeD/d8CbgV/404/fVuLb0C+Aq83MOHldZdyZHiDPAQ4m/H2IU29Ukn4OeNzM1pnZx/xpM51z9f77o8BM/73qK3uSrQPVTfbc5F+uvz1+KR/VS9b5l4AvwmsZ0/YSEsfVC2h7CYyZ5ZnZeqAR7yRwN9DunBv2v5JYviNl73/eAUwnwDo50wNkCd7lzrmLgWuBT5rZGxM/dN41Fo1FGCDVQah8F1gMXAjUA18LNDdnKDMrB34J/JVzrjPxM20vwRmjXrS9BMg5F3XOXQjMxWv1XR5sjpJzpgfIh4F5CX/P9adJljjnDvuvjcC9eBtRQ7zrhP/a6H9d9ZU9ydaB6iYLnHMN/kEnBnyf0UuNqpcsMbMCvCDsDufcr/zJ2l4CNla9aHsJB+dcO7AaeB1eN6N8/6PE8h0pe//zKqCFAOvkTA+QXwaW+ndVFuJ1DL8/4DydMcyszMwq4u+BtwGb8eogflf3R4H7/Pf3Ax/x7wy/DOhIuKwp6ZVsHTwGvM3MpvqXMd/mT5M0Oq7P/Xvwthfw6uVG/07whcBS4CW0j0srv0/kD4BtzrmvJ3yk7SVAJ6sXbS/BMbMaM5vivy8B3orXN3w18Lv+147fVuLb0O8CT/pXY05WVxmXf/qv5C7n3LCZ3YS3Y8oDbnfObQk4W2eSmcC93r6NfOBO59yjZvYycI+Z/TGwH3i///2H8e4KrwN6gT/MfpZzj5ndBVwFVJvZIeCfgS+RRB0451rN7At4BxiAf3HOjfcGMxnDSerlKjO7EO8S/j7g4wDOuS1mdg+wFRgGPumci/q/o31c+rwB+DCwye9bCfAZtL0E7WT18gFtL4GpBX5kZnl4jbH3OOceNLOtwN1m9kXgVbwTG/zXn5hZHd7NyTfCqesq0/SoaRERERGRBGd6FwsRERERkWMoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFRERERBIoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFRERERBIoQBYRERERSaAAWUREREQkgQJkEREREZEECpBFRFJgZvvM7C1ZTO+3ZvYnGfjdBWbmzCw/3b8tIjJZKUAWEckAM1toZjEz++4Ynzkz6zGzbjM7bGZfN7O8IPJ5PDN7v5k9b2a9ZvbboPMjIhIEBcgiIpnxEaAN+D0zKxrj8wucc+XA1cAHgT/NZuZOoRX4JvClgPMhIhIYBcgiIql7rZltNbM2M/uhmRUDmJnhBcj/CAwB7zzZDzjntgPPAOcmTjezt5rZdjPrMLP/Buy4z//IzLb5aT9mZvMTPnNm9mdmtsvM2s3s236eMLM8M/uqmTWb2R7gHcfl5wnn3D3AkVMtuJkV+b99bsK0GjPrM7MZp5pXRCTsFCCLiKTu94FrgMXAMryAGOByYC5wN3AP8NGT/YCZrQCuAF5NmFYN/Mr/vWpgN/CGhM9vAD4DvBeowQuw7zrup68HXgucD7zfzyd4LdXXAxcBq4DfTWqJfc65AT+PH0iY/H7gKedcYyq/KSISFgqQRURS99/OuYPOuVbgXxkNFj8KPOKcawPuBN4+RqvqK2bWBjwA/A/ww4TPrgO2OOd+4ZwbwuvycDTh8z8D/t05t805Nwz8G3BhYisy8CXnXLtz7gCwGrjQn/5+4JsJ+f73CSz/ncCNCX9/0J8mIjKpKUAWEUndwYT3+4HZZlYCvA+4A8A59wJwAC94THSxc26qc26xc+4fnXOxhM9mJ/62c84dl9Z84D/9Lg7teP2GDZiT8J3EgLoXKB/rt/18p2o1UGpml5rZArwg/N4J/J6ISCgoQBYRSd28hPdn4fXbfQ9QCXzHzI6a2VG8wPWk3SzGUJ/4237/4cS0DgIfd85NSfhf4px7Ptnf9vOdEudcFK8LyQf8/w8657pS/T0RkbBQgCwikrpPmtlcM5sG/APwM7xA+HbgPLwW1Qvx+g9fYGbnjfN3HwJWmtl7/fGJ/xKYlfD5rcAtZrYSwMyqzOx94/zte4C/9PM9Fbg58UP/Jr5iIB+ImFmxmRWc4vfuBH4Prz+2uleISE5QgCwikro7gceBPXg30n0bb9i2bzrnjib8Xwc8yqlv1rvVzG4FcM4143XT+BLQAiwFnot/1zl3L/AfwN1m1glsBq4dZ56/DzwGbABewbvRLtGHgT7gu3g3D/b588Tz2W1mVyTkZQ3Qg9d145Fx5kFEJNTM69omIiIiIiKgFmQRERERkWMoQBYRERERSaAAWUREREQkgQJkEREREZEE+UFnIFF1dbVbsGBB0NkQERERkTPAunXrmp1zNcdPD1WAvGDBAtauXRt0NkRERETkDGBmYz5NVF0sRERyiHOO53c309ozGHRWREQmLQXIIiI55Pbn9vHB76/ho7e/hMa5FxFJjQJkEZEcEYs5/ueZPQBsOtzBliOdAedIRGRyUoAsIpIj1u5vo76jn8+/ayUAq7c3BpwjEZHJSQGyiEiOWLu/FYB3XziHpTPKeeVAW8A5EhGZnBQgi4jkiA0H21lUXUZVaQEXnTWFVw+2qx+yiEgKFCCLiOSIXQ3dLK+tAOCCeVNo7x3iUFtfwLkSEZl8FCCLiOQA5xyH2/uYM6UEgHNqKwHYVq8b9UREkqUAWUQkB7T2DDIwHGO2HyCfPdNrSd5+tCvIbImITEoTCpDN7HNmdtjM1vv/r0v47BYzqzOzHWZ2zcSzKiIiJ1Pf0Q9AbZUXIJcV5TN/einbj6oFWUQkWel41PQ3nHNfTZxgZiuAG4GVwGzgCTNb5pyLpiE9ERE5TkffEABTSgtGpp0zq5Lt9WpBFhFJVqa6WNwA3O2cG3DO7QXqgEsylJaIyBmvq98LkCuKR9s9ltdWsLelh75BtU2IiCQjHQHyTWa20cxuN7Op/rQ5wMGE7xzyp53AzD5mZmvNbG1TU1MasiMicubp7B8GoLJ4tAV5+axKnIOdDWpFFhFJxmkDZDN7wsw2j/H/BuC7wGLgQqAe+FqyGXDO3eacW+WcW1VTU5Ps7CIiAnT7AXJiC/I5/pBvGslCRCQ5p+2D7Jx7y3h+yMy+Dzzo/3kYmJfw8Vx/moiIZECXHyCXFY3u1udNLaW8KF8BsohIkiY6ikVtwp/vATb77+8HbjSzIjNbCCwFXppIWiIicnJd/UOUFORRkDe6W49EjHNqK9hyRAGyiEgyJjqKxZfN7ELAAfuAjwM457aY2T3AVmAY+KRGsBARyZyu/uFjulfErZxdxT1rDxKLOSIRCyBnIiKTz4QCZOfch0/x2b8C/zqR3xcRkfHpGhgaM0BeMbuS3sEoe1t6WFxTHkDOREQmHz1JT0QkB3T1D1OeMIJF3MrZ3iOn1c1CRGT8FCCLiOSArv5hKsdoQV46o4LCvAhbjnQEkCsRkclJAbKISA7o6h+7i0VhfoRls8rZqhZkEZFxU4AsIpIDuvqHqSg6sYsFwMraKrYc6cQ5l+VciYhMTgqQRURyQPfA2KNYAJw/r4rWnkEOtPZmOVciIpOTAmQRkUluOBqjdzBK+UkC5NcumAbAy/vaspktEZFJSwGyiMgk1z0Qf8z02F0sltSUU1mcz9p9rdnMlojIpKUAWURkkos/ZvpkXSwiEWPVgmms3a8WZBGR8VCALCIyyXX2DwGMOcxb3KoFU6lr7Ka1ZzBb2RIRmbQUIIuITHLdfgty+UlGsQC4dKHXD/mF3S1ZyZOIyGSmAFlEZJI7XRcLgAvmTqGiOJ+ndzZlK1siIpOWAmQRkUmua8DrYnGqADk/L8IVS6t5ameTxkMWETkNBcgiIpPcaAvyybtYAFy5rIajnf3saOjKRrZERCYtBcgiIpPceLpYAFy5bAYAv9nWmPE8iYhMZgqQRUQmuc7+IQrzIhTln3qXPquqmIvPmsKDG+uzlDMRkclJAbKIyCTX1e89ZtrMTvvdd14wm231ndQ1qpuFiMjJKEAWEZnk4gHyeLzjvFrM4P4NakUWETkZBcgiIpNcV//QaW/Qi5tRWczlS6r5xdqDRGMazUJEZCwKkEVEJrlkWpABfv/S+Rzp6Oc32xoymCsRkclLAbKIyCTntSCPP0B+yzkzmFVZzE9e3J/BXImITF4KkEVEJjmvBXl8XSzAe2jIhy47i2d2NbPlSEcGcyYiMjkpQBYRmeSS7WIB8OHXLaCiOJ9v/WZXhnIlIjJ5KUAWEZnEojFH98AwlUm0IANUlRTwR29YyGNbGtSKLCJyHAXIIiKTWPfA+J6iN5Y/unwhU0oL+MKDW3FOI1qIiMQpQBYRmcS6+ocAkm5BBq8V+W/fdjYv7mnV0/VERBIoQBYRmcQ6+1JvQQb4wCVnsXJ2JV98aCvtvYPpzJqIyKQ14QDZzP7CzLab2RYz+3LC9FvMrM7MdpjZNRNNR0REThRvQU5mFItEeRHjP37nfFq6B/mHezerq4WICBMMkM3sTcANwAXOuZXAV/3pK4AbgZXA24HvmFneBPMqIiLH6eqfWAsywLlzqvjrty7joU31/PKVw+nKmojIpDXRFuQ/B77knBsAcM41+tNvAO52zg045/YCdcAlE0xLRESO0zUQb0FOPUAG+LMrF3Ppwmn8w72b2HioPQ05ExGZvCYaIC8DrjCzNWb2lJm91p8+BziY8L1D/rQTmNnHzGytma1tamqaYHZERM4soy3IqXWxiMuLGN/+/YupLi/iYz9eR2NnfzqyJyIyKZ02QDazJ8xs8xj/bwDygWnAZcDfAfeYmSWTAefcbc65Vc65VTU1NSkthIjImaqzzx/FomRiLcgA1eVFfP8jq+jsH+LDP3iJth7dtCciZ6bTBsjOubc4584d4/99eC3Dv3Kel4AYUA0cBuYl/Mxcf5qIiKRRW+8QpYV5FOWn5zaPFbMr+f5HVrG3pYeP/vClkZsARUTOJBPtYvF/wJsAzGwZUAg0A/cDN5pZkZktBJYCL00wLREROU5b7yBTSwvT+ptvWFLNd3//YrYe6eRD/7OGlu6BtP6+iEjYTTRAvh1YZGabgbuBj/qtyVuAe4CtwKPAJ51z0QmmJSIix2nvHWJq2cT6H4/l6nNmcuuHXsP2o12879YXONjam/Y0RETCakIBsnNu0Dn3Ib/LxcXOuScTPvtX59xi59zZzrlHJp5VERE5XmtP+luQ496yYiZ3/MmlNHcP8N7vPs/afa0ZSUdEJGz0JD0RkUmsPQNdLBKtWjCNX/756ykrzOPG217kxy/s08NERCTnKUAWEZnEvBbk9HexSLR0ZgX33XQ5Vy6r4bP3beEv715PR69u3hOR3KUAWURkkhqOxujsH2ZqWeZakOOqSgr4/kdW8bdvW8Yjm+q55ptP88wujV0vIrlJAbKIyCTV5rfiTstCgAwQiRg3vXkp937iDZQV5fHhH7zE3/9iA60aL1lEcowCZBGRSarBf9rdzMrirKZ73twqHvrLK/j4lYv41SuH/397dx5nZ1nf///1OdtMZkkmyQwJWSABAghoQgiLZVEWNa5Rf5SCWKm1X6q1alu7iPXxtfX7o622VesXhSKCthWBIii1dUNQKFYgYQ0EJAkJSci+TWY92+f7x32fmXvOnMk2y33OnPfz8TiPc9/Xfd3X/Tnnytz5nOtc9324+B9+zrcf3UihqLnJIjI5KEEWEalRW/cHCfKx0yY2QQZoTCe57q2v4b8+cSGnzm7lL+9dzdu/8jA/W7NdF/GJSM1TgiwiUqO27e8FYHYMCXLJybNauePa8/jKVWfSmyvwoW+t5PKb/odfrtulRFlEapYSZBGRGrWts49Uwmhvbog1DjPjXYvncP+fvIG/ec9r2by3h/d9/VFWfPUR/uPpV8kXirHGJyJypFJxB1DrCkWnJ5unN1egL1ukN1cgmw/+MzALHxhm0JBKMCWTpDGVZEomSUMqgZnF/ApEpFZt2NXD3OlTSCSq4zySTiZ437nH8d6lc/nuE5u55eGX+dh3nmTe9Clcdc5xXH7WvAmfLy0icjSUIB9Cd3+e9Tu7Wb+ri3U7utiwu4cdB/rY3ZVlV1f/wFXkR2tKOkiWWxpStDammNqYDp6npIetTx1YTzN1SorWcFs6qS8CROrRmm2dnDKrNe4whmlMJ7n63OO56uzjuH/Ndr7x3y/z9z9+kS/+9NdcfEoHv7lsPm84uYPGdDLuUEVEKlKCDDy7eT+5YpG93Vk27O5hw65u1u3sYv3ObraFV4kDJAzmTW9i1tQGTjqmhXNPmMHM5gZaG1M0ppNMSSdpTCfJpIKE1d0JLuoOnrP5YIS5L1cIR5wL9OWL9GTzHOgLHp29OTbu7qGzL8eBvjxd/flDxj8lnayYVJcS6amNQXJdnliX6jVnUlUzAiUih2dfT5YNu7p51+I5cYcyokTCePPps3nz6bN5eVc3d63cxN2rNnP/mh00Z5JcfOoxvPWMY3njKR00N+i/IxGpHjojAZff9Ev684Nz5FobU5zQ0cJvnDSTEztaOLGjmRM6Wjh+ZhMNqYkd8SgUna6+PJ19ueDRm+dAX47OvvA5XD8Q1jnQl2dvT5ZX9vQMbM8eYv6fWZBkN2WC0exgVDtFU1lZsJyiKRMsN6STZJJGJpUgkww+GKTD9YYKZZlUgoZkknTKSCaMVCJBwtA0E5EjVCw6Nz+0nqLDxaccE3c4h2VhezN/sfxUPvmmk/nlut38cPU2fvLcNn7wzFYyyQRLj2/jwkUdXHBSO2fMnUZSH9pFJEZWTVcZL1u2zFeuXDnhx33wxR3gMK0pzYKZzUxvSk+qpK0vVxhInkuj1AdKCXZY3pst0JMrBM/ZPD3ZYLl3oKwwMNc6VxjbfzPJhJG0IGlOJoyEQSqZIGFGKjFYPvAI6yYSg/O7DcAMg4F1G7IeFA5ZZ/g8cYbtN1SlV17+J1Re53D+xoa3MXyfYXWOZp9hFSrEUlZ4JK/PB8oq1A0Lh9fx8irD9q/0HpbvH61Svp+XbzhYnYO0Xakry/cfGkfZ/hXqMGKdkd/XQtHp6s/znjPn8qXfWjI8qBpRKDqPvbyHB1/cwcMv7WLN1k4gGKRYPK+NJfPbOPO44HlmS7wXIkr9cXcKxeAb4KI77sHfdPAc+Za4QnnwHJ4DBsqH1isWB//2R9qfIeWD9UrxHPH+YcwHi6u0f9D40PNY9DwVPfd5ZIehdQZKB9onsm+p3cZ0kuVnzB5Ndx01M1vl7suGlStBliOVKwxOFckVnGy+OPgoFMjmnWxhsCwXLvdHyorhiSdfdIqlZ3fyhfC5WKRQZOi2gbrhNveyE1HkDzb6B1/2x0+FP9jydoisl39WqvjRqaxSeZ1Kn7eG1zl4G5XasfJah3WcQ7RRqc4h9qn4+sJCq1DPDqMOkQ8xI7dTVidSaSDGivsPPW7lY5TFVnbMyq/nIHXKGzrS/cviWjx/GisWz51U06N2dfXzyNpdPPryHp56ZR8vbj8w8OMj7S0NnDyrhZNntXLSMS2cdEwLc9umcOy0RlK6DuOoFYvB+bo/cq4unbf780WyhSK50nO4PV8Mz9+FwfN4wZ1CIbJtyHNxyLl+oLwwdHsh8oiul5LBonv4iCwXB5PFgleoWxy6XylBrNhuWV2ZOHOmNfLL6y6N5dhKkEVEpKb0ZPOs3tLJM5v38eK2A/x6Rxdrtx+gO1sYqJNMGLOnNjK3bQpz2hqZ2dLAjOYMM5szwXNLhmlTMjQ3JGluCKaOTXRCXUpCc4UiuYIPJqKFoUnp0IEFDwccimQjAxHRfaPPldrJFaLLQRv9ZW1MxK8flr79Sw15TgyuJ4d+i5hKBtuTFuxrFmxPJCBhwXrCIBlZTkS2JyJlA3UTZXUtmCNfXjdZdoxo3eg3lhZug+HfOpqN9M3mYHnCot9qRuoc9BtNC48LDIll+P4V2yZ4LZTFEo3XytqOxkCkHQbqVi6PftiPfsgvtT+4TyCdTDB/RtMo/pUdvZESZM1BFhGRqtSUSXHOwhmcs3DGQJm78+r+Ptbv7GLL3l627Otly95eNu/rZeXGvezpztITSaAraUglaG5IMSW8qLqUtJUSs1QkmRsYTfTKI5FOMJI6UvKbC0dZx1LCCK/vKF3vkSAdPpfKM+FrbEsOL2+IXBtSKsuUPQ+Ul21LJ4N9B64jSUAqMfgeJpPRRFjXmUjtUoIsIiI1w8yY2zaFuW1TRqzTlyuwuzvLnq4su7v72d+boydboLs/uN6iO7ymoru/QC4cRc0Xi+TDr/xLy7lCcWD0LJEw0uGIY2l0sTQSmEhYJIG0MIksJaLhI2WRBDNy8XJyaDIa3W+wzGiIXPSsKSUi408JsoiITCqN6eQhk2gRkYPRx1ARERERkYiqukjPzHYCG2M6fDuwK6ZjS2Xqk+qkfqlO6pfqoz6pTuqX6hNnnxzv7h3lhVWVIMfJzFZWuopR4qM+qU7ql+qkfqk+6pPqpH6pPtXYJ5piISIiIiISoQRZRERERCRCCfKgm+MOQIZRn1Qn9Ut1Ur9UH/VJdVK/VJ+q6xPNQRYRERERidAIsoiIiIhIhBJkEREREZGIuk+QzWy5mb1oZmvN7FNxx1NPzOxWM9thZqsjZTPM7Kdm9lL4PD0sNzP7SthPz5jZ0vgin7zMbL6ZPWhmz5vZc2b2ibBc/RIjM2s0s8fM7OmwX/46LF9oZo+G7/+dZpYJyxvC9bXh9gWxvoBJzMySZvakmf0gXFefxMzMNpjZs2b2lJmtDMt0DouZmbWZ2d1m9oKZrTGz11dzv9R1gmxmSeCrwFuB04CrzOy0eKOqK98ElpeVfQr4mbsvAn4WrkPQR4vCx7XAjRMUY73JA59099OA84CPhn8T6pd49QOXuPtiYAmw3MzOAz4PfMndTwL2Ah8K638I2BuWfymsJ+PjE8CayLr6pDpc7O5LIvfW1Tksfv8E/MjdTwUWE/zdVG2/1HWCDJwDrHX39e6eBe4AVsQcU91w94eAPWXFK4BvhcvfAt4dKf8XD/wKaDOzYyck0Dri7lvd/Ylw+QDBCWwu6pdYhe9vV7iaDh8OXALcHZaX90upv+4GLjUzm5ho64eZzQPeDtwSrhvqk2qlc1iMzGwacBHwDQB3z7r7Pqq4X+o9QZ4LbIqsbw7LJD6z3H1ruLwNmBUuq68mWPgV8JnAo6hfYhd+lf8UsAP4KbAO2Ofu+bBK9L0f6Jdw+35g5oQGXB++DPw5UAzXZ6I+qQYO/MTMVpnZtWGZzmHxWgjsBG4LpyTdYmbNVHG/1HuCLFXMg3sQ6j6EMTCzFuC7wB+5e2d0m/olHu5ecPclwDyCb79OjTei+mZm7wB2uPuquGORYS5w96UEX9N/1Mwuim7UOSwWKWApcKO7nwl0MzidAqi+fqn3BHkLMD+yPi8sk/hsL32NEj7vCMvVVxPEzNIEyfG33f2esFj9UiXCryUfBF5P8LVjKtwUfe8H+iXcPg3YPbGRTnrnA+8ysw0E0/MuIZhjqT6JmbtvCZ93APcSfKDUOSxem4HN7v5ouH43QcJctf1S7wny48Ci8KrjDHAlcF/MMdW7+4BrwuVrgO9Hyj8QXtl6HrA/8rWMjJFwTuQ3gDXu/sXIJvVLjMysw8zawuUpwJsI5oc/CFweVivvl1J/XQ484PpVqDHl7te5+zx3X0Dwf8cD7n416pNYmVmzmbWWloE3A6vROSxW7r4N2GRmp4RFlwLPU8X9Uve/pGdmbyOYR5YEbnX36+ONqH6Y2XeANwLtwHbgs8D3gLuA44CNwBXuvidM3G4guOtFD/BBd18ZQ9iTmpldADwMPMvgvMpPE8xDVr/ExMxeR3ABS5JgYOMud/+cmZ1AMHo5A3gSeL+795tZI/CvBHPI9wBXuvv6eKKf/MzsjcCfuvs71CfxCt//e8PVFHC7u19vZjPROSxWZraE4ILWDLAe+CDh+Ywq7Je6T5BFRERERKLqfYqFiIiIiMgQSpBFRERERCKUIIuIiIiIRChBFhERERGJUIIsIiIiIhKhBFlEREREJEIJsoiIiIhIhBJkEREREZEIJcgiIiIiIhFKkEVEREREIpQgi4iIiIhEKEEWEREREYlQgiwichTMbIOZXTaBx/u5mf3eOLS7wMzczFJj3baISK1SgiwiMg7MbKGZFc3sxgrb3My6zazLzLaY2RfNLBlHnOXM7B/M7CUzO2BmL5jZB+KOSURkoilBFhEZHx8A9gK/ZWYNFbYvdvcW4FLgfcD/msjgDqIbeCcwDbgG+Ccz+414QxIRmVhKkEVEjt7ZZva8me01s9vMrBHAzIwgQf4MkCNIOCty9xeAh4EzouVm9qZwBHe/md0AWNn23zWzNeGxf2xmx0e2uZl9OBwJ3mdmXw1jwsyS4SjxLjNbD7y9LJ7PuvsL7l5090fD2F5fHreZNYRtnxEp6zCzXjM75vDePhGR6qQEWUTk6F0NvAU4ETiZICEGuACYB9wB3EUwEluRmZ0GXAg8GSlrB+4J22sH1gHnR7avAD4NvBfoIEhiv1PW9DuAs4HXAVeEcUIwUv0O4ExgGXD5QWKbErbxXPk2d+8PY7wqUnwF8At33zFSmyIitUAJsojI0bvB3Te5+x7gegaTxWuAH7r7XuB2YHmFUdUnzGwv8B/ALcBtkW1vA55z97vdPQd8GdgW2f5h4G/dfY2754G/AZZER5GBv3P3fe7+CvAgsCQsvwL4ciTuvz3I67sJeBr48QjbbweujKy/LywTEalpSpBFRI7epsjyRmBOOOr6m8C3Adz9f4BXCJLHqKXuPt3dT3T3z7h7MbJtTrRtd/eyYx1PMDd4n5ntA/YQTMGYG6kTTah7gJZKbYdxD2Nmf08w7eOK8PiVPAg0mdm5ZraAIAm/d4S6IiI1QwmyiMjRmx9ZPg54FXgPMBX4mpltM7NtBInriNMsKtgabTucPxw91ibg9929LfKY4u6/PNK2w7iHMLO/Bt4KvNndO0dqyN0LBFNIrgofP3D3A4cRg4hIVVOCLCJy9D5qZvPMbAbwl8CdBInwrcBrCUZUlxDMH15sZq89zHb/EzjdzN4b3p/448DsyPabgOvM7HQAM5tmZr95mG3fBXw8jHs68KnoRjO7jmC0+zJ3330Y7d0O/BbBfGxNrxCRSUEJsojI0bsd+AmwnuBCuq8S3Lbty+6+LfJYBfyIg1+sd5OZ3QTg7rsIpmn8HbAbWAQ8Uqrr7vcCnwfuMLNOYDXBiO/h+DrBnOKngScILrSL+huCUeW14X2au8zs05E4u8zswkgsjxLcGm4O8MPDjEFEpKrZyFPLRERERETqj0aQRUREREQilCCLiIiIiEQoQRYRERERiVCCLCIiIiISkYo7gKj29nZfsGBB3GGIiIiISB1YtWrVLnfvKC+vqgR5wYIFrFy5Mu4wRERERKQOmFnFXxPVFAsRkUmoP19gT3c27jBERGqSEmQRkUmmL1dgxQ2PcPb19/Nfz26NOxwRkZqjBFlEZJL5z2e28sK2A2SSCT5733P0ZPNxhyQiUlOUIIuITDI/XL2VuW1TuO2DZ7PzQD/fe/LVuEMSEakpSpBFRCYRd+fxDXu5cFE75y6cwSmzWrlz5aa4wxIRqSlKkEVEJpFNe3rZ35vjdfPaMDOuOHs+T2/ax4vbDsQdmohIzVCCLCIyiTy9eR8Ar5s3DYB3L5lDKmHc8+TmGKMSEakto0qQzeyvzGyLmT0VPt4Wli8ws95I+U1jE66IiBzMmq2dpBLGybNaAZjZ0sAbTu7g+0++SqHoMUcnIlIbxuKHQr7k7v9QoXyduy8Zg/ZFROQwbdjdzfwZTWRSg+Mf71k6l5+9sINfrd/N+Se1xxidiEht0BQLEZFJ5OVdPSyY2TSk7LLXzKK1IcU9T2yJKSoRkdoyFgnyH5rZM2Z2q5lNj5QvNLMnzewXZnbhSDub2bVmttLMVu7cuXMMwhERqU/uzsbd3Sxobx5S3phO8rbXHsuPVm+lN1uIKToRkdpxyATZzO43s9UVHiuAG4ETgSXAVuAfw922Ase5+5nAnwC3m9nUSu27+83uvszdl3V0dIzFaxIRqUs7DvTTky2wsCxBhmCaRXe2wE+e3xZDZCIiteWQc5Dd/bLDacjMvg78INynH+gPl1eZ2TrgZGDl0YcqIiIHs3lvDwDzZzQN23bOghnMbZvCPU9sYcWSuRMdmohITRntXSyOjay+B1gdlneYWTJcPgFYBKwfzbFEROTgtnf2AzB7auOwbYmE8e4z5/DwSzvZcaBvokMTEakpo52D/AUze9bMngEuBv44LL8IeMbMngLuBj7s7ntGeSwRETmI7Z1B4jurQoIM8J4z51F0uO8p/fS0iMjBjOo2b+7+2yOUfxf47mjaFhGRI7Ots4900pjelK64/aRjWnjdvGnc++QWfu/CEyY4OhGR2qHbvImITBI7Ovs5prURMxuxznvOnMtzr3by6+366WkRkZEoQRYRmSS2d/Yxa2rDQeu8c/EckgnTPZFFRA5CCbKIyCSxq6uf9paDJ8jtLQ1ctKid7z+1haJ+elpEpCIlyCIik8T+3hxtI8w/jnrv0nls3d/Hf6/dNQFRiYjUHiXIIiKTxP7eHNOmHDpBfvPps2hvyfDNX24Y/6BERGqQEmQRkUmgP1+gL1c8rAS5IZXk6nOP54EXdvDyru4JiE5EpLYoQRYRmQT29+YAmNaUOaz6V593HOmk8S2NIouIDKMEWURkEtjfEybIhzGCDHBMayPvfN0c/n3lJjr7cuMZmohIzVGCLCIyCQyMIB9mggzwuxcspDtb4PZHXxmvsEREapISZBGRSeBoEuQz5k7jwkXt3PLwenqzhfEKTUSk5ihBFhGZBI4mQQb4w4tPYldXlu88plFkEZESJcgiIpNAKUFuO8IE+dwTZnLOwhn880Pr6MtpFFlEBJQgi4hMCqUEeeoRJsgAH79kEds7+/n3VZvHOiwRkZqkBFlEZBLY15OjtSFFMmFHvO/5J83krOOnc8MDL2kusogISpBFRCaFzt7cUY0eA5gZf7H8VLZ39nPrIy+PcWQiIrVHCbKIyCRwuD8zPZJzFs7gstccw00/X8ee7uwYRiYiUnuUIIuITAL7e3O0NR19ggzwF8tPpTub5/8+8NIYRSUiUpuUIIuITAKjHUEGWDSrlSuWzefffrWRtTu6xigyEZHaowRZRGQS2DcGCTLAJ998Co3pJH9133O4+xhEJiJSe5Qgi4hMAvt7c0wb5RQLgI7WBv70zafw32t38V/PbhuDyEREas+oE2Qz+5iZvWBmz5nZFyLl15nZWjN70czeMtrjiIhIZX25Atl8cUxGkAHef97xnD5nKv/nB8/T3Z8fkzZFRGrJqBJkM7sYWAEsdvfTgX8Iy08DrgROB5YDXzOz5ChjFRGRCvb1lH5FLzMm7SUTxudWnMG2zj7+/scvjkmbIiK1ZLQjyB8B/s7d+wHcfUdYvgK4w9373f1lYC1wziiPJSIiFZR+RW+sRpABzjp+Or/zGwv45i838Oj63WPWrohILRhtgnwycKGZPWpmvzCzs8PyucCmSL3NYdkwZnatma00s5U7d+4cZTgiIvVnX09w3+LR3uat3J8vP4XjZzbxZ3c/Q09WUy1EpH4cMkE2s/vNbHWFxwogBcwAzgP+DLjLzI7od07d/WZ3X+buyzo6Oo7qRYiI1LPxGEEGaMqk+ML/9zpe2dPD53/4wpi2LSJSzVKHquDul420zcw+Atzjwb2AHjOzItAObAHmR6rOC8tERGSM7RunBBng3BNm8sHzF3DbIxu46OQOLn3NrDE/hohItRntFIvvARcDmNnJQAbYBdwHXGlmDWa2EFgEPDbKY4mISAX7w4v0xuI2b5X8xfJTOe3YqXzy35/m1X2943IMEZFqMtoE+VbgBDNbDdwBXOOB54C7gOeBHwEfdffCKI8lIiIV7O/NkUwYrQ2H/FLwqDSmk3z16qXk8kU+/p0nyRWK43IcEZFqMaoE2d2z7v5+dz/D3Ze6+wORbde7+4nufoq7/3D0oYqISCX7erNMbUxxhJeAHJGF7c38zXtfy8qNe3XrNxGZ9MZnuEFERCbM/t48bU1jcw/kg1mxZC6Pb9jDzQ+t5+RZrVx+1rxxP6aISBz0U9MiIjVuX0+WqeNwgV4ln33n6bz+hJl8+p5nWbVxz4QcU0RkoilBFhGpcft6ckwfpwv0yqWTCb529VKObWvk9/91FZv29EzIcUVEJpISZBGRGrerq5/2loYJO9705gzfuGYZuYLz/m88yo4DfRN2bBGRiaAEWUSkhrk7u7uyzGwZ/znIUScd08ptHzybHZ39XHPr4wM/ViIiMhkoQRYRqWEH+vNkC0XamyduBLlk6XHTufkDZ7F2xwF+95uPc6BPSbKITA5KkEVEatjuriwA7a0TO4JccuGiDr5y5Zk8vWkf7//GYwM/WiIiUsuUIIuI1LBdXf0AzIxhBLnkra89lq9dvZQ1r3Zy1dd/xe4wJhGRWqUEWUSkhpWS0Ymeg1zuzafP5uvXLGPdzi4uv+l/eHlXd6zxiIiMhhJkEZEatqs0xWIC72Ixkjec3MG//d657OvJ8p6vPcJjL+s+ySJSm5Qgi4jUsB2dfSQMZjTHO4JccvaCGdz7B+czoynD1bf8ijseewV3jzssEZEjogRZRKSGbd7Xy6ypjaST1XM6X9DezL1/cD7nLpzJp+55lk/e9TTd/fm4wxIROWzVc0YVEZEjtmVvL/OmT4k7jGGmNaX51u+ewx9fdjL3PrWFd93w36zesj/usEREDksq7gAmK3enP1+kuz9Pd3+BvnwBA8zAzEia0dSQpDmToimTxMziDllEatDmvb2cvWB63GFUlEwYn7hsEWcvmM4n7nyKFV99hI+84UQ+dulJNKSScYcnIjIiJcij1NmX47ktnTz36n5e3HaALft6eXVfL1v399GfLx5WG2bQnEnR0pBiRnOGmS0ZZjZnmNnSwMyWDO3N4XNLAx2tDbS3NJBJafBfpN715wts6+xj/oymuEM5qN84qZ2f/vFF/J8frOGGB9fy4+e28bkVZ/D6E2fGHZqISEVKkI+Qu/PM5v3cv2Y7D720i2c276N0/Ul7SwPHzZjCGXOn8abTZtHWlKGlIUVzQ4rGdAJ38LCNQtHpzhbCEeY8Xf15DvTl2dudZVd3lpd3dbOnO0tPtlAxjmlT0nS0NtARJs2lxLm03NHSQHtrhpnNDSQTGp0WmYzW7uiiUHROmd0adyiH1NaU4R+vWMw7Fh/LZ+5dzVVf/xVvOX0Wn37bazh+ZnPc4YmIDKEE+TDt7c5y+2Ov8N0nNrN+ZzcJgyXz2/jYJYtYelwbp8+ZRkfr2N9mqSebZ3dXlt3dWXYd6GdnVz87DwSPXeHy05v3sfNAf8VkOri6vZRAZ4Yk0OUJ9rQpaU31EKkhz23pBODU2VNjjuTwXXzKMfzsk2/g6w+t58ZfrONNX3yIK86ex4ffcCLzplf3SLiI1A8lyIewvbOPG3++jjsf30RvrsA5C2dw7YUn8NYzjmVaU3rcj9+USdE0I3VYX6F29+cHkuadYTJdnlSv39nNzgP9ZAvDp3+kkzY4Ch0+tzVlaG1MMXVKmqmNKVobU7Q2ppnamA6XUzRnUiQ0Si0y4R58cQfHtDZwYkdtjcA2ppN87NJFXHH2fL58/0vc+fgm7nhsE+9dOpdrLzqBk46p/hFxEZnclCCPoC9X4JaH1/O1n68jmy+yYslcfv8NJ3DyrOo9cTeH0zkO9XWlu9PZm2dnVx87D2Qrjkpv3d/HM1v2s68nS65w8HuYJgxaGlI0ZVJMySSZkk4OPDemkzRFywbKE6QSCdKpBJmkkU4mIo/B9UwqWE4lguWERR4JIuuQSIywbGXLMSbz5feDLb89rB+s7rC2otsO3u7wOA5/36ONqXzjwY4zvJ2RjzM8vpEDPmh8RxHTkO0+uH90+lRp38G6PrA9ul9pe3k7Q56H7TsY8XOvdvLj57bxwfMX1uw3P7OmNvK3730tH7vkJG5+aD3feewV7lq5mXMXzuD95x3PW06frestRCQWVk03cF+2bJmvXLky7jBYtXEvn7zrKTbs7mH56bO57m2n1u0cudLdODr7cnT25jnQl+NAXzBfurMvN7De2ZujN1egN1ekN5sPlrPD1/tyxYqj1yJy5JYe18atv3M2bU3V8SMho7Wrq59/X7mZ2x/byKY9vbQ1pVl++mze/rpjef0JM0lV0b2epXoVi04hvNanEC4XhywzrMzdKXrw4bToTjH8QFz6ABtsG3z28DhOUB+HYrjv0DKPtAkw9DilD9aD9QY/jJeOOxjL0OOWfzCHoR/AnZE+gI+83cMFr9BWtH0ixz74AMBgW8GrH3rs0gDCtKY01731NWP5z+Cwmdkqd182rHy0CbKZfQz4KFAA/tPd/9zMFgBrgBfDar9y9w8fqq24E+Rsvsg//ezX3PjzdRw7bQpfuPx1nH9Se2zxTFa5QpH+fJF8IUiWcwUnXyiSKxTJ5p1cuJwrRJeLZAs+cCIpFEsnjeAEUigOXS6dUArRE8/AiXBiX68D0fG98sE+Y2hBdHv5uOCwfQ8ycjimx4nUONRgZTSmQ7dbeb9D1S3feLDjHOx1H+m+2GB9Mxu4dWNpv1L9wTIbOEb59sF2wiOV9om0PVB3YJsNxDCjOcNr506r2dHjgykWnYde2sn3ntzCT5/fTne2wPSmNBcu6uDCRe1cuKiD2dMa4w5zUioNivTnivTnC8FyPhjcKC2Xb8+G5/NcwckVi+RL5/SiD5YXgvKB7cXgfJ8P13OFIvmiD5z7C8VgvRhNaqPJbpgAF8uS3kKxegb9alnpHBU9zw2clWzoOS1aN9wcqVN5e/S8Z8DsaY3c94cXTORLHDBSgjyqKRZmdjGwAljs7v1mdkxk8zp3XzKa9ifS+p1dfOKOp3h2y35+86x5/O93nkZr4/jPMa5HpekTIiKVJBLGG085hjeecgx9uQI/f3EnP35uGw+/tIv7nn4VgBPam1k8v43F86axeH4bp86eypTM5L63sruTLRTpzRboCR/Bcn5gvSf8xq4nW6CnPyzPVapXCBLcssQ3e5i3Jz0c6aQFU+nCaXOpYeuJsI6RSiZoTCdobUyRSiRIJYxkMvjNgGQ4ZS6ZILI8+DxkeziNrvScSgytW9qWDKfolfa3IVPyAILnUrkNLAdpYqKU+IVJYmlqXzQprFQ3UbZtsP3wmaF1Kx1nWNI65EP08O1DPvRXSGqHftCffB+4j9Zo5yB/BPg7d+8HcPcdow9pYvXlCvzzL9bzzw+tI5NKcNP7z2L5GbPjDktERAgu6Ft+xmyWnzEbd+eFbQd4+KWdrNywl0fW7uLeJ7cAwX/wc9umcGJHCyd2tHD8zCZmTW1k9rRGZk9tpKN14m95WSw6PbkgUe0KfzSqOxvc2jN6m89SeVd/PqwbJLOlW4D2ZAt09efpzRbIH+EI6ZR0kuaG4PqPpnRwnUhTJsn0pjSN6SQNqSQN6QQNqUSwnEqE6+FyKkFDOrIcqd8YlmciyW5wzchg0ilSq0Y1xcLMngK+DywH+oA/dffHwykWzwG/BjqBz7j7wyO0cS1wLcBxxx131saNG486nqPRny9w6T/+gjPmTOOz7zqNY6dV30+2iojIcO7Ots4+nt60j19v72LdzvCxo5ve3NDbXiaM4A48U1K0NoTPjUGSmE4a6USCdGrwAuHy6VuFcL1YdLL5In3htIO+XCF8BGX9YVlpFPdwNaQSA/fNb8okB5abw19cLZU3ZZJMyQwuN4XLpcS3OTOYBDemkrrDkMghHPUcZDO7H6g0pPqXwPXAg8DHgbOBO4ETgAzQ4u67zews4HvA6e7eebBjxTUHubMvx1RNpxARmRSKRWd3d5btnX1s29/Hts4+dnT2sb83R2dfcLFxZ29woXE2X7oWIpgLW1o2SqOgg1/rl75+z4Sjp43pBI2p5MByQzoZrgfbmxtSNGeC55ZI4tvUkKKlIRkmvUEdXYAoEo+jnoPs7pcdpNGPAPd4kGU/ZmZFoN3ddwKlaRerzGwdcDIQ/y0qKlByLCIyeSQSNvADSGfMnRZ3OCJSg0b7kfV7wMUAZnYywcjxLjPrMLNkWH4CsAhYP8pjiYiIiIiMu9FepHcrcKuZrQaywDXu7mZ2EfA5M8sBReDD7r5nlMcSERERERl3VfVDIWa2E5jYq/QGtQO7Yjq2VKY+qU7ql+qkfqk+6pPqpH6pPnH2yfHu3lFeWFUJcpzMbGWlSdoSH/VJdVK/VCf1S/VRn1Qn9Uv1qcY+0WWzIiIiIiIRSpBFRERERCKUIA+6Oe4AZBj1SXVSv1Qn9Uv1UZ9UJ/VL9am6PtEcZBERERGRCI0gi4iIiIhE1H2CbGbLzexFM1trZp+KO556Yma3mtmO8D7apbIZZvZTM3spfJ4elpuZfSXsp2fMbGl8kU9eZjbfzB40s+fN7Dkz+0RYrn6JkZk1mtljZvZ02C9/HZYvNLNHw/f/TjPLhOUN4fracPuCWF/AJGZmSTN70sx+EK6rT2JmZhvM7Fkze8rMVoZlOofFzMzazOxuM3vBzNaY2euruV/qOkEOf+3vq8BbgdOAq8zstHijqivfBJaXlX0K+Jm7LwJ+Fq5D0EeLwse1wI0TFGO9yQOfdPfTgPOAj4Z/E+qXePUDl7j7YmAJsNzMzgM+D3zJ3U8C9gIfCut/CNgbln8prCfj4xPAmsi6+qQ6XOzuSyK3DtM5LH7/BPzI3U8FFhP83VRtv9R1ggycA6x19/XungXuAFbEHFPdcPeHgPJfWFwBfCtc/hbw7kj5v3jgV0CbmR07IYHWEXff6u5PhMsHCE5gc1G/xCp8f7vC1XT4cOAS4O6wvLxfSv11N3CpmdnERFs/zGwe8HbglnDdUJ9UK53DYmRm04CLgG8AuHvW3fdRxf1S7wnyXGBTZH1zWCbxmeXuW8PlbcCscFl9NcHCr4DPBB5F/RK78Kv8p4AdwE+BdcA+d8+HVaLv/UC/hNv3AzMnNOD68GXgz4FiuD4T9Uk1cOAnZrbKzK4Ny3QOi9dCYCdwWzgl6RYza6aK+6XeE2SpYh7cYkW3WYmBmbUA3wX+yN07o9vUL/Fw94K7LwHmEXz7dWq8EdU3M3sHsMPdV8UdiwxzgbsvJfia/qNmdlF0o85hsUgBS4Eb3f1MoJvB6RRA9fVLvSfIW4D5kfV5YZnEZ3vpa5TweUdYrr6aIGaWJkiOv+3u94TF6pcqEX4t+SDweoKvHVPhpuh7P9Av4fZpwO6JjXTSOx94l5ltIJiedwnBHEv1SczcfUv4vAO4l+ADpc5h8doMbHb3R8P1uwkS5qrtl3pPkB8HFoVXHWeAK4H7Yo6p3t0HXBMuXwN8P1L+gfDK1vOA/ZGvZWSMhHMivwGscfcvRjapX2JkZh1m1hYuTwHeRDA//EHg8rBaeb+U+uty4AHXTe/HlLtf5+7z3H0Bwf8dD7j71ahPYmVmzWbWWloG3gysRuewWLn7NmCTmZ0SFl0KPE8V90vd/1CImb2NYB5ZErjV3a+PN6L6YWbfAd4ItAPbgc8C3wPuAo4DNgJXuPueMHG7geCuFz3AB919ZQxhT2pmdgHwMPAsg/MqP00wD1n9EhMzex3BBSxJgoGNu9z9c2Z2AsHo5QzgSeD97t5vZo3AvxLMId8DXOnu6+OJfvIzszcCf+ru71CfxCt8/+8NV1PA7e5+vZnNROewWJnZEoILWjPAeuCDhOczqrBf6j5BFhERERGJqvcpFiIiIiIiQyhBFhERERGJUIIsIiIiIhKhBFlEREREJEIJsoiIiIhIhBJkEREREZEIJcgiIiIiIhFKkEVEREREIpQgi4iIiIhEKEEWEREREYlQgiwiIiIiEqEEWUREREQkQgmyiMgomNkGM7ss7jhERGTsKEEWERlHZrbQzIpmdmOFbW5m3WbWZWZbzOyLZpaMI04RERmkBFlEZHx9ANgL/JaZNVTYvtjdW4BLgfcB/2sigxMRkeGUIIuIjN7ZZva8me01s9vMrBHAzIwgQf4MkAPeOVID7v4C8DBwRqnMAl8ysx1m1mlmz5rZGeG2aWb2L2a208w2mtlnzCwRbvsdM3sk3Hefma03s98IyzeF7V0TOc7bzezJ8BibzOyvKsVoZg1he9EYO8ys18yOGcX7JyJSVZQgi4iM3tXAW4ATgZMJEmKAC4B5wB3AXcA1FfcGzOw04ELgyUjxm4GLwjanAVcAu8Nt/zcsOwF4A0Ei/sHIvucCzwAzgdvDGM4GTgLeD9xgZi1h3e5w/zbg7cBHzOzd5TG6ez9wD3BVpPgK4BfuvmOk1yYiUmuUIIuIjN4N7r7J3fcA1zOYQF4D/NDd9xIkqcsrjLQ+YWZ7gf8AbgFui2zLAa3AqYC5+xp33xrOU74SuM7dD7j7BuAfgd+O7Puyu9/m7gXgTmA+8Dl373f3nwBZgmQZd/+5uz/r7kV3fwb4DkHSXcnt4bFL3heWiYhMGkqQRURGb1NkeSMwx8ymAL8JfBvA3f8HeIUgoYxa6u7T3f1Ed/+MuxdLG9z9AeAG4KvADjO72cymAu1AOjxW9LhzI+vbI8u9YXvlZS0AZnaumT0YTtfYD3w4PEYlDwJN4T4LgCXAvSPUFRGpSUqQRURGb35k+TjgVeA9wFTga2a2zcy2ESSwI06zqMTdv+LuZwGnEUy1+DNgF8Ho8vFlx91ylPHfDtwHzHf3acBNgI0QT4FgushV4eMH7n7gKI8rIlKVlCCLiIzeR81snpnNAP6SYErDNcCtwGsJRlmXAOcDi83stYfTqJmdHY7UpgnmCfcBxUiSer2ZtZrZ8cCfAP92lPG3Anvcvc/MzmH4KHe524HfIph7rekVIjLpKEEWERm924GfAOuBdQRTIi4Fvuzu2yKPVcCPOPjFejeZ2U3h6lTg6wS3idtIcIHe34fbPkaQNK8H/juM4dajjP8PgM+Z2QHgfxMk39GYuszswtK6uz8aHnsO8MOjPKaISNUyd487BhERERGRqqERZBERERGRCCXIIiIiIiIRSpBFRERERCKUIIuIiIiIRKTiDiCqvb3dFyxYEHcYIiIiIlIHVq1atcvdO8rLqypBXrBgAStXrow7DBERERGpA2a2sVK5pliIiIiIiEQoQRYRqUFX3fwr/vjOp+IOQ0RkUlKCLCJSg/5n/W7ufXJL3GGIiExKSpBFRERERCKUIIuIiIiIRChBFhERERGJUIIsIiIiIhKhBFlEREREJEIJsoiIiIhIhBJkEREREZEIJcgiIiIiIhFKkEVEREREIpQgi4iIiIhEKEEWEREREYlQgiwiUsPcPe4QREQmHSXIIiI1LF9UgiwiMtaUIIuI1LBcoRh3CCIik44SZBGRGpbNK0EWERlrSpBFRGpYViPIIiJjTgmyiEgNyxU0B1lEZKwpQRYRqWE5TbEQERlzSpBFRGqYLtITERl7454gm9lyM3vRzNaa2afG+3giIvVEc5BFRMbeuCbIZpYEvgq8FTgNuMrMThvPY4qI1BPNQRYRGXvjPYJ8DrDW3de7exa4A1gxzscUEakbmmIhIjL2xjtBngtsiqxvDssGmNm1ZrbSzFbu3LlznMMREZlcdJGeiMjYi/0iPXe/2d2Xufuyjo6OuMMREakpmoMsIjL2xjtB3gLMj6zPC8tERGQMaA6yiMjYG+8E+XFgkZktNLMMcCVw3zgfU0SkbmgOsojI2EuNZ+PunjezPwR+DCSBW939ufE8pohIPVGCLCIy9sY1QQZw9/8C/mu8jyMiUo+yukhPRGTMxX6RnoiIHD3NQRYRGXtKkEVEapimWIiIjD0lyCIiNUwJsojI2FOCLCJSw3QfZBGRsacEWUSkhuXymoMsIjLWlCCLiNQwTbEQERl7SpBFRGqM++CosRJkEZGxpwRZRKTGRPJjzUEWERkHSpBFRGpMQSPIIiLjSgmyiEiNKUYTZF2kJyIy5pQgi4jUmGJk0FgjyCIiY08JsohIjYlOsdAcZBGRsacEWUSkxkSnWGTzSpBFRMaaEmQRkRpTLOoiPRGR8aQEWUSkxkTyY3IFXaQnIjLWlCCLiNSYQlFzkEVExpMSZBGRGqNf0hMRGV9KkEVEakxec5BFRMaVEmQRkRoTvXOFfihERGTsKUEWEakx/WGCnEyYRpBFRMaBEmQRkRrTny8A0NKQ0kV6IiLjQAmyiEiNKY0gtzSkNIIsIjIORpUgm9lfmdkWM3sqfLwtsu06M1trZi+a2VtGH6qIiAD05YIR5NbG1ECyLCIiYyc1Bm18yd3/IVpgZqcBVwKnA3OA+83sZHcvjMHxRETqWn8uSIo7WhtYu6MLd8fMYo5KRGTyGK8pFiuAO9y9391fBtYC54zTsURE6kpp1LijpYF80enNaexBRGQsjUWC/Idm9oyZ3Wpm08OyucCmSJ3NYdkwZnatma00s5U7d+4cg3BERCa30kV6Ha0NABzoy8cZjojIpHPIBNnM7jez1RUeK4AbgROBJcBW4B+PNAB3v9ndl7n7so6OjiPdXUSk7pRGkNtbSglyLs5wREQmnUPOQXb3yw6nITP7OvCDcHULMD+yeV5YJiIio7R+ZxeZVIITj2kGYNv+fk46pjXmqEREJo/R3sXi2Mjqe4DV4fJ9wJVm1mBmC4FFwGOjOZaIiAR+tX4PS49r4+wFM0gnjS/+9EW6+zXNQkRkrIx2DvIXzOxZM3sGuBj4YwB3fw64C3ge+BHwUd3BQkRk9Pb35nju1f2cu3AmrY1p3n/e8Tzxyj4e27An7tBERCaNUd3mzd1/+yDbrgeuH037IiIy1MoNeyg6nHfCTAA+dMFCbntkA9v298UcmYjI5KFf0hMRqSGPbdhDJpngzOPaAJg9tZH2lgbueHwTe7uz8QYnIjJJKEEWEakhT2/ax2vmTKUxnQQglUzwv995Gqu37OeCzz/An9z5FD9avZV9PUqWRUSO1lj8kl7N+9HqbcybPoX5M5qY2pjSL1KJSFUqFp3VWzp5z5lDbyv/rsVzOHV2K7c8vJ4frt7GPU9uwQxOnzOV809s5+wFMzjr+OlMb87EFLmISG2p+wQ5Vyjy8TueJBveV7SlIcWctkbmtE1h9tRGZrZkmNHcQHtLhpnNDcxsyTCzJcP0pgzppAbgRWTi7OnJ0tWf56RjWoZtO3lWK1+4fDH//7tfyzOb9/HI2t38ct0ubntkA//80HoATuho5qzjprPkuDZOmdXKomNamdaUnuiXISJS9eo+QU4ljJ/80UU8v7WTLXt72bKvl1f39fLq/l6ef7WT3d1ZCkWvuG9jOkFLQ5qpjSlaG1O0NqZpaRhcnpJJMCWdpDGdpCGdDJcHyxrTifA5SSaZIJNKkEoY6VSCdCJBOmkkE6YRbREBYFdXPzD4AyGVZFIJli2YwbIFM/jEZYvoyxV4ZvN+Vm7cwxMb93L/mu38+6rNA/U7WhtY2N7M3LYpHDutkWPbpjBnWiMzWxqY3pSmrSmjb9ZEpO7UfYJsZixob2ZBe3PF7cWi09mXY1dXlt1d/ezuDp739eQ40J/nQF+Ozr48B/rydPXl2N7Zx4G+oLw3V2CE3PqIZJIJUkkjnQyS5nR0PZEgnTKSZiQS4bMZiQQkE8FyMjF0e5B0M6w8kTCSCQaWS/smLKhvED4biXClvMyMgf9IzQj2jdQpbR8sC9YP2h5BxWhblfuyQhmVKx/J//UjJQaVSkeMrULtkesefruVa8tk9evtBwCY2XL4UyUa00nOWTiDcxbOAMDd2by3l5d2HOCl7V38ensXr+zp5rGX97C9s498hZNWKmG0RZLl5oYULQ3R5yTNDSmaM6Wy5MCH/8Z0koZUYmBQoCEVDg6kkiQS+vcrEhd3xx28tAzhelBO2Xp5vcGGooseab9iFTzcEC1LmDGjyqaA1X2CfCiJhNHWlKGtKVPxa82DcXdyBacvX6AvW6AvV6QvX6A3W6AvV6A3F5blCmQLRfIFJ1cohg8nX1ouOrl8kXzRyRaKQ5bzYd1C0Sn64HOxGEwfiZZHl92hUKpf9HCZsjaC8mLxMP5ARGRCmMH8GU2j2N+YP6OJ+TOauOTUWUO2FYrOrq5+Xt3Xy96eLHu6c+zrybKnO8venhx7u7Mc6A8GBbbu76O7P09Xf57u/vxRDQZkkgkaUgkaBpLnBJlUknTSSCWMVDIxMECQSpQNECSGDhykkgnSCSOZSJCw4Nxd+pCetMHlwW3hspU+jNvg9rB+JX6IZOBQSUF5OcMSkKHrRBOXIUlMJNE4SBulYx9W+xXaIHreP1j7I7RBaf1w2i97bV7+/hys/RHaGPb+DHv9I///NuL7c8j3Pxr7CO/Pkbx35fUOp/1DvLZqM2daI7+87tK4wxhCCfI4MjMyKSOTSjC1cXLO8yv/BFocduIMku6Kf+Blf7RFj54sg3aKkbqU6lSMo0LZQWKuWH6Y7Y5Ue6S6R9KuH0m7VXiSk/HX2phibtuUcWk7mTBmTW1k1tTGI9rP3enPFweS5a7+PH25Iv25An35Av3h4EBpQKA/Hzz35Yr0h+Wlutm8ky8ODhj0ZPPkiz500KAwtE5pPVfQH8XRiH6bF/0Wj7JvDsvrEV2v0AYM//YxWm/g2IfTflkblJeXtTH0G8mDvLYEGIlhbQxr/3Bf27D3rnIbDHvNQ9s47PeuvN7htD/s/Rnexojtl70/A/+Gyv49VS63YXVKJU2Z6ktHqy8iqSmlE2O4FmcoIhITMxuYTnGw+dHjbeBDevhc9PDbsNIH9eLQsvJ6PrAcjKYf1n/0Q8pLZcMTgXJD2h4hWRme5FRI8g6ZRB6kjSOZayZSZ5Qgi4jIpGBmJEuZpYjIKOg+ZSIiIiIiETbSfMw4mNlOYGNMh28HdsV0bKlMfVKd1C/VSf1SfdQn1Un9Un3i7JPj3b2jvLCqEuQ4mdlKd18WdxwySH1SndQv1Un9Un3UJ9VJ/VJ9qrFPNMVCRERERCRCCbKIiIiISIQS5EE3xx2ADKM+qU7ql+qkfqk+6pPqpH6pPlXXJ5qDLCIiIiISoRFkEREREZEIJcgiIiIiIhF1nyCb2XIze9HM1prZp+KOp56Y2a1mtsPMVkfKZpjZT83spfB5elhuZvaVsJ+eMbOl8UU+eZnZfDN70MyeN7PnzOwTYbn6JUZm1mhmj5nZ02G//HVYvtDMHg3f/zvNLBOWN4Tra8PtC2J9AZOYmSXN7Ekz+0G4rj6JmZltMLNnzewpM1sZlukcFjMzazOzu83sBTNbY2avr+Z+qesE2cySwFeBtwKnAVeZ2WnxRlVXvgksLyv7FPAzd18E/Cxch6CPFoWPa4EbJyjGepMHPunupwHnAR8N/ybUL/HqBy5x98XAEmC5mZ0HfB74krufBOwFPhTW/xCwNyz/UlhPxscngDWRdfVJdbjY3ZdE7q2rc1j8/gn4kbufCiwm+Lup2n6p6wQZOAdY6+7r3T0L3AGsiDmmuuHuDwF7yopXAN8Kl78FvDtS/i8e+BXQZmbHTkigdcTdt7r7E+HyAYIT2FzUL7EK39+ucDUdPhy4BLg7LC/vl1J/3Q1camY2MdHWDzObB7wduCVcN9Qn1UrnsBiZ2TTgIuAbAO6edfd9VHG/1HuCPBfYFFnfHJZJfGa5+9ZweRswK1xWX02w8CvgM4FHUb/ELvwq/ylgB/BTYB2wz93zYZXoez/QL+H2/cDMCQ24PnwZ+HOgGK7PRH1SDRz4iZmtMrNrwzKdw+K1ENgJ3BZOSbrFzJqp4n6p9wRZqpgH9yDUfQhjYGYtwHeBP3L3zug29Us83L3g7kuAeQTffp0ab0T1zczeAexw91VxxyLDXODuSwm+pv+omV0U3ahzWCxSwFLgRnc/E+hmcDoFUH39Uu8J8hZgfmR9Xlgm8dle+holfN4RlquvJoiZpQmS42+7+z1hsfqlSoRfSz4IvJ7ga8dUuCn63g/0S7h9GrB7YiOd9M4H3mVmGwim511CMMdSfRIzd98SPu8A7iX4QKlzWLw2A5vd/dFw/W6ChLlq+6XeE+THgUXhVccZ4Ergvphjqnf3AdeEy9cA34+UfyC8svU8YH/kaxkZI+GcyG8Aa9z9i5FN6pcYmVmHmbWFy1OANxHMD38QuDysVt4vpf66HHjA9atQY8rdr3P3ee6+gOD/jgfc/WrUJ7Eys2Yzay0tA28GVqNzWKzcfRuwycxOCYsuBZ6nivul7n9Jz8zeRjCPLAnc6u7XxxtR/TCz7wBvBNqB7cBnge8BdwHHARuBK9x9T5i43UBw14se4IPuvjKGsCc1M7sAeBh4lsF5lZ8mmIesfomJmb2O4AKWJMHAxl3u/jkzO4Fg9HIG8CTwfnfvN7NG4F8J5pDvAa509/XxRD/5mdkbgT9193eoT+IVvv/3hqsp4HZ3v97MZqJzWKzMbAnBBa0ZYD3wQcLzGVXYL3WfIIuIiIiIRNX7FAsRERERkSGUIIuIiIiIRChBFhERERGJUIIsIiIiIhKhBFlEREREJEIJsoiIiIhIhBJkEREREZGI/wd/mvWsUAF3aQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index 30df2ed3..b55ab4e2 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -37,7 +37,7 @@ def main(): cell = l5pc_model.create(do_replace_axon=args.replace_axon) if args.replace_axon: nrn_sim = ephys.simulators.NrnSimulator() - cell.instantiate_morphology(nrn_sim) + cell.instantiate_morphology_3d(nrn_sim) if args.output_dir is not None: ephys.create_acc.output_acc(args.output_dir, cell, param_values) diff --git a/examples/l5pc/l5pc_evaluator.py b/examples/l5pc/l5pc_evaluator.py index b7b10ff3..e573ecfc 100644 --- a/examples/l5pc/l5pc_evaluator.py +++ b/examples/l5pc/l5pc_evaluator.py @@ -22,7 +22,6 @@ import os import json -from xmlrpc.server import DocXMLRPCRequestHandler import l5pc_model # NOQA @@ -201,7 +200,7 @@ def create(do_replace_axon=True, sim='nrn'): simulator = ephys.simulators.ArbSimulator() if do_replace_axon: nrn_sim = ephys.simulators.NrnSimulator() - l5pc_cell.instantiate_morphology(nrn_sim) + l5pc_cell.instantiate_morphology_3d(nrn_sim) else: raise ValueError('Simulator must be either \'nrn\' or \'arb\'.') diff --git a/examples/l5pc/l5pc_soma_arbor.ipynb b/examples/l5pc/l5pc_soma_arbor.ipynb index 338f1231..173bb718 100644 --- a/examples/l5pc/l5pc_soma_arbor.ipynb +++ b/examples/l5pc/l5pc_soma_arbor.ipynb @@ -445,26 +445,26 @@ { "data": { "text/plain": [ - "[{'gnabar_hh.somatic': 0.09693182372859019,\n", - " 'gkbar_hh.somatic': 0.015340882449785893},\n", - " {'gnabar_hh.somatic': 0.12110759452040755,\n", - " 'gkbar_hh.somatic': 0.031924882338782865},\n", - " {'gnabar_hh.somatic': 0.1195562418075583,\n", - " 'gkbar_hh.somatic': 0.06459497861401894},\n", - " {'gnabar_hh.somatic': 0.08847815492981193,\n", - " 'gkbar_hh.somatic': 0.07276510608711441},\n", - " {'gnabar_hh.somatic': 0.0508411837015028,\n", - " 'gkbar_hh.somatic': 0.013581640668739951},\n", - " {'gnabar_hh.somatic': 0.11162357675013847,\n", - " 'gkbar_hh.somatic': 0.06336568536943277},\n", - " {'gnabar_hh.somatic': 0.05371039783711741,\n", - " 'gkbar_hh.somatic': 0.012373142311124232},\n", - " {'gnabar_hh.somatic': 0.08471921358507173,\n", - " 'gkbar_hh.somatic': 0.044725101387279524},\n", - " {'gnabar_hh.somatic': 0.06995132468412933,\n", - " 'gkbar_hh.somatic': 0.012159179133505723},\n", - " {'gnabar_hh.somatic': 0.12452462089090967,\n", - " 'gkbar_hh.somatic': 0.05454205682315694}]" + "[{'gnabar_hh.somatic': 0.11973877406449063,\n", + " 'gkbar_hh.somatic': 0.04055126228540966},\n", + " {'gnabar_hh.somatic': 0.05919475965492274,\n", + " 'gkbar_hh.somatic': 0.029459071503543953},\n", + " {'gnabar_hh.somatic': 0.07691598000952081,\n", + " 'gkbar_hh.somatic': 0.06899888218472573},\n", + " {'gnabar_hh.somatic': 0.09502944351022523,\n", + " 'gkbar_hh.somatic': 0.06782567113386834},\n", + " {'gnabar_hh.somatic': 0.05531450463602975,\n", + " 'gkbar_hh.somatic': 0.021221419554995388},\n", + " {'gnabar_hh.somatic': 0.07993122992703557,\n", + " 'gkbar_hh.somatic': 0.01889628263996689},\n", + " {'gnabar_hh.somatic': 0.05622552264031967,\n", + " 'gkbar_hh.somatic': 0.012782122091769259},\n", + " {'gnabar_hh.somatic': 0.05885834962722003,\n", + " 'gkbar_hh.somatic': 0.0664357042663082},\n", + " {'gnabar_hh.somatic': 0.07084270624040735,\n", + " 'gkbar_hh.somatic': 0.02674180928477552},\n", + " {'gnabar_hh.somatic': 0.07305000390848138,\n", + " 'gkbar_hh.somatic': 0.07406120832799508}]" ] }, "execution_count": 12, @@ -551,7 +551,7 @@ " cell_model = self.cell_factory.create_cell_model(do_replace_axon=do_replace_axon)\n", "\n", " # calculate morphology with axon-replacement in Neuron\n", - " cell_model.instantiate_morphology(nrn_sim)\n", + " cell_model.instantiate_morphology_3d(nrn_sim)\n", "\n", " key = (do_replace_axon, param_i)\n", " arb_resp[key] = self.arb_protocol.run(cell_model, param_list[param_i], arb_sim)\n", @@ -643,54 +643,54 @@ " \n", " \n", " \n", - " 5\n", + " 2\n", " False\n", - " 1\n", - " 0.121\n", - " 0.0319\n", + " 0\n", + " 0.12\n", + " 0.0406\n", " Step3.soma.v\n", - " 0.16\n", - " 2.49e-07\n", + " 0.107\n", + " 6.9e-07\n", " \n", " \n", - " 49\n", - " True\n", - " 6\n", - " 0.0537\n", - " 0.0124\n", + " 25\n", + " False\n", + " 8\n", + " 0.0708\n", + " 0.0267\n", " Step1.soma.v\n", - " 0.125\n", - " 7.9e-07\n", + " 0.0947\n", + " 1e-07\n", " \n", " \n", - " 0\n", + " 17\n", " False\n", - " 0\n", - " 0.0969\n", - " 0.0153\n", - " bAP.soma.v\n", - " 0.113\n", - " 6.71e-07\n", + " 5\n", + " 0.0799\n", + " 0.0189\n", + " Step3.soma.v\n", + " 0.0923\n", + " 7.65e-07\n", " \n", " \n", - " 1\n", + " 19\n", " False\n", - " 0\n", - " 0.0969\n", - " 0.0153\n", + " 6\n", + " 0.0562\n", + " 0.0128\n", " Step1.soma.v\n", - " 0.105\n", - " 3.17e-06\n", + " 0.0866\n", + " 1.42e-06\n", " \n", " \n", " 26\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step3.soma.v\n", - " 0.103\n", - " 6.99e-07\n", + " 0.0863\n", + " 5.83e-07\n", " \n", " \n", "\n", @@ -698,18 +698,18 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "5 False 1 0.121 0.0319 Step3.soma.v \n", - "49 True 6 0.0537 0.0124 Step1.soma.v \n", - "0 False 0 0.0969 0.0153 bAP.soma.v \n", - "1 False 0 0.0969 0.0153 Step1.soma.v \n", - "26 False 8 0.07 0.0122 Step3.soma.v \n", + "2 False 0 0.12 0.0406 Step3.soma.v \n", + "25 False 8 0.0708 0.0267 Step1.soma.v \n", + "17 False 5 0.0799 0.0189 Step3.soma.v \n", + "19 False 6 0.0562 0.0128 Step1.soma.v \n", + "26 False 8 0.0708 0.0267 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "5 0.16 2.49e-07 \n", - "49 0.125 7.9e-07 \n", - "0 0.113 6.71e-07 \n", - "1 0.105 3.17e-06 \n", - "26 0.103 6.99e-07 " + "2 0.107 6.9e-07 \n", + "25 0.0947 1e-07 \n", + "17 0.0923 7.65e-07 \n", + "19 0.0866 1.42e-06 \n", + "26 0.0863 5.83e-07 " ] }, "execution_count": 15, @@ -787,7 +787,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Default dt (0.025): test_l5pc OK! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are 0.0364 (0.05), 7.25e-06 (0.0005).\n" + "Default dt (0.025): test_l5pc OK! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are 0.0292 (0.05), 2.42e-06 (0.0005).\n" ] } ], @@ -817,7 +817,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXxddZ34/9f7LrlJ7s2+b03StEl3SimbgII6gA7r6ICKAjrqV0fHZVzGUX+KfHW+M24o4ogLIw4ggoCAgBubyE4L3bcszZ5m35O7f35/nJM0bZM2bW96k9z38/Hoo7nnnnvO+27nnvf5fD7vjxhjUEoppZRSSil18hzxDkAppZRSSimlFgtNsJRSSimllFIqRjTBUkoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkqpeUJEKkTEiIgr3rEsdiJyo4g8H+845hsRuUBE9sY7DqWUWsg0wVJKKbWgichNIhISkZEp/74Y77gWImPM34wxNbHeroisF5HNIjJm/78+1vtQSqn5QhMspZSKEW15iqv7jDG+Kf++He+AYmkhf7ZEJAl4BLgbyAJ+BTxiL1dKqUVHEyyllDoJItIoIv8mItuAURFxicg5IvKiiAyIyFYRuXDK+s+KyP8TkVdFZEhEHhGR7Bm2/UER2S0iwyLSICL/57D7rxSRLfZ26kXkUnt5hojcISIdItImIt8UEecxnkeViDwtIr0i0iMi94hI5pT7+kRkg327WES6J56XiFwhIjvt5/usiKw87PX5vIhsE5FBEblPRJKP/5U+fiLyJft1GRaRXSJy9QzriYjcIiJd9mu5XUTW2Pd5ROS7ItIsIp0icruIpMxy/3fa6//FjuGvIlI+5f4fikiLvc/NInLBlPtuEpEHRORuERkCbhSRs0TkJft17hCR26YmKXb30n8WkVp7f//Xfu9etPdx/7GSGhG5UERaZ/P8jsOFgAv4gTEmYIy5FRDgrTHej1JKzQuaYCml1Ml7L/D3QCZQADwOfBPIBj4PPCgieVPWvx74EFAEhIFbZ9huF3AZkA58ELhlSpJzFvC/wBfs/b4ZaLQfd6e93WXA6cDFwIeP8RwE+H9AMbASKANuAjDG1AP/BtwtIqnAL4FfGWOeFZFq4F7gM0Ae8ATw+8NO5K8BLgUqgXXAjdMGIHK+nTzM9O/8YzyHw9UDFwAZwDfs+IumWe9irNev2l73GqDXvu8/7eXrsV7PEuBrxxHDdcD/BXKBLcA9U+57zd5uNvBr4LeHJZ9XAg9gvb/3ABHgs/a2zgXeBvzzYfu7BDgDOAf4IvAz4P1Y7+carM/qCbMT5Znen/+e4WGrgW3GGDNl2TZ7uVJKLTqaYCml1Mm71RjTYowZxzqZfcIY84QxJmqM+QuwCXjnlPXvMsbsMMaMAv8fcM10LUzGmMeNMfXG8lfgz1gJA8A/Af9jjPmLvZ82Y8weESmw9/UZY8yoMaYLuAV4z9GegDGmzt5WwBjTDXwfeMuU+38O1AGvYCWGX7HvuhZ43H5sCPgukAK86bDXp90Y0wf8HiupmC6G540xmUf5d7SiFNccdrJfbIz5rb3fqDHmPqAWOGuax4aANGAFIMaY3caYDhER4KPAZ40xfcaYYeA/jvVaHuZxY8xzxpgA1mt2roiU2c/3bmNMrzEmbIz5HuABpo5/eskY87Ad/7gxZrMx5mV7/Ubgp0x5j2zfNsYMGWN2AjuAPxtjGowxg8AfsBLuE2aMWXeU9+fwZG+CDxg8bNkg1muulFKLzoLt062UUvNIy5S/y4F/FJHLpyxzA8/MsH6TfX/u4RsVkXcAX8dqQXEAqcB2++4yrNaiw5Xb2+uw8gOwH9syzbpT91UA/BArgUuzH9N/2Go/Bx4FPmonDGC1eDVNrGCMiYpIC1ZLz4QDU/4esx8Ta/cbY94/dYGIXA/8K1BhL/IxzetsjHlaRG4DfgyUi8hDWC2PyViv+eYpr6UAR+1ueZjJ190YMyIifVjPv0VEPo+VKBcDBqulMne6x9rPpxor8d1ox+UCNh+2v84pf49Pc7vwOGKPlRGs5zZVOjAch1iUUmrOaQuWUkqdvKldn1qwWqimXtn3GmP+c8o6ZVP+XoLVgtIzdYMi4gEexGoRKjDGZGIlVBNn+i1A1TSxtAABIHfK/tONMcfqjvUf9vNYa4xJx2qJO5hViPiAHwB3ADfJwXFj7VhJ3cR6Yj+/tmPs7whilQgfOcq/C469lcltlWMlhJ8EcuzXb8fU5zSVMeZWY8wZwCqshPYLWO/JOLB6ymuZYYzxHcfTmnyv7dcwG2i3n8sXsbojZtnxDR4W39TPFcBPgD3Acvs9+vJMz2euiDXWbqb35/YZHrYTWCdTslSsrqI75z5ipZQ69TTBUkqp2LobuFxELhERp4gk24UDSqes834RWWWPZ7oZeMAYEzlsO0lYXca6gbDdmnXxlPvvAD4oIm8TEYeIlIjICmNMB1ZXwu+JSLp9X5WIHN6V7HBpWC0NgyJSgpVgTPVDYJMx5sNYY8wmTqbvB/7ejsMNfA4rwXvxWC/U4ewS4b6j/PvbcWzOi5WgdINVMARrDNIRRORMETnbjn8U8ANRY0wUK0m7RUTy7XVLROSSKY81MqWIyTTeaY8tS8Iai/WyMaYF6/UO2/G5RORrHNnKc7g0YAgYEZEVwMePsX7MGWNWH+X9+dgMD3sWa/zYp8QqGvJJe/nTpyRopZQ6xTTBUkqpGLJPnq/Eal3oxmpR+gKHHm/vwipEcQCrG9qnptnOsL38fqyueu/D6p43cf+r2IUvsFo+/srBlqTrsRK0XfZjH8AaN3U03wA22Nt6HHho4g4RuRKrSMXECf2/AhtE5DpjzF6s1q4fYbX4XA5cbowJHmN/c8oYswv4HvASVje5tcALM6yejpVI9WN1d+wFvmPf929YY89eFqua35PY46TssVTDHOy2OZ1fY3Xz7MMqPjHRjfFPwB+BffY+/RyjGydWt8X32fv8OXDfMdafF+zPwlVYn8sBrAIvV8X7M6KUUnNFDi3qo5RSai6JyLPA3caYX8Q7FnVyROT9WN0H/32G++8EWo0xXz2lgSmllIorLXKhlFJKnQBjzN3xjkEppdT8o10ElVIqQYg16e3xFCdQi5CIfHmGz8Ef4h2bUkotBjHrIigijVj9wiNA2Biz0a4ydR9WidxG4BpjzOFlf5VSSimllFJqUYh1C9ZFxpj1xpiN9u0vAU8ZY5YDT9m3lVJKKaWUUmpRinUL1kZjTM+UZXuBC40xHSJSBDxrjKmZaRu5ubmmoqIiJvEopZRSSiml1FzZvHlzjzEm7/DlsSxyYYA/i4gBfmqM+RnW5Jgd9v0HgILDHyQiHwU+CrBkyRI2bdoUw5CUUkoppZRSKvZEpGm65bFMsM43xrTZkzH+RUT2TL3TGGPs5IvDlv8M+BnAxo0btWa8UkoppZRSasGK2RgsY0yb/X8X8DvgLKDT7hqI/X9XrPanlFJKKaWUUvNNTBIsEfGKSNrE38DFwA7gUeAGe7UbgEdisT+llFJKKaWUmo9i1UWwAPidiExs89fGmD+KyGvA/SLyT0ATcM3xbjgUCtHa2orf749RqGohS05OprS0FLfbHe9Q1CL0i2f30dS4l69e9w48bp2HXSmllFLHLyZnEMaYBuC0aZb3Am87mW23traSlpZGRUUFdgKnEpQxht7eXlpbW6msrIx3OGoRavjL7fyH+w7qfnMDyz5wa7zDUUoppdQCFOt5sGLO7/eTk5OjyZVCRMjJydHWTDUnBsdDLJM2AIobfgsh/ZwppZRS6vjN+wQLSPjkKhKN0jnkJxSJxjuUuEv0z4KaOx2D4xRIHwCpZoxQ3dNxjkgppZRSC9GCSLASXd9okKThFiJd+yAaiXc4Si1KI/4whdJPs3ctQeOkc/sz8Q5JKaWUUguQJlizICJ87nOfm7z93e9+l5tuuumU7T8YDJElIySbcaLjA4fcd+GFFx51cuarrrqKc84555BlN910EyUlJaxfv541a9bw6KOPzkXY6hQZGAvyYn1PvMNY8IYDYQqlj+T8KnaYpUjLy/EOSS0Q48EIg2OheIeh5qGRQJjtrYPxDkPNQ8FwlNeb++MdhpojmmDNgsfj4aGHHqKnJ7YnscYYotFjd/szkYM/3JGx2X8ZBwYG2Lx5M4ODgzQ0NBxy32c/+1m2bNnCb3/7Wz70oQ/NKg41P9306E6u+/lLNP3236H2L/EOZ8EaGQ+QzwCurFIaUtdSMLwLQuPxDkstADf+8lU+9d2fMbpXu5WqQ33ld9u5/LbnaXv0m/DkN+IdjppH/uOJ3fzDf7/IU7s74W/fg92/j3dIKoY0wZoFl8vFRz/6UW655ZYj7uvu7uZd73oXZ555JmeeeSYvvPACYLUSffe7351cb82aNTQ2NtLY2EhNTQ3XX389a9asoaWlhS984QusWbOGtWvXct999wHw7LPPcuGFF/Lud7+bC990Ntd98iuMR104Q6NgzCEx3HXXXZOtUa+++urk8oceeojLL7+c97znPfzmN7+Z9rmtXLkSl8t1SPL4pS99iVWrVrFu3To+//nPA9DY2Mhb3/pW1q1bx9ve9jaam5sBuPHGG/n4xz/OOeecw9KlS3n22Wf50Ic+xMqVK7nxxhsnt/nxj3+cjRs3snr1ar7+9a8fEcfg4CDl5eWTid7o6ChlZWWEQnpV+Fheaujlvc5nKN/533D/9Ud8PtTsBEf6cUsEV1oB/qKzcBEm2vp6vMNS89ywP8Qr+3v5n8hX8N57NbS8euwHqYTx9J4uHEQpef078Pz3oWt3vENS88TfarsBePyVXfDUzXDf+6G3Ps5RqVhZUBO9fOP3O9nVPhTTba4qTufrl68+5nqf+MQnWLduHV/84hcPWf7pT3+az372s5x//vk0NzdzySWXsHv30Q+gtbW1/OpXv+Kcc87hwQcfZMuWLWzdupWenh7OPPNM3vzmNwPwxhtvsHPnTsDwj1f+Pc9s3sc7z1xqXVVPSp3c3tjYGFu2bOG5557jQx/6EDt27ADg3nvv5Wtf+xoFBQW8613v4stf/vIRsbzyyis4HA7y8vIA6O3t5Xe/+x179uxBRBgYGADgX/7lX7jhhhu44YYb+J//+R8+9alP8fDDDwPQ39/PSy+9xKOPPsoVV1zBCy+8wC9+8QvOPPNMtmzZwvr16/nWt75FdnY2kUiEt73tbWzbto1169ZNxpGRkcH69ev561//ykUXXcRjjz3GJZdcovNdHUM0augdCVLtaLEWhMagaxcUHPszrQ4VGB8FICnFS3r12bAf+vY8R27leXGOTM1nHYN+MhjFKfaFjT2PQ9lZ8Q1KzQuBcIRhf5gNUndw4c6HIX9l3GJS84Mxho5Bq1JtV9Oug3fs+xOc+89xikrFkrZgzVJ6ejrXX389t9566Nw4Tz75JJ/85CdZv349V1xxBUNDQ4yMjBx1W+Xl5ZPjop5//nne+9734nQ6KSgo4C1veQuvvfYaAGeddRalpaUkOaKsX11D44FeAKLB0UO29973vheAN7/5zQwNDTEwMEBnZye1tbWcf/75VFdX43a7JxMvgFtuuYX169fz+c9/nvvuu2+yOl9GRgbJycn80z/9Ew899BCpqVYi99JLL/G+970PgA984AM8//zzk9u6/PLLERHWrl1LQUEBa9euxeFwsHr1ahobGwG4//772bBhA6effjo7d+5k164pBxTbtddeO9mC95vf/IZrr732qK+jgp7RAOGooTJlnICxk9GmF+Mb1AIVtcuyu5JSWFVVQVM0n/HmN+IclZrv2gfGKZGDPQBM3ZNxjEbNJ32jQQDOybB/uz2Z0PRCHCNS88VoMMJYMMKKwjSyA20H76jXbsaLxYJqwZpNS9Nc+sxnPsOGDRv44Ac/OLksGo3y8ssvk5ycfMi6LpfrkHFNU+du8nq9s9qfx+MBwGnCOJxOwEHYOCAwhsN3cL3DS5eLCPfffz/9/f2TE/IODQ1x77338q1vfQuwxmBNdP87PO5XX32Vp556igceeIDbbruNp58++hd+Ik6HwzH598TtcDjM/v37+e53v8trr71GVlYWN95447RzWV1xxRV8+ctfpq+vj82bN/PWt7712C9SgusftbpQVqaOsy1QyZqUAVJaXoGzPhLnyBaeSNAab+VMSqEy18tTUs4ZfUdeCFBqqt6RIMVinUA/F1nLBd27rTnU3MnHeKRa7HpHrATrjHwnNEN74UWUtjwBkRA4tXdGIhvxhwF464p8nN2d1sI174KGv1rd/HVKmgVPW7COQ3Z2Ntdccw133HHH5LKLL76YH/3oR5O3t2zZAkBFRQWvv26N33j99dfZv3//tNu84IILuO+++4hEInR3d/Pcc89x1lmHdi9xEsUgJLkc+EnChMYOuX+i1ef5558nIyODjIwM7r33Xv74xz9OjvvavHnzjOOwphoZGWFwcJB3vvOd3HLLLWzduhWAN73pTZOPv+eee7jggguOua0JQ0NDeL1eMjIy6Ozs5A9/+MO06/l8Ps4880w+/elPc9lll+F0Ome9j0TlD1ll+7PNIIOOTOo9q6B15qqS6ijCAQDEnYzTIfR4q8kKtMJhLcZKTTUeilBst2D9OboRiYaha2eco1LzwUQLVnWmdbH1Dec6iASgZ188w1LzwEjAujhaU5jGUncvQ64cKDsHxnpguCPO0alY0ATrOH3uc587pCDErbfeyqZNm1i3bh2rVq3i9ttvB+Bd73oXfX19rF69mttuu43q6uppt3f11Vezbt06TjvtNN761rfy7W9/m8LCwsn7jTEIURDB6RD84sEZDYA52DqWnJzM6aefzsc+9jHuuOMOGhsbaWpqOqQ8e2VlJRkZGbzyyivTxvHOd76T9vZ2hoeHueyyy1i3bh3nn38+3//+9wH40Y9+xC9/+UvWrVvHXXfdxQ9/+MNZv2annXYap59+OitWrOB973sf5513cEzL1772tUPKxF977bXcfffd2j1wlgJh63OQFOyD1By2hcugfz8Ejt5NVR3J2F0EcVmtsOG81TgwmE49WVYzC4SjFEkfxpnEi5xmLezYGt+g1LwwFrRaKVLNKGOSwgtjJdYdB3Yc5VEqEQzbLVhpyS6KU8IMmhQossel6/FjUVhQXQTjZeqYqoKCAsbGDrYg5ebmTrYgTZWSksKf//znabc3dSyUiPCd73yH73znO4esc+GFF3LhhRcSjRocGH74H/8f7sKVdHV24IgMWlfb3Sk8++yz0+6jra3tiGUTLWpnn332Efc98cQTk39PrUQ4oby8fNqugnfeeefk3xUVFYc8t6n3Tf17qptvvvmQ2+9+97sxWgVv1vyhCEIUd6Afd0EBL7Tn8T4HVqWqsjPjHd7CEp5IsKyuXd7y9dAEQ/tfJ0OLFqgZ+EMR0hkHTxpJvqWMDKfha98S77DUPDB5ASw0QtDp49meTHB64MA2OE0vIiay0YDV+8TncZOTFGZgNInCvFW4ESvBqnlHnCNUJ0tbsOa5qDEIBiPWWyXuFIAjugmqxBQIR8lkBDFR0rIL2Roqte7o1Cukx+2wBGtJ5QqGTCrDzVviF5Oa9wLhKCkSBHcKK4sz2G0q9Qq0AiAQshIsV3iEqCedAyNhQrkr9PisJrsI+jwuMlwhxkiith/IXQ4d2+IbnIoJTbDmOQM4MIA14NHpSSFqhEhAEyxlXz0X67OQm1dAq8kl7PKCdms7fvYYrIkEa0VROrvNEpxdWuhCzSwQiuCVIOL2srIojc2hckzXLquQgUpogbDVSuEMDuFKzQCgz1dtdRHUnhoJbaKLoM/jwucIMmY81HYNQ9FpeoFmkTjpBEtEykTkGRHZJSI7ReTT9vKbRKRNRLbY/9558uEmHmO3YGG3YCW7nfhxHxwvohJaIBzFg3UiV5iTiUOErpQqTbBOgEQOHYOVluym3V1Oxki9ngypGQXCUbwOq8v2isJ09kZLkUgQ+qYvbKQSh99uwXIGh0n2ZQFQ76y0ChmMdMYzNBVnowE7wUp24Yn6GZdkajtHrDksh1rBPxjnCNXJikULVhj4nDFmFXAO8AkRWWXfd4sxZr3974mZN6FmEjV2C5adYHlcTgIk4YhogqWsFqyJBCvJk0pZdir1jgorwdKk4LjIYS1YACPpy0iNjsBIV5yiUvOdPxQhVYLgTmV5gY86Yxcy6Nkb38BU3E20YDmCwyR5M8n1edgS1G7cCkbsBMvrcSKhMRxJXuq6RiDXLojWU3eUR6uF4KQTLGNMhzHmdfvvYWA3UHKy21WWqVUEAZwOIexIwmnCEI3EOToVb4FwlGSsUsC4k1mW52NrsBgCgzDUHt/gFhhH5MgEy5Fn/dhFunbHIyS1AFgJVgCSUilMT+aA2z6B7tYEK9EFwlEcAgSGIDmD5fk+Xh3Jte7UE+iE5g9Znw2PywmhUZJTfVYXwdwaawW9QLPgxXQMlohUAKcDE7XAPyki20Tkf0Qka4bHfFRENonIpu7u7liGsygc3oIFYJz2CWBYW7ESnT8UwSP2WA9XMsum/oD31sYvsAXIEZ1IsA5Olu0rWwPAYJNebVbTC4SjpGAVuRARivLz6HXmQo9+/xJdIBzF43IigWHwpFGV7+X1HicmOVPnwkpwgXDESq4AgmOk+jJo7B0jmL4EHG79fCwCMUuwRMQHPAh8xhgzBPwEqALWAx3A96Z7nDHmZ8aYjcaYjXl5ebEKJ+YefvhhRIQ9e/bMuE5jYyNr1qyJ2T5vvPFGfvfgg4eMwQJrIlSAT3/2c5SUlBCNHpwT68477yQvL4/169ezatUqfv7zn8csHjX/HNKC5fJQle9jb8ieR01P8I7LdC1YpWVLGTKpjLXrmDY1PX8oQgoBcHsBqMrzUR8t0SvQikAogscl1sVQVwpVeT6G/BHCWcv0BDrBBcNRklwOqydSJEBaegaRqKGxPwA5VdCtn4+FLiYJloi4sZKre4wxDwEYYzqNMRFjTBT4ObCgJ5K59957Of/887n33nunvT8cDp/0PiKRI7v8GcwRLVjupGTCkSgPP/oYZWVl/PWvfz3kMddeey1btmzh2Wef5ctf/jKdnTqYdrEKhCL4nPZnz/4B7yTLqiSoCdZxcUYChHGC8+D0gMsK0qgzxYieDKkZWBc5rCIXAMvyfewMFWJ69uk4yATnD0XJcNm/6+5kqvJ8APSnVujxOcFZrZsOCI4CkJmRCWCPw1quCfgiEIsqggLcAew2xnx/yvKiKatdDSzYPjYjIyM8//zz3HHHHfzmN7+ZXP7ss89ywQUXcMUVV7BqlVXXIxwOc91117Fy5Ure/e53T05K/NRTT3H66aezdu1aPvShDxEIWFfLKyoq+Ld/+zc2bNjAb3/72yP2/czTT3HmO69j9ZkX8NhjjwHgcTt58qUtrKpZxsc//vEZk778/HyqqqpoamqaXHbrrbeyatUq1q1bx3ve8x4A+vr6uOqqq1i3bh3nnHMO27ZZczDcdNNN3HDDDVxwwQWUl5fz0EMP8cUvfpG1a9dy6aWXEgpZXdNuvvlmzjzzTNasWcNHP/rRIyYKjkajVFRUMDAwMLls+fLlmvjFQCAcxTuZYHlYlu8DhL6UJXqAPk6OaJCwJB2yLCPFTatrCenD9XGKSs13/lAEjwmAOxWAqjwv9aYYCY7qOMgEFwhH8LntBMuVTFW+lWC1Okth5IBWiktgky1YdoKVk5WFCFYlwdwa6GuAcDDOUaqT4Tr2Ksd0HvABYLuIbLGXfRl4r4isx5rKqRH4Pye9pz98CQ5sP+nNHKJwLbzjP4+6yiOPPMKll15KdXU1OTk5bN68mTPOOAOA119/nR07dlBZWUljYyN79+7ljjvu4LzzzuNDH/oQ//3f/80nP/lJbrzxRp566imqq6u5/vrr+clPfsJnPvMZAHJycnj99den3XdzUxOvPn4Xe7oCXHzFNdTV1eFJ8nDvw3/i2isv4eqrr+bLX/4yoVAIt9t9yGMbGhpoaGhg2bJlk8v+8z//k/379+PxeCYTnq9//eucfvrpPPzwwzz99NNcf/31bNmyBYD6+nqeeeYZdu3axbnnnsuDDz7It7/9ba6++moef/xxrrrqKj75yU/yta99DYAPfOADPPbYY1x++eWT+3Q4HFx55ZX87ne/44Mf/CCvvPIK5eXlFBQUzPptUtPzhyJkOMIQBdwpZKS4yUvz0OIoJb935u6s6kiuaICQI4nkw5YPp1WRNvg0jPVBanZcYlPzV2AiwUqaSLB8/MoUW3f27IMMrfmUqALhKGlTLoAVpSeT4nayN1LEBrAKXZSeEc8QVZxMtmCFrIvwSSk+yrJS2dc1DKurwUSgfz/k1cQ5UnWiYlFF8HljjBhj1k0tyW6M+YAxZq29/ApjTEcsAo6He++9d7K15z3vec8hLUZnnXUWlZWVk7fLyso477zzAHj/+9/P888/z969e6msrKS62qpIdsMNN/Dcc89NPubaa6+dcd9XXX01DoeD6uXLWLp0KXv27CEcDvHnZ57jHy65gHSfj7PPPps//elPk4+57777WL9+Pe9973v56U9/Snb2wZPCdevWcd1113H33Xfjcln59fPPP88HPvABAN761rfS29vL0NAQAO94xztwu92sXbuWSCTCpZdeCsDatWtpbGwE4JlnnuHss89m7dq1PP300+zceeR4lWuvvZb77rsPgN/85jdHfc5q9gLhKKnOiSIXVnGGZXk+9oQKYLAFgjoh9Wy5pmnBAiarOpluTVjVkSIhPw6ik10Ey3O8NGBXEtRW5IQWCEfxOSdasFJwOISqfC9vjOVby/TzkbAC4ShJLudkCxbuVJbl+2joHgW7eq1WIl3YYtGCdeoco6VpLvT19fH000+zfft2RIRIJIKI8J3vfAcAr9d7yPpil1Of6fZ0Dt/GdMQegyUi/OlPf2JwcIh1b7sGnG7GxsZJSUnhsssuA6xk5rbbbpt2O48//jjPPfccv//97/nWt77F9u1HbxH0eKyTdofDgdvtnnw+DoeDcDiM3+/nn//5n9m0aRNlZWXcdNNN+P1HVjc899xzqauro7u7m4cffpivfvWrx3zO6tj8oQhex8QVUqvtZVm+jzfacrlOgN46KFoXvwAXEJcJEnF6jlieWrIa6mGweQeZ5W+KQ2RqXguNW//bXQSTXA68WUWMjXtJ1RPohOYPRcg/7AJYVZ6Pl/eP25Xi9AQ6UVlVBA+2YJGUSlWelxfqeohmr7daP/T4saDFtEz7YvTAAw/wgQ98gKamJhobG2lpaaGyspK//e1v067f3NzMSy+9BMCvf/1rzj//fGpqamhsbKSuzpr34q677uItb3nLrPb/yMO/IxqNUr+/iYaGBmpqarj33nu55Ye30vjK4+zf9Qb79+/nL3/5y+R4r5lEo1FaWlq46KKL+K//+i8GBwcZGRnhggsu4J577gGscWW5ubmkp6fPKr6JZCo3N5eRkREeeOCBadcTEa6++mr+9V//lZUrV5KTkzOr7aujC4SjpDoOlmkHawzIjqBdSVBLtc+aOxog4nAfsby4fDljxsNIq1YSVEdyhg9NsACW5qfRKKV6BTrBHdqCNXF89tE8GCKaVaGFLhLY5Bisiel27CJVgXCUtjEnpJdqgrXAaYJ1DPfeey9XX331Icve9a53zVhYoqamhh//+MesXLmS/v5+Pv7xj5OcnMwvf/lL/vEf/5G1a9ficDj42Mc+Nqv9l5aUcNbff4DL/uFabr/9dqLRKH/84x+59O+vwBiIBP14vV7OP/98fv/730+7jQ9/+MNs2rSJSCTC+9//ftauXcvpp5/Opz71KTIzM7npppvYvHkz69at40tf+hK/+tWvZv36ZGZm8pGPfIQ1a9ZwySWXcOaZZ07ed/vtt3P77bdP3r722mu5++67tXtgDPlDEVIkDE7P5GTUVfk+9ptCDKKTWR4HlwkRcRzZgrW8MIM6U6wny2pajskEK2VyWVW+l90TlQRVwgqEI6Q6Do7BAiYrCY6kLdUT6AQ2OQYrfHB6kIkiKPXddiVB/c1Z0BZWF8E4eOaZZ45Y9qlPfWry7wsvvHDy74qKihnnyXrb297GG2+8ccTyiXFM07nzzjvp6+8je7wJk12FJFutSn19fYwFwgR7OnHY3VMeeuihycfdeOONh2znF7/4xeTfzz///BH7yc7O5uGHHz5i+U033XTI7ZGRkWnv++Y3v8k3v/nNIx5/eBK5cePGIyoMqpPjD0VIcYTAfbA0Q1WejwBJjCYX4dMf8FlzmRDRaVqwsr1JvOQsY8mwjsFSR3KE/eDm0AQrz0dtpAgZ+Sv4hyB5dj0C1OISCEXxJts9DOzPR1W+NSSgM2kJ6X1PQSQEziOPO2pxC9qTUB9MsJKoyppIsEa5MLcattxjTfUwi6Emav7RFqz5zk5IRA59qzxuBwGSYGJyVJWQrDl4QodMjluYnkxqkpMDSWXaRXCWjDE4CWMc0xS5AIZ8S8kMdVkny0rZIlGDRCcm+j70IkeDsWcq0e9gwgqEo6TKoS1YFTleRKDeFEM0DP2N8QtQxc3kGKwpLVjZ3iSyUt0HW7CCIzC8YOvDJTxNsOY5a55mjriC4XQ4CEkSzmhQJ7NMYFYXweAhJ3cOh7A0z0t9tMjqIqifj2MKRw0eQkSd0ydYkclKgtplQx0UDEfxYLdQTPnsTMyFBWg33QQ22cMAJo/RyW4nZVmpbPdPVBLUBDwRBSMTXQQnxmAd7EJaPzHZMOjnYwFbEAlWQncrm3zuRzYRR50eHBiIJM5kdAn9WZhGYOIEz3Xo7E1VeT7rBzykk53ORjAcxU0YM00XQYDU4tUADLcs2PnS1RzwhyJ45MgWrMzUJEZTS4ng1HE2CSwQjpJyWJVXgKV5Xl4Zsgs96ecjIQVCdpGLyMEWLLATrO5RyLVLtWsL+II17xOs5ORkent7E/fEerIFa5q3yv5CmtCRZdEXI2MMvb29JCcfPhVs4vKHoiQRmrz6NaEqz8fmsTzrhh6gjykYjpJEGDNDC1Zh+QoCxs2QJlhqCn84crAF67Dv4JK8LDqdhfr9S2CBcIQUpu9CuqMPjDdfWygS1BFFLuzfnqp8Lz0jAQaduZDk08/HAjbvi1yUlpbS2tpKd3d3vEOJi5HhQboig9DvAsehb9eYP0iPv4toZxBHggyiTk5OprS0NN5hzBuBcAQPwUMG2IN1hfSeqD0GpKcWll546oNbQEIRK1GNTjMPFsCyogzqTTHpXbtPcWRqPguErMQcOLIVOd9L7YFCivUEKSEZY6wxsnJoF0GwEix/KEowswqPJuAJ6cgy7QdbsADqe0fZkLNME6wFbN4nWG63m8rKyniHETd33/Z13t/zA/jXPZBedMh9rzX2kfvLywhVXULx9b+YfgNqUbNO8ILgyjhkeVWej06yCLtScWkXlGMKhKO4JUzANX0XwTyfh02OUs4dqj/Fkan5zD9xgQPAdWjrZ1Wejz3hQt7c+yQSjYDDGYcIVbwEI1GMAc9EgnVIpVerkmBvSjnFrX/USnEJyCpy4YTwxPHj0DL+9V0jbMhdDs2vxCtEdZLmfRfBhBc59Ms31bI8H/WmBEevnkAnomjUEIxESYoGwXVoC1ZlrhcRoSe5XK+AzUIwYrdEzNCCJSIMeKvICh2AwMi066jEEwhFD55ATzMOssEUI5EADLbEIToVT4Gw1b1/MgGfcmyZmO+oRUrAPwBjvac6PBVH4UiUqOFgC5YzaTLBLs1KIcnpODgOa7AFgmNxjlidCE2w5jmZSLCmGRuS5U2izVlK+kiDVopLQBM/4C4TPCIBT3Y7Kc1KodlRqgnWLIQmEqxpLmRM0EqC6nD+0NQxWIcmWJOVPEG/gwkoEJpIsEJW937nwQ5DOd4kMlLc7AkXWgv085FQJpPviTFYU44dLqeDitxUq1R7zjLAQJ/2nFiINMGa5+QoLVgAI2lVpEaGYbTnFEal5oNAOAKA2wSPOLkD6wr67mAhDLVqq8sxWEUuQsgMRS4AUorXADDSqoUulMVvf26AI47RpVmptDjs8aJ6Ap1wJo7PSdNUeRWxptLYPJprLdBu3AklaCdYk1UEDzt2LM312XNh2ZUE9fixIGmCNc85ogGiyBEFLiYYe64E073nVIal5gG/fYXUFQ0c0r9/QlWe7+APeK/OxXM0wVCEJMLIUVqwCipqCBgXQ82aYClLYGoL1mHdS50OITOnkBFHmp5AJ6CJ43OSCcx4AezVPq/1udFCFwklMDXBCgeOOHZU5Xtp7h0jlFkJiCZYC9ScJ1gicqmI7BWROhH50lzvb7GRSJCwuGccAOsrsefnadPqZolm4gqpMzrzD/jusHZRmo1gKIRDDA73zC1YywuzaDDFmG79rimLP2yNwTLiPKQL2ISqAh+NFOsFjgQ0mx4GB0bCRLKr9PicYCZasJJdTmsM1jTTrISjhqYhA5llmoAvUHOaYImIE/gx8A5gFfBeEVk1l/tcbJzREBGZvrIZQPGSKkaNh+GWnacwKjUfHNKCNe0PuJcmU4ARB/TouKGjCdlzyTmO1oKV7mG/lOId1JNlZZlowTIzfG6q8nzsCRVi9AQ64Uy0UrinGSMLBysJDnsrtIUzwUwk3x73kWOwYEolwe4RyFmun48Faq5bsM4C6owxDcaYIPAb4Mo53uei4ogGCTtmPulbVphOgynSE+gEZB2kDY7IDAlWvo8gboaSS/QAfQyRoJ1guWf+rokI/b4qsoIdEBw9VaGpeWxyDJZz+snPl+Z5qYsWISMHwD90iqNT8RSYvAB25DyFcLCSYIe7DPqbDk44qxa9g0UunHaCdWjPiaV28m2Nw1oOPXVayGwBmusEqwSYWp+21V42SUQ+KiKbRGRTok4mfDTOaPCoLVh5Pg9NjlJShxpOYVRqPvCHoriJIJhpr5BOVKpqdy/RLijHEAlZJzdHa8ECiGTbg461kqBiyhgs1/RdS61S7XY3Xe3mk1AmWimsHgZHHleWZKficgj1phhMBPr2n+oQVZz4Q3YL1kSZ9sMukKYluylI91DfNWolWKFRGGqPR6jqJMS9yIUx5mfGmI3GmI15eXnxDmfecZoQEcfM40JEhCHvUrJCnVopLsEEwhGSJ+ZYmeYKqYhQleelNlJkjQGJRk5xhAtHOGglWM6jtGABJE9WEtQuucq6Eu2REDJNCzLA0jyfdQINepEjwfintmBN8/lwOx0syUll23i+tUB7GSSMI8u0T9eF1HewiyDoBZoFaK4TrDagbMrtUnuZmiWXCRE9SoIFEJ38AurYkETiD0WnzMEz8xiQLf58a8LqgaZTGN3CMtGCdawEK79ihVVJsGX7qQhLzXP+UIRkQtNW8QTweVwEfEuI4NQEK8EcWoRo5uPzy0NZ1g09gU4YB8dgOe0y7dMXQanvHpmsFK3Hj4VnrhOs14DlIlIpIknAe4BH53ifi0Y4EiXJBIkeZW4egOSilQAM61X1hBIIR0iWiXnSjmzBAusK+paxiSukeoCeSdQucuFMmv5EecKywkwaTBHRTq0kqKwr0cmOo5f3X5KfyQFngZ5AJ5iJVgprjOz0x+eqPB+7+wwmrViPzwlkchLqyTLtR57jVeV5GfaH6SYLknz6+ViA5jTBMsaEgU8CfwJ2A/cbYzQLmKWAPYDaHKMFK698JWHjYEgrCSYUqwXr6BNRV+V5D44B0S4oM5ptC1ZxRgr7pZRUrSSosFqwUiR0xDw2U1Xl+dgXKdJKggnm0ARr5uNzKGLwZyzVE+gEMvHZSHY7px2DBQeLoNR3j9mFLvT3e6GZ8zFYxpgnjDHVxpgqY8y35np/i0kgHCVJwphjtGAtK86hyRQQ7tKB94kkEJ4yyek0Y7DAOkgPkIY/KVsP0EcRDVuJqjvp6AmWwyEM+arIDHZAcOxUhKbmsUAoSrKEZzyBBuskel+4EHrrdRxkAvEHrfd6piqvYPUwAOhNtgsRaaW4hDDZRdDlgND49FUmDy/VrkNAFpy4F7lQMwtOtGDNUKFqQnFGMk1SQspg/SmKTM0H/lD0YJGLGU7wJipVdXu0kuDRGLsFyzXDWJqponkrcGAwOjVCwvOHIyRLaMYTaLAuctSbYiQSgIHmUxidiqeJSnESCcw4Rm9iLqwmKYXAIIx0nbL4VPwcUuQiNA7u1CPWKUxPJjXJaZdqr4bBFp0eZIHRBGses1oowkftfgJWtbi+1Aqy/S0QCZ+i6FS8BcIRPDJR5GL6H3C300F5TiqN6FxYRxO156BxzCLBSitbC0Df/q1zGpOa/wKhKCkEIOnIE6QJS/N8NEQnSrXrVehEMR6K4HIIMkMXMIDM1CRyfUnsDhZYC3ScXkKYHIPlds7YguVwCEvzvNR3j0LuMmthr15EX0g0wZrHJsZgHe3q6IRQ1jJchKG/ce4DU/PCoWOwpu8iCFZXgx3BQhjrhdHeUxTdwmImJvl0zjzn3ISSqjWMmySGG9+Y46jUfOcPR0gmMO0V6AlF6cm0u+xiutqKnDD8oeiUMTYzXyRdmudj02iudUMvgiWEyS6CEoFoaOYu/nk+6rvsFizQz8cCownWPOYP2S0UxxiDBZBUaFUSHGvXQheJIhCO4HPaYzqONgYkX3/Aj0XC49YfRzlRnrCiOJO9pgxn1445jkrNd1aZ9sCMJ0hgXYnOyi1kxJEG2q00YYyHIqS4xJoi42hdSPN8vNaXYh17NAFPCIFwFIeAK2pVrz1agtU2MM54WgUg+vlYYDTBmscmxthIkveY62YvsSZA7W/WBCtR+IMRfM6jdxEE6yC9N6KVBI/GMZlgzXyiPCE1yUVL0jKyhvfpoPQEFwhH8Zijt2ABVOWnUUcZdO05RZGpeAuEIqS7Jy6AHe347KV3LEw4a6kenxNEIBzF43IioWMnWAANA2HIroRunR5kIdEEax4bD0VIIYAkHfukr7K0iE6TSfCA/oAnivFQhAynPebuKGNAqvK8tJtcIk6P/oDPQMITP3THbsECGMlagS86BEM6b3oiGw+ESTJHb8ECWJrnZXuoGNO9W5PyBDEeipAxiwRrmV2Oe8C7FLq1hTMRBEIRPG4HTFzYm2metHzr4np99yjkr4IuTbAWEk2w5jF/MEwKQRyeY7dglWWnUm9K8fTrCXSiGAtGyHDaY4eO0sq5NM9HFAf9KeX6Az6D42nBAnAWrwNgvEULXSSycNCPA3PMxLy6II290TLEPwjDHacoOhVP/lCENNexu3DXFKYB0OKqsCrF+YdOQXQqnqwWLLuCIMz4u1OR40UEGrpHIH+lVeRiYrywmvc0wZrHgoExHGJwziLBcjqErpSl5Izth2j0FESn4s0fiuBz2EUu3DN/RjJS3OSneWh0VkDXrlMT3ALjOI4xWAC5S08HoK9+01yFpBaA6MRcaMf43NQUplEbLbVu6HcwIYyHIqRNjJE9yoWbwvRk0pJd7AgXWwu6tRfKYjfRRZDQ0Y8fyW4nZVmpdgvWSjARHYe1gGiCNY+Fxq05D1ye2Z30jWbW4DF+6N8/l2GpeWIsGCHNEbCKoDhdR123pjCN7aFiq0vbeP8pinDhkPA4AZLAMbtDYvWSIvZHCwi3b5/jyNS8NnmCdPSWz4ocL41Ou5KgdvNJCP5QFJ9rYozszC1YIkJNQRovDxdaCzQBX/T8ocisWrDA6uJf2zkMeVYhMz1+LByaYM1jEf8IAK5k36zWdxWtBiCgJ30JYTwUwesIHrV74ISagjReHLbnWtGB9kdwRcYJOo4+39xUJZkp1Dkq8Pbrj12iMsYg4dm1YDkdQm5+MQOObD1BShD+UIS0iTGyx5hqpbowjRd6UjBJPv18JICxYIRUjwuOUeQCrO7FDd2jVhEUh0sT8AVEE6x5LBywfrzds+giCJBVvo6oEQZ0AtSEMB6M4CVw1O6BE2oK09gZKrFudGmlycM5I35Ccuz55iaICL2+GrKDbRAYnsPI1HwVCEdJNnYX3aMUmZlQU5jGXlOqJ9AJwh+yexjAMS+C1RSkMeCPEMquhk49Pi92Y8Ew3iTnrFrAqwvSCEaiNA6EIWe5Hj8WEE2w5rGJ/v2u5NklWJXF+TSbfMIHdH6eRDAeipAq/lmd3K0oTKedHEIuvUI6HVfET8g5+wQLIFKwFgeGcPu2OYpKzWfjQXsOLJhVcZQVhWnsCJVguvfoONkEMB6KkC7258OTdtR1qwus+3u9VXp8TgCjgQipSc4pXQRn/g2f+GzUdg5b47C0BWvB0ARrHosGrTFYs6kiCFCe42UfZST3aaW4RDAWjJCCf1ZdBJcX+HCIVQiFTj1AH84d9RNxHF+Clb3sbAB69708FyGpeW4sFCFFJorMHPsiR3VBGvtMKRIag4GmOY5OxZs/FMUndgtF0rESLGsYQKOjHMZ6YKR7rsNTcTQeipCa5JpSpv3oZfxFYF/niFWqfaAJAiOnKFJ1MjTBmsfMLCtUTUhyOehMriLL33LwyohatMaDEZLN7LoIJrudVOR4qZMlVhdBnYvnEEkmQPg4W7BqllXRZnLwN702R1Gp+Ww8GCbluFqw0tk3WUlQWykWu/FQBJ/YY2w8Rx9HnePzkOvzsC040Y1bL4ItZqOB8GEtWDMfP1KSrEqC+7rsFiyAHr2IvhCcVIIlIt8RkT0isk1EficimfbyChEZF5Et9r/bYxJtgjGzrFA1lT+7BgdRne9okTPGMB6KkGzGZ9VFEKwxIG/4i0Dn4jlCUtRPdIbJHmdSkeNlt1Th7dGiMonIakGefQtWQbqHA55y60a3JliLWSRqCIajpBo7wUo6dqGqmkIfLwznWTc0wVrUxoJ2C5bdS+nY8+j5DnYRBL1As0CcbAvWX4A1xph1wD7g36fcV2+MWW//+9hJ7icxHWcLFoCrcA0AoQ4dh7WYBSNRIlFDkpldF0GwEqyXR+xSwNpNcFIoEiWFwHEnWA6H0Juxhtxgq5a+T0BjwQgpMvsWLBGhrLCQLke+niAtciMBq3qgT8YBmdUxurogjde6XZjUHE2wFjFjDKPBMF6PEwJD1jQr7qP3nlhuVxIMpi0BV4oePxaIk0qwjDF/NsbYdUh5GSg9+ZDUBJnFAMjD5SxZgd+4GWrWSoKLmT9oDZJPiozPqosgWF2U9uhkp0cYD1nFCo43wQKQkg0ABJs3xzosNc+NhyKkYV8E86TP6jE1hWnsiZRg9Pu3qE0mWIxbBS5EjvmYmoI0xkNRAlk1egK9iAXCUYyxuv7hH4TkjGM+pqYgjXDU0Njvh7wa/f1eIGI5ButDwB+m3K4UkTdE5K8icsFMDxKRj4rIJhHZ1N2tAzunOpEugssKs6g1JUQ6tNTrYjYStH7A3dHZdxFcUZjGAGmMe/L0AD3FWMAuVnAc37MJucutQhfde1+KdVhqnhsLRMiQUYw4jlklbkJ1YRq7IqXQUwuR0BxHqOJl2G+9tylmfFbdA8H6bAB0ptiVBHWc7KI0aiff3iQX+IdmlWAtt4ug7JvoJqg9UBaEYyZYIvKkiOyY5t+VU9b5ChAG7rEXdQBLjDGnA/8K/FpEpr3EZ4z5mTFmozFmY15e3sk/o0VEJvrnzrILGEBVvpd9Zgmp/ToGazEbHAsBBnd4fNafjyXZqaS4nbR5KnWulSmG/SG8+JFjDESfzpqqJdRHiwi1aAtWohnyh8hgFOPJmFULBVgXOfZGS5FIEHrr5zhCFS8jfuskOtmMHbPAxYSJctwNUgbBERhonrP4VPyMBiIAVpGLWbZgVeX5cExWElwJIwdgrG+uQ1Un6ZgJljHm7caYNdP8ewRARG4ELgOuM8a65GKMCRhjeu2/NwP1QPWcPYtFKik8RECSweme9WM8LifdqVX4Qj0w2juH0al4GhwPkUoAhwlBcuasHuNwCNUFPvZGS60iKNHI3Aa5QAyN+UmTcRwpWcf92Pz0ZOpcy8js10IXiWZgLES6jEJK5qwfU52fxl5TZt3QVuRFa9hOsDyRsVm3YPk8LsqyU3jdX2Qt0M/HojQwbhXGyUxNmnWClex2Up7jtQtdrLYWajfSee9kqwheCnwRuMIYMzZleZ6IOO2/lwLLgYaT2VciSg4PM+469pfvcKHciUoz2kqxWA35Q2QxbN1IzZ7142oK03httAgiAejTryTA+LB1IcLpPf4EC2Ag6zQywz0w2BrLsNQ8NzgeIlPGkONIsDJS3YykVRHBoSfQi9iw3Q3MHZl9CxZATUE6fx2we/JoL4NFqX/M6j6aleq2EqxZjt9cnu+zuggWrLIW6PFj3jvZMVi3AWnAXw4rx/5mYJuIbAEeAD5mjNH2zONgjMEbHSbonl3f/qlSS9cBEGjXSoKLlXVyZ082mHI8CVY6myaukOoPOACBYevQ5PGdWILlKLfGYY3WvRCzmNT8NzgeItsxhsziCvRUS4uyaXWU6DiKRWxiDJYrNDzrE2iwupDu7DWYjCV6Ar1IDYxNacEKzG4MFlhdSBt7xwik5Fu9VvT3e9472SqCy4wxZYeXYzfGPGiMWW0v22CM+X1swk0c46EI6YwQSso87seWlVXQZ3wMN22LfWBqXhgaD5E1kWAdRwvWisI0ak2pNTBff8ABCNotWElpOSf0+NIVZzJmPPTvfT6WYal5bmg8RKZjdNZddCfUFKSxI1yC0R4Gi9ZEF0GXvx9SZ39cqSlMIxI1DGdU6wn0IjVgt2BlTrRgzTbBsj8bDT1jULBaf78XgFhWEVQxNOwPk8kIEc/xdxFcUZTB3ugS7SK4iA2dcAtWGgGSGEwp0x9wW2TUmsMqNT33hB6/tjyPLaYKV9trsQxLzXOD4yGrTPtxdBEE6zu4O1KG9DdCYGROYlPx1TcaJNkFjPWAd/bFu1YWWT1W2j1LrUqT4cAcRajiZTLBckcg7D+OFqzDKglqpcl5TxOseWriBNokH3+3pdKsFOodS0gbqoNodA6iU/E2OB6iyG0PezyOFqxcn4dcXxLNrgq9AmaLjFkJVpJv9q/jVD6Pi+bUteSN7tUT5gQyOBbEFx2Z9QnShOqCNPYZez667j1zEJmKt56RAJXeEGIix5VgVeR4SXI52BMtAxOBnn1zGKWKh/6xIGkeF66gPYZ6lsePylwvTodQ2zkC+aus7oWDLXMYqTpZmmDNUz3DATIZxXUCA+8dDmEwrRpPdAwGtdTrYtQzEqQoyZ6I+ni7KBWmsT1UCn37YWIqgAQWGrHGYMkJVBGc3EbxmTiJEmnVcu2Jwj86iJvQcXUBA1iW72OfWWLd0FbkRalvNEhlin0BzDv7lnGX08GyPB8vj+k42cVqcDxEptdtlVoHSCuc1eM8LicVOal2oQu7kqCO45zXNMGap/oHB/FI6ITHhUi+VUnQ6AF6Ueoa9lPoGoOkNHAlHddjawrSeWWkADB6BR2IjFstWMfb1WuqnBXnAdCz+7kYRKTmO2MMzpEO60Za8XE9NtntxJFdgV+StRV5keodCVLmsS9eHUcLFljjZJ/rSQdnkiZYi1D/WJDMlCQYnkiwimb92OqCNGq77LmwQI8f85wmWPPUSH8nAKkZ+Sf0+LRyq5LgaIsWuliMuoYDFDkHIK3guB+7vMDHtnCJdUOvgOEY77fmm3N5Tngb65ZXsDdaSqjx5RhGpuar/rEQucaeZzD9+BIsgOWF6ewXHQe5WPWOBCh2n1iCVVOYRvtwmHCOFrpYjLqGAuT6kmCo3VowyxYsgOUFaTT1juJ3+iCjTBOseU4TrHkq3G/1rU3JXXJCj68qLaQlmsdYi06AutgYY+gaCpAf7bIOssepusBHsykg4tQr6MYYUoM9jCadWEvxhJLMFHa5VpLdt0XHPSaAziE/hWLPPJI++yvQE2oK0tgWKsF07dKB6otMOBKlazhAscseY3McXQTBSrAA+n3VCX98XozaBsYpyUqxW7AEfLO/SFpTkEbUQF2XPQ5LL5DOa5pgzVeDbQA4MktP6OErCtPZY8pw9+ps34vNcCDMeChCVqgTMo7/87EsP40oDnpTlyb8FdIhf5gc008w+cRaiieICMN5G0iNjmi3ywTQOeSnEDvBOo4uPhOqC9PYEy1DxnphpCvG0al46hwOEI4ayqQLXMmQenwJ1soia96sJlcFDHfAmE4huliMBMIMjocoyUy13ltvHjjds378RCXB2i67kmDPPoiE5ipcdZI0wZqvhlqt/9NLTujh2d4kWtwVpI82aanXRaalbwwPQVKDvZB5/C2cGSluCtI97HdWJPwV0gODfvLpJ3IcVxFnklxljcMa3KfzYS12Lf3jFEof0eRscKcc9+NrCtLYM1HoIsG/g4tNS59V3CI31A5ZleA4vtOs/DQPmalutoUmunEn9kWwxaR9wCpMVZKVYnURPI7ugQAVuV7cTmFf54hV6CIassr5q3lJE6x5yjPazpjDB8mznwX+cONZNTjRUq+LTUP3KEVij/84gS6CAMvz09geKoHR7oS+gn5gyE++DOA6gW5eh6tZsY4ek85wrSZYi11D9whVzk4ku+KEHl+R66VBNMFajFr7rZPo9LFWyK487seLCDUFaTw/ZF/00c/HotFmfzZKMpOt87KcZcf1eLfTQWWul9rOYauLIOjnYx7TBGseCoajZAQ7GU0+vqsbh3MWrgEgekCvgC0m+3tGqRJ7gGz20hPaxvICHy8O2z/gCXyFtKe3F5/48WQdf6GCw60qyeANakjp1FLti1199yg1jrbJaq3Hy+10kJVXzKAjS8dRLDJNvaM4xOAearJasE5ATWEar/a4MSnZ0LkjxhGqeNnfYxU+KUsTGGiGvJrj3sbygjSrBSu3GhyuhP79nu80wZqH2gbGWS6t+DOqTmo7OeWrCBonw81bYxSZmg/294xydqpdIrpg1QltY3l+GluDdheUBL4CNtxjdcX15Z7YWMep3E4HnenryAm0JnSrYCLo7uog2/Sf0AnShOqCNGopgy49QVpMdrUPcV7OKBIeh9zja6GYUJXnYyQQIZSzArp0HPVisbtjiFxfEnmBZsBYSdJxqs5Po6V/jPGoE3KW6+djHtMEax6qa26n3NGFq3jtSW2nMj+TelNC6EDinkAvRtvbBjk9qdW6OupJO6FtVBf46CWDoCc7oQ/QIbtapyvr5BMsAJacC0Cg4cXYbE/NO4NjIdIH7XEPeSfWggVWK8XWYAmmaw9EIzGKTsXbjvZB3p5hFami+PQT2sbSPC8AfSnl1hgbrTS5KOzqGGJlUToy0Wp9Ai3gNYU+zEQlwYJVeoFmHtMEax46UPcGALnLzjip7VTmeqk3RbgHGmIRlpoHBsaC1HUNUxOphaJ1J7yd5flWYtabvAT6EvfzIYNWgnUi1RinU7LqHPzGTd/uv8Zke2r+ea2xj42OvdaN0o0nvJ3l+T72mDKrpaO/MTbBqbjqHg7QORTgdOd+a6Lg/NUntJ2leVa1uFZnKfgHYKw3hlGqePCHItR2jrCqOB2aX4LkDMg9sS6CAHs77UqCA80QGI51uCoGTirBEpGbRKRNRLbY/9455b5/F5E6EdkrIpecfKgJpG0TAO6SE7v6NSHbm0S7swTfWBuEg7GITMXZ5qZ+lkgX6YEOqLjghLeTkeomP81DixRDb10MI1xYPKMdRJETrtZ5uNMrC9hiluFofSUm21Pzz6uNfZzj3EM0byWkZp/wdipzvdRH7bF/WglsUXixvgeAqrEtVuuVK+mEtlOUnkyy28G+iF18RwtVLXibGvsJRqKcU5kDzS9D2TnHXWESoDw7lSSnwyp0MZGg6fFjXopFC9Ytxpj19r8nAERkFfAeYDVwKfDfIuKMwb4WPX8oQsnAJno8ZSc0geVUIsKor9KqJDjQFKMIVTw9taeLt7vtyaOXXnhS21qW72NPKB9GOhP2CpjP38GIKxtcnphsLzM1ifrkteQO74bASEy2qeaXTXubONuxG8dJfv/KslPZj32M79UTpMXgqd1d1HhH8fZsg+V/d8LbcTiEylwfb4zac2jpCfSC97fabtxO4ZysQejZC0vfckLbcTkdLM3zsq9z+OAYrgS+SDqfzVUXwSuB3xhjAsaY/UAdcNYc7WtReXFXE29iG4ElJ/blO0KOXShDD9ALXjAc5fFtHbzf+yrkrTjuEq+Hq8z1smXM/gHvrY9BhAuLPxQhN9LNWMrJl2g/ZLtFZ+EkSrRlU0y3q+JvR9sgS7r/ShIhWH3VSW0r2e0kNSOfEWeGHp8XAX8owrN7u/h4vl31r+adR3/AMSzN8/JavxecHm3BWuAiUcPvt7bzpqpcUvY9ai1cecUJb696opJgdiWIQ48f81QsEqxPisg2EfkfEcmyl5UALVPWabWXqWNof/VBkiVE/jnvicn2UopWABDq1gP0Qvfk7k6K/PUsHd8Bp70HRE5qe5W5Xnb486wbCXgF7MCgn2LpJeyL7aEpe8V5RI3Qv1fHYS0297/WzI3uPxPJrITSk79mWJGbSrOUJOT3b7F58PVWhv1BLh57Aoo3WBPBnoSqXC/NAwGiOVX6+Vjg/rqvi/ZBP+8+vRA2/RLKz4fME5vDEqwiVW0D44xGnJBZri3g89QxEywReVJEdkzz70rgJ0AVsB7oAL53vAGIyEdFZJOIbOru7j7ehy8qBwbGWdVyH71JJbgr3xSTbRYVFtJj0hlt2xOT7an4CEei3PpULV9J/R0mKQ023HDS21ya56XJFGCQhGzB6hgYp0R6kMwYVRC0rVu2hN1mCaH9WklwMWkfGOfA5kdZL3U43/SJExo/cbiKHC97wwV6BXqBC4aj/Oy5Bj6Rt5XUwVo4559PeptL83xEDYz6KrUFawGLRA0/fLKWkswU3hF6EgZb4NxPnNQ2q+1CF7VdI5C7HHo0AZ+PjvkLYYx5uzFmzTT/HjHGdBpjIsaYKPBzDnYDbAOmpuel9rLptv8zY8xGY8zGvLy8k30+C9pTv7+LDY5aHG/6JDhiM2Rtaa6P/aaQqH4BF7QfP1NPRddTXBB5BTn/Myc1uH5CZa6PAEmMpRQm5BXS/p52kiVEUm5FTLe7NNfLdsdKsvq2QiQc022r+IhGDf/vt89xs+MXhLKqYnKBA6xW5D2hQhjtAv9gTLapTr0fPV3LWG8b/xL6JRSdBmveddLbnCjV3pVUBv1NWqhqgfr53xrY2jrITecl43rq67DkTVDzjpPa5kSCte/AsDUXVm8dRKOxCFfF0MlWEZw6eOFqYGLK8UeB94iIR0QqgeXAqyezr8Vuy779XFj3X3R5lpB1wUditt2K3FQaosUkDyZuKe6F7o87Onjhmd/zQ8/tVteTN30qJtstzUrB6RC6k8oSMsEa67IKv6TlV8R0uyLCYN4ZeKLjcGBbTLetTj1jDP/16Gvc0PJVcp1juK+584Srwx2uPMdLg5moFJd438HF4JEtbfzy6W38LvMHeCLjcNVPYtO6mWslWE1SDEYLVS1Ez+zt4nt/3ss/rkzm7ds/Z104v/r2k+7eX2ZXEmzoGbUmsw6Pw1BrjKJWsXKyR4Fvi8h2EdkGXAR8FsAYsxO4H9gF/BH4hDFGZ1KcQWtnD3LvteTJAN5rfw5Od8y2nZbspiuphNRQb8JWiluojDHc+cJ+/vKbW/lV0n9Zk+G+996Yndy5nQ6WZKfSRJHVRTDBJrMM91snLMm55THfdkrV+QCM1P4t5ttWp86wP8R//OoRrnr9nzjdUY/zXT89qfnnDleZm3owwdJxFAtKJGq47elafnT/4/zRdzMlgQa45n9PeuzVhPRkNzneJHYH860FCXgRbKEyxnDXS4189H83cWlON/858DmkrwHe/UvIOvnfG6dDKMtOobFn9GAlQe1mPO+4TubBxpgPHOW+bwHfOpntJ4Ltu3fD/R9granjwMU/oXjpOTHfRzC9HAaAvv0xPTlQc2dTYx/3P/p7Luv+OTe6thMuOQfntb+CtMKY7qcy18vuznzeEhi0JrP05sZ0+/OZY8jutZxx4oONZ7J+zSoaXizEu+vP+C78dMy3r+ZWIBzhiRfeYOzZW/h89I+YJC+O9zyALHtrTPdTlp1KKwVEceLQcTYLgjGGl+p7+ekTL3Ju1338wfMnXO405LqHofLNMd1XZa6XTSP2ha8EHCe70BhjeLG+lx8+WUtzYy0/zn2Kvxt5DEnNgesfhSVnx2xfFTleGntHIceeC6u3Dpa9LWbbVyfvpBIsdeJGxgO8dN+3OXv/f+OSKB0X/5SSN107J/uS7Co7wWrQBGse6x0J8MdXd9G36becN/Invu2oI5CcibnoW7jO/hg4Y/91rcz18np9DjixDtAJlGAlj7YRkGQ8KVnHXvk4rSnO4B7HRt7b/Ser5diTFvN9qNiKRA079rey54Xfk7v/Ed4Z3YRLogxWv4vsK/8f+GI/RtjjcpKXmUZPuIh8vQI9r7X2j/HnLU20bnqMdUNP83Pnq7hdEVh7DXLxN8GXH/N9VuR6eW7fGKRkawvWPNY17OdPOw7w6OZ6Mtpf4KOeF7koZROOMYOsvw7eflNMxk1PVZHr5cX6Xow3D/GkawvWPKQJ1inW1dPL1id+Sk3Dr/g7DrDPt5Hi626jpHjlnO3TW7gMGiDYXUdsOpepWBjyh9i5r5723S9jGp+nZnQT75VGHGLoT6siePY38Jz1IUhOn7MYKnK9/CVcYCVYPbWwJPYtqPOVL3CAgaQCCk6yP/x0HA6ht+zvcLU8RrTuKRwnOWeSir1AOEJDYyOtu15mfP8rlPS/wjpTy2kSYciZRU/1+ym+5DNkZ1fOaRyVuV4aDxSTryfQ84Yxhu7hANsbD9C86xWk6QUqR97gWsdevBIgkJyBY90NyJs+cXCuyTlQmevlgc2tRJYuxamfj3mjbzTIa419bKlrYaD+VTL7tnGu7OQe5x6SkkKYlBxk7T9Z1SRj0CVwOhU5qYyHInSNBCnIWaZdjOchTbBOgdGxMbb/7RFk+29ZO/w8fycB9ntq2H/+N6g+/9qTHvB4LMUF+XSbDNwH9mmCFQeBUJimllYONO5iqKOOSE8d2UN7WBqu41zpBSCMkwOZ6+ir/ldyN1xOVtH6Of9cgFXxrs3kEnUk4UigA3QoEiUn0s14jCcZnmrp6RfR3+wjvPlh8jTBiptQKEhXSwM9rXsZaNtHsLsB71A9laFaVkofK4EoQntKNY1lH6Lo9HeQXv0W0uegxXg6lbledjYXcGbvViQaiVkFWTU7/lCEpq5BWvbvoa95N3RuJ3NoL0sjjVwoHTjF6qLXl7aUaNV74LQr8FS+JaZjpWdSkWMVuhj2lpN54KU53586lD8UobV3mLamWrqb9zLeWYdjoInMQCtV0sHbpdX6fLggkLmMpBUfgWVvQ07B56Pc/mzs7xmlIHc5NL4wp/tTx08TrDkQDgWp3/o8fTufwtf+Isv8OzhHggziY3f+Oyh58wepXPOWU3ICDdYP+H5TyLIe7cM9V4KBAF2tdfS17sPfVUe0bz9JQ82kjbdSGDlAtYxTPWX9TncpA/lnsL90AwUrzia14kxK49CNrDLXSwQnQ6llZCZQFbPu4QDF0sNg2ulzto+3rynh8UfO4or9f4Cxvph3EVEWYwx9vV10Ne9lpKOWUE8DzoFmUkdbyA61UxDtpkSikzPdh3DR7S6mP+9M+otOI3f52eRXn0lpckZc4l+a62V3uBCRgDVHTlZFXOJYrCZao1p6BulprWP8wD5Mbz2e4SYyx1soirSzVHqokYN1uPrchQznruBA8T+St3wjSZVvIjsO3acr7UqCB9ylZA63Q3AUkrynPI7FyhhD90iA1q4++lr3MXagjmhfA8nDzaSPt1IY6WCJdLNsymcjjIsRXzHkLMNUvheWnAUlZ+A5xcf3ic9GU+8o5+Qsh2336edjntEEKwaikQgNO1+lZ/tfSG59gWVjW6mRcQD2O8rZVnAlWWsuYdm5V3CG23PK41uSk8qfogWsHtp9yve9WBhj6Ontobt5DyMddYS663EMNuEdbSHHPokrlSgTU9YGjJsDjgKGkkuozTiTpLylZJZUk19eQ1LOUgqSUimI6zOyFKYnk+x20OEqIzOBBtl39faxXoYYzloyZ/tITXLRveqDeHY/zcCf/oPMq78LQP2BfrweN4VZvjnb92IzNj7GgeY6+ttq8XfVQ18jnpFmMvxtFEQOkCNj5ExZv490etxFHEhbQ0v6EpzZlXgLl1GydCUZ+eUUO5wUx+3ZHKoyz8fj0Sml2jXBOm7jwQgtfSMcaGtiqKOOQE8jjoEmkkdbyQp2UGy6OE16ccnBuYLGJYVeTynjvnXsz64krbiGvPKVuApXk52SyXy4HFKRmwrAflPECrDGUReujWtMC40/FKG1b4wDB9oYaNtHoLsBR38j3tFmsoNtlNLJBuk/5DFjkkqfp4Rx32qasipJzl9GfvkKPPlVuNJLyJwHrcxFGcm4ncL+njFYstxa2FtnzcOm5gVNsE6AiUZp2reVzq1/xt38PJWjb7CMYZYBLVLMztyLcVW9hYozLqGyoJS57cF/bOnJbrrcJXiDz+kVjqMY9QfpaG2gv3Uf45310L8fz3Az6eNtFEY6yJNhpg5zHyCNblcxnWmraUmvwJldgbdwOdll1eQVV1LujP9B+FgcDqEix0u9KWZl//MQCZ2Sri/xNty+F4Ck/OpjrHly3v2Oi7l/98Vcs/Xn7OrsomckyNnDT/J66pso/LdH53TfC0k4HKGzs53eln2MdNYR7tmPe6gJ71gruaEOCkwPS+XgNAIB46bTWcCAp4Q9aRsgs5zk/KVkFC8nv6yG7LT5cYI8G0tzvYeWal/+9vgGNA9Fo4auIT/tHW30t9cy3tWA6W8iabiFdH87+ZFOyqWHagkd8rhBZzbDvmJCaRtpy64gpXA5maUrSMpfToo3j9JT1IvkRKUmuShI97AzkM87wDqB1gTrEMYYekeDNPcM093WwOiBOiI9DbiHmkgba6Eg0sES6WSZfdF7Qr8zh6G0MkbSL6AhZynewmVkllTjyVtGamo2qfP8s+FyOijLTqWpdxQ22AlWT60mWPOIJlizdKClnuZNj+No+CsVw5uoYIAK4AC51GWej1ReQNkZl1BWuozYF30+eeNp5TBEQl/hMMbQOzTKgeZaBtv2EOyqx9m/n9TRZnKCbRSbLpZN+YEOGwfdzjz6PSXs976VhuxKPHlVpBcvJ3/JCjLTssiM39OJmcpcL9tb8rksGrZK+efNbdIxH4S6rNa69NK5Ky4DkJ+ezPIbbuPhez7FOzoeZ4m48UiIM8ZesOYdm+c/4rE05g/Q3lxHX8s+/F210LeflJFmMv2tFEU7KZHxyW58AL1k0ZtURGfm6bRllOPKWYqvaBm5ZTVk5peyxOFk7tofT53izBSGXZmMO9NISeBKYKFIlNaeIbpa9jHSvpdQdz2uwUa8Y21khzoooZsN4j/kMcOSxqCnGL9vFS2Z5XjyKsksXoavsArJXEKGO4X4dPyMncpcL5uH7eNEgpZqj0YNB4b8NHUP0NtSy1hnLfRY3TyzAq2UmE5WSzceCU8+JoyL/qRCRjOX0J15LoN5VaQXVZNevBzJqiArKZXY1489tSpyvOzvGYXsVYBopcl5RhOso6jd8jf6nv8lRX0vsyTaRiHQSwaNaWewv+ICSk6/lKKKFRTGYNb2uRbNrbESrO59iz7BGhwZo6VhF/0tuwl01uEa2I9vrIX8UBvFdJM7pZvIGMl0u4oYSl/GrvS34sxdiq9wOTml1aQXVlLkSmLuyiDMD5W5Xl7anQtuoGffok2wolFD++A4ze0HiDS+AkBa8dw/19MrC1j/ld8w7A+SluTkmd98n4tqv8VYZx2phcvnfP+n0pg/QGvDHnqbdhDsqsU50EjqaAs5wTaKTNchYxmCuOh0FjKYWsretLOQ7EpS8qvILKkmr3QZOSlph3T7W6ycdityu7+UqkVeaCYYjtLUNUBH0z5GD+wj3F2HZ7CR9PFmiiLtlNFN5ZTj8ygp9CUVMZ5VQUvGm3HnVJJWuJTskuW4cypIS05nsU+AUJnr5U87RyCteFEnWNGooW1gnMbOfvraahk7UAt9DaQMN5IdaKOcDs6UnsO6eaYykFqKP201HdmVpBYuI7OkhqQ8qytfnsNJ7CdXmD8qcry8VN+LcSUjmWWLtlT7xG93Q/coS7JTqchdGL2wNME6ioHGbazr/j21KafRXnYtBesvpWLlmeQsgITqcKlFKwjXO+DALlyLYCosYwwdPX101G9npHUn0a69pA7Vkedvosx0sGbKidwIqfQklTKUvYb+zErcectIL6khd8kKUjOLKE+gVoTpVOZ6+d9IoZVgLYITvHAkSlPfGI3NTQw0bifUuYeUgVpy/U1USStvsvvbd7hKKDpF3WVFhPQUa/yle8lGqIXefS8v2ASrt7+f9rrtDNrfPc9gPbnjjZRG26mechV5hFS63UUMpq+gJ+MSXLlLSSuqJrd8Bel5SyhzOOdli/+pVpnrpb6pkKqePfEOJSZGAmEa2rvpbtzBeNtOHD17SR+ppzjUTCWdLJ96kUtS6E0qYzRrHfuyKkkurCazdAVZpTV4vXl4E/z4XJHjpW80SLhkKa5FcHyORA0tfWPUtXXR27ST4IHdJPXvI3tsP0tNK+dK56FJlMPLgK+MQMYZdOQsxVtcTUbJCpy5y0hJzSElgT8flblWqfYDQ36KcpYv+N/vSNTQ1DvKvs5h9rd1Mty6E2fPXjJH66k0rewxS9j+tq/ziYuWxTvUWdEE6yjWXnIjcukHWZecGu9QTlpFQSaNppD8th3M3axKc2NozE/Dnq0MNGzCdGzHN1RLYbCZEroptsdlRBA6nUX0pS1lR9bfkVS4guwlq8grX4nPl4svgQ/Cx1KZ62WEVALJ+Xi698Y7nFmbOBg3tB1gcP8bmI5tpA7sJc9OpKpkZHJdv6TQl1bBWOYFNBesIL10JYXL3xSXuAuq1uN/0o2/8VV48wfiEsNsjfqDNOzbQW/9ZkzHVtIH9lAUbKSY7snWpYgROp2F9Hor2ZH5FtwFK8hcspr8itX40vP0uzcLS/N8bN+Xz8XhZxbUxNTRqKGxq5+WvW8w0rwFuvaQMdpAWbiZNdKNwz4+h3HS5S5hOGcFdbmX4y2sIatsBb6iGlK9ufN+vEs8TVSL6/ctJ6/2PlggpfwjUUNj7yh1Hb307d9OpGM7nv5acsb3U0Urbz3s89GfUoY/YzWd+f9AWskK0oqrkRxNoo5mRZF1NrerfYii3OXw+ssLouv5RGvlvs5h6tp7GGnZgaNrB+kj9VSZVtY42rhUeibXDzvdDPsqqa4sx3f2wukYrgnWUSSnLIxmyNlYUZjOLlNOUee2eIcyI2MMB/r6ad29ieHG13F17SBnxJqPZL0EAatb0QH3Egaz19KXU01y8WryKteSVbqCYnfyvKkMtpBM/IB3emtY0v5GnKOZnj8UYXfHEPX7GxjevxlX13ZyR/axgv283dE5ud6II43+9KUMZL8Df/FKsivWkVy0kuT0EornyY9OVWEWW1lKVueWeIdyiK7+AZr3vM7Q/tdxdO0gZ2gPlZH9rLXHvYRw0u4qoytzPR3Zy0kuWkFOxVryy1dRnKTfvZOxojCNJyJF9oTf+6DkjHiHdAR/KEJ9cysH9m0i0LKF5L5dFI/XspRWlto9BkK46PaUMZpzGvV5K/CVriZ36Wm4c5dR7NJZGE9ETaGVbNe6qsgLjVmfj/y5HTt6vPyhCHsPDFPb2Mzg/tehcwc5w3upoZGLpI2kyc+Hm37vEvxZG+gsXEXmkjWkFK/Glb2UPP18HLeVRemIwM72Id6WuxxCozDUBhmlx37wKTIejLDnwBA72odobG4i2LadtP5dLDONrJIm3iJtky2WYWcSI2mVmLzzCJauJqlwNeStwJVVQZbTteDGzGmClSAqc7086KzhCv9LMNQO6fE9HYpEDY0tLRzY9yr+5i0k9+6kcGwfFaaNIvuq1ghe2lOWsTf73XhKTyO/+kxyKtaxJAGq3J1KOT4PxRnJbGU5S7qfB/8gxGlOIIDBsRA72/tprd/JePMbJHXvpMhfy2pp5HQZnFyvP6WE0ay1dBS/n6yqjSSXrceXVjTvW0wcDqEzbRWrRh6H4BgkndoW8mjU0NLeRvueVxlv2YKneyf59ncv3z4RGiOZtuTl1Gddgbt0PXnLN5JbuY5ydwrlpzTaxHB6WRb/Ga2ybrS8GvcEq38kQH3dbvrqNxPt2Eb6wG6WhOpZLT2sttcZcGTRk1FNfd7b8ZWfTkH1GSTlLadYj88xtSQ7lVxfEn8bKeVNAO1vxDXBGhwPsattkOb6nYw3b8Hds5OC8VpWShOnSe/kesOeXEayVjJQdBkZlRvwlJyGO3sp+adoAu9E4PO4qMjxsrN9EGrWWwtbX4tbgjU4HmJX+xA72/o50LSXaMc2sob2sFKaeJujiWLps1Z0wFhyPsHcNUSW/COuktOgYA2u7Mp5UQI/VvSTniCcDiFcfCa03wnNL8Oafzhl+x4PhKmv301P7SYi7Vvx9e+mLFBLlfRin1LQ7cilO62aHXnvxFt+OkUrzsaXv5TqeX6yvFicWZnNH2tLuRwDza9A9cVzvk9jDF3DAXa1dHOgbgvB1i14+3ZRHqpjnTTzJrvlJIyTPl8lwby30l9+OpmVG5CidWQlZyy4K1oTwssuxrPld3S9/hj551wzZ/sJhMI01u+hu/Y1wm1b8fbvpsRfR7n0TCZKPZJNl6+anbkXk1q+nqKas0grXM7yBTjWdKEqy04h6C2i11FITtMLcM7HT8l+jTG09o7QuG8bw42bcR7YRu7wbpZFG9goYwBEEQ64yxjK28DewrVkLT2D3GVnkJleuCiqqM53IsLpS7L40wHh31JzoOFZWP++Od/vxPF5Z2sf7XXbCbZuIbVvB+WBOlY7Gjl38vPhoM9bTjD3XPrL1pO5dANSuJY0X/6iL0AyH5y+JJNn9nQRec+FON1eaHweVl895/vtHg6ws32QXW199DbuwHFgG0Vje1ntaORaaSLNLosfdTkZTa/CUXwRpmw9UrgWCtdaXYPnPMr40gQrgRStOIv+Nh+eHY+ROkcJVt/QCPv3vGF1Eziwg6yh3VSGG1gjo4A1VqrDVUZv9gZ6C9eRsXQDRTVnkZeev6ir/cx3Z1Vmc/OWpUTSfDj3PBbzBCtq98ff19hCX8PrRDu2kTG4h6rIfs6T1skuJH5JoT+zmsHCf8RUnkFa+em48leS7zr1E3TPpTPecjk9b/wboy/fATFKsAaGhmnaa333zIEdZA3upiLcQI2MUYM1VqrDVUpv9ul0F6wlvXIDxSvOJDejkNyYRKBOlIhwblUOf6tdzZX1zyKhcXCnxHQfwXCUuo4+2mrfYLzpdZK6d1Awtpca00iZBKx1cNORXEV79qV0l1gtlxkV6ylO8moX0Dg6qyKbv+zqZPS0N+Oteyrm47AiUcP+nlF2t/XQU7+VSPtW0vt3UhWp5xxpJnXi8yFJ9GcuZ7jgSqTyDNIqNuDIX0VujD+ravbeUp3HQ6+3sbVjlA0V50HtnyEahRhdIItGDU19Y+xqH2JvWxfDTdtwde+gPFDLGkcjH5Jmku3pbUJJHsayV+EqfS+UrYeidTjyVpLmTo5JLAvNSSVYInIfUGPfzAQGjDHrRaQC2A1MjJh/2RjzsZPZlzp5b15RxJ//vJGra/940t3AAuEI+5tb6arbRLB1K57eXRSM1VIRbeEM+2Q5QBLtSZU0515MW8lp5FZtJH/Z6ZR6fMyfHsIK4JLVhXz9EQ970t7E6l2PwMXfhOQTK4cyEghTe2CQ9sa9DDe+jqNrJ7kj+6im8ZCBq0OubIayV9JT/PdkLd1AypINJGdVUpQALSdFWWk8mHMt7+r7OV2bHiZ/41Wzfmw4EqW5eT+dtZvxt24luWcX+eO1lEfbOM3uy+4nibakpTTkXoKz+DRyqjZSuHwDpR6vfvfmqcvWFfGrHedwlXkKdj0Cp73nhLZjjDUpb/3+Bnr3byXcsYOUgX2U+utYLi2ssqs8jksKnd7ltOS+m+TyDRRUn0Vy0UrKtYvfvPPOdUX8xx9284ycy2Vjv4O9f4CVl53Qtqzj8xANjQ0MNm2Drl1kDNVRzX4ukZaDF7scqQxkr2So6H04qjaSXLaBpNxqCrSL37zy5uV5uJ3Cw2+0sWHtNfDQh6HxOVh64XFvazwYobZrmF1tg7Q0N+Bv24Gnbw+V0WZWO5q4WFpxT5zfJfvw56xBllwMZRug6DTcOcvIWERd/E6WGGNisyGR7wGDxpib7QTrMWPMmuPZxsaNG82mTZtiEo+a3pdu+1/+s+dfCGz8GJ7L/uuY64/4Q7Q11dHfvINAxx7orSV9pIHicAsFMjC5Xp9k0Zm6nEDOKlKWrKew+kwySlaAHowXjE/c8zo9e1/kPsdX4JxPwKX/MeO6xhh6R4M0d/XT3biL0fbdmO59pA03UBRuZql04LWvekZw0Ju8hPHsVXhKTyO76gySSk4DX/6pemrzUktXH6P/fREVtNOy9lOUXngjKdmlIML4uJ/erlYGutsYbK8n1LWPpMEGMsaaKA63kSXDk9vplly6vMsJ5qzEU3oahcs3kr1k5YKoNKYO8ocivPU7T/PryOco90WR//McpGbPuH44EqWtb4T2pjr62/cR6txHcv9ecsfqqTQtZE+pojnsSKc3bQWh/LWkVZxBXvVZOHOqYnaVW829G/7nVbY39/JaxhdxupPhI0/PWG3SGEPfaJC6A4N0tNQx1L6PaE8dvsE6ysL7qZZWsqZ8PkZc2YxmrsBZsp7Mqo24StZDVqV+PhaILz6wlUe2tPOHT2xk6a8vAG8efOhPM47vHRwLUdc9Qv2Bfrpb6xnrrMXZ30CBv4FqaaFaWsmwu4ACjHtyCOetJWXJ6dZno+g0yKqY99UKTxUR2WyM2XjE8lgkWCIiQDPwVmNMrSZY89fWlgF2/OyfuM75JM2Ff4e/8mKCnmyC/lHGhgcID3XiHmkjebSNzOABCk3X5IkywDCpdHnKGU+vwpFfQ0blBvKXb8SdURjHZ6VioaVvjHfe+je+7vgf3h39I90FF9BdfBFDjgzGR0cIjg0SHerEM9ZGeuAAhfRQRC9OOXgM6XUVMJK2FJNbja90DdlLz8BRuCrm3Z0Wi537ahn5zUc4O2pVbwwaJ1EcJBGeLGE8oUey6fGUMZa2FGdBDZmVGyhafgZJ6drBb7H4444OfnbPb/iN51sEU/I4UHk1IymljEec+If7iIx04xjrxjveRl6onVK6JlscAEYllZ6UpQSyakgqXk3u0vX4ytZaJ1x6MrSg1XYOc+WPX+Dtnj38IHQz475S2suvos9dxGgwythwP5HhThxj3WQEDlBiDlAmh34+rDmllhHOXYGvbC2ZFach+avAq8eQhax9YJzLfvQ8DhG+vnw/l+3+AqPpy2gqfifdjlz6/IbxwR7MaDdufw+FkU7KpZMS6ZlskQLwu9IYy6zBXbgKb9laHAWrIG8leBNhyvcTN9cJ1puB70/swE6wdgL7gCHgq8aYv83w2I8CHwVYsmTJGU1NTScdjzq6Z3e30fLQ17gs+MdDrmJNGMJHr6uAsZQiIullOPJrSCtdRV7lGlKzivWHehHb0TbI1x/eytntd/F+15MHq/7YIjjod+YxmlJIKK0UZ3YFqcUrySlfiyt/OZyiiXsXk1Akyhuv/o3x2udIGu8EE8Xl8eJILyI5q5DsokryylfhSo1fZUd16jy2rZ3HHvsdH/bfyelSe8gFDIBh8dHvLmTMtwSTVUlKQRXZpfa8QRmlenxexF5v7uebj+0iufV5/t31a9Y6Go9YZ9iRzoinAH9aOY6cKtKKq8ksqcaRU2VVD9bPx6K098Aw/98jO3itsY8L5Q0+77qf1Y4jz6dHnRmMpRYTzawgOX8ZacXVOHKWQnYVpBXq5+MEnHCCJSJPAtM1T3zFGPOIvc5PgDpjzPfs2x7AZ4zpFZEzgIeB1caYoaPtS1uwTp1o1NDUM8Rw627c4RHcKV6ys3LIzCnEkbLQpiJWsTYwFqRjYAzHcAc+xsjMyCDVl4GkZGm3T6XmmDGG9kE/g/29JIcHSZEwWdm5JGfkg46RSnjdwwG6hv2If5AsM4gvyYEvPRPx6ecj0fWPBukeCeAPRchkhEwZIc2N9dudmqO/33NgzlqwRMQFtAFnGGNaZ1jnWeDzxpijZk+aYCmllFJKKaUWgpkSrFiMYHw7sGdqciUieSLitP9eCiwHGmKwL6WUUkoppZSat2LRVvge4N7Dlr0ZuFlEQkAU+Jgxpu+IRyqllFJKKaXUInLSCZYx5sZplj0IPHiy21ZKKaWUUkqphSRm82DFgoh0A/OtjGAu0HPMtdRioe934tD3OrHo+5049L1OHPpeJ5b5+H6XG2PyDl84rxKs+UhENk03eE0tTvp+Jw59rxOLvt+JQ9/rxKHvdWJZSO+3TtOtlFJKKaWUUjGiCZZSSimllFJKxYgmWMf2s3gHoE4pfb8Th77XiUXf78Sh73Xi0Pc6sSyY91vHYCmllFJKKaVUjGgLllJKKaWUUkrFiCZYSimllFJKKRUjmmAdhYhcKiJ7RaRORL4U73hU7IhImYg8IyK7RGSniHzaXp4tIn8RkVr7/6x4x6piQ0ScIvKGiDxm364UkVfs7/d9IpIU7xhVbIhIpog8ICJ7RGS3iJyr3+3FSUQ+ax/Dd4jIvSKSrN/txUNE/kdEukRkx5Rl036XxXKr/b5vE5EN8YtcHa8Z3uvv2MfxbSLyOxHJnHLfv9vv9V4RuSQuQR+FJlgzEBEn8GPgHcAq4L0isiq+UakYCgOfM8asAs4BPmG/v18CnjLGLAeesm+rxeHTwO4pt/8LuMUYswzoB/4pLlGpufBD4I/GmBXAaVjvu363FxkRKQE+BWw0xqwBnMB70O/2YnIncOlhy2b6Lr8DWG7/+yjwk1MUo4qNOznyvf4LsMYYsw7YB/w7gH2+9h5gtf2Y/7bP2+cNTbBmdhZQZ4xpMMYEgd8AV8Y5JhUjxpgOY8zr9t/DWCdgJVjv8a/s1X4FXBWXAFVMiUgp8PfAL+zbArwVeMBeRd/rRUJEMoA3A3cAGGOCxpgB9Lu9WLmAFBFxAalAB/rdXjSMMc8BfYctnum7fCXwv8byMpApIkWnJFB10qZ7r40xfzbGhO2bLwOl9t9XAr8xxgSMMfuBOqzz9nlDE6yZlQAtU2632svUIiMiFcDpwCtAgTGmw77rAFAQr7hUTP0A+CIQtW/nAANTDtz6/V48KoFu4Jd2l9BfiIgX/W4vOsaYNuC7QDNWYjUIbEa/24vdTN9lPW9b3D4E/MH+e96/15pgqYQmIj7gQeAzxpihqfcZaw4DncdggRORy4AuY8zmeMeiTgkXsAH4iTHmdGCUw7oD6nd7cbDH3lyJlVQXA16O7GKkFjH9LicGEfkK1tCOe+Idy2xpgjWzNqBsyu1Se5laJETEjZVc3WOMeche3DnRpcD+vyte8amYOQ+4QkQasbr6vhVrjE6m3a0I9Pu9mLQCrcaYV+zbD2AlXPrdXnzeDuw3xnQbY0LAQ1jfd/1uL24zfZf1vG0REpEbgcuA68zByXvn/XutCdbMXgOW29WIkrAG0z0a55hUjNhjcO4Adhtjvj/lrkeBG+y/bwAeOdWxqdgyxvy7MabUGFOB9T1+2hhzHfAM8G57NX2vFwljzAGgRURq7EVvA3ah3+3FqBk4R0RS7WP6xHut3+3Fbabv8qPA9XY1wXOAwSldCdUCJCKXYnXvv8IYMzblrkeB94iIR0QqsQqbvBqPGGciB5NBdTgReSfW2A0n8D/GmG/FNyIVKyJyPvA3YDsHx+V8GWsc1v3AEqAJuMYYc/gAW7VAiciFwOeNMZeJyFKsFq1s4A3g/caYQBzDUzEiIuuxCpokAQ3AB7EuKOp3e5ERkW8A12J1H3oD+DDWWAz9bi8CInIvcCGQC3QCXwceZprvsp1k34bVTXQM+KAxZlMcwlYnYIb3+t8BD9Brr/ayMeZj9vpfwRqXFcYa5vGHw7cZT5pgKaWUUkoppVSMaBdBpZRSSimllIoRTbCUUkoppZRSKkY0wVJKKaWUUkqpGNEESymllFJKKaViRBMspZRSSimllIoRTbCUUkoppZRSKkY0wVJKKaWUUkqpGNEESymllFJKKaViRBMspZRSSimllIoRTbCUUkoppZRSKkY0wVJKKaWUUkqpGNEESymllFJKKaViRBMspZSaJ0SkQkSMiLjiHctiJyI3isjz8Y5jvhGRC0Rkb7zjUEqphUwTLKWUUguaiNwkIiERGZny74vxjmshMsb8zRhTE+vtish6EdksImP2/+tjvQ+llJovNMFSSqkY0ZanuLrPGOOb8u/b8Q4olhbyZ0tEkoBHgLuBLOBXwCP2cqWUWnQ0wVJKqZMgIo0i8m8isg0YFRGXiJwjIi+KyICIbBWRC6es/6yI/D8ReVVEhkTkERHJnmHbHxSR3SIyLCINIvJ/Drv/ShHZYm+nXkQutZdniMgdItIhIm0i8k0RcR7jeVSJyNMi0isiPSJyj4hkTrmvT0Q22LeLRaR74nmJyBUistN+vs+KyMrDXp/Pi8g2ERkUkftEJPn4X+njJyJfsl+XYRHZJSJXz7CeiMgtItJlv5bbRWSNfZ9HRL4rIs0i0ikit4tIyiz3f6e9/l/sGP4qIuVT7v+hiLTY+9wsIhdMue8mEXlARO4WkSHgRhE5S0Resl/nDhG5bWqSYncv/WcRqbX393/t9+5Fex/3HyupEZELRaR1Ns/vOFwIuIAfGGMCxphbAQHeGuP9KKXUvKAJllJKnbz3An8PZAIFwOPAN4Fs4PPAgyKSN2X964EPAUVAGLh1hu12AZcB6cAHgVumJDlnAf8LfMHe75uBRvtxd9rbXQacDlwMfPgYz0GA/wcUAyuBMuAmAGNMPfBvwN0ikgr8EviVMeZZEakG7gU+A+QBTwC/P+xE/hrgUqASWAfcOG0AIufbycNM/84/xnM4XD1wAZABfMOOv2ia9S7Gev2q7XWvAXrt+/7TXr4e6/UsAb52HDFcB/xfIBfYAtwz5b7X7O1mA78GfntY8nkl8ADW+3sPEAE+a2/rXOBtwD8ftr9LgDOAc4AvAj8D3o/1fq7B+qyeMDtRnun9+e8ZHrYa2GaMMVOWbbOXK6XUoqMJllJKnbxbjTEtxphxrJPZJ4wxTxhjosaYvwCbgHdOWf8uY8wOY8wo8P8B10zXwmSMedwYU28sfwX+jJUwAPwT8D/GmL/Y+2kzxuwRkQJ7X58xxowaY7qAW4D3HO0JGGPq7G0FjDHdwPeBt0y5/+dAHfAKVmL4Ffuua4HH7ceGgO8CKcCbDnt92o0xfcDvsZKK6WJ43hiTeZR/RytKcc1hJ/vFxpjf2vuNGmPuA2qBs6Z5bAhIA1YAYozZbYzpEBEBPgp81hjTZ4wZBv7jWK/lYR43xjxnjAlgvWbnikiZ/XzvNsb0GmPCxpjvAR5g6vinl4wxD9vxjxtjNhtjXrbXbwR+ypT3yPZtY8yQMWYnsAP4szGmwRgzCPwBK+E+YcaYdUd5fw5P9ib4gMHDlg1iveZKKbXoLNg+3UopNY+0TPm7HPhHEbl8yjI38MwM6zfZ9+cevlEReQfwdawWFAeQCmy37y7Dai06XLm9vQ4rPwD7sS3TrDt1XwXAD7ESuDT7Mf2HrfZz4FHgo3bCAFaLV9PECsaYqIi0YLX0TDgw5e8x+zGxdr8x5v1TF4jI9cC/AhX2Ih/TvM7GmKdF5Dbgx0C5iDyE1fKYjPWab57yWgpw1O6Wh5l83Y0xIyLSh/X8W0Tk81iJcjFgsFoqc6d7rP18qrES3412XC5g82H765zy9/g0twuPI/ZYGcF6blOlA8NxiEUppeactmAppdTJm9r1qQWrhWrqlX2vMeY/p6xTNuXvJVgtKD1TNygiHuBBrBahAmNMJlZCNXGm3wJUTRNLCxAAcqfsP90Yc6zuWP9hP4+1xph0rJa4g1mFiA/4AXAHcJMcHDfWjpXUTawn9vNrO8b+jiBWifCRo/y74NhbmdxWOVZC+Ekgx379dkx9TlMZY241xpwBrMJKaL+A9Z6MA6unvJYZxhjfcTytyffafg2zgXb7uXwRqztilh3f4GHxTf1cAfwE2AMst9+jL8/0fOaKWGPtZnp/bp/hYTuBdTIlS8XqKrpz7iNWSqlTTxMspZSKrbuBy0XkEhFxikiyXTigdMo67xeRVfZ4ppuBB4wxkcO2k4TVZawbCNutWRdPuf8O4IMi8jYRcYhIiYisMMZ0YHUl/J6IpNv3VYnI4V3JDpeG1dIwKCIlWAnGVD8ENhljPow1xmziZPp+4O/tONzA57ASvBeP9UIdzi4R7jvKv78dx+a8WAlKN1gFQ7DGIB1BRM4UkbPt+EcBPxA1xkSxkrRbRCTfXrdERC6Z8lgjU4qYTOOd9tiyJKyxWC8bY1qwXu+wHZ9LRL7Gka08h0sDhoAREVkBfPwY68ecMWb1Ud6fj83wsGexxo99SqyiIZ+0lz99SoJWSqlTTBMspZSKIfvk+Uqs1oVurBalL3Do8fYurEIUB7C6oX1qmu0M28vvx+qq9z6s7nkT97+KXfgCq+XjrxxsSboeK0HbZT/2AaxxU0fzDWCDva3HgYcm7hCRK7GKVEyc0P8rsEFErjPG7MVq7foRVovP5cDlxpjgMfY3p4wxu4DvAS9hdZNbC7www+rpWIlUP1Z3x17gO/Z9/4Y19uxlsar5PYk9TsoeSzXMwW6b0/k1VjfPPqziExPdGP8E/BHYZ+/TzzG6cWJ1W3yfvc+fA/cdY/15wf4sXIX1uRzAKvByVbw/I0opNVfk0KI+Siml5pKIPAvcbYz5RbxjUSdHRN6P1X3w32e4/06g1Rjz1VMamFJKqbjSIhdKKaXUCTDG3B3vGJRSSs0/2kVQKaUShFiT3h5PcQK1CInIl2f4HPwh3rEppdRioF0ElVJKKaWUUipGtAVLKaWUUkoppWJkXo3Bys3NNRUVFfEOQymllFJKKaWOavPmzT3GmLzDl8+rBKuiooJNmzbFOwyllFJKKaWUOioRaZpuuXYRVEoppZRSSqkY0QRLKaWUUkoppWJEEyyllDqKjsFxHtnShlZcVUoppdRszKsxWNMJhUK0trbi9/vjHUrcRI1hJBDGm+TC6ZB4h7NgJCcnU1paitvtjncoagH70gPb+FzT/2H/9vNZ+oHb4h2OUkoppea5eZ9gtba2kpaWRkVFBSKJmVx0D/spHGol1REhpWAZOJzxDmneM8bQ29tLa2srlZWV8Q5HLWDB9u2sc+yH+v0w9BVIL4p3SEoppZSax+Z9F0G/309OTk7CJlcAwVCIHBkmxYwRHR+MdzgLgoiQk5OTEC2fo4Ew21v1czEXolHDhsCrk7dDe/4Qx2iUUkoptRDM+wQLSOjkCsCEQ5N/R8b64xjJwpIon5ubf7+Ly2/7G42PfRuaXox3OIvKkD9EDoOMSyodJpuhnX+Jd0hKKaUWsBfqevjhY68QGe6KdyhqDi2IBCvRmaiVYAWMC0doFHSwvZriudpurnK8QMWmb8G97413OItK72gQH+NEk9J4KbqK5I5X4h2SUkqpBexz92/lLa9+HOf3loN/KN7hqDmiCdYsiAif+9znJm9/97vf5aabbjpl+3dGwwCMOdNwEoHwwW5vL7/8MmeffTbr169n5cqVk3E9++yzvPjiybVmXHrppWRmZnLZZZed1HbU3DHG0DsS5DRHvbXAPwC99XGNaTHpHw3ilXHwpNGeuhJvsBeGOuIdllJKqQXIH4pwYGic9RO/2W/cFd+A1JzRBGsWPB4PDz30ED09PTHdrjGGaDR6zPWcWAlWOCnDelxwdPK+G264gZ/97Gds2bKFHTt2cM011wCxSbC+8IUvcNdd+uWfz/pGgwQjUZYkjx9c2Ph8/AJaZMZDEdIYx3jSkOL1AJj21+MblFJKqQWpdzRImUzpGrj/b/ELRs2peV9FcKpv/H4nu9pj25y6qjidr1+++qjruFwuPvrRj3LLLbfwrW9965D7uru7+djHPkZzczMAP/jBDzjvvPO46aab8Pl8fP7znwdgzZo1PPbYYwBccsklnH322WzevJknnniC2267jT/84Q+ICF/96le59tprefbZZ7npppvIzc1l65Y3OHNdDbf97++IjAsmMIbLa+2/q6uLoiKrqpnT6WTVqlU0NjZy++2343Q6ufvuu/nRj37EihUrZoyzvr6euro6enp6+OIXv8hHPvIRAN72trfx7LPPHvW1+e1vf8s3vvENnE4nGRkZPPfcc/j9fj7+8Y+zadMmXC4X3//+97nooou48847efjhhxkdHaW2tpbPf/7zBINB7rrrLjweD0888QTZ2dn8/Oc/52c/+xnBYJBly5Zx1113kZqaesh+zznnHO644w5Wr7beuwsvvJDvfve7bNy48ajxLja9o0EAKlPHeWNgGauTu0lqfRXOuCHOkS0OwXCULBnHJBWTXrmBSIPgb9yMd8Xfxzs0pZRSC0zfSJAV0gLArmg5K5pewBGNaHXoRUhbsGbpE5/4BPfccw+Dg4dWa/v0pz/NZz/7WV577TUefPBBPvzhDx9zW7W1tfzzP/8zO3fuZNOmTWzZsoWtW7fy5JNP8oUvfIGODqsL0htvvMEPfvADXnnmCRqa23hj08v4ScKEDrZWfPazn6Wmpoarr76an/70p/j9fioqKvjYxz7GZz/7WbZs2cIFF1xw1Di3bdvG008/zUsvvcTNN99Me3v7rF+Xm2++mT/96U9s3bqVRx99FIAf//jHiAjbt2/n3nvv5YYbbpis5rdjxw4eeughXnvtNb7yla+QmprKG2+8wbnnnsv//u//AvAP//APvPbaa2zdupWVK1dyxx13HLHfa6+9lvvvvx+Ajo4OOjo6Ei65AgiErBbQXBmmnwyaUlZD6+Y4R7V4BMNRfHYL1vLSAupMCf5mfX2VUkodv76xIBli9UJ6Mno6jsAQ9DfGNyg1JxZUC9axWprmUnp6Otdffz233norKSkpk8uffPJJdu3aNXl7aGiIkZGRo26rvLycc845B4Dnn3+e9773vTidTgoKCnjLW97Ca6+9Rnp6OmeddRYlJSUMtddy2uoVtLc0419eSkpkxCp0IcLXvvY1rrvuOv785z/z61//mnvvvXfaVqejxXnllVeSkpJCSkoKF110Ea+++ipXXXXVrF6X8847jxtvvJFrrrmGf/iHf5h8Tv/yL/8CwIoVKygvL2ffvn0AXHTRRaSlpZGWlkZGRgaXX345AGvXrmXbtm2AlYR99atfZWBggJGRES655JIj9nvNNddw8cUX841vfIP777+fd7/73bOKd7HxhyMAeIL9RFLK2BnJYXnPKxAOgMsT5+gWvmAkik/GIcnHysJ0njSVvKN7++T3TymllJqt/tEgXqwLzpujNdbCzh2QUxXHqNRcWFAJVrx95jOfYcOGDXzwgx+cXBaNRnn55ZdJTk4+ZF2Xy3XI+Kqp8zF5vd5Z7c/j8VjncURxOl1EIhEizmQc0SGIBCdPoKuqqvj4xz/ORz7yEfLy8ujt7T1iWzPFCUeWMz+e8ua33347r7zyCo8//jhnnHEGmzcf/eq+x3PwpN/hcEzedjgchMPWWLMbb7yRhx9+mNNOO40777xz2oSxpKSEnJwctm3bxn333cftt98+65gXE6sFy+AO9OHKzufl3jyuMhHo2QeFa+Md3oIXCFktWJKcRnqqmxbPclJDf4ORTkgrjHd4SimlFpDhQBgvVi+knsx1RMccOA7sgFVXxjkyFWvaRfA4ZGdnc8011xzSZe3iiy/mRz/60eTtLVu2AFBRUcHrr1uD4V9//XX2798/7TYvuOAC7rvvPiKRCN3d3Tz33HOcddZZk/dHMTiYUpbdbbWeTXQTfPzxxzF22fba2lqcTieZmZmkpaUxPDx8zDgBHnnkEfx+P729vTz77LOceeaZs35N6uvrOfvss7n55pvJy8ujpaWFCy64gHvuuQeAffv20dzcTE1Nzay3OTw8TFFREaFQaHI707n22mv59re/zeDgIOvWrZv19heTQNgqwuCIhvBmFbDZX2zd0bnr6A9UsxIIR/Dhx+FJByCcu9K6o3tvHKOKr5se3cknbnuQ4PjRW+oXs5fqexkcCx17xUWqa8hPXdfwsVdcpKJRw+amPiJRnTJFHZ9AKIJP/BhnEkuKi2iRYujcGe+w1BzQBOs4fe5znzukmuCtt97Kpk2bWLduHatWrZpsSXnXu97F/8/ee4fHUd37/6+zXdpd9V6sZklucgHbQOiEmoQWCJBLIEASfrkJKaTf5CYhucn35pKekIRASEKA0Akl9A4GDLbBvcqyZElW79L2nfP7Y3Zl2VbXSqvdPa/n0aOd2Zkzn53dmTnv8ymnu7ubpUuXctttt1FVVTVqe5deeinLly9nxYoVnHXWWdx6663k5R0eGdc9WBKJ7lUyWpKQEjSfC4B77rmH6upqVq5cyTXXXMN9992H0Wjkwgsv5F//+hcrV67kzTffHNNOgOXLl3PmmWdy4okn8v3vf5+CAr2Tfuqpp/KJT3yCl19+maKiIp5//nkAfvCDHwznW33zm9+kpqaGZcuW8aEPfYgVK1bwhS98AU3TqKmp4corr+Tvf//7EZ6rifif//kfTjjhBE4++WQWLVo0vP7JJ5/kBz/4wfDy5ZdfzgMPPDBcOTER8fg1UoXe0c3IzuOAzEMzmKFdCaxIoHmHMAiJIUkXWM6iJQD4W3dF06yoEQhqPPz2Lv7QeQPGX5SD3zPxTnHGpoZuPnnneh786y9h8/3RNicq3HD3Bj72qxfpf+tOaN0WbXPmnIc3NXLZn97h/lc2wpNfhsGOaJukiBHcvqDuwbI4WJyfwrZAEVrb9mibpZgFhJzhpLVCiGLgH0AuIIE7pJS/FULcAnwOCN95viulfGa8tlavXi03btx4xLpdu3axePHiGdkYy/gCQYJtuzGarVhyFjLo8WPq2oPRkoQ5e+Yxu0dXO4w34v3389j7Tfzh4Wd42fpNBi+8k2UP29mU9UMy88vg6oejbV7Mc/fz6/n0O+fhu+BXWE74DP/e0sxpj60msPQyMq64LdrmzTm17YN87dd/5Unr9/UVn34Kyk6LrlFzzO2v7+e55/7N49bQYM93W8CSPP5OcUSfy8+KH7/A/2d8iv8y3w/FJ8Jnno+2WXPK5+/ZxHM7WvmX8xes8r8PH/4BnPr1iXdUJDw/f343Feu+waWZDbxwzots+ef3+Zb5IfhOI9hSom2eYhoIITZJKY+pshYJD1YA+LqUcglwIvBFIcSS0Hu/llKuDP2NK64Uo6OFPFjhhHqr2YgXMyLojbJlivmAN6BhQy/V7rA7yHJYOWgsVSGCkSI055zJ5gBgYa6TfbKQYHtihgjWdw6xUDQfXtEws7n2YpE9rQMsNIw4B/WJNY/N/k7dY14qWvUVzRvBm1jhgg3degRJkS80WeyeZ6NojSKW8Pg1UgwehMVJRbaD3XKB/oaKOok7ZiywpJQtUsr3Q68HgF1A4UzbVehIiZ6DJfSvymw04BcWjJpPf3OG3HLLLXHrvUoEPP4gVkK5ICYrFdl2dgSLoL8JPH3j76yYEC2gh8AZQgVlyrLs7JeFJPfVRtOsqNHj8lFpaCaAiX2yCHnw3WibNOe0D3hYnDxiPsaGt6JnTBRo7dOviUpLt75CC0BjYv0O2vs95NpNZBL6HRz6ICHDZRVTx+0P4jR4wOpgQUYydRTpb3Tuja5hiogT0RwsIUQpsAoI321vEkJsFUL8VQiRHsljJQp69tVhgQWgGa36uoDyYiU63oCGVYQFlo2KHAcbh7L15c7EFAGRRIY7TSa9+qbVZKQzqRS7vxuGjq3WGe/0uvwUiQ6GkvLZqpUSbN8dbZPmnK5BH1W2XjpJ45C1HBLsHPSGinuUmLp4SwtNndKeODmJ/qBG15CPS6pMGITkUMYJusjsSJxzoJg+Hr9eOAmLA4vJgCl9AX7M0Lkv2qYpIkzEBJYQwgE8CnxVStkP/AmoAFYCLcAvx9jvRiHERiHExo4OlSh6NMMeLEaUTg919mRAjZglOl6/hjUUIojJRkW2g22ekMDqUgJrpmj+0CCGyTK8zpceKljTmXhhgj0uH3bhxZScRq1WhGnwEHj6J94xjugc9JEnO+mz5LFXK0q4jnWv24dAIyPQxjatDH9SdkKJzM5B/Z6wKk3//4EtVPU3AYt9KKaOxx/U51a0OgEozUml2ZCnntdxSEQElhDCjC6u7pNSPgYgpWyTUgallBpwJ7B2tH2llHdIKVdLKVdnZ2dHwpy4QpMSgQaGw1+V0aILLE2FJCQ83kAQe9iDZbZRkW3noMxFCgN0qRGxmSLDXmLj4SqY5ny9aEqwLbE61gC9bj+pBi+2ZD0XDUi40JZel4+MQAc+ez6bvXnQexC8iVOyvs/lJ880hFHz0yIz6U4uTyiROeDR52vMlLoHe513IZjtKu9VMSk8fo1k9BBBgIocO3sDeUjlwYo7ZiywhD4r7V3ALinlr0aszx+x2aWAqkM5DaSUGASIESGCVrMZvzSi+dxRtEwxH/D4NRymoL4Q8mD5MTGYVKhGxCJBWGCZDgusnMIKXNLKYFPizV3S6/LhMHgx2hz0O0JVTDsSx3vhC2gENIlNG8DsyGBnICQyE2hetB6Xj4Ik/Z7jNtg5aFqgf/4I5ATHAi6f/tmdAV1gvd+TBJkVakBLMSk8/iDJUi/TDlCR5aBWy4eeAxAMRNk6RSSJhAfrZOAa4CwhxObQ30eAW4UQ24QQW4EzgZsjcKyo8fjjjyOEYPfusTsT9fX1LFu2LGLH3LNnDx8572xWnnMVNSeczo033gjArh3beOLlt2EGlQRvuOEGcnJyImqvYu7xBoLYDaGbsslKYVoSVpOBVnOxysGKAHIUgbUwN4VaWYC/LXGERZgBTwC78ILFjjW7DB/mhBJY7lDn2hx0Y3eksleGEtQTyIPT6/KTY9PvOXZnCruDheAbhL7GKFs2N7h8+mdPDuihsQdcVnxpFSqHRjEp3P4gZukDcxKge7DqZD5CC0BvQ5StU0SSSFQRXCelFFLK5SNLskspr5FS1oTWXySlbImEwdHi/vvv55RTTuH++0efWDIQmPnIQzAYPGL5y1/+Ml/4wk1sfvEBtm9Yx5e+9CUAtm/dwnOvvoUx6J32qOF1113Hc889N2ObFdHFG9BINoYFlg2DQVCe7aBOy4Pu/aBp0TUw1gkeGyJYkeNgnyzE1pN4HSq3L0gSHrDYKc1OoY4CZAJ5b1z+ACAxB92kpKZxUOYSMFgTqshDn9tPlkUPS05NTWeTK09/I0HysMIi2yo9aMKEDzOd1gV6qKgK21dMgNcXwIJ/OJe+PMtBnRYK+FIiPa6IaBXBWefZ78DfPhrZv2e/M+FhBwcHWbduHXfddRcPPPDA8PrXXnuNU089lYsuuoglS/SpvwKBAFdffTWLFy/m8ssvx+XS58t4+eWXWbVqFTU1Ndxwww14vXrHrbS0lG9/+9scd9xxPPzwkRPDtrS0UFBQoC8IAzU1Nfh8Pn74wx/y+JPPcNw5V/DgA/9kaGiIG264gbVr17Jq1SqeeOIJAP7+979z8cUXc8YZZ1BZWcmPfvSj4bZPO+00MjIyxv3cr7/+OitXrmTlypWsWrWKgYEBpJR885vfZNmyZdTU1PDggw8On4vTTz+diy++mPLycr7zne9w3333sXbtWmpqati/X58v5KmnnuKEE05g1apVnH322bS1tR1z3Kuuuoqnn356ePm6667jkUcemfB7SkQ8/pEeLP2GXZFt1wtd+F0wcCiK1sU+InBskYsUm5l2ywIcvvaEm//H7Q9ik3oFrLIsO3uChWgJlIvm8gWx4UMgSXak4rBZaLcuSCgvnssXJM2kC6yM9HTW9WXpbySIFy8cImjVXGCxA1AvCgAJ3XVRtEwRCwznzoeiItLtFnqTSvR1Ksw0rogtgRUlnnjiCc4//3yqqqrIzMxk06ZNw++9//77/Pa3v2XvXj3Re8+ePXzhC19g165dpKSk8Mc//hGPx8N1113Hgw8+yLZt2wgEAvzpT38abiMzM5P333+fq6666ojj3nzzzVx04Ue54FM38ds//pne3l4sFgs//vGPufiSS9j84gNc+fGL+OlPf8pZZ53Fe++9x6uvvso3v/lNhob0CVLfe+89Hn30UbZu3crDDz/Mxo0bJ/25f/GLX/CHP/yBzZs38+abb5KUlMRjjz3G5s2b2bJlCy+99BLf/OY3aWnRnZNbtmzh9ttvZ9euXdxzzz3s3buX9957j89+9rP8/ve/B+CUU05h/fr1fPDBB1x11VXceuutxxz3yiuv5KGHHgLA5/Px8ssv89GPfnTSdicS3oBGsuFwmXaA8mwH7w+FOj0qD2tGiODhCo0j8aSF8o8SbMTR7Q1g09xgsVOWbWe/VoCxvxH8iZEP6vYFsaN3kITFTnm2g3oSK9/R5QvgNOgDD7mZGXQGkwkmZSXMOTgcJupBWOxYTAZ2+3P1N1UHWTEBhwVW0vC6zJw8+kVKwj1P4h1TtA2YEhf8LCqHvf/++/nKV74C6N6V+++/n+OPPx6AtWvXUlZWNrxtcXExJ598MgCf+tSn+N3vfsc555xDWVkZVVV6eedPf/rT/OEPf+CrX/0qoAuK0bj++us54aSTWP/M/Tz+ytvc+bd72bJli/6mUf/qNL+bF154gSeffJJf/OIXAHg8Hg4ePAjAOeecQ2ZmJgAf//jHWbduHatXr57U5z755JP52te+xtVXX83HP/5xioqKWLduHZ/85CcxGo3k5uZy+umns2HDBlJSUlizZg35+bqru6KignPPPReAmpoaXn31VQCampq48soraWlpwefzHXHuwlxwwQV85Stfwev18txzz3HaaaeRlJR0zHYKXWAlGfwgjMO/iYpsOw+ODDkoPyN6BsY4QgsJLKPliPWm7GroAtm5D1F4XBQsiw4BvxcjQTAnU55l5zEZCg/rroPcpdE1bg5w+YIki1AHyWKnItvBjq5sPuR5AwK+Izyd8YrHrw0LrLysLOAQg45SUrv2R9ewOSKcg2XS3AhLMqWZybw/5OAGUB1kxcSEB6NG5PVWZDuoa81nZYJcQ4mC8mBNQHd3N6+88gqf/exnKS0t5ec//zkPPfQQMpT7ZLfbj9heL6o49vJoHN3GSPJyc7nhqkt4/OH7MZlMbN+uF2M0GowEpYGgz4OUkkcffZTNmzezefNmDh48yOLFi6dtT5jvfOc7/OUvf8HtdnPyySePW+ADwGo9fMMwGAzDywaDYThH7Utf+hI33XQT27Zt489//jMez7Ex6zabjTPOOIPnn3+eBx98cEwBqtBDBJNE4AgPS3mWgzbSCRiTQd2wZ4QheGQ4R5i0omoC0oDrUGKERQ3j0z3jWBwUpiVxUIRCmBPEe+HyBbATChu12CnPtrPDkw1Sg576qNo2V7h8ARxCPwcFufrgXZu5KHF+A37dg2UK6CGC5VkOdnUFwVmQMOdAMQPCeb0jn9nZeql2LcGmvIh3lMCagEceeYRrrrmGhoYG6uvraWxspKysjDfffHPU7Q8ePMg777wDwD//+U9OOeUUqqurqa+vp7ZWv/nec889nH766RMe+7nnnsPv0y/GtrYOurq6KCwsxOl04hoaxIsZAh7OO+88fv/73w+Lvg8++GC4jRdffJHu7m7cbjePP/74sHdtMuzfv5+amhq+/e1vs2bNGnbv3s2pp57Kgw8+SDAYpKOjgzfeeIO1a0ed4mxU+vr6KCzUSxvffffdY2535ZVX8re//Y0333yT888/f9LtJxregIZN+I8QAGXZdkDQk1SsQlZmiCEcImg8UmCV5WbQKLNxtyRO7g2ACOg5pVjsmIwGgukhD3SCdCzdvqA+hw3oYZJZdg6EvXgJcg5cviD2kBcvKz0Dh9VEA/kw2JYQk067fUGEAEPABWY9VPZgtwstc6HyYCkmZDiv13xYYJVlOaiT+RiG2sHTFyXLFJFGCawJuP/++7n00kuPWHfZZZeNWU2wurqaP/zhDyxevJienh7+8z//E5vNxt/+9jc+8YlPUFNTg8Fg4POf//yEx37hhRc4+eRTWHH2lZx/0aX8/Oc/Jy8vjzPPPJM9u3dxwrmX8fBjT/D9738fv9/P8uXLWbp0Kd///veH21i7di2XXXYZy5cv57LLLhsOD/zkJz/JSSedxJ49eygqKuKuu+4C4Pbbb+f2228H4De/+Q3Lli1j+fLlmM1mLrjgAi699FKWL1/OihUrOOuss7j11lvJy8ub9Pm85ZZb+MQnPsHxxx9PVlbW8PqNGzfy2c9+dnj53HPP5fXXX+fss8/GYon/sJvp4vUHSRKHS74COKwmclOsNBkSKzdkNjBofoIYhsMvw1Tk2NkvCzB2J06HKqhJzMHDAgsgLzuHLpGRMJ5SPUQw7MFyUJqZWAIrqEk97xMPIBDmZMqy7Oz05egbdMf/78DlC5JsNiJ8LrDon98flAw5ShLi8yumTyCoYZaje7AOyFBYf4LcSxOB2MrBigLh3KGRfPnLXx5+fcYZZwy/Li0tHTOM7sMf/vARnqUw9fX1Yx77V7/6Fd/77n+R6WuCrKrhTk1GRgYbNmygs6WBLNkNVgt//vOfR22jqKiIxx9//Jj1YwnEkcIvXJjiaH7+85/z85///Ih1Z5xxxhHn4rXXXhv1vYsvvpiLL774mDZXr17NX/7yl+Fls9lMd3f3qMdXHMYb0LCKwDEhbOVZDvb05rFq4DV9styj3ldMDqPmJSgsGI9an5di41lDEWcMPQ9aEAxHbxF/uP2HCzyEJ8ksz7ZTW5dLRmctkw8+jl1cR5wDO6UZyfTjwGVOJzkBBJYnFB6XhD4XGgYDpVl2NtaHKtJ27YeCVVG0cPZx+YIkWUx6uGxaMeVZ+nO5zVyE090Drm5IHr9CryIx8QU1rISLUh1+JhenJ1NPONx6PyRQXm88ozxY857QPEbi2K9KGkMjIGGXsyLh8PqDWPEdU+WuPNvOZlemnhvSfSBK1sU+Rs1PwGA+Zr0QgkFHGSbp0+e/SQBcvsAI743eqSzLsrM/mIeWIKFRnpEhguZkki0m8lJstJqKEmLkOVyiPEm6wZwM6L+BDf2pSERCePHcvgDJFqM+DYZZDxMFOKCFPZnx/ztQTA9fQMMqjqz6C2AxGZDpZWgIFdYfRyiBNd8Znkj42PFhEYrh1QKjT2543XXXcdttt82WZYp5gDcQGhE72oOV7WCHV5UOnilG6SNoGN37JzMr9RcJIy60Ed6bw53rOlmA0dOtj9zHOSPzj8JevOE8rIQQF7rA0udCC4vsZDzSQsCZGCHJLl9QF1i+IbDYybBbSE0ys8MbCnlXYYKKMfAGNGyMPvVHUXYabYachLiGEoWYEFhyWGQkIDLswTpWYJksNqSEoC8x5qCZKonwu/H4g1jwHTGnBoRjukMjqgkiAGYDk+YjKI71YAEkF+iVOv1tiVHowuUPjCjwcJS4gISYZNXlD+AwhDpIIYFRmmVnhzcbBlvjfuJpdyhE0KK5h38DpZn6eehPLkmIzqHbHyRpWGAlI4SgLMvO+wOpeqSJ8mApxsAXGBkieFTUSZad2mAeMgGuoURh3gssm81GV1dXQnSWRyf0uUcJEbSajfgwIf2je7ASGSklXV1d2Gy2iTeOYbwBDYv0HePBqshyMEgybmuWeuBPEyklJulHM45eZKWwsIhu6WCgeeccWxYdjizwoHeqc5xWWkxF+roE6Bi4fUHSjCGBFQqRK8+ys9MbKvIQ59daeA4oa9B9RJgocDhMMs6f1S5fEIdZ6OW2zfpnL8+yU9vpg7QFCXEdKKaHNxAcNQcL9Oq/tcE8ZGdt3F9DicK8L3JRVFREU1MTHR0d0TYlKgz199CuDUDv3mNElpQSb18nZiExdvqiZOH8xWazUVRUFG0zZo1AUCOgSczy2ByswvQkLCYD7ZZiSlSI4LTwByUW/GOGCFZkO9gvCyjrSIzz6/EdWeAB9Fw0c2YpwR4DxgToWLp8QVKMXjDoBR5A92A9MuzF2w8FK6Nn4CwTDhE0ay6w6CFxackW0pPN1Mk8lnr7YagTHNnRNHNWcfmCFCSFIktGiMzHPmgmWFiOUYUIKsZAn1YlPEBzZNRJWZadZ2U+Bv+QPuWBc/LVmRXzk3kvsMxmM2VlZdE2I2rc98ubuXrgr/DdluG8h5E88JP/5ePB57F8v3X4ga9IDLwB/SFvHsWDZTQISjOTqdcKKOl8OxrmxTzhik9yDA9WSWYyT8gClvRvnWPLooPriAIPhydHL85Oo6U3l6IECEV1+4I4Dd4j7sVlWXbqZWIUOAiHCBoDhz1YEAqT9GRzIegenLgWWAHSjLonbzgXMVs/F33JJWQ0vad7IEYJ61ckNt5xQgQrsh2HS7V37lMCKw5QPfJ5jkELJ0SOPoruTqnAIr3Q3zSHVinmA2GBZZK+Y0bDQC/VvsObC+4eGOqaa/NiHl9Aw0IAzTC6wLKZjXQllWL3J0aBB7c/iF140YzWI+YFK8uysy+Qi5YQHqwADuE9QlwsyEjGLyz0W+K/0EW4iqAp6DriHJRl2tkwGC7VHv/nINUU9kIcGSbZYiwA3yAMtkfLPMU8Rs/BGr1Pl+O00moq1Bfi/BpKFJTAmueIoE+f6HSMeXaM2Xols2D73rk0SzEP8AZCo8nasR4s0AtdbBoKVbZSYYJTxhfQsAg/0jj2HGK+1HL9RQI8EN0hD5Y0H+lJ1ysJ5uveG02LknVzg15F0Ddc4AH0EsuF6UkcMsV/Fb1wiKDBP3SMB+uD/hSkwZwQ58BpCHkhjspD2x8cESqqUBzFeB4sIQRJWQvwCUvcX0OJwqwLLCHE+UKIPUKIWiHEd2b7ePGGCPoIiNFH0AGcRUsA6G/cMVcmKeYJHn/Ig6V5j7lZg16qfZ82IuRAMSXCFZ+kaezrz5y7CACtI/4HOHQPlucIcQGHKwkaAm4YaImSdXOD2x8kWXiOEBcAZVkOaoMhD1YcJ6iHQwQN/qM8WFl2NAz4UkvjunMopcTlC5BiCBd70Qcbki0m8lNtbPWEB7Ti9xwopo8vlIOlGcyjDpqXZqfQSH7chxonCrMqsIQQRuAPwAXAEuCTQogls3nMeMMo/QTGKBMNUFy0gF5pZ6hl1xxapZgPDHuwgt5RPVgV2XaaZLZ+M++MfwEQaXzBIBb8MI4HK7OoEp80Mtgc/9efyxckCS/iGHER8mBB3HcsXb4gyXIUgZWZzHZPNnj6wBW/4bguXxATAUTQe4TQDntwem3Fcd059AY0NAn2sMAyHykyP+hzgMEc1+dAMX3CVQTHioooz7KzN0HCrROB2fZgrQVqpZR1Ukof8ABw8SwfM64waD6ChrEF1sJcJ/tlAUJ5KBIOr18DJMZxPFgahlCnR92wp4rHr+dgMUaRC4Dy3DTqZR6+1vifC8vt16sICuuRHqy0ZAvd1mJ9Ic5/Z25fkCTcwyXaw5Rl2dntDxV2iONz4PYHSebIUv2ghwgCephkdx1owWiYN+uEQyQd4si50ED/Dezv8kBGmQoRVIzK8DxYozyvQQ/rr5N5iJ4DEPTPsXWKSDPbAqsQaByx3BRaN4wQ4kYhxEYhxMZELcU+HkbNR3CMJHvQOzfNxiKcgwfm0CrFfECfZDhUzWqUG3Zqkpksh4VmU7EKEZwGvqCGVfjBPPZcahXZdupkAaae+O1Uh/H4gzgMx3qwAOxZxXiENe5H7t3+IDZ5bJhkaZb9cAWwOD4Hbl+ADPOR+UcADquJLIdVz0EKeqEvPosuuUIhknYRnq7gyGqSvS4/vtSyuP4NKKaPN6Bhw4cco2hZeZZeSVBoAeg9OMfWKSJN1ItcSCnvkFKullKuzs6O39Ku08Wk+dHGCREEGHCUkRLoAk//HFmlmA+Eb9bA2CNiWQ72BfNAjYhNGb2KoB/DGA9DgAx7aIDD1Rj35/dwBT3HMe+VZqdwkPy49t6Afg4s2rEhguVZDj0cV5ji+hy4/UHSwwLLfPQ5sLPNE99ePHdoouWkYS/e4WuhIlt/3WMrCnnx4rvgi2Lq+AL6oJ0Y43ldmpVMnZYY4daJwGwLrGageMRyUWidYhJIKTFJ/5hlosNomXolQam8FAnFkRWJxhgRy7azxZUNWgB6GubQutgnXKZdjCOwhBAMpZRjJAg99XNnXBRw+7RQkYtj5+Mry0qO+9wBTZN62KjmOkZgFaTZMBhN9Fjju5Kgyxck3XSsBwv0zuG7/eFS7fHpwQmXqbfJcA7WkR4sgCZDIQQ8MHBozu1TzG/COVijTasC4LSZGbCX6gtxfB9JFGZbYG0AKoUQZUIIC3AV8OQsHzNuCGgSM360cXJAAJLz9UpmA80758IsxTzB4w/qIWwwbkz31vCosip0MSW8YQ/WOCGCACJLH+CI9/Pr9gf0iYZHCREsC4e29NTHrSfP7Q9iQMOseY85ByajgQUZyTQZCuJWXIB+z0kzHZt/BHqY5O7BJKTFHrc5SGGBlSTd+ooRAqsoPQmTQbAvkKuvUB1kxVH4QlEnYpxnSkZ2HgPCqX4/ccCsCiwpZQC4CXge2AU8JKVU9cQnSThESU7gwcopWYRfGulvVAIrkfCOnLRwjBt2eZaD/cO5IcrDORW8fj9WEcBgHtuDBeAoXAyAuyW+C124fUF95H6UEMGyLDsHtDyEDMatp9QVmgcMGENk6hMu0x2/84G5fEHSTMeGx4E+2TAIPCllcds5DBe5sEiPLq4Mh7tQJqOBBZnJbHVl6iviWGgrpod3OERw7GdKebY+WKXypmOfWc/BklI+I6WsklJWSCl/OtvHiye8AQ2LCCAn8GBV5KVzUOYQTIC5eBSHGQ43gHE9WP048Fgy1Q17ivi9ekdyIg9WcX4+7TIN16H4LtXu9vqxjeHBKs1KHlHkIX4710mjVNALU5ZlZ4s7Sw8P64/PSHi3L0iKYXQPVlm2vtxtjd+qpWEPlkXzHFNJEvQ8tPd7ksCUpOdhKRQj0OfBGjsHC0Kl2oN5aJ3xeQ0lElEvcqEYG29An4dnvIlOAfJTbTSIQpL61IhZIuHxjyxyMfqIWHFGMiaDoCOOOz2zRcCneyuMlvEFVkWOg/1aQdwLWM3vxoAcVVwkW0wMOUr1hTj9nbn8gRHV40Yp9JFlpzYY3+Fhbn9wxCS7R/4OSjL05WZDoV4BLeCda/NmHVeoyIWehzdaLqKdum43MiN+vXiK6eMNaCSJsXOwIFSqXcvDMNgC3sE5tE4RaZTAmsfocyYEwDB+iJIQgu6kEtI9TRAMzJF1imjjDUycg2UOha00EP8CINIEfHqehWkiD1Z6EgcoILm/DqScC9Oigy/0sB9FYAFkZufRL1LiNhTV5QtiH8+DlWk/XAEsTnOQ3L4gDuPoHqwki5H8VBv7grkgtbgs+uIOlWk3Bd3HVFEEPbzLF9Bwp6hS7Ypj0Sv/+sccEIVQuLWM7/tIoqAE1jwmnGTPBB4sAH/6Qsz4oTc+8x8Ux+L1axOGCIKeh7XTnwuuTnB1z5F1sY/mn5wHy2Q00JtcSlKwH4Y658K06OAb0v+P4r0BPUTsgMyL246le2QO1ijhYWXZdtpIJ2C0xe050EXm+Hlom11Z+kIcenDCIYKmgAuso+ciAnRZinSBqQY8FSMYHhQd53ldnJFMvQhNF9uxZ44sU8wGSmDNY7x+vUz0eBdjGEtuNQDuVnVBJgqeQBC7ceyJhsNUZNvZOBS/nZ7ZIuDXvRWmCYpcAAQywpUE4/f6MwZc+otRxAXoHpx9wTy0OPWUunzBcUMEc502bGYjnZb4Dcf1+IP6XGgGE4ySG7wwx8HbPan6Qhyeg7DAMviHRhWY5SGB1SjyQfNDn5osVnEYX7gw1TjPa7PRQDCtnCBG6IjvwknxjhJY8xhPIIhNeBGjxHofTVrxEgB6GrbPtlmKeYLXr+EYFljjVSWyszeQpy/Eaed3NtBCIYJGy9jx8mFsBfr152+J30qewh8SWGOECJZl6SFyhsHWuMwdcPkC4xa5MBgEpZl2DoqCuBQXMKKSosUOQhzzfmWOg2avjWBSZlyeA5c3gN1iRPgGRxXZ2U4rdouR3f5wLp4qdKE4jDegYZXjCyyAktx0fcoH5cGKaZTAmsfoVat8iEl08EqKi+iUKXhb1YhHouD2BUkxhkIEx/AqgJ4X0Chz0AzmuM2PmQ20kAdrPPEapnDBQvpkMv0Ht8yyVdFBSqmHRcGYIYILcxzUxXHuwKB3ZJGL0UVmebad3f4cvVR9wDeH1s0+Ukrc/iBJeMb5DTgBGHSUxmWY5JAvQLLVpOcjWp3HvC+EoCzbzvtD4VLt8ScyFdPHF9D0VI4JnimVOQ52BfKR7ao/F8sogTWP8YRGTA1jPMxHUpJpp04WYO5RHehEwe0PkjKccD6OwMqyE8RIX1KxGhGbAsMCa4JpEgCq853skcXItvj0YHkDmt6xhjHFRXF4ol2Iy46lyztyHqyxBcZmVxbIYNzlw3r8+txeNjl6qX6Aylz9vLSZiuLyNzDoDeKwmnQP7VgiO8vBlm4T2NJUiJfiCDw+H2YC41YRBKjKdbJHK4SeurisxpkoKIE1j/F6PRiFxGCdWGCZjQZaraWkD8V5JTPFMHrJ5PBEw2P/RjLsFtKSzTSaSqA9vudqiiQyEOpMTyIHsiTTTq0sxtG3Ny6vP/cExQ0AjAaBMatCX4hD78WgNzCiiuDoAxqVOQ4OaKFw3DgTGOEKerbwJLujkBm619TJPBhsA+/AXJo467i8AexWo+7BGqvYS5adpl4PWvYiNaClOIKgL/xMmcCDleugVitESE2F9ccwSmDNYwJevWqXyTpxDhbAYGoVdm0QBlpm0yzFPMHtC+IwhBLOx6k0KYSgKtfJrkChXtnK55o7I2MYGZh8iKDZaKDbsRBbcDAuJ5l1+4Mki7C4GL1jCVCSm0mryI47cQF6DlaK0QfCMKborsp1Hg6TjDOReXgOKPeYvwEhBJU5DrZ7wkV14uscDHoDOM0Sgr5RqwiCHiYqJQw4K6BjV1wOuCimRzivd6JBu4psB7UU6QvKCxqzKIE1jzkssCb2YAGIXD3RPtC6Y9ZsUswf3P4gdoNvXO9VmOpcJ+uHcgAZ15XuIsmwwJpEiCCAlr1YfxGHXkLXyBLl44SjVuY42BfIJRiHo66D3iCpRq8uLkYp8AC692LQ4MRlSo27fMchr+7BsmquMb2YoIdJru9L1xfiTGgP+QJkmUN5r+N4sAAOmUvB3QOD7XNknWK+E/RPLirCZjYSSKtAw6C8oDGMEljzmKAnJLBskxNYzuIaAHrr4zPRXnEk7vDEp5OoMlmV52SLN5QfE4cCYDYQwx6siUMEAeyh68/TvHW2TIoaAx4/duFBIsA0dv5AZa6D/bIAOuIvVHLIG/JgjSMuLCYDpZnJNJviL99x0KsLC3PQPe45qMxxsM2dhRTx1zl0eYOkm8N5r6MLrNKQwNo37IFQ91uFjgxHj0zimVKal0GzIV95sGIYJbDmMUGvfjGaJymwFhQV0SbT8DSrUu2JwHDY1jgVBMNU5zppkLl6JUElsCaFCE4uXj5MaVERrTKdocZts2hVdBjwBEjBRdDiBMPYj42FOU72ymKM/kHoa5xDC2cfly+gzwE1QdEhPRy3CNp3xpXI7PfoIYKm4PgerMpcB14seJwl+jmIIwa9AdKGCwuNfg5SbGayHFY2u0Ol2uNMZCqmj/RP/pmiKgnGPkpgzWO00GiHcRIeCtDjdvdoxZi71A09EdDL+E/Sg5XrIIiR7uQyJbAmidEfmstplHLMo6FXfipGxOH5HfAESBEuNGvquNuVZCZTKxboC3FWUXHQG8BhGLvAQ5jKHAcb3fng6YP+Q3Nk3ewzEBZY/qFx8/AqQ6Xa25Mq4k5gDXkDpBlDnu1x7guVOQ42dVv1SoJxeD9QTJ2gJjEHQx6sSTxTqnKd7NUK9Skv4mzKh0RBCax5zLA7eRIeCgC71cQhSynpQ/tB02bRMsV8wO0PYhtnTpqRpCVbyE2x0mBYoEIOJolxgnmfjqYoPYk6wwJSBusgGJhFy+aeAY+fFFwIa8q425mNBnwZVfpCe3zlgrp8QZy4YYJzUJnrZLcWCg+Lo871oCeAkSAG/yDYxhbauSlWnFYT+0UJdB8A39AcWjl7aJpkyBckxThxsZfqPCf72geR2YvU/VYB6M9rpwgVuZjgHgK6J3ifVoiQwbicVzARmJHAEkL8XAixWwixVQjxLyFEWmh9qRDCLYTYHPq7PSLWJhr+sMCaeKLhMAMplVikF3rrZ8cmxbzB7Qti1SYeUQ9Tletke6BAD93y9M+ydbGPOeAiIMzjVmgciRCCgZQqTNIH3XWzbN3c0u/xkyKGEEnje7AAivPz9UqCcSQuIOTBkoOQlDbudlW5+pxoQFyJTF1kh8TSOOdACMHCXAebvQWAjBuBES5TnzLcSR5bYC3Od+LyBRlMWahfB3EUKqqYHi5fAAfh387EHixVSTD2makH60VgmZRyObAX+K8R7+2XUq4M/X1+hsdJSKR/ah4sAHL0SoJanIXnKI4kENTwBTVs0j2pEEEIVRIcyNEX1A17QszBIbyGKVx7HK7kKeMsNGrAE8CJG2Ny2oTbVuc62BkoJBhn1Uz73QEc2sCEAqs0K5lBg5MBS3yJzAFPgHRDWGClj7vtwmwHb/aH7jVx8iwa9Ope6RRCocPjnIPqPN1D0WQqAU+vqiSo0KdVmYQ4D2MzG/GnVaAhQOVhxSQzElhSyheklOFYmPUQltuKSCDCCZFT8GA5i5cBMBCHifaKw3gCegioRfNMqkw76JUEtwcK9YU46vjNFtagC79x8tceQErxMjQpcDXGVyXBAU+AVIMLMU5oWJjqvBT2yGJE1z4I+ufAutlHSkmvy0eyNjChuLCajJRmJnPQGF9FHga9AfIsofA4W9q421blOtkylI40JcXNOehx6XkwacMCK2PMbatyHQgBu4Khyq2qkmDC4/IFcTD5HCyAkrwsWkSu+v3EKJHMwboBeHbEcpkQ4gMhxOtCiFPH2kkIcaMQYqMQYmNHR0cEzYl9hj1YE1StGklpQQ4HtWy8TUpgxTOu0GiqWZuaB6tJZhMwJimBNQGaJrFJNwHT5K89gMqibOplLu7m+Lr++sPhYZMQWIvy9GIfBs0fN/MgDXoDGDUvZs07obgAWJSXwjZ/oV5BTgvOvoFzQL/HT645NOg3gRevOs+JhoGh1IXQFh+ezO4hXWA55QAYreMOfCZbTJRkJPPuUKiSYJx48RTTZ8gbwDE8l+Dk8norcxzsChaitavCZbHIhAJLCPGSEGL7KH8Xj9jme0AAuC+0qgVYIKVcBXwN+KcQYtSsPinlHVLK1VLK1dnZ2TP/RPGEf/JzJoSpzHGwRxZj6lIu5XjmcMnkyedgVeY6kBjoSipTI2IT4PbrE+tOVWAtyktht1yAuTO+zu+g24d9EgUeAArTkjhoKtEX4qRz3euaXP5RmOo8JxvdeRDw6IUe4oABT4AccyjEaQKRuShPH6E/ZC2PGw9Wr0v3xiYHQ17MMSabDlOd52RDpxns2XFzHSimT5/bj0O4CZrsYDBOap/qPL1gjuiuhfC8jIqYYUKBJaU8W0q5bJS/JwCEENcBHwOullLP5JRSeqWUXaHXm4D9QNWsfYo4xeQfIIhhSiGCmQ4rjaYSUofqVWnPOKbf48dEAFNwcp1e0EdVF2QkU2dYoDxYEzDkC+AQHjTz5EYaw2TYLTSay3C6m+KmehqA392PATkpD5bBIDDmLtLvXXHSue5x+UgVk8s/gnDHKL4KXfS6fIcF1gQiM9tpJT3ZzF5ZDEMdMBj70SlhD1ZSoG+Sv4EU6juHCOYsiZvfgGL69Ln9OHAjJxkeCOFS7UUILRA30QCJxEyrCJ4PfAu4SErpGrE+WwhhDL0uByqB+CqrNQfYAv24jSkTjpQdjSutCiNB6No3S5Ypok2f209qeEQ9eexcgKOpynWy1ZsPg23g6p4l62KfIW8QO27kFMJzw7jTF+liJJ4Sk929+v9JCCyAhfkZNJCPjJOR+x6X/3DuzaRCBJ3UykIkIm7Cw7qGfGSbJufBEkJQlevkPVe+viIOBEZvKAfL4uub1D13cZ4TTUKPvVIf0IqTUFHF9Ohz+3EKN2IKAqs8206tCA/UqEHRWGOmOVi3AU7gxaPKsZ8GbBVCbAYeAT4vpVS9uSmSFBzAa5qcd2IkxtylAGht6oKMV/rdftLExNWsjqY6z8G7g6HqXuqGPSb9bj924ZnSwzCMpXA5AMHW+MnDMrhCHghHzqS2r851siNYjBYnlQR7j/BgpU24fXF6MgZLMl3W4rgQFwA9Qz4yDC49ZN08cdj6ojwnr/Vk6QtxIDJ7XH6SLUYMnp5JezEB6oyloVBRNcacyIQ9WAbb5J8pVpMRLX1hKBpAPa9jjZlWEVwopSw+uhy7lPJRKeXS0LrjpJRPRcbcxCEQ1HBog/gsUxdYGSVLCUgDA3FWyUxxmH5PgHQG9IUpCawUdgbDk6DGfqdntgg/DI1JUxdYuQuqGJJWBhq2zIJlc4+UEou7U1+YrMDKS2G3tgBjf3zMudYz5CNThD5HcuaE2xsMgspcpz7Zbhx48YKapNftJ4PeKf0GDvqcBJMy40Jk9gz5SE+2gLtnUiK7JNOOzWxgiy90v23bPrsGKuY1fW4/qQYPYhIl2kdSlpdBkyhQU6vEIJGsIqiIIIPeAKliiIBlciE5I1lYkMkBmY+3Wd3Q4xXdgzX5nJAw1blOWsnAZ05RAmscel0+7HgwJ019gGNRQSp7ZDHBlvjwYPW7A6TLHn3BkTupfRblOdkt4ye0pcflJ5fQOXDmT2qfRblONnkLkN0HwDs4i9bNPr0uH1JCerBr0p8/7MHpdVbGiQfLR0ayUc8ps09ckMto0MMk3+7PAmGIi3OgmD59bj+ZhoFJDdCMpCrXyc5AgZrbNAZRAmueMuAJkMYgmjVtyvtW5TrYI4uwdqvSnvFKv9tPtnHqOVhlWXZMBgNttrK46PjOFu6BbkxCw5ySNeV9F+Y42CNLSO7ZA3rdn5imY9BLFn36wiQ6lgDpdgsdyQv1hTgYue9x+Sg29+mdI5N1Uvssyney2VuAQMb86HPnoJ5/5PB3TVpkhwVWo7ksLnKQul1+Smwu0AKQUjipfapznWxr80Jm/JSrV0yPfrefDPomfQ8NU53nZI8sQvQcAL97lqxTzAZKYM1Tel1+UsUQYhKhCEfjtJlptZbh9DTHVSUzxWF6XX5yhyt6Td6DZTEZKM+2s59i3YMVBwJgNvD3tQJgS82b8r5Wk5FO+0KSgv3QfyjSps05nYNeskUvfms6GM2T3i81r5whkRwXHctDvW6KTf2T9t6A3jHaJRfoCzF+Dlr69HtNkrd90ufAYTVRlJ7EtsACCLhjPgeppddNpS0UJppSMKl9FuWn0DnoxZOxOC4GGhTTZ2hoCIccAvvkQmzDVOU69EqCSH1ePUXMoATWPKVzwE0KLszOqbmTw3jSq/VKZuqCjEs6Br3kW1wgjJMu0x6mKtfJ+5588PTBQMssWRjbBAf1nCNzytQehmECWUv0FzHesQZo6/eQLfrQkqd2LqrzUtilFSPjILSlqcdNnqEHnJMX3IvyUmiS2fiMsS8y2/o9JOHB5BsA5+Q8WKCHir41GDpnMVz0xRsI0j7gpdwa8uROVmCFvHitSRXQ2wDegdkyUTHPEa5wHuvUPFglmXYOiNC8gjHuCU80lMCap/T1dGIQEptj8uFfIzHnLwMgEAedG8WxtA94yDUNTWrCy6OpzHHy3lCo06PysEZFhuftmWI4RxhHyQoAvM2xX2imqcdNvujClDa5TmWY6jwnu4LFyLbtMe8pbe51kym7pySwMuwWspxJHLKUxbzAaunzkCt69QXH5M9BdZ6TN3oykMIY0x6cll4PAIXGXn2Fc2oCa2/Yk6nCshOW4GC7/mKKHiyz0YAhq5wAJvW8jjGUwJqnuHt0z0JyxtRDlABySqvxSjMDDbHfwVMcS3u/lzy6IHVyuQAjqcx1sEcL7ace+KMih2YmsMoKC2iSWQw1xn4lwcZuF6WGdoyZ5VPab1FeCrvlAgy+AehrnCXrZp9+jx+fx4XT3wUpRVPad1Gek13aAl1cxLDIbOpxs9wemmklvXTS+1XlOnFpZrxpFTEtMpt79RDJHNkJBtOk7wuZDitZDisb3KGwyhgWmYrp0+/xk+wLXT/TeKZU5KVTLwrja27FBEAJrHmK7G0CwJqxYFr7V+WlsU8W4m+J3YeaYnSCmqRryEdWsANSi6e8/8IcBz2k4LFmKYE1BsZwWfIpVnwKsyjfyW6tGEMcjDh2dbaSyiBkTE1gVeY62BMHOUiHet2UiDY9ByKrckr7Vocn2/X0xnQ+Xl3HIKvCAitz4aT3W5Snhy932CuhNXbFRXOPLrAyPAchvQwMk+86Lc53sr7LDhZnTF8HiulzqNdNlgiFl04xRBB0T7CqJBh7KIE1T5H9zfqLaXgoACqyHeyVRST17o2gVYr5QNeQl6CmkeprhdSpjagDlGbaMRoErbZyFXIwBlZPF26jY0pFHUZSmJZEnaEU5+ABCHgjbN3cIrsP6C8yyqa0n81sxJNerS/EcMfyYJeLchHKVZyCuAC9Y7QtEJ4HKTbPgZSS/R1DVJvbdZEwyXmwAMqz7ZiNglpRBv1N4OqeRUtnj8YeFwYBSX11kF09pX2rc53sbR9E5i5VpdoTlEO9bopFO1IYJh1eOpKqXCd7tGIM/Y0qjy+GUAJrnmIcaEZDTOtiBL1z05FUgdPXrk+MqIgbGrpcegGUoGtaAstiMlCSmUwtxXrIgabNgpWxizcQJCvYzqBtetcegBCCwbRqjAShM3YHOTz+IM6hBn1hih4sgOL8XA6J3JgVFwC7WwcoN0xPYC3KSxnhxYtND073kI8+t58F8hBkVkwp59NsNFCR7eB9b+haitEBnV0tA1Rl2RDd+yGrakr7LspPwRvQ6E+t0q+DGA4VVUyP5h43paINLaUYTJYp71+V62CfDA22q8JlMYMSWPOUJHcrg6b0aV2MYfyZoZE2FbcbVxzoGKJQhELYJjkfy9FU5jj4wJOvl0/urY+ccXFAc48eEuZzTi88N4whTy80I2M4NGpP6wCLqSdosExZXIDuwdkRKEKL4XOw81A/x9sO6flXVseU9q3MdTAkkumz5sesyKxtHwQk2UN7IWfxlPevznPyWm/I6xWjv4NdLf2cltmvz4E1VYEVKnRx0FQG3j7oa5oNExXzmOZeD6WiDUNmxbT2L05Ppt4YqiSowvpjBiWw5iFD3gBZgTbcSZOfc2U0bIU1ACoPK86o6xxikTEUQjrFcJUwlTlO3hkMlVtWN+wjqO8coFh0YMya3sMwTFbJErzSHNOFLrYf6qNGHCCQvXRa4ZKL8pzsksX6yL/fMwsWzj67WvtZQS0UHT/lfW1mI6VZdhqMJTHrvdnc2EsBXVg9nVA49XNQnedkW38SWnIWtMVeqfZel4/mXjcn2UKhsoXHTWn/hTkODAJ2xHioqGL6HOwapNzQiphioaAwBoMgOaccHxb1vI4hlMCahxzsdlFtaMSbPr3Oc5jcogoGZBKDjaqSYDxxoHOQNcktYDBD5tSS7sMszHGwJxgK21F5AUfQ3lyPVfhx5k/dYzOS6oJ09spCvM2x16kMs72xm2XGA1iKVk1r/+q8FHZrCxAyCJ2xF9rSOehloKuVrEDLtMQF6CJzi79IDxWNwXy8TQ09nJMa8rpMUVxA2IMjGEytjklx8UFjLwCLA7vBljrle67NbKQ828HbgyEvXnvsnQPFzOg4VI8D15S9nyOpyE1jP0XQoQRWrKAE1jxk/4E6skQ/SUU1M2qnLNtBrSxEUyGCccWWxj5WmJt079U0Q0gX5jgYIgl3ckFM5wjNBu4W/QGWnDf9hyHoI/e7tQXYumPzgSilpHvfuzhxI8pOmVYbCzKSOWAs1RdisHP95r4OPmQI2b3gpGm1UZ2bwruufD28LMautaAm2dTQw3nJu8HigNypP5OqQ5UEm6wV+uh7MBBpM2eV1/d0YDMbyOneCEVrp1RBMEx1npPN7RLSFsTkdaCYPkPeAJl9oUG2aQ7SgJ6HtTNYqCoJxhBKYM1Duus2A5BRPr1R4zAlmcnUyTys/fUzN0oxLzjU66at30WFbw/kr5h2OxXZDoSADnMRdO+PoIWxj6FV9/iK/OUzaifFZqbFVoHd1wVDnZEwbU5p6HJRNbgBiYCyM6bVhtEgsGQv1ENbYrBj+fqeDs63bkUmZUy7c1QdngsLYu4cfHCwh64hLys9G6D8jGkN6BSk2nBaTfo5CHhi7n7zxt4OLil2YejeD5XnTquNxXlODna7CGQtibnfgGJmfHCwlxViP5rBDLnLpt1OWZadvVoRhsFWVbgsRpiRwBJC3CKEaBZCbA79fWTEe/8lhKgVQuwRQpw3c1MTB3PLBjQExoLpd6ABnDYz7eZCHN428LkiZJ0immxs6GGxOIjN3wulp067nSSLkaL0JBrIg67Y6vDMJr6ARtbAbnot+ZCcMfP2MkNFAWKwU/XM9hY+anwXX/5qsE9vPjCAyvw0akVxzFXR8wU03tnTzIfFJkTluWAwTqudRXlO6mWeXigkxs7B8ztaWWPaT7K7BaovmFYbQgiq8py8O5Snr4iha2F/xyB1nUN8ImmTvqL6/Gm1Uz08H9hC6NwXk6Giiumxvq6Lkw07kPmrwGybdjtlWXb2yFAen4pKigki4cH6tZRyZejvGQAhxBLgKmApcD7wRyHE9J5OCUaf20/pwPt0JC+MSAfP7QzNXdNdN+O2FNHnxZ1tnGsLdVDKTptRWxXZDnb7svVJUGN0fppIs6d1gBpqcWdNf6RxJNZQmG8wxqqnSSnZ+t7rLDI0Yl115YzaWpTnZLu/CK01djrWoF9rJ3jfJkkbhJWfnHY7CzKSsZgttNnKYkpcePxBHn2/mS+lrwdzMiy5eNptVec5eaUrDSmMMZWk/9CGRswGycrOf+sDWmnTqywariS4X5SADKpS2wnExu07WW6ow7hoeuI8THFGMrVhgdWhBFYsMFshghcDD0gpvVLKA0AtsHaWjhVXvLVtL2vEbmTFhyPSngiXBY2xsAzFsQx5A7y0s40rreuhcPW0J6EOU5pp54OhkGdCebEA2LlzCwsMHdgqT49IewX5xfRIB4NNsdOxBnhtTwcXDDyC32SH5VfMqK3qPCe75QIMrg4YbI+QhbOLlJI73tjPTdZnkJmVUDr9wQyDQejz2BBb+TdPbG7GONTGKUMvwfIrweqcdluL8px0egwE02NncvN+j59/vneQby/Yi7GvAVbfMO22itKTcFhNfOAN3bNj6HegmD57Wgeo6X5BX1j0sRm1ZTMbkc5C/MKi+nMxQiQE1k1CiK1CiL8KIdJD6wqBxhHbNIXWHYMQ4kYhxEYhxMaOjo4ImBPbdG94BJPQyF47s05NGHu+XonQ1x5bydWKY3lmWwuLA7vI9+yHFVfNuL3SzGT2+LP1BXXDBmBg50sApC89JyLtVeQ6qZUFBNtjZ8Q6ENR49OlnuND4DoY1n9Erp82A6jwnu2Rs5SA9+n4zZYeepkoeQJz2jWkVNhjJorwUNroLYLAtJvLxhrwBfv3iPv437XEEEk7+8ozaq87VxVm3fWHM/AZ+/tweNO8g1w79FbKqZ+TBE0KwMMfBu31pYLLFXKioYnr8461aPmV6GX/h2mlPqTKSkmwnLYZ8NSAaI0z41BBCvCSE2D7K38XAn4AKYCXQAvxyqgZIKe+QUq6WUq7Ozs6e6u5xxcHOIY5re5S2pAqMRVMvhzsahbk5tMk0hg4pgRXLePxB/vhqLf9tfxyZlA4r/2PGbZZm2Tkoc5HCoG7YwIDHz5Lul+ixFkXkYQhQkW1nn1ZIUl9tRNqbC/7++m5u6vsFfmsGxtO+PuP2sh1W2myh+V9iwHvRPuDhzqde53+s/0AWHA81Mx/sqs5z8r43PC3C/BcYP35qJ8uH1nG250XESV+EjOnN3xNmUSgHqcFYAj314BuKgJWzx4b6bu5Z38BdxS9gGWiEj/162jl4YapyHexud+v3lhj4DShmxt62Acwf3E2JaMN86lcj0mZJpp3aYK56XscIEwosKeXZUsplo/w9IaVsk1IGpZQacCeHwwCbgeIRzRSF1inG4c0n/8ISQwO2074MQkSkzdKsZOplHrIrdjp4imP59Yt7WdXzHMcFNiNO/w5Y7DNusyzLjh8TQ7Z85cEC3np/OyeKnbgWfTxi15/TZqbdWkqSvxeGuiLS5mzy7v5OnK9+l0WGRiyX3Q5JaTNuUwhBbl4RvSJt3uffePxBvn7vO/yf/BV2E4jL7pyx9wr0ELm9WmzkTzy0sZGNm9bz26S/6JVKz/zujNtMTTaTl2Jju78QkPP6HLT2efjSPz/gBue7nNj+AKz5LJSePON2K3OcdA568WYujomBBsX08QaC/P7Bf/Nt0334S06H6o9MvNMkKM1MZm8gB9lzALRgRNpUzB4zrSKYP2LxUiDs934SuEoIYRVClAGVwHszOVa8s2nnPs5u+BWtSQtJPeGaiLVbkmmnTsvHpkq1xyxPbG5m+7on+T/rX6HkZP2BHwEK05IwGQQdliI1IgZ0rv8nBiHJP+XaiLbrSw9NWDzPJ9p9r66LHf+4mSuNr+I96auIqumVpB4NfU6wQuQ8FlguX4Cv37OO/6/le6wQdRg+fjuEc1hnSFWekw7S8JpS5rXIfHhjI3c89iwPJ/0Mm9UGn/g7mKwRabs6z8m6gVx9YZ7O5dPY7eLKO97hJM8bfD/4R72wxXn/G5G2K3MdALTaKvRQ0UGVEhGPeANBfnLf83y984cYLHbMl98RwQFzO/UyDxH0QV9TRNpUzB4zHZq7VQixTQixFTgTuBlASrkDeAjYCTwHfFFKqeT2GDS2dmJ56JOkCRepn7xzxqEII3FYTXRaCkn2d4N3IGLtKmYfKSV/ebOONx7+HX+1/hJj1kK44h4wmiLSvsloYEFGsl6qvbsOpIxIu7FIfccAJ/U+RatzKYbsyoi2bcpdBICcx5XDXtpaT/vfP8UN4kmGaq7Feu4tEW2/Os/J7mAhsn33vPydNfe6uem2f/Gl+i/yIeNuxCV/hMUXRqz9TLuF9GQLh6xl81Jg+YMatzy5g6cf+wdPWn9Iuk0grn18xqGBI6nOc/JWtwNpSpqX5+D9gz1c8ae3uHzoAX5l+C2iaDVcee+0J3M/mqpQHto+UaKvaFdhgvFGc6+bn/3+j9xU95/kW1xYr30EnHkRa780084BLeTXUFFJ854Z9dSklGO6WqSUPwV+OpP2E4Ede/agPXA1S6il/fw7yV8QmdyrkfhSFkAv0H0AZjh5qmJu+OBgD/c+/jQXdfyZz5q3Eiw+GcMVd89oPqLRKM2ys6sthzO8/XryvSMx8yDXPX0PnzK00HfqDyLednZhOa7tVmTzDuyrI978jPD4g/zt0ac4fecPWGQ4yNCp/439rG9EbMQ1THWek0dlEQb/oD7ymlY88U5zgJSSp7Yc4oMnfs9vtLtJspkxXPkoVJwZ0eMIIajMdbK3t5Cyjrd0kRnhczxdmnvdfO+Bdzm16XZ+aHkOcpYhPnl/xL+jyhwHngB4M6qwzSNx4Q9q3PFGHQ+8+Da/sd3FCWyGZZfBRbeBJTlix8lPteGwmnjfXcDZoOdhlZ8RsfYV0aN9wMNzLzxL0Zbf80PDJgZSKrB+6h7IXRrR4yzISOaADAm27jogMtWmFbNDZIbCFVPG4/Oz7qHfcPy+32ATflrP/TOFJ35iVo4l0stDAqtOCax5TL/Hz7ObamlZ/zAn9j3DLw278NpSkGf+BOOJX4ioZzNMaaadzfszwYieh5WAAqtjwMviA3+nx5JH+vGRqd45korcFPbLfIpadzHzzLnI8cb2AzQ88VM+43sMnyWVwMfvx75kepPJTkRV7lE5SPNAYDV0DXHbw89ycfOv+KFxB+7CEzFffjtklM3K8apyHWxqyeM8+mCgFVLyJ95pFvEFNP7x9gE2vvQQPxF3UWTq0MOPz/lxRHI8jybswelMrqCobV3E258Ob9d28qMntnB698O8ZP0XFoOAj/wGjr8u4gI4XEnwg24j2HPmbZikYnIMuH28u2kDPR88xaKO57jWcIAhk5O+E79D6plfBXNSxI+ZZDFiTMnD60/CqsL65z1KYM0xfYMuNjzzN0p2/ZmzZQO1ycvJ/eSfKFwQmYlNRyM5byEcAH9nHeZZO4piqvgCGrsa26nb9g6+2tcp6X2XS8UeLCJIn70Y79rvYT3xc5CUPnFj06QsK5lXAtm6wOraDwtOnLVjzVdeeP4JrhZ76DzhxxELvxzJwhwHb8lCynrmR0hHbWsv6x75PR/p+AuniV7ayy4i54rfRmRi87FwWE0MpS0EN3p4WGVkyuBPh+4hH/e+uJ6c93/D/4pX0SxJaOf9iqTV10ekoMVYVOU6edaXDxagY1fUBJamSZ7aeohnnn2K61x381njTvxpFXDpP6DkQ7N23IU5eg5SvWEBRUPtusfcnjVrxxuP2vZBfvPCbsTOf/EX66MUm1ug6iNwwf9NezLhyVCV6+CV3R2wYKkq1R5DaJqkvr2Xpt0bcR9Yj7n1Ayo82zhb6PP6tdgr6Tz+R2Sdcv2Mp7WYiJIsO83t+ZSrwlTzHiWw5oBgUGP7xtcYfO9eFnW+yNminybTAmpP/BULP3zDrIeK5Ofm0ClTMLXuI21Wj6QYDSklHf1DNNTto/PgLjyt+7D37KDIvYclNLJC6OmJrfZKehd+juzjLyK15ENzEkJUmmWnSWajCROGBIzpHvD4Kdj+Z4YMTrJO/cysHCPbYaXRWIzD8xZ4B8HqmJXjTMTBjgFee/xOTmi8i+sMTbSm1uD/+EPklJ4wJ8cvyCukqz6dzChVkOv3+Lnv5U2Y3vsjn+NZzAYN78rrsZ/9X3PiuV2Y42CPFvLcte+CirNm/ZgjkVLyyu52Hn32BT7W8w/+bHwPnz0TeeatmI+/PmK5RmNht5ooTEtii6+IU0CvpFc2/Qmcp0NdxyC/e2kvg9v/zTdMD7PIchAtewl8+DdQff6sH78yx8lDG5vwZCzGtvmveiW4WYhMUEwdTZO0D3hp7uiit3kPvpZdGLv24hjYT5a7nhJaKBcBAHoNaXRmLqe+6iYWrLmI/MzZ8XqPRlmWnf0tuZQn4PM61lACa5Zoa66jYcOziAOvs6BvAyvoxivN7E49hcEPXUvJ2ktmdbR0JKWZdhpkLmWdasRjNnG7hmhv2E1P8168bfug5wCWgYNkepvIlx3kiMN1XgaEk/bUJTQUnE9W1QmkVZ1CniNnzm0uzbQTwMRgchEpXfvm/PjR5rlXXuETbKR1xVexz5LwEULgTqmAfqBzLxRGPs9yPOra+nj3qb+wpvEurhXNdCaXMnD2HeQdf8Wc5gEtynOye38hJ7XtjMgM95Ola9DLo6+ux77pT1wnXyZJ+OivvISkC27BNEvhgKNRleukmxTc5nSS5rDIQyCo8fS2Fl5/6Sk+0vcAfzR+QMCajHbyd7B86CawOufMlqpcB+t6cvgi6CFycySw6joG+ePLu/Ft+xefN/2bJeZ6gmll8OG7MCz9+Jw9i8OVBJutZVQEPHrYflZki+ooRkdKSfeQj6aOHroP1TLUWkeguwFjfyN2dzMZ/lYK6eB40Te8TxAD7cY8+lLLOJB1Dvay48ldfAppmSWkRSmHsiTTzh5/Dmf3vIcI+sGo4pLmK0pgRYi+7nb2b3gO375XKeh6lwWymVyghxTqHMfRXn0OlWf8ByucsxeGMxYlmcm8InOpGlAjHjNBSklnZwcdB3czcGgvgc79GHsbcLoOkuU/RLbspkRIQjWiGJBJtJsL6U1dTG/6R0jOqyR7wSJSC6twphTinAdJ7gVpSViMBlrNxaR0JtbvwxfQcGz8Ax5hI++cr8zqsQw51XMusHYc7GDT03dwSss9fNLQQltSOX0fvoOs4y+Pyqh5dZ6TvVohJ3W8AZo2653aph4X/3rhFYp2/JnrxVsYBPRXXUrSud8iJUITSU+FLIeVDLuFQ5ZSKubAi+fxB3l0UyObX32Ey90P8yvDbry2NIIf+i6mEz43qyGhY1GV6+Rv+zuRzgzEHMwF9cHBHv766i5S9z7El01Ps8DcTiCjEk79A8blV8555zSch7ZLLqAC9DBBJbAiRr/HT1N7N53NdQy11RHoqsfQf5Bk1yHSfS0U0MEK0XvEPn5M9JhzGUotoNe5nIHMUpJzF5JeUoM1t4p8s43oZkseSWmmnRe1fIQMQu/BiE0loYg8SmBNE/fQIPs2vcTQrpfIal9PeaCW44TEJa3UJi2npegKslacT9mSNRxvjG4IQFqyhTZjPnbPWxDwRmxek3jE4wvQcqiB7sY9uFpr0brrsPY3kOppIi/QQrYYYGQwURdpdJoLaExdzYHUUszZ5Tjyq8hesIj0rDycczQyOl2MBsGCzGQOyHyqut9LqJCVV955j3OCb9Ky6NMUz3JnM62wGv8+I8GWXdhWzN5xpJRs2F3P/udu48zeR7lW9NDmqKTvw3eRu2ruRupHY1Gek7/KIgwBN/QdhPTSWTnOntYBnnnu3yypu4svio0EjBaGll1H2odvJj3KxTUqcxzs6S2kov31WaskOOgNcP/6Ourf+CdX+x/jakMDbnse2mn/i/X4T89KAYvJsjDHgS8g8WRUkzRLAktKyWt7OvjHq1tY3PQwt5ifI9Pchz//eDjt15iqPxK16yBcSfCDoSw+Jox6JcGll0bFlljE7QvS3NlDR/N+Blvr8HXVY+htJMnVRJqvhXzZzpKjBFQAI92mXAZTCuhxLqM/o4Sk7DLSCxeSnFOO2ZFHzjx/To+kNGtEJcGu/UpgzWOUwJokwUCA/VvfomvrczgPvUWldyfLhR+/NFJrWcSGBZ8lbdnZVKw6g+UWW7TNPQa3YwGGQamXas9ZFG1zosqgx0dz4wF6Gnfhbt2H6K4jabCBDG8TBVorZcJLOHAoKAUdxmy6rUXUpZ8FGeVYcipIK9RFVKY9lcgWTp97SjOT2dGaw3lBrz4iNodhU9FCSon/zd8ihYGij3xj1o9XnpdOg8wl69AOZuPuoGmSN9/fStfLv+Ns19OsFW6a0tcwdO43yV187rwoCV6aZadOhAoItO2IqMCSUrLhQDfrXniYtc3/4GbjDtxmJ0Orv4rztJuwRKmYwtFU5TrZcKiAj4gB6DkQ0Xmm2vo93LtuN4Pv3centScoNbThSqtAnvkHkmqumPUcq8mwKC8F0CfbLWt8PKKeTH9Q46kth3j41Q2c3vMIt5lexm52Eyj/MJz2NcwlJ0f9OghXEtzZ4dc9V23zp1z9fEDTJG29A7Q11tLbsh9fRx2y9yC2wWZSvS3kynbK6WGhODyXXhADXaYcBh0F9DgW0ZdRSlJ2GWkFFThyyzGlFJBjMDL3AfizQ0mGPtkwEJoLK3ITwisiixJY49DZ0sCBdx7HcOBVygc2UoU+Ue9+Yxkf5F1O8qKzWLjmXBY70qJr6CTwZ1TCINC5JyEElscX4GDDfjoaduFp24fo3o89JKKKZCvVwje8rQ8T7cZ8+uxF7E35EMbMMpLyKsksWkR6YQV5JiuRmypw/lGaaWfjviz9btBVG/cCq3vIxzsbN3CO90UaF1xEeWrRrB+zItvBbllIbtfeiLbr8gV46fXXMb37B872v4ZRSBrzz8X6kW9RtOD4iB5rppiNBjxZywj0GjE1bYBFH51xm4GgxvNbDlL7yt84t/9RvmZoZDApC9dJt5D8oc/OaX7RZFicn8I975aBFWjaFBGBtfNQPw+8tpHsXfdwneFFMsUArpzlcNYvSF70sah6LY+mOs+J1WRgh7+QMt8g9DVCesnEO47DkDfAAxsaefX1V7nQ/QR3m9ZhNmnIpZfAKTdjmmdTk1TnOnl+Zyty8RJE86YZtyelZEN9Dy/vbuM/1i6gJHM+TQZxLB5/kPr2Xjob9zHYshetcz+W/gOkuA6SF2imgE7yhTa8fRAD3cZs+u0F9DpOpi99AdasMtIKF5KWX4HRWUCO0RQ3AmoikixGLM5sXEEHyQlQSVDTJM3dgzQ37KWpc4CqpStZXpQWbbMmhRJY47D/9X9ywu6f0UE6taknIxaeRfnaj1KRW0SsOWVteYvhIATb92BcEm1rIseA28vB/bvpadiKr3UX1u59pLsPsCDYSJXwUBXazoeJdlMB/c5i9qSeiilrIY6CKrJLlmDPLqHIYGT2u9nzk9IsO48F8vS7Qee+qJbQjhRS6hWh9jW101G/Hc+hHVh69pE+VEeJ1sRHDS14hYXCS26ZE3uKM5J5jHLOH9oAru4Z57+09rp5+YXHKdp5JxexCS9Wmiuuovgj36A0K3JekUhTlpfJ3r5SljRtnFE7g94Aj7+1Ddfbd3Cp/2k+KvroSanEd8ZtOFZeMW/DoI8vSef7soiAMQlT03uwfHpzH0opeX1vB8++8iqrmv/J94xvYTX6cZWdC6d/heR54K0ZDYvJwIqiNN7oz+VjAC1bpi2wGrtd/OPtOpo2/ptPBv/NZ4zbCFptGFZ9GvGhmxAR9A5GkuNL03lwYyNd9kqyeh8Ddy8kpU25HW8gyJObD3HPur1UdzzHKYbt/Hjf57njposwGqL/3fe5fNQfbKC7fiu+lp0Yu/fjcDWQ52+mQnSyaETRJxdJdFqLGEytYXd6OZbsClLzK8koWog5rZBso5nEm6FxbEqy7DR3FFAZR3NheQNB6lp7OXRgB66mHYiO3TgHasnzNVBKK8XCz/PB1bxp+bMSWPFA5VnXcqDmLEoXryF7Ho0CTofC3CwatWzSmncwv8Z0J4c3EOTAgf2073kP/6Gt2Hr3keU+wAKtmaUjvFGdIoOOpDL2pV6MMaea1KJF5JYtxZZRTFGC5BZNlbIsO904CVhSMMVgJcGeIR/7Wrppq9uGt+kDzF17SRuqo1Rr5EOiA0MonCSAkS5rMa6UJdRnX0rmcRfhzJzZ6PlkMRoEXekrof9BaNoIVdML69jR0MbW5/7CiuYHudrQwIAhlUPLv0r+OV+ibJ6EwY1HTVEa72yvYlHjqxh8LrAkT2n/xm4XT7/6Bunb/sJl8nWShI+O/FMJfvhrpC88c16KipFU5jhItlo5kLSMyrrXpry/xx/kyQ+aef+1xzh/4DH+z7gFv8WKtvxTcMpNJGctjLzREWZVSRr3rMvm/+wORN1rsOSiSe8rpWRjQw/3vLEbx55HuMH0LAvFIfyOHPjQDzAef31UindMhRPL9KDyTSziPIADr8OSiye9f8eAl/vebeCZd7bwEe8z3G1+hXRzLwBlnS387MkivnfJ3HivpZS09XloOFhPb8NW/K07sfbsI9N9gFLtICvE4PC2bmx0WotwpdVwILMcW24l6cWLcORXk+zIYcE8v3bnE4vzU9h1KJeFHXuItbMWCGo0dA7QXLud/sZtyPZdOPr3UeA7SIU4xOKQ8NYQdJry6Esrpy7jw9jyqllbsZpzK2LHvaEE1jhk5BSSkVMYbTMiQnWukz2yiBNa5//khi6vn/37dtC1byPBQ5tJ6dlJqb+WRaKPcHBjuyGbruQy9qR/CHPeYtJLlpNTvpwsezrzv5s5vyjNsgOCLnsluS1bo23OmGiapKHbxc6D7XTsfx/t0GbS+nZRHtjPCtGIVfgBvSpUp60ET9oqmnMXk7agBmfxMkwZ5eRGMQ8lZeGJ+DYZMdS9jmkKAssf1Hhz42b637yd0waeZqkYpC25nK6Tfk7mSZ/COUWREk3OWpTD959ZyWeCz+ody+oLJtxH0yRv7D7E9lcfZEXbY3zesA2/MNNf9XGSzr6Z7JzFc2B5ZDAYBKdUZvHUgWV8bfBvepnuSXhaDnQO8ei6bcgt9/Px4PNcYWjBk5xJ4KTvYV7zGbDHTiboyRVZ/Pn1Ojoy15Cz78VJFftw+4I8s62F5958h+M7n+BHptdINw/gy1kOJ9+Ceeml8yLHbDIUZyRRkGrjXx2ZnGdNgb0vTCiwpJRsa+7jH2/X07L1Za4UL/KMcQNGUxAqz4MTvwB+NzX3X0Xvpq/wE37Hty9cidkYmYHhQFCjsdvFwYMH6GvYhta2E1tfLdnuA1TQyAliaHjbQeGgI6mM1tRz6MhdTOqCZWSXryQptYBiJaIiwrLCVDa/W8pFA2/CQBs4c6Nt0qh4A0H2NXXSvHcTroMfYO3cQb57L9UcpEJ4h7frMOXTn1nBwaxzsRfVkFm+HEvuInIs9pgO/VQCK0GozHXwMgv58MAj4OkHW0q0TQKgb9BD3e4P6KnbiGjZSlq/3mGuES4AAhg4ZC6lNfsU2gpWkLlwDbmVx5OTlBrTF958Ij/FRorNxB5jJbmtj82LSpNBTXKgc5Bd9Yfo2r8JWraQ3reLKlnHeaIZUyhG32Vw0JO5mPbcM3GUHU9a2fGYMxeSb5x/t7a11UW8vWEZa7c9gem8n0zYqWzq6mfDCw+SvvdBTtM2IQQczDkdy9lfIbfqjHnvrRmNsiw77enHM+hy4Nhy/7gCq2PAy/Nvb8S/4e9c4H+RM0QPA7YcBo7/Js6TbyQzCvPGRYJzl+byyx0rudkqEJv/CWf996jb+YMaL+9s4503X2DZoUe4yfgONuFnIGcV8uTvY6u5POrX6XT4UEUmWQ4LT2sncn3fq3DgDSg/fdRttzf38fB7B+jf8gSXBl/kTuM2NLMRrfJ8+NAXsMzTUMjxEELw0eX5/O2tejwrz8e283G44Gej5gv2uf08sbmZp9bvYlnn0/yn6WUqTIcIWlMxrroRVn8GRngt5UW/59Qnv0TK+5/l8/tu5uPnnc3ZS3KwmiaO3gjPE3Wgc4jm5oO4mrZj6NiFvb+WPM8BFoomykYIqQGDky5HOW0ZH6E7dzHppTWkLajB4czDEWPfSayxrDCFB7VQrnTLZnCeF1V7QB8E2dvQSNveDXgbN5PcvYMiby2LaGZZ+HktkulwVtGc/QmSileSVbEKW/5isi32uAwBnX+9EMWsYDMbGcxaieh5GJo3QcWZc25De3cfDbvfp//ARoxt28gc3E1FsJ5VoZEML2aarRU0ZJ+PuXAl2VVryCxfxQJz0pzbmkgYDILjStJ5rb2E04I+aN0GRavn7Pj+oEZt+yB7DtTTt38jom0bWf27qKaej4rW4RC/AXMGA+lL6C68hPSFazAXriQ5bQHJMfIwP2VhFj8xncwZQ3+Euleh4qxjthn0+Hl7/Vt4N97LCQMvcqnopc+QTvPiz1B07k2UZZTOveER5ooTK7jn+TP5/K6nEC1bIP9w3Xq3L8hrW/bS8s5DLOp8nv8QO0FAZ94p+E//T5zV58E8FM9T4fyl+fwkuZCN5hNZ/d4diNWfgRR9ph0pJZsbe3njnfVYdv+Lc4NvcL6hBZ8lieCyT8JJn8M5z4o2TBWT0cAlKwu59e0hrknJxPTqT6Hk5OHvtbXPw7Pbmtn93gvUdL/IV4zvkSEG8Drz0dZ+F8Nx12JImU8zE02dq9Yu4M43D3Cfdi6f8T0E634NH/4BoIeBvrG3gxe2HCCw+1kukG/xT+NmzOYAgYLjYc1/Y1x66ajhtYbjrgFbCkse/zJ3Dn2Jlx9exf8Tq/FnLSIlrxx7cjJWi4Wg14XB3QWuLkT/IZKHDpLqbQ5V0W1ltRgYbnPI4KQ7tZyu9I8wULCMjLLl2AuX4bRnz4u5HBORhdkOao3lBIUR48F3oGpuBdagN8Deugba964n2PQBzp4dlPr3sUJ0DG/TY8igO30RB3I/Slr5cWRWrCE5o5SSGE+3mQpCSjnxVnPE6tWr5caNM0t+VozN757exOffOwdO/AKWC34ya8eRUtLc1knT7vcYbPgAS/s2cob2UC4PYgnF1w6RREtSJa6MpVgXHEde9VpSi5eqWcmjxB9ereWu5zewKekLiNO+CWd+d1aO4/EH2dvaz/66WvrrN2Fu20rO4B4WiXqKROfwdj2WfFwZS7EUryKj4niMhavAGfu1HH/7/HYuf/si0pxO7J97BlILaevqZsfGN/HuepbqntcpF4cIYKA+4xTSPnQ9WasujKvrwu0L8vFfPsXd3ptxWAw0VN9Ai99O/6F9FPRtYiV7sYgg3bZi5NLLyDzl+lmbMyta3PduA395/EWes30PX1I2ewoupWkQAu17WBXYSoWhBQ1Bb/ZaUtd+EmPNZfMm6iAS9Ln8nPPr17lAe50fBX9He8YatjhOprmrj8z+XZxo2Em26CdgsKFVnY/luP+AhWfH1Rx9//34Nu5df5B/FdzDqu5n2ZV3Me/7F9DX2cIybQ9rjHtIwoc/KRvz8sthxVVQsHJyjQ92oL3zR/zv34fV3Tbh5hqCfnMOLscCyCjHVrCU1AU1GPOWgCM35ryEicCVf36H77V/g+VZAv5z3awdp8/lZ0/dATr2vot2aDOpPTsoD+w74nndbsqnJ3UJIn8FGQtXk1mxGjFPwxZnAyHEJinlMaPSSmAlEOv2dRL4x8dZm9JN8te3RqR8rzcQpL6+jo59G/E1byGpayf57r0skIc9D33CSWtyNd6sGpJLjiNv0VoceVXzqnxworOrpZ8Lfvsm7+b/klzjIHzx3Rk/VF2+ALuae2mq3cpQw/tYOnaQ597HYlFPZmiEVEPQbSvGk1WDbcFxpJevxliwfN4nqk8Xly/Aj267kx/1fR+TCDKAA6ccxCQ0AhhocByHedlFFJ98JSIOBOVY7O8Y5P/u/hdf7v8Fywz1gP5baE2uQis7g4KTrsJQuCpuO3ZSSv7wai1vvfI0PzbcQaWhGQCPSKInew3pNedhW/FxSCmIsqWzx85D/Xztoc2s6nicr5keJlv0AzBoyUYrPZWUZR/RQ0itjihbOjt4/EFueXIHj2+s47+M93KV8TWswo+GwJ1aga3qLIyLPwalp0xfWEqpT0bbVQt9jcign2AwiNGajEjOhORMfeAqbUFMhpsmMne+UUfH87fyXfP98MUNkF018U7joGmSpm4XdXV76DmwBVq2kNG/k4XBWgpF1/B27aYCetOWYihcSWblWtIr1kBS+kw/TkwzKwJLCPEgUB1aTAN6pZQrhRClwC5gT+i99VLKz0/UnhJYs0sgqPE//3sLPwr8FvmJuxFLL5n0vpomae3ooLl2M/2NO9Had5PWv5tSfx3Zom94uzZDLp2OKoI5NThLV5G/+ARsGQvitqMUT5z/mzc40/MS3/b8Fq68FxZfOKn9fAGNAx2DHGyope/gdgJtu0nu28cC336qRSNJoSqPfsx02cvxZ9fgKFlFWvlxiLzlcduBGoshb4CnX3+b1L0P49QGSErJJLPqJIpXnImIoWIFM0XTJM09LgZ7WilK8uPMKYEECwf2BzVaej0k4ybTEkA4chLqXimlpKXPg6ZpZJuGsFpsceWpmwz9Hj/dgz7SbAbSZL9esl2JHcUEtPZ5uPjWf7HO8mXMNZfCx++Y9L7dQz4amg/RVbcFd/NWzF27yR6qZSEHSQ3lvwO0m4voS1+KsXAVmZVrSS07flpTCsQ7s+7BEkL8EuiTUv44JLD+LaVcNpU2lMCaff7x1n7WPn8xJZZ+jJfdgaXq7OHYd48vQFdnGz2H9tPXUou3swHRW0/a0AHy/Y3kie7hdvyYaLGU0J+6CJFfQ2rZavIqj8fkiE/PQyLwwo5WvnDPu7yZ+kNyRS+GC38NVRcgTVb63QE6+vrpONRA36Fa3J0NiN6DJA8dJM93kHJxCIfwDLc1ZHDS7axGy11GatnxpJYdh8iujqtQN4VCoVAoosUtT+4g871b+ZLpcfwfuhnzSZ8HZx5BTdLe209HSyP9HU24Ow4Q6NiPtb+eNE8jxbLliIHxIZFMZ/JCfJmLsBXWkFNxHNaiGrClRvHTxQ6zKrCEEAI4CJwlpdynBNb8RdMkP73333y69mYWGDpwY6VfOLBIHw7pwjxi8j/Qc6XaLAsYdJYRzKjCWbSUvIXLceRVqs5yHPKrF/fy+Cvr+Kv55yw0HEJDMCiTsOEdzp8bSY8xiz57GVpmJcmFS8gorcGSuxgSbCReoVAoFIq5xOMP8uV73+O8up9ymfFNALzSjARsoWlLRtJtyKQ3qRh/aimmrAqcC5aTVb4KQ7qKMpoJsy2wTgN+FT5ASGDtAPYC/cB/SynfHGPfG4EbARYsWHB8Q0PDjO1RjI+Uknf3NNG88UkyuzaRrA2hmZMwJaVhcmZhziwlPb+CnOJKTI5MdeElGLtb+3lj1yFsTesoGtxGCkOYbXbMSSkkZ+STVrCQ1LxyRGoRmG3RNlehUCgUioRESsn6um7qtr1Devu7pAa7sBgFFnsa1rR87FkFpOWV4cyvAos92ubGJdMWWEKIl4DRsq2/J6V8IrTNn4BaKeUvQ8tWwCGl7BJCHA88DiyVUvaPdyzlwVIoFAqFQqFQKBSxwFgCa8IJRaSUZ0/QsAn4OHD8iH28gDf0epMQYj9QBSj1pFAoFAqFQqFQKOKWSNTJPhvYLaVsCq8QQmQLIYyh1+VAJVAXgWMpFAqFQqFQKBQKxbxlQg/WJLgKuP+odacBPxZC+AEN+LyUsvuYPRUKhUKhUCgUCoUijphXEw0LITqA+VblIgvonHArRbygvu/EQX3XiYX6vhMH9V0nDuq7Tizm4/ddIqXMPnrlvBJY8xEhxMbRktcU8Yn6vhMH9V0nFur7ThzUd504qO86sYil7zsSOVgKhUKhUCgUCoVCoUAJLIVCoVAoFAqFQqGIGEpgTcwd0TZAMaeo7ztxUN91YqG+78RBfdeJg/quE4uY+b5VDpZCoVAoFAqFQqFQRAjlwVIoFAqFQqFQKBSKCKEElkKhUCgUCoVCoVBECCWwxkEIcb4QYo8QolYI8Z1o26OIHEKIYiHEq0KInUKIHUKIr4TWZwghXhRC7Av9T4+2rYrIIIQwCiE+EEL8O7RcJoR4N3R9PyiEsETbRkVkEEKkCSEeEULsFkLsEkKcpK7t+EQIcXPoHr5dCHG/EMKmru34QQjxVyFEuxBi+4h1o17LQud3oe99qxDiuOhZrpgqY3zXPw/dx7cKIf4lhEgb8d5/hb7rPUKI86Ji9DgogTUGQggj8AfgAmAJ8EkhxJLoWqWIIAHg61LKJcCJwBdD3+93gJellJXAy6FlRXzwFWDXiOX/A34tpVwI9ACfiYpVitngt8BzUspFwAr0711d23GGEKIQ+DKwWkq5DDACV6Gu7Xji78D5R60b61q+AKgM/d0I/GmObFREhr9z7Hf9IrBMSrkc2Av8F0Cov3YVsDS0zx9D/fZ5gxJYY7MWqJVS1kkpfcADwMVRtkkRIaSULVLK90OvB9A7YIXo3/Hdoc3uBi6JioGKiCKEKAI+CvwltCyAs4BHQpuo7zpOEEKkAqcBdwFIKX1Syl7UtR2vmIAkIYQJSAZaUNd23CClfAPoPmr1WNfyxcA/pM56IE0IkT8nhipmzGjftZTyBSllILS4HigKvb4YeEBK6ZVSHgBq0fvt8wYlsMamEGgcsdwUWqeIM4QQpcAq4F0gV0rZEnqrFciNll2KiPIb4FuAFlrOBHpH3LjV9R0/lAEdwN9CIaF/EULYUdd23CGlbAZ+ARxEF1Z9wCbUtR3vjHUtq35bfHMD8Gzo9bz/rpXAUiQ0QggH8CjwVSll/8j3pD6HgZrHIMYRQnwMaJdSboq2LYo5wQQcB/xJSrkKGOKocEB1bccHodybi9FFdQFg59gQI0Uco67lxEAI8T301I77om3LZFECa2yageIRy0WhdYo4QQhhRhdX90kpHwutbguHFIT+t0fLPkXEOBm4SAhRjx7qexZ6jk5aKKwI1PUdTzQBTVLKd0PLj6ALLnVtxx9nAweklB1SSj/wGPr1rq7t+Gasa1n12+IQIcR1wMeAq+XhyXvn/XetBNbYbAAqQ9WILOjJdE9G2SZFhAjl4NwF7JJS/mrEW08Cnw69/jTwxFzbpogsUsr/klIWSSlL0a/jV6SUVwOvApeHNlPfdZwgpWwFGoUQ1aFVHwZ2oq7teOQgcKIQIjl0Tw9/1+rajm/GupafBK4NVRM8EegbEUqoiEGEEOejh/dfJKV0jXjrSeAqIYRVCFGGXtjkvWjYOBbisBhUHI0Q4iPouRtG4K9Syp9G1yJFpBBCnAK8CWzjcF7Od9HzsB4CFgANwBVSyqMTbBUxihDiDOAbUsqPCSHK0T1aGcAHwKeklN4omqeIEEKIlegFTSxAHXA9+oCiurbjDCHEj4Ar0cOHPgA+i56Loa7tOEAIcT9wBpAFtAE/BB5nlGs5JLJvQw8TdQHXSyk3RsFsxTQY47v+L8AKdIU2Wy+l/Hxo+++h52UF0NM8nj26zWiiBJZCoVAoFAqFQqFQRAgVIqhQKBQKhUKhUCgUEUIJLIVCoVAoFAqFQqGIEEpgKRQKhUKhUCgUCkWEUAJLoVAoFAqFQqFQKCKEElgKhUKhUCgUCoVCESGUwFIoFAqFQqFQKBSKCKEElkKhUCgUCoVCoVBECCWwFAqFQqFQKBQKhSJCKIGlUCgUCoVCoVAoFBFCCSyFQqFQKBQKhUKhiBBKYCkUCoVCoVAoFApFhFACS6FQKBQKhUKhUCgihBJYCoVCMU8QQpQKIaQQwhRtW+IdIcR1Qoh10bZjviGEOFUIsSfadigUCkUsowSWQqFQKGIaIcQtQgi/EGJwxN+3om1XLCKlfFNKWR3pdoUQK4UQm4QQrtD/lZE+hkKhUMwXlMBSKBSKCKE8T1HlQSmlY8TfrdE2KJLE8m9LCGEBngDuBdKBu4EnQusVCoUi7lACS6FQKGaAEKJeCPFtIcRWYEgIYRJCnCiEeFsI0SuE2CKEOGPE9q8JIf5XCPGeEKJfCPGEECJjjLavF0LsEkIMCCHqhBD/31HvXyyE2BxqZ78Q4vzQ+lQhxF1CiBYhRLMQ4idCCOMEn6NCCPGKEKJLCNEphLhPCJE24r1uIcRxoeUCIURH+HMJIS4SQuwIfd7XhBCLjzo/3xBCbBVC9AkhHhRC2KZ+pqeOEOI7ofMyIITYKYS4dIzthBDi10KI9tC53CaEWBZ6zyqE+IUQ4qAQok0IcbsQImmSx/97aPsXQza8LoQoGfH+b4UQjaFjbhJCnDrivVuEEI8IIe4VQvQD1wkh1goh3gmd5xYhxG0jRUoovPQLQoh9oeP9T+i7ezt0jIcmEjVCiDOEEE2T+XxT4AzABPxGSumVUv4OEMBZET6OQqFQzAuUwFIoFIqZ80ngo0AakAs8DfwEyAC+ATwqhMgesf21wA1APhAAfjdGu+3Ax4AU4Hrg1yNEzlrgH8A3Q8c9DagP7ff3ULsLgVXAucBnJ/gMAvhfoABYDBQDtwBIKfcD3wbuFUIkA38D7pZSviaEqALuB74KZAPPAE8d1ZG/AjgfKAOWA9eNaoAQp4TEw1h/p0zwGY5mP3AqkAr8KGR//ijbnYt+/qpC214BdIXe+1lo/Ur081kI/GAKNlwN/A+QBWwG7hvx3oZQuxnAP4GHjxKfFwOPoH+/9wFB4OZQWycBHwa+cNTxzgOOB04EvgXcAXwK/ftchv5bnTYhoTzW9/PHMXZbCmyVUsoR67aG1isUCkXcoQSWQqFQzJzfSSkbpZRu9M7sM1LKZ6SUmpTyRWAj8JER298jpdwupRwCvg9cMZqHSUr5tJRyv9R5HXgBXTAAfAb4q5TyxdBxmqWUu4UQuaFjfVVKOSSlbAd+DVw13geQUtaG2vJKKTuAXwGnj3j/TqAWeBddGH4v9NaVwNOhff3AL4Ak4ENHnZ9DUspu4Cl0UTGaDeuklGnj/I1XlOKKozr7BVLKh0PH1aSUDwL7gLWj7OsHnMAiQEgpd0kpW4QQArgRuFlK2S2lHAD+30Tn8iiellK+IaX0op+zk4QQxaHPe6+UsktKGZBS/hKwAiPzn96RUj4est8tpdwkpVwf2r4e+DMjvqMQt0op+6WUO4DtwAtSyjopZR/wLLrgnjZSyuXjfD9Hi70wDqDvqHV96OdcoVAo4o6YjelWKBSKeUTjiNclwCeEEBeOWGcGXh1j+4bQ+1lHNyqEuAD4IboHxQAkA9tCbxeje4uOpiTUXouuDyC0b+Mo2448Vi7wW3QB5wzt03PUZncCTwI3hgQD6B6vhvAGUkpNCNGI7ukJ0zritSu0T6R5SEr5qZErhBDXAl8DSkOrHIxynqWUrwghbgP+AJQIIR5D9zza0M/5phHnUgDjhlsexfB5l1IOCiG60T9/oxDiG+hCuQCQ6J7KrNH2DX2eKnThuzpklwnYdNTx2ka8do+ynDcF2yPFIPpnG0kKMBAFWxQKhWLWUR4shUKhmDkjQ58a0T1UI0f27VLKn43YpnjE6wXoHpTOkQ0KIazAo+geoVwpZRq6oAr39BuBilFsaQS8QNaI46dIKScKx/p/oc9RI6VMQffEHVYVQjiA3wB3AbeIw3ljh9BFXXg7Efp8zRMc7xiEXiJ8cJy/UyduZbitEnRBeBOQGTp/20d+ppFIKX8npTweWIIuaL+J/p24gaUjzmWqlNIxhY81/F2HzmEGcCj0Wb6FHo6YHrKv7yj7Rv6uAP4E7AYqQ9/Rd8f6PLOF0HPtxvp+bh9jtx3AcjFCpaKHiu6YfYsVCoVi7lECS6FQKCLLvcCFQojzhBBGIYQtVDigaMQ2nxJCLAnlM/0YeERKGTyqHQt6yFgHEAh5s84d8f5dwPVCiA8LIQxCiEIhxCIpZQt6KOEvhRApofcqhBBHh5IdjRPd09AnhChEFxgj+S2wUUr5WfQcs3Bn+iHgoyE7zMDX0QXe2xOdqKMJlQh3jPP35hSas6MLlA7QC4ag5yAdgxBijRDihJD9Q4AH0KSUGrpI+7UQIie0baEQ4rwR+0oxoojJKHwklFtmQc/FWi+lbEQ/34GQfSYhxA841stzNE6gHxgUQiwC/nOC7SOOlHLpON/P58fY7TX0/LEvC71oyE2h9a/MidEKhUIxxyiBpVAoFBEk1Hm+GN270IHuUfomR95v70EvRNGKHob25VHaGQitfwg9VO8/0MPzwu+/R6jwBbrn43UOe5KuRRdoO0P7PoKeNzUePwKOC7X1NPBY+A0hxMXoRSrCHfqvAccJIa6WUu5B93b9Ht3jcyFwoZTSN8HxZhUp5U7gl8A76GFyNcBbY2yegi6ketDDHbuAn4fe+zZ67tl6oVfze4lQnlQol2qAw2Gbo/FP9DDPbvTiE+EwxueB54C9oWN6mCCMEz1s8T9Cx7wTeHCC7ecFod/CJei/y170Ai+XRPs3olAoFLOFOLKoj0KhUChmEyHEa8C9Usq/RNsWxcwQQnwKPXzwv8Z4/+9Ak5Tyv+fUMIVCoVBEFVXkQqFQKBSKaSClvDfaNigUCoVi/qFCBBUKhSJBEPqkt1MpTqCIQ4QQ3x3jd/BstG1TKBSKeECFCCoUCoVCoVAoFApFhFAeLIVCoVAoFAqFQqGIEPMqBysrK0uWlpZG2wyFQqFQKBQKhUKhGJdNmzZ1Simzj14/rwRWaWkpGzdujLYZCoVCoVAoFAqFQjEuQoiG0darEEGFQqFQKBQKhUKhiBBKYCkUCoVCoVAoFApFhFACS6FQKI5CSok/qEXbDIVCoVAoFDHIvMrBGg2/309TUxMejyfapihiDJvNRlFREWazOdqmKGKMHz21k5TNf+aa/7iW7IWro22OQqFQKBSKGGLeC6ympiacTielpaUIIaJtTtTwBYJYTMZomxEzSCnp6uqiqamJsrKyaJujiDH2vP8a93M3vn8+DD9oibY5CoVCoVAoYoh5HyLo8XjIzMxMaHHV7/bT1NpOf1crqImhJ4UQgszMTOX5VEwZjz/IOYE3ALBoLmjfHWWLFAqFQqFQxBLzXmABCS2uAAY9PsoNraR4W5C+oWibEzMk+u9GMT363H6yRS8+9NDSgZ3PR9kihUKhUCgUsURMCKxERwv4h18Hh7qjaIliPnLfuw2c+YvX6GjYDZ6+aJsT8/S6/Dhx02VfyH4tn6FdL0XbJIVCoVAoFDGEEliTQAjB17/+9eHlX/ziF9xyyy1zdnwZ1AWWJgHfwBHvrV+/nhNOOIGVK1eyePHiYbtee+013n777Wkfs6GhgeOOO46VK1eydOlSbr/99mm3pZhd/v5WPcld28n+2wnw8HXRNifm6XX5cAoXNkc6WwyLcHZuVaG5CoVCoZgT2nt6+e0vfsiT7486f60iRlACaxJYrVYee+wxOjs7I9qulBJNm7gUtEHqAmtQODFpPgge9mh9+tOf5o477mDz5s1s376dK664Api5wMrPz+edd95h8+bNvPvuu/zsZz/j0KFD025PMXu09nu40PiOvrD/FXD3RtWeWKfX7ceJC0NSKr2pS7EHe6H3YLTNUigUCkUC0Pzcb/nK4G/Y+cQvo22KYgYogTUJTCYTN954I7/+9a+Pea+jo4PLLruMNWvWsGbNGt566y0AbrnlFn7xi18Mb7ds2TLq6+upr6+nurqaa6+9lmXLltHY2Mg3v/lNli1bRk1NDQ8++CCgC6QzzjiDyy+/nNNPPY2rb/oeXrMT4Ig8rPb2dvLz8wEwGo0sWbKE+vp6br/9dn7961+zcuVK3nzzzXHtvOaaazjppJOorKzkzjvvBMBisWC1WgHwer1jCsHf/e53LFmyhOXLl3PVVVcB0N3dzSWXXMLy5cs58cQT2bp16/CxPv3pT3PqqadSUlLCY489xre+9S1qamo4//zz8ft14fjjH/+YNWvWsGzZMm688UbkUd4DTdMoLS2lt7d3eF1lZSVtbW0TfpfxxqA3wIAnQK5xhGfzwBvRMygO8PiDOIUbYUtBFB0PgL9pU5StUigUCkUiYG9dD8DH5OvUd6q8+1hl3pdpH8mPntrBzkP9EW1zSUEKP7xw6YTbffGLX2T58uV861vfOmL9V77yFW6++WZOOeUUDh48yHnnnceuXbvGbWvfvn3cfffdnHjiiTz66KNs3ryZLVu20NnZyZo1azjttNMA+OCDD9ixYwdmvFxy8aW898F2PrI0A83nwpiUBsDNN99MdXU1Z5xxBueffz6f/vSnKS0t5fOf/zwOh4NvfOMbAPzHf/zHmHZu3bqV9evXMzQ0xKpVq/joRz9KQUEBjY2NfPSjH6W2tpaf//znFBQUHPNZfvazn3HgwAGsVuuw4PnhD3/IqlWrePzxx3nllVe49tpr2bx5MwD79+/n1VdfZefOnZx00kk8+uij3HrrrVx66aU8/fTTXHLJJdx000384Ac/AOCaa67h3//+NxdeeOHwMQ0GAxdffDH/+te/uP7663n33XcpKSkhNzd3wu8x3mjv16skVju87BkootLUhqHpPVhyUZQti128AQ0nLqQthbyS4/FtN9K77z1yaj4ebdMUCoVCEecUDGwDYIlo4LE9ByjNWhZlixTTQXmwJklKSgrXXnstv/vd745Y/9JLL3HTTTexcuVKLrroIvr7+xkcHBy3rZKSEk488UQA1q1bxyc/+UmMRiO5ubmcfvrpbNiwAYC1a9dSVFSERWisWLaI1uYmvJjRvK7htn7wgx+wceNGzj33XP75z39y/vnnj3rM8ey8+OKLSUpKIisrizPPPJP33nsPgOLiYrZu3UptbS133333qB6i5cuXc/XVV3PvvfdiMpmGP9M111wDwFlnnUVXVxf9/bowvuCCCzCbzdTU1BAMBoftrampob6+HoBXX32VE044gZqaGl555RV27NhxzHGvvPLKYW/fAw88wJVXXjnuOY9XXL4gAHmmQVrJoNW+GBo3RNmq2Mbv9+MQHgy2VJYuyGaXLEFrVh4shUKhUMwymkayNsQe8xIMQjKwb/qpHoroElMerMl4mmaTr371qxx33HFcf/31w+s0TWP9+vXYbLYjtjWZTEeE1Y2cj8lut0/qeFarFSklAonBYEJIDTdWUoLuI7arqKjgP//zP/nc5z5HdnY2XV1dx7Q1lp1wbDnzo5cLCgpYtmwZb775JpdffvkR7z399NO88cYbPPXUU/z0pz9l27ZtE34m0L1QZrN5+FgGg4FAIIDH4+ELX/gCGzdupLi4mFtuuWXUuaxOOukkamtr6ejo4PHHH+e///u/xz1uvOIN6L+xpEAvPstCdol0ClpfAE0Dgxo/mQ7So4dbiqRUijOSWG+ooKrnHb3QhSr9r1AoFIrZwjeIAY09jjVU9uzC0vZBtC1STBPVA5sCGRkZXHHFFdx1113D684991x+//vfDy+HQ+FKS0t5//33AXj//fc5cODAqG2eeuqpPPjggwSDQTo6OnjjjTdYu3bt8PsSMKB37AwGQcBgwygDw4Uunn766eEcpX379mE0GklLS8PpdDIwcDgvZyw7AZ544gk8Hg9dXV289tprrFmzhqamJtxuXcj19PSwbt06qqurj7Bd0zQaGxs588wz+b//+z/6+voYHBzk1FNP5b777gP0XLKsrCxSUlImdY7DYiorK4vBwUEeeeSRUbcTQnDppZfyta99jcWLF5OZmTmp9uMNr1/3YFm83RgcWWzy5IF/CHpV9aHpIry6t9WYlIoQgv7URSRpg9DfHGXLFAqFQhHXhJ4/3qRceq2FZA7V4g0Eo2yUYjoogTVFvv71rx9RTfB3v/sdGzduZPny5SxZsmS4nPlll11Gd3c3S5cu5bbbbqOqqmrU9i699FKWL1/OihUrOOuss7j11lvJy8sbfl9KEBwu8iDNSfoLvy5+7rnnHqqrq1m5ciXXXHMN9913H0ajkQsvvJB//etfw0UuxrIT9DC/M888kxNPPJHvf//7FBQUsGvXLk444QRWrFjB6aefzje+8Q1qamoA+OxnP8vGjRsJBoN86lOfoqamhlWrVvHlL3+ZtLQ0brnlFjZt2sTy5cv5zne+w9133z3p85uWlsbnPvc5li1bxnnnnceaNWuG37v99tuPsPvKK6/k3nvvTdjwQNA9WDa8GAMuktLyeHtAL3hC+87oGhbDGMICKzkVAJGzCADZPn5upUKhUCgUMyI0l6WwpeLNXEQljexrGz/tRDE/EUdXaIsmq1evlhs3bjxi3a5du1i8eHGULIo+gaCGt3U3ZpMJS24Vnf1DZA3uRXPmY3DmTdzABNxyyy1HFMOIN+L99/Pc9hZ+dO+LvGP7ErtW/4TL1hWw03YDnPk9OP1bEzegOIb7H3mIT27/HPLqRxGVZ/PQG1u44pXT6Dv1h6R++GvRNk+hUCgUcUrgwDpMd3+Ux5b9gdOt+0jb+FuevnATF62uiLZpijEQQmySUq4+er3yYM1ztLAHK5T7YTFb8Ekjms89wZ6KRMDj10gSXgByszJxYWMgqQjaji0MopgcMqCfT2HW8xXLFhTTIVNxNW2PplkKhUKhiHP8Q736C1sqKaUrMQpJb8PWqNqkmB4zLnIhhCgG/gHkoqcM3SGl/K0Q4hbgc0BHaNPvSimfmenxEg0pZSgHS9fCNrMBLxaSAscWfpgOt9xyS0TaUUQHbyCIDR8A6alOHFYTTZYyFqsQwWmj+XWBhVEvyFKV42S7VsTCrj1RtEqhUCgU8U5gqEd/YU3BnK9PjRNs3QFcmdLc1wAAa95JREFUGj2jFNMiEh6sAPB1KeUS4ETgi0KIJaH3fi2lXBn6U+JqGkjCOVi6B8tsNODFjCHo0xO0FAmNx69hRS94IkxJVGTb2a0tgK5a8EdGhCcaMhgSWCYLAKnJZprNC0gdrFPXnEKhUChmDc3dC+g5WGSU4xMW7L17o2uUYlrMWGBJKVuklO+HXg8Au4DCmbar0NGO8mAJIdCMVgxow5UEFYmLNxDEKkK/A5OVihwHm1y5IDXo3h9d42IUETjSgwUwlFqJTXNBX1OUrFIoFApFvKO59SJLIjkFDEZ6ksvI9R7A41eVBGONiOZgCSFKgVXAu6FVNwkhtgoh/iqESB9jnxuFEBuFEBs7OjpG2yShGa4iKEZ8VabQXFYRChNUxC5evzYcIog5iYpsBx+4svTlzn3RMyyWCRzpwQIQOXqhlGD77mhYpFAoFIoEQPP045FmLBa9YrQ/vYIyWjjQORRlyxRTJWICSwjhAB4Fviql7Af+BFQAK4EW4Jej7SelvENKuVpKuTo7OztS5sQNR+dgARhCF17QrwpdJDqeQJAkEdAXTFYqsh0ckKHqkl1KYE0HEQwJVtPhSblTFywDoL9h/Im0FQqFQqGYLtLvxoMFm1nv81lzqigSndQe6oqyZYqpEhGBJYQwo4ur+6SUjwFIKduklEEppQbcCawdr435zuOPP44Qgt27xx7Brq+vZ9myZRE75p49e7jg3LM57twrWX7Smdx4440A7N65k6deegvNNz0PlsfjYe3ataxYsYKlS5fywx/+MGI2K+YWr1/DbgwLLBsLcxy4sOG25UJnbXSNi1WCx4YILigqokOm4j6kKgkqFAqFYnbQQgLLajICkFq8BIOQdDWpIkuxxowFlhBCAHcBu6SUvxqxPn/EZpcCMd0zuf/++znllFO4//77R30/EAjM+BjB4JExtl/+8pf5z5u+xOYXH2Dbe2/wpS99CYDdO7bx71fennaIoNVq5ZVXXmHLli1s3ryZ5557jvXr18/YfsXc4wkERwgsKyWZyZgMgnZLsV7oQjFlDMMerMMhgguznezVijB2qoecQqFQKGYJvwevNGM16d1zS04lAL5W9eyJNSLhwToZuAY4SwixOfT3EeBWIcQ2IcRW4Ezg5ggcKyoMDg6ybt067rrrLh544IHh9a+99hqnnnoqF110EUuW6IUTA4EAV199NYsXL+byyy/H5XIB8PLLL7Nq1Spqamq44YYb8Hr1UfLS0lK+/e1vc9xxx/Hwww8fcdyWlhYK8kM6VRioqanB5/Px4x/dwqNPPceasy7mwQcfZGhoiBtuuIG1a9eyatUqnnjiCQD+/ve/c/HFF3PGGWdQWVnJj370I70pIXA4HAD4/X78fj8iNM/WSB5++GGWLVvGihUrOO200wDd+3X99ddTU1PDqlWrePXVV4ePdckll3DOOedQWlrKbbfdxq9+9StWrVrFiSeeSHd3NwB33nkna9asYcWKFVx22WXD52ckJ554Ijt2HJ7H6YwzzuDoCagVOl6/hsMYLnKRhNloYEFmMgco0EMEVdW7KSNG8WDplQSLSR2Kj0qCUkquu2s9D//j94dzzhQKhUIRVaTfgxfzsAeLzIUAmHrromiVYjrMeB4sKeU6wjXEjyTyZdmf/Q60RjgHIq8GLvjZuJs88cQTnH/++VRVVZGZmcmm/7+9945v5Srz/99HXZZkyUXu3bf4Nt/0QkJIo6SQLASS7MJCgIWlfVn4LcvC0hbYsJTdpYYeCCUkhCQkIT2k15vbe7N93XuTbHVpzu+PkW+1r5tsSfZ5v173FWs0MzqTmZHOZ57n+Txbt3L22WcDsG3bNvbs2UNtbS2tra0cPHiQ22+/nYsuuogPfvCD/OQnP+GTn/wkt9xyC08//TSrVq3ife97Hz/96U/59Kc/DUBBQQHbtm075XM/85nPcN21V3PR2eu54s1v458+9v/weDx8/etf58Xnn+P2W/8FijfwH1/+Cpdffjm//vWvGR0d5bzzzuPKK68E4PXXX2fPnj3k5ORw7rnncs0113DOOeeQSCQ4++yzaWpq4hOf+ATnn3/+KZ//9a9/nSeeeILy8nJGR0cBuO222xBCsHv3bg4cOMBb3vIWDh3SLUT37NnD9u3bCYfDrFixgm9/+9ts376dz3zmM/zud7/j05/+NO985zv58Ic/DMCXvvQlbr/99qORuQluuukm7rnnHr72ta/R09NDT08P55xzSpNsBRCJa+QYjkWwAFZ4neztKuLSiA8Cg+BUtY2zwaAlI1hG8wnLA656bL7HYawXcksn2TJ72N4xiqX5cd5t+R7B+3aQc9Pt6R6SQqFQKOLhE2qwsOUyZi4gN9CKpkkMhsmm24pMJKUugkuVu+66i5tvvhmAm2+++YQ0wfPOO4/a2tqjrysrK7nooosAeO9738tLL73EwYMHqa2tZdWqVQC8//3v54UXXji6zU033TTp537gAx/gtdc38+5rr+SFl17hggsuOBr5wpB8uhEP8+STT/Ktb32LM844g0svvZRwOEx7ezsAb37zmykoKMBut/POd76Tl156CQCj0ciOHTvo7Ow8KsJO5qKLLuKWW27hl7/85dH0xZdeeon3vve9ADQ0NFBdXX1UYF122WW4XC68Xi9ut5u3v/3tAGzYsIHW1lZAF2FvfOMb2bBhA3feeecJkaoJbrzxRu69914A7rnnHt71rndN+v9HAeFY4jiBpZsy1Bc52Roo0Jcpo4tZY0hEiQoLnBTVFV79/pUD2Z+qsbNjlEsNOwCwHXgg61s+PLyrmyu+cT8dT/0EtOy2M+73h/nSA7vpHs1+E6M+f5j/eeIg/b4AJPv7ZCv9Y2G+9dgBBsYiED0180KhSAUiEUlGsI5Nz4POGqrpptuX/d8Jy4l5R7AWlWkiTQvB8PAwzzzzDLt370YIQSKRQAjBd7/7XQAcDscJ65+cajdZ6t3JnLyP4yktKeaDN/8d7//ov7DxvEuOCaGkwNJiYaSU3HfffaxevfqEbTdt2jTteDweD5dddhmPP/74KQYdP/vZz9i0aROPPPIIZ599Nlu3bj3tcVitx1KqDAbD0dcGg+Fojdott9zCAw88wMaNG7njjjt47rnnTtlPeXk5BQUF7Nq1iz/96U/87Gc/O+3nLmcicY0cEdNdJpMRl7pCBw8nSvS7e/AwVL8hvYPMMgwyRlyYsZy03FmxDprA37kXd/2l6RhaymgbCvI+oy4UDTIOPbug4uw0j2ru/OblVt4buZvKl5+AnDhc9Kl0D2nOfO9vh3jy9T18cv97oa4Rbvp9uoc0Z378TBO/f62NCw7/L0WDf4J/awFHQbqHNSd++PRh/vBaOyVDr3FL07/ATX+ANW9P97AUSwwRDxOWx0wuAChYQe3wY+wdCFCRl5O+wSlmhYpgTcO9997LP/7jP9LW1kZraysdHR3U1tby4osvTrp+e3s7r776KgB//OMfufjii1m9ejWtra00NemmA7///e9505veNO1nP/7440SjerpSX98gQ0NDlJeX43K5CAZDaFKQiIV461vfyo9+9CNksjZk+/btR/fx1FNPMTw8TCgU4oEHHuCiiy5iYGDgaMpfKBTiqaeeoqGh4ZTPb25u5vzzz+frX/86Xq+Xjo4O3vjGN3LnnXcCcOjQIdrb208RdqdjbGyM0tJSYrHY0f1Mxk033cR3vvMdfD4fjY2NM97/ciMcS2AXMT16lRTPdV4nXdJLwmBREaw5YNSiJMTJ8grKK2rxSzvjnfvSMKrU0jEcpESM8Jo9+T3Ukb0mN1JKDvWNcaFBPy9yx9TfK9nA9vZRzjMcoCTSCvsfgqHsbRi+pW0EO2EuHvyTvmDzL9M7oHmwvX0UgLzmh/QFT/xH+gajWLIYJolgOcoaKBR+Oru70zgyxWxRAmsa7rrrLt7xjnecsOyGG26Y0k1w9erV3HbbbaxZs4aRkRE+9rGPYbPZ+M1vfsO73/1uNmzYgMFg4KMf/ei0n/3kk09y0YUXsvHKm7jq+hv47ne/S0lJCZdddhmHDh7gjLfczD1/vo8vf/nLxGIxGhsbWbduHV/+8peP7uO8887jhhtuoLGxkRtuuIFzzjmHnp4eLrvsMhobGzn33HN585vfzLXXXgvAV77yFR56SP8B+bd/+zc2bNjA+vXrecMb3sDGjRv5+Mc/jqZpbNiwgZtuuok77rjjhMjVdHzjG9/g/PPP56KLLjpB1D300EN85StfOfr6Xe96F3fffTc33njjjPe9HInENWyG+NH6K4B6rwMNAz57pbJqnwNGLUrcYD5l+coSFy2ybEmI1uD4KDmECBaup0960Hqz1+S12xcmER6nwdBBQFoRAwcgOJzuYc2JeEKjZSDAGeb2YwsPP5W+Ac0DKSWtgwHWmXuPLWx+Nn0DmgexhMbhvnHsZiNnJXbpC0fb9XpMhSKFGBITNVjHIliOMv0h9ljX/nQNSzEHsitFMA1MuOQdz6c+dSz95NJLLz36d01NzZR9sq644ooTIksTTNQmTcb//d//8cUv/QcF4Q4oWAlW3fkvPz+fzZtfx999GKchislu5+c///mk+6ioqOCBBx44YVljY+OkYwHd2GKC+++//5T3J8Tiydxyyy3ccsstkx7X8e997GMf42Mf+9gp21933XVcd911R18XFxenxPp+qROJa9iIgcl+dJknx0KBw0KXsYJ8ZdU+a0xy8ghWgcPCK4YKav2n1g1mG5bQAACOgnIOt5bj7tmPbZptMpXu0RAlQhdUDyYu4h9Mz0DHJlh9VZpHNnt6fGGiCY3LCnrYP1pFjSOGvev0qdmZSp8/QiiW4LqVceiAIe/5FPTsgHj0hBYI2cDAWIRoQuMfziylfPcg/cWXUNT3ArS9Auvfme7hKZYQhkSUCGYsx0WwRIFu1a6pB6ZZhYpgZToTltAn1U4ZhCBusGKUMdC0NAxMkQlEYglsInpCBAugzuvgcKIERo5kvYHBYmPSYnp65UkIIRhz1uGOD0LYn4aRpQ5bWBdYBcVVHJYVmIYPZq39/OBYhGIxAsCz8kx9YX92pnGOBvV7tUzrpUWW0mOtg/7sfGrdNaobQZyXFwBgm+syvXdjf/Y9oOgf082l3lwJBiHZaT8PDCbo3ZXmkSmWGkYtTAwrxuPdAvNqSGDE5juSvoEpZo0SWJmOTIonceqpkkar7o+fmLyPzS233MKPf/zjhRubIu1E4hpWYkcdBCeo9zrZGfSCFoeRtjSNLjsxyRiacfIn7ImCpJPg4KHFHFLKccYGASiprKVJlmOKB8HfleZRzY3B8Qgl6BGsiKeeYVMRZKnToy+kCyxbdJiorZBDsgIGD2blQ5KJYymI9xHAzgtR/d6hf/Isj0ymzx8GoMrsA2B/OE/vT5Sl15kiczFpUeInP+AzWRizl1EU62A8ojJ7soWsEFgyS5+spoSjx36qG6Ew65NqGQsv4oCyh+Vw3YRjiaTAOjWCtTtcqL9YAjVDi4WUEpOMok0SwQLIKdMbio93Zt9T+AliCQ1PQhckzvwyhu3JNhMD2TfxBRgYj1Ji0CNYzsIqmmV51h6LLxTDQgxT1I/RVcS2cCkkojCcfU1GJwRWTrAbn6WEF4dcetRnMPtESX9SYBVqQwDs9uWAd3XWXmeKzMWkRYgbTq1rj7rrqBO9tAyMp2FUirmQ8QLLZrMxNDS0LCbLkzJFiiCAyaILrERM9UY4GSklQ0ND2GzZWlkyM/QIVgTM9hOW13udNMsy/cWgElgzJZaQWER8SoFVVL2aqDTi78jOFDSAsXCcXBFAIsDm0SeKAAPZGZUbHI9QbfaB1U1lSSF7oqXIgUNZmTrtC8XIR08/tXtKeHmsSH8jC1Mefcl0R0t4kFhOEW2jMbT8uqy8zoYD+rFMRH53+uwkChpgpBXU768iVWgaJjl5irq5aCU1opeW/rE0DEwxFzLe5KKiooLOzk4GBgbSPZS0MD42Sn/CDyPmY82Fk0TjGh3jQwjTOEanL00jzFxsNhsVFRXpHsaCEoknMMsYmFwnLK/zOvHhJGLJw6oiWDMmmtBTLuUUKYIrSz20yhLsWZwaNBaOkUuQmNmFxWCguLSC4W4XeQMHJomTZz6jwSjFRj84i6gvdLJVK0fEQ+Brh7yadA9vVvhCMQqELrA83jKa9rmQwoDo2wfr3jHN1pmFP6ynMpmifkyOFUgJAVc9riyMYPnDMRwWI8ZAL5owMaA56bfVUCo1/QFWqWolokgBcT1SGjee+mDYWb4G864I/V1H4KzKxR6ZYg5kvMAym83U1tamexhp4w/f/zzvHf0pfO4I5OSf8F4wGmfzNz7KGneUos9uStMIFekioUliCYlZRk+pwarMs2M2CvqtVVQq56EZE4trWIghjZO3HijJtbFHlHOGL3t7E/lDegQrYckFkoYospwze/ef0lw5GxgLx8kTQbB7qPM6uFsr198YOJiVAqvUqAssb0klEYIEHNU4szGCFdJFiQiPYivSmwv3W6txDT8B8cgpac2ZjD8UI9duhuAwCVseMmSgmXJKQb/OlMBSpIKkwNIm+f0xe3UnwXDvQeCSxRyVYo5kfIrgckck9EbDk/0Y5VhM9FmqcAdaszIdRjE/IvEEAGYZOUVgmYwGqgsctFIOWW7IsJhEExoW4sgpJn9CCEYcteRHOnW76SxkIoKlTQisQifNWikiSy39/aEYuSIANg/1XidNE6mxWVgf4wvFKLfornul5ZUIAT3Wmqw0U/CFYuTaTBAexZWn14M2U6EbN2VZ82R/OEauzQzhUYw5eQDsCnlBGLPyOlNkKKcRWBTqAss4nJ3f08sRJbAyHKElHQKneKIeyK3DKsMwpjp8LzfCMV1UTxbBAqgrdLA3WgTBwaxtvLrYROMaVhGDKVIEAeJ5KzGi6Rb4WYg/HCNXBMF2LILVIsswR4az8joZC8dxyXGwe8hzWDDm5OE3FWSlKPGHYpSYdXtza66Xijw7R2RZVrZb8IdiFNsToMWxOPIpclnZEy3R38yyNEFfKEau3QShEQw5eZR77BwajEBBvRJYitSRFFhykhRBXKVEDDm4Aq0ktGXqSZBlKIGV4RgSMTQMYJw8m9OQLFDX+lWUYrkxEcEyaqf2wQKoL3KyLeDVX2RpdGKxicT1CNZUDzQArKUNAAS6si9tC/TamFyCCLsb0NMeuwzJtLosvE784RgObVw37EA3eOkwlGeluYsvFKPAGNLbclhc1Hud7IkUZWW7BV8oRqk1+YAwmb75+lgyzT3LjC78oThuuxlCo2DTj6VlMAAFK7PynlFkKElHaDnJA1OEIOCsplp20z2qjFWygQUXWEKItwkhDgohmoQQn1/oz1tqGLQocWGe8n1XhW4b7cti22jF3IgkI1gm7VQXQdAjWIcSE0+Ms2tCky6icQ0rUYRp6ghWQdU6AEbb9yzWsFLKWDiOSwQxJVOdDAZBPK9efzMLRclYKIo9MQZ2D6BH5A7ESrKyPYEvFCPfGARrLhgM1BU6ed2fFCVZdjy+UIxic3IiaPNQW+jk4FAC3JVZdyzHpwhi91BX6KBlIIAsWKFb6GuJdA9RsRRIRrCmqk+UBSupEz00K6v2rGBBBZYQwgjcBlwFrAX+XgixdiE/c6kxncCqrKzGJ3MIdO1fxFEpMoHwRAQrMXnBeJ3XSYcsQjOYs3LinA4marAwT23vX1deQpcsINaXnalB/lCMXAKYHJ6jy+zFdcQxZt3ENxxLYE0EEMijEaw6r5N90SIIjUBgKL0DnCW+UAy3CIJNjy7WFznYHyvW38yye3gsHMdrSk4Y7R7qvQ5GgjFiefVZdyy+CZOLkA/sedR5nYxH4ow5a/Q+ZaPZFV1UZCgTKYKmUx+YAthLVlEuBmntza7vteXKQkewzgOapJQtUsoocDdw/QJ/5pLCoEUn7YkwwYoiF82yDJFlEyPF/NEjWBKjdqrJBUC910ECIz5bRdZNaNJFNOkiKE6TIlieZ+cI5VhGsjM1aCwUxUkYQ1KQANR43bRpRSSy7DrR68l0U4ijEaxCB82yVF+WZd+LvpBuQHJUYCXbLcSseVl5LIUmvZ4Mm5vaQgcAI/YaPa0uS3pbappkPBLHbRUQ8R1NEQRoE8k2IFl23ygylKTAEubJf3/spQ0YhMTflV01jMuVhRZY5UDHca87k8uOIoT4iBBiixBiy3LtdXU6TFqUxGkiWHkOC53GSpxjLYs4KkUmEI4l9GgLTBrB8uRYKHBY6DJlX0pOuojFohiFnPIHDsBoEAzZqskPtWbNJPF4osFRDEIeNbkAPerTIsuI92XXdTIWjuMmKbCOi2C1ZGGTbU2Tej2ZHD8qsCYm8sP2asiidgvxhMZ4JE6eYUJgeajzOgHoNJZDdBzGetI4wpkzFokjJRSaj0XjJo7lQDw7o4uKDCWu1yyKKSJYIukkmMiyGsblStpNLqSUv5BSniOlPMfr9aZ7OBmHUZu8q/fxjDlrcccHIexfpFEpMoFIXMPGhI3/5F/IdV4HhxKlep1AlrmQpYN4VJ9EGabp0RPxrMAmw+DvWoxhpRQtOKr/kZzEg36dNMtSTL4jWVVP4g/FcJ8UwarKz6FHFOmp1Vn0YGFiIp+jBY6eG6/TistmotNQkVVmCmPJJsPHn5uKPDsmg9C/jyBrRIk/pH9vFhiP1ZOV5tqwm43sHzWDPT+rrjNFBhPTrzExVYp6wQoAbD71QD0bWGiB1QUc33K6IrlMMQOklJhkDG0agaUV6E81ZJb8YClSQySuYSUpmqYQBPVeJzuD3qx0IUsH8Yj+A2c4TQQLwFysu3eGerKv9lEL+/Q/rMciWLWFDlpkqe5IOdqeppHNnrGkIyJwNIJlMRmoyHfSby7Lmkk8HJvI2xJjR49FCEG918mhRDEE+mHi3GU4vuSx5BIABFjdmI0Gqgpy2BGccDbNjnMzcSye48SiwSD0e2ZwXO9PlEXRRUUGk4xgGS2TPzDF6mTcUkRRrIOxsHpgmukstMDaDKwUQtQKISzAzcBDC/yZS4a4JjETQztNTx4Ae+kaAMay1DZaMTfCsYTeswkmrcECPTKxM1ykv1BOgtMyEcEyTfUDl8RdtR6A4dYsdBKcmKQfF8Fy2cyM2Kr1F1kUKfGHj4tgHR+RK9R7e2WTwJqYyFviYyccS733uHYLWTKRnzgWpzaup6Ia9KlGXaGTrcM2MDuy5tz4kxPZY9eZB0j2jxuYsGrPjmNRZDZaMoI1pcACIp466kSvfu0pMpoFFVhSyjjwSeAJYD9wj5RS+YnPkImCe3magnuAkprVxKQRf4f6X7uciCQtxYEpXe/qvU5aJgr+lcCalniyD4nRMrWLIEBVZQ2j0kGkN/siWIZIMpX4uEk8AIV6+km2THxhIoJ1Yoog6JPfPZEiZBY16PWFYhhJYIoHT0nf3BYo0F9kyUR+QmDlaMeicaC7IrYNh5AF2eMk6A/p6Y4nX2d1XiedI0Hi+fUw3qdS9BXzZiKD4nQCy+RdSZ3oprl/bLGGpZgjC16DJaV8VEq5SkpZL6W8daE/bykRiWtYRHzaCFZ9SR5tshitXznLLCfCsQQ2potgOfHjIGwtyJrJWTqJR/UUDdNpbNoBqpMREuNw9v0/NUaTP8zHmVwAeIvL8eHIqutkogZLCiNYnEeX13mdHI6XIrIoNdYXiuGaSHc8TizWe520y2L9GLNFlCSjPtb42CnHEk1oBFx1WXOdTaRuOrRk76GjDa0daBL6LMkqiCw5HkXmEo/q97/JOrXAcpStwS2C9PZ0LtawFHMk7SYXiqmJxBNYiME0Aqsk10abKMfmV4WPy4kTIlhT1GBV5tkxGwX9luqsmZylk0RUf4Josp5eYJmNBvqs1bgDrYswqtQhpcQcmxBYnhPeq/M6adZKifVnT6RzLBw/1jdKiKPL65I1ZUDWTHx9oRi54pit+QQrihzEMBHIqciqYwGwxPwnRrCSroj9lkoY7Tha1J/JTIjFnKMCK+nwWKgL+hZtwrEyO9I3FZlLIhnBMp9GYJmKVgEQ6snOPozLCSWwMphITMNKHKZJERRCMJJTQ364M2vSYRTzJxI/vgZr8i9kk9FAdYGDVkqVwJoBWjJF0DxNiiBAyF2HJzEModEFHlXqCMc0HDKZ6mR1nfBenVePymWTWY4vFKPQGESclO5Y53Ue64WVJcfjC8WOs5w/djxV+Q6MBqFHSrJkEj8hsExR/0m1cbooOUIZIGGoOR3DmxX+UAwhwBrz6w87zfp3bW1SLO4J5YMwqhRsxbxJxEJEpBmbxTT1SkknQTGcHd8FyxklsDKYaEKvwZoqOnHCunkrMJE96TCK+ROOHR/BmloQ1BU62BstgdAwBFQH+NORiCVTBKcxuQAQXt1cJtKTPbWPemPeIDGjHYwn9terK3TSopViCfZBJDvy+/3hGHnG0AlpaACFTgvS5mHc5Mmaia8vFCPfeGoEy2IyUJWfwxFZCsPNoGlpGuHM8YfiWIwGRMR3wrnJc+i9+fZEkv2jsiAi5w/HcVlNiPCoHo1LRkqdVhPFuVYOD0UgryYrjkWR2WjRMBHM2EzGqVfyVBEXFnLHW0lo2deHcTmhBFYGc9QlbpoUQQBLiW4bHexRToLLhUg8gdOY7Fl0GhFeX+Rka5YVyacLLa5HsMQMHmo4qjYCMNyyfUHHlErGwnqdT9zsOuW9ijw7bSKZ7pQlToL+UAyPCJ5i2CGE0E0IDOVZcyy+UIwSiy7wTz6eeq9DFyXxMPg60jC62eELxci1mxGh0VNSUeu9Tjb78/QXWRBd9CePhbDvFCFfV+jU3dyUVbsiBWjREGEs2MynEVgGI+POKmrponMkuHiDU8waJbAymHBMbyQrLI5p182vXAfASFv2PE1XzI9ITMNp1B2upotgHUwoJ8GZIGMTEcHpH2pUVq/AJ3OIdO1e4FGlDl8oTq4IollyT3nPZDQQdtfrL7JksugPx3EROGUSD1Bf6OBQvCQrJvGgixKvWRf4pwosJ5vH8vUXWfCQxB+KUWhLQCJyiiipL3KwbygBuRVZcW58oRi5NjNMRLCOo77IQcvAOLJgRdZEFxWZi4yHiUgzVvPpp+ZaQQOrRKeyas9wlMDKYEKxBHYiiBmkK9VWltMvPUT7VOHjciEYjeM2JmuwLDlTrlfnddIlvSQMlqyY0KQTLdnocbq6R4Bar5ODsgrzYPZYtY+FY+QSQJ5s0Z7E6q1HQ2TFJB70ibxTjp9qOY9eU7Y7UgzBQQiNpGF0s8MfilE4hcCq8ybFImSF+PWHY5RZJ6JxnhPeq/c6GQ5EieWtyIrrzB+OkWs36bWWJ5+XQif+cJxxV23WRBcVmYuMzSCCBdjK11NpGKCtp3+RRqaYC0pgZTDhaBw7UQwziGBV5tlpluVYstA2WjE3QjENl3GiD9bUAqve60DDwKi9CgaUAD8tyRTBmdQ92sxGuix15AcOg8yOXHh/OI5LhBC2UyNYAFXF+XRJL9pAdkQ6faEYOVrglCgJ6A8WjvWAy3xR4gvFyDeEQBhOsJwHXZQM4CZudmaFKPGFYpRMiMWTI1he/diG7VX6A58Mv3f8oThuezKCdXKKYNLoosNQoS/IgnOjyGDiM6jBAnLK9YylQJcqCclklMDKYKKREAYhMdqmF1gmo4E+Wy0FwRaVprBMCEXj5BqST4lPI8I9ORYKnRbaTTXQrwTWaZmIYM1AYAGMuVdj14Iw2r6Ag0odExEswySCBPQJY7NWSqwvO3rqRcIBzDI6ZQSrRU7UlGX+xNcXiuExnGo5DxOiRDBsr86KmrLRYIxiS9KCfZIIFkCnsRyi4zDWu8ijmx3+cDJFcIp6MoCDsaRpRxYIeUUGEwsTxjJtiiBFusGSemCa2SiBlcHEw3rfDaN16ujE8QQ9q7DJkEpTWCaEYgmchigYzKc4wp3MqmIXe2Ll4GuHsH+RRpiFxJMRwRmkCAKIEv1JYrx3z0KNKKX4Q3oEy5QzeYpgQ4mLQ7IC00gTJOKLPLrZEYknsEzR0wugttBBtygikSUNen2h2LGeXieR57CQ77DQaaiALIgujgajeM3JhxUnifnyPDsWk4GD8ezoU6bXYBkh4j/lWMo8+rHs91v185bhx6LIbERCr8GaLkWQvFriwozLrwR9JqMEVgYTj0x09Z4+ggUgivXJXrQ7OyZ7ivkRiiZwGiKnjV5NsLrExWvjRfqLgeyITqSFxEQEa3qTC4DcqkYAfEd2LNCAUstoMEIuAUw5eZO+v7LIxUFZiVGLwnBmNy7Xmwyf2jdqAqvJSGWhm35Tecabu2ia1N3q5BjY8yddp67Qwb5EBYx1Z3RNWUKT+MNx8g0TlvOeE943GgR1hQ62jiedTTNY/MYSGsFoAq8lBlI75TqbOJamgQAUrlLfrYp5YYwFCWLDZppmam40MZpTQ0W87WjPOUXmoQRWBhOP6JMH8wxSBAHc1fpkb6R154KNSZE5BKMJcsQMBVaxi12xZLpUv8rbngpjYqIGa3pjGYDa8mLatCKi3dnhJBgIBLCIxJQ1WHaLkbHcVfqL/sx2JPWFYuSSnMRPkfK4usTFfq0C+jL7WMbCcTQJzoQPciYXWPVeJ68HkkYX/ZlrrOJPTvg8hgnx6zllndUlLjYN2sDsyGhRMhbWo7iFxqmPZWWxi4O9Y+Bt0L9bM7ymTJG5mOIBxrFNH8ECYgWrWWXopGVgfBFGppgLSmBlMFoygjVTgVVbXkKnLCTWoyJYy4FwLEEOkdMaXEywqsRFp/SSMNozenKWbkzxIHGMM67BWlHk5KCsxDqUHf9PI+PD+h9TuAgCWEvWkMCQ8deJPxQ7LoLlmXSd1cUutofLYOQIRDJ3IjIU0COnOQn/lBGs+iIHrweTAiuDBeNIUE+z9TAGiEnF7+oSF52+CPHChox+4DMhFvOMyXqySY6locRF12iIcMEaCA7BuHJ2U8wNUzxAQM5MYFlL11AhBmlVToIZixJYGUwiqk8eDKex4D6e2kIHh7RKrMOZ+0RQkTqC0QR2wqe1aJ9gVbELiYHBnNqMntCkG0siSMSQc4rJwFTkWEz02uvxhNohFl7g0c2fRGBU/+M0AquurJA2rZhET+ZO4kF3RMxlGoFV4uKArNJfZHBB+IQoscZGIadg0nXqCp30kk/c4sroe3g0KUpcCR/Y88Bw6mRxTYkeQR12rYK+PRkb9ZlIv8oTk6c7gi6wANqMNfqCDI/8KjIXSyJIxJiD0TD9789EevpYh7reMhUlsDIYEU1+qZtnFsGymY302GrJC7ZCQuXlLnVCsQQ2GZnR9eG0mqjIs9MiqjI+MpFOLFqQqGFm6YETxArXYkDL6An8BFrYp/9xGoHVUOLigKzMeOMO3wkRrMmPZ3WxfiyAPpHPUIbGo5iJY4qNT5kiuKJIdxIccayEvswVWL6g/tuTEx8FR+Gk66xOipIjxhq9nmysZ5FGNzsmBFbuxHU2WQSrVBeLu2Ll+oIMji4qMphEDJOMEjPObL5nKl6rb5bB3wXLnXkJLCHEd4UQB4QQu4QQfxFCeJLLa4QQISHEjuS/n6VktMsM7ajAmvmEL+BejYl4Vlj5KuZHOJbAJsMzqsECfeK8K1oGgX4IDC7w6LITczxIzDiziPEEOZX6k8RAR+bXPsoZCKzVJS4OapVY/G2QjKJnIsPjEdycXmBV5ucwaCrWo5IZPBEZDkTxkExhtE9uQFKVn4PDYqTVWK0/JMnQqM9oSI/G2U4TjSt128i1mdgZTfaPylBRMpG6mXua66zMbcNlM7Fz2AjOkow9FkWGE9Xv/4RpZr/n5NcSE2bso5lrErPcmW8E6ylgvZSyETgEfOG495qllGck/310np+zLBGxZN73DGpsJjCWJJ9q9Kov+aVMLKERS0gscmYpgqCnCb46luzXoqJYk2LVQsRNsxNYFXXrCEszo1ngJGiOjOp/TDGJB6gucNBiqEYgMzoqNxyI4jX4kDbPlK6PRoNgZbGbdlN1Rk98h4NR8kTScn4KUWIwCNaU5rIjWg4RH/g6F3GEM2ckoEd9LJHhKY9FCEFDaS4v+pPOphkaXRwc08VibiLp2ujwnrKOEIKGkqTRRfG6jL7OFBlMskZUm+EDUwxGRnNqKA4fIRxLLODAFHNlXgJLSvmklHKiWcprQMX8h6Q4Smz2ESx35Tri0oC/LfOfpivmTij5hWrRgjNOIV1d4tJtnkEJrEmIJzTshGb+BDHJuop8PQ2tL7OdBEPRBG5t6oniBEaDIFbYoL/I4OtkMBClzDiGcBaddr1VxS52xyr02pgMjfoMj0cpMSW/76dIEQRYW5bLC77k8WZoHdZIMIpBgCE0PGWKIOgR9e39EunOXJfHwfEIFqMBa3gQrLlT/havLnFxoHcMWbRWfyiR4T3kFBlIMoIlZ/h7DhDLX81KQxdN/Zlr4LOcSWUN1geBx457XSuE2C6EeF4I8capNhJCfEQIsUUIsWVgYCCFw8l+5NEI1swFVn1pPkdkKbEML1BXzI9gRBdY5sTMI1irS1z04yFqzs3YyVk6CUQSOAjP/AliknyHhVZTPR7fwYydwIOeuuUVfhIG82lTBAFyS1cSxpLRaXVD4xGKjX5wnF5gNZS42BEty+han+FAlGpbMg3tNMeztjSXnZFkg94MFSX9/ghehxkRHJoyggXQUJLLeCROOG9Nxh7LwHiEQqcFEeg/7UOJ1SW5jIXjjOSugkRUpegrZs+Ey6nVNeNNrGXrqBCDNHf2LtCgFPNhWoElhPibEGLPJP+uP26dLwJx4M7koh6gSkp5JvD/AX8UQkzaeEVK+Qsp5TlSynO83qm/wJYj4mgEa+YpS0dto4czN7VHMX/8YT0Nx5wIzfj6qCt0YjIY6LPVZXRkIl2MR+M4CM3qCeLRbfMacGh+8HctwMhSw2gwRgE+otaCaV0SV5V6OKhVEOvetUijmz3DgSiF+GCaCNaa0lwOaEknwQwVjEOBKFXmZH2cq2TK9daW5eLHQchemrEPSfrGwtS5EiATkDN1BGvC6KLHXq83go5HFmuIM2ZwPEqhywrjA+AsnnK9NcljOTxhqKKcBBWzJaqnCAurc8abeJK9T0fbMvd7ejkzrcCSUl4ppVw/yb8HAYQQtwDXAu+RUn98K6WMSCmHkn9vBZqBVQt2FEsUc2yMmDDPuCcPgMtmpsdaizvcldEF6or54QvFsBLFqEWmbLJ6MhaTgTqvgyYqM7pIPl0EInFyRGRWP3ATmMo2AhDp2J7qYaWMgbEIhcKHljP9g6w1pbns1WoQvTsz9joZGo/ikaPTCqz1Ze6MdxIcCUYpM/rAaD1tfdyqYhcGAd22FdCTmZOqXl+YVTnJerLc0inXmxBYh2QVaHFdZGUYg2MRCp1WGO877XW2Knks20LFIIyQ4Q6cigwkGcEy2mYewTKWrANUzX2mMl8XwbcBnwOuk1IGj1vuFUIYk3/XASuBlvl81nLEGvcTMubOuCfPBJG8ifoJFcVaqvhDsWMOaqeZkJ3M6pJctoVL9SL5DI62pIOxcBwnoTkJLO+Ks9CkYKh56wKMLDX0+sIUCh8G5/QCa11ZLrtlLaaoX2/Sm2FIKRn1+7FrgdOmbgG4c8y4870MmYqhJzNrUwfGIpQYRvTo1Wm+721mI/VeJ3tkrS5IMrB5cv9YhDrLqP4it3zK9ZxWE9UFObweSoqwDBQlg8kUQQL9pxVYuTYzVfk57OoJgbcBejO7HlOReciI/lDCZJ802WtyPNVEhA2nL/MeTijmX4P1Y8AFPHWSHfslwC4hxA7gXuCjUsrheX7WsiMn4SdinsXNlsRcrj/ViKunGksWXyh2zHXMPnVR/MmsLnayaVw5CU5GIBTGJmKzeoI4QUN1GUdkCfGuzJzAA/T4whQIPxb31CloE3hyLPQ71+gvuncs7MDmgC8UwxlLtho4TUrdBBvK3eyWddCzY2EHNgdiCY0+fxivHAbX1BGfCdaW5fLieAUgM24iH4knGA5EqTCO6gtyy067/voyN0/3u/Q05ww7N5omGQ5EKbFLCE+firqh3M3uLh+UnQHd2zM28qvITOIBfYpsdMz89xyDgVFnPeXR1qNlA4rMYb4ugiuklJUn27FLKe+TUq5LLjtLSvnX1Ax3+RCJJ8iV48TmILCKqxoISQv+9sxMIVHMH38ohmeOEayDR+sEMrOGI11EAn4ATPbZC6wyt40mQw3OkcwVrf2+MYrEKEb39JN4AHv5emKYMm7iC9A5EqJcJAWWp2ra9deVuXk9XAXDLbrZRQbR6wujSfAkhsE1dZ3PBGtLc3l+PBkZ6s6slNR+v15HVSyGAHHauiWA9eVu2kaixIs3ZNyxDIxHiGuSekvy2bCn+rTrb6hw0zkSIliwAYKDGWujr8hMYv5+YtKIxTHz33OAeOEaVhk6ONw3tkAjU8yVVLoIKlLIWDiOWwRIWD2z3nZ1qZtDsoJET+alXChSgy8Ux3O0b85sIlgufDgJWosytuA/XUTH9Qm7yTG189lUCCEYyV1DfqwHQqMpHllqCA93YUKbdqI4wZpKLwe0CuKdmTXxBV1gVYik6+wMBNaGcje7ZJ3+IsPSBLtGQ4DEEe6B3Ok7nawty2WAPCL24owTv/1jYQAKEkO6uDKaT7v+hnLdzbLPuVavKcsge/OOYb3qocY0pC+YTmAlj+WgcYW+IMPOjSKzifr7GcFFnnPmNfcAORUb8Ao/rW1tCzQyxVxRAitDmRBYmvX0dsqTUed1cFhWYh9VeblLFX84dqxvziwiWBV5dnIsRrotNSqCdRIRXz8AjrzpU84mpWQDAPGezErbmsDga9f/8FTOaP11Zbns1mp1QZJh6U5do7rAksJw2jqfCdaXu9mj1egvMizlsWskRBGjGBNhyK+ddv21pXpWQ69jdcZFfXp8usDKDXeDe3qxuL5cP5Z9og7iIRg8uKDjmw0dI/r3a6nUvxemE/Lry/Tf6k3BUjCYMu7cKDIbbXyQIeki3zF50/SpcFefAcB4h8pYyjSUwMpQhgNR3AQwzCYfN4nVZGQwpx5nbAgCQwswOkW6GQlEKbYk+6TNogbLYBCsLHZxQKuEgYOgqQ7wE8T9+kTK6j59rcVUeOrOAmDw8OaUjSmVWMa79T9mGMFaX+5mj6zDFPXBaGY9He0aCVFjGARX2bRREtB7lTk8RQyaSzNu4ts1GqJGJPvY5NdNu36B00q5x84eWQeDhyGSOalBLQMBhAD72BEoWDHt+p4cC5X5dl4OJkV/Bp2bjmH9+zU/1gtGy7Tpju4cM9UFOezoiYB3TUYdiyILCA4yJHMpcMwugmUoWav/oTJSMg4lsDKUIf84LhHC4py9wAKIFU44CaqbbinSPxah1BwEk23GjYYnWF3sZEuwBBIRvSZFAYAM6CmCwjF1757TsaKunn7pIdyxI4WjSg3+cIyCWHISP4PIAkCh00pPzmr9RaZFfUaDrDAPIPJqZrzNurJcXZRkWOpW21CQ9TnJOp8ZRLAANla6eT4DjS6a+sepdwsMY91QOL3AAj217pl+F1hcGSVKOoaDFLmsmEZa9IcShumnS+uV0YVijpjCwwyTO+sIFg4v40Y3uWOHF2ZgijmjBFaG4h/R6wtsrrkJLEe5nq4U6c6cH19F6ugfC1NsHIOc2dcLrSp2sSWcNDpQAvwohlAy2jtHgVVb6OQA1diGMu//6eG+MeoN3YRyymbVV89aviEjjS6a+sao1TqgqGHG22wod/NaqBJGWiGYOaa2+3v8nJkzqKeVuWeWvrmh3MOzvqRDXwaJkqb+cS7wJBsmzyCCBbooaR+JECtuzKhjOdw/Tp3XobutFq2Z0TYbyt10jYYIFDbqZiqj7Qs8SsVSwRIZZljmkpczfUT+BITAn7uKmkQbg+OZ16x7OaMEVoYSG9F7FOUUzOwH92TKq2oZkU7G2pXAWor0j0UoYXDGE7LjWVHkpEmWIxEqreA4zOFhIsIGFsectjcaBP05qygMHYF4NMWjmx+H+sZZJTqgaO2stltT4eWgVkEig4wugtE4oaEOcmRgxhNfgPUVxxtd7FiYwc2SWEKjqX+ctYZ2Pa1sBumOAI0Vbgbw6EYXGRJd1DRJy+A4Z9uTkdLCVTPa7pjRxRq9F1Yi/XbTCU1yoNfPxhKrHuWf4X1z1OjCkBSXGSQYFRlMNIgtMU7YWoDJOIdpedEaVopODvX4Uj82xZxRAitD0ZIWr+b8uQms1SW5HJIVKkKxBInEE4wGYxTE+2ac7nU8K4tdhLEyllOlro/jsEWHCZg889pHzLseE3Fkhv1/beodoV50YytbP6vt1pfrRheyZ0fGpDsd7B3TxSLoomSGrC/LPKOLloEA0YRGefjwUZOUmbA+OZHvzmnImEl812iIcEyjQbboqcuFq2e03YQo2Sfq9bTlDOjPd2QwQDimcZ5jEJAzFvLHjC5KwGDOmHOjyHCSkc6gY3rDnslwVjXiFGG62pSxWSahBFam4tMjWDOx7Z2MqvwcmqjC6TucMRMjRWro9YURaDgjcxNYZW4bDouRLnONElhJEpokNz5I2Dr7lMvjyak+E4CRlm2pGFbKCHTtxyISiOLZRbB0o4taTJHRjEl32tfjZ6No1iOwJTMXjF6XFYe7kAFzWcZMfA/0+vEyii0yOKtjcdvN1BY62K3VwFBTRhhdbGvX+4tVhQ/qYtFomtF2R40uApljdLGvR++Jt04mXQ3LzpjRdhNGFzu7Q1C8NmMipYoMZ6QVgHjuzAyITsZV2QhAsFNlLGUSSmBlKObxbuKYwOGd0/YGg8DnWolNC6iGh0uMI4MBCvFhlPE5CSwhBCuKnOzXKvX0l1hoAUaZXfSPhSlngKhzbhHjCarq1xGQVsZaM0dgxRMaOb1b9BcV58xq2+JcG+32ZJ1Td2Yc064OH+eZm/QJrG12bSwaK9y69XyGRLB2dvh4gzn51Lny/Fltu6HczfNjSaOLDOjttbl1GI8Vcob2QNlZs9p2Q7mbZ/sd+vnMAIG1rW0Eq8mAd2QHOEtm7LwJxxtdnKmMLhQzIjHcCoCtqH5O24tkhNU4kP7or+IYSmBlIFJKcsK9+C3FM3IumnI/E+kzKkqxpDgyGKBKTPRmmdsTrxVFLjaHikFqul37MqdraJwyMYTIr5nXfhrK8jggqzD2Z06T791dPtZp+4lYC2ZkA34y1rL1RDFBV/oFlpSSlw92c5bhMKLygllv31jh4bVwFfjaIekamU5ebRni2txmMDugdOOstm2scPPcePIBSwacmy2tI9xQ3IOIBaD2klltqxtdhIgVn5ERAuv5QwNcWJePseNVqDofhJjxto1Jo4vxgg0Q9imnVsW0BPqaCEgrxSVzSxHElsuIpYS88SakEvQZgxJYGcjgeJRK2UPYObf0wAlcVXpOvwobLy1aBwOcYU2mkM6iyP94VhY7eT2QbKibATUP6Wa49whmkcBeNDOb7KmwW4x0WldQMHYQNC1Fo5sfrzQNcpFhL1S/YVYTxQnWVBSyT6sm0bl1AUY3Ow70jlEZ2IVdC8KKK2a9/cYKD7tk8ilxmify/WNh9vf4OC+xTT83MzS4mKCxwsMQbsI5ZWmPLvb4QhzoHeMq2z4QBqi5eFbbT9Rh9TrWQN9eiKfPDa11MMCRwQDvKBsFfxesuHJW2zdWeADYr4wuFDMk1r2HFlnKimLXnPcRcK+iTrbTnWz2rUg/SmBlIEf6/awSnSS8s6uXOJmKslK6ZT6hTtXheylxqG+cc21dejrNHFIEAVZ4nbTKEjSjRUU4gbGeZgDcpSvnva9g/jrsMpgxzXm7979GiRjBuvbqOW2/vtzNDq1eT6tLc2PqZw/28xbDFqTRArVvmvX2G8r1FEGJgK70CsYn9vaxVrThDnfBmmtnvf26slyEgA57Q9ojWI/s6gEkjf7noPoisHtmtf2EOcQ+UQ9aTBdZaeK5g3p2wCXaJn3ByrfOavsNFW6EgNf8xWCyp/06U2Q4UpIztJe9so61pbNLeT4eY8k66kU3h7szpwXFckcJrAyktWkPdhHFXTO7lJGTqSlw0KyVIYabUzQyRbqJJzR2do6yztgOxevnFJEAPYKVwMiYvUovkl/mxPr0NElr8fwFlrlcv28D7el/cj0wFqG65zESwjjrieIE68vd7NLqMMYDMJg+lyopJY/vaOed5lcRq68Cq3PW+3DnmPEWFNBjrkq7KHlgexcfdG1CGkyw+ppZb++wmljhdbJDq9PFfGBoAUY5Mx7a2c07igewjDbD+nfOevs8h4WKPDsvBZIPjNIYkXtwZzcrvQ7yDt+npzq6ime1vdNqot7rZEf3OJQ2pv06U2Q4I63YE34GXGuwW4xz3o27qhGLSNDXqh6YZgpKYGUggTZ9YpZbfca89lOZn0MrpeSMtapC2yXCgd4xZDRAefDQrA0LjqciLweryUCPqQyGlADPGT1ISOTMqa/YyZSsOJO4NDDcvCUFI5sfD25u5h3GlwjVXAmOuTkklrlttNmSRhdpnCxu7xilpv9vuKUfznjvnPfTWOFhe6JOn8Sn6Xtxd6eP/W09XKs9h2i4FpxzMzNqrPDwtG9ClKRH0O/oGGVXp4+P5Tyt15Ktv2FO+9lQ7ub5PpvePD1Nx7K328f29lE+W9+hO7ud+Y9z2k9juZudnT5k2Vm6AUkintqBKpYMWutL+n/L5/57DpBTprdFCPWomupMYV4CSwjxn0KILiHEjuS/q4977wtCiCYhxEEhxNwenS5T3P2bCQubHqGYB2ajgVF7FbbEeEYUdCvmz6Yjw5xnOIhBxuaUIjWB0SCo9zppTpTAyJG0p36lk1hCoyTcwrCjfs4RweNpqCqiWZYhe9Jb+xiOJfC9cjte4cP5xo/PeT9CCBxlDQSxpzWy8NOnD/Ipy0NoBStnXRdzPI0Vbl6LVENgIG0Oq9954gAfsT+DLe6DCz8x5/00Vrh5OZjeqM/3njrEevswK3sfhTPfO2tnxwlONLrYkdIxzpQfPd1ErtXAFX2/gdxyWPeOOe2nscLN4HiE0fwNEA+BcndTTMHIrsfokx7q18/ORfQU8vXaUpWxlDmkIoL1PSnlGcl/jwIIIdYCNwPrgLcBPxFCzD32uYxo6htjY3Q7Q/lnzbroeTKinqRrmEoDWxL8dWc3Nzl3gjkHqi6c177qvA72RLyQiIKvI0UjzD6a+/2sFu1ECxpSsr9Cp5VmYy25o+mdVP362X28N3YvvqLz5yXGAdZV5LFTq0VLk9HFK82DlDX9kRV0YLjiK/NyV91Y6WGnNmF0sfii5OWmQQ4fPsjHDffraZuV5815Xxsq3IyRw7irNi3Rxddahnj+UD+35d2NMFnh4s/MeV/HjC4adOOdaDBVw5wRm1qGeHxvL/+zah+mnq1w+Zfm/BvcWOkBYLdMGl2oOizFZEQDONuf5Xl5Fpc2zC4V9RTsHsZNHpyBzKj9VSxciuD1wN1SyoiU8gjQBMz9V2QZsXXzy9QbenBsvD4l+zN59ZoSOXQ4JftTpI+2oQD7O/q5XHsFGq4FS8689ldb6GD7eL7+YhmnCTbv245bBHHUz0+wHs9obgOe+EDa6mI6R4LYX/pvisUo7mv+c96RuQ3lbl2U9O1ZdIe3sXCMH9z7Nz5r/jOJ2kthzdvntb91ZbkcooqEMC36xDcQifOlv+zmf3J+h1lIuPo789rf2tJcTAZBm3X1oqc8BqNx/v2+XXwo93Wqh1+CK74CuaVz3t+EwNojVoBMQO/iRYDHI3E+d98uNrqDvLnzNqg4FxpvnvP+Js7LayO5YPOoOizFpER33otVC9JacR1O68wac5+OgKOacq2b4UA0BaNTzJdUCKxPCiF2CSF+LYTISy4rB45/JN6ZXHYKQoiPCCG2CCG2DAwMpGA42YumSYy7/kgcI56zZl8oPBl5pfVEpZGgysvNen77Shs3mZ7HFvfDWe+b9/50E5SkVfsy7tUSan4FAO/a2fXuOR2JYr1FQqJn8R084wmN3/7+N3zA8AjjjbfoFuDzZH2Z7iRo0GK6yFokNE3y5Xu38KXAt7CbjRjf/r15i8Uci4ma4nzazHWLOvHVNMm/37eLq31/5GJtM+LKr0Jezbz2aTMbWVXsYlu8Fsb7wN+dmsFOg6ZJPvvnnThG9vEf2i/0JsnnfWRe+8xzWCj32HkxsLg1ZZom+fd7d9E37OMP7p8i4mG4/rZ5RUknzsvubj+Un5V2G31FBpKIEXr2f9inVfOmK+b30GgCLa+OGtFL88B4SvanmB/TfoMIIf4mhNgzyb/rgZ8C9cAZQA/wv7MdgJTyF1LKc6SU53i9cyv0XSo8t/Mgb4k8SU/5W8FZlJJ91hS5aZfFRPpUBCubOdQ3xoOb9vFv1geg8oJZ95mZjJpCBwN4iJscyzqF1DmwlTGDG1GwImX7dNWcCcBoy+JGSDRN8oO7HuL/Df0XPtcKnNd+MyX7rcy302JZpb9YJFEipeS//7qDdxz8HOsNrZhu+PmcGiVPRmOFmy3RGmTPzkXpVyal5OsP78O+9y7+zXQPbLgRzv9oSvbdWOHmKV/y+eUiTOSllHzjkX0c3LOVPzu/h9GeBzf+DgzzrwLYUO7m5T4zuEoX7Vi+/vA+ntrdzhNlv8TVvxWu/zF4V8973xsr3eyaMLro27foKY+KzGbsmf/FHWzn4cIPcl7d3AyITsZespoSMUJbT39K9qeYH9MKLCnllVLK9ZP8e1BK2SelTEgpNeCXHEsD7AKOt+OqSC5TTEEknmD8sa/hEBFKr/mPlO23ttDBEVmKYWT5poBlO+FYgn+9eyv/Y/o5Ts2vpxWlwIyhrtABCEZtFcs2RdAXjLEyso+BvI0p+X86QX1VNd0yn3DHjpTtczoSmuT//nA/7zv8KQwWO+4P/QUsjpTsWwhBYVkdo8KzKAIrltD4wp9e4w1b/oU3GXfBdT+EhtlbmU9FY4WHzbEaRMS/4A8XEprkKw/uRdv0c75j/iWy/nK47kcpu94aKzxsClXodu8LHPWJJzS+9MAeXnnlBR50fJMcM/De+8BVkpL9b6hw0zYUJFa8ccGPJaFJvvjAHu5+5SAPF/+S6qGX4NrvzclmfjIaKzz4QjH6c9cteMpjQpM8c6CPaDwzmpsrTk94z8PkvPxtHpUXcsPf/xMiRd8Frgq9jtjXlb52GopjzNdF8PiE63cAE7kjDwE3CyGsQohaYCXw+nw+a6nz4F0/57roo3SvfC+msg0p22+Zx047JTjGOxblSa0itQSjcT7629f44OB3uYzXEW+9FUrn1x9tgjyHBbfdTLexHJap89Cew03UG3owVF2Q0v2uLHayT6vBOrg46XThWILbfnMHH2n+JDarDedHHgdPVUo/Y32Fh22JOuQC1y2NR+J87ld/5X37/plLjbuQ1/4AkYKU2OPZWOFhh7bwBgRj4Rj/fMer1G75Bl83/xZWX4W4+Y9gtqXsMxor3ESw4HetXFDx6wvG+MjvtzK0+V4esn8dh92GuOVRKF6bss9orNDrsLpz1sDgYQj7U7bv4/GHY3zot5t5dtN2nsv/Fit9L8M1/wvnfDBlnzFxLNsTyajrAl1nQ+MR3vurTXzwji3c8cqRBfkMRYqQEv8rv8F07/vYq9XgfPdPqPfOvp/fVBgLdPOeaL8SWJnAfGuwviOE2C2E2AVcBnwGQEq5F7gH2Ac8DnxCSrl8faBPg5SSv97/e65v+godOeuovHF+Rc8nYzQI/DmVmGUExnpSum/FwrKjY5R/+cEf+XT7/+Mdxpd0V6sLPpbSz6gpdNCiFcNIGyRiKd13NjC4X+9BUrRufi57J2MzG+m2ryA/1AaxUEr3fTJtg+P8/v8+y8fb/z8SOV5cH38avKtS/jnry93sSNTpzYYjYynfP8CBXj/f+MGP+XL3x1lhHUG8517EObek/HNWl7joMFQQNSyc9fyeLh8f/sF9fLz1U3zQ9Dhc8AnETX8Asz2ln7Oq2IXFaNBTOLu3L4jRxZbWYd7+g2c5v/mH/MzyfaylaxH/lPrrrLHcA8AuWQdIvYdUitnaNsI1P3wRU9OTPJv7FUri3Yh/+BOc+08p/ZxVxS6sJgNbBi265fsCXGdb20a49kcv0dnezPuMT/Ds3vS0HVBMT7T3AO0/+Ttyn/w0W2QD/e/4E5esT03K81GSKdTmUSW0M4F52ZZIKafswielvBW4dT77X+qMB0M895uvcFX/r+iz1lD28b+m/McXIOGphT50IwP3pF4jigxBSsmW1mGefvZJVhz5Iz83vohmc8H1v4V1f5fyz6styGFPcyF/JxO6yCpMXR1SNmDsep0YJnKq59fkcTLCBWsx9GjQt3deTaFPxzPb9pN46FN8mNfpr3wLRe/91Zz7EE3H+rJc7pd1CKTep6j2jSnbd0KT/P6FfZif+U++bXiSoGcllvf9CZJPZFONxWRgdambJv8K1qY46hNPaPzixRYO/+0OfmW6HZvVCNf/JmWpZydjMRlYU+pic7SGM8MP6t/zKfr/ltAkP32uib/+7Vl+bvs5a4xNcPYH4Kpvg8maks84HneOmbpCB8/6bbwddMGYoussoUlue7aJnz29l6/Z7+Hd5kcgbwO86/aU1FydjNloYG1ZLrs6fVB2ZkojWPGExs9faOF7Tx3i751b+arjl5giPr7Qaabffz5FuamLkCrmQWScri1/JbTpDlb4XyNf2viD+0Nc+J6vckHxAnxPW52Mmb14Qh3EEhpm40IZhStmwvx9IRWzJhpL8OpTf6Z8861cK9s5XHg59f/0Wwz23AX5PLO3HvpADrcgUjgpUqQGTZPs6xph79YXGNv3JBeHX+Dzhg5iZivxcz+B5U3/Cjn5C/LZtYVOnt9ZAFb0NMFlJLASmqTMv5Mex2qqUpiyNYGp/GzogWjndiwpFli+UIz7//gLrm3/Nh4RYPTir1J0xWdSWkd2MjUFDprME0YXW1M28W3qH+NXd93NPw99l2pDP8Gz/5mct31tQR42HU9jhYfXt1ezpvcpRDwKJsu899nUP8atdz/LjQM/5OOmzcTKzsV0469Tnq55Mo0VHp7YXs5HBLooSYHAOtDr5wv37uDsnrt52HoPRmsuvP13sDY1LUSmorHCzcstQ/r/sxRFfQ70+vn3+3aT0/UyzzvuwBvrggs+AVd+dUGE4gQbKzzcs6UDbe3ZGA48DMHheX+XH+ob47N/3klPZyv3FN7DWePPQ9lZREN+3jP0N+7f/nE++qaFeTChOD1aeIz+A68yfOgVTO0vUzO+jXLi9Mo8/pr/fryXf5z3rF+dspqryQjn1lAT6aFtKMiKotSlHypmjxJYi8jgQB+7n7yDssN38SaO0G/w0nz5L1h58Y0LOjHKK6kluttIrO8wqSl5V8yH4UCU5tZWBg69RqxjO7kjezhD28d6oVurDuVvIHL+p7Ce8W6w502zt/lRU5jDHTJZoD54GFa9dUE/L5M43D3IOlpoL33Pguy/vGYlI5udaC1bKLjgwynb70u7D+P/y7/yAe15+hyrkO+5HU95Y8r2PxUGg6CyvJLe3mJKUjDxjSU0fvPMbiwv/De3Gh8n7CxDvPuv5CzSQ6DGCjfPvV7HLSIC/Xv1KMMcicQT/OK5Jvqf/wU/NP6RHHMCedlXMb/hU2Bc+J/ZDRVu7nqtBM1hw9C1DTa8a877CscS3PZsEy88/ze+ab6ddeZm5OprENf+AJwL7/S7sdLDAzu6CVdvxDbP6OLEsdz53E6+bL2bd1ieBmctvP0hqEttWvBkNFa4ueOVVrpy1uiuX93bYcUVc9pXOJbgZ88385Nnm3iv5Xm+4LoTcyiq9x97w6ewbPk16x/7HN9/7UXkJXULOolf7shYiOH2fQy27ibSsx/j0GFcY82Ux9soQVICtMhynvP8Hay6inMuuZq3u+bXt3KmiIIV1Aw+wraBcSWw0owSWAtMb0czrZsfxXjoMRpDm7hMxOk017D/zG+y+soPUWRZ+FB+lTeXDllEXl+TEliLyNjoEB3N+xjuPEC4rwnDaCuuUCflWjfniuGj6/VbKvAVXYFhw1txr3szBSmy6J8JtYUORsglavFgWWbNqFt3v0qDiOFZvTAT+obSXHZrtazvTU0dyYA/zKN3/5iru35Inhin98xPU3LNF1MSeZkpZ1fnsbWjlqu6ts2rgHdP5ygP3f0zPjD2c4qNI0Q2vh/HVd8A28JE8SdjY6WHH8gJA4JtcxZYrzQP8vP7H+fjYz/ifOMBopVvwPh3P16w9MbJaKxwE8fESG4DBfMQv68fGeZr973GDaO/5S/mJyGnAK66HbH+hgV9CHg8Gys9ALTa19Ew+lfw98ypgfHm1mE+f+9OVg4/x3P23+HSfHDRp+HSzy94dHSCxgoPAFti1UmBtW1OAuuVpkG+9MAetKEmHvH8npWhHVB2Mbz9B8eyDta/C+3x/+C8sSd54fA1vGnV8m57Mx+04CgjPS34eo8QHGgjPtKOYayLnGA3udE+ChKDFAhJAaBJQQdF9FmraSq+DGPVeRQ1XMTKmkrq0pCi5yhbjf3QXXT29MC61Lh7KuaGElgpZmSwl5bNjxFveo7S4depkt2UAEMij91l76b44vdTufaCRfuxAj21p0UWkz+iCh9TSSKh0d/TxlD7AYJ9TSSGWrD423AFOyiK9+BhjOP9tUaFG5+tgqD7AlpKG8lfcR6e+nMoWqCamZlQU6hL7mFbFSWDy6sXVuTIqwAUrlkYgVWZl8OThjouGnsE4pE5pyJpmuSvz76I98Uv8n520etaS+Kmn1BSOfeIy1w5uyaPl1+o5xrfazA+MOuIhi8Y4/aHn+OM3bfyH8bt+D0NGN79Z+wLVKN2Ouq9TobNJQSNbnK6tsG5H5rV9oPjEb778HbK9vyMX5gexmC1w1U/wnLmPy7q9zvACq8Tu9nIQXMDb+j6i26sMgsRMTge4TuP7ce3/S/8xvJ7vKZhxDkf1KMjds/CDXwS1pbmYjUZeCG6igaAtpdnFZEbHI/wrccOsHnbFr5l/wMXWraBtxGu+wuUnbFQw56UukIHTquJbX0a7yhYCZ2zq8MaHI9w6yP7eXT7Eb7geoz32f+CQbPD238IZ/7jic2QHQXIlW/hnYde5tPPHlQCayoScQLDXQx1NTPW10JsqB18nZgD3TjDPeTH+3ERpACY6E4Vk0Z6KWDYVESv/QzirkoMRatwVaynqG4dlfl5VBsyI2JoL10DQLBrH7D4vxGKYyiBNU/Gx0Zp2vwkoYPP4B18nbp4C2cLSUDaaM5ppLviZoo3vpWatedSkIJGjHOhPM/O8xRz8fiLusOUSh2YMWOBIL3th/F1HSTc34QYacU+3k5epIuSRC+lIsrEs9WEFPQZvAxbyjiYexmapwZHyUqKqhsoqmrAY8/Fk86DmYRcm5lCp4UOQwUlQ4vbFDfd5A1to99URpGreEH2bzAIRtxrMfofhP79c5rc7e8YYPtd/8kNgT+RMJgZeOOtlFz6sZQ0dZ0LZ1Xm8VMtGfXp3jbjlFJNk/xlaytdj36Xj2l/xmA2EnrT18m9+BOLkkI3GUaDYH25h51D67iw5bkZfzdqmuRPm9vZ9Njv+az8DRWmQRLrbsD4tv+GBbqWpsNkNHBmlYdHR1fzhkQE2l+F+sun3S6hSe7c1MZdT7zIv2m/5nLLNrSidYjr7lkwY5bpsJmNnF9XwL1dVj5idUPzszMSWPGExp2b2vnxk7u4JXE/37I9jNFkhUtv1Zs6p+E6MxgEjRVuNrcOQ90bYM/9ulur0Xza7RKa5K7X2/nO4/t5Q/x1Xnf/EXekB9a/C95665R9x4zn3ELhoUcpbvsr29vXcWbVwqaYZyLxoI+hnhZ8PS0E+1tJjHRgHNejT+5oHwVyCAfaCdk8I9LJgMFLv6WEVueZJHIrMOZVYi+swVNSS3FpFRUOK5XZMHdKOnuKIWXVnm6UwJol4XCIpm3PMbbvb7j7XmVl9ABniARRaeKwdS2vV/wznnVvpv6MN9JoWbji2dlgNhoYtVViiQUhMACLmIKW6WiapG9wiP62A4z1HCI+2IzJ14Yz2EFhrJsSOchKcax/WAgL/cZSfPYKBlwXIfJrsRevIL9iNd7KFZRZbJSl8XjmQk2Bg0PBEs4d74Owb8Fc6DKJfn+INfH9jJS+kYW8G3KqzoI9EOvYgnkWAms8EufB++/kwgP/zT+IHjoqrqLipu+RM4dUqVTizjEjSzcSHzZian1xRgJrf4+f+//0G24a/hk3GLrx17yV3Hf8L3gqp912obmgroAH29dxYfQV3e2xZP1p19/WPsIv/vIUNw/+mO8bdxIpWA3X/RZjzcWLNOKpuWx1Ef/3aDXfcFgRh56YVmBtbRvm1r9s4bLBO3nQ9Agmiwku+waGCz42rQBYaC5ZWch/PTJAsPEycg49DlritA8VtrYN8+W/7KGy/xketf8RL32w/kZ4yzdS1gR5rly62ss3Hz3A4MVvonDbb6HtldPWf21qGeJrf91HsPcgv829mzPZDLlr4OpfTm8ss/ItJIrW88n+h/jiY9dx50fesLRqsaQkONzNYFcz/r4jRAdbkb5OLONduJLRp1zGKQYmHnXEpJE+oUefBh0bOeAoB08FloIaXEU1FJTV4S3IJ2+pOO55qokJC07/8uxtmUkogTUNUtNoPbCNvu2PYu94gZWhXawXERJS0Gxeydby9+BccwUrzr6CdTmudA93SiLuOhhENzJYZgIrltDo7htgoG0fgd7DJAaasPhbcYc6KI53UypGOX7a6sPFoKWMIU8jfe4azIV1OEtXUljVQK63kuql9IOFnia440Ah7wEYbIKKs9M9pAXn0K5NXCx8BOovWdDPWdWwge7d+dj2/Y3886fvs5PQJI89/wqOF/6T98jXGbKWE7j+z1Sue8uCjnM2vHFdDS89v5437nkA45u/MWXUZ3A8wp0P/43Gfd/hi4YdjLmq0d5+N7kNVy3yiKfm2sZS3vP0mWgWI4bdf55SYPX6wvzwkc1U7vs5PzQ9hrBakVd8E+t5H0m7GJngsoYibn3URmv+xdTuuR/ecuukUZvu0RD/+8R+Ejv/zM8td+M1DSM33Ii48j8zpo3HZQ1F/Ncj+3nZfAFvDj4AR56fVDB2DAf57hMHObzrVb5q+xMXWHYgC9bC1b+BmosWf+CTcOWaYr756AEeGW/g/WYH7L5nUoHVNRrim4/u58VdTXzO8Qh/b38Eg7TBW78JM73OhMD4ps9S++dbKG9/gCf21vG29el9KDNbItEofe2HGOnYT6T3IIahJnICbbgjPRRqg+QQ43hPzjFpp9/gZchSQqerEc1VjjGvGntRDXmltRSVVlNht1KRtiNaZAxGxhzVlPs6GQ5EyXcsXo2u4kSUwDoNWx7+BVVb/ptahqkF2g3l7C56O7ZVl1N77ltZ5SlM9xBnjChq0AXWwIGM+eFJNb5AiI7mfYy27Sbetx/T6BFyg+2UJrqpFj6qj1t3SOQzZC2nO++NdOXVYiteSV7FKgorV+N25LH0YzjHqC10cH/Qq1u1Dx1ecgIroUk6R4K0dfcz3L6HWO9+NnbdDUDpOdcs6GefV1fAE4lGru98adrUoE37j9D+wNe5LvwQmsFE9zmfo+yt/woLYCE/H67eUMJtT7+BS/0/heZnTinaD0bj3PX0Ziyv/YCP8yQJk43QJV/DdfHHF9WQYyasKnaRV1zB64GzOX/7HxCX/BtYjzlv+YIxfv38fmKv/pzPib/gNgWJr3835remPzJyMiuKnJxdncevfOdza/hp2Hs/NN549H1fKMZPn23i8KsP8C+GP9NoaSZRcgZcfTei6vz0DXwS6r1OLqjL51stRq7MKUC89rMTBJYvGOO255p44uUtfNp4Dz+wvghWN7zpvxHnfThjRC9AnddJY4Wb324Z4B/XvRPDnvvg8q8cTScdDkT5+fPN3PXqIf6BJ3nd+RDW+Bhi481w5X/O/jpbcz2y8ny+3HkXNz54IefVXptxk+xAJE57Zycj7XsJ9R7EMNyEY6wVb6SdMq2HKhE/KqJ80kGPqZwu2ypaHJci3ZVYCqpxFddQUL4Cr7eY+gypf8oUYnkrWOHfRsvAOPmOhWnxopgeJbBOgz2vnA7XRtpqLqXq3GuoqlrJwnYzWTjySmoY32vD1LOPzJquzQ4pJf2jY3Q178Hfvget/wD20cN4w61Uym7Wi/jRdYdEPsO2Cnqdl9BTUI+9eCUFVWvIq1hFgdV1tIB1uVNb6KBdFiOFETGYvU6CUkq6RkMc6ehi6MguIr37sY4coiDYSq3o4hIxeHTdGCaai95Cfd7CPtf05Fho9V6KbeQ55KEnEGuuPWWdpq5+ttz/Pa4Y/APnCz/t1e+g8l3/TVma0wGnYkWRi9H6t9PbcQ8FT3wFc/VFYLbhC8V45PlXSbz+S/4h8TgWESew9mZyr/5aRkfNP3HZCr79p2v4S/yr8OSX4Jr/o9sf4YGXdxLd/Fv+Xj5GiWGEUNWliKu+gbl04S3x58qH31jLx/4wxKcLVuF98stQdSFdFPKHlw4yvPk+bpSP8XnjYeKuCrj8Jxg3/v2JRgkZxAcvquUjv9/KS6tu5o2Hb4Mdd9FRdT1/eLWVHa8/x43ao/y7+RUMRhPigk/BxZ9Z8LYWc+X/Xb6SD/9uC79bfT23JO6Chz/Dkctv4+6tvTz+2k6u1Z7mRdvTuONDUH2FLqzmep0ZDIi3/xDnzy7mC5Ef8K93l/KLW85f9KazUkoGRvx0tezD17mPWP9hLKMt5IVaqdC6WJNsSwIQx0ivsYwRRxW73JdiKFyJo6yBgpp1FHrLcGfoNZqpWEsaKGx/nC29w5xTk70Ca8IOv+/wNkJdezgYycN76cd489r01LrOFiGlTPcYjnLOOefILVu2pHsYS5LnDvbjufNt1JYV4f7o4+kezoxIaJK2zk56Dm4i3L4D2+AeSkOHqJI9mJJ1UZoU9BuLGc6pI5K/EkvJGvKqGymu24BxgRo3LzX2dfu5+ocvsqfwizjL18Lf/zHdQ5qW4UCUfV0+ulv3E+3Yjm1oL0WBQ6zmCMVi9Oh6EWFl2F5DxLMCU8ka3FUbcFWsg7zaRSt6v39zK294+FLshdW4P/Hs0Qnt4c5edj50G2/s+x3FYpROzzl43/FtrNXpMReYDYf6xvjej7/PT43/Q599BQcta3GMHuJscQANA8P111N49ZcX1ap8rmia5EO/3cwFzd/nn02P0G0oZSxuZKXowiAk4xVvxHn5vy1K36T5IqXk/921nabdm7jf+jUMaBzRiqkWfeSICFFXFZZLPq070GVYNHEy/vWenTy0rZX7HN+mMbGXZq0UtwhQKPxoJjuGs98PF34yI+r5ToeUkk//aQcP7ujm855n+Gj4VwxIN0GsVIt+faX6y3Ub+VRdZ1vvgL/+C3fHL+Wlhi/yPzedjc2cenOcWDxBV+cRBo7sIdh9AIaacYwfoSjSTjn9GMWxOeawyGPYXk3EXYehcAWOsjUU1KzDUVSfNrObpYi2614M93+IX63/Pf/0ruvSPZwZkfD10HfodXwtW6BvD7n+wxTHuzChz/Vi0sjfzJcw/rYf8e5zMut+F0JslVKe8sOtBNYyoc8f5qnv/AM3Wjdh+WJHxj21jMTiHDnSzMChTUQ7d+Ac3kdl5DBlx0Ud+g1eBhyriRc2YCtbR2FtI/lVaxGWxWngt1QJRuOs++oTPFrxO9aEdsC/HsgYp0kpJf1jEfZ2DNHdtIto53Ycw/uojjWxVrSRK4IAJDAwYKsjkL8GS9l68qs34KhYB+6qtF/r4ViCH/zv1/j38A9oL76CztyziXRs49zQSzhFmHbXmXiu/iq5ay5L6zhny6vNQ/ztvl/y7sCdlIkh/PZKzGuvofiSD4I7uyoeonGNnz3XhNx5N5fEXybXbsW74mxyz343FK+dfgcZRDyhcccrrezZvY23Bx+g3jpKQWUDrsZroeaStN8Ps2HCGfCFfR28NfAg5xqb8BYV41xxMay5NmMjVpMRT2j87tU2njnQz/nxzbxNvkSFx4a9bB2svQ68q1P/oc/cCi98h5cT6/iV51P88zvezPm1+bM2vpBSMjwyQu+Rvfg79xHvP4TFdwRPsJXyRDdOETq6bhgLveYKxhw1aPkrsJWspqB6HQVVaxCLbPm/bBk4BLedy28KP8sHPvnldI/mRKQkPHCEngOvEWjbhrl/N97AQfK1kaOrtMliui21BDyrMJWso6DuDGpWbcDlyMxOrkpgKfivW7/El2I/go9vgqKGtI1jPByl+eBuhps2I3t24h7dT02smQLhB/SoVI+pnOHcBmRxI+66syltOB9LrurrsVC87fsv8A88xvtGfwKf2ZuWCbKUks6REPva+xho2kq8aye5o/upSzTTIDqwiRgAUWFlxLUKrbgRZ+1ZuKrPgqK1GVerdDxNfX5e+PUX+PvwPdhFlHEcdJVeQemlHyF31cUZI2gVCsUSY9vviT/678h4hCcTZ3HAeSH22vOpqV+FNz8fT44FTZPEQ3608X7Gh3uIDrUjRlux+o856hYzfHSXmhS6sYStipC7DmPhSlwVaympXYfTW51VIn5JommM/1cVLxjP5+ov3pfGcSQYbd9L76FNRDp2YB/aS2nwEC4CAMSlgRZRQY99FaGC9diqzqJ09TnUlpdiMWXPNTSVwFIx2WWEufp8aPoRWuvLGBZJYA36xmk9sA1fyxYMfbvJ9x+gLnGEjcknXjFMdJur6Sq6hJ6yM8hfcQ4lK8+h3OYiM/yslgfn1uTz0LZK3mcAjrwAZ/zDgn5eQpMcGRznYGsnI81bkD278Pj3s0o7whWi+2gKaNDgZLRwLaOll+OpOwdb5ZlYCldSnKY+UHNlRXEutf/+Yzr6v4ZLhCgoqmC1ElUKhWKhOesfMa18M/EXv88V2+/mmtDrsA/YB1FpRABmkZh000HyGLSU0ZV3Ph15ddhKV5NftY6i6jWU2Bxkls2L4igGA33ujawb3oUvEMW9CCYnWjRMX/N2Bg9vJtG1A+foPioizXiI4gHC0kyzoYatrsuIF23AUXMWFavPYaU3j1VL9LdQCaxlRH3DGbQeKqZw14M4z/tQSvctpaSrt5/Og5sJtm3HNLAXb+AQdVob5ySNJ4LY6LbV05J3LeaKMyhadT4FNRuozuDIw3LhwvoC/vBaJZH8EqwHHkmpwIrGNQ71+jnScgh/6zYMfbspGD9EgzzCNYaBo+v5TIWM561jqOKd5NWdg6XiDHI8VeQskS9fo0FQU5I9zqMKhWKJ4CrBdPW3ML3tmzB4iHjnNgZ724mODxOOS4TBhLS40HIKsecVk1tUjbtsJYVWB+obKzsxrbma6lde4pnXn+fyy96c0n1HxofpOrAZX8tWRO9uPP79lMfaKRUJStGt81tM9WzKvx5Z0oin7mxqGs5knXN5lXPMS2AJIf4ETCQOe4BRKeUZQogaYD9wMPnea1LKj87nsxTz55LVXu6X5/PhrkdgpBXyaua0H38owpHmgwy17CDRvQvHyH4qwoepEn1He034hIte+yoOFF6MveoMSldfgKt8NSuyLPKwXLi8oQin1cKr1ou59NCDMNox68JxKSUDYxEOdQ/Sf2Qv0c4dWAf3UhI6TINoZ33SNUpDMGyrJJR/Fv1VZ5Jffw6msjNwO73Lyh5foVAoFhWDAYoaMBU1qOjTEqfyDTcRe+UryM23wxwFlkzEGexsord5O6GOnVgH91IUOEip1kddcp0B6aHDuoL2kosxlm2kcOV5VK9Yy0ZL5rRKSBfzElhSypsm/hZC/C/gO+7tZinlGfPZvyK1FLlsdK/6R+JNjxH+y2dwvP+eKfuFaJqkZ3CIvrZDjHXtRes/hM3XRH6wlUqti40icnTdXmMpQ5417Ch6N66asyhrOA93fgXuJRJ5WA7YzEZuPq+S/3jpTbxkfwjDw5+Bm/4waV1TOJagczhAd1cHvu7DxHr3Yxo+jDvYSrXWyYXimHNUVFgYdK3E772aRPWZ5NedjaFkHYXH9RpSKBQKhUKROgzOQg5Uvps3tf+Jlx/7IxddNXVWSiQwQk/bIUba9xHrPYBl5DCeQAsl8U68xJiofm+nlPacBg4VvBN75VmUrD6XisoavKoP2aSkxORC6JY07cDlUsrDyQjWw1LK9bPZjzK5WHh6fWHu+P4X+bz8FUOWMrq8byJk9qBFQyRCPizhQb1jeqL/qOnEBH3Cy7C9hmjeCqylayisbaSg/iyETcUdlgJj4Rh/d9vLXDjyV/7L9CvGzF5a8y7AJ3KJR4IQGcMeHqQw0Ue5GDxqOgEQxcyQrYqwuw5TUQPu6vXkVp8J+cp+V6FQKBSKxSYaGKX7e5dRE2/hkGUtfncDUhgxxsYxRn24Ir0UxPtxc6wnmSYFPcJLn7WacVc9puIG3FXrqVh1Nu687O2ptZAsqIugEOIS4P8mPiApsPYChwA/8CUp5YtTbPsR4CMAVVVVZ7e1tc17PIrT0zYU4PH7bqex6x7O4CB2ESUuDQREDuNGN6OWUqLOcoSnkpyievKq11FQtRaDzZXuoSsWmOFAlB8+fRj/3id5W+hhzhKHyBVBIliJGHIIWvKJOMrBU4XNW4O7dAWuirWIvBpQ6Z8KhUKhUGQMoXEf2//83xR0PkVRvA8jCQIih6DBwZilmKC9jHhuFfaiatzlDZTUbyDXpR6az4Y5CywhxN9g0nTdL0opH0yu81OgSUr5v8nXVsAppRwSQpwNPACsk1L6J9nPUVQEa3GRUhKKJTBoMSxmK4ZF7vSuUCgUCoVCoVBkK3O2aZdSXjnNjk3AO4Gzj9smAkSSf28VQjQDqwClnjIIIQQ5FhPKTFKhUCgUCoVCoUgNqQhZXAkckFJ2TiwQQniFEMbk33XASqAlBZ+lUCgUCoVCoVAoFBlLKkIXNwN3nbTsEuDrQogYoAEflVIOn7KlQqFQKBQKhUKhUCwh5i2wpJS3TLLsPuC++e5boVAoFAqFQqFQKLKJlLgIpgohxACQaTaChcBgugehWDTU+V4+qHO9vFDne/mgzvXyQZ3r5UUmnu9qKaX35IUZJbAyESHElsncQRRLE3W+lw/qXC8v1PlePqhzvXxQ53p5kU3nW/lyKxQKhUKhUCgUCkWKUAJLoVAoFAqFQqFQKFKEEljT84t0D0CxqKjzvXxQ53p5oc738kGd6+WDOtfLi6w536oGS6FQKBQKhUKhUChShIpgKRQKhUKhUCgUCkWKUAJLoVAoFAqFQqFQKFKEElinQQjxNiHEQSFEkxDi8+kejyJ1CCEqhRDPCiH2CSH2CiH+Jbk8XwjxlBDicPK/eekeqyI1CCGMQojtQoiHk69rhRCbkvf3n4QQlnSPUZEahBAeIcS9QogDQoj9QogL1b29NBFCfCb5Hb5HCHGXEMKm7u2lgxDi10KIfiHEnuOWTXovC50fJs/7LiHEWekbuWK2THGuv5v8Ht8lhPiLEMJz3HtfSJ7rg0KIt6Zl0KdBCawpEEIYgduAq4C1wN8LIdamd1SKFBIH/lVKuRa4APhE8vx+HnhaSrkSeDr5WrE0+Bdg/3Gvvw18T0q5AhgBPpSWUSkWgh8Aj0spG4CN6Odd3dtLDCFEOfAp4Bwp5XrACNyMureXEncAbztp2VT38lXAyuS/jwA/XaQxKlLDHZx6rp8C1kspG4FDwBcAkvO1m4F1yW1+kpy3ZwxKYE3NeUCTlLJFShkF7gauT/OYFClCStkjpdyW/HsMfQJWjn6Of5tc7bfA36VlgIqUIoSoAK4BfpV8LYDLgXuTq6hzvUQQQriBS4DbAaSUUSnlKOreXqqYALsQwgTkAD2oe3vJIKV8ARg+afFU9/L1wO+kzmuARwhRuigDVcybyc61lPJJKWU8+fI1oCL59/XA3VLKiJTyCNCEPm/PGJTAmppyoOO4153JZYolhhCiBjgT2AQUSyl7km/1AsXpGpcipXwf+BygJV8XAKPHfXGr+3vpUAsMAL9JpoT+SgjhQN3bSw4pZRfwP0A7urDyAVtR9/ZSZ6p7Wc3bljYfBB5L/p3x51oJLMWyRgjhBO4DPi2l9B//ntR7GKg+BlmOEOJaoF9KuTXdY1EsCibgLOCnUsozgQAnpQOqe3tpkKy9uR5dVJcBDk5NMVIsYdS9vDwQQnwRvbTjznSPZaYogTU1XUDlca8rkssUSwQhhBldXN0ppbw/ubhvIqUg+d/+dI1PkTIuAq4TQrSip/pejl6j40mmFYG6v5cSnUCnlHJT8vW96IJL3dtLjyuBI1LKASllDLgf/X5X9/bSZqp7Wc3bliBCiFuAa4H3yGPNezP+XCuBNTWbgZVJNyILejHdQ2kekyJFJGtwbgf2Syn/77i3HgLen/z7/cCDiz02RWqRUn5BSlkhpaxBv4+fkVK+B3gWeFdyNXWulwhSyl6gQwixOrnoCmAf6t5eirQDFwghcpLf6RPnWt3bS5up7uWHgPcl3QQvAHzHpRIqshAhxNvQ0/uvk1IGj3vrIeBmIYRVCFGLbmzyejrGOBXimBhUnIwQ4mr02g0j8Gsp5a3pHZEiVQghLgZeBHZzrC7nP9DrsO4BqoA24EYp5ckFtoosRQhxKfBZKeW1Qog69IhWPrAdeK+UMpLG4SlShBDiDHRDEwvQAnwA/YGiureXGEKIrwE3oacPbQf+Cb0WQ93bSwAhxF3ApUAh0Ad8FXiASe7lpMj+MXqaaBD4gJRySxqGrZgDU5zrLwBWYCi52mtSyo8m1/8iel1WHL3M47GT95lOlMBSKBQKhUKhUCgUihShUgQVCoVCoVAoFAqFIkUogaVQKBQKhUKhUCgUKUIJLIVCoVAoFAqFQqFIEUpgKRQKhUKhUCgUCkWKUAJLoVAoFAqFQqFQKFKEElgKhUKhUCgUCoVCkSKUwFIoFAqFQqFQKBSKFPH/A+OIbsjBH9CDAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADhSElEQVR4nOzdd3hc1bX4/e+aIs2oV0uyJFvGYOOKjY1pNjWhhRoIhtAckksgIQESIJ04ueF38xISEkpCCgkEiDEBAoReDZjmjivusiRbttX7aNp+/zhHsiyrWiONyvo8zzya0/ZZc2YknTW7iTEGpZRSSimllFJ954h2AEoppZRSSik1XGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoNEiJSICJGRFzRjmW4E5EFIrI02nEMNiIyT0Q2RzsOpZQayjTBUkopNaSJyEIRCYhIfZvHndGOaygyxnxgjJkY6XJFZIaIrBSRRvvnjEifQymlBgtNsJRSKkK05imqFhtjEto87ol2QJE0lD9bIhIDvAA8AaQCjwEv2OuVUmrY0QRLKaX6QEQKReQHIrIWaBARl4icICIfiUi1iHwmIqe12X+JiPyfiCwTkVoReUFE0jop+2sisklE6kRkh4h8s932i0RkjV3OdhE5x16fLCKPiEipiOwWkV+JiLOb1zFeRN4RkQoRKReRJ0Ukpc22ShE51l4eLSJlLa9LRC4UkQ32610iIpPaXZ/bRWStiNSIyGIR8fT+SveeiPzQvi51IrJRRC7pZD8RkftEZL99LdeJyFR7W6yI3CsiRSKyT0QeFhFvD8//qL3/m3YM74nI2Dbb/yAixfY5V4rIvDbbForIMyLyhIjUAgtEZI6IfGxf51IRebBtkmI3L/2WiGy1z/e/9nv3kX2Op7tLakTkNBEp6cnr64XTABfwe2NMszHmfkCAMyJ8HqWUGhQ0wVJKqb67EvgSkAJkAS8DvwLSgNuBZ0Uks83+1wLXAzlAELi/k3L3A+cDScDXgPvaJDlzgH8Cd9jnPQUotI971C73SGAmcBbwjW5egwD/B4wGJgH5wEIAY8x24AfAEyISB/wDeMwYs0REJgCLgFuBTOAV4L/tbuQvB84BxgHTgQUdBiAy104eOnvM7eY1tLcdmAckA7+w48/pYL+zsK7fBHvfy4EKe9uv7fUzsK5nLnBXL2K4CvhfIANYAzzZZttyu9w04F/Av9slnxcBz2C9v08CIeA2u6wTgTOBb7U739nALOAE4E7gL8DVWO/nVKzP6mGzE+XO3p8/dnLYFGCtMca0WbfWXq+UUsOOJlhKKdV39xtjio0xTVg3s68YY14xxoSNMW8CK4Dz2uz/uDFmvTGmAfgZcHlHNUzGmJeNMduN5T3gDayEAeDrwN+NMW/a59ltjPlcRLLsc91qjGkwxuwH7gOu6OoFGGO22WU1G2PKgN8Bp7bZ/ldgG/ApVmL4E3vTfOBl+9gAcC/gBU5qd332GGMqgf9iJRUdxbDUGJPSxaOrQSkub3ezP9oY82/7vGFjzGJgKzCng2MDQCJwNCDGmE3GmFIREeAG4DZjTKUxpg74f91dy3ZeNsa8b4xpxrpmJ4pIvv16nzDGVBhjgsaY3wKxQNv+Tx8bY563428yxqw0xnxi718I/Jk275HtHmNMrTFmA7AeeMMYs8MYUwO8ipVwHzZjzPQu3p/2yV6LBKCm3boarGuulFLDzpBt062UUoNIcZvnY4GviMgFbda5gXc72X+XvT2jfaEici7wc6waFAcQB6yzN+dj1Ra1N9Yur9TKD8A+triDfdueKwv4A1YCl2gfU9Vut78CLwI32AkDWDVeu1p2MMaERaQYq6anxd42zxvtYyLtaWPM1W1XiMi1wPeAAntVAh1cZ2PMOyLyIPAQMFZEnsOqefRgXfOVba6lAF02t2yn9bobY+pFpBLr9ReLyO1YifJowGDVVGZ0dKz9eiZgJb6z7bhcwMp259vX5nlTB8vZvYg9UuqxXltbSUBdFGJRSql+pzVYSinVd22bPhVj1VC1/WY/3hjz6zb75Ld5PgarBqW8bYEiEgs8i1UjlGWMScFKqFru9IuB8R3EUgw0Axltzp9kjOmuOdb/s1/HNGNMElZN3IGsQiQB+D3wCLBQDvQb24OV1LXsJ/br293N+Q4h1hDh9V085nVfSmtZY7ESwpuBdPv6rW/7mtoyxtxvjJkFTMZKaO/Aek+agCltrmWyMSahFy+r9b22r2EasMd+LXdiNUdMteOraRdf288VwJ+Az4Gj7Pfox529nv4iVl+7zt6fhzs5bAMwXdpkqVhNRTf0f8RKKTXwNMFSSqnIegK4QETOFhGniHjsgQPy2uxztYhMtvsz/RJ4xhgTaldODFaTsTIgaNdmndVm+yPA10TkTBFxiEiuiBxtjCnFakr4WxFJsreNF5H2TcnaS8SqaagRkVysBKOtPwArjDHfwOpj1nIz/TTwJTsON/B9rATvo+4uVHv2EOEJXTw+6EVx8VgJShlYA4Zg9UE6hIgcJyLH2/E3AD4gbIwJYyVp94nIKHvfXBE5u82xRtoMYtKB8+y+ZTFYfbE+McYUY13voB2fS0Tu4tBanvYSgVqgXkSOBm7qZv+IM8ZM6eL9ubGTw5Zg9R/7rliDhtxsr39nQIJWSqkBpgmWUkpFkH3zfBFW7UIZVo3SHRz89/ZxrIEo9mI1Q/tuB+XU2eufxmqq91Ws5nkt25dhD3yBVfPxHgdqkq7FStA22sc+g9Vvqiu/AI61y3oZeK5lg4hchDVIRcsN/feAY0XkKmPMZqzargewanwuAC4wxvi7OV+/MsZsBH4LfIzVTG4a8GEnuydhJVJVWM0dK4Df2Nt+gNX37BOxRvN7C7uflN2Xqo4DzTY78i+sZp6VWINPtDRjfB14Ddhin9NHN804sZotftU+51+Bxd3sPyjYn4WLsT6X1VgDvFwc7c+IUkr1Fzl4UB+llFL9SUSWAE8YY/4W7VhU34jI1VjNB3/UyfZHgRJjzE8HNDCllFJRpYNcKKWUUofBGPNEtGNQSik1+GgTQaWUGiHEmvS2N4MTqGFIRH7cyefg1WjHppRSw4E2EVRKKaWUUkqpCNEaLKWUUkoppZSKkEHVBysjI8MUFBREOwyllFJKKaWU6tLKlSvLjTGZ7dcPqgSroKCAFStWRDsMpZRSSimllOqSiOzqaL02EVRKKaWUUkqpCNEESymllFJKKaUiRBMspZRSSimllIqQQdUHqyOBQICSkhJ8Pl+0Q1GDgMfjIS8vD7fbHe1Q1DATDhtueXwpXxpVyTnnXhTtcJRSSik1RA36BKukpITExEQKCgoQkWiHo6LIGENFRQUlJSWMGzcu2uGoYWZHeQNnbPs/ztn5IaE5a3Cm62dMKaWUUr036JsI+nw+0tPTNblSiAjp6elam6n6xY6yek5xrAVg37LnohyNUkoppYaqQZ9gAZpcqVb6WVD9JeCrJ4V6AMz2t6McjVJKKaWGqiGRYCmlVL/z1eIUA0BS1QYwJsoBKaWUUmoo0gSrB0SE73//+63L9957LwsXLoxeQG2cdtppXU7OfPHFF3PCCScctG7hwoXk5uYyY8YMpk6dyosvvtjfYSo16IX9TQBsdk4gMVQNtXuiG5BSSimlhiRNsHogNjaW5557jvLy8oiWa4whHA5HtMy2qqurWblyJTU1NezYseOgbbfddhtr1qzh3//+N9dff32/xqHUUBD2NwKwP2UGAME9a6IXjFJKKaWGLE2wesDlcnHDDTdw3333HbKtrKyMSy+9lOOOO47jjjuODz/8ELBqie69997W/aZOnUphYSGFhYVMnDiRa6+9lqlTp1JcXMwdd9zB1KlTmTZtGosXLwZgyZIlnHbaaVx22WUcffTRXHXVVZhOmiw9/vjjrbVRy5Yta13/3HPPccEFF3DFFVfw1FNPdXjspEmTcLlcByWPP/zhD5k8eTLTp0/n9ttvB6CwsJAzzjiD6dOnc+aZZ1JUVATAggULuOmmmzjhhBM44ogjWLJkCddffz2TJk1iwYIFrWXedNNNzJ49mylTpvDzn//8kDhqamoYO3Zsa6LX0NBAfn4+gUCgw7iVijQTsGqwZPR0AKqLN0UzHKWUUkoNUYN+mPa2fvHfDWzcUxvRMiePTuLnF0zpdr9vf/vbTJ8+nTvvvPOg9bfccgu33XYbc+fOpaioiLPPPptNm7q+Mdu6dSuPPfYYJ5xwAs8++yxr1qzhs88+o7y8nOOOO45TTjkFgNWrV7NhwwZGjx7NySefzIcffsjcuXMPKa+xsZE1a9bw/vvvc/3117N+/XoAFi1axF133UVWVhaXXnopP/7xjw859tNPP8XhcJCZmQlARUUF//nPf/j8888REaqrqwH4zne+w3XXXcd1113H3//+d7773e/y/PPPA1BVVcXHH3/Miy++yIUXXsiHH37I3/72N4477jjWrFnDjBkzuPvuu0lLSyMUCnHmmWeydu1apk+f3hpHcnIyM2bM4L333uP000/npZde4uyzz9b5rtSAaUmwRo0+goq1iTTu+TzKESmllFJqKNIarB5KSkri2muv5f777z9o/VtvvcXNN9/MjBkzuPDCC6mtraW+vr7LssaOHdvaL2rp0qVceeWVOJ1OsrKyOPXUU1m+fDkAc+bMIS8vD4fDwYwZMygsLOywvCuvvBKAU045hdraWqqrq9m3bx9bt25l7ty5TJgwAbfb3Zp4Adx3333MmDGD22+/ncWLF7eOzpecnIzH4+HrX/86zz33HHFxcQB8/PHHfPWrXwXgmmuuYenSpa1lXXDBBYgI06ZNIysri2nTpuFwOJgyZUprzE8//TTHHnssM2fOZMOGDWzcuPGQ1zF//vzWGrynnnqK+fPnd3kdlYqklgRrTFYaO0wOjsrtUY5IKaWUUkPRkKrB6klNU3+69dZbOfbYY/na177Wui4cDvPJJ5/g8XgO2tflch3Ur6nt3E3x8fE9Ol9sbGzrc6fTSTAY7HC/9kOXiwhPP/00VVVVrRPy1tbWsmjRIu6++27A6oPV0vyvfdzLli3j7bff5plnnuHBBx/knXfe6VGcDofjoJgdDgfBYJCdO3dy7733snz5clJTU1mwYEGHc1ldeOGF/PjHP6ayspKVK1dyxhlndHlepSIqaH0mPd549rnzmdCwOsoBKaWUUmoo0hqsXkhLS+Pyyy/nkUceaV131lln8cADD7Qur1mzBoCCggJWrVoFwKpVq9i5c2eHZc6bN4/FixcTCoUoKyvj/fffZ86cOb2Kq6XWZ+nSpSQnJ5OcnMyiRYt47bXXWvt9rVy5stN+WG3V19dTU1PDeeedx3333cdnn30GwEknndR6/JNPPsm8efN6HF9tbS3x8fEkJyezb98+Xn311Q73S0hI4LjjjuOWW27h/PPPx+l09vgcSvWV2DVYuL3UJxSQHKoEX2SbJCullFJq+NMEq5e+//3vHzQgxP3338+KFSuYPn06kydP5uGHHwbg0ksvpbKykilTpvDggw8yYcKEDsu75JJLmD59OscccwxnnHEG99xzD9nZ2b2KyePxMHPmTG688UYeeeQRCgsL2bVr10HDs48bN47k5GQ+/fTTDss477zz2LNnD3V1dZx//vlMnz6duXPn8rvf/Q6ABx54gH/84x9Mnz6dxx9/nD/84Q89ju+YY45h5syZHH300Xz1q1/l5JNPbt121113HTRM/Pz583niiSe0eaAacBKya1VdHoKp463nFduiF5BSSimlhiTpbGS6aJg9e7ZpP6fTpk2bmDRpUpQiUoORfiZUf3jxz3dxYekf4I7tPP3+ai7/9DIaz/8TcbO/Gu3QlFJKKTUIichKY8zs9uv7XIMlIvki8q6IbBSRDSJyi71+oYjsFpE19uO8vp5LKaX6S2sNlttL8uiJhIxQt1tHElRKKaVU70RikIsg8H1jzCoRSQRWisib9rb7jDH3dnGsUkoNCo5Qs/XE5WXMqBRKSYfyHV0fpJRSSinVTp9rsIwxpcaYVfbzOmATkNvXcpVSaiA5gj78uMDhYExaHLvCWThrdkU7LKWUUkoNMREd5EJECoCZQMtICjeLyFoR+buIpEbyXEopFUnOsA+/WNMMxMe62O/KIaGxJMpRKaWUUmqoiViCJSIJwLPArcaYWuBPwHhgBlAK/LaT424QkRUisqKsrCxS4SilVK+4wz4CEtO63BCfR2KwEpq7njhcKaWUUqqtiCRYIuLGSq6eNMY8B2CM2WeMCRljwsBfgQ4ndzLG/MUYM9sYMzszMzMS4SilVK85Q8345cCE4eHksdaTam0mqJRSSqmei8QoggI8AmwyxvyuzfqcNrtdAqzv67mi6fnnn0dE+PzzzkcVKywsZOrUqRE754IFC3jmmWc63X7rrbeSm5tLOBxuXffoo4+SmZnJjBkzmDx5Mn/9618jFo9Sw5kr3EzAEXtgOeMIAPxlOtCFUkoppXouEjVYJwPXAGe0G5L9HhFZJyJrgdOB2yJwrqhZtGgRc+fOZdGiRR1uDwaDfT5HKBTq8b7hcJj//Oc/5Ofn89577x20bf78+axZs4YlS5bw4x//mH379vU5NqWGO6cJEBJ363JizpEA1JZujVZISimllBqCIjGK4FJjjBhjphtjZtiPV4wx1xhjptnrLzTGlEYi4Gior69n6dKlPPLIIzz11FOt65csWcK8efO48MILmTx5MmAlWldddRWTJk3isssuo7GxEYC3336bmTNnMm3aNK6//nqam60hoQsKCvjBD37Asccey7///e9Dzv3WW28xe/ZsJkyYwEsvvXTQuadMmcJNN93UadI3atQoxo8fz65dB5o43X///UyePJnp06dzxRVXAFBZWcnFF1/M9OnTOeGEE1i7di0ACxcu5LrrrmPevHmMHTuW5557jjvvvJNp06ZxzjnnEAgEAPjlL3/Jcccdx9SpU7nhhhtoP3l1OBymoKCA6urq1nVHHXWUJn5qUHGEA4QcBxKsnKwcak0cvv1ag6WUUkqpnovEPFgD59Ufwt51kS0zexqc++sud3nhhRc455xzmDBhAunp6axcuZJZs2YBsGrVKtavX8+4ceMoLCxk8+bNPPLII5x88slcf/31/PGPf+Tmm29mwYIFvP3220yYMIFrr72WP/3pT9x6660ApKens2rVqg7PXVhYyLJly9i+fTunn34627Ztw+PxsGjRIq688kouuugifvzjHxMIBHC73Qcdu2PHDnbs2MGRRx7Zuu7Xv/41O3fuJDY2tjXh+fnPf87MmTN5/vnneeedd7j22mtZs2YNANu3b+fdd99l48aNnHjiiTz77LPcc889XHLJJbz88stcfPHF3Hzzzdx1110AXHPNNbz00ktccMEFred0OBxcdNFF/Oc//+FrX/san376KWPHjiUrK6vHb5NS/c1pgoTbJFhj0uMpMqNIrdoZxaiUUkopNdREdJj24WrRokWttT1XXHHFQTVGc+bMYdy4ca3L+fn5nHzyyQBcffXVLF26lM2bNzNu3DgmTJgAwHXXXcf777/fesz8+fM7Pffll1+Ow+HgqKOO4ogjjuDzzz/H7/fzyiuvcPHFF5OUlMTxxx/P66+/3nrM4sWLmTFjBldeeSV//vOfSUtLa902ffp0rrrqKp544glcLiu/Xrp0Kddccw0AZ5xxBhUVFdTW1gJw7rnn4na7mTZtGqFQiHPOOQeAadOmUVhYCMC7777L8ccfz7Rp03jnnXfYsGHDIa9j/vz5LF68GICnnnqqy9esVDQ4TQAjB75zykyMpYRRxNYXRTEqpZRSSg01Q6sGq5uapv5QWVnJO++8w7p16xARQqEQIsJvfvMbAOLj4w/a3xrzo/PljrQvo7vyXn/9daqrq5k2bRoAjY2NeL1ezj//fMBKZh588MEOy3v55Zd5//33+e9//8vdd9/NunVd1wjGxlqd/h0OB263uzUeh8NBMBjE5/PxrW99ixUrVpCfn8/ChQvx+XyHlHPiiSeybds2ysrKeP755/npT3/a5XmVGmiudjVYIkK1J49k32oIh8Gh30cppZRSqnt6x9CNZ555hmuuuYZdu3ZRWFhIcXEx48aN44MPPuhw/6KiIj7++GMA/vWvfzF37lwmTpxIYWEh27ZtA+Dxxx/n1FNP7dH5//3vfxMOh9m+fTs7duxg4sSJLFq0iL/97W8UFhZSWFjIzp07efPNN1v7e3UmHA5TXFzM6aefzv/3//1/1NTUUF9fz7x583jyyScBq29XRkYGSUlJPYqvJZnKyMigvr6+01EPRYRLLrmE733ve0yaNIn09PQela/UQHGaIMYRc9C65sQxuAlA3ZDtQqqUUkqpAaYJVjcWLVrEJZdcctC6Sy+9tNOBJSZOnMhDDz3EpEmTqKqq4qabbsLj8fCPf/yDr3zlK0ybNg2Hw8GNN97Yo/OPGTOGOXPmcO655/Lwww8TDod57bXX+NKXvtS6T3x8PHPnzuW///1vh2V84xvfYMWKFYRCIa6++mqmTZvGzJkz+e53v0tKSgoLFy5k5cqVTJ8+nR/+8Ic89thjPbw6kJKSwv/8z/8wdepUzj77bI477rjWbQ8//DAPP/xw6/L8+fN54okntHmgGpRcBDHOg/sxSmoBAKZSB7pQSimlVM9I+xHfomn27NlmxYoVB63btGkTkyZNilJEajDSz4SKNGMMu34+kaZRM5h089Ot659+430u/+gC6s/5AwknLIhegEoppZQadERkpTFmdvv1WoOllBrxAiGDW4LgPLiJYNroIwgaB/V7t0UpMqWUUkoNNUNrkAullOoH/lCYGILQrolgfkYye0w6jnIdql0ppZRSPTMkarAGUzNGFV36WVD9wR8M4yKEaVeDlZfqpciMwlVTGJ3AlFJKKTXkDPoEy+PxUFFRoTfWCmMMFRUVeDyeaIeihplAKIybINIuwYqPdbHflUNCY0mUIlNKKaXUUDPomwjm5eVRUlJCWVlZtENRg4DH4yEvLy/aYahhxh8Mk0IQaddEEKA+Lp+EhreguQ5iE6MQnVJKKaWGkkGfYLndbsaNGxftMJRSw1hzIESsBBFXzCHbQsljoQGo2gXZUwc+OKWUUkoNKYO+iaBSSvW3QDAAcEgTQQBXhvUFT7BC58JSSimlVPc0wVJKjXgBfzNAhzVYCdlHAlC7Z+uAxqSUUkqpoUkTLKXUiBe0EyyH69A+WDnZOVSbeHz7tw90WEoppZQagvo9wRKRc0Rks4hsE5Ef9vf5lFKqt0IBHwCODmqw8tPiKDKjoKpwgKNSSiml1FDUrwmWiDiBh4BzgcnAlSIyuT/PqZRSveUP+AFwuGMP2Zad5KGEUXjqiwY6LKWUUkoNQf1dgzUH2GaM2WGM8QNPARf18zmVUqpXQgGriaCzgxosp0Oojs0lyVcK4dBAh6aUUkqpIaa/E6xcoLjNcom9rpWI3CAiK0Rkhc51pZSKhqDfqsFydlCDBeBLHIuLINTuGciwlFJKKTUERX2QC2PMX4wxs40xszMzM6MdjlJqBAoHO6/BAiB1rPVT+2EppZRSqhv9nWDtBvLbLOfZ65RSatBobSLYSQ2Wd9R4ABr3bRuwmJRSSik1NPV3grUcOEpExolIDHAF8GI/n1MppXolZE807IrpOMFKzR5HwDip36sJllJKKaW65urPwo0xQRG5GXgdcAJ/N8Zs6M9zKqVUb4Vba7A6biKYl5HEbpNBTPmOgQxLKaWUUkNQvyZYAMaYV4BX+vs8Sil1uMJBa5ALdydNBMekx7HGjGJijQ7VrpRSSqmuRX2QC6WUirbuEqwkj5t9zmwSGos73K6UUkop1UITLKXUiGfsUQQdnTQRBGiIyyM+VAO+moEKSymllFJDkCZYSikVaLJ+uryd75LcMlT7rgEISCmllFJDlSZYSill12Dh9nS6iyvjCABCFTsHIiKllFJKDVGaYCmlVLD7GqyUnKMAqC3dOhARKaWUUmqI0gRLKTXiSdBnPemiBitvdDZVJkEnG1ZKKaVUlzTBUkqNeI6WJoJd1GAdkRFPkRmFqSwcmKCUUkopNSRpgqWUGvEcoSaCOMHZ+dSAafEx7HFk46nXodqVUkop1TlNsJRSI54j1IxfOh+iHUBEaPDmkeIvhXBogCJTSiml1FCjCZZSasRzhpsJdJNgAYRSCnARguqiAYhKKaWUUkORJlhKqRHPFfYRlNju9xs1AQDf3s39HZJSSimlhihNsJRSI54z5Cfg6D7BSs6fDEBV0Yb+DkkppZRSQ5QmWEqpEc9lmgn2IMHKHZ1HtYmneZ/WYCmllFKqY5pgKaVGPHe4mZCz8zmwWozLTGCHycFZuX0AolJKKaXUUNSnBEtEfiMin4vIWhH5j4ik2OsLRKRJRNbYj4cjEq1SSvWDGNNMqAc1WB63k72ufJIadg5AVEoppZQaivpag/UmMNUYMx3YAvyozbbtxpgZ9uPGPp5HKaX6TYzx96gGC6A+sYDkYAX4avs5KqWUUkoNRX1KsIwxbxhjgvbiJ0Be30NSSqmBEwobYowfXN3XYAGE044EwFRs68+wlFJKKTVERbIP1vXAq22Wx4nIahF5T0TmdXaQiNwgIitEZEVZWVkEw1FKqe7VNwfx4Ae3t0f7e3OOBqC2ZGN/hqWUUkqpIarbBEtE3hKR9R08Lmqzz0+AIPCkvaoUGGOMmQl8D/iXiCR1VL4x5i/GmNnGmNmZmZl9f0VKKdULDc1BPOLH4e5ZE8H0MUcTMkJtyaZ+jkwppZRSQ5Grux2MMV/oaruILADOB840xhj7mGag2X6+UkS2AxOAFX0NWCmlIqmhOchofNTGJPRo/3HZ6RSbUVC2tZ8jU0oppdRQ1NdRBM8B7gQuNMY0tlmfKSJO+/kRwFHAjr6cSyml+kN9UxPx0ox4U3q0f06Sh0IZjadG/6QppZRS6lB97YP1IJAIvNluOPZTgLUisgZ4BrjRGFPZx3MppVTE+eqqAHDGpfRof4dDqPKMIdVXBOFwP0amlFJKqaGo2yaCXTHGHNnJ+meBZ/tStlJKDYRAg5VgueJSe3yML/kIYvc3Q+1uSMnvr9CUUkopNQRFchRBpZQacgIN1QDEJPQ8wXKOmgiAf//m/ghJKaWUUkOYJlhKqREt1GjVYPUmwUrKmwRAdZEO1a6UUkqpg2mCpZQa0UJ2DZY3Ka3Hx+TmFlBnvDSVft5PUSmllFJqqNIESyk1ogVbarDie55gjRuVwA6Tg1Ru66+wlFJKKTVEaYKllBrRwk011hNPco+PSYh1sceVR0J9Yf8EpZRSSqkhSxMspdSIJr5qQjggJr5Xx9XFF5AW2Af+xu53VkoppdSIoQmWUmpE8/grqHOmgkivjguljQfAVGgzQaWUUkodoAmWUmpESwhUUOdO7/VxnuyjAajbrQNdKKWUUuoATbCUUiOWMYaUUCW+2MxeH5s+xhqqvbZEh2pXSiml1AGaYCmlRqyqxgCZVBGOH9XrY8flZFJiMgju39IPkSmllFJqqNIESyk1Yu2prCOdWpzJOb0+dnSKl0KTQ0zNjn6ITCmllFJDlSZYSqkRq3L/bhxi8KSO7vWxTodQ4RlLauMuMKYfolNKKaXUUKQJllJqxKrbvwuAhMy8wzq+PnEcXtMIdXsjGZZSSimlhjBNsJRSI5a/ogiApKwjDuv4UKo9VHu59sNSSimllKVPCZaILBSR3SKyxn6c12bbj0Rkm4hsFpGz+x6qUkpFltQUA+BIHXNYx7uzJgDg26sJllJKKaUsrgiUcZ8x5t62K0RkMnAFMAUYDbwlIhOMMaEInE8ppSIitmE3jRJHnCflsI5PzR6L3zip37cDb2RDU0oppdQQ1V9NBC8CnjLGNBtjdgLbgDn9dC6llDosCc2lVMdkgchhHZ+Xlsgek0GwojCygSmllFJqyIpEgnWziKwVkb+LSKq9LhcobrNPib3uECJyg4isEJEVZWVlEQhHKaW6Fw4bMoL7afT2fgTBFrkpXopNJs7aoghGppRSSqmhrNsES0TeEpH1HTwuAv4EjAdmAKXAb3sbgDHmL8aY2caY2ZmZmb09XCmlDkt5QzOjKSOYeHgjCAKkxLnZ68girnF3BCNTSiml1FDWbR8sY8wXelKQiPwVeMle3A3kt9mcZ69TSqlBYe/+MqZLI/sPc4ALABGh3jOahOa3wd8AMfERjFAppZRSQ1FfRxHMabN4CbDefv4icIWIxIrIOOAoYFlfzqWUUpFUU7odAG9mQZ/K8Sfa3yVVazNBpZRSSvV9FMF7RGQGYIBC4JsAxpgNIvI0sBEIAt/WEQSVUoNJY1khACk54/tUjqSNhXKsBGvUpL4HppRSSqkhrU8JljHmmi623Q3c3ZfylVKqvwQrrRqn+FEFfSrHmzkOtkDT/h14J0QgMKWUUkoNaf01TLtSSg1qrtpi/LiQhKw+lZOelU+TiaFh3/YIRaaUUkqpoUwTLKXUiORtKqXKNQocffszmJ8WT4nJJFS5K0KRKaWUUmoo0wRLKTUipfr3Uu/J6X7HbuSleikxGToXllJKKaUATbCUUiNQoz/IKFOGP6HD+c97pWUurHidC0sppZRSaIKllBqBSsuryJJqSDn8ObBaiAj13ly8oTpoqu5zeUoppZQa2jTBUkqNOFUlmwGIGRWZYf+CSS1zYWk/LKWUUmqk0wRLKTXi+Eo/ByAxL0LzVqUfCYAp3xqZ8pRSSik1ZPV1ouFhbcVLfyF75e+odafTFJtJMC4LEnOQhEzc8anEJqTiSU4nPjmDhKR04uITkT6OSNYbJhwmFAoSCgUIBQOEgkHCoaD1MxwiHAq1/gyFrG0mfGCdCQcJhUKYlv3CIWj9GURMGEz4wPkw1k/TuoLWp21Wtj5t3Xr4RACk8+2A6WS7SOfHdXCSQ8rtantXx8sh8UiXi6bzTQet7ez1GHt9D1/tgBuMcTl3vgtAWn5kEqzk/MkENzpoLFpL0rTLIlKmOpgxhubmZpob6/H76mlurCPgqyfQVE/Q10DQ30Qw0Eww4CccDCLhAISDEA7iCAcgHEDCQYwx1gPrb1nb5wDIgc+stC5Lmw0O63e+5UHbn47W59JmuxGHVcZBxznsPx0OjEjrc6uMlt/3tudqKQP7WGndFxzgEARB7BikXYzW/yZpLVdaiurmb2zvhLvfpSfa/+swh/+/pKsjpRf/o3oXQuc79+W/Ym/i7bE+XFulBlLAk0bmkbPJT4uLdig9oglWF2KTs9iXMAmvr4xR9ZtJr/2IuH3NXR7TbNw0i5sAbgISQwA3QYkh3HpzbP3sKClwmBAOQjhbf4atn20fJoyr5bkYXOibqNThKJEc8ryJESnr6LwMdpocknevJ6mbfXeU1RMf4yQr2RuRcw81wWCIqqpyasp201i5G1/1Pvx1FYSbqnA0VeP01xDjryEmWEdcqJb4cD1e04QXHx4J4Yn2C1BKKTXg3gjNYvkX/so3Tx0f7VB6RO/NuzBt3kUw76LWZRMOU1NbTX3FHppqK/HVVeKvryTYWEW4sRrjb4SQDwn6kVAzEmrGEfbjDDXTpq7HSq3a1fIIEHY4MeLEiMv66Tj4Jw4XxuEEcYHDWj7w0wXiRBxOe531XMSBOO314kScThxibXfY68XhwuFwIg6H9dzpwIjLmh+o5VtTsL4VpfUprXU17StoRFqPObjS5dCksqvvzgymy2/XrE1df/vW2feyByrcDj3eHFRmB+WbThcO3du0337wspi22zrSrtaw02AG6beQgzQsgPT8iREr6+jsRN4x+ZxSsd56szqobdy1v4pPn/0D8/Y+xtb4Y8m689mInX8wMMZQU1dP2e4d1O3bga+skHB1CdKwjxhfOQmBCpJDVaSbajIlQGYHZTQRQ70k0OhIpMmZSL13NNXuJEIxieD2Ytxx4I6HmDgcMfE4YuNwxSbg8MTjjo0jJiaWmJhYXC4XDpcbccYgLjcOpxtxunG4YnA4HDgdgsOuNXLKgefW68Cu0WpTy0UYEzaAwYRN67Ix4QM1YsaACWPCLesObAMD4Tb7EoZ2x9vVaXbZ4TbnatkWsveldb+2ZdgbrH3CoUOPb9nfXj7wOq2/S4fWvB8ecUSonHbLnbVU6FFZPW3N0G05Pd+3q3j7FE2EXku7QvuhTKUia3RsCtPH9X3k34GiCVYviMNBckoaySlp0Q5FKTWIxMW42BI3k/ObP4HyLZB5IHnbua+a5S/+kZNKHuFyKaeBWKY0fNppIjaYNTYH2FOyk8pdG2ne+zmmqpCY+j0kNZeSGdpPplST0mb/sBFqJJEaVzoNMens8xzB7rhRSMIoXMnZxKaMJj4tm5T0USSmZOB1e4l2vd7QekeUUkoNRppgKaVUBDgnnAXr/kTTqqfwnHUX67cXse21hzi+7Bkulwp2xx9N9TkPsnrdOk7fejcNe7cSnxOZUQwjyR8MU7SvgtKdG6jfvQkqthJfu5OM5l3kh/dwpDS17tuMm3JHJnWx2ZTETaAoKQ9X+ljiMseSmjOetJxxpLpjSY3i61FKKaUGmiZYSikVAefOPY6X1xzPOR//no3LXmFCcBvTJMiupGOpOfMP5B5zPojgrvPCVijfuCSqCVZdk5+iokLKCzfQtHcTzsptJNUXkhMs5gjKOLJN+9VyRyaVcWPZmTwLyZhAfO4kMsZOJWnUGHIHcGAfpZRSaijQBEsppSJgQlYi2y64j3feuoux7GH7mK8y5tQFjC2YdfB+U+dQ/kYS/i3vwpk39GtMxhj2V9WyZ8cGako2Etq/hZjq7aQ17SI/vJsp0ti6r48Y9seMoTHlGDZnHEX86ElkFkzFmzORjJh4Mvo1UqWUUmr46FOCJSKLgZbOBilAtTFmhogUAJuAzfa2T4wxN/blXEopNdidN2cKzOl68IpRyXG87Z7B7LKPIOgHV0yfz+vzBykp2k554UYa925GKraTUL+TLH8Ruewn66DaqHQqvWPZlfIlXKMmkJw/hcxxU/Gk5DNGa6OUUkqpPutTgmWMmd/yXER+C9S02bzdGDOjL+UrpdRwVD/xUpI3vE/pu38m54vf6dExtQ2N7C3eTnXpDprKdiKVO/DU7iS1qYjccClHSjNH2vv6iGG/O5e61CmsT7sIb87RpI6dQsaYyWR4krQ2SimllOpHEWkiKNYYqJcDZ0SiPKWUGs5OOfdKlm38KzM/XMi6kq04Ck4k7PQQDPhprtlPsK4M01BOTONeEnylpAf3kWkqmdCmJipoHOxzZlMVN4bPk0/COeooknMnkjVuKt40rY1SSimlokVMBGbxFpFTgN8ZY2bbywXABmALUAv81BjzQSfH3gDcADBmzJhZu3bt6nM8Sik12G0uLKLsyW9ygv8TXBI+ZHsAJ+WSTk1MNk1xowkn5eNOH0tC1hFk5I0nMesIJALNC5VSSil1eERkZUv+c9D67hIsEXkLyO5g00+MMS/Y+/wJ2GaM+a29HAskGGMqRGQW8DwwxRhT29W5Zs+ebVasWNGT16OUUkOeMYbde/dTXbQeF0FcbjcJaTmkZmYTG5cy5ObJUkoppUaSzhKsbpsIGmO+0E3BLuDLQOtQWcaYZqDZfr5SRLYDEwDNnpRSyiYi5OVkkZeTFe1QlFJKKRUhkWik/wXgc2NMScsKEckUEaf9/AjgKGBHBM6llFJKKaWUUoNWJAa5uAJY1G7dKcAvRSQAhIEbjTGVETiXUkoppZRSSg1afU6wjDELOlj3LND1ZDBKKaWUUkopNcxEZBTBSBGRMmCwDSOYAZRHOwg1YPT9Hjn0vR5Z9P0eOfS9Hjn0vR5ZBuP7PdYYk9l+5aBKsAYjEVnR0egganjS93vk0Pd6ZNH3e+TQ93rk0Pd6ZBlK77fORKmUUkoppZRSEaIJllJKKaWUUkpFiCZY3ftLtANQA0rf75FD3+uRRd/vkUPf65FD3+uRZci839oHSymllFJKKaUiRGuwlFJKKaWUUipCNMFSSimllFJKqQjRBKsLInKOiGwWkW0i8sNox6MiR0TyReRdEdkoIhtE5BZ7fZqIvCkiW+2fqdGOVUWGiDhFZLWIvGQvjxORT+3f78UiEhPtGFVkiEiKiDwjIp+LyCYROVF/t4cnEbnN/hu+XkQWiYhHf7eHDxH5u4jsF5H1bdZ1+Lsslvvt932tiBwbvchVb3XyXv/G/ju+VkT+IyIpbbb9yH6vN4vI2VEJuguaYHVCRJzAQ8C5wGTgShGZHN2oVAQFge8bYyYDJwDftt/fHwJvG2OOAt62l9XwcAuwqc3y/wfcZ4w5EqgCvh6VqFR/+APwmjHmaOAYrPddf7eHGRHJBb4LzDbGTAWcwBXo7/Zw8ihwTrt1nf0unwscZT9uAP40QDGqyHiUQ9/rN4GpxpjpwBbgRwD2/doVwBT7mD/a9+2DhiZYnZsDbDPG7DDG+IGngIuiHJOKEGNMqTFmlf28DusGLBfrPX7M3u0x4OKoBKgiSkTygC8Bf7OXBTgDeMbeRd/rYUJEkoFTgEcAjDF+Y0w1+rs9XLkAr4i4gDigFP3dHjaMMe8Dle1Wd/a7fBHwT2P5BEgRkZwBCVT1WUfvtTHmDWNM0F78BMizn18EPGWMaTbG7AS2Yd23DxqaYHUuFyhus1xir1PDjIgUADOBT4EsY0ypvWkvkBWtuFRE/R64Ewjby+lAdZs/3Pr7PXyMA8qAf9hNQv8mIvHo7/awY4zZDdwLFGElVjXASvR3e7jr7HdZ79uGt+uBV+3ng/691gRLjWgikgA8C9xqjKltu81YcxjoPAZDnIicD+w3xqyMdixqQLiAY4E/GWNmAg20aw6ov9vDg9335iKspHo0EM+hTYzUMKa/yyODiPwEq2vHk9GOpac0wercbiC/zXKevU4NEyLixkqunjTGPGev3tfSpMD+uT9a8amIORm4UEQKsZr6noHVRyfFblYE+vs9nJQAJcaYT+3lZ7ASLv3dHn6+AOw0xpQZYwLAc1i/7/q7Pbx19rus923DkIgsAM4HrjIHJu8d9O+1JlidWw4cZY9GFIPVme7FKMekIsTug/MIsMkY87s2m14ErrOfXwe8MNCxqcgyxvzIGJNnjCnA+j1+xxhzFfAucJm9m77Xw4QxZi9QLCIT7VVnAhvR3+3hqAg4QUTi7L/pLe+1/m4Pb539Lr8IXGuPJngCUNOmKaEagkTkHKzm/RcaYxrbbHoRuEJEYkVkHNbAJsuiEWNn5EAyqNoTkfOw+m44gb8bY+6ObkQqUkRkLvABsI4D/XJ+jNUP62lgDLALuNwY076DrRqiROQ04HZjzPkicgRWjVYasBq42hjTHMXwVISIyAysAU1igB3A17C+UNTf7WFGRH4BzMdqPrQa+AZWXwz93R4GRGQRcBqQAewDfg48Twe/y3aS/SBWM9FG4GvGmBVRCFsdhk7e6x8BsUCFvdsnxpgb7f1/gtUvK4jVzePV9mVGkyZYSimllFJKKRUh2kRQKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaUGCREpEBEjIq5oxzLcicgCEVka7TgGGxGZJyKbox2HUkoNZZpgKaWUGtJEZKGIBESkvs3jzmjHNRQZYz4wxkyMdLkiMkNEVopIo/1zRqTPoZRSg4UmWEopFSFa8xRVi40xCW0e90Q7oEgayp8tEYkBXgCeAFKBx4AX7PVKKTXsaIKllFJ9ICKFIvIDEVkLNIiIS0ROEJGPRKRaRD4TkdPa7L9ERP5PRJaJSK2IvCAiaZ2U/TUR2SQidSKyQ0S+2W77RSKyxi5nu4icY69PFpFHRKRURHaLyK9ExNnN6xgvIu+ISIWIlIvIkyKS0mZbpYgcay+PFpGyltclIheKyAb79S4RkUntrs/tIrJWRGpEZLGIeHp/pXtPRH5oX5c6EdkoIpd0sp+IyH0ist++lutEZKq9LVZE7hWRIhHZJyIPi4i3h+d/1N7/TTuG90RkbJvtfxCRYvucK0VkXpttC0XkGRF5QkRqgQUiMkdEPravc6mIPNg2SbGbl35LRLba5/tf+737yD7H090lNSJymoiU9OT19cJpgAv4vTGm2RhzPyDAGRE+j1JKDQqaYCmlVN9dCXwJSAGygJeBXwFpwO3AsyKS2Wb/a4HrgRwgCNzfSbn7gfOBJOBrwH1tkpw5wD+BO+zzngIU2sc9apd7JDATOAv4RjevQYD/A0YDk4B8YCGAMWY78APgCRGJA/4BPGaMWSIiE4BFwK1AJvAK8N92N/KXA+cA44DpwIIOAxCZaycPnT3mdvMa2tsOzAOSgV/Y8ed0sN9ZWNdvgr3v5UCFve3X9voZWNczF7irFzFcBfwvkAGsAZ5ss225XW4a8C/g3+2Sz4uAZ7De3yeBEHCbXdaJwJnAt9qd72xgFnACcCfwF+BqrPdzKtZn9bDZiXJn788fOzlsCrDWGGParFtrr1dKqWFHEyyllOq7+40xxcaYJqyb2VeMMa8YY8LGmDeBFcB5bfZ/3Biz3hjTAPwMuLyjGiZjzMvGmO3G8h7wBlbCAPB14O/GmDft8+w2xnwuIln2uW41xjQYY/YD9wFXdPUCjDHb7LKajTFlwO+AU9ts/yuwDfgUKzH8ib1pPvCyfWwAuBfwAie1uz57jDGVwH+xkoqOYlhqjEnp4tHVoBSXt7vZH22M+bd93rAxZjGwFZjTwbEBIBE4GhBjzCZjTKmICHADcJsxptIYUwf8v+6uZTsvG2PeN8Y0Y12zE0Uk3369TxhjKowxQWPMb4FYoG3/p4+NMc/b8TcZY1YaYz6x9y8E/kyb98h2jzGm1hizAVgPvGGM2WGMqQFexUq4D5sxZnoX70/7ZK9FAlDTbl0N1jVXSqlhZ8i26VZKqUGkuM3zscBXROSCNuvcwLud7L/L3p7RvlARORf4OVYNigOIA9bZm/OxaovaG2uXV2rlB2AfW9zBvm3PlQX8ASuBS7SPqWq321+BF4Eb7IQBrBqvXS07GGPCIlKMVdPTYm+b5432MZH2tDHm6rYrRORa4HtAgb0qgQ6uszHmHRF5EHgIGCsiz2HVPHqwrvnKNtdSgC6bW7bTet2NMfUiUon1+otF5HasRHk0YLBqKjM6OtZ+PROwEt/ZdlwuYGW78+1r87ypg+XsXsQeKfVYr62tJKAuCrEopVS/0xospZTqu7ZNn4qxaqjafrMfb4z5dZt98ts8H4NVg1LetkARiQWexaoRyjLGpGAlVC13+sXA+A5iKQaagYw2508yxnTXHOv/2a9jmjEmCasm7kBWIZIA/B54BFgoB/qN7cFK6lr2E/v17e7mfIcQa4jw+i4e87ovpbWssVgJ4c1Aun391rd9TW0ZY+43xswCJmMltHdgvSdNwJQ21zLZGJPQi5fV+l7b1zAN2GO/ljuxmiOm2vHVtIuv7ecK4E/A58BR9nv0485eT38Rq69dZ+/Pw50ctgGYLm2yVKymohv6P2KllBp4mmAppVRkPQFcICJni4hTRDz2wAF5bfa5WkQm2/2Zfgk8Y4wJtSsnBqvJWBkQtGuzzmqz/RHgayJypog4RCRXRI42xpRiNSX8rYgk2dvGi0j7pmTtJWLVNNSISC5WgtHWH4AVxphvYPUxa7mZfhr4kh2HG/g+VoL3UXcXqj17iPCELh4f9KK4eKwEpQysAUOw+iAdQkSOE5Hj7fgbAB8QNsaEsZK0+0RklL1vroic3eZYI20GMenAeXbfshisvlifGGOKsa530I7PJSJ3cWgtT3uJQC1QLyJHAzd1s3/EGWOmdPH+3NjJYUuw+o99V6xBQ262178zIEErpdQA0wRLKaUiyL55vgirdqEMq0bpDg7+e/s41kAUe7GaoX23g3Lq7PVPYzXV+ypW87yW7cuwB77Aqvl4jwM1SddiJWgb7WOfweo31ZVfAMfaZb0MPNeyQUQuwhqkouWG/nvAsSJylTFmM1Zt1wNYNT4XABcYY/zdnK9fGWM2Ar8FPsZqJjcN+LCT3ZOwEqkqrOaOFcBv7G0/wOp79olYo/m9hd1Pyu5LVceBZpsd+RdWM89KrMEnWpoxvg68Bmyxz+mjm2acWM0Wv2qf86/A4m72HxTsz8LFWJ/LaqwBXi6O9mdEKaX6ixw8qI9SSqn+JCJLgCeMMX+Ldiyqb0Tkaqzmgz/qZPujQIkx5qcDGphSSqmo0kEulFJKqcNgjHki2jEopZQafLSJoFJKjRBiTXrbm8EJ1DAkIj/u5HPwarRjU0qp4UCbCCqllFJKKaVUhGgNllJKKaWUUkpFyKDqg5WRkWEKCgqiHYZSSimllFJKdWnlypXlxpjM9usHVYJVUFDAihUroh2GUkoppZRSSnVJRHZ1tF6bCCqllFJKKaVUhGiCpZRSSimllFIRogmWUkp1oc4X4JV1pYTDOuKqUkoppbo3qPpgdSQQCFBSUoLP54t2KGqI8Xg85OXl4Xa7ox2KGsJ+/ernfGX1tez47DSOvPq+aIejlFJKqUFu0CdYJSUlJCYmUlBQgIhEOxw1RBhjqKiooKSkhHHjxkU7HDWEVZXvZYZjB2zbAeHfgkMr/pVSSinVuUF/p+Dz+UhPT9fkSvWKiJCenq41n6rPUqvXH1jYszp6gSillFJqSBj0CRagyZU6LPq5UZEwpnlr6/PGXSujGIlSSimlhoIhkWAppVS0eIK1+IihxsRRW7gq2uEopZRSapDTBKsHRITvf//7rcv33nsvCxcujF5AbXzyySccf/zxzJgxg0mTJrXGtWTJEj766KM+lX3OOeeQkpLC+eefH4FIlRqanCEfIaeXjeECHPvWd3+AUkoppUY0TbB6IDY2lueee47y8vKIlmuMIRwO96mM6667jr/85S+sWbOG9evXc/nllwORSbDuuOMOHn/88T6VodRQ1hwMEWP8hF0eipz5JNbvBKPDtSullFKqc4N+FMG2fvHfDWzcUxvRMiePTuLnF0zpch+Xy8UNN9zAfffdx913333QtrKyMm688UaKiooA+P3vf8/JJ5/MwoULSUhI4Pbbbwdg6tSpvPTSSwCcffbZHH/88axcuZJXXnmFBx98kFdffRUR4ac//Snz589nyZIlLFy4kIyMDNavX8+sWbN44oknDulXtH//fnJycgBwOp1MnjyZwsJCHn74YZxOJ0888QQPPPAARx99dKdxbt++nW3btlFeXs6dd97J//zP/wBw5plnsmTJki6vzb///W9+8Ytf4HQ6SU5O5v3338fn83HTTTexYsUKXC4Xv/vd7zj99NN59NFHef7552loaGDr1q3cfvvt+P1+Hn/8cWJjY3nllVdIS0vjr3/9K3/5y1/w+/0ceeSRPP7448TFxR103hNOOIFHHnmEKVOs9+60007j3nvvZfbs2V3Gq1RvNDSH8IifsDOWhoQxeOtfh8ZKiE+PdmhKKaWUGqS0BquHvv3tb/Pkk09SU1Nz0PpbbrmF2267jeXLl/Pss8/yjW98o9uytm7dyre+9S02bNjAihUrWLNmDZ999hlvvfUWd9xxB6WlpQCsXr2a3//+92zcuJEdO3bw4YcfHlLWbbfdxsSJE7nkkkv485//jM/no6CggBtvvJHbbruNNWvWMG/evC7jXLt2Le+88w4ff/wxv/zlL9mzZ0+Pr8svf/lLXn/9dT777DNefPFFAB566CFEhHXr1rFo0SKuu+661tH81q9fz3PPPcfy5cv5yU9+QlxcHKtXr+bEE0/kn//8JwBf/vKXWb58OZ999hmTJk3ikUceOeS88+fP5+mnnwagtLSU0tJSTa5UxDUFQnjwY5wewqlHWCsrd0Q3KKWUUkoNakOqBqu7mqb+lJSUxLXXXsv999+P1+ttXf/WW2+xcePG1uXa2lrq6+u7LGvs2LGccMIJACxdupQrr7wSp9NJVlYWp556KsuXLycpKYk5c+aQl5cHwIwZMygsLGTu3LkHlXXXXXdx1VVX8cYbb/Cvf/2LRYsWdVjr1FWcF110EV6vF6/Xy+mnn86yZcu4+OKLe3RdTj75ZBYsWMDll1/Ol7/85dbX9J3vfAeAo48+mrFjx7JlyxYATj/9dBITE0lMTCQ5OZkLLrgAgGnTprF27VrASsJ++tOfUl1dTX19PWefffYh57388ss566yz+MUvfsHTTz/NZZdd1qN4leqNQDCMB6uJoGfUUVAM/v1bick/LtqhKaWUUmqQGlIJVrTdeuutHHvssXzta19rXRcOh/nkk0/weDwH7etyuQ7qX9V2Pqb4+PgenS82Nrb1udPpJBgMdrjf+PHjuemmm/if//kfMjMzqaioOGSfzuKEQ4cz783w5g8//DCffvopL7/8MrNmzWLlyq6HsW77mhwOR+uyw+FofX0LFizg+eef55hjjuHRRx/tMGHMzc0lPT2dtWvXsnjxYh5++OEex6xUTwVCYWIlQNiZRFreUYRWCDW7N5M5K9qRKaWUUmqw0iaCvZCWlsbll19+UJO1s846iwceeKB1ec2aNQAUFBSwapU1pPOqVavYuXNnh2XOmzePxYsXEwqFKCsr4/3332fOnDk9junll1/G2J3ut27ditPpJCUlhcTEROrq6rqNE+CFF17A5/NRUVHBkiVLOO64nn87v337do4//nh++ctfkpmZSXFxMfPmzePJJ58EYMuWLRQVFTFx4sQel1lXV0dOTg6BQKC1nI7Mnz+fe+65h5qaGqZPn97j8pXqKX/IqsEyLg9jRqWyx2QQKNsW7bCUUkopNYj1OcESkXwReVdENorIBhG5xV6/UER2i8ga+3Fe38ONvu9///sHjSZ4//33s2LFCqZPn87kyZNba1IuvfRSKisrmTJlCg8++CATJkzosLxLLrmE6dOnc8wxx3DGGWdwzz33kJ2d3eN4Hn/8cSZOnMiMGTO45pprePLJJ3E6nVxwwQX85z//YcaMGXzwwQedxgkwffp0Tj/9dE444QR+9rOfMXr0aMBK/r7yla/w9ttvk5eXx+uvvw5YzRJb+lvdcccdTJs2jalTp3LSSSdxzDHH8K1vfYtwOMy0adOYP38+jz766EE1V9353//9X44//nhOPvlkjj766Nb1L774InfddVfr8mWXXcZTTz3VOnKiUpEWCBm8NGNcXsZlxFNosnBWd/xlieoba1RVHaFRKaXU0Cemj0MOi0gOkGOMWSUiicBK4GLgcqDeGHNvT8uaPXu2WbFixUHrNm3axKRJk/oUo+pc+9EOhxv9/Ki+WF5YSdbf5+A54mRGLXiMp39xOec7PiLuZyXRDm3Yue7vy0iq387915yEpI6NdjjDTmF5A2PS4nA4et4EXPVMczBEMGSIj9VeF0qNNCKy0hhzyChrfa7BMsaUGmNW2c/rgE1Abl/LVUqpaAsEw3gkAG6r72JdXD5xoTprqHYVMU3+EO9v2ccDlTfCA8dGO5xh5+PtFZx27xIee2sZlK6NdjjDztcfXcEXfvcegWAImuu6P0ApNexF9OsWESkAZgKfAicDN4vItcAK4PvGmKoOjrkBuAFgzJgxkQxH9cDChQujHYJSg1ZLHyyfnWAFk/KhAajeBXFp0Q1uGNlV2cAM2Q6AhIPQXA+xCVGOavhYuq0MJyG+9tFZ8BFwVyU4nNEOa1ho9AdZuq0cB2ECD52E27cfbt8CTne0Q1NKRVHEBrkQkQTgWeBWY0wt8CdgPDADKAV+29Fxxpi/GGNmG2NmZ2ZmRiocpZTqs0DIEIsfcVtTMzjTxgFgqnZFM6xhp7LBz7GOLQdWFH0SvWCGocKKRqZLm/nb9m/sfGfVK3trrBGCx8se4qo+h6ZK2Lc+ylEppaItIgmWiLixkqsnjTHPARhj9hljQsaYMPBXoOdD4yml1CAQCAaIlWBrgpWQZSVY9ft0suFIqm4MkCwNB1aUfR69YIah6kY/6VJ7YIUmsBGzr7YZgAypObCyZEUneyulRopIjCIowCPAJmPM79qsz2mz2yWAfqWjlBpSwv4mgNYEK2tUNjUmjqb9mmBFUlWjnyQaqZcEqkmEiq3RDmlYqWoIkBvbdGDFvg3RC2aYKau3Eqyxba/vnjXRCUYpNWhEog/WycA1wDoRWWOv+zFwpYjMAAxQCHwzAudSSqkBE2puBMARYyVYealeSkwm6dpEMKKqGwPkSCPBmCS2NSVwbNlWnaQxgqob/UxNCUAVVMWNI7WqMNohDRtN/iAAU1L9UAmkjQe9vkqNeJEYRXCpMUaMMdONMTPsxyvGmGuMMdPs9RcaY0ojEXC0PP/884gIn3/eedOVwsJCpk6dGrFzbt68mdNOO40ZM2YwadIkbrjhBsCaJPiVV17pU9nXX389o0aNimi8Sg03JmD1r3DaCVZuqpdiM4qYuuJohjXs1DQFSHU0gieZHeEcwuVagxVJ1U1WDZYfF0XuI6BK53KLlCZ/CIAjvNbfCn/WDE2wlFL6JWFPLVq0iLlz57Jo0aIOtweDwT6fIxQKHbT83e9+l9tuu401a9awadMmvvOd7wCRSbAWLFjAa6+91qcylBruwnaC5YiJAyAuxkW5K5uEpj3QxzkE1QGN/iAp0ogzLpUiMwpX436wr73qm+ZgiEZ/iGRTR50jmcLwKKguhlAg2qENC02BMAC5MfVUmQQqPPlQuxuCzVGOTCkVTUNrVrxXfwh710W2zOxpcO6vu9ylvr6epUuX8u6773LBBRfwi1/8AoAlS5bws5/9jNTUVD7//HPeeOMNgsEgV111FatWrWLKlCn885//JC4ujrfffpvbb7+dYDDIcccdx5/+9CdiY2MpKChg/vz5vPnmm9x5551cccUVrectLS0lLy+vdXnatGn4/X7uuusumpqaWLp0KT/60Y84//zz+c53vsP69esJBAIsXLiQiy66iEcffZT//Oc/1NTUsHv3bq6++mp+/vOfA3DKKadQWFjY5et+7733uOWWWwAQEd5//30SEhK48847efXVVxERfvrTnzJ//nyWLFnCz3/+c1JSUli3bh2XX34506ZN4w9/+ANNTU08//zzjB8/nv/+97/86le/wu/3k56ezpNPPklWVtZB573iiiu45ppr+NKXvgRYyeD555/PZZdd1rP3VKkICQf9ADhdB4ZcbozPJaa+GRrKIGFUtEIbVpr8YZKkkZiE8ew2GdbKmhLIODK6gQ0DDc3WF3eJ4Rp8rmQ2+zPAhKzra4+KqQ5fSxPBNKmjzCRS48ghBwPVRZBxVJSjU0pFi9Zg9cALL7zAOeecw4QJE0hPT2flypWt21atWsUf/vAHtmyxhhjevHkz3/rWt9i0aRNJSUn88Y9/xOfzsWDBAhYvXsy6desIBoP86U9/ai0jPT2dVatWHZRcAdx2222cccYZnHvuudx3331UV1cTExPDL3/5S+bPn8+aNWuYP38+d999N2eccQbLli3j3Xff5Y477qChwRqRa9myZTz77LOsXbuWf//736xY0fPRje69914eeugh1qxZwwcffIDX6+W5555jzZo1fPbZZ7z11lvccccdlJZarT8/++wzHn74YTZt2sTjjz/Oli1bWLZsGd/4xjd44IEHAJg7dy6ffPIJq1ev5oorruCee+455Lzz58/n6aefBsDv9/P222+3JltKDaSw/S200x3bui6UZM/Xp/2wIsYXCJFIIzHxqexz2ElrtV7fSPAFrATLG6wlEJvK2sYUa4M2E4yIpkAIr9tJXLCGShLZZezPrzYTVGpEG1o1WN3UNPWXRYsWtdbkXHHFFSxatIhZs2YBMGfOHMaNO/AtYH5+PieffDIAV199Nffffz9f/OIXGTduHBMmTADguuuu46GHHuLWW28FrISiI1/72tc4++yzee2113jhhRf485//zGeffXbIfm+88QYvvvgi9957LwA+n4+ioiIAvvjFL5Keng7Al7/8ZZYuXcrs2bN79LpPPvlkvve973HVVVfx5S9/mby8PJYuXcqVV16J0+kkKyuLU089leXLl5OUlMRxxx1HTo41eOT48eM566yzAKvm7d133wWgpKSE+fPnU1pait/vP+jatTj33HO55ZZbaG5u5rXXXuOUU07B6/X2KGalIikctJpRtU2wXOljYQ+Eq3bhyD8uWqENK43+IAmmAfGmEE62J3Ou0X5ukdBkJ1ixwRoavQVsLxsFTqBypzVTpeqTpkCIuBgnrmADzY54NjfbE5BXagKr1EimNVjdqKys5J133uEb3/gGBQUF/OY3v+Hpp5/G2P0v4uPjD9rfGrW+8+WOtC+jrdGjR3P99dfzwgsv4HK5WL/+0NHujTE8++yzrFmzhjVr1lBUVMSkSZMOO54WP/zhD/nb3/5GU1MTJ598cpcDfADExh64CXU4HK3LDoejtY/ad77zHW6++WbWrVvHn//8Z3y+Q/tZeDweTjvtNF5//XUWL17caQKqVH8zLTVYrpjWdQlZ1l1pw77tUYlpOGr2+4mjCTzJxKbmEsJhNbFSfdYyCIMr5CMmLom9pBJ2xmgNS4Q0+cN43E4INIHby+Y6L7i8en2VGuE0werGM888wzXXXMOuXbsoLCykuLiYcePG8cEHH3S4f1FRER9//DEA//rXv5g7dy4TJ06ksLCQbdu2AfD4449z6qmndnvu1157jUDA+gZ97969VFRUkJubS2JiInV1da37nX322TzwwAOtSd/q1atbt7355ptUVla29oNqqV3rie3btzNt2jR+8IMfcNxxx/H5558zb948Fi9eTCgUoqysjPfff585c3o+h3RNTQ25ubkAPPbYY53uN3/+fP7xj3/wwQcfcM455/S4fKUiydh9sHAeSLCyM9OpMIn4yvQb6ojx11s/YxIYnZbIXjKsgRhUnzUHWxKsJuLiEzA4aPDmaRPBCPEFQnhjnOBvxBkbz+4aH6QWaIKl1AinCVY3Fi1axCWXXHLQuksvvbTT0QQnTpzIQw89xKRJk6iqquKmm27C4/Hwj3/8g6985StMmzYNh8PBjTfe2O2533jjDaZOncoxxxzD2WefzW9+8xuys7M5/fTT2bhxIzNmzGDx4sX87Gc/IxAIMH36dKZMmcLPfvaz1jLmzJnDpZdeyvTp07n00ktbmwdeeeWVnHjiiWzevJm8vDweeeQRAB5++GEefvhhAH7/+98zdepUpk+fjtvt5txzz+WSSy5h+vTpHHPMMZxxxhncc889ZGdn9/h6Lly4kK985SvMmjWLjIyM1vUrVqzgG9/4RuvyWWedxXvvvccXvvAFYmJiOipKqX5nQocmWPmpcRSbTIz2wYoce0JnYuLIS/VSHE4nVKU1WJHQ5LdGuXOGfMQlJAFQEZOjfQgjpNEfxOt2QqARtyeBkqomTOpYTWCVGuHEDKKhhmfPnm3aD8KwadOm1uZuqnceffRRVqxYwYMPPhjtUKJGPz+qL5547I9cvfNHcMN7MHoGYH1j/dYvz2Nuwh5SfhDhUU1HqK/++kn+5fsWfPmvPB86mdBz3+TCpG247+i6WbLq3psb9/E//1zOTs/VyCl3MPujOTyY/AQnNL4HPyiMdnhD3hV/+ZhwGJ6uuJR1OV/mgi3n8vlJ7+BZvxh+VAy9aJavlBp6RGSlMeaQwQ20BksppTpjD3LRtgbL43ZS4comwVcK4XCUAhteTMCuwXJ7yUv1UmIycTXu07maIsAXCBFLAMGA20tuahyFwXRoqoLmuu4LUF1qCoTxuh0QaMQblwBAlTsH/HXgq45ucEqpqNEEaxhbsGDBiK69UqrPOmgiCNCUkIvLBKB+bxSCGn4cwQMJVm6qlxKTgZiwNWGr6pOmQAgP9ufYbTXB3OJLsZa1n1uf+fwhklwhwJCQmAjAXrGbv+tALUqNWEMiwRpMzRjV0KGfG9VnrQmW+6DV4WSdCytSjDFtEqw4RiV6KCXTWtYb1D7zBUJ4sUbDbKkhXNeQYi3rUPh91hgIkuSyalqTkpIB2BWypkbRBFapkWvQJ1gej4eKigq9WVa9YoyhoqICj8cT7VDUUNZJDZY73Zq/LawJVp8FQoYYY0/X4PbidAjBxDxrWW9Q+8wXCBEndoIVE09eipfCoD1XkyawfdbkD5PotBIsb1wiCbEutrTMhaUJrFIj1qCfaDgvL4+SkhLKysqiHYoaYjweD3l5edEOQw1hEj60DxZAYtYRANTv207SQAc1zFhN2Ozr7I4DwJWaT7hUcGgC0GdN/jDe1iaCXvJS4ygnmbAjRq9vBPgCIRKdVl9McceRm+JlS22M9VnW66vUiDXoEyy32824ceOiHYZSagSSlkEW2jURHJ2Rwj6TgkPnwuozXyCEVw40YQPISUuivDSVUVoD0GdNgVBrDQtuL7kJXgwOGr05JOj17RNjjHV9HW2ub6rXmgsrOV8TLKVGsEHfRFAppaJFwh03EcxPi6PYjNK5sCLA124QBoC81DiKwhnaBDMCfIFQax8h7BoWgKqYbE0A+igQMoTChgSn/fm153HbXdUIKWO0iaBSI1i/J1gico6IbBaRbSLyw/4+n1JKRUy4kxqsFA8lJoPY+pIoBDW8+ALhA4MwuKw+k3n2SII62XDf+QIhktrUYMXHukiLj2GvZGoftz5q8ocAiJMDXxDkpnip9QXxJ+ZqAqvUCNavCZaIOIGHgHOBycCVIjK5P8+plFKR4ggHCOEAh/Og9bEuJ5XuHBKa90EoGKXohgdrlLsDfYTASrB2mwycdXsgHIpidENfUyBEsqvl+sYDkJviZVcoAxr2Q8AXxeiGtqZA+wTL6uMGUB2To3ONKTWC9XcN1hxgmzFmhzHGDzwFXNTP51RKqYiQUJCQuDvc1hyfh5OQztXURy19sMKOmNZENteebNhhglBXGuUIhzZfIERCmz5CYCWwW5tTrHU1Wgt7uFoSrAN9COPITbWu8V5pmWpAawmVGon6O8HKBdr+dSmx17USkRtEZIWIrNCRApVSg4nDBAhKx2MBhVPsubC0GVCf+IJhPPgJu7yt67KTPOxhlLWg17dPmgLhQxKs3BQvGxqsOZuo1n5uh6uliaDXHDyRM0Bxy1xY2g9LqREp6oNcGGP+YoyZbYyZnZmZGe1wlFKqlSMc6LQGKybDGt00VFk4gBENPy0T4Rr3gQTL5XTgT7C/i9MagD7xBULEO9oPIuJlR0ATgL5qCljNgz1tJnJOj4/B43awtVnnGlNqJOvvBGs3kN9mOc9ep5RSg54zHCDs6DjBSs4uIGSE+n07Bjiq4cVqIujHtKnBAnCl2f869Aa1Tw4kWAKuWAByU+PYRypGnJrA9kGT35r/KpYDTQRFxJoLq8FrjT6qn1+lRqT+TrCWA0eJyDgRiQGuAF7s53MqpVREOEznNVi56cmUko6/XOfC6ovmllEE7dqVFllpqZSTok3Y+qjJH7IGYXDHgQhg1WCFcNLkzdIEoA9a+mDFhptpn8AWVzdDcp7WECo1QvVrgmWMCQI3A68Dm4CnjTEb+vOcSikVKU4TIOzouA9Wfmocu02G3qD2kS9ozYMlMQfXYOWmeK25sLSGpU+aAiHiaIaYAwlsy0AM1TE5mgD0QUuCFWOaICb+oAR2d3WTNReWfn6VGpH6vQ+WMeYVY8wEY8x4Y8zd/X0+pZSKFJcJWqPbdSA72UOxGYWnXm+g+qJlFEGJObgGq2Wo9lCl1mD1RUsTTNr0cUvyuEnyuNinc2H1ic8e5MIdbj7o+uameKls8BNMzNMvYJQaoaI+yIVSSg1GxhicJki4s0EuXA5qYrKJ95dBsHmAoxs+mvxhvPhxuNsnWHGUmEycdbshHI5SdEOfLxC2BmHo4PoWhzOgbg+EAlGKbmhr9FuDXLhCvoMSrJaRBGtisu25xpqiEp9SKno0wVJKqQ4EQgY3QYyz4wQLwJeQjwOjcwn1gS9o1bA4OqjBKjGZOMJ+qN8XpeiGNmMMTYEQHnNwDRZYzQS3+lPBhHUut8PUFLASf1eo6aAEtiXB2ufIslbo3welRhxNsJRSqgP+UJhYCWA6GUUQwJk21nqiAzEcNmuYdv8hNSw5yR5KaZmsVZtZHY5AyBAKG2KMr4MarLZzYWkzwcPR0gfLEWyfYFnPi409FL5+fpUacTTBUkqpDgSCYWLxE3Z6Ot3HO+oIAJrLCwcoquHHFwgf0kcIrLmwfPEtc2HpDerhODAIQ0cJVhzbA/ZcTTrQxWHxBUJ43U6kXYKVmRBLjNPBNr9eX6VGKk2wlFKqA/5QGA8Bwq7OE6yM0eMIGCd1pdsGMLLhpTkQsvsIHXqdHWljrCc1mmAdDl9LghX2HdpEMMVLqUnHIJrAHqZGfxBvjBMCjQddX4dDGJ3iYXNDAohTr69SI5AmWEop1QF/MIwHP8YZ2+k+YzMS2WPS8VcUDlxgw4wvEOxwHiyAUWmpVJEEVdoE83C0JFjWKHeHNhH046bZoyMJHq4mfxiv22kNYtEugc1LjWNXtR+ScvX6KjUCaYKllFIdCNh9sOiiBmtsehzFJhOH1rActpDfZz1pd4MK1k1qYXgU4arCgQ1qmGhpIth+lDtoM9JdbLbWEB6mRn+QuBgn+ButebDayE+Lo6iiwZoLS5sIKjXiaIKllFIdsJoI+jFdJFiJHjflrmziGnUUtsNl/I3Wkw5qsPJSvRSaLMIVOwY4quGhyZ6nydlulDuAZK+bhFgX+x1ZWkN4mBr8IeJiXYc0EQTry5eqxgD+xFxtIqjUCKQJllJKdSAQNHg4dPCF9hrickkKVoK/YYAiG15MoCXBOvQ6F6THU2SyrLmwgv4Bjmzos2qwDM6QD9oNgy8iVgIbHmUNI65zYfVaY3OQ+JiWJoIHX9+xadZyVcxoqN0DAV80QlRKRYkmWEop1QG/PT+TdJNghVLGWU+0GdvhaZmEtYMarIL0OArDWYgJay3AYfAFQsQQREyowwR2bHocG5szwIT0+h6GBn+IOPehg1wAjEm3Ps97HKMBo1M5KDXCaIKllFIdCLT0DXJ1PsgFgCvzKAD8+3UkwcMhrQnWoQlAZmIse5051kKlNhPsLV8gbA0gAh0msGPT41ldbw8lXrlzACMbHhr9QVJj/ICB2MSDto1Nt/pk7QjZc7np51epEUUTLKWU6kCg2Wry54zpugYrabSVYNXs3tzvMQ1HYX/nTQRFBJNaYC1UaQLQW03+EIliJ7DtEgCwarC2BzUBOFwNzSFSnXbT1XbXNyHWRUZCDBt89mTDmsAqNaJogqWUUh0I+qwbf2fsod/8t5WbnUW5SaJ5/9aBCGv4CXQ+yAVAUvpoGvFqAnAYGv1BEmhJsJIO2T42LZ4ykgm54jSBPQxN/iCpjs6v75i0ODZWuyA2WT+/So0wmmAppVQH/M3Wjb8rpusEqyA9nl0mC4feoPZaOGxwBu3BQdoNc92iIDOBXWYURmsAeq3WFyQBO4HtpAYLhFpvniYAvRQOGxoDIZKddhPMDq9vPEWVTZBWoAmsUiNMnxIsEfmNiHwuImtF5D8ikmKvLxCRJhFZYz8ejki0Sik1QII+65tpt6frBCslzs0eRw5x9TpIQG81+IMkSUsCcGgNAFhJQGF4FKHy7QMY2fBQ3xwktTUBOPT6jk7x4nYK+12jNcHqJV8whDGQ1EUTzDFpcZTW+giljtPrq9QI09carDeBqcaY6cAW4Edttm03xsywHzf28TxKKTWggnbfIHc3TQRFhNq4MaQE9h0YEU/1SENziMSWJmyeThKstHh2mWxrMudwaACjG/rqfAEy3J3XsDgdQn5qHLvItkbB1OvbYw3N1rVKcNiD4cQkHLLP2PQ4jIEaT741SmMoOJAhKqWiqE8JljHmDWNMy1+MT4C8voeklFLRF2puqcHqepALAH9SgfVEJ2ztlfrmIEliNxHsogZrlxmFI+y35hNSPVbvC5LeRYIF1vX9vDkDQnp9e6PRb936JJjummDCPlcOhINQUzxg8SmloiuSfbCuB15tszxORFaLyHsiMi+C51FKqX4X6mENFoA780gAAmU6VHtvNDQHSaSJoCseHM4O9xmd4qVEsq0FbWbVK3W+IKlOu4alsxrC9HjW1KdaC9pPqMdaarDiuhhEZEya1a9wZzjLWqGfX6VGjG4TLBF5S0TWd/C4qM0+PwGCwJP2qlJgjDFmJvA94F8i0uFfdxG5QURWiMiKsrKyvr8ipZSKgLDfunHqbqJhgIQca6j22j06VHtvWAlWI6GYjm/+wWrGFmytIdQEoDdaEyxxdDpK49j0ODb7M6wFTQB6rMGuwYprrcE6tIlgRkIM8TFONvn0+io10ri628EY84WutovIAuB84ExjjLGPaQZrdkNjzEoR2Q5MAFZ0UP5fgL8AzJ492/QyfqWU6hfhQMtEw90nWLmjR1NlEvDt06Hae6OuOUiiNGI6ab7WwpuRT6DIhVtvUHulrjlIssNnNV8T6XCfselxlJJO2BGDQ69vj9U0BgCIM03gjO1wQnIRYUx6POtrY6y/I1WFAxylUipa+jqK4DnAncCFxrR8jQMikikiTvv5EcBRgP7lVkoNGRKw+wb1oAZrbHochSYb0RvUXmloDpJEY6f9r1qMyUiiWIdq77U6X8CaaLiL6zs2PZ4wDurj8nQy3F6obrISLK9p7LD2qsXYtDh2VTVBmo4kqNRI0tc+WA8CicCb7YZjPwVYKyJrgGeAG40xlX08l1JKDRinv9Z64k3pdt/MhFhKJJu4eh3kojcqG/wkSiPOuJQu99Oh2g9PfbM9D1YXNYR5qV5EoNw9WhOsXqhu9AMQ668Gb1qn+41Nj6OksgmTOk6vr1IjSLdNBLtijDmyk/XPAs/2pWyllIomp7+WMIIjpuvma2A1Barx5pPk+xCCzR02F1KHqmzwkyRNuLpJsArS4yk0WUjVUjCm0+Zu6oBw2FDnC5IUXw3xGZ3uF+tyMjrZSzFZHFG5Wq9vD9U2BRABt6+iy+s7Jj0OfyhMfXw+idvfhnAYHJEcX0wpNRjpb7lSSnXAHailyRHf45uhQHIBDowO1d4LlQ1+UqQe8SR3ud+Y9Dh2mSycwQZo0MGQeqKmKUAobEgMVkF8Zpf7jk2PY0sgEwJ6fXuquilAsteNNJZ3mWCNtUcSLHPnQtAHdaUDFaJSKoo0wVJKqQ7EBurwOTvvW9GeM308AKEKbcbWUzX1DaRQDwlZXe6Xl+qlhFHWgg4U0CPl9db8V3GBniRY8XzWYDdz035CPVLdaCVYNJR3eX3HpFmjNxZhf8Z1JEylRgRNsJRSqgOxoXqaXV0PvtBWwuiJANTu1qHaeypUt996kjCqy/1iXU4a48dYC9qPpUfK6/3E4scdrO9RDdYGX7q1oNe3R8rrmxkV74LGCojrvAZrdIoHp0PY4rffA01glRoRNMFSSql2jDHEhesJuLvvf9UiJ3s0NSaOpr06VHtPORvsBCsxu9t9YzLHWU+0BqtHyuubScceqKWbBGtMWhwlJhMjDq1h6aH9dc0UeJsB0+X1dTkd5KZ4WV+fCA6XJrBKjRCaYCmlVDtNgRBJNHQ5AW57BZnxFJps/Ya6F9xNdn+fbmqwAHLSU9hHmiYAPVRe30y69CzByk+NI4ALnzdHE4AeKqtrZozXnp2miz5YYNUQ7qpqhpQx+vlVaoTQBEsppdqpbQqSJI2Y2K4HX2grK9FDMdl4daj2HgmEwsQFKqyFbvpgAeSl2kO1V+gNak+U1zeT5aixFnpQgwVQGZurXxD0gC8QoqYpwBiXfX27+fzmp8VRVNkIOlS7UiOGJlhKKdVORUMzSTTg6Gb48LYcDqHGm0dycykE/f0X3DCxu6qJUVRbC/Hd12DlpXopCutkwz1VWuNjkteefjJlTJf7Jse5SfS42OPI1hqWHthfaw0gkit2E9fUgi73H5sWR1VjAH/yWL2+So0QmmAppVQ75VVVxEszMUldf/PfXnPSOByEobqonyIbPgorGsiX/fi9o8AV0+3++WnWUO2uxn3gbxyACIe2oopGJsVUgDu+R00wx6TFsTOUaQ3a4KsdgAiHrqJK6/M3OrwXnDGQmNPl/i01hBXuXPDVQGNlv8eolIouTbCUUqqdhv3FAHjSu/7mvz1H+hEAhHWo9m7tqmikwLEX0jucr/4Q+alxFBm7KVa1NsPszq7KRgqc+63alR5MHDwmLY6NLSMJai1Ll1oSrFT/Hqt2sJu58sakWwnWboc9mIteX6WGPU2wlFKqHX+VlWAljhrbq+PicyYAUFe6JeIxDTeFFQ0cIXtxZ/YswcpIiGGvs2UuocL+C2wYaPQHKatrJiu0F9LG9eiY/LQ4VtenWgvaDLNLuyoaiHE68NQXQ0r3fyNaarC2B1uGatfrq9RwpwmWUkq1E67eDUBMal6vjsvMyqXOePHt06Hau1NWtp90qUUyepZgiQjBZDtZ0BvULu0oayCGACm+YrAnwO5OflrcgQRAa1i6tLG0lomjvEjZZsg8utv9Ez1u0uJj2NhkJ7B6fZUa9jTBUkqpdqRuj/UkaXSvjstNtfoJ6Uhs3XPuX2896cENaovktFE04tUarG6s313DBCnGGQ7A6Jk9OiY/1Us9cQRiU6FKm2B2xhjDxj21nJ5eCUEfjJ7Ro+Py0+LYXm2sEQf186vUsKcJllJKteOq30O9IxHc3l4dl5PiZY9Jx1Vf2k+RDQ/VjX6y6zZYC7mze3xcfno8u8jSGoBurN1dw5xYO0nKmdGjY1qasdXHZkPt7n6KbOjbV9tMRYOfObH2QDY5x/TouLEtQ7WnjIGakn6MUCk1GGiCpZRSbYTDhlH+XVTHFfT62IRYF+XOTOJ8eyMf2DCyuqiaYx1baUocC/HpPT4uPzWOwlAmoQqtIezKisJKzozbDnEZ3Q4h3iI31YsIVLiyNAHowic7rLnbJvvXgSelx4O05KV62VPdhEnK1eur1AigCZZSSrWxu6qRoyjGlzrhsI5v9GTjDdVDc12EIxs+lm7ew0mODbiPmNer4/LTvBSZUUhNMRjTT9ENbXuqm9i2r5ZjA6vgyC/0aARBgFiXk+wkD3tMuiYAXXh3837S49ykli6F8WeAw9mj43KSPQTDhiZvjnV99fOr1LDWpwRLRBaKyG4RWWM/zmuz7Ucisk1ENovI2X0PVSml+t/WnTtIk3o8o6ce1vHBBHtOnBptZtWRUNhQuf4dEqUJ1+Tze3VsXmocpSYdR6gZGsr7KcKh7Y0Ne5nj+BxvoBqO+mKvjs1J9lAUSoPmWmiq7pf4hjJ/MMx7W8pYMGYvUr8XJvT81iY72WpuXOXOsvpuNVb0V5hKqUEgEjVY9xljZtiPVwBEZDJwBTAFOAf4o4j07GsepZSKovKtywEYddSxh3W8I9keebBWawE68sHWMs70vY7fnQxHnNarY/NSvZQau0mhXt9DGGN4ankxNyZ8ALHJMPG87g9qIzvZw3a/PdKd1mId4rUNe6luDHAZ71gTOB/d8y8IcpI9AOwTe6TGmuL+CFEpNUj0VxPBi4CnjDHNxpidwDZgTj+dSymlIiZm9ycEcRIz5rjDOt6TYc2L46/UG6iOvPzeR5zjXI7z2Kt7PYhIstdNuXOUtaA1hIdYsrmM5n1bOMX/Acy8GmLienV8VpKHTY1J1oImWAcJhw1/fm87J6bWkl30X+v6xib0+PiWBKsknGat0Our1LAWiQTrZhFZKyJ/FxH7qy9ygbZ3FyX2ukOIyA0iskJEVpSVlUUgHKWUOjy+QIj8ujXsjTsaYuIPq4ykUXmEjdCwX4e6bu/NDXs5q/h+jMONc+53e328iBwYOl9HujtIoz/Ir/67jnu8/0Ri4mDurb0uIzupbQ2WfkHQ1pOf7mLjnmp+n/gE4ozt9fVNi48hxulgR0BrCJUaCbpNsETkLRFZ38HjIuBPwHhgBlAK/La3ARhj/mKMmW2MmZ2Zmdnbw5VSKmJWbdrKDLYQLDj1sMvITk1iPyn4q/QGta2SqkY2PXc3X3SuxHHGjyEx+7DKiUvNxo9bb1DbCIcNP3puHVfU/I3jwp8hZ/0KEkb1upzsZA/lJBN2xOj1bWPlrir+96VNPJj5Iln7l8JZv+z1HHkiQnayhx31seDy6PVVaphzdbeDMeYLPSlIRP4KvGQv7gby22zOs9cppdSgteeTZ3GKIeeErxx2GdlJHkpNOqNr9kQwsqFtT3UTzz78c24J/ZPaI84n6aTvHHZZOSle9pWkk683qIBV6/rDZ1YzfcO9fN31Ksz5Jsz+2mGVlZ3kweCgOS4br15fwOozeNPjy/mV9198qe6/cNw3YPbXD6us7GQPe2ubITlPawiVGua6TbC6IiI5xpiWGTUvAdbbz18E/iUivwNGA0cBy/pyLqWU6k8NzUEm7H6OfbFjyMqfedjlZCd72GDSGNuoCRbAklWbqH/xTm7hfarzziDlq38Hx+G3Th+d4qU4nEZuTcmIn2dkRWEljzz7X26ouZ+Zrm2YOd9Ezvm/wy4v2+4nVBubjXeEJwA1TQEeeHsrH330Lv/2Psak4GY4/iY4++4eD33fXk6yh1VFVZCdp30IlRrm+pRgAfeIyAzAAIXANwGMMRtE5GlgIxAEvm2MCfXxXEop1W8++uAtvijbKJpx12HfQAF43E4qnZnE+9ZZc930oayhyhjDss1F7HjtQc6tepIE8VE5+1bSzrurx/MGdWZ0sjWSYLh6+4hNsFYXVfHaG68xbdc/+JPzU/zeVDj/EWTaZX0qNyvJSrCqnBlk1a7vZu/hqaYxwGMf7eTjpW9ydeh5fhqzDBOTDuc9An28vtnJHvbVNGMm5CLb3o5QxEqpwahPCZYx5poutt0N3N2X8pVSaiCEwobwp3/GRyz5p1/f5/KaPFnE+pqs+YQ8yRGIcGho8AX45OMl1H/yGKf53uZ4aaQk7QTi599HWvbkiJxjdIqX1SYdZ8NHEAqCs6/fEw4N5fXNvPPpaipWv8jJta/wI8dO/O44Aid8j5i534G4tD6fw+N2khrnZi/pHF23B8LhPtU2DhX+YJhPd1bwzsfLcWx9jUtlCd917CLkSYCTfoCc8C3wpvT5PKOTvfhDYRo92cTX74NQAJzuvr8ApdSgMzL+MymlVBfeXfohZ/qXUHzk1YzzpnZ/QDdC8VngA2pLh32Cta+miRXLluLb8BJTqt7hTCnCj4vS0V/Ac87t5I09vOHuO5OT4uEVk46YENTvtfqzDFMllfWsXbYE/8ZXObL6Qy537ASgMukomk/8NbHHXhmRG/+2spI8lIRSIByEhjJIzIpo+YNFeX0zSzbuYdfa90gufod5ZiU/d5SAE5rSp8AJv8M57SvgSYrYOVuaYFa7M4nHQN1eSMnv5iil1FCkCZZSakQLhsI43vs/AhLD2It/FpEyJWk0VAB1e2DU0REpc7AwxrB1TwWbPn4V57bXmNH0CV+ScgBKEqawY8ovKTj1GsbG971GpSOjk73sMS1zCe0eVglWMBRm9bZiila8QnzhW8zyL+c8qSGEgz1JU9k/5UeMOvZC0kZN6remp9nJHnZUplgLtbuHTYJljGHDnlo+WreN2g2vc2T1Us50fEaq1BMSJzVZxxGY/k3cR5+HN+PIfokh226CuY90a96a2j2aYCk1TGmCpZQa0d5e8jZnh5ayY9JNHJHY+6GtOxKTmgc7IVizZ1j8kQ2Gwqz6fBt7lr9ISvFbzA6uZoL4aCaW3RnHs3fq+WTNupC8pJx+j8Ub46Q+Ntvq+VtbAhzf7+fsTxX1zSxbvZq6tS+RW/Y+s80GjpMgDRLP3qyTCU07n6xjv0R+fMaAxJOd5GFzSaK1ULsHco8dkPP2hyZ/iA+3lrH2s+W4t7/BnMAyrpctuCRMU2wKvnFnY465AOeRZ5A2ADXNLZMN7w6lcizoXG5KDWPD4X+/UkodFn8wTPyHv6Ze4hl34Q8iVm5CplWr0lheTOQaGA2suiY/K1ctp3bNC+SXLWGW2cIcMVQ50ykdcz4Zsy4idcoXOcLtHfDYJDkPqhmSI7EZY/h8TxUbl72FbH2dqfUfc67Deh37Y8awe+w1ZM++iPgj5zI+Cv1zspM9vNmQCB6sBGuIKalq5L2NJez57G1G7V3CaaziC479AFSnTKR50ndxTf0S3txZePs44EpvpSfE4nIIO/x2MjcEr69Sqmc0wVJKjVhvv/US54ZXsOOY73NEBPpetchMTaHKJBCsHFpzCZVW1bP24zcIbXqFSbUfcJrsBaDEcxQ7x91E7vGXkjrmWFKjPPBBcmoGDdVe4ofIXE2+QIjlm3exe8XLJBe9xQmhFUySeoI42ZM6iz2Tvk72rIsYlXkkkalDPXzZSR4qScQ4YpAhUMMSDhs+K6nm/c+20LzxVabUf8hFjrUkiI+AM4a60ScTnP4DXBPPJiXKzfGcDiErycOueje44zTBUmoY0wRLKTUi+QIhUj/9LTWSzLjzvhfRsrOTPew1qaQNgcmGd5WWseGD/xCz/XVm+j7lbKkjgIui5FnsPPom8k/4MnlpY6Id5kFyUzyUks6RgzgBKKtr5pPVa6ld+1/GlC1hDhuIlSD1jkTK8k7HMfNCkqeezZhBNghKTorXnmw4C88gTQBaRv1bvmoFji2vckJgGd+WzbgkTIM3g9CRl8IxF+AedyppMXHRDvcg2ckeSmubISlXmwgqNYxpgqWUGpHee+tFzjZr2Hnsj0iOTYho2dlJHj4zaWQ07I1ouZGye385m5Y8TfzWF5npX8FYCVAvCezJmkdgxoVkHfslxg+yG/+2clK8lITSGVddzMA28ura/jof73+yHN9nz3JM7btc4CgEoDw2j33jriNrziUkFJxIwiAeWn603U+oPnbUoEqwGpqDvLeljM9WfUzKzpf5Qvhjvmc3raxJmUBwym24pn6J+JyZg3po+exkDxv31ELmaK3BUmoYG7x/5QeB6vK91FbtIz17LPGJKdEORykVIcFgiIzl91IlqRSc852Il58S56ZM0vA0rYt42Ydrf2UNa997jpjP/8Ms3yd8QZqpcKSxLf9Sso6/jMzJpzFhiMzJMzrFGknQ1ET/+lY3+nlv+WrqVz7NtOp3uMyxA4C9SVPYN/mHjJp9CRmZE4fMhNM5KVafuipnJhm1m6Maiy8Q4u1N+/l0+cekF77COfIx5zlKCOOgOus4AjO/g3vSeSSnjo1qnL2Rk+ThnU37MeNHIzs/iHY4Sql+oglWFza/8wTHb/xfAOqMl0pnOvXuDJpi0gnGJhGOTcHhTcURl4orPo2YuERcMR5cMV5csV7csR7csXG4Y72IWN+oiQiCYETA/n8rIpiwIRQMEA4FCdo/reUAoVCAcDBoPULWNhMK2j8DhMPWMqEA4XAI0+ZBu58mHAJzYB3mwE8TDltzy4RDiAkjhBAMAMbYsWLsNbSuP2jdoU86WT6g69uObm5KBEwn+7Ss7XS7dL697ZqOIpc2e5iI3DhJu59dBNQBc1BEg8xgDKypmhPD69k886ekxsRHvHgRoTE2k/hAZVQnw62obWD1+//FueFZZjUu5QvSSI0ksnP0+WSc+FWyp55O+gB39I+E0cke3jPpuJrKIeADt2dAz1/fHOSDlZ9RteIZji5/k4scWwHYm3g0ZdN+TObxV5A9hG7620qIdZHocbGPNI6q3WP/kR+4X+JAKMzSreV8tHwZCVtf5Cw+4kuOYoxTqMuaQ+jYW3BOvoi0ITp8fHayh6ZAiOa4HDx1pdb/3yH4OzhY+AIh6puaaairprGumqb6avwNNQQaazHNtdBcj/jrMUEfJuiHoA+CzUjIjzNsP0wAV9iPEAYTRkwYsH6KMQhh62EMDgwOCWPd+dgPcWBw2PcCnawTh3WvIQ57WTA4oM1PQQjbPxFrX2M/F7sMwCrDLtfa70C5LWW3jQNa7nOk8/sV09GdTif3bR3uS+v9Yl/L6Wz/cu8RZMy9nhPHp3dy3OCiCVYX8mefxwpPPIHq3UjdXtyNe4lvLienfj0JdfUkmkYc0nniMNSEjBDCQdh+hKw/JYfcIB/6ijv7tTr4wM4Snc50/svadTSdR3Docd1F1FEMppvtPTt/B2V0UlTProPqrc88s5j2pVv7rfxmbxaOQBjq90Fybr+dp72ahmZWLn2V8LpnmFn3Hl+QWhrwsmvUGaQcfwWjZ55L8hCpqepMToqXUux/srW7IX18v5/TFwjxwWebKft0MUfuf52z+RyHGPbFH8m+KXcy6sQryB6AOAbC6GQvu0IZzA01Q10pJI3u1/OFw4ZlhZUsWb6GmM+f54uh9/mJoxAcUJs5m/Csm3FMvoikAZgGoL+1nWw424Ssz2/K4OrjGC3GGCob/Oyvrqe+YjdNFcUEqvcSqi/DNJbjaKrE3VyFJ1BNYqiGJFNLKnVkiI+eTmIQQvATQwA3fnETxE1ArEcYZ2ti1JL4GLEfuDnwtXPLt7PhA2mWnZhZSVpL6hXGYSdoAGLCOGhZtvZxGHsb4db/9da6lpQo3JIagRWR9dy0eW5vd9j7SJv92pdhfSF+6J1JZ/dnvf1qvLfldL7/oeuXcCwbx1+mCdZwMPqIyYw+YnKn28OhELV1VdRXldNYW05zYz3hgI+Q30co0ETY7yMc9GH8PrA/+Nan7MBHzdgZvPUFhAtxuhCHC+yf4nThcLjA6W59Lk43DqcLh6tluxuH04nT1bLdidM+3ul02vs6cTpc1nOnC5fLicPhso9xIg4nTpFB1Z9Bqf50TD+XH0rKg1qguqjfE6y6Jj8rPn4H/5pnmF7zNmdIJc3EsDN9Ho2z5pM350ImR2E49f6SlRjLXtP/CZY/GOajjTsp/vgZxu55hdNYh1tClHnGsnfSLWSf9FWyRk3sl3NHU06Kh42V9niGFdv7JcEyxrBudw1vrthEYN1/OD3wHnfKZhxiqMmYRnDWr3BN/TJJA/jlxEBomQur1JlHNkDFthGTYNX5AhRV1FNZuovG/dsJle+Euj24G/YS17yf5GA5WVQykdoOv7xuwkOdM5kmVwq+uAxqYo6iwpMGnmQcnkSc3mTccUnExCUTG5+EOy6ZmJZljxdxeXA6XXiB4fPXcOQ4L9oB9JImWH3gcDpJSskgKWVgJoBUSg0haUdCCZjyLcjYEyNefFNzkGWfvk/jqn8zueptTpd9BHBRmHI8u2ZezpgTvszRnqE6C1fXXE4HzfGjIQBEeKj2YCjMsm2lbPvwP2QVvcQpZiWniZ/qmFHsP+rrZM+9msyc6UOmT9XhKEiP58PCVOtL6optMG5eRMo1xrCptI7XV2+jfu2LnNS4hO861uKWEHVJRxA89ofEHPMVkodJTWBHxqRZTZI/D2YxE6wEdvwZUY0pUsJhw/66Zor2V1JVvAnfvq2EKwuJrSsi2beb7PA+jpQyYiV40HF1kkitOxNfQhZV8TOoShqNKyUXT3ouCel5JKRl44hPx+v2amKkhgxNsJRSqh94MgtoNi7Mvq1EqodQfXOQ5cs+omn1vzm64i1OlT0EcbAraRaF025lzMlXcFR8WoTONrhJ6lj8+93E7N/Y57L8wTCfbNnNjk9fIrXodU4Pf8pJ0ki9M5mKcZeRddLVpBScSMogHp0uksaPSuCx5mRMfCxSsa3P5W3dV8drq7ZR+dnLzGr4gBsdq/CKn4b4bELTb8I9cz6J2dOGddLaIiMhhtQ4N2urPVwZkwDlW/tUXihsWFNcxSc7KrlkZi6jU/o/BWkOhigsb6RodwlVRRsI7fucmOrtpDcVUmB2M0v242xTA9Ug8VR7c/ElTKEktYCYzCNIyD6SpOzxOFNySXR7Sez3qJUaWJpgKaVUP8hJTWCXySJr7+Y+JViVdU2s/vhNfBte4ajqDzhdSggjFCbMYPvUmyiYeyXjEzMjFvdQMSolge3lBUzas+awjvcFQny4YSe7l73AqD1vMtes5hTx4XPEUT72i3hOuoqEo84gYYj3VzscR2YmYHBQn3QkiaWf9fp466a/mg/Xbsa/4SVmNCzlBsd6YiWAz5MKk6+EY68gPv+EQT2ken8QEY7KSmTL/gbInAj71ve6jOpGP+9tKeOTDVtxbnuTk4Ofcr7s4k/r7uQXN38DhyMyiWpNU4Bt+2opLd5OffEGTPkW4mu3M8pfxHjZzUSpbd3Xj5uquDE0JR9DccYE4kdPJmXMJNzp44j3phL5oYSUGtw0wVJKqX4wNTeJ1SafvH1rejUSWyhs2Lh9J8UrX8db+BbTm5ZxptQSxEFJ4gx2Tf46eSdfyRHJQ7/Df18cNSqRlZvGcHTpcqQHI7EZY9i6r5Z1Kz/Cv+Ut8qs+Za5sIlaC1LrSqBlzETFzLsVz5GnkuWIH6FUMTpNzkhCBbd5pzCx5HoJ+cMV0eUxVg5+Ptu5l59oPcBcuYVZwDd+WrTjFUB+fQ2jyAph+CZ4xJ4z4UfOOzk7k2ZUlhE46Eefyv0CgCbroIxkIhfmsuJoPtuxl36aPySr7iHmOtfyvYxsuwjTFZxHGwR0Vd3H/k+l868qLiXH1LHENhw27q5vYsbeC8qLPaS7dhLNiK8kNO8kNFTNJSpklza37NzgSqU4eR2PqFyjNmUTq2Kl4so8mJmUsWSP8fVWqrT4lWCKyGGjp4ZsCVBtjZohIAbAJaJlE4xNjzI19OZdSSg0luSle/uGewQXNn8D+TZDV8YA5wVCYzTuL2LP2HRy7PiC/ZgXTKGIaUCcJlGSeTOP0C8g77nwKvKkD+yIGsZOOTOcf70zh6ua3Yed7h/RjCYcNO/bXsG3DCuq2fUzSvk+ZFfqMS+1v3ffHHcH+guvIOeEyksYcT5LeHLZKjnMzLTeZ1xuOZGbQB4Xvw5FfOGif/XU+Vu8sY/emTwnu+oT8ujXMc2zgS9JIGKEmfSqBo7+Hc9qFJOQcMyKa//XUvKMy+efHu/jcO5MpIT/seA8mntO63R8Ms6m0ltWF+ynetBz37mVMD2/kesd6kqUR4xIa///27ju+rrp+/PjrfUducrNX0+wUOugedLELskRZgoCyUfmiooJ7AuLX31dFRREVURQELCh7byq70NLSSXeapE3bNHvdmzs+vz/OSZqmWW1vcpN738/H4z5yz37fc+5pz/t+Vs4MHJO/CUedRVL+bExTFS1/+gRXbP4af/zluyTOvpDxZWVkJVslsG0dIZqbGmnZs42OvduRxkoSmivIbt9OGTs4TvbgknBXDPXuPFoyxrE35ySSCyeTXjIN15hJJCfnkqzXUqkBHVaCZYy5uPO9iPwGaOy2eIsxZtbh7F8ppUYrEYHxpxLe8Bc63vkLief9jkAoTHnFNnZuWoW/8kNS9q6iqP1jpspupgI+EtiePJ11JedTOPt00o9cyOQojaE10s0qzmBtynE0Bf5Bwos/ZdcJHirrWmmuWkd493qym9YyzWxmvLQD0OjMpL7wBBzTziBr2umMiYEuv4fSp2fk85vnxvON9DHICzezbnaI7bWttO/8GOfe9ZR1bORE2UqSdADQ5B1LR+nZhKadgXP8yWR646Mt4KE4bnw2aYku/nddDv9MKSD4ws28UxGgsraVlp0b8DZsYApbuVi2WOdXoD0lH8f482DSqcgRJ5Pc4/xKRgmp1z5Pw8P/w401d8P7d9O01EsTXhIIkkI73m4lUQAB3NQnl+BLn86eMZNIK55GSuFkyJlAZkIy+nOOUodOTJ8DfR3ETkQEqABOMcZsskuwnjHGTDuY/cydO9csW7bssONRSqmRYN3OJpb/+Ytc7nyRJpIREybVfuAH2OMYQ03aFKRwDnlTTiR70rEQ59XTDsbzq6t55qE/8XvXnfv9+h7EyZ7EI2jLm0PqhGMZM/kEJOsILUU5CO0dIS686x0Kdr3Gne4/4JFA17IOSaAhdSKmaD5ZRx2Pu3ThsI71FgseWV7Fdx75iJNkBXe5f0dit/MbkARaMo7CXbaQlPHHQtH8wZ9fY2DHcvxb3qBx93bCbY2EXR4cnhScKTkk543DmzMOMoohZWzctYFTKtJEZLkxZu4B8yOUYJ0I/LbzAHaCtRbYiDUSzI+NMW/2se21wLUAJSUlR2/fvv2w41FKqZFi+dbdbH/lL4xp34LXk4BrzASyS6YwdtJ8nKljoh3eqLelpoWP169mTMvHjElPZuy4qXjGTBiwzZAamC8Q4u3Newk37qDUt4HCnAyS8ydCZlnct6OKhK01Laze0UhmqJZJoU3kpKfizD4Cssbp+VVqlDjkBEtEXgFrPLwefmSMedJe58/AZmPMb+xpD5BijKkVkaOBJ4CpxpimXvbTRUuwlFJKKaWUUqNBXwnWgJX7jTGn9rdcRFzAZ4Cju23jB/z2++UisgWYCGj2pJRSSimllIpZkah8eyrwsTGmqnOGiOSKiNN+fwQwAdgagWMppZRSSiml1IgVie6pLgEW95h3InCriASAMHCdMaYuAsdSSimllFJKqRErIp1cRIqI1AAjrZeLHGBvtINQw0avd/zQax1f9HrHD73W8UOvdXwZide71BiT23PmiEqwRiIRWdZb4zUVm/R6xw+91vFFr3f80GsdP/Rax5fRdL11AASllFJKKaWUihBNsJRSSimllFIqQjTBGtjd0Q5ADSu93vFDr3V80esdP/Raxw+91vFl1FxvbYOllFJKKaWUUhGiJVhKKaWUUkopFSGaYCmllFJKKaVUhGiC1Q8ROVNENojIZhH5frTjUZEjIsUi8rqIrBORtSLyDXt+loi8LCKb7L+Z0Y5VRYaIOEVkhYg8Y0+PE5Gl9v39sIgkRDtGFRkikiEij4jIxyKyXkSO0Xs7NonIjfa/4WtEZLGIJOq9HTtE5O8iskdE1nSb1+u9LJY77Ou+SkTmRC9ydbD6uNa32f+OrxKRx0Uko9uyH9jXeoOInBGVoPuhCVYfRMQJ/BH4JDAF+JyITIluVCqCgsC3jDFTgIXAV+3r+33gVWPMBOBVe1rFhm8A67tN/xK43RgzHqgHvhCVqNRQ+D3wgjHmKGAm1nXXezvGiEgh8HVgrjFmGuAELkHv7VhyL3Bmj3l93cufBCbYr2uBPw9TjCoy7uXAa/0yMM0YMwPYCPwAwH5euwSYam/zJ/u5fcTQBKtv84HNxpitxpgO4CHg3CjHpCLEGFNtjPnQft+M9QBWiHWN77NXuw84LyoBqogSkSLgU8Df7GkBTgEesVfRax0jRCQdOBG4B8AY02GMaUDv7VjlApJExAV4gWr03o4Zxpg3gLoes/u6l88F/mks7wEZIpI/LIGqw9bbtTbGvGSMCdqT7wFF9vtzgYeMMX5jzDZgM9Zz+4ihCVbfCoHKbtNV9jwVY0SkDJgNLAXyjDHV9qJdQF604lIR9Tvgu0DYns4GGrr9w633d+wYB9QA/7CrhP5NRJLRezvmGGN2AL8GKrASq0ZgOXpvx7q+7mV9bott1wDP2+9H/LXWBEvFNRFJAR4FbjDGNHVfZqwxDHQcg1FORD4N7DHGLI92LGpYuIA5wJ+NMbOBVnpUB9R7OzbYbW/OxUqqC4BkDqxipGKY3svxQUR+hNW048FoxzJYmmD1bQdQ3G26yJ6nYoSIuLGSqweNMY/Zs3d3Vimw/+6JVnwqYo4DzhGRcqyqvqdgtdHJsKsVgd7fsaQKqDLGLLWnH8FKuPTejj2nAtuMMTXGmADwGNb9rvd2bOvrXtbnthgkIlcBnwYuNfsG7x3x11oTrL59AEyweyNKwGpM91SUY1IRYrfBuQdYb4z5bbdFTwFX2u+vBJ4c7thUZBljfmCMKTLGlGHdx68ZYy4FXgcutFfTax0jjDG7gEoRmWTP+gSwDr23Y1EFsFBEvPa/6Z3XWu/t2NbXvfwUcIXdm+BCoLFbVUI1ConImVjV+88xxrR1W/QUcImIeERkHFbHJu9HI8a+yL5kUPUkImdhtd1wAn83xvw8uhGpSBGR44E3gdXsa5fzQ6x2WP8GSoDtwEXGmJ4NbNUoJSKLgG8bYz4tIkdglWhlASuAy4wx/iiGpyJERGZhdWiSAGwFrsb6QVHv7RgjIj8FLsaqPrQC+CJWWwy9t2OAiCwGFgE5wG7gZuAJermX7ST7Tqxqom3A1caYZVEIWx2CPq71DwAPUGuv9p4x5jp7/R9htcsKYjXzeL7nPqNJEyyllFJKKaWUihCtIqiUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUiOEiJSJiBERV7RjiXUicpWIvBXtOEYaETlBRDZEOw6llBrNNMFSSik1qonILSISEJGWbq/vRjuu0cgY86YxZlKk9ysis0RkuYi02X9nRfoYSik1UmiCpZRSEaIlT1H1sDEmpdvrV9EOKJJG83dLRBKAJ4EHgEzgPuBJe75SSsUcTbCUUuowiEi5iHxPRFYBrSLiEpGFIvKOiDSIyEcisqjb+ktE5P9E5H0RaRKRJ0Ukq499Xy0i60WkWUS2isj/9Fh+roistPezRUTOtOeni8g9IlItIjtE5H9FxDnA5zhSRF4TkVoR2SsiD4pIRrdldSIyx54uEJGazs8lIueIyFr78y4Rkck9zs+3RWSViDSKyMMiknjwZ/rgicj37fPSLCLrROT8PtYTEbldRPbY53K1iEyzl3lE5NciUiEiu0XkLhFJGuTx77XXf9mO4b8iUtpt+e9FpNI+5nIROaHbsltE5BEReUBEmoCrRGS+iLxrn+dqEbmze5JiVy/9iohsso/3M/vavWMf498DJTUiskhEqgbz+Q7CIsAF/M4Y4zfG3AEIcEqEj6OUUiOCJlhKKXX4Pgd8CsgA8oBngf8FsoBvA4+KSG639a8ArgHygSBwRx/73QN8GkgDrgZu75bkzAf+CXzHPu6JQLm93b32fscDs4HTgS8O8BkE+D+gAJgMFAO3ABhjtgDfAx4QES/wD+A+Y8wSEZkILAZuAHKB54CnezzIXwScCYwDZgBX9RqAyPF28tDX6/gBPkNPW4ATgHTgp3b8+b2sdzrW+Ztor3sRUGsv+4U9fxbW+SwEbjqIGC4FfgbkACuBB7st+8DebxbwL+A/PZLPc4FHsK7vg0AIuNHe1zHAJ4Cv9DjeGcDRwELgu8DdwGVY13Ma1nf1kNmJcl/X5099bDYVWGWMMd3mrbLnK6VUzNEESymlDt8dxphKY0w71sPsc8aY54wxYWPMy8Ay4Kxu699vjFljjGkFfgJc1FsJkzHmWWPMFmP5L/ASVsIA8AXg78aYl+3j7DDGfCwiefaxbjDGtBpj9gC3A5f09wGMMZvtffmNMTXAb4GTui3/K7AZWIqVGP7IXnQx8Ky9bQD4NZAEHNvj/Ow0xtQBT2MlFb3F8JYxJqOfV3+dUlzU42G/wBjzH/u4YWPMw8AmYH4v2waAVOAoQIwx640x1SIiwLXAjcaYOmNMM/D/BjqXPTxrjHnDGOPHOmfHiEix/XkfMMbUGmOCxpjfAB6ge/und40xT9jxtxtjlhtj3rPXLwf+QrdrZPuVMabJGLMWWAO8ZIzZaoxpBJ7HSrgPmTFmRj/Xp2ey1ykFaOwxrxHrnCulVMwZtXW6lVJqBKns9r4U+KyInN1tnht4vY/1t9vLc3ruVEQ+CdyMVYLiALzAantxMVZpUU+l9v6qrfwA7G0re1m3+7HygN9jJXCp9jb1PVb7K/AUcK2dMIBV4rW9cwVjTFhEKrFKejrt6va+zd4m0v5tjLms+wwRuQL4JlBmz0qhl/NsjHlNRO4E/giUishjWCWPiVjnfHm3cylAv9Ute+g678aYFhGpw/r8lSLybaxEuQAwWCWVOb1ta3+eiViJ71w7LhewvMfxdnd7397L9NiDiD1SWrA+W3dpQHMUYlFKqSGnJVhKKXX4uld9qsQqoer+y36yMeYX3dYp7va+BKsEZW/3HYqIB3gUq0QozxiTgZVQdT7pVwJH9hJLJeAHcrodP80YM1B1rP9nf47pxpg0rJK4fVmFSArwO+Ae4BbZ125sJ1ZS17me2J9vxwDHO4BYXYS39PM6YeC9dO2rFCshvB7Its/fmu6fqTtjzB3GmKOBKVgJ7Xewrkk7MLXbuUw3xqQcxMfqutb2OcwCdtqf5btY1REz7fgae8TX/XsF8GfgY2CCfY1+2NfnGSpitbXr6/rc1cdma4EZ0i1LxaoqunboI1ZKqeGnCZZSSkXWA8DZInKGiDhFJNHuOKCo2zqXicgUuz3TrcAjxphQj/0kYFUZqwGCdmnW6d2W3wNcLSKfEBGHiBSKyFHGmGqsqoS/EZE0e9mRItKzKllPqVglDY0iUoiVYHT3e2CZMeaLWG3MOh+m/w18yo7DDXwLK8F7Z6AT1ZPdRXhKP683D2J3yVgJSg1YHYZgtUE6gIjME5EFdvytgA8IG2PCWEna7SIyxl63UETO6LatkW6dmPTiLLttWQJWW6z3jDGVWOc7aMfnEpGbOLCUp6dUoAloEZGjgC8PsH7EGWOm9nN9rutjsyVY7ce+LlanIdfb818blqCVUmqYaYKllFIRZD88n4tVulCDVaL0Hfb/9/Z+rI4odmFVQ/t6L/tptuf/G6uq3uexqud1Ln8fu+MLrJKP/7KvJOkKrARtnb3tI1jtpvrzU2COva9ngcc6F4jIuVidVHQ+0H8TmCMilxpjNmCVdv0Bq8TnbOBsY0zHAMcbUsaYdcBvgHexqslNB97uY/U0rESqHqu6Yy1wm73se1htz94Tqze/V7DbSdltqZrZV22zN//CquZZh9X5RGc1xheBF4CN9jF9DFCNE6va4uftY/4VeHiA9UcE+7twHtb3sgGrg5fzov0dUUqpoSL7d+qjlFJqKInIEuABY8zfoh2LOjwichlW9cEf9LH8XqDKGPPjYQ1MKaVUVGknF0oppdQhMMY8EO0YlFJKjTxaRVAppeKEWIPeHkznBCoGicgP+/gePB/t2JRSKhZoFUGllFJKKaWUihAtwVJKKaWUUkqpCBlRbbBycnJMWVlZtMNQSimllFJKqX4tX758rzEmt+f8EZVglZWVsWzZsmiHoZRSSimllFL9EpHtvc3XKoJKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSPRhjCIe1h1WllFJKHbwR1QarN4FAgKqqKnw+X7RDUaNMYmIiRUVFuN3uaIeiRhFjDNf/8Qkmemr4xpeujXY4SimllBplRnyCVVVVRWpqKmVlZYhItMNRo4QxhtraWqqqqhg3bly0w1GjSF1rB+fv/j2nOldQ+2Ee2XPOjXZISimllBpFRnwVQZ/PR3Z2tiZX6qCICNnZ2VryqQ5aVX07HgIAtC5bHOVolFJKKTXajPgEC9DkSh0S/d6oQ9EeCJEiVmKeWrMiytEopZRSarQZFQmWUkoNl45gmCyaAMgM7ILm3VGOSCmllFKjiSZYgyAifOtb3+qa/vWvf80tt9wSvYC6ee+991iwYAGzZs1i8uTJXXEtWbKEd95555D3u337dubMmcOsWbOYOnUqd911V4QiVmpk6wiGyZRmKlylAIT3rI9yREoppZQaTTTBGgSPx8Njjz3G3r17I7pfqyvo8GHt48orr+Tuu+9m5cqVrFmzhosuugg4/AQrPz+fd999l5UrV7J06VJ+8YtfsHPnzsOKVanRINThI03a2ZMxG4CGSk2wlFJKKTV4mmANgsvl4tprr+X2228/YFlNTQ0XXHAB8+bNY968ebz99tsA3HLLLfz617/uWm/atGmUl5dTXl7OpEmTuOKKK5g2bRqVlZV85zvfYdq0aUyfPp2HH34YsBKkRYsWceGFF3LUUUdx6aWXYsyB4/Ls2bOH/Px8AJxOJ1OmTKG8vJy77rqL22+/nVmzZvHmm2/2G+fll1/OMcccw4QJE/jrX/8KQEJCAh6PBwC/399nInjHHXcwZcoUZsyYwSWXXAJAXV0d5513HjNmzGDhwoWsWrWq61hXXnklJ5xwAqWlpTz22GN897vfZfr06Zx55pkEAlbHArfeeivz5s1j2rRpXHvttQd87nA4TFlZGQ0NDV3zJkyYwO7dWpVLRUB7nfU3bxqtxkPbTk2wlFJKKTV4I76b9u5++vRa1u1siug+pxSkcfPZUwdc76tf/SozZszgu9/97n7zv/GNb3DjjTdy/PHHU1FRwRlnnMH69f0/kG3atIn77ruPhQsX8uijj7Jy5Uo++ugj9u7dy7x58zjxxBMBWLFiBWvXrqWgoIDjjjuOt99+m+OPP36/fd14441MmjSJRYsWceaZZ3LllVdSVlbGddddR0pKCt/+9rcB+PznP99nnKtWreK9996jtbWV2bNn86lPfYqCggIqKyv51Kc+xebNm7ntttsoKCg44LP84he/YNu2bXg8nq6E5+abb2b27Nk88cQTvPbaa1xxxRWsXLkSgC1btvD666+zbt06jjnmGB599FF+9atfcf755/Pss89y3nnncf3113PTTTcBcPnll/PMM89w9tlndx3T4XBw7rnn8vjjj3P11VezdOlSSktLycvLG/A6KjWgdqukOjuvkG2r88mo3RTlgJRSSik1mmgJ1iClpaVxxRVXcMcdd+w3/5VXXuH6669n1qxZnHPOOTQ1NdHS0tLvvkpLS1m4cCEAb731Fp/73OdwOp3k5eVx0kkn8cEHHwAwf/58ioqKcDgczJo1i/Ly8gP2ddNNN7Fs2TJOP/10/vWvf3HmmWf2esz+4jz33HNJSkoiJyeHk08+mffffx+A4uJiVq1axebNm7nvvvt6LSGaMWMGl156KQ888AAul6vrM11++eUAnHLKKdTW1tLUZCXGn/zkJ3G73UyfPp1QKNQV7/Tp07s+3+uvv86CBQuYPn06r732GmvXrj3guBdffHFXad9DDz3ExRdf3O85V2qwpKMVgMyMLCocBSQ3b4tyREoppZQaTUZVCdZgSpqG0g033MCcOXO4+uqru+aFw2Hee+89EhMT91vX5XLtV62u+3hMycnJgzpeZxU9sKr/BYPBXtc78sgj+fKXv8yXvvQlcnNzqa2tPWCdvuKEA7sz7zldUFDAtGnTePPNN7nwwgv3W/bss8/yxhtv8PTTT/Pzn/+c1atXD+ozORwO3G5317EcDgfBYBCfz8dXvvIVli1bRnFxMbfcckuvY1kdc8wxbN68mZqaGp544gl+/OMf93tcpQYrHPAD4Ezw0OAdR3rbuxBoB3dSlCNTSiml1GigJVgHISsri4suuoh77rmna97pp5/OH/7wh67pzqpwZWVlfPjhhwB8+OGHbNvW+6/gJ5xwAg8//DChUIiamhreeOMN5s+fP+iYnn322a42Sps2bcLpdJKRkUFqairNzc0Dxgnw5JNP4vP5qK2tZcmSJcybN4+qqira29sBqK+v56233mLSpEn7HTscDlNZWcnJJ5/ML3/5SxobG2lpaeGEE07gwQcfBKy2ZDk5OaSlpQ3q83QmUzk5ObS0tPDII4/0up6IcP755/PNb36TyZMnk52dPaj9KzWQzgTL5U4kmHEkDgzUbolyVEoppZQaLTTBOkjf+ta39utN8I477mDZsmXMmDGDKVOmdHVnfsEFF1BXV8fUqVO58847mThxYq/7O//885kxYwYzZ87klFNO4Ve/+hVjx44ddDz3338/kyZNYtasWVx++eU8+OCDOJ1Ozj77bB5//PGuTi76ihOsan4nn3wyCxcu5Cc/+QkFBQWsX7+eBQsWMHPmTE466SS+/e1vM336dAC++MUvsmzZMkKhEJdddhnTp09n9uzZfP3rXycjI4NbbrmF5cuXM2PGDL7//e9z3333DfrzZGRk8KUvfYlp06ZxxhlnMG/evK5ld911135xX3zxxTzwwANaPVBFlAnaCZYnEdcY677t2LMhmiEppZRSahSR3nqmO6gdiBQD/wTyAAPcbYz5vYjcAnwJqLFX/aEx5rn+9jV37lyzbNmy/eatX7+eyZMnH1aMqm+33HLLfp1hxBr9/qiD9fS//sjZG3+I+fI7PF3u4JznF1J7zI/IPuO7A2+slFJKqbghIsuNMXN7zo9EG6wg8C1jzIcikgosF5GX7WW3G2N+3c+2Sik1opiQVYIlrkTy8zJpMMn4arSjC6WUUkoNzmEnWMaYaqDaft8sIuuBwsPdrxoet9xyS7RDUGpkCVrjseF0U5zppcrkktlQEd2YlFJKKTVqRLQNloiUAbOBpfas60VklYj8XUQyI3kspZQaEnYJFk4PY1I97GAMnpaq6MaklFJKqVEjYgmWiKQAjwI3GGOagD8DRwKzsEq4ftPHdteKyDIRWVZTU9PbKkopNWxMsMN643TjcAiNnnzS/NVwmO1VlVJKKRUfIpJgiYgbK7l60BjzGIAxZrcxJmSMCQN/BXrte9wYc7cxZq4xZm5ubm4kwlFKqUPmCNsJlssas82XXEiC8UPr3n62UkoppZSyHHaCJdZIsfcA640xv+02P7/baucDaw73WEopNeRCnW2wEqy/GSXWX22HpZRSSqlBiEQJ1nHA5cApIrLSfp0F/EpEVovIKuBk4MYIHCtqnnjiCUSEjz/+uM91ysvLmTZtWsSOuWHDBhYtWsSsWbOYPHky1157LWANEvzcc/32eN8vn8/H/PnzmTlzJlOnTuXmm2+OVMhKjX6hDsIIOKw+gDw54wDw7dWeBJVSSik1sEj0IvgWIL0sOvQMYARavHgxxx9/PIsXL+anP/3pAcuDweBhHyMUCuF0Orumv/71r3PjjTdy7rnnArB69WrASrCWLVvGWWeddUjH8Xg8vPbaa6SkpBAIBDj++OP55Cc/ycKFCw/7Myg12jlCHQRxkSDWP2vp+UcA0Fi9hcRZUQxsBLj16XU0tgf4zUUzox2KUkopNWJFtBfBWNXS0sJbb73FPffcw0MPPdQ1f8mSJZxwwgmcc845TJkyBbASrUsvvZTJkydz4YUX0tbWBsCrr77K7NmzmT59Otdccw1+v9VTWVlZGd/73veYM2cO//nPf/Y7bnV1NUVFRV3T06dPp6Ojg5tuuomHH36YWbNm8fDDD9Pa2so111zD/PnzmT17Nk8++SQA9957L+eeey6LFi1iwoQJXYmhiJCSkgJAIBAgEAggcmCO/J///Idp06Yxc+ZMTjzxRMAq/br66quZPn06s2fP5vXXX+861nnnncdpp51GWVkZd955J7/97W+ZPXs2CxcupK6uDoC//vWvzJs3j5kzZ3LBBRd0nZ/uFi5cyNq1a7umFy1aRM8BqJUaKo5wB0Fxd03njxlDvUmhI85LsNo6gjz49gbOWH0jTf+8NNrhRJUxhg27mgmHteMTpZRSB4rEQMPD5/nvw67Vkd3n2OnwyV/0u8qTTz7JmWeeycSJE8nOzmb58uUcffTRAHz44YesWbOGcePGUV5ezoYNG7jnnns47rjjuOaaa/jTn/7E9ddfz1VXXcWrr77KxIkTueKKK/jzn//MDTfcAEB2djYffvjhAce98cYbOeWUUzj22GM5/fTTufrqq8nIyODWW29l2bJl3HnnnQD88Ic/5JRTTuHvf/87DQ0NzJ8/n1NPPRWA999/nzVr1uD1epk3bx6f+tSnmDt3LqFQiKOPPprNmzfz1a9+lQULFhxw/FtvvZUXX3yRwsJCGhoaAPjjH/+IiLB69Wo+/vhjTj/9dDZu3AjAmjVrWLFiBT6fj/Hjx/PLX/6SFStWcOONN/LPf/6TG264gc985jN86UtfAuDHP/4x99xzD1/72tf2O+7FF1/Mv//9b376059SXV1NdXU1c+ceMEi2UkNCwoH9EqziLC9VJoeMOG+DVVHXxnGONZzuXA5bAV8TJKZFO6yoeOqjnXzjoRU8Nn0pc077PIyZHO2QomJnQzuf+dM7fGNRMZ/Lq4IjT4l2SFHhD4a44M/vsGjiGL491wXJOZCYHu2wlFJRpCVYg7B48WIuueQSAC655BIWL17ctWz+/PmMGzeua7q4uJjjjjsOgMsuu4y33nqLDRs2MG7cOCZOnAjAlVdeyRtvvNG1zcUXX9zrca+++mrWr1/PZz/7WZYsWcLChQu7Sr66e+mll/jFL37BrFmzWLRoET6fj4oK62HwtNNOIzs7m6SkJD7zmc/w1ltvAeB0Olm5ciVVVVVdSVhPxx13HFdddRV//etfCYVCALz11ltcdtllABx11FGUlpZ2JVgnn3wyqamp5Obmkp6eztlnnw1YJW/l5eWAlYSdcMIJTJ8+nQcffHC/kqpOF110EY888ggA//73v7nwwgt7PT9KDQVnjxKsTK+bXTKGxNYdUYwq+nY2tDNW6vfN2BG/pcrvba2lVHYzZ9Md8LfToh1O1Ly1aS+7mny0v/gzuP98KH872iFFxcqKBtbsaOLO1zfBH+bA72bosA5KxbnRVYI1QEnTUKirq+O1115j9erViAihUAgR4bbbbgMgOTl5v/V7VrXrrepdTz330V1BQQHXXHMN11xzDdOmTes1ETLG8OijjzJp0qT95i9dunTAeDIyMjj55JN54YUXDuig46677mLp0qU8++yzHH300Sxfvrzfz+HxeLreOxyOrmmHw9HVRu2qq67iiSeeYObMmdx7770sWbLkgP0UFhaSnZ3NqlWrePjhh7nrrrv6Pa5SkeQIBwh1S7BEhCZPAWn+j6yHpkHc07FoV6OfvP0SrOVxW2KxaXcLxzjWWRMdzdBWB96s6AYVBeuqmwCYajZaLbFXPQRlx0U3qCjYuKcFgAJqrRm+Bti5AgrnRC8opVRUaQnWAB555BEuv/xytm/fTnl5OZWVlYwbN44333yz1/UrKip49913AfjXv/7F8ccfz6RJkygvL2fz5s0A3H///Zx00kkDHvuFF14gELC6jN61axe1tbUUFhaSmppKc3Nz13pnnHEGf/jDHzD2L2YrVqzoWvbyyy9TV1dHe3s7TzzxBMcddxw1NTVdVf7a29t5+eWXOeqoow44/pYtW1iwYAG33norubm5VFZWcsIJJ/Dggw8CsHHjRioqKg5I7PrT3NxMfn4+gUCgaz+9ufjii/nVr35FY2MjM2bMGPT+lTpcThMg5HDvN8+XUognzsfCavEHGEM9jc4sasiC2q3RDilqdjX5mCOb9s3YfWBJfDzY2dAOGKaJ3T6xYmlU44mW3Y0+AKY4tu+bWb0yOsEopUYETbAGsHjxYs4///z95l1wwQX7VRPsbtKkSfzxj39k8uTJ1NfX8+Uvf5nExET+8Y9/8NnPfpbp06fjcDi47rrrBjz2Sy+91NXJxBlnnMFtt93G2LFjOfnkk1m3bl1XJxc/+clPCAQCzJgxg6lTp/KTn/ykax/z58/nggsuYMaMGVxwwQXMnTuX6upqTj75ZGbMmMG8efM47bTT+PSnPw3ATTfdxFNPPQXAd77zHaZPn860adM49thjmTlzJl/5ylcIh8NMnz6diy++mHvvvXe/kquB/OxnP2PBggUcd9xx+yV1Tz31FDfddFPX9IUXXshDDz3ERRddNOh9KxUJjnCAsOyfYElGKQCmYXtvm8SFVn+IsVKHP2kMW8NjCMZxgtXqD1Ka2Moek2HN2LM+qvFEy94WP7NyhWTxE3QkQu1mCB5YjT3W7WryMSbVwzRnpTVDnHGbdCulLGJGUD3huXPnmp69xa1fv57Jk+OzAfHhuvfee/frDCMe6fdHHax3frqI4kQfxd97r2veo8+/yAVLL6L1nL+SPCc+k/6fP7uOz7x/CdkFR7CkMsz5aetxf3fTwBvGoAk/eo5X0n7G9hYnCzzleGZ9Fj59e7TDGnYn3fY6nxjTwk3bLmNz2gLGNy2FL78DeVOjHdqwuvLv71Pf1sE1TXdxeuA1vMUzwYThCy9GOzSl1BATkeXGmAN6YtMSLKWU6sZpAoR7VBFMG3skAM274rfUpsUfIkeaSEjPY7vJw922Bzpaox3WsPMHQwRChnTTTIsjld2eMtgbn4lmbUsHBZ52AFY67KSq5uMoRhQdLf4gqYkuxiZ20EwS5EyAui3RDkspFUWaYMWwq666Kq5Lr5Q6FO5eEqz8MbnUmxT8e8ujE9QI0NYRxIuPpJR0KswYa2Z9eVRjioYWn9VhT1KwkXBiJlVmDNTHX9XRcNjQ4g+SI1YHD+/6yqwFcfidaPUHSU5wke3y0xBKIpheCq014G+JdmhKqSgZFQnWSKrGqEYP/d6oQ+E0QYwjYb95nWNhSWP8joXV6guShA+PN529CfYA6HXxV6LX6g/hJIQn2IQjOYdNHVnQVAWhQLRDG1atHVaimY7V4dLKplSMNycuk80Wf5AUj4s0h49mkmjwFFoL4rjNplLxbsQnWImJidTW1urDsjooxhhqa2tJTEyMdihqFAmHDQkECDv3T7DSk9zscowhqaUqSpFFX9DXigMDCcmEM8usmXXbohpTNDT7A6RjVY1MSMthvS/Tam/TGF/fjVa/NTZimrESrJpwCh0pRRCHA3K3+oMke1x4TRstJokdEr8lvEopy4gfB6uoqIiqqipqamqiHYoaZRITEykqKop2GGoUCYTDuAmC033AsiZPIekdK+N2LKxwhz00hCeFzKwxNNWnkhanJViZYp2L5IxctoftH3EatkPWuH62jC2dJVip4UaMOGnCS1NiAbkN8dcGq9UfItnjIjHUSjO51AdzmQmaYCkVx0Z8guV2uxk3Ln7+01JKRU9H0EqwOhwHDj3gSykmobYDWnZD6tgoRBdlHXZ7koQUirOSKN88hun124i3VLOlWwlWenYelaYzwYqvkptWv5VgeYNNhBMzoF2ocY0lt+FlCIfA4YxugMOkIximIxQmxePEFWyhlVJ2tLjBk6YJllJxbMRXEVRKqeHSEQyTIEFwHViCJXa1OBOH1eIA8Ns9BiYkU5TppSKcS6gu/tqYtPhDpEkbANlZuVSbbMLijLu2Ry12gpUYbsGRlIHLIVSYXAgHoLk6ytENn85EM9njQvzNhBNSqaxvh8xSTbCUimOaYCmllC0QMnYVwQNLsBLHWCXpLbvjs/tlR2BfCVZRZhKVJhdHU5VVWhFHWnxBkvEBkJ2VhThcNCWMibsODTrbYCWE2hBPCoWZSWzpyLIWxlFpXmeimeI2EGjD5U2jqr4dMss0wVIqjg15giUiZ4rIBhHZLCLfH+rjKaXUoeoIhkkg0GsbrPT88QC07Iq/BMsYgyNgldpYVQS9VJlcHOEANO+KbnDDrNUfJFmssZ9cSWkUZiaxxzk27kqwOktu3KE2SEilJMvLmrZMa2EcnYvOtmgZTj8ACckZVNa3WQlWQwWEw1GMTikVLUOaYImIE/gj8ElgCvA5EZkylMdUSqlD1REKkUAQXAeWYBXmZrDLZBLcG39VBP3BMInGSirwpFCYYZVgAXFXctPsD5Jil2DhSaE400tFOCeuSm1gX8mNK9hqnYcsL8sbUgCJq+9EZ6KZinV/JKdmsrvJTyCtBII+q82mUiruDHUJ1nxgszFmqzGmA3gIOHeIj6mUUoekIxAmgSDSo5t2gKJML5UmF2dTfD1IA7R1hEgWO6lISCbZ46I5scCajrPEotUfJNMurSAhleIsLxv9WdCyCwLt0Q1uGLXZJTfOQKtVqpnpZU87hFPjqzSvxa4qmWq3y0tJs0rx9rrsjnDiKNlUSu0z1AlWIVDZbbrKntdFRK4VkWUisky7YldKRVNHMIBDDA7XgQlWisfFbkceSa3xNd4R2NXiOkttElIAcGaWWNNx9DANVhusDJcfXIngdFGS5WWjP9ta2FDZ/8YxpDOxkI4W8KRQkuUFwOeNr7Gwujq5sEuwMrOs70KVscfCiqNzoZTaJ+qdXBhj7jbGzDXGzM3NzY12OEqpOBb0W0mE9FJFEKA5qYj0QA0EO4YzrKhr7TgwwcrLzqBGsuLuF/qWjiDpTn/XeSjJ8sZldclWfxBvgtNKsOyu+wEaPPlxdx4Aku0qtNnZOQBsCcRfezSl1D5DnWDtAIq7TRfZ85RSasQJBqyqX72VYAEE0opxEIbG+CmpAHsgVfERdrjBPjfFmV4qQjmYOHuAbPEFSXP4wGMlWMVZSVTFaYKVmiAQaANPalcJ1i5HHjTtgFAgyhEOj84EK8lYVQSzsnJwO4XyRgMpedBQHsXolFLRMtQJ1gfABBEZJyIJwCXAU0N8TKWUOiShDquUxuHuvQTL0TkWVpwlFW0dQbz4CLuTu+YVZyVRYXIJ1ZVHL7AoaPUHSREfJKQCVgnWHjIIOhLiqrSixR8k12MlFySkkJ7kJjXRxfZwLpj4+RGitcOqKukJWcMYOBPTKMhIoqq+DTJKtIqgUnFqSBMsY0wQuB54EVgP/NsYs3Yoj6mUUocq0FmC1UeClTjmSACad28etphGgs6kYr8Eq7PTj5ZqCAWjGN3waunsRTDBOhfpSW5SEhNocOfFXQlWttuuKutJQUQozvSywW+PhRUnyWaLP4jbKbg7x4lLTLPujfp2yCiNm/OglNrfkLfBMsY8Z4yZaIw50hjz86E+nlJKHapwwCrBcvaRYGWPLaXDOGmLs7GwWv0hvPi62h0BXWNhiQlBU/x0/NHiD+KlvauKoIhQkuWlWvLi6mG6tSNEtstOsLq1R/uoJd2aFyfJZqs/SLLHBf5mEAe4vVa10bo2yCyFxqq4+gFCKWWJeicXSik1UgQD1gNjXwlWUXYKO0xO3FWLa+sIkkI74tmXYBVkJO7rKS2OEosWf5Ak0yPZzPSyLZQTN0kF2N3Vd5Vg2dUls72sbEzGOFxx851o8QdJTnCBv8k6DyIUZXqpbe3An1IEJgTNO6MdplJqmGmCpZRStq4SrITEXpcXZ3mpNGNwNcZXu4oWfwiv+HF0S7A8Lie+lCJrIk7amRhjaPUHSTRtXSVYYCUWH/uyoL0efE1RjHD4tPqDZHSNB2Z3+JGZRHsQQqmFcZNstvqDpHSWYHnSAOvfCYA9TnssrDhJNpVS+2iCpZRStrDd/bqzj27aE91Oat35pLTHV2eonSVYjsSU/eZ7MosJ44ibh2l/MEwgZEgItXV1cgHWA3V5yOqeO17ORYs/RIbT7rq/q0dFK7Fo9RbFTVLR6g+R7HHun2BlWl3WV3R9J+LjBwil1D6aYCmllK2zBMuV0HuCBdCeXERyqNF6oIoTVjftfiRh/wQrPzuV3WTHzQOk1SW3wR1q378EK8tLRZxVl2zrCJIm+4+N1tlVe517bBwlmp1tsJq6qkp2JpqbOzIAiZtzoZTaRxMspZSyhew2WAl9VBEEMHZX7fHyIA12Q37Zv90RWG2PysO5hOOkTVqLP0gSfmsstP3aYCVR2ZVglUcnuGEUDhvaOkKkOjpLsKzEojAzCRHYKXnQWgMdrVGMcnh0VRH07UuwspMTSHI72d4QhLTCuPq3Qill0QRLKaVs+0qw+k6wEnKPAKB9T/z0JNjaESS5W9fknYqzvFSFcwjHyQNkVxftsF8JVmFmEk2SjN+ZHBelFa0dVq94yexfguVxORmblsjWYOfAy7FfsrlfL4KJVhVBEaE4K4lKHQtLqbilCZZSStk622CJK6HPdTIKJwHQWPXxsMQ0Evj8HXjo6PqFvlNJZ6cfrbsg6I9SdMOnxRckWdqtiW5tsDwuJ/lpSex15cdFaUWbPbhusrTbXZMndS0rzvSyvj3TmoiD0ryW/Tq56NYuL9NLZWdX7XGQdCul9qcJllJK2UxnkuDsuw1WUf5Y9po0OvZsGqaooi/os9ubHVCClUSl6SytqBzmqIZfV0ke7FeCBVZp3g5y4+JhusVvlWB5TbuVaIp0LSvO8rKi2SrJifVk0xhDiz9IauL+bbDALt2tb8dklEDTzrj4AUIptY8mWEopZTPBgPXG6e5zndJsL+VmLM76rcMUVfSF/S3Wmx4JVl5qIrsddtujhvLhDSoKmn3dqgj2bI+W5WVzwO7ww5goRDd8Wu0EKzHc3mup5sctHozbG/PJZnsgRNhAmttA0NfViyBAUWYSLf4gbd5CwFgDDiul4oYmWEopZTMh++G5j27aAbwJLqqdhaS0xvbDY3cOvz22U7cHSACHQwiklVgTcdDOpMXfrYpgjxKskiwvG/zZEGizOniIYa1+q4qgJ9zWS0leEsYIgdTimC/BavFZiWaGyy6d6nZ/dPYkuMuRZ82I8WRTKbU/TbCUUqpTVwlW322wAFqSS0kP7oXOkp0YJ50JVmLaAcuSsgoJ4Ir5h2noWYLVW3s0u7pkjJ+LzhIsazywAxNNgKbEgphPKpo6EyxHZ9K9fxssgO06FpZScUkTLKWU6hTqbIPVf4IVzBhnvamLj2qCzoDdBstzYIJVlJ1CNTlx8QDZ1B7Y1zV5Lz0qdnXVHuOJRWcvgu5Qa68leQB7XWOtRDOGq0t2tkVL7y3ByrI6/tjYngYOV1x0+KGU2kcTLKWUsjmC9oOS29vveu68iQD446CjC38wRGKozZroJcEqzvRSHsolVLdtmCMbfs2+IJluq6fJ3qrG7SvBiu1z0ZlYOAOtB5Rg5aZ68Lgc1sDLHc3QVheNEIdFZxXB1M5SzW4lvKmJbjK9bioa/JBerAmWUnFGEyyllLK5Qj4CuMHp6ne99EIrwYqHrtpb/SFSxU6weqkiWJrtpcKMwcTBYMPNvgDZTruUs2dikeIBdxJN7hyI8XPRZrfBcgaaD0i6rTGgvGwKxH6y2eK3qhQnc2AJFkBJdjIVtW2QNU4TLKXijCZYSillc4fa8Dv6HmS4U3FeLrtMJoE9G4chquhq8QVJpe8SrJIsL9tNHi5/PbQ3DG9ww6zJFyTb2QaJ6eBw7rdMRCjJ8rLLmR/zVUeb/UFEQHyNkJR5wPKSLC+r2rKtiRgu2Wy2S7CSTas1o5d2eRV1bZA5LqbPg1LqQIeVYInIbSLysYisEpHHRSTDnl8mIu0istJ+3RWRaJVSagi5wz46JGnA9Tq7anfE8K/znZr9AVKlnbA4D2h3BJ0lWHZPaTF+Ppp9ATIdLb0mFWA9UJeHx8T8eWhs6yDLA9LR+7kozkxiWWMqBonpZLOzqmRS2G6j2ONclGZ52dHQTiijFHwN0F4/zBEqpaLlcEuwXgamGWNmABuBH3RbtsUYM8t+XXeYx1FKqSHnCbfR4Ry4BCs10c1OZyGpcdBVe2cJVsidst+Asp1SE900JBZaEzH+K32zL0gGrZCY0evyokwv63050FwNHW3DG9wwamgPUOy126IlZRywvDjLS63fgUktiOlks7MNlqej0ZrRI8EqyfISChvqEuz7Q6sJKhU3DivBMsa8ZIwJ2pPvAUWHH5JSSkWHO+wj4Oi/g4tOLcmlpIQaYr5aXLMvSKq0YXpUf+rOkWX3qhjDD9Ng9yJIa78lWJuDnW2PyocvsGHW0BagIMHu2KG3Eiy7J8G2lOKYLsFq9gfxuBw4ffXgST+g7WZJtnUeKrBLeGP8Bwil1D6RbIN1DfB8t+lxIrJCRP4rIif0tZGIXCsiy0RkWU1NbA/OqJQa2RLC7YRcA1cRBAhlHGG9qdsyhBFFX4s/SBrtGE/fCVZeTjZ7yYz5B8hmX5CUcHO/Cdb2OKgu2dAeYKynM8HKOGB5Z1ftdZ7imP5O1Ld2kJWcAO11/Z6HzQG7PVoMJ91Kqf0NmGCJyCsisqaX17nd1vkREAQetGdVAyXGmNnAN4F/iciBraMBY8zdxpi5xpi5ubm5h/+JlFLqEBhj8ITbCbsGV4LlyRsPxH5X7Y3tAdKkFUcvD5CdSrKTKQ/nEq6N3dKKcNjQ0hHEG2rq9WEarJKbchP7pRVN7QHyXHYVyH5KsHbKWGjdA/7m4Qxv2NS2dpCdkmC1rfJmHbB8bFoiCU4HWxsFknNjOulWSu1vwATLGHOqMWZaL68nAUTkKuDTwKXGWCMKGmP8xpha+/1yYAswccg+hVJKHSZfIIwXP+EBxsDqlFE0ibARGqs2DHFk0VXb4iebJlypY/pcp9QuuQnHcnUwXxBjDImhvkuwirOSaCIFnystpqvGNbR1kOPs7Lo/44DlKR4XWckJbAnZ35kYLbmpbfGTneyxxvpKOjDBcjiEoqwk7UlQqTh0uL0Ingl8FzjHGNPWbX6uiDjt90cAE4DY/d9GKTXqtfiDeMUPCYNLsErGZLGT7Jjvqr22tYNsRzOS0ncNg7IcL9vDeThbdkHAN4zRDZ+aFj8ptOMwoT4TLG+Ci5wUDzXu2O3cIRw2NLYHyHL0XYIFVinWen9nV+2x+d//3pYOsjurCPZSggX2jw+1bZBZBvWx3ymOUspyuG2w7gRSgZd7dMd+IrBKRFYCjwDXGWNidzh3pdSo19YRxIsP6aUr8t6U5SSzLTwWV0NsPkh3amhpJ5Nm8Ob0uU5JVjLbzRgEAw2x+RC5t8VPlnR2x937wzRASVYSlYyN2dKKZn+QsIFMGkGcffaoWJLl5YOmdGsiBs+FMYbaVr9VRbCtvs/vREmWl8q6NkxmGTRVQbBjeANVSkWFa+BV+maMGd/H/EeBRw9n30opNZxa/EHy8SMJKYNaP8XjYre7kKPb3hniyKKro9nufCi57wQrJyWB3a4Ca6JuK+ROGobIhldtSwd52OMYpeX3uV5xlpeNtTkc63sTQgFwuocpwuFR2+IHIDNUC6ljwdH777Rl2V6eW+3AZOQgMViC1dYRwhcIk+t1gL+xz/ujJDuZZn+Q1uQSUkwYGiogp9dHJ6VUDIlkL4JKKTVqtbW1kyAhnJ7BlWABtCaX4A01W20wYlXrXutvct9VBEWEcEaZNRGDpRVglWDliZ1gpYztc73SLC/rfFlgQtBYOUzRDZ89zVaClRa0E6w+lGYnEwob/GmlMVldsq7VKokqdDZYM1J7T7o7exKsdtjnKkbboyml9qcJllJKAb7WJgCcSYMrwQIwmfb4TzGaVAA42zsTrL5LsACycvJpwRuTD9NgldyMddgJ1gCJxbawvTwGS246Eyyvf0+fSQVYJVgADYlFMXl/7LVL8vLF/nElraDX9Urt87Al1Dk+WuydC6XUgTTBUkopINBiJRKu5OxBb5Mwxuoc1bc7Nju6CIUNHn+tNdFPCRZAaY7VDsvE4MM0WJ1clLibwenps2MHsB6ot8dwV+17mqxOTNztNZCS1+d6nYPs7nIWQGMVBP3DEt9wqW2xSrCyw/YPEH0kWMWZ9lhYrV5wJcXkd0IpdSBNsJRSCuhostoaJab33R15T1lFE6yu2nfEZlftu5p8FGI/QKYX9btuSbaX8vAYQntjc+Dlqvp2ShIardIrkT7XK8n2socMgo7EmKwOtrPBR5o7jKO9rt8SrNwUD94EJ1tDuYCJuR70djdbiWZGsP8EKynByZhUD9vr2u2eBMuHJ0ClVFRpgqWUUkDA7swhJavv6l89dXXVXrN5qMKKqsq6NopkDx2eLBigd8XSrGS2m7E4miohHBqmCIfPjvp2iqQO0gr7Xc9KLFzUJhTEZBXB7bWtzM1otSbS+z4XIkJpdjLrfHbV0hirGldZ106C00Fqxx5wJ4Mnrc91S7K81lhYWeNi7jwopXqnCZZSSgHhziqCqf1Xheuuc/wnV0P5EEUVXVX17RRLDSajdMB1O6vGOcIBq0pYDAmHDVX17YwNVUH2kf2uKyKUZHnZIbHZVXt5bStzku1qo9n994ZXlu1leXOGNRFjyWZlXRuFmUk46ssho2TAUs2uwYbry8GYYYtTKRUdmmAppRQgbfZDo3fwbbC8CVZX7altFUMUVXRZJVg1uLIHTrDy0xPZIXabnBj7lb6mxY8n1EJKoG7ApAKgLDuZLcFc62E6HB76AIdJKGyorGvnqITd1owBzkVpdjJrGlwYT1rMJZsVdW0UZ3lh7wbIndjvuiVZXnY1+QiklUCgDVr2DFOUSqlo0QRLKaUAp68OP54Bq8L11JpcQnKoEdrrhyiy6NlZ10iRoxZn1rgB13U5HQTSyqyJGHuY3rS7hTLZZU0MIsEqzfay1pcNwXZo2TXE0Q2f6sZ2OkJhSqm2Bhj29j3gMlglWIEQBNJLY6oEKxw2bK1pYXymy0qic/of960024sxUOO222nF2A8QSqkDaYKllFJAgr+OFmf6QW8Xy121t1atx00Q8qYNav2k7CICuGLqYRrg411NTBC72uMgEqySbC9bQnZnKTH0vdhaY7W9GuPbBjn9l9rAvp4EmxKLYyqpqKpvp7UjxNy0ejDhAc9F51hYFZ29S2pHF0rFPE2wlFIK8AZqaU/o/xf53njGTACgPca6avcHQ3jr11sTg0ywSnJSqTR5mBh6mAZYX93MwsTtkJACORMGXL8sO3lfV+0xdC4+qmzASYi0+rVQOGfA9cuyrdLgXa58qxfBGOn8ZP0ua8y8qdg9Zo6d3u/6JVnWedjozwAkppJupVTvNMFSSsW9Zl+A/PBu/CnFB71tcoH1wN1avSnSYUXVxl0tHMU2Qg7PoEptwPqlflt4DKG9sVWCtXpHA3NdW6FgNjicA65fkuVlp8kmLM6YKs37sKKeT2TXIYE2KDx6wPXHpiWS4HJYyWYMdX6yoqIBt1MobF4NiekDlmDlpCTgTXBS3hCyhjuIoaRbKdU7TbCUUnFvR30rhbIXk1Fy0NvmZ2dQbbII1MTW+E8fVTWwwLGeQP4ccLoGtU1ZdjIVZgwSQz2l7W3xs2N3DaWBLYNKKgAKMpIQp5vGhPyYKa0wxrCisoGz0uzPUzR3wG0cDqE0y8v6zq7aYyTZ/KC8jumF6biqlkLRPHD0/yjV2bNkRV2rjoWlVJzQBEspFff27tyOR4Ik5A7cmUNPhRledpgcpCk2fp3v9MG6zUx1bMczYdGgt+nsqt0ZbIXWmqELbhi9s6WW4xxrcJogjD91UNs4HUJxppdqx9iYKa34qKqRhrYAC0PLIetIyDpiUNuVZntZ0ZJpTcRAgtXQ1sHKygbOLPRZPQgeecqgtivuHAsrsyxmkm6lVN80wVJKxb2mamug4LS8/sc46k1uqodqk42ntTrSYUVNe0cIz7ZXcGCQIz8x6O2Ks7yUd7Y9ipGHyOdXV3OOZ4XV1XjJwkFvV5LtZWt4TEwkFWCdhyxHK3m178PEMwa9XVGml9VNSeBKjIlk8+V1uwmFDZ9yLbdmTDxzUNuV2gmWyRwHrXvA3zKEUSqlok0TLKVU3PPt2gBAetFRB72t0yE0ecaS2rE7ZsY8en3DHj7Nm/iSCwdVFaxTottJW7JdzTIGHqbrWztY+nE5p8t7yLQLwOke9LYlWV7W+3PA1whtdUMY5dALhMI89dFOvpG3Cgn5YcbFg962ICORJn+YUEZpTCTdi9+v4IhsLwXbHoHCuQMOPN2pJNuLLxCmKanImtGwfQijVEpF22ElWCJyi4jsEJGV9uusbst+ICKbRWSDiAz+5y6llBpmntr1tEsSkll2SNv7vPm4TCAmqsUZY3jmtf9yonM1CUdfBiIHtb07u5RwjPSUdv9727nYvERC2AdHX3VQ2xZlJrGxw257NMqTzWdXVbOnsZXPdjwBBXMgf+agty3ISAKgLaVk1H8nVlY28GFFA987cjuydwPMvWbQ23Z21V4lsVXCq5TqXSRKsG43xsyyX88BiMgU4BJgKnAm8CcRGbjrJaWUGmbGGMa0baYm6YgBG6v3uY90+1fpGOgl7d0ttXxy7z8IOhJxzP/SQW9fmJPBbrJHfdW43U0+nvjv+3wt4WkYfxoUzDqo7Ysyvfu6ah/FD9P1rR38v+fW88OMV/C2VsJJ3z2opLszwar3FFqJ5ijt/MQYw/89t548r3Dqzj9bbalmXDTo7TsTrC2BXGvGKE+6lVL9G6oqgucCDxlj/MaYbcBmYP4QHUsppQ5ZVV0rEynHnzX5kPeRkGVViws1VEYqrKjwB0O89Ng9nO18D479GqTkHvQ+SrK8bAuNITyKEyxjDD95fBU38VcSnWE461cHvY+izCQqzOgebNgYww8eW0122xauDjwEk88edJujToV2glXtLIBAG7TsHopQh9y975SzdFsd95Y8i3Pvx3DmLw6qymhRphcR2Nzitrp2154ElYppkUiwrheRVSLydxGxuwqiEOj+pFFlzzuAiFwrIstEZFlNzeivXqOUGl02rV1GurSRdOQxh7wP75gyAJp3j84HabAepu/494vc0Pp7mjKn4lr0nUPaT2FmEuUmDzOKk4r/e2498zbdziLHChyn3TroHvO6K8r04sNDqyd31Jbm3ftOOSvXruXfKb/FkZgGZ/3moKuM5qZ4cDuF7eHRW5r36vrd/O+z6/lp4ftMLn8AFnwZJn3yoPaR4HJQkJ5EZV0bZI4bledBKTV4AyZYIvKKiKzp5XUu8GfgSGAWUA385mADMMbcbYyZa4yZm5t78L+WKqXU4WjZ+AYA+TMG31teT7k5ebSYRPy1FZEKa1iFw4Y/P/YSl274KgluF2mX3Q8uzyHtqyA9iQqTh7O9FnxNEY50aIXChh89uoKCd2/mS67nMPOvhUOoJgmQ6XWT5Hay11046korjDH8aclmHnzmJZ5O+TkpphUufQRS8w56Xw6HMDY9kU1++/fXhtF1jzy5cgdffmA5P8l4iStrf2dVFz39Z4e0r5IsL9trWyFr3Kj7TiilDs6Ao0caYwY18IeI/BV4xp7cARR3W1xkz1NKqREldfcH1DuzyMwqO+R95GcksdNkkzIKqwg2tge4//6/cdmOn+F2uUj6wjOD7hmtNwUZSVR2Vo1rrITEqRGKdGjtavRx2+LnuGTn/zHPtRFzzPXIaT876BKbTiJCUWYS1eEcShs3RjjaoVPb4uf7j64ib+ODPJu4mITEdORzTx50G7TuCtKTWNdm/547ShKsxvYA//vMOpYsX8P96Q+woO0dmHIefObug6oa2F1JlpdXP94DE8tg/TMQDoFDm6crFYsGTLD6IyL5xpjOwV/OB9bY758C/iUivwUKgAnA+4dzLKWUirTGtgATO9ayN/doMg/xQRogPz2R5SaHqc2jq5OLN1dvpv7x73J9+FXqUsbjveY/SPbBV4frbmx6IjvJtiYaqyBvZCdYgVCYxW9/TP1rv+dn5nFcCQlw9t3IzMF3Rd6XoswkyndnsbB1B4SC4Dys/3KHVDAUZvEHlTz34nPcELqPBe71mHEnI+f+EdJ7reE/aIUZSSzd1g4pedA4shMsYwzPr9nFz59axaltz/Fm8iN4gh1w+v/CMdcfcsINVlfte1v8+FNL8YQD1v2RWRrB6JVSI8Xh/mv/KxGZBRigHPgfAGPMWhH5N7AOCAJfNcaEDvNYSikVUWvXr+ZYqWXbuOMOaz+piW5qHDkktX8YociG1uYdNXzwn19xZv2/SJM29sz4MmPOvhncSYe9b7fTQSC5EAJYJVgjVChseGrZNja+8jeu8C8mX+poPeIMEs67/bATik5FmV42bM8AQtCyCzp7mxxBQmHDUx/t4MmXXuW8lodY7HyHoDcLTv0dcvRVh5VQdCrISGJXkw8zrgQZoSVYxhje3lzLb15YS0n1C/wn8TEK3Lug+AT49O8gZ/xhH6Mo07q/atz5FIFVTVATLKVi0mElWMaYy/tZ9nPg54ezf6WUGkq16/4LQP6MUw57X62JeaT46yHoP+T2S0NtQ9UeVjzzF06s/gefk1qqso8h5TO/YEzRrIgex5MxlmCNC9cIrDLpC4R4dulaGt64i7P9z3K+NNCYPR1zzv0klx0f0WMVZSbxTkcmJGCVVoygBMsfDPHUih188PrjnNX8KPc6PyKUkIg55pu4jr/B6ukuQgoykgiFDb7kApL2ro7YfiMhEArzzKqdPPDftcyoeZo73S9RmLAbM2Y6nPIHmHBaRJJM2NejYgV5doK1DTgpIvtWSo0sI7e+glJKDbHEnUtpFS/JhdMOe18d3nzwA007rUbsI8hHm8rZ/NwdnFD3KJdIAztTJtP0qbspmjKoJrYHLT8zmd17cygcQeOC1TT7eer1t0lecTfnhF/DK35qxh5P+LRvk37koog9RHdXlOllh7GrSzZUQsnCiB/jYNW3drD43c3sevdfXBJ4is86tuPz5hA+5kc4538RvFkRP2ZBRiIAjZ58khqeg3D4kMeci5TG9gCL36/g2beW8an2p7jP9Top7lbCxQvh2N8gkz4V8RgL7RKsbf50jnW4taMLpWKYJlhKqbjkD4Yoa1tNdcZMxkegobmkF0E90LRjRCRYxhjeW7mK2ld+z6KWZ5kpPrZnLqTljO9QcNQnhiSh6FSYkURlKIuCxiqG7iiDs2FXMy+/9DTjN/+Dq+QDjDipG38uSad9k9yxh59Y96coM4mdJseaiHJ1yW17W3lwyUckrvonl8kLjJV6WjPHY076A4nTLwJ34pAdu7PkZrczj7HhgFVdMq1gyI7Xn8q6Nv7+9jbWfPBfLjVP87hzKU63gcnnwrFfw1F09JAde0xqIi6HsKOxAzKKoX77kB1LKRVdmmAppeLSus3lzJYqNhZfFJH9uTOLoByC9ZW4yiKyy0PSEQyz5K034J07WORfgkMM5WNPp/Cs71FaOmdYYijISGKHySbcsJVo9JFmjOG/H+9i5SuLOa5mMdc7NtLuTqVp5lfJXHQ9Y9LyhyWOoswk2kjE504nMUoJ1vLt9Tz26jscufWf3OBcQorDR2vh8bDoBpLHnzqkiXanfDvBqgzlMBOsngSHOcFaUVHPPW9swbf+Ob7kfI6bHesJuVNwzv0yzL92WNpCOe0u63c0tENGqZZgKRXDNMFSSsWl3WuWADBm2qKI7C8lz3pAa9mznYyI7PHgNLV38PpLT5K98i5ON8vwkcD2Iy6h9KzvMD53eEvUCjKSWG+ycbS8Pay95/mDIZ5ZtpXKJX/nnLbHWOTYRZO3gLZjf453wVUkeVKGJY5OWckJJLmd1LvzyB/G6pKhsOGV9bt5+dWXOLHmX/zUuRRxC4GjzocTv0Fy/oxhiwUgxeMiw+tmU4dd/bChYliqS3aeh3++sZ6Sqqf5lvt5xrl3EkothGN+jnPO5RFtazYYhRlJ7Gxoh8JSWP/0sB5bKTV8NMFSSsWnyvfowEXGkQsisrvcrCzqTQqBuuEtqahuaOXtZ/7J+E33cK5sosmRzrZpX6fszG8wITlnWGPpVJCRyKsmBzFhaN4JGSVDerwmX4BH31qF/527uTD0HDnSRH3mVIKn/Jy0aedFrXv0zrGwdgdzhiXB8gVCPLq8ko+WPMa5rY/wa+daOhKSMUd/GddxX8EZxU42ijO9rG21e6lsGNqqce0dIR75sIpH31zJSQ1Pcqf7ZTLdTYTGzoTjfoZzyrmHPJbV4SrMTOK9LbUwrQzaasHfAsOc+Culhp4mWEqpuGOMobBxBVXeKRwRobYnBemJ7DJZZDYMT0nFx5V7WPXsX5hb/SAXSjV7E/LZOe9nFCz6ImkJ3mGJoS+FGUns6Gp7VDVkCdauRh+PvvY2GSvv5mJexyt+6gpOwpz2LTLHnTgs1d8GUpiZRMWubGY1rAZjhiSmutYOHnh7EzXv/ovPh57kUkclvuQxhI77KQnzrh72UpreFGUmsWF3MySPGbLBhve2+Pnnu9t54523+WzgaR52vYnH3UF4whlw7Ndwlh0f9e9Eod1lfTCtxHoAa9g+4seKU0odPE2wlFJxZ9vOXRxltrIp/+qI7XNseiLvm2xyW3dGbJ89GWN4f/02tr94J4saHuUiaWBn8iT2nngzOfM+O2IGsk1PclPryrMm6rdD6bER3f/G3c08++LzTNj8d66T9zDipHnCeXhP/RZZeVMieqzDVZSZxPrt2ZxDM7TuhZTciO27fG8r9/93FZ6P7udyeZ58qaMtayLmpD+ROP2z4EqI2LEOV3GWl1c/3oMpKY74WFhba1r465vb2Pbhq3xBnuKbzuWEExKQmZfAsdfjyJ0U0eMdjsKMJMIGat355IHVDksTLKVizsj433iEWvnKYlzv/xlfYi6B5LE40vJJyCgkIWMsSalZeDNyScvMISkpBYlyl7MDCYdCBINBwuEgoWCQYCiECQUJhYKEQ0FCoRDhUIhwOEQ4FAQTAhPGhI29B2P9+mq9s/4ag7GnjAHBYMz+y/fTc9rW3w+K0u+vjdL/j5EDbdtP/2bi6HuZ6XfLAWIe4NfTgT5vv9uO0O9g9MsQDlT1/rMcISHSpp8ZsX2mJrrZ68jB274lYvvsFAobXn9/Bc1L7uC09udZID4qshbScvrQ9wh4KESEcHoJoWYHzrrInA9jDO9vreXtFx9mYfUD3Ohch9/lpXXWdaSd9DUyIzQ4cKQVZXp5r2OMNRZW3ZaIJFjLt9fzn9eWcsSWf3KD8zVSHe20FR4Li76Jd5g6rjhYRZlJdATD+FMKSdy7JiL7/LCinruXbCK04QWucz3N0a6NhDwZsOA7OOZfCyljInKcSCqwO/yoMrl2gnX41SW31LTw3KpqLltYSmbyyEmqR5JgMES7rx1feyt+n48OfzuhgI9wwE846IegH2O/wqEgJhy2nofCYcLhMCYcAmMQ7JcJ4xDruQdx2Pecw+raXxxI5zwREKf1f7s4u+aJPc84HF3vEQficNjPAdZ6DocDkP3mizgQhyBivxDrmcXez76XvY3Y24O9Xwem8xjse2azlu6b6nqG6/HsZnqZ1ydjuv/pvodu7w/c175nz27z3F7ScotJ90aneu/B0gSrHyYcwmUCFDSvIqdxCQnVwV7X6zAumiQFv3gISgIBSSDo8BB0JBByJBB2JGBwdHvS7PGfnzjAhMGEERPCYYL23+6v4L73hHB2/Q1bf+2Xg7A9L4wT669Lwjiw/n9XSkER0EAKBRHq4KJTa2IeXn8TdLRCQvJh788XCPHyktdxvXcnpwbfwCGGysIzcX/ye5QUzzr8gIfQmMw0dreOpWDvpsPaTzAU5sXVFWx65V7ObHqEbzoqaUnKpe2Ym/Ee8wU8I6D6W3+KMpPYZsZaE7WbD7lzh3DY8PL63bz06qscW7OYnznfwekydEw6G068AW/h8PQQeaiKM61qqw0J+YxteP6Qx8IKhw2vb9jDPUs+prDqGb7rfpYj3DsIpRXDcb/COfuyiNx7Q6VzLKzytkSOTkg55PZoxhg+KK/n7je2sm79WuY7PuZBcyXXn3pUJMMdMXyBELWNzTTW7qa5fhftDXsJteyFtjocvjqcvnrcHQ04g224Qm14Qm0khttIMu14aScZH6kSIjXaH0QdshdDcyk/9W7+56Qjox3KoGiC1Y/Zp18Gp18GgAmHqdu7i/rdlfgadtHRUkewtY5QWwP4GnD4GpBgO46QH2e4A2fYjyvcgSfYist0gP2rB+z7hcAA0pmkC1ZKJPar2/uAw4ORZMLixNjzjMOFESdGXBiHE8TZ9RdxgsNaF/vXERxOK5Gz1xGHNa/73871rHkOa/84un4MFej6ZbSrDEekl7yxe8lSz19S95/u9zeQfn8h6f1Xj0Hu+NCPa/o/bn+byoDHDfe3sL8tB1wcLQN84qjKKJ1Bhiuyv4S1p5RYgw3XbYWx0w95P/Utfl5/8VFyV/+Vs/kQHx52TPg8xWd9m7KssojFO5TKsr1s3p5Hfu3mQyrFbPEHeeKdtTS+/TcuCDzNp6Se+rTxdJz8R1JmXjSiqr/1pyjTS5XJJSwuHLWbD3r7Vn+QR5dXsvqNJzi79VF+41xNICEJZl2D4/jrScwsi3zQQ6Ak20qwqmSsNRZWw/aDGi+uIxjmyZU7eOC/q1lQ9xS/d79IrruOUN50OP5WnFPOGzFVZPtTkuXF7RQ21rRA5jioPbgS3lDY8OLaXdz9xlY6qlbyVc/z3J34Dg5C/GZVKpz6wyGKfGj4AiF21zdRt6uC5ppK2msrCTVW42jZRZJvD6mBvWSEasmlnkJpp69y6lYSaZUUfI5kOlxegu4U2l15NLuSCbuTCbtTMAkpSEISDrcHp9uDuKyXcXoQVwLi8uBwJSJOJw6nC6fDgTicOJ0OHA6r9Mn6sVys2jriIGyMVdITNhhC1l/7B3MTtv8aA9ilYOHO92F7PYMxISRsrWdMyJ5n1RASYwgbqwaRCYcAu2TJhAF7vc7lXfPDdqUjO5bOGkim23No5/xe/3WWXt72sl5vJeW9lp73P0/EekI+cFf7z/Mm5XHyUSOvVLovI/9foxFCHA6yxhSQNSY6gyMqpUa+jsyJUAvUbDikBGvLzj2sfuEepmx/kM9IJc2OdKpm3EjhaV+jLDk78gEPoaPGprEhlM/xe19DQoFB99q2q9HH46+9jfejv/MZ8yqp0k5t3rGET/0WmRNGXnXIgRRlJhHCSUPyOLKqVw16u6r6Nh58exONyx7m8vBTXOGoxOfNIXTsT3DPuwa8WUMYdeSVZSeT5HbyYaCUuQDVKweVYNU0+3no/QreeO8dzmp/ln+53iDZ3U543Elw/A04jzh5VH0n3E4H48eksmFXM+TPgE0vDarzk1Z/kEc/rOIfb2xmUuOb3Jz4CrM9a6ykYc51NK14lAUNz7Kn+ZuMSR26QaMPVjAUZmd9G9U7ttG4czP+mq1Qv52k1ioyO6oZa3ZTRB2lsv+PcR24aXBm0+LJoT3xKLZ685DkHNypuSSm5eDNGGO/cnEmZ5Ps8jByyy1VPNIESymlIiSpYBLBTQ6CO9eSOP3CQW0TDIV564Pl1L/1N05qfobzpIWdiUdSfcxvyD/uMlIj1MvhcJs0NpV7wuNxhJ6DXaug8Og+1w2HDW9v2s2q1//D1J2P8D/yEUaExvHnwKnfJDt/5jBGHlnZyQmkJrrYlDCZBVX/7bdqXDhseHdrLS+++Q6FW/7NF51LyJZm2rMmwkl/sr5TLs/wfoAIcTqEo/JTWdKQxLUON+xcCVPP73VdYwwrKxu4/52ttK55nkvlBb7mXE04wY1MOx8WfgVHwezh/QARdNTYVN7ZshczdTay8kForOyzp8311U38a2kF/12xjrODL/Mfz2vkJOzFpJXAvFuROVdCUgbBUCLHf/Ab/vnW+1zxyROH9fMYY6hp9rN15x5qt6+lfed6XPWbSG8tpyBQSZnsokQCXeuHERqc2TQlF9CUvJDGjFLcWcUk5xSTkVeKN7uIhKRMxogwesorlNqfJlhKKRUhU4tzKTdjyapYyUBp0aYde1j/+mLytzzCIrOKMEJ5zok4P3EDBZNH16/yvZmcn8oqsduDbH+31wSrurGd199dim/5Yk7veIUTZC/NnlyaZ3+T9OO/SFba6K8xICIsGJfN6ztKWdDRCHvWHlC6ubOhncff38yuZU9wWvuL3OpcTdjlxD/+TFj4BZKOPGXUfx8AZhZl8NAHFYSKZ+DcuuSA5bubfDy+YgfvffA+cxpe4NvOtyhw7SWYPBYW/BjHnCtHZMcVB2tOaSaPr9hBlXcqxQDb3oTZl3Ytb/YFeGHNLv69dCupO97gs643udn5IS53AMpOhvnXIhPPsKr827KOu5rwB7fjeP8vNJ50zJB0BBAMhamobaWicjsNlesI7voYT+NmMtvLKTM7WCh7u9YN4aDWXUBT9ji2ZX6ChJwjSC+YQGbhBByZJWS5PIyuMlilDo4mWEopFSHTCtJ5JjyFS6rfgkA7uJP2W767vokVS55APn6ahb63mCBt1DjHsvmorzPu1C9xRObQDsg7nLwJLsaPn8CWihKOWPUQcsxXQYTaFj9vfriK2uWPM6v+JT7vsDrBqMldQOCkX5M65dNRGwR2qJwwIYc71k/hu143jg//CWfdxt4WPy+tqqBi2QtMqHmRKxzLSJV22lPGEpj3fdxzryQpBhLM7k6fmse975SzPusTTFvzK9i1hoa0ibz28R7eXLaC9O0vc7bzHa5zbCLschAetwjmXoHrqNj6Tpw6eQw/eQIe2ZnNjZnjYMX9tE+5mDc27+WZFZU0bPgvp5j3+Yv7PbISGgknZeOY8QWY+wXIndj7TjOKaZx4AZ/d8AS3PfQUP7zqMzj66Q23Py3+INt2N1K9/WNadqzH7NmAt3kref7tHCE7OUJau9b1iYfapDJ8GfPZnjuJtJJpZBRPwZl9JGNcHi2BUnFLDuhK+2A2FnkY6BxgIgNoMMbMEpEyYD2wwV72njHmuoH2N3fuXLNs2bJDjkcppaLt57//Az+q/zHBs++EWZeycfMmKpY/T0L5f5nrf480aaNNktiZdwo5J1xDxuRTDqk3tdHg2VXVLHn4t9zmvpv1WadS3u6htHUNUxxWz2l7veNxzLqYrAWfh/SiKEc7dJp8AY7/xWv8wvUXzgy+zrsJxxDyNXG0bCRZ/PicKQQnnUPK3Eug7Pj9SiZiSTAU5qw73iTYtIdnHN+kzXh4OzCRiVLBZEclAB1Zk0iY83mYcTGk5Uc54qHzxfuW8camGm4rfpdzq3/Pm+EZ+I2Tuc5NZNBC2JGATDoDmfl5mHDa4BLMlj203bGQOr/w97E/5jPnfIapBWm9Dv/R6g+yq8lH1c5qGirX4d+9gYT6zaS1llMUqqJUduORfT0nNzozafCOI5g1Ac/Yo8gsm0ZywRRILYjZf7+UGgwRWW6MmXvA/MNJsHoc4DdAozHmVjvBesYYM+1g9qEJllJqtHtxVRU5j5zH0Y5NNJpk0u1fe5sllR1jTiLt6AspmHPWqG1LczCMMfzvM2vJf///8XnHK4QdLhpSJ+E66kzyjj4bGWGDAg+ld7fU8r+Pf8B1LX9ioWM9JikDd9kxZEw/Exn/ibj4PgBs3tPM9x5dTWrNcr7veIB8ZyOSM56UyafjOOosyBkf7RCHxZ5mH997ZBUrKur5tudxzgq/gSfJS1LpXBxHfRKO/AR4Ug56v2bnStru+yzJ/j18EJ7IRudEgknZuJxO3KE2EgLNpHXsZozZS4HsJUtaurYN4qQuoZCW1HGY7ImkFB5FVul03HkTISkzkh9fqZgxpAmWWD+PVACnGGM2aYKllIpnL76/FrP0L2Q6WkkeU0bhnDPJHDcnZksmBtIRDOPA4HLF5+dXalj5W/C99UdaP3qC1OatJBgfYHUu4XN4aU7Iw+ctIJxWgDt7HBnFU0kpmgKZZTFVFVOp4TDUCdaJwG87D2AnWGuBjUAT8GNjzJt9bHstcC1ASUnJ0du3H/6o5koppZRSCuhos/66k2KisxSlRpK+EqwBO7kQkVeAsb0s+pEx5kn7/eeAxd2WVQMlxphaETkaeEJEphpjmnruxBhzN3A3WCVYA38UpZRSSik1KAneaEegVNwZMMEyxpza33IRcQGfAbr64DXG+AG//X65iGwBJgJa/08ppZRSSikVsyLR9cupwMfGmKrOGSKSKyJO+/0RwARgawSOpZRSSimllFIjViTGwbqE/asHApwI3CoiASAMXGeMqYvAsZRSSimllFJqxIpYN+2RICI1wEjr5SIH2DvgWipW6PWOH3qt44te7/ih1zp+6LWOLyPxepcaY3J7zhxRCdZIJCLLeusdRMUmvd7xQ691fNHrHT/0WscPvdbxZTRdbx1+WymllFJKKaUiRBMspZRSSimllIoQTbAGdne0A1DDSq93/NBrHV/0escPvdbxQ691fBk111vbYCmllFJKKaVUhGgJllJKKaWUUkpFiCZYSimllFJKKRUhmmD1Q0TOFJENIrJZRL4f7XhU5IhIsYi8LiLrRGStiHzDnp8lIi+LyCb7b2a0Y1WRISJOEVkhIs/Y0+NEZKl9fz8sIgnRjlFFhohkiMgjIvKxiKwXkWP03o5NInKj/W/4GhFZLCKJem/HDhH5u4jsEZE13eb1ei+L5Q77uq8SkTnRi1wdrD6u9W32v+OrRORxEcnotuwH9rXeICJnRCXofmiC1QcRcQJ/BD4JTAE+JyJTohuViqAg8C1jzBRgIfBV+/p+H3jVGDMBeNWeVrHhG8D6btO/BG43xowH6oEvRCUqNRR+D7xgjDkKmIl13fXejjEiUgh8HZhrjJkGOIFL0Hs7ltwLnNljXl/38ieBCfbrWuDPwxSjiox7OfBavwxMM8bMADYCPwCwn9cuAaba2/zJfm4fMTTB6tt8YLMxZqsxpgN4CDg3yjGpCDHGVBtjPrTfN2M9gBViXeP77NXuA86LSoAqokSkCPgU8Dd7WoBTgEfsVfRaxwgRSQdOBO4BMMZ0GGMa0Hs7VrmAJBFxAV6gGr23Y4Yx5g2grsfsvu7lc4F/Gst7QIaI5A9LoOqw9XatjTEvGWOC9uR7QJH9/lzgIWOM3xizDdiM9dw+YmiC1bdCoLLbdJU9T8UYESkDZgNLgTxjTLW9aBeQF624VET9DvguELans4GGbv9w6/0dO8YBNcA/7CqhfxORZPTejjnGmB3Ar4EKrMSqEViO3tuxrq97WZ/bYts1wPP2+xF/rTXBUnFNRFKAR4EbjDFN3ZcZawwDHcdglBORTwN7jDHLox2LGhYuYA7wZ2PMbKCVHtUB9d6ODXbbm3OxkuoCIJkDqxipGKb3cnwQkR9hNe14MNqxDJYmWH3bARR3my6y56kYISJurOTqQWPMY/bs3Z1VCuy/e6IVn4qY44BzRKQcq6rvKVhtdDLsakWg93csqQKqjDFL7elHsBIuvbdjz6nANmNMjTEmADyGdb/rvR3b+rqX9bktBonIVcCngUvNvsF7R/y11gSrbx8AE+zeiBKwGtM9FeWYVITYbXDuAdYbY37bbdFTwJX2+yuBJ4c7NhVZxpgfGGOKjDFlWPfxa8aYS4HXgQvt1fRaxwhjzC6gUkQm2bM+AaxD7+1YVAEsFBGv/W9657XWezu29XUvPwVcYfcmuBBo7FaVUI1CInImVvX+c4wxbd0WPQVcIiIeERmH1bHJ+9GIsS+yLxlUPYnIWVhtN5zA340xP49uRCpSROR44E1gNfva5fwQqx3Wv4ESYDtwkTGmZwNbNUqJyCLg28aYT4vIEVglWlnACuAyY4w/iuGpCBGRWVgdmiQAW4GrsX5Q1Hs7xojIT4GLsaoPrQC+iNUWQ+/tGCAii4FFQA6wG7gZeIJe7mU7yb4Tq5poG3C1MWZZFMJWh6CPa/0DwAPU2qu9Z4y5zl7/R1jtsoJYzTye77nPaNIESymllFJKKaUiRKsIKqWUUkoppVSEaIKllFJKKaWUUhGiCZZSSimllFJKRYgmWEoppZRSSikVIZpgKaWUUkoppVSEaIKllFJKKaWUUhGiCZZSSimllFJKRcj/BxZ1HIcBqEOjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -862,31 +862,31 @@ " 0\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " bAP.soma.v\n", - " 0.113\n", - " 6.71e-07\n", + " 0.00838\n", + " 5.52e-08\n", " \n", " \n", " 1\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step1.soma.v\n", - " 0.105\n", - " 3.17e-06\n", + " 0.0835\n", + " 2.07e-07\n", " \n", " \n", " 2\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step3.soma.v\n", - " 0.0972\n", - " 1.81e-06\n", + " 0.107\n", + " 6.9e-07\n", " \n", " \n", "\n", @@ -894,14 +894,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "0 False 0 0.0969 0.0153 bAP.soma.v \n", - "1 False 0 0.0969 0.0153 Step1.soma.v \n", - "2 False 0 0.0969 0.0153 Step3.soma.v \n", + "0 False 0 0.12 0.0406 bAP.soma.v \n", + "1 False 0 0.12 0.0406 Step1.soma.v \n", + "2 False 0 0.12 0.0406 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "0 0.113 6.71e-07 \n", - "1 0.105 3.17e-06 \n", - "2 0.0972 1.81e-06 " + "0 0.00838 5.52e-08 \n", + "1 0.0835 2.07e-07 \n", + "2 0.107 6.9e-07 " ] }, "metadata": {}, @@ -909,7 +909,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hc5ZX48e+Zrhk1q8uWLMm9Y8AYEkxNARIIISQYQghls/wgDUjvcbLLbpawISHJBpKQEEocaoCEEiBUE5oNBtyr3GWrl5Gm3vf3x72SJVvNtuSRNOfzPPN4bj9zZ0a+Z973PVeMMSillFJKKaWUOnKuVAeglFJKKaWUUmOFJlhKKaWUUkopNUQ0wVJKKaWUUkqpIaIJllJKKaWUUkoNEU2wlFJKKaWUUmqIaIKllFJKKaWUUkNEEyyllBphRKRSRIyIeFIdi0oPIrJaRE5PdRxKKTUWaIKllFJq1BOR20SkzXnERCTebfrJVMc30hljZhtjXhjKfYqIX0T+ICItIlIjIl8Zyv0rpdRIJXqjYaWUGloi4jHGJI5g+0pgK+A9kv2kKxFZAkwxxnyml2VH9N4cTaMp1t6IyH8Di4CPASXA88AVxpinUhqYUkoNM23BUkqpISAi1SLyTRF5FwiLiEdEThKRf4lIk4i8070Lloi8ICL/LSJvOL/wPyoieX3s+0oRWSsirSKyRUT+3wHLzxeRlc5+NovI2c78HBG5Q0T2iMguEflPEXEP8Domi8hzIlIvInUicq+I5HZb1iAixznT40WktvN1icjHnK5mTc7rm3nA+fmaiLwrIs0icp+IBA79TB+6Pt4bIyJTuq1zp4j8Z7fpc51z2uS8h/MGeazTRWSniHzHOX/VInJpt+UfFZG3nfdqh5MMdi7r7Br6byKyHXjOmf+A0wLULCIvicjsA+L+PxF50mmte0VESkTk5yLSKCLrROTYQZ6jDw7mNR6Cy4H/MMY0GmPWAr8DrhjiYyil1IijCZZSSg2dS4CPArlAMfA48J9AHvA14CERKey2/meBq4BSIAHc2sd+9wHnAtnAlcAt3ZKchcBdwNed454KVDvb3ensdwpwLPBh4HMDvAYB/hsYD8wEyoElAMaYzcA3gXtEJAj8EfiTMeYFEZkGLAWuBwqBJ4C/iYiv274vAs4GqoB59HGxLSKLnMSmr8eiAV5Db7rem4FahZyE5A/A/wPygduBx0TEP8hjlQAFwATsJOO3IjLdWRbGft9znXiuFZGPH7D9adjn/ixn+klgKlAEvAXce8D6FwHfc44ZBV511isAHgR+Nsi4eyUi3+rv/ehjm3HYn+t3us1+B5jd2/pKKTWWaIKllFJD51ZjzA5jTAfwGeAJY8wTxhjLGPMMsBz4SLf17zbGrDLGhIHvAxf11sJkjHncGLPZ2F4EngZOcRb/G/AHY8wzznF2GWPWiUixc6zrjTFhY8w+4Bbg4v5egDFmk7OvqDGmFvvi/LRuy38HbAJex76A/q6zaDHwuLNtHLgZyADef8D52W2MaQD+BszvI4Zlxpjcfh7L+nsNfej+3gzkauB2Y8zrxpikMeZP2InLSYdwvO875/BF7ET7IgBjzAvGmPec9+pd7KT0tAO2XeK8Zx3ONn8wxrQaY6LYye4xIpLTbf2/GmNWGGMiwF+BiDHmLmNMErgPO7k+bMaYn/T3fvSxWabzb3O3ec1A1pHEopRSo4EmWEopNXR2dHteAXzqgF/6F2EnJb2tvw3wYrc69CAi54jIa073vCbsxKlzvXJgcy+xVDj729Pt+Ldjt4L0SUSKReQvTpfCFuCeXmL6HTAH+KVz0Q92i9e2zhWMMZbz+iZ0266m2/N29l+EHw07Bl6lSwXw1QPeu3Ls1zgYjU7S3Glb57YicqKIPO90rWwGruHg89sVq4i4ReQnYnf9bGF/62T3bfZ2e97Ry/TRPM+d2px/s7vNywZaUxCLUkodVZpgKaXU0OleNWgHdgtV91/7Q8aYn3Rbp7zb84lAHKjrvkOnW9pD2C1CxU6LwRPYXfk6jzO5l1h2YLe6FHQ7frYxZqAuWv/lvI65xphs7Ja4zmMhIpnAz4E7gCWyf9zYbuzEpHM9cV7frgGOdxAROUX2VwDs7XHKwHs5yIEVndqBYLfpkm7PdwA3HvDeBY0xSwd5rHEiEuo2PRH7/AD8GXgMKDfG5AC30e389hLrp4HzgQ8COUClM//AbYaNM56sz/ejt22MMY3AHuCYbrOPAVYfjZiVUiqVNMFSSqnhcQ9wnoic5bRCBJwCCGXd1vmMiMxyxjP9GHjQ6dbVnQ/wA7VAQkTOwR5L1ekO4EoR+YCIuERkgojMMMbswe5K+L8iku0smywiB3ZHO1AWdutDs4hMwB7b1d0vgOXGmM9hd327zZl/P/BRJw4v8FXsBO9fA52oAxljXjbGZPbzePlQ99mLlcCnnffmbHp20/sdcI3T2iQiEhK7OEUWdBWWuHOA/f9IRHxOMngu8IAzPwtoMMZEnPFznx5gP1nY57EeOyH8r0N4jUPCGPNf/b0f/Wx6F/A9ERknIjOAf8ceF6iUUmOaJlhKKTUMjDE7sFsevoOdHO3ATla6/929G/uCswYIAF/uZT+tzvz7gUbsC/LHui1/A6fwBfYYlxfZ35L0WewEbY2z7YP07KLYmx8Bxzn7ehx4uHOBiJyPXaTiWmfWV4DjRORSY8x67NauX2K3wp0HnGeMiQ1wvFS5DjvGJuBS4JHOBcaY5djJwK+wz9smehbkKAde6WffNc52u7ELUlxjjFnnLPs88GMRaQV+gP2+9ucu7C6Gu7Dfx9cGemEjyA+xu69uw/5c/lRLtCul0oHeB0sppVJARF4A7jHG/D7VsajBc6oivgPMc4p5HLj8dOz3tezAZUoppdKDJ9UBKKWUUqOF0yI3c8AVlVJKpS3tIqiUUmlGRG7ro2DBbQNvrUYjEZnYT6GKiamOTymlxhLtIqiUUkoppZRSQ0RbsJRSSimllFJqiIyoMVgFBQWmsrIy1WEopZRSSimlVL9WrFhRZ4wpPHD+iEqwKisrWb58earDUEoppZRSSql+ici23uZrF0GllFJKKaWUGiKaYCmllFJKKaXUENEESymllFJKKaWGyIgag9WbeDzOzp07iUQiqQ5FjQCBQICysjK8Xm+qQ1Fj1No9Ldy39A9ceuJEpp78iVSHo5RSSqlRZsQnWDt37iQrK4vKykpEJNXhpA3LGFwj7HwbY6ivr2fnzp1UVVWlOhw1Rj37zOMsafkhPAMs+DD4M1MdklJKKaVGkRHfRTASiZCfn6/J1VHU1B5j46562lqbUx1KDyJCfn6+tmaqYeXZ917X88iqx1IYiVJKKaVGoxGfYAGaXB1lDeEYFVJDZusWiIVTHU4P+llQwy3Ytp0oXppMiOY1z6U6HKWUUkqNMqMiwVJHVzyeICBxAKxwfYqjUeroaYnEKU3upiWjnBXWNLx7VqQ6JKWUUkqNMppgDYKI8NWvfrVr+uabb2bJkiWpC6ib008/vd+bM3/84x/npJNO6jFvyZIlTJgwgfnz5zNnzhwee2x/NyjLMnitDgCSxgXRFjBmeIJXaoRpCsepkL3EsivYljGLvPYtEBlZXWWVUkopNbJpgjUIfr+fhx9+mLq6uiHdrzEGy7KGdJ/dNTU1sWLFCpqbm9myZUuPZTfccAMrV67kgQce4KqrruqKI5608JAEoJFMXFYckrFhi1GpkaS5I06+tGCFiujIn2XP3LcutUEppZRSalTRBGsQPB4PV199NbfccstBy2pra7nwwgs54YQTOOGEE3jllVcAu5Xo5ptv7lpvzpw5VFdXU11dzfTp0/nsZz/LnDlz2LFjB1//+teZM2cOc+fO5b777gPghRde4PTTT+eTn/wkM2bM4NJLL8X00ZJ09913d7VGvfHGG13zH374Yc477zwuvvhi/vKXv/S67cyZM/F4PF3JY8Iy3PTfNzLr9As55UPn8bUf3wKJCNXV1Zx55pnMmzePD3zgA2zfvh2AK664gmuvvZaTTjqJSZMm8cILL3DVVVcxc+ZMrrjiiq7jXHvttSxYsIDZs2fzwx/+8KA4mpubqaio6Er0wuEw5eXlxOPxPt8XpYZac0ecTDpwZ+TgHz8bgHjN6hRHpZRSSqnRZMSXae/uR39bzZrdLUO6z1njs/nhebMHXO8LX/gC8+bN4xvf+EaP+ddddx033HADixYtYvv27Zx11lmsXbu2331t3LiRP/3pT5x00kk89NBDrFy5knfeeYe6ujpOOOEETj31VADefvttVq9ezfjx4zn55JN55ZVXWLRo0UH7a29vZ+XKlbz00ktcddVVrFq1CoClS5fygx/8gOLiYi688EK+853vHLTt66+/jsvlorCwEIDaujqeeuofbHjpQXYFppK1722Id/ClL32Jyy+/nMsvv5w//OEPfPnLX+aRRx4BoLGxkVdffZXHHnuMj33sY7zyyiv8/ve/54QTTmDlypXMnz+fG2+8kby8PJLJJB/4wAd49913mTdvXlccOTk5zJ8/nxdffJEzzjiDv//975x11ll6vyt1VLWEwwQkjjeYTUnZVNqX++nY/h75C1MdmVJKKaVGC23BGqTs7Gw++9nPcuutt/aY/+yzz/LFL36R+fPn87GPfYyWlhba2tr63VdFRUXXuKhly5ZxySWX4Ha7KS4u5rTTTuPNN98EYOHChZSVleFyuZg/fz7V1dW97u+SSy4B4NRTT6WlpYWmpib27t3Lxo0bWbRoEdOmTcPr9XYlXgC33HIL8+fP52tf+xr33XdfV3W+zKxsAn4///bV/+DZJx/HHcjEinfw6quv8ulPfxqAyy67jGXLlnXt67zzzkNEmDt3LsXFxcydOxeXy8Xs2bO7Yr7//vs57rjjOPbYY1m9ejVr1qw56HUsXry4qwXvL3/5C4sXL+73PCo11NqdWxP4QrlMK8lhkxlPcm//P5gopZRSSnV3xC1YIlIO3AUUAwb4rTHmFyKyBPh3oNZZ9TvGmCeO5FiDaWkaTtdffz3HHXccV155Zdc8y7J47bXXCAQCPdb1eDw9xld1v3dTKBQa1PH8fn/Xc7fbTSKR6HW9A0uXiwj3338/jY2NXTfkbWlpYenSpdx4442APQbra1/72sH7crl57u/38+Zrr/CXp57ij7/5OS889IdBxelyuXrE7HK5SCQSbN26lZtvvpk333yTcePGccUVV/R6L6uPfexjfOc736GhoYEVK1Zw5pln9ntcpYZaNGwnWIFQNpX5If5uyqhq0gRLKaWUUoM3FC1YCeCrxphZwEnAF0TEGR3OLcaY+c7jiJKrkSAvL4+LLrqIO+64o2vehz/8YX75y192Ta9cuRKAyspK3nrrLQDeeusttm7d2us+TznlFO677z6SySS1tbW89NJLLFx4aP2ROlt9li1bRk5ODjk5OSxdupSnnnqqa9zXihUr+hyH1V1LSyvh1iY+8uEP8L+3/IxVa9YjVpT3v+99Xdvfe++9nHLKKYOOr6WlhVAoRE5ODnv37uXJJ5/sdb3MzExOOOEErrvuOs4991zcbvegj6HUUEhG7C7IvmAOPo+L+uAksuJ10NGY4siUUkopNVoccYJljNljjHnLed4KrAUmHOl+R6qvfvWrPaoJ3nrrrSxfvpx58+Yxa9YsbrvtNgAuvPBCGhoamD17Nr/61a+YNm1ar/u74IILmDdvHscccwxnnnkmN910EyUlJYcUUyAQ4Nhjj+Waa67hjjvuoLq6mm3btvUoz15VVUVOTg6vv/56r/v4yEc+wu7du2lubeGiyz/PMaedxwdOP43v/fCHCPDLn93EH//4R+bNm8fdd9/NL37xi0HHd8wxx3DssccyY8YMPv3pT3PyySd3LfvBD37Qo0z84sWLueeee7R7oEqNqJ1gSSDbnhw33Z6vlQSVUkopNUjSV2W6w9qZSCXwEjAH+ApwBdACLMdu5TroZ2ARuRq4GmDixInHb9u2rcfytWvXMnPmzCGLUfVvZ2M7xR2b8AZzIXciW2saqLK2Qe5ECOanOjxAPxNq+Nx91++4bMvX4HP/hLIF/Oav/+Tadz5B8txf4F5wRarDU0oppdQIIiIrjDELDpw/ZEUuRCQTeAi43hjTAvwGmAzMB/YA/9vbdsaY3xpjFhhjFnRWslOpYwy4MCD2R8Pl9WEAEtGUxqXU0eCKt9pPfJkAFEyYTNR4adul47CUUkopNThDkmCJiBc7ubrXGPMwgDFmrzEmaYyxgN8BWuh4FLCMwYXVlWD5PW5ixovRBEulAVcsbD/xZwFQUZhNtSkmvm9jCqNSSiml1GhyxAmW2CXs7gDWGmN+1m1+abfVLgBWHbitGnmMMQj0SLCieDHxg6v+KTXWuOPOLRacBKuyIMhWU4q3cXMKo1JKKaXUaDIUNxo+GbgMeE9EVjrzvgNcIiLzsUu3VwP/bwiOpYZbZ2l5p/S73+MijJesZIvdf/CAkvBKjSWehNOC5XQRLMz0s9M1gcz2tyCZAPeouje7UkoppVLgiK8WjDHLgN6uukd9WfZ0ZPfopKsFy+d10YgXwUAyDh5fCqNTani5kxFiePG57M+/iNCWWYE7nISmbZA/OcURKqWUUmqkG7IiF2qMOCDB8rhcJMRJqpI6DkuNba5khLj4e8xL5k2xn9RvSkFESimllBptNMEapEceeQQRYd26vu+HU11dzZw5c4bsmFdccQUPPvhgn8uvv/56JkyYgNXZrQ+48847KSwsZP78+cyaNYvf/e53h3bQAxIsADzOBWdCx2Gpsc2djBJ39UywMkrse2El9m1IRUhKKaWUGmU0wRqkpUuXsmjRIpYuXdrr8kQiccTHSCaTg17Xsiz++te/Ul5ezosvvthj2eLFi1m5ciUvvPAC3/nOd9i7d+/gg+glwXJ7fFiIlmpXY57HipI4IMEqKZ1Ao8kkvFtLtSullFJqYJpgDUJbWxvLli3jjjvu4C9/+UvX/BdeeIFTTjmFj33sY8yaNQuwE61LL72UmTNn8slPfpL29nYA/vnPf3Lssccyd+5crrrqKqJRO1mprKzkm9/8JscddxwPPPDAQcd+9tlnWbBgAdOmTePvf/97j2PPnj2ba6+9ts+kr6ioiMmTJ9P95s233nors2bNYt68eVx88cUANDQ08PGPf5x58+bxiXPP4d01G0BcLFmyhMsvv5xPnvshKhd+hAcfeYxvfOMbzJ07l7PPPpt4PA7Aj3/8Y0444QTmzJnD1VdfzYE3r7Ysi8rKSpqamrrmTZ069dASP6WOAo8VOSjBqiwIscWUkqzVLoJKKaWUGtjoKon15Leg5r2h3WfJXDjnJ/2u8uijj3L22Wczbdo08vPzWbFiBccffzwAb731FqtWraKqqorq6mrWr1/PHXfcwcknn8xVV13F//3f//HFL36RK664gn/+859MmzaNz372s/zmN7/h+uuvByA/P5+33nqr12NXV1fzxhtvsHnzZs444ww2bdpEIBBg6dKlXHLJJZx//vl85zvfIR6P4/V6e2y7ZcsWtmzZwpQpU7rm/eQnP2Hr1q34/f6uhOeHP/whxx57LI888gh/vv8BPnvd91j59rkAbN68mb8/9QxrX3+Wsz62mIcefpibbrqJCy64gMcff5yPf/zjfPGLX+QHP/gBAJdddhl///vfOe+887qO6XK5OP/88/nrX//KlVdeyeuvv05FRQXFxcWDf5+UOgq8JkbS3TPBqsoP8U9TyozmNSmKSimllFKjibZgDcLSpUu7WnsuvvjiHi1GCxcupKqqqmu6vLyck08+GYDPfOYzLFu2jPXr11NVVcW0adMAuPzyy3nppZe6tlm8eHGfx77oootwuVxMnTqVSZMmsW7dOmKxGE888QQf//jHyc7O5sQTT+Qf//hH1zb33Xcf8+fP55JLLuH2228nLy+va9m8efO49NJLueeee/B47Px62bJlXHbZZRhjOPn976e+sZmW1lYAzjnnHDIz/EydMZukleTssz4MwNy5c6murgbg+eef58QTT2Tu3Lk899xzrF69+qDXsXjxYu677z4A/vKXv/T7mpVKFa8VJekO9Jg3LuRjl7uMUKwOoq0pikwppZRSo8XoasEaoKVpODQ0NPDcc8/x3nvvISIkk0lEhJ/+9KcAhEKhHuvLAfeJOnC6NwfuY6D9/eMf/6CpqYm5c+cC0N7eTkZGBueea7c6LV68mF/96le97u/xxx/npZde4m9/+xs33ngj7723v0XQGOxy7LD/RsN+Pz63i7jLj9fjQZJxcLlxuVwkEgkikQif//znWb58OeXl5SxZsoRI5OBiGO973/vYtGkTtbW1PPLII3zve98b8LwodTQlLYOfGMadfdCySHYltGBXEhx/7FGPTSmllFKjh7ZgDeDBBx/ksssuY9u2bVRXV7Njxw6qqqp4+eWXe11/+/btvPrqqwD8+c9/ZtGiRUyfPp3q6mo2bbLHcNx9992cdtppgzr+Aw88gGVZbN68mS1btjB9+nSWLl3K73//e6qrq6murmbr1q0888wzXeO9+mJZFjt27OCMM87gf/7nf2hubqatrY1TTjmFe++9F8sYXn/1XxTk5ZKdk9u1ncslWK7eS7V3JlMFBQW0tbX1WfVQRLjgggv4yle+wsyZM8nPzx/U61fqaIkmkgSIYXkCBy/Mn2r/W7/56AallFJKqVFHE6wBLF26lAsuuKDHvAsvvLDPwhLTp0/n17/+NTNnzqSxsZFrr72WQCDAH//4Rz71qU8xd+5cXC4X11xzzaCOP3HiRBYuXMg555zDbbfdhmVZPPXUU3z0ox/tWicUCrFo0SL+9re/9bqPz33ucyxfvpxkMslnPvMZ5s6dy7HHHsuXv/xlcnNzWbJkCStWrODY+fP57//+CX/6+Y846KPRVaq9Z4KVm5vLv//7vzNnzhzOOussTjjhhK5lt912G7fddlvX9OLFi7nnnnu0e6AakSJxy2nBOjjByiydimWExL71KYhMKaWUUqOJHFjxLZUWLFhgli9f3mPe2rVrmTlzZooiSi/ReJLGfTsokUYoOQZc+5OsXY3tlHRsxBXMQ3LLUxilfibU8NjV1IHcMotI+alM+tyfeiz72zu7mf/QqWRPez85n7krRREqpZRSaiQRkRXGmAUHztcWLNXFMgbB2KOwDhj75fe4iRovRm82rMaoSNzuIogn46BlVU6pduo2piAypZRSSo0mmmCpLpYBFwZwHZRg+Twuonj0ZsNqzLITrDji7TvBymittqvBKKWUUkr1YVQkWCOpG+NYZozBhYXppfKh3+Mihg+x4mBZKYjOpp8FNVwiMbsFS3wHj8EK+T3U+cvxJduhtSYF0SmllFJqtBjxCVYgEKC+vl4vrI8Cq7NMuxz8sfB5XMTwInBQJcGjxRhDfX09gUAvVd6UOkKxaAcuMbh8B7dgAcRyJtlP6rWboFJKKaX6NuLvg1VWVsbOnTupra1NdShjXkcsCe11BFwW0rj2oOX1za20mUaoM9BLN6qjIRAIUFZWlpJjq7EtHrVvc+D2BXtd7i6aBg3Y98KqOvUoRqaUUkqp0WTEJ1her5eqqqpUh5EWHlqxk5wnvsipJXF8X3jloOVfvON5frXjIvjgj2DR9Uc/QKWGUayjM8Hq/ceDvNJKOtb6kJr1aBuqUkoppfoy7F0EReRsEVkvIptE5FvDfTx1+CKJJBnEwNv7L/jFxcXUm2yM3mxVjUEJpwXL4+/9819VmE21KSG6d8PRDEsppZRSo8ywJlgi4gZ+DZwDzAIuEZFZw3lMdfgicYuAxHqtogZ2JbWtpoTYPh2DosaeRGyABKsgxGZTirth09EMSymllFKjzHC3YC0ENhljthhjYsBfgPOH+ZjqMEXidguWq48LzEkFIapNCTRsOcqRKTX8krEOALx9fP4n5gWpNqUEw7sgETuaoSmllFJqFBnuBGsCsKPb9E5nXhcRuVpElovIci1kkVrReJIMorj6GORfWRBii1WCv2MvRNuOcnRKDa9k1EmwAr1//n0eF83BClwkobH6KEamlFJKqdEk5WXajTG/NcYsMMYsKCwsTHU4aS2SsAhIHPH03kWwJDvALtd4e0JbsdQYY8XtLoJ9tWABJPMm20+0VLtSSiml+jDcCdYuoLzbdJkzT41AkXiSDIn2WYLd5RLiOU5FxwYtdKHGFuOMweprDCKAv3iavW6djsNSSimlVO+GO8F6E5gqIlUi4gMuBh4b5mOqw9Q5Bqu/e1z5iqbYT+r1AlONLSYesZ/08/kfX1JKncmmfc+6oxSVUkoppUabYU2wjDEJ4IvAP4C1wP3GmNXDeUx1+CKxBP4BEqzxRQXUmHFYddqCpcYWE7fHYOHp+y5XU4qy2GJKSWglTaWUUkr1YdhvNGyMeQJ4YriPo45cZxW1/hKsSqeSYO6+jXqzVTWmSGLgz//U4kyetUqZ2/zuUYpKKaWUUqNNyotcqJHDcsag9HWjYbBLtW+1SnA1aguWGmMSUfvfflqw8kM+arxlZMQaoKPp6MSllFJKqVFFEyy13yC6SHXebNgXbdQLTDWmuAbRgiUixHI6KwnqjwxKKaWUOpgmWKqLxMP2E1+oz3XyQj72ep1bmekFphpDXIkoSVzg9va7nrd4KgBGS7UrpZRSqheaYKkuEh+4i6CIEM/trCSoF5hq7HBZEeLiH3C9vLLpJI3Qvmf9UYhKKaWUUqONJliqS1cXKV/fCRaAv3gKCdxQq6Wq1djhTkaIuwZOsCaX5LHDFNGhpdqVUkop1QtNsFQXd8JpwfJl9rteRWEOW6wSknv1AlONHZ5kdFAJ1tTiTLaYUlx6LzillFJK9UITLNXFnewc5N9/C1ZVQYhNZgLJfZpgqbHDY6IkB5FgFWX52eYuJytcDcnE8AemlFJKqVFFEyzVxZMcXBfBqoIQG80EvM3bIB45CpEpNfy81uASLBGhJWsaXhMDbcVSSiml1AE0wVIAWJbBb3W2YPVdRRBgUmEmm60JCBY0aCVBNTb4TJSkp+8S7d2Z4jn2v3tXDWdISimllBqFNMFSALTHkwRxbrQ6QAtWpt9Dc+Yke0ILXagxIJ60CNJBwtP/jwud8ivnEjduwttXDm9gSimllBp1NMFSAISjCTLESbAG8Su+r3iafc+g2g3DHJlSwy8cTZBJBGuA1ttOM8ry2WTGE9357jBHppRSSqnRRhMsBUBbNEGQKAl3BrgG/lhUlRaw0xRiaaELNQa0RROEJILxZw1q/RklWaw1Ffga9POvlFJKqZ40wVKA/Qt+kCjWIMegTCnKZIM1gcTetcMcmVLDLxxNEqIDGWSClRXwUhOYRFZ0L7Q3DHN0SimllBpNNMFSgP0LfoZEsTz9j7/qNK04i81mAp7GLVqqWo16bZEYmURwDTLBAogXzLKf7F09TFEppZRSajTSBEsB9i/4QaIDFrjoNKUok43WBFwmDo1bhzk6pYZXe7gVlxjcGYNPsDLKjwEgtlvHYSmllFJqvyNKsETkpyKyTkTeFZG/ikiuM79SRDpEZKXzuG1IolXDxu4iGBmwRHsnu5JglT1Ru34YI1Nq+MXCzQB4MrIHvU3FxCrqTDYt1SuHKSqllFJKjUZH2oL1DDDHGDMP2AB8u9uyzcaY+c7jmiM8jhpmbdEE2dKOZOQMehtP8Qz7iZZqV6NctL0FAG9w8AnWrPE5rLEqcNVoC5ZSSiml9juiBMsY87QxpnMAzmtA2ZGHpFIhHE2QRTuuYO6gt5lYWsxuk4+lLVhqlIu32y1Y/uDgf2AoG5fBOvcUclo3QrxjuEJTSiml1CgzlGOwrgKe7DZdJSJvi8iLInJKXxuJyNUislxEltfW1g5hOOpQhKMJciSMJzhu0Nt0jsOK79FB/mp0S3a0AhDIzB30NiJCW/483CSh5r1hikwppZRSo82ACZaIPCsiq3p5nN9tne8CCeBeZ9YeYKIx5ljgK8CfRaTXvjfGmN8aYxYYYxYUFhYe+StSh6UtkiCHMJKRO+htphVnsc6U42nYqJUE1aiWjNhdBD2HUOQCIFCxAID4juVDHpNSSimlRqcBEyxjzAeNMXN6eTwKICJXAOcClxpjjLNN1BhT7zxfAWwGpg3bq1BHLBppxStJCOQOepupRZlssMpxWzFo2DJ8wSk1zJJOF0H8gx+DBTB58jT2mlxaNr8xDFEppZRSajQ60iqCZwPfAD5mjGnvNr9QRNzO80nAVECvwEewWGuj/SQw+DEoIb+Hpuwp9sQ+7SaoRrGI8/kP5h3SZvPLc3nXmox7z9vDEJRSSimlRqMjHYP1KyALeOaAcuynAu+KyErgQeAaY0zDER5LDaNE2Hl7DqGLIICveCZJXLBv7dAHpdRR4o002J9j/+B/YAAozg6wxTeN3PZqiDQPT3BKKaWUGlU8R7KxMWZKH/MfAh46kn2ro8t0NNlPDqGLIEBVaQHbqouprFmtd61Wo5Yv1kjYnUO269A/xZGiY2DPUtj9Nkw6feiDU0oppdSootfECgATabKfHGIL1vSSLNZZ5SRqtIugGr0y4s10eA6t9apT5qSFAHRUvzmUISmllFJqlNIES5G0DP5Ykz2RMfgy7WBXEtxgyvA2V0OsfcD1lRppLMuQaTUT8x3aZ7/TzKoKtlglhDe/OsSRKaWUUmo00gRL0dwRpwhnkH9W6SFtO6kwxAYzEcFA7bphiE6p4dUaSTCOVhKBQytw0WleeS4rzHRCe98Eyxri6JRSSik12miCpWgIRymWRqK+XPD4D2lbv8dNOHe6PaGFLtQo1NAeI09aMMH8w9o+0+9hV/Z8MhItULdhiKNTSiml1GijCZaiptlOsBLB4sPaPqt0KlF8sG/NEEem1PCraWwjj1a8WYd/o3NXxfsBSGx9ZajCUkoppdQopQmWYndTB0XSiCv70LoHdppakssGazzJmlVDHJlSw6+5djtuMQQKJh72PqbMmEetyaFlw8tDGJlSSimlRiNNsBQ7mzooliZ84yYc1vbTSzLZYMqx9moLlhp9wrU7AMgqrjzsfSyoyuNNazreXa8NUVRKKaWUGq00wVLsbWimSJpw5xxegjWt2C7V7m3fB+16P2k1uiQa7QQrkFd+2PsoygqwOWMuWZE90LxzqEJTSiml1CikCZbCqt+CGwsKph7W9hX5ITa7KuwJHYelRhlp2WU/yT68Hxg6JcpOAsDapuXalVJKqXSmCZZCGjbZT/KnHNb2bpeQyHcqCWo3QTXKeNp2E5EMCBzejYY7lU0/gTYT0HFYSimlVJrTBCvNNYRj5HdstycOswULoKCkkmYyYd/qIYpMqeEXT1rkRXbQlDERRI5oX8dPKuQtaypm27+GKDqllFJKjUaaYKW5dTUtTHdtJxosAX/WYe9nWmk266wyEjXagqVGj2317UxiF/Fxk454X1UFIVZ7Z5HTuknHIiqllFJpTBOsNLd2TyvHyibMhAVHtJ/pxVmst8rtmw0bM0TRKTW8tuyppUzq8BbPOOJ9iQgdE07GhcFsfWkIolNKKaXUaKQJVppbu3ETFa59+CsWHtF+ppVksd6U44m3ahU1NWrUbVuHSwy55bOHZH+ls04mbPy0rP3nkOxPKaWUUqOPJlhpLGkZ3NvsX9ql4v1HtK/xOQG2eyrtCa0kqEaJaM06AAKlR96CBXDS1FJet2YiW14ckv0ppZRSavQ5ogRLRJaIyC4RWek8PtJt2bdFZJOIrBeRs448VDXU3t7eyPuSy4n68mDCcUe0LxHBFDoXqXu10IUaHTwNG+0neZOHZH+V+UHe880nu30bNO8akn0qpZRSanQZihasW4wx853HEwAiMgu4GJgNnA38n4i4h+BYagj97c2NfMj1Fq6ZHwHXkb895ePHs4d8zL61QxCdUsMraRly26tp8pWALzgk+xQR4hWnAGBteWFI9qmUUkqp0WW4ugieD/zFGBM1xmwFNgFHNshHDanWSBz36vsJSQTvgsuHZJ/TizNZlywjUbNqSPan1HDa1dhBFbvoyD7yCoLdVc1aSL3JomWNjsNSSiml0tFQJFhfFJF3ReQPIjLOmTcB2NFtnZ3OPDVC/Oml9VxlHiFceCyUnTAk+7QLXUzEXb8RkvEh2adSw2VTTSNTZRdSPDQFLjq9b0ohr1qz8W5/SStqKqWUUmlowARLRJ4VkVW9PM4HfgNMBuYDe4D/PdQARORqEVkuIstra2sPdXN1GLbWhfEtu4kyqSN0zpIjvsFqp+nFWayzynFZcajfPCT7VGq47Nu2Br/Eya6cP6T7HZ+bwfrgcYSitVC3cUj3rZRSSqmRb8AEyxjzQWPMnF4ejxpj9hpjksYYC/gd+7sB7gLKu+2mzJnX2/5/a4xZYIxZUFhYeKSvRw2guT3OPX+4latdj9I+59Mw6fQh23d+pp+9gSp7Yp8WulAjW3z3ewAEy+YN+b5N1WkAJDY9N+T7VkoppdTIdqRVBEu7TV4AdA6+eQy4WET8IlIFTAXeOJJjqSNX1xblt7f9L98M30xLwbEEz79lyI/hKZ5OEpd9w2GlRjB/wzr7s1o4fcj3PW/OMWyxSmh957Eh37dSSimlRjbPEW5/k4jMBwxQDfw/AGPMahG5H1gDJIAvGGOSR3gsdQRefG8zNY98n68nH6ex4DjGXfUQeANDfpzK4ny27Smlau9qhqbjoVJDzxhDYXgT9RkVFHn8Q77/U6cXcRcn8m81f4f2BgjmDfkxlFJKKTUyHVGCZYy5rJ9lNwI3Hsn+1ZExxvDmumq2PP1/fKhhKadJK3VzrqLg/P8Cb8awHHNqcSZrkmVMrFl9xNm7UsOlpiXCVLYRHjc0BV4OFPC6qSs/G/euR7HWPYHruM8My3GUUkopNfLoNfAYtKOmjlX/+jv+tQ/z/ti/WChxduSfRPbHb6Rg4oJhPfaUokxetco5t/l1iIXBFxrW4yl1OKp31vA+qWNbyZxhO8as409l584CQivuZ5wmWEoppVTa0ARrDKhvbGTjyldo3vgv8vb9i3nxVZwjcdokxI7KTzDxA9dQPvG4oxLL1KIs/mSc+ib71kHZ8UfluGr0sixDWyxBS0eclo4Ere3ttLe1EO9oJR6LEk/EScRiJBIJEvEoyUScZNIiKR4sl5eky4vl8iKeDFyhcQQzgoT8HjL9bsYFfZTmZFCc48fv2X8z7ebtKwHIqjhm2F7XWXNKueux0/j3XQ9D4zYYVzFsx1JKKaXUyKEJ1ihiknFqtm9kz+b3aNm1Duo2UNK2hilWNSeJBcBuTzkbJl5E8XHnUjTnTKYOwzir/hRk+tjjr7JH5e1brQlWGumIJWkIR2luaqC1sZaOljoiLXUkww2YjkZcHU24Y014Y834E634ku34rHb8VoRM6SBIhEKi+OXI7qHWbvw0EaLZZFJjxvGyKWCXKaDFX0I0qxxTMJ3Auhc52wu5lccO0as/WIbPTWL+5STefoTYc/9L5oW3Dtux1MhlWYbWSJzWlibCTbV0tDbREW4mEm4hEWnDirZhYm24YmEkHsYVD+NKdGCSccRKIFYCt0ngIonbJMAY4rhJ4sYSN8blwRIvMXcGUXcIy5uFCWQjgVxMZiH+cRPILSynqDCf8bkZZAe8qT4lSik15mmCNdIYQ6RxN3urV9Gycx2JfRvxNm8ht307xcndlJKks3RjKyF2B6fzbuEV5Ex9PxPnncr47GLGpzB8ESGjaArRvX78Wklw1EpahsZwlIamJlrrdtPRvJd4816SrbXQXoe7ox5vtAF/vJmMRAshq5Vs2igmzAQn2e9NBB9hVzYRdyZxf5CkJxfLG6LDFyLiz6LJn4k7IwtvRhaeQAi3N4DH68Xr9eH1evF4vIjLa9+7zUpAImrf1DoZw8TbSbQ3IW31ZIcbyWqvp6x1N962twjEGsECmu1H1OOhVbLIyhne+59fcPpCHnjrA1z83t2YEy9H9AeHUa0jGqehYR9t9TWEm/YRaakj3lZPItwIHY24os34Ys34Ey0Ekq1kWq1kmjA5hMmRwdV5aidAVAJY4sESD0lxdz23xA0iuLFwmQQuk0BMEncyTiDeQYZpx0Xv379Wk8FeM46VUky9v5x4TiWewsnkTJhOacU0JhXnEvC6e91WKaXUodEEK0US4UZqt62lccdqojUbcDduIStcTXF8J0EidHYmihovO1yl7PJPZFPeafiKp5E3cRYTp84lK7eY6UN0k+ChNLkkm017y5illQRHlGgiSUNLG837dtNWv4uOphriLbVYbbW4OurwRurxxxrJTDSRY5rJp5mCPlqTOgjQ4sqhw5NDNJhNh7+c9sA49maMwx3Kw5eVTyC7gMzcAoI5BbiDeZCRS8CbwXC1qQrgdR4HiYWheSc0bIHa9bj3rSNYesyQ3WS7L+NzM+g45TvULFtBzp2fJH7uL+goOIa8wlICft+wHlsNrCMap75uH031uwk37CXWss/+ESFci8v5ESEYaySUbCLbaiaPlj5/QLAQ2gjR7s6kw51NNJBNq6+cZn8OOzPGIRm59ncjlEMglENGZg4ZoWwCwWw8GVn2eFVPBkGXi+DhviBj7M96tAUizSRaamit3UG4fiexxt24WnYztW07CyPPEKjtgFpgDcSNmx2miD3eMlpDlZj8KQRLZ1BUOYfKikoy/HqpMNIYY4gnDZYxAFjGYBmwLAuTtDAmac+zklhWEiyDMSAuF+Jy43K7cbvd9nMBt0twSecD+1+X/g+u1OES43w5R4IFCxaY5cuXpzqMIZOIdrBv+zoat68lsnc9Ur+ZUFs1hbEd5JmmrvWSRtgtRezzlhHOrMTKm4y/ZBp55bOYUDmVzMDouhD74ytbCT15HZ/MXoPrG5tSHc6Y1xFLUltfR9PeHbTV7yTSWIPVsgdp24u3Yx/BWD05yXryTSN50tbrPqL4aHblEPbkEfOPIx7Ih2A+rqwifNlFZOQWExxXQmZeCd6sIvAd9iVg2jHG8Ov7n+Dc1TdQ6doLwBs5Z7PwhvtSHNnYlLQM9c3N9vehbhcdjbtJNu+B1ho8HbUEonVkxevITTYyjhY8fSRMrQRpdeUS9uYS8eWR8OdhBfNxZRbiySoikFNAMKeY7HEFZOYWIoEccB3RrSWPHmMgXEt030bqt60hvGcD1G8i2LqVwthOfOz/YaXFBNnpHk9zRiXxcZPwFU8nf+JsJkyZTTCUncIXkXpWIk60o42O9laiHe3EOtqIRcLEOsIkou0komGS0XasWDtWrAMTa4d4O5LowJ2M4EpGESuOy4o5/yZwW3FcJo7bxHGbBB7nX7dJ4CWBx/nXTRIXBsHChbEfcnjXcwnjwnL2ZOHq2nPnvwk8xMVDAg9JsR8JvCRdnS2r9ljYzu6qltsLzr/G5QWXF9xecPsQt/1cnOfi8SJuD+LyIB4vbpcH8fhwuT2I24PL7cPt8eBye3F7fbg8HtxuL26PF5fH7tXg8fjA7UEQxCUILnCJ/QOaCAKIuJzlILgQl0C39e1/BREwVhLLspNT4/xrGQtjWRgrSdJKYixnPWM5/5qu5ZZlYZz1LWv/cjrXtYy93Nj7N1YSY1lgTNd29jLL3s5KYrr9a4wz3bWuhROQvdxK2t9xZ//2fGv/PAOYpLON/RkSY/8dFGN/EoCuH8j3f6qcOT1+mOw5z3RtdeB8emwjIl3r2Ks471W35/a/LntdEZqypjFj4YeoyB9ZxdNEZIUx5qAKcvqz1BFKJi1qdmymfvtqOvasg7qNBFuryY/uoNjax3gxXV32ak0ONd4y1ma9n2jOJHzF08gtm0lp5QzKcrIoH4GtUYdjalEWz5syXO0vQrgOQgWpDmlUSlqG2uZ29tXsoGXvNqL12zHNO3G37SGjYw+hWJ2TODUxUaJMPGD7GB6aXXm0efPpyKxiZ/BEdoSK8OSU4s8tJTOvlOyCUoK5xfh9IYrGyOdvpBERvrj4o6zefgLPvvUEC9/+NlNaXrP/s9NzfkjaOqLU7tlGS0017XXbSDTuxLTtxdu+j4xoLdmJBvJNA0XSTtEB2yaN0OjKpcWdTzijmB2BOWwPFeDOLMKXU0gwt4TguBKy80sI5BSR5fGTlZJXeRSIQGYR/swixk86uecyK0m8YTu11atp2rGaxL6N+Jo3M7l9JUXhZ2EnsMJetYYCan0T6AgUY2WW4M4uISNvPBl5EwjmFpOVm08oOw/xZhz9z3oyAfEw8UiYSHsr0fY2oh2txDrCxKNhEh1hklH7YcXaMbGwnfzEO5B4O65EBHeyA0+yA7cVxWtF8FlRfCaKnyh+E8UnSTKAQ7npiWWEiPiI4CeGj4R4SYiHpHid5MUu2hOTDCyngI9xeTFuL8blsxMWtw9xuRG3G3A5iYSrx0O65u3/VxDnojoJVrLrohzLci68LaTzwrv78mQcsWJgJXBZ8R7JoNfEcVlh3In9iaDbxPHQLSkkgcck8Q6ym6xSvflj4iziExaOuASrL5pgDVK0o5Xdm1fRuG0V0b0b8DZuIre9mtLELiZIlM6RHG0mg92eCewKzWZLznm4C6eQNX4GRVWzKSwopDANLqhmj8/mNuNc7u9dDZNOS21AI1RrR4yavTU07d5Ee2018YYduFp34W+vITO6lwKrjiIaKTngP6UoPurdBbR5C2nOmktDqBhXdgm+3BJC+WXkFJWRVVCGL2MchSIUpuj1qZ5mTyxi9sQreKp5D2dv/Qnx2k14i6amOqwRI55IUrNnBw27t9CydxuJRuf7EN5DVmwveYlaCmmk6oAWpwg+mlzjaPPm0x6cTEvwfZjMYjw5pQTyxpOZX0ZuUTkZuUUUuNzozz0DcLnxFlQxvqCK8QvO7bEo0dHK7q2radi2mo6aDfiaNpPdvoOi1rcY19yIb3fvF9AxPIQlRIcrRMyV0ZVE2A8fxu3Dcjmdew0Ixn6CcX5hN4gxiInjStotPC4rhtuK2S08VhyPieHFvuD3Yl/Yw/5uwwMly5YROrATn6j4iUqAmPiJuwJ0uLNJegux3Bkk3QGMJ4DxBsGbgXiDuHwZiC+Ixx/E7bf/9QZC+DMy8QUy8WeE8AczyQhm4vb6CYocfjfQ0cyySCZixONR4rEI8a7qsDGsRJxkMk4yHiOZSGAl41jJOMlEHCuZwDjLrWQCk4zbj0Qcy0pgkgnEimN/XrB/vMJymk2cthNj2bOdz1Rf/xpcTsOJGyOCdCan4sKIG+maZ7eSiTNvf2LrJLcul7Oe227Y7tzWtX99cdljKl2u/fsVl9tuXRM3Lle3eeJC3C5cYi/vnO9yjiNOLC5ne7vrZ+e/zrbOcex1XN22dR2UoO/v3NZ5/owz1a0tqnOe6blO5zbGWD2mO9fpfB/sVr/Ot8yy/+1qcTPOw24FBMO57gyycvOO6CN4NGmC1Y9Vyx4j8tofKApvoMzaTZUYqrD/ENe4iqjzT2RVwQm4CqaROWEGBZVzKSgpZ9po6SYyTMaFfLTnTod2YN+atE2wEkmLPXWN7NuxkZY9m4jXbcHVvJ2M8E7y4nuYYPYyVTp6bBPFS6O7gLaMYpqCC2jMnoB3XDnBgonkFFeSVVyBP5jP+DRI1Mcq/6RFsBVq3nuO8g+kT4KVtAz76uqp3bGe1prNJOq2IM3bCYV3khfbTYm1l3KJUd5tmyheGlwFtPiK2ZdzAnuyxuPOLSOQP5Hs4irGlVYRyMqjRL8PR4UnI4uJs05i4qyTDlpmJZPU1tVQu2c7HQ27ibfWkgg3kexogkgLrmgLnngLnmTE7gIXj+M27bhNMx4Tx2sSIAY7vRLnkkycTnB2d6GkeIh0tfQESbpysdxeki5fV6JmXF4st99JgDqTnxBuv/3wBEJ4A5n4MkJ4M7IIZIQIhLIIBjPJ8HkI6bij4eNy4fYFcPsCBEI5qY5GqWGlCVY/Ig27GR9ew97gVHbmfRRv6SzyJs5iwqTZjA9mprRa30hXMbGSfevyKNz5JsK1qQ5n2MSTFtv2NVJTvZbw7nWYuo1ktGxlXMd2ipN7KJemAy4YfdR7imnLLmNH1kIkrxJ/wSRySicxrrQKf2ahXiyOcbOPWUD9s1mEN74MH/h/qQ5nSFmWYU9tLfu2rqJt11qs2o34WqrJjuyiOFlDqbR0VUEFCJNBraeU1lAFq7NPwTWugmBBBbmlleSPn4Q/q4hSkR7bqJHJ5XZTWDyBwuLhrcyplFKjgSZY/Tj+3KuRj12jidRhOLZiHP9aPYPztryMewyMNWntiLF9ezX1W98lUrMOV8NmssPVlCR2UkUtU7oNLm6UXOoDE9mXuYh94yoIFE4md8JU8iZMxZ9VzPg0b+FMd0XZGbzinc3U2jdG7Tis1vYI1ZvX0bR9NbF9G/A2biYnXE1pYicTpLGry3TSCLXuIpoCE9iZeQY7cyvxF04ie/xUCsqnEsoqJDQKX79SSinVH02w+iF6IXzYTqjM405rNh9v/5fdTbB4dqpDGpTWSJyNO/dRs3klsV3v4W9YS0F4M1XWNmZLS9d6HQSo9ZURzp3HhvypBEunkz9xFpkTZjAukMO4FL4GNfK1V36Iok3/Qd26ZRTMPCXV4fSpPRpnW/Um6jevJLbnPfwN6yls30yFtZO53Ur4t5DFPn85e8a9n935U8gonUFBxWzyyqZT4g1QksLXoJRSSh1tmmCpYTGjJIvVoZOwYr/HtfZvIy7BSlqGbXWtbN+8hpbqlbBvDdkt65kYr2a+7O0qdxvBz75AFftyz6C2ZDbZE+dRVDWXjNwJTNRf3tVhmv6BywhvvIna5341IhKsaCLJ1h27qd3yNh073sNbv4688CYqk9XMlPau9eokn9rgZNaMW4S/ZCbjKmZRWDmH7KxC0rtgt1JKKbWfJlhqWIgIC+bM5M0VM1jw9lLcp34dXO6UxNLcHmdjdTV1m98mvvs9Ao3rKOrYwlR2MEmigH2T0DrvBFqLZlFd/ClyquaTVzmfQF4VE1MUtxq7JpYW84/c8/lg7QM0bn2bcVXHHpXjGmOoaWhmx4Z3aNn2jvPDwgbK4tXMkHpmOOuFCVITqGJ77tm4S2aTUzWf4snHUpCZr1X4lFJKqQFogqWGzSULJ/KL1z7Eic23wppHYc4nhvV48aRFdU09uzauJLzjPVy1a8hr3UilVc0Caepar8WVQ332FHYWnESwbB6FU47DXzqLIl/ooHvnKDVcpn7iezT/4Unal15JzvXP4woObcfScCRG9aY11G95m/ie1WQ0rqcosoVKs5tSp9R5HA813nKaChbQVDyL7Ir5FE05llDeRCZrC61SSil1WDTBUsNmekkW8akfZUP1I0x66rt4qk6DUP4R79cYQ01TmG2bVtO87R2smjVkNm9gfGwrVdQw1bl4jOFhr7+KpnGLaC2ZQ8GkY8mpmk92ZjHZevGoUmxSRQVPHvs/fODtL7Ht1o9QdNWfCRVVHfJ+2iIxdmzdQMP2tcT3rMJTv4788GYqktuZ7bTQAtS4SmjMnsyagrMJls2jeMpxZE2YQbnbO5QvSymllEp7YowZeK2+Nha5D5juTOYCTcaY+SJSCawF1jvLXjPGXDPQ/hYsWGCWL19+2PGokWdbfZhv/fIu/sT3IW8Svk/fCwWDu/dPPGmxc28d+6rX0Lp7PYm6zWQ0b6awYzOTzE4CziB7C6HWU0pz1hRM4UxC5fMomno8vsKp4NbfENTIZYzh6Qd/x6JV38MlsKHwLNzTPkRO+WwyxhUjLg+RSIRYRystdbsJ1+8i1rQHV/MOMtqqyY/uYIK1F3+3ghMNksO+wGQ6xk3HVzqb/EnHUjRpHq4MHSWllFJKDSURWWGMWXDQ/CNJsA44wP8CzcaYHzsJ1t+NMXMOZR+aYI1Nr22p54677uQmcwvZEmZP4SKi40/EZJYQcQVJxCN0hMPEWuuQthq87XvJiOyjJLmbEmnssa96Vz71wcnEC2YQGD+H4snHklk+G3yhFL06pY7cqjXv0fjEf3Bc6wuEurU69SWKl73uUlqCE4nnVOEtmkJu2QwKJ8/Hn6M1+5RSSqmjYVgTLBERYDtwpjFmoyZY6kC7mzr409OvUbzmj3zQ+hcTXbW9rhfBR4Mrn3ZfAZGsiZA3mWDpNAomziR7wnTwZx3lyJU6elrb2tix9g1aazYj4TqMsfB4fbh8QTLGlZJTWMa44jICOcUpKxqjlFJKKdtwJ1inAj/rPICTYK0GNgAtwPeMMS/3se3VwNUAEydOPH7btm1HHI8auYwx7GrqoL5uH4nWWjJMB15fgOysLPIKS/AGc0fljVeVUkoppVR6OewES0SehV7vE/ldY8yjzjq/ATYZY/7XmfYDmcaYehE5HngEmG2MaellP120BUsppZRSSik1GvSVYA1YAcAY88EBduwBPgEc322bKBB1nq8Qkc3ANECzJ6WUUkoppdSY5RqCfXwQWGeM2dk5Q0QKRcTtPJ8ETAW2DMGxlFJKKaWUUmrEGooa1hcDSw+YdyrwYxGJAxZwjTGmYQiOpZRSSimllFIj1pCVaR8KIlILjLQqFwVAXaqDUEeNvt/pQ9/r9KHvdXrR9zt96HudXkbi+11hjCk8cOaISrBGIhFZ3tvgNTU26fudPvS9Th/6XqcXfb/Th77X6WU0vd9DMQZLKaWUUkoppRSaYCmllFJKKaXUkNEEa2C/TXUA6qjS9zt96HudPvS9Ti/6fqcPfa/Ty6h5v3UMllJKKaWUUkoNEW3BUkoppZRSSqkhogmWUkoppZRSSg0RTbD6ISJni8h6EdkkIt9KdTxq6IhIuYg8LyJrRGS1iFznzM8TkWdEZKPz77hUx6qGhoi4ReRtEfm7M10lIq873+/7RMSX6hjV0BCRXBF5UETWichaEXmffrfHJhG5wfkbvkpElopIQL/bY4eI/EFE9onIqm7zev0ui+1W531/V0SOS13k6lD18V7/1Pk7/q6I/FVEcrst+7bzXq8XkbNSEnQ/NMHqg4i4gV8D5wCzgEtEZFZqo1JDKAF81RgzCzgJ+ILz/n4L+KcxZirwT2dajQ3XAWu7Tf8PcIsxZgrQCPxbSqJSw+EXwFPGmBnAMdjvu363xxgRmQB8GVhgjJkDuIGL0e/2WHIncPYB8/r6Lp8DTHUeVwO/OUoxqqFxJwe/188Ac4wx84ANwLcBnOu1i4HZzjb/51y3jxiaYPVtIbDJGLPFGBMD/gKcn+KY1BAxxuwxxrzlPG/FvgCbgP0e/8lZ7U/Ax1MSoBpSIlIGfBT4vTMtwJnAg84q+l6PESKSA5wK3AFgjIkZY5rQ7/ZY5QEyRMQDBIE96Hd7zDDGvAQ0HDC7r+/y+cBdxvYakCsipUclUHXEenuvjTFPG2MSzuRrQJnz/HzgL8aYqDFmK7AJ+7p9xNAEq28TgB3dpnc689QYIyKVwLHA60CxMWaPs6gGKE5VXGpI/Rz4BmA50/lAU7c/3Pr9HjuqgFrgj06X0N+LSAj9bo85xphdwM3AduzEqhlYgX63x7q+vst63Ta2XQU86Twf8e+1JlgqrYlIJvAQcL0xpqX7MmPfw0DvYzDKici5wD5jzIpUx6KOCg9wHPAbY8yxQJgDugPqd3tscMbenI+dVI8HQhzcxUiNYfpdTg8i8l3soR33pjqWwdIEq2+7gPJu02XOPDVGiIgXO7m61xjzsDN7b2eXAufffamKTw2Zk4GPiUg1dlffM7HH6OQ63YpAv99jyU5gpzHmdWf6QeyES7/bY88Hga3GmFpjTBx4GPv7rt/tsa2v77Jet41BInIFcC5wqdl/894R/15rgtW3N4GpTjUiH/ZgusdSHJMaIs4YnDuAtcaYn3Vb9BhwufP8cuDRox2bGlrGmG8bY8qMMZXY3+PnjDGXAs8Dn3RW0/d6jDDG1AA7RGS6M+sDwBr0uz0WbQdOEpGg8ze9873W7/bY1td3+THgs041wZOA5m5dCdUoJCJnY3fv/5gxpr3boseAi0XELyJV2IVN3khFjH2R/cmgOpCIfAR77IYb+IMx5sbURqSGiogsAl4G3mP/uJzvYI/Duh+YCGwDLjLGHDjAVo1SInI68DVjzLkiMgm7RSsPeBv4jDEmmsLw1BARkfnYBU18wBbgSuwfFPW7PcaIyI+Axdjdh94GPoc9FkO/22OAiCwFTgcKgL3AD4FH6OW77CTZv8LuJtoOXGmMWZ6CsNVh6OO9/jbgB+qd1V4zxlzjrP9d7HFZCexhHk8euM9U0gRLKaWUUkoppYaIdhFUSimllFJKqSGiCZZSSimllFJKDRFNsJRSSimllFJqiGiCpZRSSimllFJDRBMspZRSSimllBoimmAppZRSSiml1BDRBEsppZRSSimlhogmWEoppZRSSik1RDTBUkoppZRSSqkhogmWUkoppZRSSg0RTbCUUkoppZRSaohogqWUUkoppZRSQ0QTLKWUGmFEpFJEjIh4Uh2LSg8islpETk91HEopNRZogqWUUmrUE5HbRKTNecREJN5t+slUxzfSGWNmG2NeGMp9iohfRP4gIi0iUiMiXxnK/Sul1EglxphUx6CUUmOKiHiMMYkj2L4S2Ap4j2Q/6UpElgBTjDGf6WXZEb03R9NoirU3IvLfwCLgY0AJ8DxwhTHmqZQGppRSw0xbsJRSagiISLWIfFNE3gXCIuIRkZNE5F8i0iQi73TvgiUiL4jIf4vIG84v/I+KSF4f+75SRNaKSKuIbBGR/3fA8vNFZKWzn80icrYzP0dE7hCRPSKyS0T+U0TcA7yOySLynIjUi0idiNwrIrndljWIyHHO9HgRqe18XSLyMaerWZPz+mYecH6+JiLvikiziNwnIoFDP9OHro/3xojIlG7r3Cki/9lt+lznnDY57+G8QR7rdBHZKSLfcc5ftYhc2m35R0Xkbee92uEkg53LOruG/puIbAeec+Y/4LQANYvISyIy+4C4/09EnnRa614RkRIR+bmINIrIOhE5dpDn6IODeY2H4HLgP4wxjcaYtcDvgCuG+BhKKTXiaIKllFJD5xLgo0AuUAw8DvwnkAd8DXhIRAq7rf9Z4CqgFEgAt/ax333AuUA2cCVwS7ckZyFwF/B157inAtXOdnc6+50CHAt8GPjcAK9BgP8GxgMzgXJgCYAxZjPwTeAeEQkCfwT+ZIx5QUSmAUuB64FC4AngbyLi67bvi4CzgSpgHn1cbIvIIiex6euxaIDX0Juu92agViEnIfkD8P+AfOB24DER8Q/yWCVAATABO8n4rYhMd5aFsd/3XCeea0Xk4wdsfxr2uT/LmX4SmAoUAW8B9x6w/kXA95xjRoFXnfUKgAeBnw0y7l6JyLf6ez/62GYc9uf6nW6z3wFm97a+UkqNJZpgKaXU0LnVGLPDGNMBfAZ4whjzhDHGMsY8AywHPtJt/buNMauMMWHg+8BFvbUwGWMeN8ZsNrYXgaeBU5zF/wb8wRjzjHOcXcaYdSJS7BzremNM2BizD7gFuLi/F2CM2eTsK2qMqcW+OD+t2/LfAZuA17EvoL/rLFoMPO5sGwduBjKA9x9wfnYbYxqAvwHz+4hhmTEmt5/Hsv5eQx+6vzcDuRq43RjzujEmaYz5E3bictIhHO/7zjl8ETvRvgjAGPOCMeY95716FzspPe2AbZc471mHs80fjDGtxpgodrJ7jIjkdFv/r8aYFcaYCPBXIGKMucsYkwTuw06uD5sx5if9vR99bJbp/NvcbV4zkHUksSil1GigCZZSSg2dHd2eVwCfOuCX/kXYSUlv628DvNitDj2IyDki8prTPa8JO3HqXK8c2NxLLBXO/vZ0O/7t2K0gfRKRYhH5i9OlsAW4p5eYfgfMAX7pXPSD3eK1rXMFY4zlvL4J3bar6fa8nf0X4UfDjoFX6VIBfPWA964c+zUORqOTNHfa1rmtiJwoIs87XSubgWs4+Px2xSoibhH5idhdP1vY3zrZfZu93Z539DJ9NM9zpzbn3+xu87KB1hTEopRSR5UmWEopNXS6Vw3agd1C1f3X/pAx5ifd1inv9nwiEAfquu/Q6Zb2EHaLULHTYvAEdle+zuNM7iWWHditLgXdjp9tjBmoi9Z/Oa9jrjEmG7slrvNYiEgm8HPgDmCJ7B83ths7MelcT5zXt2uA4x1ERE6R/RUAe3ucMvBeDnJgRad2INhtuqTb8x3AjQe8d0FjzNJBHmuciIS6TU/EPj8AfwYeA8qNMTnAbXQ7v73E+mngfOCDQA5Q6cw/cJth44wn6/P96G0bY0wjsAc4ptvsY4DVRyNmpZRKJU2wlFJqeNwDnCciZzmtEAGnAEJZt3U+IyKznPFMPwYedLp1decD/EAtkBCRc7DHUnW6A7hSRD4gIi4RmSAiM4wxe7C7Ev6viGQ7yyaLyIHd0Q6Uhd360CwiE7DHdnX3C2C5MeZz2F3fbnPm3w981InDC3wVO8H710An6kDGmJeNMZn9PF4+1H32YiXwaee9OZue3fR+B1zjtDaJiITELk6RBV2FJe4cYP8/EhGfkwyeCzzgzM8CGowxEWf83KcH2E8W9nmsx04I/+sQXuOQMMb8V3/vRz+b3gV8T0TGicgM4N+xxwUqpdSYpgmWUkoNA2PMDuyWh+9gJ0c7sJOV7n9378a+4KwBAsCXe9lPqzP/fqAR+4L8sW7L38ApfIE9xuVF9rckfRY7QVvjbPsgPbso9uZHwHHOvh4HHu5cICLnYxepuNaZ9RXgOBG51BizHru165fYrXDnAecZY2IDHC9VrsOOsQm4FHikc4ExZjl2MvAr7PO2iZ4FOcqBV/rZd42z3W7sghTXGGPWOcs+D/xYRFqBH2C/r/25C7uL4S7s9/G1gV7YCPJD7O6r27A/lz/VEu1KqXSg98FSSqkUEJEXgHuMMb9PdSxq8JyqiO8A85xiHgcuPx37fS07cJlSSqn04El1AEoppdRo4bTIzRxwRaWUUmlLuwgqpVSaEZHb+ihYcNvAW6vRSEQm9lOoYmKq41NKqbFEuwgqpZRSSiml1BDRFiyllFJKKaWUGiIjagxWQUGBqaysTHUYSimllFJKKdWvFStW1BljCg+cP6ISrMrKSpYvX57qMJRSSimllFKqXyKyrbf52kVQKaWUUkoppYaIJlhKKaWUUkopNUQ0wVIHaY3Euf/NHUTiyVSHopRSSiml1KgyosZg9SYej7Nz504ikUiqQ0kbzR1xJsTbWPf2NvyZeSCS6pAOSyAQoKysDK/Xm+pQlFJKKaVUmhjxCdbOnTvJysqisrISGaUX+qPNxr2tTE1uAsDkFCOh/BRHdOiMMdTX17Nz506qqqpSHY4aA4wxNIRj5Gf6Ux2KUkoppUawEd9FMBKJkJ+fr8nVUWKMwSRi+6c7mlIXzBEQEfLz87XlUw2ZP7+xnaU/+XcafnkmJKKpDkcppZRSI9SIT7AATa6OoqRl8Bn74rHD+CDWBsZKcVSHRz83aii98Ppyvuh5lLz6FbDhH6kORymllFIj1KhIsNTRk7AMHrGLWzSTiQtLf61Xac8Yg9Rv7ppOrn4kdcEopZRSakTTBGsQRISvfvWrXdM333wzS5YsSV1A3bz22muceOKJzJ8/n5kzZ3bF9cILL/Cvf/3rkPeXtAxu7Bariy+7ktyZp3Luxz4+hBErNfo0tscpSuwG4C1rContb6Y4IqWUUkqNVJpgDYLf7+fhhx+mrq5uSPdrjMGyjqz73eWXX85vf/tbVq5cyapVq7jooouAI0uwPCQxCNd86Sv86Rf/AUbLtav0tqe5gwrZS8IV4OnkAvyt2yFcn+qwlFJKKTUCjfgqgt396G+rWbO7ZUj3OWt8Nj88b3a/63g8Hq6++mpuueUWbrzxxh7Lamtrueaaa9i+fTsAP//5zzn55JNZsmQJmZmZfO1rXwNgzpw5/P3vfwfgrLPO4sQTT2TFihU88cQT/OpXv+LJJ59ERPje977H4sWLeeGFF1iyZAkFBQWsWrWK448/nnvuueegcUX79u2jtLQUALfbzaxZs6iurua2227D7XZzzz338Mtf/pIZM2b0GefmzZvZtGkTdXV1fOG6r3D5BR8El4cPfuhDrHiyFmP1nWA98MAD/OhHP8LtdpOTk8NLL71EJBLh2muvZfny5Xg8Hn72s59xxhlncOedd/LII48QDofZuHEjX/va14jFYtx99934/X6eeOIJ8vLy+N3vfsdvf/tbYrEYU6ZM4e677yYYDPY47kknncQdd9zB7Nn2e3f66adz8803s2DBgn7fS6UOR3N7nArZSyyrnC3MAAvY8zZM+WCqQ1NKKaXUCHPELVgiUi4iz4vIGhFZLSLXOfOXiMguEVnpPD5y5OGmzhe+8AXuvfdempube8y/7rrruOGGG3jzzTd56KGH+NznPjfgvjZu3MjnP/95Vq9ezfLly1m5ciXvvPMOzz77LF//+tfZs2cPAG+//TY///nPWbNmDVu2bOGVV145aF833HAD06dP54ILLuD2228nEolQWVnJNddcww033MDKlSs55ZRT+o3z3Xff5bnnnuPVV1/lpz+5kX01e8DlIeBxE8Pbb5GLH//4x/zjH//gnXfe4bHHHgPg17/+NSLCe++9x9KlS7n88su7qvmtWrWKhx9+mDfffJPvfve7BINB3n77bd73vvdx1113AfCJT3yCN998k3feeYeZM2dyxx13HHTcxYsXc//99wOwZ88e9uzZo8mVGjZNHXFyJIwJFWAVzLBn1m5IbVAj0ObaNr1BuVJKqbQ3FC1YCeCrxpi3RCQLWCEizzjLbjHG3DwExwAYsKVpOGVnZ/PZz36WW2+9lYyMjK75zz77LGvWrOmabmlpoa2trd99VVRUcNJJJwGwbNkyLrnkEtxuN8XFxZx22mm8+eabZGdns3DhQsrKygCYP38+1dXVLFq0qMe+fvCDH3DppZfy9NNP8+c//5mlS5fywgsvHHTM/uI8//zzycjIICMjg/efchorV77DtIpz8HtdxPAgxoJkAtwHf1xOPvlkrrjiCi666CI+8YlPdL2mL33pSwDMmDGDiooKNmywL0bPOOMMsrKyyMrKIicnh/POOw+AuXPn8u677wJ2Eva9732PpqYm2traOOussw467kUXXcSHP/xhfvSjH3H//ffzyU9+st9zrtSRaGqPU0U77owKSrPKadyXRW7terRO5X4rtjWy+Dcv8Z3KjVx1wUegeFaqQxoxttaFuerON/nqCV7OnVsKeZNSHdKI8cbWBr7+4Dv8zyfmctIEHwSyUx3SiPHUqj3c/PQGfnfpPKoSW2DC8akOSSk1SEecYBlj9gB7nOetIrIWmHCk+x2Jrr/+eo477jiuvPLKrnmWZfHaa68RCAR6rOvxeHqMr+p+P6ZQKDSo4/n9+29o6na7SSQSva43efJkrr32Wv793/+dwsJC6usPHhvSV5zQs5y5MeAWg7g9eFxCHK+9INEB7qyDtr3tttt4/fXXefzxxzn++ONZsWLFoF+Ty+Xqmna5XF2v74orruCRRx7hmGOO4c477+w1YZwwYQL5+fm8++673Hfffdx22239HlepI9HUESOTDrzBXKYWZ7LRGs/8vevwpTqwEeQfq2v4sGs5V9XcivnDrci3toHeKgGA+97cQXVdK+c+/xl4HvhuDXgzBtwuHfzxla1sq2/H9cBlEHsTrv0XFE5LdVgjws+f3cimfW1sf/DbVNUuhc8+BpNOS3VYSqlBGNIiFyJSCRwLvO7M+qKIvCsifxCRcX1sc7WILBeR5bW1tUMZzpDLy8vjoosu6tFl7cMf/jC//OUvu6ZXrlwJQGVlJW+99RYAb731Flu3bu11n6eccgr33XcfyWSS2tpaXnrpJRYuXDjomB5//HGMMYDd9dDtdpObm0tWVhatra0Dxgnw6KOPEolEqK+v59VlL7Fw/iwQl514uZ1LyD5KtW/evJkTTzyRH//4xxQWFrJjxw5OOeUU7r33XgA2bNjA9u3bmT59+qBfU2trK6WlpcTj8a799Gbx4sXcdNNNNDc3M2/evEHvX6lD1dweJ0vacQeymVKUySZrPFKnXQS721LbxjyX/XdOos1Q826KIxo51te08D7X/h4EvPdg6oIZYd7d2UwW7SyM/AusOLx7X6pDGhHiSYvNtW2A4Zhae/w2y25JaUxKqcEbsgRLRDKBh4DrjTEtwG+AycB87Bau/+1tO2PMb40xC4wxCwoLC4cqnGHz1a9+tUc1wVtvvZXly5czb948Zs2a1dWScuGFF9LQ0MDs2bP51a9+xbRpvf8id8EFFzBv3jyOOeYYzjzzTG666SZKSkoGHc/dd9/N9OnTmT9/Ppdddhn33nsvbreb8847j7/+9a/Mnz+fl19+uc84AebNm8cZZ5zBSSedxJe/9i0mlBSAuDjllFP4wtVX8s9X3qRs2lz+8Q/75qo/+MEPusZbff3rX2fu3LnMmTOH97///RxzzDF8/vOfx7Is5s6dy+LFi7nzzjt7tFwN5D/+4z848cQTOfnkk5kxY0bX/Mcee4wf/OAHXdOf/OQn+ctf/tJVOVGp4dLSESNTOsBJsDab8XijDVpJsJvq+nZODu1it8mzZ2x+LrUBjSDV9e2cnr0XAIMLtr+a4ohGhnjSYk9zBx8sbNo/c8NTKYtnJNlWHyaeNJxSasjF+bF0xxt2d32l1Ignna0fR7QTES/wd+Afxpif9bK8Evi7MWZOf/tZsGCBWb58eY95a9euZebMmUcco+rdgdUOt9WFmRjbgGQWQ/Z49rZEyG7dTCAQQPInpzjaQ6efHzUUvv7nf/HTDefAB5dgTr6ea374E253/QSufBIq3p/q8FLOGMP07z/FWxlf4GUznwWspnD6++BTd6Y6tJRLJC1mfP8plk58lNl7/sr23BOY4d4DX34r1aGl3M7Gdhb9z/PcMW8dH9jwY7YUn82kfc/At3eCLzjwDsawf22q49O/f52b3p/korcuo2biRynZ/jhc/QKMPzbV4SmlHCKywhhzUJW1oagiKMAdwNruyZWIlHZb7QJg1ZEeSw0/g7EH7ov90fB77EIXpo8ugkqlhYhzewh/NiJCNHeqPV27PnUxjSCRuEU8kSAYb8SVM55VViXs0S6CYFegTFiGQquORk8hK5JToGHz/s9UGtvV2AHANPceYnj4V2CRfd/FvXq5UBeOAXBcbjsA72Sdbi/YvTI1ASmlDslQdBE8GbgMOPOAkuw3ich7IvIucAZwwxAcSw2xJUuWdLVeAdBZmKNbghXFiyRjdgUMpdKQxJwuOoEcAEJFFUTwQd3GFEY1crRG4+QQxoVFMLeIFdFyO4mI9l9RNR2Eo3aXruzYXiLBEl5vdbrC62eHxnY7ichK1NPkzuOl8ER7wZ53UhjVyNDQZv+oWYrdDXlZbAp4g6BjP5UaFYaiiuAy6LVa8RNHum919JnOe1451b98zr2wBAPJGHgGP5ZKqbHC3Zlg+e1KmhMLsti2sZip9ZuGtlLQKBWOJskT+xxl5ZWwyTj3wqrfBOPnpy6wEaA1YidYwUgNdXkn815dCfiBuvVQlt5lt9ui9ufEH28h7Mvl1To/xpeJ1G9KcWSpVx+O4RLI6KghjpcVtR4omKqt5kqNEnptoHoyPVuw3C4hKf1XElRqrHPHnZYYv32Pnqr8EFutEpJ1eiEIdivNOGcgfkHxeLYYp4e4Xig7LVgGf7Qe/7jxbDdFWC6fXiizv3XPE21EMvJojSRJ5E7WVhqgri1GXsiHK7yXsK+ATXVhrPxpem6UGiU0wVI9HZBgAftbrTTBUmlqf4KVCUBFfpBqU4K7ebtW9cJupelswSoqHs92iu3RnNoNjrZoggyiiLHIyc0jiZvW4ES9UMY+NwDuaBO+rHwAGoMVoD9c0BCOkh/yQ7QVE8gmlrBoyZoEzTu0661So4AmWKqnXhIst9dHEoGkJlgqPbkT9mB8fPZNwisLQmw1JbisuH3Bk+bC0f0Jli+rkOK8XOo9xdqChZ1EZGJ/frJzxuFzu9jtmwi161IcWeq1RRN4XIJ0NJKRY49N2+Mps79TsfYUR5daTe1xcoJeiLbiDthdk/d4KuyFmpwrNeJpgjVIjzzyCCLCunV9/6dYXV3NnDn9VqI/JOvXr+f0009n/vz5zJw5k6uvvhqwbxL8xBNHNsTtqquuoqio6KB4BaeQRbcEy+9xETNerHjkiI6p1GjlSjqffU8GAEVZfna5xtvzGjanKKqRIxxLkNd5r55gPpMKQlQzHuq1BastmiBT7M+PK5BNRX6QTdZ4aKyGNP+bGo4myPS5kEgTwZwCfB4XW8x4wKT996o9liTT74FoK75QLgAbzQR7oSZYSo14mmAN0tKlS1m0aBFLly7tdXkiceTdhJLJZI/pL3/5y9xwww2sXLmStWvX8qUvfQkYmgTriiuu4KmnermhYy8tWD6Pmyhe7SKo0pY76bRgee0ES0Swxk2y59VvSVFUI0drJEGutGLcAfAFqSwIsTZejKnfnPbVR8PRBCE6W0AzqSoI8U60xP5bm+ZJRFs0QYk/BsZCgvlU5AV5L1JkL0zz7qXhaIKgzw2xNvzBbAJeF6s78sDl1fF7So0CR1xF8Kh68ltQ897Q7rNkLpzzk35XaWtrY9myZTz//POcd955/OhHPwLghRde4Pvf/z7jxo1j3bp1PP300yQSCS699FLeeustZs+ezV133UUwGOSf//wnX/va10gkEpxwwgn85je/we/3U1lZyeLFi3nmmWf4xje+wcUXX9x13D179lBWVtY1PXfuXGKxGD/4wQ/o6Ohg2bJlfPvb3+bcc8/lS1/6EqtWrSIej7NkyRLOP/987rzzTv7617/S3NzMrl27+MxnPsMPf/hDAE499VSqq6t7vE5jDGIsuyakCC+++CLXXXcdxoCVjPPKw7eTVZTkG9/8Fk8++SQiwve+9z0WL17MCy+8wA9/+ENyc3N57733uOiii5g7dy6/+MUv6Ojo4JFHHmHy5Mn87W9/4z//8z+JxWLk5+dz7733Ulxc3COOiy++mMsuu4yPfvSjgJ0MnnvuuXzyk5883HdZqcNmWQZPMmr/HOXdf/PT7IIy2lsyCKb5RTJ0JhERjD8LAaoKQqxPlCDSBq17IHt8qkNMmbZokixxEix/JpMKM3l1fR54gfrNUDw7pfGlUjiaoNTbDlEgmEdFfojl9ePshWnevTQcSxDy2S1Y4s9kYl6QLY0xGFeZ9om5UqOBtmANwqOPPsrZZ5/NtGnTyM/PZ8WKFV3L3nrrLX7xi1+wYYPdZL9+/Xo+//nPs3btWrKzs/m///s/IpEIV1xxBffddx/vvfceiUSC3/zmN137yM/P56233uqRXAHccMMNnHnmmZxzzjnccsstNDU14fP5+PGPf8zixYtZuXIlixcv5sYbb+TMM8/kjTfe4Pnnn+frX/864XAYgDfeeIOHHnqId999lwceeIDly5f3+TqN6dlF8Oabb+bXv/41b7/9Ng88/DDBgJ+HH7iflStX8s477/Dss8/y9a9/nT179gDwzjvvcNttt7F27VruvvtuNmzYwBtvvMHnPvc5fvnLXwKwaNEiXnvtNd5++20uvvhibrrppoPiWLx4Mffffz8AsViMf/7zn13JllJHWySRJEOiWOIGt7drfkVhiGrjtNKkubDTDU78zhi1/ND+SoJp3hLRFkmQ743bE/4sqgqCbE46rTRpfqEcjiYp9DrJZyCHyvwgGxqTmJyytO8GF44mCfk9dkELfzYV+SG21Ychb5K2mis1CoyuFqwBWpqGy9KlS7nuuusAu3Vl6dKlHH+8ff+ShQsXUlVV1bVueXk5J598MgCf+cxnuPXWW/nQhz5EVVUV06ZNA+Dyyy/n17/+Nddffz1gJxS9ufLKKznrrLN46qmnePTRR7n99tt5552Db8D49NNP89hjj3HzzTcDEIlE2L59OwAf+tCHyM+3qzN94hOfYNmyZSxYsKDX41nG4JLO7jwuTj75ZL7yla9w6aWXsvDkU/Fkeli27GUuueQS3G43xcXFnHbaabz55ptkZ2dzwgknUFpqX1RNnjyZD3/4w4Dd8vb8888DsHPnThYvXsyePXuIxWI9zl2nc845h+uuu45oNMpTTz3FqaeeSkZGRq8xKzXcOmJJAsRIuAL4ZP8t/yrzQ2yxiplauwlvP9ung9ZogixXFPHZVRarCkJUWyX2woYtMOm0FEaXWuFogjxPFJKAL4vK/BBtBIkF8vE1pPeFcms0Qa7HvtkwvkwqCkJE4haxnCr8DVtTG1wKGWMIxxJk+oB4GHyZVOYHeWlDLWZGFVK9zPlFtLdbkCqlRgJtwRpAQ0MDzz33HJ/73OeorKzkpz/9Kffffz/GGVcQCoV6rC8H/ME7cLo3B+6ju/Hjx3PVVVfx6KOP4vF4WLVq1UHrGGN46KGHWLlyJStXrmT79u3MnDnzkOOxDLi6tWB961vf4ve//z0dHR188uPnsW7TVjDJPrf3+/ffhNjlcnVNu1yurjFqX/rSl/jiF7/Ie++9x+23304kcvAg70AgwOmnn84//vEP7rvvvj4TUKWOho54kgxiWO6eN9nuLNXuadkOyXiKohsZwk6ChZNgjc/NoM6dT0J8doKVxto6EywAfyaVBfbf+6ZAOaRxEgH256YrwfJnUpFnd8FtCpSl9ecmErcwhp7nJj9ENGHREpxoJ11te1MbpFKqX5pgDeDBBx/ksssuY9u2bVRXV7Njxw6qqqp4+eWXe11/+/btvPrqqwD8+c9/ZtGiRUyfPp3q6mo2bbL7lN99992cdtrAv+g+9dRTxOP2hVtNTQ319fVMmDCBrKwsWltbu9Y766yz+OUvf9mV9L399ttdy5555hkaGhq6xkF1tq71xhiDi/1FLjZv3szcuXP55je/yTHHLmDNpm2ccuLx3HfffSSTSWpra3nppZdYuHDhgK+lU3NzMxMm2JWQ/vSnP/W53uLFi/njH//Iyy+/zNlnnz3o/Ss11CLxJAGJYnl6tqJW5oeoNiWISULT9hRFNzKEo0myJNJVxt7tEsryMqn1lKb1hTLYCVauuzPByqIoy0+G181u93h7DFYaC0cT5Licc+PLpDLf/vzUuMZDRwN0NKYwutTpvD9Y17nxZ3Wdm91d1UvT+3ul1EinCdYAli5dygUXXNBj3oUXXthnNcHp06fz61//mpkzZ9LY2Mi1115LIBDgj3/8I5/61KeYO3cuLpeLa665ZsBjP/3008yZM4djjjmGs846i5/+9KeUlJRwxhlnsGbNGubPn899993H97//feLxOPPmzWP27Nl8//vf79rHwoULufDCC5k3bx4XXnhhV/fASy65hPe9732sX7+esrIy7rjjDiwDd919D7fd9SCI8POf/5w5c+Ywb948/D4vZ5x+OueffQbz5s3jmGOO4cwzz+Smm26ipKRk0OdzyZIlfOpTn+L444+noKCga/7y5cv53Oc+1zX94Q9/mBdffJEPfvCD+Hy+Qe9fqaHWEbPsFqwDEqyS7AC7xLnYSfML5dZogpBEu27EDFCVH2KbKU77C8G2aIIcd9SuzOoNIiJU5AfZkiyG1t1pfb+ntmiCbPf+BGt8bgCPS9hsOYWP0vSz0x6zE6wsp7w/vkwq8u3Wvc2WM34vzf/mKDXSja4xWCnQOXaouy9/+ctdz08//fSu55WVlX3eJ+sDH/hAj5alTgdW8uvuZz/7GT/72c8Omp+Xl8ebb77ZY97tt9/e6z7Kysp45JFHDprfW4IYjia48rJPUyAtINJVmAKgpSOO1bAVScb46U9/yk9/+tMe255++uk9zsULL7zQ67Lzzz+f888//6BjL1iwgN///vdd016vl4aGhl5fk1JHU3ssQQZRzAEJlsslJMdVQStarCCaIEhHVxdBsG/GvHZLISc2vIdYFrjS8/e8cDRBtjjnxumiXZkfYvWufD4B0Lg1LSsJGmPsrqXSmWCF8LhdlOcFWRMpsM9Nw1aYcHwqw0yJzhasrgTLn8X43Ay8bmFNew7nujxpm3wqNVqk5/94qlfGGASDkYM/Fj6PiyhexIrtv1eWUmmgI54kQLzrHljd5RSMJ0ww7X9NDkcTZJjIQQnW5mQRkuiAtpoURpdarZEEma4I+LO65lUUBHmrNc+eSNML5Y54EstAqKuVxu4CV5EfZEVrjj0vTc9Ne8we65zZVd4/C7dLKB8XpLoh6pRqT89zo9RooQnWGHbFFVfwq1/9atDr20UurB43Ge7k87iI4UUAErGhC1KpES4St8u0Sy8JVmVBiK2mJO1LtbdGEvitjq6LZLC7CFabbpUE01Q4Zt8jrHvyWZUfYlMyvbt6dbbSBOmw7y/ncgN2696mhiQme0Lafm7C3c8NdH12KvKDbK1rt0u1p3mruVIj3ahIsDqLN6jhZRe5ML0mWC4RLJczFioZPcqRHR793KihYLdgxRBf8KBlFU6p9mRdet8UNRbtwEOiR4JlV1lM77E0xhjaIglCpr3H+LSK/BCtBIn589L23ISjditN8IDksyI/SGs0QTynUs+N6ewi2JlghdheH8aMq7K7T+r/cUqNWCM+wQoEAtTX1+vF8lHQVaa9r1LuHqdMdWLkJ1jGGOrr6wkEAqkORY1ydpGLKK5eEqzKfLsFy926c1R8L4aDMQZibfZEt25w43MzqHcVkhRP2rbSRBMWCcsQMB09zk1VZ6n2jIlpnETYrTQBq71HYt5ZLa85I31LtYdjnecmbM/wZwNQmR8kHEvSlllpf+fa9qUoQqXUQIa9yIWInA38AnADvzfGHNLdgsvKyti5cye1tbXDEp/aLxxN4O6ow+8WpP7g5U3tMdpidbj8HZDRywojTCAQoKysLNVhqFGuPZYgQ2K4e23BCvKgVYoYCxqroXD60Q8wxaIJy+4eCD0ulN0uYUJ+FrUdpZSk6YVyW48kYmLX/KIsPwGvixp3KUUN76YqvJTqPDd+6+AWLIAa93gKw7UQaYFAdkpiTJX2rnPjVJh0zk/nPdR2u0qZDnYCmlWcggiVUgMZ1gRLRNzAr4EPATuBN0XkMWPMmsHuw+v1UlVVNVwhqm7+sGwr856+iqlVJXiv/Fuvy49/+gpmTpqI74pHUxChUkdfJJ4kQBR34OAbgo/PzWCnq9SeqN+clgmWXUFwfznp7irzQ2zbUUxJmt5Qt7OVxpds79GC5XIJFXkhtiSLmdeyyy7V3ksCP5a1Rexz40327D5ZNi6IS2CrVcJcsKsslh6TmiBTJOwUufAl28Hl6eo90tm6tzlZ5CRYm6HifSmKUinVn+HuIrgQ2GSM2WKMiQF/AQ6u0a1GhEjCHmvi6mUwP9jdWraZYkxdenb3UempcwxWb98Lt0tI5Do/AKXpoPNwNGkXcYCDEqyqgiDrYoWYhi1pOV6ks5XGlwj3SLAAKguCrIo69wJsrD7KkaVeZzc4b7JnF0Gfx8WEcRmsiTjnJg1bP8PRBB6X4I632Z8bp9v+hHEZuF3C2o5cO/FKw3Oj1Ggx3AnWBGBHt+mdzrwuInK1iCwXkeXaDTC1onFnrIm/919SOyum+dp2aSVBlTZi0Rg+SfZa5AIgv6CEFslK23FGrdH4QaW2O1XkO6Xa4+G0HC9it9IY3Ilwr617b7WOsyfS8EK5M/n0JNp7PzdtufZEGn6vwtEEIb8HibWBb39i7nW7KBuXwZaGKOROTMtzo9RokfIiF8aY3xpjFhhjFhQWFqY6nLQWSSQJSBzx9N6CVTYug+2UIljQtO0oR6dUaiRizjiIPlp2K/JDbLWKMdqC1aOrF3S2eneWak+/8xOOJfATx2USB52bivwQmxJOqfZ0PDdOguWKtx2UYFXkB1nfYEFmiV0tL82EY0lCPjdEWw/63FTmh9hWH4a8yWmZmCs1Wgx3grULKO82XebMUyNQNG6RIdE+LyS9bhcdmc5Abf3lTKUJK+pU8urje1FZEGSzVYKVpl1nw9EEIQ4ucgH7W72BtLwYbI0kyOw8N/6ehRoqC4K0ECKepqXa25xS5BIP95pENHfESeRWpuW5aY8lCPo9ToJ1QNfS/CDb6toxeVqqXamRbLgTrDeBqSJSJSI+4GLgsWE+pjpM9mD+eJ8XkgCugin2kzT8xVWlJ6urBav3LoIV+SGqrRLcrbsg3nEUIxsZWqMJguKUqPf1vBgszQ5Q5y4iKe60vFAOR5Pduk8enEQANGWUp+UPVm2RBCGfC4m29dq1FKA5ozwtPzdt0SQhv8cuxX5Q616I1miC9sxKiLVCWIdWKDUSDWuCZYxJAF8E/gGsBe43xqwezmOqwxeJJQjQdwsWQEFhKc0mhEnDCwKVnpIxJ2ny9H5Ptcr8INVdrTRp2J0p2q2V5oALZZdLKMvPos5dkqYXyvFuLVg9L5RLsgP4PS72uEvT9nOT5zdgkr0kn/aPGXu9E6CtBmLhVISYMu3RhNNFsO3g1r0C+9zsdjvVS9Pwe6XUaDDsY7CMMU8YY6YZYyYbY24c7uOpw5eIR+0bDfdxIQlQVZhJtSkmXrvpKEamVAoN0II1ITeD7ZLG44yiCYISwYir1x9nKvLt6qPpeCHYFk12S7B6tu65XEJFfpCtVjG07Ey71s+2WIICX9yeOCDBKs8LIk6pdiDtEtC2aIKgr68ugvaPGFsSzv2v9MdOpUaklBe5UCPHQF2hwB5TUW1KsPSPukoXCefCt4+WXY/bRSJ3kj2Rht+L1kiCEFH7ItkpJ91dVUGI9fFCTH36lWpvi3RPIrIOWl6RH2J1JD1LtYej3c7NAa00Aa+b0uwA66L59ow0S87bY0ky/W6ni2DPz03nfcLWduRCmna9VWo00ARLdTGdv6B6+2nByrcTLF/bbkhEj1JkSqWOdH0v+v7hoaCgkCbJSdsWrBxXBPEdfCNmsH9x35wsRmKtEK47ytGlVjiaIM/j/J08IIkAuyvcitY8eyLNkvNwNME4T2fyefBnpyKNy9i3xxIE+6gi2HmfsC2NMbtUexr+zVFqNNAES+03iBas8bkBdlCCCwsatVS7GvtkgBYsgMmFmWyxitNybGI4liDbHTuom1enyoIg1cbpzpRmF8ptPRKsg1uwKgtCbEw4tydJu3OTZJzHuZ9iLwlWZUGQdY1AqDANz02CXE8MML1/bvJDVNeHIV9LtSs1UmmCpbq4EgP/Uu9xu2jPrrQn6jcOf1BKpZgknCpwAyRYm5PpWaq9NZIg2xXp9SIZDrwXVnpdDLZFE+S6Oyss9taCFaKFTOL+cWnXEtEWjXdLsHrvPlkfjpHIrUqrz03SMkTilpNg0efnZmtdGDOuCtKw661So4EmWKqLK+G0YPn6TrAAXAXT7Ce164c5IqVSz50cTIJl3+/JHU6/imfhaIKQRPtswSrOClDrLsbClVYXymAnWDn9JVgFTjnyQPqVIw9Hk2S7O0vY99KC5VQSbA2m17kJx+wbMOe6+m75rMgP0hpJ0JFV6ZRqT6+ut0qNBppgqS7uzgTL2/sv0Z2Ki4rZZ8Zh6jYchaiUSi1PchBdBIsyu5VqT5+LQbAvlDPp6PVCEOxqeRPyc6j3FKVdK004miDb1WEnV66D/7stzQ7g87jY4xmflpXysl19j0/rvBfWXu8EaEmfe8yFo3aC1ZV89tFFEGCPe7w9I83+5ig1GmiCpbq4Oy8kB2jBqiwIsdEaT7xm3VGISqnUiSctfMa5COyn62x+yEe9v8yeSLNxWK3RBCHa+0ywwB5Ps82Upt2FYGskQZZE+mzdc7mEiXlOqfbmnRCPHOUIUyOetIglLPvcQK/np8JpwdqadMbvpUmVxbaIk2D1c24674W1xSqyZ6TZDxdKjQaaYKkunq4xWP23YFXlh9hkxuNq2Kh9v9WY1hFPkiExu3ub29fneiKCp2CKPVGfXveIC0cTBE07BLL7XKeyIMT6WKFdBCSN/maEYwlCRHptoelUmR9iTaQAMGmTRHS20mTi9JroJTkP+jxMyM1gdcQp1Z4mP1y0dp6bzgSrl89OeZ5dqn11OFdLtSs1QmmCpQAwxuzvCjVAC9akwhCbzAQ88TZo3XMUolMqNSKxJBlESbr9vd7jqbsJxQXUMi7tLnbaogkCVv8tWFX5ITZZxUi0BcK1RzG61DHGOPcIG6B1Lz/I8q5y5GmSRDitNCHTAW4/ePy9rje5KJPXW5wy9mnSJb2zBWv/DaoP/uHC73EzMS/IxvoY5JanTfKp1GiiCZYCIJa0CNA5mL//BKs0J8Aud7k9oYUu1BjWEU8SJELC03+rLsCUIrtUe6I2fVqwjDFEI+14TLzfJKIiP8RG43ShrE2PrsUd8SRJy5BhOvrsIghQURBiQ6Kzq1d6JOdtTitNkHC/LZ9TCjNZVWcw2RPS5v+a/eems+hU75+dKUWZbNzXCnlaql2pkUgTLAXYA9WDdFa76v9iUkSwCqbbE2nyq6JKT+2xJFnSgTVAt1mwS7VvtUrS6l5Y0YRFIOlUTezll/ZOVQUhNloT7Ik0uVBu6bAvlANW3wVAwG7ds0u156XN39OWDvsGwxnJcL+fm8lFITriSaK5U6AuPT43nS1YAauzBav3BGtyUSZb68JYeZPsbslp1PVWqdFAEywF2H3iMyRGUjzg9g64fn5xOa0E0+ZiSaWncNQeQ2P1cp+eA00uzGSrKcUbqYOOpuEPbgRo6YiTKZ0Xgn2fo+JsPy3eAqKu9Pmb0RKxkwh/shUCOX2uN7nITt4bglVpdG46k4iBW7AA6gKVULshLZKIzjFYgWSbPb6qjx4lUwoziScN9cEqiLXZlRaVUiOGJlgKsAdjZxDF8vTfPbDT1JIsNlrjSexNj+4+Kj21RhJ2AtFPF69OZeMy2Cqd3eDS50K5v7EinUSEivwQOz0T06YlotVJsHzxln4TrJLsAFl+D9tc5Xb3yTRIIjpbsHyJtgFasOzv3TZXOcTDdqXFMa6zBcsbb4GM3D7Hfk4ttn/QqBbtrq/USKQJlgKcSmBEsTx93+unu6lFmWyyJmDS5GJJpafWaIIsOpB+fmXv5HG7iIxzus7uWzPMkY0MLZE4WYNowQK7m+AGK33G0rR0JHBh2cWAArl9riciTCnOZHViPESaobXm6AWZIp2te554a78tWPkhH7lBL6vjzj3m0uD/m7ZonIDXhTva3H/LZ6Hd8rkq5pybNPleKTVaaIKlAGiLJglKBDNAgYtOU4uy2GTG4+2og47GYY5OqdRoiyQI0YF7EAkWQFZxJe0EYN/aYY5sZGiNJMjqp9R2d1OKMnknUgxte9Pib0ZLJL7/3GTk9rvu1KJMXm8ttCfSoAhI5/g0V6wF/H0nESLC5MJM3mjrPDdjP4loiybI9Hvtbsb9JOZZAS8l2QHea/RCRl5afG6UGk00wVKAMwaL6IAVBDtNGJfBdpfTHapu4zBGplTqtEXtMUaejIHHYAFMLs5hvVVGMm0SrHi3LoL9n6NpxVms7yp0MfaLObREEuSIUwCkn5YIsM/N8vbOloixf6HcEokT8rmRSP8tWGCPNVpZ74ZgflokWC2RBFkBj92aOUBiPqUok821YSickRbnRqnR5IgSLBH5qYisE5F3ReSvIpLrzK8UkQ4RWek8bhuSaNWwsQfzRxH/wNXSANwuIZE31Z7QP+xqjLJbsCJ4Mvq/QO40oySLDVYZZm+adBHs6J5E5Pa77vQSu9UbSIskojUSJ5vBnZspRZnUkU3cl5sW56alI05uwAWx1n7HYIFzbtpixPOmpkWVxab2GOOCXog0Depzs2lfG6ZwetqM31NqtDjSFqxngDnGmHnABuDb3ZZtNsbMdx7XHOFx1DALRxNkSxjJGDfobbJKJhPFmxb94lV6au9oxy8JJDBwkQuwk4gNpgxPRx2E64Y5utRrjcQZJ60YZMBf2yvzQ+yVIuIuf1pcKLd0JChwO617g2jBAqEhNCktfrBqicQp9dvjsAZqwZpWYreM2lUWx34S0RCOkxfyOV0E+//cTCnKJBxL0pI5yU7I0uQm3kqNBkeUYBljnjbGJJzJ14CyIw9JpUI4liRHwriDuYPeZkpJLlusEq0kqMaseHuL/WSAX9k7VeaH2OKaaE+kQTfBlkicPGmDjHHgcve7rs/jorIwi92e8vRopYnEKfI5N28fIPkszQmQ6few3VVuf27GeBLR0pFgvN9p3QsW9LvuDCfB2ibl9ti9Mf7DRWM4Rl5nC9YgugiCU2UR0uJ7pdRoMZRjsK4Cnuw2XSUib4vIiyJySl8bicjVIrJcRJbX1uqvL6nSFk2QTTuuAf6gdzelKJMNppzk3rF/IanSkxVxEqxBlGkHu+tssmCmPZEOCVZHgiJ3GxLMG9T604qzWJ8cD/vG/oVgayRBoaezBSu333VFhClFmayOT7AvrNv2DXt8qdQSiVPqcRKsUH6/6xZl+RkX9PJurNSeMYYrdBpjaGiPUZRhgZUY8HMzzSnVvqrz3KRB66dSo8WACZaIPCsiq3p5nN9tne8CCeBeZ9YeYKIx5ljgK8CfRaTXn4CNMb81xiwwxiwoLCw88lekDktHJEq2tCOHkGBNLcpkvVWGv20nRFuHLzilUsTq6GzBGlyRC4Ci0ok0kzmmLwQ71YejFLjDdgGCQZhenMWKyARo2QntDcMcXWrVt0Up9TkJ1iD+rk4tyuT1Nqc1p3ZsJ+dN7XGKPINrwRIRZpRks6y12J6xd9UwR5c67bEksYRFiXdwn5u8kI+CTB8rmwLgy9IES6kRZMAEyxjzQWPMnF4ejwKIyBXAucClxtj9GowxUWNMvfN8BbAZmDZsr0IdsWi42X4ywC9m3VXkh9ja2R1K/7CrMcgdcZKAUP8Xgd3NKM1mnVVGvGb1MEU1ctS1xciXNrtM9CBMK8lirXH+Zuwd2+entjVKqbvFbv30DVw8aHpJFm+2d7bSjN0EyxhDXVuUEk+bPWMQyfn0kize2OfGZBZDzdhNsBrCMQCK3c4PO6GiAbeZVpzFhn1h6Cx0oZQaEY60iuDZwDeAjxlj2rvNLxQRt/N8EjAV2HIkx1LDKxZ27kszwKDa7twuIZpmN1ZV6cXV4SRYg2yhAafQhVWGpMFYmrq2KDm0HFIL1lqrwp4Ywy0RALVtUQqlBUKD65kxszSbOnKIBfLHdBLRFk0QTVgUuAafYM0szaI9liSSNxP2vjfMEaZOY7udYBXi/OCZWTzgNtOKs9i4t9WpJKg/dCo1UhzpGKxfAVnAMweUYz8VeFdEVgIPAtcYY8Z2f5BRLtnuJFiH0EUQIKd0MhF8Y/oXV5W+vNHDS7DWmgo88VZo2j5MkY0Mda0RMpMtEBxc9dHyvCCt3jzaPOPGdBIRS1g0tccZZ5oGdZEMdoIFsDc4FWreHcboUqu2NQpAHi32fRd9A997cXqJfW5qMqbYSUQyPqwxpkpnC1auabJnZA6cnE8ttisJNmdOhvC+Md/1VqnR4kirCE4xxpQfWI7dGPOQMWa2M+84Y8zfhiZcNVxMe5P95BBasACmlNg3Vk2kQXcolV4i8SSZVrNTgnzwty8ozPSzyz/ZnhjDrTTRRBITacVrYoNupXG7hGnFWWx1V43pc1MftpOI7GTDoC6SwR5PU5ztZ4M45cjHaBJR12YnEdn/n737Do+jOhc//j1btdqi3nu35Q62MS0YEkpCC4EEEkJNQshN5ab80kNyb+5NJTedFAglhF5DrwYMGLBxL7JlW7J6X5Xtu3N+f8xKyLYsq6y8Wvl8nkePNbMzZ87s7MrzzjnnPVr/hB9cVOc4EALqKIVIcM6m+R9uwXJFhrsmT6yLIMABQzSJ8xx9bxQl0cQyi6CSwERgeAzW5AKsmpzja2JV5fjR4wmSziBBc8pRU5CPJoTAkLMADTGnW2l6hoLkiuiNoKtgwvvNz3WxMViA7NwJkfDRd0hAw600tmDPhFuwAGrzXLzry5/TQUT3kP7eOELd4Myd0D7JFhMl6cm864uOUZuj36ueaPBpD/bq/xebk466T3X2oZkE1TgsRZkNVIClEAhHcISjXQQn+CR6WHWOkzpZhNnXBZ6eGaidosRH71CQNDFIKGliCRxGK83P4oDMRbbP3fEi3UOBqQVYeU42BgoRkQD01M9Q7eKrazCAiTCWoHtCrRDD5ue5WOOOBh1zNIgYDj6t3jZImfjUmfNyXbzWmwpGy5xt/Wzr92MzG7H4uyb8uUlJNpPjsrKh3wEmG3TNzcBcURKNCrAUPWWu6EPDMOkAqzDNRsNIJkE1DkuZO3o8ATIYRE5wjqfR5ue52K4VEW6duwFWx8DoACtvwvvV5qewU87tRBddgwFyRfSh1STem/l5LvZouWhG65wdh9XW78dsBONgy6QC85pcJ3t7AmiZ8+bs56at30deahJioHXCrXswnEnQC5lVqgVLUWYJFWAp9HqCZOPWs1dNoisUgMEgCGXM0xdUogtlDukcCJAt+jBOoovXsNo8Fzu1EswDDXN2jrgDvV7yiAZYzokHEfPynOyV+USECeZoC19bv58iEZ0sOLVkwvvNz3MRwYjbUTln35sDvR4WpEYQYf+kWrDm5znRJLhdNXO2da/V7acg1QbuRkgrnfB+VdlO9nQOIrPmqUyCijJLqABLob3fT47oI2Kf+BOz0TLzShnArgIsZU5pdXvJFz1YM0snvW9VjoPdDLfSzM3xiU29XopNvUh7FpisE97PlWQmJ81Jm6VkzrZENPR4WGx36wtpEw+wyjLtJJkNNJjK9fdmDqb5P9DrZZEzmqJ9UgGWnkmw0VSqZ8sb6pyB2sVXq9tHsRMY6pjU56Ym14E/pOG2l+uTeM/RhzqKkkhUgKXQ4vaRI9wYUyb+FHq06lwnu1QmQWWOGehpxyaCGNOKJr2v1WTEn1mrL8zReXuaer1UmzsRaWWT3rc2z8X2SPGcnWy4odtDra0XhBFcEw8ijAZBTa6LzeEi8PbAYNsM1jI+DvR4qU2KjtdNmfh3qygtGYfVxKZQdJ851sLnCYTpHAywIDmacGoS36uqaCbBRmP0vZmjCVIUJZGoAEuh1e0jW/RhSc2f0v7VOU72aIV6C9YcfOKqHJ9CfdE5rCZxEzhaVn6F3rI7x24Ehx3o9VIiWyGzetL7zs9zsd6frwcQcyw5jpSSfd0eyozdeguN0TSp/WvznLw2MDcTXbi9QQb8YapEq74is2rC+xoMgto8F2v6o11251jrZ0OPB4BqS7e+YhJdS6uyHQBsD0Y/N6qboKLEnQqwFLp7e8kUAxhSJ/6kdbTqXCd1shBTsB8G22NcO0WJD+lu0n9JnVqAVVuQwg6tmFDr3EtWEI5odPd2kxLphczKSe8/P8/FDi2aHGeOJXPo8QQZ9IcpDDVCVs2k95+f52K9L/qwa469Nw09XgDyIwcgpRgs9kntX5vv4t0OkM78ORd87uvSA6ziSPTBziSCT2eSmYJUG+sHUsBgVokuFGUWUAGWguzZp/+SMfE/6KPlpyTRZCrVFzrn5ngT5fjiD0VI9kQDrCm2YC3Id7FTK8bQuRO0SAxrF3/1XUMUR5r1hSn83ViQ72KHFn1CP8da+PZ3ezATJtW7H3IWTHr/+XkuBknGZy+ac600de0DAGR490PW5Fs+a/NdeIMRvOnz51zwWdc+iNEgyBjao//NsaVOav+qHAe7Ov3RTIKqBUtR4k0FWMc5KSWG3j36Qsbkn0SDPrFqJFNlElTmjv3dHqpoxm/NhCmkaYdoK40swRjxQe/+GNcwvrY297PIED2nvMWT3r8wzUbYmo7bnDPnbpQ3N7kpF60YtBDkLJz0/vNy9fE0rba5l0lwZ9sgKRYNS98eyK6d9P4L8vVEFy1J1fo4o6A31lWMm+2t/VRlOzB2bp9SYF6d42Rv1xBaZo0KsBRlFlAB1nGuazBATnD4SXTFlMvJyyukm1QVYClzQn3nENWGZsKZ86dcRorNTK8j+pR+jiW62N46wImmfcjkzCm18AkhmJfnZI+hDNrmVoC18YCbM+zR1s/cRZPe35lkpjg9mZ1aCfTshaAnxjWMnw2NfVyQ1YWIBKFwxaT3r8p2YjYKtmmlILU502NCSsnWln5OyDHrgeMUPjdV2Q6CYQ23vQz6GiDki31FFUWZMBVgHed2tQ8yz3AAv6MYzLYpl1OV42BXpEBlElTmhLq2fqpEC0n5k3/KPlpS/gIiGObceJFNTW5WmvYiCk4EIaZURm2ei3f8hcju3XMqiNh4oI8PJtdDcsaUEoCAPufTOm8+IOdMmv9+X4jtrf2c7YqOMZpCgGUxGajKdrLWEx2j1rYpdhWMo/rOIbqHgpyb0gAyAiWnTLqMmmjL5wFDESBVJkFFiTMVYB3ndrYNsNRQjyg8cVrlVOc42S2LEF27QNNiVDtFiY/OvZtIFgFMBcumVU51QRb1Wj7htrnTgtXrCdLZvJeCSDOUnT7lcubnudgUKkYg50y69sYeD639PhYEt0DxydMIPlPez5Y3R7pQvru/F03CkuBGSC8H19SmBVmQ7+K1jiRkUuqcaf18a5+eSXNpZJue2r9w5aTLqIxmEtwWKtBXdKpEF4oSTyrAOs7trt9NvujFWjL5P+ij1eQ6qZNF+niT/gMxqp2iHHuhiIa94119oXjVtMqqzXexUxajzaEAa01dJ6cboje2FR+ccjnz81xs06Jz/bRtjkHN4u+Zbe3ME004/G1QdfaUy6nNd9EsMwlbUubMOKzX9nThNIVJ7VgHVedMuZwF+S66PSGCWQvnTPC5pq6LwjQbrgMv6q1XVseky0i2mChKt/H2YJqeSbBzbjy0UJREpQKs41g4omE5sFZfmOaNZLbTSos5mhVMjcNSEtiW5n6WyR34k7IgrXRaZemZBEuweFrB2xubCsbZizs7+JjlbWRaKWRPfYxaTa6TDpGOz5QyZ26Un9nWzrWpmwABNR+Zcjm1+S5A0O2onhPvTTCs8e/NrXytqB4R9kPNh6dc1oKCFAA6kqv17pORUKyqGRdub5DX93RxVWVA7wEy74Ipl1WT46Su06d3TVX/DytKXE0rwBJC3CyEaBFCbIr+fGTUa98RQtQLIeqEEOdOv6pKrG1o7OMUbb2eKS1v6bTKEkIgsoYzCc6NMQPK8enl7S2cYdiCoersKXfxGpaXksQBS7m+MAe6wXUO+Nm6Ywcr5DbEoo9P6/1JMhspz3Ky31QxJ1qw9nd72NrUy/naK1BxJjiyp1xWfkoSKTYze4zl+ucmEo5hTY+9l3d10ucN8VHWgDMfSqfetXQ4y+IuyiASSPiMeY9vaiUUkXyMV8BgggWXTLmsqhwn+7o8aNnz58zYPUVJVLFowfqNlHJp9OdpACFELXAFsAA4D/iTEMIYg2MpMfTU+j180LAR0/yPgGH6H4XCvFxayUSqJ2dKgpJS0rH1RVKEB0vt1Fsghgkh3k/VPQfmNLrrrUauEs/ocdUJV0+7vPl5LjaGivWn7QneEvGPN/ZzgekdnIEOOPG6aZUlhKA2z8UGfyGE/dCzJ0a1PPaklPzjjf2c5Ogko+01OPFaMEz9dsCZZKY0I5m3fIX6igRu4QtHNO54s4GTCyxk7bkP5p0Pzpwpl1ed4yCsSfrslTDQDP7+GNZWUZTJmKkughcD90kpA1LK/UA9ML1BPkpMDfpDmLY/qA/kP3H6N0oANTkOdkUKVSZBJWG9d6CPU4eeJ2hyQuXUx9CMVlhUSrdMSfhxWP2+EM+u28Q15pcQCy+F1OJplzk/z8k6XyFEgtCVuIPym3q9PPzOXr5vf0zvnjXv/GmXWZvv4iV3rr6QwMkcXqnr5O39vfw69WGwOGHFZ6dd5oL8FF7pcoE5OaHfmwfWN7O/28N/Z72oB0On3TSt8qqy9da9/cbh7vqJ+51SlEQXiwDrS0KILUKI24UQadF1BUDTqG2ao+uUWeKu13dzPY/hzVoKhctjUuZwJkFjT33CP41Wjk8Pv7aRjxjeQSz+OJiTYlJmbb6LHVoxwZbEvREE+OWzO/lm+K+YDRJWfycmZdbmudguS/WFBL1RjmiSbzy4mRuN/yY7cADO/Z9ptdAMq81zsSOUi2ZMSthWGn8owv88vYtPpmyjsPt1WP1tsGdMu9zafBcNfQHCWbUJ+950DwX49fN1XFIwQPnuv8OST0L+9LKWVmQ5EAK2BIczCaqHnYoSL0cNsIQQLwohto3xczHwZ6ACWAq0Ab+ebAWEEDcIIdYLIdZ3dXVNdndlCg70eBFrf02h6Cb5vB9Ne5zJsKocJ3VaIQYtCL37YlKmohwrO1oHKK27DYsIYz7lizErtzYvhZ2yGHNvXcI+eHhhRweB9XdzrnE9hg/+YFqTko9Wm+div8wlZLQl7I3yn16pJ9zwFl80PgoLPjat7IGj1ea7iGCk31WVsGPU/vupHXg7G/gxf4bsWjjp8zEpV08CAj2OGj0wT7CpQSKa5JsPbiYSGOJ/+R3C6oRz/nva5dosRgrTbLzX7wCLQyW6UJQ4OmqAJaX8kJRy4Rg/j0spO6SUESmlBvyN97sBtgBFo4opjK4bq/y/SimXSymXZ2VlTfd8lKMYCoS5/Y6/cCOP4J1/GVScFbOyMx0W2pOiaZdVogslwdzx5Ctca3qO0MLLIbMyZuVWZNnZI0oxakHoTryxNFua3dxz7938j/l2IqUfgFX/EbOys5xW0u1JtFgTM9HF89vbeeyl17gj+beItGI4f9LPGI+oIsuBxWigwVyhB59SxqzsY+Hvr+/j3+t28Gj677EQgU/cDUZzTMpeEA2w9hgrIDgIfftjUu6xIKXkB49v4/W6Nv6dfwdJvbvgY38He2ZMyq/KdlLf5dEzfKpEF4oSN9PNIjh6psBLgOFR3E8AVwghrEKIMqAKeGc6x1Kmb8Af4g9/vZVvDvwvQ2nzSb7k9zEtXwiBIbsGDYN6cqYklAfePcDZTf+HMJiwnHNzTMs2GQ0EMmr1hQRLdLGhsZc///0v/Nn4C0RGBcbL745J97dhQghq811s1Ur1+Z4SqCXi6a1t/N+/HuPBpP/CYTEiPnk/JKfHrHyLyUBVjoNNoWJ9fI47MeYXlFJy66t7+ftTa/l3yi/IDjTCx++I6UOLbGcSWU4r7/qjz3ETpPUzokm+/9g2Hn17N8/k/o2izjXw4V9A1YdidoyqHIeeSTCrVn/QmWCBuaLMFdMdg/ULIcRWIcQW4EzgJgAp5XbgAWAH8CzwRSllZJrHUqZhY0Mnj9zyZb7R/QNCKWW4PvMYWJJjfpySnAwOkKMyCSoJY2fbANuf+D/ONr6H8UM/AFfe0XeaJGdhLUFMyASZNFZKyd9f28uLf/8ev+dnGLOqMF33JNhSY36s+Xku3vQUQHAoIVoiwhGNW17YzTP3/oFHzD8kNdmCuO5pyKqO+bHm57lYMxD9PCZAEOENhrnp/k08/+wTPGf/EUWyHXHFvVA59Qmpj6Q2z8XLvRl6avMEGL/XMxTgujveZe077/Bq+v9Q6V4LH/kVrPxcTI9Tle0kGNHotVeArxeGOmJavqIoEzOtAEtKeZWUcpGUcrGU8iIpZduo134qpayQUtZIKZ+ZflWVqdjb3se//vZL0m4/jWuD9+Iuv4DU/3hhWqlgx1OZ5WBnpJCI6pqgJIBBf4hf3PUY3zHeTbD0TAwx7P422vyCdPZoBQSaZ/+NYK8nyDdve5ryF67n/xn/hVb9ESyfeXpa8zqNZ36eky3haNazWd5NcFf7ANf88VlKXvtPfm/5A5aiZRg+/xpkz5uR49XmuXjbk4sUhlkfRGxo7OVjv3uJedt+zUPWn+ByOhGfeSGmrTOjLch3sbMrgJZZM6s/N1JKntnaxkf+71XK99/Li/YfkC17EJ9+KObBFUBVtgOAfYbhTILq/2JFiQdTvCugxJ7HH2L9u28w+O6/OKn/WT4l+umwV+K74LdkLvjwjB67KsfBe7KI8/o2QMgfs0xsihJrUkp+/MCb/ND7U4w2J+bL/hqT+eDGUpvvYqcsobJz9nYRDEc0/vXWXjpf+j0/1u7DahbIc36O5aTPxywRzlhq81LYLQvRhAlD22ZY+LEZO9ZUeYNh/rJmD22v3cEfTP8ixeRFnvYNDKu/HbNxRWOpzXfhx4rXWY59lrZgtff7+c3zdXRsepK/WO6hxNSiz5F29n/NSIvnsAX5KYQ1SX9qLWkta/SucDP4OZ2Kpl4vNz+xnba6d/hH8t3UGndC8Wq48HeQVjIjx6yIBlhbgvn6oPiOHTEda60oysSoAGsO0DTJ7vrdNG15FVPjq1QPrOMM0U0YA40Zp2H5wOfIWXzBjN08jlaZ7eBerRAhNejeDXmLZ/yYytwgpcQXijDgCzPgD+ENRgiEIvhDYUIBP6FggGAwQDAUIiQNaMIEBhPSYAJhxGwyYreacFhNI/+m2y1kOa0YDYffeN21tp6L9nyPYlM3xk8+OWMtNADzcl08LYu5zP8aDHXO6LEmS0rJ67s7ee2xv/Epz92UG9oZKjkL0yX/N2M3gaOVZ9kRRgudtnJyZ1kQEY5oPLi+iXeev48bQncz39REKO9EDB/9PeQsmPHjz8/Tkzm0JFVSPctasAb8IW5ds5e33niZb4h7ONW8DS2lDC589Jjc0A8nuthvqiDN8yAMts9I996p6BoM8MdX6nn97Xe4yfggF1jfQFrS4NxbYckVMxoIOqwmClJtbHWbwZ6txkMr0yKlJKxJItrhY/kMQmA2CsQse7AxW6gAK8FEwiGa9tfRtncLnpYd2Ls3U+LbwTy6mQd4SaIx9SQCtedRcvLHqHDlHtP65bqSaDaX6gudO1WAdZwZDpJ6BgP0D7gZ7OskMNBNaKiHyFAP+PqQgUFEYBARGsIUGsIc9mCJeEnSPNjx4xA+cvFjJoyZMCYxscQHQzKJfuwMyGQGsNMgXbwlM+ggA68tl7CzkEh6JekZmUgJOW/+mA+YtqJd8DsoOXlG3xe71USfowb86MkcZmBMymRJKXm1rpM3nr2Pi3tv5/uGBgZTq5Ef+Q2Omg8fs9YAs1FP5lAXKCO3bcOsaIkIRTQee6+ZN196nCu8/+SThl34U0rgnNswL/jYMXlYBZBiM1OYZmO7Vkr14LPg6Y5Ztrmp8oci/OvtA7z40rNcFX6YbxjXI5NSYfXPMSy/HkyWY1KP4vRkHFYTG0NFnAD6GLU4B1j93hB/fX0vT69dz3U8zg/MLyFMFlj1n4hTvzqjLXqjVeU42N0xpGcSVHNhHXeklAz4wwz4Qgz4QwwNDeEf6CY42EPQ6ybsHSTkG0QLDEFwEBnwYAh5MEe8WDQfZs2PQQsjZASDFsJIBBMaJhFGIghJE2GMBDERESY0gxm/wYHf5CRocqElpWB0ZGBMKcSaUUxaVj5l2U6K05MxG4/N387ZQAVYs5GUBAe76dy/DXfTdkKduzH37SPF20BuuJVSEaE0ummnIYv2lMV0F62gYOEHyKhcyfxj9B/cWIQQmLIqCXebMKm+3wkvokl6hwK4+/sY6m3D19dOsL+DyFA3mqcX4e/DFOjDEuzHFu7Hrg2QyhDZDFEkwkcuFwM+kYzfkEzQmEzY6iBizkSzOPFaHPisDoyWJAwmC0azFYPJjMlsxWi2YjIaMRBBaBFkJARaGBEJQmAIp9eN3ddHvt+N0deN1bsVc8QHIaBX/+nYk0aLzOAEUz3+E28g6cRrjsl7aSxYDHvRx4vEMcDSNMnz21vZ/NydnD9wP98zNDCYnE/o3FtxLvlETLMETtSighTe3FrAGTwHg23gyj/mdQA9eHjw3UZ2vHIflwce4uOGvfiTs5Bn/Vr/nMxgd8Ajqc1zsbYtn0sgrp+doUCYf65rZMNrT/Lp4ENcb9xCxObCsOobcPKXjlnwMMxgEMzPc7LGbeAzoL831ece0zoMa+v3cfva/bz99ptcLR/nReMbGAwCccI1cMb/A+exfdBZle3gzb09aNW1GDbcoWfnPEYPBZTYklLiCUbo8wTpGxhisK8dv7tDf3Dp6UXz9ILPjTH6/7A1PIA9MoALD6liiAqGSBJHn38xggG/IZmAIZmIyYo20jvEhDSakcKMJuyAxCDDGLUQQgYQkTAGLYA1PIQtOIgxGAEv+v+3UQFpok1m8C6ZdFmKGXKVY86ZT2bZIirLqyjKSJ6TrWAqwIojGfLR07SLnobt+Np3IXr2Yh/aT3agCRdDFKJPIBaURppFHm3WYhozz8CaU01W2UIKKheT7cxi9nQ20pXnpLK/O58q1TVhVgpFNHoHPPR1tzHU04qvr4PgQAfaYBfC24XZ34st2IM93Eeq7CeDfrKO8Ac6iIkhgwuf0YXflkLYWkFPUhq9tnQMjgwszkySXBkkubJITs3EYs+ApBSMZhsOIXDM9MlKCX439LeAuxG695DdVUd65y6CWVeS9JH/nekajCgtLGTvnjyKG9dhPv2YHXZEOKLx9MYG9r/4Ny72Psx5hg4GnKWEV/8O57JPHrOWh7GcWJLGfeuLwIqezOEYB1hDgTD3vVVP6+t3cWXoEa4ytOFzFiFX/4akpZ+K61jS2nwXd+zM1d+b9i3HPMDqHPBz55v72bfuCa7THuZGQx2h5AzkaT/CuOKzkOQ6pvUZbUF+Cg+uH0BmViDikOhiT8cgf3ltH42bX+EGwxN8z7ABzWTDsPzz+nxxqUVHL2QGVGU7CYb1TIKZYZ+enTNGk4Mr0xfRJH3eIN0DXtw9HQz16kFTeKADzdOF8PZg8feQHOrDFXGTygCZop8i4T1imX5hxWtwEbC6CFlS0Kz5eJNS8drSMCanY3SkY3WkY3Wmk+xwYUpy6pNRWxxgdWA0WrALgX06Jyalng3W5wZvD5H+FrxdjXi6GjD2HKB0oIml3tdI7n1GD8B2woC0sVUU0pVcQShjPvbixeRXL6e0qGjMrv2JRAVYM03TcHc00tWwDU/rLrTuPST17yPDf4CsSCeZQjLc4aNDptFmLqIt5SzCqeVYcmtIK15AQWk15XYb5XE9kYmrzHawY0shFR07pj0PgDJxvmCErt5eetsPMNTTTLC3hchAG4ahDqz+LuzBLlIivaTJfnLEEGPlkQxhot+QgseUjt+ZiTupBrc9C+HIwuzMJiktF3taLo60HCzOTCwWO+mz+cmTEGBL039yF+qrgGPfDqGPGXlXq6H4wNvH9ImyLxjh8XU76H/9L3ws+AQXiX76MhYR+dCvcM0/NmMzj2Z5aTo/kiVIhH6jXHPeMTluW7+Pf72+HW39nXxaPkme6GUooxZ51k+x1V4Mxvj/F7m4MAW3dOB3FJPU9O4xO+6ejkFuf3UX2paHuM7wFPMMTQSd+fCBX2BedtWMTPMxWbX5LjzBCJ70WhzHMMBa39DLrWvqCe9+ni+an2SFaSeRpDRY9R0MK2+I6XxoU1GZoz+62itK9PuLzp0qwJphUkr6fSHaB/z09PYy1N1CoK+FyEA7YrAds6+TJH8XznAPKZE+MsQA1QxiEIePbYpgYMjgwmtJI2DNIJxUSmdyBt2ObEyubGwpOSSnZZPsysRgT4ekVJLMScQ9pZgQYHXqP6lFGPOX4pwPztHbSAlDHQTbd9K5Tx/q4uipo9T7Jq6mZ6EJeAM6ZRot1jI8KTWY8haQWbGMouqlWG0z/lg2ZuL/v8ccMdDfS8e+bQw07yDcuQeLey+p3kZyIy2kEiA1ut2QTKLFkM9eWy07Ui7AmFmFo3AeuWWLyM3MICfBI3bQuyds0Aq5eOBN8A/E9QnnXBCKaHT1e+hpP4Cns4FAbxOR/jbEUDsWXyfJgS5SIz1kyD6KhY/iQ/YPYMZtSGfQkonXUcWALZMDjixMzmySUnOwp+fhysgnOS0Xc1IKmUIQ31Eec1NtvosnZQ1XBNfoCWBmKLX3sM4BP4+tWYf1vb9ziXwRl/DRnXsa2jnfIq38A3Ef5zRaaUYyyQ4XHYYScpvenvHjbWvp58GX11Gw+y4+a3iZFOFlMH8VfPCbOCo+OKvem+Wl6RgE1CcvYeGBtTManEspWbevl3+t2Ujxvvu5yfQ82SY3wfR5cPofsSz6RFxbOg9VG00C0pBUy8L+f+st1SkFM3KsiCZ5aWcH/3h1J8UtT/Ft87NUWpqIOAvg1J9jPOEqsEzr+X/MVEYzCW7y53AS6Kna518Q1zolslBEo3MwQEfvAP2dB/B2NRLua0YOtmHy6oGTK9xNhnRTINzME77Dyghipt+UgdeWSTCpkp7kLPocWZhd+v/Dzow8ktNyEfZsjLZUUgxGUuJwrjNOCHDmYnHmUlh15vvrpSTc30Z7/Xv07tuE1rGdlP7dzO98iKSue2EL3KedheOyP3LB4vh0IZ8sFWBNgtQ0utsa6Ni3laHmHdC9G/vgPrKDB8ihl+EwIiIFbSKHLmsxLWkrIKMCW9480ksWkF9YSo15br/t8/Nc3CujXSO66qBoRXwrNMsN+oJ0tLfR27YXT9cBQr1NGAaaSfK24Qq2k6l1k00f+Yckewhgoc+QzpAlE49zHgP2bAyuPCyp+dgzC0nJKsKRWYjVlkqOEGO2WCnHTrYziX22hRAGDrw1YwHWrvYBnn/uSSr33sn14h2EAHf5+cizv0Fm/tIZOeZ0CSE4sSSNtY0LuKzxZQgHwGSN6TE0TfLyrk5eefkZTuq4jx8Y3sZgBH/l+bD6azgLl8f0eLHiSjJTm+/i1WANC33/ho6tkLckpscIRTSe2dbO02te59SuB/il6TWSzEGCpWfCaV/GUnHWrAo6h9XkOnFaTbwUmMdCgP2vwtJPxfQYQ4EwD65v4om1G1k9+AR/Mr1EmnkALWcRnPw9jIsui8vYvPG4ksyUZdpZ3xbi82mlai6scUgp6R4K0tw7RHd7E4OdjQR7DiAGWrB623AG2smIdJEnelhK/2EtTgGsDJgz8DmzCCcvpMuZizslH2taHo6sImxp+QhnLhZbGlmz8Ds0awiBKTWfwuX5FC5//2GAFg7TvH87HfXvERxyMi/XOU4hs8vcvtOfppa922he/xSifQvpg3XkhZvIwk9W9PVBbLSZimlKXcn+tCosuTWkFteSV1pLoc1GYVxrHz95KUl0J5frN5JdO4/7ACsQjtDS2UtX024G2/YQ6t6Huf8ATl8TmeE28mUXlSJ48D6Y6TVmMWTLoc9+Er2uQkxphSRllpKSW0pKdjFWWyq56g92QknJr6G3KYX0xjdg+XUxK1dKyWt17Wx54Z+c0nU/XzHswWd24Fn8eVJWf4mMlNn/12hFaTrP7JzHZZanoPGNmKX69gUjPLK+gT2v3ccF3sf4qWE3QYuDyAmfx3TKF0g+Bqnop+vk8gz++WYl/2EWiN3PxSzA6vUEufftRra/+TSXBB7jVuN7RMxm5OLL4ZQvYsmpjclxZorZaOCUygwePGDkK/YsxJ7nYxZgNfV6ufPNBja++zqf1J7kAeObmEwRZPV5cPIXMZSeNiuDzmFLi1JZW9+NLJ+P6Dh+AywpJT2eII09Hto7OhhqryfcvR/jQCPJnibSA60U0skC0Y1FRA7aNyCS6Ldk47PlMeRYjDeaFc+RU4ozqxjhysNqdanAaQYZTCYKq5ZQWLWEE+NdmUlSAdY4mjc8w0k7/wc3DposlWzJvBCRVY2joJbcisVk5BRSPQvGL8w2Qgiyi6rx7Ldhb92oTzo5xw0FwjS1ddB7YDu+1l2I3r1YBptI8beQq7VTLtwHjaHzYqPbks9QSgV7XGdiTCsiKbOE1Nwy0vLKsTqyyFN/tOecM2qyeXn/Ei7Z/TzGcHDa3a08gTBPvrML9xu3cb7vCc4Q3fQnF+I97X9JXnE1Nmvi9Fc/uzaHXz61iKAxGcv2x6YdYLW4fTy4djvhDXdxeeRprjR04XEUEjntf7GceJU+TiBBnLcwl7+9vp++7MWk73gCPvDNad3c17UPcvfruwhveYgrxbN80dBAMDkNedL/w7jys7NqnrajWV2TzXPbO+hbeg7pux+FoHfK48OklKxv7OMfr9cT3PUc1xuf4fuG7USsNozLroNVX0AkyFimpUWpPLqxhcH0RbjqngVvb9zHhs2U4Vaoxu4hWlubRsa7W/obcPmayZMdVIhOThSeg/YbNKYw4Cwg6FxGa2oRtsxSXLml2DJLwFWA1ZZGtvp/WJkiFWCNY94Hr6Zj1UfJLqwgVQVSk7KkOJ136qv5wP61HPukzzNDSknPkJ+m/bvpbdxGsKMOc99eUr0NFGotzBd9I9tGMNBjyKTfVkCH4wy60kux5VSQXlhNSn4VyckZFKs/3Medsxfk8oOnVnJZ4DWofxHmfWRK5ezv9vDcSy+RtvMuzpev4xB+ujJXEDrr/0iZ/5G4pFqfrpIMO5X5mawdOokztz+KOPenkw6CNE3yxt5uXlnzIlUH7ucGw5skiwADuSuQq2/BPu/8hHxvlhWlketK4ilxOld1/AFaN0LBCZMqIxTReHlXJ8+9/gbzmh/mG8Y1pBo9BNKq4LTfYll8OZhtM3MCM+jDC3P50ePbeTxyCteF7oHtj8CyT0+qDE8gzBObW3nyrc0s6fw33zO/TIG5i4gjH1b9GOOJ1+iJchLIsuJUADabFnE6EhrfTPhxWFJK2gf81DV3096wC0/rToy9e0j1NlIsW6gSrSwflWkvjAl3Uh5+RxFDaScTyqrAlV+JNasCUktwJrlInMcsSqJRAdY4UjJySMlQI1emYllxKq9p8zmz5z4Y7ABn4ryPUkra+v00NOyjv2ETsmMb9r46cv31lMhWlo1KWT4k7HQnldDnOhV3VjW23Hlkli7EnltJtsk661LoK/FVkGojXHYmnS23k7nuzxgmEWCFIxqv7Whmz5p/cmLXo9xo2E1QWBiovBD7mV8mq2DZDNb82LjypBJ+99iZnGV9BdbfDqd+dUL79XmCPL6+nvY37+Nc31P80FBPyGwlOP9SOPUGXPmJ/d4YDIJPrizmly8u4VNOB8bXfw1X3DOhfZt6vTz0zj5a332cC4LPcotxCxGzkUj1+bDqBqyzvKvb0aQmWzh3YS6/3iW4KqsW0xu/hcWXT2hc1M62Af61bj8HNr3Mpdpz3GF8F7M5TKTkNFj5S4zzLph146smakF+Cul2C491pnC62Q57X0qoAGvQH2J3ez/N+3bibdqMqXMH6Z7dlGsHOF10Yhw1FmrAkonHUcZQxgrCefNJKZyPKbsaU0oRmQn4QEWZG1SApcyI5SXp/NJ4AnAf1D0d0/EmseQPRdjb1kPLns14mjZj7tpOhmcPlbKRU8TAyHY9hgy6nZXsSTsDS2416SULyShegMORhSOBb06UY++a06r4yz8/zA8a7oFdTx+1FWt3ez9vrXkaR90jnKW9yVliiL7kYgZP+jHOk64mcw51+7lkWQG/f3kh70SWs+LVXyBqzofMyjG3DYY1XtnRys43/01J61NcJt7FIfwMusoJn/K/mJd9CvMxnvx2Jl17Sil/f30fD1o/xhW77oLtj8GCj465bb8vxPPb2tj+7stUtD3JNYa3SBdD+B3ZRFZ8G+PyazG68o5p/WfSV86q5Kktrdxt+zTXNX0XXvsVnPmdMbftGgzw9NY21r/7JvO6nuHzxjcpFN2EbU6Myz4Lyz+DMav6GJ9B7BkNgtXVWbxc14k272wMO5+Ej/xq1rXghiIa+7s97D3QjLthE1r7NpzuOopC+5kvmjhRBAC9V0ivtRBv6mLac2pIK1pAcv48yKjEleRC5SpWZhsVYCkzwmIykFN5Igf25VK47WEMcQ6wpJR0Dfip31dP376NRNq2YnfXURTcS41oZUE0Q18AC122MtzpZ+HJX0Ra2TJSSpaSYc8gI65noMwVZ83L5p7yK9l14HUqH74B0xV3HTTeSNMku5o72fn281D/Eif5X+ca0U1AJNFb8iHCp3+GtIrVs2L+qlizWYz890cX8p93XcXTth+S/I/zMX34f2H+hUiDifZ+L5u3bqFj+2ukt7/OyXIz54oBfGYn/qpLYNWncZacmtAtMkeSkmzmJx9dwLfu93NSyjuUPvI5hLsRll1FJCmN/V1DbN2xjbadb5HetpYPGDbycdFL2GwlWHkeLL+SpIqzErZFZjxVOU7+Y3UlP35Fsiz/wyx99Wfg7YZTv0bQns+ezkHe27GL1l3vktHxJh8wbOYaQwuayUCk9AxYdgWm+RfOmjTrsXJ2bQ6PbGxhe9pZLNrxmN4tufrcuNRFSknHQIC61l7a9m8n0LIVa89Osr31VIsDfFh0j2zrMbjoS6uiO/tUHCVLSCtbhjFrHlmzYO41RZkoIeXhk5zFy/Lly+X69evjXQ0lRl7Y0cHGe77Pt8wPwBfegmOUkSoY1tjX1kXrnk14DmzG1L2DzKE9VMgG0sXQyHY9xmzcrmq07AU4S5aQVbkcY0bFrJhcVJnbej1BvnrrE9zc/30qDG202apot5YSCARJ8R2gXDZjFSFCmOnIWEnKSZ/CueSjkEBJK6bjgXebuOuxp/mN8bdUGVoIYcKNA6f0kBTtojtkTMFTeDqZKy/HWHNuzNO6z1Z/f30ff3pmPbcY/8Bqoz65br+0k0QQa/S9CRiS8RWdTsqSCxG1F0HSnJxR5yARTfJfT+7gnjfr+YH5bj5lfAkTGkPShgGN5GhLSFhYCBSchH3hBbDwYwmV0GOyQhGN037+MvOzbdzR/xlIL4drn5rxBxBDgTB17YM0HDjAYOMm6NxO6sBuyrUGqkXzyHc4goFeWyn+jPlY8heTXr4Uc/5icObNyYckytwkhNggpTxsng8VYCkzJhzRuORX/+Y+343YKk7G8OmHY/pHU2+V8rF/7076ohPT2d11FAT3U0brSB9tP1Y6beX40vU/4pmVy3AWL0m4QcvK3OINhvnn6zvRNtzNCd61FNAFBhNDyYWI7FpylpxNyvwz59xT9Ylq6/fx6IYDGOufp8i7nUzDEHZnGq7iBRTUnIQhf8mcbMWbiMYeD09uaWOo4T1qh9aRZ+zH4XCSUVRNZuVyRN7SWTUh8LG0s22AZ7a2MdC6m0XedZQYOkm128gqqiKleDEUrphylsFEdOure/nZM7t47tRd1Gz4CXzsb7D4EzEpOxzRaOjxsLulm+79Wwm1biPZvYuCwD5qDE3kCPfItoOmNAZTahA5C3GVLsVetASyao6bByPK3DUjAZYQ4n6gJrqYCrillEuFEKXATqAu+to6KeWNRytPBVhzz7Pb2lh37/9ws/ku5KlfQ3zwR1O6Ker3BDnQ3EDP/q34W7Zi7d1JpmcvZbIJh/CPbNdpysXtrEZGW6WyK5djyiyfdf3OFUVRFGWmBcMaF/z+dXoHvLya/SvsPdvgklthwSUTLiMU0Wjs8bC3tZfOpjr8bbuw9u4i07uXag5QKtoxRbvZh4QZd3IZocz5JBctxVWyFEPewjndUqgc32a8BUsI8WugX0r5k2iA9aSUcuFkylAB1tz00ye3U7bue3zK9Ar9OauwfeDLWMpPPagFKRzR6Ontpbe9kcGuAwx2HkDr2YdtYD/pgSaKZBtO4RvZfkC46EquIJA+j6SCRWRVLsNZtCih5rZRFEVRlJnW2OPh8r+sQ3q6eTD19xR7thIoPQux6FJEzgJ85gw8YejpH6S7t5fB7mYCfa1oA+1Yh5rJCDRRQjv5ovug7H191gJ8qTWY8heSWroES/4iSFfd7JXjy4wGWEIIARwAzpJS7lEBljKalJK73myg8fk/cCMPkR3tNhDAgpckTISxyCBWET5ovwgGuo3Z9NuKCaWWYcqqIqWolqyKEzC6clUfbUVRFEWZgO6hAD97ZhfPbmrgap7iWtNzI/8Xj8drsNNvKyacWoY1p5qUwnlYs6v17n3HyZhQRRnPTAdYHwBuGT5ANMDaDuwGBoDvSylfP8K+NwA3ABQXF5/Y2Ng47foos5MnEGZtXSvuXa/i6NmGNdhHMj4wWjBZbJicmVhSC7BnFpKVX4Ijp0L1z1YURVGUGOn3hdjU5OZAzxDmnl04PM2kSjdJRkhOtpHicpGaXYg9vVCfv9LqUg8zFWUcUw6whBAvArljvPQ9KeXj0W3+DNRLKX8dXbYCDilljxDiROAxYIGUcmCMckaoFixFURRFURRFURLBkQKso3aUlVJ+6CgFm4CPASeO2icABKK/bxBC7AWqARU9KYqiKIqiKIoyZ8Uix+2HgF1SyubhFUKILCGEMfp7OVAF7IvBsRRFURRFURRFUWatWKR6uQK495B1HwB+IoQIARpwo5SyNwbHUhRFURRFURRFmbVm1UTDQoguYLZlucgEuuNdCeWYUdf7+KGu9fFDXevji7rexw91rY8vs/F6l0gpsw5dOasCrNlICLF+rMFrytykrvfxQ13r44e61scXdb2PH+paH18S6XrHYgyWoiiKoiiKoiiKggqwFEVRFEVRFEVRYkYFWEf313hXQDmm1PU+fqhrffxQ1/r4oq738UNd6+NLwlxvNQZLURRFURRFURQlRlQLlqIoiqIoiqIoSoyoAEtRFEVRFEVRFCVGVIA1DiHEeUKIOiFEvRDi2/GujxI7QogiIcQrQogdQojtQoivRtenCyFeEELsif6bFu+6KrEhhDAKITYKIZ6MLpcJId6Ofr/vF0JY4l1HJTaEEKlCiIeEELuEEDuFECer7/bcJIS4Kfo3fJsQ4l4hRJL6bs8dQojbhRCdQohto9aN+V0Wut9Fr/sWIcQJ8au5MllHuNa/jP4d3yKEeFQIkTrqte9Er3WdEOLcuFR6HCrAOgIhhBH4I/BhoBb4pBCiNr61UmIoDHxdSlkLrAK+GL2+3wZeklJWAS9Fl5W54avAzlHLPwd+I6WsBPqAz8SlVspM+C3wrJRyHrAE/bqr7/YcI4QoAL4CLJdSLgSMwBWo7/Zccgdw3iHrjvRd/jBQFf25AfjzMaqjEht3cPi1fgFYKKVcDOwGvgMQvV+7AlgQ3edP0fv2WUMFWEe2EqiXUu6TUgaB+4CL41wnJUaklG1Syveivw+i34AVoF/jO6Ob3Ql8NC4VVGJKCFEInA/8PbosgLOAh6KbqGs9RwghUoAPALcBSCmDUko36rs9V5kAmxDCBCQDbajv9pwhpXwN6D1k9ZG+yxcDd0ndOiBVCJF3TCqqTNtY11pK+byUMhxdXAcURn+/GLhPShmQUu4H6tHv22cNFWAdWQHQNGq5ObpOmWOEEKXAMuBtIEdK2RZ9qR3IiVe9lJj6P+BbgBZdzgDco/5wq+/33FEGdAH/iHYJ/bsQwo76bs85UsoW4FfAAfTAqh/YgPpuz3VH+i6r+7a57Xrgmejvs/5aqwBLOa4JIRzAw8DXpJQDo1+T+hwGah6DBCeEuADolFJuiHddlGPCBJwA/FlKuQzwcEh3QPXdnhuiY28uRg+q8wE7h3cxUuYw9V0+Pgghvoc+tOOeeNdlolSAdWQtQNGo5cLoOmWOEEKY0YOre6SUj0RXdwx3KYj+2xmv+ikxcypwkRCiAb2r71noY3RSo92KQH2/55JmoFlK+XZ0+SH0gEt9t+eeDwH7pZRdUsoQ8Aj69119t+e2I32X1X3bHCSEuBa4ALhSvj9576y/1irAOrJ3gapoNiIL+mC6J+JcJyVGomNwbgN2SilvGfXSE8A10d+vAR4/1nVTYktK+R0pZaGUshT9e/yylPJK4BXgsuhm6lrPEVLKdqBJCFETXfVBYAfquz0XHQBWCSGSo3/Th6+1+m7PbUf6Lj8BXB3NJrgK6B/VlVBJQEKI89C7918kpfSOeukJ4AohhFUIUYae2OSdeNTxSMT7waByKCHER9DHbhiB26WUP41vjZRYEUKcBrwObOX9cTnfRR+H9QBQDDQCn5BSHjrAVklQQojVwDeklBcIIcrRW7TSgY3Ap6WUgThWT4kRIcRS9IQmFmAfcB36A0X13Z5jhBA/Bi5H7z60Efgs+lgM9d2eA4QQ9wKrgUygA/gR8BhjfJejQfYf0LuJeoHrpJTr41BtZQqOcK2/A1iBnuhm66SUN0a3/x76uKww+jCPZw4tM55UgKUoiqIoiqIoihIjqougoiiKoiiKoihKjKgAS1EURVEURVEUJUZUgKUoiqIoiqIoihIjKsBSFEVRFEVRFEWJERVgKYqiKIqiKIqixIgKsBRFURRFURRFUWJEBViKoiiKoiiKoigxogIsRVEURVEURVGUGFEBlqIoiqIoiqIoSoyoAEtRFEVRFEVRFCVGVIClKIqiKIqiKIoSIyrAUhRFURRFURRFiREVYCmKoswyQohSIYQUQpjiXRfl+CCE2C6EWB3veiiKoswFKsBSFEVREp4Q4lYhxFD0JyiECI1afibe9ZvtpJQLpJRrYlmmEMIqhLhdCDEghGgXQvxnLMtXFEWZrYSUMt51UBRFmVOEECYpZXga+5cC+wHzdMo5XgkhbgYqpZSfHuO1aV2bYymR6joWIcT/AqcBFwG5wCvAtVLKZ+NaMUVRlBmmWrAURVFiQAjRIIT4f0KILYBHCGESQqwSQrwphHALITaP7oIlhFgjhPhfIcQ70Sf8jwsh0o9Q9nVCiJ1CiEEhxD4hxOcPef1iIcSmaDl7hRDnRdenCCFuE0K0CSFahBD/LYQwHuU8KoQQLwsheoQQ3UKIe4QQqaNe6xVCnBBdzhdCdA2flxDiomhXM3f0/OYf8v58QwixRQjRL4S4XwiRNPl3evKOcG2kEKJy1DZ3CCH+e9TyBdH31B29hosneKzVQohmIcR3o+9fgxDiylGvny+E2Bi9Vk3RYHD4teGuoZ8RQhwAXo6ufzDaAtQvhHhNCLHgkHr/SQjxTLS17g0hRK4Q4v+EEH1CiF1CiGUTfI8+NJFznIRrgP+SUvZJKXcCfwOujfExFEVRZh0VYCmKosTOJ4HzgVQgB3gK+G8gHfgG8LAQImvU9lcD1wN5QBj43RHK7QQuAFzAdcBvRgU5K4G7gG9Gj/sBoCG63x3RciuBZcA5wGePcg4C+F8gH5gPFAE3A0gp9wL/D/inECIZ+Adwp5RyjRCiGrgX+BqQBTwN/FsIYRlV9ieA84AyYDFHuNkWQpwWDWyO9HPaUc5hLCPX5mitQtGA5Hbg80AG8BfgCSGEdYLHygUygQL0IOOvQoia6Gse9OueGq3PF4QQHz1k/zPQ3/tzo8vPAFVANvAecM8h238C+H70mAHgreh2mcBDwC0TrPeYhBDfHu96HGGfNPTP9eZRqzcDC8baXlEUZS5RAZaiKErs/E5K2SSl9AGfBp6WUj4tpdSklC8A64GPjNr+binlNimlB/gB8ImxWpiklE9JKfdK3avA88Dp0Zc/A9wupXwhepwWKeUuIURO9Fhfk1J6pJSdwG+AK8Y7ASllfbSsgJSyC/3m/IxRr/8NqAfeRr+B/l70pcuBp6L7hoBfATbglEPen1YpZS/wb2DpEeqwVkqZOs7P2vHO4QhGX5ujuQH4i5TybSllREp5J3rgsmoSx/tB9D18FT3Q/gSAlHKNlHJr9FptQQ9Kzzhk35uj18wX3ed2KeWglDKAHuwuEUKkjNr+USnlBimlH3gU8Esp75JSRoD70YPrKZNS/my863GE3RzRf/tHresHnNOpi6IoSiJQAZaiKErsNI36vQT4+CFP+k9DD0rG2r4RMKO3OhxECPFhIcS6aPc8N3rgNLxdEbB3jLqURMtrG3X8v6C3ghyRECJHCHFftEvhAPDPMer0N2Ah8PvoTT/oLV6NwxtIKbXo+RWM2q991O9e3r8JPxaajr7JiBLg64dcuyL0c5yIvmjQPKxxeF8hxElCiFeiXSv7gRs5/P0dqasQwiiE+JnQu34O8H7r5Oh9Okb97htj+Vi+z8OGov+6Rq1zAYNxqIuiKMoxpQIsRVGU2BmdNagJvYVq9NN+u5TyZ6O2KRr1ezEQArpHFxjtlvYweotQTrTF4Gn0rnzDx6kYoy5N6K0umaOO75JSHq2L1v9Ez2ORlNKF3hI3fCyEEA7g/4DbgJvF++PGWtEDk+HtRPT8Wo5yvMMIIU4X72cAHOvn9KOXcphDMzp5geRRy7mjfm8CfnrItUuWUt47wWOlCSHso5aL0d8fgH8BTwBFUsoU4FZGvb9j1PVTwMXAh4AUoDS6/tB9Zkx0PNkRr8dY+0gp+4A2YMmo1UuA7ceizoqiKPGkAixFUZSZ8U/gQiHEudFWiKRoAoTCUdt8WghRGx3P9BPgoWi3rtEsgBXoAsJCiA+jj6UadhtwnRDig0IIgxCiQAgxT0rZht6V8NdCCFf0tQohxKHd0Q7lRG996BdCFKCP7Rrtt8B6KeVn0bu+3Rpd/wBwfrQeZuDr6AHem0d7ow4lpXxdSukY5+f1yZY5hk3Ap6LX5jwO7qb3N+DGaGuTEELYhZ6cwgkjiSXuOEr5PxZCWKLB4AXAg9H1TqBXSumPjp/71FHKcaK/jz3oAeH/TOIcY0JK+T/jXY9xdr0L+L4QIk0IMQ/4HPq4QEVRlDlNBViKoigzQErZhN7y8F304KgJPVgZ/Xf3bvQbznYgCfjKGOUMRtc/APSh35A/Mer1d4gmvkAf4/Iq77ckXY0eoO2I7vsQB3dRHMuPgROiZT0FPDL8ghDiYvQkFV+IrvpP4AQhxJVSyjr01q7fo7fCXQhcKKUMHuV48fJV9Dq6gSuBx4ZfkFKuRw8G/oD+vtVzcEKOIuCNccpuj+7Xip6Q4kYp5a7oa/8B/EQIMQj8EP26jucu9C6GLejXcd3RTmwW+RF699VG9M/lL1WKdkVRjgdqHixFUZQ4EEKsAf4ppfx7vOuiTFw0K+JmYHE0mcehr69Gv66Fh76mKIqiHB9M8a6AoiiKoiSKaIvc/KNuqCiKohy3VBdBRVGU44wQ4tYjJCy49eh7K4lICFE8TqKK4njXT1EUZS5RXQQVRVEURVEURVFiRLVgKYqiKIqiKIqixMisGoOVmZkpS0tL410NRVEURVEURVGUcW3YsKFbSpl16PpZFWCVlpayfv36eFdDURRFURRFURRlXEKIxrHWqy6CiqIoiqIoiqIoMaICLEVRFEVRFEVRlBhRAZYypnBEi3cVFEVRFEVRFCXhzKoxWGMJhUI0Nzfj9/vjXZXjhi8Yod/rI81mwmpNind1piwpKYnCwkLMZnO8q6IkqKe3tFBg7GNJ7QIQIt7VURRFURQlAcz6AKu5uRmn00lpaSlC3eAcE/u7PcwPNGATQcgqAXNyvKs0aVJKenp6aG5upqysLN7VURLQ3q4hzA9exRLjBkIf/yfmBRfGu0qKoiiKoiSAWd9F0O/3k5GRoYKrYygQCunBFaB5uuNcm6kRQpCRkaFaPpUpe6O+m5WGnQC4190d59ooiqIoipIoZn2ABajg6hjSpMQS8Ud/B/yD8a3QNKjPjTIdne2tpAgvAKktr0IkHOcaKYqiKIqSCBIiwFKOnVBEw4R+I9mHE4MWhEgwzrVSlGNP66oD4BXLasyaH7p2xrlGiqIoiqIkAhVgTYAQgq9//esjy7/61a+4+eab41ehUdatW8dJJ53E0qVLmT9//ki91qxZw5tvvjnp8iKaxCQ0GptbWX3eJSw9+woWLFrCrbfeGuOaK8rsljTYAEBjwQUAyJb34lgbRVEURVESxaxPcjEbWK1WHnnkEb7zne+QmZkZs3KllEgpMRimHudec801PPDAAyxZsoRIJEJdnf7Ufc2aNTgcDk455ZRJlRfRJEYiZGRn8eizL1MpmhkSKSw8+Swuuugi8vPzp1xXRUkk1kAfAOayUxjYl4yp8T2ST7wmzrVSFEVRFGW2Uy1YE2Aymbjhhhv4zW9+c9hrXV1dXHrppaxYsYIVK1bwxhtvAHDzzTfzq1/9amS7hQsX0tDQQENDAzU1NVx99dUsXLiQpqYmvvnNb7Jw4UIWLVrE/fffD+gB0urVq7nsssuYN28eV155JVLKw47f2dlJXl4eAEajkdraWhoaGrj11lv5zW9+w9KlS3n99dfHredVV13FySefTFVVFbff9ndMRLBYbTidToLSiN/Tj6aNPS/W7373O2pra1m8eDFXXHEFAL29vXz0ox9l8eLFrFq1ii1btowc65prruH000+npKSERx55hG9961ssWrSI8847j1AoBMBPfvITVqxYwcKFC7nhhhsOO29N0ygtLcXtdo+sq6qqoqOj4+gXU1EmyBgaIoKR8vwc6mU+wXbVRVBRFEVRlKObdguWEKIIuAvIASTwVynlb4UQNwOfA7qim35XSvn0dI71439vZ0frwHSKOExtvosfXbjgqNt98YtfZPHixXzrW986aP1Xv/pVbrrpJk477TQOHDjAueeey86d49+I7dmzhzvvvJNVq1bx8MMPs2nTJjZv3kx3dzcrVqzgAx/4AAAbN25k+/bt5Ofnc+qpp/LGG29w2mmnHVTWTTfdRE1NDatXr+a8887jmmuuobS0lBtvvBGHw8E3vvENAD71qU8dsZ5btmxh3bp1eDwelixdyrmrFpBemEl3RwsfvOjj7Gs8wC9/+asxW69+9rOfsX//fqxW60jA86Mf/Yhly5bx2GOP8fLLL3P11VezadMmAPbu3csrr7zCjh07OPnkk3n44Yf5xS9+wSWXXMJTTz3FRz/6Ub70pS/xwx/+EICrrrqKJ598kgsvfD9FtsFg4OKLL+bRRx/luuuu4+2336akpIScnJyjXkdFmQgpJZbwIEGLnepcJy9qhczv2xLvaimKoiiKkgBi0YIVBr4upawFVgFfFELURl/7jZRyafRnWsFVvLlcLq6++mp+97vfHbT+xRdf5Etf+hJLly7loosuYmBggKGhoXHLKikpYdWqVQCsXbuWT37ykxiNRnJycjjjjDN49913AVi5ciWFhYUYDAaWLl1KQ0PDYWX98Ic/ZP369Zxzzjn861//4rzzzhvzmOPV8+KLL8Zms5GZmcmpp5/Bxk2bwWCiorSUl198hj1rH+fOO+8cs4Vo8eLFXHnllfzzn//EZDKNnNNVV10FwFlnnUVPTw8DA3pg/OEPfxiz2cyiRYuIRCIj9V20aNHI+b3yyiucdNJJLFq0iJdffpnt27cfdtzLL798pLXvvvvu4/LLLx/3PVeUyfAGI9jxEjI7yHBYaTMXYQv1grc33lVTFEVRFGWWm3YLlpSyDWiL/j4ohNgJFEy33LFMpKVpJn3ta1/jhBNO4LrrrhtZp2ka69atIykp6aBtTSbTQd3qRs/HZLfbJ3Q8q9U68rvRaCQcHjtNdEVFBV/4whf43Oc+R1ZWFj09PYdtc6R6wsHpzKUEk5BgNGExGfBjpTg3i4W183j99de57LLLDtr3qaee4rXXXuPf//43P/3pT9m6deuEzslgMGA2m0eObTAYCIfD+P1+/uM//oP169dTVFTEzTffPOZcVieffDL19fV0dXXx2GOP8f3vf3/c4yrKZPT7QrjwETE7AQikVUIv0L0bilfFt3KKoiiKosxqMR2DJYQoBZYBb0dXfUkIsUUIcbsQIi2Wx4qH9PR0PvGJT3DbbbeNrDvnnHP4/e9/P7I83BWutLSU997Ts46999577N+/f8wyTz/9dO6//34ikQhdXV289tprrFy5csJ1euqpp0bGKO3Zswej0UhqaipOp5PBwffnsDpSPQEef/xx/H4/PT09vLn2NVYuraWlrYuA30/EYKXPPcDaN96kpqbmoGNrmkZTUxNnnnkmP//5z+nv72doaIjTTz+de+65B9DHkmVmZuJyuSZ0PsPBVGZmJkNDQzz00ENjbieE4JJLLuE///M/mT9/PhkZGRMqX1EmYtAfxim8aFY9wDJmz9NfiKZuVxRFURRFOZKYBVhCCAfwMPA1KeUA8GegAliK3sL16yPsd4MQYr0QYn1XV9dYm8wqX//61+nu7h5Z/t3vfsf69etZvHgxtbW1I+nML730Unp7e1mwYAF/+MMfqK6uHrO8Sy65hMWLF7NkyRLOOussfvGLX5Cbmzvh+tx9993U1NSwdOlSrrrqKu655x6MRiMXXnghjz766EiSiyPVE/RufmeeeSarVq3iK9/4NoW5Wezcs5eTTjqJj5x9Jmdc9lm+8eXPs2jRIgA++9nPsn79eiKRCJ/+9KdZtGgRy5Yt4ytf+QqpqancfPPNbNiwgcWLF/Ptb3+bO++8c8Lnk5qayuc+9zkWLlzIueeey4oVK0Zeu/XWWw+q9+WXX84///lP1T1QiTlfKIILL9KiPxhIy6/AL83421SiC0VRFEVRxifGykw36UKEMANPAs9JKW8Z4/VS4Ekp5cLxylm+fLlcv379Qet27tzJ/Pnzp11HZWw333zzQckwGns8FAX2YHBkgauAVrePTE895mQnIq00vpWdAvX5Uabirb09FN55EkkVp5J1zZ28uKOD/PvOpqC4jJTPPh7v6imKoiiKMgsIITZIKZcfun7aLVhCH0RzG7BzdHAlhMgbtdklwLbpHkuZeVJKDEgQ+kfDajIQxIQMBeJcM0U5dvyhCE7hhSS9Bas0085emYexd2+ca6YoiqIoymwXi4mGTwWuArYKITZF130X+KQQYil66vYG4PMxOJYSYzfffPPBK2Q0MceoACuAmeSI99hWTFHiyB8M48CHOxpgFaXbeFrmcb73HQgHwWSJcw0VRVEURZmtYpFFcC0gxngpodOyH6/e7zIaDbDMRgYwY5ARiITBGIuYXFFmt6Dfg0loGJP0JBdWk5F+WzGGkAZ9DZA19phKRVEURVGUmGYRVOaAQ1qwTAZBiOjT+ojqJqgcH4IBvcXWaH1/SoVIWrn+i+omqCiKoijKOFSApRxsJMAS0X/E+92hwirAUo4PkWiAZUp6P8CyZOutVrJ7T1zqpCiKoihKYlABlnKwQ1qwAITJigQVYCnHjXA0wLJYk0fW5eTm0ScdBDrnZoAVimgMBcaezFxRFEVRlIlTAdYEPfbYYwgh2LVr1xG3aWhoYOHCcTPRT0pdXR2rV69m6dKlzJ8/nxtuuAHQJwl++umpD3Hz+/2sXLmSJUuWsGDBAn70ox+NvCbGCLAsJhNBaUKG/VM+pqIkkshIF0HbyLqyzGT2y1yCHXMzwPrqfRv5f//1U1reeybeVVEURVGUhKYCrAm69957Oe2007j33nvHfD0cnv6T30gkctDyV77yFW666SY2bdrEzp07+fKXvwxMP8CyWq28/PLLbN68mU2bNvHss8+ybt06/cXhJBcHBVgGgpiRqgVLOU5EgnqAJczvdxEszbCzX+Zicu+PV7VmTK8nyBtb6/mj6RYKnrgCWjfFu0oxV9c+yE+f2sGgd24+KGrr9/Ha7i5iMbflbHSgx8uu9oF4V2PG1LUP0ur2xbsaiqLEiAqwJmBoaIi1a9dy2223cd99942sX7NmDaeffjoXXXQRtbW1gB5oXXnllcyfP5/LLrsMr1e/UXvppZdYtmwZixYt4vrrrycQ0IOV0tJS/t//+3+ccMIJPPjggwcdt62tjcLCwpHlRYsWEQwG+eEPf8j999/P0qVLuf/++/F4PFx//fWsXLmSZcuW8fjj+kSod9xxBxdffDGrV6+mqqqKH//4x4A+rsrhcAAQCoUIhUIIIaL/Mb/fgvXggw+ycOFCzjh5OedcejUiHMDv83HdddexaNEili1bxiuvvDJyrI9+9KOcffbZlJaW8oc//IFbbrmFZcuWsWrVKnp7ewH429/+xooVK1iyZAmXXnrpyPsz2qpVq9i+ffvI8urVqzl0AmpFmUkyGL3RMSeNrCtMS+aAzCPZ3w7BuTVtwY7WAU41jJqqcMfcm0z5O49sYcvapzHdUgV7Xoh3dWLuxn++x423v0bXbR+Hva/EuzoxFQhHuOzWN7nwt68w8MhNUDe3Wlmb+7x85Hevc/7vXif0yi/gvbviXSVFUaYpsXJuP/NtaN8a2zJzF8GHfzbuJo8//jjnnXce1dXVZGRksGHDBk488UQA3nvvPbZt20ZZWRkNDQ3U1dVx2223ceqpp3L99dfzpz/9iS996Utce+21vPTSS1RXV3P11Vfz5z//ma997WsAZGRk8N577x123JtuuomzzjqLU045hXPOOYfrrruO1NRUfvKTn7B+/Xr+8Ic/APDd736Xs846i9tvvx23283KlSv50Ic+BMA777zDtm3bSE5OZsWKFZx//vksX76cSCTCiSeeSH19PV/84hc56aST0KTEIKWedF8Y+MlPfsJzzz1HTm4ee+q2Iwjzxz/8HiEEW7duZdeuXZxzzjns3r0bgG3btrFx40b8fj+VlZX8/Oc/Z+PGjdx0003cddddfO1rX+NjH/sYn/vc5wD4/ve/z2233TbSMjfs8ssv54EHHuDHP/4xbW1ttLW1sXz5YZNkK8qMkaFoAGV6v4ugxWSgP7kEgkDvPsiNXXfgeNvVPsBKwy4ChmQ2hYs5cffzmD70o6PvmCCGAmE2Nrl5wnw3tvAAPPsdqDo73tWKmfZ+P5ub3HzR+CzZzS/A3S/A97vmzHxt6xv66BwMcIZhO64tt8OW2+Hru8GZE++qxcSru7uIaBK7rwXzqz/VV2bWQPFJ8a2YoihTplqwJuDee+/liiuuAOCKK644qJvgypUrKSsrG1kuKiri1FNPBeDTn/40a9eupa6ujrKyMqqr9Sxk11xzDa+99trIPpdffvmYx73uuuvYuXMnH//4x1mzZg2rVq0aafka7fnnn+dnP/sZS5cuZfXq1fj9fg4cOADA2WefTUZGBjabjY997GOsXbsWAKPRyKZNm2hubh4JwjQpEeL9LIKnnnoq1157Lbff9ncCmv5RWbv2dT796U8DMG/ePEpKSkYCrDPPPBOn00lWVhYpKSlceOGFgN7y1tDQAOhB2Omnn86iRYu45557DmqpGvaJT3yChx56CIAHHniAyy67bOwLoygzRIaGW7BsB62PpM/NVO0tbh+lxm5CKSW8q9Vg6NoFobnTXWlH6wBGGWa+oZmANEPPHuhvjne1YmZzsxuAD1u3vL+y+d34VGYGbGnuB+BS24b3V+55Lk61ib31DX1kOqxcZBn1oHXXv+NXIUVRpi2xWrCO0tI0E3p7e3n55ZfZunUrQggikQhCCH75y18CYLfbD9peCDHu8lgOLWO0/Px8rr/+eq6//noWLlzItm3bDttGSsnDDz9MTU3NQevffvvto9YnNTWVM888k2effZaa+bUYeH8M1q233srbb7/NU089xU8+/GE2P3Pn+1kGx2C1Wkd+NxgMI8sGg2FkjNq1117LY489xpIlS7jjjjtYs2bNYeUUFBSQkZHBli1buP/++7n11luPeExFmRGh6DidUV0EAazZldAOsrt+zNnVE1XnQIBCYx+W9Gq2dpRjkGHo2A6Fc6PluKHHQ6lox0SY2yPnc4PpKWh4A5aM/XAr0dR3DgGSSkMrj4dO4SLTOsT+V6H01HhXLSb2dg2R47Ky3NzK2sFFnJrai6h/EU64Ot5Vi4mGHg/VOQ5O7Wumw5dFTtkCqH8JzvnveFdNUZQpUi1YR/HQQw9x1VVX0djYSENDA01NTZSVlfH666+Puf2BAwd46623APjXv/7FaaedRk1NDQ0NDdTX1wNw9913c8YZZxz12M8++yyhUAiA9vZ2enp6KCgowOl0Mjg4OLLdueeey+9///uRwc0bN24cee2FF16gt7cXn8/HY489xqmnnkpXVxdutxsAn8/HCy+8wLx58/QugqMCrL1793LSSSfxk5/8hIzMLA60dnD6quXcc889AOzevZsDBw4cFtiNZ3BwkLy8PEKh0Eg5Y7n88sv5xS9+QX9/P4sXL55w+YoSC4bwcAtW8kHr87Oz6ZSpcy5Ve+egn1zZhSW9mGZb9PvctimudYqlNrefGqG3WD2hnULAaJ9TLTzNfT6qk70khQfYqFXS76qBpnfiXa2YaXX7yE+1kRFqpUHLZjBzGbRuPPqOCaKp10tJRjJlxi72RbII5S2Hrl0Q9MS7aoqiTJEKsI7i3nvv5ZJLLjlo3aWXXnrEbII1NTX88Y9/ZP78+fT19fGFL3yBpKQk/vGPf/Dxj3+cRYsWYTAYuPHGG4967Oeff56FCxeyZMkSzj33XH75y1+Sm5vLmWeeyY4dO0aSXPzgBz8gFAqxePFiFixYwA9+8IORMlauXMmll17K4sWLufTSS1m+fDltbW2ceeaZLF68mBUrVnD22WdzwQUXICX88pe/5onnXwVh4Jvf/CaLFi1i4cKFrFi1ivm1tXzh2k+iaRqLFi3i8ssv54477jio5epo/uu//ouTTjqJU089lXnz5o2sf+KJJ/jhD384snzZZZdx33338YlPfGLCZStKzAxPSWA6uAWrNJqqPTzHAqyBfjcOOQQpBaTnleHFBl27412tmGnr91Gb1AVAOK2KZlMJdO6Mc61ip8XtY7mjG4AGUUCTuXxOnV9bv59yZwRr0M0BmU1jUg24D4CnJ95VmzZvMEz3UJDCtGTSQ+00aVm0JM/Te4u0H95jRVGUxJBYXQTjYDhL3mhf+cpXRn5fvXr1yO+lpaVHnCfrgx/84EEtS8OGxyaN5ZZbbuGWW245bH16ejrvvnvw09e//OUvY5ZRWFjIY489dtC6xYsXj1kXTUq+/c2vkSUGQAgeeeSRkdf6vEGCfftwmOAf//jHYftee+21XHvttWOe1+jXvvCFL/CFL3zhsP0vuugiLrroopHlnJycmKS+V5SpMESGuwgePAarNMPOO1ouS9wxTrYTR1JKTEMtYARchdTkutjblMfCrro50w2ytd/PqZYhkCmU5WWys6GAis4N+rQUE+jGPdu1uX2sTuqHARCppeyI9LJo6Cnw9kJyeryrNy1SSlrdPq4s0ccftxpy2RwpZRFA+2aoOCuu9Zuu7sEgALnJkiR/FwdkNnZZTilA22aV6EJREpRqwVJGaBK9i+AYNxxWoz4XlggH3p8rS1HmKGPEj4YBjAdnYStMS6aRXJKCPeDvj1PtYmswEMYRjp6LI4uyLDu7tXy0rrr4ViyG2vt95Bv7wZHNvFwXG/y54OsFT1e8qxYTfd4QuQZ9jqj03ELe8Uaz63XuiGOtYqPXEyQQ1ig16q1VpvQS3hrM1l+cA5/RPq8eYOVJ/bPYJrLYMmADqwu6E//8FOV4pQKsOezaa68dSeU+EVJKBBI5xsfCYjIQwIxAA021LClzmzHiJ2SwHvawYSRVO0DP3Mgk6PaESBVD+oItjbJMO3u1AoxDbRAYHH/nBNEzFCQDNzhzqc5xUKcV6S/MgQBESonbGyRLuMGcTEluNq/3RwOsjsQ/v+4hPQDJMuifxdTMfDb1mCEpdU4FWBlCf8hhSslnT6cHMqvnxPkpyvEqIQKsuToz/WzzfgvW4R8Lk9FAWJj1hfDhqeJnI/W5UabKpAUIG8YeWyjThlO17zuGNZo5/b4QKaMCrPJMB3tlvr7cnfjjsKSUuH0hUsK94MiOttANB1hjd+lOJEOBMGFNkqr1gSOb6lwnnaQStqbMiQDSHQ1AUtA/o1nZ+bT0+9Eyq6E78cdCur16IqsUGQ0gM3LY3TEIWfPmxPdPUY5Xsz7ASkpKoqenR90sHwNSSgxoYwZYABijN5yR2R9gSSnp6ekhKSnp6BsryiHMmp+wYezPTlJOFQByDtzcAbh9QVKIZiuzpZHjstJkjAYgcyDRxVAgTESTOMI94MilNMNONy58prkSgOg36K5IHzhyqMx2AAK3o2punJ9PPz9HpB9MNopzMwAYcJTPiS50wy1YTk0PsHJy82ju8xFMr4ShDvC541g7RVGmasaTXAghzgN+iz6E+u9SyklNZlVYWEhzczNdXXOjr/xs5gmEMfq6sRpB9B7+ep8ngCfUhejw690zZrmkpCQKCwvjXQ0lwUQ0iUUGiRjHbsEqzE6nWWaS1VnPxPNnzl79Pr2LoDSYEBYHQggMGeWE3UZMc+AG1u0NkYwfc8QHjiySzEYKUpNpMZRSOQcy7Q3foNuDPZBZQ3G6HaNB0GwqIbPzxYRP5DHcgmUL90NyOmWZ+ryRbeZiUj1dCZ/Io88bQojo+QF5uQXAAG3mYkpAb8UqWhnPKiqKMgUzGmAJIYzAH4GzgWbgXSHEE1LKCT9WM5vNlJWVzVQVlVHuequBmmc+y8LidMyffeaw13/74h4ufO3LlNSuxHjF3XGooaLMvEA4gpUgEaNtzNdLM5Jp0HJI69ozdwIsPGhJqRijN+LFWS5a+vMomQOtdG5viHQRHUuWnAlAWaad+u58KnvWxbFmsTHcgmUN9IAjG4vJQFGajd1aHksD/XoiD0d2nGs5dSPnF+oH2/sBVr2Wz3zQA5DiVfGr4DS5vUFcSWYM/l4w2SjN0z+j9VqBHmB17VIBlqIkoJnuIrgSqJdS7pNSBoH7gItn+JjKFPlD+o2lsBzhxjIzmQaZS6hrbgzuV5Sx+IIRbASQprG7CJZm2tkv8zD3758TGTWHx2AJW9rIurJMO7sjucju+jjWLDb0LpDvjzED/fy2+LPA15fwcyn1eYMINExBNyTr3efKsxxs9mbpGyR4kNznDWE2CoyBPkhOx241ketKYnMgmsgjwRNB9HlDpCWbwds30kInBGzzpujd8hP8/BTleDXTAVYB0DRquTm6boQQ4gYhxHohxHrVDTC+/CENG0EMluQxXy/LtNMoczC558aNpaKMxR/WSBIhtCN0ESyKpmq3hAb07kkJrt8bIl14MIzqZlWW6WCvlqsn8tAicazd9PV5Q6QNJ/GInmNZpp0dwegNek9iByBubwgnPoTURgLIiiw7b/VHA+YEP79+X5AUmwXh7Rm5fuVZdja4nfpE4AmeCMLtDZKabAFvD9jSo11Ybezt9kNmVcIHyIpyvIp7kgsp5V+llMullMuzsrLiXZ3jmj8UwSaCGMxHasGys1/mYop49cG3ijIH+UMRkggizWM/aLCYDAzai/WFnsRv4en3hUg3eA4aV1mWmcw+mYfQguA+EL/KxUC/N0jqSAvW+zfo+0YyJSb2DWyfNzgqzf7w+TnYH05HMyYl/Pm5R1p4ekfOryzTzt5uLzK9POG/g33eoH5+vl5I1oPi8iwH+7qHIKMi4QNkRTlezXSA1QIUjVoujK5TZqHhFiyOEGC5ksz0WqOXc46kqFaUQw13EeQIXQQBtLRK/ZfexO8uqye58Iy0foDegrVfy9MXEny+L7f34Hm+AMozHTTLLCIGc8LfwLq9IfKtPn1h5PzsSAx4naUJH2D1eYOk2Yzgd49qwXIw4A8TTK1I/PPzhEhLthwUQJZn2tnX5UFmVEFfI4SDca6loiiTNdMB1rtAlRCiTAhhAa4AnpjhYypT5A9HSBJHDrAAtLRowpEEv+lSlCMJhCNYRQgxzvcgOaeCMIaEf3oOeoDlYvCgACst2UzX8MOUBA9A+rwhcozvp6EHKEizYTQa6bMWQoKPM3N7gxRa/frCqAAE0K9hgl8/tzdEnjUIUjsoAAHoSSqGvoaEDkBGugj6ekfG0FVkO/AGI/qk5jICffvjXEtFUSZrRgMsKWUY+BLwHLATeEBKuX0mj6lMXSCkkTROCxaAPbuMMMY58eReUcbij34PxguwijJdNGlZBDsT++YVYNDjI1n6DgqwhBCkZObjEfaEDyLdviDZZh9YHGCyAGA0CEoy7DQZChJ+DE+fN0Su+eAWrEyHBWeSiQbyE74FxO0NkW/x6gsjSTz0AKtJFEQDkIY41W56gmENTzCit9D5+kYC5IpoANkookPWE7yVTlGORzM+BktK+bSUslpKWSGl/OlMH0+ZumAoiJkwmI58Y1mS5aJRyybcldg3XYpyJMNdBI+UTROgNMNOg8ydE98DbXgi01EBFuitIA3kJ/zNndsbItM4NNL6Maws086uUK7eOhAJxal20+f2BskxRwOQ6DUUQlCe5dATeSR4C4jbFyTHHG2BjAYghWnJmI2CneHETlQyPMdXtiVwcAtdtAVyRzCaXj9Bz09RjmdxT3KhzB5aMPqf9DhP7kujmQRD3aoFS5mb/KEwSQQxHiGbJujfgwaZi2UOpGo3+N36L4cEWGWZdurCOWiJ3oLlDepJPGypB60vz7KzyZsFWlhv5UlQfd4QmcNdIEclKqnItLN+UG/xSdQg2R+K4A9p759fNAAZboF8z6PPGZWo59cXneMr23RwlssclxW7xUid2wD27ITvxqooxyMVYCkjZDDazWS8ACv65N7sbkj4G0tFGUsgGMAo5LgBVlG6jQbyMUV8MNh+DGsXWxFNYg669YXDWrDs7NPyMAy0QNBz7CsXI25fSJ8HK/ngFqyKTAe7I7n6QgK3EPR5g6SLIbCmgNE0sr4i28G7Q9EAK0HPb3iS4fSRNPvvf0bLM+1s70EPQBL0/PqiLVjpYriFTr9ewy2Qe7uG9FTtCXp+inI8UwGW8r7QxFqwRlK1J/CNpaIcSciv3+wYrUf+HlhNRryOEn0hgVt4BnwhUsTBCSCGlUUnVAYSOmuo2xvCpQ0c3kUwy87e4fNL0BaQcERj0B8mhcHDAsjyTDtDJBNKzk7Y83P79AAk7ZA0+6B3ozvQ60VmVCZsC89wF8FUMaivOOj89EyCZFQm7PVTlOOZCrCUESIUvdE6wvw/AA6rCXdSob6gEl0oc1AkoD9oMCXZx93OkFml/5LA3wO3LzRqjqjUg14ry7SzL8EDECkl/b4Qdm1gzABkAAc+c1rCJrro9+ktPM6xzi86jsedXJqw16/PM+r8hBGSUkZeK8+yE4pIhhxlCdvCM9xF0KVFA6yDWugctLh9hNIq9AyDc2BSc0U5nqgASxkhQtEugpbxbywj6dEbywS9KVGU8QwHWGbr+N+DjIIygtKElqBPzyGaIvqQOaKGJVtM+J3DrXSJGUQO+MNILUJSePCwFqx0u4UUm5kOS1HCtkIO36DbI4e30JVkJCMEtBkLEzYA6Y+2YCVH+vUAUoiR1yqimQTbLYXg7UnIAGS4i6BdG9BXjLqGFdn6+bWZhqdLSMzPqKIcr1SApYwQ4eExWEduwQJwZpfgwwpdKsBS5p5INNmLcZwsggAV2Sk0yhx87Yn7PRiZZBgOah0Ylp+dQZchK3Fv0L0hXHgQyMNaePRxLnb2ycTNlDjcxcwa6j/s/JLMRgrTbOzRcvUU4J6eeFRxWobHYNnC/WNkgdRb6PbJfH1FAl5DtzeE1WTAEug7vIUuen57ZXScYAKen6Icz1SApYwwDgdY4wzuByjJclKv5RHu3HUMaqUox1YkmuxFHOV7UJntYL/MRSZo6w7oAVYKQ0SsKWAwHvZ6WaadvVouMkGfnvd5g6SJw8fvDCvLtLMtkA3ebj0ISTDDLViWoHskQcJo5ZkONvuy9IUEDJLfP7/DA8h0u4XUZDNb/YmbyrzPEyQt2aK3vh3SQlcWnQtrqycNDOaEPD9FOZ6pAEsZYdKGW7DG7xpVlmGnXhagddYdg1opyrE1kk3TlDTudhXRAMs22Aha5BjULPbc3pDeRXBUeu/RyjMd7A7nIrv3JGTW0D5vkDSGEwikHfZ6RdaoACQBu3q6vfrchcbQ4fN8gX5+6/qj6xOwBcTtDWIxGTD4e8c8v/JMO+8NuPQAJAHPr88bIjXZrI+xOuT8bBYjBak29vb4Ib0sIc9PUY5nKsBSRpgn2IJVlmWnXivA4mmFwNAxqJmiHEPDKcmPMhbRYTXRm1SMUYagv/kYVCz29BYsDyL58JtX0L/r+2UuhsAAeLqPce2mr390lsQxzrE80/5+F7MEbCFwe0OkcniChGHlWXbqQxlIoyUhz6/PGyQ92YIYbuE5RHmWg/ruaACSgK2sbu8hLViHeD+TYFVCnp+iHM9UgKUA+nw4FunXF47SglWaYWcfw/3eE3f8iaKMxRCKPjSwOI66rZZWrv+SoDc/bm+IdIMHwxg356DPFZXIAUifZ/wWrPIsB00yC02YEvJvWa83SNYhk/COVp5lR8OgTymQgC0gvZ4QacMtPEcIQDoHA3qmvQQ8vz5vkDS7We+eeoQWyH1dQ3oq+t59CdtSrijHIxVgKQB4gmGSCegL48yDBfrgaW9Kpb6QgDclijKu4RYs69EDLGvuPABkV2J2l+33hUgzeMYMPgAK0mw0iWiq9gQMIt2+0PtjsMa4QS/JSCYiTLiTChLzBt0TpCgp+mBsjDFYFdFU7d3W4sQ8P2+QvOQIRIJH7CII0Gcr0QOQSPhYV3Fa3N4QqckWPQviEVogPcEIA/ZS/T1wNx77SiqKMiUqwFIA8AYi2IQfiThqgAVgy6kkggES9MZSUY7EEBxuwRq/JRcgN7+YXunA27Jthms1M/p9QVI4coBlNAgsGSWESMwxLm5viByzF4QBrIdnSUwy6+Ncmo2FCRlA9niCFFqjXbvHCCCznVbsFiONIh/69kMkdIxrOD19niAF45zf8FxfLcZC0EIJFYBIKfUHADZTtIvgkQPkA2K4x0jifUYV5XilAiwFgKGA3oIVMSYdlMnoSMpz0miQuWgqVbsyxxjDw2OwnEfdtjLHSZ1WTKQtQQMsTwCnHDpigAVQkZtKs8hNyACkzxsk2+TVz88w9n935Vl6Io9E7ILV5wmSZ9GnFRirhUdPRe9gZygHtDD0JU4AAnoXyHxz9PzGCEBKMpIxCNgVjqYyT6DP6IA/TESTZCVpEAkcsYsnwM6R80u8hxyKcrxSAZYCgGc4wDKNn+BiWFWOg3otn3CHStWuzC2msIegsIDRdNRtK7Md1MlCbO49oGnHoHaxFfb1Y0AbN8CqznayPZyP1rnzGNYsNtzeEJmG8QPIqmwH73kzE7ILVq8nSJbpyEk8QL9JXz+UeKnawxGNfl+IHFN0DJ0967BtrCYjhWnJbPRm6isSqJW1Z0jvkp9viraYj3F+ua4kki1GdrjN+mc4gc5PUY53KsBSAD3AsokA8iiTDA+rynZSL/Mx9TckXLcTRRmPOeIlaJzY9yDDbqHJXIo54oX+AzNcs9gz+qKZAce4uRtWneOgTitC9DW8Pz4tQbiH58Eao3VgWE2Ok7pQYk7m2usNkiE8+uTwR+jaXZHl4O2BxEvV3u8LISVkiQF9hT1zzO2qsh1s6jbo17g7cbqs93j0SaKzjcPnd/h3cGQy7G4PZFarMc+KkkBUgKUA4AlG9CQXEwywKrIc7JUFGGRY71qjKHOEJeIlZDz6+CvQb4BCGXqiCxKshUdKidnfqy+M0f1qWFWOkzpZhEBCgk0u3ufVJ1I+UusOQHWuk30ymsgjgW5gh1t40sTguAFkeZadAeyEbVkJFYD0efUAJJ1+fcURHgLU5DrZ1+VBy65NqO9g96DegpXO+AFkeaaeSZDsWujYnpDz0SnK8WhaAZYQ4pdCiF1CiC1CiEeFEKnR9aVCCJ8QYlP059aY1FaZMZ5AGBuBo86BNcxmMdLviKaoVokulDkiFNFIlj7CpokFWADJhYsB0Nq3z1S1ZoQnGMGlufWFcVqwSjOS2SdK9IXOxDrHnqEATm38AKQ6x0EfLjzmjIS6QXdHW3hc2sCYGeiGlWfqiRL6HBXQseNYVW/aej16z4gUrV+f9PsI0ybU5DoJaxK3s1o/vwTpqtsdbcFKPcp3sDzLTovbRyizFvxuGGg9NhVUFGVaptuC9QKwUEq5GNgNfGfUa3ullEujPzdO8zjKDBsKhHEJLyLp8ExbR2LOrtF/SaCnoooyHn0soh9tgmMRASoKc2mWmXibt85gzWKvezBAhhge3zL203MAk9GAObOMgEhKqADEGwzjCYZxhHvHPb9ki4ni9GQazWXQnjjXsC96g26P9I/bAlkWTWXeZK7Qr1+CJPLoHT6/cB8kZx4x+dK8XBcAjaZSCHnA3XCMajg9w2Ow7OE+fcWRWrCyHEgJLdYyfUVHYj3kUJTj1bQCLCnl81LK4Ykn1gGF06+SEg+eQBgn3iNOODqW4rxsWmUGWqcKsJS5YSgQxi58aBOYZHjY/DwXdVoRWoLd+HQPBd7vnpR85AAEoCo3hb0UJtTNXfegnoLeKEPgzBt32+ocJ9vCRdC1K2HmUhoew5Mc7AZH7hG3s1mMFKXb2BYphLAvYbp093j0AMQW6hs3QC7PsmM2CraGo7cfCdJK1zMUJDXZjNHXo2csPeIYOj1A3qUV6SsSrBVZUY5XsRyDdT3wzKjlMiHERiHEq0KI04+0kxDiBiHEeiHE+q6urhhWR5kMTyBMivBgSk6d8D6V2Q72aAWEOhLnqbaijGcoEMaBHzmJAKsy28FuirAP7oNwcAZrF1vdQwEyxAARiwtMlnG3rc5xsDVUiJYgN68AXUN+soVbX3DmjLttTa6Dt715eibBBEn13TkYACQWXxc4jxxgAdTmuVg7EN2mIzGmFOgYCCAEWP3d43ZhNRsNVGQ5eHMgCxAJ8xCgxxMgw26BoU6wH7kFsiLLgdEg2NYjIKUoYc5PUY53Rw2whBAvCiG2jfFz8ahtvgeEgXuiq9qAYinlMuA/gX8JIVxjlS+l/KuUcrmUcnlW1pH/iCozyxMIk4IHYUud8D5V2Q7qZBGmnt0J0+1EUcYz6A/jFF5E0tHnwBqWZDbS76jEKCMJlQa7azBApuhHHqX1CvRuWLtlIQZvFwwlxoOwrsEg2SLa/WqcFh6AmlwX2yPF+kKCBCDt/T5SGcKgBY8aYM3Pc/GqOx0pjNCeGOfX0e8n02FFDLaBK3/cbWtynWztDEN6WcK08HQPBslwWGGwDZxHPr8ks5HKLAc72gbeT3ShKMqsd9QAS0r5ISnlwjF+HgcQQlwLXABcKaWe3kZKGZBS9kR/3wDsBapn7CyUafP7BjGLCExiDFZVjpPdshCjFoTe/TNYO0U5NnqHAqQyhGmcJ8pj0XL1RBeJNIanayhIrujDkDL+zSvAwoIUdsnhLkqJ0YrVNRQgG7e+cJQApCbHyV6ZjyZMCRRgBSi1RLt4TiDACkgz/pSKhLlBbx/wU+g0gqcLXAXjbluT63w/EUSCnF/bgI+8lCQYaDlqADk/z8mO1gHIWaBnukyglnJFOV5NN4vgecC3gIuklN5R67OEEMbo7+VAFZAYHb+PU8Gh6JPeSQRYDquJPnulvpAgN12KMp6hQTdWEcbimlxrenrxAnzSQuDAezNUs9jrGvRTYOjFkDL+zStAjstKZ1KFvpAg3/X2fh+5Bre+4Bi/i2BZph1pMNNtK02YG/T2AR/V9ui8ZEcZY1abp3cg6bAlToDVMeCnOjl6fkcJQObl6i3OXbYK6NkLQe+428dbOKLR5vZTmJoEA0dvoavNd9E+4GcodR5o4YSaTkBRjlfTHYP1B8AJvHBIOvYPAFuEEJuAh4AbpZS90zyWMoMinuEAK3VS+5lyatAQ+uBwRUlwPrc+8W5SyuQCrHn5qeyUxQSaN85EtWZES6+HbHqPenMH+nxfeYUl9InUhOli1tznoyJpAKwusI4/ps5iMlCd42Q3JQlzfm39fiqTolkgjxJAFqbZcCaZ2E2xPiG2zz3zFZym9gE/lUlufcF19CQlAHtECSBn/f9HHYMBwpqk3BGESOCoLXS1efqDz91EW5ETJEhWlOPZdLMIVkopiw5Nxy6lfFhKuSC67gQp5b9jU11lpkS8bv2XSbRgAZTmZdMssxJq8LuiHEloUB9fZHEefVzSaLV5LrZpZSR1b0+YeXg8fe2YiBz15m7YgnwXWyIlaK2JEUQ29XopN3VDasmEtl9UkMK7vjwYbAXv7H8e2N7vp8zUDcIAKeMn8BVCMD/XxdveaDA9y1sh/aEIbm+IYpNbX3GUz2hBqo0Um1m/fjDru3k29+otbGVmt75iAl0EAd4bygCjZdafn6Iosc0iqCSyQL/+7ySSXIA+DqtOKyLcpp6oKYkv7OkBQIwzr9BYspxW9psrsUQ80Df7xyNKKaG/RV+YYIC1MD+FLVoZomsXhHwzWLvYaO7zkS87IbV4QtsvLEzhvcBwqu/ZfQMb0SSdgwEK6ARXIRjNR92nNt/FS33Z+sIsb6Vrceufr3yiCVUmEEAuLkzh1S67nvK8bfNMV3Fahs+vQAyf3/jfwQyHlRyXlR0dPn0cVtumGa6hoijTpQIsBU2TmANufcE28XmwQB8cXicLMbn3QTgQ+8opyrHk1QOs8SZuHYsQglD2In0hAW5+uoYCZGud+sIExmCB3oK1TStDyMis76LkD0XoHPSTEWqDtIm3YG3XSvWF1k0zVrdYaHX7iGiSrPDEz29+npOGoIuILRNmeSvk/i597FWe1gb2bLAePavnwoIUdnV4iOQtgZbZPRayuU8PsDICzfqK9PKj7lOb59IzCeYv0z+fCdJSrijHKxVgKQz4Q2QzsXTGh6rMdrBbFmGQ4YSZP0ZRjsTgj34PbOmT3jelZDFBaSTcsim2lZoBLX0+ykS7vjCBmzuA4vRk9pmr9IVZfoPe3OcjnUHMmn/CXQTn5ToZMKTQb8mD1tl9g97QowcgKf6WCQdYC/JTAEGXa8GsP7993UMApHoPTPjzubgghVBE0uNaoLdAzuJMe819XnJcVkzu/frfmgk82KzNd7Gnc4hgzlIIDEDv3pmvqKIoU6YCLIU+b4gs4SZocoIleVL72ixGBpzDmQTVhMNKYrP4e9AwTLqrLMCCokzqZBG+xtl98wp6AFIq2gkn50yodQDAYBCk5ZXRL1yzvpWuqc9LuWjVFyZ4g55kNlKd46TOWDnrW0Aauj3Y8emTDKeVTWifmlwnVpOBOmMVdNVBYHCGazl1+7s9ZNgtmPobIKNiQvssKtTHD+80VukTRs/i+bCa+3wUpiXrGQ8neH5LClOJaJI9psR4yKEoxzsVYCl0DvjJEX2EkrOntL81t4Ywxlk/cFpRxiOlxBHoYMicCQbjpPdfVJDCNq0Mc9c20KcEnLX2dXkoM7QjJnhzN2xhQSpbtVLkLO9Ct7dziGpDdIxZ9rwJ77eoIIU3/SXgboToeLzZaG+Xh0WWaACZXTuhfcxGAwvyXbzhKwLkrB6ntLfLw/x0oU/CO8EAuSDVRrrdwlve6Ji7WRwk7+0aoiQjGmClTzDAKkoF4J3BLDDZZvX5KYqiAiwFaO33kS3ciKNMVnkkFbnp7NdyVSZBJaH1eUPkyG78yVP7HhSm2dhrqiAp5Ib+5thWLsZ2tvZTZWjDmFU5qf0W5LvYHCnV02CH/DNTuRjY2TbIYmsbWByQUjTh/RYVpvB2INrlbha3EOxqH+A0VzRBQvb8Ce+3uDCVJ7ujGetm8Q36/m4PJzuiXVhzFk5oHyEECwtSeLXTpne7m6XdIHs9QToGAixNj+gZK3MWTGi/HFcSua4kNrUOQd6SWf35VBRFBVgK0Or2k0MflrSJDXY/VHWOkzpZRLhdBVhK4mp1+8gTPUScU/seCCEIZUVvBmdx6wBAT9t+UhmAnEWT2m9hQQpbtXKEFp7ViS7qOgZYbG6BrBoQYsL7LSpIYatWhkRAy4YZrOHUSSnZ1T7IsqQ2MCdPeIwZwJKiFFpDdoLOolkbgHQO+ukaDLDUEn1IkTuxAAv0cVi7O4eI5C2btYlKdrUPAIw6v4l/BxcXprCluR8KTtD/xkTCM1FFRVFiQAVYCq19Q+QY+jCljD+Z45FU5Tio0wqxDDRC0BPj2inKsdHS5yVP9GJKm3iLx6EcJUuJSEFkFie68ATCpAxEx0vmLZ7UvhVZdnYbo12aZukNejCsUd8xQEVoj55xbRJqcp34DXZ6bCWz9vwae7y4vSGqw7v1m3PDxP8bX1yYCkC7Y/6sbcHadMANQLXcp098P8FpBEBvgYxokk7XAn1McNA7M5Wchu0teoBVHo4mqcid+HdwSVEq+7s9eDMWQdg36ydUVpTjmQqwFALdjVgIT7gv+KEqshzsGZ5hvqsuhjVTlGOnr6uVJBEiOXNi8yaNZX5xDvWyAG/j+hjWLLZ2tg2wUOzXW2km2P1qmMloICO/gn6RMmtv0Le29FMcacKqeaFwxaT2TTIbqcl1slNEE13MwrF07zT0YiFExsDOSZ9fWYYdp9XEdiqj48y6Z6iWU7exyY3ZKMjo3aif3yRbIAF2igqQEWjfMlPVnLINjX0UpdtwdG7QWx/tE58SYkk0QN5hiHbtVd0EFWXWUgGWgmE43Wtm1ZT2TzIb8aRU6wsqk6CSoLxt+sOB5NypfQ8g2sVMlmPu2Dwrb84B3trbw0qxi0j2ArA6Jr3/kqI0NkQqkM2zM4h8Z38vKwzRBz2TDEBAv4ZrfcXg6YSBlhjXbvre3d/LKbYmDFoQilZOal+DQbC4KIXXPNGJe2fhDfp7jX2sygVD924oOWVS++alJJHpsPC6J/rAb5adn5SS9Y19LC9OgwNvQcmpk9p/OFPiOncKWFNmbSuroigqwDru+YIR7EP79YWMyQ14H82eW0EAi8okqCSsSKfe3UZk1Uy5jOL0ZOqMlSQFe2flzTnAW3taOdFYj6n8A1Paf2lxKu9FKhA9u8Hnjm3lYuDt/T2cZ9uhJ7eYYAa60RYVpvC2v1RfmIWtdO829PKxlN0gDFB6+qT3X1yYytPdudFxZrPr/Ab8ITYecHNJanROxUkGIEIIPUBuN4Ezf9ad3672QbqHApyX1aNPaj7JADLFZqY8087mlkHIV4kuFGU2UwHWcW5P5yAVtBAyO8GeNeVyqnNT2aPlE1GZBJUElTywj5CwQOrUuwgKIfBlLtEXZuHNjycQxtL8FlaCUDbFAKsolU1yuIvS7LqBHQqEeXdvByu0rVBx5qS6lw1bVpTGTlmMJkyz7vx2dwzS0OPlFG0DFJwIyZOfEHtJYQr9WhL+1IpZd36v7OokGNE4Q27QMwEWLp90GcuK06jvGiKUu2TWnd+aOj3z46nau/qKqnMmXcaSolQ2N7kh/wRo3zars3kqyvFMBVjHuV3tgywx7CWcs2RKNyPDqnKc1MlClapdSUhub5CC0AH67aVTmgNrNFfpEkLSSKR5dt3cAbxR381ZrCditEH56imVUZBqo9kWnVuqeXZl2nt5VycnaZtI0jww74IplVGd48BosdGeVDHrMgk+vqmFUkMnmQPboeYjUypjONFFi22+fn6zqCvrc9vbKXAI0ltfgepzp/RdXFacipTQkrwAeurB2zsDNZ2aJza3sqQwBcfep6BgOThzJl3GksIUOgcD9KUvAS0E7VtnoKaKokyXCrCOc9saO5gnmrCWTK4v/6Gqc5zs1oowe9rB1xej2inKsbG5yc3i4QcN0zSvKIfdshBvw+wbo/TkpkYuNL2NqD4HzLYplSGEoLK4gEZDIbTMrnN8aEMzV1rXIpNSofzMKZVhMhpYXJjCRlkJLRtBi8S2klMkpeTxTa18NTMa9C28dErl6OOUrHorpKdLT3YxCwwFwryyq4svFexG+Pth8SemVM6SolSEgPe0aCvrLAmSd7QOsLNtgM9UefSgaIrntzg64fCm4fNrfidGNVQUJZZUgHWcG9jzFmYRwVA0+cHgo5Vl2qkfziTYqVLHKomlfvc20sUQqVWrpl3WooIUtmjlWDpnV6KL7qEAhl1PksYAhhOumlZZS4tSeTdUjta8ftac47aWfvbv2caZ8h3E8uvAZJlyWcuK03hlqASCg7MmFfYb9T1097n5iP9JqD4P0iY+/9VoQgiWFKbw/EC0K2zTuzGs5dQ9tL4JXyjMRd5H9ex6ZWdMqRxXkpnKLAcv9Bfo49SaZkcAcs/bjViMBs4deAhMNlj08SmVU5vnwmQQvNtjgZRiaJ4d109RlIOpAOs41uL2MW9oHRFhgrLJD5YezWIy4EuLJgdQiS6UBBPYvw6ApJLpPWgAKElPZo+xEmuoH/oapl1erPxj7V5uFI8STKuEirOmVdbSojQ2aRUYvN2zpgXkz2v2cqPlOYTBCCs/P62ylhWl8m4k2kIwS27Q/7SmnmuT38Qa7INTvjKtspYWpfJSbybSbJ8VLSCBcIS/vb6f63L3Y+/aBKfdNK2uusuKU1nX7EfmLJgVAUjHgJ8H1zfzuUUC646HYfn1Uxo/B3rW3nl5TjY3u/UxarMkQFYU5WDTCrCEEDcLIVqEEJuiPx8Z9dp3hBD1Qog6IcS506+qEmtPbmrhHMN6ggWrwOqcdnlpuWV4sKlU7UpCCYY1cnrewWd0TnpeqLEYDAJvVnTy0FmS6KK5z8uBNx5gnqEJy5nfnvY4s0WFKWwc6aIU/26CezoG2bV9A5cbXkIsuRxcU5s0fdjS4lQaZQ4+c+qsuEF/pa6TbXsP8BXTo1C4ctLZ5w51QkkaEYy40xbNigDy7rcaaXN7uMn4IDjzYOmnplXesuI0+rwhBjOX6V0ENS1GNZ2aXz5Xh0TyH9p9+nfvlC9Pq7wlhalsaepHK1wBA80w0BqjmiqKEiuxaMH6jZRyafTnaQAhRC1wBbAAOA/4kxBiev+jKzElpWT3uy9QbmjHduL0/jMbVp3rYpdWqDIJKgnljfouTmIrg7mrph14DHMVLyEoTURmSZro3zy5gW8b7iaUXg0LPzbt8lJsZkIZ8wgKS9zHuEQ0ybce2sz/WO7AYLHBWT+cdpnZziQK05LZY5kf9wCkzxPku49s5SfOR7CFeuEjv5hWQiLQxykZBOy2zIeObRD0xqi2k9fU6+WWF3bz33lv4OrZDGf/F5is0ypzWXEqALvN8yAwENdunm/Wd/PQhmZ+urAd++5H4dSvTfsBwJKiVAYDYVocC/QVs+AhgKIoB5upLoIXA/dJKQNSyv1APTC9LApKTK3Z3cV5Aw8QMLtgwUdjUmZ1joM6rRDZsWPWjMtQlKN57921FIpu0pZ8OGZlLijOZIcsxt8Y/wH2z25rY0Xdr8gTvZgv+VPMgshFxVnskOVxn3D4j6/Uc1Lr3ZzENgwfunlKmdnGsqw4jTf85dCzJ26Z6DRN8vUHN3OiZy0fDT2DOOlGyF827XIdVhPVOU7W+stAC8etpTUY1vjSv95joWE/Vwz+A6rOhUWXTbvcqmwndouRtf7oPGhxCkC6BgN89f5NrMzwc1nLzyBrHnzgG9Mu94TiNADWeQvBaFUBlqLMQrEIsL4khNgihLhdCJEWXVcANI3apjm67jBCiBuEEOuFEOu7urpiUB3laEIRjWf//SBnG9/DeMqXwGKPSblVOU52yyJMgT49O5WizHLBsEby3qfRMGCuvShm5S4sSGGrVo65c0tcuydta+nnnQd/xRWmNchTvgLTTGYz2tLiVN4Nl0PbZggHY1buZDy7rY2NL93Pt8wPIBdcoo9tiZFlRam86ivTF+IURP5pTT0ddW9zi/Uv+rxXH7o5ZmWfUJLGY935+kIcxmFpmuTbD2+hvXk/d9p+iyE5Ey7+w7Rb5wCMBsGSolRe7LDr82nF4fy8wTA3/nMDYf8gd9p/hyEwBJfdPu3WOYCKLDtpyWbeOTAEeUvUOCxFmYWOGmAJIV4UQmwb4+di4M9ABbAUaAN+PdkKSCn/KqVcLqVcnpU19YlulYn727Pv8OXBW/AmF2I6dXp9wUcrzUhmvxjOJKi6CSqz39r6Ls7S1tGftRwcsfv7U5Zhp85QiSU8BL37YlbuZOzuGOTOv/8f3xW34y/9IMYPTb/r3GhLC1PZpFUiIgHo3B7TsidiTV0n/7rvn9xq+S3kLkJcFJub82HLilPZrJWjCWNcbtDvfLOBp154gQdsP8PsSIdP3B2Tm/NhJxSn0eRPJphSdsxv0COa5IdPbOPNjVt4LvXn2CJDcMU94MiO2TGWFaeys32ISMHyYx4g+0MRbvzne+w80M4Lubdi69oCH/sr5CyISflCCE4sSWNDYx8UrdRbIOP0kENRlLEdNcCSUn5ISrlwjJ/HpZQdUsqIlFID/sb73QBbYDhnNwCF0XVKnD30xg7+f3v3HR5XcS5+/Dtne9Nq1bslW7Lcux2agTj0zoUk5CYQUm9+yQ256SGNBAIJIRhCIHAT4GJMaMYYF6oNBtxwMBhc5CYXdWnVtknaPr8/1e8DJgAAJfZJREFUdu04xlXelWR5Ps+jR1uOzow8ntV5z8y8M2P9LeRrPqxfegqM1pSdW6/TCGXtzySoEl0oQ98/33+Paq0Rx9STX5d0ME0TBAcx0cXu9gBP/u1P/F7eT7RwBuYvzEvZ1MD9xhQ6qNGqEk8G+AJ22aZmFs1/kMf0f0CfMxLtxkVgsqe0jHFFGcR0VtyWUQO6Disel/zxte0sW7qQ5y2/x2rPQNy8DJyHnQTSb/vXKTXZJyYCyAGa1h2KxvjuMx+yZv16XnXejTPugRtfhKIpKS1naqmLWFzSYp+QWIPV50np+Y/E2xvhpsf+Sc2uWlblzyWnfT1c8wiM7d/G10cyfUQWezp68OdOgVgI2tSGw4oylJxsFsGDV2peC2xJPl4C3CCEMAkhKoAqYPBTFZ3GYnHJ/y19i7Gv38B0bRfi2kdSMpf/UDn5JXjIUCNYypAXisbIqn2JOBr6Cdek/PzOERPpk0biA5wEYuW2Vl576Pv8LnY/4aJZmG9elJIsoYcy6DSyikbRqWVD/XspP//hxOKSuW9sZ9tzt3Gf/gFEyXR0X30VbNkpL8uk1zG+OIOPGZ3MRJf+DYeDkRi3PLsR96rHecZ8F/bMPMTNL4OrPOVljcyxkWk1JDas7WkfkC0F3L4gNz72T3xbl/Oa7Te4dH2Im15KjMKk2JRkAPmRTN4EGIBNsWuafVz54Gr6Gj7inay7yA7UJkbmJn8+5WXNKE+syNgYH514QU0TVJQh5WTXYP1RCLFZCLEJ+DTwfQAp5VbgeaAGeA34jpQy/X+dlMP6aHcT/7jnFj634QYq9J3EPv8M+knXpaWsynwH2+IlxFUmQWWIW7XDzWW8i6fg7JPO6nU4E0qz2CrLCdYNzOiOlJK/r/iY0NNf4js8T8/Yz2H9yuKUj+wcbEqZi7XRamTdmrSPgHT1hPnvR1cwddU3+bHheeT469B/eXG/9xM6HlNLXawIjIBwIO03jba1+PjcX1ZwXs1t/Mnwv+jKz0J8YwVkVaSlPCEEU0szef3AhsPpvQf6zs52rrx/JXOa/pf5xj9gyiqFb6xM7OWUBjl2E2VZVpb7ykDTQ93atJSz34sfNnLtX1dzaehVFpt/jU2Lws3LYMzlaSlvYrETg06wpt0IzlKoT+/vpyjKidGfzA9LKW88ynt3AneezPmV/ovG4qzdsIHOVY9xjv8VpggfLYVzKLjhAURm6bFP0E+VeYlMgrPcyQuuFK6JUJRU2r7+dS4QHUTP+FJazj+x2MmqeAVT2t9NjH6keIrewdr9IR57+mn+s+lOSnSdhC+4E9vZ30l7/5talsm6dWO40r8WuvdC1si0lLNyu5tFC+bx6+hfyTP4kZfORTfjqwPy+/1+TTWYgb2roGBiysuIxyWPr9nLK6+/wgP6hxihb4Hzfoo49yegO6k/0cc0rczFfTtyiGdmou19Ny0jLZFYnHvf2MnL767lCesjjNV2wNQb4ZI/pDX4h0T7rd3diSyejtjzDnwm9WV094S5bclWVn+8nXmZT3FGcHViI+9r/5bSdZ2HMht0TCh28sG+7sS+aLvfUn9zFWUISe+ntzKgfH1htn24hu6PX6bQ/Q7nspMYGg05Z2O77BcUjjoz7XWoynOwVpaii/SAtwEyy9JepnJ6icUl0WRmPoFACBAkMoeJ47y4CEZiFNW9REhnwTTuyrTUc2SOncf0Vehjr0PHTsgbm5Zylm9uYN+Lv+HH8YX02IoQN7yCcUT6+zrAmSOzuT8+JvFk35qUB1iBUJR7Fv+TcZvu5gH92wSzqtB99sW0TG8+nE9VZNFMDh5LGZl7VsKZ307p+Zs8ffxqwfvMqvsbL+hfRtrzEdctgYpzU1rOkZw5Kpt7l2u0ZX+Kwj0rU36BvrnRy08XfMjMjkWssDyP0WCE/3gCxl+bsjKO5syR2Sz+qJmuSWeQ/eFfIOgFszNl539jays/X7SFM4PvssY+D3OkFz5zW2KvKy1du+D8y4wRLuatqyMy/QwMm55LJNTJHpX2chVFOTYVYJ2i4nFJfaub5po1hPe9h7VtI6PC2/iU8ANQZx7Drsr/oeIz36DcVTJg9SrPsbJLJstzb1MBlgIk7mL7+iL4ekMEfN30BTz0BbyEejxEerxEgz7ifX5kyA8hPyLSA7EIIh5Gi0f+9SWjCBknikYUfeK71BNDowcLfToHIb2DiDGDoNFFxFaIMauM3CwXhU4LRZkWijLN7Gx0cyHv0TXiUgpTtE3BoTRNJAKBZhL71KQ4wOrqCfPEghe5ZM9dXKjV4R3zOZzX3gvmjJSWczTZdhOmgrH4vE4y6tbAtCNOajhhK7e7WbrwSX4UfogCvYfoWd/HPOfWlGbSO5a8DDPV+Q7ej07mwn1vJTK16Y0nfd5oLM4Ta/fx9vIl/E48Qrm+BTnty2gX3ZHSAOBYJpdmYjfpeY+JXOt7HTprIafqpM8bjMS4f8Uu3l79DvcYH2WiYSeMvACuuB/SOIPiUOdU5QCwXk7gMhmHunVQfclJn7e7J8zty2pYvXEr9zn+wWz9GsibCtc8nLYbKYczszyLv6/ayzYqmATQtlUFWMoRxeKSYCRGMBIjFIki41GQcUAipExO85bo9RpWix2LyYhOUyOi/aUCrKEuHsPv3kP73q34GrcRce/A7N1LbqiBctFJefKwRl0pLfnn0105m9JZVzEiM/VrSo6HSa8j6BoNPSQCrNEXD0o9lPSJxuJ4esN4ujvwd7vp9XQQ9LUTDXQS6+lC9HWhC3kwhD1YIl5scR9O6SdT9FAheo+rjDBGokJPTDMQFwZihsR3qekRQkMjhiZjaPEoQsbQyQiGWC+GeBBiQF/yyws0g1daaZK57JGFrJdFWAlxob4P01k3pfFfCkoqJ+NuysS58y1M01JTlpSSJe/vwvvK7XxPLqPPlE3kmqdwjk/PSNyxnDM6l3fXjePyXcsRKZgK2eYL8udF73JG7Vzm6tbR56pC++wLaMXTU1TjE3NOVQ6L1o/mQt3SRLa98nNO6nybG738buFarmh/lCf1bxLPKIFrFiNGnp+aCp8Ag07jjJHZPNsykmsBdq886QBr1a527njpIy73Ps0y4xI0sxMufTSxgfAAT18rcVkpz7byUkcml+nNiWl0JxFgxeOSFz5o5O5XtnBV5DVW2xZgjEfgM7+Gs76X9imdhzpzVDZ6TbC83cUkoSUCrBTu56cMDcFIjK6eMN5AD73eTkKBbkKBbsI93cR7vcSDHujzooV96MM+DFE/5lgAQzyIQYYxyVDiizAWQtgIky0ixyw3LHX0YSQkjEQw0KuzE9RnEjG5iJtdCFs2mrMIW14FuSWjyMgfmfZpv6cSFWANERF/B217N+Np2E7EvQND924yeuvIjzbjIML+HGA+aaXVUEJr1kzcuVVkjJxJ0fhzKHFkM3DjVEdXkF+Ae28OeSpV+ylBSokvGKWzqwtfRzM93a2EPG1E/W3IQDu6vg7MoS6s0W4csW4ypRcXAXLEkTfQDQg7PboMgiYnEWMevaZqAuZMhMWFZs3EYM3AZHNitmVicWRisTsRJkci253RgVGnp1/jBNEQBH0Q9EDADb4m8DZi8zRS3rGPis5dXB5Yj0DSay3COuq8/v6zHZdZI7NZtXICV+55O7Hh8ElOG6rv7OWZZ5/gC21zKdPa8Yz/EplX3gmWzJTUtz9mV+by9KqZXNG7DurX9TsAicUlT6/bTdMbf+HnPIdZHyM6+2dYzv3BgI5aHeqcqhxuWT2WuF6HtuuNfv9+PaEo976+Hf/6J3nY8AwufQA+9V/o5/xqUC9KZlflcNu2NiJ5IzDseh0+9c1+nafNF+T2ZTX4t7zGo6b5lOmbYeLn4eLfpyXL4/GaXZXLCx80Eh37afQ1i+GS3/frJsC2Fh+/emkL4foNLLDNY6SshRHnw2X3Qk5l6it+HBxmA9NHuFi+y8cPs0ZC25Zj/5AyqKKxOJ6+CF2+nsQNyu62xA1KXzvx3g603k50wW6M4W5sUQ+2mBcXPlwEKBJH3+ssio4eYaNPZyessxExWIjpnMR0Fnr0ZgJ6C+jNSIMFobcgNT1SaIBIfgeJIBaPISNBZKQPGQkhon0QDaIP+zBFPDh9O8nwenHSg078e3Ijv7DjMRbR4yiHnCpsRWPJqZiAJb86pdsCnQpUgDWA4uEgnQ3b6KyvIdiyA9FZiy2QGI1y4qeExIZhYamjSRTQZiplT+ZZkF2FtbCa3PIJlJWWMVqX/rndJ6Mqz8622mJy3TWoweXB0xuO4u7sprutnt7OJiKeZuL+Fgh0oA92Yg51Yot2kxH3kI2PkSJ02PP0YMWvy6TH4CJkr6DFnE2LNRudLRuDIxtzRg52Vx52Vy5Gey6Yndh1egblklFvSiwst+f+2514PQd92EX6oHM3Vosr7eskJhY7WSAmcV14NbRu6vdeP+FonOfeWo9r9e38VFuL11FO/Pp5ZFacndoK98OMche36KYREUYM25b2KwD5qMHD0wtf4OauB7hRq6O37NPor5mbtqQZJ+KsUdkIcwbbrdMZt3URXPDbExqJkVLy8uYWnlv6KreEHmGmYSfRopmIK+dC4aQ01vz4XDy+gN8s3cpH9nOZuecZ6O06ocyMkVic+evqeH75Kn4k53GBcQNx1yi4bCFUXpDGmh+fyycVMv+9OjY6L2Tmzldh3yo4gdHCQCjK/ct3snDtFm41LuCzpuVgzodL/i+xlmyQk0pcMqGA3y6tITC+GnvbwG/4rUBfOEa7P0SHx4OvvYne7mYinhbi/jZ0ve2YQx3Ywp3YYh4y4j6yhY/RR5nNERA2enRO+kyZhE0leMxZeCwudFYXOmsmRpsLo92FxZGFJSMLg80FZid6gxWnEAzEJON4XOLpCdLZWk93yx4CrXsId9ej8zXi6GuiuH0jxe3L0bb/KwDr1OXisZYTcVViyh+Nq3QszpIxiMyytCaBGiwqwEoxGY/T2bqPjn1b6WnejuzYhdm7l6xQPfmxNnKFZH9eIbd00WIooSXjPKKuURjzq3GVjqW4YiwVdgvpSc6bfpV5drbHS5jdviIlU4aUfxeKxujo6qa7tR5/RyOh7iZi3la0QCuGoBtbqB1ntIscuigXfQemke4XRYdHOOnRu+izZuExV9JtzUFz5GLIyMfiKsCRXURGdiE6ey42g5n0rFIaJAYLFEwYkKLMBh2y4nyo+yvx2rfQ+hFgrdrWRM1Ld/PF4HOYdDH8n/ohzs/8BAzmVFe3X8wGHeeMK2f1jsmcX7MYcdGdxz1Vyu0L8vDS1Yzd9gB/1L9Dr7UAedWTWMdeNegXrvuZ9DqumFzEExtn8Eftr4kL9ONMQrGlyct9i9cyu/lxntCvIG7JhIsfRD/liwOSBOF4FDjNnFOZw0PuqTwRnw8fP3vcyTxW7nBzz9KNXOx5liX6peiNBjjvN2hnfHtQRx0PNqs8iyKnmb+3jmam0QGbFhxXgBWPS17c2MTc17ZwQe8rrLK8hC3uR3zq/8H5tw7oWsejuXxiIbcvq+HjcAlnd78CoYCappUCUkr8oSitnj7cHe0E3HVEuhuJ+VoQPW4Mve1Ywh3YI11kSQ+5wkOZ6PvEeeII/JqTgD6LoCWLiHkELdZsWq056B25mJy5WDPzsWflY3TkgiULu944ODcoT4CmCbIcFrIc1VBV/Yn3g5EYtW2dtO2rIdC4jXjHTqy+PeT46in3bcFR3wfJrdsi6OkyFdPrKEe6RmHIqyQjrxxHXhlaZgmYM4fM34MToQKsfgr2BmjcvYXu+i2EW3dg8tSS2VtHUbSRHBEiJ3lcjzTRrCumwTKW2ozLELlV2IvGklc+jsK8PPKG4QLC0fkO1soStFgIuvYO2vSJU1E4Gqety0NH81787n2EOuqR3kYMPS3Ygy24ou3kyQ6KRR/Fh/xsCCMeXRZ+Qw59jtHssxWgZeRjzCzGml2MI7cUR04JequLHCEO/B9V0uvsKRPYtLeCUR8vxHbuD4775+o7e3lhwZNc3Xw/s7UW2ovnYL9+LoY07Yt0Mq6bXsLTm8/h0/77YPvSY2aJC0ZizH+nhsiq+/gxyzAa4oRnfRfrnJ8NyYvD/5hazBfXz+J2x9OY1z54zACrzRfkwTc24/jo7/xZvwSrIQzTv4Jhzi/Tum9Xf103rYT/ea4Db8k0nOsfhplfP2oyj11tfu5atoX8PS8wz7iIXH0ncsL1iIvugIyiAaz5sWma4JqpxTzyzm68Uy7HuWVhYs2UI/+IP7Nudye/W7aVoraVLLA8R7GhCUpnw8V3DYlRx4PlZZg5tyqXxc0uzkZC+/a07S02XOyfFt/i6aXD3UzAXU+ws4GYtxl9TzPm3jYyIm7yZCfFoovRh5nd0Sus+PXZ9DmyiVom0GbLoyOjAJOrEHt2MfbsInQZBWjWHJw6/YCMKg0lZoOO0SV5jC7JA84/8Ho8Lmnx9rGlvo7uhhpCbTvRuveQ0VNHkXs35e1rMe369/VhQWHCo8/j49wrKb78Z0woPjX+NVWAdQzBvh7qtm3Av/dD4u7tmH17yAnWURB3U5mcexqXgjYtF7dpBB9nTYfsKiyF1eSUj6eguIIq/ek1gjM638Eekcwe6K5RAdZBgpEYDW2ddDTspM9dS7xzLzpfPZa+VpzhNnLj7ZQKH4fm2fIIJ15DHj0Z5eyxn4WWUYQhsxBrdgmZeaVk5JZismSSLwRHvmxQBsOcsXn8+cXz+FXnE9D0IRRPO+rxvmCEF195gxEf3cMPtI14rSVErn6W3LGXDkyF+2F2ZQ53555Hve95St78HVr1ZYcdwQhFYyxcv4vWt/7GjdEXyBVeeqquQn/p7WnbUDcVpo9wMW1kIX9vuYzv7noaalccdvpbRyDEo29uJbxhHt/WllCo7yJSeQnaxXdA7uhBqPnxuXRiAX98zcy9wau5PXAbrHsQZn/yZkCt289Db25HblnErw0vUmFoIV48Ey58CjHirEGo+fH52jkVzF9Xx93+S7gztgCx4ja49pFPHPdBXTd/eXMnonY5fzAtYaJxB9I1Gi58LpGwaYjeRf/CrFLueKowsV9b88bTPsCSUtLdG6G+M4C7pR5/y24infvQvA3Y+hpxhVspkm4qRBdjDkn2EEPDq8+hx55H2DaBVkcRhqwSrNmlOHLLMGUVgy0Pq9HK6bWiKDU0TVDsslLsGguT/z3jprcvwq4OP11tDQTc+wh1NSC9TRh7W3CE2nivOcaZnj4VYA0H65+/h+lb76I6uZi/Txpp0pfQbB9PnetqTAVjyCqbQOGocRRaHAxO3r6hx6jXMBWOJd4u0Nq2nHZZjby9YZob9tLVuJM+925k115MgXoyg00UxNuoEh4OztPVh5lOfR49tgJabBNodZZiyi7FnldOVtFITFmlZBosZA7WL6SclAyzgdD4z+HdtgDz8t9h+vLCw16o9YVjvPTmu9jX38dN8l2Ceiv+M3+B8/xbhsx0wCPRNMGPLxvPL+d9iSe77kYu/m/ENX8FnQFIpJR/bfV6et9/imsjL5Mt/HjzZ8GVd2ErnTnItT82IQS/vGIs1//lIq61raZ44TcQ//kclM5CSsnWZh9vvPMu1u0L+YZYQbbOT7BwJlz8FIbywV8ndywmvY5fXTGO//ePPq7PO4+JK+9EOAph8g3EJKyu7eCtNeuw7V7GT3XLKTB0Ec0eAxfORau+dMgGHvtl2018Z04lf3h1O1dV3swZHz8GmSPg3B8TkoLlNW0sWbOZgsaX+bnhbUYb65COEpg9FzHtpgP/j4eq80bn8d9aLj5jHhn7VsOsbwx2ldIuGInR0NVLU0c3nsYdhN21aN27MQcayQw1UyjdjBEdTDkkgPLpXPjthYRsk2l0lmDIKsGeO4KMvBHoM0vQ2fPI0nQMvXHm4c9pMeAszYLSLGDyJ95Pb0qq1BNSymMfNUBmzJghN2zYMNjVOGDnh+/Q+cEizKVTyamaQeGIavR6FZMej98u3cpnN/wnYyrK0G5eOtjVSblwNE59awcte7cQaNqG7NiFzb+H3FA9I2QztoOmFMQRdGq5eM3FhBylaFnlmPNG4SyuIrNwNJo9Z8hfoCgnp76zl3/c/xNu1c0nesEd6M+55cB7bk8Pb69YQs7Wxzk//j4xoccz6avkXvKzITmd7Gjufm07YtW9/MTwPB5zMXUZM+juCZET2MEEsReAzqLzybr4p0N6xONIXvywkQcWvM7Tpt9TRDtNxpG0RGwUxFsoER3E0egrn4Pt0z+CAdrsOZXmvrGDx9/axHzLXKbKGtp1+TTEssiJd1CmtQMQLpuN8ZzvQuWFQ2Yd2fGIxyU/WbiJFz+o5xH7o1wUfRuv5qQ2VkiG9DNKa0ZDEs+fhHbGf8Gkzw/5wOpgV/5lNT/pvZfZ2mb44c5Tqm2OREpJuz9EbZsHd/0uepq3E+/cjdW/l9xwEyO1ForoRDsok51fy8BnLiJsL0G4RmDJHYmzcBTm3IrEvpynWSY7Jf2EEB9IKT8xbKwCLCUtFn/UROcLP+Bm09totzakZHPOwdAbjrK3sZWOPR8SatyMrmsXGT17KYo2Uiw6DhwXR9Cpy6PbOoKQcxS63CocRVXklFZjySkfMgu+lcHz/D/34lj6DS7VvU+DYzJu8yiCvg6qgx+RI3z0aA4842+i+KLvHXV9yFAmpWTBhkY2vfUMFwSWMUnbg9T0+O0V2MZeSO5ZXzrlNx//oK6b+Ss3MbppIbPiH5NpiKJ3lZA/7jwsU647Zdtuv9W7Opi/djeVzUuYFf+YUoMPi6uQ3PHnoR9zyZDI7Nhf8bhk6aZmnn+/nvKOd5jDPxlp6MKRmUNW5Sy0MZdCwcTBrma/3PlyDd3rnuJP+ofg629ByeDsG9cf4Wicus4edrsDuBtrCTdvxti1nZzALkbJekaKFgwiduD4Ps2G1zqCSOZIdLmV2AvH4CiuRmSPGtCNuhUFVIClDDC3P8itv/8jjxnvhRsXwag5g12lo4rG4uxr91FXuxV/3UcI91ay/Dspj+6jNHnnFqAHC+2mMnodFZAzGnvxGPIqJmLOr0pkp1OUo1hZ08SeV+7nTP/rFNJJny4DX9Z4sqZfR970q8A4fPI1hqIxDJqGNgwT+SjKUPNBXRdfeXg5H1m+jXbmt+GiOwa7Sp8gpaTZG2RHq4/dDc0E6jeha68hq6eWalFPtWgk46D05d3GAgLOakTeWOzFY3AWj0HkVIE1W836UIaMIwVYar6bkhZ5DjOegrPp63oIS82SIRVgeXsj7KxroH33h4SbNmHp2k5BsJYqGqlMTu2LoeE2luHPnsrO/PHYR0whd9Q0bK5SbOqDXemnT48r5tPj7kHKPwLgEoKhlXMtdUynWXIfRRlMU0td2J05fChmMOPjZ2DOrwZ15kggFGVHq58dzZ101tUQb9mC1buDilgdY7QG5hw0AyRotBNwjiaSfz3BskmYiydB3lhc5gxcg/YbKMrJUQGWkjYXTi7ntRXTuWrzC+guugNMjgEtPx6X7Gv30rBrC766j9DcW3H6d1IR28tM0XngOL+WQUdGFU05Z2Etm0Je5XQMBWMpNJhV4hIlLYQK0hVFSSFNE3z5rHL+/Pr5zDe+Bxvnw8yvpb3ceFxS39XLtmYvDfV76G3chKlzG/nBPYwRDVwnmjCJKAAxdPicFcRzzyJYNhlz8UTIH485oxiz+kxUhhkVYClpc/30Er61/BKuDa+B9f8L5/4obWV5+yLs3rePjt0fEmregqVrGwV9u6mkgZHJLEJRdLiNZQRyZrG7cALZI6fhrJiCw1GIQ324K4qiKKewL54xgsdXz2CzHM+Et36HqL4MMlJ3m9AfjLCj1c+uhla66zZB21YyfDuplHWcIRq4VAT+dawln1BWNaHiKzCWTUbkj0eXMxrXKboeW1FO1EmtwRJCPAfs38I5E/BIKacIIcqBbcCO5HvvSSm/dazzqTVYw88dy2qYtf4WLjBuRvf1N6Dwk6k3T0Q0FqeutZPm2o301G9Ca6/BFailPLaPXOE9cJxXc9JhG000ZxzWssnkVU7HVDhWJZtQFEVRhq03t7Vx1/zFvGL6FXpXCbovLwZnyQmdoy8cY09HgL2tnXj2bSbUUoO5ewcFoX1Uaw2UHDS9L6RZ8WdUIQrG4yibjLFoIuSNPeUyoCpKf6U9yYUQ4l7AK6W8PRlgLZNSTjiRc6gAa/gJhKJ87cFlPOD/Ptn6ELor70NMvB60o6/P8PaGaajbTVdDDcHWXWhdu7EF6iiM1FFG24G0rCGMtJnK6XFVYyiYQNbIqbgqpiBO8UxeiqIoitIfT6+vZ/HiBTxm/BNGDdxjb8Iy8SosRWOIm5z0hWP0hqO0dXnpbm/G19lCtKsOuusw++vIDjdTJtyUCfeBv7URYcBrHUE0ewy2kgnYSyciCiaAs2xYpIRXlP5Ka4AlEgsK6oE5UspdKsBSDtbY3csv573G97vuYLK2B68+B3fmZEKWfPqEBRkNEw31ovV1Ygt34Ix2kCu7sIjwgXOEMeA2FBOwlxPPHYe9bBIFVdMw5lYeM1hTFEVRlNPJliYv85a9yWca/8pF2oYDgVJQGpAINCSmQzbhBejRMghYS4hllmMsGENG2USMhRMS6fl1alWJohwq3QHWucDc/QUkA6ytwE7AB/xSSrnqWOdRAdbwFY7GeemDfbS+v4jqjuVUx/eQJXzYCRJGT1gY8WsZBAy5BM25kFGIMbcSZ0k1OWXjMGapu2SKoiiKciI6AyF27d1LcPcajL56bNFO9JoOnSYwOVzYXPlkZBdizh4BrnKwZA52lRXllNLvAEsIsQIoOMxbv5BSLk4e8zBQK6W8N/ncBNillJ1CiOnAS8B4KaXvMOf/JvBNgLKysul1dXUn9Ispp6ZILE5fJIZZp2HQayqrmqIoiqIoinJKSdsIlhBCDzQB06WUjUc45m3gR1LKow5PqREsRVEURVEURVFOBUcKsFIx5+oCYPvBwZUQIlcIoUs+HglUAXtSUJaiKIqiKIqiKMqQlYoVizcAzxzy2rnA7UKICBAHviWl7EpBWYqiKIqiKIqiKEPWSQdYUsqbD/PaQmDhyZ5bURRFURRFURTlVJKyfbBSQQjRDgy1LBc5QMcxj1KGC9Xepw/V1qcP1danF9Xepw/V1qeXodjeI6SUuYe+OKQCrKFICLHhcIvXlOFJtffpQ7X16UO19elFtffpQ7X16eVUam+1sZCiKIqiKIqiKEqKqABLURRFURRFURQlRVSAdWx/G+wKKANKtffpQ7X16UO19elFtffpQ7X16eWUaW+1BktRFEVRFEVRFCVF1AiWoiiKoiiKoihKiqgAS1EURVEURVEUJUVUgHUUQohLhBA7hBC1QoifDXZ9lNQRQpQKIVYKIWqEEFuFEN9Lvp4lhFguhNiV/O4a7LoqqSGE0AkhNgohliWfVwgh1if793NCCONg11FJDSFEphDiBSHEdiHENiHEmapvD09CiO8nP8O3CCGeEUKYVd8ePoQQjwsh3EKILQe9dti+LBIeSLb7JiHEtMGruXKijtDW9yQ/xzcJIRYJITIPeu/WZFvvEEJcPCiVPgoVYB2BEEIHPARcCowDviCEGDe4tVJSKAr8UEo5DjgD+E6yfX8GvCmlrALeTD5XhofvAdsOen43cJ+UshLoBr42KLVS0uHPwGtSyjHAZBLtrvr2MCOEKAZuAWZIKScAOuAGVN8eTp4ALjnktSP15UuBquTXN4GHB6iOSmo8wSfbejkwQUo5CdgJ3AqQvF67ARif/Jm/Jq/bhwwVYB3ZLKBWSrlHShkGngWuHuQ6KSkipWyRUn6YfOwncQFWTKKN5yUPmwdcMygVVFJKCFECXA48mnwugDnAC8lDVFsPE0IIJ3Au8BiAlDIspfSg+vZwpQcsQgg9YAVaUH172JBSvgt0HfLykfry1cCTMuE9IFMIUTggFVVO2uHaWkr5hpQymnz6HlCSfHw18KyUMiSl3AvUkrhuHzJUgHVkxUDDQc8bk68pw4wQohyYCqwH8qWULcm3WoH8waqXklL3Az8B4snn2YDnoA9u1b+HjwqgHfi/5JTQR4UQNlTfHnaklE3An4B6EoGVF/gA1beHuyP1ZXXdNrx9FXg1+XjIt7UKsJTTmhDCDiwE/kdK6Tv4PZnYw0DtY3CKE0JcAbillB8Mdl2UAaEHpgEPSymnAj0cMh1Q9e3hIbn25moSQXURYOOTU4yUYUz15dODEOIXJJZ2/GOw63K8VIB1ZE1A6UHPS5KvKcOEEMJAIrj6h5TyxeTLbfunFCS/uwerfkrKnA1cJYTYR2Kq7xwSa3Qyk9OKQPXv4aQRaJRSrk8+f4FEwKX69vBzAbBXStkupYwAL5Lo76pvD29H6svqum0YEkLcDFwBfFH+a/PeId/WKsA6sveBqmQ2IiOJxXRLBrlOSook1+A8BmyTUs496K0lwJeTj78MLB7ouimpJaW8VUpZIqUsJ9GP35JSfhFYCVyfPEy19TAhpWwFGoQQ1cmXPgPUoPr2cFQPnCGEsCY/0/e3terbw9uR+vIS4KZkNsEzAO9BUwmVU5AQ4hIS0/uvklL2HvTWEuAGIYRJCFFBIrHJPwejjkci/hUMKocSQlxGYu2GDnhcSnnn4NZISRUhxDnAKmAz/1qX83MS67CeB8qAOuBzUspDF9gqpyghxPnAj6SUVwghRpIY0coCNgJfklKGBrF6SooIIaaQSGhiBPYAXyFxQ1H17WFGCPFb4PMkpg9tBL5OYi2G6tvDgBDiGeB8IAdoA24DXuIwfTkZZD9IYppoL/AVKeWGQai20g9HaOtbARPQmTzsPSnlt5LH/4LEuqwoiWUerx56zsGkAixFURRFURRFUZQUUVMEFUVRFEVRFEVRUkQFWIqiKIqiKIqiKCmiAixFURRFURRFUZQUUQGWoiiKoiiKoihKiqgAS1EURVEURVEUJUVUgKUoiqIoiqIoipIiKsBSFEVRFEVRFEVJkf8PKIYLByou/pcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADgRklEQVR4nOzdd5xU9bn48c8zZWd3tjd22QKLKEgVFNQEsMXejUY0aiwxXk1MotE0kxjivd7kZ7wxUZMQjYmJGsTYexcVY2HpHSkLLCywve/U7++Pc3ZdYCs7s7Pleb8cd077nmfOmRnOM99yxBiDUkoppZRSSqm+c8Q6AKWUUkoppZQaKjTBUkoppZRSSqkI0QRLKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaUGGBEpEhEjIq5Yx6KGBxFZKyInxToOpZQaCjTBUkopNeiJyHwRabAffhEJtJt+LdbxDXTGmEnGmEWRLFNEPCLyNxGpE5E9IvKDSJavlFIDleiNhpVSKrJExGWMCfZh+yJgG+DuSznDlYjMAw43xlzZwbI+nZv+NJhi7YiI/BqYDZwP5ALvAdcYY16PaWBKKRVlWoOllFIRICIlIvJjEVkFNIqIS0SOF5H/iEiNiKxs3wRLRBaJyK9F5DP7F/4XRCSjk7KvFZH1IlIvIltF5L8OWH6BiKywy9kiImfa81NF5BERKRORXSLyPyLi7OZ1jBWRd0WkUkQqROQJEUlrt6xKRI62p/NEpLz1dYnI+XZTsxr79U044PjcLiKrRKRWRBaKSHzvj3TvdXJujIgc3m6dR0Xkf9pNn2sf0xr7HE7t4b5OEpFSEbnDPn4lInJFu+XniMhy+1zttJPB1mWtTUO/KSI7gHft+f+2a4BqReQDEZl0QNx/EpHX7Nq6j0QkV0R+LyLVIrJBRKb38Bid2pPX2AtXA/9tjKk2xqwHHgauifA+lFJqwNEESymlIudy4BwgDcgBXgH+B8gAbgeeEZHsdut/A7gOGAkEgfs7KXcfcC6QAlwL3NcuyTkW+CfwQ3u/JwAl9naP2uUeDkwHTgeu7+Y1CPBrIA+YABQC8wCMMVuAHwOPi4gX+DvwD2PMIhEZBywAbgGygVeBl0Qkrl3ZlwJnAmOAqXRysS0is+3EprPH7G5eQ0fazk13tUJ2QvI34L+ATOAvwIsi4unhvnKBLCAfK8l4SETG28sasc57mh3PTSJy4QHbn4h17M+wp18DjgBGAMuAJw5Y/1Lg5/Y+fcDH9npZwNPA73oYd4dE5CddnY9OtknHel+vbDd7JTCpo/WVUmoo0QRLKaUi535jzE5jTDNwJfCqMeZVY0zYGPMWUAyc3W79x4wxa4wxjcAvgEs7qmEyxrxijNliLO8DbwJz7MXfBP5mjHnL3s8uY8wGEcmx93WLMabRGLMPuA+4rKsXYIzZbJflM8aUY12cn9hu+cPAZuBTrAvon9mL5gKv2NsGgHuBBODLBxyf3caYKuAlYFonMSw2xqR18Vjc1WvoRPtz050bgL8YYz41xoSMMf/ASlyO78X+fmEfw/exEu1LAYwxi4wxq+1ztQorKT3xgG3n2ees2d7mb8aYemOMDyvZPUpEUtut/5wxZqkxpgV4DmgxxvzTGBMCFmIl14fMGPObrs5HJ5sl2X9r282rBZL7EotSSg0GmmAppVTk7Gz3fDTwtQN+6Z+NlZR0tP52wI1V67AfETlLRD6xm+fVYCVOresVAls6iGW0XV5Zu/3/BasWpFMikiMiT9pNCuuAxzuI6WFgMvCAfdEPVo3X9tYVjDFh+/Xlt9tuT7vnTXxxEd4fdna/SpvRwG0HnLtCrNfYE9V20txqe+u2InKciLxnN62sBW7k4OPbFquIOEXkN2I1/azji9rJ9tvsbfe8uYPp/jzOrRrsvynt5qUA9TGIRSml+pUmWEopFTntRw3aiVVD1f7X/kRjzG/arVPY7vkoIABUtC/Qbpb2DFaNUI5dY/AqVlO+1v2M7SCWnVi1Llnt9p9ijOmuidb/2q9jijEmBasmrnVfiEgS8HvgEWCefNFvbDdWYtK6ntivb1c3+zuIiMyRL0YA7Ogxp/tSDnLgiE5NgLfddG675zuBuw84d15jzIIe7itdRBLbTY/COj4A/wJeBAqNManAfNod3w5i/TpwAXAqkAoU2fMP3CZq7P5knZ6PjrYxxlQDZcBR7WYfBaztj5iVUiqWNMFSSqnoeBw4T0TOsGsh4u0BEArarXOliEy0+zPdBTxtN+tqLw7wAOVAUETOwupL1eoR4FoR+YqIOEQkX0SONMaUYTUl/D8RSbGXjRWRA5ujHSgZq/ahVkTysfp2tfcHoNgYcz1W07f59vyngHPsONzAbVgJ3n+6O1AHMsZ8aIxJ6uLxYW/L7MAK4Ov2uTmT/ZvpPQzcaNc2iYgkijU4RTK0DSzxaDfl/0pE4uxk8Fzg3/b8ZKDKGNNi95/7ejflJGMdx0qshPB/e/EaI8IY879dnY8uNv0n8HMRSReRI4FvYfULVEqpIU0TLKWUigJjzE6smoc7sJKjnVjJSvvv3cewLjj3APHA9zoop96e/xRQjXVB/mK75Z9hD3yB1cflfb6oSfoGVoK2zt72afZvotiRXwFH22W9AjzbukBELsAapOIme9YPgKNF5ApjzEas2q4HsGrhzgPOM8b4u9lfrHwfK8Ya4Arg+dYFxphirGTgQazjtpn9B+QoBD7qouw99na7sQakuNEYs8Fe9m3gLhGpB+7EOq9d+SdWE8NdWOfxk+5e2ADyS6zmq9ux3pe/1SHalVLDgd4HSymlYkBEFgGPG2P+GutYVM/ZoyKuBKbag3kcuPwkrPNacOAypZRSw4Mr1gEopZRSg4VdIzeh2xWVUkoNW9pEUCmlhhkRmd/JgAXzu99aDUYiMqqLgSpGxTo+pZQaSrSJoFJKKaWUUkpFiNZgKaWUUkoppVSEDKg+WFlZWaaoqCjWYSillFJKKaVUl5YuXVphjMk+cP6ASrCKioooLi6OdRhKKaWUUkop1SUR2d7RfG0iqJRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSEDqg9WRwKBAKWlpbS0tMQ6FDUAxMfHU1BQgNvtjnUoaogqqWjk9n+v5OfnTmRaYVqsw1FKKaXUIDPgE6zS0lKSk5MpKipCRGIdjoohYwyVlZWUlpYyZsyYWIejhqhXFy/h12Xfpu5fRfDjV2MdjlJKKaUGmQHfRLClpYXMzExNrhQiQmZmptZmqqhylC3nCMcujmn+iFB9eazDUUoppdQgM+ATLECTK9VG3wsq2sINe9ue7135RgwjUUoppdRgNCgSLKWU6i9efxUAPuOiedunMY5GKaWUUoONJlg9ICLcdtttbdP33nsv8+bNi11A7Zx00kld3pz5wgsv5Pjjj99v3rx588jPz2fatGlMnjyZF198MdphKjVoJAerqHels9GMxlG+LtbhKKWUUmqQ0QSrBzweD88++ywVFRURLdcYQzgcjmiZ7dXU1LB06VJqa2vZunXrfstuvfVWVqxYwb///W+uu+66qMah1GCSGqqm2Z1JWfxhZDZsjnU4SimllBpkNMHqAZfLxQ033MB999130LLy8nIuvvhiZs6cycyZM/noo48Aq5bo3nvvbVtv8uTJlJSUUFJSwvjx4/nGN77B5MmT2blzJz/84Q+ZPHkyU6ZMYeHChQAsWrSIk046iUsuuYQjjzySK664AmNMh/E99thjbbVRn332Wdv8Z599lvPOO4/LLruMJ598ssNtJ0yYgMvl2i95/MlPfsLEiROZOnUqt99+OwAlJSWccsopTJ06la985Svs2LEDgGuuuYabbrqJ448/nsMOO4xFixZx3XXXMWHCBK655pq2Mm+66SZmzJjBpEmT+OUvf3lQHLW1tYwePbot0WtsbKSwsJBAINBh3EpFgy8YIpMaWuIzqU8dR0q4Bhp0oAullFJK9dyAH6a9vV+9tJZ1u+siWubEvBR+ed6kbtf7zne+w9SpU/nRj3603/zvf//73HrrrcyePZsdO3ZwxhlnsH79+i7L+vzzz/nHP/7B8ccfzzPPPMOKFStYuXIlFRUVzJw5kxNOOAGA5cuXs3btWvLy8pg1axYfffQRs2fPPqi8pqYmVqxYwQcffMB1113HmjVrAFiwYAF33nknOTk5XHzxxdxxxx0Hbfvpp5/icDjIzs4GoLKykueee44NGzYgItTU1ADw3e9+l6uvvpqrr76av/3tb3zve9/j+eefB6C6upqPP/6YF198kfPPP5+PPvqIv/71r8ycOZMVK1Ywbdo07r77bjIyMgiFQnzlK19h1apVTJ06tS2O1NRUpk2bxvvvv8/JJ5/Myy+/zBlnnKH3u1L9qqElSCa1BOLHQepYKIdgxWZcSdmxDk0ppZRSg4TWYPVQSkoK3/jGN7j//vv3m//2229z8803M23aNM4//3zq6upoaGjosqzRo0e39YtavHgxl19+OU6nk5ycHE488USWLFkCwLHHHktBQQEOh4Np06ZRUlLSYXmXX345ACeccAJ1dXXU1NSwd+9ePv/8c2bPns24ceNwu91tiRfAfffdx7Rp07j99ttZuHBh2+h8qampxMfH881vfpNnn30Wr9cLwMcff8zXv/51AK666ioWL17cVtZ5552HiDBlyhRycnKYMmUKDoeDSZMmtcX81FNPcfTRRzN9+nTWrl3LunUH922ZO3duWw3ek08+ydy5c7s8jkpFWoMvSIL4kbgkEnPHAVBdujHGUSmllFJqMBlUNVg9qWmKpltuuYWjjz6aa6+9tm1eOBzmk08+IT4+fr91XS7Xfv2a2t+7KTExsUf783g8bc+dTifBYLDD9Q4culxEeOqpp6iurm67IW9dXR0LFizg7rvvBqw+WK3N/w6M+7PPPuOdd97h6aef5sEHH+Tdd9/tUZwOh2O/mB0OB8FgkG3btnHvvfeyZMkS0tPTueaaazq8l9X555/PHXfcQVVVFUuXLuWUU07pcr9KRVqjL0QaARxuD9mFRxAyQuOez9H6K6WUUkr1lNZg9UJGRgaXXnopjzzySNu8008/nQceeKBtesWKFQAUFRWxbNkyAJYtW8a2bds6LHPOnDksXLiQUChEeXk5H3zwAccee2yv4mqt9Vm8eDGpqamkpqayYMECXn/99bZ+X0uXLu20H1Z7DQ0N1NbWcvbZZ3PfffexcuVKAL785S+3bf/EE08wZ86cHsdXV1dHYmIiqamp7N27l9dee63D9ZKSkpg5cybf//73Offcc3E6nT3eh1KR4A+F8RBAXB5Gj0hnt8kiVLEl1mEppZRSahDRBKuXbrvttv0GhLj//vspLi5m6tSpTJw4kfnz5wNw8cUXU1VVxaRJk3jwwQcZN25ch+VddNFFTJ06laOOOopTTjmFe+65h9zc3F7FFB8fz/Tp07nxxht55JFHKCkpYfv27fsNzz5mzBhSU1P59NOO7+tz9tlns3v3burr6zn33HOZOnUqs2fP5ne/+x0ADzzwAH//+9+ZOnUqjz32GH/4wx96HN9RRx3F9OnTOfLII/n617/OrFmz2pbdeeed+w0TP3fuXB5//HFtHqhiwh8IEUcQccWTlRTHTsnFU7cj1mEppZRSahCRzkam63EBIoXAP4EcwAAPGWP+ICLzgG8BrUNw3WGMebWrsmbMmGEOvKfT+vXrmTBhQp9iVEOLvidUtHy0YTeznpzAzum3UXjBnbz667nMCfyH5Dt3xjo0pZRSSg0wIrLUGDPjwPmR6IMVBG4zxiwTkWRgqYi8ZS+7zxhzbxfbKqXUgBEMNAPgcFt9KluSi0iueB2aayAhLXaBKaWUUmrQ6HMTQWNMmTFmmf28HlgP5Pe1XKWU6m9BvzX4isNlJVgm/TAAQpUd96FUSimllDpQRPtgiUgRMB1o7ehzs4isEpG/iUh6J9vcICLFIlJcXq439FRKxU5rguWMs0bDjM8ZC0Dtrg0xi0kppZRSg0vEEiwRSQKeAW4xxtQBfwbGAtOAMuD/OtrOGPOQMWaGMWZG681ulVIqFkKtNVh2E8G0vMMBaNijIwkqpZRSqmcikmCJiBsruXrCGPMsgDFmrzEmZIwJAw8DvRt7XCml+lk40FqDlQBAQU42lSaZQGVJDKNSSiml1GDS5wRLrLvcPgKsN8b8rt38ke1WuwhY09d9KaVUNIUDPgBccVYNVl5aAqUmG2etDtWulFJKqZ6JRA3WLOAq4BQRWWE/zgbuEZHVIrIKOBm4NQL7ipnnn38eEWHDhs77YpSUlDB58uSI7fOaa67h6aef7nT5LbfcQn5+PuFwuG3eo48+SnZ2NtOmTWPixIk8/PDDEYtHqaHOBK0arNYEy+10UOEaSWJTaSzDUkoppdQgEolRBBcbY8QYM9UYM81+vGqMucoYM8Wef74xpiwSAcfKggULmD17NgsWLOhweTAY7PM+QqFQj9cNh8M899xzFBYW8v777++3bO7cuaxYsYJFixZxxx13sHfv3j7HptRw8EUNVkLbvAZvPmmBvRDu+edTKaWUUsNXREcRHKoaGhpYvHgxjzzyCE8++WTb/EWLFjFnzhzOP/98Jk6cCFiJ1hVXXMGECRO45JJLaGpqAuCdd95h+vTpTJkyheuuuw6fz7qQKyoq4sc//jFHH300//73vw/a99tvv82MGTMYN24cL7/88n77njRpEjfddFOnSd+IESMYO3Ys27dvb5t3//33M3HiRKZOncpll10GQFVVFRdeeCFTp07l+OOPZ9WqVQDMmzePq6++mjlz5jB69GieffZZfvSjHzFlyhTOPPNMAoEAAHfddRczZ85k8uTJ3HDDDRx48+pwOExRURE1NTVt84444ghN/NSAYwKtNVietnmhlFG4CUL9oP6NSCmllFL9JBI3Gu4/r/0E9qyObJm5U+Cs33S5ygsvvMCZZ57JuHHjyMzMZOnSpRxzzDEALFu2jDVr1jBmzBhKSkrYuHEjjzzyCLNmzeK6667jT3/6EzfffDPXXHMN77zzDuPGjeMb3/gGf/7zn7nlllsAyMzMZNmyZR3uu6SkhM8++4wtW7Zw8skns3nzZuLj41mwYAGXX345F1xwAXfccQeBQAC3273ftlu3bmXr1q0cfvjhbfN+85vfsG3bNjweT1vC88tf/pLp06fz/PPP8+677/KNb3yDFStWALBlyxbee+891q1bx5e+9CWeeeYZ7rnnHi666CJeeeUVLrzwQm6++WbuvPNOAK666ipefvllzjvvvLZ9OhwOLrjgAp577jmuvfZaPv30U0aPHk1OTk6PT5NS/SEctH74EPs+WACuzCLYDb7ybXhSC2IUmVJKKaUGC63B6oEFCxa01fZcdtll+9UYHXvssYwZM6ZturCwkFmzZgFw5ZVXsnjxYjZu3MiYMWMYN24cAFdffTUffPBB2zZz587tdN+XXnopDoeDI444gsMOO4wNGzbg9/t59dVXufDCC0lJSeG4447jjTfeaNtm4cKFTJs2jcsvv5y//OUvZGRktC2bOnUqV1xxBY8//jgul5VfL168mKuuugqAU045hcrKSurq6gA466yzcLvdTJkyhVAoxJlnngnAlClTKCkpAeC9997juOOOY8qUKbz77rusXbv2oNcxd+5cFi5cCMCTTz7Z5WtWKmbsPli4vqjB8uZYNxuu3vV5LCJSSiml1CAzuGqwuqlpioaqqireffddVq9ejYgQCoUQEX77298CkJiYuN/61qCKnU935MAyuivvjTfeoKamhilTpgDQ1NREQkIC5557LmAlMw8++GCH5b3yyit88MEHvPTSS9x9992sXt11jaDHY11oOhwO3G53WzwOh4NgMEhLSwvf/va3KS4uprCwkHnz5tHS0nJQOV/60pfYvHkz5eXlPP/88/z85z/vcr9KxUTQb/1tl2Bl5Y8lbISmfXovLKWUUkp1T2uwuvH0009z1VVXsX37dkpKSti5cydjxozhww8/7HD9HTt28PHHHwPwr3/9i9mzZzN+/HhKSkrYvHkzAI899hgnnnhij/b/73//m3A4zJYtW9i6dSvjx49nwYIF/PWvf6WkpISSkhK2bdvGW2+91dbfqzPhcJidO3dy8skn8//+3/+jtraWhoYG5syZwxNPPAFYfbuysrJISUnpUXytyVRWVhYNDQ2djnooIlx00UX84Ac/YMKECWRmZvaofKX6k7TWYDm/SLAKs9PZQzrhqpLYBKWUUkqpQUUTrG4sWLCAiy66aL95F198cacDS4wfP54//vGPTJgwgerqam666Sbi4+P5+9//zte+9jWmTJmCw+Hgxhtv7NH+R40axbHHHstZZ53F/PnzCYfDvP7665xzzjlt6yQmJjJ79mxeeumlDsu4/vrrKS4uJhQKceWVVzJlyhSmT5/O9773PdLS0pg3bx5Lly5l6tSp/OQnP+Ef//hHD48OpKWl8a1vfYvJkydzxhlnMHPmzLZl8+fPZ/78+W3Tc+fO5fHHH9fmgWrgCh1cg5WRGMduRuCu3xmjoJRSSik1mMiBI77F0owZM0xxcfF+89avX8+ECRNiFJEaiPQ9oaLluQd+yEWVD8EduyHui6a7b919EceEV5Pxi80xjE4ppZRSA4mILDXGzDhwvtZgKaWUTVprsNo1EQRoTiwgLVQB9iiDSimllFKd0QRLKaVsEvYRwgHO/cf/MWmjcGAwNdpMUCmllFJdGxQJ1kBqxqhiS98LKpocIT8BcR80Py7LuhVD3R5tIqiUUkqprg34BCs+Pp7Kykq9sFYYY6isrCQ+Pr77lZU6BI6wn4DEHTQ/ZaR1s+7a3ZpgKaWUUqprA/4+WAUFBZSWllJeXh7rUNQAEB8fT0FBQazDUEOUM+wj1EGClZNfhN848ZVvi0FUSimllBpMBnyC5Xa7GTNmTKzDUEoNA85wgGAHCVZBZjK7TBZUb49BVEoppZQaTAZ8E0GllOovrrCPoOPgPljxbid7nbl4GnWQC6WUUkp1LeoJloicKSIbRWSziPwk2vtTSqlD5TQBQg5Ph8vq4vNI85X1c0RKKaWUGmyimmCJiBP4I3AWMBG4XEQmRnOfSil1qNxhP6EOarAA/EmFpIRrwdfQz1EppZRSajCJdg3WscBmY8xWY4wfeBK4IMr7VEqpQ+IyAcKOg/tgAZA+GoBApQ50oZRSSqnORTvBygfad1ootee1EZEbRKRYRIp1pEClVCy58RN2dtxEMGHEYQBU7fq8P0NSSiml1CAT80EujDEPGWNmGGNmZGdnxzocpdQwZYzBbQKYTmqw0vOPAKC+bEt/hqWUUkqpQSbaCdYuoLDddIE9TymlBpRAyOAh0GkN1siR+TQajzYRVEoppVSXop1gLQGOEJExIhIHXAa8GOV9KqVUr/lDYeIIgLPjGqyclARKGYGrVu+FpZRSSqnORTXBMsYEgZuBN4D1wFPGmLXR3KdSSh0KfzBMnAQxro5rsBwOodKVi7dJK+GVUkop1TlXtHdgjHkVeDXa+1FKqb7wB8N4CEAnTQQBGrz5ZNSvBmNApB+jU0oppdRgEfNBLpRSaiDwB+0mgq74TtcJJo8igRZoquzHyJRSSik1mGiCpZRSgD8UsmqwOmkiCODKLAKgYY+OJKiUUkqpjmmCpZRSgM/vxyVhxNXJjYYBb85YAKp2beqvsJRSSik1yGiCpZRSQNDXAoDD3XkTwcwC615YTfu29ktMSimllBp8NMFSSikg4LcSLHF33kQwP3cEVSaJcFVJP0WllFJKqcFGEyyllAJC/mYAHF0McpES76ZURuKp03thKaWUUqpjmmAppRTtEqw4b5frVXoKSWvWBEsppZRSHdMESymlgJCvEQCHp+sEqyGpiMxQBfgb+yMspZRSSg0ymmAppRRg/E0AOD2JXa4Xyjjc+luxOeoxKaWUUmrw0QRLKaX4ogbL2U0NlidnHAC1peujHpNSSimlBh9NsJRSii8SLI83pcv1UvPHA9Cwa2PUY1JKKaXU4KMJllJKASGf1UQw3pvU5XqjcrPYbTIIVXzeH2EppZRSapDRBEsppQBjD1oRF991H6y81ARKTB5xNVv6IyyllFJKDTKaYCmlFF8MciFxXddgORxCZXwhac07wJj+CE0ppZRSg4gmWEopBRCwEizcCd2u2pw8hsRwAzRVRjkopZRSSg02fUqwROS3IrJBRFaJyHMikmbPLxKRZhFZYT/mRyRapZSKEglYNxruSYIlWdZQ7cHyTdEMSSmllFKDUF9rsN4CJhtjpgKbgJ+2W7bFGDPNftzYx/0opVRUSbCJFjwg0u263rwjAajZqUO1K6WUUmp/fUqwjDFvGmOC9uQnQEHfQ1JKqf7nDDbjk/gerZtTeAR+46RxtyZYSimllNpfJPtgXQe81m56jIgsF5H3RWROZxuJyA0iUiwixeXl5REMRymles4Zasbv6FmCNWZEKttNLuhQ7UoppZQ6gKu7FUTkbSC3g0U/M8a8YK/zMyAIPGEvKwNGGWMqReQY4HkRmWSMqTuwEGPMQ8BDADNmzNAhuZRSMeEKtRDoYYKVkRjHckc+R9Vti3JUSimllBpsuk2wjDGndrVcRK4BzgW+Yow1ZrExxgf47OdLRWQLMA4o7mvASikVDe5wM0F3zxIsEaEmYTTpzcsgFACnO8rRKaWUUmqw6OsogmcCPwLON8Y0tZufLSJO+/lhwBHA1r7sSymloik+3ITf1fVNhtvzp43FRRCqt0cxKqWUUkoNNn3tg/UgkAy8dcBw7CcAq0RkBfA0cKMxpqqP+1JKqahJCtcTcKf1eH3XiPEA+PZujFJESimllBqMum0i2BVjzOGdzH8GeKYvZSulVH9pCYRIpYF98Wk93ia1cAKshJqda8mZdE70glNKKaXUoBLJUQSVUmpQqmvyk0oDJj69x9sU5OVRYVLw79EaLKWUUkp9QRMspdSwV1tfS5yEcHh7nmAVZSayxeThrNocxciUUkopNdhogqWUGvaaaqx78LmSMnq8TaLHxR5XAcmNJVGKSimllFKDkSZYSqlhr7m2AgB3UmavtqtPGkNyqAaadAwfpZRSSlk0wVJKDXtNdoKVmJbVq+1CmfY4P5XaTFAppZRSFk2wlFLDXnOdlWClZ+b0aruEXGuo9sZd6yIek1JKKaUGJ02wlFLDXriuDAB3al6vtssqGIffOKnftT4aYSmllFJqENIESyk17Lkby/DjBm/PB7kAKBqRynaTS6j88yhFppRSSqnBRhMspdSwl9C8h2pXNoj0arvCDC/bGEl87ZYoRaaUUkqpwUYTLKXUsJcSKKfB07v+VwBup4Nyz2hSm0shFIxCZEoppZQabDTBUkoNa8FQmKxwBT5v7iFt35JyGC6CULM9wpEppZRSajDSBEspNaztrmoglypIyT+k7SX7CADC+zZGMiyllFJKDVKaYCmlhrWyHZtwSwhPzhGHtH1y/gQA6nfrSIJKKaWU0gRLKTXM1ZduACCjcOIhbZ+fl0eFSaG5bEMkw1JKKaXUINWnBEtE5onILhFZYT/ObrfspyKyWUQ2isgZfQ9VKaUiL1C+CYC0wgmHtP1hWUlsMXlIpQ7VrpRSSilwRaCM+4wx97afISITgcuASUAe8LaIjDPGhCKwP6WUihh39RYaJJGkxKxD2j4nxcOH5DG5fnmEI1NKKaXUYBStJoIXAE8aY3zGmG3AZuDYKO1LKaUOWVbTZvYmjO31PbBaiQi1iUUkBquhqSrC0SmllFJqsIlEgnWziKwSkb+JSLo9Lx/Y2W6dUnueUkoNGJX1zYwNb6cl49CaB7YKpI+1C9QbDiullFLDXbcJloi8LSJrOnhcAPwZGAtMA8qA/+ttACJyg4gUi0hxeXl5bzdXSqlDVrJlA8nSTFz+1D6VEz/icACCFZpgKaWUUsNdt32wjDGn9qQgEXkYeNme3AUUtltcYM/rqPyHgIcAZsyYYXqyL6WUioTqrcsAyBp7TJ/KSc8/gvByoXb3JjKnRyIypZRSSg1WfR1FcGS7yYuANfbzF4HLRMQjImOAI4DP+rIvpZSKtPCeNYQR0ov6VoM1OieDMjLw7dscociUUkopNVj1dRTBe0RkGmCAEuC/AIwxa0XkKWAdEAS+oyMIKqUGmqSaDex15TMyLrFP5YzJSmR9OIcxNSWRCUwppZRSg1afEixjzFVdLLsbuLsv5SulVLQEQ2HyfVuozpjIyO5X71KaN44y10gmNy6LSGxKKaWUGryiNUy7UkoNaNv37GO07CU8YnJEymtKHEVysBp89REpTymllFKDkyZYSqlhqWzjUgBSRh8VkfLCaWOsJ9UlESlPKaWUUoOTJlhKqWGpaedKAHLGzYxIeQk51lDtzXs+j0h5SimllBqcNMFSSg1LrvJ1NJCIJ3N0RMpLLxwPQE3phoiUp5RSSqnBSRMspdSwlNW4ib0JY0EkIuUV5eWw22QQ2Ls+IuUppZRSanDSBEspNexUN7QwJryD5owJEStzVEYiW0w+cVXaRFAppZQazjTBUkoNO9u3rCdZmnHnTYlYmXEuB3vjRpPetA3C4YiVq5RSSqnBRROsLgQCfsIhvT+yUkNNw44VAKQWHR3RcutTx+MxLVC9LaLlKqWUUmrw6NONhoe6Zc8/wNFr7qZSUqh3ptLkSqc5LoOgJx3jScaRkIorIQ2XN5W4xDSc3lTciWl44pPwJHiJT0gkIcGL0+2JWD+PPjMGjCEcDhEOBQmFQ4RDIcLhEKFwGEIha144iAmFCYfDhMNBwqEwJhy0tgsbTDiIad0mHCIcstbDWNuYcAgTCmFMCBMOY0wvftE3JjrrdqXT0yNdLz5o+47X7Lx46WaF9mVI27Ne7qRnu+jpW9R08FRkv1Nhulq3i+f7r9/xxh1tazp5H5hOCpfP3yRshOzDp3W43SErOAYqwV/yKXGZYyNbtupSMBikqamelvo6fE01+BrrCPga8ftaCPqaCQd8mGDrww8hHwR9EPJbj3DI+u4yBjFhIIyYMGJM23OMQbD+GrF/nxQHiMOeFsTR+tyBiLQtRwRpW9d6Lu2eIw5wOOznTkRAxIkRweFwtpUjDuuvw+HA2PsDa1vrb+s+nfZn2tEuBsd+6wuCcbTGaq0u9nfS/l9NYi83PfunrFdfy519dg+cH6Hv+u5E6t+Ujorux331YO8DssgY7qYfT0f/nfehdOz83lwKj5hCVpIn+juLAE2wupA+9hiKq6/E0VxJXEslCYFq8hrWklJfR6JpxiE9f0e1GDc+iSOAmxBODEJYHBisf2DBQRjBtP1t/WfN+gddMDhMuN3SMA4MYqwtDppPGCfWxYGzXclOO2b7n1h9A6hha5uriDGexIiWOWrcdOpXJNC08UNyjvl6RMseDlpaWqgsL6O2ai8ttRX46ysINVRimquQ5hpcvmrc/hrigvXEhZrwhJtIMM14TTNefKSIIeUQ9x00B38Hh6Wjb1YrsbLWNNBuC4cx9tqt38uty+1HL/7NUEop9YW/B89g16W/59ypebEOpUf0+roL444+CY4+qcNlJhyivr6W+ppKGuuq8TVUE2quJdxcS9DfQtjfRDjQQjjQggm04Aj5cIZ9OMI+q3+G2f9hzBe/lrb/J97Yv2BaiZij7S9Iu+n2v1h+8YuoaTcPh2O/dWj99dThtNd1Iq2/njoc1i+njnbz2i93WtuIwwnixOFwgL2uQ5yIw4k4BHG4rG3sffS4hgToycoi3dTo9FBntR+tv/10e0nUUXVNz3bc+606q6npbh+9+nnp4HWN2b8Stv0R3+/od7ZOB6eo8zKk43X2K7uTHfWg/NZyMgsjN8BFq6OLsvgkPJHjS962PueOg1th76tvIcHtJDneHfH9D0TGGKpq66guK6GhYict1WWEasugYS+u5nISfOUkBSpJD1eRTj35QH4H5fiMmzpJpsGRTIsrGZ8nkybXKCrciYTdiYTdSeBJQjxJODzJOOKTcMcnEueJx+3x4oqLx+n24IyLxxUXj8sdj8sTjzsuHrcrDpczei3mjTEYA0FjCIftFgThEGG7NYEJhQmFrdr+cOtf0zptMHbtWjgcsloJhOz1TBgTtmrYaG0p0PpvStiqhcOYtn9fCIcx9rqt/+5YrRpCGPPFp8RKCw32f1b89gIj0sNv3N58L/esVt708bu+x3uPYouTA4vut9fUxdw+7affGuf0z4766/X0a5umfntN0d3RtIQcCg/LjOo+IkkTrEMkDifJqRkkp2bEOhSl1ACRnhjHpqyvcFr1PYS2LMJ5xCltyzbt3MPal+5n5t6FrM84kRO//7cYRho54VCYioo9VOzaQv2erfirdiC1O4lr2E2Kbw9ZoX1kSS0H/rPoNy6qHOnUuTKoTyigMmE6JjEHZ3I2npQs4pOziE/NJjEtm6T0EXjik8gWITsmr7JvRKwmdg4EnGD/Tyml1BClCZZSSkXQYSd8ndLn/0biM9+j+fR72F5Wjm/dq8xoWMQ4aaGOBKZUv9VpDddA5AsE2V26jYrtG2jaswlTuYWEhh1k+EoZGSpjhLQwot36zcRR4RxBnWck2xMnUpJagDu9kPiMApKz8kkdUUhiaha5IuTG7FUppZRS0aEJllJKRdCZ04q4b9mdfHPHT8h78XLygCbi2ZZ7GoWnfofPlnzCqZvmUVuynNTDjol1uG2CwSB7SrdSvmMDTWVWEuWp3056Syl54T2MER9j7HUDuNjrzKUmoYD1STMhbTTx2UWk5I4hK/9wEtNGUDhQBvZRSiml+pkmWEopFUEiwi3XfoMlG04guOMTRmTnMHbKl5gUlwBAnskiuPEudn/0eL8nWOFQmH17d7GvZC0NuzdiKj4nvm4baS07yQ/tpkACFNjr+o2LPa6R1HoLWZc6C1fWWJLyxjNi1ARScooocLra1lVKKaXUF/qUYInIQmC8PZkG1BhjpolIEbAe2Ggv+8QYc2Nf9qWUUoOFwyEcN3EMTBxz0LIJRxzOx+4ZTNz6NIGGX+BOimw/zlDYsGffPiq2r6Nh9yZCFZ/jqd1GWvN2RgZ3kStNbc3yAsbJHmcu1fGjWJU6C2fWWBJHjid79EQyckczyqm/wSmllFK91ad/PY0xc1ufi8j/AbXtFm8xxkzrS/lKKTXUiAjmhB+T9M7X2PrwlRz+7X/j6OVw8XWNjVSUbqGubDNNe7cQqtpOXEMpyc27GBHaS77U7jcS317JptJTyKaMMyHrcLy548kqmkhW/hEUutwURvYlKqWUUsNaRH6eFGu87EuBU7pbVymlhrtZJ5zKy5t+wLml91L5m8nsLDwPR95RuLxphB1uQr5GWhrrCDTWIA17cTXtI665nER/BamhSrKoIaXdPZUCxkmFM5taTx6lSUeyK30MntzxpI+aQFbhkeR4vOTE8PUqpZRSw4n07v44nRQicgLwO2PMDHu6CFgLbALqgJ8bYz7sZNsbgBsARo0adcz27dv7HI9SSg10xhg+fOt54j+9n6ODK3BJuMP1wkaolhRqnRk0xWUR8I4gnJyHI2MM3hFjyCocR0buaMQ5PO6rpZRSSg0UIrK0Nf/Zb353CZaIvA0djqT7M2PMC/Y6fwY2G2P+z572AEnGmEoROQZ4HphkjKnral8zZswwxcXFPXk9Sik1ZFTU1FK5fQP+5jpcJoB4EklOTiUlLYOk9FzEFRfrEJVSSil1gM4SrG6bCBpjTu2mYBfwVaBtOCxjjA/w2c+XisgWYByg2ZNSSh0gKy2VrLTjYh2GUkoppSIgEne5PBXYYIwpbZ0hItki4rSfHwYcAWyNwL6UUkoppZRSasCKxCAXlwELDph3AnCXiASAMHCjMaYqAvtSSimllFJKqQGrzwmWMeaaDuY9AzzT17KVUkoppZRSajCJyCiCkSIi5cBAG0YwC6iIdRCq3+j5Hj70XA8feq6HFz3fw4ee6+FlIJ7v0caY7ANnDqgEayASkeKORgdRQ5Oe7+FDz/Xwoed6eNHzPXzouR5eBtP5jsQgF0oppZRSSiml0ARLKaWUUkoppSJGE6zuPRTrAFS/0vM9fOi5Hj70XA8ver6HDz3Xw8ugOd/aB0sppZRSSimlIkRrsJRSSimllFIqQjTBUkoppZRSSqkI0QSrCyJypohsFJHNIvKTWMejIkdECkXkPRFZJyJrReT79vwMEXlLRD63/6bHOlYVGSLiFJHlIvKyPT1GRD61P98LRSQu1jGqyBCRNBF5WkQ2iMh6EfmSfraHJhG51f4OXyMiC0QkXj/bQ4eI/E1E9onImnbzOvwsi+V++7yvEpGjYxe56q1OzvVv7e/xVSLynIiktVv2U/tcbxSRM2ISdBc0weqEiDiBPwJnAROBy0VkYmyjUhEUBG4zxkwEjge+Y5/fnwDvGGOOAN6xp9XQ8H1gfbvp/wfcZ4w5HKgGvhmTqFQ0/AF43RhzJHAU1nnXz/YQIyL5wPeAGcaYyYATuAz9bA8ljwJnHjCvs8/yWcAR9uMG4M/9FKOKjEc5+Fy/BUw2xkwFNgE/BbCv1y4DJtnb/Mm+bh8wNMHq3LHAZmPMVmOMH3gSuCDGMakIMcaUGWOW2c/rsS7A8rHO8T/s1f4BXBiTAFVEiUgBcA7wV3tagFOAp+1V9FwPESKSCpwAPAJgjPEbY2rQz/ZQ5QISRMQFeIEy9LM9ZBhjPgCqDpjd2Wf5AuCfxvIJkCYiI/slUNVnHZ1rY8ybxpigPfkJUGA/vwB40hjjM8ZsAzZjXbcPGJpgdS4f2NluutSep4YYESkCpgOfAjnGmDJ70R4gJ1ZxqYj6PfAjIGxPZwI17b649fM9dIwByoG/201C/yoiiehne8gxxuwC7gV2YCVWtcBS9LM91HX2WdbrtqHtOuA1+/mAP9eaYKlhTUSSgGeAW4wxde2XGeseBnofg0FORM4F9hljlsY6FtUvXMDRwJ+NMdOBRg5oDqif7aHB7ntzAVZSnQckcnATIzWE6Wd5eBCRn2F17Xgi1rH0lCZYndsFFLabLrDnqSFCRNxYydUTxphn7dl7W5sU2H/3xSo+FTGzgPNFpASrqe8pWH100uxmRaCf76GkFCg1xnxqTz+NlXDpZ3voORXYZowpN8YEgGexPu/62R7aOvss63XbECQi1wDnAleYL27eO+DPtSZYnVsCHGGPRhSH1ZnuxRjHpCLE7oPzCLDeGPO7doteBK62n18NvNDfsanIMsb81BhTYIwpwvocv2uMuQJ4D7jEXk3P9RBhjNkD7BSR8fasrwDr0M/2ULQDOF5EvPZ3euu51s/20NbZZ/lF4Bv2aILHA7XtmhKqQUhEzsRq3n++Maap3aIXgctExCMiY7AGNvksFjF2Rr5IBtWBRORsrL4bTuBvxpi7YxuRihQRmQ18CKzmi345d2D1w3oKGAVsBy41xhzYwVYNUiJyEnC7MeZcETkMq0YrA1gOXGmM8cUwPBUhIjINa0CTOGArcC3WD4r62R5iRORXwFys5kPLgeux+mLoZ3sIEJEFwElAFrAX+CXwPB18lu0k+0GsZqJNwLXGmOIYhK0OQSfn+qeAB6i0V/vEGHOjvf7PsPplBbG6ebx2YJmxpAmWUkoppZRSSkWINhFUSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSqkBRkSKRMSIiCvWsajhQUTWishJsY5DKaWGAk2wlFJKDXoiMl9EGuyHX0QC7aZfi3V8A50xZpIxZlEkyxQRj4j8TUTqRGSPiPwgkuUrpdRAJcaYWMeglFJDioi4jDHBPmxfBGwD3H0pZ7gSkXnA4caYKztY1qdz058GU6wdEZFfA7OB84Fc4D3gGmPM6zENTCmlokxrsJRSKgJEpEREfiwiq4BGEXGJyPEi8h8RqRGRle2bYInIIhH5tYh8Zv/C/4KIZHRS9rUisl5E6kVkq4j81wHLLxCRFXY5W0TkTHt+qog8IiJlIrJLRP5HRJzdvI6xIvKuiFSKSIWIPCEiae2WVYnI0fZ0noiUt74uETnfbmpWY7++CQccn9tFZJWI1IrIQhGJ7/2R7r1Ozo0RkcPbrfOoiPxPu+lz7WNaY5/DqT3c10kiUioid9jHr0RErmi3/BwRWW6fq512Mti6rLVp6DdFZAfwrj3/33YNUK2IfCAikw6I+08i8ppdW/eRiOSKyO9FpFpENojI9B4eo1N78hp74Wrgv40x1caY9cDDwDUR3odSSg04mmAppVTkXA6cA6QBOcArwP8AGcDtwDMikt1u/W8A1wEjgSBwfyfl7gPOBVKAa4H72iU5xwL/BH5o7/cEoMTe7lG73MOB6cDpwPXdvAYBfg3kAROAQmAegDFmC/Bj4HER8QJ/B/5hjFkkIuOABcAtQDbwKvCSiMS1K/tS4ExgDDCVTi62RWS2ndh09pjdzWvoSNu56a5WyE5I/gb8F5AJ/AV4UUQ8PdxXLpAF5GMlGQ+JyHh7WSPWeU+z47lJRC48YPsTsY79Gfb0a8ARwAhgGfDEAetfCvzc3qcP+NheLwt4GvhdD+PukIj8pKvz0ck26Vjv65XtZq8EJnW0vlJKDSWaYCmlVOTcb4zZaYxpBq4EXjXGvGqMCRtj3gKKgbPbrf+YMWaNMaYR+AVwaUc1TMaYV4wxW4zlfeBNYI69+JvA34wxb9n72WWM2SAiOfa+bjHGNBpj9gH3AZd19QKMMZvtsnzGmHKsi/MT2y1/GNgMfIp1Af0ze9Fc4BV72wBwL5AAfPmA47PbGFMFvARM6ySGxcaYtC4ei7t6DZ1of266cwPwF2PMp8aYkDHmH1iJy/G92N8v7GP4PlaifSmAMWaRMWa1fa5WYSWlJx6w7Tz7nDXb2/zNGFNvjPFhJbtHiUhqu/WfM8YsNca0AM8BLcaYfxpjQsBCrOT6kBljftPV+ehksyT7b227ebVAcl9iUUqpwUATLKWUipyd7Z6PBr52wC/9s7GSko7W3w64sWod9iMiZ4nIJ3bzvBqsxKl1vUJgSwexjLbLK2u3/79g1YJ0SkRyRORJu0lhHfB4BzE9DEwGHrAv+sGq8dreuoIxJmy/vvx22+1p97yJLy7C+8PO7ldpMxq47YBzV4j1Gnui2k6aW21v3VZEjhOR9+ymlbXAjRx8fNtiFRGniPxGrKafdXxRO9l+m73tnjd3MN2fx7lVg/03pd28FKA+BrEopVS/0gRLKaUip/2oQTuxaqja/9qfaIz5Tbt1Cts9HwUEgIr2BdrN0p7BqhHKsWsMXsVqyte6n7EdxLITq9Ylq93+U4wx3TXR+l/7dUwxxqRg1cS17gsRSQJ+DzwCzJMv+o3txkpMWtcT+/Xt6mZ/BxGROfLFCIAdPeZ0X8pBDhzRqQnwtpvObfd8J3D3AefOa4xZ0MN9pYtIYrvpUVjHB+BfwItAoTEmFZhPu+PbQaxfBy4ATgVSgSJ7/oHbRI3dn6zT89HRNsaYaqAMOKrd7KOAtf0Rs1JKxZImWEopFR2PA+eJyBl2LUS8PQBCQbt1rhSRiXZ/pruAp+1mXe3FAR6gHAiKyFlYfalaPQJcKyJfERGHiOSLyJHGmDKspoT/JyIp9rKxInJgc7QDJWPVPtSKSD5W3672/gAUG2Oux2r6Nt+e/xRwjh2HG7gNK8H7T3cH6kDGmA+NMUldPD7sbZkdWAF83T43Z7J/M72HgRvt2iYRkUSxBqdIhraBJR7tpvxfiUicnQyeC/zbnp8MVBljWuz+c1/vppxkrONYiZUQ/m8vXmNEGGP+t6vz0cWm/wR+LiLpInIk8C2sfoFKKTWkaYKllFJRYIzZiVXzcAdWcrQTK1lp/737GNYF5x4gHvheB+XU2/OfAqqxLshfbLf8M+yBL7D6uLzPFzVJ38BK0NbZ2z7N/k0UO/Ir4Gi7rFeAZ1sXiMgFWINU3GTP+gFwtIhcYYzZiFXb9QBWLdx5wHnGGH83+4uV72PFWANcATzfusAYU4yVDDyIddw2s/+AHIXAR12UvcfebjfWgBQ3GmM22Mu+DdwlIvXAnVjntSv/xGpiuAvrPH7S3QsbQH6J1Xx1O9b78rc6RLtSajjQ+2AppVQMiMgi4HFjzF9jHYvqOXtUxJXAVHswjwOXn4R1XgsOXKaUUmp4cMU6AKWUUmqwsGvkJnS7olJKqWFLmwgqpdQwIyLzOxmwYH73W6vBSERGdTFQxahYx6eUUkOJNhFUSimllFJKqQjRGiyllFJKKaWUipAB1QcrKyvLFBUVxToMpZRSSimllOrS0qVLK4wx2QfOH1AJVlFREcXFxbEOQymllFJKKaW6JCLbO5qvTQSVUkoppZRSKkI0wVJKKaWUUkqpCNEESymleqG+JcBTS3YSCIVjHYpSSimlBqAB1QerI4FAgNLSUlpaWmIdihpk4uPjKSgowO12xzoUNYQ89M5aEj++l5fKr+SrZ58Z63CUUkopNcAM+ASrtLSU5ORkioqKEJFYh6MGCWMMlZWVlJaWMmbMmFiHo4YQR8mH3Oh6CT57Cc6qAf1eUkoppVQ7A76JYEtLC5mZmZpcqV4RETIzM7XmU0Wc1JW2PQ9XlcQuEKWUUkoNSAM+wQI0uVKHRN83KhqSW8ranldt+DCGkSillFJqIBoUCZZSSg0UI0w55c4RtBg3DduXxTocpZRSSg0wmmD1gIhw2223tU3fe++9zJs3L3YBtfPJJ59w3HHHMW3aNCZMmNAW16JFi/jPf/7Tp7LPPPNM0tLSOPfccyMQqVKDXzhsyKWCRm8BJSaXcMXmWIeklFJKqQFGE6we8Hg8PPvss1RUVES0XGMM4XDfhnq++uqreeihh1ixYgVr1qzh0ksvBSKTYP3whz/kscce61MZSg0lvmCYEdTgT8ihzJVPYkOHN3BXSiml1DA24EcRbO9XL61l3e66iJY5MS+FX543qct1XC4XN9xwA/fddx933333fsvKy8u58cYb2bFjBwC///3vmTVrFvPmzSMpKYnbb78dgMmTJ/Pyyy8DcMYZZ3DcccexdOlSXn31VR588EFee+01RISf//znzJ07l0WLFjFv3jyysrJYs2YNxxxzDI8//vhB/Yr27dvHyJEjAXA6nUycOJGSkhLmz5+P0+nk8ccf54EHHuDII4/sNM4tW7awefNmKioq+NGPfsS3vvUtAL7yla+waNGiLo/Nv//9b371q1/hdDpJTU3lgw8+oKWlhZtuuoni4mJcLhe/+93vOPnkk3n00Ud5/vnnaWxs5PPPP+f222/H7/fz2GOP4fF4ePXVV8nIyODhhx/moYcewu/3c/jhh/PYY4/h9Xr32+/xxx/PI488wqRJ1rk76aSTuPfee5kxY0aX8SrVF75giATx0+z2UudNJqOhGEJBcA6qr1KllFJKRZHWYPXQd77zHZ544glqa2v3m//973+fW2+9lSVLlvDMM89w/fXXd1vW559/zre//W3Wrl1LcXExK1asYOXKlbz99tv88Ic/pKzM6kS/fPlyfv/737Nu3Tq2bt3KRx99dFBZt956K+PHj+eiiy7iL3/5Cy0tLRQVFXHjjTdy6623smLFCubMmdNlnKtWreLdd9/l448/5q677mL37t09Pi533XUXb7zxBitXruTFF18E4I9//CMiwurVq1mwYAFXX31122h+a9as4dlnn2XJkiX87Gc/w+v1snz5cr70pS/xz3/+E4CvfvWrLFmyhJUrVzJhwgQeeeSRg/Y7d+5cnnrqKQDKysooKyvT5EpFnS8YJh4fxp2AP/Uw3AShdmesw1JKKaXUANLnn11FpBD4J5ADGOAhY8wfRGQe8C2g3F71DmPMq33ZV3c1TdGUkpLCN77xDe6//34SEhLa5r/99tusW7eubbquro6GhoYuyxo9ejTHH388AIsXL+byyy/H6XSSk5PDiSeeyJIlS0hJSeHYY4+loKAAgGnTplFSUsLs2bP3K+vOO+/kiiuu4M033+Rf//oXCxYs6LDWqas4L7jgAhISEkhISODkk0/ms88+48ILL+zRcZk1axbXXHMNl156KV/96lfbXtN3v/tdAI488khGjx7Npk2bADj55JNJTk4mOTmZ1NRUzjvvPACmTJnCqlWrACsJ+/nPf05NTQ0NDQ2cccYZB+330ksv5fTTT+dXv/oVTz31FJdcckmP4lWqL1oCITLwIy4vztTDYRe07NlEfIbea00ppZRSlki0awkCtxljlolIMrBURN6yl91njLk3AvsYEG655RaOPvporr322rZ54XCYTz75hPj4+P3Wdblc+/Wvan8/psTExB7tz+PxtD13Op0Eg8EO1xs7diw33XQT3/rWt8jOzqaysvKgdTqLEw4ezrw3w5vPnz+fTz/9lFdeeYVjjjmGpUuXdrl++9fkcDjaph0OR9vru+aaa3j++ec56qijePTRRztMGPPz88nMzGTVqlUsXLiQ+fPn9zhmpQ6Vz+fDLSGIiycpfzyshJpdG8idePCPAEoppZQanvrcRNAYU2aMWWY/rwfWA/l9LXcgysjI4NJLL92vydrpp5/OAw880Da9YsUKAIqKili2zBrCedmyZWzbtq3DMufMmcPChQsJhUKUl5fzwQcfcOyxx/Y4pldeeQVjDGA1PXQ6naSlpZGcnEx9fX23cQK88MILtLS0UFlZyaJFi5g5c2aP979lyxaOO+447rrrLrKzs9m5cydz5szhiSeeAGDTpk3s2LGD8ePH97jM+vp6Ro4cSSAQaCunI3PnzuWee+6htraWqVOn9rh8pQ5VoKUJAHF7GTlyFPUmAd+eTTGOSimllFIDSUT7YIlIETAd+NSedbOIrBKRv4lIeifb3CAixSJSXF5e3tEqA8ptt92232iC999/P8XFxUydOpWJEye21aRcfPHFVFVVMWnSJB588EHGjRvXYXkXXXQRU6dO5aijjuKUU07hnnvuITc3t8fxPPbYY4wfP55p06Zx1VVX8cQTT+B0OjnvvPN47rnnmDZtGh9++GGncQJMnTqVk08+meOPP55f/OIX5OXlAVby97WvfY133nmHgoIC3njjDcBqltja3+qHP/whU6ZMYfLkyXz5y1/mqKOO4tvf/jbhcJgpU6Ywd+5cHn300f1qrrrz3//93xx33HHMmjWLI488sm3+iy++yJ133tk2fckll/Dkk0+2jZyoVLT5WxoBcMR5GZWVSInJwVG9JcZRKaWUUmogkdbajz4XJJIEvA/cbYx5VkRygAqsfln/DYw0xlzXVRkzZswwxcXF+81bv349EyZMiEiM6mAHjnY41Oj7R0XSkmXLmPniyWyZfS9jT/0Wb807g2meXWT/dE2sQ1NKKaVUPxORpcaYg0ZZi0gNloi4gWeAJ4wxzwIYY/YaY0LGmDDwMNDzdm9KKTUAhfxWE0FnnHXbgLr4PFJ9e6CP97NTvbN2dy2vri6LdRhKKaVUhyIxiqAAjwDrjTG/azd/pDGm9V/AiwD9iXcAmjdvXqxDUGrQCNp9sFwea6Aaf3IhcS0BaNgLKSNjGdqwcv0/irmoYSEzd48j+4yhWfs+UFU3+lm6vZqvTBjRqwGRVN/5g2E27a1nUl6KHnulBrhI1GDNAq4CThGRFfbjbOAeEVktIquAk4FbI7AvpZSKmbDf6oPl8lg1WJI+GgBTsz1mMQ039S0BKmvr+ZF7Idkf/ze01Ha/kYqYX7ywhpv/+RFlj/8XVOv7vj/d/87nnPvAYv7zwVuw+Z1Yh6OU6kKfa7CMMYuBjn5K6dM9r5RSaqAJ200EXfFWDVZC9hjYBHVlm0kddXwsQxs2tpY3cpxj/RczNr0BU3Wgm/6ydHs1pziWk7dlITxbAt98M9YhDRv/2WINsHX0+9dAuBFu/AhyJ8c2KKVUhyI6iqBSSg1lYX8zAHF2DVZa3uEANOzdGrOYhpuKBh/jpPSLGXu19Xl/afIHKattYbZjtTVj11IIdXx/RhVZxhi2lDfiIExC2KpJZ+1zsQ1KKdUpTbCUUqqHTMCqwXInWDVY+dnplJtUAhUlMYxqeKls9JMu9YRwsMGMwuxdF+uQho3yeh8A01wl1oxwEKr0NgX9ockforY5wKS4vV/MLFsRs3iUUl3TBKuHnn/+eUSEDRs2dLpOSUkJkydHrrp+48aNnHTSSUybNo0JEyZwww03ANZNgl99tW8tMK+77jpGjBgR0XiVGvICdg1WQhIABeledppsnHU7YxnVsFLV6CeDOvxxaawLjyK0Z22sQxo2Khv9AOS6Glkbtvofsmd1DCMaPqrsY39Wbh0ATRkTYPcKiNCtdpRSkaUJVg8tWLCA2bNns2DBgg6XB4N9byYRCoX2m/7e977HrbfeyooVK1i/fj3f/e53gcgkWNdccw2vv/56n8pQatgJ7D9Me7zbSbkzB29jaVdbqQiqbvST7WjAeLPYEs7D1bAb7L5xKrqqGvyAISVcy2fhIwmLC/ZqgtsfWpPbyenWtUZp+vHQVAGNFbEMSynViT4PctGvXvtJ5H8ty50CZ/2my1UaGhpYvHgx7733Hueddx6/+tWvAFi0aBG/+MUvSE9PZ8OGDbz55psEg0GuuOIKli1bxqRJk/jnP/+J1+vlnXfe4fbbbycYDDJz5kz+/Oc/4/F4KCoqYu7cubz11lv86Ec/4rLLLmvbb1lZGQUFBW3TU6ZMwe/3c+edd9Lc3MzixYv56U9/yrnnnst3v/td1qxZQyAQYN68eVxwwQU8+uijPPfcc9TW1rJr1y6uvPJKfvnLXwJwwgknUFJS0uXrfv/99/n+978PgIjwwQcfkJSUxI9+9CNee+01RISf//znzJ07l0WLFvHLX/6StLQ0Vq9ezaWXXsqUKVP4wx/+QHNzM88//zxjx47lpZde4n/+53/w+/1kZmbyxBNPkJOTs99+L7vsMq666irOOeccwEoGzz33XC655JKenVOloiXQYv11J7TNakjIJ7XpEwiHwOGMUWDDR2WjnxHOelxJWezcN8KaWbMDRhwZ28CGgapGP158uMI+9pgMGhLySNEmgv2i2k6wirxWM83P3eMYB1CzHZKyYxeYUqpDWoPVAy+88AJnnnkm48aNIzMzk6VLl7YtW7ZsGX/4wx/YtGkTYDXr+/a3v8369etJSUnhT3/6Ey0tLVxzzTUsXLiQ1atXEwwG+fOf/9xWRmZmJsuWLdsvuQK49dZbOeWUUzjrrLO47777qKmpIS4ujrvuuou5c+eyYsUK5s6dy913380pp5zCZ599xnvvvccPf/hDGhutTrCfffYZzzzzDKtWreLf//43xcXFPX7d9957L3/84x9ZsWIFH374IQkJCTz77LOsWLGClStX8vbbb/PDH/6QsjLrdmcrV65k/vz5rF+/nscee4xNmzbx2Wefcf311/PAAw8AMHv2bD755BOWL1/OZZddxj333HPQfufOnctTTz0FgN/v55133mlLtpSKJQlZFzc449rmBVIKcRGCut0ximp4qWsOkCH1uFNGUOawf5zRYfL7RWWjnwypB6DemUq5a6QO1d5PWmuwUmmghTjWBPKsBVXbYhiVUqozg6sGq5uapmhZsGBBW03OZZddxoIFCzjmmGMAOPbYYxkzZkzbuoWFhcyaNQuAK6+8kvvvv5/TTjuNMWPGMG7cOACuvvpq/vjHP3LLLbcAVkLRkWuvvZYzzjiD119/nRdeeIG//OUvrFy58qD13nzzTV588UXuvfdeAFpaWtixYwcAp512GpmZmQB89atfZfHixcyYMaNHr3vWrFn84Ac/4IorruCrX/0qBQUFLF68mMsvvxyn00lOTg4nnngiS5YsISUlhZkzZzJypHWz1bFjx3L66acDVs3be++9B0BpaSlz586lrKwMv9+/37FrddZZZ/H9738fn8/H66+/zgknnEBCQsJB6ynV70I+fLjxtLvJpyN9NOyBYFUJrrTCGAY3PDT5Q6SZOsSbSThlFDQB1SWxDmtYqGnyk+tsAMCZmMVOchhb/UGMoxoeapqsBCshWE+9I4VVDanWAn3vKzUgaQ1WN6qqqnj33Xe5/vrrKSoq4re//S1PPfUUxu5YmpiYuN/6B95dvSd3Wz+wjPby8vK47rrreOGFF3C5XKxZc/CQxMYYnnnmGVasWMGKFSvYsWMHEyZMOOR4Wv3kJz/hr3/9K83NzcyaNavLAT4APB5P23OHw9E27XA42vqoffe73+Xmm29m9erV/OUvf6GlpeWgcuLj4znppJN44403WLhwYacJqFL9LugngHu/Wd4RhwFQV6ZNpfpDs89HomkAbybejFxa8GgtSj9p9AfJi7NaR8SnjmCzPxNaaqC5JqZxDQdNfquPtstXjc+dyudVIUgeqQmWUgOUJljdePrpp7nqqqvYvn07JSUl7Ny5kzFjxvDhhx92uP6OHTv4+OOPAfjXv/7F7NmzGT9+PCUlJWzevBmAxx57jBNPPLHbfb/++usEAgEA9uzZQ2VlJfn5+SQnJ1NfX9+23hlnnMEDDzzQlvQtX768bdlbb71FVVVVWz+o1tq1ntiyZQtTpkzhxz/+MTNnzmTDhg3MmTOHhQsXEgqFKC8v54MPPuDYY4/tcZm1tbXk5+cD8I9//KPT9ebOncvf//53PvzwQ84888wel69UNEnYT1D2T7Ay8g4jbIRGvRdWvzD+JhwYiE+hICORXWRrE8F+0ugLkeOy/u1JysxlTXO6tUCPf9Q1+oLEuRw4WmoIx6exr95HKHU0VGsTQaUGIk2wurFgwQIuuuii/eZdfPHFnY4mOH78eP74xz8yYcIEqquruemmm4iPj+fvf/87X/va15gyZQoOh4Mbb7yx232/+eabTJ48maOOOoozzjiD3/72t+Tm5nLyySezbt06pk2bxsKFC/nFL35BIBBg6tSpTJo0iV/84hdtZRx77LFcfPHFTJ06lYsvvriteeDll1/Ol770JTZu3EhBQQGPPPIIAPPnz2f+/PkA/P73v2fy5MlMnToVt9vNWWedxUUXXcTUqVM56qijOOWUU7jnnnvIzc3t8fGcN28eX/va1zjmmGPIyspqm19cXMz111/fNn366afz/vvvc+qppxIXF9dRUUr1O0fo4ASrICudvaQTrCqJTVDDTNhnNVEjLpGC9AS2hbIJ67HvF42+IBlOq9VBZuYIPvdbzc+1BjH6Gv1BkjwuaK7G4c2w5nkLtAZLqQFKzAC6h8KMGTPMgYMwrF+/vq25m+qdRx99lOLiYh588MFYhxIz+v5RkfThby7kiMAGcn/xRXPZQCjMil8dT25aIoU/eC+G0Q0PF931D54Lfw+++jAvhGdR9fStXJ3wEY47SqEXTaBV71351085q+YJrmj4B299dTW3/esTVsV/C077b5j1vViHN6T9YOEKPiupYrHzJsrzTmLmqvN5b8YnjFnzAPxsD7jjYx2iUsOSiCw1xhw0uIHWYCmlVA85wgGCjv1rVN1OB5WuXBKbdsUoquFFAlYfoNYarFKTjSPQAM3VsQ1sGGjwBUmRFnC4KchOo45E/O5UbSLYDxp8dg1WSy3eZKsGa5fkAMa6TYFSakDRBGsIu+aaa4Z17ZVSkeYM+wgd0EQQoMGbT1qwHEKBGEQ1fITCBlfQvqlwXCIF6V52GvseQNoXJeqa/EGSxAeeJPLTrZFdaz060EJ/aPKHSHIDwWYSklKJcznYGmx975fEMjSlVAcGRYI1kJoxqsFD3zcq0pwmQNhxcJ/AUEohDsJQWxqDqIaP5kCIRLFHHo1LIjvJw15pvRfWztgFNkw0+kIkSQvEJZES7yY1wc0+Z672weoHjf4gGXHWaLwOTxIFaQlsaLEHGanVGiylBpoBn2DFx8dTWVmpF8uqV4wxVFZWEh+v7dJV5LjC/g4TLFeGdT83f2VJP0c0vDT5giTSmmAl4nAIodQCa7pWE6xoa/QH8doJFkBBegI7TZZ17PXf6Khq9AXJcFn3wsKTREGGl3V18dZNz7WJoFIDTtRvNCwiZwJ/AJzAX40xvbpbcEFBAaWlpZSXl0clPjV0xcfHU1BQEOsw1BDiMgHCjqSD5ifmjIE1ULt7M9lHnByDyIaHJn/IusCHtov8tIwRNDZ7SdQarKhr8oVIMM0QZ927sSA9gc27MiDYAo3lkDQixhEOXY2+EGkunzURl0RBegJv7KqF1AKtvVVqAIpqgiUiTuCPwGlAKbBERF40xqzraRlut5sxY8ZEK0SllOoxlwlgnAfXYGXmjSFkhKZ92g8omhr9+9dggXWRv6s0m3H6K35U+YNh/KEw8aYZPNYgCwXpXtZuSrN+Pq3ZqQlWFDX5g6S11mDZCVZlo59QYSFOfe8rNeBEu4ngscBmY8xWY4wfeBK4IMr7VEqpqHATINxBglWQlUIZmYS1s3lUNflDePniV3yA/LQEtocyCetFZlQ1+a3+P/Hh5v2aCG4NWsmWjiQYXY2+ECnS+t63BngBaIgfqU0ElRqAop1g5QPt665L7XltROQGESkWkWJtBqiUGqiCoTBuEwCn56BlOcnx7DLZuOq0qU40NfqCJEoLYYcbXFaiW5BhDdVu9CIzqhr9IQDiQk3tEiwvu4x9w3g9/lHTWnuY7LATLI9VgwVQ6c6Fxn0QaI5hhEqpA8V8kAtjzEPGmBnGmBnZ2dmxDkcppTrkC4aJk2DbhX17DodQFTeS5ObdMYhs+Gj2h/DSgnF72+a1XuQ7/fXQXBO74Ia4Jp9Vg+UONbU1zyzMSKABr3UvLB1kJGqa7eQ22fFF/8PWBGsX9nWTjmCq1IAS7QRrF1DYbrrAnqeUUoOKLxgmjgCmgxosgGZvPmmhCgj6+jmy4aPRHyKRFow7sW1efppVgwVoLUoUNdgJlivUBJ4vmmcC1Hly9dhHUYPdPPPAWxR4XA5KgpnWPG2iqdSAEu0EawlwhIiMEZE44DLgxSjvUymlIs4XDOEhgLg6TrCCqaOsJzqiV9Q0HTBMOEBOSjx7xG6mprUoUdPkD+EkhDPkazv+yfFu0rxu9jlH6Ps+ilprD9sP8CIi5KcnsKE5zZqnx1+pASWqCZYxJgjcDLwBrAeeMsasjeY+lVIqGnwBqwZL3B0nWO7MIgBaynUkwWhp9IVIxIfD80WC5XQIoZTW5FZrUaKlcb97kH1x/AvSEygNZ1nHXu+FFRWttYcJ5sARNL2srfeCw6XvfaUGmKj3wTLGvGqMGWeMGWuMuTva+1NKqWhoCQSIkxCOTmqwknLGAlBTtrk/wxpWmv1BEqUZ8STuNz8pbQQtePRX/CjqaIh8gII0L5v9GRBohObqGEU3tDXZfbDiw03g9oLDCVjJ7Y4aP6Tka4Kl1AAT80EulFJqMPC3WBeXnTURzM4rwm+cNO/b2p9hDSuN/hDJ4kM8yfvNL8jwsluytR9KFDX6QiSKPVKdZ/8arHVNqdaEHv+oaLRrsDzthsgH69hXNfoJpRZq81ilBhhNsJRSqgcCfivBcrrjO1xemJnEbpOFqdaLzGhp8gdJFN9+NShgNZXaHswkrDVYUdPk77yJ4LZg61DtevyjodEe5CIu3LTfe7+w9V5YCVqDpdRAowmWUkr1gN9nXVw6OumDlZEYR5lkE9egwyVHS6MvZA9ysX+ClZ9u3wurWi8yo6XBF9pvFLtWBeleSvVeWFHV4LOaCLrbjeAIfHEvLNcIqC/TEUyVGkA0wVJKqR4I+poAcMZ5O1wuIlTH5ZHSoneiiJYmfwiv2X8UQbAuNHeZLJy+avDVxyi6oa3JFyTD5bcm2vfBykiglkQCrkRNsKKkdRRBV7DxoOQWYLcZYc3Qe2EpNWBogqWUUj0Q8jUC4PR0nGABtCTmkxKqAX9TP0U1vDS1+Eng4BqsgvT298LSZmrR0OgPkt6aYLXrA2dd5At1npHaDyhKGn1BRMAR2D/BykqKw+NysC2YYc3QBFepAUMTLKWU6oGgz+rg7/QkdLqOSRtt/dXO/lERsJPcAxOs3JR4ysROsPQiPyoafaEvEqx2F/lJHhfpXjflzhF6gR8ljf4QiXEuxN+433tfRChIT2BDS7o1Q4+/UgOGJlhKKdUDIb91ce+OT+p0HXemlWA17tWRBKMh3NJgPTkgwXI5HfiTCqwJvciMiiZ/kFSn3ceng0FGdoaztfYwShp9QbxxTvA17NcHC6xjv6Y+CcSpPy4oNYBogqWUUj0Qtmuw4hISO10nOfdwAGrLtvRLTMON8bcmWAcnuYnpufhxa4IVJQ2+ICkOHyDWvZjaKUhPYEsgHXy10FwTk/iGskZ/iCSPC/yNHfY/3FHj03thKTXAaIKllFI9ELZrsOI8nSdYI/IK8Rk3vvJt/RXW8OLvuIkgQH5GktVMUC8yo6LJHyLZYQ+R79j/0sG6F1aaNaG1KBFn1WA5wF/fQYLlpbopQCilQN/7Sg0gmmAppVQPhAPWwBWu+M4HuSjMTLKGrNY+WBEXDhucgS4SrPQEtgazCVdpchsNDb4gSXLwCI5gXeS33QuruqR/AxsGGn1B0uLCYMIdNBG0+oQ2JORpE02lBhBNsJRSqgdMwLoHkLg7T7BS4t3scYzAo/fCirhGf5BksUdn9KQctLwgPYESkwtVW8GYfo5u6GvyhUiS5oMu8ME69ttbhwrXBDfiGv1BMt0HDzAC7e6F5c6B+t0Q9Pd3eEqpDmiCpZRSPRGw+mAd2P/kQLWePFJ9u/shoOGlwRckGTvBik89aPnoDC87zAgc/npoquzn6Ia+Rn+QJNPY4bEvSPdSRxJ+d6qV4KqIavKFSHcFrIkOmggC7DbZVg1Xnd6HT6mBQBMspZTqAbGbCOKO73K9lsQCksL10FLXD1ENH42+IMliJ7kd1GAVZSVaNVigtSgRZoyx+gGFO0uwrFqU6vgCqNZjH2kNviDpTqsG/cAaxKykOOLdDkqCmdYM7QOn1ICgCZZSSvWABO0LHFfn98ECIH0UoPfCirQGX4iUthqsgxOsEcke9jhHWhNaixJRvmCYsIGEcEOHyW2ix0VGYhxlzjw99lHQ5A+R7mh976ftt8y6F5ZX74Wl1ACjCZZSSvWAI9iMj7iDRlA7kCdrDAC1uz/vj7CGjYYWqw9W2OEG18G1iCKCK6OIMKIX+RFW12I1T/MEGzqswQK7D1x4BNSWQtDXn+ENaeGwodEfJE3sAV46qUFc05AIiCZYSg0QfUqwROS3IrJBRFaJyHMikmbPLxKRZhFZYT/mRyRapZSKEUfIR0Diul0vJW88APVlm6Md0rDS2gcrHJcMIh2uMzIzlX2Src3UIqyu2Uqw4kINHdYegnWRv96fZfUD0ov8iKn3BTEG0lprsBLSDlqnID2BkpogpOhIgkoNFH2twXoLmGyMmQpsAn7abtkWY8w0+3FjH/ejlFIx5Qw143d03f8KYOTIkVSbJILlmmBFUmsfLNNBE7VWRVmJbA2NwFRqDVYk1TQFiCOAK9TSRQ2WlxUNGdaE9oGLmNomK7lNlY6bCIJ17GuaAgRTCjW5VWqA6FOCZYx50xgTtCc/AQr6HpJSSg08rlALAYen2/UK0r1sNzk4a/QiM5Jaa7CkkxoUgNGZXkrCIwhXbenHyIa+2uZAuxEc0zpcZ1SGl83B1qHaNcGNlFq79jDZNIA4OrwP2agMayTBhviRmmApNUBEsg/WdcBr7abHiMhyEXlfROZEcD9KKdXvXGEfwR7UYMW7nex15ZHUqBc6kdTgs/pgSSc1KABFmYmUmByczVXQUtuP0Q1tNU2BLu9BBlZyW0kKIVeiJlgRVNNs3dcqMWz3f+ugD2hrglXpyrGGaQ8F+jVGpdTBuk2wRORtEVnTweOCduv8DAgCT9izyoBRxpjpwA+Af4lIh9/KInKDiBSLSHF5eXnfX5FSSkVBXLiZoLObEQRt9d5RpAX2aWf/CKpu9JMqzTgTOk+wRmd62a5DtUdcbXOg3QiOHR//0RnWIAt13kLtAxdBrTVYCeH6To/9qEwrwdpJDpiQDtWu1ADQbYJljDnVGDO5g8cLACJyDXAucIUxxtjb+IwxlfbzpcAWYFwn5T9kjJlhjJmRnZ0doZellFKR5Q03EIjrvHlae8HUIhxoZ/9IqmrykyZNnTZRAxiZmsBuaU2wtBYlUmqbA6RJgzXRwSALAHlp8Tgdwj6XDtUeSTV2HyxPoL7T935KvJs0r5vNQfsaSn9cUCrm+jqK4JnAj4DzjTFN7eZni4jTfn4YcASg37hKqUHJHwyTZBoJuXuWYLlHHA5Ay14dqj1Sqhp8pFMLSZ3/EOd0CKH0ImtCa1EiprY5QEGcnWAldnz8XU4H+WkJbDc5UL0dQsEO11O901qD5Q7UdprcgtVMcFWjfS8sfe8rFXN97YP1IJAMvHXAcOwnAKtEZAXwNHCjMaaqj/tSSqmYaPAFSZVGTBf9f9pLzbeGaq8p3RjNsIYVX0MVboKdXuC3ys3KpErStRYlgmqbA+S7uk6wwGqiuTGQDeEA1JX2U3RDW21zgDiXA0dTRZfHvjDDy+raBHB6tAZLqQHA1ZeNjTGHdzL/GeCZvpStlFIDRX2zn3ya2OfpWYI1cmQ+dSaBln1agxUxDRXW324SrNGZXrZtyyG9aisd3y1L9VZVo59cVwMYD3iSO11vVIaXFTvbDdXeWpuoDllFvY/sxDho2AdJOZ2uNyrDyxtr9mDyipDqkv4LUCnVoUiOIqiUUkNSY0MdLgkj3p4lWKOzkthucnBoU52IcbW0JlhZXa5XlGndCytcqcc+UvbV+xjpqoOkEZ3e5Bms5HZtS6Y1oTWIEVHe4GNUUhgCTdbx78SoDC/BsKEleRRogqVUzGmCpZRS3Wius1o4O7voA9FeksdFmTMPb4MOchEJLYEQicEaa6IHNVjbTQ7OhjLwN3W5ruqZfXUtZEpdt8ntqIxE9pJO2OnRBCtC9tX5GJtgN89Myu10vdah2qs9+VbtoTXmmFIqRjTBUkqpbjTVWbUnnuTMHm9T7y0kzV+m96SJgMpGP1li39eq2wQr0RpoAfSX/AjwB8NUNvpJD9dAYuc1KGAltwYHjd4C7QcUIfvqWxjtaU2wuq7BAtjjyIVAIzTqbW+UiiVNsJRSqhtNdg1WUmpGj7fxpxbhQu9JEwnl9T6ypQYjDvB2neTmpyWwA/uXfm2i2Wf76lsASA5UdHmBD19c5FfE5euxjwB/MEx1U4B8V701o4s+WCNT43E5hG1hHapdqYFAEyyllOqGr74agOS0rptItefOssYA8u/bHJWYhpPdNc0USDlBby443V2uG+dy4E8ZbU1oM7U+21vnIx4fCf5KSB/d5bqJHhdZSR5KydVmahHQmtyOlEprRnLnTQRdTgf56Qmsb7G/ozTBVSqmNMFSSqlumIa9ALiSep5gJeVZ91av3qVDtfeVlWBVIN1c4LfKyBpBnSRrghUBe2pbKBC7uVlaUbfrj8pI4PNgFgSboX5PdIMb4nZUWX0Ic0NlEJ8K3q5r0EdleFlenwqINo9VKsY0wVJKqW64mqwEi+SRPd5mZN5omoyHlj06VHtflVY3M0rKcWb2LMEalZHIDpOjzaQioKSykcLWBKsHCe7ozERWN9nNOLUWpU92VFoJVpqvFDIO63b9wgwvW6sDkJKv732lYkwTLKWU6oaneR+1jlRwxfV4myJ7qHa90Om77eU15EgV0oMaFLAGW9gSGkG4Umuw+mpLeQOTE6w+iKR1n2CNyvCyvCHdmtAaxD4pqWzC7RTi63f0KMEaleGluilAMHWUJrdKxZgmWEop1Y1E3z7qXF2PXnegVK+bXY6RJDRsj1JUw4d/72YcmB5dZAKMzvCy3YxA6nZC0B/l6Ia2reWNTPXsBU9Kt4NcgJXclposjDj1x4U+KqlopCjNjdTsgPQx3a7fOshIvbdQj71SMaYJllJKdSEcNqQGK2hJ6HwEr87UJhSS7tsN4VAUIhsemvxBMhs2WRM5k3q0zahML9vDuYgJ6yiOfWCMYWt5A+MogZzJXd5kuNXoTC9BXLR487QWpY/W7K7lK5mVYEI9eu+3JljlrpHQuA98DdEOUSnVCU2wlFKqC+UNPkZQ1eUIXp0JpBbhJgB1u6IQ2fCwcU89ExzbCYsbssb1aBvrXlh2bYs2Uztk2yubqG/xk+fbArlTerTNqIxEAKriC/TY90F1o5/S6ma+lGD/QJA3rdttCu0Eawf2j0E1WnuuVKxogqWUUl3YvWcPWVKHI7P7JjoHcmaOBcBfrkO1H6rlO2qYLNsIZY3vcR+4JI+LuoRCa0KbSh2y5TurOUJ24Q41w8ipPdomKykOb5yT3Y5cPfZ9sHqXdWPt8eHN4EntURPB1AQ3yR4XW4J6LyylYk0TLKWU6kLNjrUAJORN7PW2rUO115ZuiGhMw8nK7fuY6dyEe8ysXm2XmJlHi8RrLUofLN1ezYnu9dZE0ZwebSMijMrwsjWYAy010FQVvQCHsOLt1TgEsis+hdFf6lHzTID89ATWNusojkrFmiZYSinVhYZSK8HKHtOzX/DbG5E/hhbjplmHaj8kobChfvPHxOOHMSf0atvRmYnsJFcTrENkjOHd9fs4J2mjNXpgD+9BBlZfoLUt9j2b9CL/kLy/cR+n57XgrN4GY0/p8Xb5aQlsqnNZ983SGiylYkYTLKWU6oKjYgMBXLgPoYngaHuodqMX+Ydk6fZqZgc+JuRww5ie1aC0GpWZyJZgNkYvMg/J2t11NNRWMqWlGI48p1fbjs70UlzfOlS7Hv/e2lXTzMrSWq5KWW7NOOK0Hm9bkJ7Arupmq0mhJrdKxYwmWEop1QljDHkNa9idMB6crl5vn5kYx07JJaF+RxSiG/peXLqN85yfEB57mvWLfC+MyvBSYnKgugTC4egEOIQtXLKTi9wf4wwHYPLFvdq2NbkFNME6BE8XlyKEObbmdSg4tse3JwCriWC9L4g/dbT13ldKxUSfEiwRmSciu0Rkhf04u92yn4rIZhHZKCJn9D1UpZTqX1vKKplottKce8whbS8i1HjySfOVgjERjm5oK6/34V/1LNlSg3vmtb3e3rofUzYS9kN9WRQiHLqqGv08v2w7Nye8CXnTIb937//RGV58xOFPyNFalF5q9AV59D/b+H7hFtzVn8PMb/Zq+/w0ayTBuvgCqNkBoWA0wlRKdSMSNVj3GWOm2Y9XAURkInAZMAk4E/iTiDgjsC+llOo3G4vfxSMBsiaeeMhltCQWEGf80FgRwciGvr+8u5bvyFP4MifA4af2evvCdC87Wodq1+Gqe+V3b23k0vDrZPtL4YQf9niAhVajM62L/Nr4PKjWY98bf1q0mcamJm70/8Oquepl7WF+egIA+5y5EA7qjwtKxUi0mgheADxpjPEZY7YBm4Fjo7QvpZSKCsfnr+PHRdbUQ6+ElzR7uPBabSbYU0tKqigqvpvRsg/P2b8GR+//qRqR7GGP2PcD0ov8Hntn/V6Wf/o+P3UvgCNOh/Fnd7/RAfLSEnA6hH3OHE1ue2FJSRV/XrSZv498jvjarXDWb8Hp7lUZ+WlWglUatkcS1BttKxUTkUiwbhaRVSLyNxGxe7WSD7T/VJfa8w4iIjeISLGIFJeXl0cgHKWU6rvK+mam1L3PjtSZ4Ek+5HI8mdboa03leqHZE5v3NfDmP/6XK51v4z/uuzD25EMqx+EQSBtFGNGL/B76ZGslv1vwMv+I/x3OpGy4cH6va68A3E4H+WkJVg1i3S4IBaIQ7dCybncd1z+6hF8kvcis6ufhy9+FI3pfc5uVFIfH5WBrwL4cqy2NbKBKqR7pNsESkbdFZE0HjwuAPwNjgWlAGfB/vQ3AGPOQMWaGMWZGdnZ2bzdXSqmo+OydZymQCrwzr+pTOSm51uiD9Xu1L0p3lpZU8Nb82/mZeZim0V8h7vRf9qm8nIwUqhwZWoPVDWMMC5fs4NG//5l/OX9JeoIDufJpSMw85DJHZ3r53JcBJqy1KN14aeVurp7/Nv/r+BPXBhbCUV+HU+86pLJEhPy0BNY3pVgz9NgrFRPdDotljOnRTygi8jDwsj25Cyhst7jAnqeUUgOeLxAkd+WDVDkyyDv+kj6VlTMil0bjoaVCL/I70+wPsfDl15iw4n+4ybGeuiMuImXuQ71uHnWgwgwvO3Zmk6U1WJ3asKeOv77wLieX/pH5zs8IZk/GOfefkDm2T+UWZnhZvSvNmqje3quR8IaLTXvr+b/X1+Hd+Bxvxj9JWrgGTrrD6vd2CM1iW+WnJ1BSF4CEDK3BUipGej/ucDsiMtIY09qD8iJgjf38ReBfIvI7IA84AvisL/tSSqn+8sGbz3KaWceWY+4kw+XpU1kFGV52mSw8+kvyQepbArz21ht4l/2Fq8If4nMl0XT6H0g57upDapp2oIL0BLaFsphWvU3vSdKOMYaPt1TwwbuvMnHnAn7t/AzcbsJzfoJrzg+gj+95sI79+03pEI820WzHGMNn26p4bNEqsrY8yy9cr1EQV04492jknP+D/KP7vI+81ATWl9VDdiHU6PeOUrHQpwQLuEdEpgEGKAH+C8AYs1ZEngLWAUHgO8aYUB/3pZRSUVdd30TBkv+l0pHJYWd8u8/lZSTGsVayObxhdwSiG/yMMazavJ3N7y9g9M4XuFTW0yLxlE++jtxzfg7ejIjtqzDdy1YzAqn7CIK+iCQOg9mmvfV89PF/YN1zzGr5gJ84dtESl0R4+rfwnHALpIyM2L4K0r2UkYlxuBBtosnmffW8unQrlSte4ktNi/g/5wo87gDB/GNh9u9xjD+7T7VW7eWlJVDR4CM0tgCn3uRcqZjoU4JljOm0c4Ix5m7g7r6Ur5RS/e2jx+ZxLtsoPfUhxJ3Q5/JEhLq4HJJbPolAdINTSyBE8bpN7F36Mlm73uL44DKOkgDlcfmUTf85I0/+FrkJaRHfb2GGl/dNNoKxmkr1sdnbYBMIhVm2bR+fL30Px9Z3mN78Kdc6dhBGqMw6hsBxtxE/bS54kiK+78L0BMI4aPbm4R2GNVhN/iCfbq1ixZrVmM/fYnLTZ3zTsYZE8dHszcI59TqYNhdXL+8x1hN5afEANMaPJKX2fesefBGoEVZK9Vxfa7CUUmrIWPTuq5y29xE2ZZ7EuC/PjVi5LYl5JNfUgr8J4rwRK3cgK61qZMWSDwisf50x1Yv5MltwiKHGmcn2wy4j/4SryC46NqoXfoXpCewM2/fCqi4ZFglWWW0zn61YRd2a18ndt5jjWM1x0kwIBxWZ02iYdgNJ0y8mOyUvqnEUpFvv85q4PLzDoAbLGMOGPfUs3rCLfWvfJ2fvh8yRFZzssPpANSSORMZfBkddTELRbHBE79agrUO1V7pGkOJvgJYaSEjveiOlVERpgqWUUsDGrSWMe/9mal2ZjLnubxEt26QUQA3WkNVZR0S07IEiEAqzfNN2di59jYTt73G0fwnnSjVhhN2JE9g+9nvkzbyQtIJppEWoKVR3MhLjKHflWhNDtBal2R+iePMudi5/C8/295nSUswFDmtMqZq4EdQWnId7+tkkjDuFnPjUfosrKymOeLeDPY4c8mr+02/77U/VjX4+/LycDauW4CpZxPTAMq5wbMArPkIuF3U5xxKYdAPuI88kKWtcv9Ui5dkJ1h6yGANW7a0mWEr1K02wlFLDXm1DC7WPX02R1NF0+au4kw59eOqOxGWOgh3QVF6CdwglWPvqmli55EOa1r1BQcV/OJqNHCthmsTLnpwvs2/y2WRPP5eC5JyYxCcixKXnEaxz4RoitSjGGNbvrmXd8v8Q+PwdRld/wrGygTkSxI+bfZnHsG/CN8medjZp2UeSFqOmYSJCQbqX7eFsjm4sB19DVJoi9qdgKMzynTUUr9lA84Z3GFX7GbMdqzlfqgGoSynCHH4FTDgV55gTSO/D/fP6IjfVaiK4PZTJl8BKsHKnxCQWpYYrTbCUUsNaOGx4/+HbOD+8gpJZv6bo8GMjvo+kHOteWLV7tuKdEPHi+004bFi7ZRs7lrxCwvZ3mdJSzGlSB0Bpwji2F93AyBnn4h1zPIf1cYj1SMnPSGZvQzb5g7gGq7zex5I166hZ9QZpez5iZngFl9jHfW/iWPaNvpqc6WcRd9hsCiLQbzBSCtIT+LzSrjmp2QE5E2Mb0CHYW9fCh+tK2b3qHZJ2L+b48EpucljvpWZPKi2FswlPOgPH4SeTkjYqxtFa4t1OspI8bG5JtGboSIJK9TtNsJRSw9rLT/+d82sfZ3P+BRx+6k1R2UfmyCJCRmguH3wX+YFQmBXLPqW6+Gny9i5iktnCFDHUSQplI76Mb9IZ5B9zTsxqqbpTmOFl+7Zs8qq3M1i6+RtjWLu7juLiT5ENLzG98UPOdlg3qq53plGVN4eayWeSNuk0ciI48l+kFaQnsGpHa4K1fVAkWMFQmGU7aliyeh3+DW8wsf4/nOVYTaL4CIqL2pyjaTnySuKPPJWEkUeREMW+VH2RnxbPpgYnOD16s2GlYkATLKXUsPXp0mJOXPszSuOPYOzV86PWR6IgM4W9pBOu3hGV8iOtxR9kRfFi6pY9y9iKd5iJ1VF/a/xENhbdTP6M80g5bAYpA/Tisr2C9ARKQlkcX71yQCdYvmCIjzdXsGbZRyRsfpU5wf9wjd2Xak/qZPYc+WNGTD+H5NwpJPdTH7a+Kkz38lqzfS+sAdxEs9kfYtGGPaxe+iGJ299mdngp33FYw5vXe3Pwjb0U71Hn4CqaQ+YgaeaYl5bApr31kFqgNxtWKgY0wVJKDUu7yytJe+k6HA4HWd98Coni6H6ZiXEsJ4uMhl1R20dfNfkCLPv4PZpWPsv4qvc4XvYQQtjqncb68dcxZs5cDssoiHWYvVaQ7mWlGYGjuXLA9QOqbvTz3oY9bF7+Plk73+Ar5lNOcuwjjIOK7GNoPOo7JB51Ibmp+bEO9ZAUpHupJIWwKwHHAGui2egL8u76MjYVv82IHa9zmnzKWfagLLVZR9Ey+WfETzyb5JxJg3KI85GpCSzaWI45vADRGiyl+p0mWF3Ytm4J+9a8R1xKDt70HBIzRpKcmUdSaiZO5+D4BVEpdbBgMMSGv36Lk8wO9p77T0aOOCyq+xMRquJGMrp5fVT301t1zT6Wf/QG/tXPM7HmfWZLBUGcbE0+ho0Tb2bMrEs5InVgNv3rqcKMBF422dZEzXbImRTTeCobfLy5Zjdbit9k1N63Oc1RzFeliqDDRW3ulwlMvwP3xHMZkZQd0zgjoSA9ARCavAUkDYAarLqWAO+uK2PzkrfI3fU6p8tnnCc1BJxx1BWcSGj6RTjHn0F6YlasQ+2zvLR4mgMh/En5eLa9E+twVLQYY/0dhD8CDHWaYHVh74o3OX7TPQfNDxoHNeKlSRJpdiThcyXhdyUTcCcRdCdj3F7EFY/D7UHivDjd8Yg7Hlzx4PLgcLoQhxOHw4XD4cDpdOJwOhCHE3BgxEEYwZgwYsKYcBhjwtD614TAGEw4DMaaZ0zIWq/1YUIQDmHCresG7fVD+/21yg2B/bd9+W3zTQjCYcS0Lrfisv7a65rQAfPt51jriDE4CHd4nE23Z6KbNbovoGtdfi8dypdWN9sctLg3++hdPEakV1uYTte2DrLZ71hLp4fedPTMdFx2p2V0el47KN10tkbH3MFGTgkuZeOEmxk/4/xu1o6MOu9o0ms/iPm9sKrqm1i5+FXCa59ncv2HnCg1+HGxNfU4Nk/+MUVfvphxER5FMZYK0r3sbE2wqmOTYFU1+nlr9U62F7/G6L1vc5pjKZdLHQGXh6ZRJxGe/lVc488kMwo3W46lwgzrfV4VN5KkGNVg1TYFeHvtLrYWv0ne7jc53fEZF0otAWcc9YUnE55xKe7xZ5AZoxH/oqX1XljV8QXkNuwFXz0MsdfY34KhMPUtQeqammmoqaClrhJffQWB5jqMr4GwrxH81sMRsB/BZlzBJlyhJhzhAI6wH6cJ4DJBXCaAiyAuE8RNALf93EUIwbR7ABgcB8xzyP7/0oWMELbXCmM9tx7WFmFpv8zZNt+0riPt17cqEdquR3EAgpEv9oHIF1HJF+u3lmnEjlQc1vZivwqxy2rdTr4oD8TOFa1XLW2Jo/B50gwmnXk90wrTonymI0MTrC7MuOR2KiqupKZiN41VZfhq92Ea9kFzFbTU4vTX4Qo0EBeoJyWwE29jI0k04jF+3BKKdfgRETbtP6jtPrBtHzLHfstaP6Cm3bT1wbY+zIeWsMRS77I3wfRqk/ZHo+vNOk99utqmNzpPlzpat3fL2sru9kVIF1O9Iwc92d+qnIuYculdfdhD7/hTx+KoNVC1pd+HTN5XXceqxS/hWP8iRzV+xMlSTwtxbMuYRePUCyk6/iKOTOi/eyT1p9QEN9Ue+6a6VVv7bb/VjX7eWb2N0iUvM3rfu5zlWEaKNOGLS6Sl6FTM0V/FfcRppMYl9ltM/S3d6ybZ42KnjGRU5RIIBcEZ/cuOqkY/b68pZdvSNykse5PTHUu4WOoIuD00jDqF8DGX4h53OhkDqLlopLXe6Hm3s4BcgMrNkDc9pjENNM3+EHvqWqiorqWpahfN1WWEavdiGvbibNqHu6WSOH8N8cE6EsP1pJgGUqWB0dLco/IbiadFEmiRePyOBEKOOMJON2FHAmGHmxaHm7C4CTtaH3EYhxscDkSsB9JBqtUusQHrX3rr2iOMGIP1w/YXP3hjwu2Wt/uRnDC0/vgdtq7iWn84F7C2xVhl2X/BgGmdZ13VOVqfGwOE2p5b+7IipTWdM62vJNzuh3fTrnzLF6/MZmB1QzKVDb6+nPJ+pQlWF1xxHrLyRpOVN7rX24aCAZqaGmlpbqKluZFwoJlwwGf9DYWsRzhEKBTGhIKEwqG2GqnWdAVxWh8wh5Xhtz3HgTgciDjBIdYH0eHEIQ4cTieI4HBaNWTicOBwunCIA3E6cdg1Z+IUHA4XTofTnt9ak+bC4XDidFq1aw6HA20MqYai/u7V4hgxHnZAc9kGEvohwSotr2Ldh88Tt+llpjd/zKnSRBPxbM+aQ+P0iymceR4ThvAFZnvJGblU1WaSsWdVVPdT3ejnvZVb2LP0BQ4rf4ezZSVe8dHsSaHlsHMxx3wVz2En43HHRzWOgUJEOHJkMkubCpkVbIbKz2FEdO5TUNHg483VO9mx9A2K9r7NaY4lZEo9fnc8jaNPxcz4Gu4jTiN9CCe07Y0dkYgIrPXlcDRAxfBKsBp9QXZWN7F7bzkNe7fir9oBNbuIa9yFt6WM1EA5GeFqsqWWMdJ00PZhhHpJpsmVii8+BX/cSBri0qhPSIOEdJzedFxJmcQlZeBJSsPjTSHOm4wnIQVHfBK4Ekh0OBge77b+8c1YB9BLmmBFidPlJjkljeSUtFiHopQaABLzxhM0Dhp3riRh+teiso+SsnI2fPgM3s2vcLTvM06XFuolkdKck2k85hLyjj6bCcPk4r69I3NTWFU1hhN3L494Hfq++hYWLd9IzfIXOLzyXc6R1XgkSIMnk+bDLyVhxiUkFM0iYYDcF6y/TRyZwtvL8vieALtXRDTB2lfXwpurd1K69DXGlr/N2Y5i0qQRv9tL05hTMcdcQtzhpxEXwya5seKNczEqw8uSuniuEgdUbIx1SBHVEghRWt1MaUUNtbs349+7CaneirdhO0kte8gOl5MvlRx5QPIUxEm1awSNiSMIeiezLymHqpQRuFNHkpCRR1JmHnGpI3EkZpHqdDM06/VVf9AESyml+kFBdgbrzGjydn4WsTLDYcPaz7dQ+umzpO14i+mB5RRJgFpJYWfeWaTP+Bq5R53GBFdcxPY5GE0flcbSlUWcWPEMNFWBN6NP5e2uaeajz4ppXP0S42s/5KuyAZeEqY0fSd24a8iaeQlJhceRNEiGU4+myfmpPPbxCELJSTh3fAzTLu9TeVvLG3h39XbKV73JEZXvcp6jmNTWppeHnYE5+mLiDj+VuGH4Q8KBxucks3ZfA2RPgF3LYh1Or/mCIXZUNrFlXx0VpVtp3rsRqdxCUmMJOYFdjJE9zJZyXPJF07IGRzJ18bn4Eg+jMvUE6jNHkTSiiOScw3CkFeJKGkG2w8ngH0JGDXSaYCmlVD+YMDKFhYznyMpFEArAIdZotPiDLF9RTOXyl8jb8w5HhTcwRQzlzhFsGXUJOcdeTNbEk0nth74ug8WMonR+HJ7KbTwNm97o9UV+KGxYubOK9Us/wP35a0xt/A9fc1hDX1ckjaX2yJvJOOarpOZN09G8DjD7iCzCOChJ/xJjN70B4bDd1L1ngqEwK0tr+HTFavzrX2NK4ydc4VhLgvhpiUvGf/g5cPQleMaejMflieIrGXzG5ybz9vq9BI87BteGF3p97PtDOGzYU9fC1n0NlO3eTsOuDZjKzcTXlZDp28kYKeNk2YdHAm3b+BwJ1KaMwp86nX1Zh+MdOZ6U/CNxZB1OkjeD4dHwWQ10+i+wUkr1gziXg73ZXyau8nXMpjeQCef2aLtw2LBx2w5Kl72Gq2QR4xqW8CWpAKA07jA2jbmRguMvIbvoGLL14r5D43OSqUufTGVLFpkrnuhRgrWntoXlq1ZSs+ZNMvZ+xEyzmqOlgRAO9qRPp3LydWQecxFZGWP64RUMXiNTE5gwMoVnGqfxo8a3YPPbMO70LrfZXtnIf9Zvp3ztIpLKPuZL4RV822HdpLs+qYDQ+Ktg8tnEF51A/DCvne3K9FFphA1siZ/E+JZ/wt7VMPKomMRS0+Rna0Uju3bvprZ0A8HyzbhrtpDWvINRlDFN9jBbWtrWD4ibuqQC/Knjqc0+l+T88STkjoeMsXiScxmh33VqgOtTgiUiC4Hx9mQaUGOMmSYiRcB6oLXR7yfGmBv7si+llBrsRh93Pvte+R2ed39H6vizO/w1udkXZOPGtVRt+ABn6Wfk1q1kvNnBBDE0kMiO9Jk0HHEKRceeR0F2dO/fNVSICJcdV8Qf3zyLO0seg5VPwlGXtS0PhsJs3VvDtrWfUr/lE5LKVzAhsI6zHPsAqHVlUTfyK3imnkHi/2/vvsPjqq6FD//WzEgjzaiPZMnqtrGNuw22MdiAIdRAKBcCJHSSENLhppJCCPcmN518hCQkhAQChBJ6aKEXAwbccO+WLdmyLauXGU3b3x/nSMiyJMv2SCNp1vs8ejSn7zlHZ3TW7L3XnnI2RUfYxDDRXHV8GT96YhpfyS7C+5+brWQL9jhfoUiUtTsb2bBhDU1bPyR17womh1bzadmKS6KExUVj/jH4p1xH6pRzSM8dr7WE/TRvrI9kp4On26bxHYcLVj8+oAFWWzBMxb42KnftorFqHcGazTgbKkhv3cHoaDXlsptjpLlz/SgOGlJH408vp9l3EtHCo0kvnIjkHkVSZgk+h3PAyqrUQBPT+2Azh7Yjkd8AjcaY2+wA61ljzNRD2cfs2bPNkiVLYlIepZQaagKhCLf/6sfcHPw9u/JOpGXcJ2mNJtFSvxdqt5DRtIni0DZ89kNIK6lUeacQLT6O/FlnkzP++EFJcz0SBUIRPn3nG/yo/vvMdaxnZ+oEdjsLMe0t+II7KWIvyfbwGo3ObOpzZpJ81EIKZp5lZYDUh/rDFopEufzu95Ed73B/8s9BnGxxT6Ih7MIbrKVU9pAlrQCEcVGbNRX3USeTOelUpGRuXMeNG+6+8s9lvLWxhmXj7yWp8h342jI4zIGUQ5Eo1Q0Bdu6rp756G617txGur8LZVEmmfwf54V2UyR6ypWW/7RqSRtHmLSOaM4aUgolkFh9NUt4EyC4DbdaphjkRWWqMmX3A/FgEWGKNBLYDONUYs0kDLKWU6tnG3U28+vdbuTzwEBldMly1kcKu5HLasiaQXDyL/Kknk10+E/Rb3Jipaw1y50urGLX2Xo4NLSVf6om6PLSlleDyjSVjzLHkT16AZJVqQBVjbcEwf3x9C5tWf8Dprc8xVTbjcRpCqXm4csrIGjOLzHFzrYGg9aE7ZtbuauK8OxdxflETv677GjJqMpz1cyiZ2/nZEghFaPSHaGhspHHfLpprqwk07iHUtBfTUkOSfy9pgd3khGsYLfvIk6b9jhFFqE/Kp9Vbiskeizv/KLKKjyZl1HgriEpKjcdbV2pQDHSAdRLw244D2AHWGmAj0AT80Bjzdi/bXg9cD1BaWnrs9u3xGe1dKaUGizGGTdX1+Gu243VFGDWqkAxfwZDrgK6UGv6eXF7Fdx9bxQKzhN8l/4kMWgnjpJE0IsZBCu2k0N5Zg9udX1JpTMrH7xlNNL2IpJwSvKPKySwYiyu7GDKKNChWCeuwAywReQWsgcC7+YEx5ml7nT8Bm40xv7Gn3UCaMaZWRI4FngKmGGOaethPJ63BUkoppZSKrar6Nl5cvZuq3XsYW/8ORe1bSYs2k+wSHMkeXG4vztQMkjPzScspICO3kJTMfKs5YYIMzqzU4egtwDpoY35jzGkH2bEL+C/g2C7btAPt9uulIrIFmABo9KSUUkopNYiKsz18/sSxwFjg+HgXR6kRLxbtUU4D1htjqjpmiEieiDjt12OB8cDWGBxLKaWUUkoppYasWKSjugx4qNu8k4DbRCQERIEbjDF1MTiWUkoppZRSSg1ZRxxgGWOu6WHe48DjR7pvpZRSSimllBpOYjYOViyISA0w1NII5gL74l0INWj0eicOvdaJQ691YtHrnTj0WieWoXi9y4wxed1nDqkAaygSkSU9ZQdRI5Ne78Sh1zpx6LVOLHq9E4de68QynK63DrqilFJKKaWUUjGiAZZSSimllFJKxYgGWAf3l3gXQA0qvd6JQ6914tBrnVj0eicOvdaJZdhcb+2DpZRSSimllFIxojVYSimllFJKKRUjGmAppZRSSimlVIxogNUHETlLRDaIyGYR+V68y6NiR0RKROR1EVkrImtE5Bv2/BwReVlENtm/s+NdVhUbIuIUkeUi8qw9PUZE3rfv70dEJDneZVSxISJZIvKYiKwXkXUicrze2yOTiNxkf4avFpGHRCRF7+2RQ0T+JiJ7RWR1l3k93stiucO+7itF5Jj4lVwdql6u9a/sz/GVIvKkiGR1WXazfa03iMiZcSl0HzTA6oWIOIE/AGcDk4HPiMjk+JZKxVAY+KYxZjIwD/iKfX2/B7xqjBkPvGpPq5HhG8C6LtO/AG43xhwF1AOfi0up1ED4f8CLxpijgRlY113v7RFGRIqArwOzjTFTASdwGXpvjyT3Amd1m9fbvXw2MN7+uR740yCVUcXGvRx4rV8GphpjpgMbgZsB7Oe1y4Ap9jZ/tJ/bhwwNsHo3F9hsjNlqjAkCDwPnx7lMKkaMMdXGmGX262asB7AirGt8n73afcAFcSmgiikRKQbOAf5qTwtwKvCYvYpe6xFCRDKBk4B7AIwxQWNMA3pvj1QuIFVEXIAHqEbv7RHDGPMWUNdtdm/38vnAP4xlMZAlIqMHpaDqiPV0rY0xLxljwvbkYqDYfn0+8LAxpt0Ysw3YjPXcPmRogNW7IqCyy3SVPU+NMCJSDswC3gfyjTHV9qLdQH68yqVi6nfAd4CoPe0DGrp8cOv9PXKMAWqAv9tNQv8qIl703h5xjDE7gV8DO7ACq0ZgKXpvj3S93cv63DayXQe8YL8e8tdaAyyV0EQkDXgcuNEY09R1mbHGMNBxDIY5ETkX2GuMWRrvsqhB4QKOAf5kjJkFtNKtOaDe2yOD3ffmfKyguhDwcmATIzWC6b2cGETkB1hdOx6Md1n6SwOs3u0ESrpMF9vz1AghIklYwdWDxpgn7Nl7OpoU2L/3xqt8KmbmA+eJSAVWU99TsfroZNnNikDv75GkCqgyxrxvTz+GFXDpvT3ynAZsM8bUGGNCwBNY97ve2yNbb/eyPreNQCJyDXAucLn5ePDeIX+tNcDq3YfAeDsbUTJWZ7pn4lwmFSN2H5x7gHXGmN92WfQMcLX9+mrg6cEum4otY8zNxphiY0w51n38mjHmcuB14GJ7Nb3WI4QxZjdQKSIT7VmfANai9/ZItAOYJyIe+zO941rrvT2y9XYvPwNcZWcTnAc0dmlKqIYhETkLq3n/ecaYti6LngEuExG3iIzBSmzyQTzK2Bv5OBhU3YnIJ7H6bjiBvxljfhrfEqlYEZEFwNvAKj7ul/N9rH5YjwKlwHbgEmNM9w62apgSkYXAt4wx54rIWKwarRxgOXCFMaY9jsVTMSIiM7ESmiQDW4Frsb5Q1Ht7hBGRnwCXYjUfWg58Hqsvht7bI4CIPAQsBHKBPcCPgafo4V62g+w7sZqJtgHXGmOWxKHY6jD0cq1vBtxArb3aYmPMDfb6P8DqlxXG6ubxQvd9xpMGWEoppZRSSikVI9pEUCmllFJKKaViRAMspZRSSimllIoRDbCUUkoppZRSKkY0wFJKKaWUUkqpGNEASymllFJKKaViRAMspZRSSimllIoRDbCUUkoppZRSKkY0wFJKKaWUUkqpGNEASymllFJKKaViRAMspZRSSimllIoRDbCUUkoppZRSKkY0wFJKKaWUUkqpGNEASymlhhgRKRcRIyKueJdFJQYRWSMiC+NdDqWUGgk0wFJKKTXsichdItJi/wRFJNRl+oV4l2+oM8ZMMca8Ect9iohbRP4mIk0isltE/juW+1dKqaFKjDHxLoNSSo0oIuIyxoSPYPtyYBuQdCT7SVQicitwlDHmih6WHdG1GUzDqaw9EZH/AxYA5wEFwOvANcaYF+NaMKWUGmBag6WUUjEgIhUi8l0RWQm0iohLROaJyLsi0iAiH3VtgiUib4jI/4nIB/Y3/E+LSE4v+75WRNaJSLOIbBWRL3Zbfr6IrLD3s0VEzrLnZ4rIPSJSLSI7ReR/RcR5kPcxTkReE5FaEdknIg+KSFaXZXUicow9XSgiNR3vS0TOs5uaNdjvb1K38/MtEVkpIo0i8oiIpBz6mT50vVwbIyJHdVnnXhH53y7T59rntMG+htP7eayFIlIlIt+3z1+FiFzeZfk5IrLcvlaVdjDYsayjaejnRGQH8Jo9/192DVCjiLwlIlO6lfuPIvKCXVv3jogUiMjvRKReRNaLyKx+nqPT+vMeD8HVwP8YY+qNMeuAu4FrYnwMpZQacjTAUkqp2PkMcA6QBeQDzwH/C+QA3wIeF5G8LutfBVwHjAbCwB297HcvcC6QAVwL3N4lyJkL/AP4tn3ck4AKe7t77f0eBcwCzgA+f5D3IMD/AYXAJKAEuBXAGLMF+C7wgIh4gL8D9xlj3hCRCcBDwI1AHvA88G8RSe6y70uAs4AxwHR6edgWkQV2YNPbz4KDvIeedF6bg9UK2QHJ34AvAj7gz8AzIuLu57EKgFygCCvI+IuITLSXtWJd9yy7PF8SkQu6bX8y1rk/055+ARgPjAKWAQ92W/8S4If2MduB9+z1coHHgN/2s9w9EpHv9XU9etkmG+vv+qMusz8CpvS0vlJKjSQaYCmlVOzcYYypNMb4gSuA540xzxtjosaYl4ElwCe7rH+/MWa1MaYV+BFwSU81TMaY54wxW4zlTeAl4ER78eeAvxljXraPs9MYs15E8u1j3WiMaTXG7AVuBy7r6w0YYzbb+2o3xtRgPZyf3GX53cBm4H2sB+gf2IsuBZ6ztw0BvwZSgRO6nZ9dxpg64N/AzF7KsMgYk9XHz6K+3kMvul6bg7ke+LMx5n1jTMQYcx9W4DLvEI73I/scvokVaF8CYIx5wxizyr5WK7GC0pO7bXurfc389jZ/M8Y0G2PasYLdGSKS2WX9J40xS40xAeBJIGCM+YcxJgI8ghVcHzZjzM/7uh69bJZm/27sMq8RSD+Ssiil1HCgAZZSSsVOZZfXZcCnu33TvwArKOlp/e1AElatw35E5GwRWWw3z2vACpw61isBtvRQljJ7f9Vdjv9nrFqQXolIvog8bDcpbAIe6KFMdwNTgd/bD/1g1Xht71jBGBO1319Rl+12d3ndxscP4YOh8uCrdCoDvtnt2pVgvcf+qLeD5g7bO7YVkeNE5HW7aWUjcAMHnt/OsoqIU0R+LlbTzyY+rp3sus2eLq/9PUwP5nnu0GL/zugyLwNojkNZlFJqUGmApZRSsdM1a1AlVg1V12/7vcaYn3dZp6TL61IgBOzrukO7WdrjWDVC+XaNwfNYTfk6jjOuh7JUYtW65HY5foYx5mBNtH5mv49pxpgMrJq4jmMhImnA74B7gFvl435ju7ACk471xH5/Ow9yvAOIyInycQbAnn5OPPheDtA9o1Mb4OkyXdDldSXw027XzmOMeaifx8oWEW+X6VKs8wPwT+AZoMQYkwncRZfz20NZPwucD5wGZALl9vzu2wwYuz9Zr9ejp22MMfVANTCjy+wZwJrBKLNSSsWTBlhKKTUwHgA+JSJn2rUQKXYChOIu61whIpPt/ky3AY/Zzbq6SgbcQA0QFpGzsfpSdbgHuFZEPiEiDhEpEpGjjTHVWE0JfyMiGfaycSLSvTlad+lYtQ+NIlKE1berq/8HLDHGfB6r6dtd9vxHgXPsciQB38QK8N492InqzhjztjEmrY+ftw91nz1YAXzWvjZnsX8zvbuBG+zaJhERr1jJKdKhM7HEvQfZ/09EJNkOBs8F/mXPTwfqjDEBu//cZw+yn3Ss81iLFRD+7BDeY0wYY37W1/XoY9N/AD8UkWwRORr4Ala/QKWUGtE0wFJKqQFgjKnEqnn4PlZwVIkVrHT93L0f64FzN5ACfL2H/TTb8x8F6rEeyJ/psvwD7MQXWH1c3uTjmqSrsAK0tfa2j7F/E8We/AQ4xt7Xc8ATHQtE5HysJBVfsmf9N3CMiFxujNmAVdv1e6xauE8BnzLGBA9yvHj5BlYZG4DLgac6FhhjlmAFA3dinbfN7J+QowR4p49977a324WVkOIGY8x6e9mXgdtEpBm4Beu69uUfWE0Md2Jdx8UHe2NDyI+xmq9ux/q7/JWmaFdKJQIdB0sppeJARN4AHjDG/DXeZVH9Z2dF/AiYbifz6L58IdZ1Le6+TCmlVGJwxbsASiml1HBh18hNOuiKSimlEpY2EVRKqQQjInf1krDgroNvrYYjESntI1FFabzLp5RSI4k2EVRKKaWUUkqpGNEaLKWUUkoppZSKkSHVBys3N9eUl5fHuxhKKaWUUkop1aelS5fuM8bkdZ8/pAKs8vJylixZEu9iKKWUUkoppVSfRGR7T/O1iaBSSimllFJKxYgGWEoppZRSSikVIxpgKaVUHyJRzbSqlFJKqf4bUn2wehIKhaiqqiIQCMS7KGqYSUlJobi4mKSkpHgXRQ1Tr67dzWMP3c1Vl1/D8UeXxLs4SimllBoGhnyAVVVVRXp6OuXl5YhIvIujhgljDLW1tVRVVTFmzJh4F0cNUys+fIs/OX/NzieegO8vj3dxlFJKKTUMDPkmgoFAAJ/Pp8GVOiQigs/n05pPdUQctZsBKApuxbTVxbk0SimllBoOhnyABWhwpQ6L/t2oI+Vp/Tj7at2Gd+JYEqWUUkoNF8MiwFJKqXjID+2iWdIIGwfNmzTAUkoppdTBaYDVDyLCN7/5zc7pX//619x6663xK1AXixcv5rjjjmPmzJlMmjSps1xvvPEG77777mHvd/v27RxzzDHMnDmTKVOmcNddd8WoxEoND6FIlCJ2U5d2FNtNPpG9G+JdJKWUUkoNA0M+ycVQ4Ha7eeKJJ7j55pvJzc2N2X6NMRhjcDgOP869+uqrefTRR5kxYwaRSIQNG6yHwDfeeIO0tDROOOGEw9rv6NGjee+993C73bS0tDB16lTOO+88CgsLD7usSg0nLYEwGbRBajG7Wl2Ma94W7yIppZRSahjQGqx+cLlcXH/99dx+++0HLKupqeGiiy5izpw5zJkzh3fesZoR3Xrrrfz617/uXG/q1KlUVFRQUVHBxIkTueqqq5g6dSqVlZV8+9vfZurUqUybNo1HHnkEsAKkhQsXcvHFF3P00Udz+eWXY8yB4/Hs3buX0aNHA+B0Opk8eTIVFRXcdddd3H777cycOZO33367z3JeeeWVHH/88YwfP567774bgOTkZNxuNwDt7e1Eo9Eez80dd9zB5MmTmT59OpdddhkAdXV1XHDBBUyfPp158+axcuXKzmNdffXVnHjiiZSVlfHEE0/wne98h2nTpnHWWWcRCoUAuO2225gzZw5Tp07l+uuvP+B9R6NRysvLaWho6Jw3fvx49uzZ09dlVOqQNAfCpNIOSR4aUsvJba+CXu4DpZRSSqkOw6oG6yf/XsPaXU0x3efkwgx+/KkpB13vK1/5CtOnT+c73/nOfvO/8Y1vcNNNN7FgwQJ27NjBmWeeybp16/rc16ZNm7jvvvuYN28ejz/+OCtWrOCjjz5i3759zJkzh5NOOgmA5cuXs2bNGgoLC5k/fz7vvPMOCxYs2G9fN910ExMnTmThwoWcddZZXH311ZSXl3PDDTeQlpbGt771LQA++9nP9lrOlStXsnjxYlpbW5k1axbnnHMOhYWFVFZWcs4557B582Z+9atf9Vh79fOf/5xt27bhdrs7A54f//jHzJo1i6eeeorXXnuNq666ihUrVgCwZcsWXn/9ddauXcvxxx/P448/zi9/+UsuvPBCnnvuOS644AK++tWvcssttwBw5ZVX8uyzz/KpT32q85gOh4Pzzz+fJ598kmuvvZb333+fsrIy8vPzD3odleqvpkCIfAkSSPYSyioluTUETVWQVRrvoimllFJqCNMarH7KyMjgqquu4o477thv/iuvvMJXv/pVZs6cyXnnnUdTUxMtLS197qusrIx58+YBsGjRIj7zmc/gdDrJz8/n5JNP5sMPPwRg7ty5FBcX43A4mDlzJhUVFQfs65ZbbmHJkiWcccYZ/POf/+Sss87q8Zh9lfP8888nNTWV3NxcTjnlFD744AMASkpKWLlyJZs3b+a+++7rsYZo+vTpXH755TzwwAO4XK7O93TllVcCcOqpp1JbW0tTkxUYn3322SQlJTFt2jQikUhneadNm9b5/l5//XWOO+44pk2bxmuvvcaaNWsOOO6ll17aWdv38MMPc+mll/Z5zpU6VG3BCCkEcbhTceZNAKC1WvthKaWUUqpvw6oGqz81TQPpxhtv5JhjjuHaa6/tnBeNRlm8eDEpKSn7retyufZrVtd1PCav19uv43U00QOr+V84HO5xvXHjxvGlL32JL3zhC+Tl5VFbW3vAOr2VEw5MZ959urCwkKlTp/L2229z8cUX77fsueee46233uLf//43P/3pT1m1alW/3pPD4SApKanzWA6Hg3A4TCAQ4Mtf/jJLliyhpKSEW2+9tcexrI4//ng2b95MTU0NTz31FD/84Q/7PK5ShyoYipBKO81JHjKKJsIKaKxci3fS6fEumlJKKaWGsCOuwRKREhF5XUTWisgaEfmGPf9WEdkpIivsn08eeXHjKycnh0suuYR77rmnc94ZZ5zB73//+87pjqZw5eXlLFu2DIBly5axbVvPHeRPPPFEHnnkESKRCDU1Nbz11lvMnTu332V67rnnOvsobdq0CafTSVZWFunp6TQ3Nx+0nABPP/00gUCA2tpa3njjDebMmUNVVRV+vx+A+vp6Fi1axMSJE/c7djQapbKyklNOOYVf/OIXNDY20tLSwoknnsiDDz4IWH3JcnNzycjI6Nf76QimcnNzaWlp4bHHHutxPRHhwgsv5L//+7+ZNGkSPp+vX/tXqr9CoQAuiSLJHgqKymk2qbTv2RjvYimllFJqiItFE8Ew8E1jzGRgHvAVEZlsL7vdGDPT/nk+BseKu29+85vs27evc/qOO+5gyZIlTJ8+ncmTJ3emM7/ooouoq6tjypQp3HnnnUyYMKHH/V144YVMnz6dGTNmcOqpp/LLX/6SgoKCfpfn/vvvZ+LEicycOZMrr7ySBx98EKfTyac+9SmefPLJziQXvZUTrGZ+p5xyCvPmzeNHP/oRhYWFrFu3juOOO44ZM2Zw8skn861vfYtp06YB8PnPf54lS5YQiUS44oormDZtGrNmzeLrX/86WVlZ3HrrrSxdupTp06fzve99j/vuu6/f7ycrK4svfOELTJ06lTPPPJM5c+Z0Lrvrrrv2K/ell17KAw88oM0D1YCItLcCIMleynK9bDMFOOs2x7lUSimllBrqpKfMdEe0Q5GngTuB+UCLMebXB9mk0+zZs82SJUv2m7du3TomTZoU0zKqj9166637JcMYafTvRx2u/7y3jDP/cwp7T/4Fo065gZd+8kmOSaog9/tr4100pZRSSg0BIrLUGDO7+/yYJrkQkXJgFvC+PeurIrJSRP4mItm9bHO9iCwRkSU1NTWxLI5SSh22aHsbAE63B4CW1CKygnsgGolnsZRSSik1xMUswBKRNOBx4EZjTBPwJ2AcMBOoBn7T03bGmL8YY2YbY2bn5eXFqjiqn2699dYRW3ul1JGIhjoCLCspTTijBBdhaNoVz2IppZRSaoiLSYAlIklYwdWDxpgnAIwxe4wxEWNMFLgb6H/mBqWUirOOGiyXXYPl8I0BIFRbEa8iKaWUUmoYiEUWQQHuAdYZY37bZf7oLqtdCKw+0mMppdSgsWuwXClWDZZn1FgAGnZtiluRlFJKKTX0xWIcrPnAlcAqEVlhz/s+8BkRmQkYoAL4YgyOpZRSgyNkDVPgSkkDILdwLFEjtO3ZEs9SKaWUUmqIO+IAyxizCJAeFo2ItOxKqQTVUYNl98EqzsuimhwidRVxLJRSSimlhrqYZhEcyZ566ilEhPXr1/e6TkVFBVOnTo3ZMTds2MDChQuZOXMmkyZN4vrrrwesQYKff/7w49dAIMDcuXOZMWMGU6ZM4cc//nGsiqzUiCFhqwaLpFQA8jNS2GnySGqujGOplFJKKTXUaYDVTw899BALFizgoYce6nF5OBw+4mNEIvunf/7617/OTTfdxIoVK1i3bh1f+9rXgCMPsNxuN6+99hofffQRK1as4MUXX2Tx4sVHVHalRhoJB6wXLivAcjqEuuRC0vw741gqpZRSSg11GmD1Q0tLC4sWLeKee+7h4Ycf7pz/xhtvcOKJJ3LeeecxefJkwAq0Lr/8ciZNmsTFF19MW5vVzOjVV19l1qxZTJs2jeuuu4729nYAysvL+e53v8sxxxzDv/71r/2OW11dTXFxcef0tGnTCAaD3HLLLTzyyCPMnDmTRx55hNbWVq677jrmzp3LrFmzePrppwG49957Of/881m4cCHjx4/nJz/5CQAiQlqa1a8kFAoRCoWwcpXs71//+hdTp05lxowZnHTSSYBV+3Xttdcybdo0Zs2axeuvv955rAsuuIDTTz+d8vJy7rzzTn77298ya9Ys5s2bR11dHQB33303c+bMYcaMGVx00UWd56erefPmsWbNms7phQsX0n0AaqUGXNi6R3Eld85q8xSRGa79eJkCYPXORs746VO889ZL8S6KUkopFXexSHIxeF74HuxeFdt9FkyDs3/e5ypPP/00Z511FhMmTMDn87F06VKOPfZYAJYtW8bq1asZM2YMFRUVbNiwgXvuuYf58+dz3XXX8cc//pGvfvWrXHPNNbz66qtMmDCBq666ij/96U/ceOONAPh8PpYtW3bAcW+66SZOPfVUTjjhBM444wyuvfZasrKyuO2221iyZAl33nknAN///vc59dRT+dvf/kZDQwNz587ltNNOA+CDDz5g9erVeDwe5syZwznnnMPs2bOJRCIce+yxbN68ma985Sscd9xxBxz/tttu4z//+Q9FRUU0NDQA8Ic//AERYdWqVaxfv54zzjiDjRs3ArB69WqWL19OIBDgqKOO4he/+AXLly/npptu4h//+Ac33ngj//Vf/8UXvvAFAH74wx9yzz33dNbMdbj00kt59NFH+clPfkJ1dTXV1dXMnn3AINlKDaxI0PrtdH88K7MUR5OBhkrIPSpOBRt6nly+k5+2/5Q5r22EWRsgvSDeRRoyQpEore1hsjzJB19ZKaXUiKA1WP3w0EMPcdlllwFw2WWX7ddMcO7cuYwZM6ZzuqSkhPnz5wNwxRVXsGjRIjZs2MCYMWOYMGECAFdffTVvvfVW5zaXXnppj8e99tprWbduHZ/+9Kd54403mDdvXmfNV1cvvfQSP//5z5k5cyYLFy4kEAiwY8cOAE4//XR8Ph+pqan813/9F4sWLQLA6XSyYsUKqqqqOoOw7ubPn88111zD3Xff3dl8cdGiRVxxxRUAHH300ZSVlXUGWKeccgrp6enk5eWRmZnJpz71KcCqeauoqACsIOzEE09k2rRpPPjgg/vVVHW45JJLeOyxxwB49NFHufjii3s8P0oNJInY95rz4wfjpFzrXm/bq5kEu9pSVc0ch/U5EF56f5xLM7Tc8vQarvi/e9m9+JF4F2VI2dsc4Pw7F/Hsux9BoDHexRlSfv2fDVz/jyVEGndBoCnexVFKHYbhVYN1kJqmgVBXV8drr73GqlWrEBEikQgiwq9+9SsAvF7vfut3b2rXU9O77rrvo6vCwkKuu+46rrvuOqZOndpjIGSM4fHHH2fixIn7zX///fcPWp6srCxOOeUUXnzxxQMSdNx11128//77PPfccxx77LEsXbq0z/fhdn/8Tb/D4eicdjgcnX3UrrnmGp566ilmzJjBvffeyxtvvHHAfoqKivD5fKxcuZJHHnmEu+66q8/jKjUQJBIkhIskx8ffQ6XnW7VWjbs245l8ZryKNuQ49n08Nph/yzukL/x2HEszdBhjeOiDHbySfDsFL+6CwjIonRfvYg0JTy/fxUdVjRyz7xp4pR6+twOSe/9fmCgCoQh3vr6ZJMI4t34CCqbDDW/Hu1hKqUOkNVgH8dhjj3HllVeyfft2KioqqKysZMyYMbz9ds8feDt27OC9994D4J///CcLFixg4sSJVFRUsHnzZgDuv/9+Tj755IMe+8UXXyQUCgGwe/duamtrKSoqIj09nebm5s71zjzzTH7/+99jjAFg+fLlnctefvll6urq8Pv9PPXUU8yfP5+amprOJn9+v5+XX36Zo48++oDjb9myheOOO47bbruNvLw8KisrOfHEE3nwwQcB2LhxIzt27DggsOtLc3Mzo0ePJhQKde6nJ5deeim//OUvaWxsZPr06f3ev1KxIpEgIUnab96oonLajQv/3q1xKtXQE40akv17ANgQLca1V8eU77CzwY+LMGOl2pqxovfPvESzYU8zPhoppAaiYVj3bLyLNCSs2WXVWJ3usPsd714J9RXxK5BS6rBogHUQDz30EBdeeOF+8y666KJeswlOnDiRP/zhD0yaNIn6+nq+9KUvkZKSwt///nc+/elPM23aNBwOBzfccMNBj/3SSy91Jpk488wz+dWvfkVBQQGnnHIKa9eu7Uxy8aMf/YhQKMT06dOZMmUKP/rRjzr3MXfuXC666CKmT5/ORRddxOzZs6muruaUU05h+vTpzJkzh9NPP51zzz0XgFtuuYVnnnkGgG9/+9tMmzaNqVOncsIJJzBjxgy+/OUvE41GmTZtGpdeein33nvvfjVXB/M///M/HHfcccyfP3+/oO6ZZ57hlltu6Zy++OKLefjhh7nkkkv6vW+lYskRDRJm/wCrxOelyuRBw/Y4lWroqWsLkks9AG8yi9T2GmjZG+dSDQ01ze1Mkh04xPryy+w8sK9totq0t4WTkjd8PKPqw/gVZgipqrcSPx3r6tIMefu7cSqNUupwSUetx1Awe/Zs0z1b3Lp165g0aVKcSjS83Xvvvfslw0hE+vejDtcrP7+EY4Mfkn3Lts55xhjeufVkxnjbKfrO+3Es3dCxdlcTr/3xq3w56Vm+n/ojft52K1z9LIw5Md5Fi7s3Nuzlwfv+xN3Jv+W1yExOca1Cbq6CZE+8ixZ3c376CrdkPs+n9t1Ddfo0RqcnwfWvx7tYcffnN7fwfy+s57HcuyloWUuxqwmOvSYuXSSUUgcnIkuNMQdkYtMaLKWU6oHDhAjL/pnfRIRGdyEZgV1xKtXQ09AWJJ96Qql5kDPOmlm/re+NEkSjP8QoaQDgjegMxERg34a+N0oQTf4Qox2NNONlrWsS7FkD0Wi8ixV3u5sCeJOdFDvq2BHxER41OfbZk5VSA04DrBHsmmuuSejaK6WOhDMaJOJIOmB+IK2Y9GiTZveyNbeHyZd6It4C0vLLCRknplb7qIEVRORJAwZhadTKIkudnptAKEJ7OEpWtJ7mJB+rA3kQaYcmHcR7b1M7+RkpZIb2Uo2PxvQJsHdtvIullDpEwyLAGkrNGNXwoX836kg4oyEijh7GLsouA8Box3MAmgNhsqUZ8eZSmptBlcmlvUbT2INdg0UDeHzsdNmDxmuARZPfSt6UHqmj3Z3LR6051oI6/bvZ2xwgP91FSmAv1SaHamch+Os0lb1Sw8yQD7BSUlKora3Vh2V1SIwx1NbWkpKSEu+iqGHKaYJE5MAarJS8sQA0Vm8e7CINSc2BEOn4caRmUubzssPkE9EaLMAKsPKdjUh6AaNysql35oKeG5oCVoDlDdZhvKNYFxxlLdDgk0Z/iJLkNsRE2GNy2BrtODfa7Fap4WTIj4NVXFxMVVUVNTU18S6KGmZSUlIoLi6OdzHUMOUyPddgZYy2xsJq3r2FrEEu01DUHAiTLm24PJmU5Xh4y+RzfONiMAb6MQ7gSNboD5HvaIK0Eko9HipbCsjWIIJGuwYrpX0frsJ8dpNN1OnGUas1WE3+MPl5ViZBhzeHNf5czgMr+CycGc+iKaUOwZAPsJKSkhgzZky8i6GUSjAuE8I40w+YP7qgkGaTSrBGv1EGaPYHSacNZ2omRdmp7CCf5HAz+OvBkxPv4sVVoz9EjjSDx0dpspcNW0cxrW41iR12WkGEmyCucCvenNEYHDR7SsnU4JOmQAif0w+AJ9PHspZMa4EmjlFqWBnwJoIicpaIbBCRzSLyvYE+nlJKxUKSCRHtoQarOMdDlcnD0bgjDqUaegKBNpIlAu4MkpwOmj0l1gJt0kSjP0S6aYWUTEpzUtkSHoW07k34BCmN/hCZtAKQkWM1gduXXJTwTQTDkShtwQg5doCVlpXHhnoDafkJf26UGm4GNMASESfwB+BsYDLwGRGZPJDHVEqpWEgyIUwPWQRTkpzsdeaT2loVh1INPeE2u/N9SgYA0cxya1q/caexLYSnI8DyeagwBdaCBD83jf4QGWIFWEneLAoyUtjBaCsoT+BU7c2BMABZ9rnJycmjoS1EOLMc6iriVzCl1CEb6BqsucBmY8xWY0wQeBg4f4CPqZRSRyQcieIijHH2kEUQaE4tIiu4y+pnlOAifjvAclsBVnKejoXVIeRvxknUrsHyfhxgJXhfoyZ/iAysfkbWufGwMTTKTtWeuF9cdCT/yLBr9/Ly8gGsWmGtwVJqWBnoAKsIqOwyXWXP6yQi14vIEhFZookslFJDQTASxS0hjMvd8/L0ElJMO7TuG+SSDUGB/QOs0blZ7DVZhGsr4lemIcJ0nJuUTIqzU9lh7IxwCZ7iv9EfIs8VsCZSsij1efioLduaTuBz0+S3arDSaAGgIN8KsPYmFUHzLgj541Y2pdShiXuadmPMX4wxs40xs/Py8uJdHKWUIhiOkkwYeqnBcuSUAxCq1Voa2u3+RHYTwZIcD5Umj2BNYn/jHo5EcQSbrQl3BilJTjIysmh2Zid0EAF2dsXkjgDLqsFa2aoBVnNH+vpoCySnUZpn3VOVWIEW9dvjVTSl1CEa6ABrJ1DSZbrYnqeUUkNWezhKMiHopQYr1R4Lq2HnpsEs1pDk7BJEgBVg7TCjkARPAtIUCHc29SLFygRXkpNKtSM/oYMIsJrC5SbZAZY7wzovJgfjcCX0ueloIpgaaYaULDJSksj2JLEpaGfjbNAAS6nhYqADrA+B8SIyRkSSgcuAZwb4mEopdUTaQ1YNljh7DrCyi6yxsFr2JHZfGgBXR4Bl12CV2jVY7rZqiITiWLL4shI5dPQzygKs4HNbJC+hgwiwzo3PtX8NVgQnfk9hQp+bjiaCyeFmSM0CrPtptTafVGrYGdAAyxgTBr4K/AdYBzxqjFkzkMdUSqkj1R6OkEwISeo5wCrOz2OfySCS4Jm9IlFDcsTqL9JRg+XzJrPHUYDDRKAxcRMWNPpDB9ZgZXvYGPRhGqsSOvhs8oetVORONySlUJLtAaDBneABll2DlRxq6lLr6WFVfTIkeRP63Cg13Ax4HyxjzPPGmAnGmHHGmJ8O9PGUUupItQdDuCSKo5cmgvkZKew0eTgbK3tcnihaAmEyxO5477YGZRYRguml1rwEbtLU6A+R3nFuutTu7TCjEA0+yZK2ziAiL92N2+Vgt6MgoYOIJn8IEXC2N3bWepb5POxsDGCyShP63Cg13MQ9yYVSSg01waDVfKm3GiynQ6hNGk2aP3EfksH6xj2dNkIuLzicnfMlu8x6kcCd8verweraPy3akbCgIj4FGwKa/NbfTUeAJSKU5njYFhkFbbUJOxBzUyBMmtuFBJr2ayIYiRoCaaUJfT8pNdxogKWUUt2E260HY0dSaq/rtHiKyQrthWhksIo15DQHwqTTRjgpfb/5aaNKCRknJoGDiI4+WMaZAkkpwMc1WEDCBliRqKG5PUwarZ0BFljB5/p2nzWRoOemKRAiIyUJAg37NREEqOtoPqlj7yk1LGiApZRS3YTbreQEjuTeA6xwZilJhKFp12AVa8hpDljN4KLJ+wdYJb50dppcgvsSN419U0cNVpcgYlS6m3qXj7AkJWwQ0ZGK3BPd/9yU5nhY0ZJlTSTouWnyh8lyA8GWLk0EvQBUSz6EWnXsPaWGCQ2wlFKqm0i71XemrwAryTcGgLa9iZtJsKMGq6MJXIeSbCuTYHhf4o6F1dAWJMvhR1I+PjcOh1CY7aXWlbip2jsy5aVEWjr7poHWYIFVg1XgDloTdhPBgowUkpxiZZ+EhD03Sg03GmAppVQ3kaBVg+VM9vS6Tlr+OADqd24elDINRc3tIdKlDelSEwFQ6rMCLFdT4iYBafSHrEx53c5NSbbHGjg2QR+UG/1WDZY73Lx/E8HsVJrxEHZnJey5aeo2ADNY/T2Lsz2sC9ip2hM4cYxSw4kGWEop1U3EbiLocvceYPmKxxIxgr8mcWtpmgNh0vDj9OwfRBRnp1Jp8nEH66C9JU6li69Gf4gsx4EBVmmOh82h3IQNIjoCrKQuqcjBCsoBWlKLE/bcNAfCjErqyDyZ1Tm/JMfDRy12bV994ja7VWo40QBLKaW6iQath5y+AqzS3Eyq8WESeCys5kCYdGnD1S3A8iS7rDGNIGG/cW/slimvQ0lOqhVgBRrAXx+fwsVRUyCEmyCOaLBbDZZ1r+1LGp2wAVaTP4TPZQdYdhNBgLIcD5vqopCWuDWfSg03GmAppVQ3JmQ95CS5vb2uk5maRDWjSG5O3GZwTYEQGfhxpmYesCycaY+FlaCppRv9HZny9u+fVprjobIzk2DinRsrfb1VQ9w1wPK6Xfi8yVSRDw07Ei47Z0d2xRw58NyU5nhoCoQJZ5Yl5N+MUsORBlhKKdWNCVn9IJJSeq/BEhHq3YVkBHYOVrGGHH9bK24JHZDkAiDJV269SNAarCZ/6IBMeQDF2V1TtSdec68mv9VvD9ivGRxYTeE2h3IhGkq47JwtASv5R5bjwHPTkaq9OaVQAyylhgkNsJRSqhsTsh5ykvpoIggQ8BaRHakFOyBLNJG2ButFl+ZMHXJyR9NiUojUJV4QAeD3t5Jkggf2wbITgAAJ2dyr0R8i29HRz6h780kPq/12MocEOzcdfdPSOwan7tpE0O6fVpM0GpqqIBwc7OIppQ6RBlhKKdWdHTD1laYdwGSVWb8bdgx4kYYi02b3IepWEwFQ6vNSaUbRXpN4AVY4EsXZ3mhNdAsiMlKScKZm0urMSrggAqxAYrTb/kLC3b35ZCormrOsiQQ7N032+GDppgWcyeBK6VzWUYNVaUaBiUJj4jZLVmq40ABLKaW6C9sPgEl9B1juPGssrMbqBE3VHmiwfvdQg1Wck0qlycMk2IMyQFMgTJZ01ETkHLC8NMfDbmdBwgURYJ2bgo5MeZ79z01pjofKaA5GnAl3bpr8HQMw24MMi3QuS7P7p20O2uOEJWizW6WGEw2wlFKqu7D9AHiQACt99AQAmnZtGugSDUmOQEctTfYBy0pzPGw3+bibdkA0Osgli69Gf4hsmq2J1APPTUlOKtujeQkXRIA1APOoJLufUbdzU5LtIYKTdm9Rwp2bjhqslEhLj19YlOR4WNWWmM0nlRqONMBSSqnu7DTtXZvp9CS/sJQWk0Job2IGWK5gk/WihwfC0Zmp7KAAVzQAzdWDW7A4q2sNkiX2+F+eA2uwSnI8bGj3YRoqIRIe5NLFV31bkHynXbvXQ5ILgIaUwoQLIpr81t+Bu9v4YB3KfB5WNqZazQcTtF+jUsOJBlhKKdVd2E87yfs10+lJcY6X7SYfR31iDjacFOqowco6YJnTIbSkWX3UqE2sJpT1XQOsHmqwxvi8bIvmISZiJS1IIPWtIXKc9vhgTtd+y0ZnpuByCHscidd8sqMGyxqAOeuA5aU5Hqoag1a/z7rE/LxRajg5ogBLRH4lIutFZKWIPCkiWfb8chHxi8gK++eumJRWKaUGgSPcTlCSD7peSpKT3a4ivK2J1yciEjWkRuwgIuXANO0A0exx1ou6LYNUqqGhrjVIFh0B1oE1WOW53i5jYVUMXsGGgLrWoNV8sofz4nI6KMpOZVt0FLTtg/bmOJQwPhr9IRwCjvbGXpsIRg340zXAUmo4ONIarJeBqcaY6cBG4OYuy7YYY2baPzcc4XGUUmrQSMRPyOHu17rNnlJygtUJ19Sr0R8iU1oJOT3gTOpxnbS8UgIkQW2CBVhtQbKlBeNIguQDB6sem+tlR9QOsBKouZc/GMEfipBhmntsOglQ7vOyLmAvS6Dgs74tSGZqEhJo6LmJoN18ss5dYgVYCdavUanh5ogCLGPMS8aYjqeKxUDxkRdJKaXiyxlpJ+Tou/9Vh3D2WFxEEi6zV21LO1nSQij5wIfBDmW5aWyLFiRcH7X61iA5jlareWAPzUzz0t00JY8iLEkJNdhwXZs1fpM32txj00mAMblelnWkak+gmpp9zUFGeV3gbwCP74DlpfZYWDudhVaW0+bEGohZqeEmln2wrgNe6DI9RkSWi8ibInJibxuJyPUiskREltTU1MSwOEopdXjckRaCzrT+rTtqPADNu9YPZJGGnNrWID6aiKYe+DDYocznpcIUENmXWH2waluDjHK1Ib3U0ogIpbnp7HUWJFTtXn2rFWClhht7bCIIVjKHte32QMwJdG72tbQzxtMGGPDmHbA8Pz2FZJeDLZF8a0YCnRulhqODBlgi8oqIrO7h5/wu6/wACAMP2rOqgVJjzCzgv4F/ikiPjfSNMX8xxsw2xszOyzvwQ0UppQabJ9pK0NW/ACuj6GgAGqoSLMBqCZIrjZA2qtd1yn1etpnRJDftSKgmlPWtQfIdjT0+KHcoz/WyzRQkVC1NXWsQMLjba3s9N+W5XlpJJZial1B99/a1tFPmttPXp+UfsNzhEEqyU1ntz7VmJNC5UWo4ch1sBWPMaX0tF5FrgHOBTxhjjL1NO9Buv14qIluACcCSIy2wUkoNNK9pJZRU0K91i4tLaDKpBPckVjO4utZ2jpVGnOm9B1ilOR62mQIcJgSNOyBn7CCWMH7q2oLkmnpIn9rrOmN8Xtaty+OEulVINAqOkZ/Ut74tSBp+nOE2SD8wiADrvAA0ppaSV5s4wee+liDFo+2kHr18aVGa4+GjRgGnW2uwlBrijjSL4FnAd4DzjDFtXebniYjTfj0WGA8kzielUmrYikQNabQSSUrv1/olOV62mwKcDYn1EbevuR0fTSRn9h6IpiY7aUrtSNWeOOenrqWdrGhdjzURHcbketkWLUDCAWjaOYili5+61iCjpMGaSB/d4zrF2am4HEK1szBhamkCoQgt7WFGO+1x5Xqp3SvN8bC9PoDJGZNQNZ9KDUdH+pXZnUA68HK3dOwnAStFZAXwGHCDMabuCI+llFIDrqU9TAZtRN09px7vLtnlYG9SMWmtOwa4ZEOLv6mWJIng7KUmooPpqLVKoLGwQq0NJJsgpPcefHY2EYSECST2tbRT6GiwJnoJPl1OByU5HrZGC6BlDwSaBq+AcbKvpR2APLHHleulBqvM56WlPUwwo1xrsJQa4o40i+BRxpiS7unYjTGPG2Om2POOMcb8OzbFVUqpgdXU6idNAjh6GIumN83eUrJDeyAcHLiCDTHh5t3Wiz76YAFk5xXRgidhgojmQIjU4D5rIq33AGtsrpeKqL08QR6Wd9b7Ge9ptSb6Cj59HtYEOvoajfyamn0t1udGdrQeXKmQ3HP/zzG5VvPJupQSK/tkNDJoZVRKHZqR3+hbKaUOQVODVdnu8mT1e5to9licRDEJlHI73FhtvegjkQNAeV4aW6P5hGsSo4/azgZ/l2ZwvdfuZXuTaUvJJyTJCRFEAOxqCDA2xe5n1EeAVebz8mGzncY9AQLz3Y0BADKDeyCzuMfU/mDVegLsdBRCJAiNVYNWRqXUodEASymlumhtqgUg2ZvV723c+RMAaNyZOJkEk5rth7us0j7XK/d52GZGE02QVO27GvwUiz3kSGbfQ0OW56VbfY0SpQarwU+5q86qoemjCe6YXC/rgx2p2kd+8LmzwQ+A178Tsst6Xa84OxWnQ9gc6RikOjH+bpQajjTAUkqpLtqa6wFISe95INSeZJVYqdobEyRVe3s4QkZ7NVEcBw0iOsbCSmreCeH2QSph/Oys91MqezHihMySPtcdk+tlazQ/IR6Uw5Eou5sCFJk9kD2m11oasGpqArhp94xOiHNTVd+GN9mJs6kSsnoPsJKcDkqyU1nVlnjjhCk13GiApZRSXYSarRosT0bPA6H2pLSomAbjJbQ3MWppqhsClEgN/tR8cCb1uW6Zz0pYIEShvmJwChhHVQ1+xjj2WoHnQc6NVVMzClNfMeL70+xtbicSNfhCOyGnvM91O1K1N6SWJEQQsbPez/gsg/jrD14jnOtlRUOK1VcrQZqWKjUcaYCllFJdRJr3AuDJKez3NoVZqWw3BbgaEqMP1k67GVw4ve8aGgCv20VDqv3QmACZBKvq/Yx11SA5Yw66bkcmQYkEobFyEEoXP9tr23AQJd2/86DjoRVmpZDkTJxU7dv2tTIrzc4g2EcTQbAH767zW6naEyD4VGq40gBLKaW6srPjJWX1P8ByOoQadzHpbdsHqlRDytaaFsbIbpJy+zdwsPg6UrWP/AfCjdVNlLG7X4Mq759JcGQHnxt2N1EotTiiIauJYB86UrVvieRDWy346weplIMvHIlSUdvKMal20pi8o/tcf0yul7ZghPbMsQkRfCo1XGmApZRSXThbdxPA3Wcn/J60esvJDtdAKDBAJRs6qqp2kCeNpBZP7df6uXkFNJA+4ps0tYcj+Gt34I02Q/6Ug66/31hYIzyZw4Y9zcxJsROj5B/876bc52VVR6r2EXxutte1EYoYJrADHEngO6rP9TsyCda5i60mt5HwIJRSKXWoNMBSSqku3IEaGly+Pjvh98TkjMGBITqCHwY7hKpXAyD9eFAGK5Pg1mg+kRGeSXDz3haOpsKaKJh+0PXT3C6i3nzaHakjvjZi/e5m5nt3gTj6F3z6vCxpsvtBjuBzs2aXNZByYXCbVXt1kH575T4PYKdqj4ahMbEGOFdquNAASymlukgL1tCa3PfYTj1JyZ8IQP0IzyQYjRpS6tZZE/14UAbrW/cKUzDig881u5qY6tiGQWDU5H5tU5brZZdjZKdqD0WibNjdzDTndvCNh2TPQbcZk+thU8hnncsRfG4+qmzA7RLS9n0Eow8elBdlpeJyCBvDdqr2EX5PKTVcaYCllFK2UCSKL1pLKHXUIW+bXWr1nWiqWhfrYg0pm2tamBpZT2tqEaT17zyV+6y+Rq6WXSO6CeXiLbXMd22EgqngTuvXNmU+D1tGeKr2jyobCARDjG1bCSVz+7VNea6XdpJp9xaN6HPzYUUdZ+c3Iv46KD3+oOu7nA5KczysbLObT47gc6PUcKYBllJK2SprGilkH+YgnfB7UlZYSK1JJzzCm8F9uK2WuY71mNIT+r1Nqc9DhclHMCM2Vbsxhg827WKGbETKT+r3dmU51qC6pn47REIDWML4eWdzLVMcFSSFmmDMyf3apjwBUrXXNLezsqqRC7Ls7KNl/bunynO9fFSfbA3YPELPjVLDnQZYSill27N9PUkSIWX0xEPeNj/DzQ5GkzTCU7VvXfUeudKEd2L/HpQBMlKSqE+xU7qP0G/cN+9t4ai2ZSSbIIxd2O/tynweKkwBYiLQMDL707yzeR+XZa4FBMb0L/gszEol2emw+hrVbQFjBraQcfDWxhoAjg28Z2Wd7EfmSbCCz+11fkyOZhJUaqjSAEsppWwdzft8pf3rW9SViFDrLibTPzIfkgH8wQi5lS8RxYFM/OShbdwxLtQIzST4/KrdfMq5mKg745ADrG2dqdpH3sPy7sYAH26v5Szeg7L5kJ7fr+2cDqEkJ9VK1R5otNK1jzAvrtnNOG87adXvwdHn9juxzphcD/5QhEBG+Yj8m1FqJNAASymlbJG9GwDIKJ50WNu3ppWTHamFYGssizVkPLuikk/JWzQXzAOv75C2zetI1T4CHwhDkSgvfLiOc10f4JhyAbiS+71tmc9KAAKMyLGw/rWkkmPZgM+/DaZ/+pC2HZPrZZW/I1X7yPq72V7byivr9vCj4mVINAQzP9vvbTtStdcml1i1niO0aalSw9kRBVgicquI7BSRFfbPJ7ssu1lENovIBhE588iLqpRSA8tbt4YaZz6kZh3W9tFsq4lPdN/IehgEq4/RhrcfpVj2kbHg+kPevsznZVs0n8gIe1AGeHL5Tk5reQa3aYc5XzikbbM9SQTdOfidaSOuuVdzIMR9727jlsznISULph1agFXu8/JBU5Y1McLOzd/fqcDjCHHivn9B2QIY1f8vdTr6p1U5RoOJQH1iDHCu1HASixqs240xM+2f5wFEZDJwGTAFOAv4o4g4Y3AspZQaEG3BMGOD66nL6t/YTj1JGmUNEtq0a0OsijVkvLSqiosa76fZU4pMOveQty/P9bDNFIy44DMQivDIK4v5UvJzmIln9yvVdlciQlmul2rnyEvV/rtXNjEj8D7TA0vg5O9CsveQti/P9bIlnIsR54g6Nztq23j4wx38qvBtnK27YeF3D2n7jv5pnanaR1jwqdRIMFBNBM8HHjbGtBtjtgGbgf7lZlVKqTjYsHkLJVKDFM0+7H1kFFnJMVpGWIDVHAix+ZlfMsmxA8/ZPznoYKg9Kfd52R7NH3Gp2n/5wjpubP0dKU6QM392WPsoy/GyNTKyUrWvqmrkqXdX8WvPA9bYV3MPrWYPrCaCYVwE0opHzLkJR6J8+7GPmOXYwtm198Hk8/ud+KOD0yGU+jx81GY30x1BwadSI0UsAqyvishKEfmbiGTb84qAyi7rVNnzlFJqSNq7/DkA8meecdj7KBw1ir0mi8gIStUeiRruvv9+vhh6gPrSM3FOvfCw9lPu87LNFNip2kdGpsVHP9hBwQc/40Tnapxn/bTfWeC6K/V5WBfMwzRWQbg9xqUcfLsa/HztH+/wF/cdZEXr4MI/H1ZQXuazBiSuTxkZqdojUcP3n1xF5baN3JP6eyRjNJz7u8PaV7nPw+q6JHBnjpjgU6mR5KABloi8IiKre/g5H/gTMA6YCVQDvznUAojI9SKyRESW1NTUHOrmSikVE97tr1HnyCFzzLGHvY/i7FS2m1E4G0dGn4ho1PDnfz7M56t+QIu3lOzP/rXfmc66y/QkUee2v2erG94BljGGv761mbpnbuZ613NE5nwBjr32sPdX7vOwJVKAmOiwHyds894WPvfnV/l5+884xqxBzrsTig/vnirMTCXZZadqrx3eqdrDkSjf/tdHfLj0Q17I/D88xg+XPgCenMPaX7nPy/b6Noxv7IgIPpUaaVwHW8EYc1p/diQidwPP2pM7gZIui4vteT3t/y/AXwBmz549fD89lVLDVk1jK9Pbl1JZcBo5hxlAAKQkOalxFnBU2/BvItjSHuahe37D1Xt+QzAlj+zr/w0pGUe0T5MzDmoZ1qnaA6EIv3vqHeasvIVPuJYTPuZaXGf/8rADT4DSHC8PmS6p2vMOfRy2oeCFVdXc+/hT3MX/o9RRg1xwF8y49LD353AIZTkeNoXzmRNqhZY9kF4QwxIPjt2NAW58eBm525/nRc/fcDtT4IqnYfSMw95nqc9DIBSlPb2clD1LY1hapVQsHDTA6ouIjDbGVNuTFwKr7dfPAP8Ukd8ChcB44IMjOZZSSg2UVYtf4lRpI33aIY7t1INWTxGZrW9DOHhI6bqHkrdXbqTh6Zv5QuQV9mTPZNR1D0FG4RHvNzcvn6baNDKGaYC1eEsNb/7rTr7gv4dMVzvRM3+J67jrjyi4AnssrI4Aaxg299pe28rvnl/GxA138U/X8+AdhVzyLJQdf8T7Ls/1smp3l75GwyjACkei/PODHdz/4iK+y985LXkJFBwLn74PskoOvoM+lOZYzSdrU0ooanzaalrqcsei2EqpGDiiAAv4pYjMBAxQAXwRwBizRkQeBdYCYeArxpjIER5LKaUGRHTlYwRIpmT2kQdYofRSHK0GGivBNy4GpRs8u+paeOvR2zmj+i4ypY3qqTcw+sL/Paz+Mz2xUrWPYlrtlmEzCKMxhg+21vL2y09w5q4/8F1HBU25M3Bd+hcYdXRMjlGQkYLflUGbKxPPMGruVdca5I+vrMEs+Ts/dDyJz9VEdNbVOM647bCHOuhuTK6XVzdmW08rdVugfH5M9juQIlHDsyt38feXl3Ju4z953vUKTqcTTr0N5n0FnEf66GXdSwA7HYUUdTQtHaY1n0qNREd0lxtjruxj2U+Bnx7J/pVSaqBV1zYwu+V1tuWdwqSUzCPen9NXDrshXFeBa5gEWDW1tSx56vdM3fEgl8leqjJnkXbpHYwuOrSU4wczJtdDhSlgcu3WIR9ghSJRXvhoO5tfu5/Tmx7nW44KmlILCJ71FzJmfBocsXsHHU3hqtsLGTcMBhve2eDnkbdWwdJ7+TzPU+CsJ1gyH878HxyH2d+qN+U+L9vCPkxyEjLEg89wJMrzq3fz6Mtv84mGx3nI9SYpriDM/Ayy8OYjrrXqqigrFYfA5vAoK0XzMG5aqtRIdORfoyil1DC28rVHOVNaaT/h6pjsz5t/FKyBxl2b8Y3/REz2OVC2bdtMxfO/Y9beJzhbWqnwTmXfKf9H8eyLjrjZW0/KfF7eNvm4mhcP2SaUjf4QT76zCv97f+XC8POcJ/U0po8heOJvyTj2ckhKGZDjlvm8bKsqYFzdxgHZ/5EyxrBsRwNPvfEe5Zvv53rHa6RJgLai+XDKN0ked+qA/M2U+zxEceBPK8UzRJtPNrQFeeiDSpa+8xIXBJ7kPueHSJITmXYRsuCmmNV0dpXsclCYlcqqQJo1Y4ieG6USlQZYSqmEZYwhfcO/qHPkkD/zrJjsM2d0GUHjxL93aPYzMsawYum7tLz+O45reZVSoqzNOpm20/6b8mknD+ixy31eHojmW9nyGnZA7lEDerxDsaO2jadffYO8NX/jUt4kVYLUFcwneuqNZI4/LaY1Vj0p93lYsyWX00KvQ7ANkj0Derz+CkWiPL+qmkVvvMhJtY/yY+cHiEton3ghnPx1PEeQqKE/ynOtpnB17mI8tUPrntq0p5n73tlM0/KnuUKe50uODYRS0pE5X8cx74sx6bfYl9IcD+sbI5CarZkElRpiNMBSSiWsdZu3MSe0lE1jryLH4YzJPkt86ewyuUhdRUz2FyvBUIT3X32ClCV/Yk54KX7crC28iLJzvsm04th/w96TbE8Se5M7UrVvjXuAZYxh2fY63n7pCaZXPsjXnMsJOZJpmXAhqad+g5z8KYNWlrJcLx+E8yEZa5ywQTx2Txragjy8eAtV7zzKRaFn+JVjM0F3OtFjv0LyCV/Ckzk4Q1sWZKTgdjmochRSXPs+RKMDHuz2JRo1vLmphoffWkVJxePc4PoPxc59BNNL4IT/I+mYK8GdPihlKfN5eGnNHigYpzVYSg0xGmAppRLW9jfvY7JEKFl4Xcz2OTozhcXkMba58uArD4L6plaWPH8PZevv4UQqqJMsVk34GuPP+QYzM/MGtSwiguSMhTrimqo9HIny0sodbH7t75ze+AQ3OnbQmpJN87HfJn3BF8lOG9zzAlYN1iNdU7XHKcDavLeFh99cQeqqB/is/IfRUkdr5hiiC35N8szPgDttUMvjcAjlPi+bwqOYFw5A8y7ILB7UMgC0BcM8sWwnL739Dqc2PsntrrfwJAUIlZwAJ/w/kieeDTH6kqa/SnO81LYGCWWNIanyvUE9tlKqbxpgKaUSUigSpazqGXa4j6K0LHbJHFxOB3VJo5nh/zBm+zwc26p2seH53zNz58OcLnVUucrYcOz/MeG068gZoH5E/ZGdW0hrXSreOARYzYEQT7/zEYH37ub80PN8UpqozziK9pPvwDvz0gHrX9Uf5T4vFXFK1W6MYdHmfbzw2htMqXyIbzrfJtURpLX4RDjp63iPGvgmkn0pz/Xw0S4fV4IVfA5igFXd6Oe+dyrY+sFzXBp5ln84lxNJToKpF8PxXyJpgJtI9qXMZzUjrU8pYVTTvyDkh6TUuJVHKfUxDbCUUgnpww/e5QS2snHS92O+71ZvCelNL0N7y6B+42+MYfmqVex75Xec0PgcYyTAprRjCJ/8O4rnnDcgSQgOVXmul23r85k8iKnaq+rbePaV18hbfQ+f5m3cEqJm9MlETruJ7HELh8R5GZ2ZQrvTS0tSDmmD1J8mEIrw9PJKVr7xBGc0P8nPnCsJJ7sJT70U5n8Zb/7kQSnHwZTnenlxfQ4kYQWfYwe2ryDA8h313P/2BtzrHuMaxwtMdFQR8vowx30X5+zPQXr+gJfhYDrGwtrlLGQUQN02GCLXTKlEpwGWUiohNb9/P2EcjDklNtkDu4pmlkIT0LB9UJp6hSJRFr31CvLenSxofxsENuWdQcFZ32b8UbMH/PiHojzXS4XJZ8K+LQx0DsHl2+t496VHmVb5IDc4VhJ0uGmeeAnuT9xIXt6EAT76oXE5HZRke9gdLuKoAa7d29sc4OFF62n54AEujTzLpY5q/J48wsf/ENec63B5fQN6/ENV7vOyI5JFNCUFxwAGn+FIlBfX7ObJN5cwc8/j/Mj5KtmuZoK5U2DBD0iaetGQGsy31K7B2hIpYCZYwacGWEoNCRpgKaUSTmNLgJn1/2Fr1jwmZBbEfP9JvnKohPaabbgHMMBqbG3nnRf/Sf7qv3KKWU0rqWwcexVjz/1vJvnKBuy4R6LM52WxycfVtBQi4ZgMutpVJGp4dVUFW1+5h080PsFXHDtpdufSNOdmMhZcj8+TE9PjxVKZz8PW6nyOql01IPtfs6uRJ15/n/z1/+Bqx6tkShstedMwJ99G6uQLhmTafLACLGOnah+IpqWNbSEe/nAHHyx6mXMDz/Bn52KcriiRCWfDCV8huWz+kKjl7C4jJYlR6W6WNqdwEWgmQaWGEA2w+rD8P/eR+uGfCCRnE0rxEfHkYjx5OL0+kr1ZpKRn48nIxpORQ1qGD7c3AxnkTq5DTTQSJRKNEI1GiEas35FoBBONgjEH30Gfq5heXsdCb/88pe/FHWt1Lu95xV43tzfsz/9u6eFVz2Xo5RgHeRMHew/w8SU09vk3xtrQdC6353dbn/22ky776Xs7g+m2ffffptv6+++v+59Jx+yN7z/PJ6Se1lmf7fW9Hon00UfBCmiq3kTe1Njvf/ueWj567i9M2f4PPim72OfMY9O07zHuzC8zOfXIB0seSGNzvTwQLcJhwlC7OWZjBLW0h3n2nWUE3v0L54Ve4AxpoTbzaAIL/0T6jIuHbPDQ1bi8ND7aOoozgnugrQ5iEAxGooZX1+7m7Tee57g9j3Kz4wMcTmg76hw46WuklcwdksFDV2PsVO37Usrw7l0bs/1urWnhvkWbaVz2JFfI83zRsZGw24vj2OuR476IK2dMzI41UKYWZbJ0jx88uZpJMA6MMYQiBn97kECgjWCgjfZAG+H2ANFwOyYUIBoKQChA1EQwkXDns1E0Yj0bmWgYMVGEKGKiOIhg/fNyICIYEUBAHBgR63+5WNMgiAiI057ltKYdDgRBxNFlntOadlr7FXEiDgeIA4c4wGH9Fof143A4QJzWbwSHw2mt07nc2l7EmudwOBBxgtOBQ5w4HHSu43A47R9rfcQx5D93jpQGWH0QRxJhp5uMwE4y2taSVduES6K9rh81QjOptIubkCQTkmTCjmQi9u+Qw01EkjHixNh/uJ03iTg7bx6DgyiCGAOdN50B+3fHTWgtM11ed8zvWCcCxt6bsaY71v/4Rrb24TDWDe3Yb561Xue0/drRZZnTnhaM9VrMoPWrUOpwlQDNeCg/4eIB2f+o/CIajYf23etjtk9jDB9t2Mz2/9zJ/LonOE+aqEodT9UJd1A8/7PkOpNidqyBlO1NZrd3EoSAXcuPOMCqbvTz/Esvkbvmr/yXeQeXRKkpOpXIaTfhG7NgWP0Tn1acycPvjgEnsGsZHHXaYe+rtT3MYx9sZfuihzjP/zT/49hCuzuNyDFfxnXCF0nLKo1dwQdYfoYbT7KTjc7xlNW/DK21cJjNGI0xvLullofeXEnh1ke53vUyRc59BNNLYf7Pcc28HFIyYvwOBs6Uwgze3FhDdOxYHENsnLChzh+M0OAP0tTcTFtDDYGmGkLN+4i07MO01WH8jZj2FhzBZpzhVpLDrbijbbijbXhMG6nGjxc/KQTJlAhD+6ut4SVqDvzcvjdyJqMuuZ1zpw/s+HKxogFWH2ae/lk4/eNvuKORCE0N+2iu301bUz3+5nraWxsIt9YTDTTibG/GEWyCcABHOIBE2nFEgjij7bgiQTyRNpKiQSto6Qh2iNrBiv26M5AxXUIb6QxjotIRznw8z4hjv9cf/7bmIw4i4sBIsl3b4LQCOXHa61rTiBMjDsCBcVjbY3/TYLoEg8YOBrG/8TDi7PKNhL3MYf0Wx/7B45HrUo8To+em3ivW+ldL1rG99HP9A/Z/SBV7vaw8wO/BqneiY6WPfxlzQM1Xb9dFuv3uaV3pZUH3XR6wXWeZ+le7J0Da2LmkJw9Mxq0Sn4c10XLG1xx5U6/2cIR3Fr1GdPGfOdH/BjMlxJbsE3Cc9k2Kp3xiWAUQHdKLj6ZtWwqeXctg5mcOeXtjDEu31bD8lYeZWvUQn3OspV1SaJx0BXmnfYN837gBKPXAm1GcxQ+iYzAIUrX0sAKsin2tPP7WMtwr/8HF5mUKpJ6WjHIiJ/4K98zPDnqa9VgQEaYVZfJaSwmnA+xcChPOOKR9tLaHeWrFTt56+01OaniKX7kWkZrUTrBkAcz/MskTzhr0NOuxMKUwg0jU0JBaSs7ud+JdnLgLhCLUNLdT29BI874q/HW7CDXsgubdOFv3kBLYize4D2+kkQxayKGZ0dLe6/7COGkTDwFHKkGHh/YkLyFnNi2uYhqTvESS0sCVCkkpOJJScCS5cSalIEkpSFIqON3WMlcy4nThdDoRhwun04HT6cLhdFnPTw5n53Nbx7OYsb88N/aX7dY/amONBYfpnG+MIRo1GBPBGGPXitmvO9bpmI5GMCZqrWPv00StL+ONiWCiHfuMdq7HfuWIQNR0KVvUmmfA2Ms61t+/7N1+MHbFwYF6ew7JTp/K+FGDM8ZcLGiAdQgcTicZvnwyfPHPHqSUGrry0tz8xzWOOc3/gUgIDqN2aVddMx+++ADFG//BqazFj5uK0gspPftGxhXGdxDaIzWj1MeyzeOYt+WtQ/on5A9G+M8HK2lY9DdO9z/HbKmlMSWfhjk/ImvB58hLzR6wMg+GMp8HZ2om1cljKdz2Jiz8br+2i0YNb27cy6I3XmDqzkf5mmMxyRKhqfgkOPmrpB11elzTrMfCcWNy+Nvr+fzMk4xse7PfAdbWmhYeeG8L9cue4pLIi1zuXEsk2Y2ZehGc8GWSC6YNcMkH1rTiLAC2RAvIaa6GYCske+NbqAFijKGuNciu+jb27d5B656tBGu3I02VpLbuJL19N3mRveRLPSXSdsD2YZw0OHNoSc4l6C6kJSWbFo8P8eTgTMslKS2XlMw8UjPz8GaNwunJxuVykyHC8KnTVEOFBlhKKRVjIkJb3kyS9v7bagZXMrdf20WihqUrllHz9t85pu45zpc6alwFbJ1+M+WnfZGJnuEdQHQ4eUIeT7xyDAtq77cGHM4Z2+f6m3Y38t7rz5Kz4SHONu/hljC7c4+jfeFvyZx8bswTZcSLiHDShDye3TiLL+x4AmmpgT4GPd7TFOC5D9dT+/4jnBl4gR85ttGe7CU8/TqS599ARu5Rg1j6gTVvrI87XkuhJnceo9b9G874315rb4PhKK9v2MuLi96nZMczfMH1GqOljvbMYsy823Aec2VM+rcNBUVZqUzIT+OdukzmgHU/DeOgMRI17Kz3U7F7H3WV62nfsxGp24q3bTvZwd0UmhomSC3TJLzfds2ODBrdBbR7x7M3bTT7MgpwZxfh8RWSnltMUlYRrtQcch0OcuP03lRiGRn/lZRSaohJmXg6oT0/w7/iaTIOEmBt3bmHta8/RP6Wx5hrVhFF2JZ1HPsWXE/esReQNwybLvVl8ugMbklbQKT9QZwf3gNn/vSAdWpb2nn9vcWElj3EgtZXuMpRg9/hoX7C5eR/4isU5E2MQ8kH3jnTCvjNyrlc734MPvgLnPqD/ZYHQhFeXVPF+nefZUL1v/msYwkpEqIp8yjCC36Ne+ZnhmUzwIOZOyaHUelungjN44aGt2D9czDp3M7lxhhWVjXy3IfrCax6hrPDr3O7cy0kQbD0JDjhS7gnnDksmwEezOmT83nlrTRuTAJqNgz5ACsaNexpDlCxp559lRvx796Aqd2Kp3kbvvYqyqWak6Ruv20andk0pxURTJvJzqxSUnLLSS8YQ9qoMUhWKenuNIZP4zGVCDTAUkqpAXDasRN4582pzFn5Tzjje+De/9//lqrdbHnnMbxbnuPY9g8ZKyFqXAVsmPANyj/xOcYN0TTrseBwCJ9cMJcnX1rAhYvvwlE8h+iEs9levZcNK96lfdMbHN34Nhc7KokiVOceR/O8n5A+8wJSR2jzpw6fmJTPL30TedU/n1MX3U44s5SdWXPYWFFJ9fr3ydnzLifLcs6RNvzuDIKTLidl3tVkFM4alv3x+svldPC5BWP45QttXJZTTua/b6QxKKwNjWLdhg20blvCzPYlfMuxlmSJ0JZZSmT2D3DOvIzkYZTQ43CcM62QP79eRDA1jeRtb8G0gUnecyiMMdS2BqnY28Seyk20Vm/E7NtESlMFOe2VlJpq5koNTvm4v02LI53GjDKCmfOpyhtPetFEMoqORnzjyHSnaxIJNayI6b2H/8E3FnkE6PgaMQtoMMbMFJFyYB2wwV622Bhzw8H2N3v2bLNkyZLDLo9SSg0lv7znAb5T+RX25syhZdoV1LaGaa1ciW/fBxwd3kiSRKhz5FBdeDqFx19G9qSFw76vTH+FIlFuuPs1btr1TaY6KvZbFsHBzvSZpEw9l1HzLoPMovgUMk4+qmzgy/e8yp3RnzHLsXm/ZS2uLFrLTiNv9oU4xp8+pAa+HWihSJQv3r+U7RuWc1/yLyiWffstb/KW455yLu6p51nNckdwwNmVMYbZ//sKf0u9gxmOLXDjqkGrqWv0h6ioaWZ31Vaad24gum8TyY0VZAZ2UBKtplT2kCyRzvX94qE+tYRgxhgcuUeRVjSRrKJJOHLHjZhmmyqxiMhSY8zsA+YfSYDV7QC/ARqNMbfZAdazxphDGgFGAyyl1EhS29LO/X/6KZ9v+TNpEgAgYoQK90TaCo9n9JzzyZ10csIEVd0Fw1H+vbyC6OqnyQvtIjszjYIJs8k/+gQY5gkrjlRNczsvr9mJd+e7FEotRfm5FEyYi8M3LmH/XsBO6LGpho1VexnXvJQyT4Cy4lKSS2ZBeuwHDR8uvvWvj4iseoLbHb+DS+6HyefFZL8dzfm21zSxb+c2WvZsI1K7hZSmbWT5d1AUraZcdpMioc5tgpJMvbsYf3o54huHp3Ai2SWTcOWOh7RRCRP4qsQwoAGWiAiwAzjVGLNJAyyllLJEoobV23bRXlvBqLQkisZMIilVewsopWJnza5Gzv/9m7yb/n3yUqLIdS9CP5pGBkIRqhvaqNlTTUPNTtpqq4g0VOFqriS1bRdZwd0UUkMBdfuNAxrGRb27kNa0cvCNI7VgAtnFR5OcPwHSCxP6SwCVWAY6wDoJ+G3HAewAaw2wEWgCfmiMeftg+9EASymllFLq0P2/Vzbx0qv/4VH3T3FLmG25J9PgHUsAN6FIlGigGdqbcASbcQcbyIzUkUMDeTSS1KUZH1jNdBudubSkFhLOKMaZXUZafjmZo8fh8o2FzJIRk71TqSNx2AGWiLwC9FTv/gNjzNP2On8CNhtjfmNPu4E0Y0ytiBwLPAVMMcY09bD/64HrAUpLS4/dvn37Ib0xpZRSSikFz67cxX/eeo/j9z7MQllCYZdsfFHEHjTXS7srHb87j5BnFJKWT3JWAWm5xWTmFePOKYaMosMav0+pRDNgNVgi4gJ2AscaY6p6WecN4FvGmD6rp7QGSymllFLqyLWHI4SD7aQ4ojgFSPJo0z2lYqy3ACsW9bunAeu7BlcikgfUGWMiIjIWGA9sjcGxlFJKKaXUQbhdTtwuT7yLoVRCikWAdRnwULd5JwG3iUgIiAI3GGPqDthSKaWUUkoppUaQIw6wjDHX9DDvceDxI923UkoppZRSSg0n2hhXKaWUUkoppWIkZgMNx4KI1ABDLY1gLrDvoGupkUKvd+LQa5049FonFr3eiUOvdWIZite7zBiT133mkAqwhiIRWdJTdhA1Mun1Thx6rROHXuvEotc7cei1TizD6XprE0GllFJKKaWUihENsJRSSimllFIqRjTAOri/xLsAalDp9U4ceq0Th17rxKLXO3HotU4sw+Z6ax8spZRSSimllIoRrcFSSimllFJKqRjRAEsppZRSSimlYkQDrD6IyFkiskFENovI9+JdHhU7IlIiIq+LyFoRWSMi37Dn54jIyyKyyf6dHe+yqtgQEaeILBeRZ+3pMSLyvn1/PyIiyfEuo4oNEckSkcdEZL2IrBOR4/XeHplE5Cb7M3y1iDwkIil6b48cIvI3EdkrIqu7zOvxXhbLHfZ1Xykix8Sv5OpQ9XKtf2V/jq8UkSdFJKvLspvta71BRM6MS6H7oAFWL0TECfwBOBuYDHxGRCbHt1QqhsLAN40xk4F5wFfs6/s94FVjzHjgVXtajQzfANZ1mf4FcLsx5iigHvhcXEqlBsL/A140xhwNzMC67npvjzAiUgR8HZhtjJkKOIHL0Ht7JLkXOKvbvN7u5bOB8fbP9cCfBqmMKjbu5cBr/TIw1RgzHdgI3AxgP69dBkyxt/mj/dw+ZGiA1bu5wGZjzFZjTBB4GDg/zmVSMWKMqTbGLLNfN2M9gBVhXeP77NXuAy6ISwFVTIlIMXAO8Fd7WoBTgcfsVfRajxAikgmcBNwDYIwJGmMa0Ht7pHIBqSLiAjxANXpvjxjGmLeAum6ze7uXzwf+YSyLgSwRGT0oBVVHrKdrbYx5yRgTticXA8X26/OBh40x7caYbcBmrOf2IUMDrN4VAZVdpqvseWqEEZFyYBbwPpBvjKm2F+0G8uNVLhVTvwO+A0TtaR/Q0OWDW+/vkWMMUAP83W4S+lcR8aL39ohjjNkJ/BrYgRVYNQJL0Xt7pOvtXtbntpHtOuAF+/WQv9YaYKmEJiJpwOPAjcaYpq7LjDWGgY5jMMyJyLnAXmPM0niXRQ0KF3AM8CdjzCyglW7NAfXeHhnsvjfnYwXVhYCXA5sYqRFM7+XEICI/wOra8WC8y9JfGmD1bidQ0mW62J6nRggRScIKrh40xjxhz97T0aTA/r03XuVTMTMfOE9EKrCa+p6K1Ucny25WBHp/jyRVQJUx5n17+jGsgEvv7ZHnNGCbMabGGBMCnsC63/XeHtl6u5f1uW0EEpFrgHOBy83Hg/cO+WutAVbvPgTG29mIkrE60z0T5zKpGLH74NwDrDPG/LbLomeAq+3XVwNPD3bZVGwZY242xhQbY8qx7uPXjDGXA68DF9ur6bUeIYwxu4FKEZloz/oEsBa9t0eiHcA8EfHYn+kd11rv7ZGtt3v5GeAqO5vgPKCxS1NCNQyJyFlYzfvPM8a0dVn0DHCZiLhFZAxWYpMP4lHG3sjHwaDqTkQ+idV3wwn8zRjz0/iWSMWKiCwA3gZW8XG/nO9j9cN6FCgFtgOXGGO6d7BVw5SILAS+ZYw5V0TGYtVo5QDLgSuMMe1xLJ6KERGZiZXQJBnYClyL9YWi3tsjjIj8BLgUq/nQcuDzWH0x9N4eAUTkIWAhkAvsAX4MPEUP97IdZN+J1Uy0DbjWGLMkDsVWh6GXa30z4AZq7dUWG2NusNf/AVa/rDBWN48Xuu8znjTAUkoppZRSSqkY0SaCSimllFJKKRUjGmAppZRSSimlVIxogKWUUkoppZRSMaIBllJKKaWUUkrFiAZYSimllFJKKRUjGmAppZRSSimlVIxogKWUUkoppZRSMfL/AUBf85oIsa3/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -954,31 +954,31 @@ " 30\n", " True\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " bAP.soma.v\n", - " 0.0237\n", - " 1.91e-06\n", + " 0.00663\n", + " 8.57e-06\n", " \n", " \n", " 31\n", " True\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step1.soma.v\n", - " 0.101\n", - " 3.73e-06\n", + " 0.0707\n", + " 3.9e-07\n", " \n", " \n", " 32\n", " True\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step3.soma.v\n", - " 0.092\n", - " 1.6e-06\n", + " 0.0723\n", + " 1.11e-06\n", " \n", " \n", "\n", @@ -986,14 +986,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "30 True 0 0.0969 0.0153 bAP.soma.v \n", - "31 True 0 0.0969 0.0153 Step1.soma.v \n", - "32 True 0 0.0969 0.0153 Step3.soma.v \n", + "30 True 0 0.12 0.0406 bAP.soma.v \n", + "31 True 0 0.12 0.0406 Step1.soma.v \n", + "32 True 0 0.12 0.0406 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "30 0.0237 1.91e-06 \n", - "31 0.101 3.73e-06 \n", - "32 0.092 1.6e-06 " + "30 0.00663 8.57e-06 \n", + "31 0.0707 3.9e-07 \n", + "32 0.0723 1.11e-06 " ] }, "metadata": {}, @@ -1001,7 +1001,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADp2UlEQVR4nOzdd3ydddn48c91RnJO9k6b0SYUuhsKtAWkZSpLhoBSkFVQeUBRQAEVFauPPr/nQRRlCKIICljK3nuUUlYHdA+60qY7zV4nZ31/f9x30tM0sznJSZrr/XqdV869vvd17nNOcl/5LjHGoJRSSimllFKq9xyxDkAppZRSSimlDhWaYCmllFJKKaVUlGiCpZRSSimllFJRogmWUkoppZRSSkWJJlhKKaWUUkopFSWaYCmllFJKKaVUlGiCpZRSA4SIFImIERFXrGM51InILBFZEOs4BhoRmSEi62Idh1JKDWaaYCmllBrURGS2iAREpD7icVus4xqMjDEfGmPGRLtcEXlIRNaJSFhEZkW7fKWUGkj0v6RKKRUlIuIyxgRjHccQNdcYc3msg+grh8BnaxkwF/i/WAeilFJ9TWuwlFKqF0SkVER+KiLLgQYRcYnIcSLysYhUi8gyETk5Yv95IvL/RGShiNSKyIsiktFB2VeLyBoRqRORTSLyX222ny8iS+1yNorImfb6VBF5WER2ish2EfmdiDi7eB2jROQ9EakQkb0i8oSIpEVsqxSRo+3lPBEpb3ldInKeiKyyX+88ERnX5vrcIiLLRaRGROaKiKfnV7rnRORn9nWpE5HVInJBB/uJiNwtInvsa7lCRCba2+JF5C4R2Soiu0XkQRHxdvP8j9r7v23H8IGIjIzY/hcRKbPPuUREZkRsmy0iz4jI4yJSC8wSkWki8ol9nXeKyH0iEhdxjBGR74vIevt8/22/dx/b53gqcv8OYj5ZRLZ15/X1hDHmfmPMu4Av2mUrpdRAowmWUkr13qXA14E0IBd4FfgdkAHcAjwrItkR+18JXAMMB4LAPR2Uuwc4B0gBrgbujkhypgH/Bm61z3siUGof96hd7uHAUcDpwHe7eA0C/D8gDxgHFAKzAYwxG4GfAo+LSALwCPAvY8w8ERkNzAFuArKB14CX29zIXwycCRQDJcCsdgMQmW4nDx09pnfxGtraCMwAUoHf2PEPb2e/07Gu32h734uBCnvb/9rrJ2Ndz3zgjh7EcBnw30AWsBR4ImLbIrvcDOA/wNNtks/zgWew3t8ngBBws13W8cBpwPfbnO8M4BjgOOA24CHgcqz3cyLWZ/Wg2YlyR+/PX3tTtlJKHSo0wVJKqd67xxhTZoxpwrqZfc0Y85oxJmyMeRtYDJwdsf9jxpiVxpgG4FfAxe3VMBljXjXGbDSWD4C3sBIGgO8A/zTGvG2fZ7sxZq2I5NrnuskY02CM2QPcDVzS2Qswxmywy2o2xpQDfwJOitj+d2AD8BlWYvgLe9NM4FX72ABwF+AFvtLm+uwwxlQCL2MlFe3FsMAYk9bJo7NBKS5uc7OfZ4x52j5v2BgzF1gPTGvn2ACQDIwFxBizxhizU0QEuBa42RhTaYypA/6nq2vZxqvGmPnGmGasa3a8iBTar/dxY0yFMSZojPkjEA9E9n/6xBjzgh1/kzFmiTHmU3v/UuBvRLxHtjuNMbXGmFXASuAtY8wmY0wN8DpWwn3QjDElnbw/bZM9pZQakrQPllJK9V5ZxPORwLdE5NyIdW7g/Q7232Jvz2pbqIicBfwaqwbFASQAK+zNhVi1RW2NtMvbaeUHYB9b1s6+kefKBf6ClcAl28dUtdnt78BLwLV2wgBWjdeWlh2MMWERKcOq6WmxK+J5o31MtD3Vtg+WiFwJ/Bgoslcl0c51Nsa8JyL3AfcDI0XkOayaRw/WNV8ScS0F6LS5ZRut190YUy8ilVivv0xEbsFKlPMAg1VTmdXesfbrGY2V+E6x43IBS9qcb3fE86Z2lof1IHallFIHQWuwlFKq90zE8zKsGqrI/+wnGmP+N2KfwojnI7BqUPZGFigi8cCzWDVCucaYNKyEquVOvwwY1U4sZUAzkBVx/hRjzIQuXsP/2K9jkjEmBasmbl9WIZIE/Bl4GJgt+/qN7cBK6lr2E/v1be/ifAcQa4jw+k4eM7oupbWskVgJ4Q1Apn39Vka+pkjGmHuMMccA47ES2lux3pMmYELEtUw1xiT14GW1vtf2NcwAdtiv5Tas5ojpdnw1beKL/FwBPACsBY6w36PbO3o9fUWsvnYdvT8P9mcsSik1UGmCpZRS0fU4cK6InCEiThHx2AMHFETsc7mIjLf7M/0WeMYYE2pTThxWk7FyIGjXZp0esf1h4GoROU1EHCKSLyJjjTE7sZoS/lFEUuxto0SkbVOytpKBeqBGRPKxEoxIfwEWG2O+i9XHrOVm+ing63YcbuAnWAnex11dqLbsIcKTOnl82IPiErESlHKwBgzB6oN0ABGZKiLH2vE3YA3EEDbGhLGStLtFJMfeN19Ezog41kjEICbtONvuWxaH1RfrU2NMGdb1DtrxuUTkDqwarM4kA7VAvYiMBa7vYv+oM8ZM6OT9ua6j40Qkzu5fJoDb/l7oPYhS6pCkv9yUUiqK7Jvn87FqF8qxapRuZf/ft49hDUSxC6sZ2o/aKafOXv8UVlO9b2M1z2vZvhB74Ausmo8P2FeTdCVWgrbaPvYZrH5TnfkNcLRd1qvAcy0bROR8rEEqWm7ofwwcLSKXGWPWYdV23YtV43MucK4xxt/F+fqUMWY18EfgE6xmcpOAjzrYPQUrkarCau5YAfzB3vZTrL5nn4o1mt872P2k7L5Udexrttme/2A186zEGnyipRnjm8AbwJf2OX100YwTq9nit+1z/h1r2PPB4i2s2sCvYA280YQ1sIhSSh1yxJi2LRCUUkr1FRGZBzxujPlHrGNRvSMil2M1H/x5B9sfBbYZY37Zr4EppZSKKR3kQimllDoIxpjHYx2DUkqpgUebCCql1BAh1qS3OjjBECcit3fwOXg91rEppdShQJsIKqWUUkoppVSUaA2WUkoppZRSSkXJgOqDlZWVZYqKimIdhlJKKaWUUkp1asmSJXuNMdlt1w+oBKuoqIjFixfHOgyllFJKKaWU6pSIbGlvvTYRVEoppZRSSqko0QRLKaWUUkoppaJEEyyllFJKKaWUipIB1QerPYFAgG3btuHz+WIdihoAPB4PBQUFuN3uWIeiDjGN/iA/+PcnXDU6yMknnhLrcJRSSik1SA34BGvbtm0kJydTVFSEiMQ6HBVDxhgqKirYtm0bxcXFsQ5HHWIWbq7kW1t+y8nbFmKOXIWkFsQ6JKWUUkoNQgO+iaDP5yMzM1OTK4WIkJmZqbWZqk9UVFVztnMhAOULn4lxNEoppZQarAZ8ggVocqVa6WdB9ZW66vLW5/41b8QwEqWUUkoNZoMiwVJKqb7WWF8LQAMeMqpXQDgc44iUUkopNRhpgtUNIsJPfvKT1uW77rqL2bNnxy6gCCeffHKnkzN/4xvf4Ljjjttv3ezZs8nPz2fy5MlMnDiRl156qa/DVGrg89cDsD7haBLC9VC5McYBKaWUUmow0gSrG+Lj43nuuefYu3dvVMs1xhDuw/+SV1dXs2TJEmpqati0adN+226++WaWLl3K008/zTXXXNOncSg1GDgCTQDUD7f+IdG4ZUksw1FKKaXUIKUJVje4XC6uvfZa7r777gO2lZeXc9FFFzF16lSmTp3KRx99BFi1RHfddVfrfhMnTqS0tJTS0lLGjBnDlVdeycSJEykrK+PWW29l4sSJTJo0iblz5wIwb948Tj75ZL75zW8yduxYLrvsMowx7cb32GOPtdZGLVy4sHX9c889x7nnnssll1zCk08+2e6x48aNw+Vy7Zc8/uxnP2P8+PGUlJRwyy23AFBaWsqpp55KSUkJp512Glu3bgVg1qxZXH/99Rx33HEcdthhzJs3j2uuuYZx48Yxa9as1jKvv/56pkyZwoQJE/j1r399QBw1NTWMHDmyNdFraGigsLCQQCDQbtxKRZsj2AhAUvEUgsZBxeZlMY5IKaWUUoPRgB+mPdJvXl7F6h21US1zfF4Kvz53Qpf7/eAHP6CkpITbbrttv/U33ngjN998M9OnT2fr1q2cccYZrFmzptOy1q9fz7/+9S+OO+44nn32WZYuXcqyZcvYu3cvU6dO5cQTTwTgiy++YNWqVeTl5XHCCSfw0UcfMX369APKa2xsZOnSpcyfP59rrrmGlStXAjBnzhzuuOMOcnNzueiii7j99tsPOPazzz7D4XCQnZ0NQEVFBc8//zxr165FRKiurgbghz/8IVdddRVXXXUV//znP/nRj37ECy+8AEBVVRWffPIJL730Eueddx4fffQR//jHP5g6dSpLly5l8uTJ/P73vycjI4NQKMRpp53G8uXLKSkpaY0jNTWVyZMn88EHH3DKKafwyiuvcMYZZ+h8V6rfOO0Eq2B4HltMLq49a2MckVJKKaUGI63B6qaUlBSuvPJK7rnnnv3Wv/POO9xwww1MnjyZ8847j9raWurr6zsta+TIka39ohYsWMCll16K0+kkNzeXk046iUWLFgEwbdo0CgoKcDgcTJ48mdLS0nbLu/TSSwE48cQTqa2tpbq6mt27d7N+/XqmT5/O6NGjcbvdrYkXwN13383kyZO55ZZbmDt3buvofKmpqXg8Hr7zne/w3HPPkZCQAMAnn3zCt7/9bQCuuOIKFixY0FrWueeei4gwadIkcnNzmTRpEg6HgwkTJrTG/NRTT3H00Udz1FFHsWrVKlavXn3A65g5c2ZrDd6TTz7JzJkzO72OSkVTS4KVmZ7GJikksWZ9jCNSSiml1GA0qGqwulPT1Jduuukmjj76aK6++urWdeFwmE8//RSPx7Pfvi6Xa79+TZFzNyUmJnbrfPHx8a3PnU4nwWCw3f3aDl0uIjz11FNUVVW1TshbW1vLnDlz+P3vfw9YfbBamv+1jXvhwoW8++67PPPMM9x3332899573YrT4XDsF7PD4SAYDLJ582buuusuFi1aRHp6OrNmzWp3LqvzzjuP22+/ncrKSpYsWcKpp57a6XmViiaXnWBJfDJViaPIaFwMAR+4PV0cqZRSSim1j9Zg9UBGRgYXX3wxDz/8cOu6008/nXvvvbd1eenSpQAUFRXx+eefA/D555+zefPmdsucMWMGc+fOJRQKUV5ezvz585k2bVqP4mqp9VmwYAGpqamkpqYyZ84c3njjjdZ+X0uWLOmwH1ak+vp6ampqOPvss7n77rtZtszqh/KVr3yl9fgnnniCGTNmdDu+2tpaEhMTSU1NZffu3bz++uvt7peUlMTUqVO58cYbOeecc3A6nd0+h1K95QrZSb87gUDmaByEoUJrsZRSSinVM5pg9dBPfvKT/QaEuOeee1i8eDElJSWMHz+eBx98EICLLrqIyspKJkyYwH333cfo0aPbLe+CCy6gpKSEI488klNPPZU777yTYcOG9Sgmj8fDUUcdxXXXXcfDDz9MaWkpW7Zs2W949uLiYlJTU/nss8/aLePss89mx44d1NXVcc4551BSUsL06dP505/+BMC9997LI488QklJCY899hh/+ctfuh3fkUceyVFHHcXYsWP59re/zQknnNC67Y477thvmPiZM2fy+OOPa/NA1e/c4UbCCLi9xA23asvry1Z2cZRSSiml1P6ko5HpYmHKlCmm7ZxOa9asYdy4cTGKSA1E+plQfeGl/7uKr/nexPvrXcxbtY3pT01iz5HXk3fh/8Q6NKWUUkoNQCKyxBgzpe16rcFSSikgLtyEX6z+ViNz09lmsgnu1cmGlVJKKdUzvU6wRKRQRN4XkdUiskpEbrTXzxaR7SKy1H6c3ftwlVKqb8SFfTQ7vAAUpHvZSi5xNaWxDUoppZRSg040RhEMAj8xxnwuIsnAEhF52952tzHmrk6OVUqpAcEd9hFwWjVYbqeDirh8UprmgzHQZqROpZRSSqmO9LoGyxiz0xjzuf28DlgD5Pe2XKWU6k8uEyDkiGtdbkoaQUK4AZqqYhiVUkoppQabqPbBEpEi4CigZai6G0RkuYj8U0TSOzjmWhFZLCKLy8vLoxmOUkp1m9MECDv2VeqbDGsOOVOh/bCUUkop1X1RS7BEJAl4FrjJGFMLPACMAiYDO4E/tnecMeYhY8wUY8yU7OzsaIWjlFI94jBBjMPduuzJOQKA+l06F5ZSSimlui8qCZaIuLGSqyeMMc8BGGN2G2NCxpgw8HegZ7PnDjAvvPACIsLatWs73Ke0tJSJEydG7ZyzZs3imWee6XD7TTfdRH5+PuFwuHXdo48+SnZ2NpMnT2b8+PH8/e9/j1o8Sh3KXCZIOKKJYGaBlWDV7fgyViEppZRSahCKxiiCAjwMrDHG/Cli/fCI3S4ABvWMnXPmzGH69OnMmTOn3e3BYLDX5wiFQt3eNxwO8/zzz1NYWMgHH3yw37aZM2eydOlS5s2bx+23387u3bt7HZtShzoXQUxEE8HC3Ex2mAwC5dpEUCmllFLdF40arBOAK4BT2wzJfqeIrBCR5cApwM1ROFdM1NfXs2DBAh5++GGefPLJ1vXz5s1jxowZnHfeeYwfPx6wEq3LLruMcePG8c1vfpPGxkYA3n33XY466igmTZrENddcQ3NzMwBFRUX89Kc/5eijj+bpp58+4NzvvPMOU6ZMYfTo0bzyyiv7nXvChAlcf/31HSZ9OTk5jBo1ii1btrSuu+eeexg/fjwlJSVccsklAFRWVvKNb3yDkpISjjvuOJYvXw7A7Nmzueqqq5gxYwYjR47kueee47bbbmPSpEmceeaZBAIBAH77298ydepUJk6cyLXXXkvbyavD4TBFRUVUV1e3rjviiCM08VMDhjEGV5smggXpXraYYbh0qHallFJK9UCvh2k3xiwA2hvD+LXeln2A138Gu1ZEt8xhk+Cs/+10lxdffJEzzzyT0aNHk5mZyZIlSzjmmGMA+Pzzz1m5ciXFxcWUlpaybt06Hn74YU444QSuueYa/vrXv3LDDTcwa9Ys3n33XUaPHs2VV17JAw88wE033QRAZmYmn3/+ebvnLi0tZeHChWzcuJFTTjmFDRs24PF4mDNnDpdeeinnn38+t99+O4FAALfbvd+xmzZtYtOmTRx++OGt6/73f/+XzZs3Ex8f35rw/PrXv+aoo47ihRde4L333uPKK69k6dKlAGzcuJH333+f1atXc/zxx/Pss89y5513csEFF/Dqq6/yjW98gxtuuIE77rgDgCuuuIJXXnmFc889t/WcDoeD888/n+eff56rr76azz77jJEjR5Kbm9vtt0mpvhQIGdwECTn3fYfiXU72uvOY2LgkhpEppZRSarCJ6iiCh6o5c+a01vZccskl+9UYTZs2jeLi4tblwsJCTjjhBAAuv/xyFixYwLp16yguLmb06NEAXHXVVcyfP7/1mJkzZ3Z47osvvhiHw8ERRxzBYYcdxtq1a/H7/bz22mt84xvfICUlhWOPPZY333yz9Zi5c+cyefJkLr30Uv72t7+RkZHRuq2kpITLLruMxx9/HJfLyq8XLFjAFVdcAcCpp55KRUUFtbW1AJx11lm43W4mTZpEKBTizDPPBGDSpEmUlpYC8P7773PssccyadIk3nvvPVatWnXA65g5cyZz584F4Mknn+z0NSvV3wKhMG6CENEHC6AxcQTJoSporotRZEoppZQabKIx0XD/6aKmqS9UVlby3nvvsWLFCkSEUCiEiPCHP/wBgMTExP32lzYTkrZdbk/bMroq780336S6uppJkyYB0NjYiNfr5ZxzzgGsZOa+++5rt7xXX32V+fPn8/LLL/P73/+eFSs6rxGMj48HrFoot9vdGo/D4SAYDOLz+fj+97/P4sWLKSwsZPbs2fh8vgPKOf7449mwYQPl5eW88MIL/PKXv+z0vEr1p0AojFtCNDn3T7DCGcVQC1RuhuElsQlOKaWUUoOK1mB14ZlnnuGKK65gy5YtlJaWUlZWRnFxMR9++GG7+2/dupVPPvkEgP/85z9Mnz6dMWPGUFpayoYNGwB47LHHOOmkk7p1/qeffppwOMzGjRvZtGkTY8aMYc6cOfzjH/+gtLSU0tJSNm/ezNtvv93a36sj4XCYsrIyTjnlFP7v//6Pmpoa6uvrmTFjBk888QRg9e3KysoiJSWlW/G1JFNZWVnU19d3OOqhiHDBBRfw4x//mHHjxpGZmdmt8pXqD367Bkuc+//PyZNjNa9t2KUjCSqllFKqezTB6sKcOXO44IIL9lt30UUXdTiwxJgxY7j//vsZN24cVVVVXH/99Xg8Hh555BG+9a1vMWnSJBwOB9ddd123zj9ixAimTZvGWWedxYMPPkg4HOaNN97g61//eus+iYmJTJ8+nZdffrndMr773e+yePFiQqEQl19+OZMmTeKoo47iRz/6EWlpacyePZslS5ZQUlLCz372M/71r3918+pAWloa3/ve95g4cSJnnHEGU6dObd324IMP8uCDD7Yuz5w5k8cff1ybB6oBxx8ME0cQ2tRgpeaPAaBmu86FpZRSSqnukbYjvsXSlClTzOLFi/dbt2bNGsaNGxejiNRApJ8JFW2b9zaQe28x24/4Nkdc/ufW9et315H+1/HUF51O0dUPxy5ApZRSSg04IrLEGDOl7XqtwVJKDXmtg1y0qcEqzEhgi8nFWb05RpEppZRSarDRBEspNeT5A0HcEsLh3H+qA4/byR5XHkkNZTGKTCmllFKDzaBIsAZSM0YVW/pZUH0hGLAm/hZX3AHb6hNHkB7cA4Gm/g5LKaWUUoPQgE+wPB4PFRUVemOtMMZQUVGBx+OJdSjqEBPwd5xghdLsee6qSvsxIqWUUkoNVgN+HqyCggK2bdtGeXl5rENRA4DH46GgoCDWYahDTCgQAMDRToIVl3M4lFlDtSfm6OAqSimllOrcgE+w3G43xcXFsQ5DKXUIC9lNBB2u+AO2peSPhSVQu20diTrXsFJKKaW6MOCbCCqlVF8LBlsSLPcB2wryhlNlkmjes6G/w1JKKaXUIKQJllJqyAvafbCc7TQRHJmRSKkZhrN6U3+HpZRSSqlBSBMspdSQFw76AXC4D2wi6I1zstuVR2LD1v4OSymllFKDUJ8nWCJypoisE5ENIvKzvj6fUkr1VEuC5WwnwQKoSxhBWmAPBHz9GZZSSimlBqE+TbBExAncD5wFjAcuFZHxfXlOpZTqqZCdYLk6SLCCacU4MDpUu1JKKaW61Nc1WNOADcaYTcYYP/AkcH4fn1MppXokbI8i6GqnDxaAO+dwAJp2f9lvMSmllFJqcOrrBCsfKItY3mavayUi14rIYhFZrHNdKaViobWJYFz7CVZq/hgAarav67eYlFJKKTU4xXyQC2PMQ8aYKcaYKdnZ2bEORyk1BIWD1kTDHTURzBueR5VJwr97fX+GpZRSSqlBqK8TrO1AYcRygb1OKaUGDBPseJh2gJGZiWwxuUjV5v4MSymllFKDUF8nWIuAI0SkWETigEuAl/r4nEop1SMtCZa4Pe1uT4p3sdOZr0O1K6WUUqpLfZpgGWOCwA3Am8Aa4CljzKq+PKdSSvVY0B5+3dV+ggVQl1BIWmC3DtWulFJKqU65+voExpjXgNf6+jxKKXXQ7EEucLXfBwsgkFaMo8FA9RbIHtNPgSmllFJqsIn5IBdKKRVz3ajBisu2hmpv1qHalVJKKdUJTbCUUkOehKw+WJ3VYKUVjgWgsmxNf4SklFJKqUFKEyyl1JC3L8HquAZrZEEBFSYZ/661/RSVUkoppQYjTbCUUkOeI9RMCAc4Ou6WOjIzgQ0mH1elzoWllFJKqY5pgqWUGvIcoWYCuEGkw33iXU52x40krWEzGNOP0SmllFJqMNEESyk15DlCzQSk/UmGIzWkjCIxXAcN5f0QlVJKKaUGI02wlFJDnjPsJ+joOsESe3j20G7th6WUUkqp9mmCpZQa8lzhZoLdqMFKKhgPQOXWFX0dklJKKaUGKU2wlFJDnlWD1fEQ7S3yRxxOvfHQtF2HaldKKaVU+zTBUkoNeS7TvSaCo3KT2WjykAqdbFgppZRS7dMESyk15LmNn3A3EqwUj5vtzkKS6zb1Q1RKKaWUGow0wVJKDXmubiZYALXJh5EWLAdfbR9HpZRSSqnBSBMspdSQF2f8hJ1d98ECCGeMBsDs1WaCSimllDqQJlhKqSHNGIPbBLqdYHnzrZEEa8tW9WVYSimllBqkepVgicgfRGStiCwXkedFJM1eXyQiTSKy1H48GJVolVIqypqDYeLxY1zdS7ByRo7Fb5zUbdMESymllFIH6m0N1tvARGNMCfAl8POIbRuNMZPtx3W9PI9SSvWJRn+IeAkgLk+39j98WBqlZhhmz7o+jkwppZRSg1GvEixjzFvGmKC9+ClQ0PuQlFKq/zQ0B4kngLi7l2DlJMdTKgV4azf2cWRKKaWUGoyi2QfrGuD1iOViEflCRD4QkRkdHSQi14rIYhFZXF5eHsVwlFKqaw3+IEk0IfHJ3dpfRKhOPIyM5u0Q8PVxdEoppZQabLpMsETkHRFZ2c7j/Ih9fgEEgSfsVTuBEcaYo4AfA/8RkZT2yjfGPGSMmWKMmZKdnd37V6SUUj3Q2NhIvAQRT7u/otoVyByDgzBUrO/DyJRSSik1GLm62sEY89XOtovILOAc4DRjjLGPaQaa7edLRGQjMBpY3NuAlVIqmvwN1QA4vd1PsDx546EM6spWkDxsUh9FppRSSqnBqLejCJ4J3AacZ4xpjFifLSJO+/lhwBHApt6cSyml+oK/oQYAlzet28fkFE0gaBzUbF3ZR1EppZRSarDqsgarC/cB8cDbIgLwqT1i4InAb0UkAISB64wxlb08l1JKRV2wsRoAd2L3a7AOz8uk1AwjbvfqPopKKaWUUoNVrxIsY8zhHax/Fni2N2UrpVR/CDZaNVhxiendPmZYiod3pICjajb0VVhKKaWUGqSiOYqgUkoNOmFfLQDxSWndPkZEqEocpSMJKqWUUuoAmmAppYa0YJOVYHkS03p0nI4kqJRSSqn2aIKllBrSwk1WE0HxpPboOE/eeMAaSVAppZRSqoUmWEqpIc3YTQTp5kTDLbJ1JEGllFJKtUMTLKXUkOZorsFPHLjienTc4cOtkQTDu9f0UWRKKaWUGow0wVJKDWlefyW1ru6PINhieKqHzVJAQo32wVJKKaXUPppgKaWGtKRgFY3ujB4fJyJU6kiCSimllGpDEyyl1JBljCE1XEVzfOZBHR/MGK0jCSqllFJqP5pgKaWGrKrGAFlUE07IPqjjPfkTAKgv04EulFJKKWXRBEspNWTtqmogg1ocKcMO6viskePtkQR1qHallFJKWTTBUkoNWZV7d+EUQ3xq7kEdf0ReFltMLiEdSVAppZRSNk2wlFJDVv3eMgASM/MP6vjhqR42SiGJOpKgUkoppWyaYCmlhix/xRYAUoYddlDHiwh7PcWkN2+HYHM0Q1NKKaXUIKUJllJq6KrZBoA7Y8RBF+FLPcwaSbCqNEpBKaWUUmow61WCJSKzRWS7iCy1H2dHbPu5iGwQkXUickbvQ1VKqehy12/HjxsSD24UQQBn9igAQns3RCsspZRSSg1i0ajButsYM9l+vAYgIuOBS4AJwJnAX0XEGYVzKaVU1CQ07aLSlQMiB11G0vCxANRtXxutsJRSSik1iPVVE8HzgSeNMc3GmM3ABmBaH51LKaUOSnpgFw2egxuivcXw4cOpNEn4dn0ZpaiUUkopNZhFI8G6QUSWi8g/RSTdXpcPlEXss81edwARuVZEFovI4vLy8iiEo5RSXWtoDpJryvEnFfSqnKLMRErNMKjcGKXIlFJKKTWYdZlgicg7IrKyncf5wAPAKGAysBP4Y08DMMY8ZIyZYoyZkp198P0glFKqJ3ZWVpMr1Uha7xKsYSketpBHQl1pdAJTSiml1KDm6moHY8xXu1OQiPwdeMVe3A4URmwusNcppdSAsHf7Zg4H4jOLelWOwyFUewtJaZ4P/kaIS4hKfEoppZQanHo7iuDwiMULgJX285eAS0QkXkSKgSOAhb05l1JKRVP9HmsOrORhxb0uy59il1G5qddlKaWUUmpw67IGqwt3ishkwAClwH8BGGNWichTwGogCPzAGBPq5bmUUipqAvYkw2lRSLAc2YdDOZiKDciwib0uTymllFKDV68SLGPMFZ1s+z3w+96Ur5RSfUVqrHF4XOmFXezZtaS8MbAa6neuI3lCr4tTSiml1CDWV8O0K6XUgBbXsJ0qRzq44ntdVkFuNntMGk07dah2pZRSaqjTBEspNSQlN++mJq53c2C1GJmRyGYzDNGh2pVSSqkhTxMspdSQEwobMkN78CXkRaW8vDQPW8xwEupLo1KeUkoppQYvTbCUUkNOea2PPPYSTm13/vMeczkdVHkLSQxUga8mKmUqpZRSanDSBEspNeTs2b4RjwRwZh4WtTKbU+3RCCu0maBSSik1lGmCpZQacup3rAUgIW9c1Mp0ZR0OgNEESymllBrSejsPluomYwzhsCEUChEOhwiFQoTCIUw4DCaMCCAOxHqCOBzWMoI4rHUOhxNEEAGHCAKICA7BPk4p1R2hPdZofxkjojemembhWEKrhfqylaSWfCtq5aruCYXC+JubaG6sw+9rIOCrJxAIEPAHCAb9EApiwkFoeYQCEA4RNoYwghHBGDA4cDgEh8NhP5z2stNeduFwOnE4XTjtn47Wny5cTificOJyWetdTjcOex3ihAN+6v85lVLqUKMJVidWzH8R/6JHkFAAhwngDPtxhAM4TRCX8eM0QZwmgMsEiSOAiyAuQjhMGMHgwCCEcdjPnWJwRim2kBG7dCEE9hnAsG89yH7rsJ+33ExEbqed41rWGTt5C+NoZ1vLc0fr+sgfByMqqaIxvS6i5ZX2VRndLT06qXOMr4fpWRmd7RWN61FiamjAQ2JmQRRKs4wpzOFLU0j21kVRK3Mo8fsDVO3dSW35Duqrd+OvryDUWA1N1RhfNc7mGtz+WtyBWjzBOtzhJuLDPuJNMx58ePHjFYM31i/kIARxELYfpuW5WD9DrcvO1n3CYu1nbXNiJOJ4EcI9/kvTwTfOdLxHV9/lDvfvpMy22p6jW/v3YfntHdP1/j3X89+1PY2p57/Le/o6Du7vRd9eWzmI+4Jo3AdE+xz98f4NxM/UEmcJTaf/gUunjejxuWJBE6xONNfuJqd+HSFxExQ3IYebsLgJOBNpdqRhHG7CjjjCDrf9iANxYlr+Kyn7HtLy0+Gw/3O5b51p/ZgZxITt5MB+GGP/0WhZDrd5DhDGGPtYsNa3/ow8dv/nLeUajP2Lx1jlEEZa19Mmlpbzc0A5LdtMlFKT3jLtlNHTUk0PD5B2zhCVX88HWUMZeVR71+NgmIhYDr7EPnp/u1nsHiCYP41jo1jzO3ZYMi+Yw/nG3kUQDrdbM7GqdCfLn7+LxLyxnDfze1E790DW5POza0cp1Ts307R3C+Ga7Uj9HtxN5cQ3V5AUrCQ1XEW6qSVXDLntlBE0DuolkXpJotGZTLMziYb4HMLuBIzLi3F5CbsTwO0FdwLEJeBwe3G44q2aJJcLcbjB6bZqjZwuxOECpwuHAAYrPRHAGMImTDi87xEKhzHhMOFwCGO3QgiHgmBChEMhCAetbeEQJhTGGOs5LevCITD7lolYtn6GI5at52LCiLFSLOtnGIeJeB6xvnU/DA77uenol1eHH/ke/7Lr9Hds+6XJgUtdnrbj3zf7f31b/om4/5p2ztjhKbp/BXp2rXr6u3ffPz77zkGV38Pfl339Gg7mHAcXUw/PcVAvewC+jj4uH/a/n+iS5zBykns/b2V/0QSrE1POuRbOuTbWYSilBgGP28me9KPw1L4HOz6Hgimt28r21jH/2fs4bcffuFSqKK3JAw6NBKumvoldZRuo3fEl/vINSPVWXPU7SPLtIj24h2xTSbGE9zvGZ9xUO9Kpc6VT782j0lPCxoRsHMk5uFNy8ablkpiaiTcli8TUTDyJqaSJkBabl6iUUirGjol1AD2kCZZSSkWJd9K5NC+4h+ZPHiHlW1PYXd3Aghf+xuTNf+cy2cGOpPF8ETeNo6reJFRXjjM5O9Yhd4sJBajYtp49pauo2/EloYpNeOq2kNm8neFmN2Mk1Lqv37jY68iiJi6HnUnHsD0lH1d6Id6skaQOKyZtWBGepHSGiRCdaZ6VUkqpgUUTLKWUipJvHDee5xeczCWrHmfppo0Mb1zDRVLNLu9hVH/17+Qd/U3WvP0yfPImFWs+IGfaN2Md8n7CAT+7SldTUboc347VuCq+JK1xE3nBbWQRIMverx4ve1x5VKeMoTL9DFxZo0gcPpqMgjGk5hSS53ASnSmclVJKqcFHEyyllIqS7OR4hn/rj7z+ws2U+FZRlTEZOf4Khk25sLVPVvaY42j+2E3d+o9ilmD5m33s3LSSitLlBHauJq5qPekNm8gLbSdPQuQBYSPskBx2xxexLeMrSPYYUgvGMqx4PFk5+Rymo98ppZRS7dIESymlouikiSNh4nMdbh9fmM0yRpGz/bM+j6WxsYFtG1ZSvXU5wZ2r8VStJ9O3mfzQDkZKmJFYI5LucAyj3FPM9tSTceaOJWXEJPJHlVCQlkb0xllUSimlhoZeJVgiMhcYYy+mAdXGmMkiUgSsAdbZ2z41xlzXm3MppdShwOV0sCPtGI6smUOwciuujN4POVtdW8f2jSuo3rKS0O7VeKvXk+3bTEF4J6PtASaCxsEO53AqvMVsT/sa7mHjSR85ibxREylMTKaw11EopZRSCnqZYBljZrY8F5E/AjURmzcaYyb3pnyllDoUJX/lO8hr/2HL87/msO880q1jGpp87ChdR1XZWny7v0SqNpNYv4Us/zbyzB4m2IlUyAg7nXlUJB7GnvQziRs+jvSiEoYfVsIIj5fBMYOIUkopNXhFpYmgiAhwMXBqNMpTSqlD2YlTj+al+RfxjbJnWHdPFYEx50JiNkG/j+bGOoK1ezC123HV7yDRt5u0YDnDzF6OiBitrwEPe1z5VKeOZ2/a14nPm0BG0ZHkFE+gIM6rTfuUUkqpGIlWH6wZwG5jzPqIdcUi8gVQC/zSGPNheweKyLXAtQAjRuj/VpVShz6HQzjl+vt45WEP0yueJ+2T9w/YJ2CcVDgyqYnLpTJpEnuSC3FlH05KwRhyiiaQmD6c4ihOlKyUUkqp6BBjOp+rWUTegXanK/mFMeZFe58HgA3GmD/ay/FAkjGmQkSOAV4AJhhjajs715QpU8zixYt7/iqUUmqQqqlrZOeGLwg1VuP2JJCYlEpyRjbJmXmIwxnr8JRSSinVARFZYoyZ0nZ9lzVYxpivdlGwC7iQiEmWjTHNQLP9fImIbARGA5o9KaVUhNTkBFKPOiHWYSillFIqSqIxkclXgbXGmG0tK0QkW0Sc9vPDgCOATVE4l1JKKaWUUkoNWNHog3UJMKfNuhOB34pIAAgD1xljKqNwLqWUUkoppZQasHqdYBljZrWz7lng2d6WrZRSSimllFKDSZeDXPQnESkHtsQ6jjaygL2xDkL1G32/hw59r4cWfb+HDn2vhw59r4eWgfh+jzTGZLddOaASrIFIRBa3NzqIOjTp+z106Hs9tOj7PXToez106Hs9tAym9zsag1wopZRSSimllEITLKWUUkoppZSKGk2wuvZQrANQ/Urf76FD3+uhRd/voUPf66FD3+uhZdC839oHSymllFJKKaWiRGuwlFJKKaWUUipKNMFSSimllFJKqSjRBKsTInKmiKwTkQ0i8rNYx6OiR0QKReR9EVktIqtE5EZ7fYaIvC0i6+2f6bGOVUWHiDhF5AsRecVeLhaRz+zv91wRiYt1jCo6RCRNRJ4RkbUiskZEjtfv9qFJRG62f4evFJE5IuLR7/ahQ0T+KSJ7RGRlxLp2v8tiucd+35eLyNGxi1z1VAfv9R/s3+PLReR5EUmL2PZz+71eJyJnxCToTmiC1QERcQL3A2cB44FLRWR8bKNSURQEfmKMGQ8cB/zAfn9/BrxrjDkCeNdeVoeGG4E1Ecv/B9xtjDkcqAK+E5OoVF/4C/CGMWYscCTW+67f7UOMiOQDPwKmGGMmAk7gEvS7fSh5FDizzbqOvstnAUfYj2uBB/opRhUdj3Lge/02MNEYUwJ8CfwcwL5fuwSYYB/zV/u+fcDQBKtj04ANxphNxhg/8CRwfoxjUlFijNlpjPncfl6HdQOWj/Ue/8ve7V/AN2ISoIoqESkAvg78w14W4FTgGXsXfa8PESKSCpwIPAxgjPEbY6rR7/ahygV4RcQFJAA70e/2IcMYMx+obLO6o+/y+cC/jeVTIE1EhvdLoKrX2nuvjTFvGWOC9uKnQIH9/HzgSWNMszFmM7AB6759wNAEq2P5QFnE8jZ7nTrEiEgRcBTwGZBrjNlpb9oF5MYqLhVVfwZuA8L2ciZQHfGLW7/fh45ioBx4xG4S+g8RSUS/24ccY8x24C5gK1ZiVQMsQb/bh7qOvst633ZouwZ43X4+4N9rTbDUkCYiScCzwE3GmNrIbcaaw0DnMRjkROQcYI8xZkmsY1H9wgUcDTxgjDkKaKBNc0D9bh8a7L4352Ml1XlAIgc2MVKHMP0uDw0i8gusrh1PxDqW7tIEq2PbgcKI5QJ7nTpEiIgbK7l6whjznL16d0uTAvvnnljFp6LmBOA8ESnFaup7KlYfnTS7WRHo9/tQsg3YZoz5zF5+Bivh0u/2oeerwGZjTLkxJgA8h/V91+/2oa2j77Letx2CRGQWcA5wmdk3ee+Af681werYIuAIezSiOKzOdC/FOCYVJXYfnIeBNcaYP0Vsegm4yn5+FfBif8emossY83NjTIExpgjre/yeMeYy4H3gm/Zu+l4fIowxu4AyERljrzoNWI1+tw9FW4HjRCTB/p3e8l7rd/vQ1tF3+SXgSns0weOAmoimhGoQEpEzsZr3n2eMaYzY9BJwiYjEi0gx1sAmC2MRY0dkXzKo2hKRs7H6bjiBfxpjfh/biFS0iMh04ENgBfv65dyO1Q/rKWAEsAW42BjTtoOtGqRE5GTgFmPMOSJyGFaNVgbwBXC5MaY5huGpKBGRyVgDmsQBm4Crsf6hqN/tQ4yI/AaYidV86Avgu1h9MfS7fQgQkTnAyUAWsBv4NfAC7XyX7ST7Pqxmoo3A1caYxTEIWx2EDt7rnwPxQIW926fGmOvs/X+B1S8riNXN4/W2ZcaSJlhKKaWUUkopFSXaRFAppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppQYIESkSESMirljHcqgTkVkisiDWcQw0IjJDRNbFOg6llBrMNMFSSik1qInIbBEJiEh9xOO2WMc1GBljPjTGjIl2uSLykIisE5GwiMyKdvlKKTWQ6H9JlVIqSkTEZYwJxjqOIWquMebyWAfRVw6Bz9YyYC7wf7EORCml+prWYCmlVC+ISKmI/FRElgMNIuISkeNE5GMRqRaRZSJycsT+80Tk/4nIQhGpFZEXRSSjg7KvFpE1IlInIptE5L/abD9fRJba5WwUkTPt9aki8rCI7BSR7SLyOxFxdvE6RonIeyJSISJ7ReQJEUmL2FYpIkfby3kiUt7yukTkPBFZZb/eeSIyrs31uUVElotIjYjMFRFPz690z4nIz+zrUiciq0Xkgg72ExG5W0T22NdyhYhMtLfFi8hdIrJVRHaLyIMi4u3m+R+193/bjuEDERkZsf0vIlJmn3OJiMyI2DZbRJ4RkcdFpBaYJSLTROQT+zrvFJH7RCQu4hgjIt8XkfX2+f7bfu8+ts/xVOT+HcR8sohs687r6wljzP3GmHcBX7TLVkqpgUYTLKWU6r1Lga8DaUAu8CrwOyADuAV4VkSyI/a/ErgGGA4EgXs6KHcPcA6QAlwN3B2R5EwD/g3cap/3RKDUPu5Ru9zDgaOA04HvdvEaBPh/QB4wDigEZgMYYzYCPwUeF5EE4BHgX8aYeSIyGpgD3ARkA68BL7e5kb8YOBMoBkqAWe0GIDLdTh46ekzv4jW0tRGYAaQCv7HjH97OfqdjXb/R9r4XAxX2tv+110/Gup75wB09iOEy4L+BLGAp8ETEtkV2uRnAf4Cn2ySf5wPPYL2/TwAh4Ga7rOOB04DvtznfGcAxwHHAbcBDwOVY7+dErM/qQbMT5Y7en7/2pmyllDpUaIKllFK9d48xpswY04R1M/uaMeY1Y0zYGPM2sBg4O2L/x4wxK40xDcCvgIvbq2EyxrxqjNloLB8Ab2ElDADfAf5pjHnbPs92Y8xaEcm1z3WTMabBGLMHuBu4pLMXYIzZYJfVbIwpB/4EnBSx/e/ABuAzrMTwF/ammcCr9rEB4C7AC3ylzfXZYYypBF7GSirai2GBMSatk0dng1Jc3OZmP88Y87R93rAxZi6wHpjWzrEBIBkYC4gxZo0xZqeICHAtcLMxptIYUwf8T1fXso1XjTHzjTHNWNfseBEptF/v48aYCmNM0BjzRyAeiOz/9Ikx5gU7/iZjzBJjzKf2/qXA34h4j2x3GmNqjTGrgJXAW8aYTcaYGuB1rIT7oBljSjp5f9ome0opNSRpHyyllOq9sojnI4Fvici5EevcwPsd7L/F3p7VtlAROQv4NVYNigNIAFbYmwuxaovaGmmXt9PKD8A+tqydfSPPlQv8BSuBS7aPqWqz29+Bl4Br7YQBrBqvLS07GGPCIlKGVdPTYlfE80b7mGh7qm0fLBG5EvgxUGSvSqKd62yMeU9E7gPuB0aKyHNYNY8erGu+JOJaCtBpc8s2Wq+7MaZeRCqxXn+ZiNyClSjnAQarpjKrvWPt1zMaK/GdYsflApa0Od/uiOdN7SwP60HsSimlDoLWYCmlVO+ZiOdlWDVUkf/ZTzTG/G/EPoURz0dg1aDsjSxQROKBZ7FqhHKNMWlYCVXLnX4ZMKqdWMqAZiAr4vwpxpgJXbyG/7FfxyRjTApWTdy+rEIkCfgz8DAwW/b1G9uBldS17Cf269vexfkOINYQ4fWdPGZ0XUprWSOxEsIbgEz7+q2MfE2RjDH3GGOOAcZjJbS3Yr0nTcCEiGuZaoxJ6sHLan2v7WuYAeywX8ttWM0R0+34atrEF/m5AngAWAscYb9Ht3f0evqKWH3tOnp/HuzPWJRSaqDSBEsppaLrceBcETlDRJwi4rEHDiiI2OdyERlv92f6LfCMMSbUppw4rCZj5UDQrs06PWL7w8DVInKaiDhEJF9ExhpjdmI1JfyjiKTY20aJSNumZG0lA/VAjYjkYyUYkf4CLDbGfBerj1nLzfRTwNftONzAT7ASvI+7ulBt2UOEJ3Xy+LAHxSViJSjlYA0YgtUH6QAiMlVEjrXjb8AaiCFsjAljJWl3i0iOvW++iJwRcayRiEFM2nG23bcsDqsv1qfGmDKs6x2043OJyB1YNVidSQZqgXoRGQtc38X+UWeMmdDJ+3NdR8eJSJzdv0wAt/290HsQpdQhSX+5KaVUFNk3z+dj1S6UY9Uo3cr+v28fwxqIYhdWM7QftVNOnb3+Kaymet/Gap7Xsn0h9sAXWDUfH7CvJulKrARttX3sM1j9pjrzG+Bou6xXgedaNojI+ViDVLTc0P8YOFpELjPGrMOq7boXq8bnXOBcY4y/i/P1KWPMauCPwCdYzeQmAR91sHsKViJVhdXcsQL4g73tp1h9zz4VazS/d7D7Sdl9qerY12yzPf/BauZZiTX4REszxjeBN4Av7XP66KIZJ1azxW/b5/w71rDng8VbWLWBX8EaeKMJa2ARpZQ65IgxbVsgKKWU6isiMg943Bjzj1jHonpHRC7Haj748w62PwpsM8b8sl8DU0opFVM6yIVSSil1EIwxj8c6BqWUUgOPNhFUSqkhQqxJb3VwgiFORG7v4HPweqxjU0qpQ4E2EVRKKaWUUkqpKNEaLKWUUkoppZSKkgHVBysrK8sUFRXFOgyllFJKKaWU6tSSJUv2GmOy264fUAlWUVERixcvjnUYSimllFJKKdUpEdnS3nptIqiUUkoppZRSUaIJllJKKaWUUkpFiSZYSinViY837mXjntpYh6GUUkqpQWJA9cFqTyAQYNu2bfh8vliHogYZj8dDQUEBbrc71qGoQaq8rpm3/vkbZrv/jflZGeJJiXVISimllBrgBnyCtW3bNpKTkykqKkJEYh2OGiSMMVRUVLBt2zaKi4tjHY4apFbvrOW7rtcAqFjwMFlfvTnGESmllFJqoBvwTQR9Ph+ZmZmaXKkeEREyMzO15lP1SnWjn3rjBcC/5o0YR6OUUkqpwWDAJ1iAJlfqoOjnRvVWXUMTxbITgPSqFRAOxzgipZRSSg10gyLBUkqpWAjX7iBegqyJm4Q33AB718U6JKWUUkoNcJpgdYOI8JOf/KR1+a677mL27NmxCyjCp59+yrHHHsvkyZMZN25ca1zz5s3j448/7lXZZ555JmlpaZxzzjlRiFSpwae5oQ6A6pypAPh3rIxlOEoppZQaBDTB6ob4+Hiee+459u7dG9VyjTGEe9nk6KqrruKhhx5i6dKlrFy5kosvvhiIToJ166238thjj/WqDKUGM5+vEYD4/BJCRqjeuiLGESmllFJqoBvwowhG+s3Lq1i9I7rz0YzPS+HX507odB+Xy8W1117L3Xffze9///v9tpWXl3PdddexdetWAP785z9zwgknMHv2bJKSkrjlllsAmDhxIq+88goAZ5xxBsceeyxLlizhtdde47777uP1119HRPjlL3/JzJkzmTdvHrNnzyYrK4uVK1dyzDHH8Pjjjx/Qr2jPnj0MHz4cAKfTyfjx4yktLeXBBx/E6XTy+OOPc++99zJ27NgO49y4cSMbNmxg79693HbbbXzve98D4LTTTmPevHmdXpunn36a3/zmNzidTlJTU5k/fz4+n4/rr7+exYsX43K5+NOf/sQpp5zCo48+ygsvvEBDQwPr16/nlltuwe/389hjjxEfH89rr71GRkYGf//733nooYfw+/0cfvjhPPbYYyQkJOx33uOOO46HH36YCROs9+7kk0/mrrvuYsqUKZ3Gq1RPhP1WgpWTncNWk0PcrrUxjkgppZRSA53WYHXTD37wA5544glqamr2W3/jjTdy8803s2jRIp599lm++93vdlnW+vXr+f73v8+qVatYvHgxS5cuZdmyZbzzzjvceuut7Nxpdar/4osv+POf/8zq1avZtGkTH3300QFl3XzzzYwZM4YLLriAv/3tb/h8PoqKirjuuuu4+eabWbp0KTNmzOg0zuXLl/Pee+/xySef8Nvf/pYdO3Z0+7r89re/5c0332TZsmW89NJLANx///2ICCtWrGDOnDlcddVVraP5rVy5kueee45Fixbxi1/8goSEBL744guOP/54/v3vfwNw4YUXsmjRIpYtW8a4ceN4+OGHDzjvzJkzeeqppwDYuXMnO3fu1ORKRV/Q+tzmZqSxkXziq9bHOCCllFJKDXSDqgarq5qmvpSSksKVV17JPffcg9frbV3/zjvvsHr16tbl2tpa6uvrOy1r5MiRHHfccQAsWLCASy+9FKfTSW5uLieddBKLFi0iJSWFadOmUVBQAMDkyZMpLS1l+vTp+5V1xx13cNlll/HWW2/xn//8hzlz5rRb69RZnOeffz5erxev18spp5zCwoUL+cY3vtGt63LCCScwa9YsLr74Yi688MLW1/TDH/4QgLFjxzJy5Ei+/PJLAE455RSSk5NJTk4mNTWVc889F4BJkyaxfPlywErCfvnLX1JdXU19fT1nnHHGAee9+OKLOf300/nNb37DU089xTe/+c1uxatUT0iwGQC3J4Hy+CLSml6CUBCcg+pXp1JKKaX6kd4l9MBNN93E0UcfzdVXX926LhwO8+mnn+LxePbb1+Vy7de/KnI+psTExG6dLz4+vvW50+kkGAy2u9+oUaO4/vrr+d73vkd2djYVFRUH7NNRnHDgcOY9Gd78wQcf5LPPPuPVV1/lmGOOYcmSJZ3uH/maHA5H67LD4Wh9fbNmzeKFF17gyCOP5NFHH203YczPzyczM5Ply5czd+5cHnzwwW7HrFR3Scj+3ro8NKUdjqs8CFWbIeuI2AY2CNQ0BZj1yEIunTqCi6cWxjqcQWH1jlp21/o4ZWxOrEMZFCob/Hy4vpxzS/JwOHRaDqXUwKFNBHsgIyODiy++eL8ma6effjr33ntv6/LSpUsBKCoq4vPPPwfg888/Z/Pmze2WOWPGDObOnUsoFKK8vJz58+czbdq0bsf06quvYowBrKaHTqeTtLQ0kpOTqaur6zJOgBdffBGfz0dFRQXz5s1j6tSp3T7/xo0bOfbYY/ntb39LdnY2ZWVlzJgxgyeeeAKAL7/8kq1btzJmzJhul1lXV8fw4cMJBAKt5bRn5syZ3HnnndTU1FBSUtLt8pXqrpYaLFweXLljAQjt1n5Y3fHxhr2kbpvHsa+cBosObOarDjTzoU94+N//JHjvNGiqjnU4A94f3lzLjU8u5eMF78DqF2MdjlJKtdIEq4d+8pOf7Dea4D333MPixYspKSlh/PjxrTUpF110EZWVlUyYMIH77ruP0aNHt1veBRdcQElJCUceeSSnnnoqd955J8OGDet2PI899hhjxoxh8uTJXHHFFTzxxBM4nU7OPfdcnn/+eSZPnsyHH37YYZwAJSUlnHLKKRx33HH86le/Ii8vD7CSv29961u8++67FBQU8OabbwJWs8SW/la33norkyZNYuLEiXzlK1/hyCOP5Pvf/z7hcJhJkyYxc+ZMHn300f1qrrry3//93xx77LGccMIJjB07tnX9Sy+9xB133NG6/M1vfpMnn3yydeREpaLNEVGDlVRgNVGu27a6kyNUiy931/M1xxJGym6Cy5+JdTgDnj8Yps4X5BbXU7gq1sGq52Md0oD35e56kmlk+nvfhKeuhOqyWIeklFIASEvtx0EXIFII/BvIBQzwkDHmLyIyG/geUG7versx5rXOypoyZYpZvHjxfuvWrFnDuHHjehWj6ljb0Q4PNfr5Ub3xt/+7hf9q+jv8tJTPdoY57F+TCR5+JsOv+HusQxvwZr+0iuMW3ciZzkWEnF6ct2/Tvmud2FLRwEl/mMcrcbcz0VEKR5wOlz0d67AGtBPvfB931Xrejb/VWvHNf8LEi2IblFJqSBGRJcaYA0ZZi0YNVhD4iTFmPHAc8AMRGW9vu9sYM9l+dJpcKaXUQOMM72siOCIzgTKTA1WlMY1psKho8JPrsKbVcIaaoHxNjCMa2LZXN+EiyFixptJg96rYBjTAGWPYVesji4ipW8oWxi4gpZSK0Ot/JxpjdgI77ed1IrIGyO9tuap/zJ49O9YhKDVgOUP7EqzcZFjIMA6r3xDboAaJqgY/ua46NobyGcV2qNgAwybFOqwBq84XJIkmXBJmDxnk1G6Hpirwpsc6tAGp1hfEHwxzVFYA6iHsSsCxR5vvKqUGhqj2wRKRIuAo4DN71Q0islxE/iki7f6VEJFrRWSxiCwuLy9vbxellIoJV7iZgMSBCA6HUOvJJ8W/B4L+WIc24FU1+kkLV7PZY0+vUbExtgENcL5ACC/W52pJaJS1co/W+nWkyR8CYGKq9U+QioyjoGJTLENSSqlWUUuwRCQJeBa4yRhTCzwAjAImY9Vw/bG944wxDxljphhjpmRnZ0crHKWU6jWXaSboiGtd9qeMxEEYarQzfVeCzU0kmEYCKSMpJx0q2x9JVVl8gRAJYg2qsiJcbK2s0NrSjvgCVoI1wtNI2Ail3vFQuw0CTTGOTCmlopRgiYgbK7l6whjzHIAxZrcxJmSMCQN/B7o/9rhSSg0ArrCfoETM3ZZRBIDRZKFLCYFKADzpw9kUziW4V5OFzvgCYTx2DdZGk0dYXNrfrxO+oJVgpYWrqZZk1oeGWxv0mimlBoBeJ1hizUr7MLDGGPOniPXDI3a7AFjZ23MppVR/ijPNBJ37Eixv7uEA1O/SZKErcUFrHr6UtEw2h4dpE8EuNAVCJGA1d2vES238MK3160RLE0FPoIoGVxormjKtDZXaTFApFXvRqME6AbgCOFVEltqPs4E7RWSFiCwHTgFujsK5YuaFF15ARFi7tuNJRktLS5k4cWLUzrlu3TpOPvlkJk+ezLhx47j22msBa5Lg117r3aCM11xzDTk5OVGNV6lDiTEGl/ETcuxLsHLyRuAzbho0weqSBK3mbhlpKWwxw3A1lYOvtoujhi5fIIRXrAQrISmF3c5hWhvTCV8gDIA71ETYncSi2jRrgybySqkBoNcJljFmgTFGjDElkUOyG2OuMMZMstefZ482OGjNmTOH6dOnM2fOnHa3B4PBXp8jFArtt/yjH/2Im2++maVLl7JmzRp++MMfAtFJsGbNmsUbb7zRqzKUOpQFwwYPAcIRNVgjMpPZanIIa81Cp4wxrQlWVlo6m409eXqVXreONAVCpDgDAKSmpFIaztHr1YmWJoLusA9nnJcNdW6MNwMqNcFSSsXe4Jr18fWfwa4V0S1z2CQ463873aW+vp4FCxbw/vvvc+655/Kb3/wGgHnz5vGrX/2K9PR01q5dy1tvvUUwGOSyyy7j888/Z8KECfz73/8mISGBd999l1tuuYVgMMjUqVN54IEHiI+Pp6ioiJkzZ/L2229z2223cckll7Sed+fOnRQUFLQuT5o0Cb/fzx133EFTUxMLFizg5z//Oeeccw4//OEPWblyJYFAgNmzZ3P++efz6KOP8vzzz1NTU8P27du5/PLL+fWvfw3AiSeeSGlpaaev+4MPPuDGG28EQESYP38+SUlJ3Hbbbbz++uuICL/85S+ZOXMm8+bN49e//jVpaWmsWLGCiy++mEmTJvGXv/yFpqYmXnjhBUaNGsXLL7/M7373O/x+P5mZmTzxxBPk5ubud95LLrmEK664gq9//euAlQyec845fPOb3+zee6pUFARCYeLxE46owSpI9/KRyaGkZksMIxv4AiFDvN3cLSkpiXK3PXNHxUYYfmQMIxu4mgNhkp1WH6yMtFS+rMrijFAVNFWDNy2msQ1EPruJoDPkw+2xBin2pRTh1SaCSqkBIKrDtB+qXnzxRc4880xGjx5NZmYmS5Ysad32+eef85e//IUvv/wSsJr1ff/732fNmjWkpKTw17/+FZ/Px6xZs5g7dy4rVqwgGAzywAMPtJaRmZnJ559/vl9yBXDzzTdz6qmnctZZZ3H33XdTXV1NXFwcv/3tb5k5cyZLly5l5syZ/P73v+fUU09l4cKFvP/++9x66600NDQAsHDhQp599lmWL1/O008/zeLFi7v9uu+66y7uv/9+li5dyocffojX6+W5555j6dKlLFu2jHfeeYdbb72VnTutyslly5bx4IMPsmbNGh577DG+/PJLFi5cyHe/+13uvfdeAKZPn86nn37KF198wSWXXMKdd955wHlnzpzJU089BYDf7+fdd99tTbaU6i+BoCFOgvvVYHncTvbG5ZHs2wbGxDC6ga05GMKDVRsjbi+hdHtUPK2R6VCTP0SqXYOVlZ7BKl+GtaFak/n2tNRgOUM+4r2JAFR5CnWodqXUgDC4arC6qGnqK3PmzGmtybnkkkuYM2cOxxxzDADTpk2juLi4dd/CwkJOOOEEAC6//HLuuecevva1r1FcXMzo0aMBuOqqq7j//vu56aabACuhaM/VV1/NGWecwRtvvMGLL77I3/72N5YtW3bAfm+99RYvvfQSd911FwA+n4+tW7cC8LWvfY3MTKvz74UXXsiCBQuYMmVKt173CSecwI9//GMuu+wyLrzwQgoKCliwYAGXXnopTqeT3NxcTjrpJBYtWkRKSgpTp05l+HBrbJNRo0Zx+umnA1bN2/vvvw/Atm3bmDlzJjt37sTv9+937VqcddZZ3HjjjTQ3N/PGG29w4okn4vV6uxWzUtESCIeJI4hxuvdb35hYiKe2CRr2QpJOLdGeyBHxcHvJzUynqiaV9CpNFjriC4ZIcgYgBDmZaWwN51gbKjdrrV87WvpgOUI+vAlJAOx25JJXu92ap84V19nhSinVp7QGqwuVlZW89957fPe736WoqIg//OEPPPXUUxj7v9eJiYn77W8NqtjxcnvalhEpLy+Pa665hhdffBGXy8XKlQcOxmiM4dlnn2Xp0qUsXbqUrVu3Mm7cuIOOp8XPfvYz/vGPf9DU1MQJJ5zQ6QAfAPHxEcNZOxytyw6Ho7WP2g9/+ENuuOEGVqxYwd/+9jd8Pt8B5Xg8Hk4++WTefPNN5s6d22ECqlRfCoTCuAliHPsnWKa1Nqa0/4MaJHyBEB7Zl2AVpiewJZyN0dqYDjX5QyQ7rGs2PDuTrcZOsPRz1q6WUQQdIR9xnkQS45xsCWcDRuepU0rFnCZYXXjmmWe44oor2LJlC6WlpZSVlVFcXMyHH37Y7v5bt27lk08+AeA///kP06dPZ8yYMZSWlrJhgzXy2GOPPcZJJ53U5bnfeOMNAgGryciuXbuoqKggPz+f5ORk6urqWvc744wzuPfee1uTvi+++KJ129tvv01lZWVrP6iW2rXu2LhxI5MmTeKnP/0pU6dOZe3atcyYMYO5c+cSCoUoLy9n/vz5TJvW/SnOampqyM+3+mP861//6nC/mTNn8sgjj/Dhhx9y5plndrt8paIlEDS4CYJz//+Ee7JHAdBcriMJdqQ5GMJr98HC5aEwI4Gt4WzCFdpEsCO+YJgE8YPDRUFWCvUk4HOnabPKDrQ0EZRAE+L2UpiRwLpmbVaplBoYNMHqwpw5c7jgggv2W3fRRRd1OJrgmDFjuP/++xk3bhxVVVVcf/31eDweHnnkEb71rW8xadIkHA4H1113XZfnfuutt5g4cSJHHnkkZ5xxBn/4wx8YNmwYp5xyCqtXr2by5MnMnTuXX/3qVwQCAUpKSpgwYQK/+tWvWsuYNm0aF110ESUlJVx00UWtzQMvvfRSjj/+eNatW0dBQQEPP/wwAA8++CAPPvggAH/+85+ZOHEiJSUluN1uzjrrLC644AJKSko48sgjOfXUU7nzzjsZNmxYt6/n7Nmz+da3vsUxxxxDVlZW6/rFixfz3e9+t3X59NNP54MPPuCrX/0qcXHa1EP1v0DYrsFq00QwJc+aC6t25/pYhDUoWE0ErX8O4fYyIiOBMpONo3Y7hEOdHzxE+fwhkhzN4E4kN9lDnNNBVdxwqN4a69AGpJYmggR9Vi1pRgLLG9KsddoUVSkVY2IGUEftKVOmmLaDMKxZs6a1uZvqmUcffZTFixdz3333xTqUmNHPjzpYa3fVkvTAUVA0g4KrH21dv6ysmpx/HEW46CTyI9arfRaXVvLRP37Cja7n4NfVbCiv5x9/mc3/uv8BN62AtBGxDnHAOe++BfzEdx8n8QXcso5T7prHH/kTR8dtgx99HuvwBpz/99oanvhkAyudl8Mpv+C/685hzmebWeW+CvnKDfDV2bEOUSk1BIjIEmPMAYMbaA2WUkq1IxA0xLXTRHBkZgJbTQ6OmtLYBDYI+ALWEPchpwdEKEi3arAArV3ogC8QIoFmiEsArCkBNoeyrP5E4XCMoxt4mgIhUl12bahdS9oYgFBKvn7GlFIxpwnWIWzWrFlDuvZKqd5oaSLYNsFK9brZ6RhGYoN2pO+IL2D1wTIuD2ANb9+YYM/pp/1j2tUUCFkjL7pbEqwE1vkyIOSHup0xjm7g8UUmWC4PIzKs69aYUKCfMaVUzA2KBGsgNWNUg4d+blRvBIJWgiVthnsWEeq8BaQE9kKgKUbRDWw+ex6slgQLwJ0xgjAOrV3ogNVvzdeaYBVmeCMGbdB+WG35AmFSXC39/BIozLCm8qh0D9fPmFIq5gZ8guXxeKioqNCbZdUjxhgqKirweDxd76xUOwIhaxRBcR44yEogdaT1RG/k2uULhK1h2u1kASA/M4U9ZGrtQgd8/hDxZl8TwcLIZpV6zQ7QFAiR4rKm/8DtoSDdum47JAca90JzfQyjU0oNdQN+ouGCggK2bdtGeXl5rENRg4zH46GgoCDWYahBKhAKES9BxOU+YJsz8zDYBaGKTThzxsYguoHNFwiRjB8iarAK071sDmeTU1U68P+zFwO+YIh4E1mDlcB2Y4+0qon8AXyBEDlOuwbL5cXjdpKbEs+mYBZfAavWL3d8LENUSg1hAz7BcrvdFBcXxzoMpdQQEwxY8zg5XPEHbEsafgSsgrqd60nTQSoP0NIHS9ze1nUFGQmUhbOZWrlOE6w2gqEwgZAhzjTvS7DSvTQTR0N8Nolag3WA5kCYZGdLDZb1OStMT2BNU7q1rnqLJlhKqZjRv3NKKdWOUMAPcEAfLIBhuXnUGS9Nu3Wy4fY0B8PESwBH3L4Eq2UuLFfDLgj4YhjdwOMLWqMExoWaWpOFjMQ4EuOcVLi0T1F7mgIhkpz75loD6zO2tC7FWqfXTCkVQ32eYInImSKyTkQ2iMjP+vp8SikVDeFgSw3WgQnWiMxEtpocTOXm/g5rUPDZI+JJ3L4+WIUZCZSZHGuhRkdgjNTkt0bDc4V9EJcIWIOpFGYksJ0cHeSiHb5AiCTH/glWYUYCq+viMe4E7bemlIqpPk2wRMQJ3A+cBYwHLhURrbNXSg14Qb9Vg9VeE8G8NC9l5BJfp4lCe3yBEAniRyL6YA1L8bDTYSdYVaWxCWyA8gXsBCuiBgushGFTMBNqt0EoEKvwBiRfMESCY18fLLBqsIwRAsmFWoOllIqpvq7BmgZsMMZsMsb4gSeB8/v4nEop1WsmZCVYTveBNVhOh1AVn0dK83adBLYdvkAYr/j3SxacDiGYPMJa0ARrP75ACBdBnCYI7sTW9YXpCaxuSgcThpptMYxw4Gnyh0lsrcGyEvlCey6sOk+e1mAppWKqrxOsfCDyX7zb7HVKKTWghQMdNxEE8CWNxG0COglsO3ytk+Z691ufmJmHH7fe/LbhC4TxYiX0kddsRIbXqsECvWZtNAdCVhIPrQODtEw2XN7Sb02nd1FKxUjMB7kQkWtFZLGILNah2JVSA0XITrCc7gObCAJIRpH1pEr7YbXVHAzjIdDadKtFQWYS28nW5lttNAVCeLA+b3TUb02v2X58wYgEy26KmpMcT5zLwTaywV8HTVUxjFApNZT1dYK1HSiMWC6w17UyxjxkjJlijJmSnZ3dx+EopVT3GLvPS0cJlifncAAad+lIgm35AiHiaW5tutWiMD2BLaFsQpos7Mfqs2YnWBGTM4/ISGCnySAsTq3BitAyrH3bWj+HQyhI97LBb9f6aVNUpVSM9HWCtQg4QkSKRSQOuAR4qY/PqZRSvWbsUQRd7fTBAsjIKyZoHNTtWt+fYQ0KzYEAboIH1GC1DNWuN777awqEIpKFfQlWQXoCIZzUxQ/TkQQjtAxr78EPzjhwOFu3jchIYGVjmrWgSalSKkb6NMEyxgSBG4A3gTXAU8aYVX15TqWUioZwsONRBAFGZKey3WQR3LupP8MaFMLNTdaTNn2wCjO8lJlsnM014KuJQWQDky8QIgF7brCIBMsb5yQ7OZ5yZ642EYzQMuqiVUt6YBK/pFbnwlJKxVaf98EyxrxmjBltjBlljPl9X59PKaWioaWJYHsTDYPV3G2rycFVozdxbZlg+wnWiIwEtppca0Fvflv5AiE8Lf2JIvpgARSmW0mp1sbs0zJvWLzxt1tLutMXR9iTrtdMKRUzMR/kQimlBqKWJoI420+wEuNd7HHlkdSow2cfINBo/XTt3wcr1eum0j3MWtCb31a+QJiElkEu2klKN/gzoX43BJpiEN3A0xy0Eqw4c2A/v4J0K0H1JRVoEq+UihlNsJRSqj32PFg43R3u0pBYSGJIm7sdINDS3G3/ZEFEMGlF1oLe/Lay+mC1JFiJ+20rzEhgdVOataD9sAArIQVwm+b9mlTCvqHaa+J1LiylVOxogqWUUu2xmwjibL8PFkAodaT1RAdt2F8HTQQBMrKyqSdRb34j+AIhvNJ+DVZhegJbwvZQ7ZpgAVZCCuAONx9QS1qYYV2/3Y5c63rpROBKqRjQBEsppdphgi01WO03EQRwZx0GQGDvxv4IafAI2jVYbW5+oaXvWjZGk9JWTYEQyQ47oY87sAarzNhTmOg1A/YNcuEK+w6owUr2uElPcLMlnG3VQtfvikWISqkhThMspZRqh3SjiWBq/mgAaret64+QBg1XsP0mggAjMhPYGs4mVFHav0ENYM2BMMnO/ed0alGY4WUvqYQccVrrZ2tpIugKH9gHC6xmguuaM6wFbYqqlIoBTbCUUqodjlDHzdxajBiey26Thm/3l/0U1cAXChuc4c5rsMpMNo6arWBMP0c3MDX5QyQ5/IAccM2Gp3pxOpxUx+VB5ebYBDjAtDQRdIZ87X/GMhJY0ZBmLWhSqpSKAU2wlFKqHY5Omrm1KM5OZFM4D2flhn6KauBrDobwYDd3a9N8C/Y1eXOEfFC/p5+jG5gaAyGSHX7reonst83pEPLTvWx35kGlzrkG0OQPAnaC1c5nbERGAktqkqwFrcFSSsWAJlhKKdUOR6jjZm4tUjxudrrySW7Qm7gWTf4QHlqau7VXu+Blq7GHateEAbAShiRH4IA5sFqMyEhgQyjXul46aEPrPFiOoK+Dz1gCjWE3waThUKW1fkqp/qcJllJKtcMRbCaIs9M+WAB1SUXWUO2Nlf0U2cDmC4YjRsQ7MGGIdzlpTCmyFiq05g+sJm+JDn+HyfxhWYmsaMqyBg+p3d7P0Q08jXYTQQk2dliDBdCQOBIqdAAapVT/0wRLKaXa4Qz7CEjHQ7S3yhxl/dRkAbBGeEvErv2LS2p3H292MQFces1sjf4QCdJ8wBxYLYqyElkbsIdqr9SEockfQsSAv6Hdz1hLgrU3vlCvl1IqJjTBUkqpdjjDzQQcXSdYnmFjAWjcsaavQxoUfIEQCeLD4OiwRqY4O4WtJhejCRZgJQxemju+XlmJbA7bzSq1RoYmf4h0dwgxYYg/MMEanurB6RDKZDg0VmjtslKq32mCpZRS7XCFmglKx3NgtcgqOIKAcVK7fW0/RDXw+QJhkvARamfAhhZFmQlsDA8jVK4JFlg1WF78B8yB1aI4K5HdpBN0eDTBwmoimOlumTfswATL5XSQl+ZhfTDXWqF9/ZRS/UwTLKWUaoc77CPo7HgEwRbFuWlsNTkE9+hQ7WDXYOEj7Go/WQAozk5isxmGo0oHbQCrD5YHX4c1WPlpXlxOJ5WeAm3yBvj8ITLcdj+/DpqhjshIYFlTlrWgNaVKqX6mCZZSSrXDbZoJdqOJYGFGApvJI75G/0sO9pxO0kS4g9oYsAZt2GyG4wj7oXZbP0Y3MDX5Q8Sb5nYHbACrRqYwI4Ftkqc1WFg1fumulhqs9j9nIzISWFSdAuLQa6aU6neaYCmlVDvcppmQs+sEy+10UBFfSJqvDMKhfohsYKtvDpJAc4c1CwB5aV7KJM9aGOK1C8YYGv1B4sLtz+nUojgzkfXBHGvY8VCwHyMceJoCIdJc9lQA7fTBAhiZmcjuRkM4deSQ/4wppfpfrxIsEfmDiKwVkeUi8ryIpNnri0SkSUSW2o8HoxKtUkr1A2MMccZP2NnxHFiRfKmH4TYBqCnr48gGvvrmIIniw9HBjS9Yk+cG0g6zFoZ47UJzMEzYQHy4AeKTO9yvOCuRpY1ZEA5CzdZ+jHDgafKHSHV03kSwKNOq2apPGqEJllKq3/W2ButtYKIxpgT4Evh5xLaNxpjJ9uO6Xp5HKaX6TSBk8OAn7Oq6DxaAI+sIAMI6aIOVYNHUaYIFkJpdQCPeIX/z6wuEEMLEBRvAk9LhfkVZdg0WDPmktDEQJNXZeYJVnGUlWHvjR1jXy5j+Ck8ppXqXYBlj3jLGtLRV+BQo6H1ISikVW75gCA9+TDcGuQBIyreGaq/ZtrovwxoUGpqDJNKM09txbQzAYdlJbDa5mCGeLFgJqQ8HYfCkdrjfYVmJlJrh1sIQv2Z1viBpTruJYAd9sEZmWs0ttzIcAg1Qt6u/wlNKqaj2wboGeD1iuVhEvhCRD0RkRkcHici1IrJYRBaXl5dHMRyllDo4Pn+IeAlgulmDlZc3glrjpXHnuj6ObOCr8wVJEh/SySAXYNXIbAoPI1i+vp8iG5hqm4Ik02QtdJJgFWUlspcU/K6kIT+SYG1TYF8NVgfNKj1uJ3mpHtb6dYJmpVT/6zLBEpF3RGRlO4/zI/b5BRAEnrBX7QRGGGOOAn4M/EdE2m37YIx5yBgzxRgzJTs7u/evSCmleqm+OYiXZiSue32wDstJZpMZjlQM7WQB7Bos8XU6yAVYTbg2meG4ardC0N9P0Q08tb4AKdJgLcR33ERwWIoHj9vJ3riCId2s0hhDnS9IcmsfrI4T+ZGZiXzemGktDOFrppTqf66udjDGfLWz7SIyCzgHOM0Yq5GzMaYZaLafLxGRjcBoYHFvA1ZKqb7W0BwiFz91HcxL1FZWUhyfOfIoqtMEq94XwIuv0xtfsJq8PRkejpgwVJVC9uj+CXCAqW0KkEKjtdBJDZbDIRRlJrI1MJy8IdxE0BcIEwwbksQHDhe4Oh7psygrkTdXJIAzXhMspVS/6u0ogmcCtwHnGWMaI9Zni4jTfn4YcASgk8QopQaFel8AD36c8R0Pmx1JRKhJKCItsBv8jV0fcAgL+WpxYMCT1ul+2cnx7HLpUO21viDJ0pJgdVyDBVat37pAjjVaZbC5H6IbeGp91vxXSaYevOmd7luclUBlU4hQevGQ77emlOpfve2DdR+QDLzdZjj2E4HlIrIUeAa4zhhT2ctzKaVUv/A11OAUgzMhrdvHBNNHWU+GeF8PR5P9qz4hs9P9RASTYV+zoZxg7VeDldbpvkVZiSxrzAIThsrNfR/cAFTXkmCFqiEhq9N9W4Zqr0scqQmWUqpfddlEsDPGmMM7WP8s8GxvylZKqVgJNFQA4EzI6PYxcTmjYTs07/6S+GGT+iq0ga/RunZdJVgA2TnDqK5OIW0IJ1h1kTVYnfTBAqsG66PQMOsvd+VGyBnb9wEOMLU+a+DihEB1l5+xlqHay+MKSSt7z5qg2dmr2x6llOqWaI4iqJRSh4RgQxUAcUndT7DSCu2h2suG9lDtDl/3arDAugHeGM4lPIRrF2p9AbKcLaMIdp5gWUO1D7MWhmhSWtNk1WDFB6qhi3+AFGYkIIJ1zcI6EbhSqv9ogqWUUm2EG2sAiE/uvI9HpBHDstlhMgjs+bKvwhrwAqEwXn+1tdCN2r+izEQ2m+GE9w7NZAGgqsHPcHeDNepiJwM2gJWQ1pJIkzt9yCZYe+usvmdxzVVdJvHWUO1e1vjtEYqHePNdpVT/0QRLKaXaCDVatTCe5K5rYVoUZSayKTwcV9XQvYmravSTLnXWQjdqsIqyEtgcHoarYRf4G/o4uoGpvL6ZPFcNJOV2uW9GYhzJHhd74gqHbJ+iigY/QhiHr+sEC6zP2JKGlqHadawtpVT/0ARLKaXaCNlNBB3etG4fkxjvYqe7kJSGLWDNWDHkVDUEyJA6wuLucALYSEWZEU3eKofmzW95XTM5Ug3Jw7rcV0TsZoLDh3QNVo67GTGh7iVYmYksq4yzagiH6DVTSvU/TbCUUqqNsM9qIkgPEiyA+qQivOF6aCiPflCDQEVDM+nUEfSkgUiX+2ckxrE7rsA+eGje/O6tbyYjXNWtGiywmgmu9mdD/W7w1fZxdAPP3vpmDkuw+6x1s59fdVOQYFqxNhFUSvUbTbCUUqoNh6+aMA6I67oWJlI43R5YdYgmC7tqfAyXSkzS8G7tLyI4Mg+zFoZgk7dgKExFg5+UYEW3arDAHqq9yR6efAgmDHvr/Rzhsf8Bkprf5f4jW4dqHzEkP2NKqdjQBEsppdpw+WtpciSCo2e/IuOHHQGAb9favghrwNtR3USBlOPKHNntY3KzsiiXjCF587u33k+CaSIu3NTtBKs4y+rrBwzJa7ajuokx8VYTXtJGdLl/cZY1WfhudwFUb4VQoC/DU0opQBMspZQ6QFJgL/Xu7g/R3iIz/3CajZu67UM4wXLsxZne/QSrODOBjaFcwkOw1m9rZSPDxZ43LDmvW8cclpXEFpOLQYZcghUOG7ZVN1HkqgBxduuaFWYk4BDYbIaDCUHVln6IVCk11GmCpZRSEcJhQ0ZoL42e7tUoRCrKTqHU5BLas74PIhv46it34sHfrZqFFkVZiWwKD8MMwaHat1Y2Mkp2WguZo7p1TFFWAs3EURc/bMg1Rd1b34w/GGa42QMp+d2aNDje5SQvzcuaZnuo9iF2zZRSsaEJllJKRdhT18xwqSCU1L0ahUhFmYlsNTm4aofmf8kDezdbT1ILu33MSHskQaevEpqq+yawAWprZSOjHC0J1uHdOibZ4yYrKZ5drvwhlyyUVjQCkBnY1aMkvjgrkc/r7RrpIdhvTSnV/zTBUkqpCDsqqsmmBmdaQY+P9cY5qXQPJ7lpx5Abqt0XCJFaZ9/wZ4/p9nHFWZFDtQ+tm98Ne+qY6Cm3RhD0pHT7uKLMBDabYVYTwSH0OVu7qxYhTHLtOsgZ2+3jRmYmsLzSifGkDblmlUqp2NAESymlIlTsKsMhBm929/9DHqkxMZ940wSNFVGObGDbWF7PWNlC0JUA6cXdPi49wW1NnAtD7uZ35fZaxju3Q9boHh1XkO7lS38WNNeAr7pvghuAVu+oZYK3Goe/HoZN6vZxRZmJ1PqChNIPG3JJvFIqNjTBUkqpCPW7rRuw1GHdTxIihVLsxKx6aDUT/GJrNRMcpQSzJ/Ro9EURwZlpX+vKzX0U3cBT0xhgd2U1hf71kH9Mj44tSE9gdVO6tTCEBm1Ys7OW09J3WQs9SLCKs6yh2mu8I6BiaE5orZTqX5pgKaVUhPCu1QB48yYe1PGuzCIAQhWlUYpocFhRuosSx2biR0zp8bG5GanslXSo2doHkQ1MS7dVM0k24TQhKJzWo2Pz071sDdtzYVUPjWtW3xxk9c5apsetB5cHciZ0+9giO8Ha4xwGtdt0qHalVJ/TBEsppSJ4qtZR70ju9rxEbSXkWoMVtNSEDQXGGJo2fkI8AWTUKT0+Pj/NS1k4CzNEkgWA99fu4WT3Kow4oPC4Hh1bkO6lzNij4g2RmtKPN+wlEDJMaPocRn4F3J5uH1uYbg3VvjWcCSYMtTv6MFKllOplgiUis0Vku4gstR9nR2z7uYhsEJF1InJG70NVSqm+FQyFGebbRGXiKBA5qDKGZWdRaZJoLh86zd1W7ahlctMnhBxuGHlCj4/PsxOscNXQSLCMMby7djfnxX+BFB4HiZk9Oj4/zUstiQRcSUOmBmvel+WMi9tDQs16GHVaj46NcznIT/eyrtluVjlErplSKnaiUYN1tzFmsv14DUBExgOXABOAM4G/iogzCudSSqk+s3bbXibIZgI5JQddRn66lzKTg6kqjV5gA9yry8o41/kJoVGnQ3xSj4/PT/Oy3WQhtdshHO6DCAeWL8qqSapay4jAJhh/Xo+Pz0vzAkJ1fN6Q6IPlC4R4dflOfpi1BBCYeGGPyxiZkciqxjRroaYsqvEppVRbfdVE8HzgSWNMszFmM7AB6Fkjc6WU6melKxbgkQDp43vezK1FfprVfCuuflsUIxu4mvwhahbNJVtqiJty5UGVkZ/uZZvJxhEOQP2uKEc48Dz6USnXxr2JcXmgZGaPj/e4neQkx7PbkTMkamNeXLqd5qZ6vtbwKhxxOqT0fI66/DQvy2vs5H8IXDOlVGxFI8G6QUSWi8g/RcSufycfiPwX0TZ73QFE5FoRWSwii8vLy6MQjlJKHRz/+vcJI2SMPemgy/C4nVS4hpPs2zkkamP+9cEq/iv0JE1po62b34PQUoMFHPI3vyu317BhxSecL/ORKd+BhIyDKie/pR9W9ZZDei6sRn+QP7+znl9lvIu7uRJm/PigyslP97KzIYxJGgbVWoOllOpbXSZYIvKOiKxs53E+8AAwCpgM7AT+2NMAjDEPGWOmGGOmZGdn9/RwpZSKilpfgDHV89meNLHHfWLa8iUMw2UC0Lg3StENTKt21OD58P8x0rEH7zf+3KPh2SOlet1UuHKthUP45tcXCHH7Uwu5N+5+SMyCGT856LIK0hNY78+AQOMhPefa7JdWMaxuBZf65sKEC2BEzwYEaZGf5gWgOTF/SI1WqZSKDVdXOxhjvtqdgkTk78Ar9uJ2oDBic4G9TimlBqRFiz7jNCll29if97qsUHI+NGD19UjK6X1wA1BFfTMvPnIntzteo/HIq0ko6vngFi1EBNJGQC2H7Kh4gVCYW+Yu5vrK/2OUcxtc8FyvEvn8NK/Vp8iFdc0Ss6IW60DxyEeb+WTJEl5Lvh9HYj6cc/dBl5WfbiVYdZ7heKpXRitEpZRqV29HERwesXgB0PJb6yXgEhGJF5Fi4AhgYW/OpZRSfcn/2T8I4CLvxKt7XZYj3fr/kqk5NPthlVU08Pg9v+Sn/vupzZ9Bwrl39rrMzPQ0qiX1kByAoM4X4Mf/ms8F637KWc5FcOb/weE9Gwmvrfx0L2UhO0E7xD5nobDhz+98yXOvvMLLCb8jyRmAmU+AN73rgzvQUoO115UDNYfeYCq+QCjWISilInRZg9WFO0VkMmCAUuC/AIwxq0TkKWA1EAR+YIzRb79SakDavKOcr9S9yebsUxidktvr8hKyRgLg27sVb69LGziMMbz22XKcb/yUG/mE6hGnkXb5v8EV1+uy89O8bN+SRdoh1gfr4417eeHpf3Nr0wMUuCrh7D/B1O/0utyCyH5rNYdOA5GyykZuf3oxk7Y+xvPxz+FMzEUufxZyxvWq3GGpHhwC200W48IBqNsJqe12DR9UGv1B7nl3Aw8v2MSPTj2CH552RKxDUkrRywTLGHNFJ9t+D/y+N+UrpVR/+PzlB7hIGgmf+v2olJeZNYxGE09Teekhk2CtLN3N0uf/yNnVT5AsPqqO+ynpp/8UHNGZgSMvzcuWUCbjqsv6bHjb/rSxvJ65r77JURsf4E7nIppSi3F887GD7kPUVl6alxoSCToTcB0CNVg1TQEeeG8duz6Zy387n6bIvRMz7jzk3L8c9EAgkdxOB7kpHjYHWmr9ygZ1ghUIhXlqcRn/fPtzzml6mTfiF/PTd65i9LDLOGPCwU2SrpSKnt7WYCml1KC2dU81x+34F2VJEygcd/DDs0canu5lp8kguXpw3/gaY1i6bgMb3v47M/Y+xeVSxY7MY0md+RfSc3tXo9BWfpqXHSYTalZYo+Id5ETPsWSMYenWSha8/QKHb3mS250LaY5LJHDCz/GeeDO44qN2rrw0DyDUxeeQPoibVe6saeKxD9fRsOg/zDIvUuzaRTDjCDjrWeSIbnUB77b8NC/rfKnWwiBNSisb/Dy5aCtvfvIF5zQ8xyvu9/C6fRCGRz1/4oInMxh27QUcWZgW61CVGtI0wVJKDWkLX7iPb8peqk+/N2o39XmpXr40WYyvHZw3cY0+H1+89yyy9HGmNn/GURJiW+pRNJzzKHmjT+6Tc+ane1lmsnAEm6CpKiq1Fv1lT62Ptz9eROjzxznF9y4/dJTji0uiceqPSTjxh33yWpI9bpI9LiqcOaQPsmQhEAozb105Cz6eT9GWZ/ieYwHpUk9T9iQ49U5cY8+JWs1opPx0L8u3pFgLg6wp6srtNTy24EsaV77CN/iA/3IuQ9yCTLoITrgJ4hJJ+NvJPMjdXPVoFnN+cBqFGQmxDlupIUsTLKXUkLV1TzXHb3+EbYkTKCg5K2rlZifHM58sjm5cEbUy+5oxhhXLlrB3wT+ZWP4aJ0gVVZLK+uLLKP7af1GQP7FPz5+X5mVH5FxYAzzB8gfDvL+ilK0fPcnEPS9zmWM1YYTdOcfR+JXfkTDpfHD3bQPR/DQvO4JZHF6zuE/PEy0b9tTz4mdrafziGc4Jvs1vHBsIuVw0H342HHcN3sNO7tOay7w0L68uF0xqOjIIav2qG/28vGwHSz97n5K9r3K782NSnQ0EEofhPOomOOYqSC9q3d/xzYc57PGLuD30ALP+mcRz359OaoI7ZvErNZRpgqWUGrIWv3APF8peqs68L6o3dk6HUBufS1LgfQg2R7VpWLTt2LOXVe/8m5wNT3NkeDUhI6xLPp6aKVdy+PQLSe+n2HOT49lJxKh4eZP75bw9tXJbNZ/Nf4P0L5/ia+ZjzpAmqrwFVEy+lczjr2J4WmHXhURJXpqXLbvSwbcHAj5we/rt3N1V6wvw2rLtrP7kVY6seJ3rHAtJlGbq0w4ndNz/4DzyEhJ6Oe9cd+WneQmGDcHkAtwDdL61QCjM/C/LeXvhctI2PM8F8gFXOLYRjIsnPObrcMzluA87uf0avsNPQ077FWe/+1uW1xRxw5wEHr16Gk7H4Gtuq9RgpwmWUmpI2r7Xqr3amjSJEZPOjHr5zQnDrXmdandARnHUy++NpuYgixa8QXjJY0xpmMfXxMcOZz4rxt3MqNO+w/is/ksSWricDgJJBeBnwPWPqahv5q3PltK0+AlOaniL7zh20iweKovPJuHE75BedEJM+ozlpXn4ckuatVC7HTJH9XsM7QmFDR9t2MsHn3xK1sZnOVc+5BLZiz8uidD4b8G0WSQVTOn3a9YyF1a9ZzjpA2yy4dU7anlh8SZqlr7E6YH3+J1zGS5nmMacYzDTbsE14QLwpnVd0PQfw64V/HTVf7h6Yx53vZXKT88c2+fxK6X2pwmWUmpI+vz5v3CuVLL3jL/1zY1eaoGdYG0fEAmWMYbla79kxwf/ZOzOlzhRdtCIh03DTid7xnfIm3ASeTEeWCIxLYfm8njiB0DzrUAozPzV29mw4CnG7HyJi2UZTjHszjyaxuN+RsLkixgenxzTGPPSvHzYnAZxWElpjBOsDXvqePmztTQvfZqvBd7jV471hB0O6vNnYI67krixX+/zZpOdKbDnwqp05ZJe/VHMB1PZW9/Mi19sZ/nCeRxd9Rrfd35MmjTgS8pBjvoRHHUZCdmje1aoCJz/V6RyEw/uvp9zPshmYl4qXy8Z3vWxSqmo0QQrmozBmDDhUIhQKEQ4HCRkPzfhEKFgkJAJYYJh62coiAkbAMQhgANEMIi9LIg47N//gjiciIj9cCAOQRDE4dh/nQiO1n3tbQ4HIg4cgrWM9XtYBuFIXSo2jDFtliOed7ZfB8dY20yH2zo+V+/jqKqsYtq2R9iUdCSHTfpaxyfuBVf6CCiDcIyHHd9ZWcsX7z5F2tonmRZcwpESZlNCCRsm38hhJ13GRE9sk4RIeekJ7CrPYmQME6wvd9Xy4fx3SVozl9PDH3Ka1FMbn0PVpBvIOuFqcgdILRFYg6nsMLGdbLiqwc8rS7ey+bOXObrqDb7vWEK8BKhLPZzg1Nm4Jl9CSsrAuLlvqcHaKdmMCjTEZDCV5mCI99bs4e2Fy8ne/CIXOj7gO45thOLiCI3+Oky5HM9hp/RukI+4BLjkP8Q/dAqPyd1c9Ew6h+ecxZhhA+e73u+MgaCPUHMjzU31+Bob8Pt9+PwBwsGAdY8WCmBCIcKhIOFw0LpHCwUIGaz7MhFEnCDY92Mt91fOiPss+6fDZd+TOcHhxOF04HC4cDidOMSJw2k/d1gPcTpxOpyIy4XTfu5wOnE6rWVxuAblyKpDmSZYnVj23lOw8CGc4QBO48cZDuI0ftwmgMsEcBHETYA4E7B+SggBnPZjoAobIYyVyBmsXxyw/7r9l60vdVgcrdvMAQ8wWNvF3ifyBwCd3EB3sbFbJPJmvZfH91wHd/ndOu9Bn8k+/uDj7t1rht68b739U9Gb2NMJkiJN7Drr3332RyspZwQAjeWlJPXJGTrmC4T45NMPaVr4GNNq3+JsqaXSkcH6w69mxGnf47C86A6xHi356V62hjIZUb2t15+PnqhpDPDWohXULnyCr9S9yXccZQTETcWIrxGccQ0ph5/aJ6Pa9VbLwCBGHEhVab+dNxAK88G6cj7+eD55W57nPMdH5Eg1Pk8a4QlXwtTLSc47asDdECbEuUhPcLMlmMl06LfBVIwxLN9WwwuLN1G3/GXOCr7Pnc5luFxhmnKPhqk/wTnhQpzdaQLYXakFyCX/YdijX+dRx++49d9u/vZfZzEsdeD10+tSOIRprKChahf1lbtoqq3EX19FoLGaUGM1pqkGaa7B4a8jLlCHJ1SHO+zDbZqJDzcTRzMe/IB1b5ZgPwajoHEQxkEYISwOQjgwtKyzH2L9NMh+6/fdn9F618YB64D97gT3bTMQcUcYsb9pZ91+d4sHlkHrOiKe738sbfb9kKPZ+7V7mXVC7FuEdIcmWJ0I+RtJDlYTEjdBRxwBZyJhRxxhZxxhRxzG6cY44jBOax3ixjic0PpfCweIE4n86XAireusWiWLARO2/x1vf7iNaV3GGOuj2boPmJbnxl4fuW6/48PW59XeZlrSqjb7GmN9HY0xSMt//014X1ktx9Cy74ExCmEremO/pgPs+zp19LfXIJ3eXHX2N9t0o/z9o9h/yXR5XHcL7Xi/Drf04GbkwFO1f2xHr7PzQPbfeMBusv9T051zd3JqI52cq7M4urmyo5dpCo9lwsQTO9jaezkZ6VSYZExFWb8kWMYYVmwopXTevxi1/UVOYRNBnGzOnEH4K1eTc9Q5ZDgH9q/8vDQvZeFMTNXyPk+wQmHDR+t2sHb+Mxy2/UW+IUtxS4g9aZOon/ZDko65mGHe9D6Oonfy0jwEcNHgGU5S5cY+P9+qHTW8/ulKWPE0Z4be5w5HKSGnk4aRp8FxV+I54gxwxfV5HL2Rl+bly+Y0a6GmrE8HU9lV4+P5z7exYvE8jq15gxvtJoDNSbk47CaA3p42AeyJwqnIt5/k8P9cyp8afsGND/i469rzB8bw7cZAcy3U7sDUbKdh71Ya9m7DX7ObUP1epLGcuOZKEgKVJIdrcWBIgnZ/l9YaLw0k0OBIosmRSI0zk6DbS8jlIez0YFxejNsLLi8S50XcXpxxXpxuDy63265Nclk1UU63XaPkwuF02zVOYrdCCBEOWy2VjAljwvbDGAiHCBvAhOx1YSsxbFkOhzDhYMTzEBjrORHPW9Zb66xjMfvWGROCcNi+f7PXmzDScpwJ2dvsNMy0pmPA/n+z90uhpGVd5P2Qdcez7290O/vst032O46IbQZpk03tn1oduP7AdWHvKI7IHTy1sAP7r22MHX3mLDhzVqzDUEoNQnlpHnaYTHKr+ra52+7qepa89yyJq+dyXOAzSiTItvjD2TTplxSdNIsjkrP79PzRlJ/m4WOTh6PpfWis7JPahU3l9cyf/y7eVXP5WugDTpR66uKzqB73PbKmX01OzuAZECA3xYNDoDy+kKSKDX1yjj11Pl75vJTtnz3PcXVvc6PDSkRrMycQmva/OEu+RUpiVp+cuy/kp3lZXm4nzhXRT0p9gRBvrtrFO4tWMHzLi1zkmM/1dhPAllEA43vbBLAnRp2K44pnGfmfS/mH72buvncp0y78EWdMzOu7LgLGWN/f2u2EarZTv2crTRVbCVZvR+p2EN+4i6TmPXhME2DdSrckTzUmgb0mlUpSaHDl0hw/jpA3C0nKIi45F3dKNvHJGSSkZJKYkk5yaiapiR5SXLFsiK3UgTTBUkqpPpCX6uUTk8OIutKol93kD/HZwo9pXPhvjql5i7OlmhpJYUvxJeSf8h0KRh4d9XP2h/y0BDaYfGuhfB2MPD4q5VY2+Hl30QrqFj/JcbVvMsuxhQBuygu/SmD6LJKP+CrJA7x2rz1up4O8NC9bGU5xxTtRG7TBFwjx1qpdLPv0bQ7b/hIXOj4lTRpo9GYROvI63FMuJyV3fBReQf/LT/eyYIMTk5qHlK+NSpnGGBZvqeKFRZtoWvkqXw+/z912E0Bf7jF90wSwJ4qm47p+Aa6nvscdOx9k09Mv8O83z+HwUy5nypElxLt6mOz5G6F2O4HKMup2b7aSp6qtOGu342ncSYp/N3GmGbCa5KUCicbBbtLZbdLZzTDq4kpo9g4jnDwcR1oBnowCUnIKGZaewvBUD0VJ8Tq8vBrUBt9fFKWUGgTSEtxslBGc1bgI/A0Ql9ir8vzBMJ99sYyKhU9y+J63OFk2EcRBacZ0OP4qco8+j9QB3jyrK0VZCWyiwFooX9urBKvJH2Le8o3s/PRpDt/zBhfISlwSZnfqROqm/R/Jx1xM3gCfzLg7Rucms2J3Lif566w+RekjD6qcUNiwqLSS+Z8tInHts5xtPuA8x24C7nh8o86GYy8nofhkGISJaKSC9AQa/SECmWOI273qoMsxxrBmZx0vL93Kzi/e4oSm9/mpczEp0khzUi7Oo2+Eyd/G05dNAHsifSTea98ksOJ5kt77C1dV/wNe/gfbX8pmr7eIUEoh7oRUXJ4ka7CsoB9HuBmHvw5prMDtqyDeX0VioIpEUw+AG8jA6te9hzR2mkx2Sx51cUfhSxhOKCUfd1oB3qxCUrPyGZaeSFGql6MS3DrAljrkDe7flEopNUCJCLWpY5E6A3vWQMGUHpcRDIVZsupLdn4yhxE7X2cG6wAoSxhH6fhfUHjSVRyekhvt0GMm3uUkMXskjbUJJOxc1uPjfYEQH67eyvaFL5K/7VVO5QviJUC1ZzjV468n8/jLyR2kNS8dGTMsmbfXj+AGN7B9cY8SrJak6tPFi3CtfYkTgx9zm2MzYRHqhh1L+Ng7cI8/D7cnpe9eQD8bP9x6LbviD2NE2ccQ9Peo39jG8npeX7aNDZ+/z+Ta9/iO81OypJaAJxHGnQdHfqt/mwD2hAjukgvJKbkQ/67VlC58Fd/Gj0ms30Lm7jUk4CNegoCVNDXjph4PlSaFPZJKg2skvvjJ+DzZBJLycKaPICFrBCk5I8jNSGFUqofJ8S5NnpRCEyyllOoz7vxJsBbM9s+RbiZYDb4AS5d8RN2yV8jb8wFTzXocYtgZX8ymMTdTOOMKCrMHzlDh0TahIJ1Fq8Zx4uYPujXQxd76ZhYtX0nV0pfJ2/0BM1iBRwLUujOo+P/t3Xd4XNW18OHfmirNqBfLVreNbXCnuNANCSWXFgIBEjo34Uu7SUghPSHk5l5SuUkgEAgEkhB6DS30GmywsXHvli3Zsq1idU3f3x/njCzbarZGGmm83ufRozl9zxwd+6xZe68z8bMUnXgFOWVzRlxFu0SZPyGfu94oI5qWhrP6fZh+UZ/rtwcjvLthN+uXvYtr8yucHHmPrzu2ArAnfyaho3+KZ+ZFZOcM/8Omh8OssmycDmEJR1EeDcK292DCqb2uH40ZPqpp4vXlVTSv/BfT2/7Npc6lFEoLEY+X6BFnwuxLcE86E9yjp0KfZ+xUJp+/98uGaMywpyNEdWsHxhgcLjdOhwOXUyjze5ji0dtFpQ7GoK4YEXkYmGJP5gBNxpjZIlIJrAH761ZYaIz5wmCOpZRSo83EI6axefVYCpc/Q+a863tcJxyNsXrDRnYufwXX1nc5sm0hJ0o9AFu9U9g08cuUn3gZ40pmDGfTk2bBlEJeXzaNUxv/CrtWw34Zp2AkyorNO6ha+ipmyzsc2fEBn3BUAdDoHUfD+MspmvspssafRNZIzCIk2NzKPJxON5syjmXyqifhzP8Gp7treTRmWFPbwvLVa9iz5nVK6t/lRPmIM6WFGEJTwSyCR38e74xPkpuiQVV3Po+LGSXZ3Ffr5JNOD7Lmn/sEWMYYtjZ08O6GXVSvXoi35l1mR1bwFcdqvBImlJZJZOLHYfq5uCadiStFsntOh1CQ4aUgw5vspiiVEgYVYBljLo2/FpHfAM3dFm8yxswezP6VUmo0O/2oIh56eh7Xb38WU7MEKT2W+uZWtq5ZQtPmxbB9KZVtS5kl25kFdJJGde4cNh35H5TPv4CKnJJkv4Vht2DKGH7hPoUb5VEcz3yT3SfeRE1DKw1blmN2rqCsfQWz2cRxEiOCk90509k55TuMOfaT5BUdlbKZqt6ke5x8fOoY/m/9yfxR3qXpme+yruhcdtTW0lazkpzG5cw2a/msow6ADk827aULiMz6D1yTzyBvFFUATJTPzC3jO4+vYOOEszliyf1s8M1mZWc+9TUbcexeyfjgOs5zrCVLrCp3rdnjYcp1MO0cPBUn4OkWwCqlVE/EmJ6eVXSQO7E63G4DTjfGbLAzWM8aY6YfzH6OO+44s3jx4kG3RymlRorf/3MRlyy+lAJppokssk0rbokC0E4627NmESs/iXGzPkb2hDn7ZB8OV48vqWHhE7/nFtddOGXv/1Eh3Oz2TyFYeiJjZ30c/8QTwDvcj3EeebY2tHPRH//NN4O38xnX6/ssa3Xl0TLmOPyTTiZn8kkwbtbIHB80jEKRGNf85X02bNrEQ56fMdFR27UshtDqr0QqTiDzqNORypMhM3XGOSqlEktElhhjDhgDkKgA6xTgt/ED2AHWKmA90AL80Bjzdn/70QBLKZVqYjHDc+8uIW3ZX8g2zXiyxpBeNpPiKfPJLJ5sPZBcHWDdzlbWr/mIse1rGZOdwdiJM/AWTRn1VeyGSmsgzNsb6kmrW0GFq4GxYwrxF0+FzHGHXVZvICLRGG9vrGdPcwuTOj6iLEvIKSyzuqQOsuKnUurwccgBloi8AoztYdEPjDFP2+vcAWw0xvzGnvYCGcaYBhE5FngKmGaMaelh/9cD1wOUl5cfu3Xr1oN6Y0oppZRSSik13HoLsPr9KtAY8/F+duwCPgUc222bIBC0Xy8RkU3AZOCA9JQx5i7gLrAyWP21RymllFJKKaVGqkT0Tfk4sNYYUxOfISKFIuK0X08AJgGbE3AspZRSSimllBqxEtGZ/TLgwf3mnQLcLCJhIAZ8wRjTmIBjKaWUUkoppdSIlZAiF4kiInXASBuEVQDUJ7sRatjo+T586Lk+vOj5PnzouT586Lk+vIzE811hjCncf+aICrBGIhFZ3NPgNZWa9HwfPvRcH170fB8+9FwfPvRcH15G0/nW+sBKKaWUUkoplSAaYCmllFJKKaVUgmiA1b+7kt0ANaz0fB8+9FwfXvR8Hz70XB8+9FwfXkbN+dYxWEoppZRSSimVIJrBUkoppZRSSqkE0QBLKaWUUkoppRJEA6w+iMjZIrJORDaKyHeT3R6VOCJSJiKvi8hqEVklIl+z5+eJyMsissH+nZvstqrEEBGniCwVkWft6fEissi+vh8WEU+y26gSQ0RyROQxEVkrImtE5Hi9tlOTiNxg/xu+UkQeFJE0vbZTh4jcKyK7RWRlt3k9Xsti+b193peLyDHJa7k6WL2c61/Z/44vF5EnRSSn27Lv2ed6nYiclZRG90EDrF6IiBO4HfgEMBX4jIhMTW6rVAJFgG8aY6YC84Ev2+f3u8CrxphJwKv2tEoNXwPWdJv+BXCrMeYIYA/wn0lplRoKvwNeNMYcCczCOu96bacYESkBvgocZ4yZDjiBy9BrO5XcB5y937zeruVPAJPsn+uBO4apjSox7uPAc/0yMN0YMxNYD3wPwL5fuwyYZm/zR/u+fcTQAKt3c4GNxpjNxpgQ8BBwQZLbpBLEGFNrjPnQft2KdQNWgnWO77dXux/4ZFIaqBJKREqBc4A/29MCnA48Zq+i5zpFiEg2cApwD4AxJmSMaUKv7VTlAtJFxAX4gFr02k4Zxpi3gMb9Zvd2LV8A/NVYFgI5IjJuWBqqBq2nc22MeckYE7EnFwKl9usLgIeMMUFjzBZgI9Z9+4ihAVbvSoDqbtM19jyVYkSkEjgaWAQUGWNq7UU7gaJktUsl1P8BNwIxezofaOr2D7de36ljPFAH/MXuEvpnEfGj13bKMcZsB34NbMMKrJqBJei1nep6u5b1vi21XQe8YL8e8edaAyx1WBORDOBx4OvGmJbuy4z1DAN9jsEoJyLnAruNMUuS3RY1LFzAMcAdxpijgXb26w6o13ZqsMfeXIAVVBcDfg7sYqRSmF7LhwcR+QHW0I4Hkt2WgdIAq3fbgbJu06X2PJUiRMSNFVw9YIx5wp69K96lwP69O1ntUwlzInC+iFRhdfU9HWuMTo7drQj0+k4lNUCNMWaRPf0YVsCl13bq+TiwxRhTZ4wJA09gXe96bae23q5lvW9LQSJyDXAucLnZ+/DeEX+uNcDq3QfAJLsakQdrMN0zSW6TShB7DM49wBpjzG+7LXoGuNp+fTXw9HC3TSWWMeZ7xphSY0wl1nX8mjHmcuB14GJ7NT3XKcIYsxOoFpEp9qyPAavRazsVbQPmi4jP/jc9fq712k5tvV3LzwBX2dUE5wPN3boSqlFIRM7G6t5/vjGmo9uiZ4DLRMQrIuOxCpu8n4w29kb2BoNqfyLyH1hjN5zAvcaYnye3RSpRROQk4G1gBXvH5XwfaxzWI0A5sBW4xBiz/wBbNUqJyALgW8aYc0VkAlZGKw9YClxhjAkmsXkqQURkNlZBEw+wGbgW6wtFvbZTjIj8FLgUq/vQUuBzWGMx9NpOASLyILAAKAB2AT8BnqKHa9kOsm/D6ibaAVxrjFmchGarQ9DLuf4e4AUa7NUWGmO+YK//A6xxWRGsYR4v7L/PZNIASymllFJKKaUSRLsIKqWUUkoppVSCaICllFJKKaWUUgmiAZZSSimllFJKJYgGWEoppZRSSimVIBpgKaWUUkoppVSCaICllFJKKaWUUgmiAZZSSimllFJKJYgGWEoppZRSSimVIBpgKaWUUkoppVSCaICllFJKKaWUUgmiAZZSSimllFJKJYgGWEoppZRSSimVIBpgKaXUCCEilSJiRMSV7LakOhG5RkTeSXY7RhoROVlE1iW7HUopNZppgKWUUmpUE5GbRCQsIm3dfm5MdrtGI2PM28aYKYner4jcJSLrRCQmItckev9KKTWS6LekSimVICLiMsZEkt2Ow9TDxpgrkt2IoZICf1sfAQ8Dv0h2Q5RSaqhpBksppQZBRKpE5DsishxoFxGXiMwXkX+LSJOIfCQiC7qt/4aI/K+IvC8iLSLytIjk9bLva0VkjYi0ishmEfl/+y2/QESW2fvZJCJn2/OzReQeEakVke0i8t8i4uznfUwUkddEpEFE6kXkARHJ6basUUSOsaeLRaQu/r5E5HwRWWW/3zdE5Kj9Pp9vichyEWkWkYdFJO3gP+mDJyLftT+XVhFZLSIX9rKeiMitIrLb/ixXiMh0e5lXRH4tIttEZJeI3Cki6QM8/n32+i/bbXhTRCq6Lf+diFTbx1wiIid3W3aTiDwmIn8XkRbgGhGZKyLv2Z9zrYjcJiKebtsYEfmSiGywj/cz+9z92z7GI93X76XNC0SkZiDv72AYY243xrwKBBK9b6WUGmk0wFJKqcH7DHAOkAMUAc8B/w3kAd8CHheRwm7rXwVcB4wDIsDve9nvbuBcIAu4Fri1W5AzF/gr8G37uKcAVfZ299n7PQI4GjgT+Fw/70GA/wWKgaOAMuAmAGPMJuA7wN9FxAf8BbjfGPOGiEwGHgS+DhQCzwP/3O9G/hLgbGA8MBO4pscGiJxkBw+9/ZzUz3vY3ybgZCAb+Knd/nE9rHcm1uc32V73EqDBXnaLPX821udZAvz4INpwOfAzoABYBjzQbdkH9n7zgH8Aj+4XfF4APIZ1fh8AosAN9r6OBz4GfGm/450FHAvMB24E7gKuwDqf07H+Vg+ZHSj3dn7+OJh9K6VUqtAASymlBu/3xphqY0wn1s3s88aY540xMWPMy8Bi4D+6rf83Y8xKY0w78CPgkp4yTMaY54wxm4zlTeAlrIAB4D+Be40xL9vH2W6MWSsiRfaxvm6MaTfG7AZuBS7r6w0YYzba+woaY+qA3wKndlt+N7ARWIQVGP7AXnQp8Jy9bRj4NZAOnLDf57PDGNMI/BMrqOipDe8YY3L6+OmrKMUl+93sFxtjHrWPGzPGPAxsAOb2sG0YyASOBMQYs8YYUysiAlwP3GCMaTTGtAL/099nuZ/njDFvGWOCWJ/Z8SJSZr/fvxtjGowxEWPMbwAv0H3803vGmKfs9ncaY5YYYxba61cBf6LbObL90hjTYoxZBawEXjLGbDbGNAMvYAXch8wYM7OP87N/sKeUUoclHYOllFKDV93tdQXwaRE5r9s8N/B6L+tvtZcX7L9TEfkE8BOsDIoD8AEr7MVlWNmi/VXY+6u14gOwt63uYd3uxyoCfocVwGXa2+zZb7W7gWeA6+2AAayM19b4CsaYmIhUY2V64nZ2e91hb5Noj+w/BktErgK+AVTaszLo4XM2xrwmIrcBtwMVIvIEVuYxDeszX9LtsxSgz+6W++n63I0xbSLSiPX+q0XkW1iBcjFgsDKVBT1ta7+fyViB73F2u1zAkv2Ot6vb684epsceRNuVUkodAs1gKaXU4Jlur6uxMlTdv9n3G2Nu6bZOWbfX5VgZlPruOxQRL/A4VkaoyBiTgxVQxe/0q4GJPbSlGggCBd2On2WMmdbPe/gf+33MMMZkYWXi9kYVIhnA/wH3ADfJ3nFjO7CCuvh6Yr+/7f0c7wBilQhv6+Pn5P730rWvCqyA8CtAvv35rez+nrozxvzeGHMsMBUroP021jnpBKZ1+yyzjTEZB/G2us61/RnmATvs93IjVnfEXLt9zfu1r/vfFcAdwFpgkn2Ovt/b+xkqYo216+383DmcbVFKqZFKAyyllEqsvwPnichZIuIUkTS7cEBpt3WuEJGp9nimm4HHjDHR/fbjweoyVgdE7GzWmd2W3wNcKyIfExGHiJSIyJHGmFqsroS/EZEse9lEEdm/K9n+MoE2oFlESrACjO5+Byw2xnwOa4xZ/Gb6EeAcux1u4JtYAd6/+/ug9meXCM/o4+ftg9idHytAqQOrYAjWGKQDiMgcEZlnt78dqxBDzBgTwwrSbhWRMfa6JSJyVrdtjXQrYtKD/7DHlnmwxmItNMZUY33eEbt9LhH5MVYGqy+ZQAvQJiJHAl/sZ/2EM8ZM6+P8fKG37UTEY48vE8BtXxd6D6KUSkn6j5tSSiWQffN8AVZ2oQ4ro/Rt9v339m9YhSh2YnVD+2oP+2m15z+C1VXvs1jd8+LL38cufIGV+XiTvZmkq7ACtNX2to9hjZvqy0+BY+x9PQc8EV8gIhdgFamI39B/AzhGRC43xqzDynb9ASvjcx5wnjEm1M/xhpQxZjXwG+A9rG5yM4B3e1k9CyuQ2oPV3bEB+JW97DtYY88WilXN7xXscVL2WKpW9nbb7Mk/sLp5NmIVn4h3Y/wX8CKw3j5mgH66cWJ1W/ysfcy7scqejxYvYWUDT8AqvNGJVVhEKaVSjhizfw8EpZRSQ0VE3gD+boz5c7LbogZHRK7A6j74vV6W3wfUGGN+OKwNU0oplVRa5EIppZQ6BMaYvye7DUoppUYe7SKolFKHCbEeeqvFCQ5zIvL9Xv4OXkh225RSKhVoF0GllFJKKaWUShDNYCmllFJKKaVUgoyoMVgFBQWmsrIy2c1QSimllFJKqT4tWbKk3hhTuP/8ERVgVVZWsnjx4mQ3QymllFJKKaX6JCJbe5qvXQSVUkoppZRSKkE0wFJKKaWUUkqpBNEASyml9hOOxpLdBKWUUkqNUiNqDFZPwuEwNTU1BAKBZDdFjTJpaWmUlpbidruT3RQ1ijS2h/jOr//AFeVNnHrtz5LdHKWUUkqNMiM+wKqpqSEzM5PKykpEJNnNUaOEMYaGhgZqamoYP358spujRpH3tzRyW+x/8G6NEN75Wdxjj0p2k5RSSik1ioz4LoKBQID8/HwNrtRBERHy8/M186kOWl1bsOt1/Tv3Ja8hSimllBqVRnyABWhwpQ6J/t2oQ9GxZydeiQBgti1McmuUUkopNdqMigBLKaWGi2PPFgC2SimFrasgEkpyi5RSSik1mmiANQAiwje/+c2u6V//+tfcdNNNyWtQNwsXLmTevHnMnj2bo446qqtdb7zxBv/+978Peb9bt27lmGOOYfbs2UybNo0777wzQS1WamSLBTsAqMqeg9uEoW5NkluklFJKqdFEA6wB8Hq9PPHEE9TX1yd0v8YYYrHBlYO++uqrueuuu1i2bBkrV67kkksuAQYfYI0bN4733nuPZcuWsWjRIm655RZ27NgxqLYqNRpItBMAM+5oAFqrVySzOUoppZQaZTTAGgCXy8X111/PrbfeesCyuro6LrroIubMmcOcOXN49913Abjpppv49a9/3bXe9OnTqaqqoqqqiilTpnDVVVcxffp0qqur+fa3v8306dOZMWMGDz/8MGAFSAsWLODiiy/myCOP5PLLL8cYc8Dxd+/ezbhx4wBwOp1MnTqVqqoq7rzzTm699VZmz57N22+/3Wc7r7zySo4//ngmTZrE3XffDYDH48Hr9QIQDAZ7DQR///vfM3XqVGbOnMlll10GQGNjI5/85CeZOXMm8+fPZ/ny5V3Huvrqqzn55JOpqKjgiSee4MYbb2TGjBmcffbZhMNhAG6++WbmzJnD9OnTuf766w9437FYjMrKSpqamrrmTZo0iV27dvV1GpUaEEfEKnKRVTmLkHHSvFUDLKWUUkoN3Igv097dT/+5itU7WhK6z6nFWfzkvGn9rvflL3+ZmTNncuONN+4z/2tf+xo33HADJ510Etu2beOss85izZq+uxRt2LCB+++/n/nz5/P444+zbNkyPvroI+rr65kzZw6nnHIKAEuXLmXVqlUUFxdz4okn8u6773LSSSfts68bbriBKVOmsGDBAs4++2yuvvpqKisr+cIXvkBGRgbf+ta3APjsZz/bazuXL1/OwoULaW9v5+ijj+acc86huLiY6upqzjnnHDZu3MivfvUriouLD3gvt9xyC1u2bMHr9XYFPD/5yU84+uijeeqpp3jttde46qqrWLZsGQCbNm3i9ddfZ/Xq1Rx//PE8/vjj/PKXv+TCCy/kueee45Of/CRf+cpX+PGPfwzAlVdeybPPPst5553XdUyHw8EFF1zAk08+ybXXXsuiRYuoqKigqKio3/OoVL/sAKt0bBFbzDh8u7WLoFJKKaUGTjNYA5SVlcVVV13F73//+33mv/LKK3zlK19h9uzZnH/++bS0tNDW1tbnvioqKpg/fz4A77zzDp/5zGdwOp0UFRVx6qmn8sEHHwAwd+5cSktLcTgczJ49m6qqqgP29eMf/5jFixdz5pln8o9//IOzzz67x2P21c4LLriA9PR0CgoKOO2003j//fcBKCsrY/ny5WzcuJH777+/xwzRzJkzufzyy/n73/+Oy+Xqek9XXnklAKeffjoNDQ20tFiB8Sc+8QncbjczZswgGo12tXfGjBld7+/1119n3rx5zJgxg9dee41Vq1YdcNxLL720K9v30EMPcemll/b5mSs1UM6YVdq/MCeLzVKGv3lDkluklFJKqdFkVGWwBpJpGkpf//rXOeaYY7j22mu75sViMRYuXEhaWto+67pcrn261XV/HpPf7x/Q8eJd9MDq/heJRHpcb+LEiXzxi1/k85//PIWFhTQ0NBywTm/thAPLme8/XVxczPTp03n77be5+OKL91n23HPP8dZbb/HPf/6Tn//856xY0Xd3qvh7cjgcuN3urmM5HA4ikQiBQIAvfelLLF68mLKyMm666aYen2V1/PHHs3HjRurq6njqqaf44Q9/2OdxlRooZ9T6exN3Oo3+CeR0LIRQB3h8SW6ZUkoppUYDzWAdhLy8PC655BLuueeernlnnnkmf/jDH7qm413hKisr+fDDDwH48MMP2bJlS4/7PPnkk3n44YeJRqPU1dXx1ltvMXfu3AG36bnnnusao7RhwwacTic5OTlkZmbS2trabzsBnn76aQKBAA0NDbzxxhvMmTOHmpoaOjutwf579uzhnXfeYcqUKfscOxaLUV1dzWmnncYvfvELmpubaWtr4+STT+aBBx4ArLFkBQUFZGVlDej9xIOpgoIC2traeOyxx3pcT0S48MIL+cY3vsFRRx1Ffn7+gPavVH8cUftBw+50wrlTcGCgfl1yG6WUUkqpUUMDrIP0zW9+c59qgr///e9ZvHgxM2fOZOrUqV3lzC+66CIaGxuZNm0at912G5MnT+5xfxdeeCEzZ85k1qxZnH766fzyl79k7NixA27P3/72N6ZMmcLs2bO58soreeCBB3A6nZx33nk8+eSTXUUuemsnWN38TjvtNObPn8+PfvQjiouLWbNmDfPmzWPWrFmceuqpfOtb32LGjBkAfO5zn2Px4sVEo1GuuOIKZsyYwdFHH81Xv/pVcnJyuOmmm1iyZAkzZ87ku9/9Lvfff/+A309OTg6f//znmT59OmeddRZz5szpWnbnnXfu0+5LL72Uv//979o9UCWUy85g4UrDXTwVgM4dq5PYIqWUUkqNJtJTZbpkOe6448zixYv3mbdmzRqOOuqoJLUo9d100037FMNINfr3ow7Wo/97LReEnsXzkzpeWrGNjz02k7pjvsrYC25OdtOUUkopNYKIyBJjzHH7zx90BktEykTkdRFZLSKrRORr9vybRGS7iCyzf/5jsMdSSqmh5ooFCYs1VnD8mFx2mALCdRuT3CqllFJKjRaJKHIRAb5pjPlQRDKBJSLysr3sVmPMr/vYViXZTTfdlOwmKDWiuGNBIg4PAGV5PhZTxMTmrUlulVJKKaVGi0FnsIwxtcaYD+3XrcAaoGSw+1VKqWRwmRARO4OV5nZS5yoms6M6ya1SSiml1GiR0CIXIlIJHA0ssmd9RUSWi8i9IpLbyzbXi8hiEVlcV1eXyOYopdRBc8eCRJx7H5HQ5i8nI9oMnU3Ja5RSSimlRo2EBVgikgE8DnzdGNMC3AFMBGYDtcBvetrOGHOXMeY4Y8xxhYWFiWqOUkodEg8hIo69AZbJHW+92NPzoxZSUXswwuvrdjOSiiAppZRSo0VCAiwRcWMFVw8YY54AMMbsMsZEjTEx4G5g4A93UkqpJPGYIFHn3gdyuwsnAhDYdfgUurjlhbW89debWf3cbcluyrCJxYwGlEoppRIiEVUEBbgHWGOM+W23+eO6rXYhsHKwx0qmp556ChFh7dq1va5TVVXF9OnTE3bMdevWsWDBAmbPns1RRx3F9ddfD1gPCX7++ecPeb+BQIC5c+cya9Yspk2bxk9+8pNENVmpUc9jQkS7ZbBySiYB0LL98HnY8OKte/iJ+29MW/xDqP0o2c0ZcsYYLr3rPW668++wbWGymzMs/vnRDq748yLag5FkN2VYrN3ZwiV/eo8NtU2wc0Wym6OUSnGJyGCdCFwJnL5fSfZfisgKEVkOnAbckIBjJc2DDz7ISSedxIMPPtjj8khk8P9JRaPRfaa/+tWvcsMNN7Bs2TLWrFnDf/3XfwGDD7C8Xi+vvfYaH330EcuWLePFF19k4cLD46ZCqb5EY4Y0QsS6ZbDKigrZZXII1W9KYsuGV0vj7r0Tm99MXkOGybbGDj6o2sNPd30F7j0LAs3JbtKQ+5/n17Bl4xpCt58Iz34j2c0Zco8vqeH9LY2seOo3cOdJsPmNZDdJKZXCElFF8B1jjBhjZhpjZts/zxtjrjTGzLDnn2+MqU1Eg5Ohra2Nd955h3vuuYeHHnqoa/4bb7zBySefzPnnn8/UqVMBK9C6/PLLOeqoo7j44ovp6OgA4NVXX+Xoo49mxowZXHfddQSDQQAqKyv5zne+wzHHHMOjjz66z3Fra2spLS3tmp4xYwahUIgf//jHPPzww8yePZuHH36Y9vZ2rrvuOubOncvRRx/N008/DcB9993HBRdcwIIFC5g0aRI//elPARARMjIyAAiHw4TDYaxE5L4effRRpk+fzqxZszjllFMAK/t17bXXMmPGDI4++mhef/31rmN98pOf5IwzzqCyspLbbruN3/72txx99NHMnz+fxsZGAO6++27mzJnDrFmzuOiii7o+n+7mz5/PqlWruqYXLFjA/g+gVmoohKMxPIQxTk/XvPJ8H1tNEc7DZAxWLGYYG9pblj66/cMktmZ4bG3owEto74xVTyavMcMgFjM0toc4zrGO3Ja1sPgeCHcmu1lDak1tKwB59e9bM5bcn8TWKKVSXSKegzV8Xvhu4lP7Y2fAJ27pc5Wnn36as88+m8mTJ5Ofn8+SJUs49thjAfjwww9ZuXIl48ePp6qqinXr1nHPPfdw4oknct111/HHP/6Rr3zlK1xzzTW8+uqrTJ48mauuuoo77riDr3/96wDk5+fz4YcH3sTccMMNnH766ZxwwgmceeaZXHvtteTk5HDzzTezePFibrvNGh/x/e9/n9NPP517772XpqYm5s6dy8c//nEA3n//fVauXInP52POnDmcc845HHfccUSjUY499lg2btzIl7/8ZebNm3fA8W+++Wb+9a9/UVJSQlNTEwC33347IsKKFStYu3YtZ555JuvXrwdg5cqVLF26lEAgwBFHHMEvfvELli5dyg033MBf//pXvv71r/OpT32Kz3/+8wD88Ic/5J577unKzMVdeumlPPLII/z0pz+ltraW2tpajjvugIdkK5VwwUgMNxGC3QKsrDQ3tY5xTGkf1b2cB6wjHGWiYwcAK2OVTK75EGeS2zTUtjZ2ME2q9s5I8W6RtS0BgpEYpc76vTN3LIWKE5LXqCFW22wFkJMiG0A4bLqCdoaibGvsYMrYzGQ3RanDSkLLtKeqBx98kMsuuwyAyy67bJ9ugnPnzmX8+PFd02VlZZx44okAXHHFFbzzzjusW7eO8ePHM3nyZACuvvpq3nrrra5tLr300h6Pe+2117JmzRo+/elP88YbbzB//vyuzFd3L730ErfccguzZ89mwYIFBAIBtm3bBsAZZ5xBfn4+6enpfOpTn+Kdd94BwOl0smzZMmpqarqCsP2deOKJXHPNNdx9991d3RffeecdrrjiCgCOPPJIKioqugKs0047jczMTAoLC8nOzua8884DrMxbVVUVYAVhJ598MjNmzOCBBx7YJ1MVd8kll/DYY48B8Mgjj3DxxRf3+PkolWjhaAy3RKFbgAXQ5isjO1IPofYktWz4dAQjFNACwDuxGbhbqiFy4L87qaS2qZMjnFYni3rnGKhdnuQWDa36Vut8TknbQ8zYvRdqUruXQGN7iAl5XkqkgYg7A1p3QEdjsps15L7/5ArO+r+3WLezNdlNUeqwMroyWP1kmoZCY2Mjr732GitWrEBEiEajiAi/+tWvAPD7/fusv39Xu5663u1v/310V1xczHXXXcd1113H9OnTewyEjDE8/vjjTJkyZZ/5ixYt6rc9OTk5nHbaabz44osHFOi48847WbRoEc899xzHHnssS5Ys6fN9eL17CwM4HI6uaYfD0TVG7ZprruGpp55i1qxZ3HfffbzxxhsH7KekpIT8/HyWL1/Oww8/zJ133tnncZVKlHDUymDtH2CFcyqhA9hTBUXTktG0YdMWjOCXTmLiZG2sDCEGe7ZC4eRkN23ItAcjFLmsDMd7Zgbn7fo3xGLgSM3vIOOFLSanNbG8dTwzfM04GzYkuVVDJxozNHWGuWCSH9ZBbe4cyna/DrtWwvhTkt28IWOM4cml2wF4bkWtZrGUGkap+b9HAj322GNceeWVbN26laqqKqqrqxk/fjxvv/12j+tv27aN9957D4B//OMfnHTSSUyZMoWqqio2brTKPP/tb3/j1FNP7ffYL774IuFwGICdO3fS0NBASUkJmZmZtLbu/TbqrLPO4g9/+ENXieGlS5d2LXv55ZdpbGyks7OTp556ihNPPJG6urquLn+dnZ28/PLLHHnkkQccf9OmTcybN4+bb76ZwsJCqqurOfnkk3nggQcAWL9+Pdu2bTsgsOtLa2sr48aNIxwOd+2nJ5deeim//OUvaW5uZubMmQPev1KDEYrE8BABp3uf+e58q1R7uH5zMpo1rNqDUfwEiLr8tGdUWDMbU/t9twWj5Ds7iOFkYbACIp1WhiNFtdkB1jizm+2mgBZfBTSk7jne0xHCGJiZZ/XEWO2ZYS3YvSaJrRp6je17xxV+VN2UvIYodRjSAKsfDz74IBdeeOE+8y666KJeqwlOmTKF22+/naOOOoo9e/bwxS9+kbS0NP7yl7/w6U9/mhkzZuBwOPjCF77Q77FfeumlriITZ511Fr/61a8YO3Ysp512GqtXr+4qcvGjH/2IcDjMzJkzmTZtGj/60Y+69jF37lwuuugiZs6cyUUXXcRxxx1HbW0tp512GjNnzmTOnDmcccYZnHvuuQD8+Mc/5plnngHg29/+NjNmzGD69OmccMIJzJo1iy996UvEYjFmzJjBpZdeyn333bdP5qo/P/vZz5g3bx4nnnjiPkHdM888w49//OOu6YsvvpiHHnqISy65ZMD7Vmqw4hksce2bwcostrI3h0Op9rZgBD8BYm4/TjuwpDG1Kyi2ByPkOdqJeLLYYsZaM1M4qGwPWQGWP9pCvclmt7sEGlL3OW/xQGOMyyqqtDw4Dtx+aEztwjXbm6ysbL7fw/KaJn3Om1LDaHR1EUyCeJW87r761a92vV6wYEHX68rKyl6fk/Wxj31sn8xSXHxsUk9++9vf8tvf/vaA+Xl5eXzwwQf7zPvTn/7U4z5KS0t56qmn9pk3c+bMHtsCVmGLuCeeeOKA5fFgcX/XXHMN11xzTdd09/fVfdkXv/hFvvjFLx6w/fnnn8/555/fNV1UVJSQ0vdKHYxQxFgB1n5dBIvHjaPJ+AnsTt2b0LiOUAS/BDCeDHILimip9ZOVwsEGWAFHjqMD481hW2uRNbNxS8p2H2sPWpkcZ7iNiMvPVsYwpW0nBNvAm5Hk1iXeHjvAypM2ANa2uiFvPKR4ZdDWgPV/6JzKPF5ctZOG9hAFGQP/QlQpdeg0g6WUUrZQOIxLYohr3y6CFfl+qkwRkuKBBlgZrAw6wZtBeb6fzbEiInWpHVi2ByPk0IYzI48dJp+ouFI7gxWM4CGMxMJ4fFmsDY+xFqToe45n7DKMVbxlfbObWO74lH2/ca0Ba4jBrLIcADbXpX6RHqVGCg2wUtg111zTVcpdKdW/SNj6pnv/DFZBhocdMpb0tupkNGtYtQej+CWAeDMpz/Ox1YwllsLjcwA6QlGyaMPlyyPb56XBU5zSN9/twQgZYnUfS/Nns6w931qQol1B4xm79LD1AOk9xk9LeqlVtCYWTWLLhlY8gzWrNBuAzXVtyWyOUoeVURFgab9hdSj070YdrGgoAIDDtW83GhGhOb2M7NBOiIR62jRldISsMViOtEwq8n1UmbG4W2tS+n23BSNkxNogPYfyfD/bZVxKdx9rC0Yp9NjjsDJz+KAlx1qQouOwOuwMVlqkhZi4aCOdXa5iiIagJXWLmcQDrCljM/G4HGyu1wyWUsNlxAdYaWlpNDQ06M2yOijGGBoaGkhLS0t2U9QoEraf9+Rwew5cll2Bgxg0p3YWq83ObjjTMinL81EVK7JKtTdtTXbThkx7MIIv1gLpuZTn+dgYKbDGYKXo/zvtwQgFbutvPTsnl9aYl4h/XMpWEoxnsDzhZkjLBoSqmD3WLqUDaSvAykp3Mz7frxkspYbRiC9yUVpaSk1NDXV1dcluihpl0tLSKC0tTXYz1CgSDdkBluvAAMuRPxF2QbR+097qeimoPRghgwAObybZ6W4aPCXWgj1VUDApqW0bKu2hCGmudvBmUZHnY/WqAnC1QXsdZIxJdvMSri0UIc8dhgjk5lrdA9v95WSnaLfIeAbLFelA0rJIdztZGyzgLLC6gqZoMZPWQJh0txO308GEQr8+bFipYTTiAyy328348eOT3Qyl1GEgao/BcroPrLSVMXYSrIaWHevJnXLmcDdt2LSHrDFY8WpyJrcC9pCyJa3D0RiOSACHK2YV9sjy8Xw8u9G4OSUDrPZghEp3EDqhMD8faKHePY7sPQuT3bQh0R6K4nYKznA7eDKoyPexss0DDnfK/l2D1UUwI826zavI9/PKml1EYwanQ5LcMqVS34jvIqiUUsMlGu8i6DowwCoqrqDDeOnYuWG4mzWsAp0duImAxwqwsvJL6MSbsl2p2u3nfgHgyaA838c2YwdVe1KzW2R7MEK20/pbz8vLw+N0UCNF0LYTQh1Jbl3idQQj+DwuCFll6MvzfGxpDEJuZUoXM2kNRsi0A6zKfB/hqGGH/WwspdTQ0gBLKaVsezNYB3YRrCz0s9WMwaTwDRlALGB3I7IDrLJ8P9vMGEyKftPflbGDruxGjSnEICkbVLYFo+TYAZYzLZPSvHQ2hAqshSk41q49FMXvcUKoHTx+Kgv8bGvswORWpuT7jWsNRMhMsx45UZHvB2BrQ+oF0EqNREMeYInI2SKyTkQ2ish3h/p4Sil1qGJh+6azhwCrKDONasaS1pq6N2QA0XiAZXcRLM/zsTU2hkjKFkDolsHyZlCUmQYuLy2eMda4sxTUHoyQ7bD+1vFYGZ1VgTxrOgUD6Y5QBL/XzmDZ7zcUidHhL4XGqpQtZtIWCJPptTNYBT4Aqhq0kqBSw2FIAywRcQK3A58ApgKfEZGpQ3lMpZQ6VNGI9WBOVw9jsBwOoTmtlOzgDojFhrtpw0ZCdqUxz94Aa5sZg6Npa0reiLYHI/i6ugj6cTiEstx0djnGpnSAlemIB5WZVOT5WNxsPSspFd9zezCKz+uyM1hWlhKgzjUOgs3QuSfJLRwaVgbLCrCKMtPwuhxs1QBLqWEx1BmsucBGY8xmY0wIeAi4YIiPqZRShyQWiWewDgywAAJZFbhNGFpT99k5JmgHWN0zWKYIZzQAbbuS2LKh0R6MktGtiyBY77kqVpiSwQbES/EHwOkFp5uyPB/VwXSMJzMlu0V2hCJWF8GgNQar0u4uV028VHtV8ho3hFoDETLsDJbDIdZz7bSLoFLDYqgDrBKg+0Njaux5XUTkehFZLCKLtRS7UiqZjP0wXben5wDLkT8BgFj9pmFr03CTcDyDlQnAuJw0alL4RrRtnwyWFWBV5PtZG8yH1loIp1ZRgEg0RjASw286u4Joa3yO0JlRlpLnuD0Yxed22l0E/YzLTsPlEDaE7XFnKRhUgvW3HR+DBdZ51gyWUsMj6UUujDF3GWOOM8YcV1hYmOzmKKUOYzE7wHL2UEUQwFdkPQeqtTZ1Kwm6wvY33PbNt9vpIJhZbs1L0fE5GWIHUR4rs1GW52Nj2P7/KMUqCcYfuuujc5+MHUBTWmnKnuMcTxRMFDwZuJwOSnPTWdmea62QgkFlNGbsAGvv03gq831sbeggFku9rr5KjTRDHWBtB8q6TZfa85RSasSJZ7CkhwcNAxSUTCBknLTVrh/OZg0bYwyuyL5jsAA8BZXEUrSqnjUGyy744LWydhV53Uu1VyWnYUOkzX7oblqso+v9xgOsnY4iq6peio0xbA9FyXFZ13b3LOX6phj4U7OYSbt9nrsHWBX5foKRGLtaA8lqllKHjaEOsD4AJonIeBHxAJcBzwzxMZVS6pDEovZNmLPnAKuyMItqM4ZYilbU6wxH93aXs2++AUoLstlJfkreiLYFo/jZN4O177OwqpLTsCHSHowHWHszWOkeJ4WZXrbExkA0lHJjDDu6Pfdrb7dIK5tjcitTMmvXGjgwwIqPPauq13FYSg21IQ2wjDER4CvAv4A1wCPGmFVDeUyllDpkkb4DrHHZaVRThKcltbqNxbUHo/s8dDeuIs9PVXQMkfrUCyw7QhH8EsA43GB3DS3L9dFIJiGnL+Wydm12gOWJdXQFG2Bl7dYE8q2JFAoqYzFDRzhKtjOewbKD6DwfrYEIoczylOsGCtAasCqiZni7j8GyMpU6DkupoTfkY7CMMc8bYyYbYyYaY34+1MdTSqlDFesKsNw9Lnc5HTR6S8gK1KRsyfIM6STqcEO3bpLxjI5JoRvvuLZghBxnCLFvvMHK6IzJTKPeXZxSwQbszWC5I+37BNHleT4+asuxJlIoo9MZjmIMZDv2/eIgns1p9BZDS83eL1dSRFsPGazinHTcTtFKgkoNg6QXuVBKqRGjny6CAJ0ZFaTHOqC9fpgaNXza7IfuRl3+feZX5vvZZopwd9ZZpa5TSHu8+1i3LpFgfdtfbVJvfE48wHJF2vfJYJXn+1jWmoERZ0q95/hYpAzZ+2Bl2JvNqXWMBROD5uoetx+teuoi6HQIZXk+zWApNQw0wFJKKZsZQIBF3nhr3cZU7C4XxS+dxNwZ+8yPPwsLSKmbb7AKIGQ6gl1dx+LK8nxsihRY7zeFspXxKoLOcHtXKX6wznHYuIhklqRUt8j4+81w2OPs7KCyzC7ssamrWmTqvGeA1uCBARZYX5ZoBkupoacBllJK2SQeYDlcva6TXjQZgNbta4ajScOqPRghgwDGs2+Ale5x0pZuP8Iw1QKs+EN39wuwKvL81pikSABadyapdYlnZXQMEt43gxXP6LSml6bUOY5n7PzxSpH2eU5zOxmXncbqQGqWao+Pwer+HCyIF/dox6TQlwZKjUQaYCmllM0RtcdpuNN7XaegfLJVqj0FAyyri2DnPjfecfGHLKfaN/0dwSh+CewzHgmgPD89JSsJttll6QWzz3uOZ3Tq3ONSagxWR8h+7peJV4rcN2u3sjkdnN6Ues/QcxdBsDJYHaEodW3BZDRLqcOGBlhKKWVzRoNEcfRa5AJgQlEO20wR0brUe9hwPJsjngMDrPzCIlrwp1SwAXZQaXoIsPL8bE3BAKs9GCFT9u0uB1CY4SXd7aTajIXORgg0J6mFidVVlt7sW4ofrGBjS2MAcitT6hyDVeTC6RDS3c595u+tJKjdBJUaShpgKaWUzRkNEBJvn+sUZ6ezRUpIa940TK0aPu0hq0y7My3zgGUVeT6qYmOIptgzwNpDEdIJHJC1K8/zsd0UYpCUuvluD0YZ47W6j3XP5ogI5Xk+NoRTq1R7vMhFmglYXX9de6/v8nwf9W1BItkVKVeqvTUQJsPrQkT2mV/R9SwsLXSh1FDSAEsppWyuWJBwPwGWwyHsSa8gN1AD0fAwtWx4tAcj+KUTZ3oPAVaBn21mDNGG1OpK1R6MkhbrOGAMVkGGB7fHS7NnTEp1i2wLRih0293D0rL2WVaW52NFR541kSIBVodd5MITP8fdAo54Nqc5rSTlipm0BiNkeA8cS1qSk47TIWxr1AyWUkNJAyyllLK5YkHCjr4DLIBgzhG4iKTct97twQh+gji8PWewtpkiXC01EIsmoXVDoz0YwWs6D+giKCJU5PvZ4RgHKVQxsj0YId9tF3Px7htgVeT7+KA525pIkTFJ8Qcru6Md+2TsYO+zsHa7xkKoNaUevdAaiBww/grA43JQkpOulQSVGmIaYCmllM0VCxIZQIDlHmNVEgztWjvUTRpW7cEwfum5yEVFvlWq3WHC0FyThNYlXiQaIxQO4Y4FDwiwACYU+tkQGQv1G1Imu9EWjJDnsjNY+wXSlQV+6sJeYml5qZPBCsUfrHxglrLczmBtMeOsGY2p0+23NRAmK63nsaTxSoJKqaGjAZZSStncJkjEmdbvetllUwFoql491E0aVqFAJy5iPQYbOT4PDe5iayJFMjrxinrAATffABMK/CwPFEKgCToah7dxQ6QtGCHPaVfL3C/AmlhgfQbt/tKU6RbZHoricTpw7FeWHiArzU2uz83qoF3MpD51Cte0BiJk9JDBAru4R72WaldqKGmApZRSNo8JER1ABqu8pJg6k02wNrUyWKEOu3JcD10EAUz+EdaLho3D1KKh1RqI4CMebPScwdoUG2tNNKTGzXdzZ5g8l/2e07L3WTa+0Aqw6j2l0JAa2Zz2YASf1wnBth6D6Ip8Px+1ZYHDnTJ/1wAtgTDZ6b1nsFoDEZo6UmsMqVIjiQZYSill85ggUWf/AdaEggw2mWKce1Ljpjsu0tliveghgwWQW1ROG+lQv34YWzV0WgMRMuIly3t4z+MLMvZ2H0uRm++WzgjZDjvA2u89j81Kw+dxUiUl0FwNodHfjaw9GMXvcUGo7YAxWGAFG1sag5A3IWXOMUBzR+8BVnzsWZV2E1RqyGiApZRSgDEGjwkRG0AXwXSPk53uMrLbtqTM2ByAWKDNetFDNgdg4phMNsXGEdmdKgFWGD89BxsA4wv81JhCouJKme5jLYEwWY5OcKWBy7PPMhFhfIGf1cEia0YKZLHagxH8Xqf1XK/9MnZgFW/Z0dRJLG9iygRYsZihNRghq7cAq0CfhaXUUNMASymlgHDUkMbAAiyA9swJ+GOt0NEwxC0bPibYar3oJYM1sdDPJlNMrC41Aqy2YIRssb/FT885YHl2upvcjHQaPCUpcfMdCEcJRWJkEOi1G+iEwgw+aLefhZUCmcr2UASfxwWde3o8xxX5fmIGWvyV1tjCFKiQ2RqMYAxk9TIGqzTXh4hmsJQaSoMKsETkVyKyVkSWi8iTIpJjz68UkU4RWWb/3JmQ1iql1BAJRqKkSQjjGliARcEkgJQJNgAkFM9g9X7zvSlWjKd9hzWmZZRrDUTIwX4f6bk9rjOhIIOtFKdENqel0xpz46fjgBLtceML/CxszrUesJwCQWVLZ5i8NLG6CKblHLA8/iysWncpREPQtG2YW5h48fPcWxfBNLeT4ux0zWApNYQGm8F6GZhujJkJrAe+123ZJmPMbPvnC4M8jlJKDalAOEYaIavr1AD4io8CoKUmNSoJRmMGb9guctFLsFGR76MKu5JgCtx8twbCezNYPdx8gxVwrAmNSYnsRkvAuvFOj7X3GkRPLPQTMB4imaUpkcHa0xFmnNeuFNlDBqurVHssdcbaNfcTYIF9LWsGS6khM6gAyxjzkjEmYk8uBEoH3ySllBp+HaEIaYQQd/qA1h9bNomAcdO2PTUCrLZAhBzpO5vjdjrozJpgTaTAjWhrMEI2vXcRBKuS4KrQGIgGrcIPo1hzp/XfdXq0DdJ6zmBNKLC6hzb5KlMiwGrqCDHWY4+z6+HvujDDi8/jZGW8VHsK/F3HM1i9jcECq2ukZrCUGjqJHIN1HfBCt+nxIrJURN4UkZN720hErheRxSKyuK6uLoHNUUqpgWsPRkkjhMMzsABr4tgstpixmLp1Q9yy4dESCJMjbVbXsB6KAcR5xkwiiiMlbr5bAxHyHG0Ytx9cPVePHF/gZ3M8u1E/um++4xksb2gP+Ap6XCdeAGG7q8zqFhmLDVv7Ei0aM7QEIhS47ECihyxlvLDHqia39XefAsVMBpLBqsz30dge6lpXKZVY/QZYIvKKiKzs4eeCbuv8AIgAD9izaoFyY8zRwDeAf4hIj1+XGWPuMsYcZ4w5rrCwcPDvSCmlDkFnoBOXxHB6fANavzDDyzZHCb6W1Hgga3NnmBzaCHuyweHsdb2KolxqTGFKjD1r7gxT6OpEeslegTXuLFVKtcczG+7gHvD3HGBlprkZk+llY3QchDugZftwNjGh4sFDgdMOsHrNUmawqb4d8ieN+nMMewPpvrsIWqXat2kWS6kh0W+AZYz5uDFmeg8/TwOIyDXAucDlxn4suDEmaIxpsF8vATYBk4fsXSil1CAFOq2uYi7vwDJYIsIe3wRyQ7UQDgxl04ZFayBCrrQR9faevQKYWJhhl2of/Zm7hragdfPdS5dIgPI8H42SRcCZMeqzdi2dYVxEcAabwJff63oTCv18FLC/8BzFD1hu6ggBkOvoPYMFMKHAz/amTqJ5R6REgLXHfoBwjq+PDJadqdRxWEoNjcFWETwbuBE43xjT0W1+oYg47dcTgEnA5sEcSymlhlKow3rIrjO957EpPYnkHoGDmFUAYZRrCVgZLJPWe7AB1s239ZDl0d19DKCxPUSuo73XG28Aj8tBWZ6fWnfZqA42AFoCEXLiY876DLAyeK85z5oYxV3m4oFG1gDG2RkDjenlVsZulFfIrGsN4vM4rfL0vSjPiz8LSwMspYbCYMdg3QZkAi/vV479FGC5iCwDHgO+YIxpHOSxlFJqyETa9gDg9ucNeBvP2CkAdNaO/kIXLZ3WGCzx9f3+JxZmWAFWChR9aGgLkUNrrzfecRMK/GyMFY/qYAOsLnNjXXbw0FeAVeBnY6efmCdzVGftmjutDFZWpBHE0et7nlhoFfbY5rDrdI3yLFZda5DCzJ7HFMb5PC6KsrxUaRdBpYbEYKsIHmGMKdu/HLsx5nFjzDR73jHGmH8mprlKKTU0Yp1WgOXy953B6S63fBoATdtWDUmbhlNDe4gc2nBn9B1g5fo91HvLrYlRHnA0tIfIjjZC5rg+15tYmMHywBhorYVAyzC1LvHqW4NUptvdWXsZgwXxgEPoyJowqs9xk53B8ofrwV/Y69jCCYXWeKS14bHWjFH8ngHq24IUZvQdYEG8kqBmsJQaComsIqiUUqNWpN0KsNKzev9mf3/jxxVSYwoI7xr945HqWwIUSAuuzKJ+143lWw9ZHs1d5sLRGIHOdnzRVsgc2+e6EwozWBex1xnF73l3a5CKdDtj0c8YLMAKpEdxsFHXaj3/Kj1Y1+c59nlcjMtOY1lbLohzVGftYGAZLLAqCWoGS6mhoQGWUkqxN8DyZg68i2BFvo/Nphhv0+juUgTQ1tKAT4KQVdzvuoVjSmhmdBd92NMeokisc95fBis+7gwY9QFHudt+mHQf77k014fH6aBKSqB1BwRbh6mFibWrxRqL5GzfBRn9BdF+1jeGIbdyVP9dgxVIFwwwg1XXGqQ9GOl3XaXUwdEASymlANPZZL3oo+DB/txOB7u9FeR0bB31BR+6ynEPIMCaMCaDTbGxo7qS4K6WIEXYAVZW/wHWVlNETFyj+ua7ri1IiTSA29dn5USnQ6gs8LE6ZGczR+mYpF2tAYqy0pDWXf1nKQsy2FzXhik4YlQH0a2BMM2dYYpz+q+GWmmXatcHDiuVeBpgKaUU4Ag2WS/6eMhuTzqzJ+I1gVH9vCCAWFM8wCrpd90JhRlsNsWYUXwjWrOnY8AZrMIML+neNBo8xaM2wOoMRWlsDzGWOsguA5E+159YmMHiVnuc1ih9wPKu5gBjM1zQ3ncXQbCC6NZAhM6siVZAGYsOUysTq7qxE9hbJbAvFflaSVCpoaIBllJKAY5QCx3i6/Mhuz1uV2hVEoyO4mxONGZwt9daEwPIYI0v8LM5Ng53x+5RW/ShZk8n46TBmujn5ltErCyWlIza7Mb2JuvGOz+yG7JL+11/QqGfhc1ZGGTUjjvb3tTJtIwWwPT7nifYlQR3ussgGoSmbcPQwsTb1mhlow4mwNqiAZZSCacBllJKAe5QC53OzIPeLrN0KgBN1aO3kmBtcydjaLBupvsJNsC6eduCHYg1bhri1g2Nmj0dTHbvhvS8PrvLxU0ozGBNeCw0bILo6BuzUrPHuvHOCNQOLMAqyKAj5iaSVTYqg8pAOMrOlgDTvPXWjPwj+lx/QoHVXW6TsTO4o/A9A1QfRICVmeYm3+/p2kYplTgaYCmlFOCLNBN0H1z3QIDS0nKajJ/OHWuGoFXDY1tjBxOllmBGGTjd/a7vcTnozBpvTYzS7mM1ezqZ4toJBZMGtP6EAj8fBcZALAxNW4e4dYlXVd9OJh24Aw1WIYd+TBxjZXSafRWjcgxWzZ5OjIEJDjszmzexz/VLctLxuhxWOX4YtVm79btaKcjwkO3r/zoGKM/36RgspYaABlhKqcNeNGbIjzXQkdZ/ifL9TSzMZJMpxjFKb8jA+tZ7omzHFEwe8DaewiOIjeLuYxt2t1FhdkD+AAOswgw2xUZvJcGNdW3MSrODjaJp/a4fL9W+w1VqZe2MGcrmJdzG3Vblw+LoDvBkQMaYPtd3OITxBX5WNbmsEvajdKzdyh0tTCse+BdF5XkaYCk1FDTAUkod9na3BhgrDUQz+i520JNsn5saZxmZbZuHoGXDY0tdCxNkJ95xRw54m7IxuWw3haOy0EVbMEJTY531kOH8vjMbcVapdvvvYxTefK/f1caJmbusiTFH9bt+VpqbggwvG6PjINwOLTuGuIWJtaa2FYdAXttGK0vZT1EPsM7x5ro2KJg8KoPoQDjKhl2tTC/JGvA2FXk+aps7CUVGeRVUpUYYDbCUUoe92vom8qQNd07/Y1N60pIxnsxII3TuSXDLhsfuqjV4JYxjADfecRMK/WyKjSOye/QFG+t2tjLTYQfExbMHtM34Aj+tkkG7e/RlNyLRGCtqmjnWuwM8mVYVwQGYWOhneaddSXCUZSrX7mxhfH46zp0fQcmxA9pmQkEG1Xs6ieYdMerOMcCHW/cQiRmOLut/TGFceb6fmNlbBEUplRgaYCmlDntNu6oASCsY2I3n/kI59gD6UTgeKRozpO/60JooOW7A240v8LPZjMPRuGnUPQPso+omZstGq6jHAG++09xOirPTrS5zoyy7sXZnK53hKFPCq6H02AFlc8DqFvles/3g7VH0no0xLN3WxOkFLRBqheJjBrTdxDF+ojHDnvQKq7R7R+MQtzSxXl27G7dTOH5i/oC3iRfD2KaFLpRKKA2wlFKHvY46qyRzVlHlIW3vKrS6mYUbRl83wc11bUyPriHkzrK6Rg3QxMIMNptxOKOd0Fo7hC1MvIWbGzjZuxEpnHJQzz2bUOhnY2z0PQtrydY9ZNFOVvM6qDhxwNtNLPSzrjMT4/ZZ47BGiaqGDna3BjnDbweFZXMHtN2EAquwxzaHnckeRcU9ltc08cjiaj5+VBF+r2vA28VLtW/TUu1KJZQGWEqpw17Ezjz5iyYc0vbZ46wAq7V29HzLH/fmut2c5FhJpHQeOAb+X8KYTC87nPEb0dHzvsPRGMs37+AYswomfuygtp1YmMHyzkLobBxV2Y231tdxfuY6BAOVJw14u4mFGYDQkTl+VJ3jtzfUATCtfRHkVPRboj0uXthjTdh+VMEoCaTX7mzh/NvepTUQ4UsLBvZe48ZkevG6HJrBUirBNMBSSh32XI0bCOBFsssPafuSwjx2mRyCu0dfBmvNsvcoc9Thm37eQW0nIkTipa9HUfexhZsbmB1agtuEYPKZB7XthEI/6yLxMt6jI6PT2B7izfV1fDZzKfgLoWzegLctt7Mbjenlo+ocv7BiJzMLwF/zDkw+a8BdIjPT3BRmelnelgXihMbRcT0/t9zKIP/jc/OYUXpwj5oQEa0kqNQQGFSAJSI3ich2EVlm//xHt2XfE5GNIrJORM4afFOVUirxjDHktm+hIa38oDI43ZXn+ag2Y5BR9nyk3S0Bpux+nhhOmPKJg94+s6CcTtJGVVeqRxfX8Fn3m5jMcVB58kFtO6EggypjZzdGyQOWn1tRS2asmSOb34GpF4DDOeBtS3LSAdjhKIWmbRAODFUzE6aqvp2FWxr46tiVEOmEmZcd1PYTCvxsbAhCTjk0bhmiViZOJBrjsSU1nDypgBOOKDikfVTk+zSDpVSCJSKDdasxZrb98zyAiEwFLgOmAWcDfxSRgf+rrpRSw6S+LUSlqSaQc3Bda7orzPCynTGkt9cksGVD7+F/r+Ni55t0TDyr3+cE9aS8wE+VKSI2Sr7pr23uZP2KDzhZliHHXHVQwQZYN6LVZgwxHKMigxWNGf767ypuyHkLRzQIcz53UNunuZ2MzUpjY2wsYGBP1ZC0M5H+8u4WPA7DgsZHoWgGlAyswEVcZb6frQ3tkDce9oz8AOvFVTupbQ5w+bxDy74DlOf52dbYgRllzzpTaiQbqi6CFwAPGWOCxpgtwEZgYKNMlVJqGFVt2UiJNCADrDTWE4dDaE4rITO0GyKhBLZu6DR1hIgtvIM8aSPj1K8f0j4q8nxUxcYQrR8dAdavXlzL91wPWEUb5v6/g95+XHYaxuGm2TtuVGSwnviwhpbd2/hM5Bk48twBPf9qf2V56awM2JmRER5IV9W38+D71fys4iNcjRvglG8OuHtgXHm+j/q2EOGsihGfwQpGovz25fVMGpPBGRP9h7yf0tx0OkJRmjrCCWydUoe3RARYXxGR5SJyr4jEH75QAlR3W6fGnncAEbleRBaLyOK6uroENEcppQauYe1bABROO2VQ+wllluEgBs3V/a88Atz55Ct83jxBa+UZUD7wcTndVeT72WrG4mzeBrFogluYWG9vqMN89DCnOpbh+PhPwD/wUtZxLqeDktx0ap3FIz6DtbM5wP88t5o7Mv+CiyiccfMh7acs18eHrTnWxAgOsKIxw/efXMFE124urr8Dyk+AqZ886P3Eq+o1eksg0DSii5n8/tUNbK5r5w+TP8L5q/Gw9vlD2k9JrtUVtGaPPgtLqUTpN8ASkVdEZGUPPxcAdwATgdlALfCbg22AMeYuY8xxxpjjCgsLD3ZzpZQaFGf1QgJ4yKwc2POQeiN5460Xo2Ac1rOLN3DBuhsRl5fMT956yPupyPex1YzBEQtBy44EtjCxttS386cHH+N/PPcSLZ130F3luivP87E5WmQFGyO0S1VbMMKXHljC52MPc0x4CXLmzyB/4iHtqyzPx/pWNyYtZ8QGWMYYfvHiWlZsquYf2X/E4XDChXcedPYKoCLPygRtl3HWjBHaTfDFlbXc/vomvn/kLo5c/GOIReDZr0Ow9aD3VWoHWNubdByWUonSb4BljPm4MWZ6Dz9PG2N2GWOixpgYcDd7uwFuB7o/sbPUnqeUUiNGLGYoaf2I7f7p4HQPal/phVaJ987dIzuz8fbqbeQ8cy1THDW4LrkXcg7t4coAY7PS2OGIF30YmTff2xo6+Nmf/s4fYv+DK3MMzkv/dtBjr7qryPexKlgAwRZor09gSxOjNRDm6nsWceKO+/iSPA5HXzGogLIsz4cxEMqqHJHn2BjDrS+v56G3lvNc3q3ktG2Ei/4MuRWHtL945cRN0Xi3yJEXYL24cidffXAZVxZV8fkdP7K6fl7+OLTtgrd/e9D7K82x3rNmsJRKnMFWERzXbfJCYKX9+hngMhHxish4YBLw/mCOpZRSibZp+06mmCqCxYMfIpoztoKQcdK+c+TdhMY98/YH+B/6FCc4VhL4xO9wTzljUPtzOIRwtp25G4Hf9P97Uz133HYLt4V/hD8jC/c1T0Nm0aD2WZHnZ03I7m0xwsZhbalv58o7XuOztbfwTdcjMOPTcO7vDimTE1eeZ918N6eXjbj32xmK8s1HPuLF11/n1aybKQusRz59H0w69L/r7HQ32eluVnXkWTNG0N91LGa4/fWNfOHvi/lm7lvc3PoTJLsMrngcJn0cZl4K791+0EFhVrqLTK9LAyylEmjgj/vu2S9FZDZggCrg/wEYY1aJyCPAaiACfNkYM7I76CulDjs1y99kkhjyjhrc+CuA0jw/O0wB3saR10WwLRjh4X/8hfOrbibTGaLz/HvwH31RQvbtyy8j3ObCPYK+6e8IRbjtuQ8Y/+H/8L/OtwiMPQ7P5Q9A5thB77s838cD8VLtDZugfP6g9zlYxhgefL+aZ59/mt/J7ZQ7d8Kp34FTv3vIjx6IK8uzuo/tdBczpvk5iATB5U1EswdlydZGvvPIUk5reowX0h7F4c5Brng2IeejIt/HpmYDGWOhsWrwjU2AbQ0d3Pj4R2zevIlnCx5getu/4YgzrGxdeo610sd/CmuehX/9AD7zjwHvW0QoyU3XAEupBBpUgGWMubKPZT8Hfj6Y/Sul1FAKb3mPKA6Kpp406H2V5KSz1hQwqWXkFLkwxvD6klVEnv8e/xl7i3pfJa6rHyRt7NSEHaO8IIvqqjGMb9zMoedJEsMYwxvrdvHBE7/jc8G/kuPsIHTCN0n72PfBOdjvEy0V+T5qTCExceIYAV3mVtQ083/PvMuZO/7EP1xvEMkoRi76J4w/uGd89aYoMw2P08HW2Fhmmpj1PKyCSQnZ96Gobwtyywtr2fbhy/wx7W9MdlfBlHPh3P+DjMSM4y7P87G8phkKkl+qvSMU4e63tvDnN9dxleNF/uZ/HFdnFM6+BeZ9Yd/sZNY4OPXb8MpNsPlNmHDqgI9TmpvO9iYNsJRKlMT8j6OUUqNQfuMStnsmUJ6WPeh95fk91EohMztW9r/yMFi1dRdLH/sF57U8iE9C7Jj9NYrP/UHCsw8V+Vap9rL6zQxuFNvgLK/ew7NP/oNz6v/MjY7NtIydi+PCW/GMnZ7Q45Tn+YjgoiWtmJwkdpmrbe7k9hc+JH/lPfyf6wX87hDm+K/iOvVG8GYm7DgOh1Cam866UCHngTUOKwkBVksgzF/eqeL1d97k/8Ue4RPeRcQyS+Gs+6xqgYPoBrm/inwfL6zcSeyIShxb3kzYfg9GJBrj0SU1/O6lNZzQ8Rqv+v/JmPB2mHAWfOIWyJvQ84bzvwSL/gRv/eqgAqySnHQWbRm5FROVGm00wFJKHZZ272nlyOh6qoovTMj+RIS29GIyg29AOADutITs92DtaGzj7cdv56SaP3GFNLC98CT8F/+a4rEH/wykgSjP91Flijh1zztWVb0E3ugOxObdrTz7zEMcv+0uvu9YT5tvLJGz7yJr1iVD0hafx0VBhpedzmJyklCqvba5k3tfXY5/6d182/E82a52wpP+A8eZN0HhlCE5Zmmej2Vt9pikYc7atQTC3PduFa+9/Rb/GX2E/3IuAq8PTvgujhO/Bh5fwo9ZkecnGjO0pJeS07oDwp3gTk/4cXpijOHVNbv51QurOKrhZZ5If5piz3bImwGn/xamnN33DlxeOOGr8K/vwdb3oOL4AR23NNdHayBCc2eY7PRkflWiVGrQAEspdVhav/w9TpIg/kmJ6UoFEPKXQhBo2X7IZbEP1a7mDt548s8cveVPXCo1bPcfRdv5f6bkyNOH9LiV+X7eNEU4I+1WVb0EddPqz8bdrbz4z0eZu/VPfNWxlta0MQQW/JKMudcM+RihinwfW9rGcmTjq8MWVMYDK9/SP/Nlx3PkONvpmHAWnPED3ONmDemxy3LTea7aBd6sYQuwWu3A6pW33+G66CM84XwP403HMf8GOOG/wJc3ZMeOVxLc6RxHDsCeqkN6SPPBiAdWt726loraF7nb+xTlnh2Ygmmw4Bcw5ZyBj6c79hp4+9fw7u8GHGDFn4W1fU+nBlhKJYAGWEqpw1LbhncAKJm5IGH7lNwyaMR6FtYwBVh1LZ28+dSfmbnpTi6VGnalVdD4sT9RMufSYbnxL8lJpxq7Ml/j5iEPsDbsauX5Zx9j3tY/8RXHGlq9hbSd8r9kHv+fw1Z8oSLPx+qGQj4RaYO23YOuTNiX2uZO7nl1Ob6l9/Alx3PkOtvoHH8mnPEDfMWzh+y43ZXn+WjqjBAdU4lziAOs1kCY+/9dxUtvvcu10Ud40vkexpuGY97XrMzMITwg+mDFKyduiY3hSLCq8g1RgBWLGV5avYvbXlnLhN0v8zvvU1R4ajAFR8FptyBHnnfwhUo8Pqs0/5u/hPqNUHBEv5vsfRZWJ1OLsw7lrSilutEASyl1WMrY9QG7nWMZk1uasH16C8fDJgjWb8U7xPHV7uYO3n76HmZsupOL7cCqfsGdFM27ZFDPeTpYHpeDzswKCGAVBCifNyTHWbuzheeffZJ52/7E1xyraPPm037yz8k8/nPD3h2zPN/H0o/ywYNVunwIAqydzQHuefUj0pbey5cdz1qBVeUZcMb3SS85JuHH60tlgfXw3RZfBbkNQzPGsC0Y4f5/V/HiW+9yTeRRnnK+C14vjrlfgRO/Bv6CITluT8ZmpeFxOVgbzOcTMCSFLmIxwwsrd3Lbq+uYWPcKf/A+xXhPNabgSFhwH3LUBYOrADnnc/DOrbDoDjjnN/2uXpJjBVg1e/Rhw0olggZYSqnDTktniCmhVdSNOZExCdxvblEFEeOgbddmhiqXsrOpg7eevofZm+/kIqlhp7eCXQv+SNH8y4Y1sOrOk19JbLvgGIJS7at3tFgZq+p7+IZzJe3ePNpP+hkZJ3x+2MbF7K8i38cT3Uu1V5yQsH1bgdVyPEvv5YuOf5LnbKOz8mNwxg9ILzk2Ycc5GBPsAGu3u5jcpuchGh70g7nj4oHVy2+9zZWRx3ja+W/weHDM/ZIVWGUk8godGIdDKMtNZ22zE7zZCX3YcDRmeHb5Dm5/dT1HNLzGH9OeYrxnGyZ/Ciy4F5l64aBL6wPW5zbjElj2DzjtB/12qczze0h3O9mupdqVSggNsJRSh531y97lOGmm+YiBV9kaiOK8THaSh6uhKqH7Bdi+p523n76HY7b8iUvsjFXdgjsYO+/SpAVWccUFOezcXkBxAruPraxp4qXnHuGE7ffyLcca2tPy6Dzxp/hPuH5IChscjPI8P9tNATFx4UhQJcGaPR3c+9oKvMvu54uOZ8hzttJZcboVWJUel5BjHKryfB8iUBUrYoqJWqXaB9kFtiUQ5m/vbeX1t97g6sijPOFcZHUFnPMlqyvgEHa7HIiKfD9bGzshrzIhGaxINMYzH1mB1eQ9b3Bn2lNM8GzF5E2GU+9Bpl2Y+Ov4+C/Bsr/Dkvvg5G/0uao+C6sHxkAsYn2hEAtDNGJNx3V1wZbe54mAOKwfh3Pv631+BGMMkZghEjWEYzEiUUMkGiMcs39HDdYjZ8XaJdY5cwiIPS9+OIdY004RHA7B5bB+O0VwOqwfl0OQYS5IdLjRAKsP6z98g4YlT0IkBLEwEg0h0RCOWAiJhXHGQjhiYRyxCC5CuEwEp4kgGMTE9v2N9dthojgwXfMc9m8AgwPrEpL9Xh/4g1h7BLHXs/YEYGTv9nRbn/32bc3rvk9rP9jrG3vf3ad7fg3gwNj769p1P4w5cJ5g6GH2gLaPt6Tn7Q+c29P2/R27pzZ3P/ZA1t2/Rd23NT2t0O8e+lnaX0P6O0of28sBrehhXdPz0j7P1wA+u54+8z437zaz0NQTQyiee0HfBzpIpbnpbIqNYVJT4r7xrm5o462n72HO1ru4TGrYnVZJ/Wl3UjR3eLsC9qUy38eW6BjGNGwe9H8qy6v38Oqz/+CU2r/wDccG2tIK6Tzp5/jnX5f0wCquPM9HFCet6SVkD7KS4Jb6dv7yylLyVv6F/3K+aHUFLF8AZ/yQ9LI5iWnwIHldTus5b6ECzgIro3OIAdae9hB/eXcL7/37da6LPsaXnR8QTfPjmPd1OP4rw9oVsC/leT4Wbm7ATB+P1H50yPsJR2M8uXQ7d762jllNr/CXtH9S7qnB5B4Bp/4Zmf6pobuOi6bBhNOssu3zv9hvxndUPwsrFoVAM3TugUATdDbt+zrYAqEOCHdAqN3+3QHh9r3zwx12EBXeG1QNV/ONdW/mwIEbwYngxkGaffcYs+8YrZ+908ZYr6M9LDf7rLt3Otp15xm/G7WDPLGnxWHdJ9q/48uwXzsEa0sRHGLdDTrsoM+aFkTsu8n4/G7/AcfvWve+tuebvXe9lvhdLWAMVenT8JzxA04/MrlfvgyUBlh92LNpMXNq/koYF2FxW79xExUXEXETFTdRh9t+nUZQ3BhxWn+U9jcTe/8ou31TIft+i9H99rrrD8zYgZeJ/xHGX+9dh/g68dfx+V3L4vuga178D1ZMbL91rXUc3feJQcyB7ep+AXSflq5j9HbrLD28OnBxb7fN0sfU3k9w3+X7rHVIX9YcxEb9RJX97ckMqs19rLjfop6aafo7N33u++A+2P3XNvuf2YNvwMGdJgCyWFf0MY7KHXcwB+tXYYaXVyjlmLZ3B11dbuvuPSx6+k6Orfkrl8sOdqdX0njanYyZM3ICq7jyPD9bTRHzGpcd0vbGGD7Y0sh7L/yNBbvu5wbHZlrSx9J56i/JmHN10kre96Ygw4PP42SXu4TsQ8zabdjVyl9eXkzp2nu50fkyGa5OAhPOgtO/Q3ppcroC9mV8gZ/FrbnWxCG8592tAe55ewvLFr7K581jfMO5lGh6Fsy/Eef8Lw5pVcBDUZHvoyMUpSNnCv7VT0GgBdIGXvwhGInyxIfbueu1NcxrfYkHvM8yzrMTUzAVTrkXmfrJ4bmOT/kW3HcOLPwjnPzNPlctyUnno+qmoW/TQMVi0LYL2nZaxWTadtm/7dftdXt/B5r73pfTa31B4/bbv33gyQB/IeT4wOMHVxo4PRiHi0DMQXsE2kJCaxhaQtZPU9DQGojQGojQGYoQiFhfkO/9OnrvXYgDSHMLaU4hzQVep+BxgtcJHqfYv8HjAKcYXGJ9/e0Sg0MMTgxO+7UV6kTBxOz7vZj92pp2mBhOotY92T7LeviJxYC903v3FUFM1L6Xi3XdJ8aXx5MGxsRDJPu36fbano8xxNML8dfdP52uL+nj23RLAnRfL9ZtvYZwK46W4KH/PQ0zDbD6MPeibyCf/hYuIDk9/ZVSo4nDIdSnV5IWeglad0LWwQdw66t3serZPzB/5wNcIo3s9E2i6bQ/Mea4T4+4wCquIt/HB2YcrsBr1s3PAMfNxGKGV1fVsOrl+ziz6VG+5thKs6+EwGm3knXsFeDyDHHLD42IUJHvZ0tkLJMblx1UML2suomHXl3IpI338SPnq6S5wgQnnw+nf5u0sTOGtuGDMLkokweqGjDpmUjd2gFvt72pk7vf3MS2xc9yrTzL9xwriHpz4IQf4pz7eUjPGbI2D0aFXaq9Jn0yUwB2rRzQWLuWQJgHF23jgXfWclrHv3jU+xwF7nrM2GPglFuRyWcnZozVQFWeBEeeC2//FmZ9BrKKe121NNfHno4w7cEIfu8w3B4G26C5xv6p7vbanm7Z0XMWyZttVSvNKIKxM6wgKT3X+knLsV/ndJvO2afCaCxmqGsLUt3YQc2ezq7fNfUdVDd2srM5QCgaO+CwmWkuxmR6KcpKo7DES67PQ4HPTa7PQ47PTY7PQ066NZ3tc5PpdeFwaDe8RJmW7AYcJA2w+iDD+Y+gUiolxPInQS1Qt3bAAZYxhsUr11Lzyh85tekJLpQ2tmXOpunM2xg74z+G/eG9B6si38fS2CRronoRHHVen+uHIjGe+2AtdW/8iXMDz3CGNNKUOYHQ6X8ke/al4Bz5/zXNKMnig1X5nGU6rOck5Y3vdd1ozPDy6p28/tq/OL7uYX7mXITTBeFpFyMLvkVa4eRha/ehmlmazT3vGNrLZ5NRvajPdY0xfLitifvfWY9nzZN8zvEsRzqrifiK4ISbcM75HHgzh6nlh2ZGSQ4A7wdKrQBrx7I+A6xdLQHufXcLryxcxkXR53ne/RoZ7jZM2Qlwyt3IhNOSdx2fcTPceTI8ei1c82yvBUpKupVqn1yUoPMTbLMyno2brIIwjZvt35uszFN34oSsEsguhbJ51u/sEsgcZwVTGWOsYGoAxW1iMcOO5k4217azpb6WzXVtbGnooKaxg5qmTkKRfQOowkwvpbnpzC7LYdyMNIoy0xiTZQVTYzK9jMlMI90zMr/gUiPTyP9fTCmlRhF/xTHEdgjhqoV4J57W57otnSHefv1FvEv/zCmhd5gjUaryT8J99ncpn5y4ByAPNZ/HRaBgBqFWN55tC3sNsLY3dfKv198kbflfOT/2KhkSoK5wHtGPf4OcyWcO7zf7gzSnMo87lkzhh15g06uQ97kD1mnuCPPE4i1sfudRzg88xS8c6wl5/JhjPo/jhC/iza0c9nYfqqPLrO6B67wzOHb7HdDReEC3vnA0xvMrannqrSVM3/U0P3C/RpGrkXD+FDjpj7hmXDxszyobrMJMLxX5Pt7c4eLKvImw8WWraEQ3xhgWbWnkb+9VsXP1u1zleIEbnYtwuA1y5Llw/JeR8vlJegfd5E+E838Pj/8nPP45uPBPPXa7Le32sOGDCrDCnfsGTt0Dqbad+66bMdZqz+SzIG8i5JRDdpkVTGWOPegsfSAcZXNdOxt2t7JhVxub69vYXNfOlvp2gt2CKL/HyfhCP0eOy+SMqUWU5qZTmuejLNdHaW46aW4NnlRiaYCllFIJNGl8OWv+XU7J+jfwfux7Byw3xrBy01Y2v/43JtQ8wTmymQ5JZ+uEz1B+1n9ROfbIJLR68I6fUszC96dy0soncHz8p11ZqFAkxlurt1H19oPM3PUU1znWEsFJY+U5+M/6JoXD9LDcRDvhiAJuZBxNaSXkrHrKeu4Q1vlduLmRN955izGbHuV8eZtCaaEjo4TYST/Hc8xVBzWWZ6Qoz/cxuSiDR5qP5FgMrHgU5v0/ADbubuXRRVuoXfoC54Rf4s/OD3G6Y0QrF8CJ/4X7iI+N+CxsTxZMLuShD6oJnnA23sV3QVsdZBRS3xbknx/t4Ln3VjBrz4vc4H6LI9zVxNwZOI79Asy7HkZa8DzjYmithZd+aAU+Z/4Mxp+6z5capX09CyvUYVVTbNy89yceSLVs33ddf6EVPB3xMcibYAVUeROt196MQ2p+KBJjS30763e1smFXK+t3tbF+dytV9e3E7AE7TodQnudjfIGfk44oYEJhBuML/Ews9FOY6dWqeWpYSV8VwobbcccdZxYvXpzsZiil1CELhKM88N/XcI08h/Pry6xvaIGqHbtZ/taTZG94kvmRD/BKhJ3e8USOuY7SBdeO+C5T/Vm5vZk/3P5b/uT5P5rmfJ21+WeydfVCcre9zInmQ/wSpDGtFMdx15Iz/2prDMUod81f3mf6tr/xLfNXNs2+kfdaiwhs/YB5oYXMcFQRxUlb5RlkH38NTDpzxI6hG6i739rMz59fw/tFt5AT3M6/xn+P1dt2UdH8AWc6F5MnbYS8ebiPvRI59upBl3JPtpXbmzn3D+/whWkRvrP5OmryT+ARx9m07VjHAlnKCc7VuIkQKz4Wx7FXwbRPjfzgee1z8PyN0FIDWaVQehwUToG0HGIOF798dhknlPs4pdhY40hbd1oBVGvtvvvxFVgBU1cA1e13WvYhNy8cjVFV3876XW1dWal1u6xAKmJHUg6xyuhPLspgclEmk4oymVxkBVNe1+i+xtToIyJLjDEHPEtjUAGWiDwMVvdkIAdoMsbMFpFKYA2wzl620Bjzhf72pwGWUioV/O+DL/PNtZfRmHEEG31H421cw8zISrwSodmRw86Kcyk+9ToyK44Zld/s9+YHT3zE8Uu/zbnOvWN0Wp25tFSeRdEJl+OacHJKvd/NdW185o63+FX4fzjFuQKwql7tyZ1F1jGfwn30Z1MikIwLR2Nc/udFNFSt4CHPf1MoVuW2kNNHbNLZpM26CCadMWq6AQ7EL15cyx1vbOJa5wv8yPV3HFZpXULZ4/FMOxdmXw5jjkpyKw9SqAPW/BPW/hN2rrDGEO4vPXfv2KesYmuMYTygyh0/6OIkoUiMqoZ2Nuxqs7JSdjC1pVsgJWKVy580JrNbMJXBxMIM7dKnRowhCbD2O8BvgGZjzM12gPWsMWb6wexDAyylVCrY0x7ivnt+x+UNt5FNO3WeEprGnUzxnAvIm7qg10Hmo10sZnhnw27MlrcY52yhYspsvKWzR33mpi/NnWEWbapjbPtaJhWkkz52Mvjzk92sIRONGT6oaiQabGe62Uh2XiEUTBmxFR8TYe3OFrbv6WRKehOl0mCNF7Iz0ykhGoFQG0TD/Oq1Ku5dtIsPf/KJQRd1MMZQ1xpka2MHWxs62NbQzsa6NtbvatsnIyUCFXk+jrADqUlFGUwak8nEwgwtLKFGvCENsMTq2LoNON0Ys0EDLKWUgkAogtfl0IqkSqlRYdHmBi69ayE/++R0rpxf0ee6sZihvj3IruYgO1sC7GzuZGtDB1sbO9jW0MG2xg46w9Gu9eNd+44Yk2EFUmM0I6VGv94CrEQVuTgZ2GWM2dBt3ngRWQq0AD80xrzdS8OuB64HKC9PoW+ElFKHvTSP1hFSSo0ec8fnMXd8Hv/97Go27mplXE46MWNo7gjT1BGmqTNEXWuQnc0BdrcGu7JQcV6Xg/I8HxX5Pk48ooDKAp897ackJx2PS79sUoeHfjNYIvIKMLaHRT8wxjxtr3MHsNEY8xt72gtkGGMaRORY4ClgmjGmpa9jaQZLKaWUUip56tuC/Oiplby2dndXqXOPy0Guz012uptC+2G7Y7PSGJudts/rwgyvPlxXHVYOOYNljPl4Pzt2AZ8Cju22TRAI2q+XiMgmYDKg0ZNSSiml1AhVkOHljiuOJRozBCNRBNGxUEodpETkaj8OrDXG1MRniEihiDjt1xOAScDmBBxLKaWUUkoNMadD8HlcGlwpdQgSMUDgMuDB/eadAtwsImEgBnzBGNOYgGMppZRSSiml1Ig16ADLGHNND/MeBx4f7L6VUkoppZRSajTRci5KKaWUUkoplSAJe9BwIohIHbA12e3YTwFQn+xGqGGj5/vwoef68KLn+/Ch5/rwoef68DISz3eFMaZw/5kjKsAaiURkcU/lF1Vq0vN9+NBzfXjR83340HN9+NBzfXgZTedbuwgqpZRSSimlVIJogKWUUkoppZRSCaIBVv/uSnYD1LDS83340HN9eNHzffjQc3340HN9eBk151vHYCmllFJKKaVUgmgGSymllFJKKaUSRAMspZRSSimllEoQDbD6ICJni8g6EdkoIt9NdntU4ohImYi8LiKrRWSViHzNnp8nIi+LyAb7d26y26oSQ0ScIrJURJ61p8eLyCL7+n5YRDzJbqNKDBHJEZHHRGStiKwRkeP12k5NInKD/W/4ShF5UETS9NpOHSJyr4jsFpGV3eb1eC2L5ff2eV8uIsckr+XqYPVyrn9l/zu+XESeFJGcbsu+Z5/rdSJyVlIa3QcNsHohIk7gduATwFTgMyIyNbmtUgkUAb5pjJkKzAe+bJ/f7wKvGmMmAa/a0yo1fA1Y0236F8CtxpgjgD3AfyalVWoo/A540RhzJDAL67zrtZ1iRKQE+CpwnDFmOuAELkOv7VRyH3D2fvN6u5Y/AUyyf64H7himNqrEuI8Dz/XLwHRjzExgPfA9APt+7TJgmr3NH+379hFDA6zezQU2GmM2G2NCwEPABUluk0oQY0ytMeZD+3Ur1g1YCdY5vt9e7X7gk0lpoEooESkFzgH+bE8LcDrwmL2KnusUISLZwCnAPQDGmJAxpgm9tlOVC0gXERfgA2rRaztlGGPeAhr3m93btXwB8FdjWQjkiMi4YWmoGrSezrUx5iVjTMSeXAiU2q8vAB4yxgSNMVuAjVj37SOGBli9KwGqu03X2PNUihGRSuBoYBFQZIyptRftBIqS1S6VUP8H3AjE7Ol8oKnbP9x6faeO8UAd8Be7S+ifRcSPXtspxxizHfg1sA0rsGoGlqDXdqrr7VrW+7bUdh3wgv16xJ9rDbDUYU1EMoDHga8bY1q6LzPWMwz0OQajnIicC+w2xixJdlvUsHABxwB3GGOOBtrZrzugXtupwR57cwFWUF0M+Dmwi5FKYXotHx5E5AdYQzseSHZbBkoDrN5tB8q6TZfa81SKEBE3VnD1gDHmCXv2rniXAvv37mS1TyXMicD5IlKF1dX3dKwxOjl2tyLQ6zuV1AA1xphF9vRjWAGXXtup5+PAFmNMnTEmDDyBdb3rtZ3aeruW9b4tBYnINcC5wOVm78N7R/y51gCrdx8Ak+xqRB6swXTPJLlNKkHsMTj3AGuMMb/ttugZ4Gr79dXA08PdNpVYxpjvGWNKjTGVWNfxa8aYy4HXgYvt1fRcpwhjzE6gWkSm2LM+BqxGr+1UtA2YLyI++9/0+LnWazu19XYtPwNcZVcTnA80d+tKqEYhETkbq3v/+caYjm6LngEuExGviIzHKmzyfjLa2BvZGwyq/YnIf2CN3XAC9xpjfp7cFqlEEZGTgLeBFewdl/N9rHFYjwDlwFbgEmPM/gNs1SglIguAbxljzhWRCVgZrTxgKXCFMSaYxOapBBGR2VgFTTzAZuBarC8U9dpOMSLyU+BSrO5DS4HPYY3F0Gs7BYjIg8ACoADYBfwEeIoermU7yL4Nq5toB3CtMWZxEpqtDkEv5/p7gBdosFdbaIz5gr3+D7DGZUWwhnm8sP8+k0kDLKWUUkoppZRKEO0iqJRSSimllFIJogGWUkoppZRSSiWIBlhKKaWUUkoplSAaYCmllFJKKaVUgmiApZRSSimllFIJogGWUkoppZRSSiWIBlhKKaWUUkoplSD/HyA6HJ7eQYaEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj7UlEQVR4nOzdeXwV1f3/8dcnNzskBELYERAFWUUFxCqu/bq0KlqraN3Qr/WnrW21LrW2Vdp+/X5btbW12lqtrVYtYt1bl7qi0roBIoKoIEZ2CAESErLe+/n9MUO4hCQEcsPN8n4+HiFzZ86c85mZ3HA/OWfOmLsjIiIiIiIiLZeS7ABEREREREQ6CiVYIiIiIiIiCaIES0REREREJEGUYImIiIiIiCSIEiwREREREZEEUYIlIiIiIiKSIEqwRETaCDMbbGZuZqnJjqWjM7NpZjY72XG0NWY22cw+SXYcIiLtmRIsERFp18xsupnVmFlZ3Nd1yY6rPXL3N919eKLrNbN7zOwTM4uZ2bRE1y8i0pbor6QiIgliZqnuXpvsODqpme5+XrKDaC0d4GfrA2Am8MtkByIi0trUgyUi0gJmVmhmPzCzBUC5maWa2SQz+4+ZbTazD8zs6Ljys8zs/8zsXTMrNbOnzaxHI3VfZGaLzWyLmS0zs/9Xb/sUM5sf1vOZmZ0Yru9mZveZ2RozW2Vm/2NmkV0cx1Aze9XMis1sg5k9bGZ5cds2mtnB4et+Zla07bjM7FQzWxQe7ywzG1Hv/FxjZgvMrMTMZppZ5u6f6d1nZteH52WLmX1kZqc3Us7M7HYzWx+eyw/NbHS4LcPMbjOz5Wa2zszuNrOsZrZ/f1j+pTCG181sUNz235rZirDNuWY2OW7bdDN7zMweMrNSYJqZTTSzt8LzvMbM7jSz9Lh93My+ZWZLwvZ+Hl67/4RtPBpfvpGYjzazlc05vt3h7ne5+ytAZaLrFhFpa5RgiYi03DnAV4E8oDfwLPA/QA/gGuBxMyuIK38BcDHQF6gF7mik3vXAyUAucBFwe1ySMxH4K3Bt2O6RQGG43/1hvfsBBwHHA5fs4hgM+D+gHzACGAhMB3D3z4AfAA+ZWTbwF+ABd59lZsOAGcCVQAHwHPCPeh/kzwJOBIYAY4FpDQZgdkSYPDT2dcQujqG+z4DJQDfgp2H8fRsodzzB+RsWlj0LKA63/SJcP47gfPYHbtyNGM4Ffg70BOYDD8dtey+stwfwN+Dv9ZLPKcBjBNf3YSAKXBXWdRhwHPCteu2dABwCTAKuA+4BziO4nqMJflb3WJgoN3Z9ft+SukVEOgolWCIiLXeHu69w9wqCD7PPuftz7h5z95eAOcBX4so/6O4L3b0c+AlwVkM9TO7+rLt/5oHXgRcJEgaA/wb+7O4vhe2scvePzax32NaV7l7u7uuB24GzmzoAd18a1lXl7kXAr4Gj4rbfCywF3iFIDH8UbpoKPBvuWwPcBmQBX6p3fla7+0bgHwRJRUMxzHb3vCa+mpqU4qx6H/b7ufvfw3Zj7j4TWAJMbGDfGiAHOAAwd1/s7mvMzIBLgavcfaO7bwH+d1fnsp5n3f0Nd68iOGeHmdnA8Hgfcvdid691918BGUD8/U9vuftTYfwV7j7X3d8OyxcCfyTuGoVucfdSd18ELARedPdl7l4CPE+QcO8xdx/bxPWpn+yJiHRKugdLRKTlVsQtDwLONLNT4talAa81Uv6LcHvP+pWa2UnATQQ9KClANvBhuHkgQW9RfYPC+tYE+QGE+65ooGx8W72B3xIkcDnhPpvqFbsXeAa4NEwYIOjx+mJbAXePmdkKgp6ebdbGLW8N90m0R+vfg2VmFwDfBwaHq7rSwHl291fN7E7gLmCQmT1B0POYSXDO58adSwOaHG5ZT915d/cyM9tIcPwrzOwagkS5H+AEPZU9G9o3PJ5hBInv+DCuVGBuvfbWxS1XNPC6z27ELiIie0A9WCIiLedxyysIeqji/7Lfxd1/EVdmYNzyPgQ9KBviKzSzDOBxgh6h3u6eR5BQbfukvwIY2kAsK4AqoGdc+7nuPmoXx/C/4XGMcfdcgp647VmFWVfgN8B9wHTbft/YaoKkbls5C49v1S7a24kFU4SXNfE1ede11NU1iCAhvALID8/fwvhjiufud7j7IcBIgoT2WoJrUgGMijuX3dy9624cVt21Ds9hD2B1eCzXEQxH7B7GV1IvvvifK4A/AB8D+4fX6IbGjqe1WHCvXWPX5+69GYuISFulBEtEJLEeAk4xsxPMLGJmmeHEAQPiypxnZiPD+5l+Bjzm7tF69aQTDBkrAmrD3qzj47bfB1xkZseZWYqZ9TezA9x9DcFQwl+ZWW64baiZ1R9KVl8OUAaUmFl/ggQj3m+BOe5+CcE9Zts+TD8KfDWMIw24miDB+8+uTlR94RThXZv4enM3qutCkKAUQTBhCME9SDsxswlmdmgYfznBRAwxd48RJGm3m1mvsGx/Mzshbl+3uElMGvCV8N6ydIJ7sd529xUE57s2jC/VzG4k6MFqSg5QCpSZ2QHA5bson3DuPqqJ63NZY/uZWXp4f5kBaeH7Qp9BRKRD0i83EZEECj88TyHoXSgi6FG6lh1/3z5IMBHFWoJhaN9toJ4t4fpHCYbqfYNgeN627e8STnxB0PPxOtt7ki4gSNA+Cvd9jOC+qab8FDg4rOtZ4IltG8xsCsEkFds+0H8fONjMznX3Twh6u35H0ONzCnCKu1fvor1W5e4fAb8C3iIYJjcG+HcjxXMJEqlNBMMdi4Fbw20/ILj37G0LZvN7mfA+qfBeqi1sH7bZkL8RDPPcSDD5xLZhjP8CXgA+DdusZBfDOAmGLX4jbPNegmnP24sXCXoDv0Qw8UYFwcQiIiIdjrnXH4EgIiKtxcxmAQ+5+5+SHYu0jJmdRzB88IeNbL8fWOnuP96rgYmISFJpkgsREZE94O4PJTsGERFpezREUESkk7DgobeanKCTM7MbGvk5eD7ZsYmIdAQaIigiIiIiIpIg6sESERERERFJkDZ1D1bPnj198ODByQ5DRERERESkSXPnzt3g7gX117epBGvw4MHMmTMn2WGIiIiIiIg0ycy+aGi9hgiKiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBt6h6shtTU1LBy5UoqKyuTHYq0AZmZmQwYMIC0tLRkhyId0JqSCn745+e49PhxfGnU0GSHIyIiIu1Qm0+wVq5cSU5ODoMHD8bMkh2OJJG7U1xczMqVKxkyZEiyw5EO6NWP13N/ycWUPJYLo1YkOxwRERFph9r8EMHKykry8/OVXAlmRn5+vnozpdWsXl8MQDcvhS3rkhyNiIiItEdtPsEClFxJHf0sSKva9HndYvmyt5IYiIiIiLRX7SLBEhHZG7LKtg8L3LT8oyRGIiIiIu2VEqxmMDOuvvrqute33XYb06dPT15AcY4++ugmH8582mmnMWnSpB3WTZ8+nf79+zNu3DhGjx7NM88809phirQL3SqCBKvS04gWfZrkaERERKQ9UoLVDBkZGTzxxBNs2LAhofW6O7FYLKF1xtu8eTNz586lpKSEZcuW7bDtqquuYv78+fz973/n4osvbtU4RNqLtOoSaokw3/cjbfNnyQ5HRERE2iElWM2QmprKpZdeyu23377TtqKiIs444wwmTJjAhAkT+Pe//w0EvUS33XZbXbnRo0dTWFhIYWEhw4cP54ILLmD06NGsWLGCa6+9ltGjRzNmzBhmzpwJwKxZszj66KP5+te/zgEHHMC5556LuzcY34MPPljXG/Xuu+/WrX/iiSc45ZRTOPvss3nkkUca3HfEiBGkpqbukDxef/31jBw5krFjx3LNNdcAUFhYyLHHHsvYsWM57rjjWL58OQDTpk3j8ssvZ9KkSey7777MmjWLiy++mBEjRjBt2rS6Oi+//HLGjx/PqFGjuOmmm3aKo6SkhEGDBtUleuXl5QwcOJCampoG4xZpDSm1W6lJyWJtpB85W1cmOxwRERFph9r8NO3xfvqPRXy0ujShdY7sl8tNp4zaZblvf/vbjB07luuuu26H9d/73ve46qqrOOKII1i+fDknnHACixcvbrKuJUuW8MADDzBp0iQef/xx5s+fzwcffMCGDRuYMGECRx55JADvv/8+ixYtol+/fhx++OH8+9//5ogjjtipvq1btzJ//nzeeOMNLr74YhYuXAjAjBkzuPHGG+nduzdnnHEGN9xww077vvPOO6SkpFBQUABAcXExTz75JB9//DFmxubNmwH4zne+w4UXXsiFF17In//8Z7773e/y1FNPAbBp0ybeeustnnnmGU499VT+/e9/86c//YkJEyYwf/58xo0bx80330yPHj2IRqMcd9xxLFiwgLFjx9bF0a1bN8aNG8frr7/OMcccwz//+U9OOOEEPe9K9qpItJKa1AwqMvqSU/4K1FZBakaywxIREZF2RD1YzZSbm8sFF1zAHXfcscP6l19+mSuuuIJx48Zx6qmnUlpaSllZWZN1DRo0qO6+qNmzZ3POOecQiUTo3bs3Rx11FO+99x4AEydOZMCAAaSkpDBu3DgKCwsbrO+cc84B4Mgjj6S0tJTNmzezbt06lixZwhFHHMGwYcNIS0urS7wAbr/9dsaNG8c111zDzJkz62bn69atG5mZmfz3f/83TzzxBNnZ2QC89dZbfOMb3wDg/PPPZ/bs2XV1nXLKKZgZY8aMoXfv3owZM4aUlBRGjRpVF/Ojjz7KwQcfzEEHHcSiRYv46KOdJxCYOnVqXQ/eI488wtSpU5s8jyKJlhGroDaShef0D1aUrkpuQCIiItLutLgHy8wGAn8FegMO3OPuvzWz6cA3gaKw6A3u/lxL2mpOT1NruvLKKzn44IO56KKL6tbFYjHefvttMjMzdyibmpq6w31N8c9u6tKlS7Pay8jY/pfzSCRCbW1tg+XqT11uZjz66KNs2rSp7oG8paWlzJgxg5tvvhkI7sHaNvyvftzvvvsur7zyCo899hh33nknr776arPiTElJ2SHmlJQUamtr+fzzz7ntttt477336N69O9OmTWvwWVannnoqN9xwAxs3bmTu3Lkce+yxTbYrkkjuTrpXURvJIrX7AFgL0U0rifTYN9mhiYiISDuSiB6sWuBqdx8JTAK+bWYjw223u/u48KtFyVVb0KNHD8466yzuu+++unXHH388v/vd7+pez58/H4DBgwczb948AObNm8fnn39OQyZPnszMmTOJRqMUFRXxxhtvMHHixN2Ka1uvz+zZs+nWrRvdunVjxowZvPDCC3X3fc2dO7fR+7DilZWVUVJSwle+8hVuv/12PvjgAwC+9KUv1e3/8MMPM3ny5GbHV1paSpcuXejWrRvr1q3j+eefb7Bc165dmTBhAt/73vc4+eSTiUQizW5DpKVqok4WVURTs8gsGATAlvVfJDkqERERaW9a3IPl7muANeHyFjNbDPRvab1t1dVXX82dd95Z9/qOO+6ouz+rtraWI488krvvvpszzjiDv/71r4waNYpDDz2UYcOGNVjf6aefzltvvcWBBx6ImXHLLbfQp08fPv7442bHlJmZyUEHHURNTQ1//vOfKSws5IsvvthhevYhQ4bQrVs33nnnnQbr+MpXvsKf/vQnzIwpU6ZQWVmJu/PrX/8agN/97ndcdNFF3HrrrRQUFPCXv/yl2fEdeOCBHHTQQRxwwAEMHDiQww8/vG7bjTfeyPjx4zn11FOBYJjgmWeeyaxZs5pdv0giVNVGybYqYqk9yAkTrIoNheQlNywRERFpZ6yxmen2qDKzwcAbwGjg+8A0oBSYQ9DLtamBfS4FLgXYZ599Dvniix3/Yrx48WJGjBiRsBil/dPPhLSGDWVVrL9lAjm9h1B6+l/p+8eRlA39KvtccE+yQxMREZE2yMzmuvv4+usTNsmFmXUFHgeudPdS4A/AUGAcQQ/Xrxraz93vcffx7j5+20x2IiJ7W1VtjCwqiaVl0bdbFqu9J6ZJLkRERGQ3JSTBMrM0guTqYXd/AsDd17l71N1jwL3A7t1YJCKyF1XVRMmyajw1m+7Zaawln4zyNckOS0RERNqZFidYFkxhdx+w2N1/Hbe+b1yx04GF9fcVEWkrqmpjZFMFadmYGSXpvelatTbZYYmIiEg7k4gHDR8OnA98aGbzw3U3AOeY2TiCqdsLgf+XgLZERFpFMESwCtKDZ79VZPUle0s5VJZCZm6SoxMREZH2IhGzCM4GrIFN7X5adhHpPKqrKkmzKBYmWNGcfrAFKF2tBEtERESaLWGTXIiItGc1leUApKQHDwJP6RY8bcJLVyctJhEREWl/lGA101NPPYWZNfl8qsLCQkaPHp2wNqdNm8Zjjz3W6PYrr7yS/v37E4vF6tbdf//9FBQUMG7cOEaOHMm9996bsHhEOrJo1bYEK+jBysofCEB50fKkxSQiIiLtjxKsZpoxYwZHHHEEM2bMaHB7bW1ti9uIRqPNLhuLxXjyyScZOHAgr7/++g7bpk6dyvz585k1axY33HAD69ata3FsIh1dbdVWAFIyggQrpyBMsDYowRIREZHmU4LVDGVlZcyePZv77ruPRx55pG79rFmzmDx5MqeeeiojR44EgkTr3HPPZcSIEXz9619n69bgQ9srr7zCQQcdxJgxY7j44oupqqoCYPDgwfzgBz/g4IMP5u9///tObb/88suMHz+eYcOG8c9//nOHtkeNGsXll1/eaNLXq1cvhg4dSvzDm++44w5GjhzJ2LFjOfvsswHYuHEjp512GmPHjmXSpEksWLAAgOnTp3PhhRcyefJkBg0axBNPPMF1113HmDFjOPHEE6mpqQHgZz/7GRMmTGD06NFceuml1H94dSwWY/DgwWzevLlu3f7776/ET9qUaE0lAKnpmQD07tGNDZ5LzaaVyQxLRERE2plEzCK49zx/Paz9MLF19hkDJ/2iySJPP/00J554IsOGDSM/P5+5c+dyyCGHADBv3jwWLlzIkCFDKCws5JNPPuG+++7j8MMP5+KLL+b3v/89V1xxBdOmTeOVV15h2LBhXHDBBfzhD3/gyiuvBCA/P5958+Y12HZhYSHvvvsun332GccccwxLly4lMzOTGTNmcM455zBlyhRuuOEGampqSEtL22HfZcuWsWzZMvbbb7+6db/4xS/4/PPPycjIqEt4brrpJg466CCeeuopXn31VS644ALmz58PwGeffcZrr73GRx99xGGHHcbjjz/OLbfcwumnn86zzz7LaaedxhVXXMGNN94IwPnnn88///lPTjnllLo2U1JSmDJlCk8++SQXXXQR77zzDoMGDaJ3797NvkwirS1avWOC1bdbJmu9B3lbdA+WiIiINJ96sJphxowZdb09Z5999g49RhMnTmTIkCF1rwcOHMjhhx8OwHnnncfs2bP55JNPGDJkCMOGDQPgwgsv5I033qjbZ+rUqY22fdZZZ5GSksL+++/Pvvvuy8cff0x1dTXPPfccp512Grm5uRx66KH861//qttn5syZjBs3jnPOOYc//vGP9OjRo27b2LFjOffcc3nooYdITQ3y69mzZ3P++ecDcOyxx1JcXExpaSkAJ510EmlpaYwZM4ZoNMqJJ54IwJgxYygsLATgtdde49BDD2XMmDG8+uqrLFq0aKfjmDp1KjNnzgTgkUceafKYRZIhWl0BQGp6FgA9u2awlh6k62HDIiIishvaVw/WLnqaWsPGjRt59dVX+fDDDzEzotEoZsatt94KQJcuXXYoHzx3ufHXDalfx67q+9e//sXmzZsZM2YMAFu3biUrK4uTTz4ZCJKZO++8s8H6nn32Wd544w3+8Y9/cPPNN/Phh033CGZkZABBL1RaWlpdPCkpKdTW1lJZWcm3vvUt5syZw8CBA5k+fTqVlZU71XPYYYexdOlSioqKeOqpp/jxj3/cZLsie1usJhi2m5YRJFiRFKM0tYAuVUuTGZaIiIi0M+rB2oXHHnuM888/ny+++ILCwkJWrFjBkCFDePPNNxssv3z5ct566y0A/va3v3HEEUcwfPhwCgsLWbo0+KD24IMPctRRRzWr/b///e/EYjE+++wzli1bxvDhw5kxYwZ/+tOfKCwspLCwkM8//5yXXnqp7n6vxsRiMVasWMExxxzDL3/5S0pKSigrK2Py5Mk8/PDDQHBvV8+ePcnNbd5zf7YlUz179qSsrKzRWQ/NjNNPP53vf//7jBgxgvz8/GbVL7K3xOrdgwWwNasPXaKlUN30e0tERERkGyVYuzBjxgxOP/30HdadccYZjU4sMXz4cO666y5GjBjBpk2buPzyy8nMzOQvf/kLZ555JmPGjCElJYXLLrusWe3vs88+TJw4kZNOOom7776bWCzGCy+8wFe/+tW6Ml26dOGII47gH//4R4N1XHLJJcyZM4doNMp5553HmDFjOOigg/jud79LXl4e06dPZ+7cuYwdO5brr7+eBx54oJlnB/Ly8vjmN7/J6NGjOeGEE5gwYULdtrvvvpu777677vXUqVN56KGHNDxQ2iSvS7Cy6tZFu/YNFrZomKCIiIg0j9Wf8S2Zxo8f73PmzNlh3eLFixkxYkSSIpK2SD8T0hqe+Otv+dqyG+Hb70LBcAD++vBfuWDJd/ALnsH2bV6vs4iIiHQOZjbX3cfXX68eLBERgLAHi9SMulWZPYNnYVUUa6p2ERERaR4lWCIiANFgkgtSt9+Dte1hw2VFXzS0h4iIiMhO2kWC1ZaGMUpy6WdBWk1tmGBF0utW9crPZ7N3oXrjiiQFJSIiIu1Nm0+wMjMzKS4u1gdrwd0pLi4mMzNz14VFdlftzj1Y/fIyWeM98FI9bFhERESap80/B2vAgAGsXLmSoqKiZIcibUBmZiYDBgxIdhjSAaXUDRHcfg9Wr5xMPiGf7uVrkxSViIiItDetnmCZ2YnAb4EI8Cd3362nBaelpTFkyJBWiU1EZBuLVlFLhNSUSN26SIpRklpAduXcJEYmIiIi7UmrDhE0swhwF3ASMBI4x8xGtmabIiJ7IiVWTY2l77S+Iqs3udGNUFudhKhERESkvWnte7AmAkvdfZm7VwOPAFNauU0Rkd0WiVZR20CCVdu1T7Cghw2LiIhIM7R2gtUfiJ9+a2W4TkSkTbFYNbWWttP6SLfgV5aXrtrbIYmIiEg7lPRZBM3sUjObY2ZzNJGFiCRLJFZNbUrGTuszemx7FtbyvR2SiIiItEOtnWCtAgbGvR4Qrqvj7ve4+3h3H19QUNDK4YiINCwSqyaasvMQwdzegwAlWCIiItI8rZ1gvQfsb2ZDzCwdOBt4ppXbFBHZbaleTayBBKsgv4Ayz6S6WAmWiIiI7FqrTtPu7rVmdgXwL4Jp2v/s7otas00RkT2RFqsmFtk5weqbl8VKL6BLyYoG9hIRERHZUas/B8vdnwOea+12RET2lLuTQRXRSPedtvXsmsFCChhVtjIJkYmIiEh7k/RJLkREkq2qNkYm1cRSs3balpJibM7oS27VGnBPQnQiIiLSnijBEpFOr6omSLA8NbPB7ZXZ/cmKlUPl5r0bmIiIiLQ7SrBEpNOrrI2SZVV4Az1YALG8YCZBNmuiCxEREWmaEiwR6fSqamJkUY2nNZxgpeUHCVZl0ed7MywRERFph5RgiUinV1kbJZNqrJEEK7fvUABK1362N8MSERGRdkgJloh0epXVNWRZ4wlW71592OJZVKkHS0RERHZBCZaIdHo1VRUAWHp2g9sH9MhmpffUPVgiIiKyS0qwRKTTq64sByAlveEerIKuGaymF+l6FpaIiIjsghIsEen0aiu3AhBppAfLzCjJ6EtupZ6FJSIiIk1TgiUinV5tVdCDFcno0miZyq4DyPKtULFpb4UlIiIi7ZASLBHp9Gqrgh6s1IyGe7AAvNvAYGHzF3sjJBEREWmnlGCJSKcX3ZZgZTbeg5VZMASA8vWaSVBEREQapwRLRDq92nCSi8zsro2W6d5/GAAlqz7dKzGJiIhI+6QES0Q6vW1DBDOzGu/BGti3D8WeQ/X6pXsrLBEREWmHlGCJSKdXW1UGgKU1fg/WwB7ZFHofIpuX7a2wREREpB1SgiUinZ5VbQkWMnIaLZOZFmF9an9yyjXJhYiIiDSuRQmWmd1qZh+b2QIze9LM8sL1g82swszmh193JyRaEZFWkFIdJliZuU2WK+s6iLzaDVC9dS9EJSIiIu1RS3uwXgJGu/tY4FPgh3HbPnP3ceHXZS1sR0Sk1USqtxAlBdIbn+QCIJq3b7CwUcMERUREpGEtSrDc/UV3rw1fvg0MaHlIIiJ7V2rNFiotG8yaLJfRe38AylZ/sjfCEhERkXYokfdgXQw8H/d6iJm9b2avm9nkxnYys0vNbI6ZzSkqKkpgOCIizZNeW0ZFpPEZBLfJG3AAACWrPm7tkERERKSdSt1VATN7GejTwKYfufvTYZkfAbXAw+G2NcA+7l5sZocAT5nZKHcvrV+Ju98D3AMwfvx437PDEBHZcxmxMqpSmx4eCDCwb2+KvBs1RZqqXURERBq2ywTL3b/c1HYzmwacDBzn7h7uUwVUhctzzewzYBgwp6UBi4gkWla0nJrMXSdY+/TI5gPvQ9/Nn++FqERERKQ9auksgicC1wGnuvvWuPUFZhYJl/cF9gd0V7iItEnZvpWatF0nWOmpKaxP01TtIiIi0riW3oN1J5ADvFRvOvYjgQVmNh94DLjM3Te2sC0RkYSrqI7S1cvx9KanaN+mvOsgukU3wrZnZ4mIiIjE2eUQwaa4+36NrH8ceLwldYuI7A0bt1aTYxVUZTUvwfLu+0IJePFnWL9xrRuciIiItDuJnEVQRKTd2VRWSQ5biWR3b1b59N7DAChb/WlrhiUiIiLtlBIsEenUSjeuJ9ViRHJ6Nat894HBVO2lqz5qzbBERESknWrREEERkfaucvNaADK6NfQ0ip0N6lPASu9JdP2S1gxLRERE2in1YIlIp1ZVsg6A7O7NS7AGdM+i0PuQvlkTo4qIiMjOlGCJSKcW3bIegC49+jarfFokhaKMfcir+AJcz0YXERGRHSnBEpFOLVa+AaDZ92ABlHcdQlasHMrWt1ZYIiIi0k4pwRKRzq2siCgpkNW8WQQBLD94QoVv0EyCIiIisiMlWCLSqaVVFFGWkgspkWbvk9VvOAClqz5urbBERESknVKCJSKdWm71Osoyeu/WPr0G7E+lp1G+WgmWiIiI7EgJloh0WpU1UXrGNlCZ3bwJLrYZXNCVz70PXqSp2kVERGRHSrBEpNNaW1JJPysmltt/t/br1y2LL+hL5pbPWykyERERaa+UYIlIp7W+aD05VkFq94G7tV9KirExaxDdKldBtKaVohMREZH2SAmWiHRapesKAcjuuc9u71vVbV9SicKmwsQGJSIiIu2aEiwR6bQqNiwHoFufIbu9b0rP/QGIFmmqdhEREdlOCZaIdFqxzSsAyMzf/R6snAEHALBFU7WLiIhInBYlWGY23cxWmdn88Osrcdt+aGZLzewTMzuh5aGKiCRWZMvq4CHDXfvs9r79+/Rjg+dSsUYJloiIiGyXmoA6bnf32+JXmNlI4GxgFNAPeNnMhrl7NAHtiYgkRGbFGjZH8smP7P6vwiE9u7DM+zKoeGkrRCYiIiLtVWsNEZwCPOLuVe7+ObAUmNhKbYmI7JFu1evZkrH7vVcABTkZrLB+dCkrTGxQIiIi0q4lIsG6wswWmNmfzax7uK4/sCKuzMpw3U7M7FIzm2Nmc4qKihIQjojIrlXWRCmIFVGdvWcJlplRkj2IrrUbobIkwdGJiIhIe7XLBMvMXjazhQ18TQH+AAwFxgFrgF/tbgDufo+7j3f38QUFBbu7u4jIHllfUklf20gsd8Ae11HTfWiwsEHDBEVERCSwyxsP3P3LzanIzO4F/hm+XAXEP7lzQLhORKRNWL9uJftYDWk9du8hw/Eyeg2D1VBb9CmpAw5JYHQiIiLSXrV0FsG+cS9PBxaGy88AZ5tZhpkNAfYH3m1JWyIiibRl3ecAZPcctMd15A0cRq2nULpycaLCEhERkXaupbMI3mJm4wAHCoH/B+Dui8zsUeAjoBb4tmYQFJG2pLI4eMhwXt/Be1zHkF49WOEFZK37JEFRiYiISHvXogTL3c9vYtvNwM0tqV9EpLXENgejlrN6Dt7jOgb37MIc78eBmz5LUFQiIiLS3rXWNO0iIm1apGw1VaRDdv4e19EtK421qf3J3bocYrEERiciIiLtlRIsEemUsivWsDm1J5i1qJ7ynCGkexWUah4fERERUYIlIp1Ut+p1lO3hQ4bjeY/9g4XiJS2uS0RERNo/JVgi0ulU1kQp8A1Ud+nX4rqy+w0HoGLtpy2uS0RERNo/JVgi0ums21xGbzZBt/4trqv/wMFs8SxKli/cdWERERHp8JRgiUinU7xqGRFzUvMHt7iuMQO6s8gHk7Lm/WaVX7lpKxvLq1vcroiIiLRNSrBEpNOpCJ9b1aXvsBbXVZCTwWdpw+m+5ROorWq0XHVtjL89/gQbbj+cd+77fovbFRERkbappQ8aFhFpd6JFwXOrug8ckZD6ynsdRNqap2DVXBj0pZ22Lyxcx+IZ1zO18kkiKU7epsYTMREREWnflGA1YfE7/6JkzmNgKbgZFn7HUsBSMDMgBQ9fE5bBDCyy/XUc36mVcI3vvKWhdTut8YaevbNjKdvWxA7rvaFg2oA2GRQtm8hb2pqeq9+knEy6dG/5JBcA2QccR9Xqn1P5/lN0i0uwKmuiPPHUY0xaeBNn2hpWDZ3KivIUJq59hFhFKSlZuQlpv6Opralha+kmyss2s7W8jOqqcmorK4hVlxOtriBWvZVYdQVeU4HXVBKL1uLRGohFMa8Nv0chVot5lBSPYrFa8Fjwe9Djfr1avfe3Bf9Y/VU7lQ2XzHAMM4LvdQWt3k4W/D+yw5GmbK/QUvCwVid+32DZ4/b0uLbrXtd73EBQJq4eCP7/amh7Cx9VIIllbfT/QZFkWpczilGTT2f/3jnJDqVZlGA1YcvKjxhZ9E9S3EkhRvDfqJNS9z2GASmmX4Yi7c38rEmMS9AHy+PG7cd/XhnD+IWPwVduwtOymTXnQypfuJFvRF9jY3ofyr72BP1HHMcnTz9AyroZFC+bR/6ooxPSflvl7pSWlrJ5wyrKitdQsWkNtSVriZWth63FpFSVkF6zhYzoFrKiZWTHyunq5XS1CnKBPU0/az2FKBGipFBLhKgFy9t+e8P21KP5v713Lmk4FmZqFpbY9v9EfBs0sG5buW1J1fbt28s1tI5mltP/SyLSkfyl9gQ+GfZlJVgdwcQzroIzrtplOY/FcHdisSixWIxYLIbHYsRiUaKx6E69H2Y7/rWx/tIOn/nMdvpb6k6fCePriv9TK3F/h7UG6qb+X1PbiDb719S2GpfsiQMjkYTV1bdbFs8Mv5RjllxO4R1fobAqly9Vv4WZs3LkpQyYchNkdAUge/B4eB9KP3+vXSdY7s7GzZspXrWMkrXLqCr+At+8grSy1XSpWENebRHdfTPdrJJuDey/hWzKrCsVka5URnIoTR/IxvQcomm5eGY3yMwlkplDWkY2qZldSEnPJpKRTWpGFmkZXUjN6EJ6VjZpGdlkpKeTnpZGSiQNUiKkmnWq/9y8WaMdnB1HTATLHvO4PXbvd9yepnDuHo4AkUbp/LQhuhZtwQUNjApryzrT/0GtxlJSgr8YJvADm4i0L1NP/zr3/+ljTin+C+NSjC8GfY19T/kBAwqG7lBu/6H7sd7zqFnRvFkHk8ndKSreyJrPF7Fl1cdEi5aQVvI53Su+oHftGvJtC/lx5Ws9heKUfDan92ZD9ijWZhfgXQpIzelNRl4fsnv0JadnP/J69iMnPZP28XfItq9ZyUojZUz/bYmIJJwSLBGRBMjLTmfad3+G+08xM/IaKZffNYP/RIYyeFPbeW5WLOasWr2SNUvmUbFiAZHij8kp/4I+NSvpbZvoFVd2vfWkOHMfCnscx7JuA0nPH0TXXoPp0W8o3XoNpHckjd5JOxIREZHkU4IlIpJAzelNKM4/mC8V3Ut080oieQP2QlQBd2fdxs2sWjKfLV98gK1fRE7pUgZUf85A28TAsFwJXVmfsQ+rux3G6h77kdlnON33GUGvfQ6gV0aXHRIuERER2ZESLBGRvazrgafBy/ey4j9/Z/BXdn2f554or6iicOkiipfNp3bNQrI3fUKfqs8Y6GvpE06AUEk6a9L2YU3Pw1jdayQ5+4yl7/4H0y1/AN10D4iIiMgeUYIlIrKXTZwwiUUvDaHg/T/BCd+ByJ7/Kg6G961gzafz2LpyAalFi8kvX8Kg6HJGWfC8rZgba1P7sanb/izseSpZA8bQa79DyOs/nCEpuglHREQkkVqUYJnZTGB4+DIP2Ozu48xsMLAY+CTc9ra7X9aStkREOoouGal8MvxyRn16Hcv+fgP7Tv3lLmcNi8acNatXsa5wIeWrF8P6T8gp/ZT+Vct2GN63mVzWZg3lk+5fI73fGHoOPYheQw+kX3oXEvPULxEREWlKixIsd5+6bdnMfgWUxG3+zN3HtaR+EZGO6itnXsKLt73M8R//kSW/ep/KYSdjeYNwYGv5Fqo3r4HSVUTK1tBt63L61a5kgG1h2x1b1aSyKnUQq/MnsarXKHIGj6PfsIPJ696PPA3vExERSZqEDBG04K7us4BjE1GfiEhHl5kWYdKVD/H8Azdy0JpH2X/ejTuVibqxKaU7xRkDKOxxLIX5+9Ol/wgKBo8ir99+DImkJSFyERERaYo19IDC3a7E7Ejg1+4+Pnw9GFgEfAqUAj929zcb2fdS4FKAffbZ55AvvviixfGIiLQnFVW1rPhsIdGSNbilkNO1C3m9BtI1vx+mJEpERKRNMrO52/KfHdbvKsEys5eBPg1s+pG7Px2W+QOw1N1/Fb7OALq6e7GZHQI8BYxy99Km2ho/frzPmTOnOccjIiIiIiKSNI0lWLscIujuX95FxanA14BD4vapAqrC5blm9hkwDFD2JCIiIiIiHVZKAur4MvCxu6/ctsLMCswsEi7vC+wPLEtAWyIiIiIiIm1WIia5OBuYUW/dkcDPzKwGiAGXufvGBLQlIiIiIiLSZiVkkotEMbMioK3NctET2JDsIGSv0fXuPHStOw9d685F17vz0LXuXNri9R7k7gX1V7apBKstMrM5Dd28Jh2TrnfnoWvdeehady663p2HrnXn0p6udyLuwRIRERERERGUYImIiIiIiCSMEqxduyfZAchepevdeehadx661p2LrnfnoWvdubSb6617sERERERERBJEPVgiIiIiIiIJogRLREREREQkQZRgNcHMTjSzT8xsqZldn+x4JHHMbKCZvWZmH5nZIjP7Xri+h5m9ZGZLwu/dkx2rJIaZRczsfTP7Z/h6iJm9E76/Z5pZerJjlMQwszwze8zMPjazxWZ2mN7bHZOZXRX+Dl9oZjPMLFPv7Y7DzP5sZuvNbGHcugbfyxa4I7zuC8zs4ORFLrurkWt9a/h7fIGZPWlmeXHbfhhe60/M7ISkBN0EJViNMLMIcBdwEjASOMfMRiY3KkmgWuBqdx8JTAK+HV7f64FX3H1/4JXwtXQM3wMWx73+JXC7u+8HbAL+OylRSWv4LfCCux8AHEhw3fXe7mDMrD/wXWC8u48GIsDZ6L3dkdwPnFhvXWPv5ZOA/cOvS4E/7KUYJTHuZ+dr/RIw2t3HAp8CPwQIP6+dDYwK9/l9+Lm9zVCC1biJwFJ3X+bu1cAjwJQkxyQJ4u5r3H1euLyF4ANYf4Jr/EBY7AHgtKQEKAllZgOArwJ/Cl8bcCzwWFhE17qDMLNuwJHAfQDuXu3um9F7u6NKBbLMLBXIBtag93aH4e5vABvrrW7svTwF+KsH3gbyzKzvXglUWqyha+3uL7p7bfjybWBAuDwFeMTdq9z9c2Apwef2NkMJVuP6AyviXq8M10kHY2aDgYOAd4De7r4m3LQW6J2suCShfgNcB8TC1/nA5rhf3Hp/dxxDgCLgL+GQ0D+ZWRf03u5w3H0VcBuwnCCxKgHmovd2R9fYe1mf2zq2i4Hnw+U2f62VYEmnZmZdgceBK929NH6bB88w0HMM2jkzOxlY7+5zkx2L7BWpwMHAH9z9IKCcesMB9d7uGMJ7b6YQJNX9gC7sPMRIOjC9lzsHM/sRwa0dDyc7luZSgtW4VcDAuNcDwnXSQZhZGkFy9bC7PxGuXrdtSEH4fX2y4pOEORw41cwKCYb6Hktwj05eOKwI9P7uSFYCK939nfD1YwQJl97bHc+Xgc/dvcjda4AnCN7vem93bI29l/W5rQMys2nAycC5vv3hvW3+WivBatx7wP7hbETpBDfTPZPkmCRBwntw7gMWu/uv4zY9A1wYLl8IPL23Y5PEcvcfuvsAdx9M8D5+1d3PBV4Dvh4W07XuINx9LbDCzIaHq44DPkLv7Y5oOTDJzLLD3+nbrrXe2x1bY+/lZ4ALwtkEJwElcUMJpR0ysxMJhvef6u5b4zY9A5xtZhlmNoRgYpN3kxFjY2x7Mij1mdlXCO7diAB/dvebkxuRJIqZHQG8CXzI9vtybiC4D+tRYB/gC+Asd69/g620U2Z2NHCNu59sZvsS9Gj1AN4HznP3qiSGJwliZuMIJjRJB5YBFxH8QVHv7Q7GzH4KTCUYPvQ+cAnBvRh6b3cAZjYDOBroCawDbgKeooH3cphk30kwTHQrcJG7z0lC2LIHGrnWPwQygOKw2NvufllY/kcE92XVEtzm8Xz9OpNJCZaIiIiIiEiCaIigiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0REREREJEGUYImItBFmNtjM3MxSkx1LR2dm08xsdrLjaGvMbLKZfZLsOERE2jMlWCIi0q6Z2XQzqzGzsriv65IdV3vk7m+6+/BE12tm95jZJ2YWM7Npia5fRKQt0V9JRUQSxMxS3b022XF0UjPd/bxkB9FaOsDP1gfATOCXyQ5ERKS1qQdLRKQFzKzQzH5gZguAcjNLNbNJZvYfM9tsZh+Y2dFx5WeZ2f+Z2btmVmpmT5tZj0bqvsjMFpvZFjNbZmb/r972KWY2P6znMzM7MVzfzczuM7M1ZrbKzP7HzCK7OI6hZvaqmRWb2QYze9jM8uK2bTSzg8PX/cysaNtxmdmpZrYoPN5ZZjai3vm5xswWmFmJmc00s8zdP9O7z8yuD8/LFjP7yMxOb6ScmdntZrY+PJcfmtnocFuGmd1mZsvNbJ2Z3W1mWc1s//6w/EthDK+b2aC47b81sxVhm3PNbHLctulm9piZPWRmpcA0M5toZm+F53mNmd1pZulx+7iZfcvMloTt/Ty8dv8J23g0vnwjMR9tZiubc3y7w93vcvdXgMpE1y0i0tYowRIRablzgK8CeUBv4Fngf4AewDXA42ZWEFf+AuBioC9QC9zRSL3rgZOBXOAi4Pa4JGci8Ffg2rDdI4HCcL/7w3r3Aw4Cjgcu2cUxGPB/QD9gBDAQmA7g7p8BPwAeMrNs4C/AA+4+y8yGATOAK4EC4DngH/U+yJ8FnAgMAcYC0xoMwOyIMHlo7OuIXRxDfZ8Bk4FuwE/D+Ps2UO54gvM3LCx7FlAcbvtFuH4cwfnsD9y4GzGcC/wc6AnMBx6O2/ZeWG8P4G/A3+sln1OAxwiu78NAFLgqrOsw4DjgW/XaOwE4BJgEXAfcA5xHcD1HE/ys7rEwUW7s+vy+JXWLiHQUSrBERFruDndf4e4VBB9mn3P359w95u4vAXOAr8SVf9DdF7p7OfAT4KyGepjc/Vl3/8wDrwMvEiQMAP8N/NndXwrbWeXuH5tZ77CtK9293N3XA7cDZzd1AO6+NKyryt2LgF8DR8VtvxdYCrxDkBj+KNw0FXg23LcGuA3IAr5U7/ysdveNwD8IkoqGYpjt7nlNfDU1KcVZ9T7s93P3v4ftxtx9JrAEmNjAvjVADnAAYO6+2N3XmJkBlwJXuftGd98C/O+uzmU9z7r7G+5eRXDODjOzgeHxPuTuxe5e6+6/AjKA+Puf3nL3p8L4K9x9rru/HZYvBP5I3DUK3eLupe6+CFgIvOjuy9y9BHieIOHeY+4+tonrUz/ZExHplHQPlohIy62IWx4EnGlmp8StSwNea6T8F+H2nvUrNbOTgJsIelBSgGzgw3DzQILeovoGhfWtCfIDCPdd0UDZ+LZ6A78lSOBywn021St2L/AMcGmYMEDQ4/XFtgLuHjOzFQQ9PdusjVveGu6TaI/WvwfLzC4Avg8MDld1pYHz7O6vmtmdwF3AIDN7gqDnMZPgnM+NO5cGNDncsp668+7uZWa2keD4V5jZNQSJcj/ACXoqeza0b3g8wwgS3/FhXKnA3HrtrYtbrmjgdZ/diF1ERPaAerBERFrO45ZXEPRQxf9lv4u7/yKuzMC45X0IelA2xFdoZhnA4wQ9Qr3dPY8godr2SX8FMLSBWFYAVUDPuPZz3X3ULo7hf8PjGOPuuQQ9cduzCrOuwG+A+4Dptv2+sdUESd22chYe36pdtLcTC6YIL2via/Kua6mraxBBQngFkB+ev4XxxxTP3e9w90OAkQQJ7bUE16QCGBV3Lru5e9fdOKy6ax2ewx7A6vBYriMYjtg9jK+kXnzxP1cAfwA+BvYPr9ENjR1Pa7HgXrvGrs/dezMWEZG2SgmWiEhiPQScYmYnmFnEzDLDiQMGxJU5z8xGhvcz/Qx4zN2j9epJJxgyVgTUhr1Zx8dtvw+4yMyOM7MUM+tvZge4+xqCoYS/MrPccNtQM6s/lKy+HKAMKDGz/gQJRrzfAnPc/RKCe8y2fZh+FPhqGEcacDVBgvefXZ2o+sIpwrs28fXmblTXhSBBKYJgwhCCe5B2YmYTzOzQMP5ygokYYu4eI0jSbjezXmHZ/mZ2Qty+bnGTmDTgK+G9ZekE92K97e4rCM53bRhfqpndSNCD1ZQcoBQoM7MDgMt3UT7h3H1UE9fnssb2M7P08P4yA9LC94U+g4hIh6RfbiIiCRR+eJ5C0LtQRNCjdC07/r59kGAiirUEw9C+20A9W8L1jxIM1fsGwfC8bdvfJZz4gqDn43W29yRdQJCgfRTu+xjBfVNN+SlwcFjXs8AT2zaY2RSCSSq2faD/PnCwmZ3r7p8Q9Hb9jqDH5xTgFHev3kV7rcrdPwJ+BbxFMExuDPDvRornEiRSmwiGOxYDt4bbfkBw79nbFszm9zLhfVLhvVRb2D5ssyF/IxjmuZFg8oltwxj/BbwAfBq2WckuhnESDFv8RtjmvQTTnrcXLxL0Bn6JYOKNCoKJRUREOhxzrz8CQUREWouZzQIecvc/JTsWaRkzO49g+OAPG9l+P7DS3X+8VwMTEZGk0iQXIiIie8DdH0p2DCIi0vZoiKCISCdhwUNvNTlBJ2dmNzTyc/B8smMTEekINERQREREREQkQdSDJSIiIiIikiBt6h6snj17+uDBg5MdhoiIiIiISJPmzp27wd0L6q9vUwnW4MGDmTNnTrLDEBERERERaZKZfdHQeg0RFBERERERSRAlWCIiIiIiIgmiBEtEpBlqojEefW8FWyprkh2KiIiItGFt6h6shtTU1LBy5UoqKyuTHYq0M5mZmQwYMIC0tLRkhyIdwKxPirjp8XdZVdiNq878crLDERERkTaqzSdYK1euJCcnh8GDB2NmyQ5H2gl3p7i4mJUrVzJkyJBkhyMdwKLCtczPuJTURTE4dQVkdE12SCIiItIGtfkhgpWVleTn5yu5kt1iZuTn56vnUxKmsng5GVZLhBixdR8lOxwRERFpo9p8ggUouZI9op8bSSQvL6pb3lz4fhIjERERkbasXSRYIiLJZhXFdctVqz5MYiQiIiLSlinBagYz4+qrr657fdtttzF9+vTkBRTn7bff5tBDD2XcuHGMGDGiLq5Zs2bxn//8p0V1n3jiieTl5XHyyScnIFKR9i2tchMAGzwXNhYmNxgRERFps5RgNUNGRgZPPPEEGzZsSGi97k4sFmtRHRdeeCH33HMP8+fPZ+HChZx11llAYhKsa6+9lgcffLBFdYh0FOnVQYL1UWwQaeWrkxyNiIiItFVtfhbBeD/9xyI+Wl2a0DpH9svlplNGNVkmNTWVSy+9lNtvv52bb755h21FRUVcdtllLF++HIDf/OY3HH744UyfPp2uXbtyzTXXADB69Gj++c9/AnDCCSdw6KGHMnfuXJ577jnuvPNOnn/+ecyMH//4x0ydOpVZs2Yxffp0evbsycKFCznkkEN46KGHdrqvaP369fTt2xeASCTCyJEjKSws5O677yYSifDQQw/xu9/9jgMOOKDROD/77DOWLl3Khg0buO666/jmN78JwHHHHcesWbOaPDd///vf+elPf0okEqFbt2688cYbVFZWcvnllzNnzhxSU1P59a9/zTHHHMP999/PU089RXl5OUuWLOGaa66hurqaBx98kIyMDJ577jl69OjBvffeyz333EN1dTX77bcfDz74INnZ2Tu0O2nSJO677z5GjQqu3dFHH81tt93G+PHjm4xXZE91qS2hOi2LtSn9GV85O9nhiIiISBulHqxm+va3v83DDz9MSUnJDuu/973vcdVVV/Hee+/x+OOPc8kll+yyriVLlvCtb32LRYsWMWfOHObPn88HH3zAyy+/zLXXXsuaNWsAeP/99/nNb37DRx99xLJly/j3v/+9U11XXXUVw4cP5/TTT+ePf/wjlZWVDB48mMsuu4yrrrqK+fPnM3ny5CbjXLBgAa+++ipvvfUWP/vZz1i9uvl/nf/Zz37Gv/71Lz744AOeeeYZAO666y7MjA8//JAZM2Zw4YUX1s3mt3DhQp544gnee+89fvSjH5Gdnc3777/PYYcdxl//+lcAvva1r/Hee+/xwQcfMGLECO67776d2p06dSqPPvooAGvWrGHNmjVKrqTVRGNON0qoSOtOVVYfsmNlUFWW7LBERESkDWpxD5aZDQT+CvQGHLjH3X9rZj2AmcBgoBA4y903taStXfU0tabc3FwuuOAC7rjjDrKysurWv/zyy3z00fYpm0tLSykra/qD16BBg5g0aRIAs2fP5pxzziESidC7d2+OOuoo3nvvPXJzc5k4cSIDBgwAYNy4cRQWFnLEEUfsUNeNN97Iueeey4svvsjf/vY3ZsyY0WCvU1NxTpkyhaysLLKysjjmmGN49913Oe2005p1Xg4//HCmTZvGWWedxde+9rW6Y/rOd74DwAEHHMCgQYP49NNPATjmmGPIyckhJyeHbt26ccoppwAwZswYFixYAARJ2I9//GM2b95MWVkZJ5xwwk7tnnXWWRx//PH89Kc/5dFHH+XrX/96s+IV2RPVtTG6U0Z1Wi7Rrv2gHChdBQXDkx2aiIiItDGJGCJYC1zt7vPMLAeYa2YvAdOAV9z9F2Z2PXA98IMEtJc0V155JQcffDAXXXRR3bpYLMbbb79NZmbmDmVTU1N3uL8q/nlMXbp0aVZ7GRkZdcuRSITa2toGyw0dOpTLL7+cb37zmxQUFFBcXLxTmcbihJ2nM9+d6c3vvvtu3nnnHZ599lkOOeQQ5s6d22T5+GNKSUmpe52SklJ3fNOmTeOpp57iwAMP5P77728wYezfvz/5+fksWLCAmTNncvfddzc7ZpHdVVkTJYtqoqnZpOQNgLXgJaswJVgiIiJST4uHCLr7GnefFy5vARYD/YEpwANhsQeA01raVrL16NGDs846a4cha8cffzy/+93v6l7Pnz8fgMGDBzNv3jwA5s2bx+eff95gnZMnT2bmzJlEo1GKiop44403mDhxYrNjevbZZ3F3IBh6GIlEyMvLIycnhy1btuwyToCnn36ayspKiouLmTVrFhMmTGh2+5999hmHHnooP/vZzygoKGDFihVMnjyZhx9+GIBPP/2U5cuXM3x48z+Ibtmyhb59+1JTU1NXT0OmTp3KLbfcQklJCWPHjm12/SK7q7I2SqZV46mZpPfYB4CK4uVJjkpERETaooTeg2Vmg4GDgHeA3u6+Jty0lmAIYUP7XGpmc8xsTlFRUUNF2pSrr756h9kE77jjDubMmcPYsWMZOXJkXU/KGWecwcaNGxk1ahR33nknw4YNa7C+008/nbFjx3LggQdy7LHHcsstt9CnT59mx/Pggw8yfPhwxo0bx/nnn8/DDz9MJBLhlFNO4cknn2TcuHG8+eabjcYJMHbsWI455hgmTZrET37yE/r16wcEyd+ZZ57JK6+8woABA/jXv/4FBMMSt91vde211zJmzBhGjx7Nl770JQ488EC+9a1vEYvFGDNmDFOnTuX+++/foedqV37+859z6KGHcvjhh3PAAQfUrX/mmWe48cYb615//etf55FHHqmbOVGktVTVxMgkSLC69hwIQEXRF0mOSkRERNoi29b70eKKzLoCrwM3u/sTZrbZ3fPitm9y9+5N1TF+/HifM2fODusWL17MiBEjEhKj7Kz+bIcdjX5+JBE+XltK+u8nkLnPwaw49k72feAgovudQJ/z7012aCIiIpIkZjbX3XeaZS0hPVhmlgY8Djzs7k+Eq9eZWd9we19gfSLaEhHZ2yprYmRaNaRl0Ts3k9WeH0xyISIiIlJPImYRNOA+YLG7/zpu0zPAhcAvwu9Pt7QtSbzp06cnOwSRNq+qJkom1VSlZdErN4OPPZ+B5Wt2vaOIiIh0OonowTocOB841szmh19fIUis/svMlgBfDl+LiLQ7lbUxMqnB0jLJTk9lYySfrCp1youIiMjOWtyD5e6zgcbm9T6upfWLiCRbZXUtmVRTlp4NwNaMXmRVlUF1OaQ377ELIiIi0jkkdBZBEZGOqKa6ihRzIunBQ8Zrs8NJUbesTWJUIiIi0hYpwRIR2YWaqnIAUsIEy3P6BhtKVycrJBEREWmjlGA101NPPYWZ8fHHHzdaprCwkNGjRyeszU8++YSjjz6acePGMWLECC699FIgeEjwc88916K6L774Ynr16pXQeEU6qmjVVgBSM4Ihgmndg2fFxUo10YWIiIjsSAlWM82YMYMjjjiCGTNmNLi9tra2xW1Eo9EdXn/3u9/lqquuYv78+SxevJjvfOc7QGISrGnTpvHCCy+0qA6RzqK2qgLYnmBl9RgAQEXxiqTFJCIiIm1Tiye52Kuevx7WfpjYOvuMgZOanuCwrKyM2bNn89prr3HKKafw05/+FIBZs2bxk5/8hO7du/Pxxx/z4osvUltby7nnnsu8efMYNWoUf/3rX8nOzuaVV17hmmuuoba2lgkTJvCHP/yBjIwMBg8ezNSpU3nppZe47rrrOPvss+vaXbNmDQMGDKh7PWbMGKqrq7nxxhupqKhg9uzZ/PCHP+Tkk0/mO9/5DgsXLqSmpobp06czZcoU7r//fp588klKSkpYtWoV5513HjfddBMARx55JIWFhU0e9+uvv873vvc9AMyMN954g65du3Ldddfx/PPPY2b8+Mc/ZurUqcyaNYubbrqJvLw8PvzwQ8466yzGjBnDb3/7WyoqKnjqqacYOnQo//jHP/if//kfqquryc/P5+GHH6Z37947tHv22Wdz/vnn89WvfhUIksGTTz6Zr3/96827piIJFqsOerDSwgSrR4+elHkmVRtXoSkuREREJJ56sJrh6aef5sQTT2TYsGHk5+czd+7cum3z5s3jt7/9LZ9++ikQDOv71re+xeLFi8nNzeX3v/89lZWVTJs2jZkzZ/Lhhx9SW1vLH/7wh7o68vPzmTdv3g7JFcBVV13Fsccey0knncTtt9/O5s2bSU9P52c/+xlTp05l/vz5TJ06lZtvvpljjz2Wd999l9dee41rr72W8vLgnpF3332Xxx9/nAULFvD3v/+dOXPmNPu4b7vtNu666y7mz5/Pm2++SVZWFk888QTz58/ngw8+4OWXX+baa69lzZpgmNQHH3zA3XffzeLFi3nwwQf59NNPeffdd7nkkkv43e9+B8ARRxzB22+/zfvvv8/ZZ5/NLbfcslO7U6dO5dFHHwWgurqaV155pS7ZEkmGaHXQg7VtkoteuZms8+5ES3QPloiIiOyoffVg7aKnqbXMmDGjrifn7LPPZsaMGRxyyCEATJw4kSFDhtSVHThwIIcffjgA5513HnfccQf/9V//xZAhQxg2bBgAF154IXfddRdXXnklECQUDbnooos44YQTeOGFF3j66af54x//yAcffLBTuRdffJFnnnmG2267DYDKykqWL18OwH/913+Rn58PwNe+9jVmz57N+PHjm3Xchx9+ON///vc599xz+drXvsaAAQOYPXs255xzDpFIhN69e3PUUUfx3nvvkZuby4QJE+jbN7j5f+jQoRx//PFA0PP22muvAbBy5UqmTp3KmjVrqK6u3uHcbXPSSSfxve99j6qqKl544QWOPPJIsrKymhWzSGuIhQmWpQU/h71zM1ju3ckt0yyCIiIisiP1YO3Cxo0befXVV7nkkksYPHgwt956K48++ijuDkCXLjsOEDKzJl83pH4d8fr168fFF1/M008/TWpqKgsXLtypjLvz+OOPM3/+fObPn8/y5csZMWLEHsezzfXXX8+f/vQnKioqOPzww5uc4AMgIyOjbjklJaXudUpKSt09at/5zne44oor+PDDD/njH/9IZWXlTvVkZmZy9NFH869//YuZM2c2moCK7C1eEyRYhAlWQU4G6+hO+tZ1SYxKRERE2iIlWLvw2GOPcf755/PFF19QWFjIihUrGDJkCG+++WaD5ZcvX85bb70FwN/+9jeOOOIIhg8fTmFhIUuXLgXgwQcf5Kijjtpl2y+88AI1NTUArF27luLiYvr3709OTg5btmypK3fCCSfwu9/9ri7pe//99+u2vfTSS2zcuLHuPqhtvWvN8dlnnzFmzBh+8IMfMGHCBD7++GMmT57MzJkziUajFBUV8cYbbzBx4sRm11lSUkL//v0BeOCBBxotN3XqVP7yl7/w5ptvcuKJJza7fpFWsS3BSs0EICM1QklqT7pUF0H4vhMREREBJVi7NGPGDE4//fQd1p1xxhmNziY4fPhw7rrrLkaMGMGmTZu4/PLLyczM5C9/+QtnnnkmY8aMISUlhcsuu2yXbb/44ouMHj2aAw88kBNOOIFbb72VPn36cMwxx/DRRx8xbtw4Zs6cyU9+8hNqamoYO3Yso0aN4ic/+UldHRMnTuSMM85g7NixnHHGGXXDA8855xwOO+wwPvnkEwYMGMB9990HwN13383dd98NwG9+8xtGjx7N2LFjSUtL46STTuL0009n7NixHHjggRx77LHccsst9OnTp9nnc/r06Zx55pkccsgh9OzZs279nDlzuOSSS+peH3/88bz++ut8+ctfJj09vdn1i7QGrw17WtO2D1WtyOxFqtfA1o1JikpERETaIvM29NfX8ePHe/1JGBYvXlw33E12z/3338+cOXO48847kx1K0ujnRxLh/rv+h2lFt8L3FkD3QQDceedtXLHh53DZ7GA2UhEREelUzGyuu+80uYF6sEREdsEa6MGKdAsmdGGLJroQERGR7Vo9wTKzE83sEzNbambXt3Z7st20adM6de+VSKLUJVip2ydySe8ePKOudvOqZIQkIiIibVSrJlhmFgHuAk4CRgLnmNnI3a2nLQ1jlPZDPzeSKCnRbQnW9h6snJ5BglVevDIZIYmIiEgb1do9WBOBpe6+zN2rgUeAKbtTQWZmJsXFxfqwLLvF3SkuLiYzMzPZoUgHEIlWEiMFIml163p1z2GD51K9UQmWiIiIbNfaDxruD6yIe70SODS+gJldClwKsM8+++xUwYABA1i5ciVFRUWtGKZ0RJmZmQwYMCDZYUgHEIlWUWPpZMQ9R65Pt0zWe3fyS9ckMTIRERFpa1o7wdold78HuAeCWQTrb09LS2PIkCF7PS4RkW1SY1XUpGSQEbeub24Wc707vco1yYWIiIhs19pDBFcBA+NeDwjXiYi0G5FYFbUpOw43zc1KZYP1ILNifZKiEhERkbaotROs94D9zWyImaUDZwPPtHKbIiIJlRarIhrJ2GGdmbE1o4Ds2k0QrUlSZCIiItLWtGqC5e61wBXAv4DFwKPuvqg12xQRSSR3J82riaZk7LStOrsPKbiehSUiIiJ1Wv0eLHd/DniutdsREWkN1dEYGVQTizQwI2VOHyghSLDyBu68XURERDqdVn/QsIhIe1ZZHSPTqoml7pxgRfL6A+ClurVUREREAkqwRESaUFkbJZNqvIEEq0t+8BiArcVKsERERCSgBEtEpAmVNY0nWHk9+1DtEbYWr2hgTxEREemMlGCJiDShsiZGJtWQmrXTtj55XVhPd2o3r05CZCIiItIWKcESEWlCZU2UTKvB0nbuweqTm8k6746VrUlCZCIiItIWKcESEWnCtiGClrZzD1bPrums9+6kbdXDhkVERCSgBEtEpAmVtTGyqMLSs3falhpJoTStgC5V68A9CdGJiIhIW6MES0SkCZWVFaRZlJT0Lg1u35rVh8xYBVSW7OXIREREpC1SgiUi0oRoZRkAkayuDW6vzQmehUWJZhIUERERJVgiIk2q3ZZgZTScYEXy9gHANy/fazGJiIhI26UES0SkCdGqrQCkZjY8RDC71xAAytcX7q2QREREpA1TgiUi0oRY1RYA0jIb7sHK7z2ASk9j6/rP92ZYIiIi0ka1KMEys1vN7GMzW2BmT5pZXty2H5rZUjP7xMxOaHGkIiJJEAt7sNKychrc3r97Nqu8J9FNugdLREREWt6D9RIw2t3HAp8CPwQws5HA2cAo4ETg92YWaWFbIiJ7X3U5AJGMhocI9u+exWrPJ7Jl5d6MSkRERNqoFiVY7v6iu9eGL98GBoTLU4BH3L3K3T8HlgITW9KWiEgyRKuCBIu0nZ+DBdAtK431kV5kbV29F6MSERGRtiqR92BdDDwfLvcH4sfLrAzX7cTMLjWzOWY2p6ioKIHhiIi0XCzswaKR52ABlGf2Jad2I9RU7qWoREREpK3aZYJlZi+b2cIGvqbElfkRUAs8vLsBuPs97j7e3ccXFBTs7u4iIq2rGQlWTdew87501V4ISERERNqy1F0VcPcvN7XdzKYBJwPHubuHq1cBA+OKDQjXiYi0K1bT9BBBgJTu+8CG4FlYlj90L0UmIiIibVFLZxE8EbgOONXdt8ZtegY428wyzGwIsD/wbkvaEhFJBqupCBaaSLCyeg4CoKKocC9EJCIiIm3ZLnuwduFOIAN4ycwA3nb3y9x9kZk9CnxEMHTw2+4ebWFbIiJ7XUrtVqotg/SUxv8elddnEFE3ytZ/TuNpmIiIiHQGLUqw3H2/JrbdDNzckvpFRJIto7aMqkgX0pso0y8/l3V0x4uX77W4REREpG1K5CyCIiIdTlZsC5WRhh8yvE3/vCxWeU9SSvWwYRERkc5OCZaISCPcna6xMqrTuzVZrkeXdNZSQGa5noUlIiLS2SnBEhFpREVNlBzKqU3PbbKcmVGa2Y/c6nUQrW2yrIiIiHRsSrBERBpRVlVLN8qJZuTtsmxV1wFEiMKWNa0fmIiIiLRZSrBERBqxeWsN3awcy8rbdeG8fcKdNNGFiIhIZ6YES0SkEcVbKsmhgtTs7rssm95zCABVRctaOywRERFpw5RgiYg0YktJMSnmpHXtscuy3XoPJubGlnVKsERERDqzlj5oWESkw9paUgxAVm7+Lsv265nHOrpDcWErRyUiIiJtmXqwREQaUV26HoDsvIJdlh3QPYuV3hMr0bOwREREOjMlWCIijYiFMwKmdeu3y7IFXTNYTS8yy1e2dlgiIiLShinBEhFpRKRsXbCQ03eXZVNSjJKMvuRU6VlYIiIinZkSLBGRRkTK1xIlBbr0bFb5qq79iRCDLatbOTIRERFpqxKWYJnZ1WbmZtYzfG1mdoeZLTWzBWZ2cKLaEhHZGzIqiihN7QEpkWaV9256FpaIiEhnl5AEy8wGAscD8Z8qTgL2D78uBf6QiLZERPaGWMzJqdlARUavZu+Tnh88C6taMwmKiIh0WonqwboduA7wuHVTgL964G0gz8x2fSODiEgbUFxeTR82UNuld7P32fYsrHI9C0tERKTTanGCZWZTgFXu/kG9Tf2B+PmKV4br6u9/qZnNMbM5RUVFLQ1HRCQhVm0sY5CtI9p9aLP36duzG+voTvWGwtYLTERERNq0Zj1o2MxeBvo0sOlHwA0EwwP3iLvfA9wDMH78eN9FcRGRvWLt8iWMs1qy+x7Q7H365wXPwtpH92CJiIh0Ws1KsNz9yw2tN7MxwBDgAzMDGADMM7OJwCpgYFzxAeE6EZE2r2TlxwDkDxrR7H36dMtkrhcwrFxDBEVERDqrFg0RdPcP3b2Xuw9298EEwwAPdve1wDPABeFsgpOAEndf0/KQRURanxcFCVZqwfBm75MWSWFzel+6Vq3Xs7BEREQ6qdZ8DtZzwDJgKXAv8K1WbEtEJKF6lHzEptSe0LVgt/ar6DKACFE9C0tERKSTatYQweYKe7G2LTvw7UTWLyKyN2wsr2ZozadsKhhF993dOW8glAKbvoC8fVohOhEREWnLWrMHS0SkXVqwpJChKWtIH3jIbu+b1mMQANFNK3ZRUkRERDoiJVgiIvUUL3wZgIKxDc7v06Tc3kGCVbbhi4TGJCIiIu1DQocIioh0BOlfvE6FZZE1aOJu79urRx7FnkN0g6ZqFxER6YzUgyUiEufz9SVMqv4P6woOh0jabu/fLy+L1Z6Pl2iIoIiISGekBEtEJM6i2c9QYKV0nfCNPdq/b7dM1ng+qWV6KoWIiEhnpARLRCTk7qR/9Bjl1oWeB528R3XkZKaxIaWALpVrExydiIiItAdKsEREQvM++oTJNf9h3cCTIDVjj+spz+pDZrQMKksTGJ2IiIi0B0qwRERCRS/+inSrod9J17Wontqu/YKF0lUJiEpERETaEyVYIiLAx58t48jNT7Ok4EQy+w5vUV3WbUCwUKIES0REpLNRgiUiAhT+81Yyqab/qT9pcV0ZPfYBoGaTpmoXERHpbPQcLBHp9JYULueIjU/wac8vc8DAUS2uL7fXQKJulK//gryWh9fmVVbXUrRuJWXFq6nYtJaqkiJiWzfi0WosWkMqtVhKhFhqNqlZOWR3zSW7e19ye+1Dt977EMnokuxDEBERSRglWCLS6S195hb2t0r6JaD3CqBv966sozupGztWD1Z5ZTWfffohG5e8S2ztIrK2FJJftZJ+sTUMtMo9rreULmxKLaA0sx/VXQdgefuQUTCE3L5DKRiwP5k5+WCWwCPZPTXRGFsrq4lWlhGt3kptbQ2xaJRotJZoNEo0FiPFo6TgpBCDlFQskkpK+J1IKpFIGpHUNFJT04ikppKamh68jqSQkpK8YxMRkcRrcYJlZt8Bvg1EgWfd/bpw/Q+B/w7Xf9fd/9XStkREEm3ZilUcXvwYH+cfywGDDkxInX3zsljj+Qxsx5NcxGLOkuUrWf7+q6Ss+Dc9Sxayb+0yxloFALWksD7Sh5LsgSzJPRTrMYTUvL5kdutDlx696ZJXQEZmFimRNKKWSm1tLbUVZWzZUsrmkk1UbFxNzaZVxEpXk1K2hszyNeSVr2LIlnl0XVsJH2+PpYxsiiK92ZLZl6quA7C8gaR27UkkM4fUrBzSsrtBJB3McAfHwZ1obQ21leXUVm0lWrWVaFU5seqtRKu3QnU5Vr0Vqy3HaipIjW4lUltBWrSC9FgF6V5JhleS5VVkU0k3q2md8+xGNSlEiRALv0dtx9cxSyFGhJiFX0RwwHDAMXeIf123fvu6lB22AeG27fuwfVvc6+3rtr/eti7+e3NSRG9yW+M1NK/2eJaw9uqXarhOa/Llrtme7RanOLWAtHNnMmTwkBbUIiKJ0qIEy8yOAaYAB7p7lZn1CtePBM4GRgH9gJfNbJi7R1sasIhIIn369K3saxX4KYnpvYLgYcMLPZ+hZe0nwXJ3lq1ez/I5z+PLXqdfyTyG+RcMN6eaVFZm7M+yXieTNuAg+gw/lB6Dx9IvNZ1+zag7bdtC1xzyCvoysImy0WiMNUVr2bhqKWVrP6N6QyEppSvIKl9Ft4pV7Fs2j67r9ry3LF61p1JhmVRZBlWWRXVKFjWRTGrSe1AZySaWlkUsNRvSsyGtC56eTSyShUVSsZRUUlJSsEiEFIsQM8OJEAM8FsNitRCrBY9CNFj2WC0eLhOrhWgN7lGIxbav8yjEosH+4XKK14IHdZpHSdn2X6kFqY0BbkFKBFa3HtueJm1bZody1KVIO5SNW7fjdnasH8C238rdVNJiTaY72ypoqEwz9mt2Xbuub1ucXq9oXUK7LYGvX1v9HRoIY8etXm/fxqvxnZZ9hw2Gc9iWF5nz1I8ZcuXDDRyViOxtLe3Buhz4hbtXAbj7+nD9FOCRcP3nZrYUmAi81cL2REQSpnD1Wg4rmsknPY5i+JCDE1ZvZlqETam96FI1L/iElcThbU2picaYv+AD1s15mvzVszg4tpChVkMl6azIHs3igV+l15jjKBj+JfZNy9orMUUiKfTt04++ffoBR+60PRaNUbRhHWWlxVSVlVBdsYXailIsWl13mutSgUgqaZldSc3sQkZWF9Iyu5KR1ZXsLjlkZHclPZJG+l45KpHW9c5d/8349U9StPwTCvZp2SyoItJyLU2whgGTzexmoBK4xt3fA/oDb8eVWxmu24mZXQpcCrDPPvu0MBwRkeZb+PRvONm2Ev3qjxJe99asPqRtrYatxdClZ8Lr31MV1VHenTuHLXMfZf8NLzGBLwBYl9afz/ufTfdxJ9Nr1NHsn5aZ5EgblhJJoaB3Xwp69012KCJtxsBTbiB239N88dTPKfjuQ8kOR6TT22WCZWYvA30a2PSjcP8ewCRgAvCome27OwG4+z3APQDjx4/fw7EAIiK7Z0XRZsavfYRluePZd79DE15/NKc/bAVKViQ9wYrGnLkfLmLtvx9i33X/4ihbBsDnWaP5eNgPGXzY1+jdZxi9kxqliOypfvsM5e1eUxi//glWfDyHgQeMT3ZIIp3aLhMsd/9yY9vM7HLgCXd34F0ziwE9gVWwwzD7AeE6EZE2Yd6z9zLFNlH85atbpf5I3gBYR/Cw4X4HtUobu/LJ6s28P+tx+i6ZweGxuaRajBXZIygc+UMGHH4OQ3oMSkpcIpJ4+5/1P5Td+QLlT16F/+B1LEWPOhVJlpYOEXwKOAZ4zcyGAenABuAZ4G9m9muCSS72B95tYVsiIglRXlnNqM/vZ1XmUPqPPalV2sjsOQg+gaqNy8lolRYaVlkT5eV3F1Dy1l84svQ5zk4pojQlj8Lh/83A4/4fA3vvvxejEZG9Jb+gL2+OuJLJH/8P85/6FeO+dm2yQxLptFqaYP0Z+LOZLQSqgQvD3qxFZvYo8BFQC3y7Pc4guOjfz1I295FgliRLAQzftmwpOyxjKdgO6wyzyE7zrjpgOw2EjJ+RKJyzyb3elqCqnXfdeX6hnV82MvKy0VmWWlezZpNqlrZWj7QbpauZZCv5/LA7Wm0Ciu49+1LlaWwtKtwrCdbSdaW8/fIT9F7yN07wOaRZlFX5Eyk74n/JPfA0clM1nYNIR/elM7/PvF++wKgPfskXw45g0OjDkh1SwkWjUcq2lLC1vIzqyjJqK8qpqSrf8VEMVVvxmgpitdVEa2vwaA0ercViNRCrwWJRzGuDmTnD2TndY+AefjTa8fEEwfe417b9c9qOn/O2z+y5rZbts3xu+xwXPyPn9v2Cb/GVNbBc//8r2/ZP/fUWX6CZ7cStq79/3DHEr9/x05M1Ua7l/8+uyRnDyKPOZHifnBbXtTe0KMFy92rgvEa23Qzc3JL6k618/TKGbnwDC58hYsSC7x4jQmyn9Sk4KTtnT9KAmCfmQ23iUqy2OcubtJ73sw5l3JEN/vpKiH7ds1ntPeiycWWrtVFVG+W1eR9R/OZfOLzkn5yXso6ylFzWHzCNfsdeTv+e6q0S6UwikQj9L3qAzX88kq6PnU1RzgsUDBqR7LAaVbl1C5vWr6KseDUVm9ZQXbKO6JYivGITVJYQqS4ls7aUzGgZ2bFyunoZOWylmzndWtButUeoJZVaIkQtwrbHhAd2Th68XqLg9dZvs+Nz47bvXX97w+nJzuUg/o/yjSd9O+7TUAw7PreuvobabrjuhrfTQN1Wr3xD23fnM9wD0RNYMuLEdpNgmSepF6Mh48eP9zlz5iQ7jBbxWAx3JxaLEovFiMWi1P8xDB43Ev8gwx3/+rD9DwcNPXzQMKtfX/19bedtbXSaaJGOauWmrXz+6/9iZA8n/6r/JLTuFcXlzH75SXp8/DDHxN4h3aKs6nYwOYd/k9yDvgZtdAZAEdk7PlrwHn0fP52YRdj6tQcYOPbovdp+LBqjuGgVxauXUb6ukKqNK6BkBRnlq+lSXUTX2k10j22mizX8TLutnkFZSlcqUrpSGelKVWoONWm5RNNziWXkYpm5RDK6kJKeHXxlBN9TM7qQmtWV1IwupGdkkZ6RSXpGOulp6aSnZZCSmgYpkb16LqRjM7O57r7TrDItHSIo9VhKCgakRPQGFunMeudm8i8fyKQtr0Is2uL/1KMxZ/aCT1j9+p+ZWPwM56SsoTylK+uHn0e/4y6nf++2+1dqEdm7Ro6dwKf2JNmPn0vfx0/n/Xe/wbAzfkKX7g1NCr37Kiu2sn7lUjavWUZlUSHRTSuIbFlFdsUa8mrWURDbQIHVUBC3T4WnUxQpYEtaT9Z1HcnKrJ54lwIiOb1J79abrO79yMnvS15BP7Kzu5CdkEhFkkMJlohIK0iLpLChy36kVT0Pmwohf+ge1bNhSwWzX3qKrIV/4+joW2RYDau6jWXTYT+k+4Sz6LKXHgAsIu3LsDETKOr9Om89eBWTVz5E5W9nsjD3MCqHfJnewybSa/AIMrK77TDCxWMxtpaVULJhDWUb17B10xoqilfim1eQXraKrpVr6Fm7lp5sZh9g29NLY25ssO5sSuvF+q4HsKprP6zbADJ6DiKn9xB69tuXnO692EczG0onoQRLRKS19B4Fy4E1H+xWghWNOe8sWMSG2X/hwKJ/cJqto9y6sGbomfT/8rfo329M68UsIh1GQa++FFz9CIs+eJdNs+5iv41v0OeDN+CDYHuNR9hqwR9p0qgh3WvoYjG61Kun2lMpSunJ5vQ+fJ5zOEtzBpDaYx+yew0hr+9QCvoPpld6Jr327uGJtFlKsEREWkn+vgdT+kU2qR+/RPbor+2y/NKV6/lw1kzyP3uKL8XmkWoxCnMOYu2hN9Bn0lT1VonIHhl14EQ4cCLRaIzCJfNZs+R9fOMyYhVbiNRswcyIRdLxSDqRrDwspxfpub3p0r0P+X32oUfvAfRPidA/2Qci0k4owRIRaSVHjejHG6+M4dglL0JtNTQwVfpnq4v4aPbTdF3yDBOr32Y/q2JzpAdf7P/fDDzumwzuPTwJkYtIRxSJpDD4gIMZfMDByQ5FpENTgiUi0kr269WVB7udyMllP6Xyjd+Secw1lFdWs3DBXDYsepXuq2YxrnYBQ62KUstl+YBT6Hv4ueQdcBR5mulKRESkXdI07SIireg/S4rY8uA5nJDyHqV0JdVryLYqANZH+lDc72j6jJ9C99H/BZG0JEcrIiIizaVp2kVEkuBL+xfw/sV/46mX/0hB2RKysrPpMuggBh94FL16D6eXnlEnIiLSoSjBEhFpZQcN7sVBl/wk2WGIiIjIXqAHEoiIiIiIiCSIEiwREREREZEEUYIlIiIiIiKSIG1qFkEzKwK+SHYc9fQENiQ7CNlrdL07D13rzkPXunPR9e48dK07l7Z4vQe5e0H9lW0qwWqLzGxOQ9MvSsek69156Fp3HrrWnYuud+eha925tKfrrSGCIiIiIiIiCaIES0REREREJEGUYO3aPckOQPYqXe/OQ9e689C17lx0vTsPXevOpd1cb92DJSIiIiIikiDqwRIREREREUkQJVgiIiIiIiIJogSrCWZ2opl9YmZLzez6ZMcjiWNmA83sNTP7yMwWmdn3wvU9zOwlM1sSfu+e7FglMcwsYmbvm9k/w9dDzOyd8P0908zSkx2jJIaZ5ZnZY2b2sZktNrPD9N7umMzsqvB3+EIzm2FmmXpvdxxm9mczW29mC+PWNfhetsAd4XVfYGYHJy9y2V2NXOtbw9/jC8zsSTPLi9v2w/Baf2JmJyQl6CYowWqEmUWAu4CTgJHAOWY2MrlRSQLVAle7+0hgEvDt8PpeD7zi7vsDr4SvpWP4HrA47vUvgdvdfT9gE/DfSYlKWsNvgRfc/QDgQILrrvd2B2Nm/YHvAuPdfTQQAc5G7+2O5H7gxHrrGnsvnwTsH35dCvxhL8UoiXE/O1/rl4DR7j4W+BT4IUD4ee1sYFS4z+/Dz+1thhKsxk0Elrr7MnevBh4BpiQ5JkkQd1/j7vPC5S0EH8D6E1zjB8JiDwCnJSVASSgzGwB8FfhT+NqAY4HHwiK61h2EmXUDjgTuA3D3anffjN7bHVUqkGVmqUA2sAa9tzsMd38D2FhvdWPv5SnAXz3wNpBnZn33SqDSYg1da3d/0d1rw5dvAwPC5SnAI+5e5e6fA0sJPre3GUqwGtcfWBH3emW4TjoYMxsMHAS8A/R29zXhprVA72TFJQn1G+A6IBa+zgc2x/3i1vu74xgCFAF/CYeE/snMuqD3dofj7quA24DlBIlVCTAXvbc7usbey/rc1rFdDDwfLrf5a60ESzo1M+sKPA5c6e6l8ds8eIaBnmPQzpnZycB6d5+b7Fhkr0gFDgb+4O4HAeXUGw6o93bHEN57M4Ugqe4HdGHnIUbSgem93DmY2Y8Ibu14ONmxNJcSrMatAgbGvR4QrpMOwszSCJKrh939iXD1um1DCsLv65MVnyTM4cCpZlZIMNT3WIJ7dPLCYUWg93dHshJY6e7vhK8fI0i49N7ueL4MfO7uRe5eAzxB8H7Xe7tja+y9rM9tHZCZTQNOBs717Q/vbfPXWglW494D9g9nI0onuJnumSTHJAkS3oNzH7DY3X8dt+kZ4MJw+ULg6b0dmySWu//Q3Qe4+2CC9/Gr7n4u8Brw9bCYrnUH4e5rgRVmNjxcdRzwEXpvd0TLgUlmlh3+Tt92rfXe7tgaey8/A1wQziY4CSiJG0oo7ZCZnUgwvP9Ud98at+kZ4GwzyzCzIQQTm7ybjBgbY9uTQanPzL5CcO9GBPizu9+c3IgkUczsCOBN4EO235dzA8F9WI8C+wBfAGe5e/0bbKWdMrOjgWvc/WQz25egR6sH8D5wnrtXJTE8SRAzG0cwoUk6sAy4iOAPinpvdzBm9lNgKsHwofeBSwjuxdB7uwMwsxnA0UBPYB1wE/AUDbyXwyT7ToJholuBi9x9ThLClj3QyLX+IZABFIfF3nb3y8LyPyK4L6uW4DaP5+vXmUxKsERERERERBJEQwRFREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0SkjTCzwWbmZpaa7Fg6OjObZmazkx1HW2Nmk83sk2THISLSninBEhGRds3MpptZjZmVxX1dl+y42iN3f9Pdhye6XjO7x8w+MbOYmU1LdP0iIm2J/koqIpIgZpbq7rXJjqOTmunu5yU7iNbSAX62PgBmAr9MdiAiIq1NPVgiIi1gZoVm9gMzWwCUm1mqmU0ys/+Y2WYz+8DMjo4rP8vM/s/M3jWzUjN72sx6NFL3RWa22My2mNkyM/t/9bZPMbP5YT2fmdmJ4fpuZnafma0xs1Vm9j9mFtnFcQw1s1fNrNjMNpjZw2aWF7dto5kdHL7uZ2ZF247LzE41s0Xh8c4ysxH1zs81ZrbAzErMbKaZZe7+md59ZnZ9eF62mNlHZnZ6I+XMzG43s/XhufzQzEaH2zLM7DYzW25m68zsbjPLamb794flXwpjeN3MBsVt/62ZrQjbnGtmk+O2TTezx8zsITMrBaaZ2UQzeys8z2vM7E4zS4/bx83sW2a2JGzv5+G1+0/YxqPx5RuJ+WgzW9mc49sd7n6Xu78CVCa6bhGRtkYJlohIy50DfBXIA3oDzwL/A/QArgEeN7OCuPIXABcDfYFa4I5G6l0PnAzkAhcBt8clOROBvwLXhu0eCRSG+90f1rsfcBBwPHDJLo7BgP8D+gEjgIHAdAB3/wz4AfCQmWUDfwEecPdZZjYMmAFcCRQAzwH/qPdB/izgRGAIMBaY1mAAZkeEyUNjX0fs4hjq+wyYDHQDfhrG37eBcscTnL9hYdmzgOJw2y/C9eMIzmd/4MbdiOFc4OdAT2A+8HDctvfCensAfwP+Xi/5nAI8RnB9HwaiwFVhXYcBxwHfqtfeCcAhwCTgOuAe4DyC6zma4Gd1j4WJcmPX5/ctqVtEpKNQgiUi0nJ3uPsKd68g+DD7nLs/5+4xd38JmAN8Ja78g+6+0N3LgZ8AZzXUw+Tuz7r7Zx54HXiRIGEA+G/gz+7+UtjOKnf/2Mx6h21d6e7l7r4euB04u6kDcPelYV1V7l4E/Bo4Km77vcBS4B2CxPBH4aapwLPhvjXAbUAW8KV652e1u28E/kGQVDQUw2x3z2viq6lJKc6q92G/n7v/PWw35u4zgSXAxAb2rQFygAMAc/fF7r7GzAy4FLjK3Te6+xbgf3d1Lut51t3fcPcqgnN2mJkNDI/3IXcvdvdad/8VkAHE3//0lrs/FcZf4e5z3f3tsHwh8EfirlHoFncvdfdFwELgRXdf5u4lwPMECfcec/exTVyf+smeiEinpHuwRERabkXc8iDgTDM7JW5dGvBaI+W/CLf3rF+pmZ0E3ETQg5ICZAMfhpsHEvQW1TcorG9NkB9AuO+KBsrGt9Ub+C1BApcT7rOpXrF7gWeAS8OEAYIery+2FXD3mJmtIOjp2WZt3PLWcJ9Ee7T+PVhmdgHwfWBwuKorDZxnd3/VzO4E7gIGmdkTBD2PmQTnfG7cuTSgyeGW9dSdd3cvM7ONBMe/wsyuIUiU+wFO0FPZs6F9w+MZRpD4jg/jSgXm1mtvXdxyRQOv++xG7CIisgfUgyUi0nIet7yCoIcq/i/7Xdz9F3FlBsYt70PQg7IhvkIzywAeJ+gR6u3ueQQJ1bZP+iuAoQ3EsgKoAnrGtZ/r7qN2cQz/Gx7HGHfPJeiJ255VmHUFfgPcB0y37feNrSZI6raVs/D4Vu2ivZ1YMEV4WRNfk3ddS11dgwgSwiuA/PD8LYw/pnjufoe7HwKMJEhoryW4JhXAqLhz2c3du+7GYdVd6/Ac9gBWh8dyHcFwxO5hfCX14ov/uQL4A/AxsH94jW5o7HhaiwX32jV2fe7em7GIiLRVSrBERBLrIeAUMzvBzCJmlhlOHDAgrsx5ZjYyvJ/pZ8Bj7h6tV086wZCxIqA27M06Pm77fcBFZnacmaWYWX8zO8Dd1xAMJfyVmeWG24aaWf2hZPXlAGVAiZn1J0gw4v0WmOPulxDcY7btw/SjwFfDONKAqwkSvP/s6kTVF04R3rWJrzd3o7ouBAlKEQQThhDcg7QTM5tgZoeG8ZcTTMQQc/cYQZJ2u5n1Csv2N7MT4vZ1i5vEpAFfCe8tSye4F+ttd19BcL5rw/hSzexGgh6spuQApUCZmR0AXL6L8gnn7qOauD6XNbafmaWH95cZkBa+L/QZREQ6JP1yExFJoPDD8xSC3oUigh6la9nx9+2DBBNRrCUYhvbdBurZEq5/lGCo3jcIhudt2/4u4cQXBD0fr7O9J+kCggTto3Dfxwjum2rKT4GDw7qeBZ7YtsHMphBMUrHtA/33gYPN7Fx3/4Sgt+t3BD0+pwCnuHv1LtprVe7+EfAr4C2CYXJjgH83UjyXIJHaRDDcsRi4Ndz2A4J7z962YDa/lwnvkwrvpdrC9mGbDfkbwTDPjQSTT2wbxvgv4AXg07DNSnYxjJNg2OI3wjbvJZj2vL14kaA38EsEE29UEEwsIiLS4Zh7/REIIiLSWsxsFvCQu/8p2bFIy5jZeQTDB3/YyPb7gZXu/uO9GpiIiCSVJrkQERHZA+7+ULJjEBGRtkdDBEVEOgkLHnqryQk6OTO7oZGfg+eTHZuISEegIYIiIiIiIiIJoh4sERERERGRBGlT92D17NnTBw8enOwwREREREREmjR37twN7l5Qf32bSrAGDx7MnDlzkh2GiIiIiIhIk8zsi4bWa4igiIiIiIhIgijBEhERERERSRAlWCIijYjGNMuqiIiI7J42dQ9WQ2pqali5ciWVlZXJDkXamczMTAYMGEBaWlqyQ5F26PaXPuXpOZ/zj6uOJSdTP0MiIiLSPG0+wVq5ciU5OTkMHjwYM0t2ONJOuDvFxcWsXLmSIUOGJDscaYc+ee1hZqX/hvdm/4kJXz4z2eGIiIhIO9HmhwhWVlaSn5+v5Ep2i5mRn5+vnk/ZI+7O2JRlAPRf8LskRyMiIiLtSZtPsAAlV7JH9HMje6qkooZulAPQtXx5kqMRERGR9qRdJFgiInvTlspaetlmAHKjm2DrxuQGJCIiIu2GEqxmMDOuvvrqute33XYb06dPT15Acd5++20OPfRQxo0bx4gRI+rimjVrFv/5z3/2uN4vvviCgw8+mHHjxjFq1CjuvvvuBEUs0vaVVtZQECZYAF70SfKCERERkXZFCVYzZGRk8MQTT7Bhw4aE1uvuxGKxFtVx4YUXcs899zB//nwWLlzIWWedBbQ8werbty9vvfUW8+fP55133uEXv/gFq1evblGsIu1FWWUtBbaZJRmjAChfuzTJEYmIiEh7oQSrGVJTU7n00ku5/fbbd9pWVFTEGWecwYQJE5gwYQL//ve/AZg+fTq33XZbXbnRo0dTWFhIYWEhw4cP54ILLmD06NGsWLGCa6+9ltGjRzNmzBhmzpwJBAnS0Ucfzde//nUOOOAAzj33XNx3fibP+vXr6du3LwCRSISRI0dSWFjI3Xffze233864ceN48803m4zz/PPP57DDDmP//ffn3nvvBSA9PZ2MjAwAqqqqGk0E77jjDkaOHMnYsWM5++yzAdi4cSOnnXYaY8eOZdKkSSxYsKCurQsvvJDJkyczaNAgnnjiCa677jrGjBnDiSeeSE1NDQA/+9nPmDBhAqNHj+bSSy/d6bhjsRiDBw9m8+bNdev2339/1q1b19RlFGm2LRU1FLCZku5hglWk+7BERESkedr8NO3xfvqPRXy0ujShdY7sl8tNp4zaZblvf/vbjB07luuuu26H9d/73ve46qqrOOKII1i+fDknnHACixcvbrKuJUuW8MADDzBp0iQef/xx5s+fzwcffMCGDRuYMGECRx55JADvv/8+ixYtol+/fhx++OH8+9//5ogjjtihrquuuorhw4dz9NFHc+KJJ3LhhRcyePBgLrvsMrp27co111wDwDe+8Y1G41ywYAFvv/025eXlHHTQQXz1q1+lX79+rFixgq9+9assXbqUW2+9lX79+u10LL/4xS/4/PPPycjIqEt4brrpJg466CCeeuopXn31VS644ALmz58PwGeffcZrr73GRx99xGGHHcbjjz/OLbfcwumnn86zzz7LaaedxhVXXMGNN94IwPnnn88///lPTjnllLo2U1JSmDJlCk8++SQXXXQR77zzDoMGDaJ37967vI4izbF1aynpFiWzx0A2rulK9aYVyQ5JRERE2gn1YDVTbm4uF1xwAXfccccO619++WWuuOIKxo0bx6mnnkppaSllZWVN1jVo0CAmTZoEwOzZsznnnHOIRCL07t2bo446ivfeew+AiRMnMmDAAFJSUhg3bhyFhYU71XXjjTcyZ84cjj/+eP72t79x4oknNthmU3FOmTKFrKwsevbsyTHHHMO7774LwMCBA1mwYAFLly7lgQceaLCHaOzYsZx77rk89NBDpKam1h3T+eefD8Cxxx5LcXExpaVBYnzSSSeRlpbGmDFjiEajdfGOGTOm7vhee+01Dj30UMaMGcOrr77KokWLdmp36tSpdb19jzzyCFOnTm3ynIvsjsqKYAbB/O55rPF8KF2V5IhERESkvWhXPVjN6WlqTVdeeSUHH3wwF110Ud26WCzG22+/TWZm5g5lU1NTdxhWF/88pi5dujSrvW1D9CAY/ldbW9tguaFDh3L55ZfzzW9+k4KCAoqLi3cq01icsPN05vVf9+vXj9GjR/Pmm2/y9a9/fYdtzz77LG+88Qb/+Mc/uPnmm/nwww+bdUwpKSmkpaXVtZWSkkJtbS2VlZV861vfYs6cOQwcOJDp06c3+Cyrww47jKVLl1JUVMRTTz3Fj3/84ybbFdkdscogweqWk8ti8ulZvibJEYmIiEh7oR6s3dCjRw/OOuss7rvvvrp1xx9/PL/73fYHkW4bCjd48GDmzZsHwLx58/j8888brHPy5MnMnDmTaDRKUVERb7zxBhMnTmx2TM8++2zdPUpLliwhEomQl5dHTk4OW7Zs2WWcAE8//TSVlZUUFxcza9YsJkyYwMqVK6moqABg06ZNzJ49m+HDh+/QdiwWY8WKFRxzzDH88pe/pKSkhLKyMiZPnszDDz8MBPeS9ezZk9zc3GYdz7ZkqmfPnpSVlfHYY481WM7MOP300/n+97/PiBEjyM/Pb1b9Is0RrQl+9tOysilJ70WXKt3fJyIiIs3T4gTLzAaa2Wtm9pGZLTKz74Xre5jZS2a2JPzeveXhJt/VV1+9w2yCd9xxB3PmzGHs2LGMHDmybjrzM844g40bNzJq1CjuvPNOhg0b1mB9p59+OmPHjuXAAw/k2GOP5ZZbbqFPnz7NjufBBx9k+PDhjBs3jvPPP5+HH36YSCTCKaecwpNPPlk3yUVjcUIwzO+YY45h0qRJ/OQnP6Ffv34sXryYQw89lAMPPJCjjjqKa665hjFjxgBwySWXMGfOHKLRKOeddx5jxozhoIMO4rvf/S55eXlMnz6duXPnMnbsWK6//noeeOCBZh9PXl4e3/zmNxk9ejQnnHACEyZMqNt299137xD31KlTeeihhzQ8UBLOq7YCkJqeTWVWH7pGS6F6a5KjEhERkfbAGpqZbrcqMOsL9HX3eWaWA8wFTgOmARvd/Rdmdj3Q3d1/0FRd48eP9zlz5uywbvHixYwYMaJFMUrjpk+fvsNkGB2Nfn5kTzw4cwbnL74Mzn+Sh19+l3PX/B98Zx7kD012aCIiItJGmNlcdx9ff32Le7DcfY27zwuXtwCLgf7AFGBb18UDBEmXiEib5zXhfX9p2Vi3/9/enUfXVd13/39/76BZlmRJlmTJgzyDZxA2wUBswEAIjZnNb4UE47Y0hAzQPk1LaGhDn3Ql5WnatBD4QSAuWYQxCfhX5kBI4jxMxgZjPGGDbMuWZM2yNdxx//6410KyJU+60tXwea0ldM8+++zzvT4crfu9e5+9ywCINlclMSIREREZLhI6yYWZTQYWAm8DRc65w0+G1wC9zqFtZjcDNwNMnDgxkeHICfinf/qnZIcgMvSE4sMBfWmk5U8AoK1+N9nqwBIREZHjSNgkF2aWBfwKuM0512OxKhcbh9jrWETn3IPOuQrnXEVhYWGiwhEROWUWn+QCfwZZhbEvftrrtBaWiIiIHF9CEiwz8xNLrh5zzv06Xlwbfz7r8HNaBxJxLhGRgWbhw0ME0ynKz6PJZRHSYsMiIiJyAhIxi6ABDwNbnXM/7rZrLXBj/PWNwHP9PZeIyGCwyOEerHSKc9KocXm4gzXJDUpERESGhUT0YC0BvgJcYGbvx38uA34ILDezj4GL4tsiIkOep1sPVkFWKnXk4W9TgiUiIiLHl4hZBNc558w5N885tyD+84JzrsE5d6Fzbrpz7iLnXGMiAk6WZ599FjNj27ZtfdaprKxkzpw5CTvn9u3bWbp0KQsWLOC0007j5ptvBmKLBL/wwgun3G5nZyeLFi1i/vz5zJ49m3/8x39MVMgiI4I3Ek+wfOl4PUarr4D0QF1ygxIREZFhIWGTXIx0jz/+OOeeey6PP/54r/vD4XC/zxGJRHpsf+tb3+L222/n/fffZ+vWrXzzm98E+p9gpaam8vrrr/PBBx/w/vvv89JLL/HWW2/1K3aRkcQb6SCIHzyxP5HtaePIDjdCNHKcI0VERGS0U4J1Ag4dOsS6det4+OGHeeKJJ7rK33jjDc477zy+9KUvcfrppwOxROvLX/4yp512Gtdccw3t7bHpnl977TUWLlzI3LlzWb16NYFAAIDJkyfzd3/3d5xxxhk8/fTTPc5bXV1NWVlZ1/bcuXMJBoPcddddPPnkkyxYsIAnn3yStrY2Vq9ezaJFi1i4cCHPPRd73G3NmjWsWLGCpUuXMn36dL7//e8DYGZkZWUBEAqFCIVCxB6l6+npp59mzpw5zJ8/n/PPPx+I9X7ddNNNzJ07l4ULF/K73/2u61xXXHEFy5cvZ/Lkydx77738+Mc/ZuHChZx99tk0NsY6MB966CHOOuss5s+fz9VXX93179Pd2WefzUcffdS1vXTpUo5cgFpkIPkiAUKetK7tSGYRHqLQpl4sERERObaEroM14F78e6j5MLFtFs+FLxz78bDnnnuOSy+9lBkzZpCfn897773HmWeeCcCGDRvYvHkz5eXlVFZWsn37dh5++GGWLFnC6tWr+elPf8o3vvENVq1axWuvvcaMGTP46le/yv33389tt90GQH5+Phs2bDjqvLfffjsXXHAB55xzDhdffDE33XQTubm53H333axfv557770XgO9+97tccMEFPPLIIzQ3N7No0SIuuugiAN555x02b95MRkYGZ511Fl/84hepqKggEolw5plnsnPnTm699VYWL1581PnvvvtuXn75ZUpLS2lubgbgvvvuw8z48MMP2bZtGxdffDE7duwAYPPmzWzcuJHOzk6mTZvGj370IzZu3Mjtt9/Oo48+ym233cZVV13FX/7lXwLwD//wDzz88MNdPXOHrVy5kqeeeorvf//7VFdXU11dTUXFUYtkiwwYX7STkCe1a9vGlEAd0LofsouTF5iIiIgMeerBOgGPP/44119/PQDXX399j2GCixYtory8vGt7woQJLFmyBIAbbriBdevWsX37dsrLy5kxYwYAN954I3/4wx+6jlm5cmWv573pppvYunUr1157LW+88QZnn312V89Xd6+88go//OEPWbBgAUuXLqWzs5M9e/YAsHz5cvLz80lPT+eqq65i3bp1AHi9Xt5//32qqqq6krAjLVmyhFWrVvHQQw91DV9ct24dN9xwAwCzZs1i0qRJXQnWsmXLyM7OprCwkJycHP7sz/4MiPW8VVZWArEk7LzzzmPu3Lk89thjPXqqDrvuuut45plnAHjqqae45pprev33ERkovmiAcLcEy58b60lub6xKVkgiIiIyTAyvHqzj9DQNhMbGRl5//XU+/PBDzIxIJIKZcc899wCQmZnZo/6RQ+16G3p3pCPb6G78+PGsXr2a1atXM2fOnF4TIeccv/rVr5g5c2aP8rfffvu48eTm5rJs2TJeeumloyboeOCBB3j77bd5/vnnOfPMM3nvvfeO+T5SUz/7QOrxeLq2PR5P1zNqq1at4tlnn2X+/PmsWbOGN95446h2SktLyc/PZ9OmTTz55JM88MADxzyvSKL5osEeCVZWQSzBOlRXRUayghIREZFhQT1Yx/HMM8/wla98hd27d1NZWcnevXspLy/nj3/8Y6/19+zZw5tvvgnAL3/5S84991xmzpxJZWUlO3fuBOAXv/gFn//854977pdeeolQKARATU0NDQ0NlJaWkp2dzcGDB7vqXXLJJfzXf/0XzjkANm7c2LXv1VdfpbGxkY6ODp599lmWLFlCXV1d15C/jo4OXn31VWbNmnXU+Xft2sXixYu5++67KSwsZO/evZx33nk89thjAOzYsYM9e/Ycldgdy8GDBykpKSEUCnW105uVK1fyr//6r7S0tDBv3rwTbl8kEfwuSLRbgpVbOJ6IMzrVgyUiIiLHoQTrOB5//HGuvPLKHmVXX311n7MJzpw5k/vuu4/TTjuNpqYmbrnlFtLS0vj5z3/Otddey9y5c/F4PHzta1877rlfeeWVrkkmLrnkEu655x6Ki4tZtmwZW7Zs6Zrk4nvf+x6hUIh58+Yxe/Zsvve973W1sWjRIq6++mrmzZvH1VdfTUVFBdXV1Sxbtox58+Zx1llnsXz5ci6//HIA7rrrLtauXQvA3/7t3zJ37lzmzJnDOeecw/z58/n6179ONBpl7ty5rFy5kjVr1vTouTqef/7nf2bx4sUsWbKkR1K3du1a7rrrrq7ta665hieeeILrrrvuhNsWSRSfCxLxpnRtl+RlU0cukZb9SYxKREREhgM73OsxFFRUVLgjZ4vbunUrp512WpIiGt7WrFnTYzKM0Uj//8jJikQdG/9pEePycpl4+6sAdIYibP/nCnLzi5n07ReTHKGIiIgMBWb2nnPuqJnY1IMlItJNMBwllSDO91kPVprfS5NnLCkdtUmMTERERIaD4TXJhZyUVatWsWrVqmSHITKsBMIRUgjjvGk9yg+ljiMruCNJUYmIiMhwMSx6sIbSMEYZPvT/jZyKQDhKKiGcr+ezhcH0cWRHWyF89FIJIiIiIocN+QQrLS2NhoYGfViWk+Kco6GhgbS0tONXFukmEIqSaiHw9fx/J5oVX2D4YE0SohIREZHhYsCHCJrZpcBPAC/wM+fcSS1mVVZWRlVVFXV1dQMSn4xcaWlplJWVJTsMGWYC4QhZBAl0ewYLwJdbClUQbK4iJW9SkqITERGRoW5AEywz8wL3AcuBKuBdM1vrnNtyom34/X7Ky8sHKkQRkR4C4SgphLEjerDS80oBaD1QRYH+JImIiEgfBnqI4CJgp3PuE+dcEHgCWDHA5xQROWWBcIRUQpi/Z4KVPW4CAO0NWmxYRERE+jbQCVYpsLfbdlW8rIuZ3Wxm681svYYBikiydQaC+C1yVIJVUFhMwPkJNinBEhERkb4lfZIL59yDzrkK51xFYWFhssMRkVEuFOwAwHNEglWcm06ty8W1apILERER6dtAJ1j7gAndtsviZSIiQ1K4M5ZgeVPSe5Rnp/qos7H42rXYsIiIiPRtoBOsd4HpZlZuZinA9cDaAT6niMgpCwdj61x5/T3XwTIzWv0FpHceSEZYIiIiMkwMaILlnAsD3wBeBrYCTznnPhrIc4qI9Ec41A6A74geLICO1HHkhOsHOyQREREZRgZ8HSzn3AvACwN9HhGRRIgEO4HeE6xwZjHpbR3Q2QJpOYMdmoiIiAwDSZ/kQkRkKOlKsNKOTrBcTmzh6mizZhIUERGR3inBEhHpJhqKJVj+Xnqw/GMnAtBa++mgxiQiIiLDhxIsEZFuDvdgHTnJBUBm4SQA2g5UDmZIIiIiMowowRIR6S4+yYWlZBy1K69oAkHnJdCwZ7CjEhERkWFCCZaISHeh2DpY+I9OsIpzM6hxY6Fl7yAHJSIiIsOFEiwRke6OkWAVZKZSTQH+Q/sHOSgREREZLpRgiYh04wnHhgj2lmB5PEajr4jMzppBjkpERESGCyVYIiLdeMKHe7COnkUQ4FBaETmhAxCNDGJUIiIiMlwowRIR6cYTic0i2FeCFcoqxUsUDqoXS0RERI6mBEtEpBtvpIMgfvB4e93vxsQWG3aa6EJERER6oQRLRKQbb7iTgKX1uT8lP7bYcEd95SBFJCIiIsOJEiwRkW58kQ5Cnr4TrIzCyYAWGxYREZHe9SvBMrN7zGybmW0ys9+YWW63fXeY2U4z225ml/Q7UhGRQeCNdBL29p1gFRXk0+wytdiwiIiI9Kq/PVivAnOcc/OAHcAdAGZ2OnA9MBu4FPipmfX+QIOIyBDij3YQPkYP1oSxGex3BdCsZ7BERETkaP1KsJxzrzjnwvHNt4Cy+OsVwBPOuYBz7lNgJ7CoP+cSERkM/miAiK/vBKswK5UaCkg5tG8QoxIREZHhIpHPYK0GXoy/LgW6f71bFS87ipndbGbrzWx9XV1dAsMRETk5kagjxQWIenufoh1iiw23pBaTHagB5wYxOhERERkOjptgmdlvzWxzLz8rutW5EwgDj51sAM65B51zFc65isLCwpM9XEQkYdqDYTII4PwZx6zXmVVGerQNOpoGKTIREREZLnzHq+Ccu+hY+81sFXA5cKFzXV/n7gMmdKtWFi8TERmy2oMR0gj0ucjwYS5nEjQBzbshY+zgBCciIiLDQn9nEbwU+A7wJedce7dda4HrzSzVzMqB6cA7/TmXiMhAawuEybROSMk8Zr3Uwimx+rWfDEZYIiIiMoz09xmse4Fs4FUze9/MHgBwzn0EPAVsAV4CbnXORfp5LhGRAdUejDCGdkjLOWa9nPFTAThY/fFghCUiIiLDyHGHCB6Lc27aMfb9APhBf9oXERlM7e3tpFsQO06CVTyuiCaXRbDu00GKTERERIaLRM4iKCIyrAXamgHwZuQes97E/Az2ukKsZffAByUiIiLDihIsEZG4UFtsVkBfxrF7sMak+anxFJHWVjUYYYmIiMgwogRLRCQuHO/B8mfmHbfuwbTx5AZqIBod4KhERERkOFGCJSISF4z3YKWPyT9+3ewJ+AnBoZqBDktERESGESVYIiJxoXgPVnr28XuwLK8cgGiDJroQERGRzyjBEhGJi3Y0Axx3FkGAtKLYWlitNbsGMiQREREZZpRgiYjERTtaYi9OIMHKK5lC1BlttUqwRERE5DNKsERE4nyBJsJ4ISXruHUnFOZRSx5hDREUERGRbpRgiYjEpQcbaPWOBbPj1i3NS6fKFeJt2TMIkYmIiMhwoQRLRCQuO9xAe8rxZxAESPV5OeArIatda2GJiIjIZ5RgiYgA0agjL9JEZ2rBCR/Tnl7KmHA9hAMDGJmIiIgMJwlLsMzsb8zMmVlBfNvM7D/NbKeZbTKzMxJ1LhGRRKs/FKDAWnBZRSd8TChnIh4ctKgXS0RERGISkmCZ2QTgYqD7wwhfAKbHf24G7k/EuUREBsK+xkPk04J3TPEJH+MbOxmAYP0nAxSViIiIDDeJ6sH6d+A7gOtWtgJ41MW8BeSaWUmCziciklCNB/bhNUda3on/mcosngpAa7WmahcREZGYfidYZrYC2Oec++CIXaXA3m7bVfEyEZEhp+1ArBdqTHH5CR9TWDKZoPPSrrWwREREJM53IpXM7LdAb+Nm7gS+S2x44Ckxs5uJDSFk4sSJp9qMiEi/ROPrWWUWTz/hY0rzs6hyhfiaKgcoKhERERluTijBcs5d1Fu5mc0FyoEPLLZuTBmwwcwWAfuACd2ql8XLjmz7QeBBgIqKCnfkfhGRweBt2U0Uw5M76YSPKcpO5f8yjhkH9x6/soiIiIwK/Roi6Jz70Dk3zjk32Tk3mdgwwDOcczXAWuCr8dkEzwZanHPV/Q9ZRCTx0g7uodlbAP60Ez7G5/XQ6C8mq3P/AEYmIiIiw8lAroP1AvAJsBN4CPj6AJ5LROSUhSNRCgJ7OZQx4fiVj9CWXkZWpAU6WwcgMhERERluTmiI4ImK92Idfu2AWxPZvojIQNjTcIjptpea/KtO+tjQmAlwCGjeDcVzEx+ciIiIDCsD2YMlIjIsVFVuJ8s6SS09+QTJmz8ZgEhjZWKDEhERkWFJCZaIjHpNn2wEoHDqwpM+Nm1cbC2sNk3VLiIiIijBEhGBfRsI4yWtbP5JH1pYWMxBl05HfB0tERERGd0S+gyWiMhwE4k6ils3UZsxjdKUjJM+vjQvgypXSF7j7gGIbujoDEWoqq2nac8WDjXV4A13kJoxhsLSSUyesQCPz5/sEEVERIYEJVgiMqrtrGlmDjupKb76lI4vzUtnnStk3AhbCysYjrJxyzaqN75Izv4/MqlzG1OowWNHL1d4iHQ+zV/KxMv+mpypi5IQrYiIyNChBEtERrVPtrzLTAuQPe2cUzo+I8XHAW8x2Z0fgXMQW3R9WGppD/Lu238k9OFvmNLwBxZbrFeuxZND7dgF7Ci6Cn/JHMYUlmH+DA4ebKZ+7w6CO//A3PrfM+YXL/LJuOWUf+VeLLs4ye9GREQkOZRgicio1rHrTQAKTzv3lNs4lFFGSnsntNVB1rhEhTYoOoNh1r+zjpb3nua0xte4yKqJ4GF31jw+nnItZWd9kZyyBeR4jn5ktwAoP+Mi4OvsqtrPa8/8kMtqf8nBf1+MZ+WjZM38/KC/nxPlnCMcdfg8hg3jpFhERIYeJVgiMqpl12+k2TuW3LzJp9xGKHsCtANNu4dFghWJOjZ8uJm6Pz3KrNrnOdf2EcHDnjEL2TP3Vso+t5Ip2Sf3PqaWjWfKt3/Cb175EvP/7zeZ9PiVNC393+QtHfw15qNRx566FvZu30Bb1SY8TZWkH9pDbmA/OdEmMlwH2bTjI0wnfkLmp8MyaUoZRyizFF9+OVnlZ1I0czEpYycO615JEREZfEqwRGTUamkPMT2whYZx88ntx4doz9jJUAuuqRKbcFbiAkywnVUH2Pz6YxR/+hsWRTfhMccnmfPYOftrlJ9/PeUnmVQdycy46pKLWD/pBaqeWM3n37iD+vpdFFz1r+DxJuhdHC0UifLRtm3UvP8ynn3rKW7bxkx2M9lCAEQxGjwFNKeOpyV1NvX+MYT9WZjXTyQcIBzoxBdoJitQS17DBkoaXsH7sYNXoNXGcCBrFpGSM8ibvpjCmZ/DxpQMyPvoDIapq6+j5UAVbQ1VBJqribRW4zlUizfQjC/Sjj8aICXagT8awOdCRM0L5gEznPkIetKJ+DNxKVm4lGw8adl408fgz8zFnzmWtKw80rPzSB+TR1rWWCw9F3yp/YrbOUcgHCUQDBHobCcU6CAY6CDY2UE42EEo0Ek4GHsdCXVi4SCeaBBvJBBvwXAW7yH1ePB4vHg8ntiP14t5/Xi8vli51495fXh9fjxeL974Pq/Xj8fnw+eLb/v8eH3x314fzrw4jxdn3njM4FwU59xnPzhc1EHXduy90VUPHFGIOqLOxV47erRBvB5EcdF4m/G2iTrg8E88iNi7j/+mqzfVAMzo2jLrkecffu0wnIOUjBwKxxX16zqKSOIowRKRUWvzxztZ4qmlcsKqfrWTWTQFtkJn3SekJya0hGkPhvnTH1+D9Y+wuP33XGEd1PuK2DXrFiYu+3OmjJuW8HNWzCrn47/6DU/97Otct/ln1DXvofCr/w2nMEtjb5xz7Nq7n8r1L8Onb1De+i4LbD8AbZZBbfZMPin8MpmTKyiaUUFq4RQKfakUnkDb4UiUypp69m1fT/vuDfgPbGJ86zamtz6Ib8cD8Dw0egtpzJ1DtGQB6cWzyC6aTOa4yfgzx4IvpUecHYEgLa2tHGysoaO5lvamagLNB4geqsXbdoC0zjoyg/XkRhvJd81MsCATjoipkxRaPTkELY2gJ5WQJ52QL4eQxxv7UB+NgotiLkxKuJXUQA1proMM104Wnb1OTNJdAD9tlkm7ZRLwpOHwEDUPUbw48xBxhsdF8LogPhfG50J4XQg/IVJcGD8hUgmRY5GTvJKSKAHn54Prfs/82bOTHYqIoARLREaxuq3rACiafX6/2inKH0udG4PvwNBJsHbuq+P9l3/O9N1Psdw+ppMU9pRcjDt/NQWzllHQyzNViTS9JJcx336E++//Hn+19yEa7ltO/p8/DWPGn1J7NQ0tbF//OoEdr1Pc+Bazox8zzRwdpLJ3zAK2ld9A6RmXkT1xPlP68d58Xg9TS8cxtfQy4DIglnTt2HeAqi1v0VH5Ltn1m5hSv4XJDb+DzT2PD+GlkxQ8zpFCiAyLkAH01ud1kEyavWNpSy2gMW0BdZnj8GQX488tISO/jJzC2E9aeg5pp9DDGok6WtqDtLa2cKi1gbbWRgIHGwm3NxPtaMF1tGCBFjyBVnyhg6SGD+KPBjAieFwUcxGMKF5zRL2pBD1ZdHpScB4/UU8KeFPA68d5U8GXBr5UzJ+G+VLxpqTj8afi9afjTUnDl5KGLzUdX0o65kvF+VLBm4rDMBcl1hUUJeqiRCJRotEI4XAEFwkTiUaIRsJEIyFcJEw0HCYaDeMiIaKRCC4aJhoJ4yJhXDT+EwnjorHjiYbxEMXjInhcJN77E//3NAO6PYcX3+4qP1zWrTxW1RPbjP0Hw4M73PsU740zs/hpPJjFepusWzuxHrLPzum68uAoHN4X791ynxXgAPusMv5gCwu2/Rv1G/8HlGCJDAnm3LG/2RpMFRUVbv369ckOQ0RGif/v327mCwefwXfnPvCfemq0qaqZyIMXMrG4gPyvv5zACE9ONOp4c8MGmn7/AOe0vsBYO0RtykQ6F6xi4rLVWHreoMd0sDPEQz+7j6/V/Qt4/UQu/D7ZZ68C77G/3zvY3sGWDeto3fI6ubVvMju8hQwLEMbD3rRZtJedS+H8Sxh32nn9HuJ2Kg52hti7v5r6qo8JN+3F21pFtKMVb6SDFNeJMy9Rbwr+lAz8aen4sgrwjykiK7+E3ILxZOYVYQnq0ZNRzjlq755OVdoMzvy7F5IdjcioYmbvOecqjizvdw+WmX0TuBWIAM87574TL78D+PN4+becc8n71CEicoRo1FF88EOq02cwoR/JFUBpbjrr3DimHUzOYsPtwTCvvv4qme/ex9Lwn8Bgd+FSvBfcStFpFyZ1kobsND/f+Nq3ePR/ZrNgw51UvPo3NL5xDy3TriBtyufIyC8lQArNDXU0VX9CYN8m0hu2MCu0hcXWAcA+30Q+mXAlY06/iLIFyynPyE3a+zksO83P6VMmwpSJyQ5FRjszPs07h7mNLxMNBfD4B/8LBxHpqV8JlpktA1YA851zATMbFy8/HbgemA2MB35rZjOccxqgLSJDwq7aZma7XewrvrbfbY3NTKHaxpHZ8TZEwsftnUmU1o4gr7/4DEWbHmAFH9Bu6VROX8Wky25n6tih88E/xefhL65Yzq5zzubna/+bWXufYNGW/xfv1ge66hyeXiPkvNT4J/Bp8aWkTv88kysuoTR3PKXJCV1kWAhPuZDMxufYs+l3TDzz0mSHIzLq9fdTwC3AD51zAQDn3IF4+QrgiXj5p2a2E1gEvNnP84mIJETllneY3o8FhrszM9rSS/EEItC6D/ImJSDCvjW2BXn1+WeYteXHXMHHNHvy2LvgO0xYfivT0nMH9Nz9MXVcNlP/4ht0hm5h46f7OFS5kUhbAxkWJHVMAYUlEymZMpcJqelHTfQgIn2buugygu/eTtMHLyjBEhkC+ptgzQDOM7MfAJ3A/3LOvQuUAm91q1cVLzuKmd0M3AwwceLQ+cZVREa2zk9i3/eM68cCw92FcibCAaCpcsASrIOdIZ598SUmv/9/WGnv0+QtYN/ZP6B06V+Q608bkHMOhDS/l4oZE2GG/uaLJELJuEI2+mZTsP/3yQ5FRDiBBMvMfgsU97LrzvjxY4GzgbOAp8xsyskE4Jx7EHgQYpNcnMyxIiKnKqtuI02eseTlJeZDvidvcizBak78c1iBcITnXv8T2W/+iK+4dbR5s6lbdCeFF36TvH4+PyYiI0NDyfksrLqXjvrdpBcMbC+6iBzbcRMs59xFfe0zs1uAX7vYVITvmFkUKAD2QY8RHmXxMhGRpOsMRZga2MKB/HnkJWgCiOxxk4hsM6L1lfgT0mJsmu0X33yfwOs/5Mrwq0Q9Pmrn30rRpd8hcwgPBRSRwVew8HKoupeP//Qb5q24LdnhiIxq/V0I5VlgGYCZzQBSgHpgLXC9maWaWTkwHXinn+cSEUmIj3d9zEQ7gCtbnLA2x+ePYb8roKNuV7/bcs7xxgc7efJHN3PBK5dwReQV6mesJPWvN1F05b+AkisROcLcBYupooiUrb9Jdigio15/n8F6BHjEzDYDQeDGeG/WR2b2FLAFCAO3DscZBFua6jnYUIN5vJjHg8fjif+ObZvFXns8Hoj/9nTb7/F48Rzx7Xi3JQNjr1zPF65rn+u5/6iNw0Xd2jp8rOvl2G4t93ZsvwyhtdROSj/jHqbvWoCmDc8BUDjv4oS1ObUwi72ukKyGyn61s2FXNZuf/Tf+rPVxltoh9k34AiUr/jclhdMSE6iIjEher4ft46/kwv0P0Lx3C7kTTk92SEOai0YIBAIEAp1EQwFcJEg0EgbncNHYotfRaDS2AHY0gouXx35HcFFH1MW3uz7rdVtMGgPPZ6/Nc7hOvG/D4nXNYotQd1v8+nAbrscC1z3P4XqU99yP57PPnl3t0vuKHd3LDte14+zvXm49Kxy7bo92ex898lndI9r1+EnPyCLF19++ocHRrwTLORcEbuhj3w+AH/Sn/WTb9srDLN76L8kOQ0QS7HygkRzyp5yRsDanFmaxlnHMP/jhKR2/q7aZdc/8F8sPPMIZ1sj+gnPIuvJfKC1bmLAYRWRkK1/+V4TWPETlS/ey4C9/muxwEiYSidLa0khLYy3tzfUEDzUQPtRAtL0R19FCNHAIgm14Qm14w+34I+2kRDtIiXaQFu3A54L4XBg/IXyE8bswfouQBgyf6YFGt5+HL6Hwuv/g8nnjkx3KCRmcxVqGqZKFl7A+fUz8G4so5mK/XfwbjcM/zvXcpqu+I9Zxd0SWbvQoO5ylu6OS+b6+arDj1TrG1xQncOwQ4wZ0kdTh8C8gAyF32mLGehL3TVh6ipeW1PFkht6AwEFIzT6h4w60dPDKr3/G4sr7udH2UTNmNh2XP8z4mRckLDYRGR2mlE/hzczzmLfvV7Q33knG2KG9glwwEKChppKWA3tpa9hHqGk/0YPVeNtqSe+sIytUT260iTHuEHkWJa+PdkLOS7ul02lpdFo6AU86QU86Lb5C6r3pRLxpOK8fPCngTQGfH483FfP5MW8K+FJwHj/OvGCe+CglA/OAeeMfn2Ijl4iPYLIevUfERsU4R2x8i8O6ve4aMeO6jVI6on7X/iOOizUdBcC61TMcrtvvw/v7Gp3kjnrR10icXkZZHVmjl8b6HNXTNUKrr929tNFLjEXZs5hVMqavsww5SrCOYeKMBUycsSDZYYjIMHEofx7U/hKq1sPUZces29Ie5LdrH2PW1p9wg31KXdokWi95mOKFV/f+BYmIyAnIuvQu/L9azo4n72DOLY8mNZZoJELN/krq93xM24FdRBo+xde6l8yO/eSHqily9ZSYo6TbMSHnpdFyafXl05peRkPafKLp+XjS8/BljcWfXUBKVj6pYwrJyMknK6eAtPR0cszISdo7FelJCZaISILkzTyHSI3R+fE6MvtIsJrbg7zy/K+Ytvnfudq2U59SQv3nf0LhOV8Bj3eQIxaRkWbuvDP57etXc1HtU+z+09NMWnLtgJ8z0NlG9SdbaNy9mUDNNvyNO8lt/5SScBXjLUD3QV11NpZGfwk1uQvZmz0By51Aal4ZWQVl5BVNILeghCKvl6IBj1pk4FjCJjpIgIqKCrd+/fpkhyEicko2VTUTffACJud6yb39nR49UQda2/nT879g8raHWWjbafbm0/65v2b80pvBl5LEqEVkpGlsbqH6JxdQ7qpoWvEopQsvSUi7rU0HqNn5AS17PyJSt4P05p0UdO6mOFqL1z77PFlNIXVpk2gfMxVPwTSyiqeSVzqdwrJp+FIzEhKLyFBgZu855yqOLFcPlohIgswZn8N/pF/MX7feT3jbi3hmfoEPtu1g9xtrmFv7LFfafur9xdQuvpuipTeTq0WCRWQAjM3NofGGJ6j9xQomPHs9H37wVaatuIP0vOLjHhsKh6neu4um3ZvprN6K1e8g++AnFAV3M5ZWDj8FE3B+9nnHU5M5kz25l+MrmknexNmMnzqHkqycHsP+REYb9WCJiCTQC+/tYspzK5jm2UcdYymhHoCqjNmknHsr4xavBK++2xKRgbf/QB0fr7mF89p+iwM+TZ1FS9ZUotklOG8KRMJYoBXrbCK9o4acYA2F0XpSLdzVRovLZL9/Iq1ZU4iMnU5aySwKyucyftJMfP5ELasuMjz11YOlBEtEJMF+++5mon/6TwpdA6njZzNpyUoyy2YnOywRGYWcc3zw/rs0vvUYBfXvMj5SRQEtXfvbXCqHLItGXyFt6SVEssvw5U8ms/R0CsrnkV84HkvgjKsiI4kSLBERERGhIxAmEg7g9/vx+/x4PJq5VORU6BksERERESE91Qep+ggoMlDU5ysiIiIiIpIgSrBEREREREQSRAmWiIiIiIhIggypSS7MrA7Ynew4jlAA8XmWZTTQ9R49dK1HD13r0UXXe/TQtR5dhuL1nuScKzyycEglWEORma3vbXYQGZl0vUcPXevRQ9d6dNH1Hj10rUeX4XS9NURQREREREQkQZRgiYiIiIiIJIgSrON7MNkByKDS9R49dK1HD13r0UXXe/TQtR5dhs311jNYIiIiIiIiCaIeLBERERERkQRRgiUiIiIiIpIgSrCOwcwuNbPtZrbTzP4+2fFI4pjZBDP7nZltMbOPzOzb8fKxZvaqmX0c/52X7FglMczMa2Ybzex/4tvlZvZ2/P5+0sxSkh2jJIaZ5ZrZM2a2zcy2mtnndG+PTGZ2e/xv+GYze9zM0nRvjxxm9oiZHTCzzd3Ker2XLeY/49d9k5mdkbzI5WT1ca3vif8d32RmvzGz3G777ohf6+1mdklSgj4GJVh9MDMvcB/wBeB04P8xs9OTG5UkUBj4G+fc6cDZwK3x6/v3wGvOuenAa/FtGRm+DWzttv0j4N+dc9OAJuDPkxKVDISfAC8552YB84ldd93bI4yZlQLfAiqcc3MAL3A9urdHkjXApUeU9XUvfwGYHv+5Gbh/kGKUxFjD0df6VWCOc24esAO4AyD+ee16YHb8mJ/GP7cPGUqw+rYI2Omc+8Q5FwSeAFYkOSZJEOdctXNuQ/z1QWIfwEqJXeP/jlf7b+CKpAQoCWVmZcAXgZ/Ftw24AHgmXkXXeoQwsxzgfOBhAOdc0DnXjO7tkcoHpJuZD8gAqtG9PWI45/4ANB5R3Ne9vAJ41MW8BeSaWcmgBCr91tu1ds694pwLxzffAsrir1cATzjnAs65T4GdxD63DxlKsPpWCuzttl0VL5MRxswmAwuBt4Ei51x1fFcNUJSsuCSh/gP4DhCNb+cDzd3+cOv+HjnKgTrg5/EhoT8zs0x0b484zrl9wP8B9hBLrFqA99C9PdL1dS/rc9vIthp4Mf56yF9rJVgyqplZFvAr4DbnXGv3fS62hoHWMRjmzOxy4IBz7r1kxyKDwgecAdzvnFsItHHEcEDd2yND/NmbFcSS6vFAJkcPMZIRTPfy6GBmdxJ7tOOxZMdyopRg9W0fMKHbdlm8TEYIM/MTS64ec879Ol5ce3hIQfz3gWTFJwmzBPiSmVUSG+p7AbFndHLjw4pA9/dIUgVUOefejm8/Qyzh0r098lwEfOqcq3POhYBfE7vfdW+PbH3dy/rcNgKZ2SrgcuDL7rPFe4f8tVaC1bd3genx2YhSiD1MtzbJMUmCxJ/BeRjY6pz7cbdda4Eb469vBJ4b7NgksZxzdzjnypxzk4ndx687574M/A64Jl5N13qEcM7VAHvNbGa86EJgC7q3R6I9wNlmlhH/m374WuveHtn6upfXAl+NzyZ4NtDSbSihDENmdimx4f1fcs61d9u1FrjezFLNrJzYxCbvJCPGvthnyaAcycwuI/bshhd4xDn3g+RGJIliZucCfwQ+5LPncr5L7Dmsp4CJwG7gOufckQ/YyjBlZkuB/+Wcu9zMphDr0RoLbARucM4FkhieJIiZLSA2oUkK8AlwE7EvFHVvjzBm9n1gJbHhQxuBvyD2LIbu7RHAzB4HlgIFQC3wj8Cz9HIvx5Pse4kNE20HbnLOrU9C2HIK+rjWdwCpQEO82lvOua/F699J7LmsMLHHPF48ss1kUoIlIiIiIiKSIBoiKCIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0REREREJEGUYImIiIiIiCTI/w+DOV4C7or1tAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1046,31 +1046,31 @@ " 3\n", " False\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " bAP.soma.v\n", - " 0.00788\n", - " 7.19e-08\n", + " 0.00794\n", + " 5.48e-06\n", " \n", " \n", " 4\n", " False\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step1.soma.v\n", - " 0.0779\n", - " 2.23e-07\n", + " 0.00912\n", + " 6.42e-07\n", " \n", " \n", " 5\n", " False\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step3.soma.v\n", - " 0.16\n", - " 2.49e-07\n", + " 0.0103\n", + " 1.64e-06\n", " \n", " \n", "\n", @@ -1078,14 +1078,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "3 False 1 0.121 0.0319 bAP.soma.v \n", - "4 False 1 0.121 0.0319 Step1.soma.v \n", - "5 False 1 0.121 0.0319 Step3.soma.v \n", + "3 False 1 0.0592 0.0295 bAP.soma.v \n", + "4 False 1 0.0592 0.0295 Step1.soma.v \n", + "5 False 1 0.0592 0.0295 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "3 0.00788 7.19e-08 \n", - "4 0.0779 2.23e-07 \n", - "5 0.16 2.49e-07 " + "3 0.00794 5.48e-06 \n", + "4 0.00912 6.42e-07 \n", + "5 0.0103 1.64e-06 " ] }, "metadata": {}, @@ -1093,7 +1093,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADee0lEQVR4nOzdd5xcZdn/8c81M9t7y6bsJrskJKQSIAGU0JGiFBElIB0VwQoq9oL+5Hl8EEUFFVAUBQwgXXoNEKQlENITUja9bLb3affvj5ldNsnW7GxmJ/m+X6957Zx2n2vO2dmda+77XMecc4iIiIiIiMjAeeIdgIiIiIiIyP5CCZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkSHGzMrMzJmZL96xyIHBzJaa2QnxjkNEZH+gBEtERBKemd1uZo3Rh9/MAp2mn4l3fEOdc26yc25uLNs0s/PN7L9m1mxmMW1bRGQoM91oWEQktszM55wLDmD7MmAdkDSQdg5UZnYDMM45d3EXywZ0bvalRIq1K2Z2CpAPHAKc5Jw7Ib4RiYjsG+rBEhGJATOrMLPvmdkioMnMfGZ2dPQb/Foz+6DzECwzm2tm/2tm75hZvZk9bmb53bR9hZktN7MGM1trZl/ebfk5ZrYw2s4aMzs9Oj/HzO4ys61mttnMfmlm3l5ex1gze9nMqsxsp5ndZ2a5nZZVm9nh0emRZlbZ/rrM7OzoULPa6OubuNvx+Y6ZLTKzOjN7wMxS+3+k+6+bc+PMbFynde42s192mj4zekxro+dwWh/3dYKZbTKzH0aPX4WZXdRp+afM7P3oudoYTQbbl7UPDf2CmW0AXo7O/7eZbYset9fMbPJucf/JzJ6J9ta9YWbDzex3ZlZjZivM7LA+HqNT+vIa+8o596Jz7kFgSyzbFREZ6pRgiYjEzoXAp4BcoBh4CvglkW/xvwM8bGZFnda/FLgSGAEEgT900+4O4EwgG7gCuKVTknMk8E/g+uh+jwMqotvdHW13HHAYcCrwxV5egwH/C4wEJgKlwA0Azrk1wPeAe80sHfg78A/n3FwzGw/MAa4FioCngf+YWXKnts8HTgfKgWnA5V0GYDYrmth095jVy2voSse56a1XKJqQ/A34MlAA3AE8YWYpfdzXcKAQGAVcBtxpZhOiy5qInPfcaDzXmNmnd9v+eCLH/rTo9DPAwcAw4D3gvt3WPx/4cXSfbcCb0fUKgYeA3/Yx7i6Z2fd7Oh8DaVtEZH+kBEtEJHb+4Jzb6JxrAS4GnnbOPe2cCzvnXgDmA5/stP49zrklzrkm4CfA+V31MDnnnnLOrXERrwLPA8dGF38B+Jtz7oXofjY751aYWXF0X9c655qcczuAW4ALenoBzrnV0bbanHOVRD6cH99p+V+A1cDbRBLDH0UXzQaeim4bAG4G0oCP73Z8tjjnqoH/ANO7iWGecy63h8e8nl5DNzqfm95cBdzhnHvbORdyzv2DSOJydD/295PoMXyVSKJ9PoBzbq5zbnH0XC0ikpQev9u2N0TPWUt0m7855xqcc21Ekt1DzSyn0/qPOucWOOdagUeBVufcP51zIeABIsn1XnPO/aqn8zGQtkVE9kdKsEREYmdjp+djgM/t9k3/LCJJSVfrrweSiPQ67MLMzjCzt6LD82qJJE7t65UCa7qIZUy0va2d9n8HkV6QbplZsZndHx1SWA/c20VMfwGmALdGP/RDpMdrffsKzrlw9PWN6rTdtk7Pm4HMnmKJsY29r9JhDPDt3c5dKZHX2Bc10aS53fr2bc3sKDN7JTq0sg64mj2Pb0esZuY1s19ZZOhnPR/1TnbeZnun5y1dTO/L4ywicsBTgiUiEjudqwZtJNJD1fnb/gzn3K86rVPa6floIADs7NxgdFjaw0R6hIqjPQZPExnK176fsV3EspFIr0thp/1nO+cmd7FuZ/8TfR1TnXPZRHri2veFmWUCvwPuAm6wj64b20IkMWlfz6Kvb3Mv+9uDmR1rH1UA7OpxbO+t7GH3ik7NQHqn6eGdnm8Ebtzt3KU75+b0cV95ZpbRaXo0H12H9C/gCaDUOZcD3E6n49tFrJ8HzgFOAXKAsuj83bcZNNHrybo9H/sqDhGRRKEES0RkcNwLnGVmp0V7IVKjBRBKOq1zsZlNil7P9Avgoeiwrs6SgRSgEgia2RlErqVqdxdwhZmdbGYeMxtlZoc457YSGUr4GzPLji4ba2a7D0fbXRbQCNSZ2Sgi13Z19ntgvnPui0SGvt0enf8g8KloHEnAt4kkeP/t7UDtzjn3unMus4fH6/1tswsLgc9Hz83p7DpM7y/A1dHeJjOzDIsUp8iCjsISd/fS/s/NLDmaDJ4J/Ds6Pwuods61Rq+f+3wv7WQROY5VRBLC/+nHa4wJ59z/9HQ+utuu/fce8AGe6Hsgad9FLiISH0qwREQGgXNuI5Gehx8SSY42EklWOv/dvYdIIYptQCrwjS7aaYjOfxCoIfKB/IlOy98hWvgCqANe5aOepEuJJGjLots+xK5DFLvyc+DwaFtPAY+0LzCzc4gUqbgmOutbwOFmdpFzbiWR3q5bifTCnQWc5Zzz97K/ePkmkRhrgYuAx9oXOOfmA18CbiNy3Faza0GOUuCNHtreFt1uC5GCFFc751ZEl30F+IWZNQA/JXJee/JPIkMMNxM5j2/19sKGkEuIDFH8M5FrBluIJK8iIvs13QdLRCQOLHLj1Xudc3+NdyzSd9GqiB8A06LFPHZffgKR81qy+zIRETkw+OIdgIiISKKI9shN7HVFERE5YGmIoIjIAcbMbu+mYMHtvW8ticjMRvdQqGJ0vOMTEdmfaIigiIiIiIhIjKgHS0REREREJEaG1DVYhYWFrqysLN5hiIiIiIiI9GjBggU7nXNFu88fUglWWVkZ8+fPj3cYIiIiIiIiPTKz9V3N1xBBERERERGRGFGCJSIiIiIiEiNKsERERERERGJkSF2D1ZVAIMCmTZtobW2NdygyBKSmplJSUkJSUlK8Q5H91LsV1fzx6QX86LyjObg4K97hiIiISIIZ8gnWpk2byMrKoqysDDOLdzgSR845qqqq2LRpE+Xl5fEOR/ZTr7zyAnfvuIr3/3UKXPdwvMMRERGRBDPkhwi2trZSUFCg5EowMwoKCtSbKYMqvWoxAIfVvYhrqY1vMCIiIpJwhnyCBSi5kg76XZDBlt64seP5zkXPxzESERERSUQJkWCJiOwLobBjWGgrO33DaXHJ1K16Pd4hiYiISIJRgtUHZsa3v/3tjumbb76ZG264IX4BdXLCCSf0eHPmT3/60xx99NG7zLvhhhsYNWoU06dPZ8qUKTzxxBODHaZIQmhsCzLGttOSXc5KRuPbsSTeIYmIiEiCUYLVBykpKTzyyCPs3Lkzpu065wiHwzFts7Pa2loWLFhAXV0da9eu3WXZddddx8KFC/n3v//NlVdeOahxiCSKxrYghVZPIH04m1MPpqhxJTgX77BEREQkgSjB6gOfz8dVV13FLbfcsseyyspKzjvvPGbOnMnMmTN54403gEgv0c0339yx3pQpU6ioqKCiooIJEyZw6aWXMmXKFDZu3Mj111/PlClTmDp1Kg888AAAc+fO5YQTTuCzn/0shxxyCBdddBGumw9699xzT0dv1DvvvNMx/5FHHuGss87iggsu4P777+9y24kTJ+Lz+XZJHr///e8zadIkpk2bxne+8x0AKioqOOmkk5g2bRonn3wyGzZsAODyyy/nmmuu4eijj+aggw5i7ty5XHnllUycOJHLL7+8o81rrrmGGTNmMHnyZH72s5/tEUddXR1jxozpSPSampooLS0lEAh0GbfIYGhoDZBGG5aSQXPeJDJcE9Rt7H1DERERkaghX6a9s5//ZynLttTHtM1JI7P52VmTe13vq1/9KtOmTeO73/3uLvO/+c1vct111zFr1iw2bNjAaaedxvLly3ts68MPP+Qf//gHRx99NA8//DALFy7kgw8+YOfOncycOZPjjjsOgPfff5+lS5cycuRIjjnmGN544w1mzZq1R3vNzc0sXLiQ1157jSuvvJIlSyLDmubMmcNPf/pTiouLOe+88/jhD3+4x7Zvv/02Ho+HoqIiAKqqqnj00UdZsWIFZkZtbS0AX//617nsssu47LLL+Nvf/sY3vvENHnvsMQBqamp48803eeKJJzj77LN54403+Otf/8rMmTNZuHAh06dP58YbbyQ/P59QKMTJJ5/MokWLmDZtWkccOTk5TJ8+nVdffZUTTzyRJ598ktNOO033u5J9qrE1SBp+6lPSSc4+BLZB05YVZOSOjndoIiIikiDUg9VH2dnZXHrppfzhD3/YZf6LL77I1772NaZPn87ZZ59NfX09jY2NPbY1ZsyYjuui5s2bx4UXXojX66W4uJjjjz+ed999F4AjjzySkpISPB4P06dPp6Kiosv2LrzwQgCOO+446uvrqa2tZfv27Xz44YfMmjWL8ePHk5SU1JF4Adxyyy1Mnz6d73znOzzwwAMd1flycnJITU3lC1/4Ao888gjp6ekAvPnmm3z+858H4JJLLmHevHkdbZ111lmYGVOnTqW4uJipU6fi8XiYPHlyR8wPPvgghx9+OIcddhhLly5l2bJle7yO2bNnd/Tg3X///cyePbvH4ygSaw0tbaRYAF9KBvljIl+87KxYHOeoREREJJEkVA9WX3qaBtO1117L4YcfzhVXXNExLxwO89Zbb5GamrrLuj6fb5frmjrfuykjI6NP+0tJSel47vV6CQaDXa63e+lyM+PBBx+kpqam44a89fX1zJkzhxtvvBGIXIPVPvxv97jfeecdXnrpJR566CFuu+02Xn755T7F6fF4donZ4/EQDAZZt24dN998M++++y55eXlcfvnlXd7L6uyzz+aHP/wh1dXVLFiwgJNOOqnH/YrEWqC1CQBvSjpjSsqod+kEtq+Kc1QiIiKSSNSD1Q/5+fmcf/753HXXXR3zTj31VG699daO6YULFwJQVlbGe++9B8B7773HunXrumzz2GOP5YEHHiAUClFZWclrr73GkUce2a+42nt95s2bR05ODjk5OcyZM4dnn32247qvBQsWdHsdVmeNjY3U1dXxyU9+kltuuYUPPvgAgI9//OMd2993330ce+yxfY6vvr6ejIwMcnJy2L59O88880yX62VmZjJz5ky++c1vcuaZZ+L1evu8D5FYCPmbAfAkpzMyL411bgS+mjVxjkpEREQSSUL1YA0F3/72t7nttts6pv/whz90XJ8VDAY57rjjuP322znvvPP45z//yeTJkznqqKMYP358l+2de+65vPnmmxx66KGYGTfddBPDhw9nxYoVfY4pNTWVww47jEAgwN/+9jcqKipYv379LuXZy8vLycnJ4e233+6yjU9+8pP89a9/xcw455xzaG1txTnHb3/7WwBuvfVWrrjiCn79619TVFTE3//+9z7Hd+ihh3LYYYdxyCGHUFpayjHHHNOx7Kc//SkzZszg7LPPBiLDBD/3uc8xd+7cPrcvEiuhthYAvMnp+LwetieXMrpZpdpFRESk76y7ynR9bsCsFPgnUAw44E7n3O/N7AbgS0BldNUfOuee7qmtGTNmuN3v6bR8+XImTpw4oBhl/6LfCRksj7/4CufM+zR1n7qDnJkX8PDvruO82r/BDzZDSma8wxMREZEhxMwWOOdm7D4/Fj1YQeDbzrn3zCwLWGBmL0SX3eKcu7mHbUVEhgwXHSLoS4lcJxnKHwu14Ko+xEYeFsfIREREJFEM+Bos59xW59x70ecNwHJg1EDbFRHZ53ZLsFKHTwCgflPPt14QERERaRfTIhdmVgYcBrRf6PM1M1tkZn8zs7xY7ktEJNZcIJpgpUZuT5BXcggA9Vs+jFtMIiIiklhilmCZWSbwMHCtc64e+DMwFpgObAV+0812V5nZfDObX1lZ2dUqIiL7RuCjIhcAY4oL2OLyCe5UJUERERHpm5gkWGaWRCS5us859wiAc267cy7knAsDfwG6rD3unLvTOTfDOTejqKgoFuGIiOwViyZYJEUSrJG5qWxww0mq6/o2CyIiIiK7G3CCZZG73N4FLHfO/bbT/BGdVjsXUK1jERnSLNieYKUB4PN6qEoeRVbzxjhGJSIiIokkFj1YxwCXACeZ2cLo45PATWa22MwWAScC18VgX3Hz2GOPYWY93p+qoqKCKVOmxGyfl19+OQ899FC3y6+99lpGjRpFOBzumHf33XdTVFTE9OnTmTRpEn/5y19iFo/Ifi/YGvkZTbAAmjNHkxOqgbaGOAUlIiIiiSQWVQTnOefMOTfNOTc9+njaOXeJc25qdP7ZzrmtsQg4XubMmcOsWbOYM2dOl8uDweCA9xEKhfq8bjgc5tFHH6W0tJRXX311l2WzZ89m4cKFzJ07lx/+8Ids3759wLGJHAi8wV2HCAKE8w4CwFWvjUdIIiIikmBiWkVwf9XY2Mi8efO46667uP/++zvmz507l2OPPZazzz6bSZMmAZFE66KLLmLixIl89rOfpbk5UpXspZde4rDDDmPq1KlceeWVtLW1AVBWVsb3vvc9Dj/8cP7973/vse8XX3yRGTNmMH78eJ588sld9j158mSuueaabpO+YcOGMXbsWNavX98x7w9/+AOTJk1i2rRpXHDBBQBUV1fz6U9/mmnTpnH00UezaNEiAG644QYuu+wyjj32WMaMGcMjjzzCd7/7XaZOncrpp59OIBAA4Be/+AUzZ85kypQpXHXVVex+8+pwOExZWRm1tbUd8w4++GAlfjLkeELRHixfSse8lGHjAGhUJUERERHpg1jcaHjfeeb7sG1xbNscPhXO+FWPqzz++OOcfvrpjB8/noKCAhYsWMARRxwBwHvvvceSJUsoLy+noqKClStXctddd3HMMcdw5ZVX8qc//Ymvfe1rXH755bz00kuMHz+eSy+9lD//+c9ce+21ABQUFPDee+91ue+Kigreeecd1qxZw4knnsjq1atJTU1lzpw5XHjhhZxzzjn88Ic/JBAIkJSUtMu2a9euZe3atYwbN65j3q9+9SvWrVtHSkpKR8Lzs5/9jMMOO4zHHnuMl19+mUsvvZSFCxcCsGbNGl555RWWLVvGxz72MR5++GFuuukmzj33XJ566ik+/elP87WvfY2f/vSnAFxyySU8+eSTnHXWWR379Hg8nHPOOTz66KNcccUVvP3224wZM4bi4uI+nyaRfcFCbQTwkWTWMS+vZDy8DXVbVpJ1RByDExERkYSgHqw+mDNnTkdvzwUXXLBLj9GRRx5JeXl5x3RpaSnHHHMMABdffDHz5s1j5cqVlJeXM378eAAuu+wyXnvttY5tZs+e3e2+zz//fDweDwcffDAHHXQQK1aswO/38/TTT/PpT3+a7OxsjjrqKJ577rmObR544AGmT5/OhRdeyB133EF+fn7HsmnTpnHRRRdx77334vNF8ut58+ZxySWXAHDSSSdRVVVFfX09AGeccQZJSUlMnTqVUCjE6aefDsDUqVOpqKgA4JVXXuGoo45i6tSpvPzyyyxdunSP1zF79mweeOABAO6///4eX7NIvFjIT8B2/aJiVPEwdrhcgpUq1S4iIiK9S6werF56mgZDdXU1L7/8MosXL8bMCIVCmBm//vWvAcjIyNhlfev0zXdX013ZvY3e2nvuueeora1l6tSpADQ3N5OWlsaZZ54JRJKZ2267rcv2nnrqKV577TX+85//cOONN7J4cc89gikpkaFSHo+HpKSkjng8Hg/BYJDW1la+8pWvMH/+fEpLS7nhhhtobW3do52PfexjrF69msrKSh577DF+/OMf97hfkXiwcIAguyZYpflpLHLFjKhVqXYRERHpnXqwevHQQw9xySWXsH79eioqKti4cSPl5eW8/vrrXa6/YcMG3nzzTQD+9a9/MWvWLCZMmEBFRQWrV68G4J577uH444/v0/7//e9/Ew6HWbNmDWvXrmXChAnMmTOHv/71r1RUVFBRUcG6det44YUXOq736k44HGbjxo2ceOKJ/N///R91dXU0NjZy7LHHct999wGRa7sKCwvJzs7uU3ztyVRhYSGNjY3dVj00M84991y+9a1vMXHiRAoKCvrUvsi+5An7CXp2TbBSfF52+EaSqVLtIiIi0gdKsHoxZ84czj333F3mnXfeed0WlpgwYQJ//OMfmThxIjU1NVxzzTWkpqby97//nc997nNMnToVj8fD1Vdf3af9jx49miOPPJIzzjiD22+/nXA4zLPPPsunPvWpjnUyMjKYNWsW//nPf7ps44tf/CLz588nFApx8cUXM3XqVA477DC+8Y1vkJubyw033MCCBQuYNm0a3//+9/nHP/7Rx6MDubm5fOlLX2LKlCmcdtppzJw5s2PZ7bffzu23394xPXv2bO69914ND5QhyxsOELLkPeY3ZIwmN1gJ/p6/xBARERGx3Su+xdOMGTPc/Pnzd5m3fPlyJk6cGKeIZCjS74QMlrm//BSH2HqG/2jX+6L/665b+PzGG+CaN6F4UnyCExERkSHFzBY452bsPl89WCIiUV7nJ+TZswcrKVqqvWWHSrWLiIhIz5RgiYhE+cIBwl0kWNkjIhVA6zet3NchiYiISIJJiARrKA1jlPjS74IMJp8LENqtyAXAqBHDqXJZtO1YHYeoREREJJEM+QQrNTWVqqoqfbAWnHNUVVWRmpoa71BkP+V1AVwXCdbognTWu2I8KtUuIiIivRjy98EqKSlh06ZNVFZWxjsUGQJSU1MpKSmJdxiyn0qimyGCqUls9Y6kvHFVHKISERGRRDLkE6ykpCTKy8vjHYaI7Oecc/hcAOfdM8ECqE8rJaf5dQi2gS9lH0cnIiIiiWLIDxEUEdkXgmFHMsFuE6xAThkeHNSs38eRiYiISCJRgiUiAviD4R4TLF9RpFR7YKcKXYiIiEj3Bj3BMrPTzWylma02s+8P9v5ERPaGPxgm2bofIpgVLdVet1ml2kVERKR7g5pgmZkX+CNwBjAJuNDMJg3mPkVE9oY/FCaJINZNgjVi+AjqXDqt29WDJSIiIt0b7B6sI4HVzrm1zjk/cD9wziDvU0Sk39qHCOLtuoDF6MIMKtxwrHrtPo5MREREEslgJ1ijgI2dpjdF53Uws6vMbL6ZzVcpdhGJF38oTDIB8HXdg1WUmcImG05ao4pciIiISPfiXuTCOXenc26Gc25GUVFRvMMRkQOUPxAk2UJYNyXYzYy61FJy2rZCKLCPoxMREZFEMdgJ1magtNN0SXSeiMiQEvC3AWDd9GABtGWPwUsYajfsq7BEREQkwQx2gvUucLCZlZtZMnAB8MQg71NEpN+C/lYAPEnd30TYWzgWgHCVrsMSERGRrg1qguWcCwJfA54DlgMPOueWDuY+RUT2RnuCZb7UbtdJHx4p1V6/RaXaRUREpGu+wd6Bc+5p4OnB3o+IyEAEApEhgp4ehggOH1FKo0ulZduH5O6juERERCSxxL3IhYjIUBD2twDgTU7rdp0xhRmsd8UaIigiIiLdUoIlIsJHCZanhwRrZG4aGxlOSkPFPopKREREEo0SLBERIOxvBsCbnN7tOl6PUZdWSm7rFgiH9lVoIiIikkCUYImIAK59iGBK9wkWQCC3DB9BqNu0L8ISERGRBKMES0QEcIFIguVL6X6IIEBy0TgA/JWrBz0mERERSTxKsERE+CjB8qZk9LhezqgJAFRvVKl2ERER2ZMSLBERwAUjCVZyL0MER5WW0+KSad62al+EJSIiIglGCZaICB9dg5Wc2nOCddCwLNa7YqhWqXYRERHZkxIsEREg7G8FwJJ6TrDSk31s940gvWH9vghLREREEowSLBERgGCkTDtJqb2uWp9RToF/E4SCgxyUiIiIJBolWCIigAUiPVj4eq4iCBDMH08SQVz1mkGOSkRERBKNEiwREYBgK3584On9z2LyiEkA1K5fPNhRiYiISIJRgiUiAnhCrfgtpU/rFpRNJeyMhg1KsERERGRXvngHICIyFHiCfU+wykcWsdEVEd6xfJCjEhERkUQzoB4sM/u1ma0ws0Vm9qiZ5Ubnl5lZi5ktjD5uj0m0IiKDxBtuJejpW4I1LCuFtZ5S0ms/HOSoREREJNEMdIjgC8AU59w0YBXwg07L1jjnpkcfVw9wPyIig8obautzgmVmVKcfREHrBggFBjkyERERSSQDSrCcc88759rrFL8FlAw8JBGRfS+pHz1YEKkk6COoGw6LiIjILmJZ5OJK4JlO0+Vm9r6ZvWpmx3a3kZldZWbzzWx+ZWVlDMMREem7lHALQW/PNxneZf2RUwCoV6ELERER6aTXBMvMXjSzJV08zum0zo+AIHBfdNZWYLRz7jDgW8C/zCy7q/adc3c652Y452YUFRUN/BWJiOyFDNdEICmrz+sXlU8h7Iza9YsGMSoRERFJNL1WEXTOndLTcjO7HDgTONk556LbtAFt0ecLzGwNMB6YP9CARURiLRx2ZNBMTXKX3wN1aezIYWxww0CVBEVERKSTgVYRPB34LnC2c6650/wiM/NGnx8EHAzoQgURGZIa/UGyacal5PR5m+LsFNZ5SklTJUERERHpZKDXYN0GZAEv7FaO/ThgkZktBB4CrnbOVQ9wXyIig6K+qYUsa8FS+55gRSoJjqWgdaMqCYqIiEiHAd1o2Dk3rpv5DwMPD6RtEZF9pbGuBgBvet8TLIBgwcH4moO4qtXYsImDEZqIiIgkmFhWERQRSUgtDZEEy5ee26/tUkZEKgk2bFwS65BEREQkQSnBEpEDXltjJMFKzsjv13ZF5VMIOaNOlQRFREQkakBDBEVE9gdtjZFLRFMy8/q13bhRRWxww7DtqiQoIiIiEerBEpEDXnuClZXbvx6sYVkprPWMJl2VBEVERCRKCZaIHPAC9TsBSM/t383OzYyajLEUtG2AYNtghCYiIiIJRgmWiBzwrGl75Gfm8H5vG8yfgJcwbqd6sUREREQJlogIyc3bqbNs8CX3e9uUkZMBVRIUERGRCCVYInLAS/fvpCGpcK+2HVY+haDzqJKgiIiIAEqwRETIDlbRmrJ3Cda4kQWsd8WEd6iSoIiIiCjBEpEDXFswRL6rIZA2bK+2b68kmFG7KsaRiYiISCJSgiUiB7TtNU0MoxaXNWKvtm+vJJjv3wKB1hhHJyIiIolGCZaIHNC2b1yFz8IkDxu7120ECybgIYzbuTKGkYmIiEgiUoIlIge0+i2R8uq5o8bvdRupqiQoIiIiUUqwROSAFqhcA0B+yYS9bqO4bDIB56V+/eJYhSUiIiIJSgmWiBzQPLXraCMZT/bIvW7j4JH5rHPDCW9fFsPIREREJBENKMEysxvMbLOZLYw+Ptlp2Q/MbLWZrTSz0wYeqohI7OU0rqMyuQQ8e//nsCgrhXWe0WTUr45hZCIiIpKIfDFo4xbn3M2dZ5jZJOACYDIwEnjRzMY750Ix2J+ISEy0BkKUBNdTn3fEgNoxM+oyyslrejtSSTApNUYRioiISKIZrCGC5wD3O+fanHPrgNXAkYO0LxGRvbJ20zZG2U5s2MQBtxXOPzhSSbBKvVgiIiIHslgkWF8zs0Vm9jczy4vOGwVs7LTOpui8PZjZVWY238zmV1ZWxiAcEZG+2b72AwByxkwdcFtpoyJJWv2mpQNuS0RERBJXrwmWmb1oZku6eJwD/BkYC0wHtgK/6W8Azrk7nXMznHMzioqK+ru5iMhea90USbAKxw5siCDAsLIphJ1Rt0GFLkRERA5kvV6D5Zw7pS8NmdlfgCejk5uB0k6LS6LzRESGjOTKpTSRTkZB2YDbGjuyiM2ukOD2FQMPTERERBLWQKsIjug0eS7QfpfNJ4ALzCzFzMqBg4F3BrIvEZFYK2z6kO1pY8FswG0VZaVQ4SkhtU7XYImIiBzIBlpF8CYzmw44oAL4MoBzbqmZPQgsA4LAV1VBUESGkprGVg4Kr2d9/lkxac/MqE0vp7D5SQiHwOONSbsiIiKSWAaUYDnnLulh2Y3AjQNpX0RksKxdvYwjrIXkUdNi1mYgfxzJzX5c7QYsvzxm7YqIiEjiGKwy7SIiQ1rN2vcBKBo3I2ZtpgyPVBKs26BKgiIiIgcqJVgickAKb11EGCOvLHY9WIVlUwCo2bCklzVFRERkf6UES0QOSJm1K9nuGwXJGTFrs3zMaKpcFoFtqiQoIiJyoFKCJSIHnEAoTIl/DbXZE2LablFmCmtsNOk1y2ParoiIiCQOJVgicsBZv2Ubo20H4WGTY9qumbEt/RCKW1ZDKBDTtkVERCQxKMESkQPOzjWRAhcZo6fHvO3mwikkEcTtWBbztkVERGToG+h9sEREEo5/8yIACscdEfO2faUzYQM0rJpH9ohDY96+DIw/EKKlpYm26CPkbybsbyEU9BMKBnDhEKFggHAoGH2ECIcC4MJ4XBBz4WhLFrlBtRkOT2TaY5GfGGbRh8eLx+MB82JeDx6PLzLt8eLx+jCPFzMPHq8Pj9eLmRePNzIdee7tWOaJrmdeH16vB0+0Da/Xi9fjwzwezKPvTUVE4k0JVg/ef/5ekuffjjkwwoDDnMNwkeedHji3x/ZG5A7Mu877aE7nZdbF9nuutWcb8Ta4kdigtewGrW03iG0PZtw9nMuh8+sWM5PCVdRZJjlFY2Le9kETprDh9SKSlr9I9vFfjXn7B6pAMERtbS1Ntdtpqd2Ov6EKf2MNweZaQq310FqPtdXj8TeQFGwgNdREariJ1HAzyc5PimsjBT+pFiA53i9mEIWdEcJDGA8hPDiMkEWm3W7zw9H5Ybw4s+g6XsLRpDFs3sh/OPMStkgSGZnnwVlkm/79ne77H5Pd/yf2tGV/I+jf/9C9jzmmbfeybudd9/+/RP/i6M+r7M8x6eo1drf1YL/GblvZbVF/P499FHes/7H2N47+/F4PTrsRfV//9ZTjOPjcH3LswUX93Ed8KMHqUeTjrDPD4ev4ZxL5h+OJplmejnnWxTveYZE3lHUxbw/W1Y+uP1R3tTNi85YdvI/w/dnX4H2qH8wEdXCPXddJfGya7vmYdPPrlrC2U4x/9HEcNggv7NCSXB71Tues7a9DWwOkZMV8H/uLQDBE5c4d1GxbT9POjQRqt+Dqt2EtO/G1VJPiryYjWEtmuI48V0+RBejuX2vIGY2WQYul0+rNoNWbQXPSMOp8GYS9qThfKvhSsaQ0SErDk5SGJyUNfKmQlIZ5UzCfD683CfN48fp8eDw+vL6kSM+SNwnME000iLxnnMO59i/YIl/CuXA48n8j7HAuTNiFCIcdLhzChUK4cBDnwpHnLhhZLxydHw7jXAhCoY+eh0OR5S6MuejzcOQ50fmEQ+DC4EIQjv50kXnWabl1nhedjsxz0efR+YTwdDwP44kuM+fwOj+e6PyPevP6o5v3XDf/PwdL/9ru+7p7tNvrpoPzGvt77Fynv4W9bdnXtts/+/Q9lq7/O3f3Z7r/vx99W7/9K/S+tOLY9djF3gB+93ptenDa7v8nrL617U3LJsXn7Xfr8aIEqweHnXoJnHpJvMMQkQTi9RjbDzqPlDUv0Pj2P8k87qNerC07a3j3qb8zbOw0PjbrlDhGOfhCYcf2yh1UbVxF47a1BGvWY/WbSWreQUbbDrKDOyly1Yw0PyN327aRNBosm0ZfLq2pw2hMncCWtELIKMCTWURSZiFJ2YWkZ+WTkZ1PZk4+yWlZ5JiRE5dXKyIigynRBtwrwRIRibHTTzuTN2+bxKGv3Mh2Xy5b21LZueg5Dq9+inOskTUbymHWwniHOWA1tbVsqVhBw9bVtFWuw1O3gZSmzeS2baU4vJ2R1rRL8tRKEtWeQuqTCqnOmMyOjOF4skeQkl9CesEosoaNJreolMzUDDLj9qpEREQGRgmWiEiMjR2Wxfxjb6bo9S8y7vmvUAwE8fBh7rFUte7koNZlhJtr8aTnxjvUXrUFAmyp+JCq9Utp2bYCT/UaMhsrGObfwAiqyOu0bivJ7PAOpyF9JKszD8dyx5BaVE72iLEUjDqYtJxCRprt0WMlIiKyP1GCJSIyCGZ/4hhWTZ7Hy4tfoyjdx8HTZzExK49XX3iMg9+4jA3zn2T0cRfHO0wAnHPs2LGd7WsX07BlBeHKVaTWr6OgZT0jw1sptwDl0XUbSWdbUgnbco9gc944UoePI2fkOApLJpCWW8zo/e2CPRERkX4y1++qN4NnxowZbv78+fEOQ0Rk0FQ3tBC4+RDqcqcw/rqn9um+G5ub2bJ2OTUbl+Lftgpf7RqymioYEdhEgdV3rBd0HrZ5R1CdNgZ/TjneovFkl0xk2EFTyMofuf9VPREREdkLZrbAOTdj9/kD6sEysweACdHJXKDWOTfdzMqA5cDK6LK3nHNXD2RfIiL7g/ysNJ4v+BSnVP2LnavepnD8UTFtv9UfZOumNVSvX07rthW4qjWkN6yjqG0jI912xnequVtNDjtSRlORczwVBQeTPmIC+WMmU1Q6gZKkZEpiGpmIiMiBYUAJlnNudvtzM/sNUNdp8Rrn3PSBtC8isj+acN5P2HnnU7gHLqX+isfILpnYr+1bmpvZsvFDqjetoXnHGsI160ltWE9h6wZGhbdSbm0dQ/paSGabr4Sq7Ilsy/0UKcXjySmZRPFBU8jPyic/9i9PRETkgBaTa7DMzIDzgZNi0Z6IyP5szKgRvHbinUx95UrS/3oMS/JPIlj6cZJyhuOSMnChAC3NjYQaq3BNlVhTJd7mSjLaKikMbaPI1TDWHGOj7QXxUOktpiZ9DCtyPoan8GAyRk6gsGwKecNGU+7xxPX1ioiIHEhicg2WmR0H/LZ9DGJ0iOBSYBVQD/zYOfd6N9teBVwFMHr06CPWr18/4HhERBLByg9XsvGJGzm8/iXyrbHb9RpIp86TR2NyIU1powhll5JUUEbOiLEUlh5MdtFo8KpmkYiIyL7U3TVYvSZYZvYiMLyLRT9yzj0eXefPwGrn3G+i0ylApnOuysyOAB4DJjvn6rtop4OKXIjIgajVH2TrhtU01+3A428EXwoZGRlk5BSRXTiCpJT0eIcoIiIiu9nrIhfOuVN6adgHfAY4otM2bUBb9PkCM1sDjAeUPYmI7CY12Uf5uEOAQ+IdioiIiAxQLAbmnwKscM5tap9hZkVm5o0+Pwg4GFgbg32JiIiIiIgMWbEYtH8BMGe3eccBvzCzABAGrnbOVcdgXyIiIiIiIkPWgBMs59zlXcx7GHh4oG2LiIiIiIgkkphUEYwVM6sEhloZwUJgZ7yDkH1G5/vAoXN94NC5PrDofB84dK4PLEPxfI9xzhXtPnNIJVhDkZnN76o6iOyfdL4PHDrXBw6d6wOLzveBQ+f6wJJI51t3nxQREREREYkRJVgiIiIiIiIxogSrd3fGOwDZp3S+Dxw61wcOnesDi873gUPn+sCSMOdb12CJiIiIiIjEiHqwREREREREYkQJloiIiIiISIwoweqBmZ1uZivNbLWZfT/e8UjsmFmpmb1iZsvMbKmZfTM6P9/MXjCzD6M/8+Idq8SGmXnN7H0zezI6XW5mb0ff3w+YWXK8Y5TYMLNcM3vIzFaY2XIz+5je2/snM7su+jd8iZnNMbNUvbf3H2b2NzPbYWZLOs3r8r1sEX+InvdFZnZ4/CKX/urmXP86+nd8kZk9ama5nZb9IHquV5rZaXEJugdKsLphZl7gj8AZwCTgQjObFN+oJIaCwLedc5OAo4GvRs/v94GXnHMHAy9Fp2X/8E1geafp/wNucc6NA2qAL8QlKhkMvweedc4dAhxK5Lzrvb2fMbNRwDeAGc65KYAXuAC9t/cndwOn7zavu/fyGcDB0cdVwJ/3UYwSG3ez57l+AZjinJsGrAJ+ABD9vHYBMDm6zZ+in9uHDCVY3TsSWO2cW+uc8wP3A+fEOSaJEefcVufce9HnDUQ+gI0ico7/EV3tH8Cn4xKgxJSZlQCfAv4anTbgJOCh6Co61/sJM8sBjgPuAnDO+Z1ztei9vb/yAWlm5gPSga3ovb3fcM69BlTvNru79/I5wD9dxFtArpmN2CeByoB1da6dc88754LRybeAkujzc4D7nXNtzrl1wGoin9uHDCVY3RsFbOw0vSk6T/YzZlYGHAa8DRQ757ZGF20DiuMVl8TU74DvAuHodAFQ2+kPt97f+49yoBL4e3RI6F/NLAO9t/c7zrnNwM3ABiKJVR2wAL2393fdvZf1uW3/diXwTPT5kD/XSrDkgGZmmcDDwLXOufrOy1zkHga6j0GCM7MzgR3OuQXxjkX2CR9wOPBn59xhQBO7DQfUe3v/EL325hwiSfVIIIM9hxjJfkzv5QODmf2IyKUd98U7lr5SgtW9zUBpp+mS6DzZT5hZEpHk6j7n3CPR2dvbhxREf+6IV3wSM8cAZ5tZBZGhvicRuUYnNzqsCPT+3p9sAjY5596OTj9EJOHSe3v/cwqwzjlX6ZwLAI8Qeb/rvb1/6+69rM9t+yEzuxw4E7jIfXTz3iF/rpVgde9d4OBoNaJkIhfTPRHnmCRGotfg3AUsd879ttOiJ4DLos8vAx7f17FJbDnnfuCcK3HOlRF5H7/snLsIeAX4bHQ1nev9hHNuG7DRzCZEZ50MLEPv7f3RBuBoM0uP/k1vP9d6b+/funsvPwFcGq0meDRQ12kooSQgMzudyPD+s51zzZ0WPQFcYGYpZlZOpLDJO/GIsTv2UTIouzOzTxK5dsML/M05d2N8I5JYMbNZwOvAYj66LueHRK7DehAYDawHznfO7X6BrSQoMzsB+I5z7kwzO4hIj1Y+8D5wsXOuLY7hSYyY2XQiBU2SgbXAFUS+UNR7ez9jZj8HZhMZPvQ+8EUi12Lovb0fMLM5wAlAIbAd+BnwGF28l6NJ9m1Ehok2A1c45+bHIWzZC92c6x8AKUBVdLW3nHNXR9f/EZHrsoJELvN4Zvc240kJloiIiIiISIxoiKCIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYgMMWZWZmbOzHzxjkUODGa21MxOiHccIiL7AyVYIiKS8MzsdjNrjD78ZhboNP1MvOMb6pxzk51zc2PZppmdb2b/NbNmM4tp2yIiQ5k55+Idg4jIfsXMfM654AC2LwPWAUkDaedAZWY3AOOccxd3sWxA52ZfSqRYu2JmpwD5wCHASc65E+IbkYjIvqEeLBGRGDCzCjP7npktAprMzGdmR0e/wa81sw86D8Eys7lm9r9m9o6Z1ZvZ42aW303bV5jZcjNrMLO1Zvbl3ZafY2YLo+2sMbPTo/NzzOwuM9tqZpvN7Jdm5u3ldYw1s5fNrMrMdprZfWaW22lZtZkdHp0eaWaV7a/LzM6ODjWrjb6+ibsdn++Y2SIzqzOzB8wstf9Huv+6OTfOzMZ1WuduM/tlp+kzo8e0NnoOp/VxXyeY2SYz+2H0+FWY2UWdln/KzN6PnquN0WSwfVn70NAvmNkG4OXo/H+b2bbocXvNzCbvFvefzOyZaG/dG2Y23Mx+Z2Y1ZrbCzA7r4zE6pS+vsa+ccy865x4EtsSyXRGRoU4JlohI7FwIfArIBYqBp4BfEvkW/zvAw2ZW1Gn9S4ErgRFAEPhDN+3uAM4EsoErgFs6JTlHAv8Ero/u9zigIrrd3dF2xwGHAacCX+zlNRjwv8BIYCJQCtwA4JxbA3wPuNfM0oG/A/9wzs01s/HAHOBaoAh4GviPmSV3avt84HSgHJgGXN5lAGazoolNd49ZvbyGrnScm956haIJyd+ALwMFwB3AE2aW0sd9DQcKgVHAZcCdZjYhuqyJyHnPjcZzjZl9erftjydy7E+LTj8DHAwMA94D7ttt/fOBH0f32Qa8GV2vEHgI+G0f4+6SmX2/p/MxkLZFRPZHSrBERGLnD865jc65FuBi4Gnn3NPOubBz7gVgPvDJTuvf45xb4pxrAn4CnN9VD5Nz7inn3BoX8SrwPHBsdPEXgL85516I7mezc26FmRVH93Wtc67JObcDuAW4oKcX4JxbHW2rzTlXSeTD+fGdlv8FWA28TSQx/FF00Wzgqei2AeBmIA34+G7HZ4tzrhr4DzC9mxjmOedye3jM6+k1dKPzuenNVcAdzrm3nXMh59w/iCQuR/djfz+JHsNXiSTa5wM45+Y65xZHz9UiIknp8btte0P0nLVEt/mbc67BOddGJNk91MxyOq3/qHNugXOuFXgUaHXO/dM5FwIeIJJc7zXn3K96Oh8DaVtEZH+kBEtEJHY2dno+Bvjcbt/0zyKSlHS1/nogiUivwy7M7Awzeys6PK+WSOLUvl4psKaLWMZE29vaaf93EOkF6ZaZFZvZ/dEhhfXAvV3E9BdgCnBr9EM/RHq81rev4JwLR1/fqE7bbev0vBnI7CmWGNvY+yodxgDf3u3clRJ5jX1RE02a261v39bMjjKzV6JDK+uAq9nz+HbEamZeM/uVRYZ+1vNR72TnbbZ3et7SxfS+PM4iIgc8JVgiIrHTuWrQRiI9VJ2/7c9wzv2q0zqlnZ6PBgLAzs4NRoelPUykR6g42mPwNJGhfO37GdtFLBuJ9LoUdtp/tnNuchfrdvY/0dcx1TmXTaQnrn1fmFkm8DvgLuAG++i6sS1EEpP29Sz6+jb3sr89mNmx9lEFwK4ex/beyh52r+jUDKR3mh7e6flG4Mbdzl26c25OH/eVZ2YZnaZH89F1SP8CngBKnXM5wO10Or5dxPp54BzgFCAHKIvO332bQRO9nqzb87Gv4hARSRRKsEREBse9wFlmdlq0FyI1WgChpNM6F5vZpOj1TL8AHooO6+osGUgBKoGgmZ1B5FqqdncBV5jZyWbmMbNRZnaIc24rkaGEvzGz7OiysWa2+3C03WUBjUCdmY0icm1XZ78H5jvnvkhk6Nvt0fkPAp+KxpEEfJtIgvff3g7U7pxzrzvnMnt4vN7fNruwEPh89Nyczq7D9P4CXB3tbTIzy7BIcYos6CgscXcv7f/czJKjyeCZwL+j87OAaudca/T6uc/30k4WkeNYRSQh/J9+vMaYcM79T0/no7vt2n/vAR/gib4HkvZd5CIi8aEES0RkEDjnNhLpefghkeRoI5FkpfPf3XuIFKLYBqQC3+iinYbo/AeBGiIfyJ/otPwdooUvgDrgVT7qSbqUSIK2LLrtQ+w6RLErPwcOj7b1FPBI+wIzO4dIkYprorO+BRxuZhc551YS6e26lUgv3FnAWc45fy/7i5dvEomxFrgIeKx9gXNuPvAl4DYix201uxbkKAXe6KHtbdHtthApSHG1c25FdNlXgF+YWQPwUyLntSf/JDLEcDOR8/hWby9sCLmEyBDFPxO5ZrCFSPIqIrJf032wRETiwCI3Xr3XOffXeMcifRetivgBMC1azGP35ScQOa8luy8TEZEDgy/eAYiIiCSKaI/cxF5XFBGRA5aGCIqIHGDM7PZuChbc3vvWkojMbHQPhSpGxzs+EZH9iYYIioiIiIiIxIh6sERERERERGJkSF2DVVhY6MrKyuIdhoiIiIiISI8WLFiw0zlXtPv8IZVglZWVMX/+/HiHISIiIiIi0iMzW9/VfA0RFBERERERiRElWCIiIiIiIjGiBEtEpI+CoTAPLdhEXfMe95cVERERAYbYNVhdCQQCbNq0idbW1niHIgkmNTWVkpISkpKS4h2K7CeeXrINz2NfZu4b4znnG7fEOxwREREZgoZ8grVp0yaysrIoKyvDzOIdjiQI5xxVVVVs2rSJ8vLyeIcj+4lla9bzfe88qJ5HsPZ6fLkj4x2SiIiIDDFDfohga2srBQUFSq6kX8yMgoIC9XxKTGVufbvj+Y6Fz8QxEhERERmqhnyCBSi5kr2i3xuJtZyGVQC0uSSa1rwV52hERERkKEqIBEtEZCjwBRtps1QWcAiZOxfGOxwREREZgpRg9YGZ8e1vf7tj+uabb+aGG26IX0CdvPXWWxx11FFMnz6diRMndsQ1d+5c/vvf/w6o7dNPP53c3FzOPPPMGEQqkvhSgo20eTPYnj6OgpZ1EA7FOyQREREZYpRg9UFKSgqPPPIIO3fujGm7zjnC4fCA2rjsssu48847WbhwIUuWLOH8888HYpNgXX/99dxzzz0DakNkf+GcIyXURMCXSSD3YJIJQN3GeIclIiIiQ8yQryLY2c//s5RlW+pj2uakkdn87KzJPa7j8/m46qqruOWWW7jxxht3WVZZWcnVV1/Nhg0bAPjd737HMcccww033EBmZibf+c53AJgyZQpPPvkkAKeddhpHHXUUCxYs4Omnn+a2227jmWeewcz48Y9/zOzZs5k7dy433HADhYWFLFmyhCOOOIJ77713j+uKduzYwYgRIwDwer1MmjSJiooKbr/9drxeL/feey+33norhxxySLdxrlmzhtWrV7Nz506++93v8qUvfQmAk08+mblz5/Z4bP7973/z85//HK/XS05ODq+99hqtra1cc801zJ8/H5/Px29/+1tOPPFE7r77bh577DGampr48MMP+c53voPf7+eee+4hJSWFp59+mvz8fP7yl79w55134vf7GTduHPfccw/p6em77Pfoo4/mrrvuYvLkyLk74YQTuPnmm5kxY0aP8YrsrbZgmAxaCCZlkjx8PGyFps3Lycgri3doIiIiMoSoB6uPvvrVr3LfffdRV1e3y/xvfvObXHfddbz77rs8/PDDfPGLX+y1rQ8//JCvfOUrLF26lPnz57Nw4UI++OADXnzxRa6//nq2bt0KwPvvv8/vfvc7li1bxtq1a3njjTf2aOu6665jwoQJnHvuudxxxx20trZSVlbG1VdfzXXXXcfChQs59thje4xz0aJFvPzyy7z55pv84he/YMuWLX0+Lr/4xS947rnn+OCDD3jiiScA+OMf/4iZsXjxYubMmcNll13WUc1vyZIlPPLII7z77rv86Ec/Ij09nffff5+Pfexj/POf/wTgM5/5DO+++y4ffPABEydO5K677tpjv7Nnz+bBBx8EYOvWrWzdulXJlQyqhtYgmdZCODmL/NFTAKjesDTOUYmIiMhQk1A9WL31NA2m7OxsLr30Uv7whz+QlpbWMf/FF19k2bJlHdP19fU0Njb22NaYMWM4+uijAZg3bx4XXnghXq+X4uJijj/+eN59912ys7M58sgjKSkpAWD69OlUVFQwa9asXdr66U9/ykUXXcTzzz/Pv/71L+bMmdNlr1NPcZ5zzjmkpaWRlpbGiSeeyDvvvMOnP/3pPh2XY445hssvv5zzzz+fz3zmMx2v6etf/zoAhxxyCGPGjGHVqkj1tRNPPJGsrCyysrLIycnhrLPOAmDq1KksWrQIiCRhP/7xj6mtraWxsZHTTjttj/2ef/75nHrqqfz85z/nwQcf5LOf/Wyf4hXZWw2tATJpwSVnMbqklFqXQdv2lfEOS0RERIaYhEqw4u3aa6/l8MMP54orruiYFw6Heeutt0hNTd1lXZ/Pt8v1VZ3vx5SRkdGn/aWkpHQ893q9BIPBLtcbO3Ys11xzDV/60pcoKiqiqqpqj3W6ixP2LGfen/Lmt99+O2+//TZPPfUURxxxBAsWLOhx/c6vyePxdEx7PJ6O13f55Zfz2GOPceihh3L33Xd3mTCOGjWKgoICFi1axAMPPMDtt9/e55hF9kZLIESuNeNSshiVn85iN5LCmjXxDivhOeeoavJTmJnS+8oiIiIJYMBDBM2s1MxeMbNlZrbUzL4ZnX+DmW02s4XRxycHHm585efnc/755+8yZO3UU0/l1ltv7ZheuHAhAGVlZbz33nsAvPfee6xbt67LNo899lgeeOABQqEQlZWVvPbaaxx55JF9jumpp57COQdEhh56vV5yc3PJysqioaGh1zgBHn/8cVpbW6mqqmLu3LnMnDmzz/tfs2YNRx11FL/4xS8oKipi48aNHHvssdx3330ArFq1ig0bNjBhwoQ+t9nQ0MCIESMIBAId7XRl9uzZ3HTTTdTV1TFt2rQ+ty+yN/zBMFlEhggmeT1sSyolp6ki3mElvH/8t4Kv/8/vWTz3oXiHkvDueHUNj72/Od5hJLwV2+q56dkVtAZUJVRE9k4srsEKAt92zk0Cjga+amaTostucc5Njz6ejsG+4u7b3/72LtUE//CHPzB//nymTZvGpEmTOnpSzjvvPKqrq5k8eTK33XYb48eP77K9c889l2nTpnHooYdy0kkncdNNNzF8+PA+x3PPPfcwYcIEpk+fziWXXMJ9992H1+vlrLPO4tFHH2X69Om8/vrr3cYJMG3aNE488USOPvpofvKTnzBy5Eggkvx97nOf46WXXqKkpITnnnsOiAxLbL/e6vrrr2fq1KlMmTKFj3/84xx66KF85StfIRwOM3XqVGbPns3dd9+9S89Vb/7f//t/HHXUURxzzDEccsghHfOfeOIJfvrTn3ZMf/azn+X+++/vqJwoMpjaAiEyaYGULAAaMsrICVVBa2wL7xxo/rNoK3OSb2Tq3C9Ac3W8w0lYO+pb+b9nltHw8Ddoe+PP8Q4nod341HLumLuKhj+dDO/8Jd7hiEgCsvbej5g1aPY4cBtwDNDonLu5r9vOmDHDzZ8/f5d5y5cvZ+LEiTGNUT6ye7XD/Y1+fyRW5i2tYNa/D2XTjB9Qcub3ue/vt3LR+h/Dl1+DEYfGO7yE9cn/eZin/VdGJj71G5jZe6Eg2dNzS7fxv/c+ydyU6D0bv/E+5B8U36AS1IxfvsjRzXO5LTk66uNntdCPofMicuAwswXOuT2qrMW0iqCZlQGHAW9HZ33NzBaZ2d/MLK+bba4ys/lmNr+ysjKW4YiIxEyoNTLk1lIyAUguGgtA83Zdh7W3WgMhSpoWd0z7N74Xx2gS27a6Vsps20czNrzd/crSLX8wzM7GNj7u6VQhtGp1/AISkYQUswTLzDKBh4FrnXP1wJ+BscB0YCvwm662c87d6Zyb4ZybUVRUFKtwpI9uuOGG/bb3SiSWQv5IoRpvcuSebLkjxwFQv2VV3GJKdHUtAYZRC8DycCnBzQvjGk8i29nYxkGeTgnWxrfiF0wC214feZ+XpnSqBrz1gzhFIyKJKiYJlpklEUmu7nPOPQLgnNvunAs558LAX4C+V24QERligv4WALzJkUqcI4cXU+0y8VeujWdYCa3ZHyKXyAfZ/4ankFK9EkKBOEeVmCob2piQtJNmS2eRdzLsWBHvkBLStmiCVZbaxNvhQ3Dmgx3LetlKRGRXsagiaMBdwHLn3G87zR/RabVzgSUD3ZeISLyEA+09WJEEa3R+OhtcMVZbEceoEltTW5BcayToS2c1pXhdEOo2xjushLSzsY3RvmoaUkeyMjAMV62hq3ujoTWS4Oe7Ora6fOozy2C7EiwR6Z9Y9GAdA1wCnLRbSfabzGyxmS0CTgSui8G+RETion2IYFJK5EbjWalJbPMOJ71JCcHeitxbrIlgci4tWWMiM6u7vqWF9Kyy0U+OpxVLzWZNqBhrqlSFy73Q1BYpzZ7mr2Kny2FbchlUfRjfoEQk4Qz4RsPOuXlAV+V19ouy7CIi8FEPli/5o5t116eVkNv8JoSC4NV92/urqS1ILg2EU3Mh9SBoAWqUYO2NxtYA6bSRnFbMOhe91Uf1Ghh5WHwDSzAt/hDptOIJtuBPLWSjCzKh9lUIh8DjjXd4IpIgYlpFcH/22GOPYWasWNH9uPaKigqmTJkSs32uXLmSE044genTpzNx4kSuuuoqIHKT4KefHlj+euWVVzJs2LCYxiuyP3OBXXuwAALZY/AS1rC2vdTij/RgubR8coaV0EqSerD2Uos/RBotpGRkUdGeYFVpmGB/NfuDFFodAJ7MYaz0F0E4APVb4hyZiCQSJVh9NGfOHGbNmsWcOXO6XB4MBge8j1Bo17vGf+Mb3+C6665j4cKFLF++nK9//etAbBKsyy+/nGeffXZAbYgcSMLBNgC8SR/dNNuTXw5AqEpJwd7oKHKRlkdpQSYbwsPw71TRkL3RHAiREm4lJT2bLZ72Hiwdy/5q8ofIoQmA9JwiFjfnRhbUVMQtJhFJPIk1puWZ78O2xb2v1x/Dp8IZv+pxlcbGRubNm8crr7zCWWedxc9//nMA5s6dy09+8hPy8vJYsWIFzz//PMFgkIsuuoj33nuPyZMn889//pP09HReeuklvvOd7xAMBpk5cyZ//vOfSUlJoaysjNmzZ/PCCy/w3e9+lwsuuKBjv1u3bqWkpKRjeurUqfj9fn7605/S0tLCvHnz+MEPfsCZZ57J17/+dZYsWUIgEOCGG27gnHPO4e677+bRRx+lrq6OzZs3c/HFF/Ozn/0MgOOOO46KiooeX/err77KN7/5TQDMjNdee43MzEy++93v8swzz2Bm/PjHP2b27NnMnTuXn/3sZ+Tm5rJ48WLOP/98pk6dyu9//3taWlp47LHHGDt2LP/5z3/45S9/id/vp6CggPvuu4/i4uJd9nvBBRdwySWX8KlPfQqIJINnnnkmn/3sZ/t2TkUGQXsPlvk+6sHKKB4Hy6BuyyryDz4pXqElrGZ/pMiFJyOf0fnprHfDKd2pXpe90ewPkZLSgiclk/zcXGraishTD1a/tfhDZFjky5TcvFyWrEqFFCJDV8uPjW9wIpIw1IPVB48//jinn34648ePp6CggAULFnQse++99/j973/PqlWRe+GsXLmSr3zlKyxfvpzs7Gz+9Kc/0drayuWXX84DDzzA4sWLCQaD/PnPf+5oo6CggPfee2+X5Arguuuu46STTuKMM87glltuoba2luTkZH7xi18we/ZsFi5cyOzZs7nxxhs56aSTeOedd3jllVe4/vrraWqKfAP3zjvv8PDDD7No0SL+/e9/M3/+/D6/7ptvvpk//vGPLFy4kNdff520tDQeeeQRFi5cyAcffMCLL77I9ddfz9atWwH44IMPuP3221m+fDn33HMPq1at4p133uGLX/wit956KwCzZs3irbfe4v333+eCCy7gpptu2mO/s2fP5sEHHwTA7/fz0ksvdSRbInET7cHCl9wxq3DEGNqcjxbdbHivNPtDZNOENz2XMQUZrHfDSKrfAM7FO7SEEgo7/MEwSeEWSM6gNC+djTYicg2W9EuzP0ReUqSSYFFeHltdQaRUu3qwRKQfEqsHq5eepsEyZ86cjp6cCy64gDlz5nDEEUcAcOSRR1JeXt6xbmlpKccccwwAF198MX/4wx/4xCc+QXl5OePHjwfgsssu449//CPXXnstEEkounLFFVdw2mmn8eyzz/L4449zxx138MEHe97w8Pnnn+eJJ57g5ptvBqC1tZUNGzYA8IlPfIKCggIAPvOZzzBv3jxmzJjRp9d9zDHH8K1vfYuLLrqIz3zmM5SUlDBv3jwuvPBCvF4vxcXFHH/88bz77rtkZ2czc+ZMRoyIVOcfO3Ysp556KhDpeXvllVcA2LRpE7Nnz2br1q34/f5djl27M844g29+85u0tbXx7LPPctxxx5GWlrbHeiL7kutIsD4qclFamMUmV0SyrhvaKy2tbSRbiHBKJqX5aax3xfhCLdC4HbKGxzu8hNESCJFEEJ8LQHIGJXlprN48jGnV78c7tITT7A+S6wtACIoK8glRSXP6SDKUYIlIP6gHqxfV1dW8/PLLfPGLX6SsrIxf//rXPPjgg7joN6wZGRm7rB+5LVj3013ZvY3ORo4cyZVXXsnjjz+Oz+djyZI9byfmnOPhhx9m4cKFLFy4kA0bNjBx4sS9jqfd97//ff7617/S0tLCMccc02OBD4CUlE7Xpng8HdMej6fjGrWvf/3rfO1rX2Px4sXccccdtLa27tFOamoqJ5xwAs899xwPPPBAtwmoyL5koT0TrBE5qWykmOSGDXGKKrEFWyM3GfakZJCe7KM2ZVRkgRLWfmn2B0kj+rc0OZPS/HRW+wuguQraGuMbXIJp9ofI8foBKC7MB6AmeaR+J0WkX5Rg9eKhhx7ikksuYf369VRUVLBx40bKy8t5/fXXu1x/w4YNvPnmmwD861//YtasWUyYMIGKigpWr14NwD333MPxxx/f676fffZZAoHIUIVt27ZRVVXFqFGjyMrKoqGhoWO90047jVtvvbUj6Xv//Y++tXzhhReorq7uuA6qvXetL9asWcPUqVP53ve+x8yZM1mxYgXHHnssDzzwAKFQiMrKSl577TWOPPLIPrdZV1fHqFGRD1H/+Mc/ul1v9uzZ/P3vf+f111/n9NNP73P7IoOmvQfL+9EQQZ/XQ1XySLJbNmlY214ItEWGMpMU6aEO5UTvhVWrhLU/WvwhMoj+fkZ7sDa6osh07fr4BZaAmv0hsryR/7tZmTnkpCWxxVOsIYIi0i9KsHoxZ84czj333F3mnXfeed1WE5wwYQJ//OMfmThxIjU1NVxzzTWkpqby97//nc997nNMnToVj8fD1Vdf3eu+n3/+eaZMmcKhhx7Kaaedxq9//WuGDx/OiSeeyLJly5g+fToPPPAAP/nJTwgEAkybNo3Jkyfzk5/8pKONI488kvPOO49p06Zx3nnndQwPvPDCC/nYxz7GypUrKSkp4a677gLg9ttv5/bbbwfgd7/7HVOmTGHatGkkJSVxxhlncO655zJt2jQOPfRQTjrpJG666SaGD+/7UJ4bbriBz33ucxxxxBEUFhZ2zJ8/fz5f/OIXO6ZPPfVUXn31VU455RSSk5O7akpkn+qqBwugOaOUtHATtNTEIarEFu5IsCK9+CmF7QmWkoL+aPaHSLf2Hqz2BGtYZFrJar80+4NkR3uwSE6nND+NdaEiaKmG1rr4BiciCSOxrsGKg/Zrhzr7xje+0fH8hBNO6HheVlbW7TC6k08+eZeepXY9VfL77W9/y29/+9s95ufn5/Puu+/uMu+OO+7oso2SkhIee+yxPeZ3lyB2TvzaC1Ps7te//jW//vWvd5l3wgkn7HIs5s6d2+Wyc845h3POOWePNmfMmMFf//rXjumkpCSqq6u73L9IPHhCbYTw4N3thsIudwzUEakylp4fn+ASVEeClZwOwPCCXLavyqWoZr2+/euHlkCIjPYhgknRIhftPVg1Slb7o9kfItMTTbB8aZTmpbNiU/R9XbshUnlYRKQX+h8mItIHFvITsKQ95icVjQWgdYcqtvWX8+86RDCSGAwjsFPXu/RHpLT4Rz1YhZkpNPhy8XtS1RvYTx1l2pPSweOhJC+NxY05kYXqDRSRPlKCtR+7/PLLue222+Idhsh+wRtuI8iew1WzR4wDoGHrh/s6pITn/M2RJ9EhgqX5aWxyhTh9kO2XZn+IdD5KsDweoyQvnZ2+YiUF/dQcCJLZnmABpfnprAlGKvGqN1BE+iohEiyni8dlL+j3RmLJE/YT9OyZYI0aVsgOl4u/cm0cokpsLtCeYEV6sEqiPVjJTVsgFIxjZIml2R/sVOQiE4gcy81umJKCfmpuC5FmbR3DVkvz0qkhi5AvXcmqiPTZkE+wUlNTqaqq0odl6RfnHFVVVaSmpva+skgfeMN+grZngjU6P50NbhhWW7Hvg0pw3mA0wUqO9GCNzE1lsyvC40LQsCWOkSWWlt2KXACU5qWxOlAQGSKo/5991uwPkeZaOxLV0vw0wGhMG6XhliLSZ0O+yEVJSQmbNm2isrIy3qFIgklNTaWkpCTeYch+whv2E/TueQ1WXnoSm62YcU2r4hBVYvMEWyJPosOxUnxemtJHQYBIz0vu6PgFl0Ca/Z2KXEQTrJK8dNYECoB6aK2FtLy4xZcowmFHSyBEKh8NESzJi/ysThpOjnqwRKSPhnyClZSURHl5ebzDEJEDXJLzE/Kk7DHfzGhILSG7bV7kXlm+PdeRrnkCLZFxFNEhggAupxR2ouFY/dAS2PUaLIj0vCzsXElQCVavWgIhAFJcKyRnA5Ca5KUoK4XNDKO8ZmGkN9AsjlGKSCIY9CGCZna6ma00s9Vm9v3B3p+IyGDwOT8hz549WAD+7NF4cFC7cR9Hlbicc/jC0R6saFIAkFY4hhAeDcfqh/bKd86bAtFe1tK8dDZ13AtLx7Ivmv3RBCvc0lF4BSLDLdcFC8DfoPvdiUifDGqCZWZe4I/AGcAk4EIzmzSY+xQRGQw+FyDcRQ8WgOVHetldtQpd9FVrIEwabYTxgveja9tGFOSw3eURqlZS0FfN/hDZXj/WKVGN3GxY98Lqj5ZogpUUbu0ocgGRSoLLW6M9gEpWRaQPBrsH60hgtXNurXPOD9wP7HmXWRGRIS7J+Ql79yxyAZBeHLkXVuO21fsypITW7A+Shp+gN3WXIVel0cQgUKV7YfVVSyBItqetozADQH5GMsHkbFq9mRpu2UdN/kjlyqRQS8c1WBDpDVzUlBuZULIqIn0w2AnWKKDzmJlN0XkdzOwqM5tvZvNVyEJEhiLnHEk99GAVjRhNi0umebtuNtxXzf4QabQS8qXtMr8kL51NrkhJQT80+0Nketp26XUxM0ry0tjhHa5elz5qHyLoC7XsMmy1ND+NDaHCyIR+L0WkD+Jept05d6dzboZzbkZRUVG8wxER2UMg5EghgOumgMXoggw2uGGEqzREsK+a/SHSrY2wL32X+ZGbDReR0rwNgv44RZdYWvyhyM1xOyUFEOl52eiK1OvSR5Ehgi5y+4DderDqySCYnK1kVUT6ZLATrM1Aaafpkug8EZGE4Q+FSSGwy7VCnZXkpbPBFZNUr2+3+6p9iKDbrQdreHYqmxmG4aB+U5yiSywtgRAZ1rpngpWfzmp/Aa52g+6F1QfN/iDJBDEX2uMaLICG1JHqwRKRPhnsBOtd4GAzKzezZOAC4IlB3qeISEz5g2GSLYDzdn3j6tQkLzuTRpDVulkfZPsoMkSwDZe0aw+Wz+uhJSM6klw9L33S7I+Wae90DRZECl2sDRZgwRZo0hD83rT/TgK7VBEckZOK12Ps9A3X76SI9MmgJljOuSDwNeA5YDnwoHNu6WDuU0Qk1vzBaA+Wr+seLICmjJJIeWd9kO2T9iGClpy+xzLLHRN5ot6CPmn2h0hze/ZglbQPEQQlBn0QSVSjCVan30uf18OInFQ2t18bqC9RRKQXg34NlnPuaefceOfcWOfcjYO9PxGRWPMHwyQTBF/XPVgA4dzoDdGrVf2uLyJDBLtOsDIKSwnqXlh91uIPkupauhgimMZG3Qurz5r9QdItesPmpD2vZ1sdLAD1BopIH8S9yIWIyFDnDwZJwd9jD1ZSQSTBCqrQRZ+0D8fypGTssWxkfhZbwgW6F1YfNftDpLiuhgims8m1V7/TsezNLkMEk/csvrKsOTcyoZ5VEemFEiwRkV60Bfx4zWE99GBljxhL2BkNW3UvrL5oaguSbm14k/dMsErzI6Xa/TvVG9gXrYFAZHjqbscyJy2JpNRMGn25GiLYB5EbNgciE11UZFzSHL3ZcE3Fvg1MRBKOEiwRkV4E2iLDhiyp+wRrVFEe28jDX6l7YfVFS7S3wJvaVYIVGdrmqdvYxZayO+dviTzpIlktyUtnu0f3wuqLFn+QvKRogrX7EMFo0g/oWIpIr5RgiYj0ItgW+QDr6eY+WACj8yOl2q22Yh9FldiaA9EEq4shgu1D21Jad0CgJQ7RJQ5/MExKuP26oT2vZyvNT2NDWDdu7osmf4hcb/Tea10MEWwmFX9Kno6liPRKCZaISC+C/sgHWG9y9z1YxdmpbKKYtEb1uvRFa2sryRbqMikoykxhmydanKFO98LqSYs/9FFhht2uwYJocQZ/Pq52I4RD+zi6xNLiD5Hta+/B2i3ByotM16eM1HBLEemVEiwRkV6EogmWp4chgl6P0Zg2iqzATvA376vQElawtSnypIsEy+Mx2jKj96jXh9keNfqDZNCeYHXVG5jGulAhFg5Aw9Z9HF1iafYHyenowdr1WBZlpZDi81DpG64eLBHplRIsEZFehKLD1LxJaT2uF8wpizzRB7BehdqiCVYXZdoByCuL/KxRoYueNLcFIzcZhi4TrNEFne6Fpd/LHjX5Q2R7uu4NNDNK8qLDLes2QjgchwhFJFEowRIR6UXIHynd7E3u/hosgKSigyLrq1R7r8JtjZEnXfRgAWQVltBMClSpaEhPGtuCZPQwRLCsIEM3G+6jprYg2Z42MA908WVKSV46qwP5EPJDw5Y4RCgiiUIJlohIL8LRKm3e5J57sHJGjgegfsuHgx5Togu1V77rJsEqLcigIjycwE6Vve9Jsz9Eese9m7ouGLKNQhym6ne9aGoLkmWtkJwFZnssL81PY1FTfmSiWl+iiEj3lGCJiPQiFIj0ECT1UOQCYNTIUTS4NJq2K8HqVVtD5GfKnr0uAGPy06lwxYR3qgerJ41tPV+DlezzUJSXTa2vUPdv6kWTPxTpDezmd7I0L52lbdHeQCVYItIDJVgiIr1oryKYktZzD1ZZYSYb3TBcdcU+iCqxmb89wcrucnl5UQYVbjhJ9RshFNyHkSWWZn+wxyqCEB0maCM03LIXTW1BMmjp9jiW5qezxRUQ9iTrWIpIj5RgiYj0or0HK7mXIYKFmclstmJSG1RMoDe+QPQarJSsLpePyc+gwhXjcYFIUQHpUmNbqMceLIAxBemsDBRDlYZbdiccdjT7Q6S5lh57sMJ4aM4oVQ+WiPRICZaISC9ctOKdp5sPXu3MjIb0EnLatqjKWC+8vSRYacleGtNHRyaq1VvQnea2SA+Ww7oszACRHqwVgWHQUg3N1fs4wsTQ5I/0kqaFm7vtwRqdH7lecGdKiXqwRKRHSrBERHoTaC8p3nUPQWfB7DEkE4DGbYMcVOLyB8OkhqP3CusmwQKgYGzkZ7VKtXenqS1IJq2RpKCLwgwQSbDWuRGRCSUGXWpqi9yEOSXc3O3vZE56ErnpSZHhljXr9CWKiHRLCZaISC/M397b0nMPFoCvMFKqva1SH2S709QWJNNaor0u3SetecNKVaq9F03+EPneFiwtt9t1ygrTOyVYGibYlfYerORQ9z1YEElWVwWGQbAV6jfvq/BEJMEMKMEys1+b2QozW2Rmj5pZbnR+mZm1mNnC6OP2mEQrIhIHnkC0t6WHZKBd1sgJANRsXD6YISW0xrYgWbQQ9GWAp/t/Q+VFmVSEh+OvVFLQnaa2IHmeZkjN6Xadkrx0NlFEGK8SrG40tUUSLF+ouccvUsoK0lnYVBCZ0NBVEenGQHuwXgCmOOemAauAH3RatsY5Nz36uHqA+xERiRtfsIkWUntMBtoNLz2YNpdE85YV+yCyxNTYFiSTFoJJPfcIlhdmqFR7L5r8IXKspccEKzXJy7CcLHYmjVCC1Y3G9gQr2NRzD1ZhBgsao/fCUs+qiHRjQAmWc+5551x7/dy3gJKBhyQiMrR4g820eXquINiubFgWFa4Y04evbjVGhwiGe/ggC5EPsxVuOMkNG1SqvRtNbUGyranHBAsiwwTXq1R7t5raQiQTwBMO9NKDlcFWl0fYm6JKgiLSrVheg3Ul8Eyn6XIze9/MXjWzY7vbyMyuMrP5Zja/srIyhuGIiMRGcqiJ1j4mWFmpSWzxjiK9UR++utPYGunBIrmHAhdEymJvYDgeF1Sp9m7UtQTIouchghCtJOgvwlWvAef2UXSJo64lQA7Ray3T8rpdr6wwA4eHpswxSrBEpFu9Jlhm9qKZLenicU6ndX4EBIH7orO2AqOdc4cB3wL+ZWZd3k3SOXenc26Gc25GUVHRwF+RiEiMJYVa8HvS+7x+bfoYCtq2qNelG41tQbKsBUvt+ibD7ZJ90Q+yoJ6XbtQ0+clwjb0mWOWFGawMFGOBZmjYuo+iSxy1zX7yrD3Byu92vbKCyN+BqmSVaheR7vWaYDnnTnHOTeni8TiAmV0OnAlc5FzkazHnXJtzrir6fAGwBhg/aK9CRGQQJYeaCfr6nmAFcw/CRxBq1w9iVImroTVINk1YWs9JAYAVHhx5omuHulTb1Boped9LgnVQUQZrVUmwWzXNfgo80QQrvfsEKzc9mdz0JNbTXqo9tI8iFJFEMtAqgqcD3wXOds41d5pfZGbe6PODgIMB9aWLSEJKCUcr3vVR8vBIJcGmrSsHK6SEVtPsp8DqScoa1uu6+UWjqHfpOCUFewiFHcHWejy4Pg0RXBdWgtWdmuYAo1JaIhM99GABjCnIYGWwGEJ+DV0VkS4N9Bqs24As4IXdyrEfBywys4XAQ8DVzjndPl5EEk4o7Ehzzbg+lGhvl1MyEYBalWrvUk1DM7nWhC+r92HhBw3LZK0bjn/Hqn0QWWKpawmQTfS7zV4SrNL8dCo9+QQ8uq9YV2qb/YxMjiZYPfRgAZQXpPN+e6l2Jasi0gXfQDZ2zo3rZv7DwMMDaVtEZChobAuSbm3U9+Emw+1KR5VQ6zJo26YerK601e+IPEkv6HXd8sIM1rkRTNz54SBHlXiqm/wUUBeZ6OVYJnk9lORlsD0wihIlBXuoaQpQ7Ismq33owbrvg3xIIZKsjjtl8AMUkYQSyyqCIiL7nYbWAJm0YL2UFO+sND+DtW4k3lr1FHQl2LAz8iSjsNd1ywsjQ9tSmrZAoGWQI0ssNc1+iiyaYGUW97p+e7KqXpc91TT7KfQ2gS8Vknu+3rK8MIOdLptQcraOpYh0SQmWiEgPGpuayLIWXB96W9ol+zxUJpeQ3VQxeIElsuZogtWHYzoyJ40NnpGRCZXF3kV1k59hVhuZ6EOCVVaYwbK2IlxNBYQCgxpboqlp9pNvjb32XgGMKUgHjMbMMUqwRKRLSrBERHrQVBsZzubN7L23pbPGzHLygjuhrXEwwkpo3pboJbnpvR9Tj8fw5xwUmdAwwV3UNPkpojYykdGH69kKM/gwVIyFg1C7YXCDSyDhsKOmKUC+q4bM3guvlBdGrsesTC5VgiUiXVKCJSLSg+bq7QCk5vbeQ9CZyx8LQHinPoB15pwjua0qMtGHIYIASUUq1d6VqiY/RVaLSysAX3Kv65cVZrBWlQT3UNXkxx8Kkx/aCTklva6fm55MTlq0VHvtRgi07oMoRSSRKMESEelBa10kwcrMH96v7dJGRkq1125SJcHOqpr8DHM7CVlSn3qwAEYWF7LN5StZ3c22ulZG+uqxrL4l/5FrsKK/x0qwOmyti1zbl9m2HbJH9mmbssIMVgSGAS5yPywRkU6UYImI9CDQUAlAVj8TrMLSSQA0bF4R85gS2eaaFkpsJ60Zo8DTt39B5YUZrA0PJ6BS7bvYUttCibe2T9dfQeR6tiZfDi1eFWfobEttCxm0kBRogOxRfdqmrCCdBY0q1S4iXVOCJSLSg3BjJMHyZvZ+jUtnZSMK2OQKCVUqKehsc20LJVaJyynt8zYHRavfeapVlbGzzbUtjHLbIL+8T+t7PEZZQQZbfKOUFHSyubaVERYdttqHIYIQKdX+bn1eZELHUkR2owRLRKQHnuYqQnggNbdf2w3LSmE9I0mp0/ChzjbXtDDKKkkuGNPnbcoLM1jrRpDkr4Vm3bMeIteyNdRUkhFugPyD+rxdeWEGa0LDdbPhTrbWtlDu61+CVV6YToNLI5g+TAmWiOxBCZaISA9SWrdT58nr83C2dmZGTWopeS3rwblBii7xbN6xkyKrJ6mgrM/b5Gcksy0p+sFXlQQBqGxoo9C/KTIRLajSF2WFGSxpK4L6zeBvGqToEsuaykZmZkR6qikc36dtxhREKgk2ZIxRsioie1CCJSLSg9zWLdSl9u26jN215owl3TVDU2WMo0pcrVuWAmDDDunzNmZGKC+aRKi3AIDVlY2U2bbIRB+HCEJkuOXqUPR6Qt1XDIBV2xuZlrINMoZBeu/3wQIojyZY25NK9DspIntQgiUi0o1mf5DhbjttWX2/XqgzT+E4ANq2r4xlWAnLOUdKVbSqYvHkfm2bPqycIF59mI1ata2BSZ71OG9K/3qwCiLXswE6lkBDa4DNtS2UhTdC0YQ+b5ebnkR2qo8KRkS+QGmpHbwgRSThKMESEenGpspaRlCN5ZXt1faZoyYCULNhWQyjSlyba1soD60j4E2H3LJ+bTumKJf14WGENEQQgEWb6zgiqQKGT+nTPbDalRdlUOGiVQeVYLFyWwM+ghQ1r+5X0m9mlBdmsNwfvTGxCrCISCdKsEREurFj4yo85kgd1vciAp0VjjqINpdE23ZVEgT4YGMdh3lW01o0pd/XtJUXRQpdqFR7xKL1VUxmHTbysH5tV5SZgic5g7qkYbp2CHh7XTWTbD3eUAuUHtWvbccUZLCgMTqkUMdSRDpRgiUi0o36ig8AKDpo+l5tX1qQRYUrxtRTAMA7K9YxxbOOjINP6Pe27aXak2rXQTgc++ASyObaFjKrl5DmmmH0x/q1rZlRXpTBJs9I9WABb62t4lM5FZGJ0Uf3a9uywgzm1+XgzKNjKSK7UIIlItKdbR8QxEt6ydS92rwwM5n1NpL0BpVqd87h/3AuXhyeg47t9/ZjCtJZ60bgDfuhftMgRJg45n1YyXGeRTgMxp7U7+3LCjL4MKTy4q2BEPMraviE730oOgSyR/Zr+7KCdFpdEsGs0gP+WIrIrgaUYJnZDWa22cwWRh+f7LTsB2a22sxWmtlpAw9VRGTfyqtbwbaUMvCl7NX2ZkZVSim5rZshHIptcAlm2dZ6jm59ndak3H73ugBkpSaxMyVabOQAvw7ryQ+2cG7y25EhbX2setfZQYUZLGsthJaaA7o4w0vLd5AWqKG86QM45Mx+b19WGKkkWJc+WgmWiOwiFj1YtzjnpkcfTwOY2STgAmAycDrwJzPzxmBfIiL7xObqBqaEV9BQ2L9rXHbXmjUGH8HIfYcOYA/NW8InPAuwSWeDN2mv2nC50XLkNQduj+CW2hYa1r5NuduIHXrBXrVRXpTB+nC00MUBfCwfWrCRKzL+i7kQTP1cv7cv26VU+xrd705EOgzWEMFzgPudc23OuXXAauDIQdqXiEjMLXnnFbKshdwppwyonfYKhK76wP0gW9cSIGfJP0i3NlI+9uW9bierqIQ2kuAAPpZ3vraWq31PEk7Ohinn7VUbZQUZrG+vJHiAHssV2+r578rNXO59FsbMgn7cl61dXrRU+7rwcPA3QuOOQYhURBJRLBKsr5nZIjP7m5nlReeNAjZ2WmdTdJ6ISEIIrXiaIB6GTzt1QO20VyBs2XHgVhn753P/5Uv2GPVlp0XKiu+l0oJM1oeHET5Ak4LVOxqpeOdJTve8g+fjX4XU7L1qp6wggw0uWl78AOzBcs7xyyeX842Up8jy74Djv7tX7ZgZZYUZLG8riMyoqYhdkCKS0HpNsMzsRTNb0sXjHODPwFhgOrAV+E1/AzCzq8xsvpnNr6ys7O/mIiIxV9fkZ0rNS1RkzcAyCgbUVt7wcoLOQ+O2tTGKLrG8t76KQ977OckeR/Y5Nw2ordH56ax3xQR3HnjH0h8M87MH3+D/+e4imDcWjrl2r9vKTU/Cm5JJgy//gOzBuu/tDdSteYdrPI/C1PPhoOP3uq2yggzeb8yNTByAyaqIdM3X2wrOuT6NjzGzvwBPRic3A6WdFpdE53XV/p3AnQAzZszQAGYRibt3X3qQU2wHG4/44YDbKinMYrMrJKnqwEsKNtU08/4/rucLngW0nvRLkvbyhs3txhRksNgV462dG7nexSwmcQ514bDjRw/N52vbb2CUrxrPuf+EpNS9bs/MKM1PZ3vzcLIOsF6X1z+s5K9PvMIj6bdg6cPgkwNL+ssK0nl+URYuxbAD7FiKSPcGWkVwRKfJc4El0edPABeYWYqZlQMHA+8MZF8iIvtCIBQmf+Ht7PQUUDrrogG3V5qfzgY3DG/d+hhElzg+3FbHK7d9lS+EH6bukAtInfW1AbcZ6cEaFrkpbOP2GEQ59LUGQnznn3M5b9k3+Jh3GZ5z/9Tv+zV1ZXR+OutCww6oHqxnFm/l5n88xIMp/4+8pBB28cOQltf7hj0oK8yIlGrPHKEhgiLSodcerF7cZGbTAQdUAF8GcM4tNbMHgWVAEPiqc+7ArlEsIgnhtZee4uTwYlZN+x6FvuQBt5edmsR273AOa54fg+iGvnDY8fDcdxg191tc4llC9SEXkX/+rTHpbRqWlcJWz/DIRPU6yBo+4DaHsqVb6rj3vrv5TuPvKPY2wLl/hWn9r3bXldEF6az4sIBTgq9iwba9vhVBImjxh/jV00vwvvsXHkx6kKSMfOyiR6B40oDbHhOtJNiYVkLeAZSsikjPBpRgOecu6WHZjcCNA2lfRGRfamhuZeSbP6PKk8/Bnxx4j0tHu+klZDa/CG0NkJIVs3aHmiUV21n06E2cWfsvUrxh6k/5Nfkf/1LMhvJ5PEYguxyaiFzvMqb/99NKBJUNbdz7zKuMXXwL/+v9L005Y/HOfghGHRGzfZTmp/NecBiW7KBmPRSNj1nbQ0U47Hjigy28+PS/+WLbP5metIbQuFPxnHNrzJLzsoJ0ACp9I8ireTsmbYpI4htoD5aIyH7j1X/9ijPdGiqO+z0Fe1mhrSvB7NHQTOSD7ACq6A1VH6zbygf/+TMnVd3H520nm4tmkXXB70kpHBfzfSUXjiHU5MG7H/YWbKtr5amXXiT/gzv5KvPA56Pl6G+RcdJ3ISktpvsanZ/Oo67TvbD2owSrLRji8fc3s+CVRzi74UFu8y7FnzkCTrsT77TzY3rtXn5GMlmpPjZQzPjGbeBvhuT0mLUvIolJCZaICLDwndf4xMbb+DDnYxx8wmUxbdubXw7bIFy9Ds9+kmCFwo633l9I1au3c2zdkxxqjWzPnkzzmX9h1ISTBm2/owpz2FpRwKjqtewPJS6cc7y7eitLX3mAcZse4QueRbR5UmmZcgk5n/geZI8clP2Ozk9nw352L6zVOxp5+t2VtL33L84NPM35ni20phcQPuF/SZ5x5YAKg3THzCgryGBlWwGnANSuh2ETY74fEUksSrBE5IC3Y+dO8p6+igZPFqOuuDvm1ekyisfCMmjavoasgV/2EVcbt2xj+cv3ULjmUY5xSwnhYX3RCaSc/m2Kxx4z6JX9xuSnUxEeRvHOtSQN6p4G1466Zt545UmSlvyb4wLzONKaaUgppPaI75N73JdJSc8f1P2Pyk2j2rLxe9JITuDy4jsb23jy/fVsfOc/HFb7HF/2vEeKBagvnIY7/mekTj530K8vKyvMYPH6aLGMmgolWCKiBEtEDmzBYIhVf/0CH3Pb2PrphyjMi33hhGHFw6l36bRuX00iXoFV19jMwrmPkLTkAQ5veZNSC7DVN4pV479B+clf4KCCsn0Wy+iCSM/L0TXv77N9xkp9a4A33vovbQvmMKP+Bc61nbRaKttLTyV51qVkjT8JPN59Ekuyz8OInHQq3UhGVSfWLQRaAyGeX7qNRW+/xOhN/+Esz5sUWAMtqbmEJl8KMy8iO4bXq/WmrCCdOYtzIJn9pjdQRAZGCZaIHNBeuu8mTmudy9JJ32Ty9D7d9q/fSvMz2OCGUVhdMSjtDwZ/IMT7b79My/z7mFrzEsdbPbWWzaqSzzDyuMsYMf7jjIjDfahG52fwlivG11YDrXWQmrPPY+iP1kCI/36wnJ1v/YuJlc9whq0lhIeNeTPZMeOnDJt5HmNSMuMS2+j8dDZWFTMqAZKCcNjx1roq5r71LlmrHuGT7nXO9mwl4Euh9aBT4ciLSRt3Mnj3fb/m6Px0doYzCSdl4lGpdhFBCZaIHMDeees1jl/7G1ZlzWTy524YtP2U5KXxshvGyIaNg7aPWHDOsWTZYra9/k/Gbnuao9hMG0mszptF/cyLKTvqbKbFoHT9QJTkpbGBTtcOjZwe13i6Eg473vlwE2tff5CSTf/hOPcBPguzNX08m6b+mFGzLqYse0TvDQ2y0fnprNpayNG18yEc2me9Z/2xansDz7yzDP8HD3Gify4/9KwCg7rhRxE+8ockTT6HpDgn2WWFGYDRlFFKVgIPtxSR2FGCJSIHpG2VOyl69ss0ebIY/cV7wTOg+673KDXJS1XSCLJaF0I4PKj72hvrNm3hw1fuYdi6x5keXspUYHXaNFZMuZqxJ1zC5IyB3Yw1llKTvDSll0IAqF47pBKs5ZtreP+1/5D94SMcH3qLo62FGt8wtoz/EiOPvYwRIybHO8RdjC5IZ6W/EJL8UL8FckvjHRIAOxpaeWrBWra9+xgz6l/gK54PSLIQ9TnjCBzxU5Kmn0/OEIkVYEy0VHt18kiyEqA3UEQGnxIsETngBIMhVt31JY5xW9n26QcpyB38G9a2ZJSS1OCHxm2DVhmuPyprG1n4ykOkLf83M9veptwCbPGVsOTgb1B+0hWMKz4o3iF2y5NfDtuJlBePsy21Lbw+71Vs0YMc2/YKn7dqWiydyrIzSD7mMvLGHUfeEEuo25Xmp/Nm51LtcUxamv1BXli6hRVvPs3YrU/xWc+7ZFkLTelFBKZ+maQZnye7eMqgF1HZG0WZKaQne9noGcmYna9C0A9x7umVGHMOFw4RDocIBYOEw0HCoRChUDAyPxgk7BxhAPPgMcPj8WJm4PHgMQ8ez0fzPB4vHo9hHi8ejwfz+Ibk77bsPSVYPVj21rM0zH8Qh8NcODLThTEc4DDnwDmM8C7bOcCcw+3RotvlqYNoW52Wuj23oouWrI/rxV7s/gC4mLfXXVt7d1y6by++bUXai6WeY9sXv1X7WlKggePa3mTZxK8xafqp+2Sf4dwyaCBSZSxOCVZTa4B3//sCgffu5/CGl/mENVBn2awu/QwjjruCkQcfzcgE+CdfXFRI1fYcCuLUW1DXEuCVdz+g4d37OaLueWZ71hPEy7Zhx9B49MVkTjub0TG+b9VgGJ2fTkV7glW1BsqP26f7D4Udb67eydtvvkL+2sc5gzc4x2poS86g7eCz4ciLyCibNSSHLnZmZowpyGBZYCSzwkGoXqNKgvtYa2srdTU7aayvprWxDn9zLcHmekIt9YRb63GtDeBvxONvwBtoxBNsxRNuwxduwxf24wu3keT8HY9k/KQ4Pz6CeAnjtch/cW/0MViCzkMYI4wn8jAPDiOEBxed5zBCtut02LzRnx6IbhfGA9a+jgdnnR54cObFmUGnaTotxxN5jnmjP6Pr7LI/7y6fb2y3z7kffYLo7XNsN887rVOReRhTPnEpU0YN7etu2ynB6kHT5hUcsvPZyC8pRhij/dcn8gtL5JcS6OpDquvyg0oX63Wab3TzgbaLtrr60B7rD/K7hBDzj/Wxay/2rzqWsQ3mcRvYK491bInkg4JPMu1zP99n+0suKoeNENi5hqQxH99n+w2GwsxfuJCqN+9hUuUznGBbaSOJdYXH0XbkxYyccRY5cSgMMBBjCjJYEx5ObuWqQf2w01lbMMTrSyvY9MaDjNv2FGfZErzm2JYzmerDfkn+URdSklG4j6KJjbFFGWx2hfi9GSRvX7LP9rt8az0vvzUfW/IQpwTm8m3PZoIeH/WjTiB89MWkTDidlARIUDsbW5TBm+uHcRXAjuX7JMEKhMLM+7CS999+hZoNyzn6rCv51PQxg77fwRYIhamuraNu+waaqjbQWruDQMNOXHMVnpYafG01pAZqSQvWkRmqI9s1kG3NpEL71ZldCjoPTZZGi6XjtxQClkLQk0zQk0yrL48mTzIhbyrOk0LYl4LzpuC8SWDej5IMT+T5Lj89kcTE47Hof2QH4TDOOXDhyLRzOBfe5ScuvOsjHMI5h7lQdF4o8uV+OBz9cj/U8RwX7ljPCGOu/RGKfvEfwqJtWcc67dMhPO3Loz890TY6p3ft8zs/zDm8u8yLrNPdZ0+HdXxM6byOY895dLG88zrLdobYXPs5JVj7g5nnXQvnXRvvMERkEPT0j3hQ9jf6YNoW+Khfv5iiQa4g7Zxj6doNrHv1PkZteIKjWQ7A2szprDv0m4yZdQGHpA+d66r6q7wwg6XhMo7Y9tqgFmcIhx3z11WydN4TDFv3GCe6d0i3NmpSR7Jz8tcZ9vFLGF40flD2vS9kpSYxuiCT9aGDOHjb4kHd1/b6Vp55dzl18//N0U0v8VXPCgCqiw4nMPNbJE37DPmDfO+vwTR5ZA6/W1SAS/Ng25fClM8Myn7CYcc7FdW8/s580lc+wmmh1zjRswWA1x95ib9X38ZlJxyKxzP0eqL9wTA76luorNxB/Y71tFRtJFS7GWvYSkrLNrL8leQGKyly1RRbY5d/o5tIpcGyafLl0JKcy47kMWxNzSOclo83PQ9fei5J6dn40nNIycglNSOH1Iwc0rPzSE7NIMeMxPh4Lru7Mt4B9JMSLBGRfWBSSSHL3WhGbB68+zdt3FHDB3MfImvVIxwdeJcpFmBr0mhWTbiOMSdczkGFZYO2731pWkkOvwkfhDf4HOxcFfPegtXb6/nvvJdIXvYwJwVf50irpcmTRe1B55I86zLyxnxsv7leYuLwbD5YP4aDt70CoSB4Y/exoKktyAuL1rP+rcc4ZMczXOh5nxQLUptVTvNhPyD9iAvIzyuL2f7iacqobNpIpilvIpmb3olp2845Fm2q44X5ywgteYSTA69yvWcVADXFMwnOvJ5wOMTHn/0eI+dewM8Xf5NPnnU+Rx1UENM4etLYFmRbTSPV2zdTX7kef/UmQnVb8DVuIaVlB9mBHeSHqhhh1ZSYf5dtwxh1nlzqk4poTh/NhowjqcgcgTd3FCl5o8jMH0luYTHpOUVkJKWSsc9elcjeU4IlIrIPjMlP50EbxyE1b8S0kmB1QzPvv/o4tuRhZrS8wZnWTJ0nh4ry8xl13OWMKJ8Zl/tVDaZRuWlsTJ8IQWDDmzFJsHbUt/L6G68RWPQQRzXN5VLPdoL42DHyBFo/dgkZk84gw5cy8OCHmENLc3l5+UF8NvlJ2PIelB45oPZa/CFeWbGVlW8/x6iNT3K6vUW2NdOYWkDLpCtIOepickccut8kqO2mjIz0i6xJm8qhm56AUGBA9+RyzrF0Sz3PL1xH/aL/cEzzy3yzUzVF/xE/IXn6+eTljv5om+IJDH/wan5e833m3/03/i/zLAqmn8nRk8dyyPAsfN7+/80JhR01zX52VFVTu30jTVUb8VdvxtVvwde0jfTW7WQHKhlGFWXUMs52vSY9gI9abyFNaUW0pU9lfdYIfLklpBWUkF08hszCUjxZI8jzJZO4feoie1KCJSKyD3g8RmXuoaTWPQ9b3oeSvR8nuKO2kfffeBZb9hhHNL7KyVZPE+lsHH4S/o99nsKppybcdVX9YWYUjZnMljXDGLHqOWzG3g0e2VTTzJtvv0Vw8aMc3vAy53k2EcLDtsKZ1M/4HtnTz2VkAg9b64tZ4wq5/dkpOAxb/eJeJVitgRDzVm5l1dvPULDhWU7iHT5p9bT50mgoP4Pw0ReTedDxMe0dG2ryMpKZPDKb5xrHcWigGda/AQed0K822pOqF9//kPrFTzGjeR5Xez4g3dpozigmPO1qOPzCbqspWvlxZHxrAYF3/sb4eX9mRvNvCL3xW5bNG8NTlFCdVoYnswjScrCkdFJ80SuGgn58gQZ8gUasrQGPv44M/06yg1UUhGsoslomWese+2uxNGp9RTRnF9OQcQgN2SNJzhtFRtFocoaNISW/lKT0Aoo8Hor26qiKJK7996+diMgQkz3tkwRf+w3NCx8lu58J1vot2/nwzcfxffgs01re5jRrpJVkKgqPp+mI8ymdeRaHJFhhgIE4feoInl15OJevfhlrrITM3j/COedYtbWWpW+/ACuf4dDmN/mcZythjC25h7Fj+jUMO/J8RmUO2wevYGiYPDKbpMwCVvmmMuGD++H47/XpmraqxjZeW7KObQufZ/jWFzmBBZxijbR502goPZHQEZ8l5ZDTSUk+cAZ0nTKxmDtfHsd3sjLxfPBAnxIsfzDM/PXVvLtoKa3Ln2dGyxtc41lMigVpSS/EJn4epp1Lel+rKSalkXTMV0n62DWw6R2alzxLccXbjKlZRXbbPGjrvYkWS6PBl09zRiFtqVNYnzEMX/YIUvJGklVUQs6wMfhyR5GWms2B8xdHpH/MdVnuOz5mzJjh5s+fH+8wREQGxfqqJtb+7gyOSllP+vVLISWz23UbW9pYuuB1apa+SP72Nzk0tIQUC1JvWWwuPJbcw85mxBFn9djG/qyxLciF/3MPj9t12MwvYp+6ucv1qhpaWbxkIVWLXyRz21scGXqfPGskgI+t+TPJmHImBUecCzmj9vErGDpufm4la1+7jz8l/R7O/B3MuGKPdVoDId6rqGTN4rdgzSsc3PA2R9gqkixEiyeTutEnUzjzc/jGnwIHUKLfWcXOJk7+7av8a+RDHFX1GHz5NRg+ZZd1nHOs29nE/NWb2br4VbI3v8bRbiETPRsBaEwbiW/S2aQeei6UHBnbm5L7m6GlBlprIdAC7RXePEmQmg0p0cd+3NMoEmtmtsA5N2OP+QNJsMzsAWBCdDIXqHXOTTezMmA5sDK67C3n3NW9tacES0T2dzfddS/f2fA16kpPJu/COyCjkFAoxNbN69m0/B2aKhaQvnMRk/yLybEmADYnjaFu5LHkH3EuwyefoA9AUX95bS2+57/PFb7n2HnIxfjHnUZ1m5edldto2bKM9KplHBxcwUirBqDOm0/N8GPIOewc8qaeDilZcX4FQ0N1k5/TfjuXP7tfcLhbTvWhX6amaCbbm0LUbF1HqHIVxfVLmWarybBIF0hlxsEw7hQKp38SKz1aN9aN+vFji3n6rSW8lvUjUnzGzmlXsyV1HFuq6mnavhbPzhVMDK1gom3AZ2GC5qO+8AgyJ59G8oRPwPCp+931aSL7s0FJsHbbwW+AOufcL6IJ1pPOuSm9bLYLJVgisr/bVtfKA3/8EV9ruwuvORpJJ9W14ut0cfhW7yh2FhxByviTKJtxOsm5I+IY8dAVDjv+98lFjHrnRi7yvkiShXZZvt03iob8SSSNPY5R00/FN2yCPrx2Y/GmOr573+t8tfEPnOl9e5dlQbzs+P/t3Xd8HPWZ+PHPs0W9925JtrGNO+BCMS2EXgMBcnQu4UjCJeFSLqQA4Xe5S0jvBAIBEkLvPfQSMGBjY+PeZFu2LMnqK2n79/fHjGRZlizJWmml1fN+vYR32neendlZ5tlvmaSphIqPImf6cSQedhKkFkQp0rHNFwzx3cdXs3rlB/zcfQfzHFv3W+51JNKcOYf48oVkHHYcUn7chK2FVioWjGiCJSIC7ABONsZs0gRLKaX61+oN8OqbbxG35WXSgntxJqSSmFlIRsURlB2+EFeyjqc1FLubO1m3tYr4pk1kxENeXgG5ZdOQBH3izVCEwoaVO5tp3LuHnI6tZCfHUVhSjju7fFgj4k1E1U0drN3dSkLnHgpCNRRnp5GcVwEpBZFt9qeUiqqRTrCOB37ZtQM7wVoDbARagR8YY97pZ9vrwHr4eVlZ2ZHbt28fdjxKKaWUUkopNZL6S7AGbMgvIq8CfbUF+L4x5mn79ReAB3ssqwHKjDENInIk8JSIzDTGtPYuxBhzJ3AnWDVYA78VpZRSSimllBqbBkywjDGnHGy5iLiAzwHdYw4bY3zYg4EaY5aLyBbgMEDb/ymllFJKKaViViQaAp8CrDfGVHfNEJFcEXHaryuBqcDWfrZXSimllFJKqZgQibF+L2X/5oEAxwO3iUgACAPXG2MaBypo+fLle0VkrHXCygH2RjsINWr0fE8ceq4nDj3XE4ue74lDz/XEMhbP96S+Zo6pBw2PRSKyrK/Oayo26fmeOPRcTxx6ricWPd8Th57riWU8nW8dK1QppZRSSimlIkQTLKWUUkoppZSKEE2wBnZntANQo0rP98Sh53ri0HM9sej5njj0XE8s4+Z8ax8spZRSSimllIoQrcFSSimllFJKqQjRBEsppZRSSimlIkQTrIMQkdNFZIOIbBaR70Y7HhU5IlIqIm+IyFoRWSMiX7fnZ4nIKyKyyf43M9qxqsgQEaeIrBCR5+zpChH5wL6+HxaRuGjHqCJDRDJE5DERWS8i60TkaL22Y5OI3Gh/h38qIg+KSIJe27FDRO4RkToR+bTHvD6vZbH81j7vq0TkiOhFroaqn3P9M/t7fJWIPCkiGT2W3WSf6w0iclpUgj4ITbD6ISJO4A/AGcDhwBdE5PDoRqUiKAh80xhzOLAY+Kp9fr8LvGaMmQq8Zk+r2PB1YF2P6Z8CvzLGTAGagH+PSlRqJPwGeMkYMx2Yi3Xe9dqOMSJSDHwNOMoYMwtwApei13YsuRc4vde8/q7lM4Cp9t91wJ9GKUYVGfdy4Ll+BZhljJkDbARuArDv1y4FZtrb/NG+bx8zNMHq30JgszFmqzHGDzwEnBflmFSEGGNqjDEf26/bsG7AirHO8X32avcB50clQBVRIlICnAX8xZ4W4GTgMXsVPdcxQkTSgeOBuwGMMX5jTDN6bccqF5AoIi4gCahBr+2YYYx5G2jsNbu/a/k84H5jWQpkiEjhqASqhq2vc22M+acxJmhPLgVK7NfnAQ8ZY3zGmG3AZqz79jFDE6z+FQM7e0xX2/NUjBGRcmA+8AGQb4ypsRftAfKjFZeKqF8D3wHC9nQ20Nzji1uv79hRAdQDf7WbhP5FRJLRazvmGGN2AT8HdmAlVi3AcvTajnX9Xct63xbbrgVetF+P+XOtCZaa0EQkBXgc+IYxprXnMmM9w0CfYzDOicjZQJ0xZnm0Y1GjwgUcAfzJGDMfaKdXc0C9tmOD3ffmPKykughI5sAmRiqG6bU8MYjI97G6djwQ7VgGSxOs/u0CSntMl9jzVIwQETdWcvWAMeYJe3ZtV5MC+9+6aMWnIuZY4FwRqcJq6nsyVh+dDLtZEej1HUuqgWpjzAf29GNYCZde27HnFGCbMabeGBMAnsC63vXajm39Xct63xaDRORq4GzgMrPv4b1j/lxrgtW/j4Cp9mhEcVid6Z6JckwqQuw+OHcD64wxv+yx6BngKvv1VcDTox2biixjzE3GmBJjTDnWdfy6MeYy4A3gIns1PdcxwhizB9gpItPsWZ8B1qLXdizaASwWkST7O73rXOu1Hdv6u5afAa60RxNcDLT0aEqoxiEROR2ref+5xpiOHoueAS4VkXgRqcAa2OTDaMTYH9mXDKreRORMrL4bTuAeY8yPoxuRihQROQ54B1jNvn4538Pqh/UIUAZsBy42xvTuYKvGKRE5EfiWMeZsEanEqtHKAlYAlxtjfFEMT0WIiMzDGtAkDtgKXIP1g6Je2zFGRH4EXILVfGgF8EWsvhh6bccAEXkQOBHIAWqBW4Cn6ONatpPs32M1E+0ArjHGLItC2OoQ9HOubwLigQZ7taXGmOvt9b+P1S8riNXN48XeZUaTJlhKKaWUUkopFSHaRFAppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppcYYESkXESMirmjHoiYGEVkjIidGOw6llIoFmmAppZQa90TkDhHx2H9+EQn0mH4x2vGNdcaYmcaYNyNZpohcLCLviUiHiES0bKWUGsvEGBPtGJRSKqaIiMsYExzG9uXANsA9nHImKhG5FZhijLm8j2XDOjejaTzF2hcROQXIAqYDJxtjToxuREopNTq0BksppSJARKpE5L9FZBXQLiIuEVls/4LfLCKf9GyCJSJvisj/iciHItIqIk+LSFY/ZV8jIutEpE1EtorIf/Rafp6IrLTL2SIip9vz00XkbhGpEZFdIvI/IuIc4H1MFpHXRaRBRPaKyAMiktFjWaOIHGFPF4lIfdf7EpFz7aZmzfb7m9Hr+HxLRFaJSIuIPCwiCUM/0kPXz7kxIjKlxzr3isj/9Jg+2z6mzfY5nDPIfZ0oItUi8j37+FWJyGU9lp8lIivsc7XTTga7lnU1Df13EdkBvG7Pf1RE9tjH7W0Rmdkr7j+KyIt2bd2/RKRARH4tIk0isl5E5g/yGJ0ymPc4WMaYV40xjwC7I1muUkqNdZpgKaVU5HwBOAvIAPKB54H/wfoV/1vA4yKS22P9K4FrgUIgCPy2n3LrgLOBNOAa4Fc9kpyFwP3At+39Hg9U2dvda5c7BZgPnAp8cYD3IMD/AUXADKAUuBXAGLMF+G/g7yKSBPwVuM8Y86aIHAY8CHwDyAVeAJ4VkbgeZV8MnA5UAHOAq/sMQOQ4O7Hp7++4Ad5DX7rPzUC1QnZCcg/wH0A28GfgGRGJH+S+CoAcoBi4CrhTRKbZy9qxznuGHc+XReT8XtufgHXsT7OnXwSmAnnAx8ADvda/GPiBvU8f8L69Xg7wGPDLQcbdJxH57sHOx3DKVkqpWKQJllJKRc5vjTE7jTGdwOXAC8aYF4wxYWPMK8Ay4Mwe6//NGPOpMaYd+CFwcV81TMaY540xW4zlLeCfwBJ78b8D9xhjXrH3s8sYs15E8u19fcMY026MqQN+BVx6sDdgjNlsl+UzxtRj3Zyf0GP5XcBm4AOsxPD79qJLgOftbQPAz4FE4Jhex2e3MaYReBaY108M7xpjMg7y9+7B3kM/ep6bgVwH/NkY84ExJmSMuQ8rcVk8hP390D6Gb2El2hcDGGPeNMasts/VKqyk9IRe295qn7NOe5t7jDFtxhgfVrI7V0TSe6z/pDFmuTHGCzwJeI0x9xtjQsDDWMn1ITPG/ORg52M4ZSulVCzSBEsppSJnZ4/Xk4DP9/ql/zispKSv9bcDbqxah/2IyBkistRunteMlTh1rVcKbOkjlkl2eTU99v9nrFqQfolIvog8ZDcpbAX+3kdMdwGzgN/ZN/1g1Xht71rBGBO2319xj+329HjdAaQcLJYI2znwKt0mAd/sde5Ksd7jYDTZSXOX7V3bisgiEXnDblrZAlzPgce3O1YRcYrIT8Rq+tnKvtrJntvU9njd2cf0aB5npZSa8DTBUkqpyOk5atBOrBqqnr/2JxtjftJjndIer8uAALC3Z4F2s7THsWqE8u0agxewmvJ17WdyH7HsxKp1yemx/zRjzMw+1u3pf+33MdsYk4ZVE9e1L0QkBfg1cDdwq+zrN7YbKzHpWk/s97drgP0dQESWyL4RAPv6WzJwKQfoPaJTB5DUY7qgx+udwI97nbskY8yDg9xXpogk95guY18/pH8AzwClxph04A56HN8+Yv034DzgFCAdKLfn995mxNj9yfo9H6MVh1JKjReaYCml1Mj4O3COiJxm10Ik2AMglPRY53IROdzuz3Qb8JjdrKunOCAeqAeCInIGVl+qLncD14jIZ0TEISLFIjLdGFOD1ZTwFyKSZi+bLCK9m6P1lgp4gBYRKcbq29XTb4BlxpgvYjV9u8Oe/whwlh2HG/gmVoL33kAHqjdjzDvGmJSD/L0z1DL7sBL4N/vcnM7+zfTuAq63a5tERJLFGpwiFboHlrh3gPJ/JCJxdjJ4NvCoPT8VaDTGeO3+c/82QDmpWMexASsh/N8hvMeIMMb878HOR3/bdX3uARfgsK8B9+hFrpRS0aEJllJKjQBjzE6smofvYSVHO7GSlZ7fu3/DGohiD5AAfK2Pctrs+Y8ATVg35M/0WP4h9sAXQAvwFvtqkq7EStDW2ts+xv5NFPvyI+AIu6zngSe6FojIeViDVHzZnvVfwBEicpkxZgNWbdfvsGrhzgHOMcb4B9hftHwdK8Zm4DLgqa4FxphlwJeA32Mdt83sPyBHKfCvg5S9x95uN9aAFNcbY9bby74C3CYibcDNWOf1YO7HamK4C+s8Lh3ojY0hV2A1UfwTVp/BTqzkVSmlYpo+B0sppaJArAev/t0Y85dox6IGzx4V8RNgjj2YR+/lJ2Kd15Ley5RSSk0MrmgHoJRSSo0Xdo3cjAFXVEopNWFpE0GllJpgROSOfgYsuGPgrdV4JCJlBxmooiza8SmlVCzRJoJKKaWUUkopFSFag6WUUkoppZRSETKm+mDl5OSY8vLyaIehlFJKKaWUUge1fPnyvcaY3N7zx1SCVV5ezrJly6IdhlJKKaWUUkodlIhs72u+NhFUSimllFJKqQjRBEsppZRSSimlIkQTLKWU6ocxhlBYR1pVSiml1OCNqT5YfQkEAlRXV+P1eqMdihpnEhISKCkpwe12RzsUNU794MlPiF/3BP/51f8iMyMj2uEopZRSahwY8wlWdXU1qamplJeXIyLRDkeNE8YYGhoaqK6upqKiItrhqHHIGENw+d/5sfsuPn22g8wrfh7tkJRSSik1Doz5JoJer5fs7GxNrtSQiAjZ2dla86kOWXNHgIucbwGQufPVKEejlFJKqfFizCdYgCZX6pDo50YNx47GDvJoBqDYvw06GqMbkFJKKaXGhXGRYCml1Ghr6vCTIR52ucsBaN36UXQDUkoppdS4oAnWIIgI3/zmN7unf/7zn3PrrbdGL6Aeli5dyqJFi5g3bx4zZszojuvNN9/kvffeO+Ryt2/fzhFHHMG8efOYOXMmd9xxR4QiVmp88Hh9pEsHLYXHANC4aWmUI1JKKaXUeDDmB7kYC+Lj43niiSe46aabyMnJiVi5xhiMMTgch57nXnXVVTzyyCPMnTuXUCjEhg0bACvBSklJ4ZhjjjmkcgsLC3n//feJj4/H4/Ewa9Yszj33XIqKig45VqXGE19bEwDpRYexsyqXcO3aKEeklFJKqfFAa7AGweVycd111/GrX/3qgGX19fVceOGFLFiwgAULFvCvf/0LgFtvvZWf/3zfqGOzZs2iqqqKqqoqpk2bxpVXXsmsWbPYuXMn3/72t5k1axazZ8/m4YcfBqwE6cQTT+Siiy5i+vTpXHbZZRhz4PN46urqKCwsBMDpdHL44YdTVVXFHXfcwa9+9SvmzZvHO++8c9A4r7jiCo4++mimTp3KXXfdBUBcXBzx8fEA+Hw+wuFwn8fmt7/9LYcffjhz5szh0ksvBaCxsZHzzz+fOXPmsHjxYlatWtW9r6uuuoolS5YwadIknnjiCb7zne8we/ZsTj/9dAKBAAC33XYbCxYsYNasWVx33XUHvO9wOEx5eTnNzc3d86ZOnUptbe3BTqNSQxL0NACQlZPHdkcR8S3bohyRUkoppcaDcVWD9aNn17B2d2tEyzy8KI1bzpk54Hpf/epXmTNnDt/5znf2m//1r3+dG2+8keOOO44dO3Zw2mmnsW7duoOWtWnTJu677z4WL17M448/zsqVK/nkk0/Yu3cvCxYs4PjjjwdgxYoVrFmzhqKiIo499lj+9a9/cdxxx+1X1o033si0adM48cQTOf3007nqqqsoLy/n+uuvJyUlhW9961sA/Nu//Vu/ca5atYqlS5fS3t7O/PnzOeussygqKmLnzp2cddZZbN68mZ/97Gd91l795Cc/Ydu2bcTHx3cnPLfccgvz58/nqaee4vXXX+fKK69k5cqVAGzZsoU33niDtWvXcvTRR/P4449z++23c8EFF/D8889z/vnnc8MNN3DzzTcDcMUVV/Dcc89xzjnndO/T4XBw3nnn8eSTT3LNNdfwwQcfMGnSJPLz8wc8j0oNVqijGYD4lGyaEyeR5X0FjAEdPEUppZRSB6E1WIOUlpbGlVdeyW9/+9v95r/66qvccMMNzJs3j3PPPZfW1lY8Hs9By5o0aRKLFy8G4N133+ULX/gCTqeT/Px8TjjhBD76yOpMv3DhQkpKSnA4HMybN4+qqqoDyrr55ptZtmwZp556Kv/4xz84/fTT+9znweI877zzSExMJCcnh5NOOokPP/wQgNLSUlatWsXmzZu57777+qwhmjNnDpdddhl///vfcblc3e/piiuuAODkk0+moaGB1lYrMT7jjDNwu93Mnj2bUCjUHe/s2bO7398bb7zBokWLmD17Nq+//jpr1qw5YL+XXHJJd23fQw89xCWXXHLQY67UUBl71EBHchb+9EoSTSe07YlyVEoppZQa68ZVDdZgappG0je+8Q2OOOIIrrnmmu554XCYpUuXkpCQsN+6Lpdrv2Z1PZ/HlJycPKj9dTXRA6v5XzAY7HO9yZMn8+Uvf5kvfelL5Obm0tDQcMA6/cUJBw5n3nu6qKiIWbNm8c4773DRRRftt+z555/n7bff5tlnn+XHP/4xq1evHtR7cjgcuN3u7n05HA6CwSBer5evfOUrLFu2jNLSUm699dY+n2V19NFHs3nzZurr63nqqaf4wQ9+cND9KjVUTl+z9SIxE1feNNgD7TXrSE4rjGpcSimllBrbtAZrCLKysrj44ou5++67u+edeuqp/O53v+ue7moKV15ezscffwzAxx9/zLZtffffWLJkCQ8//DChUIj6+nrefvttFi5cOOiYnn/++e4+Sps2bcLpdJKRkUFqaiptbW0Dxgnw9NNP4/V6aWho4M0332TBggVUV1fT2dkJQFNTE++++y7Tpk3bb9/hcJidO3dy0kkn8dOf/pSWlhY8Hg9LlizhgQceAKy+ZDk5OaSlpQ3q/XQlUzk5OXg8Hh577LE+1xMRLrjgAv7rv/6LGTNmkJ2dPajylRosd8C+fhLSSSuZAUDzDh3oQimllFIHN+wES0RKReQNEVkrImtE5Ov2/FtFZJeIrLT/zhx+uNH3zW9+k71793ZP//a3v2XZsmXMmTOHww8/vHs48wsvvJDGxkZmzpzJ73//ew477LA+y7vggguYM2cOc+fO5eSTT+b222+noKBg0PH87W9/Y9q0acybN48rrriCBx54AKfTyTnnnMOTTz7ZPchFf3GC1czvpJNOYvHixfzwhz+kqKiIdevWsWjRIubOncsJJ5zAt771LWbPng3AF7/4RZYtW0YoFOLyyy9n9uzZzJ8/n6997WtkZGRw6623snz5cubMmcN3v/td7rvvvkG/n4yMDL70pS8xa9YsTjvtNBYsWNC97I477tgv7ksuuYS///3v2jxQjQgJ+awXrnjyiivoMPH4ajdGNyillFJKjXnS18h0QypApBAoNMZ8LCKpwHLgfOBiwGOM+fnBtu/pqKOOMsuWLdtv3rp165gxY8awYlT9u/XWW/cbDCPW6OdHHaqnfnsj5zfeA9+vxRN2sf3HR5CSU8Kkr70Q7dCUUkopNQaIyHJjzFG95w+7BssYU2OM+dh+3QasA4qHW65SSkWThPzWC1c8KfEudjuLSPZsj25QSimllBrzIjrIhYiUA/OBD4BjgRtE5EpgGfBNY0xTH9tcB1wHUFZWFslw1CDceuut0Q5BqTFJwn4CuHDbA7G0JJSQ0fkRhEPgcEY5OqWUUkqNVREb5EJEUoDHgW8YY1qBPwGTgXlADfCLvrYzxtxpjDnKGHNUbm5upMJRSqlhcYZ8BCSuezqQNgkXQWipjmJUSimllBrrIpJgiYgbK7l6wBjzBIAxptYYEzLGhIG7gMEPjaeUUlHmCAcI9kiwnDkVAAQb+h4RVCmllFIKIjOKoAB3A+uMMb/sMb/nw2IuAD4d7r6UUmq0OMJ+guLunk7KnwpAyy4dSVAppZRS/YtEH6xjgSuA1SKy0p73PeALIjIPMEAV8B8R2JdSSo0KV9hP0LGvBiunqAK/cdJRuxl96ppSSiml+hOJUQTfNcaIMWaOMWae/feCMeYKY8xse/65xpiaSAQcLU899RQiwvr16/tdp6qqilmzZkVsnxs2bODEE09k3rx5zJgxg+uuuw6wHhL8wguHPlS01+tl4cKFzJ07l5kzZ3LLLbdEKmSlYobT+An1SLAm5aZSbXIJN07cJoLVTR1c+5d3+HiT9kNTSiml+hOxQS5i3YMPPshxxx3Hgw8+2OfyYDA47H2EQqH9pr/2ta9x4403snLlStatW8d//ud/AsNPsOLj43n99df55JNPWLlyJS+99BJLly4dVuxKxRpXOECoRxPB/NQEqsknrnVHFKOKrseX7+KS7bcy54G54G2JdjhR0djuZ3X1xHzvXVo6Agz3GZrjmS8Ywh8MRzsMpdQYpgnWIHg8Ht59913uvvtuHnrooe75b775JkuWLOHcc8/l8MMPB6xE67LLLmPGjBlcdNFFdHR0APDaa68xf/58Zs+ezbXXXovP5wOgvLyc//7v/+aII47g0Ucf3W+/NTU1lJSUdE/Pnj0bv9/PzTffzMMPP8y8efN4+OGHaW9v59prr2XhwoXMnz+fp59+GoB7772X8847jxNPPJGpU6fyox/9CAARISUlBYBAIEAgEEDsoah7evTRR5k1axZz587l+OOPB6zar2uuuYbZs2czf/583njjje59nX/++Xz2s5+lvLyc3//+9/zyl79k/vz5LF68mMbGRgDuuusuFixYwNy5c7nwwgu7j09PixcvZs2aNd3TJ554Ir0fQK3USHMbPyFnfPe0wyE0xheR7p24tTerdjZymnMZLoIEl98f7XCi4saHV/LlPzzBjtfugvDEu8n+eEcTR/zPK9z3ykfgqYt2OKPOGMO5v/sXF93xHuG6DeBtjXZISqkxKKLPwRpxL34X9qyObJkFs+GMnxx0laeffprTTz+dww47jOzsbJYvX86RRx4JwMcff8ynn35KRUUFVVVVbNiwgbvvvptjjz2Wa6+9lj/+8Y/ccMMNXH311bz22mscdthhXHnllfzpT3/iG9/4BgDZ2dl8/PHHB+z3xhtv5OSTT+aYY47h1FNP5ZprriEjI4PbbruNZcuW8fvf/x6A733ve5x88sncc889NDc3s3DhQk455RQAPvzwQz799FOSkpJYsGABZ511FkcddRShUIgjjzySzZs389WvfpVFixYdsP/bbruNl19+meLiYpqbmwH4wx/+gIiwevVq1q9fz6mnnsrGjVan/08//ZQVK1bg9XqZMmUKP/3pT1mxYgU33ngj999/P9/4xjf43Oc+x5e+9CUAfvCDH3D33Xd318x1ueSSS3jkkUf40Y9+RE1NDTU1NRx11AEPyVZqRLlMgLAjeb95ncmlJDV7oLMJEjOjFFn0mLp9TaTbtywl/dj/PMjasScYCvPWxjo2xH+b+HcCUFYBU0+Jdlij6tW1teSF93L1e1+AZSnwnW3giht4wxixsdbDhto2znB8gOOPv4F5l8P5f4h2WEqpMUZrsAbhwQcf5NJLLwXg0ksv3a+Z4MKFC6moqOieLi0t5dhjjwXg8ssv591332XDhg1UVFRw2GGHAXDVVVfx9ttvd29zySWX9Lnfa665hnXr1vH5z3+eN998k8WLF3fXfPX0z3/+k5/85CfMmzePE088Ea/Xy44dVjOmz372s2RnZ5OYmMjnPvc53n33XQCcTicrV66kurq6Ownr7dhjj+Xqq6/mrrvu6m6++O6773L55ZcDMH36dCZNmtSdYJ100kmkpqaSm5tLeno655xzDmDVvFVVVQFWErZkyRJmz57NAw88sF9NVZeLL76Yxx57DIBHHnmEiy66qM/jo9RIcpkAxrH/jaPJsK/1CdoPK7tzCwAbwiW4ag78USjW7WjsIJM24iVgzdjyWnQDioLVu1qY5bA//34P7Foe3YBG2boaq8bqs077fa99akLWZCqlDm581WANUNM0EhobG3n99ddZvXo1IkIoFEJE+NnPfgZAcvL+v3D3bmrXV9O73nqX0VNRURHXXnst1157LbNmzeozETLG8PjjjzNt2rT95n/wwQcDxpORkcFJJ53ESy+9dMAAHXfccQcffPABzz//PEceeSTLlx/8f6Tx8T2bUzm6px0OR3cftauvvpqnnnqKuXPncu+99/Lmm28eUE5xcTHZ2dmsWrWKhx9+mDvuuOOg+1Uq0sJhQxx+wj2aCALE51VCFXTUbiGp+IjoBBcl3kCI5EATuOEt5nNd57MTriZvT6uXCtnTPW22vc3A3/Cxpa7Vx9kJtdCVU2x7CyYdHdWYRtOu5k4AprrqrDGS/R6oXQ2Fc6MbmFJqTNEarAE89thjXHHFFWzfvp2qqip27txJRUUF77zzTp/r79ixg/fffx+Af/zjHxx33HFMmzaNqqoqNm/eDMDf/vY3TjjhhAH3/dJLLxEIWL+U7tmzh4aGBoqLi0lNTaWtra17vdNOO43f/e533Z2OV6xY0b3slVdeobGxkc7OTp566imOPfZY6uvru5v8dXZ28sorrzB9+vQD9r9lyxYWLVrEbbfdRm5uLjt37mTJkiU88MADAGzcuJEdO3YckNgdTFtbG4WFhQQCge5y+nLJJZdw++2309LSwpw5cwZdvlKR4A+FiSOIce5fg5VWNAWA1pqJ9yyshnY/WdJKGAd7UmbbM7dGN6hRVt/mo9JhDYj7UmgB7N0IoeEPcDSe1LZ5OTp1LzUmi8bEcqhZFe2QRtXu5k6ykuOYJHWsclp9r6ldG92glFJjjiZYA3jwwQe54IIL9pt34YUX9jua4LRp0/jDH/7AjBkzaGpq4stf/jIJCQn89a9/5fOf/zyzZ8/G4XBw/fXXD7jvf/7zn92DTJx22mn87Gc/o6CggJNOOom1a9d2D3Lxwx/+kEAgwJw5c5g5cyY//OEPu8tYuHAhF154IXPmzOHCCy/kqKOOoqamhpNOOok5c+awYMECPvvZz3L22WcDcPPNN/PMM88A8O1vf5vZs2cza9YsjjnmGObOnctXvvIVwuEws2fP5pJLLuHee+/dr+ZqIP/v//0/Fi1axLHHHrtfUvfMM89w8803d09fdNFFPPTQQ1x88cWDLlupSPGHwsRL4IAEqygvl3qTjr9+4jUR3NvmI5s2AvGZhLImWzMbJ1aCVdfqo1z2EBYXr4fnISE/NE2cz4IvGKK5I0BxuIZdzmJ2uMqgvv9Hl8SiPS1eKlNDpIWbecU/2/qOqNMESym1PxlLQ60eddRRpvdocevWrWPGjBlRimh8u/fee/cbDGMi0s+POhR7PT7Mz6bSVHoKh33xnu75rd4Am/73aAqy0in+xsTqf/Paulr8/7iME7Nb+M3kO/nOspPgxP/GcdJN0Q5t1Pz4+bVM/uAHXJyyinObvs5z8T+Ai/8Gh58b7dBGxc7GDpbc/gars77Lp1Sy3RRwqfcR+F4NuBOiHd6ouOhP71ER3sHP6v+DG/z/yS+KXiM+oxgufyzaoSmlokBElhtjDhiJTWuwlFKqF38wTBwB6NUHKy3BTY2jgKT2nVGKLHpavQGypRWScyjOzWI32fhqN0U7rFHV1BEgx+VFEtOpiy+zZu6dOM1F69q8ACQEW3EkZbGsowBMGBo2Rzmy0ePxBcl1W/2wWkimKbFiQn0GlFKDowlWDLv66qsndO2VUofKSrCC4Dqw+WtbYgnpgToI+qMQWfR4vEGyaUWSc5iUlURVOJ/Q3i3RDmtUebxB0h2dSHwaedlZNDsyoXl7tMMaNa2dQRyEcflbiE/LYb0/x1owgZpJtnmDZDmt0XzbTBK7HQXQUg2hQJQjU0qNJeMiwRpLzRjV+KGfG3Wo/MEQ8QT6TLD86ZNwYKB5RxQiix6PL0SmtOFKyWFSdhJVpgB3y8S5sQar9iJVOiEhjbKsJHaRB00TJ8Fq8wVJox3BkJyRxw6TZy2YQMeg1Rsg09kBQDg+japwPpgQtEy8Wm2lVP/GfIKVkJBAQ0OD3iyrITHG0NDQQELCxOgXoCLLH/DjEIP0kWA5s6xnYYUm2LOw2r0BUunEmZRBUUYi2ykkPtACHY3RDm3UtPmCpJp2iE+jLCuZLcEcTFNVtMMaNR5vkEzxAJCelU8rKfjdaTBBjoExBo8vSLpYTQTTMrJZ78+2Fk6w7wOl1MGN+edglZSUUF1dTX19fbRDUeNMQkICJSUl0Q5DjUMBn9XXxOE+MMFKyp8Ka6GtZiMZh312tEOLGq+3A7eEID4Vt9OBJ6kM/FgjCSZlRTu8UeHxBkg2Hd01WFXhXGhZajUPc7qjHd6I8/gCZGI9IiQzJx+HBGmKKyR/giRY7f4QxkCqWDVYmZk5fFJnNxWeIMdAKTU4Yz7BcrvdVFRURDsMpdQEEvRZv1BLHyOj5RWW0Wni6KjdQsYoxxVNwc5W60V8KgDhrArYg3VjWXLAAEoxqc0bJNG0Q0IGZVlJrDB5iAlZfXCyYv//Ux5vkEyHVYPlTsmhML2FGkf+hEmwPF7rmWcpdIDDTUF2Oq9sasLExyMTqB+aUmpgY76JoFJKjbZgwKrBcvZRg1WancQOk4dpmFg3VOFeCVZ8jp1QTKAby06fj/hwJ8SnMSk7iR3hfGvBBEkwWr1B8u0R9Ei0ksxtoVyrP2I4HN3gRkGb1xrIIjncDgnplGQl4w1CKH2SNhFUSu1HEyyllOol5LebCLoOrMEqykhkp8kjrm1iDXIR9llNw4hLAaAwJ4s6k0GgoSp6QY2iUNjg9NvHICGNwvQEdsvESrA8viC5TuvaIDGTSdlJrPdmQcgHnj3RDW4UtNo1WIlhDySkUZqVCIAnuWRCDfShlBrYiCdYInK6iGwQkc0i8t2R3p9SSg1XV4LljEs8YJnb6aAhrpi0zmqYSIPvdCVYdg1WWVYSO00u/vqtUQxq9FgjCFp9b4hPw+V04EwvJCjuiZNgeYNkuuwEKz6Vsuwk1nrtQR4mwDHw+KwEKyFkDXRSmpkEQIO7yKrJnUjfB0qpgxrRBEtEnMAfgDOAw4EviMjhI7lPpZQarlCg/0EuADqTS4k3XmifOIPvOPxW3xvirRqs0qxEdpg8HBPkOVAeX5A07OZxCWkAFGenUOvImxDJBVjHIN3pBVciON3dSTYwIY5BVxPBuKBVg1ViJ1i7pAD8HmjfG83wlFJjyEjXYC0ENhtjthpj/MBDwHkjvE+llBqWsJ1gueL6TrDCmeXWiwnU70IC7daLuH01WDtMHvEdNRPiIaseb48arIR0wDoG28O5EyK5AGuY+nSHt7sWc1JWMrtMLgaZEE3kuga5cAXbICGdxDgnOSnxbAnYD1yeID82KKUGNtIJVjHQ8+l71fa8biJynYgsE5FlOhS7Umos2JdgJfW5PD5vMgD+vROjeRyAK9BVg2XdXKcnutnrKsBBeEI8ZNXjC5DKviaCACWZSWwJTJxnYXm8AasWr6uZaHYSAVx44vMnRJLZZidYTn8rxFtJdmlWImu9mdYKE+AYKKUGJ+qDXBhj7jTGHGWMOSo3Nzfa4SilFKGADwBXXN8Pqk4rmEzYCK27N45mWFFjjMEVtGuw7CaCIoIvpcyaNwFqL9q8QdK6Eiy7iWBXLZ54m6GzKXrBjRKPL0gyHfsl2emJburdhRMiuehqIii+tu7PQGlmEivarGRrIhwDpdTgjHSCtQso7TFdYs9TSqkxy9g1WO74vhOsktwMasgiMEFqsHzBMEl0WE3B3Mnd851Z5daLCXBjuf8gF121F1aCBUyIJNPjDZLcowYLYFJ2EjvNxOiH1uYLkhbvQPye7maipVmJbGsxmJSJUYunlBqckU6wPgKmikiFiMQBlwLPjPA+lVJqWEzQqsFy9zGKIHSNoJeHo7lqFKOKnnZfkBS8BJxJ4Nj3v420/DL8xolprIpecKPE4w3uayLYowZrZ3eCFdv98UJhQ7s/RGK4o7uJJFjHYKM/xxqmPdAZxQhHXps3SEG835qI31eDFQob/CmlmmAppbqNaIJljAkCNwAvA+uAR4wxa0Zyn0opNVxhu4lgf6MIZiXHsUsKSPLEft8jgHZfiGQ6CbpT9ptfkpVCtcnFNwFq8qwarE6MOwmcbgAyk9w0uAutFWK8Bqvdbw9RHm7vTjDBSrDWdHb1QYrtY+DxBimIt4ep72oimGX102xNLNZBLpRS3Ua8D5Yx5gVjzGHGmMnGmB+P9P6UUmrY7BosXH0nWCJCW2IxqcEG8HeMYmDR4fEFSZFOwj2aB4J1c1ltcglNgIcNW32w2vervRERMrNyaHOkxXztRdcIenGh9gOaCFaFumrxqqIQ2ehp8wXIcdnfDT1qsADqnIXQUj0hRtRUSg0s6oNcKKXUmBPqSrD67oMF4E+bZL2I8ZtKsBMsvJi4/WuwugZ5cLXG/i/3Hl+QTKcX6VF7A1aSuUtiv/+N9ZBdgzvo2S/BKstK7tEPrSoqsY2WNm+QHLf93WD3wSrMSMDpEOt5YGZijKiplBqYJlhKKdVbVw2WM67fVRxZFQCYGO97A3YfLOnsfgZWl+LMRKrJIz7QAt6WKEU3OjzeIBmOzv1qsMBKMrdOgKHa27xBEvDjMKH9E6zsJBpJtfrnxfgx8HiDZLn2byLodjooykhgoz/bmh/jzSSVUoOjCZZSSvUioYM3EQRIzp8CgGfPptEIKaqs4bk7kYT9a7DiXU5aE+xHG8b4jaXHFyRNOvfrfwRQmpnItnCuVXMRCkYpupHn8QVJxR7EokeCVZCWQJzTSWN8UcwnWK3eIFnOrmOw73MwKSuZT9r1WVhKqX00wVJKqV4kZI8UdpAarKKiYlpNIh17toxSVNHTNcCD024W1VMoY2I0lWzrGqa91zEoy05ih8lHwkFojd2nkHi8di0m7JdcOB1CSWYiNROimWSAjK5j0ONzUJqVxCfNCdb3RYwfA6XU4GiCpZRSvUjIhx83iPS7TmVuCjtMPqGGCTCCnjdIMl6ciakHLHNnV1ovYnwENY83QIppP6CJYGlm0oTog+TxBUjhwAQLrCRza8h+FpYxox/cKAiEwngD4R7PQutRg5WdxN6OEOG0kpi/DpRSg6MJllJK9eII+wmI+6DrFGXY/Y/aYr9Te5s3QDKduBMPrMHKzc2nxSQRbIjtvmgeX5Ak035AE8GSzJ7Pwqoa/cBGSdt+NVj7J9qTspJY25kFwU7w1EYhupHXZo+imEIHuBLBta92u8weqr09WZ+FpZSyaIKllFK9OEJ+gtJ/80CwmkY1J5SQ5t0N4dAoRRYdnZ0dxEnogD5YAGXZiew0efjrY7smr7Ozkzjjh/j9k8zEOCfB5EJCOGP65trjC5LW9aDlXglWaVYSmwI51kSMHoOuYeqTwwcm2V0JVmNc7PdDU0oNjiZYSinViyPsJzhADRZYQ7W7CUBbzShEFT3BzlbrRdyBTQS7msiZGB/kwnjtY9Dr5hqgODuVemdeTN9ct3YGye4aorx3DVZ27A/V3uq1nm+V2Ecz0bJsK8HaLXnQ2RTzI2oqpQamCZZSSvXiDPsJOg5egwXgzraGao/1flihTvuGMf7ABKvrWVgJnp0QDo9yZKMjGArjCnQlWAc2kyzNTLQSjBhNLsBKMLqfAdUrwZiUncQuk4NBYvYYWM8Bg4RQ+wGfgbQEN5lJbrYGc60ZMf5jg1JqYJpgKaVUL3HhTvyOxAHXSy6cCkDLrtgeqj3sbbNe9JFg5abGs0fycJoAePaMcmSjY/8hyg+swSrLSmJzjD8Lq7UzQJar7xqs0swk/LjxxMduktnVBysu6OmzFrMsO9nqhwYxewyUUoOnCZZSSvUSH/YSdA6cYOWVTCZgnDH/LCzx2TVYfdTeiAje1DJrIkZvLNu8wX2jx/Vxc12SlcT2cB7S2QhdTQljTKs3QKbTB66E/QZ4AKsfWl5qPHXOQmiMzcFOWjqtJoJxwbY+k+xJWUl83GbPj9HrQCk1eJpgKaVUL/HGS2AQNViVeensMjkx30TQ6bOThsSMvlfILLf+bYzN49DSGSCVA4fn7lKWlUSVybcmYvQYtHYGSXd09lmLCVYzQauZZGwnWE5/a981WFlJbGxxYhKzYvYzoJQaPE2wlFKql3jjJewaOMHKTY1nl+QT17pjFKKKHvdB+h8BJOVVEjBOTENsPnS5zRsk7SA1WJU5yWwzhdZEw+ZRjGz0tHoD1jHoJ8EqzUpinT/PGqbd1zbK0Y28VjvBEl9bn9dBWXYSobDBl14Rs58BpdTgaYKllFI9GGNIwEvYnTTguiJCc0Ix6d7qUYgseuIC9g1zPwlWSXYaO0we/tqNoxjV6Gn1Bkin3ZpIyDhgeW5qPHvdRdYgDzGaZLZ2Bkg3bZCY1efySVnJrPLaQ7XH4DFo6QyQGQ8S7DxgqH6A8uxkAJoTy2Ly/SulhkYTLKWU6sEbCJOID+MaOMEC8KWVkxJug47GEY4sOsJhQ3yozUoe+himHaAyN5ltpoDQ3tjsi9bmDZIhHow4++2HVpSbyV5nXkzWXoTDhjZfkORwGyT1k2BlJ7E1HLu1eK2dAUoT7IFOkjIPWF6RYyVYu5zF0LYbfJ7RDE8pNcYMK8ESkZ+JyHoRWSUiT4pIhj2/XEQ6RWSl/XdHRKJVSqkR1uEPkoQP4gaXYEm2NZJgoHbDSIYVNR2BEGm043OlgqPv/2VMzk1hqykirqUqJodqb+0MkIkHk5gJIn2uU5GTwjZTEJPJhccfxBhICrVB4oHJBVhNBLebfLsWL/aOQas3QFG8nWD1UYuXkxJHaoKLTcECa4b2w1JqQhtuDdYrwCxjzBxgI3BTj2VbjDHz7L/rh7kfpZQaFR2+IIn4IS55UOsnF08HoHHHmpEMK2qaO/ykSQdB94F9j7oUZSSyUwpxhX3QGnvNJa0arDakn+ZxYPXDWh/IwzRsBmNGMbqR19X/KCHY0m+CNSk7CR9xeBIKYzLBaukMUOi2++H1UYsnIlTmJPNJR1czydg7BkqpwRtWgmWM+acxJmhPLgVKhh+SUkpFT2dHOw4xOAaZYOWVTcNvnLTvXj/CkUVHU3uANNoJ9zF6XhenQ+hMsx66HIs3ls2dfrIdHUg/zePAaia5NVyI+Fqhfe8oRjfyWjuDuAhaz4DqJ8nMTo4jOc5JrbskJj8DLZ0B8l12gtXPMajMTeGDlgxrolH7YSk1kUWyD9a1wIs9pitEZIWIvCUiS/rbSESuE5FlIrKsvr4+guEopdTQeTusEfOc8YNLsCrz09lh8mPyphKgscNPurT3O8BFF2eO1VQyFjv4N7b7yXZ4+q29AasPTqyOJLjfIB/9HAMRsZoJUmh9BmKsFq+lM0CO0z4G/STaFTnJbG0JE04rjsnrQCk1eAMmWCLyqoh82sffeT3W+T4QBB6wZ9UAZcaY+cB/Af8QkT5//jTG3GmMOcoYc1Rubu7w35FSSg2Dv9PqnO5MGFyClZbgptpZTHJbbPa5aO7wk0UbjuTsg66XXVCGxyQQqo+9kQQb2/1kiqffG2uA8pxkthq7/02MJVh7PT4yxB604SBJ5qTsJNYF8sHXCu2x84OpMYamjgDZjq4ks78aLOs7oyNVh2pXaqJzDbSCMeaUgy0XkauBs4HPGGP9ZGWM8QE++/VyEdkCHAYsG27ASik1knwd1pDk7oSUQW/TklROVvsKCAXBOeDX6rjS2O4nW1pxpeUddL3KvFS2mQIm125kcMODjB8NHj+p5uA1WGkJbnxJxQTDLlwxdnNd1+ojg4ETrLKsJD7emA1OrAQj5eCfmfGitTOIPxi2ajFdCf0OgFOZY31nNMSVkrLnpdEMUSk1xgx3FMHTge8A5xpjOnrMzxURp/26EpgKxObPu0qpmBK0h1d2DSHBCmROxk0QWmLvgcMtbe1kSDtx6QUHXa+7iVyMJRcA7Z424o0Xkg5ei1eel8YeR+wdg7o2HwVO+2HTKf23NCnLTmZjMN+aiKFjUNfmBSCd/p8DBlCeYyVe26UQOpti9tENSqmBDbcP1u+BVOCVXsOxHw+sEpGVwGPA9cYY/aZRSo15gU6rGVB80uATrLi8aQC07Vo3IjFFk7+1FgDHQW6sASbnWglWYvsuCPpGI7RRYYzB1WEdA1IPnmRW5iSzORR7Q7XXtXmpTLAfNp1a2O96lTnJ7DY5hB1xMXUM6tusz3N6sAFS8/tdLynORVF6AhsCsZdkKqWGZrijCE4xxpT2Ho7dGPO4MWamPe8IY8yzkQlXKaVGVrDd+i0oKf3gtRU9ZZTNAKB559oRiSmawh67L03ywZt7ZSTFUesuRTAx9Qwgjy9IVtj+fXCABKsiJ5n1wXxM41YIh0YhutFR3+ajLK4NxAlJOf2uV5GTTBgHrUmlsDd2kos6O8FK9NVDatFB163ITWZZu/3dEaMP3lZKDSySowgqpdS4F+5oACAhtf8byd5KS8poMin498Tew4ZDbXbtzSD604QyK60XMXRjWdfmI1+arImD1N6APYqcKURCfmiOneaida0+ihzNkJLf78OmAQrSEkh0O6lxlUBDLH0GrCaC7vY9g6jFTOHDxmSMwx1Tx0ApNTSaYCmlVA+OTutmWgbob9NTaWYi20whrqYYHJq5rasGa+CE0513mPUihm4sdzV19kiwBri5zk1ha9hOwmIqyfSSK00HbR4H4HAI5TnJbAkXQuM2a9CXGFDX6iPdHcThbYK0gyfZlbnJNHkNoYyKmPoMKKWGRhMspZTqwelrxo8b3ImD3sbldFAXV0p6x/YRjGz0hcOGJO8ea2KA2huA4oJ8ak0G/trYGap9V3MnedKEcSZAQsZB1y3LSqJKiq2JGEky/cEwTR0BMkNNkHLwBBOsBGOVNw/CAWiOjeuh3uNjRrI9RPsgajEBWpPLNcFSagLTBEsppXpw+Zppc6SByJC2a0+rJCPUAN7WEYps9O31+Ciino64nEElnJW5yWwNFxGojZ2mkruaOimWRqvmYoDPRJzLQUpmPh5HWszcXNd7fIAh3V8D6SUDrl+Zk8wyT1cfpNhItGtbvUxNHHiQD4DJudbgOHvcJVZfxBipxVNKDY0mWEop1UNCoIUOZ5/PRT+47CkABOtj48YaYHeLl1Kpw59aOqj1J+dafZDczVvAeiziuLe7uZMprjokq3JQ61fmprBDimJmBLma5k6yaCMu6IHsyQOuX5mbzOYYaya5s7GTwxP2WhNZFQddtygjkTiXgy2mKKZq8ZRSQ6MJllJK9ZAYbMHnTh/ydsmF1kiCjTtiZyTBXU2dlEg9ZJQNav3SrCS2UkRcoBXswULGu+qmDsqoGVRyAVYTsXWBAkyM1N5s3dtOudjNRAeRZFbkpNBKCr747JiowfIGQuxu6WSKcw843JB+8GvB6RAqspNZ7bUHhYmRJFMpNTSaYCmllM0YQ0q4lWB85pC3zSufRsgI7TH0LKwttc0USiPJ+YOrvYl3OWlLLrcmYuTGsqm+hiTTMajkAqwanE2hAsRTGxPNRbftbafSWWdNDCrBsvogNSSUxUQt3s7GDoyB4lCNVXvldA24TWVuMh+02g8kjpG+eEqpodEESymlbE0dAbJpGdSIeb1V5Gez0+QRjpHEAqCleh1uCeHOnz7obUz2VOtFDNxYNnh8pHdUWRNZg6vBqsxJYauxm8jFwDHYWu9hflKd9QysQdRkpie6yUmJY6ejJCaS7M11HgAyvTsG/xnITWZNkxOTlBMTx0ApNXSaYCmllK2uoYFM8UDG4Poc9ZSZHMdORxGJrbHzkF1Hnd3cMX/moLdJK6jEZ9yYGOiLtmFPGzMddh+aQR6DybnJVv8biImH7a6raWOuawfkzQBX/KC2qcxJYX0wHzr2QkfjCEc4stbVtJIofhJatgz6M1CZk0IwbPCmV2qCpdQEpQmWUkrZWvdsAyAua3B9jnprTion27sTwuFIhhUVgVCYTM8mQuKEnMMGvV1FXhpVJh9f7foRjG50rN/TxmzHNsJJOZBWNKhtclPjaXAXEcI57vsgtXQE2NHYQWVgCxTMGfR2lbnJrGi3a4HHeTPBtTVtfCazHgkHoWjeoLapzLWaSTYmlMVELaZSaug0wVJKKZunrgqA1PyDjxTWH396JfH4oHVXBKOKjo21bcxiC57UKYOuuQBrmO6tpjAmarCW72hivmsbUjR/0MP2iwiluRnUuQrG/c316l0tFNBAUqABCucOeruKnGRWdI7/QR6MMazY0cTJadXWjKL5g9quMscaqn2noxja68F+eLlSauLQBEsppWyde63mYNlFg+tr0Zsrz6rpaa8Z/7U3y7fWc6RjI86KY4a0XWWu1Qcp3rMTQoERim7khcOG9Zu3MtnsRMoWD2nbytxktoQLx30TwaVbGzjOZTcTLT920NtV5qZQbXIJO9zjuhZv6952Gtr9LGAtpJVAWvGgtktPcpOdHMf6QNdw9eP7c6CUGjpNsJRSyiZN2wnixJF28IeJ9ie91BqqvWnHmkiGFRU717xPsvhImbpkSNvlp8VT7SjBYYLQVDUywY2CdXtaOdy7wpqYfNKQtq3ISWatPx/TsBnCoRGIbnS8u3kvZ6VshKRsyBt8P7yKnGRCOPEkj++RBN/ZWI+DMEVNH8HkE4f08PHK3GQ+7rAfuDzOazKVUkOnCZZSStky2zdT6y4b1FDMfSkprcBjEvDt2RDhyEZXuy9I1q5XCeOEyqElFyKCL8MeznscNw97Z9NeTnUuI5yYDYXzhrRtZW4KW0wREvJBy86RCXCE7WruZM3OvRwd/AimnAKOwd8ulGUl4XQIe9yl47oG65V1tZyfuQ2nr9k6BkNQmZPCB42p4HCN62OglDo0mmAppRTgD4YpCVTRkjblkMsoy05hmynE0bglgpGNvjfX13EqH9BWsBCSsoa8vStvmvViHP9y//LHmzjVuQLHzPPB4RzStpU5yWwNj+/mYc9+spsljlUkBFth5ueGtG2cy0FpZiLbTBE0boNQcISiHDm7mjt5b0sD16Qug7gUmHrakLavzE2mtiNMKKNiXP/QoJQ6NMNKsETkVhHZJSIr7b8zeyy7SUQ2i8gGERnaN5NSSo2yTTtqKJV6nEMYkry3OJeDPe5S0tqrIhdYFKx893kmO2pIXXj5IW1fkF/AXpNGqH58/nK/fHsTs/e+YA1YMu/fhrx9RU6PodrHYZIZDIX5xwc7uCHlTUgpgMknD7mMytwUVvvyIByA5u2RD3KEPfzRTtKMh5mNL8PM8yEuaUjbV+ZaA120pZSP62aSSqlDE4karF8ZY+bZfy8AiMjhwKXATOB04I8iMrSfAJVSahTtXv8+AFmTjxxWOa3J5WQG6yDQGYmwRt2q6maO33MvXlc6jllDq7noMjnXGknQv2d8Jlh/fn0t17tfIFR8FJQcNeTtk+NdxKXm0uFIHZfNw55fXUN606cc4V8GC74Irrghl1GRk8xHbXYfpHF2DFq9Ae791zb+p+BtHEEvLPrykMvoGqq91l0KDVvGZS2eUurQjVQTwfOAh4wxPmPMNmAzsHCE9qWUUsMWqloKQM6M44ZVTiBjMg6MdVM1Dr367IMscX4KJ3x7yL/ad6nISWZLuAhH0/j75f6dTfUctvmvFFGP8+TvH3I5lXkp7HAUj7vmYR3+IL94cS0/S7ofk5QNi/7jkMqpzE1mXSDfmhhnx+DXr2wiy1fNWZ7HYeYFUDBryGWUZSXhcohVkzlOa/GUUocuEgnWDSKySkTuEZFMe14x0LNnb7U9TymlxhxjDOl7l1PjLkMOoc9RT+78qQC014y/gS5e/ngT59X8htaEIhKOvu6Qy6mwn4UV72scV88AaukI8JdHnuYb7icIHf65Q2oa16UyN5n1wQJrJMFxwhjDj55Zy9meR5ke2oiccTskpB1SWRU5ybSSgj8he1zVYL2/pYH739vMfZl/xeGKg9P+95DKcTsdlGYlsdZvPw9sHH0OlFLDN2CCJSKvisinffydB/wJmAzMA2qAXww1ABG5TkSWiciy+vr6oW6ulFLDtn3PXuaHVtNSOLzaK4C0ImuAh9bd4+emEmBzbSuhZ75GuaOWpIvvHNLDhXtLTXCzN77Mmhgngzx4AyG+/7dX+F///2GSsnGePeT/ne2nMieFDYECpK0GfG0RinJk/f2DHTR8/BTfcj8Kh58Psy485LIm232QmhInjZvkYtvedr76wHJ+k3w/kzpWw5m/gLSiQy6vPDuJD9tyrIlxlGQqpYZvwATLGHOKMWZWH39PG2NqjTEhY0wYuIt9zQB3AaU9iimx5/VV/p3GmKOMMUfl5uYO9/0opdSQbf7gBRIkQNb8c4ZdVnF+HntNGv768dNEcGdDOyvu/A/O5D3ajv5vXJVDe/ZVX0KZ9sOax8HNdZs3wLfveo6v7/oWea4O3Jc/ekijJ/Zk1eIVWBPjoLnogx/u4N1n/8of43+HFM2D8/84pOc+9ZaXGk9ynJPqcdJMcl1NK5f9+V98J/wXzgq+Aku+CXM+P6wyK3JSWN3oxCRmjovPgFIqcoY7imDPp3FeAHxqv34GuFRE4kWkApgKfDicfSml1Ehxbn6ZThLIm/2ZYZdVlp3EDpOHs7lq+IGNgjXba1n7+8/z+dAL7J39JTJO/e+IlJuYV0kIB4zxIevrWr388I/388ParzEprhX3FY9C0bxhl1uRk0xVV4I1ho9BKGz4yQvr2PT07fzJ/WtchbORyx6DuORhlSsiVOQmszFUCB17x3RT0bc31nP1Ha/x0+BPuZSX4Zj/hJN/OOxyK3KS6AyECGRUjosfGpRSkXNoT9Pc53YRmQcYoAr4DwBjzBoReQRYCwSBrxpjxu/j7JVSMau53cuMtvfZnrmI6cNoFtclJd7FHmch5e1j+1f7cNjw6Muvcfj73+KzjirqF32X3NO/O6xai57K8jLYuSaXkvrNw/4fzUh59dPdrH38f7g9/BDh5Hzirn4C8mZEpOySzESqu36DHKO1F5vrPPz4kbe4rPZnnOJeQXjaWTgu/MshD27SW0VOCiu35fAFsJqKli6ISLmR4g2E+MU/N7DyXy/ydMId5Ju9cObPYeGXIlJ+RY7VTLIlsYzcvfobs1ITybD+v2eMueIgy34M/Hg45Sul1Ehb9s6LnCKNBOZdELEy2xJLyej4FwR9w+rLNFJ2NXp4675bubD5XgKuBDrOu5/cuedGdB/l2VYNTn7dpjGXYO1s7OBvjz3BmdW/4GuOrbRNPpPUi/4w7GaBPbmcDvKzMmj05pE1xhIsfzDMX9/dTM1rf+LXzodJcQfg1J/iWHgdOCI3uHBlTjLPrs6GOKzngY2hBOutjfX85pmlXNR8NzfFvQlpk5DPvQRliyK2j/IcK1Hd7Swmt3UX+Dsilrwqpca2sfb/PaWUGlVm1SN0Ek/J0RdFrMxg+iQcHWFo3gE5UyNW7nB1+kM89/TDzPr0J/ybbKe64CSKL78DSS2I+L7Kc5L40BRwXMs7YEzEasaGwxsI8bdXPiJz6f/xPcebtCfkEDjzTlLnXjwi8VXkJLO9upCsMdI8zBjDK2tref65x7mu/c/MdG7HX3YcznN+CbnTIr6/ytxkdoRzMQ4XMkb6YW2u8/CT51ZRtOUh7nM/RrLbi2PRV+CkmyA+NaL7KkpPJM7lYGs4n7kAjVsPach3pdT4owmWUmrCqmls4aj2t9mRdyLTInhz5ciZDDUQ2LsF9xhIsMJhw+vvvYf79Vv5fPhDGtz5NJx6JyULRiaxAKsG6xFTgCvYAZ46SM0fkf0Mhj8Y5tn3VuF961dcHnyBOEcIz5FfIeXU70X8prqnipxk1m/NZV7jcqKdXn64rZGnn3uS0+vu4TfOT/GmFGLOuo+4w88bsc/A5NwUgrhoTyohJcpJZl2rlz+9vp7OZQ9wq/MpStx1hMtPwHHm7ZA3fUT26XAI5dlJrOrM5QKw+mFpgqXUhKAJllJqwlr1xuOcJh58iy6LaLmphVNhNbTs2kjO9NMjWvZQhMOGdz78CN9rP+Ez/tfxSzw753+L0jO/Be7EEd13cryLpoRSCGEN8hCFBCsQCvPc0k9pe+PXXBh4jkTx01B5Hrln30xK9uQR339FbjKbQwVIZxN0NEa0CeJgLd/exNPPP8PJNXfzY+cneBMzCR3//0hY+MURb65WnmMNlFEfXxa1BKuu1csdb27A89FDfNXxOJNctQTy58Jnfo9j6qkjXrNakZPMsroMa2KM1GQqpUaeJlhKqQkrccMTtEgaBfPPjGi5+YWltJt4Omujc0NljOFfy1bgeeX/+IzvNcLipGrKlZSf931K00Yv0QlnTYZ6rEEeJh0zavsNhsI898FaWl7/NZ8LPEeyeKmfdCZJZ99M7gjVVvSlIjuZ17qHat8MSQsPvkEEfbKzmSeef47jd/2F25wr8CZkEFhyKwmLrxv2CIGDlRLvIj8tniqKqGj4AMIhcDhHZd91rV7+/OYmWj56iK86HqPCuQd/7iw45Te4Dzt91Jqsluck88b6ekxmATLG+uIppUaOJlhKqQlpS/VuFvqWsqX0c6Q73REte1J2MjtMPimN2yJa7kCMMSxduYqml3/CKZ0vgwjbKy+l4vwfMDn90B+YeqhS8irw17uIaxid/jfBUJjnP9pA42u/5kL/06RJJ7VlZ5By9s3k5x8+KjH0VJGbzBZjH/f6DVA68gnWp7taePz5Fzhm5138yLkcb3wa/uN+QMLR149oc8j+VOaksKY1j5NCPmjZCZnlI7q/ujYvd765iYYPH+GrjseY4tyNP/twOOUXxE0/a9T7AlbmJOMPhfFlTCZh74ZR3bdSKno0wVJKTUib3nyQyRKg8Lh+B0M9ZLmp8ayUfI7wbI942X0xxvDh6nXsffH/OKXjBRwC2yddSPn5P2RKVtmoxNCXSblpbAkXMXXP2hH9n00obHhx2SZqX/01F/meJF06qC35LKnn3EJ+wewR3PPB5acmsNdVSMARj7tu3Yjua3V1C4+9+BKLd9zFLc6P8Man4jv6JhKO/QokpI3ovg+mMjeZZbuzrYm9m0cswbISq83Uf/goX5VHOcy5C3/WNPjMfcTNODeioyMORXm2VVu4N2kyJVVPQDgctViUUqNHEyyl1IRjjCF769PUOgvJn3ZcxMsXEVriS0j3rRzxG6rla9ZT88JPOMXzHC4JUVV6AWXn38yUnPIR2+dgVeQkscGUMLl2ZJKLUNjw4sebqPnnb7nI9ySZ4qGu6CTMObeQXzR/RPY5FA6HUJqdQnVHGRX1I3MMVu5s5rEXX2Hxzrv4kfMDfHHJ+BZ/m4TjboDEjBHZ51BU5qbwkjcPErCGap96SkTLr2/z8ec3N1H74eN8VR5lunMn/syp8Jl7iDv8gqgnMxW5VoK1w1lGid9j1+JNilj5obDhuVW7eXH1Hm47byZ5aQkRK1spdeg0wVJKTTjrN23miNAq1k/9Evkj1GSoM3US7oYAtFZDRuRrkVau38yO537CKW3PME8CbCs+m9Lzb2FK3pSI7+tQTS9I45FwKed73gNva8RqUsJhw8srt7Dj5d9zkfcxsqWNusITCJ91C3mlR0ZkH5EyvSCVtRtLqKhdE9Hh6j/e0cSjL77K4up7uM35PsG4RHyLvkn8cTdEZTCN/kzJS6GBNALxWbj3fBqxcvd6rMRq9wdP8BV5zBpyPqMSTv4LcbM+N2p9vQaSmxJPTko8yzoLOAagdk1EEqxgKMxzq2q467VPWNL0NBc6NvH4e7/gy6dH/4cFpZQmWAe19dMPqFv9qvU/RRO2/sX+1xjA+lcId29jTPer7gnTs1DT9Y/pufIBK+y36CDrdRH6WifyTMQHGx5eeQe86wjfLEf+qEY6vrFd3liV0LAWpxiKllw1YvsI5UyHBgjvWYMjggnW8jUb2PXSLzi59WnmiI+thWdQev6tTCmI/HOMhqssK4ltrkprouYTqFgyrPJCYcNLyzdS++pvOd/7FGeIh7r8YwmffSt5ZaM3gMRQzCpO58PVZZwVfgNad0F6ybDKW769kSdeeIljdv+VHzs/IuROILjoa8Qt+caYSqy6zC5OB4Sa5BmU7f542OXt9fi4661N1H3wKP/B40x37iSQXg4n/5m4WReBc2zd1ogIc0vSebkhzNfECbuWw/RDH1QnEArz5Me7uP+NlZzU8hQPxr1MmrsNgC0f/RnvZ/5AgntsJJdjidfnw9PSREdbE52eZnyeFvztzQQ6Wwh1toKvFYe/DQl4kZD15wj6cIZ9OEPWv66wH7fx4TZ+XIRwmDAOQjgI7/szYZyEcNrTQtd9hBBGML3+wiL7Let6HcZhLcdJWLpeOwiL097OgcGBEWvPpse0Nc8JIhhx7rcMcXTP63rdtR7itOc5rB8oxNE9j97zHE6k5zyHExEnOKx9dZUTln01yGLMvnuq/W9ye73se1lT6lSmLzi1e3TSsW5sfRONMfVr3mDxhtujHcaghc3I3hw7ZHSSOKVGw7qE+cyYNHLPpEmZNA82QHPVCrKmnzGssowxfLhqDXtf/jkntz/PfAmwLf+zFJ13C1OKx+5zdRwOwVdwBNQC1R8ecoIVCIV5/oO1NL/xOy7wP0O6dLCn4HhCZ/6AvEmLIht0hM0uTueZsF2rWL3skBOsj6oaefaF51hScy8/di7HF5dCcNGNxB17AyRnRzDiyMpKjqMkM5HVTKGs7n7wtR3SYBu7mzv5y1sb8Sx/iOt4iimO3fgzp8CJd+KedeGYS6x6mlOSwesb6giVzcS5a9khleELhnh0WTUPvLGCM9uf5GH3P0l2d2Cmng7Hf4fGF/+HS6uf4YG3v8K/f2ZOhN/B2OL1B2lorKe9fhcdTTV4W+sItu0l3NGIo6MBl6+JeH8zicFmUsOtpJtWUsTLQI0nQ0bwEo9f4vARR1Di8DviCEo8IUccAXcqXmcOIUccRlzdSYlx7Es6jP0vsi8xsn6I7/pRPrxv2vT4kd70WI6BcBgxIcSEgTASDgPWtPU6bL02ISslM/YfYRzhMA4TtBI8E0IwOLqW2Umg2P862DdfMFZiaC939pxnp3xOwlG7F/xr8DSCxYs0wYoFc8+5gZZTrrYzc0HEgUMERBCHAxBEnIjD+tWhiwgI9nr2bMH6Jctesm896aN9eF+1MIOomZnw3Wb7rOkbQ+VFuj5srMc3xs1wjOzX38zyYraF84nfseKQyzDG8N7yj2l99eec3PlPnBKmqugsSs/9PpMLZ0Qw2pEzuayErXuKmLR9Kc4h5lfeQIhn3l+F763fcn7wRVKlk9riU0g98wcUlIyPplCzitPZJOXWQBfb/wUzzx/0tuGw4Y0Ndbz5yrOcUn8ftzlXWaMCHv1d4o/58pjoYzUYc0szeHnrJM7CwPb34LDTBr3t1noPd72xHlY9zPXOp5nkqMWXPQNO/l978IqxX1szpzQdY6AufQ6F256EgBfcg+sr1ekP8eCHO3j0reWc1/kkT7hfJdHlxUw/F47/NlJoJVOZZ/4Quesk3G/9mM2z72ZKXspIvqUREQobGlraaNy9hfa6KjqbdhNq3o3Dswd3Zz0p/nrSQg3kmiaKxd9nGR6SaJNU2l3p+BKyqYufzO74TMIJGTgS0nAkpOFOSsedlE58SgaJKRkkp2aSmJaJOyGFZBHGx+376DLGEAobAsZgwoZQKEQoHCQcChEKBgmHQ5hwmFDISuysRDIEJoz0vDuVfffAXfe1Pf/b/XK/e17r9TmuRFLSM0fsPUaaJlgHkZCUQkLS+PuSmrAi3ZdmlIfzVbHlsPwUnmcqp9R9NOSBLnzBEG+99Tqy9I+c6H8LI8L2sgsoO/d7TMmtHMGoI+/4w3J5+/1ZXLHtbfC3D+oZTI3tfl54/U2SVtzJuaE3iZMg9ZPOJOXMm6I6KuChSI53Mbc8l+V1c1m84SU44/YBv1v8wTDPfLydtW88yFntT/D/HJvoTMgkcNwtJCz6YlRHBTwUJ0zN5QerJhNKScK58eVBJVgrdjTxj7c+IW/DP7jR+U/yXE348+fCSb8i/rAzoj54xVAcUZaJyyG8I0dwceDvUPXugIN91LV5+dv723n//Xf4fOBZnnb9C7c7BLMuhCXfRPL2/4FFio+gY/4XuXLFX7jpnjv47699jYykuJF8W0NmjKHB46Nm13aad23EW78NGrcR59lJmnc3+aE9FNBIXq8aknYSaHZm0+bOoTl1Dg0p+ZBSgDO9kISMAhIz80nPKiA1K48UVzx61xZ5IoLLKT2SBhcQH72AxgFNsJRSagS4nA52Zi4mueVd2LMKiuYNuE1Dawfvv/QAhWv/yqmsoZMEtlV+gYpzv8vUzNKRD3oELKrI5h7HIq4O/RM2vAizL+p33U17Wnj75ceYsuV+LnesxI+bxikXkH/6t8jPHXt9zAbr5Ol5PL59HouDd1o1OOXH9rlefZuPp5auxbP0Pi4KPMdFjno8qaWEjvspiUdeMWoPCI60k6bnERA3m9KOZvqaJ+DU/4G4pAPWC4TCvPjpHv751tssqnuUHznfIcnlwz/pBFjyNeImf2Zc/vCVnujmmCk5/HmHg8/HpSKfPNhvgrV2dyt/fXczjate5irH83zTsZpQfALO+VfC0V+F7Mn97ifpzP+ho+pf3Nz4U275QwJf/9K/U5yROFJvq08eX5Bde2ppqN5ER+0WQg3bcLXuIKVzF9mBGkqoY7YE9tumwZFNc3whjckLqU8vw5lVQWLuJDLyJ5GRV0pyYprWKqlxR0zEmxkduqOOOsosW3Zo7ZOVUmqs+cdry7j47c/imf8lMs7vuz+nMYYVn65hz9t/ZVbdM5RJHXudebTNuZbyU69HEsdPk4j+fPuRj/nymssoy0nF9eV3wLXvl892X5A3PvyY9g/u5+jWlyhz1NPmysQ//1qyT/gypORGMfLIqG/zccpPX+Td+K+TWnw4XP1cd9O2QCjM+5vq+OTtZ5i080lOdXxEggRoyV1A2slfR6adOS6awQ3kuvuX4d/6LvdyC5z0fTjhO93LNtW28eyH6+lc+RinBV7nKMdGQuImPPti3Md+FfJnRjHyyHhu1W5u+McK/jnzFQ7beh986XWwHyXQ0hng2U92886HHzGz7lkucr5DkTQQTMrHdfR/wJHXDH4AE089HXedgbt5K3+Qi8n57H/x+UWTiXdF5jPkC4bY3dBKffVm2vZsIVC/FUfLDpLaq8n076bQ1JIlnv22aSeJhrgi2pOKCaVPwp1dTkrBZLJKDiMxtwLco5sEKhVJIrLcGHPUAfM1wVJKqZFR2+rlo5+dzynuT0j4z6X7Dc+8dft2trz3JOmbn+Ko4EocYtiaMp+kY66jYNHFY7rT/lBt29vO7b/5JX9y/pzmwuNomv4FdjX7aKlaSWnje8xiCw4xVGccRfrRV5N6xOcH3UdlvLj9pfXUvv1XfhF3Bw35x7A163hqGttw1X7CYrOSLPHQ6UzFP+NzpB9z7aBqPMeTdTWtnPeHd7kz6Q5O9L9F1aTPs4FJ1O2pprJjNQsc64mTEO1pk0lceBWOeV+AlLxohx0x4bDhgj+9R13tbl5J/D5xxseqos+zpjkO07CVo2U10xzVGIRgxUm4j7wcpp8DrkNo5tfZRMfjN5C0+Tl2mWxekBPonHwG5TMXML04h/zUBFITXDgc+2oDA6EwzR0Bmtp9tLQ00dm4C199FYHG7UhLNYkdu0jz7yE/XEcBjTh7NOML4KLBlUdrQgmB1FIc2eUk5k0mq/gwUgsnWz8SjcOaR6UGQxMspZSKgjueeo1/W3EZuBLYkXcyHm+Q1Jb1TA9txCmGvY5c6qdcSMVnriMhv//mP+Pdq2tr+dfDP+db3Eey+AAII1QnzcAx7XSKl1yJZFVEOcqREwyFueWZNciyu/kv16Pdv/K3OrPwFB9HzpHnEXf42TGXWPb02rpafvjoR3zFfw+fd75FvAQJIzSnTCFh+qkkzfscFB8Zszfjda1ebnhwBXVVa/ip+y4WOdYDEJA4vIULSJl5OjLrQkgvHv7OjMFseYPmV39O+p73cRDGb5zsMPk0k0KLScblEFwEcZoQKbSTJa1k00Z8ryZ8IRw0OXNojS/El1yMySgjPreS9KIpZBYfhjO9KCZqWZU6FCOSYInIw0BXw/gMoNkYM09EyoF1wAZ72VJjzPUDlacJllIq1gRCYe594llmf3o7h1GFQ6AufhKdJcdRvPACcqYuGlcd9ofD4wvy8eZq4lu2UZSRQEnlTGScDdgwXHs9PqobPOQ62ynKTEbG8BDrIyEQCrO5zoOLEKUJnSSkZu/XZHQiqG7qoLkjQEmKIcPph6Sckf0OaN9LcPPrtFStxFu7CbwtuHwthIwhLC6MuAi6UwklZkFyDq6UXFzpBaTkV5JeUIGkFcdUjbpSkTTiNVgi8gugxRhzm51gPWeMGdIDWjTBUkrFqlDY4A+GSXA77Ec2KKWUUmo86y/BishPEmLdLVwMnByJ8pRSKtY4HUJinDajUUoppWJdpOqklwC1xphNPeZViMgKEXlLRPp9vKSIXCciy0RkWX19fYTCUUoppZRSSqnRN2ANloi8ChT0sej7xpin7ddfAB7ssawGKDPGNIjIkcBTIjLTGNPauxBjzJ3AnWA1ERzqG1BKKaWUUkqpsWLABMsYc9DHjYuIC/gccGSPbXyAz369XES2AIcB2sFKKaWUUkopFbMi0QfrFGC9Maa6a4aI5AKNxpiQiFQCU4GtAxW0fPnyvSKyPQIxRVIOsDfaQahRo+d74tBzPXHouZ5Y9HxPHHquJ5axeL4n9TUzEgnWpezfPBDgeOA2EQkAYeB6Y0zjQAUZY3IjEE9EiciyvkYHUbFJz/fEoed64tBzPbHo+Z449FxPLOPpfA87wTLGXN3HvMeBx4dbtlJKKaWUUkqNJxPj6ZZKKaWUUkopNQo0wRrYndEOQI0qPd8Th57riUPP9cSi53vi0HM9sYyb8y3G6MjoSimllFJKKRUJWoOllFJKKaWUUhGiCZZSSimllFJKRYgmWAchIqeLyAYR2Swi3412PCpyRKRURN4QkbUiskZEvm7PzxKRV0Rkk/1vZrRjVZEhIk4RWSEiz9nTFSLygX19PywicdGOUUWGiGSIyGMisl5E1onI0XptxyYRudH+Dv9URB4UkQS9tmOHiNwjInUi8mmPeX1ey2L5rX3eV4nIEdGLXA1VP+f6Z/b3+CoReVJEMnosu8k+1xtE5LSoBH0QmmD1Q0ScwB+AM4DDgS+IyOHRjUpFUBD4pjHmcGAx8FX7/H4XeM0YMxV4zZ5WseHrwLoe0z8FfmWMmQI0Af8elajUSPgN8JIxZjowF+u867UdY0SkGPgacJQxZhbgxHo2p17bseNe4PRe8/q7ls8Aptp/1wF/GqUYVWTcy4Hn+hVgljFmDrARuAnAvl+7FJhpb/NH+759zNAEq38Lgc3GmK3GGD/wEHBelGNSEWKMqTHGfGy/bsO6ASvGOsf32avdB5wflQBVRIlICXAW8Bd7WoCTgcfsVfRcxwgRScd62P3dAMYYvzGmGb22Y5ULSBQRF5AE1KDXdswwxrwNNPaa3d+1fB5wv7EsBTJEpHBUAlXD1te5Nsb80xgTtCeXAiX26/OAh4wxPmPMNmAz1n37mKEJVv+KgZ09pqvteSrGiEg5MB/4AMg3xtTYi/YA+dGKS0XUr4HvAGF7Ohto7vHFrdd37KgA6oG/2k1C/yIiyei1HXOMMbuAnwM7sBKrFmA5em3Huv6uZb1vi23XAi/ar8f8udYES01oIpICPA58wxjT2nOZsZ5hoM8xGOdE5GygzhizPNqxqFHhAo4A/mSMmQ+006s5oF7bscHue3MeVlJdBCRzYBMjFcP0Wp4YROT7WF07Hoh2LIOlCVb/dgGlPaZL7HkqRoiIGyu5esAY84Q9u7arSYH9b1204lMRcyxwrohUYTX1PRmrj06G3awI9PqOJdVAtTHmA3v6MayES6/t2HMKsM0YU2+MCQBPYF3vem3Htv6uZb1vi0EicjVwNnCZ2ffw3jF/rjXB6t9HwFR7NKI4rM50z0Q5JhUhdh+cu4F1xphf9lj0DHCV/foq4OnRjk1FljHmJmNMiTGmHOs6ft0YcxnwBnCRvZqe6xhhjNkD7BSRafaszwBr0Ws7Fu0AFotIkv2d3nWu9dqObf1dy88AV9qjCS4GWno0JVTjkIicjtW8/1xjTEePRc8Al4pIvIhUYA1s8mE0YuyP7EsGVW8iciZW3w0ncI8x5sfRjUhFiogcB7wDrGZfv5zvYfXDegQoA7YDFxtjenewVeOUiJwIfMsYc7aIVGLVaGUBK4DLjTG+KIanIkRE5mENaBIHbAWuwfpBUa/tGCMiPwIuwWo+tAL4IlZfDL22Y4CIPAicCOQAtcAtwFP0cS3bSfbvsZqJdgDXGGOWRSFsdQj6Odc3AfFAg73aUmPM9fb638fqlxXE6ubxYu8yo0kTLKWUUkoppZSKEG0iqJRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSH/H55YiqN8LSrsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACn+ElEQVR4nOzdeXxU1f3/8ddnZrKvEMIaIIjsEFEBsYJ7FeuCVitad2v9arVVvy5tbWvRb/1+u/irrdqWam21ahHctWqtGyrWDRSRxYUl7EsIkH2dOb8/5iZMQjbIhMnyfj4eeWTuueee85m5TJjPnHPPNeccIiIiIiIi0n6+WAcgIiIiIiLSXSjBEhERERERiRIlWCIiIiIiIlGiBEtERERERCRKlGCJiIiIiIhEiRIsERERERGRKFGCJSLSyZhZrpk5MwvEOhbpGcxsuZkdG+s4RES6AyVYIiLS5ZnZHDMr9X6qzawmYvvlWMfX2TnnxjnnFkSzTTM718z+Y2blZhbVtkVEOjPTjYZFRKLLzALOudp2HJ8LrAXi2tNOT2Vms4GDnXMXNrGvXefmQOpKsTbFzE4EegOjgeOdc8fGNiIRkQNDI1giIlFgZvlm9kMzWwqUmVnAzKZ63+DvNrNPI6dgmdkCM/s/M/vQzIrN7Dkz691M25eZ2UozKzGzNWb2X432zzSzJV47q81shleeYWYPmtkWM9tkZr8wM38rz2O4mb1hZoVmtsPMHjOzzIh9O83sMG97oJkV1D0vMzvDm2q223t+Yxq9PjeZ2VIzKzKzeWaWuO+v9L5r5tw4Mzs4os5DZvaLiO3TvNd0t3cO89rY17FmttHMbvVev3wzuyBi/6lm9ol3rjZ4yWDdvrqpod8xs/XAG175E2a21Xvd3jazcY3i/qOZveyN1r1rZv3N7HdmtsvMPjezQ9v4Gp3YlufYVs6515xz84HN0WxXRKSzU4IlIhI95wOnAplAP+BF4BeEv8W/CXjKzLIj6l8MXA4MAGqBe5ppdztwGpAOXAbcHZHkTAH+Dtzs9Xs0kO8d95DX7sHAocBJwBWtPAcD/g8YCIwBBgOzAZxzq4EfAo+aWTLwN+Bh59wCMxsJzAWuB7KBl4AXzCw+ou1zgRnAMCAPuLTJAMymeYlNcz/TWnkOTak/N62NCnkJyV+B/wKygD8Dz5tZQhv76g/0AQYBlwD3m9kob18Z4fOe6cVztZmd2ej4Ywi/9id72y8DI4C+wMfAY43qnwv81OuzCnjPq9cHeBL4bRvjbpKZ/ail89GetkVEuiMlWCIi0XOPc26Dc64CuBB4yTn3knMu5Jx7FVgEfCOi/iPOuWXOuTLgZ8C5TY0wOededM6tdmFvAf8Gpnu7vwP81Tn3qtfPJufc52bWz+vreudcmXNuO3A3cF5LT8A5t8prq8o5V0D4w/kxEfsfAFYBHxBODH/i7ZoFvOgdWwPcBSQBX2v0+mx2zu0EXgAmNhPDQudcZgs/C1t6Ds2IPDetuRL4s3PuA+dc0Dn3MOHEZeo+9Pcz7zV8i3CifS6Ac26Bc+4z71wtJZyUHtPo2NneOavwjvmrc67EOVdFONk9xMwyIuo/45xb7JyrBJ4BKp1zf3fOBYF5hJPr/eac+2VL56M9bYuIdEdKsEREomdDxOOhwLcafdM/jXBS0lT9dUAc4VGHBszsFDN735uet5tw4lRXbzCwuolYhnrtbYno/8+ER0GaZWb9zOxxb0phMfBoEzE9AIwH7vU+9EN4xGtdXQXnXMh7foMijtsa8bgcSG0plijb0HqVekOBGxudu8GEn2Nb7PKS5jrr6o41syPM7E1vamURcBV7v771sZqZ38x+aeGpn8XsGZ2MPGZbxOOKJrYP5OssItLjKcESEYmeyFWDNhAeoYr8tj/FOffLiDqDIx4PAWqAHZENetPSniI8ItTPGzF4ifBUvrp+hjcRywbCoy59IvpPd86Na6JupP/1nscE51w64ZG4ur4ws1Tgd8CDwGzbc93YZsKJSV09857fplb624uZTbc9KwA29TO99Vb20nhFp3IgOWK7f8TjDcCdjc5dsnNubhv76mVmKRHbQ9hzHdI/gOeBwc65DGAOEa9vE7F+G5gJnAhkALleeeNjOox3PVmz5+NAxSEi0lUowRIR6RiPAqeb2cneKESitwBCTkSdC81srHc90x3Ak960rkjxQAJQANSa2SmEr6Wq8yBwmZmdYGY+MxtkZqOdc1sITyX8f2aW7u0bbmaNp6M1lgaUAkVmNojwtV2Rfg8scs5dQXjq2xyvfD5wqhdHHHAj4QTvP629UI05595xzqW28PPOvrbZhCXAt71zM4OG0/QeAK7yRpvMzFIsvDhFGtQvLPFQK+3fbmbxXjJ4GvCEV54G7HTOVXrXz327lXbSCL+OhYQTwv/dh+cYFc65/23pfDR3XN2/eyAA+Lz3QNyBi1xEJDaUYImIdADn3AbCIw+3Ek6ONhBOViL/7j5CeCGKrUAi8IMm2inxyucDuwh/IH8+Yv+HeAtfAEXAW+wZSbqYcIK2wjv2SRpOUWzK7cBhXlsvAk/X7TCzmYQXqbjaK/pv4DAzu8A59wXh0a57CY/CnQ6c7pyrbqW/WLmOcIy7gQuAZ+t2OOcWAd8F7iP8uq2i4YIcg4F3W2h7q3fcZsILUlzlnPvc2/c94A4zKwFuI3xeW/J3wlMMNxE+j++39sQ6kYsIT1H8E+FrBisIJ68iIt2a7oMlIhIDFr7x6qPOub/EOhZpO29VxE+BPG8xj8b7jyV8XnMa7xMRkZ4hEOsAREREugpvRG5MqxVFRKTH0hRBEZEexszmNLNgwZzWj5auyMyGtLBQxZBYxyci0p1oiqCIiIiIiEiUaARLREREREQkSjrVNVh9+vRxubm5sQ5DRERERESkWYsXL97hnMtual+nSrByc3NZtGhRrMMQERERERFplpmta26fpgiKiIiIiIhEiRIsERERERGRKFGCJSIiIiIiEiWd6hqsptTU1LBx40YqKytjHYp0AomJieTk5BAXFxfrUKQbW1dYxo3zlvDjU8dy+NBesQ5HREREupBOn2Bt3LiRtLQ0cnNzMbNYhyMx5JyjsLCQjRs3MmzYsFiHI93YKx8s4y/bvsUrz17E4df9KtbhiIiISBfS6acIVlZWkpWVpeRKMDOysrI0mikdrmzdYjKtjFm75kBtdazDERERkS6k0ydYgJIrqad/C3IgpJSsqX9csuGzGEYiIiIiXU2XSLBERA6kPpV7bm1RsGpxDCMRERGRrkYJVhuYGTfeeGP99l133cXs2bNjF1CEY489tsWbM5955plMnTq1Qdns2bMZNGgQEydOZPz48Tz//PMdHaZIlxEKOQbUbiQ/cQzlLoHqTZ/GOiQRERHpQpRgtUFCQgJPP/00O3bsiGq7zjlCoVBU24y0e/duFi9eTFFREWvWrGmw74YbbmDJkiU88cQTXH755R0ah0hXUlJZSyalkNqPjS4bf9H6WIckIiIiXYgSrDYIBAJceeWV3H333XvtKygo4Oyzz2by5MlMnjyZd999FwiPEt1111319caPH09+fj75+fmMGjWKiy++mPHjx7NhwwZuvvlmxo8fz4QJE5g3bx4ACxYs4Nhjj+Wcc85h9OjRXHDBBTjnmozvkUceqR+N+vDDD+vLn376aU4//XTOO+88Hn/88SaPHTNmDIFAoEHy+KMf/YixY8eSl5fHTTfdBEB+fj7HH388eXl5nHDCCaxfH/7Qeemll3L11VczdepUDjroIBYsWMDll1/OmDFjuPTSS+vbvPrqq5k0aRLjxo3j5z//+V5xFBUVMXTo0PpEr6ysjMGDB1NTU9Nk3CIdpay6llQqICGNHYF+JJVvjnVIIiIi0oV0+mXaI93+wnJWbC6OaptjB6bz89PHtVrvmmuuIS8vj1tuuaVB+XXXXccNN9zAtGnTWL9+PSeffDIrV65ssa2vvvqKhx9+mKlTp/LUU0+xZMkSPv30U3bs2MHkyZM5+uijAfjkk09Yvnw5AwcO5KijjuLdd99l2rRpe7VXXl7OkiVLePvtt7n88stZtmwZAHPnzuW2226jX79+nH322dx66617HfvBBx/g8/nIzs4GoLCwkGeeeYbPP/8cM2P37t0AfP/73+eSSy7hkksu4a9//Ss/+MEPePbZZwHYtWsX7733Hs8//zxnnHEG7777Ln/5y1+YPHkyS5YsYeLEidx555307t2bYDDICSecwNKlS8nLy6uPIyMjg4kTJ/LWW29x3HHH8c9//pOTTz5Z97uSA66iJkiWlbMzPo3SxAFkVHwR65BERESkC9EIVhulp6dz8cUXc8899zQof+2117j22muZOHEiZ5xxBsXFxZSWlrbY1tChQ+uvi1q4cCHnn38+fr+ffv36ccwxx/DRRx8BMGXKFHJycvD5fEycOJH8/Pwm2zv//PMBOProoykuLmb37t1s27aNr776imnTpjFy5Eji4uLqEy+Au+++m4kTJ3LTTTcxb968+tX5MjIySExM5Dvf+Q5PP/00ycnJALz33nt8+9vfBuCiiy5i4cKF9W2dfvrpmBkTJkygX79+TJgwAZ/Px7hx4+pjnj9/PocddhiHHnooy5cvZ8WKFXs9j1mzZtWP4D3++OPMmjWrxddRpCNUVNWNYKVTnTqINFcKVSWxDktERES6iC41gtWWkaaOdP3113PYYYdx2WWX1ZeFQiHef/99EhMTG9QNBAINrmuKvHdTSkpKm/pLSEiof+z3+6mtrW2yXuOly82M+fPns2vXrvob8hYXFzN37lzuvPNOIHwNVt30v8Zxf/jhh7z++us8+eST3HfffbzxxhttitPn8zWI2efzUVtby9q1a7nrrrv46KOP6NWrF5deemmT97I644wzuPXWW9m5cyeLFy/m+OOPb7FfkY5QXVFKwEJYYjq+zHTYDjWF64gbOD7WoYmIiEgX0O4RLDMbbGZvmtkKM1tuZtd55b3N7FUz+8r73av94cZW7969Offcc3nwwQfry0466STuvffe+u0lS5YAkJuby8cffwzAxx9/zNq1a5tsc/r06cybN49gMEhBQQFvv/02U6ZM2ae46kZ9Fi5cSEZGBhkZGcydO5d//etf9dd9LV68uNnrsCKVlpZSVFTEN77xDe6++24+/TS8gtrXvva1+uMfe+wxpk+f3ub4iouLSUlJISMjg23btvHyyy83WS81NZXJkydz3XXXcdppp+H3+9vch0i0VFcUAeBLTCchaygAu7Y0/f4VERERaSwaUwRrgRudc2OBqcA1ZjYW+BHwunNuBPC6t93l3XjjjQ0WhLjnnntYtGgReXl5jB07ljlz5gBw9tlns3PnTsaNG8d9993HyJEjm2zvrLPOIi8vj0MOOYTjjz+eX//61/Tv33+fYkpMTOTQQw/lqquu4sEHHyQ/P59169Y1WJ592LBhZGRk8MEHHzTZxje+8Q02b95MSUkJp512Gnl5eUybNo3f/va3ANx777387W9/Iy8vj0ceeYTf//73bY7vkEMO4dBDD2X06NF8+9vf5qijjqrfd9tttzVYJn7WrFk8+uijmh4oMVNT7iVYSRmk9g+PAJdtX9PSISIiIiL1rLmV6fa7QbPngPu8n2Odc1vMbACwwDk3qqVjJ02a5Brf02nlypWMGTMmqjFK16Z/E9KR3nrzZY556zy2nPowZUOOZ8gfc8kfcRkjL/x/sQ5NREREOgkzW+ycm9TUvqgucmFmucChwAdAP+fcFm/XVqBfM8dcaWaLzGxRQUFBNMMREdlnoYrwSqVxyZkMyExmi8vCijfEOCoRERHpKqKWYJlZKvAUcL1zrsFa6i48TNbkUJlz7n7n3CTn3KS6pcJFRGLFVYb/fMWnZJCSEGCbL5uE0k0xjkpERES6iqgkWGYWRzi5esw597RXvM2bGoj3e3s0+hIR6VDekuwJKRkAFMX1I6VqWywjEhERkS4kGqsIGvAgsNI599uIXc8Dl3iPLwGea29fIiIdzVWXAxCflAZAZVI/MoOFEArGMiwRERHpIqIxgnUUcBFwvJkt8X6+AfwS+LqZfQWc6G2LiHRuNeEEy+LDN9kOpQ3ETwhKNQgvIiIirWv3jYadcwsBa2b3Ce1tX0TkgKr1boIdSALAnzkINkHVzg0kpA+IYWAiIiLSFUR1FcHu7Nlnn8XM+Pzzz5utk5+fz/jx46PW56WXXsqTTz7Z7P7rr7+eQYMGEQqF6sseeughsrOzmThxImPHjuWBBx6IWjwiPYHVVFBFHPjCfx4Ts4YAsHvb+liGJSIiIl2EEqw2mjt3LtOmTWPu3LlN7q+trW13H8Fg26/xCIVCPPPMMwwePJi33nqrwb5Zs2axZMkSFixYwK233sq2bbpAX6StfLUVVJFQv53RdzAAZQXrYhWSiIiIdCFKsNqgtLSUhQsX8uCDD/L444/Xly9YsIDp06dzxhlnMHbsWCCcaF1wwQWMGTOGc845h/Ly8PUcr7/+OoceeigTJkzg8ssvp6qqCoDc3Fx++MMfcthhh/HEE0/s1fdrr73GpEmTGDlyJP/85z8b9D1u3DiuvvrqZpO+vn37Mnz4cNat2/PB8J577mHs2LHk5eVx3nnnAbBz507OPPNM8vLymDp1KkuXLgVg9uzZXHLJJUyfPp2hQ4fy9NNPc8sttzBhwgRmzJhBTU0NAHfccQeTJ09m/PjxXHnllTS+eXUoFCI3N5fdu3fXl40YMUKJn3RKFqykxvYkWH36DaLKBajZtTGGUYmIiEhX0e5rsA6ol38EWz+Lbpv9J8ApLa+/8dxzzzFjxgxGjhxJVlYWixcv5vDDDwfg448/ZtmyZQwbNoz8/Hy++OILHnzwQY466iguv/xy/vjHP3Lttddy6aWX8vrrrzNy5Eguvvhi/vSnP3H99dcDkJWVxccff9xk3/n5+Xz44YesXr2a4447jlWrVpGYmMjcuXM5//zzmTlzJrfeeis1NTXExcU1OHbNmjWsWbOGgw8+uL7sl7/8JWvXriUhIaE+4fn5z3/OoYceyrPPPssbb7zBxRdfzJIlSwBYvXo1b775JitWrODII4/kqaee4te//jVnnXUWL774ImeeeSbXXnstt912GwAXXXQR//znPzn99NPr+/T5fMycOZNnnnmGyy67jA8++IChQ4fSr1+T954WiSl/sJJq354Ea0BmMttcLyjeHMOoREREpKvQCFYbzJ07t36057zzzmswYjRlyhSGDRtWvz148GCOOuooAC688EIWLlzIF198wbBhwxg5ciQAl1xyCW+//Xb9MbNmzWq273PPPRefz8eIESM46KCD+Pzzz6muruall17izDPPJD09nSOOOIJXXnml/ph58+YxceJEzj//fP785z/Tu3fv+n15eXlccMEFPProowQC4fx64cKFXHTRRQAcf/zxFBYWUlwcvtnqKaecQlxcHBMmTCAYDDJjxgwAJkyYQH5+PgBvvvkmRxxxBBMmTOCNN95g+fLlez2PWbNmMW/ePAAef/zxFp+zSCwFgpXU+BLrtxPj/Ozw9SGufGsMoxIREZGuomuNYLUy0tQRdu7cyRtvvMFnn32GmREMBjEzfvOb3wCQkpLSoH74tmDNbzelcRuttffKK6+we/duJkyYAEB5eTlJSUmcdtppQDiZue+++5ps78UXX+Ttt9/mhRde4M477+Szz1oeEUxICH+T7/P5iIuLq4/H5/NRW1tLZWUl3/ve91i0aBGDBw9m9uzZVFZW7tXOkUceyapVqygoKODZZ5/lpz/9aYv9isRKIFRFrT+hQVlxXDaDqlbFKCIRERHpSjSC1Yonn3ySiy66iHXr1pGfn8+GDRsYNmwY77zzTpP1169fz3vvvQfAP/7xD6ZNm8aoUaPIz89n1arwB7RHHnmEY445pk39P/HEE4RCIVavXs2aNWsYNWoUc+fO5S9/+Qv5+fnk5+ezdu1aXn311frrvZoTCoXYsGEDxx13HL/61a8oKiqitLSU6dOn89hjjwHha7v69OlDenp6m+KrS6b69OlDaWlps6semhlnnXUW//3f/82YMWPIyspqU/siB1pcqJJaf2KDssrkfvSqLYBG1xeKiIiINKYEqxVz587lrLPOalB29tlnN7uwxKhRo/jDH/7AmDFj2LVrF1dffTWJiYn87W9/41vf+hYTJkzA5/Nx1VVXtan/IUOGMGXKFE455RTmzJlDKBTiX//6F6eeemp9nZSUFKZNm8YLL7zQZBtXXHEFixYtIhgMcuGFFzJhwgQOPfRQfvCDH5CZmcns2bNZvHgxeXl5/OhHP+Lhhx9u46sDmZmZfPe732X8+PGcfPLJTJ48uX7fnDlzmDNnTv32rFmzePTRRzU9UDq1OFdFqFGCFUwdSDw1UL4zRlGJiIhIV2GNV3yLpUmTJrlFixY1KFu5ciVjxoyJUUTSGenfhHSkVT8fR1WvEYy7/tn6sn898WdmLL+FisvfImnIxJjFJiIiIp2DmS12zk1qap9GsEREIiRQhQskNShL6h2+F9aurfkxiEhERES6EiVYIiKemmCIRKpxgYZTBNP7DgGgbMf6WIQlIiIiXUiHJ1hmNsPMvjCzVWb2o/1pozNNY5TY0r8F6UgVNUESqYa4hiNYWf2HEHRGzU7dbFhERERa1qEJlpn5gT8ApwBjgfPNbOy+tJGYmEhhYaE+WAvOOQoLC0lMTGy9ssh+qKwOkkQVxCU3KO/XK4Xt9MLpZsMiIiLSio6+D9YUYJVzbg2AmT0OzARWtLWBnJwcNm7cSEFBQQeFKF1JYmIiOTk5sQ5DuqmKykoCFsIajWAlBPzssCwSynSzYREREWlZRydYg4ANEdsbgSP2pYG4uDiGDRsW1aBERJpSVVEKgC8hea99xfF9ya3asFe5iIiISKSYL3JhZlea2SIzW6RRKhGJpaqKMgD88XsnWJVJfcms1d8oERERaVlHJ1ibgMER2zleWT3n3P3OuUnOuUnZ2dkdHI6ISPOqK70Eq4kRrGDqQFKogMriAx2WiIiIdCEdnWB9BIwws2FmFg+cBzzfwX2KiOyXWi/BCjSRYPkyBgFQukPTBEVERKR5HZpgOedqgWuBV4CVwHzn3PKO7FNEZH/VVJYDEJeYste+xCzvZsNb8g9kSCIiItLFdPQiFzjnXgJe6uh+RETaq7bKS7AS9k6w6m42XLpj3QGNSURERLqWmC9yISLSWQSrw1ME45L2TrCyBgwFoGbXpr32iYiIiNRRgiUi4gl5I1gJSal77evXK4MdLh1XpARLREREmqcES0TEE6qpACA+ce9FLgJ+H4W+LOJ0s2ERERFpgRIsERFPqDo8ghVo4hosgKK4vqRUbTuQIYmIiEgXowRLRMTjqsMjWMQlNrm/MqkfmTW62bCIiIg0TwmWiEidmroEa+8pggDVqYPJoARXWXQAgxIREZGuRAmWiIjHaisI4gN/fNP7e4VXEizZuvpAhiUiIiJdiBIsERGP1VZQTTyYNbk/se8wAIo2rzqQYYmIiEgXogRLRMTjq62k2pfQ7P60/gcDULF9zYEKSURERLoYJVgiIh5/sIIaa3qBC4C+fQdQ4pII7Vx3AKMSERGRrkQJloiIJz5YRpW/6QUuALLTE9nosgkUrz+AUYmIiEhXogRLRMSTECynpoUEy+8zCgL9SanYdACjEhERka6kXQmWmf3GzD43s6Vm9oyZZUbs+7GZrTKzL8zs5HZHKiLSwRJdBTWB1BbrFCcOpFf1ZnDuAEUlIiIiXUl7R7BeBcY75/KAL4EfA5jZWOA8YBwwA/ijmfnb2ZeISIdKduXUxqW0WKcydTCJrgrKdhygqERERKQraVeC5Zz7t3Ou1tt8H8jxHs8EHnfOVTnn1gKrgCnt6UtEpCPVBkMkU0Eo0HKC5TKGhH/vyj8AUYmIiEhXE81rsC4HXvYeDwI2ROzb6JXtxcyuNLNFZraooKAgiuGIiLRdeU2QVCoIxae1WC8h27sX1hbdC0tERET21mqCZWavmdmyJn5mRtT5CVALPLavATjn7nfOTXLOTcrOzt7Xw0VEoqKkooYUKvEltnwNVu9BI8L1lWCJiIhIEwKtVXDOndjSfjO7FDgNOMG5+qu+NwGDI6rleGUiIp1SSUkxg8zhT8xosd6Q/n3Z4dKp3rH2AEUmIiIiXUl7VxGcAdwCnOGcK4/Y9TxwnpklmNkwYATwYXv6EhHpSGXFuwCIS05vsd7AzEQ2uWz8RboXloiIiOyt1RGsVtwHJACvmhnA+865q5xzy81sPrCC8NTBa5xzwXb2JSLSYSpKdwMQ30qCFfD72B6fQ0755wcgKhEREelq2pVgOecObmHfncCd7WlfRORAqSorAiAxNbPVuqWpufTa/TbUVEBcUgdHJiIiIl1JNFcRFBHpsqrLdgOQmNryNVgAwV7D8eFwhas7OCoRERHpapRgiYgAobJCAJIz+7VaN7H/SACKNmqaoIiIiDSkBEtEBKA8nGD5U/u0WjUzZwwAJZtWdGhIIiIi0vUowRIRAfyV4VUESerVat0h/fuy1fWituCrDo5KREREuholWCIiQKBqF6WkgD+u1boDMxNZ6wYQv1v3whIREZGGlGCJiAAJ1bso9be8RHudgN9HQfxgMsrXdXBUIiIi0tUowRIRAeJriqiMy2xz/fK0YaSGiqF8Z8cFJSIiIl2OEiwRESCltoiahNavv6qXNRyAkK7DEhERkQhKsESkxyutqqUXRYSSstp8TMqg8EqCuzau7KiwREREpAtSgiUiPV5BUTn92IVLG9DmY/oNHkGN81O2SQmWiIiI7KEES0R6vF3bNxGwEIHMQW0+5qD+vVjv+hLcsaoDIxMREZGuJioJlpndaGbOzPp422Zm95jZKjNbamaHRaMfEZGOULZjPQCJWUPafExWSjwbfQNIKtZS7SIiIrJHuxMsMxsMnASsjyg+BRjh/VwJ/Km9/YiIdJTKwg0ApPdte4JlZuxKyqV35QYIhToqNBEREeliojGCdTdwC+AiymYCf3dh7wOZZtb2ixtERA6gml0bAUjbhwQLoCbzIOKphuKNHRGWiIiIdEHtSrDMbCawyTn3aaNdg4ANEdsbvbKm2rjSzBaZ2aKCgoL2hCMisl/8xRuoJAFL7rNPx8X1GwlA+WYtdCEiIiJhrSZYZvaamS1r4mcmcCtwW3sCcM7d75yb5JyblJ2d3Z6mRET2S1r5egrjBoJv375zSs8ZB8Cu9Ss6IiwRERHpggKtVXDOndhUuZlNAIYBn5oZQA7wsZlNATYBgyOq53hlIiKdinOO7JrNlPY6aJ+PHTJ4CEUumaqtGsESERGRsP2eIuic+8w519c5l+ucyyU8DfAw59xW4HngYm81walAkXNuS3RCFhGJnoLiCgazjdqMoft87JCsVFa7QQR2aql2ERERCeuo+2C9BKwBVgEPAN/roH5ERNolf+0qEq2GxH4j9vnY+ICPbfFDyChb0wGRiYiISFfU6hTBtvJGseoeO+CaaLUtItJRduUvBSBr2CH7dXxJ2kFk7HodKnZBUq9ohiYiIiJdUEeNYImIdAnBbcsByBgyYf8a6BNeSTC4/ctohSQiIiJdmBIsEenRknZ9yS5fLywla7+OTx44FoCiDcujGZaIiIh0UUqwRKTHcs6RXbGWwuTh+91Gv6EjqXIBSjZpqXYRERFRgiUiPdjWonIOYiM1vUftdxsH9c1grRsABZoiKCIiIkqwRKQHW7/mc5KtivhB4/e7jd4p8WzwDSKleHUUIxMREZGuSgmWiPRYRfmfApC9nysIApgZu5Nz6V29GWqrohWaiIiIdFFKsESkxwpuWwlA+v6uIOip7jUCHyHYqfthiYiI9HRKsESkx0re/SU7/NmQmN6uduL7jwagfLMWuhAREenplGCJSI/knKN/5Rp2puz/CoJ1eg/xlmpfr6XaRUREejolWCLSI23aWUIum6nJGt3utnIH9mWj60PN1pVRiExERES6MiVYItIjbVq9nASrJakdKwjWyc1K4Us3hKSdmiIoIiLS0ynBEpEeqWjdZwBkHzSx3W35fcbW1DFkVa6DqtJ2tyciIiJdV7sTLDP7vpl9bmbLzezXEeU/NrNVZvaFmZ3c3n5ERKIptH0FIYy0nHFRaa+qzwR8ONzWpVFpT0RERLqmQHsONrPjgJnAIc65KjPr65WPBc4DxgEDgdfMbKRzLtjegEVEoiG16CsKAgPoF58clfaScg+H9VC6dhFpQ78WlTZFRESk62nvCNbVwC+dc1UAzrntXvlM4HHnXJVzbi2wCpjSzr5ERKIiFHL0r1rL7tT2ryBYZ/hBB7PNZVKy5qOotSkiIiJdT3sTrJHAdDP7wMzeMrPJXvkgYENEvY1e2V7M7EozW2RmiwoKCtoZjohI6zbs2EUuWwhGYQXBOnk5GSx3w4nf/mnU2hQREZGup9UEy8xeM7NlTfzMJDzFsDcwFbgZmG9mti8BOOfud85Ncs5Nys7O3q8nISKyLzavWkbAQiTltH8FwToJAT9bMw6hT+U6KN4ctXZFRESka2k1wXLOneicG9/Ez3OER6aedmEfAiGgD7AJGBzRTI5XJiIScxWbwisIZg07JKrtBg/+OgCly16KarsiIiLSdbR3iuCzwHEAZjYSiAd2AM8D55lZgpkNA0YAH7azLxGRqPDv+IJafKQNGhPVdo84YhprQ/0o/eCRJvcXllQwf+6DfPb5F1HtV0RERDqPdq0iCPwV+KuZLQOqgUuccw5YbmbzgRVALXBNV1xB8P1//A99Vj9DyPyE8BMyP0EL4Cz8uO53yBfARZbXbfvCZXi/zefHZ2Bm9T8+M1xdh97sSoeBc7i62ZbOK4/cH35Qz+Goa8ntKWwk1HDT7VWhwUHOsVebFrEvvO1wDQPZU4c9depiBDDn9g5tr+5d44JGz8ft/XivRhsXNNxuKg5r5ZjW+2iijUav8545tM2+Cm3Y23qFVo9vX/PtOzrGsefufp8tvoEMjktsZ08NjeyfzsMZZ3BJ0QPUfLWAuBHHAlBVG+TVF59i6Ce/5FxW88GWk2D0E1HtuydwoRBlZSWUFhVSUbyTyrIiKivKCFaWEawux3k/1FRAbQVWU47VVmLBKlywFkK1+EI1mAvic7XeT/ix33uMCwHO+0fk/c3y+rf6bbdXWWTF8N66v9eNjrDwY4ts3fau0/h4sz3tOm9772MatlcfYYN9DR/XxdL4mMh6kcc3+czNmnzOUPf/VhPlEX3sabPRa7fX/qb6jIH2/oGSdtCL31N9nnk0J37jHHJ6RWfl347WrgTLOVcNXNjMvjuBO9vTfqz5kjIpTeiLhfb8JxxwNfhcJT4XxF/3HzPB8DYhfAQJeGXhtCxIgFr8LoTPeu4fhpBr+B/h3mnM3v9R7vng0HSbLR7ToJ+WUpq2ttFSv0210VqbB+aDQYw+fnQJXw0+t8E85mjJPfn7rJ3/PH3mXsyqvO+zY3cxmete4TT3BYX+bAjC4LJlHdBz11JeWcWuHdsoLtxCxa4tVBVtI1hSAGUF+Ct2EFddTHxtCYnBEpJCZaS4UtJcOakWJLWNfVS7AJXEU2Nx4b/G3pdkQRr+DpmfkAWo9cWFvwyDZj78Q8M0i73qgMNc49p1XwI570up8Bc8jVut/1IrYl+4rVDEdmSvjdtq1J93vDVb7h0f2VbjdMft+Sva1DOuO7ZhCrT3MftWp+ljzPsGr3GdmCVaEiM63z3R6wUZ7CqbSU6vWEfSNuaaHMWIjUmTJrlFixbFOowDwoVCBEOOoPP+44z4T6xuO/z/+55RH28HZuYNL1mDPzN132iGH0d8E8lelSIL9g6utTqN9+/buiYi3d7jL7/BxPevY7StB2BjYAhVeRcx/JTv8+pDd/D1TX+k+voviM/sH+NIO0ZRSSnbNq5m97Z1VBWuJ7R7I4HSzSRVbCW9ejuZwZ30ohh/E1861TofRZZOmS+NCn8q1YE0auLSqI1PxyVkQGI6lpSJPzmD+ORM4pNSiE9MIS4xlbjEZOKTUolPTCEhKYVAXHwMnr2IiPQEZrbYOTepqX3tnSIo+8l8PgI+COCPdSgiEmXnnXI8u6YvYsX6L+mfnU1O9p5EKmXUcbDpj2xY/BLDT7g8hlHuv+qaIFu3bGDnxi8o3/oVocI1xBevI71iI31qt9CHIjIaHVNEKjv9fSlJ7EdR0gTyU7PxpfYlPqMfiZn9SenVn4zsgSSnZ5Pl85EVk2cmIiLSfkqwREQ6QK/UBHqNnbBX+djDj2bH6+lUrXgJOnGC5ZyjYNdOtq76jOINy3DbvyCheA29KjcyILSVIVbJEK9uyBnbfdkUxg8kP/1o1qYPIiFrMKl9c8non0tmv1wyElP3SrpERES6IyVYIiIHUGZKIgvSjmZq4b+pKdlBXFqfmMYTDDk2bd3KttVLKd+0DAq+ILVkNf2r1zGIAvp69Wqcn62BARQn5/Bl+lSs9zCS+h1Mr5xR9MkZQf/4RLrnhEcREZF9owRLROQASzzqv0h85Z8se/aXjL/orgPSZ20wxIZNG9m+egllm5ZjO74ko3QNg2rWMcR21Y9GVRLPlsBgCjInsi1rJIkDx9LnoDyyB49mcEDXNImIiLRGCZaIyAF2xNTpvL3gWKau/huFX55D1sipUWu7tjbIxo1r2b76Myo2LcNX+CUZpasZVLuBYVbMMK9eOYlsjR/K1j5HsjV7FCmDxtL3oENIH3Aww3y6NlRERGR/aRVBEZEYWJ2/jqS/HU+6lVP8jT8wcPJZ+7Qi5+6iIrbkf0HR5i+p2vYV8bvCI1I5tetJt/L6eiWksDUhl7L04fiyR5E6ZAIDDp5IUtYQrQAqIiKyn1paRVAJlohIjCxd9hkJT17AKNaxNmE0uwceQ1zfg/Gl9iXkHLU11dSU76KmaBuhku0EygtIq9xIn5ot9GNng7Z2ksG2hFwqMoZjfUeTPmQ8A4ZPJLn3QCVSIiIiUaYES0SkkyrYuZtFz97LQRueYkQov9kbktc4P7t8meyKG0BZymBCvXJJzB5OxqAR9M0dS0J63yaPExERkehTgiUi0sk559ixcyc7t+RTXVyAz+cjPi6OxLRe9O6bQ0pGlkaiREREOgndaFhEpJMzM7KzssjO0i12RUREujJfrAMQERERERHpLpRgiYiIiIiIRIkSLBERERERkSjpVItcmFkBsC7WcTTSB9gR6yDkgNH57jl0rnsOneueRee759C57jk647ke6pzLbmpHp0qwOiMzW9TcCiHS/eh89xw61z2HznXPovPdc+hc9xxd7VxriqCIiIiIiEiUKMESERERERGJEiVYrbs/1gHIAaXz3XPoXPccOtc9i853z6Fz3XN0qXOta7BERERERESiRCNYIiIiIiIiUaIES0REREREJEqUYLXAzGaY2RdmtsrMfhTreCR6zGywmb1pZivMbLmZXeeV9zazV83sK+93r1jHKtFhZn4z+8TM/ultDzOzD7z39zwzi491jBIdZpZpZk+a2edmttLMjtR7u3sysxu8v+HLzGyumSXqvd19mNlfzWy7mS2LKGvyvWxh93jnfamZHRa7yGVfNXOuf+P9HV9qZs+YWWbEvh975/oLMzs5JkG3QAlWM8zMD/wBOAUYC5xvZmNjG5VEUS1wo3NuLDAVuMY7vz8CXnfOjQBe97ale7gOWBmx/SvgbufcwcAu4DsxiUo6wu+BfznnRgOHED7vem93M2Y2CPgBMMk5Nx7wA+eh93Z38hAwo1FZc+/lU4AR3s+VwJ8OUIwSHQ+x97l+FRjvnMsDvgR+DOB9XjsPGOcd80fvc3unoQSreVOAVc65Nc65auBxYGaMY5Iocc5tcc597D0uIfwBbBDhc/ywV+1h4MyYBChRZWY5wKnAX7xtA44HnvSq6Fx3E2aWARwNPAjgnKt2zu1G7+3uKgAkmVkASAa2oPd2t+GcexvY2ai4uffyTODvLux9INPMBhyQQKXdmjrXzrl/O+dqvc33gRzv8UzgcedclXNuLbCK8Of2TkMJVvMGARsitjd6ZdLNmFkucCjwAdDPObfF27UV6BeruCSqfgfcAoS87Sxgd8Qfbr2/u49hQAHwN29K6F/MLAW9t7sd59wm4C5gPeHEqghYjN7b3V1z72V9buveLgde9h53+nOtBEt6NDNLBZ4CrnfOFUfuc+F7GOg+Bl2cmZ0GbHfOLY51LHJABIDDgD855w4Fymg0HVDv7e7Bu/ZmJuGkeiCQwt5TjKQb03u5ZzCznxC+tOOxWMfSVkqwmrcJGByxneOVSTdhZnGEk6vHnHNPe8Xb6qYUeL+3xyo+iZqjgDPMLJ/wVN/jCV+jk+lNKwK9v7uTjcBG59wH3vaThBMuvbe7nxOBtc65AudcDfA04fe73tvdW3PvZX1u64bM7FLgNOACt+fmvZ3+XCvBat5HwAhvNaJ4whfTPR/jmCRKvGtwHgRWOud+G7HreeAS7/ElwHMHOjaJLufcj51zOc65XMLv4zeccxcAbwLneNV0rrsJ59xWYIOZjfKKTgBWoPd2d7QemGpmyd7f9Lpzrfd299bce/l54GJvNcGpQFHEVELpgsxsBuHp/Wc458ojdj0PnGdmCWY2jPDCJh/GIsbm2J5kUBozs28QvnbDD/zVOXdnbCOSaDGzacA7wGfsuS7nVsLXYc0HhgDrgHOdc40vsJUuysyOBW5yzp1mZgcRHtHqDXwCXOicq4pheBIlZjaR8IIm8cAa4DLCXyjqvd3NmNntwCzC04c+Aa4gfC2G3tvdgJnNBY4F+gDbgJ8Dz9LEe9lLsu8jPE20HLjMObcoBmHLfmjmXP8YSAAKvWrvO+eu8ur/hPB1WbWEL/N4uXGbsaQES0REREREJEo0RVBERERERCRKlGCJiIiIiIhEiRIsERERERGRKFGCJSIiIiIiEiVKsERERERERKJECZaIiIiIiEiUKMESERERERGJEiVYIiIiIiIiUaIES0REREREJEqUYImIiIiIiESJEiwREREREZEoUYIlIiIiIiISJUqwREQ6GTPLNTNnZoFYxyI9g5ktN7NjYx2HiEh3oARLRES6PDObY2al3k+1mdVEbL8c6/g6O+fcOOfcgmi2aWbnmtl/zKzczKLatohIZ2bOuVjHICLSrZhZwDlX247jc4G1QFx72umpzGw2cLBz7sIm9rXr3BxIXSnWppjZiUBvYDRwvHPu2NhGJCJyYGgES0QkCsws38x+aGZLgTIzC5jZVO8b/N1m9mnkFCwzW2Bm/2dmH5pZsZk9Z2a9m2n7MjNbaWYlZrbGzP6r0f6ZZrbEa2e1mc3wyjPM7EEz22Jmm8zsF2bmb+V5DDezN8ys0Mx2mNljZpYZsW+nmR3mbQ80s4K652VmZ3hTzXZ7z29Mo9fnJjNbamZFZjbPzBL3/ZXed82cG2dmB0fUecjMfhGxfZr3mu72zmFeG/s61sw2mtmt3uuXb2YXROw/1cw+8c7VBi8ZrNtXNzX0O2a2HnjDK3/CzLZ6r9vbZjauUdx/NLOXvdG6d82sv5n9zsx2mdnnZnZoG1+jE9vyHNvKOfeac24+sDma7YqIdHZKsEREoud84FQgE+gHvAj8gvC3+DcBT5lZdkT9i4HLgQFALXBPM+1uB04D0oHLgLsjkpwpwN+Bm71+jwbyveMe8to9GDgUOAm4opXnYMD/AQOBMcBgYDaAc2418EPgUTNLBv4GPOycW2BmI4G5wPVANvAS8IKZxUe0fS4wAxgG5AGXNhmA2TQvsWnuZ1orz6Ep9eemtVEhLyH5K/BfQBbwZ+B5M0toY1/9gT7AIOAS4H4zG+XtKyN83jO9eK42szMbHX8M4df+ZG/7ZWAE0Bf4GHisUf1zgZ96fVYB73n1+gBPAr9tY9xNMrMftXQ+2tO2iEh3pARLRCR67nHObXDOVQAXAi85515yzoWcc68Ci4BvRNR/xDm3zDlXBvwMOLepESbn3IvOudUu7C3g38B0b/d3gL865171+tnknPvczPp5fV3vnCtzzm0H7gbOa+kJOOdWeW1VOecKCH84PyZi/wPAKuADwonhT7xds4AXvWNrgLuAJOBrjV6fzc65ncALwMRmYljonMts4WdhS8+hGZHnpjVXAn92zn3gnAs65x4mnLhM3Yf+fua9hm8RTrTPBXDOLXDOfeadq6WEk9JjGh072ztnFd4xf3XOlTjnqggnu4eYWUZE/Wecc4udc5XAM0Clc+7vzrkgMI9wcr3fnHO/bOl8tKdtEZHuSAmWiEj0bIh4PBT4VqNv+qcRTkqaqr8OiCM86tCAmZ1iZu970/N2E06c6uoNBlY3EctQr70tEf3/mfAoSLPMrJ+ZPe5NKSwGHm0ipgeA8cC93od+CI94raur4JwLec9vUMRxWyMelwOpLcUSZRtar1JvKHBjo3M3mPBzbItdXtJcZ13dsWZ2hJm96U2tLAKuYu/Xtz5WM/Ob2S8tPPWzmD2jk5HHbIt4XNHE9oF8nUVEejwlWCIi0RO5atAGwiNUkd/2pzjnfhlRZ3DE4yFADbAjskFvWtpThEeE+nkjBi8RnspX18/wJmLZQHjUpU9E/+nOuXFN1I30v97zmOCcSyc8ElfXF2aWCvwOeBCYbXuuG9tMODGpq2fe89vUSn97MbPptmcFwKZ+prfeyl4ar+hUDiRHbPePeLwBuLPRuUt2zs1tY1+9zCwlYnsIe65D+gfwPDDYOZcBzCHi9W0i1m8DM4ETgQwg1ytvfEyH8a4na/Z8HKg4RES6CiVYIiId41HgdDM72RuFSPQWQMiJqHOhmY31rme6A3jSm9YVKR5IAAqAWjM7hfC1VHUeBC4zsxPMzGdmg8xstHNuC+GphP/PzNK9fcPNrPF0tMbSgFKgyMwGEb62K9LvgUXOuSsIT32b45XPB0714ogDbiSc4P2ntReqMefcO8651BZ+3tnXNpuwBPi2d25m0HCa3gPAVd5ok5lZioUXp0iD+oUlHmql/dvNLN5LBk8DnvDK04CdzrlK7/q5b7fSThrh17GQcEL4v/vwHKPCOfe/LZ2P5o6r+3cPBACf9x6IO3CRi4jEhhIsEZEO4JzbQHjk4VbCydEGwslK5N/dRwgvRLEVSAR+0EQ7JV75fGAX4Q/kz0fs/xBv4QugCHiLPSNJFxNO0FZ4xz5JwymKTbkdOMxr60Xg6bodZjaT8CIVV3tF/w0cZmYXOOe+IDzadS/hUbjTgdOdc9Wt9Bcr1xGOcTdwAfBs3Q7n3CLgu8B9hF+3VTRckGMw8G4LbW/1jttMeEGKq5xzn3v7vgfcYWYlwG2Ez2tL/k54iuEmwufx/daeWCdyEeEpin8ifM1gBeHkVUSkW9N9sEREYsDCN1591Dn3l1jHIm3nrYr4KZDnLebReP+xhM9rTuN9IiLSMwRiHYCIiEhX4Y3IjWm1ooiI9FiaIigi0sOY2ZxmFiyY0/rR0hWZ2ZAWFqoYEuv4RES6E00RFBERERERiRKNYImIiIiIiERJp7oGq0+fPi43NzfWYYiIiIiIiDRr8eLFO5xz2U3t61QJVm5uLosWLYp1GCIiIiIiIs0ys3XN7dMUQRERERERkShRgiUiIiIiIhIlSrBERPaTc45/Lt3MusKyWIciIiIinUSnugarKTU1NWzcuJHKyspYhyJdTGJiIjk5OcTFxcU6FOmmFq/bxXOPP8CWrEq+e+P/xTocERER6QQ6fYK1ceNG0tLSyM3NxcxiHY50Ec45CgsL2bhxI8OGDYt1ONJNLc4v5IH430IJ1FTcSlxSWqxDEhERkRjr9FMEKysrycrKUnIl+8TMyMrK0sindCjb/HH94y2fvBzDSERERKSzaHeCZWaDzexNM1thZsvN7DqvvLeZvWpmX3m/e7Wjj/aGKT2Q/t1IR7Pde1ZorcrXLSZEREQkOiNYtcCNzrmxwFTgGjMbC/wIeN05NwJ43dsWEek+ygoA2OlSsV2rYxyMiIiIdAbtTrCcc1uccx97j0uAlcAgYCbwsFftYeDM9vYVK2bGjTfeWL991113MXv27NgFFOH999/niCOOYOLEiYwZM6Y+rgULFvCf//ynXW3PmDGDzMxMTjvttChEKtL9xFcWEsTPSt8IkkvyYx2OiIiIdAJRvQbLzHKBQ4EPgH7OuS3erq1Av2aOudLMFpnZooKCgmiGEzUJCQk8/fTT7NixI6rtOucIhULtauOSSy7h/vvvZ8mSJSxbtoxzzz0XiE6CdfPNN/PII4+0qw2R7iw1uIvyuF7sShpC76qN4FysQxIREZEYi9oqgmaWCjwFXO+cK468/sU558ysyU8ezrn7gfsBJk2a1OKnk9tfWM6KzcXRChmAsQPT+fnp41qsEwgEuPLKK7n77ru58847G+wrKCjgqquuYv369QD87ne/46ijjmL27NmkpqZy0003ATB+/Hj++c9/AnDyySdzxBFHsHjxYl566SXuu+8+Xn75ZcyMn/70p8yaNYsFCxYwe/Zs+vTpw7Jlyzj88MN59NFH97quaPv27QwYMAAAv9/P2LFjyc/PZ86cOfj9fh599FHuvfdeRo8e3Wycq1evZtWqVezYsYNbbrmF7373uwCccMIJLFiwoMXX5oknnuD222/H7/eTkZHB22+/TWVlJVdffTWLFi0iEAjw29/+luOOO46HHnqIZ599lrKyMr766ituuukmqqureeSRR0hISOCll16id+/ePPDAA9x///1UV1dz8MEH88gjj5CcnNyg36lTp/Lggw8yblz43B177LHcddddTJo0qcV4RaIpI1REeVwvKlKGkFheGZ4ymNo31mGJiIhIDEVlBMvM4ggnV4855572ireZ2QBv/wBgezT6ipVrrrmGxx57jKKiogbl1113HTfccAMfffQRTz31FFdccUWrbX311Vd873vfY/ny5SxatIglS5bw6aef8tprr3HzzTezZUt44O+TTz7hd7/7HStWrGDNmjW8++67e7V1ww03MGrUKM466yz+/Oc/U1lZSW5uLldddRU33HADS5YsYfr06S3GuXTpUt544w3ee+897rjjDjZv3tzm1+WOO+7glVde4dNPP+X5558H4A9/+ANmxmeffcbcuXO55JJL6lfzW7ZsGU8//TQfffQRP/nJT0hOTuaTTz7hyCOP5O9//zsA3/zmN/noo4/49NNPGTNmDA8++OBe/c6aNYv58+cDsGXLFrZs2aLkSg6o6toQvSmiKr4XZAwCwBVvinFUIiIiEmvtHsGy8JDKg8BK59xvI3Y9D1wC/NL7/Vx7+2ptpKkjpaenc/HFF3PPPfeQlJRUX/7aa6+xYsWK+u3i4mJKS0tbbGvo0KFMnToVgIULF3L++efj9/vp168fxxxzDB999BHp6elMmTKFnJwcACZOnEh+fj7Tpk1r0NZtt93GBRdcwL///W/+8Y9/MHfu3CZHnVqKc+bMmSQlJZGUlMRxxx3Hhx9+yJlnntmm1+Woo47i0ksv5dxzz+Wb3/xm/XP6/ve/D8Do0aMZOnQoX375JQDHHXccaWlppKWlkZGRwemnnw7AhAkTWLp0KRBOwn7605+ye/duSktLOfnkk/fq99xzz+Wkk07i9ttvZ/78+ZxzzjltilckWiqqg2RRTHXiCOJ6hd+nZQUbSB14aIwjExERkViKxhTBo4CLgM/MbIlXdivhxGq+mX0HWAecG4W+Yur666/nsMMO47LLLqsvC4VCvP/++yQmJjaoGwgEGlxfFXk/ppSUlDb1l5CQUP/Y7/dTW1vbZL3hw4dz9dVX893vfpfs7GwKCwv3qtNcnLD3cub7srz5nDlz+OCDD3jxxRc5/PDDWbx4cYv1I5+Tz+er3/b5fPXP79JLL+XZZ5/lkEMO4aGHHmoyYRw0aBBZWVksXbqUefPmMWfOnDbHLBIN5TW1pFs5BfHppPYZDEBJwXpSYxyXiIiIxFY0VhFc6Jwz51yec26i9/OSc67QOXeCc26Ec+5E59zOaAQcS7179+bcc89tMGXtpJNO4t57763fXrJkCQC5ubl8/HH4JqQff/wxa9eubbLN6dOnM2/ePILBIAUFBbz99ttMmTKlzTG9+OKLOO/C+q+++gq/309mZiZpaWmUlJS0GifAc889R2VlJYWFhSxYsIDJkye3uf/Vq1dzxBFHcMcdd5Cdnc2GDRuYPn06jz32GABffvkl69evZ9SoUW1us6SkhAEDBlBTU1PfTlNmzZrFr3/9a4qKisjLy2tz+yLRUF4dJJlKLCGVXn1zqHU+qnZtjHVYIiIiEmNRXUWwJ7jxxhsbrCZ4zz33sGjRIvLy8hg7dmz9SMrZZ5/Nzp07GTduHPfddx8jR45ssr2zzjqLvLw8DjnkEI4//nh+/etf079//zbH88gjjzBq1CgmTpzIRRddxGOPPYbf7+f000/nmWeeYeLEibzzzjvNxgmQl5fHcccdx9SpU/nZz37GwIEDgXDy961vfYvXX3+dnJwcXnnlFSA8LbHuequbb76ZCRMmMH78eL72ta9xyCGH8L3vfY9QKMSECROYNWsWDz30UIORq9b8z//8D0cccQRHHXUUo0ePri9//vnnue222+q3zznnHB5//PH6lRNFDqTyikoSrBaLT6V/rxS2k0lot67BEhER6enMdaJlhSdNmuQWLVrUoGzlypWMGTMmRhF1f41XO+xu9O9HOsqiz9cy6fGJrD3sVnJOvZllt0+md6/eDL3h1ViHJiIiIh3MzBY755pcYU0jWCIi+6GqIjwF15+YQpzfx05/HxIrt8U4KhEREYm1qN0HS7qm2bNnxzoEkS6ptiK8CmcgMQ2AsoS+pFctjWVIIiIi0gloBEtEZD9UeyNY8UnhdQOrk/qR5MqhMro3QxcREZGuRQmWiMh+CFaVARDnJVjBtAHhHSVbYhWSiIiIdAJKsERE9kOwMjxFMCE5HQB/xiAAanZpJUEREZGeTAmWiMh+CHkJVt0UwcTeOQCU7NgQs5hEREQk9pRgtdGzzz6LmfH55583Wyc/P5/x48dHrc8vvviCY489lokTJzJmzBiuvPJKIHyT4JdeeqldbV9++eX07ds3qvGK9CSuOjxF0JcQTrDSssMJVkWhbjYsIiLSkynBaqO5c+cybdo05s6d2+T+2tradvcRDAYbbP/gBz/ghhtuYMmSJaxcuZLvf//7QHQSrEsvvZR//etf7WpDpCdzNeXhB/EpAPTp3Ytil0RNka7BEhER6cm61jLtL/8Itn4W3Tb7T4BTftlildLSUhYuXMibb77J6aefzu233w7AggUL+NnPfkavXr34/PPP+fe//01tbS0XXHABH3/8MePGjePvf/87ycnJvP7669x0003U1tYyefJk/vSnP5GQkEBubi6zZs3i1Vdf5ZZbbuG8886r73fLli3k5OTUb0+YMIHq6mpuu+02KioqWLhwIT/+8Y857bTT+P73v8+yZcuoqalh9uzZzJw5k4ceeohnnnmGoqIiNm3axIUXXsjPf/5zAI4++mjy8/NbfN5vvfUW1113HQBmxttvv01qaiq33HILL7/8MmbGT3/6U2bNmsWCBQv4+c9/TmZmJp999hnnnnsuEyZM4Pe//z0VFRU8++yzDB8+nBdeeIFf/OIXVFdXk5WVxWOPPUa/fv0a9Hveeedx0UUXceqppwLhZPC0007jnHPOads5FTkAfDXhESzikgHol57IdteLQMnWGEYlIiIisaYRrDZ47rnnmDFjBiNHjiQrK4vFixfX7/v444/5/e9/z5dffgmEp/V973vfY+XKlaSnp/PHP/6RyspKLr30UubNm8dnn31GbW0tf/rTn+rbyMrK4uOPP26QXAHccMMNHH/88Zxyyincfffd7N69m/j4eO644w5mzZrFkiVLmDVrFnfeeSfHH388H374IW+++SY333wzZWXhD38ffvghTz31FEuXLuWJJ55g0aJFbX7ed911F3/4wx9YsmQJ77zzDklJSTz99NMsWbKETz/9lNdee42bb76ZLVvC39h/+umnzJkzh5UrV/LII4/w5Zdf8uGHH3LFFVdw7733AjBt2jTef/99PvnkE8477zx+/etf79XvrFmzmD9/PgDV1dW8/vrr9cmWSKdR7Y1geQlW7+R4CsgkUKabDYuIiPRkXWsEq5WRpo4yd+7c+pGc8847j7lz53L44YcDMGXKFIYNG1Zfd/DgwRx11FEAXHjhhdxzzz18/etfZ9iwYYwcORKASy65hD/84Q9cf/31QDihaMpll13GySefzL/+9S+ee+45/vznP/Ppp5/uVe/f//43zz//PHfddRcAlZWVrF+/HoCvf/3rZGVlAfDNb36ThQsXMmnSpDY976OOOor//u//5oILLuCb3/wmOTk5LFy4kPPPPx+/30+/fv045phj+Oijj0hPT2fy5MkMGBBeqnr48OGcdNJJQHjk7c033wRg48aNzJo1iy1btlBdXd3gtatzyimncN1111FVVcW//vUvjj76aJKSktoUs8iB4g9WUEkCib7w91Q+n1Ec6ENS1VcxjkxERERiqcNHsMxshpl9YWarzOxHHd1ftO3cuZM33niDK664gtzcXH7zm98wf/58nHMApKSkNKhvZi1uN6VxG5EGDhzI5ZdfznPPPUcgEGDZsmV71XHO8dRTT7FkyRKWLFnC+vXrGTNmzH7HU+dHP/oRf/nLX6ioqOCoo45qcYEPgISEhPrHPp+vftvn89Vfo/b973+fa6+9ls8++4w///nPVFZW7tVOYmIixx57LK+88grz5s1rNgEViSV/bTlVvsQGZeUJ2aTV7ADv74OIiIj0PB2aYJmZH/gDcAowFjjfzMZ2ZJ/R9uSTT3LRRRexbt068vPz2bBhA8OGDeOdd95psv769et57733APjHP/7BtGnTGDVqFPn5+axatQqARx55hGOOOabVvv/1r39RU1MDwNatWyksLGTQoEGkpaVRUlJSX+/kk0/m3nvvrU/6Pvnkk/p9r776Kjt37qy/DqpudK0tVq9ezYQJE/jhD3/I5MmT+fzzz5k+fTrz5s0jGAxSUFDA22+/zZQpU9rcZlFREYMGhe8X9PDDDzdbb9asWfztb3/jnXfeYcaMGW1uX+RACQQrqPYlNyirSe5HPDVQsStGUYmIiEisdfQI1hRglXNujXOuGngcmNnBfUbV3LlzOeussxqUnX322c2uJjhq1Cj+8Ic/MGbMGHbt2sXVV19NYmIif/vb3/jWt77FhAkT8Pl8XHXVVa32/e9//5vx48dzyCGHcPLJJ/Ob3/yG/v37c9xxx7FixQomTpzIvHnz+NnPfkZNTQ15eXmMGzeOn/3sZ/VtTJkyhbPPPpu8vDzOPvvs+umB559/PkceeSRffPEFOTk5PPjggwDMmTOHOXPmAPC73/2O8ePHk5eXR1xcHKeccgpnnXUWeXl5HHLIIRx//PH8+te/pn///m1+PWfPns23vvUtDj/8cPr06VNfvmjRIq644or67ZNOOom33nqLE088kfj4+Da3L3KgxAUrqPE3HMEizVuwRQtdiIiI9FjmOnAqi5mdA8xwzl3hbV8EHOGcuzaizpXAlQBDhgw5fN26dQ3aWLlyZf10N9k3Dz30EIsWLeK+++6LdSgxo38/0lHev/1oBibVMOSW9+rLnn7mCb756RVUn/8U8aNOjGF0IiIi0pHMbLFzrsmFDWK+iqBz7n7n3CTn3KTs7OxYhyMi0iYJoUpq/Q2nCCZlhae/FhdsiEVIIiIi0gl09CqCm4DBEds5XpkcAJdeeimXXnpprMMQ6XaccyS4SkKBhvdwS88O37euYqf+zImIiPRUHT2C9REwwsyGmVk8cB7w/L420pHTGKX70r8b6ShVtSGSqSQU13AEK7t3L4pdMjW7t8QoMhEREYm1Dk2wnHO1wLXAK8BKYL5zbvm+tJGYmEhhYaE+LMs+cc5RWFhIYmJi65VF9lF5dZBkq8I1SrD6pSWyzfXCSpRgiYiI9FQdfqNh59xLwEv7e3xOTg4bN26koKAgilFJT5CYmEhOTk6sw5BuqLy6lgyq2B3f8B526UkBVpDJ4IrtMYpMREREYq3DE6z2iouLY9iwYbEOQ0SkXnlVLQOphPi9bzReHNeHpMqWb8otIiIi3VfMVxEUEelqKirK8ZnDn5Cy977EbNJrd4KmNYuIiPRISrBERPZRVXkxAL6E1L321ST3I44aqNh1oMMSERGRTkAJlojIPqqpKAEgkLR3gmWp/cMPtNCFiIhIj6QES0RkH1VXlAIQl7h3ghWXORCAip2bD2hMIiIi0jkowRIR2Ue1leEEK5CUtte+pKzwypUlBesPaEwiIiLSOSjBEhHZR0EvwUpoYopgRvZgACp2bjqgMYmIiEjnoARLRGQfBSvLAEhI3nsEK7t3BkUumWCRrsESERHpiZRgiYjso1B1eJGLuCamCPZNT2Sb6wWlWw90WCIiItIJKMESEdlHrqocAIvf+z5YqQkBCq038eXbDnRYIiIi0gkowRIR2Ueh6vAUQeKSm9y/O64vqZVKsERERHoiJVgiIvvIV+MlWPF7L3IBUJ7Yn/RgIQRrDmBUIiIi0hkowRIR2Vc15dTih0B8k7urUwfiw0Gx7oUlIiLS0yjBEhHZR/6aCqosqdn9lhG+F5Yr2nigQhIREZFOol0Jlpn9xsw+N7OlZvaMmWVG7Puxma0ysy/M7OR2Ryoi0kkEguVU+xKb39/buxdWwboDFZKIiIh0Eu0dwXoVGO+cywO+BH4MYGZjgfOAccAM4I9m5m9nXyIinUIgWEGNv/kRrJTsIQCU7VCCJSIi0tO0K8Fyzv3bOVfrbb4P5HiPZwKPO+eqnHNrgVXAlPb0JSLSWcS1kmBl985it0uheuf6AxiViIiIdAbRvAbrcuBl7/EgYEPEvo1e2V7M7EozW2RmiwoKCqIYjohIx4gPVRAMNL1EO8DAzCQ2uz6we9MBjEpEREQ6g1YTLDN7zcyWNfEzM6LOT4Ba4LF9DcA5d79zbpJzblJ2dva+Hi4ickDVBEOkUk5tXFqzdfqlJ7KFLOLKlGCJiIj0NIHWKjjnTmxpv5ldCpwGnOCcc17xJmBwRLUcr0xEpEsrq6olnTKq4jOareP3GUVxfUmp/OoARiYiIiKdQXtXEZwB3AKc4Zwrj9j1PHCemSWY2TBgBPBhe/oSEekMyqqDpFs5LjG9xXoVyQNICZVAVekBikxEREQ6g/Zeg3UfkAa8amZLzGwOgHNuOTAfWAH8C7jGORdsZ18iIjFXWlFNOuWQ0PwIFoBL8y47LdbgvYiISE/S6hTBljjnDm5h353Ane1pX0Sksykt3oXPHIGUzBbrBXoPhs0Q3LUBf/aoAxOciIiIxFw0VxEUEen2yot3AhCX0qvFesl9hgJQvD2/o0MSERGRTkQJlojIPqgoKQQgMbV3i/V69R9KyBnlBbrZsIiISE+iBEtEZB9Ul+4CICmj5QRrYFY628mkVjcbFhER6VGUYImI7INgWTjBSk7LarHeoMwkNrps/MUbD0RYIiIi0kkowRIR2QfB8t0A+JIzW6yXGOdnh78vyRVaRVBERKQnUYIlIrIPAhUF4QcpfVutW5I4kPTq7RCs7eCoREREpLNQgiUisg/iKndQYUkQn9xq3erUHAIEoWTLAYhMREREOgMlWCIi+yChqpASf8tLtNexzCEAuN1aSVBERKSnUIIlIrIPUmp2UpHQ8gIXdeL7DAOgdNuajgxJREREOhElWCIibVQTDJEZ2k1NYtsSrIwB4QSrbPvajgxLREREOhElWCIibVRYWk0fKyLUhgUuAAb2yWSby6SmUFMERUREegolWCIibbRtVxG9KMWXNqBN9XN6JbPRZeMr0s2GRUREegolWCIibbRr02p85kjKHtam+hlJcWz3ZZNUpnthiYiI9BRRSbDM7EYzc2bWx9s2M7vHzFaZ2VIzOywa/YiIxFL59tUAZAw6uM3HhO+FtQ1CwY4KS0RERDqRdidYZjYYOAmInANzCjDC+7kS+FN7+xERibXaneFrqVL7HtTmY3QvLBERkZ4lGiNYdwO3AC6ibCbwdxf2PpBpZm27aEFEpJPyFa2nhgC08RosAOs1FAC3SwtdiIiI9ATtSrDMbCawyTn3aaNdg4ANEdsbvbKm2rjSzBaZ2aKCgoL2hCMi0qHSSteyM34g+Nr+pzPRu16rVEu1i4iI9AiB1iqY2WtA/yZ2/QS4lfD0wP3mnLsfuB9g0qRJrpXqIiIxUVJZw9DadZRkTaDfPhzXq394OmHp1jWkdUxoIiIi0om0mmA5505sqtzMJgDDgE/NDCAH+NjMpgCbgMER1XO8MhGRLmnVxu0cYttZ23fsPh03sG8vtrtMqgvzOyYwERER6VT2e4qgc+4z51xf51yucy6X8DTAw5xzW4HngYu91QSnAkXOOV3hLSJd1vbVn+AzR/qQvH06LnwvrD74iza0XllERES6vFZHsPbTS8A3gFVAOXBZB/UjInJAVKx5H4A+o4/cp+NSEwIU+PoytFyLXIiIiPQEUUuwvFGsuscOuCZabYuIxFr6jsUUBvqSlZGzz8eWJA4ko/LD8L2wfP4OiE5EREQ6i6jcaFhEpDvbtKuMCbXL2d3n8P06viYthwC1ULI1ypGJiIhIZ6MES0SkFSsWv0O2FZEw5uT9Or7+Xli717dSU0RERLo6JVgiIq2oXPosQXwMOvy0/Tq+7l5YxVtXRzMsERER6YSUYImItKCotJLJRa+wNmMqlpq9X230GjAcgNJtutmwiIhId6cES0SkBe+/9iT9bSfxky/e7zYGZveiwGVQo3thiYiIdHtKsEREmhEMOVI++zvFls6QqWfvdzs5vZLZpHthiYiI9AhKsEREmvHO268xLfgBW0ddCIH4/W4nKd7Pdn8/kso3RTE6ERER6YyUYImINKEmGCL+nV9RYikcfMYt7W6vJHEgGdXbIBSKQnQiIiLSWSnBEhFpwqvPP8bXgh+xbfx/4Uvu1e72atJyiKMGSrdFIToRERHprJRgiYg0snnHTsYv+R+2xA3m4Jk/ikqbPu9eWMFd66LSnoiIiHROSrBERCIEQ44Vf72GIbYN/2l3QyAhKu3qXlgiIiI9QyDWAYiIdCb/fvJ+Til/ic8PupzRh3w9au32Ghi+F1bZtjW0f8Jh11VZXcvOXYWUFaynvHgnlWXFWE0Z/toKQhjO5yc+Lp6ExGTiU7NIysgmq98AElKzwCzW4YuIiLRKCZaIiGfZis/42vLbyU8azahv/yqqbQ/M7k2BS+8R98KqqQ2yfsN6tq7+lPJNy4jf+RUZ5flk1mwn2xUy0Kr2uc1K4tnh60tRwgCq0nLw9RpKYr8R9B48mj6DR+FLTOuAZyIiIrLv2p1gmdn3gWuAIPCic+4Wr/zHwHe88h84515pb18iIh2luLyC0JNXELAQvS95FGvHsuxNGZSZxOeuD7272b2wnHNsKdjB2k/foXzNB6TuWMJB1V8w3HYx3KtTSjJb4wZTkjGS3akDcWkD8KUPJCG9D0mp6Vh8KhafjM8cLhikoqqKyrJSasoKqS7eQXVJARRvJrFsExlVmxlY/jm9tpfAF3vi2GmZFMbnUJE6mFCvg0jsO5xeOaPpM3QM/pTeB+y1qKiuoay0hMryEirLiqkuL6G6opSaihJqK8sIVpVAdRm+mnIsWI0L1UKwBkK1EKrFhYL4QrX4CeIjCBiY4cwH+MK/zXD4wLwfn7/+t5kf/AEwf3jb58d8AcznB++3z7/nsfkDmC+Az+/HfHHebz8+f/hxXXnIwn07/DgczjlcKITDeStjhnAhB87hXAhcCOdcxG8HhAg5B6Fg3QsGLoQRPsZw9cV7XlPqy4GIR+HXu7nz0BQzqBsDtYgyDMwrsYhCY8+gaeSxdS3Ul5m1vj+irL6L+jhsTx9WV887xiJbbNie2Z7ShL7DyRgyvsnnLSIHXrsSLDM7DpgJHOKcqzKzvl75WOA8YBwwEHjNzEY654LtDVhEJNqcc/znwZuZEfqcNcf8noMGjIh6H4lxfnb4+zGovOsnWBu27uCLj14ltGYBg3d/xMjQGgZa+EPtFv8gCvpMYfuAQ8kYOoF+ww8htVcOB0dxel8w5Ni0fTsF6z+nZPOX1O5YQ6BoLenlG+i74wMGFL4Mq/bULyGFnYFsKgIZVMdnUpuQSTA+AwKJEIjHAok4fzxBfLhQMJzoBIPgaiFYi6upwGrKsJoKArVl+IMVBIIVxAcriA9VkOAqSXSVJFFFslWRvB/Pqcb5qbUAQS+1qiVA0LtM2gjhw9X/9jmHjxC+8KRK/N7vONN/sT1VrfOx9JQnyJt6YqxDERHaP4J1NfBL51wVgHNuu1c+E3jcK19rZquAKcB77exPRCTq3nrlaU7a8SgrB5zBmOMu7bB+SpIGklG+KPyNv6/rrDFUWRPk0yWLKFryHNlb32Js7ecMtlpqCJCfNI7PBvwXmSO/Rs74aQxIzWJAB8fj9xmD+vdjUP9+wDEN9oVCjq27drNt3ecUb/6SmoLVBHavJalqB4k1RaRVribNlZBOKfFtTEhCzii3RCpJpMqXSJUlUeNPoiY+jUp/P0KBJFxcMi4uBeKTsYQUfPGp+BNTCSSkEJecSlxiGgnJ6SSkpBGfmEIgMY24xGT8/jjw+YgD4tr5uoRCjmAoSLC2lmBtDbXBWkLBIMHaGkLBWmqDtbjaWoLBWkLBGkJe3VCwllAoXDfkbTsXxAVrCAaDEAric0HMBfERvo+b+XwYPpzPwmM95se8IRjzRtkwX3gkJuJx+N+9r0Hd8OicV8/TMB+vH7vZe1/kMQ0Oafj+crj64a+6Aa7wSJxX7Fz96FjdCJjbc8iesvry+gMj6ro9bUfUr9/2Doks29OE2yuuyBhc5Cheff1wPZ8LMubd6+j972upnPABiSkZiEhstTfBGglMN7M7gUrgJufcR8Ag4P2Iehu9MhGRTmX9xo2Mee9GtsQNYuSlf+zQvmrTBhNfXgNl2yGtf4f21V4lFVV8/J9XKV/6AiN3v80RthmA9XEH8WXut8nOO5l+449lREJqjCNtyOcz+mf1on/WkXDYkc3WC4UclbW1VFVWUl1dQaimkgAOnz+APxCHPxD+HfAHCMQnkmpG53qme/P5DJ8vQFwgACTGOhw5gD5NcEx47UI+/tv3mXTt32MdjkiP12qCZWavAU19EviJd3xvYCowGZhvZgftSwBmdiVwJcCQIUP25VARkXapCYZY/ci1TLNidp87D38HL5RgvYbANqjdmU+gEyZYJRXVfPTBW1R/Mp+83a9zjBVSi5916Yfx1cgrGHzkOQzpMzTWYUaFz2ckxseRGB8HaIEM6doOmX4a7y77Nkdte4xFLz/EpFMujXVIIj1aqwmWc67ZCb1mdjXwtAuPhX9oZiGgD7AJGBxRNccra6r9+4H7ASZNmtT0lakiIh3gpfkPMLPqTb4ccy0jRx7R4f0lZx8En0PRltVkDZ3a4f21hXOOJUuXsOmdvzO64BWOt03U4mdN5lTWHnIOQ6d+k+HJmbEOU0RaMfmy/8eX/28R496/mdX9hzH80GNaP0hEOkR7pwg+CxwHvGlmI4F4YAfwPPAPM/st4UUuRgAftrMvEZGoWb5qDUd9/gs2JY1g5DmzD0ifmd69sEq3riHrgPTYvN2l5Xz0yj/IXPEIk4NLOBTIT5vIugnfY/BR5zMyNdYRisi+iE9MotcVT1H4pxPo9dyFrEv5J0NHHhLrsER6pPYmWH8F/mpmy4Bq4BJvNGu5mc0HVgC1wDVaQVBEOouaYIiCedcx0sqpPP8v4G/v8gJtMzA7i+0uk9COVa1X7gDOOZauWMGWN+/n0ILn+LrtYoevD8tHXcvwE68kN7t7TP8T6amy+w1m/bfnwz9OJ+0fp7P+3PkMGds5RstFepJ2JVjOuWrgwmb23Qnc2Z72Y+2TVx6m+ss3wBfAeT/44sAfh/kC4AuEH/sDmD8OfHGYt+0LxGP+OHyBAD6fVwdwdSsn1a2KVH+vi7oVlervloGL3Ef9DTUarJTUYJ2iBhMsG8623HNbkKbK61ZBck0d0Op9R8y5RnX2Oqr+d4Mu6o5vqryp+5i40N4xNaoX+TRdo+fa4Dm5PX2z1+pMjdraE1Tds2iyzcjKTZU2fp2aO76pe8E0Pm9NlTd8To272Pt1sib6bva130dNvQL72mxz9Zt+dZur27TKrV9xcs3bfDnuOkYOnbhvgbXDwMwkPnQ5jNj1ReuVo6iovIoPXn2S1M8e5oiaD5kArEo/guqvfZfBU86kj1/3nBfpLoaMnMia814g+fGzyZx/FiuPvosxx18Q67A6Becc1TXVVJSVUFlWQm1VBbU1VdRWVxKsqaK2popgTRWh2ur636GaKghWY6EaCAVxzmEuGL7fWyh8z7e6+785Fwr/X++Ce+7zFvHZpe7znLM9nwHryvd8LgTwNboJm2/PZ7+6FTLrb5xWdx+1urZ9EfdQ80XcLy1c3dV/zvSF/49scMO1iDabLCditc+G8dfVdRHx1H+OjayL9xk34r5wkT018QCA0oyR5OUdSmZydO9R2VH0v2oLKjevYFThGwQI4ndBAgQJUIvfdKmYSFe3Kn40I8766QHtMz7gY0PcMI4ofyV8s1Wfv8P6cs6x7MtVrH/9AfK2PcNJtp3dlsEXB1/OsJOvYWTf4a03IiJd0kGjJ7L5spfZ8vD5jHn7e3y88lVGX/gbkjOyYx3afquprqJ49w7KigopLy6kqmQn1aW7CJbvJFS+GyqL8FUVEVdTTKC2nLhgJXGhCuJDleF71VFJsqskwWpJOMCxh5zh02fHdvmfmgtJHzSKiV0kwbLm7ngeC5MmTXKLFi2KdRitCgWD1NbWUFtTRU1NDcGaakK1NdTWVofvPVJTTSgYLg8GawnVVuOCtQ1HB5zDEdozMuIiR3FC1N0wI3x+9txvI3zvjYa3jI+8E3zD8kY39oy4dX3kvvqRNRp9X9Ds/UWaKm/07YTttTeiHnuzhtE2jCmy3aa/7mj6tihNdNToG5Sm+m74OjUqbuJmqdZEWeP7tkT237h6/bc9TcTZpvOx9z+GJmrYPsROk3Wb02wT+1B/r3+rrTTSbHTN1t97R/qg0QTiD/xS1n+8+3a+V/RbuOYjyB4Z9fZLKqr5z5svkPDJQ3yt+l3iLcjqlEOJO+I7DPnaLAh0jf+cRKT9yivKWfTgf3NUweOUWgqrR17B2NO+T2J6n1iHRk1tkJ2F2ynasZmKXVup3L2V2uLtuLIC/OUFxFftJKl6J2nBXWSGdpNmFS22V+0ClFgqZb4UqnxJ1PjC96sL+pMIBpJxccmE4lKw+GSIS8ESkrG4ZHyBeHxxCfi934G4eHyBBALxiQTiEgjEJeCPi8cC8ZjPj/n8+Hw+fN5j85m3HS7zRe43wyLueRi+H1rdPczqRr3q7scWwoW8u56FXP22I7I+9SNje+oR0U7d58Q9nyvrZn3U9Q00qEMT+wEvFrz9oQZl9ceHC+tr1bfv3J4ZQl5cdW3teejYM+rV+L5xe86rC491UZvcjyGDh5AU33FfTO4rM1vsnJvU1D6NYO0Hn99PvN9PfILuMyIi+yYw9AhYCtVr3yU+ignW8tXrWfP6Xxi76UlOtk2UWAqrc89jyNevYXjOuKj1IyJdR3JSMkdfO4flH19E9b9+ymFf/o7K3/6BT9Kn4x99CgMnfp0+A3L36Uu1lgRra9hVsJmigk2U7dxC5e6tBEu2Qel2/BWFJFYVklyzk/TQbnq5YvpZkH6N2gg5Y7elUeLPpCzQm4LkMWxO7INL7IUlZ+JP7kV8Si/i07JISs8iNSOLtMw+xCelkAUxX0CoJfU32I51INLhNIIlInIAvbFyKxMenwzDTyD74ofa1VZZZQ3/eetl7OOHOarybZKsmnVJY7FJlzN4+rex+JToBC0iXZ5zjs8+fpfShQ8wauebZFkRAIVksjVxOJUpAwmmDcSf3AtffDK++GQcRihYC8EaXKiW2qpyXEURVBXhqyomrqaY+JpiUmp3kxHaTYYraXIqXKWLY5cvkxJ/byrje1GT2IdQch8sNZv4jH4kZvYjuddAMrIHkJrZN3xdu0gnpxEsEZFO4vChWbwVGseJ69+EYM0+r2DonGPpqnWse+OvjN78NF+3DZSTxPrBpzPwxGsYmnt4B0UuIl2ZmZF3+DQ4fBqV1TUsX/IOxavex791CRmlqxlasYo+hUVtaqvMJVJqKZT7Uqn0p7IzcQhbEw/DpWTjS+1LfEZfknoNIK3PQDKzB5GS1osBZgzo4Oco0lkowRIROYAykuP4vM9JnLHrPdxXr2Kjv9Gm43YUl7HojacJLH+SadXvcojVsCFpNPmH/x9Dj76IUQlpHRy5iHQXifFxjJtyPEw5vkF5RUUFu3fvpLqilOqKEnxmBOLi8Pnj8QfiSExKJi0zi5S4eDQ+LtI8JVgiIgfY8K+dycZ//oG0V35BxoiToJll0guLy1n8n1fhsyc4rPQtZlgxpZbKhqFnMeiEqxg8VKNVIhI9SUlJJCUNinUYIl2eEiwRkQNs5mG5/PKNy/jprt+w87HL6H3mryF9ANXVNeR/tZSNyxaSkP8mY8o/4iQrpYp41vY5murJ5zNw0umMCBzoRYZFRESkrbTIhYhIDHy1rYTX77+FK2vn4jNHOYnEuRriLAjALstgc9bXyMj7BoOmnIklpsc4YhEREamjRS5ERDqZEf3S6HvjPTzzzjn4V79O79qtxCWkkDhgNIPHTqXPQYfSK+L+KSIiItI1KMESEYmRjOQ4zj75BOCEWIciIiIiUaKvR0VERERERKJECZaIiIiIiEiUKMESERERERGJkk61iqCZFQDrYh1HI32AHbEOQg4Yne+eQ+e659C57ll0vnsOneueozOe66HOueymdnSqBKszMrNFzS3BKN2PznfPoXPdc+hc9yw63z2HznXP0dXOtaYIioiIiIiIRIkSLBERERERkShRgtW6+2MdgBxQOt89h851z6Fz3bPofPccOtc9R5c617oGS0REREREJEo0giUiIiIiIhIlSrBERERERESiRAlWC8xshpl9YWarzOxHsY5HosfMBpvZm2a2wsyWm9l1XnlvM3vVzL7yfveKdawSHWbmN7NPzOyf3vYwM/vAe3/PM7P4WMco0WFmmWb2pJl9bmYrzexIvbe7JzO7wfsbvszM5ppZot7b3YeZ/dXMtpvZsoiyJt/LFnaPd96XmtlhsYtc9lUz5/o33t/xpWb2jJllRuz7sXeuvzCzk2MSdAuUYDXDzPzAH4BTgLHA+WY2NrZRSRTVAjc658YCU4FrvPP7I+B159wI4HVvW7qH64CVEdu/Au52zh0M7AK+E5OopCP8HviXc240cAjh8673djdjZoOAHwCTnHPjAT9wHnpvdycPATMalTX3Xj4FGOH9XAn86QDFKNHxEHuf61eB8c65POBL4McA3ue184Bx3jF/9D63dxpKsJo3BVjlnFvjnKsGHgdmxjgmiRLn3Bbn3Mfe4xLCH8AGET7HD3vVHgbOjEmAElVmlgOcCvzF2zbgeOBJr4rOdTdhZhnA0cCDAM65aufcbvTe7q4CQJKZBYBkYAt6b3cbzrm3gZ2Nipt7L88E/u7C3gcyzWzAAQlU2q2pc+2c+7dzrtbbfB/I8R7PBB53zlU559YCqwh/bu80lGA1bxCwIWJ7o1cm3YyZ5QKHAh8A/ZxzW7xdW4F+sYpLoup3wC1AyNvOAnZH/OHW+7v7GAYUAH/zpoT+xcxS0Hu723HObQLuAtYTTqyKgMXovd3dNfde1ue27u1y4GXvcac/10qwpEczs1TgKeB651xx5D4XvoeB7mPQxZnZacB259ziWMciB0QAOAz4k3PuUKCMRtMB9d7uHrxrb2YSTqoHAinsPcVIujG9l3sGM/sJ4Us7Hot1LG2lBKt5m4DBEds5Xpl0E2YWRzi5esw597RXvK1uSoH3e3us4pOoOQo4w8zyCU/1PZ7wNTqZ3rQi0Pu7O9kIbHTOfeBtP0k44dJ7u/s5EVjrnCtwztUATxN+v+u93b01917W57ZuyMwuBU4DLnB7bt7b6c+1EqzmfQSM8FYjiid8Md3zMY5JosS7BudBYKVz7rcRu54HLvEeXwI8d6Bjk+hyzv3YOZfjnMsl/D5+wzl3AfAmcI5XTee6m3DObQU2mNkor+gEYAV6b3dH64GpZpbs/U2vO9d6b3dvzb2Xnwcu9lYTnAoURUwllC7IzGYQnt5/hnOuPGLX88B5ZpZgZsMIL2zyYSxibI7tSQalMTP7BuFrN/zAX51zd8Y2IokWM5sGvAN8xp7rcm4lfB3WfGAIsA441znX+AJb6aLM7FjgJufcaWZ2EOERrd7AJ8CFzrmqGIYnUWJmEwkvaBIPrAEuI/yFot7b3YyZ3Q7MIjx96BPgCsLXYui93Q2Y2VzgWKAPsA34OfAsTbyXvST7PsLTRMuBy5xzi2IQtuyHZs71j4EEoNCr9r5z7iqv/k8IX5dVS/gyj5cbtxlLSrBERERERESiRFMERUREREREokQJloiIiIiISJQowRIREREREYkSJVgiIiIiIiJRogRLREREREQkSpRgiYiIiIiIRIkSLBERERERkShRgiUiIiIiIhIlSrBERERERESiRAmWiIiIiIhIlCjBEhERERERiRIlWCIiIiIiIlGiBEtEpJMxs1wzc2YWiHUs0jOY2XIzOzbWcYiIdAdKsEREpMszszlmVur9VJtZTcT2y7GOr7Nzzo1zzi2IZptmdq6Z/cfMys0sqm2LiHRm5pyLdQwiIt2KmQWcc7XtOD4XWAvEtaednsrMZgMHO+cubGJfu87NgdSVYm2KmZ0I9AZGA8c7546NbUQiIgeGRrBERKLAzPLN7IdmthQoM7OAmU31vsHfbWafRk7BMrMFZvZ/ZvahmRWb2XNm1ruZti8zs5VmVmJma8zsvxrtn2lmS7x2VpvZDK88w8weNLMtZrbJzH5hZv5WnsdwM3vDzArNbIeZPWZmmRH7dprZYd72QDMrqHteZnaGN9Vst/f8xjR6fW4ys6VmVmRm88wscd9f6X3XzLlxZnZwRJ2HzOwXEdunea/pbu8c5rWxr2PNbKOZ3eq9fvlmdkHE/lPN7BPvXG3wksG6fXVTQ79jZuuBN7zyJ8xsq/e6vW1m4xrF/Ucze9kbrXvXzPqb2e/MbJeZfW5mh7bxNTqxLc+xrZxzrznn5gObo9muiEhnpwRLRCR6zgdOBTKBfsCLwC8If4t/E/CUmWVH1L8YuBwYANQC9zTT7nbgNCAduAy4OyLJmQL8HbjZ6/doIN877iGv3YOBQ4GTgCtaeQ4G/B8wEBgDDAZmAzjnVgM/BB41s2Tgb8DDzrkFZjYSmAtcD2QDLwEvmFl8RNvnAjOAYUAecGmTAZhN8xKb5n6mtfIcmlJ/blobFfISkr8C/wVkAX8GnjezhDb21R/oAwwCLgHuN7NR3r4ywuc904vnajM7s9HxxxB+7U/2tl8GRgB9gY+BxxrVPxf4qddnFfCeV68P8CTw2zbG3SQz+1FL56M9bYuIdEdKsEREouce59wG51wFcCHwknPuJedcyDn3KrAI+EZE/Uecc8ucc2XAz4Bzmxphcs696Jxb7cLeAv4NTPd2fwf4q3PuVa+fTc65z82sn9fX9c65MufcduBu4LyWnoBzbpXXVpVzroDwh/NjIvY/AKwCPiCcGP7E2zULeNE7tga4C0gCvtbo9dnsnNsJvABMbCaGhc65zBZ+Frb0HJoReW5acyXwZ+fcB865oHPuYcKJy9R96O9n3mv4FuFE+1wA59wC59xn3rlaSjgpPabRsbO9c1bhHfNX51yJc66KcLJ7iJllRNR/xjm32DlXCTwDVDrn/u6cCwLzCCfX+80598uWzkd72hYR6Y6UYImIRM+GiMdDgW81+qZ/GuGkpKn664A4wqMODZjZKWb2vjc9bzfhxKmu3mBgdROxDPXa2xLR/58Jj4I0y8z6mdnj3pTCYuDRJmJ6ABgP3Ot96IfwiNe6ugrOuZD3/AZFHLc14nE5kNpSLFG2ofUq9YYCNzY6d4MJP8e22OUlzXXW1R1rZkeY2Zve1Moi4Cr2fn3rYzUzv5n90sJTP4vZMzoZecy2iMcVTWwfyNdZRKTHU4IlIhI9kasGbSA8QhX5bX+Kc+6XEXUGRzweAtQAOyIb9KalPUV4RKifN2LwEuGpfHX9DG8ilg2ER136RPSf7pwb10TdSP/rPY8Jzrl0wiNxdX1hZqnA74AHgdm257qxzYQTk7p65j2/Ta30txczm257VgBs6md6663spfGKTuVAcsR2/4jHG4A7G527ZOfc3Db21cvMUiK2h7DnOqR/AM8Dg51zGcAcIl7fJmL9NjATOBHIAHK98sbHdBjverJmz8eBikNEpKtQgiUi0jEeBU43s5O9UYhEbwGEnIg6F5rZWO96pjuAJ71pXZHigQSgAKg1s1MIX0tV50HgMjM7wcx8ZjbIzEY757YQnkr4/8ws3ds33MwaT0drLA0oBYrMbBDha7si/R5Y5Jy7gvDUtzle+XzgVC+OOOBGwgnef1p7oRpzzr3jnEtt4eedfW2zCUuAb3vnZgYNp+k9AFzljTaZmaVYeHGKNKhfWOKhVtq/3czivWTwNOAJrzwN2Omcq/Sun/t2K+2kEX4dCwknhP+7D88xKpxz/9vS+WjuuLp/90AA8HnvgbgDF7mISGwowRIR6QDOuQ2ERx5uJZwcbSCcrET+3X2E8EIUW4FE4AdNtFPilc8HdhH+QP58xP4P8Ra+AIqAt9gzknQx4QRthXfskzScotiU24HDvLZeBJ6u22FmMwkvUnG1V/TfwGFmdoFz7gvCo133Eh6FOx043TlX3Up/sXId4Rh3AxcAz9btcM4tAr4L3Ef4dVtFwwU5BgPvttD2Vu+4zYQXpLjKOfe5t+97wB1mVgLcRvi8tuTvhKcYbiJ8Ht9v7Yl1IhcRnqL4J8LXDFYQTl5FRLo13QdLRCQGLHzj1Uedc3+JdSzSdt6qiJ8Ced5iHo33H0v4vOY03iciIj1DINYBiIiIdBXeiNyYViuKiEiPpSmCIiI9jJnNaWbBgjmtHy1dkZkNaWGhiiGxjk9EpDvRFEEREREREZEo0QiWiIiIiIhIlHSqa7D69OnjcnNzYx2GiIiIiIhIsxYvXrzDOZfd1L5OlWDl5uayaNGiWIchIiIiIiLSLDNb19w+TREUERERERGJEiVYIiIiIiIiUaIES0SkFc45aoOhWIchIiIiXUCnugarKTU1NWzcuJHKyspYhyJdTGJiIjk5OcTFxcU6FOniZj+9mDVfLefP/30ByfGd/s+miIiIxFCn/6SwceNG0tLSyM3NxcxiHY50Ec45CgsL2bhxI8OGDYt1ONKFOefo+8nvuT3wPAs/GMK06cfFOiQRERHpxDr9FMHKykqysrKUXMk+MTOysrI08inttr2kijxbA0Dmp/fHOBoRERHp7Dp9ggUouZL9on83Eg0bd1Uw2AoAyChaGeNoREREpLPrEgmWiEisFBXtJte3DYB+NRsgWBvjiERERKQzU4LVBmbGjTfeWL991113MXv27NgFFOH999/niCOOYOLEiYwZM6Y+rgULFvCf//xnv9tdt24dhx12GBMnTmTcuHHMmTMnShGLdC0Vu7cD8FVSHvHUEipcE+OIREREpDPr9ItcdAYJCQk8/fTT/PjHP6ZPnz5Ra9c5h3MOn2//89xLLrmE+fPnc8ghhxAMBvniiy+AcIKVmprK1772tf1qd8CAAbz33nskJCRQWlrK+PHjOeOMMxg4cOB+xyrSFVWWFAJQmn0orF/K7o0r6N13ZIyjEhERkc5KI1htEAgEuPLKK7n77rv32ldQUMDZZ5/N5MmTmTx5Mu+++y4As2fP5q677qqvN378ePLz88nPz2fUqFFcfPHFjB8/ng0bNnDzzTczfvx4JkyYwLx584BwgnTsscdyzjnnMHr0aC644AKcc3v1v337dgYMGACA3+9n7Nix5OfnM2fOHO6++24mTpzIO++802KcF110EUceeSQjRozggQceACA+Pp6EhAQAqqqqCIWavgfQPffcw9ixY8nLy+O8884DYOfOnZx55pnk5eUxdepUli5dWt/XJZdcwvTp0xk6dChPP/00t9xyCxMmTGDGjBnU1NQAcMcddzB58mTGjx/PlVdeudfzDoVC5Obmsnv37vqyESNGsG3btpZOo8h+qSrdBUDSoDwAirbmxzAaERER6ezaPYJlZoOBvwP9AAfc75z7vZn1BuYBuUA+cK5zbld7+rr9heWs2FzcvoAbGTswnZ+fPq7Vetdccw15eXnccsstDcqvu+46brjhBqZNm8b69es5+eSTWbmy5Qvhv/rqKx5++GGmTp3KU089xZIlS/j000/ZsWMHkydP5uijjwbgk08+Yfny5QwcOJCjjjqKd999l2nTpjVo64YbbmDUqFEce+yxzJgxg0suuYTc3FyuuuoqUlNTuemmmwD49re/3WycS5cu5f3336esrIxDDz2UU089lYEDB7JhwwZOPfVUVq1axW9+85smR69++ctfsnbtWhISEuoTnp///OcceuihPPvss7zxxhtcfPHFLFmyBIDVq1fz5ptvsmLFCo488kieeuopfv3rX3PWWWfx4osvcuaZZ3Lttddy2223AXDRRRfxz3/+k9NPP72+T5/Px8yZM3nmmWe47LLL+OCDDxg6dCj9+vVr9TyK7KtgefjPVsqgMdQ4P9W7NsY4IhEREenMojGCVQvc6JwbC0wFrjGzscCPgNedcyOA173tLis9PZ2LL76Ye+65p0H5a6+9xrXXXsvEiRM544wzKC4uprS0tMW2hg4dytSpUwFYuHAh559/Pn6/n379+nHMMcfw0UcfATBlyhRycnLw+XxMnDiR/Pz8vdq67bbbWLRoESeddBL/+Mc/mDFjRpN9thTnzJkzSUpKok+fPhx33HF8+OGHAAwePJilS5eyatUqHn744SZHiPLy8rjgggt49NFHCQQC9c/poosuAuD444+nsLCQ4uJwYnzKKacQFxfHhAkTCAaD9fFOmDCh/vm9+eabHHHEEUyYMIE33niD5cuX79XvrFmz6kf7Hn/8cWbNmtXiay6yv6wq/G+3d3Z/ttELK94U44hERESkM2v3CJZzbguwxXtcYmYrgUHATOBYr9rDwALgh+3pqy0jTR3p+uuv57DDDuOyyy6rLwuFQrz//vskJiY2qBsIBBpMq4u8H1NKSkqb+qubogfh6X+1tU2vXjZ8+HCuvvpqvvvd75KdnU1hYeFedZqLE/Zezrzx9sCBAxk/fjzvvPMO55xzToN9L774Im+//TYvvPACd955J5999lmbnpPP5yMuLq6+L5/PR21tLZWVlXzve99j0aJFDB48mNmzZzd5L6sjjzySVatWUVBQwLPPPstPf/rTFvsV2V+BmhIAUtJ78wVZ9CrbGuOIREREpDOL6jVYZpYLHAp8APTzki+ArYSnEDZ1zJVmtsjMFhUUFEQznKjr3bs35557Lg8++GB92UknncS9995bv103FS43N5ePP/4YgI8//pi1a9c22eb06dOZN28ewWCQgoIC3n77baZMmdLmmF588cX6a5S++uor/H4/mZmZpKWlUVJS0mqcAM899xyVlZUUFhayYMECJk+ezMaNG6moqABg165dLFy4kFGjRjXoOxQKsWHDBo477jh+9atfUVRURGlpKdOnT+exxx77/+3dd3xcV5338c9vimbUJau4SHasxCV2XBM34hQ7kAIkhJBmHlIcA9llA1lC2wAbIOFhF8guPA8kkA0bSIDgxARI/FDS8QazKWvHKU4cF2JblrvVrDaadp4/ZiRL8shNI40sfd+vlz1zzz1z7m98faX5zTn3HCBxL1lpaSkFBQXH9H46kqnS0lKam5t57LHHUtYzM6644go+97nPMWXKFEpKSo6pfZHjlRVJDksOFNDgLye3Xff6iYiISO/SlmCZWR7wG+CzzrluN0q5RAZw+AwNiX33O+fmOOfmlJWVpSucfvP5z3+eAwcOdG7/4Ac/YM2aNcyYMYOpU6d2Tmd+5ZVXUldXxxlnnME999zDpEmpZx274oormDFjBjNnzuSCCy7gu9/9LqNGjTrmeH7xi18wefJkZs2axfXXX8/DDz+M1+vlsssu43e/+13nJBe9xQmJYX6LFy9mwYIF3HHHHYwZM4YNGzYwf/58Zs6cyfnnn88XvvAFpk+fDsAnPvEJ1qxZQywW47rrrmP69OnMnj2bW2+9laKiIr7xjW+wdu1aZsyYwe23385DDz10zO+nqKiIT37yk0ybNo2LL76YuXPndu677777usV97bXX8stf/lLDA6VfBSJNtFoOeLy0BkdSGNkPKSacEREREQGwVDPTHXcjZn7g98BTzrnvJcs2Aoucc7vNbDSwyjk3+UjtzJkzx61Zs6Zb2YYNG5gyZUqfY5TUvvGNb3SbDGOo0f8f6atn/+UKZsfWU3LHZn7343/mir0/hC++C7nqNRURERmuzGytc25Oqn197sGyxE00DwAbOpKrpJXAjcnnNwJP9PVYIiIDLRhvIeTNA8AVVAAQb9RMgiIiIpJaOhYaXghcD7xpZq8ly74CfBtYYWYfB7YD16ThWJJm3/jGNzIdgsiglhULEfFnA+AvrgSgef92CsbMzGRYIiIiMkilYxbB1YD1svu9fW1fRCST/C5ELNmDlVc2DoDm/dUc27QtIiIiMtykdRZBEZGhJsu1E/clljcoLK9MLDZcW53hqERERGSwUoIlItKLeNwRdO3EvYkhgqMKc9hHEbGDWgtLREREUlOCJSLSi/ZonKCFccl7sMryA+xzxfi02LCIiIj0QgnWMXr88ccxM955551e62zbto1p06al7ZgbN25k0aJFzJo1iylTpnDzzTcDiUWC//jHP55wu6FQiHnz5jFz5kzOOOMMvv71r6crZJEhpS0SI0gYkkME/V4P9d4RBNr2ZTgyERERGayUYB2j5cuXc84557B8+fKU+6PRaJ+PEYvFum3feuut3Hbbbbz22mts2LCBz3zmM0DfE6xAIMDzzz/P66+/zmuvvcaTTz7JSy+91KfYRYaitkiMbMLgz+ksa8kqIz9y4AivEhERkeFMCdYxaG5uZvXq1TzwwAM88sgjneWrVq3i3HPP5UMf+hBTp04FEonWxz72MaZMmcJVV11Fa2srAM899xyzZ89m+vTpLFu2jPb2dgDGjx/PP/3TP3HmmWfy61//uttxd+/eTWVlZef29OnTCYfDfO1rX+PRRx9l1qxZPProo7S0tLBs2TLmzZvH7NmzeeKJxJJjDz74IJdffjmLFi1i4sSJ3HnnnQCYGXl5iVnRIpEIkUiExHJm3f36179m2rRpzJw5k/POOw9I9H7ddNNNTJ8+ndmzZ/PnP/+581gf/vCHufDCCxk/fjz33HMP3/ve95g9ezYLFiygrq4OgJ/85CfMnTuXmTNncuWVV3b++3S1YMEC3nrrrc7tRYsW0XMBapGB0NYeJcfasaxDCVZ7djm58SaItGUwMhERERms0rEO1sD50+2w5830tjlqOrz/20es8sQTT3DJJZcwadIkSkpKWLt2LWeddRYAr776KuvXr6eqqopt27axceNGHnjgARYuXMiyZcv40Y9+xKc//WmWLl3Kc889x6RJk7jhhhv48Y9/zGc/+1kASkpKePXVVw877m233cYFF1zA2WefzUUXXcRNN91EUVERd911F2vWrOGee+4B4Ctf+QoXXHABP/3pT2loaGDevHm8733vA+CVV15h/fr15OTkMHfuXD74wQ8yZ84cYrEYZ511Flu2bOGWW25h/vz5hx3/rrvu4qmnnqKiooKGhgYA7r33XsyMN998k3feeYeLLrqITZs2AbB+/XrWrVtHKBRiwoQJfOc732HdunXcdttt/PznP+ezn/0sH/nIR/jkJz8JwD//8z/zwAMPdPbMdbj22mtZsWIFd955J7t372b37t3MmZNyoWyRftUeSnwB0DXBiueNhgagaQ+MqMpMYCIiIjJoqQfrGCxfvpwlS5YAsGTJkm7DBOfNm0dV1aEPWWPHjmXhwoUAXHfddaxevZqNGzdSVVXFpEmTALjxxht54YUXOl9z7bXXpjzuTTfdxIYNG7j66qtZtWoVCxYs6Oz56urpp5/m29/+NrNmzWLRokWEQiGqqxPTSF944YWUlJSQnZ3NRz7yEVavXg2A1+vltddeo6ampjMJ62nhwoUsXbqUn/zkJ53DF1evXs11110HwOmnn84pp5zSmWAtXryY/Px8ysrKKCws5LLLLgMSPW/btm0DEknYueeey/Tp03n44Ye79VR1uOaaa3jssccAWLFiBVdddVXKfx+R/tbe1gyAt0uC5SkYDUC0cVdGYhIREZHB7eTqwTpKT1N/qKur4/nnn+fNN9/EzIjFYpgZd999NwC5ubnd6vccapdq6F1PPdvoasyYMSxbtoxly5Yxbdq0lImQc47f/OY3TJ48uVv5yy+/fNR4ioqKWLx4MU8++eRhE3Tcd999vPzyy/zhD3/grLPOYu3atUd8H4FAoPO5x+Pp3PZ4PJ33qC1dupTHH3+cmTNn8uCDD7Jq1arD2qmoqKCkpIQ33niDRx99lPvuu++IxxXpL5GOBCtwKMEKFFcA0HyghiJ1YImIiEgP6sE6iscee4zrr7+e7du3s23bNnbs2EFVVRV/+ctfUtavrq7mxRdfBOBXv/oV55xzDpMnT2bbtm1s2bIFgF/84hecf/75Rz32k08+SSQSAWDPnj3U1tZSUVFBfn4+TU1NnfUuvvhifvjDH+KcA2DdunWd+5555hnq6upoa2vj8ccfZ+HChezfv79zyF9bWxvPPPMMp59++mHH/9vf/sb8+fO56667KCsrY8eOHZx77rk8/PDDAGzatInq6urDErsjaWpqYvTo0UQikc52Urn22mv57ne/S2NjIzNmzDjm9kXSKdyeGCLYNcHKKxsLQOuBHRmJSURERAY3JVhHsXz5cq644opuZVdeeWWvswlOnjyZe++9lylTplBfX8+nPvUpgsEgP/vZz7j66quZPn06Ho+Hv//7vz/qsZ9++unOSSYuvvhi7r77bkaNGsXixYt5++23Oye5uOOOO4hEIsyYMYMzzjiDO+64o7ONefPmceWVVzJjxgyuvPJK5syZw+7du1m8eDEzZsxg7ty5XHjhhVx66aUAfO1rX2PlypUAfPGLX2T69OlMmzaNs88+m5kzZ/IP//APxONxpk+fzrXXXsuDDz7YrefqaL75zW8yf/58Fi5c2C2pW7lyJV/72tc6t6+66ioeeeQRrrnmmmNuWyTdoqEWAPzBQ73MJSVlhJyfcIOGCIqIiMjhrKPXYzCYM2eO6zlb3IYNG5gyZUqGIjq5Pfjgg90mwxiO9P9H+uKZp1Zy4YvXU/vh5ZTM+gAAew+GCP3bdOIVc6j6u9RftIiIiMjQZmZrnXMpZ2FTD5aISC9i7YkerKzsLj1YuVnsoxhfy95MhSUiIiKDWL8nWGZ2iZltNLMtZnZ7fx9PDlm6dOmw7r0S6at4OHEPVlZ2XmeZz+uhwVtCMLQvU2GJiIjIINavCZaZeYF7gfcDU4GPmtnU421nMA1jlJOH/t9IX7mOBCvYfabPlkAZeZEDmQhJREREBrn+7sGaB2xxzr3rnAsDjwCXH08DwWCQ2tpafViW4+Kco7a2lmAwmOlQ5CQWD7cB3RcaBghnjyTbtUHoYCbCEhERkUGsv9fBqgC6zmVcA8zvWsHMbgZuBhg3btxhDVRWVlJTU8P+/fv7MUwZioLBIJWVlZkOQ05mkUQPFr7sbsXxvFFQDzTtgWDBwMclIiIig1bGFxp2zt0P3A+JWQR77vf7/VRVaTVPEcmASCjx6O+eYHkLx8AOiDbuwlc2KQOBiYiIyGDV30MEdwJju2xXJstERAY9TzQxRLBnghUcUQFA034tNiwiIiLd9XeC9T/ARDOrMrMsYAmwsp+PKSKSFhZtI4wfPN5u5fmliQSrrU7fF4mIiEh3/TpE0DkXNbNPA08BXuCnzrm3+vOYIiLp4o21EbYAWT3KS0tKaXLZRBqUYImIiEh3/X4PlnPuj8Af+/s4IiLp5omFCHsOn4myvCDAPleE9+CeDEQlIiIig1m/LzQsInKy8sVCRDyBw8pLcgPspRh/qxIsERER6U4JlohIL3zxENEUPVhej9HoKyU7tC8DUYmIiMhgpgRLRKQX/ng7MW/qxapbA2XkR2pBi6CLiIhIF0qwRER6kRUP9ZpghbNH4icCbfUDHJWIiIgMZkqwRERScM6R5dqJ+7JTV8gflXhs2j1wQYmIiMigpwRLRCSFcCxOkHCvCZa3cEyinqZqFxERkS6UYImIpBAKxwlaGOdLPUQwt6QSgOZ9OwYyLBERERnklGCJiKTQFomRTTvmz0m5v2jkOABaamsGMiwREREZ5JRgiYik0BqOkksIsnJT7h9dUki9yyNSryGCIiIicogSLBGRFNra2wlaBAJ5KfePKcpmtyvB06QES0RERA5RgiUikkKktQkATy8JVtDvZZ+njGDrroEMS0RERAY5JVgiIim0tx0EwBNMnWABNAVHU9i+R4sNi4iISCclWCIiKXT0YPkC+b3WCeWOIdu1QqhhgKISERGRwa5PCZaZ3W1m75jZG2b2OzMr6rLvy2a2xcw2mtnFfY5URGQAxULNAPhyek+wKBwLgGvQVO0iIiKS0NcerGeAac65GcAm4MsAZjYVWAKcAVwC/MjMvH08lojIgImFEj1YWdm9J1hZI04BoHXftoEISURERE4CfUqwnHNPO+eiyc2XgMrk88uBR5xz7c65rcAWYF5fjiUiMpA6erCysgt6rZM3sgqAg3u3DkhMIiIiMvil8x6sZcCfks8rgK5jZmqSZYcxs5vNbI2Zrdm/f38awxEROXHRZA9Wdl5hr3VKR1bS7vy0124fqLBERERkkDtqgmVmz5rZ+hR/Lu9S56tAFHj4eANwzt3vnJvjnJtTVlZ2vC8XEekX8Y57sI4wRHBMcQ47XQnoHiwRERFJ8h2tgnPufUfab2ZLgUuB9zrXOVfxTmBsl2qVyTIRkZOCa0/0YJGV22udktwsNlFGVXPNAEUlIiIig11fZxG8BPgS8CHnXGuXXSuBJWYWMLMqYCLwSl+OJSIyoMItiUd/7wmWx2M0ZI0kL7R7gIISERGRwa6v92DdA+QDz5jZa2Z2H4Bz7i1gBfA28CRwi3Mu1sdjiYgMGIs0004AvEfu6G/NHkNBrB4ioQGKTERERAazow4RPBLn3IQj7PsW8K2+tC8ikimByEFavPkEjlIvVlABTcDBnVBy2kCEJiIiIoNYOmcRFBEZMgLRg7R5j7DIcJKvOLEWVrh2Wz9HJCIiIicDJVgiIinkxJpo9/W+BlaHjrWwGna/298hiYiIyElACZaISAp58SbCWb2vgdWhtKKKmDNa9ynBEhERESVYIiKHicTiFNBM7BgSrMqSQnZTQrxOiw2LiIiIEiwRkcPUtYQppAXLKT5q3fL8ADvcSLKaqgcgMhERERnslGCJiPRQ29BIjrXjyy05al2Px6gPjCa/TWupi4iIiBIsEZHDNNYfACCQP+KY6rfmVFIYq4Nw69Eri4iIyJCmBEtEpIeW+r0AZBeWHVP9eFFiqnYaNExQRERkuFOCJSLSQ7h+NwC5pZXHVD+rNDFVe8veLf0Wk4iIiJwclGCJiPQQb9oFQM6IimOqnz9qIgCNu5RgiYiIDHdKsEREerDmfYnH/FHHVH/k6EpaXYDwfq2FJSIiMtwpwRIR6SHQtpdmy4WsnGOqP3ZELtWuHBq0FpaIiMhwl5YEy8w+b2bOzEqT22ZmPzCzLWb2hpmdmY7jiIgMhGBoH42+0mOuX5jjZ4+nnGDzjn6MSkRERE4GfU6wzGwscBHQdfqs9wMTk39uBn7c1+OIiAwE5xz54f2EguXH9bqGQAWF7bvAuX6KTERERE4G6ejB+j7wJaDrp4rLgZ+7hJeAIjMbnYZjiYj0q9qWMJXsJVow7rheF84bS7Zrg9bafopMRERETgZ9SrDM7HJgp3Pu9R67KoCuY2VqkmUiIoPazt27KbEmPKWnHd8LRyTWworXbu2HqERERORk4TtaBTN7Fkg1ldZXga+QGB54wszsZhLDCBk37vi+MRYRSbf6nZsAyE1OvX6ssstOhc1wcM8WisbN7Y/QRERE5CRw1ATLOfe+VOVmNh2oAl43M4BK4FUzmwfsBMZ2qV6ZLEvV/v3A/QBz5szRzQsiklFtezYDMGLslON6XUFFIiFr3rOFonQHJSIiIieNEx4i6Jx70zlX7pwb75wbT2IY4JnOuT3ASuCG5GyCC4BG59zu9IQsItJ/3L4NxPAQHDnhuF5XUVbKfldIVEMERUREhrWj9mCdoD8CHwC2AK3ATf10HBGRtCpqfIe9/krG+LOP63WVxdm87cooa6g+emUREREZstKWYCV7sTqeO+CWdLUtIjIQWsNRTolupans+JfuC/q97PON5pTWLf0QmYiIiJws0rLQsIjIULB56zYq7AA2esYJvb45u4KiyF6IRdMcmYiIiJwslGCJiCTtevMFAMrPOO+EXh8pGIeXOBysSWdYIiIichJRgiUikhTb/iIRfBSdNu+EXu8bMR6AyAFNdCEiIjJcKcESEQEisTiTD/43NXnT4TgnuOiQk5x5sHHX5nSGJiIiIieR/ppFUETkpLLxrXVMsxreOu2GE26jZEwVEeeldd/f0hjZ4LSvsYV3N6yjactLePa/TW5oD4WRfXhdFDxemrJGQskE8qZdzKQ5F2K+rEyHLCIiMiCUYImIAA2v/haAMfOvOuE2xpbms9OVYnXb0hTV4BGNxVn31gb2vPoHCneuYmZ4HQusFYA2AtT6RtIULCPsCeJiEUrbqxm94yWyah6i8akCaibfyOmXfR5vbnGG34mIiEj/UoIlIgKU7HiGLb6JTBhz2gm3MaogyIuUc+rBHWmMLHPC0Thr3niD+lce5ZQ9TzGXRM9cvWcEu0ZfSO2Ecxk19RxyRk2m0nP4iPP6+jpeWf0Evtd/yYJ3fsjBjQ/SfP6djDl/GZgN9NsREREZEEqwRGTY27Z1M1NiG1k74dN9asfrMeqyRjMz9HKaIht4zjne3LiJHX/5JRU7n+RsNgFQHZzEpgm3MXb+hymunEnxMSRIxcUjOOeym3CXLuX5Vc8y4r++yqxVn2PHm7+hctnPsdzS/n47aRGPO1ojMVpbW8BF8Xl8eL1e8nNy8Hh1K7OIiHSnBEtEhr3tf/0144GxC6/tc1utuWPJb3wa2psgkN/n9gbKjv2NvP78Coo3Pcr86FpmWJydgdPYMvE2xp77McaNnHjCbZsZFyy+kPq55/Krn/1vrjxwHw3fn0/woz8n+7SFaXwXJyYed+ysPUjN5tdpqn4d6rcRaKmhoG0XhbFa8lwLBbRQbpFur4s6Dw2WR4snn+asMkJ542BEFTmjJlJedQbFlVPBH8zQuxIRkUxRgiUiw17htj9R4x1LZdWJLTDcVbxwHDQC9dth1LS+B9ePwtE4L774As0vP8S8pme51A5S7xnBlglLGbv441RUpjf+4rwgS275Jr/5w3uYu+Y2Cn5xKQcW/BOlF30JUgwx7C/1Ta1sev2/ady0Gu++9Yxu28xp1DDWDi0QXW9F1GeNJpQ/kZZAIbsDhcQDBcQ9flwsjnMxYqFmLFSPL1RPTmgv4/avouTAStgEvAAxPOzzjuJg3qnERkwku+IMyk+dQe6YKRAs6Lf3F43FaWhupbFuL811e2lr3Ef7wQPEmg/gWmrxhRvwRVrwxtrwxkL44u344yH8LtzZhkHnMM64+Yh6g8S8QeLeIHFfNviycf4g5s/FAjl4A3l4A7l4g3n4g7lkZeeTlZNHMKeAYG4egex8LCsXvFnHNTw0HndEYlFikTCRcDvRSDvRSJho8nks0k4sEiEWCxOLhIlFIsSjYWKxMPFoJPEnFsZFIxCP4HGxQ+/NDPAkw/HgzBLFeDCPgXkwrxczL+bxgnnweDyYJ7nt8eAxL5Ys83g84PEl6pgX8ybLvV485sE8Pszjwev14syLc4aR+L+Ei0PcAQ7n4uDimIt3Pse55GPH81iX546sEWMoT8PPLxFJDyVYIjKsVe/YwbTIetZX3URlGtrzl54K1dC2/12yB2mCtWNfPa89/RCnbHmY89lEFC/bS8/Dzr6J0lkfpNjbf78aPB7j6ss+yMsTprJ5xae48KV/Zc+WPzPyhgexgtH9csxd+2t5d90qQn/7KyNq1zA58g7zrR2ABk8RBwom8W7ZYoJjZzFy4lnklJ9GcVYOxzsdRzzu2HXgALu3vs3BHW8T2/sO2Qe3UN6wjaqGF8naGoPVibp13lIac0+lrfA0oiMmECgoI6ewDF9uMZ5gPl5v4oN61EEoFCIcaiHa1kxbaxNtzY3Emg4Qb6nF01aLt72eQLiBnGgDefGDFLqDlFobvQ3AbCFIm+UQtgART4CIJ0jEFyRiObhE+oEDcA4HeOIR/NFWssP1+F07Wa6dgAuTTYhgj169o4k6D20WIIYXOo9luC6P5hx+oviI4SdKwGLHeSaGn5Dz8+7HX+XUceMyHYqIoARLRIa5LasfY5zFGfOeq9PSXsHoxCQZB3dtJnt6WppMC+ccL72+nr3P/5iFjb/nMmtkr7+CLdO+TNUFyzgtv3xA45k/pYo9//g7/uNn/8r1+++j+f/OJ/7eOylccGOferOcc7y7vZqaN/5MbNtfGVn/GpPif2OMxYg7Y0dWFX+ruJycCedSOXMRRSXjKErTe/J4jDHlZYwpPx/mn99ZHo87dtY1sePdt2moXk987zsEG7cwsmE7pza+Tu6O9hM+ZitBmqyAZl8h7cFC6gLjORAcATklePNKCRSUEiwsJ6+4nPwRo8jKLyXXFyA3De83Fnc0hyO0NTfR2tpEqOUg4bZmwm1NREMtRNqaibe3EGtvxoWb8UTb8EXb8MXaMBdLdL7gcC6RWnkNPGaYGc7jx3mycF4/eJOPHn9iun9fFuYN4PH58Hiz8Pj8eHx+vL4sPL6szuc+fxZeXxZefxZ+fwDz+ZM9R4n/J45Er5Fz8cR2sjfIuThx54jHYonn8Sgu5nAuhovHEuXx5L5YLFGe7NWMx2MQj+Hiid4nF0v0NMVdDOLxxOviMQyHEQe8OOvoPTMcHvAketYwT2LbEr1prmO/dfxJ9sA17eQ9r3+FXf/9KKeO+2IazqyI9JU55zIdQ6c5c+a4NWvWZDoMERlGXv6Xizg1+i5ld2xOy8x2r1fXU/XAFOonXsUp192Thgj7pj0a4y9/fgrfK/eyMPwiXouzrXghhYtuoWT6JQM6NC+VWNyx4k/PcfrLtzPbs5m9uZMJnHsrRXOuBl/gqK9va4+wacNr1L3zF3w7X6Gy6XWq2AVAGB/VwSm0jJpL4eTzGDtzEd6cwTNNfCzuaGhpp2F/DQfr99HWeADaGvBEWojH48TjMfzm8Pqz8AZy8QRyyc7JI7+gmPwRI8ktKsOycjL9NiTTnGP7N6fR6itmyldWZzoakWHDzNY65+ak2tfnHiwz+wxwCxAD/uCc+1Ky/MvAx5PltzrnnurrsURE0qlmz35mtb/KprFXUZamacPHluRS48rJa9iWlvZOVH1zO//15ArGvPUfvM+9STO5bD3tesZfciunlp/4VPTp5vUYH/3g+9ixYBUPPfYjzt35ACOfvIWWp77EnqIziY4+EysaiyeYT3skTrj5AG11u6GhmuLmzYyNbmemhQBoJJ+avOm8UXENpWecz+gp72GCPzvD77B3Xo9Rkh+kJH8CMCHT4cjJyoydlZdydvV97NuxhfKx+r8kkml9SrDMbDFwOTDTOdduZuXJ8qnAEuAMYAzwrJlNcs5pILWIDBobVv+WSoswct6JLy7cU3GOnzU2ijObtqetzeNR1xziL088wIRNP+HDtpV6bwlbZ36Z8Rf9A5P6cWKFvhpbkseNf/cltu3/FL/58+/I3vx7pta+xmn1f0lZv4F8dgeq2FR2GdmVMxk97XyKxk2jMMM9ciKZMPb8G+EX97F11UOUX//NTIcjMuz1tQfrU8C3nXPtAM65fcnyy4FHkuVbzWwLMA94sY/HExFJm8DmP9BoBZRPW5y2Ns2MuuA4itrXQCwCXn/a2j6SuuZ2nv39cmZs+B6X23b2ZVWy5+zvMurcpRQfw1C7wWJ8WT7jr7kBuIFQJMaG3Qdor9tBLNRM0O8lp6CEUWPGUZSbl7Z7p0ROdmNPm8o7/imM3Po74rE7tT6bSIb1NcGaBJxrZt8CQsAXnHP/A1QAL3WpV5MsExEZFHYdaGBW6BVqRl9Eoceb1rZbC6rw7Y9BQzWU9O9wvIbWMCv/+HsmvfnvXGPrOZA1mt3n/YDRC6+DNL+vgRb0e5kybiSMG5npUEQGvdZp13H6uq/yxuonmHH+FZkOR2RYO2qCZWbPAqNS7Ppq8vUjgAXAXGCFmZ16PAGY2c3AzQDjNL2oiAyQt/76/7jQ2hgx58q0t+0rmwT7IbpvI75+SrBCkRiPP/cCRS99hxt4kSZfIfvecxfliz4Fvqx+OaaIDF5nXLyMA+vuhpd+BEqwRDLqqAmWc+59ve0zs08Bv3WJqQhfMbM4UArsBMZ2qVqZLEvV/v3A/ZCYRfDYQxcROXHejX+ghWxGzbw47W0Xj5sKb0PD9jcpnfKBtLYdjzv+9NJrhJ77NldGnyHm8bN/9mcpu+jz5A/ie6xEpH8FgjmsHbeEs6vvY/Nrq5k465xMhyQybPV1kO7jwGIAM5sEZAEHgJXAEjMLmFkVMBF4pY/HEhFJi/qmNma2/JXqkoXgD6a9/fGVlex0JYR3vp7Wdv/61rss/+6nWPTUxVwee4YDkz9K8HNvUPahO0HJlciwN+0jX6KBPEJPfj3ToYgMa31NsH4KnGpm64FHgBtdwlvACuBt4EngFs0gKCKDxfqXn6bEDpI9o3+G0ZxWnss78XEEajekpb23qvfxi/9zO6evOI+PhZbTULkYzy2vMPp/3Qv5uj9JRBIKikp469RPMD20ho1/fTzT4YgMW32a5MI5Fwau62Xft4Bv9aX9TFuz8j5s81PEPT6c+XAeH3g6Hv04jxfz+BNlXh/mTTy35IrzHq8PvH48Xj/m8YIZnSvtmEHHquyQXMEdDLCOVd0Te+h4kSVXbe/K4Ui8MrntuuzpZcBl98Wl3RH2JY/boy0HWLKgW23nupX0toj14eUp6jmXou3uta1HHYfrjOvw2LpuxFOUu8OjSHXMw/5dU71Hl2Iz9b9rt7ZT/nu5nqGQarUm5+Ldtq3neU3xml4OdaK7j/04fY6j70fJ2fYs7fgZO+9DfW4rZftZPnZnT2Jx66+hvRkCeSfUTk1dM6se+zHn7fwPrrf97Boxl/AV/0rFuLlpjlhEhorZV32R7XevoPDZLxKatZhgbmGmQxp0XDxOa2sLLc0NhJobiYZbiYZCxCJtxMKJx3g4RCzSjouEiEdDEGknHm3HxWMQj2EuDi4GLoa55HayvHPbxen4ZNTxe/zQbzBPl1/odmide0t+LgS6FCafWrKs5+Oh13WUW6r9dui41hlD19cbruM4XY8B3cs79pnhuh6DQ3WcHXq9w7COsh7vq+vn2t6WozSDuqJpzJ13DiV5J8esuH1eaHgoizbuoqL5HbzE8Lpo4pEYPhfFSxwfUbJMHXMiJ6PXChYzK7v/htWFRs/Ds/1RXPVL2MReb2VNqbElzJ9W/ooZ73yf62wbe3Mn0fLBexkz9aLefwOJiAA5OXnUvvf7zHpmCa//5yeZfeujQ/LnRjwapalhP411e2mp30dr434iBw8Qb62F1lp87fX4Ik34oi1kRVsJxFvIjreSTRs5LkSuxcjtYwwxZ8TwEMfT+RjHQ8wSjw5PMrlIpFWHHjukKnedX7jDoS9fu7aRTGugy/Pu+w/f1/HcYyfndAffjFzHqIlnKcEaChZcfxdw1xHruHicWCxGNBomGo0Qi0SIRtqJRaPEoh2PYeKxGK6j5yTe0SvR8XVGnEM9Tq6z9ybRQ9OlbkevkYtj1iXjh0PfCtD1C5HENwZdNlN+9289fvD2bJtk+12rWee3GN1/brtuR+z5M/3QNxeH/6zvGmeXb2y61vCk+gVxtLYOPenWmqWoQ486dP+36d77mPp4qdrvrJHyF5x1+fsodbrscynq9Yw9VVtH+xV7TL+Cj1LpWH6PHzWOY2jk6G0cef/MolSTo6ZP0ennENnm5eBbz1JyjAlWezTG0396glFr72YJb1ObNYq69/6IkfM+ClpAV0SO0ZnnXMILGz7JeTvv57WHv8qs6/4l0yEdu2g7bXU7ObC7msb91bTW7iLWuAtP8x6C7fspiNRSHK+jwDVTaI5U/XMR56XR8mnx5NPuySbszaUtUEKtL5d4Vj4uKw8C+XiC+VggD09WDp6sbLz+IN6sIN6sbHz+IP5gEF9WNv5AkKxALoFAAL/fj9frA/PgNWMwLobhXOIzZTz5eTLuEmlbx0fJQ88dcRfHxZP9bK7LH1yX0THuUJ1k+9bxedXFD30+petrDz3v9tg5JMd1G9HUfaRUj2FTwCcChYwoyU/3P1W/sd6GcWXCnDlz3Jo1azIdhohIn+09GGLzv72X6dn1FN7+1hEzvvZojGeff5ail77DwvhaGjzFtC34HKMv+Ds4iRYJFpHBIxKN8T/fv4azW57ljVOWMv2Gf8e8mf9e3bU3c3DPVup3baFl31ZiddvxHKwhp3UnxeHdFLuGw14TcV7qPEUc9JXS4i8hFCzHZZdAbgn+vBICBWVkF5VRMKKcghGjEsMih2CvnQwuZrbWOTcn1b7MX2kiIkPQyIIgK4ov4ZzGfyO26Rm8ky86rE4oHOW/nnmCnLU/4oPxNTRZHltnfZGqD9xGUVZfB6+IyHDm93k56x+Xs+qHy1i0/UE2372WEVf/gJLTzuzX48ZDTdTt3ELDrs207ttKvL4aX1MNuW07KY7spcgdpBA6e57anY/dlFHrK6c65z1E8ivwFowhu2QMBWVjKR09jtLyCkZ6vWhKHzlZqAdLRKSfPP1GNac/dgEFuTkUffp5yC0FoLqmhvXPPcy4rY8yjb/RaAU0TFvKuA98DssuznDUIjKUxGNxVj32Q+a8/W3yaGNTwQJs5hJOXXAZ/ryS42vMOZoP1lO3ZzvNe9+lbd+7xOuryWraQW7bTkojeyjiYLeXhJyfXVZOvX8kzcExRAoq8RSNI6e8isJRpzGy4hSKcwPHNDRcZDA5Ug+WEiwRkX7inOPff/IzPrPzS0S8QXYFJ2KhRsbHtuG3GLv942g982ZOfe/HsaycTIcrIkNYdU0Nm5/4LlP3/T9GWx0ANZ4KGgIVRPJG4wIFkJwFORYNY5EWvOFmLNxMsP0A+dE6RsTryLZwt3bbnY+9VkadfxTNOZVEC8biHXEKOeWnUjRmAqNGjyU36M/EWxbpV0qwREQyJBSJseL3f2TM2z+hLLoXb1Y20dFnUvGeayibNF/3CYjIgGoLhVn/8tM0bXyBwoa3yAvtpiR2gDxa8RHDZ3GizkML2bRakJDl0OIvJhQoJZI9EvJH4iscTbB0PMUVEygfM54sv+44keFHCZaIiIiIpOScIxJzRGJxorE42X4vWf7BOD+eyOChSS5EREREJCUzI8tnZPm0HIRIOuhKEhERERERSRMlWCIiIiIiImmiBEtERERERCRNBtUkF2a2H9ie6Th6KAUOZDoIGTA638OHzvXwoXM9vOh8Dx8618PHYDzXpzjnylLtGFQJ1mBkZmt6myFEhh6d7+FD53r40LkeXnS+hw+d6+HjZDvXGiIoIiIiIiKSJkqwRERERERE0kQJ1tHdn+kAZEDpfA8fOtfDh8718KLzPXzoXA8fJ9W51j1YIiIiIiIiaaIeLBERERERkTRRgiUiIiIiIpImSrCOwMwuMbONZrbFzG7PdDySPmY21sz+bGZvm9lbZvaPyfIRZvaMmW1OPhZnOlZJDzPzmtk6M/t9crvKzF5OXt+PmllWpmOU9DCzIjN7zMzeMbMNZvYeXdtDk5ndlvwZvt7MlptZUNf20GFmPzWzfWa2vktZymvZEn6QPO9vmNmZmYtcjlcv5/ru5M/xN8zsd2ZW1GXfl5PneqOZXZyRoI9ACVYvzMwL3Au8H5gKfNTMpmY2KkmjKPB559xUYAFwS/L83g4855ybCDyX3Jah4R+BDV22vwN83zk3AagHPp6RqKQ//F/gSefc6cBMEudd1/YQY2YVwK3AHOfcNMALLEHX9lDyIHBJj7LeruX3AxOTf24GfjxAMUp6PMjh5/oZYJpzbgawCfgyQPLz2hLgjORrfpT83D5oKMHq3Txgi3PuXedcGHgEuDzDMUmaOOd2O+deTT5vIvEBrILEOX4oWe0h4MMZCVDSyswqgQ8C/5ncNuAC4LFkFZ3rIcLMCoHzgAcAnHNh51wDuraHKh+QbWY+IAfYja7tIcM59wJQ16O4t2v5cuDnLuEloMjMRg9IoNJnqc61c+5p51w0ufkSUJl8fjnwiHOu3Tm3FdhC4nP7oKEEq3cVwI4u2zXJMhlizGw8MBt4GRjpnNud3LUHGJmpuCSt/g/wJSCe3C4BGrr84Nb1PXRUAfuBnyWHhP6nmeWia3vIcc7tBP4NqCaRWDUCa9G1PdT1di3rc9vQtgz4U/L5oD/XSrBkWDOzPOA3wGedcwe77nOJNQy0jsFJzswuBfY559ZmOhYZED7gTODHzrnZQAs9hgPq2h4akvfeXE4iqR4D5HL4ECMZwnQtDw9m9lUSt3Y8nOlYjpUSrN7tBMZ22a5MlskQYWZ+EsnVw8653yaL93YMKUg+7stUfJI2C4EPmdk2EkN9LyBxj05RclgR6PoeSmqAGufcy8ntx0gkXLq2h573AVudc/udcxHgtySud13bQ1tv17I+tw1BZrYUuBT4mDu0eO+gP9dKsHr3P8DE5GxEWSRupluZ4ZgkTZL34DwAbHDOfa/LrpXAjcnnNwJPDHRskl7OuS875yqdc+NJXMfPO+c+BvwZuCpZTed6iHDO7QF2mNnkZNF7gbfRtT0UVQMLzCwn+TO941zr2h7aeruWVwI3JGcTXAA0dhlKKCchM7uExPD+DznnWrvsWgksMbOAmVWRmNjklUzE2Bs7lAxKT2b2ARL3bniBnzrnvpXZiCRdzOwc4C/Amxy6L+crJO7DWgGMA7YD1zjnet5gKycpM1sEfME5d6mZnUqiR2sEsA64zjnXnsHwJE3MbBaJCU2ygHeBm0h8oahre4gxszuBa0kMH1oHfILEvRi6tocAM1sOLAJKgb3A14HHSXEtJ5Pse0gME20FbnLOrclA2HICejnXXwYCQG2y2kvOub9P1v8qifuyoiRu8/hTzzYzSQmWiIiIiIhImmiIoIiIiIiISJoowRIREREREUkTJVgiIiIiIiJpogRLREREREQkTZRgiYiIiIiIpIkSLBERERERkTRRgiUiIiIiIpIm/x9ktRcoPUPTRQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1138,31 +1138,31 @@ " 33\n", " True\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " bAP.soma.v\n", - " 0.00618\n", - " 2.79e-05\n", + " 0.00615\n", + " 3.32e-08\n", " \n", " \n", " 34\n", " True\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step1.soma.v\n", - " 0.0642\n", - " 1.26e-06\n", + " 0.00752\n", + " 3.02e-06\n", " \n", " \n", " 35\n", " True\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step3.soma.v\n", - " 0.084\n", - " 2.76e-06\n", + " 0.00875\n", + " 1.01e-06\n", " \n", " \n", "\n", @@ -1170,14 +1170,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "33 True 1 0.121 0.0319 bAP.soma.v \n", - "34 True 1 0.121 0.0319 Step1.soma.v \n", - "35 True 1 0.121 0.0319 Step3.soma.v \n", + "33 True 1 0.0592 0.0295 bAP.soma.v \n", + "34 True 1 0.0592 0.0295 Step1.soma.v \n", + "35 True 1 0.0592 0.0295 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "33 0.00618 2.79e-05 \n", - "34 0.0642 1.26e-06 \n", - "35 0.084 2.76e-06 " + "33 0.00615 3.32e-08 \n", + "34 0.00752 3.02e-06 \n", + "35 0.00875 1.01e-06 " ] }, "metadata": {}, @@ -1185,7 +1185,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACg/0lEQVR4nOzdeXwV5dn/8c91TvaNQBLCvoiCrKICYgVF7SNYF6Ra0bqhtT7a2qp1bZ9Wqa3Pr4/a2rpUuli1ahHr3mq1bqhYEUERF1xAw76EBBISspzl/v0xk3gIWc0JJyHf9+s1L87M3HPPNWdywrlyL2POOURERERERKT9AokOQEREREREZF+hBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaISCdhZkPMzJlZUqJj2deZ2RwzW5ToODobM5tqZp8kOg4Rka5MCZaIiHRpZjbXzEJmVhGzXJPouLoi59zrzrkR8azTzIab2VNmVmxmpWb2vJnF9RwiIp2JEiwRkThRy1NCLXDOZcUsNyc6oHjq4j9bucDTwAigEFgCPJXIgEREOpISLBGRdjCzIjO71sxWAJVmlmRmk83sP2a2w8zeM7NpMeUXmtn/M7MlZlbu/2W/VxN1n29mK81sp5l9bmb/3WD/TDNb7tez2sxm+Nt7mNk9ZrbJzDaY2S/NLNjCdQwzs5fNrMTMtpnZQ2aWG7Ov1MwO8df7+a0R0/z1k83sQ/96F5rZyAbvz1VmtsLMysxsgZmltf2dbjszu85/X3aa2UdmNquJcmZmt5nZVv+9fN/Mxvj7Us3sVjNba2ZbzGyemaW38vz3+eVf8GN41cwGx+z/nZmt88+5zMymxuyba2aPmtmDZlYOzDGzSWb2pv8+bzKzO80sJeYYZ2bfM7PP/PP9wr93//HP8Uhs+SZinmZm61tzfa3lnFvinLvHOVfqnAsBtwEjzCwvnucREekslGCJiLTfmcAJeH+pLwSeAX4J9AKuAh4zs4KY8ucCFwB9gTBwexP1bgVOBHKA84HbYpKcScBfgav98x4JFPnH3efXuz9wMHAccGEL12DA/wP6ASOBgcBcAOfcauBa4EEzywDuBe53zi00s+HAfOByoAB4FvhHgy/ypwMzgKHAOGBOowGYTfGTh6aWKS1cQ0OrgalAD+Dnfvx9Gyl3HN77N9wvezpQ4u/7lb99PN772R+4vg0xnAX8AsgHlgMPxex726+3F/A34O8Nks+ZwKN49/chIAJc4dd1OHAs8L0G55sOHApMBq4B/gicjXc/x+D9rH5lfqLc1P35fSurORLY7JwrabGkiEhX5JzTokWLFi1fccFLai6IWb8WeKBBmeeB8/zXC4FfxewbBdQCQWAI4ICkJs71JHCZ//oPwG2NlCkEaoD0mG1nAq+08bpOAd5tsO1p4H1gBZDqb/sZ8EhMmQCwAZgW8/6cHbP/ZmBenO/BXP893BGz9Guk3HJgpv96DrDIf30M8CleUhKIKW9AJTAsZtvhwBetjOs+4OGY9Sy8JGlgE+W3AwfFXNNrLdR/OfBEzLoDjohZXwZcG7P+a+C3LdQ5DVgfz/vToP4B/s/HmR11Di1atGhJ9NKV+3SLiHQW62JeDwa+ZWYnxWxLBl5povwaf39+w0rN7HjgBrwWlACQgZfggNci8WwjsQz269tkZnXbAg3OuQczKwR+h9fik+0fs71BsT/hJVkXOedq/G39/GsAwDkXNbN1eC09dTbHvN7lHxNvjzjnzo7dYGbnAj/CS1zBS3D2eJ+dcy+b2Z3AXcBgM3scr+UxDe89XxbzXhpeMtxa9e+7c67CzErxrn+dmV0FfMdfd3gtlfmNHetfz3DgN8AEP64kvCQq1paY11WNrPdpQ+xx5bfi/hv4vXNufqLiEBHpaOoiKCLSfi7m9Tq8FqzcmCXTOfermDIDY14PAkLAttgKzSwVeAy4FSh0zuXiJVR13/TXAcMaiWUdXgtWfsz5c5xzo1u4hv/1r2Oscy4Hr1vZl1mFWRbwW+AeYK59OW5sI15SV1fO/Ovb0ML59mDeFOEVzSxTW66lvq7BeAnhpUCe//59EHtNsZxztzvnDsVrURyO1/VyG15SMjrmvezhnMtqw2XV32v/PewFbPSv5Rq87og9/fjKGsQX+3MFcDfwMXCAf49+0tT1dBR/rF1T92deM8f1xEuunnbO3bT3IhYR2fuUYImIxNeDwElmNt3MgmaW5k8cMCCmzNlmNsofz3Qj8KhzLtKgnhQgFSgGwn5r1nEx++8BzjezY80sYGb9zexA59wmvC+yvzazHH/fMDM7qoW4s4EKoMzM+uMlGLF+Byx1zl2IN8as7sv0I8AJfhzJwJV4Cd5/WnqjGnLeFOFZzSyvt6G6TLwEpRi8CUPwxiDtwcwmmtlhfvyVQDUQdc5F8ZK028yst1+2v5lNjznWWcwkJo34hj+2LAVvLNZi59w6vPc77MeXZGbX47VgNScbKAcqzOxA4JIWysedc250M/fn4saOMbMcvG6ybzjnrtu7EYuI7H1KsERE4sj/8jwTr3WhGK9F6Wp2/337AN74nM143dB+2Eg9O/3tj+B11fs2Xve8uv1L8Ce+wGv5eJUvW5LOxUvQPvKPfRRvQo3m/Bw4xK/rGeDxuh1mNhNvkoq6L/Q/Ag4xs7Occ5/gtXbdgdficxJwknOutoXzdSjn3Ed4Y47exOsmNxZ4o4niOXiJ1Ha87o4lwC3+vmuBVcBifza/F/GmG8fMBgI7+bLbZmP+htfNsxRv8om6bozPA8/hjf1ag5fUNduNE6/b4rf9c/4JWNBC+c5iFjAR7w8CsS1egxIdmIhIRzDnGvZAEBGRjmJmC4EHnXN/TnQs0j5mdjZe98EfN7H/PrwJI366VwMTEZGE0iQXIiIiX4Fz7sFExyAiIp2PugiKiHQT5j30tk2TE8i+x8x+0sTPwb8SHZuIyL5AXQRFRERERETiRC1YIiIiIiIicdKpxmDl5+e7IUOGJDoMERERERGRZi1btmybc66g4fZOlWANGTKEpUuXJjoMERERERGRZpnZmsa2q4ugiIiIiIhInCjBEhERERERiRMlWCIiIiIiInHSqcZgNSYUCrF+/Xqqq6sTHYp0AmlpaQwYMIDk5OREhyL7oBsfWcSY1M18c+ZpiQ5FREREuqhOn2CtX7+e7OxshgwZgpklOhxJIOccJSUlrF+/nqFDhyY6HNnH7KwOcej7P+eE4BJCR04mueeARIckIiIiXVCn7yJYXV1NXl6ekivBzMjLy1NrpnSITWXV9LVSALYteSTB0YiIiEhX1ekTLEDJldTTz4J0lNpwlGqXAkB49WsJjkZERES6qi6RYImIdLSacJQ+fgtWRtmqBEcjIiIiXZUSrFYwM6688sr69VtvvZW5c+cmLqAY06ZNa/bhzKeccgqTJ0/ebdvcuXPp378/48ePZ8yYMTz99NMdHaZIpxcKR+hnJQD0rNkAIXVFFRERkbZTgtUKqampPP7442zbti2u9TrniEajca0z1o4dO1i2bBllZWV8/vnnu+274oorWL58OX//+9+54IILOjQOka4guquUNAvxfmAEAaJQ8lmiQxIREZEuSAlWKyQlJXHRRRdx22237bGvuLiYU089lYkTJzJx4kTeeOMNwGsluvXWW+vLjRkzhqKiIoqKihgxYgTnnnsuY8aMYd26dVx99dWMGTOGsWPHsmDBAgAWLlzItGnTOO200zjwwAM566yzcM41Gt8DDzxQ3xq1ZMmS+u2PP/44J510EmeccQYPP/xwo8eOHDmSpKSk3ZLH6667jlGjRjFu3DiuuuoqAIqKijjmmGMYN24cxx57LGvXrgVgzpw5XHLJJUyePJn99tuPhQsXcsEFFzBy5EjmzJlTX+cll1zChAkTGD16NDfccMMecZSVlTF48OD6RK+yspKBAwcSCoUajVsk3qJV5QBszhoNQE3x6kSGIyIiIl1Up5+mPdbP//EhH20sj2udo/rlcMNJo1ss9/3vf59x48ZxzTXX7Lb9sssu44orrmDKlCmsXbuW6dOns3Llymbr+uyzz7j//vuZPHkyjz32GMuXL+e9995j27ZtTJw4kSOPPBKAd999lw8//JB+/fpxxBFH8MYbbzBlypQ96tu1axfLly/ntdde44ILLuCDDz4AYP78+Vx//fUUFhZy6qmn8pOf/GSPY9966y0CgQAFBQUAlJSU8MQTT/Dxxx9jZuzYsQOAH/zgB5x33nmcd955/OUvf+GHP/whTz75JADbt2/nzTff5Omnn+bkk0/mjTfe4M9//jMTJ05k+fLljB8/nptuuolevXoRiUQ49thjWbFiBePGjauPo0ePHowfP55XX32Vo48+mn/+859Mnz5dz7uSvSYaqvFe5A2DcijbuJreYxMbk4iIiHQ9asFqpZycHM4991xuv/323ba/+OKLXHrppYwfP56TTz6Z8vJyKioqmq1r8ODB9eOiFi1axJlnnkkwGKSwsJCjjjqKt99+G4BJkyYxYMAAAoEA48ePp6ioqNH6zjzzTACOPPJIysvL2bFjB1u2bOGzzz5jypQpDB8+nOTk5PrEC+C2225j/PjxXHXVVSxYsKB+dr4ePXqQlpbGd77zHR5//HEyMjIAePPNN/n2t78NwDnnnMOiRYvq6zrppJMwM8aOHUthYSFjx44lEAgwevTo+pgfeeQRDjnkEA4++GA+/PBDPvrooz2uY/bs2fUteA8//DCzZ89u9n0UiadI2Euwsnr1o9ylU7PtiwRHJCIiIl1Rl2rBak1LU0e6/PLLOeSQQzj//PPrt0WjURYvXkxaWtpuZZOSknYb1xT77KbMzMxWnS81NbX+dTAYJBwON1qu4dTlZsYjjzzC9u3b6x/IW15ezvz587npppsAbwxWXfe/hnEvWbKEl156iUcffZQ777yTl19+uVVxBgKB3WIOBAKEw2G++OILbr31Vt5++2169uzJnDlzGn2W1cknn8xPfvITSktLWbZsGcccc0yz5xWJp7A/qUVBzxw2uAKydqxNcEQiIiLSFakFqw169erF6aefzj333FO/7bjjjuOOO+6oX1++fDkAQ4YM4Z133gHgnXfe4YsvGv9r+NSpU1mwYAGRSITi4mJee+01Jk2a1Ka46lp9Fi1aRI8ePejRowfz58/nueeeqx/3tWzZsibHYcWqqKigrKyMb3zjG9x222289957AHzta1+rP/6hhx5i6tSprY6vvLyczMxMevTowZYtW/jXv/7VaLmsrCwmTpzIZZddxoknnkgwGGz1OUTay4VrAeiVk81GCkitWJ/giERERKQr6lItWJ3BlVdeyZ133lm/fvvtt9ePzwqHwxx55JHMmzePU089lb/+9a+MHj2aww47jOHDhzda36xZs3jzzTc56KCDMDNuvvlm+vTpw8cff9zqmNLS0jj44IMJhUL85S9/oaioiDVr1uw2PfvQoUPp0aMHb731VqN1fOMb3+DPf/4zZsbMmTOprq7GOcdvfvMbAO644w7OP/98brnlFgoKCrj33ntbHd9BBx3EwQcfzIEHHsjAgQM54ogj6vddf/31TJgwgZNPPhnwugl+61vfYuHCha2uXyQe6sZgJaeksCO1L9k1K8E50MOtRUREpA2sqZnpWl2B2UDgr0Ah4IA/Oud+Z2Zzge8CxX7Rnzjnnm2urgkTJriGz3RauXIlI0eObFeMsm/Rz4R0hGcf/yvfWPEDdp37HE88/QRn7fgDXPMFZPRKdGgiIiLSCZnZMufchIbb49GCFQaudM69Y2bZwDIze8Hfd5tz7tZmjhUR6RScP8lFcnIa0R6DYAewY60SLBEREWmTdo/Bcs5tcs6947/eCawE+re3XhGRvSnqj8FKSkklJW8IgGYSFBERkTaL6yQXZjYEOBioG+hzqZmtMLO/mFnPJo65yMyWmtnS4uLixoqIiHQ4F/FasCwplew++wFQvkkPGxYREZG2iVuCZWZZwGPA5c65cuBuYBgwHtgE/Lqx45xzf3TOTXDOTah72K2IyF4XDnn/BlMoKCikwqVRU7ousTGJiIhIlxOXBMvMkvGSq4ecc48DOOe2OOcizrko8CegbXOPi4jsTX4LFsEU+vXMYKPLw+1QgiUiIiJt0+4Ey7yn3N4DrHTO/SZme9+YYrOAD9p7LhGRjlL3HCySUijMTmUTeSRXbExsUCIiItLlxKMF6wjgHOAYM1vuL98Abjaz981sBXA0cEUczpUwTz75JGbW7POpioqKGDNmTNzOOWfOHB599NEm919++eX079+faDRav+2+++6joKCA8ePHM2rUKP70pz/FLR6RfVkg6idYwRSSggF2JBWSUb0lsUGJiIhIlxOPWQQXOefMOTfOOTfeX551zp3jnBvrbz/ZObcpHgEnyvz585kyZQrz589vdH84HG73OSKRSKvLRqNRnnjiCQYOHMirr766277Zs2ezfPlyFi5cyE9+8hO2bNGXRJEWRerGYKUCUJXeh5xIKfjTt4uIiIi0RlxnEdxXVVRUsGjRIu655x4efvjh+u0LFy5k6tSpnHzyyYwaNQrwEq2zzjqLkSNHctppp7Fr1y4AXnrpJQ4++GDGjh3LBRdcQE2N96VtyJAhXHvttRxyyCH8/e9/3+PcL774IhMmTGD48OH885//3O3co0eP5pJLLmky6evduzfDhg1jzZo19dtuv/12Ro0axbhx4zjjjDMAKC0t5ZRTTmHcuHFMnjyZFStWADB37lzOO+88pk6dyuDBg3n88ce55pprGDt2LDNmzCAU8r6Q3njjjUycOJExY8Zw0UUX0fDh1dFolCFDhrBjx476bQcccIASP+lULFJLFINAEIBwdj9vR/mGBEYlIiIiXU08HjS89/zrOtj8fnzr7DMWjv9Vs0WeeuopZsyYwfDhw8nLy2PZsmUceuihALzzzjt88MEHDB06lKKiIj755BPuuecejjjiCC644AJ+//vfc+mllzJnzhxeeuklhg8fzrnnnsvdd9/N5ZdfDkBeXh7vvPNOo+cuKipiyZIlrF69mqOPPppVq1aRlpbG/PnzOfPMM5k5cyY/+clPCIVCJCcn73bs559/zueff87+++9fv+1Xv/oVX3zxBampqfUJzw033MDBBx/Mk08+ycsvv8y5557L8uXLAVi9ejWvvPIKH330EYcffjiPPfYYN998M7NmzeKZZ57hlFNO4dJLL+X6668H4JxzzuGf//wnJ510Uv05A4EAM2fO5IknnuD888/nrbfeYvDgwRQWFrb6Nol0NIvUEiKZVDMAgrmDYDNEd6wn0Gu/BEcnIiIiXYVasFph/vz59a09Z5xxxm4tRpMmTWLo0KH16wMHDuSII44A4Oyzz2bRokV88sknDB06lOHDhwNw3nnn8dprr9UfM3v27CbPffrppxMIBDjggAPYb7/9+Pjjj6mtreXZZ5/llFNOIScnh8MOO4znn3++/pgFCxYwfvx4zjzzTP7whz/Qq1ev+n3jxo3jrLPO4sEHHyQpycuvFy1axDnnnAPAMcccQ0lJCeXl5QAcf/zxJCcnM3bsWCKRCDNmzABg7NixFBUVAfDKK69w2GGHMXbsWF5++WU+/PDDPa5j9uzZLFiwAICHH3642WsWSYRAtJaIffk3p/T8gQBUbC1KUEQiIiLSFXWtFqwWWpo6QmlpKS+//DLvv/8+ZkYkEsHMuOWWWwDIzMzcrbz5f/1uar0xDetoqb7nn3+eHTt2MHbsWAB27dpFeno6J554IuAlM3feeWej9T3zzDO89tpr/OMf/+Cmm27i/febbxFMTfXGowQCAZKTk+vjCQQChMNhqqur+d73vsfSpUsZOHAgc+fOpbq6eo96Dj/8cFatWkVxcTFPPvkkP/3pT5s9r8jeZtEQIfuyFbhH4RAAKovXkJOgmERERKTrUQtWCx599FHOOecc1qxZQ1FREevWrWPo0KG8/vrrjZZfu3Ytb775JgB/+9vfmDJlCiNGjKCoqIhVq1YB8MADD3DUUUe16vx///vfiUajrF69ms8//5wRI0Ywf/58/vznP1NUVERRURFffPEFL7zwQv14r6ZEo1HWrVvH0Ucfzf/93/9RVlZGRUUFU6dO5aGHHgK8sV35+fnk5LTuK2VdMpWfn09FRUWTsx6aGbNmzeJHP/oRI0eOJC8vr1X1i+wtwWgtkZgEq09+T7a5HEKlaxMYlYiIiHQ1SrBaMH/+fGbNmrXbtlNPPbXJiSVGjBjBXXfdxciRI9m+fTuXXHIJaWlp3HvvvXzrW99i7NixBAIBLr744ladf9CgQUyaNInjjz+eefPmEY1Gee655zjhhBPqy2RmZjJlyhT+8Y9/NFrHhRdeyNKlS4lEIpx99tmMHTuWgw8+mB/+8Ifk5uYyd+5cli1bxrhx47juuuu4//77W/nuQG5uLt/97ncZM2YM06dPZ+LEifX75s2bx7x58+rXZ8+ezYMPPqjugdIpBaKh3RKsfrnpbHK9ME1yISIiIm1gDWd8S6QJEya4pUuX7rZt5cqVjBw5MkERSWeknwnpCAt/+Q0ODKyjz0+8brPOOV6e+3XGpJdSeN27CY5OREREOhszW+acm9Bwu1qwRESoa8FKqV83M8pT+5BTq8cJiIiISOspwRIRAZJciGhg90cd1GT0JT1aCdXlCYpKREREupoukWB1pm6Mklj6WZCOEnQhIg0SLJfT33uhcVgiIiLSSp0+wUpLS6OkpERfrAXnHCUlJaSlpSU6FNkHJbsQrkGCldzTexZWbcmaRIQkIiIiXVCnfw7WgAEDWL9+PcXFxYkORTqBtLQ0BgwYkOgwZB8UdGGiwZTdtmX2HgxA2ZYiCjSvioiIiLRCp0+wkpOTGTp0aKLDEJF9mHOOFEK4wO4JVs/CQUScUbVNz8ISERGR1un0XQRFRDpabSRKMmFcgxas/r2y2UwvojvWJSgyERER6Wo6PMEysxlm9omZrTKz6zr6fCIibVUbjpJCCBqMwSrMSWOTyyO4c2OCIhMREZGupkMTLDMLAncBxwOjgDPNbFRHnlNEpK1CEUeyRXDB1N22pyQFKE0qIL1qU4IiExERka6mo1uwJgGrnHOfO+dqgYeBmR18ThGRNqlvwUpK2WNfZVofcmq3gmYyFRERkVbo6ASrPxA7eGG9v01EpNOoDXtjsAjumWCFMvt5yVfltgREJiIiIl1Nwie5MLOLzGypmS3VVOwikgi1kSiphLFGWrAs13sWlivTRBciIiLSso5OsDYAA2PWB/jb6jnn/uicm+Ccm1BQUNDB4YiI7Kk2FCGZMJaUuse+1F7er7CKrUV7OSoRERHpijo6wXobOMDMhppZCnAG8HQHn1NEpE1C4VoC5rBGughmFQ4BYOeWNXs5KhEREemKOvRBw865sJldCjwPBIG/OOc+7Mhzioi0Vbi2BgBL3rMFq3fvflS7ZGpK9LBhERERaVmHJlgAzrlngWc7+jwiIl9VuLYagEAjY7D69cxgo8uD8vV7OywRERHpghI+yYWISKKFQ14LVqCRFqyeGclssTySK/SwYREREWmZEiwR6fa+bMHaM8EyM8qSC8mq2by3wxIREZEuSAmWiHR7Eb8FK6mRFiyAqoy+5IRLIRLam2GJiIhIF6QES0S6vWgzXQQBoln9CBKFnZv2ZlgiIiLSBSnBEpFur64FK5ic1uj+QM/BANSWFO2tkERERKSLUoIlIt1e3RislNTGW7BSe+8HwM6Nq/ZaTCIiItI1KcESkW4vEqoFICml8Rasnn33I+wCVG1dvTfDEhERkS6ow5+DJSLS2UXDXhfB5JTGW7D69srxnoVV+sXeDEtERES6ILVgiUi3FwnXzSLYeAtW39w01rreJJev2ZthiYiISBekBEtEuj3nT3JBMKXR/alJQbYl9yV71/q9GJWIiIh0RUqwRKTbi4a9SS5o5EHDdSoyBpIV2QE1O/dOUCIiItIlKcESkW7Paqu8F8kZTZaJ9BjkvdiuboIiIiLSNCVYItLtBcO7vBcpTSdYwTxvqvZwyed7IyQRERHpopRgiUi3F4jUtWBlNlkms8/+AJRv/GxvhCQiIiJdlBIsEen2ksK7CBOEpMYnuQDoU9iXMpdB9Va1YImIiEjT2pVgmdktZvaxma0wsyfMLNffPsTMqsxsub/Mi0u0IiIdIBjZRY01PkV7nYG90lnresMOPQtLREREmtbeFqwXgDHOuXHAp8CPY/atds6N95eL23keEZEOkxyppibQfILVt0c661whaTvX7qWoREREpCtqV4LlnPu3cy7sry4GBrQ/JBGRvSs5UkVtCy1YwYCxPbU/OdWbIBrZS5GJiIhIVxPPMVgXAP+KWR9qZu+a2atmNrWpg8zsIjNbamZLi4uL4xiOiEjrJEerCQXTWyxXlTWQJMJQvnEvRCUiIiJdUYsJlpm9aGYfNLLMjCnzP0AYeMjftAkY5Jw7GPgR8Dczy2msfufcH51zE5xzEwoKCtp/RSIibZQcrSLSigTL9RzivdiucVgiIiLSuKSWCjjnvt7cfjObA5wIHOucc/4xNUCN/3qZma0GhgNL2xuwiEi8pUariSTltVyuYBh8ATXFn5M69Mi9EJmIiIh0Ne2dRXAGcA1wsnNuV8z2AjML+q/3Aw4ANLexiHQ6kagj1VXjkltuwcrtM4SQC1KxSc/CEhERkca12ILVgjuBVOAFMwNY7M8YeCRwo5mFgChwsXOutJ3nEhGJu8raMBnUUN3MQ4brDMjPYYPLJ32b/l4kIiIijWtXguWc27+J7Y8Bj7WnbhGRvaGyJky61VCdnNFi2YE9M1jpejOqrKjjAxMREZEuKZ6zCIqIdDmVNWEyqSaQ2nILVn5WChutDxmV6/dCZCIiItIVKcESkW6tsrKSdKuF9J4tljUzytIHkBEph6odHR+ciIiIdDlKsESkW6vYsRWA5Oz8VpUP5QzyXmiqdhEREWmEEiwR6daq/QQrLad3q8oHeg0FwJUWdVRIIiIi0oUpwRKRbq26fBsAGT1b96DzzD7e3D7VW1d1WEwiIiLSdSnBEpFuLVLhJViZua1rwSosKGCby6Fqy+qODEtERES6KCVYItKtRXd5j+izjNaNwRrYK521rjfRUo3BEhERkT0pwRKRbi3gJ1itmUUQYGCvDNa63qTsXNuBUYmIiEhXpQRLRLq1pJpSdlkGJKW0qnxOWjJbgn3Jqt4M4doOjk5ERES6GiVYItKtZdZsoSy5dRNc1NmVOZAAUShb10FRiYiISFelBEtEuq1o1NErvJVd6X3bdlzuEO+FnoUlIiIiDSjBEpFuq6Syln4UE87u36bjkgv2AyCqZ2GJiIhIA0qwRKTb2rStlDzbSSB3UJuO69l7IDUuiaqtn3dQZCIiItJVKcESkW5rx0YvQUovGNKm4wbkZbHZ9aK6RGOwREREZHftSrDMbK6ZbTCz5f7yjZh9PzazVWb2iZlNb3+oIiLxVVnsjaHq0Wdom44b2DODTeThytZ3RFgiIiLShSXFoY7bnHO3xm4ws1HAGcBooB/wopkNd85F4nA+EZG4CJd6z7LKKmxbgjWgZzorXB6jKld3RFgiIiLShXVUF8GZwMPOuRrn3BfAKmBSB51LROQrCZavJ0IAy+7XpuPSkoOUJxeQWbMVovq7kYiIiHwpHgnWpWa2wsz+YmY9/W39gdjBCev9bXsws4vMbKmZLS0uLo5DOCIirZO+ayPbg/kQbHtjfm1GX4JEoGJrB0QmIiIiXVWLCZaZvWhmHzSyzATuBoYB44FNwK/bGoBz7o/OuQnOuQkFBW172KeISHvk1G5hZ1rbnoFVr8cA79/yjfELSERERLq8Fv9s65z7emsqMrM/Af/0VzcAA2N2D/C3iYh0CtWhCIVuKxUZE7/S8cm9BsIGiJatIzDg0DhHJyIiIl1Ve2cRjP3T7yzgA//108AZZpZqZkOBA4Al7TmXiEg8bSzdSR9KIXdgy4UbkZ7nPTursnhNPMMSERGRLq69swjebGbjAQcUAf8N4Jz70MweAT4CwsD3NYOgiHQm2zatZT+Lktxr8Fc6PjevkGqXTE3JOrLjHJuIiIh0Xe1KsJxz5zSz7ybgpvbULyLSUSq2eM/Ayikc8pWO75ObzkaXR+Z2PQtLREREvtRR07SLiHRqNduKAOjRb9hXOr5PThqbXB6BCk1yISIiIl9SgiUi3ZIr81qeUnoN+krH52elsIk80nZtimdYIiIi0sUpwRKRbim1cj3llgMpmV/p+KRggPLk3mTWboNIOM7RiYiISFelBEtEuqWs6s3sSClsVx1V6X0IEIWKzXGKSkRERLo6JVgi0u045+gV3kpVRr921RPO9o8v02P+RERExKMES0S6nZKKGvpRTCR7QLvqCfbwjy/XTIIiIiLiUYIlIt3Ols0byLQagl/xGVh1UvO9CTJCmqpdREREfEqwmrGjeBPLX5yPi0YTHYqIxFH5+o8BSOszvF319OyZT4VLo2rb2niEJSIiIvsAJVjN+PjZOxi/6GJW/+9E3n3+r4RqaxIdkojEQWjrJwD0HDiqXfX06ZHOZteL0PZ18QhLRERE9gFJiQ6gM5tw5g0s+Wcf+r1/F/u/+QNK3vwpq/ucQM+DT2LYIccSSE5NdIjNikaihMI1hGprCdfWEArVEA6HiNTWEA7VEgnVEAnVEgnX4CJhiIaJRiPgHM5FcFEHLopzDlf3b/3+6Jf7olEMB7hmorEmVq1hwea3W+vK1xVzTdYfe+TuZZo8xq+04V7XQkwtR9DoYR2iyVCbKt/W+jsy+DjKWPsqIRcku89+7aqnT49UNro88sr1sOGO5pwjFI4Sqq0iXLOLUM0uwjVVRGqqCIdDhMO1RMIhwqEQkXCISCRENByCaBiiEcyFsWjY+y3lnP8vOBw47/eXc1+eq34fX5aNFfuTbvbl7w2LLWG7l9nzE2V7fCbr66nfsednavdjrPHfTbZbJI3+nrKGZfY4954a/f3YaPk9r1W6L9fs9wORllVlDmC/0YfRp0daokNpFSVYzUhKSWXSN39I+KSLWf7qY0TeeZCDNy0gefPf2PWvVD5PG01Vz5G43iPJLtyP3MKBZOQNIDu7B4FgsNm6o5EoNdW7qKmqoLqqglBVBbXVFYSqKwlVVRCu2UW0ppJITSXR2l1QuwsX2oWFdhEIVxEIVxEMVxGMVpMcqSI5WkNKtIpUV0Ma1aS5WlItRCrQudNAkcT4LHl/Dggmt6uOvj3SWebyOLTy/VYfs6msiszUJHLS2nfurqa6NsT20mJ2lmyiavtmasqLiezagasuw6rLsdpygrU7SQ6VkxKuIDVSSUq0ipRoNSnUkupqSaOWFNMXNRGR7ube8HRKsw7gxHHtm/13b1GC1QpJySmM//qZ8PUz2bF9Gx+/+Sxu9cvk71jB/hsfIW1TaI9jql0y1ZZKiGQMR4Bo/RJ0EdKpJd0c6W2II+wCVJFKtaVRY6mELI3aQBqhYBo1yT2IBNOIBtOJJmdAUjouKRVLSoFAMhZMxpJSsGAKlpSEBVOxpGSCScn1rwkEsUASZgECZhAIgBmBQBAzwyyABQyzIIH6fQEcASzQ+t6mdX8l/vLFHiUaXbem/gLWoJ4vV1uuf48STRxSd+49Q24+pjb/1a4Nxdv6NbOtsTR5e/YRvQcc0O46MlOTKE0bSGZoIVSWQGZeo+Wcc7z32Ro+e34ek4sfZWne0Rxz2Z/aff7OoHxXNVs3rqFsyxqqS9YS3bGewM5NJFUVk1pTSmZ4Oz2iZfSknL4WoW8T9VS4dCosk6qAt+xM6kUoKQMXTIfkNCw5HZeUDklpRJPTISkdS07DktMIBJMJJCUTDHq/0wJJyST5/xIIQjAZsyT/d5zhtRx57a11LUtf/utvD5jXIlvXOhTTAtXU74G67Ybb7fPmNZC5mJLeK7dHRQ1+zzTyIYw9xtH47ybnoruV+bJpLvZMDeJr7PeD35JX1/jU+O/gJo5rqYyISBt8LS2PPgMLEh1GqynBaqPcnvlM/sa5wLkAhEIh1q/5mJJNX1BVsh6r2Eq0poJozS6C0WqSorU481IrZ4azIIFgkvdFITkTUtIJpGRiKRkEUjNJSsskJS2T5LRMUtKzSM3IJi09m7TMTFJS0sg2Izuxb4GIxNiZPx42PwDr34YRM3bbVx2K8Oqi14gs/gNHVb/MeKuh0lI5cMfChMT6VVRWVbNxzSq2r/+Yqi2rsR1FpFRuJKtmC73CxRSwnf0tstsxVaSwPdCLyqSeVGf2pyJtHOvS87CsApJyepPao5D03N5kZPciPSePjKweZAWTyErQNYqIiMSTEqx2Sk5OZsD+Yxmw/9hEhyIiCZAzbBLhTQFqPl1I5ogZOOf4YPVaVr/6EAPXPc10VlJDCusGnED/437A4pee4ti1vyNctomkHk215+xdZeUVbF77MTvWf0LN1tUEtn9BZuVaetVuoJ/bygExCVQNyZQE8tmZ0pviHhPYkt2PpJ4DSM8fRFbBEHL7DiU9O4/0tg74ExER2UcowRIRaYfjxu/HC68dyjHv3MurmyMEt7zHxNA7jLUQW1IGUjT6GgZ//WL297sP2qDNsBaKP3iFvkd8e6/E6JyjdHspW4pWUr7xU0LFqwnuKCJr11ryQxvp40roETO2qYIMipP7UpZzICW500nK35/sfgfQe/BIMvMG0q8NXYJFRES6m3YlWGa2ABjhr+YCO5xz481sCLAS+MTft9g5d3F7ziUi0hntV5DF84dcy6Z3v89RG/7I1mAha4Z8i37T5lA4ZNIeM6ztf9BUdryeSeUHz0IcE6xwJMqWLZsoWfcxlZs+I7xtNcllReRUraN3aCP5VkbsCLHt5LAtZQBbex7KptyhpBTsR4/+I+g9eCRZPXqTpRYoERGRr6RdCZZzbnbdazP7NVAWs3u1c258e+oXEekKLpn1X5TPeJ/q8C56Z/ekdzNlBxXk8ELyRA7f/DKuchuWmd+qc4TCEUq2bqBk4xfs3PIFNSVroWwdqZWb6FGzib7RTfS3SvrHHLPV8ihJGcDaHkeypudQUgv3J7f/CHoPPpCembn0bNdVi4iISGPi0kXQvIdmnA4cE4/6RES6mpz01j8UIfy1y0l99VTW3nEiOw/6Dpbdh1BtFTVVu4hUbsPt3AqVxSRXbyO9tpSccAmFbht9LESfmHqqSaEk2Jud6X0oyj4I12soab0PIHfACAoGDqd3WmazyZ6IiIjEn+05TexXqMTsSOA3zrkJ/voQ4EPgU6Ac+Klz7vUmjr0IuAhg0KBBh65Zs6bd8YiIdGbOOZ78290c9elN9LKKRsuUk0l5oCeVKb2oSc2nNqsf5AwgNX8wPfrsR+8B+5GWU9D2p0eLiIhIXJjZsrr8Z7ftLSVYZvYi7PZH0zr/45x7yi9zN7DKOfdrfz0VyHLOlZjZocCTwGjnXHlz55owYYJbunRpa65HRKTLq9i1i7WffUC0YivJqelkZmSSmdubnPx+BFO6xtPqRUREuqumEqwWuwg6577eQsVJwDeBQ2OOqQFq/NfLzGw1MBxQ9iQi4svKyGDUQZMSHYaIiIjEUTzm2v068LFzbn3dBjMrMLOg/3o/4ADg8zicS0REREREpNOKxyQXZwDzG2w7ErjRzEJAFLjYOVcah3OJiIiIiIh0Wu1OsJxzcxrZ9hjwWHvrFhERERER6UriMotgvJhZMdDZphHMB7YlOgjZa3S/uw/d6+5D97p70f3uPnSvu5fOeL8HO+cKGm7sVAlWZ2RmSxubHUT2Tbrf3Yfudfehe9296H53H7rX3UtXut/xmORCREREREREUIIlIiIiIiISN0qwWvbHRAcge5Xud/ehe9196F53L7rf3YfudffSZe63xmCJiIiIiIjEiVqwRERERERE4kQJloiIiIiISJwowWqGmc0ws0/MbJWZXZfoeCR+zGygmb1iZh+Z2Ydmdpm/vZeZvWBmn/n/9kx0rBIfZhY0s3fN7J/++lAze8v/fC8ws5RExyjxYWa5ZvaomX1sZivN7HB9tvdNZnaF/zv8AzObb2Zp+mzvO8zsL2a21cw+iNnW6GfZPLf7932FmR2SuMilrZq417f4v8dXmNkTZpYbs+/H/r3+xMymJyToZijBaoKZBYG7gOOBUcCZZjYqsVFJHIWBK51zo4DJwPf9+3sd8JJz7gDgJX9d9g2XAStj1v8PuM05tz+wHfhOQqKSjvA74Dnn3IHAQXj3XZ/tfYyZ9Qd+CExwzo0BgsAZ6LO9L7kPmNFgW1Of5eOBA/zlIuDuvRSjxMd97HmvXwDGOOfGAZ8CPwbwv6+dAYz2j/m9/72901CC1bRJwCrn3OfOuVrgYWBmgmOSOHHObXLOveO/3on3Baw/3j2+3y92P3BKQgKUuDKzAcAJwJ/9dQOOAR71i+he7yPMrAdwJHAPgHOu1jm3A32291VJQLqZJQEZwCb02d5nOOdeA0obbG7qszwT+KvzLAZyzazvXglU2q2xe+2c+7dzLuyvLgYG+K9nAg8752qcc18Aq/C+t3caSrCa1h9YF7O+3t8m+xgzGwIcDLwFFDrnNvm7NgOFiYpL4uq3wDVA1F/PA3bE/OLW53vfMRQoBu71u4T+2cwy0Wd7n+Oc2wDcCqzFS6zKgGXos72va+qzrO9t+7YLgH/5rzv9vVaCJd2amWUBjwGXO+fKY/c57xkGeo5BF2dmJwJbnXPLEh2L7BVJwCHA3c65g4FKGnQH1Gd73+CPvZmJl1T3AzLZs4uR7MP0We4ezOx/8IZ2PJToWFpLCVbTNgADY9YH+NtkH2FmyXjJ1UPOucf9zVvquhT4/25NVHwSN0cAJ5tZEV5X32Pwxujk+t2KQJ/vfcl6YL1z7i1//VG8hEuf7X3P14EvnHPFzrkQ8Dje512f7X1bU59lfW/bB5nZHOBE4Cz35cN7O/29VoLVtLeBA/zZiFLwBtM9neCYJE78MTj3ACudc7+J2fU0cJ7/+jzgqb0dm8SXc+7HzrkBzrkheJ/jl51zZwGvAKf5xXSv9xHOuc3AOjMb4W86FvgIfbb3RWuByWaW4f9Or7vX+mzv25r6LD8NnOvPJjgZKIvpSihdkJnNwOvef7JzblfMrqeBM8ws1cyG4k1ssiQRMTbFvkwGpSEz+wbe2I0g8Bfn3E2JjUjixcymAK8D7/PluJyf4I3DegQYBKwBTnfONRxgK12UmU0DrnLOnWhm++G1aPUC3gXOds7VJDA8iRMzG483oUkK8DlwPt4fFPXZ3seY2c+B2Xjdh94FLsQbi6HP9j7AzOYD04B8YAtwA/AkjXyW/ST7TrxuoruA851zSxMQtnwFTdzrHwOpQIlfbLFz7mK//P/gjcsK4w3z+FfDOhNJCZaIiIiIiEicqIugiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIdBJmNsTMnJklJTqWfZ2ZzTGzRYmOo7Mxs6lm9kmi4xAR6cqUYImISJdmZnPNLGRmFTHLNYmOqytyzr3unBsRzzrNbLiZPWVmxWZWambPm1lczyEi0pkowRIRiRO1PCXUAudcVsxyc6IDiqcu/rOVCzwNjAAKgSXAU4kMSESkIynBEhFpBzMrMrNrzWwFUGlmSWY22cz+Y2Y7zOw9M5sWU36hmf0/M1tiZuX+X/Z7NVH3+Wa20sx2mtnnZvbfDfbPNLPlfj2rzWyGv72Hmd1jZpvMbIOZ/dLMgi1cxzAze9nMSsxsm5k9ZGa5MftKzewQf72f3xoxzV8/2cw+9K93oZmNbPD+XGVmK8yszMwWmFla29/ptjOz6/z3ZaeZfWRms5ooZ2Z2m5lt9d/L981sjL8v1cxuNbO1ZrbFzOaZWXorz3+fX/4FP4ZXzWxwzP7fmdk6/5zLzGxqzL65ZvaomT1oZuXAHDObZGZv+u/zJjO708xSYo5xZvY9M/vMP98v/Hv3H/8cj8SWbyLmaWa2vjXX11rOuSXOuXucc6XOuRBwGzDCzPLieR4Rkc5CCZaISPudCZyA95f6QuAZ4JdAL+Aq4DEzK4gpfy5wAdAXCAO3N1HvVuBEIAc4H7gtJsmZBPwVuNo/75FAkX/cfX69+wMHA8cBF7ZwDQb8P6AfMBIYCMwFcM6tBq4FHjSzDOBe4H7n3EIzGw7MBy4HCoBngX80+CJ/OjADGAqMA+Y0GoDZFD95aGqZ0sI1NLQamAr0AH7ux9+3kXLH4b1/w/2ypwMl/r5f+dvH472f/YHr2xDDWcAvgHxgOfBQzL63/Xp7AX8D/t4g+ZwJPIp3fx8CIsAVfl2HA8cC32twvunAocBk4Brgj8DZePdzDN7P6lfmJ8pN3Z/ft7KaI4HNzrmSFkuKiHRFzjktWrRo0fIVF7yk5oKY9WuBBxqUeR44z3+9EPhVzL5RQC0QBIYADkhq4lxPApf5r/8A3NZImUKgBkiP2XYm8Eobr+sU4N0G254G3gdWAKn+tp8Bj8SUCQAbgGkx78/ZMftvBubF+R7M9d/DHTFLv0bKLQdm+q/nAIv818cAn+IlJYGY8gZUAsNith0OfNHKuO4DHo5Zz8JLkgY2UX47cFDMNb3WQv2XA0/ErDvgiJj1ZcC1Meu/Bn7bQp3TgPXxvD8N6h/g/3yc2VHn0KJFi5ZEL125T7eISGexLub1YOBbZnZSzLZk4JUmyq/x9+c3rNTMjgduwGtBCQAZeAkOeC0SzzYSy2C/vk1mVrct0OCcezCzQuB3eC0+2f4x2xsU+xNeknWRc67G39bPvwYAnHNRM1uH19JTZ3PM613+MfH2iHPu7NgNZnYu8CO8xBW8BGeP99k597KZ3QncBQw2s8fxWh7T8N7zZTHvpeElw61V/7475yrMrBTv+teZ2VXAd/x1h9dSmd/Ysf71DAd+A0zw40rCS6JibYl5XdXIep82xB5Xfivuv4HfO+fmJyoOEZGOpi6CIiLt52Jer8NrwcqNWTKdc7+KKTMw5vUgIARsi63QzFKBx4BbgULnXC5eQlX3TX8dMKyRWNbhtWDlx5w/xzk3uoVr+F//OsY653LwupV9mVWYZQG/Be4B5tqX48Y24iV1deXMv74NLZxvD+ZNEV7RzDK15Vrq6xqMlxBeCuT5798HsdcUyzl3u3PuULwWxeF4XS+34SUlo2Peyx7Ouaw2XFb9vfbfw17ARv9arsHrjtjTj6+sQXyxP1cAdwMfAwf49+gnTV1PR/HH2jV1f+Y1c1xPvOTqaefcTXsvYhGRvU8JlohIfD0InGRm080saGZp/sQBA2LKnG1mo/zxTDcCjzrnIg3qSQFSgWIg7LdmHRez/x7gfDM71swCZtbfzA50zm3C+yL7azPL8fcNM7OjWog7G6gAysysP16CEet3wFLn3IV4Y8zqvkw/Apzgx5EMXImX4P2npTeqIedNEZ7VzPJ6G6rLxEtQisGbMARvDNIezGyimR3mx18JVANR51wUL0m7zcx6+2X7m9n0mGOdxUxi0ohv+GPLUvDGYi12zq3De7/DfnxJZnY9XgtWc7KBcqDCzA4ELmmhfNw550Y3c38ubuwYM8vB6yb7hnPuur0bsYjI3qcES0QkjvwvzzPxWheK8VqUrmb337cP4I3P2YzXDe2HjdSz09/+CF5XvW/jdc+r278Ef+ILvJaPV/myJelcvATtI//YR/Em1GjOz4FD/LqeAR6v22FmM/Emqaj7Qv8j4BAzO8s59wlea9cdeC0+JwEnOedqWzhfh3LOfYQ35uhNvG5yY4E3miieg5dIbcfr7lgC3OLvuxZYBSz2Z/N7EW+6ccxsILCTL7ttNuZveN08S/Emn6jrxvg88Bze2K81eElds9048botfts/55+ABS2U7yxmARPx/iAQ2+I1KNGBiYh0BHOuYQ8EERHpKGa2EHjQOffnRMci7WNmZ+N1H/xxE/vvw5sw4qd7NTAREUkoTXIhIiLyFTjnHkx0DCIi0vmoi6CISDdh3kNv2zQ5gex7zOwnTfwc/CvRsYmI7AvURVBERERERCRO1IIlIiIiIiISJ51qDFZ+fr4bMmRIosMQERERERFp1rJly7Y55woabu9UCdaQIUNYunRposMQERERERFplpmtaWy7ugiKiIiIiIjEiRIsERERERGROFGCJSLSgnAkyiNvr6OyJpzoUERERKST61RjsBoTCoVYv3491dXViQ5Fupi0tDQGDBhAcnJyokORLu6p5RspevIXfPxukEMvujvR4YiIiEgn1ukTrPXr15Odnc2QIUMws0SHI12Ec46SkhLWr1/P0KFDEx2OdHGfbt3Jj5MXwEYg/FtISk10SCIiItJJdfougtXV1eTl5Sm5kjYxM/Ly8tTyKXFRsbOi/rVb/3YCIxEREZHOrtMnWICSK/lK9HMj8ZJR9mn968rVixMYiYiIiHR2XSLBEhFJpPTK9fWvd23+tJmSIiIi0t0pwWoFM+PKK6+sX7/11luZO3du4gKKsXjxYg477DDGjx/PyJEj6+NauHAh//nPf9pV94wZM8jNzeXEE0+MQ6QiXVioCoAtLhdKVic2FhEREenUlGC1QmpqKo8//jjbtm2La73OOaLRaLvqOO+88/jjH//I8uXL+eCDDzj99NOB+CRYV199NQ888EC76hDZFwQjNQB84gaRsbMoscGIiIhIp9bpZxGM9fN/fMhHG8vjWueofjnccNLoZsskJSVx0UUXcdttt3HTTTfttq+4uJiLL76YtWvXAvDb3/6WI444grlz55KVlcVVV10FwJgxY/jnP/8JwPTp0znssMNYtmwZzz77LHfeeSf/+te/MDN++tOfMnv2bBYuXMjcuXPJz8/ngw8+4NBDD+XBBx/cY1zR1q1b6du3LwDBYJBRo0ZRVFTEvHnzCAaDPPjgg9xxxx0ceOCBTca5evVqVq1axbZt27jmmmv47ne/C8Cxxx7LwoULm31v/v73v/Pzn/+cYDBIjx49eO2116iuruaSSy5h6dKlJCUl8Zvf/Iajjz6a++67jyeffJLKyko+++wzrrrqKmpra3nggQdITU3l2WefpVevXvzpT3/ij3/8I7W1tey///488MADZGRk7HbeyZMnc8899zB6tHfvpk2bxq233sqECROajVfkqwhGawHYkLIfR4ZWQG0lpGQmOCoRERHpjNSC1Urf//73eeihhygrK9tt+2WXXcYVV1zB22+/zWOPPcaFF17YYl2fffYZ3/ve9/jwww9ZunQpy5cv57333uPFF1/k6quvZtOmTQC8++67/Pa3v+Wjjz7i888/54033tijriuuuIIRI0Ywa9Ys/vCHP1BdXc2QIUO4+OKLueKKK1i+fDlTp05tNs4VK1bw8ssv8+abb3LjjTeycePGVr8vN954I88//zzvvfceTz/9NAB33XUXZsb777/P/PnzOe+88+pn8/vggw94/PHHefvtt/mf//kfMjIyePfddzn88MP561//CsA3v/lN3n77bd577z1GjhzJPffcs8d5Z8+ezSOPPALApk2b2LRpk5Ir6TDBqPfzW5ntT/lftiGB0YiIiEhn1u4WLDMbCPwVKAQc8Efn3O/MbC7wXaDYL/oT59yz7TlXSy1NHSknJ4dzzz2X22+/nfT09PrtL774Ih999FH9enl5ORUVFY1VUW/w4MFMnjwZgEWLFnHmmWcSDAYpLCzkqKOO4u233yYnJ4dJkyYxYMAAAMaPH09RURFTpkzZra7rr7+es846i3//+9/87W9/Y/78+Y22OjUX58yZM0lPTyc9PZ2jjz6aJUuWcMopp7TqfTniiCOYM2cOp59+Ot/85jfrr+kHP/gBAAceeCCDBw/m00+9iQGOPvposrOzyc7OpkePHpx00kkAjB07lhUrVgBeEvbTn/6UHTt2UFFRwfTp0/c47+mnn85xxx3Hz3/+cx555BFOO+20VsUr8lXUtWC5XvvBdqB8PRQMT2xQIiIi0inFo4tgGLjSOfeOmWUDy8zsBX/fbc65W+Nwjk7h8ssv55BDDuH888+v3xaNRlm8eDFpaWm7lU1KStptfFXs85gyM1vXtSg19cuHmQaDQcLhcKPlhg0bxiWXXMJ3v/tdCgoKKCkp2aNMU3HCntOZt2V683nz5vHWW2/xzDPPcOihh7Js2bJmy8deUyAQqF8PBAL11zdnzhyefPJJDjroIO67775GE8b+/fuTl5fHihUrWLBgAfPmzWt1zCJtlRytIWQppOYPgdVQW7KWlGGJjkpEREQ6o3Z3EXTObXLOveO/3gmsBPq3t97OqFevXpx++um7dVk77rjjuOOOO+rXly9fDsCQIUN45513AHjnnXf44osvGq1z6tSpLFiwgEgkQnFxMa+99hqTJk1qdUzPPPMMzjnA63oYDAbJzc0lOzubnTt3thgnwFNPPUV1dTUlJSUsXLiQiRMntvr8q1ev5rDDDuPGG2+koKCAdevWMXXqVB566CEAPv30U9auXcuIESNaXefOnTvp27cvoVCovp7GzJ49m5tvvpmysjLGjRvX6vpF2irJ1RIOpJJdMJCoMyq3FiU6JBEREemk4joGy8yGAAcDb/mbLjWzFWb2FzPrGc9zJcqVV16522yCt99+O0uXLmXcuHGMGjWqviXl1FNPpbS0lNGjR3PnnXcyfHjj3YlmzZrFuHHjOOiggzjmmGO4+eab6dOnT6vjeeCBBxgxYgTjx4/nnHPO4aGHHiIYDHLSSSfxxBNPMH78eF5//fUm4wQYN24cRx99NJMnT+ZnP/sZ/fr1A7zk71vf+hYvvfQSAwYM4Pnnnwe8bol1462uvvpqxo4dy5gxY/ja177GQQcdxPe+9z2i0Shjx45l9uzZ3Hfffbu1XLXkF7/4BYcddhhHHHEEBx54YP32p59+muuvv75+/bTTTuPhhx+unzlRpKMkuxoigRQKe2azlVxqt69LdEgiIiLSSVld60e7KzLLAl4FbnLOPW5mhcA2vHFZvwD6OucuaOS4i4CLAAYNGnTomjVrdtu/cuVKRo4cGZcYZU8NZzvc1+jnR9rLOcfj15/IsRmfs+O7Sym9/Uj6986n8NLnEx2aiIiIJJCZLXPO7THLWlxasMwsGXgMeMg59ziAc26Lcy7inIsCfwIa7ffmnPujc26Cc25CQUFBPMIREYmbUMSRRi3RYCp9eqSx0eWTUtn6mTZFRESke4nHLIIG3AOsdM79JmZ7X+fcJn91FvBBe88l8Td37txEhyDSqYUiUVIJEQmmkpYcpDSpgKzqd8A5aMOEMCIiItI9xGMWwSOAc4D3zWy5v+0nwJlmNh6vi2AR8N9xOJeIyF5VG456LVgBbxzhrvS+JO+qhV0lkJmf4OhERESks2l3guWcWwQ09mfcdj3zSkSkMwhFoqRaiGjQe7xCOKs/7ALK1inBEhERkT3EdRZBEZF9Ta3fRdAlec+QC+Z6D/+mXOOwREREZE9KsEREmlE3yYULeglWat5AAGpLNVW7iIiI7EkJVis9+eSTmBkff/xxk2WKiooYM2ZM3M75ySefMG3aNMaPH8/IkSO56KKLAO8hwc8+274emBdccAG9e/eOa7wi+6La8O4tWD0L+lLrglRuU4IlIiIie1KC1Urz589nypQpzJ8/v9H94XC43eeIRCK7rf/whz/kiiuuYPny5axcuZIf/OAHQHwSrDlz5vDcc8+1qw6R7iAUiZJmtZDkTXLRp0cmW1wvQqXrExyZiIiIdEbxmEVw7/nXdbD5/fjW2WcsHP+rZotUVFSwaNEiXnnlFU466SR+/vOfA7Bw4UJ+9rOf0bNnTz7++GP+/e9/Ew6HOeuss3jnnXcYPXo0f/3rX8nIyOCll17iqquuIhwOM3HiRO6++25SU1MZMmQIs2fP5oUXXuCaa67hjDPOqD/vpk2bGDBgQP362LFjqa2t5frrr6eqqopFixbx4x//mBNPPJEf/OAHfPDBB4RCIebOncvMmTO57777eOKJJygrK2PDhg2cffbZ3HDDDQAceeSRFBUVNXvdr776KpdddhkAZsZrr71GVlYW11xzDf/6178wM376058ye/ZsFi5cyA033EBubi7vv/8+p59+OmPHjuV3v/sdVVVVPPnkkwwbNox//OMf/PKXv6S2tpa8vDweeughCgsLdzvvGWecwTnnnMMJJ5wAeMngiSeeyGmnnda6eyoSR3VjsEJ+C1a/3DQ20YshOzckODIRERHpjNSC1QpPPfUUM2bMYPjw4eTl5bFs2bL6fe+88w6/+93v+PTTTwGvW9/3vvc9Vq5cSU5ODr///e+prq5mzpw5LFiwgPfff59wOMzdd99dX0deXh7vvPPObskVwBVXXMExxxzD8ccfz2233caOHTtISUnhxhtvZPbs2SxfvpzZs2dz0003ccwxx7BkyRJeeeUVrr76aiorKwFYsmQJjz32GCtWrODvf/87S5cubfV133rrrdx1110sX76c119/nfT0dB5//HGWL1/Oe++9x4svvsjVV1/Npk3e487ee+895s2bx8qVK3nggQf49NNPWbJkCRdeeCF33HEHAFOmTGHx4sW8++67nHHGGdx88817nHf27Nk88sgjANTW1vLSSy/VJ1sie1soHCWFMOa3YBXmpLHJ5ZFSuamFI0VERKQ76lotWC20NHWU+fPn17fknHHGGcyfP59DDz0UgEmTJjF06ND6sgMHDuSII44A4Oyzz+b222/nv/7rvxg6dCjDhw8H4LzzzuOuu+7i8ssvB7yEojHnn38+06dP57nnnuOpp57iD3/4A++9994e5f7973/z9NNPc+uttwJQXV3N2rVrAfiv//ov8vLyAPjmN7/JokWLmDBhQquu+4gjjuBHP/oRZ511Ft/85jcZMGAAixYt4swzzyQYDFJYWMhRRx3F22+/TU5ODhMnTqRv374ADBs2jOOOOw7wWt5eeeUVANavX8/s2bPZtGkTtbW1u713dY4//nguu+wyampqeO655zjyyCNJT09vVcwi8VYbiZJMGEtOASAtOciOpAIya5bqYcMiIiKyB7VgtaC0tJSXX36ZCy+8kCFDhnDLLbfwyCOP4JwDIDMzc7fy1uDLVsP1xjSsI1a/fv244IILeOqpp0hKSuKDDz7Yo4xzjscee4zly5ezfPly1q5dy8iRI79yPHWuu+46/vznP1NVVcURRxzR7AQfAKmpqfWvA4FA/XogEKgfo/aDH/yASy+9lPfff58//OEPVFdX71FPWloa06ZN4/nnn2fBggVNJqAie0MoHCbZIljwy5/vqvRCkl0t7CpNYGQiIiLSGSnBasGjjz7KOeecw5o1aygqKmLdunUMHTqU119/vdHya9eu5c033wTgb3/7G1OmTGHEiBEUFRWxatUqAB544AGOOuqoFs/93HPPEQqFANi8eTMlJSX079+f7Oxsdu7cWV9u+vTp3HHHHfVJ37vvvlu/74UXXqC0tLR+HFRd61prrF69mrFjx3LttdcyceJEPv74Y6ZOncqCBQuIRCIUFxfz2muvMWnSpFbXWVZWRv/+/QG4//77myw3e/Zs7r33Xl5//XVmzJjR6vpF4i1cWwtAICmlfls0y2uppVzjsERERGR3SrBaMH/+fGbNmrXbtlNPPbXJ2QRHjBjBXXfdxciRI9m+fTuXXHIJaWlp3HvvvXzrW99i7NixBAIBLr744hbP/e9//5sxY8Zw0EEHMX36dG655Rb69OnD0UcfzUcffcT48eNZsGABP/vZzwiFQowbN47Ro0fzs5/9rL6OSZMmceqppzJu3DhOPfXU+u6BZ555JocffjiffPIJAwYM4J577gFg3rx5zJs3D4Df/va3jBkzhnHjxpGcnMzxxx/PrFmzGDduHAcddBDHHHMMN998M3369Gn1+zl37ly+9a1vceihh5Kfn1+/fenSpVx44YX168cddxyvvvoqX//610lJSWmsKpG9IhKqASCY/OXPofXw/kighw2LiIhIQ1bX6tEZTJgwwTWchGHlypX13d2kbe677z6WLl3KnXfemehQEkY/P9Je//jP+5z07ymUHvkLeh3zQwDufe5Nzl88g9oZvyZl8oUt1CAiIiL7IjNb5pzbY3IDtWCJiDQjEvZasAJJX47B6lHQj7ALUFlclKCoREREpLPqWrMISpvMmTOHOXPmJDoMkS4t6idYwZS0+m19cjPZQk+St+thwyIiIrK7LtGC1Zm6MUrXoZ8biYeIP9FM7Bisfj3S2ex6aQyWiIiI7KHTJ1hpaWmUlJToy7K0iXOOkpIS0tLSWi4s0oxo3SQXMV0E+/TwHjacrIcNi4iISAOdvovggAEDWL9+PcXFxYkORbqYtLQ0BgwYkOgwpIuLRrxp2pNiWrDSkoNsD+aTWbNcDxsWERGR3XR4gmVmM4DfAUHgz865X7Xl+OTkZIYOHdohsYmItMTVjcFK3r01dFd6H1KqqqF6B6T3TEBkIiIi0hl1aBdBMwsCdwHHA6OAM81sVEeeU0QknqJhrwWLYPLu2+seNlymhw2LiIjIlzp6DNYkYJVz7nPnXC3wMDCzg88pIhI3dS1YBHd/4LUeNiwiIiKN6egEqz+wLmZ9vb+tnpldZGZLzWypxlmJSGfj6luwdk+w0np54/tqt69reIiIiIh0YwmfRdA590fn3ATn3ISCgoJEhyMisruIN017wy6COQUDiDijctvaBAQlIiIinVVHT3KxARgYsz7A3yYi0iW4SOMtWH16ZlNMLlaqhw2LiIjIlzq6Bett4AAzG2pmKcAZwNMdfE4Rkfip6yKY1CDB6pGmhw2LiIjIHjo0wXLOhYFLgeeBlcAjzrkPO/KcIiJx1UQLVt8e6WzUw4ZFRESkgQ5/DpZz7lng2Y4+j4hIh6gfg7V7gpWe4j9suPp9PWxYRERE6iV8kgsRkU4t0vhzsAB2pRWSGq2CmvK9HJSIiIh0VkqwRESaYdHGW7AAwnUPG9Y4LBEREfEpwRIRaYY1MQYLICnXexYW5ZocVURERDxKsEREmhGI+glWYM8hqxkFgwCo2la0FyMSERGRzkwJlohIMwLRECFLbnQSi9zCwYRckMrNnycgMhEREemMlGCJiDTDoiEi1viEq/3zctjkehEqXbOXoxIREZHOSgmWiEgzklwtYdtz/BXAgJ7prHcFBMvW7uWoREREpLNSgiUi0ozkaDXhQFqj+/IyU9hovUnfpUkuRERExKMES0SkGSnRWsLB1Eb3mRk70/uRHSqBUNVejkxEREQ6IyVYIiLNSKGGSCC9yf2hLH+q9rL1eykiERER6cyUYImINCESdaS6GiJNtGABWM/B3ovtmuhCRERElGCJiDQpFImSZiEiwcbHYAGkFewHQPU2TdUuIiIiSrBERJpUE46STg3RpKYTrJ59BlHrglRu+WIvRiYiIiKdlRIsEZEm1IajpFGLaybBGtAriw0un1CJEiwRERFRgiUi0qTqUIQ0q8UlZTRZpn9u3bOw1u3FyERERKSzaleCZWa3mNnHZrbCzJ4ws1x/+xAzqzKz5f4yLy7RiojsRVWhCGnUYslNt2DlZ+lZWCIiIvKl9rZgvQCMcc6NAz4Ffhyzb7Vzbry/XNzO84iI7HW7aiOkU0sgpelp2s2MirR+ZIW3Q23lXoxOREREOqN2JVjOuX8758L+6mJgQPtDEhHpHHbVhLwWrJSmuwgC1GYP9F7sUDdBERGR7i6eY7AuAP4Vsz7UzN41s1fNbGpTB5nZRWa21MyWFhcXxzEcEZH2qa6uJmCOYAsJVv2zsHas3QtRiYiISGfWYoJlZi+a2QeNLDNjyvwPEAYe8jdtAgY55w4GfgT8zcxyGqvfOfdH59wE59yEgoKC9l+RiEichKorAEhKzWy2XHrBUABq9CwsERGRbi+ppQLOua83t9/M5gAnAsc655x/TA1Q479eZmargeHA0vYGLCKyt9RU7wIgKbXpMVgAvQoHUu2SqdzyOal7IzARERHptNo7i+AM4BrgZOfcrpjtBWYW9F/vBxwA6E+7ItKlhKu9SSuS05rvIjigVwYbXD7hkjV7IywRERHpxNo7ButOIBt4ocF07EcCK8xsOfAocLFzrrSd5xIR2atCfoKVkpbVbLmBvTL8Z2FpDJaIiEh312IXweY45/ZvYvtjwGPtqVtEJOGqywBIzuzZbLG8TO9ZWBOr3t4bUYmIiEgnFs9ZBEVE9imuajsAgYzcZsuZGRXp/ckIl0HNzr0QmYiIiHRWSrBERJpS5bVgkZbbYtFQtv8YQD0LS0REpFtTgiUi0gSr3uG9SG++iyBAoOcg74WehSUiItKtKcESEWlCsLaMKAapjT7GbzdpvYcBUF2sCVNFRES6MyVYIiJNSKktoyqQBYGWf1Xm9+5HlUuhcqsSLBERke5MCZaISBNSw+VUB7NbVXZAr0zWuwI9C0tERKSbU4IlItII5xzpkZ3UJPdoVfkBPdNZ7/IJlmuSCxERke5MCZaISCMqayNkuQoiqa1LsPIyU9hkhWTs2tDBkYmIiEhnpgRLRKQRW8urKbTtuKzerSpvZlSm9yUjUq5nYYmIiHRjSrBERBqxtaySQrZDj4GtPiaU2dd7Ub6pg6ISERGRzk4JlohII8qL15NkUVJ6tT7BIqef9+/OjR0TlIiIiHR6SrBERBqxc0sRAD367NfqY5JzvRasaJkSLBERke5KCZaISCNqtnnTrafnD2r1MRn5XmvXrpL1HRKTiIiIdH5KsEREGhHc4T8wuA1jsPJye1LmMqgpVYIlIiLSXSnBEhFpRF7lKrYl94fUrFYf0zsnlc2uF9EyTdUuIiLSXbUrwTKzuWa2wcyW+8s3Yvb92MxWmdknZja9/aGKiOwdW8qrGRopoiJ3RJuOK8xJY4vrSaBicwdFJiIiIp1dPFqwbnPOjfeXZwHMbBRwBjAamAH83syCcTiXiEiH++CLDQyxzaT0H9Om4wqyvBas1KotHRSZiIiIdHYd1UVwJvCwc67GOfcFsAqY1EHnEhGJq+0fv07QHHkjj2rTcSlJAcqT88moLYFIuIOiExERkc4sHgnWpWa2wsz+YmY9/W39gXUxZdb72/ZgZheZ2VIzW1pcXByHcERE2qloEWGCpA49vM2HVqUXEiAKlVs7IDARERHp7FpMsMzsRTP7oJFlJnA3MAwYD2wCft3WAJxzf3TOTXDOTSgoKGjr4SIicbW1vJpxlf9hS4+DICWzzcdHMvt4L8o3xTkyERER6QqSWirgnPt6ayoysz8B//RXNwCxcxsP8LeJiHRqby35DycFNrB57MVf6XjL6QvFgCa6EBER6ZbaO4tg35jVWcAH/uungTPMLNXMhgIHAEvacy4RkY7mnCP89n2ECVJ42OyvVEdKj0IAojvVRVBERKQ7arEFqwU3m9l4wAFFwH8DOOc+NLNHgI+AMPB951yknecSEelQyz9ZzbHV/2ZD368zOLvwK9WR0dP7u1P19o1kxDM4ERER6RLalWA5585pZt9NwE3tqV9EZG8qeeYXjLUakk++4SvX0Ssnix0uE1e2RQmWiIhIN9RR07SLiHQpy955m6PK/8En/b5Jer/RX7meguxUtrkeRMr1LCwREZHuSAmWiHR7kaij6l8/I2TJDPvWL9tVV35WKsUuV9O0i4iIdFNKsESk21v4wlNMCb3J2lEXkdazb8sHNKMgK5Vt5JBctS1O0YmIiEhXogRLRLq1iuoQhYt/SUkgjxGnXNfu+nLSkygll9TakjhEJyIiIl1Ne2cRFBHp0hY+/gdOdJ9RNOUW8r7Cg4UbMjOqUnqRFqmEUDUkp8Uhys5t564qtm0somzz59QUf0GobBPRylKSa3eQGiojLVRGSnQXwWiIZEIkuTAphAAIEyRqQaJ1/1qQsCUTCaQSCSQTDaQQCabiAim4YAouKRWC3mLJqViStwSS0wgmp2HJqbhgqlc2mEK07thAEhDFXBRzDsPhXASiUXD+a+dw0YhXLhqzzTmc88qBt45zOBxEo7j6+qL+PrzyuPrj28Rsz02NFHP+1sb27X5gsyWaOG/Tx7SlytiCe17W7udr5LIbKdrENVvD1UCT+1sdel35PepuukDDfS3H2Xw01uTK7quR7P6MnHw8gUBbr05EOoISLBHptraWljH+k9+yPnU/hhz9nbjVW5uWD5V447ByB8Wt3kSKRh1Fmzaz6dN3qdrwIcFtK+lRsZo+ofX0ppShFt2tfC1JlFs2FYEcdgVzqEztjQukEAmkELEkIoEUzAxzEYiGIRrG/CUQDRGM1pAUDhGM7iLNhUh2tSS5ECnULWFSqSVobUxeRPZRL2+7g2NOPjfRYYgISrBEpBtb/NhtnGzFbDn+dxAIxq1el9nbS7AqirtsgrVx2w5WrfgPlZ+/Rda25Qyq+pj9bDP7+furSGVzymC29TqEzTkDsZ6Dyeg9hJzC/cjrO4SU9CzyzcjvgNgiUUdtOEp5KEJNbS011VXU1lQRqqkiVFtNIFKLRWr8pZZApAaiYZwFcRjOAjgzzIKYmXfvLYAFDAhCIEDAAmCGWQALBKhrYbFAwEsMCfiv8Y6tK1v/L2BGoO7YgDXbWuHwE8VGWrsabwBrObGsa2lr1dGtbGVrrphrUKvFFG542G7rDVr59ijrGu5pUGKP1d03xMbc3L7G1htq9vpbiqNh+d2Obf7Ee+52u+3Mfeo89n/3f6mZ/i1SU9ObrUtEOp4SrGZEIxFqqqtIz8xKdCgiEmdfbCrmsPX3UpQ9niHjvxHXui2rALYCFV1jqnbnHJ9vLObzd1+BL16lb+nbHBD9nH4WBqAkkMeW3NG83+d0cgYfROGwg0kvGMrQQGKG8QYDRnpKkPSUIGSmAPodLd3bh6VzGb3wO7z9yC+ZeI4eQSqSaEqwmvHu8/cyaMkv+WDUJYyf+UOS9VchkX3Giid/w0zbwY4Tft7omJf2SO7RB4BoxdZOO5NQaUU1H779CrtWvkB+8VuMiX7MMAsTJsjatAP5tPAsehxwOP1GTyGv50DyEh2wiDRp1FGnsnTJvYxd9Qe2FJ1F4ZBRiQ5JpFtTgtWMrN77UZzcn4kf/S9bP5rHmkGzGHjsf9Nn8IhEhyYi7bBh82ambH6Qz3Mmst/IaXGvP92f6r16xyYy4l77VxONOj4o2sTnb/2DzKIXGF+9hKlWRhRjfeowVvc7m7wxX6f36KPYLy0n0eGKSBuYGX3PuIPQPV9j50Pn0euqV0lO7Sy/fUS6HyVYzRgx4RjcIdNY/toT2OK7OXTNXwjcew+fB/ejpO+RpA+fxuDRh5Gd16/DY4mEw+yqLKemcifVu3ZSU1VBqLqCkP9vpKaCSE0lrqYKV1sJoV1YuBqiIQLRkPdvxHttzhtEHoiGCLgwQefN6hUkXD+7lrdEY9ajGHgzcPFlmQDewPa6fxtyDcYcNFz/KuX37Kne/DGN9Wzfs96Wj2mqbEJ1cCid6ErjKs1V05OdRE/8RYfU36tHNiUum2DpuoQmWNWhCEtXvM+2d56iYOMrTIh+wDgLUWmZbCj4GhWjT2DghJMYlN0RI6VEZG/qP2g/lky+mUlv/YDld5/DuEsfJpCUnOiwWhSNRNm5cwc7y0qp2rmd2sodhHeVEdpVhqsuJ1JTSaS2CheqJhCpxsLVBCPVBCI13mQ4kRqCrgaLRjAXIeDC4KIEXIQgEQIuShD/NVGCLrLbd5a6/++t+ZGCfpmvrvHvM63b1pr6Wvd9CRq7iq96bKvj/wpvXMNDng0ezdBTb+TYkYVtrywBlGC1wAIBxk87FaadyrovPmH9a38la92rjF/3AMnr74OXYRu5lCYXUpXam6q03rjUbIIpGbikdG+mLJw/NXAEXJRIOAShSixcTSC8i2BoF8FINUmRKpIiVSRHq0lx1aRGq0mjmnRXQ4qFyQayWxl32AWoJZmQJRMmibAlEan7t35JJmrJRIIZhPxtjgD4A8DxB4NDAIyY1wb4ZayuTMufnrpfXvW/zPYYtdtggHQjW1s+pjW/IF1zuxupo9ni8dWGE3R0LA0HaO9rwoOP4vARh3dI3flZKax3BQzavrZD6m9OcXkVy996heoPn2HY9kVMsSJve3I/1g08g8IJs8gecSTDg53/i5eItM2k489l4caPmbbuLlb8bhbD//sB0rJ67tUYQpEoxTt2UrplHRUlG6kq3YDbuYVA5RZSqraRXlNMZqiE7MgOMl0lmW4XPczRoxV117hkaiyFGlKotRRClkKtpRI2b3ZSZ6m4YAbOghBIwlmAqCURtaD3J2H/URDUfW+xL79rWH1X8dhHBjSWLFjbH73QSHlr5H/ZRr9/NHquPb8v7VHXbsc1He9XPWdjk800/jiJtmvs+0d65jB6ZaZ8hdoSw9r8Q9KBJkyY4JYuXZroMFqlvKyUovcWUb7mXVJLPyF11yaya4vJc6VkuCqSrPEWnTpRZ1STQpWlUWNp1FoqNYE0woE0QsF0IsF0IkkZuKQ0oskZkJyJpWRgKZkEUzMIpmYSTMsiOT2L5LQsUtOzSM3IJi0jm/TMbJJT0uI+rkREWmfV1p18esc3mdpjG9lXvduh53LO8en6raxa/E9SVj/PuKq3KLQdRAiwPnMMkQNmMGDyLFIKR+p3gkg34JzjtQd+wZTVv6E4UEDJYdcy8uvntbs1KxSOUFKyle1b11OxbQPV2zcSKd+MVWwhuaqY9JptZIdLyXPb6WkVjdaxnRx2BHuxMzmP6uReRFJ7YGnZWFoPkjJ6kJSRS1JGD5IzcknN7EFKVk8yM7JJy8gkJTUdEjSxjkhTzGyZc27CHtuVYMWfc47KqmoiNX43PQuABXEWwIIB0lNTvb7R+rIjsk8q2xXikf89l/NTXibpZ5vj/lmvDUd598MP2br0aXpteIlDIytIsxC7LJ0NeUeQPuYE+k88GctU1z+R7urdN54n58WrGObWUkYWX/ScQm3hQaT3HUFWbj7BtBySgkFqaqqorqoitGsH4Z3F1JZvJVpRDLtKSKkuIbN2Gz0ipeS5HaRaaI/z1JDMjoCXNNWk5RPOKMSyepOc25eMnv3I7j2A7Lz+JOcUglrOZR/TVIKlLoIdwMzIykiHDM06KNId5aQnsT25kKRoNVRug6yCdtXnnOOLzdtYvewlwp+9wuAdb3GYfQFAcVIf1gw6nd6HzqTnyKM5IKnrdKEQkY5z8BHTqZ10LItffJjIB08yqvQNem5/Dj5u+diIM8osm53BnlQm57E5ZwgbM3pj2X1Ize1LZl5/cgr6k9t7IKnpPSg0o2uMjBHZO9qVYJnZAqBuSr1cYIdzbryZDQFWAp/4+xY75y5uz7lERLoKM6MqdwRsBza9Bwd8vU3HO+dYt3U7n7//Brs+fY3exW8yNvox+1mIMEHWZY7ms2FXMnDyNynoN5oCtYaLSCNSkpOYfPzZcPzZuGiUrZvXs7XoQ6ortkNtBZFIlKTUdJJT0kjJyCGlR2965vejR88CeiUl0SvRFyDSRbUrwXLOza57bWa/Bspidq92zo1vT/0iIl1VtP+hhLcHCKz5D4EWEqzisl0UffYBOz5fSmDDEgrLPmC4+5xBFgFgXcowPu93Jnljj6P3mKMZmqoH64pI21ggQO9+g+jdb1CiQxHZ58Wli6B5U6+cDhwTj/pERLq6Qw8YwPsr9mPEiifJmHYtLphCcel2Nq/5lLKNn1G75RNSSj4mb9fnDHXrmGi1AFSRyoaMkXxaeJ73oN+x0xiY3TvBVyMiIiKtFa8xWFOBLc65z2K2DTWzd4Fy4KfOudfjdC4RkU7v6yN7c0PKadxS/isqfjmEGpdEbysnNlUqtZ4UZw5jVa/JpA8YR8EBh9Jj8MHsH9TwWBERka6qxf/FzexFoE8ju/7HOfeU//pMYH7Mvk3AIOdciZkdCjxpZqOdc+WN1H8RcBHAoEFqthaRfUNGShLfv/iHPPTPbPbbsZiUpABrcweS1nsYPfsfQP6gA+mVXaAxDiIiIvuYdk/TbmZJwAbgUOfc+ibKLASucs41Owf7vjJNu4iIiIiI7NuamqY9Hk9s+zrwcWxyZWYFZhb0X+8HHAB8HodziYiIiIiIdFrx6Oh/Brt3DwQ4ErjRzEJAFLjYOVcah3OJiIiIiIh0Wu1OsJxzcxrZ9hjwWHvrFhERERER6UraPQYrnsysGFiT6DgayAe2JToI2Wt0v7sP3evuQ/e6e9H97j50r7uXzni/BzvnChpu7FQJVmdkZksbG7wm+ybd7+5D97r70L3uXnS/uw/d6+6lK93veExyISIiIiIiIijBEhERERERiRslWC37Y6IDkL1K97v70L3uPnSvuxfd7+5D97p76TL3W2OwRERERERE4kQtWCIiIiIiInGiBEtERERERCROlGA1w8xmmNknZrbKzK5LdDwSP2Y20MxeMbOPzOxDM7vM397LzF4ws8/8f3smOlaJDzMLmtm7ZvZPf32omb3lf74XmFlKomOU+DCzXDN71Mw+NrOVZna4Ptv7JjO7wv8d/oGZzTezNH229x1m9hcz22pmH8Rsa/SzbJ7b/fu+wswOSVzk0lZN3Otb/N/jK8zsCTPLjdn3Y/9ef2Jm0xMSdDOUYDXBzILAXcDxwCjgTDMbldioJI7CwJXOuVHAZOD7/v29DnjJOXcA8JK/LvuGy4CVMev/B9zmnNsf2A58JyFRSUf4HfCcc+5A4CC8+67P9j7GzPoDPwQmOOfGAEHgDPTZ3pfcB8xosK2pz/LxwAH+chFw916KUeLjPva81y8AY5xz44BPgR8D+N/XzgBG+8f83v/e3mkowWraJGCVc+5z51wt8DAwM8ExSZw45zY5597xX+/E+wLWH+8e3+8Xux84JSEBSlyZ2QDgBODP/roBxwCP+kV0r/cRZtYDOBK4B8A5V+uc24E+2/uqJCDdzJKADGAT+mzvM5xzrwGlDTY39VmeCfzVeRYDuWbWd68EKu3W2L12zv3bORf2VxcDA/zXM4GHnXM1zrkvgFV439s7DSVYTesPrItZX+9vk32MmQ0BDgbeAgqdc5v8XZuBwkTFJXH1W+AaIOqv5wE7Yn5x6/O97xgKFAP3+l1C/2xmmeizvc9xzm0AbgXW4iVWZcAy9Nne1zX1Wdb3tn3bBcC//Ned/l4rwZJuzcyygMeAy51z5bH7nPcMAz3HoIszsxOBrc65ZYmORfaKJOAQ4G7n3MFAJQ26A+qzvW/wx97MxEuq+wGZ7NnFSPZh+ix3D2b2P3hDOx5KdCytpQSraRuAgTHrA/xtso8ws2S85Ooh59zj/uYtdV0K/H+3Jio+iZsjgJPNrAivq+8xeGN0cv1uRaDP975kPbDeOfeWv/4oXsKlz/a+5+vAF865YudcCHgc7/Ouz/a+ranPsr637YPMbA5wInCW+/LhvZ3+XivBatrbwAH+bEQpeIPpnk5wTBIn/hice4CVzrnfxOx6GjjPf30e8NTejk3iyzn3Y+fcAOfcELzP8cvOubOAV4DT/GK61/sI59xmYJ2ZjfA3HQt8hD7b+6K1wGQzy/B/p9fda322921NfZafBs71ZxOcDJTFdCWULsjMZuB17z/ZObcrZtfTwBlmlmpmQ/EmNlmSiBibYl8mg9KQmX0Db+xGEPiLc+6mxEYk8WJmU4DXgff5clzOT/DGYT0CDALWAKc75xoOsJUuysymAVc55040s/3wWrR6Ae8CZzvnahIYnsSJmY3Hm9AkBfgcOB/vD4r6bO9jzOznwGy87kPvAhfijcXQZ3sfYGbzgWlAPrAFuAF4kkY+y36SfSdeN9FdwPnOuaUJCFu+gibu9Y+BVKDEL7bYOXexX/5/8MZlhfGGefyrYZ2JpARLREREREQkTtRFUEREREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERDoJMxtiZs7MkhIdy77OzOaY2aJEx9HZmNlUM/sk0XGIiHRlSrBERKRLM7O5ZhYys4qY5ZpEx9UVOeded86NiGedZjbczJ4ys2IzKzWz580srucQEelMlGCJiMSJWp4SaoFzLitmuTnRAcVTF//ZygWeBkYAhcAS4KlEBiQi0pGUYImItIOZFZnZtWa2Aqg0syQzm2xm/zGzHWb2nplNiym/0Mz+n5ktMbNy/y/7vZqo+3wzW2lmO83sczP77wb7Z5rZcr+e1WY2w9/ew8zuMbNNZrbBzH5pZsEWrmOYmb1sZiVmts3MHjKz3Jh9pWZ2iL/ez2+NmOavn2xmH/rXu9DMRjZ4f64ysxVmVmZmC8wsre3vdNuZ2XX++7LTzD4ys1lNlDMzu83Mtvrv5ftmNsbfl2pmt5rZWjPbYmbzzCy9lee/zy//gh/Dq2Y2OGb/78xsnX/OZWY2NWbfXDN71MweNLNyYI6ZTTKzN/33eZOZ3WlmKTHHODP7npl95p/vF/69+49/jkdiyzcR8zQzW9+a62st59wS59w9zrlS51wIuA0YYWZ58TyPiEhnoQRLRKT9zgROwPtLfSHwDPBLoBdwFfCYmRXElD8XuADoC4SB25uodytwIpADnA/cFpPkTAL+Clztn/dIoMg/7j6/3v2Bg4HjgAtbuAYD/h/QDxgJDATmAjjnVgPXAg+aWQZwL3C/c26hmQ0H5gOXAwXAs8A/GnyRPx2YAQwFxgFzGg3AbIqfPDS1TGnhGhpaDUwFegA/9+Pv20i54/Dev+F+2dOBEn/fr/zt4/Hez/7A9W2I4SzgF0A+sBx4KGbf2369vYC/AX9vkHzOBB7Fu78PARHgCr+uw4Fjge81ON904FBgMnAN8EfgbLz7OQbvZ/Ur8xPlpu7P71tZzZHAZudcSYslRUS6IuecFi1atGj5igteUnNBzPq1wAMNyjwPnOe/Xgj8KmbfKKAWCAJDAAckNXGuJ4HL/Nd/AG5rpEwhUAOkx2w7E3iljdd1CvBug21PA+8DK4BUf9vPgEdiygSADcC0mPfn7Jj9NwPz4nwP5vrv4Y6YpV8j5ZYDM/3Xc4BF/utjgE/xkpJATHkDKoFhMdsOB75oZVz3AQ/HrGfhJUkDmyi/HTgo5ppea6H+y4EnYtYdcETM+jLg2pj1XwO/baHOacD6eN6fBvUP8H8+zuyoc2jRokVLopeu3KdbRKSzWBfzejDwLTM7KWZbMvBKE+XX+PvzG1ZqZscDN+C1oASADLwEB7wWiWcbiWWwX98mM6vbFmhwzj2YWSHwO7wWn2z/mO0Niv0JL8m6yDlX42/r518DAM65qJmtw2vpqbM55vUu/5h4e8Q5d3bsBjM7F/gRXuIKXoKzx/vsnHvZzO4E7gIGm9njeC2PaXjv+bKY99LwkuHWqn/fnXMVZlaKd/3rzOwq4Dv+usNrqcxv7Fj/eoYDvwEm+HEl4SVRsbbEvK5qZL1PG2KPK78V99/A751z8xMVh4hIR1MXQRGR9nMxr9fhtWDlxiyZzrlfxZQZGPN6EBACtsVWaGapwGPArUChcy4XL6Gq+6a/DhjWSCzr8Fqw8mPOn+OcG93CNfyvfx1jnXM5eN3KvswqzLKA3wL3AHPty3FjG/GSurpy5l/fhhbOtwfzpgivaGaZ2nIt9XUNxksILwXy/Pfvg9hriuWcu905dyhei+JwvK6X2/CSktEx72UP51xWGy6r/l7772EvYKN/LdfgdUfs6cdX1iC+2J8rgLuBj4ED/Hv0k6aup6P4Y+2auj/zmjmuJ15y9bRz7qa9F7GIyN6nBEtEJL4eBE4ys+lmFjSzNH/igAExZc42s1H+eKYbgUedc5EG9aQAqUAxEPZbs46L2X8PcL6ZHWtmATPrb2YHOuc24X2R/bWZ5fj7hpnZUS3EnQ1UAGVm1h8vwYj1O2Cpc+5CvDFmdV+mHwFO8ONIBq7ES/D+09Ib1ZDzpgjPamZ5vQ3VZeIlKMXgTRiCNwZpD2Y20cwO8+OvBKqBqHMuipek3WZmvf2y/c1sesyxzmImMWnEN/yxZSl4Y7EWO+fW4b3fYT++JDO7Hq8FqznZQDlQYWYHApe0UD7unHOjm7k/Fzd2jJnl4HWTfcM5d93ejVhEZO9TgiUiEkf+l+eZeK0LxXgtSlez++/bB/DG52zG64b2w0bq2elvfwSvq9638brn1e1fgj/xBV7Lx6t82ZJ0Ll6C9pF/7KN4E2o05+fAIX5dzwCP1+0ws5l4k1TUfaH/EXCImZ3lnPsEr7XrDrwWn5OAk5xztS2cr0M55z7CG3P0Jl43ubHAG00Uz8FLpLbjdXcsAW7x910LrAIW+7P5vYg33ThmNhDYyZfdNhvzN7xunqV4k0/UdWN8HngOb+zXGrykrtlunHjdFr/tn/NPwIIWyncWs4CJeH8QiG3xGpTowEREOoI517AHgoiIdBQzWwg86Jz7c6JjkfYxs7Pxug/+uIn99+FNGPHTvRqYiIgklCa5EBER+Qqccw8mOgYREel81EVQRKSbMO+ht22anED2PWb2kyZ+Dv6V6NhERPYF6iIoIiIiIiISJ2rBEhERERERiZNONQYrPz/fDRkyJNFhiIiIiIiINGvZsmXbnHMFDbd3qgRryJAhLF26NNFhiIiIiIiINMvM1jS2XV0ERURERERE4kQJloiIiIiISJwowRIRaUQ0qhlWRUREpO061RisxoRCIdavX091dXWiQ5EuJi0tjQEDBpCcnJzoUKSLeXDxGlY9dyff/853KRg4PNHhiIiISBfS6ROs9evXk52dzZAhQzCzRIcjXYRzjpKSEtavX8/QoUMTHY50Mf98830e5o9UPvgU/PjTRIcjIiIiXUin7yJYXV1NXl6ekitpEzMjLy9PLZ/ylQxkEwCZNVtAD2MXERGRNuj0CRag5Eq+Ev3cyFeVW7Xuy5XtRQmLQ0RERLqeLpFgiYjsTfm1G+pfR4o/S2AkIiIi0tUowWoFM+PKK6+sX7/11luZO3du4gKKsXjxYg477DDGjx/PyJEj6+NauHAh//nPf75yvWvWrOGQQw5h/PjxjB49mnnz5sUpYpHOzTlH78gWqkkBoHz9hwmOSERERLqSTj/JRWeQmprK448/zo9//GPy8/PjVq9zDuccgcBXz3PPO+88HnnkEQ466CAikQiffPIJ4CVYWVlZfO1rX/tK9fbt25c333yT1NRUKioqGDNmDCeffDL9+vX7yrGKdAU14ShpVLMtuR8Ztduo3vQJPRMdlIiIiHQZasFqhaSkJC666CJuu+22PfYVFxdz6qmnMnHiRCZOnMgbb7wBwNy5c7n11lvry40ZM4aioiKKiooYMWIE5557LmPGjGHdunVcffXVjBkzhrFjx7JgwQLAS5CmTZvGaaedxoEHHshZZ52Fa2Sw/datW+nbty8AwWCQUaNGUVRUxLx587jtttsYP348r7/+erNxnnPOORx++OEccMAB/OlPfwIgJSWF1NRUAGpqaohGo42+N7fffjujRo1i3LhxnHHGGQCUlpZyyimnMG7cOCZPnsyKFSvqz3XeeecxdepUBg8ezOOPP84111zD2LFjmTFjBqFQCIAbb7yRiRMnMmbMGC666KI9rjsajTJkyBB27NhRv+2AAw5gy5Ytzd1GkVapjURJIUwwOZUvXF8oXZ3okERERKQL6VItWD//x4d8tLE8rnWO6pfDDSeNbrHc97//fcaNG8c111yz2/bLLruMK664gilTprB27VqmT5/OypUrm63rs88+4/7772fy5Mk89thjLF++nPfee49t27YxceJEjjzySADeffddPvzwQ/r168cRRxzBG2+8wZQpU3ar64orrmDEiBFMmzaNGTNmcN555zFkyBAuvvhisrKyuOqqqwD49re/3WScK1asYPHixVRWVnLwwQdzwgkn0K9fP9atW8cJJ5zAqlWruOWWWxptvfrVr37FF198QWpqan3Cc8MNN3DwwQfz5JNP8vLLL3PuueeyfPlyAFavXs0rr7zCRx99xOGHH85jjz3GzTffzKxZs3jmmWc45ZRTuPTSS7n++usBOOecc/jnP//JSSedVH/OQCDAzJkzeeKJJzj//PN56623GDx4MIWFhS3eR5GW1IajpFJLMCWdzWQwtHJNokMSERGRLkQtWK2Uk5PDueeey+23377b9hdffJFLL72U8ePHc/LJJ1NeXk5FRUWzdQ0ePJjJkycDsGjRIs4880yCwSCFhYUcddRRvP322wBMmjSJAQMGEAgEGD9+PEVFRXvUdf3117N06VKOO+44/va3vzFjxoxGz9lcnDNnziQ9PZ38/HyOPvpolixZAsDAgQNZsWIFq1at4v7772+0hWjcuHGcddZZPPjggyQlJdVf0znnnAPAMcccQ0lJCeXlXmJ8/PHHk5yczNixY4lEIvXxjh07tv76XnnlFQ477DDGjh3Lyy+/zIcf7jkGZvbs2fWtfQ8//DCzZ89u9j0Xaa1QJEqKhXHBFHam9SG7Zis00YIrIiIi0lCXasFqTUtTR7r88ss55JBDOP/88+u3RaNRFi9eTFpa2m5lk5KSdutWF/s8pszMzFadr66LHnjd/8LhcKPlhg0bxiWXXMJ3v/tdCgoKKCkp2aNMU3HCntOZN1zv168fY8aM4fXXX+e0007bbd8zzzzDa6+9xj/+8Q9uuukm3n///VZdUyAQIDk5uf5cgUCAcDhMdXU13/ve91i6dCkDBw5k7ty5jT7L6vDDD2fVqlUUFxfz5JNP8tOf/rTZ84q0Vm04SgohXDCVmsz+JNeGoHIrZPdJdGgiIiLSBbS7BcvMBprZK2b2kZl9aGaX+dvnmtkGM1vuL99of7iJ1atXL04//XTuueee+m3HHXccd9xxR/16XVe4IUOG8M477wDwzjvv8MUXXzRa59SpU1mwYAGRSITi4mJee+01Jk2a1OqYnnnmmfoxSp999hnBYJDc3Fyys7PZuXNni3ECPPXUU1RXV1NSUsLChQuZOHEi69evp6qqCoDt27ezaNEiRowYsdu5o9Eo69at4+ijj+b//u//KCsro6KigqlTp/LQQw8B3liy/Px8cnJyWnU9dclUfn4+FRUVPProo42WMzNmzZrFj370I0aOHEleXl6r6hdpiddFMIQLpkCPAd7GsvWJDUpERES6jHh0EQwDVzrnRgGTge+b2Sh/323OufH+8mwczpVwV155Jdu2batfv/3221m6dCnjxo1j1KhR9dOZn3rqqZSWljJ69GjuvPNOhg8f3mh9s2bNYty4cRx00EEcc8wx3HzzzfTp0/q/lD/wwAOMGDGC8ePHc8455/DQQw8RDAY56aSTeOKJJ+onuWgqTvC6+R199NFMnjyZn/3sZ/Tr14+VK1dy2GGHcdBBB3HUUUdx1VVXMXbsWAAuvPBCli5dSiQS4eyzz2bs2LEcfPDB/PCHPyQ3N5e5c+eybNkyxo0bx3XXXcf999/f6uvJzc3lu9/9LmPGjGH69OlMnDixft+8efN2i3v27Nk8+OCD6h4ocVUT9ia5ICmVlLzB3rZtRYkNSkRERLoMa2xmunZVaPYUcCdwBFDhnLu1hUPqTZgwwS1dunS3bStXrmTkyJFxjVG+NHfu3N0mw9jX6OdH2uqdtdvpfc8EgvtNZdnI6zjx2cPYdvhPyZ9+daJDExGR/9/evcfXVdV5H//8zi33e5O0TXoJ0JZCr1BKpVBb5CogCEjxEbVUZXC8DMw8jpdRFBxfj8rozDMDwohIdR4sVwd4jVpBoEpRir0BhV6gEJq2aZs298s5OZf1/HFO07RN2qQ5yclJvu/X63D2XnvvtX/pzg7nd9Zea4kMI2a23jk37+jypA5yYWaTgbnA2kTRF83sdTP7uZlpKhkRGfbCiUcEzZtBeVkZzS6b4AGNJCgiIiJ9k7RBLswsF3gSuM0512xm9wHfBVzi/UfA8h6OuwW4BWDixInJCkf66Dvf+U6qQxAZVuLzYIUJ+jMZX5jFbldCXlNNqsMSERGRNJGUFiwz8xNPrh52zv0awDm3zzkXdc7FgAeAHkducM791Dk3zzk3r7S0NBnhiIictEODXJgvg/K8DPa4MQRad6c6LBEREUkTyRhF0IAHgS3OuR93Kx/XbbePApsHei4RkcHWGY4SIIL5M/F5PTT4y8kN1qY6LBEREUkTyXhEcCHwSeANM9uUKPsG8HEzm0P8EcFq4G+ScC4RkUEVjoTwmMPjj8/Z1pE1luy2Vgi1QkZuiqMTERGR4W7ACZZzbg1gPWwaEcOyi8joEu0MAeD1Z8XX88ZDG9BSCxlTUhiZiIiIpIOkjiI4kj311FOYGVu3bu11n+rqambMmJG0c27bto3FixczZ84cpk+fzi233ALEJwn+7W9PPn8NBoPMnz+f2bNnc+aZZ/Ltb387WSGLpL1oOD7Z9aEWLG9BBQCuSf2wRERE5MSUYPXRypUrOf/881m5cmWP2yORyIDPEY1Gj1j/8pe/zO23386mTZvYsmULX/rSl4CBJ1gZGRm88MILvPbaa2zatIlVq1bxyiuvDCh2kZEi2hlPsLyBTAAySyYA0FanodpFRETkxJRg9UFraytr1qzhwQcf5JFHHukqX716NRdccAEf+chHOOOMM4B4ovWJT3yC6dOnc/3119Pe3g7A888/z9y5c5k5cybLly8nFIo/hjR58mS++tWvctZZZ/H4448fcd7a2loqKyu71mfOnElnZyd33HEHjz76KHPmzOHRRx+lra2N5cuXM3/+fObOncvTTz8NwIoVK7j66qtZvHgxU6ZM4c477wTAzMjNjfclCYfDhMNh4mOVHOnxxx9nxowZzJ49m0WLFgHx1q+bb76ZmTNnMnfuXF588cWuc11zzTVcfPHFTJ48mXvuuYcf//jHzJ07lwULFlBfXw/AAw88wDnnnMPs2bO57rrruv59uluwYAFvvvlm1/rixYs5egJqkcESS7Rgef3xBKugfBIAbXU7UxaTiIiIpI+kzYM1JH73Ndj7RnLrHDsTLv/+cXd5+umnueyyy5g6dSolJSWsX7+es88+G4ANGzawefNmqqqqqK6uZtu2bTz44IMsXLiQ5cuX85Of/IQvfvGLLFu2jOeff56pU6fyqU99ivvuu4/bbrsNgJKSEjZs2HDMeW+//XYuvPBCzjvvPC655BJuvvlmCgsLueuuu1i3bh333HMPAN/4xje48MIL+fnPf05jYyPz58/noosuAuDVV19l8+bNZGdnc84553DFFVcwb948otEoZ599Nu+88w5f+MIXOPfcc485/1133cXvf/97KioqaGxsBODee+/FzHjjjTfYunUrl1xyCdu3bwdg8+bNbNy4kWAwyGmnncYPfvADNm7cyO23384vf/lLbrvtNq699lo+97nPAfDNb36TBx98sKtl7pClS5fy2GOPceedd1JbW0ttbS3z5h0zSbbI4Igk+mAlWrDGlhRy0OXR2aC5sEREROTE1ILVBytXruTGG28E4MYbbzziMcH58+dTVVXVtT5hwgQWLlwIwE033cSaNWvYtm0bVVVVTJ06FYBPf/rT/OlPf+o6ZunSpT2e9+abb2bLli187GMfY/Xq1SxYsKCr5au7Z599lu9///vMmTOHxYsXEwwG2bkz/m37xRdfTElJCVlZWVx77bWsWbMGAK/Xy6ZNm9i1a1dXEna0hQsXsmzZMh544IGuxxfXrFnDTTfdBMDpp5/OpEmTuhKsJUuWkJeXR2lpKQUFBVx11VVAvOWturoaiCdhF1xwATNnzuThhx8+oqXqkBtuuIEnnngCgMcee4zrr7++x38fkcEQO5RgJVqwxhVksdcVQ/OeVIYlIiIiaSK9WrBO0NI0GOrr63nhhRd44403MDOi0Shmxt133w1ATk7OEfsf/ahdT4/eHe3oOrobP348y5cvZ/ny5cyYMaPHRMg5x5NPPsm0adOOKF+7du0J4yksLGTJkiWsWrXqmAE67r//ftauXctvfvMbzj77bNavX3/cnyMjI6Nr2ePxdK17PJ6uPmrLli3jqaeeYvbs2axYsYLVq1cfU09FRQUlJSW8/vrrPProo9x///3HPa9IUiUSLE8iwSrJCfAGJYxp35vKqERERCRNqAXrBJ544gk++clP8v7771NdXU1NTQ1VVVW89NJLPe6/c+dO/vKXvwDwq1/9ivPPP59p06ZRXV3NO++8A8B//dd/8cEPfvCE5161ahXhcBiAvXv3cvDgQSoqKsjLy6OlpaVrv0svvZT/+I//wDkHwMaNG7u2Pffcc9TX19PR0cFTTz3FwoULqaur63rkr6Ojg+eee47TTz/9mPPv2LGDc889l7vuuovS0lJqamq44IILePjhhwHYvn07O3fuPCaxO56WlhbGjRtHOBzuqqcnS5cu5Yc//CFNTU3MmjWrz/WLDFgiwcJ36AsCoylQRk5oXwqDEhERkXShBOsEVq5cyUc/+tEjyq677rpeRxOcNm0a9957L9OnT6ehoYHPf/7zZGZm8tBDD/Gxj32MmTNn4vF4uPXWW0947meffbZrkIlLL72Uu+++m7Fjx7JkyRLeeuutrkEuvvWtbxEOh5k1axZnnnkm3/rWt7rqmD9/Ptdddx2zZs3iuuuuY968edTW1rJkyRJmzZrFOeecw8UXX8yVV14JwB133MEzzzwDwFe+8hVmzpzJjBkzOO+885g9ezZ/+7d/SywWY+bMmSxdupQVK1Yc0XJ1It/97nc599xzWbhw4RFJ3TPPPMMdd9zRtX799dfzyCOPcMMNN/S5bpGkiHTG372Hf6+DWWPJjTZD57GDsoiIiIh0Z4daPYaDefPmuaNHi9uyZQvTp09PUUTpbcWKFUcMhjEa6fdH+uv//eJ+bnrvq3DLH2H8HAAe/s/v84na/wNf2gAlp6Y2QBERERkWzGy9c+6YkdjUgiUi0l3sUAtWoKvIVxSfLiHauCsVEYmIiEgaUYI1gi1btmxUt16JnJRIvN9j9wTr0GTDLfs12bCIiIgcX1okWMPpMUZJH/q9kZPS1YLl7yrqmmz4gCYbFhERkeMb9glWZmYmBw8e1Idl6RfnHAcPHiQzMzPVoUiaseixjwiWlxTT4HIJ12uyYRERETm+YT8PVmVlJbt27aKuri7VoUiayczMpLKyMtVhSLqJHvuI4PiCLPa4YrJbNNmwiIiIHN+wT7D8fj9VVVWpDkNERgmLHUqwDj8imJ/lY5OVMLVNkw2LiIjI8Q37RwRFRIaSp4cWLDOjOVBOTmh/iqISERGRdDHoCZaZXWZm28zsHTP72mCfT0RkIKyHQS4AQlnl5McaIRwc+qBEREQkbQxqgmVmXuBe4HLgDODjZnbGYJ5TRGQgPLEwUTzg8R5RHssbH19oqU1BVCIiIpIuBrsFaz7wjnPuXedcJ/AIcPUgn1NE5KR5XJiI+Y8p9xZVANDZoJEERUREpHeDnWBVAN0/jexKlHUxs1vMbJ2ZrdNIgSKSahYLE7Vjx//JLonPhdW8T5MNi4iISO9SPsiFc+6nzrl5zrl5paWlqQ5HREY5byxCtIcWrK7Jhus02bCIiIj0brATrN3AhG7rlYkyEZFhyet6bsEqLy2hyWUTadyVgqhEREQkXQx2gvVXYIqZVZlZALgReGaQzykictK8sXCPLVjjC7KodSVYsyYbFhERkd4NaoLlnIsAXwR+D2wBHnPOvTmY5xQRGQivCxP1HJtgZQW8HPCUkNGuUQRFRESkd8c+B5NkzrnfAr8d7POIiCSD14WJ9dCCBdASKCc39OoQRyQiIiLpJOWDXIiIDCc+FyHWQwsWQCh7LAWxBoiEhjgqERERSRdKsEREuvG6cK8JVjS/Mr7QpIEuREREpGdKsEREuvERwfWSYHmL40O1d9S9N5QhiYiISBpRgiUikhCNOfz0/ohgVukpALTs3TGUYYmIiEgaUYIlIpIQjsbwH6cFq7B8ImHnJagWLBEREemFEiwRkYRIogXLeQM9bh9fnEetK8Y1vD/EkYmIiEi6UIIlIpIQCkcJEIFeEqzy/Ex2UYqvRYNciIiISM+UYImIJIQi8UcEzdvzI4IBn4cD3rHkduwZ4shEREQkXSjBEhFJCIajZFgY58vsdZ/WrPEURA5oLiwRERHpkRIsEZGEUCRGFp3gz+51n85czYUlIiIivVOCJSKSEAxHySSEBXpPsKxoIoAGuhAREZEeKcESEUno7AwRsCjmz+p1n6zSKgBa92kuLBERETmWEiwRkYTOYBsAnozeW7CKxk4m7Ly07Xt3qMISERGRNOJLdQAiIsNFJNQOgOc4jwhOGJPLHleCt16PCIqIiMix1IIlIpIQSbRg+TJyet2nsiibXa4UX3PNUIUlIiIiaWRACZaZ3W1mW83sdTP7bzMrTJRPNrMOM9uUeN2flGhFRAZRNNGC5T3OI4K5GT7qvGVkt+8eqrBEREQkjQy0Bes5YIZzbhawHfh6t207nHNzEq9bB3geEZFBFwvFW7D8mbnH3a81q4L8yEEIdwxFWCIiIpJGBpRgOeeedc5FEquvAJUDD0lEJDVcImHyZfbeggUQyZ8QX2jcOdghiYiISJpJZh+s5cDvuq1XmdlGM/ujmV3Q20FmdouZrTOzdXV1dUkMR0Skf1xn/BFBf2bvfbAAPMWTAYjVVw9yRCIiIpJuTphgmdkfzGxzD6+ru+3zT0AEeDhRVAtMdM7NBf4e+JWZ5fdUv3Pup865ec65eaWlpQP/iURETlLsUIJ1nEEuALLLTgE0F5aIiIgc64TDtDvnLjredjNbBlwJfMg55xLHhIBQYnm9me0ApgLrBhqwiMhgOTTIhR1nmHaAknETCTk/7ft20OM3RyIiIjJqDXQUwcuAfwQ+4pxr71ZeambexPIpwBRAs3KKyLB2qAUL//ETrAnFOexyY4hpLiwRERE5ykD7YN0D5AHPHTUc+yLgdTPbBDwB3Oqcqx/guUREBpXrSrCyjrtfZVE2Na4MX7MGuRAREZEjnfARweNxzp3WS/mTwJMDqVtEZMiF48O04zt+gpXp91LnG0tux8tDEJSIiIikk2SOIigiktb84RaClgneE3/31J5dQXasFToaBz8wERERSRtKsEREErIiTbR5+zZsRaRgYnyhUf2wRERE5DAlWCIiCdnRFoK+gj7t60vMhRXVXFgiIiLSjRIsEZGEnGgTnf6+tWDllMe7oLbu1VxYIiIicpgSLBERIBSJkudaiWQU9Wn/8vJyml0WHfs1A4WIiIgcpgRLRARobA9TaK2Q1bcEq7I4h12uDNegPlgiIiJymBIsERGgvjVEIa1YdnGf9h9fmEmNKyXQUjPIkYmIiEg6UYIlIgI0N9bjsxi+3JI+7Z/h81LvH0decA84N8jRiYiISLpQgiUiArTU7wEgq6C0z8e051QQcCFo3T9YYYmIiEiaUYIlIgK018X7UuWPrerzMbGCSfEFzYUlIiIiCUqwRESAaEO8L1XWmMl9PiaQ2DeiubBEREQkQQmWiAjgbd5FDIP8ij4fk182GYCW/TsHKSoRERFJN0qwRESAzPY9NHmLwRfo8zElJWNodxmEGvYMYmQiIiKSTpRgicioF4s5CkJ7aM0c16/jygoy2euKiDYrwRIREZE4JVgiMurtaergVHYRKprar+PK8jLZTxHe1r2DFJmIiIikmwElWGb2HTPbbWabEq8Pd9v2dTN7x8y2mdmlAw9VRGRwvL/zfcZYM/5xM/p1XGGWn32umIwODdMuIiIicb4k1PGvzrl/6V5gZmcANwJnAuOBP5jZVOdcNAnnExFJqvp3NwJQVDW7X8d5PEZrYAy5nX+NTzZsNhjhiYiISBoZrEcErwYecc6FnHPvAe8A8wfpXCIiA9KxcwMA+ZPm9P/YzDL8rhM6GpIclYiIiKSjZCRYXzSz183s52ZWlCirAGq67bMrUXYMM7vFzNaZ2bq6urokhCMi0nfRmKOo4TUOBiogZ0y/j49kj40vtNQmOTIRERFJRydMsMzsD2a2uYfX1cB9wKnAHKAW+FF/A3DO/dQ5N885N6+0tLS/h4uIDMi22mZmue20lc49uQoKEiMPKsESERER+tAHyzl3UV8qMrMHgP9JrO4GJnTbXJkoExEZVra+tYlrrZGGqeef1PGBwvEARJr2JKVTq4iIiKS3gY4i2H3SmI8CmxPLzwA3mlmGmVUBU4BXB3IuEZHBEHx7NQBFZ/bpu6RjZBfHv0vqOLgrWSGJiIhIGhvoF64/NLM5gAOqgb8BcM69aWaPAW8BEeALGkFQRIYb5xwldWtp8pVQUHLaSdVRUphHvcslVr+bvCTHJyIiIulnQAmWc+6Tx9n2PeB7A6lfRGQwVR9o46zYZurHnU/BSQ6xXpaXwX5XRHGz+mCJiIhIcubBEhFJS1veWMeHrYnY1CUnXUdZfgZvu0LGtI2cyYadc9QeOMiubRsJ7nkTGt7H17aHnI69FEQOkOXayXJBMgnh8BAxL1F8tHryafMXEgqUEM6rgOJTyCw7jcLKaZRWTsEXyEj1jyYiIjLolGCJyKjVvn01AGUzP3TSdYzJzeDPFBIIbk9SVEPvQFMrb218meCOP5N3YAMVHduodPsZbw6AmDPqPUU0+MtpyDmFOn8ezp9DxJuJizmIhXGREN5QI1md9eS1VHNK86tk7wl1nSPqjFobQ71/LG3ZFYTzJ+Itmkhe8VhyC4rx5hTjy8rD7/URdRCOQbgzRLSznWiwjXCwlXCwjXCwjWiwhWioDUIt0NmGhdvwhNvwhtvwRdvxRzsIRNvJiHWQ6TrIdEEMh+Hw4ACHAYbDYUTMSwQfYXxE8RExHxF8RM1HxPxELb4cMx/OPDi84DGceXHmBfMkXvFlZx6MGOZc4j0WP2fXeuIdh7n4O4n3w2Xx/eJP4MfFo6bbT0Dip+h9+9Hvw1VfohvIPN69H3p4y4Dq78Ox/a++77EF/UVMvvlnFObrQWWR4UAJloiMWkV1f6XBO4ai4qqTrsPv9dDsKyG78yA4N7BPaUOkqT3Elo1/pvXNVYzZ92emRbayyDoB2O8pZV/+GTSUXkvuxFkUV82hcPxpjPEF6M8sYaFwhJo9NTTs2kbH/reJHXwXf3MNuR27qWp6ldKmVUfOljgAbWTSQSZBTxYhy6bTm0UwUESrr4KYL5uYLxvzeMAM5wxndjjFcjE8LoLFIlg0jLkwnlgYbyyCuQjeWBivi+B3YbwuhMVimIti0Xji5OlKhmJ4OLwew0PMPIdSJg6nVPGyw9s8xBKxxA69um07lBgdqiW+HP+PHZVmGceWdX8/tDzck61D3Il36XWnPh3bW5W9Hty/Wo/e+4RHux4XTyhAJ3PcWla/+CSLr17WjyNFZLAowRKRUWlPQzszI5upH/cBigaYFAUzS/F1RKC9HnJKkhRh8jjneLtmD+++/Gsyql9gZnAdC6wZgGr/qWyfcD0FU8+nYuYiyoomUJaEc2b4fUyYVMWESVXAZcdsD4faObD7Xerq9tHRXI+FGiHURjQaxetx+Mxh3gCeQBYEcvBl5BDIyiEjO49Adj5Z2Xlk5RYSyMwhx+MhJwkxi6QjF+mk6Z+ryN7xG2BZqsMREZRgicgo9dabG7nIGgmftmjAdUWyy6ADaN07bBIs5xyb363h3TWPU7JzFedENjLVwjRZPntKP0DjtIuZcM4VTE7M4zXU/BnZjDtlBuNOmZGS84uMFOYL8FbBImY0rcaFg5g/M9UhiYx6SrBEZFRq2/ZHAMoH0P+qS245HARa9kL5mQOvbwB27GvkjRcfZ8zbj3FOZAMzLcJBbynvVS2l/NylFE07nwLPgKZAFJFhJnTaFeSt/y27Nqyi8txrUh2OyKinBEtERqX8fWtp9BRRWDZ1wHX5C8fB++Ba9qakd0tHZ5TVa/9K2ysPcX7r77nGGmj0FFF9ysepOO9/UXLqAkqUVImMWGcsvIrmdV+hacOTSrBEhgElWMexd+d2qv/0K+Zc+w9kZmtkHpGRojUYZlrodfaNOYvCJAxKkVVcCUCwYQ9ZA66t77buquP1P/yKCdWPczlvEMXDrpLzaDz/MxTOvopCr38IoxGRVCkrLmB15rmctf9FiIZB975ISinBOo7ql1ay4J1/5cAPH+K1KZ9h+odvJb8oGd2/RSSVtr+5kbOsnu1VFySlvqLCQlpcFpEhSLDaOyP8cc0aOv+6gvPb/8AN1kK9r5yaM2+jcslnmVQ4YZAjEJHhqHPqVeS/8SI1G55lwjlXpDockVFNCdZxLPjEt9n85/nYi//MuW//iNC//TvrCxbhnX4lU8+7iuyC0lSH2KNIOEx7ewudwQ4i4RDRcJhIOEg0HCIS7iQaiZfFEsuxSCcWC+NiEYg5cFGci8XntyEGsRjOxedpcc7hXHxIYudi8fFsE3O89Dq2ba8tBD2VH1vmsB6q6LlOZ8du7XlI4u7zi1i3ffsQp/VQdoK4+qUfVfT7bP08wNJkOOf+cu//BYCx865OSn1leRnsd4UUNO1NSn09efP9vWz5wy+p2vkkl9tWInipKV9CYNFnKT7jEoo93kE7t4gMf/M+dD2tr3+D+j8/NGoSLBeLEQq2E2pvpqOjg2Cwg0hnkFgkRDQcwoXjn3Fikfiyi4Zx0U5i0RjRWBQXi+FiUeKfYaLxuedcrOt1aI66+OecxDldfLKDIz9bHDXfnMVLnNkR249cThxz9D49fGZynHifo89yog2979v3uvtbR1/r7UlT3hSmnfMhJpWkx5ixSrBOYMZ5l8N5l7P9tZep++MDzKh/loK1zxN95e/Z4TuFpoJpdJZMJ6u0ivyyiWSWVJKbX0Rubh7WSxN9JBKho72FUEcbne2tdHa00BlsIxJsJdLRSiTUTjTUSizUhutsx4Xbsc42LNKBJ9KONxLEF+3AF+0gEOvA70JkxIJkEiTLhciwMPlD/O8kkm7e9k1lythTklJXaV4GdRRS0JrcBKs1FOGlPz5PbP0vuCD4ImdaO/szKqmZ+VUqF3+GqrzypJ5PRNJXcWEBL4y5hsUHHqX+vdcorpqd6pBOyMVitLY00nhwH831++hoqiPSepBY20GsowFPsAFfZxOecBv+SBv+aDuZsQ4yXAfZroNsgmRajEygINU/jAyqhyKX0jl+XtokWOZ6n1FvyM2bN8+tW7cu1WEcVzgc5q11q2l9cxV5dRuoCO2ghKYe9+10Xjrx40lMJekhhpcYXuv/v3m7yyBoGYTIIOTJpNOTRdiTScSbSdSbRdSXTcyXhfNngT8HAjmYLwOPL4AlXp5DL28Arz+A1+/H68vA48vA4/NjHh94vJjHg8c8mMeDebyYgXm8eMyDx+MBjwePWbzM48Hw4BKTeB6jp98v1/WfI1iPv4vx74lOWOfhio/c3Eudxy6deN/Du/TSztXD8f290v25HY/5dznxAYO5O46ktN8NmfyScjIys5NSV0swzLPf+yiXZW0l5xvvDKgu5xyvbX+PnatXMGXP00y3ajrxUzPuYso/+DfkTvtgWkxmLCJDr7pmJ2N+Np+a/DlM//vfpfRvRaStgQN73qN+705aD+yis3E3nta9ZHTsJ6fzIAWRA5S4BgIW6bWOZnJosVyCnmw6PdlEfNlEfDlEfdlE/bk4fzYukAuBXLz+DHyBTDz+DMwbwPyHPt8EMH9m/POPPwOfz4/X68Pn8+H1evB6vODxgHmwQy+PFzNPotwwPOCxwxN6J1qozOj2P27X9XbEZwXX/TPH0WWH1mN93jf+dFEP+lF8/E9RPZT348NJb7v2+JmlPzH7ssgvGkOmf3g9rWFm651z844uVwtWP/n9fmZ/4GL4wMVA/Jeu8UAte2t20HqgBtdSS7SjlUioDU80iC/WicNw5o2/e7x4vb5EEpSNJyMbTyAHb0Y23oxc/Fk5BLJyycjKJyM7Jz6ZZnYu2V4vyfkoKCLJlpvho8Y7kZzOlyDYBJn9/y615kALG178NQXbHuUD4bXMsQi7sqZSM+dOKhd9ilOziwchchEZSSZPmMhzEz/HxTX/ztZff4/Tr/vmoJ0rEmylruZtGmt30LH/XWL11QRaasjr2E1JZC/5tDEWGNvtmBayafCU0Owfw+7sOVRnl2E5Y/DljiGzoJTsglKyCkrJKSojp2AM+T6/nsiRtKQEa4DMjMLS8RSWpmayThFJPTMjVHgaNAIH3obKY77M6lFdUzubXv4tbvN/M7ftJa62Jpo9+bx/yo1ULP4slZPmDmrcIjLyLPrUt3n57g0sfONutobbmfaxO3vtsnA8kc4gdbvfpWH323Tsf5dI/fv4m2vI7dhFSXgvJTQyDhiX2D/o/Oz1lNHgH8fuwhlECybiL55AXulEisdOpHTcJPKyctGYzDIaKMESEUkCb/np0Ahu35tYLwmWc463a/by3l9/h2fHc8xpe5mLrYkgAWpKF+GZv5SSs64m35cxtMGLyIiR4fdx+ucf5sX/XM6Srfey93tPUDvpGnJOXUB2WRXZOXlEolE6gkE6m/fT1rCPjsZ9uKY9+FtqyO3YTXF4L2NiBxlnriuBijgP+6yU+sBYthecRyR/Ir7iSeSMPZXiiimUjZvIZL+Pyan84UWGiQH1wTKzR4FpidVCoNE5N8fMJgNbgG2Jba845249UX3p0AdLRKQnj6ytZtFvl5A36Szylj8JxBOq3QcaeO/1l2l7+yVK973MzNgWAhalg0xqSs4n56zrGT/vKiwjN8U/gYiMJOFIlFdWPUzBxvs4M7LlhP2/Y87YbyXU+8fSmlVBJH8C3uJJZJedQuH4KZRVTiYjoC9/RLrrrQ9W0ga5MLMfAU3OubsSCdb/OOdm9KcOJVgikq4OtIZ48gef4bPe37Bx/Mdpa2ulpPktpsbeJWBRAHYGTqO1chHlZ11ByemLwBdIcdQiMhrs3beH3ds3EWusIRxsx+Px4A8EsJxScovKKSobT3FZJV6/EiiR/hjUQS4sPpHQDcCFyahPRCTdjMnNoOCSr7L2ufc4b8/DtJDNvqzT2Fb+KfKnLKRi5iIm5mtYdREZemPLxzO2XH3FRYZKsvpgXQDsc8693a2sysw2As3AN51zL/V0oJndAtwCMHHixCSFIyIy9G68YCbh814iFOkkLyNTnblFRERGoRMmWGb2B44cZfOQf3LOPZ1Y/jiwstu2WmCic+6gmZ0NPGVmZzrnmo+uxDn3U+CnEH9EsL8/gIjIcOL3esCbmeowREREJEVOmGA55y463nYz8wHXAmd3OyYEhBLL681sBzAVUAcrEREREREZsTxJqOMiYKtzbtehAjMrNTNvYvkUYArwbhLOJSIiIiIiMmwlow/WjRz5eCDAIuAuMwsDMeBW51x9Es4lIiIiIiIybCVtmPZkMLM64P1Ux3GUMcCBVAchQ0bXe/TQtR49dK1HF13v0UPXenQZjtd7knOu9OjCYZVgDUdmtq6n8e1lZNL1Hj10rUcPXevRRdd79NC1Hl3S6Xonow+WiIiIiIiIoARLREREREQkaZRgndhPUx2ADCld79FD13r00LUeXXS9Rw9d69Elba63+mCJiIiIiIgkiVqwREREREREkkQJloiIiIiISJIowToOM7vMzLaZ2Ttm9rVUxyPJY2YTzOxFM3vLzN40s79LlBeb2XNm9nbivSjVsUpymJnXzDaa2f8k1qvMbG3i/n7UzAKpjlGSw8wKzewJM9tqZlvM7AO6t0cmM7s98Td8s5mtNLNM3dsjh5n93Mz2m9nmbmU93ssW9++J6/66mZ2Vusilv3q51ncn/o6/bmb/bWaF3bZ9PXGtt5nZpSkJ+jiUYPXCzLzAvcDlwBnAx83sjNRGJUkUAf7BOXcGsAD4QuL6fg143jk3BXg+sS4jw98BW7qt/wD4V+fcaUAD8JmURCWD4f8Cq5xzpwOziV933dsjjJlVAF8G5jnnZgBe4EZ0b48kK4DLjirr7V6+HJiSeN0C3DdEMUpyrODYa/0cMMM5NwvYDnwdIPF57UbgzMQxP0l8bh82lGD1bj7wjnPuXedcJ/AIcHWKY5Ikcc7VOuc2JJZbiH8AqyB+jX+R2O0XwDUpCVCSyswqgSuAnyXWDbgQeCKxi671CGFmBcAi4EEA51ync64R3dsjlQ/IMjMfkA3Uont7xHDO/QmoP6q4t3v5auCXLu4VoNDMxg1JoDJgPV1r59yzzrlIYvUVoDKxfDXwiHMu5Jx7D3iH+Of2YUMJVu8qgJpu67sSZTLCmNlkYC6wFih3ztUmNu0FylMVlyTVvwH/CMQS6yVAY7c/3Lq/R44qoA54KPFI6M/MLAfd2yOOc2438C/ATuKJVROwHt3bI11v97I+t41sy4HfJZaH/bVWgiWjmpnlAk8Ctznnmrtvc/E5DDSPQZozsyuB/c659amORYaEDzgLuM85Nxdo46jHAXVvjwyJvjdXE0+qxwM5HPuIkYxgupdHBzP7J+JdOx5OdSx9pQSrd7uBCd3WKxNlMkKYmZ94cvWwc+7XieJ9hx4pSLzvT1V8kjQLgY+YWTXxR30vJN5HpzDxWBHo/h5JdgG7nHNrE+tPEE+4dG+PPBcB7znn6pxzYeDXxO933dsjW2/3sj63jUBmtgy4EviEOzx577C/1kqwevdXYEpiNKIA8c50z6Q4JkmSRB+cB4Etzrkfd9v0DPDpxPKngaeHOjZJLufc151zlc65ycTv4xecc58AXgSuT+ymaz1COOf2AjVmNi1R9CHgLXRvj0Q7gQVmlp34m37oWuveHtl6u5efAT6VGE1wAdDU7VFCSUNmdhnxx/s/4pxr77bpGeBGM8swsyriA5u8mooYe2OHk0E5mpl9mHjfDS/wc+fc91IbkSSLmZ0PvAS8weF+Od8g3g/rMWAi8D5wg3Pu6A62kqbMbDHwv51zV5rZKcRbtIqBjcBNzrlQCsOTJDGzOcQHNAkA7wI3E/9CUff2CGNmdwJLiT8+tBH4LPG+GLq3RwAzWwksBsYA+4BvA0/Rw72cSLLvIf6YaDtws3NuXQrClpPQy7X+OpABHEzs9opz7tbE/v9EvF9WhHg3j98dXWcqKcESERERERFJEj0iKCIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCTJ/wdBt7z2Vf4McgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACez0lEQVR4nOzdeXxU1f3/8ddnJstkDyRhDRJcQLaICogVXPsVrSJSrWjd0K/1q62tWpda2yr1W3/ffq3fuldqa6tVi+Cu1WrdULEigiIquKBEdghhSULWmTm/P+4lDiEhgUyYLO/n4zEP7j333HM/d24mzCfn3HPNOYeIiIiIiIi0XSDRAYiIiIiIiHQVSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiHQQZlZkZs7MkhIdS1dnZtPMbG6i4+hozGyCmX2W6DhERDozJVgiItKpmdl0M6s3s8qY17WJjqszcs695ZwbEs82zWywmT1jZqVmtsnMXjKzuB5DRKQjUYIlIhIn6nlKqFnOucyY1y2JDiieOvnPVi7wLDAE6A3MB55JZEAiIu1JCZaISBuYWYmZ/czMFgPbzCzJzMaZ2b/NbIuZfWhmR8fUn2Nm/2Nm882s3P/Lfs9m2r7AzJaaWYWZfWVm/9Vo+2QzW+S386WZneCX55jZ/Wa21sxWm9lvzCzYwnnsZ2avmVmZmW00s0fMLDdm2yYzO8Rf7+f3Rhztr59iZp/45zvHzIY2en+uNrPFZrbVzGaZWWj33+ndZ2bX+e9LhZktMbMpzdQzM7vNzDb47+VHZjbC35ZqZrea2QozW29mM8wsrZXHf8Cv/7IfwxtmNjBm+x1mttI/5kIzmxCzbbqZPW5mD5tZOTDNzMaa2Tv++7zWzO42s5SYfZyZ/dDMvvCP99/+tfu3f4zZsfWbifloM1vVmvNrLefcfOfc/c65Tc65euA2YIiZ5cXzOCIiHYUSLBGRtjsLOAnvL/W9geeB3wA9gauBJ8ysIKb+ecCFQF8gDNzZTLsbgJOBbOAC4LaYJGcs8DfgGv+4RwIl/n4P+O3uDxwMHA9c1MI5GPA/QD9gKDAAmA7gnPsS+BnwsJmlA38FHnTOzTGzwcBM4AqgAHgBeK7RF/kzgBOAQUAxMK3JAMzG+8lDc6/xLZxDY18CE4Ac4Nd+/H2bqHc83vs32K97BlDmb/utXz4K7/3sD9ywGzGcDfw3kA8sAh6J2fae325P4O/AY42Sz8nA43jX9xEgAlzpt3U4cBzww0bHmwgcCowDrgXuA87Bu54j8H5W95ifKDd3ff7QymaOBNY558parCki0hk55/TSSy+99NrDF15Sc2HM+s+AhxrVeQk431+eA/w2ZtswoA4IAkWAA5KaOdbTwOX+8h+B25qo0xuoBdJiys4CXt/N8zoV+KBR2bPAR8BiINUv+xUwO6ZOAFgNHB3z/pwTs/0WYEacr8F0/z3cEvPq10S9RcBkf3kaMNdfPhb4HC8pCcTUN2AbsF9M2eHA8lbG9QDwaMx6Jl6SNKCZ+puBg2LO6c0W2r8CeCpm3QFHxKwvBH4Ws/5/wO0ttHk0sCqe16dR+4X+z8dZ7XUMvfTSS69EvzrzmG4RkY5iZczyQOB7ZjYppiwZeL2Z+l/72/MbN2pmJwI34vWgBIB0vAQHvB6JF5qIZaDf3loz214WaHTMnZhZb+AOvB6fLH+fzY2q/QkvybrYOVfrl/XzzwEA51zUzFbi9fRsty5mucrfJ95mO+fOiS0ws/OAn+IlruAlODu9z86518zsbuAeYKCZPYnX8xjCe88XxryXhpcMt1bD++6cqzSzTXjnv9LMrgb+0193eD2V+U3t65/PYOD3wGg/riS8JCrW+pjl6ibW++xG7HHl9+L+C/iDc25mouIQEWlvGiIoItJ2LmZ5JV4PVm7MK8M599uYOgNilvcB6oGNsQ2aWSrwBHAr0Ns5l4uXUG3/pr8S2K+JWFbi9WDlxxw/2zk3vIVz+H/+eYx0zmXjDSv7JqswywRuB+4Hpts3942twUvqttcz//xWt3C8nZg3RXjlLl4TWm6loa2BeAnhZUCe//59HHtOsZxzdzrnDsXrURyMN/RyI15SMjzmvcxxzmXuxmk1XGv/PewJrPHP5Vq84Yg9/Pi2Noov9ucK4F7gU+AA/xpd39z5tBf/Xrvmrs+MXezXAy+5etY5d/Pei1hEZO9TgiUiEl8PA5PMbKKZBc0s5E8cUBhT5xwzG+bfz3QT8LhzLtKonRQgFSgFwn5v1vEx2+8HLjCz48wsYGb9zexA59xavC+y/2dm2f62/czsqBbizgIqga1m1h8vwYh1B7DAOXcR3j1m279MzwZO8uNIBq7CS/D+3dIb1ZjzpgjP3MXrrd1oLgMvQSkFb8IQvHuQdmJmY8zsMD/+bUANEHXORfGStNvMrJdft7+ZTYzZ11nMJCZN+I5/b1kK3r1Y85xzK/He77AfX5KZ3YDXg7UrWUA5UGlmBwKXtlA/7pxzw3dxfS5pah8zy8YbJvu2c+66vRuxiMjepwRLRCSO/C/Pk/F6F0rxepSuYcfftw/h3Z+zDm8Y2k+aaKfCL5+NN1Tv+3jD87Zvn48/8QVez8cbfNOTdB5egrbE3/dxvAk1duXXwCF+W88DT27fYGaT8Sap2P6F/qfAIWZ2tnPuM7zerrvwenwmAZOcc3UtHK9dOeeW4N1z9A7eMLmRwNvNVM/GS6Q24w13LAN+52/7GbAMmOfP5vcK3nTjmNkAoIJvhm025e94wzw34U0+sX0Y40vAi3j3fn2Nl9Ttchgn3rDF7/vH/BMwq4X6HcUUYAzeHwRie7z2SXRgIiLtwZxrPAJBRETai5nNAR52zv050bFI25jZOXjDB3/ezPYH8CaM+OVeDUxERBJKk1yIiIjsAefcw4mOQUREOh4NERQR6SbMe+jtbk1OIF2PmV3fzM/BPxMdm4hIV6AhgiIiIiIiInGiHiwREREREZE46VD3YOXn57uioqJEhyEiIiIiIrJLCxcu3OicK2hc3qESrKKiIhYsWJDoMERERERERHbJzL5uqlxDBEVEREREROJECZaIiIiIiEicKMESERERERGJkw51D1ZT6uvrWbVqFTU1NYkORTqAUChEYWEhycnJiQ5FuqBlGyr5zWNv86spB7Nfv16JDkdEREQ6oQ6fYK1atYqsrCyKioows0SHIwnknKOsrIxVq1YxaNCgRIcjXdCczzbwQOkZrH74QLj23USHIyIiIp1Qhx8iWFNTQ15enpIrwczIy8tTb6a0mw2btwLQv+rTBEciIiIinVWHT7AAJVfSQD8L0p7CZSXfrFRtSlgcIiIi0nl1igRLRGRvyKle2bDs1i1OYCQiIiLSWSnBagUz46qrrmpYv/XWW5k+fXriAopx9NFH7/LhzKeeeirjxo3boWz69On079+fUaNGMWLECJ599tn2DlOkU+hZu7phuXJDk88OFBEREdklJVitkJqaypNPPsnGjRvj2q5zjmg0Gtc2Y23ZsoWFCxeydetWvvrqqx22XXnllSxatIjHHnuMCy+8sF3jEOks0sNbGparSpVgiYiIyO5TgtUKSUlJXHzxxdx22207bSstLeW0005jzJgxjBkzhrfffhvweoluvfXWhnojRoygpKSEkpIShgwZwnnnnceIESNYuXIl11xzDSNGjGDkyJHMmjULgDlz5nD00Udz+umnc+CBB3L22WfjnGsyvoceeqihN2r+/PkN5U8++SSTJk3izDPP5NFHH21y36FDh5KUlLRD8njdddcxbNgwiouLufrqqwEoKSnh2GOPpbi4mOOOO44VK1YAMG3aNC699FLGjRvHvvvuy5w5c7jwwgsZOnQo06ZNa2jz0ksvZfTo0QwfPpwbb7xxpzi2bt3KwIEDGxK9bdu2MWDAAOrr65uMW6Q9BKK1VBGi1OVQv2lFosMRERGRTqjN07Sb2QDgb0BvwAH3OefuMLPpwA+AUr/q9c65F9pyrF8/9wlL1pS3pYmdDOuXzY2ThrdY70c/+hHFxcVce+21O5RffvnlXHnllYwfP54VK1YwceJEli5dusu2vvjiCx588EHGjRvHE088waJFi/jwww/ZuHEjY8aM4cgjjwTggw8+4JNPPqFfv34cccQRvP3224wfP36n9qqqqli0aBFvvvkmF154IR9//DEAM2fO5IYbbqB3796cdtppXH/99Tvt++677xIIBCgoKACgrKyMp556ik8//RQzY8uWLQD8+Mc/5vzzz+f888/nL3/5Cz/5yU94+umnAdi8eTPvvPMOzz77LKeccgpvv/02f/7znxkzZgyLFi1i1KhR3HzzzfTs2ZNIJMJxxx3H4sWLKS4ubogjJyeHUaNG8cYbb3DMMcfwj3/8g4kTJ+p5V7JXJUVqqbcU1kTzyC9f3fIOIiIiIo3EowcrDFzlnBsGjAN+ZGbD/G23OedG+a82JVeJlp2dzXnnncedd965Q/krr7zCZZddxqhRozjllFMoLy+nsrJyl20NHDiw4b6ouXPnctZZZxEMBunduzdHHXUU7733HgBjx46lsLCQQCDAqFGjKCkpabK9s846C4AjjzyS8vJytmzZwvr16/niiy8YP348gwcPJjk5uSHxArjtttsYNWoUV199NbNmzWqYnS8nJ4dQKMR//ud/8uSTT5Keng7AO++8w/e//30Azj33XObOndvQ1qRJkzAzRo4cSe/evRk5ciSBQIDhw4c3xDx79mwOOeQQDj74YD755BOWLFmy03lMnTq1oQfv0UcfZerUqbt8H0XiLSlaSzSYynrySKlam+hwREREpBNqcw+Wc24tsNZfrjCzpUD/trbblNb0NLWnK664gkMOOYQLLrigoSwajTJv3jxCodAOdZOSkna4ryn22U0ZGRmtOl5qamrDcjAYJBwON1mv8dTlZsbs2bPZvHlzwwN5y8vLmTlzJjfffDPg3YO1ffhf47jnz5/Pq6++yuOPP87dd9/Na6+91qo4A4HADjEHAgHC4TDLly/n1ltv5b333qNHjx5MmzatyWdZnXLKKVx//fVs2rSJhQsXcuyxx+7yuCLxlhStJZyUSkVKARm1u+6JFhEREWlKXO/BMrMi4GDgXb/oMjNbbGZ/MbMezexzsZktMLMFpaWlTVXpMHr27MkZZ5zB/fff31B2/PHHc9dddzWsL1q0CICioiLef/99AN5//32WL1/eZJsTJkxg1qxZRCIRSktLefPNNxk7duxuxbW912fu3Lnk5OSQk5PDzJkzefHFFxvu+1q4cGGz92HFqqysZOvWrXznO9/htttu48MPPwTgW9/6VsP+jzzyCBMmTGh1fOXl5WRkZJCTk8P69ev55z//2WS9zMxMxowZw+WXX87JJ59MMBhs9TFE4iHJ1REOpFITKiA9Wgn11YkOSURERDqZuCVYZpYJPAFc4ZwrB+4F9gNG4fVw/V9T+znn7nPOjXbOjd5+H1BHdtVVV+0wIcSdd97JggULKC4uZtiwYcyYMQOA0047jU2bNjF8+HDuvvtuBg8e3GR7U6ZMobi4mIMOOohjjz2WW265hT59+uxWTKFQiIMPPphLLrmE+++/n5KSEr7++usdpmcfNGgQOTk5vPvuu0228Z3vfIc1a9ZQUVHBySefTHFxMePHj+f3v/89AHfddRd//etfKS4u5qGHHuKOO+5odXwHHXQQBx98MAceeCDf//73OeKIIxq23XDDDTtMEz916lQefvhhDQ+UhEh2tUQCqYTTenkFFesSG5CIiIh0OtbczHS71YhZMvAP4CXn3O+b2F4E/MM5N2JX7YwePdo1fqbT0qVLGTp0aJtjlK5DPxPSXubfOI4+2Wm8XnA25391FVz4EuwzruUdRUREpNsxs4XOudGNy9vcg2XeDUD3A0tjkysz6xtTbQrwceN9RUQ6CuccKa6WSDCV5Bzv11f91jUJjkpEREQ6mzZPcgEcAZwLfGRmi/yy64GzzGwU3tTtJcB/xeFYIiLtoi4SJUQ90aQQoZ7ePD1VZavJSXBcIiIi0rnEYxbBuYA1salTT8suIt1LbThKKnVEgqlk9+xNvQtSs2mNEiwRERHZLXGdRVBEpLOqC0cJWT0khSjITqOUHCLlehaWiIiI7B4lWCIieD1YIepwSWkUZKWyweVilesTHZaIiIh0MkqwRETwe7Cog+QQeZkplLoeJFdtSHRYIiIi0skowWqlp59+GjPj008/bbZOSUkJI0bscib63TJt2jQef/zxZrdfccUV9O/fn2g02lD2wAMPUFBQwKhRoxg2bBh/+tOf4haPSFdWWx8mlXosKURqUpDNwZ6k1W5seUcRERGRGEqwWmnmzJmMHz+emTNnNrk9HA63+RiRSKTVdaPRKE899RQDBgzgjTfe2GHb1KlTWbRoEXPmzOH6669n/XoNcxJpSV1tDQFzWHIIgOrUAjIiWyBcl9jAREREpFNRgtUKlZWVzJ07l/vvv59HH320oXzOnDlMmDCBU045hWHDhgFeonX22WczdOhQTj/9dKqqqgB49dVXOfjggxk5ciQXXnghtbW1ABQVFfGzn/2MQw45hMcee2ynY7/yyiuMHj2awYMH849//GOHYw8fPpxLL7202aSvV69e7Lfffnz99dcNZXfeeSfDhg2juLiYM888E4BNmzZx6qmnUlxczLhx41i8eDEA06dP5/zzz2fChAkMHDiQJ598kmuvvZaRI0dywgknUF9fD8BNN93EmDFjGDFiBBdffDGNH14djUYpKipiy5YtDWUHHHCAEj/pUMK11QBYcjoAdWkF3gbdhyUiIiK7IR7Pwdp7/nkdrPsovm32GQkn/naXVZ555hlOOOEEBg8eTF5eHgsXLuTQQw8F4P333+fjjz9m0KBBlJSU8Nlnn3H//fdzxBFHcOGFF/KHP/yByy67jGnTpvHqq68yePBgzjvvPO69916uuOIKAPLy8nj//febPHZJSQnz58/nyy+/5JhjjmHZsmWEQiFmzpzJWWedxeTJk7n++uupr68nOTl5h32/+uorvvrqK/bff/+Gst/+9rcsX76c1NTUhoTnxhtv5OCDD+bpp5/mtdde47zzzmPRokUAfPnll7z++ussWbKEww8/nCeeeIJbbrmFKVOm8Pzzz3Pqqady2WWXccMNNwBw7rnn8o9//INJkyY1HDMQCDB58mSeeuopLrjgAt59910GDhxI7969W32ZRNpbfa33x5BAShoALrM3bMFLsHIHJC4wERER6VTUg9UKM2fObOjtOfPMM3foMRo7diyDBg1qWB8wYABHHHEEAOeccw5z587ls88+Y9CgQQwePBiA888/nzfffLNhn6lTpzZ77DPOOINAIMABBxzAvvvuy6effkpdXR0vvPACp556KtnZ2Rx22GG89NJLDfvMmjWLUaNGcdZZZ/HHP/6Rnj17NmwrLi7m7LPP5uGHHyYpycuv586dy7nnngvAscceS1lZGeXl5QCceOKJJCcnM3LkSCKRCCeccAIAI0eOpKSkBIDXX3+dww47jJEjR/Laa6/xySef7HQeU6dOZdasWQA8+uijuzxnkUSI1PkJVnKq929WXwBchaZqFxERkdbrXD1YLfQ0tYdNmzbx2muv8dFHH2FmRCIRzIzf/e53AGRkZOxQ38x2ud6Uxm201N5LL73Eli1bGDlyJABVVVWkpaVx8sknA14yc/fddzfZ3vPPP8+bb77Jc889x80338xHH+26RzA11f+yGQiQnJzcEE8gECAcDlNTU8MPf/hDFixYwIABA5g+fTo1NTU7tXP44YezbNkySktLefrpp/nlL3+5y+OK7G1hf9huUor3M5/aox8AtVvWEkpYVCIiItLZqAerBY8//jjnnnsuX3/9NSUlJaxcuZJBgwbx1ltvNVl/xYoVvPPOOwD8/e9/Z/z48QwZMoSSkhKWLVsGwEMPPcRRRx3VquM/9thjRKNRvvzyS7766iuGDBnCzJkz+fOf/0xJSQklJSUsX76cl19+ueF+r+ZEo1FWrlzJMcccw//+7/+ydetWKisrmTBhAo888gjg3duVn59PdnZ2q+Lbnkzl5+dTWVnZ7KyHZsaUKVP46U9/ytChQ8nLy2tV+yJ7SyTs/SwHk70hgpk9+xBxRnXZ6kSGJSIiIp2MEqwWzJw5kylTpuxQdtpppzU7scSQIUO45557GDp0KJs3b+bSSy8lFArx17/+le9973uMHDmSQCDAJZdc0qrj77PPPowdO5YTTzyRGTNmEI1GefHFFznppJMa6mRkZDB+/Hiee+65Jtu46KKLWLBgAZFIhHPOOYeRI0dy8MEH85Of/ITc3FymT5/OwoULKS4u5rrrruPBBx9s5bsDubm5/OAHP2DEiBFMnDiRMWPGNGybMWMGM2bMaFifOnUqDz/8sIYHSocUqduxB6sgJ5MycqjfsiaRYYmIiEgnY41nfEuk0aNHuwULFuxQtnTpUoYOHZqgiKQj0s+EtIeXXniSifMvYOvps8kZMZHP11dQd894CvruQ+9Lm/7jhYiIiHRfZrbQOTe6cbl6sEREgEi9N0QwKcW746ogM5UNLpdg1YZEhiUiIiKdjBIsEREgWu8NEUxO9RKs3PRkyqwHoZrSRIYlIiIinUynSLA60jBGSSz9LEh7cWE/wfJ7sMyMyuR80us3QyScyNBERESkE+nwCVYoFKKsrExfrAXnHGVlZYRCmjRb4m97D5YlffPzVZvWiwBR2KZeLBEREWmddn8OlpmdANwBBIE/O+d262FWhYWFrFq1itJSfcERL+EuLCxMdBjSFYXrvH+DKQ1F0YxeUAlUroPsvomJS0RERDqVdk2wzCwI3AP8B7AKeM/MnnXOLWltG8nJyQwaNKi9QhQRAcBF/AdkJ6U2lAWy+8B6oGJ9YoISERGRTqe9hwiOBZY5575yztUBjwKT2/mYIiK7r6EH65sEKyWnv7dp69pERCQiIiKdUHsnWP2BlTHrq/yyBmZ2sZktMLMFGgYoIgkT8ROspG+GCGbk9wOgatPqREQkIiIinVDCJ7lwzt3nnBvtnBtdUFCQ6HBEpJuyiDfJRWwPVn5OJmUui9otaxIUlYiIiHQ27Z1grQYGxKwX+mUiIh2Kbe/BCiY3lPXKCrHB5eLKNURQREREWqe9E6z3gAPMbJCZpQBnAs+28zFFRHabReqoIxnMGsp6ZadS6nIJbNuQwMhERESkM2nXBMs5FwYuA14ClgKznXOftOcxRUT2RCBSR9iSdyjLy0hhAz1IrVaCJSIiIq3T7s/Bcs69ALzQ3scREWmLQLSOsKXsUJYUDFCRlEd6XRlEoxBI+G2rIiIi0sHp24KICNsTrOSdymtCvQgSgepNCYhKREREOhslWCIiQDBaRySwc4IVyejlLVRoogsRERFpmRIsERG8HqxoIGWn8qScPt5Cxfq9HJGIiIh0RkqwRESAoKtvMsFK7eE9G71+q56FJSIiIi1TgiUiAiRF64kGd06wsgsKAdhWpkf4iYiISMuUYIlItxeNOlKoJRJM22lbr565lLt0ajapB0tERERapgRLRLq9mnCENOqIJu2cYPXNCbHe9SBarkkuREREpGVKsESk26upj5JGLS555wSrT04aG1wugW2a5EJERERapgRLRLq9mvoIaVaLa6IHKzM1ic2BHqTWlCYgMhEREelslGCJSLdXXe8NESQ5ventqQVk1m8E5/ZyZCIiItLZKMESkW6vpj5CGrVYStMJVn16L5JdPdRs2buBiYiISKejBEtEur2a2npCVt9sgkXm9ocNr9t7QYmIiEinpARLRLq9+pptAASaGSIY7OE9C6t+88q9FpOIiIh0TkqwRKTbq9ueYKU2nWClFwwEoGJ9yd4KSURERDopJVgi0u2F/QQrKZTR5Pbc3vsQcUbVxhV7MywRERHphNqUYJnZ78zsUzNbbGZPmVmuX15kZtVmtsh/zYhLtCIi7SBc6ydYqZlNbu/XM4v19CCyWQmWiIiI7Fpbe7BeBkY454qBz4Gfx2z70jk3yn9d0sbjiIi0m8j2BCvU9BDBfjlprHV5BCvW7M2wREREpBNqU4LlnPuXcy7sr84DCtsekojI3vVNgtX0EMG0lCAbAwWEqtbuzbBERESkE4rnPVgXAv+MWR9kZh+Y2RtmNiGOxxERiStXVw1ASjMJFkBlqA85dev1sGERERHZpaSWKpjZK0CfJjb9wjn3jF/nF0AYeMTfthbYxzlXZmaHAk+b2XDnXHkT7V8MXAywzz777NlZiIi0wfYerORdJFh1Gf1IrqmHbRshs2BvhSYiIiKdTIsJlnPu27vabmbTgJOB45zz/rTrnKsFav3lhWb2JTAYWNBE+/cB9wGMHj1afxoWkb0uWlMBgKVmNVvHcvpDGVC+SgmWiIiINKutswieAFwLnOKcq4opLzCzoL+8L3AA8FVbjiUi0l4CtVu8hVBus3WS87we9qrSr9s/IBEREem0WuzBasHdQCrwspkBzPNnDDwSuMnM6oEocIlzblMbjyUi0i6CdVuJYgRSs5utk9WrCICKDSU0PdegiIiISBsTLOfc/s2UPwE80Za2RUT2luS6cqosg8xA8536eQX9qHHJ1OphwyIiIrIL8ZxFUESkU0oNl1MVbP7+K4D+PdJZ4/KIbl21l6ISERGRzkgJloh0e6FwBbVJzQ8PBCjISmUdeSRXrt5LUYmIiEhnpARLRLq9tEgF9cm7TrCCAWNzcm8yatbtpahERESkM1KCJSLdWm04QparJJKa02Ld6rQ+ZIfLIFK/FyITERGRzkgJloh0a1uq6sm2KkjLbbFuOLM/ARxUrG3/wERERKRTUoIlIt3apspacqgkkN6jxbrBHoUARDavbO+wREREpJNSgiUi3VrFpvWkWIRAVt8W66bmDfT22VDSzlGJiIhIZ6UES0S6tfKN3rTr6Xn9Wqyb27sIgEolWCIiItIMJVgi0q1VlXnTruf22qfFur0L8tniMqjfpCGCIiIi0jQlWCLSrdVu8SasSO3R8hDBfrkh1ro8AuV62LCIiIg0TQmWiHRrtn1GwMw+LdbNCiWzPpBPapWehSUiIiJNU4IlIt1aUtUGqiwDUtJbVb8ipTeZtUqwREREpGlKsESkW8uuXUdlaq9W169N70dmtALqtrVjVCIiItJZKcESkW6rvKaeXm4j1en9W71PNNuvu3V1O0UlIiIinZkSLBHpttZuqaG/bcTltD7BSurhzTZYW/Z1e4UlIiIinZgSLBHpttZv3EgPqySp58BW75PZy6u7dX1JO0UlIiIinVmbEiwzm25mq81skf/6Tsy2n5vZMjP7zMwmtj1UEZH4Kl/3FQAZvYpavU+PPgOJOqN6Y0n7BCUiIiKdWlIc2rjNOXdrbIGZDQPOBIYD/YBXzGywcy4Sh+OJiMRFzUZvmF92731bvU/fnllsIJfIZj0LS0RERHbWXkMEJwOPOudqnXPLgWXA2HY6lojIHnFbVgIQ9O+rao3e2d7DhoMVmuRCREREdhaPBOsyM1tsZn8xsx5+WX9gZUydVX7ZTszsYjNbYGYLSktL4xCOiEjrJFesIkwQslp+yHDDPsEAZcEC0qv1LCwRERHZWYsJlpm9YmYfN/GaDNwL7AeMAtYC/7e7ATjn7nPOjXbOjS4oKNjd3UVE9lh6zTq2JhdAILhb+1Wm9iGnfj04106RiYiISGfV4j1Yzrlvt6YhM/sT8A9/dTUwIGZzoV8mItIhRKOOnvXr2ZbTj7zd3Lcmoy8pNXVQtQkydndvERER6craOotg35jVKcDH/vKzwJlmlmpmg4ADgPltOZaISDxtrKyln5VSn9X6Z2BtF92+z9aVu64oIiIi3U5b78G6xcw+MrPFwDHAlQDOuU+A2cAS4EXgR5pBUEQ6kjWbK+jNZixnQMuVG0nq4e1Tt0kJloiIiOyoTdO0O+fO3cW2m4Gb29K+iEh72by2hKA5Ugta/5Dh7VLzvVkHKzeU0DPegYmIiEin1l7TtIuIdGhVpSXA7j0Da7se+f2pdUnUqgdLREREGonHg4ZFRDqdcJn3kOHM3oN2e9/eOWmUkgtb18Q5KhEREens1IMlIt1SwH9QsOUU7va+fbJDrHM9CVTqWVgiIiKyIyVYItIthbatZmsgF5LTdnvf7LQkNtKDlOr18Q9MREREOjUlWCLSLeXUrmNrSp892tfMqEgpILO2NM5RiYiISGenBEtEup1I1JEXLaU6vd8et1Eb6k3IVUNtRRwjExERkc5OCZaIdDul5TX0YyOR7N2//2q7cJb/nPWtq+IUlYiIiHQFSrBEpNspXbeCNKsjqec+e95Irrev2/x1nKISERGRrkAJ1i6ULHmP935/OptLNRWzSFdSufYLAFJ7D97jNpLzvOnda0qXxyUmERER6RqUYO1C6efvctDW1+Cew1j47L1EI5FEhyQicVBf6iVYPQqH7HEb2fn9qXHJVG/4Kl5hiYiISBegBw3vwphTL+OrA8ZS/9SPOPT96yhZdA8bR17M0OPOJSO7R6LDa5NIJEK4vpZoJEI4EiYaiRKNhIlEwrhohEgkQjQSJhr1yl00Ai4KLoK5CDiHi2nPxS642HLXaLvDxe4YU9ntuKHLMNthLVFhxIkfv3Xu80hes5B6FySrz3573Eaf3DRWuQJyNrW+B2vB5yv54sV76bnfoUw86bQ9PrZ4XDRKfThMfV0t9fV1hOvriYTriEbqIVIP0TAuGsW5KM7h/+vA/3f7Kxp1wDdlOEfUOcxFE32KrfqN4drx89jmltsYmyX6d2ZCD5/437PNXr699H/Anl//OMYX91NN/HXdpQ76/3sk1INe/fclJy050aG0ihKsFuw7fCzRIe+w4KUHyFt4B6M//BVVi37Dh5mjqR94JD0OGEfh4FGkZuTG7Zjh+nqqqyupqa6krqqK2uoK6mq2Ea6pJFyzjXBtFZHabbi6KqJ1VVBXBeFqrL4KC9cQCFeTFKkhKVJNUrSG5GgNKdFaUlwNqdSS5mpJszqCcYtYpHPZD/g6OICBwT3/Rb1vfgbzXX++VfZpi3UXfv41n//jdo7f+hijrYJPtg6FbpRghcMRyiu2sm3LRqorNlFdXkZd5RbCVZuJVm+B6i0EarcSCFdj/u+vYMPvr1pSojWkuFpC1JJMPUkuQpAIKRYhBUhJ9AmKiEi7+mt4IgVn3M7JxXs+++/epASrFQJJSYw+6SLciReyZMFrlL/7EIVl71C45G1Y4tXZQE8qgrlUJ/egJjkHF0iGQDLRQBLOOQKRWgLReoLROgL+K9n/8pAcrSHV1ZJKLSFXS8jqyQKydiPGsAtQbanUEKLOUqkLhKgPpBIOhKhOzqcimE40KUQ0mAbJabikdFwwBRcIYoEgZgEIBDALev8GghAIYpaEBbxtWJL3l1IL4vy/wMT+oWP7X5oc1qi8qYVvKnTQP5bEzfZ+ua5wml4nY9foaSzY96A27Z+Xmcqy5MGcWP0eVG2C9J47bHfO8fbiT9n48u0cW/Esh1oVK/O+xbraKPtu+wCiEQh03j9zOOcor6yidM1XlK9bTu2m1YQrS6FyA0nVGwnVlpER3kR2ZDM93FZ6Wpieu2hvGyGqCVFnIeoCqdRbiPpgiNqkTKqSQoSDIaLBENFAKgSTvfcukIwleb9rLZiMBZP8bUk4S8YFgmABzAzMvN9zBliAgHm/h3bYBtj2+gHDG0WfuE+ua8Vnzdrx89j2QQVta6C9BzW0dGUT+5vOtf8b0HIEu70lrsffw8O052eizTr8SJ2OG9/gjAHsO7DzjB5TgrUbLBBg2Nhvw9hv45xj1fLPWPPZe4TXLSGlvISkmk2E6jbTu3YtQcIEXZhkwjgC1JNE2JIJWzL1lkwkkEI4EKImOZdI0Et8osnpuCQvAbLkdEhJJ5iSTiCUQVJKOkmhDJJDGSSnZZAayiQlPYtQWiah9EySklN2OykTkbapLTgI1j8CqxbA4OMBqKmP8NqbbxCe9yeOr3uZFAtT0us4Uk6+ngEDD+WVR+9g+KfzqFqzlPTCEQk+g+Y559i4aRMbvl7K1tWfU7dpBYHy1YSq1pJVu478SCl5bCXHdvwPud4F2RLIpTzYg6rUnqxJPYCV6QWQ3pNgeg+SM3qQktmD1Kw80rN7kpmTR1pWDzKCyWQk6FxFRETiSQnWHjIzCvc9kMJ9D0x0KCKSIP1GHsnmdZnw+p2scwP57J3n2Kfkcb7DUupJYvXAU+h30nXs2/ubyTRSi8bAp1C65A0GJjjBcs5Rtnkz60uWUL76c+pLl5G05SuyqlbSu341vWwzBTH1a0hhY7AX5am9WZl+ICuy+xPsMYD0giKyexWSW1BIKCuPArMd9hMREelOlGCJiOyhSaP358HXJnPZ2kfoMXMsQ4HS5H6UjLyOgcf9gKKM/J32GTLsYDb8M5f6L98CftTuMTrn2LRlC+tLlrB11Wd+ErWcrKoV9KpfTW/bTGyUZZbLxpRCVmcfzsqe+5LaezA9+g+moPAAQll5FHb1Mb0iIiJt1KYEy8xmAdv/NJsLbHHOjTKzImAp8Jm/bZ5z7pK2HEtEpKPJCiUz5ce38tJrh9DPbWCfg46hYL/DKAg0/wSMXtlpvJo8ktGl70C4DpLaPkWDc45Sfzhf+erPiZQuI7h1OVnbVtKrfhW9bTN5MfXLLJeylP6syT6cVT33JbXXAfQYcCC9Bh5IXnruDnVFRERk97QpwXLOTd2+bGb/B2yN2fylc25UW9oXEeno+vdIp/9pF+3WPhVDvkfOJ2+x7o0/0ee41vViVdfUsX5tCVvWLqdi/XLCG5eTXF5CTtVKeofX0Ms20yumfhm5lKX2Z032OFb18HqicguH0GvgUPIylESJiIi0l7gMETQzA84Ajo1HeyIiXdmRJ57Jgk9mUPzWDXy8ahm2zzhIClFdXU19RSnRbaVEKzeSvG0dmbXr6BneQC9XRpHt+FymMutJWUp/Vvc4wkuieu1Pj8IhFAwcSl56jpIoERGRBLB4PNzVzI4Efu+cG+2vFwGfAJ8D5cAvnXNvNbPvxcDFAPvss8+hX3/9dZvjERHp6JZ+uZxNM/+LcfXzCdrOv4frCVIWyGNrch+q0vsSySok2KOQUH4R+f33Ja/ffgRCmjdUREQkUcxs4fb8Z4fylhIsM3sF6NPEpl84557x69wLLHPO/Z+/ngpkOufKzOxQ4GlguHOufFfHGj16tFuwYEFrzkdEpNNzzrFyzVq2rV5KNFJPelqIzB59yMrrTSgjt+s/JE5ERKQTay7BanGIoHPu2y00nAR8Fzg0Zp9aoNZfXmhmXwKDAWVPIiI+M2Of/v2gf+d4Mr2IiIi0rPmprlrv28CnzrlV2wvMrMDMgv7yvsABwFdxOJaIiIiIiEiHFY9JLs4EZjYqOxK4yczqgShwiXNuUxyOJSIiIiIi0mG1OcFyzk1rouwJ4Im2ti0iIiIiItKZxGUWwXgxs1Kgo00jmA9sTHQQstfoencfutbdh65196Lr3X3oWncvHfF6D3TOFTQu7FAJVkdkZguamh1EuiZd7+5D17r70LXuXnS9uw9d6+6lM13veExyISIiIiIiIijBEhERERERiRslWC27L9EByF6l69196Fp3H7rW3Yuud/eha929dJrrrXuwRERERERE4kQ9WCIiIiIiInGiBEtERERERCROlGDtgpmdYGafmdkyM7su0fFI/JjZADN73cyWmNknZna5X97TzF42sy/8f3skOlaJDzMLmtkHZvYPf32Qmb3rf75nmVlKomOU+DCzXDN73Mw+NbOlZna4Pttdk5ld6f8O/9jMZppZSJ/trsPM/mJmG8zs45iyJj/L5rnTv+6LzeyQxEUuu6uZa/07//f4YjN7ysxyY7b93L/Wn5nZxIQEvQtKsJphZkHgHuBEYBhwlpkNS2xUEkdh4Crn3DBgHPAj//peB7zqnDsAeNVfl67hcmBpzPr/Arc55/YHNgP/mZCopD3cAbzonDsQOAjvuuuz3cWYWX/gJ8Bo59wIIAiciT7bXckDwAmNypr7LJ8IHOC/Lgbu3UsxSnw8wM7X+mVghHOuGPgc+DmA/33tTGC4v88f/O/tHYYSrOaNBZY5575yztUBjwKTExyTxIlzbq1z7n1/uQLvC1h/vGv8oF/tQeDUhAQocWVmhcBJwJ/9dQOOBR73q+hadxFmlgMcCdwP4Jyrc85tQZ/trioJSDOzJCAdWIs+212Gc+5NYFOj4uY+y5OBvznPPCDXzPrulUClzZq61s65fznnwv7qPKDQX54MPOqcq3XOLQeW4X1v7zCUYDWvP7AyZn2VXyZdjJkVAQcD7wK9nXNr/U3rgN6Jikvi6nbgWiDqr+cBW2J+cevz3XUMAkqBv/pDQv9sZhnos93lOOdWA7cCK/ASq63AQvTZ7uqa+yzre1vXdiHwT3+5w19rJVjSrZlZJvAEcIVzrjx2m/OeYaDnGHRyZnYysME5tzDRschekQQcAtzrnDsY2Eaj4YD6bHcN/r03k/GS6n5ABjsPMZIuTJ/l7sHMfoF3a8cjiY6ltZRgNW81MCBmvdAvky7CzJLxkqtHnHNP+sXrtw8p8P/dkKj4JG6OAE4xsxK8ob7H4t2jk+sPKwJ9vruSVcAq59y7/vrjeAmXPttdz7eB5c65UudcPfAk3uddn+2urbnPsr63dUFmNg04GTjbffPw3g5/rZVgNe894AB/NqIUvJvpnk1wTBIn/j049wNLnXO/j9n0LHC+v3w+8Mzejk3iyzn3c+dcoXOuCO9z/Jpz7mzgdeB0v5qudRfhnFsHrDSzIX7RccAS9NnuilYA48ws3f+dvv1a67PdtTX3WX4WOM+fTXAcsDVmKKF0QmZ2At7w/lOcc1Uxm54FzjSzVDMbhDexyfxExNgc+yYZlMbM7Dt4924Egb84525ObEQSL2Y2HngL+Ihv7su5Hu8+rNnAPsDXwBnOucY32EonZWZHA1c75042s33xerR6Ah8A5zjnahMYnsSJmY3Cm9AkBfgKuADvD4r6bHcxZvZrYCre8KEPgIvw7sXQZ7sLMLOZwNFAPrAeuBF4miY+y36SfTfeMNEq4ALn3IIEhC17oJlr/XMgFSjzq81zzl3i1/8F3n1ZYbzbPP7ZuM1EUoIlIiIiIiISJxoiKCIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIh2EmRWZmTOzpETH0tWZ2TQzm5voODoaM5tgZp8lOg4Rkc5MCZaIiHRqZjbdzOrNrDLmdW2i4+qMnHNvOeeGxLNNMxtsZs+YWamZbTKzl8wsrscQEelIlGCJiMSJep4SapZzLjPmdUuiA4qnTv6zlQs8CwwBegPzgWcSGZCISHtSgiUi0gZmVmJmPzOzxcA2M0sys3Fm9m8z22JmH5rZ0TH155jZ/5jZfDMr9/+y37OZti8ws6VmVmFmX5nZfzXaPtnMFvntfGlmJ/jlOWZ2v5mtNbPVZvYbMwu2cB77mdlrZlZmZhvN7BEzy43ZtsnMDvHX+/m9EUf766eY2Sf++c4xs6GN3p+rzWyxmW01s1lmFtr9d3r3mdl1/vtSYWZLzGxKM/XMzG4zsw3+e/mRmY3wt6Wa2a1mtsLM1pvZDDNLa+XxH/Drv+zH8IaZDYzZfoeZrfSPudDMJsRsm25mj5vZw2ZWDkwzs7Fm9o7/Pq81s7vNLCVmH2dmPzSzL/zj/bd/7f7tH2N2bP1mYj7azFa15vxayzk33zl3v3Nuk3OuHrgNGGJmefE8johIR6EES0Sk7c4CTsL7S31v4HngN0BP4GrgCTMriKl/HnAh0BcIA3c20+4G4GQgG7gAuC0myRkL/A24xj/ukUCJv98Dfrv7AwcDxwMXtXAOBvwP0A8YCgwApgM4574EfgY8bGbpwF+BB51zc8xsMDATuAIoAF4Anmv0Rf4M4ARgEFAMTGsyALPxfvLQ3Gt8C+fQ2JfABCAH+LUff98m6h2P9/4N9uueAZT5237rl4/Cez/7AzfsRgxnA/8N5AOLgEditr3nt9sT+DvwWKPkczLwON71fQSIAFf6bR0OHAf8sNHxJgKHAuOAa4H7gHPwrucIvJ/VPeYnys1dnz+0spkjgXXOubIWa4qIdEbOOb300ksvvfbwhZfUXBiz/jPgoUZ1XgLO95fnAL+N2TYMqAOCQBHggKRmjvU0cLm//Efgtibq9AZqgbSYsrOA13fzvE4FPmhU9izwEbAYSPXLfgXMjqkTAFYDR8e8P+fEbL8FmBHnazDdfw+3xLz6NVFvETDZX54GzPWXjwU+x0tKAjH1DdgG7BdTdjiwvJVxPQA8GrOeiZckDWim/mbgoJhzerOF9q8AnopZd8ARMesLgZ/FrP8fcHsLbR4NrIrn9WnUfqH/83FWex1DL7300ivRr848pltEpKNYGbM8EPiemU2KKUsGXm+m/tf+9vzGjZrZicCNeD0oASAdL8EBr0fihSZiGei3t9bMtpcFGh1zJ2bWG7gDr8cny99nc6Nqf8JLsi52ztX6Zf38cwDAORc1s5V4PT3brYtZrvL3ibfZzrlzYgvM7Dzgp3iJK3gJzk7vs3PuNTO7G7gHGGhmT+L1PIbw3vOFMe+l4SXDrdXwvjvnKs1sE975rzSzq4H/9NcdXk9lflP7+uczGPg9MNqPKwkviYq1Pma5uon1PrsRe1z5vbj/Av7gnJuZqDhERNqbhgiKiLSdi1leideDlRvzynDO/TamzoCY5X2AemBjbINmlgo8AdwK9HbO5eIlVNu/6a8E9msilpV4PVj5McfPds4Nb+Ec/p9/HiOdc9l4w8q+ySrMMoHbgfuB6fbNfWNr8JK67fXMP7/VLRxvJ+ZNEV65i9eElltpaGsgXkJ4GZDnv38fx55TLOfcnc65Q/F6FAfjDb3ciJeUDI95L3Occ5m7cVoN19p/D3sCa/xzuRZvOGIPP76tjeKL/bkCuBf4FDjAv0bXN3c+7cW/16656zNjF/v1wEuunnXO3bz3IhYR2fuUYImIxNfDwCQzm2hmQTML+RMHFMbUOcfMhvn3M90EPO6cizRqJwVIBUqBsN+bdXzM9vuBC8zsODMLmFl/MzvQObcW74vs/5lZtr9tPzM7qoW4s4BKYKuZ9cdLMGLdASxwzl2Ed4/Z9i/Ts4GT/DiSgavwErx/t/RGNea8KcIzd/F6azeay8BLUErBmzAE7x6knZjZGDM7zI9/G1ADRJ1zUbwk7TYz6+XX7W9mE2P2dRYziUkTvuPfW5aCdy/WPOfcSrz3O+zHl2RmN+D1YO1KFlAOVJrZgcClLdSPO+fc8F1cn0ua2sfMsvGGyb7tnLtu70YsIrL3KcESEYkj/8vzZLzehVK8HqVr2PH37UN49+eswxuG9pMm2qnwy2fjDdX7Pt7wvO3b5+NPfIHX8/EG3/QknYeXoC3x930cb0KNXfk1cIjf1vPAk9s3mNlkvEkqtn+h/ylwiJmd7Zz7DK+36y68Hp9JwCTnXF0Lx2tXzrklePccvYM3TG4k8HYz1bPxEqnNeMMdy4Df+dt+BiwD5vmz+b2CN904ZjYAqOCbYZtN+TveMM9NeJNPbB/G+BLwIt69X1/jJXW7HMaJN2zx+/4x/wTMaqF+RzEFGIP3B4HYHq99Eh2YiEh7MOcaj0AQEZH2YmZzgIedc39OdCzSNmZ2Dt7wwZ83s/0BvAkjfrlXAxMRkYTSJBciIiJ7wDn3cKJjEBGRjkdDBEVEugnzHnq7W5MTSNdjZtc383Pwz0THJiLSFWiIoIiIiIiISJyoB0tERERERCROOtQ9WPn5+a6oqCjRYYiIiIiIiOzSwoULNzrnChqXd6gEq6ioiAULFiQ6DBERERERkV0ys6+bKtcQQRERERERkThRgiUiIiIiIhInSrBERHbDV6WVvPTJukSHISIiIh1Uh7oHqyn19fWsWrWKmpqaRIcinUwoFKKwsJDk5OREhyJdyE8eeY+DS59m5JU30i+/Z6LDERERkQ6mwydYq1atIisri6KiIsws0eFIJ+Gco6ysjFWrVjFo0KBEhyNdSL8Nb/DfKQ/w9Qu1cJ6ezysiIiI76vBDBGtqasjLy1NyJbvFzMjLy1PPp8Rdpnk/U/1Knk5sICIiItIhdfgEC1ByJXtEPzcSb/WRKHlsBSA5Wg3RaIIjEhERkY6mUyRYIiIdwdbqevJt6zcF20oTF4yIiIh0SEqwWsHMuOqqqxrWb731VqZPn564gGLMmzePww47jFGjRjF06NCGuObMmcO///3vNrV9wgknkJuby8knnxyHSEU6vy1VjRKsrasSF4yIiIh0SG1OsMxsgJm9bmZLzOwTM7vcL+9pZi+b2Rf+vz3aHm5ipKam8uSTT7Jx48a4tuucI9rGIUbnn38+9913H4sWLeLjjz/mjDPOAOKTYF1zzTU89NBDbWpDpCvZVhumgK3UkuIVbF2R2IBERESkw4nHLIJh4Crn3PtmlgUsNLOXgWnAq86535rZdcB1wM/acqBfP/cJS9aUtzngWMP6ZXPjpOG7rJOUlMTFF1/Mbbfdxs0337zDttLSUi655BJWrPC+aN1+++0cccQRTJ8+nczMTK6++moARowYwT/+8Q8AJk6cyGGHHcbChQt54YUXuPvuu/nnP/+JmfHLX/6SqVOnMmfOHKZPn05+fj4ff/wxhx56KA8//PBO9xVt2LCBvn37AhAMBhk2bBglJSXMmDGDYDDIww8/zF133cWBBx7YbJxffvkly5YtY+PGjVx77bX84Ac/AOC4445jzpw5u3xvHnvsMX79618TDAbJycnhzTffpKamhksvvZQFCxaQlJTE73//e4455hgeeOABnn76abZt28YXX3zB1VdfTV1dHQ899BCpqam88MIL9OzZkz/96U/cd9991NXVsf/++/PQQw+Rnp6+w3HHjRvH/fffz/Dh3rU7+uijufXWWxk9evQu4xVpi9pwlHwrZ3nqEA6s/YiajSWEEh2UiIiIdCht7sFyzq11zr3vL1cAS4H+wGTgQb/ag8CpbT1WIv3oRz/ikUceYevWrTuUX3755Vx55ZW89957PPHEE1x00UUttvXFF1/wwx/+kE8++YQFCxawaNEiPvzwQ1555RWuueYa1q5dC8AHH3zA7bffzpIlS/jqq694++23d2rryiuvZMiQIUyZMoU//vGP1NTUUFRUxCWXXMKVV17JokWLmDBhwi7jXLx4Ma+99hrvvPMON910E2vWrGn1+3LTTTfx0ksv8eGHH/Lss88CcM8992BmfPTRR8ycOZPzzz+/YTa/jz/+mCeffJL33nuPX/ziF6Snp/PBBx9w+OGH87e//Q2A7373u7z33nt8+OGHDB06lPvvv3+n406dOpXZs2cDsHbtWtauXavkStpdbThCtm2jOr0/VS6V6k2t/6yIiIhI9xDX52CZWRFwMPAu0Ns5t9bftA7o3cw+FwMXA+yzzz67bL+lnqb2lJ2dzXnnncedd95JWlpaQ/krr7zCkiVLGtbLy8uprKzcZVsDBw5k3LhxAMydO5ezzjqLYDBI7969Oeqoo3jvvffIzs5m7NixFBYWAjBq1ChKSkoYP378Dm3dcMMNnH322fzrX//i73//OzNnzmyy12lXcU6ePJm0tDTS0tI45phjmD9/Pqeeemqr3pcjjjiCadOmccYZZ/Dd73634Zx+/OMfA3DggQcycOBAPv/8cwCOOeYYsrKyyMrKIicnh0mTJgEwcuRIFi9eDHhJ2C9/+Uu2bNlCZWUlEydO3Om4Z5xxBscffzy//vWvmT17Nqeffnqr4hVpi5r6KKnUE0rPYGNZNqGt6xMdkoiIiHQwcUuwzCwTeAK4wjlXHjuUzTnnzMw1tZ9z7j7gPoDRo0c3WaejuOKKKzjkkEO44IILGsqi0Sjz5s0jFNpxoFBSUtIO91fFPo8pIyOjVcdLTU1tWA4Gg4TD4Sbr7bffflx66aX84Ac/oKCggLKysp3qNBcn7Dyd+e5Mbz5jxgzeffddnn/+eQ499FAWLly4y/qx5xQIBBrWA4FAw/lNmzaNp59+moMOOogHHnigyYSxf//+5OXlsXjxYmbNmsWMGXrgq7S/2nCEVOpJT89gIzn0r9yQ6JBERESkg4nLLIJmloyXXD3inHvSL15vZn397X2BTv9NpGfPnpxxxhk7DFk7/vjjueuuuxrWFy1aBEBRURHvv/8+AO+//z7Lly9vss0JEyYwa9YsIpEIpaWlvPnmm4wdO7bVMT3//PM45+WlX3zxBcFgkNzcXLKysqioqGgxToBnnnmGmpoaysrKmDNnDmPGjGn18b/88ksOO+wwbrrpJgoKCli5ciUTJkzgkUceAeDzzz9nxYoVDBkypNVtVlRU0LdvX+rr6xvaacrUqVO55ZZb2Lp1K8XFxa1uX2RPeT1YdWRkZLHR5ZBUrWnaRUREZEfxmEXQgPuBpc6538dsehY4318+H3imrcfqCK666qodZhO88847WbBgAcXFxQwbNqyhJ+W0005j06ZNDB8+nLvvvpvBgwc32d6UKVMoLi7moIMO4thjj+WWW26hT58+rY7noYceYsiQIYwaNYpzzz2XRx55hGAwyKRJk3jqqacYNWoUb731VrNxAhQXF3PMMccwbtw4fvWrX9GvXz/AS/6+973v8eqrr1JYWMhLL70EeMMSt99vdc011zBy5EhGjBjBt771LQ466CB++MMfEo1GGTlyJFOnTuWBBx7YoeeqJf/93//NYYcdxhFHHMGBBx7YUP7ss89yww03NKyffvrpPProow0zJ4q0t9r6elItTGoonc2WS6h2595iERER6d5se+/HHjdgNh54C/gI2D4m7nq8+7BmA/sAXwNnOOc27aqt0aNHuwULFuxQtnTpUoYOHdqmGKV5jWc77Gr08yPx9OAbSzn/9XFUH/UrZv/7M86tf4zArzZCMK63s4qIiEgnYGYLnXM7zbLW5m8Fzrm5QHM37RzX1vZFRDqKcF0VAEmp6dSH8gnUO6gqg6wm5/ARERGRbkh/du3mpk+fnugQRDqNSK03WU0wOY1oRgFUANs2KMESERGRBnGZ5EJEpDuI1FcDEEgOEczq5RVqJkERERGJoR4sEZFWitZ5CRZJqaRkZwNQX76e5ATGJCIiIh2LerBERFopWu8/zy45jYy8vgBs27R2F3uIiIhId6MES0Skldz2BCspldweedS4ZGq3rEtsUCIiItKhKMFqpaeffhoz49NPP222TklJCSNGjIjbMT/77DOOPvpoRo0axdChQ7n44osB7yHBL7zwQpvavvDCC+nVq1dc4xXp8sLbE6wQBVlpbCSHSMX6xMYkIiIiHYoSrFaaOXMm48ePZ+bMmU1uD4fDbT5GJBLZYf0nP/kJV155JYsWLWLp0qX8+Mc/BuKTYE2bNo0XX3yxTW2IdDs7JFipbHQ5sK00sTGJiIhIh9K5Jrn453Ww7qP4ttlnJJz4211WqaysZO7cubz++utMmjSJX//61wDMmTOHX/3qV/To0YNPP/2Uf/3rX4TDYc4++2zef/99hg8fzt/+9jfS09N59dVXufrqqwmHw4wZM4Z7772X1NRUioqKmDp1Ki+//DLXXnstZ555ZsNx165dS2FhYcP6yJEjqaur44YbbqC6upq5c+fy85//nJNPPpkf//jHfPzxx9TX1zN9+nQmT57MAw88wFNPPcXWrVtZvXo155xzDjfeeCMARx55JCUlJbs87zfeeIPLL78cADPjzTffJDMzk2uvvZZ//vOfmBm//OUvmTp1KnPmzOHGG28kNzeXjz76iDPOOIORI0dyxx13UF1dzdNPP81+++3Hc889x29+8xvq6urIy8vjkUceoXfvHae4PvPMMzn33HM56aSTAC8ZPPnkkzn99NNbd01F2sk3QwRD5GWm8LHLoX+1EiwRERH5hnqwWuGZZ57hhBNOYPDgweTl5bFw4cKGbe+//z533HEHn3/+OeAN6/vhD3/I0qVLyc7O5g9/+AM1NTVMmzaNWbNm8dFHHxEOh7n33nsb2sjLy+P999/fIbkCuPLKKzn22GM58cQTue2229iyZQspKSncdNNNTJ06lUWLFjF16lRuvvlmjj32WObPn8/rr7/ONddcw7Zt2wCYP38+TzzxBIsXL+axxx5jwYIFrT7vW2+9lXvuuYdFixbx1ltvkZaWxpNPPsmiRYv48MMPeeWVV7jmmmtYu9a7yf/DDz9kxowZLF26lIceeojPP/+c+fPnc9FFF3HXXXcBMH78eObNm8cHH3zAmWeeyS233LLTcadOncrs2bMBqKur49VXX21ItkQSKRD55h6s5GCAiqQepNZuSmxQIiIi0qF0rh6sFnqa2svMmTMbenLOPPNMZs6cyaGHHgrA2LFjGTRoUEPdAQMGcMQRRwBwzjnncOedd/If//EfDBo0iMGDBwNw/vnnc88993DFFVcAXkLRlAsuuICJEyfy4osv8swzz/DHP/6RDz/8cKd6//rXv3j22We59dZbAaipqWHFihUA/Md//Ad5eXkAfPe732Xu3LmMHj26Ved9xBFH8NOf/pSzzz6b7373uxQWFjJ37lzOOussgsEgvXv35qijjuK9994jOzubMWPG0LevN7Pafvvtx/HHHw94PW+vv/46AKtWrWLq1KmsXbuWurq6Hd677U488UQuv/xyamtrefHFFznyyCNJS0trVcwi7Spc6/2b7P081qTkkVG7GaJRCOjvVSIiIqIerBZt2rSJ1157jYsuuoiioiJ+97vfMXv2bJxzAGRkZOxQ38x2ud6Uxm3E6tevHxdeeCHPPPMMSUlJfPzxxzvVcc7xxBNPsGjRIhYtWsSKFSsYOnToHsez3XXXXcef//xnqqurOeKII3Y5wQdAampqw3IgEGhYDwQCDfeo/fjHP+ayyy7jo48+4o9//CM1NTU7tRMKhTj66KN56aWXmDVrVrMJqMjeFoj4CVZSCID6tHyCRKFavVgiIiLiUYLVgscff5xzzz2Xr7/+mpKSElauXMmgQYN46623mqy/YsUK3nnnHQD+/ve/M378eIYMGUJJSQnLli0D4KGHHuKoo45q8dgvvvgi9fX1AKxbt46ysjL69+9PVlYWFRUVDfUmTpzIXXfd1ZD0ffDBBw3bXn75ZTZt2tRwH9T23rXW+PLLLxk5ciQ/+9nPGDNmDJ9++ikTJkxg1qxZRCIRSktLefPNNxk7dmyr29y6dSv9+/cH4MEHH2y23tSpU/nrX//KW2+9xQknnNDq9kXaUzBmiCCAyyjw1is3JCgiERER6WjaPcEysxPM7DMzW2Zm17X38eJt5syZTJkyZYey0047rdnZBIcMGcI999zD0KFD2bx5M5deeimhUIi//vWvfO9732PkyJEEAgEuueSSFo/9r3/9ixEjRnDQQQcxceJEfve739GnTx+OOeYYlixZwqhRo5g1axa/+tWvqK+vp7i4mOHDh/OrX/2qoY2xY8dy2mmnUVxczGmnndYwPPCss87i8MMP57PPPqOwsJD7778fgBkzZjBjxgwAbr/9dkaMGEFxcTHJycmceOKJTJkyheLiYg466CCOPfZYbrnlFvr06dPq93P69Ol873vf49BDDyU/P7+hfMGCBVx00UUN68cffzxvvPEG3/72t0lJSWl1+yLtKRit8xb8HqxgtjdBi1OCJSIiIj7b3uvRLo2bBYHPgf8AVgHvAWc555Y0VX/06NGu8SQMS5cubRjuJrvngQceYMGCBdx9992JDiVh9PMj8fSXX0/jPJ4j6cYyAB578TW+N28KVSfdS/qY7yc4OhEREdmbzGyhc26nyQ3auwdrLLDMOfeVc64OeBSY3M7HFBFpF0nRWiL2TY9qel4/AKo2r01USCIiItLBtHeC1R9YGbO+yi9rYGYXm9kCM1tQWqrnycTTtGnTunXvlUi8JUXrCAe/mcylR488alwytVvWJDAqERER6UgSPsmFc+4+59xo59zogoKC5urs5aikK9DPjcRTNOpIdnVEAt8kWL2y0yh1uUTL1ycwMhEREelI2jvBWg0MiFkv9MtaLRQKUVZWpi/Lslucc5SVlREKhRIdinQRdZEoIasjGpNgFWSlsoFcAlWa5EJEREQ87f2g4feAA8xsEF5idSawW3eCFxYWsmrVKjR8UHZXKBSisLAw0WFIF1FbHyWVeiIxQwSzQ0mUkcuA6o0JjExEREQ6knZNsJxzYTO7DHgJCAJ/cc59sjttJCcnM2jQoHaJT0SktWrDEVKpJxqTYJkZlcl5pNd9nsDIREREpCNp7x4snHMvAC+093FERNpTbdgbIuiCmTuWh/LJ3LYVwnWQpGe2iYiIdHcJn+RCRKQzqA17QwRd0o739dWn9fIWtmkYs4iIiCjBEhFple1DBGmUYFmmn2BVrktAVCIiItLRKMESEWmFunCUVOogKXWH8qScPgCEy5VgiYiIiBIsEZFWqQ1HSbV6rFEPVqhHPwC2lelhwyIiIqIES0SkVbbfg0VK2g7lWXleglWzeW0iwhIREZEORgmWiEgr1IWjhKgj0KgHKz83i00uk/otSrBERERECZaISKtsn+TCkndMsAqyUil1ubjK9QmKTERERDoSJVgiIq1QV1tHskUINhoimJ+ZQqnLIalK07SLiIiIEiwRkVaJ1NcAEEjZsQcrNSnIlmBPUms3JiIsERER6WCUYImItEK4tgpgpx4sgKqUfDLrN4JzezssERER6WCUYImItEK03kuwklIzdtpWF8onxdVBbfneDktEREQ6GCVYIiKt4Lb3YDWRYEUzenkLFZroQkREpLtrU4JlZr8zs0/NbLGZPWVmuTHbfm5my8zsMzOb2OZIRUQSqW4b0HSCZVl9AXAVmqpdRESku2trD9bLwAjnXDHwOfBzADMbBpwJDAdOAP5gZsE2HktEJGGitV6CZSk7J1gpPbyHDdduXrNXYxIREZGOp00JlnPuX865sL86Dyj0lycDjzrnap1zy4FlwNi2HEtEJJGifg8WKZk7bUvP8371bdu4cm+GJCIiIh1QPO/BuhD4p7/cH4j9prHKL9uJmV1sZgvMbEFpqZ4jIyIdVEOClb7Tph498qhwadRtWb2XgxIREZGOpsUEy8xeMbOPm3hNjqnzCyAMPLK7ATjn7nPOjXbOjS4oKNjd3UVE9g5/FkGSd06wCrJS2eByceW6B0tERKS7S2qpgnPu27vabmbTgJOB45xreAjMamBATLVCv0xEpFOy7QlWE/dg9cpKZYnryf6V6/ZyVCIiItLRtHUWwROAa4FTnHNVMZueBc40s1QzGwQcAMxvy7FERBIpEG6+BysnLZlS60GoesNejkpEREQ6mhZ7sFpwN5AKvGxmAPOcc5c45z4xs9nAEryhgz9yzkXaeCwRkYQJhquIYgSS03baFggY5ckFZNTPA+fA+30oIiIi3VCbEizn3P672HYzcHNb2hcR6SiSwtXUWYhQM8lTTagXSdvCUFUGGfl7OToRERHpKOI5i6CISJeVFK2mPrhz79V24Yw+3oIeNiwiItKtKcESEWmFlEg19YFQs9uDOX29Bc0kKCIi0q0pwRIRaYFzjuRoDZGknSe42C61h/ew4Xo9C0tERKRbU4IlItKCbXURMqkmkrzzFO3bZeZ7z1LftnFls3VERESk61OCJSLSgvLqenJsG5HUHs3W6d0ji1KXTe3mNXsxMhEREelolGCJiLSgvKaeXKskGspttk6f7BAbXA+c7sESERHp1pRgiYi0oKImTA7bsPRd9GDlhFjnepK0bd1ejExEREQ6GiVYIiItqNhWRZZVE0zv2WydrNQkygI9CdVs2IuRiYiISEejBEtEpAXVFWUAJGc2n2CZGVWpvUgPb4ZI/d4KTURERDoYJVgiIi2oLfcSrFB2/i7r1af1IoCDyvV7IywRERHpgJRgiYi0oMZPsNJbSLDI0sOGRUREujslWCIiLair2AhAIKP5SS4Agrnes7Ci5ZqqXUREpLuKW4JlZleZmTOzfH/dzOxOM1tmZovN7JB4HUtEZG+ybf7EFRkFu6yXnuclWFVlq9o7JBEREemg4pJgmdkA4HhgRUzxicAB/uti4N54HEtEZG9LrVpHFPtmCGAzcvP7UOeCVCvBEhER6bbi1YN1G3At4GLKJgN/c555QK6Z7frbiYhIB5RRu56KpJ4QTN5lvd456WygB+Etq/dSZCIiItLRtDnBMrPJwGrn3IeNNvUHVsasr/LLREQ6jfpIlJz6DVSF+rRYt09OiPWuB1TqYcMiIiLdVVJrKpnZK0BT3y5+AVyPNzxwj5jZxXhDCNlnn332tBkRkXaxZks1fdhEJHNoi3ULMlNZ5HpQVKVp2kVERLqrViVYzrlvN1VuZiOBQcCHZgZQCLxvZmOB1cCAmOqFflnjtu8D7gMYPXq0a7xdRCSRVpZVMcrKqMgtbLFuUjDA1uR80ms/2QuRiYiISEfUpiGCzrmPnHO9nHNFzrkivGGAhzjn1gHPAuf5swmOA7Y65/RwGBHpVMrWLifTagj1PbBV9WtCvUiLboPaynaOTERERDqiVvVg7aEXgO8Ay4Aq4IJ2PJaISLuoXu31RmUNGNGq+uGMPt5vvIp1kLp/O0YmIiIiHVFcEyy/F2v7sgN+FM/2RUT2tvD6pQAk9R7Wqvouqw+UAhVrIV8JloiISHcTtwcNi4h0Nc45crZ+6k3RnpHXqn0C2d5kqdHyNe0ZmoiIiHRQSrBERJqxeks1I6KfsrnnqFbvk9KjHwA1m/QsLBERke5ICZaISDM+/PQLBgXWk1w0rtX75OT2pMKlUbd5VTtGJiIiIh2VEiwRkWaUffgiAL1HHtfqffIzUtjgcols1aSpIiIi3ZESLBGRJkSijl7r5lAe7Emg/yGt3i8vM5V1ridWoQRLRESkO1KCJSLShPc++5oj3UI27/MfEGj9r8q8zBTW04OUqvXtGJ2IiIh0VEqwRESasHzOQ6RbLX2OnLZb+/VIT6HM5ZBaV9Y+gYmIiEiHpgRLRKSRNZsqOWzdI6xNG0xq0eG7tW8wYFQl9yA5Wgt129opQhEREemolGCJiDTy+jN/ZV9bS+oxV4HZbu9fH+rpLWwrjXNkIiIi0tEpwRIRibFyw2bGlfyBjakD6Dn6e3vURjQt31vYpmGCIiIi3Y0SLBGRGItm38x+tobAif8LgeAetWEZ2xMs9WCJiIh0N0qwRER8Cxct4tulD/JF3jH0HHXSHreTnN3bW6jaGKfIREREpLNQgiUiAtSFo9T84xqcBRjw/Tva1FZqTi8AwhUb4hGaiIiIdCJtTrDM7Mdm9qmZfWJmt8SU/9zMlpnZZ2Y2sa3HERFpTy8//QBHhOez9qAfE8ob2Ka2snNyqHKp1G5VgiUiItLdJLVlZzM7BpgMHOScqzWzXn75MOBMYDjQD3jFzAY75yJtDVhEJN7WlJZx0Ef/jzUpA9lv0rVtbi8vI5VNZJFZrocNi4iIdDdt7cG6FPitc64WwDm3/c+1k4FHnXO1zrnlwDJgbBuPJSLSLt6f+WsKrZTkU34PSSltbi8/M4WNLptope7BEhER6W7ammANBiaY2btm9oaZjfHL+wMrY+qt8st2YmYXm9kCM1tQWqoZt0Rk75q36COOLXuUZfnHUTDy23Fps2dGCmUuB9MkFyIiIt1Oi0MEzewVoE8Tm37h798TGAeMAWab2b67E4Bz7j7gPoDRo0e73dlXRKQtnHNUvnAjSRZhwNTfxa3dvMxUFroskmvWxK3Njqamrp7SNSvYvGEF28pWU7dlLYFtGwhWlxGsKydYv43kSBWp0SrSXBXJro6AixIkQgDv3yBRgkRxgCNAFPNfAaIEcBjOX3cYUQvssA6GAzDbcd3f75tyjzP7ZltMvdg6XZLFLu76v9m99040faQmS/cwqJbOtfXttINWnmhrj701uYC+5/2ZPr16tyUqEYmTFhMs51yzf9I1s0uBJ51zDphvZlEgH1gNDIipWuiXiYh0GG+//QbH1r7GF/tPY0jBfnFrNzuUxGbLIVS3GZwD65xf4J1zrCzdwrovPqB65Qe4jctIqyihZ+0qCt06BljdDr/oAcrJoMoyqA2kURvMoC4lh7JgX6LBFAgkgwWJWBBnXpoVNW8gheEw56VW5qLgr5uLgvPSKpzDXMRLw5yXlrH9X1xMGTuUObZ/2f6mvnkn2JBitTnJasXue3KEZlOENuQOu3OuTR+mmYM3Uby3/mra3HGaPNdWB9X66Hf7PBvt4NrwRhmOg2veYt5jN9DnR3/c84ZEJG7aNMkF8DRwDPC6mQ0GUoCNwLPA383s93iTXBwAzG/jsURE4iYSddS98X/UWCr7f/fGuLZtZtSk9CApUge1FRDKjmv77WVjRQ2ff7yAbV+8SfL6xfTe9in7uRXsY978RPUksSHYh/KsffgsewKu5yBCPQvJLigkt9cA0nv0ITs5ROc4W5GuY97tZzNmw2NsWfFjcvcZkehwRLq9tiZYfwH+YmYfA3XA+X5v1idmNhtYAoSBH3XGGQS//vR9Nrx4C0Om3U12bn6iwxGROJo7/z2OqnuL5QdcwP4ZPeLefl1qHlQB20o7bIK1ZVstHy96l/Ilr5K1/l2G1X/Mt6wCgK2WxfqMA/mi9zGk7XMIBfuPIavv/vQPJjV9Q62IJEyvyb+h+oHXKHv8p+Re+VKn7TUX6SralGA55+qAc5rZdjNwc1vaT7T1S+dyyOaXKLvjMFYedxvDx5+S6JBEJE5q3ryDiAUZNOmadmk/nNHbS7Aq1kJe/IYfttXyDeV8+M5L2KfPM6rqbcabN/lrabA3pX2Oonz/I+lbfBw5vfYjR1/SRDqFfQcN4rl+FzFp7Z2smf8U/Q77bqJDEunW2tqD1aWNnfITlg4YSebzlzL8lXP58O1xZEz8BfuPOjLRoXVqri2DzZth+iIou+Gzzz/l6G0v8WX/SQzN6dcux3BZfaEUKF/bLu23Og7nWLJiA5+98w/SvvwnY+re5VQrp54kVvU8jJKhV9Dv0JMpyBtIQUIjFZG2OGzqtXx5+5Okv/Rz6g86nuRQZqJD6lz87ybOOZx/K2eT31d28X1jd76L7M63lt35iqPvQx2DEqwWDB19DDXD3uOdx/6H4V/9leynJ/HFP/Zny6CT6Tf6FPodcDAWaOts963jolFqa2uo2VZBTXUFtVUV1FVXUlddSbi6knBtJeGabbjabbi6bVC3DeqrsHAVwXA1gXAVyZFqkiPVJEVrCbgIAX9Gr4CLesv+v8GGebyiBN32Wb+8ubtiImpYiv042w7lTdcJmCaMjBV1ifuFmMgrkajZ2w7AESZI/0k3tNsxAjn+QLqKvT+TYCTqeP/zEla8+zS5X/+LwyLvM9xqqLJ01vY5EjtkCnmjTmJQatZej01E2kev3Cy+Gv8bxr51AUvv+R5DL3+WQFJyosNqVn19PVs3lVK5eQO1VVupryqnvqaSSE0F0ZoKorWVULsN6iuxuiosXE0gUkcgWkfA1ROM1hGMhgm6OoIuTJKrI9nVE3Thhu8v1jA/qSOA87/jfLNu/neboO34XaW9/2dqzf/5TX/b2vs6yiyrf4tOpPf3buOk4r6JDqVVlGC1Qig9i8PP/39s2fxT5r30J/K/mM2YL26HL26ngnTWpAxic8a+kNGLYHZvLKMnweQQSUnJkJRCNBIlUl+DC9fi/H8jdTV+ElSFNSRBXiKUFKkmOVpNcqSGVOe9Qq6GNGoJWZTQbsRe5VKpsVRqLESdhagLhKgPpFGVkomzIM6CRC0IgSCOgPevX759GQv4ZQFv2f+wGd60x9989Czmt5LF/MVlx/Trm3+aKN8D8fvFE6eW9qCZpqYTjtt5tdhQ647k2uFXfCJ/bafufySH9N2tp0rslqycHlS6EKlbVrM3vuLU1Ed476NPKF3wNH3XvMKh7mPGWIQtwZ6sHziJ6JjTyB56LPslpe6FaEQkEcZ9ewqvrfmEY7/6HUtuO5mi//o76dl5e+XYkUiUjRvXs3ndCio3rqR+yxqsYh2Bqg0EazaTXLeVUHgr6ZFysl0F2WwjH2/q6V2pdilUW4haUglbMuFAChFLImLJhC2ZumAmkUAKUUsmGkjBBZJivst431vAvvkO0+hf73tNwOv5McP87zJNJ1px+H+wVaN49iy9aocBQrGtt0+rrWw2N2sE+/XKaJcY2oO1x3CtPTV69Gi3YMGCRIfRKitKvmD1gueJrllEj4rP6VO/ihxXvsNfQVoj6owaUqi2NGoslTpL85KgYBrhYBqRJO8VTUqH5HRIzsBS0wmkZBBIzSSYmkFyKIOktExS0rNJTcsiNT2T9IxsQukZWCDYTu+AiOzKUx+sovipb9P7gEPIPPfv7XKM8pp65i+YT+UHT1O08XVG2RcAbEjuT0XRCfQd9z3SBx0Ge6mXXUQSzznHnId/y/hlv2NrIJs1o37KsIn/SVJoz7+cVpRvZtO6FZSvX0H1ptWEt66BirUkV20gvbaUnPBG8t0mQla/874ujfJANlWBbKqTc6hLySWSmosL9SCQ0ZNgZh7J6bkEQ1mkpGeRmp5FKCOHUGYO6elZJCV33F44ETNb6JwbvVO5Eqz4CdfXs3HDWmorNhKuq6G+vg4XriMYDBJMSSUpJY2klBDB5BChUBqhjCxSQxl7bYihiOw9C7/exLY/n8KofEf25W/Hrd3S8mre//cr1C55nmFb32R/8x4xuCptCPX7n0jht84guc8wzSIm0s19OO9VUv71M4ZGv6CSNErSi6koOJi0/CKCWQWkpKQSdgHCtduI1pQTqa6gbtsmrHI9ydUbSK/ZSFa4jJ7RTWRYzU7tV5FKWSCfiuR8akIFRDL6YNl9Sc3tR0Z+IVkF+5BVUEgoXfeCSdfVXIKlIYJxlJScTJ/++wD7JDoUEUmwAT3Sedrtw7e2vgLRCOxhb3I06vi4ZC3L5z9Pesm/GFX9LhNtK2ECrMo+mBXDLqL/uNMp7KHfOyLyjYPGHUdkzHzmv/kcdYseY0D5B4z4+l34etf7VblUNgV6UpGcx4bMIaxO6wWZvUnu0Y+0vAFkFwwgr89A0rNySd87pyLS6SjBEhFpBwVZqZQEi0iK1sKmryD/gFbvW7q1iiXvv0X5klfJL32Hg91Siq2ebZbOqoIjqCueRL/RkyhK79mOZyAinV0wGGDsMZPhmMkAVFaWs37lV9RXbqS2tpYgEVLSskhOyyY1I5sePQuUOInEgRIsEZF2YGbQezhsAFYvbDbBcs6xan0Zyz9+m4ov3yW7dCEj6z/iKNsGwNqUIlYXnknB6FPJHnwkQ5JS9uJZiEhXkpmZTebQUYkOQ6TLU4IlItJO+g85lJXrC8ifdz9pI8+gJuJYsXIFG5d/SOXKjwmWLqXftk84wH3NAIsCUJrUh7X9vs2Wwccy4NAT6JvdJ8FnISIiIrtDCZaISDv53pgi7ntzEr9c+xe23LQP5iIMtioG+9srLYO1mUP5tPe3ydp/HIXDJ1CQ3VsP/BUREenElGCJiLSTXtkhplx8I7NeKqSofAGpoQyS8vcla8AIeu8/isyeAzhAs/2JiIh0KUqwRETa0fD+uQy/8KpEhyEiIiJ7SZsfwGRmo8xsnpktMrMFZjbWLzczu9PMlpnZYjM7pO3hioiIiIiIdFzxeMLtLcCvnXOjgBv8dYATgQP818XAvXE4loiIiIiISIcVjwTLAdn+cg6wxl+eDPzNeeYBuWbWNw7HExERERER6ZDicQ/WFcBLZnYrXsL2Lb+8P7Aypt4qv2xt7M5mdjFeDxdApZl9FoeY4ikf2JjoIGSv0fXuPnStuw9d6+5F17v70LXuXjri9R7YVGGrEiwzewVo6mEsvwCOA650zj1hZmcA9wPfbm1Uzrn7gPtaW39vM7MFzrnRiY5D9g5d7+5D17r70LXuXnS9uw9d6+6lM13vViVYzrlmEyYz+xtwub/6GPBnf3k1MCCmaqFfJiIiIiIi0iXF4x6sNcBR/vKxwBf+8rPAef5sguOArc65tU01ICIiIiIi0hXE4x6sHwB3mFkSUMM391O9AHwHWAZUARfE4ViJ0GGHL0q70PXuPnStuw9d6+5F17v70LXuXjrN9TbnXKJjEBERERER6RLiMURQREREREREUIIlIiIiIiISN0qwdsHMTjCzz8xsmZldl+h4JH7MbICZvW5mS8zsEzO73C/vaWYvm9kX/r89Eh2rxIeZBc3sAzP7h78+yMze9T/fs8wsJdExSnyYWa6ZPW5mn5rZUjM7XJ/trsnMrvR/h39sZjPNLKTPdtdhZn8xsw1m9nFMWZOfZX9StTv9677YzA5JXOSyu5q51r/zf48vNrOnzCw3ZtvP/Wv9mZlNTEjQu6AEqxlmFgTuAU4EhgFnmdmwxEYlcRQGrnLODQPGAT/yr+91wKvOuQOAV/116RouB5bGrP8vcJtzbn9gM/CfCYlK2sMdwIvOuQOBg/Cuuz7bXYyZ9Qd+Aox2zo0AgsCZ6LPdlTwAnNCorLnP8onAAf7rYuDevRSjxMcD7HytXwZGOOeKgc+BnwP439fOBIb7+/zB/97eYSjBat5YYJlz7ivnXB3wKDA5wTFJnDjn1jrn3veXK/C+gPXHu8YP+tUeBE5NSIASV2ZWCJyE/5w+MzO8x0o87lfRte4izCwHOBLvofc45+qcc1vQZ7urSgLS/JmM04G16LPdZTjn3gQ2NSpu7rM8Gfib88wDcs2s714JVNqsqWvtnPuXcy7sr87De6YueNf6UedcrXNuOd6M5WP3WrCtoASref2BlTHrq/wy6WLMrAg4GHgX6B3zvLZ1QO9ExSVxdTtwLRD11/OALTG/uPX57joGAaXAX/0hoX82swz02e5ynHOrgVuBFXiJ1VZgIfpsd3XNfZb1va1ruxD4p7/c4a+1Eizp1swsE3gCuMI5Vx67zXnPMNBzDDo5MzsZ2OCcW5joWGSvSAIOAe51zh0MbKPRcEB9trsG/96byXhJdT8gg52HGEkXps9y92Bmv8C7teORRMfSWkqwmrcaGBCzXuiXSRdhZsl4ydUjzrkn/eL124cU+P9uSFR8EjdHAKeYWQneUN9j8e7RyfWHFYE+313JKmCVc+5df/1xvIRLn+2u59vAcudcqXOuHngS7/Ouz3bX1txnWd/buiAzmwacDJztvnl4b4e/1kqwmvcecIA/G1EK3s10zyY4JokT/x6c+4Glzrnfx2x6FjjfXz4feGZvxybx5Zz7uXOu0DlXhPc5fs05dzbwOnC6X03Xuotwzq0DVprZEL/oOGAJ+mx3RSuAcWaW7v9O336t9dnu2pr7LD8LnOfPJjgO2BozlFA6ITM7AW94/ynOuaqYTc8CZ5pZqpkNwpvYZH4iYmyOfZMMSmNm9h28ezeCwF+cczcnNiKJFzMbD7wFfMQ39+Vcj3cf1mxgH+Br4AznXOMbbKWTMrOjgaudcyeb2b54PVo9gQ+Ac5xztQkMT+LEzEbhTWiSAnwFXID3B0V9trsYM/s1MBVv+NAHwEV492Los90FmNlM4GggH1gP3Ag8TROfZT/JvhtvmGgVcIFzbkECwpY90My1/jmQCpT51eY55y7x6/8C776sMN5tHv9s3GYiKcESERERERGJEw0RFBERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwRkQ7CzIrMzJlZUqJj6erMbJqZzU10HB2NmU0ws88SHYeISGemBEtERDo1M5tuZvVmVhnzujbRcXVGzrm3nHND4tmmmQ02s2fMrNTMNpnZS2YW12OIiHQkSrBEROJEPU8JNcs5lxnzuiXRAcVTJ//ZygWeBYYAvYH5wDOJDEhEpD0pwRIRaQMzKzGzn5nZYmCbmSWZ2Tgz+7eZbTGzD83s6Jj6c8zsf8xsvpmV+3/Z79lM2xeY2VIzqzCzr8zsvxptn2xmi/x2vjSzE/zyHDO738zWmtlqM/uNmQVbOI/9zOw1Myszs41m9oiZ5cZs22Rmh/jr/fzeiKP99VPM7BP/fOeY2dBG78/VZrbYzLaa2SwzC+3+O737zOw6/32pMLMlZjalmXpmZreZ2Qb/vfzIzEb421LN7FYzW2Fm681shpmltfL4D/j1X/ZjeMPMBsZsv8PMVvrHXGhmE2K2TTezx83sYTMrB6aZ2Vgze8d/n9ea2d1mlhKzjzOzH5rZF/7x/tu/dv/2jzE7tn4zMR9tZqtac36t5Zyb75y73zm3yTlXD9wGDDGzvHgeR0Sko1CCJSLSdmcBJ+H9pb438DzwG6AncDXwhJkVxNQ/D7gQ6AuEgTubaXcDcDKQDVwA3BaT5IwF/gZc4x/3SKDE3+8Bv939gYOB44GLWjgHA/4H6AcMBQYA0wGcc18CPwMeNrN04K/Ag865OWY2GJgJXAEUAC8AzzX6In8GcAIwCCgGpjUZgNl4P3lo7jW+hXNo7EtgApAD/NqPv28T9Y7He/8G+3XPAMr8bb/1y0fhvZ/9gRt2I4azgf8G8oFFwCMx297z2+0J/B14rFHyORl4HO/6PgJEgCv9tg4HjgN+2Oh4E4FDgXHAtcB9wDl413ME3s/qHvMT5eauzx9a2cyRwDrnXFmLNUVEOiPnnF566aWXXnv4wktqLoxZ/xnwUKM6LwHn+8tzgN/GbBsG1AFBoAhwQFIzx3oauNxf/iNwWxN1egO1QFpM2VnA67t5XqcCHzQqexb4CFgMpPplvwJmx9QJAKuBo2Pen3Nitt8CzIjzNZjuv4dbYl79mqi3CJjsL08D5vrLxwKf4yUlgZj6BmwD9ospOxxY3sq4HgAejVnPxEuSBjRTfzNwUMw5vdlC+1cAT8WsO+CImPWFwM9i1v8PuL2FNo8GVsXz+jRqv9D/+TirvY6hl1566ZXoV2ce0y0i0lGsjFkeCHzPzCbFlCUDrzdT/2t/e37jRs3sROBGvB6UAJCOl+CA1yPxQhOxDPTbW2tm28sCjY65EzPrDdyB1+OT5e+zuVG1P+ElWRc752r9sn7+OQDgnIua2Uq8np7t1sUsV/n7xNts59w5sQVmdh7wU7zEFbwEZ6f32Tn3mpndDdwDDDSzJ/F6HkN47/nCmPfS8JLh1mp4351zlWa2Ce/8V5rZ1cB/+usOr6cyv6l9/fMZDPweGO3HlYSXRMVaH7Nc3cR6n92IPa78Xtx/AX9wzs1MVBwiIu1NQwRFRNrOxSyvxOvByo15ZTjnfhtTZ0DM8j5APbAxtkEzSwWeAG4FejvncvESqu3f9FcC+zURy0q8Hqz8mONnO+eGt3AO/88/j5HOuWy8YWXfZBVmmcDtwP3AdPvmvrE1eEnd9nrmn9/qFo63E/OmCK/cxWtCy600tDUQLyG8DMjz37+PY88plnPuTufcoXg9ioPxhl5uxEtKhse8lznOuczdOK2Ga+2/hz2BNf65XIs3HLGHH9/WRvHF/lwB3At8ChzgX6Prmzuf9uLfa9fc9Zmxi/164CVXzzrnbt57EYuI7H1KsERE4uthYJKZTTSzoJmF/IkDCmPqnGNmw/z7mW4CHnfORRq1kwKkAqVA2O/NOj5m+/3ABWZ2nJkFzKy/mR3onFuL90X2/8ws29+2n5kd1ULcWUAlsNXM+uMlGLHuABY45y7Cu8ds+5fp2cBJfhzJwFV4Cd6/W3qjGnPeFOGZu3i9tRvNZeAlKKXgTRiCdw/STsxsjJkd5se/DagBos65KF6SdpuZ9fLr9jeziTH7OouZxKQJ3/HvLUvBuxdrnnNuJd77HfbjSzKzG/B6sHYlCygHKs3sQODSFurHnXNu+C6uzyVN7WNm2XjDZN92zl23dyMWEdn7lGCJiMSR/+V5Ml7vQilej9I17Pj79iG8+3PW4Q1D+0kT7VT45bPxhup9H2943vbt8/EnvsDr+XiDb3qSzsNL0Jb4+z6ON6HGrvwaOMRv63ngye0bzGwy3iQV27/Q/xQ4xMzOds59htfbdRdej88kYJJzrq6F47Ur59wSvHuO3sEbJjcSeLuZ6tl4idRmvOGOZcDv/G0/A5YB8/zZ/F7Bm24cMxsAVPDNsM2m/B1vmOcmvMkntg9jfAl4Ee/er6/xkrpdDuPEG7b4ff+YfwJmtVC/o5gCjMH7g0Bsj9c+iQ5MRKQ9mHONRyCIiEh7MbM5wMPOuT8nOhZpGzM7B2/44M+b2f4A3oQRv9yrgYmISEJpkgsREZE94Jx7ONExiIhIx6MhgiIi3YR5D73drckJpOsxs+ub+Tn4Z6JjExHpCjREUEREREREJE7UgyUiIiIiIhInHeoerPz8fFdUVJToMERERERERHZp4cKFG51zBY3LO1SCVVRUxIIFCxIdhoiIiIiIyC6Z2ddNlWuIoIiIiIiISJwowRIREREREYkTJVgiIs2IRDXLqoiIiOyeDnUPVlPq6+tZtWoVNTU1iQ5FOplQKERhYSHJycmJDkU6oZeXrOfHMxfy3GUTOKB3VqLDERERkU6iwydYq1atIisri6KiIsws0eFIJ+Gco6ysjFWrVjFo0KBEhyOd0BMLV/GcXU3g8aHwoycSHY6IiIh0Eh1+iGBNTQ15eXlKrmS3mBl5eXnq+ZQ9llu/jgMCq9mv9JVEhyIiIiKdSIdPsAAlV7JH9HMjbTFo67vfrIRrExeIiIiIdCqdIsESEdnbArXl36yULUtcICIiItKpKMFqBTPjqquuali/9dZbmT59euICijFv3jwOO+wwRo0axdChQxvimjNnDv/+97/3uN2vv/6aQw45hFGjRjF8+HBmzJgRp4hFOgerq2xYDm/4PIGRiIiISGfS4Se56AhSU1N58skn+fnPf05+fn7c2nXO4ZwjENjzPPf8889n9uzZHHTQQUQiET777DPAS7AyMzP51re+tUft9u3bl3feeYfU1FQqKysZMWIEp5xyCv369dvjWEU6k0C4quFPUBUbV9EjseGIiIhIJ6EerFZISkri4osv5rbbbttpW2lpKaeddhpjxoxhzJgxvP322wBMnz6dW2+9taHeiBEjKCkpoaSkhCFDhnDeeecxYsQIVq5cyTXXXMOIESMYOXIks2bNArwE6eijj+b000/nwAMP5Oyzz8a5nZ/Js2HDBvr27QtAMBhk2LBhlJSUMGPGDG677TZGjRrFW2+9tcs4zz33XA4//HAOOOAA/vSnPwGQkpJCamoqALW1tUSj0SbfmzvvvJNhw4ZRXFzMmWeeCcCmTZs49dRTKS4uZty4cSxevLjhWOeffz4TJkxg4MCBPPnkk1x77bWMHDmSE044gfr6egBuuukmxowZw4gRI7j44ot3Ou9oNEpRURFbtmxpKDvggANYv379ri6jSKs550iN1rDVsql3QWo2rUl0SCIiItJJdKoerF8/9wlL1pS3XHE3DOuXzY2ThrdY70c/+hHFxcVce+21O5RffvnlXHnllYwfP54VK1YwceJEli5dusu2vvjiCx588EHGjRvHE088waJFi/jwww/ZuHEjY8aM4cgjjwTggw8+4JNPPqFfv34cccQRvP3224wfP36Htq688kqGDBnC0UcfzQknnMD5559PUVERl1xyCZmZmVx99dUAfP/73282zsWLFzNv3jy2bdvGwQcfzEknnUS/fv1YuXIlJ510EsuWLeN3v/tdk71Xv/3tb1m+fDmpqakNCc+NN97IwQcfzNNPP81rr73Geeedx6JFiwD48ssvef3111myZAmHH344TzzxBLfccgtTpkzh+eef59RTT+Wyyy7jhhtuAODcc8/lH//4B5MmTWo4ZiAQYPLkyTz11FNccMEFvPvuuwwcOJDevXu3eB1FWqMuEiXNaqlPyqC0Lolo+dpEhyQiIiKdhHqwWik7O5vzzjuPO++8c4fyV155hcsuu4xRo0ZxyimnUF5eTmVlZTOteAYOHMi4ceMAmDt3LmeddRbBYJDevXtz1FFH8d577wEwduxYCgsLCQQCjBo1ipKSkp3auuGGG1iwYAHHH388f//73znhhBOaPOau4pw8eTJpaWnk5+dzzDHHMH/+fAAGDBjA4sWLWbZsGQ8++GCTPUTFxcWcffbZPPzwwyQlJTWc07nnngvAscceS1lZGeXlXmJ84oknkpyczMiRI4lEIg3xjhw5suH8Xn/9dQ477DBGjhzJa6+9xieffLLTcadOndrQ2/foo48yderUXb7nIrujLhwlgxqiSelscLlYpXpHRUREpHXa3INlZgOAvwG9AQfc55y7w8x6ArOAIqAEOMM5t7ktx2pNT1N7uuKKKzjkkEO44IILGsqi0Sjz5s0jFArtUDcpKWmHYXWxz2PKyMho1fG2D9EDb/hfOBxust5+++3HpZdeyg9+8AMKCgooKyvbqU5zccLO05k3Xu/Xrx8jRozgrbfe4vTTT99h2/PPP8+bb77Jc889x80338xHH33UqnMKBAIkJyc3HCsQCBAOh6mpqeGHP/whCxYsYMCAAUyfPr3JZ1kdfvjhLFu2jNLSUp5++ml++ctf7vK4IrujNhwljVpIyaB0WzL9qjckOiQRERHpJOLRgxUGrnLODQPGAT8ys2HAdcCrzrkDgFf99U6tZ8+enHHGGdx///0NZccffzx33XVXw/r2oXBFRUW8//77ALz//vssX768yTYnTJjArFmziEQilJaW8uabbzJ27NhWx/T888833KP0xRdfEAwGyc3NJSsri4qKihbjBHjmmWeoqamhrKyMOXPmMGbMGFatWkV1dTUAmzdvZu7cuQwZMmSHY0ejUVauXMkxxxzD//7v/7J161YqKyuZMGECjzzyCODdS5afn092dnarzmd7MpWfn09lZSWPP/54k/XMjClTpvDTn/6UoUOHkpeX16r2RVqjLhwlw2qIJqVRkZRHeu3GRIckIiIinUSbEyzn3Frn3Pv+cgWwFOgPTAYe9Ks9CJza1mN1BFdddRUbN37zZevOO+9kwYIFFBcXM2zYsIbpzE877TQ2bdrE8OHDufvuuxk8eHCT7U2ZMoXi4mIOOuggjj32WG655Rb69OnT6ngeeughhgwZwqhRozj33HN55JFHCAaDTJo0iaeeeqphkovm4gRvmN8xxxzDuHHj+NWvfkW/fv1YunQphx12GAcddBBHHXUUV199NSNHjgTgoosuYsGCBUQiEc455xxGjhzJwQcfzE9+8hNyc3OZPn06CxcupLi4mOuuu44HH3ywufB3kpubyw9+8ANGjBjBxIkTGTNmTMO2GTNm7BD31KlTefjhhzU8UOKuLhwlnVqiyRlUp+SRGdkCkfpEhyUiIiKdgDU1M90eN2ZWBLwJjABWOOdy/XIDNm9fb7TPxcDFAPvss8+hX3/99Q7bly5dytChQ+MWo+xo+vTpO0yG0dXo50f2xGfrKkj9w6EkDxzDK9v24/xNd8CVSyCnf6JDk//f3p3HV1Xe+x7//PacicyMAYmCMgUEA1LRFqw4nFppHemtVaS3nra2PfrqbU/tYKt99Vxb76tnqLa9WofTHsWxR7kdqDi1pRUVxAFFEDUGkCEhCZBpj8/9Y29iAgkE9k52hu/79coraz3rWWv9ksUK67efZz2PiIjIAGFm651z1YeWZ2yQCzPLBx4DrnfOdRnqzyWzuG4zOefcnc65audcdXl5eabCERE5bge7CDp/Hi4/NTpl867sBiUiIiKDQkaGaTczP8nk6n7n3G9TxbvNbIxzbqeZjQH0lvgA9IMf/CDbIYgMOOFYnBzChP25ePOS88wl9u/CowYsEREROYq0W7BS3f/uBjY5537aadNK4OrU8tXAE+meS0SkP0SicXIJQzCfYFFy/rfWhh1ZjkpEREQGg0y0YC0APge8bmavpMq+DdwKPGxmnwfeBy7PwLlERPpcNNKGxxwefw4FZWNJOKO94QPysx2YiIiIDHhpJ1jOuTWA9bD54+keX0Skv0XDySkKPP4QZYX5NFBAZJ/ewRIREZGjy9ggFyIiQ0U8mpyPzRMIUp4fpN4VQrNeIxUREZGjU4LVS48//jhmxltvvdVjnZqaGmbMmJGxc27evJmFCxdy6qmnMnXqVK699logOUnwH/7wh+M+bnt7O/PmzWPWrFlMnz6d73//+5kKWWRIiIWTCZbPH6KsIEidK8TbqgRLREREjk4JVi+tWLGCM888kxUrVnS7PRaLpX2OeDzeZf1rX/saN9xwA6+88gqbNm3iq1/9KpB+ghUMBnnmmWd49dVXeeWVV1i1ahVr165NK3aRoSQeSyZYXn+IvICXRism0L43y1GJiIjIYKAEqxeam5tZs2YNd999Nw8++GBH+XPPPcdZZ53FRRddxLRp04BkovXZz36WqVOncumll9La2grA008/zezZs6mqqmL58uWEw2EAJk6cyD//8z8zZ84cHnnkkS7n3blzJxUVFR3rVVVVRCIRbrrpJh566CFOPfVUHnroIVpaWli+fDnz5s1j9uzZPPFEcsDG++67jyVLlrBw4UImT57MzTffDICZkZ+ffF0/Go0SjUZJDgbZ1SOPPMKMGTOYNWsWH/3oR4Fk69c111xDVVUVs2fP5tlnn+0416c+9SkWL17MxIkTuf322/npT3/K7NmzmT9/Pg0NDQDcddddzJ07l1mzZnHJJZd0/H46mz9/Pm+88UbH+sKFC1m3bl2vr5dIuhKR5P3pC4YwM1oDJeRF90IGJ2YXERGRoSkj82D1mz9+C3a9ntljjq6CC249YpUnnniC888/n5NPPpnS0lLWr1/PaaedBsDLL7/Mxo0bqayspKamhs2bN3P33XezYMECli9fzs9//nO+8pWvsGzZMp5++mlOPvlkrrrqKn7xi19w/fXXA1BaWsrLL7982HlvuOEGzj77bM444wzOPfdcrrnmGoqKirjllltYt24dt99+OwDf/va3Ofvss7nnnntoampi3rx5nHPOOQC8+OKLbNy4kdzcXObOncsnPvEJqquricfjnHbaaWzdupXrrruO008//bDz33LLLfzpT39i3LhxNDU1AXDHHXdgZrz++uu89dZbnHvuuWzZsgWAjRs3smHDBtrb25k0aRI//vGP2bBhAzfccAO//vWvuf7667n44ov5whe+AMB3v/td7r777o6WuYOuuOIKHn74YW6++WZ27tzJzp07qa4+bJJskT4Tj6YSrEAIgHCojEBzGCLNECzIZmgiIiIywKkFqxdWrFjB0qVLAVi6dGmXboLz5s2jsrKyY338+PEsWLAAgCuvvJI1a9awefNmKisrOfnkkwG4+uqr+ctf/tKxzxVXXNHtea+55ho2bdrEZZddxnPPPcf8+fM7Wr46e/LJJ7n11ls59dRTWbhwIe3t7dTW1gKwePFiSktLycnJ4eKLL2bNmjUAeL1eXnnlFbZv396RhB1qwYIFLFu2jLvuuquj++KaNWu48sorAZgyZQonnHBCR4K1aNEiCgoKKC8vp7CwkE9+8pNAsuWtpqYGSCZhZ511FlVVVdx///1dWqoOuvzyy3n00UcBePjhh7n00ku7/f2I9JVE9MN3sADiueXJDRroQkRERI5icLVgHaWlqS80NDTwzDPP8Prrr2NmxONxzIzbbrsNgLy8vC71D+1q113Xu0MdeozOxo4dy/Lly1m+fDkzZszoNhFyzvHYY49xyimndCl/4YUXjhpPUVERixYtYtWqVYcN0PHLX/6SF154gd///vecdtpprF+//og/RzAY7Fj2eDwd6x6Pp+MdtWXLlvH4448za9Ys7rvvPp577rnDjjNu3DhKS0t57bXXeOihh/jlL395xPOKZFoilvwgw5tqwbKCUbAHaN4NpSdlMTIREREZ6NSCdRSPPvoon/vc53j//fepqalh27ZtVFZW8te//rXb+rW1tTz//PMAPPDAA5x55pmccsop1NTUsHXrVgB+85vf8LGPfeyo5161ahXRaBSAXbt2sXfvXsaNG0dBQQEHDhzoqHfeeefxs5/9DJd6P2TDhg0d21avXk1DQwNtbW08/vjjLFiwgLq6uo4uf21tbaxevZopU6Ycdv533nmH008/nVtuuYXy8nK2bdvGWWedxf333w/Ali1bqK2tPSyxO5IDBw4wZswYotFox3G6c8UVV/CTn/yEffv2MXPmzF4fXyQTXKqLIN7khwSBEaMBiO3fna2QREREZJBQgnUUK1as4NOf/nSXsksuuaTH0QRPOeUU7rjjDqZOnUpjYyNf+tKXCIVC3HvvvVx22WVUVVXh8Xj44he/eNRzP/nkkx2DTJx33nncdtttjB49mkWLFvHmm292DHLxve99j2g0ysyZM5k+fTrf+973Oo4xb948LrnkEmbOnMkll1xCdXU1O3fuZNGiRcycOZO5c+eyePFiLrzwQgBuuukmVq5cCcA3vvENqqqqmDFjBmeccQazZs3iy1/+MolEgqqqKq644gruu+++Li1XR/PDH/6Q008/nQULFnRJ6lauXMlNN93UsX7ppZfy4IMPcvnll/f62CKZ4lItWPgCAASLkwlWa8MH2QpJREREBglzA2hUrOrqanfoaHGbNm1i6tSpWYpocLvvvvu6DIYxHOnfjxyPB+7+V/7Hth/Al1+AkVN4cuMOPv7IdPbO/iojP/XDbIcnIiIiA4CZrXfOHTYSm1qwREQOdUgLVvmIXPZSSGz/riwGJSIiIoPB4BrkQo7JsmXLWLZsWbbDEBl0XDySXEi9g1WWH6TOFVKkUQRFRETkKPq8BcvMzjezzWa21cy+dTzHGEjdGGXw0L8bOV7W0YKVTLDKC4LUu0J8bXVZjEpEREQGgz5NsMzMC9wBXABMAz5jZtOO5RihUIi9e/fqYVmOiXOOvXv3EgqFsh2KDEKWONiClewiGPJ7afIWEwzXZzEqERERGQz6uovgPGCrc+5dADN7EFgCvNnbA1RUVLB9+3bq6vTJsRybUChERUVFtsOQQcjiXVuwAFr9peRFG8A56MX8diIiIjI89XWCNQ7Y1ml9O3B65wpmdi1wLcCECRMOO4Df76eysrIPQxQR6coT79qCBRAJleE/EIX2Jsgpzk5gIiIiMuBlfRRB59ydzrlq51x1eXl5tsMREcGTiBA1f5eWqkRe6u9Ts1rTRUREpGd9nWDtAMZ3Wq9IlYmIDFiWiBCzQJcyT8Go5ELz7ixEJCIiIoNFXydYLwGTzazSzALAUmBlH59TRCQt3kSUmPm7lAUKRwMQ0VxYIiIicgR9+g6Wcy5mZl8B/gR4gXucc2/05TlFRNLlTUSIe7q2YOUUjwWgZe8HBLrbSURERIR+mGjYOfcH4A99fR4RkUzxJiLEfV1bsApLyok6L+EmtWCJiIhIz/o8wRIRGWz8LkLcE+xSVlaQQz2FJNRFUERERI4g66MIiogMNH4XIe7tmmCVFwSpc4XQolEERUREpGdKsEREOkkkHEEXIeENdSkvzQ9Q7wrxtSrBEhERkZ4pwRIR6SQSTxCyw1uw/F4P+73F5ETqsxSZiIiIDAZKsEREOglHEwSJ4g5pwQJoC5aSF22ERCILkYmIiMhgoARLRKSTcDxOkAjOd3iCFc4ZiZc4tO7NQmQiIiIyGCjBEhHpJBxNdhHsLsFy+cm5sNi/o5+jEhERkcFCCZaISCeReIIQEfAfnmD5iscBEN/3QX+HJSIiIoOEEiwRkU4iseQ7WHTTgpVTOh6Alvra/g5LREREBgklWCIinYRjyRYs66YFq7BsHDHnoU0JloiIiPTAl+0AREQGkmgkjM8SmC/nsG1jivPYTTE0qYugiIiIdC+tFiwzu83M3jKz18zsv82sqNO2G81sq5ltNrPz0o5URKQfRMOtAFjg8ARrdGGI3a4YO6AES0RERLqXbhfB1cAM59xMYAtwI4CZTQOWAtOB84Gfm5k3zXOJiPS5SHsbAN5A7mHbSnID7KaUQOvu/g5LREREBom0Eizn3JPOuVhqdS1QkVpeAjzonAs7594DtgLz0jmXiEh/iLQ3A+ALHt6C5fEYB/zlFIR3g3P9HZqIiIgMApkc5GI58MfU8jhgW6dt21NlIiIDWqQ92UUwEDy8BQugPWcUQdcG4f39GZaIiIgMEkcd5MLMngJGd7PpO865J1J1vgPEgPuPNQAzuxa4FmDChAnHuruISEZFw8kugoGcvG63x/PHQDOwfyeECvsxMhERERkMjppgOefOOdJ2M1sGXAh83LmOPjM7gPGdqlWkyro7/p3AnQDV1dXqcyMiWRVPDXIRCHXfguUpHAe7wO3fgY2c0p+hiYiIyCCQ7iiC5wPfBC5yzrV22rQSWGpmQTOrBCYDL6ZzLhGR/hBLtWD5e+giGExNNty2d1u320VERGR4S3cerNuBILDazADWOue+6Jx7w8weBt4k2XXwOudcPM1ziYj0ORc+kFwI5ne7fUR5MsFqqa+l+xRMREREhrO0Eizn3KQjbPsR8KN0ji8i0t88HQlWQbfbR5WMoN6NINKwvR+jEhERkcEik6MIiogMep7owQRrRLfbRxfmsNsVJwe5EBERETmEEiwRkU48keQ8WD21YI0sCLLLleBvVYIlIiIih1OCJSLSiS/WTAQ/+ILdbvd7PTT6y8lr393PkYmIiMhgoARLRKSTQKyZdk/3c2Ad1BYaRV58P0Raj1hPREREhh8lWCIinfhjzYS9Rx4fMJo3NrlwQN0ERUREpCslWCIinQTiLUR83Q/RfpAVjksu7NNIgiIiItKVEiwRkRTnHKF4C3H/kROsYMkEANobNNmwiIiIdKUES0QkpSUSJ582EoHuRxA8KH9kMsFq2fN+f4QlIiIig4gSLBGRlH1tUQpo7XGI9oNGlhTR4PKJqAVLREREDqEES0Qkpak1Qonth9yyI9YbUxhipyvF7d/RT5GJiIjIYKEES0Qk5cD+feRZGE/ByCPWGzUixAeulECLRhEUERGRrpRgiYiktDfuAsA3YtQR64X8Xhp95eRqsmERERE5RMYSLDP7upk5MytLrZuZ/YeZbTWz18xsTqbOJSLSF1obky1SeSVjj143OIpcTTYsIiIih8hIgmVm44FzgdpOxRcAk1Nf1wK/yMS5RET6SntTsgWroPToCVYsf0xyQe9hiYiISCeZasH6V+CbgOtUtgT4tUtaCxSZ2ZgMnU9EJOPi+5MJlqfgyF0EATg42bASLBEREekk7QTLzJYAO5xzrx6yaRzQeQzj7amyQ/e/1szWmdm6urq6dMMRETlunpY9JDDIO/IoggCB1GTDUQ3VLiIiIp34elPJzJ4CRnez6TvAt0l2Dzwuzrk7gTsBqqur3VGqi4j0mYK27TT5yinx+o9aN788NdlwfS1FfRyXiIiIDB69SrCcc+d0V25mVUAl8KqZAVQAL5vZPGAHML5T9YpUmYjIgJNIOMqiH7C/oIKSXtQfVVJIvRtBfK9asERERORDaXURdM697pwb6Zyb6JybSLIb4Bzn3C5gJXBVajTB+cA+55wmjRGRAWnX/nYq2EOs6IRe1R9dGGKXK8Ht297HkYmIiMhg0pfzYP0BeBfYCtwFfLkPzyUikpaanXWMtCb8ZSf2qv7oESF2u2K8rXp3VERERD7Uqy6CvZVqxTq47IDrMnl8EZG+0vj+RgBGjJvaq/p5QR/7vMUE22uPXllERESGjb5swRIRGTQiH7wGQFHl7F7v0xooJS/WCIl4X4UlIiIig4wSLBERwF/3Bu0WxEp610UQIBwqx0sCWhv6MDIREREZTJRgiciwF40nGNO6mfrcyeDp/Z/FRN7I5ELzrj6KTERERAYbJVgiMuxt3VHHDN6hbcy8Y9rP8kclF5p390FUIiIiMhgpwRKRYW/Hxj8TtBgjpiw8pv38hWMAiO1TgiUiIiJJSrBEZNiLvrOGOB5GTv/YMe2XU5xMsFobNYe6iIiIJCnBEpFhzTnHqIaX2BGahOUUHdO+RUVFNLsQkSa9gyUiIiJJSrBEZFh7b9depifepmXMR45539L8IHtcEfH9SrBEREQkSQmWiAxr72x4jqBFKZ626Jj3Lc8PUkcR1rKnDyITERGRwUgJlogMa9F3/koCY9SMhce8b1lBgDpXiL+tLvOBiYiIyKCkBEtEhi3nHCMbXmJHcBKWU3zM++cGfDRaMTlhJVgiIiKSpARLRIat93Y3MCOxhZYx84/7GG3BUkLxFoi2ZTAyERERGazSTrDM7Ktm9paZvWFmP+lUfqOZbTWzzWZ2XrrnERHJtHdf+Qshi1I49djfvzqoPVSeXDiggS5EREQEfOnsbGaLgCXALOdc2MxGpsqnAUuB6cBY4CkzO9k5F083YBGRTIls/QsJjNFVx59gxXNHwQGgeTeUVGYuuH4Sjsao3VZDw7bNxOrehaZaaK3D195ATrSR/Ph+gq4Nv4vid1ECRAgQAyCBhzgeEnhImIcERhwvCbzEzZtcNm+yniXLE+YlYT6cHVz24syLM19yGQPAcKkIXUesHWWu809w+PaD313nsi77HHKIXju+vYazg9dT+labv4TJn7+L0sKCbIciIqSZYAFfAm51zoUBnHMHh9JaAjyYKn/PzLYC84Dn0zyfiEhGOOco37uODwInUpFbctzH8YwYDbsZFC1YbeEYm99YT/3mv+PZ/RplB96iMvYek61r98Z95NPsLaTFV8T+wDhi3lycN4DzhXDeADELAA5zCczFMZcAlwAXxxJxSMQxF0tu67TsccllTyKOEceTiOJ37XhcHI+L4aPrZ3AHH84Ppk3dbQNwdvhDfJftPT7k6+G/L5kS0n4RcGFmtb3Ac2t+x8JPfCbb4YgI6SdYJwNnmdmPgHbgfznnXgLGAWs71dueKjuMmV0LXAswYcKENMMREemdbfUHmJbYzLbRn07rOP7CMQAkDuwacC+1hmNxXn/9Veo3/I78XS8wJfwap9p+ANoIsiN4ElvL/gHvqCkUjDmZEWMnUzR2EoX+IIVZjl1EesdFWmn7lxPwvbMaUIIlMhAcNcEys6eA0d1s+k5q/xJgPjAXeNjMTjyWAJxzdwJ3AlRXV+vjLhHpF5tfW8tiC1MweUFax8kvGUXUeYk2fEBuhmJLR0NzO+v+/hSxN3/P5Ma/UG3bAaj3lLO7/AzqKs9i3MyFjBg3lUkeb5ajFZF0WSCXLTmzObHxb+AcdNOiKyL966gJlnPunJ62mdmXgN865xzwopklgDJgBzC+U9WKVJmIyIDQ9u7fARgz/WNpHae8IId6Cgk1ZS/BOtAeZe3avxF5+QHm7FvNudZADA/vF5zKlklXMX7+pykbNZkyPXiJDElNFYuY9fat7K19k9ITpmc7HJFhL90ugo8Di4BnzexkIADUAyuBB8zspyQHuZgMvJjmuUREMqagbgONnhKKi9PrmjxyRJA9roiKA7szFFnvOOdYt+kdtj93D6fs/j2LrYYYHmqKP8K2Uy+jYt4STkrj3TIRGTzGzb0I3r6VbWsfV4IlMgCkm2DdA9xjZhuBCHB1qjXrDTN7GHgTiAHXDcYRBN95fS37Vv2IE666g9JRej9MZKhoj8Y5Kfwme0pnUZxmq87IghBvuSImtPRPglV/oJ0/P/sn8l67l0XRNcy1KNvzplJb9X0qzrySSQUj+yUOERk4Tpo8jXdtPIGap0i+wSEi2ZRWguWciwBX9rDtR8CP0jl+tjXWvEpV8/O0/eIMXp77A2ZfsBzzDLTX2EXkWG15+y1m2h42j1+e9rHKC4L81RUSbKtJP7AeOOd45b2dbF59LzM+eIRL7D3aLIcdlRcz9pyvUlFR1WfnFpGBz8zYXn4WH9n9EK17d5Bb2u24YiLST9JtwRrSqj/5j7w3aS7RR69lzktf5+0Nv6Rl3j8xY+Hl+ALBbIeXcc45EglHPB4jkYgTi8WSy/E4Lh4DF8e5OOZSc8x0TFPjcJ2H43UfLrtOx/6wzH1Yx3UpHSSOrcWjP9566W6Y6r5wbKcZgO/7pH6AxnWPAVA2M/050EN+L/t8pYSijRCPgTdzf1bbo3Ge/dvfiKz9FQvbVjPbWtmdcyJ75v0LIxdcxYlBzXkjIkklZ34e/28f4K1Vt1P12f+d7XAGnI5nnFiERCxCIh4jnojj4o5EIk7cJUgkEiQSLvnM4hLQ8bziks8+B8uSBzym81tv/wPtRTXDeleRY3k+OIb/szN9zF4cz/lyGVFcRk5gcAzOpATrKCqnziF+4/O8+P/+LxWv/juT//4V6v/+XWrKFhKcspjxVR+laOT4Phu1JxaL0dZ6gPbWZsKpr0h7M7G2ZqLhFuLhZhLtLSQirbhIK0STX55YKxZtwxdPfnnj7QQS7QQSbQRcmBDtBFwMT3Lqz47vXnMMjn+6IsdvFFBPMWUnzs7I8dqDZXjCDlr2wIixaR/v/T1NrH/yfsZtfYAL2EgUH9vHLsb/8a8w6qQFGiVMRA4zveo0Xlo5h5O2riAR/QEe/+D6IDgRT7BvfxOt+/bSun8vkZZGos0NxFsbSbQ2kWjfTyLSBtHk84033oYv3o4/0YYvESbg2vEnwnhdDG9qXj0vMXwujo/kus8SesYZpO6NnUf55f/GhTPT/z+2PyjB6gWvz8+8T3+F6IXXsuHPv8W9/F9MqVtFfv3jsAYaGcEHvvGEg6XEc8uIBYowXwDz+nFePy6RgFgYi0cgHsHiYYhH8MTa8MRak38g4m34E+34E+0EXTshwoRcmByLUAAcy+fUbS5Au4UIW5CwhYh4QsQ8IcKBYlq8Y0j4con7ckh4AuDxgnnB40l+Ny94vMmukB3LyXJnHpx5Uw93qQc8+3Ai0C6PfJ0eAO2QuqTqHpz8s+uz4sB+cDyeiTP7vGXuGD9F6x8DMKZDfk/Fk+ZmbFQ9VzAGwsC+7cedYMXiCf66/jWa1tzFGft+x8XWxF7fSGpnfJ3xH/9HKgtGZSRWERmazIzI3C9R8vwXePPxW5l22fezHRLOOZoa6mjYsZX99Ttoa9xJ4sBuPC11+NvryQnvJT/WwIhEEwWuhWKLU3yE40Wcj3YLfvh8Y0EiFiLqCdLqG0HcE8J5/DivDzx+zOsHjx+8vmS5+XBeH8784PGlnnU8mFnqy4N5kt/hYOtP8ssdLMM6noN6nsT8sF9Eb39jma3Xy/Me2/+EmY3RehljRcEkThlX1MtzZ58SrGPg9weYfc5SOGcpbW1tvL7hOfa9ux5//SZGtNVS2vYuhc0vU2TNPR4j7PxE8BE1f8cfiKgnRNSTQ1ughAPeHBK+HBK+XJw/B+fLxQK5WCAPTzAXbzAPbzAPf04BgVAe/px8gjn5hHLzCeUly3I8XnL68fciMuyVT4F6cHs2YePnHdOuOxub+fvqxyjZdD9nJV7CY47ako/Q+LEvUTrzE5RqrioR6aX5iy/jb+vupfqNn7G3+lOUVs7q0/PF4gl21TewZ9sWmne+Q2Tve3j3bSOvdTvF0Z2Miu+m2FoPS5paCNFkRRzwldCQcwK7Q3NwoSI8OUV4covx5RXhzy0mUFBCqKCU3BEl5I0oJhgIEFALvgwCSrCOU05ODlVnXABnXHDYNpdIEIvHiITDxGIRAl4v/mAIry9A0ONhcDXai8jRFI6dTMubQTw7NpJz2tHrN4dj/P35NYTX/RdzDzzFJdbIfk8h26Z+nvHnXMfEssq+D1pEhhyvxxj5mZ/R/J+L4NdL2Hvlbyk9aU5ax2w60Myu2q00fvA27Xvew5pqCDZvZ0R4J6Piu6iw/VR0qt9OgDrfaPbljGVL3mkkik7AXzKBvLIKissrKBo5jrycAvLS+1FFBjQlWH3APB78ngB+fyDboYhIPzhldCFvuwpO2PFaj63HreEo69e/QNPL/82JdU9xrtUQw0tN6QLqTv8c5actYYRPH7+ISHomnziJVy56hLErr6DoN4t5teJyRp15NaMmzcYO+RvjnKO5eT+NO9/jwO4aWvbUEG2oxbt/G/ltOyiN7WKUa6DIPuzGFcNLnWck+0Jj2ZE/jQ+KTyBUPpGisZMpGTeZ0IhRjDdjfH//4CIDiBIsEZE0zTmhiAfcFKr2rIKWesgrA6B2TyNb1j9D9K0nmdL0Z86ynQBsy5tGbdVNjD/rKibll2czdBEZgk49bT41pc+y+eFv8JFtD+J78AGieKmzMiKeIOYcuYkW8lwLBRbu8p53whn1nhIaAmPZVTCXDwonECivZMTokygffwq5ZeMZ4/EyJms/ncjApwRLRCRNuQEftRM+jXfH76n51ZW855lIXuObVMU3McEixPDy/og5vDv1i0z4yKWML644+kFFRNIwceKJTPzmY9TUvk/tS78jsWcTua078cTDyQExfPkQKsSbW4KneDyh0hMoGXcSI8dOZGQgiKYsFzl+5gbQCGTV1dVu3bp12Q5DROSY1dS3sOrOb7MsfD8ec+wJjGf/6DMomn4OY2YuwnKONDaWiIiIDDZmtt45V31YuRIsEZHMcM7RHo6QE/Anpz4QERGRIaunBEtdBEVEMsTMyAlpoAoREZHhTB+xioiIiIiIZIgSLBERERERkQxRgiUiIiIiIpIhA2qQCzOrA97PdhyHKAPqsx2E9Btd7+FD13r40LUeXnS9hw9d6+FlIF7vE5xzh01oOaASrIHIzNZ1NzqIDE263sOHrvXwoWs9vOh6Dx+61sPLYLre6iIoIiIiIiKSIUqwREREREREMkQJ1tHdme0ApF/peg8futbDh6718KLrPXzoWg8vg+Z66x0sERERERGRDFELloiIiIiISIYowRIREREREckQJVhHYGbnm9lmM9tqZt/KdjySOWY23syeNbM3zewNM/unVHmJma02s7dT34uzHatkhpl5zWyDmf0utV5pZi+k7u+HzCyQ7RglM8ysyMweNbO3zGyTmX1E9/bQZGY3pP6GbzSzFWYW0r09dJjZPWa2x8w2dirr9l62pP9IXffXzGxO9iKXY9XDtb4t9Xf8NTP7bzMr6rTtxtS13mxm52Ul6CNQgtUDM/MCdwAXANOAz5jZtOxGJRkUA77unJsGzAeuS13fbwFPO+cmA0+n1mVo+CdgU6f1HwP/6pybBDQCn89KVNIX/h1Y5ZybAswied11bw8xZjYO+BpQ7ZybAXiBpejeHkruA84/pKyne/kCYHLq61rgF/0Uo2TGfRx+rVcDM5xzM4EtwI0Aqee1pcD01D4/Tz23DxhKsHo2D9jqnHvXORcBHgSWZDkmyRDn3E7n3Mup5QMkH8DGkbzG/5mq9p/Ap7ISoGSUmVUAnwB+lVo34Gzg0VQVXeshwswKgY8CdwM45yLOuSZ0bw9VPiDHzHxALrAT3dtDhnPuL0DDIcU93ctLgF+7pLVAkZmN6ZdAJW3dXWvn3JPOuVhqdS1QkVpeAjzonAs7594DtpJ8bh8wlGD1bBywrdP69lSZDDFmNhGYDbwAjHLO7Uxt2gWMylZcklH/BnwTSKTWS4GmTn+4dX8PHZVAHXBvqkvor8wsD93bQ45zbgfwf4BakonVPmA9ureHup7uZT23DW3LgT+mlgf8tVaCJcOameUDjwHXO+f2d97mknMYaB6DQc7MLgT2OOfWZzsW6Rc+YA7wC+fcbKCFQ7oD6t4eGlLv3iwhmVSPBfI4vIuRDGG6l4cHM/sOyVc77s92LL2lBKtnO4DxndYrUmUyRJiZn2Rydb9z7rep4t0HuxSkvu/JVnySMQuAi8yshmRX37NJvqNTlOpWBLq/h5LtwHbn3Aup9UdJJly6t4eec4D3nHN1zrko8FuS97vu7aGtp3tZz21DkJktAy4EPus+nLx3wF9rJVg9ewmYnBqNKEDyZbqVWY5JMiT1Ds7dwCbn3E87bVoJXJ1avhp4or9jk8xyzt3onKtwzk0keR8/45z7LPAscGmqmq71EOGc2wVsM7NTUkUfB95E9/ZQVAvMN7Pc1N/0g9da9/bQ1tO9vBK4KjWa4HxgX6euhDIImdn5JLv3X+Sca+20aSWw1MyCZlZJcmCTF7MRY0/sw2RQDmVm/0Dy3Q0vcI9z7kfZjUgyxczOBP4KvM6H7+V8m+R7WA8DE4D3gcudc4e+YCuDlJktBP6Xc+5CMzuRZItWCbABuNI5F85ieJIhZnYqyQFNAsC7wDUkP1DUvT3EmNnNwBUkuw9tAP4nyXcxdG8PAWa2AlgIlAG7ge8Dj9PNvZxKsm8n2U20FbjGObcuC2HLcejhWt8IBIG9qWprnXNfTNX/Dsn3smIkX/P446HHzCYlWCIiIiIiIhmiLoIiIiIiIiIZogRLREREREQkQ5RgiYiIiIiIZIgSLBERERERkQxRgiUiIiIiIpIhSrBEREREREQyRAmWiIiIiIhIhvx/BaDgKBlYfw0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1230,31 +1230,31 @@ " 6\n", " False\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " bAP.soma.v\n", - " 0.00957\n", - " 4.34e-05\n", + " 0.00979\n", + " 1.15e-07\n", " \n", " \n", " 7\n", " False\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step1.soma.v\n", - " 0.0106\n", - " 2.79e-05\n", + " 0.011\n", + " 8.94e-06\n", " \n", " \n", " 8\n", " False\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step3.soma.v\n", - " 0.00956\n", - " 4.33e-05\n", + " 0.00961\n", + " 7.11e-07\n", " \n", " \n", "\n", @@ -1262,14 +1262,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "6 False 2 0.12 0.0646 bAP.soma.v \n", - "7 False 2 0.12 0.0646 Step1.soma.v \n", - "8 False 2 0.12 0.0646 Step3.soma.v \n", + "6 False 2 0.0769 0.069 bAP.soma.v \n", + "7 False 2 0.0769 0.069 Step1.soma.v \n", + "8 False 2 0.0769 0.069 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "6 0.00957 4.34e-05 \n", - "7 0.0106 2.79e-05 \n", - "8 0.00956 4.33e-05 " + "6 0.00979 1.15e-07 \n", + "7 0.011 8.94e-06 \n", + "8 0.00961 7.11e-07 " ] }, "metadata": {}, @@ -1277,7 +1277,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkHklEQVR4nOzdeXxU1f3/8ddnZrIDCYR9DSooq6jgUsGtfhXrXlvRutvWajf169LWtor+ar/9tn5rq7ZFra1WLeK+27riVjdARAVU0LCvARISss3M5/fH3MQhZAMmTELez8djZO69557zuXNz43xyzj3X3B0RERERERHZeaF0ByAiIiIiIrK7UIIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLRKSdMbMiM3Mzi6Q7FukczOxjMzsi3XGIiOwOlGCJiEiHZ2bTzKw8eNWYWW3S8nPpjq+9c/dR7j4zlXWa2U1m9pmZbTazhWZ2birrFxFpr5RgiYikmHqedj13v9jdu7h7F+DXwIy6ZXc/rq5cRzo3HSnWJlQAJwL5wHnAH83sK+kNSUSk7SnBEhFJATMrNrOfmNk8oMLMImZ2sJn9x8w2mdkHyUOwzGymmf2Pmb1rZmVm9oSZ9Wii7gvMbEHQE/C5mX2vwfaTzWxuUM9iM5scrM83s7vMbJWZrTCzX5lZuIXj2NPMXjazEjNbb2b3m1lB0rYNZrZ/sNzfzNbVHZeZnRQMNdsUHN+IBp/PlWY2z8xKzWyGmWVv/ye9/Zo4N25meyWVudvMfpW0fELwmW4KzuHYVrZ1hJktN7Nrgs+v2MzOStp+vJm9H5yrZWY2NWlb3dDQb5vZUuDlYP1DZrY6+NxeM7NRDeL+s5k9F/TWvWlmfc3sD2a2Meg52q+Vn9HRrTnG1nL369x9obvH3f0d4HXgkFS2ISLSHinBEhFJnTOB44ECoA/wDPAroAdwJfCImfVKKn8ucCHQD4gCtzRR71rgBKAbcAFwc1KScyDwD+CqoN3DgOJgv7uDevcC9gOOAb7TwjEY8D9Af2AEMAiYCuDui4GfAPeZWS7wd+Aed59pZsOB6cBlQC/gWeApM8tMqvt0YDIwFBgLnN9oAGYTg8SmqdfEFo6hMfXnxt2jzX4AiYTkb8D3gELgduBJM8tqZVt9gZ7AABI9N3eY2d7BtgoS570giOcSMzulwf6Hk/jsjw2WnwOGAb2BOcD9DcqfDvwiaLMaeCso1xN4GPh9K+NulJn9tLnz0co6coAJwMc7E4uISEegBEtEJHVucfdl7l4JnA086+7PBn/BfwGYBXwtqfy97v6Ru1cAvwROb6yHyd2fcffFnvAq8DwwKdj8beBv7v5C0M4Kd19oZn2Cti5z9wp3XwvcDJzR3AG4+6Kgrmp3X0fiy/nhSdvvBBYB75BIDH8ebJoCPBPsWwvcBOQAyUPCbnH3le6+AXgKGNdEDG+4e0EzrzeaO4YmJJ+bllwE3O7u77h7zN3vIZG4HLwd7f0y+AxfJZFonw7g7jPd/cPgXM0jkZQe3mDfqcE5qwz2+Zu7b3b3ahLJ7r5mlp9U/jF3n+3uVcBjQJW7/8PdY8AMEsn1DnP33zR3PlpZzTTgA+DfOxOLiEhHoARLRCR1liW9HwJ8s8Ff+ieSSEoaK78EyCDR67AVMzvOzN4OhudtIpE41ZUbBCxuJJYhQX2rktq/nUQvSJPMrI+ZPRAMKSwD7mskpjuB0cCtwZd+SPR4Lakr4O7x4PgGJO23Oun9FqBLc7Gk2LKWi9QbAlzR4NwNInGMrbExSJrrLKnb18wOMrNXgqGVpcDFbPv51sdqZmEz+40lhn6W8WXvZPI+a5LeVzayvCs/522Y2e9I/Lyc7u6ezlhERHYFJVgiIqmT/OVxGYkequS/9ue5+2+SygxKej8YqAXWJ1cYDEt7hESPUJ+gx+BZEkP56trZs5FYlpHodemZ1H43dx/VSNlkvw6OY4y7dyPRE1fXFmbWBfgDcBcw1b68b2wlicSkrpwFx7eihfa2YWaT7MsZABt7TWq5lm00/GK/BchNWu6b9H4ZcGODc5fr7tNb2VZ3M8tLWh5M4vMB+CfwJDDI3fNJ9OxYg/2TY/0WcDJwNInJIoqC9Q33aTPB/WRNno8W9r0eOA44xt3Ldk3EIiLppQRLRKRt3AecaGbHBr0Q2cEECAOTypxtZiOD+5luAB4OhnUlywSygHVA1MyOI3EvVZ27gAvM7KtmFjKzAWa2j7uvIjGU8P/MrFuwbU8zazgcraGuQDlQamYDSNzbleyPwCx3/w6JoW/TgvUPAscHcWQAV5BI8P7T0gfVkLu/njQDYGOv17e3zkbMBb4VnJvJbD1M707g4qC3ycwszxKTU3SF+okl7m6h/uvNLDNIBk8AHgrWdwU2uHtVcP/ct1qopyuJz7GEREL46+04xpRw9183dz6a2s/Mfkbi+I5295JdF7GISHopwRIRaQPuvoxEz8M1JJKjZSSSleTfu/eSmIhiNZAN/LiRejYH6x8ENpL4wvpk0vZ3CSa+AEqBV/myJ+lcEgna/GDfh9l6iGJjrgf2D+p6Bni0boOZnUxikopLglX/DexvZme5+yckertuJdELdyJworvXtNBeulxKIsZNwFnA43Ub3H0W8F3gNhKf2yK2npBjEPBmM3WvDvZbSWJCiovdfWGw7fvADWa2GbiWxHltzj9IDDFcQeI8vt3SgbUjvybRe7coqcfrmnQHJSLS1kzDoUVEdj0zmwnc5+5/TXcs0nrBrIgfAGODyTwabj+CxHkd2HCbiIh0Dh39IYYiIiK7TNAjN6LFgiIi0mlpiKCISCdjZtOamLBgWst7S0dkZoObmahicLrjExHZnWiIoIiIiIiISIqoB0tERERERCRF2tU9WD179vSioqJ0hyEiIiIiItKs2bNnr3f3Xg3Xt6sEq6ioiFmzZqU7DBERERERkWaZ2ZLG1muIoIiIiIiISIoowRIREREREUkRJVgiIiIiIiIp0q7uwWpMbW0ty5cvp6qqKt2hSDuQnZ3NwIEDycjISHcospuqqI7y43ve4NwJfTh8Pz1PVkRERLZPu0+wli9fTteuXSkqKsLM0h2OpJG7U1JSwvLlyxk6dGi6w5Hd1H8Wl3DF8h8zcuUSGLcJ9HtHREREtkO7HyJYVVVFYWGhkivBzCgsLFRvprSplWvXMzKUmBSoYtXCNEcjIiIiHU27T7AAJVdSTz8L0tbCK2fXv1837/k0RiIiIiIdUYdIsEREdhWrKat/H131URojERERkY5ICVYrmBlXXHFF/fJNN93E1KlT0xdQkiOOOKLZhzOfcsopHHzwwVutmzp1KgMGDGDcuHGMHj2aJ598sq3DFOkwQrUVAKz3bmRsXJzmaERERKSjUYLVCllZWTz66KOsX78+pfW6O/F4PKV1Jtu0aROzZ8+mtLSUzz//fKttl19+OXPnzuWhhx7iwgsvbNM4RDqScO0WABZHhpFfUZzeYERERKTDUYLVCpFIhIsuuoibb755m23r1q3jtNNOY8KECUyYMIE333wTSPQS3XTTTfXlRo8eTXFxMcXFxey9996ce+65jB49mmXLlnHVVVcxevRoxowZw4wZMwCYOXMmRxxxBN/4xjfYZ599OOuss3D3RuO7995763uj3n333fr1jz76KCeeeCJnnHEGDzzwQKP7jhgxgkgkslXy+NOf/pSRI0cyduxYrrzySgCKi4s56qijGDt2LF/96ldZunQpAOeffz6XXHIJBx98MHvssQczZ87kwgsvZMSIEZx//vn1dV5yySWMHz+eUaNGcd11120TR2lpKUOGDKlP9CoqKhg0aBC1tbWNxi3SViLRcgDWdh1BQawEqjenOSIRERHpSNr9NO3Jrn/qY+avLGu54HYY2b8b1504qsVyP/jBDxg7dixXX331VusvvfRSLr/8ciZOnMjSpUs59thjWbBgQbN1ffbZZ9xzzz0cfPDBPPLII8ydO5cPPviA9evXM2HCBA477DAA3n//fT7++GP69+/PoYceyptvvsnEiRO3qW/Lli3MnTuX1157jQsvvJCPPkrcNzJ9+nSuvfZa+vTpw2mnncY111yzzb7vvPMOoVCIXr16AVBSUsJjjz3GwoULMTM2bdoEwI9+9CPOO+88zjvvPP72t7/x4x//mMcffxyAjRs38tZbb/Hkk09y0kkn8eabb/LXv/6VCRMmMHfuXMaNG8eNN95Ijx49iMVifPWrX2XevHmMHTu2Po78/HzGjRvHq6++ypFHHsnTTz/Nscceq+ddyS4XiW4hRoia7sNhE/impVifln9HiIiIiIB6sFqtW7dunHvuudxyyy1brX/xxRf54Q9/yLhx4zjppJMoKyujvLy82bqGDBlSf1/UG2+8wZlnnkk4HKZPnz4cfvjhvPfeewAceOCBDBw4kFAoxLhx4yguLm60vjPPPBOAww47jLKyMjZt2sSaNWv47LPPmDhxIsOHDycjI6M+8QK4+eabGTduHFdeeSUzZsyon50vPz+f7Oxsvv3tb/Poo4+Sm5sLwFtvvcW3vvUtAM455xzeeOON+rpOPPFEzIwxY8bQp08fxowZQygUYtSoUfUxP/jgg+y///7st99+fPzxx8yfP3+b45gyZUp9D94DDzzAlClTmv0cRdpCRmwLVZZDRuFgALasXZLmiERERKQj6VA9WK3paWpLl112Gfvvvz8XXHBB/bp4PM7bb79Ndnb2VmUjkchW9zUlP7spLy+vVe1lZWXVvw+Hw0Sj0UbLNZy63Mx48MEH2bhxY/0DecvKypg+fTo33ngjkLgHq274X8O43333XV566SUefvhhbrvtNl5++eVWxRkKhbaKORQKEY1G+eKLL7jpppt477336N69O+eff36jz7I66aSTuOaaa9iwYQOzZ8/mqKOOarZdkbaQGdtCdSiHLr2Da2fNF+SNSXNQIiIi0mHsdA+WmQ0ys1fMbL6ZfWxmlwbrp5rZCjObG7y+tvPhplePHj04/fTTueuuu+rXHXPMMdx66631y3PnzgWgqKiIOXPmADBnzhy++OKLRuucNGkSM2bMIBaLsW7dOl577TUOPPDA7YqrrtfnjTfeID8/n/z8fKZPn86//vWv+vu+Zs+e3eR9WMnKy8spLS3la1/7GjfffDMffPABAF/5ylfq97///vuZNGlSq+MrKysjLy+P/Px81qxZw3PPPddouS5dujBhwgQuvfRSTjjhBMLhcKvbEEmVzPgWqkK5FPYZRK2HqVqvHiwRERFpvVT0YEWBK9x9jpl1BWab2QvBtpvd/aZm9u1wrrjiCm677bb65VtuuaX+/qxoNMphhx3GtGnTOO200/jHP/7BqFGjOOiggxg+fHij9Z166qm89dZb7LvvvpgZv/3tb+nbty8LFy5sdUzZ2dnst99+1NbW8re//Y3i4mKWLFmy1fTsQ4cOJT8/n3feeafROr72ta/x17/+FTPj5JNPpqqqCnfn97//PQC33norF1xwAb/73e/o1asXf//731sd37777st+++3HPvvsw6BBgzj00EPrt1177bWMHz+ek046CUgME/zmN7/JzJkzW12/SCplxSupCefQv0cXVnsPvHRZukMSERGRDsSampluhys0ewK4DTgUKN+eBGv8+PHe8JlOCxYsYMSIESmNUTo2/UxIW5p3w8FkZ2ez15WvMOv6Q+jXLZNBV7yW7rBERESknTGz2e4+vuH6lE5yYWZFwH5AXTfJD81snpn9zcy6N7HPRWY2y8xmrVu3LpXhiIhst2yvpDacSyhkbIr0Jq9ydbpDEhERkQ4kZQmWmXUBHgEuc/cy4C/AnsA4YBXwf43t5+53uPt4dx9fN1W4iEi65HgV0Uhi9swtOf3Ij66DWOMTzIiIiIg0lJIEy8wySCRX97v7owDuvsbdY+4eB+4Etm/mBhGRNMj0amLhHACiXQcQJg7l6sUSERGR1knFLIIG3AUscPffJ63vl1TsVOCjhvuKiLQ3GdRCOBOAUMEgAKIbl6YzJBEREelAUjGL4KHAOcCHZjY3WHcNcKaZjQMcKAa+l4K2RETaTCzuZBCrT7Cyeg4BYPPqYroXfSWdoYmIiEgHsdMJlru/AVgjm57d2bpFRHalmmicTGohknhgdtc+iQSrYv0SGp2lR0RERKSBlM4iuDt7/PHHMbNmn09VXFzM6NGjU9bm+eefz8MPP9zk9ssuu4wBAwYQj8fr191999306tWLcePGMXLkSO68886UxSOyu6upjZFlUSzowerTszebPYeaDcvTHJmIiIh0FEqwWmn69OlMnDiR6dOnN7o9Gt35WcZisViry8bjcR577DEGDRrEq6++utW2KVOmMHfuXGbOnMk111zDmjVrdjo2kc6guroSAMtIJFj9CrJZ5T2wzSvTGZaIiIh0IEqwWqG8vJw33niDu+66iwceeKB+/cyZM5k0aRInnXQSI0eOBBKJ1llnncWIESP4xje+wZYtWwB46aWX2G+//RgzZgwXXngh1dXVABQVFfGTn/yE/fffn4ceemibtl988UXGjx/P8OHDefrpp7dqe9SoUVxyySVNJn29e/dmzz33ZMmSJfXrbrnlFkaOHMnYsWM544wzANiwYQOnnHIKY8eO5eCDD2bevHkATJ06lfPOO49JkyYxZMgQHn30Ua6++mrGjBnD5MmTqa2tBeCGG25gwoQJjB49mosuuoiGD6+Ox+MUFRWxadOm+nXDhg1T4iftTk1N4rq0cDBEMCvCOisks0IJloiIiLROKia52HWe+yms/jC1dfYdA8f9ptkiTzzxBJMnT2b48OEUFhYye/ZsDjjgAADmzJnDRx99xNChQykuLuaTTz7hrrvu4tBDD+XCCy/kz3/+Mz/84Q85//zzeemllxg+fDjnnnsuf/nLX7jssssAKCwsZM6cOY22XVxczLvvvsvixYs58sgjWbRoEdnZ2UyfPp0zzzyTk08+mWuuuYba2loyMjK22vfzzz/n888/Z6+99qpf95vf/IYvvviCrKys+oTnuuuuY7/99uPxxx/n5Zdf5txzz2Xu3LkALF68mFdeeYX58+dzyCGH8Mgjj/Db3/6WU089lWeeeYZTTjmFH/7wh1x77bUAnHPOOTz99NOceOKJ9W2GQiFOPvlkHnvsMS644ALeeecdhgwZQp8+fVp9mkR2hZrqKgAsIzvxrxmlmX3oUj07nWGJiIhIB6IerFaYPn16fW/PGWecsVWP0YEHHsjQoUPrlwcNGsShhx4KwNlnn80bb7zBJ598wtChQxk+fDgA5513Hq+99lr9PlOmTGmy7dNPP51QKMSwYcPYY489WLhwITU1NTz77LOccsopdOvWjYMOOoh///vf9fvMmDGDcePGceaZZ3L77bfTo0eP+m1jx47lrLPO4r777iMSSeTXb7zxBueccw4ARx11FCUlJZSVlQFw3HHHkZGRwZgxY4jFYkyePBmAMWPGUFxcDMArr7zCQQcdxJgxY3j55Zf5+OOPtzmOKVOmMGPGDAAeeOCBZo9ZJF1qaxJDBMPBEEGAqpw+dI1thGhNusISERGRDqRj9WC10NPUFjZs2MDLL7/Mhx9+iJkRi8UwM373u98BkJeXt1X5xGPBml5uTMM6Wqrv3//+N5s2bWLMmDEAbNmyhZycHE444QQgkczcdtttjdb3zDPP8Nprr/HUU09x44038uGHzfcIZmUlhkqFQiEyMjLq4wmFQkSjUaqqqvj+97/PrFmzGDRoEFOnTqWqqmqbeg455BAWLVrEunXrePzxx/nFL37RbLsi6VAbDBEMBbMIAsS7DCBU5rB5FXQfkq7QREREpINQD1YLHn74Yc455xyWLFlCcXExy5YtY+jQobz++uuNll+6dClvvfUWAP/85z+ZOHEie++9N8XFxSxatAiAe++9l8MPP7xV7T/00EPE43EWL17M559/zt5778306dP561//SnFxMcXFxXzxxRe88MIL9fd7NSUej7Ns2TKOPPJI/vd//5fS0lLKy8uZNGkS999/P5C4t6tnz55069atVfHVJVM9e/akvLy8yVkPzYxTTz2V//7v/2bEiBEUFha2qn6RXSlak/h5DmV8mWBZwUAAajcuS0tMIiIi0rEowWrB9OnTOfXUU7dad9pppzU5scTee+/Nn/70J0aMGMHGjRu55JJLyM7O5u9//zvf/OY3GTNmDKFQiIsvvrhV7Q8ePJgDDzyQ4447jmnTphGPx/nXv/7F8ccfX18mLy+PiRMn8tRTTzVax3e+8x1mzZpFLBbj7LPPZsyYMey33378+Mc/pqCggKlTpzJ79mzGjh3LT3/6U+65555WfjpQUFDAd7/7XUaPHs2xxx7LhAkT6rdNmzaNadOm1S9PmTKF++67T8MDpd2qS7AiwT1YALk9BwFQtmZJo/uIiIiIJLOGM76l0/jx433WrFlbrVuwYAEjRoxIU0TSHulnQtrK268/z8EvfZPiY/9O0SFfB+DNj7/g0IfGseyAnzDoxGvSHKGIiIi0F2Y2293HN1yvHiwRkUCsNnEPViTzyx6s3j17UuY51G7Uw4ZFRESkZUqwREQCsWCSi4yke7D6FeSwyguxMj0LS0RERFrWIRKs9jSMUdJLPwvSluLRbXuwumRFWBcqJHPLqnSFJSIiIh1Iu0+wsrOzKSkp0Rdrwd0pKSkhOzu75cIiOyBem5jkIiMza6v1ZRl96FK9Jh0hiYiISAfT7p+DNXDgQJYvX866devSHYq0A9nZ2QwcODDdYchuKh7cg5WRtXUSX53bl/zS4GHDkczGdhUREREBOkCClZGRwdChQ9Mdhoh0Ah4MEczIzNlqfaxrfygFNq+E7kW7PjARERHpMNp8iKCZTTazT8xskZn9tK3bExHZUfFoDQCRBkMEw8HDhms0k6CIiIi0oE0TLDMLA38CjgNGAmea2ci2bFNEZEfV9WAR3jrByi4MHja8ungXRyQiIiIdTVv3YB0ILHL3z929BngAOLmN2xQR2TGxRA9Ww/usCvoUAVCxfukuDkhEREQ6mrZOsAYAy5KWlwfr6pnZRWY2y8xmaSILEUknD4YIEt46werdqydlnkt047JG9hIRERH5UtqnaXf3O9x9vLuP79WrV7rDEZFOzGKNJ1j98rNZ6YVY2Yo0RCUiIiIdSVsnWCuAQUnLA4N1IiLtjsWqqSUCofBW63MzI6wPFZK1ZXWaIhMREZGOoq0TrPeAYWY21MwygTOAJ9u4TRGRHRKKVVFjjT/nqiyzD131sGERERFpQZsmWO4eBX4I/BtYADzo7h+3ZZsiIjsqFKuhlsYTrOrcvnSLb4K6mQZFREREGtHmDxp292eBZ9u6HRGRnRWKV1MbajzBinXtD5uAspXQQw8/FxERkcalfZILEZH2IhyvIdrEEMGMgsQEqNV62LCIiIg0QwmWiEggEq8m2kQPVk7hEABK9bBhERERaYYSLBGRQCReTayJBKtb38SwwMp1X+zKkERERKSDUYIlIhKIxGuIhbIa3davVw/WeTdiJcW7NigRERHpUJRgiYgEMrzpBKt/QQ7LvTfhsqW7OCoRERHpSJRgiYgEMrwGDzeeYGWEQ6zP6EfeFj0rXURERJqmBEtEJJBBbZMJFkB5zgC6166GWHQXRiUiIiIdiRIsEREgFneyqMEjTSdYsW6DCROHMvViiYiISOOUYImIAFW1MbKoxSPZTZaJFBYBUK2ZBEVERKQJSrBERIDKIMGimQQrr++eAGxa+dmuCktEREQ6GCVYIiJ82YNlGU0nWIUD9iDmxpa1n+/CyERERKQjUYIlIgJU1cTIslqsmXuwBvfMZxWFxDcU77rAREREpENRgiUiAlRXbQEglJnTZJnCvExW0JvMzct2VVgiIiLSwSjBEhEBaqsTCVa4mSGCZsamzP50rdIsgiIiItI4JVgiIkBNVSXQfA8WQGXeQApiG6C2cleEJSIiIh3MTiVYZvY7M1toZvPM7DEzKwjWF5lZpZnNDV7TUhKtiEgbiVaVAxDOym22XLxgCAC+cUmbxyQiIiIdz872YL0AjHb3scCnwM+Sti1293HB6+KdbEdEpE3FKssACOfkN1suq9dQADavWtTmMYmIiEjHs1MJlrs/7+7RYPFtYODOhyQisuvFKksByGghweradxgAZauVYImIiMi2UnkP1oXAc0nLQ83sfTN71cwmNbWTmV1kZrPMbNa6detSGI6ISOvV9WBldylotlzfAYPZ4llUr128C6ISERGRjibSUgEzexHo28imn7v7E0GZnwNR4P5g2ypgsLuXmNkBwONmNsrdyxpW4u53AHcAjB8/3nfsMEREdk6sajMA2V0Lmi03qEceS7w3WZt0D5aIiIhsq8UEy92Pbm67mZ0PnAB81d092KcaqA7ezzazxcBwYNbOBiwi0hbi1Ym//2TmdGu2XE5mmDXhvgwv17OwREREZFs7O4vgZOBq4CR335K0vpeZhYP3ewDDgM93pi0RkbZk1YkeLLK6tli2LGcA3WtWgKvTXURERLa2s/dg3QZ0BV5oMB37YcA8M5sLPAxc7O4bdrItEZE2YzXlRAlBRvPPwQKo6TqEbK+G8rW7IDIRERHpSFocItgcd9+rifWPAI/sTN0iIrtSuHYzlZZLV7MWy4Z6DIU1ULv+czK69tkF0YmIiEhHkcpZBEVEOqxIbQWV1vxDhuvk9dkTgI0rP2vLkERERKQDUoIlIgJEohXURPJaVbbHwGHE3diyWgmWiIiIbE0JlogIkBXdTG2kS6vKDurdndV0J1byRRtHJSIiIh2NEiwR6fTcnfz4JmqyerSqfK8uWSynD5llS9s4MhEREelolGCJSKe3pSZGIZuI5vRqVflQyNiQ2Z+ulcvbODIRERHpaJRgiUint6Gsgh5WDnmtS7AAtuQNoiBWAjVbWi4sIiIinYYSLBHp9DaVrAIg3K31U657QVHi301L2iIkERER6aCUYIlIp1e2bgUAuT36tXqfzF57AFC+alGbxCQiIiIdkxIsEen0KjYkerDye/Zv9T7d+g0DoFTPwhIREZEkSrBEpNOr3bQSgG69BrV6n379B1Lu2dSs/7ytwhIREZEOSAmWiHR6kbKlRAlh+QNbvc+gHnks896ENupZWCIiIvIlJVgi0unllC9jQ7gXhDNav09mmNXhvuRULGvDyERERKSjUYIlIp1eQfVKynIGbPd+ZTkD6V69CuLxNohKREREOiIlWCLSqZVW1tLP11DbdfB271vTdTCZ1ED5mjaITERERDoiJVgi0qktW76cXlZKqNew7d+5exEA0ZLFqQ1KREREOqydSrDMbKqZrTCzucHra0nbfmZmi8zsEzM7dudDFRFJvY1fzAGgy+Bx271vTu/Es7A261lYIiIiEoikoI6b3f2m5BVmNhI4AxgF9AdeNLPh7h5LQXsiIilTtfxDAHoPO2C79y3oGzxseO0Suqc0KhEREemo2mqI4MnAA+5e7e5fAIuAA9uoLRGRHZZZMp+NVkBGfr/t3rdfr+6s925ENy5tg8hERESkI0pFgvVDM5tnZn8zs7o/4g4AkucuXh6s24aZXWRms8xs1rp161IQjohI6/WqWMS63L12aN8BBTms9EJCZStTHJWIiIh0VC0mWGb2opl91MjrZOAvwJ7AOGAV8H/bG4C73+Hu4919fK9evbZ3dxGRHbautII9fCnVhfvs0P7ZGWHWh3uTvUUJloiIiCS0eA+Wux/dmorM7E7g6WBxBTAoafPAYJ2ISLtR/Ok8Jlgt2QP33eE6yrP70q1qHriDWQqjExERkY5oZ2cRTL5p4VTgo+D9k8AZZpZlZkOBYcC7O9OWiEiqlRa/D0CfvbZ/gos6tV36k+OVULUpRVGJiIhIR7azswj+1szGAQ4UA98DcPePzexBYD4QBX6gGQRFpL3x1R8RJUy3waN3uA7LHwTrIL5xGaEczSUoIiLS2e1UguXu5zSz7Ubgxp2pX0SkLXUr/YTVGYMYGMna4TqyCwfDIihb8wUF/cemMDoRERHpiNpqmnYRkXatOhpjUO0XlObv2AQXdbr1LQKgbM2SFEQlIiIiHZ0SLBHplL5Yupz+VoL1GbVT9fTqO5gaD1NdogRLRERElGCJSCe1+rM5ABQM3W+n6hnQI49VXgily1MRloiIiHRwSrBEpFOqXv4BAL13YgZBgC5ZEdaGepFRridRiIiIiBIsEemkMksWUGrdiOT3a7lwC0oz+9C1enUKohIREZGOTgmWiHQ67k7vLZ+xNndYSh4OXJ3Xn4JYCcSiKYhOREREOjIlWCLS6awt3cKevpSawhEpqS/edSBh4vjmVSmpT0RERDouJVjNWLJwDm/9/WesX7E43aGISAotX/wx2VZL5oDUPLcqUjgEgM2rPktJfSIiItJxKcFqxqr3/8UhS/5MjzsO4KNfT+Kd+67j84/fJR6Lpzs0EdkJFUvnAlCwx87NIFgnZ0BiqvfNyz5KSX0iIiLScUXSHUB7dvCZ17B00cmsfPXv9FnxAqMX/QEW/YH1FLAibyRVvfcjp2gCA/YaS49+RVgonO6Qd0wsikeriNZWU1tdSW1VJbW1VUSrq6itrSUaraU2Wks0GiUWvNxjeDwG8Rh4DOLRYDmOx6PB+jjucdzBcdwdd0j8J8EI3pvVr0/cEVNXxvnyDpm67Un3zDS4fWarxQb31myz1OytN1v/7WGbos3s681X3PzO0OI9Qc3X31LdzW9utsBOxdWqxlPKgbg7uAfvE+vcnexFzxH1EIVDUtOD1bPvEMo8l+jqBSmpT1onFouzpXILVRVlVG3ZTKy6gmhVBbFoNfHaGmLRGuK11cSitXi0hni0OvFvLLFMrAb3eOJ3j8cB//K9A9Rt82Bbokzd763Ez3zSy4ItlliuuybcQnz5OydYX18GIFS/LVFHXZ1BXcnrLBTs36B9q/9tWv87svFLduvffclFzLa9jpN/3xrgQaWNVf1le023UXfcDSJqomzTcTZSupn2tl6fgtsuZRf58qdaOrvNXYoYtt/hDOyem+5QWkUJVgsG7zWKwXvdBMCqZYtZ8d5T+JI36VP2EYO/+A98AbwCVZ7BqnB/SrP6EcvpSTy3kHhuT0J5PcnK6UJGdh6hzBxCGTmEMnOIhIyQOXGHuMeJx51Y3PFYFI/V4NEavLYq+KLw5cujX76I1UDwr8WqCcWqsVgN4XgNoXgNoVgNYa8hEq8h7LVE4jVkeA0Rasn0WjJIvCLEMSAjeIl0Bp9l7s2wzOyU1DWwRy6f+QD6b1iYkvo6i+raWjauX8PmklVUlZVQs7mEmoqNxLdsxCs3EareRLi6lIzaMrKj5WTFt5DpVWQHrxyq6Wpxuu6CWOOe+KrnSYmTJS2FTF8ERUTayt+jx1LRc18lWLujfoP2pN+gy4DLACjdsJZl89+hdPlCQhsXk7v5C7pWr6VL5Sf0KCkjw2JtHlONh6khgxoyqLUgZbJMopZB1DKoDWVRZV2IhTOJhTKJhzKJhzOJh7PwcCYeyoRINkQyIZwFkSwsIwuLZBGKZBGOZCRe4QiRSOIVjkQIhcJYKAKhMBauWw5DKIKFQoRCESwUJhQOYWaEgpeZBX89TO6XathHFUj8OXWrdZ78p8cG32c8aYXHG25rUDKpF823+V7UoHSD7bbtDk3uu93bm627hf1b3LdhTVuXT+9xpZY7wc8bWMgIGYSwus4AQmYMLRyQsvbyczJYEBrG2NIXobYSMnIaLRePO7M/+Zz+hfkM6N0zZe23J+7OpvIq1q/8gs1rFlO1fimxzWuxirVEKteTXV1CXnQD+fFN9PBS+lqcvk3UVU4u5daFLeEuVIW7Up7Zl1gkh3gkl3hGHmTkYpl5kJlLOCuv/n0oI5twJJNQJJNwRibhjCwiGVmEMzKJZGSSkZFNJDOxHA6HMAsnfjeFDLNw4mcnFMIsFKwPtX48/VY9Xo3/W99rhuPxL7d5/S88x+NxvvxdFWyvq9vjeF3vWvCZN7x+kxe/vNa9wfqtz1vD3wpbVelf/o7Y6netN6yrwe/XBvXZl6W2KeD1/7Um4m+sva0Dbeo3zZf7Nfe7X9ondTkKfDWrGz169053GK2mBGsn5PfoTf7EE4ETt9kWjcbYWFpCxcY1VJRvprqyAo9W4jWVieF4wf8b65IPCxlhs0SSEsmCcCahjCzCmVlEMrLJyMwikplNRlY2GZk5ZGRmkZmdQ2YkQqbGO4iklZmxoe9EMlY/ixe/iQ07eqvtmyurefPFJ8j44F4Oq32T9/MmMuDqJ9MU7c6pjsZYvqGCNSuKKVv9OdH1XxAqW0ZOxXK6Va2kd2wNfSmhe4M/MNUQYaMVsDnSg8qcvpRlj2JJbi+sSx8i3XqT2aWQnG49yM3vSZf8nuR2606XcAZd0nScO6wui2+uSBPvRURk96AEq41EImG6F/ame2HHybZFZMcN3O+/2PTsjfhLv6f7nkdRE3PmzX2H1e88wph1TzHZ1lBueSzxPozc8i7EaiHc/gblxuPOus1VrFq5lI0rFlG57gt84xIyNy+rT6AG2nr2tK2f+bUx1J2Nmf0pzd2XDd0GE+oxhJxee9C1TxHdew8kM6+APmb0SdNxiYiI7CpKsEREUuBr++/JtBe/xWWr72T9r4ZBrJbxVgrA5132Y8n4nzJk4pkUP3kfe314Jevmv0qvMUe3UGvbKK+qZeXKFZSs+IyKNZ8T31BMuGwZXapWUli7mgGso4/VbLVPaSif0qx+VHUZTXHBYLJ7DqVbv73I77cnoe6D6Z6RQ/e0HI2IiEj7Yr4Tg5DNbAawd7BYAGxy93FmVgQsAD4Jtr3t7he3VN/48eN91qxZOxyPiEg6LV1fwauP/pm9NrxGRm5XcooOZM9Dv0524eAvy6xaS8G0sazsfQT7/OCBNomjNhpj9ZrVrF++mM2rF1O7oZhw6RJyt6yge80q+vk6uljVVvtsti5szOjLlryBxLsNIqPnULr03YMeA4aRVVgEWR1usJ6IiEibMrPZ7j5+m/U7k2A1aOD/gFJ3vyFIsJ5299HbU4cSLBHpDJ7//bc5uvQRVh5/DwMPPHm79nV3yiqqWLd6KWWrP6d6XTGxTcsIly0ne8tK8mtW0zu+bQJVQQ4lGf0oz+lPtOsgwoVDyOuzJz0G7EXXPntgOQUpPEIREZHdX1MJVkqGCJqZAacDR6WiPhGR3dnos/+XRX9+jz2fOY8Fbx1BddFRZBb0IxrKwqPVRCvLqKkopbailPCWdWRUrSO7ej15tSUUxDbSnc3kN5gWfBNd2BDpQ3neEDZ1/Qqh7oPJ6VlE9wF7UThwOHm53cnThDgiIiJtLiU9WGZ2GPD7ugwu6MH6GPgUKAN+4e6vN7HvRcBFAIMHDz5gyZIlOx2PiEh7t3zVaj6ecR0HbXyKAqtoslw1GWy0AsoiPajM7Em0bua9/H7k9BpC1z5D6dF/TzJzu+3C6EVERGSHhwia2YvQ6GNKfu7uTwRl/gIscvf/C5azgC7uXmJmBwCPA6Pcvay5tjREUEQ6m4qqGtYu/YTyDWvJoBqLZJGZm0+3/O50K+hBRm5Bi9N+i4iIyK63w0ME3b3Zaa7MLAJ8HTggaZ9qoDp4P9vMFgPDAWVPIiJJ8rIzGTp8TLrDEBERkRRp9cPpm3E0sNDdl9etMLNeZhYO3u8BDAM+T0FbIiIiIiIi7VYqJrk4A5jeYN1hwA1mVgvEgYvdfUMK2hIREREREWm3djrBcvfzG1n3CPDIztYtIiIiIiLSkaTsOVipYGbrgPY2jWBPYH26g5BdRue789C57jx0rjsXne/OQ+e6c2mP53uIu/dquLJdJVjtkZnNamx2ENk96Xx3HjrXnYfOdeei89156Fx3Lh3pfKdikgsRERERERFBCZaIiIiIiEjKKMFq2R3pDkB2KZ3vzkPnuvPQue5cdL47D53rzqXDnG/dgyUiIiIiIpIi6sESERERERFJESVYIiIiIiIiKaIEqxlmNtnMPjGzRWb203THI6ljZoPM7BUzm29mH5vZpcH6Hmb2gpl9FvzbPd2xSmqYWdjM3jezp4PloWb2TnB9zzCzzHTHKKlhZgVm9rCZLTSzBWZ2iK7t3ZOZXR78Dv/IzKabWbau7d2Hmf3NzNaa2UdJ6xq9li3hluC8zzOz/dMXuWyvJs7174Lf4/PM7DEzK0ja9rPgXH9iZsemJehmKMFqgpmFgT8BxwEjgTPNbGR6o5IUigJXuPtI4GDgB8H5/SnwkrsPA14KlmX3cCmwIGn5f4Gb3X0vYCPw7bREJW3hj8C/3H0fYF8S513X9m7GzAYAPwbGu/toIAycga7t3cndwOQG65q6lo8DhgWvi4C/7KIYJTXuZttz/QIw2t3HAp8CPwMIvq+dAYwK9vlz8L293VCC1bQDgUXu/rm71wAPACenOSZJEXdf5e5zgvebSXwBG0DiHN8TFLsHOCUtAUpKmdlA4Hjgr8GyAUcBDwdFdK53E2aWDxwG3AXg7jXuvgld27urCJBjZhEgF1iFru3dhru/BmxosLqpa/lk4B+e8DZQYGb9dkmgstMaO9fu/ry7R4PFt4GBwfuTgQfcvdrdvwAWkfje3m4owWraAGBZ0vLyYJ3sZsysCNgPeAfo4+6rgk2rgT7piktS6g/A1UA8WC4ENiX94tb1vfsYCqwD/h4MCf2rmeWha3u34+4rgJuApSQSq1JgNrq2d3dNXcv63rZ7uxB4Lnjf7s+1Eizp1MysC/AIcJm7lyVv88QzDPQcgw7OzE4A1rr77HTHIrtEBNgf+Iu77wdU0GA4oK7t3UNw783JJJLq/kAe2w4xkt2YruXOwcx+TuLWjvvTHUtrKcFq2gpgUNLywGCd7CbMLINEcnW/uz8arF5TN6Qg+HdtuuKTlDkUOMnMikkM9T2KxD06BcGwItD1vTtZDix393eC5YdJJFy6tnc/RwNfuPs6d68FHiVxveva3r01dS3re9tuyMzOB04AzvIvH97b7s+1EqymvQcMC2YjyiRxM92TaY5JUiS4B+cuYIG7/z5p05PAecH784AndnVsklru/jN3H+juRSSu45fd/SzgFeAbQTGd692Eu68GlpnZ3sGqrwLz0bW9O1oKHGxmucHv9LpzrWt799bUtfwkcG4wm+DBQGnSUELpgMxsMonh/Se5+5akTU8CZ5hZlpkNJTGxybvpiLEp9mUyKA2Z2ddI3LsRBv7m7jemNyJJFTObCLwOfMiX9+VcQ+I+rAeBwcAS4HR3b3iDrXRQZnYEcKW7n2Bme5Do0eoBvA+c7e7VaQxPUsTMxpGY0CQT+By4gMQfFHVt72bM7HpgConhQ+8D3yFxL4au7d2AmU0HjgB6AmuA64DHaeRaDpLs20gME90CXODus9IQtuyAJs71z4AsoCQo9ra7XxyU/zmJ+7KiJG7zeK5hnemkBEtERERERCRFNERQREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERE2hkzKzIzN7NIumORzsHMPjazI9Idh4jI7kAJloiIdHhmNs3MyoNXjZnVJi0/l+742jt3H+XuM1NZp5ndZGafmdlmM1toZuemsn4RkfZKCZaISIqp52nXc/eL3b2Lu3cBfg3MqFt29+PqynWkc9ORYm1CBXAikA+cB/zRzL6S3pBERNqeEiwRkRQws2Iz+4mZzQMqzCxiZgeb2X/MbJOZfZA8BMvMZprZ/5jZu2ZWZmZPmFmPJuq+wMwWBD0Bn5vZ9xpsP9nM5gb1LDazycH6fDO7y8xWmdkKM/uVmYVbOI49zexlMysxs/Vmdr+ZFSRt22Bm+wfL/c1sXd1xmdlJwVCzTcHxjWjw+VxpZvPMrNTMZphZ9vZ/0tuviXPjZrZXUpm7zexXScsnBJ/ppuAcjm1lW0eY2XIzuyb4/IrN7Kyk7ceb2fvBuVpmZlOTttUNDf22mS0FXg7WP2Rmq4PP7TUzG9Ug7j+b2XNBb92bZtbXzP5gZhuDnqP9WvkZHd2aY2wtd7/O3Re6e9zd3wFeBw5JZRsiIu2REiwRkdQ5EzgeKAD6AM8AvwJ6AFcCj5hZr6Ty5wIXAv2AKHBLE/WuBU4AugEXADcnJTkHAv8ArgraPQwoDva7O6h3L2A/4BjgOy0cgwH/A/QHRgCDgKkA7r4Y+Alwn5nlAn8H7nH3mWY2HJgOXAb0Ap4FnjKzzKS6TwcmA0OBscD5jQZgNjFIbJp6TWzhGBpTf27cPdrsB5BISP4GfA8oBG4HnjSzrFa21RfoCQwg0XNzh5ntHWyrIHHeC4J4LjGzUxrsfziJz/7YYPk5YBjQG5gD3N+g/OnAL4I2q4G3gnI9gYeB37cy7kaZ2U+bOx+trCMHmAB8vDOxiIh0BEqwRERS5xZ3X+bulcDZwLPu/mzwF/wXgFnA15LK3+vuH7l7BfBL4PTGepjc/Rl3X+wJrwLPA5OCzd8G/ubuLwTtrHD3hWbWJ2jrMnevcPe1wM3AGc0dgLsvCuqqdvd1JL6cH560/U5gEfAOicTw58GmKcAzwb61wE1ADpA8JOwWd1/p7huAp4BxTcTwhrsXNPN6o7ljaELyuWnJRcDt7v6Ou8fc/R4SicvB29HeL4PP8FUSifbpAO4+090/DM7VPBJJ6eEN9p0anLPKYJ+/uftmd68mkezua2b5SeUfc/fZ7l4FPAZUufs/3D0GzCCRXO8wd/9Nc+ejldVMAz4A/r0zsYiIdARKsEREUmdZ0vshwDcb/KV/IomkpLHyS4AMEr0OWzGz48zs7WB43iYSiVNduUHA4kZiGRLUtyqp/dtJ9II0ycz6mNkDwZDCMuC+RmK6ExgN3Bp86YdEj9eSugLuHg+Ob0DSfquT3m8BujQXS4ota7lIvSHAFQ3O3SASx9gaG4Okuc6Sun3N7CAzeyUYWlkKXMy2n299rGYWNrPfWGLoZxlf9k4m77Mm6X1lI8u78nPehpn9jsTPy+nu7umMRURkV1CCJSKSOslfHpeR6KFK/mt/nrv/JqnMoKT3g4FaYH1yhcGwtEdI9Aj1CXoMniUxlK+unT0biWUZiV6Xnkntd3P3UY2UTfbr4DjGuHs3Ej1xdW1hZl2APwB3AVPty/vGVpJITOrKWXB8K1pobxtmNsm+nAGwsdeklmvZRsMv9luA3KTlvknvlwE3Njh3ue4+vZVtdTezvKTlwSQ+H4B/Ak8Cg9w9n0TPjjXYPznWbwEnA0eTmCyiKFjfcJ82E9xP1uT5aGHf64HjgGPcvWzXRCwikl5KsERE2sZ9wIlmdmzQC5EdTIAwMKnM2WY2Mrif6Qbg4WBYV7JMIAtYB0TN7DgS91LVuQu4wMy+amYhMxtgZvu4+yoSQwn/z8y6Bdv2NLOGw9Ea6gqUA6VmNoDEvV3J/gjMcvfvkBj6Ni1Y/yBwfBBHBnAFiQTvPy19UA25++tJMwA29np9e+tsxFzgW8G5mczWw/TuBC4OepvMzPIsMTlFV6ifWOLuFuq/3swyg2TwBOChYH1XYIO7VwX3z32rhXq6kvgcS0gkhL/ejmNMCXf/dXPno6n9zOxnJI7vaHcv2XURi4iklxIsEZE24O7LSPQ8XEMiOVpGIllJ/r17L4mJKFYD2cCPG6lnc7D+QWAjiS+sTyZtf5dg4gugFHiVL3uSziWRoM0P9n2YrYcoNuZ6YP+grmeAR+s2mNnJJCapuCRY9d/A/mZ2lrt/QqK361YSvXAnAie6e00L7aXLpSRi3AScBTxet8HdZwHfBW4j8bktYusJOQYBbzZT9+pgv5UkJqS42N0XBtu+D9xgZpuBa0mc1+b8g8QQwxUkzuPbLR1YO/JrEr13i5J6vK5Jd1AiIm3NNBxaRGTXM7OZwH3u/td0xyKtF8yK+AEwNpjMo+H2I0ic14ENt4mISOfQ0R9iKCIisssEPXIjWiwoIiKdloYIioh0MmY2rYkJC6a1vLd0RGY2uJmJKganOz4Rkd2JhgiKiIiIiIikiHqwREREREREUqRd3YPVs2dPLyoqSncYIiIiIiIizZo9e/Z6d+/VcH27SrCKioqYNWtWusMQERERERFplpktaWy9hgiKiIiIiIikiBIsERERERGRFFGCJSKyA0q31PL0vJVoJlYRERFJ1q7uwWpMbW0ty5cvp6qqKt2hSAeTnZ3NwIEDycjISHcoshu69eXPeOfNl8gp3ZevTjos3eGIiIhIO9HuE6zly5fTtWtXioqKMLN0hyMdhLtTUlLC8uXLGTp0aLrDkd1QbMnbPJX1C0pe6weTFqY7HBEREWkn2v0QwaqqKgoLC5VcyXYxMwoLC9XzKW2mz+aPASisXQXRmjRHIyIiIu1Fu0+wACVXskP0cyNtKVy9qf69r52fvkBERESkXekQCZaISHsSiztZ0dL65c1LP0hjNCIiItKeKMFqBTPjiiuuqF++6aabmDp1avoCSvL2229z0EEHMW7cOEaMGFEf18yZM/nPf/6zU3VPnjyZgoICTjjhhBREKrL72FITJZ8KSsI9Adi8+os0RyQiIiLtxU4nWGY2yMxeMbP5ZvaxmV0arJ9qZivMbG7w+trOh5seWVlZPProo6xfvz6l9bo78Xh8p+o477zzuOOOO5g7dy4fffQRp59+OpCaBOuqq67i3nvv3ak6RHZH1dE4BZRTmdWbtV5A7YZGH+QuIiIinVAqZhGMAle4+xwz6wrMNrMXgm03u/tNKWgDgOuf+pj5K8tSVR0AI/t347oTRzVbJhKJcNFFF3HzzTdz4403brVt3bp1XHzxxSxduhSAP/zhDxx66KFMnTqVLl26cOWVVwIwevRonn76aQCOPfZYDjroIGbPns2zzz7LbbfdxnPPPYeZ8Ytf/IIpU6Ywc+ZMpk6dSs+ePfnoo4844IADuO+++7a5r2jt2rX069cPgHA4zMiRIykuLmbatGmEw2Huu+8+br31VvbZZ58m41y8eDGLFi1i/fr1XH311Xz3u98F4Ktf/SozZ85s9rN56KGHuP766wmHw+Tn5/Paa69RVVXFJZdcwqxZs4hEIvz+97/nyCOP5O677+bxxx+noqKCzz77jCuvvJKamhruvfdesrKyePbZZ+nRowd33nknd9xxBzU1Ney1117ce++95ObmbtXuwQcfzF133cWoUYlzd8QRR3DTTTcxfvz4ZuMVSYXqaJx8K8dy+7GivIbC0mXpDklERETaiZ3uwXL3Ve4+J3i/GVgADNjZetubH/zgB9x///2UlpZutf7SSy/l8ssv57333uORRx7hO9/5Tot1ffbZZ3z/+9/n448/ZtasWcydO5cPPviAF198kauuuopVq1YB8P777/OHP/yB+fPn8/nnn/Pmm29uU9fll1/O3nvvzamnnsrtt99OVVUVRUVFXHzxxVx++eXMnTuXSZMmNRvnvHnzePnll3nrrbe44YYbWLlyZas/lxtuuIF///vffPDBBzz55JMA/OlPf8LM+PDDD5k+fTrnnXde/Wx+H330EY8++ijvvfceP//5z8nNzeX999/nkEMO4R//+AcAX//613nvvff44IMPGDFiBHfdddc27U6ZMoUHH3wQgFWrVrFq1SolV7LLVNfGKKCCeHYBJZHe5FS2/poRERGR3VtKn4NlZkXAfsA7wKHAD83sXGAWiV6ujY3scxFwEcDgwYObrb+lnqa21K1bN84991xuueUWcnJy6te/+OKLzJ//5QxiZWVllJeXN1vXkCFDOPjggwF44403OPPMMwmHw/Tp04fDDz+c9957j27dunHggQcycOBAAMaNG0dxcTETJ07cqq5rr72Ws846i+eff55//vOfTJ8+vdFep+biPPnkk8nJySEnJ4cjjzySd999l1NOOaVVn8uhhx7K+eefz+mnn87Xv/71+mP60Y9+BMA+++zDkCFD+PTTTwE48sgj6dq1K127diU/P58TTzwRgDFjxjBv3jwgkYT94he/YNOmTZSXl3Psscdu0+7pp5/OMcccw/XXX8+DDz7IN77xjVbFK5IKNbE4fa2cTVkFbM7OpmDLexCPQ0i3tYqIiHR2KUuwzKwL8AhwmbuXmdlfgP8HePDv/wEXNtzP3e8A7gAYP368pyqetnDZZZex//77c8EFF9Svi8fjvP3222RnZ29VNhKJbHV/VfLzmPLy8lrVXlZWVv37cDhMNBpttNyee+7JJZdcwne/+1169epFSUnJNmWaihO2nc58e6Y3nzZtGu+88w7PPPMMBxxwALNnz262fPIxhUKh+uVQKFR/fOeffz6PP/44++67L3fffXejCeOAAQMoLCxk3rx5zJgxg2nTprU6ZpGdVV0TpRtb2JhVQHVumIwttVCxFrr2TXdoIiIikmYp+XOrmWWQSK7ud/dHAdx9jbvH3D0O3AkcmIq20qlHjx6cfvrpWw1ZO+aYY7j11lvrl+fOnQtAUVERc+bMAWDOnDl88UXjs4xNmjSJGTNmEIvFWLduHa+99hoHHtj6j+qZZ57BPZGXfvbZZ4TDYQoKCujatSubN29uMU6AJ554gqqqKkpKSpg5cyYTJkxodfuLFy/moIMO4oYbbqBXr14sW7aMSZMmcf/99wPw6aefsnTpUvbee+9W17l582b69etHbW1tfT2NmTJlCr/97W8pLS1l7Nixra5fZGfVVFcRMscyc4nnD0qs3KT7sERERCQ1swgacBewwN1/n7S+X1KxU4GPdrat9uCKK67YajbBW265hVmzZjF27FhGjhxZ35Ny2mmnsWHDBkaNGsVtt93G8OHDG63v1FNPZezYsey7774cddRR/Pa3v6Vv39b/Ffzee+9l7733Zty4cZxzzjncf//9hMNhTjzxRB577DHGjRvH66+/3mScAGPHjuXII4/k4IMP5pe//CX9+/cHEsnfN7/5TV566SUGDhzIv//9byAxLLHufqurrrqKMWPGMHr0aL7yla+w77778v3vf594PM6YMWOYMmUKd99991Y9Vy35f//v/3HQQQdx6KGHss8++9Svf/LJJ7n22mvrl7/xjW/wwAMP1M+cKLKrRKu3ABDKyCajMDG0uXK9pmoXERERsLrejx2uwGwi8DrwIVA3Ju4a4ExgHIkhgsXA99x9VXN1jR8/3mfNmrXVugULFjBixIidilGa1nC2w92Nfn6kLbw+50MmPTmR5V+5kXk9juFrT09g/cHX0HPyT9IdmoiIiOwiZjbb3beZZW2n78Fy9zeAxm7aeXZn6xYRaY+iNYl7KsOZ2fTq2ZNSz6WmRM/CEhERkRTPIigdz9SpU9MdgkiHE62pBBIJVt9u2azyQrqWNdtBLyIiIp2E5hQWEdlOsaAHK5KZQ59u2az2HkQqlGCJiIiIEiwRke0Wr/0ywcqMhNgU6UlO1Zo0RyUiIiLtgRIsEZHt9GUPVmJ2zC3ZvekS3Qix2nSGJSIiIu2AEiwRke3kQQ9WRlYuALW5fQnhsHl1OsMSERGRdkAJVis9/vjjmBkLFy5sskxxcTGjR49OWZuffPIJRxxxBOPGjWPEiBFcdNFFQOIhwc8+u3OTNF544YX07t07pfGKdBbxaNCDlZWdWNEt8ew4ylamKSIRERFpL5RgtdL06dOZOHEi06dPb3R7NBrd6TZisdhWyz/+8Y+5/PLLmTt3LgsWLOBHP/oRkJoE6/zzz+df//rXTtUh0ll5bTUAFskBIKP7QABqNi1PW0wiIiLSPnSsadqf+yms/jC1dfYdA8f9ptki5eXlvPHGG7zyyiuceOKJXH/99QDMnDmTX/7yl3Tv3p2FCxfy/PPPE41GOeuss5gzZw6jRo3iH//4B7m5ubz00ktceeWVRKNRJkyYwF/+8heysrIoKipiypQpvPDCC1x99dWcccYZ9e2uWrWKgQMH1i+PGTOGmpoarr32WiorK3njjTf42c9+xgknnMCPfvQjPvroI2pra5k6dSonn3wyd999N4899hilpaWsWLGCs88+m+uuuw6Aww47jOLi4maP+9VXX+XSSy8FwMx47bXX6NKlC1dffTXPPfccZsYvfvELpkyZwsyZM7nuuusoKCjgww8/5PTTT2fMmDH88Y9/pLKykscff5w999yTp556il/96lfU1NRQWFjI/fffT58+fbZq94wzzuCcc87h+OOPBxLJ4AknnMA3vvGN1p1TkbYWTSRYRDIByO05GIDytUvpka6YREREpF1QD1YrPPHEE0yePJnhw4dTWFjI7Nmz67fNmTOHP/7xj3z66adAYljf97//fRYsWEC3bt3485//TFVVFeeffz4zZszgww8/JBqN8pe//KW+jsLCQubMmbNVcgVw+eWXc9RRR3Hcccdx8803s2nTJjIzM7nhhhuYMmUKc+fOZcqUKdx4440cddRRvPvuu7zyyitcddVVVFRUAPDuu+/yyCOPMG/ePB566CFmzZrV6uO+6aab+NOf/sTcuXN5/fXXycnJ4dFHH2Xu3Ll88MEHvPjii1x11VWsWpWYnvqDDz5g2rRpLFiwgHvvvZdPP/2Ud999l+985zvceuutAEycOJG3336b999/nzPOOIPf/va327Q7ZcoUHnzwQQBqamp46aWX6pMtkfbAgyGCRBJDBAt79qbKM6jeoB4sERGRzq5j9WC10NPUVqZPn17fk3PGGWcwffp0DjjgAAAOPPBAhg4dWl920KBBHHrooQCcffbZ3HLLLfzXf/0XQ4cOZfjw4QCcd955/OlPf+Kyyy4DEglFYy644AKOPfZY/vWvf/HEE09w++2388EHH2xT7vnnn+fJJ5/kpptuAqCqqoqlS5cC8F//9V8UFhYC8PWvf5033niD8ePHt+q4Dz30UP77v/+bs846i69//esMHDiQN954gzPPPJNwOEyfPn04/PDDee+99+jWrRsTJkygX79+AOy5554cc8wxQKLn7ZVXXgFg+fLlTJkyhVWrVlFTU7PVZ1fnuOOO49JLL6W6upp//etfHHbYYeTk5LQqZpFdor4HK5Fg9c3PYZX3IKN0RRqDEhERkfZAPVgt2LBhAy+//DLf+c53KCoq4ne/+x0PPvgg7g5AXl7eVuXNrNnlxjSsI1n//v258MILeeKJJ4hEInz00UfblHF3HnnkEebOncvcuXNZunQpI0aM2OF46vz0pz/lr3/9K5WVlRx66KHNTvABkJWVVf8+FArVL4dCofp71H70ox/xwx/+kA8//JDbb7+dqqqqberJzs7miCOO4N///jczZsxoMgEVSReL1SVYiZ/xPvnZrKEH4XI9bFhERKSzU4LVgocffphzzjmHJUuWUFxczLJlyxg6dCivv/56o+WXLl3KW2+9BcA///lPJk6cyN57701xcTGLFi0C4N577+Xwww9vse1//etf1NYmnquzevVqSkpKGDBgAF27dmXz5s315Y499lhuvfXW+qTv/fffr9/2wgsvsGHDhvr7oOp611pj8eLFjBkzhp/85CdMmDCBhQsXMmnSJGbMmEEsFmPdunW89tprHHjgga2us7S0lAEDBgBwzz33NFluypQp/P3vf+f1119n8uTJra5fZFewuh6scCLB6poVYZ0Vkl2phw2LiIh0dkqwWjB9+nROPfXUrdaddtppTc4muPfee/OnP/2JESNGsHHjRi655BKys7P5+9//zje/+U3GjBlDKBTi4osvbrHt559/ntGjR7Pvvvty7LHH8rvf/Y6+ffty5JFHMn/+fMaNG8eMGTP45S9/SW1tLWPHjmXUqFH88pe/rK/jwAMP5LTTTmPs2LGcdtpp9cMDzzzzTA455BA++eQTBg4cyF133QXAtGnTmDZtGgB/+MMfGD16NGPHjiUjI4PjjjuOU089lbFjx7Lvvvty1FFH8dvf/pa+ffu2+vOcOnUq3/zmNznggAPo2bNn/fpZs2bxne98p375mGOO4dVXX+Xoo48mMzOz1fWL7AoWryZGCMKJUdZmRnlWb7rUrod4PM3RiYiISDpZXa9HezB+/HhvOAnDggUL6oe7yfa5++67mTVrFrfddlu6Q0kb/fxIW3jqdxfyX1ueIfu6L3us7r75Z5xf+me4chF06ZXG6ERERGRXMLPZ7r7N5AbqwRIR2U6hWDVRy9hqnXdJTPDCZj1sWEREpDNTgrUbO//88zt175VIWwnHa6i1rYeuhrsn7i2Mb9JMgiIiIp1ZmydYZjbZzD4xs0Vm9tMdqaM9DWOUjkM/N9JWwvEaoqGsrdblFCYeCl5esiwdIYmIiEg70aYJlpmFgT8BxwEjgTPNbOT21JGdnU1JSYm+LMt2cXdKSkrIzs5OdyiyGwrHq4mFtu7B6tZrIFEPUbVeCZaIiEhn1tYPGj4QWOTunwOY2QPAycD81lYwcOBAli9fzrp169ooRNldZWdnM3DgwHSHIbuhDK8h1mCIYN/8PNZRoCGCIiIinVxbJ1gDgOQ/5y4HDkouYGYXARcBDB48eJsKMjIyGDp0aBuGKCKyfcJeSzzcMMHKZqX3oI8muRAREenU0j7Jhbvf4e7j3X18r16a2lhE2r8MryHW4B6snl2yWEMPMresTlNUIiIi0h60dYK1AhiUtDwwWCci0iG5Oxleg4e3TrDCIaM0oxd51RrOLCIi0pm1dYL1HjDMzIaaWSZwBvBkG7cpItJmamNOFlG8wRBBgKrs3uTEK6B6cxoiExERkfagTRMsd48CPwT+DSwAHnT3j9uyTRGRtlQdjZFJLfEGPVgA0bz+iTdlq3ZxVCIiItJetPUkF7j7s8Czbd2OiMiuUB2Nk2W1VEW2TbBC+f1hLVC2AnoN3/XBiYiISNqlfZILEZGOpDoaJ4saaCTBygoeNly1YfmuDktERETaCSVYIiLboSYaJ4soFtn2IdZdeiYeNVGxbumuDktERETaCSVYIiLboao2Rha10EiC1at7Phu8CzV62LCIiEinpQRLRGQ7VNfGyLJaQhnbDhHsm5/Nai/ES5VgiYiIdFZKsEREtkN1dSUAoYxte7D65Wez2rsTqdDDhkVERDorJVgiItuhpipIsDK3TbCyM8JsivQip2rNrg5LRERE2gklWCIi26E26MEKZ+Y0ur0qpzddoxshWrMrwxIREZF2QgmWiMh2iNYECVZG4wlWrEvwsOHNetiwiIhIZ6QES0RkO9T1YEUyt53kAiBSkEiw4proQkREpFNSgiUish1itVUAZGQ13oOVXZh4FtbmtcW7KiQRERFpR5RgiYhsh1gwRDAjK7fR7d367QlAxZovdllMIiIi0n4owRIR2Q6xmkQPVmbWtrMIAvTrWZh42PCGJbsyLBEREWknlGCJiGwHr64AIJzdtdHtA7rnsNJ7EipdvivDEhERkXZCCZaIyPao3ZL4N6PxIYL5ORmsCfUia8vKXRiUiIiItBdKsEREtoPVJnqwyMxrskxZZj/yq1eD+y6KSkRERNoLJVgiItshVJ9gdWmyTE2X/mR7JVRu3EVRiYiISHuxUwmWmf3OzBaa2Twze8zMCoL1RWZWaWZzg9e0lEQrIpJmoWhiFkEyGx8iCOD5gxJvSpftgohERESkPdnZHqwXgNHuPhb4FPhZ0rbF7j4ueF28k+2IiLQL4WgFMUIQaXwWQYDMwiEAVOhZWCIiIp3OTiVY7v68u0eDxbeBgTsfkohI+xWJbqHassCsyTJd++wBwObVn++qsERERKSdSOU9WBcCzyUtDzWz983sVTOb1NROZnaRmc0ys1nr1q1LYTgiIqkXjlZSbTnNlunVpz+Vnkl1iZ6FJSIi0tlEWipgZi8CfRvZ9HN3fyIo83MgCtwfbFsFDHb3EjM7AHjczEa5e1nDStz9DuAOgPHjx2vKLRFp1yLRLdSEm77/CmBA91xWeE8im3QPloiISGfTYoLl7kc3t93MzgdOAL7qnpiT2N2rgerg/WwzWwwMB2btbMAiIumUEd9CNLP5HqyeXTJZSC/2LF+xi6ISERGR9mJnZxGcDFwNnOTuW5LW9zKzcPB+D2AYoJsRRKTDy4hVEY0034NlZpRm9qFr9apdFJWIiIi0Fy32YLXgNiALeMESN3y/HcwYeBhwg5nVAnHgYnffsJNtiYiklbuT7ZXEI71bLFuZ15+upZugZkuzU7qLiIjI7mWnEix336uJ9Y8Aj+xM3SIi7c2Wmhi5VOEZLSdM8W4DoRQoXQ69hrd9cCIiItIupHIWQRGR3Vp5dZSuVolndm2xbKRH4llYmklQRESkc1GCJSLSSpsra+nOZuI5PVosm9e7CIBSPQtLRESkU1GCJSLSSuXlZWRbLaG8whbLFvYrIuohKtd9sQsiExERkfZCCZaISCuVb1gDQGbXni2WHdCjK6vpQXyjnoUlIiLSmSjBEhFppS1l6wDIzm95FsE+3bJZ6T2JbF7e1mGJiIhIO6IES0SklWqDBCuve8sJVjhkbMjoQ26lnoUlIiLSmSjBEhFppWj5egBy8nu1qvyWnH4URNdBLNqWYYmIiEg7ogRLRKSVvKIEAMtt+R4sgFjXgYSJw2b1YomIiHQWSrBERFopVLGWKGHIKWhd+e6DAajdoGdhiYiIdBZKsEREWqlL5Uo2RnpDKNyq8rm9igAoXaVnYYmIiHQWSrBERFrB3eleu5rynH6t3qd7vz0AqNCzsERERDoNJVgiIq1QVhmlH+uo6TKo1fv069WD9d6N6AY9C0tERKSzUIIlItIKn68poTebiPQY0up9+uXnsNILCZcpwRIREekslGCJiLTC6i/mEzInf8DwVu+TGQmxPtybnMqVbRiZiIiItCdKsEREWqF62QcAdN9j/+3aryyrHwU1a8C9LcISERGRdkYJlohIK2Ssn08tEcK9Wt+DBVCZ258sr4YtJW0UmYiIiLQnO5VgmdlUM1thZnOD19eStv3MzBaZ2SdmduzOhyoikh7xuNNz83zWZO8B4Yzt2jfadWDiTanuwxIREekMUtGDdbO7jwtezwKY2UjgDGAUMBn4s5m17sExIiLtzOLVJezrn7Cl30HbvW+oIDHrYHTD0lSHJSIiIu1QWw0RPBl4wN2r3f0LYBFwYBu1JSLSpha+9xLZVkuP0Udv975ZPYsA2KJnYYmIiHQKqUiwfmhm88zsb2bWPVg3AEgeD7M8WCci0uGEFj5NNZn0HP3V7d63oEdvKjyL6vVL2iAyERERaW9aTLDM7EUz+6iR18nAX4A9gXHAKuD/tjcAM7vIzGaZ2ax169Zt7+4iIm1q+fpNHLjlVZYVHgpZXbd7/z75Oaz2HsRKV7RBdCIiItLeRFoq4O6tGhNjZncCTweLK4BBSZsHBusaq/8O4A6A8ePHax5jEWlX5j57JydYKaFJ392h/Xt3y2KR92B4+eoURyYiIiLt0c7OItgvafFU4KPg/ZPAGWaWZWZDgWHAuzvTlojIrraxvIp9Pr+b5Zl7ULjv11reoRGFeZmspTuZlWtTHJ2IiIi0Ry32YLXgt2Y2DnCgGPgegLt/bGYPAvOBKPADd4/tZFsiIrvUzIdu41SWs3LSrWC2Q3VEwiHKMnqSV/N24mHDO1iPiIiIdAw7lWC5+znNbLsRuHFn6hcRSZdPv1jC4cV/YEneaIYcevZO1VWZ3ZvIlmjiYcN5PVMUoYiIiLRHbTVNu4hIh1VVXU3p/efTzbaQ/81bIbRzvypjeX0TbzavSkF0IiIi0p4pwRIRSeLuvHv7D5gQncPiCddTMHT/na7Tuga3q5YpwRIREdndKcESEUny2gM3cdiGh5jd7wz2Pv5HKakzo6A/AHElWCIiIrs9JVgiIoF3X36Cryz8H+bnTmC/b9+Wsnpzew4EYEvJ8pTVKSIiIu3Tzs4iKCKyW/hk/gcMf/X7rI70Z49LHiIUyUhZ3T3zu7DeuxHaqAQLIBZ3NmwqpWLDKqrKN1KzpYyailJi1eVEYlsIuYPHMfPEzIuAh7MIZeYQycohIyuPzOwcsrPzyMrrSnZuV7LzumGZeRDO1EyNIiKSVkqwRKTTW7N2LZkPfgszyD3/YbK7dk9p/b26ZrHWu9O7kwwRrI3FWblqJeuXzKd81af4+sVkbV5KbvVaukVLKPSN9LIt9GqDtqOEqCSbasumJpRDTSib2nAOsXAu0UgO8Uge8UgOsUgusUgu8Ywc4uEcQuEwoVCIkIVwDDcjjuFuuAUz7Hsc8xjmUYjHwWMQj2Eex+MxzGPgMSwew4N/E+viSesdCBJHj2+zDOAeB3cMCKIAqP+3eS0kly0kn560f8OSjjVeu9VtT161bUlvKjrbut3GW2+aAW4NW7RG3zYWW13cX340tlXpbdrbatU2lTcSXRNLzZwLI+kz2fqfRsoatbm92Oe0X5KXl9dknSKy6yjBEpFOrbKqmuV3TmGsr2LlSdMZMmiflLfRu2sWn3p3+pavTnnd6ba+tJwvFs6lrHgOtuZDupd+wpDoYoZYOUOCMnE31oV6UZrZi7LcYWzM7Q1d+2BdehPJLSAjpxuZed3IyOkGmXm4hUmkHQYWwt2xWDXR6i1UV26hpqqC2qot1FZvIVZdQby6Aq+uwGsrsJothKKJVzhaSUZsCxm1VWRWbyTHV5LtVWRTTS7V5FhNm30uMTdihIgT2urfupQJs0QiF3xtjgcj9r3BNt8qvbJGEpEvJSdgjaViLSVoLSZwzWxuTd1NlWh535Y0vX/LSak3udhSu3V178hxtS5Zbr2eVsZbd63mkB/fndJ6RWTHKMESkU4rHnfemPZD/qt2DvPH/z9GHnBsm7TTq2sWr3t3sirntUn9u0ptLM7CRZ+z5uNXYdk79C19n2GxL5hgtQBUk8mKzKEsK/wqy3ruTW6/YfQcPJKC/nvRJyObPmmOP1ks7lTV1hKtriBWXUE0GicajxKLJoYmhurSGXfMgh6FUAizCIQjmIUIhSNYOJLo+QpHCAfL4VCiNywzpKGKknpeN2w2KUd7584fcMiq+3nviQOZcPL30xSZiNRRgtWMyvIyNpdupPeAIS0XFpEO59lH7uKETQ/y8YBvMurEH7dZO1mRMKWRnuTUboBYLYRTd39XW6qNxfl48VJWz32OnCWvMKR8HmNsFWOAGiIszd6Hhb3OIHfwfvTZ+0C6DRjBHuGO8b+VcMgIZ2VCViaQ2iGhIm3JgqGFySMMD7jwD3z8uw8ZO+daPu7ej1GHnZqm6EQElGA164Nnp3HAx79hTtdDYfQ3GDnpVLLzuqU7LBFJgffnfcCkj37JsuzhjDw/dTMGNqUqpxehSofyNZA/sM3b21FL11cwd+47VM9/jiElb7AfnzDOYmwmjxX541g4+Cx6jTycwmEHsldGdrrDFREgkpHJwO89xPI/TWbPl77LPIyxh52S7rBEOi0lWM0YPOFEZpV8zog1T1Hw9mtUvXUF7+ccQPXAr9B79JEMGX0I4RTONCYiu0ZpeQUZj32bsEGPC/6J7YJEIZrbFyqBzavbVYJVG4sz+7OVfD7rX+QseYnx1e9xUmgdAKty9mTpkAvpud+J5A87lH06SO+USGeUX9iXmu89w6rbv8Y+L13InLWfsf9pV2pWTZE00P8tm9F/6Aj6XzKNaO0tfPTOvyn/4EkGrX+NAYvehkW/p+KxLJZnDqW8215Ee+xNRt99KOhXRJ/+Q8nL77nLfqm5O9FYjJrqKqqrq6mtriRaU0VtTSW11dVEa6uI1VQTq60iWltNvKaaeLSKWG018WgNHq2ufxGthVg1FquGaA0WryUUr8FiNYTjNYSC5QxqiXgtEY+S4bWEiULd/Qr1t6cHt2Z78q3aX96m3fA27rp1rT7u7bz1uanSrasnNWVao1VtteJnq3WfZKqOvWWN1rPN/eW2zcpt627lbetNFHIgi1pG2waKv/oXivoOa6G21IgU9IcSoGzlLmmvOaVbanln7lw2zn2Gvmtf5UD/iIOthmrLZk3vg1g36jh67ncC/QoGpTtUEdkOvfoMIOvHL/HRX85k/49+xfvFr1N09i1071uU7tB2mLtTWROloryUqtISqjevp6a8hNotZdRWbyFaVUGsZgteU4lFK7FoFaFoJeFoFaF4FeFYFeF4DcSjhOJRzKOEPEbYo0RI/BsmRpgYEY8SIkY4mL2z/nuLJ/+fp+F3mG23bRV/8K812Fr33o1t1rFVOWj4/72tW7Gt2tmq7ib+/93c9sZi3CqeVsXbVD3bH2/dun9nHMUeX5/Kkfv03vaA2iElWK0Qychk9MQTYeKJAKxe/gVL3n8Jlr5FXumnFK1/ncKSp+GzL/ep9gw2Wj5VoVxqwrnURPKoDeXioQhYGEIh3MLECRF3J+R1F36s/n3Ig18E8SCZidcS9loi1JLhtWRQS4ZHyaCWTIuRAaRqgtaaRCvUkkHUIkQtg6hlErUMYqEMYpZB1LKpskwqQhHiFsEJBUllYhYsC6Y6rvu3bl3dDFkE65NnxmpplqwveXOTP22z1PQ38talBi0xT1E9rYmnFUVal6imKuaWqvAm/9aw1a/c5qYiNhr5Nd5geatZmRMTQjdWlxlsBtYPOZTRk77VXOQp1a33YFgMNRuXkbnLWv3SknWlfPjW88Q+fZ59yt7imNAyAEoy+rN2yBT6HHAi2XsdzmAN+xPp0LoV9GTMVc/x1r2/ZL/iO4lPO5D3+n+TYSdcTkH/vdIWV12itHHTRso3rqN80zqqy9ZRs7mEaMVGqNyAVW0ko7qUjNpScqOldIlvphvl5FNOL4u1qp1qz6DKMqkmixrLosYyiVoWHgoTtwjxcDa1FqHGEssxi+DB95i4RYiHImAhsBCGJe55q/sOU/89BrZKsczqJx3xpPdJR7/1rCT1b+P1i9bYOoJHROD183DWrUuuaKv/5/uX67zBuq32qZsshW3TI6/7JpaUWHpdnUFVdfU39n3DGmlvmzgbrGv8GL6UmTeY/NyOM2rMvFVfDHeN8ePH+6xZs9IdxnZzdzatX836JR9RunYZlSXLCZevJqO6hFBNBZFoBVmxCrK9kpDHMOKEPDFxbzi4kKIWIUaEmAV/R6m70C1MPEho4qFM4qEMPJxFPJyZeKBmKAOPZCXeR7IIhTOxjCwskoVlZBGOZBHKyCKckUUkMzvxb0Y2kaxsMjKziWRmkZGVQ0ZmNpmZ2YQyshM34GtIgUhKPf3BCg57dDyxUafR/fS2v+crFnc+/HQRy959ii5LX2b/2tnk2xaihFnRbRzhvSfTf8LJhHoN1/Uuspta/Ol8Njx5DfttfhXDWZw9is2Dv0qP4YcwYJ+DyOzaY4fqjcdibN5cSvnGdVSUrqOybD3VZeuJlm8gvmUDVrmRUPUmMmo2kVNbRm6sjC6+mXzKyWwmUaoki4pQVyoj3aiK5FObmU9tZgHx7ALiOd2xnO6EcnsQyetBZm43snK7kpPbhdy8PLJzuhDJyoNQaEc/LpHtZmaz3X38NuuVYImItL2PVpRSefvR7NmrKz1+9HKbtLGurJKP3pvJlvnPM6jkdUb7IkLmbAp1Z23fw+gx7gR6jp0M2ZqsR6Qz+XzRQpa9dAf917zMsPgX9etLyGdTuJDKzB7EwjlEQ1l4OJOQxyBWg8WjEK8lM7aFnHg5ObFycr2CLr6FsDX9/bGSLDZbF7aEu1EZJEqxrALI6Y7l9iCjSw8yu/YkJ78XXQt60aV7L8K5PUA96NLBNJVgaYigiMguMLRnHo/7IMZseicY87HzvUbRWJx5n3zG6jnPkLt0JmOq53CkbSaOsTx7bz4r+gEDDjqZgiHjKdBfdUU6rT322oc99vo9AMuXLWXFwrepWT6XzLJlZFauJadmA7nxtWRSQ4bXECUxgiZqGcQtQnUol9JIL9bn7kk8sxtkd8OyCwjnFpDRpZCsbj3JK+hF1+696dq9FzmZOeSk+ZhF0kkJlojILpCXFWFt11Fkb3kJ1nwMfUdvdx21sTifLFrE6g9fIbT0Pwwoe5/9WQLAplABq/sexpaRkxlwwNcY3KVnqg9BRHYDAwcNZuCgwcDp6Q5FZLe1UwmWmc0A9g4WC4BN7j7OzIqABcAnwba33f3inWlLRKSjq93jv4h9eCvReY+S1UKC5e6s2VDK0gXvUfbFbCKr3qeo4gNG2ypGA1vIZnneGD4p+joDJpxIweD91EslIiLSDuxUguXuU+rem9n/AaVJmxe7+7idqV9EZHdyzEFjmfnBOCa+Mw0fcwrWbyyQeC7X8i8WsHHJfGrWfELGhs/oXfEJe/gy+gY3hG+2LqzI35f5g8+m75ij6LHXBIaHO86MSiIiIp1FSoYImpmR6Gs+KhX1iYjsjsYNKuBXw69m7KLv0ev2SZTRBXcn3yrITyq3wQpYmzecBb2OIrdoPANGHkzXXnuwj2b7ExERafdSdQ/WJGCNuyc9CYqhZvY+UAb8wt1fb2xHM7sIuAhg8ODBKQpHRKR9+tlZx/HMW09h82aQX72S7IwIoS49yek1lO6DR9F76Gh65HVnxyZPFhERkXRrcZp2M3sR6NvIpp+7+xNBmb8Ai9z9/4LlLKCLu5eY2QHA48Aody9rri1N0y4iIiIiIh3BDk/T7u5Ht1BxBPg6cEDSPtVAdfB+tpktBoYDyp5ERERERGS3lYopp44GFrr78roVZtbLzMLB+z2AYcDnKWhLRERERESk3UrFPVhnANMbrDsMuMHMaoE4cLG7b0hBWyIiIiIiIu1Wi/dg7Upmtg6Cp2a2Hz2B9ekOQnYZne/OQ+e689C57lx0vjsPnevOpT2e7yHu3qvhynaVYLVHZjarsZvXZPek89156Fx3HjrXnYvOd+ehc925dKTznYp7sERERERERAQlWCIiIiIiIimjBKtld6Q7ANmldL47D53rzkPnunPR+e48dK47lw5zvnUPloiIiIiISIqoB0tERERERCRFlGCJiIiIiIikiBKsZpjZZDP7xMwWmdlP0x2PpI6ZDTKzV8xsvpl9bGaXBut7mNkLZvZZ8G/3dMcqqWFmYTN738yeDpaHmtk7wfU9w8wy0x2jpIaZFZjZw2a20MwWmNkhurZ3T2Z2efA7/CMzm25m2bq2dx9m9jczW2tmHyWta/RatoRbgvM+z8z2T1/ksr2aONe/C36PzzOzx8ysIGnbz4Jz/YmZHZuWoJuhBKsJZhYG/gQcB4wEzjSzkemNSlIoClzh7iOBg4EfBOf3p8BL7j4MeClYlt3DpcCCpOX/BW52972AjcC30xKVtIU/Av9y932AfUmcd13buxkzGwD8GBjv7qOBMHAGurZ3J3cDkxusa+paPg4YFrwuAv6yi2KU1Libbc/1C8Bodx8LfAr8DCD4vnYGMCrY58/B9/Z2QwlW0w4EFrn75+5eAzwAnJzmmCRF3H2Vu88J3m8m8QVsAIlzfE9Q7B7glLQEKCllZgOB44G/BssGHAU8HBTRud5NmFk+cBhwF4C717j7JnRt764iQI6ZRYBcYBW6tncb7v4asKHB6qau5ZOBf3jC20CBmfXbJYHKTmvsXLv78+4eDRbfBgYG708GHnD3anf/AlhE4nt7u6EEq2kDgGVJy8uDdbKbMbMiYD/gHaCPu68KNq0G+qQrLkmpPwBXA/FguRDYlPSLW9f37mMosA74ezAk9K9mloeu7d2Ou68AbgKWkkisSoHZ6Nre3TV1Let72+7tQuC54H27P9dKsKRTM7MuwCPAZe5elrzNE88w0HMMOjgzOwFY6+6z0x2L7BIRYH/gL+6+H1BBg+GAurZ3D8G9NyeTSKr7A3lsO8RIdmO6ljsHM/s5iVs77k93LK2lBKtpK4BBScsDg3WymzCzDBLJ1f3u/miwek3dkILg37Xpik9S5lDgJDMrJjHU9ygS9+gUBMOKQNf37mQ5sNzd3wmWHyaRcOna3v0cDXzh7uvcvRZ4lMT1rmt799bUtazvbbshMzsfOAE4y798eG+7P9dKsJr2HjAsmI0ok8TNdE+mOSZJkeAenLuABe7++6RNTwLnBe/PA57Y1bFJarn7z9x9oLsXkbiOX3b3s4BXgG8ExXSudxPuvhpYZmZ7B6u+CsxH1/buaClwsJnlBr/T6861ru3dW1PX8pPAucFsggcDpUlDCaUDMrPJJIb3n+TuW5I2PQmcYWZZZjaUxMQm76YjxqbYl8mgNGRmXyNx70YY+Ju735jeiCRVzGwi8DrwIV/el3MNifuwHgQGA0uA09294Q220kGZ2RHAle5+gpntQaJHqwfwPnC2u1enMTxJETMbR2JCk0zgc+ACEn9Q1LW9mzGz64EpJIYPvQ98h8S9GLq2dwNmNh04AugJrAGuAx6nkWs5SLJvIzFMdAtwgbvPSkPYsgOaONc/A7KAkqDY2+5+cVD+5yTuy4qSuM3juYZ1ppMSLBERERERkRTREEEREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhFpZ8ysyMzczCLpjkU6BzP72MyOSHccIiK7AyVYIiLS4ZnZNDMrD141ZlabtPxcuuNr79x9lLvPTGWdZnaTmX1mZpvNbKGZnZvK+kVE2islWCIiKaaep13P3S929y7u3gX4NTCjbtndj6sr15HOTUeKtQkVwIlAPnAe8Ecz+0p6QxIRaXtKsEREUsDMis3sJ2Y2D6gws4iZHWxm/zGzTWb2QfIQLDObaWb/Y2bvmlmZmT1hZj2aqPsCM1sQ9AR8bmbfa7D9ZDObG9Sz2MwmB+vzzewuM1tlZivM7FdmFm7hOPY0s5fNrMTM1pvZ/WZWkLRtg5ntHyz3N7N1dcdlZicFQ802Bcc3osHnc6WZzTOzUjObYWbZ2/9Jb78mzo2b2V5JZe42s18lLZ8QfKabgnM4tpVtHWFmy83smuDzKzazs5K2H29m7wfnapmZTU3aVjc09NtmthR4OVj/kJmtDj6318xsVIO4/2xmzwW9dW+aWV8z+4OZbQx6jvZr5Wd0dGuOsbXc/Tp3X+jucXd/B3gdOCSVbYiItEdKsEREUudM4HigAOgDPAP8CugBXAk8Yma9ksqfC1wI9AOiwC1N1LsWOAHoBlwA3JyU5BwI/AO4Kmj3MKA42O/uoN69gP2AY4DvtHAMBvwP0B8YAQwCpgK4+2LgJ8B9ZpYL/B24x91nmtlwYDpwGdALeBZ4yswyk+o+HZgMDAXGAuc3GoDZxCCxaeo1sYVjaEz9uXH3aLMfQCIh+RvwPaAQuB140syyWtlWX6AnMIBEz80dZrZ3sK2CxHkvCOK5xMxOabD/4SQ++2OD5eeAYUBvYA5wf4PypwO/CNqsBt4KyvUEHgZ+38q4G2VmP23ufLSyjhxgAvDxzsQiItIRKMESEUmdW9x9mbtXAmcDz7r7s8Ff8F8AZgFfSyp/r7t/5O4VwC+B0xvrYXL3Z9x9sSe8CjwPTAo2fxv4m7u/ELSzwt0XmlmfoK3L3L3C3dcCNwNnNHcA7r4oqKva3deR+HJ+eNL2O4FFwDskEsOfB5umAM8E+9YCNwE5QPKQsFvcfaW7bwCeAsY1EcMb7l7QzOuN5o6hCcnnpiUXAbe7+zvuHnP3e0gkLgdvR3u/DD7DV0kk2qcDuPtMd/8wOFfzSCSlhzfYd2pwziqDff7m7pvdvZpEsruvmeUnlX/M3We7exXwGFDl7v9w9xgwg0RyvcPc/TfNnY9WVjMN+AD4987EIiLSESjBEhFJnWVJ74cA32zwl/6JJJKSxsovATJI9DpsxcyOM7O3g+F5m0gkTnXlBgGLG4llSFDfqqT2byfRC9IkM+tjZg8EQwrLgPsaielOYDRwa/ClHxI9XkvqCrh7PDi+AUn7rU56vwXo0lwsKbas5SL1hgBXNDh3g0gcY2tsDJLmOkvq9jWzg8zslWBoZSlwMdt+vvWxmlnYzH5jiaGfZXzZO5m8z5qk95WNLO/Kz3kbZvY7Ej8vp7u7pzMWEZFdQQmWiEjqJH95XEaihyr5r/157v6bpDKDkt4PBmqB9ckVBsPSHiHRI9Qn6DF4lsRQvrp29mwklmUkel16JrXfzd1HNVI22a+D4xjj7t1I9MTVtYWZdQH+ANwFTLUv7xtbSSIxqStnwfGtaKG9bZjZJPtyBsDGXpNarmUbDb/YbwFyk5b7Jr1fBtzY4Nzluvv0VrbV3czykpYHk/h8AP4JPAkMcvd8Ej071mD/5Fi/BZwMHE1isoiiYH3DfdpMcD9Zk+ejhX2vB44DjnH3sl0TsYhIeinBEhFpG/cBJ5rZsUEvRHYwAcLApDJnm9nI4H6mG4CHg2FdyTKBLGAdEDWz40jcS1XnLuACM/uqmYXMbICZ7ePuq0gMJfw/M+sWbNvTzBoOR2uoK1AOlJrZABL3diX7IzDL3b9DYujbtGD9g8DxQRwZwBUkErz/tPRBNeTuryfNANjY6/XtrbMRc4FvBedmMlsP07sTuDjobTIzy7PE5BRdoX5iibtbqP96M8sMksETgIeC9V2BDe5eFdw/960W6ulK4nMsIZEQ/no7jjEl3P3XzZ2PpvYzs5+ROL6j3b1k10UsIpJeSrBERNqAuy8j0fNwDYnkaBmJZCX59+69JCaiWA1kAz9upJ7NwfoHgY0kvrA+mbT9XYKJL4BS4FW+7Ek6l0SCNj/Y92G2HqLYmOuB/YO6ngEerdtgZieTmKTikmDVfwP7m9lZ7v4Jid6uW0n0wp0InOjuNS20ly6XkohxE3AW8HjdBnefBXwXuI3E57aIrSfkGAS82Uzdq4P9VpKYkOJid18YbPs+cIOZbQauJXFem/MPEkMMV5A4j2+3dGDtyK9J9N4tSurxuibdQYmItDXTcGgRkV3PzGYC97n7X9Mdi7ReMCviB8DYYDKPhtuPIHFeBzbcJiIinUNHf4ihiIjILhP0yI1osaCIiHRaGiIoItLJmNm0JiYsmNby3tIRmdngZiaqGJzu+EREdicaIigiIiIiIpIi6sESERERERFJkXZ1D1bPnj29qKgo3WGIiIiIiIg0a/bs2evdvVfD9e0qwSoqKmLWrFnpDkNERERERKRZZraksfUaIigiIiIiIpIiSrBERERERERSRAmWiEgz3J14XLOtioiISOu0q3uwGlNbW8vy5cupqqpKdyjSwWRnZzNw4EAyMjLSHYp0YFfdO5PqkuX88dKzCYUs3eGIiIhIO9fuE6zly5fTtWtXioqKMNOXG2kdd6ekpITly5czdOjQdIcjHVQ87hz22f9yUvgtPpu/D8NGT0h3SCIiItLOtfshglVVVRQWFiq5ku1iZhQWFqrnU3bKik2VDLD1iYV370xvMCIiItIhtPsEC1ByJTtEPzeys9ZuriaLWgAyShamORoRERHpCDpEgiUikg6bq2rpZyUA9NyyGFyTXYiIiEjzlGC1gplxxRVX1C/fdNNNTJ06NX0BJXn77bc56KCDGDduHCNGjKiPa+bMmfznP//Z4XqXLFnC/vvvz7hx4xg1ahTTpk1LUcQiHUdFRTmFtpkN1p0uXg6bV6U7JBEREWnn2v0kF+1BVlYWjz76KD/72c/o2bNnyup1d9ydUGjH89zzzjuPBx98kH333ZdYLMYnn3wCJBKsLl268JWvfGWH6u3Xrx9vvfUWWVlZlJeXM3r0aE466ST69++/w7GKdDTRTSsAKO42nh6lLxBdv5hIN10DIiIi0jT1YLVCJBLhoosu4uabb95m27p16zjttNOYMGECEyZM4M033wRg6tSp3HTTTfXlRo8eTXFxMcXFxey9996ce+65jB49mmXLlnHVVVcxevRoxowZw4wZM4BEgnTEEUfwjW98g3322YezzjoLb2R40tq1a+nXrx8A4XCYkSNHUlxczLRp07j55psZN24cr7/+erNxnnPOORxyyCEMGzaMO+9M3MifmZlJVlYWANXV1cTj8UY/m1tuuYWRI0cyduxYzjjjDAA2bNjAKaecwtixYzn44IOZN29efVvnnXcekyZNYsiQITz66KNcffXVjBkzhsmTJ1Nbm7jX5YYbbmDChAmMHj2aiy66aJvjjsfjFBUVsWnTpvp1w4YNY82aNc2dRpHtFq3YBECs92gANq36Io3RiIiISEfQoXqwrn/qY+avLEtpnSP7d+O6E0e1WO4HP/gBY8eO5eqrr95q/aWXXsrll1/OxIkTWbp0KcceeywLFixotq7PPvuMe+65h4MPPphHHnmEuXPn8sEHH7B+/XomTJjAYYcdBsD777/Pxx9/TP/+/Tn00EN58803mThx4lZ1XX755ey9994cccQRTJ48mfPOO4+ioiIuvvhiunTpwpVXXgnAt771rSbjnDdvHm+//TYVFRXst99+HH/88fTv359ly5Zx/PHHs2jRIn73u9812nv1m9/8hi+++IKsrKz6hOe6665jv/324/HHH+fll1/m3HPPZe7cuQAsXryYV155hfnz53PIIYfwyCOP8Nvf/pZTTz2VZ555hlNOOYUf/vCHXHvttQCcc845PP3005x44on1bYZCIU4++WQee+wxLrjgAt555x2GDBlCnz59WjyPItujtroCgC7994HPoGJdManrwxYREZHd0U73YJnZIDN7xczmm9nHZnZpsH6qma0ws7nB62s7H276dOvWjXPPPZdbbrllq/UvvvgiP/zhDxk3bhwnnXQSZWVllJeXN1vXkCFDOPjggwF44403OPPMMwmHw/Tp04fDDz+c9957D4ADDzyQgQMHEgqFGDduHMXFxdvUde211zJr1iyOOeYY/vnPfzJ58uRG22wuzpNPPpmcnBx69uzJkUceybvvvgvAoEGDmDdvHosWLeKee+5ptIdo7NixnHXWWdx3331EIpH6YzrnnHMAOOqooygpKaGsLJEYH3fccWRkZDBmzBhisVh9vGPGjKk/vldeeYWDDjqIMWPG8PLLL/Pxxx9v0+6UKVPqe/seeOABpkyZ0uxnLrIj4rWJaf579OrDeu9GTcnSNEckIiIi7V0qerCiwBXuPsfMugKzzeyFYNvN7n5TM/tul9b0NLWlyy67jP33358LLrigfl08Huftt98mOzt7q7KRSGSrYXXJz2PKy8trVXt1Q/QgMfwvGo02Wm7PPffkkksu4bvf/S69evWipKRkmzJNxQnbTmfecLl///6MHj2a119/nW984xtbbXvmmWd47bXXeOqpp7jxxhv58MMPW3VMoVCIjIyM+rZCoRDRaJSqqiq+//3vM2vWLAYNGsTUqVMbfZbVIYccwqJFi1i3bh2PP/44v/jFL5ptV2RHWJBgFRbks8AL6bJ5eZojEhERkfZup3uw3H2Vu88J3m8GFgADdrbe9qhHjx6cfvrp3HXXXfXrjjnmGG699db65bqhcEVFRcyZMwf4/+3de3xV1Z338c/v3HK/kBAISbhEBAQhgEagIgq0Xjq1tV6qdqot8kwdO7WdOu0808torTN9nrbOdGY6trV1tPZCvVRb9Wmt1WqtMh1tQaygiILEEAgQArmRnPt6/jgnIVcC5iQnl+/79Tqevdfee+1f3Ozk/M5aey146aWX2L27/2c3Vq1axQMPPEAsFqOhoYHnnnuOZcuWnXBMv/rVr7qeUXrzzTfxer0UFhaSl5dHa2vroHECPProowSDQRobG3n22Wc566yzqKuro6OjA4AjR46wceNG5s2b1+Pc8XicPXv2sGbNGr7+9a/T3NxMW1sbq1atYsOGDUDiWbLJkyeTn59/Qj9PZzI1efJk2traeOihh/rdz8y49NJL+bu/+zvmz59PcXHxCdUvcjJcNPHv0RfI4pB3ClkdGkVQREREji+lg1yY2SxgKfBisuhGM3vFzO4xs0kDHHO9mW0ys00NDQ2pDGdYfPazn+XQoUNd69/61rfYtGkTVVVVLFiwoGs488svv5zDhw9z+umnc8cddzB37tx+67v00kupqqpi8eLFrF27lm984xuUlpaecDw//vGPmTdvHkuWLOHaa69lw4YNeL1e3v/+9/OLX/yia5CLgeKERDe/NWvWsGLFCm6++WbKysrYvn07y5cvZ/HixZx33nl87nOfY9GiRQD81V/9FZs2bSIWi3HNNdewaNEili5dyqc//WkKCwu59dZb2bx5M1VVVXz+85/nhz/84Qn/PIWFhXz84x9n4cKFXHjhhZx11lld2+68884ecV911VX85Cc/UfdAGTaeZIKFL5PWzGkUhA9oLiwRERE5LutvZLp3VJFZLvB74KvOuZ+b2VTgEOCAfwKmOefWH6+O6upqt2nTph5l27dvZ/78+SmJUfq69dZbewyGMd7o348MxQPfuZWrDv4bfHYHD97771zZ+F34hxrI6vf7IhEREZlAzGyzc666d3lKWrDMzA88DGxwzv0cwDl3wDkXc87FgbuAE+/3JiIyCljsWAuWy69ILDfrOSwREREZ2JAHubDEKAV3A9udc9/sVj7NOdf5wMKlwLahnktS79Zbb013CCKjlqczwfJn4Z00A3ZD8FANmaWL0huYiIiIjFqpGEVwJXAtsNXMXk6WfRH4sJktIdFFsAb46xScS0RkxHhjIeIYHm+AnJKZALQeqCFzYZoDExERkVFryAmWc24jYP1senyodYuIpJM3FiRiATLMKCwpI+y8hA6ri6CIiIgMLKWjCIqIjCe+eIiIBQCYVpjNQSYRa9qb5qhERERkNFOCJSIyAG88TMQSk2OXFmRS74rwHtVcWCIiIjIwJVgn6JFHHsHMeP311wfcp6amhoULU/dwxo4dO1i9ejVLlixh/vz5XH/99UBikuDHH3/nPTCDwSDLli1j8eLFnH766Xz5y19OVcgi44ovHiLiSSRYmX4vhz3FZHYcSHNUIiIiMpopwTpB9913H+eccw733Xdfv9uj0eiQzxGLxXqsf/rTn+amm27i5ZdfZvv27XzqU58Chp5gZWRk8Mwzz/DnP/+Zl19+mSeeeIIXXnhhSLGLjEf+eIhoMsECaMuYSl64QZMNi4iIyICUYJ2AtrY2Nm7cyN13383999/fVf7ss8+yatUqPvCBD7BgwQIgkWh95CMfYf78+VxxxRW0t7cD8PTTT7N06VIWLVrE+vXrCYVCAMyaNYt/+Id/4IwzzuBnP/tZj/PW19dTUVHRtb5o0SLC4TC33HILDzzwAEuWLOGBBx7g6NGjrF+/nmXLlrF06VIeffRRAO69914uueQSVq9ezZw5c/jKV74CgJmRm5sLQCQSIRKJkBhtv6ef/exnLFy4kMWLF3PuuecCidav6667jkWLFrF06VJ+97vfdZ3rgx/8IOeffz6zZs3ijjvu4Jvf/CZLly5lxYoVHD58GIC77rqLs846i8WLF3P55Zd3/f/pbsWKFbz66qtd66tXr6b3BNQiI8HvQsS6JVjh7KlkuCAEm9MYlYiIiIxmqRimfeT8+vOwf2tq6yxdBO/92nF3efTRR7nooouYO3cuxcXFbN68mTPPPBOAl156iW3btlFZWUlNTQ07duzg7rvvZuXKlaxfv57vfOc73Hjjjaxbt46nn36auXPn8tGPfpTvfve7fOYznwGguLiYl156qc95b7rpJtauXcvZZ5/NBRdcwHXXXUdhYSG33XYbmzZt4o477gDgi1/8ImvXruWee+6hqamJZcuW8Z73vAeAP/7xj2zbto3s7GzOOuss3ve+91FdXU0sFuPMM89k586dfPKTn2T58uV9zn/bbbfxm9/8hvLycpqamgD49re/jZmxdetWXn/9dS644ALeeOMNALZt28aWLVsIBoOceuqpfP3rX2fLli3cdNNN/OhHP+Izn/kMl112GR//+McB+Md//Efuvvvurpa5TldddRUPPvggX/nKV6ivr6e+vp7q6j6TZIsMO78LE/MeS7BcXhkcAVr2QVZh2uISERGR0UstWCfgvvvu4+qrrwbg6quv7tFNcNmyZVRWVnatT58+nZUrVwJwzTXXsHHjRnbs2EFlZSVz584F4GMf+xjPPfdc1zFXXXVVv+e97rrr2L59Ox/60Id49tlnWbFiRVfLV3dPPvkkX/va11iyZAmrV68mGAxSW1sLwPnnn09xcTFZWVlcdtllbNy4EQCv18vLL79MXV1dVxLW28qVK1m3bh133XVXV/fFjRs3cs011wBw2mmnMXPmzK4Ea82aNeTl5VFSUkJBQQHvf//7gUTLW01NDZBIwlatWsWiRYvYsGFDj5aqTldeeSUPPfQQAA8++CBXXHFFv/9/RIZbwIV7tGD5CssBiGgkQRERERnA2GrBGqSlaTgcPnyYZ555hq1bt2JmxGIxzIzbb78dgJycnB779+5q11/Xu95619FdWVkZ69evZ/369SxcuLDfRMg5x8MPP8y8efN6lL/44ouDxlNYWMiaNWt44okn+gzQceedd/Liiy/yq1/9ijPPPJPNmzcf9+fIyDj2QdTj8XStezyermfU1q1bxyOPPMLixYu59957efbZZ/vUU15eTnFxMa+88goPPPAAd95553HPKzJc/C5MvFsLVlZxostu68G3KZo30FEiIiIykakFaxAPPfQQ1157LW+//TY1NTXs2bOHyspKnn/++X73r62t5X/+538A+OlPf8o555zDvHnzqKmpYefOnQD8+Mc/5rzzzhv03E888QSRSASA/fv309jYSHl5OXl5ebS2tnbtd+GFF/Kf//mfuOSD91u2bOna9tRTT3H48GE6Ojp45JFHWLlyJQ0NDV1d/jo6Onjqqac47bTT+px/165dLF++nNtuu42SkhL27NnDqlWr2LBhAwBvvPEGtbW1fRK742ltbWXatGlEIpGuevpz1VVX8Y1vfIPm5maqqqpOuH6RVInHHX6iOG+gq6xgygwAOho12bCIiIj0TwnWIO677z4uvfTSHmWXX375gKMJzps3j29/+9vMnz+fI0eO8IlPfILMzEx+8IMf8KEPfYhFixbh8Xi44YYbBj33k08+2TXIxIUXXsjtt99OaWkpa9as4bXXXusa5OLmm28mEolQVVXF6aefzs0339xVx7Jly7j88supqqri8ssvp7q6mvr6etasWUNVVRVnnXUW559/PhdffDEAt9xyC4899hgAf//3f8+iRYtYuHAhZ599NosXL+Zv/uZviMfjLFq0iKuuuop77723R8vVYP7pn/6J5cuXs3Llyh5J3WOPPcYtt9zStX7FFVdw//33c+WVV55w3SKpFI7FCRDpkWCVFuXT4PKJNinBEhERkf6ZG0XDDVdXV7veo8Vt376d+fPnpymise3ee+/tMRjGRKR/P/JONXdE6PjaHJrLz2Pe9T/sKqv9v9UUlFQw41O/SnOEIiIikk5mttk512ckNrVgiYj0IxxNtGDR7Rms/EwfDVZMRvv+NEYmIiIio9nYGuRCTsq6detYt25dusMQGZPCsTgFRMF3rIugmdEamEJO6M00RiYiIiKj2ZhowRpN3Rhl7NC/GxmKcDSOnyjW7RksgFDWFHLjLRDpSFNkIiIiMpqN+gQrMzOTxsZGfViWk+Kco7GxkczMzHSHImNUOBIjw6Lg6zmISzS3LLHQWp+GqERERGS0G/VdBCsqKqirq6OhoSHdocgYk5mZSUVFRbrDkDEqEg4CYL0SLF9BGeyDWNNevEWnpCM0ERERGcWGPcEys4uA/wC8wH85505qtmC/309lZeWwxCYiMpBIONEF0OPvmWBlFE8HoK2hlgLlVyIiItLLsHYRNDMv8G3gvcAC4MNmtmA4zykikgqdLVgeX89upnklicmG2w/tGfGYREREZPQb7mewlgE7nXNvOefCwP3AJcN8ThGRIYuGQwB4/D0HuZgyeTKtLovwEU02LCIiIn0Nd4JVDnT/mrcuWdbFzK43s01mtknPWYnIaBFLJljeXl0ESwsy2e+KoGVfOsISERGRUS7towg6577vnKt2zlWXlJSkOxwREQBikUQXQa+/ZxfBouwABynCd1STDYuIiEhfw51g7QWmd1uvSJaJiIxq0XD/CZbHYzT5S8gJHUxHWCIiIjLKDXeC9SdgjplVmlkAuBp4bJjPKSIyZPFooougLyOjz7Zg5hTyoo0Qi450WCIiIjLKDWuC5ZyLAjcCvwG2Aw86514dznOKiKRCLBIGwOfvm2BFcqfhJQ5H1YolIiIiPQ37PFjOuceBx4f7PCIiqRRPPoPlC2T22ebJnwYHwLXsw/LLRjo0ERERGcXSPsiFiMhoFI8kugj6A1l9tgUmJR4tbT9UO6IxiYiIyOinBEtEpB+u8xmsQN8ugrnJyYZbDmqyYREREelJCZaISD86Eyzz9U2wSqaWEXI+Qo1vj3RYIiIiMsopwRIR6Uc8mhjkAm+gz7aKohz2usm4JnURFBERkZ6UYImI9CeWaMGinxasopwA9VZCoE3T+omIiEhPSrBERPph0c4Eq+8ogmZGU6CUvGD9CEclIiIio50SLBGRfniiHYkFf99RBAE6ssvJjx2BSMcIRiUiIiKjnRIsEZF+eGLJxKmfFiyAeEFiqHaaNJKgiIiIHKMES0SkH95YiCAZYNbvdt+kmQAEG2tGMCoREREZ7ZRgiYj0wxcLEra+A1x0yplaCUDzvl0jFZKIiIiMAUqwRET64Y0FCXsGTrAmT5tJxHkJHqoZuaBERERk1FOCJSLSD188RMT6f/4KoLwoj/2uiPgRTTYsIiIixyjBEhHphz8eJHKcFqwpeRnspQR/q+bCEhERkWOUYImI9MMXDxL19j9EO4DHYxwJTCU3uG8EoxIREZHRTgmWiEg/AvEgce/ALVgA7Vnl5EcboXNSYhEREZnwhpRgmdntZva6mb1iZr8ws8Jk+Swz6zCzl5OvO1MSrYjICPG7MHHfwC1YANG8Cjw4aK4boahERERktBtqC9ZTwELnXBXwBvCFbtt2OeeWJF83DPE8IiIjJh53ZLjQoAmWr2gWAOHDGuhCREREEoaUYDnnnnTORZOrLwAVQw9JRCS9OiIxsiwE/uMnWNldc2HtHImwREREZAxI5TNY64Ffd1uvNLMtZvZ7M1uVwvOIiAyr9nCMLMLgG3iYdoDiabOIOaPj4O4RikxERERGO99gO5jZb4HSfjZ9yTn3aHKfLwFRYENyWz0wwznXaGZnAo+Y2enOuZZ+6r8euB5gxowZ7+ynEBFJoY5wjBLCWCD7uPuVTy6gnmLih2tGJjAREREZ9QZNsJxz7znedjNbB1wMvNs555LHhIBQcnmzme0C5gKb+qn/+8D3Aaqrq91Jxi8iknLt4TBZFsYzSIJVmp/Jn9wUKlo1yIWIiIgkDHUUwYuA/w18wDnX3q28xMy8yeVTgDnAW0M5l4jISAm2twFgGTnH3c/rMRr908jr0GTDIiIikjDUZ7DuAPKAp3oNx34u8IqZvQw8BNzgnDs8xHOJiIyISFvi15Una9Kg+7Znl1EQa4RIx3CHJSIiImPAoF0Ej8c5d+oA5Q8DDw+lbhGRdAm1JhIsf07RoPvG8mdAK9C0B0rmDnNkIiIiMtqlchRBEZFxIdzWCEBW/uAJlq84MVR7uFEjCYqIiIgSLBGRPiJHjwCQXVA86L45pacA0KS5sERERAQlWCIifcTbEwlWVt7gLVgl02YScj6CBzWOj4iIiCjBEhHpw3U0A2AnMMhFRVEue91k4k21wx2WiIiIjAFKsEREerFQM3EMMvIH3XdKXgZ7mUJG654RiExERERGOyVYIiK9+ELNtFsOeAb/FenxGEcCmgtLREREEpRgiYj04gs30eHNPeH923MqyI23QKh1GKMSERGRsUAJlohIL3mRQ7QFSk54/3jBjMSCnsMSERGZ8JRgiYh0E4s7imONhLOmnvAx/uJZAAQbNJKgiIjIRKcES0Skm8bWIKV2mFjutBM+Jrd0NgAt9ZoLS0REZKJTgiUi0s2hhoNkWRgrqDjhY6aWlnPUZRBsqBm+wERERGRMUIIlItLNofrdAOSWnHiCVVGUzR43BY68PVxhiYiIyBihBEtEpJvW/YnnqIrLZp/wMSW5GeyjhEBb3XCFJSIiImOEEiwRke4O7QAgu+y0Ez7EzGgNTCU3dGC4ohIREZExQgmWiEg32S27OOKZBFmTTuq4jqwpibmwIh3DFJmIiIiMBUqwRESSnHMUddRwOKvypI+Ndo462Fqf4qhERERkLBlSgmVmt5rZXjN7Ofn6i27bvmBmO81sh5ldOPRQRUSG19sNLZzqaomWzD/pYz355QC45r2pDktERETGEF8K6vg359y/dC8wswXA1cDpQBnwWzOb65yLpeB8IiLDoub1zcyyENmnrDjpYwNFiVEHjx6qI/fkG8BERERknBiuLoKXAPc750LOud3ATmDZMJ1LRCQlju78AwClC8456WNzJ09P1HGoNqUxiYiIyNiSigTrRjN7xczuMbPOp8LLgT3d9qlLlvVhZteb2SYz29TQ0JCCcERE3pmCfc/T6J2Mv/jkm6AmFxfT4rKJHNkz+M4iIiIybg2aYJnZb81sWz+vS4DvArOBJUA98K8nG4Bz7vvOuWrnXHVJScnJHi4ikhL1jU0sjWzhQOlqMDvp46fmZ7LfTcK1aJALERGRiWzQZ7Ccc+85kYrM7C7gl8nVvcD0bpsrkmUiIqPSjhd+zWoLkV/1/nd0/JT8DF50Rcw9qgRLRERkIhvqKILTuq1eCmxLLj8GXG1mGWZWCcwB/jiUc4mIDKfQa48TJED50gve0fEZPi+HfSVkBQ+mODIREREZS4Y6iuA3zGwJ4IAa4K8BnHOvmtmDwGtAFPikRhAUkdGqrrGFpW3PsXfy2cwOZL/jetozppAXbIRYFLypGKRVRERExpohfQJwzl17nG1fBb46lPpFREbCS8/8nA9YE54VA/5KOyGh7FI8wTi0HYCCfsf1ERERkXFOX7GKyITmnCNnx0O0Wh6Tl76z56+65E2Dw0Br/bhPsCLRKI31NTQfqKGt8QDB1kP4Qk144mHMOXAO82cSyJ1Edn4R2UVlFEybTXZxBXi86Q5fRERk2CjBEpEJ7eWdtayMvEDdrMvJ82UMqS5fYTm8DdGmOnwV1SmKML2C4ShvvPEah3f+Cbfvz+Q2vU5xeC/l7gClFqH0JOuL4OOQt4TmzOmE8mfhmTybnLLTKJmxgLzSU9LStTIUjXE0GCUSaiPW0Uo83EEsFiEajROPRcHF8ZjDi8PjMcwbwOPzY14/Pn8GXr8fny8Dn9+PLxDA78vA4x2uaSZFRGS0U4IlIhPa7t9vYKlFKFu9fsh1ZU+eAcDRQ3soGHJt6dF8NMirm5+n9fXfUdTwR2aHt1NlbQBE8bDPN53m/Eq25q4mNqmSjOIZ5BWVUlA8BX9uCfgyMI9hGMFgO0caD9F6pIGOw3uJHa7BNdWS0bqHSe11nNK2lbz6DtiaOHcELwe9pTRlTieUX4mn5FQyJ8/CnzsJf3YhgZxCsrKyEvvGHLG4IxqNEg21ETzaSqi9lVB7G+GOVqLBVuIdLbhQK4Tb8ITb8EWP4o+04Y+1E4gfJSveTpbrIJcOCujAay5l/x8jzkuU5Mt8xPASwUfMki98xM2bXPfjzIORPL9zyeXEKxFWchnXtd1wmItjgBEHwEM8ub2zzOFxiWM9DPR+rI5jExQcW+rv/4qjv6kM+pa5QbZ31WX9lPU6YrA4bIC4+q2ra+X4UzKc/IQNx6krlZXRM7Y2byGZ6x9jWunJfuUhIsNBCZaITFjBSIyZdY9xIDCDqbOWDbm+wuKphJyfYOPYSbAisTivvbaNxpceJW/vc5wW2srZ1gHAPl8FdVPXcqDiDErmLqP4lKXMOIlBQPJysikpngyc1u/2YDjKrr1v0/j2djr2vwGHd5HVWsOk9joq27aQXR9KxY9IFA8dZNHhySbkySbszSaSUUCHr4yj/hwaMvIgkEvcn0s8kIvzZeLx+vB4vHg8XpwZcTzEnAfn4hCLJF7xCC527NVZlniPdq1bPIrFI3i6LZuL4olH8STfzcXAkimWeZJJh3W9J1i3ck+37Z5u+xnODLq2e8ASaZTZsW0uuS/m6TqmM23r5HCJ7p5d6wMu0P9OPY81wPU61uiv/uMnus71PfZYBa5HXda1yfXZZ+D6Byg/gZgGPKa/UAesrPPN9Vfch89FWBV6jt8/eRfTPnrz8WoWkRGiBEtEJqw/bNrEWrZTM/9zKfl6eWpBFvvdJPxNo3vav6PBMC/94SnaXvkls488z2LbA8A+bxlvlV5Ezrw1zDzjfMoKyygbxjgyAz5mV85mduXsPttCkSi79+ym+cBuou3NuGAzrqOFaCQMgNcDXjPM4wF/Dv6sXAJZuWTk5JGZnU92bgFZuYUEsvPx+bPIMyNvGH8WkXTa8c/LqKx5ABf/UuKeEJG0UoIlIhNWyws/IY4xffW6lNQ3NT+TtyhiZtvom2y4PRRh0wvPEtryAAuPPM0qO0wUD7W5i9k++yNULL+MsvJ5w5pQnYwMv4/KU+bAKXPSHYrIqHfotI+wctstvLnpKeYsuzDd4YhMeEqwRGRCamgJsrTpCWoLqpk1aXpK6izOCfCCm8Tc9j0pqW+oorE4L276E0de3MCCxqc41/YRwceuguW0L76CyhWXckrOpHSHKSJDVHXhOpq3fp3Wjd8DJVgiaacES0QmpD8+9zjvs4Psr/5iyur0eIyWwBRyw5sTD3Kk+qn2E1R74BBbn/ox03Y9yEr3GnGMmrylvLXwRmau+jCn5RSlJS4RGR55eQW8MPVizjzwEHW7XqNi9oJ0hyQyoSnBOo69u7ay54VfMP8vPkHBpJJ0hyMiKeTfdj8dZFK6/EMprTeYNRV/Wxg6jkD2yCUywUiMP/zhOcJ//AEr2n7L++woB3zlvDH/s1SuXc8pkypGLBYRGXmnfvCLRL/3Cw4+ejMVf/dwusMRmdCUYB3Hnhd+wYo3/5Xgv3+LLTnVxOb8BTPfdSklpanpTiQi6bHnQCMrOp6jdtr5zMvITWndsZxp0Aa07B2RBGvHnv28/tQPmVX7M9byJmF81Ex5N/HzrmfqgrVM1QPvIhPC5LJZ/Pe0q1m5/0e8sem3zK1+T7pDEpmwlGAdx4qP3MLOV86nceM9zDj4DNP+fDP8+WZ2e2bSWLQUZqxgytyzKJ+9CK9/aBOUjkbxuCMcixMKxwiFO4iEgkTCQaLhIC4ahmgIYmFcLAyxCHHnIB4jHnc453AunnxPLscT67hj87t0n8+lcx369qyy3rORWNd/+mWDzHHSs37rW38v/c/5ctxK+z/7CVRzIueyE+p6Nvg+fc7V7yHv7GfvdaKut+5DDTt3bN051ysed2yf7vv1Or7Hfl37WLftyfN2G0b56K7/4ULroH3FtYP9ZCfNM6kCDoBrqsVKF6W8foD2cJSNzz1NbNO9nNPxO+ZZB/WBmexe9CVmrlnP3NzJw3JeERndqj78Fer/7dfkPH4j4QV/IpCtsTM7uXicYChER/tRwsF2YuEOouEO4pEO4pEw0ViEeCxKLBpNvkeIx2K4WBTXOZWCi2HxGLjEHHM9/4b1nJig98j9vT939L/N06Og6299j888Pffp2paceqFr1reuzcemdzDAWd99uur0WNcxPQOzfmLqu6/rXDPDrPscdN2mm7Bjn7kG+ujQvbhzn0j2VKbPPp3i3LHxeVsJ1iBOrXoXp1a9i3gszs5XX+Dwll+SUf8i8xp+Q96hR+AliDoPtd4yDmXOJJJdiqdgGp78Mnx5U8jMLSA7r5DM3AJ8mXn4/H78Ph9+nx+P10scL9F4nHg0QiwWSbxHO99DRCIRouFQMrEJEYuEiEWCyfcQ8UgQFwkRjyUSHhcNE4+GsVgIomGIh7FoGE88jMXDeGJhPMn5WLwujDcewesi+F0En4vgI4LfRfETwU+UABEKLJbuyyCScvU2hWlV56e83tyy0+B1aKvbTt5p70tp3a/X7GXHb3/AqXse5gJ7ixABassuwK3+a6bNXZW2Z75EZHTIKyhix+pvUv3stbzyvY9S9bcPwxhvxY7FYrQeaaDtyAE6mg8SajlEqK2JaEczsY4WXLAFC7UmJhKPthGIHSUjdpQs144/HiZAmIALk0GYLHNkpfsHknfkB9ELqbvy37m4arSMdXt8SrBOkMfr4dSqs6HqbAAikQi733iJgzu3ENm/nezmnRQHa5l0dAv5h9pPuF5v8jUcQs5PxHxE8BMxPzF8RM1P1BMgZj5ingAxbxZRTz5hjx/nDRD3BsATwHkTL/MFwJuB+TIwXwDzZeDxZ+A8AUjug8+P8/gxjxePWeLbDTM85sHj6Vz3di1br0kuExNrJlscek102R/neraD9J580fVp6jjOlI6u91SO/e406B59JrzsHseABe/sXMNVzyDTZA7IBpsUFHpe1eQ3W5D4lqq/b6oS2461K5p1lrgeB3Q/vuufFJZoGTX6HN95kAEF5fOG5YPH9LIyDrhCbN9rKZl3qT0U4Q+/fxL30r2c3fF7TrMQezNnU7P4VmauXsecbI0CKCLHVK/+AL9760bW1N7Bn+9cR9X1/5X4Wz6KuFiU1sZ9NB14m7aGPYQO1xFrqYejh/AGG8kINZEdayLftVDg2ig0R+EAdUWclzbLocOyk5OJ59DqL+GIL4u4NwvnywBfJvizMH8mHn8m5s9KlmVivkzMF8DrTXzx7fH68fq8iXWfH6/Xh3m9mMeLMx94vJh5MI+n298g695A0/X3p/vftO49KnqsH1vo8e6IJ97j3T/zuG5lycmoexyXeHX27ujs5GE9yrp3C3Fd5+8TB93We8fU64dxyRa9zv1dr3qsW1nnZ4JjPU16Tg7e8yPFsfMsziljemUxY4UNNPt4OlRXV7tNmzalO4whcc7R3NJMc0Mdwab9dLQ1Ez7aQrSjFU/kKC4eJR6P4mIxnIvhI46Z4Tx+8Ph6vMznx+P14/EF8Poz8Poz8fgD+AKZ+PyZ+DIy8Pkz8Qcy8WckXoGMTAKBTMwb0LfZImlQ39zBW//ybuYVGZNv+u93VEc0FudPW7fR8IcNzDvwOPOslg4yqS17L2XvvoG8U5br/haRAcVicX7/vb9l7cEfsSOzipIPf4+imSMwsqBzBNuaaNz/Nq0Ha+lorCPavBdr3Ye//SA5oYMURA9RFD+C13p+/ow6D0csnzZPAR3+QsKBQiIZRcSzJkF2MZ6cyfjzSsjIn0xWfjG5+ZPILygikKk2KUkfM9vsnKvuXa4WrBQzMwoLCiksKAQWpjscERlhpfmZPOmpZFnLkxDpAP+J/fF3zvHaW7W89fufUlb7/1juXsNjjtqcBexe/FVmnXct8zILhjl6ERkPvF4Paz7xLZ792RzOfPX/kHnPObxcdD6Fy/+SGWdcgCdw8klJqKONpoN1tDTs4eihOsJN+3At+/Ed3U9W8AB5kUMUxw+RTYjyXsc2uxwOe4pp9k+mIW82sZypWP40/JMqyJ48nYIpMyiZWk5JRgCN2SzjgRIsEZEUMjMapp6N/+Avoea/Yc7AI3lFYnH+vPUVDm56hJJ9z7Akto3TLcZ+fwW75tzIjPM+xoypc0YwehEZL8yM1Vd+mt01F1P32D9zRuMvyXniCYJP+Kn3z6QlewbRjElEMwrwen24eIxYLIZF2vFHWvCGW/CHW8mONVEUP0w+R5kKTO12jrDz0mhFNPkmcyDrVPZkr4S8aXgLysgqriB/ygwmlc4kPy+fArW6ywQypC6CZvYAMC+5Wgg0OeeWmNksYDuwI7ntBefcDYPVNx66CIqI/Pj5HVz623OJzTqPguse7Cp3zrG7bi9vb3ma+FvPM73pReZSC8A+/wyap7+bipV/Sd4pZ6kLoIik1KEjTbzx4q+Jvvksua1vUhzeR75rI582vOaIOyOO0UEGbZbDUU8eIV8ukUAhocwS4jmlWH4pGZPKyS2ZTuGUCoomT8PrHduDaIgMxUBdBFP2DJaZ/SvQ7Jy7LZlg/dI5d1J95JRgich40Nwe4Se3f4pPuvvYNXkNh/zluJZ9FB3dxamuFo85QvjZk72Q2KkXMONdl5E17bR0hy0iE1AsFicYieH1esjweU5wGhARgWF+BssSd+OVwNpU1CciMpYVZPtZ8dHb+MlPo1zY8BvK2UiTZxJHcmbxavn7KFn4bqbOX8mpJ/h8lojIcPF6PeSoFUokpVLSgmVm5wLf7Mzgki1YrwJvAC3APzrnnh/g2OuB6wFmzJhx5ttvvz3keERERov2cJSA14NPH2BERETGlXfcgmVmvwVK+9n0Jefco8nlDwP3ddtWD8xwzjWa2ZnAI2Z2unOupXclzrnvA9+HRBfBwX8UEZGxIzugsYREREQmkkH/8jvnBh4CCzAzH3AZcGa3Y0JAKLm82cx2AXMBPWAlIiIiIiLjVir6rLwHeN05V9dZYGYlZuZNLp8CzAHeSsG5RERERERERq1U9F25mp7dAwHOBW4zswgQB25wzh1OwblERERERERGrZQN054KZtYAjLZRLiYDh9IdhIwYXe+JQ9d64tC1nlh0vScOXeuJZTRe75nOuZLehaMqwRqNzGxTf6ODyPik6z1x6FpPHLrWE4uu98Shaz2xjKXrrXGDRUREREREUkQJloiIiIiISIoowRrc99MdgIwoXe+JQ9d64tC1nlh0vScOXeuJZcxcbz2DJSIiIiIikiJqwRIREREREUkRJVgiIiIiIiIpogTrOMzsIjPbYWY7zezz6Y5HUsfMppvZ78zsNTN71cz+NlleZGZPmdmbyfdJ6Y5VUsPMvGa2xcx+mVyvNLMXk/f3A2YWSHeMkhpmVmhmD5nZ62a23czepXt7fDKzm5K/w7eZ2X1mlql7e/wws3vM7KCZbetW1u+9bAnfSl73V8zsjPRFLidrgGt9e/L3+Ctm9gszK+y27QvJa73DzC5MS9DHoQRrAGbmBb4NvBdYAHzYzBakNypJoSjwWefcAmAF8Mnk9f088LRzbg7wdHJdxoe/BbZ3W/868G/OuVOBI8D/SktUMhz+A3jCOXcasJjEdde9Pc6YWTnwaaDaObcQ8AJXo3t7PLkXuKhX2UD38nuBOcnX9cB3RyhGSY176XutnwIWOueqgDeALwAkP69dDZyePOY7yc/to4YSrIEtA3Y6595yzoWB+4FL0hyTpIhzrt4591JyuZXEB7ByEtf4h8ndfgh8MC0BSkqZWQXwPuC/kusGrAUeSu6iaz1OmFkBcC5wN4BzLuyca0L39njlA7LMzAdkA/Xo3h43nHPPAYd7FQ90L18C/MglvAAUmtm0EQlUhqy/a+2ce9I5F02uvgBUJJcvAe53zoWcc7uBnSQ+t48aSrAGVg7s6bZelyyTccbMZgFLgReBqc65+uSm/cDUdMUlKfXvwP8G4sn1YqCp2y9u3d/jRyXQAPwg2SX0v8wsB93b445zbi/wL0AticSqGdiM7u3xbqB7WZ/bxrf1wK+Ty6P+WivBkgnNzHKBh4HPOOdaum9ziTkMNI/BGGdmFwMHnXOb0x2LjAgfcAbwXefcUuAovboD6t4eH5LP3lxCIqkuA3Lo28VIxjHdyxODmX2JxKMdG9Idy4lSgjWwvcD0busVyTIZJ8zMTyK52uCc+3my+EBnl4Lk+8F0xScpsxL4gJnVkOjqu5bEMzqFyW5FoPt7PKkD6pxzLybXHyKRcOneHn/eA+x2zjU45yLAz0nc77q3x7eB7mV9bhuHzGwdcDHwEXds8t5Rf62VYA3sT8Cc5GhEARIP0z2W5pgkRZLP4NwNbHfOfbPbpseAjyWXPwY8OtKxSWo5577gnKtwzs0icR8/45z7CPA74IrkbrrW44Rzbj+wx8zmJYveDbyG7u3xqBZYYWbZyd/pndda9/b4NtC9/Bjw0eRogiuA5m5dCWUMMrOLSHTv/4Bzrr3bpseAq80sw8wqSQxs8sd0xDgQO5YMSm9m9hcknt3wAvc4576a3ogkVczsHOB5YCvHnsv5IonnsB4EZgBvA1c653o/YCtjlJmtBj7nnLvYzE4h0aJVBGwBrnHOhdIYnqSImS0hMaBJAHgLuI7EF4q6t8cZM/sKcBWJ7kNbgL8i8SyG7u1xwMzuA1YDk4EDwJeBR+jnXk4m2XeQ6CbaDlznnNuUhrDlHRjgWn8ByAAak7u94Jy7Ibn/l0g8lxUl8ZjHr3vXmU5KsERERERERFJEXQRFRERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFPn/aGSxL8JpAXEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiR0lEQVR4nOzdd5xU1f3/8ddnZnuHpbMI2JAqGkCMGFu+irGgMRGN3ST+NE39WqImUfQb883P+IuJmgRNTKxBjd2oMTZUjA0QsWBBpbel7LLL1pn5/P6Yyzos22Bnd3aX9/PxGJl7z7nnfGbuzjqfPeeea+6OiIiIiIiItF8o1QGIiIiIiIj0FEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYh0MWY2zMzczNJSHYvsGszsAzM7NNVxiIj0BEqwRESk2zOzmWZWGTzqzKw+YfuZVMfX1bn7aHefncw2zexGM/vUzCrM7CMzOzOZ7YuIdFVKsEREkkwjT53P3c939zx3zwN+BTywddvdj95arzudm+4UazO2AMcBhcBZwO/N7KupDUlEpOMpwRIRSQIzW2JmPzWzhcAWM0szs8lm9h8zKzOzdxOnYJnZbDP7XzN7y8w2m9njZta7mbbPMbNFwUjA52b2fxqVTzOzBUE7n5nZ1GB/oZndYWarzWylmf3SzMKtvI49zOxFM9tgZuvN7D4zK0oo22hm+wfbg8ysdOvrMrPjg6lmZcHrG9no/bnUzBaaWbmZPWBmWTv+Tu+4Zs6Nm9meCXXuNLNfJmwfG7ynZcE5HNfGvg41sxVmdlXw/i0xs9MSyo8xs3eCc7XczGYklG2dGvpdM1sGvBjs/4eZrQnet1fMbHSjuP9oZs8Eo3WvmdkAM/udmW0KRo72a+N79PW2vMa2cvdr3P0jd4+5+5vAq8CByexDRKQrUoIlIpI8pwLHAEVAf+Ap4JdAb+BS4GEz65tQ/0zgXGAgEAFubqbddcCxQAFwDnBTQpIzCbgbuCzo92vAkuC4O4N29wT2A44EvtfKazDgf4FBwEhgCDADwN0/A34K3GtmOcDfgLvcfbaZ7Q3MAi4C+gJPA0+aWUZC2ycDU4HhwDjg7CYDMJsSJDbNPaa08hqa0nBu3D3S4hsQT0j+CvwfoBi4DXjCzDLb2NcAoA8wmPjIze1mNiIo20L8vBcF8VxgZic0Ov4Q4u/9UcH2M8BeQD9gPnBfo/onAz8P+qwFXg/q9QEeAn7bxribZGZXtHQ+2thGNjAR+KA9sYiIdAdKsEREkudmd1/u7tXA6cDT7v508Bf854C5wDcS6t/j7u+7+xbgF8DJTY0wuftT7v6Zx70M/Bs4OCj+LvBXd38u6Gelu39kZv2Dvi5y9y3uvg64CTilpRfg7ouDtmrdvZT4l/NDEsr/DCwG3iSeGP4sKJoOPBUcWw/cCGQDiVPCbnb3Ve6+EXgSGN9MDHPcvaiFx5yWXkMzEs9Na84DbnP3N9096u53EU9cJu9Af78I3sOXiSfaJwO4+2x3fy84VwuJJ6WHNDp2RnDOqoNj/uruFe5eSzzZ3dfMChPqP+ru89y9BngUqHH3u909CjxAPLneae7+65bORxubmQm8CzzbnlhERLoDJVgiIsmzPOH5UODbjf7SP4V4UtJU/aVAOvFRh22Y2dFm9kYwPa+MeOK0td4Q4LMmYhkatLc6of/biI+CNMvM+pvZ/cGUws3AvU3E9GdgDHBL8KUf4iNeS7dWcPdY8PoGJxy3JuF5FZDXUixJtrz1Kg2GApc0OndDiL/GttgUJM1bLd16rJkdYGYvBVMry4Hz2f79bYjVzMJm9muLT/3czJejk4nHrE14Xt3Edme+z9sxs98Q/3k52d09lbGIiHQGJVgiIsmT+OVxOfERqsS/9ue6+68T6gxJeL4bUA+sT2wwmJb2MPERof7BiMHTxKfybe1njyZiWU581KVPQv8F7j66ibqJfhW8jrHuXkB8JG5rX5hZHvA74A5ghn153dgq4onJ1noWvL6VrfS3HTM72L5cAbCpx8Gtt7Kdxl/sq4CchO0BCc+XA9c3Onc57j6rjX31MrPchO3diL8/AH8HngCGuHsh8ZEda3R8YqzfAaYBXye+WMSwYH/jYzpMcD1Zs+ejlWOvBY4GjnT3zZ0TsYhIainBEhHpGPcCx5nZUcEoRFawAEJJQp3TzWxUcD3TdcBDwbSuRBlAJlAKRMzsaOLXUm11B3COmR1hZiEzG2xm+7j7auJTCf+fmRUEZXuYWePpaI3lA5VAuZkNJn5tV6LfA3Pd/XvEp77NDPY/CBwTxJEOXEI8wftPa29UY+7+asIKgE09Xt3RNpuwAPhOcG6msu00vT8D5wejTWZmuRZfnCIfGhaWuLOV9q81s4wgGTwW+EewPx/Y6O41wfVz32mlnXzi7+MG4gnhr3bgNSaFu/+qpfPR3HFmdiXx1/d1d9/QeRGLiKSWEiwRkQ7g7suJjzxcRTw5Wk48WUn8vXsP8YUo1gBZwE+aaKci2P8gsIn4F9YnEsrfIlj4AigHXubLkaQziSdoHwbHPsS2UxSbci2wf9DWU8AjWwvMbBrxRSouCHb9N7C/mZ3m7h8TH+26hfgo3HHAce5e10p/qXIh8RjLgNOAx7YWuPtc4PvArcTft8VsuyDHEOC1FtpeExy3iviCFOe7+0dB2Q+A68ysAria+Hltyd3EpxiuJH4e32jthXUhvyI+erc4YcTrqlQHJSLS0UzToUVEOp+ZzQbudfe/pDoWabtgVcR3gXHBYh6Nyw8lfl5LGpeJiMiuobvfxFBERKTTBCNyI1utKCIiuyxNERQR2cWY2cxmFiyY2frR0h2Z2W4tLFSxW6rjExHpSTRFUEREREREJEk0giUiIiIiIpIkXeoarD59+viwYcNSHYaIiIiIiEiz5s2bt97d+zZV1qUSrGHDhjF37txUhyEiIiIiItIsM1vaXJmmCIqIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJF3qGqym1NfXs2LFCmpqalIdinQBWVlZlJSUkJ6enupQpAebv2wTv3viDW444zAGFGalOhwRERHpRrp8grVixQry8/MZNmwYZpbqcCSF3J0NGzawYsUKhg8fnupwpAd7/IU53L3+dF576goGfOfKVIcjIiIi3UiXnyJYU1NDcXGxkivBzCguLtZopnS4vM2fAjDq8ztSHImIiIh0N10+wQKUXEkD/SxIZ8itXAJAr0gpuKc2GBEREelWukWCJSLSmQZGVny5UbkudYGIiIhIt6MEqw3MjEsuuaRh+8Ybb2TGjBmpCyjBoYce2uLNmU844QQmT568zb4ZM2YwePBgxo8fz5gxY3jiiSc6OkyRbmVwbHXD8y3rPk9hJCIiItLdKMFqg8zMTB555BHWr1+f1HbdnVgsltQ2E5WVlTFv3jzKy8v5/PNtvyRefPHFLFiwgH/84x+ce+65HRqHSHfi7uT6FlbYAAAq1nyW4ohERESkO1GC1QZpaWmcd9553HTTTduVlZaWctJJJzFx4kQmTpzIa6+9BsRHiW688caGemPGjGHJkiUsWbKEESNGcOaZZzJmzBiWL1/OZZddxpgxYxg7diwPPPAAALNnz+bQQw/lW9/6Fvvssw+nnXYa3sy1IPfcc0/DaNRbb73VsP+RRx7huOOO45RTTuH+++9v8tiRI0eSlpa2TfJ4xRVXMGrUKMaNG8ell14KwJIlSzj88MMZN24cRxxxBMuWLQPg7LPP5oILLmDy5MnsvvvuzJ49m3PPPZeRI0dy9tlnN7R5wQUXMGHCBEaPHs0111yzXRzl5eUMHTq0IdHbsmULQ4YMob6+vsm4RTpKfdTJoYa1mfGVKmtLv0hxRCIiItKddPll2hNd++QHfLhqc1LbHDWogGuOG91qvR/+8IeMGzeOyy+/fJv9F154IRdffDFTpkxh2bJlHHXUUSxatKjFtj799FPuuusuJk+ezMMPP8yCBQt49913Wb9+PRMnTuRrX/saAO+88w4ffPABgwYN4qCDDuK1115jypQp27VXVVXFggULeOWVVzj33HN5//33AZg1axZXX301/fv356STTuKqq67a7tg333yTUChE3759AdiwYQOPPvooH330EWZGWVkZAD/+8Y8566yzOOuss/jrX//KT37yEx577DEANm3axOuvv84TTzzB8ccfz2uvvcZf/vIXJk6cyIIFCxg/fjzXX389vXv3JhqNcsQRR7Bw4ULGjRvXEEdhYSHjx4/n5Zdf5rDDDuOf//wnRx11lO53JZ2uJhIlx2pZn9OHjdV5xMqWpTokERER6UbaPYJlZkPM7CUz+9DMPjCzC4P9vc3sOTP7NPi3V/vDTZ2CggLOPPNMbr755m32P//88/zoRz9i/PjxHH/88WzevJnKysoW2xo6dGjDdVFz5szh1FNPJRwO079/fw455BDefvttACZNmkRJSQmhUIjx48ezZMmSJts79dRTAfja177G5s2bKSsrY+3atXz66adMmTKFvffem/T09IbEC+Cmm25i/PjxXHrppTzwwAMNq/MVFhaSlZXFd7/7XR555BFycnIAeP311/nOd74DwBlnnMGcOXMa2jruuOMwM8aOHUv//v0ZO3YsoVCI0aNHN8T84IMPsv/++7PffvvxwQcf8OGHH273OqZPn94wgnf//fczffr0Ft9HkY5QUxclh1qycvNZ6720yIWIiIjskGSMYEWAS9x9vpnlA/PM7DngbOAFd/+1mV0BXAH8tD0dtWWkqSNddNFF7L///pxzzjkN+2KxGG+88QZZWVnb1E1LS9vmuqbEezfl5ua2qb/MzMyG5+FwmEgk0mS9xkuXmxkPPvggmzZtargh7+bNm5k1axbXX389EL8Ga+v0v8Zxv/XWW7zwwgs89NBD3Hrrrbz44ottijMUCm0TcygUIhKJ8MUXX3DjjTfy9ttv06tXL84+++wm72V1/PHHc9VVV7Fx40bmzZvH4Ycf3mK/Ih2hpi5KH2pIy8pnk/Vit+rSVIckIiIi3Ui7R7DcfbW7zw+eVwCLgMHANOCuoNpdwAnt7SvVevfuzcknn8wdd3x589EjjzySW265pWF7wYIFAAwbNoz58+cDMH/+fL74ounrOA4++GAeeOABotEopaWlvPLKK0yaNGmH4to66jNnzhwKCwspLCxk1qxZ/Otf/2q47mvevHnNXoeVqLKykvLycr7xjW9w00038e677wLw1a9+teH4++67j4MPPrjN8W3evJnc3FwKCwtZu3YtzzzzTJP18vLymDhxIhdeeCHHHnss4XC4zX2IJEtt7RZC5pCRS2V6b7Jrk7u4jYiIiPRsSV3kwsyGAfsBbwL93X3rWsdrgP7NHHOemc01s7mlpV3/L8WXXHLJNgtC3HzzzcydO5dx48YxatQoZs6cCcBJJ53Exo0bGT16NLfeeit77713k+2deOKJjBs3jn333ZfDDz+cG264gQEDBuxQTFlZWey3336cf/753HHHHSxZsoSlS5duszz78OHDKSws5M0332yyjW984xusWrWKiooKjj32WMaNG8eUKVP47W9/C8Att9zC3/72N8aNG8c999zD73//+zbHt++++7Lffvuxzz778J3vfIeDDjqooezqq6/eZpn46dOnc++992p6oKRMXVUFAKHMXGoz+5If2aibDYuIiEibWXMr0+1wQ2Z5wMvA9e7+iJmVuXtRQvkmd2/xOqwJEyZ443s6LVq0iJEjRyYlRukZ9DMhHemdhe+y3yNf49MD/y8ffLaUE9b9EX66FLKLUh2aiIiIdBFmNs/dJzRVlpQRLDNLBx4G7nP3R4Lda81sYFA+ENCV4iLS5UVq4ovUhDJzIT8+muwVa1IZkoiIiHQjyVhF0IA7gEXu/tuEoieAs4LnZwGPt7cvEZGOFg0SrHBWPmkF8QSretOqVIYkIiIi3UgyRrAOAs4ADjezBcHjG8Cvgf8ys0+BrwfbIiJdWrQ2fg1WenY+Wb0GAlCxXgmWiIiItE27l2l39zmANVN8RHvbFxHpTF5bBUB6dh55aX0AqNEIloiIiLRRMu6DJSLSY8Rq41ME07Py6V3Ql1pPp36zrsESERGRtlGCJSKSwOviI1iZ2bn0zcmilEKoWJviqERERKS7SOp9sHqyxx57DDPjo48+arbOkiVLGDNmTNL6PPvss3nooYeaLb/ooosYPHgwsVisYd+dd95J3759GT9+PKNGjeLPf/5z0uIR2RV4fTUAmdl5FGans96LCFd1/Xv0iYiISNegBKuNZs2axZQpU5g1a1aT5ZFIpN19RKPRNteNxWI8+uijDBkyhJdffnmbsunTp7NgwQJmz57NVVddxdq1+uu7SFt5pAaAcEYWoZBRHu5NVo0SLBEREWkbJVhtUFlZyZw5c7jjjju4//77G/bPnj2bgw8+mOOPP55Ro0YB8UTrtNNOY+TIkXzrW9+iqio+3eiFF15gv/32Y+zYsZx77rnU1tYCMGzYMH7605+y//77849//GO7vp9//nkmTJjA3nvvzT//+c9t+h49ejQXXHBBs0lfv3792GOPPVi6dGnDvptvvplRo0Yxbtw4TjnlFAA2btzICSecwLhx45g8eTILFy4EYMaMGZx11lkcfPDBDB06lEceeYTLL7+csWPHMnXqVOrr6wG47rrrmDhxImPGjOG8886j8c2rY7EYw4YNo6ysrGHfXnvtpcRPuiSvj382CWcCUJVRTE79xhRGJCIiIt1J97oG65krYM17yW1zwFg4uuUV5B9//HGmTp3K3nvvTXFxMfPmzeMrX/kKAPPnz+f9999n+PDhLFmyhI8//pg77riDgw46iHPPPZc//vGP/OhHP+Lss8/mhRdeYO+99+bMM8/kT3/6ExdddBEAxcXFzJ8/v8m+lyxZwltvvcVnn33GYYcdxuLFi8nKymLWrFmceuqpTJs2jauuuor6+nrS09O3Ofbzzz/n888/Z88992zY9+tf/5ovvviCzMzMhoTnmmuuYb/99uOxxx7jxRdf5Mwzz2TBggUAfPbZZ7z00kt8+OGHHHjggTz88MPccMMNnHjiiTz11FOccMIJ/OhHP+Lqq68G4IwzzuCf//wnxx13XEOfoVCIadOm8eijj3LOOefw5ptvMnToUPr379/m0yTSWSxaQ4QwaeH4r8e6rD7k15ZDNALh7vUrU0RERDqfRrDaYNasWQ2jPaeccso2I0aTJk1i+PDhDdtDhgzhoIMOAuD0009nzpw5fPzxxwwfPpy9994bgLPOOotXXnml4Zjp06c32/fJJ59MKBRir732Yvfdd+ejjz6irq6Op59+mhNOOIGCggIOOOAAnn322YZjHnjgAcaPH8+pp57KbbfdRu/evRvKxo0bx2mnnca9995LWlr8y+KcOXM444wzADj88MPZsGEDmzdvBuDoo48mPT2dsWPHEo1GmTp1KgBjx45lyZIlALz00ksccMABjB07lhdffJEPPvhgu9cxffp0HnjgAQDuv//+Fl+zSEpFaqnjyz9WxHL6EsKhan0KgxIREZHuonv9ObaVkaaOsHHjRl588UXee+89zIxoNIqZ8Zvf/AaA3NzcbeqbWYvbTWncRmvtPfvss5SVlTF27FgAqqqqyM7O5thjjwXiycytt97aZHtPPfUUr7zyCk8++STXX389773X8ohgZmZ8mlQoFCI9Pb0hnlAoRCQSoaamhh/84AfMnTuXIUOGMGPGDGpqarZr58ADD2Tx4sWUlpby2GOP8fOf/7zFfkVSJRStpc4yyAm2Lb8/rIbo5jWE8wekNDYRERHp+jSC1YqHHnqIM844g6VLl7JkyRKWL1/O8OHDefXVV5usv2zZMl5//XUA/v73vzNlyhRGjBjBkiVLWLx4MQD33HMPhxxySJv6/8c//kEsFuOzzz7j888/Z8SIEcyaNYu//OUvLFmyhCVLlvDFF1/w3HPPNVzv1ZxYLMby5cs57LDD+L//9/9SXl5OZWUlBx98MPfddx8Qv7arT58+FBQUtCm+rclUnz59qKysbHbVQzPjxBNP5L//+78ZOXIkxcXFbWpfpLNZpJZ6y2jYzigaCEDlxtWpCklERES6ESVYrZg1axYnnnjiNvtOOumkZheWGDFiBH/4wx8YOXIkmzZt4oILLiArK4u//e1vfPvb32bs2LGEQiHOP//8NvW/2267MWnSJI4++mhmzpxJLBbjX//6F8ccc0xDndzcXKZMmcKTTz7ZZBvf+973mDt3LtFolNNPP52xY8ey33778ZOf/ISioiJmzJjBvHnzGDduHFdccQV33XVXG98dKCoq4vvf/z5jxozhqKOOYuLEiQ1lM2fOZObMmQ3b06dP595779X0QOnSQrFa6i2zYTu7VzzB2rJhZapCEhERkW7EGq/4lkoTJkzwuXPnbrNv0aJFjBw5MkURSVeknwnpSK//6mgG+2p2+9kCAOZ9uoKv3DeaL/a9lOEn/iK1wYmIiEiXYGbz3H1CU2UawRIRSRCO1RENfTlFsLhXLyo8m8jmNSmMSkRERLqLDk+wzGyqmX1sZovN7IqO7k9EpD3SvI5o6Mspgn3zMyn1Qtiimw2LiIhI6zo0wTKzMPAH4GhgFHCqmY3a0Xa60jRGSS39LEhHS4vVEksYwcrNTGOTFZFerQRLREREWtfRI1iTgMXu/rm71wH3A9N2pIGsrCw2bNigL9aCu7NhwwaysrJSHYr0YOleRyycuc2+irTeZNXqPlgiIiLSuo6+D9ZgYHnC9grggMQKZnYecB7EV8xrrKSkhBUrVlBaqr8eSzzhLikpSXUY0oOlex31adsm8VUZxeTVLExRRCIiItKdpPxGw+5+O3A7xFcRbFyenp7O8OHDOz0uEdn1uDsZXkddoxGs+uy+5FVXQqQW0jKbOVpERESk46cIrgSGJGyXBPtERLqc2kiMTKvHGyVRntcv/qRyXQqiEhERke6koxOst4G9zGy4mWUApwBPdHCfIiI7paY+Sib10GiKYDivPwB15atTEZaIiIh0Ix2aYLl7BPgR8CywCHjQ3T/oyD5FRHZWTX2MTOqxRglWRtFAACrWr0pFWCIiItKNdPg1WO7+NPB0R/cjItJeNXUR+lFPKH3bKYK5xYMAqNq4iuJUBCYiIiLdRoffaFhEpLuorasmZI5l5Gyzv7BPfASrtmxNKsISERGRbkQJlohIoK66CoBQevY2+/sU5bPJ84hVKMESERGRlinBEhEJ1FVXAmCZ245gFedmUuqFhLZoFUERERFpmRIsEZFAfe0WANIyc7fZn5EWYn2oD5nVGsESERGRlinBEhEJRGriUwTTGo1gAWxO70terUawREREpGVKsEREAtHarQlW7nZlVVn9KIhugmiks8MSERGRbkQJlohIIBpMEUzP2n4Eqz53IGFiULm2s8MSERGRbkQJlohIIFoXH8HKyMrbrszz4/fC8s0rOzUmERER6V6UYImIBGLBCFZmzvZTBDN6lQBQtX55p8YkIiIi3YsSLBGRQLSuGoD0Jha5yOu7GwAV65Z2akwiIiLSvSjBEhEJeH18iqBlbD+C1affAGo8ndpNKzo7LBEREelG2pVgmdlvzOwjM1toZo+aWVFC2ZVmttjMPjazo9odqYhIRwtGsEjP3q5oUFEOq703XqZrsERERKR57R3Beg4Y4+7jgE+AKwHMbBRwCjAamAr80czC7exLRKRDeX2QYKVtn2D1zc9kLcWkbVndyVGJiIhId9KuBMvd/+3uW28K8wZQEjyfBtzv7rXu/gWwGJjUnr5ERDqaRaqpJw3CaduVhUNGWVpfsmu0TLuIiIg0L5nXYJ0LPBM8HwwkLrW1Iti3HTM7z8zmmtnc0tLSJIYjIrJjQpFq6iyz2fLqrH4U1G+AWKwToxIREZHupNUEy8yeN7P3m3hMS6jzMyAC3LejAbj77e4+wd0n9O3bd0cPFxFJmnC0hrpQ8wlWJG8g6dRD1YZOjEpERES6k+3nwTTi7l9vqdzMzgaOBY5wdw92rwSGJFQrCfaJiHRZ6dEt1IW2X6J9KyscDOsgVr6CUJ7+ICQiIiLba+8qglOBy4Hj3b0qoegJ4BQzyzSz4cBewFvt6UtEpKNlRbdQG95+ifatMoObDVesW9ZZIYmIiEg30+oIVituBTKB58wM4A13P9/dPzCzB4EPiU8d/KG7R9vZl4hIh8qOVVGfltdseV6/4GbDpcso7KygREREpFtpV4Ll7nu2UHY9cH172hcR6Uw5voVIev9my/v0K6Hew9RuWN5sHREREdm1JXMVQRGRbisWc3KpIpKe32ydgb1zWUsvfPOKToxMREREuhMlWCIiQEVthHyq8MyCZusU52awmj5kVK7qxMhERESkO1GCJSICbK6qJY8aLKv5BMvM2JTWn5yaNZ0YmYiIiHQnSrBERICKzZsImZOWU9Rivars/hTWl+pmwyIiItIkJVgiIkDV5k0ApOW0vD5gJG8w6URgy7rOCEtERES6GSVYIiJATeVGADJzi1qsFyqK30M9skn3whIREZHtKcESEQFqK8sAyMrv1WK9rOL4vbDK13zR0SGJiIhIN6QES0QEiFbEp/zl9BrQYr2CAcMBqCpd2uExiYiISPejBEtEBIgFCVZ2UfM3Ggbo37cflZ5F3QZNERQREZHtKcESEQHYsh4Ay+3bYrWBvXJY5cWYbjYsIiIiTVCCJSICpFWXstkKIJzeYr28zDTWhfqSWbW6kyITERGR7kQJlogIkFW3gcq0lhe42GpzRn/ydbNhERERaUJSEiwzu8TM3Mz6BNtmZjeb2WIzW2hm+yejHxGRjpJXv4nqjN5tqluTM5CCWBnU13RsUCIiItLttDvBMrMhwJFA4hXfRwN7BY/zgD+1tx8RkY4SicYo8k3UZ/VpU/1YweD4k80rOzAqERER6Y6SMYJ1E3A54An7pgF3e9wbQJGZDUxCXyIiSbe6rIqBbMALS9pUPy242XDNBi3VLiIiIttqV4JlZtOAle7+bqOiwcDyhO0Vwb6m2jjPzOaa2dzS0tL2hCMislPWrlpGpkVILx7epvo5/YYButmwiIiIbC+ttQpm9jzQ1J03fwZcRXx64E5z99uB2wEmTJjgrVQXEUm68tWLAcgfsHub6vcaMAyA6lLdC0tERES21WqC5e5fb2q/mY0FhgPvmhlACTDfzCYBK4EhCdVLgn0iIl1ObWl8JKr34D3bVH9A70JKvZBo2fLWK4uIiMguZaenCLr7e+7ez92Hufsw4tMA93f3NcATwJnBaoKTgXJ3101jRKRLsk1LAEjvPbRN9QcUZrHKiwlX6O9GIiIisq1WR7B20tPAN4DFQBVwTgf1IyLSbvkVn7I2PID+GTltqp8eDrEx3I8B1fq7kYiIiGwraQlWMIq19bkDP0xW2yIiHSUWcwbUfMGmoj3pvwPHVWQNoLBmAbhDfJq0iIiISHJuNCwi0l0tX7+Joawm1mfkDh1XnzeQLK+B6k0dFJmIiIh0R0qwRGSXtuLThaRblJwhY3foOCuMr+Pj5Ss6IiwRERHpppRgicgurWLZewD033P/HTouvXc8wapYtyTZIYmIiEg3pgRLRHZptu5DIoTJHjBih47LC242XLF2SfKDEhERkW5LCZaI7NIKNn/K2vQhkJaxQ8f16T+EOg9Tu0E3GxYREZEvKcESkV1WTX2UksgSKgr33uFjBxTlsNqLQddgiYiISAIlWCKyy/p8xRqGWCnWb9QOH1ucm8Eaikmv1M2GRURE5EtKsERkl7X2swUAFAwdt8PHhkLGpvT+5NasTXJUIiIi0p0pwRKRXVbVivgKgn332G/njs/qT2GkFGLRZIYlIiIi3ZgSLBHZZaVt+IgaMknrPWynjq/NHUSYGFSsSW5gIiIi0m0pwRKRXVbvysWsyxoOoZ37VWiFJQB4+fJkhiUiIiLdWLsTLDP7sZl9ZGYfmNkNCfuvNLPFZvaxmR3V3n5ERJJp05Y6hsWWUtVrx+5/lSijeCgAW0qXJissERER6ebS2nOwmR0GTAP2dfdaM+sX7B8FnAKMBgYBz5vZ3u6uCxVEpEv4bMkXTLDNlA8cvdNt5PULEqx1S8lLVmAiIiLSrbV3BOsC4NfuXgvg7uuC/dOA+9291t2/ABYDk9rZl4hI0mz8YgEAvYeN3+k2+vTpS4VnU7dJUwRFREQkrr0J1t7AwWb2ppm9bGYTg/2DgcRvHCuCfSIiXULd6g8A6DV8351uY2BhFqu9N5TrXlgiIiIS1+oUQTN7HhjQRNHPguN7A5OBicCDZrb7jgRgZucB5wHstttuO3KoiMhOy9r4CZutgIK8/jvdRt+8TD6hmBG62bCIiIgEWk2w3P3rzZWZ2QXAI+7uwFtmFgP6ACuBIQlVS4J9TbV/O3A7wIQJE7ztoYuI7Bx3p2/1Ytbn7kGB2U63kxYOsT5tABNq3khidCIiItKdtXeK4GPAYQBmtjeQAawHngBOMbNMMxsO7AW81c6+RESSYt3mGvbw5dT23vkVBLfanLMbudHNULUxCZGJiIhId9euVQSBvwJ/NbP3gTrgrGA06wMzexD4EIgAP+yOKwjWVFXiGNk5uakORUSSaOnnHzHJasgYtPMrCG4V6zUcKoFNX0BO7/YHJyIiIt1au0aw3L3O3U939zHuvr+7v5hQdr277+HuI9z9mfaH2vneuf9/KL9hHG89/DtqqrekOhwRSZLKZQsBKBq2X7vbyu63JwC16xa3uy0RERHp/tp9o+GerHCfr1Ge1ptJ711Dzf/dmzf+8H0+mvcSHut2g3Eikqh0EQC9ho5td1O9SvYh4iE2L3u/3W2JiIhI99feKYI92qivHoNPPpoP/vMk1W/8lf3XPUzGkw9S+mRvvuj1VdKHf5WBYw6m/7AxWKh75qruTiQaJVJbQ6S+mmh9PdFIhEi0jmh9hGi0nliknli0nmiknlg00vDv1v2xSD3EIoCDO3gM3PF4BzixYD+4xzCc+EzSeP2tzz1+ANawbye0Y8GCtnJ2og/rjJ+PHY9rh1/Lzry/O3HMTr3HO6Dv2tdYZ33ol1PU7raGD+zNJz6E4pXz2x+YtJnHYtTWVFFbVUFtTTV1tTXU1dVQV1dLpLYGj9YRi9ThkTo8WgeRWjxaj8cieCxGNOZ4LIp7DGLx30sQw9wxjwHx30vmMYxYvE+Hhs+ZWcPP6Ze/rSzhZ9caqjqGYfHPQuN9gAefEcManhPUt611LaHvrTUaNhP225f/bI3FGv5NrGON2viycLt9CTE11eVO/e7phN/V0oVpSTPZQeWFI9lvv4n0ys1IdShtogSrFRYKMXrKNJgyjc2b1rHg5YcIf/o0+2x8kYJN/4T5UE4ua9N3oyJvKJGi3UkrHEhWYX+yigaQll9MVnYu2Vm5ZObkkJGZjYXCX3bg8SQjFotRF6mntrqautot1NdUUV9bHX/UVROtrSJaV0O0roZYfTWxumpi9TVQX43X1+CRGojUYNFaQsG/4Wgt4Vgt4VgdabEa0mJ1ZHgd6V5HBrVkeD2Z1JNp9aSn7i0WSYl38g6hXxLa2bNvHo/aHhyzYW7889zMF0d357X5C1n38p8ZMPFEvnrwEUnovXuqj0TYuGE9mzeto2bzeuoqNlC/ZRNetRGv2kSotoxwbTnh+krCkSrSotVkxKrIitWQRQ3ZXks2NWSZk5XqFyMiIh3uf+pPp/fQ0UqweqKCXv2YdMIPgB8QiUT4eNF8Nn00B1v1DrmVSyjZ9Bb9N/2r1XbqPUyIGAaELP5nnBCQFTx2VrVnUGsZ1JNBvWVQZxlEQhlEQplE0nKoC/WiMpxJLJyJh7PwtEw8LQvCmUTTsrFwOoTSIZyOhdOwUFr833AaoWA7lJYRfx5OIxxOJ5SW3rCNhYK/uIbi3zFDW58Hf4k1AwwLBf9avCy+PxTsD/7IG7S1I2ynRr124pgd7Mc76091O/z6dyKuWKzj++iMc+LOmCF773g/TUgLh1jfa39yyl6ElfOgZMI25fXRGC+99hr1c27l67XPk2kR5r2xFHpYguXubCzfzKbVS6jcsJKaTauJbF4NFWtJqy4lq2Y9efXrKYxtoreX09+c5u5AtsWzqLA8qkO51IeziKTlUJPWi8pwNtG0HKJpOXh6LrH0HCwjl1B6FuH0DMLpmaSlZxBOzyKUloEFj/jzzIbfX2nhEKFQmHA4TCgUIhQKgYWCUZXgd4+Fgt9DIQhGlixIoG3raH38lQNbf//41jdjm+ce1HOPJRwS7I1tLY192ebWUf2tzxPrb/034Ue+IRJPKGvmM+EJsTd0l1ja6LgvN327fU5rv3ebK2t6v7lrZGsXojMtO+K0nD4MGpCf6jDaTAnWTkpLS2PE2EkwdtI2+7dUVrBx3UrK16+itmwtVG8iWl9FrC4YaaqvxmKR4H/awf/Qg/+Zh8NhSMvG0jMJpWcTSs8ilJFNOCObcEYW4Yws0jNySMvMJiMrh/SsbDKz8sjKyiYtI4tsM7JT83aI7NLyx0+j5qXfU/3K7fT6TjzB2lhRzZsvPEL+wr9yZGwudaSzcugJbF63hN2rFrY42tUVRWPO2vJq1q5ZzuZVi6kr/Qw2LSWzchmFNSvpF1lNfzZRbNt+ea73MJtCRWwO96Yqqx9lWWP4Ircvodxi0vOKycgrJjO/N5kFfcgt7ENeUR9yM7LQ2q0iItJdKcFKsty8fHLz9mHI7vukOhQR6STHTNyHh2b/F6d/8gCL/rCZsqo69qycy9FWTnmokM9H/5hhU3/C8Px+/PueG9j3s7lULFtI/tB9Ux36NrbURli2diOlyz+lYs2nRNd/TtrmZeRXr6BfZA1DbB2DrHabYzZYMRszB7Gu6ABWFw4lrfdQMnsPJq/3YIr6l5Bb2I9+oVBSpmOKiIh0B0qwRETaqVduBrufeiOPP1DPYetepncoh9Je+1M3cTqDJ51IYfqXk3/7T5hGdPGvWDHnPkamIMEqr6pj5YolbFjxKdVrF+Mbl5BZsYyC2pUMjK1lpG1kZEL9GjLZmDmILYXDWFp4CGnFw8ntvye9SvYiu+/uFKdnU9zpr0JERKTrsp1era0DTJgwwefOnZvqMEREdoq7Ux91MtKaXzXS3Xn7l4exZ+wLCi57l7QkrGSYKBZzSjeVsW75p2xe9Ql1pZ8TKltC9pYV9K5bxWBfS7bVbXPM+lAfNmcNpjZ/N0K9h5MzYA96l+xNbv89Ibdvt5rKKCIi0hnMbJ67T2iqTCNYIiJJYmZkpLWcjJgZtQdfSdFL0/n0z2ex9w/ux9LbfvWku1NeUcn6VZ9TsfozqtZ9RmzjMtIrl1NQs4o+kbX0t7JtFpCoIov16QOpLBjGp4VfI73P7uQP2JM+Q0aQ1Xc4fdKz6LOTr1lERES2pQRLRKSTTTnkSP758Y85bvXNrP/fMSzf7QTSBo6BrAJCoTRqqiupr6ogUlVGaMsaQlvWkVFdSl79BoqiG+lDGUUJi0nUe5jScF82Zw5kVa+DWVW0G5n99qBw0F70GTKCnIJ+7KZRKBERkU6hKYIiIikQizkvPvMgvebfyvjIe4St6d/FUTc2WRGb03pTldmHSHY/ogUlpPUeSna/4fQt2Zui/rvFb5UgIiIinaKlKYJKsEREUsjdWb9pE+uXfYTXbsGj9WTm5JObX0heYS9yiwYQStOtwEVERLqSDrsGy8zGAzOJ3x83AvzA3d+y+J1jfw98A6gCznb3+e3pS0SkJzIz+vbuTd/eX011KCIiIpIEzS911TY3ANe6+3jg6mAb4Ghgr+BxHvCndvYjIiIiIiLS5bU3wXKgIHheCKwKnk8D7va4N4AiMxvYzr5ERERERES6tPZeFX0R8KyZ3Ug8Wds6x2UwsDyh3opg3+rGDZjZecRHudhtt93aGY6IiIiIiEjqtJpgmdnzwIAmin4GHAFc7O4Pm9nJwB3A13ckAHe/Hbg96KvUzJbuyPGdoA+wPtVBSKfR+d516FzvOnSudy0637sOnetdR1c810ObK2jXKoJmVg4UubsHC1uUu3uBmd0GzHb3WUG9j4FD3X27EayuzszmNrdCiPQ8Ot+7Dp3rXYfO9a5F53vXoXO96+hu57q912CtAg4Jnh8OfBo8fwI40+ImE0+8ul1yJSIiIiIisiPaew3W94Hfm1kaUENwLRXwNPEl2hcTX6b9nHb2IyIiIiIi0uW1K8Fy9znAV5rY78AP29N2F3J7qgOQTqXzvevQud516FzvWnS+dx0617uObnWu23UNloiIiIiIiHypvddgiYiIiIiISEAJloiIiIiISJIowWqBmU01s4/NbLGZXZHqeCR5zGyImb1kZh+a2QdmdmGwv7eZPWdmnwb/9kp1rJIcZhY2s3fM7J/B9nAzezP4fD9gZhmpjlGSw8yKzOwhM/vIzBaZ2YH6bPdMZnZx8Dv8fTObZWZZ+mz3HGb2VzNbZ2bvJ+xr8rMcrFx9c3DeF5rZ/qmLXHZUM+f6N8Hv8YVm9qiZFSWUXRmc64/N7KiUBN0CJVjNMLMw8AfgaGAUcKqZjUptVJJEEeASdx8FTAZ+GJzfK4AX3H0v4IVgW3qGC4FFCdv/F7jJ3fcENgHfTUlU0hF+D/zL3fcB9iV+3vXZ7mHMbDDwE2CCu48BwsAp6LPdk9wJTG20r7nP8tHAXsHjPOBPnRSjJMedbH+unwPGuPs44BPgSoDg+9opwOjgmD8G39u7DCVYzZsELHb3z929DrgfmJbimCRJ3H21u88PnlcQ/wI2mPg5viuodhdwQkoClKQysxLgGOAvwbYRv3ffQ0EVnesewswKga8BdwC4e527l6HPdk+VBmQHt4vJAVajz3aP4e6vABsb7W7uszwNuNvj3gCKzGxgpwQq7dbUuXb3f7t7JNh8AygJnk8D7nf3Wnf/gvhtoSZ1WrBtoASreYOB5QnbK4J90sOY2TBgP+BNoH/CTbHXAP1TFZck1e+Ay4FYsF0MlCX84tbnu+cYDpQCfwumhP7FzHLRZ7vHcfeVwI3AMuKJVTkwD322e7rmPsv63taznQs8Ezzv8udaCZbs0swsD3gYuMjdNyeWBfdz030MujkzOxZY5+7zUh2LdIo0YH/gT+6+H7CFRtMB9dnuGYJrb6YRT6oHAblsP8VIejB9lncNZvYz4pd23JfqWNpKCVbzVgJDErZLgn3SQ5hZOvHk6j53fyTYvXbrlILg33Wpik+S5iDgeDNbQnyq7+HEr9EpCqYVgT7fPckKYIW7vxlsP0Q84dJnu+f5OvCFu5e6ez3wCPHPuz7bPVtzn2V9b+uBzOxs4FjgNP/y5r1d/lwrwWre28BewWpEGcQvpnsixTFJkgTX4NwBLHL33yYUPQGcFTw/C3i8s2OT5HL3K929xN2HEf8cv+jupwEvAd8Kqulc9xDuvgZYbmYjgl1HAB+iz3ZPtAyYbGY5we/0redan+2erbnP8hPAmcFqgpOB8oSphNINmdlU4tP7j3f3qoSiJ4BTzCzTzIYTX9jkrVTE2Bz7MhmUxszsG8Sv3QgDf3X361MbkSSLmU0BXgXe48vrcq4ifh3Wg8BuwFLgZHdvfIGtdFNmdihwqbsfa2a7Ex/R6g28A5zu7rUpDE+SxMzGE1/QJAP4HDiH+B8U9dnuYczsWmA68elD7wDfI34thj7bPYCZzQIOBfoAa4FrgMdo4rMcJNm3Ep8mWgWc4+5zUxC27IRmzvWVQCawIaj2hrufH9T/GfHrsiLEL/N4pnGbqaQES0REREREJEk0RVBERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwRES6GDMbZmZuZmmpjkV2DWb2gZkdmuo4RER6AiVYIiLS7ZnZTDOrDB51ZlafsP1MquPr6tx9tLvPTmabZnajmX1qZhVm9pGZnZnM9kVEuiolWCIiSaaRp87n7ue7e5675wG/Ah7Yuu3uR2+t153OTXeKtRlbgOOAQuAs4Pdm9tXUhiQi0vGUYImIJIGZLTGzn5rZQmCLmaWZ2WQz+4+ZlZnZu4lTsMxstpn9r5m9ZWabzexxM+vdTNvnmNmiYCTgczP7P43Kp5nZgqCdz8xsarC/0MzuMLPVZrbSzH5pZuFWXsceZvaimW0ws/Vmdp+ZFSWUbTSz/YPtQWZWuvV1mdnxwVSzsuD1jWz0/lxqZgvNrNzMHjCzrB1/p3dcM+fGzWzPhDp3mtkvE7aPDd7TsuAcjmtjX4ea2Qozuyp4/5aY2WkJ5ceY2TvBuVpuZjMSyrZODf2umS0DXgz2/8PM1gTv2ytmNrpR3H80s2eC0brXzGyAmf3OzDYFI0f7tfE9+npbXmNbufs17v6Ru8fc/U3gVeDAZPYhItIVKcESEUmeU4FjgCKgP/AU8EugN3Ap8LCZ9U2ofyZwLjAQiAA3N9PuOuBYoAA4B7gpIcmZBNwNXBb0+zVgSXDcnUG7ewL7AUcC32vlNRjwv8AgYCQwBJgB4O6fAT8F7jWzHOBvwF3uPtvM9gZmARcBfYGngSfNLCOh7ZOBqcBwYBxwdpMBmE0JEpvmHlNaeQ1NaTg37h5p8Q2IJyR/Bf4PUAzcBjxhZplt7GsA0AcYTHzk5nYzGxGUbSF+3ouCeC4wsxMaHX8I8ff+qGD7GWAvoB8wH7ivUf2TgZ8HfdYCrwf1+gAPAb9tY9xNMrMrWjofbWwjG5gIfNCeWEREugMlWCIiyXOzuy9392rgdOBpd386+Av+c8Bc4BsJ9e9x9/fdfQvwC+DkpkaY3P0pd//M414G/g0cHBR/F/iruz8X9LPS3T8ys/5BXxe5+xZ3XwfcBJzS0gtw98VBW7XuXkr8y/khCeV/BhYDbxJPDH8WFE0HngqOrQduBLKBxClhN7v7KnffCDwJjG8mhjnuXtTCY05Lr6EZieemNecBt7n7m+4edfe7iCcuk3egv18E7+HLxBPtkwHcfba7vxecq4XEk9JDGh07Izhn1cExf3X3CnevJZ7s7mtmhQn1H3X3ee5eAzwK1Lj73e4eBR4gnlzvNHf/dUvno43NzATeBZ5tTywiIt2BEiwRkeRZnvB8KPDtRn/pn0I8KWmq/lIgnfiowzbM7GgzeyOYnldGPHHaWm8I8FkTsQwN2lud0P9txEdBmmVm/c3s/mBK4Wbg3iZi+jMwBrgl+NIP8RGvpVsruHsseH2DE45bk/C8CshrKZYkW956lQZDgUsanbshxF9jW2wKkuatlm491swOMLOXgqmV5cD5bP/+NsRqZmEz+7XFp35u5svRycRj1iY8r25iuzPf5+2Y2W+I/7yc7O6eylhERDqDEiwRkeRJ/PK4nPgIVeJf+3Pd/dcJdYYkPN8NqAfWJzYYTEt7mPiIUP9gxOBp4lP5tvazRxOxLCc+6tInof8Cdx/dRN1Evwpex1h3LyA+Ere1L8wsD/gdcAcww768bmwV8cRkaz0LXt/KVvrbjpkdbF+uANjU4+DWW9lO4y/2VUBOwvaAhOfLgesbnbscd5/Vxr56mVluwvZuxN8fgL8DTwBD3L2Q+MiONTo+MdbvANOArxNfLGJYsL/xMR0muJ6s2fPRyrHXAkcDR7r75s6JWEQktZRgiYh0jHuB48zsqGAUIitYAKEkoc7pZjYquJ7pOuChYFpXogwgEygFImZ2NPFrqba6AzjHzI4ws5CZDTazfdx9NfGphP/PzAqCsj3MrPF0tMbygUqg3MwGE7+2K9Hvgbnu/j3iU99mBvsfBI4J4kgHLiGe4P2ntTeqMXd/NWEFwKYer+5om01YAHwnODdT2Xaa3p+B84PRJjOzXIsvTpEPDQtL3NlK+9eaWUaQDB4L/CPYnw9sdPea4Pq577TSTj7x93ED8YTwVzvwGpPC3X/V0vlo7jgzu5L46/u6u2/ovIhFRFJLCZaISAdw9+XERx6uIp4cLSeerCT+3r2H+EIUa4As4CdNtFMR7H8Q2ET8C+sTCeVvESx8AZQDL/PlSNKZxBO0D4NjH2LbKYpNuRbYP2jrKeCRrQVmNo34IhUXBLv+G9jfzE5z94+Jj3bdQnwU7jjgOHeva6W/VLmQeIxlwGnAY1sL3H0u8H3gVuLv22K2XZBjCPBaC22vCY5bRXxBivPd/aOg7AfAdWZWAVxN/Ly25G7iUwxXEj+Pb7T2wrqQXxEfvVucMOJ1VaqDEhHpaKbp0CIinc/MZgP3uvtfUh2LtF2wKuK7wLhgMY/G5YcSP68ljctERGTX0N1vYigiItJpghG5ka1WFBGRXZamCIqI7GLMbGYzCxbMbP1o6Y7MbLcWFqrYLdXxiYj0JJoiKCIiIiIikiQawRIREREREUmSLnUNVp8+fXzYsGGpDkNERERERKRZ8+bNW+/ufZsq61IJ1rBhw5g7d26qwxAREREREWmWmS1trqzdUwTNbIiZvWRmH5rZB2Z2YbC/t5k9Z2afBv/2am9fIiIiIiIiXVkyrsGKAJe4+yhgMvBDMxsFXAG84O57AS8E2yIiIiIiIj1WuxMsd1/t7vOD5xXAImAwMA24K6h2F3BCe/sSEenK/vPZet5bUZ7qMERERCSFknoNlpkNA/YD3gT6u/vqoGgN0H9n2qyvr2fFihXU1NQkJ0jZZWRlZVFSUkJ6enqqQ5FdQDTmXPbnfzI8vI57fnkZZpbqkERERCQFkpZgmVke8DBwkbtvTvxy4e5uZk3ecMvMzgPOA9htt+3vdbhixQry8/MZNmyYvrBIm7k7GzZsYMWKFQwfPjzV4cgu4Iv1W7g14xb2Cy1mzbLjGTB0n1SHJCIiIimQlPtgmVk68eTqPnd/JNi91swGBuUDgXVNHevut7v7BHef0Lfv9isd1tTUUFxcrORKdoiZUVxcrJFP6TTLNm6hkEoAat68M7XBiIiISMokYxVBA+4AFrn7bxOKngDOCp6fBTzejj52PkDZZennRjrTpi31ZFgkvrFhcWqDERERkZRJxhTBg4AzgPfMbEGw7yrg18CDZvZdYClwchL6EhHpksq3VDGQDQBkVixLcTQiIiKSKslYRXCOu5u7j3P38cHjaXff4O5HuPte7v51d9+YjIBTwcy45JJLGrZvvPFGZsyYkbqAErzxxhsccMABjB8/npEjRzbENXv2bP7zn/+0q+2pU6dSVFTEsccem4RIRXq2WNlywubUkEFBzapUhyMiIiIpkpRrsHq6zMxMHnnkEdavX5/Udt2dWCzWrjbOOussbr/9dhYsWMD777/PySfHBwqTkWBddtll3HPPPe1qQ2RXEasoBeDTjFHkxiqgelOKIxIREZFUSOoy7R3t2ic/4MNVm5Pa5qhBBVxz3OgW66SlpXHeeedx0003cf31129TVlpayvnnn8+yZfEpQb/73e846KCDmDFjBnl5eVx66aUAjBkzhn/+858AHHXUURxwwAHMmzePp59+mltvvZVnnnkGM+PnP/8506dPZ/bs2cyYMYM+ffrw/vvv85WvfIV77713u+uK1q1bx8CBAwEIh8OMGjWKJUuWMHPmTMLhMPfeey+33HIL++yzT7NxfvbZZyxevJj169dz+eWX8/3vfx+AI444gtmzZ7f43vzjH//g2muvJRwOU1hYyCuvvEJNTQ0XXHABc+fOJS0tjd/+9rccdthh3HnnnTz22GNs2bKFTz/9lEsvvZS6ujruueceMjMzefrpp+nduzd//vOfuf3226mrq2PPPffknnvuIScnZ5t+J0+ezB133MHo0fFzd+ihh3LjjTcyYcKEFuMV6Si1VRUAbMzdE+oWQPlKyO6V2qBERESk02kEq41++MMfct9991Fevu1NRC+88EIuvvhi3n77bR5++GG+973vtdrWp59+yg9+8AM++OAD5s6dy4IFC3j33Xd5/vnnueyyy1i9On77sHfeeYff/e53fPjhh3z++ee89tpr27V18cUXM2LECE488URuu+02ampqGDZsGOeffz4XX3wxCxYs4OCDD24xzoULF/Liiy/y+uuvc91117FqVdunN1133XU8++yzvPvuuzzxxBMA/OEPf8DMeO+995g1axZnnXVWw2p+77//Po888ghvv/02P/vZz8jJyeGdd97hwAMP5O677wbgm9/8Jm+//TbvvvsuI0eO5I477tiu3+nTp/Pggw8CsHr1alavXq3kSlIqWrsFgNr8+O0mvLLJhVNFRESkh+tWI1itjTR1pIKCAs4880xuvvlmsrOzG/Y///zzfPjhhw3bmzdvprKyssW2hg4dyuTJkwGYM2cOp556KuFwmP79+3PIIYfw9ttvU1BQwKRJkygpKQFg/PjxLFmyhClTpmzT1tVXX81pp53Gv//9b/7+978za9asJkedWopz2rRpZGdnk52dzWGHHcZbb73FCSec0Kb35aCDDuLss8/m5JNP5pvf/GbDa/rxj38MwD777MPQoUP55JNPADjssMPIz88nPz+fwsJCjjvuOADGjh3LwoULgXgS9vOf/5yysjIqKys56qijtuv35JNP5sgjj+Taa6/lwQcf5Fvf+lab4hXpKBapAiBWNAyWQU3ZarJbPkRERER6oG6VYKXaRRddxP77788555zTsC8Wi/HGG2+QlZW1Td20tLRtrq9KvB9Tbm5um/rLzMxseB4Oh4lEIk3W22OPPbjgggv4/ve/T9++fdmwYcN2dZqLE7ZfznxHljefOXMmb775Jk899RRf+cpXmDdvXov1E19TKBRq2A6FQg2v7+yzz+axxx5j33335c4772wyYRw8eDDFxcUsXLiQBx54gJkzZ7Y5ZpGOEA4SrHDxMACqNirBEhER2RVpiuAO6N27NyeffPI2U9aOPPJIbrnllobtBQsWADBs2DDmz58PwPz58/niiy+abPPggw/mgQceIBqNUlpayiuvvMKkSZPaHNNTTz2FuwPxqYfhcJiioiLy8/OpqKhoNU6Axx9/nJqaGjZs2MDs2bOZOHFim/v/7LPPOOCAA7juuuvo27cvy5cv5+CDD+a+++4D4JNPPmHZsmWMGDGizW1WVFQwcOBA6uvrG9ppyvTp07nhhhsoLy9n3LhxbW5fpCOE6uMJVm7xYKo9g/ry1SmOSERERFJBCdYOuuSSS7ZZTfDmm29m7ty5jBs3jlGjRjWMpJx00kls3LiR0aNHc+utt7L33ns32d6JJ57IuHHj2HfffTn88MO54YYbGDBgQJvjueeeexgxYgTjx4/njDPO4L777iMcDnPcccfx6KOPMn78eF599dVm4wQYN24chx12GJMnT+YXv/gFgwYNAuLJ37e//W1eeOEFSkpKePbZZ4H4tMSt11tddtlljB07ljFjxvDVr36Vfffdlx/84AfEYjHGjh3L9OnTufPOO7cZuWrN//zP/3DAAQdw0EEHsc8++zTsf+KJJ7j66qsbtr/1rW9x//33N6ycKJJKadFqAIoKiyj1QqIVugZLRERkV2RbRz+6ggkTJvjcuXO32bdo0SJGjhyZooh6vsarHfY0+vmRzvLXa8/mLH+CDZesYsVvDmJg3z4M/PGzqQ5LREREOoCZzXP3JldY0wiWiEgSpMdqqA9n0zsng/VeSFp1cu+bJyIiIt2DFrnYxc2YMSPVIYh0e+5ORqya+nA2WeEQm9N6k133earDEhERkRTQCJaISDvVRmJkU0s0HF83sDqjmJxIGUSbXvlTREREei4lWCIi7VRTH90mwarL6kMIh6rtb5kgIiIiPZsSLBGRdqquj5JDLbH0HAA8t1+8oHJtCqMSERGRVFCCJSLSTtV1UXKsllhaPMEK5QcJ1hYt1S4iIrKr6fAEy8ymmtnHZrbYzK7o6P46ymOPPYaZ8dFHHzVbZ8mSJYwZMyZpfX788ccceuihjB8/npEjR3LeeecB8ZsEP/300+1q+9xzz6Vfv35JjVdkV1UdTBEkI55gpRfG72VXV74mlWGJiIhICnRogmVmYeAPwNHAKOBUMxvVkX12lFmzZjFlyhRmzZrVZHkk0v6L2aPR6DbbP/nJT7j44otZsGABixYt4sc//jGQnATr7LPP5l//+le72hCRuJr6KDnUQDBFMKfXQACqNinBEhER2dV09DLtk4DF7v45gJndD0wDPtyp1p65Ata8l7zoAAaMhaN/3WKVyspK5syZw0svvcRxxx3HtddeC8Ds2bP5xS9+Qa9evfjoo4/497//TSQS4bTTTmP+/PmMHj2au+++m5ycHF544QUuvfRSIpEIEydO5E9/+hOZmZkMGzaM6dOn89xzz3H55ZdzyimnNPS7evVqSkpKGrbHjh1LXV0dV199NdXV1cyZM4crr7ySY489lh//+Me8//771NfXM2PGDKZNm8add97Jo48+Snl5OStXruT000/nmmuuAeBrX/saS5YsafF1v/zyy1x44YUAmBmvvPIKeXl5XH755TzzzDOYGT//+c+ZPn06s2fP5pprrqGoqIj33nuPk08+mbFjx/L73/+e6upqHnvsMfbYYw+efPJJfvnLX1JXV0dxcTH33Xcf/fv336bfU045hTPOOINjjjkGiCeDxx57LN/61rfadk5FOll1XYxsq8UzcgEoKiyi2jOoK1OCJSIisqvp6CmCg4HlCdsrgn3dyuOPP87UqVPZe++9KS4uZt68eQ1l8+fP5/e//z2ffPIJEJ/W94Mf/IBFixZRUFDAH//4R2pqajj77LN54IEHeO+994hEIvzpT39qaKO4uJj58+dvk1wBXHzxxRx++OEcffTR3HTTTZSVlZGRkcF1113H9OnTWbBgAdOnT+f666/n8MMP56233uKll17isssuY8uWLQC89dZbPPzwwyxcuJB//OMfzJ07t82v+8Ybb+QPf/gDCxYs4NVXXyU7O5tHHnmEBQsW8O677/L8889z2WWXsXr1agDeffddZs6cyaJFi7jnnnv45JNPeOutt/je977HLbfcAsCUKVN44403eOeddzjllFO44YYbtut3+vTpPPjggwDU1dXxwgsvNCRbIl3R1kUuQpnxBKs4P4v1Xki0QtdgiYiI7GpSfqNhMzsPOA9gt912a7lyKyNNHWXWrFkNIzmnnHIKs2bN4itf+QoAkyZNYvjw4Q11hwwZwkEHHQTA6aefzs0338x//dd/MXz4cPbee28AzjrrLP7whz9w0UUXAfGEoinnnHMORx11FP/61794/PHHue2223j33Xe3q/fvf/+bJ554ghtvvBGAmpoali1bBsB//dd/UVxcDMA3v/lN5syZw4QJE9r0ug866CD++7//m9NOO41vfvOblJSUMGfOHE499VTC4TD9+/fnkEMO4e2336agoICJEycycGB8atQee+zBkUceCcRH3l566SUAVqxYwfTp01m9ejV1dXXbvHdbHX300Vx44YXU1tbyr3/9i6997WtkZ2e3KWaRVKiui5BNHbVBgtUnL4P1FDBgS2mKIxMREZHO1tEjWCuBIQnbJcG+Bu5+u7tPcPcJffv27eBwdtzGjRt58cUX+d73vsewYcP4zW9+w4MPPoi7A5Cbm7tNfTNrcbspjdtINGjQIM4991wef/xx0tLSeP/997er4+48/PDDLFiwgAULFrBs2TJGjhy50/FsdcUVV/CXv/yF6upqDjrooBYX+ADIzMxseB4KhRq2Q6FQwzVqP/7xj/nRj37Ee++9x2233UZNTc127WRlZXHooYfy7LPP8sADDzSbgIp0FfU1WwiZE25IsDIp9ULCNboPloiIyK6moxOst4G9zGy4mWUApwBPdHCfSfXQQw9xxhlnsHTpUpYsWcLy5csZPnw4r776apP1ly1bxuuvvw7A3//+d6ZMmcKIESNYsmQJixcvBuCee+7hkEMOabXvf/3rX9TX1wOwZs0aNmzYwODBg8nPz6eioqKh3lFHHcUtt9zSkPS98847DWXPPfccGzdubLgOauvoWlt89tlnjB07lp/+9KdMnDiRjz76iIMPPpgHHniAaDRKaWkpr7zyCpMmTWpzm+Xl5QweHJ8letdddzVbb/r06fztb3/j1VdfZerUqW1uXyQV6msqAUjLygMgKz3M5lARWbVKsERERHY1HZpguXsE+BHwLLAIeNDdP+jIPpNt1qxZnHjiidvsO+mkk5pdTXDEiBH84Q9/YOTIkWzatIkLLriArKws/va3v/Htb3+bsWPHEgqFOP/881vt+9///jdjxoxh33335aijjuI3v/kNAwYM4LDDDuPDDz9k/PjxPPDAA/ziF7+gvr6ecePGMXr0aH7xi180tDFp0iROOukkxo0bx0knndQwPfDUU0/lwAMP5OOPP6akpIQ77rgDgJkzZzJz5kwAfve73zFmzBjGjRtHeno6Rx99NCeeeCLjxo1j33335fDDD+eGG25gwIABbX4/Z8yYwbe//W2+8pWv0KdPn4b9c+fO5Xvf+17D9pFHHsnLL7/M17/+dTIyMtrcvkgqRGvi1zymBwkWQFVGb3LqN0EslqqwREREJAVs66hHVzBhwgRvvAjDokWLGqa7yY658847mTt3LrfeemuqQ0kZ/fxIZ7j78Wc4851TiJ30N0JjvwnAX//f5ZxbcRtc/gXk9E5xhCIiIpJMZjbP3Ztc2KDDbzQsItLTxWrjI1hbVxEEiGYHI7SVWklQRERkV6IEqwc7++yzd+nRK5HOsjXB2nqjYQDL6xd/opUERUREdindIsHqStMYpfvQz410Fq+vij/J+DLBSi+IJ1gxjWCJiIjsUrp8gpWVlcWGDRv0ZVl2iLuzYcMGsrKyUh2K7Arqt45gfTlFMKtX/J5wWzauSUVEIiIikiIpv9Fwa0pKSlixYgWlpZpmIzsmKyuLkpKSVIchuwCr234EK79XPyIeorZ8NfkpiktEREQ6X5dPsNLT0xk+fHiqwxARaVaovjr+JGEEqzgvi40UENusKYIiIiK7ki4/RVBEpKsLRbcfweqTn8kGL8B1DZaIiMguRQmWiEg7hSPVxDBI+/Kavz65mZR6IaGq9SmMTERERDqbEiwRkXZKi1ZTF8oCs4Z9BdlpbLICMms3pDAyERER6WxKsERE2ikjWkV9KHubfWbGlrTeZNdvSlFUIiIikgpKsERE2ik9VkN9aPtbAtRmFZMZq4a6LSmISkRERFJBCZaISDu4O5leQzQtZ7uySFaf+BMtdCEiIrLLUIIlItIO9VEny2uIhrO3L8ztG/93i+7jJyIisqtQgiUi0g7VdVFyrJZo2vYJVrhgAABesaazwxIREZEUUYIlItIO1fVRcqjF07efIpjRazAANZtWdXZYIiIikiLtSrDM7Ddm9pGZLTSzR82sKKHsSjNbbGYfm9lR7Y5URKQLqq6Pkt1MgpXXewARD1GzcWUKIhMREZFUaO8I1nPAGHcfB3wCXAlgZqOAU4DRwFTgj2YWbmdfIiJdztYpgmTkblfWrzCbUoqoK9MIloiIyK6iXQmWu//b3SPB5htASfB8GnC/u9e6+xfAYmBSe/oSEemKqusjZFOLNZFg9S/IYq0Xga7BEhER2WUk8xqsc4FngueDgeUJZSuCfdsxs/PMbK6ZzS0t1UpbItK9VNdGyaGGUMb2UwT75WdS6r1Iq1qbgshEREQkFVpNsMzseTN7v4nHtIQ6PwMiwH07GoC73+7uE9x9Qt++fXf0cBGRlKqpqSJsTigzb7uyvMw0NoR6k1WjPx6JiIjsKtJaq+DuX2+p3MzOBo4FjnB3D3avBIYkVCsJ9omI9Ci1VeUApGXnb1dmZlRl9iW3rgwidZCW0cnRiYiISGdr7yqCU4HLgePdvSqh6AngFDPLNLPhwF7AW+3pS0SkK6qvLAMgI7eoyfK67GBkvlLTBEVERHYFrY5gteJWIBN4zswA3nD38939AzN7EPiQ+NTBH7p7tJ19iYh0OXXBCFZWfu8myz1vIJQTX+iiaEiTdURERKTnaFeC5e57tlB2PXB9e9oXEenqolVlAKTnFDZZHi4cCCvBK1ZhnRiXiIiIpEYyVxEUEdnlxKrjI1iW1XSCld17EAA1m1Z3WkwiIiKSOkqwRETao3Zz/N9mEqyC4oFEPET1hhWdGJSIiIikihIsEZF2CNXGR7DIKmiyvG9BNusoIlK2qhOjEhERkVRRgiUi0g7huor4k8ymE6z+BVms8yK8ck0nRiUiIiKpogRLRKQd0iIVVFsOhMJNlscTrF6kbdEy7SIiIrsCJVgiIu2QGamkJpzbbHleZhobQr3JrintxKhEREQkVZRgiYi0Q2akgvr0/BbrVGf2JSdaDpHaTopKREREUkUJlojITqqui9LLy6jN7NNivbrsfvEnlZomKCIi0tMpwRIR2UkbttRSzGZiOS0nWJ43MP6kQgtdiIiI9HRKsEREdtKGyjr6WDmW26/FemmFAwDwCt1sWEREpKdTgiUispPKysvJsxrCBX1brJfVuwSAmk26F5aIiEhPpwRLRGQnVW6Mj0hlFQ1ssV5BcX/qPUz1hhWdEZaIiIikUFqqAxAR6a5qy+OLVuT0GtBivX4FOZRSSLhMUwRFRER6Oo1giYjspJqN8Sl/2b1aHsHqX5DJOi8CXYMlIiLS4yUlwTKzS8zMzaxPsG1mdrOZLTazhWa2fzL6ERHpSkLlS+NPioa2WK9fQRal3ou0qnWdEJWIiIikUrsTLDMbAhwJLEvYfTSwV/A4D/hTe/sREelqsipXUGNZkNO7xXp5mWlsDPUiq3Z9J0UmIiIiqZKMEaybgMsBT9g3Dbjb494Aisys5Tk0IiLdTGHdasozB4FZq3W3ZPQhN1IGkbqOD0xERERSpl0JlplNA1a6+7uNigYDyxO2VwT7mmrjPDOba2ZzS0tL2xOOiEinKauqY0BsLTV5JW2qX5cVLOW+RdMERUREerJWVxE0s+eBppbI+hlwFfHpgTvN3W8HbgeYMGGCt1JdRKRL+HhVGeNsLeuLv96m+tHc/lABVKyFwrYlZSIiItL9tJpguXuT3x7MbCwwHHjX4tNjSoD5ZjYJWAkMSaheEuwTEekRVi35kAOsjoKh49tUP1QwANYAlWs6NC4RERFJrZ2eIuju77l7P3cf5u7DiE8D3N/d1wBPAGcGqwlOBsrdXesTi0iPUb18IQAFw/ZtU/2MokEA1JfrV6GIiEhP1lE3Gn4a+AawGKgCzumgfkREUiJj/QdECRHuu0+b6uf0GkDMjZqNq0jv4NhEREQkdZKWYAWjWFufO/DDZLUtItKV1EaiDKl8l7W5ezMoPbtNx/QpzGMj+ViZRrBERER6sqTcaFhEZFeycMk69mUxdYMnt/mYPnkZlHoRsQpdgyUiItKTKcESEdlBS+Y/T5bV02fMEW0+pm9+Juu8iNCWtR0YmYiIiKSaEiwRkR2U/ukz1FomeSPbtkQ7QJ+8eIKVWa37/YmIiPRkSrBERHbAp6s2clDdHNb2PQgyctp8XFZ6mPK03mTXbYBYrAMjFBERkVRSgiUisgPmPzeLvlZO4Vd3fHHUmsw+hIlCTVnyAxMREZEuQQmWiEgblVfVMebzP7M+fRCFY7+xw8dHsvvEn1TqOiwREZGeSgmWiEgbvfDEPYy2L6g58GII78RdLvL6xf+tXJfcwERERKTLUIIlItIGK0o3Mn7RjaxPH0TJITt37/S0/AHxJ1u00IWIiEhPpQRLRKQVsZjz9l1Xsbutwo/5fxBO36l2snrFE6z6ct1sWEREpKdSgiUi0oqnnnyA4yvu54uS4+k7fsevvdoqv6gPdR6mepNuNiwiItJTKcESEWnBK2/NY/L8y1mXMYRhZ/yxXW0V52WxnkLqN2uRCxERkZ5KCZaISDMWfvoFg586nexQlF5n349l5rervT75maz3QrxCI1giIiI9lRIsEZEmLF27geh9pzDE1hE5+V6yBo9ud5vFuRms90LCVeuTEKGIiIh0RUqwREQa2VhRzZLbT2M/PmLjkbdQNPKwpLTbNz+TUi8ivUYJloiISE/V7gTLzH5sZh+Z2QdmdkPC/ivNbLGZfWxmR7W3HxGRzlBTF+GNP36fQ6Kvs3zizxjw1e8kre2s9DCbw0Xk1G2EWCxp7YqIiEjXsRN3yvySmR0GTAP2dfdaM+sX7B8FnAKMBgYBz5vZ3u4ebW/AIiIdJRZz/nXbTzmh+kk+3+scdj/m8qT3UZ1ZTKguCtWbILc46e2LiIhIarV3BOsC4NfuXgvg7uuC/dOA+9291t2/ABYDk9rZl4hIh3rmvt9ywoa/sLj/0ex+6m87pI/67L7xJ1vWtVxRREREuqX2Jlh7Aweb2Ztm9rKZTQz2DwaWJ9RbEezbjpmdZ2ZzzWxuaWlpO8MREdk5r/z7YY5cfD2f5k1gj+/fBaGOuUTVc4IEq1JLtYuIiPRErU4RNLPngQFNFP0sOL43MBmYCDxoZrvvSADufjtwO8CECRN8R44VEUmG9z54jzGvXcja9MEM+8HDWFpmh/UVLhgAq4HKnv8HJXendFMZpcs/YfO6ZdSVrSVWsZZw9XoyajeQVl9JWmQLmbFqMr2GLK8h0+swohhgxAi5YxbDgChhooSIkkbUwkQJE7MwUUsjamnEiD93i+/34BGzMB5KC7ZDuKXhoTQI9mMhCKU1HLPd62An/9fkbTmu5TrmrfdurbRiW0tbbKhtr9Fa2WHb12ihbvv62pG2Gtdoqe3W22p06A4Eun3dth7Zcj/Vhbuz/wkXk5a2/c+viHS+VhMsd/96c2VmdgHwiLs78JaZxYA+wEpgSELVkmCfiEiXUrqxjLR/nEmGRQmf9SDpOUUd2l9GYX8AohVr6ClfhaIxZ+mK5az56E2qli0go+wzCqpX0D+ykoG2kX6N6teSTpkVUhXKJxLOpi49j83hPqwP5xANZYKFIRTCLISFQjghYu4Qi2Fej8UiWCxCyCMQixLy+PNQLIJ5lLBHsFg9YWoIeTT+IP5vmCghjxGKp2eEiRL2KKHgeRqxnU2nmuRt+LreljrtbaNtcfQMPeV1tFUIJ89q+E8oi69+80epDkdEaOciF8BjwGHAS2a2N5ABrAeeAP5uZr8lvsjFXsBb7exLRCSpYjHn/TvO5zA+Z8XRd1IyZGSH95lf1IdaTyNatoacDu8t+dydz1eXsnThq/jS1ynYsJDBtYvZ3TawdfrCJitiQ8Zg1hUdwJqiYWT23YO8fsMo6FtCQfFAMrML6d/an/JFOoE3GmVsPOjYOFlLrL99WeNjW267Pccmbno0woc3HcGYhdezZuJUBgzZs/mORKRTtDfB+ivwVzN7H6gDzgpGsz4wsweBD4EI8MPuuIJgWekqyjetZ+je41Idioh0gGceu4djtjzDB7t/l9EHnNgpffbJz2I9heSWd48Ey935fO1GPn/738Q+f4X+m+Yz0hezh0WIubEqbQjre3+F9QPHUTh8fwbtM4le+X3plerARdrAGiX6ref9XfEPA2kUnHI7aXcfxvp7zqX3Jc+Rkdlx05xFpHXtSrDcvQ44vZmy64Hr29N+qn18/5Xst/5JXh90GiNOvILe/Zpcp0NEuqHPlq1k/3evYVXmUEad+qtO67c4N4P1Xkh2Rddd5KKqLsL8d99l47tPUbzqZfaLvsceVkuEMCuyR/D5wDMoGnkI/UcdSkluL0pSHbDILq5kj9HM238GX3nnSt6c+V0m/fhurIMW6hGR1rV3BKtH2+Nb17FgVjUHrr6bmj/M4q3iqfSe8n32GH+wfnGJdGPRmPPZ3/+bI2wTld/+O5ae1Wl9DyjM4hMvYmjlmk7rsy02VNQw9+1XqX/3UfYpm80Ui182W5o2kGUlJ9J73DH0HXs4wzLzUhypiDTlK9N+wBvrPmbyyjt540/fZ9L5fyYU1ncVkVRQgtWCPgOH0ue/H2TpR/NY/exNjN/wL7KeeJKVTw5gxcCjKBrzXwzb7zAys3vmF45YpJ76+loi9fVEIhHq6uuIRiJEIxFi0QixWD3Eong0gscieDQa/zd4HnMHjxFzxz0+1Sj+PNYwj90aJpI7X16G7V/ucw9Wpdp2Anpz0zi2323NzOhoomYzjTZ9eNumiXw5X//L+q1dgL39xehNHLF1UbA2x7FtDF82s33bX+6xZvZvf4C3ddaMt/2C/ibeum33b9/0dpWbW39t07JFHFXzLz7Z81z23uvANsWTLAMLs3nB+3FI1UfxF5PCa5FKN9fw5hsvU7/wEcZvns1RoTVECbG0YD8+3/scSiYdR99+I+ir66VEuoUDvnsTb95Ww+S197PwpjXsed7d5BTsmjc0d3eikXrqa6qIRGqpr6uLb9fXE43UE43UUV9fTyxSTyxSh8eiEK3HYxHwaLCC55ffXwi22fp86wqfwfearX3G/y/X+P89W7/dxP+N/0pt5juH2fZlib+DE55v30yjhHqb392N1vhs1GZimWMJxbbtv4n/bPf/hm0Kt+25pdewTROhbeptLa/NH8Kee+xFXmb3SF2s8QWeqTRhwgSfO3duqsNoVvnGdSx6cRY5nz7GqJoFpFmMWk9nacbuVBSMINpvNHmD9qaw31CKBw0nK69X0r48RSJRamprqK3eQm3NFuqqt1BfU0VdbVX8l0dtFdG6KqJ11cRqq4jVV+P11Vh9DUSqob6GUDT+CEdrCUdrCMdqyYjVkO51ZHgtmdSR4XVkUUcmdaRZLCmxi3RFy8MllFwxF0vP7vS+/9//XMwl0b/CpYshr2+n9r2xspY3/zObuvceZt/y2QwLrSVKiBWFXyFt7IkMmvxtLK/xun8i0l14LMac+37J5MW/ozTUl/JD/4eRX/t2Sv+Y0xbRaIzK8vVUlm2kunIjNZWbqNtSTv2WMqLV5XjNZqipIFy/mbT6LaRFt5AWrSEtVkNarI70WC3pwXeZTI9/j0m3bnf5vzTjf+pP57jzr2f8kKJUh9LAzOa5+4Qmy5Rg7ZyyTRtZ/Pa/iXw2m9yNH1BS9wW9rGKbOtWeQaXlUm3Z1IXij2g4IxiPSfxrhhOO1ZMWqyPs9aR5Lele3/DIIJ70hG3nzlU9YerIoNYyqLdM6i2TSCh4hDOJhjKJhLOJhjKJhbOIhTOJpmXh4UwIZxAKhyGURiicTigUxsJpWCi+L/4IB4/4fWUslIaFw5jZtg+MUMgIWfCXjEZ/HXES/2oT7DNLGPFoZRRou5/lpscvmvyR97Ynk019ZloaiGjjAFp8dzOfxx1pu7n/hdoO/Pzs2P+GPTnxNdd2m2s3H8f2VZ0+I75KflFq/rJ7/U2/5Wfl18J3n4chE1s/oJ3KttTy1uuzqX33YcZtns1Q25pUTSBz32/Sf9K3sE5O9ESkY733+rMU/PsihvoqFmWOIzrx+4z42nTSMzpnAYxIXS1lG9eyef1qqsrWUlNeSqRiHbHK9YSqN5BWs4ms+k3kRMooiJVR6JWtJkT1HqbScqmyHGpCOfHvM+EsouGt31+y8LT4IxbOIpaWhYezsLR0LJwR//4SDr7PhNMIpWUQDqdj4TQIp2/zXYaG7y+h+P9xQvH/xL/ChDAMC20dkbJg5CleTsIo1Jf/W/fgv97w//ovi7ZZF5JtdyeUeQtljVeejMW2KdumNLG/ptrZLuZG206zr8FJuPdeE3F6o+9bid97Gr2CbXZU5w9nxMhRFGSl01UoweoEHouxdtVS1i37mKr1y4mUrSRcuZpwfSXhyBbSIlVkRKuwWH3DMYk/gBFLJxbKiP+SCGUQC5IbD2dCWiakZUF6NpaehaVnE8rIJZyZTVpGDmlZ2aRl5pCRlUtGVg6ZWblkZueSmZ2DpefEf2mISJfxv3c9xpVfnAXf/DOMO7lD+thYWcvb/3mR+vceYdzm2exm64gQYnnhBDLHfZOBk7+N5fbpkL5FpGuoqalh/iP/j90/uYMBbGAzuSzJ/wq1gyZROHRf+gwfS1GfQYTSW066PFrP5s3lVJStZ8vGNdSUl1K3eR2xylKo2kioegPptRvJqi8jN1JGoZdTwJZm2ysjj4pQIVvSCqlJ7019Vm88uzeeXUwotxdpOUVk5BSSlV9ETn5vcvN7kVvYm3BG5884EGmOEiwRkS7kthc/4uyXp8AB55H5jeStYFi6uYa5r79A9L1HGVfxckNStaxwIhljv8ngA7+lpEpkF1RbV8eHrz5K9cLHGV7+JgNZv035FrKoII+Yhdn6598QUbK9hmyvIdPqm2wX4qNKZVZARaiAqrRe1GT0IprVi1hOH0K5fUgv6EdWYV9yi/qTXzyAwuIBhNP0h1/p/lpKsLrHlWIiIj3I3oN7874PY+8lb9LeyTor1pfxwevPUv/RM+xbOYejrZQIYZb3msTKcZcx6ICT2D1317zIXUTiMjMy2O+I6XDEdNydNauXs/zj+dSv+5RI5XpCVRvIiFRgHv1yEapQiGhaLrH0XDw9l1BWPuk5haQX9A0SpgHkFw8kv6AXfcMhNMlY5EtKsEREOtmYQYU8HtuTfde/CHVVkNH2Ww7XRWK89/EnrJ73JIXLXmR8/TscZdXUkcbK3pNYve8VDJj0TYbn9O7AVyAi3ZWZMWDQbgwYtFuqQxHpsZRgiYh0sr75mXxefChp5c/gHzyK7Xdas3Uj0RiffPYZK959AVv6GsMq5vMVWwHAhlAfVgz+BkXjj2Xg+KMYnpHbWS9BREREmqEES0QkBUYecBQf/+sWhjx7HTlDJkGfvaiPRFm+aiVrP32HyiVzySj9gJLqRYyyVYwCqsliRcG+fDx0OiUTj6N4t/EUd/Gll0VERHY1WuRCRCQF6iIxrvzDPVyz8QoKrIoKckjzCNlW11BnQ6iY9fn7EC2ZzIB9j6D3HpO0KqiIiEgXoEUuRES6mIy0EL+84HQef3Ufcj9+mKL6dWRlZZPZu4S8ktGUjJxMcdEAtDyFiIhI96IES0QkRbIzwpxyxAFwxAGpDkVERESSJJTqAERERERERHoKJVgiIiIiIiJJogRLREREREQkSbrUKoJmVgosTXUcjfQB1qc6COk0Ot+7Dp3rXYfO9a5F53vXoXO96+iK53qou/dtqqBLJVhdkZnNbW4JRul5dL53HTrXuw6d612LzveuQ+d619HdzrWmCIqIiIiIiCSJEiwREREREZEkUYLVuttTHYB0Kp3vXYfO9a5D53rXovO969C53nV0q3Ota7BERERERESSRCNYIiIiIiIiSaIES0REREREJEmUYLXAzKaa2cdmttjMrkh1PJI8ZjbEzF4ysw/N7AMzuzDY39vMnjOzT4N/e6U6VkkOMwub2Ttm9s9ge7iZvRl8vh8ws4xUxyjJYWZFZvaQmX1kZovM7EB9tnsmM7s4+B3+vpnNMrMsfbZ7DjP7q5mtM7P3E/Y1+Vm2uJuD877QzPZPXeSyo5o5178Jfo8vNLNHzawooezK4Fx/bGZHpSToFijBaoaZhYE/AEcDo4BTzWxUaqOSJIoAl7j7KGAy8MPg/F4BvODuewEvBNvSM1wILErY/r/ATe6+J7AJ+G5KopKO8HvgX+6+D7Av8fOuz3YPY2aDgZ8AE9x9DBAGTkGf7Z7kTmBqo33NfZaPBvYKHucBf+qkGCU57mT7c/0cMMbdxwGfAFcCBN/XTgFGB8f8Mfje3mUowWreJGCxu3/u7nXA/cC0FMckSeLuq919fvC8gvgXsMHEz/FdQbW7gBNSEqAklZmVAMcAfwm2DTgceCioonPdQ5hZIfA14A4Ad69z9zL02e6p0oBsM0sDcoDV6LPdY7j7K8DGRrub+yxPA+72uDeAIjMb2CmBSrs1da7d/d/uHgk23wBKgufTgPvdvdbdvwAWE//e3mUowWreYGB5wvaKYJ/0MGY2DNgPeBPo7+6rg6I1QP9UxSVJ9TvgciAWbBcDZQm/uPX57jmGA6XA34IpoX8xs1z02e5x3H0lcCOwjHhiVQ7MQ5/tnq65z7K+t/Vs5wLPBM+7/LlWgiW7NDPLAx4GLnL3zYllHr+Hge5j0M2Z2bHAOnefl+pYpFOkAfsDf3L3/YAtNJoOqM92zxBcezONeFI9CMhl+ylG0oPps7xrMLOfEb+0475Ux9JWSrCatxIYkrBdEuyTHsLM0oknV/e5+yPB7rVbpxQE/65LVXySNAcBx5vZEuJTfQ8nfo1OUTCtCPT57klWACvc/c1g+yHiCZc+2z3P14Ev3L3U3euBR4h/3vXZ7tma+yzre1sPZGZnA8cCp/mXN+/t8udaCVbz3gb2ClYjyiB+Md0TKY5JkiS4BucOYJG7/zah6AngrOD5WcDjnR2bJJe7X+nuJe4+jPjn+EV3Pw14CfhWUE3nuodw9zXAcjMbEew6AvgQfbZ7omXAZDPLCX6nbz3X+mz3bM19lp8AzgxWE5wMlCdMJZRuyMymEp/ef7y7VyUUPQGcYmaZZjac+MImb6UixubYl8mgNGZm3yB+7UYY+Ku7X5/aiCRZzGwK8CrwHl9el3MV8euwHgR2A5YCJ7t74wtspZsys0OBS939WDPbnfiIVm/gHeB0d69NYXiSJGY2nviCJhnA58A5xP+gqM92D2Nm1wLTiU8fegf4HvFrMfTZ7gHMbBZwKNAHWAtcAzxGE5/lIMm+lfg00SrgHHefm4KwZSc0c66vBDKBDUG1N9z9/KD+z4hflxUhfpnHM43bTCUlWCIiIiIiIkmiKYIiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSLSxZjZMDNzM0tLdSyyazCzD8zs0FTHISLSEyjBEhGRbs/MZppZZfCoM7P6hO1nUh1fV+fuo919djLbNLMbzexTM6sws4/M7Mxkti8i0lUpwRIRSTKNPHU+dz/f3fPcPQ/4FfDA1m13P3prve50brpTrM3YAhwHFAJnAb83s6+mNiQRkY6nBEtEJAnMbImZ/dTMFgJbzCzNzCab2X/MrMzM3k2cgmVms83sf83sLTPbbGaPm1nvZto+x8wWBSMBn5vZ/2lUPs3MFgTtfGZmU4P9hWZ2h5mtNrOVZvZLMwu38jr2MLMXzWyDma03s/vMrCihbKOZ7R9sDzKz0q2vy8yOD6aalQWvb2Sj9+dSM1toZuVm9oCZZe34O73jmjk3bmZ7JtS508x+mbB9bPCelgXncFwb+zrUzFaY2VXB+7fEzE5LKD/GzN4JztVyM5uRULZ1auh3zWwZ8GKw/x9mtiZ4314xs9GN4v6jmT0TjNa9ZmYDzOx3ZrYpGDnar43v0dfb8hrbyt2vcfeP3D3m7m8CrwIHJrMPEZGuSAmWiEjynAocAxQB/YGngF8CvYFLgYfNrG9C/TOBc4GBQAS4uZl21wHHAgXAOcBNCUnOJOBu4LKg368BS4Lj7gza3RPYDzgS+F4rr8GA/wUGASOBIcAMAHf/DPgpcK+Z5QB/A+5y99lmtjcwC7gI6As8DTxpZhkJbZ8MTAWGA+OAs5sMwGxKkNg095jSymtoSsO5cfdIi29APCH5K/B/gGLgNuAJM8tsY18DgD7AYOIjN7eb2YigbAvx814UxHOBmZ3Q6PhDiL/3RwXbzwB7Af2A+cB9jeqfDPw86LMWeD2o1wd4CPhtG+Nukpld0dL5aGMb2cBE4IP2xCIi0h0owRIRSZ6b3X25u1cDpwNPu/vTwV/wnwPmAt9IqH+Pu7/v7luAXwAnNzXC5O5PuftnHvcy8G/g4KD4u8Bf3f25oJ+V7v6RmfUP+rrI3be4+zrgJuCUll6Auy8O2qp191LiX84PSSj/M7AYeJN4YvizoGg68FRwbD1wI5ANJE4Ju9ndV7n7RuBJYHwzMcxx96IWHnNaeg3NSDw3rTkPuM3d33T3qLvfRTxxmbwD/f0ieA9fJp5onwzg7rPd/b3gXC0knpQe0ujYGcE5qw6O+au7V7h7LfFkd18zK0yo/6i7z3P3GuBRoMbd73b3KPAA8eR6p7n7r1s6H21sZibwLvBse2IREekOlGCJiCTP8oTnQ4FvN/pL/xTiSUlT9ZcC6cRHHbZhZkeb2RvB9Lwy4onT1npDgM+aiGVo0N7qhP5vIz4K0iwz629m9wdTCjcD9zYR05+BMcAtwZd+iI94Ld1awd1jwesbnHDcmoTnVUBeS7Ek2fLWqzQYClzS6NwNIf4a22JTkDRvtXTrsWZ2gJm9FEytLAfOZ/v3tyFWMwub2a8tPvVzM1+OTiYeszbheXUT2535Pm/HzH5D/OflZHf3VMYiItIZlGCJiCRP4pfH5cRHqBL/2p/r7r9OqDMk4fluQD2wPrHBYFraw8RHhPoHIwZPE5/Kt7WfPZqIZTnxUZc+Cf0XuPvoJuom+lXwOsa6ewHxkbitfWFmecDvgDuAGfbldWOriCcmW+tZ8PpWttLfdszsYPtyBcCmHge33sp2Gn+xrwJyErYHJDxfDlzf6NzluPusNvbVy8xyE7Z3I/7+APwdeAIY4u6FxEd2rNHxibF+B5gGfJ34YhHDgv2Nj+kwwfVkzZ6PVo69FjgaONLdN3dOxCIiqaUES0SkY9wLHGdmRwWjEFnBAgglCXVON7NRwfVM1wEPBdO6EmUAmUApEDGzo4lfS7XVHcA5ZnaEmYXMbLCZ7ePuq4lPJfx/ZlYQlO1hZo2nozWWD1QC5WY2mPi1XYl+D8x19+8Rn/o2M9j/IHBMEEc6cAnxBO8/rb1Rjbn7qwkrADb1eHVH22zCAuA7wbmZyrbT9P4MnB+MNpmZ5Vp8cYp8aFhY4s5W2r/WzDKCZPBY4B/B/nxgo7vXBNfPfaeVdvKJv48biCeEv9qB15gU7v6rls5Hc8eZ2ZXEX9/X3X1D50UsIpJaSrBERDqAuy8nPvJwFfHkaDnxZCXx9+49xBeiWANkAT9pop2KYP+DwCbiX1ifSCh/i2DhC6AceJkvR5LOJJ6gfRgc+xDbTlFsyrXA/kFbTwGPbC0ws2nEF6m4INj138D+Znaau39MfLTrFuKjcMcBx7l7XSv9pcqFxGMsA04DHtta4O5zge8DtxJ/3xaz7YIcQ4DXWmh7TXDcKuILUpzv7h8FZT8ArjOzCuBq4ue1JXcTn2K4kvh5fKO1F9aF/Ir46N3ihBGvq1IdlIhIRzNNhxYR6XxmNhu4193/kupYpO2CVRHfBcYFi3k0Lj+U+HktaVwmIiK7hu5+E0MREZFOE4zIjWy1ooiI7LI0RVBEZBdjZjObWbBgZutHS3dkZru1sFDFbqmOT0SkJ9EUQRERERERkSTRCJaIiIiIiEiSdKlrsPr06ePDhg1LdRgiIiIiIiLNmjdv3np379tUWZdKsIYNG8bcuXNTHYaIiIiIiEizzGxpc2WaIigiIiIiIpIkSrBERERERESSRAmWiEgbRKKxVIcgIiIi3UCXugarKfX19axYsYKamppUhyLdTFZWFiUlJaSnp6c6FOnm5i3dyP/58wvccvoBHLiPbhkkIiIizevyCdaKFSvIz89n2LBhmFmqw5Fuwt3ZsGEDK1asYPjw4akOR7q5Z99fw9y07/HFY6PgitdTHY6IiIh0YV1+imBNTQ3FxcVKrmSHmBnFxcUa+ZSkSC99H4DhNR+mOBIRERHp6rp8ggUouZKdop8bSZaBG9/6cqNqY+oCERERkS6vWyRYIiKpZDVlDc+rls1PXSAiIiLS5bU7wTKzIWb2kpl9aGYfmNmFwf7eZvacmX0a/Nur/eGmhplxySWXNGzfeOONzJgxI3UBJXjjjTc44IADGD9+PCNHjmyIa/bs2fznP//Z6XaXLl3K/vvvz/jx4xk9ejQzZ85MUsQi3U96fUXD84o1X6QwEhEREenqkjGCFQEucfdRwGTgh2Y2CrgCeMHd9wJeCLa7pczMTB555BHWr1+f1HbdnVisfUs/n3XWWdx+++0sWLCA999/n5NPPhlof4I1cOBAXn/9dRYsWMCbb77Jr3/9a1atWtWuWEW6q5xYJetDxQBUb1iW4mhERESkK2t3guXuq919fvC8AlgEDAamAXcF1e4CTmhvX6mSlpbGeeedx0033bRdWWlpKSeddBITJ05k4sSJvPbaawDMmDGDG2+8saHemDFjWLJkCUuWLGHEiBGceeaZjBkzhuXLl3PZZZcxZswYxo4dywMPPADEE6RDDz2Ub33rW+yzzz6cdtppuPt2/a9bt46BAwcCEA6HGTVqFEuWLGHmzJncdNNNjB8/nldffbXFOM844wwOPPBA9tprL/785z8DkJGRQWZmJgC1tbXNJoI333wzo0aNYty4cZxyyikAbNy4kRNOOIFx48YxefJkFi5c2NDXWWedxcEHH8zQoUN55JFHuPzyyxk7dixTp06lvr4egOuuu46JEycyZswYzjvvvO1edywWY9iwYZSVlTXs22uvvVi7dm1Lp1Fkp+V4FdXpvSn1QmJlK1MdjoiIiHRhSV2m3cyGAfsBbwL93X11ULQG6N/MMecB5wHstlvL95e59skP+HDV5mSFC8CoQQVcc9zoVuv98Ic/ZNy4cVx++eXb7L/wwgu5+OKLmTJlCsuWLeOoo45i0aJFLbb16aefctdddzF58mQefvhhFixYwLvvvsv69euZOHEiX/va1wB45513+OCDDxg0aBAHHXQQr732GlOmTNmmrYsvvpgRI0Zw6KGHMnXqVM466yyGDRvG+eefT15eHpdeeikA3/nOd5qNc+HChbzxxhts2bKF/fbbj2OOOYZBgwaxfPlyjjnmGBYvXsxvfvMbBg0atN1r+fWvf80XX3xBZmZmQ8JzzTXXsN9++/HYY4/x4osvcuaZZ7JgwQIAPvvsM1566SU+/PBDDjzwQB5++GFuuOEGTjzxRJ566ilOOOEEfvSjH3H11VcDcMYZZ/DPf/6T4447rqHPUCjEtGnTePTRRznnnHN48803GTp0KP37N/kjJtIu9dEYuVRBZgGrqyMUVGokV0RERJqXtEUuzCwPeBi4yN23yYI8PgSx/fBLvOx2d5/g7hP69u2brHCSrqCggDPPPJObb755m/3PP/88P/rRjxg/fjzHH388mzdvprKyssW2hg4dyuTJkwGYM2cOp556KuFwmP79+3PIIYfw9ttvAzBp0iRKSkoIhUKMHz+eJUuWbNfW1Vdfzdy5cznyyCP5+9//ztSpU5vss6U4p02bRnZ2Nn369OGwww7jrbfiK6YNGTKEhQsXsnjxYu66664mR4jGjRvHaaedxr333ktaWlrDazrjjDMAOPzww9mwYQObN8d/JI4++mjS09MZO3Ys0Wi0Id6xY8c2vL6XXnqJAw44gLFjx/Liiy/ywQcfbNfv9OnTG0b77r//fqZPn97iey6ys2rqoxSwhWhGPhtCfcmq1kipiMj/b+/e46Oq7/yPvz4zk5nJPeQCgXBtFQQTLhqQFlGgonZr6ypW7KpV2erW2vanbXd71Vr78PdrdR/d3da2PupqbbuIqK1K15ZqtTyUXVEBbyiCqMg9hNzIbe7f3x8zhAQSbplkQvJ+Ph5h5nzP93zPZ3JyhvnM95zvV0R6lpYeLDPLIplcLXXO/SFVXGNmI51zu81sJLC3t/s5lp6mvnTzzTdzxhlncN1113WUJRIJ1qxZQzAY7FLX5/N1uayu83xMubm5x7S/A5foQfLyv1gs1m29j370o9x4441cf/31lJWVUVdXd1idnuKEw4czP3R51KhRVFZW8sILL3DZZZd1WffUU0/x/PPP88c//pE777yTN99885hek8fjISsrq2NfHo+HWCxGKBTiS1/6EmvXrmXMmDHcfvvt3c5l9bGPfYwtW7ZQW1vLE088wfe+970j7lfkRIWiCfKtnbA/n2Z/LvkRzYUlIiIiPUvHKIIG3A9sdM79pNOqFcA1qefXAE/2dl+ZVlxczOWXX87999/fUXb++efzs5/9rGP5wKVw48ePZ/365HDO69ev54MPuh95bO7cuSxfvpx4PE5tbS3PP/88s2bNOuaYnnrqqY57lN599128Xi9FRUXk5+fT3Hxw5LOe4gR48sknCYVC1NXVsWrVKmbOnMmOHTtob28HoKGhgdWrVzNp0qQu+04kEmzfvp358+fz4x//mKamJlpaWpg7dy5Lly4FkveSlZaWUlBQcEyv50AyVVpaSktLC4899li39cyMSy65hK997WtMnjyZkpKSY2pf5Hgle7DaiPsLCAdLyU20QCyc6bBERERkgErHJYJzgKuBBWb2Wurn74AfAQvN7F3gvNTySe/rX/96l9EEf/rTn7J27VqmTp3KlClTOoYzX7RoEfX19Zx++uncc889TJw4sdv2LrnkEqZOncq0adNYsGABd911F+Xl5cccz+9+9zsmTZrE9OnTufrqq1m6dCler5dPf/rTPP744x2DXPQUJyQv85s/fz6zZ8/m1ltvZdSoUWzcuJGzzjqLadOmce655/KNb3yDqqoqAL7whS+wdu1a4vE4V111FVVVVcyYMYOvfvWrFBUVcfvtt7Nu3TqmTp3Kt771LX7zm9/0FP5hioqKuP7666msrOSCCy5g5syZHevuvffeLnEvXryY//qv/9LlgdKnwtEoebRDoIBYduoy5pZed8iLiIjIIGXdjUyXKdXV1W7t2rVdyjZu3MjkyZMzFNHgd/vtt3cZDGOw0d+P9NbbH2xnym8q2Tztm6xrKeVz7/0zfOE5GH1mpkMTERGRDDGzdc656u7WpW2QCxGRwSjS3gqA+XPxFSZ7l8NNezIZkoiIiAxgaR2mXU4+t99+e6ZDEBnQoqFkguUN5BD0JxOs1rqdBI60kYiIiAxZ6sESETmCaDg52IvPn01eSXJS71Dj7iNtIiIiIkOYEiwRkSOIhdsA8AVzKC7Ip8HlEdclgiIiItIDJVgiIkfQkWD5cyjND1DrCjWKoIiIiPRICZaIyBEkIskEKyuQTUmun1pXhK9dCZaIiIh0TwnWMXriiScwM955550e62zdupXKysq07XPTpk3MmzeP6dOnM3nyZG644QYgOUnwn/70pxNuNxQKMWvWLKZNm8bpp5/O97///XSFLDLoJCLJe7AC2bkEs7w0eoYRCNdlOCoREREZqJRgHaNly5Zx9tlns2zZsm7Xx2KxXu8jHo93Wf7qV7/KLbfcwmuvvcbGjRv5yle+AvQ+wQoEAjz33HO8/vrrvPbaa6xcuZI1a9b0KnaRwepAguUP5gDQklVMbkQJloiIiHRPCdYxaGlpYfXq1dx///08/PDDHeWrVq1i7ty5fOYzn2HKlClAMtG68sormTx5MpdddhltbcnLi5599llmzJhBVVUVS5YsIRwOAzB+/Hi++c1vcsYZZ/Doo4922e/u3bsZPXp0x3JVVRWRSITbbruN5cuXM336dJYvX05raytLlixh1qxZzJgxgyeffBKABx98kIsvvph58+Zx6qmn8oMf/AAAMyMvLw+AaDRKNBrFzA573Y8++iiVlZVMmzaNc845B0j2fl133XVUVVUxY8YM/va3v3Xs6+///u9ZuHAh48eP55577uEnP/kJM2bMYPbs2dTX1wNw3333MXPmTKZNm8aiRYs6fj+dzZ49m7feeqtjed68eRw6AbVIf0lEU6MIBpIJViRYSsCFINySybBERERkgDq55sH687dgz5vpbbO8Cj75oyNWefLJJ7nwwguZOHEiJSUlrFu3jjPPPBOA9evXs2HDBiZMmMDWrVvZtGkT999/P3PmzGHJkiX84he/4Mtf/jLXXnstzz77LBMnTuTzn/88v/zlL7n55psBKCkpYf369Yft95ZbbmHBggV8/OMf5/zzz+e6666jqKiIO+64g7Vr13LPPfcA8J3vfIcFCxbwwAMP0NjYyKxZszjvvPMAePnll9mwYQM5OTnMnDmTT33qU1RXVxOPxznzzDPZsmULN910E2edddZh+7/jjjv4y1/+QkVFBY2NjQD8/Oc/x8x48803eeeddzj//PPZvHkzABs2bODVV18lFApxyimn8OMf/5hXX32VW265hd/+9rfcfPPNXHrppVx//fUAfO973+P+++/v6Jk7YPHixTzyyCP84Ac/YPfu3ezevZvq6m4nyhbpe9FQ8tGXDUAsZzi0AC01EMjLXFwiIiIyIKkH6xgsW7aMK664AoArrriiy2WCs2bNYsKECR3LY8aMYc6cOQBcddVVrF69mk2bNjFhwgQmTpwIwDXXXMPzzz/fsc3ixYu73e91113Hxo0b+exnP8uqVauYPXt2R89XZ08//TQ/+tGPmD59OvPmzSMUCrFt2zYAFi5cSElJCdnZ2Vx66aWsXr0aAK/Xy2uvvcaOHTs6krBDzZkzh2uvvZb77ruv4/LF1atXc9VVVwFw2mmnMW7cuI4Ea/78+eTn51NWVkZhYSGf/vSngWTP29atW4FkEjZ37lyqqqpYunRpl56qAy6//HIee+wxAB555BEuu+yybn8/Iv0iluzBIiuYfMwbnnzUSIIiIiLSjZOrB+soPU19ob6+nueee44333wTMyMej2Nm3H333QDk5uZ2qX/opXbdXXp3qEPb6GzUqFEsWbKEJUuWUFlZ2W0i5Jzj97//PZMmTepS/tJLLx01nqKiIubPn8/KlSsPG6Dj3nvv5aWXXuKpp57izDPPZN26dUd8HYFAoOO5x+PpWPZ4PB33qF177bU88cQTTJs2jQcffJBVq1Yd1k5FRQUlJSW88cYbLF++nHvvvfeI+xXpU7GuPVhZheXJ4v17TrI3UBEREekP6sE6iscee4yrr76aDz/8kK1bt7J9+3YmTJjACy+80G39bdu28eKLLwLw0EMPcfbZZzNp0iS2bt3Kli1bAPjd737Hueeee9R9r1y5kmg0CsCePXuoq6ujoqKC/Px8mpubO+pdcMEF/OxnP8M5B8Crr77ase6ZZ56hvr6e9vZ2nnjiCebMmUNtbW3HJX/t7e0888wznHbaaYft/7333uOss87ijjvuoKysjO3btzN37lyWLl0KwObNm9m2bdthid2RNDc3M3LkSKLRaEc73Vm8eDF33XUXTU1NTJ069ZjbF0k3TyxEHA94swAIFI0EoK1+VybDEhERkQGqzxMsM7vQzDaZ2RYz+1Zf7y/dli1bxiWXXNKlbNGiRT2OJjhp0iR+/vOfM3nyZBoaGrjxxhsJBoP8+te/5rOf/SxVVVV4PB6++MUvHnXfTz/9dMcgExdccAF333035eXlzJ8/n7fffrtjkItbb72VaDTK1KlTOf3007n11ls72pg1axaLFi1i6tSpLFq0iOrqanbv3s38+fOZOnUqM2fOZOHChVx00UUA3HbbbaxYsQKAf/7nf6aqqorKyko+/vGPM23aNL70pS+RSCSoqqpi8eLFPPjgg116ro7mhz/8IWeddRZz5szpktStWLGC2267rWP5sssu4+GHH+byyy8/5rZF+oLFQ0TwQ6r3N794BDHnIdS4J8ORiYiIyEBkB3o9+qRxMy+wGVgI7ABeAT7nnHu7u/rV1dXu0NHiNm7cyOTJk/ssxsHswQcf7DIYxlCkvx/prb/e/Q/MbHuBwu9vB2Ddhw2MeWA6sVPOZ9TV92U4OhEREckEM1vnnOt2FLa+7sGaBWxxzr3vnIsADwMX9/E+RUTSxhMPE/Uc7KUtywtQ6wqhuSaDUYmIiMhA1dcJVgWwvdPyjlRZBzO7wczWmtna2traPg5naLn22muHdO+VSDp442FinRKs0nw/ta4IX7ver0RERORwGR/kwjn3K+dctXOuuqysrKc6/RyVDAb6u5F08CW6Jlg5fh8NniICoX0ZjEpEREQGqr5OsHYCYzotj06VHbNgMEhdXZ0+LMtxcc5RV1dHMBjMdChykstKhIl5uv4dtfpLyY3Wg96XRERE5BB9PY3LK8CpZjaBZGJ1BfAPx9PA6NGj2bFjB7p8UI5XMBhk9OjRmQ5DTnJZLkzCm9OlLBIsxReNQXsD5BRnKDIREREZiPo0wXLOxczsy8BfAC/wgHPureNpIysriwkTJvRJfCIiR5PlIiS8XZOoeE4ZNAMte5VgiYiISBd93YOFc+5PwJ/6ej8iIunmnMPvwiS8XS8R9OQNhxqgpQaGHz5Jt4iIiAxdGR/kQkRkoIrEEwSJ4HxdEyxf4UgAYvs12bCIiIh0pQRLRKQHoWiCoEXBF+hSHhyWTLDa6ndnIiwREREZwJRgiYj0IByNJ3uwsrK7lBcNKyXssgg37spQZCIiIjJQKcESEelBKJogQAQ75BLB0vwgtRQS31+TochERERkoFKCJSLSg/ZwhIDFsEN6sMryAtS6Imjdm5nAREREZMBSgiUi0oNIqA0AT6BrglWa72efK8TXpvn5REREpCslWCIiPYiEWgHwHNKDleP30eApIhjel4mwREREZABTgiUi0oNwqgfLG8g5bF2bv5ScWCPEY/0clYiIiAxkSrBERHoQTfVgZXWTYEWCpXhw0KZeLBERETlICZaISA+iqR6s7hKsRM7w5JMWjSQoIiIiBynBEhHpQSySSrCChydY3sLy5JMWDXQhIiIiBynBEhHpQSwcAsDfTYIVKBoJQKRpd7/GJCIiIgObEiwRkR7EUz1Y/mDuYesKSkYB0FK3s19jEhERkYGtVwmWmd1tZu+Y2Rtm9riZFXVa920z22Jmm8zsgl5HKiLSzxLh5CAXvsDhCVZZyTCaXTbhBvVgiYiIyEG97cF6Bqh0zk0FNgPfBjCzKcAVwOnAhcAvzMzby32JiPQri7YknwTyDls3oiBIrSsk3qxBLkREROSgXiVYzrmnnXMHJoFZA4xOPb8YeNg5F3bOfQBsAWb1Zl8iIv3NIqkEy59/2LrywiC1FOFp3dvPUYmIiMhAls57sJYAf049rwC2d1q3I1V2GDO7wczWmtna2lqNxiUiA4cnmrwHq7serLyAjwYrIqtd82CJiIjIQUdNsMzsr2a2oZufizvV+S4QA5YebwDOuV8556qdc9VlZWXHu7mISJ/xRluI4QWvv9v1bf4ScqN1/RyViIiIDGS+o1Vwzp13pPVmdi1wEfAJ55xLFe8ExnSqNjpVJiJy0vDFWmm3bPLNul0fyy4lZ38LREOQFezn6ERERGQg6u0oghcC/wJ8xjnX1mnVCuAKMwuY2QTgVODl3uxLRKS/+eLthD2Hz4F1gMsdkXyi+7BEREQkpbf3YN0D5APPmNlrZnYvgHPuLeAR4G1gJXCTcy7ey32JiPQrf6yViCe7x/XegmSCFd+/p79CEhERkQHuqJcIHolz7pQjrLsTuLM37YuIZJI/3ka0m0mGDwgUJwdObandTuFYDZQqIiIi6R1FUERkUPEn2on7ek6wcsvGAtBSu62/QhIREZEBTgmWiEg3YvEEQddOIqvnBKu0bCRh5yPSsKMfIxMREZGBTAmWiEg3WsIx8qwd/IfPgXVAeWE2NW4Ybv+ufoxMREREBjIlWCIi3djfHiOXEAR7TrBK8gLUUIyvVYNciIiISJISLBGRbuxvC1FIK5Zd3GMdr8do9JWSHarpx8hERERkIFOCJSLSjbamfXjM4c0rPWK91sAICqL7oGOedRERERnKlGCJiHQj3FwLgO8oCVY0ZwQBF4b2hv4IS0RERAY4JVgiIt2I7N8HQKDwyAkWBaOSj827+zgiERERORkowRIR6Ua8tQ6A7IKyI9bzFiUnGw7Vaah2ERERUYIlItKtaEsywcodNvyI9bJLkglWc+2HfR6TiIiIDHxKsEREupFoSV4iaDklR6xXVJZMsNrVgyUiIiIowRIR6V5bPVF8R5xoGGB4cQG1rpB4085+CkxEREQGMiVYIiLdyA3X0OgrA7Mj1isvCLLHDcOjQS5ERESENCVYZvZ1M3NmVppaNjP7qZltMbM3zOyMdOxHRKS/FEb30hIYcdR6uQEf+6yEQLsmGxYREZE0JFhmNgY4H9jWqfiTwKmpnxuAX/Z2PyIi/SUUjTM8sY9wzshjqr/fP5y88N4+jkpEREROBunowfo34F8A16nsYuC3LmkNUGRmx/ZJRUQkw/Y2tjHC6nEH5rg6inD2cPIS+yHa3seRiYiIyEDXqwTLzC4GdjrnXj9kVQWwvdPyjlRZd23cYGZrzWxtbW1tb8IREUmLXTs/xG9xgiVjj6l+PC/1/ZHuwxIRERnyfEerYGZ/Bcq7WfVd4DskLw88Yc65XwG/AqiurnZHqS4i0ucad20GYFjFqcdU31NYAbsg0bQLT/FH+jI0ERERGeCOmmA5587rrtzMqoAJwOuWHGVrNLDezGYBO4ExnaqPTpWJiAx40T0bASgcW3lM9YPFBycbLpxwdp/FJSIiIgPfCV8i6Jx70zk33Dk33jk3nuRlgGc45/YAK4DPp0YTnA00Oed07YyInBT8DVsIEcAKxxy9MpBblryUsH2fJhsWEREZ6o7ag3WC/gT8HbAFaAOu66P9iIikXUHL+9QGxjHGc2zfQZWWlNLssok0qKNeRERkqEtbgpXqxTrw3AE3pattEZH+UtPUzsTEe9QVLzjmbcoLgtS4YWTtV4IlIiIy1KVlomERkcFi86YNlFgzgfGzjnmb0jw/NQwjq3VPH0YmIiIiJwMlWCIinTS++78AlE/++DFv4/N6aPCVka3JhkVERIY8JVgiIp3k7lhNi+USqJh6XNu1B4ZTEN0HiXgfRSYiIiInAyVYIiIpTW0RprS9wo7i2eA9vltUIznleElAqyZMFxERGcqUYImIpLyx/n8ptwYCp11w3Nu6glHJJ/t3pTkqEREROZkowRIRSdn/5p8BGDPzouPe1ltYAUC0USMJioiIDGVKsEREgEgswbiaZ9gemIivqOK4t88uTvZgtdQpwRIRERnKlGCJiABr175IJe/RPuWyE9q+oGQkCWeE6pVgiYiIDGVKsEREgP0v/RcxPEyYd80JbV9WmEcd+cSaNBeWiIjIUKYES0SGvKa2MNPqV/J+wWyyCstPqI3hBQFq3TCsRQmWiIjIUKYES0SGvHWrVjDS6vGfeeUJt1GS62cvRfjaNUy7iIjIUKYES0SGPO+bD9NCLuM+dukJt+HzetjvLSE7vC+NkYmIiMjJptcJlpl9xczeMbO3zOyuTuXfNrMtZrbJzI5/UhkRkX6ws6aW6rYX2Fp+PubP6VVbbYFScqP1kEikKToRERE52fh6s7GZzQcuBqY558JmNjxVPgW4AjgdGAX81cwmOufivQ1YRCSd3v7bQyy0MGVnn9jgFp1Fs8vwheLQVgd5ZWmILrOcc9Q11LNv51ba63cRadxJvGUf8VAznmgr3lgb3lg7ziUTSo+BmWFAwusn4Q2Q8AZxviD4gpgvCP4gHl82Hn8Qb1YAb1YQn//gY5Y/m6xAkCx/AMsKYObDPB4MwwwwD3Taj6WWnQOXDLrjEedSLyTR8Xo66nQq6/wIDhKpMtwhdRLJUkdH2wfb6filHawzJFn3pd0Xn9x68aIObHqgBetS1nWldXluHdt3bGuGP6+YnILiE45HRNKrVwkWcCPwI+dcGMA5tzdVfjHwcKr8AzPbAswCXuzl/kRE0sY5R9G7f6DGW86I0+f1vr3cEdAAtNScdAlWbcN+tr69hub3XiarbhMFrVsZGd3OcGugtJv6EeejzYKECZCw1MUQqSTHcGQRJeAiBIjit1h/vhSRIafR5dJw0xtUDO/ubBWR/tbbBGsiMNfM7gRCwDecc68AFcCaTvV2pMpERAaMt7e8z4zYG2w6ZQkj0vAVu6+wHHZAYv8ePOWVaYiwbzjn2LZnH1vWPo1772+ManqVUxIfMNOSFxk0k0uNfyy7Sj7G9uKP4C8ZR2BYBbnFFRSUjSQvvwi/L4D/GPeXiMWIRNqJtLcRCbURDSd/IuEQsUiYeDRMLBoiHg0Rj4ZJREIkYhEsHsFcrGuvFJ16m1K9Rckj5zr1KBz4ut8OeZ5cZwe6BLqt3/06s8PbPFDmuqnrDvZDDCFDqdvu+F/rYb2a7mAvaedWD63X8efezX6dA1/LLmZ/eC9v/c9jVFzyxeOOS0TS76gJlpn9Fehu3OLvprYvBmYDM4FHzOwjxxOAmd0A3AAwduzY49lURKRX3n/hYU63BGPPuSot7QWGJb9Haq3fSX5aWkyfaDzB+tfWU//Kowzfu5rK+DuMsxhhstiWPYWNw68mZ8IsKqbMIb9sHPlpvKbL4/MR9OUTzBlovxWRk59LxKm541FyNj8OKMESGQiOmmA5587raZ2Z3Qj8wSW/TnzZzBJAKbATGNOp6uhUWXft/wr4FUB1dfVQ+vpLRDIoGk8wfNufqckazYix09PSZm7JKADa6gZGghWLJ3j1tXXUvbyccTV/5Sw+AGC7/6NsGXslxVUXUF41j1P9uRmOVEROlHm8bB15IWfsepjavbsoGz4q0yGJDHm9vUTwCWA+8Dczmwj4gX3ACuAhM/sJyUEuTgVe7uW+RETSZu1bm5nlNrD1lC+m5fJAgNJhRTS5HGKN3X6f1C+cc2zYVsuG5x7i1A+XM5O3AdganMKmSd9i3NzPMaZ0fMbiE5H0G3nOtWQtX8qWlb+k7PM/zHQ4IkNebxOsB4AHzGwDEAGuSfVmvWVmjwBvAzHgppNxBMFEPJ4cqcqj6cJEBpu9Lz2C1xyjzz7xyYUPNTw/yE5XRlHT9rS1eaya2qM8/eJ6oi8/wHntK6myRvZljWTzaV9n7LxrGF8yrt9jEpH+MXbyLN4MzOCU939HJPxd/IFgpkMSGdJ6lWA55yJAtzcvOOfuBO7sTfuZtvbx/yBn8xMEP/V/OWXa2ZkOR0TSJJ5wVOxayR7/WMpHpW8wirL8AJtcKcNb+68Ha9PuJlY//XvGvf8Ql7IWM9g1fC5t826kdPIFlHq8/RaLiGRO4mNfoWzVEl556pfMvPSWTIcjMqT1tgdrUPNkBRgVeZ/ixz/Fhj/NIDzjH6lccDkBfyDToYlIL7zxzmbOSLzNlo98ifI0DuaQ7fey11tGXvs7yeG9+mjyn1g8warXN7Nr1f2c3biCf/TsocVXSH3ljZTN+ydGDxvfJ/sVkYFr6jmX8M7qu/jIG/9O28JryMnXvFgimaIE6wiqL76JpnOv4KUn/5VxHzxC+Zov07Dm27xZfA6+KZ9m4qwLNLHfoZwDl8AlYql5PpMTejogkUikhpt1uITD4Tom/nSJxMHhaV1y3YHJPpNj2fZi/JPj/pB7/B+KXV/vo89n6ezreE4g/j7cx741y/CYo2LO545zH0cXyhlFsK0VQo2QPSytbde3Rnj22ZVkv/5rzou9QNCi7B42ndazv0/ejEXk+fTlj8hQZR4PiQt/xLA/XsL6pd+k+ov3ZTqkk5Jzjng8TjweJR6LEYtFcfHUYyLeuWLqMfmP61Te9fmhk5kfzjr9f2fm6Xld5//nPJ3/z7Pu6/fQbk916LLvLrNZH9yDdZ2CovMUFl0i7dxsD/umxzis02tNteXx4vN6u9YbwJRgHUVhUQlnXfP/iEV/wIYX/kD7a49xWt1z5K9+ivgLxnu+j1BfVIlnxGRyRldRNu40ioePwZPVtx904glHKBQiFGojEmpNzi8TbiMaaiMWbiMWbicWaScebiMeDeEibbhYCBcNQbQdYiEsFsYTD+GJh/AlIvhcmKxEGF8iQpYL43MxzCXwEMfj4qnHBF7ieEjgdanHjp84PksAqVnp+/Q3IHLiFgLbvGMZO6Yq7W3HC8dDG1D3Pow+My1tvvVhDRv+8gCTdz7KZ+09QhZk70cvZdQnbmJkxbS07ENETn5Tquez+n8v4ew9j/D2c/OZsuAfMh1S2rhEnLbmJlr319PW3ECopZFwayPRtiZi7U0k2vZDeD+eSAsWD+GJh/HGQ3jiEbyJEL5On2+yXAS/i+Ajhjf1uSb5k/w84zOnD8gDzA+jV/HpL97J9DFFmQ7lmOjv5xj5svxULrgCFlxBONTGhrXP0rhxFcNqX2Hivr9SWPckqcG6AKingEZvMSFPHlFvNjFvNnFfDnj9mHWeGtPAOTyJKJ5EGItH8CQieOMRvC6CNxHB56IdbwZ+wvhdlCARci3BiQ6uHMVHhCzC5idKgIj5iXr8RC1A1PyEvbnELQtnXvB4D3vE4wNLPXo8OPPhrPOj9+C3GamJOQ+87s6TfHZZfyC4A9902MFSZyeSsh1fr5cdVy9Z38wocHwxHG8cx17Xjqfd4wz5uNruq9fnHMXT/u442j52npGVsBtiu97A14sEKxSN8/yaNYT+9z7OaXua062VmuB4amb+kBFnX8PYYGEaoxaRweKML9zDpn99g/HP38zWwlLGn3l+pkPqViLhqG+sp373h7Tt20akcQ+xln241n142uvJCtcTiDSSG2+k0O2n0DUf9XNPwhltFiRMgIhlEbEAMfMT9QSIeQJEfXk0e4M4T4C4LwAeP87jS36uMW/yecdnm+SjebzgPVDu7fj81vlfrNNz6NKb4w7p2Tlcp/+7DvkM0LXXq6d6x1eerjbNdTdN9qH1D9l3l/JED+12bfPAXk4rOovygpNn8BY7Updlf6uurnZr167NdBjHLRFPsHvXh+x7/zVaaz4gsX8X3tYagqFa/PE2shLtBBLtBF07Xhfr2K7zB80YPqLmJ2ZZyR9PgLgni4THn/zxBoh7gzhfAOcNgi8IWdl4soJYVhCPPxtPVjZefza+QA6+QDZZgRyygjn4gzn4g7kEsnPwB7IxX3byzUJE0u7x9dtY+ORMopWLGfbZnx739tv3NrD+6d8xastyZrKBGF62Df8EwxfcRN6kc/vhclEROdnt2PY+sV9fxAhXywfVtzPlU1/q1/eOSDTO3toaGmu20rp3G5GGHbimnXhb95ATqqEwupfSRB0F1nbYtnFnNFk+LZ5C2rIKCWcVEwkMIxYchgsW48kuxJdTQFZOIYG8IrLzisjJH0ZeQTHB3PxkQiTSD8xsnXOuutt1SrBERNJn675Wan86jwnDApTesvqYtmmLxPifF1cTfeU3zG5+mmJrYZ+vnJbTr2TsguvxFI7s46hFZLDZsX0bdb+5kmmxN9icPY3AuV9j3MyLev0FaywaZd/eXTTs2Urz3m1EGrbjmnbja91NbriGwmgtw10d2Rbpsl3CGfWeIpp8pbQGRhDNHYnLH0XWsAqCJWPILRlFYelI8gpKMH0JLCeBIyVY+gsWEUmjcSU5/Nl3JjOblsH+3VDQfXIUiSVY/8br1K15iI/WrGShbSOGl/dL58G5/0Rp5UJKNQefiJyg0WPGUvYvz/LssruY9v6vKF15DQ1/KWRb/hnER1QRKBmHv6icYG4BCWfEEo5ELEy8rYlQcz2R1gbirfV4W/fib99LTngvRbF9FLtGyi1Bead9RZ2XOk8JzVmlNBVOpi53JJ7CCvzFFeSWjWPYyPHkl1RQ6vNTmrHfiEj/UQ+WiEia/eSh/+Zrm6+kffYtZF94e0d5SyjK6688T+PrTzF63/NM410APsyuhKmLGHv2lVj+iAxFLSKDVUNTM6+teozgphWMadvAaPYe87ZN5FLnKaU5q5RwcDiJ/HK8BaMIllSQXzaOklHjyS8eBfpCSIYYXSIoItKP3q1p5u2fL+Yiz4u8O+KTNLg8fI3vMz68mTJrAmB7cBLhiRcxZu7VBMomZDhiERkqnHPs2buXhppthBv3EG5vxovh8Rperw9PdhG5hSUUFpVQMKwUfzAn0yGLDEhKsERE+tnTr75H6x+/ybz4iwSIss9XTvOwKfgnLmDCWZ/BV1h+9EZERERkQNI9WCIi/ez8GR/FTX+U9mic7CwvYzX6n4iIyJCgBEtEpI+YGTl+vc2KiIgMJbojUUREREREJE2UYImIiIiIiKSJEiwREREREZE0GVCjCJpZLfBhpuM4RCmwL9NBSL/R8R46dKyHDh3roUXHe+jQsR46BuKxHuecK+tuxYBKsAYiM1vb0xCMMvjoeA8dOtZDh4710KLjPXToWA8dJ9ux1iWCIiIiIiIiaaIES0REREREJE2UYB3drzIdgPQrHe+hQ8d66NCxHlp0vIcOHeuh46Q61roHS0REREREJE3UgyUiIiIiIpImSrBERERERETSRAnWEZjZhWa2ycy2mNm3Mh2PpI+ZjTGzv5nZ22b2lpn9n1R5sZk9Y2bvph6HZTpWSQ8z85rZq2b236nlCWb2Uur8Xm5m/kzHKOlhZkVm9piZvWNmG83sYzq3ByczuyX1Hr7BzJaZWVDn9uBhZg+Y2V4z29CprNtz2ZJ+mjrub5jZGZmLXI5XD8f67tT7+Btm9riZFXVa9+3Usd5kZhdkJOgjUILVAzPzAj8HPglMAT5nZlMyG5WkUQz4unNuCjAbuCl1fL8FPOucOxV4NrUsg8P/ATZ2Wv4x8G/OuVOABuAfMxKV9IX/AFY6504DppE87jq3BxkzqwC+ClQ75yoBL3AFOrcHkweBCw8p6+lc/iRwaurnBuCX/RSjpMeDHH6snwEqnXNTgc3AtwFSn9euAE5PbfOL1Of2AUMJVs9mAVucc+875yLAw8DFGY5J0sQ5t9s5tz71vJnkB7AKksf4N6lqvwH+PiMBSlqZ2WjgU8B/ppYNWAA8lqqiYz1ImFkhcA5wP4BzLuKca0Tn9mDlA7LNzAfkALvRuT1oOOeeB+oPKe7pXL4Y+K1LWgMUmdnIfglUeq27Y+2ce9o5F0strgFGp55fDDzsnAs75z4AtpD83D5gKMHqWQWwvdPyjlSZDDJmNh6YAbwEjHDO7U6t2gOMyFRcklb/DvwLkEgtlwCNnd64dX4PHhOAWuDXqUtC/9PMctG5Peg453YC/wpsI5lYNQHr0Lk92PV0Lutz2+C2BPhz6vmAP9ZKsGRIM7M84PfAzc65/Z3XueQcBprH4CRnZhcBe51z6zIdi/QLH3AG8Evn3AyglUMuB9S5PTik7r25mGRSPQrI5fBLjGQQ07k8NJjZd0ne2rE007EcKyVYPdsJjOm0PDpVJoOEmWWRTK6WOuf+kCquOXBJQepxb6bik7SZA3zGzLaSvNR3Acl7dIpSlxWBzu/BZAewwzn3Umr5MZIJl87twec84APnXK1zLgr8geT5rnN7cOvpXNbntkHIzK4FLgKudAcn7x3wx1oJVs9eAU5NjUbkJ3kz3YoMxyRpkroH535go3PuJ51WrQCuST2/Bniyv2OT9HLOfds5N9o5N57kefycc+5K4G/AZalqOtaDhHNuD7DdzCalij4BvI3O7cFoGzDbzHJS7+kHjrXO7cGtp3N5BfD51GiCs4GmTpcSyknIzC4keXn/Z5xzbZ1WrQCuMLOAmU0gObDJy5mIsSd2MBmUQ5nZ35G8d8MLPOCcuzOzEUm6mNnZwAvAmxy8L+c7JO/DegQYC3wIXO6cO/QGWzlJmdk84BvOuYvM7CMke7SKgVeBq5xz4QyGJ2liZtNJDmjiB94HriP5haLO7UHGzH4ALCZ5+dCrwBdI3ouhc3sQMLNlwDygFKgBvg88QTfncirJvofkZaJtwHXOubUZCFtOQA/H+ttAAKhLVVvjnPtiqv53Sd6XFSN5m8efD20zk5RgiYiIiIiIpIkuERQREREREUkTJVgiIiIiIiJpogRLREREREQkTZRgiYiIiIiIpIkSLBERERERkTRRgiUiIiIiIpImSrBERERERETS5P8DkcKKp3hLwusAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1322,31 +1322,31 @@ " 36\n", " True\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " bAP.soma.v\n", - " 0.00761\n", - " 2.08e-07\n", + " 0.00774\n", + " 6.1e-08\n", " \n", " \n", " 37\n", " True\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step1.soma.v\n", - " 0.00846\n", - " 8.74e-07\n", + " 0.00953\n", + " 4.58e-06\n", " \n", " \n", " 38\n", " True\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step3.soma.v\n", - " 0.00787\n", - " 2.61e-06\n", + " 0.00778\n", + " 6.73e-06\n", " \n", " \n", "\n", @@ -1354,14 +1354,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "36 True 2 0.12 0.0646 bAP.soma.v \n", - "37 True 2 0.12 0.0646 Step1.soma.v \n", - "38 True 2 0.12 0.0646 Step3.soma.v \n", + "36 True 2 0.0769 0.069 bAP.soma.v \n", + "37 True 2 0.0769 0.069 Step1.soma.v \n", + "38 True 2 0.0769 0.069 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "36 0.00761 2.08e-07 \n", - "37 0.00846 8.74e-07 \n", - "38 0.00787 2.61e-06 " + "36 0.00774 6.1e-08 \n", + "37 0.00953 4.58e-06 \n", + "38 0.00778 6.73e-06 " ] }, "metadata": {}, @@ -1369,7 +1369,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgBElEQVR4nOzdd5xU9b3/8ddnZnuHXViqLBaQtqICYgRFzVWMBYlGNDb0Gn9qTNRYYoxRYq73JsbE2BKjMdFYEKNGjRq7qBhRQQELFtSFpS9L2V5m5vv74xzWYdnKzjJb3s+H82DOOd/zPZ8zZ2ecz3zLMeccIiIiIiIi0nGBeAcgIiIiIiLSUyjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSLSRZhZgZk5M0uIdyw9nZnNNrMF8Y6jqzGzqWb2WbzjEBHpzpRgiYhIt2Zmc8ys3swqoh5XxTuu7sg596ZzbmQs6zSzPDN7y8xKzWyrmb1tZofE8hgiIl2JfiUVEYkRM0twzoXiHUcvNc85d0a8g+gs3fxvqwI4F/gCcMAM4F9m1r8bn5OISLPUgiUi0gFmVmRmPzWzZUClmSWY2WQz+4//a/1SM5sWVX6+mf2fmb1rZmVm9pSZ9W2m7nPMbLmZlZvZV2b2/xptn2FmS/x6vjSz6f76bDO718zWmdkaM/sfMwu2ch57mdmrfivDJjN7yMxyorZtNrMD/OVBZlay/bzM7AQz+9g/3/lmNqrR63OFmS0zs21mNs/MUtr/SrefmV3tvy7lZvaJmc1sppyZ2S1mttF/LT80s7H+tmQzu9nMVpnZBjO7y8xS23j8+/zyL/kxvG5mw6K232pmxf4xF5vZ1Khtc8zsMTN70MzKgNlmNslv/dnqX9s7zCwpah9nZheZ2Rf+8X7lX7v/+Md4NLp8MzFPM7PVbTm/tnLO1TjnPnPORQADwkAfoMm/exGR7k4JlohIx50GHAvkAPnAs8D/4H2BvAJ43Mz6RZU/C+8X/YFACLitmXo3AscBWcA5wC1RSc4k4O/Alf5xDwWK/P3u8+vdG9gfOAo4r5VzMOD/gEHAKGAoMAfAOfcl8FPgQTNLA/4G3O+cm29mI4C5wKVAP+A5vNaJ6C/ypwDTgeFAITC7yQDMpvjJQ3OPKa2cQ2NfAlOBbOCXfvwDmyh3FN7rN8IvewpQ6m/7tb9+PN7rORi4rh0xnA78CsgDlgAPRW17z6+3L/Aw8I9GyecM4DG86/sQXmJymV/XwcCRwEWNjnc0cCAwGbgKuBs4A+96jsX7W91lfqLc3PX5Y2v7AjXA08BfnHMbOxKLiEhXZc65eMcgItJtmVkRcINz7q/+8k+Bsc65M6PKvAA87Jy738zmAwudc1f720bjffFOxfsS/DWQ2FTXKTN7EnjNOXermf0ZqHLOXdaoTD6wCshxzlX7604DznfOHd6O8zoRuN45t3/UuqfxkiQHTHTO1ZrZL4BxzrlT/DIBoBg43U/AioBrnXMP+ttvArKccxe0NZY2xDoHuAaoilo92jm3tlG5Jf45PWVms4HznHNTzOwI4C68xPddv6UFMzO87m2FfpKJmR2Mdy2HtyGu+4AU59yp/nIGsA0ocM4VN1F+CzDNObfUP6cjnHOHtlD/pcBhzrmZ/rIDpjjn3vKXFwOPOud+4y//Dgg65y5toc5pwIPOuSGtnd+u8BPImUCSc+7+zjiGiEi8aQyWiEjHRX9ZHgZ8z8yOj1qXCLzWTPmV/va8xpWa2THA9XgtKAEgDfjQ3zwUr7WosWF+feu8/AD8fXf6Qt/oWPnArXgtPpn+PlsaFbsHr/XhfOdcrb9ukH8OADjnImZWjNfSs936qOdV/j6x9mjjMVhmdhbwE6DAX5VBE6+zc+5VM7sDuBMYZmZP4LU8puC95oujXksDWuxu2UjD6+6cqzCzzXjnX2xmVwD/7S87vJbKvKb29c9nBPB7YIIfVwKwuNHxNkQ9r25ieUA7Yo8551wNMNe8rq9LnHNL4xmPiEhnUBdBEZGOi+4KUAw84JzLiXqkO+d+HVVmaNTzPYB6YFN0hWaWDDwO3AzkO+dy8BKq7d/0i4G9moilGKgF8qKOn+WcG9PKOfyvfx7jnHNZeN3KvskqvNaXPwD3AnPsm3Fja/GSuu3lzD+/Na0cbyfmTRFe0cJjauu1NNQ1DC8hvBjI9V+/j6LPKZpz7jbn3IHAaLyE9kq8a1INjIl6LbOdcxntOK2Ga+2/hn2Btf65XIXXHbGPH9+2RvE17mLyJ+BTYB//Gl3T3Pl0FvPG2jV3fe5qR1WJwJ6dFaeISDwpwRIRia0HgePN7GgzC5pZij9xQHSXqzPMbLQ/nukG4DHnXLhRPUlAMlAChPzWrKOitt8LnGNmR5pZwMwGm9m+zrl1wIvA78wsy9+2l5kd1krcmXjd4baZ2WC8BCParcAi59x5eGPMtn+ZfhQ41o8jEbgcL8H7T2svVGP+FOEZLTzebEd16XgJSgl4E4bgjUHaiZlNNLOD/Pgr8cYJRfyugvfgjX3r75cdbGZHR+3rLGoSkyZ8xx9bloQ3Fmuh3z0wE2+cXAmQYGbX4bVgtSQTKAMqzGxf4MJWysecc25MC9enyW6f5k36MsXMksws1e9Gmw+8s3ujFxHZPZRgiYjEkP/leQZe60IJXovSlez4efsA3kQU6/G6of24iXrK/fWP4nXV+z5e97zt29/Fn/gCr+Xjdb5pSToLL0H7xN/3MbwJNVryS+AAv65ngSe2bzCzGXiTVGz/Qv8T4AAzO9059xlea9fteC0+xwPHO+fqWjlep3LOfQL8Dngbr5vcOOCtZopn4SVSW/C6O5YCv/W3/RRYASw0bza/l4GRAGY2FCjnm26bTXkYr5vnZrzJJ7Z3Y3wBeB743D9mDa1048Trtvh9/5j3APNaKd9VJON1vyzFa9n8DnBs4zFyIiI9hSa5EBHZjfxJLh50zv0l3rFIx5jZGXjdB3/WzPb7gNXOuWt3a2AiIhJXmuRCRERkF2yfGVFERCSaugiKiPQS5t30tqOTE0g3Z2bXNPN38O94xyYi0hOoi6CIiIiIiEiMqAVLREREREQkRrrUGKy8vDxXUFAQ7zBERERERERatHjx4k3OuX6N13epBKugoIBFixbFOwwREREREZEWmdnKptari6CIiIiIiEiMKMESERERERGJESVYIiIiIiIiMdKlxmA1pb6+ntWrV1NTUxPvUKQLSElJYciQISQmJsY7FOmB3lqxiTtfW8EfTz+AnLSkeIcjIiIi3VCXT7BWr15NZmYmBQUFmFm8w5E4cs5RWlrK6tWrGT58eLzDkR7orte/5MfFl7Lm2e+Q873r4h2OiIiIdENdvotgTU0Nubm5Sq4EMyM3N1etmdJp+lavYnJgOWM+/l28QxEREZFuqssnWICSK2mgvwXpTIXV73yz4Fz8AhEREZFuq1skWCIiu0NGeMs3C2Vr4heIiIiIdFtKsNrAzLj88ssblm+++WbmzJkTv4CiTJs2rcWbM5944olMnjx5h3Vz5sxh8ODBjB8/nrFjx/L00093dpgi3UJC+Jvup5GSL+IYiYiIiHRXSrDaIDk5mSeeeIJNmzbFtF7nHJFIJKZ1Rtu6dSuLFy9m27ZtfPXVVztsu+yyy1iyZAn/+Mc/OPfcczs1DpHuIjHyTYJVvrHJm7OLiIiItEgJVhskJCRw/vnnc8stt+y0raSkhJNOOomJEycyceJE3nrrLcBrJbr55psbyo0dO5aioiKKiooYOXIkZ511FmPHjqW4uJgrr7ySsWPHMm7cOObNmwfA/PnzmTZtGieffDL77rsvp59+Oq6ZMSEPPPBAQ2vUu+++27D+iSee4Pjjj+fUU0/lkUceaXLfUaNGkZCQsEPyePXVVzN69GgKCwu54oorACgqKuKII46gsLCQI488klWrVgEwe/ZsLrzwQiZPnsyee+7J/PnzOffccxk1ahSzZ89uqPPCCy9kwoQJjBkzhuuvv36nOLZt28awYcMaEr3KykqGDh1KfX19k3GLdIakSC0b6QtA5abiOEcjIiIi3VGXn6Y92i//9TGfrC2LaZ2jB2Vx/fFjWi33wx/+kMLCQq666qod1l9yySVcdtllTJkyhVWrVnH00UezfPnyFuv64osvuP/++5k8eTKPP/44S5YsYenSpWzatImJEydy6KGHAvDBBx/w8ccfM2jQIA455BDeeustpkyZslN9VVVVLFmyhDfeeINzzz2Xjz76CIC5c+dy3XXXkZ+fz0knncQ111yz077vvPMOgUCAfv36AVBaWso///lPPv30U8yMrVu3AvCjH/2Is88+m7PPPpu//vWv/PjHP+bJJ58EYMuWLbz99ts8/fTTnHDCCbz11lv85S9/YeLEiSxZsoTx48dz44030rdvX8LhMEceeSTLli2jsLCwIY7s7GzGjx/P66+/zuGHH84zzzzD0UcfrftdyW6V5GqoSshmS30doa0agyUiIiLt1+EWLDMbamavmdknZvaxmV3ir59jZmvMbIn/+E7Hw42frKwszjrrLG677bYd1r/88stcfPHFjB8/nhNOOIGysjIqKiparGvYsGEN46IWLFjAaaedRjAYJD8/n8MOO4z33nsPgEmTJjFkyBACgQDjx4+nqKioyfpOO+00AA499FDKysrYunUrGzZs4IsvvmDKlCmMGDGCxMTEhsQL4JZbbmH8+PFcccUVzJs3r2F2vuzsbFJSUvjv//5vnnjiCdLS0gB4++23+f73vw/AmWeeyYIFCxrqOv744zEzxo0bR35+PuPGjSMQCDBmzJiGmB999FEOOOAA9t9/fz7++GM++eSTnc5j1qxZDS14jzzyCLNmzWrxdRSJtSRXC4lprHd9oWxtvMMRERGRbigWLVgh4HLn3PtmlgksNrOX/G23OOdubmHfdmlLS1NnuvTSSznggAM455xzGtZFIhEWLlxISkrKDmUTEhJ2GNcUfe+m9PT0Nh0vOTm54XkwGCQUCjVZrvHU5WbGo48+ypYtWxpuyFtWVsbcuXO58cYbAW8M1vbuf43jfvfdd3nllVd47LHHuOOOO3j11VfbFGcgENgh5kAgQCgU4uuvv+bmm2/mvffeo0+fPsyePbvJe1mdcMIJXHPNNWzevJnFixdzxBFHtHhckVhLdrVYYiYbSGTfqvXxDkdERES6oQ63YDnn1jnn3veflwPLgcEdrbcr6tu3L6eccgr33ntvw7qjjjqK22+/vWF5yZIlABQUFPD+++8D8P777/P11183WefUqVOZN28e4XCYkpIS3njjDSZNmtSuuLa3+ixYsIDs7Gyys7OZO3cuzz//fMO4r8WLFzc7DitaRUUF27Zt4zvf+Q633HILS5cuBeBb3/pWw/4PPfQQU6dObXN8ZWVlpKenk52dzYYNG/j3v//dZLmMjAwmTpzIJZdcwnHHHUcwGGzzMUQ6KhSOkEItkYRUyhLzSK/dGO+QREREpBuK6SQXZlYA7A9sv1vnxWa2zMz+amZ9mtnnfDNbZGaLSkpKYhlOp7j88st3mBDitttuY9GiRRQWFjJ69GjuuusuAE466SQ2b97MmDFjuOOOOxgxYkST9c2cOZPCwkL2228/jjjiCG666SYGDBjQrphSUlLYf//9ueCCC7j33nspKipi5cqVO0zPPnz4cLKzs3nnnXearOM73/kOa9eupby8nOOOO47CwkKmTJnC73//ewBuv/12/va3v1FYWMgDDzzArbfe2ub49ttvP/bff3/23Xdfvv/973PIIYc0bLvuuut2mCZ+1qxZPPjgg+oeKLtdXThCKnVEElKoSsknM7wFQnXxDktERES6GWtuZrp2V2SWAbwO3Oice8LM8oFNgAN+BQx0zp3bUh0TJkxwje/ptHz5ckaNGhWTGKVn0N+EdIYtlXVU3jSK6sHf4p3QPpyx8Xdw6YeQs0e8QxMREZEuyMwWO+cmNF4fkxYsM0sEHgcecs49AeCc2+CcCzvnIsA9QPv6vYmI7EZeC1YtLiEVsvxezproQkRERNopFrMIGnAvsNw59/uo9QOjis0EPmq8r4hIV1FbHyGNWlxiGsl9vASrulT3whIREZH2icUsgocAZwIfmtkSf901wGlmNh6vi2AR8P9icCwRkU5RF6on1eogMZX0fl63wMqSVaTGOS4RERHpXjqcYDnnFgDWxKbnOlq3iMjuUldbDYAlppLTtx+1LpHaLeoiKCIiIu0TixYsEZFur76m0nuSlEZ+diobXQ6U615YIiIi0j4xnaZdRKS7CtdWARBITKV/ZjIbySFQuSHOUYmIiEh3owSrjZ588knMjE8//bTZMkVFRYwdOzZmx5w9ezaPPfZYs9svvfRSBg8eTCQSaVh333330a9fP8aPH8/o0aO55557YhaPSE8WqqsBIJiYTEZyAqXWh6Tqrn9vPhEREelalGC10dy5c5kyZQpz585tcnsoFOrwMcLhcJvLRiIR/vnPfzJ06FBef/31HbbNmjWLJUuWMH/+fK655ho2bNCv8CKtCdV5NxUOJqZgZlQm5pFet6mVvURERER2pASrDSoqKliwYAH33nsvjzzySMP6+fPnM3XqVE444QRGjx4NeInW6aefzqhRozj55JOpqvK6Hb3yyivsv//+jBs3jnPPPZfa2loACgoK+OlPf8oBBxzAP/7xj52O/fLLLzNhwgRGjBjBM888s8Oxx4wZw4UXXths0te/f3/22msvVq5c2bDutttuY/To0RQWFnLqqacCsHnzZk488UQKCwuZPHkyy5YtA2DOnDmcffbZTJ06lWHDhvHEE09w1VVXMW7cOKZPn059fT0AN9xwAxMnTmTs2LGcf/75NL55dSQSoaCggK1btzas22effZT4SZcSrvdbsJKSAahJ6UdapALqq+MZloiIiHQz3WuSi39fDes/jG2dA8bBMb9uschTTz3F9OnTGTFiBLm5uSxevJgDDzwQgPfff5+PPvqI4cOHU1RUxGeffca9997LIYccwrnnnssf//hHLr74YmbPns0rr7zCiBEjOOuss/jTn/7EpZdeCkBubi7vv/9+k8cuKiri3Xff5csvv+Twww9nxYoVpKSkMHfuXE477TRmzJjBNddcQ319PYmJiTvs+9VXX/HVV1+x9957N6z79a9/zddff01ycnJDwnP99dez//778+STT/Lqq69y1llnsWTJEgC+/PJLXnvtNT755BMOPvhgHn/8cW666SZmzpzJs88+y4knnsjFF1/MddddB8CZZ57JM888w/HHH99wzEAgwIwZM/jnP//JOeecwzvvvMOwYcPIz89v82US6Wyheu9Hj4TEFADC6f2hAqjYAH0K4heYiIiIdCtqwWqDuXPnNrT2nHrqqTu0GE2aNInhw4c3LA8dOpRDDjkEgDPOOIMFCxbw2WefMXz4cEaMGAHA2WefzRtvvNGwz6xZs5o99imnnEIgEGCfffZhzz335NNPP6Wuro7nnnuOE088kaysLA466CBeeOGFhn3mzZvH+PHjOe200/jzn/9M3759G7YVFhZy+umn8+CDD5KQ4OXXCxYs4MwzzwTgiCOOoLS0lLKyMgCOOeYYEhMTGTduHOFwmOnTpwMwbtw4ioqKAHjttdc46KCDGDduHK+++ioff/zxTucxa9Ys5s2bB8AjjzzS4jmLxEOk/psxWACBTP9e6eVqaRUREZG2614tWK20NHWGzZs38+qrr/Lhhx9iZoTDYcyM3/72twCkp6fvUN7MWlxuSuM6WqvvhRdeYOvWrYwbNw6AqqoqUlNTOe644wAvmbnjjjuarO/ZZ5/ljTfe4F//+hc33ngjH37YcotgcrL/ZTMQIDExsSGeQCBAKBSipqaGiy66iEWLFjF06FDmzJlDTU3NTvUcfPDBrFixgpKSEp588kmuvfbaFo8rsrtFQt4YrES/i2BijpdgVW9ZQ+oecQtLREREuhm1YLXiscce48wzz2TlypUUFRVRXFzM8OHDefPNN5ssv2rVKt5++20AHn74YaZMmcLIkSMpKipixYoVADzwwAMcdthhbTr+P/7xDyKRCF9++SVfffUVI0eOZO7cufzlL3+hqKiIoqIivv76a1566aWG8V7NiUQiFBcXc/jhh/Ob3/yGbdu2UVFRwdSpU3nooYcAb2xXXl4eWVlZbYpvezKVl5dHRUVFs7MemhkzZ87kJz/5CaNGjSI3N7dN9YvsLuE6v4tgktdFMD13EACVm9bELSYRERHpfpRgtWLu3LnMnDlzh3UnnXRSsxNLjBw5kjvvvJNRo0axZcsWLrzwQlJSUvjb3/7G9773PcaNG0cgEOCCCy5o0/H32GMPJk2axDHHHMNdd91FJBLh+eef59hjj20ok56ezpQpU/jXv/7VZB3nnXceixYtIhwOc8YZZzBu3Dj2339/fvzjH5OTk8OcOXNYvHgxhYWFXH311dx///1tfHUgJyeHH/zgB4wdO5ajjz6aiRMnNmy76667uOuuuxqWZ82axYMPPqjugdIlRcJegrW9BSs7bxAhF6Bmy9p4hiUiIiLdjDWe8S2eJkyY4BYtWrTDuuXLlzNq1Kg4RSRdkf4mpDM8+/AdHPv5z3EXvYP135cVG8vJuHMctcOmMezc++IdnoiIiHQxZrbYOTeh8Xq1YImIAJGQ14JlCUkA9MtMYaPLIVChSS5ERESk7ZRgiYgA+AkWQa+LYFZKAqXWh6TqkjgGJSIiIt1Nt0iwulI3Rokv/S1IZ3FhbxZBgl4LlplRnpBLat2mOEYlIiIi3U2XT7BSUlIoLS3VF2vBOUdpaSkpKSnxDkV6In+advwuggA1Kf3ICG+FcCg+MYmIiEi30+XvgzVkyBBWr15NSYm66YiXcA8ZMiTeYUhP1KgFCyCclk+g0kHlRsgaFKfAREREpDvp9ATLzKYDtwJB4C/OuXbdLTgxMZHhw4d3SmwiIg2aSLDIzIcSoHy9EiwRERFpk07tImhmQeBO4BhgNHCamY3uzGOKiOwKC9cRJgCBYMO6pBwvqdK9sERERKStOnsM1iRghXPuK+dcHfAIMKOTjyki0m4WqaeexB3Wpfb1EqyKTWviEZKIiIh0Q52dYA0GiqOWV/vrGpjZ+Wa2yMwWaZyViMRLIFxH2HZMsLLzvI+rmi1KsERERKRt4j6LoHPubufcBOfchH79+sU7HBHppczVE2qUYPXrk0mpyyS0bX2cohIREZHuprMTrDXA0KjlIf46EZEuJRiuIxzYMcHqn5nMRpeDVSjBEhERkbbp7ATrPWAfMxtuZknAqcDTnXxMEZF2C7h6wrbjxKrZqYlsog+J1eq+LCIiIm3TqQmWcy4EXAy8ACwHHnXOfdyZxxQR2RXBSD3hQNIO68yM8sRcUmuVYImIiEjbdPp9sJxzzwHPdfZxREQ6IujqiTQagwVQndKfrMpSiIR3mMJdREREpClxn+RCRKQrCLp6IoGdE6zatIEEiUDFhjhEJSIiIt2NEiwRESDR1REOJu+03mX5d5bYpvl5REREpHVKsESk13POkeRqiQRTdtoWzPEmQq3dvGp3hyUiIiLdkBIsEen16sIRUqgnkrBzgpXRfw8Ayjd8vbvDEhERkW5ICZaI9Ho19RFSqMM10YLVLy+fSpdMbWlxHCITERGR7kYJloj0erX1YVKsDpe4c4I1qE8a61wukW2r4xCZiIiIdDdKsESk16sNeS1YJKTutG1AdgprySWxYm0cIhMREZHuRgmWiPR6NfVhUqjDmmjBSgwG2JrQn7Sa9XGITERERLobJVgi0uvV1IVJsXoscecWLICq1AFkhLZAqG43RyYiIiLdjRIsEen1amurAAg0k2CFMgYRwEG5ugmKiIhIy5RgiUivF6rxE6yktCa3B3OGABDZqokuREREpGVKsESk16uvqQQgmNx0C1ZK3jAAKkpW7raYREREpHtSgiUivV59ndeCFUxqOsHKyi8AoHJj0W6KSERERLorJVgi0uuF/TFYCclNdxEckNeXLS6Dus262bCIiIi0TAmWiPR64bqWE6zBOamsc7lY2ZrdGZaIiIh0Qx1KsMzst2b2qZktM7N/mlmOv77AzKrNbIn/uCsm0YqIdIJwbTUAic0kWNmpiWywXJIrNYugiIiItKyjLVgvAWOdc4XA58DPorZ96Zwb7z8u6OBxREQ6TaTOT7BSmk6wzIxtSQPIrNXNhkVERKRlHUqwnHMvOudC/uJCYEjHQxIR2b22dxFMaibBAqhJH0xapAJqynZXWCIiItINxXIM1rnAv6OWh5vZB2b2uplNbW4nMzvfzBaZ2aKSkpIYhiMi0jbbJ7mwxPRmy0Sy/N+PtmmiCxEREWleqwmWmb1sZh818ZgRVebnQAh4yF+1DtjDObc/8BPgYTPLaqp+59zdzrkJzrkJ/fr16/gZiYi0k9X6rVIp2c2WScr17oVVu0n3whIREZHmJbRWwDn37Za2m9ls4DjgSOec8/epBWr954vN7EtgBLCoowGLiMRaoG57gtXk70AApPcfDkDZ+q/oN2Z3RCUiIiLdUUdnEZwOXAWc4Jyrilrfz8yC/vM9gX2ArzpyLBGRzpJQV04tSZCQ3GyZvAFDqHUJ1Gwq2n2BiYiISLfTagtWK+4AkoGXzAxgoT9j4KHADWZWD0SAC5xzmzt4LBGRTpEYKqc6kEHz6RUM7pPOWpdLYMuq3RaXiIiIdD8dSrCcc3s3s/5x4PGO1C0isrskhcqpCTY/wQVAflYKC+nH8IrVuykqERER6Y5iOYugiEi3lBqupC4hs8UywYCxJTGf9Op1uykqERER6Y6UYIlIr5caqaQuseUEC6AqdRDZ4c0Qqt0NUYmIiEh3pARLRHq12lCYDFeBS2p+BsHtQg33wlI3QREREWmaEiwR6dW2VNaTadWQ2vw9sLZL6LMHACFNdCEiIiLNUIIlIr3a5opasqkgmJrTatm0/gUAlK3TXSdERESkaUqwRKRXK9+8jmQLEcge3GrZPgOGE3ZGZcnXuyEyERER6Y6UYIlIr1Zd6nX3S84d2mrZQblZbKAP4c3qIigiIiJNU4IlIr1aZEsx8E33v5YMyklhjcsjWK5JLkRERKRpSrBEpHcrWwNARr+CVosmJwQpDeaTVrW2k4MSERGR7koJloj0ala2hlqSCGbktal8RepAsus3QiTcyZGJiIhId6QES0R6teTKdZQG+4FZm8qHMgaTQBjK13dyZCIiItIdKcESkV4ts24D5cn5bS5vfbzJMCK6F5aIiIg0QQmWiPRakYgjL7yRurSBbd4nJa8AgPKNmqpdREREdqYES0R6rZKySvqzBdeGe2Btl9ZvOADVJUWdFJWIiIh0Z0qwRKTX2rBmJUFzJPVt/R5Y2+X17cNml0FIXQRFRESkCR1KsMxsjpmtMbMl/uM7Udt+ZmYrzOwzMzu646GKiMRW2Qavm196G6Zo365/lncvrMC24k6KSkRERLqzhBjUcYtz7uboFWY2GjgVGAMMAl42sxHOOc1rLCJdRs0mrxWq78Dhbd6nX0YyH7p+DKrUvbBERERkZ53VRXAG8IhzrtY59zWwApjUSccSEdkl4a1eK1R6v2Ft3icpIcDmhH6k12zorLBERESkG4tFgnWxmS0zs7+aWR9/3WAguv/Man+diEiXkVCxhgrSISWrXftVJfcnJVIJtRWdFJmIiIh0V60mWGb2spl91MRjBvAnYC9gPLAO+F17AzCz881skZktKikpae/uIiK7LLVqPVsT+7V7v/r0Ad6T8nUxjkhERES6u1bHYDnnvt2WiszsHuAZf3ENED0t1xB/XVP13w3cDTBhwgTXlmOJiMRCTmgjVVkD2r9j5gAoBcrWQt4+MY9LREREuq+OziIYfXfOmcBH/vOngVPNLNnMhgP7AO925FgiIrFUXlNPvttEfUb7ey8n5nj7RMo00YWIiIjsqKOzCN5kZuMBBxQB/w/AOfexmT0KfAKEgB9qBkER6UrWbdrCCCtnY86Qdu+b2tfbp2rTajJiHZiIiIh0ax1KsJxzZ7aw7Ubgxo7ULyLSWTavKwIgJbftNxneLrdvH8pcGvWblWCJiIjIjjprmnYRkS6tYqN3k+Gs/LbfA2u7fpkprHd9iJQ1ObRUREREejElWCLSK9Vt9u4kkTNgz3bvm5+VzHrXl0CF7oUlIiIiO1KCJSK9km3zWp+COe2f5KJfZjIbXB+SqpRgiYiIyI6UYIlIr5RUtZatgRxISG73vskJQbYl9iOtbhNENH+PiIiIfEMJloj0Shm1G9iWmL/L+9em5hMkDJW6QbqIiIh8QwmWiPQ6zjn6hkqoSduFmwxvryPDT850LywRERGJogRLRHqd0opaBrKJcMagXa4jkO2P3SpfF6OoREREpCdQgiUivc6GjRvIsBoCffbY5TpS/JsN12/RVO0iIiLyDSVYLSj+Yinv3HYmFWWb4x2KiMRQ+drPAEjJ32eX68jqN4iQC1BVWhyrsERERKQHUILVgvXLXmVC6b+ouGUSHy94Kt7hiEiM1G34HICswfvuch0Dc9LZSA51asESERGRKAnxDqArm3jSZSwfWkj6vy9mzMtn8eGCCSQdfhUjJv4XFui5ualzjkjEEQ6HCYfqcS6EC4dwbvv2CN5Th3NgzoEDR8Tf7tWxvez2Oh3ssM523ylFaf9RbZcCbXmnmJ57VIC2a8G2XH0TzzpcZ0tVdcI5NBYo+YSwM3IG7XoL1oDsFNa5XPbYtrpd+9XUhwkGjMRgz/0M6RKcw0VChEP1hEL1RMIhwpEIkXCEcMQBDR9o23fYYTnqE2uHf2z7p9/2zTHRhr/5tr4tYlZV66Xa9nnThnraUIt/wI5s3pUjtlJNLD+r4vN/RJHuwgWTSM3IIjkhGO9Q2kQJVitGTTqSmrHv8fbjNzHqy3vJ+fcpFL8wmLWDjiJzzNHsNX4KyamZMT+uc47aUISq2hBVVRVUVZRTU1VGbXUFdVUV1FWXE6qpIFJbSbiuCquvIhiqJlBfRSBcRUKomoRwNQmRapLCNSRGakiK1JDsakh0dQQJEyBCgDAJRAi4CEHCBIkQIEKCRegef8Ii7TcFWBMYwOCklF2uY1B2KovcYEZtXeJ9227ly9bGsmrmP/MQg5b/lW1DpnHs//vfXT52dxUJR6io2EpV2WaqyjZTXb6Fusqt1FduJVy1DVezDerKsfpqAqEaLFxDMFxDMFxLMFJLYqSWBFdLUqR2h88x77MrTILzPsOChEmwCIb3Pzn9j05EpHv7W+ho+p3yB44r3PXJqXYn/X+nDVLSMjj4zBuoKL+cd166n4zl8ziw+H4SVv+NyPPG6sAANiXvQTgtl1ByLuGUHBISkyDg/W8f5wiEa7FwLZH6WiL1NRCqJRCqwrYnQuFqkiLVDUlQiqshlVpyqKOvte+n0mqSqbWUhkddIIX6hFSqA5mUB1MJB5PBgrhAgv9vECwIgSDOguCvt6C33vkP7wuk/yWy4cukYQYO87Y01ZoSVfabH+ms0b8d19qrZK2W2IVKY7/jLh8ntr+oN6p/d53O7jsQffaZ1KH9U5OCbEjdm7S6+VCxATKbnvL9i7WlvP/cvRQWP8gpthKC8PWGcqBnJFg1dfWUblxL2caV1JSupnbbBsLlJVBVQmJ1Kcl1m0kLbSE7so0+rowsC5PVQn0hF6DGkqkjiVpLot6SqbNkQoFkQsEUaoI5RIIphANJEEggEkjwP58SvM+yQELUZ1sCFvDWWyCIWRAz77PJ+1jyPn9cE59r0f+65j63YtGC0aY3blvfFzF6/8TqbdiGc3NtPFhrn99tDbm1/5062vp/pVh+Vu2+zz2R7io/YwSjBmXHO4w2U4LVDhmZ2Rz03R8DP2bb1lK+fu95KlZ+QNrWz8muLiZj8xf0cWUkWajFempcIvWWSI2lULc9AQqmEkrMojKYT0VCGi4xDZLSsMQ0LDmdhOR0gikZJKZkkJiWQXJKJsnpmaSmZ5CUkglJ6ZCYBgkppAYCpO6el0SkV6vPGwVrgXXLdkiwIhHHOx99xtpX/sjUrU8xy7ayMaWAkil/4NOPl3DIuvtxNWVYSkupRvxFIo6SLVspXf05FetXULdpJa5sDYkV60iv3UBOqIT+rpTBFmJwo30rSWGb5VCR0IeatMGUJY/j65RcSO1DIDWLhLQcktJzSM7oQ2pGH9Ky+5KR3ZfE5HQydkM3URERkc6iBGsXZefkMv6/TgdO32G9i0Soqa6gqqYWIiECkRCBQBCSUkhISiElKYWUYIAUIPYdC0Vkd8ob+S0q1qQQ+eBxskYcxbot5Sx66R9kfPooh4Tf5WALU9T3W5QdeSn9xxwFZizb8gCB9fdRuuIdcsf+V7xPgVA4wtoNGyhZ9SkV6z4nvOlLEretJKt6NfmhtQywzeRHla8nSGkgl7LEfLZkFFKSOQgyB5HYdyipfYeQ1W8gOXmDSE/NID1uZyUiIhI/SrBizAIBUtKzSNE3C5Ee7+jxe/LsK9/iu8sf44MbP2ePui843srZFshm1d5nMPTbF1AwcPQO+/QdOZXwYmPLx6/utgSrtj7E2jXFlBZ/SuW6L3CbvyKpbCU5NasZEF7LHlZB9B3BNlsfNicPZmOfyazPKSCx396kD9ib3MF7kdl3EAMCAZruECkiIiIdSrDMbB4w0l/MAbY658abWQGwHPjM37bQOXdBR44lItLVDMhOIfv4/+WtF69gr8gqSgYcSnjCSfQ/4ASyg4lN7jNmrz34kL3JXTk/prFU1dSytvgrNhd/SvWGFbD5K1IrVtKnZg0DI+sZbjUM98uGnbEp2J8tKYNZlflfFPcdTlr+CPoOHUHfISPom5xJ35hGJyIi0nt0KMFyzs3a/tzMfgdsi9r8pXNufEfqFxHp6qZPHAUTn21z+aSEAF/3O4Lxm/5MxYr/kLH3t9q0X01dPRvWrmTLuiIqS76mfvNqgmXFpFUW07d2DYPcBvaOGv9ZRwIbgwPZlj6EzzMnE8zbk7QB+9Bvj1FkD9yT/ITkHbr+iYiISGzEpIugedPFnQIcEYv6RER6spHHXcr6vz1K0sPf58MxFxDovy8hB/XVlYTKNxIu34irLCWxZhPpNevp408mMczCDIuqp4oUNiYMojxzLz7KPpKEvL3IHDSCvD32Jav/MIYEggyJ21mKiIj0TrEagzUV2OCc+yJq3XAz+wAoA651zr3Z1I5mdj5wPsAee+zRVBERkR5ldMEg3jjq7wx46WLGffh/TZapJpltls22pHxKMvZjfeZggn2GkJo3jOz84eQO3ou09D4UaMY9ERGRLsVcK/epMLOXocnxzD93zj3ll/kTsMI59zt/ORnIcM6VmtmBwJPAGOdcWUvHmjBhglu0aFH7z0JEpBuqD4X5+qsV1G36ksRggOTUdNL65NOn3yASUzLiHZ6IiIi0wMwWO+cmNF7faguWc+7brVScAHwXODBqn1qg1n++2My+BEYAyp5ERHyJCUFGjBgJI0a2XlhERES6hUAM6vg28KlzbvX2FWbWz8yC/vM9gX2Ar2JwLBERERERkS4rFmOwTgXmNlp3KHCDmdUDEeAC59zmGBxLRERERESky+pwguWcm93EuseBxztat4iIiIiISHfS6iQXu5OZlQAr4x1HI3nApngHIbuNrnfvoWvde+ha9y663r2HrnXv0hWv9zDnXL/GK7tUgtUVmdmipmYHkZ5J17v30LXuPXStexdd795D17p36U7XOxaTXIiIiIiIiAhKsERERERERGJGCVbr7o53ALJb6Xr3HrrWvYeude+i69176Fr3Lt3memsMloiIiIiISIyoBUtERERERCRGlGCJiIiIiIjEiBKsFpjZdDP7zMxWmNnV8Y5HYsfMhprZa2b2iZl9bGaX+Ov7mtlLZvaF/2+feMcqsWFmQTP7wMye8ZeHm9k7/vt7npklxTtGiQ0zyzGzx8zsUzNbbmYH673dM5nZZf5n+EdmNtfMUvTe7jnM7K9mttHMPopa1+R72Ty3+dd9mZkdEL/Ipb2auda/9T/Hl5nZP80sJ2rbz/xr/ZmZHR2XoFugBKsZZhYE7gSOAUYDp5nZ6PhGJTEUAi53zo0GJgM/9K/v1cArzrl9gFf8ZekZLgGWRy3/BrjFObc3sAX477hEJZ3hVuB559y+wH54113v7R7GzAYDPwYmOOfGAkHgVPTe7knuA6Y3Wtfce/kYYB//cT7wp90Uo8TGfex8rV8CxjrnCoHPgZ8B+N/XTgXG+Pv80f/e3mUowWreJGCFc+4r51wd8AgwI84xSYw459Y55973n5fjfQEbjHeN7/eL3Q+cGJcAJabMbAhwLPAXf9mAI4DH/CK61j2EmWUDhwL3Ajjn6pxzW9F7u6dKAFLNLAFIA9ah93aP4Zx7A9jcaHVz7+UZwN+dZyGQY2YDd0ug0mFNXWvn3IvOuZC/uBAY4j+fATzinKt1zn0NrMD73t5lKMFq3mCgOGp5tb9OehgzKwD2B94B8p1z6/xN64H8eMUlMfUH4Cog4i/nAlujPrj1/u45hgMlwN/8LqF/MbN09N7ucZxza4CbgVV4idU2YDF6b/d0zb2X9b2tZzsX+Lf/vMtfayVY0quZWQbwOHCpc64sepvz7mGg+xh0c2Z2HLDRObc43rHIbpEAHAD8yTm3P1BJo+6Aem/3DP7Ymxl4SfUgIJ2duxhJD6b3cu9gZj/HG9rxULxjaSslWM1bAwyNWh7ir5MewswS8ZKrh5xzT/irN2zvUuD/uzFe8UnMHAKcYGZFeF19j8Abo5PjdysCvb97ktXAaufcO/7yY3gJl97bPc+3ga+dcyXOuXrgCbz3u97bPVtz72V9b+uBzGw2cBxwuvvm5r1d/lorwWree8A+/mxESXiD6Z6Oc0wSI/4YnHuB5c6530dteho4239+NvDU7o5NYss59zPn3BDnXAHe+/hV59zpwGvAyX4xXesewjm3Hig2s5H+qiOBT9B7uydaBUw2szT/M337tdZ7u2dr7r38NHCWP5vgZGBbVFdC6YbMbDpe9/4TnHNVUZueBk41s2QzG443scm78YixOfZNMiiNmdl38MZuBIG/OudujG9EEitmNgV4E/iQb8blXIM3DutRYA9gJXCKc67xAFvppsxsGnCFc+44M9sTr0WrL/ABcIZzrjaO4UmMmNl4vAlNkoCvgHPwflDUe7uHMbNfArPwug99AJyHNxZD7+0ewMzmAtOAPGADcD3wJE28l/0k+w68bqJVwDnOuUVxCFt2QTPX+mdAMlDqF1vonLvAL/9zvHFZIbxhHv9uXGc8KcESERERERGJEXURFBERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkS7CzArMzJlZQrxj6enMbLaZLYh3HF2NmU01s8/iHYeISHemBEtERLo1M5tjZvVmVhH1uCrecXVHzrk3nXMjY1mnmeWZ2VtmVmpmW83sbTM7JJbHEBHpSvQrqYhIjJhZgnMuFO84eql5zrkz4h1EZ+nmf1sVwLnAF4ADZgD/MrP+3ficRESapRYsEZEOMLMiM/upmS0DKs0swcwmm9l//F/rl5rZtKjy883s/8zsXTMrM7OnzKxvM3WfY2bLzazczL4ys//XaPsMM1vi1/OlmU3312eb2b1mts7M1pjZ/5hZsJXz2MvMXvVbGTaZ2UNmlhO1bbOZHeAvDzKzku3nZWYnmNnH/vnON7NRjV6fK8xsmZltM7N5ZpbS/le6/czsav91KTezT8xsZjPlzMxuMbON/mv5oZmN9bclm9nNZrbKzDaY2V1mltrG49/nl3/Jj+F1MxsWtf1WMyv2j7nYzKZGbZtjZo+Z2YNmVgbMNrNJfuvPVv/a3mFmSVH7ODO7yMy+8I/3K//a/cc/xqPR5ZuJeZqZrW7L+bWVc67GOfeZcy4CGBAG+gBN/t2LiHR3SrBERDruNOBYIAfIB54F/gfvC+QVwONm1i+q/Fl4v+gPBELAbc3UuxE4DsgCzgFuiUpyJgF/B670j3soUOTvd59f797A/sBRwHmtnIMB/wcMAkYBQ4E5AM65L4GfAg+aWRrwN+B+59x8MxsBzAUuBfoBz+G1TkR/kT8FmA4MBwqB2U0GYDbFTx6ae0xp5Rwa+xKYCmQDv/TjH9hEuaPwXr8RftlTgFJ/26/99ePxXs/BwHXtiOF04FdAHrAEeChq23t+vX2Bh4F/NEo+ZwCP4V3fh/ASk8v8ug4GjgQuanS8o4EDgcnAVcDdwBl413Ms3t/qLvMT5eauzx9b2xeoAZ4G/uKc29iRWEREuipzzsU7BhGRbsvMioAbnHN/9Zd/Cox1zp0ZVeYF4GHn3P1mNh9Y6Jy72t82Gu+Ldyrel+CvgcSmuk6Z2ZPAa865W83sz0CVc+6yRmXygVVAjnOu2l93GnC+c+7wdpzXicD1zrn9o9Y9jZckOWCic67WzH4BjHPOneKXCQDFwOl+AlYEXOuce9DffhOQ5Zy7oK2xtCHWOcA1QFXU6tHOubWNyi3xz+kpM5sNnOecm2JmRwB34SW+7/otLZiZ4XVvK/STTMzsYLxrObwNcd0HpDjnTvWXM4BtQIFzrriJ8luAac65pf45HeGcO7SF+i8FDnPOzfSXHTDFOfeWv7wYeNQ59xt/+XdA0Dl3aQt1TgMedM4Nae38doWfQM4Ekpxz93fGMURE4k1jsEREOi76y/Iw4HtmdnzUukTgtWbKr/S35zWu1MyOAa7Ha0EJAGnAh/7moXitRY0N8+tb5+UH4O+70xf6RsfKB27Fa/HJ9PfZ0qjYPXitD+c752r9dYP8cwDAORcxs2K8lp7t1kc9r/L3ibVHG4/BMrOzgJ8ABf6qDJp4nZ1zr5rZHcCdwDAzewKv5TEF7zVfHPVaGtBid8tGGl5351yFmW3GO/9iM7sC+G9/2eG1VOY1ta9/PiOA3wMT/LgSgMWNjrch6nl1E8sD2hF7zDnnaoC55nV9XeKcWxrPeEREOoO6CIqIdFx0V4Bi4AHnXE7UI9059+uoMkOjnu8B1AObois0s2TgceBmIN85l4OXUG3/pl8M7NVELMVALZAXdfws59yYVs7hf/3zGOecy8LrVvZNVuG1vvwBuBeYY9+MG1uLl9RtL2f++a1p5Xg7MW+K8IoWHlNbr6WhrmF4CeHFQK7/+n0UfU7RnHO3OecOBEbjJbRX4l2TamBM1GuZ7ZzLaMdpNVxr/zXsC6z1z+UqvO6Iffz4tjWKr3EXkz8BnwL7+NfomubOp7OYN9auuetzVzuqSgT27Kw4RUTiSQmWiEhsPQgcb2ZHm1nQzFL8iQOiu1ydYWaj/fFMNwCPOefCjepJApKBEiDkt2YdFbX9XuAcMzvSzAJmNtjM9nXOrQNeBH5nZln+tr3M7LBW4s7E6w63zcwG4yUY0W4FFjnnzsMbY7b9y/SjwLF+HInA5XgJ3n9ae6Ea86cIz2jh8WY7qkvHS1BKwJswBG8M0k7MbKKZHeTHX4k3TijidxW8B2/sW3+/7GAzOzpqX2dRk5g04Tv+2LIkvLFYC/3ugZl44+RKgAQzuw6vBaslmUAZUGFm+wIXtlI+5pxzY1q4Pk12+zRv0pcpZpZkZql+N9p84J3dG72IyO6hBEtEJIb8L88z8FoXSvBalK5kx8/bB/AmoliP1w3tx03UU+6vfxSvq9738brnbd/+Lv7EF3gtH6/zTUvSWXgJ2if+vo/hTajRkl8CB/h1PQs8sX2Dmc3Am6Ri+xf6nwAHmNnpzrnP8Fq7bsdr8TkeON45V9fK8TqVc+4T4HfA23jd5MYBbzVTPAsvkdqC192xFPitv+2nwApgoXmz+b0MjAQws6FAOd9022zKw3jdPDfjTT6xvRvjC8DzwOf+MWtopRsnXrfF7/vHvAeY10r5riIZr/tlKV7L5neAYxuPkRMR6Sk0yYWIyG7kT3LxoHPuL/GORTrGzM7A6z74s2a23wesds5du1sDExGRuNIkFyIiIrtg+8yIIiIi0dRFUESklzDvprcdnZxAujkzu6aZv4N/xzs2EZGeQF0ERUREREREYkQtWCIiIiIiIjHSpcZg5eXluYKCgniHISIiIiIi0qLFixdvcs71a7y+SyVYBQUFLFq0KN5hiIiIiIiItMjMVja1Xl0ERUREREREYkQJloiIiIiISIwowRIRaaNwxPHY4tVU14XjHYqIiIh0UV1qDFZT6uvrWb16NTU1NfEORbqZlJQUhgwZQmJiYrxDkR7i9c838sbjf6L801Gcc/oZ8Q5HREREuqAun2CtXr2azMxMCgoKMLN4hyPdhHOO0tJSVq9ezfDhw+MdjvQQH64u47akO+ALwJ0O+kwSERGRRrp8F8Gamhpyc3OVXEm7mBm5ublq+ZSY2loZ9fe0bmn8AhEREZEuq8snWICSK9kl+ruRWKur3NLwPLRheRwjERERka6qWyRYIiJdQsXGhqeVG7+KYyAiIiLSVSnBagMz4/LLL29Yvvnmm5kzZ078AoqycOFCDjroIMaPH8+oUaMa4po/fz7/+c9/OlT39OnTycnJ4bjjjotBpCLdn1Vtanhet6kofoGIiIhIl6UEqw2Sk5N54okn2LRpU+uF28E5RyQS6VAdZ599NnfffTdLlizho48+4pRTTgFik2BdeeWVPPDAAx2qQ6QnSa0rBaDCpcDWVXGORkRERLqiLj+LYLRf/utjPllbFtM6Rw/K4vrjx7RYJiEhgfPPP59bbrmFG2+8cYdtJSUlXHDBBaxa5X3Z+sMf/sAhhxzCnDlzyMjI4IorrgBg7NixPPPMMwAcffTRHHTQQSxevJjnnnuOO+64g3//+9+YGddeey2zZs1i/vz5zJkzh7y8PD766CMOPPBAHnzwwZ3GFW3cuJGBAwcCEAwGGT16NEVFRdx1110Eg0EefPBBbr/9dvbdd99m4/zyyy9ZsWIFmzZt4qqrruIHP/gBAEceeSTz589v8bX5xz/+wS9/+UuCwSDZ2dm88cYb1NTUcOGFF7Jo0SISEhL4/e9/z+GHH859993Hk08+SWVlJV988QVXXHEFdXV1PPDAAyQnJ/Pcc8/Rt29f7rnnHu6++27q6urYe++9eeCBB0hLS9vhuJMnT+bee+9lzBjv2k2bNo2bb76ZCRMmtBivSEdkhrYCsCSyF+MqVsc3GBEREemSOtyCZWZDzew1M/vEzD42s0v89X3N7CUz+8L/t0/Hw42fH/7whzz00ENs27Zth/WXXHIJl112Ge+99x6PP/445513Xqt1ffHFF1x00UV8/PHHLFq0iCVLlrB06VJefvllrrzyStatWwfABx98wB/+8Ac++eQTvvrqK956662d6rrssssYOXIkM2fO5M9//jM1NTUUFBRwwQUXcNlll7FkyRKmTp3aYpzLli3j1Vdf5e233+aGG25g7dq1bX5dbrjhBl544QWWLl3K008/DcCdd96JmfHhhx8yd+5czj777IbZ/D766COeeOIJ3nvvPX7+85+TlpbGBx98wMEHH8zf//53AL773e/y3nvvsXTpUkaNGsW9996703FnzZrFo48+CsC6detYt26dkivpdKmRcgCKgnuQWrsJnItzRCIiItLVxKIFKwRc7px738wygcVm9hIwG3jFOfdrM7sauBr4aUcO1FpLU2fKysrirLPO4rbbbiM1NbVh/csvv8wnn3zSsFxWVkZFRUWLdQ0bNozJkycDsGDBAk477TSCwSD5+fkcdthhvPfee2RlZTFp0iSGDBkCwPjx4ykqKmLKlCk71HXddddx+umn8+KLL/Lwww8zd+7cJludWopzxowZpKamkpqayuGHH867777LiSee2KbX5ZBDDmH27NmccsopfPe73204px/96EcA7LvvvgwbNozPP/8cgMMPP5zMzEwyMzPJzs7m+OOPB2DcuHEsW7YM8JKwa6+9lq1bt1JRUcHRRx+903FPOeUUjjrqKH75y1/y6KOPcvLJJ7cpXpGOCIZrCROkOiWfpJoaqKuA5Mx4hyUiIiJdSIcTLOfcOmCd/7zczJYDg4EZwDS/2P3AfDqYYMXbpZdeygEHHMA555zTsC4SibBw4UJSUlJ2KJuQkLDD+Kro+zGlp6e36XjJyckNz4PBIKFQqMlye+21FxdeeCE/+MEP6NevH6WlpTuVaS5O2Hk68/ZMb37XXXfxzjvv8Oyzz3LggQeyePHiFstHn1MgEGhYDgQCDec3e/ZsnnzySfbbbz/uu+++JhPGwYMHk5uby7Jly5g3bx533XVXm2MW2VUBV0c4kEQotT/U4M0qqARLREREosR0kgszKwD2B94B8v3kC2A9kB/LY8VD3759OeWUU3bosnbUUUdx++23NywvWbIEgIKCAt5//30A3n//fb7++usm65w6dSrz5s0jHA5TUlLCG2+8waRJk9oc07PPPovzuyl98cUXBINBcnJyyMzMpLy8vNU4AZ566ilqamooLS1l/vz5TJw4sc3H//LLLznooIO44YYb6NevH8XFxUydOpWHHnoIgM8//5xVq1YxcuTINtdZXl7OwIEDqa+vb6inKbNmzeKmm25i27ZtFBYWtrl+kV2VEKkjFEiCjP7eiooN8Q1IREREupyYJVhmlgE8DlzqnNthJgrnZQBNDlYws/PNbJGZLSopKYlVOJ3m8ssv32E2wdtuu41FixZRWFjI6NGjG1pSTjrpJDZv3syYMWO44447GDFiRJP1zZw5k8LCQvbbbz+OOOIIbrrpJgYMGNDmeB544AFGjhzJ+PHjOfPMM3nooYcIBoMcf/zx/POf/2T8+PG8+eabzcYJUFhYyOGHH87kyZP5xS9+waBBgwAv+fve977HK6+8wpAhQ3jhhRcAr1vi9vFWV155JePGjWPs2LF861vfYr/99uOiiy4iEokwbtw4Zs2axX333bdDy1VrfvWrX3HQQQdxyCGHsO+++zasf/rpp7nuuusalk8++WQeeeSRhpkTRTqTc46ESB3hQDLBLO/3IleuBEtERER2ZC4Gg7TNLBF4BnjBOfd7f91nwDTn3DozGwjMd8612IwxYcIEt2jRoh3WLV++nFGjRnU4Rmla49kOexr9/Uis1NSH+fcNx3NEehFPTvg7Zy84kppv/x8pUy6Kd2giIiISB2a22Dm30yxrsZhF0IB7geXbkyvf08DZ/vOzgac6eiwRkXipDUVIop5IMJmsvv2pd0Gqt7R9xk0RERHpHWIxi+AhwJnAh2a2xF93DfBr4FEz+29gJaB+XF3QnDlz4h2CSLdQGwqT7CdY/TLT2EQ2wa3rWt9RREREepVYzCK4AGhu2rkjO1q/iEhXUFsfIZl6XDCZfpnJlLhsBmiSCxEREWkkprMIioj0VHXhCMkWnWDlEKzq+hPziIiIyO6lBEtEpA1q670xWCQkk5OaSCk5JNdsan1HERER6VWUYImItMH2MVgkJBMIGJWJuaTWb4FION6hiYiISBeiBKuNnnzyScyMTz/9tNkyRUVFjB07NmbH/Oyzz5g2bRrjx49n1KhRnH/++YB3k+DnnnuuQ3Wfe+659O/fP6bxivRktaGIn2CleMspeQQJQ9XmOEcmIiIiXYkSrDaaO3cuU6ZMYe7cuU1uD4VCHT5GOLzjL+E//vGPueyyy1iyZAnLly/nRz/6ERCbBGv27Nk8//zzHapDpDepDXljsCzBu2l2OL2/t0ETXYiIiEiUWEzTvvv8+2pY/2Fs6xwwDo75dYtFKioqWLBgAa+99hrHH388v/zlLwGYP38+v/jFL+jTpw+ffvopL774IqFQiNNPP53333+fMWPG8Pe//520tDReeeUVrrjiCkKhEBMnTuRPf/oTycnJFBQUMGvWLF566SWuuuoqTj311Ibjrlu3jiFDhjQsjxs3jrq6Oq677jqqq6tZsGABP/vZzzjuuOP40Y9+xEcffUR9fT1z5sxhxowZ3Hffffzzn/9k27ZtrFmzhjPOOIPrr78egEMPPZSioqIWz/v111/nkksuAcDMeOONN8jIyOCqq67i3//+N2bGtddey6xZs5g/fz7XX389OTk5fPjhh5xyyimMGzeOW2+9lerqap588kn22msv/vWvf/E///M/1NXVkZuby0MPPUR+fv4Oxz311FM588wzOfbYYwEvGTzuuOM4+eST23ZNRTpBbX2YJOqxRK8FK5CRDyX4CZZagkVERMSjFqw2eOqpp5g+fTojRowgNzeXxYsXN2x7//33ufXWW/n8888Br1vfRRddxPLly8nKyuKPf/wjNTU1zJ49m3nz5vHhhx8SCoX405/+1FBHbm4u77///g7JFcBll13GEUccwTHHHMMtt9zC1q1bSUpK4oYbbmDWrFksWbKEWbNmceONN3LEEUfw7rvv8tprr3HllVdSWVkJwLvvvsvjjz/OsmXL+Mc//sGiRYvafN4333wzd955J0uWLOHNN98kNTWVJ554giVLlrB06VJefvllrrzyStat8+4FtHTpUu666y6WL1/OAw88wOeff867777Leeedx+233w7AlClTWLhwIR988AGnnnoqN910007HnTVrFo8++igAdXV1vPLKKw3Jlki8bO8iGPATrIScgQBEytWCJSIiIt/oXi1YrbQ0dZa5c+c2tOSceuqpzJ07lwMPPBCASZMmMXz48IayQ4cO5ZBDDgHgjDPO4LbbbuO//uu/GD58OCNGjADg7LPP5s477+TSSy8FvISiKeeccw5HH300zz//PE899RR//vOfWbp06U7lXnzxRZ5++mluvvlmAGpqali1ahUA//Vf/0Vubi4A3/3ud1mwYAETJkxo03kfcsgh/OQnP+H000/nu9/9LkOGDGHBggWcdtppBINB8vPzOeyww3jvvffIyspi4sSJDBzofenca6+9OOqoowCv5e21114DYPXq1cyaNYt169ZRV1e3w2u33THHHMMll1xCbW0tzz//PIceeiipqaltilmks2xPsGr8BCutj/e3XrV5LRnxDExERES6FLVgtWLz5s28+uqrnHfeeRQUFPDb3/6WRx99FOccAOnp6TuUN7MWl5vSuI5ogwYN4txzz+Wpp54iISGBjz76aKcyzjkef/xxlixZwpIlS1i1ahWjRo3a5Xi2u/rqq/nLX/5CdXU1hxxySIsTfAAkJyc3PA8EAg3LgUCgYYzaj370Iy6++GI+/PBD/vznP1NTU7NTPSkpKUybNo0XXniBefPmNZuAiuxOdfUhki1E0E+w+vTpQ4VLoXbrujhHJiIiIl2JEqxWPPbYY5x55pmsXLmSoqIiiouLGT58OG+++WaT5VetWsXbb78NwMMPP8yUKVMYOXIkRUVFrFixAoAHHniAww47rNVjP//889TX1wOwfv16SktLGTx4MJmZmZSXlzeUO/roo7n99tsbkr4PPvigYdtLL73E5s2bG8ZBbW9da4svv/yScePG8dOf/pSJEyfy6aefMnXqVObNm0c4HKakpIQ33niDSZMmtbnObdu2MXjwYADuv//+ZsvNmjWLv/3tb7z55ptMnz69zfWLdJZwnfdjwPYxWN7NhrMJla2PZ1giIiLSxSjBasXcuXOZOXPmDutOOumkZmcTHDlyJHfeeSejRo1iy5YtXHjhhaSkpPC3v/2N733ve4wbN45AIMAFF1zQ6rFffPFFxo4dy3777cfRRx/Nb3/7WwYMGMDhhx/OJ598wvjx45k3bx6/+MUvqK+vp7CwkDFjxvCLX/yioY5JkyZx0kknUVhYyEknndTQPfC0007j4IMP5rPPPmPIkCHce++9ANx1113cddddAPzhD39g7NixFBYWkpiYyDHHHMPMmTMpLCxkv/3244gjjuCmm25iwIABbX4958yZw/e+9z0OPPBA8vLyGtYvWrSI8847r2H5qKOO4vXXX+fb3/42SUlJba5fpLOE670EK5jkJVj9M5MpIQfTLIIiIiISxba3enQFEyZMcI0nYVi+fHlDdzdpn/vuu49FixZxxx13xDuUuNHfj8TKX59/m3MXTqf+mJtJPOgHVNeFefVX0/lWxgb6/HRZvMMTERGR3czMFjvndprcoNNbsMxsupl9ZmYrzOzqzj6eiEhniNTXApDgdxFMTQqyNdCX1NpN8QxLREREuphOTbDMLAjcCRwDjAZOM7PRnXlM+cbs2bN7deuVSCxtT7As8ZsZLauS+5ESqYS6qniFJSIiIl1MZ7dgTQJWOOe+cs7VAY8AM9pbSVfqxijdh/5uJJacPwaLhG9my6xP7ec9qdBEFyIiIuLp7ARrMFActbzaX9fAzM43s0VmtqikpGSnClJSUigtLdWXZWkX5xylpaWkpKTEOxTpIVyo2nsS/CbBcpn+BC+62bCIiIj44n6jYefc3cDd4E1y0Xj7kCFDWL16NU0lXyItSUlJYciQIfEOQ3qKkNdFMLoFKyHLu9mwq9hA2+8wJyIiIj1ZZydYa4ChUctD/HVtlpiYyPDhw2MalIhIe7mGBOubVtGUPoMAqNu6luSmdhIREZFep7O7CL4H7GNmw80sCTgVeLqTjykiEnuhncdgZfbtT70LUlXart+NREREpAfr1BYs51zIzC4GXgCCwF+dcx935jFFRDqDNdFFsH9WGiVkk7BtXZyiEhERka6m08dgOeeeA57r7OOIiHSqcFMJVjIbXQ6DNMmFiIiI+Dr9RsMiIj2Bheu8J1FjsPpnJlPicghWbYxTVCIiItLVKMESEWmDQHjnSS6yUxMppQ8pNZrlVERERDxKsERE2qAhwQomNawzMyqT8kgPbYFwfZwiExERka5ECZaISBsEIzu3YAHUpvbznlSom6CIiIgowRIRaZNApJ4wAQjuODeQS8/3nlSsj0NUIiIi0tUowRIRaYOESC1hS9ppvWUN8J5oJkERERFBCZaISJsEI3WEAjsnWMk5gwAIlakFS0RERJRgiYi0SYJrOsFKzx1IxBmVpWviEJWIiIh0NZ1+o2ERkZ4gIVJHOJC80/r8PplsJhO3RQmWiIiIqAVLRKRVzjkSXR2RJlqwBmansMH1IVK2Ng6RiYiISFejBEtEpBWhiCOJeiKBxJ22DcxOZb3rS1CzCIqIiAhKsEREWlVTHyaVOsIJaTtty0pJoDTQl9Qa3QdLREREOphgmdlvzexTM1tmZv80s5yobT8zsxVm9pmZHd3hSEVE4qS6Lkya1RJJ3DnBMjMqk/uTHtoCodo4RCciIiJdSUdbsF4CxjrnCoHPgZ8BmNlo4FRgDDAd+KOZBTt4LBGRuKiuD5NKLa6JFiyA+vTt98JSN0EREZHerkMJlnPuRedcyF9cCAzxn88AHnHO1TrnvgZWAJM6ciwRkXipqguTRg0kNZ1gkendC4vydbsvKBEREemSYjkG61zg3/7zwUBx1LbV/rqdmNn5ZrbIzBaVlJTEMBwRkdio8rsIWjMJVnIf7+MtvFVTtYuIiPR2rSZYZvaymX3UxGNGVJmfAyHgofYG4Jy72zk3wTk3oV+/fu3dXUSk09XUh0mjFkvKaHJ7Wt5QACpLi5vcLiIiIr1Hqzcads59u6XtZjYbOA440jnn/NVrgKFRxYb460REup2q2nrSrJaKlPQmt+fm9afGJVJdupqs3RybiIiIdC0dnUVwOnAVcIJzripq09PAqWaWbGbDgX2AdztyLBGReKmrqQQgkNx0C9aA7DTWu77qIigiIiKtt2C14g4gGXjJzAAWOucucM59bGaPAp/gdR38oXMu3MFjiYjERX11OQAJzbRgDcxO4XP6MEw3GxYREen1OpRgOef2bmHbjcCNHalfRKQrqPdbsBJTmm7ByklLZCN9GVG9cneGJSIiIl1QLGcRFBHpkcI1XgtWYmpmk9u332w4o24jNAxFFRERkd5ICZaISCsitS23YAHUpeaT6OqhesvuCktERES6ICVYIiKt2J5gWVLTY7AAXOZA70nZ2t0RkoiIiHRRSrBERFoRqfUnSW3mRsMAwRz/ZsPblGCJiIj0ZkqwRERaEakp854kN3+Xq7TcIQBUblq1O0ISERGRLkoJlohIK4K1/riq1D7Nlsnq591bvWrT6t0RkoiIiHRRSrBERFqRWLuFCAYp2c2Wye+TRYnLol43GxYREenVlGCJiLQiub6M6kAmBILNlhmQncIG1xcrX7cbIxMREZGuRgmWiEgrUsPbqE5sfvwVQG56EhvpS2LV+t0UlYiIiHRFSrBERFrgnCMjXEZdYvPdAwECAaMsMY/02o27KTIRERHpipRgiYi0YFt1PVlUEEpufoKL7WpS8skIb4NQ7W6ITERERLqimCVYZna5mTkzy/OXzcxuM7MVZrbMzA6I1bFERHaXTRW19KECS+vbatlQxgDvicZhiYiI9FoxSbDMbChwFBB9A5hjgH38x/nAn2JxLBGR3amkrJY+Vk4wPbfVsoGsQQC4Mt1sWEREpLeKVQvWLcBVgItaNwP4u/MsBHLMbGCMjicislts2bKJDKshsc+QVssm9/XKVOteWCIiIr1WhxMsM5sBrHHOLW20aTBQHLW82l/XeP/zzWyRmS0qKSnpaDgiIjFVU1IEQGq/Ya2WzfBvNlyxqbiVkiIiItJTJbSlkJm9DAxoYtPPgWvwugfuEufc3cDdABMmTHCtFBcR2a1qSr2ez+n9Clotm5vbn2qXRO1mtWCJiIj0Vm1KsJxz325qvZmNA4YDS80MYAjwvplNAtYAQ6OKD/HXiYh0G5EtXoJlOXu0WnZATirrXR+CGoMlIiLSa3Woi6Bz7kPnXH/nXIFzrgCvG+ABzrn1wNPAWf5sgpOBbc45Ta0lIt1KYsUa6kmE9H6tlu2fmcIG+hKs1M2GRUREeqvOvA/Wc8BXwArgHuCiTjyWiEjMRSKO/rVFbEkZCoHWPy6TEgJsDuSSWrNhN0QnIiIiXVGbugi2ld+Ktf25A34Yy/pFRHanlZur2IdVVPed2OZ9ypP6kVn/DjgHXtdpERER6UU6swVLRKRb+2zlGobYJlIGjWvzPjUp+SS6eqja3ImRiYiISFelBEtEpBmbV7wHQN+9DmjzPqEMf8LVck10ISIi0hspwRIRaUbC6reJYCQWHNz2nTL9+6mXaU4fERGR3kgJlohIE6rqQgzdtpiNaftAak6b90vI8e6nXr9V98ISERHpjZRgiYg04b3lXzHBPqO+YFq79kvrO5iIM6o2KcESERHpjWI6i6CISE9R/PZjJFqYAQed0q79crPTKSUL26r7qouIiPRGasESEWmkrKaekeueojR5CIl7TGjXvnkZyax3faBMk1yIiIj0RkqwREQaefXVF5lon1JbeGa772XlJVh9CVau76ToREREpCtTgiUiEqWmPkzf935PhWUw6MiL2r1/bkYSG10fkmtKOiE6ERER6eqUYImIRHnhxWc51C2idNx5kJLV7v2TE4KUJfQhtX4rRMKxD1BERES6NCVYIiK+jdsq2efd69gS7Mse3/nJLtdTl9QXw0HV5hhGJyIiIt2BEiwREd+Ch3/NaPuauiP/B0vJ3uV6Qql53pNKdRMUERHpbTqcYJnZj8zsUzP72Mxuilr/MzNbYWafmdnRHT2OiEhn+uDj5fzX+nsoyp5E/sHf71BdLl0JloiISG/VoftgmdnhwAxgP+dcrZn199ePBk4FxgCDgJfNbIRzTgMSRKTLCYUjbHvySpIsRP5pd7R75sDGEjL7e0+UYImIiPQ6HW3BuhD4tXOuFsA5t9FfPwN4xDlX65z7GlgBTOrgsUREOsWLzzzCtPo3WTX6AlIHjOxwfUnZ+QBEKpRgiYiI9DYdTbBGAFPN7B0ze93MJvrrBwPFUeVW++t2Ymbnm9kiM1tUUqIvIyKye63fXM6I929kY8JA9p7585jUmZGTR8gFqNm2ISb1iYiISPfRahdBM3sZGNDEpp/7+/cFJgMTgUfNbM/2BOCcuxu4G2DChAmuPfuKiHTU2/N+w0xbzcaj/4olpsakztyMVDaTRdK2DaTFpMauLxyOUL61lPKtJVRs20Rt2SZqy0uJ1JTjQrVQXwPhWixUB+EaiITY3hHTzMAMw/D+s4Z1WCDqwTfPCTRsNwvsVNailwMBv+4Azgzn7+tovitoe3qJWgv1xJrRxP8m2xFsZ0Xa1nrb97rGyzevcefEG/uS4YyBjJ46k2BQc5eJdAWtJljOuW83t83MLgSecM454F0ziwB5wBpgaFTRIf46EZEuY8XKVRyx/l6+zp7I8AnfjVm9uRlJlLos+pdvbL1wN1EXirBmw0a2rPqY6rWfQOmXBMrXkla9jpxQCf1dKTlWR04r9UScUUcCIUvAAeaikwbvX8Nbtz0FMiIEcN7D9DucSFNe37KZw2b+IN5hiAgdnOQCeBI4HHjNzEYAScAm4GngYTP7Pd4kF/sA73bwWCIiMfXpk79hb6uC797c4YktouVlJLHOZZFftSlmde5OVXUhPv38czZ99jaBtYvJ2bacQfUrGW6lDPfLhJ1RGujLtqR8yjJGUZI2kEjGAILpfUnMyCUlM5f07DxSMnJITEklMSmVpJRUgglJpLTxtXbO4RxEnCPiILR9ORIhEgnjXAQXcUQiYX/Z+esi3yxHwg1lDAcu4j8c5iK4pmJpRw7X1qLe75CxqvObmNuXbrYjhjYWbVsxa1edXr2xj9WrN7bl2l+4HdW2uV5H0mOnM2rp/xGaPouE1PbfIF1EYqujCdZfgb+a2UdAHXC235r1sZk9CnwChIAfdscZBEvWFrHi+T8y8YxfkZCUHO9wRCSGPvpqFYdufoIVeYezd8H4mNadm57MR2SRUF3ceuEuYGNZFZ8seYfKT18lp+Q99qz7jAPMu0lyiCBrEgvYnDeRzf1GkjxgFDnDxpE7ZAT9E5Po34lxmRlmENipo1QQSOzEI4t0L+8e+n/s+eosPv3Hdex71h/iHY5Ir9ehBMs5Vwec0cy2G4EbO1J/vH05/0EOXvVnPv/tfLLO+DsDhu0b75BEJEa+evYPjLUqgsf/IuZ1Z6cmsplskuuWxLzuWKgPR1i27H3WffA8GWv/w7j6ZUyzcgA2BAeyud8kyveYQP6+3yJ7+AEMi9HYNBHpHBOmHM3L/zmKaV/9nYrV55ExZGy8QxLp1TragtWjTf7+tbz37ABGvvsLEv56KO/scRbjTvk5aZl94h2aiHTAmvUbmLJpHl/kHMI+BQfGvP5AwKhO7EtyuArqq6ELJCjbKqr5cOGL1Hz8LHtteZMDWQtAabAfmwYeRuWIwxk0/r/I7zuM/DjHKiLtEwgYA0/6NRUPTmXjQz9knytfwwKa8EIkXpRgtWLiseexbuxU1v7jKg4qvoeK3z3Iu/2+Q85B32ev8dMIJuz+l7A2FKayNkxFdT0VVRXUVZUTqqkgVFNBuLYCV1tBpLYSV1sB9VVYXSVWX0UgVEWgvopAuAZzYQIuBC6MRcKYC/vrvAcuQsCFMBchSJggYW/MQkMU2wejez3ltw9S/2b8+Tfbd1z+5vnut/vmpNp9Z7h7zqml2dZir/OPlRKppK9VEPrOdZ12jLqUXKgCKjZCn2GddpyWrFqzlhX/eZKkr15kbNW7TLFK6kng6/TxLN/nXAoOOp7cASPJjeH4MxGJjzH77MX8EZcw7Yv/5YMHrmL/s2+Od0htUldXR3XFVqory6itLKOuupy6yjJCNeWEayqI1JQRrq0iEqqB+loI10GknkC4FovUY+E6ApF6ApE6gpE6zP8OY85hhP1/IxiOgPPGYprzJs7x1kcIOEf0/7mb+394e8YcNqdt/z/tOp/J7fn/f2dG/WrSYez93V9w2Ih+nXiU2FGC1QYDh41k4BVP8en7r1M2/w722/g0yc88ztZnMihOHU1ln32xfiPJzhtMSp+BpGTnkZqcjCUkESboDbKuryVcX0VNTQ211VXU1lRSX11OqNpLikI1lURqK6CuEucnRMH6SoKhahLCVSRGqkmOVJPsakijhjRqGUwNwXbMqFXnEqiyFOpIImxBIgSIECRi/oMgEQs0PHcWJBJIJOSX9aZG3jFV8p42TLbsb/fGTXzzprSof6JTtDhPbdwGu7JXa8dqz4Dslo/T+dzOVzsWle7qxpj6auh5HDJycqfVX5c+0EuwthXvtgQrHHF8tPxjNrz7BLmrX6Iw9DF7WJitlkVxv2lsLjyOgonHMUKD4EV6pENPvZIFf/iAKV/fwwf31jJ+9u+x4O4brxgOR9hcup5tG1dTuamY2i3rqK/YBFWbCdRuJbF2K8n120gNl5EeLiPLlZNutSQB2W08Rp0LEiKBOkuknkRCJFBviYQtkZAlEjHv+4vDcBbwvstYgjcPqQUa5iTF7JtlCxB9w4WmfnPa1e8R7a4jVl8SOmB7BLE452aP0c6qE9LySE8Kdk4wnUAJVjvse8BhcMBhbC0t4cOFT+O+eJk+ZcsZuWYxSWtjN4dHDUnUkEJtIIW6QCr1wVRCSWmEE/pSlZhOVWIaJKUTSM4gkJxBMNl/nuI9T0jJJCE1ncTULJL9fxNSMkgKJpIUsyhFpCX1mUOhBNiyEgqmdNpxKmrq+WDRf6hY+hTDSl5jP74CYE3CHiwffjb5E08kf9QUcgLd539MIrJrAsEAk370AG/ceS6HFv+dL3+9EPv29ew56dgOzZRaHwpTWrKOLRuKqdxUTM2WdUTK1hGo3EBy9UbS6zaREy4l122hn4Vo3MYQcgHKLIOKQBZVwSwqk/PZmjSCVSl9cMnZkJxBMDmDQEomwZQMElOzSErLJCk1k+T0bFLTs0hNTSMxKYmkQJAk6DX3GBTPAfEOoJ2sPVPHdrYJEya4RYsWxTuMdgvV1bCh+As2rV9DqHwDkcrN1NXXE4iECBLCLEA4mAIJyQSTUklKTiUxOcVPgDJISs8iLSOLtPRMElIyQV+ERLq9G59eytWLDyNw2BXYEdfGtO7VpeV89M5LRJY/y5iyNxlmGwD4OnUM1XtOZ49vnUzG4NExPaaIdB/OORY8+WdGLP0N+WxmneWzts9EGLQ/ybl7kJKdB5YAgSCR2kpqKrdRW7WNUOUWrHwDVrWRpKqNpNWXkh3aTF+3hSTb+YfkMtLZGsylIjGXmpT+hNLzscwBJOQMIrXvILLyhpKTN8Abu66uyNIDmdli59yEndYrwRIRib2/v13EEc8fSe7oaaTOurdDddWFIixdvpwN7z9HRvF8xtd/QI5VUkcCq7ImEhh9HHtM/i4JOYNiE7yI9Ahl5WUsfeF+Mr58huFVH5FjFW3abzNZbAv2pSIxl7qUfkTS+2NZg0juM5D03CHk5A8lp99QAslqR5LerbkES10ERUQ6wV79MlgZySdnw/J271sfjvDJVytZvfQ1bOV/2KvsHSbaKgC2BPqyYdC3qRk3nfwDjmXvlLaOXBCR3iYrM4upJ/8I+BH1oRBrVn/N1o2rqCsv9Sa5cmFcYhqp6dmkZeaQnpVLZu5A+iYn0zfewYt0Y0qwREQ6wcgBmTwQ2ZdvbX4CqjZDWvNfV0q2VfHlpx+w9cv3SFz7HnuUL2E/W81+QD0JFGfux+d7zmLIxOPpM6SQPupqIyLtlJiQwOCCfRhcsE+8QxHp8ZRgiYh0gryMZIr7TMIqHsd9/CQ28VwqauooXvklm1Z+TM36z0nctJy88uXsFVnJZKsDoJJU1mYV8vkeJ5M/9nCy9z6IPbvAfbRERESkbTQGS0Skkzy88Cv2eW4WEwOfs4G+ZLpK0qy2YXsFaaxP3YeavDGkDjuAgSMPIm3QaAjqty8REZGuTmOwRER2s9MOGs4TdfewZek99IlsITEth8T+e5MzdBT9ho0mo89Q9g4E4h2miIiIxJASLBGRTmJmnHToeDj0zniHIiIiIrtJh386NbPxZrbQzJaY2SIzm+SvNzO7zcxWmNkyM+tu9wgTERERERFpl1j0TbkJ+KVzbjxwnb8McAywj/84H/hTDI4lIiIiIiLSZcUiwXJAlv88G1jrP58B/N15FgI5ZjYwBscTERERERHpkmIxButS4AUzuxkvYfuWv34wUBxVbrW/bl30zmZ2Pl4LF0CFmX0Wg5hiKQ/YFO8gZLfR9e49dK17D13r3kXXu/fQte5duuL1HtbUyjYlWGb2MjCgiU0/B44ELnPOPW5mpwD3At9ua1TOubuBu9tafnczs0VNTb8oPZOud++ha9176Fr3LrrevYeude/Sna53mxIs51yzCZOZ/R24xF/8B/AX//kaYGhU0SH+OhERERERkR4pFmOw1gKH+c+PAL7wnz8NnOXPJjgZ2OacW9dUBSIiIiIiIj1BLMZg/QC41cwSgBq+GU/1HPAdYAVQBZwTg2PFQ5ftviidQte799C17j10rXsXXe/eQ9e6d+k219ucc/GOQUREREREpEeIRRdBERERERERQQmWiIiIiIhIzCjBaoGZTTezz8xshZldHe94JHbMbKiZvWZmn5jZx2Z2ib++r5m9ZGZf+P/2iXesEhtmFjSzD8zsGX95uJm947+/55lZUrxjlNgwsxwze8zMPjWz5WZ2sN7bPZOZXeZ/hn9kZnPNLEXv7Z7DzP5qZhvN7KOodU2+l/1J1W7zr/syMzsgfpFLezVzrX/rf44vM7N/mllO1Laf+df6MzM7Oi5Bt0AJVjPMLAjcCRwDjAZOM7PR8Y1KYigEXO6cGw1MBn7oX9+rgVecc/sAr/jL0jNcAiyPWv4NcItzbm9gC/DfcYlKOsOtwPPOuX2B/fCuu97bPYyZDQZ+DExwzo0FgsCp6L3dk9wHTG+0rrn38jHAPv7jfOBPuylGiY372PlavwSMdc4VAp8DPwPwv6+dCozx9/mj/729y1CC1bxJwArn3FfOuTrgEWBGnGOSGHHOrXPOve8/L8f7AjYY7xrf7xe7HzgxLgFKTJnZEOBY/Pv0mZnh3VbiMb+IrnUPYWbZwKF4N73HOVfnnNuK3ts9VQKQ6s9knAasQ+/tHsM59wawudHq5t7LM4C/O89CIMfMBu6WQKXDmrrWzrkXnXMhf3Eh3j11wbvWjzjnap1zX+PNWD5ptwXbBkqwmjcYKI5aXu2vkx7GzAqA/YF3gPyo+7WtB/LjFZfE1B+Aq4CIv5wLbI364Nb7u+cYDpQAf/O7hP7FzNLRe7vHcc6tAW4GVuElVtuAxei93dM1917W97ae7Vzg3/7zLn+tlWBJr2ZmGcDjwKXOubLobc67h4HuY9DNmdlxwEbn3OJ4xyK7RQJwAPAn59z+QCWNugPqvd0z+GNvZuAl1YOAdHbuYiQ9mN7LvYOZ/RxvaMdD8Y6lrZRgNW8NMDRqeYi/TnoIM0vES64ecs494a/esL1Lgf/vxnjFJzFzCHCCmRXhdfU9Am+MTo7frQj0/u5JVgOrnXPv+MuP4SVcem/3PN8GvnbOlTjn6oEn8N7vem/3bM29l/W9rQcys9nAccDp7pub93b5a60Eq3nvAfv4sxEl4Q2mezrOMUmM+GNw7gWWO+d+H7XpaeBs//nZwFO7OzaJLefcz5xzQ5xzBXjv41edc6cDrwEn+8V0rXsI59x6oNjMRvqrjgQ+Qe/tnmgVMNnM0vzP9O3XWu/tnq259/LTwFn+bIKTgW1RXQmlGzKz6Xjd+09wzlVFbXoaONXMks1sON7EJu/GI8bm2DfJoDRmZt/BG7sRBP7qnLsxvhFJrJjZFOBN4EO+GZdzDd44rEeBPYCVwCnOucYDbKWbMrNpwBXOuePMbE+8Fq2+wAfAGc652jiGJzFiZuPxJjRJAr4CzsH7QVHv7R7GzH4JzMLrPvQBcB7eWAy9t3sAM5sLTAPygA3A9cCTNPFe9pPsO/C6iVYB5zjnFsUhbNkFzVzrnwHJQKlfbKFz7gK//M/xxmWF8IZ5/LtxnfGkBEtERERERCRG1EVQREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsEREuggzKzAzZ2YJ8Y6lpzOz2Wa2IN5xdDVmNtXMPot3HCIi3ZkSLBER6dbMbI6Z1ZtZRdTjqnjH1R055950zo2MZZ1mlmdmb5lZqZltNbO3zeyQWB5DRKQr0a+kIiIxYmYJzrlQvOPopeY5586IdxCdpZv/bVUA5wJfAA6YAfzLzPp343MSEWmWWrBERDrAzIrM7KdmtgyoNLMEM5tsZv/xf61fambTosrPN7P/M7N3zazMzJ4ys77N1H2OmS03s3Iz+8rM/l+j7TPMbIlfz5dmNt1fn21m95rZOjNbY2b/Y2bBVs5jLzN71W9l2GRmD5lZTtS2zWZ2gL88yMxKtp+XmZ1gZh/75zvfzEY1en2uMLNlZrbNzOaZWUr7X+n2M7Or/del3Mw+MbOZzZQzM7vFzDb6r+WHZjbW35ZsZjeb2Soz22Bmd5lZahuPf59f/iU/htfNbFjU9lvNrNg/5mIzmxq1bY6ZPWZmD5pZGTDbzCb5rT9b/Wt7h5klRe3jzOwiM/vCP96v/Gv3H/8Yj0aXbybmaWa2ui3n11bOuRrn3GfOuQhgQBjoAzT5dy8i0t0pwRIR6bjTgGOBHCAfeBb4H7wvkFcAj5tZv6jyZ+H9oj8QCAG3NVPvRuA4IAs4B7glKsmZBPwduNI/7qFAkb/ffX69ewP7A0cB57VyDgb8HzAIGAUMBeYAOOe+BH4KPGhmacDfgPudc/PNbAQwF7gU6Ac8h9c6Ef1F/hRgOjAcKARmNxmA2RQ/eWjuMaWVc2jsS2AqkA380o9/YBPljsJ7/Ub4ZU8BSv1tv/bXj8d7PQcD17UjhtOBXwF5wBLgoaht7/n19gUeBv7RKPmcATyGd30fwktMLvPrOhg4Erio0fGOBg4EJgNXAXcDZ+Bdz7F4f6u7zE+Um7s+f2xtX6AGeBr4i3NuY0diERHpqsw5F+8YRES6LTMrAm5wzv3VX/4pMNY5d2ZUmReAh51z95vZfGChc+5qf9tovC/eqXhfgr8GEpvqOmVmTwKvOeduNbM/A1XOucsalckHVgE5zrlqf91pwPnOucPbcV4nAtc75/aPWvc0XpLkgInOuVoz+wUwzjl3il8mABQDp/sJWBFwrXPuQX/7TUCWc+6CtsbShljnANcAVVGrRzvn1jYqt8Q/p6fMbDZwnnNuipkdAdyFl/i+67e0YGaG172t0E8yMbOD8a7l8DbEdR+Q4pw71V/OALYBBc654ibKbwGmOeeW+ud0hHPu0BbqvxQ4zDk30192wBTn3Fv+8mLgUefcb/zl3wFB59ylLdQ5DXjQOTektfPbFX4CORNIcs7d3xnHEBGJN43BEhHpuOgvy8OA75nZ8VHrEoHXmim/0t+e17hSMzsGuB6vBSUApAEf+puH4rUWNTbMr2+dlx+Av+9OX+gbHSsfuBWvxSfT32dLo2L34LU+nO+cq/XXDfLPAQDnXMTMivFaerZbH/W8yt8n1h5tPAbLzM4CfgIU+KsyaOJ1ds69amZ3AHcCw8zsCbyWxxS813xx1GtpQIvdLRtpeN2dcxVmthnv/IvN7Argv/1lh9dSmdfUvv75jAB+D0zw40oAFjc63oao59VNLA9oR+wx55yrAeaa1/V1iXNuaTzjERHpDOoiKCLScdFdAYqBB5xzOVGPdOfcr6PKDI16vgdQD2yKrtDMkoHHgZuBfOdcDl5Ctf2bfjGwVxOxFAO1QF7U8bOcc2NaOYf/9c9jnHMuC69b2TdZhdf68gfgXmCOfTNubC1eUre9nPnnt6aV4+3EvCnCK1p4TG29loa6huElhBcDuf7r91H0OUVzzt3mnDsQGI2X0F6Jd02qgTFRr2W2cy6jHafVcK3917AvsNY/l6vwuiP28ePb1ii+xl1M/gR8CuzjX6NrmjufzmLeWLvmrs9d7agqEdizs+IUEYknJVgiIrH1IHC8mR1tZkEzS/EnDojucnWGmY32xzPdADzmnAs3qicJSAZKgJDfmnVU1PZ7gXPM7EgzC5jZYDPb1zm3DngR+J2ZZfnb9jKzw1qJOxOvO9w2MxuMl2BEuxVY5Jw7D2+M2fYv048Cx/pxJAKX4yV4/2nthWrMnyI8o4XHm+2oLh0vQSkBb8IQvDFIOzGziWZ2kB9/Jd44oYjfVfAevLFv/f2yg83s6Kh9nUVNYtKE7/hjy5LwxmIt9LsHZuKNkysBEszsOrwWrJZkAmVAhZntC1zYSvmYc86NaeH6NNnt07xJX6aYWZKZpfrdaPOBd3Zv9CIiu4cSLBGRGPK/PM/Aa10owWtRupIdP28fwJuIYj1eN7QfN1FPub/+Ubyuet/H6563ffu7+BNf4LV8vM43LUln4SVon/j7PoY3oUZLfgkc4Nf1LPDE9g1mNgNvkortX+h/AhxgZqc75z7Da+26Ha/F53jgeOdcXSvH61TOuU+A3wFv43WTGwe81UzxLLxEagted8dS4Lf+tp8CK4CF5s3m9zIwEsDMhgLlfNNtsykP43Xz3Iw3+cT2bowvAM8Dn/vHrKGVbpx43Ra/7x/zHmBeK+W7imS87peleC2b3wGObTxGTkSkp9AkFyIiu5E/ycWDzrm/xDsW6RgzOwOv++DPmtl+H7DaOXftbg1MRETiSpNciIiI7ILtMyOKiIhEUxdBEZFewryb3nZ0cgLp5szsmmb+Dv4d79hERHoCdREUERERERGJEbVgiYiIiIiIxEiXGoOVl5fnCgoK4h2GiIiIiIhIixYvXrzJOdev8foulWAVFBSwaNGieIchIiIiIiLSIjNb2dR6dREUERERERGJESVYIiIiIiIiMaIES0SkGZGIZlkVERGR9ulSY7CaUl9fz+rVq6mpqYl3KNLNpKSkMGTIEBITE+MdinRDv3zqQz5eUcTDlx5LQlC/RYmIiEjbdPkEa/Xq1WRmZlJQUICZxTsc6Sacc5SWlrJ69WqGDx8e73CkG6p+9z4eTfwLXy9/geFjJ8c7HBEREekmuvzPsjU1NeTm5iq5knYxM3Jzc9XyKbskEnGMtGIAAu/8Mc7RiIiISHfS5RMsQMmV7BL93ciuqg1FiPgfj8mbP4tzNCIiItKddIsES0Rkd6oLRcixcgAyq9fEORoRERHpTpRgtYGZcfnllzcs33zzzcyZMyd+AUVZuHAhBx10EOPHj2fUqFENcc2fP5///Oc/u1zvypUrOeCAAxg/fjxjxozhrrvuilHEIl1fbShMHyoASI+UQ/WWOEckIiIi3UWXn+SiK0hOTuaJJ57gZz/7GXl5eTGr1zmHc45AYNfz3LPPPptHH32U/fbbj3A4zGefed2Z5s+fT0ZGBt/61rd2qd6BAwfy9ttvk5ycTEVFBWPHjuWEE05g0KBBuxyrSHdRG4rQxyq+WbFlJaT2iV9AIiIi0m2oBasNEhISOP/887nlllt22lZSUsJJJ53ExIkTmThxIm+99RYAc+bM4eabb24oN3bsWIqKiigqKmLkyJGcddZZjB07luLiYq688krGjh3LuHHjmDdvHuAlSNOmTePkk09m33335fTTT8e5ne/Js3HjRgYOHAhAMBhk9OjRFBUVcdddd3HLLbcwfvx43nzzzRbjPPPMMzn44IPZZ599uOeeewBISkoiOTkZgNraWiKRSJOvzW233cbo0aMpLCzk1FNPBWDz5s2ceOKJFBYWMnnyZJYtW9ZwrLPPPpupU6cybNgwnnjiCa666irGjRvH9OnTqa+vB+CGG25g4sSJjB07lvPPP3+n845EIhQUFLB169aGdfvssw8bNmxo6TKKtFltKEIO5RTZYADCm4viG5CIiIh0G92qBeuX//qYT9aWxbTO0YOyuP74Ma2W++EPf0hhYSFXXXXVDusvueQSLrvsMqZMmcKqVas4+uijWb58eYt1ffHFF9x///1MnjyZxx9/nCVLlrB06VI2bdrExIkTOfTQQwH44IMP+Pjjjxk0aBCHHHIIb731FlOmTNmhrssuu4yRI0cybdo0pk+fztlnn01BQQEXXHABGRkZXHHFFQB8//vfbzbOZcuWsXDhQiorK9l///059thjGTRoEMXFxRx77LGsWLGC3/72t022Xv3617/m66+/Jjk5uSHhuf7669l///158sknefXVVznrrLNYsmQJAF9++SWvvfYan3zyCQcffDCPP/44N910EzNnzuTZZ5/lxBNP5OKLL+a6664D4Mwzz+SZZ57h+OOPbzhmIBBgxowZ/POf/+Scc87hnXfeYdiwYeTn57d6HUXaoi4UYZBV8FnqBAqq1lC+qZiceAclIiIi3YJasNooKyuLs846i9tuu22H9S+//DIXX3wx48eP54QTTqCsrIyKiopmavEMGzaMyZO9++osWLCA0047jWAwSH5+PocddhjvvfceAJMmTWLIkCEEAgHGjx9PUVHRTnVdd911LFq0iKOOOoqHH36Y6dOnN3nMluKcMWMGqamp5OXlcfjhh/Puu+8CMHToUJYtW8aKFSu4//77m2whKiws5PTTT+fBBx8kISGh4ZzOPPNMAI444ghKS0spK/MS42OOOYbExETGjRtHOBxuiHfcuHEN5/faa69x0EEHMW7cOF599VU+/vjjnY47a9ashta+Rx55hFmzZrX4mou0R119PVlUUZVZQL0LUrN5bbxDEhERkW6iW7VgtaWlqTNdeumlHHDAAZxzzjkN6yKRCAsXLiQlJWWHsgkJCTt0q4u+H1N6enqbjre9ix543f9CoVCT5fbaay8uvPBCfvCDH9CvXz9KS0t3KtNcnLDzdOaNlwcNGsTYsWN58803Ofnkk3fY9uyzz/LGG2/wr3/9ixtvvJEPP/ywTecUCARITExsOFYgECAUClFTU8NFF13EokWLGDp0KHPmzGnyXlYHH3wwK1asoKSkhCeffJJrr722xeOKtEd9TSUBc6Rk5LCJbCJl6+MdkoiIiHQTasFqh759+3LKKadw7733Nqw76qijuP322xuWt3eFKygo4P333wfg/fff5+uvv26yzqlTpzJv3jzC4TAlJSW88cYbTJo0qc0xPfvssw1jlL744guCwSA5OTlkZmZSXl7eapwATz31FDU1NZSWljJ//nwmTpzI6tWrqa6uBmDLli0sWLCAkSNH7nDsSCRCcXExhx9+OL/5zW/Ytm0bFRUVTJ06lYceegjwxpLl5eWRlZXVpvPZnkzl5eVRUVHBY4891mQ5M2PmzJn85Cc/YdSoUeTm5rapfpG2CNV5f/uZ6elsdDlYhRIsERERaZsOJ1hmNtTMXjOzT8zsYzO7xF/f18xeMrMv/H97xBRcl19+OZs2bWpYvu2221i0aBGFhYWMHj26YTrzk046ic2bNzNmzBjuuOMORowY0WR9M2fOpLCwkP32248jjjiCm266if/f3p3HV1Xf+R9/fe6efQfCjhUQJSwSlopWcG9rpVUrdtSK2Ppra9vRmc7ULlq1j/4ebf392vnNaOvDjpbWoYjVqszUutRlKk4VQVxQQKmyGkhIIGS7yV2+vz/uJYSQkEBucrnJ+/l45JGzfM85n3Bywvnc7zZixIhex/Pggw8yefJkZsyYwTXXXMPy5cvxer185jOf4bHHHmsf5KK7OCHRzG/hwoXMmzePW2+9lZEjR7Jx40bmzp3L9OnTOfvss/nWt75FRUUFAF/60pdYu3YtsViMq6++moqKCmbOnMk3v/lNCgsLuf3221m3bh3Tpk3jlltu4Te/+U2vf57CwkK+/OUvM3XqVC688EJmz57dvu/ee+89LO7FixfzH//xH2oeKCkXbU0k+nm5udS4QvzNNWmOSERERDKFdTUy3TGdwKwcKHfOvW5mecA64LPAEqDOOfdjM7sFKHLOffto56qsrHRr1649bNvGjRuZMmVKn2KU7t1+++2HDYYx2Oj3R47HC39dw8Knz+ejhT/jlRf/xAWe18i9dVu6wxIREZETiJmtc85Vdt7e5xos51yVc+715HIDsBEYBSwCDlZd/IZE0iUicsKLRRJNBH3+EM3BUnJj+yEWSW9QIiIikhFSOsiFmY0HZgKvAsOdc1XJXbuBLsfQNrMbgBsAxo4dm8pwpBduv/32dIcgcsKJtSWaCHoDISJZwyAMNFZDwaj0BiYiIiInvJQNcmFmucCjwE3OucMmq3KJdohdtkV0zt3nnKt0zlWWlZWlKhwRkeMWi7QC4Atk4fKSfSI10IWIiIj0QkoSLDPzk0iuljvn/pDcvCfZP+tgP63qVFxLRKS/xSOJGixfIIg3vzyxTUO1i4iISC+kYhRBA+4HNjrnftZh1yrg2uTytcATfb2WiMhAiLfXYIUIFSUSrOa6XekMSURERDJEKvpgzQeuAd42szeS274L/Bh42MyuB7YBV6TgWiIi/S4eTSRYgWAWeSVlxJ3RUvcRuWmOS0RERE58qRhFcLVzzpxz05xzM5JfTzrnap1z5zrnJjrnznPO1aUi4HR5/PHHMTM2bdrUbZmtW7cyderUlF1z8+bNLFiwgBkzZjBlyhRuuOEGIDFJ8JNPPnnc5w2Hw8yZM4fp06dz2mmn8YMf/CBVIYsMCi5Zg2W+EKUFOdSSR3T/R2mOSkRERDJByga5GOxWrFjBmWeeyYoVK7rcH41G+3yNWCx22Po3v/lNbr75Zt544w02btzIN77xDaDvCVYwGOT555/nzTff5I033uCpp57ilVde6VPsIoOJiyb6YOELMiwvSI0rwjXuSW9QIiIikhGUYPVCY2Mjq1ev5v777+ehhx5q3/7iiy9y1llncckll3DqqacCiUTrqquuYsqUKVx++eU0NzcD8NxzzzFz5kwqKipYunQpra2JT8jHjx/Pt7/9bU4//XR+//vfH3bdqqoqRo8e3b5eUVFBW1sbt912GytXrmTGjBmsXLmSpqYmli5dypw5c5g5cyZPPJHo7rZs2TIWLVrEggULmDhxInfccQcAZkZubqKxUyQSIRKJkOhKd7jf//73TJ06lenTp/OJT3wCSNR+XXfddVRUVDBz5kxeeOGF9mt99rOf5fzzz2f8+PHcfffd/OxnP2PmzJnMmzePurpEBeavfvUrZs+ezfTp07nsssva/306mjdvHu+88077+oIFC+g8AbVIv4q2Jb57A5TlBalxBXiba9Ibk4iIiGSElM6D1e/+dAvsfju15xxRAZ/88VGLPPHEE1x00UVMmjSJkpIS1q1bx6xZswB4/fXX2bBhAxMmTGDr1q1s3ryZ+++/n/nz57N06VJ+8Ytf8PWvf50lS5bw3HPPMWnSJL74xS/yy1/+kptuugmAkpISXn/99SOue/PNN3POOedwxhlncMEFF3DddddRWFjInXfeydq1a7n77rsB+O53v8s555zDAw88wP79+5kzZw7nnXceAGvWrGHDhg1kZ2cze/ZsPv3pT1NZWUksFmPWrFls2bKFG2+8kblz5x5x/TvvvJOnn36aUaNGsX//fgDuuecezIy3336bTZs2ccEFF/Dee+8BsGHDBtavX084HObkk0/mJz/5CevXr+fmm2/mt7/9LTfddBOXXnopX/7ylwH4/ve/z/33399eM3fQ4sWLefjhh7njjjuoqqqiqqqKysojJskW6T+xxAcg+ILkBH3UeYoIhTemNyYRERHJCKrB6oUVK1Zw5ZVXAnDllVce1kxwzpw5TJgwoX19zJgxzJ8/H4Crr76a1atXs3nzZiZMmMCkSZMAuPbaa/nLX/7SfszixYu7vO51113Hxo0b+fznP8+LL77IvHnz2mu+OnrmmWf48Y9/zIwZM1iwYAHhcJjt27cDcP7551NSUkJWVhaXXnopq1evBsDr9fLGG2+wc+fO9iSss/nz57NkyRJ+9atftTdfXL16NVdffTUAp5xyCuPGjWtPsBYuXEheXh5lZWUUFBTwmc98BkjUvG3duhVIJGFnnXUWFRUVLF++/LCaqoOuuOIKHnnkEQAefvhhLr/88i7/fUT6i0UPJVgAzYFSciJ1EI+nMSoRERHJBJlVg9VDTVN/qKur4/nnn+ftt9/GzIjFYpgZd911FwA5OTmHle/c1K6rpneddT5HRyNHjmTp0qUsXbqUqVOndpkIOed49NFHmTx58mHbX3311R7jKSwsZOHChTz11FNHDNBx77338uqrr/LHP/6RWbNmsW7duqP+HMFgsH3Z4/G0r3s8nvY+akuWLOHxxx9n+vTpLFu2jBdffPGI84waNYqSkhLeeustVq5cyb333nvU64qk3MEaLG/id7gtqwxfJAot+yCnJI2BiYiIyIlONVg9eOSRR7jmmmvYtm0bW7duZceOHUyYMIGXXnqpy/Lbt2/nr3/9KwC/+93vOPPMM5k8eTJbt25ly5YtADz44IOcffbZPV77qaeeIhKJALB7925qa2sZNWoUeXl5NDQ0tJe78MIL+bd/+zeccwCsX7++fd+zzz5LXV0dLS0tPP7448yfP5+ampr2Jn8tLS08++yznHLKKUdc/29/+xtz587lzjvvpKysjB07dnDWWWexfPlyAN577z22b99+RGJ3NA0NDZSXlxOJRNrP05XFixfz05/+lPr6eqZNm9br84ukgsUO9cECiOcMS6w3arJhEREROTolWD1YsWIFn/vc5w7bdtlll3U7muDkyZO55557mDJlCvv27eOrX/0qoVCIX//613z+85+noqICj8fDV77ylR6v/cwzz7QPMnHhhRdy1113MWLECBYuXMi7777bPsjFrbfeSiQSYdq0aZx22mnceuut7eeYM2cOl112GdOmTeOyyy6jsrKSqqoqFi5cyLRp05g9ezbnn38+F198MQC33XYbq1atAuCf/umfqKioYOrUqZxxxhlMnz6dr33ta8TjcSoqKli8eDHLli07rOaqJz/84Q+ZO3cu8+fPPyypW7VqFbfddlv7+uWXX85DDz3EFVdo+jQZeBZrI4IPPIk/kZ68EYkdGklQREREemAHaz1OBJWVla7zaHEbN25kypQpaYoosy1btuywwTCGIv3+yPH4z58u4dyWp8n+QRUAy598gavWfJbWi+8hWHl1mqMTERGRE4GZrXPOHTESm2qwREQ68cZbiZq/fT2nZCQATXWabFhERESOLrMGuZBjsmTJEpYsWZLuMEQyjicWIdYhwSouKqbRhWjbV5XGqERERCQTZEQN1onUjFEyh35v5Hh5XRtRT6B9fVh+YrLhWIMSLBERETm6fk+wzOwiM9tsZlvM7JZjPT4UClFbW6uXZTkmzjlqa2sJhULpDkUykDfeRqxjgpUXopoiPI3VaYxKREREMkG/NhE0My9wD3A+sBN4zcxWOefe7e05Ro8ezc6dO6mpqemvMGWQCoVCjB49Ot1hSAbyucMTrMIsP7UUcHJYNVgiIiJydP3dB2sOsMU59wGAmT0ELAJ6nWD5/X4mTJjQT+GJiBzJF48Q9xzqg+XxGA3+UrLbjpzoW0RERKSj/m4iOArY0WF9Z3JbOzO7wczWmtla1VKJyInAR4R4hxosgNZgKVnxJmhrTlNUIiIikgnSPsiFc+4+51ylc66yrKws3eGIyBDnnMPvIjjv4RNoR7OHJRY02bCIiIgcRX8nWLuAMR3WRye3iYickNpicQIcmWCRNyLxXQmWiIiIHEV/J1ivARPNbIKZBYArgVX9fE0RkePWGo0TJILzHt5E0F+QSLCi9RroQkRERLrXr4NcOOeiZvZ14GnACzzgnHunP68pItIXbdFEDVakU4KVVTwSgKa6XRSkIzARERHJCP09iiDOuSeBJ/v7OiIiqdAWjROwKBHf4XOoFZSUE3UewnUfKcESERGRbqV9kAsRkRNJa7IGC9/hNVhl+VnspYDoAfXBEhERke4pwRIR6aAt2QfLOg1yMSwvSLUrxBp3pykyERERyQRKsEREOmiNxggQxXyHJ1iluUFqXCG+Zs3XJyIiIt1TgiUi0kFbJIrfYpj/8D5YAZ+Hem8xWa170xSZiIiIZAIlWCIiHURawwB4/MEj9oWDpeRE90EsOtBhiYiISIZQgiUi0kG0rfsEK5IzHA9xaKoe6LBEREQkQyjBEhHpINLWDICnUxNBAApGJ77X7xrAiERERCSTKMESEengYBNBXyDriH3+ojEAtO3bPqAxiYiISOZQgiUi0kE0mWD5A0fWYOWUjQWgsVoJloiIiHRNCZaISAeRtoM1WEcmWKWlw2l2QcK1SrBERESka0qwREQ6iEWSNVjBIxOs8sIsqlwxcfXBEhERkW70KcEys7vMbJOZvWVmj5lZYYd93zGzLWa22cwu7HOkIiID4OAogoFg9hH7ygsSCZav4aOBDktEREQyRF9rsJ4FpjrnpgHvAd8BMLNTgSuB04CLgF+YmbeP1xIR6XfxSAvQ9TDtWQEvtd4yssK7BzosERERyRB9SrCcc8845w7OuPkKkBzDmEXAQ865Vufch8AWYE5friUiMiCSw7QTyOlyd1NoBHmRWk02LCIiIl1KZR+spcCfksujgB0d9u1MbhMRObFFkgmWv+sEK5IzIjHZcKNqsURERORIvp4KmNmfgRFd7Pqec+6JZJnvAVFg+bEGYGY3ADcAjB079lgPFxFJKU+kKbHQTQ0W+aOglsRkwwcnHhYRERFJ6jHBcs6dd7T9ZrYEuBg41znnkpt3AWM6FBud3NbV+e8D7gOorKx0XZURERkohxKsIwe5APAXj4EPoa1uB4GxcwcwMhEREckEfR1F8CLgn4FLnHPNHXatAq40s6CZTQAmAmv6ci0RkYHgiSYGueiuiWBu2TgAGmq2DVRIIiIikkF6rMHqwd1AEHjWzABecc59xTn3jpk9DLxLoungjc65WB+vJSLS73zRZtoIEPB2/eextKSMRheiVZMNi4iISBf6lGA5504+yr4fAT/qy/lFRAaaP9ZMqydEoJv95UXZVLkSsjTZsIiIiHQhlaMIiohkPH+shVZPVrf7ywtCicmGGzXZsIiIiBxJCZaISAe+WAsRb9cDXACE/F7qvKVkt2iYdhERETmSEiwRkQ4C8WZi3u5rsAAaQ+XkRusg2jZAUYmIiEimUIIlIpLknCMQDxPzdV+DBRDJLceDgwY1ExQREZHDKcESEUkKR+JkEybezRDt7Q5OMKyBLkRERKQTJVgiIkkN4QjZhLudZPigQPFYAFrrNFS7iIiIHE4JlohIUkNrlDxrgWDeUcvlDUtMNtxYvXUAohIREZFMogRLRCSpsaWNIhogu/So5cqKi6lzubTV7higyERERCRTKMESEUlqOVCH1xyWU3LUciMLQ1S5Ely9EiwRERE5nBIsEZGkxv17AAgVlB213IiCEB+5EvxNVQMRloiIiGQQJVgiIknh/dUA5BYNP2q5oM/LPt8wcsNKsERERORwSrBERJJaG/YCkF0wrMeyTVkjyIo1QmtDf4clIiIiGSRlCZaZ/aOZOTMrTa6bmf2rmW0xs7fM7PRUXUtEpD/EGxMJlqeHPlgA0dxRiQXNhSUiIiIdpCTBMrMxwAVAx0lhPglMTH7dAPwyFdcSEekvrrk2sZDdc4LlKUgmWAd29mNEIiIikmlSVYP1c+CfAddh2yLgty7hFaDQzMpTdD0RkZQLhasJWwgCOT2WDZYmJhsOa6h2ERER6aDPCZaZLQJ2Oefe7LRrFNDxzWNnclvn428ws7Vmtrampqav4YiIHLeC1ir2BcrBrMey+WVjiDmjuebDAYhMREREMoWvN4XM7M/AiC52fQ/4LonmgcfFOXcfcB9AZWWl66G4iEi/aIvGKYlW01JwxOdAXRpRlE81RVidmgiKiIjIIb1KsJxz53W13cwqgAnAm5b4xHc08LqZzQF2AWM6FB+d3CYicsLZua+Z0VZDbf7cXpUvLwhR5YoZWa8ES0RERA7pUxNB59zbzrlhzrnxzrnxJJoBnu6c2w2sAr6YHE1wHlDvnNOkMSJyQtq1p5pCayJQOr5X5Yfnh6h2Rfibq/s3MBEREckovarBOk5PAp8CtgDNwHX9eC0RkT6p37kJgLzySb0qH/B5aPCXEGrb3J9hiYiISIZJaYKVrMU6uOyAG1N5fhGR/hKpegeAgvHTe31MOFBCTvgARFvBF+yv0ERERCSDpGyiYRGRTObdu5E2/FjxSb0+pi17WGKhUc0ERUREJEEJlogMec45ShvfZ2/WBPB4e31cPGd4YqFxTz9FJiIiIplGCZaIDHk7ag4wnc00lJ1+TMf58hOzV7iG3f0RloiIiGQgJVgiMuT97e2XybFWciadfUzHBQrLAQjv+6g/whIREZEMpARLRIa88Pv/DcDI6V1O+detnOIRxJ3Rsk8zUIiIiEiCEiwRGfKKa9bwkX8snrxhx3RcSX4OteQR2a8ES0RERBKUYInIkFa9v5HTou+yb9jcYz62LC/IXleI0yAXIiIikqQES0SGtPfeWE2uhY+5/xVAaW6QaleIr0kJloiIiCQowRKRIa3xvUT/q9Ezjq3/FUBRdoAaCgmE96Y6LBEREclQSrBEZEgrql7DR74x+ArKj/lYr8do8JWQHamFeLwfohMREZFMowRLRIasmvompkTeYV/ZnOM+RzhUis9FIbw/dYGJiIhIxupzgmVm3zCzTWb2jpn9tMP275jZFjPbbGYX9vU6IiKptnH9y+RbCzmTj73/1UHR7OTIgxroQkRERABfXw42s4XAImC6c67VzIYlt58KXAmcBowE/mxmk5xzsb4GLCKSKo2bXwCOr/9Vu9zhUAs07IZhU1ITWBo459i7bz+1uz7gQM12wrU7scYqPM21WFsj/lgTgVgz/ngYXBxzcQyHxxyGETMfMfMT8/iJmZ+459CXa/8eAI8X83jB48M8HszjxTy+xDbzEDcvzjw4rGNwiW+d1jsUaN97xC7A6LSxU6HD93cu28O5jlgXGXixrBJmL/oaQX+fXutEJEX6+iR+Ffixc64VwDlXndy+CHgouf1DM9sCzAH+2sfriYikTFH1a+z2jWJE4ajjPocvfzgArnFPx5TghHagpY0tmzdQ//7/QNXb5DVsYUTbNkZbDWWdyrYQpJkswp4sWiybVk8IZ4mkKO4MhxF3Dl88itc1EiCKz0Xxugi+5LKfKD4iBFwULzF8pv5qIqn2UslEzlr4yXSHISL0PcGaBJxlZj8CwsC3nHOvAaOAVzqU25ncdgQzuwG4AWDs2LF9DEdEpHf21DdzavQdqkZewIg+nCdYOBKA1v0fEUpNaClX29DChtdfpnXTs+TXrGNiZBOnWwMArfjZ7R9DXdF0qosn4i+dQG7ZWAqGjyO/bAxZWXlk9UNMLh4jFo0SjUWJRCJEozHMxSAeAxfDktmqHUxbkxvat1uHdNasY8lkmU7prnVOf4+2v/O+ztH3dG6RgRNrrif7nunENz8NSrBETgg9Jlhm9mfo8v3je8nji4F5wGzgYTM76VgCcM7dB9wHUFlZqbYWIjIg3nlzDedYMwcmntmn8xQUFNHsgkT27T5hEiznHJu27eSDlx8ja/uLVITXcrbVA/CRbwx7Rixg79g5DDv1TIrGTWecxzvgMZrHiy/gxUeQUH9kcCJDRW4hG4OnMbrmv9MdiYgk9ZhgOee67ZxgZl8F/uCcc8AaM4sDpcAuYEyHoqOT20RETghNW14GoHzqgj6dpzQ/RI0rIPfA7hRE1Tfvb/+I9196mMIP/otZ0fVMsSgHLJ+qYR+nZcqFjJz1KUYWlDMy3YGKSErVlC/gE9vu5sCebeQPH5fucESGvL42EXwcWAi8YGaTgACwF1gF/M7MfkZikIuJwJo+XistXDyOeTSavchgk7NnHfWeAgrKTu7TeUpzA1RTSG5DehKsHbWNrH3+MYo3r2BeZA0TLUKtt5QPJ3yBkWd8gfyT55GfhhoqERk4pacvgm1388H/PMqMz/1DusMRGfL6mmA9ADxgZhuANuDaZG3WO2b2MPAuEAVuzMQRBDe9+gzxP99B0VX3Uz7+lHSHIyIpEo7E+Fh4A7uLZ1LQx/4zZblB1rpCJjbXpCi6nkVicVa//hZ7V/+aufv/yOeshgOWzwfjPs+I+VdRMvEMSvTBkMiQccrUSnY+NhzflmcAJVgi6danBMs51wZc3c2+HwE/6sv50y18YC8ntX2AZ9kC1k7/Hqdf8jU8Xn0SLJLp3nv/PabZHjaNva7P5yrOCbCXAkKtm1IQ2dHt2NvAq8+upPS9hzgrvg6fxdlRWEndGT+keNal5PuC/R6DiJx4PF4PH5acxey9T9Cyv4asws7jgYrIQNKECUcx4/y/Y9fJs9j/u+uofPP7/G3Dr2n6+D9w2oLFeH3+dIeXMs454vE40WiEWCxKNBrBJUf3ikcjuHgcF48k5o5xLjHjzMF5aQ7OJ9O+Hk8uJsrh4u3lDk0947qerCYleqiNOI7aiv4YICxlp+xpZLRUXKLba/XhnEc9Vf+PyLZvzUoAyqb1fQ50n9dDg6+UUPQARMLgT+1QF5FYnNVr17P/5QeYW/8kl1sdBzyF7JxyPWPO/Qpj+tjEUUQGh/wzrif0n4+w4am7mXrlHekO54Ti4jFikTai0TaikTZi0SiRWCz5fpOYR8+5WOKdxsUT253DXDz5/hJLvP8c/IL2d52upsJzvfr/0nrx32ovztOLa1kvynSce7Db0kc5T2+uccQxx1A2HsijZNhIcoKZkbpkRpRpNGrCZMpveYnX/us+Rq//v3xs9Y1Ur76NrcPPJTjlIiaevpDs/OKUXzcedzRHYjQ1t9DUeICWpgZamw4Qbmkg0tJItKWBSLiReGsTrq0JT7QZb6QFb6wZb7QZX6wFf6yFQLyFQDxM0IUJuRZCLkzARfASw0sMD3F8xPGaQ3VzMlSMAqopYdhJM1NyvtZQKbQATdVQmJrpJrZV72fdnx9i+PsPcXb8DTDYXjSPfWdeT9GMReT7Aim5jogMDtNO/zjrnpzOuM2/JR75Lh5/5tRoO+c40NhIQ101zQdqaW2opa2hjlhTHbGW/bi2Jog044k04Yk044214I0m3nP8yfccr4viS77fHJx7z+eSyxbHh156M9mvoxdSdsW/cPG0zBimSb9rveDxepm96KtEPnU9655bieeNB5m2+zFCex6GF6HKyqgJjiOaVUokVEo8VIjXF8B5fMTNi3MOb6wVoq24aJh4JIxFw3iizXiiLfgPJkTxFoLxFkKulRBhsmhluEWPKdYWgrRaiLBl0eYJ0eYJEQlk0+wt5oA3i5g3i7g3iPP4weMFjw/Mk/juSUwemtjecdmHMy8HP21xGIa1f0JzcM6ZjvPVHCoHHSauSR538FOL1NZU9Fwndhy1ZsdV0TaAsw30W01g8vQHf5aB+pH6+efpqORjpzMsVbVy+SMTCdb+HX1KsMKRGC+/8ldaXl3G3IZnuNTq2ectYdupX2PsuTcwvnh8auIVkUHHzGib8zVK//q/ePex/82pV6S5Fss5Gg/so3b3dg7U7KS57iMi9VXQsAd/SzVZbbXkRerIiR8g3zVQYBEKjnK6iPPSYiHCyfecVk8WEU+IsC+fRu9wnDeAMx9xrx9nfpzHj/MmvuP1w8Hv3gDm8eLxGGaexDtQci69Q8senOfgNm/ibcVzqFznefoO/6+k5//HzLmeS/Xqv8NeFHK9mdi9N+fpab87ppYuvfgXOMz43AmcPLrwmI5JJyVYx8DvDzDromvgomtoaWrgrdeeof7DdWTv20R+83Zy922l2NUTtEi354g7I0yAiPkJW4hWC9HmySLizSISKCXsy2afPwv8ORDIwRPMwRPMxRfMwZeVSyArn0B2LqHsPLJyCghm52KBRFl8WWR5PP0yKaiIdM837BTYA/HqTXjGzz+mY51zvLN1N5tfeJAJ2x/lXDYRxcO2krPwnnk9xdM/TZFXf6pFpGdzzruCl9f9ltnv3k3N+5+mbOKcfrtWJBZnT3U1e3e+R9PuvxGp3Yr3wA6ym3dR1FbF8Ngeci1MbqfjWvGzz4qo9xWzPzSSvcHTiIeK8GQX4skuwZ9bhD+nmFB+CVkFpWTnF5OTW4DfH8QP5PfbTySSOuYG8BPjnlRWVrq1a9emO4y+cY7WcBONLa1YLILHRfF4vZgviDeQRSgQxOPV6F4ig8nyV7ay6E9zYcbfkfu5n/fqmK176tjwlz+Q/d4TzG17lRxrpdo/mpapf8eYhdfjye9qfncRkaP7YNs2ch5YQJa10XTpg5RPO+e4zuOcY9/+fVRvf5/6qi207v0Q27+dYONOClqrGBHfQ4E1HXZME1lUe0dQHxxJOGcU8fxRBArLySoaSeGwMRQPH0NWfnH/dG4WSQMzW+ecq+y8XR+LppoZwaxcglmdP7MRkcFqQlkuW9woxle9020Z5xwbt+5i65o/EvjgGeaE/4eLrZkGy2PXmM8w8hNfZNjET+jFQ0T65KRx43jr8scoevQKxvzhc7z7/AK8FZdTNnEWBSMmJLowYLQ21VO3dw/1dXto2bud6L7tuH3b8TfuIjdcRWl0D8XWQMde5mEC1HhH0JA9kg/yZuEpHEtw2EkUlH+M0jGTyMkpZoL+hokowRIR6auKUQWsdKdQUfM0NNVCTgkAew80s+nNV6h/588M2/MXpsff5VSL0Wg5fFR+LpF5X6Ck4gLyvINnVFIRSb9pFTOoGv4yzz58O5U1j1P00ovw0qH9BoSAkcmvg1pcgBrvMOoDI/ig6DQ+KBxHsHQ8BSNPpnTMJLILRzBGCZRIj5RgiYj0UV7Iz9bRi/BW/ZEP//0atnrHkr1vM1OiGznTWgDYFTiJD8YsYUTlJRROms8kJVUi0o/Kh5VR/vV7aGi6i3VvvERL1WZc/S5cPIbfHPFALv7cYkIFw8guGU1B+UmUlJYzVt0YRPpMfbBERFJgS3Ujz/3q2yxpW4mZo9o/mvqySrJPPpPRM87FX5ya4dtFRETkxNBdHywlWCIiKeKcI9zaRlbAnxjSV0RERAYtDXIhItLPzIysUOZM7ikiIiKpp49YRUREREREUkQJloiIiIiISIoowRIREREREUmRE2qQCzOrAbalO45OSoG96Q5CBozu99Chez106F4PLbrfQ4fu9dByIt7vcc65ss4bT6gE60RkZmu7Gh1EBifd76FD93ro0L0eWnS/hw7d66Elk+63mgiKiIiIiIikiBIsERERERGRFFGC1bP70h2ADCjd76FD93ro0L0eWnS/hw7d66ElY+63+mCJiIiIiIikiGqwREREREREUkQJloiIiIiISIoowToKM7vIzDab2RYzuyXd8UjqmNkYM3vBzN41s3fM7O+T24vN7Fkzez/5vSjdsUpqmJnXzNab2X8l1yeY2avJ53ulmQXSHaOkhpkVmtkjZrbJzDaa2cf1bA9OZnZz8m/4BjNbYWYhPduDh5k9YGbVZrahw7Yun2VL+NfkfX/LzE5PX+RyrLq513cl/46/ZWaPmVlhh33fSd7rzWZ2YVqCPgolWN0wMy9wD/BJ4FTgC2Z2anqjkhSKAv/onDsVmAfcmLy/twDPOecmAs8l12Vw+HtgY4f1nwA/d86dDOwDrk9LVNIf/h/wlHPuFGA6ifuuZ3uQMbNRwDeBSufcVMALXIme7cFkGXBRp23dPcufBCYmv24AfjlAMUpqLOPIe/0sMNU5Nw14D/gOQPJ97UrgtOQxv0i+t58wlGB1bw6wxTn3gXOuDXgIWJTmmCRFnHNVzrnXk8sNJF7ARpG4x79JFvsN8Nm0BCgpZWajgU8D/55cN+Ac4JFkEd3rQcLMCoBPAPcDOOfanHP70bM9WPmALDPzAdlAFXq2Bw3n3F+Auk6bu3uWFwG/dQmvAIVmVj4ggUqfdXWvnXPPOOeiydVXgNHJ5UXAQ865Vufch8AWEu/tJwwlWN0bBezosL4zuU0GGTMbD8wEXgWGO+eqkrt2A8PTFZek1L8A/wzEk+slwP4Of7j1fA8eE4Aa4NfJJqH/bmY56NkedJxzu4D/A2wnkVjVA+vQsz3Ydfcs671tcFsK/Cm5fMLfayVYMqSZWS7wKHCTc+5Ax30uMYeB5jHIcGZ2MVDtnFuX7lhkQPiA04FfOudmAk10ag6oZ3twSPa9WUQiqR4J5HBkEyMZxPQsDw1m9j0SXTuWpzuW3lKC1b1dwJgO66OT22SQMDM/ieRquXPuD8nNew42KUh+r05XfJIy84FLzGwriaa+55Doo1OYbFYEer4Hk53ATufcq8n1R0gkXHq2B5/zgA+dczXOuQjwBxLPu57twa27Z1nvbYOQmS0BLgaucocm7z3h77USrO69BkxMjkYUINGZblWaY5IUSfbBuR/Y6Jz7WYddq4Brk8vXAk8MdGySWs657zjnRjvnxpN4jp93zl0FvABcniymez1IOOd2AzvMbHJy07nAu+jZHoy2A/PMLDv5N/3gvdazPbh19yyvAr6YHE1wHlDfoSmhZCAzu4hE8/5LnHPNHXatAq40s6CZTSAxsMmadMTYHTuUDEpnZvYpEn03vMADzrkfpTciSRUzOxN4CXibQ/1yvkuiH9bDwFhgG3CFc65zB1vJUGa2APiWc+5iMzuJRI1WMbAeuNo515rG8CRFzGwGiQFNAsAHwHUkPlDUsz3ImNkdwGISzYfWA18i0RdDz/YgYGYrgAVAKbAH+AHwOF08y8kk+24SzUSbgeucc2vTELYch27u9XeAIFCbLPaKc+4ryfLfI9EvK0qim8efOp8znZRgiYiIiIiIpIiaCIqIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIp8v8B4Pb6t3wvxiMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgiklEQVR4nOzdeXxU1f3/8ddnZrJvQBJ2JIiArKICYgHXVrEuaLWidUO/1q+2tmpdam2r1H79/vpVW6vVllptXYtQ91ardaMuFRUUUUEUJEJYQwIJ2TMz5/fHvcQhZINMmIS8n4/HPJh777nnfO7czDCfOeeea845REREREREpP0CiQ5ARERERERkX6EES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJlohIJ2FmBWbmzCyU6Fj2dWY2y8zeTHQcnY2ZTTOzFYmOQ0SkK1OCJSIiXZqZzTazejOriHlcl+i4uiLn3BvOuRHxrNPM8szsLTMrMbNtZva2mU2JZxsiIp2JfiUVEYkTMws558KJjqObmuecOzfRQXSULv63VQFcBHwOOGAG8Hcz692Fj0lEpFnqwRIRaQczKzSzH5vZUqDSzEJmNtnM/uP/Wv+hmR0VU36Bmf0/M3vXzMrN7Bkz69VM3Rea2XIz225mX5jZfzfaPsPMlvj1rDKz6f76HDO738w2mNk6M/sfMwu2chxDzexVv5dhi5k9amY9YraVmtkh/nJ/MyvecVxmdoqZfeIf7wIzG9no9bnGzJaaWZmZzTOz1N1/pXefmV3vvy7bzWyZmZ3WTDkzszvMbLP/Wn5kZmP8bSlmdruZrTGzTWY2x8zS2tj+A375l/wY/m1mg2O232lma/02F5vZtJhts83scTN7xMzKgVlmNsnv/dnmn9u7zSw5Zh9nZt8zs8/99n7pn7v/+G3Mjy3fTMxHmVlRW46vrZxzNc65Fc65KGBABOgJNPl3LyLS1SnBEhFpv7OBE4EeQB/gOeB/8L5AXgM8YWb5MeXPx/tFvx8QBu5qpt7NwElANnAhcEdMkjMJeAi41m/3CKDQ3+8Bv94DgIOB44CLWzkGA/4f0B8YCQwCZgM451YBPwYeMbN04C/Ag865BWY2HJgLXAnkA8/j9U7EfpE/E5gODAHGAbOaDMBsqp88NPeY2soxNLYKmAbkAL/w4+/XRLnj8F6/4X7ZM4ESf9uv/PXj8V7PAcCNuxHDOcAvgTxgCfBozLb3/Hp7AX8F/tYo+ZwBPI53fh/FS0yu8us6HDgW+F6j9o4HDgUmA9cB9wLn4p3PMXh/q3vMT5SbOz+/b21foAZ4FrjPObe5PbGIiHRW5pxLdAwiIl2WmRUCNzvn/uwv/xgY45w7L6bMi8BfnXMPmtkCYKFz7np/2yi8L95peF+CVwNJTQ2dMrOngdecc3ea2R+BKufcVY3K9AHWAD2cc9X+urOBS5xzR+/GcZ0K3OScOzhm3bN4SZIDJjrnas3s58BY59yZfpkAsBY4x0/ACoGfOece8bffCmQ75y5tayxtiHU2cANQFbN6lHNufaNyS/xjesbMZgEXO+emmtkxwBy8xPddv6cFMzO84W3j/CQTMzsc71wOaUNcDwCpzrmz/OVMoAwocM6tbaL8VuAo59yH/jEd45w7ooX6rwSOdM6d5i87YKpz7i1/eTEw3zn3f/7yr4Ggc+7KFuo8CnjEOTewtePbE34CeRqQ7Jx7sCPaEBFJNF2DJSLSfrFflgcD3zazk2PWJQGvNVP+S397XuNKzewE4Ca8HpQAkA585G8ehNdb1Nhgv74NXn4A/r67fKFv1FYf4E68Hp8sf5+tjYr9Ca/34RLnXK2/rr9/DAA456Jmthavp2eHjTHPq/x94m1+42uwzOx84EdAgb8qkyZeZ+fcq2Z2N3APMNjMnsTreUzFe80Xx7yWBrQ43LKRhtfdOVdhZqV4x7/WzK4B/stfdng9lXlN7esfz3DgN8AEP64QsLhRe5tinlc3sdx3N2KPO+dcDTDXvKGvS5xzHyYyHhGRjqAhgiIi7Rc7FGAt8LBzrkfMI8M596uYMoNinu8H1ANbYis0sxTgCeB2oI9zrgdeQrXjm/5aYGgTsawFaoG8mPaznXOjWzmG//WPY6xzLhtvWNlXWYXX+/Jb4H5gtn113dh6vKRuRznzj29dK+3twrwpwitaeExrvZaGugbjJYSXA7n+6/dx7DHFcs7d5Zw7FBiFl9Bei3dOqoHRMa9ljnMuczcOq+Fc+69hL2C9fyzX4Q1H7OnHV9YovsZDTP4AfAoM88/RDc0dT0cx71q75s7PnN2oKgnYv6PiFBFJJCVYIiLx9Qhwspkdb2ZBM0v1Jw6IHXJ1rpmN8q9nuhl43DkXaVRPMpACFANhvzfruJjt9wMXmtmxZhYwswFmdqBzbgPwL+DXZpbtbxtqZke2EncW3nC4MjMbgJdgxLoTWOScuxjvGrMdX6bnAyf6cSQBV+MleP9p7YVqzJ8iPLOFxxu7UV0GXoJSDN6EIXjXIO3CzCaa2WF+/JV41wlF/aGCf8K79q23X3aAmR0fs6+zmElMmvBN/9qyZLxrsRb6wwOz8K6TKwZCZnYjXg9WS7KAcqDCzA4ELmulfNw550a3cH6aHPZp3qQvU80s2czS/GG0fYB39m70IiJ7hxIsEZE48r88z8DrXSjG61G6lp0/bx/Gm4hiI94wtB82Uc92f/18vKF638Ebnrdj+7v4E1/g9Xz8m696ks7HS9CW+fs+jjehRkt+ARzi1/Uc8OSODWY2A2+Sih1f6H8EHGJm5zjnVuD1dv0Or8fnZOBk51xdK+11KOfcMuDXwNt4w+TGAm81UzwbL5HaijfcsQS4zd/2Y2AlsNC82fxeBkYAmNkgYDtfDdtsyl/xhnmW4k0+sWMY44vAC8Bnfps1tDKME2/Y4nf8Nv8EzGulfGeRgjf8sgSvZ/ObwImNr5ETEdlXaJILEZG9yJ/k4hHn3H2JjkXax8zOxRs++JNmtj8AFDnnfrZXAxMRkYTSJBciIiJ7YMfMiCIiIrE0RFBEpJsw76a37Z2cQLo4M7uhmb+DfyY6NhGRfYGGCIqIiIiIiMSJerBERERERETipFNdg5WXl+cKCgoSHYaIiIiIiEiLFi9evMU5l994fadKsAoKCli0aFGiwxAREREREWmRmX3Z1HoNERQREREREYkTJVgiIiIiIiJxogRLREREREQkTjrVNVhNqa+vp6ioiJqamkSHIp1AamoqAwcOJCkpKdGhyD7o6Q/W8fxHG7jnnENICur3JxEREdl9nT7BKioqIisri4KCAsws0eFIAjnnKCkpoaioiCFDhiQ6HNkH/fKZ9/lW/fOsWLSNMYd9PdHhiIiISBfU6X+irampITc3V8mVYGbk5uaqN1M6zExe5qdJf6XHwlsTHYqIiIh0UZ0+wQKUXEkD/S1IR+pLCQBplWsTHImIiIh0VV0iwRIR6WjOOUKRKgB61m2AuqoERyQiIiJdkRKsNjAzrr766obl22+/ndmzZycuoBhHHXVUizdnPvXUU5k8efJO62bPns2AAQMYP348Y8aM4dlnn+3oMEU6vcq6CGl4w08DONjyWYIjEhERka5ICVYbpKSk8OSTT7Jly5a41uucIxqNxrXOWNu2bWPx4sWUlZXxxRdf7LTtqquuYsmSJfztb3/joosu6tA4RLqCipowmXx1fV/tltUJjEZERES6KiVYbRAKhbjkkku44447dtlWXFzM6aefzsSJE5k4cSJvvfUW4PUS3X777Q3lxowZQ2FhIYWFhYwYMYLzzz+fMWPGsHbtWq699lrGjBnD2LFjmTdvHgALFizgqKOO4owzzuDAAw/knHPOwTnXZHwPP/xwQ2/Uu+++27D+ySef5OSTT+ass87isccea3LfkSNHEgqFdkoer7/+ekaNGsW4ceO45pprACgsLOSYY45h3LhxHHvssaxZswaAWbNmcdlllzF58mT2339/FixYwEUXXcTIkSOZNWtWQ52XXXYZEyZMYPTo0dx00027xFFWVsbgwYMbEr3KykoGDRpEfX19k3GLxFttOEI6NawPDQJg++YvExyRiIiIdEWdfpr2WL/4+ycsW18e1zpH9c/mppNHt1ru+9//PuPGjeO6667baf0VV1zBVVddxdSpU1mzZg3HH388y5cvb7Guzz//nAcffJDJkyfzxBNPsGTJEj788EO2bNnCxIkTOeKIIwD44IMP+OSTT+jfvz9TpkzhrbfeYurUqbvUV1VVxZIlS3j99de56KKL+PjjjwGYO3cuN954I3369OH000/nhhtu2GXfd955h0AgQH5+PgAlJSU89dRTfPrpp5gZ27ZtA+AHP/gBF1xwARdccAF//vOf+eEPf8jTTz8NwNatW3n77bd59tlnOeWUU3jrrbe47777mDhxIkuWLGH8+PHccsst9OrVi0gkwrHHHsvSpUsZN25cQxw5OTmMHz+ef//73xx99NH84x//4Pjjj9f9rmSvqQ1HybAaKtP6U1O+kZqSNYkOSURERLog9WC1UXZ2Nueffz533XXXTutffvllLr/8csaPH88pp5xCeXk5FRUVLdY1ePDghuui3nzzTc4++2yCwSB9+vThyCOP5L333gNg0qRJDBw4kEAgwPjx4yksLGyyvrPPPhuAI444gvLycrZt28amTZv4/PPPmTp1KsOHDycpKakh8QK44447GD9+PNdccw3z5s1rmJ0vJyeH1NRU/uu//osnn3yS9PR0AN5++22+853vAHDeeefx5ptvNtR18sknY2aMHTuWPn36MHbsWAKBAKNHj26Ief78+RxyyCEcfPDBfPLJJyxbtmyX45g5c2ZDD95jjz3GzJkzW3wdReKpLhwlgxpCaVlscL2Ilq1LdEgiIiLSBXWpHqy29DR1pCuvvJJDDjmECy+8sGFdNBpl4cKFpKam7lQ2FArtdF1T7L2bMjIy2tReSkpKw/NgMEg4HG6yXOOpy82M+fPns3Xr1oYb8paXlzN37lxuueUWwLsGa8fwv8Zxv/vuu7zyyis8/vjj3H333bz66qttijMQCOwUcyAQIBwOs3r1am6//Xbee+89evbsyaxZs5q8l9Upp5zCDTfcQGlpKYsXL+aYY45psV2ReKoNR+hpNVh6NoUul4Lt6xMdkoiIiHRB7e7BMrNBZvaamS0zs0/M7Ap//WwzW2dmS/zHN9sfbmL16tWLM888k/vvv79h3XHHHcfvfve7huUlS5YAUFBQwPvvvw/A+++/z+rVTV8wP23aNObNm0ckEqG4uJjXX3+dSZMm7VZcO3p93nzzTXJycsjJyWHu3Lm88MILDdd9LV68uNnrsGJVVFRQVlbGN7/5Te644w4+/PBDAL72ta817P/oo48ybdq0NsdXXl5ORkYGOTk5bNq0iX/+859NlsvMzGTixIlcccUVnHTSSQSDwTa3IdJetX4PlqVmsTWUT3rNxkSHJCIiIl1QPHqwwsDVzrn3zSwLWGxmL/nb7nDO3d7Cvl3O1Vdfzd13392wfNdddzVcnxUOhzniiCOYM2cOp59+Og899BCjR4/msMMOY/jw4U3Wd9ppp/H2229z0EEHYWbceuut9O3bl08//bTNMaWmpnLwwQdTX1/Pn//8ZwoLC/nyyy93mp59yJAh5OTk8M477zRZxze/+U3uu+8+zIwZM2ZQU1ODc47f/OY3APzud7/jwgsv5LbbbiM/P5+//OUvbY7voIMO4uCDD+bAAw9k0KBBTJkypWHbjTfeyIQJEzjllFMAb5jgt7/9bRYsWNDm+kXiobY+QgY11CRnUJnah6zqNyAagYASfREREWk7a25muj2u0OwZ4G5gClCxOwnWhAkTXON7Oi1fvpyRI0fGNUbp2vQ3IR3hX0vXcNyTY9k08TpeXl3HOVt+Cz9aDtn9Ex2aiIiIdEJmttg5N6Hx+rhOcmFmBcDBwI5uksvNbKmZ/dnMejazzyVmtsjMFhUXF8czHBGRNovUbAcgkJIJOQO8lZroQkRERHZT3BIsM8sEngCudM6VA38AhgLjgQ3Ar5vazzl3r3NugnNuwo6pwkVE9rZobSUAwZQMknt598KqLtG9sERERGT3xCXBMrMkvOTqUefckwDOuU3OuYhzLgr8Cdi9mRtERPaiSL03s2UwKZWM/P0AqNTNhkVERGQ3xWMWQQPuB5Y7534Ts75fTLHTgI8b7ysi0lmE62oBCCUn0yu3D9UumdpSDREUERGR3ROPWQSnAOcBH5nZEn/dDcDZZjYecEAh8N9xaEtEpENEwnUAhJJT6ZuTxibXk0C57oUlIiIiu6fdCZZz7k3Amtj0fHvrFhHZW6L1foKVlELfnFQ+pCeDKnUvLBEREdk9cZ1FcF/29NNPY2Yt3p+qsLCQMWPGxK3NWbNm8fjjjze7/corr2TAgAFEo9GGdQ888AD5+fmMHz+eUaNG8ac//Slu8Yjsy1x4xzVYKaQmBSkN5JJSvTnBUYmIiEhXowSrjebOncvUqVOZO3duk9vD4XC724hEIm0uG41Geeqppxg0aBD//ve/d9o2c+ZMlixZwoIFC7jhhhvYtGlTu2MT2de5iNeDRTAZgMrkfLLqiyHO9woUERGRfZsSrDaoqKjgzTff5P777+exxx5rWL9gwQKmTZvGKaecwqhRowAv0TrnnHMYOXIkZ5xxBlVVVQC88sorHHzwwYwdO5aLLrqI2lrvgvqCggJ+/OMfc8ghh/C3v/1tl7ZffvllJkyYwPDhw/nHP/6xU9ujR4/msssuazbp6927N0OHDuXLL7+aCe2uu+5i1KhRjBs3jrPOOguA0tJSTj31VMaNG8fkyZNZunQpALNnz+aCCy5g2rRpDB48mCeffJLrrruOsWPHMn36dOrr6wG4+eabmThxImPGjOGSSy6h8c2ro9EoBQUFbNu2rWHdsGHDlPhJp+LC3t8zwRQA6tL7kOzqoGZb4oISERGRLicek1zsPf+8HjZ+FN86+46FE37VYpFnnnmG6dOnM3z4cHJzc1m8eDGHHnooAO+//z4ff/wxQ4YMobCwkBUrVnD//fczZcoULrroIn7/+99z+eWXM2vWLF555RWGDx/O+eefzx/+8AeuvPJKAHJzc3n//febbLuwsJB3332XVatWcfTRR7Ny5UpSU1OZO3cuZ599NjNmzOCGG26gvr6epKSknfb94osv+OKLLzjggAMa1v3qV79i9erVpKSkNCQ8N910EwcffDBPP/00r776Kueffz5LliwBYNWqVbz22mssW7aMww8/nCeeeIJbb72V0047jeeee45TTz2Vyy+/nBtvvBGA8847j3/84x+cfPLJDW0GAgFmzJjBU089xYUXXsg777zD4MGD6dOnT5tPk0iHC3s/ehD03kcuqy9sA8o3QFqT90kXERER2YV6sNpg7ty5Db09Z5111k49RpMmTWLIkCENy4MGDWLKlCkAnHvuubz55pusWLGCIUOGMHz4cAAuuOACXn/99YZ9Zs6c2WzbZ555JoFAgGHDhrH//vvz6aefUldXx/PPP8+pp55KdnY2hx12GC+++GLDPvPmzWP8+PGcffbZ/PGPf6RXr14N28aNG8c555zDI488Qijk5ddvvvkm5513HgDHHHMMJSUllJeXA3DCCSeQlJTE2LFjiUQiTJ8+HYCxY8dSWFgIwGuvvcZhhx3G2LFjefXVV/nkk092OY6ZM2cyb948AB577LEWj1kkIRoNEQzl9PdWl2kmQREREWm7rtWD1UpPU0coLS3l1Vdf5aOPPsLMiEQimBm33XYbABkZGTuV924L1vxyUxrX0Vp9L774Itu2bWPs2LEAVFVVkZaWxkknnQR4yczdd9/dZH3PPfccr7/+On//+9+55ZZb+OijlnsEU1K84VKBQICkpKSGeAKBAOFwmJqaGr73ve+xaNEiBg0axOzZs6mpqdmlnsMPP5yVK1dSXFzM008/zc9+9rMW2xXZ2xquwQp5CVZq7iAAtm9ZQ4/hiYpKREREuhr1YLXi8ccf57zzzuPLL7+ksLCQtWvXMmTIEN54440my69Zs4a3334bgL/+9a9MnTqVESNGUFhYyMqVKwF4+OGHOfLII9vU/t/+9jei0SirVq3iiy++YMSIEcydO5f77ruPwsJCCgsLWb16NS+99FLD9V7NiUajrF27lqOPPpr/+7//o6ysjIqKCqZNm8ajjz4KeNd25eXlkZ2d3ab4diRTeXl5VFRUNDvroZlx2mmn8aMf/YiRI0eSm5vbpvpF9pZAox6s7HwvwaraopsNi4iISNspwWrF3LlzOe2003Zad/rppzc7scSIESO45557GDlyJFu3buWyyy4jNTWVv/zlL3z7299m7NixBAIBLr300ja1v99++zFp0iROOOEE5syZQzQa5YUXXuDEE09sKJORkcHUqVP5+9//3mQdF198MYsWLSISiXDuuecyduxYDj74YH74wx/So0cPZs+ezeLFixk3bhzXX389Dz74YBtfHejRowff/e53GTNmDMcffzwTJ05s2DZnzhzmzJnTsDxz5kweeeQRDQ+Uzim6Y5ILL8HK75nDVpdJeJsSLBEREWk7azzjWyJNmDDBLVq0aKd1y5cvZ+TIkQmKSDoj/U1IR3jsrus5q/QP8OMvIa0HWypqKb71UDL6DGW/7z+T6PBERESkkzGzxc65CY3XqwdLRAR26cHqlZ5MMT1JqtLtBERERKTtlGCJiLDrNViBgFGWlE967eYERiUiIiJdTZdIsDrTMEZJLP0tSEcJROuJYhAINqyrScknK7wVIuEERiYiIiJdSadPsFJTUykpKdEXa8E5R0lJCampqYkORfZBFq0jbEkQc2uEcEZfAkShUr1YIiIi0jad/j5YAwcOpKioiOLi4kSHIp1AamoqAwcOTHQYsg8KRusJk0Ry7MrsflAMrnwDlt0/UaGJiIhIF9LpE6ykpCSGDBmS6DBEZB8XiNYTCez8kZjccwAA1aVFpA88NBFhiYiISBfT4UMEzWy6ma0ws5Vmdn1HtycisicCrp6IJe20LiPPu9lwRfHaRIQkIiIiXVCHJlhmFgTuAU4ARgFnm9mojmxTRGRPhKK7Jlg98voTdgFqSosSFJWIiIh0NR3dgzUJWOmc+8I5Vwc8Bszo4DZFRHZbwNUTDeycYPXtkcFmehAp25CgqERERKSr6egEawAQO7amyF/XwMwuMbNFZrZIE1mISKKEXD2RwE5TXNA3J5XNrifBCiVYIiIi0jYJn6bdOXevc26Cc25Cfn5+osMRkW4q6MJEGw0RTE0KUhLIJaVmU4KiEhERka6moxOsdcCgmOWB/joRkU4l1MQQQYDK5Hwy67YkICIRERHpijo6wXoPGGZmQ8wsGTgLeLaD2xQR2S3OOZKpIxpM2WVbTVofMqIVUFeVgMhERESkq+nQBMs5FwYuB14ElgPznXOfdGSbIiK7Kxx1pFDfZILlMvt4T7brOiwRERFpXYffaNg59zzwfEe3IyKyp+oj0WYTrGDOAFgH4bL1hHKHJiA6ERER6UoSPsmFiEii1Ye9HizXRIKV0sub+HT7Zt1sWERERFqnBEtEur26SJQUq8eFdk2wsvL3A6CyRAmWiIiItE4Jloh0e/WRKKnU4YKpu2zLy82j0qUQ3lqUgMhERESkq1GCJSLd3o5rsJrqwerbI431Lg8rV4IlIiIirVOCJSLdXm19hBTqsNCuPVi90pNZTx7JFbqFn4iIiLROCZaIdHs1dbUEzRFI2jXBCgSM0qS+ZNVqmnYRERFpnRIsEen26mqqAQgk75pgAVSl9SczUg61FXszLBEREemClGCJSLdXX1MFQCAprcnt0eyB3pMyzSQoIiIiLVOCJSLdXl2t14MVSm46wQrlFgBQX/rl3gpJREREuiglWCLS7UXqvAQrmNL0EMGMPkMAKN+waq/FJCIiIl2TEiwR6fbqW+nByus7iFoXorq4cC9GJSIiIl2REiwR6fZ29GCFUppOsAb1ymS9yyW6dc3eDEtERES6ICVYItLtRf0EKyklvcnt/XJSWU8+oe262bCIiIi0TAmWiHR7kboaAJKb6cEKBQOUJvUhs3r93gxLREREuiAlWCLS7UXrvQSruWuwwLsXVnakFPyyIiIiIk1pV4JlZreZ2admttTMnjKzHv76AjOrNrMl/mNOXKIVEekA0XpviKCFUpotE8ke5D0pX7c3QhIREZEuqr09WC8BY5xz44DPgJ/EbFvlnBvvPy5tZzsiIh0mUO/daJiUzGbLJOXuB0Bdyeq9EZKIiIh0Ue1KsJxz/3LOhf3FhcDA9ockIrJ3Wd1270lKVrNlMnoPBaB8wxd7IyQRERHpouJ5DdZFwD9jloeY2Qdm9m8zm9bcTmZ2iZktMrNFxcXFcQxHRKRtgg0JVnazZXr1G0zYBajarB4sERERaV6otQJm9jLQt4lNP3XOPeOX+SkQBh71t20A9nPOlZjZocDTZjbaOVfeuBLn3L3AvQATJkxwe3YYIiJ7Lli/nWpLJS0QbLbMwNwsNrhcolsL915gIiIi0uW0mmA5577e0nYzmwWcBBzrnHP+PrVArf98sZmtAoYDi9obsIhIvIXqK6kJpNP8HILQNzuV98hnP90LS0RERFrQ3lkEpwPXAac456pi1uebWdB/vj8wDNCFCyLSKSVFKqgNZLRYxrsXVl8yqzWLoIiIiDSvvddg3Q1kAS81mo79CGCpmS0BHgcudc6VtrMtEZEOkRKpoi7U/AyCO1SmDyQnXKJ7YYmIiEizWh0i2BLn3AHNrH8CeKI9dYuI7C1p0UrCoZxWy0WyB8F2oGwt5A3r+MBERESky4nnLIIiIl1OJOpId1VEklvvwQr1GgLoXlgiIiLSPCVYItKtVdSGybRqXHLz98DaIaOPl2DpXlgiIiLSHCVYItKtlVfXk0U1pDZ/D6wdcvvuR50LUr151V6ITERERLoiJVgi0q2VbK8k26oIpfdstezAvCzWuTyiW9fshchERESkK1KCJSLdWkXpBgBCOX1aLdsnK4V15JO0fW1HhyUiIiJdlBIsEenWqks3ApDWo1+rZb17YfUjq3p9R4clIiIiXZQSLBHp1urLvAQrI7f1BAugKn0AWZGtUFfZkWGJiIhIF6UES0S6tUhFMQBpPfq2qXw4Zz/vyTYNExQREZFdKcESke6tYjMAltm7TcWTeg0GoF73whIREZEmKMESke6tspg6kqENNxoGSO8zFICyDZqqXURERHalBEtEurX0mk2UJeWBWZvK5/cdRI1LoqZYPVgiIiKyKyVYItJtRaKOXvWbqErr3+Z9BvRMp8jl47Z+2YGRiYiISFelBEtEuq0tFbX0t2Lqswa2eZ/e2SkUuXySK4o6MDIRERHpqpRgiUi3tb5kG31sG8Ge+7V5n5RQkC2h3mTqXlgiIiLSBCVYItJtla4vBCA1r2C39qtI6UNGpAzqq+MflIiIiHRp7UqwzGy2ma0zsyX+45sx235iZivNbIWZHd/+UEVE4qvKn6gip2/Bbu1Xl+Ffs1WuXiwRERHZWSgOddzhnLs9doWZjQLOAkYD/YGXzWy4cy4Sh/ZEROIiXLoGgPTeQ3Zvx6z+UAKUr4PcofEPTERERLqsjhoiOAN4zDlX65xbDawEJnVQWyIieyRYXkQUg+y2T3IBEOo1CIDwVk10ISIiIjuLR4J1uZktNbM/m1lPf90AYG1MmSJ/3S7M7BIzW2Rmi4qLi+MQjohI26RVracs2AtCybu1X0ael2BVbVnTEWGJiIhIF9ZqgmVmL5vZx008ZgB/AIYC44ENwK93NwDn3L3OuQnOuQn5+fm7u7uIyB7LqdvA9pR+u71fXs8elLpMakuVYImIiMjOWr0Gyzn39bZUZGZ/Av7hL64DBsVsHuivExHpFCprw/SJFlObefBu79snO5UNLpf8Mn2siYiIyM7aO4tg7E+/pwEf+8+fBc4ysxQzGwIMA95tT1siIvG0fmsl/awEcga1XrgRL8HqRahiQwdEJiIiIl1Ze2cRvNXMxgMOKAT+G8A594mZzQeWAWHg+5pBUEQ6ky0b1zDMIiTnDt7tfXMzktlELmnVqzogMhEREenK2pVgOefOa2HbLcAt7alfRKSjVGzy7oGV0Wc3p2gHAgGjIqUPaeFyqKuC5PR4hyciIiJdVEdN0y4i0qnVbSkEoEff/fdo/+q0vt4T3WxYREREYijBEpHuqcy7k0So1357tHs0y7/zRLkmuhAREZGvKMESkW4puWId2y0TUrL2aP9QD//mxEqwREREJIYSLBHpljJrN7Itue8e75/m32xY98ISERGRWEqwRKTbcc6RG95EdVr/Pa4jv2cOJS6LmpK1cYxMREREujolWCLS7ZRU1NKfLYR3XEe1B3bcbDi6tSiOkYmIiEhXpwRLRLqdTZvWk2k1BHoV7HEdfXO8BMsqNIugiIiIfEUJVgs2r1vNwod+Tl1NdaJDEZE42r5uBQBpfYbtcR19slPY4HqRWrUxXmGJiIjIPkAJVgu+WPAwk7+4i03/dwhLX30MF40mOiQRiYO6TZ8DkDNo1B7XkZ4cojSUT2q4HOoq4xWaiIiIdHGhRAfQmU0+50Y+fHUkvd64kXGv/zdfvPUrSkddwIhjzyWrR36iw2uXaCRKJFJPJFxHOFxPtL6ecLiWaDhMJFxHNBIhEo0SiUaJRh3gwHkPRxRzUZwDcLiow/DKOBf1ykbdTu05f9Hx1fqdS+wOa3vJNhdte51t3cO1vfG217uHde5ha22vZadq4hmjNdVAuyVteI+wC5DTb2i76qlL7wtVeDcbztvz3jDZfc456uvriYTr/c+yMC4SJhKpx4XDRKJhopEwLhwmuuN5JEw0GiES9T6Jojt9Tn313Bov7/gAM/zPulhN/23usraFv+GvNrX177wN5dr0nmlje3Gqy8Ut7ra1193F/b8LkQSKpPag94D9yUlLSnQobaIEqxUHHfNtaqecxLvP3Uf+x/cy4aPZ1C39JctSx7K932Qyh0ykV8FY8gYMJSnUvpfTReqpraqgtqqM2spyaqu2E67eTn31dsI124nWbCdaW0G0rgpXXwP1VVBfg4VrsHA1gUgNoUgNwWgNoWgtydFaklwtIVdP0EUIESFE2PvXogSArvFnKhJfQ4Evg4MYHEpuVz0puft5CVZZUasJVm04wssLXiXy9h8JDJnGSede0a62u5q6+gjl5duoKN1AdVkxNRVbqa0oI1y1DWq3E6grJ1C3nVB9BaH67d5nWaTW/zyrI8nVkuTqSHa1pLg6kqkn2SKJPiwREdkL/hI+nvwzf8tJ4/Z89t+9SQlWG6SkpDHpWz/Anfp9li95k9KFc+m95W0mrv4jgcI5ANS6EJssh+2hnlQHs4gEknGBJKKBJJxzBKL1BFyYYLSegKsnGK0nJVpNqqsm1dWQ5qpJtXpSgdQ2xBR2AWpIppZkaiyFOpKpD6RQb6nUBVOJhHKIBFOJhlIhmIIFkyAQwvkP/IcLJmM7loNJEAz5y0GCgQAWCGBmGIbDMDOcBTC8Hhoz83+VDIDhlwl42/xfGBv/iha7uPu/sLW938vteRdZHMLYs8Zb2svaeUCuqdrj8CK17ff8Pay7ofL4n8z8/Q9qdx1Z/YbBWqjdsIyUoUc3WWZbZS0LXnqG/A//wInufQA+/2IV0PUTLOccW7Ztp3RjIVVbvqS2pIho2XqoKiZYXUJybSnp9VvJjm6jpysnz+rJa6G+SpdKpaVTaenUWSrhQAp1gXQiyT2JBlOJBlNwoVRcKBVCqVgoBRdIhkCg4TMN//Nrx+cYgRAWDIJ5/wYsiAWMgBlmNHxOAWDW6H3y1TbX1PNm/ix3Xe2afa81tbalt+WuPWi7WUGLLe9ZubbFFJ+22txet6fXSPYtwzP2Y//BPRMdRpspwdoNFggw8pAj4JAjACgr3cyXy9+ndsPHULoaV1lCUm0p6ZFyAuHtBF2YJFeHMyNiSUQsRNiSiFqI+mA6Vcl5RELpRJLSiYQycckZ4D8CKVkEUjMJpmSSlJZFKD2L5LRsUtOzSEnPJC01lbTkEJlBXUYnkigDBh9A0Tt5ZKx8g5Sp399p26r1W1j8wgMM//IxTrXPKQvk8OXYq9i4/ksOLX4aV1eFJacnKPK2qQtH2VRcQmnRCqo2fkakZBWB8nWkVG0kq24zuZFi8q2cxgOmq10yZYEeVARzqEnNY2PqcNan50F6HpaRR3JWHimZPUnP7klGdi9SM3uSkpFDRjBERkKOVEREJH6UYLVDTq/ejJsyHZie6FBEJAEO3q8Hb0RH8s2i/0BdJVUumbf+8yZ1ix7iaxX/4kyrYEvKADZO/CV9j7yYnOR0Vj71F0JbnmTrqvfoOfLIRB8CteEI69avZ8uaT6nY8Bmu5AuSy78kp2Yt/SIbGGRlDIopX0YmW4N5VKT1YU36WNZk9yfUaxCpvQaRmb8fPfsOJi2zB2kJOyIREZHEUoIlIrKHemelsqzfaZy++Q0Kb5tGoK6Cb9gmwgRZnX80gWMuI+/AY7whbL6cEVOJLjFKP35lryVYNXVh1q1bQ8ma5VRt/Jxo6WpSywvpUVNE/+gG9rdK9o8pXxzIY1vKADZmHcmGnvuT3Hso2f2Hk7vfCHIyepKzV6IWERHpmtqVYJnZPGCEv9gD2OacG29mBcByYIW/baFz7tL2tCUi0hnNOutsHnxoFVPLn6c2ewirR/+AgilnMiyrT5Plxwzbn08YQk7ha3GNo7K6lvVrVrK1aAVVm1ZipV+QWrGGnrXr6B/dyFCrYceciRGM4kAftqUN5Mvsg1ibuz8ZfYeRu99IsvsdQH5y+i7D/kRERKRt2pVgOedm7nhuZr8GymI2r3LOjW9P/SIind2gXulccOX/Av/bpvKpSUFW5R7FqaV/pmr1u6QPmdSm/apr69m04Uu2bVhNZfGX1JcWESr7kvTKNeTWraOf28ywmFn16gixOdiPsoyBfJ59OMHcIWT0G07+fgeS3XcofUPJ9N2TAxYREZEWxWWIoJkZcCZwTDzqExHZl+1/4o/Y8tDj2MNnsWrMpQTyhxOOOuqqqwhXbCayfTNUlpBUs4WMmo30DBeT70ooaDQteQXpbA71oyx7BFtyjiMp7wCy+g8jf78Dyczfj4GBIAMTdIwiIiLdVbyuwZoGbHLOfR6zboiZfQCUAz9zzr3R1I5mdglwCcB+++0Xp3BERDqvcUMHseDYBxn06g8Yu/SWJstUkUqZ5VCW3JvNmePZmNWfYM+BpOUNJqfPEHIH7E9mRi8ydTdRERGRTsVcK/fLMLOXocmRJD91zj3jl/kDsNI592t/OQXIdM6VmNmhwNPAaOdceUttTZgwwS1atGj3j0JEpAuqq49QuHoFdVsKSQoGSEnLIL1nX3rm9yMpNTPR4YmIiEgLzGyxc25C4/Wt9mA5577eSsUh4FvAoTH71AK1/vPFZrYKGA4oexIR8SUnBRk+fBQMH5XoUERERCRO4nGX2q8DnzrninasMLN8Mwv6z/cHhgFfxKEtERERERGRTise12CdBcxttO4I4GYzqweiwKXOudI4tCUiIiIiItJptTvBcs7NamLdE8AT7a1bRERERESkK2l1kou9ycyKgS8THUcjecCWRAche43Od/ehc9196Fx3Lzrf3YfOdffSGc/3YOdcfuOVnSrB6ozMbFFTs4PIvknnu/vQue4+dK67F53v7kPnunvpSuc7HpNciIiIiIiICEqwRERERERE4kYJVuvuTXQAslfpfHcfOtfdh85196Lz3X3oXHcvXeZ86xosERERERGROFEPloiIiIiISJwowRIREREREYkTJVgtMLPpZrbCzFaa2fWJjkfix8wGmdlrZrbMzD4xsyv89b3M7CUz+9z/t2eiY5X4MLOgmX1gZv/wl4eY2Tv++3uemSUnOkaJDzPrYWaPm9mnZrbczA7Xe3vfZGZX+Z/hH5vZXDNL1Xt732FmfzazzWb2ccy6Jt/L5rnLP+9LzeyQxEUuu6uZc32b/zm+1MyeMrMeMdt+4p/rFWZ2fEKCboESrGaYWRC4BzgBGAWcbWajEhuVxFEYuNo5NwqYDHzfP7/XA68454YBr/jLsm+4Alges/x/wB3OuQOArcB/JSQq6Qh3Ai845w4EDsI773pv72PMbADwQ2CCc24MEATOQu/tfckDwPRG65p7L58ADPMflwB/2EsxSnw8wK7n+iVgjHNuHPAZ8BMA//vaWcBof5/f+9/bOw0lWM2bBKx0zn3hnKsDHgNmJDgmiRPn3Abn3Pv+8+14X8AG4J3jB/1iDwKnJiRAiSszGwicCNznLxtwDPC4X0Tneh9hZjnAEcD9AM65OufcNvTe3leFgDQzCwHpwAb03t5nOOdeB0obrW7uvTwDeMh5FgI9zKzfXglU2q2pc+2c+5dzLuwvLgQG+s9nAI8552qdc6uBlXjf2zsNJVjNGwCsjVku8tfJPsbMCoCDgXeAPs65Df6mjUCfRMUlcfVb4Dog6i/nAttiPrj1/t53DAGKgb/4Q0LvM7MM9N7e5zjn1gG3A2vwEqsyYDF6b+/rmnsv63vbvu0i4J/+805/rpVgSbdmZpnAE8CVzrny2G3Ou4eB7mPQxZnZScBm59ziRMcie0UIOAT4g3PuYKCSRsMB9d7eN/jX3szAS6r7AxnsOsRI9mF6L3cPZvZTvEs7Hk10LG2lBKt564BBMcsD/XWyjzCzJLzk6lHn3JP+6k07hhT4/25OVHwSN1OAU8ysEG+o7zF41+j08IcVgd7f+5IioMg5946//DhewqX39r7n68Bq51yxc64eeBLv/a739r6tufeyvrftg8xsFnAScI776ua9nf5cK8Fq3nvAMH82omS8i+meTXBMEif+NTj3A8udc7+J2fQscIH//ALgmb0dm8SXc+4nzrmBzrkCvPfxq865c4DXgDP8YjrX+wjn3EZgrZmN8FcdCyxD7+190Rpgspml+5/pO8613tv7tubey88C5/uzCU4GymKGEkoXZGbT8Yb3n+Kcq4rZ9CxwlpmlmNkQvIlN3k1EjM2xr5JBaczMvol37UYQ+LNz7pbERiTxYmZTgTeAj/jqupwb8K7Dmg/sB3wJnOmca3yBrXRRZnYUcI1z7iQz2x+vR6sX8AFwrnOuNoHhSZyY2Xi8CU2SgS+AC/F+UNR7ex9jZr8AZuINH/oAuBjvWgy9t/cBZjYXOArIAzYBNwFP08R72U+y78YbJloFXOicW5SAsGUPNHOufwKkACV+sYXOuUv98j/Fuy4rjHeZxz8b15lISrBERERERETiREMERURERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtEpJMwswIzc2YWSnQs+zozm2VmbyY6js7GzKaZ2YpExyEi0pUpwRIRkS7NzGabWb2ZVcQ8rkt0XF2Rc+4N59yIeNZpZnlm9paZlZjZNjN728ymxLMNEZHORL+SiojEiZmFnHPhRMfRTc1zzp2b6CA6Shf/26oALgI+BxwwA/i7mfXuwsckItIs9WCJiLSDmRWa2Y/NbClQaWYhM5tsZv/xf63/0MyOiim/wMz+n5m9a2blZvaMmfVqpu4LzWy5mW03sy/M7L8bbZ9hZkv8elaZ2XR/fY6Z3W9mG8xsnZn9j5kFWzmOoWb2qt/LsMXMHjWzHjHbSs3sEH+5v5kV7zguMzvFzD7xj3eBmY1s9PpcY2ZLzazMzOaZWeruv9K7z8yu91+X7Wa2zMxOa6acmdkdZrbZfy0/MrMx/rYUM7vdzNaY2SYzm2NmaW1s/wG//Et+DP82s8Ex2+80s7V+m4vNbFrMttlm9riZPWJm5cAsM5vk9/5s88/t3WaWHLOPM7Pvmdnnfnu/9M/df/w25seWbybmo8ysqC3H11bOuRrn3ArnXBQwIAL0BJr8uxcR6eqUYImItN/ZwIlAD6AP8BzwP3hfIK8BnjCz/Jjy5+P9ot8PCAN3NVPvZuAkIBu4ELgjJsmZBDwEXOu3ewRQ6O/3gF/vAcDBwHHAxa0cgwH/D+gPjAQGAbMBnHOrgB8Dj5hZOvAX4EHn3AIzGw7MBa4E8oHn8XonYr/InwlMB4YA44BZTQZgNtVPHpp7TG3lGBpbBUwDcoBf+PH3a6LccXiv33C/7JlAib/tV/768Xiv5wDgxt2I4Rzgl0AesAR4NGbbe369vYC/An9rlHzOAB7HO7+P4iUmV/l1HQ4cC3yvUXvHA4cCk4HrgHuBc/HO5xi8v9U95ifKzZ2f37e2L1ADPAvc55zb3J5YREQ6K3POJToGEZEuy8wKgZudc3/2l38MjHHOnRdT5kXgr865B81sAbDQOXe9v20U3hfvNLwvwauBpKaGTpnZ08Brzrk7zeyPQJVz7qpGZfoAa4Aezrlqf93ZwCXOuaN347hOBW5yzh0cs+5ZvCTJAROdc7Vm9nNgrHPuTL9MAFgLnOMnYIXAz5xzj/jbbwWynXOXtjWWNsQ6G7gBqIpZPco5t75RuSX+MT1jZrOAi51zU83sGGAOXuL7rt/TgpkZ3vC2cX6SiZkdjncuh7QhrgeAVOfcWf5yJlAGFDjn1jZRfitwlHPuQ/+YjnHOHdFC/VcCRzrnTvOXHTDVOfeWv7wYmO+c+z9/+ddA0Dl3ZQt1HgU84pwb2Nrx7Qk/gTwNSHbOPdgRbYiIJJquwRIRab/YL8uDgW+b2ckx65KA15op/6W/Pa9xpWZ2AnATXg9KAEgHPvI3D8LrLWpssF/fBi8/AH/fXb7QN2qrD3AnXo9Plr/P1kbF/oTX+3CJc67WX9ffPwYAnHNRM1uL19Ozw8aY51X+PvE2v/E1WGZ2PvAjoMBflUkTr7Nz7lUzuxu4BxhsZk/i9Tym4r3mi2NeSwNaHG7ZSMPr7pyrMLNSvONfa2bXAP/lLzu8nsq8pvb1j2c48Btggh9XCFjcqL1NMc+rm1juuxuxx51zrgaYa97Q1yXOuQ8TGY+ISEfQEEERkfaLHQqwFnjYOdcj5pHhnPtVTJlBMc/3A+qBLbEVmlkK8ARwO9DHOdcDL6Ha8U1/LTC0iVjWArVAXkz72c650a0cw//6xzHWOZeNN6zsq6zC6335LXA/MNu+um5sPV5St6Oc+ce3rpX2dmHeFOEVLTymtV5LQ12D8RLCy4Fc//X7OPaYYjnn7nLOHQqMwktor8U7J9XA6JjXMsc5l7kbh9Vwrv3XsBew3j+W6/CGI/b04ytrFF/jISZ/AD4Fhvnn6IbmjqejmHetXXPnZ85uVJUE7N9RcYqIJJISLBGR+HoEONnMjjezoJml+hMHxA65OtfMRvnXM90MPO6cizSqJxlIAYqBsN+bdVzM9vuBC83sWDMLmNkAMzvQObcB+BfwazPL9rcNNbMjW4k7C284XJmZDcBLMGLdCSxyzl2Md43Zji/T84ET/TiSgKvxErz/tPZCNeZPEZ7ZwuON3aguAy9BKQZvwhC8a5B2YWYTzewwP/5KvOuEov5QwT/hXfvW2y87wMyOj9nXWcwkJk34pn9tWTLetVgL/eGBWXjXyRUDITO7Ea8HqyVZQDlQYWYHApe1Uj7unHOjWzg/TQ77NG/Sl6lmlmxmaf4w2j7AO3s3ehGRvUMJlohIHPlfnmfg9S4U4/UoXcvOn7cP401EsRFvGNoPm6hnu79+Pt5Qve/gDc/bsf1d/Ikv8Ho+/s1XPUnn4yVoy/x9H8ebUKMlvwAO8et6DnhyxwYzm4E3ScWOL/Q/Ag4xs3Occyvwert+h9fjczJwsnOurpX2OpRzbhnwa+BtvGFyY4G3mimejZdIbcUb7lgC3OZv+zGwElho3mx+LwMjAMxsELCdr4ZtNuWveMM8S/Emn9gxjPFF4AXgM7/NGloZxok3bPE7fpt/Aua1Ur6zSMEbflmC17P5TeDExtfIiYjsKzTJhYjIXuRPcvGIc+6+RMci7WNm5+INH/xJM9sfAIqccz/bq4GJiEhCaZILERGRPbBjZkQREZFYGiIoItJNmHfT2/ZOTiBdnJnd0MzfwT8THZuIyL5AQwRFRERERETiRD1YIiIiIiIicdKprsHKy8tzBQUFiQ5DRERERESkRYsXL97inMtvvL5TJVgFBQUsWrQo0WGIiIiIiIi0yMy+bGq9hgiKiIiIiIjEiRIsERERERGROFGCJSLSRm9+voWVm7cnOgwRERHpxDrVNVhNqa+vp6ioiJqamkSHIl1MamoqAwcOJCkpKdGhyD6gqi7MnX9+kO+mL+CAnz4NgWCiQxIREZFOqNMnWEVFRWRlZVFQUICZJToc6SKcc5SUlFBUVMSQIUMSHY7sAz7bVMGtSX9kSGQTdUUfkLzfhESHJCIiIp1Qpx8iWFNTQ25urpIr2S1mRm5urno+JW6qasOUkAPA9k9eSnA0IiIi0ll1+gQLUHIle0R/NxJPtZEoqdQBECnS7SRERESkaV0iwRIRSbTa+igDrRiAQNnaBEcjIiIinZUSrDYwM66++uqG5dtvv53Zs2cnLqAYCxcu5LDDDmP8+PGMHDmyIa4FCxbwn//8p111T58+nR49enDSSSfFIVKRri1SXUYPqwQgo2pdgqMRERGRzkoJVhukpKTw5JNPsmXLlrjW65wjGo22q44LLriAe++9lyVLlvDxxx9z5plnAvFJsK699loefvjhdtUhsq9wNWUArGQgadEKqN6W2IBERESkU+r0swjG+sXfP2HZ+vK41jmqfzY3nTy6xTKhUIhLLrmEO+64g1tuuWWnbcXFxVx66aWsWbMGgN/+9rdMmTKF2bNnk5mZyTXXXAPAmDFj+Mc//gHA8ccfz2GHHcbixYt5/vnnufvuu/nnP/+JmfGzn/2MmTNnsmDBAmbPnk1eXh4ff/wxhx56KI888sgu1xVt3ryZfv36ARAMBhk1ahSFhYXMmTOHYDDII488wu9+9zsOPPDAZuNctWoVK1euZMuWLVx33XV897vfBeDYY49lwYIFLb42f/vb3/jFL35BMBgkJyeH119/nZqaGi677DIWLVpEKBTiN7/5DUcffTQPPPAATz/9NJWVlXz++edcc8011NXV8fDDD5OSksLzzz9Pr169+NOf/sS9995LXV0dBxxwAA8//DDp6ek7tTt58mTuv/9+Ro/2zt1RRx3F7bffzoQJmtlNOka4rhqATcn7cUBdEWz7EtJ6JDYoERER6XTUg9VG3//+93n00UcpKyvbaf0VV1zBVVddxXvvvccTTzzBxRdf3Gpdn3/+Od/73vf45JNPWLRoEUuWLOHDDz/k5Zdf5tprr2XDhg0AfPDBB/z2t79l2bJlfPHFF7z11lu71HXVVVcxYsQITjvtNP74xz9SU1NDQUEBl156KVdddRVLlixh2rRpLca5dOlSXn31Vd5++21uvvlm1q9f3+bX5eabb+bFF1/kww8/5NlnnwXgnnvuwcz46KOPmDt3LhdccEHDbH4ff/wxTz75JO+99x4//elPSU9P54MPPuDwww/noYceAuBb3/oW7733Hh9++CEjR47k/vvv36XdmTNnMn/+fAA2bNjAhg0blFxJh4rWVgFQkVngrSjTMEERERHZVZfqwWqtp6kjZWdnc/7553PXXXeRlpbWsP7ll19m2bJlDcvl5eVUVFS0WNfgwYOZPHkyAG+++SZnn302wWCQPn36cOSRR/Lee++RnZ3NpEmTGDhwIADjx4+nsLCQqVOn7lTXjTfeyDnnnMO//vUv/vrXvzJ37twme51ainPGjBmkpaWRlpbG0Ucfzbvvvsupp57aptdlypQpzJo1izPPPJNvfetbDcf0gx/8AIADDzyQwYMH89lnnwFw9NFHk5WVRVZWFjk5OZx88skAjB07lqVLlwJeEvazn/2Mbdu2UVFRwfHHH79Lu2eeeSbHHXccv/jFL5g/fz5nnHFGm+IV2VPReu9HAtejAEohXLaha32AioiIyF6h7we74corr+SQQw7hwgsvbFgXjUZZuHAhqampO5UNhUI7XV8Vez+mjIyMNrWXkpLS8DwYDBIOh5ssN3ToUC677DK++93vkp+fT0lJyS5lmosTdp3OfHemN58zZw7vvPMOzz33HIceeiiLFy9usXzsMQUCgYblQCDQcHyzZs3i6aef5qCDDuKBBx5oMmEcMGAAubm5LF26lHnz5jFnzpw2xyyyJ3YkWCm5g4muMqpK15Gd4JhERESk82n3EEEzG2Rmr5nZMjP7xMyu8Nf3MrOXzOxz/9+e7Q83sXr16sWZZ56505C14447jt/97ncNy0uWLAGgoKCA999/H4D333+f1atXN1nntGnTmDdvHpFIhOLiYl5//XUmTZrU5piee+45nHOAN/QwGAzSo0cPsrKy2L59e6txAjzzzDPU1NRQUlLCggULmDhxYpvbX7VqFYcddhg333wz+fn5rF27lmnTpvHoo48C8Nlnn7FmzRpGjBjR5jq3b99Ov379qK+vb6inKTNnzuTWW2+lrKyMcePGtbl+kT3h6r1rsHJ69KSELGq3aoigiIiI7Coe12CFgaudc6OAycD3zWwUcD3winNuGPCKv9zlXX311TvNJnjXXXexaNEixo0bx6hRoxp6Uk4//XRKS0sZPXo0d999N8OHD2+yvtNOO41x48Zx0EEHccwxx3DrrbfSt2/fNsfz8MMPM2LECMaPH895553Ho48+SjAY5OSTT+app55i/PjxvPHGG83GCTBu3DiOPvpoJk+ezM9//nP69+8PeMnft7/9bV555RUGDhzIiy++CHjDEndcb3XttdcyduxYxowZw9e+9jUOOuggvve97xGNRhk7diwzZ87kgQce2KnnqjW//OUvOeyww5gyZQoHHnhgw/pnn32WG2+8sWH5jDPO4LHHHmuYOVGkIzm/B6tXTg6bXU+i5RsTHJGIiIh0Rraj9yNuFZo9A9ztP45yzm0ws37AAudci90YEyZMcIsWLdpp3fLlyxk5cmRcY5SvNJ7tcF+jvx+Jl8fu/zVnrb2Z7f/1NovuvZQxPerIv3phosMSERGRBDGzxc65XWZZi+ssgmZWABwMvAP0cc5t8DdtBPo0s88lZrbIzBYVFxfHMxwRkfgJez1YmVmZlFovUmr0eSUiIiK7itskF2aWCTwBXOmcK4+dKME558ysya4y59y9wL3g9WDFKx5pm9mzZyc6BJEuIRDxEiwLpVGZkkdmfSlEIxAIJjgyERER6Uzi0oNlZkl4ydWjzrkn/dWb/KGB+P9ujkdbIiIJEa71/k1KpS6tNwGiULml5X1ERESk24nHLIIG3A8sd879JmbTs8AF/vMLgGfa25aISKIEIn6CFUolmuGPeK7QRBciIiKys3j0YE0BzgOOMbMl/uObwK+Ab5jZ58DX/WURkS4pEKkhQgCCSQSz+3krt29KbFAiIiLS6bT7Gizn3JtAc3emPba99YuIdAbBSC31lkwQSO3lJVg1W9ex6627RUREpDuL6yyC+7Knn34aM+PTTz9ttkxhYSFjxoyJW5srVqzgqKOOYvz48YwcOZJLLrkE8G4S/Pzzz7er7osuuojevXvHNV6RfVkgWke9efdzy8odCEBVSVEiQxIREZFOSAlWG82dO5epU6cyd+7cJreHw+F2txGJRHZa/uEPf8hVV13FkiVLWL58OT/4wQ+A+CRYs2bN4oUXXmhXHSLdSShSQziQDEBejyxKXSZ12za0speIiIh0N3Gbpn2v+Of1sPGj+NbZdyyc0PLlYRUVFbz55pu89tprnHzyyfziF78AYMGCBfz85z+nZ8+efPrpp/zrX/8iHA5zzjnn8P777zN69Ggeeugh0tPTeeWVV7jmmmsIh8NMnDiRP/zhD6SkpFBQUMDMmTN56aWXuO666zjrrLMa2t2wYQMDBw5sWB47dix1dXXceOONVFdX8+abb/KTn/yEk046iR/84Ad8/PHH1NfXM3v2bGbMmMEDDzzAU089RVlZGevWrePcc8/lpptuAuCII46gsLCwxeP+97//zRVXXAGAmfH666+TmZnJddddxz//+U/MjJ/97GfMnDmTBQsWcNNNN9GjRw8++ugjzjzzTMaOHcudd95JdXU1Tz/9NEOHDuXvf/87//M//0NdXR25ubk8+uij9Omz8y3SzjrrLM477zxOPPFEwEsGTzrpJM4444y2nVORDhCK1hIOeT1YvbNT2ex6krNdk1yIiIjIztSD1QbPPPMM06dPZ/jw4eTm5rJ48eKGbe+//z533nknn332GeAN6/ve977H8uXLyc7O5ve//z01NTXMmjWLefPm8dFHHxEOh/nDH/7QUEdubi7vv//+TskVwFVXXcUxxxzDCSecwB133MG2bdtITk7m5ptvZubMmSxZsoSZM2dyyy23cMwxx/Duu+/y2muvce2111JZWQnAu+++yxNPPMHSpUv529/+xqJFi9p83Lfffjv33HMPS5Ys4Y033iAtLY0nn3ySJUuW8OGHH/Lyyy9z7bXXsmGD9yv+hx9+yJw5c1i+fDkPP/wwn332Ge+++y4XX3wxv/vd7wCYOnUqCxcu5IMPPuCss87i1ltv3aXdmTNnMn/+fADq6up45ZVXGpItkUQJuTrCAS/B6pOdwmbXg2ClJrkQERGRnXWtHqxWepo6yty5cxt6cs466yzmzp3LoYceCsCkSZMYMmRIQ9lBgwYxZcoUAM4991zuuusuvvGNbzBkyBCGDx8OwAUXXMA999zDlVdeCXgJRVMuvPBCjj/+eF544QWeeeYZ/vjHP/Lhhx/uUu5f//oXzz77LLfffjsANTU1rFmzBoBvfOMb5ObmAvCtb32LN998kwkTJrTpuKdMmcKPfvQjzjnnHL71rW8xcOBA3nzzTc4++2yCwSB9+vThyCOP5L333iM7O5uJEyfSr5938f/QoUM57rjjAK/n7bXXXgOgqKiImTNnsmHDBurq6nZ67XY44YQTuOKKK6itreWFF17giCOOIC0trU0xi3SUJFdH1B8imJkSosR6kVLT/DWZIiIi0j2pB6sVpaWlvPrqq1x88cUUFBRw2223MX/+fJxzAGRkZOxU3rstWPPLTWlcR6z+/ftz0UUX8cwzzxAKhfj44493KeOc44knnmDJkiUsWbKENWvWMHLkyD2OZ4frr7+e++67j+rqaqZMmdLiBB8AKSkpDc8DgUDDciAQaLhG7Qc/+AGXX345H330EX/84x+pqanZpZ7U1FSOOuooXnzxRebNm9dsAiqyNwWj9USDXoJlZlSl5JFRVwLRaIIjExERkc5ECVYrHn/8cc477zy+/PJLCgsLWbt2LUOGDOGNN95osvyaNWt4++23AfjrX//K1KlTGTFiBIWFhaxcuRKAhx9+mCOPPLLVtl944QXq6+sB2LhxIyUlJQwYMICsrCy2b9/eUO7444/nd7/7XUPS98EHHzRse+mllygtLW24DmpH71pbrFq1irFjx/LjH/+YiRMn8umnnzJt2jTmzZtHJBKhuLiY119/nUmTJrW5zrKyMgYMGADAgw8+2Gy5mTNn8pe//IU33niD6dOnt7l+kY7gnCOJ+oYeLIC6tHxChKG6NIGRiYiISGejBKsVc+fO5bTTTttp3emnn97sbIIjRozgnnvuYeTIkWzdupXLLruM1NRU/vKXv/Dtb3+bsWPHEggEuPTSS1tt+1//+hdjxozhoIMO4vjjj+e2226jb9++HH300Sxbtozx48czb948fv7zn1NfX8+4ceMYPXo0P//5zxvqmDRpEqeffjrjxo3j9NNPbxgeePbZZ3P44YezYsUKBg4cyP333w/AnDlzmDNnDgC//e1vGTNmDOPGjSMpKYkTTjiB0047jXHjxnHQQQdxzDHHcOutt9K3b982v56zZ8/m29/+Noceeih5eXkN6xctWsTFF1/csHzcccfx73//m69//eskJyc3VZXIXlMXiZJMPS741d9iJMP/u9dEFyIiIhLDdvR6dAYTJkxwjSdhWL58ecNwN9k9DzzwAIsWLeLuu+9OdCgJo78fiYfymnrW/+/BpPYZRsH3nwLgL489xoWf/jfunMexYd9IcIQiIiKyt5nZYufcLpMbqAdLRKQVtfW79mCl9PSGutaUrktUWCIiItIJda1ZBGW3zJo1i1mzZiU6DJEurzYcIdnC1Ie+msglM9e7R11VSRGa41JERER26PAeLDObbmYrzGylmV2/J3V0pmGM0nXo70bipTYcJYV6LPRVD1Zezyy2ukzqt61PYGQiIiLS2XRogmVmQeAe4ARgFHC2mY3anTpSU1MpKSnRl2XZLc45SkpKSE1NTXQosg/YMUTQgl/1YPXJTmWT60m0XJNciIiIyFc6eojgJGClc+4LADN7DJgBLGtrBQMHDqSoqIji4uIOClH2VampqQwcODDRYcg+oDYcIZkwlvRVgtU7K4UPXA96Vm5KYGQiIiLS2XR0gjUAWBuzXAQcFlvAzC4BLgHYb7/9dqkgKSmJIUOGdGCIIiItqw1HSSJMIGaIYGZKiJJAL1JrlicwMhEREelsEj6LoHPuXufcBOfchPz8/ESHIyKyi9q6ekIWJZD01ZBTM6MyOZ/M+i0QjSYwOhEREelMOjrBWgcMilke6K8TEeky6murAQjEzCIIUJvWmyBRqNqSiLBERESkE+roBOs9YJiZDTGzZOAs4NkOblNEJK7CdTUABJN2njQlmtnPe7J9w94OSURERDqpDk2wnHNh4HLgRWA5MN8590lHtikiEm8NCVbyzglWMNtLsFy5EiwRERHxdPiNhp1zzwPPd3Q7IiIdJVxfC0Aweechgim9vASrdus6dEMAERERgU4wyYWISGcX8XuwQo2GCGblDQCgskSXloqIiIinw3uwRES6uki9n2A1GiKYl5PFFpdNeNv6RIQlIiIinZB6sEREWhGp84YIhhoNEeyTncpm1xO3fWMiwhIREZFOSAmWiEgrouEdswjummBtcj0IVSrBEhEREY8SLBGRVkTq67wnwZ0TrMyUECWBXqTWFCcgKhEREemMlGCJiLTC+T1YNLrRMEBVcj4Z9SUQqd/LUYmIiEhnpARLRKQVzp+mnWDyLtuq0/sRwOlmwyIiIgIowRIRaZUL+wlWEz1YkSxvqnbKNFW7iIiIKMESEWmVhau9J0npu2wL9RwEgCtbuzdDEhERkU5KCZaISCusvvkEKzV3PwCqt6zZmyGJiIhIJ6UES0SkFYHIjgQrbZdt+bm5lLl0JVgiIiICtDPBMrPbzOxTM1tqZk+ZWY+YbT8xs5VmtsLMjm93pCIiCRLYMYtgEz1YfXNSWe9yiW4r2stRiYiISGfU3h6sl4AxzrlxwGfATwDMbBRwFjAamA783syC7WxLRCQhgpFq6iwZArt+ZPbLSWO9yyO4XZNciIiISDsTLOfcv5xzYX9xITDQfz4DeMw5V+ucWw2sBCa1py0RkUQJRWqoD6Q2uS0/K4WN5JJarWnaRUREJL7XYF0E/NN/PgCInVKryF+3CzO7xMwWmdmi4uLiOIYjIhIfydHqZhOsYMDYntyb9HAZ1FXt5chERESks2k1wTKzl83s4yYeM2LK/BQIA4/ubgDOuXudcxOccxPy8/N3d3cRkQ6XFK0l3EyCBVCT0d97Uq5hgiIiIt1dqLUCzrmvt7TdzGYBJwHHOuecv3odMCim2EB/nYhIl5PkaogEm0+wXNYAKAfKiiBv2N4LTERERDqd9s4iOB24DjjFORc7NuZZ4CwzSzGzIcAw4N32tCUikgj1kSiprpZIqPkEK9hws2HNJCgiItLdtdqD1Yq7gRTgJTMDWOicu9Q594mZzQeW4Q0d/L5zLtLOtkRE9rrq+ghpVocL9Wq2TEbeIKLOqCtdS/NpmIiIiHQH7UqwnHMHtLDtFuCW9tQvIpJoNfUR0qgjGtr1JsM79O6ZzRZySN7ypRIsERGRbi6eswiKiOxzauqipFKLayHB6peTynrXSzcbFhERESVYIiItqaoPk2Z1kJTRbJm+Oamsd3mEdLNhERGRbk8JlohICypqwqRTQzClhSGCWalscLmkVm+EhslURUREpDtSgiUi0oLt1XVkUk0gLafZMsmhAOXJvUmOVkPNtr0XnIiIiHQ6SrBERFpQXVlG0BxJGT1bLFe742bDmqpdRESkW1OCJSLSgvrtJQAkZea2WM5lDfCelOk6LBERke5MCZaISAvClaUApGQ1fx8sgFAv72bDlK3t6JBERESkE1OCJSLSgmjVVgBSslruwcrMHUCdC1K3VQmWiIhId6YES0SkBZGqbQBYWsvXYPXrkc5G14vaLWv2QlQiIiLSWSnBEhFpQbTKGyJIao8Wy/XNSWUDuUQ1yYWIiEi3pgRLRKQFtmPa9dZ6sHJSWaebDYuIiHR7cUuwzOxqM3Nmlucvm5ndZWYrzWypmR0Sr7ZERPaWQG0Z9SRBUvM3Ggbok53KBteL1JpNEI3spehERESks4lLgmVmg4DjgNiLD04AhvmPS4A/xKMtEZG9KbOuhMqknmDWYrnUpCDbkvoQdBGo2LSXohMREZHOJl49WHcA1wEuZt0M4CHnWQj0MLN+cWpPRKTDhSNRekaKqUzt26bydQ03G9YwQRERke6q3QmWmc0A1jnnPmy0aQAQO19xkb+u8f6XmNkiM1tUXFzc3nBEROJm8/Za+lJCOKONvw1l77jZsKZqFxER6a5CbSlkZi8DTf2E+1PgBrzhgXvEOXcvcC/AhAkTXCvFRUT2mg3bqhllpRT3GNim8qFeg2A9UK4eLBERke6qTQmWc+7rTa03s7HAEOBD865PGAi8b2aTgHXAoJjiA/11IiJdwpbiDaRZHSm92pZg9eyZR4VLJXXr2rZ9uIqIiMg+p11DBJ1zHznnejvnCpxzBXjDAA9xzm0EngXO92cTnAyUOec2tD9kEZG9o3zjFwBk9xnSpvJ9e6SzweVSW6ohgiIiIt1VR/7I+jzwTWAlUAVc2IFtiYjEXd2GZQCk9R/VpvL9clLZ7HrQt1yzCIqIiHRXcU2w/F6sHc8d8P141i8isjellH5GPUkk9dq/TeX75qTyETkEKtWDJSIi0l3F7UbDIiL7kmjUkVf9BaVp+0EwqU379M1Opdj1ILmmGJzm7BEREemOlGCJiDRh5ebtjGYl1b3aNjwQICMlxPZQL5KiNVBX0YHRiYiISGelBEtEpAkrli0h38rJHH7Ebu0XTsv3nlRs7oCoREREpLNTgiUi0oSKT18DIHfUkbu3Y2YfvwJNdCEiItIdKcESEWmkNhyh/6YFlCb1w/KG79a+ST38e7IrwRIREemWlGCJiDTy3vLVTOYjKoccB95N1NssrWd/AMKaql1ERKRbUoIlItJI0esPk2L19J56wW7v2yO3D2EXoKp0XQdEJiIiIp2dEiwRkRibtlUyafM8NqSPIGXQIbu9f++cNLaQQ/22jR0QnYiIiHR2SrBERGK8+uQf2d82EDrymt0eHgiQm5FCscshqmuwREREuiUlWCIivk+KtnBo4X0UpxaQP/GMPaojLyuFYteDYKWmaRcREemOlGCJiADOORbNv5XhgXWkn3AzBPbs4zE3I5li14OUmuI4RygiIiJdQbsTLDP7gZl9amafmNmtMet/YmYrzWyFmR3f3nZERDrSgkUfcVrZQ6zLm0LGuFP2uJ7UpCBlwZ6k1W2FaDSOEYqIiEhXEGrPzmZ2NDADOMg5V2tmvf31o4CzgNFAf+BlMxvunIu0N2ARkXirDUeoe+FnpFo96WfeuUfXXsWqSckjUBeB6q2QkRunKEVERKQraG8P1mXAr5xztQDOuR0XHcwAHnPO1TrnVgMrgUntbEtEpEP887mnOD7ybzaO/i6h3sPaXV99er73RBNdiIiIdDvtTbCGA9PM7B0z+7eZTfTXDwDWxpQr8tftwswuMbNFZraouFjXLIjI3lVcVsXw9/+H0mA++834eVzqdEqwREREuq1Whwia2ctA3yY2/dTfvxcwGZgIzDez/XcnAOfcvcC9ABMmTHC7s6+ISHu9Pv83nG6r2XTs7yE5Iy51BrP7wHqgonvMJFhRU0fJxiKqStdRW76FuoothCtKcVVbsbrtEK4hEKklEKkjEK0jFK31dtwxFNN2/NZnODMggLMgzgIQCHrbLYgLBMGC3gQk5j23HdsD/nP/3x37OwviCBDdsbyHvys2/59TfP/bMhf/llqqc8/sWp+1Mqx2l607rXC7bt+leBMlrJlF/3gbh7RLHa00+tVm13TxVqvbec1O8TRxTlp9DVtorz6zP2OOPptQKNhiHSKyd7SaYDnnvt7cNjO7DHjSOeeAd80sCuQB64BBMUUH+utERDqN1UXrObLoj3yZdRCDD/9O3OpNzukHQGT7RvaVrzvFZVWsXfUJ5Ws/Ibp5GSnbVpNRu5Fe4U30cSUMtnCT+9W4JOosmTqSqLck6i2ZMEn+V2qHNXx5deC8ZfNSIgIuSoCI99xfDu54Tuxz5z03/UYn3dcr5dUce/p3Ex2GiNDOSS6Ap4GjgdfMbDiQDGwBngX+ama/wZvkYhjwbjvbEhGJq4+fuo2TrZzQqbe3e2KLWNk9elHtkolu3Uh8+sT2ro1bK1j1yXuUr3qHtM0f0K9yBYNdEYdYfUOZLdaLbcn9KMscS0n2AKzHIII5/UnJyie9Rz6ZOXlk9epNalIKqR0Up3OOSNQRjjrqnSMciRIJhwmHw+AimItCNALOe1g06v3bwrlu8a+guf3i+LfTmj1vKc4xWuP+na+4Rr0zu25vtIzb+TXcZXvjCprYf5f6dyO+VvLyxv1XTbfXbHhNl7GWt7e6f8xzc1GSHjmF4R/9mrqTziM5paPecSLSVu1NsP4M/NnMPgbqgAv83qxPzGw+sAwIA9/vijMIVldu54sP32D0176Z6FBEJM6WrS5i2pZ5rOx1BAccEN85ePKzUih2OWSXbYhrvR2lqHgrny9+jdrPX6NP6SJGRFcxxbxhfOWWxfqMkXyWO5XU/mPoVTCWXoPHkJeWQ16C4zYzQkFj51FRyYkKRyRhPpp6I2MX/BeLnvg/JnznpkSHI9LttSvBcs7VAec2s+0W4Jb21J9oSx7/FYevvptF7xzPAef+lh75/RMdkojEycrn7mCUVRI6OT4TW8TKzUxhCzlkddJrsEq2V7Ps/TepXP4SuZsXMiaynIFWR4QARSnDWN37W6Tvfxj9R00lu/cBZO/FHhoR2X1jjvgWixf+idGf3UPJunPJHTA00SGJdGvt7cHapx387Z/wn0crmVD0ELV3H8I7A2cy/JRr6NlnUOs7i0inVbRhI1OLH2Nlj69xwP7xv4NEXmYKn7keDK3sHAmWc44Vazfz+cJ/kLzqRcbXvMM02wZAUVIBXww4nZzR32DAQccwOK1nYoMVkd1mgQC53/4t7qEj2fzQLHpe8wqBJPXmiiSKEqwWpKZn8rXv/pbVy8+n9B+zmVj0INHfP8RH6RMJjziRAYeeQO9Bw/daPK6+htrqSqqrKqip2k5ddQW1VRXU1VRSX72dcG0VkdpKorVVUF9FIFwN0XosUgfRMBapw6JhAtF6iNYTcPUE/OWACxN0YcxFvIvMXbThYnNwBJz/L9Fd1lnDIxozi1Mrx9LasbbhF/PW551qXWt17I02ZO9LdTX0oJLIibM7pP7czGSKXQ7JNSs7pP62qAtH+WDZp2xa9DS9il7l0MiHHGh1VFka6/K/RvXIbzJwwkkMzOnLwIRFKSLxUjB0JG+Ou5GpH/2UJX+6hPGX/tmbcbOTq6+vZ3vZVirLS6mt2Eq4aiv1VeWEa6sJ11YSqasiWltNtL4aq6/C/FlJQ5FqAtE6//rKMBaNEHBhzP8uE3QRgkQI+P8GXQQjCtAwuc6OiXX8Bf9/a/+qO/87jleemO9EbdOW//vbMn9m63W0vGvbvoO09l2odfE5lubL/CvpaPb/1myOPrB3G6JJPCVYbTBk5CEMGfkshSs+ZN2C+xi64Xn6LrkRltxIKTlsSBlCZdb+uIx8XEZvQpm5pKamQSgFF0jy3pTResL1tUTqawnXef9SW4HVV0BdJYG6CgL1FYTClYTCVSRHKkmJVpMarSLVVZNONUlESIU2XzAedUYdIcKECFvQ+5cQYQsRIUTEvnpELYlwIBln3rxcmDePl/fvjo+WgJf4NLXNAoDFXKhsLVz33fJbtS3TFLfjI+erdlrNAuNQR5yncI67Dgivkx9xg5WDj+Rrww/rkLqzUkKUWk9S68sgUg/BpA5pp7HtNfUsem8hFR8+w+Atr3EYXoJXHOrL2kFnkD/hVHqOPJphIf2yLbIvmvKt77Ng4zKO2vwoS++pYfQlfyaYkr7X2o9EHaUVNWwtXs/2Leuo2bqO+m0boGIzydWbSandQnpdCamRCtIiFWS4SrKsml549/xptX5n1FgKtSRTSwphSyJiQSIW8r6/WJCohYgGQkQsmXpithHwvqsY7EiZdn7uTeTv/cDrT+rvPwdivu+0IdA43Bqhue8XsVU3W6aV7U2XbiaOVo7Ftbmd1sJouY6UjEHkpO+d/0vjwRrPppNIEyZMcIsWLUp0GK2KRqKsXLaYko9egk0f0avic/qG15NjlXtUX70LUkUqVZZGTSCd2kAatYEMwsE06pMyiIQyiCZlevfoSc4gmJxGICWTUEoGSWkZJKVmkpyWQWp6FqnpmaSkZ5KSlkVScirWBX69EtkX3fY/13Ft+I/wo+WQ3XHXb24uq+L9t18mvOwfjCx7g6G2HoC1aSOpHTqdgZNPJ3XAmL06052IJE4kEuXff7qGYzbeT1FwAFsnX8+oo79DMLTnv6k75ygtK6dk01rKi4uoLl1P3bYNsH0ToerNpNZuIbu+hJ5uK3mUEbLoLnVUkE5poCfbg72oTcomkpRFJCUbS80hkJZDMC0HS+tBKD2HUFo2KekZpKRmkZqeQVp6JqlpGQRCyfosk07FzBY75yY0Xq8erD0QCAYYPnYijJ240/ra2mq2l2ygclsxlVXVEKnHIrXerybBJJKSU0lOTiYpOY2UlFSS0rJIzcwhJTWNHDNyEnQ8IhJ/29MHQTlQsiquCZZzjlUbS1n+n+dI+vx5Dql+m+m2jTBB1uRM4MtRlzFw8ukM6jEgbm2KSNcRDAY45tLf8PZLUxjw1k8Z+9YP2PrWT1nd43Bc34NI7j2U9Oxe/o3VDReupaaqgpqKbYQrNmOVW6CymEBVCam1JWSGS+gV3UquVZLbqK0IAcosh+1JuVRn9WZL2mg2Z/YlmNWHlJ79ycgdQHb+QNJ79SMzOYPMRLwgIgmgBCuOUlLSSOm/P3n99090KCKSYC5vhJdgFX8KQ6a1q67tNfUs+fB9ti39J7kbXmd85GMOsFqqLY11vacQHTeDPhNOZn9NUCEivsO/cTr1R53CopfnUvfx0xy47W16bXsRPm193+0ujbJADyqTelKeOZTS9N6Q1YfknH6k9epPdv5AevYZRFJWb3oFgm0a3ifSnSjBEhHpAHn9CihflU76pk93+4O2pj7CshUr2Pzxa9ia/3Bg5XtMs00AbEoawJqB36L3ISfSa/Q3OCBJNxUVkaYlJSUx4YTz4YTzcdEo6zaso3zDZ1RtLyNQXwWAC6aQmpZBelYPMnr1JatXX7LS0slKcOwiXZkSLBGRDnBg/2xWuIGMLHy3xWExzjnWl5Sx5tNFbFu1iNQN7zG0eimHmDfFexVprOs1gdXDvseACSfTp/dQ+uydQxCRfYgFAgwYMIgBA3SrGZGOpgRLRKQDTN4/l99HJzKx5FHY+DH0HcPW7VUUFa5g65pl1G1aQfKW5fStWsEQV8QAiwBQZjls7DWez/b7L/qOO4bsgkMYFtRHtYiISFeh/7VFRDpATloSNaPOZNuKp0mbczTbyKSnK2Osn0gBbLUebM4cwaf5Xyej4BD6jziMnD4HkKNZskRERLosJVgiIh3k+jOmMf+FBxjyxaNkBMJsyMonpc9weg4aSX7BaHpm5tNTyZSIiMg+pd0JlpmNB+bg3f82DHzPOfeumRlwJ/BNoAqY5Zx7v73tiYh0FWnJQS445TjguESHIiIiIntJPO5CeyvwC+fceOBGfxngBGCY/7gE+EMc2hIREREREem04pFgOSDbf54DrPefzwAecp6FQA8z6xeH9kRERERERDqleFyDdSXwopndjpewfc1fPwBYG1OuyF+3IQ5tioiIiIiIdDptSrDM7GWgbxObfgocC1zlnHvCzM4E7ge+3tYAzOwSvCGEABVmtqKt++4lecCWRAche43Od/ehc9196Fx3Lzrf3YfOdffSGc/34KZWmnOuXbWaWRnQwznn/Iktypxz2Wb2R2CBc26uX24FcJRzrkv1YJnZIufchETHIXuHznf3oXPdfehcdy86392HznX30pXOdzyuwVoPHOk/Pwb43H/+LHC+eSbjJV5dKrkSERERERHZHfG4Buu7wJ1mFgJq+Gq43/N4U7SvxJum/cI4tCUiIiIiItJptTvBcs69CRzaxHoHfL+99XcC9yY6ANmrdL67D53r7kPnunvR+e4+dK67ly5zvtt9DZaIiIiIiIh44nENloiIiIiIiKAES0REREREJG6UYLXAzKab2QozW2lm1yc6HokfMxtkZq+Z2TIz+8TMrvDX9zKzl8zsc//fnomOVeLDzIJm9oGZ/cNfHmJm7/jv73lmlpzoGCU+zKyHmT1uZp+a2XIzO1zv7X2TmV3lf4Z/bGZzzSxV7+19h5n92cw2m9nHMeuafC/7s1bf5Z/3pWZ2SOIil93VzLm+zf8cX2pmT5lZj5htP/HP9QozOz4hQbdACVYzzCwI3AOcAIwCzjazUYmNSuIoDFztnBsFTAa+75/f64FXnHPDgFf8Zdk3XAEsj1n+P+AO59wBwFbgvxISlXSEO4EXnHMHAgfhnXe9t/cxZjYA+CEwwTk3BggCZ6H39r7kAWB6o3XNvZdPAIb5j0uAP+ylGCU+HmDXc/0SMMY5Nw74DPgJgP997SxgtL/P7/3v7Z2GEqzmTQJWOue+cM7VAY8BMxIck8SJc26Dc+59//l2vC9gA/DO8YN+sQeBUxMSoMSVmQ0ETgTu85cN7759j/tFdK73EWaWAxwB3A/gnKtzzm1D7+19VQhI828Vkw5sQO/tfYZz7nWgtNHq5t7LM4CHnGch0MPM+u2VQKXdmjrXzrl/OefC/uJCYKD/fAbwmHOu1jm3Gu+WUJP2WrBtoASreQOAtTHLRf462ceYWQFwMPAO0CfmhtgbgT6Jikvi6rfAdUDUX84FtsV8cOv9ve8YAhQDf/GHhN5nZhnovb3Pcc6tA24H1uAlVmXAYvTe3tc1917W97Z920XAP/3nnf5cK8GSbs3MMoEngCudc+Wx2/x7uek+Bl2cmZ0EbHbOLU50LLJXhIBDgD845w4GKmk0HFDv7X2Df+3NDLykuj+Qwa5DjGQfpvdy92BmP8W7tOPRRMfSVkqwmrcOGBSzPNBfJ/sIM0vCS64edc496a/etGNIgf/v5kTFJ3EzBTjFzArxhvoeg3eNTg9/WBHo/b0vKQKKnHPv+MuP4yVcem/ve74OrHbOFTvn6oEn8d7vem/v25p7L+t72z7IzGYBJwHnuK9u3tvpz7USrOa9BwzzZyNKxruY7tkExyRx4l+Dcz+w3Dn3m5hNzwIX+M8vAJ7Z27FJfDnnfuKcG+icK8B7H7/qnDsHeA04wy+mc72PcM5tBNaa2Qh/1bHAMvTe3hetASabWbr/mb7jXOu9vW9r7r38LHC+P5vgZKAsZiihdEFmNh1veP8pzrmqmE3PAmeZWYqZDcGb2OTdRMTYHPsqGZTGzOybeNduBIE/O+duSWxEEi9mNhV4A/iIr67LuQHvOqz5wH7Al8CZzrnGF9hKF2VmRwHXOOdOMrP98Xq0egEfAOc652oTGJ7EiZmNx5vQJBn4ArgQ7wdFvbf3MWb2C2Am3vChD4CL8a7F0Ht7H2Bmc4GjgDxgE3AT8DRNvJf9JPtuvGGiVcCFzrlFCQhb9kAz5/onQApQ4hdb6Jy71C//U7zrssJ4l3n8s3GdiaQES0REREREJE40RFBERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwREQ6CTMrMDNnZqFEx7KvM7NZZvZmouPobMxsmpmtSHQcIiJdmRIsERHp0sxstpnVm1lFzOO6RMfVFTnn3nDOjYhnnWaWZ2ZvmVmJmW0zs7fNbEo82xAR6Uz0K6mISJyYWcg5F050HN3UPOfcuYkOoqN08b+tCuAi4HPAATOAv5tZ7y58TCIizVIPlohIO5hZoZn92MyWApVmFjKzyWb2H//X+g/N7KiY8gvM7P+Z2btmVm5mz5hZr2bqvtDMlpvZdjP7wsz+u9H2GWa2xK9nlZlN99fnmNn9ZrbBzNaZ2f+YWbCV4xhqZq/6vQxbzOxRM+sRs63UzA7xl/ubWfGO4zKzU8zsE/94F5jZyEavzzVmttTMysxsnpml7v4rvfvM7Hr/ddluZsvM7LRmypmZ3WFmm/3X8iMzG+NvSzGz281sjZltMrM5ZpbWxvYf8Mu/5MfwbzMbHLP9TjNb67e52MymxWybbWaPm9kjZlYOzDKzSX7vzzb/3N5tZskx+zgz+56Zfe6390v/3P3Hb2N+bPlmYj7KzIracnxt5Zyrcc6tcM5FAQMiQE+gyb97EZGuTgmWiEj7nQ2cCPQA+gDPAf+D9wXyGuAJM8uPKX8+3i/6/YAwcFcz9W4GTgKygQuBO2KSnEnAQ8C1frtHAIX+fg/49R4AHAwcB1zcyjEY8P+A/sBIYBAwG8A5twr4MfCImaUDfwEedM4tMLPhwFzgSiAfeB6vdyL2i/yZwHRgCDAOmNVkAGZT/eShucfUVo6hsVXANCAH+IUff78myh2H9/oN98ueCZT4237lrx+P93oOAG7cjRjOAX4J5AFLgEdjtr3n19sL+Cvwt0bJ5wzgcbzz+yheYnKVX9fhwLHA9xq1dzxwKDAZuA64FzgX73yOwftb3WN+otzc+fl9a/sCNcCzwH3Ouc3tiUVEpLMy51yiYxAR6bLMrBC42Tn3Z3/5x8AY59x5MWVeBP7qnHvQzBYAC51z1/vbRuF98U7D+xK8GkhqauiUmT0NvOacu9PM/ghUOeeualSmD7AG6OGcq/bXnQ1c4pw7ejeO61TgJufcwTHrnsVLkhww0TlXa2Y/B8Y65870ywSAtcA5fgJWCPzMOfeIv/1WINs5d2lbY2lDrLOBG4CqmNWjnHPrG5Vb4h/TM2Y2C7jYOTfVzI4B5uAlvu/6PS2YmeENbxvnJ5mY2eF453JIG+J6AEh1zp3lL2cCZUCBc25tE+W3Akc55z70j+kY59wRLdR/JXCkc+40f9kBU51zb/nLi4H5zrn/85d/DQSdc1e2UOdRwCPOuYGtHd+e8BPI04Bk59yDHdGGiEii6RosEZH2i/2yPBj4tpmdHLMuCXitmfJf+tvzGldqZicAN+H1oASAdOAjf/MgvN6ixgb79W3w8gPw993lC32jtvoAd+L1+GT5+2xtVOxPeL0Plzjnav11/f1jAMA5FzWztXg9PTtsjHle5e8Tb/MbX4NlZucDPwIK/FWZNPE6O+deNbO7gXuAwWb2JF7PYyrea7445rU0oMXhlo00vO7OuQozK8U7/rVmdg3wX/6yw+upzGtqX/94hgO/ASb4cYWAxY3a2xTzvLqJ5b67EXvcOedqgLnmDX1d4pz7MJHxiIh0BA0RFBFpv9ihAGuBh51zPWIeGc65X8WUGRTzfD+gHtgSW6GZpQBPALcDfZxzPfASqh3f9NcCQ5uIZS1QC+TFtJ/tnBvdyjH8r38cY51z2XjDyr7KKrzel98C9wOz7avrxtbjJXU7ypl/fOtaaW8X5k0RXtHCY1rrtTTUNRgvIbwcyPVfv49jjymWc+4u59yhwCi8hPZavHNSDYyOeS1znHOZu3FYDefafw17Aev9Y7kObzhiTz++skbxNR5i8gfgU2CYf45uaO54Oop519o1d37m7EZVScD+HRWniEgiKcESEYmvR4CTzex4MwuaWao/cUDskKtzzWyUfz3TzcDjzrlIo3qSgRSgGAj7vVnHxWy/H7jQzI41s4CZDTCzA51zG4B/Ab82s2x/21AzO7KVuLPwhsOVmdkAvAQj1p3AIufcxXjXmO34Mj0fONGPIwm4Gi/B+09rL1Rj/hThmS083tiN6jLwEpRi8CYMwbsGaRdmNtHMDvPjr8S7TijqDxX8E961b739sgPM7PiYfZ3FTGLShG/615Yl412LtdAfHpiFd51cMRAysxvxerBakgWUAxVmdiBwWSvl4845N7qF89PksE/zJn2ZambJZpbmD6PtA7yzd6MXEdk7lGCJiMSR/+V5Bl7vQjFej9K17Px5+zDeRBQb8Yah/bCJerb76+fjDdX7Dt7wvB3b38Wf+AKv5+PffNWTdD5egrbM3/dxvAk1WvIL4BC/rueAJ3dsMLMZeJNU7PhC/yPgEDM7xzm3Aq+363d4PT4nAyc75+paaa9DOeeWAb8G3sYbJjcWeKuZ4tl4idRWvOGOJcBt/rYfAyuBhebN5vcyMALAzAYB2/lq2GZT/oo3zLMUb/KJHcMYXwReAD7z26yhlWGceMMWv+O3+SdgXivlO4sUvOGXJXg9m98ETmx8jZyIyL5Ck1yIiOxF/iQXjzjn7kt0LNI+ZnYu3vDBnzSz/QGgyDn3s70amIiIJJQmuRAREdkDO2ZGFBERiaUhgiIi3YR5N71t7+QE0sWZ2Q3N/B38M9GxiYjsCzREUEREREREJE7UgyUiIiIiIhInneoarLy8PFdQUJDoMERERERERFq0ePHiLc65/MbrO1WCVVBQwKJFixIdhoiIiIiISIvM7Mum1muIoIiIiIiISJwowRIREREREYkTJVgiIk2IRB2aZVVERER2V6e6Bqsp9fX1FBUVUVNTk+hQpItJTU1l4MCBJCUlJToU6WKcc5z06xc4q08RF5z/3USHIyIiIl1Ip0+wioqKyMrKoqCgADNLdDjSRTjnKCkpoaioiCFDhiQ6HOli1pRW8V/lv+eMyteJbj6CQO8RiQ5JREREuohOP0SwpqaG3NxcJVeyW8yM3Nxc9XzKHtlSUctoWw1A6efvJDgaERER6Uo6fYIFKLmSPaK/G9lTWyvrSSICQPVqJVgiIiLSdl0iwRIR2Zu2VVRRYBsBCG1ZnuBoREREpCtRgtUGZsbVV1/dsHz77bcze/bsxAUUY+HChRx22GGMHz+ekSNHNsS1YMEC/vOf/+xxvV9++SWHHHII48ePZ/To0cyZMydOEYt0fjWV5YQsCkBa1boERyMiIiJdSaef5KIzSElJ4cknn+QnP/kJeXl5cavXOW8a6EBgz/PcCy64gPnz53PQQQcRiURYsWIF4CVYmZmZfO1rX9ujevv168fbb79NSkoKFRUVjBkzhlNOOYX+/fvvcawiXUWkrhqAbWSRVbcZImEI6uNSREREWqcerDYIhUJccskl3HHHHbtsKy4u5vTTT2fixIlMnDiRt956C4DZs2dz++23N5QbM2YMhYWFFBYWMmLECM4//3zGjBnD2rVrufbaaxkzZgxjx45l3rx5gJcgHXXUUZxxxhkceOCBnHPOOU3ek2fz5s3069cPgGAwyKhRoygsLGTOnDnccccdjB8/njfeeKPFOM877zwOP/xwhg0bxp/+9CcAkpOTSUlJAaC2tpZoNNrka3PXXXcxatQoxo0bx1lnnQVAaWkpp556KuPGjWPy5MksXbq0oa0LLriAadOmMXjwYJ588kmuu+46xo4dy/Tp06mvrwfg5ptvZuLEiYwZM4ZLLrlkl+OORqMUFBSwbdu2hnXDhg1j06ZNLZ1GkTZz9V6CtTllP4JEoVy9WCIiItI27f5J1swGAQ8BfQAH3Oucu9PMZgPfBYr9ojc4555vT1u/+PsnLFtf3p4qdjGqfzY3nTy61XLf//73GTduHNddd91O66+44gquuuoqpk6dypo1azj++ONZvrzlazY+//xzHnzwQSZPnswTTzzBkiVL+PDDD9myZQsTJ07kiCOOAOCDDz7gk08+oX///kyZMoW33nqLqVOn7lTXVVddxYgRIzjqqKOYPn06F1xwAQUFBVx66aVkZmZyzTXXAPCd73yn2TiXLl3KwoULqays5OCDD+bEE0+kf//+rF27lhNPPJGVK1dy2223Ndl79atf/YrVq1eTkpLSkPDcdNNNHHzwwTz99NO8+uqrnH/++SxZsgSAVatW8dprr7Fs2TIOP/xwnnjiCW699VZOO+00nnvuOU499VQuv/xybrzxRgDOO+88/vGPf3DyySc3tBkIBJgxYwZPPfUUF154Ie+88w6DBw+mT58+rZ5HkbbYkWCVZ+4PtZ9A2VroOTjBUYmIiEhXEI8erDBwtXNuFDAZ+L6ZjfK33eGcG+8/2pVcJVp2djbnn38+d911107rX375ZS6//HLGjx/PKaecQnl5ORUVFS3WNXjwYCZPngzAm2++ydlnn00wGKRPnz4ceeSRvPfeewBMmjSJgQMHEggEGD9+PIWFhbvUdeONN7Jo0SKOO+44/vrXvzJ9+vQm22wpzhkzZpCWlkZeXh5HH3007777LgCDBg1i6dKlrFy5kgcffLDJHqJx48Zxzjnn8MgjjxAKhRqO6bzzzgPgmGOOoaSkhPJyLzE+4YQTSEpKYuzYsUQikYZ4x44d23B8r732Gocddhhjx47l1Vdf5ZNPPtml3ZkzZzb09j322GPMnDmzxddcZHe4em96/7qcoQDUlnyZyHBERESkC2l3D5ZzbgOwwX++3cyWAwPaW29T2tLT1JGuvPJKDjnkEC688MKGddFolIULF5KamrpT2VAotNOwutj7MWVkZLSpvR1D9MAb/hcOh5ssN3ToUC677DK++93vkp+fT0lJyS5lmosTdp3OvPFy//79GTNmDG+88QZnnHHGTtuee+45Xn/9df7+979zyy238NFHH7XpmAKBAElJSQ1tBQIBwuEwNTU1fO9732PRokUMGjSI2bNnN3kvq8MPP5yVK1dSXFzM008/zc9+9rMW2xXZLWGvByuQOwS+gMqSdaS0souIiIgIxPkaLDMrAA4Gdtw45nKz/9/encdHXd/7Hn99ZiaZyb4TdokKCBIIslZExb3V1ipW7FFbpK31dDv1tOecblrruX2cVtuec6q2Xq3WLhSx9FQ92lqtikpvXUBQWQQ39gAhIWQhmfV7/5ghBMgGmWSY5P18GPNbv7/P5Mcvmc98N3vTzB40s6JkXisViouLufrqq3nggQfatl100UXcddddbesHm8KNGTOG119/HYDXX3+dDz74oMMy586dy9KlS4lGo9TU1PDiiy8yc+bMHsf05JNPtvVReuedd/B6vRQWFpKXl0djY2O3cQI89thjtLa2Ultby/Lly5kxYwbbt2+npSX+JnPfvn2sWLGC8ePHH3btWCzGtm3bmDdvHj/84Q/Zv38/TU1NzJ07l8WLFwPxvmSlpaXk5+f36PUcTKZKS0tpampi2bJlHR5nZlxxxRX88z//MxMmTKCkpKRH5Yv0SCT+7zC7aChNLkBwn/pgiYiISM8kLcEys1zgD8BXnXMNwM+BU4Aq4jVcP+7kvBvNbKWZraypqenokBPK1772Nfbu3du2/tOf/pSVK1cyefJkJk6c2Dac+fz586mrq+P000/n7rvvZty4cR2Wd8UVVzB58mSmTJnCeeedxx133MHQoUN7HM9vfvMbxo8fT1VVFddffz2LFy/G6/Xy0Y9+lD/+8Y9tg1x0FifEm/nNmzeP2bNnc8sttzB8+HA2bNjArFmzmDJlCueccw5f//rXqaysBOCzn/0sK1euJBqNct1111FZWcnUqVP5yle+QmFhIbfddhurVq1i8uTJfOMb3+BXv/pVj19PYWEhn/vc55g0aRIXX3wxM2bMaNt37733Hhb3ggUL+O1vf6vmgZJ0luiDVZifxx5XSKxhV4ojEhERkXRhHY1Md8yFmGUATwB/cc79pIP9Y4AnnHOTuipn+vTpbuXKlYdt27BhAxMmTOh1jNKx22677bDBMAYa/fuR4/HL//tjbqi+ncbP/I1193+WMUUBht68PNVhiYiIyAnEzFY556Yfub3XNVgW70TzALChfXJlZsPaHXYFsLa31xIR6Q+eaLyJYG5ODrUUkdm6J8URiYiISLpIxsyZc4DrgbfMbE1i27eAT5pZFfGh2zcDn0/CtSTJbrvttlSHIHLC8ST6YFlGNk2ZpeSEXgfn4IgBYERERESOlIxRBFcAHb3rSOth2UVk8PLEEiNXZgQIZQ3B39gKwQYIFKQ2MBERETnhJXUUQRGRgcAbCcYXfFlEcxITWDcePQ+ciIiIyJGUYImIHMEbayWGB7wZePIT3Ukbq1MblIiIiKQFJVgiIkfwxoKELBPMyCwaDkDrvp0pjkpERETSgRKsHnr00UcxM95+++1Oj9m8eTOTJnU5Ev0x2bhxI+eeey5VVVVMmDCBG2+8EYhPEvynPx1/F7fW1lZmzpzJlClTOP300/nud7+brJBFBoSMWJCw+QHILRkJQPPe7akMSURERNKEEqweWrJkCWeddRZLlizpcH8kEun1NaLR6GHrX/nKV7j55ptZs2YNGzZs4Mtf/jLQ+wTL7/fz3HPP8cYbb7BmzRqeeuopXn755V7FLjKQ+GJBwp54glVcXEyz8xOsVw2WiIiIdE8JVg80NTWxYsUKHnjgAR5++OG27cuXL2fu3Ll87GMfY+LEiUA80br22muZMGECV111FQcOHADg2WefZerUqVRWVrJo0SKCwXgn+jFjxvBv//ZvnHHGGfz+978/7LrV1dWMHDmybb2yspJQKMStt97K0qVLqaqqYunSpTQ3N7No0SJmzpzJ1KlTeeyxxwB46KGHuPzyyzn33HMZO3Ys3/ve9wAwM3JzcwEIh8OEw2Gsg+Gnf//73zNp0iSmTJnC2WefDcRrv2644QYqKyuZOnUqzz//fNu1Pv7xj3PhhRcyZswY7r77bn7yk58wdepUZs+eTV1dHQD3338/M2bMYMqUKcyfP7/t59Pe7NmzWbduXdv6ueeey5ETUIv0JV8sRNSTCUB5QRZ7XCGxBvXBEhERke4lYx6s/vPnb8Cut5Jb5tBK+PAPujzkscce45JLLmHcuHGUlJSwatUqpk2bBsDrr7/O2rVrqaioYPPmzWzcuJEHHniAOXPmsGjRIn72s5/xpS99iYULF/Lss88ybtw4PvWpT/Hzn/+cr371qwCUlJTw+uuvH3Xdm2++mfPOO48zzzyTiy66iBtuuIHCwkJuv/12Vq5cyd133w3At771Lc477zwefPBB6uvrmTlzJhdccAEAr776KmvXriU7O5sZM2Zw6aWXMn36dKLRKNOmTePdd9/li1/8IrNmzTrq+rfffjt/+ctfGDFiBPX19QDcc889mBlvvfUWb7/9NhdddBGbNm0CYO3ataxevZrW1lZOPfVUfvjDH7J69Wpuvvlmfv3rX/PVr36VK6+8ks997nMAfOc73+GBBx5oq5k7aMGCBTzyyCN873vfo7q6murqaqZPP2qSbJE+43XhQwlWfoB1FDGqSaMIioiISPdUg9UDS5Ys4ZprrgHgmmuuOayZ4MyZM6moqGhbHzVqFHPmzAHguuuuY8WKFWzcuJGKigrGjRsHwKc//WlefPHFtnMWLFjQ4XVvuOEGNmzYwCc+8QmWL1/O7Nmz22q+2nv66af5wQ9+QFVVFeeeey6tra1s3boVgAsvvJCSkhKysrK48sorWbFiBQBer5c1a9awffv2tiTsSHPmzGHhwoXcf//9bc0XV6xYwXXXXQfAaaedxkknndSWYM2bN4+8vDzKysooKCjgox/9KBCvedu8eTMQT8Lmzp1LZWUlixcvPqym6qCrr76aZcuWAfDII49w1VVXdfjzEekrXhcmZhkA5Pp91FoR/tY9KY5KRERE0kF61WB1U9PUF+rq6njuued46623MDOi0Shmxp133glATk7OYccf2dSuo6Z3RzqyjPaGDx/OokWLWLRoEZMmTeowEXLO8Yc//IHx48cftv2VV17pNp7CwkLmzZvHU089ddQAHffeey+vvPIKTz75JNOmTWPVqlVdvg6/39+27PF42tY9Hk9bH7WFCxfy6KOPMmXKFB566CGWL19+VDkjRoygpKSEN998k6VLl3Lvvfd2eV2RZPO5MDFvZtt6c2YZuaHV4Bz04JkWERGRwUs1WN1YtmwZ119/PVu2bGHz5s1s27aNiooKXnrppQ6P37p1K3//+98B+N3vfsdZZ53F+PHj2bx5M++++y4Av/nNbzjnnHO6vfZTTz1FOBwGYNeuXdTW1jJixAjy8vJobGxsO+7iiy/mrrvuwjkHwOrVq9v2PfPMM9TV1dHS0sKjjz7KnDlzqKmpaWvy19LSwjPPPMNpp5121PXfe+89Zs2axe23305ZWRnbtm1j7ty5LF68GIBNmzaxdevWoxK7rjQ2NjJs2DDC4XBbOR1ZsGABd9xxB/v372fy5Mk9Ll8kGXwuTMyT0bYezCrD71oh2NjFWSIiIiJKsLq1ZMkSrrjiisO2zZ8/v9PRBMePH88999zDhAkT2LdvH//4j/9IIBDgl7/8JZ/4xCeorKzE4/Fw0003dXvtp59+um2QiYsvvpg777yToUOHMm/ePNavX982yMUtt9xCOBxm8uTJnH766dxyyy1tZcycOZP58+czefJk5s+fz/Tp06murmbevHlMnjyZGTNmcOGFF3LZZZcBcOutt/L4448D8C//8i9UVlYyadIkzjzzTKZMmcIXvvAFYrEYlZWVLFiwgIceeuiwmqvu/Pu//zuzZs1izpw5hyV1jz/+OLfeemvb+lVXXcXDDz/M1Vdf3eOyRZIhGnNkEMF5DtVgxXKGxhcad6UoKhEREUkXdrDW40Qwffp0d+RocRs2bGDChAkpiii9PfTQQ4cNhjEY6d+PHKuWUJT3/s8Z5JaNYsyXnwBg8cO/5dq3v4j71OPYyd3XPouIiMjAZ2arnHNHjcSmGiwRkXZC0dhRNViZhcMBaKndkaqwREREJE2k1yAXckwWLlzIwoULUx2GSFoJReIJFu0GucgpHQVAc+12slMVmIiIiKSFtKjBOpGaMUr60L8bOR6haIxMi4Dv0CAXpSUlNLkAoXrVYImIiEjXTvgEKxAIUFtbqzfLckycc9TW1hIIBFIdiqSZcCRGJhHwHhq8pTzfz25XRKxBg1yIiIhI1/q8iaCZXQL8N+AFfuGcO6bJrEaOHMn27dupqanpk/hk4AoEAowcOTLVYUiaCUVjFBKmuV0TwSF5Ada4Ik5qUoIlIiIiXevTBMvMvMA9wIXAduA1M3vcObe+p2VkZGRQUVHRVyGKiBzmYB8s8x2qwcrK9FLnLWZ86/spjExERETSQV83EZwJvOuce985FwIeBi7v42uKiBy3YFuClXnY9qbMMnLDe0HNlUVERKQLfZ1gjQC2tVvfntjWxsxuNLOVZrZSzQBFJNXCkQiZFj2sBgsglFVOpgtBa31qAhMREZG0kPJBLpxz9znnpjvnppeVlaU6HBEZ5MKhIACeI2qwYrnl8YWG6v4OSURERNJIXydYO4BR7dZHJraJiJyQIp0kWN6C+GTDrlEJloiIiHSurxOs14CxZlZhZpnANcDjfXxNEZHjFg0nEqyMw4f4DxTFWzc3127v95hEREQkffTpKILOuYiZfQn4C/Fh2h90zq3ry2uKiPTGoQTr8BqsvLL4kP8H9m4nt9+jEhERkXTR5/NgOef+BPypr68jIpIMkVArAL4jarBKiwqpdzmE63emIiwRERFJEykf5EJE5EQSSdRgeY+owSrP97PbFeE0yIWIiIh0QQmWiEg7BxMsX2bWYdvL8uIJlu/A7lSEJSIiImlCCZaISDuxRIKVkXn4PFh+n5d6XymB1j2pCEtERETShBIsEZF2Dg5y4cvwH7WvObOU3HAtxGL9HZaIiIikCSVYIiLtuEjH82ABhLKH4SMKzarFEhERkY4pwRIRaedggkVG1tH7CuJDtbNfc2GJiIhIx5RgiYi0F26Jf/cFjtrlLx4FQKhua39GJCIiImlECZaISDsWSSRYHdRg5ZaPAaBx9+b+C0hERETSihIsEZF2LBKfaLijBKusdAiNLotg7ZZ+jkpERETShRIsEZF2PAcTrA6aCI4oymanKyFWv62foxIREZF0oQRLRKQdT1sTweyj9pXnB9jpSsho2tnPUYmIiEi6UIIlItKOJxokhoHv6HmwMn0e6jOGkNNSnYLIREREJB0owRIRaccbayVsmWDW4f4DWcPIjdYfGm1QREREpB0lWCIi7fiirYTs6NqrgyJ5I+ILDWomKCIiIkdTgiUi0o4vFiTcRYLlLYzPheU00IWIiIh0QAmWiEg7vliQiKfzBCtQMhqA5j2b+ykiERERSSe9SrDM7E4ze9vM3jSzP5pZYWL7GDNrMbM1ia97kxKtiEgf80VbiXiPHqL9oILyk4g5o7lmc/8FJSIiImmjtzVYzwCTnHOTgU3AN9vte885V5X4uqmX1xER6Rc+FyTq7bwGa1hJATUUEKpTE0ERERE5Wq8SLOfc0865SGL1ZWBk70MSEUkN5xwZsSCxLmqwRhRmsdOV4mnY3o+RiYiISLpIZh+sRcCf261XmNlqM3vBzOZ2dpKZ3WhmK81sZU1NTRLDERE5NqFojABBnK/zBKswO4NdlBJo1iiCIiIicjRfdweY2V+BoR3s+rZz7rHEMd8GIsDixL5qYLRzrtbMpgGPmtnpzrmGIwtxzt0H3Acwffp0d3wvQ0Sk9w4EowQIgS+r02PMjEb/UPJCq8G5TufLEhERkcGp2wTLOXdBV/vNbCFwGXC+c84lzgkCwcTyKjN7DxgHrOxtwCIifaU5FCFAiFhG5wkWQGvOcDLrg9C8F3LL+ik6ERERSQe9HUXwEuBfgY855w60215mZt7E8snAWOD93lxLRKSvHQhFybMW8Od1fWBBorvp/q19H5SIiIikld72wbobyAOeOWI49rOBN81sDbAMuMk5V9fLa4mI9Knm1jD5NEOgsMvjMopPAiBUu6UfohIREZF00m0Twa44507tZPsfgD/0pmwRkf4Wat6P1xyWVdjlcTlDKgBo2v0Bxf0Ql4iIiKSPZI4iKCKS1kLN9QB4swu7PK6srJxGl0XrXtVgiYiIyOGUYImIJLQ2xVsy+3OLujxuZHE2O1wprl6TDYuIiMjhlGCJiCQEG2sByCoo6fK48vwAO1wpGU2abFhEREQOpwRLRCQhnGgimJ3Xdc+qTJ+HfRlDyG2t7oeoREREJJ0owRIRSYi11APg6WaQC4ADWcPJjjZCsLFvgxIREZG0ogRLRCTBJRIsAgXdHhvNS8yFpX5YIiIi0o4SLBGRBG9rPTGsRwmWt2g0AK5ekw2LiIjIIUqwREQSsoM1NHiLwOPt9thA2RgAmvZ80MdRiYiISDpRgiUikpAb2kNTZlmPji0uH0XIeWmp0VxYIiIicogSLBERIBiJUhyrJZhV3qPjhxflUO1KiNQpwRIREZFDlGCJiAB7GoIMtX243GE9On5EYRY7XSnexh19HJmIiIikEyVYIiLAnrp6iqwJT+HwHh2fn+VjrxWR2VrTx5GJiIhIOlGCJSIC1O58H4Cc0pN6dLyZ0ZhZRm6oBpzry9BEREQkjSjBEhEBmne+DUDx6Ik9PicYGEKGC0PLvr4KS0RERNKMEiwREYC9mwDIKB/X41OiuUPjC427+iIiERERSUNKsEREgOyG99nvKYKsoh6f48lPDIjRWN1HUYmIiEi66VWCZWa3mdkOM1uT+PpIu33fNLN3zWyjmV3c+1BFRPpGazhKeesH1OdUHNN5GYkBMcL1O/siLBEREUlDviSU8Z/OuR+132BmE4FrgNOB4cBfzWyccy6ahOuJiCTVms01TLUt7B5+/TGdl10yAoDmvdsp7IO4REREJP30VRPBy4GHnXNB59wHwLvAzD66lohIr7y/fiV+C1M6bvYxnVdaVEi9yyFUr7mwREREJC4ZCdaXzOxNM3vQzA52XhgBbGt3zPbEtqOY2Y1mttLMVtbUaD4ZEel/wc2vAJBdMeOYzhuS52e3KyLWoEEuREREJK7bBMvM/mpmazv4uhz4OXAKUAVUAz8+1gCcc/c556Y756aXlZUd6+kiIr0SicYYWvca+zOGQNGx9cE6mGB5mzTIhYiIiMR12wfLOXdBTwoys/uBJxKrO4BR7XaPTGwTETmhrNuxn+mso2HouRSYHdO5RdmZ7KGYqtYNfRSdiIiIpJvejiI4rN3qFcDaxPLjwDVm5jezCmAs8GpvriUi0hfeWbeSMmsgf8K8Yz7X4zGaM0vICdVCLNYH0YmIiEi66e0ogneYWRXggM3A5wGcc+vM7BFgPRABvqgRBEXkRBR+9wUACiacd1znBwNleJuj0LIPckqSGZqIiIikoV4lWM65Tsc0ds59H/h+b8oXEelLzjnKal+jLmMoxUVjjquMaHYZNANNu5VgiYiISJ8N0y4icsJ7b08DZ7i17C+fddxlWG55fKFpd5KiEhERkXSWjImGRUTS0sa3XuNSayIy/tj7Xx2UUTAUgFjj7gH9iVUkEiUSbCYSDhKLRIhEw8SiUbxeL5n+bAJZ2XgzAuAZyD8FERGR7inBEpFBq+WdlwAom3R8/a8AAkXxsX5a9u0kJylR9b9QJMb2HdvY98EbtOxcT2TfNvwHdlIQ3E1+tI7sWBN5HCBg3XelDTkfQcskiJ+QZRL2+Ambn7AnQMQbIJr4inkDxHxZOF8AZ14sMYKjmQfMMADz4ACcA1ziP3dovW0ZcPFBRuyofUd+j5dnRx4T33FoX+LYtv8fPOR4Wdv/es0lqZxkxdPv0jTsvhTKLKLq+h+Ql52V6lBEBCVYIjKIFdW8Rp1vCMVFJx13GYWFJbS4TFrrq9MiwYrGHO9v28nOdS8S2fx3iureYHT4fU62hrZjwnjZ6ymlPqOc3VkTiPkLcIECopn5OK8fPF48Hm88AYpFcZEgLhzERVoh0opFWvFE41/eaCu+aBBfrJXM0H4y3B78rpVMF8LvggQI4SWeuBngsZ5lMjF3MEUyDqZLtFvubjuAs8OP4cj97ZZ7y3qdoSW7nPSUnFc/sPiIUEgTL7wwh3M+fHWqwxERlGCJyCC1c98BKqPrqBtyJsW9KKc0z0+NKyCw/8Ttg7Vtzz42vfY0sU1Pc9L+VznVbWOsOaIY2zJOZueQc9g5ZALZIyspO3kyBWWjGebxMKz7opPKOUfMQcy5xHIMc2AewzDM48EAM/Ac45xlIgNVLHiAlv8YQ8Y7T4ISLJETghIsERmUNqx/g/OtnvApZ/WqnLI8PzUUMuoEGuTCOcf697bwwYqHKdr2LFWRNzjfgoTwsSW3ig0jPkrR+LkMnTCHMVn5qQ63jZnFk6e2+hVvSuMRSQcefzbrsmcxft8L8fn41A9SJOWUYInIoNS08UUAhlQef/8riCdYm1whFS01yQirV97ZsoN3XlpK0QdPMD2yhtMtSo23nC2jLqdw8kcYNuVCxvpzUx2miCTZ/jEXU7L+Reo2/Y3i0+amOhyRQU8JlogMSrm7X6XBU0B++Wm9K8fvo84KCQQ3JSmyY7OnoYWXnnuS/HW/ZW5oBWMtTI23nPdO+RQjzrqWsorplKk5nciANmrWxwmtu5VdryxTgiVyAlCC1YVt77zJjr/8FxOuvYOCotJUhyMiSdIajjK29U2qi6eS38vkw8xoySwhO7IfomHwZiQpys7FYo5X1r/HtuW/pGrPo8z3bOeAZbFl9BUMOWshZePOVFIlMoiMHT2CV3xTqNj2l/gImHr+RVJKCVYXqt94hhk1/0P9f/+VlVX/QtWln8eXkZnqsESklzZuXM8U28Pboz+TlPKCgVJoApprIH94UsrsyN7GVl569gmy1/6Gc8J/40MWZkfeRGpm/oiy2Z9kvJr/iQxKZkbdqIuZvfk/aNi8mvyKM1IdksigpgSrCzOv+hrvnDqL2BM3M33Nd9jxxl3sGHsdYy9YRNGQkakO7/g4RywaIRwOEg6HiIRCRCIhIuEQ0XD8Oy6Gcw7nYoeWY7HEenx+mFhi2bloYuqYaGJfDOcg1tOxdHtbe9DRSzyWAYi7ub617T+WOHt2rDs4108f6evPL9P5A9L9r/8vAOVnXJqU8mI55fEEq6E66QmWc47X1r/H1uUPUrXnUa6wHRywbKpPvorh593EiFFVSb2eiKSncecsIPrBD3jv+V8zdZAnWC4WIxRqJRRsJRIOEQ62EgkHiYaDOBfDxaKQeF8Ti8VwLhp/nxM7+P4n2va+x0UT34+aJKCDP4Lt/jBaT6Z5ODj/X/vYj/rjaocvdbG/s1i6k/x3OMl/jxDOKmNkxWkU5aRHRYcSrG6MrTqLWOXLvP7sErJfvYuZm35MZON/stE/gfqhZ5J78izKT62iZPgpWC9H7olFwrQ0N9DSvJ9gcwPB5v2EWxoJtzQQbWkk2tpELNRELNQCoQMQboFIC55IC95IS2K+mVYyYq1kuiB+FySTID6i+Fwk/p0oHnP4AX9yfkQiaec0YKcNZfjoSUkpL5I/GnYD+z6AkdOSUmZdU5AVzz1O4M3fck74b8y0MNtzT2f3zJsp/9A/UJGZDrNuiUh/ObWiglcDH2Li1qUEG76FP39IqkPqsUg4TEP9Xhr37aG5voaWhr1EGvcSO7APQk0QasLCzXjDzXjDB8iIHiAj2kJm7AB+14rfBfERIcNFyCBMpkX1PmeA+WXkYrZc/V9cNrnvWokkkxKsHvB4vZxx0XVw0XW8t34Vu1b8mtLdf2PGll/g2Xo/LIegy2Cfp5AGTxEtGfng9RM1H1HLwACvC2OxMBYL4YmF8cTC+GMtZLkDZLkWslwrWRYiB3o0WWnIeWnFT9DiX2ELEPb6iXgDtGSW0uTNIuIJEPX6cZ4M8PjifUM8GThvBubNgMR382bgab/N4wHzAJ74/DNmOLxgYObBzBP/CKNt2RLf48tt89N09+mF6/mUkR1OrtnrGSe7LuDgXjuGOHselOvxyzfnOvhEK5mxHJ9j+rEcT/l9WzylYyqT9hGbr7QC3oFI7fu9+qUaizlWrdvIzhcepLLmf/mY7aTZstleMZ+RF3yBkSOnJCVeERmYPOd/h6wnL2X972+j8jM/S2ksLhajcd9eandvobFmGy11O4jUV2NNu8ls2U1OeC95kXryXAN57gDF5jqdkzDoMjhgAVosi6BlEfJkEfZm0eovJurNJuoL4DwZOK8/8R4nE7x+8GWCNxOPLxPzZca3JyZJP/hex8wDHk/i/Y1h5j207jnifU5CxxN+H9rmHB38kTx8/WAZh23t6hzX0XU7/kt5TO9ajumPbc8OPpYye3ropJzhnDSmN7NW9i8lWMfolInTOGVi/BPq/fW1bF73Ggd2vIWrfZ+M1loCwVqyIw1YKIzPhckggsMI4yPqySBmPmKeDGI+Pwe8hez35RD1ZRP15eAycyEzFwvk4vHn4Qvk4svKJyM7n8ysfAK5+QRyCsjOySGQ6Sffk8ZttEQGkFHlpexxhfh3vUvBcZy/o66RlX9dRtHbS/hQdCUzLMqW3MlUz/gaw878JKeotkpEemD6zDksf/HDnL31d2x7+QJGzb6yz64Vjcao2b2Dmu3v0LTrPSJ7P8DbsI2cA9spDu9iSKyGfAtz5Ex7jWRT5ymhKaOE3bkT2OEvxGUVY9nF+HKL8eeVkVVQSnZhGTkFZWTlFuDP9OMHivrs1Ygkl7m+/hj6GEyfPt2tXLky1WGIiByTt7bvp/W+CzhlSD7FX3q2R+fsbWxh5YqncW8tY1rziwyxevZ7Ctlz8hWMPv/z+IdN6OOoRWQg2rW3jvp7zme028n2c37EuHnXH3dZDfvr2LNlIw3V7xKseR9Xv5VA83YKg9WUR3eRY8HDjq8nj72+oTQEhhPMGQH5w8ksHEZ26UgKykZTMmwU/qy83r5EkROGma1yzk0/crtqsEREeqmiLIdlsTFU1b0AkSD4Om75v6O2gXWvPEN4/Z+Y2vg8l1gtITLYUnoWnlnXUjrt4xT0wzDvIjJwDS0tpvn6R9j8239g4gtfYtNrDxKedDVl4z9E8bAKfIFcXCxKS+sB9u/dRXNdNY21O2nZuw3qt+Bv2kZ+azVl0V0U0nRYDVQzAfZ4h9KYNYLavNl4Ck8iMKSCohFjKRs1lsLsQgpT9cJFTiC9SrDMbCkwPrFaCNQ756rMbAywAdiY2Peyc+6m3lxLRORElev3sbVoFhmNT8OW/wenzAOgJRhh3Ya32P3GM+Rve54p4dVcZC2E8bGleDY7qj7B8FlXMDZwPA0LRUQ6dsrJY2n++gv89Xffp3Lb7yh/9Rvw6qH9BmQnvtoLugx2e4ewP3MYmwonESsYjb/sZPKGncKQUePILy6nIp2HkBXpJ0lrImhmPwb2O+duTyRYTzjnjmmILjURFJF0de/Tb3DN3z5MJKuM9QVn4933PqcG11Ju9QDUeUvZXX42hZM/wtCqi7HAkT0TRESSrzUUZtObr9C47S1i9TvwxEI4M7y+TDy5Zfjyy8kvGUbp8DEUlo3APN5UhyySNjprIpiUBMvikwVtBc5zzr2jBEtEBpsDoQg/vfcePld7J4U0sdc7hL1FVfjGfIhRVeeTPTJ5oxaKiIhI6vV1gnU28JODF0gkWOuATUAD8B3n3EudnHsjcCPA6NGjp23ZsqXX8YiIpEpLMIzf58Hj1afAIiIiA9lxD3JhZn8Fhnaw69vOuccSy58ElrTbVw2Mds7Vmtk04FEzO90513BkIc65+4D7IF6D1f1LERE5cWX5NUiFiIjIYNZtguWcu6Cr/WbmA64EprU7JwgEE8urzOw9YByg9n8iIiIiIjJgebo/pFsXAG8757Yf3GBmZWbmTSyfDIwF3k/CtURERERERE5YyZgH6xoObx4IcDZwu5mFgRhwk3OuLgnXEhEREREROWElbZj2ZDCzGuBEG+WiFNib6iCk3+h+Dx6614OH7vXgovs9eOheDy4n4v0+yTlXduTGEyrBOhGZ2cqORgeRgUn3e/DQvR48dK8HF93vwUP3enBJp/udjD5YIiIiIiIighIsERERERGRpFGC1b37Uh2A9Cvd78FD93rw0L0eXHS/Bw/d68Elbe63+mCJiIiIiIgkiWqwREREREREkkQJloiIiIiISJIoweqCmV1iZhvN7F0z+0aq45HkMbNRZva8ma03s3Vm9k+J7cVm9oyZvZP4XpTqWCU5zMxrZqvN7InEeoWZvZJ4vpeaWWaqY5TkMLNCM1tmZm+b2QYz+5Ce7YHJzG5O/A5fa2ZLzCygZ3vgMLMHzWyPma1tt63DZ9nifpq472+a2Rmpi1yOVSf3+s7E7/E3zeyPZlbYbt83E/d6o5ldnJKgu6AEqxNm5gXuAT4MTAQ+aWYTUxuVJFEE+JpzbiIwG/hi4v5+A3jWOTcWeDaxLgPDPwEb2q3/EPhP59ypwD7gMymJSvrCfwNPOedOA6YQv+96tgcYMxsBfAWY7pybBHiBa9CzPZA8BFxyxLbOnuUPA2MTXzcCP++nGCU5HuLoe/0MMMk5NxnYBHwTIPF+7Rrg9MQ5P0u8bz9hKMHq3EzgXefc+865EPAwcHmKY5Ikcc5VO+deTyw3En8DNoL4Pf5V4rBfAR9PSYCSVGY2ErgU+EVi3YDzgGWJQ3SvBwgzKwDOBh4AcM6FnHP16NkeqHxAlpn5gGygGj3bA4Zz7kWg7ojNnT3LlwO/dnEvA4VmNqxfApVe6+heO+eeds5FEqsvAyMTy5cDDzvngs65D4B3ib9vP2EowercCGBbu/XtiW0ywJjZGGAq8ApQ7pyrTuzaBZSnKi5Jqv8C/hWIJdZLgPp2v7j1fA8cFUAN8MtEk9BfmFkOerYHHOfcDuBHwFbiidV+YBV6tge6zp5lvW8b2BYBf04sn/D3WgmWDGpmlgv8Afiqc66h/T4Xn8NA8xikOTO7DNjjnFuV6likX/iAM4CfO+emAs0c0RxQz/bAkOh7cznxpHo4kMPRTYxkANOzPDiY2beJd+1YnOpYekoJVud2AKParY9MbJMBwswyiCdXi51z/5PYvPtgk4LE9z2pik+SZg7wMTPbTLyp73nE++gUJpoVgZ7vgWQ7sN0590pifRnxhEvP9sBzAfCBc67GORcG/of4865ne2Dr7FnW+7YByMwWApcB17pDk/ee8PdaCVbnXgPGJkYjyiTeme7xFMckSZLog/MAsME595N2ux4HPp1Y/jTwWH/HJsnlnPumc26kc24M8ef4OefctcDzwFWJw3SvBwjn3C5gm5mNT2w6H1iPnu2BaCsw28yyE7/TD95rPdsDW2fP8uPApxKjCc4G9rdrSihpyMwuId68/2POuQPtdj0OXGNmfjOrID6wyaupiLEzdigZlCOZ2UeI993wAg86576f2ogkWczsLOAl4C0O9cv5FvF+WI8Ao4EtwNXOuSM72EqaMrNzga875y4zs5OJ12gVA6uB65xzwRSGJ0liZlXEBzTJBN4HbiD+gaKe7QHGzL4HLCDefGg18FnifTH0bA8AZrYEOBcoBXYD3wUepYNnOZFk3028megB4Abn3MoUhC3HoZN7/U3AD9QmDnvZOXdT4vhvE++XFSHezePPR5aZSkqwREREREREkkRNBEVERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEk+f9u2Zh2JgFN6wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1414,31 +1414,31 @@ " 9\n", " False\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " bAP.soma.v\n", - " 0.00999\n", - " 8.88e-06\n", + " 0.00976\n", + " 2.33e-07\n", " \n", " \n", " 10\n", " False\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step1.soma.v\n", - " 0.0112\n", - " 4.13e-06\n", + " 0.0108\n", + " 1.56e-05\n", " \n", " \n", " 11\n", " False\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step3.soma.v\n", - " 0.00964\n", - " 5.45e-07\n", + " 0.00954\n", + " 8.79e-06\n", " \n", " \n", "\n", @@ -1446,14 +1446,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "9 False 3 0.0885 0.0728 bAP.soma.v \n", - "10 False 3 0.0885 0.0728 Step1.soma.v \n", - "11 False 3 0.0885 0.0728 Step3.soma.v \n", + "9 False 3 0.095 0.0678 bAP.soma.v \n", + "10 False 3 0.095 0.0678 Step1.soma.v \n", + "11 False 3 0.095 0.0678 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "9 0.00999 8.88e-06 \n", - "10 0.0112 4.13e-06 \n", - "11 0.00964 5.45e-07 " + "9 0.00976 2.33e-07 \n", + "10 0.0108 1.56e-05 \n", + "11 0.00954 8.79e-06 " ] }, "metadata": {}, @@ -1461,7 +1461,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj90lEQVR4nOzdd5xcVf3/8ddnZnu2pXeyoSSkEiAJQRJpCkGpogSkIyKICnwpKioGv/L9+kV+ooAaURQphl6igEoLEKQlEEIJJcCml03ZZPvuzHx+f8zNZrLZluzszpb38/HYx95y7jmfuTezmc+cc881d0dERERERETaLpTqAERERERERLoLJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERDoZMysyMzeztFTHIj2Dmb1nZkekOg4Rke5ACZaIiHR5ZjbHzMqDn1ozq0tYfyrV8XV27j7O3ecns04zu9HMVprZNjNbbmbXJrN+EZHOyvSgYRGR5DKzNHePtOH4IuAzIL0t9fRUZjYb2Nfdz2pkX5uuTUfqSrE2xsxGA6vcvcLMhgL/Bn7i7o+kODQRkXalHiwRkSQws2Iz+76ZLQEqzCzNzKaZ2X/MrNTM3k4cgmVm883sf83s9eAb/sfNrE8TdZ9vZkvNrMzMPjWzbzXYf5KZLQ7q+cTMZgbbC8zsDjNba2arzeznZhZu4XXsY2bPmdkmM9toZveaWWHCvs1mdlCwPsTMSra/LjM7MRhqVhq8vjENzs9VZrbEzLaa2f1mlrX7Z3r3NXFt3Mz2TShzp5n9PGH9+OCclgbXcGIr2zrCzFaZ2bXB+Ss2szMT9n/ZzN4KrtXKIBncvm/70NBvmNkK4Llg+4Nmti44by+a2bgGcf/OzJ4KeuteNrNBZvZrM9tiZh+Y2YGtPEdfaM1rbC13/9DdKxI2xYB9myovItJdKMESEUmeM4AvA4XAQOAJ4OdAH+Aq4GEz659Q/hzgAmAwEAFuaaLeDcDxQD5wPnBzQpIzFbgLuDpo9/NAcXDcnUG9+wIHAscAF7bwGgz4X2AIMAYYDswGcPdPgO8D95hZDvAX4K/uPt/MRgFzgcuB/sCTwN/NLCOh7tOAmcBIYCJwXqMBmE0PEpumfqa38BoaU39tWuoVChKSPwPfAvoCfwDmmVlmK9saBPQDhgLnArcHvTkAFcSve2EQzyVmdnKD4w8nfu6PDdafAvYDBgBvAvc2KH8a8OOgzRrglaBcP+Ah4FetjLtRZvaD5q5HK44tB1YBvYC/tSUWEZGuQAmWiEjy3OLuK929CjgLeNLdn3T3mLs/DSwEvpRQ/m53fzf4lv8nwGmN9TC5+xPu/onHvUB8qNWMYPc3gD+7+9NBO6vd/QMzGxi0dbm7V7j7BuBm4PTmXoC7LwvqqnH3EuIfzg9P2P9HYBnwGvHE8EfBrlnAE8GxdcBNQDbwuQbnZ427bwb+DkxqIoYF7l7YzM+C5l5DExKvTUsuAv7g7q+5e9Td/0o8cZm2G+39JDiHLxBPtE8DcPf57v5OcK2WEE9KD29w7OzgmlUFx/zZ3cvcvYZ4snuAmRUklH/U3Re5ezXwKFDt7ne5exS4n3hyvcfc/RfNXY+WjgXygIOAu4GtbYlFRKQrUIIlIpI8KxOWRwBfa/BN/3TiSUlj5ZcD6cR7HXZiZseZ2avB8LxS4onT9nLDgU8aiWVEUN/ahPb/QLwXpElmNtDM7guGFG4D7mkkpj8C44Fbgw/9EO/xWr69gLvHgtc3NOG4dQnLlUBuc7Ek2cqWi9QbAVzZ4NoNJ/4aW2NLg6Fxy7cfa2aHmNnzwdDKrcDF7Hp+62M1s7CZ/cLiQz+3saN3MvGY9QnLVY2sd+R53kXwxcBbQSzXpzIWEZGOoARLRCR5EmcNWkm8hyrx2/5ewTf62w1PWN4LqAM2JlYYDEt7mHiP0MCgx+BJ4kP5trezTyOxrCTe69Ivof18dx/XSNlE/xO8jgnunk+8J257W5hZLvBr4A5gtu24b2wN8cRkezkLXt/qFtrbhZnNsB0zADb2M6PlWnbRcEanSiAnYX1QwvJK4IYG1y7H3ee2sq3eZtYrYX0v4ucH4kPk5gHD3b0AmEPC+W0k1q8DJwFfAAqAomB7w2PaTXA/WZPXYzeqSqPxf6siIt2KEiwRkfZxD3CCmR0b9EJkBRMgDEsoc5aZjQ3uZ/oZ8FAwrCtRBpAJlAARMzuO+L1U290BnG9mR5tZyMyGmtn+7r6W+FDC/2dm+cG+fcys4XC0hvKAcmCrxWd+u7rB/t8AC939QuJD3+YE2x8AvhzEkQ5cSTzB+09LJ6ohd3/J3XOb+Xlpd+tsxGLg68G1mcnOw/T+CFwc9DaZmfWy+OQUeVA/scSdLdR/vZllBMng8cCDwfY8YLO7Vwf3z329hXryiJ/HTcQTwv/ZjdeYFO7+P81dj8aOCf69fcvMegfncCpwKfBsx0YvItLxlGCJiLQDd19JvOfhWuLJ0UriyUri3927iU9EsQ7IAr7XSD1lwfYHgC3EP5DPS9j/OsHEF8Tvb3mBHT1J5xBP0N4Pjn2InYcoNuZ64vfLbCWeQNVPqW1mJxGfpOKSYNN/AQeZ2Znu/iHx3q5biffCnQCc4O61LbSXKpcRj7EUOBN4bPsOd18IfBO4jfh5W8bOE3IMB15upu51wXFriE9IcbG7fxDs+zbwMzMrA64jfl2bcxfxIYariV/HV1t6YZ3IKcSHr5YR/8Lh1uBHRKRb03OwRERSwMzmA/e4+59SHYu0XjAr4tvAxGAyj4b7jyB+XYc13CciIj1DWqoDEBER6SqCHrkxLRYUEZEeS0MERUR6GDOb08SEBXNaPlq6IjPbq5mJKvZKdXwiIt2JhgiKiIiIiIgkiXqwREREREREkqRT3YPVr18/LyoqSnUYIiIiIiIiTVq0aNFGd+/f2L5OlWAVFRWxcOHCVIchIiIiIiLSJDNb3tQ+DREUERERERFJEiVYIiIiIiIiSaIES0REREREJEk61T1Yjamrq2PVqlVUV1enOhTpBLKyshg2bBjp6empDkW6sQcXruSFj0r4zekHEg5ZqsMRERGRLqTTJ1irVq0iLy+PoqIizPRBpydzdzZt2sSqVasYOXJkqsORbuyWh5/miYwf8fHCv7L/1GNSHY6IiIh0IZ1+iGB1dTV9+/ZVciWYGX379lVvprQrd+f88L/It0rCi+9OdTgiIiLSxXT6BAtQciX19G9B2lt5TYQDQ8sAiJVtSHE0IiIi0tV0iQRLRKSjbK6oJZ8KAAZVfJjiaERERKSrUYLVCmbGlVdeWb9+0003MXv27NQFlOCII45o9uHMJ598MtOmTdtp2+zZsxk6dCiTJk1i/PjxzJs3r73DFOkyNlXUkmtVABTEtkBNeYojEhERka5ECVYrZGZm8sgjj7Bx48ak1uvuxGKxpNaZqLS0lEWLFrF161Y+/fTTnfZdccUVLF68mAcffJALLrigXeMQ6Uq2VdWRRxWbQ30A8K2rUhyRiIiIdCVKsFohLS2Niy66iJtvvnmXfSUlJZx66qlMmTKFKVOm8PLLLwPxXqKbbrqpvtz48eMpLi6muLiY0aNHc8455zB+/HhWrlzJ1Vdfzfjx45kwYQL3338/APPnz+eII47gq1/9Kvvvvz9nnnkm7t5ofHfffXd9b9Trr79ev/2RRx7hhBNO4PTTT+e+++5r9NgxY8aQlpa2U/L4gx/8gLFjxzJx4kSuuuoqAIqLiznqqKOYOHEiRx99NCtWrADgvPPO45JLLmHatGnsvffezJ8/nwsuuIAxY8Zw3nnn1dd5ySWXMHnyZMaNG8dPf/rTXeLYunUrI0aMqE/0KioqGD58OHV1dY3GLdJeampqyLEaSnL2AWDr+s9SHJGIiIh0JZ1+mvZE1//9Pd5fsy2pdY4dks9PTxjXYrlLL72UiRMncs011+y0/bLLLuOKK65g+vTprFixgmOPPZalS5c2W9fHH3/MX//6V6ZNm8bDDz/M4sWLefvtt9m4cSNTpkzh85//PABvvfUW7733HkOGDOGwww7j5ZdfZvr06bvUV1lZyeLFi3nxxRe54IILePfddwGYO3cu1113HQMHDuTUU0/l2muv3eXY1157jVAoRP/+/QHYtGkTjz76KB988AFmRmlpKQDf/e53Offcczn33HP585//zPe+9z0ee+wxALZs2cIrr7zCvHnzOPHEE3n55Zf505/+xJQpU1i8eDGTJk3ihhtuoE+fPkSjUY4++miWLFnCxIkT6+MoKChg0qRJvPDCCxx55JH84x//4Nhjj9XzrqTDRarif2MqC0dD+RtUbiimMLUhiYiISBeiHqxWys/P55xzzuGWW27ZafszzzzDd77zHSZNmsSJJ57Itm3bKC9v/p6NESNG1N8XtWDBAs444wzC4TADBw7k8MMP54033gBg6tSpDBs2jFAoxKRJkyguLm60vjPOOAOAz3/+82zbto3S0lLWr1/Pxx9/zPTp0xk1ahTp6en1iRfAzTffzKRJk7jqqqu4//7762fnKygoICsri2984xs88sgj5OTkAPDKK6/w9a9/HYCzzz6bBQsW1Nd1wgknYGZMmDCBgQMHMmHCBEKhEOPGjauP+YEHHuCggw7iwAMP5L333uP999/f5XXMmjWrvgfvvvvuY9asWc2eR5H2EKvaCoD1H03EQ9RuXp7iiERERKQr6VI9WK3paWpPl19+OQcddBDnn39+/bZYLMarr75KVlbWTmXT0tJ2uq8p8dlNvXr1alV7mZmZ9cvhcJhIJNJouYZTl5sZDzzwAFu2bKl/IO+2bduYO3cuN9xwAxC/B2v78L+Gcb/++us8++yzPPTQQ9x2220899xzrYozFArtFHMoFCISifDZZ59x00038cYbb9C7d2/OO++8Rp9ldeKJJ3LttdeyefNmFi1axFFHHdVsuyLtIVYd78Eq7DuADRTiW9ekOCIRERHpStrcg2Vmw83seTN738zeM7PLgu19zOxpM/s4+N277eGmVp8+fTjttNO444476rcdc8wx3HrrrfXrixcvBqCoqIg333wTgDfffJPPPmv8Po4ZM2Zw//33E41GKSkp4cUXX2Tq1Km7Fdf2Xp8FCxZQUFBAQUEBc+fO5Z///Gf9fV+LFi1q8j6sROXl5WzdupUvfelL3Hzzzbz99tsAfO5zn6s//t5772XGjBmtjm/btm306tWLgoIC1q9fz1NPPdVoudzcXKZMmcJll13G8ccfTzgcbnUbIsniQYLVr28/NnhvQuXrUxyRiIiIdCXJGCIYAa5097HANOBSMxsL/AB41t33A54N1ru8K6+8cqcJIW655RYWLlzIxIkTGTt2LHPmzAHg1FNPZfPmzYwbN47bbruNUaNGNVrfKaecwsSJEznggAM46qijuPHGGxk0aNBuxZSVlcWBBx7IxRdfzB133EFxcTHLly/faXr2kSNHUlBQwGuvvdZoHV/60pdYs2YNZWVlHH/88UycOJHp06fzq1/9CoBbb72Vv/zlL0ycOJG7776b3/zmN62O74ADDuDAAw9k//335+tf/zqHHXZY/b7rrrtup2niZ82axT333KPhgZI6NWUA5OT1YXOoD1nVetiwiIiItJ41NTPdHldo9jhwW/BzhLuvNbPBwHx3H93csZMnT/aGz3RaunQpY8aMSWqM0rXp34S0p3l33cyJn86G7yxi3h9+zFHRl8m9bmWqwxIREZFOxMwWufvkxvYldZILMysCDgReAwa6+9pg1zpgYBPHXGRmC81sYUlJSTLDERHZfXWV8d8ZvajJ7k9ubBtEalIbk4iIiHQZSUuwzCwXeBi43N13mkvd491kjXaVufvt7j7Z3SdvnypcRCRVvK4qvpCeRaxXMFxX92GJiIhIKyUlwTKzdOLJ1b3u/kiweX0wNJDgt25kEJFOz7b3VqVlYfnxBMu3rW3mCBEREZEdkjGLoAF3AEvd/VcJu+YB5wbL5wKPt7UtEZF2Fw0SrHAm6YVDAKjYtDqFAYmIiEhXkoznYB0GnA28Y2aLg23XAr8AHjCzbwDLgdOS0JaISLuySDV1pJEeCpHTZygAFZtWkZviuERERKRraHOC5e4LAGti99FtrV9EpCOForXUWQbpQGG/wUQ8RO0WPWxYREREWiepswh2Z4899hhmxgcffNBkmeLiYsaPH5+0Ns877zweeuihJvdffvnlDB06lFgsVr/tzjvvpH///kyaNImxY8fyxz/+MWnxiPQEFq2hzjIBGFCQQwmFxHQPloiIiLSSEqxWmjt3LtOnT2fu3LmN7o9EIm1uIxqNtrpsLBbj0UcfZfjw4bzwwgs77Zs1axaLFy9m/vz5XHvttaxfrxnQRForHKshEsoAoH9eJuu9EKvQe0hERERaRwlWK5SXl7NgwQLuuOMO7rvvvvrt8+fPZ8aMGZx44omMHTsWiCdaZ555JmPGjOGrX/0qlZXxZ+o8++yzHHjggUyYMIELLriAmpr4jfRFRUV8//vf56CDDuLBBx/cpe1nnnmGyZMnM2rUKP7xj3/s1Pa4ceO45JJLmkz6BgwYwD777MPy5cvrt91yyy2MHTuWiRMncvrppwOwefNmTj75ZCZOnMi0adNYsmQJALNnz+bcc89lxowZjBgxgkceeYRrrrmGCRMmMHPmTOrq6gD42c9+xpQpUxg/fjwXXXQRDR9eHYvFKCoqorS0tH7bfvvtp8RPOqX0hAQrNzONzdaHzCo9o09ERERaJxmTXHScp34A695Jbp2DJsBxv2i2yOOPP87MmTMZNWoUffv2ZdGiRRx88MEAvPnmm7z77ruMHDmS4uJiPvzwQ+644w4OO+wwLrjgAn73u9/xne98h/POO49nn32WUaNGcc455/D73/+eyy+/HIC+ffvy5ptvNtp2cXExr7/+Op988glHHnkky5YtIysri7lz53LGGWdw0kknce2111JXV0d6evpOx3766ad8+umn7LvvvvXbfvGLX/DZZ5+RmZlZn/D89Kc/5cADD+Sxxx7jueee45xzzmHx4sUAfPLJJzz//PO8//77HHrooTz88MPceOONnHLKKTzxxBOcfPLJfOc73+G6664D4Oyzz+Yf//gHJ5xwQn2boVCIk046iUcffZTzzz+f1157jREjRjBwYKPPnhZJqbDXEg1l1q+Xpfcjp/bjFEYkIiIiXYl6sFph7ty59b09p59++k49RlOnTmXkyJH168OHD+ewww4D4KyzzmLBggV8+OGHjBw5klGjRgFw7rnn8uKLL9YfM2vWrCbbPu200wiFQuy3337svffefPDBB9TW1vLkk09y8sknk5+fzyGHHMK//vWv+mPuv/9+Jk2axBlnnMEf/vAH+vTpU79v4sSJnHnmmdxzzz2kpcXz6wULFnD22WcDcNRRR7Fp0ya2bYs/K/q4444jPT2dCRMmEI1GmTlzJgATJkyguLgYgOeff55DDjmECRMm8Nxzz/Hee+/t8jpmzZrF/fffD8B9993X7GsWSaX0WG19DxZAdVY/8qJbIVKbwqhERESkq+haPVgt9DS1h82bN/Pcc8/xzjvvYGZEo1HMjF/+8pcA9OrVa6fy8ceCNb3emIZ1tFTfv/71L0pLS5kwYQIAlZWVZGdnc/zxxwPxZOa2225rtL4nnniCF198kb///e/ccMMNvPNO8z2CmZnxb/JDoRDp6en18YRCISKRCNXV1Xz7299m4cKFDB8+nNmzZ1NdXb1LPYceeijLli2jpKSExx57jB//+MfNtiuSKuleSyyhByuSMwjKgfL1UDg8dYGJiIhIl6AerBY89NBDnH322Sxfvpzi4mJWrlzJyJEjeemllxotv2LFCl555RUA/va3vzF9+nRGjx5NcXExy5YtA+Duu+/m8MMPb1X7Dz74ILFYjE8++YRPP/2U0aNHM3fuXP70pz9RXFxMcXExn332GU8//XT9/V5NicVirFy5kiOPPJL/+7//Y+vWrZSXlzNjxgzuvfdeIH5vV79+/cjPz29VfNuTqX79+lFeXt7krIdmximnnMJ//dd/MWbMGPr27duq+kU6WrrXEgvvSLDIC4ayluueQREREWmZEqwWzJ07l1NOOWWnbaeeemqTE0uMHj2a3/72t4wZM4YtW7ZwySWXkJWVxV/+8he+9rWvMWHCBEKhEBdffHGr2t9rr72YOnUqxx13HHPmzCEWi/HPf/6TL3/5y/VlevXqxfTp0/n73//eaB0XXnghCxcuJBqNctZZZzFhwgQOPPBAvve971FYWMjs2bNZtGgREydO5Ac/+AF//etfW3l2oLCwkG9+85uMHz+eY489lilTptTvmzNnDnPmzKlfnzVrFvfcc4+GB0qnFYs5GdQRC2fVb0srGAJAzZbVqQpLREREuhBrOONbKk2ePNkXLly407alS5cyZsyYFEUknZH+TUh7qa6Lsvq/xxEdOJFRlz4AwLwFb3HiM0ew+fD/pc+R305xhCIiItIZmNkid5/c2D71YImIBGoiMTKtDtJ2DBEs6DeYiIeo3rIqhZGJiIhIV6EES0QkUBuJkUktnpBg9c/PYSMFRLetS2FkIiIi0lW0e4JlZjPN7EMzW2ZmP9iTOjrTMEZJLf1bkPZUE4mSSR2WtuMerAH5maz33liZEiwRERFpWbsmWGYWBn4LHAeMBc4ws7G7U0dWVhabNm3SB2vB3dm0aRNZWVktFxbZA/EerJ2HCPbJyaCEQjKqNqQwMhEREekq2vs5WFOBZe7+KYCZ3QecBLzf2gqGDRvGqlWrKCkpaacQpSvJyspi2LBhqQ5DuqnaSIRMi+zUgxUKGdvS+pFT82kKIxMREZGuor0TrKHAyoT1VcAhiQXM7CLgIohPSd5Qeno6I0eObMcQRUTiarc/JDs9e6ftVZn9ya0qhWgdhNM7PjARERHpMlI+yYW73+7uk919cv/+/VMdjoj0YJHaKgBC6TsPQ43kDIgv6GHDIiIi0oL2TrBWA8MT1ocF20REOp1IdSUAoYydEyzPHRhfKFOCJSIiIs1r7wTrDWA/MxtpZhnA6cC8dm5TRGSPROqCBKvBEMG0giEARLeu6fCYREREpGtp13uw3D1iZt8B/gWEgT+7+3vt2aaIyJ6K1sTvwQo36MHK6jMUgMrNq8nr8KhERESkK2nvSS5w9yeBJ9u7HRGRtorWbU+wdu7Byu07mKgbVUqwREREpAXtnmCJiHQV0Zr4JBdpDXqwBhTksJECDREUERGRFqV8FkERkc4iFon3YKVl5uy0fUBeJuu9N5StS0VYIiIi0oUowRIRCUSDadrTM3ceItgvN5MNXkh65YZUhCUiIiJdiBIsEZHtgh6s9AY9WFnpYUrDfcmuKUlFVCIiItKFKMESEQl4bZBgNZjkAqAqsz85kVKI1nVwVCIiItKVKMESEdkuWgPs+qBhgEivgYRwKNcwQREREWmaEiwRkYAH07STtmuCFcofFF8o10QXIiIi0jQlWCIiAYtuT7Ayd9mXWRh/2HBt6dqODElERES6GCVYIiLbReJDBEnb9R6s3P7DACgrWdmREYmIiEgXowRLRGS7SA1RQhDe9RnsffoPIepG5ebVKQhMREREugolWCIiAYtUU0tGo/sG98ljEwXUla7p4KhERESkK2lTgmVmvzSzD8xsiZk9amaFCft+aGbLzOxDMzu2zZGKiLQzi1RTZ00kWAVZrPdCrHx9B0clIiIiXUlbe7CeBsa7+0TgI+CHAGY2FjgdGAfMBH5nZuE2tiUi0q5C0RqiofRG92WlhykN9SGjUtO0i4iISNPalGC5+7/dPRKsvgoMC5ZPAu5z9xp3/wxYBkxtS1siIu0tLVpFTWjXCS62q8jsT26tEiwRERFpWjLvwboAeCpYHgokTrW1Kti2CzO7yMwWmtnCkpKSJIYjIrJ7MmOV1IV7Nbm/KnsIBbFS2P68LBEREZEGWkywzOwZM3u3kZ+TEsr8CIgA9+5uAO5+u7tPdvfJ/fv3393DRUSSJitWSV04p8n9sfzge6JtmklQREREGrfrXMQNuPsXmttvZucBxwNHu7sHm1cDwxOKDQu2iYh0WlleRSS9b5P703rvBSugauNysvvu04GRiYiISFfR1lkEZwLXACe6e2XCrnnA6WaWaWYjgf2A19vSlohIe4rFnByvIprW9BDBnAEjANi27tOOCktERES6mBZ7sFpwG5AJPG1mAK+6+8Xu/p6ZPQC8T3zo4KXuHm1jWyIi7aY6EqWXVVGRkdtkmcKBRcTcqNq4vAMjExERka6kTQmWu+/bzL4bgBvaUr+ISEeprI2SSzUbmkmwBvfNZwOFRLesbLKMiIiI9GzJnEVQRKTLqqquIdtq8WYSrIH5WazxvqSV6ZZSERERaZwSLBERoKJsKwBpWU0nWOnhEJvTBpBdtaajwhIREZEuRgmWiAhQWV4KQFp2frPlKrIGU1i7HuonTRURERHZQQmWiAhQVR7vwcrsVdBsudrcoWRQBxUbOyIsERER6WKUYImIADUV2wDIzGk+wbLC+CP+YqWa6EJERER2pQRLRASoq9gCQHZ+72bLZfULnoW1/rN2j0lERES6HiVYIiJArLwEgJzeg5otlz+wCIDy9XrYsIiIiOxKCZaICBCq2gRAOLdfs+UGDBhEhWdSu3lFR4QlIiIiXYwSLBERwKo2EyEEWYXNlhvSO4fV3g+2ruqYwERERKRLUYIlIgKkV2+izArArNly+VnpbAj1J7NCz8ISERGRXSnBEhEBMmq3UJFW2Kqy2zIGkle9rn0DEhERkS4pKQmWmV1pZm5m/YJ1M7NbzGyZmS0xs4OS0Y6ISHvJqdtKTUbzMwhuV50zhPxYKdRVtW9QIiIi0uW0OcEys+HAMUDiHd/HAfsFPxcBv29rOyIi7SUWcwpipUSyWpdgxfKHxRe2rm7HqERERKQrSkYP1s3ANYAnbDsJuMvjXgUKzWxwEtoSEUm6jWXVDLLNRHNb92cqrc9eAFRtLG7HqERERKQralOCZWYnAavd/e0Gu4YCKxPWVwXbREQ6nTXr1pBjNaT1GdGq8jn9iwDYtk7PwhIREZGdpbVUwMyeARp78uaPgGuJDw/cY2Z2EfFhhOy1115tqUpEZI9sDRKl3AFFrSrfd8gIYm5UblzejlGJiIhIV9RiguXuX2hsu5lNAEYCb1t8WuNhwJtmNhVYDQxPKD4s2NZY/bcDtwNMnjzZGysjItKeKjcUA9B78N6tKj+kTz7r6U1sy8qWC4uIiEiPssdDBN39HXcf4O5F7l5EfBjgQe6+DpgHnBPMJjgN2Orua5MTsohIckW3xOfoyQ6G/rVkQF4Wa70vaWWa5EJERER21mIP1h56EvgSsAyoBM5vp3ZERNosZ9snlFsvcnP6tqp8OGRsTh/I8KrP2jkyERER6WqSlmAFvVjblx24NFl1i4i0p34Vy1iftQ+58eHOrVKRNZjCitcgFoOQntkuIiIicfpUICI92taKWopiK6jqM3q3jqvLHUo6dVBR0k6RiYiISFekBEtEerRPP/mAfKsiffD43TouVBifxydaqokuREREZAclWCLSo20uXgxA370n7dZxWf3iz8zaqmdhiYiISAIlWCLSo9WteReAviMP2K3j8geNBKB8vSa6EBERkR2UYIlIj5az5UM2hvpj2b1367iB/QdQ5tlE9CwsERERSaAES0R6LHdnUPWnbM7dd7ePHVSYzRrvi21d1Q6RiYiISFelBEtEeqxVG7dRxGrq+o3Z7WPzstJZb/3JrFzTDpGJiIhIV6UES0R6rFXL3iHDouQMm7BHx2/NGEh+9dokRyUiIiJdmRIsEemxti1fDMDAfQ/ao+OrcgaTG9sGtRVJjEpERES6MiVYItJzbXifCCFyhuz+EEGASO7Q+MLW1UkMSkRERLoyJVgi0mPlb/uY9enDIS1zj44P9w4eNrxlRTLDEhERkS5MCZaI9Eg1kShD64opyx+1x3Vk9S8CoGxDcXKCEhERkS6vzQmWmX3XzD4ws/fM7MaE7T80s2Vm9qGZHdvWdkREkunTVevYyzbAgD0bHghQMGAvom5UlRQnLzARERHp0tLacrCZHQmcBBzg7jVmNiDYPhY4HRgHDAGeMbNR7h5ta8AiIsmw/pPFjAHyRxywx3UM6p3LOvrgGiIoIiIigbb2YF0C/MLdawDcfUOw/STgPnevcffPgGXA1Da2JSKSNJWrlgDQfw9nEAQYnB9/2HBomya5EBERkbi2JlijgBlm9pqZvWBmU4LtQ4GVCeVWBdt2YWYXmdlCM1tYUlLSxnBERFonfeMHVJFFep+iPa4jPzuN9fQnu0rPwhIREZG4FocImtkzwKBGdv0oOL4PMA2YAjxgZnvvTgDufjtwO8DkyZN9d44VEdlTfcqXsSFrJCNCe/49k5lRljmQvJrXIBaDNtQlIiIi3UOLCZa7f6GpfWZ2CfCIuzvwupnFgH7AamB4QtFhwTYRkZTbVlXLyFgx6wqPbnNdVTlDSNsagfL1kD84CdGJiIhIV9bWr1sfA44EMLNRQAawEZgHnG5mmWY2EtgPeL2NbXW4SG0Nkbq6VIchIkn26Wef0cfKSRs8vs11RfOHxRe2rmpzXSIiItL1tTXB+jOwt5m9C9wHnOtx7wEPAO8D/wQu7YozCC588P9Y+b+TWfL8Q3gslupwRCRJSovfAqBgxKQ215UWPGw4VrqyhZIiIiLSE7QpwXL3Wnc/y93Hu/tB7v5cwr4b3H0fdx/t7k+1PdSOlzVgXzK8iokvfIPin0/itfv/j9KN61Mdloi0ka9/H4C+e09qc10Fg/cBoHT1R22uS0RERLq+Nj0Hq7ub9MWvUzvjFBY9dTv5797FIUv/h8j7v+Dd7EmUj/giQyd9gWGjD8ZC4VSH2i48FiUSqSMaidT/jkbqiEXj67FohGg0Ev8drBOLgkfBwXHcHTz+29m+DAT76vcD7o759nlO4tvrl/eI7UZR241WdqPeoO7m+E4Nt77u3T4rjcSRlFllWnh9jRwQb7tVje/G+diNOHLXv8FmCuiTP6DVxzRln2GDWRnrT9qqxW2uS/acu1NTF6GmuopoXU39TyxSS6yuhlgkvhyNxojFosRi8d/RaAyPRYlGo7hHMY+BxzBi4B5fT3inOMaOf5fBv+Wd/u0Fy8E2xzCzXfc13IZhoUa21Ve9o93t22yXtkloK+Hdk7jNrEG9O0rvvM12+hWU2LmNFtrapQIRkT1U12swRUUjycnoGqlL14gyhTKysjn4lMvwk7/HJ++8zLpX7mf4umcY/+H/wYf/xzZ6sSJzP6oL9iXWbxSZ/fehcMAw+g4aTq/CgVi4bafYY1Fqa6uprqqirqqCmupK6mriP5GaSiI1VURqq4jWVBKrqyJWW43XVUGkGuqq8Ug1FqkmFKnGYjWEo9WEozWEY7Wkx6pJi9WS7rWkew2Z1JLhtWRSRxpRQuakA+nJOZUinco72VPok4R69huYywtexKEb321V+Q3bqsnPTicrvXt+MbM7IpEoW7aWsm1zCdXbSqgt20ikYjOxii14VSmx2nKoKSdUV0koUkFapJKMWBWZsUoyY1VkezWZ1JDmETKoI8tiZKX6RYmISNL9d91ZnHDxDUwaXpjqUFpFCVYrmRn7TJzOPhOngzurP/uAFYufJbzqVQq2fUTR+ifI3fDQTsdE3ai0LGrIoiaUSa1lEQlO+U5f8rkT9rog0akjg7r63xkWIRPI3MO4azydGsughgzqLPgJZRKxDCJpOdSEehMLZxILZwW/48uE0vFQON47F06DUBoWCmOhNAh+WzjYFk6PL1s4foyFwEL1rzP+bWcIgmXDguUQWPCd6E6/d3w76jT8Rre1dqc/yndaS1a9u9advLK7HUsL3UU7v+rdjGO3iu9auNmOp9Z1c+12IIZTtP+hu1F303Iy0liTPZrC6jegvARy++8amTuvv/8pK5++lWlb/s5/9j6Po879SVLa72zqIhE2bljLlvUrKNu4htrSNXjZesKVG8io3kivmo3kRLeQGysj38vpb1F2PWNx8b+h2VRZNjWWTW0om9pwNlXp/dgWziESzsHTsiCcAWmZhNIyIS0DS8uAcCaE0/FwJhbOgLQMQqE0CKcRCoWCn/hyOBwmFA5hFg7+aIXx+r9jVt9LFO9h913+ftf/22vQ6244HvNgSwvbvJE6PLE2b7DbG+xhp/dLU9vMfad3yvaRBYkbfeeGm9iW0H7CNvfm39Pmvlu9zSIiAEfl78PIvr1SHUarKcHaE2YM3XsMQ/ceA3wHgGg0xoa1xWxe8ynlG1dRXbqGcEUJ1FVAbSXhSCXpsSpCwVwfwSg5HAgZREOZxMIZxEIZeDgDD2fi4Uyo/8CQhaVnY+nZhDOyCGfkEM7MJi0zm/SMHNKzckjPzCEjK4f07F5kZWWTkZlNZii8x8mZiLROZN9j4f17qFnyCJmf+1b99uq6KC8veI7Iq7fz+er5HGK1VJHBsNVPAl0vwXJ3NmyrYu2qYrat/Zi6jZ9hpSvIKl9JfvUa+kXW0de3MNiiNJywvpxsSkO9KUvrw5bskZRk9cazehPu1Ye03D6k9epHel4fsvL6kVPQj14FfcnK7kVeKEReSl6tiIjInlGClSThcIgBw/ZmwLDdes6yiHQDkw+ZwbvvFjF8/v+jbuhUPlm/jbWL/8XQNf/kaD6hikzW7HUCw469nP88OofDN92H15RhmZ0vdaiqjbJ63Ro2rfyYinXLiGwuJn3bCnpVrqZ/ZC1D2MhA2/H4ihjGJuvL5ozBrM6dzPLcwaTlDySz9xDy+g0lv/8w8vsNJTcrj9wUvi4REZGOogRLRKSNDh7Rm1/t/UO+9dn36PWXIzgAOABYkTWKz8b/mBFHXcg+Ob0BCO13NGmb7mXFa4+x1+fP7vBYYzFnw5atbFj5MdvWfEzNxk8Jla4gu2IVvWvWMNjXs69Vsm/CMdssjy0Zg6nIH8PHBXuR0W8kuYP3pfeQfcnuP5L+aZlNDvMTERHpacx36x6H9jV58mRfuHBhqsMQEdltsZjz3BuLSfvsOfr06c9+k6aTPWDXHu3N5dVU/3IsVb2Gs8/V8/dgFsaWVVZXs2blp2xZ9TGVGz7FtxSTUbaS/KrV9I+uZ6Bt2al8NRlsTBtEWfZQ6vL2ItSniF4D96bPsFHkD94HyypIeowiIiJdmZktcvfJje1TD5aISBKEQsYXDjkQDjmw2XJ9crN4cq9z+dLKX7Hs8V+w78k/3K123J3Ssgo2rvmMsvWfUl1STGzLctLKVpFbtYY+desY4JvY13Y8HD3qxsZwf7ZkDGFt7nTW9h5BZr+RFA7Zj77DR5FVMIhhmnhAREQkKdSDJSLSwaqqa3nz/53IYXWvsCx7IuV7H0d6v70hPZtoNEakaiu15VuJVJViFRtJr1xPZnUJuXWb6BPbTG8r26m+mBslob6Upg+iInsI0YLhpPctIm/g3vQbPor8gUXxmfVEREQkKZrrwVKCJSKSAtsqq3h17v+y34oHGGlrmyxX52E2hwopS+tLZWZ/IjkDIHcQab2HkdV/JL0H70PfISMJpWu+UBERkY6iBEtEpJOKRKKsWrWcig3FeLSWtBCk5/Qmr7AP+QV9yMrtDaFQqsMUERGRBO12D5aZTQLmAFlABPi2u79u8SfL/gb4ElAJnOfub7alLRGR7igtLUxR0d5QpEc8iIiIdAdt/Vr0RuB6d58EXBesAxwH7Bf8XAT8vo3tiIiIiIiIdHptTbAcyA+WC4A1wfJJwF0e9ypQaGaD29iWiIiIiIhIp9bWadovB/5lZjcRT9Y+F2wfCqxMKLcq2LbLndxmdhHxXi722muvNoYjIiIiIiKSOi0mWGb2DDCokV0/Ao4GrnD3h83sNOAO4Au7E4C73w7cHrRVYmbLd+f4DtAP2JjqIKTD6Hr3HLrWPYeudc+i691z6Fr3HJ3xWo9oakebZhE0s61Aobt7MLHFVnfPN7M/APPdfW5Q7kPgCHdvei7iTsrMFjY1Q4h0P7rePYeudc+ha92z6Hr3HLrWPUdXu9ZtvQdrDXB4sHwU8HGwPA84x+KmEU+8ulxyJSIiIiIisjvaeg/WN4HfmFkaUE1wLxXwJPEp2pcRn6b9/Da2IyIiIiIi0um1KcFy9wXAwY1sd+DSttTdidye6gCkQ+l69xy61j2HrnXPouvdc+ha9xxd6lq36R4sERERERER2aGt92CJiIiIiIhIQAmWiIiIiIhIkijBaoaZzTSzD81smZn9INXxSPKY2XAze97M3jez98zssmB7HzN72sw+Dn73TnWskhxmFjazt8zsH8H6SDN7LXh/329mGamOUZLDzArN7CEz+8DMlprZoXpvd09mdkXwN/xdM5trZll6b3cfZvZnM9tgZu8mbGv0vRzMXH1LcN2XmNlBqYtcdlcT1/qXwd/xJWb2qJkVJuz7YXCtPzSzY1MSdDOUYDXBzMLAb4HjgLHAGWY2NrVRSRJFgCvdfSwwDbg0uL4/AJ519/2AZ4N16R4uA5YmrP8fcLO77wtsAb6RkqikPfwG+Ke77w8cQPy6673dzZjZUOB7wGR3Hw+EgdPRe7s7uROY2WBbU+/l44D9gp+LgN93UIySHHey67V+Ghjv7hOBj4AfAgSf104HxgXH/C743N5pKMFq2lRgmbt/6u61wH3ASSmOSZLE3de6+5vBchnxD2BDiV/jvwbF/gqcnJIAJanMbBjwZeBPwboRf3bfQ0ERXetuwswKgM8DdwC4e627l6L3dneVBmQHj4vJAdai93a34e4vApsbbG7qvXwScJfHvQoUmtngDglU2qyxa+3u/3b3SLD6KjAsWD4JuM/da9z9M+KPhZraYcG2ghKspg0FViasrwq2STdjZkXAgcBrwMCEh2KvAwamKi5Jql8D1wCxYL0vUJrwh1vv7+5jJFAC/CUYEvonM+uF3tvdjruvBm4CVhBPrLYCi9B7u7tr6r2sz23d2wXAU8Fyp7/WSrCkRzOzXOBh4HJ335a4L3iem55j0MWZ2fHABndflOpYpEOkAQcBv3f3A4EKGgwH1Hu7ewjuvTmJeFI9BOjFrkOMpBvTe7lnMLMfEb+1495Ux9JaSrCathoYnrA+LNgm3YSZpRNPru5190eCzeu3DykIfm9IVXySNIcBJ5pZMfGhvkcRv0enMBhWBHp/dyergFXu/lqw/hDxhEvv7e7nC8Bn7l7i7nXAI8Tf73pvd29NvZf1ua0bMrPzgOOBM33Hw3s7/bVWgtW0N4D9gtmIMojfTDcvxTFJkgT34NwBLHX3XyXsmgecGyyfCzze0bFJcrn7D919mLsXEX8fP+fuZwLPA18NiuladxPuvg5YaWajg01HA++j93Z3tAKYZmY5wd/07dda7+3uran38jzgnGA2wWnA1oShhNIFmdlM4sP7T3T3yoRd84DTzSzTzEYSn9jk9VTE2BTbkQxKQ2b2JeL3boSBP7v7DamNSJLFzKYDLwHvsOO+nGuJ34f1ALAXsBw4zd0b3mArXZSZHQFc5e7Hm9nexHu0+gBvAWe5e00Kw5MkMbNJxCc0yQA+Bc4n/oWi3tvdjJldD8wiPnzoLeBC4vdi6L3dDZjZXOAIoB+wHvgp8BiNvJeDJPs24sNEK4Hz3X1hCsKWPdDEtf4hkAlsCoq96u4XB+V/RPy+rAjx2zyealhnKinBEhERERERSRINERQREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsEZFOxsyKzMzNLC3VsUjPYGbvmdkRqY5DRKQ7UIIlIiJdnpnNMbPy4KfWzOoS1p9KdXydnbuPc/f5yazTzG40s5Vmts3MlpvZtcmsX0SkszJ3T3UMIiLdipmluXukDccXAZ8B6W2pp6cys9nAvu5+ViP72nRtOlJXirUxZjYaWOXuFWY2FPg38BN3fyTFoYmItCv1YImIJIGZFZvZ981sCVBhZmlmNs3M/mNmpWb2duIQLDObb2b/a2avB9/wP25mfZqo+3wzW2pmZWb2qZl9q8H+k8xscVDPJ2Y2M9heYGZ3mNlaM1ttZj83s3ALr2MfM3vOzDaZ2UYzu9fMChP2bTazg4L1IWZWsv11mdmJwVCz0uD1jWlwfq4ysyVmttXM7jezrN0/07uviWvjZrZvQpk7zeznCevHB+e0NLiGE1vZ1hFmtsrMrg3OX7GZnZmw/8tm9lZwrVYGyeD2fduHhn7DzFYAzwXbHzSzdcF5e9HMxjWI+3dm9lTQW/eymQ0ys1+b2RYz+8DMDmzlOfpCa15ja7n7h+5ekbApBuzbVHkRke5CCZaISPKcAXwZKAQGAk8APwf6AFcBD5tZ/4Ty5wAXAIOBCHBLE/VuAI4H8oHzgZsTkpypwF3A1UG7nweKg+PuDOrdFzgQOAa4sIXXYMD/AkOAMcBwYDaAu38CfB+4x8xygL8Af3X3+WY2CpgLXA70B54E/m5mGQl1nwbMBEYCE4HzGg3AbHqQ2DT1M72F19CY+mvTUq9QkJD8GfgW0Bf4AzDPzDJb2dYgoB8wFDgXuD3ozQGoIH7dC4N4LjGzkxscfzjxc39ssP4UsB8wAHgTuLdB+dOAHwdt1gCvBOX6AQ8Bv2pl3I0ysx80dz1acWw5sAroBfytLbGIiHQFSrBERJLnFndf6e5VwFnAk+7+pLvH3P1pYCHwpYTyd7v7u8G3/D8BTmush8ndn3D3TzzuBeJDrWYEu78B/Nndnw7aWe3uH5jZwKCty929wt03ADcDpzf3Atx9WVBXjbuXEP9wfnjC/j8Cy4DXiCeGPwp2zQKeCI6tA24CsoHPNTg/a9x9M/B3YFITMSxw98JmfhY09xqakHhtWnIR8Ad3f83do+7+V+KJy7TdaO8nwTl8gXiifRqAu89393eCa7WEeFJ6eINjZwfXrCo45s/uXubuNcST3QPMrCCh/KPuvsjdq4FHgWp3v8vdo8D9xJPrPebuv2juerR0LJAHHATcDWxtSywiIl2BEiwRkeRZmbA8Avhag2/6pxNPShorvxxIJ97rsBMzO87MXg2G55UST5y2lxsOfNJILCOC+tYmtP8H4r0gTTKzgWZ2XzCkcBtwTyMx/REYD9wafOiHeI/X8u0F3D0WvL6hCcetS1iuBHKbiyXJVrZcpN4I4MoG12448dfYGlsaDI1bvv1YMzvEzJ4PhlZuBS5m1/NbH6uZhc3sFxYf+rmNHb2TicesT1iuamS9I8/zLoIvBt4KYrk+lbGIiHQEJVgiIsmTOGvQSuI9VInf9vcKvtHfbnjC8l5AHbAxscJgWNrDxHuEBgY9Bk8SH8q3vZ19GollJfFel34J7ee7+7hGyib6n+B1THD3fOI9cdvbwsxygV8DdwCzbcd9Y2uIJybby1nw+la30N4uzGyG7ZgBsLGfGS3XsouGMzpVAjkJ64MSllcCNzS4djnuPreVbfU2s14J63sRPz8QHyI3Dxju7gXAHBLObyOxfh04CfgCUAAUBdsbHtNugvvJmrweu1FVGo3/WxUR6VaUYImItI97gBPM7NigFyIrmABhWEKZs8xsbHA/08+Ah4JhXYkygEygBIiY2XHE76Xa7g7gfDM72sxCZjbUzPZ397XEhxL+PzPLD/btY2YNh6M1lAeUA1stPvPb1Q32/wZY6O4XEh/6NifY/gDw5SCOdOBK4gnef1o6UQ25+0vuntvMz0u7W2cjFgNfD67NTHYepvdH4OKgt8nMrJfFJ6fIg/qJJe5sof7rzSwjSAaPBx4MtucBm929Orh/7ust1JNH/DxuIp4Q/s9uvMakcPf/ae56NHZM8O/tW2bWOziHU4FLgWc7NnoRkY6nBEtEpB24+0riPQ/XEk+OVhJPVhL/7t5NfCKKdUAW8L1G6ikLtj8AbCH+gXxewv7XCSa+IH5/ywvs6Ek6h3iC9n5w7EPsPESxMdcTv19mK/EEqn5KbTM7ifgkFZcEm/4LOMjMznT3D4n3dt1KvBfuBOAEd69tob1UuYx4jKXAmcBj23e4+0Lgm8BtxM/bMnaekGM48HIzda8LjltDfEKKi939g2Dft4GfmVkZcB3x69qcu4gPMVxN/Dq+2tIL60ROIT58tYz4Fw63Bj8iIt2anoMlIpICZjYfuMfd/5TqWKT1glkR3wYmBpN5NNx/BPHrOqzhPhER6RnSUh2AiIhIVxH0yI1psaCIiPRYGiIoItLDmNmcJiYsmNPy0dIVmdlezUxUsVeq4xMR6U40RFBERERERCRJ1IMlIiIiIiKSJJ3qHqx+/fp5UVFRqsMQERERERFp0qJFiza6e//G9nWqBKuoqIiFCxemOgwREREREZEmmdnypvZpiKCIiIiIiEiSKMESERERERFJEiVYIiJJ8MSStXxSUp7qMERERCTFOtU9WI2pq6tj1apVVFdXpzoU6WKysrIYNmwY6enpqQ5FurmVmyv51dy/M7Bvb/521ddSHY6IiIikUKdPsFatWkVeXh5FRUWYWarDkS7C3dm0aROrVq1i5MiRqQ5HurkP15XxeMZPyC2vJlp2OOG8AakOSURERFKkzUMEzWy4mT1vZu+b2XtmdlmwvY+ZPW1mHwe/e+9J/dXV1fTt21fJlewWM6Nv377q+ZQOsWZrFbkW/7e2+e0nUxyNiIiIpFIy7sGKAFe6+1hgGnCpmY0FfgA86+77Ac8G63tEyZXsCf27kY5Ssrm0frly/cepC0RERERSrs0Jlruvdfc3g+UyYCkwFDgJ+GtQ7K/AyW1tS0SkM0qrWLdjZeMnqQtEREREUi6pswiaWRFwIPAaMNDd1wa71gEDmzjmIjNbaGYLS0pKkhlO0pgZV155Zf36TTfdxOzZs1MXUIJXX32VQw45hEmTJjFmzJj6uObPn89//vOfNtU9c+ZMCgsLOf7445MQqUj3lVG1HoCYGxnbmnzuoIiIiPQASUuwzCwXeBi43N23Je5zdwe8sePc/XZ3n+zuk/v375+scJIqMzOTRx55hI0bNya1XncnFou1qY5zzz2X22+/ncWLF/Puu+9y2mmnAclJsK6++mruvvvuNtUh0hNkVce/HHo7NIb86lUpjkZERERSKSmzCJpZOvHk6l53fyTYvN7MBrv7WjMbDGxoazvX//093l+zreWCu2HskHx+esK4ZsukpaVx0UUXcfPNN3PDDTfstK+kpISLL76YFStWAPDrX/+aww47jNmzZ5Obm8tVV10FwPjx4/nHP/4BwLHHHsshhxzCokWLePLJJ7ntttt46qmnMDN+/OMfM2vWLObPn8/s2bPp168f7777LgcffDD33HPPLvcVbdiwgcGDBwMQDocZO3YsxcXFzJkzh3A4zD333MOtt97K/vvv32Scn3zyCcuWLWPjxo1cc801fPOb3wTg6KOPZv78+c2emwcffJDrr7+ecDhMQUEBL774ItXV1VxyySUsXLiQtLQ0fvWrX3HkkUdy55138thjj1FRUcHHH3/MVVddRW1tLXfffTeZmZk8+eST9OnThz/+8Y/cfvvt1NbWsu+++3L33XeTk5OzU7vTpk3jjjvuYNy4+LU74ogjuOmmm5g8eXKz8Yq0h+zaTQCszBrFgVXvQ6QG0jJTHJWIiIikQjJmETTgDmCpu/8qYdc84Nxg+Vzg8ba2lUqXXnop9957L1u3bt1p+2WXXcYVV1zBG2+8wcMPP8yFF17YYl0ff/wx3/72t3nvvfdYuHAhixcv5u233+aZZ57h6quvZu3a+MjKt956i1//+te8//77fPrpp7z88su71HXFFVcwevRoTjnlFP7whz9QXV1NUVERF198MVdccQWLFy9mxowZzca5ZMkSnnvuOV555RV+9rOfsWbNmlafl5/97Gf861//4u2332bevHkA/Pa3v8XMeOedd5g7dy7nnntu/Wx+7777Lo888ghvvPEGP/rRj8jJyeGtt97i0EMP5a677gLgK1/5Cm+88QZvv/02Y8aM4Y477til3VmzZvHAAw8AsHbtWtauXavkSlImHKkEoCxnr/iG8jZ/nyQiIiJdVDJ6sA4DzgbeMbPFwbZrgV8AD5jZN4DlwGltbailnqb2lJ+fzznnnMMtt9xCdnZ2/fZnnnmG999/v35927ZtlJeXN1vXiBEjmDZtGgALFizgjDPOIBwOM3DgQA4//HDeeOMN8vPzmTp1KsOGDQNg0qRJFBcXM3369J3quu666zjzzDP597//zd/+9jfmzp3baK9Tc3GedNJJZGdnk52dzZFHHsnrr7/OySef3Krzcthhh3Heeedx2mmn8ZWvfKX+NX33u98FYP/992fEiBF89NFHABx55JHk5eWRl5dHQUEBJ5xwAgATJkxgyZIlQDwJ+/GPf0xpaSnl5eUce+yxu7R72mmnccwxx3D99dfzwAMP8NWvfrVV8Yq0h3BdFRHCRPOHwibiCVbh8FSHJSIiIinQ5gTL3RcATc2HfXRb6+9MLr/8cg466CDOP//8+m2xWIxXX32VrKysncqmpaXtdH9V4vOYevXq1ar2MjN3DDEKh8NEIpFGy+2zzz5ccsklfPOb36R///5s2rRplzJNxQm7Tme+O9Obz5kzh9dee40nnniCgw8+mEWLFjVbPvE1hUKh+vVQKFT/+s477zwee+wxDjjgAO68885GE8ahQ4fSt29flixZwv3338+cOXNaHbNIsoWjldRaFmkF8eG6kW1rO/9T3EVERKRdJHUWwe6uT58+nHbaaTsNWTvmmGO49dZb69cXL14MQFFREW+++SYAb775Jp999lmjdc6YMYP777+faDRKSUkJL774IlOnTm11TE888QTxOUTiQw/D4TCFhYXk5eVRVlbWYpwAjz/+ONXV1WzatIn58+czZcqUVrf/ySefcMghh/Czn/2M/v37s3LlSmbMmMG9994LwEcffcSKFSsYPXp0q+ssKytj8ODB1NXV1dfTmFmzZnHjjTeydetWJk6c2Or6RZItPVZFbSibrN7xBKti4+oURyQiIiKpogRrN1155ZU7zSZ4yy23sHDhQiZOnMjYsWPre1JOPfVUNm/ezLhx47jtttsYNWpUo/WdcsopTJw4kQMOOICjjjqKG2+8kUGDBrU6nrvvvpvRo0czadIkzj77bO69917C4TAnnHACjz76KJMmTeKll15qMk6AiRMncuSRRzJt2jR+8pOfMGTIECCe/H3ta1/j2WefZdiwYfzrX/8C4sMSt99vdfXVVzNhwgTGjx/P5z73OQ444AC+/e1vE4vFmDBhArNmzeLOO+/cqeeqJf/93//NIYccwmGHHcb+++9fv33evHlcd9119etf/epXue++++pnThRJlbRoDXXhTPL7DiHmRvWW1t/HKCIiIt2Lbe/96AwmT57sCxcu3Gnb0qVLGTNmTIoi6v4aznbY3ejfj3SE+bOPZnRWKevPfJZhf5pAzT7HMfSc21MdloiIiLQTM1vk7o3OsKYeLBGRNsr0aiJp2fTPy6TEC/Hy9akOSURERFJE92H3cLNnz051CCJdmruT6dXEwn0YmJvJJ15A70pN0y4iItJTqQdLRKQNaiIxsqklmpZNRlqILeE+ZNXsOpOniIiI9AxKsERE2qC6Lko2NXh6DgBVGf3IrdsEnej+VhEREek4SrBERNqgui5Gju1IsGqy+pFGBKq2pDgyERERSQUlWCIibVAV9GBZkGDFeg2M7yhbl8KoREREJFWUYLXSY489hpnxwQcfNFmmuLiY8ePHJ63NDz/8kCOOOIJJkyYxZswYLrroIiD+kOAnn3yyTXVfcMEFDBgwIKnxivREVTURsqmBjF4AWF6QYFVoogsREZGeSAlWK82dO5fp06czd+7cRvdHIpE2txGNRnda/973vscVV1zB4sWLWbp0Kd/97neB5CRY5513Hv/85z/bVIeIQHVNFWkWwzLiPVgZBfEEq7ZUPVgiIiI9Udeapv2pH8C6d5Jb56AJcNwvmi1SXl7OggULeP755znhhBO4/vrrAZg/fz4/+clP6N27Nx988AH//ve/iUQinHnmmbz55puMGzeOu+66i5ycHJ599lmuuuoqIpEIU6ZM4fe//z2ZmZkUFRUxa9Ysnn76aa655hpOP/30+nbXrl3LsGHD6tcnTJhAbW0t1113HVVVVSxYsIAf/vCHHH/88Xz3u9/l3Xffpa6ujtmzZ3PSSSdx55138uijj7J161ZWr17NWWedxU9/+lMAPv/5z1NcXNzs637hhRe47LLLADAzXnzxRXJzc7nmmmt46qmnMDN+/OMfM2vWLObPn89Pf/pTCgsLeeeddzjttNOYMGECv/nNb6iqquKxxx5jn3324e9//zs///nPqa2tpW/fvtx7770MHDhwp3ZPP/10zj77bL785S8D8WTw+OOP56tf/WrrrqlIB6qrqgAgnJENQHafIQBUbF5DRsqiEhERkVRRD1YrPP7448ycOZNRo0bRt29fFi1aVL/vzTff5De/+Q0fffQREB/W9+1vf5ulS5eSn5/P7373O6qrqznvvPO4//77eeedd4hEIvz+97+vr6Nv3768+eabOyVXAFdccQVHHXUUxx13HDfffDOlpaVkZGTws5/9jFmzZrF48WJmzZrFDTfcwFFHHcXrr7/O888/z9VXX01FRfxD3+uvv87DDz/MkiVLePDBB1m4cGGrX/dNN93Eb3/7WxYvXsxLL71EdnY2jzzyCIsXL+btt9/mmWee4eqrr2bt2rUAvP3228yZM4elS5dy991389FHH/H6669z4YUXcuuttwIwffp0Xn31Vd566y1OP/10brzxxl3anTVrFg888AAAtbW1PPvss/XJlkhnU1sTJFiZ8R6swt79qPE0atSDJSIi0iO1ew+Wmc0EfgOEgT+5e/PdRc1poaepvcydO7e+J+f0009n7ty5HHzwwQBMnTqVkSNH1pcdPnw4hx12GABnnXUWt9xyC1/84hcZOXIko0aNAuDcc8/lt7/9LZdffjkQTygac/7553Psscfyz3/+k8cff5w//OEPvP3227uU+/e//828efO46aabAKiurmbFihUAfPGLX6Rv374AfOUrX2HBggVMnjy5Va/7sMMO47/+678488wz+cpXvsKwYcNYsGABZ5xxBuFwmIEDB3L44YfzxhtvkJ+fz5QpUxg8eDAA++yzD8cccwwQ73l7/vnnAVi1ahWzZs1i7dq11NbW7nTutjvuuOO47LLLqKmp4Z///Cef//znyc7OblXMIh2trqYKgLRgiGD/vCxKKMQ0yYWIiEiP1K49WGYWBn4LHAeMBc4ws7Ht2Waybd68meeee44LL7yQoqIifvnLX/LAAw/gwTNuevXqtVN5M2t2vTEN60g0ZMgQLrjgAh5//HHS0tJ49913dynj7jz88MMsXryYxYsXs2LFCsaMGbPH8Wz3gx/8gD/96U9UVVVx2GGHNTvBB0BmZmb9cigUql8PhUL196h997vf5Tvf+Q7vvPMOf/jDH6iurt6lnqysLI444gj+9a9/cf/99zeZgIp0BnXVlQCkBT1Y/XIz2egFWHlJKsMSERGRFGnvIYJTgWXu/qm71wL3ASe1c5tJ9dBDD3H22WezfPlyiouLWblyJSNHjuSll15qtPyKFSt45ZVXAPjb3/7G9OnTGT16NMXFxSxbtgyAu+++m8MPP7zFtv/5z39SV1cHwLp169i0aRNDhw4lLy+PsrKy+nLHHnsst956a33S99Zbb9Xve/rpp9m8eXP9fVDbe9da45NPPmHChAl8//vfZ8qUKXzwwQfMmDGD+++/n2g0SklJCS+++CJTp05tdZ1bt25l6NChAPz1r39tstysWbP4y1/+wksvvcTMmTNbXb9IR4vUxnuw0rPiCVbf3AxKvID0KiVYIiIiPVF7J1hDgZUJ66uCbfXM7CIzW2hmC0tKOt8Hkrlz53LKKafstO3UU09tcjbB0aNH89vf/pYxY8awZcsWLrnkErKysvjLX/7C1772NSZMmEAoFOLiiy9use1///vfjB8/ngMOOIBjjz2WX/7ylwwaNIgjjzyS999/n0mTJnH//ffzk5/8hLq6OiZOnMi4ceP4yU9+Ul/H1KlTOfXUU5k4cSKnnnpq/fDAM844g0MPPZQPP/yQYcOGcccddwAwZ84c5syZA8Cvf/1rxo8fz8SJE0lPT+e4447jlFNOYeLEiRxwwAEcddRR3HjjjQwaNKjV53P27Nl87Wtf4+CDD6Zfv3712xcuXMiFF15Yv37MMcfwwgsv8IUvfIGMDE0VIJ1XrCbeg5WRFR/Gmh4OsS3cm6zaTakMS0RERFLEtvd6tEvlZl8FZrr7hcH62cAh7v6dxspPnjzZG07CsHTp0vrhbrJ77rzzThYuXMhtt92W6lBSRv9+pL09+tDdnPLud4ic+yRpI+M9xPf870V8veZBQtdthFA4xRGKiIhIspnZIndvdGKD9u7BWg0MT1gfFmwTEekWYsEQwe33YAHUZfUjRAwqNqYqLBEREUmR9k6w3gD2M7ORZpYBnA7Ma+c2JXDeeef16N4rkY7gdfEEi7QdM116rwHxhYoNKYhIREREUqldEyx3jwDfAf4FLAUecPf39qCeZIcmPYD+3UhH2JFgJcyimRc8PLt8fQoiEhERkVRq9+dgufuTwJN7enxWVhabNm2ib9++uzXFuPRs7s6mTZvIyspKdSjSzXld8KiB9B09WBmF8YlfakrXkdnYQSIiItJttXuC1VbDhg1j1apVdMYZBqVzy8rKYtiwYakOQ7o5iwQJVtqOZD67zxAAKjevUYIlIiLSw3T6BCs9PZ2RI0emOgwRkcZFdu3B6l3Ym0rPpKZ0XYqCEhERkVRp70kuRES6tVC0mhgG4R3Pa+ufl0mJFxAr0z1YIiIiPY0SLBGRNrBoDXWWAQn3iPbPzaSEQkyzCIqIiPQ4SrBERNogHK2mzna+06pPrww2egHp1XoOloiISE+jBEtEpA3C0RoioZ0TrLRwiLK0PmTXbEpRVCIiIpIqSrBERNogLVZDNJSxy/bqzL70im6FaF0KohIREZFUUYIlItIG6bEaIuFdn7dWl9UvvlChR0yIiIj0JEqwRETaINOriYazd9nuuQPjC+WaSVBERKQnUYIlIrKH6qIxsqghmpazy75Q3gAAvFwzCYqIiPQkSrBERPZQZW2UHGqIpe3ag5VRMBiA6i1rOzosERERSSElWCIie6iqNko21Xj6rj1YvfrGE6wqJVgiIiI9ihIsEZE9VFEbIcdqsIxdE6w+BQVs82xqS9elIDIRERFJlTYlWGb2SzP7wMyWmNmjZlaYsO+HZrbMzD40s2PbHKmISCdTWRMlmxoso9cu+wbkZ1LihcTK1IMlIiLSk7S1B+tpYLy7TwQ+An4IYGZjgdOBccBM4HdmFm5jWyIinUpFTR051BDKbCTBystivfcmrFkERUREepQ2JVju/m93jwSrrwLDguWTgPvcvcbdPwOWAVPb0paISGdTVV1FmsUIN5Jg9c5Jp8R6k1GtWQRFRER6kmTeg3UB8FSwPBRYmbBvVbBtF2Z2kZktNLOFJSV6IKeIdB01lWUApGXl7rLPzChP709u7UZw7+jQREREJEVaTLDM7Bkze7eRn5MSyvwIiAD37m4A7n67u09298n9+/ff3cNFRFKmrqocaDzBAqjOGkC610LVlo4MS0RERFIoraUC7v6F5vab2XnA8cDR7vVf064GhicUGxZsExHpNuqq4wlWRnbjCVY0dyBUAGXrIKdPB0YmIiIiqdLWWQRnAtcAJ7p7ZcKuecDpZpZpZiOB/YDX29KWiEhnE6muACAjO6/R/ZYXfxYW5ZqqXUREpKdosQerBbcBmcDTZgbwqrtf7O7vmdkDwPvEhw5e6u7RNrYlItKpRIIerPSsXSe5AMjsPQSA2tI1ZHRYVCIiIpJKbUqw3H3fZvbdANzQlvpFRDqzWE28B4tGnoMF0KtvfGLVyo2rlGCJiIj0EMmcRVBEpGep2Rb/nVXQ6O6+vQvY6jnUbNEtqCIiIj2FEiwRkT2UVrM1vtBEgrX9YcO+bW0HRiUiIiKppARLRGQPpdVt78EqbHT/gPxM1ntvQhXrOy4oERERSSklWCIieyi9roxa0iE9q9H9fXIyKKE3mVUbOjgyERERSRUlWCIieyitbhtV4cafgQUQChnlGf3pVbsRYrEOjExERERSRQmWiMgeyqjbRk1afrNlqrMHkEYEqjZ3UFQiIiKSSkqwRET2gLuTFS0nkt74Q4a3i+YMjC+UaaILERGRnkAJlojIHthWHSGPCqKZjc8guF2oYHB8oWxdB0QlIiIiqaYES0RkD5RW1lJABd7EFO3bZRQOBaCuVM/CEhER6QmUYImI7IHNFbX0tnJCOX2aLderzxAAKjet6oiwREREJMWUYImI7IGtZWUUWgXh/EHNluvfO59NnkftljUdFJmIiIikkhIsEZE9ULU5PmlFeuHgZsv1z8tkg/cmtk2TXIiIiPQESrBERPZA3dZ4j1ROn6HNlhuYn8V67024Yn1HhCUiIiIplpQEy8yuNDM3s37BupnZLWa2zMyWmNlByWhHRKSzqCuN90hlB/dYNaVvrww20JvMqg0dEZaIiIikWJsTLDMbDhwDrEjYfBywX/BzEfD7trYjItKZbE+wLK/5IYKhkFGe3o9edZsgFu2I0ERERCSFktGDdTNwDeAJ204C7vK4V4FCM2v+U4iISBcSqlhHhDDk9G2xbE32AELEoKKkAyITERGRVGpTgmVmJwGr3f3tBruGAisT1lcF2xqr4yIzW2hmC0tK9OFDRLqGwqqVlGYMhlC4xbLRXsFMg2Wa6EJERKS7S2upgJk9AzQ2D/GPgGuJDw/cY+5+O3A7wOTJk72F4iIiKVdeE2FobA0VuUX0a0V5KxgMG4Cyde0dmoiIiKRYiwmWu3+hse1mNgEYCbxtZgDDgDfNbCqwGhieUHxYsE1EpMtbuamCIlvH+t6fb1X5jML4RBiR0jUt/9EVERGRLm2Phwi6+zvuPsDdi9y9iPgwwIPcfR0wDzgnmE1wGrDV3TU2RkS6hRXLP6GX1ZA9aFSryuf1HULMjarNq9o5MhEREUm19voy9UngS8AyoBI4v53aERHpcKWfvQlA/30PblX5/gW92EgBoS1ryGvPwERERCTlkpZgBb1Y25cduDRZdYuIdCZp6xYTJUTakANaVT7+sOFCBm1TR76IiEh3l5QHDYuI9BSxmNN/23tszNwLMnNbdcyAvEzWe2/CFZrkQkREpLtTgiUishuWrNzIgb6UysFTW31M39xMSigks1qPohAREenulGCJiOyGDxc+T55V0X/izFYfEw4Z5en96VW3GaJ17RidiIiIpJoSLBGR3ZC57EnqSCN3zNG7dVx19oD4Qvn6dohKREREOgslWCIirbS8ZCvTKuezqu9hkF24W8fGegXPa9fDhkVERLo1JVgiIq208N9/Y5BtofBz5+32saH87QmWZhIUERHpzpRgiYi0wtbKGvb/6HY2pg2i96QTd/v4jN5DAYhuXZPs0ERERKQTUYIlItIK/3rg94yzT6mZ/gMI7/4jBPP6DiLiIao2r26H6ERERKSzUIIlItKCJZ+s4LDPbmFd9n4M/fy5e1THgPxelFBI7Rb1YImIiHRnSrBERJpRE4my/v7LGWRbyPvqrRDasz+bA/IzWe+FxLbpHiwREZHuTAmWiEgznvnLbL5Y+yzFYy6m1z6H7nE9A/Ky2OC9CVdoFkEREZHuTAmWiEgT5j/yR45bdSsf9j6cfb728zbV1S83g/X0Jrt6Q5KiExERkc5ICZaISCNeeW4eh779Qz7JGsc+35oLoXCb6ksLhyhP70dWZBtEapIUpYiIiHQ2bU6wzOy7ZvaBmb1nZjcmbP+hmS0zsw/N7Ni2tiMi0lEWL3qFsS9cTEnaIIZf+jhpWb2SUm9tVv/4Qvn6pNQnIiIinc/uzzWcwMyOBE4CDnD3GjMbEGwfC5wOjAOGAM+Y2Sh3j7Y1YBGR9vTxsg8ZOO9MIqEM8i98jKz8fkmr23sNgEqgbD0U7pW0ekVERKTzaGsP1iXAL9y9BsDdt99ccBJwn7vXuPtnwDJgahvbEhFpV6vWroN7vka+VRA940HyB++b1Potf1B8QT1YIiIi3VZbE6xRwAwze83MXjCzKcH2ocDKhHKrgm27MLOLzGyhmS0sKSlpYzgiInumtKycDX/6GkWsYsvxf2bAqCktH7Sb0gsHAxAr00yCIiIi3VWLQwTN7BlgUCO7fhQc3weYBkwBHjCzvXcnAHe/HbgdYPLkyb47x4qIJENdJMqbv/8GR0WX8Mlh/499Jn+5XdrpVTiImBvVm1eT0y4tdA3RmFNeVkbl1g1UbdtEdWU5NVWVxCJVWF01HqnBo7XE3HGHkIUIhQwzC36HsFAYC4exUBrhUJhQOEwonEYonEY4WA6npRMOpxEKh0kLpxFOi+9PSwsTDqeRFk4nFA5DKC0+iYmFg9+hBuvbf1uqT52IiHQBLSZY7v6FpvaZ2SXAI+7uwOtmFgP6AauB4QlFhwXbREQ6FXfnX3f8lOMr/8kHo77F/l+8sN3a6leQyybySd+6rtsmWO7O+k1bWPvJEsrWfkysdCXhbavIrlpLfs168mOlFHgZBVZLQaqD3U1RN6KEiBGq/92UplIxo6nvEZv+fnH362p6X/MpYlPHdExsSZXUXLjzJ9arw8NIu+AJhgzVvZ0inUGbJrkAHgOOBJ43s1FABrARmAf8zcx+RXySi/2A19vYlohI0j33j79x3Jrb+KjvEex/+i/ata3+eZmUeCEDt61t13Y6Snl1HR8tfZstH7+KrX+P3LJlDK5ZzlA2MMh2fIiuIIuN4YFsyxrI2qzRrM7uTSyrD5bTh3BOb9Kz88jIziacnoOlZxHOyCKUlkE4FAJ3HCcajRFzJxpzYrEoHo0Si0WJRSNEoxFi0R3L0ej2/RFikUj8dzSK1//eeTkWixLy+I8RxTyGEYuve4yQxzCPJmwLthPFt3/4dhr5HN7EB/Mme8Ka+SC/G8dYfUjWaKnt2xurMvGYxDzIzWiYgHn9auMpkzdotbm4d9rr3vS+xtpppkCLqdxutLXLPm9hf+ubbaSt5itPXA0RZUbJ/bx/70UMvupJLKQn8IikWlsTrD8Dfzazd4Fa4NygN+s9M3sAeB+IAJd2xRkEI7XVRKIxsrK763fNIj3bBx9/zIELv8/qjJHse9G90M4fTPrnZbLcCxlc3vUeNuzufLZ2I8vfepbI8tco2Pw2+9Z9yEFWDkAdaaxNG0Zp7/Fs7Dea7CHj6LvX/vQetDe9evWml4bXibSbV+4dzKEf38RrD/6SQ2Z9P9XhiPR4bUqw3L0WOKuJfTcAN7Sl/lR7Y+5/M6z4EUoP/znjD/8Kpg8IIt1GZU0dW+67mJFWQ/jsuwll5bZ7m/3zMnnDC8moer/d20qGjVvLWLrweSo/eJ7+G19jXOxD9rYIMYzV6SNYPfBoNoyYwuCx0ynYawJ7hdv6nZ2I7IlDTr+WJb98gQPf/z+WvDiaiZ8/OdUhifRo+t+wGXl7T4Hih5kw/wI+XHAjZQd9i4lfOIuMjIxUhyYibfT0Pb/kpOhCiqdcR9Fe4zukzV4ZYTaH+pBduxlisXbvMdtdtZEYiz5YRsmbf6fvyqeZVPsmM6yGGMaqzH35ZMiZ9Bl/DAPHzWB4VsFON9qKSOqEwmFGXnwfq285mn2e/RbvhdMZd1j7TNYjIi1TgtWM8TNOpmbKMbw+71YGL/0Lo1+/gs2v/5Rl/b9IzoFfY//JR5KWkZXqMDs1dycWc6KxWPy+iZgDHgxAb/y32Z7cAG0tTvBl28f8N1Kw6WNb2WvZWJ3NRNJqDeptvhd19+tt3RG7V2/rOnp3r073+D0H7h783nGPwvZ7GXaU2blsfZngGHdY9tE7fGHFr/k0fzJ7H3dF62NpIzOjOqsfodooVG6C3P4d1nZTymsivP7WYra8+RjDNjzHFF9KmsXYHOrLZ0OOJ3fsFxl+4DHslds31aGKSDPyCvtR9Y3HKbnjePb997ks3nw9k47/tma/bIXtn1XqIhE8GsE9ArFI/P8T31Fmx/878d8W23mbxxfq9yfeLZf4/3fi/8BmJPyfbDtKJF62UOKxCcvxgxNqCw61xNIJ5UMN/y00H8P2eoyE/Zawf0cgO/0zM2v45eFOO5ve13B/F/63a97SnZYdaPLkyb5w4cJUh9GoWCTCey8+SPWi+5hQ/jJZVkclmSzLmkjFgAPJ2+sA+ux9EAOG70daenqHxeXu1NTWUlVZQU1VOTVVFdRWVVBbXUFddSWRmgqitZVEayqJ1lThdZV4XRUEP+FoNWmx6uB3DWnRasJeR8jr6m/mDnuk/gbwsEcJs+MnjcRtMQwPfiC0R4mSSMcoI4f077xKVr8RHdruTb/+JVeV/hwuegGGTOrQtrcr2VbNotdfovrdeYza8iJjrRiAdZlFVO49kyGHnErWXpM7XQ+biLRs68a1rPzDaYyvW8JbBV9knzN/Tf6AYakOa7dEI3VUbN1CedkWqstLqS4vpa6ylLrKbUSqtuHV26C2HCLVWKQGi1QTitYQilYTjtXGP9N4LWmxGtK9lnSvJezb5/6MxT+zJHx2CRMj3brcVAE9yn/XncUJF9/ApOGFqQ6lnpktcvfJje1TD1YrhdLSmHDUGXDUGVRs28Kb/5lH9UfzGVr6BuOX/5HQCocFEPEQG6w329L7UZ7Rj7r0fEjPgcxeRMM5xELpmFmQgMTrjsaiEKmN/6GI1mDRGkKRGkKxGsLRGkKx+B+JtFgN6bFqMryGTK8hw2vJooYsi7In/Wg1pFNNJrWWQQ2Z1FomtaFMopZOrWXgoTAeSsctjIfScIs/L8ZDafF9Ft8WC8pg4eBbjPjXJxZ8jRJfDwXfRIQwC2aXsu2pWPxEuBnuidsbamZ641bnco0UbPLY3ZoTKul1NjwDzR25W9Me79aXKp2j3viXWAnfqzX6hZfVJ/fxL/8a9v4Fv4mfr34Hn8ywDk6uAKzvPlAKbFrWoQnW8pKtvPOff8GHT3BAxcvMtJL40L+8CSwf/UOGTfsqg/rv22HxiEj7KOg3mOyrn+Olu65l2so7qPvdQbwxdBZ7H3spfffav0Nj8ViMyooytm5aR/mWDVSVbqBmWwmR8o1QuRGr2kJ6zRYya0vpFS0lL7aNXK8g22rJB/JbqL/G06mxDGpJp84yqLVMIpZBXSiTaCiDyrQ8YuFMoqFMPHimnYfS4p9ltj/fLlgnlBY8Ay++zy2M1/fi7Ojp2TELZ2O9TTuX337Qzv89NvzMsvNoDGs4h+ROBzf8rLFrT1nb6kncvyMuS9haX3cr2nEafj7ZuR1r5nNDw881+xZOY2B+ZpPlOxv1YCVB2bZSipe+SfWqt4luLiZUtpas6g3kRzaSFasi26vIooZMizRbT62nUWPp1JJBHRnUWfwPRiSUQSSUSSSURTScRTQtCw9nEUvLxtKz8fRsQunZWEYO4YxsQpm9SMvMJi2zF2lZvcjM6kVGdi8ys3uRmZ1LZlYOlp6jb6dFUmDOs+9x0YuHEZlxNRlf+FG7tePuvL98HctemUfOp/9kcu3r9LZyaklnVe9DyJpwIoOnnIzlDWy3GEQktT5e+jalT/yUg8vmEzLno/TRbBs8nayRhzB43wPoM2RfrJWT07g7VZXlbN28gYot66kqLaG2bAPRso145SasajPh6s1k1paSHSklL7qVfC8jy+oarS/qxjbLoyyUT2VaAdXphdRmFBLNKIDMfCwrj1B2PmnZ+WTkFJLZq4DM3EJy8uI/2b3ysVA4iWdLZPc014OlBKuDRGNOLFJLLFqHO8TciXn8D1ZGWoiMzGz9oRDpAZ5YspYJD82gYL9DKTj77qTWHY05i99fyprXH6XPqmeZHF1CptVRbrmsG3g4hQedTL8DvgSZ7T9jooh0Hp99+hFrX7yT3iufYb/Ix6RZDIA6D1NmuVSE86i0XLx+tAlYLEJmrIosj//keDUZzXxRXEouZZZPRbiA6oxCajN6E8vuDdl9Cef2IyO/P1kFA8jtPYC8voPIK+irzz3SpWmIYCcQDhnhjEyg63Rvikjy7TOgFx/5MA5Z/05S6ttUVsXbixZQ9e6TjNj4IgezjIOBkrRBLN9rFgOnnEzB/kewb7jj7g0Vkc5l5N6jGLn3/wD/w5bNm1j50SK2rniP0JbPsKotpNWWkh0tB4/tGJiVlkV5eADRcA7R9F54Ri7h7HxCvfqSltefzPz+5BQOoFfvART0HkBhRgaFqXuJIp2KEiwRkQ6034A8/h6ewBfK74Ktq6Bg924+r66L8t7777Jpyb/IWvkSY2sWc5RtA2B51lg+3Odyhh/6VfoPHU//LjwDk4i0j959+tJ72jEw7ZhUhyLSbSnBEhHpQOGQUTZ0Bqy+i+h78wh/7tvNlt9SVsUnSxex6YOXSV/7BntXvsPBti6+L9Sb9QMPo2r/oxl68PGMKBjcES9BREREmqEES0Skg31u2gxee3B/Js7/Jdn7HgUD9icac9Zu2Mj6T99m6/IlxNa/T+G2Dxkd/ZjJVgXANstnfe8JfDTyGww+8Dh6Dx9Pb/VSiYiIdCpKsEREOtgx4wbxowVXsN+6K8n+3SGU0YuwRxhmNWwfMFhDBusyi1g++HgyRhzC0AmHkz9oP/KVUImIiHRqSrBERDpYKGT89MKv8Y+X9yFj6SP0qV1LemYWmQUDyRm8P4P2nUT+kFGM0AxbIiIiXY4SLBGRFMhKD/PVI6bAEVNSHYqIiIgkUZueNGtmk8zsVTNbbGYLzWxqsN3M7BYzW2ZmS8zsoOSEKyIiIiIi0nm1KcECbgSud/dJwHXBOsBxwH7Bz0XA79vYjoiIiIiISKfX1gTLgfxguQBYEyyfBNzlca8ChWam+YNFRERERKRba+s9WJcD/zKzm4gna58Ltg8FViaUWxVsW9uwAjO7iHgvF0C5mX3YxpiSrR+wMdVBSIfR9e45dK17Dl3rnkXXu+fQte45OuO1HtHUjhYTLDN7BhjUyK4fAUcDV7j7w2Z2GnAH8IXdiczdbwdu351jOpKZLXT3yamOQzqGrnfPoWvdc+ha9yy63j2HrnXP0dWudYsJlrs3mTCZ2V3AZcHqg8CfguXVwPCEosOCbSIiIiIiIt1WW+/BWgMcHiwfBXwcLM8DzglmE5wGbHX3XYYHioiIiIiIdCdtvQfrm8BvzCwNqGbHvVRPAl8ClgGVwPltbCeVOu3wRWkXut49h651z6Fr3bPoevccutY9R5e61ubuqY5BRERERESkW2jrEEEREREREREJKMESERERERFJEiVYzTCzmWb2oZktM7MfpDoeSR4zG25mz5vZ+2b2npldFmzvY2ZPm9nHwe/eqY5VksPMwmb2lpn9I1gfaWavBe/v+80sI9UxSnKYWaGZPWRmH5jZUjM7VO/t7snMrgj+hr9rZnPNLEvv7e7DzP5sZhvM7N2EbY2+l4OJ1W4JrvsSMzsodZHL7mriWv8y+Du+xMweNbPChH0/DK71h2Z2bEqCboYSrCaYWRj4LXAcMBY4w8zGpjYqSaIIcKW7jwWmAZcG1/cHwLPuvh/wbLAu3cNlwNKE9f8Dbnb3fYEtwDdSEpW0h98A/3T3/YEDiF93vbe7GTMbCnwPmOzu44EwcDp6b3cndwIzG2xr6r18HLBf8HMR8PsOilGS4052vdZPA+PdfSLwEfBDgODz2unAuOCY3wWf2zsNJVhNmwosc/dP3b0WuA84KcUxSZK4+1p3fzNYLiP+AWwo8Wv816DYX4GTUxKgJJWZDQO+TPCsPjMz4o+WeCgoomvdTZhZAfB54g++x91r3b0Uvbe7qzQgO5jNOAdYi97b3Ya7vwhsbrC5qffyScBdHvcqUGhmgzskUGmzxq61u//b3SPB6qvEn6sL8Wt9n7vXuPtnxGctn9phwbaCEqymDQVWJqyvCrZJN2NmRcCBwGvAwIRntq0DBqYqLkmqXwPXALFgvS9QmvCHW+/v7mMkUAL8JRgS+icz64Xe292Ou68GbgJWEE+stgKL0Hu7u2vqvazPbd3bBcBTwXKnv9ZKsKRHM7Nc4GHgcnfflrjP488w0HMMujgzOx7Y4O6LUh2LdIg04CDg9+5+IFBBg+GAem93D8G9NycRT6qHAL3YdYiRdGN6L/cMZvYj4rd23JvqWFpLCVbTVgPDE9aHBdukmzCzdOLJ1b3u/kiwef32IQXB7w2pik+S5jDgRDMrJj7U9yji9+gUBsOKQO/v7mQVsMrdXwvWHyKecOm93f18AfjM3UvcvQ54hPj7Xe/t7q2p97I+t3VDZnYecDxwpu94eG+nv9ZKsJr2BrBfMBtRBvGb6ealOCZJkuAenDuApe7+q4Rd84Bzg+Vzgcc7OjZJLnf/obsPc/ci4u/j59z9TOB54KtBMV3rbsLd1wErzWx0sOlo4H303u6OVgDTzCwn+Ju+/Vrrvd29NfVengecE8wmOA3YmjCUULogM5tJfHj/ie5embBrHnC6mWWa2UjiE5u8nooYm2I7kkFpyMy+RPzejTDwZ3e/IbURSbKY2XTgJeAddtyXcy3x+7AeAPYClgOnuXvDG2ylizKzI4Cr3P14M9ubeI9WH+At4Cx3r0lheJIkZjaJ+IQmGcCnwPnEv1DUe7ubMbPrgVnEhw+9BVxI/F4Mvbe7ATObCxwB9APWAz8FHqOR93KQZN9GfJhoJXC+uy9MQdiyB5q41j8EMoFNQbFX3f3ioPyPiN+XFSF+m8dTDetMJSVYIiIiIiIiSaIhgiIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlItLJmFmRmbmZpaU6FukZzOw9Mzsi1XGIiHQHSrBERKTLM7M5ZlYe/NSaWV3C+lOpjq+zc/dx7j4/mXWa2Y1mttLMtpnZcjO7Npn1i4h0VubuqY5BRKRbMbM0d4+04fgi4DMgvS319FRmNhvY193PamRfm65NR+pKsTbGzEYDq9y9wsyGAv8GfuLuj6Q4NBGRdqUeLBGRJDCzYjP7vpktASrMLM3MppnZf8ys1MzeThyCZWbzzex/zez14Bv+x82sTxN1n29mS82szMw+NbNvNdh/kpktDur5xMxmBtsLzOwOM1trZqvN7OdmFm7hdexjZs+Z2SYz22hm95pZYcK+zWZ2ULA+xMxKtr8uMzsxGGpWGry+MQ3Oz1VmtsTMtprZ/WaWtftnevc1cW3czPZNKHOnmf08Yf344JyWBtdwYivbOsLMVpnZtcH5KzazMxP2f9nM3gqu1cogGdy+b/vQ0G+Y2QrguWD7g2a2LjhvL5rZuAZx/87Mngp66142s0Fm9msz22JmH5jZga08R19ozWtsLXf/0N0rEjbFgH2bKi8i0l0owRIRSZ4zgC8DhcBA4Ang50Af4CrgYTPrn1D+HOACYDAQAW5pot4NwPFAPnA+cHNCkjMVuAu4Omj380BxcNydQb37AgcCxwAXtvAaDPhfYAgwBhgOzAZw90+A7wP3mFkO8Bfgr+4+38xGAXOBy4H+wJPA380sI6Hu04CZwEhgInBeowGYTQ8Sm6Z+prfwGhpTf21a6hUKEpI/A98C+gJ/AOaZWWYr2xoE9AOGAucCtwe9OQAVxK97YRDPJWZ2coPjDyd+7o8N1p8C9gMGAG8C9zYofxrw46DNGuCVoFw/4CHgV62Mu1Fm9oPmrkcrji0HVgG9gL+1JRYRka5ACZaISPLc4u4r3b0KOAt40t2fdPeYuz8NLAS+lFD+bnd/N/iW/yfAaY31MLn7E+7+ice9QHyo1Yxg9zeAP7v700E7q939AzMbGLR1ubtXuPsG4Gbg9OZegLsvC+qqcfcS4h/OD0/Y/0dgGfAa8cTwR8GuWcATwbF1wE1ANvC5BudnjbtvBv4OTGoihgXuXtjMz4LmXkMTEq9NSy4C/uDur7l71N3/SjxxmbYb7f0kOIcvEE+0TwNw9/nu/k5wrZYQT0oPb3Ds7OCaVQXH/Nndy9y9hniye4CZFSSUf9TdF7l7NfAoUO3ud7l7FLifeHK9x9z9F81dj5aOBfKAg4C7ga1tiUVEpCtQgiUikjwrE5ZHAF9r8E3/dOJJSWPllwPpxHsddmJmx5nZq8HwvFLiidP2csOBTxqJZURQ39qE9v9AvBekSWY20MzuC4YUbgPuaSSmPwLjgVuDD/0Q7/Favr2Au8eC1zc04bh1CcuVQG5zsSTZypaL1BsBXNng2g0n/hpbY0uDoXHLtx9rZoeY2fPB0MqtwMXsen7rYzWzsJn9wuJDP7exo3cy8Zj1CctVjax35HneRfDFwFtBLNenMhYRkY6gBEtEJHkSZw1aSbyHKvHb/l7BN/rbDU9Y3guoAzYmVhgMS3uYeI/QwKDH4EniQ/m2t7NPI7GsJN7r0i+h/Xx3H9dI2UT/E7yOCe6eT7wnbntbmFku8GvgDmC27bhvbA3xxGR7OQte3+oW2tuFmc2wHTMANvYzo+VadtFwRqdKICdhfVDC8krghgbXLsfd57ayrd5m1ithfS/i5wfiQ+TmAcPdvQCYQ8L5bSTWrwMnAV8ACoCiYHvDY9pNcD9Zk9djN6pKo/F/qyIi3YoSLBGR9nEPcIKZHRv0QmQFEyAMSyhzlpmNDe5n+hnwUDCsK1EGkAmUABEzO474vVTb3QGcb2ZHm1nIzIaa2f7uvpb4UML/Z2b5wb59zKzhcLSG8oByYKvFZ367usH+3wAL3f1C4kPf5gTbHwC+HMSRDlxJPMH7T0snqiF3f8ndc5v5eWl362zEYuDrwbWZyc7D9P4IXBz0NpmZ9bL45BR5UD+xxJ0t1H+9mWUEyeDxwIPB9jxgs7tXB/fPfb2FevKIn8dNxBPC/9mN15gU7v4/zV2Pxo4J/r19y8x6B+dwKnAp8GzHRi8i0vGUYImItAN3X0m85+Fa4snRSuLJSuLf3buJT0SxDsgCvtdIPWXB9geALcQ/kM9L2P86wcQXxO9veYEdPUnnEE/Q3g+OfYidhyg25nri98tsJZ5A1U+pbWYnEZ+k4pJg038BB5nZme7+IfHerluJ98KdAJzg7rUttJcqlxGPsRQ4E3hs+w53Xwh8E7iN+Hlbxs4TcgwHXm6m7nXBcWuIT0hxsbt/EOz7NvAzMysDriN+XZtzF/EhhquJX8dXW3phncgpxIevlhH/wuHW4EdEpFvTc7BERFLAzOYD97j7n1Idi7ReMCvi28DEYDKPhvuPIH5dhzXcJyIiPUNaqgMQERHpKoIeuTEtFhQRkR5LQwRFRHoYM5vTxIQFc1o+WroiM9urmYkq9kp1fCIi3YmGCIqIiIiIiCSJerBERERERESSpFPdg9WvXz8vKipKdRgiIiIiIiJNWrRo0UZ379/Yvk6VYBUVFbFw4cJUhyEiIiIiItIkM1ve1D4NERQREREREUkSJVgiIiIiIiJJogRLRKQFsZgTjWnGVREREWlZp7oHqzF1dXWsWrWK6urqVIciXUxWVhbDhg0jPT091aFIF3fD429S/NE7zLnqHNLD+l5KREREmtbpE6xVq1aRl5dHUVERZpbqcKSLcHc2bdrEqlWrGDlyZKrDkS7M3Rm86Jf8JO0pPvhgEvuPm5TqkERERKQT6/RfxVZXV9O3b18lV7JbzIy+ffuq51ParKI2yr62BoDat+amOBoRERHp7Dp9ggUouZI9on83kgxbKmoJEwUgb8ObKY5GREREOrsukWCJiKRKaWUdw60EgF5Vq1McjYiIiHR2SrBawcy48sor69dvuukmZs+enbqAErz66qsccsghTJo0iTFjxtTHNX/+fP7zn//scb3Lly/noIMOYtKkSYwbN445c+YkKWKRrqW0ooqhthGA3nXrIRZNcUQiIiLSmXX6SS46g8zMTB555BF++MMf0q9fv6TV6+64O6HQnue55557Lg888AAHHHAA0WiUDz/8EIgnWLm5uXzuc5/bo3oHDx7MK6+8QmZmJuXl5YwfP54TTzyRIUOG7HGsIl1RxdYS0i1KcdpIiiKfwbY1UDg81WGJiIhIJ6UerFZIS0vjoosu4uabb95lX0lJCaeeeipTpkxhypQpvPzyywDMnj2bm266qb7c+PHjKS4upri4mNGjR3POOecwfvx4Vq5cydVXX8348eOZMGEC999/PxBPkI444gi++tWvsv/++3PmmWfivutzeDZs2MDgwYMBCIfDjB07luLiYubMmcPNN9/MpEmTeOmll5qN8+yzz+bQQw9lv/32449//CMAGRkZZGZmAlBTU0MsFmv03Nxyyy2MHTuWiRMncvrppwOwefNmTj75ZCZOnMi0adNYsmRJfVvnnnsuM2bMYMSIETzyyCNcc801TJgwgZkzZ1JXVwfAz372M6ZMmcL48eO56KKLdnndsViMoqIiSktL67ftt99+rF+/vrnLKLJHqsq2ArAlbxQAkU2fpTIcERER6eTa3INlZsOBu4CBgAO3u/tvzKwPcD9QBBQDp7n7lra0df3f3+P9NdvaFnADY4fk89MTxrVY7tJLL2XixIlcc801O22/7LLLuOKKK5g+fTorVqzg2GOPZenSpc3W9fHHH/PXv/6VadOm8fDDD7N48WLefvttNm7cyJQpU/j85z8PwFtvvcV7773HkCFDOOyww3j55ZeZPn36TnVdccUVjB49miOOOIKZM2dy7rnnUlRUxMUXX0xubi5XXXUVAF//+tebjHPJkiW8+uqrVFRUcOCBB/LlL3+ZIUOGsHLlSr785S+zbNkyfvnLXzbae/WLX/yCzz77jMzMzPqE56c//SkHHnggjz32GM899xznnHMOixcvBuCTTz7h+eef5/333+fQQw/l4Ycf5sYbb+SUU07hiSee4OSTT+Y73/kO1113HQBnn302//jHPzjhhBPq2wyFQpx00kk8+uijnH/++bz22muMGDGCgQMHtngdRXZXpKYSgGjh3rAFyjaupPc+KQ5KREREOq1k9GBFgCvdfSwwDbjUzMYCPwCedff9gGeD9S4rPz+fc845h1tuuWWn7c888wzf+c53mDRpEieeeCLbtm2jvLy82bpGjBjBtGnTAFiwYAFnnHEG4XCYgQMHcvjhh/PGG28AMHXqVIYNG0YoFGLSpEkUFxfvUtd1113HwoULOeaYY/jb3/7GzJkzG22zuThP+v/t3Xt8VdW99/vPb91zJeTCNShYFRHCRcOlIhVovbVWqlhxH7UKu/q02nbrbrt3bdVt7fF5rD2v9jytth77WLVKvbZVu7XepUpbURQEFFFUrgYJCQnksu7j/LEWIYEkJGQlKyTf9+sVsuacY475W5nMZP7WGHOMBQvIycmhtLSUefPm8frrrwMwZswY1qxZw8aNG7nvvvvabSGaPHkyF198MQ888AA+n6/lPV166aUAzJ8/n5qaGvbsSSXGZ599Nn6/n4qKChKJREu8FRUVLe/v5ZdfZubMmVRUVPDSSy/xzjvvHHTcRYsWtbT2PfTQQyxatKjTn7nI4XLRRgD8ZccA0FSjgS5ERESkYz1uwXLOVQFV6dd7zWw9MBpYAMxNF7sPWAb8Z0+O1ZWWpt50zTXXcNJJJ7F48eKWdclkktdee41QKNSmrM/na9OtrvV8THl5eV063r4uepDq/hePx9st95nPfIZvfvObXHHFFZSVlVFTU3NQmY7ihIOHMz9wedSoUUyaNIlXX32VCy64oM22p556ildeeYW//OUv3HLLLaxdu7ZL78nj8eD3+1uO5fF4iMfjhMNhrrrqKlauXMmYMWO46aab2p3L6rOf/SwbN26kurqaxx9/nOuvv77T44ocLhdNtWDll5YTdn6idVVZjkhERET6s4w+g2VmY4FpwApgeDr5AthBqgthe/tcaWYrzWxldXV1JsPJuOLiYi688ELuvvvulnVnnHEGv/rVr1qW93WFGzt2LG+9lZoz56233uLjj9t/bmPOnDk8/PDDJBIJqqureeWVV5gxY0aXY3rqqadanlH64IMP8Hq9FBUVUVBQwN69ew8ZJ8ATTzxBOBympqaGZcuWMX36dLZt20ZzczMAu3fvZvny5YwfP77NsZPJJFu3bmXevHn89Kc/pb6+noaGBubMmcPSpUuB1LNkpaWlFBYWdun97EumSktLaWho4LHHHmu3nJlx3nnn8e///u9MmDCBkpKSLtUv0l37EqyhQ4rY6Ypwe/Wsn4iIiHQsYwmWmeUDfwSucc61eVDKpTKAg0doSG27yzlX6ZyrLCsry1Q4vea73/0uu3btaln+5S9/ycqVK5k8eTInnnhiy3DmCxcupLa2lokTJ3L77bdz/PHHt1vfeeedx+TJk5kyZQrz58/ntttuY8SIEV2O5/7772f8+PFMnTqVSy+9lKVLl+L1evnyl7/Mn//855ZBLjqKE1Ld/ObNm8esWbO44YYbGDVqFOvXr2fmzJlMmTKF0047je9973tUVFQA8PWvf52VK1eSSCS45JJLqKioYNq0aXznO9+hqKiIm266iTfffJPJkyfzgx/8gPvuu6/L76eoqIgrrriCSZMmceaZZzJ9+vSWbXfeeWebuBctWsQDDzyg7oHSqyyWSrCGDCmimiK8TTuzHJGIiIj0Z9beyHTdrsTMD/w38Kxz7ufpdRuAuc65KjMbCSxzzo3vrJ7Kykq3cuXKNuvWr1/PhAkTehyjtO+mm25qMxjGQKP/P9JTD9/1v1j0ya3wb2/z8i+vZEJgJyOuW53tsERERCSLzOxN51xle9t63IJlqYdo7gbW70uu0p4ELku/vgx4oqfHEhHpa554qqss/jwaA6Xkx3Z1voOIiIgMapmYaHg2cCmw1sxWp9f9ELgVeMTM/hXYDFyYgWNJht10003ZDkGkX/PEU10ECeQSDZWSH9kL8Qj4gp3vKCIiIoNSJkYRXA5YB5s/39P6RUSyybuvBcuXQzJvONQDDTuhaExW4xIREZH+KaOjCIqIDDTeRDMRguDxYIWpwVCTGklQREREOqAES0SkE75kmIgnNX9coDA1wmdDzbZshiQiIiL9mBIsEZFO+BJhYpZ63iq3tByAptpPshmSiIiI9GNKsLro8ccfx8x47733OiyzadMmJk2alLFjbtiwgblz5zJ16lQmTJjAlVdeCaQmCX766acPu95wOMyMGTOYMmUKEydO5L/+678yFbLIgBNINhP15gAwpHQkAJHdSrBERESkfUqwuujBBx/k1FNP5cEHH2x3ezwe7/ExEolEm+XvfOc7XHvttaxevZr169fz7W9/G+h5ghUMBnnppZd4++23Wb16Nc888wyvvfZaj2IXGah8yQhxT6oFq7QwnxpXQGKPJhsWERGR9inB6oKGhgaWL1/O3XffzUMPPdSyftmyZcyZM4dzzz2XE088EUglWhdffDETJkzgggsuoKkpNcTziy++yLRp06ioqGDJkiVEIhEAxo4dy3/+539y0kkn8eijj7Y5blVVFeXl5S3LFRUVRKNRbrzxRh5++GGmTp3Kww8/TGNjI0uWLGHGjBlMmzaNJ55ITTl27733smDBAubOnctxxx3Hj3/8YwDMjPz8fABisRixWIzUdGZtPfroo0yaNIkpU6bwuc99Dki1fi1evJiKigqmTZvGyy+/3HKsr3zlK5x++umMHTuW22+/nZ///OdMmzaNWbNmUVtbC8Bvf/tbpk+fzpQpU1i4cGHLz6e1WbNm8c4777Qsz507lwMnoBbpKz4XJZlOsMoKguxyQ7BGJVgiIiLSvkzMg9V3/voD2LE2s3WOqICzb+20yBNPPMFZZ53F8ccfT0lJCW+++SYnn3wyAG+99Rbr1q1j3LhxbNq0iQ0bNnD33Xcze/ZslixZwq9//Wu+9a1vcfnll/Piiy9y/PHH87WvfY3f/OY3XHPNNQCUlJTw1ltvHXTca6+9lvnz53PKKadwxhlnsHjxYoqKirj55ptZuXIlt99+OwA//OEPmT9/Pr/73e+oq6tjxowZfOELXwDg9ddfZ926deTm5jJ9+nS+9KUvUVlZSSKR4OSTT2bjxo1cffXVzJw586Dj33zzzTz77LOMHj2auro6AO644w7MjLVr1/Lee+9xxhln8P777wOwbt06Vq1aRTgc5thjj+WnP/0pq1at4tprr+X3v/8911xzDeeffz5XXHEFANdffz133313S8vcPosWLeKRRx7hxz/+MVVVVVRVVVFZ2e5E2SK9zp+MkvCmPpDIC/qotSLKm6uzHJWIiIj0V2rB6oIHH3yQiy66CICLLrqoTTfBGTNmMG7cuJblMWPGMHv2bAAuueQSli9fzoYNGxg3bhzHH388AJdddhmvvPJKyz6LFi1q97iLFy9m/fr1fPWrX2XZsmXMmjWrpeWrteeee45bb72VqVOnMnfuXMLhMFu2bAHg9NNPp6SkhJycHM4//3yWL18OgNfrZfXq1Wzbtq0lCTvQ7Nmzufzyy/ntb3/b0n1x+fLlXHLJJQCccMIJHH300S0J1rx58ygoKKCsrIwhQ4bw5S9/GUi1vG3atAlIJWFz5syhoqKCpUuXtmmp2ufCCy/kscceA+CRRx7hggsuaPfnI9IXfC6G8+6fVLjBV0xOtCaLEYmIiEh/dmS1YB2ipak31NbW8tJLL7F27VrMjEQigZnxs5/9DIC8vLw25Q/satde17sDHVhHa6NGjWLJkiUsWbKESZMmtZsIOef44x//yPjx49usX7FixSHjKSoqYt68eTzzzDMHDdBx5513smLFCp566ilOPvlk3nzzzU7fRzC4/ybU4/G0LHs8npZn1C6//HIef/xxpkyZwr333suyZcsOqmf06NGUlJSwZs0aHn74Ye68885OjyvSWxJJR4AYyVYJVnOwlILmFeAcdOH6FhERkcFFLViH8Nhjj3HppZeyefNmNm3axNatWxk3bhyvvvpqu+W3bNnCP//5TwD+8Ic/cOqppzJ+/Hg2bdrExo0bAbj//vs57bTTDnnsZ555hlgsBsCOHTuoqalh9OjRFBQUsHfv3pZyZ555Jr/61a9wzgGwatWqlm3PP/88tbW1NDc38/jjjzN79myqq6tbuvw1Nzfz/PPPc8IJJxx0/A8//JCZM2dy8803U1ZWxtatW5kzZw5Lly4F4P3332fLli0HJXad2bt3LyNHjiQWi7XU055FixZx2223UV9fz+TJk7tcv0gmReNJgkTBF2pZF88pJegiEG3IYmQiIiLSXynBOoQHH3yQ8847r826hQsXdjia4Pjx47njjjuYMGECu3fv5pvf/CahUIh77rmHr371q1RUVODxePjGN75xyGM/99xzLYNMnHnmmfzsZz9jxIgRzJs3j3fffbdlkIsbbriBWCzG5MmTmThxIjfccENLHTNmzGDhwoVMnjyZhQsXUllZSVVVFfPmzWPy5MlMnz6d008/nXPOOQeAG2+8kSeffBKA73//+1RUVDBp0iROOeUUpkyZwlVXXUUymaSiooJFixZx7733tmm5OpSf/OQnzJw5k9mzZ7dJ6p588kluvPHGluULLriAhx56iAsvvLDLdYtkWjiWIGgxnDfQss7lDUu9aNBAFyIiInIw29fq0R9UVla6A0eLW79+PRMmTMhSREe2e++9t81gGIOR/v9IT+yoD+P/+bHUHP1Fjl9yFwCPP3Y/X1n3LaJfe5rAMbOzHKGIiIhkg5m96ZxrdxS2Xm/BMrOzzGyDmW00sx/09vFERDIlHEsQJIb59rfShopGANBQsz1bYYmIiEg/1qsJlpl5gTuAs4ETgX8xsxN785iy3+WXXz6oW69EeioST6YTrP3PYOWVjAKgqbYqW2GJiIhIP9bbLVgzgI3OuY+cc1HgIWBBdyvpT90Y5cih/zfSU5FoFL8l8AT2J1hDSkaQcEa0bkcWIxMREZH+qrcTrNHA1lbL29LrWpjZlWa20sxWVlcfPHlnKBSipqZGN8vSLc45ampqCIVChy4s0oFoJAzQpgWrbEgutRSSbPg0W2GJiIhIP5b1ebCcc3cBd0FqkIsDt5eXl7Nt2zbaS75EOhMKhSgvL892GHIEi0WaAPC2asEqyQuy0RURatQogiIiInKw3k6wtgNjWi2Xp9d1md/vZ9y4cRkNSkSkK2KRZgC8/v0JVsDnoc5TxJhwTbbCEhERkX6st7sIvgEcZ2bjzCwAXAQ82cvHFBHJiHg01UXQG8hps77RX0xudFc2QhIREZF+rldbsJxzcTP7FvAs4AV+55x7pzePKSKSKfF2uggCRIKlFDTsBufALBuhiYiISD/V689gOeeeBp7u7eOIiGRaIhoBwBds24IVzy0j0BCDcD3kFGUhMhEREemven2iYRGRI1UilnoGy3dAF0HyhwHgGjTQhYiIiLSlBEtEpAPJWOoZrMABLVi+wuEANO/+pM9jEhERkf5NCZaISAeS0XQL1gEJVmjoKAD27urWoKgiIiIyCCjBEhHpgIunRxH0tx3kIr8kNb9auFYJloiIiLSlBEtEpAMuPUw7gbw264eWDCPs/MTr1UVQRERE2lKCJSLSAYunhmnH17YFq6wwxA5XjO2pykJUIiIi0p8pwRIR6YClRxHE3/YZrKIcPzsZir9pRxaiEhERkf5MCZaISAc8iX0JVm7b9R5jt6+M3LCGaRcREZG2lGCJiHTAEw+TxMAXPGhbY6CMwlg1OJeFyERERKS/UoIlItIBTyJMhCCYHbQtkjMcPzFo3p2FyERERKS/UoIlItIBbyJMzHNw6xVAIn9k6sUejSQoIiIi+ynBEhHpgC8RJmrtJ1jeIanJhhP1mgtLRERE9utRgmVmPzOz98xsjZn92cyKWm27zsw2mtkGMzuzx5GKiPQxf7KZmCfU7rac0jEA7K3e2pchiYiISD/X0xas54FJzrnJwPvAdQBmdiJwETAROAv4tZl5e3gsEZE+5U9GOkywioaVA9C0SwmWiIiI7NejBMs595xzLp5efA0oT79eADzknIs45z4GNgIzenIsEZG+5ktGSHjbT7BGFBdS7QqJ1amLoIiIiOyXyWewlgB/Tb8eDbT+WHdbet1BzOxKM1tpZiurq6szGI6ISM/4k2GSvvYTrJFDcvjUFWN7q/o4KhEREenPDplgmdkLZrauna8Frcr8CIgDS7sbgHPuLudcpXOusqysrLu7i4j0imTSEXQRXAcJVmHIxy4rJtD0aR9HJiIiIv2Z71AFnHNf6Gy7mV0OnAN83rmWGTe3A2NaFStPrxMROSI0xxKEiBD35ba73czYGygjL/JhH0cmIiIi/VlPRxE8C/gP4FznXFOrTU8CF5lZ0MzGAccBr/fkWCIifakxGifHohDI6bBMJGc4Bcl6iEf6MDIRERHpz3r6DNbtQAHwvJmtNrM7AZxz7wCPAO8CzwBXO+cSPTyWiEifaYokyCWCx99+CxZAct9kw3oOS0RERNIO2UWwM865YzvZdgtwS0/qFxHJloZwlKNopjo0pMMy3qLR8AnE67bhGzq274ITERGRfiuTowiKiAwYkcZ6PObw5HScYIVKUo+a7vl0S1+FJSIiIv2cEiwRkXZEGusA8HaSYBUOPxqAxl2b+yIkEREROQIowRIRaUcsnWD58oo6LDO8bBh7XA6x2m19E5SIiIj0e0qwRETakWiqByDQSYI1YkiIKleC7dEsFCIiIpKiBEtEpB3x5joAAnlDOyxTGPJTbSUEmzSKoIiIiKQowRIRaUci3UUwt6DjBAtgT2A4eZFP+yAiERERORIowRIRaUcynOoi6Mst6rRcc84IhiR2a7JhERERAZRgiYi0Kxnek3oRKuy0XKIgPdnwnk96OSIRERE5EijBEhFph4XrieEDX6jTct6i1FxYsd0aSVBERESUYImItCsUrWWPdyiYdVoup3TfZMOb+iAqERER6e+UYImItCM/Vkujv/iQ5QqGjQWgadeWXo5IREREjgRKsEREDuCcozBRSzhYesiyw0pKqHe5xOvURVBEREQylGCZ2XfNzJlZaXrZzOyXZrbRzNaY2UmZOI6ISF/Y0xynlDqSecMPWXZEYYhPXAkeTTYsIiIiZCDBMrMxwBlA6/4xZwPHpb+uBH7T0+OIiPSVqroGSqjHU3joBKswx8enVkpAkw2LiIgImWnB+gXwH4BrtW4B8HuX8hpQZGYjM3AsEZFeV7OzCq85QkWH/rVlZuzxl5GvyYZFRESEHiZYZrYA2O6ce/uATaOBra2Wt6XXtVfHlWa20sxWVldX9yQcEZGMaNi5GYDc0vIulW8OjaAgUQ+xcG+GJSIiIkcA36EKmNkLwIh2Nv0I+CGp7oGHzTl3F3AXQGVlpTtEcRGRXhff9SEAQ0Yd36XysYJR0ADs2Q4ln+nFyERERKS/O2SC5Zz7QnvrzawCGAe8bal5YsqBt8xsBrAdGNOqeHl6nYhIv2e7PwbAX3pMl8p7CkdDFbj6bZgSLBERkUHtsLsIOufWOueGOefGOufGkuoGeJJzbgfwJPC19GiCs4B655yeABeRI0Jgz2Z2e4ohkNel8v7iowBo3LX1ECVFRERkoDtkC9Zhehr4IrARaAIW99JxREQyyjlHcXgLewrGMLSL++SXpRKspurN5PdeaCIiInIEyFiClW7F2vfaAVdnqm4Rkb5SVdfEcWzhk+Jzu7zPsJIial0+sd1qwRIRERnsMjLRsIjIQLFl47sUWDP+0VO7vM/wwhA7XAns+aT3AhMREZEjghIsEZFWdn7wOgAjT5jR5X2GFYTY4Ybia9zRW2GJiIjIEUIJlohIK77trxMhSM7oyV3eJ+DzUO8rITeiufxEREQGOyVYIiJpsUSSsQ2r2V4wCXyBbu3bFBxGXnw3JGK9FJ2IiIgcCZRgiYikrXt/IyewmfiY2d3eN543HA8OGj7thchERETkSKEES0Qk7ZMVf8JjjtEzz+/2vsn8kakXezTln4iIyGCmBEtEhNT8VyVbn6PaO4K8o6Z2e39f0WgAEvUaSVBERGQwU4IlIgJ8uG0H0+JvU11+Oph1e/9QcSrBaqzRXFgiIiKDmRIsERHg/b89RNDijJz11cPav7BkBFHnJVy7PcORiYiIyJFECZaIDHrJpGP4h4/xqW8UQ0/43GHVMawwh50MJVGnBEtERGQwU4IlIoPeW2tWc7Jbx+7jLjis7oEAZQVBPnVDsQZNNiwiIjKYKcESkUGvZvm9JDHGfuHrh13HvgQr0KRh2kVERAazHidYZvZtM3vPzN4xs9tarb/OzDaa2QYzO7OnxxER6Q0N4SiTqp9iY/50QiVHH3Y9QZ+XOm8JuZHqDEYnIiIiRxpfT3Y2s3nAAmCKcy5iZsPS608ELgImAqOAF8zseOdcoqcBi4hk0splTzDXqvno5Bt6XFdTaBihcCNEGiCYn4Ho+pd4PEFt3W6adu8gUr+TSHMDLtaMJaN44lFwSZx5cR4fzrx4fH58Pj++QBBvIIQvkIs/EMQfzCEQzCUQyiEQzMHjD4G3R3+ORERE+o2e/kX7JnCrcy4C4JzbmV6/AHgovf5jM9sIzAD+2cPjiYhklOftP7CXPMademGP64rlDIcwsHcHBI/teXBZ0BSJ8eEH66n/aCXx6g/w1X1MQfM2yuI7KHZ1DLNYrxw37jzEzE8UPzHzEyNA3OMnZgESFiDuCRCzAHHzYc4BYCTTrx2pJ+ccOIeR+gKHuX2v09uh1bZ21rWsal0PLfu3rS8z9kV/kG49Dnh4zw52KY7e1OqZx32vDv3TtU6WOqjDOl3s0pbul+p6wcP/yaf2rAuVc8LVD5MT9B92TSKSOT1NsI4H5pjZLaRuK77nnHsDGA281qrctvQ6EZF+Y+uOXZzc9Hc2jfoiE/05Pa7PFYyE3cDeT6C0/ydYzjk+/mQnm1e/RPKjVympW8O4+IdUWFNLmRobSm1gFDvyT2J73jA8+aV48srw5pfizynAF8gh6Q3gvEHweLBkAnNJSMZIxGPEY1HisSiJaDPJWIRErBkXC+NiEVw89UU8DIkoFg9jiSiWiOBJRPEmI3iSUbzJKL5ElCB7ySfWkvrQkgJZ+j7TWqVFlrp5N8PhSd1w2759WqVk6XUptj/JsH0pW3of219m/37d+WG3v7qjZK07KZx1s3x7pTt9N12uvJtRtFPccN2opW3JffUd+F66U2OHR+piFV3/Ue0veTjRtY4n3+1l2p4XWfGPZ5k575zDqE1EMu2QCZaZvQCMaGfTj9L7FwOzgOnAI2Z2THcCMLMrgSsBjjrqqO7sKiLSI2tefpgvWYThp1yckfq8RaNgC7g9n2SjLaBLahvCrF3xItF3n2J4zRuc6DZyjCWJ42Vr4Fg2lZ2Nf/QUij8znbJjKigJFVCS7aBFpEOx5r003foZWPMQKMES6RcOmWA5577Q0TYz+ybwJ+ecA143syRQCmwHxrQqWp5e1179dwF3AVRWVma234WISAeSSUfBxifY7SmmdOL8jNQZGppqqA/Xbqfn7WGZs21XHe++8mfsg2eY2vRPTrN64njZkjOBDaP/leKJn2fEiXMYNwCfGxMZ6Pw5BbxdNJcJtS/S1NRAbq6uY5Fs62kXwceBecDLZnY8EAB2AU8CfzCzn5Ma5OI44PUeHktEJGPe/mAzM+NvsvUz/8JQjzcjdQ4tLmGvyyFeuy3rCVZNQ4S//eMf2Kr7mdP0PGfYHhrJZVvZbJomncOY6Qs4Jm9olqMUkUzIm3EJhc8/y+vP3sOM876d7XBEBr2eJli/A35nZuuAKHBZujXrHTN7BHgXiANXH4kjCCbiqb7+Pp9GtxIZaDb/4xGmWZxRcy7NWJ3DCoLsdEUMqa/KWJ3dEU8k+ds7W/n4laVM3vkE53veS7VUlX2O5KzFDJt6NuN9gazEJiK954TPnsNHL45l+Nr/j+S5V+HxZuZDIxE5PD3KHJxzUeCSDrbdAtzSk/qz7Y1Hb6Nk459InPk/OWGGpvISGSiSSceILf9NtW8kZWNnZKzeYQVBqlwxRXv7NsHaUR/mhZdfILjmAc5M/I3PWxO1OeVUT72OslMXc0zB8D6NR0T6lnk81Ey7mulvfp/VLyxl6plfy3ZIIoOammY6ERxaTmGiluFPX8j6FybRNO3rTJr/LwSDoWyHJiI9sGbDB1Qm1/LRcV+nrLujwXViWGGIVQxlcvOHGauzI8mk4+/vfsTHy+5n6s4nuMTzEVH81Bx9Jnmn/Q+Kj5nTZghsERnYpp11OZve+t8Me+3/Jvq5hQRy8rIdksigpQSrE9POuoymU7/Cisd/wZiNS5mw4hrqVlzP2uJ5+CsWMH7GGYTyhmQ7zKxzySQumSCZiJFMJkkmkzjnUq+dI5l0JJ3DpZdJz1uzf5zZfYMm71ufWtuVuWasgxvIjm4rDy5u6X+7cCPa7ZvVTsq3t6lb9XcvFvN0vXy358I5IO7O987gzzDNkfqvlHSpYcdbf0+69P89B0n2r9vx9weYaklGnpq57oEA+UEfuz0l5EZeg2QSPJ6M1g9QvSfM3156mtDaB5gXX84ci1Cd9xlqp/+E4lmXMDK3OOPHFJH+z+cPsHvu/2Lay5ey8sHrqVzyi2yHdGRJJkkm4sQSqSkmYvEEyXiceDxGIhGHZAJzidSE6q12c6796QLa09m2/X9Kre0623+H0uaex1rdv5i17N/mfqaDMm2PYfvXtKmn1d+v9D2E2QFHsP1l2t6PHRzDQesPWuxonzRvgFAoB2837meySQnWIeTmD2HmJTeRiF/P2lceo3nVo0yseZ68v/2F2DIvG/zHsXtoBcFRE8kbM5niMSdQUjYCy9BD8x1JJJKEmxuJNDcSDjcSCzcSaW4mFm4kFmkiEW0iEUl/RZtx6blniDdDLIzFm/HEw/iSEXzJfd8j+F0En4vhSSbwkMDjUt+9LoGX1Gtf+rWPZOq7JTEg87eSIr3jGGCz92iOPmpyxuuO543A2xSH5lrIK81Inc453nh3I5uX3cOUnU9wgW0jbCF2jj2HwPxvUHbUdLVWiQjTTjuXf648i5mb7+GD5ady3KkLsx1SRiQSSRr27KaxrprmhjrCDXVEm+qJNdWTaN5LMrwHF9mLN9aAL9aAJ96MJ7FvHr0IvmQ0dZ/jogRcjABRAsQIuCheknhJ4jGHBwhm+81Ku34Su4Qvf+MWpo4pynYoXaIEq4u8Ph8V8y+C+RcRbmpgzRvPsWf9Mkpr3qBi55PkVT8Kb6fKRp2X3Z5i6rzFRH15JLy5JH05xL05JD2+1LSVrW6GXDKBJWOpXwaJaJtfCF4Xw5+M4ncRAi5CgChBFyVIjDxzHE4HgCg+wgSJWoCoBYm1fA8S9uST8PhJmh/n8YL5Ut89Pmj57sOl17t9r82b2m5eUh+UWOoLA/Ok5/tMT+i5b7LPVhN8pj7U2bce9n+S0XE71oHrLf3RUHcneuxq+a60qB1Ydzd26Gb57lSd7Fbx7r3PbsbSjR26Eodz6blkaZlTFsMOWGf7X7faVlJxRneD71rcQ4+GJqDmwx4nWLv2NvPPl54gd+1STo39kxkWY3v+ieycfhvDPvt/cVSwIDNBi8iAMfHKu/jwF6cx6oWr+DiYx7jpZ2U7pIMkk47aut3UVm2mqWYrsd3bSTTsxDXW4GmuxRepIxTbTW5iDwXJeoa4BoZYgkP1GWokRCO5Lfc0MU+AhCdAzJdHxFtM0hMk4QmQ8AZJeoIkvQHweFMfint8YF7M68XS9zye9D1ParsHZ16ceei8Jaa9vhfWybb9fxkN13L74NLL+/8U7v9b3vYWw7VabvX3vtU9jrVZdgeVSa1qtaXNAVzLKmtv3wPqbPu3u9X6Tu+LOtp/v4lFlYwacuQ8oqME6zCEcvOZfNr5cNr5AMTjcT76eAN7Nq8hsutjEvVVeBp3kBfZhT/eRG60hmAyTIgIPhIccF2AQQw/UQsQswAJ8xP3BIhbkIg3j6QnQNIbJOkL4Xw5OF8IfCHMn4MFcvD4c/AGcvAGcvGFcvEGc/EHcwmEcgnk5BEM5RHMySMYysX8OQQ8XjSOmEjvsJFTYTvEtr2F/6iZ3d4/nkjy+qpV1Pz9PqbU/pUv204aLJ+tx1zImM9/g9HlmW91E5GBo7BgCHsv/xM77zmXUf99Cas3fY8pC7/f6z1r9mkKR6jesY26nZtp3rWNWN12XP0n+Js+JTf8KYXxXZQkaym1Jg78CCruPNRbIQ2eApp8RdTnHk1NsJhkzlCSOcV4cobiyx1CIHcIwbwhhPKLyC0oIq+wiFDuEPI8nsP64Fkk0+zAvqPZVFlZ6VauXJntMEREDtsz66o46dFZeI6dT+ml93RpH+cc6z7axkevPszozX+m0q0jibG5sJKcGZcyYuaF4M/2zFoiciSpqtrOJ/dcxsnRN9jsG0vj1Cs59rSLCBSUHF6FzrG3vpaaHZvZs3MrTTXbiNdtx9NQRaDpU/Kj1QxN7KLE1eGztj0n4s7Dbs9Q6n2lNIWGEcsdAYUj8ReNJlRcTm5pOQWl5RQOKcZ64dlVkd5gZm865yrb3aYES0Qkc2obo6y49Yt8Ludj8n7wfqrrbDucc6z/eCub/vEYQz5+msr4KoIWZ6dvFHXjv8rY+f9KoOToPo5eRAaSRCLJ8j/fydHv3M5Yt52Y87ItMI7aghOwwpGQV4oF8/EAsYQjGQ9jkT0Qrsc11+ON1JEb3UVhbBdDk7vJtchBx9hLLru9pTQEyojkDCOZPxLvkFEEi8spGHYUQ0ccTd7QkR3+LhQ5UnWWYKmLoIhIBhXnBVhddDpn7/2fJNf/Bc/Er7RsawhHefuN5dSve5aynX9nSvJdTrQEu7zD2HTMxYw+ZRHDjj2FYRqwQkQywOv1cNoFVxH7yv9gxWsvE177BIW1azi69lWKa/bgsfY/ZI86Lw2WR6Pls8dXwid5E9icOxwrGElg6GjySkYzZNgYSkaOpSC3AD0NKtKWWrBERDLsqdWbOOZP5zDWW8P7o86lIZokVLeRcdH3KbYGALYFjqGh/DRGfHYRRcfO0iiAItJnnHPUN4ZprKsmFm4g4Yygz0MwGCSQV0xeXh4+n1qcRDqjFiwRkT70xSlHc+/2O6h+/Uamb/sTzoyd/nI+GT6PmuPmMXbGFykfMjLbYYrIIGVmFOXnUJR/VLZDERmQlGCJiGSYmbH4S6eRPHsZ4XiC3ICPsdkOSkRERPqEhmoREeklHo+RG9DnWCIiIoOJEiwREREREZEMUYIlIiIiIiKSIUqwREREREREMqRfDdNuZtXA5mzHcYBSYFe2g5A+o/M9eOhcDx4614OLzvfgoXM9ePTHc320c66svQ39KsHqj8xsZUdj3MvAo/M9eOhcDx4614OLzvfgoXM9eBxp51pdBEVERERERDJECZaIiIiIiEiGKME6tLuyHYD0KZ3vwUPnevDQuR5cdL4HD53rweOIOtd6BktERERERCRD1IIlIiIiIiKSIUqwREREREREMkQJVifM7Cwz22BmG83sB9mORzLHzMaY2ctm9q6ZvWNm/5ZeX2xmz5vZB+nvQ7Mdq2SGmXnNbJWZ/Xd6eZyZrUhf3w+bWSDbMUpmmFmRmT1mZu+Z2Xoz+6yu7YHJzK5N/w5fZ2YPmllI1/bAYWa/M7OdZrau1bp2r2VL+WX6vK8xs5OyF7l0Vwfn+mfp3+NrzOzPZlbUatt16XO9wczOzErQnVCC1QEz8wJ3AGcDJwL/YmYnZjcqyaA48F3n3InALODq9Pn9AfCic+444MX0sgwM/wasb7X8U+AXzrljgd3Av2YlKukN/xt4xjl3AjCF1HnXtT3AmNlo4DtApXNuEuAFLkLX9kByL3DWAes6upbPBo5Lf10J/KaPYpTMuJeDz/XzwCTn3GTgfeA6gPT92kXAxPQ+v07ft/cbSrA6NgPY6Jz7yDkXBR4CFmQ5JskQ51yVc+6t9Ou9pG7ARpM6x/eli90HfCUrAUpGmVk58CXg/6SXDZgPPJYuonM9QJjZEOBzwN0Azrmoc64OXdsDlQ/IMTMfkAtUoWt7wHDOvQLUHrC6o2t5AfB7l/IaUGRmI/skUOmx9s61c+4551w8vfgaUJ5+vQB4yDkXcc59DGwkdd/ebyjB6thoYGur5W3pdTLAmNlYYBqwAhjunKtKb9oBDM9WXJJR/y/wH0AyvVwC1LX6xa3re+AYB1QD96S7hP4fM8tD1/aA45zbDvw/wBZSiVU98Ca6tge6jq5l3bcNbEuAv6Zf9/tzrQRLBjUzywf+CFzjnNvTeptLzWGgeQyOcGZ2DrDTOfdmtmORPuEDTgJ+45ybBjRyQHdAXdsDQ/rZmwWkkupRQB4HdzGSAUzX8uBgZj8i9WjH0mzH0lVKsDq2HRjTark8vU4GCDPzk0quljrn/pRe/em+LgXp7zuzFZ9kzGzgXDPbRKqr73xSz+gUpbsVga7vgWQbsM05tyK9/BiphEvX9sDzBeBj51y1cy4G/InU9a5re2Dr6FrWfdsAZGaXA+cAF7v9k/f2+3OtBKtjbwDHpUcjCpB6mO7JLMckGZJ+BuduYL1z7uetNj0JXJZ+fRnwRF/HJpnlnLvOOVfunBtL6jp+yTl3MfAycEG6mM71AOGc2wFsNbPx6VWfB95F1/ZAtAWYZWa56d/p+861ru2BraNr+Unga+nRBGcB9a26EsoRyMzOItW9/1znXFOrTU8CF5lZ0MzGkRrY5PVsxNgR258MyoHM7Iuknt3wAr9zzt2S3YgkU8zsVOBVYC37n8v5IannsB4BjgI2Axc65w58wFaOUGY2F/iec+4cMzuGVItWMbAKuMQ5F8lieJIhZjaV1IAmAeAjYDGpDxR1bQ8wZvZjYBGp7kOrgK+TehZD1/YAYGYPAnOBUuBT4L+Ax2nnWk4n2beT6ibaBCx2zq3MQthyGDo419cBQaAmXew159w30uV/ROq5rDipxzz+emCd2aQES0REREREJEPURVBERERERCRDlGCJiIiIiIhkiBIsERERERGRDFGCJSIiIiIikiFKsERERERERDJECZaIiIiIiEiGKMESERERERHJkP8fcV2zou7VW40AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi/UlEQVR4nOzdd5xU5fn//9c1M9sr7NJBFgtIW0EBMYI9irGg0Yi9xRhNTNRYYkxU9Bc/n3yNn5ioSYiJxhrE2BNLrKgYGyhiwQKy9LIsbGPblPv3x5xdZpdtsLPMlvfz8Rj2lPvc55pz9ixzzX2f+5hzDhEREREREek4X6IDEBERERER6SmUYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIR6WLMrMDMnJkFEh2L9A5m9pmZHZboOEREegIlWCIi0u2Z2Rwzq/RedWYWjJl/IdHxdXXOubHOufnxrNPMbjOz1WZWbmYrzez6eNYvItJVmR40LCISX2YWcM6FOrB9AbACSOpIPb2Vmc0G9nbOnd3Mug6dm92pO8XaHDMbBaxxzm0zsyHAS8ANzrknExyaiEinUguWiEgcmFmRmf3czJYA28wsYGZTzey/ZlZqZh/HdsEys/lm9r9m9r73Df8zZta3hbovMLOlZlZhZt+Y2Q+brJ9pZou9epab2QxveY6Z3Wtm681srZn92sz8bbyPvczsNTMrMbPNZvaImeXGrNtiZvt784PNrLj+fZnZiV5Xs1Lv/Y1ucnyuNrMlZlZmZvPMLHXnj/TOa+HcODPbO6bM/Wb265j5471jWuqdw8J27uswM1tjZtd7x6/IzM6KWX+cmX3knavVXjJYv66+a+j3zWwV8Jq3/J9mtsE7bm+a2dgmcf/JzF7wWuveNrOBZvZ7M9tqZl+Y2cR2HqOj2vMe28s596VzblvMogiwd0vlRUR6CiVYIiLxcwZwHJALDACeA34N9AWuBp4ws34x5c8FLgQGASHgzhbq3QQcD2QDFwB3xCQ5U4AHgWu8/R4CFHnb3e/VuzcwETgauKiN92DA/wKDgdHAMGA2gHNuOfBz4GEzSwf+DjzgnJtvZiOBucAVQD/geeBfZpYcU/dpwAxgBFAInN9sAGbTvMSmpde0Nt5DcxrOTVutQl5Cch/wQyAP+AvwrJmltHNfA4F8YAhwHnCP15oDsI3oec/14rnUzE5qsv2hRI/9Md78C8A+QH/gQ+CRJuVPA37l7bMWeMcrlw88DvyunXE3y8yua+18tGPbSmANkAH8oyOxiIh0B0qwRETi507n3GrnXDVwNvC8c+5551zEOfcysBD4Tkz5h5xzn3rf8t8AnNZcC5Nz7jnn3HIX9QbRrlbTvdXfB+5zzr3s7Wetc+4LMxvg7esK59w259wm4A7g9NbegHNumVdXrXOumOiH80Nj1v8VWAa8RzQx/KW3ahbwnLdtELgdSAO+1eT4rHPObQH+BUxoIYYFzrncVl4LWnsPLYg9N225GPiLc+4951zYOfcA0cRl6k7s7wbvGL5BNNE+DcA5N98594l3rpYQTUoPbbLtbO+cVXvb3Oecq3DO1RJNdvczs5yY8k855xY552qAp4Aa59yDzrkwMI9ocr3LnHO/ae18tLUtkAXsDzwElHUkFhGR7kAJlohI/KyOmR4OfK/JN/3TiCYlzZVfCSQRbXVoxMyONbN3ve55pUQTp/pyw4DlzcQy3Ktvfcz+/0K0FaRFZjbAzB71uhSWAw83E9NfgXHAXd6Hfoi2eK2sL+Cci3jvb0jMdhtipquAzNZiibPVbRdpMBy4qsm5G0b0PbbH1iZd41bWb2tmB5rZ617XyjLgEnY8vg2xmpnfzH5j0a6f5WxvnYzdZmPMdHUz87vzOO/A+2LgIy+WmxMZi4jI7qAES0QkfmJHDVpNtIUq9tv+DO8b/XrDYqb3AILA5tgKvW5pTxBtERrgtRg8T7QrX/1+9momltVEW13yY/af7Zwb20zZWP/jvY/xzrlsoi1x9fvCzDKB3wP3ArNt+31j64gmJvXlzHt/a9vY3w7MbLptHwGwudf0tmvZQdMRnaqA9Jj5gTHTq4Fbm5y7dOfc3Hbuq4+ZZcTM70H0+EC0i9yzwDDnXA4wh5jj20ysZwIzgaOAHKDAW950m07j3U/W4vnYiaoCNP+7KiLSoyjBEhHpHA8DJ5jZMV4rRKo3AMLQmDJnm9kY736mW4DHvW5dsZKBFKAYCJnZsUTvpap3L3CBmR1pZj4zG2Jm+zrn1hPtSvh/ZpbtrdvLzJp2R2sqC6gEyiw68ts1Tdb/AVjonLuIaNe3Od7yx4DjvDiSgKuIJnj/betANeWce8s5l9nK662drbMZi4EzvXMzg8bd9P4KXOK1NpmZZVh0cIosaBhY4v426r/ZzJK9ZPB44J/e8ixgi3Ouxrt/7sw26skiehxLiCaE/7MT7zEunHP/09r5aG4b7/fth2bWxzuGU4AfA6/u3uhFRHY/JVgiIp3AObeaaMvD9USTo9VEk5XYv7sPER2IYgOQCvy0mXoqvOWPAVuJfiB/Nmb9+3gDXxC9v+UNtrcknUs0Qfvc2/ZxGndRbM7NRO+XKSOaQDUMqW1mM4kOUnGpt+hnwP5mdpZz7kuirV13EW2FOwE4wTlX18b+EuVyojGWAmcBT9evcM4tBH4A3E30uC2j8YAcw4C3W6l7g7fdOqIDUlzinPvCW/cj4BYzqwBuJHpeW/Mg0S6Ga4mex3fbemNdyMlEu69WEP3C4S7vJSLSo+k5WCIiCWBm84GHnXN/S3Qs0n7eqIgfA4XeYB5N1x9G9LwObbpORER6h0CiAxAREekuvBa50W0WFBGRXktdBEVEehkzm9PCgAVz2t5auiMz26OVgSr2SHR8IiI9iboIioiIiIiIxIlasEREREREROKkS92DlZ+f7woKChIdhoiIiIiISKsWLVq02TnXr+nyLpVgFRQUsHDhwkSHISIiIiIi0iozW9nccnURFBERERERiRMlWCIiIiIiInGiBEtERERERCROutQ9WM0JBoOsWbOGmpqaRIciXUBqaipDhw4lKSkp0aFID/b3t1ewaOVW7jx9Ij6fJTocERER6Ua6fIK1Zs0asrKyKCgowEwfdHoz5xwlJSWsWbOGESNGJDoc6cFe/PcTHOd/l2Vf3sDI0fslOhwRERHpRrp8F8Gamhry8vKUXAlmRl5enlozpVPVhsKcH3iRcwMvE3zvvkSHIyIiIt1Ml0+wACVX0kC/C9LZyqqD9LUKAJK3fJngaERERKS76RYJlojI7lJWFaQP0QSrz7ZlCY5GREREuhslWO1gZlx11VUN87fffjuzZ89OXEAxDjvssFYfznzSSScxderURstmz57NkCFDmDBhAuPGjePZZ5/t7DBFuo2y6iB9vBas/HAx1JQlOCIRERHpTpRgtUNKSgpPPvkkmzdvjmu9zjkikUhc64xVWlrKokWLKCsr45tvvmm07sorr2Tx4sX885//5MILL+zUOES6k9JttfShknX+IQC40tUJjkhERES6kw4nWGY2zMxeN7PPzewzM7vcWz7bzNaa2WLv9Z2Oh5sYgUCAiy++mDvuuGOHdcXFxZxyyilMnjyZyZMn8/bbbwPRVqLbb7+9ody4ceMoKiqiqKiIUaNGce655zJu3DhWr17NNddcw7hx4xg/fjzz5s0DYP78+Rx22GGceuqp7Lvvvpx11lk455qN76GHHmpojXr//fcblj/55JOccMIJnH766Tz66KPNbjt69GgCgUCj5PG6665jzJgxFBYWcvXVVwNQVFTEEUccQWFhIUceeSSrVq0C4Pzzz+fSSy9l6tSp7LnnnsyfP58LL7yQ0aNHc/755zfUeemllzJp0iTGjh3LTTfdtEMcZWVlDB8+vCHR27ZtG8OGDSMYDDYbt0hnqSovIWARtmTvC0D5plUJjkhERES6k3gM0x4CrnLOfWhmWcAiM3vZW3eHc+72VrbdKTf/6zM+X1cer+oAGDM4m5tOGNtmuR//+McUFhZy7bXXNlp++eWXc+WVVzJt2jRWrVrFMcccw9KlS1ut6+uvv+aBBx5g6tSpPPHEEyxevJiPP/6YzZs3M3nyZA455BAAPvroIz777DMGDx7MwQcfzNtvv820adN2qK+qqorFixfz5ptvcuGFF/Lpp58CMHfuXG688UYGDBjAKaecwvXXX7/Dtu+99x4+n49+/foBUFJSwlNPPcUXX3yBmVFaWgrAT37yE8477zzOO+887rvvPn7605/y9NNPA7B161beeecdnn32WU488UTefvtt/va3vzF58mQWL17MhAkTuPXWW+nbty/hcJgjjzySJUuWUFhY2BBHTk4OEyZM4I033uDwww/n3//+N8ccc4yedyW7Xbgy+mVDqP842PoqFZtWkpPgmERERKT76HALlnNuvXPuQ2+6AlgKDOlovV1NdnY25557LnfeeWej5a+88gqXXXYZEyZM4MQTT6S8vJzKyspW6xo+fHjDfVELFizgjDPOwO/3M2DAAA499FA++OADAKZMmcLQoUPx+XxMmDCBoqKiZus744wzADjkkEMoLy+ntLSUjRs38vXXXzNt2jRGjhxJUlJSQ+IFcMcddzBhwgSuvvpq5s2b1zA6X05ODqmpqXz/+9/nySefJD09HYB33nmHM888E4BzzjmHBQsWNNR1wgknYGaMHz+eAQMGMH78eHw+H2PHjm2I+bHHHmP//fdn4sSJfPbZZ3z++ec7vI9Zs2Y1tOA9+uijzJo1q9XjKNIZfDVbAEgdMo6wM2q2qIugiIiItF9cHzRsZgXAROA94GDgMjM7F1hItJVra0fqb09LU2e64oor2H///bngggsalkUiEd59911SU1MblQ0EAo3ua4p9dlNGRka79peSktIw7ff7CYVCzZZrOnS5mfHYY4+xdevWhgfylpeXM3fuXG699VYgeg9Wffe/pnG///77vPrqqzz++OPcfffdvPbaa+2K0+fzNYrZ5/MRCoVYsWIFt99+Ox988AF9+vTh/PPPb/ZZVieeeCLXX389W7ZsYdGiRRxxxBGt7lekU9RGvyDp338QxeQSKV2b4IBERESkO4nbIBdmlgk8AVzhnCsH/gzsBUwA1gP/18J2F5vZQjNbWFxcHK9wOkXfvn057bTTuPfeexuWHX300dx1110N84sXLwagoKCADz/8EIAPP/yQFStWNFvn9OnTmTdvHuFwmOLiYt58802mTJmyU3HVt/osWLCAnJwccnJymDt3Li+++GLDfV+LFi1q8T6sWJWVlZSVlfGd73yHO+64g48//hiAb33rWw3bP/LII0yfPr3d8ZWXl5ORkUFOTg4bN27khRdeaLZcZmYmkydP5vLLL+f444/H7/e3ex8i8RIJRpP/PtlZbKQvgcr1CY5IREREupO4JFhmlkQ0uXrEOfckgHNuo3Mu7JyLAH8Fms0anHP3OOcmOecm1d8H1JVdddVVjQaEuPPOO1m4cCGFhYWMGTOGOXPmAHDKKaewZcsWxo4dy913383IkSObre/kk0+msLCQ/fbbjyOOOILbbruNgQMH7lRMqampTJw4kUsuuYR7772XoqIiVq5c2Wh49hEjRpCTk8N7773XbB3f+c53WLduHRUVFRx//PEUFhYybdo0fve73wFw11138fe//53CwkIeeugh/vCHP7Q7vv3224+JEyey7777cuaZZ3LwwQc3rLvxxhsbDRM/a9YsHn74YXUPlIRxXoJlSWmUBvqRVrMxwRGJiIhId2ItjUzX7gqi/dMeALY4566IWT7IObfem74SONA5d3prdU2aNMk1fabT0qVLGT16dIdilJ5FvxPSmZ687za+u+pWuPxjnv/rjRxW/TLpN6kVS0RERBozs0XOuUlNl8fjHqyDgXOAT8xssbfseuAMM5sAOKAI+GEc9iUi0rlCtdGfgVTqMgaRXlUFNeWQmp3YuERERKRb6HCC5ZxbAFgzq57vaN0iIrubhesTrBRc1iAoBle+FlOCJSIiIu0Qt0EuRER6hJA3wmUglUDuUACqivWwYREREWkfJVgiIjF89S1Y/hTS84cBUF6sZ2GJiIhI+yjBEhGJYeFaggTA5yOnfzTBqtmqZ2GJiIhI+yjBEhGJ4QvXErRkAAb0zaXMpRMq1SiCIiIi0j5KsNrp6aefxsz44osvWixTVFTEuHHj4rbP888/n8cff7zF9VdccQVDhgwhEok0LLv//vvp168fEyZMYMyYMfz1r3+NWzwivYE/UteQYPXPTmGj64NVbkhwVCIiItJdKMFqp7lz5zJt2jTmzp3b7PpQKNThfYTD4XaXjUQiPPXUUwwbNow33nij0bpZs2axePFi5s+fz/XXX8/GjXpQqkh7+SO1hHzRBCsl4GeLry/J1ZsSHJWIiIh0F0qw2qGyspIFCxZw77338uijjzYsnz9/PtOnT+fEE09kzJgxQDTROuussxg9ejSnnnoqVVVVALz66qtMnDiR8ePHc+GFF1JbG72RvqCggJ///Ofsv//+/POf/9xh36+88gqTJk1i5MiR/Pvf/26077Fjx3LppZe2mPT179+fvfbai5UrVzYsu/POOxkzZgyFhYWcfnr0uc9btmzhpJNOorCwkKlTp7JkyRIAZs+ezXnnncf06dMZPnw4Tz75JNdeey3jx49nxowZBINBAG655RYmT57MuHHjuPjii2n68OpIJEJBQQGlpaUNy/bZZx8lftIl+SNBQpbSMF+ZlE9GbXECIxIREZHuJB4PGt59XrgONnwS3zoHjodjf9NqkWeeeYYZM2YwcuRI8vLyWLRoEQcccAAAH374IZ9++ikjRoygqKiIL7/8knvvvZeDDz6YCy+8kD/96U9cdtllnH/++bz66quMHDmSc889lz//+c9cccUVAOTl5fHhhx82u++ioiLef/99li9fzuGHH86yZctITU1l7ty5nHHGGcycOZPrr7+eYDBIUlJSo22/+eYbvvnmG/bee++GZb/5zW9YsWIFKSkpDQnPTTfdxMSJE3n66ad57bXXOPfcc1m8eDEAy5cv5/XXX+fzzz/noIMO4oknnuC2227j5JNP5rnnnuOkk07isssu48YbbwTgnHPO4d///jcnnHBCwz59Ph8zZ87kqaee4oILLuC9995j+PDhDBgwoN2nSWR38UdqCSclN8zXpvUnu/wtcA6suUf+iYiIiGynFqx2mDt3bkNrz+mnn96oxWjKlCmMGDGiYX7YsGEcfPDBAJx99tksWLCAL7/8khEjRjBy5EgAzjvvPN58882GbWbNmtXivk877TR8Ph/77LMPe+65J1988QV1dXU8//zznHTSSWRnZ3PggQfyn//8p2GbefPmMWHCBM444wz+8pe/0Ldv34Z1hYWFnHXWWTz88MMEAtH8esGCBZxzzjkAHHHEEZSUlFBeXg7AscceS1JSEuPHjyccDjNjxgwAxo8fT1FREQCvv/46Bx54IOPHj+e1117js88+2+F9zJo1i3nz5gHw6KOPtvqeRRIpEKkj7N+eYEUyBpBECKq2JDAqERER6S66VwtWGy1NnWHLli289tprfPLJJ5gZ4XAYM+O3v/0tABkZGY3KW5NvuJvON6dpHW3V95///IfS0lLGjx8PQFVVFWlpaRx//PFANJm5++67m63vueee48033+Rf//oXt956K5980nqLYEpKtKuUz+cjKSmpIR6fz0coFKKmpoYf/ehHLFy4kGHDhjF79mxqamp2qOeggw5i2bJlFBcX8/TTT/OrX/2q1f2KJEqSqyPi295FkOxBsB6CZetIyshLXGAiIiLSLagFqw2PP/4455xzDitXrqSoqIjVq1czYsQI3nrrrWbLr1q1infeeQeAf/zjH0ybNo1Ro0ZRVFTEsmXLAHjooYc49NBD27X/f/7zn0QiEZYvX84333zDqFGjmDt3Ln/7298oKiqiqKiIFStW8PLLLzfc79WSSCTC6tWrOfzww/l//+//UVZWRmVlJdOnT+eRRx4Bovd25efnk52d3a746pOp/Px8KisrWxz10Mw4+eST+dnPfsbo0aPJy9MHVemaklwdEf/2BCs1dzAA5Zv0sGERERFpmxKsNsydO5eTTz650bJTTjmlxYElRo0axR//+EdGjx7N1q1bufTSS0lNTeXvf/873/ve9xg/fjw+n49LLrmkXfvfY489mDJlCsceeyxz5swhEonw4osvctxxxzWUycjIYNq0afzrX/9qto6LLrqIhQsXEg6HOfvssxk/fjwTJ07kpz/9Kbm5ucyePZtFixZRWFjIddddxwMPPNDOowO5ubn84Ac/YNy4cRxzzDFMnjy5Yd2cOXOYM2dOw/ysWbN4+OGH1T1QuqxIxJFMsFGCldFvCAAVJWsSFZaIiIh0I9Z0xLdEmjRpklu4cGGjZUuXLmX06NEJiki6Iv1OSGepCYZZ/f+NxwaMYe8fR1tjP1+1kTH3jeSrsVcw8ns3JzhCERER6SrMbJFzblLT5WrBEhHx1AYjpFCHC2xvwRrQN5cyl064fH0CIxMREZHuQgmWiIinNhQmxYLgT21Y1ic9mU30wVep57aJiIhI27pFgtWVujFKYul3QTpTbShCCsFGLVg+n1HqzyOlZlMCIxMREZHuotMTLDObYWZfmtkyM7tuZ7dPTU2lpKREH6wF5xwlJSWkpqa2XVhkF9QnWJbU+HdsW3I/MupKEhSViIiIdCed+hwsM/MDfwS+DawBPjCzZ51zn7e3jqFDh7JmzRqKi4s7K0zpRlJTUxk6dGiiw5AeqjYYiiZYMS1YAHVp/cipKQHnoB3PthMREZHeq7MfNDwFWOac+wbAzB4FZgLtTrCSkpIYMWJEJ4UnIrJdXV0tPnP4mrRgRTIGkLw1BNVbIb1vgqITERGR7qCzuwgOAWKfzrnGWyYi0uWEaqsBdugi6M8ZBMC2zXrYsIiIiLQu4YNcmNnFZrbQzBaqG6CIJFKwrgYAf5MEK7Vv9Huhsk2rdntMIiIi0r10doK1FhgWMz/UW9bAOXePc26Sc25Sv379OjkcEZGWhb0WLF9yWqPlmfnRP2OVm9fusI2IiIhIrM5OsD4A9jGzEWaWDJwOPNvJ+xQR2SWhuioAAk1asPoMiCZYdaXrdntMIiIi0r106iAXzrmQmV0G/AfwA/c55z7rzH2KiOyqkNdFsGkL1oC+fShz6UTKNyQiLBEREelGOnsUQZxzzwPPd/Z+REQ6KhKMJliBlMYJVlqyn3XWB/82JVgiIiLSuoQPciEi0lVE6qL3YCU1acECKPPnk1qzaXeHJCIiIt2MEiwREU9LLVgA21L6kxPUSKciIiLSOiVYIiIe5yVYSc0kWDUZg+kT2QLh4O4OS0RERLoRJVgiIp76BCvQTBfBSNYQ/EQIl2kkQREREWmZEiwREY8L10YnAik7rPP3iQ7VXraxaDdGJCIiIt2NEiwRkXpeCxaB1B1WpfcbDkDFxhW7MyIRERHpZpRgiYjUC7XcgpU9oACA2pJVuzEgERER6W6UYImIeKyhi+COLVj98/IodRm40jW7OSoRERHpTpRgiYh4LFTfRXDHFqy8zBTWuXz8lWt3c1QiIiLSnSjBEhHx+MPV1JEEPv+O63xGSaAf6VXrExCZiIiIdBdKsEREPIFwNTW24xDt9SqSB5Bdt2k3RiQiIiLdjRIsERFPIFxNrW/H+6/q1aQPItNVQG3lboxKREREuhMlWCIinqRwFcFWEqxw1tDoRLnuwxIREZHmKcESEfEkhWsI+tNbXO/vE02wakpW7q6QREREpJtRgiUi4kmKVBPyt3wPVv3Dhss36GHDIiIi0jwlWCIintRINeFAywlW34EFhJ1RvVkPGxYREZHmdSjBMrPfmtkXZrbEzJ4ys1xveYGZVZvZYu81Jy7Rioh0EuccKa6GSCCjxTKD+2aykT6EtyrBEhERkeZ1tAXrZWCcc64Q+Ar4Rcy65c65Cd7rkg7uR0SkU9WGIqRZLS6p5XuwBmanss71I1CxZjdGJiIiIt1JhxIs59xLzrmQN/suMLTjIYmI7H7bakNkUAPJLSdYAb+PksAAMqrX7cbIREREpDuJ5z1YFwIvxMyPMLOPzOwNM5ve0kZmdrGZLTSzhcXFxXEMR0Sk/arqwqRRiyVntlpuW9pgcoLFEA61Wk5ERER6pzYTLDN7xcw+beY1M6bML4EQ8Ii3aD2wh3NuIvAz4B9mlt1c/c65e5xzk5xzk/r169fxdyQisgu2VVeRbGEspeV7sACCWUMJEIaK9bspMhEREelOAm0VcM4d1dp6MzsfOB440jnnvG1qgVpvepGZLQdGAgs7GrCISGeoraoEwN9KF0EAX589YAOEtq4kkDtsd4QmIiIi3UhHRxGcAVwLnOicq4pZ3s/M/N70nsA+wDcd2ZeISGeq3VYOgD+t9S6Caf1GAFC+fnmnxyQiIiLdT5stWG24G0gBXjYzgHe9EQMPAW4xsyAQAS5xzm3p4L5ERDpNXWX0T5Q/vW+r5XIG7QnAtk1FtF5SREREeqMOJVjOub1bWP4E8ERH6hYR2Z2CFSUApOW0fi/o4PxcNrlcwltW7o6wREREpJuJ5yiCIiLdVmhbNMHKyG09wRqSm8Zal4+/fPXuCEtERES6GSVYIiJAxEuw0rLzWy2XmuSn2N+ftCo9C0tERER2pARLRARw1VsBsDbuwQKoSB1ETt1GiEQ6OywRERHpZpRgiYgAgZpSakiGpLQ2y9ZlDiWJIFRu3A2RiYiISHeiBEtEBPDXlbLNl9Wuspa7BwCuVANdiIiISGNKsEREgOS6UqoDOe0qm5JfAEDFhhWdGJGIiIh0R0qwRESAjNBWapPb92Sr7EF7AVC5Sc9PFxERkcaUYIlIr1cTDNPfbaYuY1C7yg/Kz6PEZREsURdBERERaUwJloj0eptKt9GfUlz24HaVH9In+iwsX9mqTo5MREREuhslWCLS623ZtIaARQjkDm1X+Zy0JDZYf1K36VlYIiIi0pgSLBHp9co3FgGQ0W+Pdm9TkTqI7LoN4FwnRSUiIiLdkRIsEen1KjdF76XKHzyi3dvUZAwhxdXCts2dFZaIiIh0Q0qwRKTX85V8SQQjpf8+7d8od1j0Z6nuwxIREZHtlGCJSK+XU/41G/2DIDm93dsk5xUAULVZz8ISERGR7ZRgiUivN6j2Gzan77VT22QN3BOAivV6FpaIiIhspwRLRHq1srJyhrn11PQdtVPbDejXnzKXTp1asERERCRGhxIsM5ttZmvNbLH3+k7Mul+Y2TIz+9LMjul4qCIi8bfqq8X4zZE2tHCntos+C6sflK3upMhERESkOwrEoY47nHO3xy4wszHA6cBYYDDwipmNdM6F47A/EZG4KS1aDMDAffbfqe3yM1JYQj/227a2E6ISERGR7qqzugjOBB51ztU651YAy4ApnbQvEZFdFtn4GbUkkTds353azuczylIGklWzXs/CEhERkQbxSLAuM7MlZnafmfXxlg0BYvvNrPGW7cDMLjazhWa2sLi4OA7hiIi0X2bZ16wP7IH5k3Z62+r0IaS6aqje2gmRiYiISHfUZoJlZq+Y2afNvGYCfwb2AiYA64H/29kAnHP3OOcmOecm9evXb2c3FxHZZeGIY0jdCsqyd+L5VzEi2XoWloiIiDTW5j1Yzrmj2lORmf0V+Lc3uxYYFrN6qLdMRKTLWL12LQW2hY39x+zS9kn5BbAa6kqKSB48Ia6xiYiISPfU0VEEB8XMngx86k0/C5xuZilmNgLYB3i/I/sSEYm39cs+AiB7+H67tH1mvwIAyjcWxSkiERER6e46OorgbWY2AXBAEfBDAOfcZ2b2GPA5EAJ+rBEERaSrqVq1BIBBI3duBMF6/QYMosYlUVuiLoIiIiIS1aEEyzl3TivrbgVu7Uj9IiKdyb95KZVkkNl3WNuFmzE4N521Lp/k0jVxjkxERES6q84apl1EpMvrs20ZG9L2BLNd2n5ATgrrXV8ClbrFVERERKKUYIlIr1RRXceI8Epqckfuch0pAT9bAgNIr94Qx8hERESkO1OCJSK90jfffEW2VREYNK5D9WxLHUhWqARCdXGKTERERLozJVgi0iuVfLMYgL57TuhQPaGswfhwULG+40GJiIhIt6cES0R6peC6zwDot+fEDtVjOdEBMlyZBroQERERJVgi0kulbf2CEl8elt6nQ/Wk5EUTrOrilfEIS0RERLo5JVgi0us45+hX8w0lGXt3uK7sAQUAVCjBEhEREZRgiUgvtKG0kj3dWoJ5+3a4rv55fdniMgltXhGHyERERKS7U4LVii/ee5GPf3MUS997EReJJDocEYmTdcs/I8WCJA/u2AiCAENy0/jGDca/dVkcIhMREZHuTglWK6q2rGdYzZeMfmEWq389jvf/fi0rv/o40WGJSAdVrVkCQE7BhA7XlZ+ZQpENIbNieYfrEhERke4vkOgAurL9j72AbdNPYeF/7iX1iyeZVHQPvpV/Ya0NZG3fA/GPmE7/kZMZvNd4/H5/osPtOOeIhEME66oJ1dURCtYQqqsjHKolHKwlFAoTjoQIh8KEw2HC4RCRSAQXCUMkDC467byfuAhEwtHWPxfGOQc4Iq753Vuzy5orvGNJa27jHcq0o1CzdVmzwVmjhe2rO7aca/a9NRtAtHyj4q3vz+1ETC1E0WpMrl0b7eQ+OlD/zkpa/hJhZ+QP73gLls9nVGbtRWbl61C1BdL7xiFCaa9QKERdbRXB2jrq6qoI19USqqshFIz+DAdrCNfVEgnVEQ7WEo6Eof5vUsQBYYg4cKHoT7zlLlrGXATnor/DDhqm668vV3+dmTVcJ87769CwLvZvSMO1FPv9Zv16a1KmybbeRKO6m5ZtmGx+vTUtG7u+UVFrKF2/r9i/oY3/HNXHtUPtzdfdpOwOYba+6Y7rd6i75QJN17X130LTOEUkMWoyBjNi9AH0z05NdCjtogSrDRmZ2Uw65UrgSjatXUHRW48SWPkGYza/RGbJM7AQKl0qawLDqUofQih7KJGcYSRlDyI9J4+MnDxSMvuQnJ5DSkoyqckp+AJJ4AtE/7OOOJyLEAkHceEgdcEgdbW11AWDBGtrCNZuI1RTRShYQ7i2inBdFZG6aiLBaiJ1NUSC1bhgDRasxoVqsVA1vnANvlANvkgt/nAt/kgtgUgt/kgQvwsScEECLkSAEAGCJLsQSURfPnOkACkJPu4ine2bwAj2TEmPS12R/mOhEty6j7C9j2y1rHOu3cl+T1dXW0vp1k1UbClmW+kmqstLCFaWQNUWfLWl+GvL8YWq8AW3kRSuIilcRXK4mhRXTZqrJs3VkG61+o9MRKSH+3voGIrTfs/xhYMTHUq76P+lndB/yAj6n/4L4BcEg3V89flCSr9ZhK3/mPSyZfSrXMqA8jdIXhtuV30RZ/gt+j1gfftXcgfiq3VJ1FoytSRTZ8kELZmgpRD0pRD0pVITyMH5knD+JCKWhPMnE/FFfzpfEviScf4k8Cfj/MlYIBnzJ0EgBfMF8PkD+Px+fL4Afr8vOu/zgfkxnw/zRX/i8wOxy7zl5sNnFv2it0nszTVYNNeK0Wy5dm67g2aa0nZsVXJtxlHfytbmB+dmKtqxdOuBt/tzuduZNqw26m/XwWxfk9PO5hWd+e1x/rCRcasrbc+DqFvup/rzV8hpIcHaWlnLGy88Ss4nf6dmj0M59qKb47b/riQYrKN4wxpKN62hfPMa6raux1VuIGnbJlJqN5NRV0J2eAtZkXKyrJr+QP9m6gk7o9LSqSaNGl8adb406vzpVCTlUhrIIJyUjkvKgOQMXCAV8ydDUgrmT8GXlIIFkvEFUvAlpeJPSsGfFF3u9/sx8+Pzx/ztMt/2v1G+APgMn/lx5sPn92MYPq+Byrz2HDMarg1Xf414rfSuob3LW9ZoPU2m6//G1NcVe7+vi7m03PZ/d9i25bpjl7kd6tq+L3ON/9a5mO2iPxvH1XS9cy7mAm/896CtPyFN17tW1u2w7U7sa8f9tLLjHeLQFyMiiXRgWj6DhucnOox2M9euD0+7x6RJk9zChQsTHUaHhEIhSjetpnzzeirKNlNTvgVqyqCugnAoRCQchEgIn4vgdyGcWTTpMT/OAvgCSdHEJZAU/XCQnIYvOQ1/Uhr+lDQCKenRV3IayWnppKRkRH+mpveMbooi3VDR5m1svPMIRmbV0eeqReDb3v3r0+UrWfby3xi3/gn2trUArLWBDLnpy0SFu8vCEceGsmqK16+iYsNygpuXw9ZVpFSuJrt6Lfmh9fR3JQ1fHMUqI5Otvr5UJuVRnZxHKC0PS+uDL70vyVl5pGTnk5GTT2af/qTn9CMlIxvz6W+aiIh0XWa2yDk3qelytWDFWSAQIH/wCPIHj0h0KCKymxTkZ/BE9vEcWHk75a/eTtnwo/lqyXv4vn6BA2v+yzirZXXGaNYfeA1Lly/niFV3UbO5iNT8gkSHvoNttSHWbtzI5tVfsW3DckIlRSSVrySzei35oQ0MZRNDLNhom83Wl5KkQazLPYCVmUPx5wwmLW8w2flD6DNgDzL7DiInKZWcBL0nERGR3UktWCIicfD+8mKqHjiVw3yLG5aVWTYbBh/FkG//mMyC6Bdc773/Xw58/li+nng9+8z8+W6P0znHptIKNq7+mrK1y6jZvAJfaRGplavpU7ueQW4jfayy0TaVlsHW5EFUpQ8lkjucQN4I0vvvSe6QfcjovyckdY+bjkVEROKppRasDiVYZjYPGOXN5gKlzrkJZlYALAXq+8C865y7pK36lGCJSHe2bMNWlv33WXJ9VQzfazSDxk737kncriYYZvmtk8lNCjHkug/BH/+OBDV1QdavWcGWtV+zbcM3hLcUkVyxmqzqNeSHNjCQLfhiuvHVEWCzfyAVaYMJZg3DlzeCjAF70nfISLIG7Q1pfeIeo4iISHfXKV0EnXOzYnbwf0BZzOrlzrkJHalfRKQ72XtgH/b+7nmtlklN8rN6zA8Y+/l1fPGPa9j37N/t1OgfzjnKq2rYvG4lFRu/obp4BeEtKwmUrya9eh196jYwwBUzwsLEdlQutjxKUwaxOXcyxbkFpPTbk5xBe5M3bCTJuUMY7NNjEUVEROIhLl+dWnRondOAI+JRn4hIT3bUdy/m1aI3OHL5fRT95m1KRxxHoP9ILDmdcMQRqq4guG0rwapS2FZCoKqY1JpNZAQ30ye8hb6Uk9NkIInN9GFL0gA2Z49lY/ZQAn2HkzlgBHnDRpE7aE/6JaXRLzFvV0REpFeJyz1YZnYI8Lv6JjKvi+BnwFdAOfAr59xbLWx7MXAxwB577HHAypUrOxyPiEhXV1MX5M15v6Ng+cOMZFWL5cLO2GK5lAfyqErJpy5tAGQOIJA7hNR+BWQP3It+Q/ciEKdneomIiEj77PI9WGb2CjCwmVW/dM4945X5M7DMOfd/3nwKkOmcKzGzA4CngbHOufLW9qV7sESkt4lEHGvWrqZy43IiwVoC5gik55CZ05ecnDzSsvvucB+XiIiIJN4u34PlnDuqjYoDwHeBA2K2qQVqvelFZrYcGAkoexIRieHzGXsM2wOG7ZHoUERERCQO4nFX81HAF865NfULzKyfmfm96T2BfYBv4rAvERERERGRLiseg1ycDsxtsuwQ4BYzCwIR4BLn3JY47EtERERERKTL6nCC5Zw7v5llTwBPdLRuERERERGR7iQuowjGi5kVA11tGMF8YHOig5DdRue799C57j10rnsXne/eQ+e6d+mK53u4c26Hp6B0qQSrKzKzhc2NDiI9k85376Fz3XvoXPcuOt+9h85179Kdznc8BrkQERERERERlGCJiIiIiIjEjRKstt2T6ABkt9L57j10rnsPneveRee799C57l26zfnWPVgiIiIiIiJxohYsERERERGROFGCJSIiIiIiEidKsFphZjPM7EszW2Zm1yU6HokfMxtmZq+b2edm9pmZXe4t72tmL5vZ197PPomOVeLDzPxm9pGZ/dubH2Fm73nX9zwzS050jBIfZpZrZo+b2RdmttTMDtK13TOZ2ZXe3/BPzWyumaXq2u45zOw+M9tkZp/GLGv2WraoO73zvsTM9k9c5LKzWjjXv/X+ji8xs6fMLDdm3S+8c/2lmR2TkKBboQSrBWbmB/4IHAuMAc4wszGJjUriKARc5ZwbA0wFfuyd3+uAV51z+wCvevPSM1wOLI2Z/3/AHc65vYGtwPcTEpV0hj8ALzrn9gX2I3redW33MGY2BPgpMMk5Nw7wA6eja7snuR+Y0WRZS9fyscA+3uti4M+7KUaJj/vZ8Vy/DIxzzhUCXwG/APA+r50OjPW2+ZP3ub3LUILVsinAMufcN865OuBRYGaCY5I4cc6td8596E1XEP0ANoToOX7AK/YAcFJCApS4MrOhwHHA37x5A44AHveK6Fz3EGaWAxwC3AvgnKtzzpWia7unCgBpZhYA0oH16NruMZxzbwJbmixu6VqeCTzoot4Fcs1s0G4JVDqsuXPtnHvJORfyZt8FhnrTM4FHnXO1zrkVwDKin9u7DCVYLRsCrI6ZX+Mtkx7GzAqAicB7wADn3Hpv1QZgQKLikrj6PXAtEPHm84DSmD/cur57jhFAMfB3r0vo38wsA13bPY5zbi1wO7CKaGJVBixC13ZP19K1rM9tPduFwAvedJc/10qwpFczs0zgCeAK51x57DoXfYaBnmPQzZnZ8cAm59yiRMciu0UA2B/4s3NuIrCNJt0BdW33DN69NzOJJtWDgQx27GIkPZiu5d7BzH5J9NaORxIdS3spwWrZWmBYzPxQb5n0EGaWRDS5esQ596S3eGN9lwLv56ZExSdxczBwopkVEe3qewTRe3RyvW5FoOu7J1kDrHHOvefNP0404dK13fMcBaxwzhU754LAk0Svd13bPVtL17I+t/VAZnY+cDxwltv+8N4uf66VYLXsA2AfbzSiZKI30z2b4JgkTrx7cO4Fljrnfhez6lngPG/6POCZ3R2bxJdz7hfOuaHOuQKi1/FrzrmzgNeBU71iOtc9hHNuA7DazEZ5i44EPkfXdk+0CphqZune3/T6c61ru2dr6Vp+FjjXG01wKlAW05VQuiEzm0G0e/+JzrmqmFXPAqebWYqZjSA6sMn7iYixJbY9GZSmzOw7RO/d8AP3OeduTWxEEi9mNg14C/iE7fflXE/0PqzHgD2AlcBpzrmmN9hKN2VmhwFXO+eON7M9ibZo9QU+As52ztUmMDyJEzObQHRAk2TgG+ACol8o6truYczsZmAW0e5DHwEXEb0XQ9d2D2Bmc4HDgHxgI3AT8DTNXMtekn030W6iVcAFzrmFCQhbdkEL5/oXQApQ4hV71zl3iVf+l0TvywoRvc3jhaZ1JpISLBERERERkThRF0EREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhHpYsyswMycmQUSHYv0Dmb2mZkdlug4RER6AiVYIiLS7ZnZHDOr9F51ZhaMmX8h0fF1dc65sc65+fGs08xuM7PVZlZuZivN7Pp41i8i0lWZcy7RMYiI9ChmFnDOhTqwfQGwAkjqSD29lZnNBvZ2zp3dzLoOnZvdqTvF2hwzGwWscc5tM7MhwEvADc65JxMcmohIp1ILlohIHJhZkZn93MyWANvMLGBmU83sv2ZWamYfx3bBMrP5Zva/Zva+9w3/M2bWt4W6LzCzpWZWYWbfmNkPm6yfaWaLvXqWm9kMb3mOmd1rZuvNbK2Z/drM/G28j73M7DUzKzGzzWb2iJnlxqzbYmb7e/ODzay4/n2Z2YleV7NS7/2NbnJ8rjazJWZWZmbzzCx154/0zmvh3Dgz2zumzP1m9uuY+eO9Y1rqncPCdu7rMDNbY2bXe8evyMzOill/nJl95J2r1V4yWL+uvmvo981sFfCat/yfZrbBO25vmtnYJnH/ycxe8Frr3jazgWb2ezPbamZfmNnEdh6jo9rzHtvLOfelc25bzKIIsHdL5UVEegolWCIi8XMGcByQCwwAngN+DfQFrgaeMLN+MeXPBS4EBgEh4M4W6t0EHA9kAxcAd8QkOVOAB4FrvP0eAhR5293v1bs3MBE4GriojfdgwP8Cg4HRwDBgNoBzbjnwc+BhM0sH/g484Jybb2YjgbnAFUA/4HngX2aWHFP3acAMYARQCJzfbABm07zEpqXXtDbeQ3Mazk1brUJeQnIf8EMgD/gL8KyZpbRzXwOBfGAIcB5wj9eaA7CN6HnP9eK51MxOarL9oUSP/THe/AvAPkB/4EPgkSblTwN+5e2zFnjHK5cPPA78rp1xN8vMrmvtfLRj20pgDZAB/KMjsYiIdAdKsERE4udO59xq51w1cDbwvHPueedcxDn3MrAQ+E5M+Yecc5963/LfAJzWXAuTc+4559xyF/UG0a5W073V3wfuc8697O1nrXPuCzMb4O3rCufcNufcJuAO4PTW3oBzbplXV61zrpjoh/NDY9b/FVgGvEc0Mfylt2oW8Jy3bRC4HUgDvtXk+Kxzzm0B/gVMaCGGBc653FZeC1p7Dy2IPTdtuRj4i3PuPedc2Dn3ANHEZepO7O8G7xi+QTTRPg3AOTffOfeJd66WEE1KD22y7WzvnFV729znnKtwztUSTXb3M7OcmPJPOecWOedqgKeAGufcg865MDCPaHK9y5xzv2ntfLS1LZAF7A88BJR1JBYRke5ACZaISPysjpkeDnyvyTf904gmJc2VXwkkEW11aMTMjjWzd73ueaVEE6f6csOA5c3EMtyrb33M/v9CtBWkRWY2wMwe9boUlgMPNxPTX4FxwF3eh36ItnitrC/gnIt4729IzHYbYqargMzWYomz1W0XaTAcuKrJuRtG9D22x9YmXeNW1m9rZgea2ete18oy4BJ2PL4NsZqZ38x+Y9Gun+Vsb52M3WZjzHR1M/O78zjvwPti4CMvlpsTGYuIyO6gBEtEJH5iRw1aTbSFKvbb/gzvG/16w2Km9wCCwObYCr1uaU8QbREa4LUYPE+0K1/9fvZqJpbVRFtd8mP2n+2cG9tM2Vj/472P8c65bKItcfX7wswygd8D9wKzbft9Y+uIJib15cx7f2vb2N8OzGy6bR8BsLnX9LZr2UHTEZ2qgPSY+YEx06uBW5ucu3Tn3Nx27quPmWXEzO9B9PhAtIvcs8Aw51wOMIeY49tMrGcCM4GjgBygwFvedJtO491P1uL52ImqAjT/uyoi0qMowRIR6RwPAyeY2TFeK0SqNwDC0JgyZ5vZGO9+pluAx71uXbGSgRSgGAiZ2bFE76Wqdy9wgZkdaWY+MxtiZvs659YT7Ur4f2aW7a3by8yadkdrKguoBMosOvLbNU3W/wFY6Jy7iGjXtzne8seA47w4koCriCZ4/23rQDXlnHvLOZfZyuutna2zGYuBM71zM4PG3fT+ClzitTaZmWVYdHCKLGgYWOL+Nuq/2cySvWTweOCf3vIsYItzrsa7f+7MNurJInocS4gmhP+zE+8xLpxz/9Pa+WhuG+/37Ydm1sc7hlOAHwOv7t7oRUR2PyVYIiKdwDm3mmjLw/VEk6PVRJOV2L+7DxEdiGIDkAr8tJl6KrzljwFbiX4gfzZm/ft4A18Qvb/lDba3JJ1LNEH73Nv2cRp3UWzOzUTvlykjmkA1DKltZjOJDlJxqbfoZ8D+ZnaWc+5Loq1ddxFthTsBOME5V9fG/hLlcqIxlgJnAU/Xr3DOLQR+ANxN9Lgto/GAHMOAt1upe4O33TqiA1Jc4pz7wlv3I+AWM6sAbiR6XlvzINEuhmuJnsd323pjXcjJRLuvVhD9wuEu7yUi0qPpOVgiIglgZvOBh51zf0t0LNJ+3qiIHwOF3mAeTdcfRvS8Dm26TkREeodAogMQERHpLrwWudFtFhQRkV5LXQRFRHoZM5vTwoAFc9reWrojM9ujlYEq9kh0fCIiPYm6CIqIiIiIiMSJWrBERERERETipEvdg5Wfn+8KCgoSHYaIiIiIiEirFi1atNk516/p8i6VYBUUFLBw4cJEhyEiIiIiItIqM1vZ3HJ1ERQREREREYkTJVgiIiIiIiJxogRLRKQDwhHH85+sp7I2lOhQREREpAvoUvdgNScYDLJmzRpqamoSHYp0M6mpqQwdOpSkpKREhyI92Mufb+D9R/+HdWOmctFZZyU6HBEREUmwLp9grVmzhqysLAoKCjCzRIcj3YRzjpKSEtasWcOIESMSHY70YEvXlTI76UH4+kFwZ4L+TomIiPRqXb6LYE1NDXl5eUquZKeYGXl5eWr5lE5XtnH7AEJu0+cJjERERES6gi6fYAFKrmSX6PdGdoeUilUN05VrlyYwEhEREekKukWCJSLSVWVVrWmYrlj3dQIjERERka6gwwmWmQ0zs9fN7HMz+8zMLveW9zWzl83sa+9nn46HmxhmxlVXXdUwf/vttzN79uzEBRTj3Xff5cADD2TChAmMHj26Ia758+fz3//+t0N1z5gxg9zcXI4//vg4RCrSM+XWriOMj60uk7ri5YkOR0RERBIsHi1YIeAq59wYYCrwYzMbA1wHvOqc2wd41ZvvllJSUnjyySfZvHlzXOt1zhGJRDpUx3nnncc999zD4sWL+fTTTznttNOA+CRY11xzDQ899FCH6hDp6ZJCFdT4MvnGDSKpbEWiwxEREZEE6/Aogs659cB6b7rCzJYCQ4CZwGFesQeA+cDPO7Kvm//1GZ+vK+9IFTsYMzibm04Y22qZQCDAxRdfzB133MGtt97aaF1xcTGXXHIJq1ZF78P4/e9/z8EHH8zs2bPJzMzk6quvBmDcuHH8+9//BuCYY47hwAMPZNGiRTz//PPcfffdvPDCC5gZv/rVr5g1axbz589n9uzZ5Ofn8+mnn3LAAQfw8MMP73Bf0aZNmxg0aBAAfr+fMWPGUFRUxJw5c/D7/Tz88MPcdddd7Lvvvi3GuXz5cpYtW8bmzZu59tpr+cEPfgDAkUceyfz581s9Nv/85z+5+eab8fv95OTk8Oabb1JTU8Oll17KwoULCQQC/O53v+Pwww/n/vvv5+mnn2bbtm18/fXXXH311dTV1fHQQw+RkpLC888/T9++ffnrX//KPffcQ11dHXvvvTcPPfQQ6enpjfY7depU7r33XsaOjZ67ww47jNtvv51Jkya1Gq9IPDnnSApXEUpNZ2O4HwXVq9reSERERHq0uN6DZWYFwETgPWCAl3wBbAAGxHNfu9uPf/xjHnnkEcrKyhotv/zyy7nyyiv54IMPeOKJJ7jooovarOvrr7/mRz/6EZ999hkLFy5k8eLFfPzxx7zyyitcc801rF8fPWwfffQRv//97/n888/55ptvePvtt3eo68orr2TUqFGcfPLJ/OUvf6GmpoaCggIuueQSrrzyShYvXsz06dNbjXPJkiW89tprvPPOO9xyyy2sW7eu3cfllltu4T//+Q8ff/wxzz77LAB//OMfMTM++eQT5s6dy3nnndcwmt+nn37Kk08+yQcffMAvf/lL0tPT+eijjzjooIN48MEHAfjud7/LBx98wMcff8zo0aO59957d9jvrFmzeOyxxwBYv34969evV3Ilu11tKEKKqyEcSKMyuR+ZdZvBuUSHJSIiIgkUt+dgmVkm8ARwhXOuPLalxTnnzKzZTx1mdjFwMcAee+zR6j7aamnqTNnZ2Zx77rnceeedpKWlNSx/5ZVX+Pzz7UMzl5eXU1lZ2Wpdw4cPZ+rUqQAsWLCAM844A7/fz4ABAzj00EP54IMPyM7OZsqUKQwdOhSACRMmUFRUxLRp0xrVdeONN3LWWWfx0ksv8Y9//IO5c+c22+rUWpwzZ84kLS2NtLQ0Dj/8cN5//31OOumkdh2Xgw8+mPPPP5/TTjuN7373uw3v6Sc/+QkA++67L8OHD+err74C4PDDDycrK4usrCxycnI44YQTABg/fjxLliwBoknYr371K0pLS6msrOSYY47ZYb+nnXYaRx99NDfffDOPPfYYp556arviFYmn2mCEdGoJ+9OoC/QjpbwGaisgNTvRoYmIiEiCxCXBMrMkosnVI865J73FG81skHNuvZkNAjY1t61z7h7gHoBJkyZ16a9+r7jiCvbff38uuOCChmWRSIR3332X1NTURmUDgUCj+6tin8eUkZHRrv2lpKQ0TPv9fkKhULPl9tprLy699FJ+8IMf0K9fP0pKSnYo01KcsONw5jszvPmcOXN47733eO655zjggANYtGhRq+Vj35PP52uY9/l8De/v/PPP5+mnn2a//fbj/vvvbzZhHDJkCHl5eSxZsoR58+YxZ86cdscsEi+1oTDpVkskkEkkdQCUAxUblGCJiIj0YvEYRdCAe4Glzrnfxax6FjjPmz4PeKaj+0q0vn37ctpppzXqsnb00Udz1113NcwvXrwYgIKCAj788EMAPvzwQ1asaP7m9+nTpzNv3jzC4TDFxcW8+eabTJkypd0xPffcczivS9LXX3+N3+8nNzeXrKwsKioq2owT4JlnnqGmpoaSkhLmz5/P5MmT273/5cuXc+CBB3LLLbfQr18/Vq9ezfTp03nkkUcA+Oqrr1i1ahWjRo1qd50VFRUMGjSIYDDYUE9zZs2axW233UZZWRmFhYXtrl8kXmqCEdKpIZKUgS87ei+kq1jfxlYiIiLSk8XjHqyDgXOAI8xssff6DvAb4Ntm9jVwlDff7V111VWNRhO88847WbhwIYWFhYwZM6ahJeWUU05hy5YtjB07lrvvvpuRI0c2W9/JJ59MYWEh++23H0cccQS33XYbAwcObHc8Dz30EKNGjWLChAmcc845PPLII/j9fk444QSeeuopJkyYwFtvvdVinACFhYUcfvjhTJ06lRtuuIHBgwcD0eTve9/7Hq+++ipDhw7lP//5DxDtllh/v9U111zD+PHjGTduHN/61rfYb7/9+NGPfkQkEmH8+PHMmjWL+++/v1HLVVv+v//v/+PAAw/k4IMPZt99921Y/uyzz3LjjTc2zJ966qk8+uijDSMniuxuNaEw6dTiktJI6RO9bqq3rE1wVCIiIpJI5rrQDdmTJk1yCxcubLRs6dKljB49OkER9XxNRzvsafT7I51pyZpS8v86ETficD4e93O+8+8pFB/0K/odc02iQxMREZFOZmaLnHM7jLIW11EERUR6k9pQhAxqsOR0+vbJo8qlULe1/aNwioiISM8Tt1EEpXuaPXt2okMQ6bZqgmHSqKUqJZMBOWlscrn4dQ+WiIhIr6YWLBGRXVRbU0OyhbHkdPplpbCRPvgrNyY6LBEREUkgJVgiIrsoXBt9lpwvJZPMlABbrA8pNcUJjkpEREQSSQmWiMguCtVsA8CfkgnAtqQ8MuuUYImIiPRmSrBERHZRuCbaghVITQegJrUfKa4Gaita20xERER6MCVY7fT0009jZnzxxRctlikqKmLcuHFx2+eXX37JYYcdxoQJExg9ejQXX3wxEH1I8PPPP9+hui+88EL69+8f13hFeptwsBqAgNeCFc4YEF1RofuwREREeislWO00d+5cpk2bxty5c5tdHwqFOryPcDjcaP6nP/0pV155JYsXL2bp0qX85Cc/AeKTYJ1//vm8+OKLHapDpLcL19UAkJSSCoBleQ8J10AXIiIivVb3Gqb9hetgwyfxrXPgeDj2N60WqaysZMGCBbz++uuccMIJ3HzzzQDMnz+fG264gT59+vDFF1/w0ksvEQqFOOuss/jwww8ZO3YsDz74IOnp6bz66qtcffXVhEIhJk+ezJ///GdSUlIoKChg1qxZvPzyy1x77bWcfvrpDftdv349Q4cObZgfP348dXV13HjjjVRXV7NgwQJ+8YtfcPzxx/OTn/yETz/9lGAwyOzZs5k5cyb3338/Tz31FGVlZaxdu5azzz6bm266CYBDDjmEoqKiVt/3G2+8weWXXw6AmfHmm2+SmZnJtddeywsvvICZ8atf/YpZs2Yxf/58brrpJnJzc/nkk0847bTTGD9+PH/4wx+orq7m6aefZq+99uJf//oXv/71r6mrqyMvL49HHnmEAQMGNNrv6aefzjnnnMNxxx0HRJPB448/nlNPPbV951RkN4nURVuwklLSoj9zBwFQV7qO5IRFJSIiIomkFqx2eOaZZ5gxYwYjR44kLy+PRYsWNaz78MMP+cMf/sBXX30FRLv1/ehHP2Lp0qVkZ2fzpz/9iZqaGs4//3zmzZvHJ598QigU4s9//nNDHXl5eXz44YeNkiuAK6+8kiOOOIJjjz2WO+64g9LSUpKTk7nllluYNWsWixcvZtasWdx6660cccQRvP/++7z++utcc801bNsWvfn+/fff54knnmDJkiX885//ZOHChe1+37fffjt//OMfWbx4MW+99RZpaWk8+eSTLF68mI8//phXXnmFa665hvXro8/9+fjjj5kzZw5Lly7loYce4quvvuL999/noosu4q677gJg2rRpvPvuu3z00Uecfvrp3HbbbTvsd9asWTz22GMA1NXV8eqrrzYkWyJdiQtGW7AsKZpgpfcdDMC2Ej1sWEREpLfqXi1YbbQ0dZa5c+c2tOScfvrpzJ07lwMOOACAKVOmMGLEiIayw4YN4+CDDwbg7LPP5s477+Tb3/42I0aMYOTIkQCcd955/PGPf+SKK64AoglFcy644AKOOeYYXnzxRZ555hn+8pe/8PHHH+9Q7qWXXuLZZ5/l9ttvB6CmpoZVq1YB8O1vf5u8vDwAvvvd77JgwQImTZrUrvd98MEH87Of/YyzzjqL7373uwwdOpQFCxZwxhln4Pf7GTBgAIceeigffPAB2dnZTJ48mUGDot/g77XXXhx99NFAtOXt9ddfB2DNmjXMmjWL9evXU1dX1+jY1Tv22GO5/PLLqa2t5cUXX+SQQw4hLS2tXTGL7E4RL8EiEO0imJs3kDrnp2arEiwREZHeSi1YbdiyZQuvvfYaF110EQUFBfz2t7/lsccewzkHQEZGRqPyZtbqfHOa1hFr8ODBXHjhhTzzzDMEAgE+/fTTHco453jiiSdYvHgxixcvZtWqVYwePXqX46l33XXX8be//Y3q6moOPvjgVgf4AEhJSWmY9vl8DfM+n6/hHrWf/OQnXHbZZXzyySf85S9/oaamZod6UlNTOeyww/jPf/7DvHnzWkxARRLNNUmw+mWlUkwu4fL1CYxKREREEkkJVhsef/xxzjnnHFauXElRURGrV69mxIgRvPXWW82WX7VqFe+88w4A//jHP5g2bRqjRo2iqKiIZcuWAfDQQw9x6KGHtrnvF198kWAwCMCGDRsoKSlhyJAhZGVlUVGxfRjoY445hrvuuqsh6fvoo48a1r388sts2bKl4T6o+ta19li+fDnjx4/n5z//OZMnT+aLL75g+vTpzJs3j3A4THFxMW+++SZTpkxpd51lZWUMGTIEgAceeKDFcrNmzeLvf/87b731FjNmzGh3/SK7Vag+wYp+mdA/O4Vil4Nt25TAoERERCSROj3BMrMZZvalmS0zs+s6e3/xNnfuXE4++eRGy0455ZQWRxMcNWoUf/zjHxk9ejRbt27l0ksvJTU1lb///e9873vfY/z48fh8Pi655JI29/3SSy8xbtw49ttvP4455hh++9vfMnDgQA4//HA+//xzJkyYwLx587jhhhsIBoMUFhYyduxYbrjhhoY6pkyZwimnnEJhYSGnnHJKQ/fAM844g4MOOogvv/ySoUOHcu+99wIwZ84c5syZA8Dvf/97xo0bR2FhIUlJSRx77LGcfPLJFBYWst9++3HEEUdw2223MXDgwHYfz9mzZ/O9732PAw44gPz8/IblCxcu5KKLLmqYP/roo3njjTc46qijSE7WcAHSRYUat2D1TU+mmD4kV+thwyIiIr2V1bd6dErlZn7gK+DbwBrgA+AM59znzZWfNGmSazoIw9KlSxu6u8nOuf/++1m4cCF33313okNJGP3+SGf6xx9+zplb58DPV0JaLgBP3vI9jrb3yLxhVWKDExERkU5lZoucczsMbtDZLVhTgGXOuW+cc3XAo8DMTt6niMhu4QvVRieStg/CUpOST2a4DMLBBEUlIiIiidTZCdYQYHXM/BpvWQMzu9jMFprZwuJidauJp/PPP79Xt16JdDYLewmWf3s31lB6/+hEpe7DEhER6Y0SPsiFc+4e59wk59ykfv36tVRmN0clPYF+b6Sz+cM11FkyxIzO6TK9B2dXbkhQVCIiIpJInZ1grQWGxcwP9Za1W2pqKiUlJfqwLDvFOUdJSQmpqamJDkV6MF+klpA1HoQlKTs66Eu4fGMiQhIREZEE6+wHDX8A7GNmI4gmVqcDZ+5MBUOHDmXNmjWo+6DsrNTUVIYOHZroMKQH80fqCPkaJ1gpfaO9oLeVrCE7EUGJiIhIQnVqguWcC5nZZcB/AD9wn3Pus52pIykpiREjRnRKfCIiHRGI1BFKSmm0LDNvEADVW9crwRIREemFOrsFC+fc88Dznb0fEZHdLRCpJexrnGD1y81ii8skVLY+QVGJiIhIIiV8kAsRke4qydXtkGD1z0phk+uDq9AgFyIiIr2REiwRkV0QiTiSXB0Rf+N7sPIzU9jkcglU6b5RERGR3kgJlojILqgNRUixIM7fuAUrNclPmb8PqTVKsERERHojJVgiIrugNhQmlToigR0fBVCVnE9GcAvo8RIiIiK9jhIsEZFdUBOMkEYdLpC2w7ratH4kEYTqrQmITERERBJJCZaIyC6oDYVJs9pmEyyX0T86UamHDYuIiPQ2SrBERHZBbShCKnWQlL7DOn929FlYGklQRESk91GCJSKyC2qCYdKohaQdW7CScwcDUL113e4OS0RERBJMCZaIyC6oDYZJow5L3rEFKyMvmmBVlSjBEhER6W2UYImI7ILa2mp85vA1k2D16dOXSpdK3dY1CYhMREREEkkJlojILghVbwNoNsHqn53KBtcXytWCJSIi0tsowRIR2QXh2ioA/Ck7JlgDslNZ5/LwVyjBEhER6W06lGCZ2W/N7AszW2JmT5lZbsy6X5jZMjP70syO6XCkIiJdSKg22oLlT8nYYV1WahKbfXmk1WgUQRERkd6moy1YLwPjnHOFwFfALwDMbAxwOjAWmAH8ycz8HdyXiEiXEa6LJliBZhIsgIqUAWQGSyAc3J1hiYiISIJ1KMFyzr3knAt5s+8CQ73pmcCjzrla59wKYBkwpSP7EhHpSoI10QQrNT2z2fV16QPx4aBi/e4MS0RERBIsnvdgXQi84E0PAVbHrFvjLduBmV1sZgvNbGFxcXEcwxER6TwhL8FKTm2+BctleX/yNNCFiIhIr9JmgmVmr5jZp828ZsaU+SUQAh7Z2QCcc/c45yY55yb169dvZzcXEUmI+kEufM0McgHg7zMMgEiphmoXERHpTQJtFXDOHdXaejM7HzgeONI557zFa4FhMcWGestERHqEcF11dCKp+QQrLS/6J7Bq8yqa70QoIiIiPVFHRxGcAVwLnOicq4pZ9SxwupmlmNkIYB/g/Y7sS0SkS/EGuSCQ2uzqvnn9qHBp1JSs2o1BiYiISKK12YLVhruBFOBlMwN41zl3iXPuMzN7DPicaNfBHzvnwh3cl4hIl2HByuhESlaz6wfmpLLe9SVXXQRFRER6lQ4lWM65vVtZdytwa0fqFxHpqpKCFdGJlOxm1w/MTuUr15e+lRpFUEREpDeJ5yiCIiK9RiBYQY2lgr/576nyM5NZTx6pVUqwREREehMlWCIiuyAlVEmNr/kh2gECfh/lSf1JD26BUN1ujExEREQSSQmWiMguSAlvo8bf+viANXrYsIiISK+jBEtEZBekRioJBlpPsMKZ9Q8b1lMqREREegslWCIiOykScaRHthFObn4EwXr+XC/BKlOCJSIi0lsowRIR2UkVNSEyqSac3PwIgvVS8vYAILhVQ7WLiIj0FkqwRER2Ull1kGyrwlJzWi2X1zePcpdO1eaVuykyERERSTQlWCIiO6msOkgWVfjSWk+wBmRHHzYcLlUXQRERkd5CCZaIyE4qrygn1YL4M/q0Wm5gTgrrXR6mQS5ERER6DSVYIiI7qXprdNj1pJyBrZarb8FK0cOGRUREeg0lWCIiO6lqS7RFKjNvcKvlslKTKPHlew8brt0doYmIiEiCKcESEdlJwdINAGT0bT3BAqhK91q59LBhERGRXiFuCZaZXWVmzszyvXkzszvNbJmZLTGz/eO1LxGRRIpUbgLAslrvIggQzhgUnShXgiUiItIbxCXBMrNhwNHAqpjFxwL7eK+LgT/HY18iIonm27aJCAbp+W2XzfEeNqyBLkRERHqFeLVg3QFcC7iYZTOBB13Uu0CumQ2K0/5ERBImpaaYSl8O+ANtlk3uOxSASNm6zg5LREREuoAOJ1hmNhNY65z7uMmqIcDqmPk13jIRkW7LOUef4AbKU9v3fVHfvvlUulRqtqxuu7CIiIh0e21//QqY2StAczcb/BK4nmj3wF1iZhcT7ULIHnvssavViIjsFlurggyNrKc2q323lQ7ITmWD60u/rUqwREREeoN2JVjOuaOaW25m44ERwMdmBjAU+NDMpgBrgWExxYd6y5rWfQ9wD8CkSZNc0/UiIl1J0cYt7GfFrM7fq13lB+ZEn4XVT10ERUREeoUOdRF0zn3inOvvnCtwzhUQ7Qa4v3NuA/AscK43muBUoMw5p2G0RKRb27Dqa/zmyBg0sl3lB3otWIFt+vMnIiLSG7SrBWsXPQ98B1gGVAEXdOK+RER2i+q1nwPQZ9jodpXPz0xmA31Jqy2BcKhdA2OIiIhI9xXX/+m9Vqz6aQf8OJ71i4gkmn/DYsL4CAwubFf5gN/HtpQB+MJh2LYJstt+OLGIiIh0X3F70LCISE8XiTjyyz9nU+oISEpr93bBDG+MoHLdhyUiItLTKcESEWmn5RvLGMfX1PSfsFPbWZaXYFXoPiwREZGeTgmWiEg7fbX4LXJtGxn7HrFT2yX38R4BWLGhE6ISERGRrkQJlohIO9V+8RIRjP6Fx+zUdpl9BxJyPoKlasESERHp6ZRgiYi0w5bKWvYrfYXVWftBZr+d2nZATgabyaFm65pOik5ERES6CiVYIiLt8Obrz7OXrSN14uk7ve3AnFQ2uj6EytRFUEREpKdTgiUi0oZQOEL24r+yzdIZcPDZO739gOxUNrk++CqVYImIiPR0SrBERNrw6mv/4Yjw22wYdS6kZO309gNzUtnkckmu3tgJ0YmIiEhXogRLRKQVlTVB8v77a8osmz1Pun6X6shMCbDVn0dasBRCdfENUERERLoUJVgiIq145eHfMMl9SunUa7DUnF2upzbVGxijUq1YIiIiPZkSLBGRFix4+02OXn0XK7InM/zbl3WorkjmgOiEnoUlIiLSoynBEhFpxldff8VeL51PjT+DQef9HXwd+3Ppyx4UnajQs7BERER6MiVYIiJNbN5SQuQfs8ixbXDGPFLzhnW4zuQ+QwCIqAVLRESkR+twgmVmPzGzL8zsMzO7LWb5L8xsmZl9aWbHdHQ/IiK7Q01tHUVzTmefyAo2Hf1n+u4zJS71ZvYdSMj5qNmyNi71iYiISNcU6MjGZnY4MBPYzzlXa2b9veVjgNOBscBg4BUzG+mcC3c0YBGRzhIJR3jvTz/g0Lr3+XTCjYz71nfjVnf/7HSKySVt61rS41ariIiIdDUdbcG6FPiNc64WwDm3yVs+E3jUOVfrnFsBLAPi8zWwiEgnefX+mzi07GmWDDuHcSdfFde6+2ensNHlqougiIhID9ehFixgJDDdzG4FaoCrnXMfAEOAd2PKrfGW7cDMLgYuBthjjz06GI6IyK559an7OHLVXXze5zDGX/CHuNffPyuFr1wfCjRMOzV1ISrKt7Jt6yaqK7YQrq3ChWogWI0L1uJCNbhIhLCDiAMzw+/34ff58AWS8AdS8CWl4E9OxZeUQiApFX9SKv6UVAJJKSQlp+JPTiMpJYWkpDR8ft1uLCIiu0+bCZaZvQIMbGbVL73t+wJTgcnAY2a2584E4Jy7B7gHYNKkSW5nthURiYf/LniNgxZfx8rUkYy69B+Yzx/3ffTPSuUtl0tK9bK4192VRCKOjZs2sqnoU8rXL6ducxHJlWvIrF5HdrCYrEg5uZTTz8L0200xBZ2fMD7C+AmZnzB+IvgJW/RnyAJEvPUR8+EwAIz6/5IsZhrwpi1mevt8/aL6Mq6ZbZqsd02X0cK2Tf6LdNuX2Q71N9HiivaLQxVt19o5O+l41daJgdFabO3bb3lSHqlnPMSQ4XvFKyQR6YA2Eyzn3FEtrTOzS4EnnXMOeN/MIkA+sBaIHXZrqLdMRKRLWbZ8GSNevogqfxYDf/gU/pSMTtlPWrKfUn8eaaEyCNVCIKVT9rM7bS6vouiLDylb/j5u01JyK5YxNFjEINvCoJhyZWSxOWkg2zKGUp6ax+q0vrj0PHzpfUnK6IM/JR1LSsWS0vAlpWJJqQT8fnwGfgPnHKFwhGA4TDgUJFRXQyRYG32FotMuVIML1hIJ1WKhOlw4+pNwLURCEA5CJIyLhDAXwoXDmAthkSA+F46+COP3bhXentrEpkTNfNh14Bp9+I6ZNmu0zDUsqp+3JuVitm+yLRhYbApmDVMNscZs4xrlYjt+d9mebzNdG4Va3oVrfnFzNbRQoNnFrqX1zVfSVh1tLXaANXMQ2jx2jeLcidhi1+/U182OA6vfpuiR8xl47ev4Ax3tnCQiHdXRq/Bp4HDgdTMbCSQDm4FngX+Y2e+IDnKxD/B+B/clIhJXZdtqqHzkXIZYJdVnPk9a32Z7MsdNTWo/qAUqN0Ju9+oS7Zxj1dp1rF78KjUr3qPP1o8ZFf6aSVYDQC3JbEjeg035U1ifvy+pg8aQP2wf8gbvTU5aNjkJjl+kJ3vvqbs58ONf8s79P+egi/4v0eGI9HodTbDuA+4zs0+BOuA8rzXrMzN7DPgcCAE/7o4jCK768iPWvfpnRp16I336D010OCISR8455t93PTMjn7Fi2u2M2HtSp+8zmD4gmmBVbOjyCZZzjuVrN7Hiw1dgxRsMKV3IvpFvGG6OIH7WpezFykEnklwwhYH7HkzWkFEM74SulSLStikn/ZiFRW9y0Jq/seiZERww87JEhyTSq3UowXLO1QFnt7DuVuDWjtSfaOuXvMrkjY9R98eneL/PUWR/6wJGHnCUbpgW6QFefeUFvrP5fr7ufzT7HHnRbtmnZQ+CrUQTrC4oFI6w5JOP2bzwSfqte42x4aXsbWGCBFiZNpZPhlxK3rgjGTLmWwxP1mDzIl2FmTHukr+z5PfHM+HDX7E4OY0Jx34/0WGJ9FrqqNuKA793NSv3+zabXryNsSUvk/H886x7vj9r+h9G2rjj2eeAw0jNUMcXkY5w3s0G9fccuKbLG+br1zcu37iu5ss0rXPLli2MXHAFpYE89rzgnk6/gb1ecu5gWEmXSrAqa+pY/O58qj55lhEl89mf1QCsSSrg6+Hn0q/waPqPPZS9kzvn3jQRiY/UtAz2uuxpvrjzWCa89zMWFS9j/7N/3SmD9vQmzjlwDheJAA7nIt58ePs80f9vdrx3M/aeyubvrzRfzD2V5vN+bi/b6A7NmP+rGi/fcb0klhKsNgwfuR/DRz5CRflWFr3+MP4vnqNw41OkbnqM8KvG8qQ9KcndD/rvS9rAUfTZYwwDhhSQlJS8W+JzkQi1NVXU1lRTV7ONupptBGurCdZUEaytJlxXRbi2mlBdNS5YTaSuBheKThOsxULVEK7FF6rBF67BF67DH6nBFwnhc2GMMD4XwedCDTeCGxH8MTeE+6LjcVE/NpfPRZoZ2Wr7z8YjZDWejx0Jy2edP6hkxLX/j1F7o2n2RvgOlt25I5HY/be/zvgf+7bqrV8zgDBJhNg880n86X12ovaOyegzgJDzES5dSyKHuFhfUsrn/30OvnyecRVvM822EsZYkb4fS/c+i+Hf+h5DB+6NOkaLdC8ZWTmMuOI/vPPn8znomz/x2W3vkT/rTgaMGJfo0HZaJOKorK1jW9kWqsuKqa0opq6ylLqqCiJ124jUVeFqqyAYfflC1VioGn+oGn+4Gl+kDn8khN8F8bkQfu8VcEH8hAm4EAG2v8w5fN7nEp/3ecSHa/gskujUpf7zSv3/h5GYwXJaSuxiP2XtzP+5sfvZOTu7j/aXf4xvM/h7v2XGuOYGNu96zO3cUDWdatKkSW7hwoWJDqNN2yrKWPbBS5Qve5uczR+xZ+2XZFp1w/qIM8osi1JfH7YFcgn704gkpRPypRLyp+LMh89ixoEyiEQiWDiERerwRWrxh+vwR+rwR2rxuyBJkTr8ro5kV0eSqyOF6HSqBTv0XmpcErWWTB3J1FkyQUsm5L2c+YiYn4j5cRbAmQ9nfiIWwPn8OIu+qJ/3BcAr0+jbGupHt9rxmxyHtfDNjndgrHF3zIa1LX5L06TJolUtDknVpJRrb4Vt7zGmmqZDLrc02lR0KOYWVzVSX2dHr2uLmdhhaOiGVdZkPhpR01PTbOxmjUfnqj/97ayz+fqt3fs3g7S9prP3oae3XHEneP6T9Ux4/FukjTqSPmf+bbft1znHF0WrWfnOM6QX/YeJtQvJsmqqSWFVn6kExp7A8ANPJpCVv9tiEpHOEwlHeOex2yj84vekUMeSfscz9JgrGLjP/gmJpzYYorS8jPKSTWwrLaa6rJi6ys2EKrdA1RasZitJtVtJDpaRHionM1JODhXksA1/O75sDTo/NZZCDSnUWip1vhRClkzEAoQtibAvQMSSoi9fgIgvCdfwMwl8ATA/5jN85gdfNL3C+4zivM8iDl/0P5CGxzkYzsz7v8tFW5C8/9usPjFr8tgGR+P/qxv+j3Xb06TodrGfURpvR6NtGm+/fR9eObc9jWlusM/mP3s0+XzSjhFFt7+nlsvEzrT02aIlKzP3Y+yRZzFuSNfqOWZmi5xzO9zErQQrDiLhCJvWF7Fl5WdUb/iSuq3rcds2kVZbQmqwlKRIDUmRGlJcLanUNHp2inMNnywJE6DOkqJJDkmEfNFEJ+xLJuRLJuJLJuJPJeJPwQVScYEUCKRBIAVLSmsY4tiXnIY/OQ1/cjqBlFQCKekkp6QTSEknJTWdpNR0UtLSSUlJw3y6n0xkd1m6vpyKPx/F3vnp9P3p/E7dV10owuJPlrB50VP0W/caE8KfkWRhtvr6sGHAYeRMnMngiTMgKa1T4xCRxFm3pojVT9zAflteINWCFPkLKB54CGkjpjB43yn0Gbz3TnUhdJEI1dWVlG8tYVvpZqrKN1NXUUKwooRIVQmuagu+mq0k1ZWSUldGeriMzEgFuVSS0soXwtWkUunLojqQTU1SLnXJuYRTcomk9MGl98HS+xLIzCMpoy+pGdmkpmWQnJ5FanomKWlZ+HdTryGRppRgiYgkWHVdmHm3nM6ZKQtI/uVaiPMXHGXbavn4vVep/vTfjCh5i5G2CoD1SXtQuse3GXTgd8nd+1tx36+IdG3r1q3hm1fvJXvly4wJfkbAovcNBZ2frb5cyv19CPpSCfuSifiSsEgIXyTodasLkhqpIj1SSZbbRrKFWtxP0Pkps2yq/FlUB3KoTcohnJKLS+uDpecRyMwjOSuP9Nx+ZOT2J6tPP5Iy83vEcwGld2opwdI9WCIiu0lasp/1qfuQHHoJtq6AvL06VF844vhsxVpWLnyB9BUvUVj9HodYGWF8rMwcz9d7n8EeB32XQQP3bfTgXxHpXQYPHsrgc24CbqKyspzlny6ksmgRlK7Et20TacGtBCK1+ENVJLuQ17UuQNCXQq0vk1L/UCLJ2URScrC0XPzpOSRl9CU5sy9pOf3IyM0nu+8AUjNyyNdACyJKsEREdif/0IlQBG7lf7FdSLDWl5Ty5QevUv3V6wze8h5j3TIKLUKlZbAm/1tUjjuO4VNmsmdG3/gHLyLdXmZmNvtNPQKmHpHoUER6LCVYIiK70R6jp7Dqm370WTSPrP3PabVsOOL4uqiItZ++RXDl++RtXcK48FIOszrC+FiTti/fDLuIgROPJXvkdPb1J+2mdyEiIiItUYIlIrIbHVs4mAeeO5yfrn2M0If/IDDxDDCjrKKKtau+YvPyj6hb/zmpW79iWPUX7Gsb2BcI42N98gi+GXIKWaOPYtjEoxielpvotyMiIiJNaJALEZHd7MG3vmTsy2dxgO9rqkiljgC5VDYqs8nXn81Z+xIZMpn++36LfqMOxFKyEhSxiIiINKVBLkREuohzp4/izfynefy/j5BX+TUZ/hD+rAGk5A0jf8RE+u85nv5p2fRPdKAiIiKy05RgiYgkwCGjh8Lonyc6DBEREYmzDj8MxcwmmNm7ZrbYzBaa2RRvuZnZnWa2zMyWmFliHh8uIiIiIiKym8TjaZO3ATc75yYAN3rzAMcC+3ivi4E/x2FfIiIiIiIiXVY8EiwHZHvTOcA6b3om8KCLehfINTM961JERERERHqseNyDdQXwHzO7nWjC9i1v+RBgdUy5Nd6y9bEbm9nFRFu4ACrN7Ms4xBRP+cDmRAchu43Od++hc9176Fz3LjrfvYfOde/SFc/38OYWtivBMrNXgIHNrPolcCRwpXPuCTM7DbgXOKq9UTnn7gHuaW/53c3MFjY3/KL0TDrfvYfOde+hc9276Hz3HjrXvUt3Ot/tSrCccy0mTGb2IHC5N/tP4G/e9FpgWEzRod4yERERERGRHike92CtAw71po8AvvamnwXO9UYTnAqUOefWN1eBiIiIiIhITxCPe7B+APzBzAJADdvvp3oe+A6wDKgCLojDvhKhy3ZflE6h89176Fz3HjrXvYvOd++hc927dJvzbc65RMcgIiIiIiLSI8Sji6CIiIiIiIigBEtERERERCRulGC1wsxmmNmXZrbMzK5LdDwSP2Y2zMxeN7PPzewzM7vcW97XzF42s6+9n30SHavEh5n5zewjM/u3Nz/CzN7zru95Zpac6BglPsws18weN7MvzGypmR2ka7tnMrMrvb/hn5rZXDNL1bXdc5jZfWa2ycw+jVnW7LXsDap2p3fel5jZ/omLXHZWC+f6t97f8SVm9pSZ5cas+4V3rr80s2MSEnQrlGC1wMz8wB+BY4ExwBlmNiaxUUkchYCrnHNjgKnAj73zex3wqnNuH+BVb156hsuBpTHz/w+4wzm3N7AV+H5CopLO8AfgRefcvsB+RM+7ru0exsyGAD8FJjnnxgF+4HR0bfck9wMzmixr6Vo+FtjHe10M/Hk3xSjxcT87nuuXgXHOuULgK+AXAN7ntdOBsd42f/I+t3cZSrBaNgVY5pz7xjlXBzwKzExwTBInzrn1zrkPvekKoh/AhhA9xw94xR4ATkpIgBJXZjYUOA7vOX1mZkQfK/G4V0TnuocwsxzgEKIPvcc5V+ecK0XXdk8VANK8kYzTgfXo2u4xnHNvAluaLG7pWp4JPOii3gVyzWzQbglUOqy5c+2ce8k5F/Jm3yX6TF2InutHnXO1zrkVREcsn7Lbgm0HJVgtGwKsjplf4y2THsbMCoCJwHvAgJjntW0ABiQqLomr3wPXAhFvPg8ojfnDreu75xgBFAN/97qE/s3MMtC13eM459YCtwOriCZWZcAidG33dC1dy/rc1rNdCLzgTXf5c60ES3o1M8sEngCucM6Vx65z0WcY6DkG3ZyZHQ9scs4tSnQsslsEgP2BPzvnJgLbaNIdUNd2z+DdezOTaFI9GMhgxy5G0oPpWu4dzOyXRG/teCTRsbSXEqyWrQWGxcwP9ZZJD2FmSUSTq0ecc096izfWdynwfm5KVHwSNwcDJ5pZEdGuvkcQvUcn1+tWBLq+e5I1wBrn3Hve/ONEEy5d2z3PUcAK51yxcy4IPEn0ete13bO1dC3rc1sPZGbnA8cDZ7ntD+/t8udaCVbLPgD28UYjSiZ6M92zCY5J4sS7B+deYKlz7ncxq54FzvOmzwOe2d2xSXw5537hnBvqnCsgeh2/5pw7C3gdONUrpnPdQzjnNgCrzWyUt+hI4HN0bfdEq4CpZpbu/U2vP9e6tnu2lq7lZ4FzvdEEpwJlMV0JpRsysxlEu/ef6Jyriln1LHC6maWY2QiiA5u8n4gYW2Lbk0Fpysy+Q/TeDT9wn3Pu1sRGJPFiZtOAt4BP2H5fzvVE78N6DNgDWAmc5pxreoOtdFNmdhhwtXPueDPbk2iLVl/gI+Bs51xtAsOTODGzCUQHNEkGvgEuIPqFoq7tHsbMbgZmEe0+9BFwEdF7MXRt9wBmNhc4DMgHNgI3AU/TzLXsJdl3E+0mWgVc4JxbmICwZRe0cK5/AaQAJV6xd51zl3jlf0n0vqwQ0ds8XmhaZyIpwRIREREREYkTdREUERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBGRLsbMCszMmVkg0bFI72Bmn5nZYYmOQ0SkJ1CCJSIi3Z6ZzTGzSu9VZ2bBmPkXEh1fV+ecG+ucmx/POs3sNjNbbWblZrbSzK6PZ/0iIl2VOecSHYOISI9iZgHnXKgD2xcAK4CkjtTTW5nZbGBv59zZzazr0LnZnbpTrM0xs1HAGufcNjMbArwE3OCcezLBoYmIdCq1YImIxIGZFZnZz81sCbDNzAJmNtXM/mtmpWb2cWwXLDObb2b/a2bve9/wP2NmfVuo+wIzW2pmFWb2jZn9sMn6mWa22KtnuZnN8JbnmNm9ZrbezNaa2a/NzN/G+9jLzF4zsxIz22xmj5hZbsy6LWa2vzc/2MyK69+XmZ3odTUr9d7f6CbH52ozW2JmZWY2z8xSd/5I77wWzo0zs71jytxvZr+OmT/eO6al3jksbOe+DjOzNWZ2vXf8iszsrJj1x5nZR965Wu0lg/Xr6ruGft/MVgGvecv/aWYbvOP2ppmNbRL3n8zsBa+17m0zG2hmvzezrWb2hZlNbOcxOqo977G9nHNfOue2xSyKAHu3VF5EpKdQgiUiEj9nAMcBucAA4Dng10Bf4GrgCTPrF1P+XOBCYBAQAu5sod5NwPFANnABcEdMkjMFeBC4xtvvIUCRt939Xr17AxOBo4GL2ngPBvwvMBgYDQwDZgM455YDPwceNrN04O/AA865+WY2EpgLXAH0A54H/mVmyTF1nwbMAEYAhcD5zQZgNs1LbFp6TWvjPTSn4dy01SrkJST3AT8E8oC/AM+aWUo79zUQyAeGAOcB93itOQDbiJ73XC+eS83spCbbH0r02B/jzb8A7AP0Bz4EHmlS/jTgV94+a4F3vHL5wOPA79oZd7PM7LrWzkc7tq0E1gAZwD86EouISHegBEtEJH7udM6tds5VA2cDzzvnnnfORZxzLwMLge/ElH/IOfep9y3/DcBpzbUwOeeec84td1FvEO1qNd1b/X3gPufcy95+1jrnvjCzAd6+rnDObXPObQLuAE5v7Q0455Z5ddU654qJfjg/NGb9X4FlwHtEE8NfeqtmAc952waB24E04FtNjs8659wW4F/AhBZiWOCcy23ltaC199CC2HPTlouBvzjn3nPOhZ1zDxBNXKbuxP5u8I7hG0QT7dMAnHPznXOfeOdqCdGk9NAm2872zlm1t819zrkK51wt0WR3PzPLiSn/lHNukXOuBngKqHHOPeicCwPziCbXu8w595vWzkdb2wJZwP7AQ0BZR2IREekOlGCJiMTP6pjp4cD3mnzTP41oUtJc+ZVAEtFWh0bM7Fgze9frnldKNHGqLzcMWN5MLMO9+tbH7P8vRFtBWmRmA8zsUa9LYTnwcDMx/RUYB9zlfeiHaIvXyvoCzrmI9/6GxGy3IWa6CshsLZY4W912kQbDgauanLthRN9je2xt0jVuZf22Znagmb3uda0sAy5hx+PbEKuZ+c3sNxbt+lnO9tbJ2G02xkxXNzO/O4/zDrwvBj7yYrk5kbGIiOwOSrBEROIndtSg1URbqGK/7c/wvtGvNyxmeg8gCGyOrdDrlvYE0RahAV6LwfNEu/LV72evZmJZTbTVJT9m/9nOubHNlI31P977GO+cyybaEle/L8wsE/g9cC8w27bfN7aOaGJSX86897e2jf3twMym2/YRAJt7TW+7lh00HdGpCkiPmR8YM70auLXJuUt3zs1t5776mFlGzPweRI8PRLvIPQsMc87lAHOIOb7NxHomMBM4CsgBCrzlTbfpNN79ZC2ej52oKkDzv6siIj2KEiwRkc7xMHCCmR3jtUKkegMgDI0pc7aZjfHuZ7oFeNzr1hUrGUgBioGQmR1L9F6qevcCF5jZkWbmM7MhZravc2490a6E/2dm2d66vcysaXe0prKASqDMoiO/XdNk/R+Ahc65i4h2fZvjLX8MOM6LIwm4imiC99+2DlRTzrm3nHOZrbze2tk6m7EYONM7NzNo3E3vr8AlXmuTmVmGRQenyIKGgSXub6P+m80s2UsGjwf+6S3PArY452q8++fObKOeLKLHsYRoQvg/O/Ee48I59z+tnY/mtvF+335oZn28YzgF+DHw6u6NXkRk91OCJSLSCZxzq4m2PFxPNDlaTTRZif27+xDRgSg2AKnAT5upp8Jb/hiwlegH8mdj1r+PN/AF0ftb3mB7S9K5RBO0z71tH6dxF8Xm3Ez0fpkyoglUw5DaZjaT6CAVl3qLfgbsb2ZnOee+JNradRfRVrgTgBOcc3Vt7C9RLicaYylwFvB0/Qrn3ELgB8DdRI/bMhoPyDEMeLuVujd4260jOiDFJc65L7x1PwJuMbMK4Eai57U1DxLtYriW6Hl8t6031oWcTLT7agXRLxzu8l4iIj2anoMlIpIAZjYfeNg597dExyLt542K+DFQ6A3m0XT9YUTP69Cm60REpHcIJDoAERGR7sJrkRvdZkEREem11EVQRKSXMbM5LQxYMKftraU7MrM9WhmoYo9Exyci0pOoi6CIiIiIiEicqAVLREREREQkTrrUPVj5+fmuoKAg0WGIiIiIiIi0atGiRZudc/2aLu9SCVZBQQELFy5MdBgiIiIiIiKtMrOVzS1XF0EREREREZE4UYIlIiIiIiISJ0qwRETaEAxH0IirIiIi0h5d6h6s5gSDQdasWUNNTU2iQ5FuJjU1laFDh5KUlJToUKQbC0ccR/7fG0wu6Mv/nbZfosMRERGRLq7LJ1hr1qwhKyuLgoICzCzR4Ug34ZyjpKSENWvWMGLEiESHI93YVxsrOLjsX5z66ZuEvvMfApl5iQ5JREREurAu30WwpqaGvLw8JVeyU8yMvLw8tXxKh20oreZ/k+7lAN/XbPh0fqLDERERkS6uyydYgJIr2SX6vZF4KC4tbZiuWv1J4gIRERGRbqFbJFgiIomybeumhmn/5s8TGImIiIh0B0qw2sHMuOqqqxrmb7/9dmbPnp24gGK8++67HHjggUyYMIHRo0c3xDV//nz++9//7nK9K1euZP/992fChAmMHTuWOXPmxClikW6memvDZHr5NwkMRERERLqDLj/IRVeQkpLCk08+yS9+8Qvy8/PjVq9zDuccPt+u57nnnXcejz32GPvttx/hcJgvv/wSiCZYmZmZfOtb39qlegcNGsQ777xDSkoKlZWVjBs3jhNPPJHBgwfvcqwi3ZG/tgyA1b6h5NRuaqO0iIiI9HZqwWqHQCDAxRdfzB133LHDuuLiYk455RQmT57M5MmTefvttwGYPXs2t99+e0O5cePGUVRURFFREaNGjeLcc89l3LhxrF69mmuuuYZx48Yxfvx45s2bB0QTpMMOO4xTTz2Vfffdl7POOqvZ5/Bs2rSJQYMGAeD3+xkzZgxFRUXMmTOHO+64gwkTJvDWW2+1Guc555zDQQcdxD777MNf//pXAJKTk0lJSQGgtraWSCTS7LG58847GTNmDIWFhZx++ukAbNmyhZNOOonCwkKmTp3KkiVLGvZ13nnnMX36dIYPH86TTz7Jtddey/jx45kxYwbBYBCAW265hcmTJzNu3DguvvjiHd53JBKhoKCA0ph7Y/bZZx82btzY2mkU2SWB2mgL1sa0vciOlEFQA6eIiIhIy7pVC9bN//qMz9eVx7XOMYOzuemEsW2W+/GPf0xhYSHXXntto+WXX345V155JdOmTWPVqlUcc8wxLF26tNW6vv76ax544AGmTp3KE088weLFi/n444/ZvHkzkydP5pBDDgHgo48+4rPPPmPw4MEcfPDBvP3220ybNq1RXVdeeSWjRo3isMMOY8aMGZx33nkUFBRwySWXkJmZydVXXw3AmWee2WKcS5Ys4d1332Xbtm1MnDiR4447jsGDB7N69WqOO+44li1bxm9/+9tmW69+85vfsGLFClJSUhoSnptuuomJEyfy9NNP89prr3HuueeyePFiAJYvX87rr7/O559/zkEHHcQTTzzBbbfdxsknn8xzzz3HSSedxGWXXcaNN94IwDnnnMO///1vTjjhhIZ9+nw+Zs6cyVNPPcUFF1zAe++9x/DhwxkwYECb51FkZyXVRVuwyrL2gW1vQMV66Kuh/0VERKR5asFqp+zsbM4991zuvPPORstfeeUVLrvsMiZMmMCJJ55IeXk5lZWVrdY1fPhwpk6dCsCCBQs444wz8Pv9DBgwgEMPPZQPPvgAgClTpjB06FB8Ph8TJkygqKhoh7puvPFGFi5cyNFHH80//vEPZsyY0ew+W4tz5syZpKWlkZ+fz+GHH877778PwLBhw1iyZAnLli3jgQceaLaFqLCwkLPOOouHH36YQCDQ8J7OOeccAI444ghKSkooL48mxsceeyxJSUmMHz+ecDjcEO/48eMb3t/rr7/OgQceyPjx43nttdf47LPPdtjvrFmzGlr7Hn30UWbNmtXqMRfZVSnBaIJV03dfAGq3rk1kOCIiItLFdbgFy8yGAQ8CAwAH3OOc+4OZ9QXmAQVAEXCac25rS/W0R3tamjrTFVdcwf77788FF1zQsCwSifDuu++SmpraqGwgEGjUrS72eUwZGRnt2l99Fz2Idv8LhULNlttrr7249NJL+cEPfkC/fv0oKSnZoUxLccKOw5k3nR88eDDjxo3jrbfe4tRTT2207rnnnuPNN9/kX//6F7feeiuffNL6MNb178nn85GUlNSwL5/PRygUoqamhh/96EcsXLiQYcOGMXv27GafZXXQQQexbNkyiouLefrpp/nVr37V6n5FdlVKsIw6kgj02xuAik2rSNkrwUGJiIhIlxWPFqwQcJVzbgwwFfixmY0BrgNedc7tA7zqzXdrffv25bTTTuPee+9tWHb00Udz1113NczXd4UrKCjgww8/BODDDz9kxYoVzdY5ffp05s2bRzgcpri4mDfffJMpU6a0O6bnnnuu4R6lr7/+Gr/fT25uLllZWVRUVLQZJ8AzzzxDTU0NJSUlzJ8/n8mTJ7NmzRqqq6sB2Lp1KwsWLGDUqFGN9h2JRP7/9u48vq6q3vv453fmzEmTdEpnaUtp0wHSQQrS1jJdQUDA4iMK9CpXRHnAebgg4uPrIt7r9SIoLxStYmVUofeqCIKIvTJ1YCiUlgJtOqRDkmYezrSeP85JmqRJmzYnOWnyfb9eh5y99tpr/5LdHc4va+212LlzJ0uXLuV73/setbW1NDQ0cOaZZ7J69Wog8SxZUVERubm5vfp+2pKpoqIiGhoaePTRR7utZ2ZccsklfOELX2DGjBkUFhb2qn2RY+WLNdNsGWQXTwCgqWpnmiMSERGRwazPCZZzrsI5tyH5vh7YDJQAFwG/TFb7JXBxX881GHzxi1+ksrKyffvOO+9k3bp1zJ49m1NOOaV9OvNLL72U6upqZs6cyV133cW0adO6be+SSy5h9uzZzJkzh2XLlnHHHXcwevToXsdz//33M336dObOncsnPvEJVq9ejdfr5cILL+T3v/99+yQXPcUJiWF+S5cuZdGiRdx8882MHTuWzZs3s3DhQubMmcNZZ53Fl770JUpLSwH41Kc+xbp164jFYlx55ZWUlpYyb948brjhBvLz87n11ltZv349s2fP5mtf+xq//OUvewr/MPn5+Xz6059m1qxZnHvuucyfP7993z333NMp7hUrVvDrX/9awwOlX3lirUQsQFFhMY0uSPTgrnSHJCIiIoOYdTcz3XE3ZjYJeA6YBZQ75/KT5QYcbNvucsy1wLUAEyZMOG3Hjh2d9m/evJkZM2akLEbp7NZbb+00GcZQo38/0ld/+7cPMz32NhlfeI3K20ux0bOY8tnue1ZFRERk+DCz9c65sq7lKZvkwsyygd8CNzrnOk315xJZXLeZnHPuXudcmXOurLi4OFXhiIikhC8eJmZBcjN8HGAE/qa96Q5JREREBrGUTNNuZn4SydVq59zvksX7zGyMc67CzMYAWqFzELr11lvTHYLIoOaNh4n6A5gZNf5iprUceRkGERERGd763IOVHP53H7DZOfeDDrvWAFcl318FPN7Xc4mIDDR/vJWYJzH7ZVNwJLnRSuhh4W0RERGRVAwRXAx8AlhmZq8kX/8E3A6cbWZvA8uT2yIiJxSfCxP3JhKsaNZIfMSg6fClEEREREQgBUMEnXNrAeth9wf72r6ISDoFXJh4sgeL7NFwAGjYB9l6ZlREREQOl7JJLkREhiI/YeK+RILlzRsDQGvNnnSGJCIiIoOYEqxeeuyxxzAz3nrrrR7rbN++nVmzZqXsnFu2bGHJkiXMnTuXGTNmcO211wKJRYL/+Mc/Hne7LS0tLFiwgDlz5jBz5ky+9a1vpSpkkSElGosTdBFccohgRkEiwaqv3J3OsERERGQQU4LVSw888ABnnHEGDzzwQLf7o9Fon88Ri8U6bd9www3cdNNNvPLKK2zevJnPf/7zQN8TrGAwyDPPPMOrr77KK6+8whNPPMELL7zQp9hFhqLWaJygRSDZg5VbPA6A5mr1YImIiEj3lGD1QkNDA2vXruW+++7jwQcfbC9/9tlnOfPMM/nwhz/MKaecAiQSrY9//OPMmDGDyy67jKamJgCefvpp5s2bR2lpKStXrqS1tRWASZMm8dWvfpVTTz2VRx55pNN5KyoqGDduXPt2aWkp4XCYW265hYceeoi5c+fy0EMP0djYyMqVK1mwYAHz5s3j8ccTEzauWrWKiy66iCVLljB16lS+/e1vA2BmZGdnAxCJRIhEIiQmg+zskUceYdasWcyZM4cPfOADQKL365prrqG0tJR58+bx17/+tf1cF198MWeffTaTJk3irrvu4gc/+AHz5s1j0aJFVFdXA/DTn/6U+fPnM2fOHC699NL2n09HixYt4o033mjfXrJkCevWrev19RJJlZZIjCBh8IUAKBpRQL3LIFpbkebIREREZLBKyTpYA+ZPX4O9r6e2zdGlcP6RJzh8/PHHOe+885g2bRqFhYWsX7+e0047DYANGzawadMmJk+ezPbt29myZQv33XcfixcvZuXKlfz4xz/mc5/7HFdffTVPP/0006ZN45Of/CQ/+clPuPHGGwEoLCxkw4YNh533pptuYtmyZZx++umcc845XHPNNeTn53Pbbbexbt067rrrLgC+8Y1vsGzZMn7+859TU1PDggULWL58OQAvvfQSmzZtIjMzk/nz5/OhD32IsrIyYrEYp512Gtu2beP6669n4cKFh53/tttu489//jMlJSXU1NQAcPfdd2NmvP7667z11lucc845bN26FYBNmzaxceNGWlpaOOmkk/je977Hxo0buemmm/jVr37FjTfeyEc+8hE+/elPA/Cv//qv3Hfffe09c21WrFjBww8/zLe//W0qKiqoqKigrOywRbJF+l1rNE4WkfYEa2ROiP0uH0/DvjRHJiIiIoOVerB64YEHHuCKK64A4Iorrug0THDBggVMnjy5fXv8+PEsXrwYgCuvvJK1a9eyZcsWJk+ezLRp0wC46qqreO6559qPWbFiRbfnveaaa9i8eTOXX345zz77LIsWLWrv+eroySef5Pbbb2fu3LksWbKElpYWysvLATj77LMpLCwkIyODj3zkI6xduxYAr9fLK6+8wq5du9qTsK4WL17M1VdfzU9/+tP24Ytr167lyiuvBODkk09m4sSJ7QnW0qVLycnJobi4mLy8PC688EIg0fO2fft2IJGEnXnmmZSWlrJ69epOPVVtPvrRj/Loo48C8PDDD3PZZZd1+/MR6W8t4Sghi2D+RIJVkOmnknx8TVo3XURERLp3YvVgHaWnqT9UV1fzzDPP8Prrr2NmxGIxzIzvf//7AGRlZXWq33WoXXdD77rq2kZHY8eOZeXKlaxcuZJZs2Z1mwg55/jtb3/L9OnTO5W/+OKLR40nPz+fpUuX8sQTTxw2Qcc999zDiy++yB/+8AdOO+001q9ff8TvIxgMtr/3eDzt2x6Pp/0ZtauvvprHHnuMOXPmsGrVKp599tnD2ikpKaGwsJDXXnuNhx56iHvuueeI5xXpL+FwCwCW7MEyM+p9Iwi1bk9jVCIiIjKYqQfrKB599FE+8YlPsGPHDrZv387OnTuZPHkyf//737utX15ezvPPPw/Ab37zG8444wymT5/O9u3b2bZtGwD3338/Z5111lHP/cQTTxCJRADYu3cvVVVVlJSUkJOTQ319fXu9c889lx/96Ec45wDYuHFj+76nnnqK6upqmpubeeyxx1i8eDEHDhxoH/LX3NzMU089xcknn3zY+d955x0WLlzIbbfdRnFxMTt37uTMM89k9erVAGzdupXy8vLDErsjqa+vZ8yYMUQikfZ2urNixQruuOMOamtrmT17dq/bF0mlSEviGUFPIKO9rClYTHakOl0hiYiIyCCnBOsoHnjgAS655JJOZZdeemmPswlOnz6du+++mxkzZnDw4EGuu+46QqEQv/jFL7j88sspLS3F4/Hwmc985qjnfvLJJ9snmTj33HP5/ve/z+jRo1m6dClvvvlm+yQXN998M5FIhNmzZzNz5kxuvvnm9jYWLFjApZdeyuzZs7n00kspKyujoqKCpUuXMnv2bObPn8/ZZ5/NBRdcAMAtt9zCmjVrAPjyl79MaWkps2bN4vTTT2fOnDl89rOfJR6PU1payooVK1i1alWnnquj+c53vsPChQtZvHhxp6RuzZo13HLLLe3bl112GQ8++CAf/ehHe922SKqFW5sB8CSHCAKEM4rJcM3Q2pCusERERGQQs7Zej8GgrKzMdZ0tbvPmzcyYMSNNEZ3YVq1a1WkyjOFI/36kL17YsJFFa5aw/Yw7mLT8XwB45L47uHznd+HzG6DwfWmOUERERNLFzNY75w6biU09WCIiPYi2JoYIev2Hhgj68hKLDUc0VbuIiIh0QwnWEHb11VcP694rkb6KJie58AUPDREMFYwFoL5yV1piEhERkcGt3xMsMzvPzLaY2TYz+9rxtDGYhjHKiUP/bqSvYuHEM1i+QGZ7WXZRIsFqrNqdlphERERkcOvXBMvMvMDdwPnAKcDHzOyUY2kjFApRVVWlD8tyTJxzVFVVEQqFjl5ZpAexth6s0KEhggWFYwg7L5GavekKS0RERAax/l4HawGwzTn3LoCZPQhcBLzZ2wbGjRvHrl27OHDgQD+FKENVKBRi3Lhx6Q5DTmDxSKIHKxA81IM1MjfEAfJx9UqwRERE5HD9nWCVADs7bO8CFnasYGbXAtcCTJgw4bAG/H4/kydP7scQRUS615Zg+YOHerAKs4NscnnkNe1LV1giIiIyiKV9kgvn3L3OuTLnXFlxcXG6wxERaeeSQwQ7Jlhej1HjLSTQUpmusERERGQQ6+8EazcwvsP2uGSZiMig56KtAJiv87N8jYFCssNV6QhJREREBrn+TrBeBqaa2WQzCwBXAGv6+ZwiIqkRSfRg0SXBioSKyY3XQCwy8DGJiIjIoNavCZZzLgp8DvgzsBl42Dn3Rn+eU0QkZWJtCVawc3HWqMSbRk2+IyIiIp319yQXOOf+CPyxv88jIpJyySGC+DM6FXtzR8EeiNZW4Msdm4bAREREZLBK+yQXIiKDlbUlWN5Ap3J/fiKpqtdiwyIiItKFEiwRkR5YrJVWAmDWqTyrsASAxkolWCIiItKZEiwRkR54Yi1ELHBYeV5RogcrfFAJloiIiHSmBEtEpAfeeGu3CVZxQS4HXC7xuj1piEpEREQGMyVYIiI98MRaiXq6SbCyg1S4QnwNFWmISkRERAYzJVgiIj3wxsPEukmwAj4PVZ4iQs170xCViIiIDGZKsEREeuCLh4l5gt3uqwuMIje8b4AjEhERkcFOCZaISA+88dYeE6zmjFFkxhuhtX6AoxIREZHBTAmWiEgP/C5M3Nt9ghXLTi4wrIkuREREpAMlWCIi3XDO4XdhnPfwZ7AAvPmJtbBiNbsGMiwREREZ5JRgiYh0IxyLk0krMV9mt/sziycAULd/+wBGJSIiIoNdnxIsM/u+mb1lZq+Z2e/NLL/Dvq+b2TYz22Jm5/Y5UhGRAdQSiZNhrcT93SdY+aMmAtB0YOdAhiUiIiKDXF97sJ4CZjnnZgNbga8DmNkpwBXATOA84Mdm5u3juUREBkxLJEYmLdBDgjVmRB4HXC6RgxoiKCIiIof0KcFyzj3pnIsmN18AxiXfXwQ86Jxrdc69B2wDFvTlXCIiA6klEiOLVpw/q9v9Y/IzqHCFeOp3D3BkIiIiMpil8hmslcCfku9LgI7jZnYly0RETgjNra0ELYIFu0+wsoM+Kj1FBJu02LCIiIgc4jtaBTP7CzC6m13fdM49nqzzTSAKrD7WAMzsWuBagAkTJhzr4SIi/SLc3ACABbpPsADqA6PICb85UCGJiIjICeCoCZZzbvmR9pvZ1cAFwAedcy5ZvBsY36HauGRZd+3fC9wLUFZW5rqrIyIy0MJNiQTLc4QEK5I1msyDycWGgzkDFZqIiIgMYn2dRfA84CvAh51zTR12rQGuMLOgmU0GpgIv9eVcIiIDKdqaSLC8oewe67gcLTYsIiIinfX1Gay7gBzgKTN7xczuAXDOvQE8DLwJPAFc75yL9fFcIiIDJtpcDxw5wfKNSHTUN1eVD0hMIiIiMvgddYjgkTjnTjrCvu8C3+1L+yIi6dI2RDCU2fPQv+zixFpYdXvfI+PkAQlLREREBrlUziIoIjJkhFsSCVZGVl6PdQpGTyTujJZK9WCJiIhIghIsEZFutA0RzMjuuQdr9Ihc9pNPrGZnj3VERERkeFGCJSLSjViyB8vbwzpYAKNyQ+xxhXi12LCIiIgkKcESEemGCzcm3gR6nuTC7/VQ7RtJZnPFAEUlIiIig50SLBGRbnhbaxJvQvlHrNcQGkNeeB84LeMnIiIiSrBERLoVCNfQZBngCxyxXiRrLAEi0Fg5QJGJiIjIYKYES0SkG8FILY2e3KNXzE+sheVqNdGFiIiIKMESEelWKFpLs6/nGQTbBEZMAKBh33v9HZKIiIicAJRgiYh0IzNaR9iff9R62SMnAdCwf3u/xiMiIiInBiVYIiJdxOKO7Hg9sWD+UeuOHDmGJhektWpH/wcmIiIig54SLBGRLmqawuRbPS6j4Kh1xxRksNsVQe2uAYhMREREBjslWCIiXVQ1tJBHI56sEUetW5gVoIIigo17BiAyERERGexSlmCZ2RfNzJlZUXLbzOxOM9tmZq+Z2ampOpeISH+qq6zAaw5fzqij1jUzagMjyWrZOwCRiYiIyGCXkgTLzMYD5wDlHYrPB6YmX9cCP0nFuURE+ltTZeJXWbBwQu/qZ4whN3YQIs39GZaIiIicAFLVg/WfwFcA16HsIuBXLuEFIN/MxqTofCIi/aa5MjFhRf6YSb2qH8suSbyp0zBBERGR4a7PCZaZXQTsds692mVXCdBx5c1dybKux19rZuvMbN2BAwf6Go6ISJ9FaxITVmQVTepVfU9BYrHh2EEtNiwiIjLc+XpTycz+AozuZtc3gW+QGB54XJxz9wL3ApSVlbmjVBcR6Xfe+j2E8RHIKupV/VAyEavf/y75Jy3pv8BERERk0OtVguWcW95duZmVApOBV80MYBywwcwWALuB8R2qj0uWiYgMahlNezjoG8moxO+1o8obNYG4M5r27yC/f0MTERGRQa5PQwSdc68750Y65yY55yaRGAZ4qnNuL7AG+GRyNsFFQK1zrqLvIYuI9J9Y3DEqXE5d9uReHzN6RB4HyCN6sPzolUVERGRI6891sP4IvAtsA34KfLYfzyUikhI7DtQymT3EC6f1+pixeRnscUV46tRJLyIiMtz1aohgbyV7sdreO+D6VLYvItLfdr27mSkWJbNkZq+Pyc3wsd8KGd+kTnoREZHhrj97sERETjgNO14BoPh9c3t9jJnREBxJdng/OM3VIyIiMpwpwRIR6cC7Zz1h/IRK5hzTca0Zowi5Fmit66fIRERE5ESgBEtEJCked4yse409mdPBFzi2Y7OTK1nUaZigiIjIcKYES0Qk6Z1dFcxy22gds+CYj/XkJdZRjyvBEhERGdaUYImIJL39/Br8FqNw3gXHfGywIJFgNVZqqnYREZHhTAmWiAjgnMPefpJGy6JoxgeO+fickRMAaKralerQRERE5ASiBEtEBHhjdw1lkXVUjjoDvP5jPr6oIJ8al0XkoBIsERGR4UwJlogIsP7vT1BstRSddtFxHT8qN8ReNwLq9QyWiIjIcKYES0SGvVjckb/1EVosg6w5Fx9XGyNzguxzBfga96Y2OBERETmhKMESkWHv5a27WBb/B/snnA+BrONqw+/1UOMrIrNlf4qjExERkROJEiwRGfbeW/sgOdbMqA+s7FM7jcGRZEcPQiyaoshERETkRKMES0SGtZZIjEk7H6fSP5bg5MV9aiuSOQoPcWjYl6LoRERE5ETj62sDZvZ54HogBvzBOfeVZPnXgX9Olt/gnPtzX88lIpJqz294hbPYxM4ZN1Dk6ePfnHLHQDWJiS6SCw8PBbG4Y9/+vVTt3EJz5Q5i9ZXEm6qx5mq8kUYsHsFcDItH8Voc5w3gvCHwBcGXAf4MCGbhDWbjz8jBn5FDIDOPjKxcQlm5ZGTnEsjIgWDOcc3gKCIiMpj0KcEys6XARcAc51yrmY1Mlp8CXAHMBMYCfzGzac65WF8DFhFJpdoXf43HHOOW9G14IIA3bxwA0Zrd+MaV9bm9geaco3zPXvZsXUdz+Ub8B96guOltxsYqGGtNjO1Sv9X5abQMYviImpcYPuIYXhcl6FoJECFImKD1fshkGB8tlkGrZdDiyaDVk3gf9oRw5sUMDIdz4BJBt38Fl0j0cJiLJ17EMec6ffUQBxfHQ3K7rV7bcTi8yW0P3W338PM7bPvwmt2Vdd9W747tzTnpxXFHO2fvoh4GBukPos7yyPzUfzNh7Jh0hyIi9L0H6zrgdudcK4Bzru3p7ouAB5Pl75nZNmAB8HwfzycikjK1jWFKq55ge85cJo2Y1Of2MgoTCVZjZTl5fW6t/8XijrfeeYeKV5/GU/4PxtdtYCrlTEzur7E8KjKm8nbOqVjBREIjp5A9cjJZBaPJLRxJMJRN8CjniMTi1LWGaWmsp7GhlpbGOloa6wg3JV6xlgZiLfXEw43Q2oCFG7BIE/5YE4F4M8F4M6FYE/nRg+AgkU4lP+UaWCItwiyRDDg8OPMkv1qH934cHjAj1l7mAUukWc68YIn9zjzQ1k5bXYx48j3Wzads15aydJe6tIV7+L62ZPFo9brXuV63x3Vt/BhjO169PG2fueOJccBiGxj+eCtz65/lb3+7nwkf+8oAnVVEjqSvCdY04Ewz+y7QAnzJOfcyUAK80KHermTZYczsWuBagAkTJvQxHBGR3nv++Wc5z/awc87nU9JeQfFows5Lc9WuQZtgHWxo4bWX/0bLG//DxMrnmMl2ZgLNBCnPKuW1sReSO2U+o6fPJ7+ghPzukolj4Pd68GeGyM0MQXFxar4JETnEOcq/U0rxO78HlGCJDAZHTbDM7C/A6G52fTN5/AhgETAfeNjMphxLAM65e4F7AcrKygbqDz4iIoQ3PkQEH+NOX5GS9kbmZrKfAqx2T0raS5XqhhY2rP0jvP5bShvWcpbVEMPD9oxZvDn5RkbPXs6IqYuYruefRE48ZuydfAkL3rmTHW+/zsSppemOSGTYO2qC5Zxb3tM+M7sO+J1zzgEvmVkcKAJ2A+M7VB2XLBMRGRT21TZR1vAM5SPez/uyClPS5qjcEDvcCErqK1LSXl9EojFefP45al76DafWPc1yq6KZEDsKT6d51gWMX3Ax78tOzfctIuk1Zfk/E9l2NxVP3snEqT9Ndzgiw15fhwg+BiwF/mpm04AAUAmsAX5jZj8gMcnFVOClPp5LRCRl1j/3B/7Jqtlb9rGUtVmYFeBlV8CU5vQlWOV79rDlyZ8xafsjnEE5UbzsKFjErlNXULLwUk4OZqctNhHpH0VjJvFy/tnM3v84Bw/cRkGxJrsQSae+Jlg/B35uZpuAMHBVsjfrDTN7GHgTiALXn4gzCG57dS0Hn/4hYy68mXFT56Q7HBFJId+bv6WZEKPnX5KyNj0eoy5QTFbra4mn/Pv4/FJvhSMx1v3vn4m+9AvmNz7LBAuzPTCNLaXf4qQln+B9OXr2SWSoKz7/q2Q++ASv//7fWHjtnekOR2RY61OC5ZwLA1f2sO+7wHf70n66HXzvVWbWPkfo12exKTSX1pkrmL70Y2Tn5Kc7NBHpgz1VtSxoeo7yUcuYHshMadvNoVEEG5uhtQ5C/TvVRfmeCt7688+YvONhTqecJkJsG/Mhxiy7jknTFvbruUVkcJl08qm8lLOcebtXs/fdaxk9ZVa6QxIZtvq80PBQNv/i6znw/g/z+h/+i3HlayjZ8DWa1n+L17Lm0jJxKaPnnMO4k+bg8Q2vH6Nzjkg0TjQWIRaNEI9FcfEYxKLEYxFcPI6Lx4kD8Xgc5+I4l5iKOB53OBdva6l97Rpom3jZtZ0kOfnykec9sW4WJTHPkXsNOncqJNd46UVPQ9c63Z27mxO063464UN1jzitsfVuwuREB3LP38th5zjGHpbeTL3sjtLkoTZ6+jl1o0ucrsdAOv0r6tG2F//EcmukseyKo9Q8drGs0dAI1FX0S4IVjsZ56X//QvTF+1jQ+FfOsVZ2BKby1uzvMPWDV1OakZvyc4rIiWH8Ff9B+N5FHHz4c4z68l8w7/D6fHLMnCMeaSEcbiESjRKLRIlEI4n30Qi4OPFYFOIxcDGIx3DxOMQjuMThuLalFpJr8zkHzox4N/+faltVruP/0jp/JLH2r9bl80mndeqsrY2On0Qs0Zh1WLuuvZ1DS1t097nn0FvrFMOh0uQxHs9hZa7D93OoTevcZqfvrW2/dY61y8+j03dm4PwZ5OYXEvJ7ORHozjuK4lHjKV7578Rjd7B53VPUr3uYMZX/y/jNt8Pm22lyQd4LnERt7nR8hZPJHDmF0Mgp5BWPo6BwJL5AKCVxxGMxWluaCLc0Em5pItLSRLi1kUhzE5HWJmLhZmKtjcTCTcTDLcQjLcQjrbhoC0RbcNEwFm3FYomXNx7GGw/jc4e++uNhfC6C34XxEsXj4niI4SWOlxhed+h9wByBlHxnIgNvElBNLmNPPT/lbVveWNgP1O6CkSenrN0dFQfY9OQvmPTeg5zBOzQT5N0x5zNq6XVMnL4oZecRkRPXmJJJ/H3Glzjzre+w8f6vMu/q/0h3SCkRi8VpqKuh4eB+muv201J/kNbGOiLNdUSba9vX0PNEGvBGGvFFG/HHGvHGwnjjrYnPOMnPNwEiBAgTdBECFsUDhJIvGbx+ET2X4o/+kAtmd13yfnBSgtVLHq+HGQvPhYXn4pxj93tvsuvVv8KejeTXvMnsqj+RXdUMWzsf10yQerJp9mQQMx9x8xMzXzJt8SQSGBdLJjIxLJ5876IEXJigayVImJBFyAAyjiP2uDNa8RMxP2ECRMxPxAJEzU/UAkQ8AVo9WTT6Coh5gsQ9fuIeP5gXPD7weJMvH9b21evDkvucxwd4cMn9zryYWfIFbX8RMfPg6bANJL9a+19m2vqyXLJax31ddd+J4Y5Yp+Nme5/QYXWOvlhnT6c26/1KA8fSd9Sr/iujx66bo/UVHbEjyx051s7H9vQXu57P32NP4BHa7DGWY6hb8L4yRvhS/2cC/+hT4G1o2vUamVN7nIS1V8LROP944X9peeFnnF7/JB+yJnb7J7F19i2874P/zMzM/NQELSJDxuLLv8DaH77MGdt/xmuPjGD25d9Md0iHcc5RU99I9d4dNFbupPXgLmK1FbjGSjzN1XhbDhKK1JAZrSXH1ZHn6smz2BHXF4w6D02WQROZNHsyCHsyiHqChAP5NHuCxL0B4m1fvUHi3iDOGwRvALwBPN7EZxiP15t8f+gzjTMPeLzJbV/7ouSJDqNDPULtn2iSnUYd/+/m2v9D19L2n0nyzWFlnRckP7SoedcySxa4Tu249mbb/h/Z6XNOh2Paj+8QQ/sxnT4HxbuG3znWTm27Lt931+/Tdd3TbfWSnKlMLxmsK0weTgnWcTAzSqbMpGTKzPYyF49zoHIvlTvfpuXAu0Rq9xNprMY1HyQQqccfbYBYBHNRPPEobSlWzPxELUQcL3FL3rgeL+bxEfeFiHtDOF/ihT8D84fAn4n5M/AGEi9fMLP95Q9lEszIIhDMIBjKJBjKwOcPkmF2XMmZiBybKRMmsNsV4t+xkeN9umvz9p1sfWY148sfYwmbCePjvZHLiS69jpIZZw3Y5BkicuLxeD2UXb+K5394Oe9/4w427tvMzGvuIpCVPyDnj8XiVFfuo3rvDhoqy2mp2kW8dg/exr2EmveREznAiFgVhVZHQZdjo85DreXQ4Mml2ZdHQ9YEDgYLiIUKcJmFeDJH4M0uJJhVQEZ2Hpm5BWTl5JGZnY8vkEmuGRokLYOB9fwsw8ArKytz69atS3cYIiLHrboxzPrbz6Usp5qCr7za6+P2HmzkleceI7TpIRaF/0HIIuz1j6fxlBVMWv4veHNG9mPUIjLUhMNhXrzviyzeez91ls2Ok65k0llXkTd+xnG32dJUT/XendQd2Elj1S4iB3fj6vbgb9xHRus+8qOVFMarCVnksGMPkkuNr4jG4EjCmaNw2WPw5Y8lOGIcmYXjyB05kdyCYjzeE+MZGxEAM1vvnCvrWq4eLBGRFBqRFWBLaDZnN62Cqneg8H091q2oquGNtf+DvfXfzGn6B+dZHfWWzfYJH6FkyUpGT1mo3ioROS6BQIAzr/sRG56/BPfM/+O0bT+BbT9hr2cU+7NPJpIzHk92EbFAHl6PgXmIRiK4llpcax2e1jo8rbWEWirJjlZREK8mlybGkljgtE2r81PlKaTWX8S+nJnszhqNJ3csgRHjyCocT/7oiRSMHE9BIHRYj5XIUKUES0QkxaInXwyvr6LpH/eSeeH3DpXH4ryxeRN7NjxBxs7nOC28juXWTCMZ7B55JrHTLmNU2cWc7AumL3gRGVJOff8y3KKlvLV1C3uef4iMvesYW7eVkbXPk2Hhbo+JOC8NZNLkyaTeN4KqjClUZC7CZY/CmzuGYMFYcovHUzhmEjn5RYz1eDgxph4QGRgaIigikmLbKxt5+c7/w+WeZ3lr1IeoIRdPbTljm7cyzg4AcNBTwN5RZ5F36iWMnXc+KKkSkQHUEo5SW1tLrLmGaDxOLO7IDAYSzzVl5uDxeo7eiMgwpyGCIiIDZFJRFm9/5D/53Zqvsmzvs0wkQrW3iJqCWdRNfD8T5n+IgpKZFGj4n4ikSSjgI1RcCBSmOxSRIUcJlohIPzh77hTcnIdpjsQI+b2UmFGS7qBERESk3ynBEhHpJ2ZGZkC/ZkVERIYTDbAVERERERFJESVYIiIiIiIiKaIES0REREREJEUG1TTtZnYA2JHuOLooAirTHYQMGF3v4UPXevjQtR5edL2HD13r4WUwXu+JzrniroWDKsEajMxsXXfz28vQpOs9fOhaDx+61sOLrvfwoWs9vJxI11tDBEVERERERFJECZaIiIiIiEiKKME6unvTHYAMKF3v4UPXevjQtR5edL2HD13r4eWEud56BktERERERCRF1IMlIiIiIiKSIkqwREREREREUkQJ1hGY2XlmtsXMtpnZ19Idj6SOmY03s7+a2Ztm9oaZ/d9k+Qgze8rM3k5+LUh3rJIaZuY1s41m9j/J7clm9mLy/n7IzALpjlFSw8zyzexRM3vLzDab2ft1bw9NZnZT8nf4JjN7wMxCureHDjP7uZntN7NNHcq6vZct4c7kdX/NzE5NX+RyrHq41t9P/h5/zcx+b2b5HfZ9PXmtt5jZuWkJ+giUYPXAzLzA3cD5wCnAx8zslPRGJSkUBb7onDsFWARcn7y+XwOeds5NBZ5ObsvQ8H+BzR22vwf8p3PuJOAg8M9piUr6w38BTzjnTgbmkLjuureHGDMrAW4AypxzswAvcAW6t4eSVcB5Xcp6upfPB6YmX9cCPxmgGCU1VnH4tX4KmOWcmw1sBb4OkPy8dgUwM3nMj5Of2wcNJVg9WwBsc86965wLAw8CF6U5JkkR51yFc25D8n09iQ9gJSSu8S+T1X4JXJyWACWlzGwc8CHgZ8ltA5YBjyar6FoPEWaWB3wAuA/AORd2ztWge3uo8gEZZuYDMoEKdG8PGc6554DqLsU93csXAb9yCS8A+WY2ZkAClT7r7lo75550zkWTmy8A45LvLwIedM61OufeA7aR+Nw+aCjB6lkJsLPD9q5kmQwxZjYJmAe8CIxyzlUkd+0FRqUrLkmpHwJfAeLJ7UKgpsMvbt3fQ8dk4ADwi+SQ0J+ZWRa6t4cc59xu4N+BchKJVS2wHt3bQ11P97I+tw1tK4E/Jd8P+mutBEuGNTPLBn4L3Oicq+u4zyXWMNA6Bic4M7sA2O+cW5/uWGRA+IBTgZ845+YBjXQZDqh7e2hIPntzEYmkeiyQxeFDjGQI0708PJjZN0k82rE63bH0lhKsnu0GxnfYHpcskyHCzPwkkqvVzrnfJYv3tQ0pSH7dn674JGUWAx82s+0khvouI/GMTn5yWBHo/h5KdgG7nHMvJrcfJZFw6d4eepYD7znnDjjnIsDvSNzvureHtp7uZX1uG4LM7GrgAuDj7tDivYP+WivB6tnLwNTkbEQBEg/TrUlzTJIiyWdw7gM2O+d+0GHXGuCq5PurgMcHOjZJLefc151z45xzk0jcx8845z4O/BW4LFlN13qIcM7tBXaa2fRk0QeBN9G9PRSVA4vMLDP5O73tWuveHtp6upfXAJ9Mzia4CKjtMJRQTkBmdh6J4f0fds41ddi1BrjCzIJmNpnExCYvpSPGntihZFC6MrN/IvHshhf4uXPuu+mNSFLFzM4A/g68zqHncr5B4jmsh4EJwA7go865rg/YygnKzJYAX3LOXWBmU0j0aI0ANgJXOuda0xiepIiZzSUxoUkAeBe4hsQfFHVvDzFm9m1gBYnhQxuBT5F4FkP39hBgZg8AS4AiYB/wLeAxurmXk0n2XSSGiTYB1zjn1qUhbDkOPVzrrwNBoCpZ7QXn3GeS9b9J4rmsKInHPP7Utc10UoIlIiIiIiKSIhoiKCIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKTI/wccdaz2fARY1gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1506,31 +1506,31 @@ " 39\n", " True\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " bAP.soma.v\n", - " 0.00783\n", - " 4.32e-06\n", + " 0.00768\n", + " 1.12e-06\n", " \n", " \n", " 40\n", " True\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step1.soma.v\n", - " 0.00936\n", - " 1.29e-07\n", + " 0.00896\n", + " 2e-06\n", " \n", " \n", " 41\n", " True\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step3.soma.v\n", - " 0.0079\n", - " 2.12e-05\n", + " 0.00766\n", + " 1.95e-06\n", " \n", " \n", "\n", @@ -1538,14 +1538,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "39 True 3 0.0885 0.0728 bAP.soma.v \n", - "40 True 3 0.0885 0.0728 Step1.soma.v \n", - "41 True 3 0.0885 0.0728 Step3.soma.v \n", + "39 True 3 0.095 0.0678 bAP.soma.v \n", + "40 True 3 0.095 0.0678 Step1.soma.v \n", + "41 True 3 0.095 0.0678 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "39 0.00783 4.32e-06 \n", - "40 0.00936 1.29e-07 \n", - "41 0.0079 2.12e-05 " + "39 0.00768 1.12e-06 \n", + "40 0.00896 2e-06 \n", + "41 0.00766 1.95e-06 " ] }, "metadata": {}, @@ -1553,7 +1553,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADtcklEQVR4nOzdd3yV9dn48c91Rk52QiaEQBL2FhUQC7jaOlpnbUXrQh/rT1tbtY5uS/s8Pu1jbW0drbW12joQB+69UHEyBGTPAIEQsnfO/P7+uO/EELIgJzlJzvX2dV6ee32/17nPOeG+znfcYoxBKaWUUkoppVTPOSIdgFJKKaWUUkoNFppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFL9hIjki4gREVekYxnsRGSBiCyLdBz9jYjME5HNkY5DKaUGMk2wlFJKDWgislBE/CJS1+pxa6TjGoiMMR8YY8b3Vvkicpn9I8JVvVWHUkpFmv5KqpRSYSIiLmNMINJxRKnFxphLIh1EbxkMny0RGQL8HFgf6ViUUqo3aQuWUkr1gIgUishPRGQtUC8iLhGZLSIfiUiViKwRkZNa7b9URH4nIp+JSI2IPC8iaR2UfYWIbBSRWhHZISL/r832c0RktV3OdhE53V6fIiIPikixiOwVkf8REWcXr2O0iLwjIuUiUiYij4lIaqttFSJyjL2cIyKlza9LRM4WkfX2610qIhPbnJ+bRWStiFSLyGIRiT38M334ROSn9nmpFZENInJeB/uJiNwlIgfsc/mFiEyxt3lE5E4R2S0iJSJyv4jEdbP+h+3937RjeE9E8lpt/4uI7LHrXCki81ptWygiT4vIoyJSAywQkVki8rF9notF5F4RiWl1jBGR74vIVru+/7bfu4/sOp5svX8HMZ8kIkXdeX1H4HfA3UBZL5WvlFL9giZYSinVcxcB3wRSgWzgZeB/gDTgZuAZEclstf9lwJXAMCCAddHZngPAmUAycAVwV6skZxbwH+AWu94TgEL7uIftcscARwOnAl11yRKsC+AcYCIwAlgIYIzZDvwEeFRE4oGHgH8bY5aKyDhgEXADkAm8ArzY5kL+AuB0oACYBixoNwCRuXby0NFjbhevoa3twDwgBfiNHf+wdvY7Fev8jbP3vQAot7f93l4/Het8DgduO4wYLgb+G8gAVgOPtdq23C43DXgceKpN8nkO8DTW+/sYEARutMs6Hvgq8P029Z0GHAvMBm4FHgAuwXo/p2B9Vo+YnSh39P78tZPjZgEzgPt7Ur9SSg0EmmAppVTP3W2M2WOMacS6mH3FGPOKMSZkjHkTWAF8o9X+jxhj1hlj6oFfARe018JkjHnZGLPdWN4D3sBKGAD+C/iXMeZNu569xphNIpJt13WDMabeGHMAuAu4sLMXYIzZZpflNcaUAn8CTmy1/R/ANuBTrMTwF/am+cDL9rF+4E4gDvhKm/OzzxhTAbyIlVS0F8MyY0xqJ4/OJqW4oM3Ffo4x5im73pAxZjGwFZjVzrF+IAmYAIgxZqMxplhEBLgauNEYU2GMqQX+t6tz2cbLxpj3jTFerHN2vIiMsF/vo8aYcmNMwBjzR8ADtB7/9LEx5jk7/kZjzEpjzCf2/oXA32n1HtnuMMbUGGPWA+uAN4wxO4wx1cCrWAn3ETPGTOvk/Wmb7AFgf7b/ClxnjAn1pH6llBoIdAyWUkr13J5Wz/OA74jIWa3WuYF3O9h/l709o22hInIG8GusFhQHEA98YW8egdVa1FaeXV6xlR+AfeyedvZtXVc28BesBC7JPqayzW7/AF4ArrYTBrBavHY172CMCYnIHqyWnmb7Wz1vsI8JtyfbjsESkcuAHwP59qpE2jnPxph3RORe4D4gT0SWYLU8xmKd85WtzqUAnXa3bKPlvBtj6kSkAuv17xGRm7ES5RzAYLVUZrR3rP16xmElvjPsuFzAyjb1lbR63tjO8tDDiD1cvg+sNcZ8EoG6lVKqz2kLllJK9Zxp9XwPVgtV61/2E4wxv2+1z4hWz0ditaAcNC5FRDzAM1gtQtnGmFSshKr5Sn8PMLqdWPYAXiCjVf3JxpjJXbyG/7Vfx1RjTDJWS9yXWYVIIvBn4EFgoXw5bmwfVlLXvJ/Yr29vF/UdQqwpwus6eczrupSWsvKwEsLrgHT7/K1r/ZpaM8bcbYw5FpiEldDegvWeNAKTW53LFGNM4mG8rJb32j6HacA++7XcitUdcYgdX3Wb+Fp/rgD+BmwCxtrv0c87ej29Rayxdh29Px11//sqcJ6I7BeR/Vitm3+0k1qllBp0NMFSSqnwehQ4S0ROExGniMTaEwfkttrnEhGZZI9n+i3wtDEm2KacGKwuY6VAwG7NOrXV9geBK0TkqyLiEJHhIjLBGFOM1ZXwjyKSbG8bLSJtu5K1lQTUAdUiMhwrwWjtL8AKY8xVWGPMmi+mnwS+acfhBm7CSvA+6upEtWVPEZ7YyeODwyguAStBKQVrwhCsMUiHEJGZInKcHX890ASE7O5s/8Aa+5Zl7ztcRE5rdayRVpOYtOMb9tiyGKyxWJ8YY/Zgne+AHZ9LRG7DasHqTBJQA9SJyATg2i72DztjzORO3p9rOjhsAda4vun2YwXWmLhfdLC/UkoNaJpgKaVUGNkXz+dgtS6UYrUo3cLBf28fwZqIYj9WN7QftVNOrb3+Sayuet/F6p7XvP0z7IkvsFo+3uPLlqTLsBK0DfaxT2ONm+rMb4Bj7LJeBpY0bxCRc7AmqWi+oP8xcIyIXGyM2YzV2nUPVovPWcBZxhhfF/X1KmPMBuCPwMdY3eSmAh92sHsyViJVidXdsRz4g73tJ1hjzz4Raza/t7DHSdljqWr5sttmex7H6uZZgTX5RHM3xteB14Atdp1NdNGNE6vb4nftOv8BLO5i/37BGFNljNnf/AB8QI09LkwppQYdMaZtDwSllFK9RUSWAo8aY/4Z6VhUz4jIJVjdB3/WwfaHgSJjzC/7NDCllFIRpZNcKKWUUkfAGPNopGNQSinV/2gXQaWUihJi3fT2cCYnUIOQiPy8g8/Bq5GOTSmlBgPtIqiUUkoppZRSYaItWEoppZRSSikVJv1qDFZGRobJz8+PdBhKKaWUUkop1amVK1eWGWMy267vVwlWfn4+K1asiHQYSimllFJKKdUpEdnV3nrtIqiUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUm/WoMVnv8fj9FRUU0NTVFOhTVD8TGxpKbm4vb7Y50KGoQavAF+N6/PuScY/O5YGZepMNRSiml1ADU7xOsoqIikpKSyM/PR0QiHY6KIGMM5eXlFBUVUVBQEOlw1CD06c4KfrLvekYUl2Imr0Pih0Q6JKWUUkoNMP2+i2BTUxPp6emaXClEhPT0dG3NVL1m275ypjl2MkTq2L/i+UiHo5RSSqkBqN8nWIAmV6qFfhZUb2oo2fHl8+0fRTASpZRSSg1UAyLBUkqpvhBTuxuAeuMhofTzCEejlFJKqYFIE6xuEBFuuummluU777yThQsXRi6gVk466aROb8587rnnMnv27IPWLVy4kOHDhzN9+nSmTJnCCy+80NthKjUgJNZb9wv8xPMV0hoLIRSKbEBKKaWUGnA0weoGj8fDkiVLKCsrC2u5xhhCvXgBV1VVxcqVK6murmbHjh0HbbvxxhtZvXo1Tz31FFdeeWWvxqHUQBHjrSSEg7K0Y4kxPqgpinRISimllBpgNMHqBpfLxdVXX81dd911yLbS0lLOP/98Zs6cycyZM/nwww8Bq5XozjvvbNlvypQpFBYWUlhYyPjx47nsssuYMmUKe/bs4ZZbbmHKlClMnTqVxYsXA7B06VJOOukkvv3tbzNhwgQuvvhijDHtxvfII4+0tEZ99tlnLeuXLFnCWWedxYUXXsgTTzzR7rETJ07E5XIdlDz+9Kc/ZdKkSUybNo2bb74ZgMLCQk455RSmTZvGV7/6VXbvtrpSLViwgGuvvZbZs2czatQoli5dypVXXsnEiRNZsGBBS5nXXnstM2bMYPLkyfz6178+JI7q6mry8vJaEr36+npGjBiB3+9vN26leoW/AZ/Dgzt7PABNxZsjHJBSSimlBpp+P017a795cT0b9tWEtcxJOcn8+qzJXe73gx/8gGnTpnHrrbcetP7666/nxhtvZO7cuezevZvTTjuNjRs3dlrW1q1b+fe//83s2bN55plnWL16NWvWrKGsrIyZM2dywgknAPD555+zfv16cnJymDNnDh9++CFz5849pLyGhgZWr17N+++/z5VXXsm6desAWLRoEbfddhvZ2dmcf/75/PznPz/k2E8//RSHw0FmZiYA5eXlPPvss2zatAkRoaqqCoAf/vCHXH755Vx++eX861//4kc/+hHPPfccAJWVlXz88ce88MILnH322Xz44Yf885//ZObMmaxevZrp06dz++23k5aWRjAY5Ktf/Spr165l2rRpLXGkpKQwffp03nvvPU4++WReeuklTjvtNL3flepTEmgk4Iolafh4WAOVezYybOLXIx2WUkoppQYQbcHqpuTkZC677DLuvvvug9a/9dZbXHfddUyfPp2zzz6bmpoa6urqOi0rLy+vZVzUsmXLuOiii3A6nWRnZ3PiiSeyfPlyAGbNmkVubi4Oh4Pp06dTWFjYbnkXXXQRACeccAI1NTVUVVVRUlLC1q1bmTt3LuPGjcPtdrckXgB33XUX06dP5+abb2bx4sUts/OlpKQQGxvLf/3Xf7FkyRLi4+MB+Pjjj/nud78LwKWXXsqyZctayjrrrLMQEaZOnUp2djZTp07F4XAwefLklpiffPJJjjnmGI4++mjWr1/Phg0bDnkd8+fPb2nBe+KJJ5g/f36n51GpcDLG4Aw2EXTGMiwnj1oTh69kU6TDUkoppdQAM6BasLrT0tSbbrjhBo455hiuuOKKlnWhUIhPPvmE2NjYg/Z1uVwHjWtqfe+mhISEbtXn8XhanjudTgKBQLv7tZ26XER48sknqaysbLkhb01NDYsWLeL2228HrDFYzd3/2sb92Wef8fbbb/P0009z77338s4773QrTofDcVDMDoeDQCDAzp07ufPOO1m+fDlDhgxhwYIF7d7L6uyzz+bnP/85FRUVrFy5klNOOaXTepUKJ18wRCxeAs44RmYksMMMI61ie6TDUkoppdQAoy1YhyEtLY0LLriABx98sGXdqaeeyj333NOyvHr1agDy8/NZtWoVAKtWrWLnzp3tljlv3jwWL15MMBiktLSU999/n1mzZh1WXM2tPsuWLSMlJYWUlBQWLVrEa6+91jLua+XKlR2Ow2qtrq6O6upqvvGNb3DXXXexZs0aAL7yla+0HP/YY48xb968bsdXU1NDQkICKSkplJSU8Oqrr7a7X2JiIjNnzuT666/nzDPPxOl0drsOpXqqyR8iDh8hZyzJsW72OnNIqNsV6bCUUkopNcD0OMESkREi8q6IbBCR9SJyvb1+oYjsFZHV9uMbPQ838m666aaDJoS4++67WbFiBdOmTWPSpEncf//9AJx//vlUVFQwefJk7r33XsaNG9dueeeddx7Tpk3jqKOO4pRTTuGOO+5g6NChhxVTbGwsRx99NNdccw0PPvgghYWF7Nq166Dp2QsKCkhJSeHTTz9tt4xvfOMb7Nu3j9raWs4880ymTZvG3Llz+dOf/gTAPffcw0MPPcS0adN45JFH+Mtf/tLt+I466iiOPvpoJkyYwHe/+13mzJnTsu222247aJr4+fPn8+ijj2r3QNXnvP6glWC54gCojssj1b8f/I0RjkwppZRSA4l0NDNdtwsQGQYMM8asEpEkYCVwLnABUGeMubOz41ubMWOGaXtPp40bNzJx4sQexagGF/1MqN6wu7yBir/MJTt7GMN+8DL/+fsfuKz4f+AHn0Hm+EiHp5RSSql+RkRWGmNmtF3f4xYsY0yxMWaV/bwW2AgM72m5SinVl5oCQWLxgdtqwXJnjgLAX7ajs8OUUkoppQ4S1jFYIpIPHA0090O7TkTWisi/RGRIB8dcLSIrRGRFaWlpOMNRSqlu8/pDxOHF2AlW8rAxAFTt2xrJsJRSSik1wIQtwRKRROAZ4AZjTA3wN2A0MB0oBv7Y3nHGmAeMMTOMMTOa78WklFJ9rSkQJE58iNu6NUH20FwajIemAzqToFJKKaW6LywJloi4sZKrx4wxSwCMMSXGmKAxJgT8Azi8qfGUUqoPNfmDxOJFYqwEa2R6ArtNFlQURjYwpZRSSg0o4ZhFUIAHgY3GmD+1Wj+s1W7nAevaHquUUv1F8zTtDrsFKzPJw16yiKnbE+HIlFJKKTWQhONGw3OAS4EvRGS1ve7nwEUiMh0wQCHw/8JQl1JK9Qqvtwm3BHF4rARLRKiKHU5K03owBtrc0FsppZRSqj3hmEVwmTFGjDHTjDHT7ccrxphLjTFT7fVnG2OKwxFwpDz33HOICJs2bepwn8LCQqZMmRK2OhcsWMDTTz/d4fYbbriB4cOHEwqFWtY9/PDDZGZmMn36dCZNmsQ//vGPsMWj1GDmb6oHwBkT17KuKXEEsaYJ6ss6OkwppZRS6iBhnUVwMFu0aBFz585l0aJF7W4PBAI9riMYDHZ731AoxLPPPsuIESN47733Dto2f/58Vq9ezdKlS/n5z39OSUlJj2NTarALehsAcMYmtKyTIfkAmMqdkQhJKaWUUgOQJljdUFdXx7Jly3jwwQd54oknWtYvXbqUefPmcfbZZzNp0iTASrQuvvhiJk6cyLe//W0aGqyLtrfffpujjz6aqVOncuWVV+L1egHIz8/nJz/5CccccwxPPfXUIXW/9dZbzJgxg3HjxvHSSy8dVPfkyZO59tprO0z6srKyGD16NLt27WpZd/fddzNp0iSmTZvGhRdeCEBFRQXnnnsu06ZNY/bs2axduxaAhQsXcvnllzNv3jzy8vJYsmQJt956K1OnTuX000/H7/cD8Nvf/paZM2cyZcoUrr76atrevDoUCpGfn09VVVXLurFjx2rip/qVoNdqwXJ7vkywPPa9sOr360yCSimllOqecIzB6juv/hT2fxHeModOhTN+3+kuzz//PKeffjrjxo0jPT2dlStXcuyxxwKwatUq1q1bR0FBAYWFhWzevJkHH3yQOXPmcOWVV/LXv/6V6667jgULFvD2228zbtw4LrvsMv72t79xww03AJCens6qVavarbuwsJDPPvuM7du3c/LJJ7Nt2zZiY2NZtGgRF110Eeeccw4///nP8fv9uN3ug47dsWMHO3bsYMyYMS3rfv/737Nz5048Hk9LwvPrX/+ao48+mueee4533nmHyy67jNWrVwOwfft23n33XTZs2MDxxx/PM888wx133MF5553Hyy+/zLnnnst1113HbbfdBsCll17KSy+9xFlnndVSp8Ph4JxzzuHZZ5/liiuu4NNPPyUvL4/s7Oxuv01K9baQz/oxxNWqBStl2GgAavdvIzEiUSmllFJqoNEWrG5YtGhRS2vPhRdeeFCL0axZsygoKGhZHjFiBHPmzAHgkksuYdmyZWzevJmCggLGjRsHwOWXX87777/fcsz8+fM7rPuCCy7A4XAwduxYRo0axaZNm/D5fLzyyiuce+65JCcnc9xxx/H666+3HLN48WKmT5/ORRddxN///nfS0tJatk2bNo2LL76YRx99FJfLyq+XLVvGpZdeCsApp5xCeXk5NTU1AJxxxhm43W6mTp1KMBjk9NNPB2Dq1KkUFhYC8O6773LccccxdepU3nnnHdavX3/I65g/fz6LFy8G4Iknnuj0NSsVCS0Jlj3JBUBudjolJhV/2Y5IhaWUUkqpAWZgtWB10dLUGyoqKnjnnXf44osvEBGCwSAiwh/+8AcAEhISDtpf2sw01na5PW3L6Kq8119/naqqKqZOnQpAQ0MDcXFxnHnmmYCVzNx7773tlvfyyy/z/vvv8+KLL3L77bfzxRedtwh6PB7AaoVyu90t8TgcDgKBAE1NTXz/+99nxYoVjBgxgoULF9LU1HRIOccffzzbtm2jtLSU5557jl/+8ped1qtUXwv5GgFabjQMMGJIPBtMFjnVuzo6TCmllFLqINqC1YWnn36aSy+9lF27dlFYWMiePXsoKCjggw8+aHf/3bt38/HHHwPw+OOPM3fuXMaPH09hYSHbtm0D4JFHHuHEE0/sVv1PPfUUoVCI7du3s2PHDsaPH8+iRYv45z//SWFhIYWFhezcuZM333yzZbxXR0KhEHv27OHkk0/m//7v/6iurqauro558+bx2GOPAdbYroyMDJKTk7sVX3MylZGRQV1dXYezHooI5513Hj/+8Y+ZOHEi6enp3Spfqb5i/Pb3p1WCleBxUeocSnx9UYSiUkoppdRAowlWFxYtWsR555130Lrzzz+/w4klxo8fz3333cfEiROprKzk2muvJTY2loceeojvfOc7TJ06FYfDwTXXXNOt+keOHMmsWbM444wzuP/++wmFQrz22mt885vfbNknISGBuXPn8uKLL7ZbxlVXXcWKFSsIBoNccsklTJ06laOPPpof/ehHpKamsnDhQlauXMm0adP46U9/yr///e9unh1ITU3le9/7HlOmTOG0005j5syZLdvuv/9+7r///pbl+fPn8+ijj2r3QNU/2S1YuOMOWl0Tl0uK/wAEfBEISimllFIDjbSd8S2SZsyYYVasWHHQuo0bNzJx4sQIRaT6I/1MqN7wyP2/59L9v4MfrYa0L8dVPnr/77hk/+/hh6sgfXTkAlRKKaVUvyIiK40xM9qu1xYspZQCJNDcghV/0HpnupVsBcv1XlhKKaWU6pomWEopBUigeQzWwV0EE4datzmoLt7a1yEppZRSagAaEAlWf+rGqCJLPwuqtzgD9uyXbRKs9GEj8Ro3jSV6s2GllFJKda3fJ1ixsbGUl5frhbXCGEN5eTmxsbGRDkUNQs5gEwFc4Dz4ht0j0xMpMhmEKgojE5hSSimlBpR+fx+s3NxcioqKKC0tjXQoqh+IjY0lNzc30mGoQcgVbMLn8BzyR3FYShwfkM2E2t0RiUsppZRSA0u/T7DcbjcFBQVd76iUUj3gCjXidxzaOup0CBUxOSQ3vh+BqJRSSik10PT7LoJKKdUXXCFvuwkWQGNiLvGhOmis7OOolFJKKTXQ9HqCJSKni8hmEdkmIj/t7fqUUupIxISaCHaQYJnUPOtJZWHfBaSUUkqpAalXEywRcQL3AWcAk4CLRGRSb9aplFJHIibkJej0tLvNk2ndYLjxgM4kqJRSSqnO9XYL1ixgmzFmhzHGBzwBnNPLdSql1GExxhCDl6Azrt3tyfa9sGr2aYKllFJKqc71doI1HNjTarnIXtdCRK4WkRUiskJnClRKRYI3ECIOLyFX+wlWTnYW5SYJX5kmWEoppZTqXMQnuTDGPGCMmWGMmZGZmRnpcJRSUajJHyQOHyFX+2OwRqbFs8dkIVW7+jgypZRSSg00vZ1g7QVGtFrOtdcppVS/0eQPESdecMe3uz0l3k2xI5u4uj3tbldKKaWUatbbCdZyYKyIFIhIDHAh8EIv16mUUoelyR8kFh+mgy6CADWxw0nx7YdQsA8jU0oppdRA06sJljEmAFwHvA5sBJ40xqzvzTqVUupwNQWCxOGFmI4TLH/SSFwEoUYb4ZVSSinVMVdvV2CMeQV4pbfrUUqpI9Xks8ZgSQddBAEc6QVQCsHynThTR/ZhdEoppZQaSCI+yYVSSkWa19uIQwyOmI4TrORhYwGo2rulr8JSSiml1ACkCZZSKur5G+sAOk2wskeMxmvc1O/b2FdhKaWUUmoA0gRLKRX1/E0NADg9HSdYo7KS2WGGQtnWvgpLKaWUUgOQJlhKqagX9NUD4PQkdLhPWkIMux25xNfs6KuwlFJKKTUAaYKllIp6Qa/VguWK7TjBEhGq4vNJ8+2DgLevQlNKKaXUAKMJllIq6gV9VoLl7qSLIIB/yGgchKBCW7GUUkop1T5NsJRSUS/ktboIuuMSO93PnT0RgKZinehCKaWUUu3TBEspFfWauwjGxHaeYKWOsBKs6t16v3SllFJKta/XbzSslFL9XXMLljMmrtP9RuVkUWQyCJVs6ouwlFJKKTUAaQuWUirqGa91Hyw8nbdg5WcksNPk4K7c1gdRKaWUUmog0gRLKRX1xNecYCV1up/b6aAsNo8hDYVgTO8HppRSSqkBRxMspVTUc/hqrScxnbdgAXhTRxNrmqBmby9HpZRSSqmBSBMspVTUcwbqaJJYcDi73NeVNQGApuINvR2WUkoppQYgTbCUUlHPHainydHxTYZbG1JwFACVO1b1ZkhKKaWUGqA0wVJKRb2YYD1eZ+c3GW6WP3IkxSYN394vejkqpZRSSg1EPUqwROQPIrJJRNaKyLMikmqvzxeRRhFZbT/uD0u0SinVCzzBBvzO7rVg5aXFs9nkEVehNxtWSiml1KF62oL1JjDFGDMN2AL8rNW27caY6fbjmh7Wo5RSvcYTasDv6l6C5XI6KIkfQ1pjIQS8vRuYUkoppQacHiVYxpg3jDEBe/ETILfnISmlVN8JhgzxpoGgu+sZBJv5MybhIogp1RsOK6WUUupg4RyDdSXwaqvlAhH5XETeE5F5HR0kIleLyAoRWVFaWhrGcJRSqmv1vgBJ0ojpxhTtzRJHTgegeufq3glKKaWUUgNWlwmWiLwlIuvaeZzTap9fAAHgMXtVMTDSGHM08GPgcRFJbq98Y8wDxpgZxpgZmZmZPX9FSil1GOq9ARJowsR0fpPh1nLHTKHJuKku1JkElVJKKXUwV1c7GGO+1tl2EVkAnAl81Rhj7GO8gNd+vlJEtgPjgBU9DVgppcKpusFLJg2Ux6V0+5iJw9PYbEYwpGR9L0amlFJKqYGop7MIng7cCpxtjGlotT5TRJz281HAWGBHT+pSSqneUFNZgUtCOBMzun1MgsfFXs8ohtRuAet3JaWUUkopoOdjsO4FkoA320zHfgKwVkRWA08D1xhjKnpYl1JKhV1D9QEAPCmH10W5YcgkkkLVUFvcG2EppZRSaoDqsotgZ4wxYzpY/wzwTE/KVkqpvtBkJ1hxKVmHdZxrxNFwAGp3LCdp+jldH6CUUkqpqBDOWQSVUmrACdSWAZCQengtWEPHzsJvnFRu/bg3wlJKKaXUAKUJllIqqgXrywGISTq8BGviyGw2mxHIvs97IyyllFJKDVCaYCmloluDPTw0Pv2wDkuJd7PdPY706nU60YVSSimlWmiCpZSKaq6mCvy4wNP9+2A1q0mfRnyoDip0klSllFJKWTTBUkpFNY+3nFpnCogc9rFx+TMAqNn+SbjDUkoppdQApQmWUiqqJfkOUBuTfUTH5k84lgbjoXLrp2GOSimllFIDlSZYSqmoFQiGSAuW4Y0bekTHTxmRznqTj6t4VZgjU0oppdRApQmWUipqldX5GCoVBJOGHdHxsW4ne+MnkVm3GQK+MEenlFJKqYFIEyylVNQqLSslSRpxpuQecRneYTOIwUdgr07XrpRSSilNsJRSUaz6wC4A4jJGHHEZKePnAlC28f2wxKSUUkqpgU0TLKVU1Gos2w1AYubIIy5j8rhx7Apl4dv5cbjCUkoppdQApgmWUipqBSqLAEjJzjviMnKHxLHOOYEhZav0hsNKKaWU0gRLKRW9pLYYAEdyzpGXIUJ52jEkBSv1hsNKKaWU0gRLKRW9YhqKqZQh4IrpUTmeUV8BoGbrsnCEpZRSSqkBTBMspVTUSmwqoSYms8fljJsyg2oTT+WmD8IQlVJKKaUGMk2wlFJRKzVQSmNsdo/LmZI7hNWMJ774szBEpZRSSqmBrEcJlogsFJG9IrLafnyj1baficg2EdksIqf1PFSllAqfmiY/2ZQTSDyymwy35nY62Jd6LJneXVC7PwzRKaWUUmqgCkcL1l3GmOn24xUAEZkEXAhMBk4H/ioizjDUpZRSYVFSVk6KNODowU2GW3OOPgmAuk3vhqU8pZRSSg1MvdVF8BzgCWOM1xizE9gGzOqlupRS6rBV7rduMhybfuQ3GW5t9NTZ1jis9W+FpTyllFJKDUzhSLCuE5G1IvIvERlirxsO7Gm1T5G97hAicrWIrBCRFaWlpWEIRymlulZ/wEqwErOO/CbDrU0dkc5nTCZx30dhKU8ppZRSA1OXCZaIvCUi69p5nAP8DRgNTAeKgT8ebgDGmAeMMTOMMTMyM3s+m5dSSnWHz77J8JChBWEpL8blYF/acQzx7YPSLWEpUymllFIDT5cJljHma8aYKe08njfGlBhjgsaYEPAPvuwGuBdo3e8m116nlFL9gqm2/iS5U9ttXD8iidPOBqB85TNhK1MppZRSA0tPZxFsPf3WecA6+/kLwIUi4hGRAmAsoPMXK6X6DXf9fqolGdyxYStz9tHT+Dw0htD658NWplJKKaUGlp6OwbpDRL4QkbXAycCNAMaY9cCTwAbgNeAHxphgD+tSSqmwifeWUO3OCmuZw1Pj+DxxHpm1GzGVhWEtWymllFIDQ48SLGPMpcaYqcaYacaYs40xxa223W6MGW2MGW+MebXnoSqlVPik+ktpjOv5TYYPKXfGBYSMsH/pP8NetlJKKaX6v96apl0ppfqtmiY/WZQTDMNNhts6dc4slnIsyV/8GxorD9q2v6qBR/5+B6+9/lLY61VKKaVU/6AJllIq6pSUV5IutTiSc8JedqLHxe6jric2WEvx4z+AUBB/MMQrb7zKnru+yqXFtzP009+FvV6llFJK9Q+uSAeglFJ9rWrvVgBiMkf3Svnzz/wmj267jMv3/Jt9t0+lKSh8gyJqHUkUOkdRECgEY0CkV+pXSimlVORoghUBJhSktrKcqor91FUeoLHqAP7aUgL1FYivHgk0Iv5GHMFGXMFGnEEvoVAIYwwiIIBDwIiTgMND0BFDwOnBODxITBwSk4AjLgVH/BDcCWnEJKUTl5xGfFI6KWmZxMXFRfoUKBVRTfut+1QlDh/fK+XHxTj51o/+yLNPjSF/z3N4Yp1sGXsJY0+7lpXP/JX8bf9HU/luYjPyeqV+pZRSSkWOJli9oK6+jgM711NTvI2msl2Eqopw1+0loamE9OAB0k0lyRIiuYPjm4ybJvHgxYNXPAQkBuNwIoBBMFg/fjtMEDc+YowPj/Hixo/H+HBL5xM21ptYaiSRBmcyja5kfO4Ugp5UQnFDcMQNwZWYRkxiBnEpGcSnZpKclklcUgYSxumslYokU74DgCG5E3qtjqRYN+dd+iPgRwetd+VMg21Qtn0VuZpg9ZpQMIQ/4CPo9+IPBAj6fYQCfvwBP8GA31oOBggE/BAMACAOu0VRBBDrP/sXLcFeJ/bD4UAcThwOFw6nA4c4cDidiMOBw+Gw1ztxOJz2sgOHw4nT5cLhcCDiBHFYdWlLplJKDSqaYPVAXV0tuzZ8Rt2uzzEHNhNXs4MM726GmVJGiWnZz2dclDozqHEPpShpJjvisyEhE3dSBjHJmcSnZpGclk1yWhax8cnEOpz0JJXxexupqy6nobqMxppyvHWV+OsqCNRXEmyohMZKHN4q3L5qPP5q0uu3k1hXS7Kp6zQ5a8RDrSRS60jG54gn6Iwl6IzFuOIIumIJOuMIOWMJueIwLg/icONwuhCnC5fTibhciDgJiQsjDow4AayU0YSaU0fENP/farUzxmBCIcAQMiEIhSAUxJgQxoSsY0PNz4MQCoIxGBOyywiCvR/2OkIhwNpfjDl4W+v/03rZ4DBBIIQYg/DlsULbbSEc9nqh+bW1p+2WLy+0DG0vuqxlI4euO3T/Vus72L/TYzqI9nAd2WXjERx1mIdM8O2lgmTSEoYcfl09lJp/FLwPDbtXw3Hn9Xn9/Z3X56W2ooT6qjIaasrx1lbgq68k2FBFqLEKaarG4a3G7a/DGWzEFWrCHWzCbbzEhJrw4CXWeInDi0dCkX453RIyQhCH9ddCBIPD/qvhaFlvbWt+7iCEA2PvaxCM2Otar5cvt7Vexv5/yF4XaimjVXmdfqk6/wvR9dex4+Otv/9HdqxVd9exdfev8aFV96xuu5AOjj2y47pddyebu447XP8i9AM9fCkD/0z07BVE8vV/GjuXCefczFdGZ0Qwiu7TBKubfD4fO9d/SvXm95HiNWTUbmJEcA+T7X/AG4yHYlcuB5Knsm/IaJxZ40gcNo6M4aMYkpnDcIeT4X0Uq9sTx5CsXIZk5R7WccFgiIqaKmoqDtBQdYCG6jJ8tWUE6isxDeU4WyVlrkADrkAdcb5y3KEmYvHiMT5i8eERfy+9ssMXMlZ6E7IvWJovJIKtLjBaLi6a92m+GGle12pfRAjhbLkQad4XsS9ixGWvt+po3pdWFyzN/5iZ5uctf7G+/NPV0T94gmn5N/7gfdp/3tnFSkfHCx39Y3/4f1q7vFaKkNKYXGpz5jE7AnWPGZHDbpOF2f9FBGqPjFDIUF5ZQdm+HdQfKMRftY9gTQlSX4qrsYw4XzmJgQpSQtUMoZYMMXT0T2ijiaFOEml0xON1xBFwxOKLSaHBGUvIGWf9wOOOx7jiMK5YjNONOFyI0404XfZza9nRss7Z0jMAzJcfXPuHlS+/ogaDsX/MMRAKEgpZP8KY5v+b5h+AgvY6AybYsp7mH4xafvgxSPO+9g86zT8AHfRjUMt2a//WP/w07ystPwqZVs+b15tW+1hlOO00znlQSmf9ONQV02WrW+fbO0vguv6zceRlN5ff0R5dva6uyu46tp4c29PY2q/GHGbZ0d7eOuBff4RfwJFWP9DOuyZYndi9ZTV7P36K+OJPGd24jvHSCEApQ9gXN44VGV8jPu8YMsfOJDt3LKOdA3tSRqfTQdqQNNKGpAFH3nXKBAMEfI34fH4CAT++gI9AIEjA5yMYDFotP6GAdSEBVjcZQOykxeoy46D5Ur+5+404HThEcDiciMOJ02l3tXE6W7rfND+cLpe9r0OnylT9SqzbyR73KEZXb4p0KGETChlKSks5sGsD9cVbCJYX4qjdS2xDMcn+EjKDpWRKPZltjmsglipHKnWuNOoS8qiKy2BHfCah+EyciWnEJAwhNimd+OQ0ElIySEpJI84Th44iVUqp6DIp0gEcJk2wOlG85i2O33kvuxwj2Jh5Oq5Rcxk67RSGDi8gU/vMd0icLtxxSbj1KkipdlUNmcrQ0k8wdQeQxKxIh9NtldU17Nm6ltqiDQTKtuGu3klywx6GBvYxTKppfVexahKpcGVRF5fD9oRjISWXmLSRJGTlkZQ1ktSMHOLjkoiP2KtRSimleocmWJ2Y+PUrKD/xIvKyhqND0ZVS4eIefQKU/oP9X7zNsOMvinQ4h2hobGT3tnVU7FyDv3gDcVWbyWrcQa7Zz7RW45pKJZ0Kz3D2DDmR3WmjiMsex5ARE0gfMZaUuGRSIvgalFJKqUjRBKsTyanpkQ5BKTUITZpxIrUfx1HzxWsRT7BKK2so3PgZNduX4z6wlmH1GxkZ3MMEsWbWCxphv3MYFUmjWZv+TTw5k0nPn0rmyAlkxiYe0u1PKaWUinaaYCmlVB/LzUjhzZjZHF/8FgS84PL0Sb0VNXXs3LCcmu2f4dy/hqy6jYwK7WKmPXtotSSxN248X6TNwz1sCpmjjiJ71DSGe+L7bJIepZRSaqDTBEsppSLAP/kCEle/y74P/kPOyd8Le/nVtQ3s3Licqm3Lce5fTUbtRkaFCjnWbpmqIZHi+PFsyDyRhIKZDJ94PClZBaTo+FKllFKqR8T0o3mUZ8yYYVasWBHpMJRSqtdV1nkpvvM4spx1pN+yEok98hFL1XX1FG5cSfX2z5D9a8mo2cCoYGHLLRNqiWdv/ASaMqYSlz+DnEnHk5Q9Rm9wq5RSSvWAiKw0xsxou15bsJRSKgKGJHr4aNZvGf/pZez86/mM/N4iXEldj2gqrahg96bPqdm5ElfJGjLrNlIQ3MVRdstULfHsjR3H+oyLiMs7luGTjic5ZxwTNJlSSiml+kSPWrBEZDEw3l5MBaqMMdNFJB/YCGy2t31ijLmmq/K0BUspFU2MMSz51x2ctfv/aHAksiv3LJwjjsURl4Y3EMRfV46vaj+hyt0k1e1gqG8XwyhrOb6WBPbGjachfQqekccwbOJs0oaPB4fe/U0ppZTqbR21YIWti6CI/BGoNsb81k6wXjLGTDmcMjTBUkpFo6Xvv0vcB7dztG8VMfaEE601EUOxawTViaMIpI0lKXcywyYeR/JQ7eanlFJKRUqvdhEUEQEuAE4JR3lKKRVNTjrhZDjhZMoqKijdvYlAYw2xbidxyRmkZA4nKTWTAk2klFJKqQEhXGOw5gElxpitrdYViMjnQA3wS2PMB+0dKCJXA1cDjBw5MkzhKKXUwJORlkZG2lciHYZSSimleqDLBEtE3gKGtrPpF8aY5+3nFwGLWm0rBkYaY8pF5FjgORGZbIypaVuIMeYB4AGwugge7gtQSimllFJKqf6iywTLGPO1zraLiAv4FnBsq2O8gNd+vlJEtgPjAB1gpZRSSimllBq0wjHV1NeATcaYouYVIpIpIk77+ShgLLAjDHUppZRSSimlVL8VjjFYF3Jw90CAE4DfiogfCAHXGGMquipo5cqVZSKyKwwxhVMGtJoXWQ12+n5HD32vo4e+19FF3+/ooe91dOmP73deeyvDNk37YCUiK9qbflENTvp+Rw99r6OHvtfRRd/v6KHvdXQZSO+33o1SKaWUUkoppcJEEyyllFJKKaWUChNNsLr2QKQDUH1K3+/ooe919ND3Orro+x099L2OLgPm/dYxWEoppZRSSikVJtqCpZRSSimllFJhogmWUkoppZRSSoWJJlidEJHTRWSziGwTkZ9GOh4VPiIyQkTeFZENIrJeRK6316eJyJsistX+/5BIx6rCQ0ScIvK5iLxkLxeIyKf293uxiMREOkYVHiKSKiJPi8gmEdkoIsfrd3twEpEb7b/h60RkkYjE6nd78BCRf4nIARFZ12pdu99lsdxtv+9rReSYyEWuDlcH7/Uf7L/ja0XkWRFJbbXtZ/Z7vVlETotI0J3QBKsDIuIE7gPOACYBF4nIpMhGpcIoANxkjJkEzAZ+YL+/PwXeNsaMBd62l9XgcD2wsdXy/wF3GWPGAJXAf0UkKtUb/gK8ZoyZAByF9b7rd3uQEZHhwI+AGcaYKYATuBD9bg8mDwOnt1nX0Xf5DGCs/bga+FsfxajC42EOfa/fBKYYY6YBW4CfAdjXaxcCk+1j/mpft/cbmmB1bBawzRizwxjjA54AzolwTCpMjDHFxphV9vNarAuw4Vjv8b/t3f4NnBuRAFVYiUgu8E3gn/ayAKcAT9u76Hs9SIhICnAC8CCAMcZnjKlCv9uDlQuIExEXEA8Uo9/tQcMY8z5Q0WZ1R9/lc4D/GMsnQKqIDOuTQFWPtfdeG2PeMMYE7MVPgFz7+TnAE8YYrzFmJ7AN67q939AEq2PDgT2tlovsdWqQEZF84GjgUyDbGFNsb9oPZEcqLhVWfwZuBUL2cjpQ1eoPt36/B48CoBR4yO4S+k8RSUC/24OOMWYvcCewGyuxqgZWot/twa6j77Jetw1uVwKv2s/7/XutCZaKaiKSCDwD3GCMqWm9zVj3MND7GAxwInImcMAYszLSsag+4QKOAf5mjDkaqKdNd0D9bg8O9tibc7CS6hwggUO7GKlBTL/L0UFEfoE1tOOxSMfSXZpgdWwvMKLVcq69Tg0SIuLGSq4eM8YssVeXNHcpsP9/IFLxqbCZA5wtIoVYXX1PwRqjk2p3KwL9fg8mRUCRMeZTe/lprIRLv9uDz9eAncaYUmOMH1iC9X3X7/bg1tF3Wa/bBiERWQCcCVxsvrx5b79/rzXB6thyYKw9G1EM1mC6FyIckwoTewzOg8BGY8yfWm16Abjcfn458Hxfx6bCyxjzM2NMrjEmH+t7/I4x5mLgXeDb9m76Xg8Sxpj9wB4RGW+v+iqwAf1uD0a7gdkiEm//TW9+r/W7Pbh19F1+AbjMnk1wNlDdqiuhGoBE5HSs7v1nG2MaWm16AbhQRDwiUoA1sclnkYixI/JlMqjaEpFvYI3dcAL/MsbcHtmIVLiIyFzgA+ALvhyX83OscVhPAiOBXcAFxpi2A2zVACUiJwE3G2POFJFRWC1aacDnwCXGGG8Ew1NhIiLTsSY0iQF2AFdg/aCo3+1BRkR+A8zH6j70OXAV1lgM/W4PAiKyCDgJyABKgF8Dz9HOd9lOsu/F6ibaAFxhjFkRgbDVEejgvf4Z4AHK7d0+McZcY+//C6xxWQGsYR6vti0zkjTBUkoppZRSSqkw0S6CSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSinVT4hIvogYEXFFOpbBTkQWiMiySMfR34jIPBHZHOk4lFJqINMESyml1IAmIgtFxC8ida0et0Y6roHIGPOBMWZ8b5UvIpfZPyJc1Vt1KKVUpOmvpEopFSYi4jLGBCIdR5RabIy5JNJB9JbB8NkSkSHAz4H1kY5FKaV6k7ZgKaVUD4hIoYj8RETWAvUi4hKR2SLykYhUicgaETmp1f5LReR3IvKZiNSIyPMiktZB2VeIyEYRqRWRHSLy/9psP0dEVtvlbBeR0+31KSLyoIgUi8heEfkfEXF28TpGi8g7IlIuImUi8piIpLbaViEix9jLOSJS2vy6RORsEVlvv96lIjKxzfm5WUTWiki1iCwWkdjDP9OHT0R+ap+XWhHZICLndbCfiMhdInLAPpdfiMgUe5tHRO4Ukd0iUiIi94tIXDfrf9je/007hvdEJK/V9r+IyB67zpUiMq/VtoUi8rSIPCoiNcACEZklIh/b57lYRO4VkZhWxxgR+b6IbLXr+2/7vfvIruPJ1vt3EPNJIlLUndd3BH4H3A2U9VL5SinVL2iCpZRSPXcR8E0gFcgGXgb+B0gDbgaeEZHMVvtfBlwJDAMCWBed7TkAnAkkA1cAd7VKcmYB/wFuses9ASi0j3vYLncMcDRwKtBVlyzBugDOASYCI4CFAMaY7cBPgEdFJB54CPi3MWapiIwDFgE3AJnAK8CLbS7kLwBOBwqAacCCdgMQmWsnDx095nbxGtraDswDUoDf2PEPa2e/U7HO3zh73wuAcnvb7+3107HO53DgtsOI4WLgv4EMYDXwWKtty+1y04DHgafaJJ/nAE9jvb+PAUHgRrus44GvAt9vU99pwLHAbOBW4AHgEqz3cwrWZ/WI2YlyR+/PXzs5bhYwA7i/J/UrpdRAoAmWUkr13N3GmD3GmEasi9lXjDGvGGNCxpg3gRXAN1rt/4gxZp0xph74FXBBey1MxpiXjTHbjeU94A2shAHgv4B/GWPetOvZa4zZJCLZdl03GGPqjTEHgLuACzt7AcaYbXZZXmNMKfAn4MRW2/8BbAM+xUoMf2Fvmg+8bB/rB+4E4oCvtDk/+4wxFcCLWElFezEsM8akdvLobFKKC9pc7OcYY56y6w0ZYxYDW4FZ7RzrB5KACYAYYzYaY4pFRICrgRuNMRXGmFrgf7s6l228bIx53xjjxTpnx4vICPv1PmqMKTfGBIwxfwQ8QOvxTx8bY56z4280xqw0xnxi718I/J1W75HtDmNMjTFmPbAOeMMYs8MYUw28ipVwHzFjzLRO3p+2yR4A9mf7r8B1xphQT+pXSqmBQMdgKaVUz+1p9TwP+I6InNVqnRt4t4P9d9nbM9oWKiJnAL/GakFxAPHAF/bmEVitRW3l2eUVW/kB2MfuaWff1nVlA3/BSuCS7GMq2+z2D+AF4Go7YQCrxWtX8w7GmJCI7MFq6Wm2v9XzBvuYcHuy7RgsEbkM+DGQb69KpJ3zbIx5R0TuBe4D8kRkCVbLYyzWOV/Z6lwK0Gl3yzZazrsxpk5EKrBe/x4RuRkrUc4BDFZLZUZ7x9qvZxxW4jvDjssFrGxTX0mr543tLA89jNjD5fvAWmPMJxGoWyml+py2YCmlVM+ZVs/3YLVQtf5lP8EY8/tW+4xo9XwkVgvKQeNSRMQDPIPVIpRtjEnFSqiar/T3AKPbiWUP4AUyWtWfbIyZ3MVr+F/7dUw1xiRjtcR9mVWIJAJ/Bh4EFsqX48b2YSV1zfuJ/fr2dlHfIcSaIryuk8e8rktpKSsPKyG8Dki3z9+61q+pNWPM3caYY4FJWAntLVjvSSMwudW5TDHGJB7Gy2p5r+1zmAbss1/LrVjdEYfY8VW3ia/15wrgb8AmYKz9Hv28o9fTW8Qaa9fR+9NR97+vAueJyH4R2Y/VuvlHO6lVSqlBRxMspZQKr0eBs0TkNBFxikisPXFAbqt9LhGRSfZ4pt8CTxtjgm3KicHqMlYKBOzWrFNbbX8QuEJEvioiDhEZLiITjDHFWF0J/ygiyfa20SLStitZW0lAHVAtIsOxEozW/gKsMMZchTXGrPli+kngm3YcbuAmrATvo65OVFv2FOGJnTw+OIziErASlFKwJgzBGoN0CBGZKSLH2fHXA01AyO7O9g+ssW9Z9r7DReS0VscaaTWJSTu+YY8ti8Eai/WJMWYP1vkO2PG5ROQ2rBasziQBNUCdiEwAru1i/7Azxkzu5P25poPDFmCN65tuP1ZgjYn7RQf7K6XUgKYJllJKhZF98XwOVutCKVaL0i0c/Pf2EayJKPZjdUP7UTvl1Nrrn8TqqvddrO55zds/w574Aqvl4z2+bEm6DCtB22Af+zTWuKnO/AY4xi7rZWBJ8wYROQdrkormC/ofA8eIyMXGmM1YrV33YLX4nAWcZYzxdVFfrzLGbAD+CHyM1U1uKvBhB7snYyVSlVjdHcuBP9jbfoI19uwTsWbzewt7nJQ9lqqWL7tttudxrG6eFViTTzR3Y3wdeA3YYtfZRBfdOLG6LX7XrvMfwOIu9u8XjDFVxpj9zQ/AB9TY48KUUmrQEWPa9kBQSinVW0RkKfCoMeafkY5F9YyIXILVffBnHWx/GCgyxvyyTwNTSikVUTrJhVJKKXUEjDGPRjoGpZRS/Y92EVRKqSgh1k1vD2dyAjUIicjPO/gcvBrp2JRSajDQLoJKKaWUUkopFSbagqWUUkoppZRSYdKvxmBlZGSY/Pz8SIehlFJKKaWUUp1auXJlmTEms+36fpVg5efns2LFikiHoZRSSimllFKdEpFd7a3XLoJKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRS3fDy2mL2VDREOgyllFJK9XP9agxWe/x+P0VFRTQ1NUU6FDXAxMbGkpubi9vtjnQoaoBbv6+azxf/N96kBkb89OFIh6OUUkqpfqzfJ1hFRUUkJSWRn5+PiEQ6HDVAGGMoLy+nqKiIgoKCSIejBrjPdlbwS/dj0AT1O64hYdTsSIeklFJKqX6q33cRbGpqIj09XZMrdVhEhPT0dG35VGFRemB/y/PKz1+MYCRKKaWU6u/6fYIFaHKljoh+blS4xJWtbXke2rcmgpEopZRSqr8bEAmWUkpFkqPWasH6nAmkVG+McDRKKaWU6s80weoGEeGmm25qWb7zzjtZuHBh5AJq5ZNPPuG4445j+vTpTJw4sSWupUuX8tFHH/Wo7NNPP53U1FTOPPPMMESq1MDl9FUDsCPhKFICZdBYGeGIlFJKKdVfaYLVDR6PhyVLllBWVhbWco0xhEKhHpVx+eWX88ADD7B69WrWrVvHBRdcAIQnwbrlllt45JFHelSGUoNBbKCWEELtkMnWisrCiMajlFJKqf6r388i2NpvXlzPhn01YS1zUk4yvz5rcqf7uFwurr76au666y5uv/32g7aVlpZyzTXXsHv3bgD+/Oc/M2fOHBYuXEhiYiI333wzAFOmTOGll14C4LTTTuO4445j5cqVvPLKK9x77728+uqriAi//OUvmT9/PkuXLmXhwoVkZGSwbt06jj32WB599NFDxhUdOHCAYcOGAeB0Opk0aRKFhYXcf//9OJ1OHn30Ue655x4mTJjQYZzbt29n27ZtlJWVceutt/K9730PgK9+9assXbq003Pz1FNP8Zvf/Aan00lKSgrvv/8+TU1NXHvttaxYsQKXy8Wf/vQnTj75ZB5++GGee+456uvr2bp1KzfffDM+n49HHnkEj8fDK6+8QlpaGv/4xz944IEH8Pl8jBkzhkceeYT4+PiD6p09ezYPPvggkydb791JJ53EnXfeyYwZMzqNV6kjERuqw+tMwJM1BorAW7oDT87RkQ5LKaWUUv2QtmB10w9+8AMee+wxqqurD1p//fXXc+ONN7J8+XKeeeYZrrrqqi7L2rp1K9///vdZv349K1asYPXq1axZs4a33nqLW265heLiYgA+//xz/vznP7NhwwZ27NjBhx9+eEhZN954I+PHj+e8887j73//O01NTeTn53PNNddw4403snr1aubNm9dpnGvXruWdd97h448/5re//S379u3r9nn57W9/y+uvv86aNWt44YUXALjvvvsQEb744gsWLVrE5Zdf3jKb37p161iyZAnLly/nF7/4BfHx8Xz++eccf/zx/Oc//wHgW9/6FsuXL2fNmjVMnDiRBx988JB658+fz5NPPglAcXExxcXFmlypXpMQrKXJmUTq8HEAVO3dEuGIlFJKKdVfDagWrK5amnpTcnIyl112GXfffTdxcXEt69966y02bNjQslxTU0NdXV2nZeXl5TF7tnUfnWXLlnHRRRfhdDrJzs7mxBNPZPny5SQnJzNr1ixyc3MBmD59OoWFhcydO/egsm677TYuvvhi3njjDR5//HEWLVrUbqtTZ3Gec845xMXFERcXx8knn8xnn33Gueee263zMmfOHBYsWMAFF1zAt771rZbX9MMf/hCACRMmkJeXx5Yt1gXpySefTFJSEklJSaSkpHDWWWcBMHXqVNautWZqW7duHb/85S+pqqqirq6O00477ZB6L7jgAk499VR+85vf8OSTT/Ltb3+7W/EqdbiMMSSYOnzuZEYMzaLMJOM9sD3SYSmllFKqnxpQCVak3XDDDRxzzDFcccUVLetCoRCffPIJsbGxB+3rcrkOGl/V+n5MCQkJ3arP4/G0PHc6nQQCgXb3Gz16NNdeey3f+973yMzMpLy8/JB9OooTDp3O/HCmN7///vv59NNPefnllzn22GNZuXJlp/u3fk0Oh6Nl2eFwtLy+BQsW8Nxzz3HUUUfx8MMPt5swDh8+nPT0dNauXcvixYu5//77ux2zUofDHzQkUY/fncKItHi2myyyqwsjHZZSSiml+qkedxEUkREi8q6IbBCR9SJyvb0+TUTeFJGt9v+H9DzcyEpLS+OCCy44qMvaqaeeyj333NOyvHr1agDy8/NZtWoVAKtWrWLnzp3tljlv3jwWL15MMBiktLSU999/n1mzZnU7ppdffhljDGB1PXQ6naSmppKUlERtbW2XcQI8//zzNDU1UV5eztKlS5k5c2a369++fTvHHXccv/3tb8nMzGTPnj3MmzePxx57DIAtW7awe/duxo8f3+0ya2trGTZsGH6/v6Wc9syfP5877riD6upqpk2b1u3ylTocjf4gKdTjdyeTEuemWIYSX18U6bCUUkop1U+FYwxWALjJGDMJmA38QEQmAT8F3jbGjAXetpcHvJtuuumg2QTvvvtuVqxYwbRp05g0aVJLS8r5559PRUUFkydP5t5772XcuHHtlnfeeecxbdo0jjrqKE455RTuuOMOhg4d2u14HnnkEcaPH8/06dO59NJLeeyxx3A6nZx11lk8++yzTJ8+nQ8++KDDOAGmTZvGySefzOzZs/nVr35FTk4OYCV/3/nOd3j77bfJzc3l9ddfB6xuic3jrW655RamTp3KlClT+MpXvsJRRx3F97//fUKhEFOnTmX+/Pk8/PDDB7VcdeW///u/Oe6445gzZw4TJkxoWf/CCy9w2223tSx/+9vf5oknnmiZOVGp3tDkD5Ii9QQ9KQBUxQ4nxVcCAV+EI1NKKaVUfyTNrR9hK1DkeeBe+3GSMaZYRIYBS40xnTZjzJgxw6xYseKgdRs3bmTixIlhjVF9qe1sh4ONfn5UT+0sqyfrngKKx8xnzKX38K97/ocry/8AP1wF6aMjHZ5SSimlIkREVhpjDpllLayzCIpIPnA08CmQbYwptjftB7I7OOZqEVkhIitKS0vDGY5SSvVYozdAHD5wW2MnTVq+taGy/W6/SimllIpuYZvkQkQSgWeAG4wxNa0nSjDGGBFpt6nMGPMA8ABYLVjhikd1z8KFCyMdglL9WlNTAw4xODzWvdhiM/JhKzSWFRI3JrKxKaWUUqr/CUsLloi4sZKrx4wxS+zVJXbXQOz/HwhHXUop1Zd8jfUAOGOsFqyUrJEEjIP6Em3BUkoppdShwjGLoAAPAhuNMX9qtekF4HL7+eXA8z2tSyml+pqvyUqwXB7r/nc56UnsJw1/+e5IhqWUUkqpfiocLVhzgEuBU0Rktf34BvB74OsishX4mr2slFIDit9rt2B5rBas3NQ4ikwmjpo9kQxLKaWUUv1Uj8dgGWOWAR3dmfarPS1fKaUiKWC3YLnjrAQrI9HDh2QyqWFTJMNSSimlVD8V1lkEB7PnnnsOEWHTpo4vqgoLC5kyZUrY6ty8eTMnnXQS06dPZ+LEiVx99dWAdZPgV155pUdlX3nllWRlZYU1XqUGo+YEKybWSrAcDqHGM5REXxkE/ZEMTSmllFL9kCZY3bRo0SLmzp3LokWL2t0eCAR6XEcwGDxo+Uc/+hE33ngjq1evZuPGjfzwhz8EwpNgLViwgNdee61HZSgVDYK+RuDLBAvAmzgcByGo2RupsJRSSinVT4VtmvY+8epPYf8X4S1z6FQ4o/PhYXV1dSxbtox3332Xs846i9/85jcALF26lF/96lcMGTKETZs28cYbbxAIBLj44otZtWoVkydP5j//+Q/x8fG8/fbb3HzzzQQCAWbOnMnf/vY3PB4P+fn5zJ8/nzfffJNbb72VCy+8sKXe4uJicnNzW5anTp2Kz+fjtttuo7GxkWXLlvGzn/2MM888kx/+8IesW7cOv9/PwoULOeecc3j44Yd59tlnqa6uZu/evVxyySX8+te/BuCEE06gsLCw09f93nvvcf311wMgIrz//vskJiZy66238uqrryIi/PKXv2T+/PksXbqUX//616SmpvLFF19wwQUXMHXqVP7yl7/Q2NjIc889x+jRo3nxxRf5n//5H3w+H+np6Tz22GNkZx98i7QLL7yQSy+9lG9+85uAlQyeeeaZfPvb3+7ee6pUGAV9DcDBCRYpI6ESqNoDQ/IjEpdSSiml+idtweqG559/ntNPP51x48aRnp7OypUrW7atWrWKv/zlL2zZsgWwuvV9//vfZ+PGjSQnJ/PXv/6VpqYmFixYwOLFi/niiy8IBAL87W9/aykjPT2dVatWHZRcAdx4442ccsopnHHGGdx1111UVVURExPDb3/7W+bPn8/q1auZP38+t99+O6eccgqfffYZ7777Lrfccgv19Va3ps8++4xnnnmGtWvX8tRTT7FixYpuv+4777yT++67j9WrV/PBBx8QFxfHkiVLWL16NWvWrOGtt97illtuobjYup/0mjVruP/++9m4cSOPPPIIW7Zs4bPPPuOqq67innvuAWDu3Ll88sknfP7551x44YXccccdh9Q7f/58nnzySQB8Ph9vv/12S7KlVJ+zEyyJiW9ZFZOeb22q2BWJiJRSSinVjw2sFqwuWpp6y6JFi1paci688EIWLVrEscceC8CsWbMoKCho2XfEiBHMmTMHgEsuuYS7776br3/96xQUFDBu3DgALr/8cu677z5uuOEGwEoo2nPFFVdw2mmn8dprr/H888/z97//nTVr1hyy3xtvvMELL7zAnXfeCUBTUxO7d1tTSH/9618nPT0dgG9961ssW7aMGTNmdOt1z5kzhx//+MdcfPHFfOtb3yI3N5dly5Zx0UUX4XQ6yc7O5sQTT2T58uUkJyczc+ZMhg0bBsDo0aM59dRTAavl7d133wWgqKiI+fPnU1xcjM/nO+jcNTvjjDO4/vrr8Xq9vPbaa5xwwgnExcV1K2alwi1kJ1i4v/wMJmfnA1BfsoOYCMTU3xhjuPedbeRlJHD2UTmRDkcppZSKKG3B6kJFRQXvvPMOV111Ffn5+fzhD3/gySefxBgDQEJCwkH7W7cF63i5PW3LaC0nJ4crr7yS559/HpfLxbp16w7ZxxjDM888w+rVq1m9ejW7d+9m4sSJRxxPs5/+9Kf885//pLGxkTlz5nQ6wQeAx+Npee5wOFqWHQ5Hyxi1H/7wh1x33XV88cUX/P3vf6epqemQcmJjYznppJN4/fXXWbx4cYcJqFJ9wm+NwcL9ZQvWsPQUSkwqvjJtwQJYW1TNS2+9xchnvknDh3+PdDhKKaVURGmC1YWnn36aSy+9lF27dlFYWMiePXsoKCjggw8+aHf/3bt38/HHHwPw+OOPM3fuXMaPH09hYSHbtm0D4JFHHuHEE0/ssu7XXnsNv9+apWz//v2Ul5czfPhwkpKSqK2tbdnvtNNO45577mlJ+j7//POWbW+++SYVFRUt46CaW9e6Y/v27UydOpWf/OQnzJw5k02bNjFv3jwWL15MMBiktLSU999/n1mzZnW7zOrqaoYPHw7Av//97w73mz9/Pg899BAffPABp59+erfLVyrcJGD/COCKbVmXO8S6FxbVei8sgI93lPM91ytMd+xAPvwz2H+Lot3KXRV8uK0s0mH0K5X1Php8PZ8UajBp8gdb/v1WSg0OmmB1YdGiRZx33nkHrTv//PM7nE1w/Pjx3HfffUycOJHKykquvfZaYmNjeeihh/jOd77D1KlTcTgcXHPNNV3W/cYbbzBlyhSOOuooTjvtNP7whz8wdOhQTj75ZDZs2MD06dNZvHgxv/rVr/D7/UybNo3Jkyfzq1/9qqWMWbNmcf755zNt2jTOP//8lu6BF110EccffzybN28mNzeXBx98EID777+f+++/H4A///nPTJkyhWnTpuF2uznjjDM477zzmDZtGkcddRSnnHIKd9xxB0OHDu32+Vy4cCHf+c53OPbYY8nIyGhZv2LFCq666qqW5VNPPZX33nuPr33ta8TEaCcsFTkSaG7B+rKL4NCUWPaZDGLqdRZBgNW7qzjGtROAuIZ94Z+MaACqqPdx/t8+5pOHfkLt87dCwBfpkCKuot7HyX9cyqX3vkHoo/vAVx/pkCKuqLKBGf/zFj98fCWsfQoaKyMdklIqDKQ//WoyY8YM03YSho0bN7Z0d1OH5+GHH2bFihXce++9kQ4lYvTzo3rquTu/x5l1S3AtLD9o/SP/vYCLgi/iuq0UHNH9W9X5f3mDpyrnsyz2RE5oehfOuhuOvTzSYUXUS2v38bPHP+SLWPuHo3P+CkdfHNmgImzJqiJ+/OQa/uT+K99yLoN5N8FXb4t0WBH19/e287tXN3Ga4zP+HvNna1bSH62Gw+jOr5SKHBFZaYw5ZHKD6L4qUEqpLjiDTXjFc8j6poThuAhA3f4IRNW/uKp24iBEUfbJ1BKHKV4b6ZAibktJHSc6W52HbW9GLph+YsWuSlwOw+mO5daKVY9EfXfSNUVVAJzr/NBaUVkIFTsiFo9SKjw0wRrEFixYENWtV0qFgzPgxe+IPWS9SRlhPamK7nFYtU1+YrwVAAzJGsH6UD7+vasjG1Q/sLWkluPj9xLEyauOE2HHe1GfTGwrqeOMHC/x4mW7exzUH7ASiii2tqiab04dxtHOHeyKm2St3PFuZINSSvVYrydYInK6iGwWkW0i8tMjKaM/dWNUA4d+blQ4uEKNBByHtmDFpOcBEIjye2EVVzeRTg0AQ3NGsDU0HCnfGuGoIm/rgTrGxZRTF5fDR94CaKyAmn2RDiuiCsvrmRFnnYNHA6dYK/d8GsGIIssfDLGvqpHx6S6GUs77HAOJ2VDU/ftVKqX6p15NsETECdwHnAFMAi4SkUmHU0ZsbCzl5eV6sawOizGG8vJyYmMPbXlQ6nC4Ql4CzkM/R0nZowCoK9nZ1yH1K+V1PtKlGoDc3JEUmqG4fdXQUBHhyCJrf3UTw81+Ain5bAyNtFaWHHqbjWjR6AtyoNbLeEcRAE82zsS4YqP6nOyvbiJkYJy7BICVdWmY7ClRfU6UGix6+0bDs4BtxpgdACLyBHAOsKG7BeTm5lJUVERpaWkvhagGq9jYWHJzcyMdhhrgYkJNBNtJsIZlplNhEvGVRXeCVVHvI0NqMA43GemZ7HPaNxou3w7xaZENLkKa/EHqvAHS3HvxZ85mU6GdYO3/AsadFtngIqSkxrrdQbYpxRebQX1THA1J+SSURW9r574qa4bSPIoB2BoYSnWyn9TCDyDoB6c7kuEppXqgtxOs4UDrAQpFwHGtdxCRq4GrAUaOHHlIAW63m4KCgl4MUSml2meMIcZ4CToPvRl47pB4ikwmmVE+BquiwUc6NYTiM3A6HPhTCqAWqNgOI2ZGOryIKKvzkkw9sYFaYoaOxu9KpMadRXIUJxOldV4AUgJlkJwDVVDqySOhbEtkA4ugfdVWgpUVPADAHpPJbreT1KDP+oEia0Ikw1NK9UDEJ7kwxjxgjJlhjJmRmZkZ6XCUUqqFLxjCg8/qytRGy72w6qL7XlgVdT7SpQZHovX3251RQBAHlG+LcGSRU17nI8PuNulIGsaozET2OnKspDNKldZaCVZ8UwnuIcNJiHFSyHBrkouAN7LBRcj+aut1JwcrMa5Yaohne2iYtTGKvz9KDQa9nWDtBUa0Ws611ymlVL/X5AsRh5eQK+6QbTEuB1UxQ0lsKo7q2eEq6r1kOWuQxCwAcjNS2GsyMOXRm0yU13vJwEqwSMhgdGYCW4JZVqtElGpOsGIaSpCkHEZnJbLelw0mFLXTkpfXeYmPceJuLEMSskiNj2FdY4a1MYqTcaUGg95OsJYDY0WkQERigAuBF3q5TqWUCotGf5A4fOA+NMECaIwfjsc0RfWEDhUNfjKlFhKsFqyR6QnsDA0lUBq9v8CXtWrBIjGLURkJrG/KsGYSbKyMbHARUlbnJd7hx9FUCck5jMpIYHmdnUxEaTfB8nofaQkxUFcCiZnkpSewudoFcWlRnYwrNRj0aoJljAkA1wGvAxuBJ40x63uzTqWUCpdGf5BY8XaYYIVa7oUVvVO1V9Q1McRUQYJ1sZyXFs8OMwyp3BG1LXtldV7SxZq6noQs8uykE4Dy6GytKa31Mj6+zlpIGkZ+RgKf1Q6xlqM0wSqr85Ke6IH6UkjIIj89nsLyekgfHbWtekoNFr0+BssY84oxZpwxZrQx5vberk8ppcKlwRcgFj/ijm93u7v5XliVu/syrH6lsb4GD76WFqy89Hh2mWxc/jrrwjEKldf5yHHVgjggPo38jAR2GjvBitKuX6W1XkbFNVgLidnkpyfQYGLxJw6HKJ38o6LeR0ZCDNQdgEQrEd9X1UhwyChtwVJqgIv4JBdKKdVfNfkCxOHFEdN+C1Zidj4Atfuj+Nfm5iTKTrByUuPYQ7a1riI6p7Avr/My3F0L8engcJKfHs8ek4VBovbCubTOy8hYO8FKyCA/w5qZsyY+L2rPSXmdj/R4JzSUQaLVghUyUB03Amr3ga8h0iEqpY6QJlhKKdWBpiYvLgnhiGm/BSs7cyi1Jo7GssK+DayfMMbgbCyzFuwEy+104E2yWvaoLIxMYBFWVucjy/HluLS0hBhiYuOpismO6hasHJfdRTAhk4J0K8EqcedEZXc4Ywzl9V5yYxutiT4SsshLt/7OtNxLLgrPi1KDhSZYSinVAV9TPQBOz6H3wQLITYunyGRgKqPzXlh13gCpoS9ny2vmzsgnhEBldLZgldV5rUku7ARLRMhPT2CvDIvK1hpjDOV1PrKctdaKhAxS4t0MiXdTGMqOysk/ar0B/EFDrss+J3YXQYDtwejuTqrUYKAJllJKdcDXaP3i7vK034I1LCWOfSYDd110JlgV9b6DJnNolpOeSglp0dtFsN5nT/zx5b0d89Lj2RbMjsqks9YbwBcMkU41eFLA5QEgPyOBTd7macmj67yU1/kAyHLa35/ELNITYkj0uKwZJ0FbsJQawDTBUkqpDvi91hiIjhKsGJeDSvdQkhqL+zKsfqOi3kc6zQnWly1YeenxFAazCUThjHmhkKGi3kdSoAoSv0w6CzISWN+UbrXURNm0/hV2MpESqjroc1KQnsCq2lR7p+j6rJTXWfcFS6fKWpGQhYiQlx7P5iqB+IyoOydKDSaaYCmlVAf8dhfBmLjEDvepTxhBXKgu6i6aASobrPs9BWOSW1olAEamJbDLZGGirFUCoKrRjzvUREyooU0LVoLVHQ6irhWrvN5KsBIDlYeckxUtCVZ0npPUUJW1wk7G89MT2FVeD2mjou6cKDWYaIKllFIdCDZZ4yNi4pM63CeUmm89icKLoYp6P+lSQyg+46D1eenx7DZZuBtLwVsXoegio7x5/BUclEwUZMRT2DJVe3R9Vppba+J85ZD45TnJz4inCQ/+hKFR11rT3EUwOVAJrljwWH9j8tLjKapsJDSkIOrOiVKDiSZYSinVgeYEyx3bcYLlyR4LQNOBbX0SU39SWe8jg2qk1UUzwMi0eHab5taawr4PLILK6nxk8OW4mmZ56QnsNvZylCVYFXZrjbup/KCxegX2VO21cSOjLploTjpjffY5EQGsFqxAyFATPwJq9oK/MZJhKqWOkCZYSinVEa/VRRBPx10EhwwfR8gINfs291FQ/UdFg48MRw3ONglWgsdFdVyutRB1CVbrFqwvW/bSE2KI8cRT7c6MvmSi3oeLAM6mioOSzuZ7YUXjVO3l9T6SYl046w+0ScSt8Z7FzVO1R9n3R6nBQhMspZTqgPHZ3dti2p+mHWBE1hCKScMXrS1YUoMkZB6yTdIK7J2iq7WmvM5LplRZC4nZLetFhLyMePY5hkVfMlHnIzfG/rGi1WclOdZNekIMu0w21B8Ab22EIux7ZXVeMhI9UHfgoM9Jc9K5I9jc2hldnxWlBgtNsJRSqgPSkmB13IKVn5HArlA2zqrCvgmqH6msaySV2oMumptlZGRTQ2LUdYcrr/eR1c4YLLC6CW4PZkXdRXN5vZfR8XZXt1atNWB9fzZG4VTtVoIVA3UlB52TrCQPcW5nq6nao+ecKDWYaIKllFIdEL/9q3snCVaix0WJK4fE+t19FFX/Eagrx4E55KIZYERaPDtDWYSiLJkoq/OS666FuCEHzawI1rTkG5vS7daa6Jn8o6Lex0iP/XoT2iRY6Qmsqk2zd4yez0pZnY+sBBc0lB/a0pkez+ZqF8SmRtU5UWow6VGCJSJ/EJFNIrJWRJ4VkdRW234mIttEZLOInNbjSJVSqo85/Q2EEHDHdbpffcIIkoKV0FTTR5H1E/Wl1v8TMg7Z1DyTYKAsun6BL6vzkeOqOeiiuVleejw7o3Cq9rI6H7luO8FqM14vPz2eVXWp1kIUJRNldV5GxjZAOz9Q5KcnUNgyVXv0nBOlBpOetmC9CUwxxkwDtgA/AxCRScCFwGTgdOCvIuLsYV1KKdWnnIEGvBLXMsNXRwKp0TneyNVUbj1pp4tgc4Llqi2CYKCPI4scawxWdbutegUZCexqmao9ei6cK+q9DHU235D60C6C9cQRiIueyT/8wRBVDX5GuO0xZ20+K3kZ8eypaCSkCZZSA1aPEixjzBvGmOZ/OT8B7GmjOAd4whjjNcbsBLYBs3pSl1JK9TV3sB6fo/PWKwBP1hgAvFE00UUwZPB4O06wrJsNZ+MwAaje08fRRU5ZnY80U9VBC5Z1A2Ygai6cjTFU1PvIlBpwxx8yI2fzVO018SOiZrxR8z2whrnssXptPiv56Qn4giHq4kdY352Ar69DVEr1UDjHYF0JvGo/Hw60/he1yF53CBG5WkRWiMiK0tLSMIajlFI9ExNqxOeM73K/lOHjAKjZt6W3Q+o3qhv9pDXf76m9SS4SYyhxDrMWoqRlzxhDWV0TycGKdhOsjMQYTEwS9a7UqEkmapoC+IOGNKra/Zw0z5p3wBU9U7WX2ffAyqA5wWrTgmVP1b7flQMmBFXRN75TqYGuywRLRN4SkXXtPM5ptc8vgADw2OEGYIx5wBgzwxgzIzPz0D++SikVKTHBRvyurhOsEdlZlJoUmkqipwWrot5HhlQTEqc1GL8NESGYmm8tRMm9fOq8AcRXT0yoqd0ugiJCfkYC+5zRk0w031A3KVDZ7jlJ9LjISPRQaLKhdh/4Gvo6xD5Xap+TNFNprWhn4g/gy/F6UfJZUWowcXW1gzHma51tF5EFwJnAV40xxl69FxjRardce51SSg0IxhhiTQPBbrRg5WXEs9lkM7wyei6ESmu9pFNDwJNGjKP93+oSM0bgq3ETU769j6OLjAO17d8Dq7X89AR21GQxtiI6kvH9NU0AJAYqIGFMu/sUZMSzqSmT08FKxrMn9Vl8kVBW25x0VoAnGWIO/hszNDmWGJeDjd4MTgNNsJQagHo6i+DpwK3A2caY1j87vQBcKCIeESkAxgKf9aQupZTqS43+IAk0EXR3fJPhZsmxbvY5h5NYv6sPIusfDtQ2kS2VhDpIJADyMpLYaYZiyqMjmSipaSKzg25fzfIz4tnUlI6p2Qv+pj6MLjJK7ATL4y0/ZAbBZnnpCXxeO8RaiIJkoswegxXvq2j3c+JwCHlp8WyoirFuEREF50SpwaanY7DuBZKAN0VktYjcD2CMWQ88CWwAXgN+YIwJ9rAupZTqM1UNflKox8QN6db+1fH5JAfKobGqdwPrJ0pqrATLlZLT4T4FGQlsDw0jcCA6xqYdqOm6BSsvPYEdoWwEExVdJ/dXe3ERwNlUcUhXuGYFGQl8Xh9NCZaXOLcTV0Nph+ckPyOBXRWNkFYQNWMYlRpMejqL4BhjzAhjzHT7cU2rbbcbY0YbY8YbY17trByllOpvqhr8pEgd0s0Ey5821noSNa01XoZKJc5OEqzRWYlsNzk4q3dFxUxoJTVN1hTt0GkXwZ3GnvwjCj4rJTVNjPLUIiYEKbnt7pOfnkANiQQ8Q6IiwdpX1ciw1FioK+m4pTM9nl0V9ZghoyBKutgqNZiEcxZBpZQaNKrr60mWRpwJad3a3zN0AgBNxRt7M6x+o6y6lnSpQZI7TrBGZSSwIzQMhwlGRWvNgVovw13VIE6Ia/9zk58Rz47mBKts8Lfs7a9uYlKCfb+nlHYnEyY/wxqDVBs/EioGfzKxt6qR4SmxULMXOvj+5KUn0OQPUZ9UYH13ouAHCqUGE02wlFKqHfXVFQC4E9O7tX/miHH4jJOaog29GVa/4a8qtp4kDe1wn7SEGEo99nxH5Vv7IKrI2l/TRIG70kokOpj4IzPRg4lJosadAWXRcU7GxlZZC8kdt2ABlMTkQtngb9XbW9nIuGQf+BsgZUS7+zSfk33ukWCCUdGyp9RgogmWUkq1o7G6DABPUvdasEZlp7LLDCV4YHNvhtVvSG1zgjWs431EIN3uOhkFycSu8nrynGWQmtfhPiJCXnoCRc7cqGnBynfZ05F30IKV4HGRleRhhxluTdXeVNOHEfatRl+Q8nof4zxV1orU9hOs0VlWgrU1ZLdwlUXH3xWlBgtNsJRSqh2+unIA4lMyurX/yPR4dpBDTNXg/6XZGENcQ5G1kDqy032HZWdTTuqgb8EyxlBY1kB26ECX5yQ/I54twWFW0tlyd5PBxxcIcaC2ieGOcohNAU9Sh/vmpyfwhdduDR3EyfjeqkYA8l3WDzgdfVaGJseS6HGxpsH++xMFybhSg4kmWEop1Y5gvdVF0JPUvQTL43JS6hlJSuMeCPp7M7SIO1DrZWiwxFroIpkYnZXIttDQQT+TYFmdD5+3kWR/WZfnJC89gTWN2eCttiY6GKT2VDYQMjAsuA+GFHS6b35GPJ/W2d+10k19EF1kNCdYw4ydYHXQRVBEGJ2ZwPryoNW1chAnnUoNRppgKaVUO0J2gkU3ZxEEaEoZjYsAVA7u+2EVltUzQkrxxWYecpPUtkZlJLA9lDPoLxALy+vJkTJr+vUuEqyC9AS2hAb/RBeFZfUApDbugfTRne6bn5HAmvohGGfMoO4Ot7fSSrDSfEXgSen078uYrCS2HaiDzHFQOnjPiVKDkSZYSinVDkej1UXwcBIsZ9Z4AEKD/GKosLyekXIAMyS/y32tqdqH4fJWQkNF7wcXIYVl9YyWfdZC87izDuSlx1tJJwzuBKu8ATcBYur3QlrnCVZBegJBnHiT86F08J6TXRX1uJ1CfM0OyBgLIh3uOyYrkZIaL97UMYO+O6lSg40mWEop1Y7YpgP4iDmsBCt5+ESAQT+TYGF5A/mO/bgzOu/2BTAyLZ5dNCcTg7cVq7C8nnEOO8HK6DzBGp2VyH7S8DvjBvc5KatnYmy5dQ+sbrRgAVTEjxrUXQS3H6hjVEYijrKtkDGu033HZCUCcCBmBPjrrWndlVIDgiZYSinVjjhvKdXujE5/YW5r5PBhlJhUGvcN7nthlRwoYZhU4Mia0OW+bqeDplT74nowt9aUNTA19oB1g+G41E73TU+IYUh8DCUxIwf1OdlRVsdXkg5YC10kE83Tkhc5R0DVLvA39XZ4EbH1QB1TMgTq9neZiDcnWNuNPfviIP6sKDXYaIKllFJthEKGFH8pTbFZh3Xc6MxEtodycFQM3lYJANM8FX3mxG7tH581Ci8xg7plYmdZPeMde7tMJMCawGBsVpJ14TxIW7CMMWzYV8PM2H0gDsjq/LMSF+NkaHIsmwLDwISgfPDdD6vJH2R3RQPHxdu3OOjinIwYEkeMy8HapmxrxSDuOqnUYKMJllJKtVFW5yWTSgIJHd9Etz1pCTEUOXNJqts5aMdL+AIh4qrsC71utGABjMpKYbsZRujA4GzZ8waCFJZWkeffAcOO6tYxY7MTWduUBdV7wFvXyxH2veLqJiob/Iyj0BqT5o7r8pgxWYmsaMi0FgbhRBcbi2swBqY6dlorhk3vdH+X08GojATWVMZY09xrC5ZSA0bYEiwRuUlEjIhk2MsiIneLyDYRWSsix4SrLqWU6k37qhoZKpU4kju+iW5HapNGER+shfqyXogs8rYdqGMiO/G7EiA1v1vHjM1KZHMol2DJ4GzB2rCvhvzgblzGBzlHd+uYsVmJrPM1zyQ4+JKJdXurAUN2/SYYNq1bx4zJSuT98lSMOAblrHlri6oByPNtg4QsSOr6B5zRWYlsK6u3WkYH4TlRarAKS4IlIiOAU4HdrVafAYy1H1cDfwtHXUop1dvKS/cRJz5i0tq/R01nQmljrCeD8KIZYE1RFdMd2/APPRoc3fsnZGx2IltDw3HX7QVvbS9H2PdW7a7iKMd2a6G7CVZ2EltMrrVwYPAlnmuLqhkppcQ0lMCI47p1zLjsJKr8TgLJIwdlMrFmTxUZiR7iDqyC4cd0a3znmMxE9lQ0EMiYAAc2DNqWcaUGm3C1YN0F3Aq0/uafA/zHWD4BUkXk8H8OVkqpPtZYbHXFSRzevS5wrcXlTLTLGJzd4VZs3ctEx27i8rt30QxWy8S25oH6g3AcyardlZzi2QyJQyFtVLeOGZudyC6TTcARY104DzIfbS/jvIwia2Hk7G4dMy7bmtShKqFg0HWHM8bw6c4KThkeQsq3Qf7cbh03JiuRkIGy+NHQWAH1pb0cqVIqHHqcYInIOcBeY8yaNpuGA3taLRfZ69oef7WIrBCRFaWl+odDKRV53hI7wRo2/rCPzc4dTb3xUFs0+BIsYwy+HctwEULyvtLt4+JjXNQk2S17g2yii1DI8NmOco6T9VAwr9uzTmYmekiK83AgJm/QnZM6b4A1RdWcFrMW4jMga1K3jhubnQTYMwmWb4NgoDfD7FO7yhvYW9XI2cn2pCZ5c7p13Fg76dwhdmv6IB3HqNRg060ES0TeEpF17TzOAX4O3HakARhjHjDGzDDGzMjMzDzSYpRSKmwcFdsJ4ESG5B32saOykthhhmEGYbev7aX1HOVdSdARA4eRYAEkDB2DDzeUDq4LxNVFVQyr30hysBJGn9Lt46yZBBPZTu6g6yL44bYyHCE/42o+gvFngMPZreNS4txkJ3vYFMyBoA8qC3s30D707mZruvrpjR9b46+6mOCiWUFGAg6BtT77XnKaYCk1IHQrwTLGfM0YM6XtA9gBFABrRKQQyAVWichQYC/QegBDrr1OKaX6LWMMKfU7qIzJAaf7sI8fmRbPDjOc2JodvRBdZC3dVMLXHSvx5R4PMfGHdeyY7BS2mxxCgyyZeH39fr7hWo4RJ4w7/bCOHZudxCrvMKgpgqbqXoqw7728tpivxW3B5a+DCWce1rHjspNYXmffHmEQJeOvrtvPtCw3ibuXwvjTuz1+0eNyMjItni8qPRCXNii7kyo1GPWoi6Ax5gtjTJYxJt8Yk4/VDfAYY8x+4AXgMns2wdlAtTGmuOchK6VU7ymr8zHe7KB2yOQjOt7tdFAel0+Ktxh89WGOLrI2rHyPPMcB4qZ/+7CPHZudxJbQcIIlg+eiORgyvLqmiO/EfISMPhni0w7r+LFZiaz12kOTB8mkDnXeAG9tLOHqlOUQkwijTjys48dkJfJeZbq1MEiS8T0VDXy2s4IfDNsEvlqYesFhHT8mK4ktB+qs+2YNsu6kSg1WvXkfrFewWri2Af8Avt+LdSmlVFhs3rGD4VKOY/j0Iy7DmzraejKIbpa6aX8NcyqW4HfGwcSzD/v4sVmJbAnl4q4tGjT3fXp7Ywnjaz4iPVgGR1962MePzU5sNZPg4Eg8Fy/fQ7LvANOr37bOSTfuf9XauOwkyv1uaybBA+t7Kcq+9einu3AInFzzPAwp6Pb4q2bjhyays6yeYMYE63OiMwkq1e+FNcGyW7LK7OfGGPMDY8xoY8xUY8yKcNallFK9Yf+GjwAYNuH4Iy7DnW3NJDiY7vv05DvLOcvxEaHpl0Bc6mEff9BMgoNgCntjDP98fwc3eF7EpIw47K5wYCUTRSYTvyN2UCRYvkCIfy3byU/T30MIwexrDruM5pkEKxPHDopzUtXg49GPd3Hj6P3EFK+A2dd2u3tgs3HZSQRCxppJ0FsDNTraQqn+rjdbsJRSasBx7fkIPy48+bOOuIzU3PEEjVC7d3CMl9hRWseIjQ/gEoNn7nVHVEaCx0V1ot2yNwi6w725oYThe15gstmKnPgTcLoOu4ysJA+JsTGUePIHxXijf324E2d1IWc1vQiTz4Mh+YddxpgsaybB3a48qwU44A1zlH3rnne24fX7uLrh75A6Eo65/LDLGGfPrriNwXvfNKUGG02wlFLK1uQPMqpuFcVJUw97EofWCoamsctk49s/8C+EjDE8vOQFLnO8jnfaJUd00dwsfugY/LgGfMtEdaOfu174hF96niCUcyxMv/iIymmeSXAbIwb8OSmqbOAvb23hr6mP43S64ev/fUTlpMS5GZocy4bAcAgFBnQ32zV7qnjow53ck/8xnorNcOrt4I497HJGZSbgdAirm4ZaK3SiC6X6PU2wlFLK9sma9Uxz7CBYcHKPyhmdmcB2k4OrYuBeHDZ74sNNXLj393g9acSdcWQXzc3GDE1lu8nBDOAWLGMMP3v6c37W+EeGSD2OM/902F2+WhuXncTnTUOhrgQaKsIYad9p8ge59tFVXOt4limNy+FrCyHlkNtedtvY7EQ+qc+2FkoGZjJRWe/jukWrODVxJ6fv/7vVhXTiWUdUlsflpCAjgTXlTutm1gM8GVcqGmiCpZRSttIVzwKQe/z5PSonNT6Gva4RJDfsGtA3S/1keykpb9zABMduYs+//4jGXrU2JiuRLaHhBPYPzItmYwy/e2Ujczb/nhMca3F84w7Imd6jMsdkJbKmZSbBgdfi6QuE+NGizxlT/BI/lCdh2nyYeVWPyhyblcT7FakYh2tAttbUewMseHg5KTVbudfxB+t+euf+tds3oW7P+OwktpTUQtaEQdGdVKnBThMspZQCvIEgY4pfpsSTh3vokU3R3lpD0mhcxg9Vu8IQXd9bubOU/Y9cxTccn+A98TYc40/tcZnjspPsmQT3DLgp7IMhw+0vrGXMxz/lYtfbmDk3wrELelzu2OwkNofsW0YOsGSi0Rfk//1nOVmbH+VPMfcjo06Es/7So0QCrIkuav0O/KmjB1xrTXmdl4v/+Slx+z5hSfz/4oqJg0uWQGxKj8odl53ErooGAukTrDFYoVCYIlZK9QZNsJRSClj28UccLZupm3hhjy8QAUzmOOtJ2ZYel9XXXv50Aw0Pn8+5LKVm9s3EnfzjsJQ7JiuRrc0zCQ6gboLVDX5u+tcbfH3l1Vzgeg8z7xbka78Oy+dkXHYixaThcyUOqMkLth2o4zv3vstpO3/H/7gfQsadBhcuOuxp2dsz1p7UoSJh9ICaqn1tURXn3reMafuX8HjM74hJyoAFL0NaQY/LHj80EWNgf+woCDRCVWHPA1ZK9ZrDn/ZIKaUGGWMMlR8+RBAHBaf8V1jKTMyZBNuhcd9G4safEZYye1uTP8h/nljEqVt/S66jnNqv/5HkOT3r7tVaosdFTcIo8GMlWMOPCVvZvWXpphLeeOp+bgs8QLLLD+c9iEw9/Bstd2RociyJHjclMXmMGACtNaGQYdHy3bz48vPc47ifAudemHcznPyLHo1Fa22sPVV7oTOfoVWvgLcWPElhKbs3eANB7nt3O88s/Yw7PP9ijnMljDoFvv0viBsSljqaZxLcYnKtuQQPbIK0UWEpWykVfppgKaWi3oote/ha42vsHXoyI5Ozw1Jmbs5QDphUHPs20PPf9Hvf++t2cOC5X3KV/xVqYofCd18iKf/I7wXWkdih4/DvceHu5+NI9lQ08NCSVzhp15/5X+cXNGQdheuCf0Dm+LDWIyJWy179CEaULg9r2eH2RVE1f1ryHmcc+CePu97HJA2Hc5+F0aeEtZ7kWDfDUmJZ589hNljJeO6MsNYRLu9vKeX3L37OyRVP8U7Mi8Q4DJz6e5j1/8KWcALkpScQ43KwqjGTU8DqTjrhG2ErXykVXppgKaWi3rbX72em1BN32i1hK3N0ZiLbQzmM7eddBAv3lbD66Ts4ofwJUqWekgmXMuxbvwNPYq/UNzo7hR27hzHuwCZ63sEu/CrrfTz21qcMWfkXfiFv4fck4j/5duJnX3NE97rqjnHZiXy+YRinhMqhrhQSM3ulniP1+e5KHnx7DaO3/Ye/ul8iJiaEHPcDHCf+BGKTe6XOsdlJfFydzVVgJRP9LMH6fHcld7+5idTtz/Mvz9MMdZfChLPg67/tlZYlp8Oa0v+L0hCkjBxwY9OUijaaYCmlotqOkirmlS+mKPkockeFr8Umd0gcH5HD0TWfgjFhGa8TTtuLitn0/J185cATnCt17EqfQ9I5v2FY3sxerdea6GI4o0o24u7Vmg5PdYOfp9/+gKQV9/E9luJyGJqmX0HCqb+C+LRerXtsVhJLVw2FGKxkIvHEXq2vuz7dUc7Db61kwu7H+V/XGyS76/FPOAfnqb8Jy7iizozNSuSxHQmYuHikn0zVbozho+3lPPDOBnJ3Pct/u18iN+YAoaypcPpDUDCvV+sfn53ExzvKYeQETbCU6uc0wVJKRbXlL/+L+VJG9Sl/Cmu5LqeDyvgCYr1vQX0pJGaFtfwjtW33XjY9fydzyxbzTalnW+oc+OavyBsX/u6A7RmTncjSUC5n1XxizSQYk9An9XakpKaJ5994m6Ff/I3L+RAjTuonXUjq124moZeTiGZjshN5IJRrLZRuglGRS7CMMXywtYzH3vyUGcWP8UfXO8S7mgiMPxNOuAl3H42bG5edSFMAfEPG4Ynw7IqhkOHNjSU89PZappUs4Y/uV8lwVxHMmQEn3o1j7Glh7Q7YkXFDk1jy+V68aePx7FgKQT84+9PPFEqpZppgKaWiVkWdl6m7/s2B2Dyyjjqym4B2JpA2BoqxxpBEOMHaXLiHrS/8gXnlTzFGGtiWNg+++SvGjDmuT+MYm5XI38xIa6FkPYyY1af1N9tZVs8rr73E2C3/4GrHcryOWKqn/BfpX7+J1ORhfRrL+OwkSknF60rGE6GWiVDI8PamAzz55gecWPo497jew+U2mMnnwwk34cqa0KfxNM8kWBY/iuEHlvVp3c38wRAvrtnHY+98zglVz/AP1xskuesJFpwEJ9yMM39un7ZMj7fPyd6YfEYFfVCxI+xjApVS4dHjBEtEfgj8AAgCLxtjbrXX/wz4L3v9j4wxr/e0LqWUCqf3XnuS86SQkuPv7JVfoD3DJkIxBEs34+zl7kMd2bBjF9tfuJMTK59mvDSwLf0E5MzbGDOqd7sCdiQp1k1J4gTwAftW93mCta6oirdeW8Kxu//FDxxf0OhOpPqYH5Ny8g/x9HJXwI4MS4klNT6GfTEFFJT07bTkwZDh1XXFPP/mu5xe9Th/c36ExDhh+iU45t7Q610BOzI2yxoDuNOZz/D6JVBfBgkZfVJ3kz/Ikyv28MzS5ZxV/wyPud4h1uUlNP5MOOHHOIcf2ydxtDVuqJVgbQoOZxRY3Uk1wVKqX+pRgiUiJwPnAEcZY7wikmWvnwRcCEwGcoC3RGScMSbY04CVUiocvIEgOesfoNKZRvbcy3qljsycUdSv9OAv2kBqHzfUrNtWyM6X/sCJlc8wSRrZlnEScuavGVMQ+anRU7PzqSxKZUjx6j6r89PtZXzw2hOcWPJvbnBsoc6TRt3sX5E452riemmihu4SEabkpLC6rICC/a9BwAeumF6t0x8M8cLqfbz+9hucW7uIvzuXE4qJxTHjGhxzfgjJOb1af1eSYt2MSItjZeNQ5oKVTBSc0Kt11jb5efST3bz2wcfM9z7D0673cboNMvU7MPdGHH3citdWTkosiR4Xqxoy+YbDbf1AMfm8iMaklGpfT1uwrgV+b4zxAhhjDtjrzwGesNfvFJFtwCzg4x7WN+iFQoYmbyPeump8DdX4vE34fH58fh9+vx8nQZwCTncMDpcHpysGZ4z1f1dcEonJqcTFuJF+NqBeqf7m/ffe4utmLTun3soQl6dX6hidncR2k0NOSd/dVHfNlh3seukPnFz9LFOkkW2Zp+A46zbG5B3dZzF0ZVJOCmt35TFv3+pevdu9MYYPthzg01cf4fSKR7jZUUht3FAaT/g/EmddHpab4obL5Jxk3i3M5zxXE5Ss67V7hHkDQZ5ZuZdl77zIdxoW84BzDX5PIsy+Cdfx1/ZZK1F3HJWbyhu7srgerGSilxKsynof//pwJ+99tIzLg0tY4vwIiXEhx1yOzLkehuT1Sr2HS0QYm53IugNeGHYU7Pks0iEppTrQ0wRrHDBPRG4HmoCbjTHLgeHAJ632K7LXHUJErgauBhg5cmQPw+mfAoEAB/YWUr53G02Ve/FX74e6A7gaDhDrLSPeV05sqJ64UAOJNBIvfuJ7UF+diaNO4ml0JOB1JOBzJeJzpxDwpEBsKs6ENFyJacQmZRCfmkFiaibJaVm4E9J0wKyKCsYYYj65h3riyT/tB71Wz/jsJF43OeRXbu21Opp9vmkbe17+A6fUPMdU8bIj66s4z/41Y0ZM6/W6D9f0ESms/bCAE0pfBH9j2BMdYwxvry9m9esPcVb149ziKKImcST+k+8m6eiLer116EhMHp7CC4HR1r/KRcvDnmA1+oI88dkuPl/6LN/1PcV3HRvxxQ/BzPkV7lnfg9iUsNYXDkflpvLS2mKC2SNxFoX/HmGltV7++cEOln/yHv9lnuFG53LwxOKY+X04/jro47F43TElJ4Ulq4oIHT8Lx8p/9Ulrp1Lq8HWZYInIW8DQdjb9wj4+DZgNzASeFJHDugGEMeYB4AGAGTNmmMM5tj8xoRDF+3ZRsu1zGou+wFG5k7j6PQzx7mNo6AA5EqB1hwu/cVIpKVQ706hzp1PtGQWeJIw7kVBMIqGYJMSTiMMdi8vtxuWyHiGcBI0hFPBjgl5Mq/+Lrx7TVI3x1iDeWly+WlyBOuIClaR7d5NUW0eiacAhHZ/mBmKpdyTR6ErB504m4EnFxKbiiB+CxA3BkZCGOyGdmKR0PElpxKdm4ElMR2IS+t001F0yBkzIeoSCYEKYUIBgMEgoZAiFAoRCQULBgLUctJZNKEgoGGrZhjEEQ0FCoRDGQMgYQsa6yGt+3lrrsyT2eyGt1nZ0GqWDpeb9vzxODiqv5am0qburCtu9S5F0uL9pZ39r145eUPvrO/0UdXhyOmoHaX//vbu3Mde3jC2jFzAxLrWzGnskLsZJefxokr0fQmMlxA0Jex3L129h36t/4Gu1z3OU+NiZ/XWGnf1rxuROCXtd4TJ9xBCeDRUgJmhNdBGmexyFQobX1u5m8xv/5Jy6J/maYz9VyWMIfO0Bkqee32v3sQqH6bmpFJNOvSeLhKLlcNz/C0u5dd4Aj368k63vP8mlgWe4wrEdb0I25oT/JebYBRGfxbEzR41IBaA0ZRpDi1aE7XYH+6ubuP+97Wz47G3+nyzhZ87PCcYk4TjuJpj9fUhI73EdveXYvCE88sku9iZNZUSgCUq+gAiNCRsMQiFDgz9IQ2MTjfU1NNbV4GusxddQg7+xlmBTLfjqMUE/BLyEgj4k6IegD4I+xF52GD9C87/nxvqsAi3/MppW2wAjDkI4MOLAiAscThAHxuGy/j1zOEGc4LC3NS+L9VycLhAn4nAgDms/h8M6ThxOxGFtdzgd9rITh8NlPXc6cThd9rrmMlw47PWO5ucOFw6H4HQIDgGHQ3CI9Rzky5cImDb/P+S5aX71h15/mlbnCvPluTL2eWzebtzx/P/27ju+qvp+/PjrfVf2ToAsCHslYQiICiruVdE6W7et/trar9Xa2lqr1U6rrbZqq9W66t57K6KigrL3JpCQQPZe997z+f1xbmKABEJyk5uE9/PxCPee/b735ITzPp8Vn5BMhMfZlVPd6w74v40x5oSOlonIj4FXjP3pvxYRC0gGdgKZbVbNCMwbEPw+Hzs2LqNk3RdYhcuIqd5ERnMeaVLXmkRVEUWJK5XSqNEUxp6AM3EYUYNGEJ0ylPiUDGISUxjkcNLb/Yr5vF7KK8qoqSymtqKUhqpSmmrL8NWWYxrKoaESV3MlnuYqwutriK7dTRy1xFGLRzpuQtdsXDRKGF7ceHHhFxc+ceMTN35x4Rc3lsMNCKbNf5AtN+UG2eMGXTA4sHAYP2IsJPDegWVPGwsHfpzGby/DwhGY9+17+8eJ9e3+Wtc17SaagnateSjIBGokkuFzf9Pjx2oePAl2AIXLYORxQdmnMYZv1myg6N27OKH2TQ6TZrYOOZmMM29lZPrEoByjJw2JC6cgagJ4ge1fdjvB8vkt3l62je0fPcR3G17iNCmlImEC/pPuIn78Gb3ShXZ3ZSZGkB4fwQbnOKYGobSmqt7LE19sYecXz3CF9Qo/cuTTGDsUjv0HYZO/Dz1ULTaYstNjcTmEFY4JDKl5y+41L2lkl/eXX17PA/M3s2PpB/zY8Sq3uVbjD0+AI3+Lc/pV0IMPW4LlsGH2Q5qvvSPtm6z8rzXBCmjy+SmpbqS0vIzakny8lUX4a4rx11cgDeU4GivxNFcS5qsi0ldNlFVDLLXE0MAg8XbpmJYRmsWFD9ce9zGGPe9vvk2t7GkHBmfL/QoWrsD9jUus7n8RA9RjvpNJOf8fnJEb2vahndXde8nXgDnAJyIyBnuYxFLgDeAZEbkbu5OL0UC/rSzc2FDHxsUfU7d+HrGlS8lq3MBwaWQ4UEMEO93D2Zh8AgyeQOzQXFJHTyEuKZW+V+ECXG43yYOGkDyovULJfRljqGnyUVjTRH1dNQ3VpXhry/HVluOvL8fUVyCNFbibq3D6G8HvxWHZT3TEasZhvDgsL07Li9NqbvMUB2jztEfaPNWwn3FIIDVy4BcHRtxYEhZ42uO0X3FgifPb6XZe2eO9I3Cj5WjzhKjlVQJPhwJPgMSx5/vAutLy2vLe4UDEiTgEEScOsevJS+Apj8P+u9paorTH0xvT8iJ7zwp89x2dkz2m9pi39/OhPeebduZ3pJ2nTB3MB5AOgjUdzJcO9tPR/gM763Bf7S/qaH1b3JgjGRXX8484orKmww6o3bqI6G4mWMYYvlq5npL37+TEurc5TLzkpZ5CxtxbGZU6PkgR944RI0azbUM6WVs/RY66tkv7aPZZvP71RnZ/8iDnN7/KXKmkPGky/pMfIGHMif2qVF1EmDkiiXnrhjO17jOo2N6ltj9ltU089tlGqhc9xRXmVYY7dtOYOBrmPER4dt8uxdtbpMfF9KxEni8byckAW+Z1KcHaVlrHv+dtomzFO1zjfJXDXBvxRw6CWX/EedgVEBYd9Nh7SkaCnYi/n+/knLihkLcAZv441GH1uPpmHwXl9RTtKqS6aAu+8u04qvMJqysioqmEGG8piVYFg6SSDGlqfx9EUOeIod4VS3NkHA2eDGrD4rE80RAWgyMsCkdYDK7waFwRMXgiY/FExuAKi8LlCcfpDsPtsX+c7nBwenA4nIQH84O21KwJ1JDxWz78Ph/G78eyfPh9Xiy/H8vvxVgWfsuH5fdh/JZd68bvx7TWvrFr3JjW9z57OrAvY1lg7Gmz1yvGXm4CtXAsY5cuWYESpfb+tLZWlmlvWQelz0LL/L2r2rSZJ/ZOM6NHMyY9vptfcO/p7l/aR4FHRWQ1dqe7lwVKs9aIyAvAWsAHXNMfexBcOf8lHF/dx6jGNeSKF59xsM01gtUpp+HMnMaQCbNIH5nNOEf/KK7sChEhNtxNbLgbUqKB/vHkQKm+YmxWBpvmp5Ow5QuiT+zaPowxfLF8DWUf3MVJ9e/gER956aeRceYtjBwS2p7Nuuq4cSnMX5PNZXmfIk21B3WT2+j188qXa6j57AHO871BotRSNngm1sm/IXHE0f0qsWrryJFJ3Lcsl1+EARvehZk/6vS2u6sbeXT+WvyLn+AKeZN0KaMhJQeO+xvh4/pHKV575oxL4c/vlOIbPAzXhndgxlWd3nbDrhr+PW8j3jVv8BPX62S7t+GLSYfZf8M55RJwB/XWuFeICHPGpfDK0p34pp2Aa9Vz0FwPnu603A49YwwltU1s3l1NWcEWGnetx1G+mfCa7cQ0FjLIX0yGlDBGGvfYrl4iqHYl0RCVTFPkJPKjh+CMSyUsIY2IxHSiEoYQHpuMRCYS6QrrVvv2XtHysNfhxOHy4AC0ZXz/1K0EyxjTDFzcwbI/AX/qzv5DzddQQ4K3kuWDv0vkuOMYOe0kRseGZpwUpVT/NCkznhfJ4YLdn4C38aBu6owxfL5kBRUf3c3JDe/gEj87Ms4gY+6tjBw0ugej7nnHjBnEj60ZXOF/Hza+BznnHnCb2iYfL3+2DP+X/+Zc611ipYGy9GMxp9xE0tCZvRB1zzphwmB+40xnV/gIhqx8rlMJ1vayOv43bznRKx/nasd7JDmqaUidAcc9RMSo4/ttstniuHGD+PM761kVfzxTtj4BNbshZvB+t1mRX8kD89YTteFVrnW/wUh3Ib6EETD7fly5F/T7TiFOGD+YpxbuYEnUbA73Pgrr34bc80IdVqdYlqGwqoHNReWU562iqWgtzvLNxNVtY6i1k6lSRHib6noNEkllWCqNUSPYHX8slclZxAweScyQETgShhEZEd/3kyZ1SOo/dQVCYMrJlyGnXkFohllUSg0E4W4npYNn4Sl5D7P1E2TsqQfcxuu3mP/FF1gL/sGcpk9wCORnfoeMubcwImVUL0Td8xKjPESPns3O7YNIXfgAjuxzOkwGSmqaeGP+l0Qs+Q8XmI/wiI+KrFPhlJtISu17vSR2VVyEm1Oyh/DY+mO4qfAx2P4VDDui3XWX51fywscLGbH5CX7u/JgoZxMNw46DOb8gIuuoXo6854waFMPhwxP5c+FUXjCPIQv/DSfevs96lmX4bFMJz3y2mrS8V7nV/Q5pnlL8gybC0X/CNWGuXdV7AJg9OoX0+Aj+vjGO5xNHIl/dD9nn9LlSSr9l2FJSy7rNWynfugRTtJqk2o2MYTtHys7Wdt0WDio8qdTHDqc0+QQi08YTmzEe16BxREQlE9HPHxKoQ5N01EYiFKZNm2YWL14c6jCUUiqoXvlmK8e8dTRW5hGk/PDFDterb/bx8UfvEL343xzjX0izuCkYfh5ZZ9yIKymr9wLuJYu2lvHGI3/kT+5H4eyHYNIFrcuMMazMr2DRhy8wevtzHCPLscRB1ejvknTyryC5f5fgdWRVQRXf+9dHLIj6FXGJKciV70NgIOS6Jh/vrMhn/ZdvMqPsdY53LsWB0DzuLMKP/TkM6bs9R3bH/A3FXP7YN7yT8T8mVMyDK96DDLtjh5KaJt5asZOFX37C0dVvc7brCyJpxJ8+A+cxv4DRJ/X7Urz2/O+rPG59fQ3PH76Nw1fcDCf+AbrYljEYjDHklzewdut2yjctxFm4hME1axjHNoZIRet61e5kauPHIUNyiBk2hejMHEgc0S+rayoFICJLjDH79NSkCZZSSvWwZp/F03/+AVdYr2Bd+RGOodP3WL65oJi1Hz7KyO3PM5Gt1EkUxeMuYdhpN+CI6e2+RnuPMYZfPL+EC9f+hKnOLRRM+H+Ux02gcNcurB1fM9O7kBSpotaViHfypSTMvhri2h1ScUC58731rPrsVR733EldZAabkk9ke5Wf8IoNHCkriZc6GtwJOA+7GM/hV/WZgXB7ijGGX728kg8Xr+XD6NuIsypZm3IaG+ujMJX5HOlYTYaU4neEQc65OGf8sMcGau4r/Jbh4v8uYtG2Ul5P/g85NZ9hXf05jrTeKdEtrmlkVV4Juzd+g79gMQkVKxlvbWakowgAC6E0PIuG5Byihk4mccRhOFJz+nQX+Ep1hSZYSikVQs8vWMOsD79DrMuieNoN1EekUlKwmbAdnzG5aTFR0kShJwvf1CsYeuyVraUWA12j188fXvqKWWtv41Tnt92TN0gExYOPZtDM84nIPrPft5s5GJZleOjzrSz79HWu8f2PiZKHUwxV7hS8Q48m6bC5yJhTD6nvxOu3uO/jTbz15VKu8z/BCY6lREoT9a4ErPRpRE86E8adAZGHTjvp+mYfd7y7nncXr2ee46eUpB7LiB89F/TjVDd6WZVfSd6mVTTlfU102QrGeDcwXrYTJj57HVcSVUmTcA+dTtKYI3FnTj1k/oapQ5smWEopFULGGB557X1mLfsF4xz5rfPLHQkUDTme9KMvJX5s/+0Br7sKKxsoLtpBRGMJQ4ckETF4zIBpM9NVfstQVttEmNMQ5wHcEaEOKeQsy1DZ4CXS4yTcYYFT+1jz+i3eufsqzqh7hdoffkVcRtd7Fm30+llTWM2GrXnUbFlE+O5lDGtcx2THZuKlDoAmCac8biJkTCNxzEzChh0OsWmH7N8udWjTBEsppfqA4uoGdm5cjsdXTfrQkcSnjtQbE6VUt2zYvJH0J2eTHz6GjGvfIyYq6oDb1Df7WFdUw/r8Yiq2LcdRuIS02jVMkk0Md+wG7A4oyqNG4B0ylbhRM4kcMRNSxh3yDz+UaqEJllJKKaXUALXotX9z+PKbWCOjWZt9I4MmHk1CdDhev6G2ycfusgoqi7biLd2Cp3Qdgxs2M152MFyKcIkFQK07mbpBU4gcfjgxI2dC2pR+NRCzUr1NEyyllFJKqQFsyyf/I+nzW4i3KqkzYZSYeBxYREoTyVK9x7pVYak0JY0nPHMSMUMnIxnTIDZdS9SVOggdJVg6DpZSSiml1AAwcs6lcMRZ1K15l5rNCwmrK0YcTixPFFVJmcQMtgfoZdB44iLiQx2uUgOWJlhKKaWUUgNFeCxRh11A1GEXHHhdpVSP6FvDfiullFJKKaVUP6YJllJKKaWUUkoFiSZYSimllFJKKRUkfaoXQREpAbaHOo69JAOloQ5C9Ro934cOPdeHDj3XhxY934cOPdeHlr54vocZY1L2ntmnEqy+SEQWt9f9ohqY9HwfOvRcHzr0XB9a9HwfOvRcH1r60/nWKoJKKaWUUkopFSSaYCmllFJKKaVUkGiCdWAPhToA1av0fB869FwfOvRcH1r0fB869FwfWvrN+dY2WEoppZRSSikVJFqCpZRSSimllFJBogmWUkoppZRSSgWJJlj7ISKniMgGEdksIr8OdTwqeEQkU0Q+EZG1IrJGRH4WmJ8oIh+KyKbAa0KoY1XBISJOEVkmIm8FpoeLyKLA9f28iHhCHaMKDhGJF5GXRGS9iKwTkSP02h6YROT6wN/w1SLyrIiE67U9cIjIoyJSLCKr28xr91oW272B875SRKaGLnJ1sDo413cF/o6vFJFXRSS+zbKbAud6g4icHJKg90MTrA6IiBP4F3AqMAH4nohMCG1UKoh8wA3GmAnATOCawPn9NfCxMWY08HFgWg0MPwPWtZn+K3CPMWYUUAH8ICRRqZ7wT+A9Y8w4YBL2eddre4ARkXTgWmCaMSYbcAIXotf2QPI4cMpe8zq6lk8FRgd+rgYe6KUYVXA8zr7n+kMg2xiTC2wEbgII3K9dCEwMbPPvwH17n6EJVsdmAJuNMVuNMc3Ac8DcEMekgsQYU2SMWRp4X4N9A5aOfY6fCKz2BHBWSAJUQSUiGcDpwH8D0wIcB7wUWEXP9QAhInHA0cAjAMaYZmNMJXptD1QuIEJEXEAkUIRe2wOGMeYzoHyv2R1dy3OB/xnbQiBeRFJ7JVDVbe2da2PMB8YYX2ByIZAReD8XeM4Y02SM2QZsxr5v7zM0wepYOpDfZrogME8NMCKSBUwBFgGDjTFFgUW7gMGhiksF1T+AGwErMJ0EVLb5w63X98AxHCgBHgtUCf2viESh1/aAY4zZCfwN2IGdWFUBS9Bre6Dr6FrW+7aB7Urg3cD7Pn+uNcFShzQRiQZeBq4zxlS3XWbsMQx0HIN+TkTOAIqNMUtCHYvqFS5gKvCAMWYKUMde1QH12h4YAm1v5mIn1WlAFPtWMVIDmF7LhwYRuRm7acfToY6lszTB6thOILPNdEZgnhogRMSNnVw9bYx5JTB7d0uVgsBrcajiU0FzFHCmiORhV/U9DruNTnygWhHo9T2QFAAFxphFgemXsBMuvbYHnhOAbcaYEmOMF3gF+3rXa3tg6+ha1vu2AUhELgfOAC4y3w7e2+fPtSZYHfsGGB3ojciD3ZjujRDHpIIk0AbnEWCdMebuNoveAC4LvL8MeL23Y1PBZYy5yRiTYYzJwr6O5xljLgI+Ac4NrKbneoAwxuwC8kVkbGDW8cBa9NoeiHYAM0UkMvA3veVc67U9sHV0Lb8BXBroTXAmUNWmKqHqh0TkFOzq/WcaY+rbLHoDuFBEwkRkOHbHJl+HIsaOyLfJoNqbiJyG3XbDCTxqjPlTaCNSwSIis4DPgVV82y7nN9jtsF4AhgLbgfONMXs3sFX9lIgcC/zCGHOGiIzALtFKBJYBFxtjmkIYngoSEZmM3aGJB9gKXIH9QFGv7QFGRG4HLsCuPrQM+CF2Wwy9tgcAEXkWOBZIBnYDvwNeo51rOZBk349dTbQeuMIYszgEYasu6OBc3wSEAWWB1RYaY34UWP9m7HZZPuxmHu/uvc9Q0gRLKaWUUkoppYJEqwgqpZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppVQfISJZImJExBXqWAY6EblcRBaEOo6+RkRmi8iGUMehlFL9mSZYSiml+jURuU1EvCJS2+bnxlDH1R8ZYz43xoztqf2LyKWBhwg/7KljKKVUqOlTUqWUChIRcRljfKGO4xD1vDHm4lAH0VMGwu+WiCQAvwHWhDoWpZTqSVqCpZRS3SAieSLyKxFZCdSJiEtEZorIlyJSKSIrROTYNuvPF5G/iMjXIlItIq+LSGIH+75CRNaJSI2IbBWR/7fX8rkisjywny0ickpgfpyIPCIiRSKyU0T+KCLOA3yOkSIyT0TKRKRURJ4Wkfg2y8pFZGpgOk1ESlo+l4icKSJrAp93voiM3+v7+YWIrBSRKhF5XkTCD/6bPngi8uvA91IjImtF5OwO1hMRuUdEigPf5SoRyQ4sCxORv4nIDhHZLSIPikhEJ4//eGD9DwMxfCoiw9os/6eI5AeOuUREZrdZdpuIvCQiT4lINXC5iMwQka8C33ORiNwvIp422xgR+YmIbAoc7w+Bc/dl4BgvtF2/g5iPFZGCzny+LvgLcC9Q2kP7V0qpPkETLKWU6r7vAacD8cBg4G3gj0Ai8AvgZRFJabP+pcCVQCrgw77pbE8xcAYQC1wB3NMmyZkB/A/4ZeC4RwN5ge0eD+x3FDAFOAk4UJUswb4BTgPGA5nAbQDGmC3Ar4CnRCQSeAx4whgzX0TGAM8C1wEpwDvAm3vdyJ8PnAIMB3KBy9sNQGRWIHno6GfWAT7D3rYAs4E44PZA/KntrHcS9vc3JrDu+UBZYNkdgfmTsb/PdODWg4jhIuAPQDKwHHi6zbJvAvtNBJ4BXtwr+ZwLvIR9fp8G/MD1gX0dARwP/GSv450MHAbMBG4EHgIuxj6f2di/q10WSJQ7Oj//3s92M4BpwIPdOb5SSvUHmmAppVT33WuMyTfGNGDfzL5jjHnHGGMZYz4EFgOntVn/SWPMamNMHXALcH57JUzGmLeNMVuM7VPgA+yEAeAHwKPGmA8Dx9lpjFkvIoMDx7rOGFNnjCkG7gEu3N8HMMZsDuyryRhTAtwNHNNm+cPAZmARdmJ4c2DRBcDbgW29wN+ACODIvb6fQmNMOfAmdlLRXgwLjDHx+/nZX6cU5+91s59mjHkxcFzLGPM8sAmY0c62XiAGGAeIMWadMaZIRAS4GrjeGFNujKkB/nyg73IvbxtjPjPGNGF/Z0eISGbg8z5ljCkzxviMMX8HwoC27Z++Msa8Foi/wRizxBizMLB+HvAf2pyjgDuNMdXGmDXAauADY8xWY0wV8C52wt1lxpjc/ZyfvZM9AAK/2/8GfmqMsbpzfKWU6g+0DZZSSnVffpv3w4DzROQ7bea5gU86WH97YHny3jsVkVOB32GXoDiASGBVYHEmdmnR3oYF9ldk5wcQ2Da/nXXbHmsw8E/sBC4msE3FXqs9DLwBXB1IGMAu8dresoIxxhKRfOySnha72ryvD2wTbC/s3QZLRC4Ffg5kBWZF0873bIyZJyL3A/8ChonIK9glj+HY3/mSNt+lAPutbrmX1u/dGFMrIuXYnz9fRH6BnSinAQa7pDK5vW0Dn2cMduI7LRCXC1iy1/F2t3nf0M70kIOIPVh+Aqw0xiwMwbGVUqrXaQmWUkp1n2nzPh+7hKrtk/0oY8wdbdbJbPN+KHYJyh7tUkQkDHgZu0RosDEmHjuharnTzwdGthNLPtAEJLc5fqwxZuIBPsOfA58jxxgTi10S921WIRIN/AN4BLhNvm03Void1LWsJ4HPt/MAx9uH2F2E1+7nZ/aB99K6r2HYCeFPgaTA97e67WdqyxhzrzHmMGACdkL7S+xz0gBMbPNdxhljog/iY7We68B3mAgUBj7LjdjVERMC8VXtFV/b3yuAB4D1wOjAOfpNR5+np4jd1q6j89NR9b/jgbNFZJeI7MIu3fx7IKlVSqkBRxMspZQKrqeA74jIySLiFJHwQMcBGW3WuVhEJgTaM/0eeMkY499rPx7sKmMlgC9QmnVSm+WPAFeIyPEi4hCRdBEZZ4wpwq5K+HcRiQ0sGykie1cl21sMUAtUiUg6doLR1j+BxcaYH2K3MWu5mX4BOD0Qhxu4ATvB+/JAX9TeAl2ER+/n5/OD2F0UdoJSAnaHIdhtkPYhItNF5PBA/HVAI2AFqrM9jN32bVBg3XQRObnNtkbadGLSjtMCbcs82G2xFhpj8rG/b18gPpeI3IpdgrU/MUA1UCsi44AfH2D9oDPGTNzP+flRB5tdjt2ub3LgZzF2m7ibO1hfKaX6NU2wlFIqiAI3z3OxSxdKsEuUfsmef2+fxO6IYhd2NbRr29lPTWD+C9hV9b6PXT2vZfnXBDq+wC75+JRvS5IuxU7Q1ga2fQm73dT+3A5MDezrbeCVlgUiMhe7k4qWG/qfA1NF5CJjzAbs0q77sEt8vgN8xxjTfIDj9ShjzFrg78BX2NXkcoAvOlg9FjuRqsCu7lgG3BVY9ivstmcLxe7N7yMC7aQCbalq+LbaZnuewa7mWY7d+URLNcb3gfeAjYFjNnKAapzY1Ra/Hzjmw8DzB1i/TzDGVBpjdrX8AM1AdaBdmFJKDThizN41EJRSSvUUEZkPPGWM+W+oY1HdIyIXY1cfvKmD5Y8DBcaY3/ZqYEoppUJKO7lQSimlusAY81SoY1BKKdX3aBVBpZQ6RIg96O3BdE6gBiAR+U0Hvwfvhjo2pZQaCIJWRTAwzsViYKcx5gwRGQ48ByRhdyN7Sajr5CullFJKKaVUTwpmCdbPgHVtpv8K3GOMGYXdcPgHQTyWUkoppZRSSvU5QSnBCnQ//ATwJ+zepb6D3XvWEGOMT0SOAG4zxpy8n92QnJxssrKyuh2PUkoppZRSSvWkJUuWlBpjUvaeH6xOLv6BPWBiTGA6Cag0xvgC0wVA+oF2kpWVxeLFi4MUklJKKaWUUkr1DBHZ3t78blcRFJEzgGJjzJIubn+1iCwWkcUlJSXdDUcppZRSSimlQiYYbbCOAs4UkTzsTi2OA/4JxItISwlZBrCzvY2NMQ8ZY6YZY6alpOxTwqaUUkoppZRS/Ua3EyxjzE3GmAxjTBZwITDPGHMR8AlwbmC1y4DXu3sspZTqLcYYfH4r1GEopZRSqp/pyYGGfwU8JyJ/BJYBj3RlJ16vl4KCAhobG4ManBr4wsPDycjIwO12hzoU1Q/d+vyX+Ld+zm9vuIHIMP0dUkoppVTnBDXBMsbMB+YH3m8FZnR3nwUFBcTExJCVlYWIdHd36hBhjKGsrIyCggKGDx8e6nBUP2NZhpTVD3Gt6zXWfRzH+NN+HOqQlFJKKdVPBHMcrB7R2NhIUlKSJlfqoIgISUlJWvKpumR3TSPDpBiAmLVPhzgapZRSSvUnfT7BAjS5Ul2ivzeqq/LLGxgjBQAk120Eyx/iiJRSSinVX/SLBEsppXpTSXU9I2Un5Y5Ewk0TlG4MdUhKKaWU6ic0weoEEeGGG25onf7b3/7GbbfdFrqA2li4cCGHH344kydPZvz48a1xzZ8/ny+//LLL+92+fTtTp05l8uTJTJw4kQcffDBIESvV9/nqK/GIny0JswCo27E8tAEppZRSqt/QBKsTwsLCeOWVVygtLQ3qfo0xWFb3uoG+7LLLeOihh1i+fDmrV6/m/PPPB7qfYKWmpvLVV1+xfPlyFi1axB133EFhYWG3YlWqv7AaqgBwpE4CoHLnhlCGo5RSSql+RBOsTnC5XFx99dXcc889+ywrKSnhnHPOYfr06UyfPp0vvvgCgNtuu42//e1vretlZ2eTl5dHXl4eY8eO5dJLLyU7O5v8/Hx++ctfkp2dTU5ODs8//zxgJ0jHHnss5557LuPGjeOiiy7CGLPP8YuLi0lNTQXA6XQyYcIE8vLyePDBB7nnnnuYPHkyn3/++X7jvOSSSzjiiCMYPXo0Dz/8MAAej4ewsDAAmpqaOkwE7733XiZMmEBubi4XXnghAOXl5Zx11lnk5uYyc+ZMVq5c2Xqsyy67jNmzZzNs2DBeeeUVbrzxRnJycjjllFPwer0A/P73v2f69OlkZ2dz9dVX7/O5LcsiKyuLysrK1nmjR49m9+7d+zuNSnWa1VANQPKQTApNIs0lW0MckVJKKaX6i54cByvobn9zDWsLq4O6zwlpsfzuOxMPuN4111xDbm4uN9544x7zf/azn3H99dcza9YsduzYwcknn8y6dev2u69NmzbxxBNPMHPmTF5++WWWL1/OihUrKC0tZfr06Rx99NEALFu2jDVr1pCWlsZRRx3FF198waxZs/bY1/XXX8/YsWM59thjOeWUU7jsssvIysriRz/6EdHR0fziF78A4Pvf/36Hca5cuZKFCxdSV1fHlClTOP3000lLSyM/P5/TTz+dzZs3c9ddd5GWlrbPZ7njjjvYtm0bYWFhrQnP7373O6ZMmcJrr73GvHnzuPTSS1m+fDkAW7Zs4ZNPPmHt2rUcccQRvPzyy9x5552cffbZvP3225x11ln89Kc/5dZbbwXgkksu4a233uI73/lO6zEdDgdz587l1Vdf5YorrmDRokUMGzaMwYMHH/A8KtUZpsn+OzMkJYVlZjAZVXmhDUgppZRS/YaWYHVSbGwsl156Kffee+8e8z/66CN++tOfMnnyZM4880yqq6upra3d776GDRvGzJkzAViwYAHf+973cDqdDB48mGOOOYZvvvkGgBkzZpCRkYHD4WDy5Mnk5eXts69bb72VxYsXc9JJJ/HMM89wyimntHvM/cU5d+5cIiIiSE5OZs6cOXz99dcAZGZmsnLlSjZv3swTTzzRbglRbm4uF110EU899RQul6v1M11yySUAHHfccZSVlVFdbd+wnnrqqbjdbnJycvD7/a3x5uTktH6+Tz75hMMPP5ycnBzmzZvHmjVr9jnuBRdc0Fra99xzz3HBBRfs9ztX6qAEEqyw6HhKXGnE1ueHOCCllFJK9Rf9qgSrMyVNPem6665j6tSpXHHFFa3zLMti4cKFhIeH77Guy+Xao1pd2/GYoqKiOnW8lip6YFf/8/l87a43cuRIfvzjH3PVVVeRkpJCWVnZPut0FCfs25353tNpaWlkZ2fz+eefc+655+6x7O233+azzz7jzTff5E9/+hOrVq3q1GdyOBy43e7WYzkcDnw+H42NjfzkJz9h8eLFZGZmctttt7U7ltURRxzB5s2bKSkp4bXXXuO3v/3tfo+r1MGQphr7TXgctVGZxNZ8DM114OnctauUUkqpQ5eWYB2ExMREzj//fB555JHWeSeddBL33Xdf63RLVbisrCyWLl0KwNKlS9m2bVu7+5w9ezbPP/88fr+fkpISPvvsM2bMmNHpmN5+++3WNkqbNm3C6XQSHx9PTEwMNTU1B4wT4PXXX6exsZGysjLmz5/P9OnTKSgooKGhAYCKigoWLFjA2LFj9zi2ZVnk5+czZ84c/vrXv1JVVUVtbS2zZ8/m6aftwVnnz59PcnIysbGxnfo8LclUcnIytbW1vPTSS+2uJyKcffbZ/PznP2f8+PEkJSV1av9KdYarOXDthMXgjc2y31fkhSocpZRSSvUjmmAdpBtuuGGP3gTvvfdeFi9eTG5uLhMmTGjtzvycc86hvLyciRMncv/99zNmzJh293f22WeTm5vLpEmTOO6447jzzjsZMmRIp+N58sknGTt2LJMnT+aSSy7h6aefxul08p3vfIdXX321tZOLjuIEu5rfnDlzmDlzJrfccgtpaWmsW7eOww8/nEmTJnHMMcfwi1/8gpycHAB++MMfsnjxYvx+PxdffDE5OTlMmTKFa6+9lvj4eG677TaWLFlCbm4uv/71r3niiSc6/Xni4+O56qqryM7O5uSTT2b69Omtyx588ME94r7gggt46qmntHqgCjqntyXBisWVMgIAb+mWEEaklFJKqf5C2uuZLlSmTZtmFi9evMe8devWMX78+BBFNPDddttte3SGMdDo74/qinf/8SOOr3wRz21lvLFwLWe+dwRlR95C0kkD8zpRSiml1METkSXGmGl7z+92CZaIZIrIJyKyVkTWiMjPAvMTReRDEdkUeE3o7rGUUqo3eHy1NEgkAEMGD6HCRNNYoiVYSimllDqwYHRy4QNuMMYsFZEYYImIfAhcDnxsjLlDRH4N/Br4VRCOp4LotttuC3UISvU5Hl8tjY4o4oDMxAgKTDKJldqToFJKKaUOrNslWMaYImPM0sD7GmAdkA7MBVoa3zwBnNXdYymlVG9wWo14HXaPl4NjwilkEJ7aghBHpZRSSqn+IKidXIhIFjAFWAQMNsYUBRbtAtodBVZErhaRxSKyuKSkJJjhKKVUl7j8TXgd9pAGDodQFZZKbGMR9KE2q0oppZTqm4KWYIlINPAycJ0xprrtMmP3pNHunYkx5iFjzDRjzLSUlJRghaOUUl3msprwO78dM64pKo0w0wj1+44xp5RSSinVVlASLBFxYydXTxtjXgnM3i0iqYHlqUBxMI6llFI9zWOasJzfDvRtxQ2131RuD1FESimllOovgtGLoACPAOuMMXe3WfQGcFng/WXA6909Vii99tpriAjr16/vcJ28vDyys7ODdswNGzZw7LHHMnnyZMaPH8/VV18N2IMEv/POO13eb2NjIzNmzGDSpElMnDiR3/3ud8EKWakBwW2asdqUYLmTsgBoLssLTUBKKaWU6jeCUYJ1FHAJcJyILA/8nAbcAZwoIpuAEwLT/dazzz7LrFmzePbZZ9td7vP5un0Mv9+/x/S1117L9ddfz/Lly1m3bh3/93//B3Q/wQoLC2PevHmsWLGC5cuX895777Fw4cJuxa7UQGGMIYwmjOvbBCtmyHAAqndtC1VYSimllOongtGL4AJjjBhjco0xkwM/7xhjyowxxxtjRhtjTjDGlAcj4FCora1lwYIFPPLIIzz33HOt8+fPn8/s2bM588wzmTBhAmAnWhdddBHjx4/n3HPPpb6+HoCPP/6YKVOmkJOTw5VXXklTUxMAWVlZ/OpXv2Lq1Km8+OKLexy3qKiIjIyM1umcnByam5u59dZbef7555k8eTLPP/88dXV1XHnllcyYMYMpU6bw+ut2YeHjjz/O3LlzOfbYYxk9ejS33347ACJCdHQ0AF6vF6/Xi10QuacXX3yR7OxsJk2axNFHHw3YpV9XXHEFOTk5TJkyhU8++aT1WGeddRYnnngiWVlZ3H///dx9991MmTKFmTNnUl5un/6HH36Y6dOnM2nSJM4555zW76etmTNnsmbNmtbpY489lr0HoFaqpzT7LcJp3iPBGpwymCoTSVOJJlhKKaWU2r9gjIPVe979NexaFdx9DsmBU/dfuPb6669zyimnMGbMGJKSkliyZAmHHXYYAEuXLmX16tUMHz6cvLw8NmzYwCOPPMJRRx3FlVdeyb///W9++tOfcvnll/Pxxx8zZswYLr30Uh544AGuu+46AJKSkli6dOk+x73++us57rjjOPLIIznppJO44ooriI+P5/e//z2LFy/m/vvvB+A3v/kNxx13HI8++iiVlZXMmDGDE044AYCvv/6a1atXExkZyfTp0zn99NOZNm0afr+fww47jM2bN3PNNddw+OGH73P83//+97z//vukp6dTWVkJwL/+9S9EhFWrVrF+/XpOOukkNm7cCMDq1atZtmwZjY2NjBo1ir/+9a8sW7aM66+/nv/9739cd911fPe73+Wqq64C4Le//S2PPPJIa8lciwsuuIAXXniB22+/naKiIoqKipg2bZ9BspXqEY3NdoKFK6J1XkZCBAUmhfjKHSGMTCmllFL9QVC7aR+onn32WS688EIALrzwwj2qCc6YMYPhw4e3TmdmZnLUUUcBcPHFF7NgwQI2bNjA8OHDGTNmDACXXXYZn332Wes2F1xwQbvHveKKK1i3bh3nnXce8+fPZ+bMma0lX2198MEH3HHHHUyePJljjz2WxsZGduywbwRPPPFEkpKSiIiI4Lvf/S4LFiwAwOl0snz5cgoKClqTsL0dddRRXH755Tz88MOt1RcXLFjAxRdfDMC4ceMYNmxYa4I1Z84cYmJiSElJIS4uju985zuAXfKWl5cH2EnY7NmzycnJ4emnn96jpKrF+eefz0svvQTACy+8wLnnntvu96NUT2jw+u0Ey/NtgjU4NpydpOhYWEoppZQ6oP5VgnWAkqaeUF5ezrx581i1ahUigt/vR0S46667AIiKitpj/b2r2rVX9W5ve++jrbS0NK688kquvPJKsrOz202EjDG8/PLLjB07do/5ixYtOmA88fHxzJkzh/fee2+fDjoefPBBFi1axNtvv81hhx3GkiVL9vs5wsK+7XXN4XC0TjscjtY2apdffjmvvfYakyZN4vHHH2f+/Pn77Cc9PZ2kpCRWrlzJ888/z4MPPrjf4yoVTA3NPoaIF4f72wTL6RAq3KnENq62x8LqxHWtlFJKqUOTlmAdwEsvvcQll1zC9u3bycvLIz8/n+HDh/P555+3u/6OHTv46quvAHjmmWeYNWsWY8eOJS8vj82bNwPw5JNPcswxxxzw2O+99x5erxeAXbt2UVZWRnp6OjExMdTU1LSud/LJJ3PfffdhAoOgLlu2rHXZhx9+SHl5OQ0NDbz22mscddRRlJSUtFb5a2ho4MMPP2TcuHH7HH/Lli0cfvjh/P73vyclJYX8/Hxmz57N008/DcDGjRvZsWPHPond/tTU1JCamorX623dT3suuOAC7rzzTqqqqsjNze30/pXqrsaGOgCkTYIF0BiVbo+F1VARirCUUkop1U9ognUAzz77LGefffYe884555wOexMcO3Ys//rXvxg/fjwVFRX8+Mc/Jjw8nMcee4zzzjuPnJwcHA4HP/rRjw547A8++KC1k4mTTz6Zu+66iyFDhjBnzhzWrl3b2snFLbfcgtfrJTc3l4kTJ3LLLbe07mPGjBmcc8455Obmcs455zBt2jSKioqYM2cOubm5TJ8+nRNPPJEzzjgDgFtvvZU33ngDgF/+8pfk5OSQnZ3NkUceyaRJk/jJT36CZVnk5ORwwQUX8Pjjj+9RcnUgf/jDHzj88MM56qij9kjq3njjDW699dbW6XPPPZfnnnuO888/v9P7VioYmhrtjlccnj0TLCs2036jY2EppZRSaj+kpdSjL5g2bZrZu7e4devWMX78+BBF1L89/vjje3SGcSjS3x91sL5ZsYrpr85i68w/M+KUa1rnP/Xqm1y84mK85zyBO+es0AWolFJKqT5BRJYYY/bpiU1LsJRSqo3mQAmWK2zPEqyoISMAqN21tddjUkoppVT/0b86uVAH5fLLL+fyyy8PdRhK9SveJjvBcodF7jF/cMpgqk0kjaWaYCmllFKqY/2iBKsvVWNU/Yf+3qiu8AUSLFf4nr17ZiREUmBSMBU6FpZSSimlOtbnE6zw8HDKysr0ZlkdFGMMZWVlhIeHhzoU1c9YzXaC5dkrwRoSF85Ok4y7dmcowlJKKaVUP9HnqwhmZGRQUFBASUlJqENR/Ux4eDgZGRmhDkP1M/7mBgA84XtWEfS4HJR7hhDTuE7HwlJKKaVUh3o8wRKRU4B/Ak7gv8aYgxot2O12M3z48B6JTSml9uZvCiRYEfsOAN4QkU54bb09FlZkYm+HppRSSql+oEerCIqIE/gXcCowAfieiEzoyWMqpVR3GK9dRdDpidxnmT+uZSwsbYellFJKqfb1dBusGcBmY8xWY0wz8Bwwt4ePqZRSXWa8dgkWrn3b77kShwLgL9fBhpVSSinVvp5OsNKB/DbTBYF5SinVJxlvo/3GHbHPsqhBIwGoKd7WmyEppZRSqh8JeS+CInK1iCwWkcXakYVSKtRkPyVYgwYNpsZE0FiiCZZSSiml2tfTCdZOILPNdEZgXitjzEPGmGnGmGkpKSk9HI5SSh2AL1CC1U6ClZ4YSYFJxqrQKoJKKaWUal9PJ1jfAKNFZLiIeIALgTd6+JhKKdVlDn8jTXjAse+fx/T4CApMCp6aghBEppRSSqn+oEe7aTfG+ETkp8D72N20P2qMWdOTx1RKqe5w+BrxioewdpaFu52UuwYT3bBBx8JSSimlVLt6fBwsY8w7wDs9fRyllAoGp9WI19FeemWri0wnvK4OGishIqH3Aush+eX1/OeDZcwdH8P0SbmhDkcppZTq90LeyYVSSvUlTn8jvv0kWP7YDPtNZX6H6/Qnd7yzhovX/j+mvzob3xqtwa2UUkp1lyZYSinVhttq2m+C5UnKAgbGWFgNzX7q133EOIedLDZ++KcQR6SUUkr1f5pgKaVUGy6rCb9z3x4EW8SmjgCgeteW3gqpxyzbUcEsWYHfGc7d5iKiK9dDRV6ow1JKKaX6NU2wlFKqDbdp3m+ClToknToTRv0AGGx4WX4lUx2bMKmTKUmfY8/c8klog1JKKaX6OU2wlFIqwLIMHtOEtZ8Ea1hyFAUmZUCMhbW5qJyJjjxcQ2eQNmISxSae5ryvQh1WUBhj2Li7Bp/fCnUoSimlDjGaYCmlVECjz08YzZh2BhluMTgmnEIGxlhYNUWb8OCDwROZmpXIKms43vyloQ4rKO54bz03/uNR1t51EmblC6EORyml1CFEEyyllAqoa/ITTjPijuhwHYdDqApPI7Zxpz0WVj9lWQZXZaCaY+JIxqfGstpkEVG1BZrrQhtcN1XVe/nfF1v4u/sBchu/wXrjWqjaGeqwus2yDL94cQXfveddSt/7K1TuCHVIQVHd6OUfH21k/oZiKNsC1sAodVy6o4JHFmyjvskL9eWhDkcp1Ys0wVJKqYCGZj+R0oTZT4IFUB89nAhTD7XFvRRZ8BXXNJFuFdoTSSNJjPJQED4GBxbs7t/jwX+8fjeTrHWMdBRxj/98nL4GWNX/S7HeW7OLl5YUcH35H0le+Gd45GTwNoQ6rG67/Y21/OOjTeQ/9RO4byq8/pNQh9RtRVUNfP/hhfzhrbWsevAKuHMEfHpnqMNSSvUSTbCUUiqgrtlHJE2IJ3r/KybZPQmask29EFXPyCurY7jswuuJg8hEAHyDJ9kLC5eHLrAg+GJzGad4VmIcbtYNu4g1jrGw+pVQh9VtrywtYFbMbmY7V/OpPxdqCmH506EOq1vK65p5bflOrh7v4yLHR/bMFc9CwZLQBtZNLy8poNFrccWIKg6veBMwdoI1ANpuKqUOTBMspZQKqG/yEUUjErb/BCtiyFgAqndu6I2wesSOsnqyZBdWwojWeYPTR1BmYvHvXBbCyLpvTWEVx3jWI5mHc+T4YbzflIPZtQoaKkMdWpf5/BYLNpdydeIyjDi5zvsTKqJHwepXQx1at3y8bjd+y/CDhGUgcJ77fownGpY8FurQuuXTjSVkp8dybdI3NBk3b896GSwvrHw+1KEppXqBJlhKKRXQ1FCLQwyO8Jj9rpeUPopm46SuqP8mWHlldQx37MadMrJ13vi0WFZbWXh3Lg9dYN3U5POzrbiKTG8epE1m5sgkvjFjEQzkLwp1eF22paSORq9FdvMKJP0wEpJT+dRxOOz4sl+371mcV0FCpJtBuz+jIiGXb2oSqUyfAxvf77dtsaoavCzdUcmxYwYRX7yI5c6JvLozHjJnwtrXQx2eUqoXaIKllFIBTfXVALgOkGBlpcSywwzGKt3cG2H1iJ2llaRKGY6kUa3zxqfGss4MxV2xCfzeEEbXdVuK6xhqCnGZZhiSy+hBMWx0jcUnLtj+ZajD67LVO6uIpJGEytUwfDZHj0nhhfLRYCzY0X+71l9dWMVhqR6kcBnhY44HYHn4dKgrhl0rQxxd13y1pRS/ZZgzIgopXkd9ymS+2FyKf/RJsHs11JWGOkSlVA/rVoIlIneJyHoRWSkir4pIfJtlN4nIZhHZICIndztSpZTqYb6WBCti/1UE0+LDySOVsKr+O9hwc8kWHBhI+rYEa0RyFFsYitPy2r259UPriqoZL4F2LkNycDqE0RmD2Owc1e8TkanuHYjxQ+bhTM9KZIkvC8vhgR0LQx1elzT5/GzcXcOxcbvAWESNOJzhyVG8UzvaXqGffq4VBVW4HEKOc3vgc82gwesnLzLQxrEf/x4qpTqnuyVYHwLZxphcYCNwE4CITAAuBCYCpwD/FhFnN4+llFI9yttYA4AnMna/67mcDsrDMolvzO+X1ZiMMbirvu2ivYXL6aAuYZw9sXt1CCLrvvW7qslx7cA4PZBs36hPzkzg86ZRmJ1L+22ve6t3VnFcfJE9kTqJyUPjacJDaeyEfpuIbNhVg9dvmOoKJMRpk5mRlcgHBS5MXAbk98/PtaawmjGDY/DsstsyZmbPAuCrpqHgDIPtmmApNdB1K8EyxnxgjPEFJhcCGYH3c4HnjDFNxphtwGZgRneOpZRSPc3fWAuA+wAJFkBT3HDcxgvV/W/A4cp6L4O9gXGhkkbssSwidRw+HFC8NgSRdd+6ohqmhRUgg8aD0w3A5Mx4FvtHI5a3X3ZBb1mGNYXVTHHvgOjBEDOEtLhwUmLCWOUcD4XL+mXiuGpnFQDDmjZATCrEDOGwYQlUNXipG3QY5H8d4ggPnjGGNTurmJgWC4VLITaDIWlDSYkJY2lBPWRMs9vNKaUGtGC2wboSeDfwPh3Ib7OsIDBvHyJytYgsFpHFJSUlQQxHKaUOjhUowQqL2H8bLAB3it12yVfS/7pq315ez3DZRbMnHiIS9lg2Ki2ZrVYq3qJ+WoJVVMVoaxsMyWmdNykzjpVWIJHcuTREkXXdtrI66pv9DPduhlS7mpmIMDkzno/rRti90/XDz7V6ZzVxEW4iy1ZD6mQAcjLiANgaPhGqd0JV/3qAsbu6ibK6ZjvB2rkE0qe2nqvl+ZUw9AgoWgFNNaEOVSnVgw6YYInIRyKyup2fuW3WuRnwAQc9IIcx5iFjzDRjzLSUlJSD3VwppYLGarJLsFwRBy7BikkfD0BF/roejaknbC+rI0t24U8Ysc+ysUOiWW+GYvXDBKu4phGpKybaXwlDclvnD4kNxxs1hBpXol3a08+s3llFGM3E1W7d43NNGRrPu5WZ9kTBNyGKrutW76xiWqoLKd0IaVMAGD0omjCXg0W+QDusftbz45pCu1RuUpIFFXmQPhWwz9XW0jpqB0+zOybph7+HSqnOO2CCZYw5wRiT3c7P6wAicjlwBnCRMcYENtsJZLbZTUZgnlJK9V3NdoKFJ+qAq6YPHUG9CaO+H3bVvr2snizHLjyDRu+zbOyQWNZbmYTV7YTG6hBE13Xri2qY6Ai05xmc3TpfRJiYHs9aRtjVtvqZ1TuryHEV2B1cBEqwwK76WEEsDVEZ/e5zNfssNuyq4di43YCBtMmA3Q5wYlos88pTwBUBBYtDGufBWlNYjQiMtwI9jKYfBtjnCmB5a0lq/x5IWSm1f93tRfAU4EbgTGNMfZtFbwAXikiYiAwHRgP9rzK1UurQ0lRnv3r234sgwMhB0eSZIf2yt73CknLSpBxn8qh9lqXFhbPdlWVPFPev0rn1u6qZ0NqDYPYey3LS4/iqcRimZAMESir7i9U7qzkufpc90SbByk63q9MVRIyDfjY49MbdNTT7Laa6Ap2tBKoIAuRmxLOiqA4zJLffVX1cU1jF8KQowktWANL6uXIz4nEILC4WSBiuCZZSA1x322DdD8QAH4rIchF5EMAYswZ4AVgLvAdcY4zxd/NYSinVsw6iBCsm3E2BK4OYmv6XYHlLAk/XE/etIigi+JLt6o/9rSfBdUU1TAkrgPhhEB63x7Ls9FhWWCPsAYeLVoQowoNnjGF1YRXTPDsgPB7ih7Yuiw13Mzw5ym5fVrWjX42vtLq1g4tNEJMGMYNbl+Wkx1Hf7KcyIds+V35fR7vpc1bvrGZCS/ur5NEQblc3jg5zMWpQNKsKquxSrX6WECulDk53exEcZYzJNMZMDvz8qM2yPxljRhpjxhpj3t3ffpRSqi9wNlfRRBi4wjq1fmXUKBK9u/pdiYizsqWL9n0TLIDEtFHUEIHZ3b96ElxXVE22Y8ceHVy0yE6PY1VL9ax+1P5lR3k9NY0+Rvq32KVXInssz0mPY15NoAPfflTas2pnFTHhLqLKVrW2v2qRG+joYpNrDPgaoGR9KEI8aJX1zeysbGBiaqx9LgLVA1vkpMezcmcVJm2K3ftoza4QRaqU6mnB7EVQKaX6tTBvNfXOA/cg2MKfPBbArnbWTzQ0+0lsDHTy2maQ4bbGDolhvZXZr3oSbPZZFJaUMsRXsEdHEC3S4yPwRSZT6R7Ur9orrd5ZjRsfCTWb9qge2CInPY75NekYpJ99riqmD3EhZZtb21+1GJESTaTHycLGQGldP/lcKwvsUrlpifVQVwxpU/dYnpsRR0lNE+Xxgd/PfpQQK6UOjiZYSikVEOGrosEVd+AVA8LTJgJQk7+qp0IKuryyOkY7CmgMT9mnGl2LMUNi2GBl4iheA619F/VtW0pqGWVtt6sA7tX+Cuyqj9lpcayRUf2qBGvVziqyXTtwWM37lIiA3a15HRHUx47oNzfsXr/Ful01zIkrwu7gYs8SLKfDPleflsZAWFy/+VwrCyoBmGD27OCiRUsX9Mu8mSBObYel1ACmCZZSSgVE+atp9nQ+wUoZOo4m46Imv/+U9GzcXcM4yceXMqHDdcYOjmG9GYrLW2OPRdQPrC2sJtex1Z7Yq+SgRXZ6HF81ZEL5Vmio6MXoum5lQSUnxQXOQfq+n2timt3GZ0f4OLukpx8kxBt319Dss5jSTgcXLXIy4lhdVIuVNrnflGCtKKhiRHIUUSUrwOHeJ9GfkBqL0yGs2N0MgydogqXUAKYJllJKYT9VjzE1eD3xnd5m1JB4tpo0THH/aCMCsLmogtGyk4iMfavRtUiKDqMoPFB9sJ+0w1pRUMk011ZMTBrEpra7TnZ6LMv8Le2wlvdecF3k81ssz6/kiLDtEJUCcZn7rBMT7mZESpT9uepK+sXAvEt3VAIwomGN3aNe9L5jYOZmxNHksyiPy4bda8Db2MtRHryVBZV2+7GdS2DwxH3acoa7nYweFM2qnYGOLgqXgmWFKFqlVE/SBEsppYDqBi8JUosVHt/pbQbHhrFVMomu3tRzgQVZZcF6POLD2U5HEG05BwdKuIrX9EJU3bdsRyWHubch7ZTytMhJj2OVNdye6AfVBNcV1VDf7Gekd4N9Q75XBxctctLj+Lgq3Z7oB6U9y7ZXkBzlJmL3Ysg8vN11cgJd0G9wjALL1+d7tNxd3cju6iYmp0XZY3cNPaLd9XIz4lhVUIVJmwqNVXZpqlJqwNEESymlgIq6JuKoxRGZ2OltRISKqBHEN/efngSdJYGEaXDHVQQBMlJTKTRJmF19P8FqaPZTWFRIqm9nu+2UWgxNjMSEx1Pq6R8D8y7eXk4M9UTXbN3v58pJj2NB7RCMw9Uv2isty6/kpLRGpK4EhrafYGUlRRET5uLLlo4u+vjnWpFfCcDMiB12z4fD2k+wcjLiKatrpjgu8ICjH/weKqUOniZYSikFlFdW4BE/7uikg9rOl2T3JEhp3+9JsK7JR3L9FvzihOQx+1137JBo1llD+0VPgqt2VjGBwHhk+0lEWjq6WMuIflFFcHFeBSfF5Nkdd2RM63C9nPQ4mvBQEze2z5fMldc1s620juOjAu2vOijBcjiE7PQ4FuwOg6i+3/Pjku0VuJ3CyPpAhzdDj2x3vdxAydzy+hRwR2o7LKUGKE2wlFIKqCnfDUBY3L7tQfYnMt1uyF5b0PcTkZUFVYyXHTTEjjjgWF9jh8SywWTiKt8MvuZeirBrlu2o4DDHRow49unye2/Z6bF80TAMqvKhtqR3AuwCYwyLt5dzevRGcIZ1WOUMYGJ6HCKwPWysnTj24XY93+SVA5DtXwdhsZAyrsN1czPiWLerFittSp8vwfpqaxmTM+NxF3wFSaPbbVcGMC41BrdTWFFYZ3fuoQmWUgOSJlhKKQU0ldudA0QlZRzUdoOzxtFk3FRv7/tdtS/dXs5kx2bcmR2X8rQYOziGjSYTh/FCWd9uY7Z0RwUnetYgaVM77Hq+RXZ6HMt8WfZEHy7tKahoYHd1E1O8y2DoTHBHdLhudJiLEclRLPENh6a+3a7ns40lRHocDNr9OWTNAoezw3VzMuJo9luUxE6E0o3QVNOLkXZedaOX1TurOHJEPOQv7LB6IECYy8mYwTGBji6mQtHKPv8AQyl18DTBUkopwF9ZCEBU8r49te3P2NQEtppUrH7Qk+DOLatJkhrChnd8A9giwuOkLj5QutCHexL0+S1Wb9nOeGsTjDr+gOtnp8ex2gzv8wPzLtxaRgqVJNRughHHHnD93Ix4PqxMsyf66OcyxvDpxhLOy6xGqgtgzMn7XT83PR6AtTIKMH22WueCTaVYBk6O3mZ3XDHqhP2un5sRx6qdVZj0w8Df1G86klFKdZ4mWEopBVBTBIAzLu2gNhscG8Y2RyZRVX27lMcYQ3jhQnsic2antonJGE8zLti1sgcj654VBZVMal6OAwtGHjjBGp4UhXiiKAkf1qdLsD5Yu5szogNJ+8g5B1w/Oz2OhbWDMK6IPludbltpHQUVDcyNDFSnHX3SftfPTIwgLsLNgvrAQ48+mji+t3oXiVEexlV+ZlfnPMDvYU56PJX1Xoqi7YHKtZqgUgNP0BIsEblBRIyIJAemRUTuFZHNIrJSRDruO1cppULMUVtEEx6ISDio7USEquiRJHj7dk+CKwuqmOpbTkNYCqSM7dQ2EzKSWG9l0lzQdxORj9cVc6xzJSYsdr8dXLRwOISJaXGsYaSdiPTBgXnrm318trGECyMXQ2w6DJl0wG1yM+Lw46QqfnyfTUTeX2O3c5xY+xWkToLY/T/MEBFyM+JYuEsgfmifTBybfH7mrS/mpPGDcGx4B0YeB2HR+90mN8OuxrqsKgYik2Fn372+lFJdE5QES0QygZOAHW1mnwqMDvxcDTwQjGMppVRPCG8optqd3OFYQ/vjT7ar0pmSvltN8KPVBRzlWI1z1JxOf8YJabGsskYgRSv6ZCJijOHDlds53fUNMvZUcLo6tV12epxdKlJXDNWFPRzlwftsYwmRvkpG13wNOeeC48D/VU9IjUUEtrrH2u16/L5eiLTzjDG8vLSA09IbCCv6BsZ/p1Pb5aTHsWFXDf7UKX0ycVywqZTaJh/npZVC1Q4Yd9oBtxkzOAaP08HKwsCAw1qCpdSAE6wSrHuAG4G2/wPPBf5nbAuBeBFJDdLxlFIqaCzLEOctpiF8SJe2j8zMBaB6+4pghhVUpas+IEFq8eSc1eltJqbGscoMx+2thoptPRdcF60sqGJs5edEmTqY/P1Ob5edHstSb8uAw33vpv2FxQVcELkEh/FBzvmd2iYqzMWolGgWe7PscZhK1vVskAdpZUEVm4tr+Un8QhAHTL6oU9vlZsThswy7oidA5Q6oK+3hSA/OK0t3EhfhZnLxa3a36+PPPOA2HpeDcakxrCoIJFgl6/tsBx5Kqa7pdoIlInOBncaYve8s0oH8NtMFgXl7b3+1iCwWkcUlJX23y1yl1MBVXNPEMCmiOW5Yl7ZPyxpHnQmjpo8mWFtLaplW8zFNrpgDNsBvKy7STUlMoKOLPtjBwDOLdnC++3OsmHTIOrrT2+Wkx7HWDMMSV59rh5VfXs8nG3bzg/BPYHA2DMnu9LY56XG819LRRR+rTvfiknwiXYYJu9+w214doHpgi5yMeAC7Sif0qfNVWNnAe2t2cemUeJyrX4Sc8yAivlPb5qQHOrpIm0Jf7sBDKdU1nUqwROQjEVndzs9c4DfArV0NwBjzkDFmmjFmWkrKwY0/o5RSwVC4ezcpUo0kjezS9mOGxLHBZOLoo72BfbB8Gyc7FuMb+50Djn+1t/C0HLuji6LlPRNcF1XWN7Nq+SJmyQocUy/uVDW6FiNSonG4I9gdPrzPJSJPLdzOHMdyUuo3wxE/PahtczLiWFqbiBUW16dK5oprGnlxcQG/G7oKR+1umHZlp7dNiwsnKcrDZzUZgPSp8/W/r7ZjjOEHEZ/apYbTf9DpbXMz4qhp9JEfEXiAodUElRpQOlVh3RjT7iNPEckBhgMrxK7TnwEsFZEZwE6gbX/HGYF5SinVp5TlbwAgOnVMl7ZPjPLwqTOLsTXf2G2VutCOq6d4/RaVi54iWhpheueqZbU1Lj2J9ZszmVCwrHP/YfSSRxZs42p5BVwRMOP/HdS2TocwIS2WNdUjSS1c2GfOWXFNI098tY13Yt8Fd4bd/uog5KTHAUJF/ESS+lAi8t/Pt2H8zXy35mlIm3LA3gPbEhGy0+P4pqgRksf0mcSxtLaJpxdu56xx0cQvud/uOTD1wJ2RtMgJdEG/rMzJ0IQsTbCUGmC6VUXQGLPKGDPIGJNljMnCrgY41RizC3gDuDTQm+BMoMoYU9T9kJVSKrjqCu3OKZKHTejyPqrjxhLlr4KaXcEKKyjeXZHP95pfoSoxF4YdddDbZ6fHsdoaDn2oo4vS2iY+W/ApZzoX4pjxQ4hKOuh9ZKfF8nldJjRW9pn2Zf/4aBMnmy8Z0bAajr4BnO6D2n5CWiwOgc2uMVC8FryNPRRp5+WV1vH4l3ncOfRr3DX5cOxvDjqZnZQZz6biGrxDJveZnh/v/nAjDV4/t8S/b/8OnXDbQW0/ZnA0EW4ny/Mr7XZYfajqo1Kq+3pyHKx3gK3AZuBh4Cc9eCyllOqysJKVNOPG2cnuy9tjBtlj2li7VgcrrG5r8vlZ/d5/GeYoJubEX3WplGZiWiyrzHBczVVQkRf8ILvgL2+t4VYexoTHwVHXdWkf2elxLG7t6CL0N7dfbinlrUXr+EPEs3ZJyNTLDnofkR4XYwbH8FXjULB8sGtVD0TaecYYbn1jDVnOUuaWPQKjToTRJx70fqYOjccy2NXp6oqhOrSVYZbtqOC5r3fwy9xGEpY/CJO+D6m5B7UPl9NBbkYcS7dX2AlWVT7U7O6hiJVSvS2oCVagJKs08N4YY64xxow0xuQYYxYH81hKKRUsQ2rWUBg+ClyeLu8jNsu+waravjxIUXXf0/NXclXT49Qk5eIYe+Duo9szKDacgohA4tkH2mG9vbKI+FWPcJhjI85T/tKl0iuA3Ix4NpgM/A5PyBOs2iYfN764gn9GPUaMvxLOuAcczi7ta+qwBN4qDXTYG+LqdE98mceXG4t4MuERRBz25+pCkj8l0x6bbqkvkBCHsPpjbZOPnz23nBGx8MPSv0JUCpzy5y7ta+qwBNYUVtM0eLI9o49Uf1RKdV9PlmAppVSfV13fyBhrC9VJB/cEem/DMzIoNIk05K8MUmTds7WkltjPbydJaok59/6D6gRib1EZ2Xhxhbyns7WF1Tz14gvc5H4W/5jTYNKFXd7XqEHRhIeF24l1CAd69VuGnz27jNNrX2SO/0vkuN92asDkjkwdmsDmplh8kYNCmogszivnz++s4z8pLzO4chmceS/EZx54w3bERboZmRLFh2WDwOmBgq+DHG3n+PwWP3t2GTsranlhyJM4yzbC2Q8c9ODkLQ4bmoDPMqy2skCc2g5LqQFEEyyl1CFty9olREkTYUOndWs/owfHsN4aiqcs9OMPNXr9vPTY3Zwrn1A//ZqDanzfngmZg1hvZeALYSJSXtfMH554nX87/4bEZeA8+4FudUzhdAiTMuNY7h9ul8xZVvCC7SRjDL9/cw1xG1/iJtezMPFsOPJn3drnlKHxgLA7ekLIbtg37a7hh/9bzK+j3uT4mtft3hAPssOOvU0ZmsA3O+sxaVNhx6IgRdp5xhhuemUVH6/fzTujXidx+7twwu0w8rgu79M+V/DNzkYYFLrzpZQKPk2wlFKHtPJN9s1a2oRZ3dpPdJiLwrDhxNdtA783GKF1id8yPPDE/7i27l4qU6YRfcpt3d5nbkYcq6zhmMLlIelgoKy2iV/95xX+3vg7osPdOC99tdPjDe3PlMwEPqvLhOZaKNvU/UAPgmUZbn9zLZWLnuZvnodh+DFw9n+6VdIIMCI5ivhINytljP2Z6sqCFHHnrCuq5sL/fMVVvMqVzc/Y7ZNO/EO39zt1aALldc1UpwQ6hPA2BCHazvFbht++tpqXluzg1eGvMzb/Rbvt35H/1639JkWHkZUUGWiHNbXPdOChlOo+TbCUUoc0R9EyaokkJn1ct/dVHz8OFz4o7d2b9RaWZXjw2Zf4Yf5NNERlEH/5C+DsfufqkzLiWWZG426ugrLNQYi084qqGrj5gae5o+qXJIcb3Je9Bl0cr2xvU4bGs9w/wp7oxXZYjV4/N7ywHNeif/FPz7+RrCPgwqcPeoyy9ogIUzLjeb8m8Ll2fNXtfXbWJ+uLufDBBdzEf7nGegZyzocz7+t20ggwdVg8AGvd48Hy9lr1x0avn588vYSXF23i3dRHmFL0gl0id8JtQenaf+qwBJbuqMCkH2b3Rli+tdv7VEqFniZYSqlDljGGwTVrKIwcF5SbQGdaDgC+ot7vvc3rt3jwiSe4ZOO1+MPjSfjRO13uAGJvCVEeimICbdTye6961pLtFdx371+5u/bXREdF4bnqw4PurW1/pgxNYItJw+uM6LUb9t3VjVz6n/nMXvNbfut+GjNhLnLRyxAWE7RjTBmawDvlqRhnGGz/Mmj77Ygxhv9+vpVfP/EBT7r/zLnW+zDrertELggJPsDoQTFEh7n4pK73EsfNxbWc9a8vWLd2JQtS7mJcxXw4+c9w0h+DNm7a1KEJlNY2sys6256RH5r2ZUqp4NIESyl1yNpVXsUoK+/bXry6KXnYRJqNk+rtK4Kyv84qr2vmwfvu4Ad5N+CNHEzcj96H2LSgHiMhczxVRPdKgmWM4akvNrHiv9fwZ/89kJpL2I/nQ/KooB4nMcrD0KRo8tyjeqUHt083lvCTfz7HH0t+xtnOL2DOzci5j4M7PKjHmTo0gWbcVCVNgh09m2CV1zVz1f8W88m7L/Bh5M3kyBY460G7hCcIDy1atLSZ+3ynBSnjYMfCoO27Pa8sLeDM+xeQXf0p86JvIdm7E773LBxxTVAHpT5smN1BxsK6FAiPh+0LgrZvpVToBOfRklJK9UN5axaRKn6iR8wIyv5GpyayxaSTWNh7JVhr80tZ8/i1/J//bUqSDiPlhy9BZGLQjzNpaCJL1o/i6O2LevQ/jrLaJu597k3O3fEHcpx5NE75AZGn39GtLvT3Z+rQBL5YP5JRhW8jzfXgiQz6MRq9fv723lpY+ADPul/AGRGNnPsyjDo+6McCmDw0HqdDWOvO5sjCx6GpJqglZC0WbCrlNy8s4tLGZ/iB521IHIuc9wQM6n512/bMHJ7E3z/cSOOM6YRveMPumCSISRxAXZOP372xhg+WbOBfCS8yp+EDSD0Mzn0MEoYF9VgAYwbbJXNLd1Rz9rCjIO+LoB9DKdX7tARLKXXIqtliV8dJm3BkUPY3IiWK9WYokRXrg7K//THG8Oq8L2j876mc53+b4ok/IOWa93skuQKYlBnPEmsMrrIN0FAR9P0bY3hrRQGP//2X/Cb/R4wKq8Q6/0nC597dY8kVwOEjEpnXNBaxvJAf/FKRb/LK+eE9L3DyN1fyW/fTOEefgPOaRT2WXIHd4UpOehwf1o0AYwW92llVvZcbX1rBfY8+zjO+G/ih8y3ksMuRq+b1WHIFMGt0MgDr3BOhqQqK1wZ1//M3FHPSPZ9RvvxNvoz9Dcc2fgyzb4Ar3uuR5ArskrkpQ+P5Jq8csmZBxTaoCu1Aykqp7tMSLKXUISu8eDnlkkBi4tDg7M/tpCRiJDHNC+wkpIvj4xxISXUjbz5xJ+eX/guHw0HVaf9h0PSujwnVGTnpcdwrgQGHCxbD6BODtu+SmibuefEjztj2R25wrqUm6wRiznsAogcF7RgdOWJEMrdbY7HEhWPb593qdrutuiYfd727FvPNf3nY/RzuMA+c8R+cuRcEtYpZR44YmcTTn6Vza5gT2f5l0BK691bv4o7Xvuaqpie4M+wjrLgsmPsmDD86KPvfn9yMeGLCXbxbM4opAFvnw5Dsbu+3vK6ZP7y1lnnLNvC3mGc50f0JxE+As16EtCnd3v+BzByRxF3vb6Bi0AwSALZ/Abnn9/hxlVI9RxMspdQhyW8Z0uvXUhw3gcQg3vA2J4+HQmD3Wsg6Kmj7bTF/6Vp441qu5BuKEqcz+JJHiEzsmafrbYW7nZA2FX+xA2f+oqAkWMYYXl9WwPo37+Zm62ncHif+U+8l5rBLeyUJAchMjCAhPoFtjGVk3udB2efnm0r494vvcn3jv5jhXo9vxAm4zrov6O3i9ueIEUk8MD+MmsSJxG77rNv7K65p5LY31lC/5j1eCHuMFFcZzPwpjjk390i1yvY4HcKRI5N4e0c1N6WMQzZ/CEf+tMv7M8bwxopCbn9jDUc2f8EXMU8S5a+CY34Fs3/RoyWnbR01Kpm73t/A5zWDOTM8HrZ8ogmWUv2cJlhKqUPStp1FjKCIdWnnBHW/4emToBCadq4kLIgJVm2Tj1ee+Q+n5d1BrDRQfOTvSD3huqC3QdmfyaPSWbdrKOO2f9Xt/zx2Vzdy//NvMTf/r5zl2EjdsGPxfPc+iA9OaWJniQgzRyQxb+1YRux8HWmsgvC4Lu2rqsHLHW+uIGXFAzzhfg1HeBSccj+uKRf3WsLYYlpWAm6nsDx8BkcXPAK1xV0qETTG8NKSAu5762t+bj3GWZ7PMUnjkLOeg4zuDc7dFbNGp/D+mt1UjTuG+FWPQVMthEUf9H4KKxv47WurWbd+HQ/EPs3h1kJIyoG5r3Z7YO6DlZMeR0y4iwWbyzlz9Emw8T3w+4LWA6NSqvdpGyyl1CEpf81XOMSQMHpmUPc7YsQIKkw0VUHsSfDrdXl8eud5XLr9N/iihsD/m8+gk37eq8kVwIzhiXxhTcSRvwgaq7u0D2MML329lRfuvpZbCv4f2Z7dWGf9h6grXuv15KrFUaOSeLcpFzF+2PDeQW9vjOGdVUVc/7eHuGL1Zfzc/RLOCd/Bde1imHpJrydXAJEeFzNHJPF42UTA2DftBym/vJ5LH1nEp6/8hzccP2eu6ys4+kbkR5+FJLkCmD3Kbof1tesw8DdD3sH1umdZhie/yuOUe+YzfOvTfBr1K2ZYK+zBkK+a3+vJFdglc7NHJzN/QwnW2NOgobxXh0NQSgVft/93FpH/E5H1IrJGRO5sM/8mEdksIhtE5OTuHkcppYKpabvd8H/I2COCut/sjHjWW0Mxu1Z3e18NzX4ef/pJ0p47nlP88ynMvYYhP/8CT2r32510xWHDEviUaTgsL2z5+KC3L6xs4Pb/PMXEt+byfzxP85jTCL9uCY7JF4YkCWlx3LhBrJLRVHsGwdrXDmrbwsoG/u/xzyh5/v/4r/9msmIs+P4LOM9/vFfakO3P6TmpzKscRHN0Jqx/u9Pb+S3DY19s44p/vMRV+b/ifs99xA3OQq6eD8fdHJQBkbtqWFIkGQkRvFySAZ4YWPdmp7fdXFzL+f/5iqffeJdXwm7jFsdjeLKOQK5ZCEddG9ISoxMnDKa4ponlYYeB0wMb3unUdi3n6qR7PmVrSW0PR6mU6qxu/TURkTnAXGCSMaZJRAYF5k8ALgQmAmnARyIyxhjj727ASikVDNGlK9ntTGNwdHAG420xKCacjz0jOazmffA1d7kdx7LNBWx7/kYu975NWXgG3gveIW1EcJPBgxXpcREz+igqt8UQt/4dZOLZndrOsgwvLNxA/ft/4hbepDEiGeusp4kef0YPR9w58ZEeZo0exDsFh3PB5vc7VU3QbxmeWridb957it/KIwx2VWBmXI3n+Ft6pEv0rjh54hBufm01K6KPYvqWV6G+/IC9TK7eWcUtryxn2q7neNvzCm6XA477CzLj6j5RZU1EOC0nlUcXbKNhyulErH0dTrtrv+3Amnx+/vPpVh6et5afuV/lyvA3EVc8nPFfyDk3pMl9ixMnDCHcvYqXVlcxdcSxsOZVOOH2/X7nawuruemVlWwpKGK07OTd1elcMye4Y8Uppbqmu38tfwzcYYxpAjDGFAfmzwWeC8zfJiKbgRlAzw+9PgD4fD4a62torq+mqamR5uZmmr1evF4vTuPH6QCnKwyn2x149eB0e3BHxBAdFY3LqTU/ldqfRq+f4c0bKU+eyuAe2H9V0hQ8xW/CrpUHXZWq0evnpZefZ/a63zFJSigcdzlp3/1Lr3UkcCAn56Tz8ebJzN3wPq5OJJCbdtfw1HNPc0XZ3WQ5dlM78SKiz/gzRMT3TsCddEZuGk9tnMaFYW/C6pdh2pUdrrt+VzV/e3EeZxf/i/udX9OcNA456wUkc3ovRnxgCVEeZo1K5p9Fh/OU/zlY9iQc9bN2161r8nH3hxtZ8uVH/NXzCGPdeZjRpyCn/Q3iM3s58v27cHomD322lXddJ/Dd5udgxbMw/Qftrvv5phJufX0Nw8oXMC/qaVK8hTDpIjjpjz02pEFXRIe5ODU7lTeXF3Lzdy8iatNlsOFtmDB3n3WrG73848NNPPHVNs4LW8zz8U8S3ljCzWsSQRMspfqE7iZYY4DZIvInoBH4hTHmGyAdaDugSEFg3j5E5GrgaoChQ0NT/76nGcuitLiQkoJNNJQV4q0qwqrZjbO+GE9jKRHN5YT7awi36oky9UTRSLSYLh2rybioIpIGRyQNjiianNF4XdF4PXH4w+KRiAScUYm4YxKJiE0mKj6F2PhkouNTcETE9YkneUr1tI2b1pMrpdRm9kw7kpgxs6AYqjZ8StxBJFir8orY9Mwv+X7TW1SEpdJ47uukjTmmR2LsquPHD+b6V47knObPYd0bdglAO5p8fh59/xsGLfoztzs+pTY6E3PuG0SP6Fufp8WpOUP4w1vj2eYew/Av/gmTL9qnKlxlfTP3f7iaiG8e4D7X63jcBnPMzXiOuq7Xepw7WJcflcUVj5VQlD6T1C/uhcMu36N0zrLsnvQeefdLLq3/Hzd7PofowXDak8j47/TJ/xNGpERz1Kgk7ljjYW7qVJyf/x0mXQieqNZ1Cisb+PM761i7agl/iXyGmZ6lEDMSzngdRhwbuuD344ezh/Pqsp08tHsM1yeNgk/+AmNObf3dajlXf3pnHYPr1vNhwouMqFsO8bn4dlcxdvfbNDRfRITHGdoPopQ6cIIlIh8BQ9pZdHNg+0RgJjAdeEFERhxMAMaYh4CHAKZNm9a1rKIPMMZQWlxE4aZl1OWvQiq2El6TT1zTTgb7d5MijaTstU0FMVQ6EqhzJVIRORzjicHyRON32694onG4w3C53LhcbpxuNxYO/AaMz4vxN2H5fOBvwvi9SHMdNFUhjTU4mmtweWtw+2qJaiwgqn4d0aaOSGnq8DP4cFAr0dQ7Ymhyx9LsjsMKj8eE20mZIzLeTs6ikwiLSSIiJpmIuCRcUYngdPfsF9zTjLEH5LT8YCyM8WP8fvyWH7/fj7EsLMuHZfmxAtP2fL89z/JjLINljH1+jMGywDIGC/PtMQDBvmFpe9/S8l6Qb9dru3yfN3tO7LF96zz5dq127pEE6eDmqYMbKpEO7rX2nWn2s48OFuy7ykHc2Il0UGrbwT4qvnkJgOSc4I3l1Na07Als/CyduLUfEHf8DQdcv9ln8cprLzJz1a18V3ZRMPYSMs796x43jH1FXISbxJxT2bb2f2TOvxPXhLP2qMZkjGHemkLWvPkPLm98ikhHM/Uz/o/oE37TZ0rh2hPpcfGjY0dx6/vf5cnmO+Dj38PJfwLs0p0XF21l2yePcqX1MsNcxTSPPh3naX+GhKzQBn4Ax45JYcbwRK4rOovn5GbktZ/AeY9jiYv5G4t57N0vmFX2Ei+6PsLjMThm/h8c/Ysu96TYW35x0ljOeeBL7ku9nOuqr4U3/g/O/g87a3z859MtfPP1Qq50vsk/wz/H4YqE4/8IM/5fn02EASamxXFGbir//jSP0066kbGfXA3v/Rr/KXfy3toS7pu3ibDdy7g75iNmeT5HTCKc/neYejkVT1zM6dsX8PmGQk7K6Vsljn2NMYYmr4+G2iqaG2ppbqynuaEOb3M93sZ6/E2Bn+Z6jLcRLB9YPiy/HzE+jOUHq+XVj1h+BD+CgZb/V0UAR+DVnjbiAATZ473D7qxIHIjDAeIEcSIOAYcTaXkvLsThQMSBOJzQ5r0934k4nSAOHA4njsA6DocLcUhgP04cTicOcSDOwLTDEXi1f8TZsr0Lh8OBw2nHZMSO0X61/1811l637ObbNyYwIYH7Gfvl23sh02YjY/a8R9rjX9PmGK4IomPj7SFD+gHZI/iD3VjkPeCvxphPAtNbsJOtHwIYY/4SmP8+cJsxZr9VBKdNm2YWL17c5Xh6i7EsCrauYdeaBfh2LiOqciOpzdtIobJ1nXoTxm7nEKrC02mKzkQShxGeMoLo5AxiU9KJT07D5Qnv9dgbG+qoKC+htryYuqpSGqpL8daW468rxzRU4GisxNVcRZi3ikh/DdFWDXFSRyz1OPZTqlZLBI2E4cONT1z4xIVf3PjEjd/hxhI3lsNN6420fHsTvvervdjgMBYO/IixkD3e+3HQMu/baUdg2tEyjYVg4TT2qz1tcAZeW9ZxGLPfz6YGplISSP7dth55Qm+M4ck/XM5F1ps4f7V1v9Xhlm3OZ+sLv+Hspjep8Awm7NwHiR47J+gxBVNeaR13/vPv/Nv5d3zTrsZ12l8xIizaUMCSdx7htMpnGO7YTcWQo0g45x+QMibUIXdKs8/i4kcWcWbB37nY+SH5g+awxjmW6sLNHMtiBkkljcnZhJ/6h6ANSNwbdpTV890HvuBc75v8Wp6g2JPJCt8w4n3FTHFsxiGCTDgLOf63kHhQz0hD6l+fbOau9zdwS9x7/KDpfxQ60ljtTWWoFDPOkY/lisAx5WI45saQdzjSWZX1zXz331+SX1HP/SmvcnLlC+SRxhb/YMa6dpNhCjFhscj0H8Cs61sTYd+6d3A9/z0eSPsTP76662OD9TcNjU2UlxRRVVpIbflumqp2YWpLcDSU4WyqxOmtwe2txeOrJcKqJdKqI8rUESMNQY3Da5wt6RWCse819L4iqB7znUzK+f/gjNzeG0+wM0RkiTFmn6oq3U2wfgSkGWNuFZExwMfAUGAC8Ax2u6u0wPzRB+rkoq8mWM1NTWxa+gk16+YRVbyEoY3riKMOgAbjocA9jKqYUVjJ44kemsPgkVNJHDLUfhrRz/n8FpUNXsprGqivqaCpphRfbTm+ugqs+nKor8DRVIGnuQqHvwnxN+OwvIjVjNPy4jBeHJYXl2nGYfloeSohra/sMU3gD1Ob9AdLHFjYT1DMft4bcdo/tLx3YBxOCEzjsNOrlqdFtD6RcSIt64r9JMiIY48nS/aTpMDTJUfLsjZPjgLrOgT7ZkXsEiL7V+DbciXT5l2L9i7BtsmmwXS4XtvltLsf0+6GezxNakP28/egvSXS7kH3eDa1/3Xb2bHZ37oHE3OHn8U+QsKoaYyaNKuDdbrvgWde4Mcbr6L2+DuInv3jfZbXNDTz1gsPc8zWv5Em5ewc9X3Sz7urS2P6hMJzX++g9o0b+aHrXXa70ijxRzHc2kGUNFEeO47YU27BNf70PlnFbH+qGrz86c1VDFr5AD9wvkOC1NLoiKAh42jiZ1+FjDqh330msLtc/8u76wjb/B6X8hapzio8MUnETTgR5/TLQ9ZFfne9saKQRxdsY1zV51xo3iXDU0t0Yhrh40+CSd+DqORQh3jQKuubuefDjczfUMwc7+d8z/0pQzwNxA4aav/+Tbpw345U/F5q/zKKBd6xzPzVW8RH9t2Sus6ob/Kya/cuyovyqC/dgVVZgKNmJ566XUQ17SbWW0qsVUWC1LS7vc84qJUo6iSKRme03VzCHYPfE4PlicGExWHCYhB3JA5PBE5PBI6wCFyeSNzhkbjCo/CEReL0ROByh+FwOnG63DicLlwuNw6nM/DqskuU2jDG2JVisB/IGwzGMhgsjGWBMVjGCtSM8WNZBuP3Y1k+/JYf9qghY2Esf2C+H8tvYRn7lZYaNMYCvw/LGIzfhzH2NpbfrpFjWZZd4hY4prH89nvjB7+FFXhwbS+zwPjs98aA5W99WN3ysLvl/1Bgr7+Fe/1d3KvqjQDm2yoqbdbb9x5pj3UDr5XRoxk742SykvtWzY6eSrA8wKPAZKAZuw3WvMCym4ErAR9wnTHm3QPtr68lWKs+exXry38xqmElUdKEZYQ85zBK47IhYxop445i6NipOF2h71lJKdW3bNpVTcO/j2ZoZDPxNywBdwRgP7T4YN7HxH75Z2aZpewOH0nMef8icmRoewjsik83FLP+w8eZWvUB0W6DZ9BoMo+6EM+oY/plEtJWbZOP2oZmksN8uMJj+v3nUQNfxUvXE7nqSR474n1+dMphoQ5nvyzLUFxVx64dG6kq3Ehz8WYclXlE1eWT3LyTVFNM1F5NGvwIZZJIhWsQ9WEpeMOTISoFZ0wKYXGDiExIJS5pCDFJaXiiE3t9nEB1aOqRBCvY+lqCteTt/5Ky5G52JR6OZ/QcRkw/hdjE/lHNQCkVenf/52F+XvQLdg6eQ/Ph15C3bQuuda9ylHcRDY4IKqdfR/rJP+//bRiVUqG3cyk8PIc/ylX87Fd/ISY89H9Xmnx+thVXU7RtLXU7VuAsWUN89UbSvNtJoxS3fFuxqREPpa5UqiOH4o3NxBmfQXjyUGJShhE3JIvw+LQ+MVSAUm1pgtUFxrIGRDU/pVRolNU28coDv+Xy2kdabyQqJY6ysd9jxJm/QvpQN9FKqX7OGOrvn0VVaSEPZj/L7efN7LVDW5Zhe3k9m7cXUL51Kf5da4itWk9G81bGSEFrB1s+HOx2Z1IVPQp/wnA8KaOISx9DUuZY3HFpWuqk+h1NsJRSKgQsy7Bs9RqsopWkpg8lY/zhWmKllOoZBYsx/z2BJ30nEHvOPzlrSrsj5HRLTaOX9YWVFG5dQ+2OFbhL15Bct5kxbCdDSlvXq3XEUh4zBm/yBMIzJpE8ciphqRPA3fsdfCnVUzTBUkoppZQa4Hzv/hrXogf4q+9Chpz6ay49Mqt12I6DYYyhoKKBjYFSKV/RaqIr1pPp3bNUyo+DsvBhNCSOw5M+iaQRU/CkT4KYIdp2UQ14HSVYWplVKaWUUmqAcJ38J3w1u/nV2ud4+72t/HjxVZww60hmj05mUEzYPslWo9dPQUUDO3aVUVWwBu+utbjKNpJQu5nRbOf4vUqlKhLHUjpoNjHDJhM/fDLOlPEM0lIppfagJVhKKaWUUgOJ34f58l6sT/6M0/Ky0hrOams4ZY4kXGERuIyPcNNInK+UJKuMDCkhU0pax4T04aQsPJOGhPG403NJGjmVcC2VUmofWkVQKaWUUupQUrMba+n/aFj3IY6yjUR4K1oX+XFS40mmIXww/ug0nIPGEjM0h+iMHEgaqW1FleoETbCUUkoppQ5lviawfOD0gMOlpVFKdZO2wVJKKaWUOpS5woCwUEeh1ICnAw4opZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFSZ/q5EJESoDtoY5jL8lA6QHXUgOFnu9Dh57rQ4ee60OLnu9Dh57rQ0tfPN/DjDEpe8/sUwlWXyQii9vrHUQNTHq+Dx16rg8deq4PLXq+Dx16rg8t/el8axVBpZRSSimllAoSTbCUUkoppZRSKkg0wTqwh0IdgOpVer4PHXquDx16rg8ter4PHXquDy395nxrGyyllFJKKaWUChItwVJKKaWUUkqpINEESymllFJKKaWCRBOs/RCRU0Rkg4hsFpFfhzoeFTwikikin4jIWhFZIyI/C8xPFJEPRWRT4DUh1LGq4BARp4gsE5G3AtPDRWRR4Pp+XkQ8oY5RBYeIxIvISyKyXkTWicgRem0PTCJyfeBv+GoReVZEwvXaHjhE5FERKRaR1W3mtXsti+3ewHlfKSJTQxe5OlgdnOu7An/HV4rIqyIS32bZTYFzvUFETg5J0PuhCVYHRMQJ/As4FZgAfE9EJoQ2KhVEPuAGY8wEYCZwTeD8/hr42BgzGvg4MK0Ghp8B69pM/xW4xxgzCqgAfhCSqFRP+CfwnjFmHDAJ+7zrtT3AiEg6cC0wzRiTDTiBC9FreyB5HDhlr3kdXcunAqMDP1cDD/RSjCo4Hmffc/0hkG2MyQU2AjcBBO7XLgQmBrb5d+C+vc/QBKtjM4DNxpitxphm4DlgbohjUkFijCkyxiwNvK/BvgFLxz7HTwRWewI4KyQBqqASkQzgdOC/gWkBjgNeCqyi53qAEJE44GjgEQBjTLMxphK9tgcqFxAhIi4gEihCr+0BwxjzGVC+1+yOruW5wP+MbSEQLyKpvRKo6rb2zrUx5gNjjC8wuRDICLyfCzxnjGkyxmwDNmPft/cZmmB1LB3IbzNdEJinBhgRyQKmAIuAwcaYosCiXcDgUMWlguofwI2AFZhOAirb/OHW63vgGA6UAI8FqoT+V0Si0Gt7wDHG7AT+BuzATqyqgCXotT3QdXQt633bwHYl8G7gfZ8/15pgqUOaiEQDLwPXGWOq2y4z9hgGOo5BPyciZwDFxpgloY5F9QoXMBV4wBgzBahjr+qAem0PDIG2N3Oxk+o0IIp9qxipAUyv5UODiNyM3bTj6VDH0lmaYHVsJ5DZZjojME8NECLixk6unjbGvBKYvbulSkHgtThU8amgOQo4U0TysKv6HofdRic+UK0I9PoeSAqAAmPMosD0S9gJl17bA88JwDZjTIkxxgu8gn2967U9sHV0Let92wAkIpcDZwAXmW8H7+3z51oTrI59A4wO9EbkwW5M90aIY1JBEmiD8wiwzhhzd5tFbwCXBd5fBrze27Gp4DLG3GSMyTDGZGFfx/OMMRcBnwDnBlbTcz1AGGN2AfkiMjYw63hgLXptD0Q7gJkiEhn4m95yrvXaHtg6upbfAC4N9CY4E6hqU5VQ9UMicgp29f4zjTH1bRa9AVwoImEiMhy7Y5OvQxFjR+TbZFDtTUROw2674QQeNcb8KbQRqWARkVnA58Aqvm2X8xvsdlgvAEOB7cD5xpi9G9iqfkpEjgV+YYw5Q0RGYJdoJQLLgIuNMU0hDE8FiYhMxu7QxANsBa7AfqCo1/YAIyK3AxdgVx9aBvwQuy2GXtsDgIg8CxwLJAO7gd8Br9HOtRxIsu/HriZaD1xhjFkcgrBVF3Rwrm8CwoCywGoLjTE/Cqx/M3a7LB92M493995nKGmCpZRSSimllFJBolUElVJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlguT/Aycy+zmZv5JjAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADVeElEQVR4nOzdd5xcVf3/8ddnZrbXbEmyqZveQwJJaKErRYGACAHpqCiKCirYEfXL9+tPURRRsaAoYAgdlN4CBAmkkt6zqZtkey9Tzu+Pmd1skt3NJjub2d28n4/MY+fee+45n5nZ2cxnTrnmnENEREREREQ6zxPrAERERERERHoLJVgiIiIiIiJRogRLREREREQkSpRgiYiIiIiIRIkSLBERERERkShRgiUiIiIiIhIlSrBERLoJM8s3M2dmvljH0tuZ2Q1mNj/WcXQ3Znaama2LdRwiIj2ZEiwREenRzOxuM/ObWXWL252xjqsncs6955wb01X1m9l1kS8RvtBVbYiIxJq+JRURiRIz8znnArGO4xg11zl3TayD6Cq94XfLzPoA3wdWxToWEZGupB4sEZFOMLMCM/uOmS0HaszMZ2Ynmdl/zazczD42szNblJ9nZv9nZh+ZWaWZPW9mWW3UfaOZrTGzKjPbbGZfOuD4LDNbFqlnk5mdH9mfYWYPmVmhme00s/8xM+8hHscIM3vLzErMrNjMHjOzzBbHSs3s+Mj2ADMranpcZnaxma2KPN55ZjbugOfn22a23MwqzGyumSUe/jN9+Mzsu5HnpcrMVpvZpW2UMzO7z8z2Rp7LFWY2MXIswczuNbNtZrbHzB40s6QOtv9wpPzrkRjeMbOhLY7/1sy2R9pcbGantTh2t5k9ZWaPmlklcIOZzTCzDyLPc6GZPWBm8S3OcWb2FTPbEGnvZ5HX7r+RNp5oWb6NmM80sx0deXxH4P+A+4HiLqpfRKRbUIIlItJ5VwGfBjKBfsCLwP8AWcC3gafNLLdF+euAm4A8IED4Q2dr9gIXAunAjcB9LZKcGcA/gTsi7Z4OFETOezhS70hgKnAucKghWUb4A/AAYBwwGLgbwDm3CfgO8KiZJQN/B/7hnJtnZqOBOcBtQC7wEvDvAz7IXwGcDwwDJgM3tBqA2cxI8tDWbeYhHsOBNgGnARnATyLx57VS7lzCz9/oSNkrgJLIsZ9H9k8h/HwOBO46jBiuBn4G5ADLgMdaHFsYqTcL+Bfw5AHJ5yzgKcKv72NAELg9UtfJwDnAVw5o7zzgBOAk4E7gz8A1hF/PiYR/V49YJFFu6/X5QzvnzQCmAQ92pn0RkZ5ACZaISOfd75zb7pyrI/xh9iXn3EvOuZBz7nVgEfCpFuUfcc6tdM7VAD8Crmith8k596JzbpMLewd4jXDCAPB54G/Oudcj7ex0zq01s36Rtm5zztU45/YC9wFXtvcAnHMbI3U1OOeKgF8DZ7Q4/hdgI/Ah4cTwB5FDs4EXI+f6gXuBJOCUA56fXc65UuDfhJOK1mKY75zLbOfW3qIUVxzwYX+Ac+7JSLsh59xcYAMwo5Vz/UAaMBYw59wa51yhmRlwM3C7c67UOVcF/O+hnssDvOice9c510D4OTvZzAZHHu+jzrkS51zAOfcrIAFoOf/pA+fcc5H465xzi51zCyLlC4A/0eI1iviFc67SObcKWAm85pzb7JyrAF4mnHAfMefc5HZenwOTPQAiv9t/AG51zoU6076ISE+gOVgiIp23vcX9ocDlZnZRi31xwNttlN8aOZ5zYKVmdgHwY8I9KB4gGVgROTyYcG/RgYZG6isM5wcQOXd7K2VbttUP+C3hBC4tck7ZAcX+ArwA3BxJGCDc47W1qYBzLmRm2wn39DTZ3eJ+beScaHviwDlYZnYd8E0gP7IrlVaeZ+fcW2b2APB7YKiZPUO45zGR8HO+uMVzaUC7wy0P0Py8O+eqzayU8OPfbmbfJpwoDwAc4Z7KnNbOjTye0YQT32mRuHzA4gPa29Pifl0r2/0PI/Zo+Qqw3Dm3IAZti4gcderBEhHpPNfi/nbCPVQtv9lPcc79vEWZwS3uDyHcg7LfvBQzSwCeJtwj1M85l0k4oWr6pL8dGNFKLNuBBiCnRfvpzrkJh3gM/xt5HJOcc+mEe+L2ZRVmqcBvgIeAu23fvLFdhJO6pnIWeXw7D9HeQSy8RHh1O7fTDl1Lc11DCSeEtwLZkedvZcvH1JJz7n7n3AnAeMIJ7R2EX5M6YEKL5zLDOZd6GA+r+bWOPIdZwK7IY7mT8HDEPpH4Kg6Ir+XvFcAfgbXAqMhr9P22Hk9XsfBcu7Zen7aG/50DXGpmu81sN+HezV9FkloRkV5HCZaISHQ9ClxkZueZmdfMEiMLBwxqUeYaMxsfmc/0U+Ap51zwgHriCQ8ZKwICkd6sc1scfwi40czOMTOPmQ00s7HOuULCQwl/ZWbpkWMjzOzAoWQHSgOqgQozG0g4wWjpt8Ai59wXCM8xa/ow/QTw6UgcccC3CCd4/z3UE3WgyBLhqe3c3juM6lIIJyhFEF4whPAcpIOY2XQzOzESfw1QD4Qiw9n+QnjuW99I2YFmdl6Lc521WMSkFZ+KzC2LJzwXa4Fzbjvh5zsQic9nZncR7sFqTxpQCVSb2VjglkOUjzrn3IR2Xp8vt3HaDYTn9U2J3BYRnhP3gzbKi4j0aEqwRESiKPLheRbh3oUiwj1Kd7D/39tHCC9EsZvwMLSvt1JPVWT/E4SH6n2O8PC8puMfEVn4gnDPxzvs60m6jnCCtjpy7lOE50215yfA8ZG6XgSeaTpgZrMIL1LR9IH+m8DxZna1c24d4d6u3xHu8bkIuMg513iI9rqUc2418CvgA8LD5CYB77dRPJ1wIlVGeLhjCfDLyLHvEJ57tsDCq/m9QWSeVGQuVRX7hm225l+Eh3mWEl58omkY46vAK8D6SJv1HGIYJ+Fhi5+LtPkXYO4hyncLzrly59zuphvQCFRG5oWJiPQ65tyBIxBERKSrmNk84FHn3F9jHYt0jpldQ3j44PfaOP4wsMM598OjGpiIiMSUFrkQERE5As65R2Mdg4iIdD8aIigicoyw8EVvD2dxAumFzOz7bfwevBzr2EREegMNERQREREREYkS9WCJiIiIiIhESbeag5WTk+Py8/NjHYaIiIiIiEi7Fi9eXOycyz1wf7dKsPLz81m0aFGswxAREREREWmXmW1tbb+GCIqIiIiIiESJEiwREREREZEoUYIlIiIiIiISJd1qDlZr/H4/O3bsoL6+PtahSDeQmJjIoEGDiIuLi3Uo0gtV1Pr54WNvcMUp4zhtQn6swxEREZEeqNsnWDt27CAtLY38/HzMLNbhSAw55ygpKWHHjh0MGzYs1uFIL/Tm2j38bueVlD6ZARO2xTocERER6YG6/RDB+vp6srOzlVwJZkZ2drZ6M6XLFBQWA5BFBf7tS2McjYiIiPRE3T7BApRcSTP9LkiXKitovlu6YUHs4hAREZEeq0ckWCIiR0NidUHz/fody2MXiIiIiPRYSrA6wMz41re+1bx97733cvfdd8cuoBbOPPPMdi/OfMkll3DSSSftt+/uu+9m4MCBTJkyhYkTJ/LCCy90dZgiPUJazXYANoQG4iteG+NoREREpCdSgtUBCQkJPPPMMxQXF0e1XuccoVAoqnW2VF5ezuLFi6moqGDz5s37Hbv99ttZtmwZTz75JDfddFOXxiHSU8Q3lhPAx9q4saTVbIl1OCIiItIDKcHqAJ/Px80338x999130LGioiIuu+wypk+fzvTp03n//feBcC/Rvffe21xu4sSJFBQUUFBQwJgxY7juuuuYOHEi27dv54477mDixIlMmjSJuXPnAjBv3jzOPPNMPvvZzzJ27FiuvvpqnHOtxvfII48090Z99NFHzfufeeYZLrroIq688koef/zxVs8dN24cPp9vv+Txu9/9LuPHj2fy5Ml8+9vfBqCgoICzzz6byZMnc84557BtW3iFtRtuuIFbbrmFk046ieHDhzNv3jxuuukmxo0bxw033NBc5y233MK0adOYMGECP/7xjw+Ko6KigqFDhzYnejU1NQwePBi/399q3CJdwfy1NHoSqU8ZRHqwDPx1sQ5JREREephuv0x7Sz/59ypW76qMap3jB6Tz44smHLLcV7/6VSZPnsydd9653/5vfOMb3H777cycOZNt27Zx3nnnsWbNmnbr2rBhA//4xz846aSTePrpp1m2bBkff/wxxcXFTJ8+ndNPPx2ApUuXsmrVKgYMGMCpp57K+++/z8yZMw+qr7a2lmXLlvHuu+9y0003sXLlSgDmzJnDXXfdRb9+/bjsssv4/ve/f9C5H374IR6Ph9zcXABKSkp49tlnWbt2LWZGeXk5AF/72te4/vrruf766/nb3/7G17/+dZ577jkAysrK+OCDD3jhhRe4+OKLef/99/nrX//K9OnTWbZsGVOmTOGee+4hKyuLYDDIOeecw/Lly5k8eXJzHBkZGUyZMoV33nmHs846i//85z+cd955ut6VHFVxwVr88ckE0odAJVC+DXLHxDosERER6UHUg9VB6enpXHfdddx///377X/jjTe49dZbmTJlChdffDGVlZVUV1e3W9fQoUOb50XNnz+fq666Cq/XS79+/TjjjDNYuHAhADNmzGDQoEF4PB6mTJlCQUFBq/VdddVVAJx++ulUVlZSXl7Onj172LBhAzNnzmT06NHExcU1J14A9913H1OmTOHb3/42c+fObV6dLyMjg8TERD7/+c/zzDPPkJycDMAHH3zA5z73OQCuvfZa5s+f31zXRRddhJkxadIk+vXrx6RJk/B4PEyYMKE55ieeeILjjz+eqVOnsmrVKlavXn3Q45g9e3ZzD97jjz/O7Nmz230eRaItwdUT8Cbhy84HoLFYwwRFRETk8PSoHqyO9DR1pdtuu43jjz+eG2+8sXlfKBRiwYIFJCYm7lfW5/PtN6+p5bWbUlJSOtReQkJC832v10sgEGi13IFLl5sZTzzxBGVlZc0X5K2srGTOnDncc889QHgOVtPwvwPj/uijj3jzzTd56qmneOCBB3jrrbc6FKfH49kvZo/HQyAQYMuWLdx7770sXLiQPn36cMMNN7R6LauLL76Y73//+5SWlrJ48WLOPvvsdtsViaZQyJHo6gn4kknpPwI+horCjeSOi3VkIiIi0pN0ugfLzAab2dtmttrMVpnZNyL77zaznWa2LHL7VOfDja2srCyuuOIKHnrooeZ95557Lr/73e+at5ctWwZAfn4+S5YsAWDJkiVs2dL6N+GnnXYac+fOJRgMUlRUxLvvvsuMGTMOK66mXp/58+eTkZFBRkYGc+bM4ZVXXmme97V48eI252G1VF1dTUVFBZ/61Ke47777+PjjjwE45ZRTms9/7LHHOO200zocX2VlJSkpKWRkZLBnzx5efvnlVsulpqYyffp0vvGNb3DhhRfi9Xo73IZIZzUEQiRbA0FvErn9B9Pg4qgvUg+WiIiIHJ5o9GAFgG8555aYWRqw2Mxejxy7zzl3bzvn9jjf+ta3eOCBB5q377///ub5WYFAgNNPP50HH3yQyy67jH/+859MmDCBE088kdGjR7da36WXXsoHH3zAcccdh5nxi1/8gv79+7N2bceXiE5MTGTq1Kn4/X7+9re/UVBQwNatW/dbnn3YsGFkZGTw4YcftlrHpz71Kf76179iZsyaNYv6+nqcc/z6178G4He/+x033ngjv/zlL8nNzeXvf/97h+M77rjjmDp1KmPHjmXw4MGceuqpzcfuuusupk2bxsUXXwyEhwlefvnlzJs3r8P1i0RDQyBIMvUEfdkMzkplh8shrrQg1mGJiIhID2NtrUx3xBWaPQ88AJwKVB9OgjVt2jR34DWd1qxZw7hxGqMj++h3QrrCnsp6qu6dStyAiQy++Qneu/sMxqTW0//Ojw59soiIiBxzzGyxc27agfujusiFmeUDU4GmbpJbzWy5mf3NzPq0cc7NZrbIzBYVFRVFMxwRkQ6r9wdJsgZcXDIej1Een0dafWGswxIREZEeJmoJlpmlAk8DtznnKoE/AiOAKUAh8KvWznPO/dk5N805N61pqXARkaOtIRAihXpcXHgRmtqUgaSEKqE+upeGEBERkd4tKgmWmcURTq4ec849A+Cc2+OcCzrnQsBfgMNbuUFE5Chq8IdIogHiw5cmCKYPDh+o2BHDqERERKSnicYqggY8BKxxzv26xf68FsUuBVYeeK6ISHfR0FhPggWw+FQAfH2GAOAv2xbLsERERKSHicYqgqcC1wIrzGxZZN/3gavMbArggALgS1FoS0SkS/jragCw+PAQwZS++QBU7t5M9thYRSUiIiI9TacTLOfcfMBaOfRSZ+sWETlagvVVAHgSwglWdv/BNDovdUVbYxmWiIiI9DBRXUWwN3vuuecws3avT1VQUMDEiROj1uYNN9zAU0891ebx2267jYEDBxIKhZr3Pfzww+Tm5jJlyhTGjx/PX/7yl6jFI9KbBRrrAPAlJAEwsE8Ku10WwbLtsQxLREREehglWB00Z84cZs6cyZw5c1o9HggEOt1GMBjscNlQKMSzzz7L4MGDeeedd/Y7Nnv2bJYtW8a8efP4/ve/z549ezodm0hvF2gIJ1je+HCC1T8jkV3k4KveGcuwREREpIdRgtUB1dXVzJ8/n4ceeojHH3+8ef+8efM47bTTuPjiixk/fjwQTrSuvvpqxo0bx2c/+1lqa2sBePPNN5k6dSqTJk3ipptuoqGhAYD8/Hy+853vcPzxx/Pkk08e1PYbb7zBtGnTGD16NP/5z3/2a3vChAnccsstbSZ9ffv2ZcSIEWzdum+I0/3338/48eOZPHkyV155JQClpaVccsklTJ48mZNOOonly5cDcPfdd3P99ddz2mmnMXToUJ555hnuvPNOJk2axPnnn4/f7wfgpz/9KdOnT2fixIncfPPNHHjx6lAoRH5+PuXl5c37Ro0apcRPupVgYz0AvkiCleDzUurtS3KdroUlIiIiHReNRS6Onpe/C7tXRLfO/pPggp+3W+T555/n/PPPZ/To0WRnZ7N48WJOOOEEAJYsWcLKlSsZNmwYBQUFrFu3joceeohTTz2Vm266iT/84Q/ceuut3HDDDbz55puMHj2a6667jj/+8Y/cdtttAGRnZ7NkyZJW2y4oKOCjjz5i06ZNnHXWWWzcuJHExETmzJnDVVddxaxZs/j+97+P3+8nLi5uv3M3b97M5s2bGTlyZPO+n//852zZsoWEhITmhOfHP/4xU6dO5bnnnuOtt97iuuuuY9myZQBs2rSJt99+m9WrV3PyySfz9NNP84tf/IJLL72UF198kUsuuYRbb72Vu+66C4Brr72W//znP1x00UXNbXo8HmbNmsWzzz7LjTfeyIcffsjQoUPp169fh18mka4WjAwRjIsMEQSoSepPeu17EAyAt2f9uRQREZHYUA9WB8yZM6e5t+fKK6/cr8doxowZDBs2rHl78ODBnHrqqQBcc801zJ8/n3Xr1jFs2DBGjx4NwPXXX8+7777bfM7s2bPbbPuKK67A4/EwatQohg8fztq1a2lsbOSll17ikksuIT09nRNPPJFXX321+Zy5c+cyZcoUrrrqKv70pz+RlZXVfGzy5MlcffXVPProo/h84Q+M8+fP59prrwXg7LPPpqSkhMrK8MVVL7jgAuLi4pg0aRLBYJDzzz8fgEmTJlFQUADA22+/zYknnsikSZN46623WLVq1UGPY/bs2cydOxeAxx9/vN3HLBILQX+4B6tlguVPHYiXEFTvjlVYIiIi0sP0rK9kD9HT1BVKS0t56623WLFiBWZGMBjEzPjlL38JQEpKyn7lw5cFa3u7NQfWcaj6Xn31VcrLy5k0aRIAtbW1JCUlceGFFwLhZOaBBx5otb4XX3yRd999l3//+9/cc889rFjRfo9gQkICEO6FiouLa47H4/EQCASor6/nK1/5CosWLWLw4MHcfffd1NfXH1TPySefzMaNGykqKuK5557jhz/8YbvtihxtLpJg+VokWJ7MIbAXQmXb8WQMilVoIiIi0oOoB+sQnnrqKa699lq2bt1KQUEB27dvZ9iwYbz33nutlt+2bRsffPABAP/617+YOXMmY8aMoaCggI0bNwLwyCOPcMYZZ3So/SeffJJQKMSmTZvYvHkzY8aMYc6cOfz1r3+loKCAgoICtmzZwuuvv94836stoVCI7du3c9ZZZ/H//t//o6Kigurqak477TQee+wxIDy3Kycnh/T09A7F15RM5eTkUF1d3eaqh2bGpZdeyje/+U3GjRtHdnZ2h+oXOVpC/sgqgvH7EqzEnKEAVO3dEpOYREREpOdRgnUIc+bM4dJLL91v32WXXdbmwhJjxozh97//PePGjaOsrIxbbrmFxMRE/v73v3P55ZczadIkPB4PX/7ylzvU/pAhQ5gxYwYXXHABDz74IKFQiFdeeYVPf/rTzWVSUlKYOXMm//73v1ut4wtf+AKLFi0iGAxyzTXXMGnSJKZOncrXv/51MjMzufvuu1m8eDGTJ0/mu9/9Lv/4xz86+OxAZmYmX/ziF5k4cSLnnXce06dPbz724IMP8uCDDzZvz549m0cffVTDA6Vbcv7wwjP4Epv3ZfTLB6Bmr66FJSIiIh1jB674FkvTpk1zixYt2m/fmjVrGDduXIwiku5IvxPSFZ796/9y6Y7/B7evgshwwNW7Ksn70zgqh1/E0OsfPEQNIiIiciwxs8XOuWkH7lcPlogIQCAyd7BFD9bAPknsctlY5Y4YBSUiIiI9jRIsERGAYNMQwYTmXemJPvZYLgk1u2IUlIiIiPQ0PSLB6k7DGCW29LsgXcUCB8/BMjOqEvqT1qhl2kVERKRjun2ClZiYSElJiT5YC845SkpKSExMPHRhkcNkwQaCeMCz/9UrGlLySA7VQH1FjCITERGRnqTbXwdr0KBB7Nixg6KioliHIt1AYmIigwbpekQSfZ5gA36Lw3vAtedC6YOgDKjYCYkZsQlOREREeoxun2DFxcUxbNiwWIchIr2cJ9hAwOIP2h+fNQS2Qn3xVhL7jY9BZCIiItKTdPkQQTM738zWmdlGM/tuV7cnInIkPKFG/K0kWCl98wGo2KOLDYuIiMihdWmCZWZe4PfABcB44Coz01fAItLt+EKNBDwJB+3PyRtCo/NSX6yLDYuIiMihdXUP1gxgo3Nus3OuEXgcmNXFbYqIHDZvqIGg5+AerAF9UtjtsgiVbY9BVCIiItLTdHWCNRBo+alkR2RfMzO72cwWmdkiLWQhIrHiCzW2mmD1TUukkBx81brYsIiIiBxazJdpd8792Tk3zTk3LTc3N9bhiMgxKs41EGpliKDXY5TF9SOlTtfCEhERkUPr6gRrJzC4xfagyD4RkW4l3jUS8rV+jbXapP5kBIogGDjKUYmIiEhP09UJ1kJglJkNM7N44ErghS5uU0TksPiDIRJpIOhtPcEKpA7ESwiqCo9yZCIiItLTdGmC5ZwLALcCrwJrgCecc6u6sk0RkcNV7w+SSCPOl9TqcU+fIQAESguOYlQiIiLSE3X5HCzn3EvOudHOuRHOuXu6uj0RkcNV7w+RaI24NoYIJvQdCUDlrg1HMywRERHpgWK+yIWISKw19WAR13oPVmbecALOQ92ejUc5MhEREelplGCJyDGv3h8kiUaIS271+KCcDHa5bIIlm49yZCIiItLTKMESkWNefWOQZGvA2ujBGpiZxDb6EVe59ShHJiIiIj2NEiwROeY1NNQB4IlvPcGK93koiR9Ieq0uNiwiIiLtU4IlIsc8f301AN6ElDbL1KYMJiVUCXXlRykqERER6YmUYInIMc9fXwu03YMFQJ9hALjSLUcjJBEREemhlGCJyDEv0FADgC+h9UUuABL6jgCgZreWahcREZG2KcESkWNeoCHcg9VegtVn4GgAKnetPyoxiYiISM+kBEtEjnnBpgQrse05WIPz+lLk0mks0lLtIiIi0jYlWCJyzAs2hlcRjGunB2tQn2S2uX54KwqOUlQiIiLSEynBEpFjnmsM92DFJ6a2WSYxzkuRbwCpNduPVlgiIiLSAynBEpFjXrCxaQ5WO6sIAtUpQ8gIFIG//miEJSIiIj2QEiwROea5hvB1sCyh7R4sAH+fEXhwULrpaIQlIiIiPZASLBGRhqrwz4T0dovF9R0DQM2uNV0dkYiIiPRQSrBE5JhnjU0JVlq75TIHjyPkjIrtq45CVCIiItITdSrBMrNfmtlaM1tuZs+aWWZkf76Z1ZnZssjtwahEKyLSBXz+KhpIAG9cu+WGD8hlp8shsHvtUYpMREREeprO9mC9Dkx0zk0G1gPfa3Fsk3NuSuT25U62IyLSZeL81dR5274GVpMhWclsYQDx5RuPQlQiIiLSE3UqwXLOveacC0Q2FwCDOh+SiMjRFResocFz6ATL5/VQnDiUPnXbIBQ6CpGJiIhITxPNOVg3AS+32B5mZkvN7B0zOy2K7YiIRFVisIZGX/srCDZpyBxBgquHyp1dHJWIiIj0RL5DFTCzN4D+rRz6gXPu+UiZHwAB4LHIsUJgiHOuxMxOAJ4zswnOucpW6r8ZuBlgyJAhR/YoREQ6ITFUg9/X/gqCTTx9x8JeaNy9hvjMwV0cmYiIiPQ0h0ywnHOfaO+4md0AXAic45xzkXMagIbI/cVmtgkYDSxqpf4/A38GmDZtmjvM+EVEOiUYciS7OoJxAzpUPmPIBFgJZdtW0W/suV0cnYiIiPQ0nV1F8HzgTuBi51xti/25ZuaN3B8OjAI2d6YtEZGuUNMYIM1qcYe4BlaTIQOHUO5SqCvUtbBERETkYIfswTqEB4AE4HUzA1gQWTHwdOCnZuYHQsCXnXOlnWxLRCTqKmr9ZFBHzSGugdVkeN9UVrkB9C3RSoIiIiJysE4lWM65kW3sfxp4ujN1i4gcDWXVtQy2WoqS+3SofGKcl91xQxhVs6SLIxMREZGeKJqrCIqI9DhVpXsBiEvP7fA5lemjSA+WQU1xV4UlIiIiPZQSLBE5ptVV7AEgMaNfx0/qOw6A4O5VXRGSiIiI9GBKsETkmNZQHu7BSs7seIKVPuQ4AEq3fNwlMYmIiEjPpQRLRI5pweoiAJL7dDzBGjp0GGUuldodK7oqLBEREemhlGCJyDHNReZReVI7PgdrZL801rtB+ErWdlVYIiIi0kMpwRKRY5q3riR8Jymrw+ckxnkpTBhGVs0mcLo+uoiIiOyjBEtEjmm++hKqPOngPbyrVtRljiEpVAMVO7ooMhEREemJlGCJyDEttWEvlXF9D/s8b/8JADTs0kqCIiIiso8SLBE5ZoVCjqzAXuqTDmOJ9oisYZMBKN2yLMpRiYiISE+mBEtEjlnFNQ30txICaQMO+9zhgwdR6LJo2LWyCyITERGRnkoJlogcs/aUlJFl1XgyBh32uUOzU9jIYBLK1nVBZCIiItJTKcESkWNW+e4CAJJyhhz2uV6PUZw0nOzaLRAKRjkyERER6amUYInIMau2aBsAaX2HHtH5DVljiccPpZujGZaIiIj0YEqwROSY5S8LL7Ge1jf/iM5PGDARgOpty6MVkoiIiPRwSrBE5JhlleEEy5Mx8IjOzxk+mZAzyrZ+HM2wREREpAdTgiUix6yE2kIqPBkQl3hE548e1Jetri/B3aujHJmIiIj0VJ1KsMzsbjPbaWbLIrdPtTj2PTPbaGbrzOy8zocqIhJdKUd4keEmfdMS2OIZQnL5+ihGJSIiIj2ZLwp13Oecu7flDjMbD1wJTAAGAG+Y2WjnnJbaEpFuwTlHn0ARdWlHtsAFgJlRljqS7OrF4K8/4p4wERER6T26aojgLOBx51yDc24LsBGY0UVtiYgctrJaP3kUE0g9/IsMtxTMGYuXEK5Y18MSERGR6CRYt5rZcjP7m5n1iewbCGxvUWZHZN9BzOxmM1tkZouKioqiEI6IyKHtLiomw2rxZh7+RYZbSho0GYCyAq0kKCIiIh1IsMzsDTNb2cptFvBHYAQwBSgEfnW4ATjn/uycm+acm5abm3u4p4uIHJHy3VsASMwe3Kl6BgyfQKPzUqWVBEVERIQOzMFyzn2iIxWZ2V+A/0Q2dwItP7UMiuwTEekWmi4ynN4vv1P1jMzLYoMbRNqeFVGISkRERHq6zq4imNdi81JgZeT+C8CVZpZgZsOAUcBHnWlLRCSa/GXhUcwZnUywMpLi2OwbSVblanAuCpGJiIhIT9bZVQR/YWZTAAcUAF8CcM6tMrMngNVAAPiqVhAUke7EKncBR36R4ZbKMseTWvomVOyAzM4NORQREZGerVMJlnPu2naO3QPc05n6RUS6SnztLso9fcj0xXe6Ltf/OCiFwM5l+JRgiYiIHNO6apl2EZFuLaVhLxXxR36R4Zb6DJtC0BkVmxdGpT4RERHpuZRgicgxxzlHVqCI+qT+Ualv7JD+bHCDaNy2JCr1iYiISM+lBEtEjjmlNY30p4RgJy8y3GRkbiprPKPIKFkKIU03FREROZYpwRKRY86evXtIszo8UZov5fEYxX1PIjlUDbvbvuBwQyDIv158nfeXrWyzjIiIiPRsSrBE5JhTtWsdAIn9RkatzpQxZwNQtuw/rR7ftLuMZ+69hdkfXY7nP7dHrV0RERHpXpRgicgxp3HPBgDSBo6JWp3nTJ/EgtA4WD53v+thOef4z9vvU/3HT3BV/VyqSGF0YH3U2hUREZHupbPXwRKgobGR6ooS6sr30lBdTkNtJY111QTqq/HXV+MaarBALRb040IBXDAQnqcRCoALYqEAHkLhysyDw3DmBTMwDyG8YB7M4wGPFzMveDzg8YHHh3l84f3efdvm9UZ++vB4fOCNw+P14vHGhfd5fXg84W2PNw6Pzxe+eXx4fT483ji8vji8Xl/4FhfZ9vnwRY7h8YVjFOlpyjYTckafKCZY/dITeTbnIk4q/QX1S58g8fjZbCksZuG/fspFlXMIeeIov+BPLFuzjjO3/JqGsp0k9On8NbiOdc45/IEQfn8jgcYGgoEGgv4GAv4Ggv7G8C3kJxRykcTXYZGfzjlwISxcEeD2JceRv78Oa3Hfg3kMa/oZ+VtsEP4b7PFgGHg8eGzfcTA83n3HzLx4LHwf82BmeDxezCzcFB7MAwaROsFjnvCf20gZj3n2Ox4+1/Q3WUSkG1CC1Y6Av5Hiwq2UFm6hem8B/pJteKt3kVi3m8TGMpID5aSFqsigmmxzh64QCDojiJcgHoLmJYiXEB5CeHCA4fASwnCRvZH7bl8pn4W69oEfhvDj8RDEG/4gcpiMjj1vh3vOoSI5dB3tH+9s/Yc+3j5PB3/fpHWnAYWeXPLik6Ja7/SLbmbF359k9Au3svj1hxlWu5wrrJqt/T/B4Ct/Q0qfwVjFc7AFSjYuYsD0YzfB8geCVFaWU1NWRF1lEfVVJfirSgjWlOJqy6ChHBqq8fhr8QRqiAvWER+qIyFUR4KrJ8nVkeAa8REgwQJ0/mpmvVfIhf+iNP3VaPpbve9nz9VT08kj+b+vO+ipcUPP/V3R//dhfw+cR98rfsunJ+fFOpQOUYLVjoVP/D9O3nAvLRdyriKJYk8uNb4silJGsyexDy45G5KzsORsvMmZxCenkZCURmJyGkmp6SSmpONLSCEuPhGv14O3s4E5RygYJBgKEAz4CQT8hPwBAkE/ocC+n8Ggn1Aw8jMQCO+L9KCFgn5cMEAw2LQdgGCAUMiPCwabe9pcKABN26FAuNctGMS5cC+chQKYC+JxR3flNHeIb2kNazXha3nagX+yDizddH5bTbnw99HtBHHoNKxTx/VNdaekjDiFaP+ZPmFYLm9e9Chlr3+PEQ0b2J1zMnb2lxk64RPNZTKHHQ/vQ3XBEpg+K8oRxF4gEGTP7p2U7tpIbclO/OWFuKrd+Gr3klBfRIq/mMxgKX1cBdkWJLuNeupcPLWWRIMl0uhJotGbRKMvhUpvLn5fEiFfMs6XiHnjMV88eOPBG4d543GRn+H94V76ph6e5h4pDGe2729FZB8Q7iWiZY9XqLm3CxcCHIQi+whBKLLP7X9/v3Mc4IK4ph60yHFzoXAdLhRpzkX+NrnIv329ai5yzHCtlsWFWvxdC5exFmlVS+b232/hyI7kJe8Gohz3UXsaeubz3dbH/UP8j9hNdLMYOxxON4s7BjLSJjCib0qsw+gwJVjtyDv+Aj5KSCYpZygZ/YfRd9Bw0lL7kBbrwMzCw/nwERefGOtoRKSFc6ZPhOn/BqC1/qkxQwey1fWDwrZXG+zOnHPs2buHPQWrqdmzhUDJFjyV20mu3UmfxkL6h/Yy0Br3e+whZ5RbOhXebGris9mROJptKbmQnI0nOYu41Czi07JJSs8hOSOXtD45JCYmk6QvEUREpAdSgtWO/HHTyB83LdZhiEgvkhjnZVv8SMZWrI51KO2qrW9g+5b1lG1bRcPutXhLN5JRs4X+/h30t/L9evYrSaXY15+q1OGUpJ6OZQ0lKSef1JxBZPYdQlp2f7J88WTF7NGIiIgcPUqwRESOsrKcaeQWvo+/eDNxOcNjGotzjr1FxexY9xHVBUvxFa0ip3odQ4PbGGP+5nIVpLInfgg7cmayLXskyXlj6DNgFNmDRpKe0of0GD4GERGR7kQJlojIUZY5+Xwo/C07PnyeYZ8+etfECgSCbNu6kb3rF9Kw42OSSleTV7eBweyhX6RMOensShrFqqyTies7howh4+k3fDIZGX3JOGqRioiI9FxKsEREjrITpk5n3SuDSVn5OHRRglVVU8vW9cso37wYV7iC9Iq1DGncxHCrZjjheVGF3jxK0sdT1PcKUvOnMmDMdDJzBpOpuU8iIiJHTAmWiMhRlpIYx9qBlzNr168pWfYS2VM+dcR1hRed2M3OtQup3voxcUUryalZz9DgNiZaAIB64tgRN5yCvp9gW94k+ow4gQGjjmdgckarC3GIiIjIketUgmVmc4GmK3VmAuXOuSlmlg+sAdZFji1wzn25M22JiPQmx1/ydQp+P4fUF75G3YCxJPU99Fysyppatm5cRdnmpbjdK0gtX8uAhk3kUdK86ESZZVCYNIqVWTNJHDyFvqOmkzN0HCO9cV37gERERAToZILlnJvddN/MfgVUtDi8yTk3pTP1i4j0VoP79uHts3/PCW9dg/vDySwfMAs35CR8KX1oDITwV5fQWLEbV76D5KoCchq3MyC0h0kWvuZcwHnY5RvMnszj2dV3AulDpzBg7HT6ZA2kj4b4iYiIxExUhgiamQFXAGdHoz4RkWPBWWecw+L0/1D1ys84ZedTxO+ae1CZeuLZ7RtIWeooivqcT1L/0eSMOJ6+w49jSFwiQ2IQt4iIiLQtWnOwTgP2OOc2tNg3zMyWApXAD51z77V2opndDNwMMGSIPiqIyLHlhKknwNTnKCmvoHTrauprK0nyeUjMyCEzdyCpGTnkezyxDlNEREQ6yJxz7RcwewP2u6Zkkx84556PlPkjsNE596vIdgKQ6pwrMbMTgOeACc65yvbamjZtmlu0aNHhPwoREREREZGjyMwWO+emHbj/kD1YzrlPHKJiH/AZ4IQW5zQADZH7i81sEzAaUPYkIiIiIiK9VjTGnXwCWOuc29G0w8xyzcwbuT8cGAVsjkJbIiIiIiIi3VY05mBdCcw5YN/pwE/NzA+EgC8750qj0JaIiIiIiEi3dcg5WEeTmRUBW2MdxwFygOJYByFHjV7vY4de62OHXutji17vY4de62NLd3y9hzrncg/c2a0SrO7IzBa1NnlNeie93scOvdbHDr3Wxxa93scOvdbHlp70emvtXxERERERkShRgiUiIiIiIhIlSrAO7c+xDkCOKr3exw691scOvdbHFr3exw691seWHvN6aw6WiIiIiIhIlKgHS0REREREJEqUYImIiIiIiESJEqx2mNn5ZrbOzDaa2XdjHY9Ej5kNNrO3zWy1ma0ys29E9meZ2etmtiHys0+sY5XoMDOvmS01s/9EtoeZ2YeR9/dcM4uPdYwSHWaWaWZPmdlaM1tjZifrvd07mdntkb/hK81sjpkl6r3de5jZ38xsr5mtbLGv1feyhd0fed2Xm9nxsYtcDlcbr/UvI3/Hl5vZs2aW2eLY9yKv9TozOy8mQbdDCVYbzMwL/B64ABgPXGVm42MblURRAPiWc248cBLw1cjr+13gTefcKODNyLb0Dt8A1rTY/n/Afc65kUAZ8PmYRCVd4bfAK865scBxhF93vbd7GTMbCHwdmOacmwh4gSvRe7s3eRg4/4B9bb2XLwBGRW43A388SjFKdDzMwa/168BE59xkYD3wPYDI57UrgQmRc/4Q+dzebSjBatsMYKNzbrNzrhF4HJgV45gkSpxzhc65JZH7VYQ/gA0k/Br/I1LsH8AlMQlQosrMBgGfBv4a2TbgbOCpSBG91r2EmWUApwMPATjnGp1z5ei93Vv5gCQz8wHJQCF6b/cazrl3gdIDdrf1Xp4F/NOFLQAyzSzvqAQqndbaa+2ce805F4hsLgAGRe7PAh53zjU457YAGwl/bu82lGC1bSCwvcX2jsg+6WXMLB+YCnwI9HPOFUYO7Qb6xSouiarfAHcCoch2NlDe4g+33t+9xzCgCPh7ZEjoX80sBb23ex3n3E7gXmAb4cSqAliM3tu9XVvvZX1u691uAl6O3O/2r7USLDmmmVkq8DRwm3OusuUxF76Gga5j0MOZ2YXAXufc4ljHIkeFDzge+KNzbipQwwHDAfXe7h0ic29mEU6qBwApHDzESHoxvZePDWb2A8JTOx6LdSwdpQSrbTuBwS22B0X2SS9hZnGEk6vHnHPPRHbvaRpSEPm5N1bxSdScClxsZgWEh/qeTXiOTmZkWBHo/d2b7AB2OOc+jGw/RTjh0nu79/kEsMU5V+Sc8wPPEH6/673du7X1Xtbntl7IzG4ALgSudvsu3tvtX2slWG1bCIyKrEYUT3gy3QsxjkmiJDIH5yFgjXPu1y0OvQBcH7l/PfD80Y5Noss59z3n3CDnXD7h9/FbzrmrgbeBz0aK6bXuJZxzu4HtZjYmsuscYDV6b/dG24CTzCw58je96bXWe7t3a+u9/AJwXWQ1wZOAihZDCaUHMrPzCQ/vv9g5V9vi0AvAlWaWYGbDCC9s8lEsYmyL7UsG5UBm9inCcze8wN+cc/fENiKJFjObCbwHrGDfvJzvE56H9QQwBNgKXOGcO3CCrfRQZnYm8G3n3IVmNpxwj1YWsBS4xjnXEMPwJErMbArhBU3igc3AjYS/UNR7u5cxs58AswkPH1oKfIHwXAy9t3sBM5sDnAnkAHuAHwPP0cp7OZJkP0B4mGgtcKNzblEMwpYj0MZr/T0gASiJFFvgnPtypPwPCM/LChCe5vHygXXGkhIsERERERGRKNEQQRERERERkShRgiUiIiIiIhIlSrBERERERESiRAmWiIiIiIhIlCjBEhERERERiRIlWCIiIiIiIlGiBEtERERERCRKlGCJiIiIiIhEiRIsERERERGRKFGCJSIiIiIiEiVKsERERERERKJECZaIiIiIiEiUKMESEekmzCzfzJyZ+WIdS29nZjeY2fxYx9HdmNlpZrYu1nGIiPRkSrBERKRHM7O7zcxvZtUtbnfGOq6eyDn3nnNuTFfVb2bXRb5E+EJXtSEiEmv6llREJErMzOecC8Q6jmPUXOfcNbEOoqv0ht8tM+sDfB9YFetYRES6knqwREQ6wcwKzOw7ZrYcqDEzn5mdZGb/NbNyM/vYzM5sUX6emf2fmX1kZpVm9ryZZbVR941mtsbMqsxss5l96YDjs8xsWaSeTWZ2fmR/hpk9ZGaFZrbTzP7HzLyHeBwjzOwtMysxs2Ize8zMMlscKzWz4yPbA8ysqOlxmdnFZrYq8njnmdm4A56fb5vZcjOrMLO5ZpZ4+M/04TOz70aelyozW21ml7ZRzszsPjPbG3kuV5jZxMixBDO718y2mdkeM3vQzJI62P7DkfKvR2J4x8yGtjj+WzPbHmlzsZmd1uLY3Wb2lJk9amaVwA1mNsPMPog8z4Vm9oCZxbc4x5nZV8xsQ6S9n0Veu/9G2niiZfk2Yj7TzHZ05PEdgf8D7geKu6h+EZFuQQmWiEjnXQV8GsgE+gEvAv8DZAHfBp42s9wW5a8DbgLygADhD52t2QtcCKQDNwL3tUhyZgD/BO6ItHs6UBA57+FIvSOBqcC5wKGGZBnhD8ADgHHAYOBuAOfcJuA7wKNmlgz8HfiHc26emY0G5gC3AbnAS8C/D/ggfwVwPjAMmAzc0GoAZjMjyUNbt5mHeAwH2gScBmQAP4nEn9dKuXMJP3+jI2WvAEoix34e2T+F8PM5ELjrMGK4GvgZkAMsAx5rcWxhpN4s4F/Akwckn7OApwi/vo8BQeD2SF0nA+cAXzmgvfOAE4CTgDuBPwPXEH49JxL+XT1ikUS5rdfnD+2cNwOYBjzYmfZFRHoCJVgiIp13v3Nuu3OujvCH2Zeccy8550LOudeBRcCnWpR/xDm30jlXA/wIuKK1Hibn3IvOuU0u7B3gNcIJA8Dngb85516PtLPTObfWzPpF2rrNOVfjnNsL3Adc2d4DcM5tjNTV4JwrAn4NnNHi+F+AjcCHhBPDH0QOzQZejJzrB+4FkoBTDnh+djnnSoF/E04qWothvnMus51be4tSXHHAh/0BzrknI+2GnHNzgQ3AjFbO9QNpwFjAnHNrnHOFZmbAzcDtzrlS51wV8L+Hei4P8KJz7l3nXAPh5+xkMxscebyPOudKnHMB59yvgASg5fynD5xzz0Xir3POLXbOLYiULwD+RIvXKOIXzrlK59wqYCXwmnNus3OuAniZcMJ9xJxzk9t5fQ5M9gCI/G7/AbjVORfqTPsiIj2B5mCJiHTe9hb3hwKXm9lFLfbFAW+3UX5r5HjOgZWa2QXAjwn3oHiAZGBF5PBgwr1FBxoaqa8wnB9A5NztrZRt2VY/4LeEE7i0yDllBxT7C/ACcHMkYYBwj9fWpgLOuZCZbSfc09Nkd4v7tZFzou2JA+dgmdl1wDeB/MiuVFp5np1zb5nZA8DvgaFm9gzhnsdEws/54hbPpQHtDrc8QPPz7pyrNrNSwo9/u5l9m3CiPABwhHsqc1o7N/J4RhNOfKdF4vIBiw9ob0+L+3WtbPc/jNij5SvAcufcghi0LSJy1KkHS0Sk81yL+9sJ91C1/GY/xTn38xZlBre4P4RwD8p+81LMLAF4mnCPUD/nXCbhhKrpk/52YEQrsWwHGoCcFu2nO+cmHOIx/G/kcUxyzqUT7onbl1WYpQK/AR4C7rZ988Z2EU7qmspZ5PHtPER7B7HwEuHV7dxOO3QtzXUNJZwQ3gpkR56/lS0fU0vOufudcycA4wkntHcQfk3qgAktnssM51zqYTys5tc68hxmAbsij+VOwsMR+0Tiqzggvpa/VwB/BNYCoyKv0ffbejxdxcJz7dp6fdoa/ncOcKmZ7Taz3YR7N38VSWpFRHodJVgiItH1KHCRmZ1nZl4zS4wsHDCoRZlrzGx8ZD7TT4GnnHPBA+qJJzxkrAgIRHqzzm1x/CHgRjM7x8w8ZjbQzMY65woJDyX8lZmlR46NMLMDh5IdKA2oBirMbCDhBKOl3wKLnHNfIDzHrOnD9BPApyNxxAHfIpzg/fdQT9SBIkuEp7Zze+8wqkshnKAUQXjBEMJzkA5iZtPN7MRI/DVAPRCKDGf7C+G5b30jZQea2XktznXWYhGTVnwqMrcsnvBcrAXOue2En+9AJD6fmd1FuAerPWlAJVBtZmOBWw5RPuqccxPaeX2+3MZpNxCe1zclcltEeE7cD9ooLyLSoynBEhGJosiH51mEexeKCPco3cH+f28fIbwQxW7Cw9C+3ko9VZH9TxAeqvc5wsPzmo5/RGThC8I9H++wryfpOsIJ2urIuU8RnjfVnp8Ax0fqehF4pumAmc0ivEhF0wf6bwLHm9nVzrl1hHu7fke4x+ci4CLnXOMh2utSzrnVwK+ADwgPk5sEvN9G8XTCiVQZ4eGOJcAvI8e+Q3ju2QILr+b3BpF5UpG5VFXsG7bZmn8RHuZZSnjxiaZhjK8CrwDrI23Wc4hhnISHLX4u0uZfgLmHKN8tOOfKnXO7m25AI1AZmRcmItLrmHMHjkAQEZGuYmbzgEedc3+NdSzSOWZ2DeHhg99r4/jDwA7n3A+PamAiIhJTWuRCRETkCDjnHo11DCIi0v1oiKCIyDHCwhe9PZzFCaQXMrPvt/F78HKsYxMR6Q00RFBERERERCRK1IMlIiIiIiISJd1qDlZOTo7Lz8+PdRgiIiIiIiLtWrx4cbFzLvfA/d0qwcrPz2fRokWxDkNERERERKRdZra1tf0aIigiIiIiIhIlSrBERERERESiRAmWiEgHrNtdxX+W74p1GCIiItLNdas5WK3x+/3s2LGD+vr6WIciPUxiYiKDBg0iLi4u1qFIL/DNfy3g5rJfs813N0PGnxjrcERERKSb6vYJ1o4dO0hLSyM/Px8zi3U40kM45ygpKWHHjh0MGzYs1uFID+ecY2jxu8yK/y97Xv8ujH871iGJiIhIN9XthwjW19eTnZ2t5EoOi5mRnZ2tnk+Jisq6AOd6wyucemqKYhyNiIiIdGfdPsEClFzJEdHvjURLUXUDA60YgNzG7VBXHtuAREREpNvqEQmWiEgsFVU1kEENISJJe+nm2AYkIiIi3ZYSrA4wM771rW81b997773cfffdsQuohQULFnDiiScyZcoUxo0b1xzXvHnz+O9//9upus8//3wyMzO58MILoxCpSM9VUtNAhtWwLXEcAHV71sc4IhEREemulGB1QEJCAs888wzFxcVRrdc5RygU6lQd119/PX/+859ZtmwZK1eu5IorrgCik2DdcccdPPLII52qQ6Q3qG0IkkEN1dkTAaguVIIlIiIirev2qwi29JN/r2L1rsqo1jl+QDo/vmhCu2V8Ph8333wz9913H/fcc89+x4qKivjyl7/Mtm3bAPjNb37Dqaeeyt13301qairf/va3AZg4cSL/+c9/ADjvvPM48cQTWbx4MS+99BIPPPAAL7/8MmbGD3/4Q2bPns28efO4++67ycnJYeXKlZxwwgk8+uijB80r2rt3L3l5eQB4vV7Gjx9PQUEBDz74IF6vl0cffZTf/e53jB07ts04N23axMaNGykuLubOO+/ki1/8IgDnnHMO8+bNa/e5efLJJ/nJT36C1+slIyODd999l/r6em655RYWLVqEz+fj17/+NWeddRYPP/wwzz33HDU1NWzYsIFvf/vbNDY28sgjj5CQkMBLL71EVlYWf/nLX/jzn/9MY2MjI0eO5JFHHiE5OXm/dk866SQeeughJkwIv3Znnnkm9957L9OmTWs3XpEj0dhQS6L5SegzkF07srCiTbEOSURERLop9WB10Fe/+lUee+wxKioq9tv/jW98g9tvv52FCxfy9NNP84UvfOGQdW3YsIGvfOUrrFq1ikWLFrFs2TI+/vhj3njjDe644w4KCwsBWLp0Kb/5zW9YvXo1mzdv5v333z+orttvv50xY8Zw6aWX8qc//Yn6+nry8/P58pe/zO23386yZcs47bTT2o1z+fLlvPXWW3zwwQf89Kc/Zdeujl9M9ac//SmvvvoqH3/8MS+88AIAv//97zEzVqxYwZw5c7j++uubV/NbuXIlzzzzDAsXLuQHP/gBycnJLF26lJNPPpl//vOfAHzmM59h4cKFfPzxx4wbN46HHnrooHZnz57NE088AUBhYSGFhYVKrqTLuLoyADKzc9npcrDKnTGOSERERLqrHtWDdaiepq6Unp7Oddddx/33309SUlLz/jfeeIPVq1c3b1dWVlJdXd1uXUOHDuWkk04CYP78+Vx11VV4vV769evHGWecwcKFC0lPT2fGjBkMGjQIgClTplBQUMDMmTP3q+uuu+7i6quv5rXXXuNf//oXc+bMabXXqb04Z82aRVJSEklJSZx11ll89NFHXHLJJR16Xk499VRuuOEGrrjiCj7zmc80P6avfe1rAIwdO5ahQ4eyfn14SNVZZ51FWloaaWlpZGRkcNFFFwEwadIkli9fDoSTsB/+8IeUl5dTXV3Neeedd1C7V1xxBeeeey4/+clPeOKJJ/jsZz/boXhFjkhtOQB9svryIdmMrNke23hERESk2+p0gmVmg4F/Av0AB/zZOfdbM8sC5gL5QAFwhXOurLPtxdJtt93G8ccfz4033ti8LxQKsWDBAhITE/cr6/P59ptf1fJ6TCkpKR1qLyEhofm+1+slEAi0Wm7EiBHccsstfPGLXyQ3N5eSkpKDyrQVJxy8nPnhLG/+4IMP8uGHH/Liiy9ywgknsHjx4nbLt3xMHo+nedvj8TQ/vhtuuIHnnnuO4447jocffrjVhHHgwIFkZ2ezfPly5s6dy4MPPtjhmEUOlzWUA+BL6UNlfD9SGxeBc6BLAYiIiMgBojFEMAB8yzk3HjgJ+KqZjQe+C7zpnBsFvBnZ7tGysrK44oor9huydu655/K73/2ueXvZsmUA5Ofns2TJEgCWLFnCli1bWq3ztNNOY+7cuQSDQYqKinj33XeZMWNGh2N68cUXcc4B4aGHXq+XzMxM0tLSqKqqOmScAM8//zz19fWUlJQwb948pk+f3uH2N23axIknnshPf/pTcnNz2b59O6eddhqPPfYYAOvXr2fbtm2MGTOmw3VWVVWRl5eH3+9vrqc1s2fP5he/+AUVFRVMnjy5w/WLHC5vQ2RocGIfGpL7E+f8UBPdRW9ERESkd+h0guWcK3TOLYncrwLWAAOBWcA/IsX+AVzS2ba6g29961v7rSZ4//33s2jRIiZPnsz48eObe1Iuu+wySktLmTBhAg888ACjR49utb5LL72UyZMnc9xxx3H22Wfzi1/8gv79+3c4nkceeYQxY8YwZcoUrr32Wh577DG8Xi8XXXQRzz77LFOmTOG9995rM06AyZMnc9ZZZ3HSSSfxox/9iAEDBgDh5O/yyy/nzTffZNCgQbz66qtAeFhi03yrO+64g0mTJjFx4kROOeUUjjvuOL7yla8QCoWYNGkSs2fP5uGHH96v5+pQfvazn3HiiSdy6qmnMnbs2Ob9L7zwAnfddVfz9mc/+1kef/zx5pUTRbqKNdaE7ySkQdrA8P3KHbELSERERLota+r9iEplZvnAu8BEYJtzLjOy34Cypu0DzrkZuBlgyJAhJ2zdunW/42vWrGHcuHFRi1H2d+Bqh72Nfn8kGub86R6uKvwF3LaCR95czLUrbiB4+aN4J1wU69BEREQkRsxssXPuoFXWoraKoJmlAk8Dtznn9ltL3YWzuFYzOefcn51z05xz03Jzc6MVjohI1Jg/MofSl0RK7lAAqooKYheQiIiIdFtRWUXQzOIIJ1ePOeeeiezeY2Z5zrlCM8sD9kajLYmuu+++O9YhiHR7FqgL34lLpE/uABqcj/pirSQoIiIiB+t0D1Zk+N9DwBrn3K9bHHoBuD5y/3rg+c62JSISC57gvh6svD7J7HZZBMs1B0tEREQOFo0hgqcC1wJnm9myyO1TwM+BT5rZBuATkW0RkR7HE6wngBe8PvLSkygkG29Vxy/ILSIiIseOTg8RdM7NB9q6GMw5na1fRCTWPIEG/JaAD0hP8rGXbMbWbYx1WCIiItINRW2RCxGR3soXasDvCV9qwMyoTuhHamMxtLiYuIiIiAgoweqw5557DjNj7dq1bZYpKChg4sSJUWtz3bp1nHnmmUyZMoVx48Zx8803A+GLBL/00kudqvumm26ib9++UY1XpLfyheoJePZdy60xpR8+AlCriw2LiIjI/pRgddCcOXOYOXMmc+bMafV4IBDodBvBYHC/7a9//evcfvvtLFu2jDVr1vC1r30NiE6CdcMNN/DKK690qg6RY4Uv1EDAk9i87VKbLja8M0YRiYiISHcVlWXaj5qXvwu7V0S3zv6T4IL219+orq5m/vz5vP3221x00UX85Cc/AWDevHn86Ec/ok+fPqxdu5bXXnuNQCDA1VdfzZIlS5gwYQL//Oc/SU5O5s033+Tb3/42gUCA6dOn88c//pGEhATy8/OZPXs2r7/+OnfeeSdXXnllc7uFhYUMGjSoeXvSpEk0NjZy1113UVdXx/z58/ne977HhRdeyNe+9jVWrlyJ3+/n7rvvZtasWTz88MM8++yzVFRUsHPnTq655hp+/OMfA3D66adTUFDQ7uN+5513+MY3vgGEh0W9++67pKamcuedd/Lyyy9jZvzwhz9k9uzZzJs3jx//+MdkZmayYsUKrrjiCiZNmsRvf/tb6urqeO655xgxYgT//ve/+Z//+R8aGxvJzs7mscceo1+/fvu1e+WVV3Lttdfy6U9/GggngxdeeCGf/exnO/aaikRZnGsk6N3Xg+XrMxB2QLB8J94BU2MYmYiIiHQ36sHqgOeff57zzz+f0aNHk52dzeLFi5uPLVmyhN/+9resX78eCA/r+8pXvsKaNWtIT0/nD3/4A/X19dxwww3MnTuXFStWEAgE+OMf/9hcR3Z2NkuWLNkvuQK4/fbbOfvss7ngggu47777KC8vJz4+np/+9KfMnj2bZcuWMXv2bO655x7OPvtsPvroI95++23uuOMOampqAPjoo494+umnWb58OU8++SSLFi3q8OO+9957+f3vf8+yZct47733SEpK4plnnmHZsmV8/PHHvPHGG9xxxx0UFhYC8PHHH/Pggw+yZs0aHnnkEdavX89HH33EF77wBX73u98BMHPmTBYsWMDSpUu58sor+cUvfnFQu7Nnz+aJJ54AoLGxkTfffLM52RI52pxzxIUaCHn39WAl5QwBoKZoW6zCEhERkW6qZ/VgHaKnqavMmTOnuSfnyiuvZM6cOZxwwgkAzJgxg2HDhjWXHTx4MKeeeioA11xzDffffz+f/OQnGTZsGKNHjwbg+uuv5/e//z233XYbEE4oWnPjjTdy3nnn8corr/D888/zpz/9iY8//vigcq+99hovvPAC9957LwD19fVs2xb+4PfJT36S7OxsAD7zmc8wf/58pk2b1qHHfeqpp/LNb36Tq6++ms985jMMGjSI+fPnc9VVV+H1eunXrx9nnHEGCxcuJD09nenTp5OXlwfAiBEjOPfcc4Fwz9vbb78NwI4dO5g9ezaFhYU0Njbu99w1ueCCC/jGN75BQ0MDr7zyCqeffjpJSUkdilkk2hoCIRKtkZA3tXlfn9wB+J2X2pLtpMcwNhEREel+1IN1CKWlpbz11lt84QtfID8/n1/+8pc88cQTOOcASElJ2a98+LrLbW+35sA6WhowYAA33XQTzz//PD6fj5UrVx5UxjnH008/zbJly1i2bBnbtm1j3LhxRxxPk+9+97v89a9/pa6ujlNPPbXdBT4AEhL2DaHyeDzN2x6Pp3mO2te+9jVuvfVWVqxYwZ/+9Cfq6+sPqicxMZEzzzyTV199lblz57aZgIocDQ3+EEk0EvLt68HKy0xhD30IlGsOloiIiOxPCdYhPPXUU1x77bVs3bqVgoICtm/fzrBhw3jvvfdaLb9t2zY++OADAP71r38xc+ZMxowZQ0FBARs3hq+b88gjj3DGGWccsu1XXnkFv98PwO7duykpKWHgwIGkpaVRVVXVXO68887jd7/7XXPSt3Tp0uZjr7/+OqWlpc3zoJp61zpi06ZNTJo0ie985ztMnz6dtWvXctpppzF37lyCwSBFRUW8++67zJgxo8N1VlRUMHBgeIGAf/zjH22Wmz17Nn//+9957733OP/88ztcv0i01QeCJNAILROsjER2uyw8utiwiIiIHEAJ1iHMmTOHSy+9dL99l112WZurCY4ZM4bf//73jBs3jrKyMm655RYSExP5+9//zuWXX86kSZPweDx8+ctfPmTbr732GhMnTuS4447jvPPO45e//CX9+/fnrLPOYvXq1UyZMoW5c+fyox/9CL/fz+TJk5kwYQI/+tGPmuuYMWMGl112GZMnT+ayyy5rHh541VVXcfLJJ7Nu3ToGDRrEQw89BMCDDz7Igw8+CMBvfvMbJk6cyOTJk4mLi+OCCy7g0ksvZfLkyRx33HGcffbZ/OIXv6B///4dfj7vvvtuLr/8ck444QRycnKa9y9atIgvfOELzdvnnnsu77zzDp/4xCeIj4/vcP0i0VbXGCTRGnEtEqzM5Dj2kkVC7e4YRiYiIiLdkTX1enQH06ZNcwcuwrBmzZrm4W5yeB5++GEWLVrEAw88EOtQYka/P9JZa3dXkvvH8VQP/zRDr/9T8/65/3MtlwZfJf6uPXAYQ29FRESkdzCzxc65gxY3UA+WiEg76v0hEmnE4hP329+QnEe8a4D68tgEJiIiIt2SEqxe7IYbbjime69EoqG+MUAijXji9l/J0qVFhsZWah6WiIiI7NPlCZaZnW9m68xso5l990jq6E7DGKXn0O+NRENDQz1ec1j8/qt9ejPDFwEPaiVBERERaaFLEywz8wK/By4AxgNXmdn4w6kjMTGRkpISfViWw+Kco6SkhMTExEMXFmmHv6EWAG/8/j1YSdmDAagp2nrUY+qtGgJB6v3BWIchIiLSKV19oeEZwEbn3GYAM3scmAWs7mgFgwYNYseOHRQVFXVRiNJbJSYmMmjQoFiHIT2cvz6SYCXsn2Bl9h1MyJkuNhwloZBj1gPvU1PXwCu3ziAlLSPWIYmIiByRrk6wBgLbW2zvAE5sWcDMbgZuBhgyZMhBFcTFxTFs2LAuDFFEpG2BSA+WLz55v/39+qRRTAb+Mg0RjIblOyvYuLuMp+Lvxj0YgG8uAW9crMMSERE5bDFf5MI592fn3DTn3LTc3NxYhyMisp+mBCsucf8EKy8jkUKXheliw1Hx/sZiTvcsZ4pnM6k122DVs7EOSURE5Ih0dYK1ExjcYntQZJ+ISI8QbKgDIC5h/wQrKyWevWTrYsNRsmlvNackbSOEUUcibHo71iGJiIgcka5OsBYCo8xsmJnFA1cCL3RxmyIiURNqjPRgJey/iqCZURmfS0rDnliE1etsLq5hatw2SpPyeT80gdCOhbEOSURE5Ih0aYLlnAsAtwKvAmuAJ5xzq7qyTRGRaAr5wz1YngNWEQSoT+pPcqgGGqqPdli9zpbiGoYHt1CXPZ4lwRF4SjZAXXmswxIRETlsXT4Hyzn3knNutHNuhHPunq5uT0QkmlwkwSLu4CX/Q6mRiw1XFR7FiHqfusYgVXUNZPiLScodxjoXGVlevCG2gYmIiByBmC9yISLSnTUnWL6De7CaLjYc0sWGO6WoqoFsKvAQJKN/PgUMDB8oUYIlIiI9jxIsEZH2+OvDP+MOTrASIxcbri7acjQj6nX2VtWTZ6UAxGUMJJQxhCBe9WCJiEiPpARLRKQd+4YIHpxgpfXNJ+SMur0FRzeoXmZvVUNzgkX6AAblpFPo7Q8lG2MbmIiIyBFQgiUi0g4LRHqwfAfPweqflcFeMgmUbTvKUfUueyvr6dciwRqSlczGoBIsERHpmZRgiYi0w4JtDxHsn5HITpeDp2L7UY6qd9lb1cBATxnOEwfJOQzNTmZdoD+uZBOEgrEOT0RE5LAowRIRaYcnWE8QD3jjDjqWnRLPLnJJrNUiF52xt6qBIXEVWFoeeDwMyUphsxuABRtAyWuX21ZSy5bimliHISLSayjBEhFphzdQj98SWj3m8RgV8f1Jb9ijnpZO2FvVwEBvKaQPAGBodjJbQpEl8Is1TLArbSup5ZP3vcO5973DmsLKWIcjItIrKMESEWmHL1RPo/fg4YFN6lMG4iUIVbuPYlS9y97Kevq6UkjPA2BIVjJbXCTBKt0cw8h6v+eW7aQhEMIfdPzjvwWxDkdEpFfwxToAEZHuLD5Yiz++7QSLjCFQAZRvg4yBRy2u3qSosp4sVwzp4ecvJcGHS+lHYyiR+DItgd+VXl21m+OHZJKXkcTb6/binMPMYh2WiEiPph4sEZF2JLg6Ar7kto/n5gPQWLr1KEXUu/iDIQJ1ZcS7BkjLa94/NCclvFR7qRKsrlLdEGDVrkrOGN2X00fnsKeygXV7qmIdlohIj6cES0SkDaGQIzFUT8DbdoKV0T8fgKrdGsp2JEqqG+lHWXgjvUWClZXMllA/DRHsQhsiydS4vDROGZET3rfiQ/jrJ+DVH8QyNBGRHk0JlohIGxoCIZKtgaCv7SGCA3JzKHbpNBQXHL3AepG9VfX0s0iClTagef+Q7GTWN+bgygogFIpNcL3c+kiCNbpfGoP6JJGVHMfEpT+BHQvhgwdg01sxjlBEpGfqVIJlZr80s7VmttzMnjWzzBbHvmdmG81snZmd1+lIRUSOsjp/kGTqCcWltFlmcFYyO11OeA6WHLa9lQ0tEqz+zfuHZCVT4PqHl2qv2hWj6Hq3dburSYzzMDgrGTPj3H4VDKtdAZ/8KSRlwZJHYh2iiEiP1NkerNeBic65ycB64HsAZjYeuBKYAJwP/MHMvJ1sS0TkqKrzB0mxelw7CVZuagKF5JBQoyTgSOypqqcvBydYQ7OT2er6hjc0D6tLbNhbxai+aXg94UUtLohbBkD92EthwqWw7mUINMQwQhGRnqlTCZZz7jXnXCCyuQAYFLk/C3jcOdfgnNsCbARmdKYtEZGjra4x3INFfNsJlsdjVCYMIK2hEJw7itH1Dk09WC4xE+L2DcUckpXCVtcvvKF5WF1i3e4qRvdLa94eV7+UNaHBbG7IhJHnQKAOdi6OXYAiIj1UNOdg3QS8HLk/ENje4tiOyL6DmNnNZrbIzBYVFRVFMRwRkc6p9wdJpgFrJ8ECaEgdSLxrhBr9DTtce6saGOKrwNIH7Lc/JzWeiri+BM0HWqo96spqGtlb1cCY/qnhHaEQ2eUrWRoaxYa9VTD0VDAPbHk3toGKiPRAh0ywzOwNM1vZym1WizI/AALAY4cbgHPuz865ac65abm5uYd7uohIl6muqyfR/HgSUtsvmDE4/FPzsA5bUVU9ed7y/YYHApgZA7PSKPL20xDBLtC0wMWoph6s0k14GytYzkg27KmGpEzIHaseLBGRI3DICw075z7R3nEzuwG4EDjHuebxMTuBwS2KDYrsExHpMeqqwx9CfUntJ1jxfUdAAdTu3UjyoGlHIbLeY09lA7mUQdr0g44NzU5ma3V/+muIYNSt31sNwJimBCuSSBWlT6S06VpYeVNg4xvhoa+6+LCISId1dhXB84E7gYudc7UtDr0AXGlmCWY2DBgFfNSZtkREjrb62goA4hLbT7DS+48EoGrXxi6PqbcpqqwlM1h6UA8WwNDslH1LtWt+W1St311FWoKPvIzE8I4diyA+lYS8cWyIJF8MmAo1e6FSC7iIiByOzs7BegBIA143s2Vm9iCAc24V8ASwGngF+KpzLtjJtkREjqr62vA3+Qkp6e2WG9g3i70uE3+xeloORzDkCNUU4yUIaXkHHR+clczmYF+soRJqS2IQYe+1bk8Vo/unYU09UzsXwYCpjOyXwdaSGur9QRgwJXyscFmswhQR6ZE6u4rgSOfcYOfclMjtyy2O3eOcG+GcG+Oce7m9ekREuiN/bSUAiSkZ7ZYb3CeZba4vnvKtRyOsXqO0ppFc17RE+8EJ1tCs5BYrCWoeVrQ459iwp8UKgv562L0SBp7AqH5phBxsLqqBfhPDC13sWhrbgEVEephoriIoItKrhGpKAYhPzW63XGZyHIXWj+Sa7e2Wk/3tqaynn4Wf41YTrOwWCZZWEoyaouoGymr9jO4XGfq6ewWE/DBoGqMi+zbsrYL4ZMgdpwRLROQwKcESEWlLXaR3JalPu8XMjIrEgaT790Kg8SgE1jtsL61lgEWG/h2wTDvAgMwkdllfHKZrYUXRut3hoa/7FrhYFP45cBrDclLweqx5lUH6T4I9q2IQpYhIz6UES0SkDZ768CIXh0qwAPzpQ/DgoEK9WB21tbSWwbYX50uE1H4HHY/zesjNzKDMl6shglG0ald46Ov4AZG5hTsWQdoASM8jweclPzuZ9XsiC130Gw9VhVBbGqNoRUR6HiVYIiJt8DY29WBlHrKsJ2s4AE6JQIdtK61lpK8YyxwCntb/OxqancwO668erChavauSgZlJZCbHh3fsXASDTmg+PiI3lU1FkQSr7/jwz6K1RzlKEZGeSwmWiEgb4horqbcE8CUcsmxy/xEAVO/WUu0dta2klnxvMWQObbPMkKxkNvpzNQcrilYXVjIuL9J7VVMMZQUwcN/120b0TWVbSS3+YAj6jgvv3Lv66AcqItJDKcESEWlDvL+CWm/7S7Q3yckbQr2Lo0YJVodtK6khz+2GPu0nWOv9uVBTBA1VRzG63qmuMcjmomomNA0P3Pp++OeQk5vLDM9JIRBybC+thfSBkJAOe9fEIFoRkZ5JCZaISBvi/ZU0+tpfor3J0OxUtru+BEvU09IR/mCIhordJIdqIHtUm+X2W0lQwy87be3uSkKuxfyrLe9BXAoMPL65zPDc8EqCm4tqwCzci6UES0Skw5RgiYi0IhAMkRKqIhDfsR6sgX2S2Ob6Ele1rYsj6x0Ky+sZzo7wRu6YNssNyUphm5Zqj5rlO8ILt0wcGPnioOA9GHISeOOay4zITQFgc3HTPKxx4SGCzh3VWEVEeiolWCIirSitaSSbSoJJWR0qn+DzUhqfR1rdTn0Q7YDNxdWMtJ3hjdyxbZYbkp3MVtc3vKGFLjptYUEpeRmJDMhIhOq94cUrhp22X5nM5HiyUuLDPVgAfSeEL1lQtTsGEYuI9DxKsEREWlFc3UhfK8OlHnwB3LbUpgwmKVSz7/pZ0qbVhZWMse24hHRI699mudQEH4mpmVR7MzVEsJOccywsKGV6fhZmBpvfCR/IP/2gsiNyU1okWFroQkTkcCjBEhFpRVl5KelWhyfz4AvgtsU1rYanoWyHtGpXJSfEbcXyjgvP82nH0OwUdnny1IPVSRv2VrOnsoGThmeHd6x+DtLyYMDUg8oOz2m5VHtTgqV5WCIiHaEES0SkFbUl4flBCX0Gdvic+NzwtbAai5QIHMqGnSWMcgX7La7QlvzsFDYF+4aXE5cj9uaavQCcPbYv1FfChtdh/CWtXoNseG4KJTWNVNT6ISUHUvoqwRIR6aCoJVhm9i0zc2aWE9k2M7vfzDaa2XIzO/T/oiIi3URN0XYAMvsO6fA56XkjAago1FLt7SmvbSSlbDU+AjDg0P81DMtJZm1DDq5iBwQajkKEvdNba/cwYUA6/TMSYd3LEGyACZe2WrZpJcFNTQtd5I6B4vVHK1QRkR4tKgmWmQ0GzgVaLp91ATAqcrsZ+GM02hIRORoaysILMCRkDerwOQP75lDkMmjcqwSrPQs2l3KSRebzDD31kOXzc1LY6vphOCjb2sXR9U47ympZtLWMT46PrMi4+GHIGAKDprdafnjTSoJN87ByRoUTLC3gIiJySNHqwboPuBNo+Zd3FvBPF7YAyDSzjs8WFxGJIW9F5Pui9I4PERyancI21xcrVxLQngWbSzjNt4pQ3/GQmnvI8vmR5xXQ/LYj9OSi8JDXy44fBNs/gm3/hZO/0urwQAhf4NnnMTY3zcPKGQP15VBTfJQiFhHpuTqdYJnZLGCnc+7jAw4NBLa32N4R2Xfg+Teb2SIzW1RUVNTZcEREoiK9diulvr4Qn9zhc/okx1Fo/Uiu2X7owsco5xwL125mhq3BM/KcDp2Tn5NCgYusNKiFLg5bvT/I4wu3MXNkDoOzkuG9X0NiJky9ts1z4rwehmQn79+DBRomKCLSAR1KsMzsDTNb2cptFvB94K4jDcA592fn3DTn3LTc3EN/kyki0tX8wRB9G3dQmTz0sM4zMyqSBpPeuBcCjV0UXc+2alclY8rnh+dfjZvVoXNSE3x4U3Oo9yQrwToCj324jT2VDdxy5ghY/xqsfxlO+RokpLZ73n4rCeaMDv9UgiUickgdSrCcc59wzk088AZsBoYBH5tZATAIWGJm/YGdwOAW1QyK7BMR6dY2761mmO3CZY847HMb0wbjIQQV6sVqzdNLdnClbx7BzHwYeEKHzxuWkxpZql1DBA9HeW0jf3h7I6eMyOaUAT546Vvh4X6nfO2Q547ITWFrSS3BkAsPlY1LhuINRyFqEZGerVNDBJ1zK5xzfZ1z+c65fMLDAI93zu0GXgCui6wmeBJQ4Zwr7HzIIiJdq6BgIxlWS8rA8Yd9ri8nvFR7qLQgylH1fJX1flYseo8ZnrV4p93Q5vyf1uTnJLMx2A9KN3VdgL2Mc44fPLuSyno/P7hgNDz9eagshFkPgC/hkOcPz02hMRhiR1lt+LXKHgnF645C5CIiPVtXXgfrJcI9XBuBvwBf6cK2RESipnrzQgCyRp142Ocm9Qv3elVpqfaD/GP+Fm4JPU4wLg1OuPGwzs3PSWG9PxdXvg2C/i6KsHf5y3ubeXFFId86ZxgTFtwBG9+AT/0SBs/o0PlNS7Xvm4c1WkMERUQ6IKoJVqQnqzhy3znnvuqcG+Gcm+ScWxTNtkREuop3zzKCePDlTT7sc3PzhtLg4qjdowSrpe2ltax7Zw7neJfiPfNOSMo8rPOHZYcXurBQAMq3HfqEY9zD72/hf19ayxUTkvnSju/ByqfgEz+BaR1PbEc0XQur5Tys8u3QWNsVIYuI9Bq+WAcgItKdBIIh+lcsZ2/ScPIOYwXBJkOyU9nuckks0VyhJv5giJ/PfZO7PX/DnzOBuJMOf0BDfk4KBaHINZxKt8ARzI87FtQ1BvmfF1fz2IfbuHPIem7Z8yBWVwoX/w6Ov+6w6spKiSczOY7NxS1XEnThYZr9J0U/eBGRXkIJlohIC2u272Uq69gx8HNHdP6AzETed32ZUKVeFoBQyPHzZxfwlcIfkBnvJ+7yv4L38P/ryc9OocBFLqVYugn4RHQD7QXmbyjmrhdWklb8MW/2e4kRexeEE6HPzYUBU46ozuE5KS2uhdViJUElWCIibVKCJSLSwoaFrzPJ/ORMPveIzk/weSmJyyO97l1wDsyiHGHP4Q+G+N/H3+Dydd9mjHcn3tmPQ7/DXzgEICneiy+tL/XBJBK1VPt+lm0v595XVsOWd/mfxNc4JWExNGbBuffAiV8Cb9wR1z0sJ5X5GyPXqMweCZhWEhQROQQlWCIiLfg2vES9JZAx7uwjrqMmeTBJ1TVQVwbJWVGMrufYUVbLv/7xB75edh8pviCezz0JI4/8OQXIz01h194BDC/RSoL+YIhXV+3mxfcWMWDXK9wT9xZD4wtxiTlw0o/CiVVCWqfbGZ6bwtNLdlDdECA1IRH6DNVCFwdoDISobgiQ4POQFOfF4zl2v1QRkTAlWCIiEZt2l3FSw38p7Hcaw45g/lWTQMYQqAbKCo65BKveH+SpV95iwKL/405bTFnmBOKveyQqc6aG5aSwsbAvw4/Rpdqdc6zcWcl7H7yPW/MfZgY+4I+ezRAHwYEz4MSfYuNndWgJ9o4akZsCwJaiGiYNyjimVxIsqW5gybZy1hZWsnZ3FWt3V7K7opbkxjLyrIRUqyPR68jJymbI0OF88uRpjMnLiHXYIhIDSrBERCJWznuSWVZOyUmHtxjAgeJyhsNOCJZswTvw+ChF173V+4O88tZbeD78I1cG38bvTaLi5B/Q56zbwBcflTbys1NY7+/LJ8sXYkF/p4a+9RTOOTbuqWLJgrcJrH6BE+v/y1c8uwCoyJlMaMqP8Yy/CG/OqC5pf1hOZKn24up9CdaW9yAUOqzrmPVEO8pqWVhQykdbwrfioj0c59nEBNvKZYnbGe/ZSq53N97EwP4nVgDLofzjFJYmTSTvtOvof+LlUU18RaR7U4IlIkJ49bWstf+izJtN9nGf7lRdqf1HwMdQtXsjmYe/0nuPsnl3GQvffIpBGx7lEpbRQAJFY68m7+K7SUrJiWpb+TkpvOH67VuqvZeuJBgMOZYWFLH2o9dI3vQSJzYuYLaVEMRDUe50aqd+jeRJs8jIGNjlsQzNTsas5bWwRkGgDiq2h4cL9iJlNY28v6mY99YXM39jMQ3lu5nhWcPM+PXcEreewYlbMFy4cNoQ6D8l/DuYMRjSB0JiBnh80FBJTdE2Cle8R9/C+fR//avUvfMjEj/5I+yE68HjjenjFJGupwRLRAR4+b0PmOWWsWfCV+hzBKvctdQ/N4cil0Fob+9cjKG+McCi+a9Su2gOJ9TMY7ZVUeHNYtukbzHkk18lLyW7S9odlpPCllD/8EYvW6q93h9kwfqdbP3oRfpse5WZoYVMs2oaLZ49/U6hYuqlZBx3Mf2P8pDTxDgvAzOTWizVHllJsGRDj0+wGgMhlm4r470Nxby3oYitO3dyqq3kzPjV3B63jv6J2wFwccnY4BNh6OfCF2nOmwxJfdqtO2UUjDvl8xRX1fHrR//BqYV/58QXb8ct/jt22UOQO/poPEQRiRElWCJyzAsEQ3g++C0h85L3iVs7Xd+gPklsc30ZVF7Q+eC6iUAwxJIlH1H+4WOMK3qVmbaHBuLZ1vcMvKdcQ+akT5ERpaGAbRmSlcxWmhKsnr9Ue0Wtn3dXbmLv4hcYuPtNZrKMM62eOk8KJYPPInHaZSSPO5fBCakxjXN4bipbig9Yqr1oPYzsec//9tJa3l63l3fXF/PRpj2M8q/jTN8K7k1YxciE9RgOl5CODT0Fhn4Rhp6K5R13xMNRc9KSuO1LX+I3b5zFP+c9ys/3/oPUP5+BfeqXMPWaKD86EekulGCJyDHv7YUfc4H/LXaPuIzB6QM6XV9eRhJLXV9GVvXsiw2HQo4Va9eya/5j5O96kRlsJoixKfUE1k3+FqNOv5JRSUdvEn9inJf49P7U+3vuUu27K+p5d+kqKpc9z8jSdzjPVhBvQarisqjMv4T46ZeRNOJMBnVxsno4hueksLigFOcclpwd7r3pIQtdBEOOpdvKeGPNXt5au4eqPVs5y7uM6xJX8YBvBYmeGpx5sP7TYOR3YcQ52ICpR3SttrZ4PMY3zx3Dwyk3cc6/x/C3jL8w8fmvwrYP4FP3QlxS1NoSke5BCZaIHNOcc9TMuw+fhRj46e9Fpc54n4fS+AGkNiyAHrYYg3OOdVt3svHdOfQreIETgis4zhxbE8awduz3yD/jWkZndf3cn7bk56awa3dej1qqfUtxDe8t+piGFc8xueodPmvr8JijPGkA5aNuJGfaZ0kbMoO0bjo3Z3huCjWNQfZUNtA/IzGykmD3vRZWdUOAd9cX8caaPcxbu5e8ug2c613Mn5I+ZljixnCh1CEw8nIYcTY27AxIyuzyuG44dRhpiXFc8lQGP896kc8ufRQKP4Yr/glZw7u8fRE5epRgicgx7aNVGzi37hW2Dfo0w7KHRa3eupTBeCuD4cUAesCHpx3F5Sx/+ylS1j3NSf6FjDU/e315rBv5JYaceQNDB4yLdYhAeCXBDTv6Mbyb92Ct3V3Jex8tIbT6BabVvst1nnBCUpI2gvJxt5M17TNk9pvYIy5EPbzFSoLhBGsUrH8txlHtr6ymkVdW7ealFYUs2ryHE9xqLoxfwo98S+mTsBeHYf1PhLHXwegLwo8hBs/9ZScMIjHOyzce97IqZyw/Kv8Nnj+dCZf8AcZdeNTjEZGu0ekEy8y+BnwVCAIvOufujOz/HvD5yP6vO+de7WxbIiLRtvu1XzPdGhlw4fejWm+oTz5UEr4WVjdNsCrrGvnwvdcILnucGTVv8ymrpsKTwZahnyVv5rX0HXUKfbtZAjAsJ4WNgVzOLV+IBQNRHcrVWbvK63jjw2U0LJ3L9Np3+KInnASWZIylYtL3yDj+MrK7aDn1rjQ8ci2szUU1nDIiJ9yDtfTR8IW0D7HYQ1eqrPfz2qo9/Gf5Lv67YS/Hs4bPJS/kT0kfkhwox/mSsJHnwJgLsFHnQWpuzGJt6dOT80jwefjKY8aGPr/gr0kPkDj3apj+BTjrB8fctfNEeqNO/c9kZmcBs4DjnHMNZtY3sn88cCUwARgAvGFmo51zwc4GLCISLWsKtnNWxfNsyT2bEXnjo1p3fM4w2Bq5FlY3WuzOHwyxcOkSSj94lAnFr/BJK6SROApyzyR48nXkTrmAjG48pDE/O4VXXf/wUu0V22KevFbU+nlt2Sb2fPgkx5W+wjWeVXjMUZw5nprjfkjK1MvI7qYJdkf1T08kMc7TYqn2yEIXxRth8PSjGku9P8hrq/fw74938c66vYwLbeDq5I/4XcoC0vzFOEvGxlwAEz4TTq666fymT4zvx8M3TufWOUs5sfIOHh/2EmMX/Q1b/iRM/zxMuRpyRrZbhwsF2blpJbvXfUh5aTHTLvsmmSmJR+kRiEh7OvvV3y3Az51zDQDOub2R/bOAxyP7t5jZRmAG8EEn2xMRiZr1Lz7AOKvFPh3d3iuAzH5DaHA+GvZsIj3qtR++rXvLWfL6v8jbOIdT3HIAtqRNZeuU2xhy6pWMPgpzUKIhPyeFgqal2ks2xyTBCoUc767fy8J3X2T0jqf5tC0k2RqoSBlI5aTbyDzpWnJ60RLyHo8xLKe1lQTXHJUEyznHip0VPLFoO88v20V8fQnXpizgnrT36Fu/GUcCNuKTMPEybPR5EJ/S5TFFwykjc3jp66dx+9xlXLDuQs7qczJ3pTxN/vu/web/GjKHwICpkJZHwJdCdU01FRUV+Mt3kFy1lezAbgbhZ1Ckvpcfb+SCz98dy4ckIhGdTbBGA6eZ2T1APfBt59xCYCCwoEW5HZF9BzGzm4GbAYYMGdLJcEREOmZnSQUz9j7BlvQTGDZsWtTrH5SVyg6XS2ZR7OYK+YMh3l+4mIr3H+Lkype51Mop9eaycczXGHL2FxiWkx+z2I5ULJdqL65u4OmPNlO04F9cUv8Cd3gKqI9LpWbUZSSdfC0ZQ07uEXOqjsTw3BRW7qwIb/QZBnEpsHtll7ZZUefnmSU7mLtwO+t3V/CJuOU8lvkBE+0DPMEA5E2Hqd/AJlwavshvD9Q/I5F/ffFE3lq7l/vf3MBZO24ml8u5JG4BJ1VuYnTFR2S4ClJdHfHEk0o8e10ftiQMYn3OTBLzxpE7+kQCr/yQU7f9id27v0D//oMO3bCIdKlDJlhm9gY0/W+2nx9Ezs8CTgKmA0+Y2WF9neic+zPwZ4Bp06a5wzlXRORILXnxIS6yUorPeaBL6h/UJ4nNri9ZFVu7pP72lFTVM/+VueSs/junh5bhzNiWdQplp3+JrOM+TVY3Xa2uI+J9HhIy+1Nff3SWanfO8dGWUp5/fyn91/+LqzxvkGsVVGWMIHDafSROuZLE+OQujyPWhuek8PKKQhoDIeJ9Hug3HvZ0TYK1pbiGv7+/hacW7yCusYLbshZweZ9XSK3bBcEcOOnLMPVa6Du2S9o/2syMc8b145xx/dhRVst/N5awpWQaL1c18GLIkZLgo396Av0zkhjdL41R/VIZF7f/e7gw8ZekPHoWS+b8gP63/yNGj0REmhwywXLOtfn1oJndAjzjnHPAR2YWAnKAncDgFkUHRfYd04LBEI2NDdTX1xPwN0DID0E/LhQCMxxEfnoAAwyv1/B6PPh8cfji4/H5EoiLj8d68AckkVirawgwevPD7IwfxsDjPtUlbeRlJPEOfTm5esGhC0fJpl3FLHvxz0ze8RizbAdl3iy2jvsKQz75ZYb16T0jBPJzUtm5K48RXbhUeF1jkKeW7OCD997gnMpn+In3A+K8QWqGngOn30ra8LN6bW9Va0b2TSXkYFNRNePy0qH/JFjxNIRC4PF0un7nHP/dVMLf5m/hrXV7mejZzt9y32NG1Rt4auth6EyY8X8w9tM96rIHh2tQn2SumH74CXveqKmsGPAZZu56lsXzX+WEmed1QXQi0lGdHSL4HHAW8LaZjQbigWLgBeBfZvZrwotcjAI+6mRb3UJDfQ2lu7dRWbyTmpLdNFbsJli9F19dCd6GCrz+auKCNcQHa0kM1ZDs6kh2dcQRIM6CJAHRmHIbcB4CeAngw28+gpH7AfMRxEfQvAQsjpB5CZqPoMURMl/45vHhzIMzH5gXzIPzhO87jxc83vB+jy+cyHm8WOQcPF5C5gsngWYYNH/IaHnfYc2fPaz5Q4gdsA2Yp7n8/g7uzDTnWtkLRuv7w9W0fsRFzmu7eDudqW3UeaTnHSqWA4+13LIWdbbdcitH2nwMx0Yncqh8B6eylU0z7u2yD8nxPg9l8QNJDFZ16WprzjkWrVrHzjd+z8yy57jMKtmVNJI9p/6GfidfTZ9udMHaaBmWk8LKbYMYvmflQX85OmtvVT2P/ncThQue4orgf7jWsx5/fDI29fNw8pdJ6UVzqw7HpIHhIXgfby8PJ1gDT4BFfwtfcLgTPUn1/iAvLNvF397fwvrdFXwm+WPey32DQZVLoToJjpsNM26G/hOj9VB6rdFX/4qSX71L3ze+zs6R7zKwf79Yh9SlXChEQ30tdTVV1NVU0lhXTUNtFf66avz11QQaqnENdbhAAy7YGP5CO9iIC/rDK5CGwvss5MdCAcwFmv9vNFzkftMNcC6yH8KfWg74/7Ll55+WP8MfjqDlX6uWn4uaj+/77NR0bvN+23+7ZVstz2+qc786Doir9bb3r7fVbaM5qtbL7Yt1v2MRrrXYcS0+/9kBx/Y/tyhtPONnXszIvmn0BJ1NsP4G/M3MVgKNwPWR3qxVZvYEsBoIAF/tiSsIrl/yDiWLnsZXtZ20ul1kB/aQSxl5QN4BZStJptrSqPck0ehNoSEhmxrfEPb4Ugj6UnC+BMwbj8cXh/niMW8cIU8cIY8P8GLmsKY3b9Mb1zmcc4RCIULBYKTHqxGCgfD9kB9r+cch5McT+SPhCfnxuPC2xwWJd368oTq8LoDHBfC4EB6CeFwII4g3su1l334vTbcgPgsd/RdApAutiD+OiWfd2KVtNKQNhnLCS7VHOcFqDISYN/9dgv/9A2c3vMV087MlayZxn7ydAePO6dW9K/nZKSwN5DOr+l2oLIT0A/8iH771e6p47O1lpKz6F1d7XmOgFVOfPhh3yj3EHX9tj53jEy3DclLISIpj2fZyrpwxBAafFD6w/cMjSrD2VtXz6IJtPLZgK7U1ldza50Ouy3qJtNrtYEPgkz+DqddoyfLDkJDah+Alf6L/s5ez8q9XkHrbS2Sk9owFP+obGti7eyfVJTtpKCskULmbUE0poboyPPXleBsqiPNXkhSoJDlYRaqrJo0aEs2RCBzuX9eQMwJ48Ue+mA7gJUh4ZFD4E1g4YXA0JQxNH/yJ7LfmJMBBixShKelyB2xHjjvXSpl957b8wvVQdTa37jpyDgecuy+uA/e1VXbf/ygH72+rrMei96Xt3wPnsXbkWcdGguWcawSuaePYPcA9nak/1sq3LGHazkfZ68mhPD6PremnsCltMJYxkMTMPFKy+pPZdyB9cgaQHp/YLVYK6wrOOQLBEIFgEFwQQkFcMIAjnABC5DueUFNPktv3xQ/hxKzpmHOh/cqH74f2fSvS4k9V658PjdZ32/49Y4c+I/KFS2vHWv/2Zf8viKy1EvtiabVF2omx9Vj27dr/2H4ttDjv4Cra/pBtnjajbPOc3mRifCIWhaFN7YnPHQnl4Eo2YwOmRqXO8poG3nn1KXJW/IVz3VIaiGfH0EsYdMG3GJbXPS4G3NWG5aTwYihyUehdS484wXLO8f7GEl58620mbp/Dd73vkeRtpG7gKXDa/SSOPj/coy+YGVOHZLJkW1l4R/YISMmFgvfghOs7XM+qXRX8bX4B//54F31CJfy073zO9b5EXF0FDJwGn/4ZjL2oW13frCcZcNw5rNl1D1M//C6LfnsxQ7/0BLk52TGNKdRYR1nhZsp3baK2aAvB0q1QuYu4uiKSG0tID5bSx1UypJUP4wHnocpSqbFU6rxp1MdnUhM/lML4dILx6RCfgiWk4olPwZuYii8hhbikVOIS04hPTiU+KRVffCJx8Qn44uLxxcUTF5eIx+cjnvCwK2ld8+e7SKfdfp/3mjr1cIRcy3MO8d1e8+gZd/B2e8eAq8xLXHzCkT2YGNBfsHZMufAWPLO+xkCfr/UlEI8RZobP58Xn0wcNkcORO2wCjeu9NGxdQtqkyzpV1+bdJSx78a9M2PYos2wb5Z4+bJl0O/nn3cqIlJwoRdwzTBqUwUo3jIAnAV/BfBh7ePPoGgJB/rNsJx/Pe4pPVDzD/3lXEIiLJzjxs3DqV0nScLRWTc/P4pevrqOwoo68jCQYdS6s/Q8E/e3OiwqGHG+t3ctD8zezYHMpU+O380S/tzmu/E2sIgDjLoSTvwZDTjyKj6b3GnfBLawN+pm68C62PXAa68/8FaeccX6bX/B1Vk11JcU7NlKxezMNRQW48q34qnaQWldIdmA32a6MbKApzQs4D0X0odybTVlCf/YmTcJS+xGX0Z+4zDwSMvqTnDWAtOx+pKVl0sfjOeweKum8pt+Xtr7olfYpwWpHfIIu2CciR27swGxWu6EM2bboiM53zvHRqg3seuP3zCx7ls9YBYWJwyg8+V7yTr2WzLhj829UTmoCowfmsrpqPJM3v93h84qqGnji/dXUfPQIlwVe4jJPIbXJffGf9APiZtyE7xhLVA/X+RP788tX1/HSit18fuaw8IITyx6DDa+3muRW1vt5evEOHv5vAdtLqvlM2hrm573BoLIPoSoFpt0UXhGwh1+IuTsae+HX2ZE3ktT/fI1T513JgvdnUD9hNsNOuoQh/bI7nGz5A0GKi/dSVriJqj1baSwpwCp2kFCzk/T6XeQE95JNBS0HIjY6L3stl7L4fqxPPxl/2iC8mUNIzB1GWt4I+g3Ip39KInm9eBiziBIsEZEuMrZ/Os+4EYwrfv+Q3/K3VO8P8vb8+YQ++APnNLzJieanIOtk4s6+nbyJ5/bq+VUddcboXJ5/bxKTG/8Je1aHlw1vw6pdFbz05jzy1j/KdZ73SLM6KnOPw53xM5LHz4JeuBBIVxiRm8q4vHSeWLidG07JxzvqPEgfBPPvg9HnN68muKawkkcWbOW5pTtJaSzhtuwPuTTrdZJrd0EgD875MUy7scsWfpGwQSd8iuD4U1n57C8Yu+ERMpd9i4al32GtZyjFCUMIJefgj8/A6/FgoQCBgJ84fyUJjeUk+MtIC5TRzxWTZ3X7zTtvxMdeT18q4vuzJWMsGzMG48saSnLfYWQOGElu/yEMiotDV+OSY5m5dldEO7qmTZvmFi06sm96RUS6o1/+9tfcUfYTuPZZGHF2u2U37S5hxeuPMWjT40xjFY3EsWPwxQy84JskDNCwtZZW7arg6vtfZnHSrXgnXw6X/nG/45X1fl5asontHzzDzPJ/c7J3NQGLo270xaTNvAUGT49R5D3bvz/exdfmLOV7F4zlS2eMgKWPwvNfpfb4m3kq8yaeW1HC7u2bODtuBddkLGdMzeLw6mzDzgj3WI35lBLaGHBBP7s/fp3S5a8St3cFmQ07SAlWkkJdc5kgHqothWpPOnW+TBoSsmhMGUAoYxAJ2UNJ75dP1oARpGYNiMrS/CK9gZktds5NO2i/EiwRka7z0NuruHLeWQTHXEj65/520PG6hgDv/fdd6hY9xszqV8m2Kop9/amZeA1DPvElLLVvDKLuGW56eCEnbb6fmz0vEPrEzygeNoulm3awe/V8Mne9yzm2iFSrpyoxD9+JXyRpxvWgYYCd4pzjS48s5rXVezhxWBaZST4+veM+Lm58kYDzEDIv8fjDhfvkw/hZMPU6yBkZ07ilDUE/YJHLs6hnXORwKcESEYmBkuoGXvjlTVxvLxG48nHix55HWWUNa5a+R/nyVxhd/DojbQdBPGzNOYOsM75E5oTz9A1xBxRVNXDTX9/j66X/yye9i/c7VutNo27Ep8k66Sos/zStBhhF/mCIP87bxOur99AYCNE3PYFZfQo4O24lWQlA5hAYchL0m/j/27vv+Krq84Hjn+femz0hiwwgkRlIWLIcKFgVrAO3tm5brdUOra3V2lpra39WbW2tVqtVcaDgRNyigIgyZMkeAQIEEsgge93x/f1xDjGEBAK5yU3C83698so9+7n35MB57vf7fY7etCulujVNsJRSKkBeX7iG7E9/QKZjF/uJJtxUEyIefAi54cOQ7EtIn/ADba06BrVuL5+szad+20J6u3eQltiTlMzxOJKGaFKllFKqXWmCpZRSAfT1+u0Uf/kc8TW5hEb1JPKEMWSMOgtXTK9Ah6aUUkqpY9BSgqVVBJVSqgOcPCQDhvwl0GEopZRSqp1pJ3+llFJKKaWU8hNNsJRSSimllFLKTzTBUkoppZRSSik/6VRFLkSkENgR6DiaiAeKAh2E6jB6vo8feq6PH3qujy96vo8feq6PL53xfPc1xiQ0ndmpEqzOSESWNVcdRHVPer6PH3qujx96ro8ver6PH3qujy9d6XxrF0GllFJKKaWU8hNNsJRSSimllFLKTzTBOrJnAh2A6lB6vo8feq6PH3qujy96vo8feq6PL13mfOsYLKWUUkoppZTyE23BUkoppZRSSik/0QRLKaWUUkoppfxEE6zDEJEpIrJJRHJE5O5Ax6P8R0R6i8g8EVkvIutE5Jf2/J4iMkdEtti/ewQ6VuUfIuIUkZUi8r49nSEiS+zre6aIBAc6RuUfIhIrIm+KyEYR2SAiJ+m13T2JyB32v+FrReQ1EQnVa7v7EJHnRWSfiKxtNK/Za1ksj9vnfbWIjApc5OpotXCuH7H/HV8tIu+ISGyjZffY53qTiEwOSNCHoQlWC0TECTwJnAMMAX4gIkMCG5XyIw9wpzFmCDAeuM0+v3cDnxtjBgCf29Oqe/glsKHR9N+Ax4wx/YH9wI8CEpVqD/8CPjbGDAaGY513vba7GRFJBX4BjDbGZAFO4Er02u5OpgFTmsxr6Vo+Bxhg/9wMPNVBMSr/mMah53oOkGWMGQZsBu4BsO/XrgSG2tv8x75v7zQ0wWrZWCDHGLPNGFMPzACmBjgm5SfGmHxjzAr7dQXWDVgq1jl+0V7tReDCgASo/EpE0oBzgf/Z0wKcAbxpr6LnupsQkRjgNOA5AGNMvTGmFL22uysXECYiLiAcyEev7W7DGLMAKGkyu6VreSrwkrEsBmJFJLlDAlVt1ty5NsZ8aozx2JOLgTT79VRghjGmzhizHcjBum/vNDTBalkqsKvRdJ49T3UzIpIOjASWAEnGmHx7UQGQFKi4lF/9E7gL8NnTcUBpo3+49fruPjKAQuAFu0vo/0QkAr22ux1jzG7gUWAnVmJVBixHr+3urqVrWe/burcbgY/s153+XGuCpY5rIhIJvAXcbowpb7zMWM8w0OcYdHEich6wzxizPNCxqA7hAkYBTxljRgJVNOkOqNd292CPvZmKlVSnABEc2sVIdWN6LR8fRORerKEd0wMdS2tpgtWy3UDvRtNp9jzVTYhIEFZyNd0Y87Y9e++BLgX2732Bik/5zSnABSKSi9XV9wysMTqxdrci0Ou7O8kD8owxS+zpN7ESLr22u58zge3GmEJjjBt4G+t612u7e2vpWtb7tm5IRK4HzgOuMt89vLfTn2tNsFr2DTDArkYUjDWYbnaAY1J+Yo/BeQ7YYIz5R6NFs4Hr7NfXAe92dGzKv4wx9xhj0owx6VjX8VxjzFXAPOBSezU9192EMaYA2CUig+xZ3wPWo9d2d7QTGC8i4fa/6QfOtV7b3VtL1/Js4Fq7muB4oKxRV0LVBYnIFKzu/RcYY6obLZoNXCkiISKSgVXYZGkgYmyJfJcMqqZE5PtYYzecwPPGmAcDG5HyFxE5FfgSWMN343J+hzUO63WgD7ADuNwY03SAreqiRGQi8GtjzHkicgJWi1ZPYCVwtTGmLoDhKT8RkRFYBU2CgW3ADVhfKOq13c2IyJ+AK7C6D60Efow1FkOv7W5ARF4DJgLxwF7gj8AsmrmW7ST7CaxuotXADcaYZQEIWx2DFs71PUAIUGyvttgYc4u9/r1Y47I8WMM8Pmq6z0DSBEsppZRSSiml/ES7CCqllFJKKaWUn2iCpZRSSimllFJ+ogmWUkoppZRSSvmJJlhKKaWUUkop5SeaYCmllFJKKaWUn2iCpZRSSimllFJ+ogmWUkoppZRSSvmJJlhKKaWUUkop5SeaYCmllFJKKaWUn2iCpZRSSimllFJ+ogmWUkoppZRSSvmJJlhKKaWUUkop5SeaYCmlVCchIukiYkTEFehYujsRuV5EFgY6js5GRCaIyKZAx6GUUl2ZJlhKKaW6NBG5X0TcIlLZ6OeuQMfVFRljvjTGDGqv/YvItfaXCD9ur2MopVSg6bekSinlJyLiMsZ4Ah3HcWqmMebqQAfRXrrD35aI9AB+B6wLdCxKKdWetAVLKaXaQERyReS3IrIaqBIRl4iMF5GvRaRURL4VkYmN1p8vIv8nIktFpFxE3hWRni3s+wYR2SAiFSKyTUR+0mT5VBFZZe9nq4hMsefHiMhzIpIvIrtF5C8i4jzC++gnInNFpFhEikRkuojENlpWIiKj7OkUESk88L5E5AIRWWe/3/kiktnk8/m1iKwWkTIRmSkioUf/SR89Ebnb/lwqRGS9iFzUwnoiIo+JyD77s1wjIln2shAReVREdorIXhF5WkTCWnn8afb6c+wYvhCRvo2W/0tEdtnHXC4iExotu19E3hSRV0SkHLheRMaKyCL7c84XkSdEJLjRNkZEbhWRLfbx/myfu6/tY7zeeP0WYp4oInmteX/H4P+Ax4Gidtq/Ukp1CppgKaVU2/0AOBeIBZKAD4C/AD2BXwNviUhCo/WvBW4EkgEP1k1nc/YB5wHRwA3AY42SnLHAS8Bv7OOeBuTa202z99sfGAmcDRypS5Zg3QCnAJlAb+B+AGPMVuC3wCsiEg68ALxojJkvIgOB14DbgQTgQ+C9JjfylwNTgAxgGHB9swGInGonDy39nHqE99DUVmACEAP8yY4/uZn1zsb6/Aba614OFNvLHrLnj8D6PFOB+44ihquAPwPxwCpgeqNl39j77Qm8CrzRJPmcCryJdX6nA17gDntfJwHfA25tcrzJwInAeOAu4BngaqzzmYX1t3rM7ES5pfPzn8NsNxYYDTzdluMrpVRXoAmWUkq13ePGmF3GmBqsm9kPjTEfGmN8xpg5wDLg+43Wf9kYs9YYUwX8Abi8uRYmY8wHxpitxvIF8ClWwgDwI+B5Y8wc+zi7jTEbRSTJPtbtxpgqY8w+4DHgysO9AWNMjr2vOmNMIfAP4PRGy58FcoAlWInhvfaiK4AP7G3dwKNAGHByk89njzGmBHgPK6loLoaFxpjYw/wcrijF5U1u9lOMMW/Yx/UZY2YCW4CxzWzrBqKAwYAYYzYYY/JFRICbgTuMMSXGmArgr0f6LJv4wBizwBhTh/WZnSQive33+4oxptgY4zHG/B0IARqPf1pkjJllx19jjFlujFlsr58L/JdG58j2sDGm3BizDlgLfGqM2WaMKQM+wkq4j5kxZthhzk/TZA8A+2/7P8DPjDG+thxfKaW6Ah2DpZRSbber0eu+wGUicn6jeUHAvBbW32Evj2+6UxE5B/gjVguKAwgH1tiLe2O1FjXV195fvpUfgL3trmbWbXysJOBfWAlclL3N/iarPQvMBm62EwawWrx2HFjBGOMTkV1YLT0HFDR6XW1v42+vNx2DJSLXAr8C0u1ZkTTzORtj5orIE8CTQF8ReRur5TEU6zNf3uizFOCw3S2baPjcjTGVIlKC9f53icivsRLlFMBgtVTGN7et/X4GYiW+o+24XMDyJsfb2+h1TTPTvY4idn+5FVhtjFkcgGMrpVSH0xYspZRqO9Po9S6sFqrG3+xHGGMearRO70av+2C1oBw0LkVEQoC3sFqEkowxsVgJ1YE7/V1Av2Zi2QXUAfGNjh9tjBl6hPfwV/t9ZBtjorFa4r7LKkQigX8CzwH3y3fjxvZgJXUH1hP7/e0+wvEOIVaJ8MrD/Ew48l4a9tUXKyH8GRBnf35rG7+nxowxjxtjTgSGYCW0v8E6JzXA0EafZYwxJvIo3lbDubY/w57AHvu93IXVHbGHHV9Zk/ga/10BPAVsBAbY5+h3Lb2f9iLWWLuWzk9L3f++B1wkIgUiUoDVuvl3O6lVSqluRxMspZTyr1eA80Vksog4RSTULhyQ1midq0VkiD2e6QHgTWOMt8l+grG6jBUCHrs16+xGy58DbhCR74mIQ0RSRWSwMSYfqyvh30Uk2l7WT0SadiVrKgqoBMpEJBUrwWjsX8AyY8yPscaYHbiZfh04144jCLgTK8H7+kgfVFN2ifDIw/x8eRS7i8BKUArBKhiCNQbpECIyRkTG2fFXAbWAz+7O9izW2LdEe91UEZncaFsjjYqYNOP79tiyYKyxWIuNMbuwPm+PHZ9LRO7DasE6nCigHKgUkcHAT4+wvt8ZY4Ye5vzc0sJm12ON6xth/yzDGhN3bwvrK6VUl6YJllJK+ZF98zwVq3WhEKtF6Tcc/O/ty1iFKAqwuqH9opn9VNjzX8fqqvdDrO55B5YvxS58gdXy8QXftSRdi5Wgrbe3fRNr3NTh/AkYZe/rA+DtAwtEZCpWkYoDN/S/AkaJyFXGmE1YrV3/xmrxOR843xhTf4TjtStjzHrg78AirG5y2cBXLawejZVI7cfq7lgMPGIv+y3W2LPFYlXz+wx7nJQ9lqqC77ptNudVrG6eJVjFJw50Y/wE+BjYbB+zliN048TqtvhD+5jPAjOPsH6nYIwpNcYUHPgB6oFye1yYUkp1O2JM0x4ISiml2ouIzAdeMcb8L9CxqLYRkauxug/e08LyaUCeMeb3HRqYUkqpgNIiF0oppdQxMMa8EugYlFJKdT5+6yJojzVYKSLv29MZIrJERHLEerDkYR9uqJRSqn2J9dDboylOoLohEfldC38HHwU6NqWU6g781kVQRH6FVTo22hhznoi8DrxtjJlh/+f9rTHmKb8cTCmllFJKKaU6Ib+0YNnVsc4F/mdPC3AG1sBqgBeBC/1xLKWUUkoppZTqrPw1BuufWM/ziLKn44BSY4zHns7j4IdONis+Pt6kp6f7KSSllFJKKaWUah/Lly8vMsYkNJ3f5gRLRM4D9hljlh/hWSAtbX8zcDNAnz59WLZsWVtDUkoppZRSSql2JSI7mpvvjy6CpwAXiEguMAOra+C/gFgROZDApQG7m9vYGPOMMWa0MWZ0QsIhCaBSSimllFJKdRltTrCMMfcYY9KMMenAlcBcY8xVwDzgUnu164B323ospZRSSimllOrM/FamvRm/BX4lIjlYY7Kea8djKaWUXxlj8Hh9gQ5DKaWUUl2MXx80bIyZD8y3X28DxrZ1n263m7y8PGpra9u6K3WcCQ0NJS0tjaCgoECHorqg+99eTv6WlTx+542EBjkDHY5SSimlugi/JljtIS8vj6ioKNLT07Gqvyt1ZMYYiouLycvLIyMjI9DhqC4oeMVzPBP0Kqu/jGTYGT8IdDhKKaWU6iLas4ugX9TW1hIXF6fJlToqIkJcXJy2fKpjUuv20kf2ARC7+vkAR6OUUkqprqTTJ1iAJlfqmOjfjTpWBWW1JMl+AGIqcgIcjVJKKaW6ki6RYCmlVEfaW15Lb7sFK8ZbAlXFAY5IKaWUUl2FJlitICLceeedDdOPPvoo999/f+ACamTx4sWMGzeOESNGkJmZ2RDX/Pnz+frrr495vzt27GDUqFGMGDGCoUOH8vTTT/spYqU6v6o6N72lkN3ONADMvvUBjkgppZRSXYUmWK0QEhLC22+/TVFRkV/3a4zB52tbGejrrruOZ555hlWrVrF27Vouv/xyoO0JVnJyMosWLWLVqlUsWbKEhx56iD179rQpVqW6CndtFZFSS17saADK92wOcERKKaWU6io0wWoFl8vFzTffzGOPPXbIssLCQi655BLGjBnDmDFj+OqrrwC4//77efTRRxvWy8rKIjc3l9zcXAYNGsS1115LVlYWu3bt4je/+Q1ZWVlkZ2czc+ZMwEqQJk6cyKWXXsrgwYO56qqrMMYccvx9+/aRnJwMgNPpZMiQIeTm5vL000/z2GOPMWLECL788svDxnnNNddw0kknMWDAAJ599lkAgoODCQkJAaCurq7FRPDxxx9nyJAhDBs2jCuvvBKAkpISLrzwQoYNG8b48eNZvXp1w7Guu+46JkyYQN++fXn77be56667yM7OZsqUKbjdbgAeeOABxowZQ1ZWFjfffPMh79vn85Genk5paWnDvAEDBrB3797DnUalWs1dWwWAM74/XiNU7N0e4IiUUkop1VV0+jLtjf3pvXWs31Pu130OSYnmj+cPPeJ6t912G8OGDeOuu+46aP4vf/lL7rjjDk499VR27tzJ5MmT2bBhw2H3tWXLFl588UXGjx/PW2+9xapVq/j2228pKipizJgxnHbaaQCsXLmSdevWkZKSwimnnMJXX33FqaeeetC+7rjjDgYNGsTEiROZMmUK1113Henp6dxyyy1ERkby61//GoAf/vCHLca5evVqFi9eTFVVFSNHjuTcc88lJSWFXbt2ce6555KTk8MjjzxCSkrKIe/loYceYvv27YSEhDQkPH/84x8ZOXIks2bNYu7cuVx77bWsWrUKgK1btzJv3jzWr1/PSSedxFtvvcXDDz/MRRddxAcffMCFF17Iz372M+677z4ArrnmGt5//33OP//8hmM6HA6mTp3KO++8ww033MCSJUvo27cvSUlJRzyPSrWGp64GgNgeceylB779uwIckVJKKaW6Cm3BaqXo6GiuvfZaHn/88YPmf/bZZ/zsZz9jxIgRXHDBBZSXl1NZWXnYffXt25fx48cDsHDhQn7wgx/gdDpJSkri9NNP55tvvgFg7NixpKWl4XA4GDFiBLm5uYfs67777mPZsmWcffbZvPrqq0yZMqXZYx4uzqlTpxIWFkZ8fDyTJk1i6dKlAPTu3ZvVq1eTk5PDiy++2GwL0bBhw7jqqqt45ZVXcLlcDe/pmmuuAeCMM86guLiY8nIrMT7nnHMICgoiOzsbr9fbEG92dnbD+5s3bx7jxo0jOzubuXPnsm7dukOOe8UVVzS09s2YMYMrrrjisJ+5UkfDW2e1YMX1iGG3icdRrgmWUkoppVqnS7VgtaalqT3dfvvtjBo1ihtuuKFhns/nY/HixYSGhh60rsvlOqhbXePnMUVERLTqeAe66IHV/c/j8TS7Xr9+/fjpT3/KTTfdREJCAsXFh1Y8aylOOLScedPplJQUsrKy+PLLL7n00ksPWvbBBx+wYMEC3nvvPR588EHWrFnTqvfkcDgICgpqOJbD4cDj8VBbW8utt97KsmXL6N27N/fff3+zz7I66aSTyMnJobCwkFmzZvH73//+sMdV6mh466sBiIiIosiRQL+abQGOSCmllFJdhbZgHYWePXty+eWX89xzzzXMO/vss/n3v//dMH2gK1x6ejorVqwAYMWKFWzf3vwYjgkTJjBz5ky8Xi+FhYUsWLCAsWPHtjqmDz74oGGM0pYtW3A6ncTGxhIVFUVFRcUR4wR49913qa2tpbi4mPnz5zNmzBjy8vKoqbG6Se3fv5+FCxcyaNCgg47t8/nYtWsXkyZN4m9/+xtlZWVUVlYyYcIEpk+fDlhjyeLj44mOjm7V+zmQTMXHx1NZWcmbb77Z7HoiwkUXXcSvfvUrMjMziYuLa9X+lWoNb731tx8UEk5FaDLR9YXg8wY4KqWUUkp1BZpgHaU777zzoGqCjz/+OMuWLWPYsGEMGTKkoZz5JZdcQklJCUOHDuWJJ55g4MCBze7voosuYtiwYQwfPpwzzjiDhx9+mF69erU6npdffplBgwYxYsQIrrnmGqZPn47T6eT888/nnXfeaShy0VKcYHXzmzRpEuPHj+cPf/gDKSkpbNiwgXHjxjF8+HBOP/10fv3rX5OdnQ3Aj3/8Y5YtW4bX6+Xqq68mOzubkSNH8otf/ILY2Fjuv/9+li9fzrBhw7j77rt58cUXW/1+YmNjuemmm8jKymLy5MmMGTOmYdnTTz99UNxXXHEFr7zyinYPVP7ntlqwJDic+ogUXHigUouoKKWUUurIpLnKdEe1A5HewEtAEmCAZ4wx/xKRnsBMIB3IBS43xuw/3L5Gjx5tli1bdtC8DRs2kJmZ2aYYVcvuv//+g4phdDf696OOxasv/ZcfbrsLbprHy58v45ptv4EbP4U+4wIdmlJKKaU6CRFZbowZ3XS+P1qwPMCdxpghwHjgNhEZAtwNfG6MGQB8bk8rpVTnZ7dgERROUFw6ALXFOwIXj1JKKaW6jDYXuTDG5AP59usKEdkApAJTgYn2ai8C84HftvV4yr/uv//+QIegVOfjtsZgERRKVGI6AJV7t3FoiRillFJKqYP5dQyWiKQDI4ElQJKdfAEUYHUhbG6bm0VkmYgsKyws9Gc4Sil1TMRjV650hZGYEE+piaBOW7CUUkop1Qp+S7BEJBJ4C7jdGHPQ04CNNdCr2cFexphnjDGjjTGjExIS/BWOUkodM/EeaMEKIzkmlHzTE1O2J7BBKaWUUqpL8EuCJSJBWMnVdGPM2/bsvSKSbC9PBvb541hKKdXeHJ7vEqyk6FAKTE+CqgoCG5RSSimluoQ2J1hiPSn2OWCDMeYfjRbNBq6zX18HvNvWYymlVEdweOrw4ARnEEFOB6VBiUTUaoKllFJKqSPzRwvWKcA1wBkissr++T7wEHCWiGwBzrSnu6xZs2YhImzcuLHFdXJzc8nKyvLbMTdt2sTEiRMZMWIEmZmZ3HzzzYD1kOAPP/zwmPdbW1vL2LFjGT58OEOHDuWPf/yjv0JWqltw+GpxS0jDdHVoEpHeUnDXBi4opZRSSnUJ/qgiuBCQFhZ/r6377yxee+01Tj31VF577TX+9Kc/HbLc4/G0+Rherxen09kw/Ytf/II77riDqVOnArBmzRrASrCWLVvG97///WM6TkhICHPnziUyMhK3282pp57KOeecw/jx49v8HpTqDoK8dbgdIYTZ097IZKgGKvKhZ0YgQ1NKKaVUJ+fXKoLdVWVlJQsXLuS5555jxowZDfPnz5/PhAkTuOCCCxgyZAhgJVpXXXUVmZmZXHrppVRXW8/T+fzzzxk5ciTZ2dnceOON1NXVAZCens5vf/tbRo0axRtvvHHQcfPz80lLS2uYzs7Opr6+nvvuu4+ZM2cyYsQIZs6cSVVVFTfeeCNjx45l5MiRvPuu1Rtz2rRpTJ06lYkTJzJgwICGxFBEiIyMBMDtduN2u7F6eh7sjTfeICsri+HDh3PaaacBVuvXDTfcQHZ2NiNHjmTevHkNx7rwwgs566yzSE9P54knnuAf//gHI0eOZPz48ZSUlADw7LPPMmbMGIYPH84ll1zS8Pk0Nn78eNatW9cwPXHiRJo+gFqp9uTy1eJxfNeCJTGpAJjy3YEKSSmllFJdRJtbsDrUR3dDwRr/7rNXNpxz+N6L7777LlOmTGHgwIHExcWxfPlyTjzxRABWrFjB2rVrycjIIDc3l02bNvHcc89xyimncOONN/Kf//yHn/3sZ1x//fV8/vnnDBw4kGuvvZannnqK22+/HYC4uDhWrFhxyHHvuOMOzjjjDE4++WTOPvtsbrjhBmJjY3nggQdYtmwZTzzxBAC/+93vOOOMM3j++ecpLS1l7NixnHnmmQAsXbqUtWvXEh4ezpgxYzj33HMZPXo0Xq+XE088kZycHG677TbGjRt3yPEfeOABPvnkE1JTUyktLQXgySefRERYs2YNGzdu5Oyzz2bz5s0ArF27lpUrV1JbW0v//v3529/+xsqVK7njjjt46aWXuP3227n44ou56aabAPj973/Pc889x89//vODjnvFFVfw+uuv86c//Yn8/Hzy8/MZPfqQh2Qr1W6CfLV4gr976lVIzz4A1BTvIjw9QEEppZRSqkvQFqxWeO2117jyyisBuPLKK3nttdcalo0dO5aMjO+6DPXu3ZtTTjkFgKuvvpqFCxeyadMmMjIyGDhwIADXXXcdCxYsaNjmiiuuaPa4N9xwAxs2bOCyyy5j/vz5jB8/vqHlq7FPP/2Uhx56iBEjRjBx4kRqa2vZuXMnAGeddRZxcXGEhYVx8cUXs3DhQgCcTierVq0iLy+vIQlr6pRTTuH666/n2Wefxev1ArBw4UKuvvpqAAYPHkzfvn0bEqxJkyYRFRVFQkICMTExnH/++YDV8pabmwtYSdiECRPIzs5m+vTpB7VUHXD55Zfz5ptvAvD6669z6aWXNvv5KNVegkw9Xsd3CVZkgpVgVe3TZ2EppZRS6vC6VgvWEVqa2kNJSQlz585lzZo1iAherxcR4ZFHHgEgIiLioPWbdrVrrutdU0330VhKSgo33ngjN954I1lZWc0mQsYY3nrrLQYNGnTQ/CVLlhwxntjYWCZNmsTHH398SIGOp59+miVLlvDBBx9w4oknsnz58sO+j5CQ77pUORyOhmmHw9EwRu36669n1qxZDB8+nGnTpjF//vxD9pOamkpcXByrV69m5syZPP3004c9rlL+ZIwh2NThdX2XYCUlxFFuwqkryQtgZEoppZTqCrQF6wjefPNNrrnmGnbs2EFubi67du0iIyODL7/8stn1d+7cyaJFiwB49dVXOfXUUxk0aBC5ubnk5OQA8PLLL3P66acf8dgff/wxbrcbgIKCAoqLi0lNTSUqKoqKioqG9SZPnsy///1vrOc5w8qVKxuWzZkzh5KSEmpqapg1axannHIKhYWFDV3+ampqmDNnDoMHDz7k+Fu3bmXcuHE88MADJCQksGvXLiZMmMD06dMB2Lx5Mzt37jwksTuciooKkpOTcbvdDftpzhVXXMHDDz9MWVkZw4YNa/X+lWqreq+PUOrxOb9LsJJjwqyHDesYLKWUUkodgSZYR/Daa69x0UUXHTTvkksuOaibYGODBg3iySefJDMzk/379/PTn/6U0NBQXnjhBS677DKys7NxOBzccsstRzz2p59+2lBkYvLkyTzyyCP06tWLSZMmsX79+oYiF3/4wx9wu90MGzaMoUOH8oc//KFhH2PHjuWSSy5h2LBhXHLJJYwePZr8/HwmTZrEsGHDGDNmDGeddRbnnXceAPfddx+zZ88G4De/+Q3Z2dlkZWVx8sknM3z4cG699VZ8Ph/Z2dlcccUVTJs27aCWqyP585//zLhx4zjllFMOSupmz57Nfffd1zB96aWXMmPGDC6//PJW71spf6h1H5pgJUaFUEBPgirzAxiZUkoppboCOdDq0RmMHj3aNK0Wt2HDBjIzMwMUUdc2bdq0g4phHI/070cdrX3ltVQ9OgxSR5Hxk++qhr77wCVMcqwg+vfbAxidUkoppToLEVlujDmkEpu2YCmlVCN1Hh+h4gZX2EHzq0OTiPTsB099gCJTSimlVFegCVY3dv311x/XrVdKHYtat5cw6iDo4ATLG5mMA2M9bFgppZRSqgVdIsHqTN0YVdehfzfqWBwYgyVNEiyJ1ocNK6WUUurIOn2CFRoaSnFxsd4sq6NijKG4uJjQ0NAjr6xUI7VuN6HixhEcftD8kLjeANQU7QpEWEoppZTqIjr9c7DS0tLIy8ujsLAw0KGoLiY0NJS0tLRAh6G6mPraagAcwQe3YEUm9gWgsnAH4YdspZRSSillafcES0SmAP8CnMD/jDFH9bTgoKAgMjIy2iU2pZRqyt2QYB2cRiXEJ1Bhwqgr0RYspZRSSrWsXbsIiogTeBI4BxgC/EBEhrTnMZVSqi3ctVUAuEIObsFKjgmlwPTElO0JRFhKKaWU6iLaewzWWCDHGLPNGFMPzACmtvMxlVLqmHnqrBYsZ0jEQfMTo0LIpydBVVpFUCmllFIta+8EKxVo3J8mz57XQERuFpFlIrJMx1kppQLNW38gwTq4i6DL6aDUlUh47d5AhKWUUkqpLiLgVQSNMc8YY0YbY0YnJCQEOhyl1HHOZydYQaERhyyrCU0iylMMXndHh6WUUkqpLqK9E6zdQO9G02n2PKWU6pR8dhfB4JBDawV6InvZDxsu6OiwlFJKKdVFtHeC9Q0wQEQyRCQYuBKY3c7HVEqpY+Zz1wDgaibBkhir7L8+bFgppZRSLWnXBMsY4wF+BnwCbABeN8asa89jKqVUW5h6K8GS4EMTrJCe+rBhpZRSSh1euz8HyxjzIfBhex9HKaX8wmMlWLhCD1kUmWA9bLhCHzaslFJKqRYEvMiFUkp1Ku5a63fQoSlUQkICVSaE+pK8Dg5KKaWUUl2FJlhKKdWIeKwiFwQd2oKVHBtGvonDlO7s4KiUUkop1VVogqWUUo2Ip8560UwLVmJUKLtJIKTy+ClyUVxZx80vLWPmvGWBDkUppZTqEjTBUkqpRhyeGrw4wBl0yDKnQyh29SKydk8AIguMp7/YSv9Nz3DFF9+jYt4/Ax2OUkop1elpgqWUUo04vbXUyaHdAw+oDk8jwlsOteUdGFXgLNiwm9uCrKdrhC586LsxakoppZRqliZYSinViHhr8Uhwi8u9sX2sF8fBOKySqnqSSr4hghpmBZ1LkLcGchcGOiyllFKqU9MESymlGnF5a6l3tNyCFRxnlWp3F2/vqJACZuXO/Yx2bMKIk5X9b6WGEEzOnECHpZRSSnVqmmAppVQjLl8dXmdIi8sjk/oDUJa/taNCCpjNeysZIjvwxQ1gYHpv1vr6UrdzeaDDUkoppTo1TbCUUqqRIF8t3sO0YCX1SqHKhFBb2P1bsLYVVpLt3IEzeRgjesey1peBa99a8HkDHZpSSinVaWmCpZRSjQT56vC6Wk6weseFk2cSMPt3dGBUgVGwby9JlEDSUAYlRbFJMnB5a6BkW6BDU0oppTotTbCUUsrm9RlCqMPnPEwLVlQou0kkuHJXB0YWGKZoi/UifgAup4OKHkOt6fxvAxdUB6uq8/C/L7eRs68y0KEopZTqIjTBUkopW63bSyhujCusxXUcDqE0JJno2nwwpgOj61j7q+qJq8uzJuKscWchyZnUEQT5qwIXWAf7w6y1vPDBAoqfmkLtnL9063OulFLKP9qUYInIIyKyUURWi8g7IhLbaNk9IpIjIptEZHKbI1VKqXZWXe8llDrMYboIAtREpBLmq4Ka/R0UWcfbVlTJCY4CjDigRzoA/Xr1YIOvN57dKwMbXAfJL6vh7ZW7+W/MC4wzawj96hHY9FGgw1JKKdXJtbUFaw6QZYwZBmwG7gEQkSHAlcBQYArwHxFxtvFYSinVrmrdXsKkHoJabsECIMYq1d6dn4WVW1RNhuTjiUoDl1VVcUBiJBt9fTB7NwY4uo7x8doC+slusupW8VLo1eQ7k2HRE4EOq0PtLq3h/z7cwOJtxYEORSmluow2JVjGmE+NMR57cjGQZr+eCswwxtQZY7YDOcDYthxLKaXaW3W9l0hqMCHRh10vOCEDgJp93bfYw47iKjKkAGd8/4Z5A5KiyDGpBNUWQXVJAKPrGHPW7+WSmM0AuLOvZEbdyZgdX0PlvgBH1jE8Xh8/mvYN/1uwhfxp11P3xMmQd3yV6d9eVMU9b6/h03UFgQ5FKdWF+HMM1o3Agb4TqUDjEeB59rxDiMjNIrJMRJYVFhb6MRyllDo6NfVuoqQGCYk87HrRvfoBUJ6f0xFhBURuURUnOApwNEqw+vQMJ9dhf49WuClAkXUMj9fHyp2lnB6aAzF9GJmdxafe0QgGcj4LdHgd4vON+9hYUMGrWSu4yLGAkKJ18MZ14HUHOrQO4fUZfjTtG15bupPnpk+n+snT4eN7wOcLdGhKqU7uiAmWiHwmImub+ZnaaJ17AQ8w/WgDMMY8Y4wZbYwZnZCQcLSbK6WU39RVVwAgoYdvwUru1YtSE0FdYfd92HBp0W4iqIGe/RrmOR2Cu8dAa6Kwe3cT3FhQQY3bQ7+a1dD3ZLJSYtjm7EuNMwp2Lgp0eB3ivW/3kBThYuy+mWwKH8UvHfdA2S5Y/26gQ+sQ8zbuY1tRFX+/IIOngx4jvHAVLP4PLH8h0KEppTq5IyZYxpgzjTFZzfy8CyAi1wPnAVcZ01BeaTfQu9Fu0ux5SinVabmrSgFwhMYcdr3ePcLJNUk4S7vvw4ad++3uj3H9D5of2yuDGkKgaHMAouo4K3fuJ0MKCK0rhr4nEexyMCytB2udg2Hn4kCH1+58PsPXW4u5Oq0AKd9DedY1zK4eSl1EKqx5M9DhdYjpS3aQGBXCheZzekgFl3ofxJMyGr7+tz5sWyl1WG2tIjgFuAu4wBhT3WjRbOBKEQkRkQxgALC0LcdSSqn2VltVBkBwxOFbsGLDg9jtSCG8sns+bLi0up74+gMl2k84aFn/pGhyfMl49m4IQGQdZ+XOUs4Is7uA9jkZgBP79uSLmhOs5LKqexd92FBQTklVPWcGrwVxMvDkqTgdTtZEnQJb50Jd934uWFm1my82F3LJiWk4N75PVc+hLHNnsDr1Cti/HXYtCXSISqlOrK1jsJ4AooA5IrJKRJ4GMMasA14H1gMfA7cZY/TrHqVUp1Zvt2CFRfY47HoiQnlYb2Lq94KnrgMi61g7iqs5QfLxSRDE9DloWf/ESLaYNHz7uvcYrBU79/O98BwIj4f4AQCc2LcHSzyDrBW6+Q32VzlFAPQvXwK9xxITG8fIPrG8X5MN3jrI697fmX69tQifgbPTnbBrCWFZ5xEV6uKdymxwBsOG9wMdolKqE2trFcH+xpjexpgR9s8tjZY9aIzpZ4wZZIzRB4copTo9d3U5AKGRh+8iCFAfk4EDA/tz2zmqjpdrVxD0xPQBp+ugZf0TI8nxpRJctQdqywMUYfsqrqwjt7iaLM966HsSiACQnRrDanMCXnHBru7dTXBhTjFj4j0E7f0W+n8PgNHpPXmnMBUjTsj9KsARtq8FW4qIDHGRXb0UMDgGn8OEAfHM2VqNyTgNtn4e6BCVUp2YP6sIKqVUl+atsboIhoQfOcFyJVhjk9yF3a+S4I7iatKlAGfCgEOW9Y2LYNuBorBFWzo4so6xcmcpvSgmunZ3Q/dAgKToECIiIskPOQH2rApcgO2s1u1l6fZiroy3i7j0PxOAMek9KPOFUtVzKOz4OoARti9jDAs2F3JyvzhcWz6CqGRIHsFJJ8RRUF5LWeI4q8hLpVY+Vko1TxMspZSy+Q60yIREHXHdqBSrq1j57u5XTW9nURn9HPk4EwcdsizY5aA61i58UdQ9uwmu2Lmf8S77vfU9qWG+iDAkOZp1Jh0KVkNDXafuZcXO/dS6fZxsVlpdJHsNB+DEPj0B2BI2DHYvA3dtIMNsN9uLqthdWsPp/aIhZy4MnAIijOprdR1e7cqyVtyxMIBRKqU6M02wlFLKZuqsMu2tSbBSU1IoNRHU7u1+rTi1+RsJwgNJWc0uD0/sTz2ubluqfcXO/ZwduQ2CIyEp+6BlQ1OiWVSdBjX7oSwvQBG2r69yinA5DEmFX0O/M8Bh3SrEhAfRPzGShe5B4K23kqxuaMFmq2XqrLDN4K6CQd8HYFBSFBHBTuaWp1h/G7maYCmlmqcJllJK2eQoEqy+cRHkmiQo2dbOUXUsr88QUmInTolDml3nhKQYtvuSu2WhC4/Xx7e7yjiRjdB73CFj0IakRLPaYxf+KFgdgAjb38KcYi7uVYyjuqihe+AB2akxzC6xn8KS1z0TrC+3FNE3LpzE/HkQFA4ZpwHgcjoY0SeWb3ZWWH8bmmAppVqgCZZSStlC3KVUSzg4g464blxEMHnS/Uq17yiuop9vBz5xQfzAZtexKgmm4Nnb/VqwNhZUEOIuJal220HdAw8YkhzNBtMHg0B+90uwyqrdrMkr5YJI+9z2O+Og5dmpMWypCMYb0wf2rAxAhO2r3uNj0bZiTusfD5s+tt5/UGjD8hP79GBDfjn1qfY4rJrSwAWrlOq0NMFSSilbuLuUKldsq9YVEcrDu1+p9k0FFQySXdTF9gdXcLPr9E+MJMekElS+E9w1HRxh+1q5cz9jHHbLXKMCFweckBCJCQqnKLRvt2zBWrTNKk8+vO4bSB4BkQkHLR+WZhWAKYoe2i0TrOU79lNd7+X7iUVQngeDzjlo+fDesfgMbAu2xyd2w89AKdV2mmAppZQt0ltKTdDhn4HVWHcs1b6xoILBjl0EpTQ//gqgX0IkW3xpCD4o7l5VFJft2M9ZoesxQeGQNvqQ5U6HMKhXNJskA/K/DUCE7WvBliKSguuI3LfikO6BYHWRdAhsdvSH0h1QXRKAKNvP5xv2Eux0MKpmESAwYPJBy7NTrQTzm/q+1ow9Kzo4QqVUV6AJllJKYY09ivKW4Q7p2eptXPFWNT1PUfdJMnbs3kOqFOHqNbTFdSJCXJRFZFgThd1nHJbPZ1i4pYhJzjVI+gRwhTS73pDkaJbUpEL5bqgq7uAo24/PZ/hs/V5uTs5BjBcGnHXIOuHBLvonRrKo1h6H1o1acIwxzNmwl5P7xxGy+X3oM/6QFrzE6FB6RYeyfB/Q8wTYrQmWUupQmmAppRRQXFVHnJThC49v9TZRKdYYpbK87pFkGGPw7frGmkgdddh1g5IG4MXRrRKsdXvKCa/eRYJ7d8PDdZszNCWa5fUHCl10n1asVXml7Kuo4xzHUojsBWljm10vOzWWD4uSrIlulGBt3lvJjuJqLu1TDfvWwZALm10vOy2G1bvLIGVUt3r/Sin/0QRLKaWAwvJaelCBM7L1CVZKSmq3KtW+q6SGfnXr8eGA1BMPu27fxJ7sMkmYblSqfcGWQk532OOqmhR3aCwzOZp1vnRrohsVuvh03V6iHHUkFy6EzPMbyrM3NTQlmtwqF54eJ3SrBOPTdQUATPR+DQgMuaDZ9bJTY9hWWEVt4nCrFbNibwdGqZTqCjTBUkopYH9JEcHiJSg6qdXbpMdFkGt6QcnWdoys43yTW8IY2Uh9/JAjlqrvnxjJZl/3qiQ4b+M+Lg5bBT3SIa5/i+sN7hVFuURSHtIL9q7tsPjakzGGT9cVcHPyVsRT02JyAVaCCVAcPRT2rOqgCNuXz2d4a0UeY/v2IHLzO1b3wOiUZtfNtgt95ATZVTZ1HJZSqgm/JVgicqeIGBGJt6dFRB4XkRwRWS0ih+9vopRSAVRZZD00Nrxncqu3iY8MJk96EdFNSrWv2rab0c7NhAxoufXmgAOVBJ37t4HX3QHRta89pTXs3LGNEZ5vIftyEGlx3YgQF317hpPrzICCNR0YZftZuauUbUVVXMrnEJ3abAXFAzKTreR7q2uAVWmvcl9HhdluFm0rJre4mp/3y4eizTDq2hbXzUqxEqxldb1BHDoOSyl1CL8kWCLSGzgb2Nlo9jnAAPvnZuApfxxLKaXag7vE+ucrMjGj1duICGVhfYjuBqXafT5D1ab5BONB+k864vr9EyPZ4kvFYTxQsr0DImxf7327hwucX+PAB8MuP+L6mcnRrHT3tm7Gu0Gp+leX7CQzeB/JxYvgxBsOecByY7HhwSTHhLLMbY9D6wbdJF9dspPY8CBOLpkFYT1g6EUtrpsQFUJSdAir97qth3FrC5ZSqgl/tWA9BtwFmEbzpgIvGctiIFZEWv/VsFJKdSDffivBColPP6rt3N2kVPvq3WWMrf0atysC+p5yxPXjIoLZG2KXqu7i47CMMcxcuoNrQxdCykiIH3DEbQb3imZRdQoYH+xb3wFRtp/9VfW8v3oP9yZ+DQ7XYVtvDshMjmZuqd2dNn9V+wbYzvZV1PLJugJuGgLOTR/AyKshKOyw2wxNiWHtnjJIGWF1kzTmsOsrpY4vbU6wRGQqsNsY07SUUiqwq9F0nj1PKaU6HUf5Ljw4IarXUW3njO8HdP1S7Z+t2cFk5zLMgCktlidvTERwxNtjUIq6diXBBVuKSN//FX28O2DcLa3aJjM5inU+O8Es6NrjsF74ajsx7iJO3v8uZF8GUUceh5iZHMWaIjA9Mrr8A5efmr8VA1xX/xo4g+Gknx1xm6yUaHL2VVKfMAyqi6xiF0opZWtVgiUin4nI2mZ+pgK/A+471gBE5GYRWSYiywoLC491N0op1Sah1fmUuhLA4Tyq7aJSBwNQvrvrJhlur4/K5W/QQyoJHnPk1osD0nolsIeELl2q3RjDk59v4faQ9zAxvSHrklZtl5kcTZ5JoN4V2aXHYeWX1fDcwu08kvgJDuODiXe3arvM5Gi8PkN5bGaX7iK4q6Sa6Yt38ssh1VZxi/G3tOpLlqGpMfgMbAu2i6F0w4dOK6WOXasSLGPMmcaYrKY/wDYgA/hWRHKBNGCFiPQCdgO9G+0mzZ7XdN/PGGNGG2NGJyQkNF2slFLtzuszxNfvoSr86BvZU5JTKDUR1BRsbofIOsac9Xu50P0hVVEnQMbprd6uf2Ikm70pePZuaMfo2tfHawuI2/Uxw8wm5NTbwRnUqu3SeoQRGRrM7pB+XTrB+sv7G8jybWJCxQcw+kargmIrHKgkuDO4P+zfDrVl7Rhl+zDG8PtZawlzevlp2WMQmQin/LJV22alWoUuVtSlWoUuukk1RaWUf7Spi6AxZo0xJtEYk26MScfqBjjKGFMAzAautasJjgfKjDH5bQ9ZKaX8q6CshhNkN3Wx/Y562/T4cHJNL6SLFnrw+QxfzJnFCMdWwk75yWGr5zXVLzGSLSYVR/EW8HnbMcr2UVnn4ZHZy/lzyCuYpGwYdX2rtxURMntFs8HXxyrV7vO1X6DtZM76vcxds52nop5HolPhjN+3etv0uAhCgxys9qZbM7pgkvnSoh18sbmQl/rNJahwLZz7D6vARSukxIQSGx7E6oJ6SBisLVhKqYO053OwPsRq4coBngVubcdjKaXUMduxM5cYqSYoKfOot02IDCFPehFemev/wDrA+6t3c1Xpf6kO7YWjFcUNGuufYJVqd3jroLRrlao3xvDA7LXcXvsEcexHznvssJXzmpOZHMXXVSlQX2m14nQh24uq+NXMlTwT/Tw9anbABf+G0OhWb+90CIOSoviywn5WVBfrJrgst4Q/v7+e3/bZwPDtz8HIayDzvFZvLyJkHSh0kTy8yxf6UEr5l18TLLslq8h+bYwxtxlj+hljso0xy/x5LKWU8peSXOvb97j07KPe9qBS7e5af4fWrsqq3Wx4/3GGObYTes4DEBx+VNunxoaxw2H3BO9i47BeWbyDqFXPcIFzETLpXug95qj3kZkczSq3/f67UAvOvopafvTCUn7jmM6E+oXImfdDvyOX5m8qMzmaxYVOTGSvLtWCs3Z3GT96cRkXRm3kluK/QdpYOPfvR72foanRbC6oxJM0HCr3QkVBO0SrlOqK2rMFSymlugSv/e17dJ+jT7AA6g+Uau9CrTjGGB6f8R6/cL9ARcopOLIvO+p9OByCt6ddSXBf1xmH9f7qPaz94En+EDQdk3kBnPqrY9pPZnI0W0waPnF2mQQrv6yGq5/5mmsrn+VaMxvG/LjV446aykyOprTaTV1CVpepJPjtrlKufm4JU12LecTzEBI/CH44s1WVM5vKSomh3utjV6hd6ELHYSmlbJpgKaWOe1Elaylxxh91ifYDDpRq9xZu8WdY7erlz5dxde7dmOAIon7wPDiO7b+D5F692Edcl2nBeuObnax//U/8zfUMnvSJyCX/O+b3PqhXFG4JpiQs3RqH1ckt2FzIpf+aw2/LH+R6+QDG/gTOeeSoxt01dqDQRX7YQOv8d/IHLs9auZsr//sVP3O8xQPuvyOpo+C62RDe85j2d6DQxcq6PoB0qVY8pVT7OroO50op1c3U1HtJr9tEcc8hHNttFkSnDIZ1UL5nMz2G+DW8dvH2lysZteDHpDpLcV793jEnlmBVEty4PoX4fRs69Td2bq+PR99bSf9l93OXawGeIZfguvipY2q5OCA0yElGfARbTAbxnbgFy+sz/OuzzXwx/xNmhj5FqqMApjwM437Spv0OTo4CYCMZZBgv7F0PaSf6I2S/qqzz8Jf31/PFN6t4M/pZhtavhmFXwgWPt+n89+0ZTmSIi1X73FwcP0DHYSmlGnTm/w+VUqrdrd++ixMkH0fqqGPeR3Jysl2qvXO3YBljeP79uYyccwUDnPnIla/g7DuuTfvsnxjJZpNmtWB00kp6a3eX8et/TuOyFVdzqetLfBPuwnXp/9p0c31AZnI0K2pTrQfNVhX7IVr/2lFcxY+e+YKwBX/m7eD7SYkU5NrZbU6uAKJDg0jrEcbiGvvxBgWdqwXHGMMn6wo497G5RK18mvnhv2WI2QoXPgUXPd3m8+9wCEOSo1m3p9wudNG53r9SKnC0BUspdVzbs2ExJwIJg8Yf8z4y4iPINb1IKtnqv8D8rKzGzesvP8Vlux8iKMiJ45rZBKUf+3s+oH9iJPNNGg5vLZTmQs8T2h6sn9TUe3nq4xXEf/MwjznnUB8ej1w+Czlhot+OkZkczddrU7gtGNi7Bvy477aoqHXzvwXbyPlyBv/neJFkVzGMuAomP9jqUuStkZkczcJ9AqExnaqS4KaCCh54fx2+bQuYFvoKGa4d0H8KnPO3Vj/rqzWGpkYzY+kufMOG41jzBlQWQqQ+01Op450mWEqp45p753IAok8Ye8z7SIgKYTHJpFfm+Cssv/pqfS75b97NTb6P2BeVScwN05G4o3/mV3PS4yLYRpo1UbipUyRYxhg+X5fP0tlP86O6F0lwluEe9SNCz77PSgT8aEhyNM/5+loTBYFPsGrqvby0KJdv5s/mJu8M7nBuxB0/BC54Ffq0PaFuKrNXFJ9v2It34DCcnaAFp7iyjn99voUNSz7l18FvMS54LSYqDc55DQZ/3+/Hy0qJocadS374QFLBasUacKbfj6OU6lo0wVJKHdd67F9NUVAy8RFxx7wPEaE8rDfRdV9ZpdqDQv0Y4bGrqKnj09ce59QdT3CKlFKY9SMSL3wIXMF+O0awy0Fd7ACowqokOOgcv+37WKzetZ9P336e84uf50xHHpXx2TgufoeQNnQBPZzM5GhKiKYqJJGIAI7DqvN4mbF0F/M//5Ab66fzE+da3JFJMOnvBI26/qif8dVaQ1Ki8RkojhpE4sZXwOtpt2MdTnFlHc98uY1VX3/GbfI6DwSvxheeAKc9hJx4PQSFtctxh6ZahT5WefraCdZKTbCUUppgKaWOX/ml1QzxbaQs7iTi27iv+tgMHHsN7M+FxMH+CO+YeX2GeZ+9T6+v/8QlbGF3xBDqLp9Jgh+6BDanV1IS+7bHk1i4sV323xqb91bw/rszmZT3FL925FAW2RfPOdOIzLrwmKvktUZSdAg9woPYGdyPzIKOryTo8fp4a0UeH8/5hKtrpvOCcyXuiDg4/a8Ejb6x3RKLA4YkWy2CW50nkOiphaLNkNRxlV4OJFbLvp7HbbzOPc6VeEN7woQ/4xjz46N+ttvR6p8QSYjLwap9Ps7teUKHj8PKL6vhv19s46O1+bz8o3EMTIrq0OMrpZqnCZZS6ri1cdMGJkkp7oy2Jx7O+H6wF7xFOTgDmGCtXLue/bN/x5n18yhx9GTnqf+gz8QbjrkUeWv0T4xkY04KCfs20H6pTPNyi6p4673ZjN3+JL9yrKEiNJHa7/2TmNHXdEhLioiQmRzNmpI+ZBa91WEtmF6f4f3Ve5j1yRwur3yFF5zf4A6LwUz4I0Fjb4aQyHaPASCtRxhRIS6W1vXmJLASjA5IsA4kVku+/oKf8gb3OJfhDYmFU/+IswPfv8vpYHByNGt3l0PyCMhb1iHH3VNaw1Pzt/LBN5u4Wj7iQclh3up/MfCs4R1yfKXU4WmCpZQ6bpVu/gqApMwJbd5XdMogWAcVezYTG4BS7XmFxayc8Re+VzQdp/jYPPBmBlxyHz1D2v8b7X4JkWzypXFq4VzE5wWHs92PmV9Ww6vvf0bmpn9zp2MJ1cExVJ/6AFGn/KTDu2hmJkfz1c5kLnd6oHAjpIxot2NZlfH2MvPjuVxY9jLPORfhDY3AnHw3QSfd6vcxZkficAiZKdF8Wezml64w+4HDP2i345VU1fPfBVv56uuvuJWZ3ONcijc4Gk65F+e4WyA0ut2O3ZKslGje+3YPZshwZN3bUF1yzM/WOpI9pTU8MS+Hj5Zt4nrHh3wV+glh3koANm34CDTBUqpT0ARLKXXcCspfTh0hhKQOa/O+kpNT2G8iqS3YTGzbQ2u1mjoPn7/9LCM2Psr5UsSW+EmkXf4oA5P6d1gM/RMjedWk2pUEd7RroYv9VfVM//Qreq38J7fLF3hcYVSNvZOIibcH5OYarATrCU9vcGIVumiHBMsYwxebC3n5oy+ZXPQi/3N9iQkOQcb9kqBTf9luN/StMSQ5mpnf7ML0GYq0UyXBilo3//tyO58uXMTNvtf5rfMrCIqAk3+Lc/ytEBbbLsdtjaEpMUxfspPCqEwSwXoeVr8z/HqMfRW1/GfeVt5ZsplrHB/xVeiHhHsroP+5cNqvKZ92GQOKP6PecxfBLn0Cj1KBpgmWUuq45Pb6SKtaS0FUJn2dQW3eX3pcBDtMEkkl2/wQ3ZEZY1j45Twi593LeWY9eSEnUHj+0wzIPqtDjt9Y/8RItvjsSoL7NrZLglVV52HGvOUEL/onN/EpDqeD6hE3EXXmbwmJaOsIurbJTI5ih0nC4wzH1Q6FLlbs3M8z73/JqXum8bTrCxzBDmTMLTgn3AGRiX4/3tEamhJNjdtLeWwmMTnvWs9D81OX1Jp6Ly8uymXW/MVc636D911fICHBOMb9Ak65PaCJ5QFZdqGL1Z4+nAlWN0k/JVj7q+p5esFWXvt6M5eZOSwMe58oz344YTKcca/1/C2gtPeZnLL1HVZtL2DsgBS/HFspdezanGCJyM+B2wAv8IEx5i57/j3Aj+z5vzDGfNLWYymllL9s2V3IELazI/l6v+wvKTqEpR1Uqn3ztu3sfPMezqj6mApHJNvG/4UTzr61Q7rmNScyxEV9z4FWJcHCjX4th13v8fHmoo1Uzf07P/S9R6i4qcy8gpgpvycoJs1vx2mL/omROB1O9ob3J9WPCVbOvgr+/eFyMnOe5V+uT3AFGRh1Lc7TfwPRnecmelhaLAA5zn6cWFful+eh1Xt8zPhmJy99voKramfwnmsuzmDBMfommHAnRCW1PXA/GZgUhcshrCwSzoztA3tWtXmflXUenlmwjRcX5vB9z+d8EfYuPTyF0Pt0OOP30Pvgx0rEjzqf8G0zyPnmU8YOuL7Nx1dKtU2bEiwRmQRMBYYbY+pEJNGePwS4EhgKpACfichAY4y3rQErpZQ/5K1fwhDxEjvgZL/sryNKte+vqOarGX/jtLxnyJA6NqVfxYDL/kxMZOC/xU9P7UX+lgSS/ZRgGGP4ZO0elr33X26qe5EkKaUk41wizvsTMfED/HIMfwlxOe1xaOmk7p0PxrSpcuHe8lr+8cl6nKte4T7XG8S5ynFnXYHze7/z60Ny/WVAYiRRIS4W16RxIlgPHD7GBMsYw5z1e3n4g9WcXjaLd4NnER5Ui4y8Ck67C2J7+zV2fwgNcjIgKYp1e+xCF22oJOjzGd5ckccjn2xiUNUyPop8jRTJhV5j4XvPQ8ZpzW4XPvAM6iWY4G1zMOY6pB0rZyqljqytLVg/BR4yxtQBGGP22fOnAjPs+dtFJAcYCyxq4/GUUsov6nMXAxCfear/9hmTgWOf/0u1e32Gzz5+m4yl93MeO9kaPZqEy/9FZu8svx2jrbJSYli5IYPE3StoazvapoIKXn7rbS7e+zi/d+RQHjcMc+Hr9Owzzi+xtofM5CiW5KRyhqfcGod2DIlQrdvLcwu38828WdwtLzI4aCfu1HFw7t8IShnp/6D9xOEQRvbtwUd7ndzmCILdy2HohUe9nw355fzl/XWEb/+UaaGvkRaUj+l3JnL2gwF/9MGRZKVEM2/TPsxpw5ENs6FmP4T1OKp9LNlWzAPvr6c2fwNPRb3O6OBvICIdLnwZMs8/fNIeHE5R/FjG7F3KpoJyBid3bLETpdTB2ppgDQQmiMiDQC3wa2PMN0AqsLjRenn2vEOIyM3AzQB9+vRpYzhKKdU6McWrKHT2IiGql9/26UjoB/vAW+y/Uu3L166n7N17mOyeT5Ezgbwz/ku/k69o12c7HYus1Gi+9p3A90uXHnMVtdLqep79cBEZ3/6dvzi/oCY0Du+UJ4ke8cN2LTPvD5nJ0Xz4bTKEYHURO4oE60BlwGnvf84NVc9zm3MZnqg0mDKNoCEXdrpz3ZzRfXvw2JZCPP1G49r+xVFtW1RZxz/mbGbVNwv5Y/ArjAtei+k5CCb/GxnQ8WMKj8XQlGjeWJ5HSdyJxAFs/xKGXNCqbXcWV/N/H23g67U53BvxLpeGfoIQBmc9AONuAVdIq/YTNeJioub8ile++ozBl15y7G9GKdVmR0ywROQzoLk7kHvt7XsC44ExwOsiclT9AowxzwDPAIwePdoczbZKKXUsqus99KvfQHHCaBL8uN+oZLtU++7NxGa2bV97istY8tpfOatwGkHiZcugn9L/kj8gwRH+CdbPhqbE8KSxKxfuWgqDprR6W6/PMGNxDvvm/JNbfG8R5nJTM+bnhJ1xV8AqAx6tYWmxPGrS8bgicG2b1+oWnE0FFTwyeymjdz7Py66PcYQEw2l/wHXSbe3+kGB/OrlfHP+YAzlRYxi84d9QWQiRh7+66j0+Xvw6l+mff8Mtvhn8JXi+VWZ+0iPI6BvAD8VnOsrodOsLhblVfbksJBpy5hwxwaqodfPkvK28tHALVzk/Y0nk24R4K5FR18Gke4/4+TUVdeJl1H12D+HrZ+L1XYzT0fkTc6W6qyMmWMaYM1taJiI/Bd42xhhgqYj4gHhgN9C4o3SaPU8ppQJu88Z1jJASKvuMPfLKRyHFD6Xaa91ePnz3NYaveZCLZA9be04g9cp/MqADy64fi54RwZTFjaC+Iojg7QtanWAt2VrEh2+/yPUV/yXDsZeKvmfimvowrrh+7Ryxf41O70FoaCgbw08ka8ucI1bS219Vz7/mbMC97CUedr1OT1c5vuE/xHHmH8GPraodZWSfHsRFBDOrejh3Y2D9LBh7U7PrGmP4dP1e/v7Bt0wqe4ePgt8l1FmPjPkJnH5Xp6gMeLSGpkSTGhvGx+uLuWzAWbDhPfj+o822Pnl9hjeX7+KRjzcxrGYx8yJfJ6l+J/SZCJP/CklDjy2I0GiKek/mzB2fsXDDLk4fqr2ClAqUtnYRnAVMAuaJyEAgGCgCZgOvisg/sIpcDACWtvFYnY7H7aakMJ+y4nzqSgtwV5bgrinHW1uBr6Yc6itxeqpweapweOvB58HhcyM+D07jxmk8uPAgxgciGKwfHwIIVnOeWMvEiU9c+MSF1xGEERfG4cLnCLJ+SxDGGQQOF8Zh/3YGg8NlfQvoCAJnMOJ0Wb8dLhxOJ+J04XC6cDicOJxOHM4g67fDhcPlxOkMwuF04XRa6+NwWZXKxAHiQMRxIEp7UK31jZk0+uZMhIYBt4IcWAURR5OeLwd/22aabc80GJpZYAzNzT6wRUtM8wexjt3CsgN7PWR9vjtrzR7fNL9N0/0dsoeGFVt4380vae6QjWa28L5b2E93U/bN6wAkDG99K0trpMeHs8WkklG47qi3NcYwf+kK+OReLvYtYl9wCkXnvEy/Ua3rZtQZjOmfzPIVgxiXMwcHfz3surtLa3junY85fds/+JNzNZUxJ2AueJOoLtIlrKkgp4OJgxKZsWUEf/EtgB1fQcahD7B2e328sngHi+a8xR2+F8l0fTfOytGJx1kdidMhnD00iRdXevhN0mCcK1+BMT8+pHvj+j3l/Pm9dcTveJ+XQl6nV9A+6D8ZJj8Inax4ydEQEc7J6sWLi3IpufwSeq59y0qysi89aL0vtxTy4AcbkL1reT5qJsOCV0FUfzh7Bgyc0ubuoImn3UTQK7PJ/fxZTh/65zbtq9vxefHUVlJXV0t9fR3uuhrq62px19fhcdfhrq/DV18LPjd43RjjtW4tfF4wBmN81j2D/dv4fBjjA2PdtVk3Qg77Pkes+yNx2DdBDqRh3nfTB5aLw4FwYJnY90f2Oo6D13WIwz6eNNxHffd/tzTcfwkOTJN7su+Kn0jD39qBezcBjEjDvhvdrB283UH7acy+H2ly43Hgvqile5uW7vWa8oXEEN+rN1GhXaNlu60J1vPA8yKyFqgHrrNbs9aJyOvAesAD3NYVKwiWlRSSv/VbKgq24S7OxVG2k/CafKLr9xHtKyXWVJAohpaeQlJHEFWEUSthuCUIr7jwipUceR1BeCWMepwYHIgYMKYhtTrwg7ESCvF5cZpaQnweHHhwGg9O48WF2/7twYUXl520BUuX+7iV6jDpQIEk0KuPf4tEJEWF8qkMYGT5p+B1t7qL0+a8fXw788+cVz4DEdgx4k76nntXu1QibE9nDUnig6VjOKnoBShYC70O/Xxr6r1M+2w5kYsf5XcyB29wOPWT/kLkSbd0qS5hzbl4VCq3fDuK+6KiCV705EEJljGGuRv38ep7H3N1xXPc4PyW+pjeMPkFgoZe1CXGWR3JNePTeW3pLubGXMxZW/8Kmz6EwecCsKukmifnbmHXio+5O/gNhgdvwSRmweRn4YSJgQ3cT647OZ0Xvs7lH1tT+UtCJsz7Kww6B4IjWJ1XyqOfbiZvy7f8Jvx9poR8Ac5YOOdhGH2j3/72g/pNoCAqm+8Vv8q6nb9gaB9/doIOLE9tJWXFeynfv5fq/YXUlBfhqSqG6v046kpx1ZXiPPDFtreGEF81Ib4aQk0NYaaWMKnHhXXj2zk7WqvDecEzmYTL/8l5wzrPIyoOp00JljGmHri6hWUPAg+2Zf+BtuGTZxi/6eGG6RKiKXYlURLam72hIzERCTgiEwmOTSI4KpHQ6DjCo2KJiO5BRGQsIUHBtG5oajswBuPz4HXX4XG78Xjq8dXXWb899rTXi8fjxuf14vV68Hk9eL1efB43Pp8Hn9dr/fZ48Pm8GK8HjBexf/Ad+FbiQCLYcPBG30g0blk6eH7j103arvjum5Pm3pw0O9sgh7lHOczNy2FvbA5ddmD1plFLM68OndVkm0aT5nB7OFyMLS47+s+w5fW7n/gTRvn9ptbhECrihxFU/D7sXQtHaJEorarj47ee45St/+AyKWR7r7PpfcWj9O3Z169xdZTxJ8Txp7DTcHteIWjJUzD1yYZlHq+Pd5dtY/ecf3Od+3WiHLVUD7uGyMn3QYAfFOwvEwcmcEJyPP8rP59bN0+HldOpz/4B8zYWMHfOe0wseYNnncvwhkZhJv6Z4HE/aXUBg65gSEo05w5L5hdrvSyOH0TUrNvYNLqIj/OCKM1Zyg8dXzAseBu+iCQ480lk+A8C9uy29tC7ZzjXjO/LtK9zGTP251yw+jYKn76A6eZsivflc1PQKk4NWQUSipx0G5z266OuNHhEIkRPuZfwN65k3qx/MuTnf+n0Jdt9Hg8le3Mp27OVyqJd1O/fg6+iAGfVXkJrC4n2FNHDV0IUNcSBVUSkiWoTQrlEUi0R1DvCcDvDqAmJxeuKwBsUgc8Vji8oAl9QOOIKweEKxhFk/XYGheAMCsUZZL0WZzA4XYjDabUQIYjDabUeORyIQ3A4nFaLlMMBdstTQ+uWz+5p4/Phs1u4fD6rf5LxNW4J8+IzBmnUIobxYTi41cxuRsNn/7ZuuXwHtRQZY30pf1CPmYbFvu/mNelRYwyNtjuwzcH3bRjfd6+bLj7EgRaug+c2vV/6bvVGvZsary+H3or0i0ynXx8/Xy/tSFrqIhUIo0ePNsuWLQt0GA32bN9I4fbVxKb0J6l3f0IjusZga6VU4Dzz4dfcvPQcaib8jrDv/bbZdeo9Pt7/bC7Ji+/nJNZQENqP8Kl/JzpzUgdH63///WIrrjn3cqPrE+TyaVSd8H3mLV3Jni9f4sL690iUUkpTTiP2wochsY2VQDqhdXvK+OHTC3jG8X+MYx17iCfc1BArVdS7onCOuwnnKT/vkuOMWqO0up7rnl9Kye7NTAt6mH6O/IZl7p4DCTr5Vhj+gy7XOttadR4vP3t1JXPW7+VCx0IeCJpGtFQD4ItOwzHiBzD2J0ddwOKoGMPux88mpmQ1S8/5gDPGj26/Y7VSVWkh+7atobwgh/rC7UjZTsKq8oitzyfRV0RQk143tSaIEkdPyl1xVIfEUxeaiDciEUdkAsGR8YTFxBMZm0BEjwQiYxMICQ3v9Imk6p5EZLkx5pCLTBMspZTyozV5ZXifmUSf2GB63rHooK/yjDEs+GYFVZ/+lcnuz6lxRlJ50l30OuNWcLa1x3bn4Pb6uPG/8/lNwa8Y5thOvXE2dFkuTjyZnlPuRk44PcBRtq/Neyt4du4Ghux5ixGOHBLietJr2PdwZZ4HIZGBDq/dub0+5m8qpKisksH1axmSEExIYv8uPcbqaK3fU87e8lrSIqG/Yw8SkQDRKR3WFdRTnEv9v8ezhTRibv6Q9JSWBjP4j/F52Ze3lX3b1lC1Zz1SvIWoim0k1e8kjrKD1i0klmJXLyrDUnFHpUFsX4LjM4hO7EPPXn3o0SMeh7NzP5pBKdAESymlOoQxhsf/7y5+Wf8M3h++iXPgWfh8hoVLFlE2/0nOrv0YEaFg0DX0vuBepJt0j2us1u3l9UVbiNz4OmnsJSk1gz7jLkTiO3clRKW6k6Jv3qLHBz/iWxlC9LXT6Z+R4Zf9eupqyN++juLcNdQVbMRVsoXYqlySPXmES13DemVEkB/Ul/LIDDw9+hOUNJiY1EEk9RlATLT2CFLdgyZYSinVQT5amcugdybTy1nOuujTCCnfzjCzCQ9Odva+kD4X3Y+rp5ZQVkq1r90LXiR+7p2Um3BWZdzEqPN/SlxcK77UMYaa0r3s3baasl3rce/bREjpNnrW5tLLuxenfHfvmE8C+0L7Uh3dD4kfSGTaUHr1yyYuIcUeo6RU96UJllJKdaA3P1tI8tf3Mdi3lf0hKXj7nUX/yT/FGZMc6NCUUseR4m3L2f/GL+lfs4Y642Jb8AAqovrjC09AgsJwGje++mpcdaWE1hQQWbePnt4iIqlu2EetCSLPmcr+sD7UxVqtUbG9h5LSL4uo6NjAvTmlAkwTLKWUUkqp45Ex5K2eT8GS1wkrXEOKO5doU9nQElVjgqkgghJnPBUhibjDk/DEZhCUOJD49Gx6ZwwkNLhrP0ZBqfbQUoLVPUZVK6WUUkqp5omQNnwSacO/q1Tq8/qoqq1BXEGEBQcRJtLicz2VUkdHEyyllFJKqeOMw+kgIkIfuatUe9DRh0oppZRSSinlJ5pgKaWUUkoppZSfaIKllFJKKaWUUn7SqaoIikghsCPQcTQRDxQFOgjVYfR8Hz/0XB8/9FwfX/R8Hz/0XB9fOuP57muMSWg6s1MlWJ2RiCxrrvyi6p70fB8/9FwfP/RcH1/0fB8/9FwfX7rS+dYugkoppZRSSinlJ5pgKaWUUkoppZSfaIJ1ZM8EOgDVofR8Hz/0XB8/9FwfX/R8Hz/0XB9fusz51jFYSimllFJKKeUn2oKllFJKKaWUUn6iCZZSSimllFJK+YkmWIchIlNEZJOI5IjI3YGOR/mPiPQWkXkisl5E1onIL+35PUVkjohssX/3CHSsyj9ExCkiK0XkfXs6Q0SW2Nf3TBEJDnSMyj9EJFZE3hSRjSKyQURO0mu7exKRO+x/w9eKyGsiEqrXdvchIs+LyD4RWdtoXrPXslget8/7ahEZFbjI1dFq4Vw/Yv87vlpE3hGR2EbL7rHP9SYRmRyQoA9DE6wWiIgTeBI4BxgC/EBEhgQ2KuVHHuBOY8wQYDxwm31+7wY+N8YMAD63p1X38EtgQ6PpvwGPGWP6A/uBHwUkKtUe/gV8bIwZDAzHOu96bXczIpIK/AIYbYzJApzAlei13Z1MA6Y0mdfStXwOMMD+uRl4qoNiVP4xjUPP9RwgyxgzDNgM3ANg369dCQy1t/mPfd/eaWiC1bKxQI4xZpsxph6YAUwNcEzKT4wx+caYFfbrCqwbsFSsc/yivdqLwIUBCVD5lYikAecC/7OnBTgDeNNeRc91NyEiMcBpwHMAxph6Y0wpem13Vy4gTERcQDiQj17b3YYxZgFQ0mR2S9fyVOAlY1kMxIpIcocEqtqsuXNtjPnUGOOxJxcDafbrqcAMY0ydMWY7kIN1395paILVslRgV6PpPHue6mZEJB0YCSwBkowx+faiAiApUHEpv/oncBfgs6fjgNJG/3Dr9d19ZACFwAt2l9D/iUgEem13O8aY3cCjwE6sxKoMWI5e291dS9ey3rd1bzcCH9mvO/251gRLHddEJBJ4C7jdGFPeeJmxnmGgzzHo4kTkPGCfMWZ5oGNRHcIFjAKeMsaMBKpo0h1Qr+3uwR57MxUrqU4BIji0i5HqxvRaPj6IyL1YQzumBzqW1tIEq2W7gd6NptPseaqbEJEgrORqujHmbXv23gNdCuzf+wIVn/KbU4ALRCQXq6vvGVhjdGLtbkWg13d3kgfkGWOW2NNvYiVcem13P2cC240xhcYYN/A21vWu13b31tK1rPdt3ZCIXA+cB1xlvnt4b6c/15pgtewbYIBdjSgYazDd7ADHpPzEHoPzHLDBGPOPRotmA9fZr68D3u3o2JR/GWPuMcakGWPSsa7jucaYq4B5wKX2anquuwljTAGwS0QG2bO+B6xHr+3uaCcwXkTC7X/TD5xrvba7t5au5dnAtXY1wfFAWaOuhKoLEpEpWN37LzDGVDdaNBu4UkRCRCQDq7DJ0kDE2BL5LhlUTYnI97HGbjiB540xDwY2IuUvInIq8CWwhu/G5fwOaxzW60AfYAdwuTGm6QBb1UWJyETg18aY80TkBKwWrZ7ASuBqY0xdAMNTfiIiI7AKmgQD24AbsL5Q1Gu7mxGRPwFXYHUfWgn8GGsshl7b3YCIvAZMBOKBvcAfgVk0cy3bSfYTWN1Eq4EbjDHLAhC2OgYtnOt7gBCg2F5tsTHmFnv9e7HGZXmwhnl81HSfgaQJllJKKaWUUkr5iXYRVEoppZRSSik/0QRLKaWUUkoppfxEEyyllFJKKaWU8hNNsJRSSimllFLKTzTBUkoppZRSSik/0QRLKaWUUkoppfxEEyyllFJKKaWU8pP/ByFOx+0jUs3oAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1598,31 +1598,31 @@ " 12\n", " False\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " bAP.soma.v\n", - " 0.00677\n", - " 1.95e-07\n", + " 0.00735\n", + " 5.06e-07\n", " \n", " \n", " 13\n", " False\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step1.soma.v\n", - " 0.0711\n", - " 4.35e-07\n", + " 0.0678\n", + " 8.95e-07\n", " \n", " \n", " 14\n", " False\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step3.soma.v\n", - " 0.0714\n", - " 5.95e-07\n", + " 0.0655\n", + " 3.39e-07\n", " \n", " \n", "\n", @@ -1630,14 +1630,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "12 False 4 0.0508 0.0136 bAP.soma.v \n", - "13 False 4 0.0508 0.0136 Step1.soma.v \n", - "14 False 4 0.0508 0.0136 Step3.soma.v \n", + "12 False 4 0.0553 0.0212 bAP.soma.v \n", + "13 False 4 0.0553 0.0212 Step1.soma.v \n", + "14 False 4 0.0553 0.0212 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "12 0.00677 1.95e-07 \n", - "13 0.0711 4.35e-07 \n", - "14 0.0714 5.95e-07 " + "12 0.00735 5.06e-07 \n", + "13 0.0678 8.95e-07 \n", + "14 0.0655 3.39e-07 " ] }, "metadata": {}, @@ -1645,7 +1645,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADh80lEQVR4nOzdd3gc1dX48e/Zot5sNcuSbMm9ygZsY4LphBKKIRAMoRlCCJAQIJSQRntD3ryEH4SWOBASEooxHdO7AdPcu7FxkS3bkq3eV9vu748ZCVlWM1ppVc7nefbRzsyde8/OeNd79t65I8YYlFJKKaWUUkp1nSPcASillFJKKaVUf6EJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSinVy4hIjogYEXGFOxY1MIjIehE5NtxxKKVUf6AJllJKqT5PROaJSI398IqIr9nyW+GOr7czxkw0xizqjrpFZLCIFIvI4u6oXymlehvRGw0rpVRoiYjLGOPvwv45wHbA3ZV6BioRuQMYZYy5qJVtXTo3PakvxdoeEXkMGAs4jDGzwh2PUkp1N+3BUkqpEBCRfBH5tYisAWpFxCUiM0XkcxGpEJHVzYdgicgiEflfEVkiIlUi8qqIDG6j7stEZKOIVIvINhH5WYvts0VklV3PVhE5xV6fKCKPi0ihiOwWkT+KiLOD1zFSRD4UkVIRKRGRp0Ukqdm2MhE51F4eavdMHGsvn2kPNauwX9/4FsfnJhFZIyKVIrJARKIO/kgfvDbOjRGRUc3KPCEif2y2fLp9TCvsc5jXybaOFZFdIvJb+/jli8iFzbafJiIr7XNVYCeDjdsah4b+RER2Ah/a658XkSL7uH0iIhNbxP03EXnL7q37TESGiMhfRaRcRL4WkUM6eYxO7MxrPBgi8j1gEvDvUNetlFK9lSZYSikVOhcApwFJQDrwBvBHYDBwE/CiiKQ2K38JcDmQAfiBB9uodx9wOpAAXAbc3yzJmQH8F7jZbvdoIN/e7wm73lHAIcBJwBUdvAYB/hcYCowHsoE7AIwxW4FfA0+JSAzWl+b/GGMWicgYYD5wPZAKvAm8JiIRzeo+DzgFyAXygLmtBiAyy05s2np8l16QpnPTUa+QnZD8C/gZkAz8A1goIpGdbGsIkAJkApcCj4rIWHtbLdZ5T7LjuVpEzmqx/zFYx/5ke/ktYDSQBqwAnm5R/jzg93abDcAXdrkU4AXgvk7G3SoRubW989HOfk7gYeAXgA6XUUoNGJpgKaVU6DxojCkwxtQDFwFvGmPeNMYEjTHvAcuAHzQr/6QxZp0xphb4A3Beaz1Mxpg3jDFbjeVj4F3gKHvzT4B/GWPes9vZbYz5WkTS7bauN8bUGmP2AfcD57f3AowxW+y6GowxxVhfzo9ptv0xYAvwFVZi+Dt70xzgDXtfH3AvEA18r8Xx2WOMKQNeA6a2EcNiY0xSO4/vci1P83PTkSuBfxhjvjLGBIwx/8FKXGYeRHt/sI/hx1iJ9nkAxphFxpi19rlag5WUHtNi3zvsc1Zv7/MvY0y1MaYBK9mdIiKJzcq/bIxZbozxAC8DHmPMf40xAWABVnL9nRlj/tze+Whn118CXxljlnelfaWU6mt0hiqllAqdgmbPhwM/EpEzmq1zAx+1UX6HvT2lZaUicipwOzAG64exGGCtvTkbq7eopeF2fYUi0rjO0aLNA9iJ2QNYCVy8vU95i2KPAQuBK+0v/WD1eO1oLGCMCYpIAVYvTqOiZs/r7H16Sruvu4XhwKUicm2zdRF0Pt5yO2lutKNxXxE5HPgz1rC5CCASeL6tWO2E+27gR1g9g0F7UwpQaT/f22zf+laW4zoZd8iIyFCsBOuwnm5bKaXCTXuwlFIqdJoPgyrA6qFq/mt/rDHmz83KZDd7PgzwASXNK7SHpb2I1SOUbvcYvIk1lK+xnZGtxFKA1euS0qz9BGPMxFbKNvcn+3VMNsYkYPXENWVoIhIH/BV4HLhDvr1ubA9WYtJYTuzXt7uD9g4gIkfJtzMAtvY4quNaDtByiFodVqLaaEiz5wXA3S3OXYwxZn4n2xokIrHNlodhHR+AZ7CS02xjTCIwj2bHt5VYfwzMBk4EEoEce33LfbqNfT1Zm+ejjd1mYPVwbhCRIqykfYZ9LVm71wEqpVRfpwmWUkp1j6eAM0TkZBFxikiUPQFCVrMyF4nIBPt6pruAF+xhXc019nIUA367N+ukZtsfBy4TkRNExCEimSIyzhhTiDWU8P+JSIK9baSItByO1lI8UANUikgm1rVdzT0ALDPGXIE19G2evf454DQ7DjdwI1aC93lHB6olY8ynxpi4dh6fHmydrVgF/Ng+N6ew/zC9x4CrRORwscTak1PEQ9PEEk90UP+dIhJhJ4On820vVTxQZozx2NfP/biDeuKxjmMpVkL4p4N4jSFhjPlTe+ejjd3ewkoGp9qP24CVwNRW/o0rpVS/ogmWUkp1A2NMAVbPw2+xkqMCrGSl+efuk1gTURQBUVhDqlrWU22vfw5rqN6PsXpAGrcvwZ74AmvI2Md825N0CVaCtsHe9wWsXoX23Akcatf1BvBS4wYRmY01ScXV9qpfAYeKyIXGmE1YvV0PYfXCnQGcYYzxdtBeuFyHFWMFcCHwSuMGY8wy4KdYEzSUY11zNrfZvtnAZ+3UXWTvtwdrQoqrjDFf29uuAe4SkWqspOO5DuL8L9YQw91Y5/HLjl5Yb2Bff1bU+MD69+SznyulVL+m98FSSqkwEJFFwFPGmH+GOxbVefasiKuBPHsyj5bbj8U6r1kttymllBoYdJILpZRSqpPsHrnxHRZUSik1YOkQQaWUGmBEZF4bExbM63hv1ReJyLB2JqoYFu74lFKqPwnZEEF7VqBlwG5jzOkikgs8i3WTxuXAxb14LL5SSimllFJKdVkoe7CuAzY2W/4/4H5jzCisi31/EsK2lFJKKaWUUqrXCUkPlj3t8H+wbob4K6yZmYqBIcYYv4gcgXVn+pPbqyclJcXk5OR0OR6llFJKKaWU6i7Lly8vMcaktrYtVJNc/BW4Bet+HWANC6wwxvjt5V1AZms7isiVwJUAw4YNY9myZSEKSSmllFJKKaVCT0R2tLWty0MEReR0YJ8xZvl32d8Y86gxZpoxZlpqaqtJoFJKKaWUUkr1CaHowToSOFNEfoB1o8wE4AEgSURcdi9WFtZNEpVSSimllFKq3+pyD5Yx5jfGmCxjTA5wPvChMeZC4CPgXLvYpcCrXW1LKaWUUkoppXqz7rzR8K+BZ0Xkj8BK4PHvUonP52PXrl14PJ6QBqf6pqioKLKysnC73eEORfVjNQ1+rn92FbNGDmburBHhDkcppZRSfUhIEyxjzCJgkf18GzCjq3Xu2rWL+Ph4cnJyEJGuVqf6MGMMpaWl7Nq1i9zc3HCHo/qxd9bs4vwtN5G7tQjPtFVERUWFOySllFJK9RGhvA9Wt/B4PCQnJ2typRARkpOTtTdTdbuKLUs40bmSkY5Ctnz5WrjDUUoppVQf0usTLECTK9VE/y2onhAo3tT0XDa9GcZIlFJKKdXXdOc1WEop1SfF12zDj4u1jrEMLlsX7nCUUkop1Yf0iR6scBMRbrzxxqble++9lzvuuCN8ATVz7LHHtntz5rPOOouZM2fut+6OO+4gMzOTqVOnMmnSJBYuXNjdYSrVp6R7d1IWlUVx4mQyGraB3xvukJRSSinVR2iC1QmRkZG89NJLlJSUhLReYwzBYDCkdTZXUVHB8uXLqaysZNu2bfttu+GGG1i1ahXPP/88l19+ebfGoVRf4vUHSQ2WUBudiT9tMhH4aSjaGO6wlFJKKdVHaILVCS6XiyuvvJL777//gG3FxcWcc845TJ8+nenTp/PZZ58BVi/Rvffe21Ru0qRJ5Ofnk5+fz9ixY7nkkkuYNGkSBQUF3HzzzUyaNInJkyezYMECABYtWsSxxx7Lueeey7hx47jwwgsxxrQa35NPPtnUG7VkyZKm9S+99BJnnHEG559/Ps8++2yr+44fPx6Xy7Vf8njrrbcyYcIE8vLyuOmmmwDIz8/n+OOPJy8vjxNOOIGdO3cCMHfuXK6++mpmzpzJiBEjWLRoEZdffjnjx49n7ty5TXVeffXVTJs2jYkTJ3L77bcfEEdlZSXDhw9vSvRqa2vJzs7G5/O1GrdS3aWs1ksitRA9iOih4wEo2bEhzFEppZRSqq/oU9dg3fnaejbsqQppnROGJnD7GRM7LPfzn/+cvLw8brnllv3WX3fdddxwww3MmjWLnTt3cvLJJ7NxY/u/dn/zzTf85z//YebMmbz44ousWrWK1atXU1JSwvTp0zn66KMBWLlyJevXr2fo0KEceeSRfPbZZ8yaNeuA+urq6li1ahWffPIJl19+OevWWdeMzJ8/n9tuu4309HTOOeccfvvb3x6w71dffYXD4SA1NRWA0tJSXn75Zb7++mtEhIqKCgCuvfZaLr30Ui699FL+9a9/8ctf/pJXXnkFgPLycr744gsWLlzImWeeyWeffcY///lPpk+fzqpVq5g6dSp33303gwcPJhAIcMIJJ7BmzRry8vKa4khMTGTq1Kl8/PHHHHfccbz++uucfPLJer8r1eNKahoYJrWUxySRNnwCALV7vg5zVEoppZTqK7QHq5MSEhK45JJLePDBB/db//777/OLX/yCqVOncuaZZ1JVVUVNTU27dQ0fPrzpuqjFixdzwQUX4HQ6SU9P55hjjmHp0qUAzJgxg6ysLBwOB1OnTiU/P7/V+i644AIAjj76aKqqqqioqGDv3r188803zJo1izFjxuB2u5sSL4D777+fqVOnctNNN7FgwYKm2fkSExOJioriJz/5CS+99BIxMTEAfPHFF/z4xz8G4OKLL2bx4sVNdZ1xxhmICJMnTyY9PZ3JkyfjcDiYOHFiU8zPPfcchx56KIcccgjr169nw4YDewTmzJnT1IP37LPPMmfOnHaPo1Ldoba+gQSpQ6IHMTwjlSIziGDJlnCHpZRSSqk+ok/1YHWmp6k7XX/99Rx66KFcdtllTeuCwSBffvnlATcidblc+13X1PzeTbGxsZ1qLzIysum50+nE7/e3Wq7l1OUiwnPPPUd5eXnTDXmrqqqYP38+d999N2Bdg9U4/K9l3EuWLOGDDz7ghRde4OGHH+bDDz/sVJwOh2O/mB0OB36/n+3bt3PvvfeydOlSBg0axNy5c1u9l9WZZ57Jb3/7W8rKyli+fDnHH398u+0q1R28dRUASPQg4iJdbHIMZXBVflhjUkoppVTfoT1YB2Hw4MGcd955PP74403rTjrpJB566KGm5VWrVgGQk5PDihUrAFixYgXbt29vtc6jjjqKBQsWEAgEKC4u5pNPPmHGjBkHFVdjr8/ixYtJTEwkMTGR+fPn8/bbbzdd97V8+fI2r8NqrqamhsrKSn7wgx9w//33s3r1agC+973vNe3/9NNPc9RRR3U6vqqqKmJjY0lMTGTv3r289dZbrZaLi4tj+vTpXHfddZx++uk4nc5Ot6FUqARqywFwxg4CoDwqm8ENBeEMSSmllFJ9iCZYB+nGG2/cb0KIBx98kGXLlpGXl8eECROYN28eAOeccw5lZWVMnDiRhx9+mDFjxrRa39lnn01eXh5Tpkzh+OOP55577mHIkCEHFVNUVBSHHHIIV111FY8//jj5+fns2LFjv+nZc3NzSUxM5Kuvvmq1jh/84Afs2bOH6upqTj/9dPLy8pg1axb33XcfAA899BD//ve/ycvL48knn+SBBx7odHxTpkzhkEMOYdy4cfz4xz/myCOPbNp222237TdN/Jw5c3jqqad0eKAKm0BdGQAuO8Gqjx9OYrASPJXhDEsppZRSfYS0NTNdpysQyQb+C6QDBnjUGPOAiAwGFgA5QD5wnjGmvL26pk2bZlre02njxo2MHz++SzGq/kX/Taju9P5rz3Di8qspn7OQQeOPYeGz/+DMr2/B/5MPcWUfFu7wlFJKKdULiMhyY8y01raFogfLD9xojJkAzAR+LiITgFuBD4wxo4EP7GWllOrd6isAiEhItv6mW73P5bv0XlhKKaWU6liXEyxjTKExZoX9vBrYCGQCs4H/2MX+A5zV1baUUqrbNVi3goiyhwgOGmolWHWF34QtJKWUUkr1HSG9BktEcoBDgK+AdGNMob2pCGsIYWv7XCkiy0RkWXFxcSjDUUqpg2Z8dQA4I63ZPjPTBrHXJBEoyw9jVEoppZTqK0KWYIlIHPAicL0xZr+7ARvrQq9WL/YyxjxqjJlmjJnWeLNbpZQKG2+t9TfCSrCGJESxy6ThqtKZBJVSSinVsZAkWCLixkqunjbGvGSv3isiGfb2DGBfKNpSSqnuJL56fLjA6QbA5XRQ4s4gtm5XmCNTSimlVF/Q5QRLrLvcPg5sNMbc12zTQuBS+/mlwKtdbUsppbqbw1+Ph8j91tVEZ5LkL4aAL0xRKaWUUqqvCEUP1pHAxcDxIrLKfvwA+DPwfRH5BjjRXu6zXnnlFUSEr7/+us0y+fn5TJo0KWRtzp07lxdeeKHN7ddffz2ZmZkEg8GmdU888QSpqalMnTqVCRMm8Nhjj4UsHqUGAoe/Dq8jar91gcRhOAlCpQ4TVEoppVT7QjGL4GJjjBhj8owxU+3Hm8aYUmPMCcaY0caYE40xZaEIOFzmz5/PrFmzmD9/fqvb/X5/l9sIBAKdLhsMBnn55ZfJzs7m448/3m/bnDlzWLVqFYsWLeK3v/0te/fu7XJsSg0UrkA9Xtk/wXINzgHAW7I9DBEppZRSqi8J6SyC/VVNTQ2LFy/m8ccf59lnn21av2jRIo466ijOPPNMJkyYAFiJ1oUXXsj48eM599xzqauzZiT74IMPOOSQQ5g8eTKXX345DQ0NAOTk5PDrX/+aQw89lOeff/6Att9//32mTZvGmDFjeP311/dre+LEiVx99dVtJn1paWmMHDmSHTt2NK178MEHmTBhAnl5eZx//vkAlJWVcdZZZ5GXl8fMmTNZs2YNAHfccQeXXnopRx11FMOHD+ell17illtuYfLkyZxyyin4fNZwqbvuuovp06czadIkrrzySlrevDoYDJKTk0NFRUXTutGjR2vip3old6Aer3P/BCtmyEgAKvZsCUdISimllOpDXOEO4KC8dSsUrQ1tnUMmw6ntj1589dVXOeWUUxgzZgzJycksX76cww47DIAVK1awbt06cnNzyc/PZ9OmTTz++OMceeSRXH755fztb3/jF7/4BXPnzuWDDz5gzJgxXHLJJfz973/n+uuvByA5OZkVK1a02nZ+fj5Llixh69atHHfccWzZsoWoqCjmz5/PBRdcwOzZs/ntb3+Lz+fD7Xbvt++2bdvYtm0bo0aNalr35z//me3btxMZGdmU8Nx+++0ccsghvPLKK3z44YdccsklrFq1CoCtW7fy0UcfsWHDBo444ghefPFF7rnnHs4++2zeeOMNzjrrLH7xi19w2223AXDxxRfz+uuvc8YZZzS16XA4mD17Ni+//DKXXXYZX331FcOHDyc9vdWZ+5UKK1fQg98dvd+6lIxcvMZJ/d6tYYpKKaWUUn2F9mB1wvz585t6e84///z9eoxmzJhBbm5u03J2djZHHnkkABdddBGLFy9m06ZN5ObmMmaMdcPSSy+9lE8++aRpnzlz5rTZ9nnnnYfD4WD06NGMGDGCr7/+Gq/Xy5tvvslZZ51FQkIChx9+OO+8807TPgsWLGDq1KlccMEF/OMf/2Dw4MFN2/Ly8rjwwgt56qmncLms/Hrx4sVcfPHFABx//PGUlpZSVWXNtH/qqafidruZPHkygUCAU045BYDJkyeTn58PwEcffcThhx/O5MmT+fDDD1m/fv0Br2POnDksWLAAgGeffbbd16xUOEUEPQRa9GBlp8Szx6Rgyne0sZdSSimllKVv9WB10NPUHcrKyvjwww9Zu3YtIkIgEEBE+Mtf/gJAbGzsfuWtSRXbXm5Nyzo6qu+dd96hoqKCyZMnA1BXV0d0dDSnn346YCUzDz/8cKv1vfHGG3zyySe89tpr3H333axd236PYGSkNZuaw+HA7XY3xeNwOPD7/Xg8Hq655hqWLVtGdnY2d9xxBx6P54B6jjjiCLZs2UJxcTGvvPIKv//979ttV6lwiTQeAq4h+61LjYvkc9IYUb0zTFEppZRSqq/QHqwOvPDCC1x88cXs2LGD/Px8CgoKyM3N5dNPP221/M6dO/niiy8AeOaZZ5g1axZjx44lPz+fLVus6zeefPJJjjnmmE61//zzzxMMBtm6dSvbtm1j7NixzJ8/n3/+85/k5+eTn5/P9u3bee+995qu92pLMBikoKCA4447jv/7v/+jsrKSmpoajjrqKJ5++mnAurYrJSWFhISETsXXmEylpKRQU1PT5qyHIsLZZ5/Nr371K8aPH09ycnKn6leqp0UZD0F3zH7rHA6hPGIo8Z7dYYpKKaWUUn2FJlgdmD9/PmefffZ+684555w2J5YYO3YsjzzyCOPHj6e8vJyrr76aqKgo/v3vf/OjH/2IyZMn43A4uOqqqzrV/rBhw5gxYwannnoq8+bNIxgM8vbbb3Paaac1lYmNjWXWrFm89tprrdZxxRVXsGzZMgKBABdddBGTJ0/mkEMO4Ze//CVJSUnccccdLF++nLy8PG699Vb+85//dPLoQFJSEj/96U+ZNGkSJ598MtOnT2/aNm/ePObNm9e0PGfOHJ566ikdHqh6La8/SBRejCv6gG31sVnEByqhoSYMkSmllFKqr5CWM76F07Rp08yyZcv2W7dx40bGjx8fpohUb6T/JlR3qazz4fi/bPKH/ZDJP/nbftsW/PuvzNlxO1z9OaRPDFOESimllOoNRGS5MWZaa9u0B0sppWx1Xh8xeJCImAO2RaSOAKB2r07VrpRSSqm2aYKllFK2+vo6nGJwRB448UxChnW7gyq9F5ZSSiml2tEnEqzeNIxRhZf+W1DdyVNbC4Aj4sAEa8iQodSYKBqKt/d0WEoppZTqQ3p9ghUVFUVpaal+sVYYYygtLSUqKqrjwkp9Bw311v3fnJFxB2zLTo6lwKQiFfk9HJVSSiml+pJuvw+WiJwCPAA4gX8aYw7qZlZZWVns2rWL4uLibolP9S1RUVFkZWWFOwzVT3k91gyBzqgDr8FKiHKz3DGECbW7ejospZRSSvUh3ZpgiYgTeAT4PrALWCoiC40xGzpbh9vtJjc3t7tCVEqpJr56K8FyRx3YgwVQFTWUpIa1YAx04ibiSimllBp4unuI4AxgizFmmzHGCzwLzO7mNpVS6jvxe6ybdUdEt55geeOziTQeqNUedaWUUkq1rrsTrEygoNnyLntdExG5UkSWicgyHQaolAqngD1EMCI6vvUCg6ze9EBZfg9FpJRSSqm+JuyTXBhjHjXGTDPGTEtNTQ13OEqpASzQYM0iGBnTeg9WTJp1Lyydql0ppZRSbenuBGs3kN1sOctep5RSvU7QayVYUW30YA3KtO6FVV2kCZZSSimlWtfdCdZSYLSI5IpIBHA+sLCb21RKqe/E2AlWazcaBshKS6HYJOAv1XthKaWUUqp13ZpgGWP8wC+Ad4CNwHPGmPXd2aZSSn1XxmtNckHEgdO0A2QkRVFg0nBW7ezBqJRSSinVl3T7fbCMMW8Cb3Z3O0op1VUOn51guVtPsNxOB6XuDIbXfdODUSmllFKqLwn7JBdKKdVbiL8eL25wONssUxudSZJvHwT8PRiZUkoppfoKTbCUUsrm8Nfhkah2y/gTh+MkCJUF7ZZTSiml1MCkCZZSStmcgXq8jvYTLHeaNZNgXeHXPRGSUkoppfoYTbCUUsrm9tfhdUS3WyYxayIA5Ts39ERISimllOpjNMFSSilbRLAer7P1KdobZWVlU2liaCja1ENRKaWUUqov0QRLKaVskYE6/K7WZxBsNCw5jm1mKK5yvdmwUkoppQ6kCZZSStmiTB0BV/s9WBEuB3sjskmoze+ZoJRSSinVp2iCpZRSQDBoiDYegu72EyyA2rhckgKl0FDdA5EppZRSqi/RBEsppYA6X4BY8WAiOk6wgsmjrb/FOkxQKaWUUvvTBEsppYDaBj9x1ENEXIdlYzLGAVBesL67w1JKKaVUH6MJllJKAbX1HqLEh0TGd1g2Zfg4Akao2b2xByJTSimlVF/SpQRLRP4iIl+LyBoReVlEkppt+42IbBGRTSJycpcjVUqpblRfUwWAI7LjHqzcIYPZZVIJFm/u7rCUUkop1cd0tQfrPWCSMSYP2Az8BkBEJgDnAxOBU4C/iYizi20ppVS3aairBMAZ3XEPVmpcJDslk6jKbd0dllJKKaX6mC4lWMaYd40xfnvxSyDLfj4beNYY02CM2Q5sAWZ0pS2llOpODXVWD5Y7quMES0QojxnOYE8BBIPdHZpSSiml+pBQXoN1OfCW/TwTKGi2bZe9TimleiVfnTXlujsmoVPlvcnjiKQBU769O8NSSimlVB/TYYIlIu+LyLpWHrOblfkd4AeePtgARORKEVkmIsuKi4sPdnellAoJX10FAFFxSZ0qH5WZB0Bl/qruCUgppZRSfZKrowLGmBPb2y4ic4HTgROMMcZevRvIblYsy17XWv2PAo8CTJs2zbRWRimlupu/pgyA2KSUTpVPGzmFwJdCxfaVJB12TneGppRSSqk+pKuzCJ4C3AKcaYypa7ZpIXC+iESKSC4wGljSlbaUUqo7mfpyACLjkjtVfkxWGvlmCKZoXXeGpZRSSqk+psMerA48DEQC74kIwJfGmKuMMetF5DlgA9bQwZ8bYwJdbEsppbqNqa+wnkQndap8UkwEy1w5TK3UqdqVUkop9a0uJVjGmFHtbLsbuLsr9SulVE9xeipoIIJId3Sn96mMH0tK5RfQUAOduH+WUkoppfq/UM4iqJRSfZbLV0mto+Mp2psLpk0AwF+0vjtCUkoppVQfpAmWUkoBkb4q6p0Hl2DFD58KQOm2Fd0QkVJKKaX6Ik2wlFIKiPJX0+Du3D2wGg3LHUe1iaauYE03RaWUUkqpvkYTLKWUAmKDVfgjEg9qn9FD4tnMMJz7dIigUkoppSyaYCmlBrwGf4AkqvFHJh3Ufm6ng6LoMaTVboKgTpSqlFJKKU2wlFKK0moPKVRi4oYc9L6e9KlEGQ+BfV93Q2RKKaWU6ms0wVJKDXilxUW4JIgrIf2g940dMROAkk2fhzospZRSSvVBmmAppQa8qpJdAEQPHnrQ+44cO5lKE0Pt1q9CHZZSSiml+iBNsJRSA1592R4A4lOyDnrfEWkJrGMU0cWrQhyVUkoppfoiTbCUUgOer6IQgITUg0+wnA6hKH4CafVbwVsX6tCUUkop1cdogqWUGvBM9V4AnPEHfw0WgH/IoTgJ4t+zKoRRKaWUUqov0gRLKTXgRdbuplriIDLuO+2fPOYIAPZu+CyUYSmllFKqDwpJgiUiN4qIEZEUe1lE5EER2SIia0Tk0FC0o5RS3SHOU0i5++CnaG80edwYdpkUGvKXhDAqpZRSSvVFXU6wRCQbOAnY2Wz1qcBo+3El8PeutqOUUt3BGMNgXxF1MZnfuY70hCg2usYzuHQ5GBPC6JRSSinV14SiB+t+4Bag+beK2cB/jeVLIElEMkLQllJKhVRxtYehFBNMyO5SPRWp00kKlGLKtoUoMqWUUkr1RV1KsERkNrDbGLO6xaZMoKDZ8i57XWt1XCkiy0RkWXFxcVfCUUqpg1ZYuItYacCdPLxL9cSMOQaAkvUfhSIspZRSSvVRHSZYIvK+iKxr5TEb+C1wW1cCMMY8aoyZZoyZlpqa2pWqlFLqoFXu2gRA7NAxXapnzIRDKTEJ1G7+OBRhKaWUUqqPcnVUwBhzYmvrRWQykAusFhGALGCFiMwAdgPNx9tk2euUUqpXqSu0EqzkYRO7VM/ItHg+kPEctndpKMJSSimlVB/1nYcIGmPWGmPSjDE5xpgcrGGAhxpjioCFwCX2bIIzgUpjTGFoQlZKqdCR0m/w4yQyJbdL9TgcQknyNAb7CqGioOMdlFJKKdUvddd9sN4EtgFbgMeAa7qpHaWU6pKY6nxK3Bng7LBDv0Oxo48GoHTDoi7XpZRSSqm+KWQJlt2TVWI/N8aYnxtjRhpjJhtjloWqHaWUChV/IMhQ3w6q4kaEpL4JU4+gwsRSsf79kNSnlFJKqb6nu3qwlFKq19tRXM5wigikjAtJfSPTE1junEJy0WK9H5ZSSik1QGmCpZQasAq3rMUlQWIyJ4WkPhGhdMgskgIlBPZuCEmdSimllOpbNMFSSg1YdbvXAZA6cmrI6kycfAoA+1a8EbI6lVJKKdV3aIKllBq49m3Ej4OYjNAMEQQ4dNIkNgWz8G9+N2R1KqWUUqrv0ARLKTVgxVdtYZ9rKLgiQ1Znanwka+KOZGjFcqgtCVm9SimllOobNMFSSg1IwaAhw5tPZdyokNctE8/GSZCyZS+EvG6llFJK9W6aYCmlBqSC4jKy2UswZWzI6z585tFsDWZQt+rFkNetlFJKqd5NEyyl1IC0Z8sanGKIyQrNDILNZSfHsizuWDLKl2HKtoe8fqWUUkr1XppgKaUGpJqCtQCkhXAGwebij/wpASMUvnN/t9SvlFJKqd5JEyyl1MBU/DV+nMSGcAbB5o6fMZV3HEeRvPlZTG1pt7ShlFJKqd5HEyyl1IAUV7WFve5McEV0S/1Rbie+w6/FGfRRsOCmbmlDKaWUUr1PlxMsEblWRL4WkfUick+z9b8RkS0isklETu5qO0opFSqBoGGoN5+qbphBsLnZJ53ASzHnMmznSxQuvBOCgW5tTymllFLh16UES0SOA2YDU4wxE4F77fUTgPOBicApwN9ExNnFWJVSKiR2FpWQzb5umUGwOadDOOIn9/GO42gyVtxH+f+MYOcfp7L2/Se7tV2llFJKhU9Xe7CuBv5sjGkAMMbss9fPBp41xjQYY7YDW4AZXWxLKaVConDbGhxiiM2e3O1tZafEc/iNL7Bw3D1siJ5GnK8YWfl0t7erlFJKqfDoaoI1BjhKRL4SkY9FZLq9PhMoaFZul73uACJypYgsE5FlxcXFXQxHKaU61rB7PQDJuVN7pL2k2EjOPP9nHHnLi6yNO5LsuvVgTI+0rZRSSqme5eqogIi8DwxpZdPv7P0HAzOB6cBzIjLiYAIwxjwKPAowbdq0AfWNw+v1UVVeTENtOQ111XjrqvDVV+OvryHYUE3AUwveGoLeWozfS9Dvg4AXh/HjMD4cQT9O48dh/GCCYAxBBIBg45EUQRBEBBEIihMjLoION8bhtv6KC+NwY5xucLoRpxucEYgrAofThTgjEHckDlckDncETlckDlcETnckTncELnckzogoXO5IXBGRuNyRuCOjiHBHEhEZhdPlBpHwHWilWnCWfo0PJ/FDx/R421XJU0isfYdA6XacKQf1cal6kDGGgN+H3+vB6/Ph9/vx+f0EgwFMMADBIJgAJhAEAtb1dSaIMQZjwIhgEBAHBkAcOMSBw2n9FacTZ7Nlp9OBw+nEIU6cTicOh7XsdDoRcYLDCeLQz1KllOoDOkywjDEntrVNRK4GXjLGGGCJiASBFGA3kN2saJa9rl8zwSAVZfsoLdpB9b4CvOW7oaYIqSvB4akgoqGcKH8lMYEqEoLVJEgtKZ2s22tc+MSFn8aHE7+4CODCLy4MDgQDAgJ2mmVnWU2/lBscJmjtbRprCuDGh8sEiBB/qA8JAEEj+Pg2fp8dcwA3fnHhFyvRC4ibgMNNUNwEHS4C4saIE0Qw4gAcGHEgIgSl8ctGswcCjsbn1l/rS47DfvWGb7+amGZ/rOeCwTQdu8ZiZv/yzZ6LOXDdfuVNi21N6/f/HUEwGGPFZlppU5rVbZov2200xr1/+83rbv7aWrwe07KN5jG3jLv5/s1fY+d+F2lsqfU9vl1jTMdfIA0HlmlZZ3tRjapbz25nFjlOd4dthVp07kzYCUXrPyHzGE2wuioQCFJdVUFNxT7qK0vwVJfira3CW1+Fv74KPNXgq8Xhq8Xlq8Xlr8UVqMMdqMcZ9OI0PtzGi9v4cOMjwnhx4ycCHy4J4gKiwv0imwkaIYhgRAjgwOAgiBBs+VwcmObr7c/CoFjLBuvzMYiz6XPS2Nto/IzF+uw14vw2WRTHfvUgDru9b+sINtaB/VncSBr/tP7ulP0+Jb7dR9p8M7e1oY31rfQaN2+ro08yOeBz8SBCCtVOnez53u//hY7KtlNnyy1tnbv29MQv5zogoP9bmvB9Tj37EnJSYsMdSqd0mGB14BXgOOAjERkDRAAlwELgGRG5DxgKjAaWdLGtsAv4fezbvY3Sgs3U7t1GoGw7EdUFxNfvIcFfwuBgOYPEx6AW+1WbaKocCdQ6EvC4E6iOyWZ35CCIHoTEDIaoRFxRcTij4oiIScAVnUBUbAKRMfFExyYQExNHhNNB90wm3YwxEAwQ8DfgbfDi83nwNTTg99kPbwN+v/U36PMS8DcQ9DUQ8HsJ+hoI+r2YxkfAi/E3QMALfh8EvRDwIgEfEvQhAS+OoPXcEfThNPZffz0Rpgqn8ePGh5hvvyKICdpfH8yBf5uX22+7wUmwRVog+/21njdqe9v+61pLFKTNbd/ua2XALetsvo+0un7/hKKt9a1vaxaPtLG+1fhbtCnfrm/c0lr77emo9H7/ebdRWA7IgjuopzVON2WjfkhOB/F0hzGTZlCzKIrqrV/AMXPDEEHvVt/go6ykiOqSPdSV7sZbWUiwei9SsxeHpxyXt5IoXxUxQfuHKmpIkgBJ7dQZMEK9RFNHNA2OKDyOGHyOKLzuBIwzgoAzEuOIIOiMIGg/N84IjCvK6s13unA4XVbPk8Nl/+hjJSY4nIATHFZy0TRqAGtUgdV/FUQMmGCAoDFWz5cxmGDQWg4GMcbqEQsGDcYEERPA2L1kmOB+zwmab583lrVHMYgJIHZPWuNzMQFrG0HEBO147Oem8fM1AI2fs8HGMoGmz9Kmz98Wn8OO5p+7zbY5m6V9nflB5Nv1rb+5215/cPW09uFxMN/ND+4zr/NlD6bepgEqnamzk9Ue7Gf5wdOeV9U11d4J1Pv6zky8XU2w/gX8S0TWAV7gUrs3a72IPAdsAPzAz40xfeeo2DZ8/gaVa98kpuIbUj07SA0WkyEBMuztfuNgnyOFMvcQdsVPIT82HUdCBhGDMolLySI+NZvE1GziY2KJD+sr6SQRcLpwOl1ER8YSHe54lOpGQ8PUbnZKHMscYxha9FWYIgifmvoGivfkU1m0HU9xPv7ynTirdxNVV0SMr4SkQBmDTSWZcuB/F/UmgipHAnXOBDzuRCrdIymLTCIQ1fhjVTLuuMFExA0mOj6RmLgk4hKSiI5NxBkRQ5wIcWF4zUoppbrulnAHcJC6lGAZY7zARW1suxu4uyv1h1vVhvc4bM98djuz2BMzju2JJ+ManEts+giSs8eSljmCoe6IsH1RU0r1PSJCccYxTN/zEA17vyEyfXS4QwoZvz/A3r17KN25kdqibwiWbMFdVUBMfSGD/HtJN6XkSnC/fSqIo8yZSm1ECnuix7ArNh1HfDquxCFEDRpKfEomialZRMclEq3XHymllOoDxPSigavTpk0zy5YtC3cYTWqqK4iMjMYdERnuUJRS/chXK1dx+KvHsGn8tYyd88dwh3NQjDGUlpdRuGU11bs24CveSkTldpI8BQwNFJIotU1lA0YodqRSEZGOJ2YogYQsnIOyiU7JIWFILslDRxARkxDGV6OUUkp9NyKy3BgzrbVtXR0i2K/FxSeFOwSlVD80bcoUvnptKqM2zQf/H8DV+37EMcZQVFHDzs1rqdq5Gtm3gfjKzQz1biebvU0T9ASNsM+ZRnlUNtvip0LySKLSRzM4exwp2WMY4o5sdRpapZRSqr/SBEsppXqY0yGU5F3J4auuYdfb95F1+m/CGk+tx8e2/K2UbF2Jd/daoso3kVa/lRFmFxniAyCAgyLnUMoSx1Oc/EMiMyeTkjuZ1KwxDImI0iRKKaWUsmmCpZRSYXDMqXNYvOZfHLLsAXxHXoR7UHbHO3VRMGjYWbSPws3LqSlYg6t4I0k135AT2MFkqWkqV+YYTEncKLakHEV0Zh6pIw8hPnsime7o1u8Yr5RSSqkmmmAppVQYxEW6MCfdTfCtsyiZdwbpv/wIR2zLmzx8d5U1tezcvJay7SsJ7l1PbMVmhjZsI0eKm6anryOKoqgR7E76PkVDJpI84hBSRhzC4LhkBocsEqWUUmpg0QRLKaXC5KiZM3lp1//j9LXXUnrfTMzp95M29VTrlgmdVFlTx57tG6nauRpf4QYiyjaTWr+NrOAeJtvTnftxUOTKomJwHuWpE4gbNoWMMYcRk5LDCIejgxaUUkopdTB0FkGllAojYwxvvb2QSV/exDDZx25XNiXpRyIpo3EmDsU4XBgjeOsq8FaXEKgpxVVTSGxdAYO9hQwxxTjF+hwPGqHImU5p9Ah8yWOJypxI2shDSR4+EXFHhfmVKqWUUv1He7MIaoKllFK9QGFpOStff4whO19ngn8DUfbkEq0pJYkSdwZ1MVkEk4YTmTaKxOGTSRuRR6ROe66UUkp1O02wlFKqD6nxeCnavYOG8j0IQcQEiY5LIjE5ncRBaTjcEeEOUSmllBrQ9D5YSinVh8RFRTBq5GhgdLhDUUoppdRB0qublVJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQqRXTXIhIsXAjnDH0UIKUBLuIFSP0fM9cOi5Hjj0XA8ser4HDj3XA0dvPNfDjTGprW3oVQlWbyQiy9qaIUT1P3q+Bw491wOHnuuBRc/3wKHneuDoa+dahwgqpZRSSimlVIhogqWUUkoppZRSIaIJVsceDXcAqkfp+R449FwPHHquBxY93wOHnuuBo0+da70GSymllFJKKaVCRHuwlFJKKaWUUipENMFSSimllFJKqRDRBKsdInKKiGwSkS0icmu441GhIyLZIvKRiGwQkfUicp29frCIvCci39h/B4U7VhUaIuIUkZUi8rq9nCsiX9nv7wUiEhHuGFVoiEiSiLwgIl+LyEYROULf2/2TiNxgf4avE5H5IhKl7+3+Q0T+JSL7RGRds3WtvpfF8qB93teIyKHhi1wdrDbO9V/sz/E1IvKyiCQ12/Yb+1xvEpGTwxJ0OzTBaoOIOIFHgFOBCcAFIjIhvFGpEPIDNxpjJgAzgZ/b5/dW4ANjzGjgA3tZ9Q/XARubLf8fcL8xZhRQDvwkLFGp7vAA8LYxZhwwBeu863u7nxGRTOCXwDRjzCTACZyPvrf7kyeAU1qsa+u9fCow2n5cCfy9h2JUofEEB57r94BJxpg8YDPwGwD7+9r5wER7n7/Z39t7DU2w2jYD2GKM2WaM8QLPArPDHJMKEWNMoTFmhf28GusLWCbWOf6PXew/wFlhCVCFlIhkAacB/7SXBTgeeMEuoue6nxCRROBo4HEAY4zXGFOBvrf7KxcQLSIuIAYoRN/b/YYx5hOgrMXqtt7Ls4H/GsuXQJKIZPRIoKrLWjvXxph3jTF+e/FLIMt+Pht41hjTYIzZDmzB+t7ea2iC1bZMoKDZ8i57nepnRCQHOAT4Ckg3xhTam4qA9HDFpULqr8AtQNBeTgYqmn1w6/u7/8gFioF/20NC/ykiseh7u98xxuwG7gV2YiVWlcBy9L3d37X1Xtbvbf3b5cBb9vNef641wVIDmojEAS8C1xtjqppvM9Y9DPQ+Bn2ciJwO7DPGLA93LKpHuIBDgb8bYw4BamkxHFDf2/2Dfe3NbKykeigQy4FDjFQ/pu/lgUFEfod1acfT4Y6lszTBattuILvZcpa9TvUTIuLGSq6eNsa8ZK/e2zikwP67L1zxqZA5EjhTRPKxhvoej3WNTpI9rAj0/d2f7AJ2GWO+spdfwEq49L3d/5wIbDfGFBtjfMBLWO93fW/3b229l/V7Wz8kInOB04ELzbc37+3151oTrLYtBUbbsxFFYF1MtzDMMakQsa/BeRzYaIy5r9mmhcCl9vNLgVd7OjYVWsaY3xhjsowxOVjv4w+NMRcCHwHn2sX0XPcTxpgioEBExtqrTgA2oO/t/mgnMFNEYuzP9MZzre/t/q2t9/JC4BJ7NsGZQGWzoYSqDxKRU7CG959pjKlrtmkhcL6IRIpILtbEJkvCEWNb5NtkULUkIj/AunbDCfzLGHN3eCNSoSIis4BPgbV8e13Ob7Guw3oOGAbsAM4zxrS8wFb1USJyLHCTMeZ0ERmB1aM1GFgJXGSMaQhjeCpERGQq1oQmEcA24DKsHxT1vd3PiMidwBys4UMrgSuwrsXQ93Y/ICLzgWOBFGAvcDvwCq28l+0k+2GsYaJ1wGXGmGVhCFt9B22c698AkUCpXexLY8xVdvnfYV2X5ce6zOOtlnWGkyZYSimllFJKKRUiOkRQKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaV6GRHJEREjIq5wx6IGBhFZLyLHhjsOpZTqDzTBUkop1eeJyDwRqbEfXhHxNVt+K9zx9XbGmInGmEXdUbeIDBaRYhFZ3B31K6VUbyPGmHDHoJRS/YqIuIwx/i7snwNsB9xdqWegEpE7gFHGmIta2dalc9OT+lKs7RGRx4CxgMMYMyvc8SilVHfTHiyllAoBEckXkV+LyBqgVkRcIjJTRD4XkQoRWd18CJaILBKR/xWRJSJSJSKvisjgNuq+TEQ2iki1iGwTkZ+12D5bRFbZ9WwVkVPs9Yki8riIFIrIbhH5o4g4O3gdI0XkQxEpFZESEXlaRJKabSsTkUPt5aF2z8Sx9vKZ9lCzCvv1jW9xfG4SkTUiUikiC0Qk6uCP9MFr49wYERnVrMwTIvLHZsun28e0wj6HeZ1s61gR2SUiv7WPX76IXNhs+2kistI+VwV2Mti4rXFo6E9EZCfwob3+eREpso/bJyIysUXcfxORt+zeus9EZIiI/FVEykXkaxE5pJPH6MTOvMaDISLfAyYB/w513Uop1VtpgqWUUqFzAXAakASkA28AfwQGAzcBL4pIarPylwCXAxmAH3iwjXr3AacDCcBlwP3NkpwZwH+Bm+12jwby7f2esOsdBRwCnARc0cFrEOB/gaHAeCAbuAPAGLMV+DXwlIjEYH1p/o8xZpGIjAHmA9cDqcCbwGsiEtGs7vOAU4BcIA+Y22oAIrPsxKatx3fpBWk6Nx31CtkJyb+AnwHJwD+AhSIS2cm2hgApQCZwKfCoiIy1t9VinfckO56rReSsFvsfg3XsT7aX3wJGA2nACuDpFuXPA35vt9kAfGGXSwFeAO7rZNytEpFb2zsf7eznBB4GfgHocBml1IChCZZSSoXOg8aYAmNMPXAR8KYx5k1jTNAY8x6wDPhBs/JPGmPWGWNqgT8A57XWw2SMecMYs9VYPgbeBY6yN/8E+Jcx5j27nd3GmK9FJN1u63pjTK0xZh9wP3B+ey/AGLPFrqvBGFOM9eX8mGbbHwO2AF9hJYa/szfNAd6w9/UB9wLRwPdaHJ89xpgy4DVgahsxLDbGJLXz+C7X8jQ/Nx25EviHMeYrY0zAGPMfrMRl5kG09wf7GH6MlWifB2CMWWSMWWufqzVYSekxLfa9wz5n9fY+/zLGVBtjGrCS3Skiktis/MvGmOXGGA/wMuAxxvzXGBMAFmAl19+ZMebP7Z2Pdnb9JfCVMWZ5V9pXSqm+RmeoUkqp0Clo9nw48CMROaPZOjfwURvld9jbU1pWKiKnArcDY7B+GIsB1tqbs7F6i1oabtdXKCKN6xwt2jyAnZg9gJXAxdv7lLco9hiwELjS/tIPVo/XjsYCxpigiBRg9eI0Kmr2vM7ep6e0+7pbGA5cKiLXNlsXQefjLbeT5kY7GvcVkcOBP2MNm4sAIoHn24rVTrjvBn6E1TMYtDelAJX2873N9q1vZTmuk3GHjIgMxUqwDuvptpVSKty0B0sppUKn+TCoAqwequa/9scaY/7crEx2s+fDAB9Q0rxCe1jai1g9Qul2j8GbWEP5GtsZ2UosBVi9LinN2k8wxkxspWxzf7Jfx2RjTAJWT1xThiYiccBfgceBO+Tb68b2YCUmjeXEfn27O2jvACJylHw7A2Brj6M6ruUALYeo1WElqo2GNHteANzd4tzFGGPmd7KtQSIS22x5GNbxAXgGKznNNsYkAvNodnxbifXHwGzgRCARyLHXt9yn29jXk7V5PtrYbQZWD+cGESnCStpn2NeStXsdoFJK9XWaYCmlVPd4CjhDRE4WEaeIRNkTIGQ1K3ORiEywr2e6C3jBHtbVXGMvRzHgt3uzTmq2/XHgMhE5QUQcIpIpIuOMMYVYQwn/n4gk2NtGikjL4WgtxQM1QKWIZGJd29XcA8AyY8wVWEPf5tnrnwNOs+NwAzdiJXifd3SgWjLGfGqMiWvn8enB1tmKVcCP7XNzCvsP03sMuEpEDhdLrD05RTw0TSzxRAf13ykiEXYyeDrf9lLFA2XGGI99/dyPO6gnHus4lmIlhH86iNcYEsaYP7V3PtrY7S2sZHCq/bgNWAlMbeXfuFJK9SuaYCmlVDcwxhRg9Tz8Fis5KsBKVpp/7j6JNRFFERCFNaSqZT3V9vrnsIbq/RirB6Rx+xLsiS+whox9zLc9SZdgJWgb7H1fwOpVaM+dwKF2XW8ALzVuEJHZWJNUXG2v+hVwqIhcaIzZhNXb9RBWL9wZwBnGGG8H7YXLdVgxVgAXAq80bjDGLAN+ijVBQznWNWdzm+2bDXzWTt1F9n57sCakuMoY87W97RrgLhGpxko6nusgzv9iDTHcjXUev+zohfUG9vVnRY0PrH9PPvu5Ukr1a3ofLKWUCgMRWQQ8ZYz5Z7hjUZ1nz4q4GsizJ/Nouf1YrPOa1XKbUkqpgUEnuVBKKaU6ye6RG99hQaWUUgOWDhFUSqkBRkTmtTFhwbyO91Z9kYgMa2eiimHhjk8ppfoTHSKolFJKKaWUUiGiPVhKKaWUUkopFSK96hqslJQUk5OTE+4wlFJKKaWUUqpNy5cvLzHGpLa2rVclWDk5OSxbtizcYSillFJKKaVUm0RkR1vbdIigUkoppZRSSoWIJlhKKaWUUkopFSKaYCml1Hewt8rDwtV70JlYlVJKKdVcr7oGqzU+n49du3bh8XjCHYrqY6KiosjKysLtdoc7FNUP/f6pD0jd/QEx9Rdy4szDwh2OUkoppXqJXp9g7dq1i/j4eHJychCRcIej+ghjDKWlpezatYvc3Nxwh6P6GX8gyPcKn+Qy91usXLwFZi4Md0hKKaWU6iV6/RBBj8dDcnKyJlfqoIgIycnJ2vOpukVhpYfxkg/AyJplEPCHNyCllFJK9Rq9PsECNLlS34n+u1HdZUdJLRNkB7USRwK11O5cEe6QlFJKKdVL9IkESymlepPSwu0kSB35w84GoHjryjBHpJRSSqneQhOsThARbrzxxqble++9lzvuuCN8ATXz5ZdfcvjhhzN16lTGjx/fFNeiRYv4/PPPu1T3KaecQlJSEqeffnoIIlWq//BWFAIwePwxeIyb+t3rwxyRUkoppXqLLidYIpItIh+JyAYRWS8i19nrB4vIeyLyjf13UNfDDY/IyEheeuklSkpKQlqvMYZgMNilOi699FIeffRRVq1axbp16zjvvPOA0CRYN998M08++WSX6lCqPwrUWJ8F6UOHs41M3KVfhzkipZRSSvUWoZhF0A/caIxZISLxwHIReQ+YC3xgjPmziNwK3Ar8uisN3fnaejbsqepywM1NGJrA7WdMbLeMy+Xiyiuv5P777+fuu+/eb1txcTFXXXUVO3fuBOCvf/0rRx55JHfccQdxcXHcdNNNAEyaNInXX38dgJNPPpnDDz+c5cuX8+abb/Lwww/z1ltvISL8/ve/Z86cOSxatIg77riDlJQU1q1bx2GHHcZTTz11wHVF+/btIyMjAwCn08mECRPIz89n3rx5OJ1OnnrqKR566CHGjRvXZpxbt25ly5YtlJSUcMstt/DTn/4UgBNOOIFFixa1e2yef/557rzzTpxOJ4mJiXzyySd4PB6uvvpqli1bhsvl4r777uO4447jiSee4JVXXqG2tpZvvvmGm266Ca/Xy5NPPklkZCRvvvkmgwcP5rHHHuPRRx/F6/UyatQonnzySWJiYvZrd+bMmTz++ONMnGidu2OPPZZ7772XadOmtRuvUqFg6koBcMQmU+QeRl7d5jBHpJRSSqneoss9WMaYQmPMCvt5NbARyARmA/+xi/0HOKurbYXTz3/+c55++mkqKyv3W3/ddddxww03sHTpUl588UWuuOKKDuv65ptvuOaaa1i/fj3Lli1j1apVrF69mvfff5+bb76ZwkJr+NHKlSv561//yoYNG9i2bRufffbZAXXdcMMNjB07lrPPPpt//OMfeDwecnJyuOqqq7jhhhtYtWoVRx11VLtxrlmzhg8//JAvvviCu+66iz179nT6uNx111288847rF69moULramqH3nkEUSEtWvXMn/+fC699NKm2fzWrVvHSy+9xNKlS/nd735HTEwMK1eu5IgjjuC///0vAD/84Q9ZunQpq1evZvz48Tz++OMHtDtnzhyee+45AAoLCyksLNTkSvUYR72VYBGTTG1sFoP8+3QmQaWUUkoBIb4PlojkAIcAXwHpxphCe1MRkN7GPlcCVwIMGzas3fo76mnqTgkJCVxyySU8+OCDREdHN61///332bBhQ9NyVVUVNTU17dY1fPhwZs6cCcDixYu54IILcDqdpKenc8wxx7B06VISEhKYMWMGWVlZAEydOpX8/HxmzZq1X1233XYbF154Ie+++y7PPPMM8+fPb7XXqb04Z8+eTXR0NNHR0Rx33HEsWbKEs846q1PH5cgjj2Tu3Lmcd955/PCHP2x6Tddeey0A48aNY/jw4WzebP3Cf9xxxxEfH098fDyJiYmcccYZAEyePJk1a9YAVhL2+9//noqKCmpqajj55JMPaPe8887jpJNO4s477+S5557j3HPP7VS8SoWCu6EcP05cUYkEE7JxVgYxVbuQQTnhDk0ppZRSYRayBEtE4oAXgeuNMVXNh7IZY4yImNb2M8Y8CjwKMG3atFbL9BbXX389hx56KJdddlnTumAwyJdffklUVNR+ZV0u137XVzW/H1NsbGyn2ouMjGx67nQ68ftb/4V85MiRXH311fz0pz8lNTWV0tLSA8q0FSccOJ35wUxvPm/ePL766iveeOMNDjvsMJYvX95u+eavyeFwNC07HI6m1zd37lxeeeUVpkyZwhNPPNFqwpiZmUlycjJr1qxhwYIFzJs3r9MxK9VVkd5yap2JJIrgTsmFAqgt2kacJlhKKaXUgBeSWQRFxI2VXD1tjHnJXr1XRDLs7RnAvlC0FU6DBw/mvPPO22/I2kknncRDDz3UtLxq1SoAcnJyWLHCujfOihUr2L59e6t1HnXUUSxYsIBAIEBxcTGffPIJM2bM6HRMb7zxBsZYeek333yD0+kkKSmJ+Ph4qqurO4wT4NVXX8Xj8VBaWsqiRYuYPn16p9vfunUrhx9+OHfddRepqakUFBRw1FFH8fTTTwOwefNmdu7cydixYztdZ3V1NRkZGfh8vqZ6WjNnzhzuueceKisrycvL63T9SnVVjL+CencSALHpowCoKNwaxoiUUkop1VuEYhZBAR4HNhpj7mu2aSFwqf38UuDVrrbVG9x44437zSb44IMPsmzZMvLy8pgwYUJTT8o555xDWVkZEydO5OGHH2bMmDGt1nf22WeTl5fHlClTOP7447nnnnsYMmRIp+N58sknGTt2LFOnTuXiiy/m6aefxul0csYZZ/Dyyy8zdepUPv300zbjBMjLy+O4445j5syZ/OEPf2Do0KGAlfz96Ec/4oMPPiArK4t33nkHsIYlNl5vdfPNNzN58mQmTZrE9773PaZMmcI111xDMBhk8uTJzJkzhyeeeGK/nquO/M///A+HH344Rx55JOPGjWtav3DhQm677bam5XPPPZdnn322aeZEpXqCMYbYQDVeO8FKycolYIT6fdvCG5hSSimlegVp7P34zhWIzAI+BdYCjWPifot1HdZzwDBgB3CeMaasvbqmTZtmli1btt+6jRs3Mn78+C7FqNrWcrbD/kb//ahQa/AH+OauQ4lNySb3l69T5fFR9b/jqBtyOGOufibc4SmllFKqB4jIcmNMqzOsdfkaLGPMYqCti3ZO6Gr9SinVm9Q1BIjBg3Fb11ImRLnZLKmk1hSEOTKllFJK9QYhnUVQ9T133HFHuENQqk+p8wWIFQ+1Ed9OVlPuzmCEZ00Yo1JKKaVUbxGSSS6UUmqgqGvwE0MDRMZ9uy42i6RAKfgbwhiZUkoppXoDTbCUUuog1Db4icWDNEuwAglZODBQtTuMkSmllFKqN9AESymlDoKnvgaHGBzNEiz3YOsm6XXF+WGKSimllFK9hSZYSil1EBpqrfvLuaK+TbBiUnMAqCzKD0NESimllOpNNMHqpFdeeQUR4euvv26zTH5+PpMmTQpZm5s2beLYY49l6tSpjB8/niuvvBKwbhL85ptvdqnuyy+/nLS0tJDGq9RA4K2vAsAVFd+0bnBGDgD12oOllFJKDXiaYHXS/PnzmTVrFvPnz291u9/v73IbgUBgv+Vf/vKX3HDDDaxatYqNGzdy7bXXAqFJsObOncvbb7/dpTqUGoj89VYPVkTMtwnW0JRBFJtEAuU6VbtSSik10PWtadrfuhWK1oa2ziGT4dQ/t1ukpqaGxYsX89FHH3HGGWdw5513ArBo0SL+8Ic/MGjQIL7++mveffdd/H4/F154IStWrGDixIn897//JSYmhg8++ICbbroJv9/P9OnT+fvf/05kZCQ5OTnMmTOH9957j1tuuYXzzz+/qd3CwkKysrKalidPnozX6+W2226jvr6exYsX85vf/IbTTz+da6+9lnXr1uHz+bjjjjuYPXs2TzzxBC+//DKVlZXs3r2biy66iNtvvx2Ao48+mvz8/HZf98cff8x1110HgIjwySefEBcXxy233MJbb72FiPD73/+eOXPmsGjRIm6//XaSkpJYu3Yt5513HpMnT+aBBx6gvr6eV155hZEjR/Laa6/xxz/+Ea/XS3JyMk8//TTp6en7tXv++edz8cUXc9pppwFWMnj66adz7rnndu6cKtWN/J4aACKiE5rWpcZFstakEF+jk1wopZRSA532YHXCq6++yimnnMKYMWNITk5m+fLlTdtWrFjBAw88wObNmwFrWN8111zDxo0bSUhI4G9/+xsej4e5c+eyYMEC1q5di9/v5+9//3tTHcnJyaxYsWK/5Arghhtu4Pjjj+fUU0/l/vvvp6KigoiICO666y7mzJnDqlWrmDNnDnfffTfHH388S5Ys4aOPPuLmm2+mtrYWgCVLlvDiiy+yZs0ann/+eZYtW9bp133vvffyyCOPsGrVKj799FOio6N56aWXWLVqFatXr+b999/n5ptvprCwEIDVq1czb948Nm7cyJNPPsnmzZtZsmQJV1xxBQ899BAAs2bN4ssvv2TlypWcf/753HPPPQe0O2fOHJ577jkAvF4vH3zwQVOypVS4BRoTrGY9WA6HUO5OI6a+MFxhKaWUUqqX6Fs9WB30NHWX+fPnN/XknH/++cyfP5/DDjsMgBkzZpCbm9tUNjs7myOPPBKAiy66iAcffJDvf//75ObmMmbMGAAuvfRSHnnkEa6//nrASihac9lll3HyySfz9ttv8+qrr/KPf/yD1atXH1Du3XffZeHChdx7770AeDwedu7cCcD3v/99kpOTAfjhD3/I4sWLmTZtWqde95FHHsmvfvUrLrzwQn74wx+SlZXF4sWLueCCC3A6naSnp3PMMcewdOlSEhISmD59OhkZGQCMHDmSk046CbB63j766CMAdu3axZw5cygsLMTr9e537BqdeuqpXHfddTQ0NPD2229z9NFHEx0d3amYlepuxmslWO7o+P3W10ZlkFS7AowBkXCEppRSSqleQHuwOlBWVsaHH37IFVdcQU5ODn/5y1947rnnMMYAEBsbu195afHFquVya1rW0dzQoUO5/PLLefXVV3G5XKxbt+6AMsYYXnzxRVatWsWqVavYuXMn48eP/87xNLr11lv55z//SX19PUceeWS7E3wAREZGNj13OBxNyw6Ho+katWuvvZZf/OIXrF27ln/84x94PJ4D6omKiuLYY4/lnXfeYcGCBW0moEqFg7F7sIjY/33rjx9KFA1QXx6GqJRSSinVW2iC1YEXXniBiy++mB07dpCfn09BQQG5ubl8+umnrZbfuXMnX3zxBQDPPPMMs2bNYuzYseTn57NlyxYAnnzySY455pgO23777bfx+XwAFBUVUVpaSmZmJvHx8VRXVzeVO/nkk3nooYeakr6VK1c2bXvvvfcoKytrug6qsXetM7Zu3crkyZP59a9/zfTp0/n666856qijWLBgAYFAgOLiYj755BNmzJjR6TorKyvJzMwE4D//+U+b5ebMmcO///1vPv30U0455ZRO169Ut/NZw2+JiNtvtSRlW5vLdvZ0REoppZTqRTTB6sD8+fM5++yz91t3zjnntDmb4NixY3nkkUcYP3485eXlXH311URFRfHvf/+bH/3oR0yePBmHw8FVV13VYdvvvvsukyZNYsqUKZx88sn85S9/YciQIRx33HFs2LCBqVOnsmDBAv7whz/g8/nIy8tj4sSJ/OEPf2iqY8aMGZxzzjnk5eVxzjnnNA0PvOCCCzjiiCPYtGkTWVlZPP744wDMmzePefPmAfDXv/6VSZMmkZeXh9vt5tRTT+Xss88mLy+PKVOmcPzxx3PPPfcwZMiQTh/PO+64gx/96EccdthhpKSkNK1ftmwZV1xxRdPySSedxMcff8yJJ55IREREp+tXqruJtzHB2r8HKzp5OAAVRdt7OqQ+aV+1h/99cwNb9lV3XFgppZTqQ6Sx16PbGhA5BXgAcAL/NMa0eSHVtGnTTMtJGDZu3Ng03E0dnCeeeIJly5bx8MMPhzuUsNF/PyrUXr3/Gs6ofAbH7eX7XWv11dqvOfzFw9k+/Q5yT7shjBH2DTcsWMWsdb9nUuRexl7/JsSlhjskpZRSqtNEZLkxptWJDbq1B0tEnMAjwKnABOACEZnQnW0qpVR3cvrq8Ej0ARNZpA3JosG48ZbtCFNkfUcwaCja+AXnOD9lrH8z5R/+NdwhKaWUUiHT3UMEZwBbjDHbjDFe4Flgdje3qWxz584d0L1XSnUHV6AOr+PAWS0zkqLZbZKRyl1hiKpv2VJcwyE+61rRtcEcHF+/Zs2+qDr01tpCDv3DK3z40mMQ8IU7nD5j3e5K7nxtPfsq68MdilJqAOjuBCsTKGi2vMte10RErhSRZSKyrLi4uNVKunsYo+qf9N+N6g4RgToaWkmwotxOip2pRNbqvbA6sn5PJXmObXgTc3jTeTyJdTtAE9MOGWO4773NXGee4vg1NxF46WfhDqlPMMZw7fyVfPr5YmIfGA1v3hLukJRS/VzYJ7kwxjxqjJlmjJmWmnrgGPyoqChKS0v1y7I6KMYYSktLiYqKCncoqp9xB+rwO1u/L1t15BDivUU9HFHfs72kjjzHNpxZh+FJP9RauWdFeIPqAworPRTsK+VCl3VfQdnwKtSWhjmq3m/z3hq2l9Tyq4hXiA1Ww5J/wL72bzuilFJd0d03Gt4NZDdbzrLXdVpWVha7du2ird4tpdoSFRVFVlZWuMNQ/Uyk8eBztX7vuoaYDJLK3reGbjndPRxZ37FrXylDpRTSx5OUcAgNhS4cO5finqAjyNuzuqCCPNmGCz/3B37EDc7nYdObcOjF4Q6tV1tdUIEQ5AT3Wt5rOIwTXKtxrH0OTrgt3KEppfqp7k6wlgKjRSQXK7E6H/jxwVTgdrvJzc3tjtiUUuqgGGOICtYTcCW2vj0hC0eZwVTtRgbl9GxwfUhDsT2VfVIOYwensNlkkbNrDZqStm/t7kqmOa37KS5NOYvqyneIL/hSE6wOrNpVweSoEiL91XxoDmN8rJes/MXhDksp1Y916xBBY4wf+AXwDrAReM4Ys74721RKqe7S4A8Sg4egu/UeLPfgYQBUFuX3YFR9T2S1fTPmQTmMTI1li8nEWbo5vEH1AdtLapkWtQuShjE8exgrgqMxBUvCHVavt7mompMSrWv8KgZPYbWMhT0rwecJc2RKqf6q26/BMsa8aYwZY4wZaYy5u7vbU0qp7lLvDRAjHkwbCVZsWg4AlUXbejCqviUQNCQ22CPFB+UwLDmGbSaTmPpCaKgJb3C93PaSWkY49kLyKCYOTWSpbwRSshka9GbN7dlTUc84915wuIjPGs9HtbkQ8ELR2nCHppTqp8I+yYVSSvUVtV4/sXggovUEa/DQEQB4SvReWG0prWkgk2L8ziiITSHS5aQyzjpulGgvVluMMeworWWIfzcMHsnkzEQ2G/sa02I9bm3xB4IUVXnINnsgaTjjhg5mSf1Qa2PxxvAGp5TqtzTBUkqpTqpv8BNDAxIR1+r2oSmDKDEJBCsKWt2uYG9VA0OknIboIU03aw4OHm1t1ASrTSU1XmJ85UQFayF5JKPS4r5NsPZtCG9wvdi+6gaCBlJ9e2DwCMZnJFBgUgk4o2CfJlhKqe6hCZZSSnVSnacetwRwRLXeg5UY7aaIFFzVe3o4sr5jb5WHVKnAxA1pWhc3dCw+4yS4b1MYI+vd9lZ5GC57rYXBI4iNdOGPH4ZPIqBYpxxvS2FlPWBIqNsJg0cwISMBg4PSmBGamCqluo0mWEop1UkNdVUAOCLjW90uIlS406zriVSr9lZ7SKccZ+K3CVZOWiI7TDqeQv3C25bCSg9DpMxaSLR6rnLSEtnpyNaemHbsqfCQRA0ufy0MyiExxk1KXCQ7nMP1uCmluo0mWEop1UneWmsyAVd060MEAeqiMxjk2wt6c/RW7av0kC7lRA7KbFo3Mi2OLSYTo9cStamosp6MxgQrwbqGaGRqLBv8QzHag9WmPRXNjlui9W9uREosGwKZULNXb9SslOoWmmAppVQneeutHixXVOs9WAD+uKHEUA+eyp4Kq0+prCwlWrw4EjKa1uUkx7LNZBBdsxMC/jBG13sVVXkY6ijDuGMgKgmwEtP1/kykajfUV4Q1vt6qsNLDiIgKayHBTrBSY1laa/eg6kQXSqluoAmWUkp1kt9jTSMeEd12guUYlA1AfanOJNgaX7l9fVqza7BS4iIodA7FYfxQuTNMkfVuhZUehrsrkIShTZODjEhpNtFFsV6/1po9FfWMibZ+GGlMsHJTYllWl26t02GCSqluoAmWUkp1UlOCFdN2ghWTMhyA8j16L6zWmGr7+rT4bxMsEcGbmGMtlOpxa01RpYcsZ3nT8ECAkWlWzx8Apd+EKbLerakHS5wQlwZYCVYRgwm4Y6FEj5tSKvQ0wVJKqU4yHusarKjYxDbLJAyx7ulUsy+/J0Lqc5y1+6wn8Rn7rXek2FO1l27p4Yj6hqIqD2mmtKkXBmBIQhSl7gwC4tJEoQ17KurJdJZb/94cTgBGpMYBQlVMjiamSqluoQmWUkp1UtBbC4C7nSGCaRnZeI0TX5kOdWvJHwgS6y22FuLT99uWkp5FtYkmUKIJVkvGGPZV1pHkL92vB0tEGJaSwF5nhiamrfD4ApTWekkNljZNcAEwbHAMTodQ5M4C/femlOoGmmAppVRnNVgJFhGt3wcLID0xhkKSkcpdPRRU31FS4yWNcnzOGGgx1X1OShz5Jp2Gfdqj0FKVx0+MtwwHgf0SLLCGu20zmmC1pqjSA0CSf99+xy3C5SB7UDRbgxlQWQC++nCFqJTqpzTBUkqpzvJa12C1l2A5HUKpM42oOr3ZcEt7qzykSQXemPQDtuWkxJJvhkDp1jBE1rvtrfKQIfZ04s2GCIKVYK33pmPKtkEwEIboeq899k2GYzx7Wz1uaxvSAKP/5pRSIacJllJKdZLDX2c9cbedYAFURA5lUMPuHoiob7ESrHJM7IEJVmNPTFTtbvB7wxBd77XfTYZb6cHaEsxAAl6o0Jkrm2u8ybAz4DkgwRqRGsdXVYOtBb0OSykVYppgKaVUJzl9NdQTBY72Pzrr44YxKFgO9jVbyrK3uoF0ynEmZhywbVCMmyJXJg6CUJ7f88H1YnsrPc1uMnxgT8y2oH089Xqi/RS2cpPhRrkpsWzyWbMK6nFTSoValxIsEfmLiHwtImtE5GURSWq27TciskVENonIyV2OVCmlwszpq6PBEdVhuWBSLgD+Ep1yvLl9lfWkSQWRgzIP2CYi+BOt40aZDtlqbk9lPUOkDOOMgJjk/bY1XYMF2hPTwp5KD2Oj7Rt+t+zBSomlnigaYjL0uCmlQq6rPVjvAZOMMXnAZuA3ACIyATgfmAicAvxNRJxdbEsppcLK7a+hwdn+8ECAiFRrqvbKPfrFrbmK8hKixYsjYUir252pOlV7aworPOS0uMlwo6QYK+mqcyboVO0tFFbWM7rpJsP7D63MSbHex2XRw/W4KaVCrksJljHmXWOM3178ErBvKc9s4FljTIMxZjuwBZjRlbaUUircIv3VNDjbnqK9UVyGlSjUFmmi0Jy3wp74I/7AIYIAaekZlJs4naq9hT2V9WQ7yw/ohWmUmxLLLkemJqYt7KmoJ8ddad9keP/r/oYkRBHldljHreQbMCZMUSql+qNQXoN1OfCW/TwTKGi2bZe97gAicqWILBORZcXFxSEMRymlQismWIPP3XGClZ6eQaWJ0SGCLVXvtf7Gt96DlZsSQ74ZQsNe7VForqjSQxplB/TCNMpNiWNzYIj2xLRQWOEh01G2302GGzkcQk5yrHXcvNVQszdMUSql+qMOEywReV9E1rXymN2szO8AP/D0wQZgjHnUGDPNGDMtNTX1YHdXSqkeEQgaYk0tgYjEDssOTYpih0nHWZnf/YH1Ia7aIutJXOsJVk5yLNvMEKRcE9PmiirrGBQoaSfBimF9QzrUFIGnqoej652qPT6qG/ykBksOmOCi0YjUWFbX2d87NDlVSoVQhwmWMeZEY8ykVh6vAojIXOB04EJjmvrYdwPZzarJstcppVSfVOPxkyB1BCMTOiwbE+GiyJlBbG1Bh2UHCo8vQKJvn7WQ0PoQwdyUWPKDQ4iuKwRvXQ9G13tVeXxENZThMr52hgjGNZvoQocJgjW1PWD9m2szMY3liyp70hCd6EIpFUJdnUXwFOAW4ExjTPP/DRcC54tIpIjkAqOBJV1pSymlwqnK4yOeOojquAcLoDIykyRvIQT8HRceAPZWeciSEjwRg9u8UXNSTAT7IuxLecu392B0vVdhhYdssRPTQTmtlslNiWWrJlj72VVehxAkpr4Qkoa1WiY3JY5dwUEEXVE6VbtSKqS6eg3Ww0A88J6IrBKReQDGmPXAc8AG4G3g58YYvcW8UqrPqq6tsWbAi07qVHlv4nBcBKBKO+8B9lY1kCXF+OJa74Vp5Eu0ZmCkVKdqB3uCi8YEK2l4q2VyUmLYadIJ4tChbrZd5fWkU44j6G03MTU4qI3L0R4spVRIubqyszFmVDvb7gbu7kr9SinVW9RWlgPgiulcD5Y7ZQTsBV/JNtyDWv9iPJAUVXmYKCWQdEi75dypo6ACvReWzerBsieAaqMnJibCxeCEeMrMEFI0UQCsBGukq8RaaCPBGmFP1V4cMYx4TUyVUiEUylkElVKq32qoKQPAHTeoU+Xj7anay3dt6raY+pK9FfUMlVIiBrefbGakp1JsEvEX6xdesO7lNMxRjIlNg4iYNsvlpsSyQ4bqUDfbrvI68uKsH0XaSrAGxUaQFOMmX4ZCxQ7wN/RcgEqpfk0TLKWU6gRvjfVlLTJ2cKfKp2eNoMG4qNN7YQFQum8P0eIlIqX9BCs3JZbtZgjefXrcAHZX1DPCVYJ00AuamxrLRm+6dQ1WMNhD0fVeBWX1jI0oBXFAYnab5XJT7ONmglCm1/0ppUJDEyyllOoEX7U1TCtmUHoHJS0j0hLYZVIxOtQNgPqSfACkjeuIGuUkx7I9mIFTp2oHYEdpHcMcxW32wjTKTY5loy8d/PV63R9WD9ZwZwkkZIHT3Wa53ORYltfoTIJKqdDSBEsppTohUG1NNBA7KK1T5ZNiItjpyCKmShMFACp2Wn+T2u5NAMhJiSXfDCHSU6z3dAJ2FleRHChpc4KLRrkpsc2mah/YiUJNg5/yOh9DAkXQUc9fSixLqu1eab0OSykVIppgKaVUZ9RaPVgS17kEC6A8ZjiDG3YP+Kna/YEgUbV2r0o7w7UAEqPdFEfaU7WXDezktKLOS2R9IU4CHScKqbFsDdr3exrg12FtL64FYJB3T8c9f6mx1BCDLyZNEyylVMhogqWUUp3grC/DQ2Sb93BqTUPSSNz4rAvoB7DCSg8ZFON1xUEnprn3J+VaTwb48MrtJbUM62CK9kbZg2IodQzC64gZ8PfC2ry3migaiPJ0YmilPZNgVWzOgO/5U0qFjiZYSinVCRENpVQ7kw5qH1fqWAAa9m7uhoj6jh2ldeTIXnzxrU8z3lJkmn0HkNKB3YOVX1rLSNljLaSMbrdshMtB1qAYCt1ZAz5R2Ly3mjEuOzEdPKLdso0J1h5nltWDZUx3h6eUGgA0wVJKqU6I8ZVT5+7cFO2NErLHA1Cxc113hNRn7CirZZRjN5I2rlPls1KT2WVS8O8b2FPcby+uZaxjFyYyHuIzOizfdB3WAB8iuGlvNbMS7AQrbUK7ZWMiXGQmRfNNMAM8FVBX2v0BKqX6PU2wlFKqA8YY4gPleCM7N0V7o8yMTEpMAg1FAztR2L23hCwpISpjfKfKD0+JZUswE3/Rhm6OrHfbUlzDJHchkjoeRDosPzI1jrX1aZjKAvDV90CEvdPmomoOjS4ChxuSR3ZYfnR6HCvrUq0FvQ5LKRUCmmAppVQHKut9pFJGIHbIQe3X2KPgKh/YPQpVuzcC4Egb26nyI1Nj2WyycJdvgWCgO0Pr1TbuqWIUBdDJnr8x6XFsDgxBMFA6MK9fq/L42FPpYZTZYQ2rbGeK9kZj0uP5vMLunR7gwyuVUqGhCZZSSnWgqLScVKlCOphivKXYSBeFrmzia/K7J7A+IqLYHiLZwXCtRiNT49hiMnEGG6A8v/sC68VqGvz4ynYQF6yCjCmd2md0evyAn6r9m73VgCGjbhMMyevUPqPS4tjuTybojNQeLKVUSGiCpZRSHSgvygcgIrn9mdxaUxefS3ygHOrLQxxV37Cv2sNw7xa8zlgY3PFwLYAot5PqBHtSh30buzG63mtjYRWTZLu1MPSQTu0zOi2O7cbuZR2g12F9XVTNEMqs+6hlHtqpfcakxxPEQV3sME2wlFIhoQmWUkp1oHZfPgAJQ3IOel+TMsb6O0C/uK3fXcUkRz6e5Ing6Px/Oa50+3qt4oGZYK3YUc5Ux1aMww1pEzu1T3yUm6TEJMpc6QP4uFUwK8a+LUInE9NRaXEAFEUOH7DHTSkVWiFJsETkRhExIpJiL4uIPCgiW0RkjYh07mckpZTqhTwlOwFIGtL+lM+tiR1qXT9TsXN9SGPqK1ZuL2KS5BOdO/2g9huWkcouk0Jg78D8wrtsRzmzIjYjQw8Bd1Sn9xudHs83Mgz2DswJQpbkl3Jq/DZwRXV6aGVcpDWT4CYzzBqS2lDTvUEqpfq9LidYIpINnATsbLb6VGC0/bgS+HtX21FKqbAp204AB87EzIPeNX34WLzGSfXugZkolG/5ikjx4c498qD2G5Mez+ZgFr4BOJNgIGhYt30P44NbIOcgj1taHCsbhmJKvwG/t5si7J32VNRTUFbP1MB6yJ4BrshO7zsqLY4VnqHWQvHX3RShUmqgCEUP1v3ALUDzu/PNBv5rLF8CSSLS8U08lFKqF0qo3UaxOxNcEQe976ghSewwQzDFA+9mwx5fgOR9S6yFYUcc1L6j0+K/nUkw4O+G6HqvdbsrGdewBicByDnqoPYdkx7PBn82EvRDycD6N/f51lJSqGRwzWbIOfqg9h2THseiCnuq9r0D+751Sqmu61KCJSKzgd3GmNUtNmUCBc2Wd9nrlFKqT/EFgmR4d1Idl/ud9k+OjWCnI5Poqu0hjqz3+2JbKbNkFVWDJ0PMwd1DbERqLFtMFs6gD8oH1rFbtKmY4x0rMe4YyJl1UPuOSo/ja2PPdrlvYPX+vbu+iLPi1lnT1I85+aD2HZ0WzzZ/MkF3zIAdXqmUCp0OEywReV9E1rXymA38FritKwGIyJUiskxElhUXF3elKqWUCrmCkiqGSxGB5DHfaX8RoTImh8ENuwZcT8xX6zZziHxDzIRTDnpfaybBUdbCAJtJ8O01OzkjYhky6oSDGuYG1kyC20wGAXHB3oFz3V+9N8An3xQzJ3o5JGbDkMkHtf/o9DgMDqriRw+4xFQpFXodJljGmBONMZNaPoBtQC6wWkTygSxghYgMAXYDzW8Yk2Wva63+R40x04wx01JTU7v6epRSKqR2f7OKCAkQnTnpO9fhHzwaF/4B1RPjDwQx61/FKQbXxDO/Ux0R6fYNdgfQNTGbiqrJLPmMpGAFTPnxQe8fH+UmLTGOoojhAypReHdDEYN8xYyq/gqmXAAiB7V/40yCuyNyrcTUmA72UEqptn3nIYLGmLXGmDRjTI4xJgdrGOChxpgiYCFwiT2b4Eyg0hhTGJqQlVKq51Ru+QqAjAkHN9lAcxEZ1pTj1QUD59qOz7aWcrL/Q2riRx50b0Kj4RlpFJhUAgNoyNazS3dynusTgjEpMPr736mO0enxbDLZA2qo2zNf7eTy+C+t4YFTv1timpkUzcZgNtSXQc3ebohSKTVQdNd9sN7E6uHaAjwGXNNN7SilVLeK2LuKWokhInXUd65j8HCr96ti59pQhdXrffbRWxzq2ELkEVcedG9Co9HpcWwOZuEfIDMJVnt8fL5sBSc4VuCYegE43d+pnnEZ8Syvz4CqXVBfEdoge6ENe6pYuX0v5zs+sCYFGfzdrpccnxHPV7Xp1sIAGl6plAq9kCVYdk9Wif3cGGN+bowZaYyZbIxZFqp2lFKqp/gCQXLq1lAYP+mgbpLbUu7QdOueTgMkUdhaXEPerqfxOONxH3bRd65ndFo835gs3OXbIOALYYS90xOf5fOTwPOI0wUzv/vvkhMyElgfyLIWBsD1aw98sJnLohYR31AER934nesZNySBj8rtSxUG0PBKpVTodVcPllJK9Xlrvt7MGNlFYNjBTZXdUmZSNFvJJqpiS4gi692ef+11fuD4CnPYXIiM+871jEyLZTPZOIwPSr4JXYC9UHF1A+9/8jHnuj7FMf0nkDD0O9c1bkgCm4LDrIV9/bsn5sttpXyxfhu/dC+0eq9GHPud6xqfkUBJMB5fTNqAGl6plAo9TbCUUqoNe5a/AUDWYQc/C15zDodQEp3L4Pp8CAZCEFnvtXhzMSfm/z88EUlEH3dTl+qKdDmpSbKuX6Oofw+vvOvVNdxl/oaJSoRZv+pSXSNSYyl1puBxxvXrRMHjC/D7V9bxp9j5xPjL4ft3fefhqGANrQQojR3V7xNTpVT30gRLKaXaMGjnu5Q5kokdPq3LdTUkjSYCH5Tndz2wXqqy3seq5+9mmmMz7pPuhOikLtcZmzkeLy7Y238TrOeWFjDq60eY4tiK87R7Ia5rM+q6nQ5GpcWzw5XTb4e6GWO487X1jCt5j9MDHyKzboDMQ7tUZ05yLFFuB9sdw6F4U7//MUQp1X00wVJKqVZsyi9gmm85+zJP7NL1V41cQ6yeGM+e/vnLeDBomPfkU/zM+1/Kh52Ee9olIal3TMZgNgez8O3pnwnW51tK+OLVR7nO9TLBKT+GSeeEpN5xGfGs9WVaPVj9cMrxf366nY1LP+L+yEcheyYc8+su1+l0CGPT41ntzQS/B0q3hiBSpdRApAmWUkq1YseH/yJKfGQcd2VI6hvUOJPgjv6XKBhj+Ptzr3HV7t9SFzOUQRc82qWhWs2Nz4hnY3CYNUSwnyUKy3eU8+x//8ZfXI/gzzocxxl/Ddlxm5CRwIqGLGiohIodIamzt3jyi3xef+s1non+P1xJGXD+0wd9Q+a2jBuSwEeVQ6yFojUhqVMpNfBogqWUUi3UeHzk7nye/MixJI7o+vBAgNzMIew2yXj72UyCgaBh3lPP8OONV+OIiCHhytchelDI6h+fkcAGMxy3p7Rf3ZvovfVFvP34bdzvuJ9gxlRcF70QsiQBrERhbdCernzPqpDVG07BoOG+9zbz2Wv/5rmoPxGVkIJc+jrEpoSsjfEZ8SyvS8M4I2HPypDVq5QaWDTBUkqpFj5+50VGU4Bj2tyQ1Tk8OZYtJovI8v4zG15lnY/H/vZ/XLblOkz0IOKufh8ZlBPSNtLiI9kVOdJaKOr7N2r2B4I8+NZKKp79Kb9z/Bf/qJOJmLsQohJC2s64DOtmwwFxQeGqkNYdDvuqPPzsP18Q+fH/MC/ir7iHTsbxk/cgKTuk7YzLSMCPi+qkcVC4OqR1K6UGDle4A1BKqd7E6wuQueqvlDpSGHbs5SGr1+10sC8yhyPq3rIunnc4Q1Z3OHy5MZ/yF67jqsAi9g06hLSfvhDSnoRGIgLpk6AQa6KL0SeGvI2esrqggqefm8/PK+8j21mMf9ZNRB7/u5Bc49dSSlwkifFxFDpzyerDPVjGGF5YvosFr7/JneZvTHTlYw65GMcP7gV3VMjbGz/ESnQLIscwsfAdCAa75fwopfo3TbCUUqqZj9+cz/fNRjYfejvJIf4CV580iohir3VNzOARIa27p5TWNPDSgn9z8o57me4opXDqL8k443Zwdt9/J9lDM9m9J4WMonV9cthFlcfH31//glGr7+Ee56fUxWXimPMmjuHf69Z2xw2JZ+3eXLIKl1rXr4Xo+q6ekl9Sy59f+YqZ+X/nOdf7mJhBMPsZZNxp3dZmYoybzKRoVgWGM7GhCsq3Q/LIbmtPKdU/aYKllFK2isoKxq28i0JXJqNPuSbk9TvSx0Mx+Io24u5jCVYwaHj7k8+IXnQHP2UppbE5+M99goyRs7q97fEZ8WwIDiN192oiur210PEHgiz8fDWVHz3INYG3iHb5aTjiV8QcezNExHR7+3lZiXy2PYtTXe9CZQEkDev2NkOhtKaBf763gqgV/+TPjrdJcNUh03+C4/jfhfT6vrZMyU7kg4KhXAjWdViaYCmlDpImWEopZVvz9G84mr3sPPU5pBuGHw3OyYN1UJa/hvQJ3fcrfCgZY1i67Ctq3vszJzcswueIoGTGraR8/0Zw9Uy6MykzkXdMDieWvwwN1RAZ3yPtflf+QJAPlqyk5sP7+IH3XSLFR9WI03CddieulFE9FkdeVhKPBHKt/+n3rOr1Cdaeinqe+WApSasf5efyHnFODw0jT8Fx4u8gI6/H4piSlcS9a1MwsRFI4SqYfG6Ptf1d1HsDrN1dyfScQdaQWqVU2GmCpZRSwJqln/C9vc+yIvVMDj3s5G5pY8ywoewyKZjdvX/6Z2MMq5Z/Qd37f+aI+k9okAi2jbqUkbN/Q0rCkB6NZXRaHPfJWARj9SjkHt2j7XdWgz/AO598iXx2Pyf7P8QhsDd3NkNP+w1JqWN6PJ68rEQ2mWyC4sJRuAomnNnjMXTGtuIann3vM4ZtfIxrHYtwOwLUjj4TTryFyPSJPR7PlOwkfLioThxLQi++fq24uoEnP9/K7i+eJ9W3h6XH38DPTxgX7rCUUmiCpZRS1HsaiHzrOiolgfEX/7Xb2slJjuUjk8shpb13NjxjDMu++hTfR/cw07MYj0SyPncuY8/+DaMT08MSk8vpwJ9xKOwDdi3rdQlWbYOftz78iLilD3BaYDEBcVE0ag5Zp91K5uDhYYtrSEIUCfHxFDpyyOyFicL6PZW8+O5HTNj6ODc7PkNcgmfCeUQefxPxYRyWNzkzEYdAvns0eYUf9LqJLjbvrebfH3+NY81zXOFYSK6jCNzw0qJdPBH5AHNn9VwvqVKqdZpgKaUGvM+euosTg9vYdPTDjE1M7rZ2XE4He2PHMrh+Wa8b6maM4cvPF8HH/8cR3i+oJZr1I3/C6Nm/ZnJiWrjDY+SwLLbvHcLwgqW9ZqKLijovb737NmmrHuJcluCRKIom/IShp97EsISMcIeHiDAlK5GVu0aQufurXpMoLMsv47V33mbGrn/ze8dSAu4IfFN/Qswx1xOXmBnu8IiNdDEmPZ4l/lzyGiqhZBOkjQ9rTMYYPt9ayn8XrSN7+3Nc73qTdFc5DamT4dj/I1C8mR8uupsX37mOv/vu46pjx+hwQaXCqMsJlohcC/wcCABvGGNusdf/BviJvf6Xxph3utqWUkqF2vp1qzmy4FE2JM5iwnEXdXt73rTJOHYYTNFapJtnkeuMYNDwxeL3cHx6L0f4vqKaGNaOuoqxs29hcnz3JZsHa0p2Eiu+GkVWwVIcYZ4Rb1+Vh3feepncDX/nAllNrSOOwrxfknHSDWTGDA5bXK2Zmp3Ee5tGcXrEu9Y09xlTwhKHMYZPvinh/Xde5bh9T3KncxUNEbF4Z1xP1Kxf4O6GKf67YkpWEi+vz+UKgPzFYUuwAkHDu+uLePqjFUzf9zz3uN4j0V2Db9hRcMyviBxxHIjgxPqydc6iu3nxwxv5U82f+M1pk3E4NMlSKhy6lGCJyHHAbGCKMaZBRNLs9ROA84GJwFDgfREZY4wJdDVgpZQKlQafH8/L1xIUJ8Mu+luPfGmPGX4o7ICa7cuJD2OCFQgaPlv0FpGf/z+O9C+jmljWj/05Y868mcmx3T9T28Gamp3Eo8FRnFO/GCp2wqCeH3pXUFrL+6/PZ9K2x7hYvqbalcS+abeSdtzPiQ3xjYJDZeaIZJ4MTrAWtn/a4wlWMGh4Z10hn7/3PKdVzud/HBupjxqE93u/I/KIn0FUYo/G01lTspNYsGwQvpRM3Pmfwoyf9mj7Xn+QV1bu5qVFX3Jy5fP80/URUS4vgbGnw1G/wp112AH7OI+9haAJcs7H/8uHS67lt7X/y13nziTCFf5eS6UGmq72YF0N/NkY0wBgjNlnr58NPGuv3y4iW4AZwBddbE8ppULmw+ce4tTAajZNu4OxaT3zhX3kiFHs+zgJ3/blxB/bI03uxxcIsvjDN4j98v9xdGAlVRLPhvHXMfbMG5kY3Tu/7AJkDYpma9xh0PAEbP0Qpl3WY21vLqpk8Wv/YXrBv7jMsZ2KiDTKjriLwbN+SnwPTLfeFXlZSVS5UymNzCY5/1P43i96pF1fIMjClbtY/f7TnFP3HP/j2EZdTBr+o/+X6Glze2Sa+q743shkQNiZcCgj8xf32H3Eahv8zF+ykw8+/phzG17kKefnONwCU+bAkdfhTB3b7v6O427FxKVx7Bs3kb7hKq79x9386dKTSI6L7PbYlVLf6mqCNQY4SkTuBjzATcaYpUAm8GWzcrvsdQcQkSuBKwGGDevdU8gqpfqPLdu3M3PzvWyPmcTYH1zXY+1OzkzkczOCKXuX91ibYP0i/sn7r5K05D6OC66hUhLYNOlGRp92PROie2fvS3MiwvAxU9m9JpWMb97D0QMJ1uodJSx9/Z8ctfdJLnfsoiw6k6qj/x9Jh1/SY1PUd1WEy8G0nEF8uXcCp+34HAL+br0ptMcX4IUl29m66L9c0PAC5zh2Uxs/jOBxDxIz9Xxw9Y0v+sOTY8geHM0nvnGMrHsN9m2E9And1l5ZrZcnPs9nxWfvckngJeY7lxOIiMYx7Urke7+AxKxO1yXTL0eShjF2wcX8ad81/M+DN3Dl3CuYMLT3v8+V6i86/JQVkfeB1ubk/Z29/2BgJjAdeE5EDurumcaYR4FHAaZNm2YOZt/+yuP1UVddSUNtBd76arweDw0N9fga6gj6vOBvQAIeCHgh4MMYQzAYxGANxzAmiDEGYwxOsb6YOJwucLgRlxtxusHpxuG0lp1Oa53T5cbpjsAVEYnLHUVEZBSuiCjckVFERkQSERlt1aMXzqo+LhA07H72eoaLBzl/Xo9e+B/ldlKQeBjHVz8GlbsO6ovTd+Hx+vn43ZdIWf4AJ5p1VEgSm6f8mtE/+CWJkXHd2naoHT0mlUUr8zh/28fg93ZLkmOM4ctv9rD+zUf5ftkzXOHYR0ncCGqOm8fgQ3/UrclJdzlyVAqvbx3HaRHvwI7FMOLYkLdR7fEx/4stlHz6by7yv8RFjmJqBo3BnPBPYiee3eeOm4hw1OhUnlw1krkiyMbXuiXB2l1Rzz8/2UrB0tf5Ca/yK+cG/DFJMPNWnDOuhNjveB3k6BNx/WwRMc9czH3ldzFv3hqWfv83XHzkGL0uS6ke0OEnnjHmxLa2icjVwEvGGAMsEZEgkALsBrKbFc2y1w04dTUVlBQWUFVWhKd8L77qfQRrinHUleD0lBHlrcAdqCEqWEd0sJZYU0csHqKkd+aaQSP4cOEVF37c+MWFDzcBcRMQF36Hm6C4CTrcBBwRBB1ujMONcUZgHBEYpxuckeB0gzMCcUUizgjEFYHDHYm4InC6rPU4I+wyEdYXKae1XVwRiDMCh8OBQ8T66xBEHDgdDsRedojDTgYFRDBGMALw7d/GbRhjPWj8a7PXmRbbDca6J0/TduykNvjtfubb/UxjWWMwYJdrVgYDQatds197wW9Da9y6X3h23djVNe5rLe73Wqynpll4QZpV26IekGZtmZbHxW67adu3VTd7bg7YdkCRZvV8W68cUMrstyT7HwNa7A8YhBar7bqtvzV7NnBqwyI2jr2G8cMnH1iwmwVyj4U1j9Gw+QMip1/aLW3UN/j56O3nyFj1ICebjZQ7BrHlkN8x8pSfkxQR2y1tdrfvjUzhFpPHhb4PoODLkE7XHgwaFq3bwfZ3H+EH1S9whJSxL3EC9SfdS8rEM3rF7Hvf1Q8mZXD/W4fgdcYSseb5kCZYZbVenvpkAw1fPc7F5jWGSDk1aVMwJz5A3JhT+/RxO3ZMKs98lUDFsBkMWvs8HHNLyH5g3LKvhn8s2kzDmpf5mWMhE535+GOHwKw/4Tr0UgjFjx+pY4m+ehGehTdyzbpn2Prel9yx/Fp+dO5FTM7qvcOBe6OAz0tdbTUN9bV4PbUEGmoJeusJeOvx+30EfV4Cfh/BgJeA34uxnxu/3/ob8GECPgj4wAT3+85h9nve8juEtSz2dw7rq4sDI4KIYHAg9jLioOk7TeP3H3EA3z5v3KfxOeIAR+N3IauciNOKwfFtfWLXLQ5pVp+9XgTBigeHA2M/b9om+9eB/d2tsU1pis16bQ67XRHBSON3OQf+uAxyc3KJiegbP9Z0NcpXgOOAj0RkDBABlAALgWdE5D6sSS5GA0u62FavEwwEKN6zjbKCTVTvzcdXXoCzejfR9UUkePeRHCwmgTpaG/hYSxQVkkSdM4EGVxyVrjTK3HEEI+MhIh6iEpDIBByRsTgjonBHROOKjMLpjgJ3JA5XJOKKsnqgxE4omhIOsRINcRA0hkDQEAj4CDT7AAj6Gj8I/JiAj6DfR9DvJeBrIBDwEfQ1EPQ1YPxegn4vJtBg/WIcaP7w4Qh4kaAXCfpwBH04gl6cQR9Ovw+nqSfC+HAaPy7jw2182GkZEfZft+i8Jyo8ClzDGHfu7WFpO3f8dPatTkLWvUtqiBOsGo+PRW/MJ3vtQ/yAzZQ6Utg27XZyv38Vg3r5dS8dSYxx4xt+DPV7/kbk2hdwhCDB8geCvLNiM/s+eIQz6l/heKli7+DD8J7yKGljTuwXPfbDkmMYnZnCpzVHcMLGhXDa/wN3VJfqLKr08ORHq4hc8TgXyZsMlhpqhh4B37+VuNxj+sVxO3ZsGoNi3LzJLC4s/X9QuBqGTu1SnWt3VfLoRxuI+/oFfu56nRxXEb5Bo+DoR3BNPi/0vbIRMUSd+3fMlHNIf/l67qr4LR/+4zn+PuqnnPyDsxiR2rd6sTst4MNfW0ZtVTl11eXUV1fQUFuBr64Sf10lAU8VxlOFNFTj9FXj9tcS4a/FFazHHfTgDjYQaRqIwEuUacAlQeKB7r6xRtBI04+E9s+40Oy5QbBSpG9LODA4eumP8qH0P76LOOOqu5manRTuUDpFWv56fFA7i0QA/wKmAl6sa7A+tLf9Drgc8APXG2Pe6qi+adOmmWXLln3neLpLZdk+Cjcvo2rX1wRKthBZlc8gTwEZgUKixLdf2XIS/n979x1fVX0+cPzz3JW9E1YCSdh7yRRQcFsHWgfuWa1VW7Va22prrf3ZOutWqnXViRMHbgEBkS17yE6AMLL3zR3f3x/nJgZIIJCb3Izn/XrllXvW9zz3Hk44z/0u8u0plIR1xB3ZCX9sKs64zkQkdCIyoSMxiZ2IS+qMM7x1foMcDMYYqnx+qrx+qjxeqqoq8VS58bjdeAKvjdcNPivBMz5PoFmkB+OrgkCyV1MLE2gi6TcGjB/jNxis9WJ+/rNE9bc/gSqamj9Z1Z2XA9+oVP9Bs775CcRc69uUmpqvaiI1263aMQmUIPuVW/1NjvUHkv3WV38D9PNDSfW3OdY+UlPjRmDfmpe1tlev+znun89T/frn7bW31bWviBxyO/Dze5Wf9/o5tlrvdf9T/bz2gGew6k+/9j5y0K619jlgW805av1ZO/A5TwI1lsl9xuCMjCcUytxevrl/Mie5VhN11xaw2RtdZlF5Fd99+jrd1z7NQDaTa+9A6cjfkXHS9a2m30tDfLpyF5Xv/ppzwpbiuGPdUY9C5/b6mDF/BWVznmay53NipZzdHcaTfPpdODLHBTnq0Pvv3C3M+vwd3nD9C8593ho04Shs3lfKu9/+QMqal7jQNosYqaA0/SSiT/ojdB0V5KhD796P1/DpwrUsDr8RGXopnPX4EZdhjGHh1nxe/vZHemx7h6udX5JCId6OQ3Ecfzv0PSMofwMOy1NJ5dwn8c1/hihvIUv9vViT/AvSJ1zC6IG9CHc2QwxHyhhMVRkVRbkU5++hvGgfFUX78JTsw1eWD+X52CoLcFUVEuYpJMpbRIwpIZrywxbtNg5KJZIKIqmwRVJpi8Rjj8BnD8dvD8fniABHOMYRgTgjEFckNlcE4oxEXIF1jnCre0Wgi4Xd4bK6WjjDcDirXztxOcMCr12IzY7NZkOwvhgXESQINb3G77e6i5jq3z7reSjw2m+s135jEL8fv99nPT8ZH9R0L7GOxe+32qD4/TUtbYzxg/FbXVFqWuVY5eLHeu7yG+u8xnre8vutY0xNGQYJbK/+qd5e09on8B6sy++vqckrje3JwIFDiYtwNvqzChYRWWqMGVHntsYkWMHW0hKsBW/cR/rG/9GZfTXrqoyDHHtnCiO6UhmTAYk9iOjUi8Qu3emY1r1dJ05KqYab+uyj3LD3PvyXfoit1wlHXU5haQVzPnmVHhv+wwC2sM/RiYrRt9Jt0rWtZiCGI1Hl9XP1P1/gDf+dMOkvcPwfjuj4wvIqPv9uLhGLn+V032yc4mNf6smknH4XtrRhTRR16JVUehj/wDd85vwTqXEu+M18q6l2A1QnCF988zWDs1/jLNsP2AQq+5xN1KTboVPzN7NtLj/tKeHUx+fwfuo0hhd8DjcvhoSMBh3r8xtmrt/L+zPnM3L3NC52zCKSSryZk3CMv8VqqhmKmr6qMkp/eBn3gv+SVLEVj7Gzkl7sThyFM3MMXXqPoFePHoQ5g9wUyxioKqOyOJfi/N2UF+ylsngvnpJc/GV5UJ6HvbIAp7uAcG8hUd5iYkwxYXjqLbLERFAkMZTZYil3xON2xeENi8cXloA/PAF7RByOyDhcUfGERcURERNPVGwiUbEJREdGaX801SiaYB2lxdOfwbb5GzwpAwnvOpiUjMF06toDu6N1tP9USrVcn/24jbHTx+FJG0uH69474uNz8gpZ+slUBmx9hUzJYa+zC55jf0/qcVc1+MG5tXry2430nf1rTnStxX7TD5CYedhjNu0pZs6X79Ft8xucwFK84iCv1wV0OvV2JLlnM0Qdeo99/ROrZ73Ni65H4fg/wqS7Drl/ldfPl6uyWDPzbcYVfsIE+2qqbBH4hl1BxISbIb59jPx753sr+OHHVcyOvBN72jFw2YeHHLSjqMLDu4u3s/r7Tzmp/DNOsy/GJjbMwPOwj/tty0lIjcGzcyU589/AtnUOnSs2YMeqOSgyUeywdaHclYQ3IgV/ZBLijMDmisDmjMDhcCDGB36vNTKl8UJVBVSVIlUl2DxlODylOL1lhPnKiPQdOlnyG6GAaIokljJbLBWOOKpccXjDEjERCUhUEs7oJFyxKUTGJROd0JG4xA7ERkVqkqRCRhMspZRqYTw+P6/983qu8b2LuX420qVhtScbt2ezfsYzjNzzNp2kgOywXtgn/J4ux05pnmZGLUBFlY+rH3+f58tvJSy+M2FXvl9nrUKlx8f8JcvIXfAmows+Jd22lzJ7HBVDryJ50m8hOqX5gw8ht9fHOc/M58aChzmL76wawAm37zcQhTGGNTsLWTTvKxwbPuV0/2xSpJiy8E64xlyHc/S1ENHyJqJuSntLKjnzyXlMNjO52/sM9PkFnPsfqDW5tNfnZ97GfSxcMJeILV8ymdmk2/ZS5YzDcczl2Mb+pslHDG20ikLyNi9m98bleHavI6J0O2HuPGK9+cSZYuwN6OdTZsIoJZJyiaCyptldFG5nHN6wBPwRiUhUEo7oZFwxKUTGpxCd2JG4+GTiosJx2FvvoCiq/dEESymlWqD3v1/FcV+dgSOmAwk3z9zvga02t8fLwnnf4F/0IqPLZxMhVWyJOYboE/9AhyGntYkBBY7UT3tKePT5l3jY9yAuh43i/pdhuo4h3+Mgf9dWynesIL1gIb0lC4AdcccQO/46Yoee2+gBHlqzrLxyrn1xLjeVPME59u8pjspgT+cTyCeO4sI8nHnrGeBfT4oU48NGfuoJJB13PbZeJ7WbBL4uq3cWcfmLC/mldwZ32V7D64hkV+cTyZFOFJSU4izYRH+ziTTJBaCs8xiixl4L/c5uG//ejMHrcVNRXkZlRRkVbg9id2CzO7DZndgcdlyuSKIiwnA5NElS7YMmWEop1QL5/YZHpz7HbXvupjC6B1Fn3E9E70ngcFFSsJdNK76nZPUXZObOoit7KCecrZ1/QdeTbyK2e51/09uV7Pxynnn/SyZlPc1JtqX7fcPuxsnOqAGYPr8gY9yF2JMO34ywvcgvq+KJrzdQ8eM7XGC+YLBsIUy8+BD2OdNwpwwmafjZRA84td3VVh3KnuJKHvx8PTvXzOMy8wnH2taQJCX4EfJdqXhTBpA09HScfU+HmLqmD1VKtSWaYCmlVAtVXuXlpZef55e7HqaL5OPFhgcnEbgB8Bg7G6OG4xg4mZ6TrsAWofPXHCg7v5wN27Jw5G8izmXoktaNDun9rUnVVb28Pj85RZW4qzwkuTwkxMa2yYFRgs3j81NY7qGiykeHSAgPC2vXtXtKtVeaYCmlVAtmjGHZlt1s/+EDogrWEoYXR2wH4jOH02v4RMKitRZBKaWUakkOlWDpcHhKKRViIsIxPTpzTI+bQh2KUkoppRpJeyIqpZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFSYsa5EJE9gHbQx3HAZKB3FAHoZqNXu/2Q691+6HXun3R691+6LVuP1ritU43xtQ5Y32LSrBaIhFZUt8IIart0evdfui1bj/0Wrcver3bD73W7Udru9baRFAppZRSSimlgkQTLKWUUkoppZQKEk2wDu/5UAegmpVe7/ZDr3X7ode6fdHr3X7otW4/WtW11j5YSimllFJKKRUkWoOllFJKKaWUUkGiCZZSSimllFJKBYkmWIcgIqeJyAYR2SQifwp1PCp4RKSriMwSkbUiskZEbgmsTxSRr0VkY+B3QqhjVcEhInYR+VFEPg0sZ4rIwsD9PU1EXKGOUQWHiMSLyHsisl5E1onIWL232yYRuS3wN3y1iLwlIuF6b7cdIvKSiOwVkdW11tV5L4vlycB1Xykiw0MXuTpS9VzrhwN/x1eKyIciEl9r258D13qDiJwakqAPQROseoiIHXgGOB3oD1wsIv1DG5UKIi9wuzGmPzAGuClwff8EfGuM6QV8G1hWbcMtwLpayw8CjxljegIFwLUhiUo1hSeAL4wxfYEhWNdd7+02RkRSgd8BI4wxAwE7cBF6b7clrwCnHbCuvnv5dKBX4Od64LlmilEFxyscfK2/BgYaYwYDPwF/Bgg8r10EDAgc82zgub3F0ASrfqOATcaYLcaYKuBtYHKIY1JBYozJMcYsC7wuwXoAS8W6xq8GdnsVOCckAaqgEpE04Azgv4FlAU4A3gvsote6jRCROOA44EUAY0yVMaYQvbfbKgcQISIOIBLIQe/tNsMYMwfIP2B1fffyZOB/xrIAiBeRzs0SqGq0uq61MeYrY4w3sLgASAu8ngy8bYxxG2O2ApuwnttbDE2w6pcKZNda3hFYp9oYEckAhgELgY7GmJzApt1Ax1DFpYLqceBOwB9YTgIKa/3h1vu77cgE9gEvB5qE/ldEotB7u80xxuwEHgGysBKrImApem+3dfXdy/rc1rZdA3weeN3ir7UmWKpdE5Fo4H3gVmNMce1txprDQOcxaOVE5ExgrzFmaahjUc3CAQwHnjPGDAPKOKA5oN7bbUOg781krKS6CxDFwU2MVBum93L7ICJ3Y3XteCPUsTSUJlj12wl0rbWcFlin2ggRcWIlV28YYz4IrN5T3aQg8HtvqOJTQTMOOFtEtmE19T0Bq49OfKBZEej93ZbsAHYYYxYGlt/DSrj03m57TgK2GmP2GWM8wAdY97ve221bffeyPre1QSJyFXAmcKn5efLeFn+tNcGq32KgV2A0IhdWZ7qPQxyTCpJAH5wXgXXGmH/X2vQxcGXg9ZXAR80dmwouY8yfjTFpxpgMrPt4pjHmUmAWcH5gN73WbYQxZjeQLSJ9AqtOBNai93ZblAWMEZHIwN/06mut93bbVt+9/DFwRWA0wTFAUa2mhKoVEpHTsJr3n22MKa+16WPgIhEJE5FMrIFNFoUixvrIz8mgOpCI/AKr74YdeMkYc39oI1LBIiLjgbnAKn7ul3MXVj+sd4BuwHbgQmPMgR1sVSslIhOBO4wxZ4pId6warUTgR+AyY4w7hOGpIBGRoVgDmriALcDVWF8o6r3dxojI34EpWM2HfgR+hdUXQ+/tNkBE3gImAsnAHuBvwHTquJcDSfbTWM1Ey4GrjTFLQhC2Ogr1XOs/A2FAXmC3BcaYGwL7343VL8uL1c3j8wPLDCVNsJRSSimllFIqSLSJoFJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJBogqWUUkoppZRSQaIJllJKtTAikiEiRkQcoY5FtQ8iskZEJoY6DqWUags0wVJKKdXqichUESkN/FSJiKfW8uehjq+lM8YMMMbMboqyRSRRRPaJyLymKF8ppVoaMcaEOgallGpTRMRhjPE24vgMYCvgbEw57ZWI3Av0NMZcVse2Rl2b5tSaYj0UEXkB6APYjDHjQx2PUko1Na3BUkqpIBCRbSLyRxFZCZSJiENExojIfBEpFJEVtZtgichsEfmXiCwSkWIR+UhEEusp+2oRWSciJSKyRUR+fcD2ySKyPFDOZhE5LbA+TkReFJEcEdkpIv8nIvbDvI8eIjJTRPJEJFdE3hCR+Frb8kVkeGC5S6BmYmJg+exAU7PCwPvrd8Dnc4eIrBSRIhGZJiLhR/5JH7l6ro0RkZ619nlFRP6v1vKZgc+0MHANBzfwXBNFZIeI3BX4/LaJyKW1tp8hIj8GrlV2IBms3lbdNPRaEckCZgbWvysiuwOf2xwRGXBA3M+KyOeB2rrvRaSTiDwuIgUisl5EhjXwMzqpIe/xSIjIscBA4OVgl62UUi2VJlhKKRU8FwNnAPFAR2AG8H9AInAH8L6IpNTa/wrgGqAz4AWerKfcvcCZQCxwNfBYrSRnFPA/4A+B8x4HbAsc90qg3J7AMOAU4FeHeQ8C/AvoAvQDugL3AhhjNgN/BF4XkUish+ZXjTGzRaQ38BZwK5ACfAZ8IiKuWmVfCJwGZAKDgavqDEBkfCCxqe/naGpBaq7N4WqFAgnJS8CvgSTgP8DHIhLWwHN1ApKBVOBK4HkR6RPYVoZ13eMD8fxGRM454PjjsT77UwPLnwO9gA7AMuCNA/a/EPhL4Jxu4IfAfsnAe8C/Gxh3nUTkT4e6Hoc4zg48DdwMaHMZpVS7oQmWUkoFz5PGmGxjTAVwGfCZMeYzY4zfGPM1sAT4Ra39XzPGrDbGlAF/BS6sq4bJGDPDGLPZWL4DvgImBDZfC7xkjPk6cJ6dxpj1ItIxcK5bjTFlxpi9wGPARYd6A8aYTYGy3MaYfVgP58fX2v4CsAlYiJUY3h3YNAWYETjWAzwCRADHHvD57DLG5AOfAEPriWGeMSb+ED9H05en9rU5nOuB/xhjFhpjfMaYV7ESlzFHcL6/Bj7D77AS7QsBjDGzjTGrAtdqJVZSevwBx94buGYVgWNeMsaUGGPcWMnuEBGJq7X/h8aYpcaYSuBDoNIY8z9jjA+YhpVcHzVjzAOHuh6HOPR3wEJjzNLGnF8ppVobHaFKKaWCJ7vW63TgAhE5q9Y6JzCrnv23B7YnH1ioiJwO/A3ojfXFWCSwKrC5K1Zt0YHSA+XliEj1OtsB5zxIIDF7AiuBiwkcU3DAbi8AHwPXBx76warx2l69gzHGLyLZWLU41XbXel0eOKa5HPJ9HyAduFJEfltrnYuGx1sQSJqrba8+VkRGAw9gNZtzAWHAu/XFGki47wcuwKoZ9Ac2JQNFgdd7ah1bUcdydAPjDhoR6YKVYB3T3OdWSqlQ0xospZQKntrNoLKxaqhqf9sfZYx5oNY+XWu97gZ4gNzaBQaapb2PVSPUMVBj8BlWU77q8/SoI5ZsrFqX5FrnjzXGDKhj39r+GXgfg4wxsVg1cTUZmohEA48DLwL3ys/9xnZhJSbV+0ng/e08zPkOIiIT5OcRAOv6mXD4Ug5yYBO1cqxEtVqnWq+zgfsPuHaRxpi3GniuBBGJqrXcDevzAXgTKzntaoyJA6ZS6/OtI9ZLgMnASUAckBFYf+AxTSbQn6ze61HPYaOwajjXishurKR9VKAv2SH7ASqlVGunCZZSSjWN14GzRORUEbGLSHhgAIS0WvtcJiL9A/2Z7gPeCzTrqq26lmMf4A3UZp1Sa/uLwNUicqKI2EQkVUT6GmNysJoSPioisYFtPUTkwOZoB4oBSoEiEUnF6ttV2xPAEmPMr7Cavk0NrH8HOCMQhxO4HSvBm3+4D+pAxpi5xpjoQ/zMPdIy67AcuCRwbU5j/2Z6LwA3iMhosUQFBqeIgZqBJV45TPl/FxFXIBk8k59rqWKAfGNMZaD/3CWHKScG63PMw0oI/3kE7zEojDH/PNT1qOewz7GSwaGBn3uAH4GhdfwbV0qpNkUTLKWUagLGmGysmoe7sJKjbKxkpfbf3dewBqLYDYRjNak6sJySwPp3sJrqXYJVA1K9fRGBgS+wmox9x881SVdgJWhrA8e+h1WrcCh/B4YHypoBfFC9QUQmYw1S8ZvAqt8Dw0XkUmPMBqzarqewauHOAs4yxlQd5nyhcgtWjIXApcD06g3GmCXAdVgDNBRg9Tm7qtaxXYHvD1H27sBxu7AGpLjBGLM+sO1G4D4RKcFKOt45TJz/w2piuBPrOi443BtrCQL9z3ZX/2D9e/IEXiulVJum82AppVQIiMhs4HVjzH9DHYtquMCoiCuAwYHBPA7cPhHruqYduE0ppVT7oINcKKWUUg0UqJHrd9gdlVJKtVvaRFAppdoZEZlaz4AFUw9/tGqNRKTbIQaq6Bbq+JRSqi3RJoJKKaWUUkopFSRag6WUUkoppZRSQdKi+mAlJyebjIyMUIehlFJKKaWUUvVaunRprjEmpa5tLSrBysjIYMmSJaEOQymllFJKKaXqJSLb69umTQSVUkoppZRSKkg0wVJKKaWUUkqpINEESymlDkNHW1VKKaVUQ7WoPlh18Xg87Nixg8rKylCHolqZ8PBw0tLScDqdoQ5FtWLGGK54bjadKjfyr1t+hcOu30sppZRSqn4tPsHasWMHMTExZGRkICKhDke1EsYY8vLy2LFjB5mZmaEOR7ViG/aUcHnOPzjFvpTFSwcwctS4UIeklFJKqRasxX8VW1lZSVJSkiZX6oiICElJSVrzqRptY1YOp9iXAmBf8t8QR6OUUkqplq7FJ1iAJlfqqOi/GxUM+Ts31rxOyV8WwkiUUkop1Rq0igRLKaVCxRRmA7AhehRdvFlQVRbiiJRSSinVkmmC1QAiwu23316z/Mgjj3DvvfeGLqBaFixYwOjRoxk6dCj9+vWriWv27NnMnz//qMvdvn07w4cPZ+jQoQwYMICpU6cGKWKlWhdH6U4A9qWdgh0/BVuWhjgipZRSSrVkmmA1QFhYGB988AG5ublBLdcYg9/vb1QZV155Jc8//zzLly9n9erVXHjhhUDjE6zOnTvzww8/sHz5chYuXMgDDzzArl27GhWrUq1RZHkOHpw4ek4EoDB7bWgDUkoppVSLpglWAzgcDq6//noee+yxg7bt27eP8847j5EjRzJy5Ei+//57AO69914eeeSRmv0GDhzItm3b2LZtG3369OGKK65g4MCBZGdn84c//IGBAwcyaNAgpk2bBlgJ0sSJEzn//PPp27cvl156aZ1z8ezdu5fOnTsDYLfb6d+/P9u2bWPq1Kk89thjDB06lLlz5x4yzssvv5yxY8fSq1cvXnjhBQBcLhdhYWEAuN3uehPBJ598kv79+zN48GAuuugiAPLz8znnnHMYPHgwY8aMYeXKlTXnuvLKK5kwYQLp6el88MEH3HnnnQwaNIjTTjsNj8cDwH333cfIkSMZOHAg119//UHv2+/3k5GRQWFhYc26Xr16sWfPnkNdRqWOSmzVbgqdHUjp2guPsePesynUISmllFKqBWvxw7TX9vdP1rB2V3FQy+zfJZa/nTXgsPvddNNNDB48mDvvvHO/9bfccgu33XYb48ePJysri1NPPZV169YdsqyNGzfy6quvMmbMGN5//32WL1/OihUryM3NZeTIkRx33HEA/Pjjj6xZs4YuXbowbtw4vv/+e8aPH79fWbfddht9+vRh4sSJnHbaaVx55ZVkZGRwww03EB0dzR133AHAJZdcUm+cK1euZMGCBZSVlTFs2DDOOOMMunTpQnZ2NmeccQabNm3i4YcfpkuXLge9lwceeICtW7cSFhZWk/D87W9/Y9iwYUyfPp2ZM2dyxRVXsHz5cgA2b97MrFmzWLt2LWPHjuX999/noYce4txzz2XGjBmcc8453Hzzzdxzzz0AXH755Xz66aecddZZNee02WxMnjyZDz/8kKuvvpqFCxeSnp5Ox44dD3sdlTpSEd4i3NEJpCXFsMMkIwVbQx2SUkoppVowrcFqoNjYWK644gqefPLJ/dZ/88033HzzzQwdOpSzzz6b4uJiSktLD1lWeno6Y8aMAWDevHlcfPHF2O12OnbsyPHHH8/ixYsBGDVqFGlpadhsNoYOHcq2bdsOKuuee+5hyZIlnHLKKbz55pucdtppdZ7zUHFOnjyZiIgIkpOTmTRpEosWLQKga9eurFy5kk2bNvHqq6/WWUM0ePBgLr30Ul5//XUcDkfNe7r88ssBOOGEE8jLy6O42EqMTz/9dJxOJ4MGDcLn89XEO2jQoJr3N2vWLEaPHs2gQYOYOXMma9asOei8U6ZMqante/vtt5kyZcohP3OljobH5yfKlOFzxRLmsLPb0YXIsqxQh6WUUkqpFqzRNVgi0hX4H9ARMMDzxpgnRCQRmAZkANuAC40xBY05V0NqmprSrbfeyvDhw7n66qtr1vn9fhYsWEB4ePh++zocjv2a1dWejykqKqpB56tuogdW8z+v11vnfj169OA3v/kN1113HSkpKeTl5R20T31xwsHDmR+43KVLFwYOHMjcuXM5//zz99s2Y8YM5syZwyeffML999/PqlWrGvSebDYbTqez5lw2mw2v10tlZSU33ngjS5YsoWvXrtx77711zmU1duxYNm3axL59+5g+fTp/+ctfDnlepY5GeZWPGCrwuWIAKA5PI7HiWzAGdBoApZRSStUhGDVYXuB2Y0x/YAxwk4j0B/4EfGuM6QV8G1hu1RITE7nwwgt58cUXa9adcsopPPXUUzXL1U3hMjIyWLbMmjNn2bJlbN1ad7OiCRMmMG3aNHw+H/v27WPOnDmMGjWqwTHNmDGjpo/Sxo0bsdvtxMfHExMTQ0lJyWHjBPjoo4+orKwkLy+P2bNnM3LkSHbs2EFFRQUABQUFzJs3jz59+ux3br/fT3Z2NpMmTeLBBx+kqKiI0tJSJkyYwBtvvAFYfcmSk5OJjY1t0PupTqaSk5MpLS3lvffeq3M/EeHcc8/l97//Pf369SMpKalB5St1JMqrvMRKOf5AglUVm0GUKYfy/BBHppRSSqmWqtEJljEmxxizLPC6BFgHpAKTgVcDu70KnNPYc7UEt99++36jCT755JMsWbKEwYMH079//5rhzM877zzy8/MZMGAATz/9NL17966zvHPPPZfBgwczZMgQTjjhBB566CE6derU4Hhee+01+vTpw9ChQ7n88st54403sNvtnHXWWXz44Yc1g1zUFydYzfwmTZrEmDFj+Otf/0qXLl1Yt24do0ePZsiQIRx//PHccccdDBo0CIBf/epXLFmyBJ/Px2WXXcagQYMYNmwYv/vd74iPj+fee+9l6dKlDB48mD/96U+8+uqr9YV/kPj4eK677joGDhzIqaeeysiRI2u2TZ06db+4p0yZwuuvv67NA1WTKa/yEUs5Jsz6gkCSuwNQseenUIallFJKqRZM6hqZ7qgLE8kA5gADgSxjTHxgvQAF1csHHHM9cD1At27djtm+fft+29etW0e/fv2CFqPa37333rvfYBhtjf77UY2xevteBr7ci40Db6PX+fcya+5cJn17JjsnPUHq8VeFOjyllFJKhYiILDXGjKhrW9AGuRCRaOB94FZjzH5D/Rkri6szkzPGPG+MGWGMGZGSkhKscJRSqtHcpVa3UVtEHAAJqT3xG6Fyrw7VrpRSSqm6BWWYdhFxYiVXbxhjPgis3iMinY0xOSLSGdgbjHOp4Lr33ntDHYJSLZanvBAAeyDB6pKSwF7iMQXbD3GUUkoppdqzRtdgBZr/vQisM8b8u9amj4ErA6+vBD5q7LmUUqo5ecuKAHBExgOQEh3GLpJxlOwMYVRKKaWUasmC0URwHHA5cIKILA/8/AJ4ADhZRDYCJwWWlVKq1fBVWE0EnVHxgDV6ZYGzM9EVu0IYlVJKKaVaskY3ETTGzAPqmxDmxMaWr5RSoWLc1lQHrqifpxkoj+hMfMn34PeBzR6q0JRSSinVQgVtkAullGprfJVlAERE/pxgeWPTcOCDkt2hCksppZRSLZgmWA00ffp0RIT169fXu8+2bdsYOHBg0M65YcMGJk6cyNChQ+nXrx/XX389YE0S/Nlnnx11uZWVlYwaNYohQ4YwYMAA/va3vwUrZKXaFFNlJVhhkdE16+wJ6QC4c7eFIiSllFJKtXCaYDXQW2+9xfjx43nrrbfq3O71eht9Dp/Pt9/y7373O2677TaWL1/OunXr+O1vfws0PsEKCwtj5syZrFixguXLl/PFF1+wYMGCRsWuVFtkqsoBEFdUzbrIDhkAFORsCUVISimllGrhNMFqgNLSUubNm8eLL77I22+/XbN+9uzZTJgwgbPPPpv+/fsDVqJ16aWX0q9fP84//3zKy60HtG+//ZZhw4YxaNAgrrnmGtxuNwAZGRn88Y9/ZPjw4bz77rv7nTcnJ4e0tLSa5UGDBlFVVcU999zDtGnTGDp0KNOmTaOsrIxrrrmGUaNGMWzYMD76yBqw8ZVXXmHy5MlMnDiRXr168fe//x2wOupHR1vfyHs8HjweD9ZgkPt79913GThwIEOGDOG4444DrNqvq6++mkGDBjFs2DBmzZpVc65zzjmHk08+mYyMDJ5++mn+/e9/M2zYMMaMGUN+fj4AL7zwAiNHjmTIkCGcd955NZ9PbWPGjGHNmjU1yxMnTmTJkiUNvl5KBY0n8O/T+XOCldC5BwAV+zTBUkoppdTBgjIPVrP5/E+we1Vwy+w0CE4/9ACHH330Eaeddhq9e/cmKSmJpUuXcswxxwCwbNkyVq9eTWZmJtu2bWPDhg28+OKLjBs3jmuuuYZnn32Wm2++mauuuopvv/2W3r17c8UVV/Dcc89x6623ApCUlMSyZcsOOu9tt93GCSecwLHHHsspp5zC1VdfTXx8PPfddx9Llizh6aefBuCuu+7ihBNO4KWXXqKwsJBRo0Zx0kknAbBo0SJWr15NZGQkI0eO5IwzzmDEiBH4fD6OOeYYNm3axE033cTo0aMPOv99993Hl19+SWpqKoWFhQA888wziAirVq1i/fr1nHLKKfz0008ArF69mh9//JHKykp69uzJgw8+yI8//shtt93G//73P2699VZ++ctfct111wHwl7/8hRdffLGmZq7alClTeOedd/j73/9OTk4OOTk5jBhR50TZSjUpm6ecKhy47D//qeyckkSeicGbnxXCyJRSSinVUmkNVgO89dZbXHTRRQBcdNFF+zUTHDVqFJmZmTXLXbt2Zdy4cQBcdtllzJs3jw0bNpCZmUnv3r0BuPLKK5kzZ07NMVOmTKnzvFdffTXr1q3jggsuYPbs2YwZM6am5qu2r776igceeIChQ4cyceJEKisrycqyHv5OPvlkkpKSiIiI4Je//CXz5s0DwG63s3z5cnbs2FGThB1o3LhxXHXVVbzwwgs1zRfnzZvHZZddBkDfvn1JT0+vSbAmTZpETEwMKSkpxMXFcdZZZwFWzdu2bdsAKwmbMGECgwYN4o033tivpqrahRdeyHvvvQfAO++8w/nnn1/n56NUU7N5y3FL+H7rOsaGs9OkYC/eEaKolFJKKdWSta4arMPUNDWF/Px8Zs6cyapVqxARfD4fIsLDDz8MQFRU1H77H9jUrq6mdwc6sIzaunTpwjXXXMM111zDwIED60yEjDG8//779OnTZ7/1CxcuPGw88fHxTJo0iS+++OKgATqmTp3KwoULmTFjBscccwxLly495PsICwureW2z2WqWbTZbTR+1q666iunTpzNkyBBeeeUVZs+efVA5qampJCUlsXLlSqZNm8bUqVMPeV6lmorNW4lbwomptc5uE/KdHelQoZMNK6WUUupgWoN1GO+99x6XX34527dvZ9u2bWRnZ5OZmcncuXPr3D8rK4sffvgBgDfffJPx48fTp08ftm3bxqZNmwB47bXXOP744w977i+++AKPxwPA7t27ycvLIzU1lZiYGEpKSmr2O/XUU3nqqacwxgDw448/1mz7+uuvyc/Pp6KigunTpzNu3Dj27dtX0+SvoqKCr7/+mr59+x50/s2bNzN69Gjuu+8+UlJSyM7OZsKECbzxxhsA/PTTT2RlZR2U2B1KSUkJnTt3xuPx1JRTlylTpvDQQw9RVFTE4MGDG1y+UsHk8JVTZQs/aH1peGcSqvZA4J5TSimllKqmCdZhvPXWW5x77rn7rTvvvPPqHU2wT58+PPPMM/Tr14+CggJ+85vfEB4ezssvv8wFF1zAoEGDsNls3HDDDYc991dffVUzyMSpp57Kww8/TKdOnZg0aRJr166tGeTir3/9Kx6Ph8GDBzNgwAD++te/1pQxatQozjvvPAYPHsx5553HiBEjyMnJYdKkSQwePJiRI0dy8sknc+aZZwJwzz338PHHHwPwhz/8gUGDBjFw4ECOPfZYhgwZwo033ojf72fQoEFMmTKFV155Zb+aq8P5xz/+wejRoxk3btx+Sd3HH3/MPffcU7N8/vnn8/bbb3PhhRc2uGylgs3hq8BjizhovSc6jTDcUJYbgqiUUkop1ZKJaUHfwI4YMcIcOFrcunXr6NevX4giat1eeeWV/QbDaI/0349qjGX3jSMuTOjxx3n7rf/o7ReYvP4OPNd8i7ObDsCilFJKtTcistQYU+dDgNZgKaVUPcL8lfjsB9dghQfmwirM2dzMESmllFKqpWtdg1yoI3LVVVdx1VVXhToMpVqtMFOJxxF50Pr4wFxYZXu2kNLcQSmllFKqRWvyGiwROU1ENojIJhH509GU0ZKaMarWQ//dqMYwxhBOJX7nwTVYnTt0othE4MnTubCUUkoptb8mTbBExA48A5wO9AcuFpH+R1JGeHg4eXl5+rCsjogxhry8PMLDDx4BTqmGqPT4icANzoOnUegUZ82FZSvODkFkSimllGrJmrqJ4ChgkzFmC4CIvA1MBtY2tIC0tDR27NjBvn37mihE1VaFh4eTlpYW6jBUK1Ve5SUSNzgPbiLoctjIdXSgR/muEESmlFJKqZasqROsVKD2V7w7gNFHUoDT6SQzMzOoQSml1OGUuz0kSRW4Dk6wAErCOhNf2eDvipRSSinVToR8FEERuV5ElojIEq2lUkq1FBXlZQDYwqLr3F4VnUqkKYeKwmaMSimllFItXVMnWDuBrrWW0wLrahhjnjfGjDDGjEhJ0fG4lFItg7u8GAB72MF9sAAkoRsA3vztzRaTUkoppVq+pk6wFgO9RCRTRFzARcDHTXxOpZRqNHdFKQD2sLqbCIYlWU2Xi3ZvbbaYlFJKKdXyNWkfLGOMV0RuBr4E7MBLxpg1TXlOpZQKhqpAguUMr7uJYGzn7gCU7tlMUrNFpZRSSqmWrsknGjbGfAZ81tTnUUqpYPJWlADgqCfB6tgplQrjoipXmwgqpZRS6mchH+RCKaVaIm+lNciFK6LuBCs1IZKdJhkp0rmwlFJKKfUzTbCUUqoOXreVYIVHxtS5PdxpZ6+9A2E6F5ZSSimlatEESyml6mDcVh8sVz0JFkBxWGdi3TnNFZJSSimlWgFNsJRSqg6+qnKg/iaCAO6oVOL8RVBV1lxhKaWUUqqF0wRLKaXqEkiwcNY9DxaAibOm+fMXtN1+WB6fnye/2cB7n32F8ftDHY5SSinV4mmCpZRSdamulXLVPQ8WQFhyOgDFu7c0R0Qh8fL3W0n/7lbOX3QBW165LtThKKWUUi2eJlhKKVUXbzl+BBzh9e4S09GaC6t4T9tNsH5cOJvJ9vkA9Mh6D3JWhjgipZRSqmXTBEsppepg95TjlnAQqXef5M7dqDJ23Lnbmi+wZrRxTwmjir7EawvnrXGfUWFcFP3wcqjDUkoppVo0TbCUUqoOdk8ZlRJxyH1SE6PJMUlQ2Db7YC3Yksd422q8Xcdy3MjhzPUPwr5hBhgT6tCUUkqpFksTLKWUqoPTV0alvf4BLgBiwp3ssaXgKtvZTFE1r+ysrfSy7SSs9wmkxkewPGIM0e49kPtTqENTSimlWixNsJRSqg5hvnI89voHuKhW4OpCfMWOZoio+fl2LgdA0kYCYLodC4B/+w+hCqlZTP1uM9c9+gbLPpn682iSSimlVANpgqWUUnUI95fjcRy6BgugLDqdOH8BVBY3Q1TNx+83RBeutxY69gcgs/dg9plYSn+aE8LImtbCLXm8+8W3PF58G8OX/pGK16a0+SaRReUenpm1iVlrssHrDnU4zWJvSSXbcnX+OqVU09AESyml6hBuyvE56p9kuJon3hpJ0ORvbuqQmtX2/HJ6mW2URqRCeBwAIzITWeLvg2QvCHF0Tef1hVncETadiDAX//OdQkT2HPjpy1CH1WSMMfzmjaV89dUMhrwzBs+DPWH7/FCH1aRWZBdy/EOzufXR/5Lz9Okw65/g94U6LKVUG9KoBEtEHhaR9SKyUkQ+FJH4Wtv+LCKbRGSDiJza6EiVUqqZeH1+Ik0FvkNMMlwtrEMvAIp3bmjqsJrVupxi+koWvg4DatZlJkex1tGfmIqdULwrhNE1jVK3l8Vrf+IUFmAbfgXze97OHpLwL/5vqENrMvM35/HD5n28nPgqNpuNYq8D88H14K0KdWhNwhjDPz5dSydXBa+GP0rn3Pnw3YOw6IVQh6aUakMaW4P1NTDQGDMY+An4M4CI9AcuAgYApwHPioi9kedSSqlmUVblI0oqMa7D12AldesLtL0Ea+OOvWRKDlFdh9SsExGKUkZYC9mLQhRZ05m1fi/j/Uux44PBF3LOMem87x2HbJ4JZbmhDq9JvL90B6eEryWxbDPrh97N7e5fIUXZsObDUIfWJFbsKGLJ9gIe7b6MOFPEGe77yU4YbSVZnspQh6eUaiMalWAZY74yxngDiwuAtMDrycDbxhi3MWYrsAkY1ZhzKaVUcylze4mmAgk7fIKV0SmZXSYR776NzRBZ8ynOXoVdDI4ug/ZbH5cxlCpjx7tjaYgiazqLt+VzimM5JrYLdB7C8b078C2jEeODzbNCHV7QVXp8fLFmN7+JWwQRiQw66XIW2YeR50qFlW+HOrwm8fmqHBw2YUjB15A+johuw3m26gyoyIf1n4Y6PKVUGxHMPljXAJ8HXqcCtSeG2RFYdxARuV5ElojIkn379gUxHKWUOjpl5eWEiRcJjz3svqnxEWw3nXEWbm2GyJqPY+9a60XHgfut79c1hXUmncpti0MQVdNavCWXsfZ1SPdJIEKEy05Y12EUSwxsnhnq8IJuWVYBnio3A8oXQt8ziIqKYnyvDnzpG4HZOhcqi0IdYlAZY/h89W5OzxTsueug18mcMbgzb+d1xxvVCdZOD3WISqk24rAJloh8IyKr6/iZXGufuwEv8MaRBmCMed4YM8IYMyIlJeVID1dKqaCrLLNGBLSFxxx2X5tNyA/vSlxFVlOH1WyKKjx0qtyExxYBCZn7bRvYJY6V/u649q0Cvz9EEQZfUYUH/771xPiLIf3YmvXjenfkO+8AfJu+bXOjCS7Yks9I2wacnhLoczoAx/VO4f3yoYjfA5u+CXGEwbVpbylZ+eVckhQYkKbHCZw6oBMGGxvjx1m1lO1kFEWlVNM6bIJljDnJGDOwjp+PAETkKuBM4FJjav732Ql0rVVMWmCdUkq1eBWlhQA4GlCDBVARk2E9mFcUNGFUzWd9TjH9bFmUJ/QB2/7/TXRNjOAnRy9c3lJoQyMnLssqYKQEhqVPH1ez/tgeSczxD8Zetgeqa/XaiAWb85gctxnEDhkTADi+dwo/ml5UOBNg/YwQRxhc8zfnATDYvQwik6HjILrER9AjJYovqoZBVSls/z7EUSql2oLGjiJ4GnAncLYxpvZsjB8DF4lImIhkAr2AttcjWinVJlWW5AMQHhPfoP1tyT0A8O7b1FQhNat1u4roJ9txHtD/CqyBLqo6BAa+2LmsmSNrOku25TPWtg5/TBdIyKhZP6BLHItksLWwte3M/1VR5WN5diHj7GugyzAIfJnQNTGS9OQYlrpGWDU6baiW8ofNeaTFhRG1Yy50n1jz5cG4nsm8ujsd44iADV+ENkilVJvQ2D5YTwMxwNcislxEpgIYY9YA7wBrgS+Am4wxOsmEUqpVcJdY33RHxDas2XJU5z4A5GW1jRqOXVmbiZNyImqNIFhbQvpAyk0Yvp1tZ6CLxVvzGevcgC1jHIjUrHc5bHRM68leWwpkLwxhhMG1LKsAp6+MLmXrIPO4/baN75nM5yU9rIEfctvG6Jh+v2HB1jzOTSuCsr3Q44SabeN6JlPosVPYcTRsmR26IJVSbUZjRxHsaYzpaowZGvi5oda2+40xPYwxfYwxnx+qHKWUakl8ZVYNVmR8wxKsDul98BmhbFfbeBj17V4FgBwwwEW1/mlJrDYZuLcvac6wmozb66Ngx3oS/QX79b+qNjw9gUXenpistpNgLdiSx2j7T9iM96AEa0RGAnM81pcGbJsXguiCb/3uEgrLPZwcFvgSpMekmm1juidhE1jlGGQllKU64JZSqnGCOYqgUkq1CabcSrDCYpIatH9mx0R2mmT8ua2/iaDPb4guDPRF6ti/zn0Gdollpb87YftWg89b5z6tyeqdRQw166yFbgcnWCPSE1jk642U7ILC7IO2t0Y/bM7jrNhNYHNC19H7bRuRkUi26UBZWMc20yfphy1WrXTv0sWQ0hdiu9Rsi4tw0rdTLN+WW019yZofihCVUm2IJlhKKXWg6sEqIhIatHt8pIssWxqRxVuaMKjmsTW3jN5mK6WRaRAeV+c+GUlR/GTrid3vhn3rmjnC4Fu8rYCRsgF/eAIk9z5o+/D0BJb6A+vbQDPB8iovK3YUMsa2BrqOAlfkfttT4yPoHBfBWtdA2PZ9mxg98YfNufROtBO+cwF0n3TQ9hEZCUzfk4JxRsJ2TbCUUo2jCZZSSh3AXllIJS5wRjT4mLzI7iRXbgd/6+5uui6nmEGyFV/HwfXuY7MJFW1ooIsl2/I51vkTtvSxB42aCJAY5cKd2I9KCW8TCdbS7QVE+EroVLbhoOaB1Y5JT+Cb8l5Wf6W81j1apM9vWLg1nykdd4LPvV//q2ojMhIpqhLKUoZZSaVSSjWCJlhKKXUAZ1UhZbaGDdFezZ3QCxdVULCtaYJqJpuysuhm20dUxohD7pfUtR9FJgr/rh+bKbKm4fcbtmzdQprJgW5j691vaEYyK01PTBtIsH7YnMex9g0Ipt4Ea2RGIl+X97QWtrfuflhrdhVRUunlOPsqq0lkxriD9hmRbtVW/xQxBPasbjNTLiilQkMTLKWUOkCYp4gKx+EnGa7N0cnqr1S2c3VThNRsyrdZNVKOtOGH3G9gWjwr/ZlUZbXugS427CmhT9Uaa6GOAS6qjUhP4AdvL9i9GtylzRRd0/i+uv+VIwJS606kj0lPYIvpTGVYUquv0fkhMP9VRtEi6DYGXFEH7dMlPoIuceF85+4FGGhDA5oopZqfJlhKKXWACF8xVc66+x/VJzHdGnGvcNvKpgipWfj9hshcawRBOtc9RHu1gamxrDLdceWuA09lM0TXNOZvzmOUbT1+RwR0qr9Z5PD0BJb5eyPGB614ePqicg+rdhQyWlZD+lhwuOrcr2+nGKJcDjaFD4asH5o5yuD6YUseI5M9OPet2W/0wAONyEjkwz0dMXZXq6+1U0qFliZYSilVi9fnJ96XT1VEw4Zor9YjrTM7TDKenNY7F9aW3DJ6+TdbA1xEJh5y354p0ayVntYw33tab63d/E25THD9hC1tRL3JBljvd6OrL36kVffD+mFLLgmmiOTyzZAxod79HHYbw7olMK+qJxRlt9rREz0+P4u35jMlMTDCZx0DXFQbkZFAVglUdRwK21t3UqmUCi1NsJRSqpa8UjcdpBAT1emIjkuNj2AraYQVbmyiyJreyh2FDLVtxt9p6GH3ddhtVKQEarlaaT8sr8/Plq2b6OnfCj1PPOS+NpvQq1sa223dIGtBM0UYfPM25XKCKzDyY+bxh9x3REYCnxZlWAuttBZr2fYCyqp8jPMvgagU6Dy03n2PCfTD2hY1FHKWt/qmoEqp0NEESymlatmXl0uUuLHHdTn8zrXYbEJeZHeSKlrvSIJbflpDmuQS1bvugQ8O1CmtO7nEYVppk7lVO4sY4Q2Mgtjz5MPuP7xbAvM9PTE7FrXKa2yM4buf9nFB9EqI6gBdhh1y/xHpiaz1p+N1RLXaBOvLNXuIcvjptG8e9D6tzlEiq/XtFEt0mIMFvt7g98KOxc0YqVKqLdEESymlainauwOAsITOR3ysJ7F3qx5J0L/lOwDs3Q9ds1FtYFo8K3zd8WS3zgRr1vq9TLItxx/dGToOOOz+x6QnsMTXG3GXwN7WN//Xml3F7MkvZljVYuhz+iGTDYBh3eIRm53s6EGtssmcMYYv1+zm6tSd1jXr84tD7m+3CcO6xfNRXlcQW6tNKpVSoacJllJK1VKRbyVYMSldj/jYsC7WQ3px9qqgxtQcdhSU06tiOeWuJEjp06BjBnaJY6W/O878jeAuaeIIg8sYw5crszjesQZbr5NA5LDHDOkax1IT+GyyW18zwU9X5jDOvg6ntwz6nnHY/aPCHAzoEstCbx9rQuny/GaIMnjW7CpmZ2EFkyNWgCMcuk887DEjMxL5ca8Pb8dBOuGwUuqoaYKllFK1VBXmABCbknbEx3bIHARAQSscSXD+xlyOta3B2218g5INgN6dollND2s+pZzW9Z437CkhNX8BUaYM+p7ZoGNiwp1EduhOgS2x1fXDMsYwY9UuropfDs6ow/a/qjYiPZFPCjOshVb2nr9asxuXeOmx5yvodQq4Ig97zMiMRIyBXbHDrCaC3qpmiFQp1dZogqWUUrXYCrcD4EjodsTH9ujahR0mGV9O6xtVb8uaBXSUQmL6HXqwh9rCHHbKkwNDm+9a1kSRNY0ZK3M41/49/ojEww5wUdsxGYks9vXGtLJkY9XOInLzCzi2cg4MOBec4Q06blRmAku8mfhtLshqPTU6xhg+XZnDrzpvwVaRC0MvadBxw7rF47QLS0w/8Fa22gFclFKhFZQES0RuFxEjIsmBZRGRJ0Vkk4isFJFDz1iplFIthKskiwJbQoO+7T5QcrSLTZJBdOH6Jois6VR6fCRtm4EPO9LA2pxqGekZ7CIZs7P1JFjGGL5dsYVTHMuwDTgX7M4GH3tMYMJhKcqGop1NGGVwfbR8F2c6FuH0lcOwyxp83IiMRNy42BPTv1X1w1q4NZ8tuWVcEvY9RCZDz5MadFy4086g1Dg+KQx8wbK9dU+yrJQKjUYnWCLSFTgFyKq1+nSgV+DneuC5xp5HKaWaQ1zlTgrDjrx5IICIkBfdmyR3NngqghxZ05n70z5OMfMp6jQWopKO6NhhXeNZ7uuOJ7v1JFhLtxcwtPBrwowbBk85omOHd0tgib919cMqr/Ly7pJsboieC4k9oNuYBh+bHB1G9+QoltPHGrq8qqzpAg2iNxdm0Tu8kNQ9s2DIRUeURI/MTGTeLvAn99aBLpRSRyUYNViPAXcCpta6ycD/jGUBEC8iRz4kl1JKNaPyKi+d/Tm4Y468eWA1T0p/7Pgxe1rPhMPLFs4i3baX2BEXHvGxw7rFs9LfHVfxtlYzCMIr87bwK+cX+DoNga6jjujY9KRI9kb0xC3hkNU6Jhx+f9lOertX06NyDYy6vsF97KqNzEhkRlFmYOjyJU0UZfBk55czY1UO93WcgxgDo284ouNHpifi8Rn2JR5j9TtrhUPyK6VCq1EJlohMBnYaY1YcsCkVqD3t+47AurrKuF5ElojIkn379jUmHKWUapTtu/PoRAGSlHnUZUR0HQpAwZbWUaOzr8RN961vUWULxzHg7CM+vkdKNJscvayFVtBfJTu/nIp1X9CdndiP/e0RJxsiwuCMFNbYereKGiy318fU2Zv5U8znmMgkGH7FEZcxMjOROZU9MEirGOji+TlbSJJiRuV/DIPOh/gjGxF0RIY14fBy6Q/uYtizpinCDJofswq4cOoP5JfpgBxKtRSHTbBE5BsRWV3Hz2TgLuCexgRgjHneGDPCGDMiJSWlMUUppVSj5G1ZgU0MEamDjrqMtO79KTXhlGYtD15gTWj6vOWcbfue8v5TICLhiI+32QRbamDC2lYw0MXjX6/ndse7+GK7woBzjqqM4d0SmOvugdm9qsUPTz9tcTapRcsYUbUYGXPjUfUtHJmRQDFRFMb0avEDXWzNLePtxVk80elLbF43jP/9EZcRH+miT8cYPisOfNHSgodr9/sN1/1vKYu25fO7t35kV2HraZqsVFt22ATLGHOSMWbggT/AFiATWCEi24A0YJmIdAJ2ArW/MkoLrFNKqRarJHs5AB17Hf24PH07x7HBdMW+t2V/6w1Q5vbCwqmEiZf4ib876nL6ZKSxxXTGu6NlJ1hrdhXBymn0l23YT773iPrl1HZMegJL/b0R47eG8m6h8suqeOKrdTwU9QYmNg3G3HhU5XRLjKRDTBir7P0hezH4vEGONDiMMdw/Yx397DsZk/8RjLgaOvQ9qrJGZibwzU4nJq5rix7o4r1lO8gtdTMqM5HF2/KZ9Mhs/u/TteSWukMdmlLt2lE3ETTGrDLGdDDGZBhjMrCaAQ43xuwGPgauCIwmOAYoMsbkBCdkpZRqGra966jERVhKj6MuIyrMwU5XDxJKfwJjDn9ACL31zUIuM59SkHkGJPc86nKGdo1nhb87/hacYPn8hgff/567nW/i7TQMBvzyqMsanBbHKumLHztsmxfEKIPr/hnruNDzERneLcgp/ziq2iuwmkWOzEzk69Lu4CmD3Qf2CmgZPl2Zw+x1O/lv3EtIeBxMvOuoyxqZkUhZlY/ClJHWQBct8F7eW1zJ/326lhO6Cm+f5Oab3x/PWUO68NL3WznuoVl8tFy/11YqVJpqHqzPsGq4NgEvAEf3tZlSSjWjDiXr2B3RC2z2RpVTltiPSH8ZFGYdfucQ2VFQTvLCB3DYDAln/7NRZQ3tGs8qf3dc5buhZHeQIgyu/3y3iQv3Pk68lOM49xmwHf1/f+FOO727deYnR0/YOjeIUQbPJyt2sf7HudzhfBf6nW3NfdUII9MT+KI08MVDC0wqt+eVcfeHq/hnwgw6lKyFsx4/4hExaxudaR272jEAyvZB3qYgRRocPr/h9ndXYLyVPGfux/baZLrmzuWRC4bw9e+PZ2CXOG55ezn/+W5zqENVql0KWoIVqMnKDbw2xpibjDE9jDGDjDEtf9ghpVS7lpNfTD+zibKUoY0uy9nFmny3PNDksKXx+w1vvv4C59jmUDHiN5CQ0ajykqLD2B3d31pogQNd/LA5j9xvn+JM+0LkhLuh44BGlzm2RxLfVvbB7FrW4vphrd1VzEPvz+XliCewRXeAs5444sE8DjQyM5F9JFAc0wO2zA5OoEFSUeXj168t5UQWcWHFNGuer/6TG1Vmp7hwuidHMaMkkFRu/S4IkQbPo19tYO7GfXyc/h5huashritMvxFK9tAjJZrXfzWaMwd35l+fr+eTFbtCHa5S7U5T1WAppVSrsn7FAsLFQ2zPsY0uq0OPYfiNkL+l5SUbAG/PXMjVuY9SENOb2FP/EpQyozOG48WOaWFDl2/ZV8rrr73AXY7X8fQ8DRl3a1DKHds9iR/8AxC/t0WNrJdTVMHNL3/Hc/aHSZFi5KI3IDKx0eX26xRLQqST5c6h1oTDnsrGBxsEVV4/N725jPi9C3nE/hSkjoBfPBqUso/tmcQn2eFWP6zNs4JSZjC88v1Wnp29mVe7ziBz58cw8c9w6XtQVQrTbwC/H5fDxqMXDmFEegJ3fbCKnTr4hVLNShMspZQCKjbMBKDLkBMbXVaf9M5sNx3w7lrZ6LKC7fv1O+k75yZibG7iL3sFHGFBKXdYjy4s9/fAvanlfNO/o6Ccx154iUd5FF+HATjPf6FRTQNrG9otnlW2vvjEAVvnBKXMxsopquDa52fzSNU/GCBbkQtegtSjH7ClNptNOLZnMh8X9wZvBexYFJRyG8Pj83PbtOUUbpjHaxGPYk/MhEumgTM8KOWP75lMWZWf3I7jrGvcAgb3eGdxNn//dA1PdP6K4/e9CSOuheP/aA3mcdoDsHkmfPcAAGEOO49NGYrPGP46fXWII1eqfdEESymlgJS989npzMAe16XRZXWICWOTLZPowvVBiCx4Vm/fh/etyxhu24Q55zkkCE3lqo3MSGSBvx+uvSvAXRq0co/WttwyHn/2GR6s+j+ITyfsyukQHhu08sMcdgZmdGKtrQ9sC30/rO15Zdww9TMeKP0Lw2ybkPNehL5nBPUc43sm80VpD4zYQ95MsLzKy3X/W4Jnzce8E/EAzrjOcMVHEJUctHOM6Z6ECCyyDbXmwwrxNAQvzNnCH99fztSkd5lc8AoMvgh+8fDPzT+PuQqGXgrfPQgbvgCga2Ikt57Ui5nr9/L9ptyQxa5Ue6MJllKq3cvJK2CQby35ncYFpTwRoSC2L8lVO6GyKChlNtaKbXvZ/fKlHC/LKDrxISKGHP0oenXpkRLFGtcQbMYX8iZz8zfl8trT9/KA559IUi/Cr/20UQMe1Gds9yRmuvtgclZARWHQy2+ohVvyuOPpN3mu4k4GOHciU1476jm+DmV8z2RKiWRv7MCQJljb88o4/9n59Nz8Kv9xPY6j8wC45kuI6RTU88RHuhiUGsd7+T0AsWqHQqDK6+euD1fx1GdL+CjpWU4tnQ5jboJzntt/QB4ROONR6DQIProJyvMBuGJsBmkJETzw+XpMCxwNUam2SBMspVS7t2bBV4SLh4SBpwStTH+nIQB4d4Z+SOs5qzZT9vIvOYmF5E+4j7gJvw76OUQEZ/poPDhCVqNjjOH173/ip1dv4q88T1X6JCKuD/6Dd7WxPZKY5xtozYcVgkEQ/H7D1O82M+2lR3nV/IUOUQ7s13wR9Jqral0TI0lPimShDLYGM6koaJLzHMrXa/cw5amv+F3hv/iL43Wk35lw5acQ3aFJzndsj2Tm7fTi6zw0JP2wdhSUc/ELC1i6aB6z4//OoIpFcNqDcOr9dTd3dUbAOVOhshC+tIapD3fauXlST1btLGLuRq3FUqo5aIKllGr3qtZ/RRUOUoc2vv9VtdjuIwHI3xi62hxjDB/N+p6Ud89hlKyl+NQnSDzxliY739AeqSz3d6cqBP2wSt1eHnjjM4Z8eQFX2b+gasSvibziHQiLbrJzDk6LZ4OzLxW2aNj4VZOdpy57Syr59YuzSfnmFv7teAZX2lAc18+ELkOb9LzjeibzbkEvMP5mrdFxe3386/N1PPnaO3xg+zOnykI48R644H9HPb9XQ4zvmYzHZ8hOGGNNKt2MNdKfrtzFL574jpG7p/FZxN9IdHiQKz+FMTccelTITgPh2N/Birdg51IAzh2eSsfYMJ6d3bKGm1eqrdIESynVrhVXVDGweA5ZcSORsJigldu7ewY7TDKVWaHpt1Hq9vLCf59l0uzz6eoowDNlGrFjr2rSc47vlcwP/v449q6EyuImPVdtS7fl8/ij93Hzxmvp5czDd+HruM58COyOJj2v027j2F6d+J7BmI1fN9tktN+s3cPdj/+Hu3fcwLn27zHH/xHH1TMgLrXJzz2hZzLfu7vjCU+C9Z81+fkAVu8s4rwnZxH7/T+ZHvY3OkcJctUMmHB70AYtqc/IzASiXHY+dw8G44ONXzfp+QCKyj3c/s4K/vnm17zu/Bd/klew95gIv54L6Q0c5XTC7yEyGb66B4whzGHn2vGZLNiSz+qdLaPZslJtmSZYSql2bdnieXSTvTgGnB3UcrsnR7NWehCZuyqo5TbE6uxcpj9yPdfvvIvKmHQibp5HRL+Tm/y8vTpEszFiqNUPa/v8Jj+f2+vjP5/MpfDFX/KXqieQjv0J/+187P3PavJzVzuxXwc+rxyMlO6B3U07auS+Eje3vzaH3W/+hhd899Al1ontqk+RSXc1eTJZbULvFBwOB6ujxljJhs/TZOdye338++ufuOfZV3my+BZucnyMfdjFyI0/NDzRaKQwh53j+6Tw8vZkTHRHWPdJk53LGMNnq3I4+dGZRK98mVlRf2aQbIaznrRGR4zpeASBx8DEP8H2eTW1q1NGdCPSZefl77c1zRtQStXQBEsp1a6VL5+ODxtdx54f1HJtNqEgdgDJVTuara+KMYaPvp6JeeFkLvO8z95eF9HhltnYEzOa5fwiQkyvCZQSgX9D09ZuLNmax1MP38PFSy5ggmMtlSf+H9E3fA3x3Zr0vAc6oW8HvjND8GNrsodvYwzvL93B//37Ef6w6UoucczCN/pGXL9dCBnBGZiloaLDHEzomczbxYPAXQTbv2+S88zfnMv5j39Bwnd/4T3n38iI8cOl78PkZyAivknOWZ+T+3dkb6mH3LSTrKTSE/w5pfYUV/Lr15by9Jsf8Dp383fHy4Slj0JumAfHXHl0E0UfcxUkdodv/g5+P3GRTs4/Jo1PVuxib0nLmMdMqbZKEyylVLvl9vrokTebrKhB2GOC30leAnMQubcvCXrZB8otqWDa03dz6rwLyXDkUjL5ZTpc+p+gzQnUUOP7pTLbNxjvus/A7w96+SWVHh6d9jXlL03mDvfT+DsOwnXzD4RP+O3+I6o1k6ToMNK7ZbDCORhWvRf0ZoLZ+eX87oXPCZt+LU+Yh0hISsH2q2+wn/4vcEUF9VwNdeqATnxU0gefI9J6z0GUW+rm99N+5O0XH+OV0pu4yvEVthFXY7tpAfQ6KajnaqgT+nTEbhO+NaPAUwabvgla2T6/4bUftnHWv79k9KZ/82n4X+kVXgi//C9c/iEkZh594XYnTLwL9q6BtdMBuHpcJlU+P28syApK/EqpummCpZRqt35cvow+sh1v76YZdS2l7zi8xkbe2qYdfezbBcvY/OjJXJT3DHuTxxB162JihgV3GPaGGtcjmZnmGFwV+4I+b9A3q7L538O3cuPaSxjt3Iz71IeJv+FLSOoR1PMcqVMHdOTN8lFQsDVo77nS4+Ppr9fx+mN38sDOqznduQz/xLsIu3EepB0TlHMcrZP6d8RnD2dV3CRY8yFUlTW6TL/f8NaiLK555E3OW3MzT7qeJqFzBnLdTDjz3xAeF4TIj05cpJNJfVJ4fHMnq5ngj68Hpdyl2ws4+6m5zPnkVT6z38G1thnYhl2G3LQIBl9wdLVWBxr4S0jpC7MfAL+PzOQoTuzbgdcXbKfS42t8+UqpOmmCpZRqt/KXfgBAt2MvbJLyB/VIZbXJxNZE/ZHyS928/tz/MfLzMxjMRvYc/yDdbv4EW2zTDEveEHGRTtwZJ+HFhlnzUVDK3FtcyWP/fZlu757KTb7XcWecQNgtiwkbe32TD3LQEOcOS+MbMwqvOGHFtEaXN3vDXu589DlOmnsBf7a/hj3zWOw3LcA28Y/gcAUh4sZJjHJxSv9OPJE/GqpKYW3jrvP63cVcOnUWuR//lQ+4gzHhWXDGo9iu+xYCtcChduGIruwu9bGt67lWn6aiHUddVl6pmzvfW8GdU9/lr4V/5QXXv0lKTISrv4Czn4TIxOAFbrNbfbFyN8Dq9wG4ZnwmeWVVfLxiV/DOo5TaT+j/Z1JKqRDw+w2pu78lK6wXYSmNaIZzCMnRYax1DSKpaHXQ+23MWbyMDY+ezGV7HqYkvh/Om+bTcdJhhm9uJqeO7Me3vuF4l70O3qqjLsfr8/PGzKV8/+gUbttxK50i/HimvEX81dMgLi2IETdOSkwYxw7owRdmDObH12smeD1SOwsr+MPLX5H/+tU8WXm31e/oojcJv/KDkNfSHejiUd2YVdGD0qh0WPifo2oaWVBWxT3TV/HUU4/wyN5f81vHdOyDz8P+u6Uw8lchafJZn0l9O5AcHcZzxeOs97rk5SMuo7o54JmPfEbvFQ/yVfifGO3aAqc9YPW1aqqBO/pNho4DrVosn5djeyTRt1MML83bqhMPK9VEGp1gichvRWS9iKwRkYdqrf+ziGwSkQ0icmpjz6OUUsG0asMGhpgNlHU/vUnP404dixMPvqxFQSkvr6SCac/dy/BPT2eo2cDu8f9H6i3f4EhpOQ/gp/TvyAe2U3C682H90Q38sHRbLk89cg+/+O5szpK5FA6/mdjbl+Ls94sgRxscl4zuxlPuMxBPGSx58YiOrfT4mPrtGt789++5Z9sVTHYsxDvudsJvWWJNGtwCkuYDHdsjie7J0TznPwdylsP6Txt8rNfn59X527jx4Rc5c9mveMb5BB2Tk+HKT5FfPt9kkwY3htNu44qx6byz2U5Bxumw4Dko2dPg4xduyeOcp+ew/JPn+Nx2G9faP8M+9BLkt8tgzG+s/lJNxWaDSXdB/mZYOQ0R4ZpxmazfXcIPW/Ka7rxKtWONSrBEZBIwGRhijBkAPBJY3x+4CBgAnAY8KyIt56sopVS7t2uh1VymaxM1D6yWOngSPiPsXfFlo8oxxvDN/IVsefQkpux5jPyEwdhvXkink37bIprJ1RbutJM0+FSyTQc83z9zRLUbeaVunnn1dRwvncxtFU9hUvpi/8084s++P2SDOjTE2O5J2DsN5HvbMZj5T0HRzsMe4/cbpi/L5oGH/sGZc87mD7Y3cXYfh/2mBThOvqdJJ9BtLJtNuPO0PkwtGEFRVAZ8ex9UlR/yGGMMszbs5crHPyDq89/yFn9ieFQunPk4jhvnQeaE5gn+KF07PpPkaBf3lJ2P8blh5n2HPWbT3hJ+9coi/vPfZ3ms4Lc86ppKXJeeyHXfwuSnITqlGSIH+vwCOg+F7x4En4ezh3YhMcrFS/O2Nc/5lWpnGvu/8m+AB4wxbgBjzN7A+snA28YYtzFmK7AJGNXIcymlVFAYY0jK+ordjlSi0wY26blG9ctksemLc9MXR13GnqJy3n7qbo798iz6yxZ2H/8Q3W75CldyRvACDbLrju/F095zcOYshRVvH3b/So+P17+cy6JHzuGmrTfRPawE95nPkHjj10jH/s0QcePYbMLdZ/TjropL8VS54aObwOetc19jDLPX7+Zf/36IHtPP5F7PY8QndoArPiL8yvchuWczR390Th3QiWMyU/hD6WWY3I3w6a11JtPGGOb8tI8bnv6AnNeu55WSX/NL5w+YcbfiuOVHGHF1i2oOWJ+oMAe/P7kPn2SHs7LrZdZgF0tfqXPfTXtLufOdZTz0xGPctPVmXnI9Qvd4O5z/EnLNV5DazAOViMCku6FwOyx7lXCnnctGd+Pb9XvYltv4QUqUUvtr7MyEvYEJInI/UAncYYxZDKQCC2rttyOw7iAicj1wPUC3bs07f4lSqn3amLWDYb5VbEy/gk5N3PwqPtLFhvjjGVM8FbN3HdKhX4OPNcbw5azZpMz5ExeznqzkcaRe9h+iEro2YcTBkZkcRfjIy1m2bCaDPr8LZ8Z4iD847iqvn6/mL8Iz+1Eu8M0Em528Y24j6ZQ/tOgaq7qM65nMxDGj+duiS/nXlhcxb1+CTH6mppaiqMLDd8tWs2veG5xY9hl323ZSGtMV/0nPEj3k4hZXE3k4IsJjU4Zy7jNl/Md/ETesfAvcJXDq/ZDYnX0lbmb/uI7NC2cwsvhrnrMvxzgdMPxKbMf9vkX1o2uoi0d1Ze7Gffxy9Yl81XE93T+5FcnbDGNvpsSZyMx1u/lxyXyit3/DTfbvSHfuwReTCsc/hm3Y5U3bFPBwep0MGRPg239Av8lcNiad577bzCvzt3Hv2QNCF5dSbZAcroOjiHwD1DUk1d3A/cAs4HfASGAa0B14ClhgjHk9UMaLwOfGmENOmDFixAizZEnTzxcTau6qKooK9lGav4fygj14ygrwlBfjrSzBX1mCcZdi85Tg9Jbh8JZj97ux+T3Y/B7s/ipsxovd78FhPDjwYDcNG2rVJ3Z82PHiwC92fOLEJw78Ngd+mxMjDozNgbE5MTantc4eZv2HYHfV/IgjDHG4Aj9h2J0ubM4w7I4w67czHIfThd0ZhtMVjsNl/Xa6wnGGheFwhiOOQHk2R4vsX6DattnvPMXEtX8h96LPSO7b9BO1fjp/Bad+OYm8AVfR6cJ/N+iYLbv2subNuzmt5H0qbZFUnvAPUsZf1arul5JKD7c8NY3HS/+AMyqe8LMfQXqfjhFhy87drJ//KZHr3mW8fwmIkNf7QjqdcXerfPCu5vX5uf3dFcSsepW/O1/FLw6yowZS4HURWb6LPpKNTQz5cf2JPeH3OAaeC/bGftcZWutyirnx9aUcX/gBdzvfxImXPEmgyi90pACbGCrCknGOvBLHyGshrs7vW1uNSo+Pv3+yho8WbeRvrteZYpsJQIGJJhI3YeIBwJM6Guexv4G+Z7Wca7xvAzw3DgacA+f9l99PW84Xa3Yz+46JdIht3jnz2jVjwO8DvxeMD6+niiqPB5/Pi9/rxe/z4PN68Pt9+H0e/H6D34DP78dvBJ/fYIzBbwyIIAgIgCACgiDWC+u1zQZis35jA5sNERvY7IjYsNnsiN2GTeyB14LNZsdus9dss9vs2MQq324TbCLYxPqipb0SkaXGmBF1bmvMCDIi8gXwoDFmVmB5MzAG+BWAMeZfgfVfAvcaY344VHmtOcEyxlBUWEBezlZK927Hnb8DX9FO7KU5OCtycVUVEuUrJM5fTByl2KT+z91vhHIJp4IIKiSCKnHhszkDCVEg8QkkQP7qJAWpFUutuGqtFHw4jBeb34sYK2ETvxeb8VrJm7Fe240Pu/HgwIsTL07jwYkXFx7sh4j7aPgRrDTRiQcHXrFe+8SBV5xWBOLAKy6M2BARjNis9ys262FTbBis9QbBUGtdzbJgsGECfwik5o+SqfmUrHXWJyn73RfWZKk1n7CxSjW1PuHa+1dvs9aZmnVU729+Pq56ndSsqrVfzTnNQc1u5ID9qrfX+lfw835m/2Wz3/GB85s6jtvv/dW9vUH/Gkz1OzQHrj6AHGZ7TbQNOeUhpfj2gNhI+evmZqk1KK/yMuv+sznRtozwO9ZAVFK9+5ZVevjq/RcY9dOjpEoum1LPpfvFj2CLTm7yOJvCrsIK/vXi29xW9ADdbbupJIwyIog3RdjFUGSLp7j3eaSd/nukFSdWtRljmLEqh2/mzmNs3gf09W8ixu7BRHcisvtYOo6Zgq1jw2syW4NKj493l2Szct06BuR/Q3fZRYcoBwlpfekw5GSky/CWk2QEydLt+cxYuRtvzmqGViwgw1VIl5QkOnQfgq3XSRATuukSDmn2gzD7n3Duf9iaehanPj6Hk/t35JlLWsaQ+C2G3wfuYqtWNvBTVVZIeUkh7rJCqsqL8VUUWV+MV5ZgPBUYTwXirUR8buy+Shx+N3Z/FU7jxul34zJVuKjCTvAnYW8OPiP4seEPPFsd8nXgOcxaZ6tZb+TA5erntVrbavb5+fWXUWdx9sW/oVfHmFB/DDWaMsG6AehijLlHRHoD3wLdgP7Am1j9rroE1vcy5tBVLS09wfJ6qti1/Sdys9ZTuWcTUrCFiNIsEip3kOjLJUYOHoa5gBgKbYlUOONxuxLwhidgwpOQ6GQcMcm4YlIIi0kkIjqOyJgEoqLjcEXEtLimIsYYvH5DVZWHKnclnqpKPFVuqqoq8VZV4vW48VW58Va58Xkr8VW58Xnd+D1V+L1u/N4qjMeN8VZhfFXgc1vDNwdq5cRXXTtXXVPnwWY8VqLn92A3VYGExV+T4IjxBxILP7ZAomQLrBeodatX37r+QIJRk7YEfgvUsW7//aTWvtby/scTSOL2L4da5XDg/tX7St3bjfWdVK3y6zn+wNhqijs45ppy5eBU6uDtByYyB8Zbf6JT+y1VJ7N17rff0uH/FtUd0YEOfEcHHyAY3P3OY+hZNx32nMHy+idfcdGSKeRnnkmHK/930Gfi9nj57qvpdFnyAAPNRnLCMok49wni+x7fbDE2lSqvn4+Wbadi+Qd0KF5FjN1LdEoaqYMnkTzgxDb34K1Ui+bzwqtnWaM/XjWDJ9fH8O+vf+Llq0YyqW/LG8ExaNwl1siPpXugPA9TnkdVSS4VhXvxlObhL8tFKgpwuAsI9xQS7isNPFscWomJoIxwKowLNy484sJjC8MrLry2MLy2MHz2MHy2MPz2cIzDBTYXdocDmz3w43BiszsQmwPEDnYHYrODzfotNjs2oabW6OfXBlPzPaqp9X2q/+fvZY3B4Ad/4BnK70fwg/GD8Vm//QZj/OD3WUP3B9abwDZr2WeVZfxIzbZAOTXl+QPPZtWvf96/Zh0msM1nPR+Yn+Opfs4T44ea5zmDGB9fRp3NmRffSM8O7SPBcgEvAUOBKqw+WDMD2+4GrgG8wK3GmM8PV15LS7DWL/qGgpWfE5a/ng4VW+jo34NTfs4RK4yLHHtnisJSqYrugsSl4kxIIyKpK7Ed0knsnE54ROvqQ6CUahqVHh9vPXwTV1e9RU6vS+h89t8wUR3YtWMbG+a9T+eNb9HPbCbPlkTJ2DvJOOFXmngopZpGyR548STwVFB16Yf84u18Css9fHjjsXRNbLmjV9bJU2FN/Fy803pfJTn4S3bjLtiFtygHKd1NWOU+nL665yIsN2EUEE2BiaHARFNIDOWOOCqd8fhcsUh4LLaIWJwRcbii4giPTiA8Oo6wqDgio2OJDg8jJtxBdLiDKJcDu639Nplrb5oswQq2lpZg/fDCLYze8So77F3YF9GdqrgeOFJ6Epfai+Ru/Ujo0DXQnlUppQ5vR34Zc5+7kYs90wHwYMeJ9aVNtqMb7mHX0uPk65EWPDy3UqqNyN1o1WR5ytl58nOc/omDjrHhvHfDscRFhnAwjgN5KqAwGwqzrFEQC7PwF2bhzdsORVm4KvYddEiZCWOviWcvCewz8ewxCRTaE/FEdMAflYIzJoWwuA5ExaeQGB9HSnQ4HWLDSIkOIy7CiU2TJNUAmmAdpaL8XFxhYUREtZzqSKVU61bp8fH17Fn4N88iwZ9PeEIaXYedTOc+I1vVABZKqTagMAveuAD2rSen92Wcs2Y8ccldeP7yEWQkN1MLnKpyKNo/gaIwC1/+dkxhNo4DEigPDnaZJLL9yewwKew0yeySDniiOuOM60xYQhpJSYl0jougc3w4XQK/Y8NbUNKo2gRNsJRSSiml1MGqyuGbe2Hxf/HZw5nmPY6POY4zTjmdi0en47A3oqWOMVBZaNVAFe0I/GTV1Ej5C7Owlefud4gHJ7tIJsuXxA6TEvhJptDVGYnvRnRyKmlJMaQnRdIt0frpHBfeuDiVOgqaYCmllFJKqfrlboTZD2DWfoz4q8g1saxz9CMqtT9p3fuT0ikNcUWBM9IaiMvrBm+l9bs8H8pzoWwflAV+F+3EFGUjVaX7ncYjLvbZUtjuT2arJ6kmgdphUqiMSiUmKZVuydFkJEeRnhRJemIU3RIjW1azRaXQBEsppZRSSjVERQFm3afkrPgGs2MxHby79xvg61A84qLYHk8BsezwJbLVk8gOk8ROk8Iuk8ROk4wzpgPpyVFkJkeRnhRFRlIk6UlWMhUVpgP7qNbjUAmW/ktWSimllFKWiARk+OV0GX45ADvzS1i0fCVZO7LZnZtHeWkJpW4PlcaJ2zhx46KQKModiTjDo4mLdJEU7aJzXARd4sPpERfB+EBfqG6JkUS47CF+g0o1PU2wlFJKKaVUnVITYzj3hHH7rfP7DX5jrCmSArM2uhzaB0qpappgKaWUUkqpBrPZBNshJptXqr3TrxuUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCpEUN0y4i+4DtoY7jAMlA7mH3Um2FXu/2Q691+6HXun3R691+6LVuP1ritU43xqTUtaFFJVgtkYgsqW+Me9X26PVuP/Ratx96rdsXvd7th17r9qO1XWttIqiUUkoppZRSQaIJllJKKaWUUkoFiSZYh/d8qANQzUqvd/uh17r90Gvdvuj1bj/0Wrcfrepaax8spZRSSimllAoSrcFSSimllFJKqSDRBEsppZRSSimlgkQTrEMQkdNEZIOIbBKRP4U6HhU8ItJVRGaJyFoRWSMitwTWJ4rI1yKyMfA7IdSxquAQEbuI/CginwaWM0VkYeD+niYirlDHqIJDROJF5D0RWS8i60RkrN7bbZOI3Bb4G75aRN4SkXC9t9sOEXlJRPaKyOpa6+q8l8XyZOC6rxSR4aGLXB2peq71w4G/4ytF5EMRia+17c+Ba71BRE4NSdCHoAlWPUTEDjwDnA70By4Wkf6hjUoFkRe43RjTHxgD3BS4vn8CvjXG9AK+DSyrtuEWYF2t5QeBx4wxPYEC4NqQRKWawhPAF8aYvsAQrOuu93YbIyKpwO+AEcaYgYAduAi9t9uSV4DTDlhX3718OtAr8HM98FwzxaiC4xUOvtZfAwONMYOBn4A/AwSe1y4CBgSOeTbw3N5iaIJVv1HAJmPMFmNMFfA2MDnEMakgMcbkGGOWBV6XYD2ApWJd41cDu70KnBOSAFVQiUgacAbw38CyACcA7wV20WvdRohIHHAc8CKAMabKGFOI3tttlQOIEBEHEAnkoPd2m2GMmQPkH7C6vnt5MvA/Y1kAxItI52YJVDVaXdfaGPOVMcYbWFwApAVeTwbeNsa4jTFbgU1Yz+0thiZY9UsFsmst7wisU22MiGQAw4CFQEdjTE5g026gY6jiUkH1OHAn4A8sJwGFtf5w6/3ddmQC+4CXA01C/ysiUei93eYYY3YCjwBZWIlVEbAUvbfbuvruZX1ua9uuAT4PvG7x11oTLNWuiUg08D5wqzGmuPY2Y81hoPMYtHIiciaw1xizNNSxqGbhAIYDzxljhgFlHNAcUO/ttiHQ92YyVlLdBYji4CZGqg3Te7l9EJG7sbp2vBHqWBpKE6z67QS61lpOC6xTbYSIOLGSqzeMMR8EVu+pblIQ+L03VPGpoBkHnC0i27Ca+p6A1UcnPtCsCPT+bkt2ADuMMQsDy+9hJVx6b7c9JwFbjTH7jDEe4AOs+13v7batvntZn9vaIBG5CjgTuNT8PHlvi7/WmmDVbzHQKzAakQurM93HIY5JBUmgD86LwDpjzL9rbfoYuDLw+krgo+aOTQWXMebPxpg0Y0wG1n080xhzKTALOD+wm17rNsIYsxvIFpE+gVUnAmvRe7stygLGiEhk4G969bXWe7ttq+9e/hi4IjCa4BigqFZTQtUKichpWM37zzbGlNfa9DFwkYiEiUgm1sAmi0IRY33k52RQHUhEfoHVd8MOvGSMuT+0EalgEZHxwFxgFT/3y7kLqx/WO0A3YDtwoTHmwA62qpUSkYnAHcaYM0WkO1aNViLwI3CZMcYdwvBUkIjIUKwBTVzAFuBqrC8U9d5uY0Tk78AUrOZDPwK/wuqLofd2GyAibwETgWRgD/A3YDp13MuBJPtprGai5cDVxpglIQhbHYV6rvWfgTAgL7DbAmPMDYH978bql+XF6ubx+YFlhpImWEoppZRSSikVJNpEUCmllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkj+H91Xp9ug6diJAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADJFklEQVR4nOzdd3wc1bn/8c+zq96tYtmWbMvggisGbGOw6YSSUEPAEDpJuEAKkABJSCO54d7chF9ICAkEQgKhmN4SejNgArh3G9zkXmRbve/u+f2xI1m21YxWWpXv+/Xal3bmnDnz7I5nvc+eM2fMOYeIiIiIiIh0nC/aAYiIiIiIiPQWSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiHQzZlZgZs7MYqIdi/QNZrbczE6MdhwiIr2BEiwREenxzOx+M6vwHnVmVt9k+bVox9fdOefGOudmdUbbZpZpZkVmNrsz2hcR6W5MNxoWEYksM4txzgU6sH0BsB6I7Ug7fZWZ3QEMd85d1kxZh45NV+pJsbbGzB4ERgE+59z0aMcjItLZ1IMlIhIBZlZoZj80syVApZnFmNlUM/uPmZWY2eKmQ7DMbJaZ/a+ZzTGzMjN7ycwyW2j7ajNbaWblZrbOzP5rv/JzzWyR185aMzvDW59uZg+Z2TYz22JmvzYzfxuv41Aze9fMdpvZLjN73MwympTtMbMjveVBXs/Eid7yOd5QsxLv9Y3e7/25xcyWmFmpmT1lZgkH/04fvBaOjTOz4U3qPGxmv26yfJb3npZ4x3BCO/d1opltNrPbvfev0MwubVL+FTNb6B2rTV4y2FDWMDT0G2a2EXjXW/+MmW333rcPzGzsfnH/xcxe83rrPjKzAWb2BzMrNrNVZnZEO9+jU9vzGg+GmR0LjAP+Eem2RUS6KyVYIiKRcwnwFSADyAVeAX4NZAK3AM+ZWU6T+lcA1wADgQBwTwvt7gTOAtKAq4G7myQ5U4B/Ard6+z0eKPS2e9hrdzhwBHAa8M02XoMB/wsMAkYDg4E7AJxza4EfAo+ZWRLhL82POOdmmdlIYCZwE5ADvAr8y8zimrR9EXAGMAyYAFzVbABm073EpqXHF+kFaTw2bfUKeQnJ34H/ArKAvwIvm1l8O/c1AMgG8oArgQfMbJRXVkn4uGd48VxvZuftt/0JhN/7073l14ARQH9gAfD4fvUvAn7q7bMW+Nirlw08C/y+nXE3y8x+1NrxaGU7P3Av8B1Aw2VEpM9QgiUiEjn3OOc2OeeqgcuAV51zrzrnQs65t4B5wJeb1H/UObfMOVcJ/Ay4qLkeJufcK865tS7sfeBN4Div+BvA351zb3n72eKcW2Vmud6+bnLOVTrndgJ3Axe39gKcc2u8tmqdc0WEv5yf0KT8QWAN8CnhxPAnXtEM4BVv23rgLiAROHa/92erc24P8C9gYgsxzHbOZbTy+CLX8jQ9Nm25Fvirc+5T51zQOfcI4cRl6kHs72fee/g+4UT7IgDn3Czn3FLvWC0hnJSesN+2d3jHrNrb5u/OuXLnXC3hZPdwM0tvUv8F59x851wN8AJQ45z7p3MuCDxFOLn+wpxzv2nteLSy6feAT51z8zuyfxGRnkYzVImIRM6mJs+HAhea2dlN1sUC77VQf4NXnr1/o2Z2JvALYCThH8aSgKVe8WDCvUX7G+q1t83MGtb59tvnAbzE7I+EE7hUb5vi/ao9CLwMXOt96Ydwj9eGhgrOuZCZbSLci9Nge5PnVd42XaXV172focCVZvbdJuviaH+8xV7S3GBDw7ZmdjTwG8LD5uKAeOCZlmL1Eu47gQsJ9wyGvKJsoNR7vqPJttXNLKe0M+6IMbNBhBOso7p63yIi0aYeLBGRyGk6DGoT4R6qpr/2JzvnftOkzuAmz4cA9cCupg16w9KeI9wjlOv1GLxKeChfw34ObSaWTYR7XbKb7D/NOTe2mbpN/Y/3OsY759II98Q1ZmhmlgL8AXgIuMP2Xje2lXBi0lDPvNe3pY39HcDMjrO9MwA29ziu7VYOsP8QtSrCiWqDAU2ebwLu3O/YJTnnZrZzX/3MLLnJ8hDC7w/AE4ST08HOuXTgfpq8v83E+nXgXOBUIB0o8Nbvv02n8a4na/F4tLDZFMI9nCvMbDvhpH2Kdy1Zq9cBioj0dEqwREQ6x2PA2WZ2upn5zSzBmwAhv0mdy8xsjHc906+AZ71hXU019HIUAQGvN+u0JuUPAVeb2Slm5jOzPDM7zDm3jfBQwv9nZmle2aFmtv9wtP2lAhVAqZnlEb62q6k/AvOcc98kPPTtfm/908BXvDhigR8QTvD+09YbtT/n3IfOuZRWHh8ebJvNWAR83Ts2Z7DvML0HgevM7GgLS/Ymp0iFxoklHm6j/V+aWZyXDJ7F3l6qVGCPc67Gu37u6220k0r4fdxNOCH8n4N4jRHhnPuf1o5HC5u9RjgZnOg9fg4sBCY2829cRKRXUYIlItIJnHObCPc83E44OdpEOFlp+rn7KOGJKLYDCYSHVO3fTrm3/mnCQ/W+TrgHpKF8Dt7EF4SHjL3P3p6kKwgnaCu8bZ8l3KvQml8CR3ptvQI831BgZucSnqTiem/V94EjzexS59xnhHu7/kS4F+5s4GznXF0b+4uWGwnHWAJcCrzYUOCcmwd8i/AEDcWErzm7qsm2g4GPWml7u7fdVsITUlznnFvlld0A/MrMygknHU+3Eec/CQ8x3EL4OH7S1gvrDrzrz7Y3PAj/e6r3nouI9Gq6D5aISBSY2SzgMefc36Idi7SfNyviYmCCN5nH/uUnEj6u+fuXiYhI36BJLkRERNrJ65Eb3WZFERHpszREUESkjzGz+1uYsOD+treWnsjMhrQyUcWQaMcnItKbaIigiIiIiIhIhKgHS0REREREJEK61TVY2dnZrqCgINphiIiIiIiItGj+/Pm7nHM5zZV1qwSroKCAefPmRTsMERERERGRFpnZhpbKNERQREREREQkQpRgiYiIiIiIRIgSLBERERERkQjpVtdgNae+vp7NmzdTU1MT7VCkG0hISCA/P5/Y2NhohyK92PbSGq5/fD7fO3kEJx3WP9rhiIiISA/S7ROszZs3k5qaSkFBAWYW7XAkipxz7N69m82bNzNs2LBohyO92KtzV/HL7d9m+QuT4ccPRjscERER6UG6/RDBmpoasrKylFwJZkZWVpZ6M6XTVa6fywTfei6pfZrq4u3RDkdERER6kG6fYAFKrqSR/i1IV4gvXdP4fOvS96IYiYiIiPQ0PSLBEhHpSplV66mxeGpdLLXrP452OCIiItKDKMFqBzPjBz/4QePyXXfdxR133BG9gJo48cQTW70583nnncfUqVP3WXfHHXeQl5fHxIkTGTduHC+//HJnhynSo+QHt1CUNJx1DCJuz+pohyMiIiI9iBKsdoiPj+f5559n165dEW3XOUcoFIpom02VlJQwf/58SktLWbdu3T5lN998M4sWLeKZZ57hmmuu6dQ4RHoS5xwZrpSa+GyK4vJJqyyMdkgiIiLSgyjBaoeYmBiuvfZa7r777gPKioqKuOCCC5g8eTKTJ0/mo48+AsK9RHfddVdjvXHjxlFYWEhhYSGjRo3iiiuuYNy4cWzatIlbb72VcePGMX78eJ566ikAZs2axYknnsjXvvY1DjvsMC699FKcc83G9+ijjzb2Rs2ZM6dx/fPPP8/ZZ5/NxRdfzJNPPtnstqNHjyYmJmaf5PFHP/oRY8aMYcKECdxyyy0AFBYWcvLJJzNhwgROOeUUNm7cCMBVV13F9ddfz9SpUznkkEOYNWsW11xzDaNHj+aqq65qbPP6669n0qRJjB07ll/84hcHxFFaWsrQoUMbE73KykoGDx5MfX19s3GLdJbaQIgUqyYQl0Z5yjCyAtshUBftsERERKSH6PbTtDf1y38tZ8XWsoi2OWZQGr84e2yb9b797W8zYcIEbrvttn3W33jjjdx8881Mnz6djRs3cvrpp7Ny5cpW21q9ejWPPPIIU6dO5bnnnmPRokUsXryYXbt2MXnyZI4//ngAFi5cyPLlyxk0aBDTpk3jo48+Yvr06Qe0V1VVxaJFi/jggw+45pprWLZsGQAzZ87k5z//Obm5uVxwwQXcfvvtB2z76aef4vP5yMnJAWD37t288MILrFq1CjOjpKQEgO9+97tceeWVXHnllfz973/ne9/7Hi+++CIAxcXFfPzxx7z88succ845fPTRR/ztb39j8uTJLFq0iIkTJ3LnnXeSmZlJMBjklFNOYcmSJUyYMKExjvT0dCZOnMj777/PSSedxL///W9OP/103e9KulxlbYA0KimNSyOYfCj+4hCh3evw5R4W7dBERESkB1APVjulpaVxxRVXcM899+yz/u233+Y73/kOEydO5JxzzqGsrIyKiopW2xo6dGjjdVGzZ8/mkksuwe/3k5ubywknnMDcuXMBmDJlCvn5+fh8PiZOnEhhYWGz7V1yySUAHH/88ZSVlVFSUsKOHTtYvXo106dPZ+TIkcTGxjYmXgB33303EydO5JZbbuGpp55qnJ0vPT2dhIQEvvGNb/D888+TlJQEwMcff8zXv/51AC6//HJmz57d2NbZZ5+NmTF+/Hhyc3MZP348Pp+PsWPHNsb89NNPc+SRR3LEEUewfPlyVqxYccDrmDFjRmMP3pNPPsmMGTNafR9FOkNVTR1pVg3xacRmHwpA6bY1bWwlIiIiEtajerDa09PUmW666SaOPPJIrr766sZ1oVCITz75hISEhH3qxsTE7HNdU9N7NyUnJ7drf/Hx8Y3P/X4/gUCg2Xr7T11uZjz99NMUFxc33pC3rKyMmTNncueddwLha7Aahv/tH/ecOXN45513ePbZZ7n33nt599132xWnz+fbJ2afz0cgEGD9+vXcddddzJ07l379+nHVVVc1ey+rc845h9tvv509e/Ywf/58Tj755Fb3K9IZaqtKAXAJ6aTmFgBQvmMd/aIYk4iIiPQc6sE6CJmZmVx00UU89NBDjetOO+00/vSnPzUuL1q0CICCggIWLFgAwIIFC1i/fn2zbR533HE89dRTBINBioqK+OCDD5gyZcpBxdXQ6zN79mzS09NJT09n5syZvP76643Xfc2fP7/F67CaqqiooLS0lC9/+cvcfffdLF68GIBjjz22cfvHH3+c4447rt3xlZWVkZycTHp6Ojt27OC1115rtl5KSgqTJ0/mxhtv5KyzzsLv97d7HyKRUldRDIAvMYPsgUOpc35qd22IclQiIiLSU3Q4wTKzwWb2npmtMLPlZnajtz7TzN4ys9Xe317xA/APfvCDfSaEuOeee5g3bx4TJkxgzJgx3H///QBccMEF7Nmzh7Fjx3LvvfcycuTIZts7//zzmTBhAocffjgnn3wyv/3tbxkwYMBBxZSQkMARRxzBddddx0MPPURhYSEbNmzYZ3r2YcOGkZ6ezqefftpsG1/+8pfZunUr5eXlnHXWWUyYMIHp06fz+9//HoA//elP/OMf/2DChAk8+uij/PGPf2x3fIcffjhHHHEEhx12GF//+teZNm1aY9nPf/7zfaaJnzFjBo899piGB0rU1FWGEyx/YjqD+iWzzWVhpZuiHJWIiIj0FNbSzHTtbsBsIDDQObfAzFKB+cB5wFXAHufcb8zsR0A/59wPW2tr0qRJbv97Oq1cuZLRo0d3KEbpXfRvQjrT/Pf/xVHvXcaaM2cy/Ogv8+kdxzIw2Rhy60fRDk1ERES6CTOb75yb1FxZh3uwnHPbnHMLvOflwEogDzgXeMSr9gjhpEtEpFsLVpUAEJcc7nQvjRtAas22KEYkIiIiPUlEr8EyswLgCOBTINc51/CtZDuQ28I215rZPDObV1RUFMlwREQOmqspASA2JQOA6sRBpAf36F5YIiIi0i4RS7DMLAV4DrjJObfPzapceBxis2MRnXMPOOcmOecmNdyLSUQkWkK1lQAkJKUBEEwbjA8HZZujGZaIiIj0EBFJsMwslnBy9bhz7nlv9Q7v+qyG67R2RmJfIiKdKVRXBUBicgoAMZlDAKja2fxMoCIiIiJNRWIWQQMeAlY6537fpOhl4Erv+ZXASx3dl4hIp6urBiA+IXy/uqT+4XvJlW5XgiUiIiJti8SNhqcBlwNLzWyRt+524DfA02b2DWADcFEE9iUi0rnqq6l1scT7wx+P/QYMBaBG98ISERGRdojELIKznXPmnJvgnJvoPV51zu12zp3inBvhnDvVObcnEgFHy4svvoiZsWrVqhbrFBYWMm7cuIjt86qrruLZZ59tsfymm24iLy+PUCjUuO7hhx8mJyeHiRMnMmbMGB588MGIxSPSF1igimqLb1wemJXBTpdBqET3whIREZG2RXQWwd5s5syZTJ8+nZkzZzZbHggEOryPYDDY7rqhUIgXXniBwYMH8/777+9TNmPGDBYtWsSsWbO4/fbb2bFjR4djE+krLFBNXZMEq39qPFtdFv7yrVGMSkRERHoKJVjtUFFRwezZs3nooYd48sknG9fPmjWL4447jnPOOYcxY8YA4UTr0ksvZfTo0Xzta1+jqip8wfw777zDEUccwfjx47nmmmuora0FoKCggB/+8IcceeSRPPPMMwfs++2332bSpEmMHDmSf//73/vse+zYsVx//fUtJn39+/fn0EMPZcOGvUOb7rnnHsaMGcOECRO4+OKLAdizZw/nnXceEyZMYOrUqSxZsgSAO+64gyuvvJLjjjuOoUOH8vzzz3Pbbbcxfvx4zjjjDOrr6wH41a9+xeTJkxk3bhzXXnst+9+8OhQKUVBQQElJSeO6ESNGKPGTbskXqKHOEhqXY/w+imNySKzWvbBERESkbZG4BqvrvPYj2L40sm0OGA9n/qbVKi+99BJnnHEGI0eOJCsri/nz53PUUUcBsGDBApYtW8awYcMoLCzks88+46GHHmLatGlcc801/OUvf+E73/kOV111Fe+88w4jR47kiiuu4L777uOmm24CICsriwULFjS778LCQubMmcPatWs56aSTWLNmDQkJCcycOZNLLrmEc889l9tvv536+npiY2P32XbdunWsW7eO4cOHN677zW9+w/r164mPj29MeH7xi19wxBFH8OKLL/Luu+9yxRVXsGjRIgDWrl3Le++9x4oVKzjmmGN47rnn+O1vf8v555/PK6+8wnnnncd3vvMdfv7znwNw+eWX8+9//5uzzz67cZ8+n49zzz2XF154gauvvppPP/2UoUOHkpvb7K3RRKLKH6ymzhe/z7qKhIGkVy8E58AsSpGJiIhIT6AerHaYOXNmY2/PxRdfvE+P0ZQpUxg2bFjj8uDBg5k2bRoAl112GbNnz+azzz5j2LBhjBw5EoArr7ySDz74oHGbGTNmtLjviy66CJ/Px4gRIzjkkENYtWoVdXV1vPrqq5x33nmkpaVx9NFH88YbbzRu89RTTzFx4kQuueQS/vrXv5KZmdlYNmHCBC699FIee+wxYmLC+fXs2bO5/PLLATj55JPZvXs3ZWXhW5mdeeaZxMbGMn78eILBIGeccQYA48ePp7CwEID33nuPo48+mvHjx/Puu++yfPnyA17HjBkzeOqppwB48sknW33NItEUE6wh4EvYZ1198iASXC1UF0cpKhEREekpelYPVhs9TZ1hz549vPvuuyxduhQzIxgMYmb87ne/AyA5OXmf+rbfr9v7Lzdn/zbaau+NN96gpKSE8ePHA1BVVUViYiJnnXUWEE5m7r333mbbe+WVV/jggw/417/+xZ133snSpa33CMbHh3/J9/l8xMbGNsbj8/kIBALU1NRwww03MG/ePAYPHswdd9xBTU3NAe0cc8wxrFmzhqKiIl588UV++tOftrpfkWiJDdUQiEvcd2V6HhRBqGQTvqTM5jcUERERQT1YbXr22We5/PLL2bBhA4WFhWzatIlhw4bx4YcfNlt/48aNfPzxxwA88cQTTJ8+nVGjRlFYWMiaNWsAePTRRznhhBPatf9nnnmGUCjE2rVrWbduHaNGjWLmzJn87W9/o7CwkMLCQtavX89bb73VeL1XS0KhEJs2beKkk07i//7v/ygtLaWiooLjjjuOxx9/HAhf25WdnU1aWlq74mtIprKzs6moqGhx1kMz4/zzz+f73/8+o0ePJisrq13ti3S12FANQf++CVZcVniq9vIdhVGISERERHoSJVhtmDlzJueff/4+6y644IIWJ5YYNWoUf/7znxk9ejTFxcVcf/31JCQk8I9//IMLL7yQ8ePH4/P5uO6669q1/yFDhjBlyhTOPPNM7r//fkKhEK+//jpf+cpXGuskJyczffp0/vWvfzXbxje/+U3mzZtHMBjksssuY/z48RxxxBF873vfIyMjgzvuuIP58+czYcIEfvSjH/HII4+0892BjIwMvvWtbzFu3DhOP/10Jk+e3Fh2//33c//99zcuz5gxg8cee0zDA6Vbi3e1hPz7DhFM6e8lWDt1s2ERERFpne0/41s0TZo0yc2bN2+fdStXrmT06NFRiki6I/2bkM607ReHsD3nGI74zuON65ZtLmbEg8PZMuoqDvn6/4tidCIiItIdmNl859yk5srUgyUi4nHOkUAtxOw7RHBQv2S2u0xc6eYoRSYiIiI9hRIsERFPTX2IRGpxsUn7rO+XFMt2yyauUjcbFhERkdb1iASrOw1jlOjSvwXpTFW1dSRYPRa7bw+WmVESm0tyzfYoRSYiIiI9RacnWGZ2hpl9ZmZrzOxHB7t9QkICu3fv1hdrwTnH7t27SUhIaLuyyBdQXVUJgC8u6cCyxAGkB3ZBMNDVYYmIiEgP0qn3wTIzP/Bn4EvAZmCumb3snFvR3jby8/PZvHkzRUVFnRWm9CAJCQnk5+dHOwzppWqrKwDwxR+YYAVS8vCXh6BiO6Tr36CIiIg0r7NvNDwFWOOcWwdgZk8C5wLtTrBiY2MZNmxYJ4UnIrJXTVU4wYqJP/Dm3/5++bAN6vdsIlYJloiIiLSgs4cI5gGbmixv9tY1MrNrzWyemc1TL5WIRFNdTTjB8jeTYCVkh++FVbpD98ISERGRlkV9kgvn3APOuUnOuUk5OTnRDkdE+rA67xqs2IQDE6z0AQUAVO0s7MKIREREpKfp7ARrCzC4yXK+t05EpNupr205weqf3Z8yl0SgeNMBZSIiIiINOjvBmguMMLNhZhYHXAy83Mn7FBH5QoJeghWXeGCCNSgjgS0uCyvTb0QiIiLSsk5NsJxzAeA7wBvASuBp59zyztyniMgXFaitAiA+MeWAsqS4GHb5somv2tbVYYmIiEgP0tmzCOKcexV4tbP3IyLSUSGvBysh6cAEC6AsbgBptbO7MiQRERHpYaI+yYWISHcRqqsGIK6Za7AAqlMGkxIqh+qSLoxKREREehIlWCIiHlcXHiJocQfeaBiAfgXhesWFXROQiIiI9DhKsEREGtSHEyxim+/BSuh/CABlW9d0VUQiIiLSwyjBEhFpEKgmgA/8sc0Wpw0aCUDZdiVYIiIi0jwlWCIiHl99NbXEg1mz5XkDcil2KdTvWtfFkYmIiEhPoQRLRMTjC1ZT50tosTwvI5GNrj++kg1dGJWIiIj0JEqwREQ8MYEq6i2+xfKEWD9FMQNIqtrchVGJiIhIT6IES0TEExesotbfwgyCnvLEfDLrtkMo2EVRiYiISE+iBEtExBMXqqLe3/wMgg0CaUOJIQBlW7soKhEREelJlGCJiHjiQ9UEY1pPsPxZwwCo00QXIiIi0gwlWCIigHOORFdNsIV7YDVIGTAcgOItq7siLBEREelhlGCJiAC1gRBJVOPiWk+wsvIOIeB8VO/QvbBERETkQB1KsMzsd2a2ysyWmNkLZpbRpOzHZrbGzD4zs9M7HKmISCeqrA2QQg2ujR6sIdlpbHHZhPas76LIREREpCfpaA/WW8A459wE4HPgxwBmNga4GBgLnAH8xcz8HdyXiEinqawJkEw1xKe2Wi87JY4tNoD4ssKuCUxERER6lA4lWM65N51zAW/xEyDfe34u8KRzrtY5tx5YA0zpyL5ERDpTZVUFfnP4E1pPsMyMPYlDyKzeCM51UXQiIiLSU0TyGqxrgNe853nApiZlm711BzCza81snpnNKyoqimA4IiLtV1NZAoCvjQQLoCb9UBJdFZRv7+SoREREpKdpM8Eys7fNbFkzj3Ob1PkJEAAeP9gAnHMPOOcmOecm5eTkHOzmIiIRUVtZBkBMYlqbdWNyRoa32f5Zp8YkIiIiPU9MWxWcc6e2Vm5mVwFnAac41zheZgswuEm1fG+diEi3VFdVCkBcUtsJVmr+WFgGuzcuY9DIEzs5MhEREelJOjqL4BnAbcA5zrmqJkUvAxebWbyZDQNGAHM6si8Rkc4U8BKs+OT0NuvmDT2EShdPzbZVnR2WiIiI9DBt9mC14V4gHnjLzAA+cc5d55xbbmZPAysIDx38tnMu2MF9iYh0mmBlMQAJaVlt1i3ITuFzN4j03brZsIiIiOyrQwmWc254K2V3And2pH0Rka4SqNwDQHJG29eCJsT62R47mLwKXYMlIiIi+4rkLIIiIj1XVTjBssTMdlUvTxlGVmAH1FW1XVlERET6DCVYIiKAr6aYOmIgLrld9UNZIwBwGiYoIiIiTSjBEhEBYupKqPClQfh60jYlDDwMgJJNKzozLBEREelhlGCJiAAJ9aVU+9ueor1B/yFjCDmjTAmWiIiINKEES0QESAiUURvb9hTtDYbnZbPJ5RDcsbIToxIREZGeRgmWiPR5zjlSQmXUx2e0e5uslHjW+4eSXKKZBEVERGQvJVgi0udV1QXJopRgQvtmEGxQkjKC7LrNUF/TSZGJiIhIT6MES0T6vKKScrKtDJc66KC2C2SPxk+I0M5VnRSZiIiI9DRKsESkz9uzYxMA8f0OLsFKHjwhvP36RZEOSURERHooJVgi0ueVF20GICkr/6C2G3joOGpdLOUbF3dGWCIiItIDKcESkT6vpjicYGXkDjmo7UYOzGCNG4SvSDMJioiISFhEEiwz+4GZOTPL9pbNzO4xszVmtsTMjozEfkREOkOwZBtw8D1YSXExbIodRnrZ6s4IS0RERHqgDidYZjYYOA3Y2GT1mcAI73EtcF9H9yMi0lliKrZQRwwkZR/0tuVpI8kI7oKqPZ0QmYiIiPQ0kejBuhu4DXBN1p0L/NOFfQJkmNnACOxLRCTikqs2sytmIPgO/iPRBowFoG7r0kiHJSIiIj1QhxIsMzsX2OKc2/8K7zxgU5Plzd665tq41szmmdm8oqKijoQjInLQnHP0q9tKRWKzH1FtSh06EYDd6xZFLigRERHpsWLaqmBmbwMDmin6CXA74eGBX5hz7gHgAYBJkya5NqqLiERUSWUd+W47m9KnfKHthxUcQrFLoXaLerBERESkHQmWc+7U5tab2XhgGLDYzADygQVmNgXYAgxuUj3fWyci0q1s2raVCVZNbFbBF9p+WE4KC9xg8ndrJkERERHpwBBB59xS51x/51yBc66A8DDAI51z24GXgSu82QSnAqXOuW2RCVlEJHJKNq0AICVv9BfaPtbvY0fioWRWroVQKJKhiYiISA/UWffBehVYB6wBHgRu6KT9iIh0SNWWcM9TVsH4L9xGTeZoEl01FK+PVFgiIiLSQ7U5RLC9vF6shucO+Hak2hYR6Sy2+3PqiCE+e9gXbiNu8BGwDUrXzyc969AIRiciIiI9TWf1YImI9Agp5espis0Hn/8LtzFg+BHUOz+l6+ZHMDIRERHpiZRgiUifVVMfJC+wgfK0ER1qZ3R+DqtdPmzb/44VIiIi0tcowRKRPmv91iKGsBP6H9ahdtKTYlkXeyj9ylaC090mRERE+jIlWCLSZ+1ctxifOdKGTOhwW6UZY0kNlkC5JkwVERHpy5RgiUifVbk5fHPg7EMmdrgt/6DDAajdtLDDbYmIiEjPpQRLRPos367PqCOWuJyOz/yXdeiRhJyxZ83cCEQmIiIiPZUSLBHps/pVrGF7fEGHZhBsMKZgEOvcQOo3L+pwWyIiItJzKcESkT6ppj7I4EAhlWnDI9LeoPQE1voPIa14aUTaExERkZ5JCZaI9EnrNm9lkO3BlzsmIu2ZGcVZE8kI7ILiDRFpU0RERHoeJVgi0iftXLsIgNQh4yPWpn/YdADKP5sVsTZFRESkZ1GCJSJ9UvWWZQD0P/SIiLU5dPRkil0K5avej1ibIiIi0rN0OMEys++a2SozW25mv22y/sdmtsbMPjOz0zu6HxGRSIrdtYoqEonpNyRibU4Y3I/57jASt30SsTZFRESkZ4npyMZmdhJwLnC4c67WzPp768cAFwNjgUHA22Y20jkX7GjAIiKRkFG5lp0JBRT4IteRnxDrZ0fmUfQr+SuUbIKMwRFrW0RERHqGjn6zuB74jXOuFsA5t9Nbfy7wpHOu1jm3HlgDTOngvkREIqKyNsDQ4Aaq0kdEvO240V8GoHjB8xFvW0RERLq/jiZYI4HjzOxTM3vfzCZ76/OATU3qbfbWHcDMrjWzeWY2r6ioqIPhiIi0bd2GDeRYGb4BYyPe9tGTprAiNJS6BU+CcxFvX0RERLq3NhMsM3vbzJY18ziX8BDDTGAqcCvwtJnZwQTgnHvAOTfJOTcpJyfnC70IEZGDsWf9YgDSIjiDYIMhWUnMzTqH3IoV1K+bHfH2RUREpHtrM8Fyzp3qnBvXzOMlwj1Tz7uwOUAIyAa2AE0vPsj31omIRF1wxwoAsg+Z2CntDz/tW2xzmZQ8eyPUlgMQCjk+nD2LN/73Ima/+Wyn7FdERESir0OTXAAvAicB75nZSCAO2AW8DDxhZr8nPMnFCGBOB/fVczhHKFBPTW0VtTU11NZUU1dbTV1tDYHaalyg1nvUEQoFCIVCuFDQ+xsiFAzgXPi5cyHMhfC5EEYo3L7PB1j40fDcfDgzDAPzyswPZhiAz4+ZYeYLr/P5vGW/t7kfzIfPrPF5uKofM69uQxs+H+YzDP/ednw+zOdv3N68Ns3nw2c+r164rs/nx2c+8IfX+bx15vPh83l1vdcUgYNBhwdpNRnm1bERXwdu3BBdc+02rNu/jtunjttnXWM7TSq1tP3+2za3T5rd50HEtd/rch2Mi1b32UK7+8QQXvAXLaeMZNIyBtEZpo0eygMFt3NN4W0U/W4yG9OPIqn4M44LrQZg6cI9cNrXOmXfsi/nHHWBALU1VdRVV1NXW0l9bTWBmmoC9TWEgvUQDBAKBXHBAC4UxIUCEAoSCu597rzPasD7jGXv56sZhg9voeEP4POqhj+XzRr++pr89e372ew9b/icDbfhfeY2fmaH6/h84c95nxn4vO2saf2mf8OfxXu3PbCez+cHbO9ntrcu/BJ8Tf5v8Z6bb9/lxv9/mrz/HT5+ba1oZdsvtPdOHtbb6cOGFX/rzWvYdo/l8xMbExf+3OsBOppg/R34u5ktA+qAK13429FyM3saWAEEgG/3xBkEN61Zyq7CZdSV78ZV7YbqEqyuAl9dBb5AJTGBKmIDVcSFqkhwNSS6ahKpJsHV4TNHEpAU7RchIs36LG4caQc3ovmgXH3FN3jm2UQOW/knhu76kN3xg1k+/PtUFc5jTNU8CAXB5++0/fd0zjmqa2oo2b2Dij07qC7dQW1pEcGqEkI1ZVBbjtWV46+rwB+oIC5QSVywkoRQJXGhGuKoI97VEUc98RYgPtovSEREvrD/rr+Ms6+7k4mDM6IdSrt0KMFyztUBl7VQdidwZ0faj7Ytb9/H1O2PNy4HnVFJIjWWQLUviTpfIvX+JCrjBlASk0wwJolgTDKh2ETMH4/FxOOLjccfG48vNoGY2Dh8sQlYTLiMmDh8/hiv5yYGn8+Hz+/H7/OH//rDvUeOcO8U5sM571c5FwIXwjmHCznAYS7o/frvwLnwcxfyesNc+K9zuFAw3MvW0EYoXNe5IC4U8rYNNm7TsB8ae9X2trtPmQtBKBSOr0m9pnX2re8wFwL2LSfkgBDm3AG/hn4RDu/H5I600SQO61BrrWxrLdewA+pYM4WtbH9AnQN31lJk+25r+++92fb3jfXAPRz4etra795aB4TTZF3r7exbmjnhjGZqR06s38clMy6j4SMy21v/78f+yOQ1H1C9aRGJQ4/q1Bi6o5raWnZt30TJjo1U7tpEfclWKNtGTNVO4uv2kFBfQmqwlDRXRppVtfojVQWJVJFEtS+JWn8SdTHJ7InJxcUk4mISCPkTICYeYhKg4bM3NhGLTcQXl4A/Nh58MZg/Bp/5MX/4ebj33e99Psfg8/sxf2z4M9rrFwn/EN7wOev2LhPyPoK9eiGH4ZU3fB5D4yiFvZ/jocbPaLzPw1BDnSafqeFH+HOaUDD8cUlwn+2ca6jvbduk3cZtm7S99/PXW8/ethr+hs8e73OZ8GsKPw+Xmbcv48A+iA5/ih/wYdC5v2B3eh9HJ/6wAw1HoTP17PZdz+gAkf0cljGFgekJ0Q6j3Trag9WrDTn9e6wuuZjkjBxS+uWQnNqPNL+ftGgHJiI9Vv/xp8Can7Nl0VsM72UJlnOO3cXF7Ny0mrJta6jduQ4r3UhS1RbS6naQEdxNlish3xz5TbYLOB/Fvn6U+zOojs2gKGUw2xP64RKz8KVkE5OaQ0J6DknpOSSnZ5OU2o/45DRSfH5SovZqRUREmqcEqxWDhh0GHBbtMESkFxk/ejSFzw8guO4D4EfRDuegOefYtruErWsWU7VlBbbrM+LLNpBas5WcwHayrbSxtw6ghjh2+gdQFpfLpsRRFKYMxJ8+kITMfFJzBtNvwFBS+g0gxx+D5pEVEZHeQAmWiEgXSozzszbjGI4r/Rf15buITc1ue6MocM6xs7iULasXU7ppGW7HSpJLV5Nbu4HBbGeQhQdSBZyPIl8OJfGD2JhxPBsyhhCfcyjpAw8le/AoEvsNYEgnD4kSERHpTpRgiYh0saSjrybuzRdY9fq9HHbhHVGNxTnHrpIytqxZQumGJYR2riSpdA25tYUMdtvJbUik8LHDn0dJxiiWZZ9DUt44MoeNJ3PwGAbGxDMwqq9CRESk+1CCJSLSxaZMPZ5P3jmKMcsfpO6064lLz+2S/e4pLWPz6nAiFdy5iqSS1eTWriffbSenSSK13Z9HSfoolmWdTULeWPofMpF+g8eQFxNHXpdEKiIi0nMpwRIR6WJ+n8Fp/038q+ew5W+XMOx7r0BsYsTaLy0rZ9OaxZRsWEpox0oSS1bTv6aQfLeNzCZD+7bHDKIkbSRLss4mcdBYcg6ZQOaQMeTHJuwzCYWIiIi0nzXc1LM7mDRpkps3b160wxAR6RLP/+P/cV7hf1OYcjj9L3uAlIGj2r1tKOTYvnM7O9ctoWLzCtj1OYll68ipKSTP7cC/XyJVnHwIgcyRxA8aR86hh5M9ZAwW23OmvBUREelOzGy+c25Ss2VKsEREoiMYcrz6xB85cfVvSLA61qZMpnbAUfj7j8CXkEYIP/U15QSqSqkt342VbSG+citptdvICuwky8oa26pzMWyNyaMkqYBg5ggSBo0le9gE+g8bp0RKREQkwpRgiYh0Yys++4wtb9zNyD3vMZTtLdarJp4iX39K43KpS8nDsg4lcdBo+g8bT2beCMyvUd8iIiJdobUES/8bi4hE2ZhRoxgz6n5CIce23bsp2fI59TUVxBAiLimdhOR0MrNzSErL1pTnIiIi3ZwSLBGRbsLnMwbmZDMwp3veG0tERETa5ot2ACIiIiIiIr2FEiwREREREZEIUYIlIiIiIiISId1qFkEzKwI2RDuO/WQDu6IdhHQZHe++Q8e679Cx7lt0vPsOHeu+ozse66HOuZzmCrpVgtUdmdm8lqZglN5Hx7vv0LHuO3Ss+xYd775Dx7rv6GnHWkMERUREREREIkQJloiIiIiISIQowWrbA9EOQLqUjnffoWPdd+hY9y063n2HjnXf0aOOta7BEhERERERiRD1YImIiIiIiESIEiwREREREZEIUYLVCjM7w8w+M7M1ZvajaMcjkWNmg83sPTNbYWbLzexGb32mmb1lZqu9v/2iHatEhpn5zWyhmf3bWx5mZp965/dTZhYX7RglMswsw8yeNbNVZrbSzI7Rud07mdnN3mf4MjObaWYJOrd7DzP7u5ntNLNlTdY1ey5b2D3ecV9iZkdGL3I5WC0c6995n+NLzOwFM8toUvZj71h/ZmanRyXoVijBaoGZ+YE/A2cCY4BLzGxMdKOSCAoAP3DOjQGmAt/2ju+PgHeccyOAd7xl6R1uBFY2Wf4/4G7n3HCgGPhGVKKSzvBH4HXn3GHA4YSPu87tXsbM8oDvAZOcc+MAP3AxOrd7k4eBM/Zb19K5fCYwwntcC9zXRTFKZDzMgcf6LWCcc24C8DnwYwDv+9rFwFhvm79439u7DSVYLZsCrHHOrXPO1QFPAudGOSaJEOfcNufcAu95OeEvYHmEj/EjXrVHgPOiEqBElJnlA18B/uYtG3Ay8KxXRce6lzCzdOB44CEA51ydc64Endu9VQyQaGYxQBKwDZ3bvYZz7gNgz36rWzqXzwX+6cI+ATLMbGCXBCod1tyxds696ZwLeIufAPne83OBJ51ztc659cAawt/buw0lWC3LAzY1Wd7srZNexswKgCOAT4Fc59w2r2g7kButuCSi/gDcBoS85SygpMkHt87v3mMYUAT8wxsS+jczS0bndq/jnNsC3AVsJJxYlQLz0bnd27V0Lut7W+92DfCa97zbH2slWNKnmVkK8Bxwk3OurGmZC9/DQPcx6OHM7Cxgp3NufrRjkS4RAxwJ3OecOwKoZL/hgDq3ewfv2ptzCSfVg4BkDhxiJL2YzuW+wcx+QvjSjsejHUt7KcFq2RZgcJPlfG+d9BJmFks4uXrcOfe8t3pHw5AC7+/OaMUnETMNOMfMCgkP9T2Z8DU6Gd6wItD53ZtsBjY75z71lp8lnHDp3O59TgXWO+eKnHP1wPOEz3ed271bS+eyvrf1QmZ2FXAWcKnbe/Pebn+slWC1bC4wwpuNKI7wxXQvRzkmiRDvGpyHgJXOud83KXoZuNJ7fiXwUlfHJpHlnPuxcy7fOVdA+Dx+1zl3KfAe8DWvmo51L+Gc2w5sMrNR3qpTgBXo3O6NNgJTzSzJ+0xvONY6t3u3ls7ll4ErvNkEpwKlTYYSSg9kZmcQHt5/jnOuqknRy8DFZhZvZsMIT2wyJxoxtsT2JoOyPzP7MuFrN/zA351zd0Y3IokUM5sOfAgsZe91ObcTvg7raWAIsAG4yDm3/wW20kOZ2YnALc65s8zsEMI9WpnAQuAy51xtFMOTCDGziYQnNIkD1gFXE/5BUed2L2NmvwRmEB4+tBD4JuFrMXRu9wJmNhM4EcgGdgC/AF6kmXPZS7LvJTxMtAq42jk3LwphyxfQwrH+MRAP7PaqfeKcu86r/xPC12UFCF/m8dr+bUaTEiwREREREZEI0RBBERERERGRCFGCJSIiIiIiEiFKsERERERERCJECZaIiIiIiEiEKMESERERERGJECVYIiIiIiIiEaIES0REREREJEKUYImIiIiIiESIEiwREREREZEIUYIlIiIiIiISIUqwREREREREIkQJloiIiIiISIQowRIR6WbMrMDMnJnFRDsW6RvMbLmZnRjtOEREegMlWCIi0uOZ2f1mVuE96sysvsnya9GOr7tzzo11zs3qjLbNLNPMisxsdme0LyLS3ZhzLtoxiIj0KmYW45wLdGD7AmA9ENuRdvoqM7sDGO6cu6yZsg4dm67Uk2JtjZk9CIwCfM656dGOR0Sks6kHS0QkAsys0Mx+aGZLgEozizGzqWb2HzMrMbPFTYdgmdksM/tfM5tjZmVm9pKZZbbQ9tVmttLMys1snZn9137l55rZIq+dtWZ2hrc+3cweMrNtZrbFzH5tZv42XsehZvaume02s11m9riZZTQp22NmR3rLg7yeiRO95XO8oWYl3usbvd/7c4uZLTGzUjN7yswSDv6dPngtHBtnZsOb1HnYzH7dZPks7z0t8Y7hhHbu60Qz22xmt3vvX6GZXdqk/CtmttA7Vpu8ZLChrGFo6DfMbCPwrrf+GTPb7r1vH5jZ2P3i/ouZveb11n1kZgPM7A9mVmxmq8zsiHa+R6e25zUeDDM7FhgH/CPSbYuIdFdKsEREIucS4CtABpALvAL8GsgEbgGeM7OcJvWvAK4BBgIB4J4W2t0JnAWkAVcDdzdJcqYA/wRu9fZ7PFDobfew1+5w4AjgNOCbbbwGA/4XGASMBgYDdwA459YCPwQeM7Mkwl+aH3HOzTKzkcBM4CYgB3gV+JeZxTVp+yLgDGAYMAG4qtkAzKZ7iU1Ljy/SC9J4bNrqFfISkr8D/wVkAX8FXjaz+HbuawCQDeQBVwIPmNkor6yS8HHP8OK53szO22/7Ewi/96d7y68BI4D+wALg8f3qXwT81NtnLfCxVy8beBb4fTvjbpaZ/ai149HKdn7gXuA7gIbLiEifoQRLRCRy7nHObXLOVQOXAa865151zoWcc28B84AvN6n/qHNumXOuEvgZcFFzPUzOuVecc2td2PvAm8BxXvE3gL87597y9rPFObfKzHK9fd3knKt0zu0E7gYubu0FOOfWeG3VOueKCH85P6FJ+YPAGuBTwonhT7yiGcAr3rb1wF1AInDsfu/PVufcHuBfwMQWYpjtnMto5fFFruVpemzaci3wV+fcp865oHPuEcKJy9SD2N/PvPfwfcKJ9kUAzrlZzrml3rFaQjgpPWG/be/wjlm1t83fnXPlzrlawsnu4WaW3qT+C865+c65GuAFoMY590/nXBB4inBy/YU5537T2vFoZdPvAZ865+Z3ZP8iIj2NZqgSEYmcTU2eDwUuNLOzm6yLBd5rof4Grzx7/0bN7EzgF8BIwj+MJQFLveLBhHuL9jfUa2+bmTWs8+23zwN4idkfCSdwqd42xftVexB4GbjW+9IP4R6vDQ0VnHMhM9tEuBenwfYmz6u8bbpKq697P0OBK83su03WxdH+eIu9pLnBhoZtzexo4DeEh83FAfHAMy3F6iXcdwIXEu4ZDHlF2UCp93xHk22rm1lOaWfcEWNmgwgnWEd19b5FRKJNPVgiIpHTdBjUJsI9VE1/7U92zv2mSZ3BTZ4PAeqBXU0b9IalPUe4RyjX6zF4lfBQvob9HNpMLJsI97pkN9l/mnNubDN1m/of73WMd86lEe6Ja8zQzCwF+APwEHCH7b1ubCvhxKShnnmvb0sb+zuAmR1ne2cAbO5xXNutHGD/IWpVhBPVBgOaPN8E3LnfsUtyzs1s5776mVlyk+UhhN8fgCcIJ6eDnXPpwP00eX+bifXrwLnAqUA6UOCt33+bTuNdT9bi8WhhsymEezhXmNl2wkn7FO9aslavAxQR6emUYImIdI7HgLPN7HQz85tZgjcBQn6TOpeZ2RjveqZfAc96w7qaaujlKAICXm/WaU3KHwKuNrNTzMxnZnlmdphzbhvhoYT/z8zSvLJDzWz/4Wj7SwUqgFIzyyN8bVdTfwTmOee+SXjo2/3e+qeBr3hxxAI/IJzg/aetN2p/zrkPnXMprTw+PNg2m7EI+Lp3bM5g32F6DwLXmdnRFpbsTU6RCo0TSzzcRvu/NLM4Lxk8i729VKnAHudcjXf93NfbaCeV8Pu4m3BC+D8H8Rojwjn3P60djxY2e41wMjjRe/wcWAhMbObfuIhIr6IES0SkEzjnNhHuebidcHK0iXCy0vRz91HCE1FsBxIID6nav51yb/3ThIfqfZ1wD0hD+Ry8iS8IDxl7n709SVcQTtBWeNs+S7hXoTW/BI702noFeL6hwMzOJTxJxfXequ8DR5rZpc65zwj3dv2JcC/c2cDZzrm6NvYXLTcSjrEEuBR4saHAOTcP+BbhCRqKCV9zdlWTbQcDH7XS9nZvu62EJ6S4zjm3yiu7AfiVmZUTTjqebiPOfxIeYriF8HH8pK0X1h14159tb3gQ/vdU7z0XEenVdB8sEZEoMLNZwGPOub9FOxZpP29WxMXABG8yj/3LTyR8XPP3LxMRkb5Bk1yIiIi0k9cjN7rNiiIi0mdpiKCISB9jZve3MGHB/W1vLT2RmQ1pZaKKIdGOT0SkN9EQQRERERERkQhRD5aIiIiIiEiEdKtrsLKzs11BQUG0wxAREREREWnR/Pnzdznncpor61YJVkFBAfPmzYt2GCIiIiIiIi0ysw0tlWmIoIiIiIiISIQowRIREREREYkQJVgiIl/Qp+t2M69wT7TDEBERkW6kW12D1Zz6+no2b95MTU1NtEORHiYhIYH8/HxiY2OjHYr0QrWBINc+8DZn+Ocy6if/TWpSYrRDEhERkW6g2ydYmzdvJjU1lYKCAsws2uFID+GcY/fu3WzevJlhw4ZFOxzphZZvLeO5uDsY7tvK0v8czvhTL492SCIiItINdPshgjU1NWRlZSm5koNiZmRlZannUzrNpt3lDPdtBSC4+r0oRyMiIiLdRbdPsAAlV/KF6N+NdKbSHRsbn/cv1u0lREREJKzDCZaZDTaz98xshZktN7MbvfWZZvaWma32/vbreLgiIt1DTVEhABvihpNTtwWCgegGJCIiIt1CJHqwAsAPnHNjgKnAt81sDPAj4B3n3AjgHW+5RzIzfvCDHzQu33XXXdxxxx3RC6iJTz75hKOPPpqJEycyevToxrhmzZrFf/7znw61fcYZZ5CRkcFZZ50VgUhFepeYii0AbO53DLEEcCUt3m9QRERE+pAOJ1jOuW3OuQXe83JgJZAHnAs84lV7BDivo/uKlvj4eJ5//nl27doV0Xadc4RCoQ61ceWVV/LAAw+waNEili1bxkUXXQREJsG69dZbefTRRzvUhkhvlVwVTrCqBk8HoHjTymiGIyIiIt1ERGcRNLMC4AjgUyDXObfNK9oO5Ha0/V/+azkrtpZ1tJl9jBmUxi/OHttqnZiYGK699lruvvtu7rzzzn3KioqKuO6669i4MXw9xh/+8AemTZvGHXfcQUpKCrfccgsA48aN49///jcAp59+OkcffTTz58/n1Vdf5d577+W1117DzPjpT3/KjBkzmDVrFnfccQfZ2dksW7aMo446iscee+yA64p27tzJwIEDAfD7/YwZM4bCwkLuv/9+/H4/jz32GH/605847LDDWoxz7dq1rFmzhl27dnHbbbfxrW99C4BTTjmFWbNmtfrePPPMM/zyl7/E7/eTnp7OBx98QE1NDddffz3z5s0jJiaG3//+95x00kk8/PDDvPjii1RWVrJ69WpuueUW6urqePTRR4mPj+fVV18lMzOTBx98kAceeIC6ujqGDx/Oo48+SlJS0j77nTp1Kg899BBjx4aP3Yknnshdd93FpEmTWo1XJFLi6kqotiSSBh8O86BiyyoyJ6q3V0REpK+L2CQXZpYCPAfc5JzbJwtyzjnAtbDdtWY2z8zmFRUVRSqciPv2t7/N448/Tmlp6T7rb7zxRm6++Wbmzp3Lc889xze/+c0221q9ejU33HADy5cvZ968eSxatIjFixfz9ttvc+utt7JtWzgvXbhwIX/4wx9YsWIF69at46OPPjqgrZtvvplRo0Zx/vnn89e//pWamhoKCgq47rrruPnmm1m0aBHHHXdcq3EuWbKEd999l48//phf/epXbN26td3vy69+9SveeOMNFi9ezMsvvwzAn//8Z8yMpUuXMnPmTK688srG2fyWLVvG888/z9y5c/nJT35CUlISCxcu5JhjjuGf//wnAF/96leZO3cuixcvZvTo0Tz00EMH7HfGjBk8/fTTAGzbto1t27YpuZIuFRsop8afTE5uHlUunvo9G9veSERERHq9iPRgmVks4eTqcefc897qHWY20Dm3zcwGAjub29Y59wDwAMCkSZOaTcIatNXT1JnS0tK44ooruOeee0hM3HtD0bfffpsVK1Y0LpeVlVFRUdFqW0OHDmXq1KkAzJ49m0suuQS/309ubi4nnHACc+fOJS0tjSlTppCfnw/AxIkTKSwsZPr06fu09fOf/5xLL72UN998kyeeeIKZM2c22+vUWpznnnsuiYmJJCYmctJJJzFnzhzOO++8dr0v06ZN46qrruKiiy7iq1/9auNr+u53vwvAYYcdxtChQ/n8888BOOmkk0hNTSU1NZX09HTOPvtsAMaPH8+SJUuAcBL205/+lJKSEioqKjj99NMP2O9FF13Eaaedxi9/+Uuefvppvva1r7UrXpFIiQ9UUJ+YwoCMRLa5TKxsc7RDEhERkW6gwwmWhcesPQSsdM79vknRy8CVwG+8vy91dF/RdtNNN3HkkUdy9dVXN64LhUJ88sknJCQk7FM3JiZmn+urmt6PKTk5uV37i4+Pb3zu9/sJBJqfpezQQw/l+uuv51vf+hY5OTns3r37gDotxQkHTmd+MNOb33///Xz66ae88sorHHXUUcyfP7/V+k1fk8/na1z2+XyNr++qq67ixRdf5PDDD+fhhx9uNmHMy8sjKyuLJUuW8NRTT3H//fe3O2aRjgoEQySGKgnEppKWEMtyy2Zw5ba2NxQREZFeLxJDBKcBlwMnm9ki7/FlwonVl8xsNXCqt9yjZWZmctFFF+0zZO20007jT3/6U+PyokWLACgoKGDBggUALFiwgPXr1zfb5nHHHcdTTz1FMBikqKiIDz74gClTprQ7pldeeYXwCMzw0EO/309GRgapqamUl5e3GSfASy+9RE1NDbt372bWrFlMnjy53ftfu3YtRx99NL/61a/Iyclh06ZNHHfccTz++OMAfP7552zcuJFRo0a1u83y8nIGDhxIfX19YzvNmTFjBr/97W8pLS1lwoQJ7W5fpKMqagOkWjXBuFQASuJySandEeWoREREpDuIxCyCs51z5pyb4Jyb6D1edc7tds6d4pwb4Zw71Tm3JxIBR9sPfvCDfWYTvOeee5g3bx4TJkxgzJgxjT0pF1xwAXv27GHs2LHce++9jBw5stn2zj//fCZMmMDhhx/OySefzG9/+1sGDBjQ7ngeffRRRo0axcSJE7n88st5/PHH8fv9nH322bzwwgtMnDiRDz/8sMU4ASZMmMBJJ53E1KlT+dnPfsagQYOAcPJ34YUX8s4775Cfn88bb7wBhIclNlxvdeuttzJ+/HjGjRvHsccey+GHH84NN9xAKBRi/PjxzJgxg4cffnifnqu2/Pd//zdHH30006ZN47DDDmtc//LLL/Pzn/+8cflrX/saTz75ZOPMiSJdpaouSCpVhLwEqyZxIGnBPRCoi3JkIiIiEm3W0PvRHUyaNMnNmzdvn3UrV65k9OjRUYqo99t/tsPeRv9+pDOs2VlB+p9HUznsdAqu+hvPPvA/fG3r/8GNi6FfQbTDExERkU5mZvOdc83OsBaxWQRFRPqK6rogaVTj4tMA8PULT0ZTt2dTNMMSERGRbiCi98GSnueOO+6IdggiPU51dSXxVo8lpAOQmDUEgPIdhWQdelw0QxMREZEoUw+WiMhBqqsK3w/P5yVYaQMKAKgs2hCtkERERKSbUIIlInKQAl6CFZMUHiKYm51FiUsmUKwhgiIiIn2dEiwRkYNUXx2+BUJMQngWwdy0BLa5LHzlW6IZloiIiHQDSrBERA5SsKYCgLikFABSE2Ipsiziq3QvLBERkb5OCVY7vfjii5gZq1atarFOYWEh48aNi9g+P/vsM0488UQmTpzI6NGjufbaa4HwTYJfffXVDrV9zTXX0L9//4jGK9JXBGqrAIhLTG1cVxbXn5S6ndEKSURERLoJJVjtNHPmTKZPn87MmTObLQ8EAh3eRzAY3Gf5e9/7HjfffDOLFi1i5cqVfPe73wUik2BdddVVvP766x1qQ6SvCtVWAhCfmNK4riaxP6nBEgjURikqERER6Q561jTtr/0Iti+NbJsDxsOZv2m1SkVFBbNnz+a9997j7LPP5pe//CUAs2bN4mc/+xn9+vVj1apVvPnmmwQCAS699FIWLFjA2LFj+ec//0lSUhLvvPMOt9xyC4FAgMmTJ3PfffcRHx9PQUEBM2bM4K233uK2227j4osvbtzvtm3byM/Pb1weP348dXV1/PznP6e6uprZs2fz4x//mLPOOovvfve7LFu2jPr6eu644w7OPfdcHn74YV544QVKS0vZsmULl112Gb/4xS8AOP744yksLGz1db///vvceOONAJgZH3zwASkpKdx222289tprmBk//elPmTFjBrNmzeIXv/gFGRkZLF26lIsuuojx48fzxz/+kerqal588UUOPfRQ/vWvf/HrX/+auro6srKyePzxx8nNzd1nvxdffDGXX345X/nKV4BwMnjWWWfxta99rX3HVKSTubpwguWP35tgBZIHQhlQvk03GxYREenD1IPVDi+99BJnnHEGI0eOJCsri/nz5zeWLViwgD/+8Y98/vnnQHhY3w033MDKlStJS0vjL3/5CzU1NVx11VU89dRTLF26lEAgwH333dfYRlZWFgsWLNgnuQK4+eabOfnkkznzzDO5++67KSkpIS4ujl/96lfMmDGDRYsWMWPGDO68805OPvlk5syZw3vvvcett95KZWX4C+CcOXN47rnnWLJkCc888wzz5s1r9+u+6667+POf/8yiRYv48MMPSUxM5Pnnn2fRokUsXryYt99+m1tvvZVt27YBsHjxYu6//35WrlzJo48+yueff86cOXP45je/yZ/+9CcApk+fzieffMLChQu5+OKL+e1vf3vAfmfMmMHTTz8NQF1dHe+8805jsiXSHTQkWMQlNa7zZ+QBECzdGo2QREREpJvoWT1YbfQ0dZaZM2c29uRcfPHFzJw5k6OOOgqAKVOmMGzYsMa6gwcPZtq0aQBcdtll3HPPPXzpS19i2LBhjBw5EoArr7ySP//5z9x0001AOKFoztVXX83pp5/O66+/zksvvcRf//pXFi9efEC9N998k5dffpm77roLgJqaGjZu3AjAl770JbKysgD46le/yuzZs5k0aVK7Xve0adP4/ve/z6WXXspXv/pV8vPzmT17Npdccgl+v5/c3FxOOOEE5s6dS1paGpMnT2bgwIEAHHrooZx22mlAuOftvffeA2Dz5s3MmDGDbdu2UVdXt8971+DMM8/kxhtvpLa2ltdff53jjz+exMTEdsUs0iXqw9dgEbs3wYrPDPc2V+zcQHrBsdGISkRERLoB9WC1Yc+ePbz77rt885vfpKCggN/97nc8/fTTOOcASE5O3qe+mbW63Jz922hq0KBBXHPNNbz00kvExMSwbNmyA+o453juuedYtGgRixYtYuPGjYwePfoLx9PgRz/6EX/729+orq5m2rRprU7wARAfH9/43OfzNS77fL7Ga9S++93v8p3vfIelS5fy17/+lZqamgPaSUhI4MQTT+SNN97gqaeeajEBFYkWX0OCFbf33E3JGQpA5S7dC0tERKQvU4LVhmeffZbLL7+cDRs2UFhYyKZNmxg2bBgffvhhs/U3btzIxx9/DMATTzzB9OnTGTVqFIWFhaxZswaARx99lBNOOKHNfb/++uvU19cDsH37dnbv3k1eXh6pqamUl5c31jv99NP505/+1Jj0LVy4sLHsrbfeYs+ePY3XQTX0rrXH2rVrGT9+PD/84Q+ZPHkyq1at4rjjjuOpp54iGAxSVFTEBx98wJQpU9rdZmlpKXl54aFUjzzySIv1ZsyYwT/+8Q8+/PBDzjjjjHa3L9IVfIFq6okBf2zjuuysbCpdPHXFm6MYmYiIiERbpydYZnaGmX1mZmvM7Eedvb9ImzlzJueff/4+6y644IIWZxMcNWoUf/7znxk9ejTFxcVcf/31JCQk8I9//IMLL7yQ8ePH4/P5uO6669rc95tvvsm4ceM4/PDDOf300/nd737HgAEDOOmkk1ixYgUTJ07kqaee4mc/+xn19fVMmDCBsWPH8rOf/ayxjSlTpnDBBRcwYcIELrjggsbhgZdccgnHHHMMn332Gfn5+Tz00EMA3H///dx///0A/OEPf2DcuHFMmDCB2NhYzjzzTM4//3wmTJjA4Ycfzsknn8xvf/tbBgwY0O7384477uDCCy/kqKOOIjs7u3H9vHnz+OY3v9m4fNppp/H+++9z6qmnEhcX1+72RbqCP1BFrSXss25ARiLbXSaU6RosERGRvswaej06pXEzP/A58CVgMzAXuMQ5t6K5+pMmTXL7T8KwcuXKxuFucnAefvhh5s2bx7333hvtUKJG/36kM7z5v19jUmAhmT9b27guFHJ8csc0hqb5yLtldhSjExERkc5mZvOdc81ObNDZPVhTgDXOuXXOuTrgSeDcTt6niEiniglWU+/bd+IVn88oickhqWZHlKISERGR7qCzE6w8oOkV35u9dY3M7Fozm2dm84qKijo5nL7lqquu6tO9VyKdJS5UQ8CfcMD6qoRcUgO7IRRsZisRERHpC6I+yYVz7gHn3CTn3KScnJyW6nRxVNIb6N+NdJa4UDUB/4G3DggkDyCGIFTqxyIREZG+qrMTrC3A4CbL+d66dktISGD37t36siwHxTnH7t27SUg4sJdBpKPiQzUEYw5MsFzaoPBfTXQhIiLSZ3X2jYbnAiPMbBjhxOpi4OsH00B+fj6bN29GwwflYCUkJJCfnx/tMKSXCQRDJFBLKCbpgLK4fuER0NW7N5GUd2RXhyYiIiLdQKcmWM65gJl9B3gD8AN/d84tP5g2YmNjGTZsWKfEJyJysKrqgyRRS00zCVZy9hAAKnZu4MBSERER6Qs6uwcL59yrwKudvR8Rka5QXRckwWqpjjswheqXM4g656d2j242LCIi0ldFfZILEZGepKou3INlzSRYAzKS2Ek/QqUHdampiIiI9CJKsEREDkJVbT2J1GFxyQeU5aYlsM1l4qvYHoXIREREpDtQgiUichBqqyvxmcMXf2CClRDrZ48vi8RqJVgiIiJ9lRIsEZGDUFNVDoC/mQQLoCI+l9T6XaBbS4iIiPRJSrBERA5CfXU4wYpJSGm2vDZpAPGuBmpKujAqERER6S6UYImIHIS66koAYltIsFzKwPAT3WxYRESkT1KCJSJyEAI1FQDEJTafYMV4NxuuL9FMgiIiIn2REiwRkYMQrA33YLWUYCVmDQagfOeGLotJ9tpRVsMPnl7Me6t2RjsUERHpo5RgiYgchGBtuAcrPimt2fK0nHxCzqjZrZsNR8Otzy7h3wvW8cbj/4+SwsXRDkdERPogJVgiIgfBeT1YLc0imNsvjd2kEShRgtXVtpRU8+HqIh7KfYbf+O8n9omvQtWeaIclIiJ9jBIsEZGD4OrCCRbN3GgYYFBGIttcpia5iIL3Vu0k2xUzrex1VvuHk1y3CxY9Hu2wRESkj1GCJSJyEKwuPESQ+NRmy9MTYymybOKrtnVhVAKwfGsZX0lYirkgs8f+kkWhQwkufiraYYmISB+jBEtE5CD461tPsABKEwaSXrtNNxvuYiu2lXFmwjJIy2Pk+KN5MzgJ/46lUFEU7dBERKQP6VCCZWa/M7NVZrbEzF4ws4wmZT82szVm9pmZnd7hSEVEuoGY+gqqSQCfv8U6tcn5JLgaXf/ThQLBEKu2lXFY8HMYeizj8jP4T2hsuHD9+9ENTkRE+pSO9mC9BYxzzk0APgd+DGBmY4CLgbHAGcBfzKzlbyMiIj1ETKCCGl9Sq3Vc+pDw3xJN1d5V1u+qJDlQQnr9Thh4OOmJsVRkjqPWEmDTnGiHJyIifUiHEizn3JvOuYC3+AmQ7z0/F3jSOVfrnFsPrAGmdGRfIiLdQWygklp/8xNcNIjPLgCgauf6LohIIHz91VhfYXhh4OEAjBucySoKYNuiaIUlIiJ9UCSvwboGeM17ngdsalK22Vt3ADO71szmmdm8oiKNkxeR7i0uWEldTOsJVuqAQwAo3762K0ISwtdfHe73egwHjAdgQn4G8+sLcNuWQCgYxehERKQvaTPBMrO3zWxZM49zm9T5CRAADno+XOfcA865Sc65STk5OQe7uYhIl0oIVhJoI8EakJtLqUuibldh1wQlLN9aytTETZAxFBL7ATB6YBpLQ8OwQDXs+jzKEYqISF8R01YF59yprZWb2VXAWcApzjVOmbUFGNykWr63TkSkxwqGHImuilDswFbr5WUkstnlkFq6qdV6EhnOOVZsLeOwmPUw8KjG9SNzU1jiwr2JbF0I/UdHKUIREelLOjqL4BnAbcA5zrmqJkUvAxebWbyZDQNGALrKWER6tIraAKlWTSgupdV6mclxbLX+JFRu7qLI+rZtpTUEq0rIrtvSeP0VQFZKPOVJQ6j1JcLWRdELUERE+pSOXoN1L5AKvGVmi8zsfgDn3HLgaWAF8DrwbeecBsCLSI9WXlNPCtVYfFqr9cyMsviBpNXoXlhdYcXWMsb4vOuvBk7cp2z4gAzW+obB9iVdH5iIiPRJbQ4RbI1zbngrZXcCd3akfRGR7qS8up4BVLMroeWbDDeoTsojoaQaqoshKbMLouu79p1BcMI+ZSNzU1m6eRCjd87DnAOzrg9QRET6lEjOIigi0qtVlRcTYyH8yW0nTC4jfC8sdC+sTrdiWylTEzZD6iBI6b9P2agBqSwP5GE1JVCxIzoBiohIn6IES0SknWpKw7eS8Kdkt1k3PnsYANW6F1anW761jHG+9ftcf9VgZG4Kq513i8adK7s4MhER6YuUYImItFN9RTjBikvNarNuuncvrFLdC6tTlVbVs7u4mNy6Tc0mWCNyU/k8pARLRES6jhIsEZF2qi3bDUByRv82akLewAGUuiRqi9Z1dlh92optZYy2jfgIHXD9FUBaQizx6bmU+zOgSAmWiIh0PiVYIiLtFPB6sJIzctusOzgziU2uP1aysbPD6tMWby7hCN/q8ELepGbrjMhNZZ0NVg+WiIh0CSVYIiLt5Cr3AOBrxyQX6YmxbPMNILFCCVZnWrSxhGkJhZA+BFKbT3xH9E9hSd0g3M5VmjZfREQ6nRIsEZH2qi4miA8SMtpVvTQxn4zabRDSbQA7g3OOBRuLmWhrIP+oFuuNyE1hVTAPqyuHUt38WUREOpcSLBGRdoqt3UOVLwV87fvorE0dSiz1ULa1kyPrm7aV1uDKt5MZ2AH5k1usN7x/Kp81THRRtKqLohMRkb5KCZaISDul1O2iLKbtGQQb+LPCMwkGd2uii86waFMJR/jWhBdauP4KYHj/FD5vnKp9RRdEJiIifZkSLBGRdnDOkR7YRXVC2xNcNEgaMByA0i2fd1ZYfdrCjcVMi1mJi0lodor2BumJsSSlZVMakw071YMlIiKdSwmWiEg7lNcG6M8eAskD2r1N9qBh1Dk/VTvWdGJkfdec9Xs4NXYpVjAdYhNarTsiNyU8k6CmahcRkU6mBEtEpB227yknm1IsfVC7txmSncpml0NIQwQjbk9lHcVbPicvuAWGf6nN+sP7p7CkbiCu6DMIhbogQhER6auUYImItEPxjk34zBGXmd/ubQamJ7KJXOLKNnRiZH3T7DW7ON63JLww/NQ264/on8ryQB5WXwUlhZ0bnIiI9GkRSbDM7Adm5sws21s2M7vHzNaY2RIzOzIS+xERiZbSHeEkKTV7SLu38fuMPfF5pNVs1v2XIuyNZdv5StwCXL8CyDq0zfojclNY3TiT4GedG5yIiPRpHU6wzGwwcBrQ9G6aZwIjvMe1wH0d3Y+ISDTV7ghPVJE5+LCD2q4qeQhJoUqoLu6MsPqkqroAK1at4Gi3BBt/EZi1uc3wnBTWuLzwgqZqFxGRThSJHqy7gduApj/Pngv804V9AmSY2cAI7EtEJCp8e9YSxIcvs+DgNuzn1d+zPtIh9VmvLNnGl0Pv48PBxK+3a5t+yXHEp/SjJCZHMwmKiEin6lCCZWbnAlucc4v3K8oDNjVZ3uytExHpkZIrN7ArdhD4Yw9qu/ic8FTtVdtXd0ZYfY5zjpmfrOfSuPdxBdMhc1i7tx3RP4X1vsHqwRIRkU4V01YFM3sbaG5e4p8AtxMeHviFmdm1hIcRMmRI+69tEBHpKoFgiNz6TVT0G0L774IVlpY3AoCybZ+TFPnQ+pw56/dwyLZ/Myh2Bxz9+4PadkRuCku3DGTirvewUAh8mudJREQir80EyznX7PRMZjYeGAYstvD493xggZlNAbYAg5tUz/fWNdf+A8ADAJMmTdJV4CLS7RTu2MNwtrA2++B/TxrcP5Ptrh/1RZqqvaOcc/zhzeX8LvZFQgMOx3fYVw5q+xH9U1gWGIRZFZRu3Dt8U0REJIK+8M93zrmlzrn+zrkC51wB4WGARzrntgMvA1d4swlOBUqdc9siE7KISNcqXDmfWAuSfsikg952cGYSG1wu/tLCyAfWx7y8eCtTNj1MPjvwnfLzdk1u0dTw/qmsDnmj1XUdloiIdJLOGh/xKrAOWAM8CNzQSfsREel0lYXzAOg/8uiD3jYlPoYd/oEkV25qu7K0aGtJNU+8+DLfjX2R0LgLYUTb977a34hczSQoIiKdr80hgu3l9WI1PHfAtyPVtohINKXunEepL530rPZPqNBUeVI+6ZXvQX01xCZGOLrer6Y+yM8ee4c/ut9Cai6+L//2C7WTlRyHPymDUl826boXloiIdBJd4Ssi0oriilpG1SxmR7/JBz0krUEgvcBrrDBicfUVdYEQtz/yFj/ceRvZMTXEXPY0JGV+obbMjBH9Uyn0DYailRGOVEREJEwJlohIKxYtmkue7SZh5AlfuI3YrEMAqN+1NlJh9QnFlXX89P4nuGnjdxgWuyecXA0Y36E2h+emsLRuIK7ocwiFIhSpiIjIXkqwRERaUbnkJQDyjv7qF24jeaA3VftW3QurveYX7uahP/ycXxXdRE6Sj9irX4Fhx3W43RH9U1hWPwirr4RSXRcnIiKRpwRLRKQF1bUBRux4g42Jh+HPyP/C7QwcMIgyl0TNjjURjK53Kq2u5/6nXib49y9zS/191A2aQuJ3PoL8oyLS/oimMwnqOiwREekEEZvkQkSkt5n7n7c43jawdsKvO9TOkKxkNrj+ZBavj1BkvU9NfZAX3v6A9E9/x7XuP9TEplBz+j2kTb7iC1/71pwRuSmsbpxJcCWMPPh7m4mIiLRGCZaISAsCcx6iigSGnXhlh9rpnxrPAgYwqHxjhCLrPTbtruSDt19i4Mp/cJGbS8AXz56JN5B9+q2Q2C/i++ufGo9LyKAsJos09WC1qS4QoriqjuKqOgwjxm+kJsSQkxKPRTDxFRHpTZRgiYg0Y+mqVRxbNYvC/HM4LDGtQ235fEZpQh7ptfMgFASfP0JR9kzBkOPTRUvY9OHjjN/9Opf6NlDhS2P72BvIO/0m4lP6d9q+wzMJprChZDDjd2omwQbBkOPzHeUsW7eZ4nXziS9aSnL5erICO8izXWRbOfHUE0eAKuLZYKkUxQ2hLmcsORO/zIgjT8T8sdF+GSIi3YISLBGR/Tjn2PavX3OYhRh89o8j0mZN6lBidgegdDP0GxqRNnuaLVs28fl7j9Fv3ctMDa7kWHNsTz2MkmPuImPKpaTEJXVJHCP6p7KsaBDji94H5yI6BLGnKK+pZ866XaxbuQDfho8YULqQMW4tF/p2NNap8qdSkTaImuRRVCb3p9wfT8BiCFSXEyzfSW7legZtnkvMlr9T/GoGO4dfxIiv3IivA9crioj0BkqwRET2M3fhAk6seJV1+ecxasCIiLRpmcNgN7g967E+lGCVFO9hxXtPkLDqBcbXLiTPgmzxD2b1mG8z7MQrGZA7sstjGpGbwtKFA7nEVYYT3ozBXR5DV6uuCzKvcBdrln5KaN2H5JcvZLKt5BSrAKAsLofy7CMoHnoEGYcchQ08nKTUAbSV8pYW72bJ+8/jX/Y0R3/+IIHV/2DP2CsY8JWffuH7lYmI9HRKsEREmqiuDRB65VYCFkvBBb+MWLuJucNhNVRsX03qoSdGrN3uqLS8nOXvP0vsiucYX/kJx1o9OyyHpUMuY9D0y8gb+cVv2hwJw/un8HrjTIKremWC5ZxjbVElny77jLJlbzBo10cca0s4zsoAKEkcRF3+6dSPPpHYQ44jrV8BaV/gmKT3y+K4875F6Jxv8u4nc6l95385Y9nfqfzseWK/8n/ETbyoV/YQhkKu8dq0muoa6qpKCdVWYgY+M2Ji/KQkJZKYmkVGWgoJsX17WLBIX6MES0SkiX8/dR8XBuez7qifckhm5L54Zw0ooNbFULl9NakRa7X7KKuqZskHL2FLn2NCxYcca9XsIZ1lueeSefQlDDviJHK7ybVnI3JTWe28YWxFq2DEl6IbUIRU1gb4ePV21i98j/gN73FE3Xwu9RWGy+IyKM87gdrxZxA/4kQy0iM7jM/nM049dgqVRz3Dfc+/zPSVv2biS9dSOv8J0r/2J8gYEtH9dbaqugDrd5axY9NqyjevIrhnPbGV20ms2Ula/U4yQ7vpRzmDqSbeAq22Ve3iKLJkSv2ZlMcPIJiWT1zWUNIGjSR3+EQScw4Fn+6aI9KbKMESEfHMXbqCU9f+hi3Jh3HIl2+OaNtDc1LZ7HJI2LUuou1GU3l1LQs/eoPA4mc4vGwW062MCpJYm3MyKUddzCFTzmRSN5z4YFB6AoG4dMpjskjduSra4XTIjrIaZi1ew66F/2borlkcb4s41aoJ4mN31uGUjrqI9PFnkjxwIsld8CU+OT6G71zyVWZ/No27n/k/rt30GHX3TMF36i+ImXptt5vgJRhyrNtezMbPF1JRuBB2fUZ6ZSGDglsYbjsY2yR5CuKj1J9FRUIONYmHUZSUxZ7EdCw+FUtIxWITCWHgHIGgo66uilB1KcGqEkJVJcRX76BfzUZyKueRvL0WlgNvQQ1x7IgbSmX6cPy5Y0gfOoH+w8bjyyzodu+XiLSPEiwREaC8uo7ACzeQaHUkXv4I+CP78TgkK4n/uFzGlm2IaLtdraYuwPw5H1A1/0nG7nmb4203NcSxNvM4So64kEOOOY/DYxOjHWarzIzhualsKBvMuKKeN5Pg2qIKPpq/hOplLzO6dDbn+1YQZ0Eq4/pRMfQsEo84m9hDT6B/YkbUYpw+KpcJt/wfdz93BtNW/ZqT3vwR1YufJvGCv0D/0VGJqS4QYu3mrWz7bD5VmxaSsGs5A6tXM5xNjPASqXpi2B2XR1XmcDZnnUnigFFkDh1DQs6h+FP6k+nz09Ery+oDQdZt3cKO9cup2rwMK1pFWvla8nZ+ysCi12CZFy+x7E4YTHX6cFzWSJIGjSZz4DDiM/MhdSDExHUwEhHpLEqwRESAt/75v3w1tJCNx/w3QwYeFvH242P87I7PJ63qnR43c10gGGLBkiXs+vhxRu54lWm2mQB+1qVPYd3hF1Fw7NcY28Gp7LvaiP4pLN2dx7gd70IwEPGEOpKcc6zYVsYHcxdhK15gavX7XOEL94QWpwylYtS36HfEeSQPnkJyN+rxSEuI5aeXnsYby8bz0+f+wve3/524+6YTPOIK4k68DdIGdtq+a+oCrFm3lp2r51K/ZRHJe1aQX7uW0badhvSuzNIpShtJYf8TSS04iv4jJhGbM4IBnfxvITbGzyFDhnDIkCHAmXtjrg+yfOMWtq9dTMWWFfh2fUZaZSFDqxYzePtb+Fe4fdoptXQqY9Kpj02jMnMsI6+8l5hYJV0i3UGHP0XM7LvAt4Eg8Ipz7jZv/Y+Bb3jrv+ece6Oj+xIR6Qz/mfMJZ269l3UZUznktO922n4q0w4hYc+/oWwLRPgamEhzzrFkzQY2fvg4eRv/xRTCPT3rkieweuy1DDv+UkamZkc5yi9uRP8UPlk4lEviqsPXYQ0YF+2QDrCuqIK35y6hZvELHFM9i+t9nwOwK2MsZeN/QtrE8+iX0/WzMB6s08cN5KiCn3LPv05lxIo/MmPBIwQWPU5gwtdJmPoNGDC+Q+2XVlaz4fMlFK+dR2jbUtJKV1JQv45x3oQeADv8AynOHM3KARfR75Aj6T9iCmnpg77QxB6dJSHWz9hDhzD20CHA2UD4PCyuqmfZzj3s2fwZ5Ts2ECzdSmzVNhKqdxJXV0pyVTFHVT3Fwqf7c8Slv47uixARoIMJlpmdBJwLHO6cqzWz/t76McDFwFhgEPC2mY10zgU7GrCISCQVl1eT8tp3CfjiyLvqoU7tWXLZh8EeCO1Yia+bJlh7yquZ8/YzJC9/gin1czncAmyPHcznI29i6IlXckjOIdEOMSJG5KbwpDs0vLB1QbdJsIor6/j3/DXsmPMsU0tf5xu+FfjNUZw+gqqJt5M08WtkZx0a7TAPWnZKPHdccgJLN0/kh6/OYurGv3HOwsdg0T8oTR5G6NBTSD3kaGIGjoWUAZDYb+/ED87hakrYU7SNou2bqdq+mtodq/EXryO9ehNDQ5uYYPUA1BHD1rhhbO1/AjsHjSdr+CRyhh9FbmIGuVF8/V+UmZGZHEfmsAEwbECzdZxzfPx/5zBp9V8oWn0uOSMmd3GUIrK/jvZgXQ/8xjlXC+Cc2+mtPxd40lu/3szWAFOAjzu4PxGRiJr1yC84333O5pP/RH6/zk16EvPHwedQvnkZ6SO7z8x1oZBjwdKl7Pzgb0zc9W/OsN2UWhobhl3MoBOvYsDQSQzoRr/0R8KI/qkUulzqYlKJ27IAjrwiarGEQo7Zq4v4dPZb5Bc+z7m+j0izaspS8qmecDMpR11EvyhdtxRp4/PT+X/XnsuanSfzh9lLiV35PEeVfcrUxY8Qs+RvjfWC+KgnFsPhJ0AMIbKALK884Hzs9OdSkjSYVf2OJS5/Iv1HHEXW0HEU9LFrk8yMvEv/QsnfplP91DcJ3PoJMfHd+zpIkd6uownWSOA4M7sTqAFucc7NBfKAT5rU2+ytO4CZXQtcCzBkSM+axlVEerZZsz/ky0V/Z23OSRx63OWdvr/Bg/IocmkEtywnvdP31radpZXMf/MJ+q16gimBhWCwLm0yW6beSd7RF5Dei7+o5vdLJCMpnsL4kYzcuiAqMWwuruLlj5cRXPA4p9e9xa2+LdTHxFM5/CyYdg1pQ47ttdN3D++fyg+/eizOHcPaogpe37SLPYXL8O/+nLja3cTXFRNHHbExMcTExBJM6EdCen9SswaQPmgkgwpGMSg+gUHRfiHdxJDBg/lgyv9w/NwbWPi36zjihod71HWeIr1NmwmWmb0NNNcv/RNv+0xgKjAZeNrMDmr8iHPuAeABgEmTJrk2qouIRMTuskqy3r6JWl8iQy+/v0u+jBySk8LqUD4jdn3W6ftqiXOOBas3sv7N+zi66FnOtCL2+LL4fNS1DPvSdQzvJUMA22JmTCrIZM6mAkbueAnqayA2odP365zj43W7eevddxi1cSbX+GaTYPUUZx9O/dRbiJ3wNTISetaEIR1hZgzvn8rw/qlw1LBoh9OjHf+VS3l/w384YedjLH32TsZf+NNohyTSZ7WZYDnnTm2pzMyuB553zjlgjpmFgGxgC9D0Dp353joRkW7ho3/+gnNYw9ZT7iMtvflrGyItNy2ed32DObJ8dpfPJFgfDDHrkzlUf/gXTqp+k6Osmo1pE9k+7X8YMPmrZHbjWfQ6y5SCTN5dNYzL4gKweQ4MO77T9lVTH+Sl+Rv4/IOn+VLFi/zCt5L62HjqxlwMx11Pv9yxnbZv6TuO+dYf+fj/beDoZXexNLEf48/6drRDEumTOvo/6ovAScB7ZjYSiAN2AS8DT5jZ7wlPcjECmNPBffUYLlhPXW0VtVXV1NRUUVtTRV1NNXW11QRqq3CBWgjUEArW44IBQqEgLhTChYKEQgFcMIgLhR+4EOY9AO8LmeEMwOc9t8b1YN5TH5gPs4Z1Fl7n8+19bj7MfGCGmT/81+fD4cN8Tdd5f82H+XyAD5/PcObDfH4Mw/z+xnatYb0R3pbwdmaGz+f3nvvAF27TZ37w+fA1xObze8/9+MzCMft8+MwwCP/1sfe5hf82vCP7HAv2doo6t3dts8fNNX0earFs3xYcbr/CpkvO7d9wS+3Qajv7B7F/2b67aGUnzcW3T9l+MbQc+oHxttL/vM8+W9nHgfG1/p7sW9xyQ/tvt3ntMk4v+gers09hxPSvNx90JzAzqtJHkFD2RpfNJFhSWct7b71Mv8UPcnJoDs58bMw7k9jTv8+QoUd1+v67s8nDMvlDaDQhi8G39r1OSbC2llTzzIdLcAse4cLQ68yw3VQmD6L+2F8Se9QVxCZ19K5KInvFxcYw/jszWfLHs5g473aW1Vcx7vxbox1WjxQKOQLBEIFALYG6GoJ1tQTrawjW1xKsrycYDHiPIKFgPcFQiGAgQCgYCH93CwXBBb3vb+HvFOH/s8LfV1zj72sWXt/4g1uTv0b4O5btu4z3vS+8uuF7nTV+59tbbo3l5n1vNJ/3PRILf9dj77aN3wm9Mrz2967z7Vd/v/155dYQm6/pd1DDGr5fem3tLQOj4Xvh3ljMe1uM8HfD+Lg4fL7GN65b62iC9Xfg72a2DKgDrvR6s5ab2dPACiAAfLsnziC4feNqdm1cSU1pEcGKXVC9B2rKsLpyfPUVxNRXEhuoJCFURaKrItFVk+yqiLMA8UA80HcGeoj0HMOBYktjyBX3dfm+Y/Mnwgqo3zSP2E5MsNZu38OCV//B6A2Pcb6to9yXyqax1zHk9O9xSLquXAEYOygNi09lfeI4Dv38dTj1FxFp1znHvA3FvPnuOwxf/zj/5Q0DLB14DO6E75A86kzoRverkt4lJSWVQ278N3P+dCFTFv+aRduWMf4b9+GPT4p2aJ2quqaOkuIiKkt3UVe+i/qKYgJVJQRqKgjVlBOqrYDaCqy+Al99FbGBSmJD1cQFq4kPVRPj6ohxdcRST5yrJ4564ggQZ7p6pTv47/rLOPu6O5k4OCPaobRLhxIs51wdcFkLZXcCd3ak/Whb/+rvOWb7E/usq3TxVFsi1ZZEjT+Zen8yFfGD2BOTTDAmmWBsCi42CYtNwBebiC8uAX9sAv64BGLiEoiJS8QXG4/FJuLzx2K+GPwxfnz+GPw+Hz5/DDH+mPByTAw+84X/IzZf+Jf/cJcILhT+iwuFf5331hMK4XCEXChcJxQi5BwO5/WShXAuhHPO6yULL+NChFwovL0L18O5JvWD4d6Ehvohrw2CEHI41/A3/EtNePtwHdzeZbw4cHsfDXUOXHbg7de819nQYxFyLvzy8XonXLhnZN9fgQ7UUOS8X4j2r2nNVW6prcZfoeyAdlrccTP7bKles3WtlTJa2Xa/yq3F0No+w4utBtFiUYdeS+tvWstLrbzu3CO/Qnx610/cnDtyCrXLYyld9SH9x50X0badc8xZsYZNb/2F6cUvcKEVsyNhCNuP/l8GTL+K1Lje/QXrYMX6fZwyuj9Pf3YkP676O+xcCR2Yra82EOTfCzex6v2nOKXsBX7iDQOsHTMDjvs26bljIhi9SMvSUlI5/AcvMevBmzlx5+Ns/O0CAqf9L4ccfVa0Q2sX5xzlFeXs2bGF8l1bqC7eSl3JNqxiJ/7qXcTUlRBXV0pCsJzkYDmprpw0q6KtuRPrXAxVlkiNJVLrCz/q/IlUx/Uj5E/A+ePAH4+LiYeYePDH4fzx3iOucZ35Y/H5/Pj8Pny+GHx+f/jhi8H8MV5PkA9n/sbvcOH/gdze/89cwzeR8Bcb23+sh9v7t2E0x96/Icy5xu9/jlD4O1iT74nehnvX7fd87wicJuVNl9m7zhrrhrzV+253wDZeXI3f0pqp57x1tn8cjX/3HX0yJmMKA9M7/zrZSLH9h+BE06RJk9y8efOiHUajjZ8vonzXVlL69Se5X39SMvqTkNBzDq6IdD9bSqrZ8vsTOCQjhuzv/ycibdYGgsya/RGB//yZk2vfJdHqKMyYSr+TbyR93Bm9dia6SHhz+XZuf/Rd5iR+D9/ka+DLvz3oNraVVvPih4sILXiE84Jvkme7qUgcRNwx/0XcpCtAwwAliv7z5tMM+c9PyGcnK5ImEXvs9Qw/5jwsCtdd1tXVU7xrK6VFm6nctZXa0m0Ey3ZgFTuIrSkisXY3qYE99AsVk2ZVzbZRQiplvjRq/KnUxKRTH5eOS0jHJfTDl5yJP6kfMSmZxCVnEp/aj8TkdJJS00lKTsMXG9/Fr1h6MzOb75yb1GyZEiwRka7jnOPB/7mBa+ufgO+vgrSBX7itPRU1fPjaU+Ss+AfHuoXUEcvmweeQd+b3iR/UPW6c290FgiFOvGsWv3J/5qTgf7DvzG3XtXHOOf6zZhcfznqDURtn8mXfJ8RbgJIBx5J+wg3YqC9rGKB0G2UV5cx/+jeM2/gYOZSw2/qxMft4Yg49gbwxx9Ivf6R3zfTBq6urp2T3dkp3baWqeBt1JdsJlu3AVe7EX7WL+JpdJNfvIT20h0xXir+ZIXcVJFLi60dFTCY18dnUJ+VASi4xabnE9xtIalYe6dn5pGYNwHrx7SOkZ1GCJSLSjfzl6Ze5YcXl1H7pf4mfdsNBb792yw6Wv3of4zY/xSG2lWJ/JqVjr2Doad/BUnI6IeLe7fFPN3Dfi+8xK/E2YoZNg68/Ay38ul9UXstbc5ZQMucJTqx+hzG+DdT6kqgbdzGpx10HOaO6OHqR9qusqmbhW48R99nLjKmcS4pVh9e7eHb5cyiL608gNp1gTCIBfyI+nx9CAULBIC5UT2yggvhABfHBShKCFSS5Cvq5smaTpjoXwx7LoCwmk+q4LOoSsgkm98efOoC4jAEkZQ4iLSeffjl5xCWldvVbIdJhSrBERLqRhRv2YA+dwrDUEOk/WNCuno7aQJCPPvqA2jkPM63iDdKsmo2Jo4k99gYGHnMx6FfdLywUcnz9b58wfONz/DrmQdywE7DTfg0DxoMZm3buYdmiuRQvf5OC4v9wtK3Eb449GeNIPfpKYo+4GPrQvaukd6iurmHNinmUrJlL7O6VxFVuI6V2ezh5cjUkUAMOgubD4SdkfqotiWpfMjX+ZAKxqRCfRigpG0vpT0x6Lon9BpCcmUdaTh6paZneTHEivZMSLBGRbuZ3v/8Nt5b9LzWn/g8J05u/V41zjtUbNrLm3UcZuvF5xrKWemJYn3MK/b90Ixkjp3Vx1L1XaVU933p0HodsfJafxD5BKlVUWAo1LoZ+TYY1FSUNx3fYmWQdc7l6q0RE+jAlWCIi3cyijcUUP3gex/uXUD79p2RM+wYkZlBdXc3nSz5m98r3ydj0LhMCy4ixEFviDqF2/NcpOOlqfCnZ0Q6/VwqFHK8u28Z/ln5OwY63KQisp1+8I7ZfHrmHTGDA+JOx9LxohykiIt2AEiwRkW7olbmfkfzv/+JEWwhAJYkkuhp8Xm/J5pghFA85jfxpF9PvkElt3jpAREREukZrCVbXz9EpIiIAfGXyKLYMf5WnPnib1E3vkRIqIzYpg9QhEyg4/Hjyc4fRebciFhERkc6gBEtEJIry+iUx49xzgHOiHYqIiIhEgKZ3ERERERERiRAlWCIiIiIiIhGiBEtERERERCRCutUsgmZWBGyIdhz7yQZ2RTsI6TI63n2HjnXfoWPdt+h49x061n1HdzzWQ51zOc0VdKsEqzsys3ktTcEovY+Od9+hY9136Fj3LTrefYeOdd/R0461hgiKiIiIiIhEiBIsERERERGRCFGC1bYHoh2AdCkd775Dx7rv0LHuW3S8+w4d676jRx1rXYMlIiIiIiISIerBEhERERERiRAlWCIiIiIiIhGiBKsVZnaGmX1mZmvM7EfRjkcix8wGm9l7ZrbCzJab2Y3e+kwze8vMVnt/+0U7VokMM/Ob2UIz+7e3PMzMPvXO76fMLC7aMUpkmFmGmT1rZqvMbKWZHaNzu3cys5u9z/BlZjbTzBJ0bvceZvZ3M9tpZsuarGv2XLawe7zjvsTMjoxe5HKwWjjWv/M+x5eY2QtmltGk7Mfesf7MzE6PStCtUILVAjPzA38GzgTGAJeY2ZjoRiURFAB+4JwbA0wFvu0d3x8B7zjnRgDveMvSO9wIrGyy/H/A3c654UAx8I2oRCWd4Y/A6865w4DDCR93ndu9jJnlAd8DJjnnxgF+4GJ0bvcmDwNn7LeupXP5TGCE97gWuK+LYpTIeJgDj/VbwDjn3ATgc+DHAN73tYuBsd42f/G+t3cbSrBaNgVY45xb55yrA54Ezo1yTBIhzrltzrkF3vNywl/A8ggf40e8ao8A50UlQIkoM8sHvgL8zVs24GTgWa+KjnUvYWbpwPHAQwDOuTrnXAk6t3urGCDRzGKAJGAbOrd7DefcB8Ce/Va3dC6fC/zThX0CZJjZwC4JVDqsuWPtnHvTORfwFj8B8r3n5wJPOudqnXPrgTWEv7d3G0qwWpYHbGqyvNlbJ72MmRUARwCfArnOuW1e0XYgN1pxSUT9AbgNCHnLWUBJkw9und+9xzCgCPiHNyT0b2aWjM7tXsc5twW4C9hIOLEqBeajc7u3a+lc1ve23u0a4DXvebc/1kqwpE8zsxTgOeAm51xZ0zIXvoeB7mPQw5nZWcBO59z8aMciXSIGOBK4zzl3BFDJfsMBdW73Dt61N+cSTqoHAckcOMRIejGdy32Dmf2E8KUdj0c7lvZSgtWyLcDgJsv53jrpJcwslnBy9bhz7nlv9Y6GIQXe353Rik8iZhpwjpkVEh7qezLha3QyvGFFoPO7N9kMbHbOfeotP0s44dK53fucCqx3zhU55+qB5wmf7zq3e7eWzmV9b+uFzOwq4CzgUrf35r3d/lgrwWrZXGCENxtRHOGL6V6OckwSId41OA8BK51zv29S9DJwpff8SuClro5NIss592PnXL5zroDwefyuc+5S4D3ga141Hetewjm3HdhkZqO8VacAK9C53RttBKaaWZL3md5wrHVu924tncsvA1d4swlOBUqbDCWUHsjMziA8vP8c51xVk6KXgYvNLN7MhhGe2GRONGJsie1NBmV/ZvZlwtdu+IG/O+fujG5EEilmNh34EFjK3utybid8HdbTwBBgA3CRc27/C2ylhzKzE4FbnHNnmdkhhHu0MoGFwGXOudoohicRYmYTCU9oEgesA64m/IOizu1exsx+CcwgPHxoIfBNwtdi6NzuBcxsJnAikA3sAH4BvEgz57KXZN9LeJhoFXC1c25eFMKWL6CFY/1jIB7Y7VX7xDl3nVf/J4SvywoQvszjtf3bjCYlWCIiIiIiIhGiIYIiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiIiIiIhEiBIsERERERGRCFGCJSLSzZhZgZk5M4uJdizSN5jZcjM7MdpxiIj0BkqwRESkxzOz+82swnvUmVl9k+XXoh1fd+ecG+ucm9UZbZtZppkVmdnszmhfRKS7MedctGMQEelVzCzGORfowPYFwHogtiPt9FVmdgcw3Dl3WTNlHTo2XaknxdoaM3sQGAX4nHPTox2PiEhnUw+WiEgEmFmhmf3QzJYAlWYWY2ZTzew/ZlZiZoubDsEys1lm9r9mNsfMyszsJTPLbKHtq81spZmVm9k6M/uv/crPNbNFXjtrzewMb3262f9v777Do6rSB45/z8yk90ZJCEmA0FNAqoACKqKI6OKKFZVV1ra79nV1VXTX/dl2dV27gr1QVCzYkI7Se4cAIQkkENJDMsmU8/vjTmIICQQyyYTk/TxPHubee+4578xl4L45556jpiulspVSB5VS/1RKmU/xProqpRYqpfKUUkeVUh8rpUJrHMtXSvV3bUe7eiZGurYvdw01K3S9v161Pp8HlFKblVJFSqmZSinf0/+kT18910YrpbrVKPOeUuqfNbYvc32mha5rmNzAtkYqpbKUUo+4Pr90pdT1NY6PU0ptcF2rTFcyWHWsamjoH5RSGcBC1/7ZSqkc1+e2VCnVp1bcrymlvnf11v2ilOqglHpJKVWglNqplOrXwM/owoa8x9OhlDoX6Au86+66hRCipZIESwgh3OdaYBwQCrQH5gH/BMKBB4DPlVJRNcpPBqYAHQE78HI99R4BLgOCgVuAF2skOYOAD4AHXe2eB6S7znvPVW83oB8wBrj1FO9BAf8HRAO9gFhgGoDWei/wV+AjpZQ/xk3z+1rrxUqp7sCnwD1AFPAd8I1SyrtG3VcDY4EEIBm4uc4AlBruSmzq+zmTXpDqa3OqXiFXQjID+CMQAbwJfK2U8mlgWx2ASCAGuAl4SynVw3XsGMZ1D3XFc4dS6opa55+P8dlf7Nr+HkgE2gHrgY9rlb8a+LurzQpghatcJDAH+E8D466TUurhk12Pk5xnBl4B7gZkuIwQos2QBEsIIdznZa11pta6HLgB+E5r/Z3W2qm1ng+sBS6tUf5DrfVWrfUx4DHg6rp6mLTW87TWe7VhCfATMMJ1+A/ADK31fFc7B7XWO5VS7V1t3aO1Pqa1PgK8CFxzsjegtU5z1VWhtc7FuDk/v8bxt4E0YBVGYvio69AkYJ7rXBvwAuAHnFvr8zmktc4HvgFS64lhudY69CQ/Z/IsT81rcypTgTe11qu01g6t9fsYicuQ02jvMddnuAQj0b4aQGu9WGu9xXWtNmMkpefXOnea65qVu86ZobUu0VpXYCS7KUqpkBrlv9Rar9NaW4EvAavW+gOttQOYiZFcnzGt9TMnux4nOfXPwCqt9brGtC+EEGcbmaFKCCHcJ7PG6zjg90qp8TX2eQGL6il/wHU8snalSqlLgCeA7hi/GPMHtrgOx2L0FtUW56ovWylVtc9Uq80TuBKz/2IkcEGucwpqFXsb+BqY6rrpB6PH60BVAa21UymVidGLUyWnxusy1znN5aTvu5Y44Cal1J9q7POm4fEWuJLmKgeqzlVKDQaewRg25w34ALPri9WVcD8N/B6jZ9DpOhQJFLleH65xbnkd24ENjNttlFLRGAnWOc3dthBCeJr0YAkhhPvUHAaVidFDVfO3/QFa62dqlImt8bozYAOO1qzQNSztc4weofauHoPvMIbyVbXTtY5YMjF6XSJrtB+ste5TR9ma/uV6H0la62CMnrjqDE0pFQi8BEwHpqnfnhs7hJGYVJVTrvd38BTtnUApNUL9NgNgXT8jTl3LCWoPUSvDSFSrdKjxOhN4uta189daf9rAtsKUUgE1tjtjfD4An2Akp7Fa6xDgDWp8vnXEeh0wAbgQCAHiXftrn9NkXM+T1Xs96jltEEYP53alVA5G0j7I9SzZSZ8DFEKIs50kWEII0TQ+AsYrpS5WSpmVUr6uCRA61Shzg1Kqt+t5pqeAOa5hXTVV9XLkAnZXb9aYGsenA7copS5QSpmUUjFKqZ5a62yMoYT/VkoFu451VUrVHo5WWxBQChQppWIwnu2q6b/AWq31rRhD395w7Z8FjHPF4QXcj5Hg/XqqD6o2rfUyrXXgSX6WnW6dddgIXOe6NmM5fpje28DtSqnByhDgmpwiCKonlnjvFPU/qZTydiWDl/FbL1UQkK+1trqen7vuFPUEYXyOeRgJ4b9O4z26hdb6Xye7HvWc9j1GMpjq+nkc2ACk1vF3XAghWhVJsIQQoglorTMxeh4ewUiOMjGSlZr/7n6IMRFFDuCLMaSqdj0lrv2zMIbqXYfRA1J1fDWuiS8whowt4beepMkYCdp217lzMHoVTuZJoL+rrnnAF1UHlFITMCapuMO16z6gv1Lqeq31Lozerv9h9MKNB8ZrrStP0Z6n/AUjxkLgemBu1QGt9VrgNowJGgownjm7uca5scAvJ6k7x3XeIYwJKW7XWu90HbsTeEopVYKRdMw6RZwfYAwxPIhxHVee6o21BK7nz3KqfjD+Ptlcr4UQolWTdbCEEMIDlFKLgY+01u94OhbRcK5ZETcBya7JPGofH4lxXTvVPiaEEKJtkEkuhBBCiAZy9cj1OmVBIYQQbZYMERRCiDZGKfVGPRMWvHHqs8XZSCnV+SQTVXT2dHxCCNGayBBBIYQQQgghhHAT6cESQgghhBBCCDdpUc9gRUZG6vj4eE+HIYQQQgghhBD1Wrdu3VGtdVRdx1pUghUfH8/atWs9HYYQQgghhBBC1EspdaC+YzJEUAghhBBCCCHcRBIsIYQQQgghhHATSbCEEOIUnE6N3eH0dBhCCCGEOAu0qGew6mKz2cjKysJqtXo6FHGW8fX1pVOnTnh5eXk6FHGW+8sHyzAf2cqz9/0RH4vZ0+EIIYQQogVr8QlWVlYWQUFBxMfHo5TydDjiLKG1Ji8vj6ysLBISEjwdjjiLFRyrZNTeZ/mdeTlr1yczYNBwT4ckhBBCiBasxQ8RtFqtRERESHIlTotSioiICOn5FI2290gJo00bALCsf9fD0QghhBCipWvxCRYgyZU4I/L3RrjDwYMZhKpjAITlb/RsMEIIIYRo8c6KBEsIITylLD8bgFxLBzpWHgCH3cMRCSGEEKIlkwSrAZRS3H///dXbL7zwAtOmTfNcQDWsXLmSwYMHk5qaSq9evarjWrx4Mb/++usZ13vgwAH69+9Pamoqffr04Y033nBTxEKcXewlRwA4GD4Yb2w4jqZ5OCIhhBBCtGSSYDWAj48PX3zxBUePHnVrvVprnM7GTf1800038dZbb7Fx40a2bt3K1VdfDTQ+werYsSMrVqxg48aNrFq1imeeeYZDhw41KlYhzkrHcgEoiz4XgIIDmz0ZjRBCCCFaOEmwGsBisTB16lRefPHFE47l5uYyceJEBg4cyMCBA/nll18AmDZtGi+88EJ1ub59+5Kenk56ejo9evRg8uTJ9O3bl8zMTB588EH69u1LUlISM2fOBIwEaeTIkVx11VX07NmT66+/Hq31Ce0fOXKEjh07AmA2m+nduzfp6em88cYbvPjii6SmprJs2bKTxnnjjTcydOhQEhMTefvttwHw9vbGx8cHgIqKinoTwZdffpnevXuTnJzMNddcA0B+fj5XXHEFycnJDBkyhM2bN1e3ddNNNzFixAji4uL44osveOihh0hKSmLs2LHYbDYAnnrqKQYOHEjfvn2ZOnXqCe/b6XQSHx9PYWFh9b7ExEQOHz58sssoxBkxlxm/WPGJHwRASc5+T4YjhBBCiBau0dO0K6VigQ+A9oAG3tJa/1cpFQ7MBOKBdOBqrXVBY9p68pttbD9U3LiAa+kdHcwT4/ucstxdd91FcnIyDz300HH7//KXv3DvvfcyfPhwMjIyuPjii9mxY8dJ69qzZw/vv/8+Q4YM4fPPP2fjxo1s2rSJo0ePMnDgQM477zwANmzYwLZt24iOjmbYsGH88ssvDB9+/BTR9957Lz169GDkyJGMHTuWm266ifj4eG6//XYCAwN54IEHALjuuuvqjXPz5s2sXLmSY8eO0a9fP8aNG0d0dDSZmZmMGzeOtLQ0nn/+eaKjo094L8888wz79+/Hx8enOuF54okn6NevH3PnzmXhwoVMnjyZjRs3ArB3714WLVrE9u3bGTp0KJ9//jnPPfccV155JfPmzeOKK67g7rvv5vHHHwfgxhtv5Ntvv2X8+PHVbZpMJiZMmMCXX37JLbfcwqpVq4iLi6N9+/anvI5CnC7viqPYsdAhricl2o/KvHRPhySEEEKIFswdPVh24H6tdW9gCHCXUqo38DCwQGudCCxwbZ+1goODmTx5Mi+//PJx+3/++WfuvvtuUlNTufzyyykuLqa0tPSkdcXFxTFkyBAAli9fzrXXXovZbKZ9+/acf/75rFmzBoBBgwbRqVMnTCYTqamppKenn1DX448/ztq1axkzZgyffPIJY8eOrbPNk8U5YcIE/Pz8iIyMZNSoUaxevRqA2NhYNm/eTFpaGu+//36dPUTJyclcf/31fPTRR1gslur3dOONNwIwevRo8vLyKC42EuNLLrkELy8vkpKScDgc1fEmJSVVv79FixYxePBgkpKSWLhwIdu2bTuh3UmTJlX39n322WdMmjTppJ+5EGcq0JZPiSWUDiF+HCQKVZTp6ZCEEEII0YI1ugdLa50NZLtelyildgAxwARgpKvY+8Bi4K+NaashPU1N6Z577qF///7ccsst1fucTicrV67E19f3uLIWi+W4YXU112MKCAhoUHtVQ/TAGP5nt9c9e1nXrl254447uO2224iKiiIvL++EMvXFCSdOZ157Ozo6mr59+7Js2TKuuuqq447NmzePpUuX8s033/D000+zZcuWBr0nk8mEl5dXdVsmkwm73Y7VauXOO+9k7dq1xMbGMm3atDrXsho6dChpaWnk5uYyd+5c/v73v5+0XSHOVICzmHLvUMJMijxLe+LKDno6JCGEEEK0YG59BkspFQ/0A1YB7V3JF0AOxhDCs1p4eDhXX30106dPr943ZswY/ve//1VvVw2Fi4+PZ/369QCsX7+e/fvrfm5jxIgRzJw5E4fDQW5uLkuXLmXQoEENjmnevHnVzyjt2bMHs9lMaGgoQUFBlJSUnDJOgK+++gqr1UpeXh6LFy9m4MCBZGVlUV5eDkBBQQHLly+nR48ex7XtdDrJzMxk1KhRPPvssxQVFVFaWsqIESP4+OOPAeNZssjISIKDgxv0fqqSqcjISEpLS5kzZ06d5ZRSXHnlldx333306tWLiIiIBtUvxOnycZZjM/sDUOIbTZgtB+p4HlIIIYQQAtyYYCmlAoHPgXu01sc9KKWNDKDOOxKl1FSl1Fql1Nrc3Fx3hdNk7r///uNmE3z55ZdZu3YtycnJ9O7du3o684kTJ5Kfn0+fPn145ZVX6N69e531XXnllSQnJ5OSksLo0aN57rnn6NChQ4Pj+fDDD+nRowepqanceOONfPzxx5jNZsaPH8+XX35ZPclFfXGCMcxv1KhRDBkyhMcee4zo6Gh27NjB4MGDSUlJ4fzzz+eBBx4gKSkJgFtvvZW1a9ficDi44YYbSEpKol+/fvz5z38mNDSUadOmsW7dOpKTk3n44Yd5//33G/x+QkNDue222+jbty8XX3wxAwcOrD72xhtvHBf3pEmT+Oijj2R4oGhSPk4rDosfABUBMQToMrAWejYoIYQQQrRYqq6Z6U67EqW8gG+BH7XW/3Ht2wWM1FpnK6U6Aou11j1OVs+AAQP02rVrj9u3Y8cOevXq1egYRd2mTZt23GQYrY38/RGNYXc42ftkEuaoRLr9aS5fffIaE3b/DcfUpZijUzwdnhBCCCE8RCm1Tms9oK5jje7BUsZDNNOBHVXJlcvXwE2u1zcBXzW2LSGEaE7lNgf+VKC9jCGClogEAEpy9noyLCGEEEK0YI2e5AIYBtwIbFFKbXTtewR4BpillPoDcAC42g1tCTebNm2ap0MQosUqr3Tgr6yUuxKswHZGgnXs8H5CPRiXEEIIIVoud8wiuBxQ9Ry+oLH1CyGEp5TbHLSjgjxvY+bPyHYdOKZ9qMw74OHIhBBCCNFSuXUWQSGEaE3KKmz4qUpM3kYPVsdQf3J0OBTLVO1CCCGEqJskWEIIUQ9rmbEYt3L1YIX5e5FDJN7Hsk92mhBCCCHaMEmwhBCiHpWuBMvsGwQY668VebcjwHrYk2EJIYQQogWTBKuB5s6di1KKnTt31lsmPT2dvn37uq3NXbt2MXLkSFJTU+nVqxdTp04FjEWCv/vuuzOu12q1MmjQIFJSUujTpw9PPPGEu0IWolWxWY3Fui2+AdX7yn3bE+zIA4fNU2EJIYQQogWTBKuBPv30U4YPH86nn35a53G73d7oNhwOx3Hbf/7zn7n33nvZuHEjO3bs4E9/+hPQ+ATLx8eHhQsXsmnTJjZu3MgPP/zAypUrGxW7EK2RrbwqwQqs3ucIjMaEhpIcT4UlhBBCiBZMEqwGKC0tZfny5UyfPp3PPvusev/ixYsZMWIEl19+Ob179waMROv666+nV69eXHXVVZSVlQGwYMEC+vXrR1JSElOmTKGiogKA+Ph4/vrXv9K/f39mz559XLvZ2dl06tSpejspKYnKykoef/xxZs6cSWpqKjNnzuTYsWNMmTKFQYMG0a9fP776ylhy7L333mPChAmMHDmSxMREnnzyScAY5hQYaNww2mw2bDYbxnJmx5s9ezZ9+/YlJSWF8847DzB6v2655RaSkpLo168fixYtqm7riiuu4KKLLiI+Pp5XXnmF//znP/Tr148hQ4aQn58PwNtvv83AgQNJSUlh4sSJ1Z9PTUOGDGHbtm3V2yNHjqT2AtRCNAe71Rgi6FUjwVKhxnfSUZjlkZiEEEII0bK5Yx2s5vP9w5Czxb11dkiCS545aZGvvvqKsWPH0r17dyIiIli3bh3nnHMOAOvXr2fr1q0kJCSQnp7Orl27mD59OsOGDWPKlCm89tpr3H333dx8880sWLCA7t27M3nyZF5//XXuueceACIiIli/fv0J7d57772MHj2ac889lzFjxnDLLbcQGhrKU089xdq1a3nllVcAeOSRRxg9ejQzZsygsLCQQYMGceGFFwKwevVqtm7dir+/PwMHDmTcuHEMGDAAh8PBOeecQ1paGnfddReDBw8+of2nnnqKH3/8kZiYGAoLCwF49dVXUUqxZcsWdu7cyZgxY9i9ezcAW7duZcOGDVitVrp168azzz7Lhg0buPfee/nggw+45557+N3vfsdtt90GwN///nemT59e3TNXZdKkScyaNYsnn3yS7OxssrOzGTCgzoWyhWhSDusxALz9g6r3+YYbCVZJ7gFC44d6JC4hhBBCtFzSg9UAn376Kddccw0A11xzzXHDBAcNGkRCQkL1dmxsLMOGDQPghhtuYPny5ezatYuEhAS6d+8OwE033cTSpUurz5k0aVKd7d5yyy3s2LGD3//+9yxevJghQ4ZU93zV9NNPP/HMM8+QmprKyJEjsVqtZGRkAHDRRRcRERGBn58fv/vd71i+fDkAZrOZjRs3kpWVVZ2E1TZs2DBuvvlm3n777erhi8uXL+eGG24AoGfPnsTFxVUnWKNGjSIoKIioqChCQkIYP348YPS8paenA0YSNmLECJKSkvj444+P66mqcvXVVzNnzhwAZs2axVVXXVXn5yNEU3NWGj1YPjUSrOrFhnNlLSwhhBBCnOjs6sE6RU9TU8jPz2fhwoVs2bIFpRQOhwOlFM8//zwAAQEBx5WvPdSurqF3tdWuo6bo6GimTJnClClT6Nu3b52JkNaazz//nB49ehy3f9WqVaeMJzQ0lFGjRvHDDz+cMEHHG2+8wapVq5g3bx7nnHMO69atO+n78PHxqX5tMpmqt00mU/UzajfffDNz584lJSWF9957j8WLF59QT0xMDBEREWzevJmZM2fyxhtvnLRdIZqKrjCGsNYcItiuXRQl2g9bXqanwhJCCCFECyY9WKcwZ84cbrzxRg4cOEB6ejqZmZkkJCSwbNmyOstnZGSwYsUKAD755BOGDx9Ojx49SE9PJy0tDYAPP/yQ888//5Rt//DDD9hsxkxlOTk55OXlERMTQ1BQECUlJdXlLr74Yv73v/+htQZgw4YN1cfmz59Pfn4+5eXlzJ07l2HDhpGbm1s95K+8vJz58+fTs2fPE9rfu3cvgwcP5qmnniIqKorMzExGjBjBxx9/DMDu3bvJyMg4IbE7mZKSEjp27IjNZquupy6TJk3iueeeo6ioiOTk5AbXL4Q76UpjiGDVOlgAHUP8yNHh6OJDngpLCCGEEC2YJFin8Omnn3LllVcet2/ixIn1zibYo0cPXn31VXr16kVBQQF33HEHvr6+vPvuu/z+978nKSkJk8nE7bfffsq2f/rpp+pJJi6++GKef/55OnTowKhRo9i+fXv1JBePPfYYNpuN5ORk+vTpw2OPPVZdx6BBg5g4cSLJyclMnDiRAQMGkJ2dzahRo0hOTmbgwIFcdNFFXHbZZQA8/vjjfP311wA8+OCDJCUl0bdvX84991xSUlK48847cTqdJCUlMWnSJN57773jeq5O5R//+AeDBw9m2LBhxyV1X3/9NY8//nj19lVXXcVnn33G1Vdf3eC6hXA7m5Fg4e1fvctYbDgC72OSYAkhhBDiRKqq16MlGDBggK49W9yOHTvo1auXhyI6u7333nvHTYbRFsnfH9EY8165l3FHZ8Dfc8HiXb3/u39OZJheT8hj+z0YnRBCCCE8RSm1Tmtd5yxsTd6DpZQaq5TapZRKU0o93NTtCSGEu5hsZdiwHJdcAZT7dSDIUQD2Sg9FJoQQQoiWqkkTLKWUGXgVuAToDVyrlOrdlG2K39x8881tuvdKiMYyO8qpUL4n7LdXLzac7YGohBBCCNGSNXUP1iAgTWu9T2tdCXwGTDjdSlrSMEZx9pC/N6KxzPYyKk0nJljm0BgA7IUyk6AQQgghjtfUCVYMUPMOJMu1r8F8fX3Jy8uTm2VxWrTW5OXl4et74s2xEA3l5bDWmWD5RsQBUHI4o7lDEkIIIUQL5/F1sJRSU4GpAJ07dz7heKdOncjKyiI3N7e5QxNnOV9fXzp16uTpMMRZzMtZTqXF/4T9we2NBOvY0XTCmjsoIYQQQrRoTZ1gHQRia2x3cu2rprV+C3gLjFkEa1fg5eVFQkJCU8YohBB18naWYzf7nbC/XVQkxdoPW36WB6ISQgghREvW1EME1wCJSqkEpZQ3cA3wdRO3KYQQbuGjrTgsJyZYHUP8yNYRIIsNCyGEEKKWJk2wtNZ24G7gR2AHMEtrva0p2xRCCHfx1VacdSRYwb4WjqhIfMpkFkEhhBBCHK/Jn8HSWn8HfNfU7QghhDvZHE58qaDEEnDCMaUUJd7tCKxY7YHIhBBCCNGSNflCw0IIcTYqq3QQgBXtdeIkF2AsNhzsKAR7RfMGJoQQQogWTRIsIYSog9XmwJ8K8D6xBwvAGRRtvJDnsIQQQghRgyRYQghRhzJrJT7KhvKuuwfLHGosAVBZIIsNCyGEEOI3kmAJIUQdrGXFAKh6erB8I40VKEoOH2i2mIQQQgjR8kmCJYQQdagsKwXA7BtY5/HgdvEAHMuVBEsIIYQQv5EESwgh6lBRVgKAxbfuHqwOUREUaX/sBbLYsBBCCCF+IwmWEELUwWY1Eiwv36A6j3cM8SNLR2EqzmjOsIQQQgjRwkmCJYQQdbCVG0MEvf3qHiIY4GPhsKk9/sekB0sIIYQQv5EESwgh6mC3uhKsgLp7sACKfWMIrcgGrZsrLCGEEEK0cJJgCSFEHezWYwD4+gfXW6YyKBZvKqH0cHOF1eJYbQ4mv72MJ/45jT2bV3o6HCGEEMLjJMESQog6OCuMHiyfeoYIAqiwOAAc+enNEVKL9NHKA4w68D+etL9I7BeXQ/4+T4ckhBBCeJQkWEIIUQddafRg1bcOFoBv+64AFGWnNUtMLdHC9du50fIzh0IHoLWmZMG/PR2SEEII4VGSYAkhRF0qy4w/vf3rLRLWsRsAx3L2NkdELc6RYitdj8zHggPLZc/znXMQ3ju/BJvV06EJIYQQHtOoBEsp9bxSaqdSarNS6kulVGiNY39TSqUppXYppS5udKRCCNGcbK4Ey6v+HqxO7cI5okOx5+1vpqBalsW7cznftImK4HjadevPtrCL8HEcg4xfPR2aEEII4TGN7cGaD/TVWicDu4G/ASilegPXAH2AscBrSilzI9sSQohmY7IdoxIvMFvqLRMd6kemjsJcnNmMkbUcG/bnMsS8E+/EUQD4dz+PSm3BvvtnD0cmhBBCeE6jEiyt9U9aa7trcyXQyfV6AvCZ1rpCa70fSAMGNaYtIYRoTl72EspM9fdeAXhbTBy1dCCgrG2uhVWSsYlAylHxwwHo3y2G9ToRa9pSD0cmhBBCeI47n8GaAnzveh0D1PyVbpZr3wmUUlOVUmuVUmtzc3PdGI4QQpw5b/sxyk31zyBYpdS/E6G2I+CwNUNULUd5pYPQgs3GRqcBAAyID2e9MxG//O1gK/dgdEIIIYTnnDLBUkr9rJTaWsfPhBplHgXswMenG4DW+i2t9QCt9YCoqKjTPV0IIZqEr6OECsupEyx7UGfMOKGobfVibc8uIpm9VHqHQagxXX2wrxeHgvpi1g7I3uThCIUQQgjPqP/hAhet9YUnO66Uuhm4DLhAa61duw8CsTWKdXLtE0KIs4KvoxSbX+gpy5kj4iEbKo/uxzs8ocnjaik2ZxVxrmkvOuYcUOq3AzEDjEHhWWug8xCPxdcSFFtt/Jp2lNTYMDqE+Ho6HCGEEM2ksbMIjgUeAi7XWpfVOPQ1cI1SykcplQAkAqsb05YQQjQXrTX++hgOn+BTlg3sYKyFVXioba2FtetANommg/jEDTxuf0J8FzKcUVjTV3kospahsKySK179hY8/eY8d/xnH0R+fBafT02EJIYRoBqfswTqFVwAfYL4yfoO5Umt9u9Z6m1JqFrAdY+jgXVprRyPbEkKIZlFaYSeYMvIakGC169SFSm3mWM6eZois5bBmrseEhuj+x+1Piglhg07k4sw1HoqsZXj2h12E5m/mfZ8XqNBm/FasRfuaUOc/6OnQhBBCNLHGziLYTWsdq7VOdf3cXuPY01rrrlrrHlrr709WjxBCtCSFZTaCOYbyDTll2YSoEDJ0e8hrOz1YJVYb7Yq3GhsxxydYfaKD2aIT8C3PgWNHPRCd5x0sLGfO2gP8L/gjTEEd+HLkfL51DEYvfQ5KDns6PCGEEE3MnbMICiFEq1BcWoqvsmFqwDNYYQHeZJqi8StJb/K4WootB4tIMe2lPKATBEQedyzAx0JhcE9jo41OdDFzTSbnspmY8l0w6hEmDO3D/7jGmGlyzTueDq9FyMgr45NVGezNLfV0KEII4XaSYAkhRC1lxfkAWAJCG1S+0C+OcGtmm3nGZmNmISmmfZhjB9R53CsmxXiRs6UZo2oZtNZ8uSGLu0J+Af8ISLqKAB8L3Xqlsopk9JZZUD0fVNv0S9pRLnpxCa98uYhfXp7CwY/ugIJ0T4clhBBuIwmWEELUUpVg+QSENah8ZUgC3tiguG1M1b5/Xxqd1FG8Ow+s83hCbCeydCQVWRubN7AWYO2BAsrzcxhgXQkp14LFB4DxydF8aRuEKkhvsz17AEVlNu6ZuZEBoaUsCfsH15oXEJk2G+c7F7W5pQ7q88PWbO6buZEZy/fjcLbtZFyIs5UkWEIIUUtl8REAfEPbN6i8OSoRgIrDu5ssppZCa43poGsCi3qmYe8THcJ2ZxyOQ20vkfhifRbXei/DpO3Q/6bq/SN7RLHMNBgHZtg+13MBetgzP+wg/1gFbwW+hZezgvSJ33NZxdPYy0tg3gOeDs/jXl2Uxu0frWf+9hw2fPcO616ahF7xKtgrPR2aEOI0SIIlhBC1OEuNBMs/rEODygd1Mp45Ksjc3mQxtRSHiqx0r9iG3eQDHZLrLNMnOphtznj8ivdDRdt5xsZqc/Dt5kNM9l0Cnc+FqO7Vx3y9zHRPiGODOQm2f+3BKD0n/egxZq3N4p+9sgjIWQ0XPUli0iA6dEtlhroSdn/fpnv3VuzN498/7eLylGg2DV7I/7xfoXvRctSPj8CsG8EpkzELcbaQBEsIIWorzQXAN7RhCVZ0dDyl2hdrG5iqfUNGAeeYdmNtlwoW7zrLhPp7k+PfHYWGI60/6azy847D9KncQlTlQTjnphOOj0iMZJ41CfL3QsEBD0ToWa8tTsPbpPl94QwI7wr9bgTgxiFxvHZsJHazH6x+28NRekZZpZ37Zm0kPiKA5+PXYFr9Js7Bt3Nt6Ce85HUr7P4BVr3h6TCFEA0kCZYQQtSijxkJlqo1Q1594qMCSNcdUPl7mzKsFmHTvmz6qHT8ugw9aTnd0dW71YZ6JD5fl8Vk32Von2DodfkJx4cnRrLcmWRs7F/SzNF5VmZ+GV+sP8jTXXdgydsJo/8OZi8ALujVHt+gCFb4j4Ytc6As38PRNr83l+wju8jKf8eE4PPz3yFxDKaL/8VdF3TnpZJR5HU8H5Y8C+UFng5VCNEAkmAJIUQtlrJcilVw9Q3gqQT5enHIHENAaXrTBtYCFOxajpdyYI4/96TlomO7UqADsR1sGwlWTpGV9bsPcBErUUlXgbf/CWV6tA+iwL8LRZYI2LvIA1F6zmuL9+Kj7Fxe8B50TIHeV1QfM5sUF/fpwIuFw8FeDjva1hDK7KJy3ly6l8uSOpC0+Z9g9obxL4PJzJjeHYgI8OF187VgLYKNn3g6XCFEA0iCJYQQtfhU5HHM0rAZBKsU+3cmvDK7VT+MnlVQRveSVTiUF8QNO2nZPjGhbHPGUdlGZhKcsy6TcaYVeDkroN8NdZZRSjG4SwS/OpOMHqw2Mq1/dlE5c9Zl8kzcOizFmXDBE2A6/vZjbN8OrLd15lhA5zb3jNrzP+zCqWFa4l5I+xlGPwrBHQHwtpi4akAn3t0XQmX0QFgzvc38vRHibCYJlhBC1BJgz8fqE3Fa59hCu2LC2arX81m6+yijTBuxxgwFn8CTlu0THcw2HY9vwS5jgd1WzOnUzFqTyR/8l0G7PhDdv96yA+LD+NnaE8ry2szzaW8u2Ye/LufSgg8hfgR0HX1CmUEJ4YT6e7PKd5iRfLaRoXCbswr5YsNB7hjajshlT0CHJBh423Flrh4Qi8OpWRl+hfH83v7FHolVCNFwkmAJIUQNZZV22uujVAR0PK3zvNobU7WX5exsirBahG3bNpNoOoh/n7GnLNsxxJcDXl0xOyvhaOuevn7FvjzaFW6gq203DLgFlKq37MD4cFbrHsZGxopmitBzjpRY+XR1Bi/ELMVcngcXTqvz8/EymxiRGMX7hSngtMOuH5o/2Gamteaf3+4gIsCbu5gNJdkw7kUwW44r1zUqkMR2gbyTnww+IbB5tociFkI0lCRYQghRQ05+CR3IR4fEntZ5oa6p2osyW2eCVWl3EpjxMwAqccwpyyulsLdzTeiQvbkpQ/O4t5ft4y7fH9B+4ZB6/UnL9uwQRL5XR4q9IiFjZTNF6Dn//nE37ZxHuaDgM+hzJXQaUG/ZEd0iWXIsFrt/e0ib34xResaP23JYnZ7PPwfb8V77ljHzZGzdi3df1Ls9v6SXUtntYtg1r1UPRRaiNXBLgqWUul8ppZVSka5tpZR6WSmVppTarJSqf7yEEEK0IAU56ZiVxhIef1rnxcXEcFQHt9rFhhfvOsKlziWUhPaEyMQGnRPeuTfl2htHK06wdmQXk7V7AyP1GtTAP9Q5uUVNFrOJ/nHhbKCX0YOldTNF2vy2ZBUxa10mr3f4yrjZuOipk5YflhgJKPaHDIR9i1v1s0alFXb+OW8HvaJ8GJv2DwhsBxc+WW/5MX064HBq1gWeb0x2sX9pM0YrhDhdjU6wlFKxwBggo8buS4BE189U4PXGtiOEEM2hMNuYaj2kY5fTOq9zhD/pugOmgn1NEZbHrVq1nBTTPvwHnbi+U316xYSxU3fGmrGhCSPzHK01//puB4/4zAbvQBhyZ4POGxAXzsKyLlB8EIoymzhKz9BaM+2bbVzgn0bf/Plw7p8gtPNJz4kJ9aNLZACLKvsYz6jltN7E/B/fbOdQYTnvdF2OOrINxv0H/ELrLZ8cE0K7IB8+y+sGPsGwfW6zxSqEOH3u6MF6EXgIqPlruAnAB9qwEghVSp3eAw1CCOEB5YeNBCsypttpnedjMXPEO5bgY+lNEJVnHS62ErP/cxyYMadc3eDz+kQHs90Zh1fu1lbZU7N4Vy7lacsZzRrU8L+Af3iDzhsYH8YaZ9VzWK1zmOCcdVlsP5DNiz5vQ2gcDLunQecNT4zko1zXLzf2Lmy6AD1o/vbDzFybyT/7FRGz6b+Q9HvoeelJzzGZFCMSo1i6rxjd9QLYM79VfqeEaC0alWAppSYAB7XWtRc6iQFq/louy7WvrjqmKqXWKqXW5ubmNiYcIYRoNEvBHiqxYAqLO+1zjwUlEOrIM4bwtCKzl27iatNCrImXQQMXXwZIiAxktykBb3sJFB5owgibn83h5Ll5m3nBdwY6uFODe68AUjuHskfFUWEOgAO/NmGUnnEg7xjTvt7Kq2GfEVSWCVe8dspZJ6sM6xZJRmUQZWE9YV/rWyvsaGkFD3++mXPb27n2wBMQ3tXovWqA4YkRFJTZOBg5DEpz4PC2Jo5WCHGmTplgKaV+VkptreNnAvAI8HhjAtBav6W1HqC1HhAVFdWYqoQQotFCS/dxxLvzCTN5NUiE8WySI3ePm6PynMKySrzWvEGgshJw0d9O61yzSVEW0dfYaGXPYb28YA/jC94nXmehxv8XvAMafK6/t4UeHUPYYenV6mYSLK908KdPN3CN6WdGl/8EIx6A+OENPn9o1whMCrb7DTB69yrLmjDa5mW1OZj6wVp0RQnTff6DqiyFSR+Cb3CDzh/W1fjlxkK7a/KYtJ+bKlQhRCOdMsHSWl+ote5b+wfYByQAm5RS6UAnYL1SqgNwEKg5BVcn1z4hhGixKuwOYuwZFAed3vDAKv7RvQEozNjqzrA86oMff+V6vqO4y6XQrtdpnx8Qm4Rdm9CHag90OHv9mnaUrUtmc6fla+h3IyReeNp1DIgLZ0l5V8jdCWX5TRBl83M4NX/5bAOhh5bxqHoPEi+GUY+cVh3Bvl70jQnhR2svcFTCgV+aJthmZnc4ueezjWzLPMJPHd/EL3cLTJx+Wt+pdsG+dG8fyPxMBe37SoIlRAt2xkMEtdZbtNbttNbxWut4jGGA/bXWOcDXwGTXbIJDgCKtdbZ7QhZCiKax68BBYlUulg69z+j8qLieVGozpVmtYwHZ7YeK6b7habxNmuDx/3dGdfTo1I40HUN5ZuuY6GJvbin/+3gOr3i9irNdX7j0+TOqp39cGCvsrtkYs9a4MULPcDg1j365hdKdC5jh+yKm9r3gd2+ByXzadQ3pEsFnR2LRZm9j0eGznM3h5M+fbWDZtv0s7Pg6kbkr4YrXT/ncVV2GdYtk9f587F1GGz18FSVNELEQorGaah2s7zB6uNKAt4GGD04XQggPyd5uDNeK6DHkjM7v2j6EdN0B3QoW1i2tsPP1By8w1rQa+4iHICz+jOrpEx3MNh2P6fDZP0TwUGE5f3/7C17TT+MTFIbp+png5XdGdZ0TF8ZGZ1ecynLWT3RRYXfwp0/Xk7/uC973/TeWyG5w41cnnRXvZIZ0CafEbqE4sh/sO7sTrGKrjSnvrWHtlh0siXqemIK1RnKVMumM6huRGEmF3cnOgEHgtMH+ZW6OWAjhDm5LsFw9WUddr7XW+i6tdVetdZLWeq272hFCiKZiyzD+qQrvNviMzg8P8CbD1ImA4r3uDKvZaa155eM53FP+GkUdhuJ//j1nXFf39kFs1/H4WnOh5LD7gmxmaUdKefzV93il4lGC/Lyx3PwNhHQ64/piQv0ICwkh06fbWZ1g5ZZUcMv0VXTe/hZver+EV8ckmPwVBESccZ0D4sMxKdjqkwo5W87aIZQ7sov53Wu/ovctZWnwY0RaM+G6mZB63RnXOSghAotJ8X1xPHgFwN4F7gtYCOE2TdWDJYQQZ52I/A3keHVCNXC67dqUUhT4xxNWcRAcNjdH1zy01rw650duPfAgNt9wQm744Mwm/HDx9TJTHOp6zuQsXddoye5c3n7teV6xPU5QcCiWP/wIEV0bXW//uDBW2BLh0HqwV7oh0ua1dHcuN7z0NXccfJiHvT5D9bkCbv4WAhs3YVXVc1g/HOsOaEhf7pZ4m4vTqXln2T6ufmURk0un86H3v/ANjoKpiyDxokbVHehjITU2lOX7iozJQ/a2vpkWhWgNJMESQgggp6CUPvat5EcNalQ9trBELDgg/+xbcNjp1MyYPZdJW2/Dz8tE4K3fQmC7RtfrFZNivMje2Oi6mlOl3cl/v99Izoe38iwvoTqm4P3HhRB5ZpOg1HZO5zAWl3cFuxWyz55JQMorHfzzm23MfO9lZjrvZ5jXThj3b7jq3TMeMlnb0C4RfJ7THu0VcFY9h7X/6DFumL6Kn777gvn+jzDZ+RWq/2S4bSFE9XBLG+d2i2TLwSLKY0dA/l4ozHBLvUII95EESwghgG1rlxCsygnuObpR9Xi37wlA2aEd7gir2ZRV2nntrdeYtO12vLz98J/6Iyqqu1vq7hobQ7qzPdbMjW6prznsyC7miZdeZfyKSfzevATbuffhc+v3je6dqWlAfBjrnK7POLPlDxPUWvPD1hymvPAxI1ffxqveLxPcPh7TH5fCwFtBKbe1NaRLBGUOE4VRA2D/UrfV21RKK+w88/1Oprw4m5uynmCWzz9oH2AyhkuO/2+D1wFriGFdI3BqWG9JNXbsW+y2uoUQ7nHm4z6EEKIVce74BjtmYgaMa1Q9YXG9Yb0xVbt/yhXuCa6Jbcs6ypYPH+buitnkBfUg/LYvUSF1rg1/RvpEB7NVx9P+LOilKbHaeOe7FXTd8H/8n/lXyoI6Y7rqa0wJ57m9rV4dgyn1iiDfO5rwjJVw7p/c3oa7bD1YxNvzfiE14z0+sCxA+fnDhS9gGjDljGYKPJUB8WGYFGz2SuH8Q0ugOBuCO7q9ncay2hzMWpvJpwvWcIX1S37yno/FbIYRj6KG3g3e/m5vs1/nMPy8zMzPDWNYYAdjmGD/yW5vRwhx5iTBEkK0eQ6Hkx75i0gL6E/PM3z+qkpcx/Yc0uHYDu9yU3RNx+5wMue7H+i79hGuUfs51O0aoie95LZhXlV6RwfzhjOey0pXQXnhGc8u15Qq7A6++HUbpYv+y63OefhZ7JQPfRD/Ufe7/fOo4mU2kRIbwqa8nozKXAVau7UXyB02ZxXywQ+/kpQ+g+cti7B4AanXYbrgcbf25tUW5OtFUkwI80q7cz4YvVhnOPNeUyivdPDxqgPMXbKGidbPmWtZhLeXHZV0NVzwOLjxFxS1eVtMDEwI55e9edBlJKTNB6cTTDIoSYiWQhIsIUSbt33DrySRw8bEOxpdV1yEP6t0DF0L9rghsqazce9Bdn/+JBOPzaHcEkzpuBlE95/YJG0F+3pxJLAHVGDMCpcwoknaORM2h5O5K3dSuOhlJtm+IliVUZhwKZbx/8TihoksTuWcuDAWZCQwyrLQeG6vGdpsiE2ZhXz443JS0t/lX5bFmL00juRrMY188Iyn7D9dQ7pE8N4vRTwbFIpqIQlWaYWdj1Ye4LslK7im8nPmWpZi8gKVMgk1/D63PZ93Kud2jeCZ73dSfO5wgjd/ZkwgE53aLG0LIU5NEiwhRJuXt2YWDq1IPP+aRtflZTZxxKczA8oWtsgeicy8UhbMfpWLs98gVeWT2Xk8sde+DI3suTsVU8cUSMeYzKEFJFh2h5Nv1qZx+Of/ManyC8JUKUc7XYC+7AlCO6Y0WxznxIXxzOLuxv/Gmas8nmBtyCjgox+X0//Au/yfZTEmL4Uj5TrM5z+AOSyuWWMZ0iWCN5fuIy9qMJH7l3j0+1RstfH+L+n8vHw5N9q/4EvzcpS3BVP/m2DYX6CZP5thXSMB+NXZl7FgPIclCZYQLYYkWEKINs3h1MQd/pk0/xR6hHVwS51lwV3xzZsHJdkQHO2WOhurqMzGF9/MJXXbs9xs2sPhwF6U/+4jYrsOa5b2Y2PjyNofSfuM1Xid2yxN1snp1MzbsI/Mn17h99Y5RKlijkafhx43jchO5zR7PP07h7FHx2C1BOGbsaJRayQ1xroDBXz84zIGZMzgGctSTF4KZ+qNRmIVGuuRmAbEh2E2KTZaUriw6Eco2A/hXZo1hsKySmb8ks7yX5Zwi2MOX5pXgbcPpoG3G8/Meej73Ts6mBA/LxYeMjE2qhfsWwTD7/FILEKIE0mCJYRo07ZsWEUqB9nSfYrb6lRRPSAPHId3YvZwglVpd/Ll4pUELv8Xt7CMYu9wika/RPshNzXrMxt9YoLZ4OzGmIzVzdZmTVprftqcwZ7vX+Oq8pmMVwUcbT8Ufdk0IjsP8UhMAKH+3nRtF8xuWy+SM1Y1e/vrDuTz8Q9LGZT5Ls9almHyMuHsdxPm8+/H3IiFlN0hyLUe1jcl3bgQjOewminByiut4J3l+1n36wJu1Z9zn3kdDt8ATIPvgSF3NenzZw1hNimGdongl7Q8dMr5qLXvGmvvmb08GpcQwiAJlhCiTctbMwunVnR1w/DAKkExvWEnFGZuIyKxcdO+nymtNfM3pHH4+2f4feVXmBTkpt5N1CUPg09Qs8fTJzqEN5yJjC9bCUUHm3QSgJq01izafpCt815n4rFPuVjlkRd5Ds5xTxLZxfNDFcG1Hta2biSXfwKlR9yy9tiprEnP59MfljAk612esywDbwu63y2Yz7sPczNdm4YY0iWcGcsLeSmsA2rfEjjn5iZt70iJlbeX7mPzygXcoWbzV9MmHN4hMPRhzIP/2ORDaU/HsG4R/LAth7zgPkQ6KuDoHmjf29NhCSGQBEsI0YbZHU4658xnn39fuoW777f1MbFxFGt/yg9td1udp2ND+lFWff5fJha/T5QqIid+PO2veJqoZn5OpKZ2QT7s8+0NDiBrTbMkWL+mHeHXr97hqqL3GG06TF5YMo5xbxPRbXSLejbunPgwPljXmz/7AGkLIPXaJmtrbXo+H/ywnKFZM3jOssRIrPrfitd597aY4aw1DekSwZtL9pEbOYR2+5c22Wx5R0qsvLF4H5tXLeRuNYtHzZtw+IbBsMcxD7wNfIPd3mZjDU80etGWl7TnCoAj2yXBEqKFkARLCNFmbd60jv5ksD3xEbfW2yUqiL06mnZ5aW6t91Qy88v4+ouPGJ3xMrebMjkS3g/7lc/TofPAZo2jLkopTNEpVGR645O1Bvpc0WRtbT9YxLy5H3PJ4Td5wJROQUh37Je+RETPS1pUYlVlYHw4f9XxlHtH4LfnpyZJsLYdKuKt71aQmj6DFywLMHsp9Dm3Yjnvvha5vlSVgfHhWEyKFSqFCWVzjeS882C31Z9bUsGbS/ayfuUi7jLN4XHLehw+YTD8CcyDprp1gWB3S4gMoGeHIGbu11xhssDhbZB0lafDEkLghgRLKfUn4C6M30vO01o/5Nr/N+APrv1/1lr/2Ni2hBDCnXJXzwagy3nuGx4IEBbgzTJzLF1LNru13voUW218Nm8+PTY9y12mjRT6RVN+6bu0S76yRSUU/ePbsfFAF87Zu6RJfruXmV/G7K+/YvC+//GgaRvF/tFUjnmDsNRJLXqNoPgIf+IiAlnLOYzYuwAcdjC75xPal1vKmz+sIWHXdJ6x/IiPxYEz9TrMI/8KHpq84nQE+lgYkRjJK4d6cLnFF7VlllsSrKOlFby1dB9rViziTubwd8s6HD6hMOwxYyigB4bRnolL+nbkpQW7sUd3xXJ4m6fDEUK4NOpfcKXUKGACkKK1rlBKtXPt7w1cA/QBooGflVLdtdaOxgYshBDuUDU8cL9vLxIi3T90rjioC8HFi+BYHgREuL1+MGZAnLt8I3rRv5ji/BmbxZ/i4U8Qet5dYPFpkjYb49xukSxYmMLgIzOhJAeC3DNrY/6xSj79fiEJm1/kPtNKyrxDKT//XwQPvbVFfg61KaW4oFd7Zq/qzQjzT5CxotFT2R8sLOfNHzcSsfVtHjN9R4DFiq33REwXPIKphay11VDjU6K5b1cuBT0vIHzblzD2mTOezKGwrJI3l+5jxS+LuYPZPGJei8MnBM59FPPg21vkUMCTGZfcgRd/3k2GVwJdjkiCJURL0dhfkd0BPKO1rgDQWh9x7Z8AfObav18plQYMAlY0sj0hhHCLTVs2cg772Jn4YNM00CEFisFxaCPmxAvcXv3K3YfY/uWz/L5sJv6qgoI+k4kc9zh+TZTMuUNKpxCetgwAZsKen6D/5EbVV17p4LOFqwlY8QJ/ZCEOiw8lg+4naNS9Z00PRJWLerfnluXJ2HwC8drw4RknWEdLK3j7562Y173DvaavCTOXUpE4DnXRY3i36+XmqJvHRb3b420x8Z0azg1l82DXd9B7wmnVUWK1MWN5OkuWLeY250z+al6DwzsYzv2bkVj5hTZJ7E2tW7sgenUM5peS9nQ59gNYi8A3xNNhCdHmNTbB6g6MUEo9DViBB7TWa4AYYGWNclmufSdQSk0FpgJ07ty5keEIIUTD5K6eA0D8iKZZdyis60DYDflpq4lyY4J14GgpP816jUsOv8kQdZScjqMInPgskVE93NZGU7GYTUR26UfO/kja7/4RdYYJlt3hZO7K7ZQs+DfXOL7FSzkp6TuZsLGP4tMMM/A1hUHx4USGh7FIjWLMtrlGL81pzFhXbLUxY/FOjv36DlPVl0SZi7DGj4Yxj+MT3a/pAm8GQb5eXJ4Szb82ObgmqguWxc9Cz/ENGvZptTn4YEU68xct5Cb7bP5iXoXDLwiG/hXzkDvP2sSqpiv7RbPwh3bc6A3kbIH44Z4OSYg275QJllLqZ6CucRyPus4PB4YAA4FZSqnTWqRCa/0W8BbAgAED9OmcK4QQZ8Lh1MRk/0SGTyKd2zXNujo9EmLZ72yPd7p71n0qsdr48usvSdr6HLeZ9pAb2J3KCW/TobtnpoE/U5elxjB/TyrXpS3EXFFyWj1NWmvmb85g73cvco11NmGqlLyuE4i47EnCwhOaMOqmZzIprj4nlv/8PIwxPt/A+vdh+L2nPK+0ws6Hy3eTt2wGt+gviDHlUR4zFC6ehq8H1/dyt7tGdeOL9Vl8GzqZK/ZPg21fnHRCB6vNwey1mfy04CduqJjJbPNaHL4BMPRBI7FqQdOtN9bIHu149btENAp14FdJsIRoAU6ZYGmtL6zvmFLqDuALrbUGViulnEAkcBCo+fRsJ9c+IYTwuK07tpGi97C966lvYM9UQmQg35h6c9HRtY2aWtrh1Hy3dAU+S/7BZP1r9ULBUUMmg8ns5qib3oW92jHFNJIb7T/D5pkw8NYGnbdm72FWz32VK4o/YozK42iH4egJTxMRndq0ATejG4fG8dbSLmzyHUjysv+gkq+pd4a/sko7H/2yh9ylM7jZ+TkxKo+y9ufAxdPx6zKyRU1u4g4JkQH8rn8nHtqgGdOxL/7fPQAdUyAy8bhyReU2Plm5j13L5zKhch4fmjdh9wtuketYuUuXyACslmAO+3WjQ/pyOP8hT4ckRJvX2CGCc4FRwCKlVHfAGzgKfA18opT6D8YkF4mAe36NezZwOrBVllNuLafSWk5FeTmVFcaPvdKK014Btgq0owLtsON0OtFOB06nA+10Vv+pnQ7QTtBOTDhROF0NmFBKAQptMgHK9Z+pyfWna1spUK6yyuzaZUKZTKCM85Tpt21T1bGq+k1mY2pls/GnrirjKqdMJpQyG/eNyuzaNmEyKZQyo1znK5NCmcyYlAmTyQTV5aq2zZiUcm2bXTEoV4yN1chOUa1PttnoGLTrWFW9VSW1a0fNM6vbri57+udqji+sT3G8znprvZ3a59aOp66YfqujvvdQs/1aZeppr3Y8db2fqkOHln9MChA7bBJNxWxSFEYNICB3kbE+TYe+p13Hmp37Sf/yH1xu/QqUmZx+f6HD2Ida9NTRp+LvbSGx30g2buhK36X/wZJ6A3j51lt+04E8fv36LcbmvstdpsPkhSbhGD+DyG4jmy3m5hLq7839Y7pzz7fX8JPfo3jNvAFumAN+YdVlsovK+WrJGkwb3udK509EqWKOtesHF7+Nf9eWtb6Xuz02rjer9+dz1dGpfOHzJD7TL0INv4+S2FFsO2xly+Z1eGUs5XJWEqPyqAyIRJ/7GJZBt7Xq55IsZhN9ooNZW9KLyzLng70SLN6eDqvVcjo1FTYHVmsZFdZSKq1WbJWVOO0VOO2VaHslTocNba9EO2zGPqcN7JXG/Z524nBq4z5Pa0Ab92calNKgq7Y1SmmU635Iu+7zqu7HcP2oqj9Nxr0eSv12n6Z+u+cyypiNezJldt33GfdnVeebVNX9mzLu31z3kdX3b8q4bzRVt6Gq7+eUUiiUcR9nNl4bx4z6jPs6atyXVu1zxcdv/3YZ5V2vq/Yrhdl1P3o2UPrM7hiNk5XyBmYAqUAlxjNYC13HHgWmAHbgHq3196eqb8CAAXrt2rVnHI+7Hdy3jaPpW6kozsNZlgflBaiKEkyVpZhspXjZy7A4yvBxluGry/F3/fgom6dDF0KcwgFLPHF/39SkbcxauJqrl15E4ZCHCB37aIPPyzhSxC+z/s2Y3BlEqBIyYyfQ6ap/oULctxiyJx0utvLQ86/wvvkfOAf8AdO4fx+XGGitWbM7i50/vcPQ3Nkkmg5yNLA7QZdMw6f3pa06idBa8+fPNlKx5Ste934Zu08IhztfxkEdQX5OJrHF60k27cOJorjTKEJH/Qm6jGrVn0lNWQVl/OWzjRzN2MGz3tMZoo6fOc+mvLF2OpegoVOgx6VnPNvg2ebfP+0ibcmnvO71Ikz5EVrR8FB30VpTWmGnoKiIovxcjhUepaI0H8exApzlBVBeiKoowlJRhJetCIu9DIujHC9nOT5OK75Y8dUV+FGBP1bMSp5qaU7/sN3A+NufJjU21NOhVFNKrdNaD6jzWGMSLHdraQnWyjfuZEjOx9XbTq04hi/lyo9ykz+VJn8qzf7YLf7YLQHYLQE4LAFoL3+w+GDy8sXk5YPZyxeTty8WL1/MXr4oizfK2xdl9sZk9sJkNmM2u3p4zGbMZgsmkwmz2YIymdDKhMb47YNGG7/x0E600wlotNP4DQhV265eL+PSarTTgda//bZEOx04tRO0ca7Wrp6zqvOcxp9Op6sd7ayu47ft39rB6cCpARxQY792/aamOjbtal87Ufq3bWq9rjquGtv75GL8/ufMbz50rRuXprqN+a0ZVWu7jrK1XqhaRxpy7gntNSCmE1/Wce4JMdWu6yTtVp9bz2deqw5VZ1i16q0nnrCkMUR0a9oFeDPzyzjy0nnEBTqJfHDdKW+CS8orWfDF26TsfpkElUNWSH+iJr6AT+dzmjROT/hw5QHKvv0bf7TMo6TreHS/GzjiCOTA7s3Y9yxgSMWvhKgycgO6E3TRX/FN/l2LXsvKnWwOJy8v2MOvy37mNr5ktGk93spBJV7kBvYkIOlSQgdeC2f5c2dnyuHULNl9hF/T8ggoTqOXyqBruBdxXXviHTcIvPw8HWKzW70/nz+++SPrfe9AjXwYRj7s6ZCaTWmFnZzCMgqOHKT0yH6sBdnYi3Iwl+XiZT2KX2UeQfZ8QpyFRFJIoLKevD78KTUFUWnyx2b2xWH2x27xw2H2w2Hxw2nxN+7zvP3BK8C4z7N4g8ULZfICizfK5IXJ4o0yexn3fGYvTBYvlNmCxWSM9DG5Ru9o192O1sb9htaA68/qba0B1/2Z02ncCzqNkU26+v6qauTTb/d1xv1hjXs4Z81yNe7LnA6our+sKqNx3c9V1VF1/+na1vq349X3d7p6G62NUSRV93247lW1RlX13Ln2qeOGnjipS0boYM4bfSkdQuof8dDcJME6Qwf3baM0P4fAsHYEhbYnIDQCs/nse+ZBCOE5b700jamFL2K//gss9cwmWF5h5+fvZhG/6d8kkUaOTzw+Fz9FWL/LW3XPxNtL0ij7+Rn+aJqLb42e/xIVSF7H8+l4wV34dDm3VX8GJ2O1OdiVU4LWTuICHISFRbSZJFOcHpvDSf+n5jM34J90DbTDna1jVRytNQVlNrLyiijI2kPZ4X3Y8jNQxVn4lmUTUnmY9jqXDiofH2U/4fxiFUSpJYwy7wgqfSNx+EVCYHu8A8PxCYrANygc3+AI/IIj8AkMN4aSnoXPtgrPkARLCCE8ZNHWDLrPHol/QBBhf1523EKm+UUlrPr+Q+J2vkNv9pJnjqJ82F/pNHJKm/lP/lBhOSu378U/bzsRFivxXbsT1W1gm3n/QrjLw59vJmDTuzxmmgF/XGpMAnKWKDhWyf7DBRzJ3MOx7J04j+7DpzidsIosOutsYtRRLOq3ng0HJgotkRzz6UBlYDQ6uBPmsE74R8YR3K4z/mEdISBKnkUTTUoSLCGE8KCX3nyLuw49TKFfJ452nUip3URl1ib6lv5KiDpGjiWG8kF3kTDqDyed8EEIIeqz7kA+t7z+M+v9/4Ql6Xdw5eueDuk4Wmtyiq3sOpTP4f3bqTi4Fd+CXUSU7SXBmUGcOnzcc01lKoACv85UBMWhw7vg2z6RkJhEAtslQGAHMDd2njYhGudkCZb87RRCiCZ2+5Q/8O7HZkbt+ze9tv0HgEKCOBA5gvDB19FpwGXSYyOEaJT+ncOI7xTNnIKLmLTpU9SQO6BjskdiKSq3sTuniKz9uyjN3Iw5dychpWl0cWYwVB2qHs7nxMRRn1hKQ/qSETWRwI49CIvtgSUyEX//cPzb6PBgcfaTHiwhhGgmRWWV5OTmEuoD7dp1dC1JIIQQ7rF8z1HunL6AFYEPEdCxB9z0bZMOk6uwO0g7XMKBjHSKDmxCH95BYNFuYu0HSFRZx00oUeDVgWOhiZja9SYkPoWA2GSISJRee3HWkh4sIYRoAUL8vQmJi/F0GEKIVmp4YiTjB/fmkTXX8d/M1+CrO+GK1xs9Xb3DqcnIL2N/Zib5+zdjy9mOX8FuOlTsJ1Fl0keVVJctMYdRFN6NgnbnYotNJjQuGdWuF2G+wYSdpA0hWhNJsIQQQgghWonHLuvN1IIreW5vHg9tmUnlkT14X/p/0HnoKWfkLKu0k5FXSnbWAQoP7qYyZwe+BbuJKt9PN5XFaFVYXbZc+ZMf3JXSyLE4YvoSnpCKpUMfggKjCGri9yhESydDBIUQQgghWpFKu5MXftrFoV8+5UmLsWB5vldHjoQkc8yvIxXmQBwarJWVUFaAV0U+3hX5tHMcJlbl4lNj2QSr8iXPL4HK8B54d+xNeEIKftF9IKRTm11CQQiQWQSFEEIIIdqczPwy5q7eg9f2z+lRsoKujv10UPl4K0d1mXJ8KDWHYPUKoyKwE4TF4RfVldBO3Qjo2AtCYmX9NSHqIAmWEEIIIUQbZ3M4cTrsKIcNs0lhNpvB4uPpsIQ4K8kkF0IIIYQQbZyX2QRmb0AW4BWiKUmfrxBCCCGEEEK4iSRYQgghhBBCCOEmkmAJIYQQQgghhJu0qEkulFK5wAFPx1FLJHDU00GIZiPXu+2Qa912yLVuW+R6tx1yrduOlnit47TWUXUdaFEJVkuklFpb3wwhovWR6912yLVuO+Raty1yvdsOudZtx9l2rWWIoBBCCCGEEEK4iSRYQgghhBBCCOEmkmCd2lueDkA0K7nebYdc67ZDrnXbIte77ZBr3XacVddansESQgghhBBCCDeRHiwhhBBCCCGEcBNJsIQQQgghhBDCTSTBOgml1Fil1C6lVJpS6mFPxyPcRykVq5RapJTarpTappT6i2t/uFJqvlJqj+vPME/HKtxDKWVWSm1QSn3r2k5QSq1yfb9nKqW8PR2jcA+lVKhSao5SaqdSaodSaqh8t1snpdS9rn/DtyqlPlVK+cp3u/VQSs1QSh1RSm2tsa/O77IyvOy67puVUv09F7k4XfVc6+dd/45vVkp9qZQKrXHsb65rvUspdbFHgj4JSbDqoZQyA68ClwC9gWuVUr09G5VwIztwv9a6NzAEuMt1fR8GFmitE4EFrm3ROvwF2FFj+1ngRa11N6AA+INHohJN4b/AD1rrnkAKxnWX73Yro5SKAf4MDNBa9wXMwDXId7s1eQ8YW2tffd/lS4BE189U4PVmilG4x3uceK3nA3211snAbuBvAK77tWuAPq5zXnPdt7cYkmDVbxCQprXep7WuBD4DJng4JuEmWutsrfV61+sSjBuwGIxr/L6r2PvAFR4JULiVUqoTMA54x7WtgNHAHFcRudathFIqBDgPmA6gta7UWhci3+3WygL4KaUsgD+QjXy3Ww2t9VIgv9bu+r7LE4APtGElEKqU6tgsgYpGq+taa61/0lrbXZsrgU6u1xOAz7TWFVrr/UAaxn17iyEJVv1igMwa21mufaKVUUrFA/2AVUB7rXW261AO0N5TcQm3egl4CHC6tiOAwhr/cMv3u/VIAHKBd11DQt9RSgUg3+1WR2t9EHgByMBIrIqAdch3u7Wr77ss922t2xTge9frFn+tJcESbZpSKhD4HLhHa11c85g21jCQdQzOckqpy4AjWut1no5FNAsL0B94XWvdDzhGreGA8t1uHVzP3kzASKqjgQBOHGIkWjH5LrcNSqlHMR7t+NjTsTSUJFj1OwjE1tju5NonWgmllBdGcvWx1voL1+7DVUMKXH8e8VR8wm2GAZcrpdIxhvqOxnhGJ9Q1rAjk+92aZAFZWutVru05GAmXfLdbnwuB/VrrXK21DfgC4/su3+3Wrb7vsty3tUJKqZuBy4Dr9W+L97b4ay0JVv3WAImu2Yi8MR6m+9rDMQk3cT2DMx3YobX+T41DXwM3uV7fBHzV3LEJ99Ja/01r3UlrHY/xPV6otb4eWARc5Som17qV0FrnAJlKqR6uXRcA25HvdmuUAQxRSvm7/k2vutby3W7d6vsufw1Mds0mOAQoqjGUUJyFlFJjMYb3X661Lqtx6GvgGqWUj1IqAWNik9WeiLE+6rdkUNSmlLoU49kNMzBDa/20ZyMS7qKUGg4sA7bw23M5j2A8hzUL6AwcAK7WWtd+wFacpZRSI4EHtNaXKaW6YPRohQMbgBu01hUeDE+4iVIqFWNCE29gH3ALxi8U5bvdyiilngQmYQwf2gDcivEshny3WwGl1KfASCASOAw8Acylju+yK8l+BWOYaBlwi9Z6rQfCFmegnmv9N8AHyHMVW6m1vt1V/lGM57LsGI95fF+7Tk+SBEsIIYQQQggh3ESGCAohhBBCCCGEm0iCJYQQQgghhBBuIgmWEEIIIYQQQriJJFhCCCGEEEII4SaSYAkhhBBCCCGEm0iCJYQQQgghhBBuIgmWEEIIIYQQQrjJ/wM+iKQVYIBKogAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1690,31 +1690,31 @@ " 42\n", " True\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " bAP.soma.v\n", - " 0.00531\n", - " 6.02e-07\n", + " 0.00575\n", + " 1.63e-06\n", " \n", " \n", " 43\n", " True\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step1.soma.v\n", - " 0.0545\n", - " 2.2e-07\n", + " 0.0231\n", + " 2.3e-07\n", " \n", " \n", " 44\n", " True\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step3.soma.v\n", - " 0.0616\n", - " 8.56e-07\n", + " 0.0406\n", + " 1.25e-05\n", " \n", " \n", "\n", @@ -1722,14 +1722,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "42 True 4 0.0508 0.0136 bAP.soma.v \n", - "43 True 4 0.0508 0.0136 Step1.soma.v \n", - "44 True 4 0.0508 0.0136 Step3.soma.v \n", + "42 True 4 0.0553 0.0212 bAP.soma.v \n", + "43 True 4 0.0553 0.0212 Step1.soma.v \n", + "44 True 4 0.0553 0.0212 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "42 0.00531 6.02e-07 \n", - "43 0.0545 2.2e-07 \n", - "44 0.0616 8.56e-07 " + "42 0.00575 1.63e-06 \n", + "43 0.0231 2.3e-07 \n", + "44 0.0406 1.25e-05 " ] }, "metadata": {}, @@ -1737,7 +1737,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgy0lEQVR4nOzdeXxU9b3/8ddnJiskYUnCjoBWkFVUQKzg1talda1WtO5e69XWVq1Laxelvdf767W2ti63ttbWVi1i3fddVFo3QEQFF9CwLyFAQkK2mfn8/jiHGEI2zITJ8n76yIMz53zP93zOOZlxPvkux9wdERERERERabtIqgMQERERERHpKpRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhHpIMxsuJm5maWlOpauzszONbO5qY6jozGz6Wb2UarjEBHpzJRgiYhIp2ZmM82s1szK6/1cneq4OiN3f83dRyW73vAPBxX17s+fk30MEZGOQn8lFRFJEjNLc/dYquPopma7+5mpDqK9dJHfrX3dfWmqgxARaW9qwRIRaQMzKzKzH5nZIqDCzNLMbKqZ/dvMtpjZu2Z2WL3yc8zs/5nZW2ZWZmaPmlnfJuo+z8yWmNlWM/vUzP6zwfYTzGxhWM8yMzs6XN/LzO40s7VmttrM/tvMoi2cx15m9pKZlZjZRjO718x619u2ycz2D18PMrPi7edlZseb2Qfh+c4xs9ENrs+VZrbIzErNbLaZZe36ld51Zvbj8LpsNbPFZnZSE+XMzG4ysw3htXzPzMaF2zLN7EYzW2Fm683sdjPLbuXx7wrLPx/G8IqZDau3/fdmtjI85nwzm15v20wze8DM7jGzMuBcM5tiZq+H13mtmd1qZhn19nEz+66ZfRIe77/Ce/fv8Bj31y/fRMyHmdmq1pyfiIg0TgmWiEjbnQ58A+gN9AeeBP4b6AtcCTxoZoX1yp8NnA8MBGLAzU3UuwE4FsgDzgNuqpfkTAH+DlwVHvcQoCjc766w3i8B+wFHAhe0cA4G/D9gEDAaGArMBHD3ZcCPgHvMrAfwV+Bv7j7HzEYCs4DLgELgKeDxBl/kTwWOBkYAE4BzGw3AbFqYPDT1M62Fc2hoGTAd6AX8Iox/YCPljiS4fiPDsqcCJeG2X4XrJxJcz8HAtbsQwxnAfwEFwELg3nrb3g7r7Qv8A/hng+TzBOABgvt7LxAHLg/rOgj4CvDdBsc7CjgAmApcDfwJOJPgfo4j+F39wsJEuan7838t7P6qma0zs4fMbHhb4hAR6ciUYImItN3N7r7S3SsJvsw+5e5PuXvC3Z8H5gFfr1f+bnd/390rgJ8DpzbWwuTuT7r7Mg+8AjxHkDAA/AfwF3d/PjzOanf/0Mz6h8e6zN0r3H0DcBNwWnMn4O5Lw7qq3b0Y+C1waL3tdwBLgTcJEsOfhptmAE+G+9YCNwLZwJcbXJ817r4JeJwgqWgshrnu3ruZn+YmpTi1wZf9Qe7+z/C4CXefDXwCTGlk31ogF9gHMHdf4u5rzcyAC4HL3X2Tu28F/qela9nAk+7+qrtXE1yzg8xsaHi+97h7ibvH3P03QCZQf/zT6+7+SBh/pbvPd/c3wvJFwB+pd49CN7h7mbt/ALwPPOfun7p7KfA0QcL9hbn7hGbuT8Nkr75DgeEE13gN8IRpMhcR6aL04SYi0nYr6y0PA75lZsfVW5cOvNxE+eXh9oKGlZrZMcB1BC0oEaAH8F64eShBa1FDw8L61gb5AYT7rmykbP1j9Qd+T5DA5Yb7bG5Q7A7gMeDCMGGAoMVr+fYC7p4ws5UELT3brau3vC3cJ9nubzgGy8zOBn5I8MUeIIdGrrO7v2RmtwK3AcPM7CGClscsgms+v961NKDZ7pYN1F13dy83s00E57/SzK4kSJQHAU7QUlnQ2L7h+YwkSHwnhXGlAfMbHG99veXKRl4P2IXYk8bdXw0Xa8zsUqCMoKX0vab3EhHpnNSCJSLSdl5veSVBC1X9v+z3dPdf1SsztN7yHgQtKBvrV2hmmcCDBC1C/d29N0FCtf2b/kpgr0ZiWQlUAwX1jp/n7mNbOIf/Cc9jvLvnEbTEfZ5VmOUAvwPuBGba5+PG1hAkddvLWXh+q1s43k4smCK8vJmf6S3XUlfXMIKE8BIgP7x+79c/p/rc/WZ3PwAYQ5DQXkVwTyqBsfWuZS93z9mF06q71+E17AusCc/laoLuiH3C+EobxFf/9wrgD8CHwN7hPfpJU+fTXiwYa9fU/bl9F6pydnPsIiK7ixIsEZHkugc4zsyOMrOomWWFEwcMqVfmTDMbE45n+iXwgLvHG9STQdBlrBiIha1ZR9bbfidwnpl9xcwiZjbYzPZx97UEXQl/Y2Z54ba9zKxhV7KGcoFyoNTMBhMkGPX9Hpjn7hcQjDHb/mX6fuAbYRzpwBUECd6/W7pQDYVThOc08/PaLlTXk+BLfDEEE4YQjEHaiZlNNrMDw/grgCog4e4JgiTtJjPrF5YdbGZH1dvXrd4kJo34eji2LINgLNYb7r6S4HrHwvjSzOxaghas5uQStPyUm9k+wMUtlE86dx/bzP25qLF9zGysmU0M3w85wG8IEvAluzV4EZHdRAmWiEgShV+eTyBoXSgmaFG6ih0/b+8mmIhiHUE3tB80Us/WcP39BF31vk3QPW/79rcIJ74gaPl4hc9bks4mSNAWh/s+QDBuqjm/APYP63oSeGj7BjM7gWCSiu1f6H8I7G9mZ7j7RwStXbcQtPgcBxzn7jUtHK9duftigi/yrxN0kxsP/KuJ4nkEidRmgu6OJcCvw20/Ihh79oYFs/m9QDhOKhxLtZXmu7n9g6Cb5yaCySe2d2N8FngG+Dg8ZhUtdOMk6Lb47fCYdwCzWyjfUfQniLUM+JSgy+ax4Zg9EZEux9wb9kAQEZH2YmZzgHvcXQ9a7eTM7EyC7oPXNLH9LmCVu/9stwYmIiIppUkuREREvgB3vyfVMYiISMejLoIiIt2EBQ+9bevkBNLJmdlPmvg9eDrVsYmIdAXqIigiIiIiIpIkasESERERERFJkg41BqugoMCHDx+e6jBERERERESaNX/+/I3uXthwfYdKsIYPH868efNSHYaIiIiIiEizzGx5Y+vVRVBERERERCRJlGCJiIiIiIgkiRIsERERERGRJOlQY7AaU1tby6pVq6iqqkp1KNIBZGVlMWTIENLT01MdinRBNz6+gLzadVz4za+nOhQRERHppDp8grVq1Spyc3MZPnw4ZpbqcCSF3J2SkhJWrVrFiBEjUh2OdDHxhNP/zes5K+0FKqYvomfhsFSHJCIiIp1Qh+8iWFVVRX5+vpIrwczIz89Xa6a0i5KKaoZacbD86h0pjkZEREQ6qw6fYAFKrqSOfhekvdTEElSSAUBk1VspjkZEREQ6q06RYImItLeaWIJ8KwMgb+vSFEcjIiIinZUSrFYwM6644oq61zfeeCMzZ85MXUD1HHbYYc0+nPnEE09k6tSpO6ybOXMmgwcPZuLEiYwbN47HHnusvcMU6fBq4gnyCROsWAlUbk5xRCIiItIZKcFqhczMTB566CE2btyY1HrdnUQikdQ669uyZQvz58+ntLSUTz/9dIdtl19+OQsXLuSf//wn559/frvGIdIZ1MacAitlNf2CFcUfpzYgERER6ZSUYLVCWloaF154ITfddNNO24qLizn55JOZPHkykydP5l//+hcQtBLdeOONdeXGjRtHUVERRUVFjBo1irPPPptx48axcuVKrrrqKsaNG8f48eOZPXs2AHPmzOGwww7jlFNOYZ999uGMM87A3RuN7+67765rjXrrrc/Hjjz00EMcd9xxnHbaadx3332N7jt69GjS0tJ2SB5//OMfM2bMGCZMmMCVV14JQFFREUcccQQTJkzgK1/5CitWrADg3HPP5eKLL2bq1KnsueeezJkzh/PPP5/Ro0dz7rnn1tV58cUXM2nSJMaOHct11123UxylpaUMGzasLtGrqKhg6NCh1NbWNhq3SLLV1lTSy7axosdYACrWL0txRCIiItIZdfhp2uv7xeMfsHhNWVLrHDMoj+uOG9tiue9973tMmDCBq6++eof1l156KZdffjnTpk1jxYoVHHXUUSxZsqTZuj755BP+9re/MXXqVB588EEWLlzIu+++y8aNG5k8eTKHHHIIAO+88w4ffPABgwYN4uCDD+Zf//oX06ZN26m+bdu2sXDhQl599VXOP/983n//fQBmzZrFtddeS//+/Tn55JP5yU9+stO+b775JpFIhMLCQgBKSkp4+OGH+fDDDzEztmzZAsD3v/99zjnnHM455xz+8pe/8IMf/IBHHnkEgM2bN/P666/z2GOPcfzxx/Ovf/2LP//5z0yePJmFCxcyceJErr/+evr27Us8HucrX/kKixYtYsKECXVx9OrVi4kTJ/LKK69w+OGH88QTT3DUUUfpeVey28QrSgDY2nc8bHuZres/o2eKYxIREZHORy1YrZSXl8fZZ5/NzTffvMP6F154gUsuuYSJEydy/PHHU1ZWRnl5ebN1DRs2rG5c1Ny5czn99NOJRqP079+fQw89lLfffhuAKVOmMGTIECKRCBMnTqSoqKjR+k4//XQADjnkEMrKytiyZQvr16/nk08+Ydq0aYwcOZL09PS6xAvgpptuYuLEiVx55ZXMnj27bna+Xr16kZWVxX/8x3/w0EMP0aNHDwBef/11vv3tbwNw1llnMXfu3Lq6jjvuOMyM8ePH079/f8aPH08kEmHs2LF1Md9///3sv//+7LfffnzwwQcsXrx4p/OYMWNGXQvefffdx4wZM5q9jiLJFK/eBkCPPv0o8VxqS4pSG5CIiIh0Sp2qBas1LU3t6bLLLmP//ffnvPPOq1uXSCR44403yMrK2qFsWlraDuOa6j+7qWfP1v1dPDMzs245Go0Si8UaLddw6nIz4/7772fz5s11D+QtKytj1qxZXH/99UAwBmt797+Gcb/11lu8+OKLPPDAA9x666289NJLrYozEonsEHMkEiEWi/HZZ59x44038vbbb9OnTx/OPffcRp9ldfzxx/OTn/yETZs2MX/+fI444ohmjyuSTPHaGgAK8nJZ5YX0LV2V4ohERESkM1IL1i7o27cvp556KnfeeWfduiOPPJJbbrml7vXChQsBGD58OAsWLABgwYIFfPbZZ43WOX36dGbPnk08Hqe4uJhXX32VKVOm7FJc21t95s6dS69evejVqxezZs3imWeeqRv3NX/+/CbHYdVXXl5OaWkpX//617npppt49913Afjyl79ct/+9997L9OnTWx1fWVkZPXv2pFevXqxfv56nn3660XI5OTlMnjyZSy+9lGOPPZZoNNrqY4i0Vbw2SPpzc3qy3grJrlCCJSIiIruuzQmWmQ01s5fNbLGZfWBml4brZ5rZajNbGP58ve3hpt4VV1yxw4QQN998M/PmzWPChAmMGTOG22+/HYCTTz6ZTZs2MXbsWG699VZGjhzZaH0nnXQSEyZMYN999+WII47ghhtuYMCAAbsUU1ZWFvvttx8XXXQRd955J0VFRSxfvnyH6dlHjBhBr169ePPNNxut4+tf/zpr1qxh69atHHvssUyYMIFp06bx29/+FoBbbrmFv/71r0yYMIG7776b3//+962Ob99992W//fZjn3324dvf/jYHH3xw3bZrr712h2niZ8yYwT333KPugbLbJWqrAYimZ7I1cyC5NeuhiYllRERERJpiTc1M1+oKzAYCA919gZnlAvOBE4FTgXJ3v7G5/eubNGmSN3ym05IlSxg9enSbYpSuRb8T0h5efPZhvvL6uWz85j95ds4czth0G1y5FHIKUx2aiIiIdEBmNt/dJzVc3+YWLHdf6+4LwuWtwBJgcFvrFRHZneq3YNFraLByy4oURiQiIiKdUVLHYJnZcGA/YHs/tEvMbJGZ/cXM+iTzWCIiyRQPE6z0jCzSC4YDsG1j42MnRURERJqStATLzHKAB4HL3L0M+AOwFzARWAv8pon9LjSzeWY2r7i4OFnhiIjsEo8FCVZaRhY5/fcEoHydEiwRERHZNUlJsMwsnSC5utfdHwJw9/XuHnf3BHAH0OjUeO7+J3ef5O6Ttj/sVkRkd/NYME17ekYm/QsL2erZVG9SF0ERERHZNcmYRdCAO4El7v7beusH1it2EvB+w31FRDqMeJBgRdMzGdgrm7XeFy9dneKgREREpLNJxoOGDwbOAt4zs4Xhup8Ap5vZRMCBIuA/k3AsEZF2sb2LINEM+uVkspS+7F2+NrVBiYiISKeTjFkE57q7ufsEd58Y/jzl7me5+/hw/fHu3qm/qTzyyCOYGR9++GGTZYqKihg3blzSjnnuuefywAMPNLn9sssuY/DgwSQSibp1d911F4WFhUycOJExY8Zwxx13JC0ekS4t7CJIWiZp0Qhb0vrRo3p9amMSERGRTiepswh2ZbNmzWLatGnMmjWr0e2xWKzNx4jH460um0gkePjhhxk6dCivvPLKDttmzJjBwoULmTNnDj/5yU9Yv15fEkVaFP+8BQugMnsAubFNnydeIiIiIq2gBKsVysvLmTt3LnfeeSf33Xdf3fo5c+Ywffp0jj/+eMaMGQMEidYZZ5zB6NGjOeWUU9i2bRsAL774Ivvttx/jx4/n/PPPp7o6+DI3fPhwfvSjH7H//vvzz3/+c6djv/DCC0yaNImRI0fyxBNP7HDssWPHcvHFFzeZ9PXr14+99tqL5cuX1627+eabGTNmDBMmTOC0004DYNOmTZx44olMmDCBqVOnsmjRIgBmzpzJOeecw/Tp0xk2bBgPPfQQV199NePHj+foo4+mtrYWgF/+8pdMnjyZcePGceGFF9Lw4dWJRILhw4ezZcuWunV77723Ej/pWMIxWNsTrFjOICI4lK9LYVAiIiLS2SRjDNbu8/SPYd17ya1zwHg45lfNFnn00Uc5+uijGTlyJPn5+cyfP58DDjgAgAULFvD+++8zYsQIioqK+Oijj7jzzjs5+OCDOf/88/m///s/LrnkEs4991xefPFFRo4cydlnn80f/vAHLrvsMgDy8/NZsGBBo8cuKirirbfeYtmyZRx++OEsXbqUrKwsZs2axemnn84JJ5zAT37yE2pra0lPT99h308//ZRPP/2UL33pS3XrfvWrX/HZZ5+RmZlZl/Bcd9117LfffjzyyCO89NJLnH322SxcuBCAZcuW8fLLL7N48WIOOuggHnzwQW644QZOOukknnzySU488UQuueQSrr32WgDOOussnnjiCY477ri6Y0YiEU444QQefvhhzjvvPN58802GDRtG//79W32bRNpdPPiDwfYEK9prMKyHxJZVRHrvkcLAREREpDNRC1YrzJo1q66157TTTtuhxWjKlCmMGDGi7vXQoUM5+OCDATjzzDOZO3cuH330ESNGjGDkyJEAnHPOObz66qt1+8yYMaPJY5966qlEIhH23ntv9txzTz788ENqamp46qmnOPHEE8nLy+PAAw/k2Wefrdtn9uzZTJw4kdNPP50//vGP9O3bt27bhAkTOOOMM7jnnntISwvy67lz53LWWWcBcMQRR1BSUkJZWRkAxxxzDOnp6YwfP554PM7RRx8NwPjx4ykqKgLg5Zdf5sADD2T8+PG89NJLfPDBBzudx4wZM5g9ezYA9913X7PnLJIKkXg1MaIQCT4Ws/KHAFBerKnaRUREpPU6VwtWCy1N7WHTpk289NJLvPfee5gZ8XgcM+PXv/41AD179tyhfDBrfdOvG9Owjpbqe/bZZ9myZQvjx48HYNu2bWRnZ3PssccCQTJz6623Nlrfk08+yauvvsrjjz/O9ddfz3vvNd8imJmZCQStUOnp6XXxRCIRYrEYVVVVfPe732XevHkMHTqUmTNnUlVVtVM9Bx10EEuXLqW4uJhHHnmEn/3sZ80eV2R3s0QttaTXfSjm9g/+cFJRXERe6sISERGRTkYtWC144IEHOOuss1i+fDlFRUWsXLmSESNG8NprrzVafsWKFbz++usA/OMf/2DatGmMGjWKoqIili5dCsDdd9/NoYce2qrj//Of/ySRSLBs2TI+/fRTRo0axaxZs/jzn/9MUVERRUVFfPbZZzz//PN1472akkgkWLlyJYcffjj/+7//S2lpKeXl5UyfPp17770XCMZ2FRQUkJfXuq+U25OpgoICysvLm5z10Mw46aST+OEPf8jo0aPJz89vVf0iu4vFa4jZ591sP3/Y8KoURiUiIiKdjRKsFsyaNYuTTjpph3Unn3xykxNLjBo1ittuu43Ro0ezefNmLr74YrKysvjrX//Kt771LcaPH08kEuGiiy5q1fH32GMPpkyZwjHHHMPtt99OIpHgmWee4Rvf+EZdmZ49ezJt2jQef/zxRuu44IILmDdvHvF4nDPPPJPx48ez33778YMf/IDevXszc+ZM5s+fz4QJE/jxj3/M3/72t1ZeHejduzff+c53GDduHEcddRSTJ0+u23b77bdz++23172eMWMG99xzj7oHSocUTeyYYA3qHTxsGD1sWERERHaBNZzxLZUmTZrk8+bN22HdkiVLGD16dIoiko5IvxPSHl78f99kQux9Cn/+MQDuztzrDmGv3FoGXfVGiqMTERGRjsbM5rv7pIbr1YIlIgJEE7XE7fNhqWZGWUY/elbpcQIiIiLSekqwRESAiNcSj2TssK4qewC58c162LCIiIi0WqdIsDpSN0ZJLf0uSHtJS9SQiOz4LLl4rh42LCIiIrumwydYWVlZlJSU6Iu14O6UlJSQlZWV6lCkC4p6LQnbsQUr2jt4FlZs88pUhCQiIiKdUId/DtaQIUNYtWoVxcXFqQ5FOoCsrCyGDBmS6jCkC0rzWuLRHZP37PyhAJSuX07+iINTEZaIiIh0Mh0+wUpPT2fEiBGpDkNEurg0r8UjOz7/LW/AcAAqipejJ7eJiIhIa3T4LoIiIrtDGjESDSa5GBA+bLh2sx42LCIiIq3T7gmWmR1tZh+Z2VIz+3F7H09EZFe5O+lei0d3nORiYK/gYcNWpocNi4iISOu0a4JlZlHgNuAYYAxwupmNac9jiojsqpp4gnRiEN2xBatnZhobIwVkbNMsgiIiItI67d2CNQVY6u6funsNcB9wQjsfU0Rkl9TEEmRYDG/QRRBga0Y/cqr1sGERERFpnfZOsAYD9ec3XhWuq2NmF5rZPDObp5kCRSQVamIJMqiFtJ0TrKrsAeTpYcMiIiLSSimf5MLd/+Tuk9x9UmFhYarDEZFuqCaeIIMYRDN32pbICx82vHVtCiITERGRzqa9E6zVwNB6r4eE60REOozamAcJViMtWNsfNly1SQ8bFhERkZa1d4L1NrC3mY0wswzgNOCxdj6miMguqYnHSSeGNZJg9SjYA4At64p2c1QiIiLSGbXrg4bdPWZmlwDPAlHgL+7+QXseU0RkV1XX1JJmCSy6c4LVu/9wALZtXLGboxIREZHOqF0TLAB3fwp4qr2PIyLyRdXWVAEQSd95DFb/fv3Y6tnE1UVQREREWiHlk1yIiKRarKYagEhaIwlWXharvYBomVqwREREpGVKsESk24uFLVjWSIKVkRZhfXQA2ds0P4+IiIi0TAmWiHR78dqwBauRLoIApVmD6FOzFtx3Z1giIiLSCSnBEpFub3sLVrSJBKu652CyvAq2lezOsERERKQTUoIlIt3e9kku0jOyGt2e6DUMAN+8fLfFJCIiIp2TEiwR6fZqq4MugmkZjbdgpReMAKBi/bLdFpOIiIh0TkqwRKTbi9U234KV239PQAmWiIiItEwJloh0e7FwkouMzOxGtxcWFrLZc6gpURdBERERaZ4SLBHp9rbPIpjeRBfBwb2zWemFRLYowRIREZHmKcESkW7Pw0kumpqmvSAng7XWj8yKVbszLBEREemElGCJSLcXjwUtWEQzGt1uZpRmDqJX9VpIJHZjZCIiItLZKMESkW4vUVsTLEQbb8ECqM4ZQrrXQvn63RSViIiIdEZKsESk27NYRbCQ0aPpMr33AMA1DktERESaoQRLRLq9aO22YCGjZ5NlsvoFU7VvW//p7ghJREREOiklWCLS7UVjYYKV3nSClTfwSwBsXadnYYmIiEjT2pRgmdmvzexDM1tkZg+bWe9w/XAzqzSzheHP7UmJVkSkHURj26glHdIan+QCYHBhH9Z5H2IblWCJiIhI09ragvU8MM7dJwAfA9fU27bM3SeGPxe18TgiIu0mLV5JdSSr2TJD+/ZghffTs7BERESkWW1KsNz9OXePhS/fAIa0PSQRkd0rI76NGstutkxeVjrrIgPouU3PwhIREZGmJXMM1vnA0/VejzCzd8zsFTOb3tROZnahmc0zs3nFxcVJDEdEpHUyEpXURJtPsAC2Zg8mt7YYaqt2Q1QiIiLSGbWYYJnZC2b2fiM/J9Qr81MgBtwbrloL7OHu+wE/BP5hZnmN1e/uf3L3Se4+qbCwsO1nJCKyi1qbYNXmDSOCQ+nK3RCViIiIdEZpLRVw9682t93MzgWOBb7i7h7uUw1Uh8vzzWwZMBKY19aARUSSLcsribciwYr0HQHrIVHyKZGCvXdDZCIiItLZtHUWwaOBq4Hj3X1bvfWFZhYNl/cE9gb08BgR6ZAyvYpYWtMPGd4ue0AwVXv5uqXtHZKIiIh0Ui22YLXgViATeN7MAN4IZww8BPilmdUCCeAid9/UxmOJiCRdTSxBtlcRa+YZWNsV9h9CpWewbf0yGu3zLCIiIt1emxIsd/9SE+sfBB5sS90iIrvD1qpaeloVpRk5LZYdmt+TFd6P3E2f7YbIREREpDNK5iyCIiKdTllVjB5UE8lsuYvg4N7ZrPD+ZJSt2A2RiYiISGekBEtEurWt27aRa5VEsnq3WDYrPcrG9IHkVq2GYE4fERERkR0owRKRbq1ySwkAkZyCVpXf1nMImYlKqNBz+0RERGRnSrBEpFurKtsAQHpe657Dl+g1PFjYXNQ+AYmIiEinpgRLRLq1qtIgwerZZ0CryqcXjAAgVqInT4iIiMjOlGCJSLdWUxZ09cvp069V5XMGhs/CWqtnYYmIiMjO2vocLBGRTi1RsRGAtJzWdREcXNCHtd6XSPGy9gxLREREOim1YIlIt2bbgkku6JHfqvJD+2azwvthGoMlIiIijVCCJSLdWlrVJrZZD0jLaFX5gb2yWeX9yK5Y2c6RiYiISGekBEtEurWc6vWUpreueyBANGJszhpMbk0x1Fa1Y2QiIiLSGSnBEpFuy93pE9vAtuyBu7Rfde4ewcKWFe0QlYiIiHRmSrBEpNvaWF7DIIqJ5Q7Zpf2s9/BgYfNnyQ9KREREOjUlWCLSba0rLiHfthLps8cu7ZfVfy8Aaoo1VbuIiIjsSAmWiHRbm9YGDwvOLhi+S/sV9B9CpWdQvqEo+UGJiIhIp9amBMvMZprZajNbGP58vd62a8xsqZl9ZGZHtT1UEZHk2lZcBEDvgXvu0n5D+/ZgjedTu0kzCYqIiMiOkvGg4Zvc/cb6K8xsDHAaMBYYBLxgZiPdPZ6E44mIJEVs03IAevYbvkv7De3bgw+9LyPLVrdDVCIiItKZtVcXwROA+9y92t0/A5YCU9rpWCIiX0i0bBVxIljurs0imN8zg/VWSNa2Ne0UmYiIiHRWyUiwLjGzRWb2FzPrE64bDNTvO7MqXLcTM7vQzOaZ2bzi4uIkhCMi0jpZ29ayOVoI0V1rzDcztmUNIKe2BOK17RSdiIiIdEYtJlhm9oKZvd/IzwnAH4C9gInAWuA3uxqAu//J3Se5+6TCwtY/7FNEpK1616xja9autV5tV91zIBEctq5NclQiIiLSmbX4Z1t3/2prKjKzO4AnwpergaH1Ng8J14mIdAjbamL082Iqen6x3sueNxg2A6WroPeuTfMuIiIiXVdbZxGs/6ffk4D3w+XHgNPMLNPMRgB7A2+15VgiIsm0ZtNWBrAJeg9tuXAj0vsE+8U3ayZBERER+VxbZxG8wcwmAg4UAf8J4O4fmNn9wGIgBnxPMwiKSEeyce0KvmQJMgqGfaH9exQOB6CieDl5SYxLREREOrc2JVjuflYz264Hrm9L/SIi7aV8ffCQ4dx+I77Q/oX5fdniPaktWZHMsERERKSTa69p2kVEOrSakuAZWLv6kOHtBvTKYq3nkyhdlcywREREpJNTgiUi3dOWIDFK6/PFJqgY2CuL1Z5P2lbN3yMiIiKfU4IlIt1SRsVqSi0PMnp8of17ZaezwQrIrlyX5MhERESkM1OCJSLdUm71WkozBnzh/c2M8sz+9IiXQU1FEiMTERGRzkwJloh0O4mEkx/bQGWPQW2qp7pnuH+pugmKiIhIQAmWiHQ7G8urGMRGEnlD2lZRr3D/Mk10ISIiIgElWCLS7WxYt5oeVk207xd7BtZ22x82nNiiBEtEREQCSrCasaV4LQtfmIUnEqkORUSSaOvqDwHI6j+qTfXkFA4l4UblxuXJCEtERES6ACVYzVjy1C1MnHsRn14/iQVP/YWa6qpUhyQiSVC74SMAeu8xpk319OudSzG9qC5ZmYywREREpAtIS3UAHdnk06/jzScHMWjRrez/1uVseetaFvY7itzxx/KlyV8jPSsn1SE2zR0SMYjXQLwWEjHisRqqq6upqamiprqamppqamtrqK0O/k3EasFj4I57AhIJ3D38SQAOiTi4k3CAOO4eHivcju9ioNZ+5a2dyu5izN5M+Z0P2/q6vcHOze+5i9d5l65HC1UlrabkhdVj+cvUeBq5/Ue0qZ6BvbJZ6/kM3aIEq70lEk5lVRVVlRXUVG0jXl1BvKaSWG0NiXgtsVgN8dpaEvFa4rFaPFaLJ+KYx4LPwkS9zzYIPtcS4OF/eLDOtn+G+Y6fZdbCZ5tjrfr9bPTzwIzWvVN2LuNYI6ubOsbO+7bmqA0/a7Yfwxqsb+6zruG+bdGWz4E27ZvUT7Pdo+E92qV923TglOyazP91SQezrece7DXhIAb2yk51KK2iBKsZaRmZHHjSJcSPu4h3X3uEmnl3s+/6R8nc8AA1L6TxYcZItvbeh0TBPvToN5xehUPJKRhCj9xeZGb1xKI7X153J5FwYjXbqK6soKaynNqqCmorK6itqiBeXU6sehvx6m14zTYSNdvw2m1Y7Tao3YbFqojEKonEKonGKklLVJEWryQtUU16oorMRBUZXk0m1UTZsWtjFOgR/oh0d5+k783ejbxHd0X/Xpm87fmMqFjTqvJVtXFe/te/GDZ4CGP23rNNx+5M4glnc1kZ5SXrqNyyjurS9dRWbCJWsYVEZSleVUqkeitpNWVkxLeSFa8gK1FBhleT4TVkeTWZ1NDT4vRM9cmIiMhu99fYUWzptQ/HTlCC1WVE09LY9/BT4PBT2Fq2hUVvPkft0pfoVbKIURueIa/4IViy8341nkYN6RhOhASR8N90ixMFMnchhoQblWRQSSZVZFBlWdRYJuWWRY31pDZaQCw9i1g0i3g0i3haNh7NxNIyiETTiYT/RtMziKRlEE3LIC19+08m0fSgjEWimEUgEsEwzCJYJBL8FSwSwYgQiQAWJWIGZuH24GeX/nzkTf9FuPEtu9A6tkPdLezXTBxtiKDFunfe1Prad/5rejP77sL5BcV3+SybritpNYX1JbHC/oP3anMdBT0zWW/96LFtYdBSHE1vtNzGrVXMeeZBBn/wR47hXd7OnArXPNvm46daLJ5gw6ZNbFrzGduKl1O7aQVWtppIxXrSqzaRXbuJnNhm+ngpBVZJQRP11Hga5daTbZEcqqI9qUzLYVu0MPwcy8LTsyE9G0vPJpKRjaVl4+nZWHpW+NmWQSQtnUg0jbS07Z93aRCNYtEMLJIGkTQikaClyCz4iUQsaJWoW97+ERZ+joWfZ97g9U7cG/llb+SXtdFfYG/d+6SpfRu2tDVRrvF9W3eM1sWys0Zb/byR4+K0tt2ilVer8X3b8PnRlo+etsTcFm37vOyE1zlF5yu7x/SsPhQOKkx1GK2mBGsX5eb1ZvLXToWvnQqAJxJsXLucdas+Zdum1cRL1+I1FVBbCbWVRBI1WCQCFgGLBv9G0kikZYVfGHpARk8iGT2IZvYkmtmDtMyepGdlk5aVS0ZWDzJ65JKZmU1WRhp9o5HwS4KIpFokYpT02Zf00idgzTswdMoO2z9ZtY73n76D0avu5xRbQWmkD8t8D0ZVvx98G+jg/VniCWfthmI2LF/CtnWf4CWfEilbSVblOvJqNlCYKGaQVVD/aWIJN7ZYLmXRPmxL70NJz3EU9yjAehZiOYWk5fYjo1chPXsV0jOvL7m988nI7EFfoG+qTlRERCSJlGC1kUUiFAweQcHgto3lEJHOKW3P6fAOVC15jqyhUyivquXfrz5L7YL7mF75AntbJWuy92bD1F/T7+CzmXf/Lez1yX9Tte5jsga2bRbDZIjFE6xdv54Ny5dQsfYjYhuXkVG6nF5VKxkQW8MQK6X+08JKyWFzWj/Kew7is54HYL2GkJE/lOyCYeT1H07v/sPom56pZElERLotJVgiIm1w5OQxzJm3Lwe9fjNvvDuPQeUfcKRtoIZ0Vgz4KnzlEgbtfXBda1X68IPgE9jw3vPssZsSrNpYnLVrV7NxxRLK135CYuMyMrcup1flSgbE1zDUyhlar3yx5bM5cwhr+h7Kmr4jyOq/N70GjyJ/6Ch69ehFr90StYiISOdkbRlvYWazge3fEHoDW9x9opkNJxiV9FG47Q13v6il+iZNmuTz5s37wvGIiKTC3595jQlv/JBBVkJp7ijSJ5zEsINPxbJ771S2ZGsVlTeOpaZgLHt+/7GkxVBVU8ualZ9RsupjKtd9jJd8SubWFfSpXsnA+DrybFtd2YQbxdFCNmcOoTJ3GJG+e5I9YG/y99iHvkNGYhmaSkJERKQlZjbf3Sc1XN+mFix3n1HvAL8BSuttXubuE9tSv4hIZ3D20dPh6LcB6NdC2fzcLJ7MPoivlTxDrKSItPzhrTpGVU0t69esYMu6z6jYsJz45hVQtpqsilX0rV7NoMQ69rQats9NWEuU4kh/NmcNYWneAVjfPem5PYkavDf907Po/4XPWERERJqSlC6CFjxo4VTgiGTUJyLSleV+9Upijz/HltuPo2TCfxLpswe18Ti1lVuJlW0gXl6MVWwkraqEHtXF9IltoJ+XMMziDKtXzzayKIn2o7TnUJbkTSdauBc5A/amYI99yBswgkHR9B0moBAREZH216YugnWVmB0C/HZ7E1nYRfAD4GOgDPiZu7/WxL4XAhcC7LHHHgcsX768zfGIiHR0Tz56H/svuIaBtqnR7VvpQVmkF+Xp+VRmDySeO5hI7yFkFQyjV//h9B20F1m5fTv8TIQiIiJdVVNdBFtMsMzsBWBAI5t+6u6PhmX+ACx199+ErzOBHHcvMbMDgEeAse5e1tyxNAZLRLqTbVXVrFj2AbHStaSnZ5CVnUPPvgPonT+AtMzO8TBFERGR7uoLj8Fy96+2UHEa8E3ggHr7VAPV4fJ8M1sGjASUPYmIhHpkZbLP2P1THYaIiIgkUSQJdXwV+NDdV21fYWaFZhYNl/cE9gY+TcKxREREREREOqxkTHJxGjCrwbpDgF+aWS2QAC5y98YHGoiIiIiIiHQRbU6w3P3cRtY9CDzY1rpFREREREQ6k6TMIpgsZlYMdLRpBAuAjakOQnYb3e/uQ/e6+9C97l50v7sP3evupSPe72HuXthwZYdKsDoiM5vX2Owg0jXpfncfutfdh+5196L73X3oXncvnel+J2OSCxEREREREUEJloiIiIiISNIowWrZn1IdgOxWut/dh+5196F73b3ofncfutfdS6e53xqDJSIiIiIikiRqwRIREREREUkSJVgiIiIiIiJJogSrGWZ2tJl9ZGZLzezHqY5HksfMhprZy2a22Mw+MLNLw/V9zex5M/sk/LdPqmOV5DCzqJm9Y2ZPhK9HmNmb4ft7tpllpDpGSQ4z621mD5jZh2a2xMwO0nu7azKzy8PP8PfNbJaZZem93XWY2V/MbIOZvV9vXaPvZQvcHN73RWa2f+oil13VxL3+dfg5vsjMHjaz3vW2XRPe64/M7KiUBN0MJVhNMLMocBtwDDAGON3MxqQ2KkmiGHCFu48BpgLfC+/vj4EX3X1v4MXwtXQNlwJL6r3+X+Amd/8SsBn4j5REJe3h98Az7r4PsC/Bfdd7u4sxs8HAD4BJ7j4OiAKnofd2V3IXcHSDdU29l48B9g5/LgT+sJtilOS4i53v9fPAOHefAHwMXAMQfl87DRgb7vN/4ff2DkMJVtOmAEvd/VN3rwHuA05IcUySJO6+1t0XhMtbCb6ADSa4x38Li/0NODElAUpSmdkQ4BvAn8PXBhwBPBAW0b3uIsysF3AIcCeAu9e4+xb03u6q0oBsM0sDegBr0Xu7y3D3V4FNDVY39V4+Afi7B94AepvZwN0SqLRZY/fa3Z9z91j48g1gSLh8AnCfu1e7+2fAUoLv7R2GEqymDQZW1nu9KlwnXYyZDQf2A94E+rv72nDTOqB/quKSpPodcDWQCF/nA1vqfXDr/d11jACKgb+GXUL/bGY90Xu7y3H31cCNwAqCxKoUmI/e211dU+9lfW/r2s4Hng6XO/y9VoIl3ZqZ5QAPApe5e1n9bR48w0DPMejkzOxYYIO7z091LLJbpAH7A39w9/2AChp0B9R7u2sIx96cQJBUDwJ6snMXI+nC9F7uHszspwRDO+5NdSytpQSraauBofVeDwnXSRdhZukEydW97v5QuHr99i4F4b8bUhWfJM3BwPFmVkTQ1fcIgjE6vcNuRaD3d1eyCljl7m+Grx8gSLj03u56vgp85u7F7l4LPETwftd7u2tr6r2s721dkJmdCxwLnOGfP7y3w99rJVhNexvYO5yNKINgMN1jKY5JkiQcg3MnsMTdf1tv02PAOeHyOcCjuzs2SS53v8bdh7j7cIL38UvufgbwMnBKWEz3uotw93XASjMbFa76CrAYvbe7ohXAVDPrEX6mb7/Xem93bU29lx8Dzg5nE5wKlNbrSiidkJkdTdC9/3h331Zv02PAaWaWaWYjCCY2eSsVMTbFPk8GpSEz+zrB2I0o8Bd3vz61EUmymNk04DXgPT4fl/MTgnFY9wN7AMuBU9294QBb6aTM7DDgSnc/1sz2JGjR6gu8A5zp7tUpDE+SxMwmEkxokgF8CpxH8AdFvbe7GDP7BTCDoPvQO8AFBGMx9N7uAsxsFnAYUACsB64DHqGR93KYZN9K0E10G3Ceu89LQdjyBTRxr68BMoGSsNgb7n5RWP6nBOOyYgTDPJ5uWGcqKcESERERERFJEnURFBERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwRkQ7CzIabmZtZWqpj6erM7Fwzm5vqODoaM5tuZh+lOg4Rkc5MCZaIiHRqZjbTzGrNrLzez9WpjqszcvfX3H1UsusN/3BQUe/+/DnZxxAR6Sj0V1IRkSQxszR3j6U6jm5qtrufmeog2ksX+d3a192XpjoIEZH2phYsEZE2MLMiM/uRmS0CKswszcymmtm/zWyLmb1rZofVKz/HzP6fmb1lZmVm9qiZ9W2i7vPMbImZbTWzT83sPxtsP8HMFob1LDOzo8P1vczsTjNba2arzey/zSzawnnsZWYvmVmJmW00s3vNrHe9bZvMbP/w9SAzK95+XmZ2vJl9EJ7vHDMb3eD6XGlmi8ys1Mxmm1nWrl/pXWdmPw6vy1YzW2xmJzVRzszsJjPbEF7L98xsXLgt08xuNLMVZrbezG43s+xWHv+usPzzYQyvmNmwett/b2Yrw2PON7Pp9bbNNLMHzOweMysDzjWzKWb2enid15rZrWaWUW8fN7Pvmtkn4fH+K7x3/w6PcX/98k3EfJiZrWrN+YmISOOUYImItN3pwDeA3kB/4Engv4G+wJXAg2ZWWK/82cD5wEAgBtzcRL0bgGOBPOA84KZ6Sc4U4O/AVeFxDwGKwv3uCuv9ErAfcCRwQQvnYMD/AwYBo4GhwEwAd18G/Ai4x8x6AH8F/ubuc8xsJDALuAwoBJ4CHm/wRf5U4GhgBDABOLfRAMymhclDUz/TWjiHhpYB04FewC/C+Ac2Uu5Igus3Mix7KlASbvtVuH4iwfUcDFy7CzGcAfwXUAAsBO6tt+3tsN6+wD+AfzZIPk8AHiC4v/cCceDysK6DgK8A321wvKOAA4CpwNXAn4AzCe7nOILf1S8sTJSbuj//18Lur5rZOjN7yMyGtyUOEZGOTAmWiEjb3ezuK929kuDL7FPu/pS7J9z9eWAe8PV65e929/fdvQL4OXBqYy1M7v6kuy/zwCvAcwQJA8B/AH9x9+fD46x29w/NrH94rMvcvcLdNwA3Aac1dwLuvjSsq9rdi4HfAofW234HsBR4kyAx/Gm4aQbwZLhvLXAjkA18ucH1WePum4DHCZKKxmKY6+69m/lpblKKUxt82R/k7v8Mj5tw99nAJ8CURvatBXKBfQBz9yXuvtbMDLgQuNzdN7n7VuB/WrqWDTzp7q+6ezXBNTvIzIaG53uPu5e4e8zdfwNkAvXHP73u7o+E8Ve6+3x3fyMsXwT8kXr3KHSDu5e5+wfA+8Bz7v6pu5cCTxMk3F+Yu09o5v40TPbqOxQYTnCN1wBPmCZzEZEuSh9uIiJtt7Le8jDgW2Z2XL116cDLTZRfHm4vaFipmR0DXEfQghIBegDvhZuHErQWNTQsrG9tkB9AuO/KRsrWP1Z/4PcECVxuuM/mBsXuAB4DLgwTBghavJZvL+DuCTNbSdDSs926esvbwn2S7f6GY7DM7GzghwRf7AFyaOQ6u/tLZnYrcBswzMweImh5zCK45vPrXUsDmu1u2UDddXf3cjPbRHD+K83sSoJEeRDgBC2VBY3tG57PSILEd1IYVxowv8Hx1tdbrmzk9YBdiD1p3P3VcLHGzC4FyghaSt9rei8Rkc5JLVgiIm3n9ZZXErRQ1f/Lfk93/1W9MkPrLe9B0IKysX6FZpYJPEjQItTf3XsTJFTbv+mvBPZqJJaVQDVQUO/4ee4+toVz+J/wPMa7ex5BS9znWYVZDvA74E5gpn0+bmwNQVK3vZyF57e6hePtxIIpwsub+Zneci11dQ0jSAgvAfLD6/d+/XOqz91vdvcDgDEECe1VBPekEhhb71r2cvecXTitunsdXsO+wJrwXK4m6I7YJ4yvtEF89X+vAP4AfAjsHd6jnzR1Pu3FgrF2Td2f23ehKmc3xy4isrsowRIRSa57gOPM7Cgzi5pZVjhxwJB6Zc40szHheKZfAg+4e7xBPRkEXcaKgVjYmnVkve13AueZ2VfMLGJmg81sH3dfS9CV8Ddmlhdu28vMGnYlaygXKAdKzWwwQYJR3++Bee5+AcEYs+1fpu8HvhHGkQ5cQZDg/bulC9VQOEV4TjM/r+1CdT0JvsQXQzBhCMEYpJ2Y2WQzOzCMvwKoAhLuniBI0m4ys35h2cFmdlS9fd3qTWLSiK+HY8syCMZiveHuKwmudyyML83MriVowWpOLkHLT7mZ7QNc3EL5pHP3sc3cn4sa28fMxprZxPD9kAP8hiABX7JbgxcR2U2UYImIJFH45fkEgtaFYoIWpavY8fP2boKJKNYRdEP7QSP1bA3X30/QVe/bBN3ztm9/i3DiC4KWj1f4vCXpbIIEbXG47wME46aa8wtg/7CuJ4GHtm8wsxMIJqnY/oX+h8D+ZnaGu39E0Np1C0GLz3HAce5e08Lx2pW7Lyb4Iv86QTe58cC/miieR5BIbSbo7lgC/Drc9iOCsWdvWDCb3wuE46TCsVRbab6b2z8IunluIph8Yns3xmeBZ4CPw2NW0UI3ToJui98Oj3kHMLuF8h1Ff4JYy4BPCbpsHhuO2RMR6XLMvWEPBBERaS9mNge4x931oNVOzszOJOg+eE0T2+8CVrn7z3ZrYCIiklKa5EJEROQLcPd7Uh2DiIh0POoiKCLSTVjw0Nu2Tk4gnZyZ/aSJ34OnUx2biEhXoC6CIiIiIiIiSaIWLBERERERkSTpUGOwCgoKfPjw4akOQ0REREREpFnz58/f6O6FDdd3qARr+PDhzJs3L9VhiIiIiIiINMvMlje2Xl0ERUREREREkkQJloiIiIiISJIowRIRaYWXPlzPmi2VqQ5DREREOrgONQarMbW1taxatYqqqqpUhyKdTFZWFkOGDCE9PT3VoUgnt660ir///c+Myq3mmmt+mepwREREpAPr8AnWqlWryM3NZfjw4ZhZqsORTsLdKSkpYdWqVYwYMSLV4Ugn99H6rfwx/bdkVseIrTiOtD0mpzokERER6aA6fBfBqqoq8vPzlVzJLjEz8vPz1fIpSbFlWw3rvQ8AZYueSnE0IiIi0pF1+AQLUHIlX4h+byRZSitrSbM4AFVrF6c4GhEREenIOkWCJSKSSlu21dKbCgAyN3+S4mhERESkI1OC1QpmxhVXXFH3+sYbb2TmzJmpC6ieN954gwMPPJCJEycyevTourjmzJnDv//97zbVffTRR9O7d2+OPfbYJEQq0nmVV5TTw6oB6FW5HOKxFEckIiIiHZUSrFbIzMzkoYceYuPGjUmt191JJBJtquOcc87hT3/6EwsXLuT999/n1FNPBZKTYF111VXcfffdbapDpCuIVm8BYFnal0jzGGxdm9qAREREpMPq8LMI1veLxz9g8ZqypNY5ZlAe1x03ttkyaWlpXHjhhdx0001cf/31O2wrLi7moosuYsWKFQD87ne/4+CDD2bmzJnk5ORw5ZVXAjBu3DieeOIJAI466igOPPBA5s+fz1NPPcWtt97K008/jZnxs5/9jBkzZjBnzhxmzpxJQUEB77//PgcccAD33HPPTuOKNmzYwMCBAwGIRqOMGTOGoqIibr/9dqLRKPfccw+33HIL++yzT5NxLlu2jKVLl7Jx40auvvpqvvOd7wDwla98hTlz5jR7bf75z3/yi1/8gmg0Sq9evXj11Vepqqri4osvZt68eaSlpfHb3/6Www8/nLvuuotHHnmEiooKPvnkE6688kpqamq4++67yczM5KmnnqJv377ccccd/OlPf6KmpoYvfelL3H333fTo0WOH406dOpU777yTsWODe3fYYYdx4403MmnSpGbjFfki0qtLAdjQcyR7lS6F0lXQe2iKoxIREZGOSC1YrfS9732Pe++9l9LS0h3WX3rppVx++eW8/fbbPPjgg1xwwQUt1vXJJ5/w3e9+lw8++IB58+axcOFC3n33XV544QWuuuoq1q4N/jr+zjvv8Lvf/Y7Fixfz6aef8q9//Wunui6//HJGjRrFSSedxB//+EeqqqoYPnw4F110EZdffjkLFy5k+vTpzca5aNEiXnrpJV5//XV++ctfsmbNmlZfl1/+8pc8++yzvPvuuzz22GMA3HbbbZgZ7733HrNmzeKcc86pm83v/fff56GHHuLtt9/mpz/9KT169OCdd97hoIMO4u9//zsA3/zmN3n77bd59913GT16NHfeeedOx50xYwb3338/AGvXrmXt2rVKrqTdZNRsAWBbnzEAxDevSGE0IiIi0pG1uQXLzIYCfwf6Aw78yd1/b2Yzge8AxWHRn7h7m+Y3bqmlqT3l5eVx9tlnc/PNN5OdnV23/oUXXmDx4s9nFSsrK6O8vLzZuoYNG8bUqVMBmDt3LqeffjrRaJT+/ftz6KGH8vbbb5OXl8eUKVMYMmQIABMnTqSoqIhp06btUNe1117LGWecwXPPPcc//vEPZs2a1WirU3NxnnDCCWRnZ5Odnc3hhx/OW2+9xYknntiq63LwwQdz7rnncuqpp/LNb36z7py+//3vA7DPPvswbNgwPv74YwAOP/xwcnNzyc3NpVevXhx33HEAjB8/nkWLFgFBEvazn/2MLVu2UF5ezlFHHbXTcU899VSOPPJIfvGLX3D//fdzyimntCpekS8iozb8w8rAcVAEWzcU0TuVAYmIiEiHlYwugjHgCndfYGa5wHwzez7cdpO735iEY3QIl112Gfvvvz/nnXde3bpEIsEbb7xBVlbWDmXT0tJ2GF9V/3lMPXv2bNXxMjMz65aj0SixWOMD6/faay8uvvhivvOd71BYWEhJSclOZZqKE3aeznxXpje//fbbefPNN3nyySc54IADmD9/frPl659TJBKpex2JROrO79xzz+WRRx5h33335a677mo0YRw8eDD5+fksWrSI2bNnc/vtt7c6ZpFdFYkH79/e+YPY7DlUl6gFS0RERBrX5i6C7r7W3ReEy1uBJcDgttbbEfXt25dTTz11hy5rRx55JLfcckvd64ULFwIwfPhwFixYAMCCBQv47LPPGq1z+vTpzJ49m3g8TnFxMa+++ipTpkxpdUxPPvkk7g4EXQ+j0Si9e/cmNzeXrVu3thgnwKOPPkpVVRUlJSXMmTOHyZMnt/r4y5Yt48ADD+SXv/wlhYWFrFy5kunTp3PvvfcC8PHHH7NixQpGjRrV6jq3bt3KwIEDqa2traunMTNmzOCGG26gtLSUCRMmtLp+kV0WD2YQzO+dyxrPhy2rUhyQiIiIdFRJHYNlZsOB/YA3w1WXmNkiM/uLmfVpYp8LzWyemc0rLi5urEiHcsUVV+wwm+DNN9/MvHnzmDBhAmPGjKlrSTn55JPZtGkTY8eO5dZbb2XkyJGN1nfSSScxYcIE9t13X4444ghuuOEGBgwY0Op47r77bkaNGsXEiRM566yzuPfee4lGoxx33HE8/PDDTJw4kddee63JOAEmTJjA4YcfztSpU/n5z3/OoEGDgCD5+9a3vsWLL77IkCFDePbZZ4GgW+L28VZXXXUV48ePZ9y4cXz5y19m33335bvf/S6JRILx48czY8YM7rrrrh1arlryX//1Xxx44IEcfPDB7LPPPnXrH3vsMa699tq616eccgr33Xdf3cyJIu0lEq8BoLB3Lmu8gLTy1SmOSERERDoq29760eaKzHKAV4Dr3f0hM+sPbCQYl/VfwEB3P7+5OiZNmuTz5s3bYd2SJUsYPXp0UmKUnTWc7bCr0e+PJMNffvMjzt96O1z9Gf/434s5Ke1fZP9crVgiIiLdmZnNd/edZllLSguWmaUDDwL3uvtDAO6+3t3j7p4A7gBa3+9NRKQDiSSCFiyiGZRnDSA7vhWqkvvICBEREekakjGLoAF3Akvc/bf11g909+1P4zwJeL+tx5LkmzlzZqpDEOnwtncRJC2TmpxBUA2UrYasvJTGJSIiIh1PMmYRPBg4C3jPzBaG634CnG5mEwm6CBYB/5mEY4mI7HaRRA0JjEgkDfIGQwnBw4b7qfupiIiI7KjNCZa7zwUam9e7Tc+8EhHpKKJeQ8zSyTAjo88Q+AzipauJpjowERER6XCSOougiEhXFE3UErd0AHILh5BwY9vGlSmOSkRERDoiJVgiIi2IJmqIR4IEq3+fXErIo3qTZhEUERGRnSnBaqVHHnkEM+PDDz9sskxRURHjxo1L2jE/+ugjDjvsMCZOnMjo0aO58MILgeAhwU891bYemOeffz79+vVLarwiXVXEa4lbBgD987JY631JlK5JcVQiIiLSESnBaqVZs2Yxbdo0Zs2a1ej2WCzW5mPE4/EdXv/gBz/g8ssvZ+HChSxZsoTvf//7QHISrHPPPZdnnnmmTXWIdBdpiVrikSDBGtgrm/Xel7SKtS3sJSIiIt1RMmYR3H2e/jGsey+5dQ4YD8f8qtki5eXlzJ07l5dffpnjjjuOX/ziFwDMmTOHn//85/Tp04cPP/yQ5557jlgsxhlnnMGCBQsYO3Ysf//73+nRowcvvvgiV155JbFYjMmTJ/OHP/yBzMxMhg8fzowZM3j++ee5+uqrOe200+qOu3btWoYMGVL3evz48dTU1HDttddSWVnJ3Llzueaaazj22GP5/ve/z/vvv09tbS0zZ87khBNO4K677uLhhx+mtLSU1atXc+aZZ3LdddcBcMghh1BUVNTseb/yyitceumlAJgZr776Kjk5OVx99dU8/fTTmBk/+9nPmDFjBnPmzOG6666jd+/evPfee5x66qmMHz+e3//+91RWVvLII4+w11578fjjj/Pf//3f1NTUkJ+fz7333kv//v13OO5pp53GWWedxTe+8Q0gSAaPPfZYTjnllNbdU5EkS6OWRNhFsE+PdDZYPtmVn6Q4KhEREemI1ILVCo8++ihHH300I0eOJD8/n/nz59dtW7BgAb///e/5+OOPgaBb33e/+12WLFlCXl4e//d//0dVVRXnnnsus2fP5r333iMWi/GHP/yhro78/HwWLFiwQ3IFcPnll3PEEUdwzDHHcNNNN7FlyxYyMjL45S9/yYwZM1i4cCEzZszg+uuv54gjjuCtt97i5Zdf5qqrrqKiogKAt956iwcffJBFixbxz3/+k3nz5rX6vG+88UZuu+02Fi5cyGuvvUZ2djYPPfQQCxcu5N133+WFF17gqquuYu3a4C/57777LrfffjtLlizh7rvv5uOPP+att97iggsu4JZbbgFg2rRpvPHGG7zzzjucdtpp3HDDDTsdd8aMGdx///0A1NTU8OKLL9YlWyK7WzzhpHstibAFy8yoyCwkO14GtZUpjk5EREQ6ms7VgtVCS1N7mTVrVl1LzmmnncasWbM44IADAJgyZQojRoyoKzt06FAOPvhgAM4880xuvvlmvva1rzFixAhGjhwJwDnnnMNtt93GZZddBgQJRWPOO+88jjrqKJ555hkeffRR/vjHP/Luu+/uVO65557jscce48YbbwSgqqqKFStWAPC1r32N/Px8AL75zW8yd+5cJk2a1KrzPvjgg/nhD3/IGWecwTe/+U2GDBnC3LlzOf3004lGo/Tv359DDz2Ut99+m7y8PCZPnszAgQMB2GuvvTjyyCOBoOXt5ZdfBmDVqlXMmDGDtWvXUlNTs8O12+6YY47h0ksvpbq6mmeeeYZDDjmE7OzsVsUskmy18QQZxEhEM+rW1fQYCKVA2RrI3yt1wYmIiEiHoxasFmzatImXXnqJCy64gOHDh/PrX/+a+++/H3cHoGfPnjuUN7NmXzemYR31DRo0iPPPP59HH32UtLQ03n///Z3KuDsPPvggCxcuZOHChaxYsYLRo0d/4Xi2+/GPf8yf//xnKisrOfjgg5ud4AMgMzOzbjkSidS9jkQidWPUvv/973PJJZfw3nvv8cc//pGqqqqd6snKyuKwww7j2WefZfbs2U0moCK7Q008QabV4mEXQQDLC/6QQJkmuhAREZEdKcFqwQMPPMBZZ53F8uXLKSoqYuXKlYwYMYLXXnut0fIrVqzg9ddfB+Af//gH06ZNY9SoURQVFbF06VIA7r77bg499NAWj/3MM89QW1sLwLp16ygpKWHw4MHk5uaydevWunJHHXUUt9xyS13S984779Rte/7559m0aVPdOKjtrWutsWzZMsaPH8+PfvQjJk+ezIcffsj06dOZPXs28Xic4uJiXn31VaZMmdLqOktLSxk8eDAAf/vb35osN2PGDP7617/y2muvcfTRR7e6fpFkq40FLVherwUrrXfwO+xKsERERKQBJVgtmDVrFieddNIO604++eQmZxMcNWoUt912G6NHj2bz5s1cfPHFZGVl8de//pVvfetbjB8/nkgkwkUXXdTisZ977jnGjRvHvvvuy1FHHcWvf/1rBgwYwOGHH87ixYuZOHEis2fP5uc//zm1tbVMmDCBsWPH8vOf/7yujilTpnDyySczYcIETj755LrugaeffjoHHXQQH330EUOGDOHOO+8E4Pbbb+f2228H4He/+x3jxo1jwoQJpKenc8wxx3DSSScxYcIE9t13X4444ghuuOEGBgwY0OrrOXPmTL71rW9xwAEHUFBQULd+3rx5XHDBBXWvjzzySF555RW++tWvkpGR0VhVIrtFTTxBBrV49PMW2h4FQwHYVqKHDYuIiMiObHurR0cwadIkbzgJw5IlS+q6u8muueuuu5g3bx633nprqkNJGf3+SFutKNlG1e8n0WPwGIb85wMAPPP+Wr78z/2oHTeD/G/9PsURioiISCqY2Xx332lyA7VgiYg0oyYeJ4MY1GvBGtArm3Xel/gWdREUERGRHSnB6sLOPffcbt16JZIMNTEnw2oh7fOuqgN7ZbHO+xIpV4IlIiIiO+oUCVZH6sYonYd+byQZtk/TTtrnLVgFOZmspy+ZlRtSGJmIiIh0RB0+wcrKyqKkpERflmWXuDslJSVkZWWlOhTp5LZPcmH1ughGI0Z5RiE9azZCPJbC6ERERKSjafcHDZvZ0cDvgSjwZ3ffpacFDxkyhFWrVlFcXNwu8UnXlZWVxZAhQ1IdhnRytbEEmcQoT9txNsuqHgOIbE1AxQbIG5Si6ERERKSjadcEy8yiwG3A14BVwNtm9pi7L25tHenp6YwYMaK9QhQRaVZNLE6m1RKp10UQwHMGwlaChw0rwRIREZFQe3cRnAIsdfdP3b0GuA84oZ2PKSKSNLW1NQBYgwTr84cNr97tMYmIiEjH1d4J1mCg/pM4V4Xr6pjZhWY2z8zmqRugiHQ08dpqACLpOyZY2fnBw4arSlbt9phERESk40r5JBfu/id3n+TukwoLC1MdjojIDuK1VcDOCVbvgoFUexrbSlY2tpuIiIh0U+2dYK0GhtZ7PSRcJyLSKcRrtrdg7Tgj5cDe2az3PsQ2qwVLREREPtfeCdbbwN5mNsLMMoDTgMfa+ZgiIkmzvQUr2qAFa0CvLNbRF9u6NhVhiYiISAfVrgmWu8eAS4BngSXA/e7+QXseU0QkmbaPwUprkGD1y81infclY9u6VIQlIiIiHVS7PwfL3Z8Cnmrv44iItIfE9gQrc8cughlpEUrTCulZPR/cwSwV4YmIiEgHk/JJLkREOrK6BKvBGCyAquz+pHsNVG7e3WGJiIhIB6UES0SkGYlY47MIAsRzBgYLZWt2Z0giIiLSgSnBEhFphseCFiyiOydY0V6DggUlWCIiIhJSgiUi0gwPuwiStnOClVWwBwCVJct3Z0giIiLSgSnBEhFphsdqgoVoxk7b+gzYg1qPUrH+s90clYiIiHRUSrBERJpR10WwkRaswX1yWOP5xEqKdm9QIiIi0mEpwRIRaU58+xis9J02De6TzSovJFK2ajcHJSIiIh2VEiwRkebEt3cR3LkFqzAnk3VWSPa21bs5KBEREemolGCJiDTDtidYjXQRNDPKsgaSW7sRaqt2c2QiIiLSESnBEhFpRl2C1cgkFwDVOUOChTK1YomIiIgSLBGRZlmi6RYsgEjvocHCFk3VLiIiIkqwRESa1VILVmbBCABqNhbtpohERESkI1OCJSLSjEiihlrSwazR7b37DyPmEco36FlYIiIiogRLRKRZ0XgNcUtrcvug/FzWej61asESERERlGCJiDQrPVFFTTS7ye1D+mSzmgKsbOVujEpEREQ6KiVYIiLNyEhUUhtpOsHql5vFai8kq0KzCIqIiEgbEywz+7WZfWhmi8zsYTPrHa4fbmaVZrYw/Lk9KdGKiOxmGYlKYmk9mtwejRilmQPJqSmGWM1ujExEREQ6ora2YD0PjHP3CcDHwDX1ti1z94nhz0VtPI6IyG4XTzjZXkW8mQQLoCZnMBEcylbtpshERESko2pTguXuz7l7LHz5BjCk7SGJiHQM22pi9LQq4mk9my3nvfcIFrZoHJaIiEh3l8wxWOcDT9d7PcLM3jGzV8xselM7mdmFZjbPzOYVFxcnMRwRkbaprInTgyoS6c23YGXkDwcgtkkPGxYREenump57OGRmLwADGtn0U3d/NCzzUyAG3BtuWwvs4e4lZnYA8IiZjXX3soaVuPufgD8BTJo0yb/YaYiIJN+2mjg9rJp4RvMtWHn9hxF3o3z9MnrvntBERESkg2oxwXL3rza33czOBY4FvuLuHu5TDVSHy/PNbBkwEpjX1oBFRHaXbTVxBlJFWQsJ1uD8PNbRl/QStWCJiIh0d22dRfBo4GrgeHffVm99oZlFw+U9gb2BT9tyLBGR3a2yNkYPqrDMnGbLDendg1VeiG1ZsZsiExERkY6qrWOwbgVygecbTMd+CLDIzBYCDwAXufumNh5LRGS3qqysJNNiRFtIsAb0ymKNF5BRsWY3RSYiIiIdVYtdBJvj7l9qYv2DwINtqVtEJNWqK8sBiGQ1n2BlpEXYkj6AnOrXIR6DaJs+WkVERKQTS+YsgiIiXUpleSkAmdm5LZat7jmQKHHYura9wxIREZEOTAmWiEgTqiqCiU+zeua1WDbRa2iwUKqHDYuIiHRnSrBERJpQW74ZgKycvi2WTc8fBkBCE12IiIh0a0qwRESa4BUbAYjkFrZYNqffcADKN3zWniGJiIhIB6eR2CIiTYhUBgkWPQpaLDuwoC8bPQ8vLmrfoERERKRDUwuWiEgT0qpKgoWeLSdYQ/pks8bzSWxZ2c5RiYiISEemBEtEpAkZVZuosixIz26x7KDe2az2AtLLV++GyERERKSjUoIlItKEjJrNVKT1aVXZHhlplKT1J6dyLbi3c2QiIiLSUSnBEhFpRCLh9IhtoTqz5RkEt9uWPYgMr4LKze0YmYiIiHRkSrBERBpRUlFDIVuIZ+W3ep9E7uBgQVO1i4iIdFtKsEREGrG+tJKhtoF472Gt3ifaNyjrSrBERES6LSVYIiKNWLt2NTlWRWbhnq3eJ6swSLAqNVW7iIhIt6UES0SkEaVrPgagz+BRrd6nV9/+VHgm1SVqwRIREemulGCJiDSiesNSALL67dXqfQpzs1jjBcT1LCwREZFuSwmWiEgjsjZ9RIw06Dui1fv0y8tkg/fGyje0Y2QiIiLSkbUpwTKzmWa22swWhj9fr7ftGjNbamYfmdlRbQ9VRGT3qIklGFixhOIeX4K0zFbvV5ibSTG9SKssbsfoREREpCNLS0IdN7n7jfVXmNkY4DRgLDAIeMHMRrp7PAnHExFpV0vWlDLWPqW0/7G7tF9uZhqbrQ/Z1e+0U2QiIiLS0bVXF8ETgPvcvdrdPwOWAlPa6VgiIklVtPhNetk2cr/05V3az8yozMwnI1EJ1eXtFJ2IiIh0ZMlIsC4xs0Vm9hcz6xOuGwzUH+W9Kly3EzO70Mzmmdm84mJ1qxGR1Kv88HkAeo/f9d7NtVmFwUL5+mSGJCIiIp1EiwmWmb1gZu838nMC8AdgL2AisBb4za4G4O5/cvdJ7j6psLBwV3cXEUmq0spaRm56hfXZX8LyBu16BTn9g3+VYImIiHRLLY7BcvevtqYiM7sDeCJ8uRoYWm/zkHCdiEiH9vq8eRwd+YTVY67+QvtH8gYGf25SgiUiItIttXUWwYH1Xp4EvB8uPwacZmaZZjYC2Bt4qy3HEhHZHSpf/zNxIgycdvYX2j+rT/CxWFu2LplhiYiISCfR1lkEbzCziYADRcB/Arj7B2Z2P7AYiAHf0wyCItLRvfvxp3yl4ilW9j+C4X2GtrxDI3L7FFLrUao2rSU9yfGJiIhIx9emBMvdz2pm2/XA9W2pX0Rkd3F3Vj8yk3FWRdrxv/jC9RTmZbORXmRsWZvE6ERERKSzaK9p2kVEOpXX3niDr1U8wbKhJ9NjyLgvXE9hbibF3gvfqi6CIiIi3ZESLBHp9mpiCSIvXEuNZbDnKf/dproKcjIp9t5EtumxEyIiIt2REiwR6fZeeOoBpsXfYt2E75LWa0Cb6srPyaDYe5FRpQRLRESkO1KCJSLdWmlFNcMX/A8bo/3Y89gr21xfZlqUrWl9yK7ZDIlEEiIUERGRzqStswiKiHRqrzxwC8fzGasOvRnL6JGUOqszC4hWx6FyE/QsSEqdHdXWympWryxi69ql1JYUEd+6Hq8oIVq1iayazfSMl5KRqCTda0j3GjK8hnRqwMEtgmMkiOAWIUGEuKURI424pROPpJOwNBKRNBKRDDySjkfSgn+jGRBNh0g6Fs3A0oLXHkknsf3H0nZ6nYikYRYB9/AMHNxxCNbVW/Zwe/A6EezScLtvLxWWaWRbuBUL/93+T93rBv9a3X6NlzNvuF+Dct7geLvKvthuLVfbThW3k3aLth0qruk5kAO/8R9kZehrnUhHoHeiiHRbqzdsZMqnt7Gixz7sMa3JSVF3WaxHIVQD5Ru6RILl7hRvLmP5xwspXb4I27CY3ls/Ib9mNQO9mH2sdofytUQptV5sjfSmPJpHRUZvEtEMEpFMEmlZEM3ALIInEuBxEuG/JOJYopZIopaIx4J/E7VEamNEvIqobyXNa4l4nDRqSSdGepCOkU6MjPB11L5gYiHSib1YG+Mrp34v1WGICEqwRKQbW/DgjRxnm9h47F8gkrwe05bTDzYDFRuAMUmrd3cp3VbNRx8sYNNH/yZ97XyGVrzPCF9FPwseZ1hLGmvThlLaaySb875Kev4IevTfk5z+e9Kr/1Aye/SmwIz2Ti3dnZp4gupYguraBFvjCdwdEnFI1EKsFkvUQqIWi9cEy/F6yaAZ7mBmmBG0bAEWMQwL1oflgu311htABML1kbDs9n3DAsF+9V7XNV+08bXXtYI0Vb7B9lbyTpabtle8/kVb/1qqt12qdTbc8jXGLv4tVdvOIatHTnscRER2gRKsZiRiMSorK+iZ2yvVoYhIkn2yah1fXncPn/Y6kD3HHp7UuqN5/YKF8s4x0UVpRQ2L3vk3ZYtfpO+G1xldu5gpVgFAufVkdc4YFhd8hR5DJzDgSweQO2Q0e0RT/xhlMyMzLUpmWhSyUh2NSOpUHfFfjHj2dN6cdS0H/sdvUx2OSLenBKsZC56+kxHzr+eDkRcw4cQf6q9CIl3Ikkdu5HjbSsbxM5Ned3bvgQDUlK0jI+m1t11NLMF7H35I8YIn6LF6LmOq3mG6lQGwLm0wqwd+jY3DpzJo/CHkDBzNqCS27olI8o0+6Ou89e+vsd+Ku1jz8ZkMGrl/qkMS6daUYDWj15DRrHlvBFM+/g2bbriDhQOPY+gRFzJ474mpDk1E2mDVmjVML57Fst4HsdeXvpz0+nN7F1Dt6VRvWt1hEqyNW6uY/9Zctr33BHttfpUDbBkAmyN9WNfvy5SN/ApDDziKAX2H0baJ6kUkFYZ9+3dU3D6VmvvPp+aHr5HRIzfVIYl0W0qwmrH3fofgE+fw/r+fovbf/8cBa+4j/d57WRUZxLqCL5O216EM3mcKBUP3xiLRdokhkXAqq2uorNhKdWU5NZVbqamsIFZVTm1VOfHqCuLVFXjNNhLV26C2AmorsdptEK+qG4Oww6BxjxENB4pHE7VEiRH1GBGPYyQwD+b1MrzeMkQIppyObN+GEwn/3f6zXcO5rRrTWFd0b7Lszuub7sreWNm2xVB/XeeaB0sak0sNOWwjfmzbHirclMK8LFZ7Pn02r2iX+lvr03WbWPz6M0Q+fpoJ2/7NUbYRgBU9x/Lxnj9k0JQT6TN0An1Mv9UinV3/gUN44+DfMvlfF/LB/81g3KUPE0nPTHVYzXJ3qmtqqCjbRGXZZqrKN1NdvoXabaXEKrcQrywjXr0NaishVkUkVoXFq4nEq4jEq4jGa4gmqkhL1BDxOBHiwb+e+HyZONHtr0kQJU6Uxh6h0dTsnfXW7cIYurqi1nB9U5+3rf+esyvfU3bl+1PjsbXPd7hd9XjkCIad8j98dUz/Nte1OyjBaoGZMe7gb8DB32D9mhUsm3M3WctfZsz6x+mx4QF4HSo8i43RQioyCtmWVUgiPRdPz4b07GBq4e2Drj2YKcsTMaKxKiKxbURilURjlUTjVaQlqkiPV5Lh1WR6FVleRTY19LRaeu5CzAk3qsig2jLC6Y7TiFka8brlYLriuKVRE+1RNxWyWxSPRMOB3oaH/2JBKhWs+3y9N1gPRv3vacGQb6fR726NjPTd8QOh/vpG3sZNjBTepWmJfecP2NZ/jGxf3/KHxhcb07yLe32Bg3TksezBxAPte4zE8EOZuvekdqm7MCeTNZ5P39LV7VJ/UxIJZ9HS5ax481Fylz/HAbXzOdYqqSKT1fkHsnrssQyacgJ75KqNSqQrmnrkqcwt/oRpn9zAB787jj0v/AfZvXbfTKbuTnl1jA0lm9iyYRVVm9ZQW7YOL1tHZNsGMio3kF1dQk6shLz4FnK8gh5W3aohlDUepcYyqCaDGsug1jKptQxqI5nELYPaaFbwPSb8SVgUwn/d0iASwS2t7ntOs8lEs5PEtOZ/Ts18b2h0U+PpSuNV7ELZBo+GgM+/JzXcwxqpuunvVO30vawZ2TljKczt2H8wqM+8A00ZNGnSJJ83b16qw2iVqsptfPr+G5QWLcSKl5BWvoae1cX0jpeQ7VVkUU1Wg6mLt4t5hEoyqbZMqiyL2kgWNZEsYpEsYtFs4mnZJNKy8bRsPL0Hlt4Dy+yBZfQkktGDaGYOaZk9iGblkJ6VQ0Z28JOZ3ZPMHrlkZvXANGZCJGXWl1Xxyg2ncmzPJfS45pN2PVZlTZz5CxewecGjDFj/MvslFpNmCbZE+rBh4GH03f9ECsYfCUl6xpeIdHwv33sD0z7+FVsivVi3/w8Zc9R3iGa0bSaYqppaNm5Yy+YNq6jYuJrqLauJl60nUrGejMqN9KzZSF58EwVsIdcqd9o/RoTN1oeyaF/KM/KpycwnkdkLy8rFsnoRyc4jmt2b9B69yczpTVZOb3rk9qFHTvi9pgNMrCPSkJnNd/ed/lqrBKsd1dTGSNRWEY1GiUaiRKJp4Zy96o4j0pXVxhPcdt1/cGnaw9jPNkBackdibdhSwcI3XyS2+Em+tGUuI20VAGsyRlA+/KsMOvAUckZMSerU8yLSuSx8cw5Zz17BPomllJPNJ7lTSQzaj/T+I8npXUgkMzfokRKvpqaqiuqKLcS2FlNbVkyivBjbVkJG9UZ61pTQO7GJvl5KeviohvoqyKY02peKjHxqsgpJ9OxPNK8/Gb0Hkd1nID0KBpObP4S0nAJ9JkmX01SCpS6C7SgjPQ3SNfOgSHeTHo1QkT0Yq3XYshwK9m5TfdWxOIs+/Jj1C58le+WrTKh6myOtjBhRVuRN5NNR5zLkwJMZVLhnks5ARDq7iQceRuyAt3jz5YeJvf8we5f+m34fvQwftbxvrUcptTy2pvWhIrOA1dmjWNWzH5G8AWT2GUROwWD6FA4lp2AQPTNzdmkYg0h30KYEy8xmA6PCl72BLe4+0cyGA0v4/G38hrtf1JZjiYh0JlUF42AtsHrBLidY8YTzUdEKlr/zEvbZK+y5dR6TbSUAZZbHun5Tqdn3eAYdcCx7Zvdph+hFpCtIS4ty4NdOga+dgruzZu1qStd8RPmWTURrywEnbplkZGWR2aMXWb0K6V0wiF598imIRNr9YeEiXVWbEix3n7F92cx+A5TW27zM3Se2pX4Rkc6q59BxVKzJJHPFW6TtO6PJcu7O+s3lLP9oAWWfvE7muvkMqfiAMbaaMUA1GazK25dPRpzGoP2PJm+P/clTNxsR2UVmxqBBQxg0aEiqQxHp8pLSRdDMDDgVOCIZ9YmIdHZT9+rHvNdHMeWDx0g7ciaekcOGzaWsKfqY0tUfkli3mKzNH1K4bRnDfDUDwrENpZbH2l7jWDzoZAaOO4Q+o6azV3rbBqeLiIjI7pOsMVjTgfXuXn+6rBFm9g5QBvzM3V9L0rFERDq86XsXclXetzm04sds+39fYptn0t9Kqf8Ejw2RQkpy9uKjgiPoMXRfBo6ZRq8Be9NLE+GIiIh0Wi0mWGb2AtDYQ1N+6u6PhsunA7PqbVsL7OHuJWZ2APCImY1197JG6r8QuBBgjz322NX4RUQ6pGjEuOrCc7nniSyGF79Mdhqs7D2Y7H57kj9kFPnDx9OvRx/6pTpQERERSao2T9NuZmnAauAAd1/VRJk5wJXu3uwc7F1tmnYREREREemampqmPRkjpb8KfFg/uTKzQjOLhst7AnsDnybhWCIiIiIiIh1WMsZgncaO3QMBDgF+aWa1QAK4yN03JeFYIiIiIiIiHVabEyx3P7eRdQ8CD7a1bhERERERkc6kzWOwksnMioHlqY6jgQJgY6qDkN1G97v70L3uPnSvuxfd7+5D97p76Yj3e5i7FzZc2aESrI7IzOY1NnhNuibd7+5D97r70L3uXnS/uw/d6+6lM93vZExyISIiIiIiIijBEhERERERSRolWC37U6oDkN1K97v70L3uPnSvuxfd7+5D97p76TT3W2OwREREREREkkQtWCIiIiIiIkmiBEtERERERCRJlGA1w8yONrOPzGypmf041fFI8pjZUDN72cwWm9kHZnZpuL6vmT1vZp+E//ZJdaySHGYWNbN3zOyJ8PUIM3szfH/PNrOMVMcoyWFmvc3sATP70MyWmNlBem93TWZ2efgZ/r6ZzTKzLL23uw4z+4uZbTCz9+uta/S9bIGbw/u+yMz2T13ksquauNe/Dj/HF5nZw2bWu962a8J7/ZGZHZWSoJuhBKsJZhYFbgOOAcYAp5vZmNRGJUkUA65w9zHAVOB74f39MfCiu+8NvBi+lq7hUmBJvdf/C9zk7l8CNgP/kZKopD38HnjG3fcB9iW473pvdzFmNhj4ATDJ3ccBUeA09N7uSu4Cjm6wrqn38jHA3uHPhcAfdlOMkhx3sfO9fh4Y5+4TgI+BawDC72unAWPDff4v/N7eYSjBatoUYKm7f+ruNcB9wAkpjkmSxN3XuvuCcHkrwRewwQT3+G9hsb8BJ6YkQEkqMxsCfAP4c/jagCOAB8IiutddhJn1Ag4B7gRw9xp334Le211VGpBtZmlAD2Atem93Ge7+KrCpweqm3ssnAH/3wBtAbzMbuFsClTZr7F67+3PuHgtfvgEMCZdPAO5z92p3/wxYSvC9vcNQgtW0wcDKeq9XheukizGz4cB+wJtAf3dfG25aB/RPVVySVL8DrgYS4et8YEu9D269v7uOEUAx8NewS+ifzawnem93Oe6+GrgRWEGQWJUC89F7u6tr6r2s721d2/nA0+Fyh7/XSrCkWzOzHOBB4DJ3L6u/zYNnGOg5Bp2cmR0LbHD3+amORXaLNGB/4A/uvh9QQYPugHpvdw3h2JsTCJLqQUBPdu5iJF2Y3svdg5n9lGBox72pjqW1lGA1bTUwtN7rIeE66SLMLJ0gubrX3R8KV6/f3qUg/HdDquKTpDkYON7Migi6+h5BMEand9itCPT+7kpWAavc/c3w9QMECZfe213PV4HP3L3Y3WuBhwje73pvd21NvZf1va0LMrNzgWOBM/zzh/d2+HutBKtpbwN7h7MRZRAMpnssxTFJkoRjcO4Elrj7b+ttegw4J1w+B3h0d8cmyeXu17j7EHcfTvA+fsndzwBeBk4Ji+ledxHuvg5YaWajwlVfARaj93ZXtAKYamY9ws/07fda7+2uran38mPA2eFsglOB0npdCaUTMrOjCbr3H+/u2+ptegw4zcwyzWwEwcQmb6UixqbY58mgNGRmXycYuxEF/uLu16c2IkkWM5sGvAa8x+fjcn5CMA7rfmAPYDlwqrs3HGArnZSZHQZc6e7HmtmeBC1afYF3gDPdvTqF4UmSmNlEgglNMoBPgfMI/qCo93YXY2a/AGYQdB96B7iAYCyG3ttdgJnNAg4DCoD1wHXAIzTyXg6T7FsJuoluA85z93kpCFu+gCbu9TVAJlASFnvD3S8Ky/+UYFxWjGCYx9MN60wlJVgiIiIiIiJJoi6CIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUi0kGY2XAzczNLS3UsXZ2ZnWtmc1MdR0djZtPN7KNUxyEi0pkpwRIRkU7NzGaaWa2Zldf7uTrVcXVG7v6au49Kdr3hHw4q6t2fPyf7GCIiHYX+SioikiRmlubusVTH0U3NdvczUx1Ee+kiv1v7uvvSVAchItLe1IIlItIGZlZkZj8ys0VAhZmlmdlUM/u3mW0xs3fN7LB65eeY2f8zs7fMrMzMHjWzvk3UfZ6ZLTGzrWb2qZn9Z4PtJ5jZwrCeZWZ2dLi+l5ndaWZrzWy1mf23mUVbOI+9zOwlMysxs41mdq+Z9a63bZOZ7R++HmRmxdvPy8yON7MPwvOdY2ajG1yfK81skZmVmtlsM8va9Su968zsx+F12Wpmi83spCbKmZndZGYbwmv5npmNC7dlmtmNZrbCzNab2e1mlt3K498Vln8+jOEVMxtWb/vvzWxleMz5Zja93raZZvaAmd1jZmXAuWY2xcxeD6/zWjO71cwy6u3jZvZdM/skPN5/hffu3+Ex7q9fvomYDzOzVa05PxERaZwSLBGRtjsd+AbQG+gPPAn8N9AXuBJ40MwK65U/GzgfGAjEgJubqHcDcCyQB5wH3FQvyZkC/B24KjzuIUBRuN9dYb1fAvYDjgQuaOEcDPh/wCBgNDAUmAng7suAHwH3mFkP4K/A39x9jpmNBGYBlwGFwFPA4w2+yJ8KHA2MACYA5zYagNm0MHlo6mdaC+fQ0DJgOtAL+EUY/8BGyh1JcP1GhmVPBUrCbb8K108kuJ6DgWt3IYYzgP8CCoCFwL31tr0d1tsX+AfwzwbJ5wnAAwT3914gDlwe1nUQ8BXguw2OdxRwADAVuBr4E3Amwf0cR/C7+oWFiXJT9+f/Wtj9VTNbZ2YPmdnwtsQhItKRKcESEWm7m919pbtXEnyZfcrdn3L3hLs/D8wDvl6v/N3u/r67VwA/B05trIXJ3Z9092UeeAV4jiBhAPgP4C/u/nx4nNXu/qGZ9Q+PdZm7V7j7BuAm4LTmTsDdl4Z1Vbt7MfBb4NB62+8AlgJvEiSGPw03zQCeDPetBW4EsoEvN7g+a9x9E/A4QVLRWAxz3b13Mz/NTUpxaoMv+4Pc/Z/hcRPuPhv4BJjSyL61QC6wD2DuvsTd15qZARcCl7v7JnffCvxPS9eygSfd/VV3rya4ZgeZ2dDwfO9x9xJ3j7n7b4BMoP74p9fd/ZEw/kp3n+/ub4Tli4A/Uu8ehW5w9zJ3/wB4H3jO3T9191LgaYKE+wtz9wnN3J+GyV59hwLDCa7xGuAJ02QuItJF6cNNRKTtVtZbHgZ8y8yOq7cuHXi5ifLLw+0FDSs1s2OA6whaUCJAD+C9cPNQgtaihoaF9a0N8gMI913ZSNn6x+oP/J4ggcsN99ncoNgdwGPAhWHCAEGL1/LtBdw9YWYrCVp6tltXb3lbuE+y3d9wDJaZnQ38kOCLPUAOjVxnd3/JzG4FbgOGmdlDBC2PWQTXfH69a2lAs90tG6i77u5ebmabCM5/pZldSZAoDwKcoKWyoLF9w/MZSZD4TgrjSgPmNzje+nrLlY28HrALsSeNu78aLtaY2aVAGUFL6XtN7yUi0jmpBUtEpO283vJKghaq+n/Z7+nuv6pXZmi95T0IWlA21q/QzDKBBwlahPq7e2+ChGr7N/2VwF6NxLISqAYK6h0/z93HtnAO/xOex3h3zyNoifs8qzDLAX4H3AnMtM/Hja0hSOq2l7Pw/Fa3cLydWDBFeHkzP9NbrqWurmEECeElQH54/d6vf071ufvN7n4AMIYgob2K4J5UAmPrXcte7p6zC6dVd6/Da9gXWBOey9UE3RH7hPGVNoiv/u8VwB+AD4G9w3v0k6bOp71YMNauqftz+y5U5ezm2EVEdhclWCIiyXUPcJyZHWVmUTPLCicOGFKvzJlmNiYcz/RL4AF3jzeoJ4Ogy1gxEAtbs46st/1O4Dwz+4qZRcxssJnt4+5rCboS/sbM8sJte5lZw65kDeUC5UCpmQ0mSDDq+z0wz90vIBhjtv3L9P3AN8I40oErCBK8f7d0oRoKpwjPaebntV2orifBl/hiCCYMIRiDtBMzm2xmB4bxVwBVQMLdEwRJ2k1m1i8sO9jMjqq3r1u9SUwa8fVwbFkGwVisN9x9JcH1joXxpZnZtQQtWM3JJWj5KTezfYCLWyifdO4+tpn7c1Fj+5jZWDObGL4fcoDfECTgS3Zr8CIiu4kSLBGRJAq/PJ9A0LpQTNCidBU7ft7eTTARxTqCbmg/aKSereH6+wm66n2boHve9u1vEU58QdDy8QqftySdTZCgLQ73fYBg3FRzfgHsH9b1JPDQ9g1mdgLBJBXbv9D/ENjfzM5w948IWrtuIWjxOQ44zt1rWjheu3L3xQRf5F8n6CY3HvhXE8XzCBKpzQTdHUuAX4fbfkQw9uwNC2bze4FwnFQ4lmorzXdz+wdBN89NBJNPbO/G+CzwDPBxeMwqWujGSdBt8dvhMe8AZrdQvqPoTxBrGfApQZfNY8MxeyIiXY65N+yBICIi7cXM5gD3uLsetNrJmdmZBN0Hr2li+13AKnf/2W4NTEREUkqTXIiIiHwB7n5PqmMQEZGOR10ERUS6CQseetvWyQmkkzOznzTxe/B0qmMTEekK1EVQREREREQkSdSCJSIiIiIikiQdagxWQUGBDx8+PNVhiIiIiIiINGv+/Pkb3b2w4foOlWANHz6cefPmpToMERERERGRZpnZ8sbWq4ugiIiIiIhIkijBEhERERERSRIlWCIijdAMqyIiIvJFdKgxWI2pra1l1apVVFVVpToU6WSysrIYMmQI6enpqQ5FOpl/L93IfX+7jf8869uMHbl3qsMRERGRTqTDJ1irVq0iNzeX4cOHY2apDkc6CXenpKSEVatWMWLEiFSHI53Ms+8s5ebob6m4/6/ws6JUhyMiIiKdSIfvIlhVVUV+fr6SK9klZkZ+fr5aPuWLKd8AQM/YZqgqS3EwIiIi0pl0+AQLUHIlX4h+b+SLsm3Fn78o/jB1gYiIiEin0ykSLBGR3SmtcmPdcvmqD1IYiYiIiHQ2SrBawcy44oor6l7feOONzJw5M3UB1fPGG29w4IEHMnHiREaPHl0X15w5c/j3v//9hetdvnw5+++/PxMnTmTs2LHcfvvtSYpYpOPLqt5ct1y2anEKIxEREZHOpsNPctERZGZm8tBDD3HNNddQUFCQtHrdHXcnEvniee4555zD/fffz7777ks8Huejjz4CggQrJyeHL3/5y1+o3oEDB/L666+TmZlJeXk548aN4/jjj2fQoEFfOFaRziIvESRYSxOD6LHx4xRHIyIiIp2JWrBaIS0tjQsvvJCbbrppp23FxcWcfPLJTJ48mcmTJ/Ovf/0LgJkzZ3LjjTfWlRs3bhxFRUUUFRUxatQozj77bMaNG8fKlSu56qqrGDduHOPHj2f27NlAkCAddthhnHLKKeyzzz6cccYZjT6XZ8OGDQwcOBCAaDTKmDFjKCoq4vbbb+emm25i4sSJvPbaa83GedZZZ3HQQQex9957c8cddwCQkZFBZmYmANXV1SQSiUavzc0338yYMWOYMGECp512GgCbNm3ixBNPZMKECUydOpVFixbVHeucc85h+vTpDBs2jIceeoirr76a8ePHc/TRR1NbWwvAL3/5SyZPnsy4ceO48MILdzrvRCLB8OHD2bJlS926vffem/Xr1zd3G0VarVdiCxXRPD7zgaRvXZ3qcERERKQT6VQtWL94/AMWr0nujF5jBuVx3XFjWyz3ve99jwkTJnD11VfvsP7SSy/l8ssvZ9q0aaxYsYKjjjqKJUuWNFvXJ598wt/+9jemTp3Kgw8+yMKFC3n33XfZuHEjkydP5pBDDgHgnXfe4YMPPmDQoEEcfPDB/Otf/2LatGk71HX55ZczatQoDjvsMI4++mjOOecchg8fzkUXXUROTg5XXnklAN/+9rebjHPRokW88cYbVFRUsN9++/GNb3yDQYMGsXLlSr7xjW+wdOlSfv3rXzfaevWrX/2Kzz77jMzMzLqE57rrrmO//fbjkUce4aWXXuLss89m4cKFACxbtoyXX36ZxYsXc9BBB/Hggw9yww03cNJJJ/Hkk09y4okncskll3DttdcCcNZZZ/HEE09w3HHH1R0zEolwwgkn8PDDD3Peeefx5ptvMmzYMPr379/ifRRpjVzfSlVaHlu8Hz2rPkp1OCIiItKJqAWrlfLy8jj77LO5+eabd1j/wgsvcMkllzBx4kSOP/54ysrKKC8vb7auYcOGMXXqVADmzp3L6aefTjQapX///hx66KG8/fbbAEyZMoUhQ4YQiUSYOHEiRUVFO9V17bXXMm/ePI488kj+8Y9/cPTRRzd6zObiPOGEE8jOzqagoIDDDz+ct956C4ChQ4eyaNEili5dyt/+9rdGW4gmTJjAGWecwT333ENaWlrdOZ111lkAHHHEEZSUlFBWFiTGxxxzDOnp6YwfP554PF4X7/jx4+vO7+WXX+bAAw9k/PjxvPTSS3zwwc6TDMyYMaOute++++5jxowZzV5zkV2R5rXEI5lU9hhEj0S5pmoXERGRVutULVitaWlqT5dddhn7778/5513Xt26RCLBG2+8QVZW1g5l09LSduhWV/95TD179mzV8bZ30YOg+18sFmu03F577cXFF1/Md77zHQoLCykpKdmpTFNxws7TmTd8PWjQIMaNG8drr73GKaecssO2J598kldffZXHH3+c66+/nvfee69V5xSJREhPT687ViQSIRaLUVVVxXe/+13mzZvH0KFDmTlzZqPPsjrooINYunQpxcXFPPLII/zsZz9r9rgiuyItUUsiko73GgLlQNlqyMpLdVgiIiLSCbS5BcvMhprZy2a22Mw+MLNLw/UzzWy1mS0Mf77e9nBTq2/fvpx66qnceeeddeuOPPJIbrnllrrX27vCDR8+nAULFgCwYMECPvvss0brnD59OrNnzyYej1NcXMyrr77KlClTWh3Tk08+WTdG6ZNPPiEajdK7d29yc3PZunVri3ECPProo1RVVVFSUsKcOXOYPHkyq1atorKyEoDNmzczd+5cRo0atcOxE4kEK1eu5PDDD+d///d/KS0tpby8nOnTp3PvvfcCwViygoIC8vJa9+V0ezJVUFBAeXk5DzzwQKPlzIyTTjqJH/7wh4wePZr8/PxW1S/SknjCSSOGRzJI7zsUgNim5SmOSkRERDqLZHQRjAFXuPsYYCrwPTMbE267yd0nhj9PJeFYKXfFFVewcePnz8i5+eabmTdvHhMmTGDMmDF105mffPLJbNq0ibFjx3LrrbcycuTIRus76aSTmDBhAvvuuy9HHHEEN9xwAwMGDGh1PHfffTejRo1i4sSJnHXWWdx7771Eo1GOO+44Hn744bpJLpqKE4JufocffjhTp07l5z//OYMGDWLJkiUceOCB7Lvvvhx66KFceeWVjB8/HoALLriAefPmEY/H/397dx5fVX3nf/z1uUvuzUY2EpaEJSgoSlg0ohVRoG4drdYV+6u2yFTHbk79/WZ+3a3aXx/T1rYz8xtt/emotFMH16n66GKlLlU6biCoKIugAQIBQgJkv+v398e9CSEkYckNl5u8n4/HfeSc7znn+/2EkxPOJ99zvl+uv/56qqqqmDVrFrfeeiuFhYXccccdrFy5kunTp/PNb36TX/3qV4f9/RQWFnLTTTcxbdo0LrroIs4444yubffdd98BcS9cuJDf/OY3ejxQUioSixOwCHFvFjmlEwFo3lWT1phEREQkc1hvI9MNqEKzZ4B7gDlAi3Pup4c4pEt1dbVbsWLFAWVr165l6tSpKY1R9rvjjjsOGAxjqNHPjxypfe0RPvqnsygtLePD8x/inEdPZfeMv2PMlf+U7tBERETkOGJmK51z1T3LUzrIhZlNBGYBbySLvmpm75rZQ2ZW1McxN5vZCjNbUV9fn8pwRESOWCQWx08U5/EzujCXHa6Y+J6t6Q5LREREMkTKEiwzywOeAr7unGsCfgmcAMwE6oCf9Xacc+5+51y1c666tLQ0VeHIYbrjjjuGbO+VyNGIxOJkEcF5sxhTEGQ7JXiaa9MdloiIiGSIlCRYZuYnkVw94pz7LwDn3E7nXMw5FwceAA5/5AYRkTQJR+NkEQVvgIJsPzsYSXZbXbrDEhERkQyRilEEDXgQWOuc+3m38jHddrsCWDPQtkREBlskFsdvUfBmYWY0B0aRH94F8Vi6QxMREZEMkIp5sOYANwDvmdnqZNm3gc+a2UzAATXA36WgLRGRQRWOOgqI0O7LAiCUPRpvJA6t9ZB/+CN8ioiIyPA04ATLObccsF42DYlh2UVkeInE4gSI0pFMsOL5Y6GJxGTDSrBERETkEFI6iuBQ9vTTT2NmrFu3rs99ampqmDZtWsraXL9+PfPmzWPmzJlMnTqVm2++GUhMEvyHPxx9/trR0cHs2bOZMWMGp556Kt///vdTFbJIxgsnRxE0bwAAX1E5APF929MZloiIiGQIJViHaenSpZxzzjksXbq01+3RaHTAbcRiB77jceutt3LbbbexevVq1q5dy9e+9jVg4AlWIBDgxRdf5J133mH16tU899xzvP766wOKXWSoiEQTowiaL5FgZRePA6Btt4ZqFxERkUNTgnUYWlpaWL58OQ8++CCPPvpoV/nLL7/M3LlzueyyyzjllFOARKL1uc99jqlTp3L11VfT1tYGwAsvvMCsWbOoqqpi8eLFhEIhACZOnMg3vvENTjvtNJ544okD2q2rq6OioqJrvaqqinA4zO23385jjz3GzJkzeeyxx2htbWXx4sXMnj2bWbNm8cwzzwCwZMkSLr/8cubNm8fkyZO58847ATAz8vLyAIhEIkQiERJjlRzoiSeeYNq0acyYMYNzzz0XSPR+3XjjjVRVVTFr1ixeeumlrrY+85nPcMEFFzBx4kTuuecefv7znzNr1izOOussGhsbAXjggQc444wzmDFjBldddVXXv093Z511Fu+//37X+rx58+g5AbXIYIlEwnjNYf7EI4KFpWMIOy/tDVvSHJmIiIhkglQMcnHs/PGbsOO91NY5ugo+9aN+d3nmmWe4+OKLmTJlCiUlJaxcuZLTTz8dgLfffps1a9ZQWVlJTU0N69ev58EHH2TOnDksXryYX/ziF3z1q19l0aJFvPDCC0yZMoXPf/7z/PKXv+TrX/86ACUlJbz99tsHtXvbbbexYMECzj77bC688EJuvPFGCgsLueuuu1ixYgX33HMPAN/+9rdZsGABDz30EHv37mX27Nmcf/75ALz55pusWbOGnJwczjjjDC655BKqq6uJxWKcfvrpbNy4ka985SuceeaZB7V/11138ac//Yny8nL27t0LwL333ouZ8d5777Fu3TouvPBCNmzYAMCaNWtYtWoVHR0dnHjiifz4xz9m1apV3Hbbbfz617/m61//OldeeSU33XQTAN/97nd58MEHu3rmOi1cuJDHH3+cO++8k7q6Ourq6qiuPmiSbJFBEQkn/vjhSfZgjS7MZRdFePduS2dYIiIikiHUg3UYli5dynXXXQfAddddd8BjgrNnz6aysrJrfdy4ccyZMweA66+/nuXLl7N+/XoqKyuZMmUKAF/4whd45ZVXuo5ZuHBhr+3eeOONrF27lmuuuYaXX36Zs846q6vnq7vnn3+eH/3oR8ycOZN58+bR0dHBli2Jv7ZfcMEFlJSUkJ2dzZVXXsny5csB8Hq9rF69mtra2q4krKc5c+awaNEiHnjgga7HF5cvX871118PwMknn8yECRO6Eqz58+eTn59PaWkpBQUFfPrTnwYSPW81NTVAIgmbO3cuVVVVPPLIIwf0VHW69tprefLJJwF4/PHHufrqq3v99xEZDLFIMsHyJxKsMQVB6lwx1qy5sEREROTQMqsH6xA9TYOhsbGRF198kffeew8zIxaLYWbcfffdAOTm5h6wf89H7Xp79K6nnnV0N3bsWBYvXszixYuZNm1ar4mQc46nnnqKk0466YDyN95445DxFBYWMn/+fJ577rmDBui47777eOONN/j973/P6aefzsqVK/v9PgKBQNeyx+PpWvd4PF3vqC1atIinn36aGTNmsGTJEl5++eWD6ikvL6ekpIR3332Xxx57jPvuu6/fdkVSKR7pAPb3YI3MC/CWK+GEttp0hiUiIiIZQj1Yh/Dkk09yww03sHnzZmpqati6dSuVlZW8+uqrve6/ZcsWXnvtNQD+8z//k3POOYeTTjqJmpoaNm7cCMB//Md/cN555x2y7eeee45IJALAjh07aGhooLy8nPz8fJqbm7v2u+iii/i3f/s3nHMArFq1qmvbsmXLaGxspL29naeffpo5c+ZQX1/f9chfe3s7y5Yt4+STTz6o/U2bNnHmmWdy1113UVpaytatW5k7dy6PPPIIABs2bGDLli0HJXb9aW5uZsyYMUQika56erNw4UJ+8pOfsG/fPqZPn37Y9YsMVCwaBvb3YHk9RlPWSPJCuyB5jYmIiIj0RQnWISxdupQrrrjigLKrrrqqz9EETzrpJO69916mTp3Knj17+NKXvkQwGOThhx/mmmuuoaqqCo/Hwy233HLItp9//vmuQSYuuugi7r77bkaPHs38+fP54IMPuga5+N73vkckEmH69OmceuqpfO973+uqY/bs2Vx11VVMnz6dq666iurqaurq6pg/fz7Tp0/njDPO4IILLuDSSy8F4Pbbb+fZZ58F4B//8R+pqqpi2rRpnH322cyYMYMvf/nLxONxqqqqWLhwIUuWLDmg5+pQfvCDH3DmmWcyZ86cA5K6Z599lttvv71r/eqrr+bRRx/l2muvPey6RVIhFk70YHn9+3+u24OjyXIhaN+TrrBEREQkQ5g7jv4iW11d7XqOFrd27VqmTp2apogy25IlSw4YDGM40s+PHKnf/mkZV7x2Na2X/Tu5p10DwAP3/YybdtwFX/pvGHVqmiMUERGR44GZrXTOHTQSm3qwRES6iUcTg1x4s4JdZZ6CxGTDbp9GEhQREZH+ZdYgF3JEFi1axKJFi9IdhkhGcclRBL3+/QlWsCQxH11H41ay0xKViIiIZIqM6ME6nh5jlMyhnxs5GvHkIBe+5ETDAAWl44g7o7V+a7rCEhERkQxx3CdYwWCQhoYG3SzLEXHO0dDQQDAYPPTOIt245COC5tv/szO6KJ/dFBDZo6HaRUREpH/H/SOCFRUV1NbWUl9fn+5QJMMEg0EqKirSHYZkmmSChW9/D9aYwmzqXDFlTdvTFJSIiIhkiuM+wfL7/VRWVqY7DBEZJlws8Ygg3v0JVll+gDWumPK2HWmKSkRERDLFoD8iaGYXm9l6M9toZt8c7PZERAYk2plg7Z8Hy+/10OQfSU7HzjQFJSIiIpliUBMsM/MC9wKfAk4BPmtmpwxmmyIiA9LZg9XtEUGA9uzR5MRbINyahqBEREQkUwx2D9ZsYKNz7iPnXBh4FLh8kNsUETl6vTwiCBDLG5NYaKo7xgGJiIhIJhnsBKsc6D6ucW2yrIuZ3WxmK8xshQayEJF0s2jvCZa3c7LhJo0kKCIiIn1L+zDtzrn7nXPVzrnq0tLSdIcjIsOcxZOjCPZIsALFiREp2xu2HeuQREREJIMMdoK1DRjXbb0iWSYicnyKRRJffYEDivPLxgPQWr/lWEckIiIiGWSwE6y3gMlmVmlmWcB1wLOD3KaIyFHzxMPEMfAcOIvFqJIi9rpcQnu29nGkiIiIyCDPg+Wci5rZV4E/AV7gIefc+4PZpojIQFgsQhQfWWYHlI8pSEw2nK/JhkVERKQfgz7RsHPuD8AfBrsdEZFU8MTDRM1PVo/ysvwAG1wxRS0aRVBERET6lvZBLkREjifeeJiYp2d6BT6vh33+UnJDu9IQlYiIiGQKJVgiIt14XISY9d653xYcRW50D3QO5S4iIiLSgxIsEZFuvPEIMTu4Bwsgkl+OBweaC0tERET6oARLRKQbn+v9EUEAChJDtbu9GqpdREREeqcES0SkG6+LEPf4e92WXVYJQOvOj49lSCIiIpJBlGCJiHTji/edYBWNnkjMGS07PzrGUYmIiEimGPRh2kVEMoVzDh8R4t7eHxEsLxnBDopxjZuPcWQiIiKSKdSDJSKSFIs7/ESJ9/EOVnlRNrWuFM++rcc4MhEREckUSrBERJLCsThZRHF9JFgjgn52ecrIadt2jCMTERGRTKEES0QkKRyNk0UE18cjggAtwTHkR+ohFj2GkYmIiEimUIIlIpLU2YNFPwlWJH8cXuLQpF4sEREROZgSLBGRpEQPVv8JlrdoHABurwa6EBERkYMpwRIRSQpH4wQthPMH+9wnWJqYC6tFc2GJiIhIL5RgiYgkRWKOHEI4f26f+xSOnkTcmRIsERER6ZUSLBGRpPZwlGzCWFZOn/uUlxawi0KiDTXHLjARERHJGANKsMzsbjNbZ2bvmtlvzawwWT7RzNrNbHXyc19KohURGUSh9lY85rBA3z1Y5YXJubCaNBeWiIiIHGygPVjLgGnOuenABuBb3bZtcs7NTH5uGWA7IiKDLtzeBIAvkNfnPvmaC0tERET6MaAEyzn3vHOuczKY14GKgYckIpIekfZWALz9JFgALdljyQ/v0lxYIiIicpBUvoO1GPhjt/VKM1tlZn8xs7kpbEdEZFBE2psB8Gfn97tfOK8CHzFo3n4swhIREZEM4jvUDmb2Z2B0L5u+45x7JrnPd4Ao8EhyWx0w3jnXYGanA0+b2anOuaZe6r8ZuBlg/PjxR/ddiIikQDzUAoA/u/8eLCuaAPXg9mzGCvV7S0RERPY7ZILlnDu/v+1mtgi4FPikc84ljwkBoeTySjPbBEwBVvRS//3A/QDV1dXuCOMXEUmZWEciwco6RIKVXTYJNkDzjk2MqFQHvYiIiOw30FEELwb+N3CZc66tW3mpmXmTy5OAycBHA2lLRGSwxcOJd7ACh3hEsHB0JXFntO7UrzURERE50CF7sA7hHiAALDMzgNeTIwaeC9xlZhEgDtzinGscYFsiIoPKhRN/J/L0M0w7QPnIQnZQRExzYYmIiEgPA0qwnHMn9lH+FPDUQOoWETnW4qFEDxb9TDQMUFGUzRpXRoXmwhIREZEeUjmKoIhIRouFOxOs/nuwcgM+6r1l5LbVHoOoREREJJMowRIRSXLJUQTx959gATQHyxkR2Q3R8CBHJSIiIplECZaISJIv3EzIAuDLOuS+kfwKPMShSb1YIiIisp8SLBGRpOzIHlq9BYe1r7d4IgDxxi2DGJGIiIhkGiVYIiJJObF9tPsLD2vf7LJKAFp2bhzEiERERCTTKMESEQGcc+THmggfZoJVPLqSqPPQuvPjwQ1MREREMooSLBERoCMSp5AmosHiw9q/vCSfOldCtFEJloiIiOynBEtEBNjdEqLYmnE5h5dgVRTlUOtK8WmQCxEREelGCZaICLBrbzMF1oY/f+Rh7Z+d5aXeN0pzYYmIiMgBlGCJiAB76ncAkF1QdtjHtGSXMyLaAJGOwQpLREREMowSLBERoG33ZgDySicc9jHh/IrEwr6tgxGSiIiIZCAlWCIiQKwxkWDljpp02MfEC8YnFvZsHoyQREREJAMpwRIRAbxNiQmDrejwe7CyShIJVkejerBEREQkQQmWiAjgb66l2TMCAvmHfUzeyHIA2ho00IWIiIgkKMESkWHPOceI9m00BcYc0XFlhSPY7UYQ3rNtkCITERGRTKMES0SGvV3NIU5gCx1Fk4/ouFEjguxyRbjmukGKTERERDLNgBIsM7vDzLaZ2erk52+6bfuWmW00s/VmdtHAQxURGRw1W7cy2vbgGTXtiI4bNSLITleIt2XnIEUmIiIimcaXgjr+2Tn30+4FZnYKcB1wKjAW+LOZTXHOxVLQnohISm1btwKAshNPP6Lj8gI+Gj0lZIfeHYywREREJAMN1iOClwOPOudCzrmPgY3A7EFqS0RkQEJbVgKQO2HWER/bFhhJbqQRYtFUhyUiIiIZKBUJ1lfN7F0ze8jMipJl5UD3cYtrk2UHMbObzWyFma2or69PQTgiIocvGoszcu87NGaNhbzSIz4+nDMKD3Fo1e8vEREROYwEy8z+bGZrevlcDvwSOAGYCdQBPzvSAJxz9zvnqp1z1aWlR35zIyIyEB9s38cMNtA26sgeD+zk8pIjD2qgCxEREeEw3sFyzp1/OBWZ2QPA75Kr24Bx3TZXJMtERI4r6z5YzXTby74p5x7V8d4RiQTLNW3Hyk9LZWgiIiKSgQY6imD3SWOuANYkl58FrjOzgJlVApOBNwfSlojIYIh8+DIABad88qiODxSPBaCjUX9DEhERkYGPIvgTM5sJOKAG+DsA59z7ZvY48AEQBb6iEQRF5HjjnKO04U32+kopLJ50VHXklowl5oz2xm1kpzg+ERERyTwDSrCcczf0s+2HwA8HUr+IyGDatKuF0+Jr2Dv2PArNjqqO0hE57KYA9m5PcXQiIiKSiVIxD5aISEZav+YtLrEm4ifNP+o6yvID7HRFjGrZkcLI0isSi1O7dTO7P36H9voa2FeLv2UbwVAD/lgbWfF2suNteMwRxUfcfES82XRkFRHJKsJyS/DmjyJYPJa80nEUlY0jp7gcAnnp/tZEREQGnRIsERm22jf8BYDSaQuOuo7SvCBvuULKW3emKqxjqiMSY92HH9Kw9hU8tW9R0LSOCdEaKq2Jym77NVDEPl8RIU8uoawSmr0VxPHgcVGIR/FHW8lp20Z+y1oKG5oI2MHzgrWSTZOvhLaskURyRhHJKSOaU4bLGYk3KwgeH1G8xM0H8SgWC0MsTCzcQTwSIh4N4SLtWLQDoh1YNIQn1o4nFsIT68AXC+GNh/DHQ/hcmCwXIiv51UccLPE8u6Ozt9JwWFdZHA8OD84Mhyex3rlsyW0YrnPZOte9xJN1xS15XFd9ifoBzHUuuf3/KG7/snUv76Wst+3dyw/c3v243uuToaPVW0jFFx9h9MjidIciIijBEpFhrKj+LRp9ZRQXTTzqOkZk+9hNMcGOmpTFNZgisThr1n/Ijrd/T+62V6lsW8NM2wVAB1lsD0xiW8k8astOIa+iipEVkxkxagIl/iAlh9lGeyjK5vqd7Nm5hZbdtXTs2Y5rqsNadhLs2EVeewOFrauZwB6yLXxU30cIPyGyCFsWYQJEPFlELEDUEyDmzyPsDdDsDRL3Bon7AomkzTlwLpliuGRyk0w4nAMX7/qYiyWXHeZiWOcyseT2RAplLvnpTMlcHC8xPMS7UqzOhM44MLnDkoXdUqADU6Ru+3aWHfAkq/XY17odc6DO8gMTTBkKsuIdVHf8Ny+/+hSjr7gp3eGICEqwRGSY2r6njemxNTSWzaH4KN+/AjAzWgKl5Eb3QCwCXn8Ko0yNfW0h3v7rMjre/z0T9rzGLPsYgL1WSF3xLNaPX0zpqedSPOkMJvmyBtxedsDHhIpyJlT0Or88kJjgubUjyr7WPYT27SIc6sDiUTwuhoco5vFhvgDmCxAIBPAHsgkEswkEc/H6gwQ8HgIDjlQk87lYhL0/qCTvoz8ASrBEjgdKsERkWFr7/io+afsInXh08191FwqWQgvQshMKKgYeXArsaw2x8q9/Irrmt1Tte5n51kgUL1vyprGh8jbGVH+awvGzKPQMaLaOo+bzeijIzaIgdxSUjUpLDCJDgXn9rC2Yy/R9LyYeofVrPFORdFOCJSLDUuv6xPtXo6uO/v2rTvHcUYkEqzm9CVZHJMYrr79O5K1fcfq+ZSywRsL4qCn6BKHpVzDhE1cyKbsobfGJyOAITb6U3BV/oPbt56g484p0hyMy7CnBEpFhKW/nm+z1FFFYNmXAddmI0bATaK4beGBHYeP23axe9gjjPn6cC1lDFA8fFZ1NaMbVjP/ElUwJFqQlLhE5Nk6Z82ma3voHmt5+CpRgiaSdEqx+1G/7mI/++iSzLv8aWYFgusMRkRRp7Yhwcuhddo487ajnv+ouqzDxrlGsqQ7vgGs7PB2RGK+89hrtrz/EOa3Pc7U10+AbxeZp/5PxC25iyoixxygSEUm3sqIR/CX7LE7b9dJx+y6oyHCiBKsfm158mLM2/St1a/8fW6bezKkXf5G8ERoCVSTTrf9gNadZA+sr56akvtzi0cSc0d64jcGe6enDbfW8u+w3jK95nAv5IPFeVdk8/OfdTMkpF1KSpneqRCS9wlMuJf/dF6ld9TwV1ZekOxyRYU0JVj/O/NwdvPOX6QT/+mPO/OCHtL3/U1YWzSdr2qVMPvNSgvnH77sMkXAH7e1thDraiUTCxCNhYtEw8WiEWCREPBohHk1+jYVx0QjxWIR4PE48FiPeNVxxYuhiI/HVdQ1l3Fke7xr6GFz3KV26hkLue0jgg8ud9dzj4GGK99ffd729dUr0OvtLjx0713qvu++ejhR0ghyZo2xvYGEe3dHH44DQ0Y+XAzDmtE+npL6RI3LYTQH+PYPziGBHJMYrf32V8JsPM6f1z1xlLdT7x7J52j8yfsEXmZQ/elDaFZHMcfqCq2l559vs/uuSYZVgxWMxwh0thEMdhEPthDs6iEY6iIRCRCMhouF2YpEQLhrGRcMQj+BcHBfv/MRw8XjivicewzmHS07NkJi7LjEVw4H/0fe4Nzlo+gQ7cH/bv9DzPsN6q7dbWe/TNRz7/807mzzcaR5S/X9/c/4kJs86j3HFOSmueXAoweqHeTzMmH817rwrWff2S+xd/iDT9rxI3vLniL56Kx/6T2DfiJOIjpxKTlklI8rGkTdyHHkjighk52K9dNE754jFYkTD7bS3ttDR1kSovZVQeyuR9mYi7a1EQ63EQq3EQ63Ew20QaYVIO55IGxZtxxtrxx9rxxvrICvegT/eQcB1EHAhgq6DIGH8FkMPCIj0bZP3BE4Ye2JK6irLD7DLFTKmeXtK6uu0oXYXa5b9mombn+BC1hHBx5ZRC/CcdzOlUz8J6q0SkaTiwgJeHvkZ5u5+jD2b36NoQlW6QzosHR3tNDXsomXvTtr21hNq2k24ZTeutRHaG/GF9+GNtOKNtpEVayMr3kYg3k7QtZPj2sm1EEFAL3IMbQ9HL6KtdEbGJFjm3PEzq3t1dbVbsWJFusPoV0dHBx+89QLta5eRv3sVFaFNFFtzr/uGnY8w/q7JJj3E8RLHZ/EjbjeCl3aChCxAyIKELUjEEyTiDRL1ZhPzZhP3ZRPzZYM/G+fPweMLYv4AXq8ffFng8ePxZYE38dW8fjw+P+bNwuPPwuv14/V68Xq9eDwG5gXzJP66Yh4ww8yDmSdR7jEgUY4nUW4kVjv/RtPftJcHF7k+9ujtZ7SPn1vnelbT5/52UHuuz337aq7/Hrr+He2Vd7TXbDou9aNv0zHYfV/FoyrIzs1PSV21e9pY+/NLOKOgicJ/WDmgulo6Iry2/AViK3/N2W0vMcLa2OWvoK3qBiYsWIzllaUkZhEZej7avIWyh85gS0E1p9z2uzQ8XrFfe1sr9ds/pmnXVtr3bCOydzs07cDXtpOcUD35kd0UxxvJt/Y+6+hwfposnw5PNiFPNmFPDlFfDlFfLnF/4uOSXzvnzfP4A3h8WXj9geQniDcrgPmy8PgCiXshrxePx4vH48E8HrxeL2ZevF4P1lXuTd7QeHCuW4+Uc8n7hW6TlHfq5T89F99/b9HzPmP/tv1lB9bRT1nvzR3SwO4FDu/go2uj///3XVYeRaVjyA0cX31DZrbSOVfds/z4ijIDBINBTpt7CcxNdL+7eJzG+u3srN1Ey+5aovu2Ew+1QKQdi7TjjYUSf2VOJit4vODxEfcFMX8u3kBO4hPMwxfIJZCdS1Z2HoGcfILZeQRz88kK5uL3ZalHSuQ4NXpEkD9QzvzW947qBfN43LFi3Ua2/eVXTN3xDBfYFkJksWX0BTDvi5SdPD+tN0oikhkmTRjPsnFf5ILae/jw2Z8w+fJvDFpb0UiEXds+orH2Q9p2bSLaUIO/eSt57dsoieygjEbG9zgm5Pw0eIpp9pXQmHsiO7LLcDkleHKL8eWXEsgfSW5hGXlFpYwoHpW4Dxq070Bk8CjBGiDzeCgeVUHxqONjclEROfZ8Xg97ck/E1xGBxo+g9KRDHuOcY23NNj5a/gSFH/+eM2KrmG1RanNOZvPM/8P4c69nsuasEpEjdM4Nd/LXn67kE2//E+siHZx05XcTvTFHKPEH5G3Ub91Ay45NRHfX4Nm3mZy2WorCdZTFdzPWYnSOVxpzRr1nJI3+MWwpPJOPC8bjKxpHsLiC/NJxFI0eT17BSMbq0WYZBpRgiYikQLR0KmwFdr7fZ4IVjcV5f/0Gtq74PSM2/4kzo29zikVo8I5k64mfY9z8L1JRMf3YBi4iQ0p2wMfJX17K8vu+wLlrfk7t2ieon3wNxSedTdGYEwnk5uMctLS20bpnB+37dtHSUEeocSuefVvJbq2lKLydstguSixMSbe6Gyhgt280O/JOZeuIcXiLJ5JTdgJF5ZMpq5jE6KwgGnJHZIDvYJnZY0DnnUQhsNc5N9PMJgJrgfXJba875245VH2Z8A6WiEhvlryynitemIfv5IvJ/ezDQKKXqqauno9X/4XIhy8wfs9rTKUGgD3eEurHfYrRZ/8PRpz4CQ1YISIpFY7EeP13D1L23n2cHN90WMc0kUu9dxRNwbF05I3DCscTLJtE4dgTKRs3mZw8TVou0l1f72ClbJALM/sZsM85d1cywfqdc27akdShBEtEMtWWhjZe/pcv8FnvS6wq/yytzXsZ1bSGKa4Gn8WJ4mVzThWRSQsor76M/Akz9V6ViAw65xxbajay/cNVxPZswYXbwSCQlYXlleLPL6No5BhGjplAbuHIdIcrklEGdZALSwzify2wIBX1iYhkmvElOdh53+CdVzYze9uvaSaXHTlTWDfmbyk+eS5jquZxQlB//RWRY8vMmFA5mQmVk9Mdisiwkap3sOYCO51zH3YrqzSzVUAT8F3n3Ku9HWhmNwM3A4wf33O8GRGRzHHD+dVE5r9OKBoiP5BNagaBFxERkUxyyATLzP4Mvb6z+B3n3DPJ5c8CS7ttqwPGO+cazOx04GkzO9U519SzEufc/cD9kHhE8Ei/ARGR44nf6wFvdrrDEBERkTQ5ZILlnDu/v+1m5gOuBE7vdkwICCWXV5rZJmAKoBesRERERERkyErFsFXnA+ucc7WdBWZWambe5PIkYDLwUQraEhEREREROW6l4h2s6zjw8UCAc4G7zCwCxIFbnHONKWhLRERERETkuJWyYdpTwczqgc3pjqOHkcDudAchx4zO9/Chcz186FwPLzrfw4fO9fByPJ7vCc650p6Fx1WCdTwysxW9jW8vQ5PO9/Chcz186FwPLzrfw4fO9fCSSec7Fe9giYiIiIiICEqwREREREREUkYJ1qHdn+4A5JjS+R4+dK6HD53r4UXne/jQuR5eMuZ86x0sERERERGRFFEPloiIiIiISIoowRIREREREUkRJVj9MLOLzWy9mW00s2+mOx5JHTMbZ2YvmdkHZva+mf19srzYzJaZ2YfJr0XpjlVSw8y8ZrbKzH6XXK80szeS1/djZpaV7hglNcys0MyeNLN1ZrbWzD6ha3toMrPbkr/D15jZUjML6toeOszsITPbZWZrupX1ei1bwv9Nnvd3zey09EUuR6qPc3138vf4u2b2WzMr7LbtW8lzvd7MLkpL0P1QgtUHM/MC9wKfAk4BPmtmp6Q3KkmhKPC/nHOnAGcBX0me328CLzjnJgMvJNdlaPh7YG239R8D/+ycOxHYA/xtWqKSwfCvwHPOuZOBGSTOu67tIcbMyoFbgWrn3DTAC1yHru2hZAlwcY+yvq7lTwGTk5+bgV8eoxglNZZw8LleBkxzzk0HNgDfAkjer10HnJo85hfJ+/bjhhKsvs0GNjrnPnLOhYFHgcvTHJOkiHOuzjn3dnK5mcQNWDmJc/yr5G6/Aj6TlgAlpcysArgE+PfkugELgCeTu+hcDxFmVgCcCzwI4JwLO+f2omt7qPIB2WbmA3KAOnRtDxnOuVeAxh7FfV3LlwO/dgmvA4VmNuaYBCoD1tu5ds4975yLJldfByqSy5cDjzrnQs65j4GNJO7bjxtKsPpWDmzttl6bLJMhxswmArOAN4BRzrm65KYdwKh0xSUp9S/A/wbiyfUSYG+3X9y6voeOSqAeeDj5SOi/m1kuuraHHOfcNuCnwBYSidU+YCW6toe6vq5l3bcNbYuBPyaXj/tzrQRLhjUzywOeAr7unGvqvs0l5jDQPAYZzswuBXY551amOxY5JnzAacAvnXOzgFZ6PA6oa3toSL57czmJpHoskMvBjxjJEKZreXgws++QeLXjkXTHcriUYPVtGzCu23pFskyGCDPzk0iuHnHO/VeyeGfnIwXJr7vSFZ+kzBzgMjOrIfGo7wIS7+gUJh8rAl3fQ0ktUOuceyO5/iSJhEvX9tBzPvCxc67eORcB/ovE9a5re2jr61rWfdsQZGaLgEuBz7n9k/ce9+daCVbf3gImJ0cjyiLxMt2zaY5JUiT5Ds6DwFrn3M+7bXoW+EJy+QvAM8c6Nkkt59y3nHMVzrmJJK7jF51znwNeAq5O7qZzPUQ453YAW83spGTRJ4EP0LU9FG0BzjKznOTv9M5zrWt7aOvrWn4W+HxyNMGzgH3dHiWUDGRmF5N4vP8y51xbt03PAteZWcDMKkkMbPJmOmLsi+1PBqUnM/sbEu9ueIGHnHM/TG9Ekipmdg7wKvAe+9/L+TaJ97AeB8YDm4FrnXM9X7CVDGVm84B/cM5damaTSPRoFQOrgOudc6E0hicpYmYzSQxokgV8BNxI4g+KuraHGDO7E1hI4vGhVcAXSbyLoWt7CDCzpcA8YCSwE/g+8DS9XMvJJPseEo+JtgE3OudWpCFsOQp9nOtvAQGgIbnb6865W5L7f4fEe1lREq95/LFnnemkBEtERERERCRF9IigiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiL/H9CBnX/auXzyAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD2gklEQVR4nOzdd3gc5bX48e/ZIq206tVFsiRXbGxjwBgInSSUBHAICYZLAMNNuJAKIaSHkNzL/eUCgYSSEAIJCRBjeu/FgAnNBuNu4yJbsmVbvay0/f39MSNZltVsrbSS9nyeZx/vzLzzztnZXXnOvmXEGINSSimllFJKqYFzxDsApZRSSimllBotNMFSSimllFJKqRjRBEsppZRSSimlYkQTLKWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRjRBEsppYYJESkVESMirnjHMtqJyEIRWRrvOIYbETlBRDbEOw6llBrJNMFSSik1oonIDSISEpGWTo8fxzuukcgY844xZlqs67V/OPB1en/ujfUxlFJquNBfSZVSKkZExGWMCcc7jgS12BjzjXgHMVhGyWfrMGPMpngHoZRSg01bsJRSagBEpFxEfiIiKwGfiLhE5BgR+beINIjIpyJycqfyS0Tk/4nIhyLSJCJPi0hOD3VfJiLrRKRZRLaIyH912T5fRFbY9WwWkTPs9Zkicp+IVInIDhH5HxFx9vE6JonIGyJSKyI1IvKQiGR12lYnIkfYy+NEpLr9dYnIOSKyxn69S0Rkepfz8yMRWSkijSKyWEQ8B36mD5yI/NQ+L80islZEzu2hnIjIbSKyxz6Xq0Rkpr0tWURuEZHtIrJbRO4WkZR+Hv9+u/yrdgxviUhJp+1/FJEK+5jLReSETttuEJHHRORBEWkCForIPBF5zz7PVSJyp4gkddrHiMi3ReQz+3j/bb93/7aP8Ujn8j3EfLKIVPbn9SmllOqeJlhKKTVwFwJfBrKAQuB54H+AHOBHwOMikt+p/CXA5cBYIAzc3kO9e4CzgAzgMuC2TknOPOCfwHX2cU8Eyu397rfrnQwcDpwGfLOP1yDA/wPGAdOBYuAGAGPMZuAnwIMikgr8HfiHMWaJiEwFFgFXA/nAC8CzXS7kzwfOAMqA2cDCbgMQOd5OHnp6HN/Ha+hqM3ACkAn8xo5/bDflTsM6f1PtsucDtfa239nr52Cdz/HA9QcQw0XAfwN5wArgoU7bPrLrzQH+BTzaJfmcDzyG9f4+BESAa+y6jgU+D3y7y/FOB44EjgF+DNwDfAPr/ZyJ9Vk9aHai3NP786c+dn9bRHaJyBMiUjqQOJRSajjTBEsppQbudmNMhTGmDeti9gVjzAvGmKgx5lVgGfClTuUfMMasNsb4gF8B53fXwmSMed4Ys9lY3gJewUoYAP4T+Jsx5lX7ODuMMetFpNA+1tXGGJ8xZg9wG3BBby/AGLPJritgjKkGbgVO6rT9r8Am4AOsxPAX9qYFwPP2viHgFiAF+FyX87PTGFMHPIuVVHQXw1JjTFYvj94mpTi/y8X+OGPMo/Zxo8aYxcBnwLxu9g0B6cAhgBhj1hljqkREgCuAa4wxdcaYZuB/+zqXXTxvjHnbGBPAOmfHikix/XofNMbUGmPCxpjfA8lA5/FP7xljnrLjbzPGLDfGvG+XLwf+Qqf3yHaTMabJGLMGWA28YozZYoxpBF7ESrgPmjFmdi/vT9dkr7OTgFKsc7wTeE50Mhel1Cilf9yUUmrgKjo9LwG+LiJnd1rnBt7sofw2e3te10pF5Ezg11gtKA4gFVhlby7Gai3qqsSur8rKD8Det6Kbsp2PVQj8ESuBS7f3qe9S7K/AM8AVdsIAVovXtvYCxpioiFRgtfS029Xpeau9T6w90nUMlohcAvwQ68IeII1uzrMx5g0RuRO4CygRkSewWh49WOd8eadzKUCv3S276DjvxpgWEanDev0VIvIjrER5HGCwWirzutvXfj1TsRLfuXZcLmB5l+Pt7vS8rZvlMQcQe8wYY962nwZF5AdAE1ZL6aqe91JKqZFJW7CUUmrgTKfnFVgtVJ1/2fcaY37XqUxxp+cTsFpQajpXKCLJwONYLUKFxpgsrISq/Uq/ApjUTSwVQADI63T8DGPMoX28hv+1X8csY0wGVkvc3qxCJA34A3AfcIPsHTe2Eyupay8n9uvb0cfx9iPWFOEtvTxO6LuWjrpKsBLC7wK59vlb3fk1dWaMud0YcyQwAyuhvQ7rPWkDDu10LjONMWkH8LI63mv7HOYAO+3X8mOs7ojZdnyNXeLr/LkC+DOwHphiv0c/7+n1DBaxxtr19P7cfQBVGYY4dqWUGiqaYCmlVGw9CJwtIqeLiFNEPPbEAUWdynxDRGbY45l+CzxmjIl0qScJq8tYNRC2W7NO67T9PuAyEfm8iDhEZLyIHGKMqcLqSvh7Ecmwt00Ska5dybpKB1qARhEZj5VgdPZHYJkx5ptYY8zaL6YfAb5sx+EGrsVK8P7d14nqyp4iPK2XxzsHUJ0X6yK+GqwJQ7DGIO1HRI4SkaPt+H2AH4gaY6JYSdptIlJglx0vIqd32tdIp0lMuvEle2xZEtZYrPeNMRVY5ztsx+cSkeuxWrB6k47V8tMiIocAV/VRPuaMMYf28v5c2d0+InKoiMyxvw9pwO+xEvB1Qxq8UkoNEU2wlFIqhuyL5/lYrQvVWC1K17Hv39sHsCai2IXVDe373dTTbK9/BKur3n9gdc9r3/4h9sQXWC0fb7G3JekSrARtrb3vY1jjpnrzG+AIu67ngSfaN4jIfKxJKtov6H8IHCEiFxljNmC1dt2B1eJzNnC2MSbYx/EGlTFmLdaF/HtY3eRmAe/2UDwDK5Gqx+ruWAvcbG/7CdbYs/fFms3vNexxUvZYqmZ67+b2L6xunnVYk0+0d2N8GXgJ2Ggf008f3Tixui3+h33MvwKL+yg/XBRixdoEbMHqsnmWPWZPKaVGHTGmaw8EpZRSg0VElgAPGmP0RqsjnIh8A6v74M962H4/UGmM+eWQBqaUUiqudJILpZRS6iAYYx6MdwxKKaWGH+0iqJRSCUKsm94OdHICNcKJyM97+By8GO/YlFJqNNAugkoppZRSSikVI9qCpZRSSimllFIxMqzGYOXl5ZnS0tJ4h6GUUkoppZRSvVq+fHmNMSa/6/phlWCVlpaybNmyeIehlFJKKaWUUr0SkW3drdcugkoppZRSSikVI5pgKaWUUkoppVSMaIKllFJKKaWUUjEyrMZgdScUClFZWYnf7493KGoY8Hg8FBUV4Xa74x2KGoUeeK+cN9dV8edL5pHscsY7HKWUUkqNQMM+waqsrCQ9PZ3S0lJEJN7hqDgyxlBbW0tlZSVlZWXxDkeNQmtfuY+/mdtZ9dyvmfWVH8Y7HKWUUkqNQMO+i6Df7yc3N1eTK4WIkJubq62ZalCEI1FKQ5sBKFx3f3yDUUoppdSINewTLECTK9VBPwtqsLQEwhRIAwAFgW3QvCu+ASmllFJqRBoRCZZSSg22prYwhdQTxhp75d/y7zhHpJRSSqmRSBOsfhARrr322o7lW265hRtuuCF+AXVy8skn93pz5q985Sscc8wx+6y74YYbGD9+PHPmzGHmzJk888wzgx2mUsNekz9EgTTwWdpRRI1Qt/XTeIeklFJKqRFIE6x+SE5O5oknnqCmpiam9RpjiEajMa2zs4aGBpYvX05jYyNbtmzZZ9s111zDihUrePTRR7n88ssHNQ6lRgIrwarHnT+JbaaAUNWaeIeklFJKqRFIE6x+cLlcXHHFFdx22237bauurua8887jqKOO4qijjuLdd98FrFaiW265paPczJkzKS8vp7y8nGnTpnHJJZcwc+ZMKioquO6665g5cyazZs1i8eLFACxZsoSTTz6Zr33taxxyyCFcdNFFGGO6je+BBx7oaI368MMPO9Y/8cQTnH322VxwwQU8/PDD3e47ffp0XC7XPsnjT3/6U2bMmMHs2bP50Y9+BEB5eTmnnnoqs2fP5vOf/zzbt28HYOHChVx11VUcc8wxTJw4kSVLlnD55Zczffp0Fi5c2FHnVVddxdy5czn00EP59a9/vV8cjY2NlJSUdCR6Pp+P4uJiQqFQt3ErFWu+5iYypI20vPFsdUwgpWFjvENSSiml1Ag07Kdp7+w3z65h7c6mmNY5Y1wGvz770D7Lfec732H27Nn8+Mc/3mf9D37wA6655hqOP/54tm/fzumnn866det6reuzzz7jH//4B8cccwyPP/44K1as4NNPP6WmpoajjjqKE088EYBPPvmENWvWMG7cOI477jjeffddjj/++P3qa21tZcWKFbz99ttcfvnlrF69GoBFixZx/fXXU1hYyHnnncfPf/7z/fb94IMPcDgc5OfnA1BbW8uTTz7J+vXrEREaGhoA+N73vsell17KpZdeyt/+9je+//3v89RTTwFQX1/Pe++9xzPPPMM555zDu+++y7333stRRx3FihUrmDNnDjfeeCM5OTlEIhE+//nPs3LlSmbPnt0RR2ZmJnPmzOGtt97ilFNO4bnnnuP000/X+12pIdPW0ghAkjeHurQp5LYsh5Af3J44R6aUUkqpkURbsPopIyODSy65hNtvv32f9a+99hrf/e53mTNnDueccw5NTU20tLT0WldJSUnHuKilS5dy4YUX4nQ6KSws5KSTTuKjjz4CYN68eRQVFeFwOJgzZw7l5eXd1nfhhRcCcOKJJ9LU1ERDQwO7d+/ms88+4/jjj2fq1Km43e6OxAvgtttuY86cOfzoRz9i8eLFHbPzZWZm4vF4+M///E+eeOIJUlNTAXjvvff4j//4DwAuvvhili5d2lHX2WefjYgwa9YsCgsLmTVrFg6Hg0MPPbQj5kceeYQjjjiCww8/nDVr1rB27dr9XseCBQs6WvAefvhhFixY0Ot5VCqWAn4fAMmeFII503AShRptxVJKKaXUgRlRLVj9aWkaTFdffTVHHHEEl112Wce6aDTK+++/j8ez76/cLpdrn3FNne/d5PV6+3W85OTkjudOp5NwONxtua5Tl4sIjzzyCPX19R035G1qamLRokXceOONgDUGq737X9e4P/zwQ15//XUee+wx7rzzTt54441+xelwOPaJ2eFwEA6H2bp1K7fccgsfffQR2dnZLFy4sNt7WZ1zzjn8/Oc/p66ujuXLl3Pqqaf2elylYikSbAPAlZxK0rgi2A4tFatIGzu7jz2VUkoppfbSFqwDkJOTw/nnn899993Xse60007jjjvu6FhesWIFAKWlpXz88ccAfPzxx2zdurXbOk844QQWL15MJBKhurqat99+m3nz5h1QXO2tPkuXLiUzM5PMzEwWLVrESy+91DHua/ny5T2Ow+qspaWFxsZGvvSlL3Hbbbfx6afWTGqf+9znOvZ/6KGHOOGEE/odX1NTE16vl8zMTHbv3s2LL77Ybbm0tDSOOuoofvCDH3DWWWfhdDr7fQylBsqErKTflZxK3oQZBI2T5opVcY5KKaWUUiPNiGrBGg6uvfZa7rzzzo7l22+/vWN8Vjgc5sQTT+Tuu+/mvPPO45///CeHHnooRx99NFOnTu22vnPPPZf33nuPww47DBHhpptuYsyYMaxfv77fMXk8Hg4//HBCoRB/+9vfKC8vZ9u2bftMz15WVkZmZiYffPBBt3V86Utf4t5770VEmD9/Pn6/H2MMt956KwB33HEHl112GTfffDP5+fn8/e9/73d8hx12GIcffjiHHHIIxcXFHHfccR3brr/+eubOncs555wDWN0Ev/71r7NkyZJ+169ULJhgKwDOJA9l2ZlUmAKSqjfFOSqllFJKjTTS08x08TB37lzT9Z5O69atY/r06XGKSA1H+plQg+GhRf/gog3fh4UvEJnwOd6+4RRmpLVQ+OOe7zOnlFJKqcQlIsuNMXO7rh9wF0ERKRaRN0VkrYisEZEf2OtvEJEdIrLCfnxpoMdSSqlBY3cRxO3B6RDqPUVktlXAMPoRSimllFLDXyy6CIaBa40xH4tIOrBcRF61t91mjLmll32VUmp4CNsJlsuasCaYUYqnxg8teyC9MI6BKaWUUmokGXALljGmyhjzsf28GVgHjB9ovUopNaS6JFiOvMnW6prP4hWRUkoppUagmM4iKCKlwOFA+0wK3xWRlSLyNxHJ7mGfK0RkmYgsq66ujmU4SinVb9KeYLlTAPCOmQJAY6XeC0sppZRS/RezBEtE0oDHgauNMU3An4FJwBygCvh9d/sZY+4xxsw1xszNz8+PVThKKXVAHJF9W7Dyi6cQMk5admmCpZRSSqn+i0mCJSJurOTqIWPMEwDGmN3GmIgxJgr8FTiwmzsppdQQkkjAemInWKUFGVSaPEzN5jhGpZRSSqmRJhazCApwH7DOGHNrp/VjOxU7F1g90GPF01NPPYWI9Hp/qvLycmbOnBmzYy5cuJDHHnusx+1XX30148ePJxqNdqy7//77yc/PZ86cOcyYMYO//vWvMYtHqdHMGd43wcpPS6ZSxpLcVB6/oJRSSik14sSiBes44GLg1C5Tst8kIqtEZCVwCnBNDI4VN4sWLeL4449n0aJF3W4Ph8MDPkYkEul32Wg0ypNPPklxcTFvvfXWPtsWLFjAihUrWLJkCT//+c/ZvXv3gGNTarRzRgOEcIPD+rMoItR7isnyV+pU7UoppZTqt1jMIrjUGCPGmNnGmDn24wVjzMXGmFn2+nOMMVWxCDgeWlpaWLp0Kffddx8PP/xwx/olS5ZwwgkncM455zBjxgzASrQuuugipk+fzte+9jVaW1sBeP311zn88MOZNWsWl19+OYGA9Wt5aWkpP/nJTzjiiCN49NFH9zv2a6+9xty5c5k6dSrPPffcPsc+9NBDueqqq3pM+goKCpg0aRLbtm3rWHf77bczY8YMZs+ezQUXXABAXV0dX/nKV5g9ezbHHHMMK1euBOCGG27g0ksv5YQTTqCkpIQnnniCH//4x8yaNYszzjiDUCgEwG9/+1uOOuooZs6cyRVXXEHXm1dHo1FKS0tpaGjoWDdlyhRN/NSw4oz6CUnSPusCGSWkmFbw1cQpKqWUUkqNNLG4D9bQefGnsGtVbOscMwvO/F2vRZ5++mnOOOMMpk6dSm5uLsuXL+fII48E4OOPP2b16tWUlZVRXl7Ohg0buO+++zjuuOO4/PLL+dOf/sR3v/tdFi5cyOuvv87UqVO55JJL+POf/8zVV18NQG5uLh9//HG3xy4vL+fDDz9k8+bNnHLKKWzatAmPx8OiRYu48MILmT9/Pj//+c8JhUK43e599t2yZQtbtmxh8uTJHet+97vfsXXrVpKTkzsSnl//+tccfvjhPPXUU7zxxhtccsklrFixAoDNmzfz5ptvsnbtWo499lgef/xxbrrpJs4991yef/55vvKVr/Dd736X66+/HoCLL76Y5557jrPPPrvjmA6Hg/nz5/Pkk09y2WWX8cEHH1BSUkJhod5bSA0frkiAkCN5n3WO3ElQbU3V7krTSXiUUkop1beYTtM+Wi1atKijteeCCy7Yp8Vo3rx5lJWVdSwXFxdz3HHHAfCNb3yDpUuXsmHDBsrKypg6dSoAl156KW+//XbHPgsWLOjx2Oeffz4Oh4MpU6YwceJE1q9fTzAY5IUXXuArX/kKGRkZHH300bz88ssd+yxevJg5c+Zw4YUX8pe//IWcnJyObbNnz+aiiy7iwQcfxOWy8uulS5dy8cUXA3DqqadSW1tLU1MTAGeeeSZut5tZs2YRiUQ444wzAJg1axbl5eUAvPnmmxx99NHMmjWLN954gzVr1uz3OhYsWMDixYsBePjhh3t9zUrFg9MECTv2bcHyjrW+s/UVPY+9VEoppZTqbGS1YPXR0jQY6urqeOONN1i1ahUiQiQSQUS4+eabAfB6vfuUt+b86Hm5O13r6Ku+l19+mYaGBmbNmgVAa2srKSkpnHXWWYCVzNx5553d1vf888/z9ttv8+yzz3LjjTeyalXvLYLJydYv+g6HA7fb3RGPw+EgHA7j9/v59re/zbJlyyguLuaGG27A7/fvV8+xxx7Lpk2bqK6u5qmnnuKXv/xlr8dVaqi5owHC7n1bsAqKJxMxgq/qM7T9SimllFL9oS1YfXjssce4+OKL2bZtG+Xl5VRUVFBWVsY777zTbfnt27fz3nvvAfCvf/2L448/nmnTplFeXs6mTZsAeOCBBzjppJP6dfxHH32UaDTK5s2b2bJlC9OmTWPRokXce++9lJeXU15eztatW3n11Vc7xnv1JBqNUlFRwSmnnML//d//0djYSEtLCyeccAIPPfQQYI3tysvLIyMjo1/xtSdTeXl5tLS09DjroYhw7rnn8sMf/pDp06eTm5vbr/qVGiouEyTcpYtgSUE2lSafaO2WOEWllFJKqZFGE6w+LFq0iHPPPXefdeedd16PE0tMmzaNu+66i+nTp1NfX89VV12Fx+Ph73//O1//+teZNWsWDoeDK6+8sl/HnzBhAvPmzePMM8/k7rvvJhqN8tJLL/HlL3+5o4zX6+X444/n2Wef7baOb37zmyxbtoxIJMI3vvENZs2axeGHH873v/99srKyuOGGG1i+fDmzZ8/mpz/9Kf/4xz/6eXYgKyuLb33rW8ycOZPTTz+do446qmPb3Xffzd13392xvGDBAh588EHtHqiGJVc0RNSx7zjGHG8SlY6xJDeXxycopZRSSo040nXGt3iaO3euWbZs2T7r1q1bx/Tp0+MUkRqO9DOhBsOHvz6GwgwPJdcu2Wf987/7D04OLMF7/Q7oR5dfpZRSSiUGEVlujJnbdb22YCmlEp4xBrcJYZxJ+20LpJfiNT5orYtDZEoppZQaaTTBUkolvFDEkEQI49g/wXLkTbTKVG8a6rCUUkopNQKNiARrOHVjVPGlnwU1GIKRKEmEMc7k/baljZ0CQK1O1a6UUkqpfhj2CZbH46G2tlYvrBXGGGpra/F4PPEORY0ywXCUZILddhHMK55G1AitVRvjEJlSSimlRpphfx+soqIiKisrqa6ujncoahjweDwUFRXFOww1ygTCEZIkTMi1fwtWaWEOO8klWqdTtSullFKqb8M+wXK73ZSVlcU7DKXUKBYMR0knhK+bFqys1CTWy1jGN22NQ2RKKaWUGmmGfRdBpZQabMGwNQZLumnBAmjwFJHlrxziqJRSSik1EmmCpZRKeIFwlCRC4O5+fF8go5T0aLNO1a6UUkqpPmmCpZRKeIFQmCSJ9NiCJbmTrHLVm4cyLKWUUkqNQIOeYInIGSKyQUQ2ichPB/t4Sil1oELBAACOHhKs9qna63SqdqWUUkr1YVATLBFxAncBZwIzgAtFZMZgHlMppQ5UOOgHwOHuPsHKKz4EgBadql0ppZRSfRjsFqx5wCZjzBZjTBB4GJg/yMdUSqkDsjfB6n4MVsmYXHaaHEyNdhFUSimlVO8GO8EaD1R0Wq6013UQkStEZJmILNN7XSml4iFiJ1jOHlqwMlPc7JCxJDdvG8qwlFJKKTUCxX2SC2PMPcaYucaYufn5+fEORymVgMLBNgCcPbRgAdR7isnyV/S4XSmllFIKBj/B2gEUd1oustcppdSwEQlZk1w4k7pvwQIIZJSQGW0Ef+NQhaWUUkqpEWiwE6yPgCkiUiYiScAFwDODfEyllDog0bCVYLmSem7BctpTtfv36DgspZRSSvVsUBMsY0wY+C7wMrAOeMQYs2Ywj6mUUgcqGrLHYPWSYKWOnQpAzfZ1QxKTUkoppUYm12AfwBjzAvDCYB9HKaUOVtSe5MLdyxis/AnWVO2tOzcMSUxKKaWUGpniPsmFUkrFW3+6CJaMzafS5EGNJlhKKaWU6pkmWEqphGfsSS56utEwQFqyi+2OIrxNOgZLKaWUUj3TBEsppcLWNO24vb0Wq0spJc+/HaLRIQhKKaWUUiORJlhKqYTn6EiwUnot58+cTDIBaNT7YSmllFKqe5pgKaUSnnQkWKm9lnMUWhNdtFXpTIJKKaWU6p4mWEqphNfRgpXUe4KVXnQoAA3bVg92SEoppZQaoTTBUkolPGd7guXqeRZBgPHjiqgxGYR2awuWUkoppbqnCZZSKuE5wm34SQaRXsuV5XnZbMbhqvtsiCJTSiml1EijCZZSKuE5wn6Cjt5brwBSkpzsSioho2UrGDMEkSmllFJqpNEESymV8JzRNoLS8z2wOmvLnERatAl8NYMclVJKKaVGIk2wlFIJzxXxE+5HCxaAy55JMLhr7WCGpJRSSqkRShMspVTCc0f9hJy93wOrXcaEwwCo3fLpYIaklFJKqRFKEyylVMJLivqJOPvXglVaOpE6k0Zgx8pBjkoppZRSI5EmWEqphJcU9RN19a8Fqyw/jQ1mAu4a7SKolFJKqf0NKMESkZtFZL2IrBSRJ0Uky15fKiJtIrLCftwdk2iVUirGwpEoyQT7nWC5nQ52eSaT17oZotFBjk4ppZRSI81AW7BeBWYaY2YDG4Gfddq22Rgzx35cOcDjKKXUoGgNRUghgOlnggXQlnMIycYP9VsHMTKllFJKjUQDSrCMMa8YY8L24vtA0cBDUkqpodMWjJAiQXD3P8FyjZtl7Vup47CUUkopta9YjsG6HHix03KZiHwiIm+JyAk97SQiV4jIMhFZVl1dHcNwlFKqb63BCGm0YZLT+71PXulsIkao3/rJIEamlFJKqZHI1VcBEXkNGNPNpl8YY562y/wCCAMP2duqgAnGmFoRORJ4SkQONcY0da3EGHMPcA/A3LlzzcG9DKWUOjitra2kSgDxZPZ7n2kTCik3Y3BXrR7EyJRSSik1EvWZYBljvtDbdhFZCJwFfN4YY+x9AkDAfr5cRDYDU4FlAw1YKaViqbWpFgCXN7vf+4zL9PCqo5Qj69cNVlhKKaWUGqEGOovgGcCPgXOMMa2d1ueLiNN+PhGYAmwZyLGUUmow+JutBMvtzen3PiJCQ/pUcoM7IdA8WKEppZRSagQa6BisO4F04NUu07GfCKwUkRXAY8CVxpi6AR5LKaViLtBcD4Anvf8JFgBjDgUgXLUq1iEppZRSagTrs4tgb4wxk3tY/zjw+EDqVkqpoRButRKslIwDS7DSy46Ez6B20zIKSz83GKEppZRSagSK5SyCSik14kR8doKVnntA+02aOJUak4F/+8eDEZZSSimlRihNsJRSCc34GwFwpPZ/kguAiflprDNlJFfrTIJKKaWU2ksTLKVUQovaXQQ5gGnaAVxOB7u808hr2wLhwCBEppRSSqmRSBMspVRCM631BEkCt+eA9w3mz8RFBLN77SBEppRSSqmRSBMspVRCSw7U0uw+wBkEbamlRwLQsOWjWIaklFJKqRFMEyylVMKKRg1p4VoCyXkHtX/JpBk0mVSay3WiC6WUUkpZNMFSSiWsGl+APBoJp+Yf1P7Tx2ayxpTi3q33wlJKKaWURRMspVTC2tXoJ18akLTCg9o/JcnJjuTJ5Po2QiQc4+iUUkopNRJpgqWUSli765vJlWaSssYedB2tuTNJMkGo2RjDyJRSSik1UmmCpZRKWI01OwFIyRl30HUkTzgCAN82HYellFJKKU2wlFIJrLW2EoC03KKDrmPcpFm0mSQatyyLVVhKKaWUGsE0wVJKJaxoQwUAjuzig65jxvhs1pkJyK5PYxWWUkoppUYwTbCUUgnL1bTDepJ58C1YuWnJbHFNJqtpA0SjMYpMKaWUUiOVJlhKqYTlaasiIB7wZA2onubsQ0mJ+qB+a2wCU0oppdSINaAES0RuEJEdIrLCfnyp07aficgmEdkgIqcPPFSllIodYwwZwd00JY8BkQHV5Ro/B4Bg5ScxiEwppZRSI1ksWrBuM8bMsR8vAIjIDOAC4FDgDOBPIuKMwbGUUiommgNhCk0N/tSDn0GwXcHkwwgaJ/Wbl8cgMqWUUkqNZIPVRXA+8LAxJmCM2QpsAuYN0rGUUuqA7W70M05qiaYPPMGaUZTPRlNMdOeKgQemlFJKqREtFgnWd0VkpYj8TUSy7XXjgYpOZSrtdUopNSzsqmskXxpx5hz8DILtirJT2OCYSEb9WjAmBtEppZRSaqTqM8ESkddEZHU3j/nAn4FJwBygCvj9gQYgIleIyDIRWVZdXX2guyul1EFp3rMNgJS80gHXJSI0ZEzHG2mA9pkJlVJKKZWQXH0VMMZ8oT8VichfgefsxR1A55+Fi+x13dV/D3APwNy5c/WnX6XUkPDXbAcgvaAkJvXJ2MOgCSI7P8U5gGnflVJKKTWyDXQWwbGdFs8FVtvPnwEuEJFkESkDpgAfDuRYSikVSxH7JsNJORNiUl/2xMOJGKFx80cxqU8ppZRSI1OfLVh9uElE5gAGKAf+C8AYs0ZEHgHWAmHgO8aYyACPpZRSMeNqthvVM2IzPPSQCWPYbMaRXrkiJvUppZRSamQaUIJljLm4l203AjcOpH6llBosntYqGh1ZZLo9MalvckEaL1DGKbVrYlKfUkoppUamwZqmXSmlhrXM4G6ak8fErD6300FtxnQyQnugeXfM6lVKKaXUyKIJllIq4QTCEfKj1fhTx/Zd+ABIsXW7v9C292Jar1JKKaVGDk2wlFIJZ0+jn7FSSzRG46/ajZt+NG0mibp1b8W0XqWUUkqNHJpgKaUSTs2eHaSJH0d2aUzrPbyskI+jU3Bt1QRLKaWUSlQDnUVQDUAoHKGlsY625jrafE0EW5sItLYQamsh4m8mEvCBiYCJYqJRjDHWMiBOF7g8iNuDuDy4klPxpKSS7M3Ek56DNzOftMwcPMlJcX6VSg0/vp0bAEgZOy2m9Rake3g241iO890L9dsge/97bDW0BhERMlPcMT22UkoppYYHTbAGgb/Nx+7KLdRXbaWtZjumsRKnbzcufx3JwXpSww2kRxvJMs1kS4TsQYylyaTSLGm0OtPxuzIIJmURTs6G1Fwc3lzcabl4MvLxZheQnlNIRnYBDk86iAxiVErFV6T6MwAyiqfHvO7kmWfBB/fS9OFDZJz+8471xhheXPoBKa/8mNbcmXz56j/F/Nhqr0jUEAqHCQVaCQf8hINthPytRMJBwuEI4UiESCSMmChgwEQR+wctwWDEiREniBOHw4XD5cTlcuF0unG6XLhcLlxOF063G5fLjcudhNudhDjd4HDp31CllEpgmmAdBGMMdTW72LVlNU07NhCt2YSnaSuZ/kpywnvIoYkSoPNv1414aXRk0erMpCmliDrPbLam5EJqLpKShcuTjsuTRlJqOsmp6Xi86SR70nC6knA4BXE4cTqciEMAIRwOWRcLwTZCgTYCbT78rT78rU1EfHVEWusxbQ2IvwFnoAFXsJHkUCNZLbtJb24iw/hwiOn29QVx0SwZ+JwZ+N1ZBJOyCCVbiVnEk414snB6vLiTU0nypJLk8eJMTkXcKTiTUnA4XThdLpxOp3UB4rJidzidGBxEEKKRMCYSxUTDRKMRotEIJhIhGg1jolGikQjY66OREBH7YsjaL0w0EiIaiXQ8NxGrHiIhq45IBBO1yppoGKIR+98wJhqBaBgi9r/G/jcati6u7PIOs3dZTNi6+IpGcZgwQvfnrsfPDNbFVreXXNK5XNdS0rG/yN569q6nY710Oo6Rvcud13fULfvGtfdiUPZdv992ei8vve9nerjoFHMg59PQ/enff6Vg6K7qsU3rCBoXafllB3Dc/jlh3jzeeW8Wc5bdByd9BzyZVFQ38P5Dv+VL9Q/idQaoqq+I+XFHE2MMTc3NNNVW4avfhb9hN4GmGkKtDUTampBAM85gE+5wC0n2IyXqwxNtxU2QZBMkiRAeCRObSfgPXMg4iYiTME4iWM8juIiIi6hY66Lish9Oog63ldQ5rHU4XNZze33U4cKI/XC4iDpc0Pm5vYzYf51MtPMJ7fh2GHu587b29Xu/L9a/grWfdNTV/t0z9vNOtRpDx3ewfX2nGKTbMmafY4pdv2n/i9JR3nSpo32VVb/Yr0/oVL6jzvb1g8PQ/d+0/uhpz57qPNicvb8xHkj17WdUDvT1D+HvDgN5b4asTv0hpt+qPJPJPvnbnDQ1P96h9IsmWH3wt7awbf3H1G9ZhqlaTWbTesaFtpFLC7l2mbBxsNtRQG1SEbUZMzDp43DnTCCtoISsMWVkjyklM8VLZgzjSh7g/sFgiIb6PTTV7sFXvxt/UzXB5hqiLbWYtjqc/nqSg/V4go142zYxxjSTRTMuifZd+QgTNg7rAggHEWl/7iSKw74Isp7vvShyHtAf2faSff0Xv/cioPPFROf/j0wP5brf3jVpkQPev4f19F5vj/Xts37/89fT+en5XA+sjlWZp3CkM/Z/AktyvTw96Tt8bstVVN7xJTYlH8qU2tf5utSwreBk1rvHceTOf+Gv34kne1zMjz+c+YMhanfvoGH3NlprthOsq4SmHThba0gK1JIabiAt0kC2aSRTAj3+zQziwkcqbQ4vbQ4vAaeXxuQial1pGLvrNC4PUZcHnMng8tjrk3G4kqwfgRxOHA6xkhQREAcGB0asocnS0aIVwUQjRCNhopHI3h957B+HOn7EiYQgEsJEw0gkjImGIBpGIqGOH3A6fqyJhnFEw/aPONZzZySMwwRxmFbrL4+J4CSM00RwEcFFGCdRXITtZet5kkSG7g3sRdS0pzd7f3TZ+xdg7w9Cpn250488nbfvW777Orqrk677yP519Fd/07EBJW497Bq7y+3BSypjnbD2VF/3/1PEz1C9btW9akcz2+ta4x1Gv4k5oF+OB9fcuXPNsmXL4h1Ghw8euYW5a/4Hp32l6cNDhXsijRlTIGcyqeOmkV8ynYLiaTjcA015hr9wOIKvpYFAUw1tra0E/S3423yE2loxoTYIWw/rgiNqXXxEI0SjUUw0golGcUoUBwbECeIAh9N6iAPEiTisLjnYFz44HDgcThxOF+J0IQ7rX4fThcPpttc7cTjcOFwuHC4XTocLh8uN02mtc9rlXS53x79O++FwOBCHzvWiYqslEOZf9/6ec/fcSQ7NbM04iuzPX03unC/zzmtPc8LSS9hx5v2MP/rceIcaU742P7sqPqO+8jPa9myGunKSWipJC+wmO1JDnqnbLyEIGicNjixanFm0ubMJJucSScnBpObiSCvAnVGAJ7OAtKwCMrJz8GbkIO6UOL3C4cMYQyRqiEaN3dIftJJAY6cbIh2tCyIg4tjnx/J9tjukY5/2Non2ffZplZa9iYxdYGherFJKDVMistwYM3e/9Zpg9eyzT96mZvmTeIoOo3DqPMaWTrMSAKWU6odQOIIDg9O1t6Vs9dYdTL//ULbM+DZTFvxvHKM7OK1+PxWb11O3bSXBXRtxNpaT1lpBXqiKMaZ6n1bukHGyx1lAU1Ih/pRCImnjcGSMIym3iLT8ErLHlJCRO1b/riqllBqRekqwtItgL6YcfiJTDj8x3mEopUYot2v/xGFK8Rg2Mx5H1YqhD+gA1DU2sWPTSpq2ryG8Zz2exk3ktZVTFN3JNAl3lGsggxr3WGozZ7IrsxRXbhlpYyeTV3wImQXFjHe6iO3dxpRSSqnhTRMspZQaQskuJ5WeQziy6SNrwH6cu1lFoobtldvZteFD/BUrSK5ZR2HrRkrMDnLs1qiIEXY7x1CXWsrq7JNwFx5C9oSZFE46jKy0bLLi+gqUUkqp4UUTLKWUGmIt444lc+tr+Mo/xFt29JAdty0QYuvGldRuXk5k50rSGtZTHNhEmdTTPp9iteSxJ20qK/NOJ3ncTHJLZ1FQeijjklJIrCk5lFJKqYOjCZZSSg2xCcd8lfCWG9n57iKmDFKCVVNfT8W6ZTSVf4xjzxpymjdQGt7KDAkAEMbBDtcEduUeTdWYWWSVHc7YaUeRn1HAyJgEVymllBqeNMFSSqkhdtjUMt5yHc3czY9gWn+NpB787cbDkSgVFVvZteEjApWf4qldS2HrZ0wwO8mzZ0BtIZUdnslsLPgKrvGHkT/5SAonHUaJO2Wf+/UppZRSauAGlGCJyGJgmr2YBTQYY+aISCmwDthgb3vfGHPlQI6llFKjhYgQOO5aPG+dz+b7LmPytx+DPu7JZYyhuqaaXZtX0VixhsjudWQ0rmdCcDNl0tjRxW+3o4A96VP5NO8sUiccxrhp88gYO5lpOqW2UkopNSQGlGAZYxa0PxeR3wONnTZvNsbMGUj9Sik1Wp12yhd4av1VnLvnLir+7yjqJp+Hs+AQcLrx+/3463cSbarC2bKTdN82xgQrKJB6Cuz9Q7iodJeyI+94doydRVbZEYydehSF6TkUxvWVKaWUUoktJl0Exbo74fnAqbGoTymlRjsR4ez/+h9eeryYsrV3c9jam2Ht/uUaSKcmaTw7co+lMncKKeOmk182i9yiqZS5koY+cKWUUkr1KiY3GhaRE4Fb22+0ZXcRXANsBJqAXxpj3ulh3yuAKwAmTJhw5LZt2wYcj1JKjSThSJTKii207dmKiUZITkomq2A82QXFOJJS4h2eUkoppbrR042G+0ywROQ1YEw3m35hjHnaLvNnYJMx5vf2cjKQZoypFZEjgaeAQ40xTb0da+7cuWbZsmX9eT1KKaWUUkopFTc9JVh9dhE0xnyhj4pdwFeBIzvtEwAC9vPlIrIZmApo9qSUUkoppZQatRwxqOMLwHpjTGX7ChHJFxGn/XwiMAXYEoNjKaWUUkoppdSwFYtJLi4AFnVZdyLwWxEJAVHgSmNMXQyOpZRSSimllFLDVkwmuYgVEakGhtssF3lATbyDUENG3+/Eoe91YtH3O3Hoe5049L1OLMPx/S4xxuR3XTmsEqzhSESWdTd4TY1O+n4nDn2vE4u+34lD3+vEoe91YhlJ73csxmAppZRSSimllEITLKWUUkoppZSKGU2w+nZPvANQQ0rf78Sh73Vi0fc7ceh7nTj0vU4sI+b91jFYSimllFJKKRUj2oKllFJKKaWUUjGiCZZSSimllFJKxYgmWL0QkTNEZIOIbBKRn8Y7HhU7IlIsIm+KyFoRWSMiP7DX54jIqyLymf1vdrxjVbEhIk4R+UREnrOXy0TkA/v7vVhEkuIdo4oNEckSkcdEZL2IrBORY/W7PTqJyDX23/DVIrJIRDz63R49RORvIrJHRFZ3Wtftd1kst9vv+0oROSJ+kasD1cN7fbP9d3yliDwpIlmdtv3Mfq83iMjpcQm6F5pg9UBEnMBdwJnADOBCEZkR36hUDIWBa40xM4BjgO/Y7+9PgdeNMVOA1+1lNTr8AFjXafn/gNuMMZOBeuA/4xKVGgx/BF4yxhwCHIb1vut3e5QRkfHA94G5xpiZgBO4AP1ujyb3A2d0WdfTd/lMYIr9uAL48xDFqGLjfvZ/r18FZhpjZgMbgZ8B2NdrFwCH2vv8yb5uHzY0werZPGCTMWaLMSYIPAzMj3NMKkaMMVXGmI/t581YF2Djsd7jf9jF/gF8JS4BqpgSkSLgy8C99rIApwKP2UX0vR4lRCQTOBG4D8AYEzTGNKDf7dHKBaSIiAtIBarQ7/aoYYx5G6jrsrqn7/J84J/G8j6QJSJjhyRQNWDdvdfGmFeMMWF78X2gyH4+H3jYGBMwxmwFNmFdtw8bmmD1bDxQ0Wm50l6nRhkRKQUOBz4ACo0xVfamXUBhvOJSMfUH4MdA1F7OBRo6/eHW7/foUQZUA3+3u4TeKyJe9Ls96hhjdgC3ANuxEqtGYDn63R7tevou63Xb6HY58KL9fNi/15pgqYQmImnA48DVxpimztuMdQ8DvY/BCCciZwF7jDHL4x2LGhIu4Ajgz8aYwwEfXboD6nd7dLDH3szHSqrHAV7272KkRjH9LicGEfkF1tCOh+IdS39pgtWzHUBxp+Uie50aJUTEjZVcPWSMecJevbu9S4H97554xadi5jjgHBEpx+rqeyrWGJ0su1sR6Pd7NKkEKo0xH9jLj2ElXPrdHn2+AGw1xlQbY0LAE1jfd/1uj249fZf1um0UEpGFwFnARWbvzXuH/XutCVbPPgKm2LMRJWENpnsmzjGpGLHH4NwHrDPG3Npp0zPApfbzS4Gnhzo2FVvGmJ8ZY4qMMaVY3+M3jDEXAW8CX7OL6Xs9ShhjdgEVIjLNXvV5YC363R6NtgPHiEiq/Te9/b3W7/bo1tN3+RngEns2wWOAxk5dCdUIJCJnYHXvP8cY09pp0zPABSKSLCJlWBObfBiPGHsie5NB1ZWIfAlr7IYT+Jsx5sb4RqRiRUSOB94BVrF3XM7PscZhPQJMALYB5xtjug6wVSOUiJwM/MgYc5aITMRq0coBPgG+YYwJxDE8FSMiMgdrQpMkYAtwGdYPivrdHmVE5DfAAqzuQ58A38Qai6Hf7VFARBYBJwN5wG7g18BTdPNdtpPsO7G6ibYClxljlsUhbHUQenivfwYkA7V2sfeNMVfa5X+BNS4rjDXM48WudcaTJlhKKaWUUkopFSPaRVAppZRSSimlYkQTLKWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRjRBEsppZRSSimlYkQTLKWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRjRBEsppZRSSimlYkQTLKWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRjRBEsppYYJESkVESMirnjHMtqJyEIRWRrvOIYbETlBRDbEOw6llBrJNMFSSik1oonIDSISEpGWTo8fxzuukcgY844xZlqs67V/OPB1en/ujfUxlFJquNBfSZVSKkZExGWMCcc7jgS12BjzjXgHMVhGyWfrMGPMpngHoZRSg01bsJRSagBEpFxEfiIiKwGfiLhE5BgR+beINIjIpyJycqfyS0Tk/4nIhyLSJCJPi0hOD3VfJiLrRKRZRLaIyH912T5fRFbY9WwWkTPs9Zkicp+IVInIDhH5HxFx9vE6JonIGyJSKyI1IvKQiGR12lYnIkfYy+NEpLr9dYnIOSKyxn69S0Rkepfz8yMRWSkijSKyWEQ8B36mD5yI/NQ+L80islZEzu2hnIjIbSKyxz6Xq0Rkpr0tWURuEZHtIrJbRO4WkZR+Hv9+u/yrdgxviUhJp+1/FJEK+5jLReSETttuEJHHRORBEWkCForIPBF5zz7PVSJyp4gkddrHiMi3ReQz+3j/bb93/7aP8Ujn8j3EfLKIVPbn9SmllOqeJlhKKTVwFwJfBrKAQuB54H+AHOBHwOMikt+p/CXA5cBYIAzc3kO9e4CzgAzgMuC2TknOPOCfwHX2cU8Eyu397rfrnQwcDpwGfLOP1yDA/wPGAdOBYuAGAGPMZuAnwIMikgr8HfiHMWaJiEwFFgFXA/nAC8CzXS7kzwfOAMqA2cDCbgMQOd5OHnp6HN/Ha+hqM3ACkAn8xo5/bDflTsM6f1PtsucDtfa239nr52Cdz/HA9QcQw0XAfwN5wArgoU7bPrLrzQH+BTzaJfmcDzyG9f4+BESAa+y6jgU+D3y7y/FOB44EjgF+DNwDfAPr/ZyJ9Vk9aHai3NP786c+dn9bRHaJyBMiUjqQOJRSajjTBEsppQbudmNMhTGmDeti9gVjzAvGmKgx5lVgGfClTuUfMMasNsb4gF8B53fXwmSMed4Ys9lY3gJewUoYAP4T+Jsx5lX7ODuMMetFpNA+1tXGGJ8xZg9wG3BBby/AGLPJritgjKkGbgVO6rT9r8Am4AOsxPAX9qYFwPP2viHgFiAF+FyX87PTGFMHPIuVVHQXw1JjTFYvj94mpTi/y8X+OGPMo/Zxo8aYxcBnwLxu9g0B6cAhgBhj1hljqkREgCuAa4wxdcaYZuB/+zqXXTxvjHnbGBPAOmfHikix/XofNMbUGmPCxpjfA8lA5/FP7xljnrLjbzPGLDfGvG+XLwf+Qqf3yHaTMabJGLMGWA28YozZYoxpBF7ESrgPmjFmdi/vT9dkr7OTgFKsc7wTeE50Mhel1Cilf9yUUmrgKjo9LwG+LiJnd1rnBt7sofw2e3te10pF5Ezg11gtKA4gFVhlby7Gai3qqsSur8rKD8Det6Kbsp2PVQj8ESuBS7f3qe9S7K/AM8AVdsIAVovXtvYCxpioiFRgtfS029Xpeau9T6w90nUMlohcAvwQ68IeII1uzrMx5g0RuRO4CygRkSewWh49WOd8eadzKUCv3S276DjvxpgWEanDev0VIvIjrER5HGCwWirzutvXfj1TsRLfuXZcLmB5l+Pt7vS8rZvlMQcQe8wYY962nwZF5AdAE1ZL6aqe91JKqZFJW7CUUmrgTKfnFVgtVJ1/2fcaY37XqUxxp+cTsFpQajpXKCLJwONYLUKFxpgsrISq/Uq/ApjUTSwVQADI63T8DGPMoX28hv+1X8csY0wGVkvc3qxCJA34A3AfcIPsHTe2Eyupay8n9uvb0cfx9iPWFOEtvTxO6LuWjrpKsBLC7wK59vlb3fk1dWaMud0YcyQwAyuhvQ7rPWkDDu10LjONMWkH8LI63mv7HOYAO+3X8mOs7ojZdnyNXeLr/LkC+DOwHphiv0c/7+n1DBaxxtr19P7cfQBVGYY4dqWUGiqaYCmlVGw9CJwtIqeLiFNEPPbEAUWdynxDRGbY45l+CzxmjIl0qScJq8tYNRC2W7NO67T9PuAyEfm8iDhEZLyIHGKMqcLqSvh7Ecmwt00Ska5dybpKB1qARhEZj5VgdPZHYJkx5ptYY8zaL6YfAb5sx+EGrsVK8P7d14nqyp4iPK2XxzsHUJ0X6yK+GqwJQ7DGIO1HRI4SkaPt+H2AH4gaY6JYSdptIlJglx0vIqd32tdIp0lMuvEle2xZEtZYrPeNMRVY5ztsx+cSkeuxWrB6k47V8tMiIocAV/VRPuaMMYf28v5c2d0+InKoiMyxvw9pwO+xEvB1Qxq8UkoNEU2wlFIqhuyL5/lYrQvVWC1K17Hv39sHsCai2IXVDe373dTTbK9/BKur3n9gdc9r3/4h9sQXWC0fb7G3JekSrARtrb3vY1jjpnrzG+AIu67ngSfaN4jIfKxJKtov6H8IHCEiFxljNmC1dt2B1eJzNnC2MSbYx/EGlTFmLdaF/HtY3eRmAe/2UDwDK5Gqx+ruWAvcbG/7CdbYs/fFms3vNexxUvZYqmZ67+b2L6xunnVYk0+0d2N8GXgJ2Ggf008f3Tixui3+h33MvwKL+yg/XBRixdoEbMHqsnmWPWZPKaVGHTGmaw8EpZRSg0VElgAPGmP0RqsjnIh8A6v74M962H4/UGmM+eWQBqaUUiqudJILpZRS6iAYYx6MdwxKKaWGH+0iqJRSCUKsm94OdHICNcKJyM97+By8GO/YlFJqNNAugkoppZRSSikVI9qCpZRSSimllFIxMqzGYOXl5ZnS0tJ4h6GUUkoppZRSvVq+fHmNMSa/6/phlWCVlpaybNmyeIehlFJKKaWUUr0SkW3drdcugkoppZRSSikVI5pgKaWUUkoppVSMaIKllFK98IciPPFxJW3BSLxDUUoppdQIMKzGYHUnFApRWVmJ3++PdyhqhPF4PBQVFeF2u+MdihrB7lu6lVlvLGTtinkcefmt8Q5HKaWUUsPcsE+wKisrSU9Pp7S0FBGJdzhqhDDGUFtbS2VlJWVlZfEOR41g2yoq+I5zFWxfBf5fgycz3iEppZRSahgb9l0E/X4/ubm5mlypAyIi5ObmasunGrDU6k86noc2vx3HSJRSSik1Egz7BAvQ5EodFP3cqFgY37ax43ntZx/EMRKllFJKjQTDvougUkrFU0q4kTZJZWskn8zK5fEORymllFLD3IhowYo3EeHaa6/tWL7lllu44YYb4hdQJ++//z5HH300c+bMYfr06R1xLVmyhH//+98DqvuMM84gKyuLs846KwaRKjXyGGNwR1oJu7xskDLSGzbEOySllFJKDXOaYPVDcnIyTzzxBDU1NTGt1xhDNBodUB2XXnop99xzDytWrGD16tWcf/75QGwSrOuuu44HHnhgQHUoNZL5ghG8+Im4vTSnlZIRrgV/U7zDUkoppdQwNqK6CP7m2TWs3Rnbi5sZ4zL49dmH9lrG5XJxxRVXcNttt3HjjTfus626uporr7yS7du3A/CHP/yB4447jhtuuIG0tDR+9KMfATBz5kyee+45AE4//XSOPvpoli9fzgsvvMCdd97Jiy++iIjwy1/+kgULFrBkyRJuuOEG8vLyWL16NUceeSQPPvjgfuOK9uzZw9ixYwFwOp3MmDGD8vJy7r77bpxOJw8++CB33HEHhxxySI9xbt68mU2bNlFTU8OPf/xjvvWtbwHw+c9/niVLlvR6bh599FF+85vf4HQ6yczM5O2338bv93PVVVexbNkyXC4Xt956K6eccgr3338/Tz31FD6fj88++4wf/ehHBINBHnjgAZKTk3nhhRfIycnhr3/9K/fccw/BYJDJkyfzwAMPkJqaus9xjznmGO677z4OPdR6704++WRuueUW5s6d22u8Sh2IprYQXtqIuL1E0ieDD6j9DMYfGe/QlFJKKTVMaQtWP33nO9/hoYceorGxcZ/1P/jBD7jmmmv46KOPePzxx/nmN7/ZZ12fffYZ3/72t1mzZg3Lli1jxYoVfPrpp7z22mtcd911VFVVAfDJJ5/whz/8gbVr17Jlyxbefffd/eq65pprmDZtGueeey5/+ctf8Pv9lJaWcuWVV3LNNdewYsUKTjjhhF7jXLlyJW+88Qbvvfcev/3tb9m5c2e/z8tvf/tbXn75ZT799FOeeeYZAO666y5EhFWrVrFo0SIuvfTSjtn8Vq9ezRNPPMFHH33EL37xC1JTU/nkk0849thj+ec//wnAV7/6VT766CM+/fRTpk+fzn333bffcRcsWMAjjzwCQFVVFVVVVZpcqZhr9ofxih+TlIZn7CEAtFWtj3NUSimllBrORlQLVl8tTYMpIyODSy65hNtvv52UlJSO9a+99hpr167tWG5qaqKlpaXXukpKSjjmmGMAWLp0KRdeeCFOp5PCwkJOOukkPvroIzIyMpg3bx5FRUUAzJkzh/Lyco4//vh96rr++uu56KKLeOWVV/jXv/7FokWLum116i3O+fPnk5KSQkpKCqeccgoffvghX/nKV/p1Xo477jgWLlzI+eefz1e/+tWO1/S9730PgEMOOYSSkhI2brRmYjvllFNIT08nPT2dzMxMzj77bABmzZrFypUrASsJ++Uvf0lDQwMtLS2cfvrp+x33/PPP57TTTuM3v/kNjzzyCF/72tf6Fa9SB8IfipCGlWAVTDiE8IcOGirWkaK5vFJKKaV6MOAES0SKgX8ChYAB7jHG/FFEbgC+BVTbRX9ujHlhoMeLp6uvvpojjjiCyy67rGNdNBrl/fffx+Px7FPW5XLtM76q8/2YvF5vv46XnJzc8dzpdBIOh7stN2nSJK666iq+9a1vkZ+fT21t7X5leooT9p/O/ECmN7/77rv54IMPeP755znyyCNZvrz3WdY6vyaHw9Gx7HA4Ol7fwoULeeqppzjssMO4//77u00Yx48fT25uLitXrmTx4sXcfffd/Y5Zqf4KhKNk4se4vZSOyabC5OOu3tj3jkoppZRKWLHoIhgGrjXGzACOAb4jIjPsbbcZY+bYjxGdXAHk5ORw/vnn79Nl7bTTTuOOO+7oWF6xYgUApaWlfPzxxwB8/PHHbN26tds6TzjhBBYvXkwkEqG6upq3336befPm9Tum559/HmMMYHU9dDqdZGVlkZ6eTnNzc59xAjz99NP4/X5qa2tZsmQJRx11VL+Pv3nzZo4++mh++9vfkp+fT0VFBSeccAIPPfQQABs3bmT79u1Mmzat33U2NzczduxYQqFQRz3dWbBgATfddBONjY3Mnj273/Ur1V+BcASvtEFSGkXZKWwx40hu2BzvsJRSSik1jA04wTLGVBljPrafNwPrgPEDrXe4uvbaa/eZTfD2229n2bJlzJ49mxkzZnS0pJx33nnU1dVx6KGHcueddzJ16tRu6zv33HOZPXs2hx12GKeeeio33XQTY8aM6Xc8DzzwANOmTWPOnDlcfPHFPPTQQzidTs4++2yefPJJ5syZwzvvvNNjnACzZ8/mlFNO4ZhjjuFXv/oV48aNA6zk7+tf/zqvv/46RUVFvPzyy4DVLbF9vNV1113HrFmzmDlzJp/73Oc47LDD+Pa3v000GmXWrFksWLCA+++/f5+Wq77893//N0cffTTHHXcchxxySMf6Z555huuvv75j+Wtf+xoPP/xwx8yJSsVaMBwlDT+SnEayy8nupAlktm2HAc7+qZRSSqnRS9pbP2JSmUgp8DYwE/ghsBBoApZhtXLV97b/3LlzzbJly/ZZt27dOqZPnx6zGNW+us52ONro50cNxIufVnDmkzOpmXsteWddz19vu55vNf4Rrl4FWRPiHZ5SSiml4khElhtj9huZHbNZBEUkDXgcuNoY0wT8GZgEzAGqgN/3sN8VIrJMRJZVV1d3V0QppeIiErC62Yon3VqRU2b9W9d9l99Ede87W3h2uXadVEoppSBGCZaIuLGSq4eMMU8AGGN2G2Mixpgo8Feg24FFxph7jDFzjTFz8/PzYxGOOgA33HDDqG29Umqgon5rpk2nnWAlF04GwF+tyUS7qsY27n7+fc5+9ghC7+lkM+027Grmm//4iM92N/ddOEEYY7jppfU88lEFxLD3zEj3wZZafv7kKvyhiJ4XpUaJASdYYk05dx+wzhhza6f1YzsVOxdYPdBjKaXUUIoEWwFwJlszf+aMLSVonLTs1JkE232yvYFTnJ8A4H75J3qBaHvw/W3UrV9Kzr3zYOUj8Q5nWNi4u4U/LdnMv554AvN/pVDxUbxDGhZ+9uQq/vXBdjY/+T9w82Sw/+4opUauWLRgHQdcDJwqIivsx5eAm0RklYisBE4BronBsZRSashEg9btFVxJ1r3vSnIzqDAFhGu0BatdZX0rJzpW7l3RtCN+wQwja6uaONG5ktzQTnjtN/EOZ1hYtaMRgBvc/0D8DbCi51liE0U4EqWyvo1kghy69lZorYHNr8c7LKXUAA34PljGmKVAdzdOGvHTsiulElsk2AaAK9lKsCbkprLcFDK7cVs8wxpWdjcFmOeopY1kUgjArtWQWRTvsOKusr6VSbLTWmiqBF8teHPjG1Scbav1ATBe7PHWW5bEL5hhYndzgGA4ymTZs3flxpdg+tnxC0opNWAxm+RCKaVGGxNqb8GybtCdmeJml3Ms6a3btSucbVeTnwJHM+s9c6wVu1fFNZ7hIBo11LYEmZm0myaTaq2s1O5wtb4gY71CvjQRkiSo3wr+pniHFVe1LQEAjsyx/tYYZzLs0u+QUiOdJlj99NRTTyEirF+/vscy5eXlzJw5M2bH3LBhAyeffDJz5sxh+vTpXHHFFYB1k+AXXhhYA+Hll19OQUFBTONVarQxYeviR9wpHet83gkkR9vAV9PTbgmlsTVEFo0EM0qoMAWY3WvjHVLcNbaFCEejFEV38nzkaGtldc//dyQKXyBMSZKVUH2SdKS1snpDHCOKv9qWIADH5IUAaCk+0Ton0Ug8w1JKDZAmWP20aNEijj/+eBYtWtTt9nA4POBjRCL7/kH9/ve/zzXXXMOKFStYt24d3/ve94DYJFgLFy7kpZdeGlAdSo127S1YOJM61kWySq0n9TpVO4C/zUeqaSM5s4Ct0UJCOj6NmpYAHoK4TYAdjjG0uLKhTs9Liz9MsasBgNeCh1orq9fFL6BhoNZnJViHpFndJyuyj4WwH+rL4xiVUmqgRlaC9eJP4e9fju3jxZ/2ediWlhaWLl3Kfffdx8MPP9yxfsmSJZxwwgmcc845zJgxA7ASrYsuuojp06fzta99jdZWazag119/ncMPP5xZs2Zx+eWXEwhYv4yXlpbyk5/8hCOOOIJHH310n+NWVVVRVLR3LMOsWbMIBoNcf/31LF68mDlz5rB48WJ8Ph+XX3458+bN4/DDD+fpp58G4P7772f+/PmcfPLJTJkyhd/8Zu9A6xNPPJGcnJxeX/dbb73FnDlzmDNnDocffjjNzc0YY7juuuuYOXMms2bNYvHixR3n4qSTTmL+/PlMnDiRn/70pzz00EPMmzePWbNmsXmzdXHx7LPPcvTRR3P44YfzhS98gd27d+933AsuuIDnn3++Y3nhwoU89thjfbxLSsWeCdsJlsvTsS4pfxIA4ZpN8Qhp2HH6awHwZo9hmynEoReG1LQESccav5fszaLKOQ5qt8Q5qvhrDoQpctYD8JZ/Msbl0RYsu4tgsauBRpPKBof194UanalUqZFsZCVYcfL0009zxhlnMHXqVHJzc1m+fHnHto8//pg//vGPbNxo/THcsGED3/72t1m3bh0ZGRn86U9/wu/3s3DhQhYvXsyqVasIh8P8+c9/7qgjNzeXjz/+mAsuuGCf415zzTWceuqpnHnmmdx22200NDSQlJTEb3/7WxYsWMCKFStYsGABN954I6eeeioffvghb775Jtdddx0+n/Vr2Icffsjjjz/OypUrefTRR1m2bFm/X/ctt9zCXXfdxYoVK3jnnXdISUnhiSeeYMWKFXz66ae89tprXHfddVRVVQHw6aefcvfdd7Nu3ToeeOABNm7cyIcffsg3v/lN7rjjDgCOP/543n//fT755BMuuOACbrrppv2Ou2DBAh55xJrWOBgM8vrrr/PlL3+533ErFTMdCVZyx6qMsZOJGsFXpQkWgDtgXTBn5o1lmynEFWyE1ro4RxVfzf4QaWIlWN70bDZHCrUFC6sFq9BhzSS4y+TgTytO+JaaWl8Qj9uBN1hNrWSzxm9PhJLg50WpkW7AswgOqTN/F5fDLlq0iB/84AeA1bqyaNEijjzS6j8+b948ysrKOsoWFxdz3HHHAfCNb3yD22+/nS9+8YuUlZUxdepUAC699FLuuusurr76asBKKLpz2WWXcfrpp/PSSy/x9NNP85e//IVPP/10v3KvvPIKzzzzDLfccgsAfr+f7du3A/DFL36R3FzrD/ZXv/pVli5dyty5c/v1uo877jh++MMfctFFF/HVr36VoqIili5dyoUXXojT6aSwsJCTTjqJjz76iIyMDI466ijGjrVufzZp0iROO+00wGp5e/PNNwGorKxkwYIFVFVVEQwG9zl37c4880x+8IMfEAgEeOmllzjxxBNJSUnZr5xSg84eg9W5BasoP4ud5OLes4nMOIU1nHgCdeCEnPyxVDDGWlm/FVJ7byEfzXzBMGl2C1ZGVg5rq/I4I1wFQR8keeMcXfz4gmEyU6zz0kwq9UnjSKlP7Bk5G1tDZHjcSGs9re5s1ta7ICkd6rQLslIjmbZg9aGuro433niDb37zm5SWlnLzzTfzyCOPYOwZxLzeff+ztO673PNyd7rW0dm4ceO4/PLLefrpp3G5XKxevf/9mo0xPP7446xYsYIVK1awfft2pk+fftDxtPvpT3/KvffeS1tbG8cdd1yvE3wAJCfv/ZXf4XB0LDscjo4xat/73vf47ne/y6pVq/jLX/6C3+/frx6Px8PJJ5/Myy+/zOLFi3tMQJUabBJpT7D2frZLclPZHi3A0aAXQKFIlNRIMwCutDza0outDQl+cdgSiHS0YOXk5LA5YieedYndTbDFHyZN/Bh3KoiDXY5Cq6UmgWfk9AXDpCW7INAESelsq2uDnFId46nUCKcJVh8ee+wxLr74YrZt20Z5eTkVFRWUlZXxzjvvdFt++/btvPfeewD861//4vjjj2fatGmUl5ezaZPVpeiBBx7gpJNO6vPYL730EqGQNbPQrl27qK2tZfz48aSnp9Pc3NxR7vTTT+eOO+7oSPo++eSTjm2vvvoqdXV1tLW18dRTT3W0rvXH5s2bmTVrFj/5yU846qijWL9+PSeccAKLFy8mEolQXV3N22+/zbx58/pdZ2NjI+PHjwfgH//4R4/lFixYwN///nfeeecdzjjjjH7Xr1Qs7U2w9rZgFaZ7qJAxpLZUxCmq4aPFH8ZrJxIkpeHMsVukEzzBag2ESccaf5ufm0+5KbQ21CZ2N8HmgNWyJ8npjMtKoTySD8HmhO5S6guE8Sa7INCMKzWDnY1tRDJLtIugUiOcJlh9WLRoEeeee+4+684777weZxOcNm0ad911F9OnT6e+vp6rrroKj8fD3//+d77+9a8za9YsHA4HV155ZZ/HfuWVV5g5cyaHHXYYp59+OjfffDNjxozhlFNOYe3atR2TXPzqV78iFAoxe/ZsDj30UH71q1911DFv3jzOO+88Zs+ezXnnndfRPfDCCy/k2GOPZcOGDRQVFXHfffcBcPfdd3P33XcD8Ic//IGZM2cye/Zs3G43Z555Jueeey6zZ8/msMMO49RTT+Wmm25izJgx/T6fN9xwA1//+tc58sgjycvL61i/bNkyvvnNb3Ysn3baabz11lt84QtfICkpqbuqlBp0jvD+LVgOh9DkKcIbrk/4e/i0BMKkYrdCJ3kZk5dLNdkJ/+u7LxAm3U48CwvyKTftLViJm2AFw1GC4She2iApjdJcL+sCOt7IF4jgTXZCoJkkbxbGQFNKEdRvg2g03uEppQ7SyBqDFQftY4c6+/73v9/x/OSTT+54Xlpa2mM3us9//vP7tCy1Ky8v7/HYt956K7feeut+63Nycvjoo31vWvmXv/yl2zqKiop46qmn9lvfU4LYOfFrn5iiq5tvvpmbb755n3Unn3zyPudiyZIl3W6bP38+8+fP36/OuXPncu+993Ysu91u6uoS91dNNTw4ogHCuHA5nPusD2aUQA1WIjH2sPgENww0+UOkdSRYaUzISWVLtJDsms0J/Z+LLxghx2VNv52Xk0fI5aXFnUNaAncR9AWsbuIpphWS05mQm8onO+xRjA3lUHRk/IKLI18wzJgMDwSaSE3PBmCPayzZkQA0V0Hm+DhHqJQ6GNqCpZRSPXBGAoRk/xZUR+5EAEyCd4Vr8YdJFT8RZzI4XUzIscanmQROJMBKJrKdVuLpSMmgODuF3c4xVqtEgmqxEyxP1EqwSnJSWdtmJRSJ3YIVJtMdhUiQtEzrfGxr71Ka4C3BSo1kmmCNYgsXLuTOO++MdxhKjViOaJCwY/8EyzvWmhG0bXdiT9Xe7A+Thh/jTgPsCUBMAe7WPRBqi3N08dPSnmA5k8CVbCee+QmdYDX7rQQrOWInWLmptOIhnJKX2AlWMEKO20rGvenZeNwONrZ3nUzwH3CUGslGRIJlEniGIXXw9HOjBsoVDRDupgVrbEE+NSaDtl2fxSGq4cMXtFqwjD31eHGOlWAB0LA9jpHFV2swQrojAMnpAJTketkYyMU0VUIkFOfo4sMXtBIsd8RndRHMsT4zzSnjEzvBCoTJdlhjPcWTyYScVFb7MkCcCX1elBrphn2C5fF4qK2t1YtldUCMMdTW1uLxePourFQPXNEgkW5asEpyU9lmCokm+C/MvkAEL35IslqwMlPc1CWNszYm8MVhSyBMhqOtI8EqzkllUzgPMVFoTMzZJ1vsFixX2GeN18tNBaDalbhdJ6NRQ2swQqbdndRKPFMprw9aY68aEvO8KDUaDPtxyEVFRVRWVlJdXR3vUNQI4/F4KCoqincYagRzmSARR/J+64uzU3nRFDKlObG7CLYGw3jx40hO27syuxTqSdiLZrDOSzp7E6wJOam82t6yV78NcibGMbr4aLbHYLmCLZCcTlqyi7y0JCpNIVMbX7Na9pzuOEc5tFpDEQAyHXZ32uR0inNS+ffmWsykUiSBf6RQaqQb9ARLRM4A/gg4gXuNMb87kP3dbjdlZWWDEptSSvXGbYLWBA5dpCQ5qXaPJy3wLoQD+0zjnkh8gQhe8ePw7L1VQ3ruWNrqk0lJ4ItDq2WvDZIzgL03pwYStmWvxR8miRASDYKdkE/ISWVjMJdTTQQaKyEnsf6vb7WTzvYp/UnOYEJOKq3BCIG0YjxbXo1jdEqpgRjULoIi4gTuAs4EZgAXisiMwTymUkrFissEiTq7vw+bP20CDkxit9SEwqSJH7HHYAEU53qpMPmYBJ4BrSUQxkvr3i6C2ansIoeIuBI2wfIFwlbSCZ0STy+rfPZMggnYHa59ZsU09rZgTcixuk7WJo0D3x4I+uIVnlJqAAZ7DNY8YJMxZosxJgg8DOx/EySllBpmwpEoyYSIdtNFELC6wgEk8JTkrYEIXtk7mQNYrRLbogWEaxM3wWoNhEmJ7k2wUpKc5KanUO8uTMhEAqwugmmyN5EA67PyaYt9L6wEHM/oC1hdBFPbE6ykNIrtBKtKdLIYpUaywU6wxgOdR/RW2uuUUmpYC4StBMv00P3PM2YKAOHazUMZ1rDiC9qtEp1asCbkpFJhCnA0bIMEnJwoGjX4ghGSOyVYACU5qeyQwoRtwWrxhylwWzdfbp8UpSQ3lZ0mF+NwJ+R5aZ9Z0Ws6jcHKthKsreF8a10CnhelRoO4zyIoIleIyDIRWaYTWSilhouOBMvZ/UyU+QXjaDYptFQl7kQXrf4wqZ1mEQQrwdpuCnCGW8FXE8fo4qPNnrggOeLb77xsCeUlbJdSXyBMXpKdYHVMX59KFAdt3sScqt1ndxFMjraCOMCdQkqSk/z0ZNb622/CnJifF6VGusFOsHYAxZ2Wi+x1HYwx9xhj5hpj5ubn5w9yOEop1T/BcJRkgj22YJXkedluCojUJG4LVijkx0VknxascVkpVJK4Ezr4AmHchHFFAx1jjcCaqn1DMBfa6sDfGMcI46MlECbXvW+C1X4vrLqk8ZCAY/Z8QSsZ90RbISkdRAArGV/XmARub0J+h5QaDQY7wfoImCIiZSKSBFwAPDPIx1RKqQELhCMkS6jHGQKLc1IpN4W4GsuHNrBhJOpvtp506grndjoIpNm/qyXgxWHLPpM5dOoimGuNTQMSslWiORAmx7VvgpWXloQ3ycnOBO062d6ClRRp3W8cY0W9H7JLEnbMnlIj3aAmWMaYMPBd4GVgHfCIMWbNYB5TKaViIWh3EcTVQxfBtGR2yljS2nZANDLE0Q0PJtBiPenUggXgzCm1njSUD2k8w0FrMLLfZA7QPjbN7qWRgBfNLf4QWZ1uqAsgIkzI9bIlUmC16rXWxTHCodeeYLnDvo6p68H68WZnYxvRrJKETDyVGg0GfQyWMeYFY8xUY8wkY8yNg308pZSKhfYxWNJDgiUi+LzFOE3YuodPApJQe4KVts/6wtwcashKyIvDloB9k2HYN8HKtcamAQl5XnyByN4Eq9PnpSQnlbVt7eONyoc+sDhqn0XQGd5/vJ4x0Jwy3mrtTMDJYpQa6eI+yYVSSg1HgVDESrDc3SdYAKHMUutJAo4fAXC036OnS4I1ITeV8mgBkdryoQ8qznyB8D73NWqXn5ZM0J1BmzM9IbsItgTCZEjAWuicYOWm8klLlrWQYN8jXzBMssuBI9iyTwtW+72wql1jIeSD1tp4haiUOkiaYCmlVDeCQT8OMYi7h/tgAUn5kwAwCXgPHwBHyE6wkvdNsIrtmQSjCXhefPt0Edw7yYWIMCEnlT3OxBxv1OwPkS6tVnLl2HvpMSE3lc0JOiV5SyBMWrILAs37dScF9nYpTbDzotRooAmWUkp1IxS0LpId7pQey2SPKSFgXLTu+myowho2olGDK9JqLXQZg9V+LyxXy04IB+MQXfz4eugiCNasedtNQcKNwTLGujeYV/z7nZOSHC+teAh6chMukfAFwniTXRBssWYRtBWkJ5PkcvBZMM9akWDnRanRQBMspZTqRiRgjRdx9NJFsCQ/gwpTQGBP4t0Lyx+OkGr2H1MD9r2wogUIBhorutl79PIFwni7meQCrPPyWTAXU78NotE4RBcf/lCUSNSQatr2T7ByrdaaJk8RJFiLZ0eCFWjepxXY4RCKs1NY7cu0VmiCpdSIowmWUkp1I2y3YDmTem7BmpjnZZspRBLwAqg1GNmbSHRJsLJT3dS4x1gLCTauptnf/RgsgAk5KWwJ5yGRALTsikN08dEcCAGQEvXt91kZm+nB5RB2u8Ym3Ni0lkCYtCSH1YLV5bNSnJPKpgYD3sRr8VRqNNAESymluhEJWq0zrqSeW7DGZaVQKYV4fdsTbqav1kAEL/akBV3GYIkI0axSayHBks+WQJgcVwCQ/bpOluR6O80kmDgXzS1+azpyj2ndL5FwOR0UZadY9whrqkyoLqWtwQhZSVGIhrttBa6oa8Vk61TtSo1EmmAppVQ3InYLlquXFiynQ2hJnUBStA181UMV2rDgC1pd4QyObu8V5s0dTxBXQiUSYCUT2U6/NcGFyD7biu2xaUBCXTS3T0fe9Ya67SbkelkfyAUTTagupS3d3Hy53YScVJoDYYLpExLuO6TUaKAJllJKdSMa6jvBAjDtLTUJNn6kNRjBi5+IO3W/RAKgKCeNSlOASaBEAqAlGCbTsf9kDgBF2SnsJA+DJFS3r/YugtYNdfc/LyU5qazw2ffCSqDvkS8QJtu1/9T1YCXjAA3J46ykM4Fa9pQaDTTBUkqpbnR0EUzuPcFKLpxsla/ZPOgxDSetwTDp0kYkKaPb7RNyU9kWzSdcmzgXzGC1YPWUYHncTnIy0mlw5SdUItHeRdAVbtkvkQBroov1/lxrIYHG7PkCEbJd9kQx3bRgAex0jbda9hIoIVdqNNAESymlutHeRTDJ03uClTNuMhEjNFdtHIqwhg1fIEI6rZik/RMJgFJ7vJHUb02o8WktASvx7C7BAqtlYodjLNRtGeLI4scXDAMGZzeTOYCVTOwhi6gzOWG6TlpT14fJdHQ/jrG9BWtz1J4spjbxZipVaiTTBEsppboRtluwpJvxRZ2Vjsmmilz8exKwBYtW8HTfglWW56XcjMEVagFfzRBHFz8t/jBeek6wSnJS2RguTKgL5sbWEMmEEBPp9ryU5nkBoSW1KGESrNZgBGMgoz3B6vJDRVqyi1xvEmv99s2GE+jzotRooAmWUkp1o30MVncTOHRWlpfGtmghjgTq2gTQ1BYiXVpxeDK73T4+K4UKxzhroTZxbsTcEgiTalr3a5FoNyEnlTWBfGirg9a6IY4uPpr8Pd98GfZ2h6txj0uYrpO+gNVtMt3RfRdBsFqx1je6ICUHahPrBxylRjpNsJRSqhvGbsHCldxruRxvElXOsXh9iTP7Gey9aHaldp9gORxCKMsan0ZN4iRYzf4Q3mgL9JB4TshNZasZay0kSKtEY1uIvKTuZ8sDa2xaYUYyFWJ3nUyAmzD7gtbMil7Taq3oJiEvy/OytcYHuZMT5rOi1GihCZZSSnVDQi3Wkx66enXm8xbjjTSAv3FwgxpGGttCZEgrjpTuEwkAb0GpNVV7grRgWeNqIqREmiElu9syE3JS2ZKACVZhsp1gdTPJBUBJjpf1oTEQbrPuhzXKNfutmRW92D/kdHNeJuZ5qWr0E86eqC1YSo0wmmAppVQ3nO0JVg8XhJ1FsydaTxKkexNAY2vQnsyh+zFYAGUFGWyLFhKtSYxEwh+K4ooGcJkgeLK6LTMhJ5VKk09UXAnTstfYFqIwyUooevrBYkJuKp+05lkLCXBe6lut85EmvSRY+da62uRiaN4JgZYhi08pNTCaYCmlVDdcIR9hXH12EQTwjJkKgH934swk2Nbqw024x0kuwBqfttmMI7wnMc5LcyBEJj5rISWr2zI53iQ8yR7qksYmTAtWU1uIvCR7MocePi8lOaksb0mcBKuh1WrR89IKbi849r8cm5jvBWB7+1jGBJp5UqmRbkAJlojcLCLrRWSliDwpIln2+lIRaRORFfbj7phEq5RSQ8Qd8eF3pHR7E92ucooOIWKEpoo1QxDZ8BBqbbCe9NKCNTHfyxYzFlfjNoiEhiawOGr2h8kUO8HqoQVLRJiU72W7jE+YBKuxLUSh0259ScnptsyE3FSqybTuq5YAXUrrfVaC5Qk39didtCzPiwhsCBZYK+q0m6BSI8VAW7BeBWYaY2YDG4Gfddq22Rgzx35cOcDjKKXUkEqO+Ag4UvtVtmxsLhWmgODuDYMc1fAR9TdZT3qYzAGsMSRbzFgcJgwN24cosvip8wXJpD2RyOqx3KT8NNYFC6xxNQkwoUNTW4hcp514puZ2W6Yk156qPa00IVqw2rsIJgUbILX7pNPjdjIuM4UVPnt7giTkSo0GA0qwjDGvGGPC9uL7QNHAQ1JKqfhLirQSdHr7VbYkN5UtZhxJ9YlzAeTw11tPemipAchKTaImudhaSICL5tqWYJ8tWACTCtJYHciHSCAhJnRobAuRTQs4kyCp++9UiT1V+56k4oT4rNS3BslMceNoq+sx6QSrFXh9XQTSx+lEF0qNILEcg3U58GKn5TIR+URE3hKRE3raSUSuEJFlIrKsuro6huEopdTB85g2Qq7+JVjJLid7kieQ1bYtIVokAJICdoLlzeu9YO4U698E6PZV5wuS1TEGq/tuX2C1YG2J2uNqRnkyEYpE8QUjZNJsJRI9dLnNSnWT7nGxjfEJMaFDfWuI7FQ3tNb22IIF1mdla7UPkztp1H9WlBpN+kywROQ1EVndzWN+pzK/AMLAQ/aqKmCCMeZw4IfAv0Sk2476xph7jDFzjTFz8/PzB/6KlFJqgKJRQ0rUR8TdvwQLoC1zEkkmCI2j/35Y4UiU1HD/Eqz8grE0kJ4Q3ZvqfIG9LVi9dBGcXOBlixljLYzyVolmv9XJJSPa2OP4K7DGppXkprI23H5eRvfnpaE1SFZqknWz6T5asHzBCG0ZE61zYswQRqmUOlh9JljGmC8YY2Z283gaQEQWAmcBFxljffONMQFjTK39fDmwGZg6aK9CKaViqDkQxosfk9T3PbDaOfKtP3GR6tE/Y16zP0wuzdZCau8J1sT8NDZFxybETIK1viCFrhZwuCC557FpJble6h3ZBJypUDO6z0tjmzXWKDXS1GtLDUBprpflLXayMcpba+pbg+SlOsHf0HuClWdN1b47qdgq66sZmgCVUgMy0FkEzwB+DJxjTPvtyEFE8kXEaT+fCEwBdH5RpdSI0NQWwit+SO77Hljt0otmWPsmwEyCDW0hcqSJsDMFknqfCGRivpct0bGYUX7BDFYXwSJXI3gLup12u53b6WBCrpedruJR33WyfTrylHBjnwnWpPw03m/MxCCj/rzU+0KMS26zFnpp2ZtUYLWibzbtXUpHd0Ku1Ggx0DFYdwLpwKtdpmM/EVgpIiuAx4ArjTF1AzyWUkoNica2EGm04fT0vwWraHwxdSaN1p1rBzGy4WFPk59caSLs6fmX93aT8tPYZMbhbquGtvohiC5+6nxBCp1NkFbQZ9nJ+Wlsio4b9S011c3W/a+Sg/W9ttSANflHwCQRSi8e9YlEfWuQsW77d+leEs8xGR5Sk5ys8hdaK0b5eVFqtHANZGdjzOQe1j8OPD6QupVSKl4afX68+GlM6bmbV1eT8r1sNuMoGuVjRwB2NwfIpQm8fSdYJbmplDPeWqj5DIrnDXJ08VPbEqSAekif0mfZSQVprNxYwBdDb0KgGZL7n8yPJHuaAyQTxOWvs2bC68Uk+8a6DamlFNSM3u9RIByhNRhhnLPBWpE+pseyIsLEfC8rmtzgShn1Y9OUGi1iOYugUkqNCm2N1TjE4MrouyWiXY43iQpHEekto7839O5GqwXLmd73+XE7HbRm2b/FjfJf3+t8QbKi9f1uwdoYHWstjOKL5urmAIVit1xm9J5gleVZCdaO9q6To3RGzjr7JsMF1lB1yBjfa/lJ+Wlsqm6F3Mmj/juk1GihCZZSSnURbNoNQPIBJFgiQnNaGWnhemtmsFFsd5Of8VKLK6u4X+W9BRMJ4oLq0Xsj5mjU0ODzkxZugLSeWyTaTSpI6zSuZvR2E9zTHGBqij0hSsbYXsumJrkYn5XChshYCPtH7YycOxv8ABRiJ1jpvZ+XSflp7GhoI5yjCZZSI4UmWEop1UW4eQ8AKdl9Xyh3Fs1pv+fT6G2RAKhvbCBbmpF+JlhlBZlsNWOJjuIZFmtaAmRG6nAQhfTCPstPyvey3RQSxTmqL5p3NrQxLbXJWuijpQasSVE+abVv2TJKE8+qRmtyi+xwtTULp9vTa/mJdtfJupQSqN8GIf+gx6iUGhhNsJRSqotos3XT8+TMvi+UO0seewgArTvXxTym4SRab7csZPYvwZpcYE3VHtkzeluwKurbKBGr5ZPs0j7Lp3vcZGekUZM0dlQnWJX1rUxMshOsPlpqwGqtebfBnvShZnR+XnY2WAlWWnA3ZPaddE7Kt2YzrXAUAQbqRn83ZKVGOk2wlFKqi4idYIm3/10EAQqKpxIwLporR/dU7Y4mO8HqZwtW+wQgrqZtEA4MYmTxU1nfSomjPcEq69c+k/LTrAlARmlLjTGGHQ1tlDqrwZMFnow+95mU76UymErUkz1qE88d9W2kJ7twN1VCRlGf5cvyvIjA+vabMI/S86LUaKIJllJKdSGtNURxQEr2Ae03sTCTcjOGyCi+qa4/FMHj22EtZPZ9cQjtNxsej5go1G4exOjip7K+jQmyByNOyJrQr30mF6SxOlCIqd0E0cggRzj0djcF8IeijA9XQF7fMytCe2uN0JI+cdQmnltqfEzM9VgtUf04Lx63k/FZKXzsS4ybMCs1GmiCpZRSXST7q2lxZvZ6s9juFOekspVxJDeOziQCYGuNj8myg7Aztc9pt9tlpripSy21Fkbpr++b9rQwLakGySwCp7tf+0zM87IuPAaJBKFh2yBHOPTW77K6Bub4t0Pe1H7tM6nA6g63O2nCqP2sbK3xMTezCSLB/p+X/DTW10asbrmj9LwoNZpogqWUUl1kh3bRnNz3eJGu3E4HNZ4SsvyVEA4OQmTxt7m6halSSShnygEloM72X+pH6cXhxt3NzHBWQv4h/d5nYn4am6OjdybBDbuaSaOVpLY9/W7BKkhPJi3ZxRYzDnzVo25GztZgmB0Nbcz22N1JDyDB2lLtw+ROsaawV0oNa5pgKaVUJ03+EOPMHtrS+je+qKtA5iScRKF+a4wjGx427WlhqqMS99hDD2i/osI8dpKHGYUJViRqqNhTx7hQBYyd3e/9Jtpj04BRmXhu2N3McWlV1kL+9H7t035j3dVBe4KZUZZ4rt7RhDEw01Vprehv18kCL22hCL6MMuucGDOIUSqlBkoTLKWU6mTbnibGSw2SXXJQ+7sKrRaM8CidMa9862bypRHX2JkHtN+k/DQ+i4wjsnv9IEUWPxt2NVMWKcdBBMb0P8Eal5mC35VBi2t0TuiwYVczJ6fZE6KMP7Lf+03KT+P9pvbxRqPrvKyosG66XOxbY7VepWT1a7+JeVbXySpXMQRboLlqsEJUSsWAJlhKKdVJVcVm3BLBO2byQe2fWTwDgKaK0TeTYCRqcO74wFooPuaA9m2/sa7UbYJodBCii59PKuo50mG3tBxAIuFwCGV5XnY4i0ddS02TP8T6Xc0c4dxkTfqRlt/vfSfle1nelIlxJo26BOvTikaKsjwk7foYio7q936TCqx7YY3mFk+lRhNNsJRSqpOWHdY9rHKK+z+WprMJYwuoMjn4q0ZfS836XU3MDK8l7PQcUFc4sC6aN5nxOMNt0FQ5SBHGx/tb6jg5aS0mZ1K/7mvU2cR8Lxsjo+9eWB9sqcNEI0xs+QQmfO6A9p2Un0YUB4H27nCjRDRqWLatjjMKG6C1BoqP7ve++WnJpHtcrPTbt44YRedFqdFIEyyllOrEsXslAEnjDyyBaDcpL43N0bE46zbFMqxh4YPNtZziWEG46Nh+z5TXblxmCpUOe1r3UZRMRKKGDzbuYJ6sRcpOPOD9J+al8am/AFprwVc7CBHGx9LPqjnKXY47UA9TvnhA+060b6xbm1Iyqj4rn1Q0sLspwFe8q60VB3BeRIRJ+WmsqPdAUpomWEoNc5pgKaVUJ2n166hxjTnge2C1y0x1s9NVTIZv66gbiL720w8odezGM/OsA97X4RDCue0zCY6ei8N/b65hTmAZnmgbTD/7gPcvy/OyKWrPWDlKZoeLRg2vrN3Nt7KWgzMJJp16QPuX5KbiEKhwFFmTxYySm1O/uKoKt1OYXv8mjD0MMvp3m4N2E/O9bK7xWRNjjKLEU6nRSBMspZSy7WnyMzm8iZbsGQOqpyV9IilRH7TsjlFk8VdZ38q0Xc8SEScccuCJBEBewXiaSIPq0TMByGPLK7kw6R1Mah6UnXTA+0/M97JplI2reWdTDXWNTZzof91KOlNzDmh/j9tJcU4q68NjwEStG/KOcJGo4YVVVVxQ0oKz6hOYfcEB1zEpP43dTQFC2ZNH1Y8USo1GA0qwROQGEdkhIivsx5c6bfuZiGwSkQ0icvrAQ1VKqcG1bsM6Sh27cZYd2JiRrswovOfTw0vX8jXnWwQnnQHphQdVx6SCdDZGxxGtHh3npaKuldUrP+ZkliNHLgSn64DrmJiXxk6TR9iRPCo+L8YY/vjaRi5O+4ikUBMcedlB1TMpP41lLfbEGKPgvLy0ehc7G/38l/sFcKXA7AUHXMek9q6TnhJrHGPQF+swlVIxEosWrNuMMXPsxwsAIjIDuAA4FDgD+JOIOGNwLKWUGjTVq14HoGDWgY0Z6SplrHXPH589YcZIt6fZj/ujv5AtLaScfO1B1zMx38vm6Diio6QF64+vf8Z1rocx7hQ4+r8Oqo7MVDfZXg/VSUWjolXi7c9qWLt9N1e7nrS6wZUef1D1TMzz8m6D3U13hCdYoUiUW1/dwKk5NYzf/jQcuRC8uQdcz6R8aybBbQ57IpXa0TfOU6nRYrC6CM4HHjbGBIwxW4FNwLxBOpZSSg2YMYbsytdpdGaTfJATXLQrGFeGzyTj27k2RtHF158ee5Er5Cl8k74MRf2fhryrsjwvW80YXG014G+MYYRD780Ne/B/8ihnOD7EccK1kFZw0HVNzPeylfEjPpFoDYb5zbNruNG7mDT/Tjj9f0HkoOqaVJBGfTiJcNq4EZ94/vG1z6iobuAPyX9BPJlw0o8Pqp4Juak4HcK64BhrxQg/L0qNZrFIsL4rIitF5G8i0j4qfDxQ0alMpb1uPyJyhYgsE5Fl1dXVMQhHKaUO3Nptuzg68jE1478AjoH9aSzJ81JuxhCtHfljRx55bwMXbP0VJKXinX/LgOqyEqz2CR02xyC6+NjR0MafH32B/03+O9FxR8BxVw+ovol5aawOFEJ9+Yid0CEaNfzsiVXMqHud8yIvwTHfOejWK9jbHa4prWxEj9lbsmEPdy35jPvHPUlG/RqYf9cBj0lrl+xyMiEnlY9bskEcIz4hV2o06/MqQkReE5HV3TzmA38GJgFzgCrg9wcagDHmHmPMXGPM3Pz8/t+IUCmlYmn76/eQJn7yj1844LqKc1IpN4UkNW0beGBx9NrKcsa9+J9MdVSS9PV7D3jWs668yS6aUidYCyN04oI9TX5+cs9T3B7+LameFBxf+9tBjb3qrCzfayVYJjoiE89o1PCbZ9fQvPI5/pj0J5hwLHz++gHVWZZndYfb5S62usKNwBk5/725hqseXM7/ZjzF5+qegmO/C4d8eUB1luV52VgbgqwSbcFSahjr838FY8wX+lORiPwVeM5e3AEUd9pcZK9TSqlhxx8IcFjFA2zyzGLy1IP/1b2dx+2kxl1ERtvHEI2AY+QNQX30rY8pff1KjnRsJPDlO0iZOrBxae1c+ROJVgmOETh+ZGVlA3ff/w9uD91MuseF69KnIadswPWW5Xl5tqNlbxMUDmwWy6HUEgjzk0c/pWDd37k36SFkzGy48GFwewZUb15aEunJLraYscwItlgzcqaPiVHUg8sYw6IPK/i/Z5fz55T7ODnwDhxxKXzxvwdcd1mel39vrsEcMhXRBEupYWtAP7uJyFhjTJW9eC5g3z2PZ4B/icitwDhgCvDhQI6llFKD5ZOX7udYqllz9P/ErM629GJcjWForITskpjVO9ga20I88tC9nFPxO7KcbQTO+Ssph389ZvUXF+SyuyqXsSOopSYUifK3JeuQt/4fdzqeI5RVhvuSxyB3Ukzqn2h3KQVG1MQF72+p5ZbHlvDd5j9ysvtTzLQzka/eC8lpA65bRCjL97ImUMBZYLXWjIAEq7o5wP88v5aKT5fwgvdvjAtVwBdusLqRHuR4tM7K8rz4Q1F86aWkbX0botEBd2lWSsXewPo1wE0iMgcwQDnwXwDGmDUi8giwFggD3zHGRAZ4LKWUirlIJErep39mu6OYGSfFLpEw2ROhEasr3AhIsKJRw8vvLYPXf8u3om9T452E6xt/xznusJgeZ2Kel02RMeRXfzbg/4CGwnubanjjyXu5uPleJjiq8c++GM+XfxeTJKLdhNxUWiWFFnceaSMg8dzT5OfWF1eSs/Je/ul+Gk+SgdNvQY76ZkySiHZleV4+3GqPV6r9DMpOiFndseYPRbhv6VYeefMjrjSP8ofkNyB1PDL/iQO+0XJvJnZ0nZzA5HAbNFaMiL8vSiWaAf3/Zoy5uJdtNwI3DqR+pZQabB++8TjHRrfy6RE3MiGGXflSxkyBcghWbyJp0ikxqzfWjDF8tHYz2577P85ufRKHwO4536PwrF+BKznmx2uf6OLYug+scTUxvCCPpZXba3nj6fs5vvphfuHYSHPWFPjKvXgmnhzzYyW7nBRlp7DLjGdy3fBNsOp9Qf72xkoCH/2D78kLjHfXEJn6ZRyn/3fMWvM6K8vz8uynXow3BakZni17kajhuZU7uefFDzjT9xSvuF8mScLIUVfCqb+A5PSYHq/Mnqp9sxnHZLAST02wlBp2RsIPiEopNSiMMXg+uIMayWHmGd+Mad25Y0rwGze+qo0c+B1vBp8xhvdWrqPm5Vv4vO855kmA7UVnUfS1/0dh9oRBO25Znpd3zRhcwSZorQVv3qAd60BFo4Z31mxh22t/5aT6x7nasYfm1HGETv496UctHPBkFr0py0tj8+4xTK79eNCOcbAq61t5/PX3yFx1H9/iDTIcbfjHHgVf/BvOiScN2nHL8rxEjYNgZinJw6zrZFswwmPLK3jj7Tc5o/kpnnS9S5IrBIeeB6f+EnImDspxC9M9pLidrPIXcDpYXScn92uovFJqCGmCpZRKWB/9+w3mhT9l5fRryUsa2KD8rkry0thmCsmqHl4tEv5QhNfeWUr0vT9zevA1XBJh27gzGH/Wz5kwftagH784J5VtdJqqfRgkWL5AmBffXUb4vbv5UvBlTpJWqrIOo+3U/yN99vwhmaRkYp6X1dvyOV2qoa0BUrIG/Zh9WVXZyCuvPMshW//Jdx0fgjjwTT4LTvkBnvEHfz+0/pqYZ3XDrEspYWzt8JiSvLYlwD//vZUt7z/N+aFn+LtzNZFkD3L4JXDMVZA3ZVCP73AIpXle1jS4wZOlMwkqNUxpgqWUSkjGGAJv/4EWUpl+1vdiXn9JjpcPTCH5jeUxr/tg7Gls4+2XH6Vw7d85i48J4aKyZD7jzvoZEwsG96KwM7fTQSCzDFqxJnSYcPSQHburHQ1tvPrKCxSuvZevmPcRgaqi00k9/YeMnTBvSGMpy/OyNFQASUDdZhiCBKY7kajhtdWVrHnjX5xc9wjXOjbhT0qjdc63ST/x22RkFg1ZLKV5qQDscBYxtv5VCAfBlTRkx+9s4+5mHnxnHY5PF3GxvMgkRxXB9DGYY3+N88iFB31vq4MxMc/Lmp2NVjKn98JSaljSBGuYi0YNwXCEQDBMNBrGJVHcTgfOJA8upxMZpuMXlBruVqxcwef877Bu4kJmerP73uEAZaa6qXKOI711VVxn+lq7fTerX7yHOTsf5mtSSaMzm4qZV1P0hW9Tll4Yl5hS88sIb3PiitN4o4/La1j28kMcvuMhFjo20ObwUjP9cgq/8H2K4jSepSzPywMdMwkOfYLV2BriiffX0Pzvv/PV0HOcLjU0eotoO/53pMy9GE8MJ/Xor3SPm7y0ZDZFxjDXRKB+K+RPG7LjR6OGNzfs4am3lzG94mF+6HydLKcPf/5hcMJ/k3ToV8DpHrJ42k3M9/LSml1EJk3BufXNIT++UqpvmmANgdaWBmqrttFQXUVrw24izXswrbU4W2txB+pwhZpwhX0kRdpINm2kmjZSjJ8kQjiJ4hFDd52XQsZJADch3ITETZuk0uZMw+9KJ+RKJ5SUgUnKgJQsXGm5JKXnkZKVT3pWIZm5BXiz8pE4/Oeg1HBQ++qtRMTJ5LN/NGjH8Hkn4PYFobkKMscP2nG6ikQN736yipo37+Lk5ueYIS1UpU6h+rg/kn/MhWQOwuQVB2JCfiaV5fmU1HzGUP1EFIpEeeWTzex886+c1vwkVzj20OAZS8MxvyXruMtJifFkBAeqLM/LdlNIVJw4hrBVYtOeFp5+813y1tzP1+RN0qWNuvy5RE75A5nTvxT3e7hNzPPyaVs+F4DVHW4IEqxmf4hHl1XywdJX+ZLvSW5zfoDDZQhP/RIc/z08xUfHdXKWsjwvkaihIbWE3OYq8DeBJyNu8Sil9qcJ1gAZY6ivq2XPtjU079hAsHYbjuYdeFqryAjsJi+6h0x8pLLvnZcBWkihUTJodaYTcnrxJxXS4vKy25VCxOXFOJNxOJ04HC4cTheIEDEOosYgkSASCSCRII5oEMJ+HCEf7lATaeEGUoKVpLb4SDctuCTaY/xNeGlxZNDmyiTgziLsyYKUHBzeXNxpuSRnFpCamU9yRh6ezDyS0vKQpNTBPKWDKxrFRENEI2HC4SCRcJhIONTxbzQcIhKxtkfCnf6NRq2HMUQi1r/W3Qn2EtNl2d4uHeVM9xeTsm/Lxt7/t6XTsnQstxcQ+3lP5aVL+X32lb3lreXujyWOTsdi77EMjn2qbq9J9mmlkU7bO5XvFE/nM9L17O2/bu++1qne93XtV7a9XrP/lpo9VRzf/CKbxn6ZGTmD1+Upml0GPqyp2ocgwfIFwrzx+kskL7+HU8JLcUqUbfknk/TFqxk79aRhM2NfWb6Xz6LjGb97PYP9E09Da5Bn3v4Ix0f3cE74FTKklT05c2g75f/ImjU046v6Y1xWCriSqUsuIm/32kE9VjRqeGvjHt558wXm7vwXVzs+AoeD5snnwKk/IGfc4YN6/ANRlufl3+vsFuZBnuiivMbHP9/dRP3HT3GReY7LHRsJJXuRI/8LxzH/RVJ26aAev7/K7KnaK51F1gQ6tZtg/BFxjWkkM8bQGoxQ7wvg8zURaG4g1FpP0NdEpK2BaFsTxt+ECbRgQq1EQwEckQCuqB9HJIgzGsAVDeAyQRzRMJgoQhSMwUEUweDAIETtfw0RnETFSRQHUXFiuj4cLhAHxuGyHuLCONzWensdDrfVgupw2f9ay+J0I06n9QO6MwlH+zqXG4fTeogrCYfLjdNe73Il4XAl4XS5cbrdOF3JOFxu3G5rncvpxOUUXA7pseeUMQZjrP+3jTH2v2Cw10cNhigmGrXLRq1H1FjXZtjPMUSjdjmi9jaDkSS8WbmkJY+M1GVkRDkMGGOorqqgasNHtO5YhaN2E96W8v/f3n3H11XXjx9/ve/K3nu1SUe6dwtlL1nKEEFAARlfRRxfFfdEwJ9+VVQUUXGgDJG9h+xZoIWW7r3SJG2aPW+SOz+/P85JmrZJmzY3vbnp+/loHrlnf05OTnre5/P5vD/kBarIoYW+ra/bSKLRmUtbfB4NiXMIpxTiSi8iKTOflMwCkjPzScnMIzkukWFvdGEM3d5WWpvqaG+uw9tcS3dbA8GOBsLeJuhqxt3dhCfQSmJnPZkdW0mnnWTpHnCXXcTRSgqdjiRCDg9hRxwhh5ugw0NQ4ux5bhAHYt+MIg6sUEPsPzdgjABhHOEQYoKICSEmjMP+7DAhe96ez32/O7C+O/t+Zs+0k7A1TQiXsaYdYj3SO+0vdXQaA3QSR/FFtwzrcTw5E6Aagg1bcA3jGD47m9pZ/MJ9lG25l/PZSKckUDXxCsaccyNl2cOTzWwoyrKTWGpK+FjzsxDoBndkE4wAbK3v4OVXXmDMhn/xWbH6V9WPOYfkM79J7pgFET/eUDkdQmlWItuDpWTXDU+A5fUFeXJpBdveeZDzO5/iJscWuuNS8M39XxJPuIH0I1jLOlhlOUk8vNRFOCsXxzAkdDDG8O6WRh56ZzX52x7lOudLFEsDvtQSOOGXuGdfMeJqh3oCrI3BAmYB1G/QAGsfXl+Q2tYuGupr6Kivwt+6m1B7PXQ24OxqxONrIt7fTFKohdRwKxm0U0AnThnoVd0eYQQ/bnx4CIgHv3gI4CEgbkLixojDepnlcBDGiUEI2GFWz/OPw1jPJw4Twm0C9rNNuM+zTdh6jjEhnARxEcJlrO9OQtb0AV6eR0Of18DD4qXQfCo+9je+eErkh4QYDhpgHcDWVe9St+RREhrXUtS9mVyaybWXNZNKnbuYyszj2ZE5AU9eOenFk8ktmUhqcjoj5s+xCPHJ6cQnp5M3pvygq/e8yalsbaelqQ5vcx3dbfUYbyPS1YyjuwmXrwW3rwV3sN2qQQv5cAW7iTftuI0fj/HjJmDX6JiecAoxIGJ9dth1F9afkJ5wyEFI7LDIfrPT+5ZHnBhxEMCFETdhp8ue5+p94xMWJzjs+Q4XiAvjcIK4wOHEOF0gTustj8NaV5zW2yBxOK03P/a8Pd/dOJwOxOHC6RAcIjgdYgWPff6SmN4al966HAx9x/gR67XOPm9++tauiP2Wx9pP74e+U2DCfWb3+Y/A/twz3+wzf79t+ywSwn2m96xv+uxT+tmnweyz/z1l3+tc9qpBMv0OfdS3/kn2WR/s9feZ37uPPrOt/ez/J76/F26pZfOZmFe2/4IIyigcR8dH8YQqV5EW4Wd6YwwrNu1g+yt3cUz9o1wsDTS4C6iaexMlp32BcSPsobCvcdnJ/Ds8BjEh6+GwcHZE9muMYdGmWla8+h+OrX2ILzk20uVKonX658k6/X/JTx++9PORMDE3hVUVBSzwvg2+jogNZlzV1MnD76yG5fdxuXmRK6WBjpQxBE/6NfFzrojooMmRVp5nla0tbTLpNSsjtt8uf4gnl+/kpXfe49SWJ/iV6y2SXN34ixbCib8nblL0m0cOJD3RQ3ayhw/bM7jUnQg1K2H2Z6NdrCPG6wtS2eilpraGzt1bCTZVQNsu3N4aErrrSAs0kGMaKJIWxklgv+2DOGl3pOJ1pdMdl0FXXAnehEwcCRlIfCqOhFRciem4EtPwJKbhSU4nMSWDuMQ0HJ5EHE438SL9dt04ksKhEMFggGDARzAYIBzwEwz6CQf9BANBTMhPKOjvbZ0TDgYIh/yYns/hACZkfSZkfe75oucrHIRwkFDYYIwhbCBsPw/0ebrZu2XNnsk9LW16Ct0TfCL2Z7tFjNjT2DVk9nrGnocInsRiTpqYcwR+spGhAdYBNG1ZyoLqe6lyjmFH2jFU5M8gpXQeBeVzycjKJ/Ld4qNPREiKc5GUm8GY3AzgyHUoVmq0mVyQzkZTQumuVRHbpy8Y4s13F+N//8+c3vUKc8THjtQ5NJ5yG9lzR06TtwPJS42jwm2/haxZOeQAqzsQ4vkP1tPwzt2c0/kcJznqaE0opOP4/0fywmui3r9qsGaVpPHO2hL+x2Ng13IYQq2nMYYl25t44Y23GV/xH25wvE2ydNNesBBz6h0kl58btcQrh2JGUToA2z3lzNnxLwh0gTvhsPe3q6WL+96rYNOHL3FZ8Fn+5VwGbidm2qfg+C/jGUHNIw9kVnE6y6vboWCW9bsyioTDhtr2birr22ncuZmu2i2EGrfjbq8ktWsneaHdjJE6pkjnXtv58NDqzqYzJQ9f0nx2pOTjTi8iIXsMyZlFJGbk4UjOxhWfToZIzD/DOZxOPE4nnrhoh3qqPxpgHcD0s68jeO7nKUtIYnjfcyulRqPy/GQeM2OZ3vI+/VbdHYK61k7eeekxctbfw5nhjwiKk6rij1N49o2MHRNbzYNEhOwxU2ipTiO9cjHMu/qw9lPT2sWLr79Byqp/8vHw2ySKj4bsuQRO+zVp0y6IiWCzr9klGfwpbKfMr1pyWAFWdyDEMyuqWfPW45zR+iS3OlcRdLnxT74QTvpfUiJUW3ik5KTEUZgWz1L/WOaYkBWQj1l4SPswxrBsRzMPvLOexI1PcKXjZaY4KgkkpCPHfBM55guQWjBMZzA85oxJ57UNdfjKZxK34j4I+iDKyWsOVSAUZkejl627GmjasRZ/7QbcTVvI6NxOGTuZLTXESbB3fT9uWuIK6UoqpjH9BDpyxpFcMIHkvPE40oqIS8ggd4T0M1VKA6wDSEiKjbeeSqmRKc7lpDZlGnGdr0Ldesibesj7WL1lB1te/iuzax/nYtlNmyOd6plfpeSsrzI+JX8YSn1kHDsui8UV5Zy5fRHOQwg+w2HDu5trWf36Q8yueYRrHWvxi4eWCReScMZXyY6xAKKv6UWpdDhSaEgoI7tiEZw8+AyX2xu8PPHeWszyf3NJ6EUuddTSmZhLYOEPcS+4Fldy7sF3MkLNGZPBIxUlfF4cyNbXBx1gdfiCPLNiF2+8/z7HNjzJLa63SHV14s+eBsf9AfeMSyFGkzbNGWPVv2xKnMOM4F+hcjGMOyXKpRpYfbuPtTtbqNy+ia7K5SQ0rqGoezPlVHGmNOCw+z6FcdCSUEBn6njqss8hoWAy6SWTcWWNw5OcT24M1LoqBRpgKaXUsDJlJ8PaPxDY8gbuQQZYrV4/77z9Cu7l/+Jk31vMED+VyTOpP/7H5Bx7Kakx9qa6PwvHZfLEqzM4p+1DqF0D+TMOuH6z189L735A94f38zH/q5wkDbTG59My/0ekn/h5co/gQK/DJdHjYt6YDF5rnstlFU9DZ9MBB7ANhMK8unY3H77zXybXPM2XnItJFB9tefMwJ/8fiVMviMo4TZF2+uRcnl9dQ+eY2SRtehFO++EB11+zs5WHF2+hfeVzfNK8xt+dKwm7XYQnXwDHfRFPlNOsR8LcMRkkepw82lDGDIcbNr04IgIsYwxVTV2s3dnE7q2r8VevIKl5HWWBrcxy7OBU6QCsQKopaQzdmfOpz5tM2pjpxBdMwZE5nkx3PLF/N6ujnQZYSik1jObOmMnW1QVkrXyK9BO+MuB64bBh2Zp17HrnXqbWPc95Uk03cVSWnE/xWf/LmDGx0TdksGYVp/ODxJMIBu7F9dH98PFf77eOPxjmrTUVVLz3GFN3P82lshYEGvKOJ3Dyb0mbch44R9d/Y+fOyOf+5+ZwWdzjsOIBOP5/91pujGHtrjZeXbIc55pH+XjwNc511OCPSyQ05WI4/oukxnAtXn9On5yLyyG86T6ZT+z8PVQvheL5e61T3+7j+ZU7WbX0bWY2PM83ne+R4ejAn5iHWfB9HPOvxRHDNb77SvA4OWdaPk+uq+WmSWfjWvkgnHHTkPqnHapgKMzWei/rq+po2Lac8K6VpLWupzy8nVOlkgTxAxAQDy0ZE/DnnUdX2VwSSubiyJtKtifpiJVVqSNtdP3PpJRSI8xx47P4q/N0vl73AOxcBkXzepeFw4bVGzdRtfhxsitfYkF4JQvEUJk8g51zvkzRCVdQnpAevcIPI5fTwXkLZ/D4Gyfx6aX/xDHtkzD2eLy+IB+sWsuuFS+Tv/NlTjQrOFP8tMTn0zjzm+SceC256fuOKjh6XDyvmN+9Us4KzxxmvXUbUnYywdwZrKxsZO2KxXSvf4VjuhfxDcdWAFpy5xE+/sd4pl8Eo/SBNSPJw6fnl/CjZV2clZyB+9lvYK58nApfMks2VLJ15SKya97kTMdSrnHsJujxEC7/OMy7Cs/402KuL95gXbFwDE8s38k//WdyfddzsOZxmHPlsByrOxBifU0bm3bspHX7RzhqV5HdvoHJVHCe7OxNGd7tSKI1cwodBafgHDcPT/Fs3Nnl5IyCmlSlDoX0NwhntMyfP98sXbo02sVQSqmIuvuV5Xxi0UUkeDzsnP5FWvwO/DVryW5ewXRjje1T7yqgadyFlJ7xP8TlHXxIhdGgOxDimjv/yy+av0Wpo5YaycMd7iZXWgBodWXRXnYuBQsvw1l2YkxkvYuE51bt4tcPvsRjnlvIlWYaTBrJdBJvp5xuTJ1K0uxPET/rU5AVG2PCDFVDh49L/vIepc3v8VfP7TgJ0WqSyKADhxhC4qK7+ASSZn0Spl0ECbGeI25w/u+F9fz17a28kfgD8jNSSfjqoiE3f2zs8LGxpo3K7RvpqFyJu34NeZ2bmSI7GOuo612v3Z2NN3Mq7qLZpI+bh7NwFmSUxnzzS6UOhYgsM8bM32/+UAIsEXmYPXm804EWY8xsESkF1gMb7WWLjTE3HGx/GmAppUajUNjw5/88xic2/Zhxjt0AdONhV/xEukpPZ+zxnya5ZOZR+WDS1h3g0XdWkbH2fsYEthOflEzSmNmUzDwVV/G8oyao2tfyymZe+nAtU3c9QYmjkdS0dAomH0fihBNgFNfgHUhLp59/L95Be9VajvW+RlFcF7kFY0kfNw8pPQHi06JdxCPOGMN/1+xm2eO/4Sf8g+DVz+MqO3FQ23YHQmyp62BL9W6adqwhuHsdKS3rKQ1sZ6qjgjQ7DXoYoSW+BF/2VBJK5pA2bh5SMAtiOHGKUpEyLAHWPgf4LdBqjLnVDrCeM8ZMP5R9aICllBrN6tq6aNy5lexEF1mF43C4PdEuklJqFHhu6SYWPHsmDnc8jWf9kYJpp+J0OfD6gjR0+GhobKBh5zY66yoIN20nuWMb+f5KxkkNBdLUux+fxNOSMpFQ7nRSS+eQPHYu5E4Z0YNRKxVNwxpgiYgAlcDpxpjNGmAppZRSSh05z77wLMct+QrZ0kqzSabJpBAnAVLxkipde63b5UiiJbGMYOYEEgqnkFEyDWfeZMgcN2r7rCk1HAYKsCKV5OIkoNYYuzOBpUxElgNtwI+NMe8MULDrgesBxowZE6HiKKWUUkodPc7/+Pm0HHccq999BFfNUjyBdnyueJoTU2lLLyEtv5TknLFIZhkJyXkkHIVNkpU6Ug5agyUirwL95Tb9kTHmaXudvwBbjDG/tafjgGRjTKOIzAOeAqYZY9oOdCytwVJKKaWUUkrFgsOuwTLGfOwgO3YBnwJ6cw8bY3yAz/68TES2AuWARk9KKaWUUkqpUSsS6Zk+BmwwxlT3zBCRHBFx2p/HAROBbRE4llJKKaWUUkqNWJHog3U58OA+804GbhWRABAGbjDGNO23pVJKKaWUUkqNIiNqoGERqQd2RLsc+8gGGqJdCHXE6PU+eui1Prro9T566LU+eui1PrqMxOs91hiTs+/MERVgjUQisrS/zmtqdNLrffTQa3100et99NBrffTQa310iaXrHYk+WEoppZRSSiml0ABLKaWUUkoppSJGA6yD+1u0C6COKL3eRw+91kcXvd5HD73WRw+91keXmLne2gdLKaWUUkoppSJEa7CUUkoppZRSKkI0wFJKKaWUUkqpCNEA6wBE5BwR2SgiW0Tk+9Euj4ocESkRkTdEZJ2IrBWRr9vzM0XkFRHZbH/PiHZZVWSIiFNElovIc/Z0mYgsse/vh0XEE+0yqsgQkXQReUxENojIehE5Tu/t0UlEbrT/hq8RkQdFJF7v7dFDRP4pInUisqbPvH7vZbHcYV/3VSIyN3olV4dqgGt9m/13fJWIPCki6X2W/cC+1htF5OyoFPoANMAagIg4gT8B5wJTgc+IyNTolkpFUBD4ljFmKrAQ+Ip9fb8PvGaMmQi8Zk+r0eHrwPo+078CbjfGTACagf+JSqnUcPgD8KIxZjIwC+u66709yohIEfA1YL4xZjrgBC5H7+3R5B7gnH3mDXQvnwtMtL+uB/5yhMqoIuMe9r/WrwDTjTEzgU3ADwDs57XLgWn2Nn+2n9tHDA2wBnYMsMUYs80Y4wceAi6McplUhBhjaowxH9mf27EewIqwrvG99mr3Ap+MSgFVRIlIMfAJ4B/2tACnA4/Zq+i1HiVEJA04GbgbwBjjN8a0oPf2aOUCEkTEBSQCNei9PWoYY94GmvaZPdC9fCFwn7EsBtJFpOCIFFQNWX/X2hjzsjEmaE8uBortzxcCDxljfMaY7cAWrOf2EUMDrIEVAVV9pqvteWqUEZFSYA6wBMgzxtTYi3YDedEql4qo3wPfBcL2dBbQ0ucPt97fo0cZUA/8y24S+g8RSULv7VHHGLMT+A1QiRVYtQLL0Ht7tBvoXtbnttHtOuC/9ucRf601wFJHNRFJBh4HvmGMaeu7zFhjGOg4BjFORM4D6owxy6JdFnVEuIC5wF+MMXMAL/s0B9R7e3Sw+95ciBVUFwJJ7N/ESI1iei8fHUTkR1hdOx6IdlkGSwOsge0ESvpMF9vz1CghIm6s4OoBY8wT9uzaniYF9ve6aJVPRcwJwAUiUoHV1Pd0rD466XazItD7ezSpBqqNMUvs6cewAi69t0efjwHbjTH1xpgA8ATW/a739ug20L2sz22jkIhcA5wHXGH2DN474q+1BlgD+xCYaGcj8mB1pnsmymVSEWL3wbkbWG+M+V2fRc8AV9ufrwaePtJlU5FljPmBMabYGFOKdR+/boy5AngDuMReTa/1KGGM2Q1Uicgke9YZwDr03h6NKoGFIpJo/03vudZ6b49uA93LzwCfs7MJLgRa+zQlVDFIRM7Bat5/gTGms8+iZ4DLRSRORMqwEpt8EI0yDkT2BINqXyLycay+G07gn8aYn0e3RCpSRORE4B1gNXv65fwQqx/WI8AYYAdwqTFm3w62KkaJyKnAt40x54nIOKwarUxgOXClMcYXxeKpCBGR2VgJTTzANuBarBeKem+PMiJyC3AZVvOh5cDnsfpi6L09CojIg8CpQDZQC/wUeIp+7mU7yL4Tq5loJ3CtMWZpFIqtDsMA1/oHQBzQaK+22Bhzg73+j7D6ZQWxunn8d999RpMGWEoppZRSSikVIdpEUCmllFJKKaUiRAMspZRSSimllIoQDbCUUkoppZRSKkI0wFJKKaWUUkqpCNEASymllFJKKaUiRAMspZRSSimllIoQDbCUUkoppZRSKkI0wFJKKaWUUkqpCNEASymllFJKKaUiRAMspZRSSimllIoQDbCUUkoppZRSKkI0wFJKKaWUUkqpCNEASymlRggRKRURIyKuaJdltBORa0RkUbTLMdKIyEkisjHa5VBKqVimAZZSSqmYJiI3i0hARDr6fH032uWKRcaYd4wxkyK9X/vFgbfP9flHpI+hlFIjhb4lVUqpCBERlzEmGO1yHKUeNsZcGe1CDJdR8rs1yxizJdqFUEqp4aY1WEopNQQiUiEi3xORVYBXRFwislBE3hORFhFZKSKn9ln/TRH5PxH5QETaRORpEckcYN/Xish6EWkXkW0i8sV9ll8oIivs/WwVkXPs+WkicreI1IjIThH5fyLiPMh5jBeR10WkUUQaROQBEUnvs6xJROba04UiUt9zXiJygYistc/3TRGZss/P59siskpEWkXkYRGJP/Sf9KETke/bP5d2EVknIhcNsJ6IyO0iUmf/LFeLyHR7WZyI/EZEKkWkVkTuEpGEQR7/Hnv9V+wyvCUiY/ss/4OIVNnHXCYiJ/VZdrOIPCYi/xaRNuAaETlGRN63f841InKniHj6bGNE5Msistk+3s/sa/eefYxH+q4/QJlPFZHqwZyfUkqp/mmApZRSQ/cZ4BNAOpAHPA/8PyAT+DbwuIjk9Fn/c8B1QAEQBO4YYL91wHlAKnAtcHufIOcY4D7gO/ZxTwYq7O3usfc7AZgDnAV8/iDnIMD/AYXAFKAEuBnAGLMV+B7wbxFJBP4F3GuMeVNEyoEHgW8AOcALwLP7PMhfCpwDlAEzgWv6LYDIiXbwMNDXiQc5h31tBU4C0oBb7PIX9LPeWVg/v3J73UuBRnvZL+35s7F+nkXATYdQhiuAnwHZwArggT7LPrT3mwn8B3h0n+DzQuAxrOv7ABACbrT3dRxwBvDlfY53NjAPWAh8F/gbcCXW9ZyO9bt62OxAeaDr8+eDbP62iOwWkSdEpHQo5VBKqZFMAyyllBq6O4wxVcaYLqyH2ReMMS8YY8LGmFeApcDH+6x/vzFmjTHGC/wEuLS/GiZjzPPGmK3G8hbwMlbAAPA/wD+NMa/Yx9lpjNkgInn2sb5hjPEaY+qA24HLD3QCxpgt9r58xph64HfAKX2W/x3YAizBCgx/ZC+6DHje3jYA/AZIAI7f5+ezyxjTBDyLFVT0V4ZFxpj0A3wdKCnFpfs87BcaYx61jxs2xjwMbAaO6WfbAJACTAbEGLPeGFMjIgJcD9xojGkyxrQDvzjYz3Ifzxtj3jbG+LB+ZseJSIl9vv82xjQaY4LGmN8CcUDf/k/vG2OessvfZYxZZoxZbK9fAfyVPtfI9mtjTJsxZi2wBnjZGLPNGNMK/Bcr4D5sxpiZB7g++wZ7fZ0ClGL9jHcBz4kmc1FKjVL6x00ppYauqs/nscCnReT8PvPcwBsDrL/DXp69705F5Fzgp1g1KA4gEVhtLy7Bqi3a11h7fzVWfAD2tlX9rNv3WHnAH7ACuBR7m+Z9Vvs78AxwvR0wgFXjtaNnBWNMWESqsGp6euzu87nT3ibSHtm3D5aIfA74JtaDPUAy/fycjTGvi8idwJ+AsSLyBFbNYzzWz3xZn5+lAAdsbrmP3p+7MaZDRJqwzr9KRL6NFSgXAgarpjK7v23t8ynHCnzn2+VyAcv2OV5tn89d/UznH0LZI8YY87b90S8iXwfasGpKVw+8lVJKxSatwVJKqaEzfT5XYdVQ9X2zn2SM+WWfdUr6fB6DVYPS0HeHIhIHPI5VI5RnjEnHCqh6nvSrgPH9lKUK8AHZfY6faoyZdpBz+IV9HjOMMalYNXF7ogqRZOD3wN3AzbKn39gurKCuZz2xz2/nQY63H7FShHcc4Oukg++ld19jsQLCrwJZ9s9vTd9z6ssYc4cxZh4wFSug/Q7WNekCpvX5WaYZY5IP4bR6r7X9M8wEdtnn8l2s5ogZdvla9ylf398rgL8AG4CJ9jX64UDnM1zE6ms30PW56xB2ZTjCZVdKqSNFAyyllIqsfwPni8jZIuIUkXg7cUBxn3WuFJGpdn+mW4HHjDGhffbjwWoyVg8E7dqss/osvxu4VkTOEBGHiBSJyGRjTA1WU8LfikiqvWy8iOzblGxfKUAH0CoiRVgBRl9/AJYaYz6P1ces52H6EeATdjncwLewArz3DvaD2pedIjz5AF/vHMLukrAe4uvBShiC1QdpPyKyQESOtcvvBbqBsDEmjBWk3S4iufa6RSJydp9tjfRJYtKPj9t9yzxYfbEWG2OqsH7eQbt8LhG5CasG60BSsGp+OkRkMvClg6wfccaYaQe4Pjf0t42ITBOR2fb9kAz8FisAX39EC6+UUkeIBlhKKRVB9sPzhVi1C/VYNUrfYe+/t/djJaLYjdUM7Wv97Kfdnv8IVlO9z2I1z+tZ/gF24gusmo+32FOT9DmsAG2dve1jWP2mDuQWYK69r+eBJ3oWiMiFWEkqeh7ovwnMFZErjDEbsWq7/ohV43M+cL4xxn+Q4w0rY8w6rAf597Gayc0A3h1g9VSsQKoZq7ljI3Cbvex7WH3PFouVze9V7H5Sdl+qdg7czO0/WM08m7CST/Q0Y3wJeBHYZB+zm4M048RqtvhZ+5h/Bx4+yPojRR5WWduAbVhNNs+z++wppdSoI8bs2wJBKaXUcBGRN4F/G2N0oNUYJyJXYjUf/MEAy+8Bqo0xPz6iBVNKKRVVmuRCKaWUOgzGmH9HuwxKKaVGHm0iqJRSRwmxBr0danICFeNE5IcD/B78N9plU0qp0UCbCCqllFJKKaVUhGgNllJKKaWUUkpFyIjqg5WdnW1KS0ujXQyllFJKKaWUOqBly5Y1GGNy9p0/ogKs0tJSli5dGu1iKKWUUkoppdQBiciO/uZrE0GllFJKKaWUihANsJRSSimllFIqQjTAUkqpfmiGVaWUUkodjhHVB6s/gUCA6upquru7o10UFWPi4+MpLi7G7XZHuygqxtz3fgUbXvoHX/3cZykcNzXaxVFKKaVUDBnxAVZ1dTUpKSmUlpYiItEujooRxhgaGxuprq6mrKws2sVRMealt9/jAf5IyyNPwvfXRrs4SimllIohI76JYHd3N1lZWRpcqUMiImRlZWnNpzosJ/veBCC9uxr83ugWRimllFIxZcQHWIAGV+qw6O+NOhyBUJi8QHXvdKj6oyiWRimllFKxJiYCLKWUOlKavH6S6KLJkQlAy9YPo1wipZRSSsUSDbAGQUT41re+1Tv9m9/8hptvvjl6Bepj8eLFHHvsscyePZspU6b0luvNN9/kvffeO+z97tixg7lz5zJ79mymTZvGXXfdFaESKzWydflDpEon7Ylj2G0y6K7UGiyllFJKDd6IT3IxEsTFxfHEE0/wgx/8gOzs7Ijt1xiDMQaH4/Dj3KuvvppHHnmEWbNmEQqF2LhxI2AFWMnJyRx//PGHtd+CggLef/994uLi6OjoYPr06VxwwQUUFhYedlmVigW+YJgUuvAk5bO+DaY1ro92kZRSSikVQ7QGaxBcLhfXX389t99++37L6uvrufjii1mwYAELFizg3XffBeDmm2/mN7/5Te9606dPp6KigoqKCiZNmsTnPvc5pk+fTlVVFd/5zneYPn06M2bM4OGHHwasAOnUU0/lkksuYfLkyVxxxRX9jstTV1dHQUEBAE6nk6lTp1JRUcFdd93F7bffzuzZs3nnnXcOWM6rrrqK4447jokTJ/L3v/8dAI/HQ1xcHAA+n49wONzvz+aOO+5g6tSpzJw5k8svvxyApqYmPvnJTzJz5kwWLlzIqlWreo919dVXc9JJJzF27FieeOIJvvvd7zJjxgzOOeccAoEAALfeeisLFixg+vTpXH/99fuddzgcprS0lJaWlt55EydOpLa29kCXUalB8QVDpNAJ8ak0xo8lrasKBvj9V0oppZTaV0zVYN3y7FrW7WqL6D6nFqby0/OnHXS9r3zlK8ycOZPvfve7e83/+te/zo033siJJ55IZWUlZ599NuvXH/iN9+bNm7n33ntZuHAhjz/+OCtWrGDlypU0NDSwYMECTj75ZACWL1/O2rVrKSws5IQTTuDdd9/lxBNP3GtfN954I5MmTeLUU0/lnHPO4eqrr6a0tJQbbriB5ORkvv3tbwPw2c9+dsByrlq1isWLF+P1epkzZw6f+MQnKCwspKqqik984hNs2bKF2267rd/aq1/+8pds376duLi43oDnpz/9KXPmzOGpp57i9ddf53Of+xwrVqwAYOvWrbzxxhusW7eO4447jscff5xf//rXXHTRRTz//PN88pOf5Ktf/So33XQTAFdddRXPPfcc559/fu8xHQ4HF154IU8++STXXnstS5YsYezYseTl5R30Oip1ML5gmBTppDMuFV9aLnH1PmirhvQx0S6aUkoppWKA1mANUmpqKp/73Oe444479pr/6quv8tWvfpXZs2dzwQUX0NbWRkdHxwH3NXbsWBYuXAjAokWL+MxnPoPT6SQvL49TTjmFDz+0OtUfc8wxFBcX43A4mD17NhUVFfvt66abbmLp0qWcddZZ/Oc//+Gcc87p95gHKueFF15IQkIC2dnZnHbaaXzwwQcAlJSUsGrVKrZs2cK9997bbw3RzJkzueKKK/j3v/+Ny+XqPaerrroKgNNPP53Gxkba2qzA+Nxzz8XtdjNjxgxCoVBveWfMmNF7fm+88QbHHnssM2bM4PXXX2ft2v3HIbrssst6a/seeughLrvssgP+zJUaLJ8/RDJdEJeKI2ciAKG6jVEulVJKKaViRUzVYA2mpmk4feMb32Du3Llce+21vfPC4TCLFy8mPj5+r3VdLtdezer6jseUlJQ0qOP1NNEDq/lfMBjsd73x48fzpS99iS984Qvk5OTQ2Ni43zoDlRP2T2e+73RhYSHTp0/nnXfe4ZJLLtlr2fPPP8/bb7/Ns88+y89//nNWr149qHNyOBy43e7eYzkcDoLBIN3d3Xz5y19m6dKllJSUcPPNN/c7ltVxxx3Hli1bqK+v56mnnuLHP/7xAY+r1GCFfO24JAzxaSSlTYF10FK1jqzyM6NdNKWUUkrFAK3BOgSZmZlceuml3H333b3zzjrrLP74xz/2Tvc0hSstLeWjj6zsYx999BHbt2/vd58nnXQSDz/8MKFQiPr6et5++22OOeaYQZfp+eef7+2jtHnzZpxOJ+np6aSkpNDe3n7QcgI8/fTTdHd309jYyJtvvsmCBQuorq6mq6sLgObmZhYtWsSkSZP2OnY4HKaqqorTTjuNX/3qV7S2ttLR0cFJJ53EAw88AFh9ybKzs0lNTR3U+fQEU9nZ2XR0dPDYY4/1u56IcNFFF/HNb36TKVOmkJWVNaj9K3UwoS6rtlXiUykqHkObSaSrRmuwlFJKKTU4Qw6wRKRERN4QkXUislZEvm7Pv1lEdorICvvr40MvbvR961vfoqGhoXf6jjvuYOnSpcycOZOpU6f2pjO/+OKLaWpqYtq0adx5552Ul5f3u7+LLrqImTNnMmvWLE4//XR+/etfk5+fP+jy3H///UyaNInZs2dz1VVX8cADD+B0Ojn//PN58skne5NcDFROsJr5nXbaaSxcuJCf/OQnFBYWsn79eo499lhmzZrFKaecwre//W1mzJgBwOc//3mWLl1KKBTiyiuvZMaMGcyZM4evfe1rpKenc/PNN7Ns2TJmzpzJ97//fe69995Bn096ejpf+MIXmD59OmeffTYLFizoXXbXXXftVe7LLruMf//739o8UEVUuNsKsBwJaZTlpLDNFCBNW6JcKqWUUkrFCukvM90h7UCkACgwxnwkIinAMuCTwKVAhzHmNwfavq/58+ebpUuX7jVv/fr1TJkyZUhlVAO7+eab90qGMdro7486VK+8/BxnvncFDRfeT9bs83nulgs42b2BtB9tjnbRlFJKKTWCiMgyY8z8fecPuQbLGFNjjPnI/twOrAeKhrpfpZSKhnDAaqbqjktCRGhNLCUtUAf+ziiXTCmllFKxIKJJLkSkFJgDLAFOAL4qIp8DlgLfMsY097PN9cD1AGPGaBrkI+3mm2+OdhGUGlHCfivAcnmshDCh9LHQCTRXQN7U6BVMKaWUUjEhYkkuRCQZeBz4hjGmDfgLMB6YDdQAv+1vO2PM34wx840x83NyciJVHKWUOiwmaAVYnrhEAFzZ4wEINGg/LKWUUkodXEQCLBFxYwVXDxhjngAwxtQaY0LGmDDwd2DwqfGUUipKepoIuuKsGqzUQitBTevOTVErk1JKKaViRySyCApwN7DeGPO7PvML+qx2EbBmqMdSSqnhZoI+AMRljdlWWFBAi0nCV7c1msVSSimlVIyIRB+sE4CrgNUissKe90PgMyIyGzBABfDFCBxLKaWGl91EEJdVgzUmM4kdJo/s5v7HslNKKaWU6isSWQQXGWPEGDPTGDPb/nrBGHOVMWaGPf8CY0xNJAocLU899RQiwoYNGwZcp6KigunTp0fsmBs3buTUU09l9uzZTJkyheuvvx6wBgl+4YUXDnu/3d3dHHPMMcyaNYtp06bx05/+NFJFVirm9dRg9QRY2ckedkoeCe07olgqpZRSSsWKiCW5GO0efPBBTjzxRB588MF+lweDwSEfIxQK7TX9ta99jRtvvJEVK1awfv16/vd//xcYeoAVFxfH66+/zsqVK1mxYgUvvvgiixcvHlLZlRotpCfAcnqsaRFaE8aQ5t8NoUAUS6aUUkqpWKAB1iB0dHSwaNEi7r77bh566KHe+W+++SYnnXQSF1xwAVOnWumbg8EgV1xxBVOmTOGSSy6hs9MaO+e1115jzpw5zJgxg+uuuw6fz3qIKy0t5Xvf+x5z587l0Ucf3eu4NTU1FBcX907PmDEDv9/PTTfdxMMPP8zs2bN5+OGH8Xq9XHfddRxzzDHMmTOHp59+GoB77rmHCy+8kFNPPZWJEydyyy23ANYDY3JyMgCBQIBAIIDVlW5vjz76KNOnT2fWrFmcfPLJgFX7de211zJjxgzmzJnDG2+80XusT37yk5x55pmUlpZy55138rvf/Y45c+awcOFCmpqaAPj73//OggULmDVrFhdffHHvz6evhQsXsnbt2t7pU089lX0HoFZq2OxTgwUQSB2DkzC0VkWpUEoppZSKFREdB2vY/ff7sHt1ZPeZPwPO/eUBV3n66ac555xzKC8vJysri2XLljFv3jwAPvroI9asWUNZWRkVFRVs3LiRu+++mxNOOIHrrruOP//5z3z1q1/lmmuu4bXXXqO8vJzPfe5z/OUvf+Eb3/gGAFlZWXz00Uf7HffGG2/k9NNP5/jjj+ess87i2muvJT09nVtvvZWlS5dy5513AvDDH/6Q008/nX/+85+0tLRwzDHH8LGPfQyADz74gDVr1pCYmMiCBQv4xCc+wfz58wmFQsybN48tW7bwla98hWOPPXa/499666289NJLFBUV0dLSAsCf/vQnRITVq1ezYcMGzjrrLDZtsrKrrVmzhuXLl9Pd3c2ECRP41a9+xfLly7nxxhu57777+MY3vsGnPvUpvvCFLwDw4x//mLvvvru3Zq7HZZddxiOPPMItt9xCTU0NNTU1zJ+/3yDZSg0LCfkJ4cDp3PPn0ZE1Duog1LANZ+a4KJZOKaWUUiOd1mANwoMPPsjll18OwOWXX75XM8FjjjmGsrKy3umSkhJOOOEEAK688koWLVrExo0bKSsro7zcSvd89dVX8/bbb/duc9lll/V73GuvvZb169fz6U9/mjfffJOFCxf21nz19fLLL/PLX/6S2bNnc+qpp9Ld3U1lZSUAZ555JllZWSQkJPCpT32KRYsWAeB0OlmxYgXV1dW9Qdi+TjjhBK655hr+/ve/9zZfXLRoEVdeeSUAkydPZuzYsb0B1mmnnUZKSgo5OTmkpaVx/vnnA1bNW0VFBWAFYSeddBIzZszggQce2Kumqsell17KY489BsAjjzzCJZdc0u/PR6nh4Aj7CODea15ywUQA2nZpqnallFJKHVhs1WAdpKZpODQ1NfH666+zevVqRIRQKISIcNtttwGQlJS01/r7NrXrr+ndvvbdR1+FhYVcd911XHfddUyfPr3fQMgYw+OPP86kSZP2mr9kyZKDlic9PZ3TTjuNF198cb8EHXfddRdLlizh+eefZ968eSxbtuyA5xEXF9f72eFw9E47HI7ePmrXXHMNTz31FLNmzeKee+7hzTff3G8/RUVFZGVlsWrVKh5++GHuuuuuAx5XqUhyhHwExEN8n3m5BWPpMh66areQEbWSKaWUUioWaA3WQTz22GNcddVV7Nixg4qKCqqqqigrK+Odd97pd/3Kykref/99AP7zn/9w4oknMmnSJCoqKtiyZQsA999/P6eccspBj/3iiy8SCFid6nfv3k1jYyNFRUWkpKTQ3t7eu97ZZ5/NH//4R4wxACxfvrx32SuvvEJTUxNdXV089dRTnHDCCdTX1/c2+evq6uKVV15h8uTJ+x1/69atHHvssdx6663k5ORQVVXFSSedxAMPPADApk2bqKys3C+wO5D29nYKCgoIBAK9++nPZZddxq9//WtaW1uZOXPmoPev1FA5wn4CDs9e88ZkJ1Npcgk1botSqZRSSikVKzTAOogHH3yQiy66aK95F1988YDZBCdNmsSf/vQnpkyZQnNzM1/60peIj4/nX//6F5/+9KeZMWMGDoeDG2644aDHfvnll3uTTJx99tncdttt5Ofnc9ppp7Fu3breJBc/+clPCAQCzJw5k2nTpvGTn/ykdx/HHHMMF198MTNnzuTiiy9m/vz51NTUcNpppzFz5kwWLFjAmWeeyXnnnQfATTfdxDPPPAPAd77zHWbMmMH06dM5/vjjmTVrFl/+8pcJh8PMmDGDyy67jHvuuWevmquD+dnPfsaxxx7LCSecsFdQ98wzz3DTTTf1Tl9yySU89NBDXHrppYPet1KR4Az5CMneAVZBWgJV5BE/ClO1dwdC/OSpNby5YXe0i6KUUkqNCtJT6zESzJ8/3+ybLW79+vVMmTIlSiWKbffcc89eyTCORvr7ow7VWz87l3LnTgp+uGqv+Y/+/CouDL6E56ZaGETT31jx9IqdvPDI3/mt5y4SP3s/jvIzo10kpZRSKiaIyDJjzH6Z2LQGSyml+nCaAKF9mggCdKeMxWN80D66ano+2N7E111PkEwX3vf+Fu3iRJzXN/QxCpVSSqlDoQHWKHbNNdcc1bVXSh0Ol/ET7ifAItPKFmqaRlc/rIr6dsY5agBIqHwLgv4olyhy3tvawJybn+edR26H7rZoFyeiXl67m/+uroFw6OArx5D6dh8PLNmBPxiOdlEiyhjDMyt3UdW0/9iPSqnRJyYCrJHUjFHFDv29UYfDbfyEHPv3K0zMmwBAe83mI12kYRVuqSIeP0vMNFxhHzSMnlT0jy2r5lxZzEnrboYHL492cSKm2evn+vuX8eCD/yL8i0LYuf84irHq1ufW8aMn17DswVvhb6ftGfg7xr21qZ6vPbicq//xHrxyE7z842gXSSk1jEZ8gBUfH09jY6M+LKtDYoyhsbGR+Pj4g6+sVB8u4yfs3L8GK6toAkHjwFszegIQYwzJ7VsBWJZ6hjUz0oO5R9G6XW2c4/zQmtjx7qipxfqwogmAb7kexRHshtduiXKJIsMYw5JtjSTRxXFbb4ddH8Hy+6NdrIh4e1MDAGNbFsO7f4D3/gitO6NcKqXUcBnx42AVFxdTXV1NfX19tIuiYkx8fDzFxcXRLoaKIcYYPCaAce5fg1WSk8ZOk42jYfQ0EWzuDJATbgAntBaeTNfGu0jYvQr4TLSLNmTGGCqbOjnWvY2aUCYF0gRVH8DEj0W7aEO2vqYdtwSZ5qiwZlQutpp2uvpp2hpDdrZ0Udfu47S4yj0zN70MCz4fvUJFyJpdrSTHuZge3L5n5vpnYOGXolcopdSwGfEBltvtpqysLNrFUEodBXzBMB4ChPsJsIozEviAPCa2VRz5gg2TmtYu0rHG1MsvGsO29QVMrN1IbD+mW+o7fAT93WQ6Gvlb+Hw+73wBR9XiURFgVTZ1MjulHZc/zHuOuRwf/AhqV0PRvGgXbUi21XsBuKTMBxXQVnA8qdUfgjExn7mzqqmTM6fmMWNdFY1xxWTFAdVLD7qdUio2jfgmgkopdaT4Q2HiJIBx7R9gxbmcNLgLSemsjkLJhkdLZ4AM6SDkSmRcfibbTQHhhi3RLlZEVDZ2UiCNALQnj6POVQD1G6JcqsioaupkdlIzAA92H2/NrF4WxRJFRl271d9qVmIjPuNifeYZ0NUEMZ5YxhcMsbutmzGZiUxzVbNZSqFgFtSsjHbRlFLDZNgDLBE5R0Q2isgWEfn+cB9PKaUOly8QJo4A9FODBdCZPIakcDt0NR/hkg2PngArHJ/BuOwktpl8PB3VoyKTYG2bj2Kxmpa7skrZbAqhfnT0n6tr76bcXQfA4vAUgp4UaNgY5VINXZPXCrDyAjupJo8V/hJrQYwHxrtbuzEGitPjyQ3Xs7E7A1MwCxq3gK892sVTSg2DYQ2wRMQJ/Ak4F5gKfEZEpg7nMZVS6nD5giErwOqnBgsgnG43V27a3u/yWNPaFbCaCCZmUpieQLUU4jAhaNkR7aINWVOnnyKxEguk5o9jtS/fSrEfCkS5ZEPX5PVTRB1hVwL1pNOaWDYqsj82eQO4nYKrvYrmuEI+9GZbC2L83Bq91guL/Hg/buOnMpBKa8pEwEDD6MpKqpSyDHcN1jHAFmPMNmOMH3gIuHCYj6mUUoelpw+WuPvPPhmfOx6AztrR8VDU0uUnQzpwJGXidAjdqaXWgsatUS1XJDR7/eRj1TTml5SxNVyIhAPQXBHdgg1RIBSmrTtIhmlFknNxORzscpWMigf1Jq+PzCQP4m0glJDNukYgOT/mz63ZDrByjJX9sc5ksJ18a+EouNeUUvsb7gCrCKjqM11tz1NKqRHH5w8RLwFkgBqs9KKJALTviu0Hvh6tXQEypQNnYhYArhxrrC8aY78fVnOnn3xXB8SlUZaXwRZTaC2oj+2mdC2dVg1cargVScxiTFYiW8IF0F4T82nom7x+MhM94G3AmZLDrtZuQlkTY74Gq8kOsDKNFfDXmQw2+nJBHNA4Ov6WKKX2FvUkFyJyvYgsFZGlmopdKRVNfn8XAA5X/zVYRbk51Jp0fPWj461zq90Hi8RMAPLyi2g2yYRjvMYArFqDXJcXkrIozUpia0+AFeN9lXoe1pNCLZCUzbjsZFZ251oLY/xhvcnrpygxAOEACel5ALQllVoBVgyPhdncaV2z1KCVdKXZmcG2lgCkj4n52jmlVP+GO8DaCZT0mS625/UyxvzNGDPfGDM/JydnmIujlFIDC/q6AQZsIjg2K5EdJg9nS8URLNXwafX6SMELCVaAVZadxHaTj68u9muwmjoDZDvaITGLeLeTtPQsWlw5MZ/ooifASgi0QGI243OTeL+1p69SbD+sN3n9lMRZLznSsqwmdLvcJdDdCt7YfQHb5A3gcTqI67ISk8RnFLK9wQtZE2M+KFZK9W+4A6wPgYkiUiYiHuBy4JlhPqZSSh2WgN8KsJye/psIJsW5qHUWkOyt7Hd5rAl0NuMk3FuDNc4OsKQp9gOsZq+fTNrAbv5Ylp3EDimK+eZmPbUhbl8TJGUxPjuZraFsjMMV880fG71+ijzWWFjZuVZvgq3hnprH2L1uTV4fGUlupLMBXAnk5eRQ0eCF7IlWH6xwONpFVEpF2LAGWMaYIPBV4CVgPfCIMWbtcB5TKaUOV9BnvT13uhMGXMebWEJasAECXUeqWMPGdFqd7knIAKwgpCKcT3zn7pg/vyavn1TTDolW7U5ZdhIbArmYpq0x3dysyesngW4cwW5IzGJcThJBXHQmjYnpIMQfDNPeHSTP2QFAfHouealxrOy2mgrG8rk1eQNkJHqgswkSs6xgv6mTcOZ4CHRC+65oF1EpFWHD3gfLGPOCMabcGDPeGPPz4T6eUkodrqAdVDg8/TcRBAikl1ofYjwbHYCjqyfAsmqwMpM81LntGoMYT0Xf3OkjOdTaWztXlp3EpkAu0t1qPejGqGavnyyxx05KzKY0OwmAxriSmB6Qt8Wumcty7Dm3suwkVrQkgCs+prPtNXf6yUzyQGcjJGZSmpWEPximMX6MtUKMN+1USu0v6kkulFJqpOjpg+U6QIDlybFStftHQT8ll6/F+mAHISJCMH2cNa8pdh9ouwMhxO/FZfy9TQTH5SSxzRRYK8RwlsRGr5/iOKsZHUnZZCV5SIlzUSUFVoAVo83NesaKysTOhJiUTVl2MtubuiFzXGwHWN6+AVYWpdmJAFTQ8zIjds9NKdU/DbCUUsoW8vcEWAM3EUwpLAegdVfsNlkCq0lWQrDVmrCbCALE5dqp2mO6NiRARk8tT5LVRHBcdjIVxh57KIYfaJs7/YyJ67QmErMREcpyktgUzIVgd8w2N+tJ3pEabrVqrNyJlGUn0uT1E0gri+lr1tS5T4CVZdU6bvQmgzsxpoNHpVT/NMBSSilbKHDwAKsgr4BWk0h3bezWgoA1BlaGWP1demqwAAry8mk0KQTrY/f8mrx+MulpambVYBVlJLDbkUsYZ0zXYDV5/RR67P5xSda5lWYlscJrfY7Vc+sJsJKDLVa/ORHKspOtZQljrCar4VAUS3h4gqGwda8l7gmw8lPjiXM5qGjshMzxGmApNQppgKWUUrZwT4AVN3ATwdLsZHaYvJjvg9XaFSBdOjA4IC6td35ZThIVJh9fbez2C2nu9JMpewdYTodQlJVGvTs/ZoMQsM6twNUTGNsBVnYSH7bbQXKMPqz3BFjxgebewLHMbkq301EA4QC0xF72ztauAMZAVoJY6eYTs3A4hNKsJCoavZA1LqZ/H5VS/dMASymlbGE7yUVcXOKA66QnutnlyCexY8eRKtawaO3yk0E7gbg0cOz5r6CnKZ2jJXaTXDT1pGiH3iAE7CyJpgAaY7f5Y7M3QI6jHRxuiEsFrECkxmQQdsbFbNPORq8fETv9vJ35sSQzEYfA5qCdSTAGmwn2BI55brvW0a4tLs1OZFuDF7ImQMsOCAWiVUSl1DDQAEsppWw9TQQPlEVQRGhLKCHNvxtCwSNVtIhr6bRqsMLxmXvNL81OpCKcR0LXbvB3Rql0Q9Pc6d/TB6tPgDUuO4l1/pyYTtXe6PVZtXNJVjM6gLLsZAwOvEljY7gGy0d6ghvxNvb2m4tzOSnKSGB1lz2QcgwGxj0BVo5j79/Hsuxkqpo6CWWMg3AwJmvnlFID0wBLKaVsJuCzPjj7H2i4hz91LC5C0Fp1BEo1PFo6A2TQAYkZe81P9LhoSbDTRzfHZi1Wk9dqImgcLojv0/wxO4mtoXwk0AntNVEs4eHp8ofoDoRJN629tTwAZXbShIa4ophtbtbsDdiJIBr2OrfSrCRWNseBJzkma7B6BobOxE4ok5QDWMF+IGSo9xRb82M0MFZK9U8DLKWUshk7iyCuAwdYziwrlXkoBt+o92ixk1w4+9Tw9Ahn9KRqj83za/b6yXd1IIlZvbU8YAVY23syCcZgINJkP6wnh1p6+ykBpCW6yUh0s4NCq29gDNasNnp95CeGrYF3k/audaxo7MRkxmZfpSav1fQvzfQEWPbA1zlWULwlZDd/jMFzU0oNTAMspZSyhYN2DZZr4CaCAMn5EwFo3Rm7qdpbO/2kSzuu5P0DrLg8K1W7idG36k2dAXKd3r2aB4KdwCMcuwFWs93cLDHQsv+5ZSex0Z9jJYOIwZrVJq+fkriefkp9arCyk2j3BfGllsVkLU9PDVZysMWaYddgldkDRG9qi7NqWWOwdk4pNTANsJRSqkewpwbLc8DVcotK6TZuOms2HoFCDY+eGixJzNxvWVF+Pg0mFV9dbGYSbPb6yXJ07BeE5CTH0RaXR1A8Mfmw3jMYr8ffvFcQAlYgsrwnVXsMPqw3eQMUeew+f0l9mj/agUhTfInVTynGkkE0dvhJ9DhxdzeCOHrHnMtK8pAS72J7Y6eV6CIGA36l1MA0wFJKKZsjaD/guQfOIggwLjeVraYQ0xC7NVjejg4S8O81BlaPcdlWqvZAXWw+9DV5/WTQtl+AJSKUZqdQ4yqMyQCryevDTRBXoH2vIASsfljLOmIzVXs4bOz0815rRuL+AVaVowBMCJpjK3tnk9dHVrIHvA2QkAkOJ2D9Lo7LTmJ7g9ceCys2m+MqpfqnAZZSStlcoU78uMHpPuB62ckedjhKSG6LrQfZvoLeRutDQsZ+y8qyk9hh8nDGaKr25k4/qeH9Ayywzm1bOC8ma3kaO6zU+kC/zR/rSSfkToq5AKutO0AobMhx7n9uRekJuBzCpkBs9lVq9PrJSooDb31v88AeZT0BVtYEq1mnncVUKRX7NMBSSimbK9iFz3Hg2iuw3j63Jo0jI7AbfB1HoGTDoLMnwNq/Bqs4I4EdJp/E7tqYS9VujKHZ201iaOAAa50vF9O0PeaSQTR6/eT1BCH71GCVZiUBQkfS2JgLHhs6rL6PWWKPXdYnyYXL6WBMViIrO2Oz+WNjh5/sZI91v+1b65idzM6WLvzpZYCJ2aydSqn9aYCllFK2uHAnPkfCoNYNZZdbH2K0maCju8n60E8Q4nI66Egea03E2ENfpz9EYrANwez3QAswLsfKJCjhALTG1thDjR0+xibYAe8+163UbkpX5469VO317VbfsnTTBg4XxKfvtbwsK4k1zfb8GKuda/T6rPTz3vr9Ayw7k+BOZ6G9cmxdN6XUwDTAUkopmyfUScA5uAArrmAqAO3Va4ezSMPG091sfUjO7X+FzPHW94bYSnTR5O1/kOEe47KT2R4usCZirN/LQJn2AJLjXOSmxLHD5FvJIIL+KJTw8PTUYKWEWqxr1ie1Pli1jhWNXkzm+JgKQowxNHb4yUqOs/pg7dNEcJwdFG/pbf4YW8GjUmpgQwqwROQ2EdkgIqtE5EkRSbfnl4pIl4issL/uikhplVJqGMWFuwg4D95EECCvdAp+46S9as0wlyryQmFDYrCnBmv/Wh6AhILJAITrYytTYnOnn8zefkr7N38szU5ku+kJsGLnYR2gocNPodtukrrPwzpYtVjr/blgwjFV89hoB1gJ/iZI2j/gL81OojsQpivGUrW3dQUJhg05CQLdLf1mfgTY1CrWecfY76NSamBDrcF6BZhujJkJbAJ+0GfZVmPMbPvrhiEeRymlhl2c6SY4yABrfH4G200BoboNw1yqyGvy+smkjTCOfpNcABTnZVMVzqF71/ojXLqhafL69/Tl6Sd4TIl3I8k5dDsSY64/T5PXT4GjBRzufoPHsqwklnTYgVcMBcYNHX6cDsHdVQcpefst76npqY8fC23V4Gs/0kU8LI1eK3AsdO+ffh721DpaiS7Gx1TwqJQ6sCEFWMaYl40xPb2EFwPFQy+SUkodecYYEkwXoYOkaO9RmBZPhRSR2Bp7b53r231k0UogLhMc/f83UJadxBZTSDjGAsgmr59csZs/phT0u05ZTjI7HbHXV6mxw0cOLZCct18zOoDxuUks67RrgGIqwLL6KUlHLSTn77d8Qm4yAFt7HjFipN9jz7hlua7+E5OA1SdwS10HZJdD/QYw5kgWUSk1TCLZB+s64L99pstEZLmIvCUiJ0XwOEopFXGd/hCJdGPcSYNaX0RoShxHhm9XzKVXrmvvJkvaCfXTR6nHuJwkNptiEtq2Qjh0BEs3NHXtPvKkGeNw9dsHC6wakc2hvJjqX9YdCOH1h8gwTf3W8gBMzEuhi3h8ycXWw3qMaOjwkZvkgo7+a7ByUuJIjXexstteFiNBf0/Tx0xarRn9NOucmJvC1roOTM5k6Gqy+moppWLeQQMsEXlVRNb083Vhn3V+BASBB+xZNcAYY8wc4JvAf0QkdYD9Xy8iS0VkaX19/dDPSCmlDkOHL0iSdCOe5EFvE8gsx0E45mpC6tp9ZEkbjn76u/TISY6j2lmCM+yHltgZ3LW2rZsiZyuSnH/A2rlV/kJr7KHutiNcwsOzu9UK4tOCTf3W8gBMtGt6GhLKYqoGq77DT2litzWQcD/nJiJMzEthSUsaOONiJnisb7cCrAwzcIBVnpdMuy9IU+I4e6PYapKrlOrfQQMsY8zHjDHT+/l6GkBErgHOA64wxqrbNsb4jDGN9udlwFagfID9/80YM98YMz8nZ/8/PkopdSS0dwdJohuJH3yA5SmYAkDXrtjKJFjfbjU1c6UOHGCJCJ1pE+wNYudhvbatm2JXK6T0H4SAFWBtNnZzsxg5t50tVvbARH/DgDVYRekJJHmcVEiJ1YwuRmoeG9p9lMbZzegGOLfyvGQ21XdB9sSYuWa7WrtxO4UUX501I7Vwv3Um5qUAsDFcZM2Ikdo5pdSBDTWL4DnAd4ELjDGdfebniIjT/jwOmAjEVj5cpdRRpaOrm3gJ4IwbfICVNWYaISO0VMZWJsGGti4KpAlXxoG7zTpzJ1kfYqTGAKC2zWoieKAAa1xOEhtNiTURIzUGO5u78BDA7WsesAZLRJiQl8Iafz6EfNBccWQLeRiCoTC727oZF2fX8gzQb25CbgpNXj++jIkx8/u4q6WL/LR4HG3VVjIZz/7Nj8vtAGtdeyLEpcXMuSmlDmyofbDuBFKAV/ZJx34ysEpEVgCPATcYY5qGeCyllBo2nR3WA57zEGqwJhRmscPkEdwdGw/pPTpb6vBIEFKLDrhefl4+tSadUF1s1BiA1ZQuM9x0wACrJDORneQQcMRBXWxcu+qWLooddv+c9DEDrjcxN5n322Mnk2BNazehsGGso9GaMcC5ledZ92VtXKk1zpffe4RKePh2tXRRmJYAbTshtf+XGZlJHrKTPWyq64DcyRpgKTVKDDWL4ARjTMm+6diNMY8bY6bZ8+YaY56NTHGVUmp4+Nutd0Cu5IETP+xrTGYi2ygmPtYyCbZVW98PEmCNy0lic7iIwO51R6BQQxcKG7raG0kKt0P62AHXi3M5GZuVwi73WKiLjXPb1dLF9ES7lucAAVZ5XjJLvT0B1sgPHqubraaP+aYOXPFWhsR+TMy1anq2UwyYmMgkuKulm8L0BGithrSBa4sn5qawqbYDciZbAb9mElQq5kUyi6BSSsUsX5uVZCc+bfB9QZ0OoSGxjIyuSggFhqtoEeds32V9SDtIgJWdzGZTjKtpc0w89O1q6aIgbPd3ySg94LrleSmsDxXHTJ+Xnc1dTE2w089nDBw8TsxLoYNEfEmFMVGDVdVs9S7ICOyGtJJ+088D5KXGkRLnYqXfrpkc4ecWCht2t3VTmB5vJVM5wL1WnpfMlroOTM4kO5OgJvxSKtZpgKWUUoDfDrCSMvp/gz7gdukTcRGKmUFCg6EwcZ011sRBarBKsxPZagpxBTutt/AjXEWjlxLpCbAGDkIAyvNT+Kg7Hzp2Q+fIb8G+s6WLce5Ga5DhAfopwZ5Mgo0JpTHR3Ky6qROHQIJ35wFr5qxMgslWJkGHa8SfW1273fQxwQfdrZBRNuC6E/JS6PAFaUwcb80Y4eemlDo4DbCUUgoI2ePPxKUcWjZTT+FUALpjJJNgTWs3Y9hNwJnQb9rovlLi3dTF2+mjY6Cv0vYGL2Ok1po4SA3WpLwUNobtRBcj/NzCYUNNaxcl1FpNzRzOAdftySS4w1EC9ZsgHD6CJT10Vc1dFKTG42jedtBrNjE3hY313ZA1YcTXPG6ts/qITXbvtmZkTRhw3XI7KN6kmQSVGjU0wFJKKQCv3cn+AIPv9idzzHTCRmjZsXoYChV5Oxo7KZPd+NLGDdgcqy/JtwJI6kZ+ALm9wcsEVx0mIRPi0w647qT8ZDaFe1K1j+wAa3dbN4GQocBfYfXTOYCeTIKrA0UQ7ILm7UemkIepqqmTaWldVi3PQc5tYl4yDR1+fJmTRnzfuU21Vtr5UuzmuNkTB1y3J5Pg2raeTIIj+/dRKXVwGmAppRTg7G4ihOOgD+b7Gl+UQ6XJjZlEEDuavJRJDY4DPPD1VVJQSI3JJFw78s+vosHLDFc1kjv1oOuOzUqi0ZlNtzNpxNdgbdzdjosgqZ2VVqa5gyjPTWZRm93UdQQHIsYYNtd1cEyS3ecoZ9IB15+cnwpAbfw4a/BrX/twF/Gwba5rJz3RTUpHhdWs8wBJVzKSPGQnx9mZBKeM+N9HpdTBaYCllFKA299MuyNtULU6fY3NTGQrxcS3bB6mkkXWtpomiqWehPx+x37fT3l+ChvCJQR2jfyxvrbXd1AWroS8gwdYbqeDcTnJVLlKR3yTrA272xkrtTjCgYPW8gBMyk/hA28uBoHakVvzWNvmo7UrwMw4u0/gQc6tPN9qSrcRO1gZwYHIptoOynNTkNo1kF0OTtcB1y/PS7YCrLxpULsuJpLKKKUGpgGWUkoBCf5mutzph7ydy+mgISF2Mgl6q1fjFIMMIggBu6+SGYO7afOIPr/WrgDB5kriTZdVCzAIk/JTWBcstGp5RvAD7cbdbZyYZCcZyZt20PUn5afQTRzdKWNGdIC1fncbAGWBLVZ/wOTcA66fkxxHZpKHZV12ko8Rem7GGDbVtjMxNwl2rYDC2QfdZlJ+Cptr2wnnTgVfa0wklVFKDUwDLKXUUS8UNmQE6+mKP7QMgj26MybiIghN2yJcssgyxpDYYPcVK5g9qG0m5iWz0ZTgMAFoHLnjfa2qbmG22OUrnDuobcrzUljeXWClxu6oG8bSDc3K6lZOTtwB7iTIOXjwOCnf6tNTGz9+RDcRXFXVighktqyCovkHrT0WESblpbC4KQk8ySP23KqaumjvDjI3sws6GwZ1r03OT6HTH6Iuwc4kOEKDR6XU4GiApZQ66tW3+yiUBkIpAw8GeiCeAqtWwTfCMwlWNnUyIbgFnzv1oBnbeiR6XLSm2P21RvBD34rKFuY5NmHciZA3fVDbWLVzPZkER+bDekOHj+0NXmaYzVA456BNzWBPTc8WxlhBf6DrCJT00C3d0cS8HMHZuBmK5w1qm0n5KWyq82JyplhN6UagDyqstP8LXfZgyIM4t0l2/7K1IftvUAwklVFKDUwDLKXUUW9XQxPZ0oYzs+Swts8cMy0mMgl+WNHMAsdGgvlzDqmvWVzBZCsByAgNQgCWVTZzkmcTUjRvUEEIWA/re1K1j8xzW1rRTCpecjrWw9jjBrVNT03PUl8hmPCIHFcpEAqzvLKFizLsWt+xJwxqu56aHm96uRWEjMCmnR9ubyI13kVh01IrK2D+rINuU56XjAisaQDSRnbTTqXUwWmApZQ66jXXWKmsE3JKD2v78UU5VJmcEZ9JcN3GjUx07CRh0hmHtN34/Cy2hgsI7R6ZD31eX5CtWzczIbwdJgz+3IrSE+j2ZNDuyhqxD7RvbqzjjLj1iAnD+MGf2+SCFN5qscc5G4E1PUsrmunwBTnZuQo8KVC8YFDb9TR/rPKMg65maN89nMU8ZMYY3tpUz3HjMpFtr0PpCYMK+BM9LsZkJrKxts1K0jICr5lSavA0wFJKHfU666wAKy1/3GFtPzYriS0U42keuZkEw2FDeMtrADjGn3pI25bnW03pRmqA9famek4yy6yJCWcOejuHQ5iYl8J2ZynUjrwsieGw4fUNdXwmdRXEp0Px/EFvOzk/hY3+HMKu+BFZO/fS2t0kOA1FtW/A+NPA6R7Udj1jRq0L2k3pRlhgvGZnG7vburmkqAlaKmHSxwe97aS8FDbsbrcSmTRsgqBvGEuqlBpOGmAppY56oXqrr0Ri/oHH4RmI2+mgPqGMzK4dIzbT3vKqZk4OvIs3sQjyZx7StpPzU9gQHoOnvWpEjj304trdfMr9HiZr4qCy7PU1KS+ZFf4iK1V7KDhMJTw872xpoKO9lbmd78HUCwcdhIDVpyeMg/aU8SMuCPEFQzy1YidfLt2Fw1sH0y8e9LZJcVZNz+LOfGvGCOur9NSKnbidwoldb4LDdUgB1uT8FCoavPizJoMJWUGWUiomaYCllDrqeZq34JXkg6aJPhBfermdSXB7BEsWOS8vWclJjtW4Z37qkMf6Ks1KYov09FUaWWMPNXb42LhmGfNZj8y6/JDPrTwvheW+Igj5RlwWyIc+qOTahHdwhTphzlWHtG1Pn56dnnEjLsB6ZV0tLZ0BLne8CgkZUH72IW0/KT+F5fUCKQUjqildlz/Ek8t3cu6kNBLWPgSTPwFJWYPeflJ+KmEDO1xl1owRdt2UUoOnAZZS6qgWDhuyu7bTmFh2yA/nfbnyrfTZ/hHYjK61M0Dq2n/jlhCeBdce8vYel4OuDHsQ2BH20PfAkkqu4xnCzjiYe/Uhbz8pP4UNZow1MYKaCW6r7+D1dTu53v2ClQCiZHB9lHr09OlZFyoGbx14G4appIfGGMPdi7ZzUmod2dWvwLxrwZ1wSPuYnJ/C9gYv4ZwpI6oG6773K2jy+vlO5ttW6v9jbzik7Xv6l63qyganZ8Tda0qpwdMASyl1VNvZ3MkEKvFnlg9pP+ljphM2QusIzCT4wFuruIL/0jb2TMgaf1j7SC8YTycjqz9PY4ePt99+nUtcb+NY8HlIzjnkfUzKS2GrKSQszhH1QHv7q5u50vUGaf5aOOEbh7WPSXkpLPHaTelGyLm9sq6W5ZUt/CrtMSQuBY7/30Pex6T8FEJhQ1PyRKjfNCKadnb4gvz17W2cNT6BkrV/hQkfg7HHH9I+SrMS8bgcbKjrgpxJI+peU0odmiEFWCJys4jsFJEV9tfH+yz7gYhsEZGNInJo9f9KKXWEVG5ZS6Z04C4Z3Dg8AyktyGanyca/e2SlxN7d2k3G+/9HqnSRes5Nh72fSQVpbAgXj6hEF796YS3fM3dj4tPhlO8e1j5yUuJITEykPm7kpMZ+Y2MdS1eu5nuuh2DcqTBx8Ik7+pqc3yeT4Ah4WG/vDnDzM2u5NmMVhfWL4KRvQ2LmIe9nsl3Ts91Zajft3Brhkh66X/13A82dfv4v6UHoboXTf3LI+3A5HUzMTbYSXeROGzG/j0qpQxeJGqzbjTGz7a8XAERkKnA5MA04B/iziDgjcCyllIqots2LAMiZevKQ9lOWncRWU4i7eUskihURxhjufuABLpNX6Zj9P1BwaMkt+irPS2FDuARTOzLGHnpm5S4KV/2RBY6NOM/5BSSkH9Z+RITyvBQ2MXZEPNDWtnXzw0eX8dekv+B2GDjv94fddHVSfip1Jo1gfGbUzy0UNnzrkZU426r4UejPUDj3kJvQ9RiblYTH6WCVv8iaEeWmna+sq+X+xTv4zZStZG16BE68EQpnH9a+JuWnsLEnk2B7DXQ2RbawSqkjYriaCF4IPGSM8RljtgNbgGOG6VhKKXXY3DXL8JJIYuGhZZ/bV6LHxW7PGNI7KyAcjkzhhuhf/13E9bW30JFUQuq5Px3SviblpbDRjMHla4n62EPvb23kjUf/wtdcTxKacTnM/uyQ9jcpL4Vl3YXQWmnVPkRJW3eAz9+zhO8G/sLM0Drkgj9CZtlh78/q0yNWU7oo12D96sUNfLhuM89m3I5LBC75J7g8h7Uvt9PB+Nxk3mvLAnFGNdHF6upWvvHQci7Lq+ZTO/4fFB8Dp3z/sPc3OT+FunYf7Wl2k+UREPQrpQ5dJAKsr4rIKhH5p4hk2POKgKo+61Tb8/YjIteLyFIRWVpfXx+B4iil1OCEwobijtXUpEwDx9D/HHamjsNjfNBadfCVh9mjb33EiYu/SIozQMo1j0BcypD2V5yRwHbHWGsiiokFVlS18Ph9d3Cb60+EixfivOD3Q95neX6Klaodovaw3toZ4H/+uZjPNfyOi+QtOPUHMPPTQ9pnT5+eCudYKw19FAJ/Ywy3vbSBp99eyn/TbyPdvxs++9CQAkewApG1tT7Ijl7wuGxHM1fevYQz49fxf523IGnF8JmHDjtwBJicnwqwJ/HKCGjaqZQ6dAd9ohCRV0VkTT9fFwJ/AcYDs4Ea4LeHWgBjzN+MMfONMfNzcg69g7JSSh2urdU1TKSSQMHgB3A9oBxrHC0T5fFrHn11EbNfu5Kxzgacn30IyZ0y5H06HGJlbYOoBSEvrNrFy3//Ib+R3xMqnI/rykcOOQNdfyblWeN8AVFpblbZ2MnVf3mZr+3+IZ92vAknfxdO+d6Q9+tyOijPS7aa0gW80FIx5H0eCl8wxHcfW8Vrb77BSym3kheuswKQQ0z+0J9J+Snsbuu2xoyKQi3PMyt38Zm/L+Yy9yJuD/4CR0YpXPP8IaVl709P/7I1rfGQkBn15o9KqcPjOtgKxpiPDWZHIvJ34Dl7cidQ0mdxsT1PKaVGjOo1iygXQ8akkyKyv6SiqbAJ2qvXknqYiQmGwh8Mc//D/+GTm75PvAv47GO4Jwytb1lfhYVF1DdlkHOE36oHQmHuenEZ4xb/kO86P8A36ZPEXfJXcMdHZP/lecnsJpNuVyrxR/hh/cU1u7n/scf4A3+kxNUI5/0R5n4uYvuflJfKoo15fB6sQCRzXMT2fSCVjZ185YFlzKh9kucS/o0zLgO54oUh9QPsqyeleW38eEpanrIGwB5iLe1g+IIh/u+FDTz43ib+nPEwH+v6L5SeBJf9+7D7AfaVkxJHRqKbjbUdVj+sETTOl1Jq8A4aYB2IiBQYY2rsyYuAnlctzwD/EZHfAYXAROCDoRxLKaUiLbB9MQB5U4f+Rh2guKiEJpOMf+d6UiOyx8HbXtfK4nt+wDXe/9ASX0z855/EmTMxoscoz0th/cpiMmrWDO0/j0NQ0eDlr/ffz1dabqPA2Uzg9JuJO/HrEWnS2SM90UNeajzVrnFMOEIBVmtXgJ89s5KS1Xdyn+tpTEoBjkuehbHHRfQ4k/NT+N1HuZh4QWrXwZTzI7r/fYXDhvver+CfLy3hJsfdfMz9AZSdDhf9dUgDee+rp6Zns4yx3ubWbTjkscIO1fqaNr71yEoSd3/Au2n3kN1VCSd+E077ETgjc0eIiDU22+52GDcNPrrfatoZwd93pdTwG+pfhF+LyGzAABXAFwGMMWtF5BFgHRAEvmKMCQ3xWEopFVHpTSvY6R5LUULGwVcehPE5yWwxRYxtPHJNBENhw+OvvMn4977HZ2Qj1WMvpPizd0J85EO8SfkprDdjOLHhFWvsoQg9VPbHHwxz3+srSF30M/7P8Tre5BKcn3kYZ3GEmnPuozwvhfX1JUyoe2PYH2hfWVfLg08+yTd9dzHdtZ3wzM/g/PivID4t4sealJ9CF/F0p5SQMMx957bUtfO9x1YxYeeT/NfzIImOAJx2Cxz/tYj/PPNT40mNd7Gsq4DTweoXOEwBVncgxJ/f3Mo9b6zhR3GPcGnci0hCCVz6FIw/LeLHm5yfyiNLqwgvnIqjp2nnEap5VEpFxpD+dzTGXHWAZT8Hfj6U/Sul1HBp8XYzKbiBnQVn9p+B5zDkpcaxSIqY1v5RhPZ4YNtrm1l83018quNBQg4Pref8ieJjrxy2403KS+GpcAmOsB+atkHO0AZnHsiiTfW88cRfuKHrH2Q62umYdwPJZ98EnqRhOR7Yg/LuKOB8R4eVTTCjNOLHqGrq5DdPvc+CbX/iH67XCSXnwHn345h6QcSP1aOnpqcufjxjh6m5mS8Y4m9vbeO519/m5+5/MN+9DjPmBOT8OyB7wrAcU0SYnJ/KkqYQeFKGrR/W6xtqufnptUxufZs3kx4kI1CLHPtFa5yruORhOeak/BQ6/SHq4ieQD0e0aadSKjKOVCsPpZQaUTau+YhjxUtj2cKI7VNEaEkaR1Ln69b4NYcxiOpgdAdCPPXMk8xd9VM+I9VUFZ1D8eW/JzG1YFiO1yMnJY5dcWVWm4W6tREPsHa3dnPXky9z6tbf8BPnStqyZuD89J9ILpgV0eP0pzw/hQcCxRCH9UAbwQDLFwzxj7e3svPNu/mpPEC6uxNzzA24T/vhsNQ09tXTp2eLjGFs01sQ6IpIYpAeb2yo47Znl3JB6wM8734RR1wSnHUHMueqYW/WNik/haeW78SUTLGaP0ZQVVMntzy7lm0bVvC7xAeY71kO6VPg/HthTOT+ZvSnp3/Z2mAB+YjVD2uYm3YqpSJLAyyl1FGpedO7ABTOiFwSCIBQ5gToBOo3Rrw/DcBbKzbQ8txPuDTwCi3uHJrPu5+S2cNXA9KXiODMm0xotwNn7TqYdlFE9hsIhfn3W+sIvvVrfsjzGE8cgdN/QepxN4DjyIxRPzk/hU2mGIMgtWth8icist93Ntdz75PP88WOP7HAsQl/wQIcF94O+TMisv+D6enTs6yjkDNM2Pq9PMxBcPva0ejlZ8+uJXnTk9wX9yDZrmaYcyWccTMkH5mMwJPyU2j3BelMn0TS1uesAbAPc1DmHt2BEHe9tZX73lzDV5xP8Nf4/+JwJcCZv4QFnwenO0KlH1h5nhVgrWsIcUZmmWYSVCoGaYCllDoqeWqW0iFJJOcPPYV5X3EFU6Aa/LUb8EQwwKpqaOfNB3/DeQ3/IFU62T31Wgo/+bNha6Y0kHEF2eyoyaesbi1De5S1LNnawOuP/YVrOv9JgTTRMflSkj/x/yAlLwJ7H7zJ+amEXIk0xxWRGYEH2srGTn73zGJmb/0Ld7leJZyQBmffiWf2FUc8YcHk/FTeWJrHdx1AzYohBVid/iB/fmMr77zzGj913sNcz0bCBXPh449D8bxIFXlQepo/VseNY1JXszX+XPqYw97fa+trueWZtcxpfYU3Eh4mLdQIs66Ej/00ogk6DiY5zkVJZgIbatutTII6FpZSMUcDrBHGGIPP78fX2U7A14k/ECAQCBIIBgmHg7gFXA5wuOJxeuwvdzyJiYnEe4b/zZpSo0EwFGaMdw01aTOZGOGH3ZziiXR/4MZbtZasY4a+v+5AiGeee5qpK27lKtnOzoz5JF92B4UF04a+88NQnpfC+nAxY2rWDuk/kNq2bu578nlO3vprfuDYQGvmNMxFD5E85tiIlfVQeFwOphWmsrl1LMcOoT9Ppz/IXW9sonnR3fzU8TBpLi9m3jV4zvjJsDUZPZhJ+Snc488hlJ6Bs3opzLvmkPdhjOGF1bv543NLuLLzPp50vW6N03TmnTiiEDSC1awTYBUTmQRQvfSwAqyt9R387Ll11G5ayp2J9zPTsw7y5sDHH4FhSqpyMJPyUtlQ0wbzZ8L656CrJSJp4JVSR4YGWMOss6OVhl3baavdQUdzLYG2OhydDTi7mvD4mogPNhMf7CA+3Em86SKRbuIlwOGM7uI1cXRIEl5HCl2OZPyuZALuVIJxaUh8Oo7kbFzJ2cSnZZOckUtqRh6pWXk445KH3KxCqViyeft2pkg164s+FfF9j8tNYZspJKtu45D39e7K9bQ++yMuDb5Giyub5rPvomjB5VG9Xyfnp/B2eAwfb/0QfB2HXIPmC4b49xsriF/0K77Jy/g8qfjPvJ20BVcfseaAA5ldks7i3YUc43sPOcQHWmMMz62q4bnnnuBrvr8xzbkDf9FxOM6/7Yg1BxyIVdMjNKVNJ2fnskPeflNtOzc/tYpxlY/yiOcxUtydyDFfhFN/ENWH/tR4N2OzEnm9KYFPu+KtAGv64O/p9u4Af3x9C0+8u5pvux7l0rhXkbgMOOMOOAJ9yA5kamEqr2+opSN3HskY69wmDmpYUqXUCKAB1hC1d3RQs309bdXr8NdtgdZq4rtqSPXVkh2uI50O9n2fFjJCq6TQ7kijw5VOa0IRze5k8CQRdicTdidi3EmIKx6ny4XT6cLpdILDScgIYRPGBAMQ7IaQH4I+woFujK8dp78Nl78NT6Cd1GADCb4KUtrbSaFzwHPw46JdUulwpuJzpxOISyccn4EkZuJKzsadko0rKQt3SjZxaTkkpOWQkJKJRPlhqF/GQDiECQcIBgOEgkGCwQDhQIBQKEAoGCAUChIOBgiHgoRCAcLBIOGQNR0OBTChoD0viAlb06FwmLCBcDhM2BhM2GD19Kf3uxiz57nX7FkmPct71+8h+3xn7wdn6fkmGJE9a9nr9D8tfRY4ehebvdZ37H106T2QfTS75Pvtt+eT7FPUvtP7n4sgPUVhn5Jbxxng/A3S+yM2ewUUgtnrZykDfO7Zz977BWha+yZTgMxZH99v/aEqy07iZVNIUcvWw95HVUMb7z70Kz5e/08SxE/V1OspufCnR7w5YH8mF6TyJ8Zbv89VS2DCGYPazhjDq2trWPnMHVznu5906aRjxtWknvvTqNXs7Gt2STr/eW8yX48zUPk+TDp3UNut29XGHU+9ybk1f+GvzvfwpRTCuf/CM+2iEfHyalphGgluJ6scUzij5m/gbYCk7INu19oV4PevbmLt4pe41X0vk90VmDEnIh+/DfKmHoGSH9yxZZm8tLYWUzIX2bFoUNuEw4bHP6rmtv+u42PdL/FW/GMkhtuRBV+A034AERq2YSiOH5/FHa9tZom/lDPECZXvaYA1BMYYfMEwbZ3deNua6WpvprujGV9HC8HOFkKdrYi/DfF3IIFOCHYjQR+OUDeOUDeusA9X2I877MNlAkAYMdaXg54v0/vZ+l9KCOMkLHvWCIu1FtLz2YkRJ2FxYhwu+7Or97P13ZrG4bS/93y5MQ4nYk+L0w1OlzXtdOOwP4vTjTit747e79Znh8uNw+XC6fRYn50uHE43TpebsDjsZxmDsZ9pTLjnf19j/7OXGWu+sdfveQYyxmDs9awNDSYcBsJ7nqPCBkMYEw5b62OsoTJMeM++TZiAJ43ccTMpTI9ckp7hpAHWIHV1etmxYSkt25ZB7XoS2reR1V1FgamjXPY87LWRRJMzh7b4PDYlziKcUowzo5jErBLScwrJyCkgITWbTKeLI/lIEQoGaG2qo62plvbmOrpb6/G3NxDqaMR0NuLsbsHjbybe10pS12ZSTTsZdOCScP/7M4KXBALiIShuAuK2v1vTQfEQFieIA+kJDkTsG7BP2GHAQQiHsb6EcO9nZ898QjhNz+dw77STPl8mjJNQb3kFcNtfSvWnlixyyyPQhm8f8W4nu+MnkOZ7/5AzCXp9QZ555lHmrPkFl0sllZnHEn/ZHyiJcD+xoUiOc9FVcAzBBieuincGFWBtqWvnP489yid338G3HdtpzV2A4+LbSY1yzc6+5o7J4LtmPEFHHK5tbx00wGr2+rnjpdUkfXQXt7uexuM2hE/4DnEn3TisKeUPlcflYH5pBk81TeIMgG1vwoxLBlw/GArz4AeVPPTKe1wfuJ+fut8jnFIIZ/8LGSFBY4+F47J4ZGk1dbknkLf0NuioP2CSjeWVzdz87DoSdr7Hg4kPMd69BYpPgHN/DfnTj2DJD2zumAwS3E7equjijOIFsPkVOOOmaBdrRAmEwjS0d9PQUEd73Q46G3cSbK8HbwPOrgbcvibi/c0kBVtIDbeQQRu50jWofXfjwYcHv8QREOt70OEhIHH4HYkY+/kGcWD2CqCsoMpgvXR1EOoNwsR+hsHsCc7EhJBwAKfp6n3m6f1uQjgJ4sR+vjF9PhPCLUfX8LIvh+ax5GN/54unjI92UQZFA6wDWPfeC3iX/Ivs9o2UhKqYbD+8d5o4alzF1KVOoybjAjx55aQUTSG3dBqpaZkMb9Ldw+N0ucnMLSIzd3Aj/viDYRq9PpqaG/A21xPsaCDsbSTc2YR0NuHsbkb87ZiAD0I+HGEfznAAZ9iP2/hxh/04wyH7rUXPGw3sCharzqKnwmPPGx7rLU7AEdf7OSw9b3Ec1lsccWLEBQ4HxuG2gjiHC8QFzp5l1ryetzo4e97u9Myz3viIy4U4et7oWMsc9psdcbpwuFw4nFYNosPhwOEQXA7B4XDi6K2t6an96alVkT4PH9Z3s8961jyb2ROc7/WWqO/8np9fn9V768f61JRhvynqO9/Yoeye1Uz/2/e8Weqd3yewNma/8u4pXt9ps3d56Ammw72zZM+vwV7rHexzb71an5+L9aPsM9132T61hf09DmaWlA9bLay/cAHsuB9TtQQZRC1IOGx45Z338Lx5C58xS2hy59F8zj8ZM+9TI+phtse8icV8VDeReRtexPmxmwdcr6XTzwMvvMH4Vb/hJscHeBNyCX7876TN/PSIPK+SzERK87JY0TWL+eufgbN/0W8zse5AiPve28a2N+7lK+YhSlz1+Ms/gfPcXwzL+FmRcEp5Dr94Po/fZ2ThXPd0vwGWMYY3N9bz++eXcm7zf3jS9SIujwNO+A6OE0dW0NjjxAnZOARe9s/kKoANz8H8a/dbr6qpk9++vJHVKz/kpvhHOMXzISaxGM68G6ZfPOJ+Hz0uB8eOy+TtTfWYhecgr90MLZX79THzBUPc994O/vNBJb/59CzmjY1+7VskhMOG3W3d7Kytp61mM776bQRbduJs30V8dx1pgTqyQo3kSxMF4t9v+yBO2hxpeF3pdCdm0BE3lpaETIhPx5GQhjMhDXdSOp6kdOKTM0hMySAuOQN3YiriTiBe5LC6ahwpxhiCoTDBUIhg0E8o0NNCx/5ut9oJBwO9LXVCQT8mZLXiMXaLnXDQaqVjQgHC4SCEAoRDAQhZL7f3tIqxnmOsFi+yp2WMADj2bsHS56W6xdH7UQSMOACHtZ5I74t4azsHxiGIvU7vfHGQm5DFtImFR+gnPHQaYB1AZ8MOSls/pCZhIkuzziC+ZDZ5k44hr6Sc8c4R2DwugjwuB3lpCeSllUBpSbSLo1RMySo/Fn+Fk66Nb5F2kADro43bqH7qFs7pfJaQw8Ouud+m8JxvgSfxCJX20J09LZ9H317IMQ33wO7V+/Ux6vKHePDNj/C891uuNy8TdnnwHvd9kk752oh8SO/r/FkF3PfqAub7P4Btr8OEPc2ywmHDU8ureefFR/iC716ud+ygO2c6fPwfeMadGr1CD8InZhbw8xfWszz9TOZvfBzaa/fK1LiyqoU/vLiKMRWPcq/7KdJdbZhZlyOn3wRpkRqKO/JyU+M5YUI2d23s4Mrcqciye6wkHvYTXZPXz52vb+GVxcv5ovMpfhf3GuJOgJN+iiz8UkTHBIu0c6bl8/0nVrM6/Qxmyq2w9J9gv9AIhQ3PrtzFb17eSGbLGi5wrODZpV9i3tgF0S30IQiGwtS0dLGrejstOzfir9sKLTtI7KgiM7CLYmpZIG17bRPARYsrG29CDr7EGVSkFOJMKyQus4SUnGJSsgpwp+Tiik8jU+SIthQ6kkQEl8uJy+WEOE+0i6P6IXu9KY+y+fPnm6VLl0a7GL3CoRCOUR5IKaUib1t9B9V3nMOs5BbSvru637fj63bUsPrJ33F28wOkSBeVYz/F2It/jiM1PwolPjTGGC77/Qvc03odceWn4/zMf0CEDl+Q595ZSui9O/lk6GUSJEDr1M+Sce5NRzzt+uHa1dLF2b99hTfjvkVmVg7yP6/QLfE8u3wHa954hPO9jzPfsYnupGLiz77Zqv2IYjKEQ/Glfy+jYtNqXnB9G5lyHuFP3c3i7c38542PKK54nC+4/0sWrYTHnojj7J9HZLysI+Gltbv54v3LuGfWBk7deCucdztV4y7nX+9WsPTDd/mMeZ5PuxbhJIzMvxZO+f4RG6trKLy+ICf9+g3KspN4JPOvOLe8TOfVr/D0rlT+8eYmxra8z5cT32B+0Epc8lvXF/jmj27b0692hPAFQ2zZ3Urltg20Va5GGjaR2rGNfH8l42QnqX2a7YVw0OTKoyOxiFDaWJxZZSTmjietqJz4rLGQmBUz95s6OojIMmPMfulGNcBSSqlh8IfbfsLXvXcQvuppHONP7Z2/rmIXm567nRPrHyJb2qjMPI7cT91GfPHI6o90MG9urGPxfT/h++6HqMg7i03hQuLqVnEcK3GKoXncBWSf8wPInRztoh6yu97aypKXHuRuz29ocuawLZjDRHaQIR14E4tJOOXrOOZdDa64aBf1kFQ0eDn/j4v4guMpvmb+QyUFeMNuJjqqcREmWHY6rlO+BWNPGHFN5g7EGMMX71/Gq+tqeCr1t8z0L2d1uJR08VIi9YSdcTjmXgXHfw0yxka7uIfk6RU7+fpDK5id3sm9/m/hCXWx3oxhgrOWVNOOScpFFt5A09LHaGpuofW6d5lXGr16m/p2H5u3V9C0dRnBXatIaVlPoW8b46SGOAn0rtfqzKQlqYxAxkRceZNJK55CelE5kl5yRAZzVipSNMBSSqkj6IkPtrDw+TOJT0im4+zbqaypp3vtsxzT8Tqp0sX2tGPJOe+nJE88IdpFPWz3v7edjpd+xtU8R6L4aHAXEp58Hrmnf2XE9kUaDGMM975Xwab3n+VTvqfIcgdIzJ9I7jEXI+XnRD2d/FBsqm3njlc3Ma7mec4Ov0NmahLZ4+binnWxNahtjPIFQ/zpja0s2VTFpb6nOMa5keycfBLGnwjTLoqJGquBvLR2Nw9/WIWno5r/MU9S7q4ntWACUn4WlJ8DTjfdS/9N/HNf4S9jfseXrvufYS9TIBRma10blVvW0rFjBc661WS2b2JCeDsF0tS7XpMzm+aUckz2ZFJKppFVOh1X7qQRkalRqUjQAEsppY6gcNjw+3/eyxeqvk+K3QTGh4eKvLMoOvOrJE84LsoljAx/MExzRyfZiS6cnpHcLVypUSzQjfdXk1jkm0Dxl55gWmFaxHbd5PWzobqeui0f4a9eSWLTOgq6NjNJKkmWbsBq2lcXNxZvxlRcRTPJGj+flLFzICkrYuVQaiTSAEsppY6wcNiwdMNW2PEeWdm5jJtxPBI/EvOMKqViXdd/b8Kz5I98PeH/+OmXryUn5dCasAZCYSoavGyuqqF52zKoWUla63rGB7cxQXb2pgXvkkTqk8sJ5kwjccwcsibMx503Bdz6gkUdfTTAUkoppZQarbpb8d15PB3tbdzi/gbHnnkJ504vIDNpT5Y5YwwtnQF2tnSxs7GFhh0b6KpZj6dpE9mdW5hCBWWO2t7125yZtKZNhoJZpI2bT2rZXEgv1UQTStmGJcASkYeBSfZkOtBijJktIqXAemCjvWyxMeaGg+1PAyyllFJKqcPUsAXf/Z8mrnUbK8Lj+DA8mXZXBh6ng7hwF+mhRrJNEyVSz1ip3Wuw2pa4QryZ03AXzSZjwnzcRbMhZeRnNVUqmgYKsIY0DpYx5rI+B/gt0Npn8VZjzOyh7F8ppZRSSg1S9gTivvo+5oO/MXHFE0xvfA1X2AchCOPAG5dJd3wO4ZSpNOd+itSSacQXTIXsiaR7kkiPdvmVGiUiMtCwWIMuXAqcHon9KaWUUkqpw+COR074GkknfA2MAb8XRHA440hxukiJdvmUOgpEqhHtSUCtMWZzn3llIrJcRN4SkZMG2lBErheRpSKytL6+PkLFUUoppZQ6yolAXDJ4ksAZkXfqSqlBOOjdJiKvAv01wv2RMeZp+/NngAf7LKsBxhhjGkVkHvCUiEwzxrTtuxNjzN+Av4HVB+tQT0AppZRSSimlRoqDBljGmI8daLmIuIBPAfP6bOMDfPbnZSKyFSgHNIOFUkoppZRSatSKRBPBjwEbjDHVPTNEJEdEnPbnccBEYFsEjqWUUkoppZRSI1YkGuRezt7NAwFOBm4VkQAQBm4wxjQdbEfLli1rEJEdEShTJGUDDdEuhDpi9HofPfRaH130eh899FofPfRaH11G4vUe29/METXQ8EgkIkv7y2+vRie93kcPvdZHF73eRw+91kcPvdZHl1i63joUt1JKKaWUUkpFiAZYSimllFJKKRUhGmAd3N+iXQB1ROn1PnrotT666PU+eui1PnrotT66xMz11j5YSimllFJKKRUhWoOllFJKKaWUUhGiAZZSSimllFJKRYgGWAcgIueIyEYR2SIi3492eVTkiEiJiLwhIutEZK2IfN2enykir4jIZvt7RrTLqiJDRJwislxEnrOny0RkiX1/PywinmiXUUWGiKSLyGMiskFE1ovIcXpvj04icqP9N3yNiDwoIvF6b48eIvJPEakTkTV95vV7L4vlDvu6rxKRudEruTpUA1zr2+y/46tE5EkRSe+z7Af2td4oImdHpdAHoAHWAETECfwJOBeYCnxGRKZGt1QqgoLAt4wxU4GFwFfs6/t94DVjzETgNXtajQ5fB9b3mf4VcLsxZgLQDPxPVEqlhsMfgBeNMZOBWVjXXe/tUUZEioCvAfONMdMBJ3A5em+PJvcA5+wzb6B7+Vxgov11PfCXI1RGFRn3sP+1fgWYboyZCWwCfgBgP69dDkyzt/mz/dw+YmiANbBjgC3GmG3GGD/wEHBhlMukIsQYU2OM+cj+3I71AFaEdY3vtVe7F/hkVAqoIkpEioFPAP+wpwU4HXjMXkWv9SghImnAycDdAMYYvzGmBb23RysXkCAiLiARqEHv7VHDGPM20LTP7IHu5QuB+4xlMZAuIgVHpKBqyPq71saYl40xQXtyMVBsf74QeMgY4zPGbAe2YD23jxgaYA2sCKjqM11tz1OjjIiUAnOAJUCeMabGXrQbyItWuVRE/R74LhC2p7OAlj5/uPX+Hj3KgHrgX3aT0H+ISBJ6b486xpidwG+ASqzAqhVYht7bo91A97I+t41u1wH/tT+P+GutAZY6qolIMvA48A1jTFvfZcYaw0DHMYhxInIeUGeMWRbtsqgjwgXMBf5ijJkDeNmnOaDe26OD3ffmQqyguhBIYv8mRmoU03v56CAiP8Lq2vFAtMsyWBpgDWwnUNJnutiep0YJEXFjBVcPGGOesGfX9jQpsL/XRat8KmJOAC4QkQqspr6nY/XRSbebFYHe36NJNVBtjFliTz+GFXDpvT36fAzYboypN8YEgCew7ne9t0e3ge5lfW4bhUTkGuA84AqzZ/DeEX+tNcAa2IfARDsbkQerM90zUS6TihC7D87dwHpjzO/6LHoGuNr+fDXw9JEum4osY8wPjDHFxphSrPv4dWPMFcAbwCX2anqtRwljzG6gSkQm2bPOANah9/ZoVAksFJFE+296z7XWe3t0G+hefgb4nJ1NcCHQ2qcpoYpBInIOVvP+C4wxnX0WPQNcLiJxIlKGldjkg2iUcSCyJxhU+xKRj2P13XAC/zTG/Dy6JVKRIiInAu8Aq9nTL+eHWP2wHgHGADuAS40x+3awVTFKRE4Fvm2MOU9ExmHVaGUCy4ErjTG+KBZPRYiIzMZKaOIBtgHXYr1Q1Ht7lBGRW4DLsJoPLQc+j9UXQ+/tUUBEHgROBbKBWuCnwFP0cy/bQfadWM1EO4FrjTFLo1BsdRgGuNY/AOKARnu1xcaYG+z1f4TVLyuI1c3jv/vuM5o0wFJKKaWUUkqpCNEmgkoppZRSSikVIRpgKaWUUkoppVSEaICllFJKKaWUUhGiAZZSSimllFJKRYgGWEoppZRSSikVIRpgKaWUUkoppVSEaICllFJKKaWUUhHy/wGc4xfXfK5AiQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1782,31 +1782,31 @@ " 15\n", " False\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " bAP.soma.v\n", - " 0.00952\n", - " 6.92e-07\n", + " 0.0072\n", + " 1.35e-07\n", " \n", " \n", " 16\n", " False\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step1.soma.v\n", - " 0.0106\n", - " 1.49e-05\n", + " 0.0811\n", + " 3.35e-07\n", " \n", " \n", " 17\n", " False\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step3.soma.v\n", - " 0.00949\n", - " 0.000122\n", + " 0.0923\n", + " 7.65e-07\n", " \n", " \n", "\n", @@ -1814,14 +1814,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "15 False 5 0.112 0.0634 bAP.soma.v \n", - "16 False 5 0.112 0.0634 Step1.soma.v \n", - "17 False 5 0.112 0.0634 Step3.soma.v \n", + "15 False 5 0.0799 0.0189 bAP.soma.v \n", + "16 False 5 0.0799 0.0189 Step1.soma.v \n", + "17 False 5 0.0799 0.0189 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "15 0.00952 6.92e-07 \n", - "16 0.0106 1.49e-05 \n", - "17 0.00949 0.000122 " + "15 0.0072 1.35e-07 \n", + "16 0.0811 3.35e-07 \n", + "17 0.0923 7.65e-07 " ] }, "metadata": {}, @@ -1829,7 +1829,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj5ElEQVR4nOzdeXxU9b3/8ddnZrIRCCEh7EtwAVlFBcTrbq1iXdBqRetuW692U6/Lba21tLf29me9tVXbUltb16LW3aq1brhVVFDEBReEsC9hSwjZZjKf3x9ziJOQDTNhEvJ+Ph5jzvI93+9nzmHifPL9nu8xd0dERERERETaL5TuAERERERERHYXSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiHQyZlZsZm5mkXTHIt2DmX1gZkekOw4Rkd2BEiwREenyzGyWmVUEr1oziyatP53u+Do7dx/r7nNSWaeZ3RFci4qkVziVbYiIdEamBw2LiKSWmUXcPdaO44uBpUBGe+rprsxsJrCXu5/dxL52XZtdqSvF2hQzuwNY6e7XpjsWEZFdST1YIiIpYGYlZvbfZrYQ2GZmETObamb/NrMtZvZu8hAsM5tjZv9rZm+aWbmZPWZmBc3UfYGZLTKzrWa2xMz+s9H+6Wa2IKjnMzObFmzvbWa3m9kaM1tlZj9vrQfBzPY0sxfMbKOZbTCze80sP2nfJjPbP1gfZGal29+XmZ0UDDXbEry/0Y3Oz5VmttDMyszsfjPL3vkzvfOauTZuZnsllbnDzH6etH5CcE63BNdwQhvbOsLMVprZNcH5KzGzs5L2H29m7wTXakWQDG7ft31o6DfMbDnwQrD972a2NjhvL5vZ2EZx/97Mng56iF4zswFm9hsz22xmH5nZfm08R0e35T2KiEjLlGCJiKTOmcDxQD7QH3gS+DlQAFwJPGRmRUnlzwUuBAYCMeDmZupdD5wA5AEXADclJTlTgLuAq4J2DwNKguPuCOrdC9gPOAb4ZivvwYD/BQYBo4GhwEwAd/8M+G/gHjPrAfwVuNPd55jZSGA2cBlQBDwFPGFmmUl1nw5MA0YAE4DzmwzA7JAgsWnudUgr76Ep9demtV6hICH5C/CfQCHwR+BxM8tqY1sDgL7AYOA84DYzGxXs20biuucH8VxiZic3Ov5wEuf+2GD9aWBvoB/wNnBvo/KnA9cGbdYArwfl+gIPAr9uY9xNMrMftHQ9Wjn820FSPt/MTm1PHCIiXYUSLBGR1LnZ3Ve4exVwNvCUuz/l7nF3fxaYB3wlqfzd7v6+u28Dfgyc3lQPk7s/6e6fecJLwL+AQ4Pd3wD+4u7PBu2scvePzKx/0NZl7r7N3dcDNwFntPQG3H1xUFeNu5eS+HJ+eNL+PwGLgTdIJIY/CnbNAJ4Mjo0CNwI5wH80Oj+r3X0T8AQwsZkYXnX3/BZer7b0HpqRfG1acxHwR3d/w93r3P1OEonL1J1o78fBOXyJRKJ9OoC7z3H394JrtZBEUnp4o2NnBtesKjjmL+6+1d1rSCS7+5pZ76Tyj7j7fHevBh4Bqt39LnevA+4nkVx/Ye7+y5auRwuH3sznieGPgTvM7OD2xCIi0hUowRIRSZ0VScvDga81+kv/ISSSkqbKLwMySPQ6NGBmx5nZ3KAnYAuJxGl7uaHAZ03EMjyob01S+38k8WW3WWbW38zuC4YUlgP3NBHTn4BxwC3Bl35I9Hgt217A3ePB+xucdNzapOVKoGdLsaTYitaL1BsOXNHo2g0l8R7bYnOQNG+3bPuxZnagmb0YDK0sAy5mx/NbH6uZhc3sl5YY+lnO572TycesS1quamJ9V57neu7+trtvdPeYuz9Fouftq+mIRURkV1KCJSKSOsmzBq0g0UOV/Nf+XHf/ZVKZoUnLw4AosCG5wmBY2kMkeoT6Bz0GT5EYyre9nT2biGUFiV6Xvknt57n72CbKJvtF8D7Gu3seiZ647W1hZj2B3wC3AzPt8/vGVpNITLaXs+D9rWqlvR2Y2aHWcOa5xq9DW69lB41ndKoEeiStD0haXgFc3+ja9XD32W1sq4+Z5SatDyNxfgD+BjwODHX33sAsks5vE7F+HZgOHA30BoqD7Y2P6TDB/WTNXo+dqMrZhXGLiKSLEiwRkY5xD3CimR0b9EJkBxMgDEkqc7aZjQnuZ/oZ8GAwrCtZJpAFlAIxMzuOxL1U290OXGBmXzKzkJkNNrN93H0NiaGE/2dmecG+Pc2s8XC0xnoBFUCZmQ0mcW9Xst8C89z9mySGvs0Ktj8AHB/EkQFcQSLB+3drJ6oxd3/F3Xu28HplZ+tswgLg68G1mUbDYXp/Ai4OepvMzHItMTlFL6ifWOKOVur/qZllBsngCcDfg+29gE3uXh3cP/f1VurpReI8biSREP5iJ95jSrj7L1q6Hs0dZ2anmVnP4N/eMSSS9cd3XeQiIumhBEtEpAO4+woSPQ/XkEiOVpBIVpJ/795NYiKKtUA28P0m6tkabH8A2EziC/njSfvfJJj4AigDXuLznqRzSSRoHwbHPkjDIYpN+Smwf1DXk8DD23eY2XQSk1RcEmz6L2B/MzvL3T8m8QX6FhK9cCcCJ7p7bSvtpculJGLcApwFPLp9h7vPA74F3ErivC2m4YQcQ4HXWqh7bXDcahLD4i5294+Cfd8GfmZmW4HrSFzXltxFYojhKhLXcW5rb6wTuZRE3FuAXwHf8hQ/a0tEpDPSc7BERNLAzOYA97j7n9Mdi7RdMCviu8CEYDKPxvuPIHFdhzTeJyIi3UMk3QGIiIh0FUGP3OhWC4qISLelIYIiIt2Mmc1qZsKCWa0fLV2RmQ1rYaKKYemOT0Rkd6IhgiIiIiIiIimiHiwREREREZEU6VT3YPXt29eLi4vTHYaIiIiIiEiL5s+fv8Hdixpv71QJVnFxMfPmzUt3GCIiIiIiIi0ys2VNbdcQQRERERERkRRRgiUiIiIiIpIiSrBERERERERSpFPdg9WUaDTKypUrqa6uTnco0glkZ2czZMgQMjIy0h2K7Kbq4s6Vd73I1MFZzPjywekOR0RERLqYTp9grVy5kl69elFcXIyZpTscSSN3Z+PGjaxcuZIRI0akOxzZTX24upxLlnyXkSWriB+5kVCk0/+aFBERkU6k0w8RrK6uprCwUMmVYGYUFhaqN1M61IrNlYwMrQJg3YcvpzkaERER6Wo6fYIFKLmSevq3IB1tY+ma+uXKRc+mMRIRERHpirpEgiUisqvkbP6kftk3fNJCSREREZEdKcFqAzPjiiuuqF+/8cYbmTlzZvoCSnLEEUe0+HDmk08+malTpzbYNnPmTAYPHszEiRMZN24cjz/+eEeHKdJlhGrKASilDznlS9McjYiIiHQ1SrDaICsri4cffpgNGzaktF53Jx6Pp7TOZFu2bGH+/PmUlZWxZMmSBvsuv/xyFixYwN///ncuvPDCDo1DpEuJVgKwPGskRTUrIF6X5oBERESkK1GC1QaRSISLLrqIm266aYd9paWlnHrqqUyePJnJkyfz2muvAYleohtvvLG+3Lhx4ygpKaGkpIRRo0Zx7rnnMm7cOFasWMFVV13FuHHjGD9+PPfffz8Ac+bM4YgjjuC0005jn3324ayzzsLdm4zv7rvvru+NevPNN+u3P/zww5x44omcccYZ3HfffU0eO3r0aCKRSIPk8Qc/+AFjxoxhwoQJXHnllQCUlJRw1FFHMWHCBL70pS+xfPlyAM4//3wuueQSpk6dyh577MGcOXO48MILGT16NOeff359nZdccgmTJk1i7Nix/OQnP9khjrKyMoYPH16f6G3bto2hQ4cSjUabjFuko1gskWBt7DWKTGqhfHWaIxIREZGupEvNP/zTJz7gw9XlKa1zzKA8fnLi2FbLfec732HChAlcffXVDbZfeumlXH755RxyyCEsX76cY489lkWLFrVY16effsqdd97J1KlTeeihh1iwYAHvvvsuGzZsYPLkyRx22GEAvPPOO3zwwQcMGjSIgw8+mNdee41DDjlkh/oqKytZsGABL7/8MhdeeCHvv/8+ALNnz+a6666jf//+nHrqqVxzzTU7HPvGG28QCoUoKioCYOPGjTzyyCN89NFHmBlbtmwB4Hvf+x7nnXce5513Hn/5y1/4/ve/z6OPPgrA5s2bef3113n88cc56aSTeO211/jzn//M5MmTWbBgARMnTuT666+noKCAuro6vvSlL7Fw4UImTJhQH0fv3r2ZOHEiL730EkceeST/+Mc/OPbYY/W8K9nlQkEPVrRgFGyA6KblZOQPTXNUIiIi0lWoB6uN8vLyOPfcc7n55psbbH/uuef47ne/y8SJEznppJMoLy+noqKixbqGDx9ef1/Uq6++yplnnkk4HKZ///4cfvjhvPXWWwBMmTKFIUOGEAqFmDhxIiUlJU3Wd+aZZwJw2GGHUV5ezpYtW1i3bh2ffvophxxyCCNHjiQjI6M+8QK46aabmDhxIldeeSX3339//ex8vXv3Jjs7m2984xs8/PDD9OjRA4DXX3+dr3/96wCcc845vPrqq/V1nXjiiZgZ48ePp3///owfP55QKMTYsWPrY37ggQfYf//92W+//fjggw/48MMPd3gfM2bMqO/Bu++++5gxY0aL51GkI4RjVQBk9B8FQNm6kjRGIyIiIl1Nu3uwzGwocBfQH3DgNnf/rZnNBL4FlAZFr3H3p9rTVlt6mjrSZZddxv77788FF1xQvy0ejzN37lyys7MblI1EIg3ua0p+dlNubm6b2svKyqpfDofDxGKxJss1nrrczHjggQfYvHlz/QN5y8vLmT17Ntdffz2QuAdr+/C/xnG/+eabPP/88zz44IPceuutvPDCC22KMxQKNYg5FAoRi8VYunQpN954I2+99RZ9+vTh/PPPb/JZVieddBLXXHMNmzZtYv78+Rx11FEttivSEcKxKuoI0XtwIsHatr6EvmmOSURERLqOVPRgxYAr3H0MMBX4jpmNCfbd5O4Tg1e7kqvOoKCggNNPP53bb7+9ftsxxxzDLbfcUr++YMECAIqLi3n77bcBePvtt1m6tOnZyA499FDuv/9+6urqKC0t5eWXX2bKlCk7Fdf2Xp9XX32V3r1707t3b2bPns0///nP+vu+5s+f3+x9WMkqKiooKyvjK1/5CjfddBPvvvsuAP/xH/9Rf/y9997LoYce2ub4ysvLyc3NpXfv3qxbt46nn366yXI9e/Zk8uTJXHrppZxwwgmEw+E2tyGSKqG6Kqotm0H9+rLFc6ndtCzdIYmIiEgX0u4eLHdfA6wJlrea2SJgcHvr7ayuuOIKbr311vr1m2++uf7+rFgsxmGHHcasWbM49dRTueuuuxg7diwHHnggI0eObLK+U045hddff519990XM+OGG25gwIABfPTRR22OKTs7m/32249oNMpf/vIXSkpKWLZsWYPp2UeMGEHv3r154403mqzjK1/5Cn/+858xM6ZPn051dTXuzq9//WsAbrnlFi644AJ+9atfUVRUxF//+tc2x7fvvvuy3377sc8++zB06FAOPvjg+n3XXXcdkyZN4qSTTgISwwS/9rWvMWfOnDbXL5JKGXVV1Fg2A3pn86n3JUuTXIiIiMhOsOZmpvtClZkVAy8D44D/As4HyoF5JHq5NjdxzEXARQDDhg07YNmyhn8tXrRoEaNHj05ZjNL16d+EdKSXfzmdkbFPGHDtIl756VHsmVXGoB/MT3dYIiIi0smY2Xx3n9R4e8omuTCznsBDwGXuXg78AdgTmEiih+v/mjrO3W9z90nuPmn7THYiIumSUVdNreUAsDVrAHk169IckYiIiHQlKUmwzCyDRHJ1r7s/DODu69y9zt3jwJ+AnbuxSEQkDbK8img4MWlNbe5AevpWqGl5ZlARERGR7dqdYFliCrvbgUXu/uuk7QOTip0CvN/4WBGRziYzXk00lOjB8rwhiZ9lK9MZkoiIiHQhqXjQ8MHAOcB7ZrYg2HYNcKaZTSQxdXsJ8J8paEtEpENleTU14X4ARAqGwVLYVlpCz377pDkyERER6QpSMYvgq4A1savLT8suIt1PlldTGUn0YOUWDQegfN1yeqb3MXwiIiLSRaRskgsRkd1BltcSD+7BKug/lLgb1RuXpzkqERER6SqUYLXRo48+ipm1+HyqkpISxo0bl7I2zz//fB588MFm91922WUMHjyYeDxev+2OO+6gqKiIiRMnMmbMGP70pz+lLB6R7iBCDMIZAAws7M0GelNXtirNUYmIiEhXoQSrjWbPns0hhxzC7Nmzm9wfi8Xa3UZdXV2by8bjcR555BGGDh3KSy+91GDfjBkzWLBgAXPmzOGaa65h3TpNMy3SFrG6OJnEIJIFQN+eWaz1AsJb16Q5MhEREekqlGC1QUVFBa+++iq333479913X/32OXPmcOihh3LSSScxZswYIJFonXXWWYwePZrTTjuNyspKAJ5//nn2228/xo8fz4UXXkhNTQ0AxcXF/Pd//zf7778/f//733do+7nnnmPSpEmMHDmSf/zjHw3aHjt2LJdcckmzSV+/fv3Yc889SX54880338yYMWOYMGECZ5xxBgCbNm3i5JNPZsKECUydOpWFCxcCMHPmTM477zwOPfRQhg8fzsMPP8zVV1/N+PHjmTZtGtFoFICf/exnTJ48mXHjxnHRRRfR+OHV8Xic4uJitmzZUr9t7733VuInnU5tXZxMohBOJFjhkLE5UkR29do0RyYiIiJdRSpmEdx1nv4BrH0vtXUOGA/H/bLFIo899hjTpk1j5MiRFBYWMn/+fA444AAA3n77bd5//31GjBhBSUkJH3/8MbfffjsHH3wwF154Ib///e/57ne/y/nnn8/zzz/PyJEjOffcc/nDH/7AZZddBkBhYSFvv/12k22XlJTw5ptv8tlnn3HkkUeyePFisrOzmT17NmeeeSbTp0/nmmuuIRqNkpGR0eDYJUuWsGTJEvbaa6/6bb/85S9ZunQpWVlZ9QnPT37yE/bbbz8effRRXnjhBc4991wWLFgAwGeffcaLL77Ihx9+yEEHHcRDDz3EDTfcwCmnnMKTTz7JySefzHe/+12uu+46AM455xz+8Y9/cOKJJ9a3GQqFmD59Oo888ggXXHABb7zxBsOHD6d///5tvkwiu0JNbR19LAaRzPptldn9yKv6II1RiYiISFeiHqw2mD17dn1vzxlnnNGgx2jKlCmMGDGifn3o0KEcfPDBAJx99tm8+uqrfPzxx4wYMYKRI0cCcN555/Hyyy/XHzNjxoxm2z799NMJhULsvffe7LHHHnz00UfU1tby1FNPcfLJJ5OXl8eBBx7IM888U3/M/fffz8SJEznzzDP54x//SEFBQf2+CRMmcNZZZ3HPPfcQiSTy61dffZVzzjkHgKOOOoqNGzdSXl4OwHHHHUdGRgbjx4+nrq6OadOmATB+/HhKSkoAePHFFznwwAMZP348L7zwAh98sOOX0RkzZnD//fcDcN9997X4nkXSpaamGgALhggCRHsMpKdX6GHDIiIi0iZdqwerlZ6mjrBp0yZeeOEF3nvvPcyMuro6zIxf/epXAOTm5jYon3jucvPrTWlcR2v1PfPMM2zZsoXx48cDUFlZSU5ODieccAKQSGZuvfXWJut78sknefnll3niiSe4/vrree+9lnsEs7ISXzRDoRAZGRn18YRCIWKxGNXV1Xz7299m3rx5DB06lJkzZ1JdXb1DPQcddBCLFy+mtLSURx99lGuvvbbFdkXSobY28W83lJRg0XsQbIB42WpC/UamKTIRERHpKtSD1YoHH3yQc845h2XLllFSUsKKFSsYMWIEr7zySpPlly9fzuuvvw7A3/72Nw455BBGjRpFSUkJixcvBuDuu+/m8MMPb1P7f//734nH43z22WcsWbKEUaNGMXv2bP785z9TUlJCSUkJS5cu5dlnn62/36s58XicFStWcOSRR/L//t//o6ysjIqKCg499FDuvfdeIHFvV9++fcnLy2tTfNuTqb59+1JRUdHsrIdmximnnMJ//dd/MXr0aAoLC9tUv8iuVBv0YIUyPk+wMvsMBaB8/bImjxERERFJpgSrFbNnz+aUU05psO3UU09tdmKJUaNG8bvf/Y7Ro0ezefNmLrnkErKzs/nrX//K1772NcaPH08oFOLiiy9uU/vDhg1jypQpHHfcccyaNYt4PM4///lPjj/++Poyubm5HHLIITzxxBNN1vHNb36TefPmUVdXx9lnn8348ePZb7/9+P73v09+fj4zZ85k/vz5TJgwgR/84AfceeedbTw7kJ+fz7e+9S3GjRvHsccey+TJk+v3zZo1i1mzZtWvz5gxg3vuuUfDA6XTijXRg5VbNAyArUqwREREpA2s8Yxv6TRp0iSfN29eg22LFi1i9OjRaYpIOiP9m5CO8t77Cxj/4OF8PPUGRk37TwA+WLaOsX8dySdjL2Pk136a5ghFRESkszCz+e4+qfF29WCJiARiTQwRHFCYz0bvRd0WPWxYREREWqcES0QkEK1NPJ8unJRgFeRmso5CIhWr0xWWiIiIdCFdIsHqTMMYJb30b0E6Ul000YMVycyp32ZmbIkUkV2tB2OLiIhI6zp9gpWdnc3GjRv1xVpwdzZu3Eh2dna6Q5Hd1PZJLiKZmQ22V2b3I692fTpCEhERkS6m0z8Ha8iQIaxcuZLS0tJ0hyKdQHZ2NkOGDEl3GLKbqosmhghGMhsm8bU9BtJ7WzlEqyFDCb6IiIg0r8MTLDObBvwWCAN/dvedelpwRkYGI0aM6JDYRESSxYMEKyNpiCCA9R4EpRDbsopI0Z7pCE1ERES6iA4dImhmYeB3wHHAGOBMMxvTkW2KiHxR9T1YWQ17qbY/bHjLupJdHZKIiIh0MR19D9YUYLG7L3H3WuA+YHoHtyki8oXEY4kEKzMzq8H23H562LCIiIi0TUcnWIOBFUnrK4Nt9czsIjObZ2bzdJ+ViKSTb0+wshoOESwYUAxA1cYVjQ8RERERaSDtswi6+23uPsndJxUVFaU7HBHpxrYnWBZp2IM1oKiQMu9BvEwPGxYREZGWdXSCtQoYmrQ+JNgmItL5BAkW4YYJVl52BusoJLx1TRqCEhERka6koxOst4C9zWyEmWUCZwCPd3CbIiJfiMdqEwvhjB32bYkUkaOHDYuIiEgrOjTBcvcY8F3gGWAR8IC7f9CRbYqIfGHbE6xGQwQBKrP762HDIiIi0qoOfw6Wuz8FPNXR7YiItJfVVScWwpk77IvmDiR/25ZEEhbZcb+IiIgIdIJJLkREOgurq6GGTDDbcV/eIEI4NVtWpyEyERER6SqUYImIBMJ1NdRa071TGQWJ+Xo2rynZhRGJiIhIV6MES0QkEI5XE7Ud778C6FWUeNhwuR42LCIiIi1QgiUiEgjX1RANNZ1g5Q8aAUDNhpJdGJGIiIh0NUqwREQCkXhNsz1YA4v6sdl7YlvUgyUiIiLNU4IlIhKIxGupCzV9D1ZOZpjV1o/MipW7OCoRERHpSpRgiYgEMryGWLjpHiyAzRkD6FWlWQRFRESkeUqwREQCGfEa4qHsZvdX9BhMYWwtxOO7MCoRERHpSpRgiYgEMryGeKT5BCvaaxiZRGHb+l0YlYiIiHQlSrBERAB3J8triYebT7CsT2Kq9urSJbsqLBEREelilGCJiAC1dXEyLQoZzSdY2UV7ALBl9eJdFZaIiIh0MUqwRESA6micbGrxFia5yBuwZ6LsevVgiYiISNOUYImIANXROrKphYycZssM7NuHUu9NfLOehSUiIiJNU4IlIgJU18bIphZrYYhg/7xsVngRkfLluzAyERER6UqUYImIANU1NYTNCWX0aLZMZiREaWQguZWrdmFkIiIi0pW0K8Eys1+Z2UdmttDMHjGz/GB7sZlVmdmC4DUrJdGKiHSQmupKAEKZzfdgAVTmDKJ3dD3UxXZFWCIiItLFtLcH61lgnLtPAD4Bfpi07zN3nxi8Lm5nOyIiHSpavQ2AUGbzPVgA0byhRKiDrat3RVgiIiLSxbQrwXL3f7n79j/jzgWGtD8kEZFdr7a6Amg9wQoXFCfKb1ja0SGJiIhIF5TKe7AuBJ5OWh9hZu+Y2UtmdmgK2xERSbl4ZRkAkR69WyyX238vQM/CEhERkaZFWitgZs8BA5rY9SN3fywo8yMgBtwb7FsDDHP3jWZ2APComY119/Im6r8IuAhg2LBhX+xdiIi0U+22LQBk5fZpsVzh4D2IeYiqdZ/tgqhERESkq2k1wXL3o1vab2bnAycAX3J3D46pAWqC5flm9hkwEpjXRP23AbcBTJo0yXcyfhGRlIgFPVg5vVpOsIb27c0aLyS+SUMERUREZEftnUVwGnA1cJK7VyZtLzKzcLC8B7A3sKQ9bYmIdKR4VdsSrH69slhJPzL1LCwRERFpQnvvwboV6AU822g69sOAhWa2AHgQuNjdN7WzLRGRjlOTGMHc2j1YoZCxKXMQvar1LCwRERHZUatDBFvi7ns1s/0h4KH21C0isitZkGCRlddq2crcoeSVPQs1FZDVs4MjExERka4klbMIioh0WVa7lRoyIZLZatm6/OGJhS3LOjgqERER6WqUYImIAJFoBZXW8jOwtssq2gOAbes0VbuIiIg0pARLRASI1G6lOty24X69BiRGR5frWVgiIiLSiBIsEREgI7aV2kjbEqwBAwax1XOo3aDJUUVERKQhJVgiIkCvui3UZha0qezQwlxWeD/YXNKxQYmIiEiXowRLRLq9mlgdhWwhmtO3TeV752SwOtSfnIqVHRyZiIiIdDVKsESk29tcUUNfyoj37NfmY8qzB5Nfuxri8Q6MTERERLoaJVgi0u1tKl1LxOKEeg1o8zE1vYaR6bVQsa4DIxMREZGuRgmWiHR7W0pXAJBbMKjNx1ifYgDim5Z2REgiIiLSRSnBEpFub9vG1QDkFQ1u8zE5/RLPwtq6VlO1i4iIyOeUYIlIt1e7eRUAvYuGtvmYPoP2JO5GxRolWCIiIvI5JVgi0u1FykqoI0Qov+0J1pCiPqylD7GNGiIoIiIin1OCJSLdXk7FcjaGiyCS2eZjBvfJYYX3I1K+vAMjExERka5GCZaIdHv5NaspzxmyU8dkRcKURgbSs1LPwhIREZHPKcESkW5tS2Utg30t0bzhO33sth5D6B3bANGqDohMREREuiIlWCLSra1YsYxC20qoaOROHxvtHSRlWzRMUERERBLalWCZ2UwzW2VmC4LXV5L2/dDMFpvZx2Z2bPtDFRFJvc1LFwDQc/jEnT42o7AYgOiGz1IXkIiIiHRpkRTUcZO735i8wczGAGcAY4FBwHNmNtLd61LQnohIylSvXAhA/70O2Olje/bfC4CyNUvoOzqlYYmIiEgX1VFDBKcD97l7jbsvBRYDUzqoLRGRLyxr0yI2WR8ief12+tjCAUOo9TDVG5Z1QGQiIiLSFaUiwfqumS00s7+YWZ9g22BgRVKZlcG2HZjZRWY2z8zmlZaWpiAcEZG2cXf6V35Kae7eX+j4wX1yWeOFxLesaL2wiIiIdAutJlhm9pyZvd/EazrwB2BPYCKwBvi/nQ3A3W9z90nuPqmoqGhnDxcR+cLWba5ghK+ktvCLje/rn5fNKvoS2boqxZGJiIhIV9XqPVjufnRbKjKzPwH/CFZXAUOTdg8JtomIdBrLPl3IAIuRM3TfL3R8ZiTEpkg/xlR9kOLIREREpKtq7yyCA5NWTwHeD5YfB84wsywzGwHsDbzZnrZERFKtbOnbAPQfOekL11GZPZC82Aaoi6YqLBEREenC2juL4A1mNhFwoAT4TwB3/8DMHgA+BGLAdzSDoIh0Ous+IEqEXoO++BSAtb0GE6p0KF8NfXb+YcUiIiKye2lXguXu57Sw73rg+vbULyLSkXqXf8LazGEMjWR+4TpC+UNhHXjZCkwJloiISLfXUdO0i4h0atXROobHlrC196h21ZNdmEiqKtYtTUVYIiIi0sUpwRKRbumzZcsYYJsJDRjXrnp6D9gDgG3rS1IQlYiIiHR1SrBEpFta/+k7AOSP2K9d9Qzom88GzyO6aXkqwhIREZEuTgmWiHRLNaveBaDfXl98BkGAwfk5rPZCKNeTKEREREQJloh0U1kbF7HF8gnl9W9XPb1zMlhrRWRvU4IlIiIiSrBEpBtyd/pVLaY0d+9212VmbM0aQK+ateCeguhERESkK1OCJSLdztotFezpK6jt+8Wff5Wsuscgsr0aqjanpD4RERHpupRgtWDZh2/x+u1Xsm7ZR+kORURSaNVn75NtUTIHTUhJfd57SGJhy7KU1CciIiJdV7seNLy7W/ve8xy4/M+E/vonPoqMpmzIERTsexx7TDiEcDic7vBE5AuqXLEQgD577J+aCvvuA8ugds2HZA5q36yEIiIi0rUpwWrBgTN+wKqSr7Jizh30XfkMB5b8AUr+QPljuSzPHsXWwn3JGHoA/UeMY9CI0YQzs9Md8k6ri0Wpra6itqaKaE0VtTXVxKLVRGuqqYtWUxeLUheL4fE6PF5HPB6DeB3xujrwOryujrjXQV1iv3sssex1EI9j1CUa8vr/fK7B/Sre6PYVb7bczrOmt9r2Gnfcn7ylyf3WVMkWGmlrbDsUb/vxTTW1Pfbmaqnf32wzLbdvLby/xuetwVX0hlubvKrecF9Ttze1vK/5A3qUPEvUwxQMG9tUyzstf8goauZlsHXZAvoecFZK6pSWeTxOTXUl1ZXbqKyqoKaqkpqqSupqK/HaKuqiVXi0Go9WEY9FidfFiMdjeF2UeF0dXpf4vWYeIxSvA+LBzzrM4zv8ytr+r3H7v7WWfhNZ47X6z0mjZQAzHMO219nEfmtc1pI/Xy3XbwYe1LH92ET82+sM1Zf24Pj63xrWQv1NbEt+3/V7G/+ubO1XmuwU032fu14T51xXoeOV99qDkQcczbDCHukOpU2UYLVicPFIBp//C+AXlK5dyfK3/kFs6b8p2PIe+6y8k8iqv8JcqHNjTaiITRkDqM0uJJZdSF12Id6jgMycXDKye2IZ2RDpgWVkEQ4ZITPCBnXu1MUTr3hdFGJR4rFqiNUSr6uFWC0eqyEeq8GDZWI1UFeL1dVidTVYXS2huhpC8VrC8VpC8SjheC0RryXiUSLxWiJEyfAoGUTJ9CiZRAmbkwPkpPtEi+xin2SNZmSK/igyZkgBn/pg+q5+PyX1dQfuTsW2bWzdtI6KzWupKislWr6e2NYNeOVmvLoMq91KJLqVjNg2suPbyK7bRg+vJJdKcqkmG8gG8lMYV8xDxFOUBRhgwVcvS0qJQqavYyIiO+OvsWOpHjBJCdbuqGjAEIpOvBi4GIDqyq0s+/htSpd9SKz0U3LKl5JTvY6CrR+TX1ZGb9vWofFUewa1ZBC1DKJkELMMopZJzDKIhTKos0xqwz2oC2USD2fioUzioUw8nIlHsiAcvCKZWCQLi2RjGVmEMrIIBz9D4QxC4QihUBgLhbFgORSOYKEwoVCEUDiEhSKEwmEsFCEcDhOKJPZj4YZ/3dzhL532eS9I/V9Ot68mrVkoeUfbTlBTvWYNdzb9l6jmetIab2ny2JZ72xpW7c3va7S/qd6YBmehqbfZqAeoiQJNhdFgf5O9QNv3xlv6kthwX/0lbqLHramraUl/fW9cpqlesx3qt6b2NTx+z979Woh/5xQX5vKg7cX0Ta8l/vgRyWqy3NrN23jjub8zeI+xTDpgcsra70xisTo2bFjLlnXLqShdQe3mlcTLVhOuWEtW9Xp6RDfTs24L+b6VXlZFr2bq2UY2ldaDqlAuNaFcaiI92Zw9gPUZPanL6Iln9sIycwhlZBPO7EEkqweRrBxCGTmEMnOwjBzCmYl9oYxMMiIZhCMRIpEMMjIyiEQihCMRLJSR+N0WCn6nBX/4aql3NqX8899F7vFg0et/NtwW9KD59s+mJ30OPagjsew4iUODT3FSXfWf/bgHx22vM55Uf3BsUnxNtU9yrPWfsoa/Wz7vaf58+646vd1D8ydzl/077m50Xne5aRm55Bek7v/bHU0JVjtk9+jFnvsdzp77Hd7k/tqaaiq2rGdbRQWVlRV4tCrxqq2mzo24x6mLO6FQiHDIglc4keREsghlZhGOZBGKZBPJyiIzM5uMrCwyM3PIzMgkOxyi6w1KFNn9hELG2gFHkLXuOXzpK9jeR9fvc3cWfvwJy5//E/uuf4zptp73PxkHB7yWxoi/uIrKStYs+5QtqxdTXbqU+OZlZFespGfNOvJjpfT1zQywKAMaHbeZPDZH+lKVWUhpVjFrsgugRwGWW0RGr75k9+5HTn5/ehUMIK9PX3IjGeSm5R3uYg3+wPT5cD0REem6lGB1oMysbAr6D6Ogfc8xFZEuYNik49j4j/+HPf1z+gybyvL1m/j09X+Q8ckTHBR9g32tjpK8/VkQLWZs9Xy8uhzLzkt32Duoi8VYv+ozNq78hMp1S4htLCGydSW5lasojK2ln29i76QhblEPUxouoiyjH+tzJ7A6dwDWexCZ+YPJLRpKfv/h9Ok3lD4ZWfRJ4/sSERHZVZRgiYikwPH778Fv51zElZv+D/53MMOB4cCWUD5L9zibIV++hOJBo5nz9N/JeOObrJj/NEMPnpGWWMvKtrB++ceUr/qEmtIlhLYspce2FRTUrKJ/fD0DrY6BQdk6NzaECtmUMZBVfaawIm8oGX1HkDdgTwqH7k1e0VAGhTMYlJZ3IiIi0vmYN38DRusHm90PjApW84Et7j7RzIqBRcDHwb657n5xa/VNmjTJ582b94XjERFJp7KqKM889QhF61+jV34BQ8YfzoAxh0Lo88c6bCjfRuz/xlKRtzd7XfFsh8QRjdWxbs0qNq74iG1rP6Vu41Iyy0voVbWKothqitjSoPxWerAuPJDynCHU5A0nXDCCHv33pGDw3vQbsgeRLjhDqoiISEczs/nuPqnx9nb1YLl7/Z9fzez/gLKk3Z+5+8T21C8i0pX0zsng9FNPB05vtkzfvFyeHnA6x637I0ue+QN7HHvJTrezrbKK9auWsnntEqpKl1G3eTmRravIqVxDfnQd/eLrGWI1BI8/Ju7GhlABGzMHszzvYJbmF5NZtAe9Bo6kaPg+5PXp1+xkEyIiIrJz2tWDVV9JYpqa5cBR7v5p0IP1D3cftzP1qAdLRLqDsq2VfPabY9m/biGf9JxM5R7HEskfCpk9iMdqqa2qIFpVQXzbRqxiHeGqUrJqNpIb3UR+3WYKKdthqu/N5LEpoz/bsgcQzR1MqLCYnP57UTBkFIVD9iacqYcxiIiIpFJzPVipSrAOA369vYEgwfoA+AQoB65191eaOfYi4CKAYcOGHbBs2bJ2xyMi0tlt2FLGm/f9ggPW3E9/29xsuVqPsCnUh4pIH6oyC4lm96WuZ38ifYaT2284+YP2pHDgCMJZ3WLOPRERkU7jCydYZvYc7DDjLsCP3P2xoMwfgMXu/n/BehbQ0903mtkBwKPAWHcvb6kt9WCJSHcTjdWxYtliqjevwWsrCUUyyenZix65eeTm9yM3r0DPXBEREemEvvA9WO5+dEv7zSwCfBU4IOmYGqAmWJ5vZp8BIwFlTyIiSTIiYfbYcxSfzxckIiIiXVkoBXUcDXzk7iu3bzCzIjMLB8t7AHsDS1LQloiIiIiISKeViudgnQHMbrTtMOBnZhYF4sDF7r4pBW2JiIiIiIh0Wu1OsNz9/Ca2PQQ81N66RUREREREupKUzCKYKmZWCnS2aQT7AhvSHYTsMrre3Yeudfeha9296Hp3H7rW3UtnvN7D3b2o8cZOlWB1RmY2r6nZQWT3pOvdfehadx+61t2Lrnf3oWvdvXSl652KSS5EREREREQEJVgiIiIiIiIpowSrdbelOwDZpXS9uw9d6+5D17p70fXuPnStu5cuc711D5aIiIiIiEiKqAdLREREREQkRZRgiYiIiIiIpIgSrBaY2TQz+9jMFpvZD9Idj6SOmQ01sxfN7EMz+8DMLg22F5jZs2b2afCzT7pjldQws7CZvWNm/wjWR5jZG8Hn+34zy0x3jJIaZpZvZg+a2UdmtsjMDtJne/dkZpcHv8PfN7PZZpatz/buw8z+Ymbrzez9pG1NfpYt4ebgui80s/3TF7nsrGau9a+C3+MLzewRM8tP2vfD4Fp/bGbHpiXoFijBaoaZhYHfAccBY4AzzWxMeqOSFIoBV7j7GGAq8J3g+v4AeN7d9waeD9Zl93ApsChp/f8BN7n7XsBm4BtpiUo6wm+Bf7r7PsC+JK67Ptu7GTMbDHwfmOTu44AwcAb6bO9O7gCmNdrW3Gf5OGDv4HUR8IddFKOkxh3seK2fBca5+wTgE+CHAMH3tTOAscExvw++t3caSrCaNwVY7O5L3L0WuA+YnuaYJEXcfY27vx0sbyXxBWwwiWt8Z1DsTuDktAQoKWVmQ4DjgT8H6wYcBTwYFNG13k2YWW/gMOB2AHevdfct6LO9u4oAOWYWAXoAa9Bne7fh7i8Dmxptbu6zPB24yxPmAvlmNnCXBCrt1tS1dvd/uXssWJ0LDAmWpwP3uXuNuy8FFpP43t5pKMFq3mBgRdL6ymCb7GbMrBjYD3gD6O/ua4Jda4H+6YpLUuo3wNVAPFgvBLYk/eLW53v3MQIoBf4aDAn9s5nlos/2bsfdVwE3AstJJFZlwHz02d7dNfdZ1ve23duFwNPBcqe/1kqwpFszs57AQ8Bl7l6evM8TzzDQcwy6ODM7AVjv7vPTHYvsEhFgf+AP7r4fsI1GwwH12d49BPfeTCeRVA8CctlxiJHsxvRZ7h7M7Eckbu24N92xtJUSrOatAoYmrQ8JtsluwswySCRX97r7w8HmdduHFAQ/16crPkmZg4GTzKyExFDfo0jco5MfDCsCfb53JyuBle7+RrD+IImES5/t3c/RwFJ3L3X3KPAwic+7Ptu7t+Y+y/rethsys/OBE4Cz/POH93b6a60Eq3lvAXsHsxFlkriZ7vE0xyQpEtyDczuwyN1/nbTrceC8YPk84LFdHZuklrv/0N2HuHsxic/xC+5+FvAicFpQTNd6N+Hua4EVZjYq2PQl4EP02d4dLQemmlmP4Hf69mutz/burbnP8uPAucFsglOBsqShhNIFmdk0EsP7T3L3yqRdjwNnmFmWmY0gMbHJm+mIsTn2eTIojZnZV0jcuxEG/uLu16c3IkkVMzsEeAV4j8/vy7mGxH1YDwDDgGXA6e7e+AZb6aLM7AjgSnc/wcz2INGjVQC8A5zt7jVpDE9SxMwmkpjQJBNYAlxA4g+K+mzvZszsp8AMEsOH3gG+SeJeDH22dwNmNhs4AugLrAN+AjxKE5/lIMm+lcQw0UrgAnefl4aw5Qto5lr/EMgCNgbF5rr7xUH5H5G4LytG4jaPpxvXmU5KsERERERERFJEQwRFRERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0SkkzGzYjNzM4ukOxbpHszsAzM7It1xiIjsDpRgiYhIl2dms8ysInjVmlk0af3pdMfX2bn7WHefk8o6zeyO4FpUJL3CqWxDRKQzMndPdwwiIrsVM4u4e6wdxxcDS4GM9tTTXZnZTGAvdz+7iX3tuja7UleKtSlmdgew0t2vTXcsIiK7knqwRERSwMxKzOy/zWwhsM3MImY21cz+bWZbzOzd5CFYZjbHzP7XzN40s3Ize8zMCpqp+wIzW2RmW81siZn9Z6P9081sQVDPZ2Y2Ldje28xuN7M1ZrbKzH7eWg+Cme1pZi+Y2UYz22Bm95pZftK+TWa2f7A+yMxKt78vMzspGGq2JXh/oxudnyvNbKGZlZnZ/WaWvfNneuc1c23czPZKKnOHmf08af2E4JxuCa7hhDa2dYSZrTSza4LzV2JmZyXtP97M3gmu1YogGdy+b/vQ0G+Y2XLghWD7381sbXDeXjazsY3i/r2ZPR30EL1mZgPM7DdmttnMPjKz/dp4jo5uy3sUEZGWKcESEUmdM4HjgXygP/Ak8HOgALgSeMjMipLKnwtcCAwEYsDNzdS7HjgByAMuAG5KSnKmAHcBVwXtHgaUBMfdEdS7F7AfcAzwzVbegwH/CwwCRgNDgZkA7v4Z8N/APWbWA/grcKe7zzGzkcBs4DKgCHgKeMLMMpPqPh2YBowAJgDnNxmA2SFBYtPc65BW3kNT6q9Na71CQULyF+A/gULgj8DjZpbVxrYGAH2BwcB5wG1mNirYt43Edc8P4rnEzE5udPzhJM79scH608DeQD/gbeDeRuVPB64N2qwBXg/K9QUeBH7dxribZGY/aOl6tHL4t4OkfL6ZndqeOEREugolWCIiqXOzu69w9yrgbOApd3/K3ePu/iwwD/hKUvm73f19d98G/Bg4vakeJnd/0t0/84SXgH8Bhwa7vwH8xd2fDdpZ5e4fmVn/oK3L3H2bu68HbgLOaOkNuPvioK4ady8l8eX88KT9fwIWA2+QSAx/FOyaATwZHBsFbgRygP9odH5Wu/sm4AlgYjMxvOru+S28Xm3pPTQj+dq05iLgj+7+hrvXufudJBKXqTvR3o+Dc/gSiUT7dAB3n+Pu7wXXaiGJpPTwRsfODK5ZVXDMX9x9q7vXkEh29zWz3knlH3H3+e5eDTwCVLv7Xe5eB9xPIrn+wtz9ly1djxYOvZnPE8MfA3eY2cHtiUVEpCtQgiUikjorkpaHA19r9Jf+Q0gkJU2VXwZkkOh1aMDMjjOzuUFPwBYSidP2ckOBz5qIZXhQ35qk9v9I4stus8ysv5ndFwwpLAfuaSKmPwHjgFuCL/2Q6PFatr2Au8eD9zc46bi1ScuVQM+WYkmxFa0XqTccuKLRtRtK4j22xeYgad5u2fZjzexAM3sxGFpZBlzMjue3PlYzC5vZLy0x9LOcz3snk49Zl7Rc1cT6rjzP9dz9bXff6O4xd3+KRM/bV9MRi4jIrqQES0QkdZJnDVpBoocq+a/9ue7+y6QyQ5OWhwFRYENyhcGwtIdI9Aj1D3oMniIxlG97O3s2EcsKEr0ufZPaz3P3sU2UTfaL4H2Md/c8Ej1x29vCzHoCvwFuB2ba5/eNrSaRmGwvZ8H7W9VKezsws0Ot4cxzjV+Htl7LDhrP6FQJ9EhaH5C0vAK4vtG16+Hus9vYVh8zy01aH0bi/AD8DXgcGOruvYFZJJ3fJmL9OjAdOBroDRQH2xsf02GC+8mavR47UZWzC+MWEUkXJVgiIh3jHuBEMzs26IXIDiZAGJJU5mwzGxPcz/Qz4MFgWFeyTCALKAViZnYciXuptrsduMDMvmRmITMbbGb7uPsaEkMJ/8/M8oJ9e5pZ4+FojfUCKoAyMxtM4t6uZL8F5rn7N0kMfZsVbH8AOD6IIwO4gkSC9+/WTlRj7v6Ku/ds4fXKztbZhAXA14NrM42Gw/T+BFwc9DaZmeVaYnKKXlA/scQdrdT/UzPLDJLBE4C/B9t7AZvcvTq4f+7rrdTTi8R53EgiIfzFTrzHlHD3X7R0PZo7zsxOM7Oewb+9Y0gk64/vushFRNJDCZaISAdw9xUkeh6uIZEcrSCRrCT/3r2bxEQUa4Fs4PtN1LM12P4AsJnEF/LHk/a/STDxBVAGvMTnPUnnkkjQPgyOfZCGQxSb8lNg/6CuJ4GHt+8ws+kkJqm4JNj0X8D+ZnaWu39M4gv0LSR64U4ETnT32lbaS5dLScS4BTgLeHT7DnefB3wLuJXEeVtMwwk5hgKvtVD32uC41SSGxV3s7h8F+74N/MzMtgLXkbiuLbmLxBDDVSSu49zW3lgncimJuLcAvwK+5Sl+1paISGek52CJiKSBmc0B7nH3P6c7Fmm7YFbEd4EJwWQejfcfQeK6Dmm8T0REuodIugMQERHpKoIeudGtFhQRkW5LQwRFRLoZM5vVzIQFs1o/WroiMxvWwkQVw9Idn4jI7kRDBEVERERERFJEPVgiIiIiIiIp0qnuwerbt68XFxenOwwREREREZEWzZ8/f4O7FzXe3qkSrOLiYubNm5fuMERERERERFpkZsua2q4hgiIiIiIiIimiBEtERERERCRFlGCJiHxBL368nuUbK9MdhoiIiHQineoerKZEo1FWrlxJdXV1ukORLiY7O5shQ4aQkZGR7lBkN7RiUyWP3Plb+vbK5Lof/iTd4YiIiEgn0ekTrJUrV9KrVy+Ki4sxs3SHI12Eu7Nx40ZWrlzJiBEj0h2O7IY+WruVmzNvhRqoLT2XzCL9OxMREZEuMESwurqawsJCJVeyU8yMwsJC9XxKh1m2oaJ+eeOCJ9IYiYiIiHQmnT7BApRcyReifzfSkaorNtcvV67+MI2RiIiISGfSJRIsEZHOJlS+sn45c9PiNEYiIiIinYkSrDYwM6644or69RtvvJGZM2emL6Akc+fO5cADD2TixImMHj26Pq45c+bw73//u111T5s2jfz8fE444YQURCqye8moWA3AEoaQt21JmqMRERGRzkIJVhtkZWXx8MMPs2HDhpTW6+7E4/F21XHeeedx2223sWDBAt5//31OP/10IDUJ1lVXXcXdd9/drjpEdleZVesB+DRnAr1jGyGq+/1ERESkC8wimOynT3zAh6vLU1rnmEF5/OTEsS2WiUQiXHTRRdx0001cf/31DfaVlpZy8cUXs3z5cgB+85vfcPDBBzNz5kx69uzJlVdeCcC4ceP4xz/+AcCxxx7LgQceyPz583nqqae49dZbefrppzEzrr32WmbMmMGcOXOYOXMmffv25f333+eAAw7gnnvu2eG+ovXr1zNw4EAAwuEwY8aMoaSkhFmzZhEOh7nnnnu45ZZb2GeffZqN87PPPmPx4sVs2LCBq6++mm9961sAfOlLX2LOnDktnpu///3v/PSnPyUcDtO7d29efvllqqurueSSS5g3bx6RSIRf//rXHHnkkdxxxx08+uijbNu2jU8//ZQrr7yS2tpa7r77brKysnjqqacoKCjgT3/6E7fddhu1tbXstdde3H333fTo0aNBu1OnTuX2229n7NjEtTviiCO48cYbmTRpUovxiqRKvLYKgMpeI6AK2LoaCvZIb1AiIiKSdurBaqPvfOc73HvvvZSVlTXYfumll3L55Zfz1ltv8dBDD/HNb36z1bo+/fRTvv3tb/PBBx8wb948FixYwLvvvstzzz3HVVddxZo1awB45513+M1vfsOHH37IkiVLeO2113ao6/LLL2fUqFGccsop/PGPf6S6upri4mIuvvhiLr/8chYsWMChhx7aYpwLFy7khRde4PXXX+dnP/sZq1evbvN5+dnPfsYzzzzDu+++y+OPPw7A7373O8yM9957j9mzZ3PeeefVz+b3/vvv8/DDD/PWW2/xox/9iB49evDOO+9w0EEHcddddwHw1a9+lbfeeot3332X0aNHc/vtt+/Q7owZM3jggQcAWLNmDWvWrFFyJbtWNPGA4XjBXgDUbVnZUmkRERHpJrpUD1ZrPU0dKS8vj3PPPZebb76ZnJyc+u3PPfccH374+Qxi5eXlVFRUNFVFveHDhzN16lQAXn31Vc4880zC4TD9+/fn8MMP56233iIvL48pU6YwZMgQACZOnEhJSQmHHHJIg7quu+46zjrrLP71r3/xt7/9jdmzZzfZ69RSnNOnTycnJ4ecnByOPPJI3nzzTU4++eQ2nZeDDz6Y888/n9NPP52vfvWr9e/pe9/7HgD77LMPw4cP55NPPgHgyCOPpFevXvTq1YvevXtz4oknAjB+/HgWLlwIJJKwa6+9li1btlBRUcGxxx67Q7unn346xxxzDD/96U954IEHOO2009oUr0iqROLVxAkR6ZvotapYv5ze6sASERHp9tqdYJnZUOAuoD/gwG3u/lszKwDuB4qBEuB0d9/cXD1dwWWXXcb+++/PBRdcUL8tHo8zd+5csrOzG5SNRCIN7q9Kfh5Tbm5um9rLysqqXw6Hw8RisSbL7bnnnlxyySV861vfoqioiI0bN+5Qprk4YcfpzHdmevNZs2bxxhtv8OSTT3LAAQcwf/78Fssnv6dQKFS/HgqF6t/f+eefz6OPPsq+++7LHXfc0WTCOHjwYAoLC1m4cCH3338/s2bNanPMIqmQEa8maln07FcMQOWGZfROb0giIiLSCaRiiGAMuMLdxwBTge+Y2RjgB8Dz7r438Hyw3qUVFBRw+umnNxiydswxx3DLLbfUry9YsACA4uJi3n77bQDefvttli5d2mSdhx56KPfffz91dXWUlpby8ssvM2XKlDbH9OSTT+LuQGLoYTgcJj8/n169erF169ZW4wR47LHHqK6uZuPGjcyZM4fJkye3uf3PPvuMAw88kJ/97GcUFRWxYsUKDj30UO69914APvnkE5YvX86oUaPaXOfWrVsZOHAg0Wi0vp6mzJgxgxtuuIGysjImTJjQ5vpFUiESryYayqJfQR82e0+im1ekOyQRERHpBNqdYLn7Gnd/O1jeCiwCBgPTgTuDYncCJ7e3rc7giiuuaDCb4M0338y8efOYMGECY8aMqe9JOfXUU9m0aRNjx47l1ltvZeTIkU3Wd8oppzBhwgT23XdfjjrqKG644QYGDBjQ5njuvvtuRo0axcSJEznnnHO49957CYfDnHjiiTzyyCNMnDiRV155pdk4ASZMmMCRRx7J1KlT+fGPf8ygQYOARPL3ta99jeeff54hQ4bwzDPPAIlhidvvt7rqqqsYP34848aN4z/+4z/Yd999+fa3v008Hmf8+PHMmDGDO+64o0HPVWv+53/+hwMPPJCDDz6YffbZp377448/znXXXVe/ftppp3HffffVz5wositlxquJhbPp3zuLtV6Albf93kURERHZfdn23o+UVGZWDLwMjAOWu3t+sN2AzdvXGx1zEXARwLBhww5YtmxZg/2LFi1i9OjRKYtRGmo82+HuRv9+pKM8fd2xTO6xloKrFzBn5pGM7bmN/le/le6wREREZBcxs/nuvsMsaymbRdDMegIPAZe5e4O51D2RxTWZybn7be4+yd0nFRUVpSocEZEO4+5keg2xcDahkFEWKSK3Zl26wxIREZFOICWzCJpZBonk6l53fzjYvM7MBrr7GjMbCKxPRVuSWjNnzkx3CCJdTrTOyaGGeDgxaUxlzgB6biuDaBVk5LRytIiIiOzO2t2DFQz/ux1Y5O6/Ttr1OHBesHwe8Fh72xIR6QxqYnXkWC3xSCKZiuYm7ltE92GJiIh0e6kYIngwcA5wlJktCF5fAX4JfNnMPgWODtZFRLq8mlicbGqIRxI9WJanBEtEREQS2j1E0N1fBZp7cNKX2lu/iEhnk0iwavGgByuzz2AAqjetJHtEOiMTERGRdEvZJBciIt1FbSxOjtXiGT0A6Fk0FIBtG/QsLBERke5OCVYbPfroo5gZH330UbNlSkpKGDduXMra/PjjjzniiCOYOHEio0eP5qKLLgISDwl+6qmn2lX3hRdeSL9+/VIar0h3UROrI4caCIYIFhYWstVzqNm0Ms2RiYiISLopwWqj2bNnc8ghhzB79uwm98disXa3UVdX12D9+9//PpdffjkLFixg0aJFfO973wNSk2Cdf/75/POf/2xXHSLdVU00MUTQMhNDBAfkZbPe84mXr0lzZCIiIpJuKZmmfZd5+gew9r3U1jlgPBzX8vwbFRUVvPrqq7z44ouceOKJ/PSnPwVgzpw5/PjHP6ZPnz589NFH/Otf/yIWi3HWWWfx9ttvM3bsWO666y569OjB888/z5VXXkksFmPy5Mn84Q9/ICsri+LiYmbMmMGzzz7L1VdfzRlnnFHf7po1axgyZEj9+vjx46mtreW6666jqqqKV199lR/+8IeccMIJfO973+P9998nGo0yc+ZMpk+fzh133MEjjzxCWVkZq1at4uyzz+YnP/kJAIcddhglJSUtvu+XXnqJSy+9FAAz4+WXX6Znz55cffXVPP3005gZ1157LTNmzGDOnDn85Cc/IT8/n/fee4/TTz+d8ePH89vf/paqqioeffRR9txzT5544gl+/vOfU1tbS2FhIffeey/9+/dv0O4ZZ5zBOeecw/HHHw8kksETTjiB0047rW3XVKSD1dRGybIYRBJDBPvnZbPAC9hz29o0RyYiIiLpph6sNnjssceYNm0aI0eOpLCwkPnz59fve/vtt/ntb3/LJ598AiSG9X37299m0aJF5OXl8fvf/57q6mrOP/987r//ft577z1isRh/+MMf6usoLCzk7bffbpBcAVx++eUcddRRHHfccdx0001s2bKFzMxMfvaznzFjxgwWLFjAjBkzuP766znqqKN48803efHFF7nqqqvYtm0bAG+++SYPPfQQCxcu5O9//zvz5s1r8/u+8cYb+d3vfseCBQt45ZVXyMnJ4eGHH2bBggW8++67PPfcc1x11VWsWZP4q/27777LrFmzWLRoEXfffTeffPIJb775Jt/85je55ZZbADjkkEOYO3cu77zzDmeccQY33HDDDu3OmDGDBx54AIDa2lqef/75+mRLpDOI1VYDEMpMDBHMzYqwMVRIdrUeNiwiItLdda0erFZ6mjrK7Nmz63tyzjjjDGbPns0BBxwAwJQpUxgx4vNpw4YOHcrBBx8MwNlnn83NN9/Ml7/8ZUaMGMHIkSMBOO+88/jd737HZZddBiQSiqZccMEFHHvssfzzn//kscce449//CPvvvvuDuX+9a9/8fjjj3PjjTcCUF1dzfLlywH48pe/TGFhIQBf/epXefXVV5k0aVKb3vfBBx/Mf/3Xf3HWWWfx1a9+lSFDhvDqq69y5plnEg6H6d+/P4cffjhvvfUWeXl5TJ48mYEDBwKw5557cswxxwCJnrcXX3wRgJUrVzJjxgzWrFlDbW1tg3O33XHHHcell15KTU0N//znPznssMPIydHDW6XziNZUAhDKyK7fti2riF61r0E8DiH97UpERKS70reAVmzatIkXXniBb37zmxQXF/OrX/2KBx54AHcHIDc3t0H5xHOXm19vSuM6kg0aNIgLL7yQxx57jEgkwvvvv79DGXfnoYceYsGCBSxYsIDly5czevToLxzPdj/4wQ/485//TFVVFQcffHCLE3wAZGVl1S+HQqH69VAoVH+P2ve+9z2++93v8t577/HHP/6R6urqHerJzs7miCOO4JlnnuH+++9vNgEVSZftPVjhpASrtkd/wtRB5cZ0hSUiIiKdgBKsVjz44IOcc845LFu2jJKSElasWMGIESN45ZVXmiy/fPlyXn/9dQD+9re/ccghhzBq1ChKSkpYvHgxAHfffTeHH354q23/85//JBqNArB27Vo2btzI4MGD6dWrF1u3bq0vd+yxx3LLLbfUJ33vvPNO/b5nn32WTZs21d8Htb13rS0+++wzxo8fz3//938zefJkPvroIw499FDuv/9+6urqKC0t5eWXX2bKlCltrrOsrIzBgxPPDLrzzjubLTdjxgz++te/8sorrzBt2rQ21y+yK8RqqwAIZ36eYHnPRO8tW/WwYRERke5MCVYrZs+ezSmnnNJg26mnntrsbIKjRo3id7/7HaNHj2bz5s1ccsklZGdn89e//pWvfe1rjB8/nlAoxMUXX9xq2//6178YN24c++67L8ceeyy/+tWvGDBgAEceeSQffvghEydO5P777+fHP/4x0WiUCRMmMHbsWH784x/X1zFlyhROPfVUJkyYwKmnnlo/PPDMM8/koIMO4uOPP2bIkCHcfvvtAMyaNYtZs2YB8Jvf/IZx48YxYcIEMjIyOO644zjllFOYMGEC++67L0cddRQ33HADAwYMaPP5nDlzJl/72tc44IAD6Nu3b/32efPm8c1vfrN+/ZhjjuGll17i6KOPJjMzs831i+wK23uwIkk9WOHegwCIlynBEhER6c5se69HZzBp0iRvPAnDokWL6oe7yc654447mDdvHrfeemu6Q0kb/fuRjvDEM89w4uuns/Wkv9Br/1MBePDFNzjtpWMoP/pX5B1yUZojFBERkY5mZvPdfYfJDdSDJSKyk+q292Bl9ajfltd3MHE3qjbqYcMiIiLdWYcnWGY2zcw+NrPFZvaDjm5PPnf++ed3694rkY4SjwYJVtI9WP3ze7KB3sS2rEpXWCIiItIJdGiCZWZh4HfAccAY4EwzG7Oz9XSmYYzSdejfjXSUeKyJBCsvm7XeB7auSVdYIiIi0gl0dA/WFGCxuy9x91rgPmD6zlSQnZ3Nxo0b9WVZdoq7s3HjRrKzs1svLLKTPFoDgEU+fzRB356ZrPMCMiv1sGEREZHurKMfNDwYWJG0vhI4cGcqGDJkCCtXrqS0tDSlgcnuLzs7myFDhqQ7DNkNeSyRYJGUYEXCIcoy+tKjZnGaohIREZHOoKMTrFaZ2UXARQDDhg3bYX9GRgYjRozY1WGJiDTLgyGCRBr2kFZn9yO3sgyi1ZCh3lMREZHuqKOHCK4ChiatDwm21XP329x9krtPKioq6uBwRERSIFab+Blu+Iy2aG7wTDjdhyUiItJtdXSC9Rawt5mNMLNM4Azg8Q5uU0SkQ3nd9iGCDXuprNfAxIISLBERkW6rQxMsd48B3wWeARYBD7j7Bx3ZpohIR7P6e7Aa9mBlFSTu+avVVO0iIiLdVoffg+XuTwFPdXQ7IiK7im3vwQpnNdjeo29iRHTF+hUU7OqgREREpFPo8AcNi4jsbkJ1wT1YkYYJVkFBX6o8k+rNK9MQlYiIiHQGSrBERHaS1dUSJQPMGmwf0DuHtd6HeNnqNEUmIiIi6aYES0RkJ4XitcQsY4ft/Xtns44CwhVr0xCViIiIdAZKsEREdlI4XkMslLnD9l5ZETZYAVlV69MQlYiIiHQGSrBERHZSuJkeLDOjIrMfvaLrwT0NkYmIiEi6KcESEdlJkXgNdaGsJvfV5PQjw6NQtXkXRyUiIiKdgRIsEZGdlOk1xMI5Te/M08OGRUREujMlWCIiOymRYGU3vS8/8bDh2BZN1S4iItIdKcESEdkJ7k6m11DXTILVo18xAOVrl+zCqERERKSzUIIlIrITonVODrXEI00PESwYMIxaD1NVWrJrAxMREZFOQQmWiMhOqK2Lk0MN8WZ6sAb3yWWNFxLfvHwXRyYiIiKdgRIsEZGdUBOtI9tq8Yyme7AG5eewyvsS3qp7sERERLqjdiVYZvYrM/vIzBaa2SNmlp+074dmttjMPjazY9sdqYhIJ1ATS/RgeTM9WNkZYTZE+pNbqVkERUREuqP29mA9C4xz9wnAJ8APAcxsDHAGMBaYBvzezMLtbEtEJO2qonXkUAuZPZotsy17IL1iGyBWuwsjExERkc6gXQmWu//L3WPB6lxgSLA8HbjP3WvcfSmwGJjSnrZERDqDqpoYOVZLqIUEK9prMCEcyjVMUEREpLtJ5T1YFwJPB8uDgRVJ+1YG23ZgZheZ2Twzm1daWprCcEREUq+ychsAkazcZsuE8ocB4Fs00YWIiEh302qCZWbPmdn7TbymJ5X5ERAD7t3ZANz9Nnef5O6TioqKdvZwEZFdqqaqAoBQVvM9WNlFxQBsW1eyCyISERGRziTSWgF3P7ql/WZ2PnAC8CV392DzKmBoUrEhwTYRkS6ttirRg5XRQg9W7wHFxN3Ytn4pPXdVYCIiItIptHcWwWnA1cBJ7l6ZtOtx4AwzyzKzEcDewJvtaUtEpDOorU70YGVkN59gDSzozTr6EN20bFeFJSIiIp1Eqz1YrbgVyAKeNTOAue5+sbt/YGYPAB+SGDr4HXeva2dbIiJpF61O/C0pI7v5IYJD+uSw2PsyqGxFs2VERERk99SuBMvd92ph3/XA9e2pX0Sks4nVJIYIZue0MEQwJ4N1VsSelUt3VVgiIiLSSaRyFkERkd2eV28FICM3v9kyZsbW7AHk1a6DuDrvRUREuhMlWCIiO6N6CwCWnd9isZrcwYSpg61rOz4mERER6TSUYImI7IRwbVliIbt3ywV7BxOp6j4sERGRbkUJlojITrCa8sRCKwlWZt9iAGo2lnRsQCIiItKpKMESEdkJ4ZpyasmAjOwWy/XqPwKArWuW7IqwREREpJNQgiUishMiteVUhVp/fPCAvoVs8p7UqgdLRESkW1GCJSKyEzJj5VRHerVabnCfHFZ5X92DJSIi0s0owRIR2QnZdRXUtiHB6tcrm9UUkVWxehdEJSIiIp2FEiwRkTaqizs94hXEMvNaLRsOGVsyBtCzZi2474LoREREpDNQgiUi0kZbq6P0Zhue1coU7YHq3EFkeTVUburgyERERKSzUIIlItJGmypq6GdbqMstalP5eN6QxELZ8g6MSkRERDqTlCVYZnaFmbmZ9Q3WzcxuNrPFZrbQzPZPVVsiIulQunEDuVZDRu9BbSofKRgGQGyTEiwREZHuIiUJlpkNBY4Bkr9FHAfsHbwuAv6QirZERNKlvDQxI2BO36FtKp/bL/EsrIr1SzssJhEREelcUtWDdRNwNZB8J/d04C5PmAvkm9nAFLUnIrLLVW1cCUBeUdsSrKJ+A6n0LKpKSzowKhEREelM2p1gmdl0YJW7v9to12Ag+QEwK4NtjY+/yMzmmdm80tLS9oYjItJholsSU67nFAxpU/lBfXqwyvsS36xnYYmIiHQXkbYUMrPngAFN7PoRcA2J4YFfiLvfBtwGMGnSJM1lLCKdVmhr8EyrXk39OtzR4Pwc5npfRles6sCoREREpDNpU4Ll7kc3td3MxgMjgHfNDGAI8LaZTQFWAcnjaIYE20REuqTcihI2hwvok9WzTeWzM8JsivQjt+rNDo5MREREOot2DRF09/fcvZ+7F7t7MYlhgPu7+1rgceDcYDbBqUCZu69pf8giIrteXdwpqllOWY8RO3XctuwB9Kwrg2hVB0UmIiIinUlHPgfrKWAJsBj4E/DtDmxLRKRDrdy0jT1YRazPXjt1XCy3f2Jh69oOiEpEREQ6mzYNEWyroBdr+7ID30ll/SIi6bJs2RKGWyVlA/fZqeM8bxBsALaugYKd6/0SERGRrqcje7BERHYbGz9+DYB++xy0U8dl9E48nSIWzEAoIiIiuzclWCIibRBe+RZRImQP3X+njtv+UOJtGzVVu4iISHegBEtEpBU1sTpGbHuHtbmjIZK1U8cWFBRR7RlUb9IkqiIiIt2BEiwRkVa89d4HjLclRPf48k4f2y8vh7VeQLxMQwRFRES6AyVYIiKtKH3jQQCGHPTVnT62f1426+iDVWgWQRERke5ACZaISAvKttUyas1jrMrem8xB43f6+MLcTNZ7H7Iq13VAdCIiItLZKMESEWnBy889xhgrwSad/4WOD4WMrZl9ya0tBffUBiciIiKdjhIsEZFmbK2qZeg7N7Il1IdBh3/jC9dTld2fTK+B6rIURiciIiKdkRIsEZFmvPDg75nIR2w9+AeQkfOF66nL7Z9Y2LomRZGJiIhIZ6UES0SkCR98upj/WPxrVmSPYuiRF7Wvsl6DEj+VYImIiOz2lGCJiDSytaqGivsuIs8qyT/zzxBq36/KzPzBAMS2KMESERHZ3bU7wTKz75nZR2b2gZndkLT9h2a22Mw+NrNj29uOiMiuUBd35vzhMg6sm8+qKT+m1/AJ7a6zR99ED9a2jSvbXZeIiIh0bpH2HGxmRwLTgX3dvcbM+gXbxwBnAGOBQcBzZjbS3evaG7CISEd67O7f8NXyv/HpkFPZ+7jvp6TOwvx8yrwHtZtXpaQ+ERER6bza24N1CfBLd68BcPf1wfbpwH3uXuPuS4HFwJR2tiUi0qH+9c9HOX7J9ZT0nMje588Cs5TU269XNuu8D/FyDREUERHZ3bWrBwsYCRxqZtcD1cCV7v4WMBiYm1RuZbBNRKRTmvf2PCa9/h02Z/Rj6MUPQyQzZXX3y8viE+9Dn4q1Kauzq6qri7NxwzrKNq0num0TtRWbqassI161hVi0Gq+LEvI6QvEYIY8TtzDxUAYWySAcySKcmUVGRhaRrBwiWT3IyOpBRnYuWTk9yMrJJTsnl0hWbmLWx0h2ypJkERGRtmo1wTKz54ABTez6UXB8ATAVmAw8YGZ77EwAZnYRcBHAsGHDduZQEZGUKFmxnL6Pn004ZPT8xiOEexamtP7C3EzW04d9qz5Nab2dkbuztnQDa5e8R/nKD6H0EzK3rSa3Zh350VKKfCP9rJZ+uyieGjKpsSyilkk0lEXMsoiGs6kLZRMLZRELZxELZVMXyiIWTvw0AzPDcHDHcdwTy4mHRTtxJ1iPY8QhHge84TaP19eRWHfME+Wsfl/DMla/Lw5OYps7oe372ImHVbeSXFoiklYPaVwm+fgdylnT+xrX1WJkbYi7cXvNxdVqe7bDQhta3nG1QUwt1dhqe5/H6zs013yMVVl9GXLmbykoSO3vLhH5YlpNsNz96Ob2mdklwMPu7sCbZhYH+gKrgKFJRYcE25qq/zbgNoBJkybtxP85RETar6y8gvK/zmAfStl86oP0Hzgq5W1EwiHKI33pEX098UW8nbMSdhbVtTE+/eRDSj+Zi69aQJ/yRQyqLWGgbWJgUCbmITaGCinLKGJj3mjW5Q7Eeg8is1dfwj3yieT2IbNnAdm5vcnJySUjMwtCYTycAaEIxGN4rJZYbQ1V1VXU1tZQXV1FbXUl0epKYtXbiNVWEaupxGuriNdWEo9WQbQKotUQqyZUV0UoVk04XkO4rpqMaDWReA1ZlJPjtWRRQxa1ZHkt2dQCn39R9mDZkzKH5PU4IRKpUejzdTO2p0RsT5ssVH+cB8c02GbNbf+8PsyIe6JsfXCNbN/UWiLmvmMZb6JOC85Ag11NVJ1cV3MtW4rq2V6uyf3esExr9TTbUpPnocUjWm/Pm66rqWNaun5N7Rnjb/Du7Vvoc8Xj2G7y+0WkK2vvEMFHgSOBF81sJJAJbAAeB/5mZr8mMcnF3sCb7WxLRCSlYnVx3vnjNzgi/iGLD7uZvcYd2WFtVWf3I1IVg6pNkNu3w9rpSCvWb+LTd14mtvRVCjfOZ4/aTxhvFQDECLMyo5i1hQeypnBvegwaTd8R4ygYMor+kSz6p6D9PimoQ2R3NPeenzB18W94/W//w0Fn/yTd4Yh0e+1NsP4C/MXM3gdqgfOC3qwPzOwB4EMgBnynK84guK18M1s2rGXwHqPTHYqIdICn/vYbTtr2Tz7c81uMOeq8Dm2rLrc/VJF42HAXSbBWb9rKJ/NeIPbJs/TdOJ/R8U8ZalEAVkSKWd7/S6wesh/9R02l7x77UZyRneaIRbqnA7/+E975v/lM+fQm3n5qCPt/5RvpDkmkW2tXguXutcDZzey7Hri+PfWn23tP/oEpH93Auz0mUzPqZPY57DTyClLxd1gRSbe5b83lS4t/ydKe+zLm67/s+AbzBiT697euhQHjO769LyBWF2fBp8tY8ebj9Fz+PJOi8znCKogRYkXWSBYPOJPeo49g0LgjGNqzsME4cBFJHwuFGHXJvXz8268w4Y0reScUZr9p56c7LJFuq709WLu1PQ87g7nbNrLXykfot+AaYu9cyweZY9k68CD67HMYw/c9nOzcvHSHKSI7afOWMgqevIhYKJOBF94D4Y7/VZiZn5hINV6+uv1PeE+h8uoo8+a9SfnCfzB4/Uvs54uYZHHKQ71ZN+gIKsaewOD9j2NEj/x0hyoiLejRszdDv/sEn97yFfZ9/TLmr/+E/c/+HywUTndou6+kiW8Sq3E83uj+QEue+MQ+32Tbl0NNlpWuzRIj+jqHSZMm+bx589Idxg48Xscn77zCxrcfpf/alxgRW0rInJiHWBUewqYeI6jtM5KMAaPo1a+YXv2GUtBvKJk5uR0XkzuxuFMbraOmppra2mpqgxvAo7VVxGpqiNbWEKutoi5aSyya+BmP1hCPVhOPJZapq8VjNXhdLcRqCcVrCcWjhOK1hD1KOB4lHK8l5FEi8ShhjxHx2uBnlAyiiZ8erZ/lCmgw29X25R3XCWbL2rH8Tp2LNsz+1NYa21JX22abalubbWtv17/H1NaVuvPV9nPfcrkMYvSxClYcdydDDzy5TXW219/+vZjTn5lM1dRL6XXczF3SZnOWry/j/bnPwCdPM3rrvxlhienjV2ftQVXx0Qyc8lV6jJgC+mIm0uVUbitn4R/OZ2rF87yXtT/9zriF/iPGpTusL8zdqaiqpnxTKRVb1lO7dSN1lZuJV2+lrqaSeG0lHq3Ca6sgVonFqrFoFaG6KsJ1NWTEqwnHo4Q8RshjhL0u8ZPEctjrCBMjQh1h6oh4jHD99xlv4jsKhGzXfXeO++cT7tSfk6T/xyVPyPM5a6Lcjsc39f/K1upuOHtn87E1/f/hz7/hNdVOU3Fs//l46CiGn/YLvjymc40kM7P57j6p8Xb1YLWBhcKMOuAIOOAIADZv2sCSd16gdsnrZG76iH7bPmHQ1pcJr2j4z7uCHCrJoSrUg+pQD2pDPRJfWEKRYKapEHXB37K3f8jNo1i8rv4XgXkd4SCBCXuMDKJkbP9JjFyLkco0Lo4RDWqPWgZ1Fgl+ZhALXvFQBrFQDlHLozqUSTyU2B+3xJcxs+2zXAUvq0+nPv/rTDBLFpa8Pfln+95Hg8Pb+EeEtszWa22uq23pVerqal/a90VOd5viasv52pnL7U39L2SHQm2qau0eBzN6FyVXAMP75bPCi+i19mN67bJWE+riznufLmHFW0/Qa9lz7F87n69YJbVEWJE/mWX7XMKQA09mUEHxLo5MRFKtR24eUy5/kDcevJExH/6arDsOY17RiQyZdhkD9tovrbHV1NZQtnkDWzeXUrmllNqtGxIJ07ZNULWZUPUmIjVlZEbLyImVkxsvp7dvpZdVten3Zo1nUGOZ1JCVeDxDKHhEQ/DycA/iFiFuETwUwS1CPBSBULAeygiWw+zwHaZBT1Soft2t0febpOUG/5/07T+SHrfQ4H9Xn6ceyTNOeqNtjdOZHaf/bFy3N9jf5PcYj++4rb6eJureHlsTs5Em9+jtWGXSe0yqp6V2ti/3zB1L/7yspuvthNSDlSLVVdtYteRDytcvp2bzKuJla7DKUkLRbWTEgle8EovXYV5HyOOEiBMmMfdHjAh1Fv78g2/hxIfeIsTDGcRDmXgoAw9n4uEsCGdAOAuLZGCRbCySSSgji1Aki3BGFqGMxM9wRjaRzEwyMnOIZGaTkZlFZlYOGZlZRDKzsEh2fV2EM3fJUCmR7mj1lioW/d9x7J+/jT5XvNXh7W2rjvL223Mpe/cfDF43hwn+MWFztoT6sG7A4fSZeCL99p0GWT07PBYRSY9VK5ex/MEfsf/mf5JlUZZG9mTj4CPouedBFI08kIL+Q7EvMCwtVltDRdkmyrckEqWarRuo2bqJuoqNeNVmrHozkZrNZNYGiVJdOT29gt62rdk6425stVwqQr2oDPemJiOPaGZv6rL7QE4fQj0KifQsICO3kHDPAjJ75JGZnUtWj55k5+SSk9OTUETfYWTXaq4HSwmWiMguEI87d878OmdHnifj2rUd8iys5es28MncfxL/9Fn22fpvhtl6AFZk7U1l8dEMPvAUehZP3m2ewyUibbNmzUo+eeaPFK54jtGxRYSDIW4V5LA5VMjWSAF14Wzi4WyioUwsHqsfSROKx8ioqyS7bis94tvo6dvoYTXNtlWfKFlPtoXzqMnoTW1mPnVZ+ZCdj+UWEsktJLNXATm9i8jNLyKvTz9yehXod5N0ORoiKCKSRqGQsSl3bzKqnoINH0O/9j/+oTpax7vvLWDj2/+gYM1LTIwtZJhFqSaT5fmT+Gyf7zNs6skM7aP5/kS6s4EDhzDw/P8B/ofSDaWs+ugtqle8Q3zjUiKV6+gZ3URW7SYy4jVkUkudRagjQswiiVsFwj2ozOzL+sxe1GXmQXZvLLs3kdx8Mnr1JSeviB69+5LXpx89exfSOxKhd7rftEgaKcESEdlFYsMOho9/S3zJS4S+QIJVG4vz0UcfsHbh82Su/Dcjti3gQFsHwNrIYJYMO42CiScyYMKXGKlnUolIE4r6FlF0yFeAr6Q7FJHdlhIsEZFdZJ/R41i2qB99FjxC3tSLWy2/dmMZSz54g61L3iJ7/TvsuW0BE6yUCcBW68mq/P34ZM9vMfzA6QzoP5IBHf8WREREpBVKsEREdpGjR/fn9zaNq9beRXTe3WQccDaYUVldw4qln7Ch5H2q135EZNMn9K/4iD3iyxhgiYlwyiyP1fn7saj4YAZP/DJ5wyeyj+5XEBER6XQ0yYWIyC70wOufUPz02UwJfUw1mVSTSZ5va/BclXLrxZqckdT025eee0xm0Jj/ILtwuB5CKSIi0olokgsRkU7g9ING8nrhIzz46t8o2PoJueEYoR4FZPUdTsHwsfTfYwJ5vYrIS3egIiIi8oUowRIR2cUOGjkYRl6V7jBERESkA7R7AL+ZTTSzuWa2wMzmmdmUYLuZ2c1mttjMFprZ/u0PV0REREREpPNKxR3SNwA/dfeJwHXBOsBxwN7B6yLgDyloS0REREREpNNKRYLlUH+7QG9gdbA8HbjLE+YC+WY2MAXtiYiIiIiIdEqpuAfrMuAZM7uRRML2H8H2wcCKpHIrg21rkg82s4tI9HABVJjZxymIKZX6AhvSHYTsMrre3Yeudfeha9296Hp3H7rW3UtnvN7Dm9rYpgTLzJ6DJp9h+SPgS8Dl7v6QmZ0O3A4c3dao3P024La2lt/VzGxeU9Mvyu5J17v70LXuPnStuxdd7+5D17p76UrXu00Jlrs3mzCZ2V3ApcHq34E/B8urgKFJRYcE20RERERERHZLqbgHazVweLB8FPBpsPw4cG4wm+BUoMzd1zRVgYiIiIiIyO4gFfdgfQv4rZlFgGo+v5/qKeArwGKgErggBW2lQ6cdvigdQte7+9C17j50rbsXXe/uQ9e6e+ky19vcPd0xiIiIiIiI7BZSMURQREREREREUIIlIiIiIiKSMkqwWmBm08zsYzNbbGY/SHc8kjpmNtTMXjSzD83sAzO7NNheYGbPmtmnwc8+6Y5VUsPMwmb2jpn9I1gfYWZvBJ/v+80sM90xSmqYWb6ZPWhmH5nZIjM7SJ/t3ZOZXR78Dn/fzGabWbY+27sPM/uLma03s/eTtjX5WQ4mVbs5uO4LzWz/9EUuO6uZa/2r4Pf4QjN7xMzyk/b9MLjWH5vZsWkJugVKsJphZmHgd8BxwBjgTDMbk96oJIViwBXuPgaYCnwnuL4/AJ53972B54N12T1cCixKWv9/wE3uvhewGfhGWqKSjvBb4J/uvg+wL4nrrs/2bsbMBgPfBya5+zggDJyBPtu7kzuAaY22NfdZPg7YO3hdBPxhF8UoqXEHO17rZ4Fx7j4B+AT4IUDwfe0MYGxwzO+D7+2dhhKs5k0BFrv7EnevBe4Dpqc5JkkRd1/j7m8Hy1tJfAEbTOIa3xkUuxM4OS0BSkqZ2RDgeILn9JmZkXisxINBEV3r3YSZ9QYOI/HQe9y91t23oM/27ioC5AQzGfcA1qDP9m7D3V8GNjXa3NxneTpwlyfMBfLNbOAuCVTaralr7e7/cvdYsDqXxDN1IXGt73P3GndfSmLG8im7LNg2UILVvMHAiqT1lcE22c2YWTGwH/AG0D/peW1rgf7piktS6jfA1UA8WC8EtiT94tbne/cxAigF/hoMCf2zmeWiz/Zux91XATcCy0kkVmXAfPTZ3t0191nW97bd24XA08Fyp7/WSrCkWzOznsBDwGXuXp68zxPPMNBzDLo4MzsBWO/u89Mdi+wSEWB/4A/uvh+wjUbDAfXZ3j0E995MJ5FUDwJy2XGIkezG9FnuHszsRyRu7bg33bG0lRKs5q0ChiatDwm2yW7CzDJIJFf3uvvDweZ124cUBD/Xpys+SZmDgZPMrITEUN+jSNyjkx8MKwJ9vncnK4GV7v5GsP4giYRLn+3dz9HAUncvdfco8DCJz7s+27u35j7L+t62GzKz84ETgLP884f3dvprrQSreW8BewezEWWSuJnu8TTHJCkS3INzO7DI3X+dtOtx4Lxg+TzgsV0dm6SWu//Q3Ye4ezGJz/EL7n4W8CJwWlBM13o34e5rgRVmNirY9CXgQ/TZ3h0tB6aaWY/gd/r2a63P9u6tuc/y48C5wWyCU4GypKGE0gWZ2TQSw/tPcvfKpF2PA2eYWZaZjSAxscmb6YixOfZ5MiiNmdlXSNy7EQb+4u7XpzciSRUzOwR4BXiPz+/LuYbEfVgPAMOAZcDp7t74BlvposzsCOBKdz/BzPYg0aNVALwDnO3uNWkMT1LEzCaSmNAkE1gCXEDiD4r6bO9mzOynwAwSw4feAb5J4l4MfbZ3A2Y2GzgC6AusA34CPEoTn+Ugyb6VxDDRSuACd5+XhrDlC2jmWv8QyAI2BsXmuvvFQfkfkbgvK0biNo+nG9eZTkqwREREREREUkRDBEVERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLRKSTMbNiM3Mzi6Q7FukezOwDMzsi3XGIiOwOlGCJiEiXZ2azzKwieNWaWTRp/el0x9fZuftYd5+TyjrN7I7gWlQkvcKpbENEpDMyd093DCIiuxUzi7h7rB3HFwNLgYz21NNdmdlMYC93P7uJfe26NrtSV4q1KWZ2B7DS3a9NdywiIruSerBERFLAzErM7L/NbCGwzcwiZjbVzP5tZlvM7N3kIVhmNsfM/tfM3jSzcjN7zMwKmqn7AjNbZGZbzWyJmf1no/3TzWxBUM9nZjYt2N7bzG43szVmtsrMft5aD4KZ7WlmL5jZRjPbYGb3mll+0r5NZrZ/sD7IzEq3vy8zOykYarYleH+jG52fK81soZmVmdn9Zpa982d65zVzbdzM9koqc4eZ/Txp/YTgnG4JruGENrZ1hJmtNLNrgvNXYmZnJe0/3szeCa7ViiAZ3L5v+9DQb5jZcuCFYPvfzWxtcN5eNrOxjeL+vZk9HfQQvWZmA8zsN2a22cw+MrP92niOjm7LexQRkZYpwRIRSZ0zgeOBfKA/8CTwc6AAuBJ4yMyKksqfC1wIDARiwM3N1LseOAHIAy4AbkpKcqYAdwFXBe0eBpQEx90R1LsXsB9wDPDNVt6DAf8LDAJGA0OBmQDu/hnw38A9ZtYD+Ctwp7vPMbORwGzgMqAIeAp4wswyk+o+HZgGjAAmAOc3GYDZIUFi09zrkFbeQ1Pqr01rvUJBQvIX4D+BQuCPwONmltXGtgYAfYHBwHnAbWY2Kti3jcR1zw/iucTMTm50/OEkzv2xwfrTwN5AP+Bt4N5G5U8Hrg3arAFeD8r1BR4Eft3GuJtkZj9o6Xq0cvi3g6R8vpmd2p44RES6CiVYIiKpc7O7r3D3KuBs4Cl3f8rd4+7+LDAP+EpS+bvd/X133wb8GDi9qR4md3/S3T/zhJeAfwGHBru/AfzF3Z8N2lnl7h+ZWf+grcvcfZu7rwduAs5o6Q24++Kgrhp3LyXx5fzwpP1/AhYDb5BIDH8U7JoBPBkcGwVuBHKA/2h0fla7+ybgCWBiMzG86u75Lbxebek9NCP52rTmIuCP7v6Gu9e5+50kEpepO9Hej4Nz+BKJRPt0AHef4+7vBddqIYmk9PBGx84MrllVcMxf3H2ru9eQSHb3NbPeSeUfcff57l4NPAJUu/td7l4H3E8iuf7C3P2XLV2PFg69mc8Twx8Dd5jZwe2JRUSkK1CCJSKSOiuSlocDX2v0l/5DSCQlTZVfBmSQ6HVowMyOM7O5QU/AFhKJ0/ZyQ4HPmohleFDfmqT2/0jiy26zzKy/md0XDCksB+5pIqY/AeOAW4Iv/ZDo8Vq2vYC7x4P3NzjpuLVJy5VAz5ZiSbEVrRepNxy4otG1G0riPbbF5iBp3m7Z9mPN7EAzezEYWlkGXMyO57c+VjMLm9kvLTH0s5zPeyeTj1mXtFzVxPquPM/13P1td9/o7jF3f4pEz9tX0xGLiMiupARLRCR1kmcNWkGihyr5r/257v7LpDJDk5aHAVFgQ3KFwbC0h0j0CPUPegyeIjGUb3s7ezYRywoSvS59k9rPc/exTZRN9ovgfYx39zwSPXHb28LMegK/AW4HZtrn942tJpGYbC9nwftb1Up7OzCzQ63hzHONX4e2XssOGs/oVAn0SFofkLS8Ari+0bXr4e6z29hWHzPLTVofRuL8APwNeBwY6u69gVkknd8mYv06MB04GugNFAfbGx/TYYL7yZq9HjtRlbML4xYRSRclWCIiHeMe4EQzOzbohcgOJkAYklTmbDMbE9zP9DPgwWBYV7JMIAsoBWJmdhyJe6m2ux24wMy+ZGYhMxtsZvu4+xoSQwn/z8zygn17mlnj4WiN9QIqgDIzG0zi3q5kvwXmufs3SQx9mxVsfwA4PogjA7iCRIL379ZOVGPu/oq792zh9crO1tmEBcDXg2szjYbD9P4EXBz0NpmZ5VpicopeUD+xxB2t1P9TM8sMksETgL8H23sBm9y9Orh/7uut1NOLxHncSCIh/MVOvMeUcPdftHQ9mjvOzE4zs57Bv71jSCTrj++6yEVE0kMJlohIB3D3FSR6Hq4hkRytIJGsJP/evZvERBRrgWzg+03UszXY/gCwmcQX8seT9r9JMPEFUAa8xOc9SeeSSNA+DI59kIZDFJvyU2D/oK4ngYe37zCz6SQmqbgk2PRfwP5mdpa7f0ziC/QtJHrhTgROdPfaVtpLl0tJxLgFOAt4dPsOd58HfAu4lcR5W0zDCTmGAq+1UPfa4LjVJIbFXezuHwX7vg38zMy2AteRuK4tuYvEEMNVJK7j3NbeWCdyKYm4twC/Ar7lKX7WlohIZ6TnYImIpIGZzQHucfc/pzsWabtgVsR3gQnBZB6N9x9B4roOabxPRES6h0i6AxAREekqgh650a0WFBGRbktDBEVEuhkzm9XMhAWzWj9auiIzG9bCRBXD0h2fiMjuREMERUREREREUkQ9WCIiIiIiIinSqe7B6tu3rxcXF6c7DBERERERkRbNnz9/g7sXNd7eqRKs4uJi5s2bl+4wREREREREWmRmy5rariGCIiIiIiIiKaIES0REREREJEWUYImItMDd0WyrIiIi0lad6h6spkSjUVauXEl1dXW6Q5EuJjs7myFDhpCRkZHuUKQL+81zn3LvG8t55rJDKeyZle5wREREpJPr9AnWypUr6dWrF8XFxZhZusORLsLd2bhxIytXrmTEiBHpDke6sLf//SwP1f2GZc9cTOGpV6Q7HBEREenkOv0QwerqagoLC5VcyU4xMwoLC9XzKe12fN0LDA+tp3fJU+kORURERLqATp9gAUqu5AvRvxtpr+poHb28HICibZ+C7sUSERGRVnSJBEtEJB3Kq6P0oQKAvHgZlK9Kc0QiIiLS2SnBagMz44orPr/34sYbb2TmzJnpCyjJ3LlzOfDAA5k4cSKjR4+uj2vOnDn8+9///sL1Llu2jP3335+JEycyduxYZs2alaKIRbqO8qoY+baNKrIBqFm3OM0RiYiISGenBKsNsrKyePjhh9mwYUNK63V34vF4u+o477zzuO2221iwYAHvv/8+p59+OtD+BGvgwIG8/vrrLFiwgDfeeINf/vKXrF69ul2xinQ15dVR8m0ra3L2BmDT6s/SHJGIiIh0dkqw2iASiXDRRRdx00037bCvtLSUU089lcmTJzN58mRee+01AGbOnMmNN95YX27cuHGUlJRQUlLCqFGjOPfccxk3bhwrVqzgqquuYty4cYwfP577778fSCRIRxxxBKeddhr77LMPZ511VpPP4lm/fj0DBw4EIBwOM2bMGEpKSpg1axY33XQTEydO5JVXXmkxznPOOYeDDjqIvffemz/96U8AZGZmkpWVmJK6pqam2UTw5ptvZsyYMUyYMIEzzjgDgE2bNnHyySczYcIEpk6dysKFC+vbOu+88zj00EMZPnw4Dz/8MFdffTXjx49n2rRpRKNRAH72s58xefJkxo0bx0UXXbTD+47H4xQXF7Nly5b6bXvvvTfr1q1r6TKK7LTyqij5bKOm7xgAKktL0huQiIiIdHrtnqbdzIYCdwH9AQduc/ffmtlM4FtAaVD0Gndv1zRcP33iAz5cXd6eKnYwZlAePzlxbKvlvvOd7zBhwgSuvvrqBtsvvfRSLr/8cg455BCWL1/Osccey6JFi1qs69NPP+XOO+9k6tSpPPTQQyxYsIB3332XDRs2MHnyZA477DAA3nnnHT744AMGDRrEwQcfzGuvvcYhhxzSoK7LL7+cUaNGccQRRzBt2jTOO+88iouLufjii+nZsydXXnklAF//+tebjXPhwoXMnTuXbdu2sd9++3H88cczaNAgVqxYwfHHH8/ixYv51a9+xaBBg3Z4L7/85S9ZunQpWVlZ9QnPT37yE/bbbz8effRRXnjhBc4991wWLFgAwGeffcaLL77Ihx9+yEEHHcRDDz3EDTfcwCmnnMKTTz7JySefzHe/+12uu+46AM455xz+8Y9/cOKJJ9a3GQqFmD59Oo888ggXXHABb7zxBsOHD6d///6tXkeRnVFVWUkPqyGnYDDrl+cT37I83SGJiIhIJ5eKHqwYcIW7jwGmAt8xszHBvpvcfWLw6tJzHOfl5XHuuedy8803N9j+3HPP8d3vfpeJEydy0kknUV5eTkVFRYt1DR8+nKlTpwLw6quvcuaZZxIOh+nfvz+HH344b731FgBTpkxhyJAhhEIhJk6cSElJyQ51XXfddcybN49jjjmGv/3tb0ybNq3JNluKc/r06eTk5NC3b1+OPPJI3nzzTQCGDh3KwoULWbx4MXfeeWeTPUQTJkzgrLPO4p577iESidS/p3POOQeAo446io0bN1JenkiMjzvuODIyMhg/fjx1dXX18Y4fP77+/b344osceOCBjB8/nhdeeIEPPvhgh3ZnzJhR39t33333MWPGjBbPucgX4VWbAMjNL2K19yWjQsNkRUREpGXt7sFy9zXAmmB5q5ktAga3t96mtKWnqSNddtll7L///lxwwQX12+LxOHPnziU7O7tB2Ugk0mBYXfLzmHJzc9vU3vYhepAY/heLxZost+eee3LJJZfwrW99i6KiIjZu3LhDmebihB2nM2+8PmjQIMaNG8crr7zCaaed1mDfk08+ycsvv8wTTzzB9ddfz3vvvdem9xQKhcjIyKhvKxQKEYvFqK6u5tvf/jbz5s1j6NChzJw5s8lnWR100EEsXryY0tJSHn30Ua699toW2xX5IqxqMwDhHn3YGOnPoKplaY5IREREOruU3oNlZsXAfsAbwabvmtlCM/uLmfVp5piLzGyemc0rLS1tqkinUVBQwOmnn87tt99ev+2YY/5/e3ceX2V553388zt79pAFAoTNBWQHWaQiClSrtlZrteo8LkXHOp1pp6OdznTVqvOa5zW2M52lOnVqbbWto6htxcdWq9VapXUpIK6IoiwJBgiB7Dn79fxxTmI2SCAnnCzf94vzyr1c93X/Tm7u5PxyXfd1fYzvf//7HevtXeGmTp3Kpk2bANi0aRPbt2/vtc4VK1awdu1aEokEtbW1PPfccyxdurTfMf3617/ueEbp3Xffxev1UlxcTEFBAU1NTX3GCbBu3TrC4TB1dXU8++yzLFmyhOrqatra2gA4ePAg69evZ8aMGV3OnUwmqaqqYtWqVdx22200NDTQ3NzMihUruO+++4DUs2RlZWUUFhb26/20J1NlZWU0Nzfz8MMP91rOzLjwwgv58pe/zMyZMyktLe1X/SJHIhlL3QPeUD4toQqKo3s1F5aIiIgcVsYSLDPLB34BXO+cawR+ABwPLCDVwvVvvR3nnPuhc26xc25xeXl5psIZNH//93/fZTTB//qv/2LDhg3MmzePWbNmdQxnftFFF3HgwAFmz57N7bffzvTp03ut78ILL2TevHnMnz+f1atX853vfIeKiop+x/Ozn/2MGTNmsGDBAq688kruu+8+vF4vn/zkJ/nVr37VMcjFoeKEVDe/VatWsWzZMm688UYmTJjAli1bOOWUU5g/fz5nnHEGX/nKV5g7dy4A1157LRs2bCCRSHDFFVcwd+5cFi5cyJe+9CWKi4u5+eab2bhxI/PmzeNrX/sa9957b7/fT3FxMZ/73OeYM2cOZ599NkuWLOnYd+edd3aJ+9JLL+XnP/+5ugfKoEnGIgD4AiEi+RMJEIOWof2HIBEREcku621kuiOuxMwPPAb81jn3vV72TwUec87NOVw9ixcvdhs2bOiybcuWLcycOXPAMUrvbr755i6DYYw0+v8jA7Hul/dxwWt/Q/SqX/PIC29xybv/gLv2GaxyUbZDExERkSwzs43OucXdtw+4BctSD9HcDWzpnFyZ2fhOxS4E3hjouUREjqX2Fix/IESgZDIAzft67+4rIiIiAhkY5AJYDlwJvG5mm9PbvgH8hZktIDV0+w7grzJwLsmwm2++OdshiAxd8dQzgeYLkTd2KgAt+3ZSkMWQREREZGjLxCiC6wHrZdewHpZdRMTF0iNY+kKUl5fS5gJEDlZnNygREREZ0jLRgiUiMjLFU10E8QWoKMphjxsDDZoLS0RERA4to8O0i4iMKIn2BCtEeUGQfYzB17InuzGJiIjIkKYES0TkECwRTS14A3g9Rr2vnJzwvuwGJSIiIkOaEqx+euSRRzAz3n777UOW2bFjB3PmHHYk+iOydetWVq5cyYIFC5g5cybXXXcdkJok+De/OfpH3MLhMEuXLmX+/PnMnj2bb3/725kKWWRkiX/YggXQGhxLYaxWkw2LiIjIISnB6qf777+f0047jfvvv7/X/fF4fMDnSCQSXda/9KUvccMNN7B582a2bNnC3/7t3wIDT7CCwSDPPPMMr776Kps3b+aJJ57gxRdfHFDsIiORp72LoDcAQCx3XGqy4baDWYxKREREhjIlWP3Q3NzM+vXrufvuu3nggQc6tj/77LOsWLGC888/n1mzZgGpROvyyy9n5syZXHzxxbS2tgLw9NNPs3DhQubOncs111xDJJL64DZ16lS++tWvcvLJJ/PQQw91OW9NTQ2VlZUd63PnziUajXLTTTexdu1aFixYwNq1a2lpaeGaa65h6dKlLFy4kHXr1gFwzz33cMEFF7By5UpOPPFEbrnlFgDMjPz8fABisRixWIzUdGZdPfTQQ8yZM4f58+dz+umnA6nWr6uvvpq5c+eycOFCfv/733ec61Of+hRnnXUWU6dO5fbbb+d73/seCxcuZNmyZRw4cACAu+66iyVLljB//nwuuuiiju9PZ8uWLePNN9/sWF+5ciXdJ6AWORY8ySgxfOBJ/ah0Benp/ZpqshiViIiIDGXDaxTBx78Ge17PbJ0Vc+HcfzlskXXr1nHOOecwffp0SktL2bhxI4sWLQJg06ZNvPHGG0ybNo0dO3awdetW7r77bpYvX84111zDf//3f/PFL36RNWvW8PTTTzN9+nSuuuoqfvCDH3D99dcDUFpayqZNm3qc94YbbmD16tWceuqpfOxjH+Pqq6+muLiYW2+9lQ0bNnD77bcD8I1vfIPVq1fz4x//mPr6epYuXcqZZ54JwMsvv8wbb7xBbm4uS5Ys4ROf+ASLFy8mkUiwaNEitm3bxhe+8AVOOeWUHue/9dZb+e1vf8vEiROpr68H4I477sDMeP3113n77bf52Mc+xjvvvAPAG2+8wSuvvEI4HOaEE07gtttu45VXXuGGG27gpz/9Kddffz2f/vSn+dznPgfAt771Le6+++6Olrl2l156KQ8++CC33HILNTU11NTUsHhxj0myRQadJxEmZgH86XX/mImwA8J11YTGzc5maCIiIjJEqQWrH+6//34uu+wyAC677LIu3QSXLl3KtGnTOtYnTZrE8uXLAbjiiitYv349W7duZdq0aUyfPh2Az372szz33HMdx1x66aW9nvfqq69my5YtfOYzn+HZZ59l2bJlHS1fnT355JP8y7/8CwsWLGDlypWEw2F27doFwFlnnUVpaSk5OTl8+tOfZv369QB4vV42b95MdXV1RxLW3fLly1mzZg133XVXR/fF9evXc8UVVwBw0kknMWXKlI4Ea9WqVRQUFFBeXk5RURGf/OQngVTL244dO4BUErZixQrmzp3Lfffd16Wlqt0ll1zCww8/DMCDDz7IxRdf3Ov3R2SweZIx4hboWM8rS7UoN9buylZIIiIiMsQNrxasPlqaBsOBAwd45plneP311zEzEokEZsZ3v/tdAPLy8rqU797Vrreud911r6OzCRMmcM0113DNNdcwZ86cXhMh5xy/+MUvmDFjRpftL730Up/xFBcXs2rVKp544okeA3TceeedvPTSS/z6179m0aJFbNy48bDvIxgMdix7PJ6OdY/H0/GM2po1a3jkkUeYP38+99xzD88++2yPeiZOnEhpaSmvvfYaa9eu5c477zzseUUGizcZIdYpwSosnwSkWrBEREREeqMWrD48/PDDXHnllezcuZMdO3ZQVVXFtGnTeP7553stv2vXLl544QUA/vd//5fTTjuNGTNmsGPHDrZt2wbAz372M84444w+z/3EE08Qi8UA2LNnD3V1dUycOJGCggKampo6yp199tl8//vfx6VHNnvllVc69j311FMcOHCAtrY2HnnkEZYvX05tbW1Hl7+2tjaeeuopTjrppB7nf++99zjllFO49dZbKS8vp6qqihUrVnDfffcB8M4777Br164eid3hNDU1MX78eGKxWEc9vbn00kv5zne+Q0NDA/Pmzet3/SKZ5E3GSHj8HevjxhSy3xWSaNidxahERERkKFOC1Yf777+fCy+8sMu2iy666JCjCc6YMYM77riDmTNncvDgQf76r/+aUCjET37yEz7zmc8wd+5cPB4Pn//85/s895NPPtkxyMTZZ5/Nd7/7XSoqKli1ahVvvfVWxyAXN954I7FYjHnz5jF79mxuvPHGjjqWLl3KRRddxLx587joootYvHgxNTU1rFq1innz5rFkyRLOOusszjvvPABuuukmHn30UQD+4R/+gblz5zJnzhxOPfVU5s+fz9/8zd+QTCaZO3cul156Kffcc0+Xlqu+/NM//ROnnHIKy5cv75LUPfroo9x0000d6xdffDEPPPAAl1xySb/rFsk0XzJCwvNhC1ZFUYi9bgymQS5ERETkEMwNoflcFi9e7LqPFrdlyxZmzpyZpYiGt3vuuafLYBijkf7/yECsv2UVU0MtVH715Y5tf7h5FdNzmhj/VY1sKSIiMpqZ2UbnXI+R2NSCJSJyCH4XJeHp2kLbHCgnL1qbpYhERERkqBteg1zIEVmzZg1r1qzJdhgiw5bfRUl6C7tsi4TGUthYD/Eo+AK9HygiIiKj1rBowRpK3Rhl+ND/Gxkov4vhurVgJfLTkw0378lCRCIiIjLUDfkEKxQKUVdXpw/LckScc9TV1REKhbIdigxT8USSADGS3q6tVJ6iCan99RpJUERERHoa9C6CZnYO8J+AF/iRc+6IJrOqrKykurqa2lo98yBHJhQKUVlZme0wZJiKphOsuLdrC1awJPV/qqm2ijFTP5KN0ERERGQIG9QEy8y8wB3AWUA18Gcze9Q591Z/6/D7/UybNm2wQhQR6VUkliRoMWK+rglWQXqy4db9VYzJRmAiIiIypA12F8GlwDbn3PvOuSjwAHDBIJ9TRGTAUi1YcejWRbC0rIKI8xM9WJ2lyERERGQoG+wEayJQ1Wm9Or2tg5ldZ2YbzGyDugGKyFARjScJEgNf1+f4Kopz2OPG4Bo/yFJkIiIiMpRlfZAL59wPnXOLnXOLy8vLsx2OiAgAkXjqGSzzd02wSnID7GMMvpZ9WYpMREREhrLBTrB2A5M6rVemt4mIDGmRWIygxbFug1x4PEaDr5yc8N4sRSYiIiJD2WAnWH8GTjSzaWYWAC4DHh3kc4qIDFgsEgbAAj2H+m8NjaUwvh80fYSIiIh0M6gJlnMuDnwR+C2wBXjQOffmYJ5TRCQTYtFUguXpNoogQCxvHEEXgXD9MY5KREREhrpBnwfLOfcb4DeDfR4RkUyKRdoA8PTSgkXBBKgF1/gBlqPB2kVERORDWR/kQkRkKEqkW7C8vp4Jlr84NRhq634N1S4iIiJdKcESEelFPJpqwfL20oKVW1YJQFPtrmMak4iIiAx9SrBERHrR0YIVyOmxr2jsZADCdVU99omIiMjopgRLRKQXiVgqwfIFeg5yUVFSRK0rJFmvLoIiIiLSlRIsEZFeuHQLli+Y22Pf2MIgu10ZviYlWCIiItKVEiwRkV4k4u0tWD2fwQr6vNR6xpLT+sGxDktERESGOCVYIiK9cOkugoFgz2ewAJpD4ymK7dVkwyIiItKFEiwRkV4kYxEAvP6ez2ABRPInEnBRaKk9lmGJiIjIEKcES0SkN+kugubvvQXLUzQJAFevodpFRETkQ0qwRER64eLR1IKv9xasYPkUAJr3bj9WIYmIiMgwoARLRKQXlm7Bwtt7glVYcTwATUqwREREpBMlWCIivfDEW1MLgbxe948rH0eTyyFat/MYRiUiIiJDnRIsEZFeeOOtJDE4xDNYE0ty2e3KoKHqGEcmIiIiQ5kSLBGRXnjjrUQIglmv+4ty/Oz1lBNs2X2MIxMREZGhTAmWiEgvPPFWIp7eW6/aNQUrKIzsOUYRiYiIyHCgBEtEpBe+RBtRT+iwZcK5E8hLNkO48RhFJSIiIkPdgBIsM/uumb1tZq+Z2a/MrDi9faqZtZnZ5vTrzoxEKyJyjPgSYWJ9tGChubBERESkm4G2YD0FzHHOzQPeAb7ead97zrkF6dfnB3geEZFjKphsI+Y9fIIVKEvNhdWyb8cxiEhERESGgwElWM65J51z8fTqi0DlwEMSEcm+QLKNeB8JVsG44wBo3PP+sQhJREREhoFMPoN1DfB4p/VpZvaKmf3BzFYc6iAzu87MNpjZhtra2gyGIyJy9IIuTNKXe9gy5eMnE3F+Ivs12bCIiIik+PoqYGa/Ayp62fVN59y6dJlvAnHgvvS+GmCyc67OzBYBj5jZbOdcjyfBnXM/BH4IsHjxYnd0b0NEJHMSSUfIRQj7D59gTRyTR7Urw6NnsERERCStzwTLOXfm4fab2RrgPOCjzjmXPiYCRNLLG83sPWA6sGGgAYuIDLbWaJw8C9PmzztsueJcP2/aWI5rrj5GkYmIiMhQN9BRBM8B/hE43znX2ml7uZl508vHAScCekhBRIaF1miCHCLQRwuWmVEfHE9h+INjFJmIiIgMdQN9But2oAB4qttw7KcDr5nZZuBh4PPOuQMDPJeIyDHREo6RSwQLHj7BAgjnTiQ/2QiRpmMQmYiIiAx1fXYRPBzn3AmH2P4L4BcDqVtEJFuam5vwmMMXKuizbLJ4MtQD9VUwbtagxyYiIiJDWyZHERQRGRFa6vcB4Cso7bOsv2QqAK373hvMkERERGSYUIIlItJNpDE1ZUSwoKzPsvkVxwOaC0tERERSlGCJiHQTa64DIKdobJ9lx1ZU0uYCRGo1F5aIiIgowRIR6SHRtB+A3OK+E6zKklyqXTlOc2GJiIgISrBERHpwbalBTwP96CJYkhfgAysn2Fw12GGJiIjIMKAES0SkG0/bwdRCzpg+y5oZDYHxFIZrBjkqERERGQ6UYImIdGNtB2ixXPD6+1W+La+SvGQThBsGOTIREREZ6pRgiYh044scpNVb2O/yyaJJqYV6dRMUEREZ7ZRgiYh0UxzbR3NwXL/L+0unAdBWq6HaRURERjslWCIinUTjSca6WsK5E/p9TEH7XFg1mmxYRERktFOCJSLSyd76Zio4QLKwst/HjB03nhYXJLJ/x+AFJiIiIsOCEiwRkU5qqnfgsyShsin9PmZiei4s6ncOYmQiIiIyHCjBEhHp5EC6m9+YCcf1+5jy/CAfUE6wuXqwwhIREZFhQgmWiEgn8T1vA1BcOavfx5gZDcEK8sJ7ByssERERGSaUYImIdBI8sJU2QnjG9L+LIEBrqIL8ZCNEWwYpMhERERkOlGCJiHQypvld9oWmgefIfjzG8yemFhp2D0JUIiIiMlwMKMEys5vNbLeZbU6/Pt5p39fNbJuZbTWzswceqojI4NpT38rxyR1ESk464mOtODXqoGvQZMMiIiKjmS8Ddfy7c+5fO28ws1nAZcBsYALwOzOb7pxLZOB8IiKDYtuWVzjNmmmY9pEjPtY/ZhIAbbU7yT0h05GJiIjIcDFYXQQvAB5wzkWcc9uBbcDSQTqXiEhGNG59HoDxc8844mMLxk4i4YzW/RqqXUREZDTLRIL1RTN7zcx+bGZj0tsmAp37yVSnt/VgZteZ2QYz21BbW5uBcEREjk7+7uc46CkhOG7GER87triAfYwhflBdBEVEREazPhMsM/udmb3Ry+sC4AfA8cACoAb4tyMNwDn3Q+fcYufc4vLy8iM9XEQkI/bUNbAwuomaipVgdsTHjysI8YErxRo1yIWIiMho1uczWM65M/tTkZndBTyWXt0NTOq0uzK9TURkSHr7xcdZaW0UzD//qI4fWxjkNVfK8S0fZDgyERERGU4GOorg+E6rFwJvpJcfBS4zs6CZTQNOBF4eyLlERAZT5M3/RxtBKhce3aCnIb+XOm85eeE94FyGoxMREZHhYqCjCH7HzBYADtgB/BWAc+5NM3sQeAuIA1/QCIIiMlRV1TawqOU5dpcv54RA7lHX0xwajz8chdY6yCvLYIQiIiIyXAwowXLOXXmYff8M/PNA6hcRORY2P/Mgn7RG+MiaAdUTyxsPYaChSgmWiIjIKJWJebBERIYt5xzF7zxEvWcMZQs+MbDKiiqhDmjYDRMWZiS+oSocDrNvz24a6vYQb64l3lxHIhbF4xIYDvOHCOQWEswvJr+wlLKJUwnmlx7VACIiIiLDiRIsERnVNm/dxrL4Bt4/4SqKvQP7kegvmQLvQ6K+Cm+G4ssm5xz7DtRT9fYGmndswLNvCwWtVZTHdlPhaplsySOqr40gdd5ymoIVRPIm4IonEyybRuH44ymrPJFQ8QTwDNb0jL1zzhGNJwi3ttLW1kSktRni4fS+1P72Z+ocqffrMcPMg8frxevxYh4PXq8Hj8eLmReP14PX48XjTb883o79Ho8HMy+Yp9PLlHiKiIwgSrBEZFSr/sO9LLQEk1ZdO+C6ikrHEXZ+Evt3kpeB2I61eCLJ1nffYe9rT+Hb9Ucqmt/iOFfFuHQi1UQe+wKV7C+aQ03hFLzFkwgVl+MvKCdYUIo/EMJ5fDg8xCMttDY3EGmpp62hjtjBamjcTbC1hsLwHia2vEt5bQO8++H5I/ip846lPjie1lAFLmcMnpwiCBaRDBbi9QXw+nyYx0PceUgk4rhYOJUQxcIkY2FctA0Xb4NYGxZvwxtvwxNvw5cM40+04U+G8ScjBF2YoIsQIkIOUYLmKMrS9x0giZHEcHjSX40knvTXntuTGEYq8TNILx9+vb08uE5lun11dCrXt1RNmSuXiXr6LGP08x1aL0tDU6OniNjVTzJl0uRshyIiKMESkVEsHEtw/AePUZUzg0mVcwZcX0VRDrtdGSUHqoZNglW1Zz9vv/D/8L33FNOaNjHbapgNNJNHdf5s3iw/k9wpi6mYuYyCsdMoyFBLSzLp2HPgILXV22iseY/o/u1Qv4tQSzVjwjVMad1GgWshZLEjr9sZYQsQJkjEQkQtRNQTIu4JEQmU0OLLwflySHpzcP4c8OdCIBcL5OIN5OG8gXSLkqX/dW5hMpxLknQOl0ymXi6JSyZwLgnpddLrqX1JzCVwSZfa5z4sg0umm8qSHftI14NLAkk8zmGWxJz7MNVyyW6tXp504mCYfZhCtacGrlP8XfZ32o6l0jCDfrWo9T8R67ucZWjkzfaYetTm2r+k3nmvZ3O9H+u6LfQeqTtsme5vrz/v1nU76FB1+lyU0xse5fmn72LKmn/qR80iMtiUYInIqPWnF55ntW1n+5xvZaS+iqIQNa6E0oaqjNQ3GBJJx5tb3+aDl39FcdXTLIi9yiSL0UIOVUUn8+bkqxg//0xKjl/ESZ7B6+jo8RgVZSVUlC2FBUt7LRNPJKlraiLa0kCi9SCxWIx4LE4yGcfnSeLzBfAGQngDOfgCOQRy8sjNycUfCJFrxtGPBykyvLz1z6dy3K6HcMmbsUG8b0Wkf5Rgicio1bLhfuJ4mHLGZzNS3/iiEG+5Mha2bMlIfZninGPLe7t4//n7GL/rMRYm32KeOfZ5K9g2+TOUL7qAcXNWc5IvkO1Qu/B5PZQWF0FxEaCuTyKH0jDrcma9+g3efflxTlx2XrbDERn1lGCJyKi0r7GVRQ1PsXPMMo4vGJuROkvyAuy1MnIjtZCIgdefkXqPVvW+Ot74/VoK3v0VS2IbmWUJ9vgnsfX4L1B56mWMnTSHsRpcQWTYm/uxz1K/+f/S/Me7QAmWSNYpwRKRUWnjHx7jXKtjz5LLM1anmdGSU4FFHTR+AGOmZKzu/grHEvzxT88TfeluTm35HedYKwc8Jbw37XIqT7+KimmLqVBSJTKi5Ofl82LFJ1m050E+eO9NJhw/O9shiYxqSrAO44PtW6j682PMPfdacgvGZDscEckg/5sP0UoOFUs+ndF6Y3kTIAo07j6mCdb7NbW8/tt7mbzjQT7KVmL42D72o0RP+0vK555JiZ7LEBnRTrjg68T+55fsXXcjE778y2yHIzKqKcE6jF1/fIBl2/6Dljf/lY0Fy7CTPs5xyz5Fcdm4bIcmIgNQva+OpW3Ps2v8mZwUyOxQCFZUCQeBhuqM1tubSDzBH1/4E+EXf8SpzU9xgbWw11/J9jlfY8rqa5leUD7oMYjI0FA2YQp/nHAZy2vuZdvG33HCojOzHZLIqKUE6zBO+T/f5u2Np9P04k+YVvc8ZRueJfHnr/Ke7zgOlJ2Md8pHGD9jKeOmnITHl91nLTItmXTEE0kS8SjxaBvJWIR4NEIimSCRiJNMJIgnEiQSqXWXSIJLdAxX3D7ksHVaTg07nEjNzuKA9JwrH87WktqePORwvf2db6W3Qw93bKd9vR3cx2n7mnOlz+F4zXoM4dvvk6ff19Ee7w7zfenXvDUDHFp5IEcP5NSN7zzH2dZG8ylXDCCC3gVLJ8MOcA3VgzZ3zs49dbz65E+pfH8tq9lCDB87xq7GrbyOcbPO1KS1IqPUvMtuZve/P07Or79I+KSXCeUVZjukISWRdMRiUaLhFuKRNmKRVhKRMPFYhFg8TiIeS33uicdJJuJYMoFLxsElsGQcl0yktqU/y3T+DOOc6/i95HA9fkd1/7Fs3X9DmGGdp03ocpClpxew9AwS6d/96XLWbboF63Zs57oOeQ7rfA5PlyLt0zt8OPVD1zg+rKu9vCf9fjpv7Hp+8/T8PdV95rnO37N4TikTp8xgTN7QGozpUJRgHYZ5PJy05KOw5KMkEgm2vPIHGl/7Dbl7/szsPY+Su/cheBmizscH3gkczJ1KPG88rqACb+F4QsXj8OcUEsgtwJ9TRCCvgJzcPEJ+X3oY1dScI5gHcLhEjGg0QiwSIRaLEIumX7EoifYEJxYhEWsjEQ2TjEVIxiOpr7EwxCO4eATiEUhEIBHFElE8iUjqazL18iajeJMxfC6KLxnF52L4iOF3MQLECRJNfT2K+WdEhou9Vsb4eZn/C29ZyRgOuHxy9u8kJ4P1RuNJ/vjSn2h74W4+0vQk51sz+3wTeH/OPzL1o5/jxAwN1CEiw1dBUQnvrPo3Fv3+Sl67aw1zv/TQiBi2PdzaTMOBPbQc2EdbQy3h5oNEWhpIhhuxSBMWbcIba8Yba8YfbyYQbyGUbMWXjOB3UQIuQoAYIaKELEko229IjthP4mez45L/4Lx5E7IdSr8oweonr9fLzMWrYfFqACKRMO9u+TP739uMq32bnIb3KG15j5KmP5O/t+2oz5OpdrC48xC1ADF8xMxP3PzELUDcAiQ8fhLeAAlPHnHvGKKeAM6beiU9QZLeAElvALxBkp4AeAM4bzA1IprHj8frwePxYB4vHo8XS7+wVLKYWvakXp2XzZv6y0X7Xy9IHwIdf+nwtO/p8Zeeo2+uOPwElj33Wec/mfTZTNJ1f8+/x/Rx/OH+wnXE5+5+9r7O/eH+ng0emZn0sz8G0tbS8z33X/HkWZg38z8Cp48roMaVMj5DCdaOvQdSrVXvrWUVbxHHy/byVbDyrxg760zGejwZOIuIjBSLzjifZ7Z9gdVVd/Dq//wl8667C8vyiKbduWSSpsaDHKzZQWPtLtrqqkk0fIBrrsUXOUgwepDceAP5iQYKXSN5FjlsUtTqgrRaDm2WS5snj4g3j4OB8SR8IfCGwB8CXwjnDeJ8qeX2bfhCePwBvF4fXq8fr8+Hx+vH4/NhHg/O/ODxYB4/eLyYx9fxWcY6PrtYj88zqc847b1Muk5i3fXXe2oCcZdsL+O6FnLt21yX3j/ttTmX7DhHx29E16ksAOky3c5h7XW69i2uU3DJjvO3n6/jaNd+bOfy7fF0Osh1ey9dypDq4dT+AaTbJN3dJ9qelV/JtKklDBfW/Q1k0+LFi92GDRuyHcaAOOdobDhI/b4qmg7sJdHWRCLSRCLchIs0k4y2EU8kU21XLomR7LghkuYDbwCPz4/5Anh8qWWvL4jH78frC+H1B1MTa/pD+AIh/MHUKxDMJRDMIRAM4fGHUomNiBxzdc0RNt12LicXNVL6laP7edYSjvHyn54mvOkBTml6ihJrptY3nsbZlzP1o9fhLdRzoCJyaMlEkmd/8Les3v9z3s45mbGX/w8lldOPybnjsSgH9lZTv3cnLfuriB6sxjXW4GuuISe8j8JYLaXJOnIt0uPYJnJosiKavYWE/cVEAmNIhEpwuSVYXin+/LEECsvIKywhv6iE/MIx5OQXDbkEUkYPM9vonFvcfbtasDLMzCgqLqGoePhk2SKSOaX5QWr8lRS1/AaiLRDI69dxsUSSV17dzP4Xfs5J+x5nlX1AFB87y8/AzvgrymefRblaq0SkHzxeD6u+cDu/X3s8S7bchv+uU3l13Mcp/cgVVM5bDUfReu+SSVoa9nNgz06aaqtoO7CbeH0N1lxDsHUPedFaiuP7KXH1jDVH507LUeelzkpo8JexL+9EdueuwBWMxz9mIjmlkygaO5nSiikU5OVTkLlvg0jWKMESEcmwfeWn4tu7Drf9OWzGuYcsF47GeWXjCxzc9AiTap9lKdsAeD9/PtvnfZEpp/0fTszTFBEicuTMjFWXfZnt759H1SO3sHTvbwitW0fzulxqQsfRmDcVcktxwWLw+jGSxOMJXLQFb7QBb6QRT7SRULSeosR+SpMHybc4+d3O00AeBzxlNAXKOZh/Itvyx+MpnECwpJL88kkUV0yhpGw8471exmfh+yCSDQPqImhma4EZ6dVioN45t8DMpgJbgK3pfS865z7fV30joYugiMgDf9rGx3+7guSkZRRf+6uO7c45tldVs33jUyTff44ZjX9isu0FYGdoJpETP87kM64iVDY1S5GLyEhVu38/b65/BN/2P1DUvI2KxAcUumaCFu9RttHl0mT5tHnzifgKaQ2WE8sdh8uvwF88gdzSielWp0nk5qnNSUavQ3URzNgzWGb2b0CDc+7WdIL1mHNuzpHUoQRLREaClkicH912PX+X/BnbS1awLzgF11hDacu7HO+q8JgjQoCdhYtwM85l2qkXExgzMdthi8go0xaJ09baRCIRBzyEAl5yc/Px+tTBSaQ/BvUZLEsNk3IJsDoT9YmIDGd5QR+nf/YW7v3fOOfWPc58XqTBU8yBvGm8Mf48xs0/i3EzlzPdF8x2qCIyiuUEfeQE1Q1ZJNMy0oJlZqcD32vP4NItWG8C7wCNwLecc88f4tjrgOsAJk+evGjnzp0DjkdEZKhojcYJ+rx4e5lUUURERIavo27BMrPfARW97Pqmc25devkvgPs77asBJjvn6sxsEfCImc12zjV2r8Q590Pgh5DqItj3WxERGT5yA+pqIyIiMpr0+ZvfOXfm4fabmQ/4NLCo0zERIJJe3mhm7wHTAT1gJSIiIiIiI1YmJlU5E3jbOVfdvsHMys3Mm14+DjgReD8D5xIRERERERmyMtF35TK6dg8EOB241cxiQBL4vHPuQAbOJSIiIiIiMmRlbJj2TDCzWmCojXJRBuzPdhByzOh6jx661qOHrvXoous9euhajy5D8XpPcc6Vd984pBKsocjMNvQ2OoiMTLreo4eu9eihaz266HqPHrrWo8twut6ZeAZLREREREREUIIlIiIiIiKSMUqw+vbDbAcgx5Su9+ihaz166FqPLrreo4eu9egybK63nsESERERERHJELVgiYiIiIiIZIgSLBERERERkQxRgnUYZnaOmW01s21m9rVsxyOZY2aTzOz3ZvaWmb1pZn+X3l5iZk+Z2bvpr2OyHatkhpl5zewVM3ssvT7NzF5K399rzSyQ7RglM8ys2MweNrO3zWyLmX1E9/bIZGY3pH+Gv2Fm95tZSPf2yGFmPzazfWb2Rqdtvd7LlvJf6ev+mpmdnL3I5Ugd4lp/N/1z/DUz+5WZFXfa9/X0td5qZmdnJejDUIJ1CGbmBe4AzgVmAX9hZrOyG5VkUBz4e+fcLGAZ8IX09f0a8LRz7kTg6fS6jAx/B2zptH4b8O/OuROAg8BfZiUqGQz/CTzhnDsJmE/quuveHmHMbCLwJWCxc24O4AUuQ/f2SHIPcE63bYe6l88FTky/rgN+cIxilMy4h57X+ilgjnNuHvAO8HWA9Oe1y4DZ6WP+O/25fchQgnVoS4Ftzrn3nXNR4AHggizHJBninKtxzm1KLzeR+gA2kdQ1vjdd7F7gU1kJUDLKzCqBTwA/Sq8bsBp4OF1E13qEMLMi4HTgbgDnXNQ5V4/u7ZHKB+SYmQ/IBWrQvT1iOOeeAw5023yoe/kC4Kcu5UWg2MzGH5NAZcB6u9bOuSedc/H06otAZXr5AuAB51zEObcd2Ebqc/uQoQTr0CYCVZ3Wq9PbZIQxs6nAQuAlYJxzria9aw8wLltxSUb9B/CPQDK9XgrUd/rBrft75JgG1AI/SXcJ/ZGZ5aF7e8Rxzu0G/hXYRSqxagA2ont7pDvUvazPbSPbNcDj6eUhf62VYMmoZmb5wC+A651zjZ33udQcBprHYJgzs/OAfc65jdmORY4JH3Ay8APn3EKghW7dAXVvjwzpZ28uIJVUTwDy6NnFSEYw3cujg5l9k9SjHfdlO5b+UoJ1aLuBSZ3WK9PbZIQwMz+p5Oo+59wv05v3tncpSH/dl634JGOWA+eb2Q5SXX1Xk3pGpzjdrQh0f48k1UC1c+6l9PrDpBIu3dsjz5nAdudcrXMuBvyS1P2ue3tkO9S9rM9tI5CZrQHOAy53H07eO+SvtRKsQ/szcGJ6NKIAqYfpHs1yTJIh6Wdw7ga2OOe+12nXo8Bn08ufBdYd69gks5xzX3fOVTrnppK6j59xzl0O/B64OF1M13qEcM7tAarMbEZ600eBt9C9PRLtApaZWW76Z3r7tda9PbId6l5+FLgqPZrgMqChU1dCGYbM7BxS3fvPd861dtr1KHCZmQXNbBqpgU1ezkaMh2IfJoPSnZl9nNSzG17gx865f85uRJIpZnYa8DzwOh8+l/MNUs9hPQhMBnYClzjnuj9gK8OUma0EvuKcO8/MjiPVolUCvAJc4ZyLZDE8yRAzW0BqQJMA8D5wNak/KOreHmHM7BbgUlLdh14BriX1LIbu7RHAzO4HVgJlwF7g28Aj9HIvp5Ps20l1E20FrnbObchC2HIUDnGtvw4Egbp0sRedc59Pl/8mqeey4qQe83i8e53ZpARLREREREQkQ9RFUEREREREJEOUYImIiIiIiGSIEiwREREREZEMUYIlIiIiIiKSIUqwREREREREMkQJloiIiIiISIYowRIREREREcmQ/w+Ev41UxI+A+AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADt/klEQVR4nOzdd3wc5bXw8d/Zot6sbkuyJfcqbLCBxKYTSkKHYAg1hHAhhAAJkE4ccrk3L+GGBEgwSQgQIMZ0nNCbAROabdwLbrItW7bV+/bn/WNG8kpWs7XSStb5fj7r3Zl55pmzO9r1nn3KiDEGpZRSSimllFK954h2AEoppZRSSil1uNAESymllFJKKaUiRBMspZRSSimllIoQTbCUUkoppZRSKkI0wVJKKaWUUkqpCNEESymllFJKKaUiRBMspZQaYESkUESMiLiiHYsaGkRkrYicGO04lFLqcKAJllJKqUFPROaLSIN984mIP2z5tWjHN9AZY6YYYxZHsk4Recw+Fw1hN2ckj6GUUgOR6IWGlVIqskTEZYwJ9GL/QmAb4O5NPUOViMwDxhpjLu9gW6/OTX8aTLF2REQeA0qNMb+IdixKKdWftAVLKaUiQERKROTHIrIKaBQRl4gcKyL/EZEaEVkZ3gVLRBaLyP+KyGciUiciL4tIeid1f1tE1otIvYhsFZH/arf9XBFZYdezRUTOsNenisgjIlImIrtE5L+7a0EQkTEi8q6IVIpIhYg8JSJpYduqRORIe3mEiJS3PC8ROcfualZjP79J7V6f20RklYjUishCEYk7+Ff64HVyboyIjA0r85iI/HfY8ln2a1pjn8PiHh7rRBEpFZGf2a9fiYhcFrb9GyLyhX2udtrJYMu2lq6h3xGRHcC79vpnRWSP/bp9ICJT2sX9ZxF5zW4h+khEckXkDyJSLSIbRGRGD1+jU3vyHJVSSnVNEyyllIqcS4FvAGlADvAK8N9AOnAb8LyIZIWVvxK4BhgOBID7O6l3H3AWkAJ8G7gvLMk5GvgHcLt93OOBEnu/x+x6xwIzgNOAa7t5DgL8LzACmAQUAPMAjDFbgB8DT4pIAvAo8LgxZrGIjAcWALcAWcCrwL9EJCas7ouBM4AioBi4usMARObYiU1ntzndPIeOtJ6b7lqF7ITk78B/ARnAw8AiEYnt4bFygUwgD7gK+IuITLC3NWKd9zQ7nhtE5Lx2+5+A9dqfbi+/BowDsoHlwFPtyl8M/MI+phf42C6XCTwH/L6HcXdIRH7S1fnoZvfv2Un5MhG5sDdxKKXUYKEJllJKRc79xpidxphm4HLgVWPMq8aYkDHmLWAp8PWw8k8YY9YYYxqBXwIXd9TCZIx5xRizxVjeB94EjrM3fwf4uzHmLfs4u4wxG0Qkxz7WLcaYRmPMPuA+4JKunoAxZrNdl9cYU4715fyEsO1/BTYDn2Ilhj+3N80FXrH39QP3AvHAV9u9PruNMVXAv4DpncSwxBiT1sVtSVfPoRPh56Y71wEPG2M+NcYEjTGPYyUuxx7E8X5pv4bvYyXaFwMYYxYbY1bb52oVVlJ6Qrt959nnrNne5+/GmHpjjBcr2T1CRFLDyr9ojFlmjPEALwIeY8w/jDFBYCFWcn3IjDG/7ep8dLHr/exPDH8JPCYis3sTi1JKDQaaYCmlVOTsDHs8Cvhmu1/652AlJR2V3w64sVod2hCRM0XkE7sloAYrcWopVwBs6SCWUXZ9ZWHHfxjry26nRCRHRJ62uxTWAU92ENNfganAA/aXfrBavLa3FDDGhOznlxe2356wx01AUlexRNjO7ou0GgX8qN25K8B6jj1RbSfNLba37Csix4jIe3bXylrgeg58fVtjFRGniPxWrK6fdexvnQzfZ2/Y4+YOlvvzdW5ljFlujKk0xgSMMa9itbxdEI1YlFKqP2mCpZRSkRM+a9BOrBaq8F/7E40xvw0rUxD2eCTgByrCK7S7pT2P1SKUY7cYvIrVla/lOGM6iGUnVqtLZtjxU4wxUzooG+5/7OcxzRiTgtUS13IsRCQJ+APwCDBP9o8b242VmLSUE/v57ermeAcQkeOk7cxz7W/HdV/LAdrP6NQEJIQt54Y93gnc3e7cJRhjFvTwWMNEJDFseSTW6wPwT2ARUGCMSQXmE/b6dhDrt4BzgVOBVKDQXt9+nz5jjyfr9HwcRFWGfoxbKaWiRRMspZTqG08CZ4vI6XYrRJw9AUJ+WJnLRWSyPZ7pLuA5u1tXuBggFigHAiJyJtZYqhaPAN8WkVNExCEieSIy0RhThtWV8P9EJMXeNkZE2ndHay8ZaABqRSQPa2xXuD8CS40x12J1fZtvr38G+IYdhxv4EVaC95/uXqj2jDEfGmOSurh9eLB1dmAF8C373JxB2256fwWut1ubREQSxZqcIhlaJ5Z4rJv6fy0iMXYyeBbwrL0+Gagyxnjs8XPf6qaeZKzXsRIrIfyfg3iOEWGM+Z+uzkdn+4nIRSKSZP/tnYaVrC/qv8iVUio6NMFSSqk+YIzZidXy8DOs5GgnVrIS/rn7BNZEFHuAOOAHHdRTb69/BqjG+kK+KGz7Z9gTXwC1wPvsb0m6EitBW2fv+xxtuyh25NfAkXZdrwAvtGwQkXOxJqm4wV71Q+BIEbnMGLMR6wv0A1itcGcDZxtjfN0cL1puxoqxBrgMeKllgzFmKfBd4EGs120zbSfkKAA+6qLuPfZ+u7G6xV1vjNlgb/secJeI1AN3Yp3XrvwDq4vhLqzz+El3T2wAuRkr7hrgd8B3TYSvtaWUUgORXgdLKaWiQEQWA08aY/4W7VhUz9mzIq4Eiu3JPNpvPxHrvOa336aUUmpocEU7AKWUUmqwsFvkJnVbUCml1JClXQSVUmqIEZH5nUxYML/7vdVgJCIju5ioYmS041NKqcOJdhFUSimllFJKqQjRFiyllFJKKaWUipABNQYrMzPTFBYWRjsMpZRSSimllOrSsmXLKowxWe3XD6gEq7CwkKVLl0Y7DKWUUkoppZTqkohs72i9dhFUSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKkAE1Bqsjfr+f0tJSPB5PtENRA0BcXBz5+fm43e5oh6IOY//v1TWU13u455tH4XBItMNRSiml1CAy4BOs0tJSkpOTKSwsRES/6AxlxhgqKyspLS2lqKgo2uGow1Sdx0/2f+7ix643WPXZcxQf+7Voh6SUUkqpQWTAdxH0eDxkZGRocqUQETIyMrQ1U/WptbvqONWxHAD57G9RjkYppZRSg82AT7AATa5UK/1bUH2tvLqWXKkCIL/mUwiFohyRUkoppQaTQZFgKaVUfwnsXY9bgmxIOoZhoWoC5ZuiHZJSSimlBhFNsHpARPjRj37Uunzvvfcyb9686AUU5sQTT+zy4sznnXcexx57bJt18+bNIy8vj+nTpzN16lQWLVrU12EqNWgEakoBaBr7dQD2bVoWzXCUUkopNchogtUDsbGxvPDCC1RUVES0XmMMoT7sflRTU8OyZcuora1l69atbbbdeuutrFixgmeffZZrrrmmT+NQajDxNdYCkDL2q/iMk6YdX0Q5IqWUUkoNJppg9YDL5eK6667jvvvuO2BbeXk5F154IbNmzWLWrFl89NFHgNVKdO+997aWmzp1KiUlJZSUlDBhwgSuvPJKpk6dys6dO7n99tuZOnUq06ZNY+HChQAsXryYE088kYsuuoiJEydy2WWXYYzpML4nnniitTXqs88+a13/wgsvcPbZZ3PJJZfw9NNPd7jvpEmTcLlcbZLHn/zkJ0yePJni4mJuu+02AEpKSjj55JMpLi7mlFNOYceOHQBcffXV3HDDDRx77LGMHj2axYsXc8011zBp0iSuvvrq1jpvuOEGZs6cyZQpU/jVr351QBy1tbWMGjWqNdFrbGykoKAAv9/fYdxK9RWnrw6AvLyRbDF5uMrXRDkipZRSSg0mA36a9nC//tda1u2ui2idk0ek8Kuzp3Rb7sYbb6S4uJg77rijzfqbb76ZW2+9lTlz5rBjxw5OP/101q9f32VdmzZt4vHHH+fYY4/l+eefZ8WKFaxcuZKKigpmzZrF8ccfD8AXX3zB2rVrGTFiBLNnz+ajjz5izpw5B9TX1NTEihUr+OCDD7jmmmtYs8b6QrhgwQLuvPNOcnJyuPDCC/nZz352wL6ffvopDoeDrKwsACorK3nxxRfZsGEDIkJNTQ0AN910E1dddRVXXXUVf//73/nBD37ASy+9BEB1dTUff/wxixYt4pxzzuGjjz7ib3/7G7NmzWLFihVMnz6du+++m/T0dILBIKeccgqrVq2iuLi4NY7U1FSmT5/O+++/z0knncS///1vTj/9dL3elep3Ln8DAPHJw9jlHskRDVu72UMppZRSaj9tweqhlJQUrrzySu6///42699++22+//3vM336dM455xzq6upoaGjosq5Ro0a1jotasmQJl156KU6nk5ycHE444QQ+//xzAI4++mjy8/NxOBxMnz6dkpKSDuu79NJLATj++OOpq6ujpqaGvXv3smnTJubMmcP48eNxu92tiRfAfffdx/Tp07nttttYuHBh6+x8qampxMXF8Z3vfIcXXniBhIQEAD7++GO+9a1vAXDFFVewZMmS1rrOPvtsRIRp06aRk5PDtGnTcDgcTJkypTXmZ555hiOPPJIZM2awdu1a1q1bd8DzmDt3bmsL3tNPP83cuXO7fB2V6gsxgQZ8xIArlobEQtL9eyDgjXZYSimllBokBlULVk9amvrSLbfcwpFHHsm3v/3t1nWhUIhPPvmEuLi4NmVdLlebcU3h125KTEzs0fFiY2NbHzudTgKBQIfl2k9dLiI888wzVFdXt16Qt66ujgULFnD33XcD1hislu5/7eP+7LPPeOedd3juued48MEHeffdd3sUp8PhaBOzw+EgEAiwbds27r33Xj7//HOGDRvG1Vdf3eG1rM455xx+9rOfUVVVxbJlyzj55JO7PK5SfSE2WE+TI5EYwGSMxVkXIlS5DUfOxGiHppRSSqlBQFuwDkJ6ejoXX3wxjzzySOu60047jQceeKB1ecWKFQAUFhayfLl1sdLly5ezbdu2Dus87rjjWLhwIcFgkPLycj744AOOPvrog4qrpdVnyZIlpKamkpqayoIFC3j99ddbx30tW7as03FY4RoaGqitreXrX/869913HytXrgTgq1/9auv+Tz31FMcdd1yP46urqyMxMZHU1FT27t3La6+91mG5pKQkZs2axc0338xZZ52F0+ns8TGUipS4YCMep/UjSHzuBACqdq6NZkhKKaWUGkR6nWCJSIGIvCci60RkrYjcbK+fJyK7RGSFfft678ONvh/96EdtJoS4//77Wbp0KcXFxUyePJn58+cDcOGFF1JVVcWUKVN48MEHGT9+fIf1nX/++RQXF3PEEUdw8sknc88995Cbm3tQMcXFxTFjxgyuv/56HnnkEUpKSti+fXub6dmLiopITU3l008/7bCOr3/96+zevZv6+nrOOussiouLmTNnDr///e8BeOCBB3j00UcpLi7miSee4I9//GOP4zviiCOYMWMGEydO5Fvf+hazZ89u3XbnnXe2mSZ+7ty5PPnkk9o9UEVNfKgRrzMJgIxRkwCoL90QzZCUUkopNYhIZzPT9bgCkeHAcGPMchFJBpYB5wEXAw3GmHu72j/czJkzTftrOq1fv55Jkyb1KkZ1eNG/CdWXVv36aOITkhl3+zuU1Tbj+v0EavNPZux3H4t2aEoppZQaQERkmTFmZvv1vW7BMsaUGWOW24/rgfVAXm/rVUqpaEg0DfjcyQDkJMexjRHE1upMgkoppZTqmYiOwRKRQmAG0NIP7fsiskpE/i4iwzrZ5zoRWSoiS8vLyyMZjlJKHbQE00zAZY3BcjiE8ph8Upu2RzkqpZRSSg0WEUuwRCQJeB64xRhTBzwEjAGmA2XA/3W0nzHmL8aYmcaYmS3XYlJKqWgIhQyx+DCu/bOCNiWNIiVUA57IXoNPKaWUUoeniCRYIuLGSq6eMsa8AGCM2WuMCRpjQsBfgYObGk8ppfqZNxAiDj+EJVihNOtSB6ZKuwkqpZRSqnuRmEVQgEeA9caY34etHx5W7HxgTft9lVJqIPH4AsTiA3d867q4nDEA1JdtjlZYSimllBpEInGh4dnAFcBqEVlhr/sZcKmITAcMUAL8VwSOpZRSfcbj8zBMDBKWYKXlWZdYqNu9kZSjohWZUkoppQaLSMwiuMQYI8aYYmPMdPv2qjHmCmPMNHv9OcaYskgEHC0vvfQSIsKGDZ1fD6ekpISpU6dG7JhXX301zz33XKfbb7nlFvLy8giFQq3rHnvsMbKyspg+fTqTJ0/mr3/9a8TiUepw521uAsDhjm1dl5eTTblJIVChXQSVUkop1b2IziJ4OFuwYAFz5sxhwYIFHW4PBAK9PkYwGOxx2VAoxIsvvkhBQQHvv/9+m21z585lxYoVLF68mJ/97Gfs3bu317EpNRR4mxsBcLgTWtflD0tgu8nFWbMtWmEppZRSahDRBKsHGhoaWLJkCY888ghPP/106/rFixdz3HHHcc455zB58mTASrQuu+wyJk2axEUXXURTk/WL+DvvvMOMGTOYNm0a11xzDV6vF4DCwkJ+/OMfc+SRR/Lss88ecOy3336bmTNnMn78eP7973+3OfaUKVO44YYbOk36srOzGTNmDNu3759i+v7772fy5MkUFxdzySWXAFBVVcV5551HcXExxx57LKtWrQJg3rx5XHXVVRx33HGMGjWKF154gTvuuINp06Zxxhln4Pf7AbjrrruYNWsWU6dO5brrrqP9xatDoRCFhYXU1NS0rhs3bpwmfmrA8XvtFqyYsDFYbiflruEkNe6MVlhKKaWUGkQiMQar/7z2E9izOrJ15k6DM3/bZZGXX36ZM844g/Hjx5ORkcGyZcs46ihrMMby5ctZs2YNRUVFlJSUsHHjRh555BFmz57NNddcw5///Ge+//3vc/XVV/POO+8wfvx4rrzySh566CFuueUWADIyMli+fHmHxy4pKeGzzz5jy5YtnHTSSWzevJm4uDgWLFjApZdeyrnnnsvPfvYz/H4/bre7zb5bt25l69atjB07tnXdb3/7W7Zt20ZsbGxrwvOrX/2KGTNm8NJLL/Huu+9y5ZVXsmLFCgC2bNnCe++9x7p16/jKV77C888/zz333MP555/PK6+8wnnnncf3v/997rzzTgCuuOIK/v3vf3P22We3HtPhcHDuuefy4osv8u1vf5tPP/2UUaNGkZOT0+PTpFR/2J9gxbVZ35BQQGrDB+D3gDuuo12VUkoppQBtweqRBQsWtLb2XHLJJW1ajI4++miKiopalwsKCpg9ezYAl19+OUuWLGHjxo0UFRUxfrw1WP6qq67igw8+aN1n7ty5nR774osvxuFwMG7cOEaPHs2GDRvw+Xy8+uqrnHfeeaSkpHDMMcfwxhtvtO6zcOFCpk+fzqWXXsrDDz9Menp667bi4mIuu+wynnzySVwuK79esmQJV1xxBQAnn3wylZWV1NVZ1/w588wzcbvdTJs2jWAwyBlnnAHAtGnTKCkpAeC9997jmGOOYdq0abz77rusXbv2gOcxd+5cFi5cCMDTTz/d5XNWKloCnmYA3LEJbdenFeLAQI1ecFgppZRSXRtcLVjdtDT1haqqKt59911Wr16NiBAMBhERfve73wGQmJjYprw1a33nyx1pX0d39b3xxhvU1NQwbdo0AJqamoiPj+ess84CrGTmwQcf7LC+V155hQ8++IB//etf3H333axe3XWLYGysNdjf4XDgdrtb43E4HAQCATweD9/73vdYunQpBQUFzJs3D4/Hc0A9X/nKV9i8eTPl5eW89NJL/OIXv+jyuEpFQ8BntWC52iVYrswxUArefVuIzZoQjdCUUkopNUhoC1Y3nnvuOa644gq2b99OSUkJO3fupKioiA8//LDD8jt27ODjjz8G4J///Cdz5sxhwoQJlJSUsHmzdR2dJ554ghNOOKFHx3/22WcJhUJs2bKFrVu3MmHCBBYsWMDf/vY3SkpKKCkpYdu2bbz11lut4706EwqF2LlzJyeddBL/7//9P2pra2loaOC4447jqaeeAqyxXZmZmaSkpPQovpZkKjMzk4aGhk5nPRQRzj//fH74wx8yadIkMjIyelS/Uv0p4LVasFxxbX/0SB5hJVW1uzb2e0xKKaWUGlw0werGggULOP/889usu/DCCzudWGLChAn86U9/YtKkSVRXV3PDDTcQFxfHo48+yje/+U2mTZuGw+Hg+uuv79HxR44cydFHH82ZZ57J/PnzCYVCvP7663zjG99oLZOYmMicOXP417/+1WEd1157LUuXLiUYDHL55Zczbdo0ZsyYwQ9+8APS0tKYN28ey5Yto7i4mJ/85Cc8/vjjPXx1IC0tje9+97tMnTqV008/nVmzZrVumz9/PvPnz29dnjt3Lk8++aR2D1QDVtBnJVgxsW3HWQ3PHUGdicezTy82rJRSSqmuSfsZ36Jp5syZZunSpW3WrV+/nkmTJkUpIjUQ6d+E6ivvPv8wJ6++g9qrPyC18IjW9bVNfnb8diZpWXkU3PRqFCNUSiml1EAhIsuMMTPbr9cWLKWUsoX8VpfXuIS2XQRTE9yUOYYT36CTXCillFKqa5pgKaWUzfhbugjGH7CtLj6fNO8eCPb+ouJKKaWUOnwNigRrIHVjVNGlfwuqT9ktWOI+MMHypRTiIgB1pf0dlVJKKaUGkQGfYMXFxVFZWalfrBXGGCorK4mL0wu9qj5it2DRQYLlyhxtFSnf2p8RKaWUUmqQGfDXwcrPz6e0tJTy8vJoh6IGgLi4OPLz86MdhjpcBexruLkOTOKTho+HtVC7eyOZ40/u58CUUkopNVgM+ATL7XZTVFQU7TCUUkOABL14cRPbwQXCs/MK8Ro3TXs2RSEypZRSSg0WA76LoFJK9RcJePBJTIfbRmUms91kY6q29XNUSimllBpM+jzBEpEzRGSjiGwWkZ/09fGUUupQOYMe/BLb4bbMpBh2SS5xdTpVu1JKKaU616cJlog4gT8BZwKTgUtFZHJfHlMppQ6VI+jF30kLlohQE5dPmncX6KQ7SimllOpEX7dgHQ1sNsZsNcb4gKeBc/v4mEopdUicIS8BR8ctWADe5FHEGg807O3HqJRSSik1mPR1gpUH7AxbLrXXtRKR60RkqYgs1ZkClVLR5OomwZIMa6r2YKVO1a6UUkqpjkV9kgtjzF+MMTONMTOzsrKiHY5Saghzd5NgJeaOA6Bm15f9FZJSSimlBpm+TrB2AQVhy/n2OqWUGnBcxkfI2XmClZE/hoBx0FSmCZZSSimlOtbXCdbnwDgRKRKRGOASYFEfH1MppQ6J23gJOQ+8yHCLUVlp7DKZ2kVQKaWUUp3q0wTLGBMAvg+8AawHnjHGrO3LYyql1KGKNT6CXbRg5abEsZMcYnSqdqWUUkp1wtXXBzDGvAq82tfHUUqp3giGDDH48HTRguVwCNWxeaQ0f9SPkSmllFJqMIn6JBdKKTUQeANBYvFh3J0nWACe5FEkheqhubqfIlNKKaXUYKIJllJKAR5/iDj84Oo6wXJmjgEgUKHjsJRSSil1IE2wlFIK8PiDxOFD3PFdlksaMQGAiu06nFQppZRSB9IESymlgCaPF7cEkW66COYWTiZgHDTu0gRLKaWUUgfSBEsppQBvcxMAzpiELssV5Q5ju8mBcr0WllJKKaUOpAmWUkoBnuYGAJyxXXcRTI5zs9M5kqS6zf0RllJKKaUGGU2wlFKK/S1YrpiuEyyAmqQiMny7IOjv67CUUkopNchogqWUUoC/uR4AV3xyt2WD6eNxEcRUbunrsJRSSik1yGiCpZRSQKC5DgB3fGq3ZWOHTwKgZodOdKGUUkqptjTBUkopIOi1xmDFJHTfgpVZOBWA2p1r+jQmpZRSSg0+mmAppRQQ8lgJVmwPEqzRI7IpNZmE9m7o67CUUkopNchogqWUUoDxWmOwYhO67yKYlRxLCfnE1epMgkoppZRqSxMspZQC8FktWI64pG6LighVCYVkNG+HUKivI1NKKaXUIKIJllJKAfgarfuY7hMsAH/6eGLxYmq292FQSimllBpsNMFSSinA4bcTLHdCj8rH508DoGbbF30VklJKKaUGoV4lWCLyOxHZICKrRORFEUmz1xeKSLOIrLBv8yMSrVJK9RGHv5Fm4sDRs4/F7DFHEjKiCZZSSiml2uhtC9ZbwFRjTDHwJfDTsG1bjDHT7dv1vTyOUkr1KWegiWZHfI/LjyvIYZvJJbRHp2pXSiml1H69SrCMMW8aYwL24idAfu9DUkqp/ucKNOI7iAQrNd7NdlchKbU6VbtSSiml9ovkGKxrgNfClotE5AsReV9EjutsJxG5TkSWisjS8vLyCIajlFI95wo04XMmHtQ+tSkTyPLvBnuKd6WUUkqpbhMsEXlbRNZ0cDs3rMzPgQDwlL2qDBhpjJkB/BD4p4ikdFS/MeYvxpiZxpiZWVlZvX9GSil1CGKDjQRdB5dgmRxrogvv7tV9EZJSSimlBiFXdwWMMad2tV1ErgbOAk4xxhh7Hy/gtR8vE5EtwHhgaW8DVkqpSDPGkByqwxcz9qD2SyuaDhuhYvNy8oq+2jfBKaWUUmpQ6e0sgmcAdwDnGGOawtZniYjTfjwaGAds7c2xlFKqrzT5gqRJA6G4YQe136jRE6g1CXhKV/VRZEoppZQabHo7ButBIBl4q9107McDq0RkBfAccL0xpqqXx1JKqT5R0+QjjXpIOLgEqzAziS8ZRUzF2j6KTCmllFKDTbddBLtijOmwP40x5nng+d7UrZRS/aWutpo8CSIJGQe1n9Mh7I0fy7SmtyAUBIezjyJUSiml1GARyVkElVJqUGqqtWYwdSUdXIIF4MkqJs54CJVvinRYSimllBqENMFSSg15HjvBik3JPOh9E4tmAlC56dOIxqSUUkqpwUkTLKXUkOetqwQgPvXgLxUxcvx0mkws9ds+j3RYSimllBqENMFSSg15nrp9AKRm5B70vuOHp7GOQtx7V0Q4KqWUUkoNRppgKaVU3W4A3Gl5B72r2+lgd8Ikshu/hGAg0pEppZRSapDRBEspNeS5G/fQKAkQm3xI+3uziok1XkL7NkQ4MqWUUkoNNppgKaWGvATPXmpdBz/BRYuk0bMAqNCJLpRSSqkhTxMspdSQl+rfR2NsziHvXzi+mDoTT6NOdKGUUkoNeZpgKaWGNG8gSIapwpdw8BNctBiXk8I6M5qYfSsjGJlSSimlBiNNsJRSQ9qu8mpyqMaRVnDIdbicDsqSJpLVuAkCvghGp5RSSqnBRhMspdSQVrF9Aw4xxOaO71U9/uwjiMFPaO+6CEWmlFJKqcFIEyyl1JDWsHs9AMNGTulVPUlFOtGFUkoppTTBUkoNcaZiEwBp+RN7Vc+Y8VOpMYk60YVSSik1xGmCpZQa0mJrt1Ih6UhcSq/qGZOdxFpGE1u+KkKRKaWUUmow0gRLKTWkpTWVUBU/qtf1uJwO9iROJrtpM/g9EYhMKaWUUoNRrxIsEZknIrtEZIV9+3rYtp+KyGYR2Sgip/c+VKWUiqy6Zh8FoV34UkdHpD7/8CNxESSw64uI1KeUUkqpwScSLVj3GWOm27dXAURkMnAJMAU4A/iziDgjcCyllIqYkh3bSZUm3DkTIlLfsPFfBaB8/ZKI1KeUUkqpwaevugieCzxtjPEaY7YBm4Gj++hYSil1SCq2WeOl0no5g2CLyePGsiOUha/kk4jUp5RSSqnBJxIJ1vdFZJWI/F1Ehtnr8oCdYWVK7XUHEJHrRGSpiCwtLy+PQDhKKdUz3t1rAMgaPSMi9eUPi2etcyJplSvAmIjUqZRSSqnBpdsES0TeFpE1HdzOBR4CxgDTgTLg/w42AGPMX4wxM40xM7Oysg52d6WUOmSxlRuolyQcqSMiUp+IUJU+ndRABdSWRqROpZRSSg0uru4KGGNO7UlFIvJX4N/24i6gIGxzvr1OKaUGjMymLeyNH0uySMTqdI86BiofoGnLxyQcVdD9DkoppZQ6rPR2FsHhYYvnA2vsx4uAS0QkVkSKgHHAZ705llJKRVJVg4fRoe140yMzwUWLgokzaTYxVH35UUTrVUoppdTg0G0LVjfuEZHpgAFKgP8CMMasFZFngHVAALjRGBPs5bGUUipitm1ez1HiwT1iWkTrnTYqi1VmNCN3fR7RepVSSik1OPQqwTLGXNHFtruBu3tTv1JK9ZXqbSsAyBwTmQkuWiTFuihJms7MhmeguRrih3W/k1JKKaUOG301TbtSSg1owTKrR/OwUcURr9tXdCpOQng2vBXxupVSSik1sGmCpZQakhJrN7LXORyJS4l43UXFx1Npkqle8a+I162UUkqpgU0TLKXUkBMKGYZ7tlCdNLZP6j96TBb/kemklL4PIR1+qpRSSg0lmmAppYacneVVjGIPwaxJfVJ/jMtBVf6pJAZr8W16p0+OoZRSSqmBSRMspdSQs2/rKlwSIi4/8uOvWoyd800qTAoVb/+xz46hlFJKqYGnt9O0q17yBwI0NTTQ3FRHc2Md/uZGQt4GAt5Ggn4fwYCfQMBHKOAn5PdBKIAYP45QADEBMGAwGARjBCMCxl5GEAGHOBCnC3HFgNONOGMQZwwOtxuH0424YnG43DjdsTic1r07JgaXOxZXTBzumDjc7lhiYuNwu104HYJE8MKsSvU3T+kqANKLIjuDYLivThjBE4nnc2X54zSueYXEqd/os2OpyDHG4A8a/IEAAZ+HUMBH0O8h5PcRDPgIhYIEgyFCoRDBkMGYEILBAYgYxBhEQAQQJ+KwbogLcTrA4cLhcOFwOXE6XdZnrsuJ0+HC6XLhdLpwOR36GauUUoOYJlgR4PP5qakoo7FqN001+/DVV+JvrCLYWAWeGhyeWly+GmL8dcQF6kk0jcSZZuKMlwTxkgqkRvtJ9FDQCF5c+O1bQNwEcBEQ63FQXATt+5C4CTrchBxuTNi9ccZgHG5wWglfm3txtLlJ62NBHAdus9ZJm2Xra4lpTT6thNO6t+5C1pMxxiqHsR+2PDat+9Nm//3L1jqAkF2FXQaDGOw6wrZjwIRaH7bWY9diPQ5hDGHx28dojaelzrB9WyvsbHvLOpD2ZdoxbVYJpqMyHW1reQpI+1UdL5vwO+ngKO3rCt+hfXnTpnyHdR0YKnm1y/EaN2n5kb3IcDgRYcoFP2X9E4spfO4avtxwA7UmiebtS3GMPZk5513XZ8ceSoIhQ219PfXV+2iuq8LfUImvwfr8DTXXEfI2YLwN4G/E4W/EGWjCHWwmJtREbKiZmJCHGOPDRQC38eMmQAx+EiUUtecUMA6COAlg3QdxEpSwxzgJiZMgDvveiZH961tupvWxq/WxESfGXjaOlnt7nZ0IGocLHE5wWI+tBNGBU2i9FxEcDsEh1g9uDpH970PhgM+F/Z88bRPH1vX2Z1/LZ6ehg08hs39ZwsqF12TVc+B+VgljH2P/Jmn9zA8v15G2n6dtP5fCHpg2Kw+oNzw2E/Y82hwnLLbOHNx+bZfbnAHT+bau6ukqtsOF/sTRlkT5FdmdPJUpJ17ExNzIT0zVFzTB6oIJhajct4uKXZtp3ldCoKaUUN1enE37iPFWkuirJDVUzTBTS7Z0/GHjMy7qJIlGRzLNzmSa4rKpdSUTdCeCOwFiEpGYBBwxiTjjknDEJuGITcQZE4/THYvLHYM7Jga3KxZXTAzidFnJiMNttUqJlVDI/jYrkJbH1n8CgUDQagnz++xfYb0EA36Cfq/VMhbwWbegDxOwWs1MwEsoYC2boN++90HAB0EfhPxI0IcE/UjIj4R8SMiPI+THGfLjMH7cIS9xgQacxo/LBFrvXQRw48dtArgJ4IriF5nDSchI2H/cYV92wu5Nu2WAdnd09vXCKmPo6L+dzv6z7fILQpfH6Exnxzn4ur5Mm81Ep7uLY/XeUWOH8843nqD21Rs5ds19reu3r14LmmB1yBhDTU0NVeWl1JXvxlNdRrB+LzSW42wqJ9ZTQZy/hvhgHYmhelJMA+niJ72LOv3GSZPE45E4vI54fPatwZ1DwBlPyBmHsVv2xRkDrhjrBx9XrJWEOGPBFYOIC3E4cDgcOBxiff7K/k/fEPvfe8ZYP6qICUAwBAQhFERMCEIBTMhatu4D1mMTRFrvA1aPBXu7mKBVVyiIo/XeWicmiCMURAjiDgVwEECMD4ddxoF177Qfh9+3pGwOQrgI4kInZVE9EzKagqj+83jodLZMPnPQJFhiDvgVJHpmzpxpli5dGu0wWn3yz99w7Jf3tlnnNS6qJY06VzpNMRn44jIxidlIUg7OlBxiU7KIT80kMS2L1GFZxCck2X1FVGeCgQB+v5eA34sJGUImBKEgoVCIUCgIIYMJBQmZlvsQJhTChILWvQkRChkw1peVYEsrkN1PR3AgDuscWN1uBHHYv8WIw05KxT5Ndtcce1lErO0Oux5rp/1lEHBYv+y0JrsO+xjisAKxf+EV+1h2CAfE1fJlrSX21mXBqgsJ+1uS1uenBr5Gb4Ct27aQEgNb3niIE/c8hvykBIlPi3Zo/SoQCLJ3bxkVu7fRuK8Ef81OHHW7iW0qI9Gzh9RABcNC1SSKt8P9a0im1pFGo2sYvphUAjGpEJeGJAzDmZiOM2EYrsR0YpMziEvJJDEljcTkNFwxcf38TAcxOzHETvAIBSAYwGAIBkMEQoaQMQRD1uduwL4PhqyukRjT+ku32D88tra2tCxjdWW3Pr7Cy1vd3Fs/5Vo+b9v/GNR6L23v25QL2w9aP2tbCrTW0ebznzaxhN+3iUf219OGtD3GoW1rt70vth1MPPp/jFJdEpFlxpiZ7ddrC1YXsotP41OHk/isQhKzR5OWW8iw9GxynQ5yox3cYcTpssYeEJ8Y7VCU6hOJsS6mTbS6I24ZNRvH3kfZvXoxI44+L6pxRVowZCjbV07lzo00ln1JsHIrrtrtJDaVkubfS1aogjzxkRe2j984qXBkUOPOZl/yZHYnWD9YxaTmED9sOMkZw0nOzCNxWC5prhjSovXkhgoREKfVRZDY/auxvjDolwallOqeflZ2YfTUYxg99Zhoh6GUOoyMm3kKTZ/GUrPqtUGZYBljKK+uYu+W1TSWriVQvgVXXQkpzaXkBMrIlzryw8pXkUKFezhVSePZl3QizmH5xGeOIjl7FMOGF5EwbATDHQ6GR+0ZKaWUUpGlCZZSSvWjgux0/uMqZlzZuxAKgWNgXi0jGDLs2FNO2eYVNJSuxVGxkdT6zeT6tpNHeeu406ARyh1Z1MTlsTPjJHYOKyIueywpeePJLJhAemJal+OjlFJKqcONJlhKKdXP6sedS9aGX7Bn+b/JnXlOVGMJhQy79lWye/MK6neuQco3kFy/meG+7YyinCI7kfLhYo+7gJr0YirSxxMzYgrpo6aRPWoiue5Y7TatlFJK2TTBUkqpfjbj9KvYs/73+N65G448q19asYwx7KmoZNemldTvXIPZt57kuv0tUgVhidRedwF1GUdQmzmBpIKp5IydTnz2OEY69b8MpZRSqjv6v6VSSvWz7GEp/GvMTZy99ddsfeFXjL7oNxGr2xjDvopKdm9aQV3pGsy+jSTVbSLXu5182dc61im8RaomcwIJ+dPIGXsESbnjKdBESimllDpkvfpfVEQWAi1X6kwDaowx00WkEFgPbLS3fWKMub43x1JKqcPJ1y75Ae/e+z4nr7mfzc21jLn4f5DYpB7v7/MH2b1rO1U71tG0ez1SsZGkus3k+HaQSyU5LeVwUebKp2pYMRWZ40nIm0rO2BmkjhivLVJKKaVUH4jYdbBE5P+AWmPMXXaC9W9jzNSDqWOgXQdLKaX6UlV9M5/++Tuc2fwKNZLKjqwTIXcarrR8cMUQCBn8nkZ8tfsINFTgbNhDYvMuUr27yQ3tI078rXU1EUuZayR1yaMJZUwgMW8SOWOOYFjeBNBESimllIq4Pr0OllhX4rsYODkS9Sml1FCQnhzP1257krfe/jcJyx6meO+bJO97udPydSRS7sylJnEMFSkn4soYRWLueDKLiknLLWSMw9mP0SullFKqIxFpwRKR44Hft2RwdgvWWuBLoA74hTHmw072vQ64DmDkyJFHbd++vdfxKKXUYNTs9bN79w6ay3eACeJyCO7YBIZlDSctIwdHTHy0Q1RKKaWUrbMWrG4TLBF5GzqcgffnxpiX7TIPAZuNMf9nL8cCScaYShE5CngJmGKMqevqWNpFUCmllFJKKTUYHHIXQWPMqd1U7AIuAI4K28cLeO3Hy0RkCzAe0OxJKaWUUkopddiKxMVXTgU2GGNKW1aISJaIOO3Ho4FxwNYIHEsppZRSSimlBqxITHJxCbCg3brjgbtExA+EgOuNMVUROJZSSimllFJKDVgRm6Y9EkSkHBhos1xkAhXRDkL1Gz3fQ4ee66FDz/XQoud76NBzPbQMxPM9yhiT1X7lgEqwBiIRWdrR4DV1eNLzPXTouR469FwPLXq+hw4910PLYDrfkRiDpZRSSimllFIKTbCUUkoppZRSKmI0wereX6IdgOpXer6HDj3XQ4ee66FFz/fQoed6aBk051vHYCmllFJKKaVUhGgLllJKKaWUUkpFiCZYSimllFJKKRUhmmB1QUTOEJGNIrJZRH4S7XhU5IhIgYi8JyLrRGStiNxsr08XkbdEZJN9PyzasarIEBGniHwhIv+2l4tE5FP7/b1QRGKiHaOKDBFJE5HnRGSDiKwXka/oe/vwJCK32p/ha0RkgYjE6Xv78CEifxeRfSKyJmxdh+9lsdxvn/dVInJk9CJXB6uTc/07+3N8lYi8KCJpYdt+ap/rjSJyelSC7oImWJ0QESfwJ+BMYDJwqYhMjm5UKoICwI+MMZOBY4Eb7fP7E+AdY8w44B17WR0ebgbWhy3/P+A+Y8xYoBr4TlSiUn3hj8DrxpiJwBFY513f24cZEckDfgDMNMZMBZzAJeh7+3DyGHBGu3WdvZfPBMbZt+uAh/opRhUZj3HguX4LmGqMKQa+BH4KYH9fuwSYYu/zZ/t7+4ChCVbnjgY2G2O2GmN8wNPAuVGOSUWIMabMGLPcflyP9QUsD+scP24Xexw4LyoBqogSkXzgG8Df7GUBTgaes4vouT5MiEgqcDzwCIAxxmeMqUHf24crFxAvIi4gAShD39uHDWPMB0BVu9WdvZfPBf5hLJ8AaSIyvF8CVb3W0bk2xrxpjAnYi58A+fbjc4GnjTFeY8w2YDPW9/YBQxOszuUBO8OWS+116jAjIoXADOBTIMcYU2Zv2gPkRCsuFVF/AO4AQvZyBlAT9sGt7+/DRxFQDjxqdwn9m4gkou/tw44xZhdwL7ADK7GqBZah7+3DXWfvZf3edni7BnjNfjzgz7UmWGpIE5Ek4HngFmNMXfg2Y13DQK9jMMiJyFnAPmPMsmjHovqFCzgSeMgYMwNopF13QH1vHx7ssTfnYiXVI4BEDuxipA5j+l4eGkTk51hDO56Kdiw9pQlW53YBBWHL+fY6dZgQETdWcvWUMeYFe/Xeli4F9v2+aMWnImY2cI6IlGB19T0Za4xOmt2tCPT9fTgpBUqNMZ/ay89hJVz63j78nApsM8aUG2P8wAtY73d9bx/eOnsv6/e2w5CIXA2cBVxm9l+8d8Cfa02wOvc5MM6ejSgGazDdoijHpCLEHoPzCLDeGPP7sE2LgKvsx1cBL/d3bCqyjDE/NcbkG2MKsd7H7xpjLgPeAy6yi+m5PkwYY/YAO0Vkgr3qFGAd+t4+HO0AjhWRBPszveVc63v78NbZe3kRcKU9m+CxQG1YV0I1CInIGVjd+88xxjSFbVoEXCIisSJShDWxyWfRiLEzsj8ZVO2JyNexxm44gb8bY+6ObkQqUkRkDvAhsJr943J+hjUO6xlgJLAduNgY036ArRqkRORE4DZjzFkiMhqrRSsd+AK43BjjjWJ4KkJEZDrWhCYxwFbg21g/KOp7+zAjIr8G5mJ1H/oCuBZrLIa+tw8DIrIAOBHIBPYCvwJeooP3sp1kP4jVTbQJ+LYxZmkUwlaHoJNz/VMgFqi0i31ijLneLv9zrHFZAaxhHq+1rzOaNMFSSimllFJKqQjRLoJKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKTXAiEihiBgRcUU7FjU0iMhaETkx2nEopdThQBMspZRSg56IzBeRBvvmExF/2PJr0Y5voDPGTDHGLI5knSLymH0uGsJuzkgeQymlBiIxxkQ7BqWUOqyIiMsYE+jF/oXANsDdm3qGKhGZB4w1xlzewbZenZv+NJhi7YiIPAaUGmN+Ee1YlFKqP2kLllJKRYCIlIjIj0VkFdAoIi4ROVZE/iMiNSKyMrwLlogsFpH/FZHPRKRORF4WkfRO6v62iKwXkXoR2Soi/9Vu+7kissKuZ4uInGGvTxWRR0SkTER2ich/d9eCICJjRORdEakUkQoReUpE0sK2VYnIkfbyCBEpb3leInKO3dWsxn5+k9q9PreJyCoRqRWRhSISd/Cv9MHr5NwYERkbVuYxEfnvsOWz7Ne0xj6HxT081okiUioiP7NfvxIRuSxs+zdE5Av7XO20k8GWbS1dQ78jIjuAd+31z4rIHvt1+0BEprSL+88i8prdQvSRiOSKyB9EpFpENojIjB6+Rqf25DkqpZTqmiZYSikVOZcC3wDSgBzgFeC/gXTgNuB5EckKK38lcA0wHAgA93dS7z7gLCAF+DZwX1iSczTwD+B2+7jHAyX2fo/Z9Y4FZgCnAdd28xwE+F9gBDAJKADmARhjtgA/Bp4UkQTgUeBxY8xiERkPLABuAbKAV4F/iUhMWN0XA2cARUAxcHWHAYjMsRObzm5zunkOHWk9N921CtkJyd+B/wIygIeBRSIS28Nj5QKZQB5wFfAXEZlgb2vEOu9pdjw3iMh57fY/Aeu1P91efg0YB2QDy4Gn2pW/GPiFfUwv8LFdLhN4Dvh9D+PukIj8pKvz0c3u37OT8mUicmFv4lBKqcFCEyyllIqc+40xO40xzcDlwKvGmFeNMSFjzFvAUuDrYeWfMMasMcY0Ar8ELu6ohckY84oxZouxvA+8CRxnb/4O8HdjzFv2cXYZYzaISI59rFuMMY3GmH3AfcAlXT0BY8xmuy6vMaYc68v5CWHb/wpsBj7FSgx/bm+aC7xi7+sH7gXiga+2e312G2OqgH8B0zuJYYkxJq2L25KunkMnws9Nd64DHjbGfGqMCRpjHsdKXI49iOP90n4N38dKtC8GMMYsNsasts/VKqyk9IR2+86zz1mzvc/fjTH1xhgvVrJ7hIikhpV/0RizzBjjAV4EPMaYfxhjgsBCrOT6kBljftvV+ehi1/vZnxj+EnhMRGb3JhallBoMNMFSSqnI2Rn2eBTwzXa/9M/BSko6Kr8dcGO1OrQhImeKyCd2S0ANVuLUUq4A2NJBLKPs+srCjv8w1pfdTolIjog8bXcprAOe7CCmvwJTgQfsL/1gtXhtbylgjAnZzy8vbL89YY+bgKSuYomwnd0XaTUK+FG7c1eA9Rx7otpOmltsb9lXRI4RkffsrpW1wPUc+Pq2xioiThH5rVhdP+vY3zoZvs/esMfNHSz35+vcyhiz3BhTaYwJGGNexWp5uyAasSilVH/SBEsppSInfNagnVgtVOG/9icaY34bVqYg7PFIwA9UhFdod0t7HqtFKMduMXgVqytfy3HGdBDLTqxWl8yw46cYY6Z0UDbc/9jPY5oxJgWrJa7lWIhIEvAH4BFgnuwfN7YbKzFpKSf289vVzfEOICLHSduZ59rfjuu+lgO0n9GpCUgIW84Ne7wTuLvduUswxizo4bGGiUhi2PJIrNcH4J/AIqDAGJMKzCfs9e0g1m8B5wKnAqlAob2+/T59xh5P1un5OIiqDP0Yt1JKRYsmWEop1TeeBM4WkdPtVog4ewKE/LAyl4vIZHs8013Ac3a3rnAxQCxQDgRE5EyssVQtHgG+LSKniIhDRPJEZKIxpgyrK+H/iUiKvW2MiLTvjtZeMtAA1IpIHtbYrnB/BJYaY67F6vo2317/DPANOw438COsBO8/3b1Q7RljPjTGJHVx+/Bg6+zACuBb9rk5g7bd9P4KXG+3NomIJIo1OUUytE4s8Vg39f9aRGLsZPAs4Fl7fTJQZYzx2OPnvtVNPclYr2MlVkL4PwfxHCPCGPM/XZ2PzvYTkYtEJMn+2zsNK1lf1H+RK6VUdGiCpZRSfcAYsxOr5eFnWMnRTqxkJfxz9wmsiSj2AHHADzqop95e/wxQjfWFfFHY9s+wJ74AaoH32d+SdCVWgrbO3vc52nZR7MivgSPtul4BXmjZICLnYk1ScYO96ofAkSJymTFmI9YX6AewWuHOBs42xvi6OV603IwVYw1wGfBSywZjzFLgu8CDWK/bZtpOyFEAfNRF3Xvs/XZjdYu73hizwd72PeAuEakH7sQ6r135B1YXw11Y5/GT7p7YAHIzVtw1wO+A75oIX2tLKaUGIr0OllJKRYGILAaeNMb8LdqxqJ6zZ0VcCRTbk3m0334i1nnNb79NKaXU0OCKdgBKKaXUYGG3yE3qtqBSSqkhK2JdBO1+7F+IyL/t5SIR+VRENot1QcmY7upQSinV90RkficTFszvfm81GInIyC4mqhgZ7fiUUupwErEugiLyQ2AmkGKMOUtEngFeMMY8bf+nvdIY81BEDqaUUkoppZRSA1BEWrDsWbG+AfzNXhbgZKwB1QCPA+dF4lhKKaWUUkopNVBFagzWH4A7sKaTBcgAaowxAXu5lLYXm2wlItcB1wEkJiYeNXHixAiFpJRSSimllFJ9Y9myZRXGmKz263udYInIWcA+Y8wye/akg2KM+QvwF4CZM2eapUuX9jYkpZRSSimllOpTIrK9o/WRaMGaDZwjIl/Huo5LCtaFKNNExGW3YuVjXQtDKaWUUkoppQ5bvR6DZYz5qTEm3xhTCFwCvGuMuQx4D7jILnYV8HJvj6WUUkoppZRSA1nEpmnvwI+BH4rIZqwxWY/04bGUUqpfePxBnvl8Jw3eQPeFlVJKKTXkRPRCw8aYxcBi+/FW4Oje1un3+yktLcXj8fS2KjXExMXFkZ+fj9vtjnYo6jDyyOINNCy+n2dKzuCab54f7XCUUkopNcBENMHqC6WlpSQnJ1NYWIg1+7tS3TPGUFlZSWlpKUVFRdEORx1GvF++w4/dT8Pap+HCc8DhjHZISimllBpA+rKLYER4PB4yMjI0uVIHRUTIyMjQlk8VcXE1m1of12z5PIqRKKWUUmogGvAJFqDJlTok+nejIi0UMmR5thO0Pzor17wV5YiUUkopNdAM+C6CSik1UNR7A4yRXexOmYHUbidUtibaISmllFJqgBkULVjRJiL86Ec/al2+9957mTdvXvQCCvPJJ59wzDHHMH36dCZNmtQa1+LFi/nPf/7Tq7rPOOMM0tLSOOussyIQqVKDX12zn1ypIpiSzzbHKJJqN0Y7JKWUUkoNMJpg9UBsbCwvvPACFRUVEa3XGEMoFOpVHVdddRV/+ctfWLFiBWvWrOHiiy8GIpNg3X777TzxxBO9qkOpw0lNk58kmpH4NCoTx5Dl3QEBX7TDUkoppdQAMqi6CP76X2tZt7suonVOHpHCr86e0mUZl8vFddddx3333cfdd9/dZlt5eTnXX389O3bsAOAPf/gDs2fPZt68eSQlJXHbbbcBMHXqVP79738DcPrpp3PMMcewbNkyXn31VR588EFee+01RIRf/OIXzJ07l8WLFzNv3jwyMzNZs2YNRx11FE8++eQB44r27dvH8OHDAXA6nUyePJmSkhLmz5+P0+nkySef5IEHHmDixImdxrllyxY2b95MRUUFd9xxB9/97ncBOOWUU1i8eHGXr82zzz7Lr3/9a5xOJ6mpqXzwwQd4PB5uuOEGli5disvl4ve//z0nnXQSjz32GC+99BKNjY1s2rSJ2267DZ/PxxNPPEFsbCyvvvoq6enp/PWvf+Uvf/kLPp+PsWPH8sQTT5CQkNDmuMceeyyPPPIIU6ZY5+7EE0/k3nvvZebMmV3Gq1Rv1DR5mIKH+oRUfMMKcDUEoXobZE2IdmhKKaWUGiC0BauHbrzxRp566ilqa2vbrL/55pu59dZb+fzzz3n++ee59tpru61r06ZNfO9732Pt2rUsXbqUFStWsHLlSt5++21uv/12ysrKAPjiiy/4wx/+wLp169i6dSsfffTRAXXdeuutTJgwgfPPP5+HH34Yj8dDYWEh119/PbfeeisrVqzguOOO6zLOVatW8e677/Lxxx9z1113sXv37h6/LnfddRdvvPEGK1euZNGiRQD86U9/QkRYvXo1CxYs4KqrrmqdzW/NmjW88MILfP755/z85z8nISGBL774gq985Sv84x//AOCCCy7g888/Z+XKlUyaNIlHHjnwGtVz587lmWeeAaCsrIyysjJNrlSfa6irwSGGmMQ04nLGAlBftqmbvZRSSik1lAyqFqzuWpr6UkpKCldeeSX3338/8fHxrevffvtt1q1b17pcV1dHQ0NDl3WNGjWKY489FoAlS5Zw6aWX4nQ6ycnJ4YQTTuDzzz8nJSWFo48+mvz8fACmT59OSUkJc+bMaVPXnXfeyWWXXcabb77JP//5TxYsWNBhq1NXcZ577rnEx8cTHx/PSSedxGeffcZ5553Xo9dl9uzZXH311Vx88cVccMEFrc/ppptuAmDixImMGjWKL7/8EoCTTjqJ5ORkkpOTSU1N5eyzzwZg2rRprFq1CrCSsF/84hfU1NTQ0NDA6aeffsBxL774Yk477TR+/etf88wzz3DRRRf1KF6leqO5vhqA2MRU0nMmwlKoLt1IcrGOU1RKKaWUZVAlWNF2yy23cOSRR/Ltb3+7dV0oFOKTTz4hLi6uTVmXy9VmfFX49ZgSExN7dLzY2NjWx06nk0Ag0GG5MWPGcMMNN/Dd736XrKwsKisrDyjTWZxw4HTmBzO9+fz58/n000955ZVXOOqoo1i2bFmX5cOfk8PhaF12OBytz+/qq6/mpZde4ogjjuCxxx7rMGHMy8sjIyODVatWsXDhQubPn9/jmJU6VMHmGgDcicMYMTyfehOPr3xLdINSSiml1ICiXQQPQnp6OhdffHGbLmunnXYaDzzwQOvyihUrACgsLGT58uUALF++nG3btnVY53HHHcfChQsJBoOUl5fzwQcfcPTRR/c4pldeeQVjDGB1PXQ6naSlpZGcnEx9fX23cQK8/PLLeDweKisrWbx4MbNmzerx8bds2cIxxxzDXXfdRVZWFjt37uS4447jqaeeAuDLL79kx44dTJjQ8zEq9fX1DB8+HL/f31pPR+bOncs999xDbW0txcXFPa5fqUPmsd5TMQmp5KUnsMNk46wpiW5MSimllBpQep1giUiBiLwnIutEZK2I3GyvTxeRt0Rkk30/rPfhRt+PfvSjNrMJ3n///SxdupTi4mImT57c2pJy4YUXUlVVxZQpU3jwwQcZP358h/Wdf/75FBcXc8QRR3DyySdzzz33kJub2+N4nnjiCSZMmMD06dO54ooreOqpp3A6nZx99tm8+OKLTJ8+nQ8//LDTOAGKi4s56aSTOPbYY/nlL3/JiBEjACv5++Y3v8k777xDfn4+b7zxBmB1S2wZb3X77bczbdo0pk6dyle/+lWOOOIIvve97xEKhZg2bRpz587lsccea9Ny1Z3f/OY3HHPMMcyePZuJEye2rl+0aBF33nln6/JFF13E008/3TpzolJ9TbzWJDvOhDRiXU72OoeT2LgjylEppZRSaiCRltaPQ65AZDgw3BizXESSgWXAecDVQJUx5rci8hNgmDHmx13VNXPmTLN06dI269avX8+kSZN6FaPqXPvZDg83+vejIun5x//Ahdt+BTd+DlnjefGeazm76UVcd+4DhzPa4SmllFKqH4nIMmPMAbOs9boFyxhTZoxZbj+uB9YDecC5wON2scexki6llBq0HD67221cCgC+lFG4CEDdrihGpZRSSqmBJKKTXIhIITAD+BTIMcaU2Zv2ADmRPJaKjHnz5kU7BKUGDZffTrBikwFwZIyGPRCo2IorbWQUIxs8dlQ2UZAef1CT6SillFKDScQmuRCRJOB54BZjTJurARurH2KHfRFF5DoRWSoiS8vLyyMVjlJKRZwj0Gw9cFsXvo7Ptq6FVbvry2iFNKi8vGIXP/6/B3n9qT9EO5RBo7LBS2l1U7TDGFT21Xu6L6SUUn0oIgmWiLixkqunjDEv2Kv32uOzWsZp7etoX2PMX4wxM40xM7OysiIRjlJK9QlHwIOXGLBbX9JHFOI3TprKt0Y5ssHh7XV7WRBzN2dunofZ/UW0wxnwgiHDBQ/9hxv/8E8a17we7XAGhb8v2cYxd7/FF28+Cd6ur0mplFJ9JRKzCArwCLDeGPP7sE2LgKvsx1cBL/f2WEopFU2OoAef7J8RsyAjmd0mg1BlSfSCGkQad67c/3jpgihGMjhs3tdAU+UuXpYfkfjcXGjQXh7dWfj5Tk5yrGDGf26ER8+MdjhKqSEqEi1Ys4ErgJNFZIV9+zrwW+BrIrIJONVeVkqpQcsZ9OB37E+whqfGsYss3PU7oxjV4GCMIb1hEwBVJgn/9s+iHNHAt2FPHTMcm/evWL8oesEMAh5/kM3lDRzvWGWt2LMKGiujG5RSakiKxCyCS4wxYowpNsZMt2+vGmMqjTGnGGPGGWNONcZURSLgaHnppZcQETZs2NBpmZKSEqZOnRqxY27cuJETTzyR6dOnM2nSJK677jrAukjwq6++2qu6r7nmGrKzsyMar1KHO2fIiz+sBcvldFDpHk5Ss84i2J3qJj/ZIesagq+FjiW5ag0EfFGOamDbtLeB8Y7dANSRBNs/inJEA1tZrYdgyHBS3CbqTby1Ul8zpVQURGySi8PdggULmDNnDgsWdNytJRAI9PoYwWCwzfIPfvADbr31VlasWMH69eu56aabgMgkWFdffTWvv659+pU6GO6gh4Cj7UWzmxLySAlWg785SlENDmW1zQyXSnzuVEoSpuEyfqjeFu2wBrSyWg/TYsqoi83lk+AEQmWroh3SgFZWa70HcylnUfCrBB0xsPPTKEellBqKIjpNe5977SewZ3Vk68ydBmd23XuxoaGBJUuW8N5773H22Wfz61//GoDFixfzy1/+kmHDhrFhwwbefPNNAoEAl112GcuXL2fKlCn84x//ICEhgXfeeYfbbruNQCDArFmzeOihh4iNjaWwsJC5c+fy1ltvcccdd3DJJZe0HresrIz8/PzW5WnTpuHz+bjzzjtpbm5myZIl/PSnP+Wss87ipptuYs2aNfj9fubNm8e5557LY489xosvvkhtbS27du3i8ssv51e/+hUAxx9/PCUlJV0+7/fff5+bb74ZABHhgw8+ICkpiTvuuIPXXnsNEeEXv/gFc+fOZfHixfzqV78iLS2N1atXc/HFFzNt2jT++Mc/0tzczEsvvcSYMWP417/+xX//93/j8/nIyMjgqaeeIien7Qz+l1xyCVdccQXf+MY3ACsZPOuss7jooot6dk6V6iOukJdgTNsEK5g6EuqBmh2QNSE6gQ0Ce2o95EoVweQRBGPHQBlQuVlfsy7sq/dQ5NiDJ3UM6xpz+Frli+BrhJjEaIc2IJXVeIjHQ2yggVKyqIofRVb5xmiHpZQagrQFqwdefvllzjjjDMaPH09GRgbLli1r3bZ8+XL++Mc/8uWX1jTNGzdu5Hvf+x7r168nJSWFP//5z3g8Hq6++moWLlzI6tWrCQQCPPTQQ611ZGRksHz58jbJFcCtt97KySefzJlnnsl9991HTU0NMTEx3HXXXcydO5cVK1Ywd+5c7r77bk4++WQ+++wz3nvvPW6//XYaGxsB+Oyzz3j++edZtWoVzz77LEuXLu3x87733nv505/+xIoVK/jwww+Jj4/nhRdeYMWKFaxcuZK3336b22+/nbIy63JnK1euZP78+axfv54nnniCL7/8ks8++4xrr72WBx54AIA5c+bwySef8MUXX3DJJZdwzz33HHDcuXPn8swzzwDg8/l45513WpMtpaLJbXwE27VguTIKAfBVaGtMV/bWeRkhlUhqHrHZ4wEwFZu72WtoK6/3kmFqcKfmsj40EsGAJgyd2lPnIUeqAfAnZFPiGAXlnXfrV0qpvjK4WrC6aWnqKwsWLGhtybnkkktYsGABRx11FABHH300RUVFrWULCgqYPXs2AJdffjn3338/X/va1ygqKmL8eOtLxVVXXcWf/vQnbrnlFsBKKDry7W9/m9NPP53XX3+dl19+mYcffpiVK1ceUO7NN99k0aJF3HvvvQB4PB527NgBwNe+9jUyMjIAuOCCC1iyZAkzZ87s0fOePXs2P/zhD7nsssu44IILyM/PZ8mSJVx66aU4nU5ycnI44YQT+Pzzz0lJSWHWrFkMHz4cgDFjxnDaaacBVsvbe++9B0BpaSlz586lrKwMn8/X5rVrceaZZ3LzzTfj9Xp5/fXXOf7444mPj+9RzEr1JbfxEnSmtFmXlDsGVkLt7s1kTYpSYINAbbOfbKnGlTqCEbm5VKxIIWHPRhKiHdgAVtHgJTlUiwzLZZuxPlup3gZ5R0Y3sAGqqtFHobsWAHdaHuvqa5jV/DZ461svDq6UUv1BW7C6UVVVxbvvvsu1115LYWEhv/vd73jmmWewrp0MiYltu2qIfX2czpY70r6OcCNGjOCaa67h5ZdfxuVysWbNmgPKGGN4/vnnWbFiBStWrGDHjh1MmjTpkONp8ZOf/IS//e1vNDc3M3v27C4n+ACIjd3/y77D4WhddjgcrWPUbrrpJr7//e+zevVqHn74YTyeAy8IGRcXx4knnsgbb7zBwoULO01AlepPxhhijY+QK67N+uzckXiMm2a9FlaX6jx+UmnCmTCM0ZmJbDO5+Mu1BaszoZChqbGOGOPFnZKFN2mktaFK/846U+/xMyrGSrASswpY1pBpbajcEsWolFJDkSZY3Xjuuee44oor2L59OyUlJezcuZOioiI+/PDDDsvv2LGDjz/+GIB//vOfzJkzhwkTJlBSUsLmzdaXiSeeeIITTjih22O//vrr+P1+APbs2UNlZSV5eXkkJydTX1/fWu7000/ngQceaE36vvhi/wU833rrLaqqqlrHQbW0rvXEli1bmDZtGj/+8Y+ZNWsWGzZs4LjjjmPhwoUEg0HKy8v54IMPOProo3tcZ21tLXl5eQA8/vjjnZabO3cujz76KB9++CFnnHFGj+tXqq/4giFi8WGcbROs/PRESk0Wpnp7lCIbHJoaG4iRABKXQmFmIttCw3HXaLLQmQZfgHTqrIXELIZnDaPSkQFV2hW1M3XNAfJc1muWmTOSTYEsa4NOpqKU6meaYHVjwYIFnH/++W3WXXjhhZ3OJjhhwgT+9Kc/MWnSJKqrq7nhhhuIi4vj0Ucf5Zvf/CbTpk3D4XBw/fXXd3vsN998k6lTp3LEEUdw+umn87vf/Y7c3FxOOukk1q1bx/Tp01m4cCG//OUv8fv9FBcXM2XKFH75y1+21nH00Udz4YUXUlxczIUXXtjaPfDSSy/lK1/5Chs3biQ/P59HHnkEgPnz5zN//nwA/vCHPzB16lSKi4txu92ceeaZnH/++RQXF3PEEUdw8sknc88995Cbm9vj13PevHl885vf5KijjiIzM7N1/dKlS7n22mtbl0877TTef/99Tj31VGJiYnpcv1J9xeMPESc+jLttd9Xs5Fh2k0WMXgurS/4mq2WBuFRyU+LYLsNJ8JZb3bfUAeo9ATJaEqyETAqGJbDd5GgLVhfqvX7Snc0gDnKzs9lhsq0N1SVRjUspNfQMrjFYUdAydijcD37wg9bHJ554YuvjwsLCTrvRnXLKKW1allp0NZPf73//e37/+98fsD49PZ3PP/+8zbqHH364wzry8/N56aWXDljfWYIYnvi1TEzR3u9+9zt+97vftVl34okntnktFi9e3OG2c889l3PPPfeAOmfOnMnf/va31mW3201V1aC+dJo6zHj9QeLxUuNqm2A5HEJ1zAhSPEuiFNngEGyqsR7EpeJ0CA2Jo8CDlTAMPyKaoQ1Idc1+0sVOPhMzKUhPYJM/mxmV6+l5R++hpa45wDBHE8Slkp+eSCPxeGLSidNWP6VUP9MWLKWU6gGPP0QcfsQdd8C2psQ8EkP14KmNQmSDg/Hsb8ECCKaNtpYrdRxWR+o9ATKkpQUrg4L0eLabHKRxL3gbohvcAFXv8ZMqdoI1zPohpDo2T7sIKqX6nSZYh7Grr76aBx98MNphKHVY8Pj9xIofcR84o6VJG2U9qNnRz1ENIl47WYi1ZmGMzbITLB271qF6j59UrMttED+MgmEJlBj7moGaMHSozhMgiSaITSHO7SQ7OZYyR452EVRK9btBkWC1TN6g1MHQvxsVSV5PE0CHCZbbvhaWR2cS7JSzJcGKsxKs4dmZVJgUvHr9sA7VewKkSBMGgdgU8oclsN3Y4111HNYBjDHUNftJNI2traQF6QlsC2ZDbSkEfFGOUCk1lAz4BCsuLo7Kykr9sqwOijGGyspK4uIO7M6l1KHwNVmtCY6YAxOs5NwxgHUtLNUxp98eTxT25bfUZOHTpLRDdR4/yTRhYpLA4bAmU3FqgtUZjz9EIGRICIUlWMPi2eDJABOCWp2ERinVf/p8kgsROQP4I+AE/maMOairBefn51NaWkp5eXmfxKcOX3FxceTn50c7DHWY8PmsFixn7IEJVk7OcOpNPN5ybY3piDcQJD7YYP2kZ3cRHJWRwJcmm3G12q2yI/WeADnShNgtfg6HMCwtg4amFJK0W+UB6jzWJU3igvUQlwZA/rAEPm8aBjFY3SozxkQvQKXUkNKnCZaIOIE/AV8DSoHPRWSRMWZdT+twu90UFRX1VYhKKdUjAbuLoDMm4YBtBRnWtbASa/SLb0fqPQGS7e5uEpMEQMGwBN422cQ1fQbBADh1UttwdR4/46UZsZMFgPz0BMqacxinf2cHqLcTrJhAQ2s31IL0eJ4N2VO160yCSql+1NddBI8GNhtjthpjfMDTwIFzdCul1AAX8FpdBF2xByZYGYkx7JZs4hpL+zusQaGu2U8yzfjdyeCw/ttJjHVRHTMcpwlC3a4oRzjw1HsCpDmaW5MFsLq8bQtm6qQNHahtDuAkiDsQ3kUwgX2kEXLEgCalSql+1NcJVh4Q3vG51F7XSkSuE5GlIrJUuwEqpQaqoLcZAHfcgQmWiFAbO5wUz27Q8aIHqPMESJFGgu7kNuv9KSOtB/rl9wD1ngCpjqbWLpVgdXnbEsjE1OyEUDCK0Q089R4/SVjv0fBxfgYHDfEjdLZKpVS/ivokF8aYvxhjZhpjZmZlZUU7HKWU6lDQHoPljk3scLsnqYA444Gmyv4Ma1Bo8ARIoRkTliwAuNLt7t/aInMAq9WvqTVZAKvL206TjYT8ULc7itENPC1JPND6mg1PjcPpECrdwzWJV0r1q75OsHYBBWHL+fY6pZQaVIK+zluwAEya3Rqjv5QfoMHrt8ZgxbVNsJJzRhEwDoKVJdEJbACzWmSa2nURTGCHsccUacLQRr3HT0pLC5adyLucDnJT4thFtr4vlVL9qq8TrM+BcSJSJCIxwCXAoj4+plJKRZyxE6yYThKsuEyrNaZp75Z+i2mwqPMESKEJR1hrDEBBZiq7TCbN+/Q1a6++2U9CqKFdC1YCO43d00Nb/dqoaz6wBQtgZHoCW/wZ4KmB5pqoxKaUGnr6NMEyxgSA7wNvAOuBZ4wxa/vymEop1RdCfivBcnXSRbDlWlh1ezRZaK/BEyCZJpwJaW3Wj7QThpDO8HYAv6cRJ6E2Y7CGJbipdecQwqEtMu3Ue/ykSdsxWGB1q1zrSbcWtNVPKdVP+nwMljHmVWPMeGPMGGPM3X19PKWU6gvGTrBwdXzx6hE52VSZJHyVmiy01+C1WhecCW1bsEamW13e3PV6EdgDeGut+7BkQUTITU+h2qkzCbZX5/GTE+OxFtq1YK1tGmYtaFKqlOonUZ/kQimlBgW//eXNfeCFhsEaH7PTZOOo0Qvnttdgz/DmjE9rsz47OZYyySHeVwXehugENwAFgiHc/nproX23yvQEdpKjrTHt1HsCZLhbEqywcWvh3Sr1NVNK9RNNsJRSqgckYM0i2FkLVkq8i716LawOeZvqcYpp090NwOEQmpPseZA0MW3V4A2QwoHjicBK5Lf4MzDagtVGXbOfDKedYMW2TbDqSLKuwaYtWEqpfqIJllJK9URLC1YnCZaIUBs3glTvHgiF+jGwgS/UMrlAu1kEAUJpo6wHmjC0qvcESBE7oY9La7OtID2ebcEspGEv2JcOUNZrNqzlumEOZ+v6kenWpDR1cXn6N6aU6jeaYCmlVA84gl68xICj849Nb3IBbvzQsKcfIxv49idYqQdsi8saDYCp1rFrLWqb/Z22YI1s0+VNW/1a1Hn8pDqaD3i9MhJjSIhxss+Zq10ElVL9RhMspZTqAUfQg19iui4zzGqNCVWV9ENEg4inzrqPPbAFKzNrOPUmHk+5Jlgt6jx+kjuYEQ9axhTptbDaq7cvBdD+b0xErOuHhbKshNSYKEWolBpKNMFSSqkecAY9+B2xXZZJzLGnai/TqdrDOX12gtWuuxvAyIxESk0WvvKt/RvUAFbXHD4Gq23C0DKZCqBd3sLUNftJorHDVtKC9AQ2+TIg4IGGvVGITik11GiCpZRSPeAMegl0k2Bl5I8FoH7P5v4IadBw+FpmxDuwBWtUhjVVu2hrTKs6j58UaSLkigNX27+5+BgnJjEbn8TqpA22QDBEoy94wIWZW4xMT2B1U5q1oK+ZUqofaIKllFI94Ap5uk2wRmWns9ek4a/Q7m7hWqcc76CLYP4wK8GKb9yp3bdsdS1jsDp4vQAKMhLY58zRFixbgzcAQHyoscMkviA9ns3+DGtBXzOlVD/QBEsppXrAHfISdHQ8g2CLEWnx7DC5uOr0V/IWxhhiAh1f0wmsFpmamOG4Q15o2NfP0Q1MdfYsgtLuumEtRqYnsD2UrWOwbPUeK8GKDdR32oJVqtfCUkr1I02wlFKqB+JMM35XQpdlnA6hPDaf1Cb9Etei2R8kiSaC4gZ3xwmqP3Wk9UC//AJWC1a6oxnpIFkAaxzW5pZrYWmrH7XNfoQQbn/nXQS9xOCJy9IugkqpfqEJllJKdcMYQ7xpJuhO7LZsU1IhqcFq8NT2Q2QDX4M9u5vfndRpGUd6ofVAu28B1hisNEdTh8kCWF3etoeyEV8DNFX1c3QDT22zn0Q8CKEOX7P8YdYPI1UxIzSJV0r1C02wlFKqG75giAQ8BF3dJ1jBYdZMgqZSZxIEqPcGSJYmAu6OxxMBJGVbr5m/UseugT2LoHSeYI1MT9x/LSxNSqlt9pOMPa19B+PW4mOcZCXHUubIhSr9G1NK9b1eJVgi8jsR2SAiq0TkRRFJC9v2UxHZLCIbReT0XkeqlFJR4vGFSBQPoS5aYVok5I4DoG7Xhr4Oa1Bo8ARIpolQbHKnZfKyh7HXpNG8V5NSsK+D1cmU4wBFmYnsaL0WVkn/BTZA1TT5SZGOL8zcYmR6AluCOVBXCv7mfoxOKTUU9bYF6y1gqjGmGPgS+CmAiEwGLgGmAGcAfxYRZy+PpZRSUdHsD5KIB2K6b8Ealj+RkBFNsGy1zX5SpRFiO/7iC9aX3x0mm6C2YAFQ1+QjMdR5gpWTEkuFa7i1oC0y1Db7rYsMQ+fdKofFs8Zjt/pV6TXXlFJ9q1cJljHmTWNMwF78BMi3H58LPG2M8RpjtgGbgaN7cyyllIqWZq+PePFhYrtPsEblZrCbDELlm/ohsoGvuslHGg1IYkanZUamWy0y7vqd/RjZwOXzNOEi0GmyICJkZaRT40zXBAsrwUp32q1SHUzTDjAqI5HljenWgnbfVUr1sUiOwboGeM1+nAeE/09Zaq87gIhcJyJLRWRpeXl5BMNRSqnIaG60JqxwdtHNrcXw1Di2m1zctSV9HNXgUNPkZ5g04ErqPMHKTIqhTHJJ9OyBgLcfoxugPDXWfScJFljdBLeb4VCpF7WubfaRF2u3YCV0/Hc2OiuRbaFca0FfM6VUH+s2wRKRt0VkTQe3c8PK/BwIAE8dbADGmL8YY2YaY2ZmZWUd7O5KKdXnmhqsBMsV132C5XI6qIgtIK15u06hDdQ0NpNKI7HJmZ2WEREaEkchmCHffSsYMoiv8+uGtSjMTGS9PwdTqS2ltc1+cl32GKyEjv/ORmcm0Ui8NVV7lbZgKaX6lqu7AsaYU7vaLiJXA2cBpxjT+m1iF1AQVizfXqeUUoOOx06wYhI6nwkvXHNKEQmVr0FjBSQN7R+OPPXVOMRAF10EAQLpY6z/JSo2Qfak/gluAGrwBEjFTha6GLdWlJnIplAu0vSuNVV7Qno/RTjw1Db7yXY2gDO203GShZn2VO2x+YzQLoJKqT7W21kEzwDuAM4xxjSFbVoEXCIisSJSBIwDPuvNsZRSKlq8TVaLQlxizxIsZ6Y1k2CgQlsX/A2V1oP4YV2Wc2ePB8AM8desusnHMLFbsLp4zYoyE9lmWia6GNqtfjVNfjIcDVb3QJEOyyTHuclKjqXUMULHYCml+lxvx2A9CCQDb4nIChGZD2CMWQs8A6wDXgduNMYEe3kspZSKCl9THQCxiZ23KIRLzpsAQNWO9X0W02ARamxJsLpuYcnNymKvScOzd2M/RDVwVTR4yRDr762r1s/CjES2GXtM0RBPSmua/AyjvtPxVy2KMhP50p8NjfvAU9dP0SmlhqJuuwh2xRgztottdwN396Z+pZQaCALNVotCQlLPWrByR03AZ5w07tIEi+Yq676bLmwjMxLYGhrBtH1f9kNQA1dFg5dM7C//iZ0nWJlJMVTG5BHEiXMIT9pgjKG8wUtaWl23f2OjMxNZsTeTy8EahzViRr/EqJQaeiI5i6BSSh2WQs32JBcJaT0qPzonle0mF1MxtJMFAFfLjHjddBEcmZ7AVjOcmJotQ3pykPIGH5lSSygmCdzxnZYTEfIzUyh35QzpWfHqmgP4AiGSQnXdtmCNzkpkVbM9CYZ2E1RK9SFNsJRSqhsOb7X1oJskoUVKnJudznyS6vUaRfFe+/IbSTldlssfFs9WhhPjr4Omyn6IbGCqqLe6CEoXrVctijKT2BYa2lO176v3AJDgr+lBF8EktpscDKIJllKqT2mCpZRS3XB6qgkhEJfW433qEotI9+2CoL/vAhvgGrwBUoNV+JyJEJvUZdlYl5OauFHWwhAeU1TR4CXXWY8kZXdbtigzkXW+bEzlFgiF+iG6gWdfvZdYfMT4ayE5t8uyRZmJeImhOT53SCelSqm+pwmWUkp1I8ZXQ4MkgaPnH5mB9HG4CFpffoeoPbUesqUab1zPpqoPZdrDeofwtZ0qGrxkO+q6HH/VYkxWIlvNcCTQDPW7+yG6gWdfvYdcscf5pYzosuzI9AQcAvtiR4J231VK9SFNsJRSqhux/loanT2b4KJ1n9yJANSWruuLkAaFvXUesqUG0033wBZpw8fiM64hPVV7ZYOPTFMFPWjBGpudxNaWqdqH6Gu2r85LDnYX3uThXZaNcTkoSE9gK/nW6zVEW/2UUn1PEyyllOpGrL8Wr6tnU7S3yCicAkDtjjV9EdKgUFbrIZsaHCldf/FtMTonlRKTg2fP0J2qva6ummRTD6kF3ZYdk5XEVmO32gzVBKvey0i3NQlNdy1YYL1mq7254G+EutI+jk4pNVRpgqWUUt1IDNbhj007qH0KR+RSZtIJ7Bu6ycLe2maypYa49O6/+AKMtRMGUz40u28FQwZH7S5rIW1kt+Xj3E5i0obT7EiEiqH5d7av3suYOHta+27GYAGMy07i03p7JsEh+nemlOp7mmAppVQXGr0BUqknFNezGQRbDE+NYxt5xNUM3TFYdZVlJIgX17BRPSo/NjuJTSaPuIYdEPD1cXQDz946DzlUWAup+T3aZ2x2MiWSD+VDM8HaU9vMKFc1xCRBbPfdeMdkJ7EuYCf85Rv6ODql1FClCZZSSnWhot7DMOqRxK6ngG5PRKiMH0V68/Yhe10nU1ViPRhW2KPymUkx7HaNxGGC1oVgh5idVU2MkJYEq/sugmAlpWv8wzFDNFnYVtHIaMdeSC8CkW7Lj81OooZkfLHpQ7bVTynV9zTBUkqpLlRXVZAoXhw9GN/Rnid1LPGmCerL+iCygc9ZW2I9SC/qUXkRwZ8+zloYgglDaXUzI2UfxuHuUXc3sBKGjcE8pLEcmqr6OMKBpbbZT0WDj9zgbkgf06N9xmZblwsojysasq1+Sqm+pwmWUkp1oaF8BwAx6T1rUQjnyp4AQHPZ+ojGNBgEQ4bYeuu1I61nXQQB4nInWtccG4JffrdVNDLWsRuTMQYczh7tMzY7ic0tE10MsddsW0UjToKkeHZD+uge7ZMS5yYnJZbtDrtb5RBtXVZK9a2IJVgi8iMRMSKSaS+LiNwvIptFZJWIHBmpYymlVH/xVu4EICm750lCi5SCyQBUbx96MwnurGpiJGU0xeWAO67H+43KzWRnKAvfnqGXlG7aV88k524cWRN6vM/YrGQ2G3u81hBr9dtW0UC+lOMwgR4nWADjspNZ68sFTw007Ou7AJVSQ1ZEEiwRKQBOA3aErT4TGGffrgMeisSxlFKqP3mrrI+1tJzCg943r6CIOhOPp2xoffEF2LyvgUmyA3/m5IPar2Wii8DeoZdgleypYoTZC5k9T7BSE9x4E0bgk7gh14K1tbyRKQ77a0dOz//OxmYn8UnLTII6Dksp1Qci1YJ1H3AHEN7Wfi7wD2P5BEgTkZ5dDEUppQaIUO1ugjhwpPRsTEy4wkxr2nFX1dCbDnrLnmrGyC5i84oPaj+ry1sesbVbIRjoo+gGnmZfkLjqjTgIQfakg9p3TE4yO5z5Qy5ZWF9Wz1cTd4E4IXtKj/cbm53EGp/9dWSIJaVKqf7R6wRLRM4FdhljVrbblAfsDFsutde13/86EVkqIkvLy8t7G45SSkVUYuN2qp2Z4HQf9L5xbidl7gJSGkoiH9gAt2/rCmIkSFz+wSVYeWnxbHcU4Az5obqkb4IbgFbvqqVYNlsL+TMPat+x2UmsDwzHDKFkwRjD8h3VHBWzE7ImHFQ31LHZSexlGAF3kiZYSqk+0aMES0TeFpE1HdzOBX4G3HmoARhj/mKMmWmMmZmVlXWo1SilVMQZY8jx7aA6oWez4HWkIXkMacEK8NRFMLKBzRhDzO6l1sJBJgsOh+BJG2stDKEWmRU7q5nu2EwoIavHU7S3GJuVxHr/CKRu15D5O9tW0Uh1o4fR3nWQd9RB7TsuOwkQquKLhtTfmFKq//QowTLGnGqMmdr+BmwFioCVIlIC5APLRSQX2AWE/y+Rb69TSqlBYU9tE0Vm1/6pww9BKMPaN1Q+dLoJllY3M9m/msa4nIOaQbCFO8fuIjeEJm34ZEslx7nW4xh1bI+u5xRubHYym4zdQaRiUx9EN/As217NJNlBrL8Oio4/qH0zkmIZluBmh7NAW7CUUn2iV10EjTGrjTHZxphCY0whVjfAI40xe4BFwJX2bILHArXGmKF5MRil1KC0edMG4sVHYt7BjYkJFz/c2rdm59pIhTXgfbBxD19xrCNY8NWDThYACnKz2WUyCAyRmQS9gSB7t64i21TCmFMOev8x2Yn7E6whkpS+t3EfZ8avsxYK5xz0/i3dKmnYC83VEY5OKTXU9eV1sF7FauHaDPwV+F4fHksppSKudsvnAGSPPbhubuGyR03Eb5w0lg6dBGvHysVkSh3JxWcf0v5js5PYEhqBf4gkWEs2VXBC6DNrYeypB71/bkoc1TEjCIh7SCRYjd4A727Yx3lxy2HEDDiEi4CPzU7mswZ7WMIQal1WSvWPiCZYdktWhf3YGGNuNMaMMcZMM8YsjeSxlFKqr7nLluHDTfzIQ7+M3+icNLabHEzF0PgSV93oo2DXawQkBhl38MkCtEzVno+7ZguEQhGOcOB5YXkp57v/Q6jgGEg7+AtaiwiFWSnsduUPiS5v727YR05gNwVN62DSOYdUx9jsJFZ4cqwFHYellIqwvmzBUkqpQSsYMmTXrmR3/HhwxRxyPVnJsZRIPvG1WyMY3cD18tLNnO1YQtOYMyAu9ZDqGJWRyBbycAWboXZn9zsMYuX1XqrWf8A4duI44tJDrmdMdhIbgyOGRLLwzNKdfDd+MUaccIiv2bjsJHaZLILOoXf9MKVU39MESymlOrB66w6mmU34Cg5+fEc4EaE6oZBh3lII+iMU3cDk8Qep/PBvpEoTKXOuP+R6YlwO6pPtmQQP8y+/f/9oG9c7XiAYmwbFcw+5nrHZSaz2DsdUbwdfU+QCHGDW7Kplw6bNzOVNZOoFkHJol9ccm51ECAe1CYWH/d+YUqr/aYKllFId2Pn5a7gkxPCjvtHrunxpY3ARhKptEYhs4HpuyWqu8j9LbfYsGPXVXtXlzJ5gPTiMxxTtrGpi00cvcoJjFc4TfwwxCYdc19isJDabEQgGKg/PmQSNMfzva+v5UdzLuAjAiT895LqGp8aRGOOk1DVSEyylVMRpgqWUUu0YY0je+m9qJYXksbN7XZ8rZyIA3sN40oZdNc3ELP4N6dJA6gX3HdLsgeHyRoyg3KQSOky//IZChrtf/JRfOh4jkFYEs67tVX0t49aAwzZheHZpKYEtS6zWq6Ouhowxh1yXiDA2O4mNweFQuwN8jZELVCk15GmCpZRS7azevJ1jfJ+yJ/8McLp6Xd+wkVMAqN6xptd1DUTeQJBnHv0jF8vbNM74LuRO63WdY7OT2BTKw1e2LgIRDjwPLd7E2SX/Q4GjHNf5f+7VOD+AkekJ7HaMIITzsEywVpXW8MDLH/Dn+IcgfTSc+ute1zk2O5mlTdnWwhCZhEYp1T80wVJKqXZ2vvVn4sVHwddujEh9I0fkUGbS8e85/L74BoIh5j/+D66v+T8q048k+Rv/HZF6x2ZZF891Vn4JxkSkzoHiif9sI/ndn/EN52fIqfN63Z0SwOV0kJeZwl73iMOuW+WmvfXc+ui7POb+LcOczcg3H4XYpF7XOzY7iaWNdoKlU7UrpSJIEyyllApTUVvPzL3PsDnpKBJGTo9InYUZiWwxw3FXH15jY5p9Qf788INct+MOmhPzyLhmYa9bYlpYF8/Nxx1ogPrD4xr1xhgefns1aa9dz5Wutwh85QfIV2+KWP0trX6HUwvWZ9uquO3hF/l78GcUOfbiuHQBDD8iInWPy06yLqEgrsMuKVVKRVfv+74opdRh5LPn/sDXpZrgibdGrM44t5O9MSM5qul9qzWml+OTBoIte2v47NE7+IFnIRWpk8m8bhEkZUWs/oQYFzUJo8GPlTAcwsVkB5LqRh/3LVjE3B13Mcm5g8DJv8J13K0R/VsYm5XEqvW5HFf1ORLwRSzZjYZgyDB/8Wa2vfsIC1yPEhsXj+Nb/4KRx0TsGGOzkwjgoi5xJKnaRVApFUHagqWUUratO0s5dsd8tiTOYMRRZ0W07qaUMcSHmqB+T0Tr7W/eQJBnX3mNpj+fxKWehewuuojMm96LaHLVqnUmwcHbImOMYdHSLSy49yZ+sfO/GBNbi3xrIa7jfxjxRHtcTjJfhvIQE4SqLRGtuz99saOaGx98jonvfZd7XQ8Rkz8d5/UfRjS5AihITyDG5aDMPWpQt2D5gyH+s6UCX+Dwvyi3UoOFtmAppRTWF+EtC27nFGlELrw34l9+JXM8VEFo30Ych3jtnmgyxrBk2SpqXv8NF/jfptGZSs0ZDzNi1tw+a5HLzsmnpjSJ1PINDMY2v4++3Mvnix7i4vrHOUeqqBtzFikX/KFvklFgYm4y802etVC+AbIn9clx+sqOyib+9OqnFG58hPtdr+GIjcGc9BtcX7kRHM6IH8/pEEZnJvJlKI+JNR+A3wPuuIgfp6/4AiGeX17Ka+++Q1H9Fzw65mLuvfQYUuPd0Q5NqSFPEyyllAKWvPokX2t6lXVFVzN59MyI15+cPxm+hNqdaxk29sSI199XjDEsXbORXW/8H6fXv4RLQpRNuJL88+ZBQnqfHntsTjJfmjyKy9YxeL72wrLNZSx79W8cX7GQWxw7qUqbSvDcf5Ay+rg+PW5hZiI7HXkYBBlErX5byht4+v0VpK/8K3c6XifB5SU45SJcp//mkC8k3FNjs5NYWjKcc0wQKjZGbHxXX6pq9PHPT0pY+Z83ON+3iMecn+NwG1aWLOHbf/wJd11xOlPzUqMdplJDmiZYSqkhb+fO7Uz67OeUuIuYeOn/65Nj5BWMpt7E07B7HcP65AiRFQoZln36PvXvP8js5veYJQG2DD+TkRf9D/mZo/slhrHZSWwO5TG98ot+OV5vhEKGD79Yy553/8zJDf/iKKmjKnkMvtP+RnrxRf0y7s7tdDAiK53yhlyy9w3sa64ZY/hwUwWvLV7M5B1Pc6vzQ+KcPnzjz0ZO+SmunMn9Ese47GQWrcmBGGDPmgGdYG3cU88/PvwS/6rnuFxe4/uObfjjU5Gjb4XsSUxddAt/9dzOjQ/t5txzLuCSWQXIYTDeU6nBqNcJlojcBNwIBIFXjDF32Ot/CnzHXv8DY8wbvT2WUkpFWiAQpOyJ65gujQQveQlHTN+0lYzNSWaLGU7mAB9M3+Tx8tkbC0hb9VdmBdfQTCwloy6k8Os/ZEzuxH6NZVx2Eq+ZPGK870JDeZ91reuNBm+A9957i5ilD3OS/wNiJMjOrOPxfO0W0sef3O8TmkzMTWbtl6PI3rO6X4/bU02+AC8s28n6D57n9IaX+F/nagLuGPyTL8Rxws3E9XO3xrHZSWwL5RJyxuHYu7Zfj90ToZDhvY37eO6DLxi741ludr1NtrMGb9pYmHMf7uK5EJMIgDO3mLR/XsKTNb/hly/v4POSK7n7vGnEx0S+e6VSqmu9SrBE5CTgXOAIY4xXRLLt9ZOBS4ApwAjgbREZb4wJ9jZgpZSKpPcW/B9f833C2qk/ZsrYI/vsOGkJMZQ6CyisH5gXzi3bV86aV/7MhO1PcSJ7KXdksWbyjxh/5veZkNy3XQE7MywxhrLY0RAC9q6GpJOjEkdHSvbV8enrTzBmyxOcLetpJo7SMZdQcMatFGSPi1pcE3JTWLp6JCdVfQKeOohLiVos4XbVNPP0h2sJLHuCi0OvcbljL82JOQSO/QWuWd/GlZgZlbjG5SQRwkFt8jiG7R04SWmjN8Bzy0r58MP3OK3+Rf7g+g+xbj/+olNg9veIHX0yONrNU5Y9Eed/LcY89x3+d8sj/HP1Ni7edSP3X/EVijITo/NElBqietuCdQPwW2OMF8AYs89efy7wtL1+m4hsBo4GPu7l8ZRSKmLWrF7OVzffy5eJRzLlgp/0+fHqk4pIq38fPLUQF/0xEsYY1q5bzb63/sis6lf4mjSzNW4yW475BaOPv5QsZ/QHy5vhR8AuYNdyGBPdBCsUMvxn3VZK35nP7KoXmSvlVMbkUjrjF+Sf9F1Gx6dFNT6ACblJ/MOMshb2rIbC2VGLxRjDsu3VvPLehxRufYr/crxPknhoyD0Kc9z/Ej/5HIjy31hRZiIxLgclriKG7VkS9cso7Kxq4on/bGHP0pe5NPgKVznXEYiNR2ZcCcdcjztrfNcVxKchlz0D7/6Gby25jxm127jxgVu55eLTOW1Kbv88CaVUrxOs8cBxInI34AFuM8Z8DuQBn4SVK7XXHUBErgOuAxg5cmQvw1FKqZ6pb2qGF/6LkLgYcfWjB/4a3Af8mZOhHszetcior/b58Trj8wf55P1/4/psPsd4P2aCOPgy4xSyvnYzoyfNiVpcHSnKz2Nr6XAKdy2P2nVFGrwB3vrwI/j0YU7zvc0c8VKaOoOaE+4hY8a5fTLD3aGakJvC2lCRtVC2MioJli8Q4pVVpaxY/CInVj/Pr5wrCbpceCacB8fdSFJe37UUHyy308Hk4Sl84c1jRnOVdRmFfp7l0xjD0u3V/PODNaR/+QxXOt9glOzDm5IHX70L15FXQvxBjNx0OOHUeVBwDONfuJ7nfD/m9qc2s/KEy/jh1ybgdOi4LKX6WrcJloi8DXT0s8fP7f3TgWOBWcAzInJQo5+NMX8B/gIwc+ZMczD7Hm6CgQBNjXV4PI14m5vxej2E/F6Cfi8m4CUU8BHy+zABD6FQiGDIEAoZQiaEMQYR68JmIoIA4hCMw41xuBCHC3G6cbpjcLpicLljcLncuGPcuFyxuGJicLtjccXGERMTS0xMHA7nwPnSoFSkLXn0Z5xpvmTr8X9kdHZhvxwzLv8I2AYNJV+QHIUEa19NHctf/Tujvnyc49lKLcmsG30NY75+M1OyRvV7PD0xZUQKK0OjKShd1u8JVkl5Ax+8+Ryjvnyc82U5flyUjTwL9+m3kJ8/o5+j6ZkRqXF44jKpc2WQUrayX49d0eDl2Y/WU//pE1wYeIXzHWU0J2TiO/onxBx9DYnJOf0aT08dkZ/Ke8tyuMYBlK3otwTLFwjxyurdvPb+f/hKxXP8xvUBSa5mvCOOgdm/I3biWeDsxe/gE87EecMS4p69mj/tup8FH67mum3f485vzmZUhnYZVKovdfvONcac2tk2EbkBeMEYY4DPRCQEZGJ16CgIK5pvrzusmVCQhtpKaiv30lC9j8bacnx1FZimSqS5CqenGqevDlegEVegkZhgM3GhZuJpIsF4SBAvyUBytJ+ILWAc+HHhFxcBXARwExAXQXEREDdB+xZytL2ZlpszBpxujCMGcVmPxWk9FmcM4rbuccZa3UScMdBSzmE9drjcVsIoDpwO69567MDhAHE4cIgDEIyIdW/Hv3/ZugkhMAYTMoB9M9a9MQaxE9X9y9a9MaE25WgpZ6zk1toWghCYljKhoF0ea5sxrftgQlaMxtjlW17xluNhx0FrPFZZOrgP2eXYf7z22+zapfVA7eoMtz8YWraGrcK0Xo2o7Z7GSFiZdvftDmJE2u/eptwB+4dfAamljHRcd2fHbamjdVtTNWfse4z1Wacx6eSrD6ykj4wsHEvVB0l4tn/Rr+/ztZu2sP3NPzFz3/OcITXsdhXw5YzfMPbU7zAtdmB/0Zqal8oTodGc3/iR1bqQ3LfdnEIhw0cbdrLlnb/zlfJnudJRSr1rGGXFtzD8lBsZmZTdp8fvLRHhiPw01u8p4piyFf1yzHW761j03hJyNj7BZfIeKdJMXWYxoRN+TfyU863P9QFsWn4aCz8ehUlwITs/hQln9unxKhq8/POT7Wz4+N+c7/s3853LMW4nZsr58JXvERvJFr60AhzXvA7v3c3cj+7ntLLl/O8fr2D8KVdzzZwxuJzRahcegIyBgJeQrwlPcwOepkY8TfV4PU34mxvxexrwexsJepsxviYINEHAiwn4IeSHoB8TDEDIj4T8EAxY9yaAIxTAaQI4jPXdoPU7Bdb/zS3/r0vLOvtfafnfS8DgwIij9T4kTgwOEAchcQD2vVjbrWUniGDa3DvAXkac2F+mAMf+x/Z2cVjlRcRqGW1db5URh/WdDHFa388cVh3WemfY/nbd2PW0/L9uNwhYsYj9nGntpith5fyJuRSMnUZWcmx//DX0Wm+7CL4EnAS8JyLjsSY6rQAWAf8Ukd9jTXIxDvisl8eKGhMKUVu5l6rdW6ivKMVTtYtgXRnSsIc4TzlJvgrSglUMMzUkS6jDL05BI9RJMg2ShNcRj9+ViCcmh0ZXAkFXIkF3EiF3IsQmIe54XO5YnO5YHO5YxBVrJSWuGMRlrXM6XThFcDoFh8OBYH2JNMZgEELGQCiEsd/0BIMEgz6Cfh+hgJ9g0E8w4LdaxQJ+QkEfJuDHBH2YgA+CPkzQDwEfEvLZHxZ+JOjDaX94OIwfZ8iPI+jHGfDgNgGcxo/LBHBh3bvt1CzGvjlkSDdSqgFkrzOboivn9+sxp+WnsdSMZsqe5X1+LH8wxEcffUDgP3/iuOb3mCJ+NqUeS/CEmxgx4+v90iUyEgozEtgeN9Gaj3bXMpj4jT45ToM3wBsffYr/479yhu9NjpNG9iWPp27O/aTMuoRk1+D4Tx1gVmE6S0qKOKb8WWishMSMiB8jGDK8vW4Pn737IseWP8sdji8wDgdN486GE24iJT/y15LrK0fkp+IhlqqUSWTs+LTPjrO+rI4nP1yHc/UzXC6v8wPHLnwJ6cjRt+E4+tq++/HA6YZT5+GYcgHJL/+Ae/c8yPp3FnH3x3M58oyr+Hpx/uHRbdAYjKeWxtpyGqvL8daW422oxNdUS7CplpCnDjx1iK8Op68Bd8C6xYUaSQg1kUgTbgI4gAT71lMB4yCA0/7G47R+jMZJMOw+IC5COO0ff8FKMoTWDMpeZ8LGABpj/0BoDA5COEwIByHEhBBCOIzBQRDB4GhZR8haDi/fstx6M+22/f/27ju+rrp+/PjrfWf2aGYzmqZtujctFArSIlD2kC0yVcTxUxH160TUL9+vil9REEWQpbJ3mYJAgQItdNG9mzZp0+yd3P35/XFu0rRN2rS5yU1u38/HI4/cs98nJyc57/NZZtA/nz0cWMCey//IeVPzoh1Kr/Q1wXoIeEhE1gI+4LpwadY6EXkaWA8EgG8OxR4El7/2IMOW/YnsYCVp4iHtgOV1pNBgz6DFmUld8lgCCVnYEjJxJmfgTskiIS2bpPRsktKySUhJJ91mHxLj30SaMQZfMERrIITP58fn9+D3egj6vAT8PkIBLwR9hAK+cDJoJXkmPG1MiJAxmFD4uwlhQmbf5/BbHzBIuCSno9zKelMEItbbIMKlXZ2NmLuUfol0lHSFv9s63h3ZwGbNt962iPWGpusbF7GFdyuAHbF1/cNpC09b23Qsk/AyazVr2taxvtDlzY4t/HJn35sda7F0nkvHtPVFl/2H3wKF/3mKWA/Vpstbos4fRZcKWAe18Zb9vu23jnQpKpLOt04dR+nYrsuW4T/i+x3DdMzrun3X8sh9+7BW2f8fgUjHPrqus398B+47O30E4k5iICW6HZQmTOXUtn9Be/2Rtavopdrmdj5640my1z/EPLMaDy52FFxI4dm3UFIwOeLH628iQvLI4/Buc+Ha8T4S4QSrtLqF9996gfxNj3IRy0CEivwzSDj922QXz41qhwdHa3ZxOr9/exK3Op6B0g9g0kUR23djm58XPtlM9Yf/4ELvyyyw7aY9Lh3frO8Rd+JXSR7g9kuRMDorifQEJ5/ZJ3Na+bPgbQZ3ZMqYgyHDOxurePW9j5i0+2l+aH+PVHsrnqypMPfnuCZdDM4BGkZ7+FRcN72NWfMMhf/5Lb9ovpPyFx7mXy9/Dpl6OfNP/hyFg6XqYCgI7Q34mqutGkENVXibavA1VRNqq8W0WbWCXL4G4vwNJASbSDHNOAiSBHT3lz1gbDSTQKvE0y6JeOyJtNgzCcSNJOBIIuBMIuRKQlyJ2Fzx2FwJ2N2JONyJOOLicccn4XQn4k5IwhWXiDMuEYc7HpfThcvpIG6oJ6kdNWxCQUwoRDAUJBQKEgqGCIWCBENBCIbnmyAmPL9jHWOChEIhQsEghIIETRATNBgTDO/TICZIZzpwQI0c6VpTyFphX1jGMCMhh8JRkX9Z1F/6lGAZY3zAl3pYdgdwR1/2H23O+BQa4vKpSjoBkzYC17AiErMKSc8ZwbDsfIa54ohO58VDi4jgdthxO+wQ5+TI3gspFVu8ecfD9n8R3PEh9onnRWy/G3bsZOsbf2Pa3mc4X6qos2eybdKtFJ/5TcYnDZ1/St05bsxwPto8gbkb/43r7L4PBG2M4cMNZWx9+yHmVD/LtbYyWhwpVE/6OjmnfYOCtMLD72QQm1GYzmbHGNrtScRv/ndEEqyNe5t4adESMtf/g0vlbVKljcZhEwl+7qfET7lk4JKEfmCzCaeUZPHk1vGcFvLDtndh4gV92md9q4+nPt3Fhg9f5jzPQv5gX4lx2gmOOx/mfoO4gtnRSd5tdmTalSRNuYzghpdxv/93rql8EdvK59mzYhhvOqfhHz6TYSOnkTNmBiMKCvpejTAUBG8TwdY6Wuoraa2vxNNYjb+5mmBLDbTVWsmSt554fz0JwUaSTAs2DC6shv5dn7V8xk4DyTRKMi22VGqchXjj0wi60yFhGJIwDEdS+GV3cgbxyekkpQwjOSmFlHgn6UM9Eeov4SqDYrN3vFpWfdDngYZj2dT5l8H8y6IdhlIqhoyYOo/mbfG0rXyZnD4mWP5giCUfv4/no/uY2/oOE8RLaeIUKk76BcNPvIJhg6Cb9Ug4fWIO974yk/mND1s94w2fdlT7aWzz8+8Pl2I++TsLfG9ycrgaYOPcP5I6+0qSnPERjjw64l12ThmXx3+2zea8ja8g/ruOKgHyB0O8tW4Pa959huNrXuAHttUYm42WUWfBvG+TWnjCkCzh68788Vn84LNi/KnpONc+e9QJ1pryRp5avA7Humf4ovybm2278SYMwxz/feyzv4x9sJTw2ezYJ11E1qSLoLmSuhXP41n3NnNqPiGl7F0oAz6AFhNPgy2NFkc6Plca2N2E7G6Mw41DwGYCELK+bKEAzmArzkArrmAr7mArcaE2EmgHwA6khr86eI2DepJpIJlaeyptjmJ8cWkE3OmY+GHYEjNxJGUQl5pJQloOSenZpKWmMyzRRba2H1ODmCZYSik1gE6ZkM97z0/j1B1vQMB3VB0AlFXVs/KtxyjY+hinmPV4cbEj7xzyz/w2I4uP64eoo2t4ajwVhefg2/svHMsexnb+H3u9rTGGVaWVrH37cUbtep7LbWsIYhvy1QAP59ypw3ls/Umcb96FNU/DzGt7vW1ZXRuvfrwKVvyT8wJvco7U0Bqfie+47xE350ZSUwv6L/AoWTApl5+74/go8XRO3fgiNO2BlN619WjzBXhtdQXLPvw3M6sX8hP7EhLsXqsa4Mm34Z50MQzmNnzJOQw79esMO/XrYAyeujL2bllF067VeGt3Ymurxu2tJa59L86QDyc+XMZHCCGAnSB2AtgJiZ1W4vHYEvHah+F3J+F3JBF0JSPuZCScLLlSsohPyyYpLYe0tHTSE93kurTXYhVbxHTXDVeUzJo1yyxbtizaYSilVL/6031/4Tt7f4z3gr/invnFXm3jC4RY9skHtHz8MLOa3mKYtFDtyKVx0rUUn3Ez9iFeDfBwXlm9h8anv8VVzvewfXMJZJYccv2qpnYWL16E+exJ5nneJkOaqXfm4pt6NTmf+zKkdjs0Y8zwB0PMv/NdHvH/gNFJXuQbSw7ZrqjdF+TNVdsp/fg5JtW8wam21TglSG32iaSdejP28edGfVDg/nb7wnW8u+RTFsV9H5lyGVz81x7X7Ri76t8fr8Sx4UUu5h3G2crx2+Mxky/BNftGyJ8Zk8l7B3NA+1aljkUistwYc1CvPppgKaXUAFteWkvCQ/PIj/eRcssnEJfa7XqhkOGztaup+PgpiireYBLb8ONge8apZJzyZTKnnjWoBrntT6GQ4YY/v8yf6r5OfHo+7hteOmi8oor6Zj775D28615jSsM7jLJVEMDO7tzTyD71JuLHff6Y+XkBvLhyN/94+mmec/8SxpyOXPrgfr9rTR4/H67Zwt7lr5FZsYh5LCNZ2mlxZWOmXEbyiTdC5pgonsHAqm3xMv/3i/ix+xmu8j4Dp/8S5n6nM0kKhgwrd9axfMVSPBvfZo53MbNlEzYxtGROJXHOl5Epl0Ssgwyl1OCnCZZSSg0iv3/wn3xn13doTJtA2hf+D8eIEzDGUF1dwa61H9Gy6T1yqj9igtkGQJl7LO2TLqd4/vU4k7OiHH107Kpt43/uvY8/BH+D3W5jd+Yp1Lvz8LTU4W4uY5x/I8nSThAb5SkziZ9xKdnHXwaJmdEOPWpuX7gO79IH+W/nwwRscexMP5Fak4y/pZY873aK2YNdDK32VFpHnkHmSddiKz5lyHTjH2mLt9Rw06Mf80fHnzmTJTS48yhNmEqjz+Bo2ctYSsmSRgAak8cQP/1SXFO/AFnjohy5UioaNMFSSqlBpM0X4L6/3c1Xan5HirTjw0EIIQ4/YHUpvCtuHO1jzmHU575IfM6xU5JwKHsbPTz00luM3fYQc1lFBo20SQINrlxaM6eRMek0cqadgQzyAYEHijGGF1ft5v333uaUuueYwSbSbK347Mk0pYwmoWgWuTPPwV5w3DFVuncom/Y2c9+7m3FvfokFgUWMt5fjlhBtcbmQOYbMyacRVzIPho2KdqhKqSjTBEsppQaZUMjwzuptNC5/jpTWHbhtBndGIWkjJlM84zRcCSnRDnHQMsbQ1B7A5bARrw3ke8UYQ8gQG4PKDpBgyOjPSynVo54SLO1FUCmlosRmE06fPgam/1e0QxlyRITUhNjudCHSRAS75gpHRJMrpdTRODYrWSullFJKKaVUP9AESymllFJKKaUiRBMspZRSSimllIqQQdXJhYhUAzujHccBMoGaaAehBoxe72OHXutjh17rY4te72OHXutjy2C83kXGmIPGThlUCdZgJCLLuusdRMUmvd7HDr3Wxw691scWvd7HDr3Wx5ahdL21iqBSSimllFJKRYgmWEoppZRSSikVIZpgHd790Q5ADSi93scOvdbHDr3Wxxa93scOvdbHliFzvbUNllJKKaWUUkpFiJZgKaWUUkoppVSEaIKllFJKKaWUUhGiCdYhiMhZIrJJRLaKyI+iHY+KHBEpFJF3RWS9iKwTke+E5w8TkbdEZEv4e3q0Y1WRISJ2EVkpIq+Ep4tFZGn4/n5KRFzRjlFFhoikicizIrJRRDaIyIl6b8cmEbkl/Dd8rYg8ISJxem/HDhF5SESqRGRtl3nd3stiuTt83VeLyMzoRa6OVA/X+s7w3/HVIvKCiKR1Wfbj8LXeJCILohL0IWiC1QMRsQP3AmcDE4GrRGRidKNSERQAbjXGTATmAN8MX98fAW8bY0qAt8PTKjZ8B9jQZfq3wF3GmDFAPfDlqESl+sOfgDeMMeOBaVjXXe/tGCMi+cC3gVnGmMmAHbgSvbdjySPAWQfM6+lePhsoCX/dBPx1gGJUkfEIB1/rt4DJxpipwGbgxwDh57UrgUnhbf4Sfm4fNDTB6tnxwFZjzHZjjA94ErgwyjGpCDHGVBhjVoQ/N2M9gOVjXeNHw6s9ClwUlQBVRIlIAXAu8PfwtACnAc+GV9FrHSNEJBX4HPAggDHGZ4xpQO/tWOUA4kXEASQAFei9HTOMMe8DdQfM7ulevhD4h7EsAdJEZPiABKr6rLtrbYx50xgTCE8uAQrCny8EnjTGeI0xO4CtWM/tg4YmWD3LB8q6TJeH56kYIyIjgRnAUiDHGFMRXrQXyIlWXCqi/gj8EAiFpzOAhi5/uPX+jh3FQDXwcLhK6N9FJBG9t2OOMWY38HtgF1Zi1QgsR+/tWNfTvazPbbHtRuD18OdBf601wVLHNBFJAp4DvmuMaeq6zFhjGOg4BkOciJwHVBljlkc7FjUgHMBM4K/GmBlAKwdUB9R7OzaE295ciJVU5wGJHFzFSMUwvZePDSLyU6ymHY9FO5be0gSrZ7uBwi7TBeF5KkaIiBMruXrMGPN8eHZlR5WC8PeqaMWnImYucIGIlGJV9T0Nq41OWrhaEej9HUvKgXJjzNLw9LNYCZfe27HndGCHMabaGOMHnse63/Xejm093cv63BaDROR64DzgarNv8N5Bf601werZp0BJuDciF1ZjuoVRjklFSLgNzoPABmPMH7osWghcF/58HfDSQMemIssY82NjTIExZiTWffyOMeZq4F3g0vBqeq1jhDFmL1AmIuPCsz4PrEfv7Vi0C5gjIgnhv+kd11rv7djW0728ELg23JvgHKCxS1VCNQSJyFlY1fsvMMa0dVm0ELhSRNwiUozVsckn0YixJ7IvGVQHEpFzsNpu2IGHjDF3RDciFSkicjLwAbCGfe1yfoLVDutpYASwE7jcGHNgA1s1RInIPOD7xpjzRGQUVonWMGAl8CVjjDeK4akIEZHpWB2auIDtwA1YLxT13o4xIvJL4Aqs6kMrga9gtcXQezsGiMgTwDwgE6gEfgG8SDf3cjjJ/jNWNdE24AZjzLIohK2OQg/X+seAG6gNr7bEGHNzeP2fYrXLCmA183j9wH1GkyZYSimllFJKKRUhWkVQKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaUGGREZKSJGRBzRjkUdG0RknYjMi3YcSikVCzTBUkopNeSJyH0i0hL+8omIv8v069GOb7AzxkwyxiyK5D5F5JHwtWjp8mWP5DGUUmowEmNMtGNQSqmYIiIOY0ygD9uPBHYAzr7s51glIrcDY4wxX+pmWZ+uzUAaSrF2R0QeAcqNMT+LdixKKTWQtARLKaUiQERKReS/RGQ10CoiDhGZIyIfiUiDiHzWtQqWiCwSkf8VkU9EpElEXhKRYT3s+wYR2SAizSKyXUS+dsDyC0VkVXg/20TkrPD8VBF5UEQqRGS3iPz34UoQRGS0iLwjIrUiUiMij4lIWpdldSIyMzydJyLVHeclIheEq5o1hM9vwgE/n++LyGoRaRSRp0Qk7sh/0keuh2tjRGRMl3UeEZH/7jJ9Xvhn2hC+hlN7eax5IlIuIj8J//xKReTqLsvPFZGV4WtVFk4GO5Z1VA39sojsAt4Jz39GRPaGf27vi8ikA+L+i4i8Hi4h+lBEckXkjyJSLyIbRWRGL39Gp/fmHJVSSh2aJlhKKRU5VwHnAmlADvAq8N/AMOD7wHMiktVl/WuBG4HhQAC4u4f9VgHnASnADcBdXZKc44F/AD8IH/dzQGl4u0fC+x0DzADOBL5ymHMQ4H+BPGACUAjcDmCM2Qb8F/AvEUkAHgYeNcYsEpGxwBPAd4Es4DXgZRFxddn35cBZQDEwFbi+2wBETg4nNj19nXyYc+hO57U5XKlQOCF5CPgakAH8DVgoIu5eHisXyATygeuA+0VkXHhZK9Z1TwvH83URueiA7U/F+tkvCE+/DpQA2cAK4LED1r8c+Fn4mF7g4/B6mcCzwB96GXe3RORHh7oeh9n8G+GkfLmIXNKXOJRSaqjQBEsppSLnbmNMmTGmHfgS8Jox5jVjTMgY8xawDDiny/r/NMasNca0Aj8HLu+uhMkY86oxZpuxvAe8CZwSXvxl4CFjzFvh4+w2xmwUkZzwsb5rjGk1xlQBdwFXHuoEjDFbw/vyGmOqsR7OT+2y/AFgK7AUKzH8aXjRFcCr4W39wO+BeOCkA34+e4wxdcDLwPQeYlhsjEk7xNfiQ51DD7pem8O5CfibMWapMSZojHkUK3GZcwTH+3n4Z/geVqJ9OYAxZpExZk34Wq3GSkpPPWDb28PXrD28zUPGmGZjjBcr2Z0mIqld1n/BGLPcGOMBXgA8xph/GGOCwFNYyfVRM8b85lDX4xCb3s2+xPDnwCMiMrcvsSil1FCgCZZSSkVOWZfPRcBlB7zpPxkrKelu/Z2AE6vUYT8icraILAmXBDRgJU4d6xUC27qJpSi8v4oux/8b1sNuj0QkR0SeDFcpbAL+1U1MDwCTgXvCD/1glXjt7FjBGBMKn19+l+32dvncBiQdKpYIKzv8Kp2KgFsPuHaFWOfYG/XhpLnDzo5tReQEEXk3XLWyEbiZg3++nbGKiF1EfiNW1c8m9pVOdt2mssvn9m6mB/Ln3MkYs8IYU2uMCRhjXsMqeftCNGJRSqmBpAmWUkpFTtdeg8qwSqi6vu1PNMb8pss6hV0+jwD8QE3XHYarpT2HVSKUEy4xeA2rKl/HcUZ3E0sZVqlLZpfjpxhjJnWzblf/Ez6PKcaYFKySuI5jISJJwB+BB4HbZV+7sT1YiUnHehI+v92HOd5BROQU2b/nuQO/Tjn8Xg5yYI9ObUBCl+ncLp/LgDsOuHYJxpgnenmsdBFJ7DI9AuvnA/A4sBAoNMakAvfR5efbTaxfBC4ETgdSgZHh+Qdu02/C7cl6vB5HsCvDAMatlFLRogmWUkr1j38B54vIgnApRFy4A4SCLut8SUQmhtsz/Qp4NlytqysX4AaqgYCInI3VlqrDg8ANIvJ5EbGJSL6IjDfGVGBVJfw/EUkJLxstIgdWRztQMtACNIpIPlbbrq7+BCwzxnwFq+rbfeH5TwPnhuNwArdiJXgfHe4HdSBjzAfGmKRDfH1wpPvsxirgi+Frcxb7V9N7ALg5XNokIpIoVucUydDZscQjh9n/L0XEFU4GzwOeCc9PBuqMMZ5w+7kvHmY/yVg/x1qshPB/juAcI8IY8z+Huh49bScil4pIUvh370ysZH3hwEWulFLRoQmWUkr1A2NMGVbJw0+wkqMyrGSl69/df2J1RLEXiAO+3c1+msPznwbqsR7IF3ZZ/gnhji+ARuA99pUkXYuVoK0Pb/ss+1dR7M4vgZnhfb0KPN+xQEQuxOqk4uvhWd8DZorI1caYTVgP0PdglcKdD5xvjPEd5njR8h2sGBuAq4EXOxYYY5YBXwX+jPVz28r+HXIUAh8eYt97w9vtwaoWd7MxZmN42TeAX4lIM3Ab1nU9lH9gVTHcjXUdlxzuxAaR72DF3QDcCXzVRHisLaWUGox0HCyllIoCEVkE/MsY8/dox6J6L9wr4mfA1HBnHgcun4d1XQsOXKaUUurY4Ih2AEoppdRQES6Rm3DYFZVSSh2ztIqgUkodY0Tkvh46LLjv8FuroUhERhyio4oR0Y5PKaViiVYRVEoppZRSSqkI0RIspZRSSimllIqQQdUGKzMz04wcOTLaYSillFJKKaXUIS1fvrzGGJN14PxBlWCNHDmSZcuWRTsMpZRSSimllDokEdnZ3XytIqiUUkoppZRSEaIJllJKKaWUUkpFiCZYSil1CKGQIRTS3laVUkop1TuDqg1Wd/x+P+Xl5Xg8nmiHooaYuLg4CgoKcDqd0Q5FDVGBYIgb/vg8U9x7+cE3v4mIRDskpZRSSg1ygz7BKi8vJzk5mZEjR+rDjeo1Ywy1tbWUl5dTXFwc7XDUELV6dyM/b7yNsbbdbFk/h5JJs6IdklJKKaUGuUFfRdDj8ZCRkaHJlToiIkJGRoaWfKo+2bqrnLG23QD4P34gytEopZRSaigY9AkWoMmVOir6e6P6yr93Y+fnpGodQkIppZRShzckEiyllIoGb2MVAGsTjiffux18rVGOSCmllFKDnSZYvSAi3HrrrZ3Tv//977n99tujF1AXS5Ys4YQTTmD69OlMmDChM65Fixbx0UcfHfV+d+7cycyZM5k+fTqTJk3ivvvui1DESg0dtrYaAKpyT8VOCG/5Z1GOSCmllFKDnSZYveB2u3n++eepqamJ6H6NMYRCoT7t47rrruP+++9n1apVrF27lssvvxzoe4I1fPhwPv74Y1atWsXSpUv5zW9+w549e/oUq1JDTZy/HgDnqJMBqC5dF81wlFJKKTUEaILVCw6Hg5tuuom77rrroGXV1dVccsklzJ49m9mzZ/Phhx8CcPvtt/P73/++c73JkydTWlpKaWkp48aN49prr2Xy5MmUlZXxgx/8gMmTJzNlyhSeeuopwEqQ5s2bx6WXXsr48eO5+uqrMebgsXiqqqoYPnw4AHa7nYkTJ1JaWsp9993HXXfdxfTp0/nggw8OGec111zDiSeeSElJCQ88YDXkd7lcuN1uALxeb4+J4N13383EiROZOnUqV155JQB1dXVcdNFFTJ06lTlz5rB69erOY1133XWccsopFBUV8fzzz/PDH/6QKVOmcNZZZ+H3+wH41a9+xezZs5k8eTI33XTTQecdCoUYOXIkDQ0NnfNKSkqorKw81GVU6ogl+utpl3jySqbjNQ5ad6+PdkhKKaWUGuQGfTftXf3y5XWs39MU0X1OzEvhF+dPOux63/zmN5k6dSo//OEP95v/ne98h1tuuYWTTz6ZXbt2sWDBAjZs2HDIfW3ZsoVHH32UOXPm8Nxzz7Fq1So+++wzampqmD17Np/73OcAWLlyJevWrSMvL4+5c+fy4YcfcvLJJ++3r1tuuYVx48Yxb948zjrrLK677jpGjhzJzTffTFJSEt///vcB+OIXv9hjnKtXr2bJkiW0trYyY8YMzj33XPLy8igrK+Pcc89l69at3HnnneTl5R10Lr/5zW/YsWMHbre7M+H5xS9+wYwZM3jxxRd55513uPbaa1m1ahUA27Zt491332X9+vWceOKJPPfcc/zud7/j4osv5tVXX+Wiiy7iW9/6FrfddhsA11xzDa+88grnn39+5zFtNhsXXnghL7zwAjfccANLly6lqKiInJycw15HpY5EYrCBFnsaRZkpbDe52Ou2RjskpZRSSg1yfS7BEpFCEXlXRNaLyDoR+U54/u0isltEVoW/zul7uNGTkpLCtddey913373f/P/85z9861vfYvr06VxwwQU0NTXR0tJyyH0VFRUxZ84cABYvXsxVV12F3W4nJyeHU089lU8//RSA448/noKCAmw2G9OnT6e0tPSgfd12220sW7aMM888k8cff5yzzjqr22MeKs4LL7yQ+Ph4MjMzmT9/Pp988gkAhYWFrF69mq1bt/Loo492W0I0depUrr76av71r3/hcDg6z+maa64B4LTTTqO2tpamJisxPvvss3E6nUyZMoVgMNgZ75QpUzrP79133+WEE05gypQpvPPOO6xbd3C1rCuuuKKztO/JJ5/kiiuuOOTPXKmjkRxsoNWRhsNuo8JZSHLLjmiHpJRSSqlBLhIlWAHgVmPMChFJBpaLyFvhZXcZY35/iG2PSG9KmvrTd7/7XWbOnMkNN9zQOS8UCrFkyRLi4uL2W9fhcOxXra7reEyJiYm9Ol5HFT2wqv8FAoFu1xs9ejRf//rX+epXv0pWVha1tbUHrdNTnHBwd+YHTufl5TF58mQ++OADLr300v2Wvfrqq7z//vu8/PLL3HHHHaxZs6ZX52Sz2XA6nZ3HstlsBAIBPB4P3/jGN1i2bBmFhYXcfvvt3Y5ldeKJJ7J161aqq6t58cUX+dnPfnbI4yp1NJJDTbQ7sgFoTCwms2kpBHzgcEU5MqWUUkoNVn0uwTLGVBhjVoQ/NwMbgPy+7ncwGjZsGJdffjkPPvhg57wzzzyTe+65p3O6oyrcyJEjWbFiBQArVqxgx47u33yfcsopPPXUUwSDQaqrq3n//fc5/vjjex3Tq6++2tlGacuWLdjtdtLS0khOTqa5ufmwcQK89NJLeDweamtrWbRoEbNnz6a8vJz29nYA6uvrWbx4MePGjdvv2KFQiLKyMubPn89vf/tbGhsbaWlp4ZRTTuGxxx4DrLZkmZmZpKSk9Op8OpKpzMxMWlpaePbZZ7tdT0S4+OKL+d73vseECRPIyMjo1f6VOhIu4yXkiAfAnz4GOyFM3fYoR6WUUkqpwSyinVyIyEhgBrA0POtbIrJaRB4SkfRIHitabr311v16E7z77rtZtmwZU6dOZeLEiZ3dmV9yySXU1dUxadIk/vznPzN27Nhu93fxxRczdepUpk2bxmmnncbvfvc7cnNzex3PP//5T8aNG8f06dO55ppreOyxx7Db7Zx//vm88MILnZ1c9BQnWNX85s+fz5w5c/j5z39OXl4eGzZs4IQTTmDatGmceuqpfP/732fKlCkAfOUrX2HZsmUEg0G+9KUvMWXKFGbMmMG3v/1t0tLSuP3221m+fDlTp07lRz/6EY8++mivzyctLY2vfvWrTJ48mQULFjB79uzOZffdd99+cV9xxRX861//0uqBqt90TbAcOdYLhpbdh25jqZRSSqljm3TXM91R7UgkCXgPuMMY87yI5AA1gAF+DQw3xtzYzXY3ATcBjBgx4ridO3fut3zDhg1MmDAhIjGqg91+++37dYYRa/T3Rx2tYMhQ/8sR7Bl+OlNvfphFq7cx7/mZ7J71X+Sf95Noh6eUUkqpKBOR5caYWQfOj0gJlog4geeAx4wxzwMYYyqNMUFjTAh4AOi23psx5n5jzCxjzKysrKxIhKOUUn3mDQSJwwfhEqyC3BxqTAq+6m1RjkwppZRSg1mfO7kQq5eCB4ENxpg/dJk/3BhTEZ68GFjb12OpyLv99tujHYJSg1K7N0AaXnBZCVbhsHjWmWwyG0qjG5hSSimlBrVI9CI4F7gGWCMiq8LzfgJcJSLTsaoIlgJfi8CxlFJqQLR7PWSIQZxWguV22Kl25DGydVOUI1NKKaXUYNbnBMsYsxiQbha91td9K6VUtPjaWwGwORM657UkFpLavFi7aldKKaVUjyLai6BSSsUKb0eCFa4iCBBMG4mdEDTsilZYSimllBrkNMFSSqlu+DxtANjd+0qwHJmjAGiv2hqVmJRSSik1+GmC1UsvvvgiIsLGjRt7XKe0tJTJkydH7JibNm1i3rx5TJ8+nQkTJnDTTTcB1iDBr7129DUwPR4Pxx9/PNOmTWPSpEn84he/iFTISsUMv8cqwXK495VgJQ8vAaChfHNUYlJKKaXU4KcJVi898cQTnHzyyTzxxBPdLg8EAn0+RjAY3G/629/+NrfccgurVq1iw4YN/L//9/+AvidYbrebd955h88++4xVq1bxxhtvsGTJkj7FrlSs8XutBMvuTuyclzu8iFbjxqslWEoppZTqgSZYvdDS0sLixYt58MEHefLJJzvnL1q0iFNOOYULLriAiRMnAlaidfXVVzNhwgQuvfRS2tqsakZvv/02M2bMYMqUKdx44414vV4ARo4cyX/9138xc+ZMnnnmmf2OW1FRQUFBQef0lClT8Pl83HbbbTz11FNMnz6dp556itbWVm688UaOP/54ZsyYwUsvvQTAI488woUXXsi8efMoKSnhl7/8JQAiQlJSEgB+vx+/34/V2/7+nnnmGSZPnsy0adP43Oc+B1ilXzfccANTpkxhxowZvPvuu53HuuiiizjjjDMYOXIkf/7zn/nDH/7AjBkzmDNnDnV1dQA88MADzJ49m2nTpnHJJZd0/ny6mjNnDuvWreucnjdvHsuWLev19VIqEoJe63fT2aWK4IiMRHaZbKRhR7TCUkoppdQgF4lu2gfO6z+CvWsiu8/cKXD2bw65yksvvcRZZ53F2LFjycjIYPny5Rx33HEArFixgrVr11JcXExpaSmbNm3iwQcfZO7cudx444385S9/4Vvf+hbXX389b7/9NmPHjuXaa6/lr3/9K9/97ncByMjIYMWKFQcd95ZbbuG0007jpJNO4swzz+SGG24gLS2NX/3qVyxbtow///nPAPzkJz/htNNO46GHHqKhoYHjjz+e008/HYBPPvmEtWvXkpCQwOzZszn33HOZNWsWwWCQ4447jq1bt/LNb36TE0444aDj/+pXv+Lf//43+fn5NDQ0AHDvvfciIqxZs4aNGzdy5plnsnmzVV1q7dq1rFy5Eo/Hw5gxY/jtb3/LypUrueWWW/jHP/7Bd7/7Xb7whS/w1a9+FYCf/exnPPjgg50lcx2uuOIKnn76aX75y19SUVFBRUUFs2YdNEi2Uv0qEE6wXPFJnfNSE5wss+UypUU7uVBKKaVU97QEqxeeeOIJrrzySgCuvPLK/aoJHn/88RQXF3dOFxYWMnfuXAC+9KUvsXjxYjZt2kRxcTFjx44F4LrrruP999/v3OaKK67o9rg33HADGzZs4LLLLmPRokXMmTOns+SrqzfffJPf/OY3TJ8+nXnz5uHxeNi1y3oAPOOMM8jIyCA+Pp4vfOELLF68GAC73c6qVasoLy/vTMIONHfuXK6//noeeOCBzuqLixcv5ktf+hIA48ePp6ioqDPBmj9/PsnJyWRlZZGamsr5558PWCVvpaWlgJWEnXLKKUyZMoXHHntsv5KqDpdffjnPPvssAE8//TSXXnpptz8fpfpT0NcOgKtLCRZAU1wBad49EApFIyyllFJKDXJDqwTrMCVN/aGuro533nmHNWvWICIEg0FEhDvvvBOAxMTE/dY/sKpdd1XvDnTgPrrKy8vjxhtv5MYbb2Ty5MndJkLGGJ577jnGjRu33/ylS5ceNp60tDTmz5/PG2+8cVAHHffddx9Lly7l1Vdf5bjjjmP58uWHPA+329352WazdU7bbLbONmrXX389L774ItOmTeORRx5h0aJFB+0nPz+fjIwMVq9ezVNPPcV99913yOMq1R9CPqsNljth//vTm1yEy+ODlr2QkheN0JRSSik1iGkJ1mE8++yzXHPNNezcuZPS0lLKysooLi7mgw8+6Hb9Xbt28fHHHwPw+OOPc/LJJzNu3DhKS0vZutVqGP/Pf/6TU0899bDHfuONN/D7/QDs3buX2tpa8vPzSU5Oprm5uXO9BQsWcM8992CMAWDlypWdy9566y3q6upob2/nxRdfZO7cuVRXV3dW+Wtvb+ett95i/PjxBx1/27ZtnHDCCfzqV78iKyuLsrIyTjnlFB577DEANm/ezK5duw5K7A6lubmZ4cOH4/f7O/fTnSuuuILf/e53NDY2MnXq1F7vX6lIMR0lWHEHvAAZZpVYB2u3D3RISimllBoCNME6jCeeeIKLL754v3mXXHJJj70Jjhs3jnvvvZcJEyZQX1/P17/+deLi4nj44Ye57LLLmDJlCjabjZtvvvmwx37zzTc7O5lYsGABd955J7m5ucyfP5/169d3dnLx85//HL/fz9SpU5k0aRI///nPO/dx/PHHc8kllzB16lQuueQSZs2aRUVFBfPnz2fq1KnMnj2bM844g/POOw+A2267jYULFwLwgx/8gClTpjB58mROOukkpk2bxje+8Q1CoRBTpkzhiiuu4JFHHtmv5Opwfv3rX3PCCScwd+7c/ZK6hQsXctttt3VOX3rppTz55JNcfvnlvd63UhHltxIsce5fRTAhx+qqvXG3dtWulFJKqYNJR6nHYDBr1ixzYG9xGzZsYMKECVGKaGh75JFH9usM41ikvz/qaL35tx9xZsVf4ScV4NqXZH20uYLjH5tIxZSbKbz0f6MYYf/zBUL84qW1HJ8d4uJTpkc7HKWUUmpQEZHlxpiDemLTEiyllOpOwCrBwhG33+zCzFT2mAxCdbHfVfvraytIX3EPF799Ki0b3o52OEoppdSQoAlWDLv++uuP6dIrpfpCAu14cYFt/z+Tw1Pj2EUOrsadUYps4Hy6tZJbHdb4fO1v/jrK0SillFJDw5BIsAZTNUY1dOjvjeoLW8CDT1wHzXfYbdS68klpL49CVAOrduca7GIoI4dh9avB0xjtkPrVstI65v76VV59+RnwNh9+gyHu/c3VvLAy9n+PAdp8ARZ+tocWbyDaoSiljgGDPsGKi4ujtrZWH5bVETHGUFtbS1xc3OFXVqobtqAHn3TfgUtbYiGJoSZobxjYoAaQMYbERqsjj/czLsdOEHZ+HOWo+tc/Pt7J17wPc+7yrxB47UfRDqdfNXv8XPvQJ6x79n9ouvc0qFgd7ZD61R2vbuDbT6zgowd/AE9fB4GDx5RUSqlIGfTjYBUUFFBeXk51dXW0Q1FDTFxcHAUFBdEOQw1R9qAHv637BCuUVgyNQP0OiJ8xsIENkOoWL6NCuwjaHTSOuQhq78G/+zOc486Kdmj9whjDB5sr+ZnDGu9P1j4HZ/8vxKVEObL+sWhTNQ4CfNvxAinVbfDRPXDJA9EOq18YY3htTQXjpYwzqx6CKmDsApj+xWiHppSKUf2eYInIWcCfADvwd2PMEY0W7HQ6KS4u7pfYlFKqJ46Ql0APCZYrezTshLbKrSTkxWaCVVbXRrFU4EkeQXFBPrs+ziKlbDVp0Q6sn+xt8pDlKSXbXcfzwVP4Ah/Aro+tB/EY9GlpHae6t5AibVQzjKwNC8F/Dzhjr9R/d0M79W1+fpa3Feog4EjEsfopTbCUUv2mX6sIiogduBc4G5gIXCUiE/vzmEopFQnOkIeArfuHzdThYwBo2hO7Y2HtbvCQK/WQUsC43GQ2mRFI9fpoh9VvtlW1MkZ2A/Bx+gUEsMOuJVGOqv9sq27hlCTrfH/rvwwCHtiz8jBbDU3r9jQBMC9+G5tD+azJOhfKPoGgP8qR9R9jDKGQNq1QKlr6uw3W8cBWY8x2Y4wPeBK4sJ+PqZRSfeYI+Qjau0+w8nKyqTYp+Ku3D3BUA6e2xUuO1OFIy6MoI5GtMoLklp0x23ZlW3ULxbIXAHf+FDZSjCn/JMpR9Z9tVa2Md1bid2fwTjBcClu2NLpB9ZMdNa0ApLfvotJdxEe+seBvi+l2Zz9+fg1Tbv83K3fVRzsUpY5J/Z1g5QNlXabLw/M6ichNIrJMRJZpOyul1GDhMp4eE6wRGQnsMjnYGkoHNqgBVNfcTjYNuNIKsNuEhuQSbAShelO0Q+sXFY0extj3YpLzGF2Qy+rACMzedRCDHSy1+QLsbfIwIrQbySqhjhQa4gpg9/Joh9YvKps8pLoFW8NOfCnFvNUUbptbsSqqcfWXqiYPT35aRqsvyL3vbot2OEodk6Lei6Ax5n5jzCxjzKysrKxoh6OUUgC4jI9QDwlWSpyTClsuia27BjiqgeNt3ItDQkjqcAACGROsBVWxWU2wqtnDGHslkjGaCcNT2GwKsHnqoaUq2qFF3N5GDwDDPLtwZI+lODORHfYiqN4Y5cj6R1WTlylJjRAK4MgazarmZIwrCao2RDu0fvHhthoATigexuKt1fjKlsMnD0AoGOXIlDp29HeCtRso7DJdEJ6nlFKDVjBkiDNejKPnBv/N8YWk+KtjtsqcadxjfUjOAyBx+Di8xkFw77ooRtV/qpu95EodpBYwPjeZTSb8rysGE8qqZi9ufMT56iCtiHE5yaz150Pttpj8fa5s8jDJXQtAWsF4QGhJHRuT1xZg/Z4mXA4b1580Ere/CdeDp8Fr34fPnoh2aEodM/o7wfoUKBGRYhFxAVcCC/v5mEop1SfeQJA48WGc8T2u40stwoaB+p0DGNnAkdZwyU1yDgBF2amUmlw8FbFZylHd5CE9VA9JOaQluKiOG2UtiMFSjqpmL9kSbpuTnMuY7CSWteWACULNlugG1w+qmr0UuaxBsvOLrA5q9riKrQQrBquArq9oYnxuMieNzuQce5d2hEv+Gr2glDrG9GuCZYwJAN8C/g1sAJ42xsTm60+lVMxo9wVx4wNHzwmWI9N6AA/WxmYbB3u7Vc2IxGwAirMS2W6GQ23sPYAD+JprcBCA5FwA0rPzaJIUqI7BBKvJQzYN1kRyLqOzE9kQDLdLirGE0hhDZZOHPIeVYGXkjiA13slmUwjt9dBSGeUII2/T3mYm5KaQmuBkQfwGah3ZcPrtULkWmiqiHZ5Sx4R+b4NljHnNGDPWGDPaGHNHfx9PKaX6qt0fJB4fcogSrMTcjq7aYzPhcHvrrA+JmQCMyrQSrPiWspjr3toXCOFsD5fYJVkldqOzkqyH8BhLOMAaRDo/nHCQPJwxWcnsMMMJiSPmEsqm9gDeQIhsUw9xqYgznjHZSazwWG0LqYytd77tviA1LT6KMhMAmCA7WWtGwZjTrRW2L4pecEodQ6LeyYVSSg02Hq8XpwQRV88JVnZuIa3GTXvl1gGMbGB4/EGSgg347AkQTjLTElxUOkdgMwGoL41ugBFW2+olWxqsiXAJ1qisRNYF8jBVG2KuGll1k5dRbmtsKJKHMyorET8O6uNHxFxCWdlsdeiRHqqDZCupKslO4v0G68VBrLXD2tPYDkBeajx4m8n272aZp8Bqc+ZMiNmeE5UabDTBUkqpA3jbWgCwuRJ6XKcoM4ldJgdTt2OgwhowNS1eMqQJn3vYfvN9aeF2STHWTqeqybuvyly4BGtUZhJbTAHia4Hm2KpWVdXsZYSrCewuiE8n0e0gLzWOXfaimEs4qpqsTjuS/LWd13ZMdhLb2uIJJWTF3LADexrCCVZaPFRvQjBsNCPYVNUKuVNieuwvpQYTTbCUUuoAvnZrYFKbK6nHdXJT4igjh7jm2OuqvbbFRwZNBOIz95vvzBkXXiHGEqxmLzldOn0AGJ2dxDZj9aAYaw/hVc0e8mwNkJQLIoB1vhsCw6FhF/g90Q0wgiqbrHOJ91Z1lmCNybbu65bkUVCzOWqx9Yd9CVYchF/+lJpc1lc0w/BpsHc1hELRDFGpY4ImWEopdQC/pxkAe1zPJVh2m1DnzifFuzvmHlhqW71kSlNn+6sOuTm5VJsU/FWx9VBa3ewlSxoIuZLBlQhAYXo8OyXfWiHWSuyavWTR0JlMgtXmbEVrJpgQ1MVOxy1WFUGDvbWqs0fMjgSr0jXCSp5jqAro7gYPNoGclDgID4Te6Mpl094mK8HytUDd9ugGqdQxQBMspZQ6QMBjlWDZ3YmHXM+bPAKn8UPznoEIa8DUtPjIkEYcSdn7zbc6usjDtze2umqvavaQLfVIl4TDYbeRMCyfdkmMqVIObyBIQ5uf9GDt/glWdhLr/eHpGDrfqiYvhe52JOTvLMHKS40nwWW3Sig9DdBWG90gI2hPQzvZyXE47TZrCInELPJzMtla1WIlWKDtsJQaAJpgKaXUAQJeK8FyxPVcRRDAnjEagFBtbL0Rrm32kEET7rSc/eaPykpie2g4jvrYKeEAq0Qnz960X4IF1vmWSl5MJRzVzR1tkmo6Ew6A0eFeIg0C1bFzvlXNHsYlWvdzRxssm00YnZXEak/49zuGrm9FY7tVPRCgYSekFVGSnWQlWFnjrXZ3FZ9FN0iljgGaYCml1AECHquTC1f8oROs5LwSABpjrKv2toZqHBLCmbJ/wlGUkcB28nD76qGtLkrRRV51s5ccW0PnA3gHq11SLiaGqghWNXuJw4sr0HxQCZYHNy3xw2Mq4ahs8jI6PpxgdUkoS7KT+Lgp3IlLDLWx29PgsTq4AKsEK72Ikuxkalp81HsMZI2LuY5MlBqMNMFSSqkDdCRY7oTkQ66XXTAGv7HTXBE7D6QAgebw4KtJWfvNj3PaaUwosiZqY6d7+qomDxmmfr+EA6x2SVuDeUjzHvA2Rym6yKpqOrhLeoDsZDdJbgd7nSOgJnYSjsomD0Wuji7p9yXQo7OTWNWUhHHEx0wbO2MMuxvayU+Lh2AAGsshraizzdnW6hbInghVsVXFV6nBSBMspZQ6QMjbBkBcwqFLsEbnpLLbZBKsia0qgsHm8KC7iVkHLTMZVqldrDyUArQ11eE23oNLsLIS9/UkGCPnW93sIZdw6WOXBEtEGJWVyNZQHtRsjYmOW4wx4eqf4UGVk/ad75jsJAw22lOKY6bErrbVhy8QYnhqHDTtBhOE9H0J1pbKcDXBpnLwNEY5WqVimyZYSil1gJDPSrCch2mDlZXsZrfk4mraORBhDRhprbY+JGYftCw5dzR+Y8fEyEOpMQZ7a7jELiVvv2WjspLYGmMJVlWzl1xbR5f0+5+v1S4pGwLt1kP4ENfY7scXCJFNHcSlQpdx7UrCSUdN/MiYSbD2GwOrIfw3Ka2I/LR44p12qx1W9kRrfgxVi1RqMNIESymlDuQLt9lw9txNO1hv/Rvj80nzlMdUV89OT431IengBKs4O5WdJgfv3th4QGto8zPMHFyiA5Aa76Q1cQRB7DHzEF7V5KXYHa7ueFCVyESWt4ZLLWOgo4vK8CDD6aHag5LJEcMScNltlJIfHvurPRohRtSeBmvMr7y0eKv9FUB6kdWpR3YiW6qaIXu8NV/bYSnVrzTBUkqpA5iOh63DJFgAntTRJJpW6Cj1GeKCIUO8r46g2CEu7aDlxZnWALyhGCrRyaGjRGf4QcuLslKpsMdOxw9VzeE2SY54q1SnC6vErmPsr6F/vh2DDCf7qg9KJh12G8WZiaz35QAmJtoUdpRg5XeUYIkNUgsBKMlOtkqwUkeAM1HbYSnVzzTBUkqpA9j8rQSxgcN9+HWzrDfCnj3r+jusAVHf5iODRryuYWA7+F/EqCyrO293U6nVkH6I29vkIUfCCdYBbbDA6gxhc3B4zPQkWNnkJd/eACnDQWS/ZaOzkqgjGZ8zNSYSrKpwl/Rx7VUHVf8Eqx3W0pbwYNoxcL57GtqJc9pIS3BaJVgpBWB3Ata5VjR6aPYFtSdBpQaAJlhKKXUAW6Adr7gPegDtTvKIyQDUla7p77AGRE2Ll0xpxB+X2e3y3JQ4ymz52E1gXzuPIawynGCFXMngPrjN3eisJDYFcqFuW0wklFXNHrKo7760LiMBmwjVcUUxkXBUNnmwEcLeVtXt+Y7JTuLjhjRr7K8YSKB3N7STlxaPiFj3ZnpR57KONmfbqlutdljVWoKlVH/SBEsppQ5gJVjxvVo3v7CYJhOPtyI23gjXNPvIlEZMNz0IgjVIqyd1dHjlof9QWtXkIVsO7qK9Q0dPghL0DfmE0hcIUdPiIz1Y2+35xjntFKQnsFMKYiLBqmryUBzXgpigVWJ3gDHZSXiMC39KYUx0+lBe305herhac701yHCHfT0JhtthtVTG1Fh2Sg02mmAppdQB7MF2/LbDVw8EGJlptVux1w39ZAM6SrCasCV1n2ABOLLDXbXXDv1z3tvkId/eiK2bKmRglWBtC8VGT4LVLV7AhNskHZxwgJVQrvfnWm0Kh/gD+N4mD+MTOwYZPvj6luRYSUddfPGQv7YAZfVtFKTHWx12tOyF9JGdyzo69bB6EpxgzazaEJ1AlToG9CnBEpE7RWSjiKwWkRdEJC08f6SItIvIqvDXfRGJVimlBkBcsAWv/dCDDHeu67Sz11VEasu2fo5qYNQ0e8ikEXdq9yU6ALk5edSaZIIx0tNcrq37KnNgdRhQbo+Njh8qmzyk0IYj5DlEgpXEspYMa2KIJx17GjyUxFuDhndXYlecmYhNoNxeYL0sGMJjfzV7/DS0+SkclmD1igj7VRF02G3WOGdVLZDVkWDFRqm7UoNRX0uw3gImG2OmApuBH3dZts0YMz38dXMfj6OUUgMmIdSC13HoMbC6ak0ZQ2qwfsi/8QdoaqwnTvy40npOsIrDHV3EQlftVY3tZIR6riJoswmZWbk02tKHfoLVGK4OCT2e76isJNYHOkrshvb5VjS2U+wKD6jbTQml22GnKCORjYFcCHigsWyAI4yc8nqrB8GC9C5dtHepIghWhy1bqlqsn4U7VdthKdWP+pRgGWPeNMZ0tPpdAhT0PSSllIquxFALfmdKr9e3hceW8e0d+lVu/I0VAEg3Pep1GJOVzPZQHva6oV9q52mqwYm/xxIdCPecSN6QL9GpbPKQ25Fg9VglMpFyk0XI5hzSCZY3EKSmxUeevR7EDj20KRydlbRv7K8hfL4dCVZhesK+toLp+ydYJdlJlNW30e4PWe2wtIqgUv0mkm2wbgRe7zJdLCIrReQ9ETmlp41E5CYRWSYiy6qrY2McGaXU0OUPhkiijZC79wlWcqHVk2BtDPQkaBrCb/FT83tcZ0x2EjsYjttbA+0NAxNYPwiGDPa2vdZEDyU6YD2Eb/DnYobwAzhARZOHfFuDNdFTpx7ZSYSw0RA/tHsS3NtojYGVZeqsc7XZu12vJCeJxQ3DrIkhfL47a622ZoXDEqC+FBxxBw07UJKdjDGwrTrcDqtqQ0wNkK7UYHLYBEtE/iMia7v5urDLOj8FAsBj4VkVwAhjzAzge8DjItLt04ox5n5jzCxjzKysrJ4bVSul1EBoaveTQiumm0F2ezJi1FjajJu23UN/LCxb8x7rQ2rPFRLiXXZakoqtiSE8QGtlk4dsU2tNHKIEa3RWIltDeUh7HbQM3ReBu2rbGJcQrjLXw/lmJLpIjXey2zG0e9bbHR50Ny1Qc8hrOyYriepgEsG4YUP6fLdWtTAs0cWwRJeVYKUVHTTMREenHtuqw+2w2uugpSoK0SoV+w6bYBljTjfGTO7m6yUAEbkeOA+42hjrVYgxxmuM9V/LGLMc2AaM7bezUEqpCGlsaSNRvNjiU3u9TXFWMttNHraaofuABmCMIa6twhoXqJte1/YTrhY5lKsZlda2UijhhKlLj2sHGpebzCYTTjiHcMcApbVtjHXVWgmHs/thCESEcTnJVjushp3gaxvgKCOjosEqwUps3w1pI3pcryPpaEgeM6Sv7Zaqls6xrqjeBJklB60zMiMRu03YUtmlJ8HqoXv/KjWY9bUXwbOAHwIXGGPauszPEhF7+PMooATY3pdjKaXUQGhptEo0HAnpvd7G7bCzx1VEWsvQLc0BqG31kWNqaHdlgMN1yHWH5VuldoGKoVstcmdtG0VSScgRD0nZPa43KjOJLYTbs1QOzVJKYwy7alspoBLSiw+57vjhyXzckgsmNGQ7Qtjd0I6DAI7mchjW8/mOzrKSknLXKKhcPyR7EjTGsLmy2UoWAz6o2w5Z4w9az+WwUZSRwJaqZu2qXal+1tc2WH8GkoG3DuiO/XPAahFZBTwL3GyMGfrdaymlYl5bs/WnypnU+wQLoDV1rDWA6xDuSXB3fTt5UoM/6TClV8DY4alsNgV4dg/dBKu0tpWRtmpkWPFB1am6cjlsDMvOt3oSHKIJVk2Lj1ZfkCx/xSFL68AqsVvpC7fBG6Lnu726hZkpLUgoAMNG9bheottBXmoc64OF4G+FhtKBCzJCdje00+wJMGF4ipVcmSBkjet23ZLsJKur9sQsSMgY0qV2Sg1mfe1FcIwxpvDA7tiNMc8ZYyaF5800xrwcmXCVUqp/ecMJlvsIEyxyJlrb71kb6ZAGTHl9O8W2vZhDPJB2GJ+bzMZQIc6aodtQvrSmlVGOauQwCQd0VBMshKqhmXDsrG3FjY8Eb9VBvcsdaHxuMrtMNkF7/JBNsLZVtzIrNdze7DAldmNykvmkPdxOq3LoJRwbK5oBGJ+bsi9h6iHBGpOdRGltG76gsdphVQ3NEkqlBrtI9iKolFJDnr/FqiIYn5JxRNuljJgOQO32lZEOacDsqqolj1oScrt/OOuqKCORLVKE21c/ZBvKl9U0U2AqDlnC0WF8bgqf+QswVRsgFByA6CKrtLaN0bIHwXTbPqersTnJGGxUJ4yGyqH3wiAUMmyrbmFyXLh9XcboQ64/JiuJd+syrLaHQzCh3Li3CbBeAlCxCuyufYMJH6AkO5lgyFBa22pVE6zeOGRfkCg1mGmCpZRSXQQarW67UzKPbFi/ouLRNJoEvEO4ylzTni3YxODKPvQDOIDTbqM5Jdx30RB8CDfGEKzbgcv49rVHOYTxw5PZGBqBBDxWNawhZmdtK+Psu62JHh6+OyTHOSlIj2e7rchKOIbYA/jeJg9tviAllEF8+kHdlR+oJCeJBr+TQFrxkPxd3rC3mRHDEkhyO2DPSsie2GMbyjHhjjCsji7Gg7cJmnYPZLhKHRM0wVJKqa5arATLntLzuEjdGZmZxCZThLN26Fa5CVWHB9LNOHyJDoBz+CTrwxBsx7G3yUNRcJc1cZiEA8JVIk2hNTEEH8K3VrUwM74SbA7IGHPY9cfnJrPCm2915d28dwAijJxt1S0A5Hi2W8nGIdrXwb6koz6pZGiWYFU0MT432SpZ3bMK8mb0uO7orCRErN8Hsq1qzdrRhVKRpwmWUkp14WirppUEcCUc2XZ2G5Xxo8ho3Tbk3viDVaKT0rSZENJtD2TdyS8opNKk4R+C7c7W7m5irJRbEz20V+kqNyWOKvdIQtiG5EP4uj1NTHfttpKrw/QQCVaVyA+bwyU/Q+x8t1S2AIakpi29+l0eE+5JcJez2Cqd9LX2c4SR0+YLsKOmlfHDU6DiM6tEauTJPa4f77JTkB5v9SSYNfSHWlBqsNIESymluojzVNPoOLL2Vx08w8YTb9qgYVeEo+p/O2paGRPaQUtiEbgSe7XNuByr2px/z9CrFrlmdyPTbNsJDRsD7qTDri8iFA/PYLc9f8h1hNDY5mdXXSujfZsPWbrR1bjcZKtnPRhyJXaryxuYlVyHzdsEedMPu356oovMJBfrggWAGVIdP6wpbyRkYHphKux435p5iAQLrHZYW6taIGEYJOVqgqVUP9AESymlukjy19Lmyjyqbd15kwFo2vVZJEMaECt3NTDJVgq5U3u9zbhwtTl3wxYIBvovuH6wrryB4xzbsBXO7vU2E3KTWRcowFQOrYRy7Z5Gq/MSfy3kH9erbcbnJtNIEm1xuUOuBGtVWQPnpodLJ/Nn9WqbMdlJLGnp6Elw6Fzfz8obAJhWkAYbXobcKZB86OrNJdlJbK9pJRAMWe2wdLBhpSJOEyyllArzBUKkheoIJGQd1fZZo63SgfodqyIY1cDYvG0rBVJDUnHvE478tHh2Ooqxh3xQO3QGWQ6FDHt2bWGYaeh1wgEwLjeF1YERSMMuaG/ot/gi7ZMddcyyb7Ym8mf2apvizETcDhu73aNg79BJOOpafZTWtnG8Yxu4kntV/ROsKpHvVSdgXMmwd+iU2K3c1UDhsHgyPLtg9zKYdPFhtxmdnYQvEKKsvt1qh1W9aUgOsKzUYKYJllJKhe2uayafGkg79DhBPSkZkUe5ySRQMbTe+AOEdn4MgG3kSb3eRkTwZVmlduxd3R9h9YsNe5uY7FtlTRymOlVXE/NSWGtGWhNDKOlYsr2Wc5O2gDsVhk/v1TYOu43xw1NYExwJNZvA19avMUbKR9tqABjdshyKTgKbvVfbTc5Ppc1v8GROstoyDQHBkOHj7bUcXzQM/nM7OBNgxjWH3a6ksyfBcDssfxs07OznaJU6tmiCpZRSYZVlW3BKEHfO4XtZ605mkpvttiISGzZFOLL+1eINUNC0Ar8tDoZPO6Jt00ZMwmOchPYMjYdSgI+21nKKbQ3BhOxed+gB4Z4ECQ9aO0Qewlu8AVbuqucEs9pKJnuZcABMzkvhvZY8MKEhU03wg801jIurJ65pB4ye3+vtJuWlALAnfqyVPA+Bsc5WlzfQ0ObnqsRPYeMrcOp/QVL2Ybfr6DVxa7X2JKhUf9EESymlwpr3WNWo0vJ7V62oOw1JJWR6d0HAF6mw+t2HW6qZLytpHn4S2J1HtO2EvGFsNIV4yobOAMvvrNvFafbV2MeecdguvLuKc9pJz8qnzp41ZBKs9zZVUxLaQZqvAsaddUTbTspL5VPPCGuiYlXkg4uwQDDE2xsr+WpWuBOSkjN7ve2Y7CRcDhvrTDEE2qFmcz9FGTnvbKxCBKbW/wdS8mHud3q1XXKck+GpcWytbNlXhVLbYSkVUZpgKaVUmL96GwBpBUefYAWzJuAgSGAI9US2esXHjLBVkzrt3CPedlJ+CutDI3FUrRkS3dNXNXmIL19MEq0w8aIj3n5SXgprQyOHTIL1yuo9XBr3KUZsMO6cI9p2cn4Ke8jA50obEuf70bZaalp8nB78EHKmQMboXm/rtNsYn5vMBy151oxBfr7GGBZ+tofTi924St+FCecf0cuCMdlJbKlqgbgUSC3UEiylIkwTLKWUCnPVbaaNeCR5+FHvI6nQqmJXs31wP6B1aPcFydj2AkHs2CdeeMTbj85KYqMU4/I3DYnu6Z9ZXs5ltkUE4zNg1Lwj3n5SfirLfSMwNZsH/XhJVc0e3lm/h0sdHyAlZ0LikfWOOTYnGYfNZlWbG+QJB8DzK8qZHldBWt0qmHr5EW8/KS+Ft6tSMY74QX++n5bWs7O2ja8PWwFBL0y76oi2H5OdxNaqFkIhY1WTHUIvhJQaCjTBUkoprDfCmS2b2JtQckRvgg+UVzIFn7HTPES6an991U7O432aCk6FpCPvPdFpt9GaHm7HMcg7uvAHQ7z38VLOtC/HPuPqXg24e6BJ4Y4uBDPoe5t78pMyzmMxyf4aOO6GI94+zmlnTHYSa80oq4Qj4O2HKCNjT0M7r6yu4BcZ74DdDdO/eMT7mJSXSp0nhC9z4qBPsP723jayE2xML3/MGtusF+N9dVWSnUy7P8iexnbInmB1ZDLEhlpQajDTBEsppYDKxnZKTCmejEl92s+Y3HS2mzxsVYN/MNpAMMTWtx8iWxpIm/eto95PfOE0Atgwg/yh9IWVu7m8/Umwu+DEozvfiXkprA0N/o4umjx+HvlgKz9MWGiNbTZ2wVHtZ3J+Kh+05EPID4P4d/r+97dTRAXT696A2V8+4tI62NfRxd7E8VCxetB2Xb5xbxNvb6zijtHrsTWUWp1bHKGSnHBPglUtVoIV9EH9jghHqtSxSxMspZQCtm9YSaJ4iR/Ru3GCeuJ22NnjHkVa85YIRdZ/Xl62jWs8j9GQPhUZfdpR72dsQRbbQnl4y1ZFLrgIa/UGeOmNt7jYvhjb8V+B5Jyj2k9KnJO4Yfk02dMHdYL153e2cp7/dXICe2Dej4+6VHZSXgoftxdYE4P0fLdWtfCvJTv5Y9ZCxOGGk285qv1MGJ6C3SZWT5G+5kGZcBhj+MVL6xgeF+C0yoesXj/HHlnnJQBjssI9CVaGEywY1Am0UkNNnxIsEbldRHaLyKrw1zldlv1YRLaKyCYRObpXZ0opNUAaNi4CYPiUeX3eV0vqWDKCVeBp7PO++ktjm5+6N3/HcKkj9aLf9ala5KS8FNaZkYO6iuBvX1vDj31/IhSXjpz8vT7ta3J+GutN8aBNOFaVNfDm4iX8zPUUjD4Nxp191PuanJ/KLpON35k8KM83EAzxg2c/42LXUqY0LoJTbu1VV+XdiXPaGZ2VyEdtHQnlqojFGSnPLCtn6Y46/lH4Cvam3XD2nUd176YnushMcrG1qgUyxwGi7bCUiqBIlGDdZYyZHv56DUBEJgJXApOAs4C/iEjvB99QSqkBFlfxCQ22dOJySvq8L/twa/DdlrLBORitMYYHnniS6wLPUj/6QqToxD7tb3xuCutNEXHtldBSHaEoI+f1NRUULv8dk22lOC/8EyRm9Gl/E/NSWOYrxFQPvnZJda0+bvnnR/zV/WecTgecf3efkucJw1MQEfYmjBuUCdZvXt9IY9l67nA+BPmzYO53+7S/yXmp/KcmzapGOsjOd0NFE7ctXMv3hq+hpOxpOPGbMOKEo96f1ZNgM7gSIH2klmApFUH9VUXwQuBJY4zXGLMD2Aoc30/HUkqpPqltamOadzmVGSf06WG0Q3rxdACqtw3OsaGeXfQJV+36Ba3xw0m/7J4+7y/R7aAuKTxg797B9VC6clc9S5/5HV91vEZw1let7qz7aHJ+KmtDxUgoMKgeSlu9AW5+5CN+6vk/xpttyCV/h7TCPu0zye2gOCORDRRbnXoE/RGKtu/+8XEpCxev4NmUu3C53HDpQ2B39GmfE/NS2N0cwp85YVAlWOX1bdzw8KfMd2/i/zX9AUacBJ//RZ/22dFVuzHGqiZYrSVYSkVKJBKsb4nIahF5SETSw/PygbIu65SH5x1ERG4SkWUisqy6evC9+VRKxb4Ny94lQ5pxTTqycYJ6MmrUOJpMAt7dg68E6/Wlq5ny7pfJsLWRdM3jEJcakf3a863u6akYPNUEl++s598P3s7ttofwjjoD+9m/ich+O3oSBAbNQ3iTx89ND3/IzZW3c7ptGXL2b/tUNbCriXkpVrW5oHfQDMD7yIc7uH/hu7yS9N+km0a48glIL+rzfifnW/dDddJ42LNqUIztVlrTypX3L2GGbxn3mv9BhhXDFf86ql4wuyrJTqbZE6Cq2WslWLVbh9QA6UoNZodNsETkPyKytpuvC4G/AqOB6UAF8H9HGoAx5n5jzCxjzKysrCPvIlgppfqqbe0rBLBROKvvpRsAOalxbJNC3HWD643wS+9+xPhXL6PYVoXtqsex50+P2L6LC/MpC2XhK18VsX32xWurylj+4Lf5kTxC+5hzcX/xsT6XbnTITHITSCqkzZY0KBKsHTWtfO3eV7hlzw+Yb1sF590FJ3wtYvufnJ/K+y3hd6R7VkVsv0fDFwjx0xfW8PIrL/BKwq/JcrQj1y6EwtkR2f/EcE+Cm22jwdMQ9bHdFm+p4eJ7F3O25zXutd2JLWscXP9qn6u5ApRkhzu6qGqBrAkQClhJllKqzw7738YYc3pvdiQiDwCvhCd3A13rJRSE5yml1KDS7gtSXPs+O5OmMTppWET2KSLUJIyhpO096w14BKod9kUgGOLJpx9jwcafEu8IYb70Iu5RJ0X0GJPyUllnRpK5J7oJh8cf5J6FHzF31Q85x74ez7TriL/gDxFLrjpMyk9lU9koZkQ5wXp9TQVPP/s4f5Y/keb0IRc/CJMviegxJuWlsMPkEnQkYq/4DGZcHdH999beRg/femw503c/xjPuJ5GUEciVj0POxIgdIyXOSVFGAks9BcwDK4GOQMnYkQqFDPd/sJ173ljF3UmP8nn/ezD6DLjk7xCfFpFjjOnoqr2ymbmju/QkGMGfp1LHqr72Iji8y+TFQMeoiwuBK0XELSLFQAnwSV+OpZRS/eGTTz6mRMqxjT83ovv1ZYwnybQQaozuu6Vd1c08e9e3uWrj/4O4VNw3vUlchJMrgInDU1gbGkl8cyl4miK+/97YuLeJ3971e65ffTWzHdvwnX8vcRffHfHkCqwE61NvISZK7ZKaPH5ue/YTyp66lb/Lf5OSno39a4sinlyBlTwbbFQllkSlZz1jDE9/WsZ1dz3Ddyt/xM+cj2Ebfzbytff6JRmYlJfCWzWZYHNE5XzL6tq46oElvPvGC7yb9HNO878P838GX3w6YskVQFaSm5Q4hzUWVmYJiF3bYSkVIX39r/M7EZkOGKAU+BqAMWadiDwNrAcCwDeNMcE+HksppSKudcWThBBGfO5LEd1vXMEUKLM6usg5riCi++4NYwyvvLOI/Pd/yJWymbLC8ym85j5wJ/XL8bKS3ZTHlUAQ661/8Sn9cpzuePxB/vHWJxQsuZ1f2JbQnD4B51UPQk7fBo0+lEl5KbwUGo0EX4W9ayC/b+OnHYm3N1Ty3HNP8kP/vYx0VBKceQPOBb8Gd3K/HG9Yoov8tHg2yBiGV7xitdPpY/uf3iqvb+Mnz31G8Y4neMn1FC6nHc74Pcz+Sr+VDE8tSOO1NXsJFE3CUTZw74YDwRCPfFTK/W+t4lZ5nCvcb2GSRiIXvNwv95OIUJKTbFURdLghYzRUbYj4cZQ6FvUpwTLGXHOIZXcAd/Rl/0op1Z9aPX4m1b7JjuTjGJ06/PAbHIGc0TPhY2goXUXOcZFp29VbOyobWPb4L7ig4V/47PHUnXEPhXOu6feqioHhx1ldGpV/MmAJ1nsb9rDihbu43vs4SXYvrXN/QvL874Hd2a/HnTEijdtCY62JsqUDkmBtr27hnhff53O7/sxf7B/iTSmCL7yCfQB+1tML03i7dBSnBTzWeGcFs/r1eN5AkIc/LOX9t1/lx/IIU5zbMKM+j5z/R0gb0a/HPq7I6q9rT8o0RpQ+a5VQ9vPv0/Kddfzs+dVMqH6df8c/TVqoAeZ8C5n/U6sb9X5Skp3EW+srrYms8VC59tAbKKV6JfL1JpRSaohY9vHbnCqVbJ96S8T3PXpEAXvMMEJ710V83z3x+IO8/OITTF/7v1wm5ZQOP5MRX/wztpScATn+uOIitu7Ko6h0Cc5+fuavaGznqacfY0HZH7nFVkZD7hycl96NM2tc/x44LDs5jriMAmq8OWTuWgJzvt5vx2rxBvjLf9biWHIvd9hewuU0BE+8Ffep3+/Xh++uZhalc9+akdwRB+z6uN8SLGMMb2+o4m8vv88XWx7mcfuHBBNz4cz7kamXD0h7xin5qTjtwgozlhH+tn4toaxs8nDnvzexdcUi7oz7J5NdWzC5xyFn3wkFx/XLMbsak53Ek5+WUdviJSN7Amx4Gfzt4Izv92MrFcs0wVJKHbN8K5/Gh4ORc6+M+L7jXXZWOUZT1DAwCdbHy1bgff3HXBZcQo0rj4Zz/sHIGRcOyLE7zBo5jOXvjqWo7JN+69yj3RfkiTcXk//pHXxXltIUPxz/eY+QNvmiAe9MZFbRMJZtKGFB2VKkH843FDK8sKKcJa//g//nf5gR9mq8JefiOOd/rIFhB9DMEWlUk0Zr4ggSdy2Bk/5fxI+xtaqZ/124iok7HuEfzpdxOw3M/T72k2/pt6qt3Ylz2pmUl8objUVcBFD2ScQTrHZfkAc+2M6z7y3juzzO793vE0rIgTPuQ6ZeAbb+GqZ0f2O69CSYkT0BMFC9CfKmD8jxlYpVmmAppY5JjS0epjW+zfb0kxifmH74DY5CddoUTqz9FNobIto4vasdFdWsfvKXLGh4EiM2dk6/laJzfwjOuH453qFML0xjIWO5wrfI6u45syRi+w6FDK8u30r1G7/li4EXEZudxhN+SOrnvxe1t+2zRqbz4WdjOKt5MTSWRbTq2uryBh58/hUur/4Ld9rX0Z4xDs5/EPeoUyN2jCMxKS8Vl8PG1rjJTNu1JKIJdGO7nz+9tZnqpU/xK+fj5DurCY2/ANuCXw94ItnhuKJ0/rWkCTOsAClbAnNujsh+jTEs/GwPf3htDee0vsCbrpdwSxBOugXbKbf2Wzu6npTkWMfbWt3CCcXhngSrN2qCpVQfaYKllDomLX//ZU6TBjwzr+i3YwSHz4Lah/CUfkrchDMiuu+mdh9vPvsAc7b+gQulhq05Cxhxxe8pyujf9imHEu+y05x9HNRhVSOLUIK1vLSWRc/9lauaHiRP6qgpPp/Mi3+DO3XgOw/pavbIdB4NjbcmdnwQke7L9zS0c9+rSyjZ8Gf+4HiHYFwSodPvJH7Wjf3SG2JvuRw2jh85jLdrRzGt/TWrlCN7fJ/26Q+GeGzJTl7/z5t8L/gQJzg3EsiaCOc8jG0AO0npzqyidB5cvIO6zFlk7PgAQqE+lyqt2FXPr19eR+7uN3ki7mnynBUw9lxY8N8wbFSEIj8yealxJLrsbKlsgVljwea0umpXSvWJJlhKqWOSrH2WNuIonHNxvx0jtWQOoTVC3eYPyYtQghUMGd54510yF9/GpayhIn4UDRf8nTET50dk/32VP3oqlbXpZG55G/vMa/u0r/L6Np59/hnm7fwjt9q2U586gdAXHiNzZOS7mT8ao7OSqEkYTSMZpG59q08JVos3wN/fXkfw47/wQ9tLJDh8BGbegOv0n0FCZMZn66tTx2bx0Gvj+F4csOXNo06wjDG8tb6Sv7+6mMuaHuUJxweEEtLh9D/imHkt2OyRDfwonDQ6E5vAUvtMzml7ESpWQv7RtYna3dDO797YSNlni/hl3BNMdW3CZE6EBX+B0adFNvAjJCKMzk6yehK0O62XIlXaVbtSfaUJ1hBjjCEYCBAI+Aj6fQSChoAxGMAmNkTE+m4XJDzPZrMjdgc2mw2nXZAoD3qqVLRV1Tcys/V9dmbPZ4Irsd+OU1I4nM2mgOTyTyOyv2Xrt7DnpV9wjud1PLYE9pz4a/I+/42olmwc6MQxmSz6eBpf2Po29qPsfa3FG+CJ19+haMXv+K7tU5rjsvGeeS/pM784YG1TekNEOGNSLm99NpVLtv4H8XuOuGpmIBji6U93sfHNv/O14OPk22tpH7UA2zl34IpgFctIOHVcFne8lkF98ljSN74Kc799xPtYU97I/738KbN2/4N/OF7H5TLICd/E8bkf9Fs12qORmuBkxoh0Hq0azTlihw2vHHGC1eoN8Lf3tvHq+x9zq+0JznEvsdpZnXY3MuNLgyKRBKsd1kdba62J7AlQFpm/V0odywbPf+UYEwgEaKivpbmhGk9TDd6mWvyt9YTa6jDtDYS8rRhfK7ZAG45AG45gO46gB1eoDVfIg8t4cRg/DoI4TMD6ThAnARxijurC+Y2ddhwEsOPHQVDsBHASEDtBcRLAQcjmIChOQuIgaHMSEichm5OQzYWxOTB2l/Vlc4LdBXYXYneBw4V0fNnd2JwubA4Xdqfb+u5wY3O6cTjdOFxuHM44HC43dqe1jd3hRuwubHYbdrsdm836sj4PgaTQGOsLgzGh8GTHZ4MxJryaNU14nsFgQtZ3THg51rYSMhhC4d12rBuyvhsAA6GOY5rwdl33H+oMjc4YTGc8nTF1dzpI56cDFmB6uBYG6WZ1A0iX6f1/ZPsv67JUJLz8QF3W77Lcisl0v4yD49294g3OlDYaj7uqu4NETEF6PM/bxnJ23ScQCh71A1VZVT2fPv2/nF79T6aLh/JRl1N06R0kJWZGOOK+O2l0Jrc6jucK/yLY9g6MXdDrbQPBEAs/Xof3nf/l+uAbhOxOmub8FynzvztgveUdqQWTcvn7sjlcKu/Cln/DxN53LPLe5mpeeelprm2+ny/aSmnLmgLn/YP4kSf3Y8RHryQ7iZEZCbxhTuKqskegvrTXbaT2NLTzf2+sI2HNP/mD83mGOZoITb4U2+dvg/Si/gz7qF04PY/bXqqneczJJK99Fk77ea8SfF8gxJOf7uKR/6zkKu/T/NvxJjaHE+b+CNtJ/29AO+zojfG5yTy/Yjc1LV4ysybA2ufA2zzg7cGOJd5AkBZPgBaPj9aWZtpbm/C0NOH3NBPytmDCX+JvRXytEGiHgA8T8EHIhwR92EN+7MaHPRSwvhs/dhMAEwJjkPAzgIjBBggh68V7+L+iiMFgIyQ2DDaM2MOf7YTEjhEbiB1js1uDUIe/G7GBzYGxOazBuMOfpWPa7kBsTuvFn82Bze4Auwub3VpHHE7rpb/dGf5yIA5ruc3uwO50YbM7sdsd4edHh/Us6U4iITkNp33wvGQ7FE2wjkDA56G2qpyGynJaavfgbaiA5r3Y2qpwe2pI9NWQGGgg0bSQYlrJFENPjz8BY6Nd4vBIHF6Jw2uLx2+Lw+dIodWRS8juBrsL05HY2Bxgc3Z+7/jFFZsNuwgSfnDueMgPdfmMMUgogIT81ngeIR8EA0jIhwT9EPJjCy+3hfzYTABHyIcr0I7dBHCEb1qH8VsJHn6cJoCDAC4ZmPGjg0YIhf8shNj32YgcMM96BJfww7bs93htELNv2lq270m86/S+few/3XW5TbrNAMLrqsFsElBPCoWzzu7X44gIjbknkbD3bUzZJ0jRiUe0fWOrj3deuJ9ZW/7EF6SKHRkn477sTkYOn9hPEfedy2EjfsIC6jf8leRlj+LoRYJljOHNlVspe+OPXOZ9niTxUD/uCjLP/yXu5IHpYv5onTQ6kx/ETadOshj2yQO9SrCW76znxVde4vS9D3KnfTXtSXmYBfeTMOWyQVVCdyAR4YrZI7jnjZlcGf9P5JMHYMGhh7usafHyt3c3U/PJ03zb9jTFzr0ERsyFBf+NbQAHZz4aF07L545XN/C6/TQub/gFbH4Dxp/T4/qhkOHl1Xu4798rOaPpBRa63iDR0WqVVs3/KaREdqy9SJk5wurkZ8XOes7MDnd0UbUBCo+PYlRDg8cfpK7VR12rj4aGejz1e/A27iXQVEWwtR48ddg8jbh8jcQFm0gItpBkmkk1LaRKK0XSdkTHCyH4ceLHQUD2fQ+IgwBOguKwEiAk/J3OJxeDYIwQCD8rGQNiDDYC2AhiMyGchLCZIDZC2AghJoQ9vMyaZ322Y823h1/+Owhi7+GZKFIeDiwg87I/cv60vH49TqRognUIa95/Ce+nD5PcvoeMQCWZNJADHPjvvoFk6m3ptDiG0ZQ4kUBcGsSlY09Mx5GYgTNpGK7kDNzJGSSmZZKUmoHbHU+yzcZQfz8UCgbx+bz4fR78Pi8Bnw+/z0PA7yHg8xLwewn6fQT9XoIBL0G/F+P3Egy/iTFBK8mzBb0Q8kO4hAYTwoRC4TcxIas0xoSshsaEv3cuM9jEelsjHSmWHJRaIdJRmrEvBdpXGhP+3nU76bKu0LnffQTCf8AEOv+Y7dvO+iwd24W3NeFp6bq/8LTpMk869tM1RpEu87vG1LHPfccXkf3OTzrnd12nm4t6QOdgcuDCA1hH7ZKodt3AHFx+tG95xzb7ryHdHKP7WA4uGzv4WAfua98aqcUzEYerx2NFSvrUs/FX/A8Nnz5HVi8TLI8/yJuvv0jhit9yMZvYEzeK2nPvoXjqWf0cbWRcdeJoHltzGt/cvBAq10NO9wmhMYbFG8rY+spdXND6DAukmaq8eaRc9D9k5kwa4KiPjsth4/pTxnDvf87k56WPwbZ3YXT37eE+K2vgpVdf5uTdf+fX9lW0x6UT+NwviZ/ztSEz7tClxxVw13+y+TRpPscvewhO+Fq3vSfWtfr4+/tbqPr4SW7mWcbY9+DPGAcL7sZRcuaAd6l/NFITnJw7dTi/XhPkC+mFON75byg546Bqr8GQ4fW1FTzyzmpOqH6Op12vkexswYw9xxooOHdylM6gdybnp+Ky21i+q54zTw6Pb7ZryTGdYDV7/FQ2ealsbKeurpq26p0E6sugcTf2tirc3lqSA3WkmwYyaWSUNJIg3m73FcBOmy2ZdkcKXncKPtdw2lxpNMelIe4UbPHJOOKSccYl40xIwh6XjCM+CWd8Cq74ZFwJKYgzHuxubDY7bhHcA/zz6IkxhpCBQCiENxjE7/cTDPgJBnzh7wGCAR+hgDU/FPATCobnBQOYoDXPBAMEg35M0Ppsgn5MKLDf58yEUUzKS4n2KfeamO7r4UTFrFmzzLJly6IdRqdlC+8jd+UfaXDl0paQRyApH1tqLvFpeSRm5pOeXUhaVh5252D5VVdKDTaNbX4++c3ZnOTcTOKPNh+yjY4/GOL9d14n6ePfcUJoFQ22YbSd/CPy5n1l0LTX6K2v3/8m/7vnBuKzR+P+yhv7VfHzB0O8u3Q59e//jdPb3yBDmtmbNZes83+JfcTsKEZ9dJo8fhb87k2eNt8nPzGE7YbXIGM0YFUXW7RuFxvfeYyT6l9klm0zHkcqtpO/jevEmwdddbHeuOftLTz51ocsSvwRzpwJcPWzkJiBMYb1FU0sfO8T4tc/zWW2t8mXWrzDxuP+/I9hwgWDuoSuO7sb2jnjD+9x/bD1/LDhlzDjS3DeH8HupLbFy8JVu/lo8TvMa3mNLzg+JB4PZuxZyLwfD6muzr/wlw+xifDs10+Cu2danV188aloh9UvjDHUtfooq2+nvK6Fhr2leKq2Eaovw9mymyRvJdmhaoZLLXlSS5J4DtpHiz2VNmcG3rhMggmZkJSDIzkbZ9pwEtKHk5Ceiz1xGMSngytpSLxQUEdHRJYbYw4aeV0TLKWU6mf3PvQw39z1XZpP/hnJp//goOUeX4CP/vM88cvu48TQcholhfoZ32TkWd8etG2PDqesro3/u/sP/B//R3PyaBomXE2tSaambBOZez9gutkIIlTkzCP7rO/jKp4b7ZD7ZOn2Wn714DM87vw18bYAu9LnUOFPxtlUygyzEbf4aYwfgfvErxB3/A0QN3TexB7IGwjy5UeW4d7+b+5z3U3AHs/WhKlUtQmF/u2Mte0GoK3gFBLm3gzjzhlyiVVXCz/bwy1PreJn8c9zQ/AZGly5rLeNo6WtlemylWxpIGhzI1MuwXbCTZA3I9ohH7E7Xl3Pox/v5LPbziT+37fCmmfgh9vBMTRfIIdChr1NHnbUtLKjsp76PdsIVG/D2VRKSlsZ+WYvRVJJoVThlsB+27Y40mmLH04gKQ9JK8A1bARJ2SNxDxsBqfmQmHVUnfeo2KQJllJKRUlZXRsb/3gB820r8ZxzN0mzrsQgbF6/kt1Ln2dE2UuMoYwGSaVm8pcZfd73kBhoYL5uTyOP//MBvtp6PyNtlZ3zy9wlBMecyYjP34Rt2MjoBRhha8obuX/hIk6peJjZsp50WzstcdmEik4mf/ZF2EedOqQTja68gSB/XbSN5Us/4Aue55lh30Gcw2DSRpI66UwSppwPmWOiHWbEfLytlrvf3kJa2dtcanuHifbdONzxuPOnkDLxDBh/7qDpTv9ofLSthi8+sJT7vjSTs1xr4PHL4IvPwNgzox3aIbV6A2ypamF7dQu7qupo27MRR81GUlu2McrsYqyUUyDV+7UP8tniaUkoxJ86EkfmKBKHlxCXPQZSCyElPyqDtKuhSxMspZSKojeWbSRn4ZeYYdtiNUzGRjw+AErd4/Af92XGzL/WqmsfQ4wxbNjTRGttGWnSRtHIMbiSh+6DaG8EgiFCxmqfdSwwxgz+nl7VIQWCIU74n7c5aUwm91w6AX4/1kquLvl7tEMDrKq222ta2LS3ma0V9TSUb4TqDWS2badEyhknZRRJJQ6xes4Lip3mxJEEho0jbvg4EnNLkGGjrAGdk7K1yp6KmJ4SLO3kQimlBsBZs8azOe9Nnn/7XyTWbSDRESR++HhGn3gRI4ePinZ4/UZEmJifCvmp0Q5lwDiGSDfCkaLJ1dDnsNs4a3Iuz60op9Y7kYzpV8Gyh+CMX0HKwPXaFgoZyurb2Li3mS0VDdSUb4Gq9SQ3baVEyhgr5Zwtezp7MA45bLQnjcBkTUfyJ0HuRMiagD1jDGkD0ImRUj3REiyllFJKqWPctuoWTv/De9x0yih+fGI83DMLpl4OF/0l4scyxlDV7GXT3mY2722ismwbgcp1JDZsptiUMVbKGCN7iBdf5zatCfmYzPHEF0zGnjMJssdD5tgh0wOnik1agqWUUkoppbo1OiuJS2YW8PfFOzh94hxmn/QtWHwXFMyCWTce9X4b2/xsqmxm095GKsu24atYj7thCwX+XZTYyrlCdpMs7dbKNmiLyyGQMQ5H/jlWiVT2RMgaR+IQ7HFTHbv6lGCJyFPAuPBkGtBgjJkuIiOBDcCm8LIlxpib+3IspZRSSinVf35+7kSW76znhoc/5fZzr+WSMeuQV26B6k1wyvchKavb7XyBEGX1bZRWt7Bn7x6aK7YRqN2OvXEXub6djJHdfEF2k9hlrKj2hAx8w8biHH4q5E/uTKQS4tMH6nSV6jcRqyIoIv8HNBpjfhVOsF4xxhzR6HpaRVAppZRSKnoqGtv59hMr+bS0nsIUO79JeIwTG14BoDp5PPXuAholhXZfgHZfAKevgXh/A8NoJF9qSOkojQprcWfjSy/BlTuRxIJJSNZ4yBo3pHtdVKpDv/YiKFYL113AacaYLZpgKaWUUkoNTcGQ4Y21e1n42W5WlTWQ0rKd82wfMUs2ky81pEsLIoLYbHjsyfjjhkFCJo5hI0jKHUNC9ihIHwnpRRADQ04o1ZP+TrA+B/yh4wDhBGsdsBloAn5mjPmgh21vAm4CGDFixHE7d+7sczxKKaWUUioyQiFDqy+A027DZbdhs2nPkUpBHzq5EJH/ALndLPqpMeal8OergCe6LKsARhhjakXkOOBFEZlkjGk6cCfGmPuB+8EqwTr8qSillFJKqYFiswnJcc5oh6HUkHHYBMsYc/qhlouIA/gCcFyXbbyAN/x5uYhsA8YCWv9PKaWUUkopFbMiMRri6cBGY0x5xwwRyRIRe/jzKKAE2B6BYymllFJKKaXUoBWJcbCuZP/qgQCfA34lIn4gBNxsjKmLwLGUUkoppZRSatCKWDftkSAi1cBg6+UiE6iJdhBqwOj1PnbotT526LU+tuj1PnbotT62DMbrXWSMOWiAuEGVYA1GIrKsu95BVGzS633s0Gt97NBrfWzR633s0Gt9bBlK1zsSbbCUUkoppZRSSqEJllJKKaWUUkpFjCZYh3d/tANQA0qv97FDr/WxQ6/1sUWv97FDr/WxZchcb22DpZRSSimllFIRoiVYSimllFJKKRUhmmAppZRSSimlVIRognUIInKWiGwSka0i8qNox6MiR0QKReRdEVkvIutE5Dvh+cNE5C0R2RL+nh7tWFVkiIhdRFaKyCvh6WIRWRq+v58SEVe0Y1SRISJpIvKsiGwUkQ0icqLe27FJRG4J/w1fKyJPiEic3tuxQ0QeEpEqEVnbZV6397JY7g5f99UiMjN6kasj1cO1vjP8d3y1iLwgImldlv04fK03iciCqAR9CJpg9UBE7MC9wNnAROAqEZkY3ahUBAWAW40xE4E5wDfD1/dHwNvGmBLg7fC0ig3fATZ0mf4tcJcxZgxQD3w5KlGp/vAn4A1jzHhgGtZ113s7xohIPvBtYJYxZjJgB65E7+1Y8ghw1gHzerqXzwZKwl83AX8doBhVZDzCwdf6LWCyMWYqsBn4MUD4ee1KYFJ4m7+En9sHDU2wenY8sNUYs90Y4wOeBC6MckwqQowxFcaYFeHPzVgPYPlY1/jR8GqPAhdFJUAVUSJSAJwL/D08LcBpwLPhVfRaxwgRSQU+BzwIYIzxGWMa0Hs7VjmAeBFxAAlABXpvxwxjzPtA3QGze7qXLwT+YSxLgDQRGT4ggao+6+5aG2PeNMYEwpNLgILw5wuBJ40xXmPMDmAr1nP7oKEJVs/ygbIu0+XheSrGiMhIYAawFMgxxlSEF+0FcqIVl4qoPwI/BELh6Qygocsfbr2/Y0cxUA08HK4S+ncRSUTv7ZhjjNkN/B7YhZVYNQLL0Xs71vV0L+tzW2y7EXg9/HnQX2tNsNQxTUSSgOeA7xpjmrouM9YYBjqOwRAnIucBVcaY5dGORQ0IBzAT+KsxZgbQygHVAfXejg3htjcXYiXVeUAiB1cxUjFM7+Vjg4j8FKtpx2PRjqW3NMHq2W6gsMt0QXieihEi4sRKrh4zxjwfnl3ZUaUg/L0qWvGpiJkLXCAipVhVfU/DaqOTFq5WBHp/x5JyoNwYszQ8/SxWwqX3duw5HdhhjKk2xviB57Hud723Y1tP97I+t8UgEbkeOA+42uwbvHfQX2tNsHr2KVAS7o3IhdWYbmGUY1IREm6D8yCwwRjzhy6LFgLXhT9fB7w00LGpyDLG/NgYU2CMGYl1H79jjLkaeBe4NLyaXusYYYzZC5SJyLjwrM8D69F7OxbtAuaISEL4b3rHtdZ7O7b1dC8vBK4N9yY4B2jsUpVQDUEichZW9f4LjDFtXRYtBK4UEbeIFGN1bPJJNGLsiexLBtWBROQcrLYbduAhY8wd0Y1IRYqInAx8AKxhX7ucn2C1w3oaGAHsBC43xhzYwFYNUSIyD/i+MeY8ERmFVaI1DFgJfMkY441ieCpCRGQ6VocmLmA7cAPWC0W9t2OMiPwSuAKr+tBK4CtYbTH03o4BIvIEMA/IBCqBXwAv0s29HE6y/4xVTbQNuMEYsywKYauj0MO1/jHgBmrDqy0xxtwcXv+nWO2yAljNPF4/cJ/RpAmWUkoppZRSSkWIVhFUSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKkP8P9RjOwdZg/lAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1874,31 +1874,31 @@ " 45\n", " True\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " bAP.soma.v\n", - " 0.00754\n", - " 4.58e-07\n", + " 0.00585\n", + " 2.4e-07\n", " \n", " \n", " 46\n", " True\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step1.soma.v\n", - " 0.00858\n", - " 8.81e-07\n", + " 0.0578\n", + " 5.03e-07\n", " \n", " \n", " 47\n", " True\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step3.soma.v\n", - " 0.00765\n", - " 5.82e-06\n", + " 0.0784\n", + " 1.02e-06\n", " \n", " \n", "\n", @@ -1906,14 +1906,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "45 True 5 0.112 0.0634 bAP.soma.v \n", - "46 True 5 0.112 0.0634 Step1.soma.v \n", - "47 True 5 0.112 0.0634 Step3.soma.v \n", + "45 True 5 0.0799 0.0189 bAP.soma.v \n", + "46 True 5 0.0799 0.0189 Step1.soma.v \n", + "47 True 5 0.0799 0.0189 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "45 0.00754 4.58e-07 \n", - "46 0.00858 8.81e-07 \n", - "47 0.00765 5.82e-06 " + "45 0.00585 2.4e-07 \n", + "46 0.0578 5.03e-07 \n", + "47 0.0784 1.02e-06 " ] }, "metadata": {}, @@ -1921,7 +1921,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD0nUlEQVR4nOzdd3gc5bX48e/Zpt57s+XejQHbQGwTSkJJqIFgCDVcwg/SgBsCCUmIw03uzSXckFACISFAKMaE3jsGTAA35N5t2bIt2+pd2vb+/piRWNuSJVsrrbQ6n+fZRzsz77xzdnbXnrNvGTHGoJRSSimllFKq9xyRDkAppZRSSimlooUmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaXUACEixSJiRMQV6ViinYhcJSKLIh3HQCMic0RkQ6TjUEqpwUwTLKWUUoOaiMwTEZ+INIY8bol0XIORMeZjY8y4cNcrIk4R+a2I7BaRBhH5QkRSw30cpZQaCPRXUqWUChMRcRlj/JGOY4haYIy5LNJB9JUo+Gz9BvgKcAKwA5gEtEY0IqWU6iPagqWUUr0gIqUicquIrASaRMQlIseLyL9FpFZEVojISSHlF4rI/4jIYhGpF5GXRCS9i7q/KyLr7F/8t4rI/ztg+7kiUmLXs0VEzrDXp4jIwyJSLiK77JYDZzevY5SIvC8iVSJSKSJPtrcw2NuqReQYezlfRCraX5eInCMia+zXu1BEJhxwfm4WkZUiUiciC0Qk9vDP9OETkZ/Z56VBRNaKyPldlBMRuVtE9tnncpWITLa3xYjIXSKyQ0T2isiDIhLXw+M/apd/x47hQxEZHrL9zyJSZh9zmYjMCdk2T0SeFZEnRKQeuEpEZorIp/Z5LheR+0TEE7KPEZHvi8gm+3j/Zb93/7aP8Uxo+S5iPklEdvbk9fWUiKQBNwLfM8ZsN5bVxhhNsJRSUUkTLKWU6r1LgG8CqUAO8BrwWyAduBl4TkSyQspfAVwN5AF+4J4u6t0HnAUkA98F7g5JcmYC/wR+ah/3RKDU3u9Ru97RwNHAacA13bwGAf4HyAcmAEXAPABjzBbgVuAJEYkHHgEeM8YsFJGxwHysC+gs4HXglQMu5C8CzgBGAFOBqzoNQGS2nTx09ZjdzWs40BZgDpCC1YLyhIjkdVLuNKzzN9YuexFQZW/7vb1+Gtb5LABuP4wYLgX+C8gESoAnQ7YtsetNB54C/nVA8nku8CzW+/skEABusus6ATgV+P4BxzsdOBY4HrgFeAi4DOv9nIz1WT1idqLc1fvzly52m4L1ebxQRPaIyEYR+UFv4lBKqQHNGKMPfehDH/o4wgdWUnN1yPKtwOMHlHkLuNJ+vhD4fci2iYAXcALFgAFcXRzrReAG+/lfgbs7KZMDtAFxIesuAT44zNd1HvDFAeteBlYBK4EYe92vgGdCyjiAXcBJIefnspDtdwIPhvk9mGefw9qQR34n5UqAc+3nVwGL7OenABuxkhJHSHkBmoBRIetOALb1MK5HgadDlhOxkqSiLsrXAEeFvKaPuqn/RuCFkGUDzApZXgbcGrL8f8CfuqnzJGBnmN+f79ixPQzEYSXZFcDXw3kcfehDH/oYKA9twVJKqd4rC3k+HPh26C/7wGys1qrOym8H3FitEvsRkTNF5DO7e14t8I2QckVYLTQHGm7XVx5y/L8C2Yd6ASKSIyJP210K64EnOonpb1itIPcaY9rsdfn2awDAGBO0X19ByH57Qp43YyUa4faMMSY15LFbRK4Qqwtl+3mYTCfn2RjzPnAfcD+wT0QeEpFkrBa5eGBZSB1v2ut7quO9NsY0AtVY5wy76+Q6u+tkLVbrWWZn+9rlx4rIq3YrUD3w3528nr0hz1s6We6Lc9+dFvvvHcaYFmPMSuBprM+zUkpFHU2wlFKq90zI8zKsFqzQi/0EY8zvQ8oUhTwfBviAytAKRSQGeA64C8gxxqRidb+TkOOM6iSWMqwWrMyQ4ycbYyZ18xr+234dU4wxyVjdytqPhYgkAn/CaoWYJ1+OG9uNldS1lxP79e3q5ngHEWuK8MZDPOZ0X0tHXcOxEsIfAhn2+Vsd+ppCGWPuMcYci9WiOBar62UlVnIwKeRcphhjDidJ6Xiv7XOYDuy2X8stWN0R0+z46g6IL/RzBfAAsB4YY79Ht3X1evqKWGPtunp/Huxit5X239DXc+BrU0qpqKEJllJKhdcTwNkicrpYU1PH2hMHFIaUuUxEJtrjme4AnjXGBA6oxwPEYHWl8ovImVhjhdo9DHxXRE4VEYeIFIjIeGNMOfA28H8ikmxvGyUiX+0m7iSgEagTkQKsBCPUn4GlxphrsMaYtV9MPwN8047DDfwEK8H7d3cn6kDGmiI88RCPjw+jugSsi/gKsCYMwWrBOoiIzBCR4+z4m7BmtwvarXF/wxr7lm2XLRCR00P2NRIyiUknvmGPLfNgjcX6zBhThnW+/XZ8LhG5HWus3aEkAfVAo4iMB67vpnzYGWMmHeL9ua6LfbYAHwO/EGvSkAnAxcCr/Rm7Ukr1F02wlFIqjOyL53OxWhcqsFqUfsr+/94+jjU+Zw8QC/y4k3oa7PXPYI3N+Q7WGKj27YuxJ77Aavn4kC9bkq7AStDW2vs+y/5dFDvzG+AYu67XgOfbN4jIuViTVLRf0P8ncIyIXGqM2YDV2nUvVovP2cDZxhhvN8frU8aYtVhjjj7F6iY3Bfiki+LJWIlUDVZ3xyrgD/a2W4HNwGd2t7x3gXEAIlIENGCNS+vKU8CvsboGHot1rsAal/cm1tiv7VhJXVlnFYS4Getz0GDHu6Cb8gPJJVifzyqsz9evjDHvRTYkpZTqG2KMttIrpVR/EZGFwBPGmL9HOhbVOyJyGVb3wZ93sf1RrAkjftmvgSmllIoovdGwUkopdQSMMU9EOgallFIDj3YRVEqpIUKsm94ezuQEKgqJyG1dfA7eiHRsSikVDbSLoFJKKaWUUkqFibZgKaWUUkoppVSYDKgxWJmZmaa4uDjSYSillFJKKaXUIS1btqzSGHPQzecHVIJVXFzM0qVLIx2GUkoppZRSSh2SiGzvbL12EVRKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAqTATUGqzM+n4+dO3fS2toa6VDUABAbG0thYSFutzvSoagoVN/q47aHX+UbMyfwjRnjIx2OUkoppQahAZ9g7dy5k6SkJIqLixGRSIejIsgYQ1VVFTt37mTEiBGRDkdFoTdX7eHuff+B+7UATNsD7rhIh6SUUkqpQWbAdxFsbW0lIyNDkyuFiJCRkaGtmarP7Ny9E7cEAKgqeTXC0SillFJqMBrwCRagyZXqoJ8F1Zdk37qO5/UbP4lgJEoppZQarAZFgqWUUv0htXEzADtMNjHlSyIcjVJKKaUGI02wekBE+MlPftKxfNdddzFv3rzIBRTipJNOOuTNmc877zyOP/74/dbNmzePgoICpk2bxuTJk3n55Zf7OkylBoX4tn34cbI85jgymjZDMBjpkJRSSik1yGiC1QMxMTE8//zzVFZWhrVeYwzBPryAq62tZdmyZdTV1bF169b9tt10002UlJTwr3/9i6uvvrpP41BqsHD5GmlzJuBNG02MaYX6XZEOSSmllFKDjCZYPeByubj22mu5++67D9pWUVHBBRdcwIwZM5gxYwaffGKN25g3bx533XVXR7nJkydTWlpKaWkp48aN44orrmDy5MmUlZXx05/+lMmTJzNlyhQWLFgAwMKFCznppJO48MILGT9+PJdeeinGmE7je/zxxztaoxYvXtyx/vnnn+fss8/m4osv5umnn+503wkTJuByufZLHn/2s58xceJEpk6dys033wxAaWkpp5xyClOnTuXUU09lx44dAFx11VVcf/31HH/88YwcOZKFCxdy9dVXM2HCBK666qqOOq+//nqmT5/OpEmT+PWvf31QHHV1dQwfPrwj0WtqaqKoqAifz9dp3Er1BZe/Ea8zAUe2NUV72571EY5IKaWUUoPNgJ+mPdRvXlnD2t31Ya1zYn4yvz57UrflfvCDHzB16lRuueWW/dbfcMMN3HTTTcyePZsdO3Zw+umns27dui5qsWzatInHHnuM448/nueee46SkhJWrFhBZWUlM2bM4MQTTwTgiy++YM2aNeTn5zNr1iw++eQTZs+efVB9zc3NlJSU8NFHH3H11VezevVqAObPn8/tt99OTk4OF1xwAbfddttB+37++ec4HA6ysrIAqKqq4oUXXmD9+vWICLW1tQD86Ec/4sorr+TKK6/kH//4Bz/+8Y958cUXAaipqeHTTz/l5Zdf5pxzzuGTTz7h73//OzNmzKCkpIRp06bxu9/9jvT0dAKBAKeeeiorV65k6tSpHXGkpKQwbdo0PvzwQ04++WReffVVTj/9dL3fleo3Xn+Q2GALfnciSUWTYBXUbF9N7vivRzo0pZRSSg0i2oLVQ8nJyVxxxRXcc889+61/9913+eEPf8i0adM455xzqK+vp7Gx8ZB1DR8+vGNc1KJFi7jkkktwOp3k5OTw1a9+lSVLrMH1M2fOpLCwEIfDwbRp0ygtLe20vksuuQSAE088kfr6empra9m7dy+bNm1i9uzZjB07Frfb3ZF4Adx9991MmzaNm2++mQULFnTMzpeSkkJsbCz/8R//wfPPP098fDwAn376Kd/5zncAuPzyy1m0aFFHXWeffTYiwpQpU8jJyWHKlCk4HA4mTZrUEfMzzzzDMcccw9FHH82aNWtYu3btQa9j7ty5HS14Tz/9NHPnzj3keVQqnBrb/CTSQtCdQGFBEbUmgdY9h/6xRCmllFLqQIOqBasnLU196cYbb+SYY47hu9/9bse6YDDIZ599Rmxs7H5lXS7XfuOaQu/dlJCQ0KPjxcTEdDx3Op34/f5Oyx04dbmI8Mwzz1BTU9NxQ976+nrmz5/P7373O8Aag9Xe/e/AuBcvXsx7773Hs88+y3333cf777/fozgdDsd+MTscDvx+P9u2beOuu+5iyZIlpKWlcdVVV3V6L6tzzjmH2267jerqapYtW8Ypp5xyyOMqFU6tvgCJ0kLAncaIrETWmgJyqzdFOiyllFJKDTLagnUY0tPTueiii3j44Yc71p122mnce++9HcslJSUAFBcXs3z5cgCWL1/Otm3bOq1zzpw5LFiwgEAgQEVFBR999BEzZ848rLjaW30WLVpESkoKKSkpzJ8/nzfffLNj3NeyZcu6HIcVqrGxkbq6Or7xjW9w9913s2LFCgC+8pWvdOz/5JNPMmfOnB7HV19fT0JCAikpKezdu5c33nij03KJiYnMmDGDG264gbPOOgun09njYyjVWy2+gNWC5Uki3uOi3FVEcmNppMNSSiml1CDT6wRLRIpE5AMRWSsia0TkBnv9PBHZJSIl9uMbvQ838n7yk5/sNyHEPffcw9KlS5k6dSoTJ07kwQcfBOCCCy6gurqaSZMmcd999zF27NhO6zv//POZOnUqRx11FKeccgp33nknubm5hxVTbGwsRx99NNdddx0PP/wwpaWlbN++fb/p2UeMGEFKSgqff/55p3V84xvfYPfu3TQ0NHDWWWcxdepUZs+ezR//+EcA7r33Xh555BGmTp3K448/zp///Ocex3fUUUdx9NFHM378eL7zne8wa9asjm233377ftPEz507lyeeeEK7B6p+1+oLkCQtGE8SAA1JI0kOVENLTYQjU0oppdRgIl3NTNfjCkTygDxjzHIRSQKWAecBFwGNxpi7DrV/qOnTp5sD7+m0bt06JkyY0KsYVXTRz4TqC8u2VzPhH+OpmnAZRRf/kScfe4BLt/0Mc837SOGxkQ5PKaWUUgOMiCwzxkw/cH2vW7CMMeXGmOX28wZgHVDQ23qVUqo/tbZ5iZc2JMZqwYrNGQ1AY/nGSIallFJKqUEmrGOwRKQYOBpo74f2QxFZKSL/EJG0cB5LKaXCydfcAIAj1kqwMgqtbr31u3WiC6WUUkr1XNgSLBFJBJ4DbjTG1AMPAKOAaUA58H9d7HetiCwVkaUVFRXhCkcppQ6Lv9W6x157glWUk0G5ScdXsTmSYSmllFJqkAlLgiUibqzk6kljzPMAxpi9xpiAMSYI/A3odGo8Y8xDxpjpxpjp7Te7VUqp/uZrbQLAHWPd+60oLZ7tJgd3XWkEo1JKKaXUYBOOWQQFeBhYZ4z5Y8j6vJBi5wOrD9xXKaUGioC3BQBXrJVgeVwOKt0FJDXviGRYSimllBpkwnGj4VnA5cAqESmx190GXCIi0wADlAL/LwzHUkqpPhFoawa+bMECaE4sIrnuXWhrhJjESIWmlFJKqUEkHLMILjLGiDFmqjFmmv143RhzuTFmir3+HGNMeTgCjpQXX3wREWH9+vVdliktLWXy5MlhO+ZVV13Fs88+2+X2G2+8kYKCAoLBYMe6Rx99lKysLKZNm8bEiRP529/+FrZ4lIpmAW8rAJ7YhI51wbSRAJjqrRGJSSmllFKDT1hnEYxm8+fPZ/bs2cyfP7/T7X6/v9fHCAQCPS4bDAZ54YUXKCoq4sMPP9xv29y5cykpKWHhwoXcdttt7N27t9exKRXtgl6rBcsV0oIVmz0GgMZynUlQKaWUUj2jCVYPNDY2smjRIh5++GGefvrpjvULFy5kzpw5nHPOOUycOBGwEq1LL72UCRMmcOGFF9LcbF20vffeexx99NFMmTKFq6++mra2NgCKi4u59dZbOeaYY/jXv/510LHfffddpk+fztixY3n11Vf3O/akSZO4/vrru0z6srOzGTVqFNu3b+9Yd8899zBx4kSmTp3KxRdfDEB1dTXnnXceU6dO5fjjj2flypUAzJs3jyuvvJI5c+YwfPhwnn/+eW655RamTJnCGWecgc/nA+COO+5gxowZTJ48mWuvvZYDb14dDAYpLi6mtra2Y92YMWM08VMDStBnjcHCFduxLtWeqr1ut94LSymllFI9E44xWP3njZ/BnlXhrTN3Cpz5+0MWeemllzjjjDMYO3YsGRkZLFu2jGOPPRaA5cuXs3r1akaMGEFpaSkbNmzg4YcfZtasWVx99dX85S9/4Yc//CFXXXUV7733HmPHjuWKK67ggQce4MYbbwQgIyOD5cuXd3rs0tJSFi9ezJYtWzj55JPZvHkzsbGxzJ8/n0suuYRzzz2X2267DZ/Ph9vt3m/frVu3snXrVkaPHt2x7ve//z3btm0jJiamI+H59a9/zdFHH82LL77I+++/zxVXXEFJSQkAW7Zs4YMPPmDt2rWccMIJPPfcc9x5552cf/75vPbaa5x33nn88Ic/5Pbbbwfg8ssv59VXX+Xss8/uOKbD4eDcc8/lhRde4Lvf/S6ff/45w4cPJycnp8dvk1J9zfisLoK44zrWFeXlUGmSdap2pZRSSvWYtmD1wPz58ztaey6++OL9WoxmzpzJiBEjOpaLioqYNWsWAJdddhmLFi1iw4YNjBgxgrFjrV/Dr7zySj766KOOfebOndvlsS+66CIcDgdjxoxh5MiRrF+/Hq/Xy+uvv855551HcnIyxx13HG+99VbHPgsWLGDatGlccskl/PWvfyU9Pb1j29SpU7n00kt54okncLms/HrRokVcfvnlAJxyyilUVVVRX2/dE+jMM8/E7XYzZcoUAoEAZ5xxBgBTpkyhtLQUgA8++IDjjjuOKVOm8P7777NmzZqDXsfcuXNZsGABAE8//fQhX7NSkSAdLVgxHevap2p31myLUFRKKaWUGmwGVwtWNy1NfaG6upr333+fVatWISIEAgFEhD/84Q8AJCQk7FfemrW+6+XOHFhHd/W99dZb1NbWMmXKFACam5uJi4vjrLPOAqxk5r777uu0vtdee42PPvqIV155hd/97nesWnXoFsGYGOti0+Fw4Ha7O+JxOBz4/X5aW1v5/ve/z9KlSykqKmLevHm0trYeVM8JJ5zA5s2bqaio4MUXX+SXv/zlIY+rVH+TgP25dX3ZguVxOahwFzCieV2EolJKKaXUYKMtWN149tlnufzyy9m+fTulpaWUlZUxYsQIPv74407L79ixg08//RSAp556itmzZzNu3DhKS0vZvNnqZvT444/z1a9+tUfH/9e//kUwGGTLli1s3bqVcePGMX/+fP7+979TWlpKaWkp27Zt45133ukY79WVYDBIWVkZJ598Mv/7v/9LXV0djY2NzJkzhyeffBKwxnZlZmaSnJzco/jak6nMzEwaGxu7nPVQRDj//PP5z//8TyZMmEBGRkaP6leq3/itcZG4Y/db3ZxQRKp/H/gO/uFAKaWUUupAmmB1Y/78+Zx//vn7rbvgggu6nFhi3Lhx3H///UyYMIGamhquv/56YmNjeeSRR/j2t7/NlClTcDgcXHfddT06/rBhw5g5cyZnnnkmDz74IMFgkDfffJNvfvObHWUSEhKYPXs2r7zySqd1XHPNNSxdupRAIMBll13GlClTOProo/nxj39Mamoq8+bNY9myZUydOpWf/exnPPbYYz08O5Camsr3vvc9Jk+ezOmnn86MGTM6tj344IM8+OCDHctz587liSee0O6BakBydNKCBRBIHYEDg6kp7f+glFJKKTXoyIEzvkXS9OnTzdKlS/dbt27dOiZMmBChiNRApJ8J1Rde/MM1fLPpRdzzKvdb/9KrL3Hu0itoOP8Jko46u4u9lVJKKTXUiMgyY8z0A9drC5ZSSgGOQBs+8Ry0Ps2eqr1294b+DkkppZRSg5AmWEopBbgCrfgcBydY+XmF1Jt4vHt1qnallFJKdW9QJFgDqRujiiz9LKi+4gq24XfEHLS+KMOeqr1Wp2pXSimlVPcGfIIVGxtLVVWVXlgrjDFUVVURGxvbfWGlDlNXCVaMy8ledwHxTWURiEoppZRSg82Avw9WYWEhO3fupKKiItKhqAEgNjaWwsLCSIehopDLeAk4Ok/em+KLSG/4FAI+cLr7OTKllFJKDSYDPsFyu92MGDEi0mEopaKc23gJOA9uwQIIpBbjaghgasuQjJH9HJlSSimlBpMB30VQKaX6mjEGj2kj4Oy8BcudNRqAxvJN/RmWUkoppQYhTbCUUkOeP2iIxYvpogUrpWAcADW7dKp2pZRSSh1anydYInKGiGwQkc0i8rO+Pp5SSh2uNn/QSrBcnbdg5RcW02xi8O7TFiyllFJKHVqfJlgi4gTuB84EJgKXiMjEvjymUkodrlZfgBjxdZlgFWXEs8NkI9U6VbtSSimlDq2vW7BmApuNMVuNMV7gaeDcPj6mUkodljZ/kJhDtGDFuJzsdeXrVO1KKaWU6lZfJ1gFQOgVyU57XQcRuVZElorIUp2KXSkVCW2+ALH4wBXXZZnG+CIyvLsgGOzHyJRSSik12ER8kgtjzEPGmOnGmOlZWVmRDkcpNQS1j8ESd9c3sfanFuPBBw27+zEypZRSSg02fZ1g7QKKQpYL7XVKKTVgtLa14ZYA4u66Bat9qvaG3TrRhVJKKaW61tcJ1hJgjIiMEBEPcDHwch8fUymlDouvrRkAxyFasJLz7anad67vl5iUUkopNTi5+rJyY4xfRH4IvAU4gX8YY9b05TGVUupw+dtaAHB44rssk1s0Eq9x0rpXW7CUUkop1bU+TbAAjDGvA6/39XGUUupItbdgOT1ddxEsykyizGQjNTpVu1JKKaW6FvFJLpRSKtLaW7CcMV0nWDEuJ3tc+cQ17uivsJRSSik1CGmCpZQa8gJ2C5YrpusuggAN8cOsqdqN6Y+wlFJKKTUIaYKllBrygl6rBau7BMuXUkycaYGG8v4ISymllFKDkCZYSqkhL+Btb8HquosggCNnIgCNZav6PCallFJKDU6aYCmlhrz2FqzYuIRDlkssnAJA7faVfR6TUkoppQYnTbCUUkOev30M1iGmaQcoKCyk0iTj37OuP8JSSiml1CCkCZZSasgL2l0EcR+6i2BRejybTCGemo39EJVSSimlBiNNsJRSQ554G60nMUmHLBfjclLuKSataavOJKiUUkqpTmmCpZQa8hw+O8HyJHZbtiV1DHHBJqjf1cdRKaWUUmow0gRLKTXkOXxNBHB020UQwJVrzSToLV/T12EppZRSahDSBEspNeS5/M20ShyIdFs2o3gqAFVbdSZBpZRSSh1MEyyl1JDn8jfR5ui+9QpgVPFwKkwKreWr+zgqpZRSSg1GmmAppYY8T6AZr/PQU7S3G5Yez2aKcFfpTIJKKaWUOpgmWEqpIS8m2IzPeeibDLdzOoSK+FFktmyBYKCPI1NKKaXUYKMJllJqyIsNtuB39awFC6A1czKxpg1Tqa1YSimllNpfrxIsEfmDiKwXkZUi8oKIpNrri0WkRURK7MeDYYlWKaXCzBhDnGkm4O5ZCxZATOHRANRvXdZXYSmllFJqkOptC9Y7wGRjzFRgI/DzkG1bjDHT7Md1vTyOUkr1iVZfkARaCbi7vwdWu9xRU2k1buq3Le3DyJRSSik1GPUqwTLGvG2M8duLnwGFvQ9JKaX6T32rjwRpQTw9b8Ean5/OOjMcxx6dql0ppZRS+wvnGKyrgTdClkeIyBci8qGIzOlqJxG5VkSWisjSioqKMIajlFLdq2v2kkArjrjkHu+TEu+m1DOa9Ib1EAz2YXRKKaWUGmy6TbBE5F0RWd3J49yQMr8A/MCT9qpyYJgx5mjgP4GnRKTTqxdjzEPGmOnGmOlZWVm9f0VKKXUYGhvqiBE/jvj0w9qvKWMyccEmqNnWR5EppZRSajBydVfAGPO1Q20XkauAs4BTjTHG3qcNaLOfLxORLcBYQAcsKKUGlJY6q+XcnZhxWPvFDzsW9kL9tmUkZ4zqi9CUUkopNQj1dhbBM4BbgHOMMc0h67NExGk/HwmMAbb25lhKKdUX2uorAYhJOrwW9MKxR+M1Tmq2LO6LsJRSSik1SHXbgtWN+4AY4B0RAfjMnjHwROAOEfEBQeA6Y0x1L4+llFJh52usAiA2JfOw9ps0LIsNpojk3SV9EJVSSimlBqteJVjGmNFdrH8OeK43dSulVH/w2wlWfMrhtWAlxLjYFjuRr9d/AMEAOJx9EZ5SSimlBplwziKolFKDTnsLlivx8FqwAJqyjiHOtGD2rgl3WEoppZQapDTBUkoNacEmK8EiLu2w940b9RUAajZ+Es6QlFJKKTWIaYKllBrSpKWGFokHl+ew9x09dhIVJoWmzf/ug8iUUkopNRhpgqWUGtLivRU0eg5vivZ2E/JTWMlY4vYuD3NUSimllBqsNMFSSg1Zrb4AGcEqWmNzj2h/p0OoSJtGpncnNFaEOTqllFJKDUaaYCmlhqyKhjZypZpAUt4R1+EafhwAjVu0m6BSSimlNMFSSg1he2qbyKEGR0rBEddRNHkWXuOkct3HYYxMKaWUUoOVJlhKqSGrpmIXbgkQk150xHUcVZzDSjMad5m2YCmllFJKEyyl1BDWXFkGQGLmkSdYsW4n2xKnkdu0DtoawhWaUkoppQYpTbCUUkOWt3onAPFZR55gAfiHzcJJEO82bcVSSimlhjpNsJRSQ1f9bgAkubBX1eROOhGvcVKx6r1wRKWUUkqpQUwTLKXUkOVp3oMPN8Qf2X2w2h0zqpAVZhSOHZ+EKTKllFJKDVaaYCmlhqz41r3UuTPB0bt/ClPi3WxNOIbshrU6DksppZQa4jTBUkoNScYYUvz7aInJDk99xbNxEqRl86Kw1KeUUkqpwUkTLKXUkFTb7CPHVONNOPKbDIcqnnYSbcbNvhVvhaU+pZRSSg1OvUqwRGSeiOwSkRL78Y2QbT8Xkc0iskFETu99qEopFT576lrIlWpIzg9LfUePymcp44nf8UFY6lNKKaXU4BSOFqy7jTHT7MfrACIyEbgYmAScAfxFRJxhOJZSSoVFZeUeYsWHJ613Mwi2i3E5KU2bRVZrKdTuCEudSimllBp8+qqL4LnA08aYNmPMNmAzMLOPjqWUUoetucJKguJ7cZPhA7nHfQ2AulVvhq1OpZRSSg0u4UiwfigiK0XkHyKSZq8rAMpCyuy01x1ERK4VkaUisrSioiIM4SilVPdaq6ybDCfnFIetzqOmHcdOk0njylfDVqdSSimlBpduEywReVdEVnfyOBd4ABgFTAPKgf873ACMMQ8ZY6YbY6ZnZWUd7u5KKXVEgnVWguVO7fS3nyMyNjeJf3tmkVPxCbTUhK1epZRSSg0eru4KGGO+1pOKRORvQPvPtruA0H43hfY6pZQaEFyN5QRw4EzMCVudIkLLuPNxrX6JppIXSDjh6rDVrZRSSqnBobezCIbOb3w+sNp+/jJwsYjEiMgIYAywuDfHUkqpcIpp2UudMx2c3f7OdFiOPf5kSoM51C95Oqz1KqWUUmpw6O0YrDtFZJWIrAROBm4CMMasAZ4B1gJvAj8wxgR6eSyllAqbZO8+GsN0k+FQkwpSWJTwNfKqP8dUbAh7/UoppZQa2HqVYBljLjfGTDHGTDXGnGOMKQ/Z9jtjzChjzDhjzBu9D1UppcKjzR8gI1hFW1xu2OsWEZJnX0urcVP+8h1hr18ppZRSA1tfTdOulFIDVkVDG7lSTTApPDcZPtA3jp/KszHnk1/2KnVLnwHAGMPCTxfz0rxzeOmR/+2T4yqllFIq8sI7+ED1KWMMza1eautqaWpqwNvSiL/VegS8bQQNIIKIAIK4PMQkpBCTkEJcUioJiSmkJ8bidEikX4pSEVVZsY9CacEZxhkEQ7mcDo6+9LeU/OMLprz6/1ix8J/4W+qZ41+JUwzry3YBt/bJsZVSSikVWZpgDQCBQJDKinKqy7fStHc73qrtBBr2IC1VxLTVEO+rITFQR7KpJ00aSTjS4xihihSqHek0ujNpi8vCmzQM0keSlD+W3OJJ5GVnagKmol5j+UYAYrJH99kxJg3PYe13X+a9Z3/OpKZPCTjj2Dj2e7RWbGdC7fsQ8Id9gg2llFJKRZ7+795Pmpsa2L1tLbVl62jbuwlnzVbiW8pJ8e0jO1hBjngJnSzabxzUO5JpcKbS7E6lNmEclbEZmPg0XHEpuGIScMQm4PQk4IpLxOWOwSGCMUHAYAwEfa14m+sJtNQTaG3AtNRC415czfvIaKskpW4D6XV11m2gV1rH3WdS2esqoD5hOL7UkXhyxpFaNIGCkRNJSTzS1E6pgcVXsQmA5ILxfXqcicX5TLz5sf3WLVzwJ2Jr36Jh90aSiib26fGVUkop1f80wQqzuppqdmxYRsP2EpwVa0lo2Epm205yqST0t/IqUqly51KTOJp9iV+FlEJiMoeRlF1MRv4oktJzSHc4Se/jeE1bA7W7NlC1Yz3N5RsxVVuJa9jGhIZPSK9/HXYAS6yEb4dkUxEzjJakYkzGGOLzx5M1fBL5hcW4XM4+jnTgMMYQCAQJ+NsIBPwE/H6CQUMw4CcQ8GOCAQIBP8FAgGAwQPCAdSYQxBh/R32C1WIo+7UcSsgf+bJM+2oBYy9Y2wSHtBdw4HCEdBV1CA5xYBBEwOFwIAKCA+xyggNxCCIOe9marEHat7evt/8igkPat1kPhxWAHUPI347AO9l2UJnOzvcRv1EHruh45qreQtAIyfljjrDyI+cpPArWQfXWZZpg9VKbz0dTXQ2tTXW0tTTitR/+1kYCrU0E2hoJtjVhvE3gb4Og33oEfIjxI0EfEgxYf40fgvYPVPZn0/r6fflZDV024iQoTozDjXG4wOEGp/1wuBCnG7GXHfZzcXlwuL5cdtrLTpcLp8vT8dcVUs7hsh5O+7mz4+GxvssOHUrdztjfeWO+/LZ3rOPLfxKM/SPkl/t1vn6g6uKfyohr/3+qVzp9AzpZd5jlBuo5G6gG5PkSBy6Xe9D0stIEqxeqK/ZQuvIjWkuXEFu1lpyWTRSYvUyxtzcQx27XMHYmH01p2ig82WNILZpA3oiJZCSlkRHR6C0Sk0TayOmkjZx+0DZfUw17t62mdsdavHs34KzZSkZzKTmVJcRVesGegbrNuKlwpNHgzqQ5Jgt/fDYmMQdnfDqu+BQ8CanEJKYRl5SGOy4JtzsGV0wMbk8MLncM4oyB9osEY8AE7Yf13JggAb+PtrY2fN5WfN4W/N42fG0t+LxtBLyt+H1tBHxtBH2tBPxegr5WjK+NoL8N42/D+L3g90KgDQJeJNCGBHxIwIsjaD2cQS+OoA9n0IfTeHEZHy7jw218uPDhNn7c+PDgwyMB/fL0kaAR62Io5D9rOeA/ztB/Xh1y+FdEc4ByRxZ57rgjC7IXskdMwWectOxc2e/HHsha27xUVZRTV7GTpqrd+Bv2YRr2QWsNjtZanN56Ynx1xPrriQ80kmgaSaKJ9MN8/33GSQAHfnHhx0kAV8eysed9EqxLNcHQ/mm0PoLG/jnD4CCIiwBO/LhMABd+PNL/dyPxGicBnASxfkQx9o8yJiT6/V+JdHy3uipzoC5++uikXDcXvabr+gRz0N6d1XfgOnOI+nq2Lrz7dn5eBnp8fX/cI/l3WqlQj/hPJ+uiP3HW1L6ZnCrc9Bqxh0wwyI7Nq9i74m3YuZTc+lUMM7tIxxrbtNNZwN7EiezKvID4oqPIHXcsGXmjGDeIf110J6RROHkOhZPn7L8hGKRuXyl7t62hcdc6fFXbMQ17iG+rILVxMxn1i0mSlsM6VtBIl/8AC9YHNRwfVp9x4sOFV9z4ceETN37x4Bc3fnETFDcBpxuvI55Wh4egw0PQ6bF+pXZ6wBmDcXqsh8P6pRqHE8T6JVnECQ4n4rD/ivVcnF+uc9jlrWYoK672SwtjvvwPy7SvaGeCHesl5FfZL4sFrV9rjXUZZUzQui601xlCt9nrTPvF45dlTMfPv+0JrlW3Vb79OV/Ww5d1HXjp1h7cl/8JGzv2/S/l2teFrhdjQlrp9k+46Fjb2fMDLiFCfooLrSNx9CxC75TeX4pz0tlCPo59q7svHAWMMVTUVFOxcysNe0vxV++A+p14GncT17qPeF81KcEa0kw9BWI4cNoRn3HSIAk0OZJocSbR5kmjyVPMnphUTGwKxKYiMUk4YhNwxSTgik3EFZuIJz4RT2wSsQmJxMUnERObgMPlxi2Cu+9eLIGAH5+3DZ/PS8Dnxe/z4vd78Xu9BPzWw+/zEvD7CPp91t+Aj4Dfiwn47WW/NUYv6MPYLW5W65sPAgHE2H+DPjB+JOiHYABjrO99e6uNmJAEMeS7Gfqd3P/7aOxE54Dvmj2B0kFCvp+0PwspJl8eMaS4fFl2/2q+XLffoUKOcWC5jvVyUKIlHS3knce8f3UH1ndQEPbr6OEv550ct/N9e1hO9itwiHJHftzOmE6bMXp2jG5fx2HW12m5HsenDsdAbcXNSJrI+NykSIfRY5pgHUJtRTmbF79KcNP7DKtdzHAqGQ5UkUJZ/CTKc79FypivMHzKLIYnpjA80gH3F4eDlNyRpOSOBM4+aLMxhtr6Oppqq2luqKaloQZvUw3epjrwNRH0+zCB9hYlHwS81kUCDusfzPbkQxxY/2HbyYsrJuThwemOxeGKwWm3hDndsdZzTwxuTxzumFhcnljcnlhiYmLxxMThdjpxA/H9fc6UsrmcDvbEjmJKwyo7ox4c3R0OpamljZ3bN1Fdtg7fvi04arYS11RGctseMgMVZEsDobd0DhihUtKpc2XQEJtPTdxUtiZk40rKwZOWS0J6HgkZBSSl5xGbkEK6w9Hn3aXDQqSjC19spGNRSikVMZpgHcL6d/7O8Rvvop4EtiQcQ1nxSeQfcwb5IyaSMYhbpvqaiJCakkpqSiowMtLhKDXg1GUeTfquhQSqS3FmjIh0OD0SDBp27dnLvq0lNO9cjVRuJK6hlIy2neSZvYyTL8cVtuBhnzOPhthctiUexbaUImIyhpGYU0xqzkiSs4vIcXn2m9hHKaWUihaaYB3C6FOuZOP4OYyaOpujXXqqlFLhkTjuJNh1N7tK3mXYqd+LdDgHqa6tY+eGZdTtWInZu46Euk3ke0spkiqK7DIteNjrzKc+aSTVqV/DnTWK5ILxZA6fQEJ6IcP1RyillFJDlGYNh5CZO4zM3GGRDkMpFWWmHXM8+95Lxbv2dYhwgrWvuo7StYup37oEz94V5DatZ6TZwVSxxvy14Wa3axgV6ceyL3sC8YWTyRo5jZS8URQ7hs7soUoppVRPaYKllFL9LD0xltfjZ3Nq1duY1jokNqVfjltd38jWNUuo37IE594SchrXMTK4nZn27Hd1kkR5wgRWZX4Nz7CjyR19NOmFYxnh7LNpIZRSSqmoowmWUkpFgOvoS4n596tsf+dBhp99a9jrr2tqYevaZdRu/hznnhIy69cyKljKdHusVAMJ7E4Yz7qsk0gonk7BxBNIyRpBShRMuqGUUkpFkiZYSikVAbNPOo3PP53CxOX34vvqVbiTj3zKh4bmFrauXU7NliVIuZ1MBbZytPgAaCSeXXHjWJ91CXHDZ5A/8QSScscwTpMppZRSKuw0wVJKqQiI97hoOvl3eN67gPIHziXv2n/hTivqdr+augbKNi6nbssS2LOSjPp1jAxs4yg7mWomll2xY1ifcRGxw48lf+JXSM4fN6jvyaeUUkoNJmJ6cUcxEVkAjLMXU4FaY8w0ESkG1gEb7G2fGWOu666+6dOnm6VLlx5xPEopNdi8+PTf+Pq6XxAUJ9vyvglFM5GEDEBoqq/GX7cH6nYSV7+VrLbtFJi9OO2bcjcSz67YMTRnTCZm2NHkjzuO1GGTrJtfK6WUUqpPicgyY8z0A9f3qgXLGDM35AD/B9SFbN5ijJnWm/qVUiranXfx9/hsyTQC797BMbtfIq78XweVacNNubOAmuQJVKWfhSd/MnkTjie9QFumlFJKqYEmLF0ERUSAi4BTwlGfUkoNJcfPmAEzXqG+sZEd29YSbKkDY0hKzSAtu5CElCyKNZFSSimlBoVwjcGaA+w1xmwKWTdCRL4A6oFfGmM+7mxHEbkWuBZg2DC955RSauhKTkwkecrMSIehlFJKqV7oNsESkXeB3E42/cIY85L9/BJgfsi2cmCYMaZKRI4FXhSRScaY+gMrMcY8BDwE1hisw30BSimllFJKKTVQdJtgGWO+dqjtIuICvgUcG7JPG9BmP18mIluAsYDOYKGUUkoppZSKWuHo1P81YL0xZmf7ChHJEhGn/XwkMAbYGoZjKaWUUkoppdSAFY4xWBezf/dAgBOBO0TEBwSB64wx1d1VtGzZskoR2R6GmMIpE6iMdBCq3+j7PXToez106Hs9tOj7PXToez20DMT3e3hnK3t1H6yhQESWdja/vYpO+n4PHfpeDx36Xg8t+n4PHfpeDy2D6f3WeX+VUkoppZRSKkw0wVJKKaWUUkqpMNEEq3sPRToA1a/0/R469L0eOvS9Hlr0/R469L0eWgbN+61jsJRSSimllFIqTLQFSymllFJKKaXCRBMspZRSSimllAoTTbAOQUTOEJENIrJZRH4W6XhU+IhIkYh8ICJrRWSNiNxgr08XkXdEZJP9Ny3SsarwEBGniHwhIq/ayyNE5HP7+71ARDyRjlGFh4ikisizIrJeRNaJyAn63Y5OInKT/W/4ahGZLyKx+t2OHiLyDxHZJyKrQ9Z1+l0Wyz32+75SRI6JXOTqcHXxXv/B/nd8pYi8ICKpIdt+br/XG0Tk9IgEfQiaYHVBRJzA/cCZwETgEhGZGNmoVBj5gZ8YYyYCxwM/sN/fnwHvGWPGAO/Zyyo63ACsC1n+X+BuY8xooAb4j4hEpfrCn4E3jTHjgaOw3nf9bkcZESkAfgxMN8ZMBpzAxeh3O5o8CpxxwLquvstnAmPsx7XAA/0UowqPRzn4vX4HmGyMmQpsBH4OYF+vXQxMsvf5i33dPmBogtW1mcBmY8xWY4wXeBo4N8IxqTAxxpQbY5bbzxuwLsAKsN7jx+xijwHnRSRAFVYiUgh8E/i7vSzAKcCzdhF9r6OEiKQAJwIPAxhjvMaYWvS7Ha1cQJyIuIB4oBz9bkcNY8xHQPUBq7v6Lp8L/NNYPgNSRSSvXwJVvdbZe22MedsY47cXPwMK7efnAk8bY9qMMduAzVjX7QOGJlhdKwDKQpZ32utUlBGRYuBo4HMgxxhTbm/aA+REKi4VVn8CbgGC9nIGUBvyD7d+v6PHCKACeMTuEvp3EUlAv9tRxxizC7gL2IGVWNUBy9DvdrTr6rus123R7WrgDfv5gH+vNcFSQ5qIJALPATcaY+pDtxnrHgZ6H4NBTkTOAvYZY5ZFOhbVL1zAMcADxpijgSYO6A6o3+3oYI+9ORcrqc4HEji4i5GKYvpdHhpE5BdYQzuejHQsPaUJVtd2AUUhy4X2OhUlRMSNlVw9aYx53l69t71Lgf13X6TiU2EzCzhHREqxuvqegjVGJ9XuVgT6/Y4mO4GdxpjP7eVnsRIu/W5Hn68B24wxFcYYH/A81vddv9vRravvsl63RSERuQo4C7jUfHnz3gH/XmuC1bUlwBh7NiIP1mC6lyMckwoTewzOw8A6Y8wfQza9DFxpP78SeKm/Y1PhZYz5uTGm0BhTjPU9ft8YcynwAXChXUzf6yhhjNkDlInIOHvVqcBa9LsdjXYAx4tIvP1vevt7rd/t6NbVd/ll4Ap7NsHjgbqQroRqEBKRM7C6959jjGkO2fQycLGIxIjICKyJTRZHIsauyJfJoDqQiHwDa+yGE/iHMeZ3kY1IhYuIzAY+Blbx5bic27DGYT0DDAO2AxcZYw4cYKsGKRE5CbjZGHOWiIzEatFKB74ALjPGtEUwPBUmIjINa0ITD7AV+C7WD4r63Y4yIvIbYC5W96EvgGuwxmLodzsKiMh84CQgE9gL/Bp4kU6+y3aSfR9WN9Fm4LvGmKURCFsdgS7e658DMUCVXewzY8x1dvlfYI3L8mMN83jjwDojSRMspZRSSimllAoT7SKolFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmGiCZZSSimllFJKhYkmWEoppZRSSikVJppgKaWUUkoppVSYaIKllFIDhIgUi4gREVekY4l2InKViCyKdBwDjYjMEZENkY5DKaUGM02wlFJKDWoiMk9EfCLSGPK4JdJxDUbGmI+NMePCXa+IOEXktyKyW0QaROQLEUkN93GUUmog0F9JlVIqTETEZYzxRzqOIWqBMeaySAfRV6Lgs/Ub4CvACcAOYBLQGtGIlFKqj2gLllJK9YKIlIrIrSKyEmgSEZeIHC8i/xaRWhFZISInhZRfKCL/IyKLRaReRF4SkfQu6v6uiKyzf/HfKiL/74Dt54pIiV3PFhE5w16fIiIPi0i5iOyyWw6c3byOUSLyvohUiUiliDzZ3sJgb6sWkWPs5XwRqWh/XSJyjoissV/vQhGZcMD5uVlEVopInYgsEJHYwz/Th09EfmaflwYRWSsi53dRTkTkbhHZZ5/LVSIy2d4WIyJ3icgOEdkrIg+KSFwPj/+oXf4dO4YPRWR4yPY/i0iZfcxlIjInZNs8EXlWRJ4QkXrgKhGZKSKf2ue5XETuExFPyD5GRL4vIpvs4/2X/d792z7GM6Hlu4j5JBHZ2ZPX11MikgbcCHzPGLPdWFYbYzTBUkpFJU2wlFKq9y4BvgmkAjnAa8BvgXTgZuA5EckKKX8FcDWQB/iBe7qodx9wFpAMfBe4OyTJmQn8E/ipfdwTgVJ7v0ftekcDRwOnAdd08xoE+B8gH5gAFAHzAIwxW4BbgSdEJB54BHjMGLNQRMYC87EuoLOA14FXDriQvwg4AxgBTAWu6jQAkdl28tDVY3Y3r+FAW4A5QApWC8oTIpLXSbnTsM7fWLvsRUCVve339vppWOezALj9MGK4FPgvIBMoAZ4M2bbErjcdeAr41wHJ57nAs1jv75NAALjJrusE4FTg+wcc73TgWOB44BbgIeAyrPdzMtZn9YjZiXJX789futhtCtbn8UIR2SMiG0XkB72JQymlBjRjjD70oQ996OMIH1hJzdUhy7cCjx9Q5i3gSvv5QuD3IdsmAl7ACRQDBnB1cawXgRvs538F7u6kTA7QBsSFrLsE+OAwX9d5wBcHrHsZWAWsBGLsdb8Cngkp4wB2ASeFnJ/LQrbfCTwY5vdgnn0Oa0Me+Z2UKwHOtZ9fBSyyn58CbMRKShwh5QVoAkaFrDsB2NbDuB4Fng5ZTsRKkoq6KF8DHBXymj7qpv4bgRdClg0wK2R5GXBryPL/AX/qps6TgJ1hfn++Y8f2MBCHlWRXAF8P53H0oQ996GOgPLQFSymleq8s5Plw4Nuhv+wDs7Faqzorvx1wY7VK7EdEzhSRz+zuebXAN0LKFWG10BxouF1fecjx/wpkH+oFiEiOiDxtdymsB57oJKa/YbWC3GuMabPX5duvAQBjTNB+fQUh++0Jed6MlWiE2zPGmNSQx24RuUKsLpTt52EynZxnY8z7wH3A/cA+EXlIRJKxWuTigWUhdbxpr++pjvfaGNMIVGOdM+yuk+vsrpO1WK1nmZ3ta5cfKyKv2q1A9cB/d/J69oY8b+lkuS/OfXda7L93GGNajDErgaexPs9KKRV1NMFSSqneMyHPy7BasEIv9hOMMb8PKVMU8nwY4AMqQysUkRjgOeAuIMcYk4rV/U5CjjOqk1jKsFqwMkOOn2yMmdTNa/hv+3VMMcYkY3Uraz8WIpII/AmrFWKefDlubDdWUtdeTuzXt6ub4x1ErCnCGw/xmNN9LR11DcdKCH8IZNjnb3XoawpljLnHGHMsVoviWKyul5VYycGkkHOZYow5nCSl4722z2E6sNt+LbdgdUdMs+OrOyC+0M8VwAPAemCM/R7d1tXr6StijbXr6v15sIvdVtp/Q1/Pga9NKaWihiZYSikVXk8AZ4vI6WJNTR1rTxxQGFLmMhGZaI9nugN41hgTOKAeDxCD1ZXKLyJnYo0Vavcw8F0ROVVEHCJSICLjjTHlwNvA/4lIsr1tlIh8tZu4k4BGoE5ECrASjFB/BpYaY67BGmPWfjH9DPBNOw438BOsBO/f3Z2oAxlrivDEQzw+PozqErAu4ivAmjAEqwXrICIyQ0SOs+NvwprdLmi3xv0Na+xbtl22QEROD9nXSMgkJp34hj22zIM1FuszY0wZ1vn22/G5ROR2rLF2h5IE1AONIjIeuL6b8mFnjJl0iPfnui722QJ8DPxCrElDJgAXA6/2Z+xKKdVfNMFSSqkwsi+ez8VqXajAalH6Kfv/e/s41vicPUAs8ONO6mmw1z+DNTbnO1hjoNq3L8ae+AKr5eNDvmxJugIrQVtr7/ss+3dR7MxvgGPsul4Dnm/fICLnYk1S0X5B/5/AMSJyqTFmA1Zr171YLT5nA2cbY7zdHK9PGWPWYo05+hSrm9wU4JMuiidjJVI1WN0dq4A/2NtuBTYDn9nd8t4FxgGISBHQgDUurStPAb/G6hp4LNa5Amtc3ptYY7+2YyV1ZZ1VEOJmrM9Bgx3vgm7KDySXYH0+q7A+X78yxrwX2ZCUUqpviDHaSq+UUv1FRBYCTxhj/h7pWFTviMhlWN0Hf97F9kexJoz4Zb8GppRSKqL0RsNKKaXUETDGPBHpGJRSSg082kVQKaWGCLFuens4kxOoKCQit3XxOXgj0rEppVQ00C6CSimllFJKKRUm2oKllFJKKaWUUmEyoMZgZWZmmuLi4kiHoZRSSimllFKHtGzZskpjzEE3nx9QCVZxcTFLly6NdBhKKaWUUkopdUgisr2z9dpFUCmllFJKKaXCRBMspZRSSimllAoTTbCUUqobdS0+/rW0DH8gGOlQlFJKKTXADagxWJ3x+Xzs3LmT1tbWSIeiBpnY2FgKCwtxu92RDkUNcn94YzWty+aTXjGTU8+8MNLhKKWUUmoAG/AJ1s6dO0lKSqK4uBgRiXQ4apAwxlBVVcXOnTsZMWJEpMNRg1zitrf5rfuv+Bb/A864APTfIqWUUkp1YcB3EWxtbSUjI0OTK3VYRISMjAxt+VS9ZozB07ADALfxQc22CEeklFJKqYFswCdYgCZX6ojo50aFQ6svSLp/X8dyw4aPIhiNUkoppQa6QZFgKaVUpNS2eCmQKso9w2kxHhp2rIx0SEoppZQawDTB6gER4Sc/+UnH8l133cW8efMiF1CIzz77jOOOO45p06YxYcKEjrgWLlzIv//9717VfcYZZ5CamspZZ50VhkiVGpxqm33kSyX+5GFsMfkE962PdEhKKaWUGsA0weqBmJgYnn/+eSorK8NarzGGYLB30z5feeWVPPTQQ5SUlLB69WouuugiIDwJ1k9/+lMef/zxXtWh1GBX2+wjT6pwpxWx3VFIYv3mSIeklFJKqQFswM8iGOo3r6xh7e76sNY5MT+ZX5896ZBlXC4X1157LXfffTe/+93v9ttWUVHBddddx44d1iD4P/3pT8yaNYt58+aRmJjIzTffDMDkyZN59dVXATj99NM57rjjWLZsGa+//jr33Xcfb7zxBiLCL3/5S+bOncvChQuZN28emZmZrF69mmOPPZYnnnjioHFF+/btIy8vDwCn08nEiRMpLS3lwQcfxOl08sQTT3Dvvfcyfvz4LuPcsmULmzdvprKykltuuYXvfe97AJx66qksXLjwkOfmX//6F7/5zW9wOp2kpKTw0Ucf0drayvXXX8/SpUtxuVz88Y9/5OSTT+bRRx/lxRdfpKmpiU2bNnHzzTfj9Xp5/PHHiYmJ4fXXXyc9PZ2//e1vPPTQQ3i9XkaPHs3jjz9OfHz8fsc9/vjjefjhh5k0yXrvTjrpJO666y6mT59+yHiVOlx1LV4SaaE+IY3qOCepLYvA2wSehEiHppRSSqkBSFuweugHP/gBTz75JHV1dfutv+GGG7jppptYsmQJzz33HNdcc023dW3atInvf//7rFmzhqVLl1JSUsKKFSt49913+elPf0p5eTkAX3zxBX/6059Yu3YtW7du5ZNPPjmorptuuolx48Zx/vnn89e//pXW1laKi4u57rrruOmmmygpKWHOnDmHjHPlypW8//77fPrpp9xxxx3s3r27x+fljjvu4K233mLFihW8/PLLANx///2ICKtWrWL+/PlceeWVHbP5rV69mueff54lS5bwi1/8gvj4eL744gtOOOEE/vnPfwLwrW99iyVLlrBixQomTJjAww8/fNBx586dyzPPPANAeXk55eXlmlypPlHX2IxHAnjiEvGlDLdW1u6IbFBKKaWUGrAGVQtWdy1NfSk5OZkrrriCe+65h7i4uI717777LmvXru1Yrq+vp7Gx8ZB1DR8+nOOPPx6ARYsWcckll+B0OsnJyeGrX/0qS5YsITk5mZkzZ1JYWAjAtGnTKC0tZfbs2fvVdfvtt3PppZfy9ttv89RTTzF//vxOW50OFee5555LXFwccXFxnHzyySxevJjzzjuvR+dl1qxZXHXVVVx00UV861vf6nhNP/rRjwAYP348w4cPZ+PGjQCcfPLJJCUlkZSUREpKCmeffTYAU6ZMYeVKa/KA1atX88tf/pLa2loaGxs5/fTTDzruRRddxGmnncZvfvMbnnnmGS68UG/+qvpGW2sTAO7YBFwZBbAHAlVbcWZPiHBkSimllBqIBlWCFWk33ngjxxxzDN/97nc71gWDQT777DNiY2P3K+tyufYbXxV6P6aEhJ51LYqJiel47nQ68fv9nZYbNWoU119/Pd/73vfIysqiqqrqoDJdxQkHT2d+ONObP/jgg3z++ee89tprHHvssSxbtuyQ5UNfk8Ph6Fh2OBwdr++qq67ixRdf5KijjuLRRx/tNGEsKCggIyODlStXsmDBAh588MEex6zU4QjYCZYrNoGk3NGwBurLt5Cm+ZVSSimlOqFdBA9Deno6F1100X5d1k477TTuvffejuWSkhIAiouLWb58OQDLly9n27bOb046Z84cFixYQCAQoKKigo8++oiZM2f2OKbXXnsNYwxgdT10Op2kpqaSlJREQ0NDt3ECvPTSS7S2tlJVVcXChQuZMWNGj4+/ZcsWjjvuOO644w6ysrIoKytjzpw5PPnkkwBs3LiRHTt2MG7cuB7X2dDQQF5eHj6fr6OezsydO5c777yTuro6pk6d2uP6lToc/rZmAFwxCeTkFtBkYmjZtyXCUSmllFJqoOp1giUiRSLygYisFZE1InKDvT5dRN4RkU3237Tehxt5P/nJT/abTfCee+5h6dKlTJ06lYkTJ3a0pFxwwQVUV1czadIk7rvvPsaOHdtpfeeffz5Tp07lqKOO4pRTTuHOO+8kNze3x/E8/vjjjBs3jmnTpnH55Zfz5JNP4nQ6Ofvss3nhhReYNm0aH3/8cZdxAkydOpWTTz6Z448/nl/96lfk5+cDVvL37W9/m/fee4/CwkLeeustwOqW2D7e6qc//SlTpkxh8uTJfOUrX+Goo47i+9//PsFgkClTpjB37lweffTR/VquuvNf//VfHHfcccyaNYvx48d3rH/55Ze5/fbbO5YvvPBCnn766Y6ZE5XqC8E2qwVLPPEMy0xgh8kmWF0a2aCUUkopNWBJe+vHEVcgkgfkGWOWi0gSsAw4D7gKqDbG/F5EfgakGWNuPVRd06dPN0uXLt1v3bp165gwQfvi9JUDZzuMNvr5Ub314BPzuW7zdXDpswRGfY0P5p3K1IRasm9dHunQlFJKKRVBIrLMGHPQLGu9bsEyxpQbY5bbzxuAdUABcC7wmF3sMaykSymlBhXja7GeuONwOoQaTz4prbuglz9OKaWUUio6hXWSCxEpBo4GPgdyjDHl9qY9QE4X+1wLXAswbNiwcIajemDevHmRDkGpgc37ZYIF0JJYRExtKzRVQGJ2BANTSiml1EAUtkkuRCQReA640Riz392AjdUPsdOfe40xDxljphtjpmdlZYUrHKWUCg+/NckFbmv2T5Nq/xBUUxqZeJRSSik1oIUlwRIRN1Zy9aQx5nl79V57fFb7OK194TiWUkr1J/Ht34LlyRwJQGtlaYQiUkoppdRAFo5ZBAV4GFhnjPljyKaXgSvt51cCL/X2WEop1d8cHS1Y8QAk5Y4AoGGPTtWulFJKqYOFYwzWLOByYJWIlNjrbgN+DzwjIv8BbAd0Lm2l1KDjCNg3CbdbsPKzs6gySbRpC5ZSSimlOhGOWQQXGWPEGDPVGDPNfrxujKkyxpxqjBljjPmaMaY6HAFHyosvvoiIsH79+i7LlJaWMnny5LAdc8OGDZx00klMmzaNCRMmcO211wLWTYJff/31XtV99dVXk52dHdZ4lYpGzgMSrKK0eHaaLKR2RwSjUkoppdRAFbZJLqLd/PnzmT17NvPnz+90u9/v7/UxAoHAfss//vGPuemmmygpKWHdunX86Ec/AsKTYF111VW8+eabvapDqaHA5W/BJx5wOAHITPRQLlnENO2McGRKKaWUGojCOk17n3vjZ7BnVXjrzJ0CZ/7+kEUaGxtZtGgRH3zwAWeffTa/+c1vAFi4cCG/+tWvSEtLY/369bz99tv4/X4uvfRSli9fzqRJk/jnP/9JfHw87733HjfffDN+v58ZM2bwwAMPEBMTQ3FxMXPnzuWdd97hlltu4eKLL+44bnl5OYWFhR3LU6ZMwev1cvvtt9PS0sKiRYv4+c9/zllnncWPfvQjVq9ejc/nY968eZx77rk8+uijvPDCC9TV1bFr1y4uu+wyfv3rXwNw4oknUlpaesjX/eGHH3LDDTcAICJ89NFHJCYmcsstt/DGG28gIvzyl79k7ty5LFy4kF//+tekpqayatUqLrroIqZMmcKf//xnWlpaePHFFxk1ahSvvPIKv/3tb/F6vWRkZPDkk0+Sk7P/DP4XX3wxl19+Od/85jcBKxk866yzuPDCC3v2nioVRq5gKz5nLG57WUSoj8knue0L615YIhGNL1KMMdz/wWYm5idzyvhO78KhlFJKDUnagtUDL730EmeccQZjx44lIyODZcuWdWxbvnw5f/7zn9m4cSNgdev7/ve/z7p160hOTuYvf/kLra2tXHXVVSxYsIBVq1bh9/t54IEHOurIyMhg+fLl+yVXADfddBOnnHIKZ555JnfffTe1tbV4PB7uuOMO5s6dS0lJCXPnzuV3v/sdp5xyCosXL+aDDz7gpz/9KU1NTQAsXryY5557jpUrV/Kvf/2LpUuX9vh133XXXdx///2UlJTw8ccfExcXx/PPP09JSQkrVqzg3Xff5ac//Snl5dbtzlasWMGDDz7IunXrePzxx9m4cSOLFy/mmmuu4d577wVg9uzZfPbZZ3zxxRdcfPHF3HnnnQcdd+7cuTzzzDMAeL1e3nvvvY5kS6n+5gm24nfG7reuLSEfj/FC49CdHPXTLVW88c5bpD91Jm0rX4x0OEoppdSAMbhasLppaeor8+fP72jJufjii5k/fz7HHnssADNnzmTEiBEdZYuKipg1axYAl112Gffccw9f//rXGTFiBGPHjgXgyiuv5P777+fGG28ErISiM9/97nc5/fTTefPNN3nppZf461//yooVKw4q9/bbb/Pyyy9z1113AdDa2sqOHdb4kK9//etkZGQA8K1vfYtFixYxffr0Hr3uWbNm8Z//+Z9ceumlfOtb36KwsJBFixZxySWX4HQ6ycnJ4atf/SpLliwhOTmZGTNmkJeXB8CoUaM47bTTAKvl7YMPPgBg586dzJ07l/Lycrxe737nrt2ZZ57JDTfcQFtbG2+++SYnnngicXFxPYpZqXAKBg0e04rfsX+CRepwqAHqyiBpaLbeLN1ew49dLzDNsYX6j/9MzNTzIh1SxDz44RZWldXyx3OLiUnKiHQ4EbOirJYlpdVcPWsEDsfQbNkF2LCngX9vqeSKE4pxDuHzoNRQpi1Y3aiurub999/nmmuuobi4mD/84Q8888wzWPdOhoSEhP3KywHdhQ5c7syBdYTKz8/n6quv5qWXXsLlcrF69eqDyhhjeO655ygpKaGkpIQdO3YwYcKEI46n3c9+9jP+/ve/09LSwqxZsw45wQdATExMx3OHw9Gx7HA4Osao/ehHP+KHP/whq1at4q9//Sutra0H1RMbG8tJJ53EW2+9xYIFC7pMQJXqa23+ILF4Cbj2T/Bjs4oBaN63NQJRDQyb9jUy2bkdgKSKL6CpMsIRRUabP8Dv31jP1zb8Cvcfx0DV0J2+/z8eW8r819+l8qFzoeSpSIcTMTcuKOE3r6xly5M3wRu3gt8b6ZCUUv1ME6xuPPvss1x++eVs376d0tJSysrKGDFiBB9//HGn5Xfs2MGnn34KwFNPPcXs2bMZN24cpaWlbN68GYDHH3+cr371q90e+80338Tn8wGwZ88eqqqqKCgoICkpiYaGho5yp59+Ovfee29H0vfFF190bHvnnXeorq7uGAfV3rrWE1u2bGHKlCnceuutzJgxg/Xr1zNnzhwWLFhAIBCgoqKCjz76iJkzZ/a4zrq6OgoKCgB47LHHuiw3d+5cHnnkET7++GPOOOOMHtevVDi1+ALE0UbwgAQrOde62fBQvhfW7vJyCqhgifNoBAPlJZEOKSJW76onlQbOd36CwwRg+T8jHVJElNe1UNnYxnnOT8je8yG8/UsIBiMdVr+rbfayfk89adQzdssj8PmDsKF3k1IppQYfTbC6MX/+fM4///z91l1wwQVdziY4btw47r//fiZMmEBNTQ3XX389sbGxPPLII3z7299mypQpOBwOrrvuum6P/fbbbzN58mSOOuooTj/9dP7whz+Qm5vLySefzNq1a5k2bRoLFizgV7/6FT6fj6lTpzJp0iR+9atfddQxc+ZMLrjgAqZOncoFF1zQ0T3wkksu4YQTTmDDhg0UFhby8MMPA/Dggw/y4IMPAvCnP/2JyZMnM3XqVNxuN2eeeSbnn38+U6dO5aijjuKUU07hzjvvJDc3t8fnc968eXz729/m2GOPJTMzs2P90qVLueaaazqWTzvtND788EO+9rWv4fF4ely/UuHU6gsQJ17MAQlWfnY21SZxSN8LK6HeSi5XZZ5prQj3BESDxIqyWsY7yr5csfndyAUTQSvKagGY49lkrWiuGpJJ96pddRgD30gK+fFliH4mlBrKpL3VYyCYPn26OXAShnXr1nV0d1OH59FHH2Xp0qXcd999kQ4lYvTzo3pjS0Uj3ntPIDV/NHnXvdCxvrbZy47fzyQtK4+iH70RwQgjIxA0/PhXt3O/+x4eO+opTi35MXmTTsR50SORDq3f3fHKWpxL/sovHI/ytP8k5ro/Rm7bDe7Y7neOIn/7aCv//foaNsb9B2/4j+Ec56dw+v/ACd+PdGj96qnPd3DbC6t4esRrHL37Gcyok4mt2Qg3HDx+Wik1+InIMmPMQZMbaAuWUkp1odUXIJY2jDt+v/UpcW72SDaxjbsiFFlk1bf4yKIWgOz84WwMFuLbuyGyQUVIeV0LR8XsxutJ5YPgNMQEYO+aSIfV73bVtjDM04jbtLE4OB5fXCbsPXjMcLTbUd2M2ymM9tSwy2RQnjARakqhrTHSoSml+pEmWFHsqquuGtKtV0r1VnsXQXHv30VQRKiPzSPZu8e6F9YQU9PsJUtqCYqLYYUFbDc5uGq3DclzsbuulSJnDSaliDWm2Fq5d+h1lyyva2FKkpVElJt0KhPGDsluo2U1zRSkxpHq3cduk8FGhlsb9q2LbGBKqX41KBKsgdSNUQ0e+rlRvdXqCxJHG+I5eKbPtsQiYkzbkJw9r6bZRza1eGMzKc5MYpvJxRVoHpL3BSuvbSGTWtypeVQ4svCLe0jOJLi7tpWxcfUA1Lpz2OoYDhUbIBiIcGT9q7KhjezkWFyNu6h25bC0xbp1yVBszVNqKBvwCVZsbCxVVVV6sawOizGGqqoqYmOH1jgIFV6t9iyC4ok/aJsjtQgAU7u9v8OKuNpmL1lSRyAhh4QYFzUxhdaG6qE1bX0waKhsbCM1UIUjKZfhmUnsdeUPufMAUF7Xygh3DQDxmcNY582GQBvU7YxwZP2rptlLZhzQsIe2hDy+qE8CVyxUbY50aEqpftTnNxoWkTOAPwNO4O/GmMO6W3BhYSE7d+6koqKiT+JT0Ss2NpbCwsJIh6EGsba2NjwSwBlzcIIVmzUCtkDT3q0kFvbs5t3RorbZxwSpRRKtm6f7U0dANVZiMfyEyAbXjxpa/YgJEO+rgaQ8hmcksL0pl4Ih1oJljKG22UsuVeCKJT0zhxWl9iyx1VsgbXhkA+xHNc0+hue1AgaSCyjd1wppI6B6W6RDU0r1oz5NsETECdwPfB3YCSwRkZeNMWt7Wofb7WbEiBF9FaJSSnXJ19oMgKOTFqz2e2HV79lKYr9GFXk1zV7SpR5XUjZg3XjZX+3ANcRabmqavWRSZ90HLDGHYenxrNuczQnVJUgwCI4B30kkLBra/PiDhrRgjXUeMhJ4blU6eLCS7lGnRDrEfmGMoabJS56rBYC49Dwqt7bhH1E85L4bSg11ff2v/0xgszFmqzHGCzwNnNvHx1RKqbDwe5sAcMUePAYrPyebGpOIt3Lo/TJd2+wjlUbciRkAFGYks8tkERxiLTc1zV6ypdZaSMplWHo8mwPZSKAN6odO17jaJh8AicE6SMhkWHo85cEUgq5YqBo6iUWjnWhmO6zJPlIzrXtE1sUVQc22IXnjZaWGqr5OsAqAkDswstNe10FErhWRpSKyVLsBKqUGkoDdguWKObiNqjAtjp0mE0dd2UHbol1jYz2x4kPi0wAoSo+nNJiDv2JojTOpbfaRIdbEDiRkMSw9nlJj33h9CCWbNc1eAOL9dRCfwfCMBAwOmhOHD6nxaDV2oplmJ1hZWfkA7HHmg78VGsojFptSqn9FvP+CMeYhY8x0Y8z0rKysSIejlFIdAva9a1yxB3cRTIp1s9eRQ2zT0LsXlq+h2noSnw5gJxY5OIbYVO01zV5Sse9vFJdOUXo8W4P2rHHVQy/BivHVQlw6wzOs70u1p2BInoc0GgDIzbd+T94WzLEKDKFkU6mhrq8TrF1AUchyob1OKaUGPOO1WrDcnXQRBGiIzSdlCN4LK9hsT00fZ7VgDUuPZ4fJweVrhJaaCEbWv2qafaSLdTFNfDqFaXHskzR8jtgh1YJV22y13LhbayA+g6zEGGJcDnY68q2b7A6RqdrbE6ykYD2Ik5SUDNLi3az12j8ea4Kl1JDR1wnWEmCMiIwQEQ9wMfByHx9TKaXCwvisweriPrgFC8CbWECMaYXmqv4MK+JMc631xE6wcpJj2S1217iaoTMmra7ZS5o0YMQBsanEup3kJsdR4c4fUrPG1TR7icGLw98M8ek4HGKNR/NnQcA7ZKZqb0+wEvy1Vuuuw8GwjARW1SeA06MJllJDSJ8mWMYYP/BD4C1gHfCMMWZNXx5TKaXCpb0Fiy4SLLGnnw5WD617YTlb7S6CcVYXQadD8CbZnRVqSiMTVATUNPvIdTUhcWkdMwYWpcezi5whlWjWNPtIE7urZLw18cnwjHjWtGTYBYbGuWgfgxXrr/3yPKTHU1rTCmnFQ6q7pFJDXZ+PwTLGvG6MGWuMGWWM+V1fH08ppcLF+OwEq5Np2gHisooBaNg7tC6cnN4664ndggXgzLBvpzGkEiwvWa7mjkQTrO6Sm3yZdte4oTFrXG2zl6IYq7X3y3F5CSytT7HWDZHWvJpmLw4Bd1ttx2dieEY8u2tbCaYVD6nvhlJDXcQnuVBKqYFK2hMsd1yn21NyRwHQsGfoJFitvgCJAXvmvJAEKyczgypShtRFZG2zj3Rp7EgqwEqw1rZlWrPGNe6JYHT9p6bZR1Gs/V0JacHa5kvDONxDpwWr2UtqvAdpru74TBSlxxMIGhrjCqG6dMiN11RqqNIESymluiD2GKyuugjm52ZTaxLwVQ2dLoJ1LT5SpBG/I2a/lr1h6fFsD2bhH0L3Batp9lozxtlJBbRP+GHdgHmotNzUNnvJc7e3YFnnYlh6PEEctCUWDJnzUNPsIzXebY3JDOkiCFjj8rwNQ268plJDlSZYSinVBUeg1XrSRQtWQWo8O00WUrejH6OKLGtq8ib8npT91helx7Pd5BCsLo1MYBFQ2+wjyTTs10Ww/TwAQ6Y1r6bZS47buil3R4JlT9VeG1s4dFqwmrykx7mhpfqg87Cj/TMxRJJNpYY6TbCUUqoLDv+hW7DiPE72OXOIbdrdj1FFVk2TjzRpIBCbtt/64RlWy427cRcEfBGKrn/VNLeRGKjbr4vg8Ix4dplMguIcQomFj2xH+/3ArM9FYVocIlDuzB8yXeNqmn3kxfkg6O9IsHKSYvG4HNa4PBgySbdSQ50mWEop1QVXoAUvbnA4uyzTGJtHqnf3kLiABKs7WIo07Tf+CqyWmzKTjRCEurIIRdd/2vwBjLcZl/Hu10UwI8GDxxNDnTtnyLRW1DZ7SXM0QUwKON0AxLic5CXHsj2YPWS6xtU0eSnwtI9Fs5Juh0MoSotjdVOqXWhofCaUGuo0wVJKqS64Aq3WTWMPoTVpOLGmDRr39lNUkVXT7CONBhwJGfutT4xxURtTYBcq7f/A+llds4902m8y/OW5ELHuAVXuyB0SF9Nef5Amb4BUU79fSx5YSfe6NvvcRHmyaYyhptlL3gFdJcEaj7a5JgBJQ+v+aEoNZZpgKaVUF1zBFnyOmEMXSh8JQKBycz9EFHm1LV5SpQl3YvpB20xqsfVkCCRY1r2f2hOsgxOLbcHsIXExXWvfXDcpeHCCNTwjni8a7ZbOKE82W3wB2vxBspwHJ1jDMxIoq27GpBcPie+GUkoTLKWU6pI72H0LVmzuGADqd2/oj5AirrbJSyoNuA5owQJIzCzEi2tIXETWNHtJl4NbsMCeqr01w5rsoLUuAtH1n5pma7xdfKCu0/OwojHVWojyZLP9PGQ4Dk66i9LjaWjz400aFvWJplLKogmWUkp1wR1sw+88dIKVljcSn3HSXL6pn6KKrKaGOjwSOGgMFkBRRiJlJntIzCRY2+wllfaJHfZvuRmWHs9mf5a1EPWJhdWCFeurPTjBykigDQ++hOjvLlnTZJ2HlPbPxAFdBAGqPQXQUA7tt39QSkUtTbCUUqoLnmAbAWfnMwi2K8pIZofJxlQNjZsN+xqrrSfxB3cRHJYRz45gFv7Krf0cVf+rafZ13YKVYU34YRWM7sSi2k4sPG01nbZgATTEFQ2ZRDM5WA8OF8Qkd2wbbk/VvtuRZxcu7e/wlFL9TBMspZTqhNcfJJZWgq5Dt2Dlpcay3eTgqS/tn8AizLTYs8F10oLVfpNdR13033i5ptlLmjRgEIhL3W9bcUbCl/fCivLEorrJSwxeHP7mgz4T+91kN8oTzfYuggmBWqtFU6RjW1GadR62+nWqdqWGCk2wlFKqE81eP/G0Ybq4B1a7GJeTCk8BKc1lQ2KqdmmpsZ4cIsFyeeuhvVyUqm70kuVoQuJSD5rGvyA1jlZHPM2utKhPLKqbQrpKHtCClRrvJinWRRk51iyb3qYIRNg/qhvbAIjzHTwWLc7jJDsphjWtdqtvlCfdSqleJlgi8gcRWS8iK0XkBRFJDdn2cxHZLCIbROT0XkeqlFL9qMkbIJEWjCep27LNicOJMS3QuK8fIossR2ut9STu4C6COcmxlEuutRDlv9JXN3nJcTUddDEN4HE5KEiNY68rL+ovpqubvBTGtN/7af9z0T5l/VC4yW5VkxenQ3B30lUSrB8f1tW6ra6DUZ50K6V634L1DjDZGDMV2Aj8HEBEJgIXA5OAM4C/iEjXd+pUSqkBpqnNT6K0QExi94Xtqdqpju5xWMGgweWttRY6acFyOsSaKQ2i+mIarAvqTGdjpxfTAMWZCZQGs6P+PNQ0exkWZ0/a0Mm5GJ4Rz8qm6G+5qWz0khbvQVqqOx+fmB5PWU0LpA2P6vOglLL0KsEyxrxtjPHbi58Bhfbzc4GnjTFtxphtwGZgZm+OpZRS/amp1UcCLUjIYPWuxOeOtfYp39jXYUVUXYuPFNM+c97BCRaAI2OE9STKJ/2obvKSRkOnLXkAxRnxrPdmYup2gt/bz9H1n+omL/nu9gTr4HNRlB7P0vpUayGKW26qGtvITPRAc1WXE8CU17cSSC2O+qRbKRXeMVhXA2/YzwuAspBtO+11BxGRa0VkqYgsraioCGM4Sil15JpbWvBIAEdc9wlWdtFofMYZ9ffCqm72kiqN+J1x4O588o/crAz2mjRMVXTfeLm6yUuyaeiyBWt4RgKbvJkIBmp39HN0/ae6yUue++Cb67Ybnp5ARSCeYExKVLfcVDd5yYh3QXN1l10EjYH6uCKo3Q7BQASiVEr1l24TLBF5V0RWd/I4N6TMLwA/8OThBmCMecgYM90YMz0rK+twd1dKqT7R1mzdINYZ2/0YrBHZqZSZLPwVQ6DVRhrxx6R2WWZEZgJbg3n490X3fcGqmlpJDNR12loBVgtWx0yCUdxyU93kJdvZAEinrZrtU5Q3JxRF9XmoavJSFNcGJgAJ2QdtL85MAGCPIxcCXqjf3d8hKqX6kau7AsaYrx1qu4hcBZwFnGpMxxRau4CikGKF9jqllBoUfE21ALjjU7otW5gWxyJymVAX3fd/qmr0kkoDJrbz7oEAI7MS2WrymF61rB8j61/NXj/ia8Hl9HadYGUmsCPKp2o3xlDd5CUz2Z45z+k+qMyoLGsMY6Unn8Tq6E26KxvbGFZkzSRI4sEJ1qhM6zxsDuYwAaBqM6QWHVROKRUdejuL4BnALcA5xpjmkE0vAxeLSIyIjADGAIt7cyyllOpPPrsFyx3ffRdBl9NBZcww0lp2QDDY16FFTHWTl0ypQ5JyuiwzMjOBrSYPt7fW6i4VhaoarfMAQELnPS8K0+KokhR8jtiobblp8QVo8wdJMzWQlNtpmZzkGBI8TspMLtSVQcDfabnBrM0foKHVT76z3lqRePD3IyXeTUaCh5UtdvJVGb3JplKq92Ow7gOSgHdEpEREHgQwxqwBngHWAm8CPzDGaIdjpdSgEWhtACA2ofsWLIDmlNF4TJt1ERmlqpvayJI63CmdX0wD5KfGUebItxai9CKyuslLDvZ9vrpILGJcTvJT49nnyo/aCT+qGq3JO5L91Z222oA1VfuIrAQ2+DIh6Ie66BuPVtNk3WQ422En3Z0kWAAjsxJYURMLniSois7vhlLK0ttZBEcbY4qMMdPsx3Uh235njBlljBlnjHnjUPUopdRAE2yxfo32xKf2qLxkWTMJBvZF70QXVY1tZFOL8xAtWE6H4EsZZe8QnRNdVDW1kS211kJSXpflRmQmsI18qIzO2SX31LcCkOCt7DKpAKub4LJGe+KHyuj7TFTaNxlOpz3B6rxVc2RmIlurmiBzTNR+JpRSlnDOIqiUUlHD32K1YPVkFkGAxMKJANSXre6zmCKtub4StwS6bLVpF5c9Eh+uqP2VfndtKzlit2Aldn0uRmUlsrItB1O7HXyt/RRd/ymvawUMntbKLluwwEosPmuwbzYchYlFVZPVkpcaqAZXrHUz4U6MzEqgstGLN21UVCaaSqkvaYKllFKdCLTa4yk8PbjRMFBYUESVSaKlfF0fRhVZ3hp75rNDXEwDFGcns91kE4zSi8jyuhZyHHUYh7vLSS4ARmcnst6Xh5hgVN6Eek9dCyk04Qh6D9mCNTIrgRqThD82Ayqjr4W3vNa6D1iS327JE+m03Mj2CT9ihkP9TvA29VuMSqn+pQmWUkp1wtlqT9DQxQ11DzQyM4HNpgBHlLbaAATr91pPDtFqA9aF5LZgHv590ddaAVBe28owdz2SlNflxTRYCdZm0z4eLfrORXldK6M8dktecqe3ugS+nEmwLqE4Ksfl7aptwSEQ11wOKV3PDDjCnqp9h9ifiSjtQquU0gRLKaU65WmroUW6vqHugdITPJQ5CkhqiM6p2oNBQ0zLHmuhmy6CIzIT2GLycNZui8obqu6ua6HI2fXMee1GZ1tT1hsEKqIvwdpb38rEBHvc0SGmHG9PLHa7h0FF9LVg7appITc5Fkf9Lkgp7LLcsPR4nA5hnd/+3ERhsqmUsmiCpZRSnYj11dLkSu1xeRGhMXEUCYE6aKrsu8AipLKpjTxTYSULh7iIBBiVlcA2k4cz6I3KWRXL61rJYx+kDT9kuYwED7HxidS4c6O2BWtMjJ1gHaLlJs7jpCA1js3BfGiphqaqfoqwf+ysbWFYaox18+BDJJoel4Nh6fEsb0gHRBMspaKYJlhKKdWJxEAtbe7Uw9onmGnNJBiNF9N76loplAra4rLAFXPIsqnxHipj7AvNKLuINMawr66JdN8+SD10giUijM5KZLsUROXYoz11rQx3VlkTO3RxP7B2I7MSKOm4B1R0nYtdNS1MSGoGE+j2x4eRmQlsrPJB6rConQRGKaUJllJKHSQQNCQF62mL6XoCg87E508AoHHnmr4IK6LK61opkEoCyV3/Qr+frPHW34r1fRdUBFQ1eckIVOIgYF0kd2N0diJrfLnWrHFRdBNqXyDIvoY28qiwxl8dYiwaWOOwPqlrn6o9en6A8AeC7KlvZWyMPWazuwQrK4FtVU2YzLFRdR6UUvvTBEsppQ5Q1+IjXRoIxvZsgot2ecPH0GxiaIjCBKusupkCqcSVfuhWm3Z5eflUkoLZF12zKu6saaFQKqyFbroIgp1geXPA3xJV3SXLqpsJBA05vl2QMarb8qOyEtjiTSXoiouq8Wh76lsJBA0jHfb4xIzRhyw/OjsRrz9IfUKxdQPqKEq6lVJf0gRLKaUOsK+hlXQacHRxw9CujMlJtiY1iMKB/KV7ayhwVBKTObJH5cdkJ7ExUIBvT3QlWJv2NjBCyq2FtBHdlh+VncjmoD3DXhR1l9xW2YQQJLmpFDLGdFt+ZFYiBgfNSSOjqovgzhprivZ8/05wxhxyLBrA2Jwkaz/XMPA1Q92OPo9RKdX/NMFSSqkDVFRWES9teJIPfb+nA+WlxFIqBcTXR99Mgk17NuIiCFnjelR+TE4iG00hjsqNYEwfR9d/Nu9rZLxzF8ad0O3FNMDorES2dEzVHj2JxdaKJvKoxhFohczuE6wx2dZU7ftiiqKqa9ymfY0AZLbtgPSR4HAesvwYO8FaF7CT7ihr4VVKWTTBUkqpAzTs2w5AXGb3Y2xCiQi1CSNJ9e6JqpuIGmO+vL9X+0Qe3RiTncQmU4jL3wh1O/swuv61aV8jUzx7kKxx4Oj+v9CC1Dha3GnWjJRRNB5t875Gjo7fZy30IMHKSoohNd7NFgqhdkfUfD827W0gKcZFbO1myDx090CAxBgXBalxLG60b8ysCZZSUUkTLKWUOoC32uq2k5TTfRewAwXS7YvNKOoOVtXkJc9rd2XqwcU0QGaih3JPsbUQRYnFxr0NjDJlX07i0Q2HQxiZlcB25/CoupheW17PnES7q2T2xG7Liwhjs5NY3pJnrYiSz8TGvQ1MyXIg1Vsg96ge7TMmJ5GVlUFILoyqz4RS6kthS7BE5CciYkQk014WEblHRDaLyEoROSZcx1JKqb4UrLUmI/Ck93DGvBAxedbFZnP52rDGFEmb9jYyyVFKS+Jw8CT0aB8RwWRZsypGy0VkY5sfX80uUgJVkNezi2mwJjZY6y+wzkMUdJf0BYJs2NvAUa5Sa6r6+J7Ntjk2N5EP6+xxjVHwmQgGDWt213NSyl5rRd7UHu03LieJrRVNBLPHR8V5UEodLCwJlogUAacBoaM1zwTG2I9rgQfCcSyllOprjvpdBHBAUt5h75s1bDw+46R++6o+iCwy1pbXM9WxFQoO73ey/Lw8KkjFVETHReSy7TVMc2yxFgqO7fF+o7MSWd6aB97GqJhJcOPeBrz+IMNaNx5WojkuJ4n1rekYV1xUJBZbK5toaPUzI8a+9OnhuRiTk4Q3EKQucbQ1Hi3g78MolVKREK4WrLuBW4DQn+bOBf5pLJ8BqSJy+FcrSinVz2KbdlPvSgen+7D3HZ2fTqnJJbA3OrpAAWzaspkCqSKueMZh7TcmO5ENgQL8UdKa99nWKo5xbsY4XJA7pcf7jclJYkPQvj/SvsH/uViyrZocqkloLoOimT3eb0xOEkEcNCaPgn2D/zPxxY4aAMa0rLBa8pJye7Tf2Bxrwo8y13AItEHNtj6LUSkVGb1OsETkXGCXMWbFAZsKgNCf6nba6w7c/1oRWSoiSysqKnobjlJK9UqbP0CubwcNCcVHtH9hWjxbKCS2NjrGYBljcO74t7VQdPxh7Tsmx5rowlG1MSru9/P51ipOjVmPFM4Ad2yP9xuXa50HICoSi8Wl1ZyZaH++i+f0eL/2KcrLPSOiogXr0y1VZMa7SNjz+WGdh9H2jIpr/O2ficF/LpRS++tRgiUi74rI6k4e5wK3AbcfaQDGmIeMMdONMdOzsg7vnjNKKRVuZVVNjJLd+NJ7NlvegZwOoSp+JGltu8DXGubo+t/mfY1MaVuO15UE+dMOa9/2qdqd/uZB3zWuqc1P2c4yRvk3w8iTD2vfYenxtLmSqHdnD/qLaV8gyMebKjk7YT3EpR1WS156goespBg2mkJoKIfm6j6MtG8ZY1i0uZKLC6uQlhoYcWKP9433uBiWHs/nDZmADPrPhFLqYD1KsIwxXzPGTD7wAWwFRgArRKQUKASWi0gusAsIHSFeaK9TSqkBa+eOrSRJC57cCUdchzdtDA6CUDX4W7HeX7eHk5wrCBSf2O09fg6UlRjDbnextTDIZ41btLmSk2QZgoExXz+sfZ0OYUxOItucwwZ9C9aS0mpaWluZ0vwZjD3jsD8TY3MSWdpid6UbxJ+JL8pq2dfQxlkxX4A4D/szMTYnkTUVPkgrHvSfCaXUwXrVRdAYs8oYk22MKTbGFGN1AzzGGLMHeBm4wp5N8HigzhhT3vuQlVKq71Rv+wKAzJE9H7x/oPaZBNuiYOzRti/eJ1dqiJt6/mHvKyKQbU9nPsh/pX95xW6+5f4Mkzoc8o8+7P3H5iSxypsPFRsgGOiDCPvHKyt28zXPGjy+Ophw9mHvPzYniYU17TMJDt7vx6sryvE4DWP3vQUj5vR4JsV2Y3KS2FbZRDBr/KBONJVSnevL+2C9jtXCtRn4G/D9PjyWUkqFhWP3coIIccOO/M4SGcMn4jcO6ravDmNk/W/t7nqmVb2OzxELY08/ojryc/PYR9qgnkmwusnL1rXLOYGVyLRLQeSw6xiXk0RJW541qUH14JzUoKHVxysryvlB8ieQkAVjTjvsOsblJFHqSyHoSR60SXerL8ALX+zkh8XlOOq2w7TLDruOsTmJ+IOGmsTRULUZ/N4+iFQpFSlhTbDslqxK+7kxxvzAGDPKGDPFGLM0nMdSSqlwM8aQVbeSvTHFEJN0xPWMyktnu8nBt3fw/kIP8PK/V3CO81OCky6A2OQjqmNsTiLrA4X49wzOi2mAJz/bzmW8TtAZAzP+44jqGJubxIag3Wt+kLbcPLN0J1neMiY3fgLHXHFEs2yOyUkChPrk0YM2wXp22U5qmn1cbl6GhOwjbskD2O4YBkG/lWQppaJGX7ZgKaXUoLKxvJYpwY00Z/fuvujDMxLYTCGxNYN3DNbu2hayVz5ArPiIOfGGI65nTLY9k2Dl4JxJsK7Fx2sfL+bb7o9xHDUXEjKPqJ5xOUlsNvmYQTqpQVObnwcWbuF/k59D3HFw3HVHVE/7FOU73SOsRHOQ3Xi51RfggYVbuCK3lLTdH8EJ3z+sGSXbjcpKxCGw2pdvrRikSbdSqnOaYCmllG3DFx+RLM2kTTn8rk+h3E4HlbEjSG0tA39bmKLrX4+89hGXyts0T7wIssYdcT1jchLZZApwBlqgbkf3Owwwf3hrPT8JPIzL6YQTbznievJSYnHFJFLtyR+UF9P3vL+J8c1Lmdn2b5jzE0jMPqJ6kmLdFKTGsT5YAC010Lg3zJH2rb8s3MLe2gZu5VHr3lfHXX9E9cS6nQzPSGBxQ4Y1ScYgTLqVUl3TBEsppWxm49sEEdIn9y7BAmhLH4OTIFRtCUNk/eujDXs5Zf08cLpJPO2XvaorOymGXe7h1sIgu8nuok2VNC9+gq87l+E4+eeQWtT9Tl0QEcbmJrFVhg26i+nPt1bx7Ecl3JfwMKSPhBN+2Kv6xuQksrjJnklwECWbX+yo4S8fbOav+a+RULsRzvifI2q9ajc2J5G1FW2QMUonulAqymiCpZRSQH2Llym177M98ejDnhGsM64ca5p3757BcwEJUF7XwroFv+IE51oc3/jfXiUVYM8kmGXPJDiIJrrYXtXEA089w/94/kFg2Gw4vvfzNI21J7owVZsHTctmWXUzP37icx6K/wspwTq48JFeJRVgdZf8sMbuajlIks2dNc1c98QyLk1YwqnVC2DGNTD+m72qc2xOEturmglkjh9UiaZSqnuaYCmlFLD40w8ZKbtxTL0wLPWlD59EwAj1O1aFpb7+UNXYxoIHf8v/Cy6gbuyFuI+9PCz1Fublspd0zCC6mL79r09zv/kdzqRsnBc9ekQTOhxoXE4iK735iAkMikkNdtW2cNXfFvHfwT9ybGAlcvafDvtm050Zm5PE3kAi/risQZFY7K1v5Yp/LOZ476fMC9wDw74Cp/93r+sdk5NEIGiojh9lzSzpbQ5DtEqpgUATLKWUAtq+WIAfJ8NmXRyW+kblZbLDZOMtHxxJxea9DSz48y3c2HIfNXlzSLnogSOajrwzo7OT2BAoILB34J+LkrJa/nDffdzn/QUJCUm4vvsqJGaFpe6xuUlsMO0zCQ7sc7Fmdx3X/OVN7mz5FaeyBM68E6Z9Jyx1t8+gV5s48GcS3LS3gW/d/wlfr3ueP8kfkbyj4DsLwBXT67rbJ/zY5hwGGKjc2Os6lVIDgyvSASilVKRt2V3JzPq32J4xi1EJGWGpc0RmAh+ZQo6pGfgXTZ9tKGPn/Bv4Pu9RPeIs0i/9B7g8Yat/bE4iG0whsyo/sG6y63CGre5wMcbw7JLtlL3y3/zR+S98GRNwX/EMpBSG7RjjcpLYZvIIigvHAG25McYwf3EZr7z6Ag877yPXWQfnPwKTvxW2Y4zOTkQEytzDydz3ijW7pGNg/d5rjOHFkl389wuL+bXzMc5yLIRxZ8G3HgJPQliOMTIzEZdDWOXLZyZYyWYYWgiVUpGnCZZSasgreeNhLpB6PKf+KGx1xrqd7IstJq2lBAK+sHQxCzevP8jTr7zGV0puYaaUUz/9R6R/446wX+yOyU7iJTMMZ6DV6gqVOTqs9ffWvvpW7nnmDc7b8d9827mRtvHnE/ut+8N2Id0uIzGGlMR49jmLyB2ALTf76lv59bNLmLz1IZ50vYpJKcTx7aeh8NiwHifO42R4ejxr/YUc7WuyZpdMKw7rMXpjX0Mrv3pxNU3r3uXVuEfIDu6Dr/4MvnprWL8bHpeD4swEFtfF8h9Oz6Aao6iUOjRNsJRSQ1ptUxsTdjzFntgR5E78eljrbk0dg7MiYM0kmD0+rHX31ootO9n4zK+4pPUlmt1ptFz4HMnjT+2TY+Ukx1DmHmkt7F09YBIsXyDIM5+so+2933M7r2E8cQTPfoiYqReFrXvkgcbmJLGpsojcAdSC5QsEeeyTbax69wl+Kf+kwFWJmXYpjjN+f8Q3mO7OmJwkPtuTzaUAe9cOiASr2evnkU9KeenDz/nP4KOc4VmMSRmJnPcmDDuuT445NieRNbvrIXMs7F3TJ8dQSvU/TbCUUkPawnde4jwppfy4/w37RbUrdwJUgH/vOlwDJMHaV9fCW888wNd23stRUs2ukRdScOGdEKaukZ0REdy5EwjsceDcuxomnddnx+qJQNDwyhfb2fDW37iy7UlypYaGCXNJ+uZvj/j+Tj01NieJ5WW5zGn7CLxNYW8lOxyBoOHVlbt5863X+E7jY1zjXI03YwKc8zgy/Ct9euxxOUk8vj4DPFgTXYz/Rp8e71BafQGe/HwHT3xQwrfaXuQV95u4PcCJv0S+8uOwjLfqypjsJN5YvQf/yMm4tn3QZ8dRSvUvTbCUUkOWLxAkbeXfaJAk8mZfEfb6UwsnEVwp1O1YTcaU88Ne/+GoaWzj7VeeYtL6e7hctrInYRzNFzxFwagT+uX4o/Mz2Vaez6g9q+mbtqHuBYOGN1fvouSNh7m46SnOc+yhLmMq5vxnSCqa2S8xjMtN4gN/gZ1YrIPC6f1y3FDBoOGtNXt46c03uLD+nzzg/AJvfBrm5N/jmfE9cPb9pcHY3CTqgnH4EgtxR6g1zxcI8q+lO3n4vRV8s+lFXvW8QYKrCSaeD1+/A1KH9XkM43KTMAYqEsaS1/g0NOyBpNw+P65Sqm9pgqWUGrI+/uwzTgosoXTi9SR54sNe/8iCLMpMFp7yyHUHa2j18eZrzzNy5R+ZK+up8uRSceKfyJ11Rb9ONjE+N4m1wSKK96zu9/94jDG8v24Pn7/2KBc2PM43HLuoTxtP8Iw/kjL+G33WHbAzY3OSuC9YbC3s/qJfEyxjDO+v38dzb7zN2TWP8aBzCd7YFIKzf4Xn+P8HMUn9Fkv7DHqVSePI213Sb8cFq+Xu5RW7+Os7Kzm57iVe9LxGkrvBmsTipJ9D7uR+i2V8rnXO1zGSPIDylZpgKRUFev3/nIj8CPgBEABeM8bcYq//OfAf9vofG2Pe6u2xFLT5A9Q2ttBUX4OvqRZvSwNerxevz4sE/UgwCAJBpwenO57Y+ATiEhKJS8kiOTGBpBiXdeNPpRRti+7DL06Kz7yhT+oflZXIp6aAadUb+qT+Q2n1BXjjrdfIWXoX32YFNa4M9n7lv8n56vfCOkNgT43LTeKd4DDOqf8UWusgNqXPj2mM4d+bK/no1cc4t+af3ObYTn3ySAJnPEbyxHMiMnPd2JxEdpFJszuN+N1f9MsxjTEs2lzJ/Nff54zKR7jP+RmBmASCX7kVz1d+0C/vxYHaZ9Db5BpLXvl70FILcal9ekxjrJa7+95exXFVL/K051VS3XWY0afBybdB/tF9evzOFGckkBjj4pOmDE4B2LMCxp7W73EopcKrVwmWiJwMnAscZYxpE5Fse/1E4GJgEpAPvCsiY40xgd4GHK1avT727S6lrnwrTVU78daWY+r34GreS1xbJcn+KhKDDSTSTI60HtEx6k0820mh0ZVKY0wOLYnDCKaNICZrJJlF4ykeMYpYz8Cb6UypvrBy4xZObn6b0oKzGZvcN78YJ8S42OMpJrX5FQj4+6Xrldcf5K333yPp0zs53yym3pHC7um/IP/rPwJ3XJ8fvyvjcpP4M8OthfKVMGJOnx5v6bYq3n3lSc6sfISfO7bSkDgM/2l/JXnqtyM6TXxSrJui9Hi2MJYpu5b3+fE+31rFE28s5KQ9j3Cv8xOCnhjM8TfinvVjiE/v8+N3xeNyMDYniX+3DudEsFrzRp3cJ8cyxvDhxgr+/NYapux9gUc9L5PprsEUnwSn/ALpp+6hnXE4hMkFySzdE4C0EdZ3Qyk16PX2f/vrgd8bY9oAjDH77PXnAk/b67eJyGZgJvBpL483qDW3NFO+bS11O9bQum8L1O4grqmM9Lbd5Jp9DBP/fuV9OKmVNOrdmTQnFNIQkwqxKTjiUnDEpiBxqThjE3G73bjcHsThwjicYAzibyPoa6GttRl/axOmqRJproSmStwtFQxvXU9W80e49gXB/nG92cSwyZlPdVwxvtRReHLGkjZsEgWjJxOfmNrv50upvlT29n1MFR8F37y5T4/TnDIaV7UfarZB5pg+O44/EOSdj/+N6+Pf803/IlodcZRNu4miM39Ccj92/epKvMdFY/o0aADKPu+zBGvlzlpef3kBX9vzd37m2EhjfB6+r91L0tHf6ZcEtyeOHZbGZxuHM7nlWaStEWISw36ML3bU8NgbH3Nc2T+42/UhuN2YmdfjnvOfkJAZ9uMdiaOKUnhlZQ4/A9i1rE8SrM+3VnH3W2sYsfNFHvS8RI67ElP0FTjll0jxrLAf70hMLUzl0X+XEpwyFUd5SaTDUUqFQW//txkLzBGR3wGtwM3GmCVAAfBZSLmd9rqDiMi1wLUAw4b1/YDS/uD1etm+oYTq0hX4ytcRU7uRzJb/3959x0dd3w8cf71vZu8QMiAJm7CnKA60zjrQatXWbau11bbaoZ3W2l9bW9vaWq3WaqtV6164FyI4EFmyR4BAAiF7j5uf3x/fSwgjEMiFu8D7+Xgcue/6fN+XL3f5vu+ztpAXLGeo7KrEayCBakc29UkjqU46FVtaIe6MfJIy80gbmE9c8gAybTYy+yrQgI/WqhJqStdTv30DvsoNuOs3M7h1DVnN87BtNxD6grVC0qlxD6YtaSi2zOEk5RWRPXQ8cRmDo26CSKUOpKKmlmOqnmdj8nEMz+3b/hb2rNFQC4HKtdj7IMEKBg1zFy3B8/7vOcM7F784KR3zLQafcxuDIlhDsS/DCwezccUghm1bGPaBLtbtbGTOnBc4ofQhfmJfQ3PsALwn/5mEqVdGpEnk/kzJT2XuinyucwWh/AsI443+qu0N/OfNT5hQ8gh3Oz7A5hTMlG/iOOmHUde3Z0JeCk8tcuMdOARXmJtLflFaz1/eXkPmlpf5s/Mlcp2VBHOmwSkPI0NmHdZ+dwcyLjcZrz9IZeIYBq59BZoqIDEr0mEdNfz+AO2eNjytTXg9bXjb2/B62vB52vF72wj42jE+LwQ8SMCLMQZjgtYj2PEcjAkiBLEBdpuAzYHNZkfsDuu53Y7YnIjdgc1uLdvsDsTmxGZ3YHc4sTtd2O0OHB3PHQ7sTjcOhxOn04Xd4QSbU++7+oEDJlgi8h6wr0/ln4eOTwNmANOAZ0VkyMEEYIx5CHgIYOrUqeZgjo0GPp+XknXLqN34GcHty0htWEO+bzPDxQtAwAjl9mxq4wv5IvU0bFmjScorIqtgFMkpmRz+lu9d2J3EDRxO3MDhDJq2+yafp5WyzWuo2bqS9vL12Os2kdyyhREVr5NY2Qah6TracVHpzKMpoRBvylAkYzix6bkkpw8kKS2L2ORMpA+HuN0XYwwenx+Ppz30YdmOz9OGz9uO39tu/fR5CHo9+H3tBL3tBP0egr52gn4vQb8H/F6M32N9oPq9EPAiQS/i92ILerEbL46gD7vxYjd+HMaHw/hwGq/1Ex82EwRM6EbSYMMgmNA6a7lj++7LpvPm0wDGWFuCHXuIdO7Vo0eX/UEIdvyUjjN3/AQ6og1to8sr6Lgh2bV/x3o6l6XLsbteRWi77L1dQq9xr5sdY7oc2WV1l0h3relyFrOfbV2WY30NDJVG/KfdSl9LGTwG1kLTtpWkFJ0XtnKNMXy0bDW1b9/Fme1vIgJlwy8nf/YvyI/Sm7Mp+aksWjqCIds+wx4MhKWp3uaqZl58dQ7TS/7BrbaVtMSk037S70g45hvgjAlD1OE3OT+VvwZDfyrLPg9LgrWhoomH31zIyOJH+J3jPRzOIMGJV2Cf9WNIzut1+X1h4uAUAMrjR5Nftth63/cy8Vm/s4m/vL2GmPUvc6frJfKd5QQHToRT7sc2/LSoSqw6TMhLAWCpjObLANs+jfhUBv1JMGhoaPVQV1tJU20FrfWVeBqrCLbUIG21ONprsXkacfiacfqbcQZaiQm2EBtsJY42EmgjQQKEvx657wSN4Bc7AayHP/QzIHaC2AmIg6CEfmInaLOWg+LAdN0WKsOII/S3mc6/0xL66yudf+MNGDr3Cy12PKXzr2zon477Hcyu+yDrb7tBCIJhj326lNKxn9lVztLYYyk69/vMGNJ3U4qE0wETLGPMqd1tE5FvAy8aYwywSESCQAawHRjUZde80Lp+r72thU3L59Owbj4JOxcxtH0Vw0N9olqIYZtrOCuyL8SVN4n0IZPIGTqWPHcc0fnnrXtOdxyDR09l8OjdR7jy+wNs276NnZtX0LpjHVRvJL55M1m1K8mtnYt9y945cjNxNEsCPpsbny2m8+G3ucFmR8SGiOyeRCDYjB+78WML+rEZHxK0novxYzc+bEFruwMfzlBS4zQ+XPiJkQDhurUKYMOHAz9OfOLEv8cjIE78NicBWyKtNicBcRG0OTFitwYUERuIbVcCE0p4On8iGLG+jdq1LOxKZ0wocdjjQ6kjgTPBzoTE2r5rv87tof07y+w8dldSZ3b7sLP2s8o07Ep4du1vxcFuy4Su4u7lsfv2Lh+ku5W/x43P7gka+9m2n+P2KtPitcfyUe63OH5c3/T56KogZwAlwSziSsP3Df2iNRspe+0PnNXyCk7xU1rwFQaffwcFqYMOfHAETc1P5a/BkVzmfd8aorwXo7WV1rby/GuvM37j/fzIvoxWVzJtx99B/HHfgj4YETKcRmYl0u5KozKmgAFbPoTjbz7ksjZXNfPw258zeN0j3GF/hxiHH//4S7GffBv21PzwBd0HRgxIJD3exaeB0eQ3vw5V6w95Qu6S6hb++u46fKte5seOFxnmKiOQWQSn/AnbqLOjMrHqMCgtlkFpscypjOXLzjgoWaAJFtZoj9WNrVRVbKexchttNWX4G3YgTeU4WytI8FaR4q8mzdSTQhOpsu/v6D04aZYE2iQOjz0enzMOjzONVmcCVc54As5Egq4EcMVhc8Rgc8Vgc8bgcLqxu2Kxu2KwO9wYhwuxu7HZbdhCf9dtNrEeYgObDWOsv26BoCEY8BMM+gn4AwQDPkzQb63z+0PPA5iAj2AgtOz37foZ8EPQ2kbQWu5YR9CPBHyYYAAJ+iAYQIwfCfqtbaH7JOt+KYDN+LGZQOheKoDNeLCbAK6O9MwEcOBn19/8Ll9PGvb+e935fNeTPffp+kXs7l8lgxFbl6+e9/iSt+t9UZcviQHE24I/0H/qYXrbRPBl4GTgAxEZgTWzRzUwB/ifiPwFa5CL4cCiXp4rIkwwyLaNKyj//GUSt81lmGcNY8QHwBZbPqszv4wj/xiyRs0ge8g4Rtsj13n6cHA47AzOL2RwfiFWVzuLMYa6xiZqyzbQVL2D1voKAi01SGsN9vZa7J4G8LfjDIYe/kbiTDs2E+jyjcaumhwRgx8HAez4xEEABwGbA784CNjiMeLE2BzWw+7G2F0Yuwvsbqs5kMON2F3YHG7E6UYcbuxONzZXDA6HC7srBoczBrsrBqcrBqc7BqcrFqfLjcsdg8MVY00uaXdjtzs4sq+q6ksjBybxthnJWRWf9/ob+uXF29g054+c1vA8U6WdrblfJu+COynMHBbGiPtOfnocm2LHWmPLlnx0SAnWzoZ2nn3jbUasvY9bbItocyXScuxPiT/hxsM6zHhvOOw2JuenMn/nOC7c+i7ibT3opHBrTQuPvLuMAasf5ue2N4lzePAWXYTtSz/FlT60jyIPL5tNmDksgyeKh3IpQPF7B51glda2cv/cjdQte4WbHc8z2rmVQPoIOPk/2IvO7xdNqUSEE4ZnMmf5DoIjT8K24R34cu9r86JdMGiobGynfOd26rdvpK1yM6auBFdzKclt28kKVpBNNVmy+/hoQYR6WyqNjgxakwZTFjOF0rh07AkZuJIGEJOcSUJaFvGpWbgTM3C74nEf4b/Lo0H/+Cu3S28TrH8D/xaRVYAXuCpUm7VaRJ4F1gB+4Mb+OILg0jf/w4BFd5FvdpIPbLEVsDz7ImKGnUjhpC9RmJ5FYaSDjBIiQlpyEmnJh3/STKWiWYLbQWXqZOIa50PVOhgw+qDLWF1SzppX/syXap9iojSzZcCXcF9wJ4U5h2++nnAQEcYWjWXTilwK1szBPuOGHh9b3tDG82++R8Gaf3CTfIrXEUvTtB+QOOv7fT68d184e1w2L2waz0WuV2HDmzD2wh4dV1LdwiPvLSN91b/5kf1NkuyttI+YjZz2c9yZI/s46vA7cUQmc77YQVvOaGLXvAzH3dSj47bVhBKr5XP4rv1Fxjk3408phJMfwj7uooiOFHkoThyewf8+28am1JkM3/AmlC/v0bDxlU3tPP7pVt5atZO7LhzPlPzUvg/2IDW0+diys4aqkrW07liDVG8koWkTWb5tDKaCSdK22/6NkkSdO5e2+PFsSBqEIyWP2IxBJGUOInnAYGyJWaTZHURXD1OldterBMsY4wUu72bbb4Hf9qb8SHPGJVMTk8/2wm+QP+MCCgcP14RKKXXQnCNPhc//Suuq14g7pecJ1uotO1gz5y+cXPsMY6SRrWnHETv7NxQW9N8vMs6dmMucpTO4eduLULsF0vb/qbqjvo0X33iToese5EZZhN/upnnyjSR96YfERNkgHgfjrLHZ/OqVIhqdGSQte+KACVZJdQv/fmcx2Wsf5jbbuyQ42vAMOwtO/QUxh3Fi3HA7rSgLt8PGe45ZnFv2gNV0dD9fQpRUt/CPuRto/eIlbnS8zGjnVvxJg2HWfTgmfC1qRoo8WLNGDiAlzsmDleP4syMGljy23wSrtLaVf87fxKeLF/MNmcM/bBu46/lf8ODNl+C0R6bWrsXjZ315HeXFK2gvXY6rejUprSUMCpQxTiqxd2nCV+0YSENKAduTj8ORXkDCwGGkDRqBK72AJHciSRF5BUqFjxgTPe0Zp06dahYvXhzpMJRSKqyWbatDHj6F/BQXqbcsPGDTn1Wby1g35y+cXPcs6dLE1tRjyTj7l8QPi45hpXsjEDRccNdzvOD9No7JlyPn/W2f+60vb+SDd19hePG/+ZJtKe22eDxTvknyrO9DfP/o5HwgNz65lGHr/8kttqfh2rdh8Iy99lm2rY45cxcweNOTXGqbS4z48Iw8j5hTboOsMRGIOvz+77U1vPjxChbH34Jt+Jfgkif22ueL0nqeWLAWx5oX+Ib9DYbJdvypw3Cc9CMYdxHY+/8cjr9/Yy0Pf7SFpRPmkLzhBbhx0V5fQKzb2cg/522iZOUCrrW/ydm2hYjNQcDmpMSbzAuTH+O28/t2Xq9A0LC1poWNZRXUbl5KsHwliXVrGOzbxCgpJSbUjcKHg2r3IFqThkHGcBLyxpCWPxbngBFR309SqZ4SkSXGmL2+9dQESyml+pgxhvvu/jnfbb0fc+UcZMhJe+0TDBo+XfYFNfP+wYmNr5EiLZSkzSTz7F8SP/TYCETdd15YUkbDSz/kWsdbcPHjEBpdsc0b4OMv1rDt46c5tvYVRttKabUn4Z/+bZJO/E6/bAq4P1uqW7jgnrd4L+YnpCW4sV3xMmQMo7rZw3vLNlC+6GUm1b/LLPsXBMSOd/SFxJ5ya5/OpxYJ1c0eTvzjB/w04XWuaP0vfOl2mHkLtW1+3lm1nRWfvsvw6vf4iv0jkqUFX+YYnCf9CIpm97umgPtT1eThjL/OZ3R8M4+334QtrRC+/ix19gzeXVPBvEVLSN/xAV9zzKNISgg647FN+wYceyNUbyTw2GzmBcazbtaDfOeUkdYgS73U4vGzbmcTm7eW0FSyFHvFSjKa1jOSEoZIObZQrVSLLZHaxFEEs8aSUDCZtKFTkIyR/bZGUame0gRLKaUi6JXFxUx99XTi4hJIvfF9SLBmuNtRXc+q+S/hXv0sM/0LEYGSjJMZePZtxBceE+Go+0YwaPjhk59w5cbvMclWzOa48VSbJBJayxjFVmxiqEoYSdzMbxE/5WtH9LfdLywp47EXXuJx1+9JoI1SWy7G72OwVGAXQ4t7AI7p1+Kefk3UzWMVTu+uqeDGJz7nb477OMv2KXUkUR1MJEeqiRcPAXESHPllnMfeAIOPPWIHgJi3vpJvPb6EE2Q599vvwYGPrcEsYsVDttQC4M8ownHMN2DcxRCzqzFd4LOHsL/5Y14IHM/7Q27jpjMmUpTTs8Z2/kCQ0ro2NlU0Ul6yBk/pF7hr1pDTXkyRbWvnuQHqXQNpSS3CkTuB1CFTcOVNtKYCOEKviVL7owmWUkpFkDGGvz7yKDeU3krA5mJb7GiC3hYKfZuIFw+NkkjFsIspOPN7ONMLIh1un/MFgjz24Rqcix5gsmcRKbZWPHHZuIbMJHfGV7EPHHPU3LAtLqnltY+XMaH8WQYHt5MU6yS1YDzpE89Gcqf2i5HwwmHNjkb+91kJGaVvM8O/mEyXh5SBBaSNPAEZftpuycSRrLiyiScWbqNxxwZO87zLMFs5GWlppBRORIafYdVg7uu9YQxm3l3w4R/YadL4j/90ilNPIHfoGHLTEkmLc4FYNcX1Tc0Ea7dir9+MvX4LKa1bGSVbGSXbiBcPYE1RUhdXiDdzDPH5k0kqmIQMHA/9uO+jUuGmCZZSSkWY1x/klXfeIX35A+T4yxBnDJ700QyYcj4DJ55xRPQjUUpFWMnH+N/7DY6yTwHwYafCpOIzdhwESZFmEvcYua/dnkhT8kiCWWNJKpxMbN4EyBwVtZN1KxUtNMFSSimllDpa1G6GLQugdjO+hh34fD6M2LDFpeNOysCWmg9pQyFtiFUrdZTUGCsVTt0lWNr7UCmllFLqSJM2xHoAztBDKXV4HB0Nu5VSSimllFLqMNAESymllFJKKaXCRBMspZRSSimllAqTqBrkQkSqgK2RjmMPGUB1pINQh41e76OHXuujh17ro4te76OHXuujSzRe73xjTOaeK6MqwYpGIrJ4X6ODqCOTXu+jh17ro4de66OLXu+jh17ro0t/ut7aRFAppZRSSimlwkQTLKWUUkoppZQKE02wDuyhSAegDiu93kcPvdZHD73WRxe93kcPvdZHl35zvbUPllJKKaWUUkqFidZgKaWUUkoppVSYaIKllFJKKaWUUmGiCdZ+iMiZIrJeRIpF5CeRjkeFj4gMEpEPRGSNiKwWke+H1qeJyLsisjH0MzXSsarwEBG7iCwTkddCy4Ui8lno/f2MiLgiHaMKDxFJEZHnRWSdiKwVkWP1vX1kEpFbQp/hq0TkKRGJ0ff2kUNE/i0ilSKyqsu6fb6XxXJv6LqvEJHJkYtcHaxurvXdoc/xFSLykoikdNn209C1Xi8iZ0Qk6P3QBKsbImIH7gfOAoqAr4lIUWSjUmHkB35ojCkCZgA3hq7vT4D3jTHDgfdDy+rI8H1gbZflPwD3GGOGAXXANyISleoLfwPeMsaMAiZgXXd9bx9hRCQX+B4w1RgzFrADl6Lv7SPJo8CZe6zr7r18FjA89LgeeOAwxajC41H2vtbvAmONMeOBDcBPAUL3a5cCY0LH/CN03x41NMHq3nSg2Biz2RjjBZ4GZkc4JhUmxphyY8zS0PMmrBuwXKxr/Fhot8eA8yMSoAorEckDzgYeDi0LcArwfGgXvdZHCBFJBk4EHgEwxniNMfXoe/tI5QBiRcQBxAHl6Hv7iGGMmQ/U7rG6u/fybOC/xrIQSBGR7MMSqOq1fV1rY8w7xhh/aHEhkBd6Pht42hjjMcZsAYqx7tujhiZY3csFSrssl4XWqSOMiBQAk4DPgCxjTHlo004gK1JxqbD6K3ArEAwtpwP1XT649f195CgEqoD/hJqEPiwi8eh7+4hjjNkO/AnYhpVYNQBL0Pf2ka6797Letx3ZrgXeDD2P+mutCZY6qolIAvACcLMxprHrNmPNYaDzGPRzInIOUGmMWRLpWNRh4QAmAw8YYyYBLezRHFDf20eGUN+b2VhJdQ4Qz95NjNQRTN/LRwcR+TlW144nIx1LT2mC1b3twKAuy3mhdeoIISJOrOTqSWPMi6HVFR1NCkI/KyMVnwqbmcB5IlKC1dT3FKw+OimhZkWg7+8jSRlQZoz5LLT8PFbCpe/tI8+pwBZjTJUxxge8iPV+1/f2ka2797Letx2BRORq4BzgMrNr8t6ov9aaYHXvc2B4aDQiF1ZnujkRjkmFSagPziPAWmPMX7psmgNcFXp+FfDK4Y5NhZcx5qfGmDxjTAHW+3iuMeYy4APgotBueq2PEMaYnUCpiIwMrfoSsAZ9bx+JtgEzRCQu9Jneca31vX1k6+69PAe4MjSa4AygoUtTQtUPiciZWM37zzPGtHbZNAe4VETcIlKINbDJokjE2B3ZlQyqPYnIl7H6btiBfxtjfhvZiFS4iMjxwAJgJbv65fwMqx/Ws8BgYCtwsTFmzw62qp8SkVnAj4wx54jIEKwarTRgGXC5McYTwfBUmIjIRKwBTVzAZuAarC8U9b19hBGRXwOXYDUfWgZ8E6svhr63jwAi8hQwC8gAKoBfAS+zj/dyKMm+D6uZaCtwjTFmcQTCVoegm2v9U8AN1IR2W2iMuSG0/8+x+mX5sbp5vLlnmZGkCZZSSimllFJKhYk2EVRKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKqSghIgUiYkTEEelYjnQicrWIfBTpOKKNiJwgIusjHYdSSvVnmmAppZTq10TkDhHxiUhzl8etkY6rPzLGLDDGjAx3uSJiF5H/E5EdItIkIstEJCXc51FKqWig35IqpVSYiIjDGOOPdBxHqWeMMZdHOoi+cgT83/o1cBxwLLANGAO0RzQipZTqI1qDpZRSvSAiJSJym4isAFpExCEiM0TkExGpF5EvRGRWl/3nicjvRWSRiDSKyCsiktZN2deIyNrQN/6bReRbe2yfLSLLQ+VsEpEzQ+uTReQRESkXke2hmgP7AV7HUBGZKyI1IlItIk921DCEttWKyOTQco6IVHW8LhE5T0RWh17vPBEZvcfv50ciskJEGkTkGRGJOfjf9METkZ+Efi9NIrJGRC7oZj8RkXtEpDL0u1wpImND29wi8icR2SYiFSLyoIjE9vD8j4b2fzcUw4cikt9l+99EpDR0ziUickKXbXeIyPMi8oSINAJXi8h0Efk09HsuF5H7RMTV5RgjIt8RkY2h8/0mdO0+CZ3j2a77dxPzLBEp68nr6ykRSQVuBq4zxmw1llXGGE2wlFJHJE2wlFKq974GnA2kAFnA68D/AWnAj4AXRCSzy/5XAtcC2YAfuLebciuBc4Ak4Brgni5JznTgv8CPQ+c9ESgJHfdoqNxhwCTgdOCbB3gNAvweyAFGA4OAOwCMMZuA24AnRCQO+A/wmDFmnoiMAJ7CuoHOBN4AXt3jRv5i4EygEBgPXL3PAESODyUP3T2OP8Br2NMm4AQgGasG5QkRyd7Hfqdj/f5GhPa9GKgJbbsrtH4i1u8zF7j9IGK4DPgNkAEsB57ssu3zULlpwP+A5/ZIPmcDz2Nd3yeBAHBLqKxjgS8B39njfGcAU4AZwK3AQ8DlWNdzLNb/1UMWSpS7uz7/6OawcVj/Hy8SkZ0iskFEbuxNHEopFdWMMfrQhz70oY9DfGAlNdd2Wb4NeHyPfd4Grgo9nwfc1WVbEeAF7EABYABHN+d6Gfh+6Pk/gXv2sU8W4AFiu6z7GvDBQb6u84Fle6ybA6wEVgDu0LpfAs922ccGbAdmdfn9XN5l+x+BB8N8De4I/Q7ruzxy9rHfcmB26PnVwEeh56cAG7CSEluX/QVoAYZ2WXcssKWHcT0KPN1lOQErSRrUzf51wIQur2n+Acq/GXipy7IBZnZZXgLc1mX5z8BfD1DmLKAszNfn66HYHgFisZLsKuC0cJ5HH/rQhz6i5aE1WEop1XulXZ7nA1/t+s0+cDxWbdW+9t8KOLFqJXYjImeJyMJQ87x64Mtd9huEVUOzp/xQeeVdzv9PYMD+XoCIZInI06EmhY3AE/uI6V9YtSB/N8Z4QutyQq8BAGNMMPT6crsct7PL81asRCPcnjXGpHR57BCRK8VqQtnxexjLPn7Pxpi5wH3A/UCliDwkIklYNXJxwJIuZbwVWt9TndfaGNMM1GL9zgg1nVwbajpZj1V7lrGvY0P7jxCR10K1QI3A7/bxeiq6PG/bx3Jf/O4PpC30805jTJsxZgXwNNb/Z6WUOuJogqWUUr1nujwvxarB6nqzH2+MuavLPoO6PB8M+IDqrgWKiBt4AfgTkGWMScFqfiddzjN0H7GUYtVgZXQ5f5IxZswBXsPvQq9jnDEmCatZWce5EJEE4K9YtRB3yK5+YzuwkrqO/ST0+rYf4Hx7EWuI8Ob9PE44cCmdZeVjJYQ3Aemh39+qrq+pK2PMvcaYKVg1iiOwml5WYyUHY7r8LpONMQeTpHRe69DvMA3YEXott2I1R0wNxdewR3xd/18BPACsA4aHrtHPuns9fUWsvnbdXZ8HuzlsRehn19ez52tTSqkjhiZYSikVXk8A54rIGWINTR0TGjggr8s+l4tIUag/053A88aYwB7luAA3VlMqv4ichdVXqMMjwDUi8iURsYlIroiMMsaUA+8AfxaRpNC2oSJy0gHiTgSagQYRycVKMLr6G7DYGPNNrD5mHTfTzwJnh+JwAj/ESvA+OdAvak/GGiI8YT+PBQdRXDzWTXwVWAOGYNVg7UVEponIMaH4W7BGtwuGauP+hdX3bUBo31wROaPLsUa6DGKyD18O9S1zYfXFWmiMKcX6fftD8TlE5Hasvnb7kwg0As0iMgr49gH2DztjzJj9XJ8bujlmE7AA+LlYg4aMBi4FXjucsSul1OGiCZZSSoVR6OZ5NlbtQhVWjdKP2f3z9nGs/jk7gRjge/sopym0/lmsvjlfx+oD1bF9EaGBL7BqPj5kV03SlVgJ2prQsc+zexPFffk1MDlU1uvAix0bRGQ21iAVHTf0PwAmi8hlxpj1WLVdf8eq8TkXONcY4z3A+fqUMWYNVp+jT7GayY0DPu5m9ySsRKoOq7ljDXB3aNttQDGwMNQs7z1gJICIDAKasPqlded/wK+wmgZOwfpdgdUv7y2svl9bsZK60n0V0MWPsP4fNIXifeYA+0eTr2H9/6zB+v/1S2PM+5ENSSml+oYYo7X0Sil1uIjIPOAJY8zDkY5F9Y6IXI7VfPCn3Wx/FGvAiF8c1sCUUkpFlE40rJRSSh0CY8wTkY5BKaVU9NEmgkopdZQQa9LbgxmcQB2BRORn3fw/eDPSsSml1JFAmwgqpZRSSimlVJiErQYrNFrWMhF5LbRcKCKfiUixiDwTGkFJKaWUUkoppY5YYavBEpEfAFOBJGPMOSLyLPCiMebpUPOTL4wxD+yvjIyMDFNQUBCWeJRSSimllFKqryxZsqTaGLPX5PNhGeQiNL/L2cBvgR+EJpo8BWs4WYDHgDuwJknsVkFBAYsXLw5HSEoppZRSSinVZ0Rk677Wh6uJ4F+xZqQPhpbTgXpjjD+0XAbkhulcSimllFJKKRWVep1gicg5QKUxZskhHn+9iCwWkcVVVVW9DUcppZRSSimlIiYcNVgzgfNEpAR4Gqtp4N+AFBHpaIKYB2zf18HGmIeMMVONMVMzM/dqwqiUUhERCBp0lFWllFJKHaxe98EKzWD/UwARmQX8yBhzmYg8B1yElXRdBbxyKOX7fD7Kyspob2/vbajqKBMTE0NeXh5OpzPSoah+xhjDNf94k+MDi7n+e78EkUiHpJRSSql+IiyDXHTjNuBpEfk/YBnwyKEUUlZWRmJiIgUFBYje5KgeMsZQU1NDWVkZhYWFkQ5H9TNldW1cXPFXzrF/xvblx5A76YxIh6SUUkqpfiJs82ABGGPmGWPOCT3fbIyZbowZZoz5qjHGcyhltre3k56ersmVOigiQnp6utZ8qkOyoaKJSbZiANo/fyLC0SillFKqPwlrgtVXNLlSh0L/36hDVVldTa7UAJBcvTTC0SillFKqP+kXCZZSSh1OnkYrudppG0iadzt4miIckVJKKaX6C02wekBE+OEPf9i5/Kc//Yk77rgjcgF1sXDhQo455hgmTpzI6NGjO+OaN28en3zyySGXu3XrViZPnszEiRMZM2YMDz74YJgiVir6+ZutBGtH6jRsGILlqyIckVJKKaX6C02wesDtdvPiiy9SXV0d1nKNMQSDwQPvuB9XXXUVDz30EMuXL2fVqlVcfPHFQO8TrOzsbD799FOWL1/OZ599xl133cWOHTt6FatS/UWgtRaAtpwZADSWrY5kOEoppZTqRzTB6gGHw8H111/PPffcs9e2qqoqLrzwQqZNm8a0adP4+OOPAbjjjjv405/+1Lnf2LFjKSkpoaSkhJEjR3LllVcyduxYSktL+fGPf8zYsWMZN24czzzzDGAlSLNmzeKiiy5i1KhRXHbZZfuck6eyspLs7GwA7HY7RUVFlJSU8OCDD3LPPfcwceJEFixYsN84r7jiCo499liGDx/Ov/71LwBcLhdutxsAj8fTbSJ47733UlRUxPjx47n00ksBqK2t5fzzz2f8+PHMmDGDFStWdJ7rqquu4oQTTiA/P58XX3yRW2+9lXHjxnHmmWfi8/kAuPPOO5k2bRpjx47l+uuv3+t1B4NBCgoKqK+v71w3fPhwKioq9ncZleq5tjoAYgdNwmvstJRviHBASimllOov+nKY9rD79aurWbOjMaxlFuUk8atzxxxwvxtvvJHx48dz66237rb++9//PrfccgvHH38827Zt44wzzmDt2rX7LWvjxo089thjzJgxgxdeeIHly5fzxRdfUF1dzbRp0zjxxBMBWLZsGatXryYnJ4eZM2fy8ccfc/zxx+9W1i233MLIkSOZNWsWZ555JldddRUFBQXccMMNJCQk8KMf/QiAr3/9693GuWLFChYuXEhLSwuTJk3i7LPPJicnh9LSUs4++2yKi4u5++67ycnJ2eu13HXXXWzZsgW3292Z8PzqV79i0qRJvPzyy8ydO5crr7yS5cuXA7Bp0yY++OAD1qxZw7HHHssLL7zAH//4Ry644AJef/11zj//fG666SZuv/12AK644gpee+01zj333M5z2mw2Zs+ezUsvvcQ111zDZ599Rn5+PllZWQe8jkr1hK3dSrAG5uRSagbgrNkc4YiUUkop1V9oDVYPJSUlceWVV3Lvvffutv69997jpptuYuLEiZx33nk0NjbS3Ny837Ly8/OZMcNqevTRRx/xta99DbvdTlZWFieddBKff/45ANOnTycvLw+bzcbEiRMpKSnZq6zbb7+dxYsXc/rpp/O///2PM888c5/n3F+cs2fPJjY2loyMDE4++WQWLVoEwKBBg1ixYgXFxcU89thj+6whGj9+PJdddhlPPPEEDoej8zVdccUVAJxyyinU1NTQ2GglxmeddRZOp5Nx48YRCAQ64x03blzn6/vggw845phjGDduHHPnzmX16r2bZ11yySWdtX1PP/00l1xyyX5/50odDKenHoCsrGy2MRB3Y0lE41FKKaVU/9GvarB6UtPUl26++WYmT57MNddc07kuGAyycOFCYmJidtvX4XDs1qyu63xM8fHxPTpfRxM9sJr/+f3+fe43dOhQvv3tb3PdddeRmZlJTU3NXvt0FyfsPZz5nss5OTmMHTuWBQsWcNFFF+227fXXX2f+/Pm8+uqr/Pa3v2XlypU9ek02mw2n09l5LpvNht/vp729ne985zssXryYQYMGcccdd+xzLqtjjz2W4uJiqqqqePnll/nFL36x3/MqdTBiAo2022KJcbqpdeeR3PYuGAM69L9SSimlDkBrsA5CWloaF198MY888kjnutNPP52///3vncsdTeEKCgpYutSaP2fp0qVs2bJln2WecMIJPPPMMwQCAaqqqpg/fz7Tp0/vcUyvv/56Zx+ljRs3YrfbSUlJITExkaamXUNLdxcnwCuvvEJ7ezs1NTXMmzePadOmUVZWRltbGwB1dXV89NFHjBw5crdzB4NBSktLOfnkk/nDH/5AQ0MDzc3NnHDCCTz55JOA1ZcsIyODpKSkHr2ejmQqIyOD5uZmnn/++X3uJyJccMEF/OAHP2D06NGkp6f3qHyleiI+0ES7PRGA9sR8Ykw7tFRFOCqllFJK9QeaYB2kH/7wh7uNJnjvvfeyePFixo8fT1FRUedw5hdeeCG1tbWMGTOG++67jxEjRuyzvAsuuIDx48czYcIETjnlFP74xz8ycODAHsfz+OOPM3LkSCZOnMgVV1zBk08+id1u59xzz+Wll17qHOSiuzjBauZ38sknM2PGDH75y1+Sk5PD2rVrOeaYY5gwYQInnXQSP/rRjxg3bhwA3/zmN1m8eDGBQIDLL7+ccePGMWnSJL73ve+RkpLCHXfcwZIlSxg/fjw/+clPeOyxx3r8elJSUrjuuusYO3YsZ5xxBtOmTevc9uCDD+4W9yWXXMITTzyhzQNV2MWYVrz2UE1z2hAATM2mCEaklFJKqf5C9jUyXaRMnTrVLF68eLd1a9euZfTo0RGK6Mh3xx137DYYxpFG//+oQzHv9lmMTGwj+8ef8dJ787ngo3NpOONeko+9KtKhKaWUUipKiMgSY8zUPddrDZZSSnURDBpcxkPQbvVXTM0dit/YaClfH+HIlFJKKdUf9HqQCxEZBPwXyAIM8JAx5m8ikgY8AxQAJcDFxpi63p5Phdcdd9wR6RCUiireQJAY8RK0W/0G89KT2WHSkdqSyAamlFJKqX4hHDVYfuCHxpgiYAZwo4gUAT8B3jfGDAfeDy0rpVRUa/cFiMGHcVg1WHmpsZSZTOwNpRGOTCmllFL9Qa8TLGNMuTFmaeh5E7AWyAVmAx2jGzwGnN/bcymlVF9r9wVx4+1MsGKcdqqdA0loK4twZEoppZTqD8LaB0tECoBJwGdAljGmPLRpJ1YTwn0dc72ILBaRxVVVOgyyUiqy2n0BYsQLjl1zxrXE5pHkrwVfWwQjU0oppVR/ELYES0QSgBeAm40xjV23GWuown0OV2iMecgYM9UYMzUzMzNc4Sil1CHx+IPE4AVnbOe6QPJg60m9NhNUSiml1P6FJcESESdWcvWkMebF0OoKEckObc8GKsNxrkh5+eWXERHWrVvX7T4lJSWMHTs2bOdcv349s2bNYuLEiYwePZrrr78esCYJfuONNw653Pb2dqZPn86ECRMYM2YMv/rVr8IVslL9ntUHy4s4d9VgOdILAPDVbI5QVEoppZTqL3qdYImIAI8Aa40xf+myaQ7QMWnMVcArvT1XJD311FMcf/zxPPXUU/vc7vf7e32OQCCw2/L3vvc9brnlFpYvX87atWv57ne/C/Q+wXK73cydO5cvvviC5cuX89Zbb7Fw4cJexa7UkaLd6w8lWLtqsBIGDgWgoVwnG1ZKKaXU/oWjBmsmcAVwiogsDz2+DNwFnCYiG4FTQ8v9UnNzMx999BGPPPIITz/9dOf6efPmccIJJ3DeeedRVFQEWInWZZddxujRo7noootobW0F4P3332fSpEmMGzeOa6+9Fo/HA0BBQQG33XYbkydP5rnnntvtvOXl5eTl5XUujxs3Dq/Xy+23384zzzzDxIkTeeaZZ2hpaeHaa69l+vTpTJo0iVdesXLZRx99lNmzZzNr1iyGDx/Or3/9awBEhISEBAB8Ph8+nw8rT97dc889x9ixY5kwYQInnngiYNV+XXPNNYwbN45JkybxwQcfdJ7r/PPP57TTTqOgoID77ruPv/zlL0yaNIkZM2ZQW1sLwL/+9S+mTZvGhAkTuPDCCzt/P13NmDGD1atXdy7PmjWLPSegVqqveLwe7GKwuXYlWJkDB+ExTtoqt0QwMqWUUkr1B72eB8sY8xGw99255Uu9LX83b/4Edq4Ma5EMHAdn7T/3e+WVVzjzzDMZMWIE6enpLFmyhClTpgCwdOlSVq1aRWFhISUlJaxfv55HHnmEmTNncu211/KPf/yDm266iauvvpr333+fESNGcOWVV/LAAw9w8803A5Cens7SpUv3Ou8tt9zCKaecwnHHHcfpp5/ONddcQ0pKCnfeeSeLFy/mvvvuA+BnP/sZp5xyCv/+97+pr69n+vTpnHrqqQAsWrSIVatWERcXx7Rp0zj77LOZOnUqgUCAKVOmUFxczI033sgxxxyz1/nvvPNO3n77bXJzc6mvrwfg/vvvR0RYuXIl69at4/TTT2fDhg0ArFq1imXLltHe3s6wYcP4wx/+wLJly7jlllv473//y80338xXvvIVrrvuOgB+8Ytf8Mgjj3TWzHW45JJLePbZZ/n1r39NeXk55eXlTJ261yTZSvUJv8dK+m3OuM51gzMSKDMZOHQuLKWUUkodQFhHETxSPfXUU1x66aUAXHrppbs1E5w+fTqFhYWdy4MGDWLmzJkAXH755Xz00UesX7+ewsJCRowYAcBVV13F/PnzO4+55JJL9nnea665hrVr1/LVr36VefPmMWPGjM6ar67eeecd7rrrLiZOnMisWbNob29n27ZtAJx22mmkp6cTGxvLV77yFT766CMA7HY7y5cvp6ysrDMJ29PMmTO5+uqr+de//tXZfPGjjz7i8ssvB2DUqFHk5+d3Jlgnn3wyiYmJZGZmkpyczLnnngtYNW8lJSWAlYSdcMIJjBs3jieffHK3mqoOF198Mc8//zwAzz77LBdddNE+fz9K9QVfKMGyu3clWFmJMWxnAK5mHeRCKaWUUvvX6xqsw+oANU19oba2lrlz57Jy5UpEhEAggIhw9913AxAfH7/b/ns2tdtX07s97VlGVzk5OVx77bVce+21jB07dp+JkDGGF154gZEjR+62/rPPPjtgPCkpKZx88sm89dZbew3Q8eCDD/LZZ5/x+uuvM2XKFJYsWbLf1+F2uzuf22y2zmWbzdbZR+3qq6/m5ZdfZsKECTz66KPMmzdvr3Jyc3NJT09nxYoVPPPMMzz44IP7Pa9S4dRRg+XokmDZbEK9K5vEtk8iFZZSSiml+gmtwTqA559/niuuuIKtW7dSUlJCaWkphYWFLFiwYJ/7b9u2jU8//RSA//3vfxx//PGMHDmSkpISiouLAXj88cc56aSTDnjut956C5/PB8DOnTupqakhNzeXxMREmpqaOvc744wz+Pvf/441Gj4sW7asc9u7775LbW0tbW1tvPzyy8ycOZOqqqrOJn9tbW28++67jBo1aq/zb9q0iWOOOYY777yTzMxMSktLOeGEE3jyyScB2LBhA9u2bdsrsdufpqYmsrOz8fl8neXsyyWXXMIf//hHGhoaGD9+fI/LV6q3AvtIsABaE/JICDaCp2lfhymllFJKAZpgHdBTTz3FBRdcsNu6Cy+8sNvRBEeOHMn999/P6NGjqaur49vf/jYxMTH85z//4atf/Srjxo3DZrNxww03HPDc77zzTucgE2eccQZ33303AwcO5OSTT2bNmjWdg1z88pe/xOfzMX78eMaMGcMvf/nLzjKmT5/OhRdeyPjx47nwwguZOnUq5eXlnHzyyYwfP55p06Zx2mmncc455wBw++23M2fOHAB+/OMfM27cOMaOHctxxx3HhAkT+M53vkMwGGTcuHFccsklPProo7vVXB3Ib37zG4455hhmzpy5W1I3Z84cbr/99s7liy66iKeffpqLL764x2UrFQ4BrzWZsMMdu9t6kzzIelK39XCHpJRSSql+RDpqPaLB1KlTzZ6jxa1du5bRo0dHKKL+7dFHH91tMIyjkf7/UQfrhZee48Ivvon/spdwDD+lc/2Lr87hK0uuoOUr/yV+/OwIRqiUUkqpaCAiS4wxe43EpjVYSinVRbCzBmv3JoKJ2cMAaNS5sJRSSim1H/1rkAt1UK6++mquvvrqSIehVL8S9FkJFo6Y3dZnD8yhxbjxVOlcWEoppZTqXr+owYqmZoyq/9D/N+qQdCRYzt37YA1Ki6fUDIB67YOllFJKqe5FfYIVExNDTU2N3iyrg2KMoaamhpiYmAPvrFRX3dRgJcc52WkbQExzWQSCUkoppVR/EfVNBPPy8igrK6OqqirSoah+JiYmhry8vEiHofoZ8bdbT/aowQJodOeQ7FkLxkAP5rhTSiml1NEn6hMsp9NJYWFhpMNQSh0t/PuuwQLwJOYRW90KbXUQl3aYA1NKKaVUfxD1TQSVUupwsgU81pN91GBJagEAwdqSwxeQUkoppfqVPk+wRORMEVkvIsUi8pO+Pp9SSvWGzd9OABvYnXtti8kcAkBDefHhDksppZRS/USfJlgiYgfuB84CioCviUhRX55TKaV6wx5oxyvufW5Lzh4KQHOFzoWllFJKqX3r6xqs6UCxMWazMcYLPA3M7uNzKqXUIbMHPfi6SbByB2ZRb+Lx6lxYSimllOpGXydYuUBpl+Wy0LpOInK9iCwWkcU6UqBSKtIcwXb8tm4SrNRYSk0m9sZthzkqpZRSSvUXER/kwhjzkDFmqjFmamZmZqTDUUod5RxBT7cJltthp9o+kLiW7Yc5qvCrbGznmw+8xcvP/ge8rZEORymllDpi9PUw7duBQV2W80LrlFIqKjmCHgL2fSdYAM2xuaS0Lu33c2E9/NEWrtjxW06qWEG9czUpF/wp0iEppZRSR4S+rsH6HBguIoUi4gIuBeb08TmVUuqQOYNeAva958Dq4E0ahAsvNFccxqjCb+Wa1ZxgXwlA3KonwdMc4YiUUkqpI0OfJljGGD9wE/A2sBZ41hizui/PqZRShyoYNLjwENxPgmVPKwDAW735MEUVfm3eADl1n2PD8GDMN3EFWmHbwkiHpZRSSh0R+rwPljHmDWPMCGPMUGPMb/v6fEopdag8/iAxeAk6uk+w4gYUAlC/vf/OhbWhookxUkLAHkPtyEvwGjuBzfMiHVavBYMm0iEopZRSkR/kQimlokW7L0AMPsx+Eqz0vOEANFf23xqsteWNFNm24s8oYvzQPFaYobRv/jTSYfXKxoomZv7fGzz7l5sJbHg30uEopZQ6immCpZRSIW2+ADF4wRHb7T65melUmWQCtSWHL7Aw21DRzEgpw5U7jqLsJFYFC3DVrIVgMNKhHbL7PyjmHM9rXNz4H+z/uwhq+vdk0C8v284pd89l+WsPwhFQu/jAvE38/s21+Hes7Pf9/Soa27nz1TUsLqmFxnLweyMdklIqymiCpZRSIe2+ALHiAWf3CdaARDfbycTZWNrtPtGuqqaaVGlCUgvIT4+n2FaI098C9SWRDu2QBIOGeRuquCHuAzbLIHzihEX/inRYh6zdF+CXr6ziuPo5TFx8G/x3NlSui3RYh+zTTTX84a11rF/wAo6Hjoe/TwFPU6TDOmR3vrqGf3+8hacf+zv8ZRQ8choE/JEOSykVRTTBUkqpkHZfkDg84Izvdh+bTah1ZpPQWnYYIwuvQO1W60nKYOw2oTWtyFreuTJyQfXC5upmEtp2kO4rZ9XAr/CpGYvZ8KY1lH4/9HFxNU3tPr6XNJ8dJo2gzQmL/x3psA7ZU4u2kRbv4mexL1krmnfCkkcjGtOhqm3x8vbqnUzITeJbgWesleXLYcUzEY1LKRVdNMFSSqmQNq+POPEg7rj97tcUP5hUfyX4PYcpsvCyN4WSw9QCAOLzxuDHhilfEbmgeuHzkjqOkbUAxI6YxTu+iUhdCdT2z35yq3c0kks1A9o28Zg5l9WJM2H1i/2yCacxhkVbajmrQBgRKOaPvkvwZE2GVS9EOrRDsnBzDf6g4bcnJzLctp0n079rvY9WvxTp0JRSUUQTLKWUCvG1twBgc3VfgwXgSx6KnSDUlRyGqMKrxeMn1VtuLaQMBmB4bibFwVw8ZV9EMLJDt668kfHOUowjllHjp/N5cKS1YfuSyAZ2iDZUNHFaklXL6M2bwatt46GlCirXRDiyg1da28bOxnbOirOaOM4LTmBDyvGwYxk09b+55D4vqSXGaWN0q/V/65maYZiR51j95LwtkQ1OKRU1NMFSSqkQb5vV+d7m3n+C5RhgjSTYsqP/9YvZUd9GnlQTsLkhPhOAUQOTWGPyYWf/rMHaXN3CGFcFkjGMvLR4mhOH4pEYKFsc6dAOycaKZk5wbwJXAoNHTeO1xmHWhi3zIxvYIVi6rQ6AIlOMccZTETOEub6x1satH0cwskOzvLSe8Xkp2Hcspd2Vzor2DLalTIWgD7YvjXR4SqkooQmWUkqF+EM1WI6YhP3ul5Bj1ZA0be9/CVZZfRt5UoU3MQ9EABiRlcD64CBi2iqgrS7CER68zVUtFLAdMkYgIowblM5aGdova7B8gSCbq5sZzjbIGsPEggx2kEFbXA6ULYp0eAdtY2UTdpuQUr8ayR7PlMJM5uxMBUdMv7s+xhiKK5oZNTARqtYiWaMBYUGbNTdef7w+Sqm+oQmWUkqF+D1WgmV37z/BGpg1kCqThK9yw+EIK6y211kJlqQO7lyXEueiIiZ0k9jPRqtr9wWoaWgg3bcTMkYAUJSTxCJvAWbnin43hPbWmhZ8AUOWpwQyRzI6OwmHTdgaM8pqVtfPFFc2U5AWg61iFWRPYFpBGptqffgGjOt3NYwVjR6aPH6GZ8ZD1Xrc2WPISnKzpBJIHw6ln0c6RKVUlNAESymlQgLtVhNBZ8z+mwgOTo9ji8nGXtf/5lraEarBcqUX7rY+mBkaSbBydQSiOnQlNS0UsBPBQIbVdHN0dhLLgsOQgBcq+tfIiBsqmkmjEbe3DjJHEeO0W6/HX2D1+WutjXSIB2VTVQvTU1vA1woDihiTmwRAReJYa/S9gC+yAR6EjZXW0PJF8U3gbYYBoxiXm8zK7Q2QN82qweqnI1cqpcJLEyyllAoJhmqwnHH7r8FKinFSbs8lsWXr4QgrrKprakiTZmxdarAAMnKG0GRiMRVrIxTZodlS1cJQ2WEtdKnBWhEcYq3rZ/1iNlQ0Mdy23VrItJqijstL5v3GXGtd+fLIBHYIfIEgJdUtTImrtFZkjmRMdjIAa+wjwN8OFasiGOHB2VhhfQEzTEKjcGaOYmxuMpuqmvFkT4HWmn47cqVSKrx6lWCJyN0isk5EVojISyKS0mXbT0WkWETWi8gZvY5UKaX6WEeC5Y7df4IF0JxQQKK/Ftob+jqssPJ1mQOrqxEDE1lvBuHZ0X9ueMEa4GKo7MAgkDYUgJzkGJpiBtJqT+x3c3ttrGhmWkK1tZBhJVhjc5JZ1D7IWtePmglurWnFHzSMsO9KgJPjnOSlxrKgrcBa14+aCW6sbCY1zklSU7G1InMUY3OSMQY2ukZZ6/pZQq+U6hu9rcF6FxhrjBkPbAB+CiAiRcClwBjgTOAfImLv5bmUUqpPBTzWN9SOA/TBAiDdupk3Nf2rmaC9odR6kpK/2/rhWYlsCOZhq17Xr5o5ba5qYYx7J5IyCFzW/GUiQlFOMsW2wn6XYG2oaGJizE5wJUByHgBjcpJoJIGW+Px+lWAVV1rvp1z/NmvEyrg0wHo9H1XGQlw6lPefqQGKK5sYPiARqVoHCVkQl8a4PKtG7vPmAWB3wc7+83qUUn2nVwmWMeYdY4w/tLgQyAs9nw08bYzxGGO2AMXA9N6cSyml+logVIPVcaO+P3HZ/W8kQV8gSEJbqPnZnjVYWQmsN4Nweeuhuf/MT7S5upmRtvLO2p4Oo7OTWOIZhKlcAwF/N0dHF68/yJbqFobJdqs/WWiUx5EDE7HbhG0xw2FH/7mB31RlJVgpLVt2uz5jcpLZUtOKP2t8v0mwjDFsqGhmWFYCVK6FTKvGKisphowEN6t2tkHWmH7zepRSfSucfbCuBd4MPc8FSrtsKwut24uIXC8ii0VkcVVVVRjDUUqpg2O8rdYT5/4HuQDIGDyaoBEayvpPn6WdDe3kShX+LnNgdUiMcVITF+q31I8mtC2paiInUNbZ/6pDUXYSX/jzEX871GyMUHQHp6SmBX/QkOXZ2nkDDxDjtDN8QAKrAvnQsK3fDKW/qbKZ7CQ39poNkLnr+ozJsQa6qEoYZSUrfk+kQuyx6mYvDW0+hmVYIwh2vT5jcpJYvaMBsidA+Yp+VQOslOobB0ywROQ9EVm1j8fsLvv8HPADTx5sAMaYh4wxU40xUzMzMw98gFJK9RVvz2uwhmans91kEOhHQ7Vv75gDK2HXHFi7GRAaSbCifyRYtS1e4tp24jKezhEEO4zODk2eDNZNbz+woaKJRFqJba/oHOCiw5icZD5szLYW+kmzx+KqZqZk+Kx+invUYAGsk0Jrgt7K6P+SoqM2bkxCI/haYMDuCVZxZTO+AeOhvR7qt0UoSqVUtDhggmWMOdUYM3Yfj1cARORq4BzgMmM6v7bZDgzqUkxeaJ1SSkUt8bcQwGZNgnoA2ckxlEgu7ob+0wertLaVwVIJqfn73J6TO4gqk0ywn9RgbaluZqht9xEEOwzPSmCr5OIXF+zsLwlW864RBDP2TLCS+LS1YyTB6H89xhg2VTYzNT7UMqVLDVZWkpv0eBeftYVuE/pBs7qO/mRDOxrnZI7u3DYmJxl/0LDNHUry+8HrUUr1rd6OIngmcCtwnjGmtcumOcClIuIWkUJgOKBTnCuloprb10SrLWHftTt7EBGq4wpJb98KwcBhiK73ttW0MFgqcQ8Yts/twwcksD6Yh3dH/5gLa9M+hmjv4HbYKRyQTKmzoN8kWBsrmjgmMTSC4B41WGNzk6khGU/sgH7xenY2ttPiDVDkCF2fLgmJNQhJEguqE8Cd3C8Skk1VzcS57KS3hIZh73J9ikJNHpe2Z4PY+8XrUUr1rd72wboPSATeFZHlIvIggDFmNfAssAZ4C7jRGNM/7kCUUkctt7+JdnsPRhAMaU8Zgct4rQlg+4Gayh0kShv20AiIexqRlcgGMwhHzXoIBg9zdAdvS3ULw23lmJgUiM/Ya/voUD+s/tIvxhpBsALsbkgt2G3b6OxEAMpjhveLJoIdNT6DA1shJhkSB+62vSgniY2VLQQHjusXCUlxZTNDMxOQ6vWdIwh2yE+LI8HtYGWFx+qb1Q9ej1Kqb/V2FMFhxphBxpiJoccNXbb91hgz1Bgz0hjz5v7KUUqpaBAbaMbrSOzx/o6BVp+l9n4yd1SgY0j5tCH73D48NJKgI9AG9dE/ifLmqmaKXDuRjBH7rHUcnZ3IYk+e1S+moezwB3gQPP4AJTWtu0YQtO0+s0lijJPCjHjWmAJrkAVfW2QC7aGOBCutZbNVe7XH9SnKTsIbCFKXNMqabDjKR3rcXNXC0Mz43UYQ7GCzCaOzE1m9ozE00MXyfpHQK6X6TjhHEVRKqX4t1jTjdSb1eP+U/HEA1JdEf5MtAFdDifWkmwQrzuWgPiFUu9UPBh7YWNFMIdv3GuCiw+jsJNYEQ/3NorxZ3ZbqFgJBw0Dv1r2aB3Yoykni49ZcMIGoH+lxY2UzyTEOnLXrdxsQokPHQBebHMPA3w7V0TtYTIvHz/b6NoZlxlnJ7YDRe+0zJieZteWNBAeOh5YqaNoZgUiVUtFCEyyllMKagyjJtBBw9TzBKszJosxk4NsZ3Te7AE3tPjJ82wli22sOrK4cWaGbx8ro7ofV7gvQVLOD5EDdrtEP9zA6O4m1ZjAGifpmdRsqmonBQ1zr9r0GuOgwJieJ+U2hkQSjfKCL9TubmD4ggLTV7VXjA1CYEU+M08ZiT+j/YhQ3q9tSbY0uOi6uLjSC4N7/34qyk2j1BiiPC127KE/olVJ9SxMspZTC+pY6SVoIuHueYOWnx7HR5OGui95v3ztsq20lXypoj8sBh6vb/QbnDKTMZBCM8qHaN1e1MFJCw2EPHLvPfTIS3CQmJlPpGhT1CcmGnU0U2csQzD5rSADG5iRTagbgdyZE9Q28MYb1O5s4LqljBMG9Eyy7TRg1MIn5tcngiI3q17OhogmAEWaLtSJ7/F77dAx08YVvECBRnTAqpfqeJlhKKQXUt/lIohWJSenxMU67jcqYQlJbt0Z9H5JtNa0USAXBPQZP2NOIrATWBQfhK4/uGqyNlU2M6kiwssZ1u59Vi1UQ9TVYq3Y0cHJSaMS9nIn73MeaoFeoih8R1a+nrK6NZo+fcc7Q6+kmYRyTk8TqnS2YKB/oYtX2RmKcNrJa1oPNsc8arBFZiTjtwoqqAKQPjerXo5Tqe5pgKaUUUNfYSKx4ccSnHNRx3tQROPFB3Za+CSxMtlQ3ky8VuLoZor1Dx0iCzrpN4PcepugO3oaKJsbYtmESsyE+vdv9Rmcn8Xl7LjRsg9bawxhhzxljWFnWwHT3NohNg+RB+9wvPcFNdnIM66UQKlZH7fQA63ZaNT6F3g3WiHsJWfvcrygniaZ2P81pY6waxigduXLV9gaKspOwVay0auMc7r32cTlsDB+QyJryjoEuNMFS6mimCZZSSgGNdTUAuBPSDrDn7ty5VvO0tigfSXB72VZSpRlX1t7NtboampnARpOHzfihNnonUV5X3sR4ZymSte/mgR1GZyeyIhAa6KIiOq9ReUM7NS1ehgU2WTfn+5mHbUxOEp+15YGvFWqKD2OUPbe2vBERSK1fCblTun09RdlWs7oS5zDwNkXllxTBoGH1jgbG5iZbSeDAvZsHdijKSWLNjgbMwAnQUAotNYcxUqVUNNEESymlgLb6CgBiUwYc1HEZBVbztNot0duHBMBfHkouDpCQxDjtNCWFJu2N0pHqjDGs3FZFvinrtv9Vh6KuIwlGaT+sFWUNuPCR2rKp2+aBHcbkJDOvMboHulheWs/4DMFWsxFyJne736iBSdgElvs7rs/ywxPgQSipaaHFG2BquhdaKvfZ/6rDmJwkqpu91KeEmkTu1FospY5WmmAppRTgbbCGVY5Pzz2o40YMymJrcMCuBCYKtXkDJDeutxayxhxw/7icUfixQZQOdFFS00pm22Ycxg8Du+9/BdZodc2OVBqdGVE7kMKq7Q0U2UuxBX2QPXG/+47JSWJjMIegzRWVN/DGGL4oreestNAw5bndJ1ixLjtDMhP4qCEd7K6obFa3cnsDABNtodrc/VyfjqHnVwaiO6FXSvU9TbCUUgoINlo1WO7k7IM6Ljcllo1SQHxd9M4btb6iiSIpoT02C+IO3ARyZF4mm4PZ+HZE5w3ikq11zLCFft+Dj93vvg67jaKcJDbahkTtwBArtjdwelJowI79JCQAY3OT8eOgLmFoVL6e0to2alq8HOMKNffLmbTf/Yuyk1hR3mYNhBGFCdaybfXEOG3k1i8GR8x+r8/obGuS8hU1oakQovD1KKUOD02wlFIKsLVYCRYJB9dEUESoSRhBmqcMvC19EFnvrdnRyETZRDBnSo/2H5OTxEpTiNmxvG8DO0RLt9VxvHMdJm0IJOUccP/xucl83p6LqVoPvrbDEGHP+QNBlm2tY5ZjNaQW7neOMoDs5BhS45xssg+FHcvBmMMTaA99VFwNwMi2pdZoewdI6MfnJVPe0E5bxlgrIYmy17Nwcw1T89OwlyyAwTP2OcBFh8QYJwXpcazeoQNdKHW00wRLKaUAZ3s1HtzgTjzoY32ZRdgwmChtUrd5awkFtgpiC4/p0f5jcpJZGRyCq60SGsv7OLqDt6ykhmm29UjB8T3af3xeCst9+YgJQGV01TR+UVZPm6ed4W3LYcisA+4vIozNTeYzbwG010Pt5j6O8ODM31DFkCSILV8EQ0854P4TB6UAUOIcDm111uAQUaK+1cv6iiZOyhVr4u2CEw54TFFOkpVgDZxgDRLT3ngYIlVKRRtNsJRSCnC1V9HoSNvvCG7diR88EYCGkmVhjio8vJs/AUAG9SzBykx0sz12pLWwI7peU32rF6laTUKwqUc3vGDVkqw2oX4xUdYPa8HGaibaNuH0t8DQk3t0TFFOEm/X51kLZYv7MLqD4wsE+bi4miuyS5GAF4adesBjxuQkY7cJS7yhmrsoqvWZv7EaY+CUuI3WisITD3jM2NxkttW20pwWmisrCptxKqX6XtgSLBH5oYgYEckILYuI3CsixSKyQkT237BcKaUixBhDgreadnf38yntT17hKBpNLM1boysZAahq8jCkeQk+W4w1ZHYPOXLGE8AWdSO7zV1XyUkSSpJ6WIM1JDOBWudA2m3xUTfwwPwNVVyUvAGQHieMY3KSWRPII+CIg+3Rk2AtL62nyePnZMdKcMQesH8cWANdjMxKZG5dJog9qq7P3LUVpMe7KKyeBzHJB+xPBrtq5FYECqwVUZQwKqUOn7AkWCIyCDgd2NZl9VnA8NDjeuCBcJxLKaXCraHNR66pxJOw7wleD2RkdhLrzGBsVdHXRHDBhkpOtK2gPecYcLh6fNzwQQMpDuYSKFvah9EdvHfXVHC+8zNM3vQe9b8CsNuEMbmpbLQPjaoaue31bSzdVscZfAz5x/VoABKAsTlJBLFRk1QUVTVY76+txGkzDK6cC0NOAmdMj46bODiFz7e3YTJHRk1C7/EHmLuuktOGJ2Fb/wYUzQa784DHjc9LQQQWVTshYWBU/X9TSh0+4arBuge4FejaO3U28F9jWQikiMjBDc+llFKHQVlNIzlSDakFh3R8UoyTUmchqU0bo66T/vovPmWIbSfxEy44qOM6BroIbl8WNa+p2eNn6/rljGQLMvbCgzp2fG4yn3gKMTtXRM1AF69+sYOJsonUtm0w4dIeH1eQHk+8y84Gx0irCZqvvQ+j7JlA0PDysu3cMGgbtqYdB/V6Jual0NTupyltHGxfEhX/3z5YV0Vju58r09eCtxnGXtSj4xLcDkYMSGTZtnoYNA3KFvVtoEqpqNTrBEtEZgPbjTF71oPnAl17q5aF1u15/PUislhEFldVVfU2HKWUOmi1O7ZgF0NM5pBDLqM5ZRSxwRao3xrGyHqnqd1HeslrBLBjKzrvoI4dn5fMimAhzvZqaNzRRxEenDdWlHOGWYBBYMz5B3XsuLxkPvcPQ4L+qGi2ZYzhhSVlXJ/8mTX8d9HsHh9rswlFOUl84imEoC8q+vl8XFzNzsZ2vuZcALGpMPLLPT52QqhZXbF7NLTWRMXAHc8tLiUz0c2oytchIavHzVEBJg1O4YuyequWta4Emiv7LlClVFTqUYIlIu+JyKp9PGYDPwNuP9QAjDEPGWOmGmOmZmZmHmoxSil1yJrKrU7syTnDD7kMW2jCW9+OyN/sdnjtix2cwae05B4H8QfXv2xgUgylMaOshSho5mSM4bnPNnKlc641eELiwIM6fkJeCsuDw6yFss/7IMKDM299FZWVOznN9wGMPtfq43MQxuel8GpNqIlkFPTD+s/HWxgR10x2+Xsw7uL9Dme+p2EDEoh32fnEM9RaUfpZH0XZMyXVLcxdX8lNY33YNr4DU64Bm73Hx08clEJ9q4/ypNAk2KVai6XU0aZHCZYx5lRjzNg9H8BmoBD4QkRKgDxgqYgMBLYDXTs05IXWKaVUVPFUWAlWYi8SrLQhEwkaoX5z9PRZ2vDJy+TbKkmc9vWDPlZEiMmbEDUDXXy2pZbh5a+RahqQmd8/6OPz0+PwxWZQ48yOihveBz7cxPfi38MZaIXjbzno46fkp1LqT8EbNzDi/bDW7Gjkg/VV3D3wfcQE4djvHNTxdpswLi+Z96pSwJ0c8evz97nFuOw2Lva8BM44OOZbB3X8xMEpACxqHww2pzYTVOoo1KsmgsaYlcaYAcaYAmNMAVYzwMnGmJ3AHODK0GiCM4AGY0z0TaiilDrqxdRvoFXiIGmvVsw9Njwviy1mIL4d0TEK2vLSek6vfZoW9wCkh/1H9jQmfwAbgnn4SiObNBpjuO+dVXzH+SrB7MkH1Vyrg4hYTbcYHvGE5JPiajZuKeFyeRNGnQNZYw66jCn5qQBsTxgb8RqsP769jmHuesZXvAwTv35IfRknDEph9c5mgrlTIppgFVc289KyMn4w3kfs2udhytU9Hnykw/ABicS77Czd0WZNOFwa+RpTpdTh1ZfzYL2BVcNVDPwLOLivtJRS6jAwxpDRuoWa2MJDmgOrQ2FGPOvJJ7Y2Oiayfe21FznWvgbHzJsOavTAriYMSmFFcIjVRDCCAw+8vXonk0v/Sx6V2E771SFfp8mDU5nfWghNO6AhMg0qvP4gv3xlFf8X/yyuYBuc/PNDKicrKYbclFiWB4da/XxaqsMbaA/NXVfBvPWVPJL5NGKzw4k/PqRyJual4AsYKlImQuUaaG8Ib6A9YIzhly+vIt5t59rGf1jNNg/h9dhtYk1uXVoPg6bDjqXg94Y/YKVU1AprghWqyaoOPTfGmBuNMUONMeOMMZFvJK6UUnuoaGhnCKW0p47oVTlOu42quOGkerZDe2OYojs0H6wt5/zyv9HsHoD7mG8ccjnjc1NYaQpxemqhftuBD+gDtS1eHn7pbW50ziE4+nwYMuuQy5o8OJWlEe6Hdf8HxeTUfMrZgbnIsTdBVtEhlzUlP5V3GiI34XBDq4+fvriS61OXkl89H07+GaQMPqSyOprVfWGGA8YaTfAwe2pRKZ9uruHfo5fhLPsUTr3joGuvOkwcnMKaHY14c6aCvx0qoqdvplKq7/VlDZZSSkW9LZs3kCGNOHLG97osX0boZrkycrVYzR4/q178A2NtJbjPvgvcCYdcVnKck8qk0O8lAglJMGj45XOf83/+P2OPScT25T/0qrwJg5JZRz5+mzsir2f+hiqemfsZD8Q+AAOK4KTbelXelPxUPmjKw9icULowTFH2jD8Q5KanlpLavJnbfA/AoGPgmG8fcnnZybHkpsTybsMgQA57M8HVOxr49auruXJwDVM3/AVGnAmTrzzk8iYNSsEfNKxzhAaK0WaCSh1VNMFSSh3V6jZ8AsCA0TN7XVbsYCsZadm2vNdlHQpjDA899TzXex+nbtCXcI77Sq/LTMwfTysxmAiM7Pa399Zx7qZfMUq24bjwoYMeOXBPiTFOhmSlsskx7LAnWBsrmvj5Uwv4X+yfiLf74eL/giuuV2VOyU+lHTd1KWNg6ydhivTAjDHc8epqNmzcwPPJf8XujoevPgp2R6/KnVaQyoJSDyar6LAmWKW1rVz9n88ZH1vNHU2/RhIHwvkP9KrJ8KTBVh+5T6tirL6dER4ZUSl1eGmCpZQ6qtnKl+LFQfzgib0ua3DBCBpMHE1bIzOs+X/f+phLt/wUb0w6qV97uFc3iB3GDUpneWAIvpLDW0Py+CdbyJr/M860f4458y4YfmpYyp2cn8qn3kLMjuWHrV/MtppWrnt4PvdxF4XsQC55EjIOfcTKDqMGJhLrtLPGOQa2Lz0sEygbY/jzOxt4Y+EqXk+5m4RAI3z9GUjK6XXZUwrSqGzy0Jw52WryGAyGIeL9q2xs56p/LyLFV8H/Yv6ATQxc/tIhNw3skJnoZkhmPIu21Fr9sKJgagCl1OGjCZZS6qhljCGzYTXlMcMPat6e7ozOSWatyUcqVoUhuoPz2sJVzPz0OlLtHhKufq7XN4gdJgxKYakZjqNqDXhbw1LmgTy6YCOON27h6465BGbegsw49KZne5o8OJWF3mFIwHNYhp9fs6ORax94i7/7bmc8G5GLHoahJ4elbIfdxsRBKcxtG2ZNONzH/bACQcMvXl7Fy/M+5a3k35Hur7CSq9wpYSl/WoFV67POMRo8DVC1LizldmdrTQsXPvgJcY3FvB73G5zeBrjsOcgYFpbyjylMZ1FJLcG86dBQCg1lYSlXKRX9NMFSSh21yutaGGWKaRswISzlZSS42eooJKWp+LB8+95hzkfLGPLG1xlsq8J+2TNIdnheD8Do7CRWMAKb8ff5hMPBoOGPc5Yw8J1v8zXHB/iP/yH2U38V1nNMyU/l8+BIa6Hko7CWvadPiqu59Z8v8Ejg54yxlyKXPAFFs8N6jin5qbxYPQiDwLZPw1p2V+2+AN9/ehkrF33AWwl3kikNyOUvQkHvm9Z2GDEgkcQYBx+0hyYc3vpx2Mre06ebarjwgU8Y07aUl2N/g0sCcM0bYUsWAY4pTKOp3c+W+InWij76/+YPBFmytQ4TwZE+lVK70wRLKXXU2rRmCfHiIbbgmLCV2ZI6Grdpg7otYSuzO8Gg4bFX32fCOxczxF6B+drTuIaeENZzxDjttAyYZC30YT+S+lYvP//3HM5dfBWn2xcTPOP3OE69PSzNHLsqSI9DEjLZ6Srosxt4YwwPL9jMY//5B8/Iz8iLacd25Ssw6uywn2tKfir1wThaU0f12evZWtPCV+7/mJTV/+WlmDtJiItHrn07rMkVgM0mTM1P5Z0dsZA8GLbMD2v5YF2bf83fzBWPfMoNtld4gN/iSM6Bb7wDA8eF9VzTC61a5PmNWRCTAlsWhLV8gJpmDxc+8AkXPvAJ766pCHv5SqlDowmWUuqo1bTJShiyxxwXtjIdOdZNmnf7F2Erc1+a2n3c+9ADnL/4ctKdHuSqV3GPDE8/pT2NGlLIZpNNYFvfDDywbFsdv7vnHm4r/TZDXA3IZc9jO7Zvpk4UEWYMSecj/0jMtoUQ8Ie1/IY2H99/chH+t2/nn84/EzNwBPZvzYf8Y8N6ng6T81OxCWyIGWeNVBfwhbX8t1fv5Kt/f48b6//I/zn/g33oLPjWhzBgdFjP02FqQRrFlc20D5oJJQvCWhPc7PFz0/+Wcd8bn/N86j/4pvdxZMxX4JvvQVph2M7TIScllrzUWD7bUm9Njl0S3gRrwcYqzvzbAnZs38aptiV8sK4yrOUrpQ6dJlhKqaOWq2IZzRKPK7N3c2B1lTlkEn5jo35L3zWn21zZyNN/uYXvlv8Mf2Ie8Td+iLtgep+d75jCNJYGhxPc9llYb3iNMTz64RrW/Oub/NH3O1zp+bi/Mx8J04AW3TluaAbz2kcg3mYoD18ivLiklm/f8z+u33A9NzhexUy5Bvs33oaUQWE7x56SY52Mz0vhvZah4GuxBrsIg2aPn9ueX8E/n3iKl2238WU+gpN/AV9/Nmz9+/blhOEZAKx0joe2OghTf8bFJbWc9bf5tKx+i0+SfsaEts/gzD/AhQ+DKz4s59iXjn5YpuB4qN8alvnkvP4gv39jLVc8sogzHUv53P1tHnb9mcYN4a/xU0odGk2wlFJHpWDQkNOylp0JRWAL30fhqEGZbDbZ+LavCFuZXc1fsory+8/hOu/j1BWcTfr35iF98O17V9ML0/g0WGRNOFy5OixlVja1c+e/nuL49y/kMvt7eKbdSNx35vVJTcKeZg5LZ2EwNGfZ5rm9Lq/dF+D3b6zh1X/9mv94f8TIuEa49H/IuX8FZ0yvyz+QE4Zn8FT1EIzYYeM7vS7v85Jazvvr++Qvv5vn3XeSnehErn4NTvpxWN8r+zI2J5mMBDev1If6YW35sFfl+QJB/vT2eq7+5wf80Psgj7r+QHxyJnLdBzDjhrA3Qd3TMYVp1LZ42ZI01VpR/H6vyttU1cxFD37CU/NX8mL24/ym7beQZv2uZra8T0l1S29DVkqFgSZYSqmj0padVYxgK76Bk8Jabn5aHBukgIS68E423O4L8Ph/H6JozllMkXXUnfIHMq5+ok+/fe+QEudiZ0aoidum3ickb6zYzpN/+SE/3X4T2bE+zBUv4z77d2EZybEnBqfF4U4ZSIl7JKx/q1dlrSxr4Jp7X2HGpzfwa+ej2IeciPPGhX3S36o7M4dlUBuMpy59Mmx8+5DL8fgD/P7Ntdz+0DM81H4r33HMwTbpMuTbH1tN3A4Dm004eWQmc7aAGTAG1r1xyGWt29nIBf/4mE/mvcG8xF8y2/8OHPdduH4eZPd+YvGeOGlkJgBv7kyBlHxYf2ivJxA0PDR/E2f9bQHZNQv5LPWXTK5/B068Fb6zkJYR53O6fTHvrNoexuiVUodKEyyl1FFp2+qFOCRI8rAZYS3XZhMqk8aS7KuAxh1hKXNdWRVv3H01V2z+MYG4TOT6D0g9se+/fe9qxLDhbDCDCPbiG/iGVh+/+e9rpD//FW4xT+Adejrx31+EhGnY8p4SEWYOS+dVz0TYvhiaDn5wAF8gyD3vrOeJB3/LQ003cqJrPXz5TziueB4Ss8If9H5MHpxKnMvOQsdU2LkSGg7+JnvNjkYu+Pt85KO/8qr7lwyJa4WvPQ2z74OYpD6IununjBpAY7uf7dmnWiMjNh9c3yJfIMi972/kwr9/wIW1j/CC+04y4uzI1a/D6f93WGoVO2QlxTAhL5l311bCqHNg84fgaTqoMoorrVqre95Yzj/TnuKf5jfExifBN96FU34ODhfx42eTIY0UL+39FyBKqd7rdYIlIt8VkXUislpE/thl/U9FpFhE1ovIGb09j1JKhVPbFmvAhoGjwjfARQdvzjQAAiW9GzY7GDS88PZcgv86la9451A24kqyfvAJ7pwx4QjzoBw/LIMPA+MwWz89pPmwPlxfwb/+/BN+uOlaJjrL8J93PwlXPNWn/Xn254wxA3nDM9FaOMhan/U7m7ju7y8zacF1/MHxT2LzJmD/zicw/brDmvR2cDlsnF6Uxb92hiYvPohaEo8/wJ/eXs+P7v8fdzf8kJ84n8Yx6ixs31kII8/qo4j37/jhGTjtwlvBaYCBda/3+Ng1Oxo5//6P+eC913kv/nauMS8hky6DGz4O+6iHPXVaURbLS+upG3wqBDw9biYYCBr++eEmvnzvAtKqFvF5+h3MapwDM26Eb82HvC5Dyg87lYA4GVY7n81VzX30SpRSPeXozcEicjIwG5hgjPGIyIDQ+iLgUmAMkAO8JyIjjDGB3gZ8tDHG0NzupaGmgqb6aloaa2hvqiPQ2gCeRoynmUDAR9DvR0wAuwmAgF9cGEcMdlccdncctvh0HIkDSEofyICBuWSkJGOzHf4bAaWiRUL1F1TbM8lIzg572Tkjp9G6zk3r+gVkjL/wkMqobGjjzUd/y8W1/8Rvj6Vx9hPkTTg3zJH23PHDM3jGPpnrgm/ApvdhdM9iafH4eeCl95m5+g5+ZF9D06BZxH31H5Cc28cR79/xwzO42TWEWudA0la9CJOvPOAxXn+Qf84rpnzev7jP8QQxLgOn341j2jf7vG/SgZw/KZerl2+nacAIElc8YyV7B7B0Wx0/f24JZ9Q9yRznHGxxKfDl/8CYCyKSKHZIjHEyrSCNJza18o20IcjqF2HqNfs9xusPcv8Hxfz7g1X8xP0CX3e/jsTkwEXPwYjTD1Pk+3bGmIH86Z0NvFiVxzfiM2HlczDm/P0eU1zZzI+e+4JNpTt4OPMlTmx6HVwF8NXX9t1cMyYJf/6JnLHlc15ctp1bTh/ZJ69FKdUzvUqwgG8DdxljPADGmI56/NnA06H1W0SkGJgO9N0siP1Uu8dLeekmass24qnahGnYjrRU4GqrJMFbTUqglnQaSJTw5qY1JokK+0Dq3Lm0JQzCnj6EpNyRDCwcS3Z2Hja7th5VRy6PP0CBZx3V6ePI6IPypwzJ4ovgUIZvW3hIx7/32XJi3/weV/EF2zOOI+eqR5CknDBHeXDcDjtJo0+mdt29pKx4DlsPEqwP11ew6Lk/8x3fozicdnxn/Y3EqVdF9Oa9g9th58yx2fxv5fHctPl5qN0MaUO63X/ptjruffYdrm34O991rMSXdxyOr/zjsAzK0RPHD8sgIyGGNx2ncHHZg9ak0Dn77l/Y5g3w53fW8/kn7/F398MMc2yFcRfDmXdBfPphjnzfvjo1j1ue+YKtx5xPwRd/gcp1MGDUPvf9orSe215YQVrlp8yL/w/pvnKY9k340q8Oe/PGfRmelcikwSn8b/EOrp3wdeTT+6C+dJ+jS3r8AR76cDN//6CYLzuX8lTKo8Q0V1t9x2b9DFxx3Z7HPfEi8kveZ/2it/F/aTgO/TuuVMT0NsEaAZwgIr8F2oEfGWM+B3KBrncWZaF1exGR64HrAQYPHtzLcKKTzx+grGQjNSUr8JavxV63idiWUtI8OxhgqiiUAF3/RNeRRIMjndaYDHbGjqQ8fgAkZuFMyCAmMYXYxDRiE9OISUjFHZ+E3eEEm8N6iN0qxN8O/nZ8nlZam5tob6ykvb6S1rpy2ut3QkMZsS2lDGtfQ0bbh9irgrDOOrTexFPuyKMpvoBA+jBiskaSUTCG7MIiHO7uP9yV6i82btrEWKlkXe6UA+98CHJTYnnXVcT0phfB0wzuhB4d19Dm4+XH72X29j8TI34qT/wduSd/JyoSEoCzJgzipVUzuWbd61b/sm6SvvpWLw89/wYnFf+eH9vW0ZB7PPEXP9inw5Ufim+cUMiVS07mhtg5OBb8GWbfv9c+zR4/f31zBQmL/84/Ha9id7vg9D/hnPqNiNdadeWw27hkWh6/mTeVCxOTsM+7C77+zG77GGN4e/VO7n99IV9r+i8/c30ACQPh3GdhRHS15P/yuGx++/o6flM+nYed8ci838HF/91tn5pmD3e/vZ4Fi5dxe8wznOH6GBKHwnlvRKw5YHeuPq6A7z+9nPcSz+M02wPw4V17/X/7aGM1t7+yimBNMc+nvcD4lk8geSyc9zT05LOq6Hx8r9/Kme1v8t7ar3Lm2PDXziuleuaACZaIvAcM3Memn4eOTwNmANOAZ0Wk+68A98EY8xDwEMDUqVPNwRwbjaordrB9zae0bF2KvWY9Ka1byPOXUiieziSqnkSqHNlUJRVRnpSPM6OAhOxhpGQPIzV7CKlOF6m9DcQVB644nHFpJKdCMvuZFDLgo2nnZnZuWUXT9rWY6mJiG7dQ2Pg5mY1vwxZgIQSNUG4bQG1sPt7kQhwDRpAyaAwDhozBnTooam4C+5IxBl/AEAga/H4vAW87AZ+HoK+dgN9HMBAgEAwQDPgJBIME/AECwSAmGEBMEGOCCEFMMIiYIBgDdGwj9DsUDAJi/TR0/F6tddavWRARDDbEBoKA2BCx1oMtVJRVHjZBsLYT2qfrc/axTcQ6Bpt0nk9sYp2rS3m7jttVBhBatoWOscrZVbatyzk6XhOImM7lUOTs+l9l6PoBYbrMx2S6/tuxkzFdjjC71gO1X1h9VDLG9V3Tofa8mdi3Po9v41ycY8874P4LV2+i8YXvc1VwAeVJY4m/4lEGDBjeZ/EdipNGZPJQwmyubn+b4Id3Yzv3nt22B4KGlxdtoOnt33FL8FX8znh8Z/yV5GlXR+Xnw6iBSYwfPYonNp/GVcueRMZeBKEBN7z+IE8v3MyG9x/juuDT5Dsq8Y0+H8dZv+82sYy0604YwhMLt/G440Ku3vAfWPo4TL4CCNXAvb6YorJn+Z/zdeKdHmzHfAdm3QYxyRGOfG9uh50fnDaCn720kuVFVzJpzQOw/CmY+DWaPX6eXLiVZz74nIsDr/Ob2Ldx2ASOuxVO+AE4YyMd/l7OGZ/Dgx9u5qfv13PsxGtJWPIgjDgTRp/LyrIG7nlvA+vXreaWhHf5Suzb2HxuqwbuuO+C3dmzk7jisE+8lC9//h++M3+5JlgHEgzi8zTT2tyIt7UZb1szvrYm/O3N+D0tBNqbCXrbrL/1Pi9Bv5eA34sJ+JCgDwn6kaAPW9CPMdbfI2MMQSMYQn+7ZNffM8TW+TNos2PEgRE7xuYgaHOAOBC7A2NzIB1fmtudiM1abz23I3YXNrsDsdsRmxOxO7Db7Yjdgc3uxGa3Y7M7sYee2x0d+ziwORw47C7EYcNhd2F3OHHY7djtNuw2wWHruCdQvSXGHHpOIyJvAX8wxnwQWt6ElWx9E8AY8/vQ+reBO4wx+20iOHXqVLN48eJDjudwa2qoZfOyD2jZvIiY6lVkt64jm+rO7ZWSTpW7gLaUodizRpOUN5YBQ8eRmNZ/PvRaGuvYsXkVtdvW4KvYgLN+E6ltW8kNbCdePJ37teGmwplHXWw+/rgB2OPTsSVk4EhIx5WUSWxSOvHxibhj43G643HGxCKO2J59AxwMQtBH0OfB6/PibW/H62vH5/Hg9Xrwe9vxhRKdgLcdv7edYCjpCfo9BH0ejN96WDV7XiToBb8HW9CLBLzYAl5sxost4MNuvDiCXhzGi8P4cBgfTnw4jQ8XPlz4ceHDLv3++4CjWh1JpN6+tc9qId5fVcaU56bjKTyVrKv/2+1+zR4/rzzzMKds+gOZ0kDV5JvJPvtnYO9tA4O+8cry7dQ8/wOucbwNF/0HGXsBXn+QD1dupuSd+zm/9QUypYG6EReTOvv3EN8XjTDDZ2dDOxf+7V0eD/6EwfYathV9i5WtadRs+YIv+ReQb6ukLXUUsef+AYbMinS4B/TWqp1898nPeCb+L0z2L2dN5pdZ3pJKQtNmTrEvJ4E2gsNOw3b6/3Xb5C5aBIKG6/+7mPnrd/Bm6j0MbV3O8qSTWdKYREFgK7PsK7ETQMZ+BU69A1KiuxXMhoomLrj/Y9JcAZ6N+S1ZzWuZ7zqRda0JjHeUMoOV1pdOE78Gp9x+aKNRVm3A3D+dB/3nMOUb9zK9MDKDyBxWxuBra6S+cjtN1WW01ZXT3lSDr7kW2uqwexpwehtw+RqJDTQSF2giwTQRT3uvTus1DnzY8eMgiM36DrTL14BdvxwU6wcGsBPETgA7AVxh7v5xqPzGRgA7wVDUhr2TLLPHNtPN+j337/iddP3KuOP53ts7lnffT4BHA2cw4OJ7OGd8dH3BJSJLjDFT91rfywTrBiDHGHO7iIwA3gcGA0XA/7D6XeWE1g8/0CAX0Z5g1VfvZNPid/FuXkB6zVKG+DfhEOtbi1JbLlUJI/FlTSCpcCqDimaQkBLdNxa90e71s23rJqq3rqZ1x1pstZtIaS1hgG87KcF6EqRnH1xe48DInm/KXU/sBHGG+QMoYASvuPDixI8Tnzjxhx4Bm5OAzUVAXARtLgJ2F8bmwtjdGIcLbC6Mw42xu7o83GB3gc2J2O3YxG79tNkQW8dPGwYbVnWTDSO7P5fODyaz68PFhJaNQcR0fjhjgljvW9P5E2NC6+msuZGO7R0PgqEyrGVjgh0FggnScQJDsPMY6+OhY3nXc8Puy4Ti6gyyy/l2rTf7/Nn5MdtRDF2KDD2k6wf3bv9d9lzf8YEe+sDf62/ErhVJw45lzMxz9vM/pXfafQFe+b+LucA2H9eP1+9ztLyPlq3E8+qtfCn4CRUxQ0j+2sPE5PdNs8VwMcbwk2cWcfGaG5li28hm92iaPAFGmS24xUdV5rFknHsHMji8w9/3pTU7GvnNU3O5vv4vnGz/AoAgNhqyppMy6yZk5NlR1RzwQN5ZvZM/vb6cSxof5WL7PBKljVZXBs7RZ+Kc8a3DNgdUOLT7Atz15jpe+byYG81TfMXxEUm0EUjKwz36LDjm+v32nYs2a3Y0cvsrq1i/bTs/cjzLbMdnJNIC6cOwjzrL6juWnNerc/if+wa+1a9yQ/q/+feNZ2PvxwNaBX0easu3UFe+mdaqEny126BxJ862KmK9NST6a0kxdcTi3efxXuOgURJotiXSYkvC40jE40zG70oCdyI2VzzijkdcCYg7Drs7Abs7HntMAs7YBJzueGLcblzuGNxuNzFuN26326phCkdNT8ff7oCPYMBHwO8n4PcR8Hs6n5uAL9RCxh/66cP4fQQCfmtbMAABP8GOR9APgUDop49gMIAJ+CHox4Sem6A/9OW1H4I+q1VN0IcxJlQLZ0K3AaGWIqG/ybsSyN1/7mpns8d6Y0L3eLta43S00Ok8SmzsKsRGlyYt0GXf8sTxFJ10ESMHJvb+9x5GfZVguYB/AxMBL1YfrLmhbT8HrgX8wM3GmDcPVF60JVjBQIDNqz6laumrpG7/kBG+ddjE0G6cbHaPpnHAVBJHnEjBhJOITz4KviXqoWDQUNvYRHN9JW31lbQ3VOFrrsXT3oLxtiP+NvC3I/52JOAhGLTezJ3NwkLvLRsQFEeo+tyFOJyIw4XN4cbmcFkPpwu7IwaH04ndFYPdFYvTFYPD5cbpisXpjsHpisHpjsXtjsHhio3amgF15PnX869x3arLqBt/Half+VPn+s3lVSx9/m5Or36cGPFRNflmcr98KzhcEYy254JBw5MfrcP+2T8Y3/45TlcMsYMmkHPCFTgG7fV3pl8IBg3FVc2015ZRGB8gMSsf3NH1h/xg1TR7iHEI8U7peTOzKOUPBPEGgsQ67UdEEyaPP4DTZuub0XyriwneP50X/TNpO/s+rpiRH/5zhIkxhrqqcqq2rKR1x2qC1cXYG7cT176TNF8FaaYe2x6tRepMInX2NJodqbS5MvDFZmLiM7ElZuFKySY+LYuktIGkpg8gLi4B6Udfjqj+p08SrHCLtgRr4eO3M2PT3wDY4BhBbfZJpIw7nSHjT8AVE31tvJVS0aWm2cMHf7qMi3iXTSO/RW3yKOo2fs7E2jcYIPVsTT2O7K/diyvK+loppfo38/5vkAV/4iZu5dbv3sLg9MgOUNXu9bOtZAPVW1bSXr4GZ20xqa1byPFtI012TbzsMU4qbBnUOwfSGpuNPzEXW0oeMRn5JGYNITO3kOTExCMiyVZHBk2wDkFZ8SrKV82jcMZsMgZG1+hXSqn+4YuSCsof+wZnmgUA+LGxJXkGmWfeRsroWZENTil1ZPJ78D54Mp7qzfwg7nf84cbLSYvv+xrytrZ2SotXUbt1Jd6KdbhqN5LSVsKgQNlu/bYbSKTCPZimhCH400bgzh5FyuCxDBw8nBhX/65tVUcXTbCUUipCPP4Aa9asJllayC0ciTtBmxQrpfpYQxmef55Ka0sTv4v9MddedS2js8MzL1hLUwPbi1dQv20Vvoq1xNRvIr1tC7nBnbv1m66UDGpiC2hPHoojazQp+WPIGjIBV9KAqBxZVKmDpQmWUkoppdTRpHYzrf+9lLj69bwcOJ6SEd/ghBNnMXlw6gGb2ZlggJodW6goWU3Tjg2Y6o3EN25iQPtWBlLVuZ/f2Ci3Z1MbW4A3dTiugaNIyx/LwKHjccZF3xQASoWTJlhKKaWUUkcbTzNt79+F4/N/4jReykwGa2UY7fGDkPg03A47YvzYfM3EemuJ8dSQ7K0gJ1hOjPg6i2kzLnY4BlEXX4gvdRgx2aNJLxxPTmERDldMBF+gUpGjCZZSSiml1NGqtZb2L56nauVc4qq/INFbhYtdCZQPB/WSTJM9lRb3AFoT8wmmDiEhZyQDCscwIKcQsdkj+AKUij6aYCmllFJKKYsx4GsFBGx2az5H7Rel1EHpLsHSCYGUUkoppY42IuCKj3QUSh2RdPY1pZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMImqQS5EpArYGuk49pABVEc6CHXY6PU+eui1PnrotT666PU+eui1PrpE4/XON8Zk7rkyqhKsaCQii/c1Oog6Mun1PnrotT566LU+uuj1PnrotT669KfrrU0ElVJKKaWUUipMNMFSSimllFJKqTDRBOvAHop0AOqw0ut99NBrffTQa3100et99NBrfXTpN9db+2AppZRSSimlVJhoDZZSSimllFJKhYkmWEoppZRSSikVJppg7YeInCki60WkWER+Eul4VPiIyCAR+UBE1ojIahH5fmh9moi8KyIbQz9TIx2rCg8RsYvIMhF5LbRcKCKfhd7fz4iIK9IxqvAQkRQReV5E1onIWhE5Vt/bRyYRuSX0Gb5KRJ4SkRh9bx85ROTfIlIpIqu6rNvne1ks94au+woRmRy5yNXB6uZa3x36HF8hIi+JSEqXbT8NXev1InJGRILeD02wuiEiduB+4CygCPiaiBRFNioVRn7gh8aYImAGcGPo+v4EeN8YMxx4P7SsjgzfB9Z2Wf4DcI8xZhhQB3wjIlGpvvA34C1jzChgAtZ11/f2EUZEcoHvAVONMWMBO3Ap+t4+kjwKnLnHuu7ey2cBw0OP64EHDlOMKjweZe9r/S4w1hgzHtgA/BQgdL92KTAmdMw/QvftUUMTrO5NB4qNMZuNMV7gaWB2hGNSYWKMKTfGLA09b8K6AcvFusaPhXZ7DDg/IgGqsBKRPOBs4OHQsgCnAM+HdtFrfYQQkWTgROARAGOM1xhTj763j1QOIFZEHEAcUI6+t48Yxpj5QO0eq7t7L88G/mssC4EUEck+LIGqXtvXtTbGvGOM8YcWFwJ5oeezgaeNMR5jzBagGOu+PWpogtW9XKC0y3JZaJ06wohIATAJ+AzIMsaUhzbtBLIiFZcKq78CtwLB0HI6UN/lg1vf30eOQqAK+E+oSejDIhKPvrePOMaY7cCfgG1YiVUDsAR9bx/punsv633bke1a4M3Q86i/1ppgqaOaiCQALwA3G2Mau24z1hwGOo9BPyci5wCVxpglkY5FHRYOYDLwgDFmEtDCHs0B9b19ZAj1vZmNlVTnAPHs3cRIHcH0vXx0EJGfY3XteDLSsfSUJljd2w4M6rKcF1qnjhAi4sRKrp40xrwYWl3R0aQg9LMyUvGpsJkJnCciJVhNfU/B6qOTEmpWBPr+PpKUAWXGmM9Cy89jJVz63j7ynApsMcZUGWN8wItY73d9bx/Zunsv633bEUhErgbOAS4zuybvjfprrQlW9z4HhodGI3JhdaabE+GYVJiE+uA8Aqw1xvyly6Y5wFWh51cBrxzu2FR4GWN+aozJM8YUYL2P5xpjLgM+AC4K7abX+ghhjNkJlIrIyNCqLwFr0Pf2kWgbMENE4kKf6R3XWt/bR7bu3stzgCtDownOABq6NCVU/ZCInInVvP88Y0xrl01zgEtFxC0ihVgDmyyKRIzdkV3JoNqTiHwZq++GHfi3Mea3kY1IhYuIHA8sAFayq1/Oz7D6YT0LDAa2AhcbY/bsYKv6KRGZBfzIGHOOiAzBqtFKA5YBlxtjPBEMT4WJiEzEGtDEBWwGrsH6QlHf20cYEfk1cAlW86FlwDex+mLoe/sIICJPAbOADKAC+BXwMvt4L4eS7Puwmom2AtcYYxZHIGx1CLq51j8F3EBNaLeFxpgbQvv/HKtflh+rm8ebe5YZSZpgKaWUUkoppVSYaBNBpZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMPl//nf3YE6uGp8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD2qklEQVR4nOzdd3xb9bn48c+j4SHvFTuxHdsZDtkBQoASdlugBVIKJVBmuZQLLS3QAt2Qcm97+6O0tIyWQimU0RDKLnsGCDODLBKynenEe1vW+v7+OMeOktixHcuWLT/vF3qhs77n0ZHknEffJcYYlFJKKaWUUkr1nSPaASillFJKKaVUrNAESymllFJKKaUiRBMspZRSSimllIoQTbCUUkoppZRSKkI0wVJKKaWUUkqpCNEESymllFJKKaUiRBMspZQaJESkWESMiLiiHUusE5HLRWRRtOMYbETkeBFZF+04lFJqKNMESyml1JAmIvNExC8iTWGPm6Md11BkjHnfGDMh0uWKiFNE/ldEdolIo4h8JiLpkT6PUkoNBvorqVJKRYiIuIwxgWjHMUwtMMZcHO0g+ksMfLZ+DXwJOBbYBkwGvFGNSCml+onWYCmlVB+ISJmI/EREVgLNIuISkWNE5EMRqRORFSJyUtj+C0Xk/0TkUxFpEJHnRSSzi7K/IyJr7V/8N4vIf++3fY6ILLfL2SQip9vr00TkQREpF5Gdds2Bs5vXMVZE3haRahGpEpHH22sY7G01InKEvTxKRCrbX5eInC0in9uvd6GITNzv+twoIitFpF5EFohIQu+vdO+JyE/t69IoImtE5Jwu9hMRuVNEKuxruUpEptjb4kXkDhHZJiJ7ROQ+EUns4fkftvd/w47hXREpCtv+ZxHZbp9zqYgcH7Ztnog8JSKPiUgDcLmIzBKRj+zrXC4i94hIXNgxRkS+JyIb7PP9j/3efWif48nw/buI+SQR2dGT19dTIpIBXA981xiz1VhWG2M0wVJKxSRNsJRSqu8uBL4OpAO5wEvA/wKZwI3A0yKSE7b/pcAVwEggANzVRbkVwJlAKvAd4M6wJGcW8Ahwk33eE4Ay+7iH7XLHAYcDXwWu7OY1CPB/wChgIlAIzAMwxmwCfgI8JiIe4CHgn8aYhSJSCszHuoHOAV4G/rPfjfz5wOlACTANuLzTAERm28lDV4/Z3byG/W0CjgfSsGpQHhORkZ3s91Ws61dq73s+UG1v+529fgbW9cwHbulFDBcB/wNkA8uBx8O2LbbLzQT+Bfx7v+RzDvAU1vv7OBAEbrDLOhY4Ffjefuc7DTgSOAa4GbgfuBjr/ZyC9Vk9ZHai3NX785cuDpuK9Xk8T0R2i8h6Efl+X+JQSqlBzRijD33oQx/6OMQHVlJzRdjyT4BH99vnNeAy+/lC4Hdh2yYBPsAJFAMGcHVxrueA6+znfwPu7GSfXKANSAxbdyHwTi9f1zeAz/Zb9wKwClgJxNvrfgU8GbaPA9gJnBR2fS4O2347cF+E34N59jWsC3uM6mS/5cAc+/nlwCL7+SnAeqykxBG2vwDNwNiwdccCW3oY18PAE2HLyVhJUmEX+9cC08Ne03vdlH898GzYsgGOC1teCvwkbPkPwJ+6KfMkYEeE359v27E9CCRiJdmVwFcieR596EMf+hgsD63BUkqpvtse9rwI+Fb4L/vAbKzaqs723wq4sWol9iEiZ4jIx3bzvDrga2H7FWLV0OyvyC6vPOz8fwNGHOwFiEiuiDxhNylsAB7rJKYHsGpB7jbGtNnrRtmvAQBjTMh+fflhx+0Oe96ClWhE2pPGmPSwxy4RuVSsJpTt12EKnVxnY8zbwD3AvUCFiNwvIqlYNXIeYGlYGa/a63uq4702xjQBNVjXDLvp5Fq76WQdVu1ZdmfH2vuXisiLdi1QA/DbTl7PnrDnrZ0s98e1706r/f/bjDGtxpiVwBNYn2ellIo5mmAppVTfmbDn27FqsMJv9pOMMb8L26cw7PlowA9UhRcoIvHA08AdQK4xJh2r+Z2EnWdsJ7Fsx6rByg47f6oxZnI3r+G39uuYaoxJxWpW1n4uRCQZ+BNWLcQ82dtvbBdWUte+n9ivb2c35zuAWEOENx3kcXz3pXSUVYSVEF4LZNnXb3X4awpnjLnLGHMkVo1iKVbTyyqs5GBy2LVMM8b0JknpeK/ta5gJ7LJfy81YzREz7Pjq94sv/HMF8FfgC2C8/R79vKvX01/E6mvX1ftzXxeHrbT/H/569n9tSikVMzTBUkqpyHoMOEtEThNraOoEe+CAgrB9LhaRSXZ/ptuAp4wxwf3KiQPisZpSBUTkDKy+Qu0eBL4jIqeKiENE8kXkMGNMOfA68AcRSbW3jRWRE7uJOwVoAupFJB8rwQj3Z2CJMeZKrD5m7TfTTwJft+NwAz/GSvA+7O5C7c9YQ4QnH+Txfi+KS8K6ia8Ea8AQrBqsA4jIUSJytB1/M9bodiG7Nu4BrL5vI+x980XktLBjjYQNYtKJr9l9y+Kw+mJ9bIzZjnW9A3Z8LhG5Bauv3cGkAA1Ak4gcBlzTzf4RZ4yZfJD35+oujtkEvA/8QqxBQyYCFwAvDmTsSik1UDTBUkqpCLJvnudg1S5UYtUo3cS+f28fxeqfsxtIAH7YSTmN9vonsfrmfBurD1T79k+xB77Aqvl4l701SZdiJWhr7GOfYt8mip35NXCEXdZLwDPtG0RkDtYgFe039D8CjhCRi4wx67Bqu+7GqvE5CzjLGOPr5nz9yhizBqvP0UdYzeSmAh90sXsqViJVi9XcsRr4vb3tJ8BG4GO7Wd6bwAQAESkEGrH6pXXlX8CtWE0Dj8S6VmD1y3sVq+/XVqykbntnBYS5Eetz0GjHu6Cb/QeTC7E+n9VYn69fGWPeim5ISinVP8QYraVXSqmBIiILgceMMX+Pdiyqb0TkYqzmgz/rYvvDWANG/HJAA1NKKRVVOtGwUkopdQiMMY9FOwallFKDjzYRVEqpYUKsSW97MziBikEi8vMuPgevRDs2pZSKBdpEUCmllFJKKaUiRGuwlFJKKaWUUipCBlUfrOzsbFNcXBztMJRSSimllFLqoJYuXVpljDlg8vlBlWAVFxezZMmSaIehlFJKKaWUUgclIls7W69NBJVSSimllFIqQjTBUkoppZRSSqkI0QRLKaWUUkoppSJkUPXB6ozf72fHjh14vd5oh6IGgYSEBAoKCnC73dEORcWgXXWt/Pafz3LhCdM57vDJ0Q5HKaWUUkPQoE+wduzYQUpKCsXFxYhItMNRUWSMobq6mh07dlBSUhLtcFQMemVVOffUXgPPA9NrwOGMdkhKKaWUGmIGfRNBr9dLVlaWJlcKESErK0trM1W/qdi+seN507p3ohiJUkoppYaqQZ9gAZpcqQ76WVD9Ka12Vcfzmi/ej2IkSimllBqqhkSCpZRSAyG9eRMhhE2hkbBjcbTDUUoppdQQpAlWD4gIP/7xjzuW77jjDubNmxe9gMKcdNJJB52c+Rvf+AbHHHPMPuvmzZtHfn4+M2bMYMqUKbzwwgv9HaZSQ4KzrYE2h4e17omk162JdjhKKaWUGoI0weqB+Ph4nnnmGaqqqiJarjGGUCgU0TLD1dXVsXTpUurr69m8efM+22644QaWL1/Ov//9b6644op+jUOpocLlb8TvSqI5dRypwVporY12SEoppZQaYjTB6gGXy8VVV13FnXfeecC2yspKzj33XI466iiOOuooPvjgA8CqJbrjjjs69psyZQplZWWUlZUxYcIELr30UqZMmcL27du56aabmDJlClOnTmXBggUALFy4kJNOOonzzjuPww47jIsuughjTKfxPfroox21UZ9++mnH+meeeYazzjqLCy64gCeeeKLTYydOnIjL5donefzpT3/KpEmTmDZtGjfeeCMAZWVlnHLKKUybNo1TTz2Vbdu2AXD55ZdzzTXXcMwxxzBmzBgWLlzIFVdcwcSJE7n88ss7yrzmmmuYOXMmkydP5tZbbz0gjvr6eoqKijoSvebmZgoLC/H7/Z3GrVSkBUMGj2nG50rGZI0HIFSxPspRKaWUUmqoGfTDtIf79X8+Z82uhoiWOWlUKree1f18N9///veZNm0aN9988z7rr7vuOm644QZmz57Ntm3bOO2001i7du1By9qwYQP//Oc/OeaYY3j66adZvnw5K1asoKqqiqOOOooTTjgBgM8++4zPP/+cUaNGcdxxx/HBBx8we/bsA8praWlh+fLlvPfee1xxxRWsXr0agPnz53PLLbeQm5vLueeey89//vMDjv3kk09wOBzk5OQAUF1dzbPPPssXX3yBiFBXVwfAD37wAy677DIuu+wy/vGPf/DDH/6Q5557DoDa2lo++ugjXnjhBc4++2w++OAD/v73v3PUUUexfPlyZsyYwW9+8xsyMzMJBoOceuqprFy5kmnTpnXEkZaWxowZM3j33Xc5+eSTefHFFznttNN0vis1YNoCQZJpJeBKISl/MmyEum2rySw6OtqhKaWUUmoI0RqsHkpNTeXSSy/lrrvu2mf9m2++ybXXXsuMGTM4++yzaWhooKmp6aBlFRUVdfSLWrRoERdeeCFOp5Pc3FxOPPFEFi+2OtfPmjWLgoICHA4HM2bMoKysrNPyLrzwQgBOOOEEGhoaqKurY8+ePWzYsIHZs2dTWlqK2+3uSLwA7rzzTmbMmMGNN97IggULOkbnS0tLIyEhgf/6r//imWeewePxAPDRRx/x7W9/G4BLLrmERYsWdZR11llnISJMnTqV3Nxcpk6disPhYPLkyR0xP/nkkxxxxBEcfvjhfP7556xZc2D/lrlz53bU4D3xxBPMnTv3oNdRqUjy+kOkSAsBdzK5o0tpM26admo/LKWUUkr1zpCqwepJTVN/uv766zniiCP4zne+07EuFArx8ccfk5CQsM++Lpdrn35N4XM3JSUl9eh88fHxHc+dTieBQKDT/fYfulxEePLJJ6mtre2YkLehoYH58+fzm9/8BrD6YLU3/9s/7k8//ZS33nqLp556invuuYe33367R3E6HI59YnY4HAQCAbZs2cIdd9zB4sWLycjI4PLLL+90Lquzzz6bn//859TU1LB06VJOOeWUg55XqUjy+oOk0EowLoWxualsNnkkVWkTQaWUUkr1jtZg9UJmZibnn38+Dz74YMe6r371q9x9990dy8uXLweguLiYZcuWAbBs2TK2bNnSaZnHH388CxYsIBgMUllZyXvvvcesWbN6FVd7rc+iRYtIS0sjLS2N+fPn8+qrr3b0+1q6dGmX/bDCNTU1UV9fz9e+9jXuvPNOVqxYAcCXvvSljuMff/xxjj/++B7H19DQQFJSEmlpaezZs4dXXnml0/2Sk5M56qijuO666zjzzDNxOp09PodSfeX1B0mRVkxcCplJcWxzFOBp2Nz9gUoppZRSYTTB6qUf//jH+wwIcdddd7FkyRKmTZvGpEmTuO+++wA499xzqampYfLkydxzzz2UlpZ2Wt4555zDtGnTmD59Oqeccgq33347eXl5vYopISGBww8/nKuvvpoHH3yQsrIytm7dus/w7CUlJaSlpfHJJ590WsbXvvY1du3aRWNjI2eeeSbTpk1j9uzZ/PGPfwTg7rvv5qGHHmLatGk8+uij/PnPf+5xfNOnT+fwww/nsMMO49vf/jbHHXdcx7Zbbrlln2Hi586dy2OPPabNA9WA8/pDJNOKiU9BRKj3FJPp2wX+A2tblVJKKaW6Il2NTNfjAkQKgUeAXMAA9xtj/iwi84DvApX2rj83xrx8sLJmzpxp9p/Tae3atUycOLFPMarYop8J1R+WlVVwxMPj2Tz1OsacexuP3f97Lt71v/D9TyFnQrTDU0oppdQgIyJLjTEz918fiT5YAeDHxphlIpICLBWRN+xtdxpj7jjIsUopNSgEWxoBkPg0AFw5Y2EX+Co2EqcJllJKKaV6qM9NBI0x5caYZfbzRmAtkN/XcpVSaiD5vdYUEI6EZABSRlnNeut3rYtaTEoppZQaeiLaB0tEioHDgfaOPteKyEoR+YeIZHRxzFUiskREllRWVna2i1JK9bugtwUAZ5w1NUFe7ijqjYe2PRuiGZZSSimlhpiIJVgikgw8DVxvjGkA/gqMBWYA5cAfOjvOGHO/MWamMWZm+2S3Sik10AJtVoLlik8EoCg7iTKTBzWdjwCqlFJKKdWZiCRYIuLGSq4eN8Y8A2CM2WOMCRpjQsADQO/GHldKqQEU8LUC4I63arCykuLYKXl4mrZGMyyllFJKDTF9TrDEmuX2QWCtMeaPYetHhu12DrC6r+dSSqn+EmxPsBKsBEtEqEssJN23GwK+aIamlFJKqSEkEjVYxwGXAKeIyHL78TXgdhFZJSIrgZOBGyJwrqh57rnnEBG++OKLLvcpKytjypQpETvn5ZdfzlNPPdXl9uuvv578/HxCoVDHuocffpicnBxmzJjBpEmTeOCBByIWj1KxLGQnWHEJiR3rfCnFOAhB/fZohaWUUkqpISYSowguMsaIMWaaMWaG/XjZGHOJMWaqvf5sY0x5JAKOlvnz5zN79mzmz5/f6fZAINDncwSDwR7vGwqFePbZZyksLOTdd9/dZ9vcuXNZvnw5Cxcu5Oc//zl79uzpc2xKxbqQPaGwOz6pY50jewwAwapNUYlJKaWUUkNPREcRjFVNTU0sWrSIBx98kCeeeKJj/cKFCzn++OM5++yzmTRpEmAlWhdddBETJ07kvPPOo6XF6jj/1ltvcfjhhzN16lSuuOIK2traACguLuYnP/kJRxxxBP/+978POPebb77JzJkzKS0t5cUXX9zn3JMnT+aaa67pMukbMWIEY8eOZevWvX1I7rrrLiZNmsS0adO44IILAKipqeEb3/gG06ZN45hjjmHlypUAzJs3j8suu4zjjz+eoqIinnnmGW6++WamTp3K6aefjt/vB+C2227jqKOOYsqUKVx11VXsP3l1KBSiuLiYurq6jnXjx4/XxE8NKsZv1WA54/bWYCWNtIZqbyrXodqVUkop1TORmGh44LzyU9i9KrJl5k2FM3530F2ef/55Tj/9dEpLS8nKymLp0qUceeSRACxbtozVq1dTUlJCWVkZ69at48EHH+S4447jiiuu4C9/+QvXXnstl19+OW+99RalpaVceuml/PWvf+X6668HICsri2XLlnV67rKyMj799FM2bdrEySefzMaNG0lISGD+/PlceOGFzJkzh5///Of4/X7cbvc+x27evJnNmzczbty4jnW/+93v2LJlC/Hx8R0Jz6233srhhx/Oc889x9tvv82ll17K8uXLAdi0aRPvvPMOa9as4dhjj+Xpp5/m9ttv55xzzuGll17iG9/4Btdeey233HILAJdccgkvvvgiZ511Vsc5HQ4Hc+bM4dlnn+U73/kOn3zyCUVFReTm5vb4bVKq39kJFq6EjlW5eYU0mQRadm8kLUphKaWUUmpo0RqsHpg/f35Hbc8FF1ywT43RrFmzKCkp6VguLCzkuOOOA+Diiy9m0aJFrFu3jpKSEkpLrV/DL7vsMt57772OY+bOndvluc8//3wcDgfjx49nzJgxfPHFF/h8Pl5++WW+8Y1vkJqaytFHH81rr73WccyCBQuYMWMGF154IX/729/IzMzs2DZt2jQuuugiHnvsMVwuK79etGgRl1xyCQCnnHIK1dXVNDRYk66eccYZuN1upk6dSjAY5PTTTwdg6tSplJWVAfDOO+9w9NFHM3XqVN5++20+//zzA17H3LlzWbBgAQBPPPHEQV+zUtFgAlatMu69NVijs5LYanIx1dpEUCmllFI9M7RqsLqpaeoPNTU1vP3226xatQoRIRgMIiL8/ve/ByApKWmf/a1BFbte7sz+ZXRX3muvvUZdXR1Tp04FoKWlhcTERM4880zASmbuueeeTst76aWXeO+99/jPf/7Db37zG1atOniNYHx8PGDVQrnd7o54HA4HgUAAr9fL9773PZYsWUJhYSHz5s3D6/UeUM6xxx7Lxo0bqays5LnnnuOXv/zlQc+r1ECTwIE1WKPSE3iDPEY26lDtSimllOoZrcHqxlNPPcUll1zC1q1bKSsrY/v27ZSUlPD+++93uv+2bdv46KOPAPjXv/7F7NmzmTBhAmVlZWzcuBGARx99lBNPPLFH5//3v/9NKBRi06ZNbN68mQkTJjB//nz+/ve/U1ZWRllZGVu2bOGNN97o6O/VlVAoxPbt2zn55JP5f//v/1FfX09TUxPHH388jz/+OGD17crOziY1NbVH8bUnU9nZ2TQ1NXU56qGIcM455/CjH/2IiRMnkpWV1aPylRooErB/GAhLsFxOB9XxBaR6d0Go54PQKKWUUmr40gSrG/Pnz+ecc87ZZ925557b5cASEyZM4N5772XixInU1tZyzTXXkJCQwEMPPcS3vvUtpk6disPh4Oqrr+7R+UePHs2sWbM444wzuO+++wiFQrz66qt8/etf79gnKSmJ2bNn85///KfTMq688kqWLFlCMBjk4osvZurUqRx++OH88Ic/JD09nXnz5rF06VKmTZvGT3/6U/75z3/28OpAeno63/3ud5kyZQqnnXYaRx11VMe2++67j/vuu69jee7cuTz22GPaPFANShJsw48LHPv+WfQmj8ZFAOp3RCkypZRSSg0lsv+Ib9E0c+ZMs2TJkn3WrV27lokTJ0YpIjUY6WdC9YdXfn8ZJ7S8TtKt+84o8ffHHuHKjT+AS56DsSdHJzillFJKDToistQYM3P/9VqDpZRSgDPUhl/iD1ifmGsNTtOye8NAh6SUUkqpIUgTLKWUAhzBNvyOAxOs7JGj8Ro3TeXroxCVUkoppYaaIZFgDaZmjCq69LOg+osr1EZQ4g5YX5SdzFaTS7B6cxSiUkoppdRQM+gTrISEBKqrq/XGWmGMobq6moSEhO53VqqXXKE2As4Da7CKMq25sOLqt0QhKqWUUkoNNYN+HqyCggJ27NhBZWVltENRg0BCQgIFBQXRDkPFILfxEXQcmLwnxjmpdOeT2roKQqEDRhlUSimllAo36BMst9tNSUlJtMNQSsU4d6iNkDO5022tKUW4633QWA5p+QMcmVJKKaWGEv0pVimlgDjjI+jsovlp5hjr/zXaD0sppZRSB6cJllJq2AsEQ8Tjw3SRYHnyxgM6VLtSSimlutfvCZaInC4i60Rko4j8tL/Pp5RSvdUWsBMs14GDXABk54/BZ5w06lDtSimllOpGvyZYIuIE7gXOACYBF4rIpP48p1JK9ZbXHyRB/OBK7HT7mBGpbDcjCFRuHODIlFJKKTXU9HcN1ixgozFmszHGBzwBzOnncyqlVK94AyES8IG78yaChZketpo83A1lAxuYUkoppYac/k6w8oHtYcs77HUdROQqEVkiIkt0KHalVDR4/UHi8SNdJFjxLidVcfmktuwAnZNPKaWUUgcR9UEujDH3G2NmGmNm5uTkRDscpdQw5PX5iRc/4up6EuvWlCISTCs06w9BSimllOpafydYO4HCsOUCe51SSg0abd5WACSu8z5YAJJlDdVuqjcNSExKKaWUGpr6O8FaDIwXkRIRiQMuAF7o53MqpVSv+L0tADgPkmAl5lpDtTfpSIJKKaWUOghXfxZujAmIyLXAa4AT+Icx5vP+PKdSSvWW39sMgCve0+U+OQXjCBgHjbvWkzJQgSmllFJqyOnXBAvAGPMy8HJ/n0cppQ6Vr82qwXIdpAareEQ6O0wOjiptIqiUUkqprkV9kAullIo2v90H62A1WAUZiWwjF3d92QBFpZRSSqmhSBMspdSwF/RZNVjugyRYLqeDmvgC0lq36VDtSimllOqSJlhKqWEvYDcRjEvouokggDe1GE+oGZqrBiIspZRSSg1BmmAppYa9oK8NAHdC1zVYAI4RhwHg261j9SillFKqc5pgKaWGvZCvfZCLgydYaaOnAVBTtrLfY1JKKaXU0KQJllJq2DN+a5ALXAkH3a9w9BjqjQfvjtUDEJVSSimlhiJNsJRSw574rXmwiEs66H5jRiSzwRTgqv5iAKJSSiml1FCkCZZSatjrSLDikw+6X4LbSXl8CRnNm3UkQaWUUkp1ShMspdSw5+yowTp4ggXQkjqepFAjNO3p56iUUkopNRRpgqWUGvacgRZ8uMHp7nZfR95EAHzlOpKgUkoppQ6kCZZSathzB5ppcxx8Dqx2qe0jCW7RkQSVUkopdSBNsJRSw5472ILXcfAh2tsVjy6mxiTj3aU1WEoppZQ6kCZYSqlhLy7Ugq+HNVglOclsNAW4a9b1c1RKKaWUGoo0wVJKDXvuYCsB18GHaG8X53KwO34MmU0bIRTq58iUUkopNdRogqWUGvbiQy0EXT1rIgjQnDWZRNMCtVv6MSqllFJKDUV9SrBE5Pci8oWIrBSRZ0Uk3V5fLCKtIrLcftwXkWiVUirC/MEQicZLyN2zGiyA+MIjAGjYsqS/wlJKKaXUENXXGqw3gCnGmGnAeuBnYds2GWNm2I+r+3gepZTqF43eAEnihbieJ1gjx8/AZ5zUbdIESymllFL76lOCZYx53RgTsBc/Bgr6HpJSSg2chlY/SXiR+JQeHzOpIId1phDZvaIfI1NKKaXUUBTJPlhXAK+ELZeIyGci8q6IHN/VQSJylYgsEZEllZWVEQxHKaW619jqJ5lWHAk9T7DSPG7K3OPIqF8LxvRjdEoppZQaarpNsETkTRFZ3cljTtg+vwACwOP2qnJgtDHmcOBHwL9EJLWz8o0x9xtjZhpjZubk5PT9FSmlVC+0NNbiliAOT2avjmvMmExyqAHqd/RTZEoppZQailzd7WCM+fLBtovI5cCZwKnGWD/lGmPagDb7+VIR2QSUAtphQSk1qHgbqwFwJWf16jhX/uFQBS3bluFJL+yP0JRSSik1BPV1FMHTgZuBs40xLWHrc0TEaT8fA4wHNvflXEop1R98jVUAxKVk9+q43PFHEjAOajYs7o+wlFJKKTVEdVuD1Y17gHjgDREB+NgeMfAE4DYR8QMh4GpjTE0fz6WUUhEXaLb+NCWm9i7BmlqSx0aTT+LOZf0RllJKKaWGqD4lWMaYcV2sfxp4ui9lK6XUQAi1J1jpvesDmpkUx0dxpZxY96k10IX1I5NSSimlhrlIjiKolFJDTqDJ6oPlTOpdHyyAxuwjSA41Yqo2RDospZRSSg1RmmAppYa1YLOVYJGQ3utjE8YcC0Dd+g8iGJFSSimlhjJNsJRSw5p462gVD7jien3smImHU288NGz4sB8iU0oppdRQpAmWUmpY8/gqaXb3bg6sdoeNTGelGU/CnqURjkoppZRSQ5UmWEqpYastECQzWEVrYt4hHR/ncrArZSo5rZvB2xDh6JRSSik1FGmCpZQatioa2hgpNQSTRx5yGcH8mTgw+LbpfFhKKaWU0gRLKTWM7alvIZdaHGn5h1xG7qTZhIxQueb9CEamlFJKqaFKEyyl1LBVW7kTtwSJzyw85DIOH1/EOlNAcKsOdKGUUkopTbCUUsNYc+U2AJJyRh9yGZlJcaxLmMaIuhUQ9EcqNKWUUkoNUZpgKaWGLX/tDgCSsg+9BgugddQxJBgvgR3LIhGWUkoppYYwTbCUUsOWaSgHQPrQBwsgY9LJAFSufrvPMSmllFJqaNMESyk1bLmbywngAk92n8qZMWE8G0L5BDbrQBdKKaXUcKcJllJq2Ery7qHenQ2Ovv0pzEtLYE3cVLJrPoNgIELRKaWUUmoo0gRLKTUsGWNI81fSEp8bkfIa844m0bQQKl8ZkfKUUkopNTRpgqWUGpbqW/2MoBpf0qFPMhwu7bCTAKha/WZEylNKKaXU0NSnBEtE5onIThFZbj++FrbtZyKyUUTWichpfQ9VKaUiZ3d9KyOlBlIjk2AdPvkw1oUK8K1/KyLlKaWUUmpoikQN1p3GmBn242UAEZkEXABMBk4H/iIizgicSymlIqKqcg8J4sedXhCR8goyPKyMP4IRNUvB3xqRMpVSSik19PRXE8E5wBPGmDZjzBZgIzCrn86llFK91lS5FQBP9qFPMry/ttEnEYcf3+ZFEStTKaWUUkNLJBKsa0VkpYj8Q0Qy7HX5wPawfXbY6w4gIleJyBIRWVJZWRmBcJRSqntt1dYkw2m5RRErM3/GqbQZN5XLX4lYmUoppZQaWrpNsETkTRFZ3cljDvBXYCwwAygH/tDbAIwx9xtjZhpjZubk5PT2cKWUOiShhp0AuDMi00QQYFZpAR+bSXg2vQLGRKxcpZRSSg0dru52MMZ8uScFicgDwIv24k6gMGxzgb1OKaUGBWdjOUEcOJMjM0w7QFK8i405X+bE6j9gdn2G5B8RsbKVUkopNTT0dRTB8OG3zgFW289fAC4QkXgRKQHGA5/25VxKKRVJCa27aXBmgLPb35l6JfPIb+IzTio/fiKi5SqllFJqaOhrH6zbRWSViKwETgZuADDGfA48CawBXgW+b4wJ9vFcSikVMan+CpriRkS83FNmTOBDM434L56FYCDi5SullFJqcOtTgmWMucQYM9UYM80Yc7Yxpjxs22+MMWONMROMMdrjWyk1aPgCITKD1Xg9eREvO83jpqzoPNL8FbQsfybi5SullFJqcOuvYdqVUmrQqmj0kic1hFJG9Uv5s067iPWhfLyvzwNfS8d6rz/I0y+9wuIVq/rlvEoppZSKvsh2PlD9xhhDk9dPbXUl3sYqWpsb8TY34G9tIuBtBH8roVCQoLGyZofDgTgcGFcikpBKUmo6yamZpGflkpGVS0KcvvVq+KqsqqBAWqlI73T2iD6bVJDBw6U3c+mG69nxwFzcZ/yWNevWYZY8yLnBD1m6/AiY/k6/nFsppZRS0aV32YOAt81H+c4t1JaX0Va1lVDddpxN5Thbq4j31eLx15EaqieDBkZL37uyeY2b7WRS48yiIS4Xb2oJjpzxJOdPJLd4MoV5OTgdEoFXptTg1LxrPQAJI8b12znOP/9iHvnLBi6u+AuuR2aTCzSTCECp/4t+O69SSimloksTrAFgjKG6tobyTZ/TVL6OYNVG4uu3kNSyg3R/BTmmhhIJUhJ2TBOJ1DnSaXGm05qUT2PCNHZ6snAk5+BMysTlSSUhMYV4TzLxSam445Nwu+NwCBgMgWCIUDBI0NdMW1M9TQ21tDbW4muoQBrLcTXvxuOtYGTb52RXLMRRYeBz69zlJpPyuCKaUsYiOaWkFE5l5LjpjMgdhYgmXmro81duBCBl1GH9dg5PnItLf/i/LPnsHIJb3id35GhKjjiVhQvu5KSyP+Gr30NcWuSGiFdKKaXU4KAJVoRVV+5m57olNG1dgaNqLSlNW8jx72QEtWSH7VdBFlVxoyhPO5ydqfm4M0fjySkmNbeY9LwSklMySO5DHPH7LR/0Ns7fSsOudVSWfU7Lri8wVetJb9jMYTUv4qnxwjrgTaghlXJ3EU2pY5ERh5FaMJlR42aQOqIQhlHiZYwhGAwSDPoJBgIEAn5MMEggGCAU8BMMBgkFA4SCAYLBAKFgkFDATygUxAQDYEKdF9yjayj2f2LtLgIiCI4Dlx0CiJUUi70/gogDEXs9jr3b2teFbd9bDuBoP0/7OQRxOMJi2VuWdXxYOeKwzt0ek2Nv2XvLoePY/uas3QxA6qjx/Xoeh0OYdeRMOHJmxzoZORXKoHrTUkYe8bV+PX+sCwaDNNVX01RfS0tTPb7WJnzeJoLeJgJtLYTamqw+cIFWHP5WTNCHCfoh6IdQEDF+HKEgYgI4TBCHCYAxGMAgYd8n6fh87/1OOQg5XITEjXG4MA43IYcbHC6MMw5xusHpRpxuxBmHuKz/O1xxiCsOp8uNwxWHw+XG5XTjcFvrXK44XG5rm9sdhyvsEee2jsfpju2/ucZYfye7nay7m+39fnw/6/f3uB/L72HsZr9r3Nkl339V/78rMfzdGspEcDicOIZICytNsPpg944t7Fj1Pr5ti0mqXUuedxO51JBlb68jmd1xo9mecSzbMseSmDeejMKJZI+eyAhPCpEfIPoQuRNJLZpBatGMfdeHQtTv3sKuTSto2rEaKteT0riJidVvkFr9HKwF3oBGk0iVM5em+BzaPHmQMhJH2ijikrNISM0kKTWbpLQs4lMyiEtMtW48DvEfDhMMEPB78Xm9+Nta8Pu8+Nu8BHytBHxe/D4vIV8rAX8bIV8rQX8bIb+XkN+L8bdhAl4ItFmPYBsSbEMCPhyhNhxBH85QG46QH1eoDZfx4TJ+3Pb/44yPOALE4SNOgvrl6QchI4Swbm6N/Y9c+83u3iWLdPw/fJ3ZZxuAQw785/gEYLfkkBfniWD0PZNadDh8BE3bloMmWB3a/H5qK3fTULWTlppyvHXlBBv3QHM1Dm8dLn898f5GEoKNJAUbSTZNpNBCmhjSengOn3ESxElAnIRwEsC1z/OQODo+a2J/Cvfe8RkchOyPoPXcSRAXAdwmgIsgbgK4pIsfUCIsaMSKHycBnFa0svcbYMIeHcuyd5v1Kvbfb98j2O+5o3272ffoA89o9r2G+2wHIdTpORwDcOusBpf97wSGxq2zioaHAqeRc/6fOHNa/wxOFWl6j9hDwWCQTSs/pPbzt3DvXsqopjXkUUUe1j/aO1yFbE87krKcySSPns6oCTPJGFFI+lD+ldHhIG3UWNJGjQW+2bHahELsLt9O+cbltOxcg6tmPXEtu0lqqyCvdQNZVfWd3tSG8+HCj8u+QXATEAcODA5jEEL2P7Tt/6BbNzJuE8AtQdyAu48vrc24acONT+II4MYvbgKOOPwSR1DcBF2J+B2pBB3xGEccIVc8xhkPzniMM8562L9Wi8MJDgficIHDaS9b68XhQpxOHA4X4nRZv4I7nBz4z8i+10s6u9Gwf1nH2EmHMfaC/WuvvcGErTP2AcZYNzfhx+xdR9jxYds7ThSyywBp3y9sm7Fjs2IMdcQKe88vYWW3n9eK0YTFvfcXawmv5Ws/ruMqhV072ZtmHbiOvWnZPt9D63nyuC8R+UHauzeueDTlJpPgrpVROHt0NDc1UrFzM/W7N9NauZVQ7XZcTTuJ91aQ5K8hPVRLhmkgT0IHvCd+46RRkml2pNDqTKYtLpOmuGJ2xqVhEtIgIQOnJx1XYjJxCSm4Ej3EJSQTn5iK25NEXEIycYnJxCUkEed09v+LDYUIBXz4A234fT6C/jb8vjYCAT9Bn5dgwEfA7ycUaCPot5+H/IQCPoL+ACboIxT0Ewr4MUE/JuAnFAp01LyZoB+xa9sk5McRCuAwAeu7Hf43of271vH93btN7L8l+ydF4YkXdg2eYW961V6D3lXSZuyavvCUqv37uO8xe593Vub+ZRzsn9H2mPfXfkz79s72Etn3+C5K6vrk0P1vhZ1sl+7KBDr7MelgJ+7tnYZ0clAP21AcdMX+sXdWas/K6Or8/ZuED+E7tpiXmTKZCbkp0Q6jxzTBOojd2zey9aNncW19j7HNyyilCYBdksvOlGlsHXUkmaVfomjyMYxJ8DAmyvEOFHE4yMsvIi+/CJhzwPaG5hbqK3bQVF9Fa0MNrY01BJrrcLTVIf5m68Yh0AZBn1VbZDfPsX59dez9bVMcGLtKWBzOjgQHVxy4EhBXPOJOwOGOx+GKR9yJuOLicboTcMUn4opLJC4+Hne8B3d8AnHxScQnJBAXl0C803FAM0qlBkJKgpvVrhJG18XOQBden58dWzdSs20t3j0bcNZtIbFpO8ltu8kOVpBJwz59TENGqJYM6l1ZtCbmsT1hCmWeHCRlBHFpeSRkjCQlaxRpOQV4UjLIFCEzaq+ulxwOHHEJxMclED/wFaRKKaUGAU2wDqLsg6c45ov/Yw9ZbEg/Hse4kyk64nRGjSpiaFRQRkdqkofUklKgNNqhKDUo1aRNYVbNo+Cth4SeNnCLrlDIsKuiiorNK2jZsQqpWkdCYxmZ3h2MCu1mnPg79vUaN3uceTTE57HJM5kNqfm4MkaTnFtExsgxZI0sIccdT04UX49SSinVXzTBOogJp17G9iPPoGDsVHIdOiezUipCimfjrPknlZ8vJOfIA2uBo62mrp7tG5ZTX7aSUMVakurXM7KtjAKppMDep8242e0aRX3SaFannYQrZyypoyaQVTSJ1JzRFOnfTKWUUsOUJlgHkZEzkoyckdEOQykVYyYedQrepW5qVrwc9QSroqaOss8/pWnLp7grVpLXtJYSs4Pp9mANfpzschVSmzmD6uzDSMyfQtaY6WTmj6fIqf+EKKWUUvvTfx2VUmqAleRlsdB1FEfseBWCARigRKWytoGyNZ/QuHkJ7j0ryG1eS0loOyPsCcxrJY3dSYexMuerJBRMJ3fsDDILD6PIFTcg8SmllFKxQBMspZQaYCJC84RzSVvzIXs+WUDuly6K+Dmq6xvZsmYxDZsW49qzgtymNZSEtnGUnUzVSwq7PBP5POfLJJXMJH/Sl8jIHk3GUB75VCmllBoEZP9J3qJp5syZZsmSJdEOQyml+l1FQwsNf5hJqtuQc/MSJC7pkMuqrW9ky9ol1G9ajHPPSkY0rqEktJV4CQDQQDK7PIfhzZmKp3gm+ZOPIymnOLYnq1VKKaX6mYgsNcbM3H+91mAppVQUjEj18NGMW5iz4r/Z9Ne5jLnqUSQx46DHGGOorK5h58blNGxegnP3CnIa11IS2soRds1UE0ns9ExgbfZFeIqPYtSkY0jNHUeqJlNKKaXUgOhTgiUiC4AJ9mI6UGeMmSEixcBaYJ297WNjzNV9OZdSSsWas+bM5enda/nG7j9Te/vhbCucg6vwCIhPIxgK0lJfRaC+HEfDDpIaNpHr28pIqhlhH99AMjs9E/g8+3g8RUcyauKxpIwczwRNppRSSqmoiVgTQRH5A1BvjLnNTrBeNMZM6U0Z2kRQKTXcGGN4++3XSP/od0zzr8Rt10SFayWeclch9cljMNmlePInMbJ0FmmjxmkzP6WUUipK+rWJoIgIcD5wSiTKU0qp4UJEOPXU0+HU06muqWZP2VrE34wgpGbmkJk7msSUTMZoIqWUUkoNCZHqg3U8sMcYsyFsXYmIfAY0AL80xrzf2YEichVwFcDo0aMjFI5SSg09WZlZZGXOjnYYSimllOqDbhMsEXkTyOtk0y+MMc/bzy8E5odtKwdGG2OqReRI4DkRmWyMadi/EGPM/cD9YDUR7O0LUEoppZRSSqnBotsEyxjz5YNtFxEX8E3gyLBj2oA2+/lSEdkElALawUoppZRSSikVsxwRKOPLwBfGmB3tK0QkR0Sc9vMxwHhgcwTOpZRSSimllFKDViT6YF3Avs0DAU4AbhMRPxACrjbG1HRX0NKlS6tEZGsEYoqkbKAq2kGoAaPv9/Ch7/Xwoe/18KLv9/Ch7/XwMhjf76LOVkZsmPZYJSJLOht+UcUmfb+HD32vhw99r4cXfb+HD32vh5eh9H5HoomgUkoppZRSSik0wVJKKaWUUkqpiNEEq3v3RzsANaD0/R4+9L0ePvS9Hl70/R4+9L0eXobM+619sJRSSimllFIqQrQGSymllFJKKaUiRBMspZRSSimllIoQTbAOQkROF5F1IrJRRH4a7XhU5IhIoYi8IyJrRORzEbnOXp8pIm+IyAb7/xnRjlVFhog4ReQzEXnRXi4RkU/s7/cCEYmLdowqMkQkXUSeEpEvRGStiByr3+3YJCI32H/DV4vIfBFJ0O927BCRf4hIhYisDlvX6XdZLHfZ7/tKETkiepGr3urivf69/Xd8pYg8KyLpYdt+Zr/X60TktKgEfRCaYHVBRJzAvcAZwCTgQhGZFN2oVAQFgB8bYyYBxwDft9/fnwJvGWPGA2/Zyyo2XAesDVv+f8CdxphxQC3wX1GJSvWHPwOvGmMOA6Zjve/63Y4xIpIP/BCYaYyZAjiBC9Dvdix5GDh9v3VdfZfPAMbbj6uAvw5QjCoyHubA9/oNYIoxZhqwHvgZgH2/dgEw2T7mL/Z9+6ChCVbXZgEbjTGbjTE+4AlgTpRjUhFijCk3xiyznzdi3YDlY73H/7R3+yfwjagEqCJKRAqArwN/t5cFOAV4yt5F3+sYISJpwAnAgwDGGJ8xpg79bscqF5AoIi7AA5Sj3+2YYYx5D6jZb3VX3+U5wCPG8jGQLiIjByRQ1WedvdfGmNeNMQF78WOgwH4+B3jCGNNmjNkCbMS6bx80NMHqWj6wPWx5h71OxRgRKQYOBz4Bco0x5fam3UButOJSEfUn4GYgZC9nAXVhf7j1+x07SoBK4CG7SejfRSQJ/W7HHGPMTuAOYBtWYlUPLEW/27Guq++y3rfFtiuAV+zng/691gRLDWsikgw8DVxvjGkI32asOQx0HoMhTkTOBCqMMUujHYsaEC7gCOCvxpjDgWb2aw6o3+3YYPe9mYOVVI8CkjiwiZGKYfpdHh5E5BdYXTsej3YsPaUJVtd2AoVhywX2OhUjRMSNlVw9box5xl69p71Jgf3/imjFpyLmOOBsESnDaup7ClYfnXS7WRHo9zuW7AB2GGM+sZefwkq49Lsde74MbDHGVBpj/MAzWN93/W7Htq6+y3rfFoNE5HLgTOAis3fy3kH/XmuC1bXFwHh7NKI4rM50L0Q5JhUhdh+cB4G1xpg/hm16AbjMfn4Z8PxAx6YiyxjzM2NMgTGmGOt7/LYx5iLgHeA8ezd9r2OEMWY3sF1EJtirTgXWoN/tWLQNOEZEPPbf9Pb3Wr/bsa2r7/ILwKX2aILHAPVhTQnVECQip2M17z/bGNMStukF4AIRiReREqyBTT6NRoxdkb3JoNqfiHwNq++GE/iHMeY30Y1IRYqIzAbeB1axt1/Oz7H6YT0JjAa2AucbY/bvYKuGKBE5CbjRGHOmiIzBqtHKBD4DLjbGtEUxPBUhIjIDa0CTOGAz8B2sHxT1ux1jROTXwFys5kOfAVdi9cXQ73YMEJH5wElANrAHuBV4jk6+y3aSfQ9WM9EW4DvGmCVRCFsdgi7e658B8UC1vdvHxpir7f1/gdUvK4DVzeOV/cuMJk2wlFJKKaWUUipCtImgUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoNEiJSLCJGRFzRjiXWicjlIrIo2nEMNiJyvIisi3YcSik1lGmCpZRSakgTkXki4heRprDHzdGOaygyxrxvjJkQ6XJFxCki/ysiu0SkUUQ+E5H0SJ9HKaUGA/2VVCmlIkREXMaYQLTjGKYWGGMujnYQ/SUGPlu/Br4EHAtsAyYD3qhGpJRS/URrsJRSqg9EpExEfiIiK4FmEXGJyDEi8qGI1InIChE5KWz/hSLyfyLyqYg0iMjzIpLZRdnfEZG19i/+m0Xkv/fbPkdEltvlbBKR0+31aSLyoIiUi8hOu+bA2c3rGCsib4tItYhUicjj7TUM9rYaETnCXh4lIpXtr0tEzhaRz+3Xu1BEJu53fW4UkZUiUi8iC0QkofdXuvdE5Kf2dWkUkTUick4X+4mI3CkiFfa1XCUiU+xt8SJyh4hsE5E9InKfiCT28PwP2/u/YcfwrogUhW3/s4hst8+5VESOD9s2T0SeEpHHRKQBuFxEZonIR/Z1LheRe0QkLuwYIyLfE5EN9vn+x37vPrTP8WT4/l3EfJKI7OjJ6+spEckArge+a4zZaiyrjTGaYCmlYpImWEop1XcXAl8H0oFc4CXgf4FM4EbgaRHJCdv/UuAKYCQQAO7qotwK4EwgFfgOcGdYkjMLeAS4yT7vCUCZfdzDdrnjgMOBrwJXdvMaBPg/YBQwESgE5gEYYzYBPwEeExEP8BDwT2PMQhEpBeZj3UDnAC8D/9nvRv584HSgBJgGXN5pACKz7eShq8fsbl7D/jYBxwNpWDUoj4nIyE72+yrW9Su19z0fqLa3/c5ePwPreuYDt/QihouA/wGygeXA42HbFtvlZgL/Av69X/I5B3gK6/19HAgCN9hlHQucCnxvv/OdBhwJHAPcDNwPXIz1fk7B+qweMjtR7ur9+UsXh03F+jyeJyK7RWS9iHy/L3EopdSgZozRhz70oQ99HOIDK6m5Imz5J8Cj++3zGnCZ/Xwh8LuwbZMAH+AEigEDuLo413PAdfbzvwF3drJPLtAGJIatuxB4p5ev6xvAZ/utewFYBawE4u11vwKeDNvHAewETgq7PheHbb8duC/C78E8+xrWhT1GdbLfcmCO/fxyYJH9/BRgPVZS4gjbX4BmYGzYumOBLT2M62HgibDlZKwkqbCL/WuB6WGv6b1uyr8eeDZs2QDHhS0vBX4StvwH4E/dlHkSsCPC78+37dgeBBKxkuxK4CuRPI8+9KEPfQyWh9ZgKaVU320Pe14EfCv8l31gNlZtVWf7bwXcWLUS+xCRM0TkY7t5Xh3wtbD9CrFqaPZXZJdXHnb+vwEjDvYCRCRXRJ6wmxQ2AI91EtMDWLUgdxtj2ux1o+zXAIAxJmS/vvyw43aHPW/BSjQi7UljTHrYY5eIXCpWE8r26zCFTq6zMeZt4B7gXqBCRO4XkVSsGjkPsDSsjFft9T3V8V4bY5qAGqxrht10cq3ddLIOq/Ysu7Nj7f1LReRFuxaoAfhtJ69nT9jz1k6W++Pad6fV/v9txphWY8xK4Amsz7NSSsUcTbCUUqrvTNjz7Vg1WOE3+0nGmN+F7VMY9nw04AeqwgsUkXjgaeAOINcYk47V/E7CzjO2k1i2Y9VgZYedP9UYM7mb1/Bb+3VMNcakYjUraz8XIpIM/AmrFmKe7O03tgsrqWvfT+zXt7Ob8x1ArCHCmw7yOL77UjrKKsJKCK8Fsuzrtzr8NYUzxtxljDkSq0axFKvpZRVWcjA57FqmGWN6k6R0vNf2NcwEdtmv5Was5ogZdnz1+8UX/rkC+CvwBTDefo9+3tXr6S9i9bXr6v25r4vDVtr/D389+782pZSKGZpgKaVUZD0GnCUip4k1NHWCPXBAQdg+F4vIJLs/023AU8aY4H7lxAHxWE2pAiJyBlZfoXYPAt8RkVNFxCEi+SJymDGmHHgd+IOIpNrbxorIid3EnQI0AfUiko+VYIT7M7DEGHMlVh+z9pvpJ4Gv23G4gR9jJXgfdneh9mesIcKTD/J4vxfFJWHdxFeCNWAIVg3WAUTkKBE52o6/GWt0u5BdG/cAVt+3Efa++SJyWtixRsIGMenE1+y+ZXFYfbE+NsZsx7reATs+l4jcgtXX7mBSgAagSUQOA67pZv+IM8ZMPsj7c3UXx2wC3gd+IdagIROBC4AXBzJ2pZQaKJpgKaVUBNk3z3OwahcqsWqUbmLfv7ePYvXP2Q0kAD/spJxGe/2TWH1zvo3VB6p9+6fYA19g1Xy8y96apEuxErQ19rFPsW8Txc78GjjCLusl4Jn2DSIyB2uQivYb+h8BR4jIRcaYdVi1XXdj1ficBZxljPF1c75+ZYxZg9Xn6COsZnJTgQ+62D0VK5GqxWruWA383t72E2Aj8LHdLO9NYAKAiBQCjVj90rryL+BWrKaBR2JdK7D65b2K1fdrK1ZSt72zAsLciPU5aLTjXdDN/oPJhVifz2qsz9evjDFvRTckpZTqH2KM1tIrpdRAEZGFwGPGmL9HOxbVNyJyMVbzwZ91sf1hrAEjfjmggSmllIoqnWhYKaWUOgTGmMeiHYNSSqnBJ2JNBO2+Bp+JyIv2comIfCIiG8WaWPKgkxsqpZTqX2JNetubwQlUDBKRn3fxOXgl2rEppVQsiFgTQRH5ETATSDXGnCkiTwLPGGOesP/xXmGM+WtETqaUUkoppZRSg1BEarDs0bG+DvzdXhasiRufsnf5J9aklUoppZRSSikVsyLVB+tPWPN5pNjLWUCdMSZgL+9g30knO4jIVcBVAElJSUcedthhEQpJKaWUUkoppfrH0qVLq4wxB0w+3+cES0TOBCqMMUu7mQukU8aY+4H7AWbOnGmWLFnS15CUUkoppZRSql+JyNbO1keiBus44GwR+RrWfC6pWBNSpouIy67FKgB2RuBcSimllFJKKTVo9bkPljHmZ8aYAmNMMdbM7G8bYy4C3gHOs3e7DHi+r+dSSimllFJKqcEsYsO0d+InwI9EZCNWn6wH+/FcSinVb3bVtfLyqnJ0YnallFJKdSeiEw0bYxYCC+3nm4FZfS3T7/ezY8cOvF5vX4tSw0xCQgIFBQW43e5oh6KGuFsfeYUzKx/gs9DvOGL69GiHo5RSSqlBLKIJVn/YsWMHKSkpFBcXY43+rlT3jDFUV1ezY8cOSkpKoh2OGsKMMYzas5A57g+pfuVSmL4i2iEppZRSahDrzyaCEeH1esnKytLkSvWKiJCVlaU1n6rPmn1BimU3AGne7eBvjXJESimllBrMBn2CBWhypQ6Jfm5UJFQ1tjFWdgHgIkhol9ZgKaWUUqprQyLBUkqpaKlsamOsYxdrE48AoGHz4ihHpJRSSqnBTBOsHhARfvzjH3cs33HHHcybNy96AYX5+OOPOfroo5kxYwYTJ07siGvhwoV8+OGHfSr79NNPJz09nTPPPDMCkSo1NFU2eMmhDn/udBpMIs3l66IdklJKKaUGMU2weiA+Pp5nnnmGqqqqiJZrjCEUCvWpjMsuu4z777+f5cuXs3r1as4//3wgMgnWTTfdxKOPPtqnMpQa6uoam4iTICNycigzeZiqjdEOSSmllFKD2KAfRTDcr//zOWt2NUS0zEmjUrn1rMkH3cflcnHVVVdx55138pvf/GafbZWVlVx99dVs27YNgD/96U8cd9xxzJs3j+TkZG688UYApkyZwosvvgjAaaedxtFHH83SpUt5+eWXueeee3jllVcQEX75y18yd+5cFi5cyLx588jOzmb16tUceeSRPPbYYwf0K6qoqGDkyJEAOJ1OJk2aRFlZGffddx9Op5PHHnuMu+++m8MOO6zLODdt2sTGjRupqqri5ptv5rvf/S4Ap556KgsXLjzotfn3v//Nr3/9a5xOJ2lpabz33nt4vV6uueYalixZgsvl4o9//CMnn3wyDz/8MM899xzNzc1s2LCBG2+8EZ/Px6OPPkp8fDwvv/wymZmZPPDAA9x///34fD7GjRvHo48+isfj2ee8xxxzDA8++CCTJ1vv3UknncQdd9zBzJkzDxqvUr0V8lp/c9LSs/jMMYqCps1RjkgppZRSg5nWYPXQ97//fR5//HHq6+v3WX/ddddxww03sHjxYp5++mmuvPLKbsvasGED3/ve9/j8889ZsmQJy5cvZ8WKFbz55pvcdNNNlJeXA/DZZ5/xpz/9iTVr1rB582Y++OCDA8q64YYbmDBhAueccw5/+9vf8Hq9FBcXc/XVV3PDDTewfPlyjj/++IPGuXLlSt5++20++ugjbrvtNnbt2tXj63Lbbbfx2muvsWLFCl544QUA7r33XkSEVatWMX/+fC677LKO0fxWr17NM888w+LFi/nFL36Bx+Phs88+49hjj+WRRx4B4Jvf/CaLFy9mxYoVTJw4kQcfPHCO6rlz5/Lkk08CUF5eTnl5uSZXql8EWxsBcCem0ugZTbpvDwR8UY5KKaWUUoPVkKrB6q6mqT+lpqZy6aWXctddd5GYmNix/s0332TNmjUdyw0NDTQ1NR20rKKiIo455hgAFi1axIUXXojT6SQ3N5cTTzyRxYsXk5qayqxZsygoKABgxowZlJWVMXv27H3KuuWWW7jooot4/fXX+de//sX8+fM7rXU6WJxz5swhMTGRxMRETj75ZD799FO+8Y1v9Oi6HHfccVx++eWcf/75fPOb3+x4TT/4wQ8AOOywwygqKmL9+vUAnHzyyaSkpJCSkkJaWhpnnXUWAFOnTmXlypWAlYT98pe/pK6ujqamJk477bQDznv++efz1a9+lV//+tc8+eSTnHfeeT2KV6le81k1WM7EFNpSS3C0hKC2DHJKoxuXUkoppQalIZVgRdv111/PEUccwXe+852OdaFQiI8//piEhIR99nW5XPv0rwqfjykpKalH54uPj+947nQ6CQQCne43duxYrrnmGr773e+Sk5NDdXX1Aft0FSccOJx5b4Y3v++++/jkk0946aWXOPLII1m6dOlB9w9/TQ6Ho2PZ4XB0vL7LL7+c5557junTp/Pwww93mjDm5+eTlZXFypUrWbBgAffdd1+PY1aqV9qsGiyJT0Wyx8BuCFZtwKkJllJKKaU6oU0EeyEzM5Pzzz9/nyZrX/3qV7n77rs7lpcvXw5AcXExy5YtA2DZsmVs2bKl0zKPP/54FixYQDAYpLKykvfee49Zs2b1OKaXXnoJYwxgNT10Op2kp6eTkpJCY2Njt3ECPP/883i9Xqqrq1m4cCFHHXVUj8+/adMmjj76aG677TZycnLYvn07xx9/PI8//jgA69evZ9u2bUyYMKHHZTY2NjJy5Ej8fn9HOZ2ZO3cut99+O/X19UybNq3H5SvVG2InWMSn4MmzPscNO3UkQaWUUkp1ThOsXvrxj3+8z2iCd911F0uWLGHatGlMmjSpoybl3HPPpaamhsmTJ3PPPfdQWtr5r93nnHMO06ZNY/r06Zxyyincfvvt5OXl9TieRx99lAkTJjBjxgwuueQSHn/8cZxOJ2eddRbPPvssM2bM4P333+8yToBp06Zx8sknc8wxx/CrX/2KUaNGAVby961vfYu33nqLgoICXnvtNcBqltje3+qmm25i6tSpTJkyhS996UtMnz6d733ve4RCIaZOncrcuXN5+OGH96m56s7//M//cPTRR3Pcccdx2GGHdax/4YUXuOWWWzqWzzvvPJ544omOkROV6g8Ov93kNz6V3LxR1Jkk2vasj25QSimllBq0pL3245ALECkEHgFyAQPcb4z5s4hkAguAYqAMON8YU3uwsmbOnGmWLFmyz7q1a9cyceLEPsWourb/aIexRj8/qq+euPdWLqj8E/x4Pdt8KdT++ThGjMhj5LWvRDs0pZRSSkWRiCw1xhwwylokarACwI+NMZOAY4Dvi8gk4KfAW8aY8cBb9rJSSg0pzkB7DVYKI9MT2GFyiG/aHt2glFJKKTVo9XmQC2NMOVBuP28UkbVAPjAHOMne7Z/AQuAnfT2fiqx58+ZFOwSlBjW3v4kgDpzuRNwi1MaNIrVtGYRC4NBW1koppZTaV0TvDkSkGDgc+ATItZMvgN1YTQg7O+YqEVkiIksqKysjGY5SSvWZK9iCVxLBHl2zLTkfl/FD0+4oR6aUUkqpwShiCZaIJANPA9cbYxrCtxmro1ennb2MMfcbY2YaY2bm5OREKhyllIoIV9CL37F3kBaTVmQ9qd0apYiUUkopNZhFJMESETdWcvW4MeYZe/UeERlpbx8JVETiXEopNZCcoTb8jr3zx8XnlADgqy6LUkRKKaWUGsz6nGCJNSvtg8BaY8wfwza9AFxmP78MeL6v51JKqYHmCrURDKvBSh05BoDG3RujFZJSSimlBrFI1GAdB1wCnCIiy+3H14DfAV8RkQ3Al+3lIeu5555DRPjiiy+63KesrIwpU6ZE7Jzr1q3jpJNOYsaMGUycOJGrrroKsCYJfvnll/tU9hVXXMGIESMiGq9SscgdaiMQlmDlZ2ewx6Tjq+x88nCllFJKDW99TrCMMYuMMWKMmWaMmWE/XjbGVBtjTjXGjDfGfNkYUxOJgKNl/vz5zJ49m/nz53e6PRAI9PkcwWBwn+Uf/vCH3HDDDSxfvpy1a9fygx/8AIhMgnX55Zfz6quv9qkMpYYDt2kj5NzbRLAw08MOk4PUb4tiVNFX1dTGxX//hNc+18E+lFJKqXB9HqZ9QL3yU9i9KrJl5k2FMw5eudbU1MSiRYt45513OOuss/j1r38NwMKFC/nVr35FRkYGX3zxBa+//jqBQICLLrqIZcuWMXnyZB555BE8Hg9vvfUWN954I4FAgKOOOoq//vWvxMfHU1xczNy5c3njjTe4+eabueCCCzrOW15eTkFBQcfy1KlT8fl83HLLLbS2trJo0SJ+9rOfceaZZ/KDH/yA1atX4/f7mTdvHnPmzOHhhx/m2Wefpb6+np07d3LxxRdz6623AnDCCSdQVlZ20Nf97rvvct111wEgIrz33nskJydz880388orryAi/PKXv2Tu3LksXLiQW2+9lfT0dFatWsX555/P1KlT+fOf/0xrayvPPfccY8eO5T//+Q//+7//i8/nIysri8cff5zc3H0HmLzgggu45JJL+PrXvw5YyeCZZ57Jeeed17P3VKkIMcYQZ3yEXCkd63KS4/mEEYxt3hzFyKLvuc92clTZfRyz43WM5wmk5PhohxQ1jV4/TofgiRta/6QqpZTqHzqJSw88//zznH766ZSWlpKVlcXSpUs7ti1btow///nPrF+/HrCa9X3ve99j7dq1pKam8pe//AWv18vll1/OggULWLVqFYFAgL/+9a8dZWRlZbFs2bJ9kiuAG264gVNOOYUzzjiDO++8k7q6OuLi4rjtttuYO3cuy5cvZ+7cufzmN7/hlFNO4dNPP+Wdd97hpptuorm5GYBPP/2Up59+mpUrV/Lvf/+bJUuW9Ph133HHHdx7770sX76c999/n8TERJ555hmWL1/OihUrePPNN7npppsoL7dG41+xYgX33Xcfa9eu5dFHH2X9+vV8+umnXHnlldx9990AzJ49m48//pjPPvuMCy64gNtvv/2A886dO5cnn3wSAJ/Px1tvvdWRbCk1kHzBEAnsW4PlcAj18aNIadsDwb7XXA9Vn26p4XTHp6TRRPOi+6IdTtS0BYKc/qf3ufqPj+Pb1vO/r7HohgXLufiBD/HvivAPoUPMb15aw6X/+BRfVRm0NUU7HKVUFAytn9u6qWnqL/Pnz++oybnggguYP38+Rx55JACzZs2ipKSkY9/CwkKOO+44AC6++GLuuusuvvKVr1BSUkJpaSkAl112Gffeey/XX389YCUUnfnOd77Daaedxquvvsrzzz/P3/72N1asWHHAfq+//jovvPACd9xxBwBer5dt26zmS1/5ylfIysoC4Jvf/CaLFi1i5syZPXrdxx13HD/60Y+46KKL+OY3v0lBQQGLFi3iwgsvxOl0kpuby4knnsjixYtJTU3lqKOOYuTIkQCMHTuWr371q4BV8/bOO+8AsGPHDubOnUt5eTk+n2+fa9fujDPO4LrrrqOtrY1XX32VE044gcTExB7FrFQkeX0hEvARciXss74tuQBnbQgadkJGUZSii649lZWMd+wEwL190bCdeHnxllqq6+r4IOGH8A/g2iWQPT7aYQ247TUtPPvZTi52voH7/ofgK/8Dx/0w2mENuOa2AA+8v4U4/MTd8xWIS4GbNoI7ofuDlVIxY/j9a9hLNTU1vP3221x55ZUUFxfz+9//nieffBJrai9ISkraZ3+xJyPtarkz+5cRbtSoUVxxxRU8//zzuFwuVq9efcA+xhiefvppli9fzvLly9m2bRsTJ0485Hja/fSnP+Xvf/87ra2tHHfccQcd4AMgPn7vQAAOh6Nj2eFwdPRR+8EPfsC1117LqlWr+Nvf/obX6z2gnISEBE466SRee+01FixY0GUCqlR/8waCJIgfXPsl+Omjrf/XDc+5sIwxJNetxYHhxdCxxPvqoHpDtMOKinV7GpkqYQOerHslesFE0bJttQCc7vjUWrH471GMJnrar8Nsh12L52uEze9EMSKlVDRogtWNp556iksuuYStW7dSVlbG9u3bKSkp4f333+90/23btvHRRx8B8K9//YvZs2czYcIEysrK2LjRGtb50Ucf5cQTT+z23K+++ip+vx+A3bt3U11dTX5+PikpKTQ2Nnbsd9ppp3H33Xd3JH2fffZZx7Y33niDmpqajn5Q7bVrPbFp0yamTp3KT37yE4466ii++OILjj/+eBYsWEAwGKSyspL33nuPWbNm9bjM+vp68vPzAfjnP//Z5X5z587loYce4v333+f000/vcflKRZLXHyQB3wG/PsfnWEO1t1UNz5EEq5p8JAfrAdiQbH//K9ZGMaLo2VrdzKx463NQ50iHTW9HN6AoKatqwUmQo53rCOKwfnyo3xHtsAbc2vIGAM5MDZvGYdtHUYpGKRUtmmB1Y/78+Zxzzjn7rDv33HO7HE1wwoQJ3HvvvUycOJHa2lquueYaEhISeOihh/jWt77F1KlTcTgcXH311d2e+/XXX2fKlClMnz6d0047jd///vfk5eVx8skns2bNGmbMmMGCBQv41a9+hd/vZ9q0aUyePJlf/epXHWXMmjWLc889l2nTpnHuued2NA+88MILOfbYY1m3bh0FBQU8+OCDANx3333cd5/Vn+JPf/oTU6ZMYdq0abjdbs444wzOOeccpk2bxvTp0znllFO4/fbbycvL6/H1nDdvHt/61rc48sgjyc7O7li/ZMkSrrzyyo7lr371q7z77rt8+ctfJi4ursflKxVJrR0Jlmef9Wl5xQSN0LR7U5Qii67aFh8ZYvUtac6bSQiByoPXcMeqLVXNHB5fTr0rm4XmCNhzYCuD4WBXXSsTk5txE+Df5lRr5baPoxtUFOyq85IS72JSYh0bTT6hgqOG5XVQariT9lqPwWDmzJlm/0EY1q5d29HcTfXOww8/zJIlS7jnnnuiHUrU6OdH9cXybbXM+EcxWyZ/n5Jv/bZj/dKtteT+Yyau4uPI+84jUYwwOhaX1fD2Az/jJ+4nuOuY9zn7w/MYPfkYHHOH37U4+Y6F3GX+j5GOev5SM5Nb3I/CjRsgeUS0QxtQlzz4CfmNK/hd3U1c6fsxD8TfiRx/I5zyi2iHNqCuemQJZdXNPMlPWV7jZvq06WRsfB5+uhV60URfKTU0iMhSY8wBgxtoDZZSSnWhra0VAId73z5YhRmJ7DTZw3YurLoWP+nSSMgZT35OJhvNKPwVw7MPVnVTG+mmAUdSFmuN3TdvGNZi7aprpTTe6n+0xeTh9eQPy355u+pbGZmWSLK3nB0mm92uAmirh+bKaIemlBpAmmDFsMsvv3xY114p1Vc+rzXdgSNu3wQrOzmenYwgsXn49TEBqG/1k0EToYRMirM9bDcjcNZvhUHUImIgBEOGBm+AlFAD8ak5bAxZ/UupGn6Jxe56L0XOGgB2mSyqEkZD1cZujoo9u+vbKEoO4WqrZafJYaOxRtalevhdC6WGsyGRYA2mZoxq6NDPjeqrgJ1gOeP27YPlcAgNCfkk+6sg0BaN0KKqzu6DJZ5MRmcmsc2MwBVohpaaaIc2oBparUGIEgN1JKaPoMGVgc+RCDXDa/CTtkCQZl+QXFOJSczAFZ/MDke+lVSEQtEOb8AYY6hr8THaXQdAU0Iuq7051sZhmHQrNZwN+gQrISGB6upqvVlWvWKMobq6moQEnXtEHbqAtwUAV/yB87C1JefjwAzLkdIaWq0mgo6kTLKT46hw2r/S15ZFNa6BVtviw0WA+EATjqRsRmcmscc1Emo2Rzu0AVVvJ5opoXokaQRF2R7WBfIg0GrNFTdMNLUFCIQMOU7rh5mEtByW1yeDM35YNpdUajjr94mGReR04M+AE/i7MaZXswUXFBSwY8cOKiu1/bLqnYSEBAoKCqIdhhrC/G3tCZbnwI3pxVCDlVRkjR3IsKKurtVPtqMJ8UwEEQLpRdAA1G6BgiOjHd6AqbObSgLgyWR0poetO/MorB1eNVj1LVaClRRsgMQMihKTWL7Nrrmp3gDphVGMbuDU2dchy2ElWCkZuWza6rX+PlQPzxFHlRqu+jXBEhEncC/wFWAHsFhEXjDGrOlpGW63m5KSkv4KUSmluhT0WQlWXMKBk4En5JTAZmirKiN+3EBHFl3tfbBIzAQgPrtkb4I1jFhNJe05CT1ZFGZ6WL8lm+NqlyChIDic0Q1wgNR1NJVsAM8YijM9PLs6E+Kw+mGNPSW6AQ6Q9gQrHeszkZWTR9XnjfjHjMFdtS6aoSmlBlh/NxGcBWw0xmw2xviAJ4A5/XxOpZSKiKDPC4C7kxqsjJFF+IyT5j3D75fp+uY2UmgCj5VgjczJZI/JIFRTFt3ABlhdi5/M9gQrMZPCTA8bAjlI0Desmsa1JxZx/jpIzKQoK4ldoXRC7uRh1TSurtUHQJqdYI0YYc0RWecpsn58CPqjFptSamD1d4KVD2wPW95hr1NKqUEvZNdguTupwSrITGaXycZfPbxqbQD8LXU4CXXUYBVlJrHN5OCvHF7JZl2Lnwz21mCNzvSw1eRay8NooIu6FiuxcHrrwJNBcVYSIDQnjx5W16E2vKmkw8WoXGsutHLnKAgFoH77wQ5XSsWQqA9yISJXicgSEVmi/ayUUoOJ8dnzYMUdOMhFQUYi200OjuF409RqzXfUXoM1OtPDNjNi2A1yUdfi21uD5cmiMDORraH2BGv4DHRR3+ongTYcQa/VByvLqvGtiRs1rJqN1tuJZqLdF210lvXDzJagPen0MPt+KDWc9XeCtRMI791aYK/rYIy53xgz0xgzMycnp5/DUUqpnjN+K8HCfWCClZMcT7kMz7mwnF57OPbEvQnWdjOCuJbdw2rY+rpWPyPjrFpOPJkUZngoJ4uguIdVglXX4u8Y2IHETEakxBPvcrBT8qBuG4SC0Q1wgLQ3lYz31UNiJikJbjKT4ljblmXtMIxq85Qa7vo7wVoMjBeREhGJAy4AXujncyqlVER0JFiuA4f7FxEaEkaRHKgFuynhcGCMwd1WZy2098FKT2A7eQgG6oZPjV5di588ZxPEpYArnqR4F5nJCVTHjRxWtRV1rT4KE6z+ingyERFGZ3rYFMiBoA8adkU3wAFS2+InKc6Jw1vb8d0ozPTweYPHGqp9GH0mlBru+jXBMsYEgGuB14C1wJPGmM/785xKKRUxAfumsZMaLABfil1BX7dtgAKKvqa2AKlmb7M4ALfTQYvHnhJhGDUJq23xke1s7riZBijI8LBLcofVzXRti5/8ePvHiLBazc9b7ZqbYfKZqGv1ke6JsybcTswAoCjTQ1ltK2QUDavPhFLDXb/3wTLGvGyMKTXGjDXG/Ka/z6eUUpHiCHRdgwUgGUXWk7qtAxRR9NW1+MkQe+4n+yYSQDKLrSfD6CayvtVPljR2JJpgJRabAznWdTAmesENoPoWP3nu9gTL+kwUZnpY1phmrRsmTePqWvyke9zQWrNPormrzksovWjYJJpKqUEwyIVSSg1W0k0NVmLOGADaqobPjVN9q590acTggIT0jvWp2QV4iRs2N9Ng3VCncWCCtdabCW0NewcDiXF1rT5GuPf2RQPrOmzypWMcrmGTdNe1+OwEqxY8VqI5OstDMGRo8hRC7dZhk3QrNdxpgqWUUl1wBNsI4Opywtis3AK8xk3znuEzoEH7JMOB+DRw7P0npDAriW2hHALDaHCH2hYfKaGGfRKswsxEykLto8YNj2SzrsVPtmPfWs3RmR6COGlLLhg+16HVT05CyGpaHFaDBVDpHmkl3S010QxRKTVANMFSSqkuOIJefBLX5faCTA87TA7+YVaDlSFNhBIy9llfaM8BFRwm1yIQDNHoDZAUrN8vwbKHrIdhU3NT3+InU5rAldhR2zvaHqq9PqFg2NRq1rX4GbVfTV77kPXbh9lnQqnhThMspZTqgjPoxe+I73J7cVYS200OzobhNXJeOo1I2MAOsHeodmfDtmHRDKq+1U88PuKCLfsMctF+HYBhcTPtD4ZobAuQxr6DfRRmWIlFhTNvWNRgGWOob/WT255g2TV5uSkJxLkcbPDZ09AMg2uhlNIESymluuQKtRFwdD7ABUC6x02FMxdPy/CZC6u9BsuZlLXP+vbJhl2BFmiuilJ0A6eu1U86drO4sBqskWmJ+ByJNLszhkWC1dBqzf2UYho6msUBJMY5yUmJZ6sZAd76mO+P1uANEAwZsp3tCZZ1LRwOoTAjkZXN6dZ6TbCUGhY0wVJKqS5YCVbXNVgiQqunAE+w0bqJHAbqWn1kSBOOpH1rsDI8bipco6yFYXATWdfiJ1P2Ha4ewOkQCjM97HGOGhZN4+rsBMsTbOgY2KHd6EwPX7RlWwsxfi3q7UmGM9snXN6vVnNTXQiS84ZF0q2U0gRLKaW65Aq1EXR2XYMFEEofbT0ZJnNhNdg1WOLZtwZLRAik2cPWD4ObyLoWHxmdJFhg3VBvDeVYo8bFuDo7sUgI1O8zbD9Y12FFs51oxHjSXdviAyC9fY64sNq8oqwkttW0YDKKoaZs4INTSg04TbCUUqoTxhjcpo2Qs+saLID47GIA/NWxfQPZrrm5mUTaDriZBnBnDqcEy08m7QnWvrV5RVke1vmyMA07IOCLQnQDp77Ven1xvvp9kgponwsr1VqI8Rqs9pq8VBqsFWHfj8JMD01tAXwpo4fFd0MppQmWUkp1yusPkYAP4+p8Dqx2aaPGA1Bfvmkgwoq6YHO19WS/pAJgZHYGu00mZhgM1V7X6u+yBqsoK4mN/mzEhKA+tgdAsWqwDK62ugM+E6MzPTSbBAKJOTFfg1Vn12AlBRvA7QH33prvInuo9pr4UdCwEwJtUYlRKTVwNMFSSqlONPsCJNKG6WKS4XYj80bRaBJp3TM8EqyOeXwSD0ywRmd52GpGDIth6+tafGS1J1j71eYVZXrYGsq1FmK8xqK2xU8qLYgJHvCZaJ8DqjmpMOabS+5tKtlw4HWwh2rfJXmAGTbNiZUazjTBUkqpTrT6giTjJeROPuh+xdlJlJlcGAa1NgCO9tHgOqnBKmwfojzGkwqwbqjzXM2QkAZO9z7birPD58KK7WTT6ou27yTD7doTrKq42B/wo70PVpyv7oDBPtqHrN8cbB+qvWwAI1NKRYMmWEop1YkWXxCPeJG4gydYmUlxbHeMIqkxtm8g27na7ASrkxqswgwPW0MjiGvZDf7WAY5sYNW1+slxNR/QPBCgIMNDpaQTkLiYv5muafZRmGg3edsv6R6REk+8y8FO8mK+aVxdi5+UeJf1A8R+343EOCcjUuJZ22qvj/FkUynVxwRLRH4vIl+IyEoReVZE0sO2/UxENorIOhE5rc+RKqXUAGrxBUjGC/EHT7BEhPrEItJ9u2P6BhLA6w+SGLQ78XdSg1WQkbi35ibGm0F1NBHsJMFKcDvJS/VQ7Y79YbnrWvwUxNvJ9H6JhcMesn5jIBswMd1MsK7FR3qSG1prOv1uFGV5WN2QYPXPivHPhFKq7zVYbwBTjDHTgPXAzwBEZBJwATAZOB34i4g4+3gupZQaMK1eL/Hix5Fw8AQLoC2tBAehmL9xqmvxk86Bw1C3S3A7afYUWgsxfi2qm3zWPFidJFhg9bvZTuwnWDXNPvLc7QnWgSNLjs70sLrVvkYxfC3qWv2kJ8ZZfRQ7uQ6FmR6217ZCRnHMNxtVSvUxwTLGvG6MCdiLHwMF9vM5wBPGmDZjzBZgIzCrL+dSSqmB1NZiJRLOhJRu93XllALgr9jQrzFFW02z1d8m4EzcZ5S0fWSU2DvHdp+0mmYfqaGGLhOs4qwkNvqzrFobYwY4uoFT2+Ij191iLXRSczM608PShjR759hNLGpb/GQkOsFb1+mPD0WZSexu8BJMK4rpRFMpZYlkH6wrgFfs5/lA+Ni0O+x1BxCRq0RkiYgsqaysjGA4Sil16Pwt9QA4E1K73Tc5/zAAGnas6deYoq19QINgfHqX+2TkjKQJD1TH7qiKxhhqmn0khRo6TSrAqsFa58uGtgZoqR7gCAdObYuPHEcjIJCQfsD2wkwPW9uSMG5PTPc9qm/xMSreCyYESTkHbB+dlYgx0OgpsBKsGE66lVI9SLBE5E0RWd3JY07YPr8AAsDjvQ3AGHO/MWamMWZmTs6Bf5SUUioaAq3WyGjuxO6bCBbk5VJp0mjbs66/w4qqmhYf6TRiukgqAMaMSGFjKI9A5foBjGxgNbUFcARbcYfaDlqDtcWMtBaqYrNm0xhDbYufTLFr8pyuA/YpyfYAQmtyYczXYOW77dEUk7IP2D46MwmAPc488LdA056BDE8pNcAO/Gu4H2PMlw+2XUQuB84ETjWm4yeZnUBh2G4F9jqllBoSAl6riWC8J63bfcfkJLPBjGR0TezW2gDUNvuYKvVI0ugu9xmTk8RmM4pJlbGZVIDV/ypb2gf76KIPVqaHTe0JVvUGKDp2gKIbOC2+IL5AiIxQXae1NgBjsq0fKGri8vHEaNO4YMjQ4PWT67T7JyaPOGCf9iHrt5qRTACrhjclb+CCVEoNqL6OIng6cDNwtjGmJWzTC8AFIhIvIiXAeODTvpxLKaUGUshr3UDHJXXfRDAzKY5djlEkN8XuKGkANc1+sqUBd2pul/uMzUlic2gkcc27wNc8gNENnOpmHznUWQvJnd8kF2V52GlyrKHaY7QGq33up5RgLSR3nmAVZCTidgo7xR7wIxQawAgHRn2rH2Mgx2En3Z0km9nJcXjinKzx29+d6tj8TCilLH3tg3UPkAK8ISLLReQ+AGPM58CTwBrgVeD7xphgH8+llFIDJuBtbyLY/SAXAE3JxaQEasBb359hRVVtcxvZUo8j5cBf6NuNzkxiq9g1NzE60EVNs48cqbMWukgsUhLcZCYnUBWXD9UbBy64AVTTbCVYHn9tlzVYLqeD0ZkeNgZyIOCFxvKBDHFAVDR6Aey+aHR6LUSE0ZkeVjWmgCshZpNupZSlr6MIjjPGFBpjZtiPq8O2/cYYM9YYM8EY88rBylFKqcGmvQaLbiYa7pA11vp/DA/u0NJURwL+Lm+mAeJcDlpTxlgLMXoTWdPctreJYHLXtXkl2UlsZVTMXofd9VZiEd9Wc9DPREl2Mita7H5JMZhs7mmw5r/LpB7E0ekw7QBjRySzsaoFssbF7GdCKWWJ5CiCSikVM0J2DRbxPavBShxpjSTYtOuL/gop6oKNFdaTpK5rsADcOeOsJzF4Mw1Q1RTWRPAgicXYnGQ+942wBncI+gcmuAG0p7GNeHw4/Y3dXIckPqy3+6pVxd7gJ3sarEQzNVhr9clzdD7t59icZLbXtBDMHBeT10EptZcmWEop1QlnW631pJOhpzuTPXoCAeOgfvvn/RdUlJkmO8Hqollcu4LcLHaZLEyM/kpf3eRjpKt95Dx3l/uNzUnm87ZcCAWs+bBizJ56L3kOu0lsNzV5O4JphNzJMZlYVNgJVqK3AlJGdrnfuBHJhAzUJBZD3VYItA1QhEqpgaYJllJKdSLOV0ereMAV16P9x+ZlsdXkEqyI4aHam+y5CrupwRqTk8ym0Eh8FbF3Mw1QXt9Kgbux2+swdkQSm8NHEowxexq8TPTYTSXTOp3qErA+DyA0pY6Bytj7fuxpaCPd48bZuAtSu74O43Ks5sbbnfnWfFkx2kdRKaUJllJKdSrBX0+Lq/sh2tvlpyeyRfJJrIvNZnEtvgBpfnvunoPcRAKMybYSC2fNxpicUHVXXSujpPqgSQVYNVgdQ7XHYM3NnsY2ShPsGqzUgi73K8m254CKK4rN69DgJTclARp2QuqoLvcbk5OECKz12yNPxuC1UEpZNMFSSqlOeIINeN09T7AcDqEmsZgM73YIBvoxsugor/cySqoJOBPgIBMNg1VjsdmMwuVvgubKAYpw4Oys8zIiVAFpXScVAAUZHrzOVJpdGTE5qMGeei9FcXXWwkESi+zkOFISXGw2o6xRBNsHkIkRexrbKEg20Fp70KQ7we2kICORpU3t/dFi7zOhlLJogqWUUvsJhgwpoQb8cem9Oq4tfTwuAtagBjFmd72XkVKNP2kkiBx03+zkOHa77RvNGPuVvi0QpLmpnuRgPaQVHnRfp0Mozvaw0xmbQ7XvafSS76iBhDSI73q0TRFh/IhkVra119zEVmJR0eBlfKI9RHs3tbvjcpJZUxW09oux66CU2ksTLKWU2k+j1086TQQTOh9uuSvuPGskwbbytf0RVlSV13vJl+pubyDBuqEOZJZaCzHW52a3XZMHQProbvcfm5PMhuDImEs0m9sC1LX4yTVVB20e2G78iJSYHEnQFwhR0djGuLgaa0V3CdaIZLZUNWOyxsVkvzyllEUTLKWU2k9ti58MacQkHrwp3P7SCycDULd1VX+EFVXlda2MlGrcmd0nFQBpucU0kwiVsTVs/c66VgqkylropgYLrATrM28etFRDc1U/RzdwyqqbAcj27YTMkm73H5+bzMqWDIzDDVWxk3Rvq2kmGDKMc9n9E9vnw+vCuBHJtAVCNCWPsWqwYrCPolJKEyyllDpARV0TadJCXEp2r44ryc9jl8nEtzv2arAqamrIk1pcWWN6tP+43BTWh/IJ7F7Tz5ENrO01LRTLbmshs/trMT43mXUhu1ajInY+F1uqmnEQIql5uzVxbjfG56YQxElrSjFUxk4N1qZKK9HMD5aD23PQYdrBSrAAdsUVQluD1SdNKRVzNMFSSqn91FftBCAh4+A3S/srzvaw0eTjro29pj9tu+2b4uzub6YBSkeksD5UgKmIrRqszZXNlDrKMfGpkHzwYdrBahq3PmQ3oYuh2rwtlc2MkiocIV+3tTYA4+3EojIhtkYS3FRpTUie4d1uJdzd9E8caw/VviFk137GUNKtlNpLEyyllNqPt8qaFDYpp6hXx8W7nFTEFZHeUgahUD9EFj2u2k3Wk6zxPdp/fG4y600+bm8VNFf3Y2QDa1NlM5PidiPZpd3eTIM1NHelZOB1JsfUzfSWqmZmJtvva2b3CdbItASS411sId+a/ylGJtndXNnMiJR4XHWbe1Sjme6JIzs5jmWt9sTMMfSZUErtpQmWUkrtx1+7AwBPds/6G4VrSRtHgvFac+LEiLoWHzlt2zBIj2orAAozPGx12NevMnZuItfvaaSEnZBd2qP9E9xOirOS2eEuiqkarE2VTcxK3GUtjJjY7f4iwrgRyaz0jQITjJlRFTdXNjExywHVmyB3So+OGZuTzIpaN3iyY+q7oZTaK2IJloj8WESMiGTbyyIid4nIRhFZKSJHROpcSinVn6TB6hch3Uwk2xnHiAkABGOoadyqnfVMdGzDmzIa3Ik9OsbhEAJZ7SMJxsa1qG320Vqzi/RgNeRN7fFx43OT+SKQb9VWxMCgBr5AiLXljUx3bYO00d3Oi9auNDeZDxpyrIUYqLkJhQwbK5o4JnkPYHr8mRg3IpmNFU2YERMhhv5OKKX2ikiCJSKFwFeBbWGrzwDG24+rgL9G4lxKKdXf3M3leCUeEtJ7fWxKgT2S4LbVEY4qelbuqGeKYwvO/N79TpaRV0ITnpi5iVy5s56pjs3WwqjDe3xcaW4Ky7y50FoTExMvr9vdiC8Yosi3sXeJ5ogUljVnYxyumEiwNlc10eANMCveqvEmr2c1WONHJFPf6qc1fbw1jUEMJN1KqX1FqgbrTuBmIPyvxBzgEWP5GEgXkd71GFdKqShIat1Jgzu3R31s9je6cDQ1JpnWXbEzet6WrVspkCriCnuXYI3PS2F9aBSBPbFxLVZur2O6YxNGHL2swUphXftAFzGQWKzYUUc6jSQ3bYH8niea43KT8ePCm1IcE7WaS8pqASj1r4Hk3B4N2w9QmpcCwC53CfgaoX5Hv8WolIqOPidYIjIH2GmMWbHfpnxge9jyDnvd/sdfJSJLRGRJZeXQ/2VPKTW0NbUFyA/upDml+7l9OjN2RDIbTT6O6tgZKc2142PrScHMXh03PsZGEly+vY6T4tYjedMgPrnHx5XmJsfUSILLttZyisce9KRodo+PK821EouKxDFQMfST7iVba8n0uEne/QkUfanHP8i0X4dYHL5fKWXpUYIlIm+KyOpOHnOAnwO3HGoAxpj7jTEzjTEzc3JyDrUYpZSKiLKKeoplN6Gsng1isL/UBDc7XaNJbdoS4ciiY0tVM4d5l+N3JEB+7xKs0txkNpgC3N6hP8muLxBixeadTDbrYMyJvTq2JDuJGkcGrc7UIX8zHQoZ3ttQxZzUDeBKhF40Gx2VlkBSnJPNMhpqtoCvpR8j7X9Lymo4fVQL0rATio7r8XHZyfFkJcWxpMUeSVAHulAq5vQowTLGfNkYM2X/B7AZKAFWiEgZUAAsE5E8YCcQXl9eYK9TSqlBa/fWdcRLgMRRhx1yGU0pY0kO1g/5pALgjc/LOd6ximDhMeCK69WxBRkeyhyxMd/Pkq01HBFYjssEYOwpvTo23uWkOCuJHe7RQ74Ga015A1VNXma2fQJjTgJXfI+PbR9JcEVbHmCG9HxYGyuaKKtu4RyP3Xin9LReHT8+N5nl1QLJeTHTR1EptVefmggaY1YZY0YYY4qNMcVYzQCPMMbsBl4ALrVHEzwGqDfG6JTlSqlBra5sOQA5JdMPvZAcq/bLDPGbaYC1Kz9lrKOchCln9/pYp0PwZ1mjKg71xOLV1bs5y/UpJiGjV7UV7UpzU1gbAyMJvrSqnBnOLSS17oLDvtbr48fnprCowZ6geQgn3a+ssm5npje8aw3Pnt67KR0m5KawYU8TZsRhWoOlVAzqz3mwXsaq4doIPAB8rx/PpZRSEeEsX04AJ+5RPR/EYH/JMTKSYGVjG+P3vEIIBxx25iGVkZVXbI8kOHRvIn2BEO8s38BpziXI5DngdPe6jPG5KSxrzQNvHTTtiXyQAyAYMjz/2U5+kPEJuBJgYu+T7vEjkvmsKQPjjBuyiUUgGOKJxds5t7CZuN1LYdrcXpcxPjeFprYAzan2SIIxNjG5UsNdRBMsuyaryn5ujDHfN8aMNcZMNcYsieS5lFIq0oIhQ17T5+xJHAfuhEMuZ1ThOJpNPM07hnZH/qc/3ci3nO/SUvxlSMk9pDLG56WwLpRPYM/QvJkGeGHFLk73vU6caYMjLz+kMkpzk1lnhvZIgq+sLsdbX8GJrW/C5HMgMb3XZZTmphDESWvq2CF7Hd76ooKdda3ckPQqOONh+gW9LmOCPZLgDncR+Fugbmukw1RKRVF/1mAppdSQsqG8hqlsxJvb86GnOzM+L5VNZhRUrYtQZAPP6w/S/MED5Eg9ySdce8jldIwkOESbCAaCIR5+ZyXfj3sRM+bkXs1/Fa40N4UNQ3gkwVDI8NeFm7gp5XWcoTaY/aNDKmfcCGv0xYrEkiGZYBljuP+9zRye2kD+tuethDt5RK/LKR1hJVhfBO2RBIfgZ0Ip1TVNsJRSyrbxs3dJFi9pk77cp3Iyk+LY7iwkuXFzhCIbeI++u4ZLg09Tn3dsr0fNC7d3JMEaaBp6U3HMX7ydr9T9m3TTgJzyq0MupzgriTpHGi2utCGZWDy5ZDv15Rv5VugVZMq5Hf0Meys/PZFEt5NNjIb67eBtiHCk/evlVbtZurWWO7OeR8QBx113SOWkedzkpsazuNmuGR6CnwmlVNc0wVJKKVtw/ZsEcZA9tW8JFkB98hjS/RXQ1hiByAbWtuoWkt67jRxpIO3r/9OnsvYZSXCI9bnZXtPCCy+/xPddz2OmnAcFRx5yWXEuByXZyWx3FQ252oo9DV7+7+XP+VvKgzidLjj1kGdmweEQxucms8I30lpROXRqeaua2rj1hc+5MmsVxeWvwAk3Q9oB03v2WGluCiurDKTmD7nPhFLq4DTBUkopoL7Fx7T6t9iacgQkZvS5vGBW+0iCQ2soaq8/yMMP/5VvO16n8Yj/hsKj+lTePiMJDqHhqFt9QX722DvcIX9GkkcgX7+jz2VaIwmOsq7DEBlJ0OsPcvVjS/le6Akm+1Yhp/+21yPm7W/ciGQW1dvzXg6RpLvVF+R7jy0jx7uFn/nvhZEzYPb1fSqzNDeFDRWNmJzDtAZLqRijCZZSSgGffPg2JbIb9/TzIlKeZ9QkABp3fB6R8gZCMGS469EF3Njw/2jImEzKGbdFpNzsvCIa8QyZm+m2QJCbH3+PH1fdQoGrFuf5D0ck6R6fm2yNJNhWD42Df9YSrz/Itf/6jOk7n+C/Hc9Z/Y0Ov6TP5ZbmpvBZYyrGPTRGl/T6g3z3kSXs3voFT6f+EWdcIsx97JBGkwxXmpuM1x+iMWWcNSdYKBihiJVS0aYJllJKAd7PniSAk4Iv9X7I5c6MKDoMn3HSuH1oDNXuC4T460MPcfXWHxFIzCL1imf7NJJiOGskwQICuwf/qIoNXj83/+M1vrflB0xzluE87x8w+piIlF2am8L6ITKSYHNbgP966BMmr/8L89yPwISvw9fuAJE+l12am4zBQUvquEF/HVp8Aa5+bCk1m5fwatr/4Qm1wLefhPTCPpddmmsNdLHdXQwBL9SW9blMpdTgoAmWUmrY215Ry7FNb7At80uIJzMiZY7Py6DM5BGqGPx9TCoavTxwz2/47rabCCSNJPWaNw55WPbOWCMJ2v1MBnHTuI0Vjdzy5/v52c7vM85djfPip2Dioc3/1ZnS3GTWD4GRBDfsaeTb97zO5Tt+xQ3up2HaBXD+P/tcY9OuPbHYnTC4RxLcWNHEnHs+IHPjM7yQ8Gs8bidc/hKMmhGR8sfb12FNYJS1YhBfC6VU77iiHYBSSkXb0lce4hvSgOOEyM2Hnpsaz0op4IiGTRErsz988Plm6p66nu+bd6nMPoqc/3oSIpRktivNTeZDU4Cr7R1orjykYa37UyhkePT9L2h563f8wfEC/tRC3N9+HkZOi+h5irKSaHSm0ezKIKli8NXm+YMhHvpgC8veWMDfnH8n11kHp/0Ojr46IjVX7fLTE0mJd7HRFDC26XloqYn4Z64vQiHDIx+V8Y/XPuEWx0N82f0xFM6Gbz0U0c9ucryL/PREPm1O51tgNaGNYEKvlIoeTbCUUsNao9fPmM2PsyeukNxpp0esXBGhLqmEzJbFEGgDV3zEyo6EPfWt/GfB/Zy5805ypJ6qmT8i54xfgDPy/ywUZHjY4rAHRqhYO6gSrNU763n6yUe4rPZuih17aJ18AYln3wHxKRE/l9vpYEx2Mlvbipm0Z3D1zftwUxV3PfsuF9T/nfucHxLImoCc8yQUzIz4uUSE0rwUlrSO5DSwavOKvhTx8xyKxWU1/O6l1ZTueo6X458kSXxw0i3wpR9GrAYvXGluMqsqvJA2WmuwlIohmmAppYa1d974D2fLRnbO/DU4Ittq2pdZiqMlBNWbIHdSRMs+VIFgiP+8/jpZH/+OK+UzKpLHE/jWArKLj+63czodQiBrAtRh3Uz3YV6tSNla3cyzL77AEZvu5VbHKhpTijHffJ7EsSf163nH5yazcnMhkypeh2CgXxLa3iivb+XO/yyl8IsH+KfrZdxuA8f/BNfxP+7XHwUm5KXw3sosfgFQsSbqCdaK7XX84fV1ODa9ye1x8xnr3o4pOBY5665DnvOrJ0rzUvhgYzWhSZNw7B4a/TWVUt3TBEspNWwFgiHSPruPJkkm/+TvRrz8hLyJsAOad60hKcoJVihkeP/jDzFv/5ZzAotodiZTc+ytjDjlhwNyk5+TN5qGumRSo9w0bkdtC0+/+DJTNtzL9Y5ltMSl0Tr7VlJmf39AahlLc1P4dPUoLojzQs0myJnQ7+fszJ4GL397aw0s+yc/cTxDlquB4ORzcXz5Vsgo6vfzT8hN4V+tqYRSU3BEcfj+teUN/PGN9VSs/YCfxf+bY+JWEcoYA195FJl4VkSbRnamdEQKvmCIurSJZG58HXwtEOfp13Mqpfpfn/9VFZEfAN8HgsBLxpib7fU/A/7LXv9DY8xrfT2XUkpF0vsff8SJwU8pm/TfJMclRbz8rKLJhBYL9VtXkXR4ZIZ/7y1jDB8sWUbrG7/llLa38Ek8myZezZizf0pSBIYe76lxuSms/nw0R+9cjnPAzrrX7nov/375VSasvYfrHItpdafQdMxPST7h2n5pDtiV0txkXjV2c8ndqwY8wapo9PLA21/gX/JP/tvxHCOdNXhHHQNf/y3O/EOfSLm3JuSlAEJjWilpu1cN2Hnbbaxo4k9vrmfrqg+4Ke5pToj/jFBiJpz4Oxwz/wtccQMSh3UdoMw1hkwTsmrz+qFZplJqYPUpwRKRk4E5wHRjTJuIjLDXTwIuACYDo4A3RaTUGKOTPBwiYwyNrV6qqyppaajF21SLr7kOf0s9QW8jwYCfUDCICQVxiMElhpArgZDLgyM+iaSkVDzpI0jOKSQzM5vUxDgcjv79ZU6pwc77/j0ExEnRGT/ql/LHjsphh8mGPQP/C70xhk9WrqH6ld/yldZXMOJgy7hLKPnGrxibMvB9oEpzU1hlSjim4g0I+vulP0tnKhq9PPnqWxSvuofvy0f4XB4aj/oxKSdfBwlpAxJDuNLcFDaafELiwrHnc5g6MIl3VVMbD7zzBd7Fj/Df8iyjnNW0jTwKvvwPEsac1O81Nfs7zE4stsWXMrX8uQFrLrm9poU/vbmBDcvf4wb3M5wcv4xQQgYcdwuOWVcNaLINMDYnGRFYHhjNEQC7V2qCpVQM6Otfs2uA3xlj2gCMMRX2+jnAE/b6LSKyEZgFfNTH88UkYwxV1TXs2b6Olj2bCdRsxTTuxtlcSXxbJSn+KtKCtWTSQKr0fYhjr3GzgwyqHDnUeUbjTR1DQt4EckqmUDxuEimexAi8KqUGt5XrNnJy6xuUFZxNaWrkhiQPl5+RyPsUMLFuY7+U35Ulazay86X/46tNL+CWIGVF36TonFsZl9H3uXsO1aRRqbwQKsER8lmd+SM8Qt/+app9PPnaQvKW38U1soiAK4GmI64l9ZQfkRDFEeuKspKIi0+kIr6IvD393+emptnH3xeup+mTf3KVPEOBowpv7pHwlQeIH3vKgCdW7dI9ceSmxrPCjGVqoNXqm5c3pd/OV17fyj1vb2TVkvf4ofNp/hC3lFBCOnzplzhm/TckpPbbuQ8mMc5JUaaHJXXJXJGQBuUroxKHUiqy+ppglQLHi8hvAC9wozFmMZAPfBy23w573bBljGFPxR4qtqykdecagtWbcTdsI6V1JzmB3eRIAzlh+weMgxpHBo3OTFoSR9KQOJ3tySNwJWfjSkrD7ckgPjmNxOQMEpLTiIuLx+V04nS6MOIgGDIEfa0E25rxtjTQ1FhPS+0eAvXlhBp342zaQ0bLTsa1fEBq8ytQDnwGbcbFRkcB1Ulj/3979x0eR3U9fPx7tql3yeqW5C73boPpvZdAgIROEn7pCQkphISQ9iYhhdBCCwk1gOmEXk0x2Lj3bsuSbMnqXatt9/1jVrJsS7Zlrbwr+3yeZx/ttDtnNJrVnL1l8KaOJjZvHFkjppJdOBqxhaNhj1IDo/yde5goXvLOuXnA9mG3CTUxRaS2/++wfEO/fHMpW1/5M6c3vcBUcbMt91zyLvoNI4aMGND9HoycpGh2xI4GH1CxfMASrMY2L8++N5/UJf/g63xEwO6gZdKNJJ3+U6Li0gdkn31htwnjcxNZV1tA1s7l1nPBBiDJaWjz8O+PNlH/uZVY5duqcQ+ZAqc/SPSIU8OWWHU3LieJ92tyuQpg59IBSbCqmzu4f94WFi/8mO/anuMPzsUEopLg2Fuxzfq/sNRi7m1cThLLyxoga6JVg6WUGvQO+N9eRN4DsnpYdGtw+1RgNjADmCsiw/oSgIjcCNwIMHTo0L5sGrEa6usoW7eQppLlSM1GEpo3k+UpJUsaun6RXmOnypZBQ1QOJSknU5JcQPSQYcRnDic5ZxiJadkMsdk5lIY8gnViOk9uLNZJ6o1praVm+1qqS1bj3rkGV/1GCltXktnyPpQCn0E7LiqcQ2lOGIkts5jkwokMGT6FqLSCiPhHrVRfVFbXMKvmBTamHMeo3HEDuq+2lDE4K1+Emo0DNpLgmu2VrHn5r5xe9zSTpYVtQ07FdfHvGJ4zsMfWFyJCWt4YWktiiKtYEfLym91e5r6/kPhF/+A68wFis9Ey/lqSz/g5roSe/oWFz6T8ZD4uK+Bk+wfQUBrSQSUa2738+5NN1M1/nK+bFyiwVeHOmASn/5PokadH1Of1lPxk7tyQgElMRHYshanXhKzshjYPD368lfnzP+bbzOU2xyICrgQ49hZss74JMckh21d/TRmazOurKmgbN47Y5f+JyMc6HImMMXR4/TS3tuJpbcTb3ozf3YLP68bX0Y7f5yHgdeP3egj43AS8HRifFwl4wBgEE3xwusFYBXaWDFifeWJzWC+7A7E7sdkdYHdgczix2ZzYHE7EFpx2OLE7nNjsLuxOJ3a7C7vThcPpwuF0YndG4XC4cDqd2B0uq5l1BF3Pak8HTLCMMaf1tkxEvgW8aIwxwBciEgDSgR1A97YoecF5PZX/EPAQwPTp0/vf/u0wa6yvZfuq+TSXLMZVtYrM1vXkBSqYEGzK10wslc6hlKUdS2n6aGJyxpJSMJ4h+SPJdTgjolpP4tLIGHs8GWOP32N+e3MDpRuWUleyAn/lOuIaN5JTu4DMujch+LiONqLZ6SqkKX4E/rSRRKflE5eeR9KQfFKG5GOLPrzt2QEwBuNz09HehsfdhsfdiqejHW9HO76Odrwe66ff047f6ybgcRPwtmO8HRivG3xujM+N+D2IrwPxd2Dzd2ALdGAPdOAIeHAYLzbjRwhgN35sxo8dPzb82EwAO/7dLxPAhjXPwf67Ifblo9L6WJfgy9p69/vdy7rei3RtQ/f5e23buXz3+27LZe/9yF7rgBHZY77pYR1E9tgPwfj2WKdzO9mzrL1/7i5795Zgus3r9hsLzo7xN5MlzfjOuGW/v+NQsOVMhkroKF9GVIgTrI3l1Sx76R+cXPMkl0kD29PmEH3BbykqjMw+HJMLUlm1tZDp5UtDNoRta4ePufMWE/X5P7jKvIddDM3jvkLKmb8gOSkSPmH3NSkvmft8I8AOlC8KSYLV7Pby6Kebqfz0cb4ReIFC2y7cGRPg9HuIHnVmRN6ITRmaQsDYaEgZT8rOZSEps9nt5d+fljDvk3l8IzCXn9m/IOCMh2N+iu2Yb8NhHNjlYE3OTwZgU9Q4Jvk7oGIF5M8Mb1CDhDGGtg4fDQ11NNftoq2xGndjFd7mWvyttUh7HXZ3HS5PI9G+JlyBNqIDbUSbdmJNO3G4yZDBOzyAz9jwiR0fDvwEf0rwbkM6X3YCne9xEBB71zyDLfjZ0O3/b/D/vMju/8Fdy/b5/w+d/1s77xo6k05rqwDSOW32vDvpTFK77jaC63WVHJy2BZcviJrD2Atv5tgR4W+JcDD6+z/uZeBk4EMRGQW4gBrgVeC/IvJ3rEEuRgJf9HNfEaFqx3ZKl7+Hb9t8MuqWUuQvYWIwmaqUDCpjR1OZcSGxhdPIGT2D1KwCEiLwH9vBiElIZvT0U2D6KV3zfP4AW3bsYOemZbh3rsVVu4Hkls0U1H5CWt1rsGnPMtqJolViaZc4PPZYvI44vI44fLZoxGbHiN1qNiXWRW8QbMaHGD9i/BDwQ8AHAZ81gEfAG0xyrJcz4MFpPLjowGm8RNFBNF4EiA6+DoXbOPGICw9OvOLCKy584sJnc+GzReGRKEznB5TYMbbgT7GDzU5A7BCch22v9wdMo/a/fPc3ZWbfn50ZhOm+DCBglbzPt23dP9Q6t9l3vX0+OPf6pm73B+peH67dPjDp9oFqHaXZYzvTtd89P6h3v6dr2b5pYWfCRbdErfvvrPs8wWuPYX7upcwZe9x+f9ehkF40jrYlUbRtXUTUtCtDUubWyloWv3gPx+96jMuljrLkabSe9xsKRh5/4I3DaHJ+MosDo5hZ+Tp0NPdrQIF2j5/nP16GmX8XVwTewiU+Gkd/mdSzbyXlMAwz3h+T85NZb4biscfhKvm0XwNdtHT4eHz+ZnZ8/ARfCzzPMFsl7Rnj4fR/ED367IhMrDpNzE9CBDY4xjB7x2PgbjzkJnutHT4e/3w77340jxt8c/mefSEmOhZm34ztmO9AGPvdHcj43CScdmFe+3AmAWyfrwkW0ObxUVnXSGPFNlqrS+lo2EmgsQJbayXR7VXEeWtI9tcxhHpypaPHMgIIzRJPiy2RdnsCHlc8LY5MGp1xVuIdFY9EJYAr+N4Vi80Zg90ZbdUeuaKxu6JxOKNwuqKxO6OwOVwYmw0JfkkoEqytCiYqVn4i+AMB/H4fPp+XgM+Dz+sj4PdaNWJ+HwG/h4AvOM/nxfh9+H1e8HsJ+D0Yvxfj82L81vr4vRi/N3hP5LWanfu91vuADwl4sQXvl2zGiwR8SMCHzVgve/DlMF5cxo8D3x5JzZ4JD3R9hWlM13/Z3SnW7uU9fQG7RzIm3b8Y7VaC7E6f9thujy9yd3/J6rQR/B0PDv1NsP4N/FtEVgMe4NpgbdYaEZkLrMVqcf+dwTqCoLu9lU1fvE3rmrfIrf6EfLOTIUCbiWJr9FgW5X2D+BHHkj/uGLLSsnpsS3kkcdhtDB+az/Ch+cAFXfONMdTUVFFTsZ3mmnI66nfgb6zE0V6DzdOM3duCw9eKy9NKrLsWp/Fi26OGx4+dADYMvuA7X7BOKBBMXKxvXRz4JAqvLQq3Iw6fLYqAvfMVjbFHE3BEW80rnDHYnNGIM9r6wHTFYHPF4HBF44yKwemKxREdg8sVjSs6Bld0HFHRMURFRRNtsx1ycqZUd6OzU1gRGM6osoX9Lqu0qpGFL93DsTv/w2VSQ3niRFrOeYT84lMOvHEEmJCXxP1mPN81r0DJfBh9Vp/LcHv9PPfpKryf3MXl/teJEQ/1Iy4i5pxfkZo2fACiDr2c5BiGDUlipWci07e8f0j9sFo7fDzx2VZKP36Cr/mfY7itgvb0sXD634gZc25EJ1adEqOdTMpL5pXm0cw2ftj2MRSf36cyWjt8PLFgO+9+9DHXep/lefsCTHQstlk3wbHfi+jEqlO0086MwlTe2OrhB0PGwub34bibwh3WgOvw+dlR20z1ji00VWzBW1OCNJYS01pGUkclWaaKQuqx7TW4VztRNNjTaI3KoDVmAptjh2ASMrHHDyE6MY2Y5CEkpGQSnzwEW2wySTY74e9pp/qrONwB9FG/EixjjAes/qk9LPsD8If+lB9ui168i3Er/sAE6aDDONkQM5mdeZeTNvZkCsfPZrxL20h3EhHSMzJJz8jEGjBSKQVQmBbL+87xzGp6/pC/oS+raeKzl/7JMeWP8GWpojx+HI1n30feuMhs+tWbxGgnzsJjaN8RTfSGN5E+JFjtHj/Pf7Ic76f3cmngTRKlndrCc4k779ekhelhvf1xanEmr8wvZrr7c9i15qAHeGh2e3ny862UffxfbvDPZYRtJ+1pY+D0O4gZcx7YbAMceWidOmYId7+XzR8SErCtf+OgE6zOxOrtjz7hGu9cnrN/homKwTbrB3Ds9yEubYAjD62TRw/hD2+so/n400lYfC+01R1UcujzB3h9VQVvrKrgZ2eNYVhG/GGI9uAZY6hq7qBkx07qtq+ho3I99rrNJLWWkO0to0AqGdatiZ4fG3X2DJrjsmmIn0ND8lAcaQXEZhSSnDmUuNRcYqISiBlEn3vq6DTwD50YxBKGjmfVznOJHns2o2adzcS4MPQnUkoNaiJCR/5x2LbPJbD5Q2zjLzrobctqmpj/8oPMKvsXl0slO+PG0HDGneRNGhw1FD05fWIBb5dO5bw1L+M4544DduZv8/h44eOlmPn3cEngbavGqvAsOPuXpA3gsN4D7bTiIXzjo5n8xvk4thVPQ9b+v4+sb/Xw+CcbaFjwONcEXqHItov21FFw+mPEFF8w6BKrTqeNzeRv725kU/ppjF73KpzzF4jqPUlo6fDx1ILtfPzRu1zpfYEX7IswUdHYZn4P5vwAImCkyENx2thM/vDGOl73z+QK44dVz8Gs/+t1/XaPn7mLy3jy4zWc1PwaF9s28eeWm3ngm2eGrRlVY7uXjeXV7Nq8DHf5CqLr1jGkbQtFlDNLGrvW82GnxplDS/oItqWciTNzFEnZI0jJGYE9OY8Mu3OPUZWVGow0wdqPMdNPhemnhjsMpdQglzvxRGpKErEtfpbUg0iwtlbUsOJ/9zFtx5NcIVVUxoyg/oxHyZly0aBNrDqdMS6TH716Ehd1fAbLn4LpN/S4Xm1LB699+ClRSx/my4H3cImf+uHnE3fWL0gbMuYwRx16U4emkJyezWee2cxZ8hhy/I97rLHY1eTmiY9W41/0KNfKa2RJPW0Z4+GUOwZ1YtWpODuR6QUp/K12Ng95XoJFD/fYPK6qyc1/5m9j08I3uMb/Ev9nX4UvJgHbrB/BrG9B/OC+JS9Kj+P4ken8fVUzl+VMxfb5fTDtun2+gKhu7uCJz0t48/PlXOB9g5ec7xHvbCGAjdSK23jkowK+ftLANqYKBAzba1vZtnUjDduWwa7VJDZupNC3lalSgT3YpM8t0VTHD6ch+WRahowmMW8sKUPH4UgtJOswPWhcqXARY8yB1zpMpk+fbhYvXhzuMJRSKqRaO3y8/MeruJx3cdy0ApLy9lnHGMOyjSVse/teTqh9jgxppCx2LHGn/oTUKRcN+hvp7m5/ZTUXLLmOiTE1OL71MSRbj+gwxrBs2y5WzHuJYSXPcKJtOT4cNIy4iPSzboH08D/PK5SeX1LOQ8+/xlvRv8A26iz48qPgcOHzB/hsczULPnmHodtf5HzbfOKkg9acY4k79Scw7ORBn2h39+H6Kq5/dBHvZN7HyNalyPWvQ+40/AHDZ1tqeGvBCuI2vsxl8j4jbDvxxqTjnPNdKzmPgOdYhcpnW2r46sMLuW3sLm7YehNM/xqc81cCCAu21vLSoq3UrX2fS/iAM+xLsBNAis+DOTdh6rchL3yN5/wnwgX38uUZoXnsTZPby4aKRsq3rKa9dBnR1avJattAMdtIkZau9WqdWTQmjkayJ5BSNJWkwslIStER9bmlVE9EZIkxZp+hezXBUkqpw+C+lz7kG8svoSXvRFJveK7rocONrW4WfvQ69hVPMcf9MdHipSR5Fsln/Jzk4iPrRrpTXauHH9z7LPe1/RSH08WW7HOpdtuR2k1M868gUdpocqThnXIdaSf8HyRkhjvkAREIGL711BKy1z/G7c7HqXPlsNFVTFtLExPNBtKlCa8tio7RFxE/5/8gb1q4Qx4wv3p5NW8tWMHrsbeTaurYEDWJMncUBYFyim2lAHRkTSNq1g0w/hJwxoQ54oHxxzfW8eDHW7kz5QUubn+Bnc6hrPLlEetrYqp9M3G48UclY596lZVgdhvYxfPu73DN/ysP+s6lZNLNfPvUMeSnxh7Uft1eP1uqW9hUUU/t9jWYnctJrF9LgXczY2U7CdIOgBcn1bHDcKeNIzp/CmkjphGVM/6ISnSV6gtNsJRSKoxaOnw8euctfNf9EJVRReyMG4u/tY7h7lWkSgttxFCWfx5Dz/guMfmTwx3ugNvZ0M6Dz7/OqaV3MUvWEiU+qhzZtGXPJnPWl4kZczo4XOEOc8B5/QH+9ck2yhe+wNltrzHStpOAKx6TOZ70yefiKj47oh6KO1ACAcMTC7bzxoKVXNT8NNNlPcmODkguIHnc6TiLz4Yhg20csb4zxvDMojKe+KyEac3vcTEfMtRWiz0uhYSiaTjGnAPDTgJnD+PcBgL4X/sh9qWPsSmQy3/8Z1GbfSLZ+cPJSo4hNc6FP2DweP20NNbQXluOvWEbCc1bSG/fxnDZwUjZQbR4AfBIFLUJo/FnTiC+cBpJw6YjGcVHxXWp1MHSBEsppcKsqtnNm8/ez8Typ8mlCrc9gabksSROOp/8mRcg0YnhDvGwc3v9dHgDJEbbEW1OpFT/rXsN7/u/x1mzDoB2XFQHrBomuwRIoYXYvZ4b1eTKxJ08Emf2WCuRy50CaSOCz25USvVGEyyllFJKqaOBMVC5Cko/h4ZSvE2VePwgNjsSk4wrJQ97Ug6kFEHGqH499Fupo1lvCZaOIqiUUkopdSQRgeyJ1gtwBl9KqcND22MopZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFSEQNciEi1cD2cMexl3SgJtxBqMNGz/fRQ8/10UPP9dFFz/fRQ8/10SUSz3eBMSZj75kRlWBFIhFZ3NPoIOrIpOf76KHn+uih5/roouf76KHn+ugymM63NhFUSimllFJKqRDRBEsppZRSSimlQkQTrAN7KNwBqMNKz/fRQ8/10UPP9dFFz/fRQ8/10WXQnG/tg6WUUkoppZRSIaI1WEoppZRSSikVIppgKaWUUkoppVSIaIK1HyJylohsEJHNIvLzcMejQkdE8kXkQxFZKyJrROQHwfmpIvKuiGwK/kwJd6wqNETELiLLROS14HSRiCwMXt/Piogr3DGq0BCRZBF5XkTWi8g6ETlGr+0jk4jcFPwMXy0iT4tItF7bRw4R+beIVInI6m7zeryWxXJ38LyvFJGp4Ytc9VUv5/ovwc/xlSLykogkd1t2S/BcbxCRM8MS9H5ogtULEbED9wFnA2OBr4jI2PBGpULIB/zYGDMWmA18J3h+fw68b4wZCbwfnFZHhh8A67pN/xm40xgzAqgHvhaWqNRAuAt4yxgzBpiEdd712j7CiEgu8H1gujFmPGAHrkCv7SPJo8BZe83r7Vo+GxgZfN0I3H+YYlSh8Sj7nut3gfHGmInARuAWgOD92hXAuOA2/wzet0cMTbB6NxPYbIzZaozxAM8AF4Y5JhUixpgKY8zS4PtmrBuwXKxz/FhwtceAi8ISoAopEckDzgX+FZwW4BTg+eAqeq6PECKSBJwAPAJgjPEYYxrQa/tI5QBiRMQBxAIV6LV9xDDGfAzU7TW7t2v5QuBxY1kAJItI9mEJVPVbT+faGPOOMcYXnFwA5AXfXwg8Y4zpMMZsAzZj3bdHDE2wepcLlHWbLg/OU0cYESkEpgALgUxjTEVwUSWQGa64VEj9A/gpEAhOpwEN3T649fo+chQB1cB/gk1C/yUicei1fcQxxuwA/gqUYiVWjcAS9No+0vV2Let925HtBuDN4PuIP9eaYKmjmojEAy8APzTGNHVfZqxnGOhzDAY5ETkPqDLGLAl3LOqwcABTgfuNMVOAVvZqDqjX9pEh2PfmQqykOgeIY98mRuoIptfy0UFEbsXq2vFUuGM5WJpg9W4HkN9tOi84Tx0hRMSJlVw9ZYx5MTh7V2eTguDPqnDFp0JmDnCBiJRgNfU9BauPTnKwWRHo9X0kKQfKjTELg9PPYyVcem0feU4Dthljqo0xXuBFrOtdr+0jW2/Xst63HYFE5DrgPOBKs/vhvRF/rjXB6t0iYGRwNCIXVme6V8MckwqRYB+cR4B1xpi/d1v0KnBt8P21wCuHOzYVWsaYW4wxecaYQqzr+ANjzJXAh8ClwdX0XB8hjDGVQJmIjA7OOhVYi17bR6JSYLaIxAY/0zvPtV7bR7beruVXgWuCownOBhq7NSVUg5CInIXVvP8CY0xbt0WvAleISJSIFGENbPJFOGLsjexOBtXeROQcrL4bduDfxpg/hDciFSoichzwCbCK3f1yfoHVD2suMBTYDlxmjNm7g60apETkJOBmY8x5IjIMq0YrFVgGXGWM6QhjeCpERGQy1oAmLmArcD3WF4p6bR9hROQ3wOVYzYeWAV/H6ouh1/YRQESeBk4C0oFdwK+Bl+nhWg4m2fdiNRNtA643xiwOQ9jqEPRyrm8BooDa4GoLjDHfDK5/K1a/LB9WN4839y4znDTBUkoppZRSSqkQ0SaCSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSikVIUSkUESMiDjCHcuRTkSuE5FPwx1HpBGR40VkQ7jjUEqpwUwTLKWUUoOaiNwuIl4Raen2+mm44xqMjDGfGGNGh7pcEbGLyO9FZKeINIvIMhFJDvV+lFIqEui3pEopFSIi4jDG+MIdx1HqWWPMVeEOYqAcAX9bvwGOBY4BSoFxgDusESml1ADRGiyllOoHESkRkZ+JyEqgVUQcIjJbRD4TkQYRWSEiJ3Vbf56I/FFEvhCRJhF5RURSeyn7ehFZF/zGf6uI/N9eyy8UkeXBcraIyFnB+Uki8oiIVIjIjmDNgf0AxzFcRD4QkVoRqRGRpzprGILL6kRkanA6R0SqO49LRC4QkTXB450nIsV7/X5uFpGVItIoIs+KSHTff9N9JyI/D/5emkVkrYhc3Mt6IiJ3ikhV8He5SkTGB5dFichfRaRURHaJyAMiEnOQ+380uP67wRg+EpGCbsvvEpGy4D6XiMjx3ZbdLiLPi8iTItIEXCciM0Xk8+DvuUJE7hURV7dtjIh8W0Q2Bff3u+C5+yy4j7nd1+8l5pNEpPxgju9giUgK8EPgG8aY7cay2hijCZZS6oikCZZSSvXfV4BzgWQgE3gd+D2QCtwMvCAiGd3Wvwa4AcgGfMDdvZRbBZwHJALXA3d2S3JmAo8DPwnu9wSgJLjdo8FyRwBTgDOArx/gGAT4I5ADFAP5wO0AxpgtwM+AJ0UkFvgP8JgxZp6IjAKexrqBzgDeAP631438ZcBZQBEwEbiuxwBEjgsmD729jjvAMextC3A8kIRVg/KkiGT3sN4ZWL+/UcF1LwNqg8v+FJw/Gev3mQvc1ocYrgR+B6QDy4Gnui1bFCw3Ffgv8NxeyeeFwPNY5/cpwA/cFCzrGOBU4Nt77e9MYBowG/gp8BBwFdb5HI/1t3rIgolyb+fnn71sNgHr7/FSEakUkY0i8p3+xKGUUhHNGKMvfelLX/o6xBdWUnNDt+mfAU/stc7bwLXB9/OAP3VbNhbwAHagEDCAo5d9vQz8IPj+QeDOHtbJBDqAmG7zvgJ82MfjughYtte8V4FVwEogKjjvV8DcbuvYgB3ASd1+P1d1W34H8ECIz8Htwd9hQ7dXTg/rLQcuDL6/Dvg0+P4UYCNWUmLrtr4ArcDwbvOOAbYdZFyPAs90m47HSpLye1m/HpjU7Zg+PkD5PwRe6jZtgDndppcAP+s2/TfgHwco8ySgPMTn56vB2B4BYrCS7Grg9FDuR1/60pe+IuWlNVhKKdV/Zd3eFwBf7v7NPnAcVm1VT+tvB5xYtRJ7EJGzRWRBsHleA3BOt/XysWpo9lYQLK+i2/4fBIbs7wBEJFNEngk2KWwCnuwhpoexakHuMcZ0BOflBI8BAGNMIHh8ud22q+z2vg0r0Qi1ucaY5G6vnSJyjVhNKDt/D+Pp4fdsjPkAuBe4D6gSkYdEJBGrRi4WWNKtjLeC8w9W17k2xrQAdVi/M4JNJ9cFm042YNWepfe0bXD9USLyWrAWqAn4fz0cz65u79t7mB6I3/2BtAd//tYY026MWQk8g/X3rJRSRxxNsJRSqv9Mt/dlWDVY3W/244wxf+q2Tn6390MBL1DTvUARiQJeAP4KZBpjkrGa30m3/QzvIZYyrBqs9G77TzTGjDvAMfy/4HFMMMYkYjUr69wXIhIP/AOrFuJ22d1vbCdWUte5ngSPb8cB9rcPsYYIb9nP6/gDl9JVVgFWQvhdIC34+1vd/Zi6M8bcbYyZhlWjOAqr6WUNVnIwrtvvMskY05ckpetcB3+HqcDO4LH8FKs5Ykowvsa94uv+dwVwP7AeGBk8R7/o7XgGilh97Xo7Pw/0stnK4M/ux7P3sSml1BFDEyyllAqtJ4HzReRMsYamjg4OHJDXbZ2rRGRssD/Tb4HnjTH+vcpxAVFYTal8InI2Vl+hTo8A14vIqSJiE5FcERljjKkA3gH+JiKJwWXDReTEA8SdALQAjSKSi5VgdHcXsNgY83WsPmadN9NzgXODcTiBH2MleJ8d6Be1N2MNER6/n9cnfSguDusmvhqsAUOwarD2ISIzRGRWMP5WrNHtAsHauIex+r4NCa6bKyJndtvWSLdBTHpwTrBvmQurL9YCY0wZ1u/bF4zPISK3YfW1258EoAloEZExwLcOsH7IGWPG7ef8fLOXbbYAnwC3ijVoSDFwBfDa4YxdKaUOF02wlFIqhII3zxdi1S5UY9Uo/YQ9P2+fwOqfUwlEA9/voZzm4Py5WH1zvorVB6pz+RcEB77Aqvn4iN01SddgJWhrg9s+z55NFHvyG2BqsKzXgRc7F4jIhViDVHTe0P8ImCoiVxpjNmDVdt2DVeNzPnC+McZzgP0NKGPMWqw+R59jNZObAMzvZfVErESqHqu5Yy3wl+CynwGbgQXBZnnvAaMBRCQfaMbql9ab/wK/xmoaOA3rdwVWv7y3sPp+bcdK6sp6KqCbm7H+DpqD8T57gPUjyVew/j5rsf6+fmWMeT+8ISml1MAQY7SWXimlDhcRmQc8aYz5V7hjUf0jIldhNR+8pZflj2INGPHLwxqYUkqpsNIHDSullFKHwBjzZLhjUEopFXm0iaBSSh0lxHrobV8GJ1BHIBH5RS9/B2+GOzallDoSaBNBpZRSSimllAoRrcFSSimllFJKqRAJWR8sEbEDi4EdxpjzRKQI60GCaVhPk7/6QKNKpaenm8LCwlCFpJRSSimllFIDYsmSJTXGmH0ePh/KQS5+AKxj93M8/gzcaYx5Jti+/2tYD0nsVWFhIYsXLw5hSEoppZRSSikVeiKyvaf5IWkiGHyA5rnAv4LTApyC9ewVgMeAi0KxL6WUUkoppZSKVKHqg/UP4KdAIDidBjQYY3zB6XIgt6cNReRGEVksIourq6tDFI5SSimllFJKHX79TrBE5Dygyhiz5FC2N8Y8ZIyZboyZnpGxTxNGpZQKC3/AEAjoKKtKKaWU6ptQ9MGaA1wgIucA0Vh9sO4CkkXEEazFygN2HErhXq+X8vJy3G53CEJVR5Po6Gjy8vJwOp3hDkUNMh5fgC/d+SYXJW3h6zd+P9zhKKWUUmoQ6XeCZYy5BbgFQEROAm42xlwpIs8Bl2KNJHgt8MqhlF9eXk5CQgKFhYVYXbuUOjBjDLW1tZSXl1NUVBTucNQgs6y0np82/ZETWldRv+VYUoZPD3dISimllBokBvI5WD8DfiQim7H6ZD1yKIW43W7S0tI0uVJ9IiKkpaVpzac6JKXVDZxgXwVA7aLnwhyNUkoppQaTUA7TjjFmHjAv+H4rMDMU5WpypQ6F/t2oQ1VftbPrfeyO+WGMRCmllFKDzUDWYCml1KDkbakBoEZSSW3ZDIHAAbZQSimllLJognUQRIQf//jHXdN//etfuf3228MXUDcLFixg1qxZTJ48meLi4q645s2bx2effXbI5W7fvp2pU6cyefJkxo0bxwMPPBCiiJWKfKbVSrA2xU0j2rRDQ4/PEVRKKaWU2ocmWAchKiqKF198kZqampCWa4wh0M9vxq+99loeeughli9fzurVq7nsssuA/idY2dnZfP755yxfvpyFCxfypz/9iZ07dx54Q6WOAPb2WgAaso4BwLNzVTjDUUoppdQgognWQXA4HNx4443ceeed+yyrrq7mkksuYcaMGcyYMYP5863+Grfffjt//etfu9YbP348JSUllJSUMHr0aK655hrGjx9PWVkZP/nJTxg/fjwTJkzg2WefBawE6aSTTuLSSy9lzJgxXHnllRiz7zN5qqqqyM7OBsButzN27FhKSkp44IEHuPPOO5k8eTKffPLJfuO8+uqrOeaYYxg5ciQPP/wwAC6Xi6ioKAA6Ojp6TQTvvvtuxo4dy8SJE7niiisAqKur46KLLmLixInMnj2blStXdu3r2muv5fjjj6egoIAXX3yRn/70p0yYMIGzzjoLr9cLwG9/+1tmzJjB+PHjufHGG/c57kAgQGFhIQ0NDV3zRo4cya5du/Z3GpU6aI6OegBcRVaCVV+2PpzhKKWUUmoQCekgFwPtN/9bw9qdTSEtc2xOIr8+f9wB1/vOd77DxIkT+elPf7rH/B/84AfcdNNNHHfccZSWlnLmmWeybt26/Za1adMmHnvsMWbPns0LL7zA8uXLWbFiBTU1NcyYMYMTTjgBgGXLlrFmzRpycnKYM2cO8+fP57jjjtujrJtuuonRo0dz0kkncdZZZ3HttddSWFjIN7/5TeLj47n55psB+OpXv9prnCtXrmTBggW0trYyZcoUzj33XHJycigrK+Pcc89l8+bN/OUvfyEnJ2efY/nTn/7Etm3biIqK6kp4fv3rXzNlyhRefvllPvjgA6655hqWL18OwJYtW/jwww9Zu3YtxxxzDC+88AJ33HEHF198Ma+//joXXXQR3/3ud7ntttsAuPrqq3nttdc4//zzu/Zps9m48MILeemll7j++utZuHAhBQUFZGZmHvA8KnUwojx1BBAyh46hzsTTUbU53CEppZRSapDQGqyDlJiYyDXXXMPdd9+9x/z33nuP7373u0yePJkLLriApqYmWlpa9ltWQUEBs2fPBuDTTz/lK1/5Cna7nczMTE488UQWLVoEwMyZM8nLy8NmszF58mRKSkr2Keu2225j8eLFnHHGGfz3v//lrLPO6nGf+4vzwgsvJCYmhvT0dE4++WS++OILAPLz81m5ciWbN2/mscce67GGaOLEiVx55ZU8+eSTOByOrmO6+uqrATjllFOora2lqclKjM8++2ycTicTJkzA7/d3xTthwoSu4/vwww+ZNWsWEyZM4IMPPmDNmjX77Pfyyy/vqu175plnuPzyy/f7O1eqL2K8jbTZEynISGC7ycJWvy3cISmllFJqkBhUNVgHU9M0kH74wx8ydepUrr/++q55gUCABQsWEB0dvce6Dodjj2Z13Z/HFBcXd1D762yiB1bzP5/P1+N6w4cP51vf+hbf+MY3yMjIoLa2dp91eosT9h3OfO/pnJwcxo8fzyeffMKll166x7LXX3+djz/+mP/973/84Q9/YNWq/fdV6Twmm82G0+ns2pfNZsPn8+F2u/n2t7/N4sWLyc/P5/bbb+/xWVbHHHMMmzdvprq6mpdffplf/vKX+92vUn0RF2imw5VIWrSTCns2ha2bwh2SUkoppQYJrcHqg9TUVC677DIeeWT3M5PPOOMM7rnnnq7pzqZwhYWFLF26FIClS5eybVvP34Aff/zxPPvss/j9fqqrq/n444+ZOfPgHx/2+uuvd/VR2rRpE3a7neTkZBISEmhubj5gnACvvPIKbreb2tpa5s2bx4wZMygvL6e9vR2A+vp6Pv30U0aPHr3HvgOBAGVlZZx88sn8+c9/prGxkZaWFo4//nieeuopwOpLlp6eTmJi4kEdT2cylZ6eTktLC88//3yP64kIF198MT/60Y8oLi4mLS3toMpX6mC4TAc+u/VlRGNMPkneXeDrCHNUSimllBoMNMHqox//+Md7jCZ49913s3jxYiZOnMjYsWO7hjO/5JJLqKurY9y4cdx7772MGjWqx/IuvvhiJk6cyKRJkzjllFO44447yMrKOuh4nnjiCUaPHs3kyZO5+uqreeqpp7Db7Zx//vm89NJLXYNc9BYnWM38Tj75ZGbPns2vfvUrcnJyWLduHbNmzWLSpEmceOKJ3HzzzUyYMAGAr3/96yxevBi/389VV13FhAkTmDJlCt///vdJTk7m9ttvZ8mSJUycOJGf//znPPbYYwd9PMnJyXzjG99g/PjxnHnmmcyYMaNr2QMPPLBH3JdffjlPPvmkNg9UIeXzB3AZD4FgguVNLMSGgXodql0ppZRSByY9jUwXLtOnTzeLFy/eY966desoLi4OU0RHvttvv32PwTCONPr3o/qqpcPH2j8cS25qArk/fJ//vvA8X131NXxXPINjzNnhDk8ppZRSEUJElhhjpu89X2uwlFKqG7fXTzQejCMGgNhsq/a5ccfGcIallFJKqUGi34NciEg+8DiQCRjgIWPMXSKSCjwLFAIlwGXGmPr+7k+F1u233x7uEJSKKLsTLKuJYHZmDk0mBvcuHehCKaWUUgcWihosH/BjY8xYYDbwHREZC/wceN8YMxJ4PzitlFIRze0NEI0HgglWQXo85WYIRvtgKaWUUuog9DvBMsZUGGOWBt83A+uAXOBCoHN0g8eAi/q7L6WUGmhur59o8YLTaiI4JCGKHQwhqqUszJEppZRSajAIaR8sESkEpgALgUxjTEVwUSVWE0KllIpoHT6riaA4rRosm01oiMom0V0BETQokFJKKaUiU8gSLBGJB14AfmiMaeq+zFhDFfZ4ZyIiN4rIYhFZXF1dHapwlFLqkLi9AaLwIMEaLAB3fD5Rxg2t+hmllFJKqf0LSYIlIk6s5OopY8yLwdm7RCQ7uDwbqOppW2PMQ8aY6caY6RkZGaEIZ0C8/PLLiAjr16/vdZ2SkhLGjx8fsn1u2LCBk046icmTJ1NcXMyNN94IWA8JfuONNw65XLfbzcyZM5k0aRLjxo3j17/+dahCVmrQc3d4iBIfNlfs7pnJQ62f2g9LKaWUUgfQ7wRLRAR4BFhnjPl7t0WvAtcG318LvNLffYXT008/zXHHHcfTTz/d43Kfz9fvffj9/j2mv//973PTTTexfPly1q1bx/e+9z2g/wlWVFQUH3zwAStWrGD58uW89dZbLFiwoF+xK3Wk8Ha0A2B37a7Bis4YBkBb1ZawxKSUUkqpwSMUNVhzgKuBU0RkefB1DvAn4HQR2QScFpwelFpaWvj000955JFHeOaZZ7rmz5s3j+OPP54LLriAsWPHAlaideWVV1JcXMyll15KW1sbAO+//z5TpkxhwoQJ3HDDDXR0dABQWFjIz372M6ZOncpzzz23x34rKirIy8vrmp4wYQIej4fbbruNZ599lsmTJ/Pss8/S2trKDTfcwMyZM5kyZQqvvGLlso8++igXXnghJ510EiNHjuQ3v/kNACJCfHw8AF6vF6/Xi5Un7+m5555j/PjxTJo0iRNOOAGwar+uv/56JkyYwJQpU/jwww+79nXRRRdx+umnU1hYyL333svf//53pkyZwuzZs6mrqwPg4YcfZsaMGUyaNIlLLrmk6/fT3ezZs1mzZk3X9EknncTeD6BWaqB43dbfZPcEKyl7OADNFZpgKaWUUmr/+v0cLGPMp8C+d+eWU/tb/h7e/DlUrgppkWRNgLP3n/u98sornHXWWYwaNYq0tDSWLFnCtGnTAFi6dCmrV6+mqKiIkpISNmzYwCOPPMKcOXO44YYb+Oc//8l3v/tdrrvuOt5//31GjRrFNddcw/33388Pf/hDANLS0li6dOk++73ppps45ZRTOPbYYznjjDO4/vrrSU5O5re//S2LFy/m3nvvBeAXv/gFp5xyCv/+979paGhg5syZnHbaaQB88cUXrF69mtjYWGbMmMG5557L9OnT8fv9TJs2jc2bN/Od73yHWbNm7bP/3/72t7z99tvk5ubS0NAAwH333YeIsGrVKtavX88ZZ5zBxo3WA1hXr17NsmXLcLvdjBgxgj//+c8sW7aMm266iccff5wf/vCHfOlLX+Ib3/gGAL/85S955JFHumrmOl1++eXMnTuX3/zmN1RUVFBRUcH06fs8JFupAeHzWAmWI2p3E8GcIelUm0Q8tdvCFZZSSimlBomQjiJ4pHr66ae54oorALjiiiv2aCY4c+ZMioqKuqbz8/OZM2cOAFdddRWffvopGzZsoKioiFGjRgFw7bXX8vHHH3dtc/nll/e43+uvv55169bx5S9/mXnz5jF79uyumq/u3nnnHf70pz8xefJkTjrpJNxuN6WlpQCcfvrppKWlERMTw5e+9CU+/fRTAOx2O8uXL6e8vLwrCdvbnDlzuO6663j44Ye7mi9++umnXHXVVQCMGTOGgoKCrgTr5JNPJiEhgYyMDJKSkjj//PMBq+atpKQEsJKw448/ngkTJvDUU0/tUVPV6bLLLuP5558HYO7cuVx66aU9/n6UGgi+YBPB7glWfkos5WYI0qB9sJRSSim1f/2uwTqsDlDTNBDq6ur44IMPWLVqFSKC3+9HRPjLX/4CQFxc3B7r793Urqemd3vbu4zucnJyuOGGG7jhhhsYP358j4mQMYYXXniB0aNH7zF/4cKFB4wnOTmZk08+mbfeemufAToeeOABFi5cyOuvv860adNYsmTJfo8jKiqq673NZuuattlsXX3UrrvuOl5++WUmTZrEo48+yrx58/YpJzc3l7S0NFauXMmzzz7LAw88sN/9KhVK/mANljN6d4KVFOuk0jaEgtaSMEWllFJKqcFCa7AO4Pnnn+fqq69m+/btlJSUUFZWRlFREZ988kmP65eWlvL5558D8N///pfjjjuO0aNHU1JSwubNmwF44oknOPHEEw+477feeguv1wtAZWUltbW15ObmkpCQQHNzc9d6Z555Jvfccw8m+IyeZcuWdS179913qauro729nZdffpk5c+ZQXV3d1eSvvb2dd999lzFjxuyz/y1btjBr1ix++9vfkpGRQVlZGccffzxPPfUUABs3bqS0tHSfxG5/mpubyc7Oxuv1dpXTk8svv5w77riDxsZGJk6ceNDlK9VfpjPB6laDBdAUnUuiZxcE/D1tppRSSikFaIJ1QE8//TQXX3zxHvMuueSSXkcTHD16NPfddx/FxcXU19fzrW99i+joaP7zn//w5S9/mQkTJmCz2fjmN795wH2/8847XYNMnHnmmfzlL38hKyuLk08+mbVr13YNcvGrX/0Kr9fLxIkTGTduHL/61a+6ypg5cyaXXHIJEydO5JJLLmH69OlUVFRw8sknM3HiRGbMmMHpp5/OeeedB8Btt93Gq6++CsBPfvITJkyYwPjx4zn22GOZNGkS3/72twkEAkyYMIHLL7+cRx99dI+aqwP53e9+x6xZs5gzZ84eSd2rr77Kbbfd1jV96aWX8swzz3DZZZcddNlKhULA6wbY4zlYAN6EfBz4oWlHOMJSSiml1CAhnbUekWD69Olm79Hi1q1bR3FxcZgiGtweffTRPQbDOBrp34/qqycef4irt/4Evv4+5O0eXOWp/z7KlRt/QOCa/2EbdkIYI1RKKaVUJBCRJcaYfUZi0xospZTqxnitQS5wRO8xPzYzOFR7pQ7VrpRSSqneDa5BLlSfXHfddVx33XXhDkOpQUV8VhNB9moimJIzDL8RWndtISkMcSmllFJqcBgUNViR1IxRDR76d6MORVeCtVcNVl5aEhWk4astOfxBKaWUUmrQiPgEKzo6mtraWr1ZVn1ijKG2tpbo6OgDr6xUd73UYOWlxFBuMnA0lYYhKKWUUkoNFhHfRDAvL4/y8nKqq6vDHYoaZKKjo8nLywt3GGqQsfVSgxXttFPjyKK4bVUYolJKKaXUYBHxCZbT6aSoqCjcYSiljhJ2f88JFkBLTC5JrR+C1w1OrR1VSiml1L4ivomgUkodTjZ/B15xgm3fj0d/0lDrTWPZYY5KKaWUUoPFgCdYInKWiGwQkc0i8vOB3p9SSvWHPeDGKz0/PNueZtWme2u3Hc6QlFJKKTWIDGiCJSJ24D7gbGAs8BURGTuQ+1RKqf5wBDrw2npOsOKGDAOgaefmwxmSUkoppQaRga7BmglsNsZsNcZ4gGeACwd4n0opdcicAQ++XhKsjJwCOoyTtqqthzmq0PP5Azw6fxsbdzWHOxSllFLqiDLQCVYu0L2zQnlwXhcRuVFEFovIYh0pUCkVbg7jxt9LgpWfFk+5ScfUlxzeoAbAEwu2U/nGn4i6fya+rZ+EOxyllFLqiBH2QS6MMQ8ZY6YbY6ZnZGSEOxyl1FHOFfDgt/c8QmBWYjQ7yMDZPPgHuXh7RSn/53iNAnbS+uZvwh2OUkopdcQY6ARrB5DfbTovOE8ppSKOMQaX6T3BstuEelcOCe07D3NkoRUIGOIqF5IiLSwKjCapehE0loc7LKWUUuqIMNAJ1iJgpIgUiYgLuAJ4dYD3qZRSh6TDFyBaPATsPTcRBGiPyyM+0ATupsMYWWiV1bcxwm/1I/tf6rXWzO2fhzEipZRS6sgxoAmWMcYHfBd4G1gHzDXGrBnIfSql1KHq8AaIxoPp4SHDnQLJwWdhNWw/TFGF3vrKZkbbyvDEZRM76kRaTAz+kvnhDqtfyuraOOWO93j2kb9B1fpwh6OUUuooNuB9sIwxbxhjRhljhhtj/jDQ+1NKqUPV4fMThQfTSxNBAFeaNVR7e/XgHUlwQ2UzxVKKPWscxTkpLA8Mw1O2JNxh9cuDH29hauM7XF72W8z9x0JbXbhD6pfnl5Rz3J/eZ/nbjw362kVjDPe8v4m/vr0BX8Vq8LSFO6R+qWx0c8uLq1haWg/NleD3hjskpVSECfsgF0opFSncXquJoHHG9LpOQvbgfxZWaW0rhbZd2DNGMSYrkfVmKM66jRDwhzu0Q2KM4b21VXw79kMAxPhh6eNhjurQ+fwB7nhrPbOb32by59+H/5wFDaXhDuuQfbq5hr+9u5GlH72M48E5cO8M8LaHO6xD9utXV/P0F6U889g/4W+j4T/nQCAQ7rCUUhFEEyyllArq8PmJwQPO2F7XycrModnE4K7edhgjC62mhipi6ICkPIZlxLGZoTj8bqgbnMdUWtdGc1M9hd7NvJh4FZtsw2DTu+EO65B9sa2OquYObkxcgNfYrZnLngpvUP3w7tpdxDjt/DT6ZWtGUzmsej6sMR2qNo+P99ZVMSoznq96g8dQ/gVseD28gSmlIoomWEopFdThCxBLx34TrKFpcZSbDGQQ98Ey9cERA5PycNpttCSPsaarBmcX2TU7m5hk24KNAI6hs3jPMw5TtgA6BudDlJeW1pNIKyPbV3K//0LKE6fA2lfCHdYh+2RTDScWxjDBbOAB/wX4U4bDmhfDHdYhWVHWiD9guPXEDCbbtvJO1o0Qmw5rdfwupdRummAppVRQh8dDlHgRV+8JVnKsk50yhOiWwfksLGMMjpbgMPNJeQDE5IzFjw12Dc4Ea31lM5NtVp+49OI5LAwUIwEfVKwIc2SHZllpA6enVCIYqlIm8wlToHodtNaGO7Q+a2jzsK2mlfNSSrEbP5/6x7EzfQ5s/wy87nCH12dLS+sBmG7fBMD/mobBiNNg83uDtomtUir0NMFSSqkgr7sVAHHF9bqOiFAfnUdyx45B2e+ioc1LeqDamki0EqzhuRmUBDLx7lwVxsgO3eaqZsZH10B8JuOGDWVVoMhasHN5WOM6VOsrmzkh3qpljC+czlsN1nlix+AbiGRrjXVNjcaq8V3NcBbZJoHPDTsWhzO0Q7KstJ7hGXHEVS3BL07ersumKedYaK+Dmk3hDk8pFSE0wVJKqSBvh3UzaIvqvQYLoD2hCJfxWH1JBpmdje3kSi0BmxPiMgAYnZnAepNPoHJ1mKM7NCU1bQyz74LUYSTFOEnKyKHOngEVy8MdWp+5vX52NrYzxmyDpKGMG1HEIk8hRmyDMiHZVm1dU5meMojLIC87i3ebggnjIEyAt1S3MjorAWo20ZE0DA9O1soIa+HOZeENTikVMTTBUkqpIL/bGj7avp8mggD2jJHW+tWD7xvrigY32VKLNy4bbNa/gBFD4tkYyMfVXDbohtA2xrC9tpXcQAWkDgdgYm4Sq03hoGwiuL22DWMg01sO6SOZnJ9MG9E0xA+H8sGXYJXUtmITiG8tgTTreD7ZKZjEvEGXkPj8Acrq2ihMi4PazbgyRyICi5rTwBkHO5eGO0SlVITQBEsppYJ87hYA7NHx+10vPqcYgIaydQMeU6hVNLaTIzVIsP8VQG5yDCW2fAQDNRvDGF3f1bR4CHhaSfDWQKrVNHB0ViKLOwowNZsG3UAX22paAENCWymkDSc3OYb4KAdbXMVWE0Fjwh1in2ytaSU/NRZb7WZIG87E3GRaOny0pY8fdDWM5fXt+AKGotQoqNuGI2MURWlxrNrZAjmTYYcmWEopiyZYSikV1NkHKyq69z5YADl5BbSYaNoq1h+OsEJqR4ObXKnFmTq0a57NJnhSR1kT1RvCFNmh2V7bSoFUWROp1jPKxmQlsMoUWQlj5eDqV7a1ppV0mrB7WyB1ODabMCYrgUXeYeBugNot4Q6xT7ZVtzIuJQBtNZA+kjHZCQDsiBkNtZvB3RTmCA/ettpgf7Loegh4IW0E43KTWLOzCXKmWH9r+tBhpRSaYCmlVBdfh1WD5YpL2O96w4YksM1kDbqbXYBdDc0Mkfo9arAA4rJH4cMO1YMraSypbaNAKq2JNKuJ4KisBNYECq15FSvDE9gh2lbdyuS44GiBweMpzk7kg8Zsa17l4DkeYwwlta1MjauxZqSNZOSQBGwCq42VDA+mZpwlwQE7CkxwFM60EYzPSWRHQzstaRPB3wFVa8MYoVIqUmiCpZRSQf4Oq/9R1AGaCKbGuSi35RLXPPgezOuur8BBoGuI9k5FmSlsDWThrRxcN4ilta0MswUTrBSriWBOUjTtUem02pMH3bO9rISkzprorJHLTmBFRxbG5oBdg2cgkqrmDto8fsY4gzWM6SOJcdkpTI/j09bg398gaia4raaVhCgHia0l1oz0kYzLSQJgg60zYRw8CbBSauD0K8ESkb+IyHoRWSkiL4lIcrdlt4jIZhHZICJn9jtSpZQaYCY4iqD9AKMIAjTFFpDsrRx8z/Jp7HzIcP4es0cOiWeTySVQNbhqsErr2iiOqrFGRIxOBKyh9EdlJbLVXjjonu21raaVYtcusDkguQCwarA8OGlJGAaDaKTHrcERBIeaHSB2SCkEoDgrkcXVdkjIHlTHs62mlcL0OKR2M8SkQGwqxcEmj8taUqyBLgZRAqyUGjj9rcF6FxhvjJkIbARuARCRscAVwDjgLOCfImLv576UUmpA+TtH0HMeOMHypQzHhoG6rQMcVegEAobo1gprIil3j2UjMxPYZPJwNZWCtz0M0R2a0ro2hturump7Oo3OSmC5Jxeza+2geQBsk9tLTYuHoVRayYjdAVjD6ItAuWv4oOpTti3YpC69ozR4PE7A6iNXWteGL2PcoDqeklorwaJ2M6RZI4mmxUcxJCGKtZUtkDl2UCWMSqmB068EyxjzjjHGF5xcAHS2ObkQeMYY02GM2QZsBmb2Z19KKTXg+pBgubJGA9BeOXgGhaht9TDEdD5keM8EKz8lhm2SjxAYVA9MLa1rI6/bEO2dRmcmsMKbh/jaoW5wNOUsrbX+/jK85XscT1yUg4LUWNYECqB5J7TWhivEPtlW04LLYSOmaRukj+yaPybbqmmsjh8FNRvA1xGuEA+axxdgR307RWmxwQRrRNey4uxE1lU0Q+Z4K2EcZCM9KqVCL5R9sG4A3gy+zwXKui0rD85TSqmIJd5ggnWA52ABJOcNvqHaKxuDz8ByJnQ1p+vksNtwJwdvggfJSIKtHT5aWppJ8lX3WIO1LhAcKXGQNNsqqW0FDPGtpV0DXHQqzk7k89bgQBe7Bketz7aaNopSo5G6rXslJFazui22Qgj4BsXfW2ldGwEDw5OB5oo9zk9xdiKbq5rxDRkHHY3QWNZrOUqpo8MBEywReU9EVvfwurDbOrcCPuCpvgYgIjeKyGIRWVxdXd3XzZVSKmTEF0ywHDEHXLcwJ5Mqk4xnV+TfHHba2dhOrtTii+/5+66Y7NH4sA2akQTL6tsY2jVEe9Eey0ZnJrDZ5BLANmj6YW2vbSOTemy+9n0SxjFZicxrzLQmBkkztG01LUxLbgWfe48arNzkGBKiHCx2B/8OB0EC3NnccXS3ATs6FWcn4PUbdkQFk65Bcn6UUgPngAmWMeY0Y8z4Hl6vAIjIdcB5wJXGdNWL7wC696DOC87rqfyHjDHTjTHTMzIy+nUwSinVH05fC+0SC7YDV+4PTYtli8nBWb/5MEQWGhUN7eRJNbaUoT0uLxqSQkkgC9+uwTGS4PbaNor2GqK9U0qci6SEBKpc+YMmwSqp6T5E+4g9lo3JTqDWJOKJzRwUCYnPH6C0ro2JMZ1DtO8+HhFhTHYCn9cnWV9mDIJ+WJ1DtOcHdg/R3qk42ORxpScXkEFxfpRSA6u/owieBfwUuMAY09Zt0avAFSISJSJFwEjgi/7sSymlBlqUr5k22/6HaO9a12Gn0lVAStu2QdPnoqKxnXypwpUxrMflIzOtkQT9uwZJDVZdt2dgpRTts3x0VgIbKRg0N7zba9uYstczsDqNDd7E18SNHBQJyY6Gdrx+wyh7ZwI8co/lY7ISWVvZhskcOyiOZ1ttK8mxTuKaSwDZo4ZxWHocLoeNVTUBqyZ1EByPUmpg9bcP1r1AAvCuiCwXkQcAjDFrgLnAWuAt4DvGmMExjJNS6qgV7W+lw3FwCRZAa+IIYgKt0NRjBX3Eaa7dRby4kR6SEbCGat9o8nA1lgyKgQdK69oY6azGxKZBTPI+y0dnJrC4PRsatoO76fAH2Eclta2Mce4CR/Q+g5DkJscQH+Ww+i1VbwCfJzxBHqTOJnW5gXKISoT4IXssH5OdQHOHj9aUMVYCHOFfUpTUtFKUHge1m6xHHDh3NyN22G2MyoxnXUWTNdDFIEnolVIDp7+jCI4wxuQbYyYHX9/stuwPxpjhxpjRxpg391eOUkpFgmh/M54+JFiSNQ5g8Dyct77E+hl8HtHeCtLi2EreoBlJsLSujZGOKmSvEQQ7jc5KYLU/2Fq9KrLPUZvHR1VzB4Wm3Krtse35ZBObTRidlcBidz4EvBHfT25zVQsAKe3breZ0InssH5Nl1ciVO4dDez007TzsMfbFtppWitI6h2jf9++tOCvRSrCyJliPbuhoDkOUSqlIEcpRBJVSatAyxhAbaMXvSjzwykHJBRMBaChZOVBhhZS9cbv1ppcEy+Ww0ZYU7FsS4TfwYA1rPpTKfQa46FScnci6gPWw3kivVdgeHKJ9iLsEMkb3uM6YrAQ+bAzWBEX48WypbiE51omzfsseA0J0Gp1ljSS42h/sDxjBzeraPX4qGt0UpsVCbc/HU5ydSE2Lh4bEUdaMQdKPUSk1MDTBUkopoKXDRwJtBFwJB71NUX4+1SaJ9p2RP4hCm8dHojvYlDG550EuAKKzRuPHFvFDZ/sDhvr6WlJ9VZA+qsd1RmbGU21Lw21PiPiBLkpqWonBTWzbjl4TrOLsRFa7Mwg4YiJ+pLotVa1MTANp2gFDxu6zPD7KwdDUWD5vybJmRPDQ89vrrOaOY+KaoaOpx7+3McGh59cTTPYj+HiUUgNPEyyllAKa3D4SpQ2ikw56m2EZcWwyebhqI7+2p6TGGtLcHZ2x3+d8FWWmsj2QiT/Cv4EvrWujKFBqTWSO63GdKIedEUMSKHEURnyCtamqheESbCbXa4KVQAAbzYkjoTKya003V7dwTEJwSPMeEiywjmdZtd+qUY3ghHFLlZVgjSJYA5w5fp91OgchWd4YZ32GRPDxKKUGniZYSikFNLZ6SKANW8zBJ1jRTjuVUYUkt26FQGAAo+u/ktpWhkoV/qSC/a43IjOBjSYPX4SPJLihsolRtnJrYkhxr+sVZyeyyptnNdmK4HO0obKZWQnBIc0zxvS4zujOfkuu4RE9MERdq4e6Vg8TnMGEsZfzMyYrkZKaVvwZ4yO6ieD6yibsNiG3Y6s1I3PfhDE51kV2UjTrK5shc0LEN+FUSg0sTbCUUgpoaWnEIQHsscl92q49eRTRxg2NZQMTWIhsq2kl39b7EO2dRg6xhmp3Nm4Dr/swRdd3GypbGCNlGFc8JPXe5LE4O4ElHbngaYbG0sMYYd9s2NXM1JhdYHPs85DhTp3N6lYH8oMDQ0Tm6JWdA1wUBkrBlQBJeT2uV5ydQMBAdfxIa2AIT+vhDPOgrd3ZxPCMOJw1a62/tV5quYuzE1lX0QxZ460a04AOnqzU0UoTLKWUAtqa6gBw9jHBsgdHEvRURHaTuh1VteRILc70nkfc6zQsI46NpgCb8Uf0QBcbdjUx0bUTyRiz3wdDF2cnsj4QTMAitJlgh8/PtppWRtt2WMmV3dnrumOyEpjfnGNNRGgztDU7GwHIaN9i1V7tNYJgp86RBDdLEWAidmCIdRVN1sOEd63ptTkqWAnjluoWvBljwdsGddsOY5RKqUiiCZZSSgGexl0ARCVl9mm7lOBIgnUlK0IeUyj5dq3Hhtlvczqw+i21pgabQEVwP58NFU2MpPSAx1OcnchGk4dBIjYh2VLVij8QIK99HWRP2u+6Y7IT+bAhw5qI0IEUVpQ1kJngIqp23X7Pz9DUWOJcdha1BxPGCDyehjYPOxvdjB8SZT26YL8JViK+gGG7I1gDGYHHo5Q6PDTBUkopwNNQAUBCek6fths+NIcKk4pnZ2TevIM1BH10fbA2akjvN4idUvJG0Up0xPaLcXv9tNRVkBBo3O8NL0B6fBTxCUnUuHIitl/M8rIGcqkh2l0NeTP3u+7Y7ASaTQwdCUMj9vwsL2vgzKxmqxlj3oxe17PZhHE5SXxSHQNRSRF5PGsrrAdUT4vdBca/37+3zhq5FR3ZIPaITeiVUgNPEyyllAL8zcEarOTsPm1XkBbHRjOUqLrIbU5XXt9OvrcEny2q12dGdTc2N4W1gaF4ypcPfHCHYM3OJsaz2ZrImnjA9YuzE9lgCiK2ieDikjpOiC2xJvJ7T0hg9018VeyoiLyBr2/1UFLbxsmxwQEhhs7e7/oT8pJYW9mMyRwbkcezeofV3HGUJ9h8MXdar+sWpccR7bSxpspjDeUeoQm9UmrgaYKllFIArdXWz7ghfdrMabdRGTOctLZt4PMMQGD9t3pHIxNtW+lIGws2+wHXH5udyJpAIbaqNRE58t7S7fVMtW3C2ByQM+WA6xdnJ7LEnYOp2wodLYchwr5ZtL2O0xK2gyOmxyHAuxuaGktCtIMNFFgDQ0TY8SwvbwBgrG8dxKRC2oj9rj8hNwm3N0B94pjgwBCR9fe2cGsdw9LjiK/43Hp+XErvo3DabcLozATWVTRZA11EYI2cUurw0ARLKaUAZ3s17RKz32dE9aYjbSwOfFC7aQAi67/V5bVMkG1EFe6/dqTT2OxE1poCHL5WqI+8jvqLt9dxrGsLkjXhoM7X2JxEVvgLEUzE9SurbHRTVtfOBLPJShb3M8AFWM3qJuYl8XlbDmCgKrIGhlhR1oAIZNQvg/xZvQ5w0WlCnjUi3xZbIXhbraQxQvgDhi+21TG7KAVK5kPh8Qfcpjg7kfWVTZisidYojy3VhyFSpVSk0QRLKaWA6I5amh0ph7ZtntVMrbU0Mge6qN+2kljpwHGA5medkmKd1MQHH3YbYQlJIGBYXVLJBLMRCo87qG0m5iaxMhAcPXHH0gGMru8Wb68jjnbSW9ZD/v77X3WakJvMe3XBgS4i7Pws3FrHzAw/trotMHTWAdcvSosjPsrBFx3BmqGdywY4woO3rqKJ5g4fp2XUQ3vdQf29jc1JpL7NS03yBGvGzsj6e1NKHR4hS7BE5MciYkQkPTgtInK3iGwWkZUiMjVU+1JKqVAyxhDvraXdlXFI22cOm0CHcdBYEjk3h53cXj/xlZ9bEwXHHvR20dnj8GGPuGZOa3Y2MaJ9JQ7jhWEnHdQ2BWmxeGPSaXAOibgb3s+31HKKax22gBdGnHpQ20zKS2K7Pw1fVDLsXD6g8fVFk9vLopI6rk0L9kccfsoBt7EGukjk/do0cMbCjsUDHOXB+2yL9eDn6YHgNVAw54DbTMpLBmCZZyiIDXYsGajwlFIRLCQJlojkA2cA3Z/ieDYwMvi6Ebg/FPtSSqlQa2z3kkMVnoSeH4h6IMU5KWwyeQQisJP+0tJ6ZpjVtMYX9vrA156MyktncyAH/87IqpX7YH0VZ9oXYZyxMPTgEkYRq1ndGkZEVA1WIGB4d+0uvpK02nogb/7+B4ToZDWrE3YljIuoG/hPN9XgCxiO9cyH5IKDGoAEYGJeEqsrWwlkT4qo43lnzS7GZieSuPV1yCjeb/+rTmOyE3DZbSyp8MCQsRF1PEqpwydUNVh3Aj8FTLd5FwKPG8sCIFlE+jY8l1JKHQbltU1kU4skH/gGqicZCVFssxeS2Bh5Iwku3FDOHNsanKMOXJvQ3djsRFabIgI7l4MxB1z/cPlgbTnnORYhY87tU3+5iXlJfNpeYPUpa6sbwAgP3rKyBpqam5jR/gmMvQAcroPaLjc5hrQ4F2tkJFStg47mAY704Ly+qoL8GA9JFfOh+PwD9r/qND43CY8vQF3yBKhYGRGDxVQ1uVlSWs+lw4HSz2HCJQe1XZTDTnFOIsvLGiB3qpVgRdD1o5Q6PPqdYInIhcAOY8zeX3PmAmXdpsuD8/be/kYRWSwii6urtTOoUurwq9u5FbsYoocMO6TtRYSGxNEk+uoiqlO7MYaaVe8QKx24xp3fp20n5CWxMlCEs73G6qwfATbuaial8jMSTTOMP7gb3k4T85JZHgie3whpJvji0nLOcS7F6WuFSVcc9HYiwoS8JD5uKwBMRDQTbGz38u7aXfwofyMS8MLYCw9624nBZnUb7SPB3wFV4R9O/8VlOzAGLnQusGb04e9tcl4Sq3Y0EsiZZj0LLAIHilFKDayDSrBE5D0RWd3D60LgF8BthxqAMeYhY8x0Y8z0jIxD6/+glFL90VxhPVMpOWf/Q0rvV/ABpP7K8N8cdlpb0cTslvfpcCZBwcENCNEpKzGa7dFjrIkIaVb3wpJyLrV/QiAq8aD693Q3KS+Z1YHgM8B2hL+vXJvHxyvLd3Jj4gJIzOvz+ZmYl8wbdcGHYkdAv6VXlu/A4/NzVsvLVnO6/TxgeG8FwaHn57s7z094m9X5A4ZnF5UxY2giaRufgdzpkHrwX75Myk+mzeOnNLrYmlGuzQSVOtocVIJljDnNGDN+7xewFSgCVohICZAHLBWRLGAHkN+tmLzgPKWUiigdu6zh1eOzRx5yGYkFkwFo2BY5N1OvL1jNGbYlmPGXHnTzs04iQnTuJGugiwio8Wnp8PHxF4s4x74Q27TrwBHVp+2zkqKJSUhhl2toRBzP3EVlFHg2MaZ1EUy7Dmx9a1AyMTeJOpOAO6EAysObYPkDhkc+3cZVmaXE1K2F2d866OaBYA10MT4niU+qoiEuI+wJyTtrKtlW08rPizZD7WY49rt92n5yfjIAi1qHWM82035YSh11+tVE0BizyhgzxBhTaIwpxGoGONUYUwm8ClwTHE1wNtBojKnof8hKKRVaUfWbaJNYSNynFfNBG15YyC6TTHt5ZAyb3ez2krDi30SJl+hjbjykMsYOHcK6QD6+svDXkPx34Xa+6nsFbA6Y/e1DKmNiXjIrA8PC3i/G7fXz4MdbuS3xdYhKgll9Pz8Tg8+PKo8bG/YaxpeX7WB7bSs3uV6C2HSYeFmfy5iYn8S6ymb82VPDmpAEAob75m2mKDWaqaX/gdThUHxBn8ooTIsjMdrBsp0tkDNZEyyljkID+RysN7BquDYDDwOH9h9RKaUGkDGG9Pat1MYU9ulb972NGBLPejMUV01kPPj1yY/X8hXepLHgTBgy5pDKmJgffH7UzmUQCIQ4woPX0ObhzQ/m8RXHh9imXAmJhzZe0qTOgS5adkHTzhBHefAe+XQb+U3LmNXxmVXbE53U5zKGJEaTlRjNisAIaN4ZtuNp8/j4+7sbuTF9DWnVX8BJPwdnTJ/LmZKfgtdvqEwYDzUbwd04ANEe2AtLy1m9o4m/jlyNVKyAE38KNnufyrDZhEn5yawoa4DcaVCxAvzegQlYKRWRQppgBWuyaoLvjTHmO8aY4caYCcaY8H8FqpRSe6lscjOMMjpSRvWrnGinnYroEaS0bgv7zVRVkxvb/DtJllaSTv/ZIZczMTeJ5WY4Dm8L1G0JYYR98/vX1vKzwL+QqHg45ZeHXM7E/GANFoStmeC2mlYe+GAtd8c/ag1lPuf7h1zWpPwk3m0KtsQPUzPBO97aQEtjNT82j1rDkk+7/pDKmVqQDMBKM5xwDdxR09LBn95cz8l5MHXjP6zHAEy8/JDKmpSXzPrKZjxZk62BO3ZFTt9MpdTAG8gaLKWUingl2zaTIU04cib0u6yOtGKceK1+G2H075ff4npepWX0lyFv2iGXkxYfRWXcWGsiTM3Q3l27i6QVDzHbthb76b+BuPRDLmtibhJrTQF+cYSl2Zbb6+eHzyzjVvsTZHnL4Ly/gyvukMubXpDKBw2ZGJszLMfz0cZqHv1sG09lPktUexVccC/YHYdU1pCEaPJSYni/qXPgjsN7PIGA4afPr6S1w8O9Ufcj3jbr/Bxirfak/GT8AcN6W/CLmwgYiEQpdfhogqWUOqo1bPwcgLTRB/fQ2v1xBZO0trLl/S7rUL2+dBvnbf41AWcc8ef/sd/lJQ0dRztRYanx2VrdwpPPPs0tzmfwjz7PGgyiH1LiXGSmJlPqGgGlC0MT5EEyxnDbK6sZVfEKV/AOHPs9GHFav8qcWpCCByeNSWMOe0JSUtPK9/67lN8lv874hvfh5Fv7lcwDTB2awvwdAUgbAWVfhCjSg/P3dzfywfpdvDD8TeJ2fAJn3wFDig+5vEn5VrPPL+rjIT7zsP+9KaXCSxMspdTRbccSvDhIKJja76Kyhk/AY+w0blve/7gOwcbKJjpeuYnxthIclzwI8f1/9MX4/DRWBQrxlR3eG/iqJje3P/IC98gdmJRC7Bfd168+cp0m5yfzuXcEZufSw/pA27+9s5HmpS/wZ+e/YNjJcOrt/S5zfG4iLoeNzc7RVg2j39f/QA9CZaObqx5ZyKXyPle7/wuTr4Tjbup3uVOGJlPR6KYta4b1cN/D1O/vX59s5d4PN/NAwTzGbX8CZt4IU6/pV5lDEqLJTY5heXkjDJ0NpQtCFK1SajDQBEspdVTLaFpNRfRwcEb3u6zROWlsNnkEKleFILK+qWhs55OHb+ZL8iFNM2/CUXxOSMqdmJvEysAwZNfKw9a3bGdDO7c9+F/+0X4rMTFxOK95CWKSQ1L2jMIUPnKPQHxua/CBAWaM4W/vbGDzR//lnqj7kPyZcMVTh9yUrrsoh52JuUl85B4O3lbYNfB/d9trW7nswc85q+1//Mo8BCNOh/PvCknyO3VoCgCboieAuwGq1/e7zAP51ydb+f3ra7k7933O2vUwTLgMzvpzaJL5ocksK22AocdAYyk0lvc/YKXUoKAJllLqqFVZ38rowBZa0yeFpLzspGg22wpIaNgQkvIOVlltK2/f8z2+5n+W+lFfJvHsX4es7PF51kiCdn8HVA38CIkbdzXz+/se5o6WW4mLi8f59bcgpSBk5U8vTGVJYLQ1Ufp5yMrtSYfPzy0vrqL5o3v5p+su7DlTkCvn9qvf1d6mFaTwcu1Qa2KAa0lWlTdy6T/nc3XbE/xS/o2MPhsufwLszpCUX5ydSJTDxqcdwefRlX4WknJ7EggYfvfaWv74+moezZzLBbWPWMnVRf/s8zPJejOjIIUdDe1UpQZrx7UWS6mjhiZYSqmj1uZ1S0mQdqKLZoWkPBGhIWE0ib4aaK0NSZkHsrGingX//DrX+Z6jdtRlpFzxYEi+fe+UGO2kNiU4AEj5opCV25MP1+/iuftv527v7UQlZxN147uQNjyk+xiVmUBHVBo1rjwoG7h+Mbua3Fz74EdMWfYrbnc+jow5B7n21UMakn1/phakUOZPoSM+D7YPXELy0rJyrnvgPe40d/ANXoApV8NlTxzSkOy9cTlsTMhN4v1dsRCfBdsHJgGubenghscW8eqny3g//e+c1PgKHPNduPjBkCWLYCXzAAtassAVP2AJ/bwNVXzloQWU17cNSPlKqb7TBEspddRq2mx9o5wzdk7oCs0cB3BYmgl+sGw91Q9cwJf9b1Az4eukXfFgn5/ZczAyh46mmhTMAN3w+gOGu95czq4nb+RW/oW38GSivvUhJOeHfF92mzC1IIWlZpRVozAADxxeVFLHt+6ey+1VP+Ryxzw4/mbksifAFRvyfXU2q9seN8m6gQ/x8bR7/Nz60ir+NfcV/hf1K+awDM7+C1xwT0iaOe5temEqq3Y24cufPSDHs3BrLefc/QmeLZ/yUdKvKXSvh4segDP/ELKaq07F2YnERzn4orQJ8maEvAbLHzD8/Z0NXPefRXy+tZbXVlaEtHyl1KHTBEspddRy7VpGi8QRlTk6ZGUmFEwGoLFkecjK3FsgYHjq1TcZ/tL5zJS1NJ7+d9Iv+VvIbxA7zSxKY6F/NL6S0NeQVDd38Kv7n+S8z6/gMsdH+Ob8mJhr5oa8pqe76QUpvN82HNpqoDZ0z/fy+gP87e31/Pfhv/C472eMjG6EK5+HU381IIkvQEZCFIVpsSz0j4LW6pA+ImDtziYuvOcjkhbfw6vRt5Ed40eu/R/MujGktaTdHTs8Da/fsC12IjTtgIbSkJTrDxjueX8TVz/8Kd82c3nK+Xti4xLhG+/D5K+EZB9760zmF22rh4JjrWdhtTeEpOyyujYuf/BzHvxgLY/mvsq8mJ+wckN4Hw+hlNot9F8/KaXUIBAIGHJa1lKRUMzIECYmRYVFVJskPGUrSAlZqbtVNbbz2qN/5Ct19+NxJRC48jWSio4ZgD3tNqMolccDozmvZYF1w5s8NCTlvrVqB+tf/CO3B/6LLzYd22WvYBt2YkjK3p/pham8HAg+n2j7fEgf0e8yt1a3cNvTH3Fl9Z382LkIf+5M7F9+JGS/q/2ZWpDCc+uHczXAlg8hfWS/ygsEDP/5rISn3vyYv7vuZ7JzHRRfCOf9A2JTQxFyr2YUpuKy2/ioYyQjwarF6mcfvLK6Nn76/Epqtq3g/cR/kd+x0XqA8Dl/GdBEHmBmYQp/fWcjjRnTSMJYxzP67EMuzxjDC0t3cPuraxjHVhZlPExi8EuC3LLXaPecRoxrYJJ5pdTB0xospdRRaVtlDSMpxZs1JaTljsqMZ50ZirN6TUjLBfho+XpW33kBN9TfRUP6VBK/P5+oAU6uAIalx7Eperw1EYJmgk1uL7956h0S5n6ZH5on6Bh+JrHfXwCHIbkCa6j2UlsuTa4hsPndfpUVCBieWLCdv919J3fVfYsznMvhtN9g/9pbhyW5ApgzPJ2Vbal0JBb2+3hKa9v46sOfs/aNB3jd9XMmOcusJnRffmzAkyuAGJedqQXJvLwjCWLTYPN7h1yWMYanvyjlnH/MY2r5E7wV80vy7LVW37EvPTTgyRXACaOsRyV82Fpk9cPa9M4hl1XV7OabTy7h588t4dcJr/CM7VYSaYOrXqAlZRznyGfM21AVqtCVUv2gNVhKqaNS6ZoFDBc/SSNmh7TcWJeDsqhRHNv6CnjbQzIIgNvr55lnn+CsTbeTJs3UHPsrsk/70YA1CdybiJBUMJnmrbEkbPsYJl1+yGV9tqma9569ix96/02MM4Dv3HtImHr1gDU560mMy86MwjQ+qZ7KuVvmWc/Dcrj6XE5ZXRu/nvs55+z4B/fZP8abMR77pQ919cM7XI4fmQ7AxoRZTNj2KnjdfX7sQCBgeHLhdv795mfcLg9zkmspJv8Y5OIHQzqK48GYMzydv727kY7ppxO16U3r8QB9HHyiorGdn7+wiq2bVjM34RGKPath5Llw/j8gfsjABN6D8TlJpMdH8d6mBi4afjJsfNvqV9aHv3djDK+u2MmvX11Dtmc7n2U8wpDmddaoh+fcATEpxExexpQPf88vl63i7AnZA3hESqmD0e//ziLyPRFZLyJrROSObvNvEZHNIrJBRM7s736UUiqU3CVfAJBVHMIBLoKa0qfgwAc7l/W7rPU7anjlL1/nmk0/xBGTgPnau6SfcfNhS646zRyewYf+Sfg3vAkBf5+3b/P4+Nvz82h7/Mvc5rsHe2Yxru/MxzHtmsOaXHU6YVQGL7WMA09zn4cDDwQMj39ewu3/uJc/VHyDLznmY46/Gef/fXjYkyuAIYnRjM1O5NXWseBrt5o99kFZnVVrteq1+3jdfjMnOtbCGX9Arnv9sCdXAHOCCeOK2GPB3din0feMMbywpJwz75zH8JKn+SD2F4yRUrjofuv5Y4cxuQKw2YSTR2fw8cZq/CPOtPqV7Vp90NtXNbm58Ykl/OiZJdwU8wavR93KEH8VXPY4XPIwxFgNke3F5wPg3PwWbm/fr0+lVGj1qwZLRE4GLgQmGWM6RGRIcP5Y4ApgHJADvCcio4wxetX3USBgqK2vo35XOc01ZbQ11uBvbyTgbsa0NyKeZuzeVgj4wPghEMAmBhsGny0Krz2GgCMGe1Q8tvg07InZuJJziEvLIS0zj6zkeGy2w39zo1S4xVUvp8aeQXpS6L/tjR1+DFRAy+b5xBcce0hlBAKGl995n5Gf/4TLZSs7R15BzmV/D+kzlPripNFD+Pvr07ig/XNruPahB1/zt3BLDe89ezff7XiYGIcfz6l/IP7Ybw3YwA8H47TiTO5+cxx+cWLf8BYMO+mgtiutbeP2uZ9y1o57ecTxEd6UEdgueQ7ypg1swAdw1vgs7n9vKL+Ii0HWvQojTj3gNoGA4amF23n0zU/5jTzEcc4VmKHHIhfcG/Lh8ftiUl4yGQlRPFE9jJn2KFj/BhSdcMDtyuvb+OXLqynduIJn4h9lrHc1FJwEF9w7ICNSHqyTxwzhuSXlLI+ewTSA9a9D1oT9bmOM4aVlO/jN/9ZS4N3KgoxHyWheB2POg/Pu3DdRzBhNe0IRJzd8wbtrd3H+pJwBOx6l1IH1t4ngt4A/GWM6AIwxnY1/LwSeCc7fJiKbgZnAwD7VcRBqbGyksnQD9Ts346nehq2xjJi2HUR31JLkqyXF1JMhHWT0sn0HTtolBj8OjAgGOwGxYYzBZTxEGTfRdGAnsM+2HmNnG5nscubTllCELWMkSfljyRk5lazMTCQM3yordTh0+PwUdqynJnU86QNQ/viRw9nycTYJm+cTf+pP+rx9WW0LHz52O5c3PorHHkPT+f8hZ8qXBiDSg1eUHkdJyjH4Wu/HseGNg0qw2jw+/vm/+Uxafju32pfSNGQariseDuvNe6cRQ+IZmpXBorbpzF79PJzxu/02Q+vsa7X4zcf5s+0R0pzNmDk/wnniz/rcHG8gnDMhi7+/u5FNaSczas1LcNaf9ts8dUt1C798cQVFpS/wmutpohzAaX9BZnz9sNeO7s1uE86dkM1/vyjFU3wqrlXPwem/7bUZZ2eN4t/eXsv1/I9/xbyA3R4D5/wTJn81LDWk3Z0wKoNYl5256zxMKzoBlv8XTvhpr7/nykY3t760ik/W7+D/pb3FJe3PIYEUqx/c2At7Ph4RoiZexLHz7+I785dqgqVUmPU3wRoFHC8ifwDcwM3GmEVALtD9gQ/lwXn7EJEbgRsBhg49PB2CD7e29nbKN6+hbvsqfFXriarfTEJ7Oem+CtJppHs3WzdOqm1DaHamUx07jsq4IUhCJs6kbGJTc0hIHUJsYipx8SnYYhKJckQRdaAAjAGfG3djFY3V5bTX7cBdvxN/XSmO+s0UtGwno34JrnofbATehypSqHQV0pY0EkfWWFKKJpI3aipR8QMxLppSh9emLVsYL1Wsz7t2QMofn5vI/xjNOdVL+9TfwhjD6x9/TuYHP+IaWceOzJPIufpBJCFrQOLsq1Mmj+KzT8Zy7MoXcJz66/3WQH2+uYYP597FtzseIc7hxXPK70ic852w1lrt7dJpeTz05hxmuz6Hta/AhEt7XG/tzib+9uLHfGnXXdxj/wJvxnhsX/onZE86zBH3bsSQBGYWpnJX3bHc53kDlj8FM76+z3odPj8PzNvK+x++z+3OfzPVuQFTeCJywd2QUnj4A+/FFTPzefSzEt6OPpvz296AVc/BlCv3WW/TrmZ+/uIq/KWLeDX+CYq8m2D0+XDO3yAhMwyR7ys+ysH5E3N4dcVOfnnhlSS89n+w4XUINuvr5PUHeOyzEu58dyNTzRq+SH2C5NZtMOmr1nO6DjDIiG3q1djm38nIHS+zadeJjMxMGMjDUkrtxwETLBF5D+jpv/utwe1TgdnADGCuiAzrSwDGmIeAhwCmT58e+ic+HkYmEGBn6RYqNiyko3QZ0fXrSWvfRm6gklGyu3XkLkmjxpVHSeJxbEsqICqjiKSckQwZOoqY5GzyQ/3toQg4Y4hOLyA6vZf29AE/zVVbqdy0gqayVUj1ehKbtzCi6hViq+dC8Jmp1ZJGbewwvKmjcGaPI6lgAhlFE3HEJoc25gjl8/nxeDvwedwEfD58Ph8Bvw+/30vAt9dPvx/j9+L3+zB+H36/D/y+A+xh/5dA9/t0EVuwllGsnzZBkOBKwXkSXC84X8QGQnC5tYyuZZ3bWOWITTDYrPWC053ldu7bBOeLCALB7W17lWULbktwveA22KyYZc+Yuy8XWzBW257lgLXvztgNpuuBpKb7g0m73hvrbXC6bvn/AEibcPoBzsehiXLYqU6eTGzTPKhae1D9cnY1tvPGY3/my7X3Y7PZqD31H+TOuS7s3753d+m0PP4471ROaP4HrPsfjLton3Wqmt3856U3OWnzn/iFbT3NQ6bhvPzBfg8dPhAum5HPXe9Np9xRQO68PyJjztujNqrJ7eXut1cRtegB7nG8QpQzgDnpNpxzvt/nQRcOh68dX8T/PVHL7ZkTyfjoDhh/KcQkA9Z18cH6Ku55fSEXNjzJy853rf47Z9yHTL4yov7OAMZkJXL8yHRuW23n7MyJOOb90UpIohMBqG/1cNf7m3h7wTJucc3lgqiPMFGZcPHjVi1PhPnGCUU8t6SMv5WP4fbU4fD+b2HE6V1/bwu21vLrV9bQWrWVR1OeZ0bbJ+AcCle9ACNOO7idpA3HU3ACXy35gAc+28pvL46cLwAijQkE8HjaaW9uor2tiY7WJjraGvG2t+Brb8bvbsF42wn4PBifB/zWy/i94Pcgfg8S8AS7Z0DX/+69H4zdfdpmw4gDY7ND50+bA2NzgM1pfflkcyA2h/XTbgebE5s9OO1wIDYn9uBPcTix252I3YHd4cDmcGGzO7AH59scTuwOJw6nNe1wuLA7re3tDidic2KzO7v+h0caY6z/29av12CMwWazDZpuLWL68ZR0EXkL+LMx5sPg9BasZOvrAMaYPwbnvw3cbozZbxPB6dOnm8WLFx9yPIdbdUUp25d/gGf7IuLr15LfsYkUmgHwG2GnPYe6mCI8KSNxZY0htXA8mUUTcMUN/NCwoRLw+ykv2UDl5mW0la/BWbeB1NatFJpyYsTTtd4uSac6qgBPbBYmPhN7YhaulBxcSVnExKcQl5hMXGIKzpjEft+YGL8PT0cbHncb3o52PB3teN2t+Dra8Xe04/O04/e0WUmQp52At52A143xusHXAT7rp/jciL8Dm78DCXiw+z3YAx04Ah4cxoMj4MGJB5fx4DReXHiJwotNBvX3ACqojkRSb9s+YM2hHnt7AVd/dhYtx/6ExDNv3e+673y+hOi3f8wJLGNn6kyyrn4EW0pk1ujf9PQivrP+WgqSHDi//WnXDa/b6+fFj5fi//jvXMHb+Jxx2M/4Ha7p14S9ydn+PLFgO++++hSPu/6MmXgZcv491HYIz89fQ/OCR/lK4DVypRbviLNxnvP/ILVP3yEeVsYYrvzXQjylS5jruA1bwTG0X/AgH+0Q3pr3EcW7/sc1jveJFg8y/Wtwyq1dgyREos1VzZxz16dcnF7Gn5p+BkUnUHrC33hmbQcrvpjH+f53+bLjU+w2QWZ/G064GaIit9bm9lfX8OhnJTx8bCOnL/0W/lFnM3/0rTy8pAH3ti/4WsxHnGHmIw4XctxNcOz3+j4K6br/wbNX8SP/d/nZT35FZmL4m68ONOP30lxXSWNVOa11O2lrqMbbUotpq8fmrsfe0YDL00C0r4k4fxPxpplY045D9u06cSA+Y8OLAy8OfOLAjz34ZV+3eILTu+cLYLARwE4AG37s+HEYP47ge3sY7yv8RvB1Ow7T9QXmbkak2/K9js3sOc8gSLc5skeJptvXowee3/1+6z++M8m47B+cNzGymr+KyBJjzPR95vczwfomkGOMuU1ERgHvA0OBscB/sfpd5QTnjzzQIBeRnmDt2LqG8mXvIaWfkdO0gjxTAVh9mcqchdQnFmOyJ5E6bDp5xdOJik0Mc8QDp6apjR3bNtBctgr/rrVE128ipb2EJH8taaZxvx9cblx04MJgwy92Atjxix0/NgxifdgYP7bODyLj7/pQchgfLunfWCkdxokHBx5x4cGJV1z4xIXX5sIvUfjsLvy2KIzNScAejbG7MI5ojD0KHNHgiAK7Cwl+24Tdia3zmyd78GWzIzYHtuA3TTa7tdxmdxzwi+K9P9i6LQh+ZBH8NicQ/HbM+man8xsea3Hw999tva5r3QSscoz1IUbntl21QN3K69qpAQLB+QTXCewOim77NwCBru3FmK6Y995P50/prGHaI4bd5UjnMRkQsfax58d98J3Q9duzPuQFE6xd6xI8AYnDZzP22HP2fzL6YWt1C3X3nMzweC8pNy/tMckor23m0//+kfNqHsEphubjf0n6yd+N6ISkstHNz+98gH/xW1pTxrJz/LfYWlmLf/OHnB74FJf4aB17BYnn/h7i0sId7gEFAoZvP7WU4esf4CfOuTRLHLWBePKpwi6G1uzZxJ32cxh+crhDPShVzW6++vBCxte8xV9cD2I3AXzYcImfADYY/yVsJ9wMQ4rDHepBeW/tLr791FIu5EP+n+NfOLt9/gfsUdimXAnHfh9Si8IY5cFxe/1888klzNtQzfXOd7nV9tge/yuNKx6Zeg0c811I6rFXxYEFAnjum0NFTS0PTXyWP1wS2uf8HW6elnpqd2yhsWIr7TUl+Bp3Ii27iHJXE+epJclfR7Jp7DVBaTRxNNsSaLUl0O5IwuNMwheVhIlKwBaVgLjisUXFY4+JxxGdgCM6nqi4RJwxCbhi4nA4XThd0biionE6o3A4HANS22MCfgJ+Pz6fB7/Pi9fnI+Dz4vd58HutljB+n5eAz4vP5yXg9+L3ea3WMT4Pgc6WMj4vxu8lEPBhgsuN34cJBN8HfOD3IsYHAT9i/EjAh8349vj/v+f/bCB4T9F53yDBpBG6/y/enRzRmZBJ95Ymu993rt37citF62wFg0BlwnjGnnBJxDV9HagEywX8G5gMeLD6YH0QXHYrcAPgA35ojHnzQOVFWoLlbmthw8I3ca99i9ya+V0JVQMJlMROoCNnFinFJ1A0/hicUf1/1s2Ros3dQU1VBU3V5Xgad+Fpa8DX1oTf3QwdTYinBZvfqlrvvMgJWN/i2DD4xYERqyo9IFaiInbrJ3ZnMMmJBmc04ohGnDHYXNHYnDHYgz+d0bE4o2JwRMXiio7FFR2DKzqO6OhoXAP0AanU3u658/d8r/EveL/8FM5x53XN9/gCvPray4xa9nsmyhZKU48l56v/xJEe+TeJAEtL63n28fv5mfc+UqUFgHaJpWn4eQw5++dIBAxi0Rf+gOG5xWXsWPY205o+IDvGR1rBWNKnXQw5k8MdXp+1e/zMXVxGbelaZrTMY2gC5A0rxj7mbIiQ/nx9UVbXxotLdyB1WznO/zkjUhwk5oy2Rko8DA8/DqVAwPD2mkqWbK8nz1/OcWYxhYk2HFnF1kiWoXj48Ya34OnL+Y33as75xm+ZURi5v6OAz0tV6XpqSlbRXrEJGkuJat1JgruCdP8uEmjbY32fsVEryTTaU2l1ptMRnYYvNhNJyMSRmE1MahbxKVkkpWaQmJKB0xl5TXnVkWVAEqxQi7QEa8ETtzF7y124jZONMZNpKziF7ClnMXTUJKv2Qiml9uOTdTvIfPp0Ml0dxF7/Is2x+Sz55E1ilv+b4wKLabSn4D/9/5E66ysR1wfmQNxePyu3VRJbv568IWkk542JiNH0lDrqGYPviUvxb/2Y/4u9k3u+fzkJ0eFNNLwdbVRsWUXd9lV4KtbjrN9EattWsn07ccnuvsnNJoYq+xAaXVm0x+YQSMzHnjqUuCFFpGQPZ0h2HtEuTZpU5NAE6xBUlm2massKRs08k+jY+HCHo5QahP71wqtctPI7pEtT17xmSaBm4jcoOvfmsD3XSil1BGuuxHvvbErdMfw15+/842tnEOUY+C+G25rr2LlpJY1lq/Dt2kBMwybS2kvICuzqasbnN8JOWxbVUQW0JQ3HNmQMCfnjySoaR3r6EG1hogYVTbCUUipM5q9cT8eyucTQQfaIKRTOOt/qy6eUUgNl+2f4HruYbb407sn4NbdccwHZSSHozmAM9dU7qdyyguayNZjqDcQ1byHTXUIGdV2rdRgHO+y51MUU4k4eiTNzDMkF48kdMYH4OP3SWh0ZNMFSSimllDqabPuEjqevJtDRyhOcg2/qDZxxzFSGZ8QfsKbI7W6nomQDDWVrce/ahL1uE4nNW8jylpJMS9d6rSaaHY586uOG4UsdSVR2MWmFE8gtKsbl6vnh0EodKTTBUkoppZQ62jTtpOV/Pyd+0ysEjLDB5LHNMZyOuGwcsck4beAwXuyeZqLd1cR6a0nz7iLLVO0xymE9CVQ4C2hOGEYgbRSxOWPJGDaRrLzh2OyRO/KpUgNJEyyllFJKqaNV7RaalsyledN84uvWEu+vx87uBKoDF/W2FJocabRGZ+FNKsKeMZLE3NFkFo4jMS0zjMErFZl6S7Ac4QhGKaWUUkodRmnDSTzjFhLPCE4bA54WEDvYXUTZ7GSJMPgG8lcq8miCpZRSSil1tBGBqMh6aKtSRwptNKuUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUiETWKoIhUA9vDHcde0oGacAehDhs930cPPddHDz3XRxc930cPPddHl0g83wXGmIy9Z0ZUghWJRGRxT8MvqiOTnu+jh57ro4ee66OLnu+jh57ro8tgOt/aRFAppZRSSimlQkQTLKWUUkoppZQKEU2wDuyhcAegDis930cPPddHDz3XRxc930cPPddHl0FzvrUPllJKKaWUUkqFiNZgKaWUUkoppVSIaIKllFJKKaWUUiGiCdZ+iMhZIrJBRDaLyM/DHY8KHRHJF5EPRWStiKwRkR8E56eKyLsisin4MyXcsarQEBG7iCwTkdeC00UisjB4fT8rIq5wx6hCQ0SSReR5EVkvIutE5Bi9to9MInJT8DN8tYg8LSLRem0fOUTk3yJSJSKru83r8VoWy93B875SRKaGL3LVV72c678EP8dXishLIpLcbdktwXO9QUTODEvQ+6EJVi9ExA7cB5wNjAW+IiJjwxuVCiEf8GNjzFhgNvCd4Pn9OfC+MWYk8H5wWh0ZfgCs6zb9Z+BOY8wIoB74WliiUgPhLuAtY8wYYBLWeddr+wgjIrnA94HpxpjxgB24Ar22jySPAmftNa+3a/lsYGTwdSNw/2GKUYXGo+x7rt8FxhtjJgIbgVsAgvdrVwDjgtv8M3jfHjE0werdTGCzMWarMcYDPANcGOaYVIgYYyqMMUuD75uxbsBysc7xY8HVHgMuCkuAKqREJA84F/hXcFqAU4Dng6vouT5CiEgScALwCIAxxmOMaUCv7SOVA4gREQcQC1Sg1/YRwxjzMVC31+zeruULgceNZQGQLCLZhyVQ1W89nWtjzDvGGF9wcgGQF3x/IfCMMabDGLMN2Ix13x4xNMHqXS5Q1m26PDhPHWFEpBCYAiwEMo0xFcFFlUBmuOJSIfUP4KdAIDidBjR0++DW6/vIUQRUA/8JNgn9l4jEodf2EccYswP4K1CKlVg1AkvQa/tI19u1rPdtR7YbgDeD7yP+XGuCpY5qIhIPvAD80BjT1H2ZsZ5hoM8xGORE5DygyhizJNyxqMPCAUwF7jfGTAFa2as5oF7bR4Zg35sLsZLqHCCOfZsYqSOYXstHBxG5Fatrx1PhjuVgaYLVux1AfrfpvOA8dYQQESdWcvWUMebF4OxdnU0Kgj+rwhWfCpk5wAUiUoLV1PcUrD46ycFmRaDX95GkHCg3xiwMTj+PlXDptX3kOQ3YZoypNsZ4gRexrne9to9svV3Let92BBKR64DzgCvN7of3Rvy51gSrd4uAkcHRiFxYneleDXNMKkSCfXAeAdYZY/7ebdGrwLXB99cCrxzu2FRoGWNuMcbkGWMKsa7jD4wxVwIfApcGV9NzfYQwxlQCZSIyOjjrVGAtem0fiUqB2SISG/xM7zzXem0f2Xq7ll8FrgmOJjgbaOzWlFANQiJyFlbz/guMMW3dFr0KXCEiUSJShDWwyRfhiLE3sjsZVHsTkXOw+m7YgX8bY/4Q3ohUqIjIccAnwCp298v5BVY/rLnAUGA7cJkxZu8OtmqQEpGTgJuNMeeJyDCsGq1UYBlwlTGmI4zhqRARkclYA5q4gK3A9VhfKOq1fYQRkd8Al2M1H1oGfB2rL4Ze20cAEXkaOAlIB3YBvwZepodrOZhk34vVTLQNuN4YszgMYatD0Mu5vgWIAmqDqy0wxnwzuP6tWP2yfFjdPN7cu8xw0gRLKaWUUkoppUJEmwgqpZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFyP8H5abUHVx7ilEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1966,31 +1966,31 @@ " 18\n", " False\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " bAP.soma.v\n", - " 0.00679\n", - " 1.79e-07\n", + " 0.00694\n", + " 2.58e-07\n", " \n", " \n", " 19\n", " False\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step1.soma.v\n", - " 0.0847\n", - " 2.21e-07\n", + " 0.0866\n", + " 1.42e-06\n", " \n", " \n", " 20\n", " False\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step3.soma.v\n", - " 0.0787\n", - " 5.89e-07\n", + " 0.0828\n", + " 1.2e-06\n", " \n", " \n", "\n", @@ -1998,14 +1998,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "18 False 6 0.0537 0.0124 bAP.soma.v \n", - "19 False 6 0.0537 0.0124 Step1.soma.v \n", - "20 False 6 0.0537 0.0124 Step3.soma.v \n", + "18 False 6 0.0562 0.0128 bAP.soma.v \n", + "19 False 6 0.0562 0.0128 Step1.soma.v \n", + "20 False 6 0.0562 0.0128 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "18 0.00679 1.79e-07 \n", - "19 0.0847 2.21e-07 \n", - "20 0.0787 5.89e-07 " + "18 0.00694 2.58e-07 \n", + "19 0.0866 1.42e-06 \n", + "20 0.0828 1.2e-06 " ] }, "metadata": {}, @@ -2013,7 +2013,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADwAUlEQVR4nOzdd3gc1dX48e/ZXUmr3rtkS+5V2GCDiW16KAngEIohQCghvJCEAIEQkhDi8IaEH+ENCZDEISFAKMb03osB020jN9xt2ZItW71rV9rd+/tjVkJdsrXSqpzP8+jx7sydO2dntPKevXfOiDEGpZRSSimllFL9Zwt2AEoppZRSSik1UmiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoNMSKSIyJGRBzBjkWNDiKyUUSOC3YcSik1EmiCpZRSatgTkaUiUuf/aRKR5jbPXwt2fEOdMWa6MWZFoPsVkZNEZI2I1ItIkYicF+h9KKXUUCN6o2GllAosEXEYYzz92D4H2AWE9Kef0UpElgATjDEXdbGuX+dmMA2nWLsiItOAFcAlwFtALBBnjNkRzLiUUmqg6QiWUkoFgIgUiMgvRGQdUC8iDhGZJyIfi0iViKxtOwVLRFaIyB9F5HMRqRGRF0QkoZu+LxORTSJSKyI7ReR/OqxfJCL5/n52iMip/uWxIvKAiBSLyF4R+b2I2Ht5HeNF5F0RKReRMhF5TETi2qyrEJHD/c8zRKS05XWJyJn+qWZV/tc3tcPxuVFE1olItYgsFxHnwR/pg9fNuTEiMqFNm4dE5Pdtnp/uP6ZV/nOY18d9HecfqfmV//gViMiFbdZ/W0S+9J+rQn8y2LKuZWroD0RkD/Cuf/lTIrLff9w+EJHpHeL+u4i85h+t+0hE0kTkLyJSKSKbRWR2H4/RSX15jQfhFuCfxpjXjDEeY0y5JldKqdFAEyyllAqcC4BvA3FAKvAK8HsgAbgReEZEktu0/z5wOZAOeIB7uum3BDgdiAEuA+5uk+QcCfwX+Ll/v8cABf7tHvL3OwGYDZwMXNHLaxDgj0AGMBXIBpYA+D8c/wJ4VEQigAeBh40xK0RkErAMuA5IBl4FXhKR0DZ9nwecCuQCecClXQYgssCf2HT3s6CX19CV1nPT26iQPyH5D/A/QCLwT+BFEQnr477SgCQgE2v05n4RmexfV4913uP88VwtIt/psP2xWMf+FP/z14CJQAqwBnisQ/vzsJKZJMANfOJvlwQ8Dfy5j3F3SURu7ul89LDpPP/26/1J/qPdfYmglFIjiSZYSikVOPcYYwqNMY3ARcCrxphXjTE+Y8xbwCrgW23aP2KM2WCMqQd+A5zX1QiTMeYVY8wOY3kfeBNY6F/9A+A/xpi3/PvZa4zZLCKp/n1dZ4ypN8aUAHcD5/f0Aowx2/19uY0xpVgfzo9ts/5fwHbgM6zE8Nf+VYuBV/zbNgN3AeHANzocn33GmArgJWBWNzGsNMbE9fCzsqfX0I2256Y3V2KNvHxmjPEaYx7GSlzmHcT+fuM/hu9jJdrnARhjVhhj1vvP1TqspPTYDtsu8Z+zRv82/zHG1Bpj3FjJ7mEiEtum/XPGmNXGGBfwHOAyxvzXGOMFlmMl14fMGHNHT+ejh02zgIuBs7ESxHDg3v7EopRSw4EmWEopFTiFbR6PBc7t8E3/AqykpKv2u4EQrFGHdkTkNBH51D89rworcWpplw10Ne1qrL+/4jb7/yfWKEi3RCRVRJ7wTymsAR7tIqZ/ATOAe/0f+sEa8drd0sAY4/O/vsw22+1v87gBiOoplgAr7L1Jq7HADR3OXTbWa+yLSn/S3GJ3y7YicpSIvOefWlkNXEXn49saq4jYReQOsaZ+1vD16GTbbQ60edzYxfPBPM5tNQIPGmO2GmPqgD/Q/gsGpZQakTTBUkqpwGlbNagQa4Sq7bf9kcaYO9q0yW7zeAzQDJS17dA/Le0ZrBGhVP+IwatYU/la9jO+i1gKsUZdktrsP8YYM72Ltm39wf86ZhpjYrBG4lr2hYhEAX8BHgCWtJnytQ8rMWlpJ/7Xt7eX/XUiIgvl6wqAXf0s7L2XTjpWdGoAIto8T2vzuBC4vcO5izDGLOvjvuJFJLLN8zFYxwfgceBFINsYEwsspc3x7SLW7wGLgJOwikTk+Jd33GbA+K8n6/Z89LDpOtq/Fq2qpZQaFTTBUkqpgfEocIaInOIfhXD6CyBktWlzkYhM81/PdBvwtH9aV1uhQBhQCnhE5DSsa6laPABcJiIniohNRDJFZIoxphhrKuH/iUiMf914Eek4Ha2jaKAOqBaRTKxru9r6K7DKGHMF1tS3pf7lTwLf9scRAtyAleB93NuB6sgY86ExJqqHnw8Pts8u5APf85+bU2k/Te9fwFX+0SYRkUixilNEQ2thiYd66f93IhLqTwZPB57yL48GKowxLv/1c9/rpZ9orONYjpUQ/uEgXmNAGGP+0NP56GHTB7F+N8f5f8dvBl4enKiVUip4NMFSSqkBYIwpxBp5+BVWclSIlay0/bv7CFYhiv2AE/hpF/3U+pc/CVRifSB/sc36z/EXvgCqgff5eiTp+1gJ2lf+bZ+m/RTFrvwOONzf1yvAsy0rRGQRVpGKq/2LfgYcLiIXGmO2YI123Ys1CncGcIYxpqmX/QXLtVgxVgEXAs+3rDDGrAJ+CNyHddy2074gRzbwUQ997/dvtw+rIMVVxpjN/nU/Am4TkVrgVqzz2pP/Yk0x3It1Hj/t7YUNFcaY/2DF/xnWa3DTxe+4UkqNNHofLKWUCgIRWQE8aoz5d7BjUX3nr4q4FsjzF/PouP44rPOa1XGdUkqp0cER7ACUUkqp4cI/Ije114ZKKaVGLZ0iqJRSo4yILO2mYMHS3rdWw5GIjOmhUMWYYMenlFIjiU4RVEoppZRSSqkA0REspZRSSimllAqQIXUNVlJSksnJyQl2GEoppZRSSinVo9WrV5cZY5I7Lh9SCVZOTg6rVq0KdhhKKaWUUkop1SMR2d3Vcp0iqJRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSBD6hqsrjQ3N1NUVITL5Qp2KGoIcDqdZGVlERISEuxQ1AjmavZy9aOrmT8hiSsWjgt2OEoppZQaRoZ8glVUVER0dDQ5OTmISLDDUUFkjKG8vJyioiJyc3ODHY4awd7asJdrd11F5C4X1TNXEhuXEOyQlFJKKTVMDPkpgi6Xi8TERE2uFCJCYmKijmaqAVe0bS2zbDuYaNvL7k+eCXY4SimllBpGhnyCBWhypVrp74IaDPYD61ofO7a+GsRIlFJKKTXcDIsESymlBlNizSbc4mRl6AJSajYEOxyllFJKDSOaYPWBiHDDDTe0Pr/rrrtYsmRJ8AJq47jjjuvx5szf+c53mDdvXrtlS5YsITMzk1mzZjFjxgxefPHFgQ5TqWEloXk/VWEZVCfkkeQtwdSXBTskpZRSSg0TmmD1QVhYGM8++yxlZYH9kGWMwefzBbTPtqqqqli9ejXV1dXs3Lmz3brrr7+e/Px8nnrqKS6//PIBjUOp4cTrM0T5anCHJWDLnA1A9c4vghyVUkoppYYLTbD6wOFwcOWVV3L33Xd3WldaWsrZZ5/N3LlzmTt3Lh999BFgjRLdddddre1mzJhBQUEBBQUFTJ48me9///vMmDGDwsJCfv7znzNjxgxmzpzJ8uXLAVixYgXHHXcc55xzDlOmTOHCCy/EGNNlfI888kjraNTnn3/euvzZZ5/ljDPO4Pzzz+eJJ57octupU6ficDjaJY8333wz06ZNIy8vjxtvvBGAgoICTjjhBPLy8jjxxBPZs2cPAJdeeilXX3018+bNY9y4caxYsYLLL7+cqVOncumll7b2efXVVzNnzhymT5/Ob3/7205xVFdXM3bs2NZEr76+nuzsbJqbm7uMW6mBUt3YTDy1eJ3xJI47DIDygvVBjkoppZRSw8WQL9Pe1u9e2shX+2oC2ue0jBh+e8b0Xtv9+Mc/Ji8vj5tuuqnd8muvvZbrr7+eBQsWsGfPHk455RQ2bdrUY1/btm3j4YcfZt68eTzzzDPk5+ezdu1aysrKmDt3LscccwwAX375JRs3biQjI4P58+fz0UcfsWDBgk79NTQ0kJ+fzwcffMDll1/Ohg3WNSPLli3j1ltvJTU1lbPPPptf/epXnbb97LPPsNlsJCcnA1BeXs5zzz3H5s2bERGqqqoAuOaaa7jkkku45JJL+M9//sNPf/pTnn/+eQAqKyv55JNPePHFFznzzDP56KOP+Pe//83cuXPJz89n1qxZ3H777SQkJOD1ejnxxBNZt24deXl5rXHExsYya9Ys3n//fY4//nhefvllTjnlFL3flRp0FfVNxEstNeEJjB8zlioTSdP+rcEOSymllFLDRL9HsEQkW0TeE5GvRGSjiFzrX75ERPaKSL7/51v9Dzd4YmJi+P73v88999zTbvnbb7/NT37yE2bNmsWZZ55JTU0NdXV1PfY1duzY1uuiVq5cyQUXXIDdbic1NZVjjz2WL76wpiMdeeSRZGVlYbPZmDVrFgUFBV32d8EFFwBwzDHHUFNTQ1VVFQcOHGDbtm0sWLCASZMmERIS0pp4Adx9993MmjWLG2+8keXLl7dW54uNjcXpdPKDH/yAZ599loiICAA++eQTvve97wFw8cUXs3Llyta+zjjjDESEmTNnkpqaysyZM7HZbEyfPr015ieffJLDDz+c2bNns3HjRr766qtOr2Px4sWtI3hPPPEEixcv7vE4KjUQKutdxFGHPSqJhKgwdksGYdU7e99QKaWUUorAjGB5gBuMMWtEJBpYLSJv+dfdbYy5q4dtD0pfRpoG0nXXXcfhhx/OZZdd1rrM5/Px6aef4nQ627V1OBztrmtqe++myMjIPu0vLCys9bHdbsfj8XTZrmPpchHhySefpLKysvWGvDU1NSxbtozbb78dsK7Bapn+1zHuzz//nHfeeYenn36a++67j3fffbdPcdpstnYx22w2PB4Pu3bt4q677uKLL74gPj6eSy+9tMt7WZ155pn86le/oqKigtWrV3PCCSf0uF+lBkJtVRl2MYREJyEilIVlk924rvcNlVJKKaUIwAiWMabYGLPG/7gW2ARk9rffoSghIYHzzjuPBx54oHXZySefzL333tv6PD8/H4CcnBzWrFkDwJo1a9i1a1eXfS5cuJDly5fj9XopLS3lgw8+4MgjjzyouFpGfVauXElsbCyxsbEsW7aM119/vfW6r9WrV3d7HVZbdXV1VFdX861vfYu7776btWvXAvCNb3yjdfvHHnuMhQsX9jm+mpoaIiMjiY2N5cCBA7z22mtdtouKimLu3Llce+21nH766djt9j7vQ6lA8dZZ1yM6oqxps/VRuSR4y8Dd88i0UkoppRQEuMiFiOQAs4HP/It+IiLrROQ/IhLfzTZXisgqEVlVWloayHAGxA033NCuIMQ999zDqlWryMvLY9q0aSxduhSAs88+m4qKCqZPn859993HpEmTuuzvrLPOIi8vj8MOO4wTTjiBO++8k7S0tIOKyel0Mnv2bK666ioeeOABCgoK2L17d7vy7Lm5ucTGxvLZZ5912ce3vvUt9u3bR21tLaeffjp5eXksWLCAP//5zwDce++9PPjgg+Tl5fHII4/w17/+tc/xHXbYYcyePZspU6bwve99j/nz57euu/XWW9uViV+8eDGPPvqoTg9UQeOrrwDAEZUIgEmcAEBz6bagxaSUUkqp4UO6q0x30B2JRAHvA7cbY54VkVSgDDDA/wLpxpjLe+pjzpw5puM9nTZt2sTUqVMDEqMaGfR3Qg2k15/7L6euvYb6i18ncvzRvPHuO5zywXcpPeXvJB99YbDDU0oppdQQISKrjTFzOi4PyAiWiIQAzwCPGWOeBTDGHDDGeI0xPuBfwMHNe1NKqSDwuesBCAuPAiAheyo+I9Tv2xzMsJRSSik1TASiiqAADwCbjDF/brM8vU2zs4ANHbdVSqmhxjQ3AOBwWgnW2NQE9pGIr2x7MMNSSiml1DARiCqC84GLgfUiku9f9ivgAhGZhTVFsAD4nwDsSymlBlaTNYJFqFXtMzk6jE9JI7tmTxCDUkoppdRw0e8EyxizEpAuVr3a376VUmrQNVkjWC0JlohQGZbJ9MauC8QopZRSSrUV0CqCSik13EmzfwTLEd66zBWVTYyvCty1wQlKKaWUUsOGJlhKKdWG3dOIizCwtfnzmDAOAF/5ziBFpZRSSqnhQhOsPnr++ecRETZv7r6SWEFBATNmzAjYPi+99FKefvrpbtdfd911ZGZm4vP5Wpc99NBDJCcnM2vWLKZNm8a//vWvgMWj1Ghg9zbgFme7ZaEp4wGo3rs1GCEppZRSahjRBKuPli1bxoIFC1i2bFmX6z0eT7/34fV6+9zW5/Px3HPPkZ2dzfvvv99u3eLFi8nPz2fFihX86le/4sCBA/2OTanRwu5ppMnWPsGKz7RuFF5brAmWUkoppXqmCVYf1NXVsXLlSh544AGeeOKJ1uUrVqxg4cKFnHnmmUybNg2wEq0LL7yQqVOncs4559DQYF0w/8477zB79mxmzpzJ5ZdfjtvtBiAnJ4df/OIXHH744Tz11FOd9v32228zZ84cJk2axMsvv9xu39OnT+fqq6/uNulLSUlh/Pjx7N69u3XZPffcw7Rp08jLy+P8888HoKKigu985zvk5eUxb9481q1bB8CSJUu45JJLWLhwIWPHjuXZZ5/lpptuYubMmZx66qk0NzcDcNtttzF37lxmzJjBlVdeScebV/t8PnJycqiqqmpdNnHiRE381JAU4m2kyRbebllWWiplJgZPmU4RVEoppVTPAlGmffC8djPsXx/YPtNmwml39NjkhRde4NRTT2XSpEkkJiayevVqjjjiCADWrFnDhg0byM3NpaCggC1btvDAAw8wf/58Lr/8cv7+97/zk5/8hEsvvZR33nmHSZMm8f3vf59//OMfXHfddQAkJiayZs2aLvddUFDA559/zo4dOzj++OPZvn07TqeTZcuWccEFF7Bo0SJ+9atf0dzcTEhISLttd+7cyc6dO5kwYULrsjvuuINdu3YRFhbWmvD89re/Zfbs2Tz//PO8++67fP/73yc/Px+AHTt28N577/HVV19x9NFH88wzz3DnnXdy1lln8corr/Cd73yHn/zkJ9x6660AXHzxxbz88succcYZrfu02WwsWrSI5557jssuu4zPPvuMsWPHkpqa2ufTpNRgCfG5aA6NaLcsIy6c9SaVxOqC4ASllFJKqWFDR7D6YNmyZa2jPeeff367EaMjjzyS3Nzc1ufZ2dnMnz8fgIsuuoiVK1eyZcsWcnNzmTTJmmZ0ySWX8MEHH7Rus3jx4m73fd5552Gz2Zg4cSLjxo1j8+bNNDU18eqrr/Kd73yHmJgYjjrqKN54443WbZYvX86sWbO44IIL+Oc//0lCQkLrury8PC688EIeffRRHA4rv165ciUXX3wxACeccALl5eXU1NQAcNpppxESEsLMmTPxer2ceuqpAMycOZOCggIA3nvvPY466ihmzpzJu+++y8aNGzu9jsWLF7N8+XIAnnjiiR5fs1LBFOZrxONoP4IVYrdRFpJOVH1hkKJSSiml1HAxvEawehlpGggVFRW8++67rF+/HhHB6/UiIvzpT38CIDIysl17EenxeVc69tFbf2+88QZVVVXMnDkTgIaGBsLDwzn99NMBK5m57777uuzvlVde4YMPPuCll17i9ttvZ/36nkcEw8LCAGsUKiQkpDUem82Gx+PB5XLxox/9iFWrVpGdnc2SJUtwuVyd+jn66KPZvn07paWlPP/889xyyy097lepYAkzLnz2pE7L6yKyia/9EDxucIQFITKllFJKDQc6gtWLp59+mosvvpjdu3dTUFBAYWEhubm5fPjhh12237NnD5988gkAjz/+OAsWLGDy5MkUFBSwfft2AB555BGOPfbYPu3/qaeewufzsWPHDnbu3MnkyZNZtmwZ//73vykoKKCgoIBdu3bx1ltvtV7v1R2fz0dhYSHHH388/+///T+qq6upq6tj4cKFPPbYY4B1bVdSUhIxMTF9iq8lmUpKSqKurq7bqociwllnncXPfvYzpk6dSmJiYp/6V2owGWNwGhe+kIhO6zxxOdgwULUnCJEppZRSarjQBKsXy5Yt46yzzmq37Oyzz+62sMTkyZP529/+xtSpU6msrOTqq6/G6XTy4IMPcu655zJz5kxsNhtXXXVVn/Y/ZswYjjzySE477TSWLl2Kz+fj9ddf59vf/nZrm8jISBYsWMBLL73UZR9XXHEFq1atwuv1ctFFFzFz5kxmz57NT3/6U+Li4liyZAmrV68mLy+Pm2++mYcffriPRwfi4uL44Q9/yIwZMzjllFOYO3du67qlS5eydOnS1ueLFy/m0Ucf1emBashye3yEixtfhymCACFJVqn2xgPbBzsspZRSSg0j0rHiWzDNmTPHrFq1qt2yTZs2MXXq1CBFpIYi/Z1QA6Wyvgn7nWMpGrOIaT9Y2m7d21+s56RXFlD8jdtIP/naIEWolFJKqaFCRFYbY+Z0XK4jWEop5dfQ7CUcN4RGdVqXlp5NvQnDXaIjWEoppZTqniZYSinl19jYQIh4kbDOhWfGJEWyx6QilbuCEJlSSimlhothkWANpWmMKrj0d0ENJHd9LQC20M4JVowzhH22NMLrtMiFUkoppbo35BMsp9NJeXm5frBWGGMoLy/H6XQGOxQ1QrkbrQTL3sUIFkBNeBZx7n3g8w1mWEoppZQaRob8fbCysrIoKiqitLQ02KGoIcDpdJKVlRXsMNQI1eyqA8Du7DrBckePJbSxGWr3Qaz+HiqllFKqswFPsETkVOCvgB34tzHmoO4WHBISQm5u7oDEppRSbTU3WglWSHjnIhcAtsRxUALesp3YNcFSSimlVBcGdIqgiNiBvwGnAdOAC0Rk2kDuUymlDpXHVQ9AiDO6y/URaRMAqN63ddBiUkoppdTwMtDXYB0JbDfG7DTGNAFPAIsGeJ9KKXVIvP4pgiERXY9gJWaMp9nYqS/eNphhKaWUUmoYGegEKxMobPO8yL+slYhcKSKrRGSVXmellAomX5OVYDkjYrpcPyY5hiKThK9i52CGpZRSSqlhJOhVBI0x9xtj5hhj5iQnJwc7HKXUKGbc1hTBsG6uwUqLcVJIGqE1uwczLKWUUkoNIwOdYO0Fsts8z/IvU0qpIcc0NQBgD+s6wbLbhIqwTGJdRaC3jlBKKaVUFwY6wfoCmCgiuSISCpwPvDjA+1RKqUPjT7AIjei2SUPUGCJ89dBYOUhBKaWUUmo4GdAEyxjjAX4CvAFsAp40xmwcyH0qpdShkmZ/guUI77aNic+x/i3fMQgRKaWUUmq4GfBrsIwxrxpjJhljxhtjbh/o/Sml1KESTz2NOMHW/Z/GyFSrVHtNsZZqV0oppVRnQS9yoZRSQ4XN04hbnD22SR4zBYDqvVqqXSmllFKdaYKllFJ+IZ4G3LaeE6zc9CT2m3iaS3WKoFJKKaU60wRLKaX87N5GmntJsFpKtTu0VLtSSimluqAJllJK+YX6Gmm2d1/gAsBmEyqdWcQ1aIKllFJKqc40wVJKKb8QnwtvLwkWQEPMeGJ9VdBQMfBBKaWUUmpY0QRLKaX8wnwuvI7IXtvZUqYC4Cr+aqBDUkoppdQwowmWUkoBxhicxoWvh3tgtYjKngFA+a51Ax2WUkoppYYZTbCUUgpwe3xEiAsTGtFr28yxE6k3Ybj26X3TlVJKKdWeJlhKKQU0NHkJxw0hvSdYY5Oi2GEycZTrzYaVUkop1Z4mWEopBdS7monADaG9X4PlDLGzL3QssXU7ByEypZRSSg0nmmAppRTgcjfiEB+2PiRYADXRE4jzlkFj1cAGppRSSqlhRRMspZQCGutrAbCH9S3BMkmTAPCUbB6wmJRSSik1/GiCpZRSQFODP8FyRvWpfUz2TADKd60fsJiUUkopNfxogqWUUkBTnXXTYHtEfJ/aZ+dOptGEUl+kCZZSSimlvqYJllJKAU31VQA4oxP61H5ieiw7TAa20k0DGJVSSimlhhtNsJRSCmiurwQgIqZvCVaYw05R2HgSareCMQMZmlJKKaWGkX4lWCLyJxHZLCLrROQ5EYnzL88RkUYRyff/LA1ItEopNUA8DVUARMQm9Xmb2vjpxPiqoGbfwASllFJKqWGnvyNYbwEzjDF5wFbgl23W7TDGzPL/XNXP/Sil1MBqtEaw7OGxfd7EnjkbgPo9awYkJKWUUkoNP/1KsIwxbxpjPP6nnwJZ/Q9JKaUGn7hqrAdhMX3eJnHC4fiMULn9iwGKSimllFLDTSCvwboceK3N81wR+VJE3heRhd1tJCJXisgqEVlVWloawHCUUqrvbE3VNBAOdkeft5mancZOk45379oBjEwppZRSw0mvCZaIvC0iG7r4WdSmza8BD/CYf1ExMMYYMxv4GfC4iHT5tbAx5n5jzBxjzJzk5OT+vyKllDoEjqZaGux9uwdWi5QYJzsc44mp2jhAUSmllFJquOn1q1pjzEk9rReRS4HTgRONsUppGWPcgNv/eLWI7AAmAav6G7BSSg2EME8NLnv0QW9XHTeN+IoPob4MIvteIEMppZRSI1N/qwieCtwEnGmMaWizPFlE7P7H44CJwM7+7EsppQZSuLeGppC+X3/VIiRLC10opZRS6mv9vQbrPiAaeKtDOfZjgHUikg88DVxljKno576UUmpAGGOI81XhCks86G1TJs0FoGzLZ4EOSymllFLDUN+v5u6CMWZCN8ufAZ7pT99KKTVYat0ekqimMOLgp/hNyx1DgS8VX9HqAYhMKaWUUsNNIKsIKqXUsFRaUU2MNCBRqQe9bXxkKJtDppJUmQ/WZahKKaWUGsU0wVJKjXpVZcUAhMYefIIFUJN0ODHeSkyFXmqqlFJKjXaaYCmlRr268n0ARMSnH9L24RPmA1C+6cOAxaSUUkqp4UkTLKXUqOeq2g9ATFLGIW0/eeZcakwE1VtXBjIspZRSSg1DmmAppUY9b401ghWZeGgJ1oSUGNbJJCIOaKELpZRSarTTBEspNeo5avbhxYbEZB7S9jabUBY3i1T3LmisCmxwSimllBpWNMFSSo16YfX7qLQlgv3Q71xhy5mHDUP1to8DGJlSSimlhhtNsJRSo160u5iasLR+9ZE94xiajZ3yje8GKCqllFJKDUeaYCmlRrUmj48kXwnuyEO7/qrF9Jx08pmIs1ALXSillFKjmSZYSqlRrbiihnQqMHFj+tVPqMPGrpi5pDVshoaKAEWnlFJKqeFGEyyl1KhWVrSNEPESkjKx333Zxx9vXYe1SacJKqWUUqOVJlhKqVGtpnAjAPFjZvS7r0mHH0utCad83Zv97ksppZRSw5MmWEqpUa35wBYAEsdO63df07MSWSPTid6n12EppZRSo5UmWEqpUS2kaidVEoeEx/e7L5tNKEs5muTmvfgqCvofnFJKKaWGHU2wlFKjWnzjbsrD+1fgoq3oaScDsH/1ywHrUymllFLDhyZYSqlRq8bVTLavCFfs+ID1Oevwuez0pdH81SsB61MppZRSw0e/EiwRWSIie0Uk3//zrTbrfiki20Vki4ic0v9QlVIqsAoKi0iUWhzJkwLWZ0pMOF+GH01G5efgrg1Yv0oppZQaHgIxgnW3MWaW/+dVABGZBpwPTAdOBf4uIvYA7EsppQKmbNd6AGKzpwa0X9+kUwnBQ9X61wPar1JKKaWGvoGaIrgIeMIY4zbG7AK2A0cO0L6UUuqQuIutEu1J42YHtN9Z3ziFMhND5RfLA9qvUkoppYa+QCRYPxGRdSLyHxFpKcOVCRS2aVPkX9aJiFwpIqtEZFVpaWkAwlFKqb4JKd9CI04c8YErcgEwMT2elWHHkHlgBTRWBbRvpZRSSg1tvSZYIvK2iGzo4mcR8A9gPDALKAb+72ADMMbcb4yZY4yZk5ycfLCbK6XUIYuv284BZw7YAj+Y75p2HqE0U/HFkwHvWymllFJDl6O3BsaYk/rSkYj8C2ipS7wXyG6zOsu/TCmlhoSGJg9jvHsoiT1mQPpfeOw32fZlJpGfPQgLfwgiA7IfpZRSSg0t/a0imN7m6VnABv/jF4HzRSRMRHKBicDn/dmXUkoF0q49e0iWauyp0wak/8z4CFalnkdG/Vc0bn13QPahlFJKqaGnv/Ni7hSR9SKyDjgeuB7AGLMReBL4Cngd+LExxtvPfSmlVMCU7MgHIHZs3oDtY/Ip/8MBE0fVa7eDMQO2H6WUUkoNHf1KsIwxFxtjZhpj8owxZxpjitusu90YM94YM9kY81r/Q1VKqcBp2mdVEEwZH9gKgm3NHpfG6/EXkl61msrPHhuw/SillFJq6BioMu1KKTWkhZRvpk4iscdmDNg+RISFF/yCL80kwl//GTVfvT1g+1JKKaXU0KAJllJqVEqo30mJM3fAi0+MS42lbtGDFJpkYp48mx13HsuOlU8P6D6VUkopFTyaYCmlRp3axiZyfLtpjJs0KPtbePgMvD94m5cSLmV8Qz6+D+4alP0qpZRSavBpgqWUGnV279lFnNRjG6AKgl2ZMiadM376V95NWMyYpu3gaRq0fSullFJq8PR6Hyw19Hiam2lsrMPVWE9TYwNuVwNNrgaM1wPGizE+8Bl8xgs+HxgvGB/GGIzY8YkDm92BwxGCzRGCIyQEhyMUhyMEu8OBIywcR1gkIc4IQkJCCLXbEL2HjxpBanavAyA6e+ag77shZTZhFctx711H2Ng5g75/pZRSSg0sTbCCwOvxUFG2j5rSYuoqi3FX7sfTUImvsRpxVWFz1+BoriHUU0e4t44IXx0RpoFQmggzTYSIl2ggehBibTZ26gjFTShNEkoToTTZwmiWMDy2UDw2Jx5bGF57GD67E5/diXFYP4Q4wRGOhIQjoeHYQsKxhYZjD43wJ3EROMIiCHVGEhoeSUhYBE5nOM5QO2EOO3abJnXq0Bl/WfSW6uimzbLmYquCYNL4WYMeV/T4o2AzHNj0EWM0wQoqYwxuVyONDXU0NtbjbrS+rPI0ufA2NeJrduFrdmGaXRiPC1+zG5/Xi8/n8X+h5UP8X2QJXjAGMV7/j7F+5xD/vzbrX7EBgs1mA7FhEwGbDZtYX2SJzYbY7P4fB9js2PzLbHY72BzYWpc5sNmttnabHbE7sDus7ez+9na7HZvd4X8cgs1uw2F3IDYHDocdm80ONjtIy79WXO2X+ZfbdNKLUkr1hSZYgWQM1VXllBZtp+ZAAa6y3VBdRFh9MWHuMiKbK4jxVRFnakgWQ3IXXTQSSr1E0mCLwmWPwh0aT41jDF5HpJW4hDiRNkmLvfXHCfYQxP8fofj/80bE+k9abAhgw4cYDz6vB6+nCZ+nGa/Hg8/nwedpxniaMR434mlEPC7wuPyP3Yi3EZvHjd3rwu5zE+F14fDW4fA0EepzE4KbMNNEGG4c+A7pEPqM4CKUakJoIgQvDnxix+sfefOJo3UUzlpu/etrWYb1WET8xQusfwX8xwME8X/I8Z+21g9AVnvrMYhps8ZYr0fwWR+iWrYybT5CGYPgQwyAr/361m18rZ/4O/Yl/na07asllnb7ozXajnG2Xff1fr5+dS1tWvdjHaE2j1v2Q4dtO7ftTldrW/bedmXrsh62//qxdFrW5X5M730CzJJaKiWG+Li0LtsPpGmTp1H6ciyuAr33en+5mpqprCiltqKEhupSmmrL8daXYxrKkYYqTFMttqY67M11ODwNhHrrcfoacJpGIk0DETTiFC9OID7YL2aY8GLDiw0fNoz/X6+0f+7zP29d1ua5T6xlpm2b1u0FwbT+zcPQ+rfna+3/Vll/Azuva/m3u/Vf74cObdv30bKdtHvcof9DPJadX1u7MA9umx4caoyHsi918Lr7v1C196bjOMad/TuOn5IS7FD6RBOsg+T1NLN/z3bKdm+koXgrUrmDyLo9xLiLSfSWESuNxLZp32zslNoSqbEnUuXMpMR5GCYiGYlOITQmFWd8GtGJ6cTEpRAZm0B4qJPwoL26API2Q3Mjze4G3I31NLsbaHLV0+xqxOOux+NuxNvUgK+p0f9NcQM0uTDNjRiPC/H/+Lwe8HnA1wxeL/g8iK8ZMV7sxoPduAk1HmzGix0vdmP99/91wgOmTXIhrQmRpWNq1TaR+DolspI0n/85ralPu9QII+2f08XytsusfmwYaUnHrG+2ESsBbI1Gvo62NWlsE3VrwC3Ppe06+Xpdaxv/en9fAq3x0Lo/ab/f1jZ0WNe2RctRo8M607Eh4v8g1ZF0+NefKXb534+0+djQEo4Y0+mTxNf7+XrFfkDGLQzKh+rkGCcrHZOYUJ4fhL0PfY0uN6X7i6guLaS+fB/uqn1QewBHQwlOVykRzRVEequJ9tUSQx3pYkjvoh+fERrESYNE4LaF02SLoCk0igZ7IjUhkXgdkfhCozGhUUiI9UWVLTQcR6jTehzixBbqxB5ijbrbQ8OwhzgJCbGmV1sjQ9aIkogdsdsQcVhfbtns1kgU4v/SxSACYqx3us/nw+vz4fX68Hi9+HwGr9eD1/jweb14vV7rSzCvt3XEzOvxYnwevD4vxt/G+Dz+f334vB58/nU+nwdjvPg8XozPay3v9OMBn6/dMozVV8tja73H/+WP14rfP2pnvS4ftpbl+FrX22i/zPpiz+v/9+tlrc9bHtPhr4gA/pE/63lXf7ktpou/ce37av+Hoe3fTyOd/vK0Lm//V+3rvjr+VTrkD8mHNP3+0PZ1aDH2sI3mBf2mSWzfhUWOITYiJNhh9JkmWD0oK97N7vx3cRetJbJyCwmu3aR695MpXjL9beqNk2JHBuXOsRRHzoPYLEITxxKdmkNixjjikzPJsDsYuDvtDFH2ELCHEOKMISS29+ZKjSbVqfNI23cv7tKdhCWPC3Y4g8bd3EzJvkLK922nrqQAb/ke7LV7iWjcR0zTAeJ9FcSbGsZI5w8d1URRaU+g3pFAWfhkDjjjITwee2QijuhEwqKTccYkER6XTGRsChEx8UTZ7EQF4XX2xu7/UUop1TdHBDuAg6QJVg+2r3iceVvuwGNsFNkzKXHmUhh7Ao6kCURlTiEtdxrxyVlM0HnpSqmDED97Eey7l6KPn2T8opuDHU7AGGMoraykeNcm6vZuwVu+g5DqXUTVFxHfvJ8UU0a2eMlus00tEZTbU6hxplIVPpOdUanYY9JxxqcTnZxJXMoYohLSiQ1xot/VKKWUGg7EmKEzPDlnzhyzatWqYIfRqmzfbipL9jBmyuGEOSODHY5SaoRwNXvZefsRxIbZyLx59YDf7DjQXE3N7CvYSuWufNz7N2Or3EFk/R5SmveSSkW7tpXEUBKSSUN4Bp6YTOzxY4hMziEuYzxJGeOwR8QF50UopZRS/SQiq40xnSpW6QhWD5IyxpKUMTbYYSilRhhniJ2d2edweuGfqN70DrHTTgp2SF1qbPKyY/duSrZ/SdO+DTgrN5PUsIMc727Giau1XQWxlIZmsjf+KPYmjMOZNon4rMkkjZlCfGS8FpBQSik1qmiCpZRSQTD1tCvZ988H4OVbiJ16YlBHsYwx7C2toHDrl9TtWYeUfEVc7TbGeAqYIVWt7aolhgPOcWyLW4SkTiU6+zBSJ8wiITaBhKBFr5RSSg0tmmAppVQQjM9I4ans/+Hcoj9S/O4/SD/xR4Oy37pGNwXbNlK+80s8+zcQUbmFNNdOxrCfLH9xCTeh7A8dS1nifCrSZhCfexjJ4w4nNiaN2GE2nVEppZQabJpgKaVUkJxw3k/55O5XmfvhLVQmjyM+79SA9e3z+thbVMD+7WtoKFyPo2wTiQ3bGestZIY0WW2McMCRTmXcRDYmn0lU9mGkTTyciLRJjLVpnTullFLqUGiRC6WUCqINO3YT+t9vM072snvajxh35i8QZ0yft/d5fezbV8iB7V/SsHcD9rItxNRtJ6t5N3FS39quQuI44ByPK34SoRkzSRo/m5RxeUjYUCxkrpRSSg193RW56FeCJSLLgcn+p3FAlTFmlojkAJuALf51nxpjruqtP02wlFKj0Zbde9n7yP9wgudD6gmnIG4evtSZ2BJysIVGYGwOmt2NNNWV462rwNQUE1ZfRJx7HyneEqKksbWvGiIpDs2hLmYCpEwlbmweGZPmEB6fGsRXqJRSSo08A1JF0BizuM0O/g+obrN6hzFmVn/6V0qp0WDy2EzG//JF3l3xBrLmYSZXfk5G1Xvdtm8gjBJ7GtXODMqijsKRmEtU9gzSJswiJjmbGL1OSimllAqagFyDJSICnAecEIj+lFJqtHHYbZxw4mlw4mk0e30UlZZTfWAXvqZGxOch1BlOVFwSMQkpREXFkqNJlFJKKTUkBarIxULggDFmW5tluSLyJVAD3GKM+TBA+1JKqREtxG4jKy2ZrLTkYIeilFJKqYPUa4IlIm8DaV2s+rUx5gX/4wuAZW3WFQNjjDHlInIE8LyITDfG1HTR/5XAlQBjxow52PiVUkoppZRSasjoNcEyxpzU03oRcQDfBY5os40bcPsfrxaRHcAkoFMFC2PM/cD9YBW5OJjglVJKKaWUUmoosQWgj5OAzcaYopYFIpIsInb/43HARGBnAPallFJKKaWUUkNWIK7BOp/20wMBjgFuE5FmwAdcZYyp6K2j1atXl4nI7gDEFEhJQFmwg1CDRs/36KHnevTQcz266PkePfRcjy5D8XyP7WrhkLrR8FAkIqu6qm+vRiY936OHnuvRQ8/16KLne/TQcz26DKfzHYgpgkoppZRSSiml0ARLKaWUUkoppQJGE6ze3R/sANSg0vM9eui5Hj30XI8uer5HDz3Xo8uwOd96DZZSSimllFJKBYiOYCmllFJKKaVUgGiCpZRSSimllFIBoglWD0TkVBHZIiLbReTmYMejAkdEskXkPRH5SkQ2isi1/uUJIvKWiGzz/xsf7FhVYIiIXUS+FJGX/c9zReQz//t7uYiEBjtGFRgiEiciT4vIZhHZJCJH63t7ZBKR6/1/wzeIyDIRcep7e+QQkf+ISImIbGizrMv3slju8Z/3dSJyePAiVwerm3P9J//f8XUi8pyIxLVZ90v/ud4iIqcEJegeaILVDRGxA38DTgOmAReIyLTgRqUCyAPcYIyZBswDfuw/vzcD7xhjJgLv+J+rkeFaYFOb5/8PuNsYMwGoBH4QlKjUQPgr8LoxZgpwGNZ51/f2CCMimcBPgTnGmBmAHTgffW+PJA8Bp3ZY1t17+TRgov/nSuAfgxSjCoyH6Hyu3wJmGGPygK3ALwH8n9fOB6b7t/m7/3P7kKEJVveOBLYbY3YaY5qAJ4BFQY5JBYgxptgYs8b/uBbrA1gm1jl+2N/sYeA7QQlQBZSIZAHfBv7tfy7ACcDT/iZ6rkcIEYkFjgEeADDGNBljqtD39kjlAMJFxAFEAMXoe3vEMMZ8AFR0WNzde3kR8F9j+RSIE5H0QQlU9VtX59oY86YxxuN/+imQ5X+8CHjCGOM2xuwCtmN9bh8yNMHqXiZQ2OZ5kX+ZGmFEJAeYDXwGpBpjiv2r9gOpwYpLBdRfgJsAn/95IlDV5g+3vr9HjlygFHjQPyX03yISib63RxxjzF7gLmAPVmJVDaxG39sjXXfvZf3cNrJdDrzmfzzkz7UmWGpUE5Eo4BngOmNMTdt1xrqHgd7HYJgTkdOBEmPM6mDHogaFAzgc+IcxZjZQT4fpgPreHhn8194swkqqM4BIOk8xUiOYvpdHBxH5NdalHY8FO5a+0gSre3uB7DbPs/zL1AghIiFYydVjxphn/YsPtEwp8P9bEqz4VMDMB84UkQKsqb4nYF2jE+efVgT6/h5JioAiY8xn/udPYyVc+t4eeU4CdhljSo0xzcCzWO93fW+PbN29l/Vz2wgkIpcCpwMXmq9v3jvkz7UmWN37Apjor0YUinUx3YtBjkkFiP8anAeATcaYP7dZ9SJwif/xJcALgx2bCixjzC+NMVnGmBys9/G7xpgLgfeAc/zN9FyPEMaY/UChiEz2LzoR+Ap9b49Ee4B5IhLh/5vecq71vT2ydfdefhH4vr+a4Dygus1UQjUMicipWNP7zzTGNLRZ9SJwvoiEiUguVmGTz4MRY3fk62RQdSQi38K6dsMO/McYc3twI1KBIiILgA+B9Xx9Xc6vsK7DehIYA+wGzjPGdLzAVg1TInIccKMx5nQRGYc1opUAfAlcZIxxBzE8FSAiMguroEkosBO4DOsLRX1vjzAi8jtgMdb0oS+BK7CuxdD39gggIsuA44Ak4ADwW+B5ungv+5Ps+7CmiTYAlxljVgUhbHUIujnXvwTCgHJ/s0+NMVf52/8a67osD9ZlHq917DOYNMFSSimllFJKqQDRKYJKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKTXEiEiOiBgRcQQ7FjU6iMhGETku2HEopdRIoAmWUkqpYU9ElopInf+nSUSa2zx/LdjxDXXGmOnGmBWB7ldEThKRNSJSLyJFInJeoPehlFJDjRhjgh2DUkqNKCLiMMZ4+rF9DrALCOlPP6OViCwBJhhjLupiXb/OzWAaTrF2RUSmASuAS4C3gFggzhizI5hxKaXUQNMRLKWUCgARKRCRX4jIOqBeRBwiMk9EPhaRKhFZ23YKloisEJE/isjnIlIjIi+ISEI3fV8mIptEpFZEdorI/3RYv0hE8v397BCRU/3LY0XkAREpFpG9IvJ7EbH38jrGi8i7IlIuImUi8piIxLVZVyEih/ufZ4hIacvrEpEz/VPNqvyvb2qH43OjiKwTkWoRWS4izoM/0gevm3NjRGRCmzYPicjv2zw/3X9Mq/znMK+P+zrOP1LzK//xKxCRC9us/7aIfOk/V4X+ZLBlXcvU0B+IyB7gXf/yp0Rkv/+4fSAi0zvE/XcRec0/WveRiKSJyF9EpFJENovI7D4eo5P68hoPwi3AP40xrxljPMaYck2ulFKjgSZYSikVOBcA3wbigFTgFeD3QAJwI/CMiCS3af994HIgHfAA93TTbwlwOhADXAbc3SbJORL4L/Bz/36PAQr82z3k73cCMBs4Gbiil9cgwB+BDGAqkA0sAfB/OP4F8KiIRAAPAg8bY1aIyCRgGXAdkAy8CrwkIqFt+j4POBXIBfKAS7sMQGSBP7Hp7mdBL6+hK63nprdRIX9C8h/gf4BE4J/AiyIS1sd9pQFJQCbW6M39IjLZv64e67zH+eO5WkS+02H7Y7GO/Sn+568BE4EUYA3wWIf252ElM0mAG/jE3y4JeBr4cx/j7pKI3NzT+ehh03n+7df7k/xHu/sSQSmlRhJNsJRSKnDuMcYUGmMagYuAV40xrxpjfMaYt4BVwLfatH/EGLPBGFMP/AY4r6sRJmPMK8aYHcbyPvAmsNC/+gfAf4wxb/n3s9cYs1lEUv37us4YU2+MKQHuBs7v6QUYY7b7+3IbY0qxPpwf22b9v4DtwGdYieGv/asWA6/4t20G7gLCgW90OD77jDEVwEvArG5iWGmMievhZ2VPr6Ebbc9Nb67EGnn5zBjjNcY8jJW4zDuI/f3Gfwzfx0q0zwMwxqwwxqz3n6t1WEnpsR22XeI/Z43+bf5jjKk1xrixkt3DRCS2TfvnjDGrjTEu4DnAZYz5rzHGCyzHSq4PmTHmjp7ORw+bZgEXA2djJYjhwL39iUUppYYDTbCUUipwCts8Hguc2+Gb/gVYSUlX7XcDIVijDu2IyGki8ql/el4VVuLU0i4b6Gra1Vh/f8Vt9v9PrFGQbolIqog84Z9SWAM82kVM/wJmAPf6P/SDNeK1u6WBMcbnf32Zbbbb3+ZxAxDVUywBVth7k1ZjgRs6nLtsrNfYF5X+pLnF7pZtReQoEXnPP7WyGriKzse3NVYRsYvIHWJN/azh69HJttscaPO4sYvng3mc22oEHjTGbDXG1AF/oP0XDEopNSJpgqWUUoHTtmpQIdYIVdtv+yONMXe0aZPd5vEYoBkoa9uhf1raM1gjQqn+EYNXsabytexnfBexFGKNuiS12X+MMWZ6F23b+oP/dcw0xsRgjcS17AsRiQL+AjwALGkz5WsfVmLS0k78r29vL/vrREQWytcVALv6Wdh7L510rOjUAES0eZ7W5nEhcHuHcxdhjFnWx33Fi0hkm+djsI4PwOPAi0C2MSYWWEqb49tFrN8DFgEnYRWJyPEv77jNgPFfT9bt+ehh03W0fy1aVUspNSpogqWUUgPjUeAMETnFPwrh9BdAyGrT5iIRmea/nuk24Gn/tK62QoEwoBTwiMhpWNdStXgAuExEThQRm4hkisgUY0wx1lTC/xORGP+68SLScTpaR9FAHVAtIplY13a19VdglTHmCqypb0v9y58Evu2PIwS4ASvB+7i3A9WRMeZDY0xUDz8fHmyfXcgHvuc/N6fSfprev4Cr/KNNIiKRYhWniIbWwhIP9dL/70Qk1J8Mng485V8eDVQYY1z+6+e+10s/0VjHsRwrIfzDQbzGgDDG/KGn89HDpg9i/W6O8/+O3wy8PDhRK6VU8GiCpZRSA8AYU4g18vArrOSoECtZaft39xGsQhT7ASfw0y76qfUvfxKoxPpA/mKb9Z/jL3wBVAPv8/VI0vexErSv/Ns+Tfspil35HXC4v69XgGdbVojIIqwiFVf7F/0MOFxELjTGbMEa7boXaxTuDOAMY0xTL/sLlmuxYqwCLgSeb1lhjFkF/BC4D+u4bad9QY5s4KMe+t7v324fVkGKq4wxm/3rfgTcJiK1wK1Y57Un/8WaYrgX6zx+2tsLGyqMMf/Biv8zrNfgpovfcaWUGmn0PlhKKRUEIrICeNQY8+9gx6L6zl8VcS2Q5y/m0XH9cVjnNavjOqWUUqODI9gBKKWUUsOFf0Ruaq8NlVJKjVo6RVAppUYZEVnaTcGCpb1vrYYjERnTQ6GKMcGOTymlRhKdIqiUUkoppZRSAaIjWEoppZRSSikVIEPqGqykpCSTk5MT7DCUUkoppZRSqkerV68uM8Ykd1w+pBKsnJwcVq1aFewwlFJKKaWUUqpHIrK7q+U6RVAppZRSSimlAkQTLKWUUkoppZQKEE2wlFLqELy3pYTtJbXBDkMppZRSQ8yQugarK83NzRQVFeFyuYIdihpmnE4nWVlZhISEBDsUNcJs3l/D/Q8/xOH2XVx36z36O6aUUkqpVkM+wSoqKiI6OpqcnBxEJNjhqGHCGEN5eTlFRUXk5uYGOxw1wny2aTfLQm8HYMPn32LG/DOCHJFSSimlhoohP0XQ5XKRmJioyZU6KCJCYmKijnyqAVGze23rY++GF4IYiVJKKaWGmiGfYAGaXKlDor83aqBEVG4CYJdtDIllemsJpZRSSn1tWCRYSik1lCTWb6fBFsnWuGNIa94NzTpSqpRSSimLJlh9ICLccMMNrc/vuusulixZEryA2vj000856qijmDVrFlOnTm2Na8WKFXz88cf96vvUU08lLi6O008/PQCRKjVyRDWXURuWhjd1Jg58NO7bEOyQlFJKKTVEaILVB2FhYTz77LOUlZUFtF9jDD6fr199XHLJJdx///3k5+ezYcMGzjvvPCAwCdbPf/5zHnnkkX71odRI0+z1EWtqaAqNJzz7MADKd+YHNyillFJKDRn9riIoItnAf4FUwAD3G2P+KiIJwHIgBygAzjPGVPZnX797aSNf7avpX8AdTMuI4bdnTO+xjcPh4Morr+Tuu+/m9ttvb7eutLSUq666ij179gDwl7/8hfnz57NkyRKioqK48cYbAZgxYwYvv/wyAKeccgpHHXUUq1ev5tVXX+W+++7jtddeQ0S45ZZbWLx4MStWrGDJkiUkJSWxYcMGjjjiCB599NFO1xWVlJSQnp4OgN1uZ9q0aRQUFLB06VLsdjuPPvoo9957L1OmTOk2zh07drB9+3bKysq46aab+OEPfwjAiSeeyIoVK3o8Nk899RS/+93vsNvtxMbG8sEHH+Byubj66qtZtWoVDoeDP//5zxx//PE89NBDPP/889TX17Nt2zZuvPFGmpqaeOSRRwgLC+PVV18lISGBf/3rX9x///00NTUxYcIEHnnkESIiItrtd968eTzwwANMn26du+OOO4677rqLOXPm9BivUv1V7/aQQC3NzhzSxk6m2dhp2L812GEppZRSaogIxAiWB7jBGDMNmAf8WESmATcD7xhjJgLv+J8PWz/+8Y957LHHqK6ubrf82muv5frrr+eLL77gmWee4Yorrui1r23btvGjH/2IjRs3smrVKvLz81m7di1vv/02P//5zykuLgbgyy+/5C9/+QtfffUVO3fu5KOPPurU1/XXX8/kyZM566yz+Oc//4nL5SInJ4errrqK66+/nvz8fBYuXNhjnOvWrePdd9/lk08+4bbbbmPfvn19Pi633XYbb7zxBmvXruXFF18E4G9/+xsiwvr161m2bBmXXHJJazW/DRs28Oyzz/LFF1/w61//moiICL788kuOPvpo/vvf/wLw3e9+ly+++IK1a9cydepUHnjggU77Xbx4MU8++SQAxcXFFBcXa3KlBkV9k5d4qcXrjCc3JZYik4Qp3xnssJRSSik1RPR7BMsYUwwU+x/XisgmIBNYBBznb/YwsAL4RX/21dtI00CKiYnh+9//Pvfccw/h4eGty99++22++uqr1uc1NTXU1dX12NfYsWOZN28eACtXruSCCy7AbreTmprKscceyxdffEFMTAxHHnkkWVlZAMyaNYuCggIWLFjQrq9bb72VCy+8kDfffJPHH3+cZcuWdTnq1FOcixYtIjw8nPDwcI4//ng+//xzvvOd7/TpuMyfP59LL72U8847j+9+97utr+maa64BYMqUKYwdO5atW61v+I8//niio6OJjo4mNjaWM86w7h80c+ZM1q1bB1hJ2C233EJVVRV1dXWccsopnfZ73nnncfLJJ/O73/2OJ598knPOOadP8SrVX/WNbtKppyw8EWeInf2ODDLrdgc7LKWUUkoNEQG90bCI5ACzgc+AVH/yBbAfawphV9tcCVwJMGbMmECGE3DXXXcdhx9+OJdddlnrMp/Px6efforT6WzX1uFwtLu+qu39mCIjI/u0v7CwsNbHdrsdj8fTZbvx48dz9dVX88Mf/pDk5GTKy8s7tekuTuhczvxgypsvXbqUzz77jFdeeYUjjjiC1atX99i+7Wuy2Wytz202W+vru/TSS3n++ec57LDDeOihh7pMGDMzM0lMTGTdunUsX76cpUuX9jlmpfrDVVOGTQxEJgFQ7cwmr/FtMAb01gBKKaXUqBewIhciEgU8A1xnjGl3oZQxxmBdn9WJMeZ+Y8wcY8yc5OTkQIUzIBISEjjvvPPaTVk7+eSTuffee1uf5+fnA5CTk8OaNWsAWLNmDbt27eqyz4ULF7J8+XK8Xi+lpaV88MEHHHnkkX2O6ZVXXsE6vNbUQ7vdTlxcHNHR0dTW1vYaJ8ALL7yAy+WivLycFStWMHfu3D7vf8eOHRx11FHcdtttJCcnU1hYyMKFC3nssccA2Lp1K3v27GHy5Ml97rO2tpb09HSam5tb++nK4sWLufPOO6muriYvL6/P/SvVH021pQDY/AmWKyaHSNMADZ2/2FBKKaXU6BOQBEtEQrCSq8eMMc/6Fx8QkXT/+nSgJBD7CrYbbrihXTXBe+65h1WrVpGXl8e0adNaR1LOPvtsKioqmD59Ovfddx+TJk3qsr+zzjqLvLw8DjvsME444QTuvPNO0tLS+hzPI488wuTJk5k1axYXX3wxjz32GHa7nTPOOIPnnnuOWbNm8eGHH3YbJ0BeXh7HH3888+bN4ze/+Q0ZGRmAlfyde+65vPPOO2RlZfHGG28A1rTEluutfv7znzNz5kxmzJjBN77xDQ477DB+9KMf4fP5mDlzJosXL+ahhx5qN3LVm//93//lqKOOYv78+UyZMqV1+Ysvvsitt97a+vycc87hiSeeaK2cqNRg8NRZiZQjKsFakDAOgKbSbcEKSSmllFJDiLSMfhxyB9Z8soeBCmPMdW2W/wkoN8bcISI3AwnGmJt66mvOnDlm1apV7ZZt2rSJqVOn9itG1b2O1Q5HGv39UYH20auPM//zqyk+92XSpy/kjfdXcsp736bkpL+SsuDSYIenlFJKqUEiIquNMZ2qrAXiGqz5wMXAehHJ9y/7FXAH8KSI/ADYDegwg1Jq2PO4ram3YRExAMRnjMdrhMb9OoKllFJKqcBUEVwJdHdl94n97V8NrCVLlgQ7BKWGFZ/Lqr4ZERUHQFZyHPtMEr6Krq+zVEoppdToErAiF0opNRr43PUAhEVGA5Aa42QvyYTUFAYzLKWUUkoNEZpgKaXUwWiyRrAkNAoAu02oCE0nytX3G3QrpZRSauTSBEsppQ6CNNXRjAMcoa3L6iMyifOUQbOrhy2VUkopNRpogqWUUgfB1txAI+Htlvlisq0H1UVBiEgppZRSQ4kmWH30/PPPIyJs3ry52zYFBQXMmDEjYPvcsmULxx13HLNmzWLq1KlceeWVgHWT4FdffbVffV9++eWkpKQENF6lRgO7px6XzdlumSMxFwB32c5ghKSUUkqpIUQTrD5atmwZCxYsYNmyZV2u93g8/d6H1+tt9/ynP/0p119/Pfn5+WzatIlrrrkGCEyCdemll/L666/3qw+lRiOHp4EmW/sRrMhU62bD1fu2ByMkpZRSSg0hgbgP1uB57WbYvz6wfabNhNPu6LFJXV0dK1eu5L333uOMM87gd7/7HQArVqzgN7/5DfHx8WzevJk333wTj8fDhRdeyJo1a5g+fTr//e9/iYiI4J133uHGG2/E4/Ewd+5c/vGPfxAWFkZOTg6LFy/mrbfe4qabbuL8889v3W9xcTFZWVmtz2fOnElTUxO33norjY2NrFy5kl/+8pecfvrpXHPNNWzYsIHm5maWLFnCokWLeOihh3juueeorq5m7969XHTRRfz2t78F4JhjjqGgoKDH1/3+++9z7bXXAiAifPDBB0RFRXHTTTfx2muvISLccsstLF68mBUrVvDb3/6WuLg41q9fz3nnncfMmTP561//SmNjI88//zzjx4/npZde4ve//z1NTU0kJiby2GOPkZqa2m6/559/PhdffDHf/va3ASsZPP300znnnHP6dk6VGkAObyNN9oh2y5IzxuI2DhpLtVS7UkopNdrpCFYfvPDCC5x66qlMmjSJxMREVq9e3bpuzZo1/PWvf2Xr1q2ANa3vRz/6EZs2bSImJoa///3vuFwuLr30UpYvX8769evxeDz84x//aO0jMTGRNWvWtEuuAK6//npOOOEETjvtNO6++26qqqoIDQ3ltttuY/HixeTn57N48WJuv/12TjjhBD7//HPee+89fv7zn1Nfb5WS/vzzz3nmmWdYt24dTz31FKtWrerz677rrrv429/+Rn5+Ph9++CHh4eE8++yz5Ofns3btWt5++21+/vOfU1xcDMDatWtZunQpmzZt4pFHHmHr1q18/vnnXHHFFdx7770ALFiwgE8//ZQvv/yS888/nzvvvLPTfhcvXsyTTz4JQFNTE++8805rsqVUsIX5GvB0SLCyEqLYa5IwlbuDFNXw8NLafdz5+mY8Xl+wQ1FKKaUGzPAaweplpGmgLFu2rHUk5/zzz2fZsmUcccQRABx55JHk5ua2ts3Ozmb+/PkAXHTRRdxzzz1885vfJDc3l0mTJgFwySWX8Le//Y3rrrsOsBKKrlx22WWccsopvP7667zwwgv885//ZO3atZ3avfnmm7z44ovcddddALhcLvbs2QPAN7/5TRITEwH47ne/y8qVK5kzZ06fXvf8+fP52c9+xoUXXsh3v/tdsrKyWLlyJRdccAF2u53U1FSOPfZYvvjiC2JiYpg7dy7p6ekAjB8/npNPPhmwRt7ee+89AIqKili8eDHFxcU0NTW1O3YtTjvtNK699lrcbjevv/46xxxzDOHh4Z3aKRUMYb5GPI6kdsuSo8LYRjLjavVeWN3ZX+3igSee4r+hf2Rb+cVMvfBPwQ5JKaWUGhA6gtWLiooK3n33Xa644gpycnL405/+xJNPPokxBoDIyMh27UWkx+dd6dhHWxkZGVx++eW88MILOBwONmzY0KmNMYZnnnmG/Px88vPz2bNnD1OnTj3keFrcfPPN/Pvf/6axsZH58+f3WOADICwsrPWxzWZrfW6z2VqvUbvmmmv4yU9+wvr16/nnP/+Jy9W5rLXT6eS4447jjTfeYPny5d0moEoFg9M04gtpP4JlswmVoRlE672wuvXBtlIuc7xOjDQyddv9UFcS7JCGrGavj9+9tJHHPtgI/v9rVNeqG5t5alUh1Q3NwQ5FKaVaaYLVi6effpqLL76Y3bt3U1BQQGFhIbm5uXz44Yddtt+zZw+ffPIJAI8//jgLFixg8uTJFBQUsH27dQH8I488wrHHHtvrvl9//XWam63/NPbv3095eTmZmZlER0dTW1vb2u6UU07h3nvvbU36vvzyy9Z1b731FhUVFa3XQbWMrvXFjh07mDlzJr/4xS+YO3cumzdvZuHChSxfvhyv10tpaSkffPABRx55ZJ/7rK6uJjMzE4CHH36423aLFy/mwQcf5MMPP+TUU0/tc/9KDSSP10cELkxI5y9FGiMziPZWgbtu8AMbBtbsKudE+5cUROYB4Nv4fHADGsJeWVfMGx+t4ox3TqT2wXPA5+19o1Hqdy9uZMnTn1F437fg4/uCHY5SSgGaYPVq2bJlnHXWWe2WnX322d1WE5w8eTJ/+9vfmDp1KpWVlVx99dU4nU4efPBBzj33XGbOnInNZuOqq67qdd9vvvkmM2bM4LDDDuOUU07hT3/6E2lpaRx//PF89dVXzJo1i+XLl/Ob3/yG5uZm8vLymD59Or/5zW9a+zjyyCM5++yzycvL4+yzz26dHnjBBRdw9NFHs2XLFrKysnjggQcAWLp0KUuXLgXgL3/5CzNmzCAvL4+QkBBOO+00zjrrLPLy8jjssMM44YQTuPPOO0lLS+vz8VyyZAnnnnsuRxxxBElJX0+zWrVqFVdccUXr85NPPpn333+fk046idDQ0K66UmrQNTR7icSFCe2cYHljx1gPqnWaYFdqDuwiikYqJ5zFXpNI3dYPgh3SkPXBtlKuDnmRGGkkes/bsPvjYIc0JHm8Pt766gBXOV5iRsPn8OavoaTnmRZKKTUYxAyh6Qdz5swxHYswbNq0qXW6mzo4Dz30EKtWreK++0bvt3r6+6MCqbiyjvS/ZrJ+wtXMvKj9NaFPv/Ac53x5Ka5zH8c5XYuydHT9bX/kbt8dFJ/zIquX/4HjI3cTebN+GO7K/Dve5Snf9ZSbGCY1byFszkVw+p+DHdaQ8+WeSs76+8d8lHg7TbVl5NoOwAm/gWNuDHZoSqlRQkRWG2M6FTcY8BEsETlVRLaIyHYRuXmg96eUUgOlod6ammtzRndaF+W/F1ZN8Y5BjWk4qHU1k+62StinTZjFV/ZJRLqK9TqsLtS4mqmqqiC9aTfVqUfxkW8avl062teVbQfqiMBFRsNm3uAb7I2YCtveDHZYSik1sAmWiNiBvwGnAdOAC0Rk2kDuU33t0ksvHdWjV0oFmqu+BgB7WFSndclp2TSaUFx6L6xOdpc3kCUluMMSEWcsDXGTrRUlm4Ib2BBUUFbPdClAMISOmcNq70Rs5dugsTLYoQ05u8rrme4oQoyX2qQ8PjNTYV8+eJqCHZpSapQb6BGsI4Htxpidxpgm4Alg0cF2MpSmMarhQ39vVKC5WxKs8M4JVnZCBEUmGSoLBjmqoW9vVSMZUoE3OgMAR6r/e7bSLUGMamjaVVbPWNsBADLG57HGTLRW7F3dw1aj067Seg6PqgAgJnMq79dmg9cNJRuDHJlSarQb6AQrE2h7xXeRf1krEblSRFaJyKrS0tJOHTidTsrLy/XDsjooxhjKy8txOp3BDkWNIO4GK8EKDY/ptC4pKoy9pBBaVzTYYQ15ZXVuMqQMW1w2AGmZY6k2Ebj26QfhjnaXNzBGSjBiJ2PMBHaHjLdWHPgquIENQbvK6pnuLAexkZQ1idVe/30V964JbmBKqVEv6DcaNsbcD9wPVpGLjuuzsrIoKiqiq+RLqZ44nU6ysrKCHYYaQTyNVgn20IjO12DZbEJVWDoxLr1epqPSWjfpUkFIgpVgTUiNZqvJYnLxRvQrkPb2VjZyfEg5EpuFhISSmZ5OZUk88aVaEKQtn89QUF7PuJT9EJvFhIxEikwyHkckDj1WPfL5DFc9upqdZfU8fPmRZMaFBzskpUacgU6w9gLZbZ5n+Zf1WUhICLm5uQENSimlDkWzyypyERbReQQLoDEik4jqOmisgvC4wQtsiKutLidaGiHW+sJjYmo07/syyatcY91I9yBugD7SHah1kWMvgfgcwDpWW/ZnMU+vV2unsqEJt8dHinc/JOQyISUKEMrCc0nTBKtH728t5c2vrGmo//pgJ0vOnB7kiJQaeQZ6iuAXwEQRyRWRUOB84MUB3qdSSg0Irz/BckZ1nWB548ZaD6r2DFZIw4K3yv+9Wox1DVZGrJPdtjGENVdDvc5OaKukxk2aKQP/dMpxSZFs8mRgSjeDzxfk6IaOklo3ANFNZRCTSWSYg6z4cHZJll7b14v3tpQQHmLn5GmpPPflXpq9+nulVKANaIJljPEAPwHeADYBTxpjdNK9UmpY8rnrAXB2M4IVmpgDgKt052CFNCyYlnLsUSkAiAh1sf7iDToy005ZTQMx3kqITgdgXHIk20wW0tygN7Fuo6TWjeAjzFUK0dbN7ielRrOhKR3qDkBDRZAjHLpWbi/j6PGJnDkrg+rGZjbsrQ52SEqNOAN+HyxjzKvGmEnGmPHGmNsHen9KKTVg3P77YHVRph0gKs1/L6z9mmC1ZWsZpYpK/XpZ8iTrQfm2IEQ0NHm8PmgoxYavNWkYlxTFVp+/NpROfWtVUuMinjpsxtN6rCamRvFZXbLVoGxrEKMbuurdHnaV1TMrO4554xIB+GRneZCjUmrkGfAESymlRowmawSL0K4TrNSUdGpMOG4dwWon1FVmPYhMbl2WkJZDvQnDU6ofhFuU1zeRTJX1JMpKGrLiw9ll81/KrKN9rUpq3aSK/95g/gRrQnIUm72ajPZk64FajIHJadEkRYUxLjmSL/dUBTsspUYcTbCUUqqPpKmeJhzgCO1yfXZCBHtNMlTtHuTIhq56t4c4XyVecUB4fOvycSlR7DLpuIv1epkWJTWdkwaH3UZcQgrV9gQdlWmjtNZNTph124Svp1NGsdck4nFEQIkmWF3Zst8ahZ+SZlVCnZERy0adIqhUwGmCpZRSfWTz1OOS7ksat9wLK6zuoIqljmiltW6SqMYdltiuWmBuUiS7TBpSsSOI0Q0tJbUuUqTKeuJPsMBKHArIgDKdTtmipNbFOKd124SWqafjkyMx2KgMHwtlmrh3ZWdZPaEOG9nxEQDMyIxhX7WLivqmIEem1MiiCZZSSvWR3dOA29Z9gvX1vbD2WuXHFWV1bpKkGm94UrvluUmR7DQZOOv3gscdpOiGlgM1blJapghGprQuH5ccyaamVIxer9bqQI2bsSEtI1hWMhoXEUpiZChFtiwo2x7E6IauwooGsuLDsdmsLzumZ8QCsHGfjmIpFUiaYCmlVB+FeOpp6iHBAnBFZuE0Lq1i5ldaayVYbQtcAEQ7QygNG2MVdKjQa9agZQSrEhOR2G4a6vikKLb50pDGSqjXggRgHasMexWEJ4AjrHX5uORItnjToHoPNDUEL8Ahak9FA2MSIlqfT8+wKqJu3FcTrJCUGpE0wVJKqT4K9TXSZI/osY2v9V5YBQMf0DBQWucmWapxxKR2WtccP956oFPfAKtwQ5ajGvFfU9RiXLI12gdo1UXAGENJjZtkKttNpQSr6mJ+vb+Yik4/7aSwoqF1eiBYo35pMU62HqgNYlRKjTyaYCmlVB+F+hrxOnpOsMKScgBoLNFRGYCymkYSqSEsLq3TOmdqS6l2nc4FVpGLdHvn0b7cpEh2tCRYWuiCGpcHt8dHvK+ic4KVHMlaV0updk1G26puaKbG5Wk3ggVWefvtJXVBikqpkUkTLKWU6iOnrxGvI7LHNgmZEwCo2qffngPUV5cRIl5sUSmd1mWmJnPAxNF0QJMGgNJaF0lUdUoaEiJDqQ1LxyMhmjRgHSeA6Oay1gqCLcYlR7HLpGEQPVYdFFZaUyazE9pPc56QYiVYPl8314163LDnM/D5BjpEpUYMTbCUUqoPvD5DuGnEhPScYGWlpVJhonCX6QgWQFP1AetBFwlWblIUO30ZNJVoxTeA0ppG4rwVnUawRISxyTHst6fraB/WSJ/gI8xV1ulYjUuOxEUYDeHpOp2ygz0VLQlWhxGslGgamrzsq27svJGnCR74JvznZHj6Ui3eo1QfaYKllFJ9UOfyECEuTGjPCVZOYiRFJhmpKhykyIY2U9dTghXJTpNOSKWO9vl8Bk9dGXa8nUawAMYlRbLdl66jMljXqiVQi814Oo1gjUmIwGETDoSO0emUHRR2l2ClWjdO39bVNMEv/wvFayEtD756AXa8M+BxKjUSaIKllFJ9UOtuJhI3EhbVY7vwUDul9jSc9UWDFNnQZm8osx5Edk6wxiREsIsMwpqrR311vIqGJpKNv/Jkh6QBrGT0q6ZUTOUu8DYPcnRDS0mtq9MNmVuE2G2MSYxgF+lQvkNHXNrYU9FAbHgIMc6QdssnJFt/07Yf6CLBWvMIpB8GP3zXeg+venAwQlVq2NMESyml+qC2wU2EuLH3kmAB1EVmk9C0D7yeQYhs6DLG4HSVWk+iO1cRDHXYqIv0V10c5VPfSmrcpLQkDTEZndbnJlujfeLzQOXuQY5uaDlQ4ybb0XIPrM7J6LikKDa6U6GpDmqLBzm6oauwsrFTgQuA+MhQkqLCOlcSrCyA4nyYcQ7YQyDvPNj6Ori0pLtSvelXgiUifxKRzSKyTkSeE5G4Nut+KSLbRWSLiJzS70iVUiqIGhqsDx/28N4TrObYcYTgse7FM4pVNzaTaCrw2MLAGddlG5NoFQUZ7dfLHKh1kSYtI1hdTRGMYodPS7UD7K9xMSHCnwx0kbiPT45kVZ3/xtY6TbBVkf8mw12ZmBLF9tIOI1gFH/lXftP6d9Ip4PPA7o8GMEqlRob+jmC9BcwwxuQBW4FfAojINOB8YDpwKvB3EbH3c19KKRU0jXVVAISEx/Ta1pFilR9vKB7dxRtKat2kSiXu8BQQ6bJNdPp4mowdUzq6k4aSGhdpUmlVv4vqnDTkJEWww/hHa0b5dVglNS7GhPhHUbo4VuOSI9ni8Sepo/xYtfD5DEVVjZ2uv2oxISWK7QfqMG2nVBZ+Cs5YSJpsPc86EhzhsHPFwAes1DDXrwTLGPOmMaZlDsynQJb/8SLgCWOM2xizC9gOHNmffSmlVDA11VqjCyGR8b22jc6aCkBV4VcDGtNQV+pPsLyRnUdkWuQkx7LbpOE+MLqT0QM1blKpsIqB2EM6rY8IdRAZm0StPW7Uj8rsr3GR6aiG8ARwhHVaPy45igPE43FEaoLlV1rnpsnjI7ubEawJKVHUuj2U1Lq/XrjnM8g+Cmz+j4ohThh7NOx8fxAiVmp4C+Q1WJcDr/kfZwJtS2gV+Zd1IiJXisgqEVlVWloawHCUUipwmuut62PCohN7bZuZkUm1icA9yu/vVFLrIoVKbDGdr5NpMS4pkl0mDV/Z6L4G60CNiyxHNdLF9MAWuUmRFErmqL5ezRhjJaOmHGK7/FjB+OQoQKgMHzPqp1O2aKkgmNXNCNbEFH8lwZZCFw0VULbFSrDaGnc8lG6C2v0DFqtSI0GvCZaIvC0iG7r4WdSmza8BD/DYwQZgjLnfGDPHGDMnOTn5YDdXSqlB4W2oAiA8uvcRrLGJUew0GTgqRnf58dIaq9pbaHznog0txiVbxyqspgB83sELbogpqXWTYauE6O6PVW5SJJs9qZhRPCpT1dBMk8dHorcEYrO7bJMQGUpcRAh77VkwyhP3Fq03GY7vfoogwPYS/7VthZ9b/46Z175h7kLrX70OS6ke9ZpgGWNOMsbM6OLnBQARuRQ4HbjQfD15dy/Q9i9fln+ZUkoNS6ax7yNY4aF29jsyiaovGOCohraqqkoixU1IXNcjDQCpMWEU2jKxm2aoGr3V8UpqXCRTAT2N9iVHsbk5FWkoA//v42hzoNYFQLR7P8RmddtuXJL/OqzqPdDUMFjhDVmFFdZNhLsrcpEcHUaM0/F1oYvCT8HmgIzD2zdMnQH2MNi7ZiDDVWrY628VwVOBm4AzjTFt/4K9CJwvImEikgtMBD7vz76UUiqYxFVt/dtNNbyOaiLHEu8phab6AYxqaGuusr5Xky5KabcQEdyx46wno3i0obK6lmhfTZdlx1uMS4pkp/GPcI3SY7W/2kU0DYQ01/acYCVHkd/onxUzykeSwZoimBIdhjOk63pjIsKElKivpwju+cy6/1VohxEve4i1XBMspXrU32uw7gOigbdEJF9ElgIYYzYCTwJfAa8DPzbGjN65H0qpYc/mT7BwxvapvSe+pfz46P1wZ2r812n0cF0RgCN5ovVglF4v4/UZpP6A9aSHBCs3KZIdZnSXai+pcZMu/ptS95hgRZLf4E+wRnlREICiysZuR69aTEiJYkdpHXjcsHc1ZM/rumHmEdb9sUb5ff6U6kl/qwhOMMZkG2Nm+X+uarPudmPMeGPMZGPMaz31o5RSQ52tqYYGwsHu6FP78DSrVHvdvs0DGdaQZqtrSbC6TxoAUlIzqDKReEdpqfb9NS6SjT9p6GGKYFZ8OMWSglfso7Y63v4aFxlSZj3p5hossO4btsukWWXvR+loX1uFlQ3dlmhvMTElmrK6Jmp2rgKvG8Yc1XXDzCOgucEqdqGU6lIgqwgqpdSI5WiqpsHe+02GWyTnTANGb6l2n8/gaGgZlel8r6K2clOi2GnSR22p9t3l9aSJ/5qqHpJRh91GRmIMpY6MUTuCVVTZwGSnfzS5hxGs8cmRuAijITx91B6rFk0eH8XVrm4LXLRoKXRRvfVDa0G3I1j+67L2rg5UiEqNOJpgKaVUH4Q21+K2R/e5/fiMFPaZBJpLRueHu7I6N8mmnCZ7JIT1fNxyk6xKgrZRWn58T3kD2eK/TUncmB7bTkiOsm44PEpHsAorGpnkrLIKMHRxk+EWYxIjsNuEkrAxo36K4O7yerw+w/iUyB7btSRYFH4G8bndfzGSMA6ccZpgKdUDTbCUUqoPIr1VuEPj+tw+PdZJAZmEVo3OpKGoqpFMKaMpqvsKgi1ykyLZ6UvH6SoBd+0gRDe07K5oYKy9BBOR1GsyOik1mo3uFEzFzlFZ1r6wsoGxjgqIyQRb1wUbAMIcdrLjwykgw5oi2FrkePTZXmIVrpiQ3PPvVmZcOM4QIaH8y87l2dsSsaYJaqELpbqlCZZSSvXC4/UR56ui2ZnU521EhLLwcSQ27gKfbwCjG5qKKhvJlhKIz+m1bWx4CGVh/utpRmFRkN3l9UwMKUP6cKwmpkax3ZeOeJtGXVn7Zq+PfVWNpFHW4/VXLcYlR7HRnQLN9VCzbxAiHJpaEqzeRrBsNmFhQg2RnsrONxjuKPMIKPlqVFdJVaonmmAppVQvKhuaSZIavBEHdzN0V/wknMY96j4IAxRV1DNGSghLHten9p748daDUThNcHfLFME+JFiT06LZ4fNXEiwdXVPfiqtc+AwkNBX3eP1Vi3FJkXxR5/9SZBRfh7WtpI7MuHAiQnsv0HNiuP84jf1Gzw0zDwfjg+J1AYhQqZFHEyyllOpFVU010dKIRB1cghWSbhW6qN+7YSDCGtKqSoutmwwn9S3BCk+diA8ZddcWGWPYV15Doqdvo325SZFsF/91WiUbBza4IWZ3RT0RuIhwHYCkib22H5ccxaZmf9GQ0tFZQAWsEayJqX0r0HOEJ59ik0B9dC/v2/RZ1r/F+f2KTamRShMspZTqRXWpNb0oNKbnangdxY/NA6CqYG3AYxrqXC3FPfqQNABkpyZQ6Eum+cDoKv1c2dBMUlMRdryQPLnX9mEOO0mJSZQ7UuDA6KpQuWV/LblSbD3pU4IVSQlxNIfFw4HRlYy2aPb62FFax8SUPiRYPh9ja77gI98MdpT1MvUvJh2i0mBffkDiVGqk0QRLKaV6UVNmJViRiRkHtd24rAz2mkSai0fXB2EAR8uUrKRJfWo/LimSLSYbz/7R9UF4d3k9E2Sv9aSPx2pSajRbzRjrGphRZFNxLbMj/NUW+3CsxidHAUJZxPhRm2Bt2V+L2+PjsOy43hvvX0doUzUfeme0XrfVo4zZsO/Lfseo1EikCZZSSvWisdL61jwu+eASrMz4cHaQhbNydF0rU1bnJr15Nx6bs9ey4y2mpMWw2WQTVrUTml0DHOHQUeBPsAxyUAnWGncGpmwreJoGOMKhY/P+GuZGloDYrVLhvUiKCiU+IoSdthwo2TQqi83kF1YBcFhWXO+Nd7wDwGfMZFufEqxZVgl8dx/aKjXKaIKllFK9qS4CwJk49qA2s9uE0vDxJDQWgNczAIENTVv31zJJinDFju+xlHZbWfHh7LLlYMMHpZsHOMKhY8PeGqY7CiF+LIT2fCPYFpNSo9niG4P4PKOmeEOz18e2A3VMlwJrKqUjrNdtRIQpaTGscWdalQSrCgY8zqFmbWEViZGhZMWH99544/OQOYeopMy+jWClzwIM7NdCF0p1pAmWUkr1IqS2CDehEJVy0Nu64yYSSjNU7hqAyIamLQdqmWLbgyNtap+3sdmE5iSrKMhomvq2fm81s+y7kZaiAX0wKTWKzcZfpnyUTH3bVVZPk9dHpmsbpOX1ebsp6dF8WO1/346SY9XWl4VV5GXFIiI9NyzbZiVKM85mYkoU2w704X50GbOsf/U6LKU60QRLKaV6EdGwl3JHqnWDzYPkyJgBQOO+0VNJsLhoF6lSRdjYOQe1XWzWZFyEYPaPjmPl8xmK9u0jzbf/6w+rfZCTFEmhLQOvOEZN0rCpuIZkqgh3l0J63xOsqekxrG9Ot6ZgjpJj1WJfVSPbS+o4enxi7403PAsITP8Ok9Oi2V3RQENTL6Pu0WkQna7XYSnVhYAlWCJyg4gYEUnyPxcRuUdEtovIOhE5PFD7UkqpwWKMIa5pP/XhB3f9VYuEsVaCVVUweqbRNO1ZBYBkHNyf/SnpcWz1ZdG0b/1AhDXk7CqvZ2Kzv3x4xuw+bxditzE2OY69jtFT6GLD3mqOcvinQ2Yd2eftpqbF0IiThsgxoy7B+mCrVRDk2Em9jLx7PfDlo5CzAGIymJIWjTGw7UAfC11oqXalOglIgiUi2cDJwJ42i08DJvp/rgT+EYh9KaXUYKpsaCaDA3hjer+xaVcmZKay25dCc/Ho+HBXWd9EavU6a3QlbeZBbTslPYbNvjHIKPkg/NnOCo6ybcLYHJA196C2nZYew0Zv1qgp1f7xjnK+FVsADiekH9bn7SamRmET2Bs2btQlWCu2lJIW42RSb/fA2vQCVO+BeVcDMDktBrAqEPYqfZY1vdDdh7ZKjSKBGsG6G7gJMG2WLQL+ayyfAnEikh6g/Sml1KAoKtpDgtRh68N9d7oyJiGCHZI9aioJflFQwdG2r2hIntXnog0tJqdFs9mMIdRdDnUlAxPgEPLR9jIWhmy2RgFCIw9q22kZMeS7M6GmCBorByjCoaGivomN+2o4kg1WIuoI7fO2zhC7dcNh3xio2AlNvdzfaYSocTWzYmsJJ01L6fn6K2Pgo3sgYTxMOg2w/maFh9jZtL+m9x1lzAYMFI+eEXql+qLfCZaILAL2GmM63kkzEyhs87zIv0wppYaN0p3Wn7a4sX2/7qMtm02oiBhPgmvPqCipnb9tNzNkF+GTjj3obWOcIZRFTLCejPDRBq/PsHH7Tqab7cj4Ew96+2kZMXxl/FUtR/g1ax/vKCOVCpLqt8GEkw56+ylp0XzWkAYYq1z7KPDKumJczT7OOSK754Zrn7Cm+C28AWzWR0K7TZiUGtW3EayWawd1mqBS7fQpwRKRt0VkQxc/i4BfAbceagAicqWIrBKRVaWlpYfajVJKDYiGIuvDa9K4vk9L6sibNBkHXswIL6ltjKFp0xs4xIdj0imH1Ictfbr14MDIThpW767kCPcXVln6QzhW09Nj2ejLsZ6M8A+372wq4XRnvvVk4skHvf3U9Bg+qPVfQ1nc8bvgkccYw6Of7mZCShSHZcV237ChAt76jTUqeNgF7VZNTovuW4IVlQLRGVroQqkO+pRgGWNOMsbM6PgD7ARygbUiUgBkAWtEJA3YC7T96iTLv6xj3/cbY+YYY+YkJyf39/UopVRAhVVsol4iscUe+gC8M8tKzmp2j+wPd1sO1DKrYSWNoQmQdXAVBFtkZY6h2CTg3Teyj9WLa/dybsiH+OLG+u8ndHBiI0IIj0ulwpEyopOGereH1zfs58LIVZA0GVL6Xvq/xdT0aIpMEp7Q2BGfjIKVkG7cV8OVx4zrfnqgzwvPXAGuavj2n1tHr1pMTouhvL6J0lp37zvMmK2l2pXqoF9TBI0x640xKcaYHGNMDtY0wMONMfuBF4Hv+6sJzgOqjTHF/Q9ZKaUGh89nGNPwFcVR0w+pRHuLtHEzaDJ2qneN7G9531i1mW/a1sC0s/p8g+GOpqRHs8GXQ3PRyD1Wbo+XtevWMk82Ypt9cacPt301PSOGr8gd0QnWm1/tJ8Ozh3H1+ZB37iG9D6ekxQBCSdTUEX2swPrd+uNrmxiTEMFZs7v5UsgYePXnsOMdOO3OLsveT02LBmBzn67DmmXd8NrVh7ZKjRIDeR+sV7FGuLYD/wJ+NID7UkqpgNu8p5iJ7KE544h+9TM5M5HtJmtEX1fk9njxrXmUMGkm/MiLD7mfaekxbDQ5hFXtAHcfykQPQy/k7+PkprcwYoNZ3zvkfqZlxPC5KxtTtm1EHitjDA99VMC1kW9h7GFwxGWH1E96rJOEyFC2SK5VddHTh1GZYeqPr25mR2k9v1s0nRB7Fx/xml3wwo9h1QMw/1o44tIu+5nsT7D6dh2W/xYD+7XQhVItAppg+UeyyvyPjTHmx8aY8caYmcaYVYHcl1JKDbRda97BLob06cf1q5+4iFB2O3KIqdkSmMCGoJdXF3CB90WqUo46qHs6dZSTGMk22wQEMyKvw/L6DE+syOdyx5sw+VvQj6mn0zNi2eDLGbHH6uMd5RQV7eFbvveRwxZDZNIh9SMizMiM5RPXGPA1j8h7h3l9hj+/uYWHPi7g8vm5HD+5i3tf7cuHB74J+Y/BsTfDSb/rdkQwMSqMpKgwNve1VDvodVhKtTGQI1hKKTWs2Xa+SxMhxE09+Ip4HVXHTibOUwb15QGIbGhp8vjY+fb9pEklsSff3K++bDbBk+q/f9YInM719OpCTqlaRgQu5IRb+tXXtIwYNvhyrScj7Fh5fYY7XtvMrRFPY8cL3/hpv/qbkRHD25X+O8WMsGNVWNHAMXe+xz3vbufcI7L41bemtG9QtQdevh7+dTzU7ofzH4fjf9nrdMspfS50kQwxWXodllJtaIKllFJdaHR7mFr7MYXRsyAkvN/9SeoMAJr3re93X0PNo++u5oqmR6lKnoOMP77f/aVnjaPMxOIbYd+Il9S4ePbV17jc8QbMOv+QCja0lRHrpCk8mVpHwoj7cPv4Z7sJ2fcFi3zvIPOuhkO8D12LmZmx7PQl4w2NGVHHqtnr45plX1LZ0MQ9F8zmznPycNht4PXA1jfgyUvgntmw5hGY8wP4yRcw5dt96ntyWjRbD9Ti9ZneG2fM0hEspdpwBDsApZQair74+C2Okf1sn3FdQPqLyZ0Nm6Fi52pSJx4XkD6Hgq/2VpO28haibS4c5/6tX8VAWszIimP9qhy+UZhPWABiHAp8PsMtT33O//ruRSITkZNv73efIsK0jFi2lIxjzggaldl6oJZ7XvmCVyP+gYnKQo65qd99zsiMBYTSqMmkjaBjdefrm9lRuI9l3zjAYfYG+LwMCj+FnSugoRzCE+DI/4Gjf3zQ01GnpEXj9vgoKK9nfHJUz43TZ8Hml62qhM4eSsMrNUpogqWUUl1oXrMMF6GMO+bQixC0NW5sLiUmDlfRyLkQvLqhmfceXsKPbZ9Sv/DXOFKm9L5RH0zPiOEtk8uxlS9Bc2NARhCD7c7XNvLdgtuYaC9Cvvs0RCQEpN/pGTF8XpjNEaUvIiPgWJXUuLjyPx9zb8i9JJkK5NzXwRnT736z4sOJDQ9hq208aQeeA28z2EMCEHHwPPlFIY98uJnXE+8lZ81aWONfEZVm3ZB56pnWfcMcoYfUv1V90Sp00WuC1XLdZfE6yF14SPtTaiTRKYJKKdVBYUkFs2veYWfCMdjCA/Nt7LjkSLaYMYSVbwpIf8HW0OTh4aV/5Gr3g1SOOYXI428MWN8TUqLYIuOwGe+IqLy49N1NTPz0F5xq/wJO+YP14TdAZmTGstaTgxivVSFvGCutdfODB1Zyi+tPzDNrkTP+esj3U+vIKnQRw2eubPC6oXRzQPoNlqdWFbLk2c95NvYvjK1fB4v+Dld9BDdsgRs2w3fvh6mnH3JyBTAxNQqb0LdCFxmzrH91mqBSgCZYSinVydqX/kaC1JF2wtUB6zPEbmN/+AQSG3Za354PY1UNTTx03//yk+o/U5F6NPEXPXTI93LqSojdhiuppdBFfsD6HWwer487XljN+Pd+zNn2lfiO+zVydGDvWDIrO44NvhzryTA+VrvK6rn8H2/w26pfc5J8Yd2fafaFAd3HjMxY3mopdDFMr8MyxvDvD3fyp2fe54Xou5jatB757r+sY5U2A6LTAjJNF8AZYicnMZLNxX24v1VkEsRmD+vfQaUCSRMspZRqo7Kmntl7HqYgfDoJ008MaN9NiVMJoRnKtwe038G0saiMN/98OT+q+QsVad8g6YfPQmhEwPeTmj2BSqIx+4bn9TIlNS5u+seTfHf1xZxkX4PvtLuwHdf/a4k6GpMQQX14OvX2WNi3pvcNhqDX1hfz23v/zdKGn3G4fSec8x846n8Cvp8ZGbFs86bgDYkalolAndvDT5/I541Xn+PNiFuZYAqQcx+ybsA8QKakR7PlQB9GsADSD9MRLKX8NMFSSqk2Pnrqz2RKKSHH3xSwb4JbhGbmAVC/Jz+g/Q4Gn8/w/Fvv4f7XqZzneYkD0y4j6coXBuyan8Oy41jvzaGpcHglDcYYXv5yD4/ffSO3l17DGKcLufg5bEf9cED2JyLMzIpjo0yEouF1u8mqhiZufPxTti+/mQdlCamxEdguexVmnD0g+8vLisVgozR6KuxdPSD7GCgfbC1l0Z/f5PCNf+TJsP8lNiYG+cFbMG3RgO53cmoMeyoaqHd7em+cMRsqdkJj1YDGpNRwoEUulFLKb+eeQr6xZyk7o2Yzbm7gP7ikjptJ0+d2qnZ9SeScCwLe/0DZXlzOZ4//nnNqHqHZ7qTmW/8kdc75A7rP2WPiecvksqD8VWhqGJBRskDbUVrHsmee4ax9/8fptt3U5Z5M1Nn3WtO2BtCs7DhW7srlyNKnrA+34XEDur/+8vkMT36xh8/feJTrvA8xxlGCb9ZF2E+7A8KiB2y/YxIiSIwMZYNtCmn7lw2L36u9VY386bVNuNa/wKNhj5PuKIG5P4STfjugx6rF9IwYjIGvimuYm9NLYZaW67CK18K4/t87UKnhTBMspZTC+tC364mbOI56bGf/X8BHrwCmZCayzWQRN0zKRJfWuHjzmX8zv+BeLpT9FKafRNaFf0MGOGEAmJAcxV/tU7GZF61pRznzB3yfh6qk1sWjr7zLlK/+wi22z6h3JuE982Gipi8akN+jjvKy4njIN8F6snc1TAjs1NZAMcbw3pYSnn3lVc6reoA/29fjSpgEp9+PLQD3T+uNiDB7TDzvFo/lJJ9nSP9e1bia+ft7O1j10Zv80v4oR4RuwZc0Bb790KDGPDPLKvKzYW917wlWekslwXxNsNSopwmWUkoB776yjJMaXmXT+MuYOu6IAdlHcnQYH9knckrVp2DMoHz4PhSNTV5eeuVFxuXfwYWymZLwXGq+9TjZM781aDHbbIIncy7sw7qvzxD8IFzjauaptz4iatW9XMN7+Byh1M+7ichjr4WwXspaB9Bh2bGs9Y3HIEjRF0Mywfp0ZzlPvvwap5Q+yH32VTQ5YzAn3oFz7hWDWi798LFx/GtTFn9wAoWfDbnfq1pXM499tofP33+Fi5qf4WZHPt6IZDjxr9hmXQT2wf3YlhIdRlJUGOv3VvfeODIRYsfodVhKoQmWUkpRuG8/01fdwt6QbKZc8McB24+IUJ2QR0T529a1ConjB2xfh8LV7OXdN18kftVfOM/kU+OIp3TBHaQc88NB/2AHMClnDNv2ZjJu92fYh9CtdUpr3Tz39vuk5P+NS/gAY7PTOP0iYk75NWHRqYMeT0q0k4SEJPZ6csgq/HzQ998dYwwfbCvjlTff5LgDD/Fn++c0hUXjnf9LQo++Oig3pD18TDyVxFAfnUvkEDpW5XVuHly5i52fPselvue4yrYFT2QCfOMW7EddPagJe1siwszMGDb0JcECyDhs2FZoVCqQNMFSSo1qPp9h2yPXcCwVVJzzCDLAN2p1jJkD5eDa/QXOIZJg1bmaee/1p0lfey/fMhuptsVSePgvyD75mkG5zqM7s8fEsfqDieTs+Qy7zxfQUvCHorCigRfeeIucTUv5gXyC1xZK1fTLSDr5RkJiMoIa25G5CXy8cSLnFn6MeJr6df+j/vL6DK+u28eHb7/AadVPcKd9LU2hUXiO/jmh838S1GvE8rJisduEnc7pzCz8CHxesNmDFs/eqkb+/f42qlY/xQ95gWm23TRFZ8Axd+KYffGQuEZsZmYs728tpbHJS3hoL8cqYzZsegkaKyE8fnACVGoI6neCJSLXAD8GvMArxpib/Mt/CfzAv/ynxpg3+rsvpZQKtHdefIRvNr7JpolXMHXKwE8Xypw4i4Y1YVRv+4T0wwe2UERvqhuaWPHK44zd+HfOYAuVtgR2H/Frxp78Y2JDI4MaG8Ds7Hj+YCZxftMKKNsCKVODEsfWA7W8+tqLTNv5H35iW4XbEU7trB8Rd8J1JEWlBCWmjo7MTeCdL6dzHm9C0RdBmfrm9nh5ZlUhG99bxtmNT3OnbTuu8AQ837iF0KOuGBIfuCNCHeRlxfJW41RmNr5sXS+UOTBTgnuyvaSOf723Cfv65Vxpf4kc236a4ibAsX8ndOa5QU2QO5qRGYvPX+jiiLG9nMP0Wda/+76E8ScMeGxKDVX9SrBE5HhgEXCYMcYtIin+5dOA84HpQAbwtohMMsZ4+xuwUkoFyu6iveR9eStFoTlMWXz7oOxz5pgk1ptcxu4NXvnx8loX77/0MJO2/JNFsoNyewqFR/4v2SdcSXyIM2hxdRQfGUpZ8jeg6n7Y9tagJ1hrdlfwwavLmFf8CNfZNtEYEk3dnBuIOvYnhEX0csH/IDsqN4Hf+6bhEzu2ne8NaoJV62rmiU92ULzyv3yv+Tm+Z9tHQ3Q2vmP/D+fsCweslP+hOnZSMo+8M57rwwTZ/s6gJljriqp44J0NJG97nJ/ZXyXVUUlT6mFw7J8InXJ60EdpuzIj8+tCF70mWFlzQexQ8JEmWGpU6+8I1tXAHcYYN4AxpsS/fBHwhH/5LhHZDhwJfNLP/SmlVEB4fYadj17DQqmm+rzlyCAlFklRYbzlnMYRNS+Cu25Qr63YX1nPyhcfYMbOf/Fd2UNpaAb7jr6TjGMuI3EIfWPe1tQpU9n08Rgmbnkdx/yfDvj+jDF8uGU/a19/kJMqlnGdbQ+1zhQa5v8vEfMuD9q1ML0ZmxhJYlIKO5onM3HHu3DCLQO+z7I6N499sJHmz//DheYV0qWCusRpmBP+l4hp3wnKdXt9ceykZP7ydgxVcdOJ3/4OHBv4G0C3ZYzhkx3lPPzul0zZvYzfhbxBnKOO5uwFcNwNhI47fsgWvAFIj3WSGBnKuqI+XIfljLGmCRZ8OPCBKTWE9fev3yRgoYjcDriAG40xXwCZwKdt2hX5l3UiIlcCVwKMGTOmn+GMPE1uN666ahoba3A31OFuqKW5sY5mVx1eVx1edz2eJjceTzP4vIjxYDNexOcB48Xm82Iw+LBhEHxiw2BDbHZsdjs2mwOb3Q6OMHCEISHh2EKcSIgTW4gTW2g4oWERhISFE+qMJDQ8HKczEmd4JGEhdmQI/6egVE/efu5BTnG9w+ZJVzFl4lGDuu+GrGNw7HwW784PsE/91oDvr7C0ii9e+AezCx/iHNlPSdgYDiz4C6nzLx6yH4JbHDMpmfdWzmJy4avgqh6wwghen+GttbsoeOuffLvuGY6xlVIZPQ73cfcRPXvxkJqy1Z3jJ6fw+hdTmbD3WaT2AAxQwY3CigYef3c1Mese4FJ5g1hpoDbjaDjxRqLGnzikkwWwytrHRYSwynE43yx6FBoqYABGJH0+w1ubDvDEO5/xjZInuNvxLhEhLponnArH3khI9tyA73MgiAiHj41n1e6Kvm2QuxA+vnfQv0BSaijp9X9WEXkb6OqmJ7/2b58AzAPmAk+KyLiDCcAYcz9wP8CcOXPMwWw73Bifj+rqCioPFFJbWkhjxT68NfuhoRybqxJHUzX/v737jq+qvh8//nrfmb1DyIAkbELCEhAVFDete1Rt3Vb91tZW/dplh7X229ZWv7W/1rZ+tVr33ltxIKCAIiB7BAgkEMjeuTd3fH5/nJsQIMzc5Cbh/Xx4vfesz3nfe3Iu530/47h99UT7G4gNNhJvmogTDy4gIdLBd6HVuPDiwisuvLhps7nxiRufzY3f5iZgjyJgjyJojybocGMc0RhHNDiiEVc0Nlc0Nmc0Nncsdlc0DncsDncMrqgYnFGxuKJicMXEERUdS5TLidPe95pO9HfGGIwBE3odNGCw5gEEQy/a12nfBtq3aZ/Z/rR7287r735trbPnNnTaJlR20HR6HbSWdPp22F2O7LG/vcLBGOmYMkjHsqaaCiavuItS93BGX3L3IX1W4TS48GRaNrlpWfEuaT2YYG3eUcnXr/+N6Tuf4kKpYXvMKKpO/h2DplwU0Y79h2Py0GT+YZ/C980bVjPBoovDWn6bP8g7i9dQ8+k/OM/7JrOlkcrUifhO/yvJY77ZJ5ts7c+pYwdx5+fT+aH7ZVj5Ahz/w7CWv35nIy/MWUDehke4xTYXl81Py7BvwCk/Jj6n9/sxHSm7TThxZDqPbRzH6SYIq16GaTeErXxfIMgby3fw5sfzOKP+Bf7PMR+H02DGXQQzb8OZURC2ffWW6cNSmbNmFzvqWslKOkiTz7yZsOB+6/YKI07rnQAHuGDQ0Nzmp8nrp8njp9UXwOML4vEFrIffeu31BWjzegh4msDfit3fivg92AKt2P0ebAHrtSPgwR7wYA94O36ct5sANgLYTQA7fuwEsJkAjtCzjSCA9S+pCIKVfFsPsAkgNmwCIjYk9IzNDuJAbHbrBz2bA2x2xGbNE7sTsTnA7sBmb5/nQGxObA5rns3mwJ8ynJThU4hz9+0fBdsdNEpjzH7PDhG5CXjFWFdcX4hIEEgDtgNDOq2aE5o3oHlamthVWkzdjmJaKzcTqNmGu6mMOO8uEvzVJAdrSZI2kvbars3YaZR4mmzxtDriaYnKoME9mjJ3EkF3IsYdj80VayUi7lgcUfE4o2NxRcfjjonDHRVDlNuF3e6y/ijtdmyhP1ix2bHZBDEGTBBMAEyQQMCPz+fHF/Dj9/nwt3nwe1vxt7USaGsh0OYJPVo7HkFfK8E2D8bXivG1Ir5W8Huw+VtDJ611wroDXuICtTj8XpxBL27jxUUbUcaLQ4JH9Nl6jYNGnASxERQ7oa8BgmIjiJ0AdgJi71gebF8mdgw2QNr/C/24KpjOO9jjmn+vZe1LQjMldCkvuy/xwXTeyux+bfYq0ZiO7a35u9c3ncrY89lYxw/2LCu0XXsKIcbsEbmw7766mpZ9lreXvWccB57ef1nt63KQsmzSu7+v+LBTd8kriMPdq/sFmDYyk4XBAo7Z8nGPlL++pIx1b93PCZUvcIE0sDV+IjWn/5Ps8bP7fO3C3lwOGzlFJ1K+MpX0JY/hCFOC1dLm5415X8LCBzjHP4dY8bIr8yQCs39Oet7xYdlHbzs2P4XGuGFskjEMX/4MHHdzWI73V1trePP9D5hU+jh32BYhDhvecZdgm/XfxKWNDEPkve+cCVnc8HUOjYPHEr/0cZh6fbc/q5Y2Py98WcrCT9/lwtaXedT+FcblRCZdhW3GLZCcF57gI2D6MKuGb/GWai6YlHPglYdOB7sLij/WBKuTYNDQ4PFR2+KjprmNupY2alt8oec2app91Le20ejx09rait1Tg9NTQ5SvlhhfHSnSQCLNxEsL8bQSLy0k0EyGtBJPS2i6Fbf4jjhG69rKur7anWbZ8YeupazrFNj9E+feP5ru+e+4zboqwxG6UrOeQ68P83rwUf9sBl1yP2ePj+yIrYequ2nga8DJwCciMgpwAVXAG8AzIvIXrEEuRgJ954YT3eBr87Bj8xqqt67GU74OR20xSS0lpPp2kkoduUBuaN02Y6fCNoh65yB2xBdRGpMOcYNxJmUSnZJNQnoOSYOGEBOfTKrNRmpPBi4C2Gg/5HYn2KOg17uzB3z4vc14W61Hm6cZn6cZn6cFv7cZvzeU0HmbCba1Ynwt4POArwUT8BHw+zFBPwT9iLF+VZHQw2oaGUDaf20JzbcT3F2LYtprYNov7vf8B9W215fDHv/eSsf/rJRAbB2pQ0e6IJ2Wty+T3SmFSKc0Q9r3br1uj6b99e592vYKRrp4LZ3WOdByq7zdSWZ74tlpG7GFimova/cHsEecB9337rL2WI5gQvuXTnG2l9f+mSDWetKxzZ5Hq3MyZ/3P7HE8dyeLHZ/yHtvHj5pB5ogpREJ6vJuS5OM4teGfmIp1yKAxYSn36/UbKX3nL5xY9yqjpZVNycfhmH0HuWNOCkv5kXLx1DyeXHYaP936PFSsg258XlVNXt7+6BOSl/2Ti8wCbGKozD+HmNk/JWNwYRij7n0Ou41vTcnh0Xkn8Pu2R6BsCRxhM7RA0PDhmp188dHLzKx6gbvsX9PmisE/+SaiZt5MTISHpe+uWaPTSYuL4lXbaVy18++wY+kRD3ZR0ejhic+2ULboZa4Ivs41tg34ohORY2/Hdux/QR8ZabI7xg5OIDHaycJNh5BguWJh+Kmw5jU443/6VS3wkWjzB9nV4KGi0Utlo/Vc0eClotFDZaPXmm70Ut3kIcE0MVhqGSw1ZEgtg6khQ2rItTUwyNZIqjSSTAOxpnn3DgTr6jrEb4/B74oj4ErEuOIx7nSISkSiEghEJ+KNTsQRHY/NFWPddqT94Wh/HQPOKOvZ4QabM1Sr5MBusxGOtg3BoCFgDIGgwR80+ANB2oKG1tB0IGDwBwL4A34C/tAj0EbQ7ycY8BHwB/AHfJiAj2DAjwn4yXbEUzg08iORHqruJliPAo+KyCqgDbg6VJu1WkReANYAfuAH/XEEwbrKcrZ8/SmtW78itmY1Ka0lZAbKyZVgRxJVSQq7XEMoTjqB9QlDcKblE58xjLSckaQMHkqO3c5BvoqOLnYnjpgkHDFJRH4QaKUiJ3HyRfg/eZC6zx4j7YJ7jrgcYwwLl66g9qO/cErzOxSJj+L0U5GzfsHw/P7TbOtAJg9N4p6Us2lrfBnH5w9gO/+Bwy5jw8565r/7AiO3PMnVtq/xipuasVeScebtDE4aOP1/L5s6lHPnHc8v7S8SM/cPcMUrh1Uz09Lm59Uvitkx7wnO9bzOmbYyWqJTaTvul7im39AnhloPB6fdxtXH5XLvnAlcnpCAfe6f4PIXDquMjbsaefzTNciKF7jG9jbDbeV4E7Jhxp9wTrpiQPU/stmEE0ak8sn6SgJBg912kL+pwgthw7tQuhhyj+udIHtIg8fHjrpWtte2sr0u9KhttebVtVLR6MUYcOAnS6oZIhUMlUrGumv4pqOaLKkmlWoSo6pxmLZ9yg/GpCFxg5DYwRBTCLFpEJMGsamh57Tdz1GJOOzOPn8TW5tNsCE4+0dL9B4hxvRus5wDmTJlilmyZEmkw+iw6NnfM339nwkaocyWRUX0MNqSR+AcNJrkoePIGlFITHzfGqpXKdU/VDd5WfrnszjeuZ7Yn6457Bv6+gNBFsz/kOBn/2Bm23xEYEvWWeSc8wuiMyNzv6ie9OGaXWx75kdc63gf+e4HMGTaQbcJBg2fr91C8Yf/YUb1S4yw7aDBkYrvmOtIPfEm6wJmAPrtm6uxLf4Xv3Y8Cec/CBO/fdBtNlc28f78RThWPM2FZg6p0kh94hjiTvoR9vEXW790DzCNHh8n3zeXm13vcE3Lo3DBQzDh0gNu4w8E+XBtBXM/m8/o0he5yD6fBGnBm16I+8TboA+Pnthdb63Ywc3PLOPZG6Zz3PCDnDveRrh3BEy6Es66r3cC7IYGj4+Sqma2VDVTUtVCSbX1emt1M7Utu5vcReNhlH0Xk+OqKHBVkGevJDO4i+S2cmK8FYjp1OzN5oDEHEjIgYRMiM+EhCyIHwzxWda8uMH9YgAdtX8i8pUxZp/mMAPzWyBMhs38NmuHTSF33LEMjUti4PzGqZSKtNQ4NyVj/4vT119P3Qd/Iumc/zmk7WoaW1j03jMMXvMos8xqmolmy/AryPvmfzMyLa9ng46gU8cO4gf53+P0bUvJePoyXFe9bA0H3YXSqga+nPsmMWuf5yT/QmZIGxUJY2k+6dckTLp4wF/Q3HrqKM5dcx5neb5i4pu3YLM5YPy39lmvvtXH/GVr2Lb4NY6pfYebbOsIItQPPRVzyi0k5s3sd332Dkd8lJPfnVfIzU+3MiN5CcNf/77VEb/woj3etzGG1TsamPvVKlqXv8xJ/gXcY1tPwOnAP+ZcmH4D7qHHDejPCuCUMYOIdtp5a8WOgydY7ngYczZ8/Syc/IseGaXxcBlj2NXgZcOuxo7HpspmSqqaqW7uXLNkmJTQxLS4aq4bXMEw2UGGr5TE5q24mndYq3gBr1hJU3IuJM0KPeeGnodaSdQATbbVwWkNllJKRUhFg4eF/3sJZ8t8/Jc8g7vgG12uFwwaln+9hNoF/6Gw6h0ypJZK+yBqCq9j5Jk3YYtJ6t3AI6SupY0f/+tF7mq4kwxbA7Vjv4OMOI02dyoVlTupKlmNe/tCJrQtI1FaaJZYKnLPIvvk63ENnTbgL4A7W7ezgR88/BH3+P/EVFlLddpUGnNPp96eTFV1NW0715HZuJLxshmbGOqih+CYfAVx066wfnU/ivxzbjH/fG8Zz8Tcx/jgOurSp1CdNYtdgUQqK8vxV29hTNsaxso2bGJoShhJ9JRvY598FcSlRzr8XnXLc8v4eG0FC35+ConRzgOvvGs1/Ot4OOlnVpLVi6qbvKzb2Z5INXUkVI0ef8c6aXEuClIdHBu3k0JHKXn+LaQ3FxNduxbxNu4uzJ0AqSMgbaT1SA09pwzrczfRVr1vfzVYmmAppVQEzV2xidSXLqTAto1doy4ncfoVuFOGUl1TTenGFbQWzye7agHDTCkBI2xMPI6E464la9qFR+Wvo7XNbfz9jQUUrLmf82yf4ZQ9u/fW2FKpyJhB2sSzSZt8zlF9AbSz3sMf3lpB5trH+I5tDrm2io5lrURRHTcKGXkqmceciy170lGVgO5t4aZq7ntnBUU7X+FK+xyG28o7lrVKDPUpRSSMPZmY8efDoIHXBPdQrdpez9l/X8CPzxjFzaccwgiSz18Bmz+Fmz6HpCEHX/8wGWMoq21l9Y56Vu9oCD3q2dXg7VgnKcbJqPQ4pqU2M9m9nRHBrWS0bsRdtQZqNtMx8p07ATLGWY9BBZA+2kqm4gYd1eeGOjBNsJRSqo+at2oTFS//nPOCH+2TMPiMnY3REwiOPJ3hs64iOvXoql3Yn6omL8s3bsVesRqXv4m0tDSyhxcSl5qjF0N7aWnzs6WqmeaaXSRJIzmD0ohJHTLgR3c7EhWNHspqW5HWWga7vQwelIFEJ+vfVCfXPfYlS0pqeP+2E8lMPMgPGDWb4cETYXARXP1mt34U8geCbKps7pRM1bNmRwMNoVopm8CIQXFMHBzF8QkVjLNtI7ttE9E1a5Fdq60blbdLzofBhZBRZCVUgwut5n16nNVh0gRLKaX6sNa2AItXrsG3ZRHSWk1sbBxJQwsYOW4Kjui+eKtxpdTRaEtVM2f9bT7jcxJ5/LppuB0HGSpuxQvwyg0w+ptw8aOHVKvc0uZn3c5G1oRqpdbsqGfdzka8fmsQCbfDxpjB8ZyQ3sq0mHJGsY2Mlo3YK9dAdbF1308AZ+zuBCqj0Er0Bo097EGFlNofTbCUUkoppVS3vfxVGbe/+DUzR6bx10snkhp3kFEmv3gY3vkxpAyH0++G0d8Am5WYVTR6WLOjgTXlDR3PW6qaab88TYxycMJgP9OT6pjgKifXX0Ji4wakYi14G3bvIyk3lEQV7n5OytOaWtWjNMFSSimllFJh8cKXpfzytZXEuh1ccWwuJ49Jpyg7CZdjz4QmGDTUtfpoXvshKXN/TmzTVprsSax2jGV5Ww6lbXF4cWLDkBEDI+O8DI1qZbCtjhTvdhz1JYivZXeBUYkwaBxkFFh9pTIKrVqpKK3pV71PEyyllFJKKRU263c2cu/76/hoXQXGgN0mJMe4SIhyEDSG5rYANc1tBILWtaYDP6fZlnK2ezlTbOsZHCjvuuDoFGtwieR8a7S+lHzrkT4GErK1r5TqM/Q+WEoppZRSKmxGD47n31dPparJy5KSGlZtb6C62Uujx49NhGinnbR4F2lxblLj3OSmxJCf/k0SokJDvAd80FwFQR+IDewuK7k6CkdIVQOL/gUrpZRSSqkjlhbnZnZhJrMLMw9vQ7sTEg5zG6X6Ae35p5RSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSZ9ahRBEakEtkY6jr2kAVWRDkL1Gj3eRw891kcPPdZHFz3eRw891keXvni8c40x6XvP7FMJVl8kIku6Gn5RDUx6vI8eeqyPHnqsjy56vI8eeqyPLv3peGsTQaWUUkoppZQKE02wlFJKKaWUUipMNME6uIciHYDqVXq8jx56rI8eeqyPLnq8jx56rI8u/eZ4ax8spZRSSimllAoTrcFSSimllFJKqTDRBEsppZRSSimlwkQTrAMQkdkisl5EikXk55GOR4WPiAwRkU9EZI2IrBaRW0LzU0RkjohsDD0nRzpWFR4iYheRZSLyVmg6X0QWh87v50XEFekYVXiISJKIvCQi60RkrYgcp+f2wCQit4W+w1eJyLMiEqXn9sAhIo+KSIWIrOo0r8tzWSx/Cx33FSIyOXKRq8O1n2N9b+h7fIWIvCoiSZ2W3RE61utF5MyIBH0AmmDth4jYgX8A3wAKgG+LSEFko1Jh5AduN8YUANOBH4SO78+Bj4wxI4GPQtNqYLgFWNtp+k/A/caYEUAt8N2IRKV6wv8D3jPGjAEmYB13PbcHGBHJBn4ETDHGFAJ24DL03B5IHgNm7zVvf+fyN4CRoceNwL96KUYVHo+x77GeAxQaY8YDG4A7AELXa5cB40Lb/DN03d5naIK1f9OAYmPMZmNMG/AccF6EY1JhYowpN8YsDb1uxLoAy8Y6xo+HVnscOD8iAaqwEpEc4Czg36FpAU4BXgqtosd6gBCRROBE4BEAY0ybMaYOPbcHKgcQLSIOIAYoR8/tAcMYMw+o2Wv2/s7l84AnjGURkCQimb0SqOq2ro61MeYDY4w/NLkIyAm9Pg94zhjjNcZsAYqxrtv7DE2w9i8bKO00XRaapwYYEckDJgGLgQxjTHlo0U4gI1JxqbD6K/BTIBiaTgXqOn1x6/k9cOQDlcB/Qk1C/y0isei5PeAYY7YD9wHbsBKreuAr9Nwe6PZ3Lut128B2HfBu6HWfP9aaYKmjmojEAS8DtxpjGjovM9Y9DPQ+Bv2ciJwNVBhjvop0LKpXOIDJwL+MMZOAZvZqDqjn9sAQ6ntzHlZSnQXEsm8TIzWA6bl8dBCRX2J17Xg60rEcKk2w9m87MKTTdE5onhogRMSJlVw9bYx5JTR7V3uTgtBzRaTiU2FzAnCuiJRgNfU9BauPTlKoWRHo+T2QlAFlxpjFoemXsBIuPbcHntOALcaYSmOMD3gF63zXc3tg29+5rNdtA5CIXAOcDVxudt+8t88fa02w9u9LYGRoNCIXVme6NyIckwqTUB+cR4C1xpi/dFr0BnB16PXVwOu9HZsKL2PMHcaYHGNMHtZ5/LEx5nLgE+Di0Gp6rAcIY8xOoFRERodmnQqsQc/tgWgbMF1EYkLf6e3HWs/tgW1/5/IbwFWh0QSnA/WdmhKqfkhEZmM17z/XGNPSadEbwGUi4haRfKyBTb6IRIz7I7uTQbU3EfkmVt8NO/CoMeb3kY1IhYuIzADmAyvZ3S/nF1j9sF4AhgJbgUuMMXt3sFX9lIjMAn5sjDlbRIZh1WilAMuAK4wx3giGp8JERCZiDWjiAjYD12L9oKjn9gAjIr8FLsVqPrQMuB6rL4ae2wOAiDwLzALSgF3Ab4DX6OJcDiXZD2A1E20BrjXGLIlA2OoI7OdY3wG4gerQaouMMd8Lrf9LrH5ZfqxuHu/uXWYkaYKllFJKKaWUUmGiTQSVUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUqqPEZE8ETEi4oh0LOroICKrRWRWpONQSqmBQBMspZRS/Z6IPCgiTaFHm4j4Ok2/G+n4+jpjzDhjzNxwlysip4nIUhFpFpEyEbkk3PtQSqm+RowxkY5BKaUGFBFxGGP83dg+D9gCOLtTztFKRO4CRhhjruhiWbeOTW/qT7F2RUQKgLnA1cAcIBFIMsZsimRcSinV07QGSymlwkBESkTkZyKyAmgWEYeITBeRz0WkTkS+7twES0TmisgfReQLEWkQkddFJGU/ZV8rImtFpFFENovIf+21/DwRWR4qZ5OIzA7NTxSRR0SkXES2i8j/iIj9IO9juIh8LCLVIlIlIk+LSFKnZTUiMjk0nSUile3vS0TODTU1qwu9v7F7fT4/FpEVIlIvIs+LSNThf9KHbz/HxojIiE7rPCYi/9Np+uzQZ1oXOobjD3Ffs0I1Nb8IfX4lInJ5p+Vniciy0LEqDSWD7cvam4Z+V0S2AR+H5r8oIjtDn9s8ERm3V9z/FJF3Q7V1n4nIYBH5q4jUisg6EZl0iJ/RaYfyHg/Dr4D/M8a8a4zxG2OqNblSSh0NNMFSSqnw+TZwFpAEZABvA/8DpAA/Bl4WkfRO618FXAdkAn7gb/sptwI4G0gArgXu75TkTAOeAH4S2u+JQElou8dC5Y4AJgFnANcf5D0I8EcgCxgLDAHuAghdHP8MeEpEYoD/AI8bY+aKyCjgWeBWIB14B3hTRFydyr4EmA3kA+OBa7oMQGRGKLHZ32PGQd5DVzqOzcFqhUIJyaPAfwGpwP8Bb4iI+xD3NRhIA7Kxam8eEpHRoWXNWMc9KRTPTSJy/l7bn4T12Z8Zmn4XGAkMApYCT++1/iVYyUwa4AUWhtZLA14C/nKIcXdJRH5+oONxgE2nh7ZfGUryn9rfjwhKKTWQaIKllFLh8zdjTKkxphW4AnjHGPOOMSZojJkDLAG+2Wn9J40xq4wxzcCvgUu6qmEyxrxtjNlkLJ8CHwAzQ4u/CzxqjJkT2s92Y8w6EckI7etWY0yzMaYCuB+47EBvwBhTHCrLa4ypxLo4P6nT8oeBYmAxVmL4y9CiS4G3Q9v6gPuAaOD4vT6fHcaYGuBNYOJ+YlhgjEk6wGPBgd7DfnQ+NgdzI1bNy2JjTMAY8zhW4jL9MPb369Bn+ClWon0JgDFmrjFmZehYrcBKSk/aa9u7QsesNbTNo8aYRmOMFyvZnSAiiZ3Wf9UY85UxxgO8CniMMU8YYwLA81jJ9REzxtxzoONxgE1zgCuBi7ASxGjg792JRSml+gNNsJRSKnxKO73OBb611y/9M7CSkq7W3wo4sWod9iAi3xCRRaHmeXVYiVP7ekOArppd5YbKK++0///DqgXZLxHJEJHnQk0KG4CnuojpYaAQ+Hvooh+sGq+t7SsYY4Kh95fdabudnV63AHEHiiXMSg++Sodc4Pa9jt0QrPd4KGpDSXO7re3bisixIvJJqGllPfA99v18O2IVEbuI3CNW088GdtdOdt5mV6fXrV1M9+bn3Fkr8B9jzAZjTBPwB/b8gUEppQYkTbCUUip8Oo8aVIpVQ9X51/5YY8w9ndYZ0un1UMAHVHUuMNQs7WWsGqGMUI3BO1hN+dr3M7yLWEqxal3SOu0/wRgzrot1O/tD6H0UGWMSsGri2veFiMQBfwUeAe7q1ORrB1Zi0r6ehN7f9oPsbx8iMlN2jwDY1WPmwUvZx94jOrUAMZ2mB3d6XQr8fq9jF2OMefYQ95UsIrGdpodifT4AzwBvAEOMMYnAg3T6fLuI9TvAecBpWINE5IXm771Njwn1J9vv8TjApivY873oqFpKqaOCJlhKKdUzngLOEZEzQ7UQUaEBEHI6rXOFiBSE+jPdDbwUatbVmQtwA5WAX0S+gdWXqt0jwLUicqqI2EQkW0TGGGPKsZoS/q+IJISWDReRvZuj7S0eaALqRSQbq29XZ/8PWGKMuR6r6duDofkvAGeF4nACt2MleJ8f7IPamzFmvjEm7gCP+YdbZheWA98JHZvZ7NlM72Hge6HaJhGRWLEGp4iHjoElHjtI+b8VEVcoGTwbeDE0Px6oMcZ4Qv3nvnOQcuKxPsdqrITwD4fxHsPCGPOHAx2PA2z6H6y/zWGhv/GfA2/1TtRKKRU5mmAppVQPMMaUYtU8/AIrOSrFSlY6f+8+iTUQxU4gCvhRF+U0hua/ANRiXZC/0Wn5F4QGvgDqgU/ZXZN0FVaCtia07Uvs2USxK78FJofKeht4pX2BiJyHNUjFTaFZ/w1MFpHLjTHrsWq7/o5VC3cOcI4xpu0g+4uUW7BirAMuB15rX2CMWQLcADyA9bkVs+eAHEOAzw5Q9s7QdjuwBqT4njFmXWjZ94G7RaQRuBPruB7IE1hNDLdjHcdFB3tjfYUx5lGs+BdjvQcvXfyNK6XUQKP3wVJKqQgQkbnAU8aYf0c6FnXoQqMifg2MDw3msffyWVjHNWfvZUoppY4OjkgHoJRSSvUXoRq5sQddUSml1FFLmwgqpdRRRkQe3M+ABQ8efGvVH4nI0AMMVDE00vEppdRAok0ElVJKKaWUUipMtAZLKaWUUkoppcKkT/XBSktLM3l5eZEOQymllFJKKaUO6KuvvqoyxqTvPb9PJVh5eXksWbIk0mEopZRSSiml1AGJyNau5msTQaWUUkoppZQKE02wlFJKKaWUUipMNMFSSqmD8AeCBIM64qpSSimlDq5P9cHqis/no6ysDI/HE+lQVD8TFRVFTk4OTqcz0qGofszjC3DOXz9hRGKQf95wOiIS6ZCUUkop1Yf1+QSrrKyM+Ph48vLy9MJGHTJjDNXV1ZSVlZGfnx/pcFQ/trC4iocav09+8y42rv6QkYVTIx2SUkoppfqwPt9E0OPxkJqaqsmVOiwiQmpqqtZ8qm7bunUT+bZdANQveTHC0SillFKqr+vzCRagyZU6Ivp3o8LBW7a843Va+dyIxaGUUkqp/qFfJFhKKRUpifXrAJifeC5Z3k3gb4twREoppZTqyzTBOgQiwu23394xfd9993HXXXdFLqBOFi1axLHHHsvEiRMZO3ZsR1xz587l888/P+Jyt27dyuTJk5k4cSLjxo3jwQcfDFPESvUvcZ5yGuzJNA8+Fhd+WnesjnRISimllOrD+vwgF32B2+3mlVde4Y477iAtLS1s5RpjMMZgsx15nnv11VfzwgsvMGHCBAKBAOvXrwesBCsuLo7jjz/+iMrNzMxk4cKFuN1umpqaKCws5NxzzyUrK+uIY1WqP4ry1dEalURs3iRYD1XFXzJk6KRIh6WUUkqpPkprsA6Bw+Hgxhtv5P77799nWWVlJRdddBFTp05l6tSpfPbZZwDcdddd3HfffR3rFRYWUlJSQklJCaNHj+aqq66isLCQ0tJSfvKTn1BYWEhRURHPP/88YCVIs2bN4uKLL2bMmDFcfvnlGLPvfXgqKirIzMwEwG63U1BQQElJCQ8++CD3338/EydOZP78+QeM88orr+S4445j5MiRPPzwwwC4XC7cbjcAXq+XYDDY5Wfzt7/9jYKCAsaPH89ll10GQE1NDeeffz7jx49n+vTprFixomNfV199NTNnziQ3N5dXXnmFn/70pxQVFTF79mx8Ph8Ad999N1OnTqWwsJAbb7xxn/cdDAbJy8ujrq6uY97IkSPZtWvXgQ6jUofN6w8QH2zA504ma9g4fMZO8451kQ5LKaWUUn1Yv6rB+u2bq1mzoyGsZRZkJfCbc8YddL0f/OAHjB8/np/+9Kd7zL/lllu47bbbmDFjBtu2bePMM89k7dq1Byxr48aNPP7440yfPp2XX36Z5cuX8/XXX1NVVcXUqVM58cQTAVi2bBmrV68mKyuLE044gc8++4wZM2bsUdZtt93G6NGjmTVrFrNnz+bqq68mLy+P733ve8TFxfHjH/8YgO985zv7jXPFihUsWrSI5uZmJk2axFlnnUVWVhalpaWcddZZFBcXc++993ZZe3XPPfewZcsW3G53R8Lzm9/8hkmTJvHaa6/x8ccfc9VVV7F8+XIANm3axCeffMKaNWs47rjjePnll/nzn//MBRdcwNtvv83555/PzTffzJ133gnAlVdeyVtvvcU555zTsU+bzcZ5553Hq6++yrXXXsvixYvJzc0lIyPjoMdRqcNR1+IjhUYCUTnkpiWwjUHYajZFOiyllFJK9WFag3WIEhISuOqqq/jb3/62x/wPP/yQm2++mYkTJ3LuuefS0NBAU1PTAcvKzc1l+vTpACxYsIBvf/vb2O12MjIyOOmkk/jyyy8BmDZtGjk5OdhsNiZOnEhJSck+Zd15550sWbKEM844g2eeeYbZs2d3uc8DxXneeecRHR1NWloaJ598Ml988QUAQ4YMYcWKFRQXF/P44493WUM0fvx4Lr/8cp566ikcDkfHe7ryyisBOOWUU6iurqahwUqMv/GNb+B0OikqKiIQCHTEW1RU1PH+PvnkE4499liKior4+OOPWb163z4vl156aUdt33PPPcell156wM9cqSPR7PWTLI0Eo1Nw2G2U27OJbdoW6bCUUkop1Yf1qxqsQ6lp6km33norkydP5tprr+2YFwwGWbRoEVFRUXus63A49mhW1/l+TLGxsYe0v/YmemA1//P7/V2uN3z4cG666SZuuOEG0tPTqa6u3med/cUJ+w5nvvd0VlYWhYWFzJ8/n4svvniPZW+//Tbz5s3jzTff5Pe//z0rV648pPdks9lwOp0d+7LZbPj9fjweD9///vdZsmQJQ4YM4a677uryXlbHHXccxcXFVFZW8tprr/GrX/3qgPtV6ki0eH3k0kh9dAoADTFDSWtaCcEgdKPvpFJKKaUGrm5fIYjIEBH5RETWiMhqEbklND9FROaIyMbQc3L3w42slJQULrnkEh555JGOeWeccQZ///vfO6bbm8Ll5eWxdOlSAJYuXcqWLVu6LHPmzJk8//zzBAIBKisrmTdvHtOmTTvkmN5+++2OPkobN27EbreTlJREfHw8jY2NB40T4PXXX8fj8VBdXc3cuXOZOnUqZWVltLa2AlBbW8uCBQsYPXr0HvsOBoOUlpZy8skn86c//Yn6+nqampqYOXMmTz/9NGD1JUtLSyMhIeGQ3k97MpWWlkZTUxMvvfRSl+uJCBdccAH//d//zdixY0lNTT2k8pU6HN6mWuxiIMb6+2pLzMeNFxrLIxyZUkoppfqqcPwE6wduN8YUANOBH4hIAfBz4CNjzEjgo9B0v3f77bdTVVXVMf23v/2NJUuWMH78eAoKCjqGM7/ooouoqalh3LhxPPDAA4waNarL8i644ALGjx/PhAkTOOWUU/jzn//M4MGDDzmeJ598ktGjRzNx4kSuvPJKnn76aex2O+eccw6vvvpqxyAX+4sTrGZ+J598MtOnT+fXv/41WVlZrF27lmOPPZYJEyZw0kkn8eMf/5iioiIArr/+epYsWUIgEOCKK66gqKiISZMm8aMf/YikpCTuuusuvvrqK8aPH8/Pf/5zHn/88UN+P0lJSdxwww0UFhZy5plnMnXq1I5lDz744B5xX3rppTz11FPaPFD1GH9jJQC2UIJlTxsBQFP5+ojFpJRSSqm+Tboama5bBYq8DjwQeswyxpSLSCYw1xgz+kDbTpkyxSxZsmSPeWvXrmXs2LFhjVHtdtddd+0xGMZAo38/qjs++/QDTvjkW5Se+ShDjruIuYuXMOvdUymb8UdyTvt+pMNTSimlVASJyFfGmCl7zw9rJwIRyQMmAYuBDGNMezuanUCXQ7yJyI0iskREllRWVoYzHKWU6ha/xxoIxhVjNXEdlDMCr3HStmtDJMNSSimlVB8WtkEuRCQOeBm41RjT0HmgBGOMEZEuq8qMMQ8BD4FVgxWueNShueuuuyIdglJ9lt9j9WN0x8QDMDQtjq1mEI6azZEMSymllFJ9WFhqsETEiZVcPW2MeSU0e1eoaSCh54pw7EsppXpL0NMMgDsmDoA4t4Ndtgyim8siGZZSSiml+rBwjCIowCPAWmPMXzotegO4OvT6auD17u5LKaV6k2mzmgi6Y3aPglkfnUOitxzC3H9VKaWUUgNDOGqwTgCuBE4RkeWhxzeBe4DTRWQjcFpoWiml+g3TZtVg2dxxHfPa4oYQY1qgpSZSYSmllFKqD+t2HyxjzAJA9rP41O6Wr5RSEeNrsZ5du28OLim5UAn+mi04YvX+a0oppZTaU1hHERzIXnvtNUSEdevW7XedkpISCgsLw7bP9evXM2vWLCZOnMjYsWO58cYbAesmwe+8884Rl+vxeJg2bRoTJkxg3Lhx/OY3vwlXyEoNKDZfM37sYHd1zItKHw5A3faNkQpLKaWUUn2YJliH6Nlnn2XGjBk8++yzXS73+/3d3kcgENhj+kc/+hG33XYby5cvZ+3atfzwhz8Eup9gud1uPv74Y77++muWL1/Oe++9x6JFi7oVu1IDkc3Xgoco6DQqalL2SACad26KVFhKKaWU6sM0wToETU1NLFiwgEceeYTnnnuuY/7cuXOZOXMm5557LgUFBYCVaF1++eWMHTuWiy++mJYWq4nRRx99xKRJkygqKuK6667D6/UCkJeXx89+9jMmT57Miy++uMd+y8vLycnJ6ZguKiqira2NO++8k+eff56JEyfy/PPP09zczHXXXce0adOYNGkSr79ujSfy2GOPcd555zFr1ixGjhzJb3/7WwBEhLg4q0+Jz+fD5/PReVj9di+++CKFhYVMmDCBE088EbBqv6699lqKioqYNGkSn3zySce+zj//fE4//XTy8vJ44IEH+Mtf/sKkSZOYPn06NTVWf5WHH36YqVOnMmHCBC666KKOz6ez6dOns3r16o7pWbNmsfcNqJXqDXZ/C15b1B7zsgelU2US8FfrUO1KKaWU2lfY7oPVK979OexcGd4yBxfBNw48/sbrr7/O7NmzGTVqFKmpqXz11Vccc8wxACxdupRVq1aRn59PSUkJ69ev55FHHuGEE07guuuu45///Cc333wz11xzDR999BGjRo3iqquu4l//+he33norAKmpqSxdunSf/d52222ccsopHH/88Zxxxhlce+21JCUlcffdd7NkyRIeeOABAH7xi19wyimn8Oijj1JXV8e0adM47bTTAPjiiy9YtWoVMTExTJ06lbPOOospU6YQCAQ45phjKC4u5gc/+AHHHnvsPvu/++67ef/998nOzqaurg6Af/zjH4gIK1euZN26dZxxxhls2GDddHXVqlUsW7YMj8fDiBEj+NOf/sSyZcu47bbbeOKJJ7j11lu58MILueGGGwD41a9+xSOPPNJRM9fu0ksv5YUXXuC3v/0t5eXllJeXM2XKPjfJVqrHOQIteG3Re8zLTIpitUknuWFbhKJSSimlVF+mNViH4Nlnn+Wyyy4D4LLLLtujmeC0adPIz8/vmB4yZAgnnHACAFdccQULFixg/fr15OfnM2rUKACuvvpq5s2b17HNpZde2uV+r732WtauXcu3vvUt5s6dy/Tp0ztqvjr74IMPuOeee5g4cSKzZs3C4/GwbZt18Xf66aeTmppKdHQ0F154IQsWLADAbrezfPlyysrKOpKwvZ1wwglcc801PPzwwx3NFxcsWMAVV1wBwJgxY8jNze1IsE4++WTi4+NJT08nMTGRc845B7Bq3kpKSgArCZs5cyZFRUU8/fTTe9RUtbvkkkt46aWXAHjhhRe4+OKLu/x8lOppzkArvr0SLKfdRpUzk9iW7RGKSimllFJ9Wf+qwTpITVNPqKmp4eOPP2blypWICIFAABHh3nvvBSA2NnaP9fduatdV07u97V1GZ1lZWVx33XVcd911FBYWdpkIGWN4+eWXGT169B7zFy9efNB4kpKSOPnkk3nvvff2GaDjwQcfZPHixbz99tscc8wxfPXVVwd8H263u+O1zWbrmLbZbB191K655hpee+01JkyYwGOPPcbcuXP3KSc7O5vU1FRWrFjB888/z4MPPnjA/SrVU1zBVnyumH3mN0bnkNz0OQT8YO9fX6NKKaWU6llag3UQL730EldeeSVbt26lpKSE0tJS8vPzmT9/fpfrb9u2jYULFwLwzDPPMGPGDEaPHk1JSQnFxcUAPPnkk5x00kkH3fd7772Hz+cDYOfOnVRXV5OdnU18fDyNjY0d65155pn8/e9/x4RufLps2bKOZXPmzKGmpobW1lZee+01TjjhBCorKzua/LW2tjJnzhzGjBmzz/43bdrEsccey9133016ejqlpaXMnDmTp59+GoANGzawbdu2fRK7A2lsbCQzMxOfz9dRTlcuvfRS/vznP1NfX8/48eMPuXylwskdbCVg3zfBCiQMxU4QGrQWSymllFJ70gTrIJ599lkuuOCCPeZddNFF+x1NcPTo0fzjH/9g7Nix1NbWctNNNxEVFcV//vMfvvWtb1FUVITNZuN73/veQff9wQcfdAwyceaZZ3LvvfcyePBgTj75ZNasWdMxyMWvf/1rfD4f48ePZ9y4cfz617/uKGPatGlcdNFFjB8/nosuuogpU6ZQXl7OySefzPjx45k6dSqnn346Z599NgB33nknb7zxBgA/+clPKCoqorCwkOOPP54JEybw/e9/n2AwSFFREZdeeimPPfbYHjVXB/O73/2OY489lhNOOGGPpO6NN97gzjvv7Ji++OKLee6557jkkksOuWylws1tPASd+yZY9lSrWbC3Uge6UEoppdSepL3Woy+YMmWK2Xu0uLVr1zJ27NgIRdS/PfbYY3sMhnE00r8fdaQCQcOu3w6jJuMECr//1B7L5ny2mNPnnMGuWfeSMevGCEWolFJKqUgSka+MMfuMxKY1WEop1YVWX4AYvNBFH6yUrGH4jY3WCr0XllJKKaX2pL2zB7BrrrmGa665JtJhKNUvtbT5ScIDzrh9lg1Ji2eHSSVYszUCkSmllFKqL+vxGiwRmS0i60WkWER+fiRl9KVmjKr/0L8b1R0tLa24JIC49x3lMz3OTZlk4GrUe2EppZRSak89mmCJiB34B/ANoAD4togUHE4ZUVFRVFdX68WyOizGGKqrq4mKiop0KKqf8rRYI3XaukiwRIRaVxYJHh1FUCmllFJ76ukmgtOAYmPMZgAReQ44D1hzqAXk5ORQVlZGZWVlD4WoBqqoqChycnIiHYbqp7wtDQDY3fs2EQRojc0hoe4D8DbBftZRSiml1NGnpxOsbKC003QZcOzhFOB0OsnPzw9rUEopdTBtLU0AOKLju1weTMqFOjC1Jcjgwi7XUUoppdTRJ+KjCIrIjSKyRESWaC2VUqqv8LVaNViOqK5rp9xpwwBo3qX3wlJKKaXUbj2dYG0HhnSazgnN62CMecgYM8UYMyU9Pb2Hw1FKqUPja7VqsFwxXddgxWWOAKChfGOvxaSUUkqpvq+nE6wvgZEiki8iLuAy4I0e3qdSSnVbwNsM7D/BGjw4iyYThbdyS2+GpZRSSqk+rkf7YBlj/CJyM/A+YAceNcas7sl9KqVUOAQ91iiCUftJsIakxlJqBhFdV9KLUSmllFKqr+vxGw0bY94B3unp/SilVDgF26warKiYhC6XJ0Q5WWLLYFxzWW+GpZRSSqk+LuKDXCilVF9kQgmW7QBDsDdEZZPkLYcBeJ8+Ywz3f7CeBx79D/V11ZEORymllOo3NMFSSqkuSCjBwrXvjYbbeeOH4DYeaB54I6Au3FRN3Ly7uHnbrbQ89A3weyMdklJKKdUvaIKllFJdEF8Lfuxgd+1/neQ8AILVA2+gi5cXrOBKx4cEETJb1uNZ8WqkQ1JKKaX6BU2wlFKqCzZ/Mx6iQGS/67gHDQegfoAN1R4IGqJL5hBFG6u++SolwQyaFj4W6bCUUkqpfkETLKWU6oLD34LXFnXAdZIzrQSreeem3gip16wtb2BiYBVeVxIFk2fyse1Ykqq+BE9DpENTSiml+jxNsJRSqgt2fyteW/QB18kZlMIuk4R/gDURXF5ax1RZR2DI8TgcDqoyTsRh/LBlXqRD6xEvf1XGpX96ns+f/SO01kU6HKWUUv2cJlhKKdUFZ6AF30ESrOzkaErNIOz123opqt6xtbySXFsF0UMnAZA46njajJ3WzQsjHFn41Ta38efXF/NAy485fv09eB67AILBSIfVI1bvqOdbD37Ok089SnDzwEyWAXyBIP/36Sb+PW8TgdptA/Z4Ary9opwHPt5IS5s/0qEopTrRBEsppbrgDHrwO2IOuI7bYafamUlsy8C6F5Zn51oAJH0MAJOGZbLa5OPZMvASrOeXlHJh4APSpYHng6cStWsprH0j0mGFnTGG255fTm7pa1xZfBu2J86Br5+PdFg94u8fF/PHd9eSNudm7P+vCJ6+CIKBSIcVdnPXV/CDZ5by3JwFLPy/H4KvNdIhKaVCNMFSSqkuuIOtBBwHrsECaIkdSpK/AnyeXoiqd9irNlgvQgnW+JxElpuRxFWvAn9bBCMLv4/XVXBJ1CIYejxfFPySnaQSXPpEpMMKu+WldWzeVcfd8a+xxZ7PBttwzAe/GnDHs7UtwH8WbOGW4RWcb/+czWTDpo/h6+ciHVrYPTRvM9lJ0TyV+jinVj9D/Uf/G+mQlFIhmmAppVQXokwrQcf+74HVLpA6AhsGU13cC1H1vEaPj0HeEgLigJR8AKKcdiqTJuA0Xti1MsIRhk+jx8fOrRvID5TAmG8ye3wOr/qPRzbPHXADerzx9Q5mONcT49lF6fgf8QfPhUhzBWx4N9KhhdXc9RU0ev1c6fgQnzuFb3h+T2PCSPji/yIdWljtrPfw+aZqrp8QRV7TMgCivnpoQP3Qo1R/pgmWUkrtxesPEIUXc4CbDLeLGjwagLrStT0dVq/YVNnMSCmjJT4f7M6O+YHsaQCY0i8iFVrYfVlSwxTWWBPDT+GEEaksMBMRE4CSBZENLsw+XLuLq5JWgjOGcSdewGdMpNmZAmtej3RoYbWguIokV5DU8nnYC84mJiaWOVFnQvnXUD1wRvv8amstAKfblgDwu8A1uH31sO6tSIallArRBEsppfbS5PETiwecB+6DBZCaOw6AxrLVPR1WryiuaGKkbEcGjdlj/tD8EZSbFFq2LI5QZOG3oqye8bYtGGcspI8hxuUgkD0FD26rWdkAUdHoobSmlcmBryFvJqnJyRyTl8rnMgk2fTKg+id9vqmab2fuRNoasY3+BmcUDObfu0ZZCzfOiWxwYbR0Wy1uh42sqgWQMoxFqRdSY0+DVa9EOjSlFN1MsETkXhFZJyIrRORVEUnqtOwOESkWkfUicma3I1VKqV7S5PUTjRdxxx103dzB6ZSZNPwVG3ohsp63ZWclQ6WC6Kxxe8wfl5XIqmA+ZsfyyATWA1Ztr2eaqwTJnAA2OwDTRmSyKDiW4ABKsJZurSOdWpJatkL+TACOG5bGG81jobUGBsgx3VHXypaqZk6JK7FmDJ3OyWPSWeNNw5OQDxs/iGh84bR0Wy0Ts+OwbVsI+ScyKjORD8yxUPwhtLVEOjyljnrdrcGaAxQaY8YDG4A7AESkALgMGAfMBv4pIvZu7ksppXpFU2srbvFjcx+8ieDghCi2koW7fnMvRNbzWravwyYGe8aeNVhjBsezygwjtrFkwPRPWlNWzQizBbInd8ybPjyVeYEibDWboK40gtGFz9JttRzn2GhN5B4PwPRhKcwPFGEQ66J8APiypAaA0f4NkDoCYlKYmpcCwLqE461mn23NkQwxLLz+AKu3N3BGWhV4GyB3BgWZCbzrKYSAF0oXRTpEpY563UqwjDEfGGPab76wCMgJvT4PeM4Y4zXGbAGKgWnd2ZdSSvUWT4N1oWaPSTroujabUBWVS0prCRjTs4H1Alv1eutF+p4JVpTTTnVCAYKBnSsiEFl4VTR6SGrahMu0QdakjvkThyTxpQm999KB0Rxy6dZaTk0oBbsLMooAmDAkiRZHIjtixw6Y5pAryupxO4T4quWQMxWA1Dg3IwfFMactlHxs7f+3Gli9o4G2QJDprtCPOkOPpSArgS+CownanLB5bkTjU0qFtw/WdUD7cETZQOef/spC8/YhIjeKyBIRWVJZWRnGcJRS6sh4m6wO5I5DSLAAWhOHEW1aobG8B6PqeR5fgJTmzQTEDinD91luy55ovRgATcpWba9nvC10gdopwYpxOQgOKsQrbij7MkLRhU+bP8iK7fVMtG+GwePB4QKshHny0CQWBcbAjqUDYvS5FWV1zMrwWKMj5kzpmD8tP4UXd2VhxD4ganeWhga4GOZdD7HpkDiEsZkJtBLFroQiTbCU6gMOmmCJyIcisqqLx3md1vkl4AeePtwAjDEPGWOmGGOmpKenH+7mSikVdr5m6wLGGZt8SOvb00YC0LZrfY/F1BtKqpsZIdtpicvtuBDvLDc3nx0mBc+2JRGILrxWbW9ggm0TJioJUobtsWxCbiorzbABMWLimvIG/H4/2S3r92gKCXBsfirvN+ZCoM0aZa8f8weCrNrewOnx26wZoRossBKsCq+T1tQC2Nb/E6xl2+rIToomumI5ZE8BEVJiXWQmRrHMMRHKV0BLTaTDVOqodtAEyxhzmjGmsIvH6wAicg1wNnC5MR3tY7YDQzoVkxOap5RSfZ6/pQ4Ad1zqIa2fMMQaEKJ2a/8eSXDjriZGyHZM2pgul4/LSmBlcBjB7ct7N7AesHJ7PVOcW5GsSSCyx7KJQ5L40j/Cagrpa41QhOGxoqyOEbIdR6AFso/ZY9nUvBS+CoRG2OvnNTvFlU20+gJMtG0ERzQM2j1Iy7H51nm8OaoQypZAwBepMMNi6bZajs9xQtWGPY7p2MwEPmwdBZgB07xVqf6qu6MIzgZ+CpxrjOk8bM0bwGUi4haRfGAk0P9/ClRKHRWCLVYNVnRCyiGtP2TocJpMFM07+ve9sLbsrCFPdhKTXdDl8oKsBFYG84lp3AKe+l6OLrw2lFUyLLh1n1odgMlDk1gaHIkE/f2+ZmdFWT0nRG+1JrL2fK8ThiRSK4nURg2Fbf37gnxFqfX3mNO82jqmdkfHssGJUQxJiWahfyT4W60ann6qvL6V8noPpyZsB8wef78FmQm8V5uJsTkGRPNWpfqz7vbBegCIB+aIyHIReRDAGLMaeAFYA7wH/MAYM3ButKGUGtCCrXUARMUdWhPBYYPi2GIysVVv7MGoel7jjrXYxeDIGNvl8oQoJ7viQsv68UVqVZOXlMb12Ans0f+q3bC0ODa62ge66N+/Da4oq+PE2G3gTrBG1uskPsrJ6MEJrLSNtmo8+vEgLV+X1ZHiNrirVu/R/6rdMUOTea061LCmH9fWLd1aB8AEW+imyZ3+fguyEmgJOmlNKdAES6kI6+4ogiOMMUOMMRNDj+91WvZ7Y8xwY8xoY8y7BypHKaX6kmCL9Wu47RAHuYhy2tnpyiWxaVMPRtXz7JXrrBfpXTcRBLC1X9CVL+/5gHrIyrJ6ijoGuNi3BstmE4YMyaPcltGvL1SbvX6KK5ooCBZD1kSw7ftP/pTcZD5qyoeWKqjuv3+/y0vrOHtQJRJo26P/VbvJucmsbozFnzAUtvXfkQTbbzCc0bjaGogmZncte0FmAgDbY8fB9qUD6gbSSvU34RxFUCmlBgTx1OHDAc6YQ96mMXEUyYGqftu53B8Ikty4kYA4IG3UftfLy82lzKTRtu2rXowuvL4uq2OCbTPB2AxIyOpynYlDkvjCN5xg6Rf9tmZn9Y4GnKaN9JbiffpftTsmN5nPfKGarX7ab6e1LcC6nY3Mii2xZmTvW4M1eahVG12eONFqDtlPj+nSbbUUZSdi27F0n2M6NCWGWJedrxkJbU3Q/oOJUqrXaYKllFJ7sbU10GKL3WfwgwMxGYUAeHes6qmwetSWqmZGUUJT/LAuRxBsV5SdyKpgPoHty3oxuvD6urSOqc7N2LIn7/cYTwr1w7I17YT6sl6OMDxWlNUxTkqwGf8BE6xNJguvM6HfNp1bub2eQNBQENgACTmQkLnPOmMGxxPjsrOc0dBcATX978bg7TcYPmlwm3VLiL2aQtpswtjMBOY251oz+nHtq1L9nSZYSim1F1dbPR57/GFtk5g7AYDqTUt7IqQet3ZnI2NspRBKFPenMDuBFcF8ohtL+uVAF8YYSkrLGBrcDkP2bUrWbuKQZJYGreH3Keuf/bBWlNVzckwokRhybJfr5CRHkxYfTbF7XL8d6GJ5aS1gSK9dBkO7fp8Ou42JQ5J4ryHPmtEPa+vabzA8M6rYmjFk2j7rFGQlMLcyDhOTqgmWUhGkCZZSSu0l3l9Di/PQRhBsl5s7jBoTh3fHyh6KqmeVbCslU2qIHTrxgOslxbjYFRfqo9UPR9jbXtfKUE+o6VQXfXXapcS6aEkeQ5u4oLR/XqiuKKtjRtRmSM6HuEFdriMiHDM0mc+8w6Bqfb9s4rpsWx1TkpqwN5XD0OP2u97kocm8X5mEiUrsl/fDar/B8CjvanDGQkbRPusUZCbQ5A3QOmiSNSS9UioiNMFSSqlOjDEkmjraog7tHljt8tLj2GCG4qrqn0O1t5ZZyZIja9+Ltr3ZskMDXezof80EV5TVM8m2ESO2LkcQ7Gx8bjqrGI7ph7UdFY0eSqqbGd22Zr+1V+2OyU3mo6bQzZb74aiJy0vrODc5dIPhA7zXY3KT8QeFupSJ/fJ9Lt5SQ25qDDE7l0DOMXsMRd+uIMsa6KIsZpzVBys0IqpSqndpgqWUUp00ePykUU8gOv2wtnPabZRHDSe1ZRMEgz0UXc9xVa2xXhykiSBA/tCh1kAXpf2vOeTXpXUcYyvGpI8F94GbgU4amsQi30jrhsNtLQdct69ZtLmGoVJBjK9mv83m2k3OTeZrM4ygOPpd07n2+0JNtW8AVzxkjNvvupOGJgGw3jUOKtdCa20vRdl9waDhiy01nDg0CnatgiHTu1xvVEY8dpuwguHWjH482qdS/ZkmWEop1UltQxNJ0oyJO7wEC8CbMpoo44G6kvAH1oPK61vJa9tAiyttv03JOivKTmRFcBiBsv6XYH25uZLJ9k3YDtD/qt2kIcksCY6ybji8vX+NmrhwUzUz3aH7sh2kBqswO4GgPZrymFH9LsFasLEKgPyWlVafOpt9v+smxbgYMSiOT1vba+v6T9PPdTsbqW/1cWbiNjDB/SbNUU47w9NjmdeYY83Y3v/OUaUGAk2wlFKqk4bqHQA4EjIOe9voHGugi4at/atv0pKSWqba1tOWvW+n+a4UZlkjCUY3betXtQD1LT6CO5YRa5ohb+ZB1x+TGc8qW/sNh/tXn52Fm6o4N3YtxA6C9K5vHN3O7bBTlJPIUjPKSiT9bb0UZffN31jF6NgWomrWQd6Mg65/zNBkXq3IwIi9Xx3TxVuqAZjQthTsrgP2NSvITODLCiBlWL/7YUCpgUITLKWU6qSuwkqw4lK6vj/SgWSMmEjQCDWb+1ffpI0b15EjVcSPOvGQ1k+OdbEjpv8NdLFwczUzZCUGgWEnH3R9p93G0OxsSu1D+lWfnfL6VrZVNzGhbRmMOLXLGwzv7ZjcZD5oyAO/x2oS2Q8Eg4YFxVVcMyhUUzfyjINuMzk3iZ2tdrzphf1q1MSFm6oZkhJNfOlcyD0eXLH7XbcgK4Hyeg/ejEn9sp+kUgOBJlhKKdVJc7V1z6OkjCGHve3YoZlsNYMIlPevkQT9Wz4DwJ53/CFv48iZaL3YsTz8AfWQBcWVzHKsxGROgNhDG8Rk0tAkFvpGWgNd9JO+dQs3VVMoW4jy1cGI0w5pm8lDk1nkDw1L309G2FtT3kBNcxszZTnEZx5S/8Fjcq0bDm+LLbJqdwK+Ho6y+7z+AJ8VV3F2bsAauGLE6QdcvyAzEYDtMWOhYTs07uyNMJVSnWiCpZRSnZhaazSy2PT8w942McbJZucIEuvWhDusHtPk9ZPdsAyvPfaQLlDbjc7PY1swHc+2/tMEadnGUibKRmzDTznkbSYNTeaLwEjEU28NY94PfLS2gm9GrzrkmjqwanYqSaYhKrvf9MP6dEMldgJkVS+0EslDuDH4sLQ4EqOdfBkYBf5WKO/7tXWLNtfQ3BbgvNjQ98rIAydYYzOtwVtWmdBAF9oPS6lepwmWUkp1Ym8sxYvrkAZ76EpdYgFp/p395n5Ci4qrOE5W0zzomAMOELC3ybnJrDT5BMv6R4JVXNHE8NrPcBA46AVqZ1PzUlgSHGVN9IOaHY8vwNz1uzjf+QUy5NhDrqkbFB/F0JQY1jjGWgmWMT0cafe9s7KcKwaVYPM2wKgzD2kbm02YPDSJN2tDNdT9oB/We6vKiXbaGVn1odWvKm3UAddPjXMzOCGKBc1ZIHbYoQmWUr0tbAmWiNwuIkZE0kLTIiJ/E5FiEVkhIpPDtS+llOopsa07qHFkHNKv4V2R0L2VWvtJzc7KrxczzLaThInnHtZ2hdkJfM1oYlq2Q0N5D0UXPm98vYPz7J8RiM/e7xDXXUmPd2NLHU6DLalf1OzMXV/BUN8WBnu3wPhvHda2x+Qm80nLMGjaBTWbeyjC8Niwq5HVOxq4KuZziEo6pP5X7Y7JTWZRpZtAUh6UfNZjMYaDxxfgrRXlfHu0DXvJfBh/6SF9NxVkJbBiVxsMKtCBLpSKgLAkWCIyBDgD2NZp9jeAkaHHjcC/wrEvpZTqScltO2mMyjzi7dNGWcN/V23o+4MiBIOG2E1vE0RwFBxeguV22KlLC/1u1sdrAYwxzFu+jpPsK7CPv/iQBn3o7NhhaXwZHInpBzVYL321ne9EL8TYHDDuwsPadnJuMh+2hvphlczvgejC57Vl20m0tTKsai4UXgQO9yFvOznUD2tXylTYugCCgR6KsvvmrNlFo8fPVXFfAAbGX3JI2xVkJlBc0YQ/MzTQRT+okVRqIAlXDdb9wE+BzmfwecATxrIISBKRI79qUUqpHlbT5CXHlBNIPPwBLtqNzhvK1uCgfnGPqEVbqpnpW0ht6mSIP/xh6ZOHTaHVuPBvXdgD0YXPlyW1TKybYzUPLDq0C9TOjs1PYZFvJFK7pU8PGFBe38pn68u40DYfGXkGxKQc1vbHDE1mk8nC406DLX03wWrzB3l5aRm3DV6B+FthwmWHtf3kocm47Da+ZBx46mFn3x2U5oUlpWQnOMnd9opV85oy7JC2K8hKwB807IovsG6lULulhyNVSnXW7QRLRM4Dthtj9h6rNxso7TRdFpq39/Y3isgSEVlSWVnZ3XCUUuqIbd26hURpwTG44IjLGBTvZqN9GPG1q8MYWc9Y/Nlcxtq2ET/54iPaflJ+OsuCI/Bu+jzMkYXXE58Vc73zPQLZU2HwoQ/k0W5afgqLgqG/iZIFYY4ufJ5YuJXzZT6x/lqYftNhbz96cDxxbifroydaNVh9tNbj9eXbqWxo5ZK21yBrEuQc/KbRnUU57UzOTeKVmjxrRh89pqt31DN/YxW/GrEFqdkE0793yNsWZCZYZZgR1gwd6EKpXnVICZaIfCgiq7p4nAf8ArjzSAMwxjxkjJlijJmSnp5+pMUopVS3VZdYvxMl544/4jJEhJqEcaT6yvv0QBd1LW0MKX6SNonCNfk7R1TG5KHJfGlGE129GryNYY4wPLZWNyPr3iSHCuwzbjmiMrKSomlIGkOLLRa2fBrmCMOjprmNpxdu4daY962k4xBupLw3u02YmpfMh62jrX5YVRt7INLuCQYND83bzHdTVhDTtBVm3HZE/SWPH57GvF0uAsnD+mxzyH/N3USc287ptc9aNVdjD70Z79CUGGJddhY1DwJHtCZYSvWyQ0qwjDGnGWMK934Am4F84GsRKQFygKUiMhjYDnRuZ5MTmqeUUn1SW/laAFLzjzzBAqz7LAFtZX33Jp8vzVvOOfIZzWO/BdFJR1TGoIQoSmLGYyMIZUvCG2CY/PWDNfzI/gr+5OEw+ptHXM6U/EEsDhZgtswLY3Th83+fbuJs/xwyfKUw47+PeJCWE0ak8UZDaHjvkr73Xl/6qoySijpukeet0fTGnH1E5Rw/PBVjYEfSVNj6OQT8YY60e1Ztr+ftleX8buQmHOXL4IRbD2uUT5tNGJuZwIodzZA5Xge6UKqXdauJoDFmpTFmkDEmzxiTh9UMcLIxZifwBnBVaDTB6UC9MabvDzWllDpqRVevpk4SkbjD74/UWfJwq8lS9ca+OdBFg8eHa9FfcUqA5JN/2K2ynLnTCGDDbOt7/bC+Lq0jYdWTjJQyHGfcfVgXqHs7Nj+FT31jkdoSqN0aviDDYFNlEy99tppfRL0EuSfA2HOOuKzjh6ex1WTQEjW4z/XDavT4+PP76/l16ifENW+FM/94xMd0fE4S0U47i0wBeBtg5969HCInGDTc+foqsqIN5+36BwwugklXHHY5hdmJrClvIJg1Gcq/7nNJpFIDWU/eB+sdrBquYuBh4Ps9uC+llOoWfyBITssaKuILjvjX/3YFI/IoDabjLe2bzXKeeW8el5n3qBt9CaSP7lZZE0cMZV1wCJ7ivnUx7gsEue+lj7nd+RL+3Jkw5qxulXfssBQ+D46zJvpQk7JA0PCLV1Zyl/NxYoNNMPuP3fr7HTM4ntRYN6vd4633GQyGMdru+d1ba0hu2cwVnmet2siRpx1xWS6Hjan5KbxQlWfN2Dw3LDGGw1OLt7J0Wx2PDXkLW+N2+MafjyiRLMxOpKUtQEVcgXVT5cp1PRCtUqorYU2wQjVZVaHXxhjzA2PMcGNMkTGmb7YfUUopoHj7LoaxnWDmpG6XlZ0UzQb7cOKqV4UhsvBaX95AwdK7MDYnKWfd1e3yjh+eyufBcbjKl4CvtfsBhslf3l/LTTX3EmM3OM77W7eT5qEpMTTGj6DRngR9qJngPz8pJmPrm5zDPOSkn0KoeeqRstmE44an8mbTGGiphvLl4Qm0m95eUc7rSzbzVNLD2NyxcPb93S7z+OGpfFnlxDeoCIo/CkOU3bduZwP/8/Za/nvIRkZufRaOuxlyjz+issbnJALwtQk1+dRmgkr1mp6swVJKqX5j+4q52MWQNGpGt8sSEeqSCkjz7bCGSO4jPL4Ac578IyfaVuA/5S5I6P6dM3JTY1gXNQl7sA36yH2i3ltVTuLnf+B4+xocZ/35kIe2PhARYeaodBYECjCbP+0TI+x9uGYXH370Hve5H8YMPQ5m/jgs5Z4wIo23m8daE8UfhqXM7li1vZ6fvriMxxIeYlDLRjjvnxA/uNvlHj88FYAtSdOtv11PfbfL7I7KRi/XP76E6VHb+GHtn6zBSk494jHEGJ4eZzWDrEu0bsa8o2/WqCs1EGmCpZRSgG/TPPzYyCg8MSzl2bKnANC8pW/0wzLG8OhzL3BD80NUZ8wg9oT/Cku5IoJrxEx82K3EI8K+2lrD4uf/zPccb+GffB1MvjJsZc8cmc7HvkKkaSfsimzt5KLN1fy/Z9/gcfe9OBIGI5c+BXZHWMo+YXga1SRSlTAu4gnWlqpmrv3PF9zlepLj2j5HZv8RRs8OS9njshJJiHLwYVsRmABE8O+3vtXHdY99SVTTNh5x3ovEpsG3nz+sGyjvzW4TCrISWLWjwUrWtAZLqV6jCZZS6qgXCBqya79ge/RYxB0fljIHjT2egBGq1/aNe+w8995cvlX8M1qjBpF69ZNgC9/X/5SRQ1gWHIFnQ2SbWX21tZa3//N7fmN/lLbhZ1q1V2E0Y0Qac4MTrYkN74e17MPxeXEVv/vPKzzh+B3xMVHYrnwVYtPCVv7Q1BiGpESz0DYJyr6M2O0GNu5q5PKHPucngYf5VuAdmP6DI7q/1/7YbcKJo9J5vDQD406A4jlhK/tw1DS3cdWjX+DfuYa3436PEz9c/uIR3fx7b0XZiaza3kAw6xjYtaZPNeNVaiDTBEspddRbV1zMOLOJltxTwlZmYX4OG8wQKIt8DdZzH8znpEXXEeWAhOtegZiUsJZ//AirH1ZU5cqINYmcv6GC+Y/8nDv5N635p+P69pNgd4Z1H8mxLrKycyl2jIxYgvX2inIefPwxnrP/hsQYN/Zr34a0EWHfz8mjB/F09SgwQdj8SdjLP5glJTVc8a+5/MZ3P5eY9+GEW+DM34d9P6eMGcSu5gD1mcdb/bB6uenntuoWLv7X58SWL+b12N/jtgtc8w4MGhOW8ouyE2n1BdgZN9aqpdu5MizlKqUOTBMspdRRb8eSN7GJYfDU88NWZmKMk42usaTVr4zYSGzGGJ5/611O/OwqEux+oq57E1vG2LDvJzMxms3xUxEMlPRujZ0xhqc/30jVk9dyq+05WsdcSPTlT3eradWBzByZztve8ZiyL6G5ukf20ZVg0PDXOetZ+PyfeNT+B6JTc7Bd/yGkjeyR/Z06NoMvfMPwuRJhY+81EzTG8MTCEn7y8Js8abuTM8zncNpv4fS7uz1QSVdmjR6ECHxpnwwN26FiTdj3sT9z11dw3gPzOb3pdZ5y/h5XfBpc+y5kFIRtH0WhgS6WB3WgC6V6kyZYSqmjXtSWD6m2pZI87JiwltuUPpmYYDMmAsMj+wJBHnvi35z15TXEOG24v/sWzuzujTB3IIkjj6PZRBHoxYvxJq+f3z3xFuPeu4QL7AvwzryD6Esf7bHkCuCUsYP40D/JSiZ7qX9SVZOX7z/6CaPm3cz/OP+DDD8Zx/UfQHJuj+1z+rAUolxO1sRMhY3v98o9lJq8fn747DLmvfkEb7h/xQhnFfKdF2DGrT22z5RYF5OGJPFkzVhAYO1bPbavdv5AkHvfX8eP/jOX/3X8kzt4FNvI0+CGjyF1eFj31T7QxZfVLojPgu060IVSvUETLKXUUW1rRQ0T25ZSOfiksP9CHj1sOgD1Gz8Pa7kHU1Hfwgv3386Vm39Kc+xQEm6e16PJFcCM0ZnMCxbhX/tur9TYrd5ex9//cjf/vfl6xrgqCV7yJO5Tf94jtRydTcxJoipuDPX2ZNjwXo/uC+Djdbv42f0P88vSG5ntWIo57W7sl78I0Uk9ul+3w87MkWk80zTZGq69h+/9taSkhkv+9gEz1t7Nv13/S1z6UGw3zoVRZ/TofsGqrZtXbqctaxqseb1H97WlqplvP7yIZZ++zrz4X3Kyfz7M+gVc9ixEJYZ9f+0DXawsq4fsyVqDpVQv0QRLKXVUWzP/NeKlldQpF4W97PzRE6gxcTQW916CtWjlejb+9Ztc3vQou7JPJ+OWT7AlZff4fmeOTONjpuJu3QXly3psP/5AkEfe/5It/3cZd3j/H8HB44n64SJsBef22D47s9mEM4uyeM83CbPxfWhr7pH91Lf4uOO5hWx96oc8HPgVGfFubNe9h8y4JawDlBzImeMG81pTAQFHLKx5rUf20dLm5643VnPfQ4/wcMutXGqfCzNuQ274JOy1OfvzjUJryPclsTOhYjVUbQz7PgJBw8PzNnP+X+dw7s6/84zrDyQlJCDfnQOzftajx7QoO5HVOxoIZk2Gmk196tYRSg1UmmAppY5q7g1v0ShxpE84M+xlj81K4GszEvfOnm+W4/EFePzpx8l9aTZTzSp2zfwD2Tc8D+64Ht83QIzLQUvuqfixYda90yP72Lizgf93/++54PPzmW37kpYZPyfhv96DxJwe2d/+zC4czCu+E5C2Zlj/btjL/2jtLn75v3/j+2uv5FrH+5gp38X1w0UwZGrY93UgZ44bjM0Zzaq46bD2TQj4wlr+58VVXHL/W4z74uc85/ofMhOjkWvfhdPuAocrrPs6kGHpcUwYksS/KgqtGateDmv5G3Y1cuG/Puez957hw6ifcSXvwLT/gv+aDznhbZbclfaBLnbEhvpf7ui5H0CUUhZNsJRSR60dVXVM8SykLOPksI84B1Yzq11JExnk2QJNFWEvv93arTt5/94ruHrjj3BGxWG+O4eMU3/Q483l9nZ80Ui+CIyhbcWrYR2NzeML8NCb89j+z3O4vek+JHU4ju8vIOa0O8BmD9t+DtXUvBQ2xxRR4xgEK54PW7k76z389PGPqHn6eh4I3M2gpHi49l3sZ/8vhOn2AYcj1u3gzHEZPFw31WomuC48/ZNqm9v4+Utf89Kj9/J0681c5PwcZvw3th8sgtzjwrKPw3XhpGzm73LRnDMTlj4Rlj5nHl+A++ds4Lq/vc7NlXfzmOte0pIS4Zq34Zt/BldMGCI/uPaBLpb68qwZ2g9LqR6nCZZS6qi1asEbJEgLyVMu6bF9yHBr6PemteEfEMEfCPLqay8R8+iJnNP2LmWjryHt9sW4h0wK+74OxVlFmbxhZuKu3wSli8NS5oL1O/m/e3/Gd5Z8i+Ps62g6+X9IvvkTGBT+0RAPld0mnDtpCM97j8MUfwR1pd0qzx8I8si8jfz7f+/gl5uv5ELnZwSOvxX3zZ9D7vFhivrInD8pm3c8hbTEZMOXj3SrrGDQ8MzibVx331Ocu+Im/uJ6kLicsdi+Nx9O+w04o8MU9eE7e3wmDpvwXtQ3rdEEu3lPrI/W7mL2Xz6mfu7fmeP+Cac5lsMpv0K+twDyZoQn6EPUPtDF0goDqSO0BkupXhCe274rpVQ/5Fz/Bk3EMnji7B7bx8iJJ1C1NAHPyveIm/qdsJW7rnQXa5/+Gee1vka1czBNF79GzphZYSv/SCTFuGgdeS5NW54g5qvHsQ2dfsRlVTZ6efrFFzi95F5usW2lNmsmcZc8gDs5L3wBd8O3pw3lygWncaPjLewL/wHfuOeIyvlqaw1Pv/QS361/gHG2rXhyZmI/738hfXSYIz4yM0akkZMSx4ucxtUlj8Ou1ZAx7rDL+bq0jj+9upDTKh7jJccHEBUHp/8F+zHX9lqfsgNJjXNzekEGvy82XBCXgW3RP2HU7MOuBS6taeG3b66mdf1HPBr1DMOcWyH/VDjrPkgZ1kPRH5jdJozLSmDl9nrIPga2zItIHEodTbr9rSYiPxSRdSKyWkT+3Gn+HSJSLCLrRST8nRuUUqobdtU2MLnlM0oHzerR/h7jc5JZxHgSd8wPy+h6bf4gz7/0PM5/z+ICz6uUDruMtJ98SUKEk6t25x07kjf8xxFc9Qo0Vx329v5AkBc/Xcpn/3sJt267maFRrbRd+B+Sb3wT+khyBTBiUByjR4/hHWZglj5+2O+1rLaFO594j5J/X8VfGn/C8FgP5uLHiPrum30muQJw2G3cfPII7q85Hp8zHub85rC239Xg4ecvLuOFB3/LP2tu4FrHB9iOuQb7Lctg6nf7RHLV7sYTh1Hjgc8HX2ElIZs+OuRtGz0+7n1/Hdf/5Vm+s/lnPO36I/kJwCVPwBUvRyy5ajc5N5mVZfX4Bk+ExnJo2BHReJQa6LpVgyUiJwPnAROMMV4RGRSaXwBcBowDsoAPRWSUMSbQ3YCVUiocVs5/k9OkheYpF/fofhx2G9WDZxC/awH+7UtxDJlyxGWtLN7Kthd+wqVt71PtGkzD+S+RO+70MEbbfbNGDeLGpIu5tGku5tM/Id+895C3/Xz9dla8+he+0/oMMdJG7aSbSZ59R68N1HG4fnTqSH7yr7P5ZtQC7O//Ai586KDbNHn9PPbRMqIX/ZVfyvvYHYJv+o+ImvWzPvs+L5iczf/7aBCPybe4ofhR2PA+jDrw76aNHh8PfVrMtgXP8UPbi4xwbsc/5Hjkm3+CzPG9FPnhmTQ0mVPHDOLmjcewJCkXx/u/gtwTDth00RcI8szibTzz4SK+3fYy7zg+QlzRcOJdyLE3gTOqF9/B/h2bn8JD8zaz1j6G8QDbFkJh+EdOVUpZuvvT0U3APcYYL4Axpr0X93nAc8YYrzFmC1AMTOvmvpRSKmzs616jmWiyJp/V4/vKPvYCPMZJxbxHj2h7jy/Ay0/9k0FPnsjstjlsG30dqT9ZSkIfS67AGsb83NNP5jn/yZgvH4Vdaw66TfGuev79j3sY8vRJfM/zb7wZk7D/YCHJ5/2+zyYdAJOHJjNh0jQe8J1vDXax4oX9rtvk9fPIB1/yxD03ceXic7nW9jb+ggtw3LIU55m/69Pv02m38euzx3Jv7UlURA+DV27c71Dm9a0+/vXRWn735z9y5meX8f/sfyU3JQYueQLHde/02eSq3a/PLsAbtPMn2w3WDcJfv7nLmmePL8DTi7fy7fteIvjOT3kzeDNXOz/GfsyV2H64FGbc1meSK4ApeSmIwCcNmdb9tjZ9EumQlBrQutsHaxQwU0R+D3iAHxtjvgSygUWd1isLzduHiNwI3AgwdOjQboYzMJlgEF+bl9aWJjwtDbS1NuFtbcbn2f3w+3yYoB8xAUwwgC0YABN6BIMYhKDYMGIjiB2xO7DZ7djtjo6HON3YndHYXFHYXDHYXdE43FG43LG4omOIio4lyuXEae87TTqUOhJV9U1MbP6cbYNOYqzD3eP7m1E0kjmvT+e0Ta9D232HNXrYgq+WE3znp1wUWMyO6JG0XvYSQ/N6d7juw3V2USY3fX49Z+xcQuJTl+D6r48hbtA+623YXsUXbzzI1PJnud5WRmXCaNrOeZD00adFIOoj85uzx3HR1u8wo3kNk1/9L6SxHI79HoT+rtbtqGXhJ28Tt/FVvmPmES1t1A89FdtZdxM7uDDC0R+62YWZXHbcCC5c9CPei72LmEfOwDb7Hig4D7/NxRebq1j+xVxkw/ucz8dkSg3exFw47f9wFn0rIqM9Hom8tFjuuaiIW54LkJd+DZev+g+0VMHpd2Myivh6ewOfLFlJzcoPONG3gOftyxGnDZn4HeTE2/tUM9bOEqOdFGQmsHBLHbfknwib51ojffbySKNKHS3EHGQoXRH5EBjcxaJfAr8HPgF+BEwFngeGAX8HFhljngqV8QjwrjHmpQPta8qUKWbJkiWH+x76FZ/PR03lDuoqymiu3oGvbgfB5mqMpw7x1OHw1uPyNRAVaCAm0ES8aSKOFhzS/b4b4eA1Dtpw4sWFV9y0iZs2ceGzufHZogjY3PjtUQRDj4AjGhxR1sMZgzijEFcMNmc0Nnc0dncsDlcMDncMzqhYnFExuKJjcUfFEuWOxu2y43bYEP1HoE9q//5o/xoxned1rAOGPdfbcxuzx/bt5Xbenk7r7i5zrxj2KrN9ZldxrJ7/Gqct+R4lpz9M3gk9N4JgZw8+/jjf2/Ijms68n7jjrjvo+mUV1Sx55m7OqH0Wuxh2Tr6N3LN+0iPDyfeEikYPd/ztMf7R9iuMOwFO+QWu4bPYVudh2/rleNa8y+TmeaRLAxUxI4g5+cfEHXNpn+qTc6hKa1q46T/zuaXuHk63L6XFFsd2Vx5t3jaGBEtJkFbaxE3jiHNJPf32iI6A2B2BoOGP76zlk88W8FfnPymybcGLi1riSTINRImPIEJz9kziT/wBjDy93yRWe3t9+XbueGUF5wQ+4rfOx4mijRbc+I2dBGkBoC0qHeeUq5Ap10BS3/+B+O431/D04q2sOqcM57s/hh8u7bWbOSvr3yqPL4jHF8DjbcXb0kSbp4U2Tws+bzN+bwt+bysBbwtBXyvi92Dze6z7z5kAJuiHgB8J+jHBAGL8EAyA8SPBABL0s/tfPBsICIDYQCT0WkLXU9Y1lYR+eDc2O0bsiM0BNgfY7IjNDjYHYnd0PIst9Ai9ttmtdWx2B2J3hp7t2GxObA4HNpv1Q77NYa3T/rCHnh12az273YHdsXu+9KN/B0TkK2PMPm3/D5pgHaTQ94A/GWM+CU1vAqYD1wMYY/4Ymv8+cJcxZuGByuvvCVbA76Ni+2aqt2+muWIz/pqtOBrKiPZUEOurJjFQQ7Kpxy77fuY+Y6dRYmm2xdNqj6fNEY/PlYjPmUDAlQCuWHDGYHPHYHfHWolJp6TE7XJhszs7nRB2ROxgt/7AxQTBBLBhPQd8fvx+H/6AH7/fegTavAR9LQR9HoyvFdPW2vE66PNA6DV+D+L3IAEPdr8He8CDI+jBEfTiCHpxBj24TBsu48VNG1G0HdHnGTSCBxd+7ASw4xc7QewExU5AHATaX2MnEFoWEAdBsROkU1IW+jLp+FKxvmUAMEjoYb0ObdDxFYUx1meGQYzZdwsT3D1tDLbQfMzu9YQgGHaX00VZ7fOEIFaU7fvsHOXu17S/Nuw53eld7H/aWr9z2e2fSPv76jzdefme++9a5z3utu+8/ZXS1fZdzzvUfe8734Ufv9iJumMLdnfv3IumeFcDzf84iTx3E4m3fwVRCV2uV9fUyvzX/o9JGx8gRyrZlH4qQy79C660vF6JM5x2NXi47/GXuKbyz4yzbd1jWStutqfNYPApNxE39rR+/0u6xxfg6UVb2bH0XSY0fEIu5bhcbmxpI8ieeBpxRWdZ3+MDwJodDbz19TbsWz5lbOtSMhwtJKcNJqdgOq5Rp0JsWqRDDIvKRi8vfVVGSek2Cus/JZ8dDI6zk50/muiRs2Dw+H71g8AHq3dy45Nf8cqlg5j8+mnwjXvh2BsjHVa/4g8EqWlpo6axlYbaClpqK/A2VBJsqoLWasRTj3gbsfsacfqacPqbiAo2ExVsJsa0EE8LcbTilu7fZ62dz9ixru5sBMXW6RrDsvvf8N3XEZ2nbQS7vC6NpKARAtg63ldA7LwkZ5J98T2cMa6rOp/I6akE63tAljHmThEZBXwEDAUKgGew+l1lheaPPNggF/0hwfK3eSnfuo6qktW0lq/DUbuJuOZtJPvKSQ9W71PTVE0SNfY0WlxpeKPTCcakY0sYjDspk9jULOLTckhIGUxUbEK/ytgPSzAIfg9+bwteT3NH88Y2Twt+TzP+thYCXusRbGsl2NaC8bdifB7wtWICfkzARzDgh0CoKWTQj834sZkAYgLYQ69tJoANv5VQQkeiYzq93l2tYRAhlNiYjtxrd5Ih7E6ZrGdECIa6LlrzBCPtKVFoa7G2AzBioyNN6Zhv7Wjv7TuvS0cy2ClF6jQvNKNjf7D716n2ebunCU23l9Pp76z9daflHeW1J6Kdfu3qXD6754ZeC3unMtZqe37HdI6+o9iOeaZjqnNiuPd6+y2n/fus08X6ngnibu5hx5F/4uX0poeeeY7r1t9ETeZMBn33+T06z1fUVLP83ccZufEh8ilnu3s47rP/RFpR3+tndTiMMSzfVsv6FYtIql9LepyLQbmjyRk3A+mlG60qpaDZ62fy7+bw7alDuKvseqsv1nffj3RYERcMGmpa2thZ10J1RTlNVaV4a7cTrC/H2bqLKE8lMW3VxAbqSQzWkyyNJNGMbT9JSQAbLRJDqy0Wrz2WNkccAUccAVc8AVccQVcCxhWHzWl1x7C6ZMRgd0fjjIrB6bZa9dhc0VZrH4cbu8OBzWHVEDkcTqtbh93ZUTt1JIyxWo8EjSEYDBIM+AkGrR/fgz4/gdB1VyDgJ+gPvfb7CAYC1rqh67Gg30cwGLCmA35MwE8wGLCu1wJ+giaACQSsZaFuLASsWjiCVi2cCdXEmUAATBCCPjBBq1Yu1OVlc8xExp9+ZceNs/uKnkqwXMCjwESgDasP1sehZb8ErgP8wK3GmHcPVl5fS7Cqd5WydfmneEuXEV27ltTWEgYHduKU3XliDQnscubQFJ2NLz4He0ousen5JGUOY9CQEbii9AJCKWVpbQvw2N9+zU1N/6DGkcHOrNNoNm6kaj0FLUuIES/bXMOxzfoZOdO/1a9+HVdK9X03PLGElWX1fD7ja2wf/xZ+tBxS8iMdVo+qb/VRWtPCzopdNJRvwle9FXv9NqJayojz7CLRX80gqWEQdXtc33Vsb0uk2ZGCx5WMPyoFE52KxKbijE/HnTiI6KR0YhIzcCekQ3QSOGP6fY28OnQ9kmCFW19LsBY9+wemr/8TASOU2rKpjsnHmzgcx6BRJA0ZS+bwIuKT0iMdplKqH2n2+nn5pacYvvFRpppVuCRAmWRSkTadwTOuIGv8qfqPs1KqR7y6rIzbnv+al78zhGNemQkn/xJO+mmkw+qWYNBQ3uBhc0UDlWWb8OzagK16E+6mbcR7djA4WEGOVJIkzXts55Eo6pwZtEZlEIjNwJaQiSs5i9i0ocSn5+BIzIK4jB69T6Lq/zTBOgKVO0qo3rGJvIJpRMXERzocpdQAEggaaprbiHII8dH6D7hSqud5fAGm//EjjhuWyr+Cd0PFWqsWqx80123y+tlS2cy27dtpKFuDr2IDrvotJLVuJdfsIF92EiW+jvW94qbenYknNgeTOBR3Wh7xmSOIGZSPJOVCTIr+mKW6bX8JVneHaR/Q0rPySM/Ki3QYSqkByG4T0uN7foh4pZRqF+W0c+nUIfx7/hZ2XHYLWa9cAF/+G074UaRD69DmD7KpsokN26uoKlmFv3wVsbXryfFtYYxtG0VS27GuHzv1Udm0JuRTk34msZmjic8eiy19JO64DAZpAqUiRBMspZRSSqmjxHdn5PP0om3cuSyefw8/BebfB+PO7/Wh5o0x7Kj3sL68ntKSjbSWrcRVtYa0lk2Mlm18U8o7+kT5xUlt4jDaUk6kMquQpNxCnOmjcCTnktpPbl2hji6aYCmllFJKHSUGxUfxw1NG8Md31/HmmbdzTull8OI1cPVbPdZUsKXNz7qdjRRvK6du69ewaxUJDRsYFtzKFCnllNC9xQDqozNpTRlNQ9YFJOZOwJFZhCN1OOmaSKl+RBMspZRSSqmjyPUzh/HZpmpum1NFxoz/YdoXt8IT58KlT0H8kd9nyBhDWW0r67ZXUbFlFd7tq3DVrGOwZwujpZTJtsqOdT22WOqTR+EZdCHOvAlEZ4+HQWNJjEqkbw3ErdTh00EulFJKKaWOMg0eH9c/voQvttTwq2HFXLfr99jsLph+E4y/FFKH73cQiEDQsL2mhbIdpdSWbaBl50aCNZtJbNzEMLONfNl9S5sAdmpj8vCljiE6ZzyJeROQjEJIzNFBJlS/p6MIKqWUUkqpDl5/gL9/VMyjn20h3bed38c8x/GBL7FhaHUmURszjBZnMp6gnTa/H+Nrxe2tJTZQRzp1xIlnj/JqXFk0J43GkTmO5LwJRGUVQuoIHepcDViaYCmllFJKqX3Ut/p4ZWkZCzdVU1m2kYKWJUxkA0NslaTSgFMC2Gw2gjYXHlcywehUHAkZuNKHkZQ9isSsUUhyHjijIv1WlOpVmmAppZRSSqmDCgYNHn8Amwgi4LLbEG3Op9Q+9D5YSimllFLqoGw2Icall4hKHSlbpANQSimllFJKqYFCEyyllFJKKaWUChNNsJRSSimllFIqTPrUIBciUglsjXQce0kDqiIdhOo1eryPHnqsjx56rI8ueryPHnqsjy598XjnGmPS957ZpxKsvkhElnQ1OogamPR4Hz30WB899FgfXfR4Hz30WB9d+tPx1iaCSimllFJKKRUmmmAppZRSSimlVJhognVwD0U6ANWr9HgfPfRYHz30WB9d9HgfPfRYH136zfHWPlhKKaWUUkopFSZag6WUUkoppZRSYaIJllJKKaWUUkqFiSZYByAis0VkvYgUi8jPIx2PCh8RGSIin4jIGhFZLSK3hOaniMgcEdkYek6OdKwqPETELiLLROSt0HS+iCwOnd/Pi4gr0jGq8BCRJBF5SUTWichaETlOz+2BSURuC32HrxKRZ0UkSs/tgUNEHhWRChFZ1Wlel+eyWP4WOu4rRGRy5CJXh2s/x/re0Pf4ChF5VUSSOi27I3Ss14vImREJ+gA0wdoPEbED/wC+ARQA3xaRgshGpcLID9xujCkApgM/CB3fnwMfGWNGAh+FptXAcAuwttP0n4D7jTEjgFrguxGJSvWE/we8Z4wZA0zAOu56bg8wIpIN/AiYYowpBOzAZei5PZA8Bszea97+zuVvACNDjxuBf/VSjCo8HmPfYz0HKDTGjAc2AHcAhK7XLgPGhbb5Z+i6vc/QBGv/pgHFxpjNxpg24DngvAjHpMLEGFNujFkaet2IdQGWjXWMHw+t9jhwfkQCVGElIjnAWcC/Q9MCnAK8FFpFj/UAISKJwInAIwDGmDZjTB16bg9UDiBaRBxADFCOntsDhjFmHlCz1+z9ncvnAU8YyyIgSUQyeyVQ1W1dHWtjzAfGGH9ochGQE3p9HvCcMcZrjNkCFGNdt/cZmmDtXzZQ2mm6LDRPDTAikgdMAhYDGcaY8tCinUBGpOJSYfVX4KdAMDSdCtR1+uLW83vgyAcqgf+EmoT+W0Ri0XN7wDHGbAfuA7ZhJVb1wFfouT3Q7e9c1uu2ge064N3Q6z5/rDXBUkc1EYkDXgZuNcY0dF5mrHsY6H0M+jkRORuoMMZ8FelYVK9wAJOBfxljJgHN7NUcUM/tgSHU9+Y8rKQ6C4hl3yZGagDTc/noICK/xOra8XSkYzlUmmDt33ZgSKfpnNA8NUCIiBMruXraGPNKaPau9iYFoeeKSMWnwuYE4FwRKcFq6nsKVh+dpFCzItDzeyApA8qMMYtD0y9hJVx6bg88pwFbjDGVxhgf8ArW+a7n9sC2v3NZr9sGIBG5BjgbuNzsvnlvnz/WmmDt35fAyNBoRC6sznRvRDgmFSahPjiPAGuNMX/ptOgN4OrQ66uB13s7NhVexpg7jDE5xpg8rPP4Y2PM5cAnwMWh1fRYDxDGmJ1AqYiMDs06FViDntsD0TZguojEhL7T24+1ntsD2/7O5TeAq0KjCU4H6js1JVT9kIjMxmref64xpqXTojeAy0TELSL5WAObfBGJGPdHdieDam8i8k2svht24FFjzO8jG5EKFxGZAcwHVrK7X84vsPphvQAMBbYClxhj9u5gq/opEZkF/NgYc7aIDMOq0UoBlgFXGGO8EQxPhYmITMQa0MQFbAauxfpBUc/tAUZEfgtcitV8aBlwPVZfDD23BwAReRaYBaQBu4DfAK/RxbkcSrIfwGom2gJca4xZEoGw1RHYz7G+A3AD1aHVFhljvhda/5dY/bL8WN083t27zEjSBEsppZRSSimlwkSbCCqllFJKKaVUmGiCpZRSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRSSimllFJhogmWUkoppZRSSoXJ/weIB6m0Pvl+cwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADwoklEQVR4nOzdd3hc1bXw4d+aIo26rF5tyb3bgCkJpnMpCSWUYAidEC6kASGQhDSThHwp3EAoCYEQSICYXkNvBkwAYxtjGxfcZEu2bKv30bT9/XGO5JGsZmukUVnv88zjmVP2WTNHM541e+91xBiDUkoppZRSSqn+c0Q7AKWUUkoppZQaKTTBUkoppZRSSqkI0QRLKaWUUkoppSJEEyyllFJKKaWUihBNsJRSSimllFIqQjTBUkoppZRSSqkI0QRLKaWGGBEpEhEjIq5ox6JGBxH5XESOjXYcSik1EmiCpZRSatgTkXtFpNG++UTEH/b4lWjHN9QZY2YYYxZHul0ROVFEVohIk4iUich5kT6GUkoNNaIXGlZKqcgSEZcxJtCP/YuArYC7P+2MViKyEJhojLmoi3X9OjeDaTjF2hURmQ4sBi4F3gBSgFRjzOZoxqWUUgNNe7CUUioCRKRERH4kIquAJhFxicgRIvJfEakVkc/Ch2CJyGIR+X8islRE6kXkeRFJ66bty0VknYg0iMgWEfnfTuvPFJGVdjubReQUe3mKiDwgIuUiskNEfiMizl6exwQReVtEqkSkUkQeFZHUsHXVInKw/ThPRCranpeInGEPNau1n9+0Tq/PD0VklYjUicjjIuLZ/1d6/3VzboyITAzb5iER+U3Y49Ps17TWPoez+3isY+2empvt169ERC4MW/9VEfnUPleldjLYtq5taOg3RWQ78La9/EkR2WW/bu+JyIxOcf9FRF6xe+s+EJEcEblDRGpEZL2IHNTH1+jEvjzH/fAz4G/GmFeMMQFjTJUmV0qp0UATLKWUipwLgK8CqUA28BLwGyAN+CHwtIhkhm1/CXAFkAsEgDu7aXcPcBqQDFwO3B6W5BwG/Au40T7u0UCJvd9DdrsTgYOAk4Are3kOAvw/IA+YBhQCCwHsL8c/Ah4RkXjgQeCfxpjFIjIZWARcB2QCLwMvikhMWNvnAacAxcBs4LIuAxCZbyc23d3m9/IcutJ+bnrrFbITkn8A/wukA38DXhCR2D4eKwfIAPKxem/uE5Ep9romrPOeasdzjYh8rdP+x2C99ifbj18BJgFZwArg0U7bn4eVzGQArcCH9nYZwFPAn/oYd5dE5Mc9nY8edj3C3n+1neQ/0t2PCEopNZJogqWUUpFzpzGm1BjTAlwEvGyMedkYEzLGvAEsA74Stv3Dxpg1xpgm4OfAeV31MBljXjLGbDaWd4HXgaPs1d8E/mGMecM+zg5jzHoRybaPdZ0xpskYswe4HTi/pydgjNlkt9VqjKnA+nJ+TNj6+4FNwMdYieFP7VULgJfsff3AbUAc8OVOr89OY0w18CIwt5sYlhhjUnu4LenpOXQj/Nz05iqsnpePjTFBY8w/sRKXI/bjeD+3X8N3sRLt8wCMMYuNMavtc7UKKyk9ptO+C+1z1mLv8w9jTIMxphUr2Z0jIilh2z9rjFlujPECzwJeY8y/jDFB4HGs5PqAGWN+19P56GHXAuBi4BysBDEOuKs/sSil1HCgCZZSSkVOadj9ccDXO/3SPx8rKelq+22AG6vXoQMROVVEPrKH59ViJU5t2xUCXQ27Gme3Vx52/L9h9YJ0S0SyReQxe0hhPfBIFzHdD8wE7rK/9IPV47WtbQNjTMh+fvlh++0Ku98MJPYUS4SV9r5Ju3HADZ3OXSHWc+yLGjtpbrOtbV8ROVxE3rGHVtYBV7Pv69seq4g4ReR3Yg39rGdv72T4PrvD7rd08XgwX+dwLcCDxpgvjDGNwG/p+AODUkqNSJpgKaVU5IRXDSrF6qEK/7U/wRjzu7BtCsPujwX8QGV4g/awtKexeoSy7R6Dl7GG8rUdZ0IXsZRi9bpkhB0/2Rgzo4ttw/3Wfh6zjDHJWD1xbcdCRBKBO4AHgIVhQ752YiUmbduJ/fx29HK8fYjIUbK3AmBXt6N6b2UfnSs6NQPxYY9zwu6XArd2OnfxxphFfTzWGBFJCHs8Fuv1Afg38AJQaIxJAe4l7PXtItZvAGcCJ2IViSiyl3feZ8DY88m6PR897LqKjs9Fq2oppUYFTbCUUmpgPAKcLiIn270QHrsAQkHYNheJyHR7PtOvgKfsYV3hYoBYoAIIiMipWHOp2jwAXC4iJ4iIQ0TyRWSqMaYcayjh/4lIsr1ugoh0Ho7WWRLQCNSJSD7W3K5wfwaWGWOuxBr6dq+9/Angq3YcbuAGrATvv729UJ0ZY943xiT2cHt/f9vswkrgG/a5OYWOw/TuB662e5tERBLEKk6RBO2FJR7qpf1bRCTGTgZPA560lycB1cYYrz1/7hu9tJOE9TpWYSWEv92P5xgRxpjf9nQ+etj1Qay/zfH23/iPgf8MTtRKKRU9mmAppdQAMMaUYvU83IyVHJViJSvhn7sPYxWi2AV4gO930U6DvfwJoAbrC/kLYeuXYhe+AOqAd9nbk3QJVoK21t73KToOUezKLcDBdlsvAc+0rRCRM7GKVFxjL/oBcLCIXGiM2YDV23UXVi/c6cDpxhhfL8eLlmuxYqwFLgSea1thjFkGfAu4G+t120THghyFwAc9tL3L3m8nVkGKq40x6+113wZ+JSINwC+wzmtP/oU1xHAH1nn8qLcnNlQYY/6BFf/HWM+hlS7+xpVSaqTR62AppVQUiMhi4BFjzN+jHYvqO7sq4mfAbLuYR+f1x2Kd14LO65RSSo0OrmgHoJRSSg0Xdo/ctF43VEopNWrpEEGllBplROTebgoW3Nv73mo4EpGxPRSqGBvt+JRSaiTRIYJKKaWUUkopFSHag6WUUkoppZRSETKk5mBlZGSYoqKiaIehlFJKKaWUUj1avnx5pTEms/PyIZVgFRUVsWzZsmiHoZRSSimllFI9EpFtXS3XIYJKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRMqTmYHXF7/dTVlaG1+uNdihqCPB4PBQUFOB2u6MdihrBapp8XPPIMs47dCxnH1wQ7XCUUkopNYwM+QSrrKyMpKQkioqKEJFoh6OiyBhDVVUVZWVlFBcXRzscNYK9sGwzd+68gO3PZROY+R6uGE+0Q1JKKaXUMDHkhwh6vV7S09M1uVKICOnp6dqbqQZc3eaPyZJa5jk2sHX569EORymllFLDyJBPsABNrlQ7/VtQgyG1ckX7/ZbPX45iJEoppZQabob8EEGllBps2c0bqYrJY4s/g5yK5dEORymllFLDyLDowYo2EeGGG25of3zbbbexcOHC6AUU5thjj+3x4sxf+9rXOOKIIzosW7hwIfn5+cydO5eZM2fywgsvDHSYSg0bwZAhOVSLNzaTyqSpZLdugaA/2mEppZRSapjQBKsPYmNjeeaZZ6isrIxou8YYQqFQRNsMV1tby/Lly6mrq2PLli0d1l1//fWsXLmSJ598kiuuuGJA41BqOKlr8ZNGPQFPGoHsmcQQwLdrbbTDUkoppdQwoQlWH7hcLq666ipuv/32fdZVVFRwzjnncOihh3LooYfywQcfAFYv0W233da+3cyZMykpKaGkpIQpU6ZwySWXMHPmTEpLS7nxxhuZOXMms2bN4vHHHwdg8eLFHHvssZx77rlMnTqVCy+8EGNMl/E9/PDD7b1RS5cubV/+zDPPcPrpp3P++efz2GOPdbnvtGnTcLlcHZLHH//4x0yfPp3Zs2fzwx/+EICSkhKOP/54Zs+ezQknnMD27dsBuOyyy7jmmms44ogjGD9+PIsXL+aKK65g2rRpXHbZZe1tXnPNNcybN48ZM2bwy1/+cp846urqGDduXHui19TURGFhIX6/9hyowVXd5CNN6jHxGSSOPRiAPZtW9LKXUkoppZRlWM3BuuXFz1m7sz6ibU7PS+aXp8/odbvvfOc7zJ49m5tuuqnD8muvvZbrr7+e+fPns337dk4++WTWrVvXY1sbN27kn//8J0cccQRPP/00K1eu5LPPPqOyspJDDz2Uo48+GoBPP/2Uzz//nLy8PI488kg++OAD5s+fv097zc3NrFy5kvfee48rrriCNWvWALBo0SJ+8YtfkJ2dzTnnnMPNN9+8z74ff/wxDoeDzMxMAKqqqnj22WdZv349IkJtbS0A3/ve97j00ku59NJL+cc//sH3v/99nnvuOQBqamr48MMPeeGFFzjjjDP44IMP+Pvf/86hhx7KypUrmTt3LrfeeitpaWkEg0FOOOEEVq1axezZs9vjSElJYe7cubz77rscd9xx/Oc//+Hkk0/W612pQVfT5KWIRloSM8kdP43Amw6ad26IdlhKKaWUGib63YMlIoUi8o6IrBWRz0XkWnv5QhHZISIr7dtX+h9u9CQnJ3PJJZdw5513dlj+5ptv8t3vfpe5c+dyxhlnUF9fT2NjY49tjRs3rn1e1JIlS7jgggtwOp1kZ2dzzDHH8MknnwBw2GGHUVBQgMPhYO7cuZSUlHTZ3gUXXADA0UcfTX19PbW1tezevZuNGzcyf/58Jk+ejNvtbk+8AG6//Xbmzp3LD3/4Qx5//PH26nwpKSl4PB6++c1v8swzzxAfHw/Ahx9+yDe+8Q0ALr74YpYsWdLe1umnn46IMGvWLLKzs5k1axYOh4MZM2a0x/zEE09w8MEHc9BBB/H555+zdu2+Q64WLFjQ3oP32GOPsWDBgh5fR6UGQkNNBS4J4U7OZFzmGEpNJlK1KdphKaWUUmqYiEQPVgC4wRizQkSSgOUi8oa97nZjzG097Ltf+tLTNJCuu+46Dj74YC6//PL2ZaFQiI8++giPp+OFSF0uV4d5TeHXbkpISOjT8WJjY9vvO51OAoFAl9t1Ll0uIjzxxBPU1NS0X5C3vr6eRYsWceuttwLWHKy24X+d4166dClvvfUWTz31FHfffTdvv/12n+J0OBwdYnY4HAQCAbZu3cptt93GJ598wpgxY7jsssu6vJbVGWecwc0330x1dTXLly/n+OOP7/G4Sg2E1ro9AMQkZxEX42SnM5+ixpLoBqWUUkqpYaPfPVjGmHJjzAr7fgOwDsjvb7tDUVpaGueddx4PPPBA+7KTTjqJu+66q/3xypUrASgqKmLFCmvexooVK9i6dWuXbR511FE8/vjjBINBKioqeO+99zjssMP2K662Xp8lS5aQkpJCSkoKixYt4tVXX22f97V8+fJu52GFa2xspK6ujq985SvcfvvtfPbZZwB8+ctfbt//0Ucf5aijjupzfPX19SQkJJCSksLu3bt55ZVXutwuMTGRQw89lGuvvZbTTjsNp9PZ52MoFSmmyZqP6E7OAqA2fhzp3u3QzRxIpZRSSqlwES1yISJFwEHAx/ai74rIKhH5h4iMieSxouWGG27oUBDizjvvZNmyZcyePZvp06dz7733AnDOOedQXV3NjBkzuPvuu5k8eXKX7Z111lnMnj2bOXPmcPzxx/OHP/yBnJyc/YrJ4/Fw0EEHcfXVV/PAAw9QUlLCtm3bOpRnLy4uJiUlhY8//rjLNr7yla+wc+dOGhoaOO2005g9ezbz58/nT3/6EwB33XUXDz74ILNnz+bhhx/mz3/+c5/jmzNnDgcddBBTp07lG9/4BkceeWT7ul/84hcdysQvWLCARx55RIcHqqgxrdY8z9iEVAB8ycV4aIX6nVGMSimllFLDhXRXmW6/GxJJBN4FbjXGPCMi2UAlYIBfA7nGmCu62O8q4CqAsWPHHrJt27YO69etW8e0adMiEqMaGfRvQg2kF/99N6d/8VPMNR8i2dN54dlFnPHZ1TSf/wzxU0+IdnhKKaWUGiJEZLkxZl7n5RHpwRIRN/A08Kgx5hkAY8xuY0zQGBMC7ge6HPdmjLnPGDPPGDOvrZKdUkpFja8ZAImx5kom5U0FoLa05+qgSimllFIQmSqCAjwArDPG/ClseW7YZmcBazrvq5RSQ43xWwkWdoKVU1hMs4nFu1tLtSullFKqd5GoIngkcDGwWkRW2stuBi4QkblYQwRLgP+NwLGUUmpAOeweLNzWJQrGZSSyzWThqe66UI1SSimlVLh+J1jGmCWAdLHq5f62rZRSg00CzYQQHO44AOJjXOx25jK1cXuUI1NKKaXUcBDRKoJKKTXcOQLNtBILYdeXq48rJM23E8KubaeUUkop1RVNsJRSKowr0EKro+OFw33JRcTgh4byKEWllFJKqeFCE6w+eu655xAR1q9f3+02JSUlzJw5M2LHvOyyy3jqqae6XX/dddeRn59PKOxX9YceeojMzEzmzp3L9OnTuf/++yMWj1KjgTPYgq9TguXMGA+Ar2JTNEJSSiml1DCiCVYfLVq0iPnz57No0aIu1wcCgX4fIxgM9nnbUCjEs88+S2FhIe+++26HdQsWLGDlypUsXryYm2++md27d/c7NqVGC3eoBb8jrsOyxNxJANSUaSVBpZRSSvVME6w+aGxsZMmSJTzwwAM89thj7csXL17MUUcdxRlnnMH06dMBK9G68MILmTZtGueeey7NzVZFsrfeeouDDjqIWbNmccUVV9Da2gpAUVERP/rRjzj44IN58skn9zn2m2++ybx585g8eTL/+c9/Ohx7xowZXHPNNd0mfVlZWUyYMIHwizffeeedTJ8+ndmzZ3P++ecDUF1dzde+9jVmz57NEUccwapVqwBYuHAhl156KUcddRTjxo3jmWee4aabbmLWrFmccsop+P1+AH71q19x6KGHMnPmTK666io6X7w6FApRVFREbW1t+7JJkyZp4qeGpJigl4CzY4KVnj8ev3HSvGtjlKJSSiml1HARiTLtg+eVH8Ou1ZFtM2cWnPq7Hjd5/vnnOeWUU5g8eTLp6eksX76cQw45BIAVK1awZs0aiouLKSkpYcOGDTzwwAMceeSRXHHFFfzlL3/hu9/9LpdddhlvvfUWkydP5pJLLuGvf/0r1113HQDp6emsWLGiy2OXlJSwdOlSNm/ezHHHHcemTZvweDwsWrSICy64gDPPPJObb74Zv9+P2+3usO+WLVvYsmULEydObF/2u9/9jq1btxIbG9ue8Pzyl7/koIMO4rnnnuPtt9/mkksuYeXKlQBs3ryZd955h7Vr1/KlL32Jp59+mj/84Q+cddZZvPTSS3zta1/ju9/9Lr/4xS8AuPjii/nPf/7D6aef3n5Mh8PBmWeeybPPPsvll1/Oxx9/zLhx48jOzu7zaVJqsMSYFgLOxA7LxmUkU2oyQUu1K6WUUqoX2oPVB4sWLWrv7Tn//PM79BgddthhFBcXtz8uLCzkyCOPBOCiiy5iyZIlbNiwgeLiYiZPngzApZdeynvvvde+z4IFC7o99nnnnYfD4WDSpEmMHz+e9evX4/P5ePnll/na175GcnIyhx9+OK+99lr7Po8//jhz587lggsu4G9/+xtpaWnt62bPns2FF17II488gstl5ddLlizh4osvBuD444+nqqqK+vp6AE499VTcbjezZs0iGAxyyimnADBr1ixKSkoAeOeddzj88MOZNWsWb7/9Np9//vk+z2PBggU8/vjjADz22GM9PmeloinWtBJydezBSkuIYYfk4GnQUu1KKaWU6tnw6sHqpadpIFRXV/P222+zevVqRIRgMIiI8Mc//hGAhISEDtuLSI+Pu9K5jd7ae+2116itrWXWrFkANDc3ExcXx2mnnQZYyczdd9/dZXsvvfQS7733Hi+++CK33norq1f33CMYGxsLWL1Qbre7PR6Hw0EgEMDr9fLtb3+bZcuWUVhYyMKFC/F6vfu086UvfYlNmzZRUVHBc889x89+9rMej6tUNIRCBo/x4nPFd1guItR68kn1vgPGdCjhrpRSSikVTnuwevHUU09x8cUXs23bNkpKSigtLaW4uJj333+/y+23b9/Ohx9+CMC///1v5s+fz5QpUygpKWHTJqsC2cMPP8wxxxzTp+M/+eSThEIhNm/ezJYtW5gyZQqLFi3i73//OyUlJZSUlLB161beeOON9vle3QmFQpSWlnLcccfx+9//nrq6OhobGznqqKN49NFHAWtuV0ZGBsnJyX2Kry2ZysjIoLGxsduqhyLCWWedxQ9+8AOmTZtGenp6n9pXajC1+IPESyvGHb/vusRxxJtmaK6OQmRKKaWUGi40werFokWLOOusszosO+ecc7otLDFlyhTuuecepk2bRk1NDddccw0ej4cHH3yQr3/968yaNQuHw8HVV1/dp+OPHTuWww47jFNPPZV7772XUCjEq6++yle/+tX2bRISEpg/fz4vvvhil21ceeWVLFu2jGAwyEUXXcSsWbM46KCD+P73v09qaioLFy5k+fLlzJ49mx//+Mf885//7OOrA6mpqXzrW99i5syZnHzyyRx66KHt6+69917uvffe9scLFizgkUce0eGBashq9gWJpxW6SLAkzRoKHKraPNhhKaWUUmoYkc4V36Jp3rx5ZtmyZR2WrVu3jmnTpkUpIjUU6d+EGiil1c3k/LmATZMuZ9pF/9dh3YtvvcPp73+NmlPuYcwRF0UpQqWUUkoNFSKy3Bgzr/Ny7cFSSilbc4sXtwSRmH3nRablTyZkhMZyLdWulFJKqe5pgqWUUjZfSwMAjth9E6yxWWPYxRiClTpEUCmllFLdGxYJ1lAaxqiiS/8W1EBq7SHByk3xsN3k4K7fts86pZRSSqk2Qz7B8ng8VFVV6RdrhTGGqqoqPB5PtENRI5S/pREAdxcJlsvpoDImj6Tm0sEOSymllFLDyJC/DlZBQQFlZWVUVFREOxQ1BHg8HgoKCqIdhhqh/F4rwXLFJXa5vjmhkOS6N6G1AWKTBjM0pZRSSg0TA55gicgpwJ8BJ/B3Y8x+XS3Y7XZTXFw8ILEppVS4gLcJALen6wQrOKYY6oCaEsiZNXiBKaWUUmrYGNAhgiLiBO4BTgWmAxeIyPSBPKZSSh2oUKvVgxXTTQ9WTOYEAJp2aSVBpZRSSnVtoOdgHQZsMsZsMcb4gMeAMwf4mEopdUCCrVYPVmxc18P/UvKmAFC/44tBi0kppZRSw8tAJ1j5QPiM8DJ7WTsRuUpElonIMp1npZSKJtPaDEBsfNcJVn5ONlUmCV+FlmpXSimlVNeiXkXQGHOfMWaeMWZeZmZmtMNRSo1ixm/1YHVVph1gbFo82002ztqtgxmWUkoppYaRgU6wdgCFYY8L7GVKKTX0+KweLNzxXa5OiHVR7swloUlLtSullFKqawOdYH0CTBKRYhGJAc4HXhjgYyql1AERuweLmK57sAAa4gpJ8e+GQOsgRaWUUkqp4WRAEyxjTAD4LvAasA54whjz+UAeUymlDpT4W/DhBoez220CKeNwYKB2+yBGppRSSqnhYsCvg2WMeRl4eaCPo5RS/eUMNOMVDzE9bOPOnAjl4KvYTEzGpEGLTSmllFLDQ9SLXCil1FDhDLbgc3h63Ca1YDIA1aXrByMkpZRSSg0zmmAppZTNFWzB54jrcZvCgnE0mVhadm8apKiUUkopNZxogqWUUjZ3sAV/Lz1YxZmJbDM5mGot1a6UUkqpfWmCpZRStpiQl4Cz5x4sj9vJHncuCY3bBikqpZRSSg0nmmAppZQtxngJubq+Bla4hoRiMvw7IOAbhKiUUkopNZxogqWUUjaP8RJ09dyDBRBMn4KTEKFKnYellFJKqY40wVJKKcAfDOGhFdOHHqzY/BkAVJesGuiwlFJKKTXMaIKllFJAsy9IPF6Mu/cEK2PcTIJGaCxbMwiRKaWUUmo40QRLKaWAZl+AeFqR2IRetx2fm852k4XZs24QIlNKKaXUcKIJllJKAc1eHx7xIzG992ClJcRQ4igkvk7nYCmllFKqI02wlFIKaG1uBEBieu/BEhFq4ieQ3loKQf9Ah6aUUkqpYUQTLKWUAlpbrATLGZvYp+19aZNwEcRUaS+WUkoppfbSBEsppQBfcx0ArrikPm0fb1cSrNuuhS6UUkoptZcmWEopBfgbawFwJYzp0/a5E2YTMkKNlmpXSimlVBhNsJRSCvA1VQMQl5TWp+0nF2ZTajIJ7l47kGEppZRSapjRBEsppYCAPUQwPrlvCVZKnJttrmISazcMZFhKKaWUGmb6lWCJyB9FZL2IrBKRZ0Uk1V5eJCItIrLSvt0bkWiVUmqABFtqAfAkpvZ5n+qUaWT5y6C1YWCCUkoppdSw098erDeAmcaY2cAXwE/C1m02xsy1b1f38zhKKTWw7ARL4lL7vIvJmYMDQ2uZzsNSSimllKVfCZYx5nVjTMB++BFQ0P+QlFJq8ElrPUEcENO3Mu0AqeMPAaBi49KBCksppZRSw0wk52BdAbwS9rhYRD4VkXdF5KjudhKRq0RkmYgsq6ioiGA4SinVd05fA80SDyJ93mdC8UQqTAq+0hUDGJlSSimlhpNeEywReVNE1nRxOzNsm58CAeBRe1E5MNYYcxDwA+DfIpLcVfvGmPuMMfOMMfMyMzP7/4yUUuoAuPz1tDj63nsFUJAWz3rGE1/1+QBFpZRSSqnhxtXbBsaYE3taLyKXAacBJxhjjL1PK9Bq318uIpuBycCy/gaslFIDwRNopNXVt4sMt3E4hD2JU/hy0xPg94LbM0DRKaWUUmq46G8VwVOAm4AzjDHNYcszRcRp3x8PTAK29OdYSik1kOKDdfjcXXa09yiYPQcnIQK71gxAVEoppZQabvo7B+tuIAl4o1M59qOBVSKyEngKuNoYU93PYyml1IAwxpBq6miNTd/vfcdMPBSA3Rs+jnRYSimllBqGeh0i2BNjzMRulj8NPN2ftpVSarDUtfhJo56G+Iz93nfqlOnUvJZIc8knAxCZUkoppYabSFYRVEqpYamyppYkacGRlL3f+xakxfO5YzJJFZ8OQGRKKaWUGm40wVJKjXp1FeUAxCZn7fe+IkJF6lxyWkugpSbCkSmllFJquNEESyk16jXWWAlWXFrOAe0vYw8DoGHTfyMWk1JKKaWGJ02wlFKjnrd2NwDJ6XkHtH/utPkEjIOq9e9HMiyllFJKDUOaYCmlRr1g/U4AEtJyD2j/mcW5rDPjcJRpoQullFJqtNMESyk16rkadhLEgSTnH9D+CbEutsTNJLt+NQQDEY5OKaWUUsOJJlhKqVEvpmknNY50cB74lStac+cRa1rxl6+KYGRKKaWUGm40wVJKjXpJrbuojz2wAhdtMqcdDcCuVe9EIiSllFJKDVOaYCmlRjV/MER6sAJfwoHNv2ozZ+ZMtoWyCGx+N0KRKaWUUmo40gRLKTWq7appJI9KTEphv9pJS4jhc89BZFd/ovOwlFJKqVFMEyyl1KhWUfoFMRLEnTW532015R1JvGnGX7YiApEppZRSajjSBEspNarVla0DIKVwer/bSp/9PwDs/uy1frellFJKqeFJEyyl1Kjm270BgIxxM/rd1sFTJ7IuNBazeXG/21JKKaXU8KQJllJqVHPXbKZekpGE9H63lRofw/q4g8iu+wz8LRGITimllFLDjSZYSqlRbUxzCZWecRFrL1h0DDH4adq0JGJtKqWUUmr40ARLKTVqNbUGKAjtwJsyPmJtFs07Ba9xU7Hs+Yi1qZRSSqnho18JlogsFJEdIrLSvn0lbN1PRGSTiGwQkZP7H6pSSkXW1h07yZQ6nJmTItbm3PG5fCyzSNr+JhgTsXaVUkopNTxEogfrdmPMXPv2MoCITAfOB2YApwB/ERFnBI6llFIRU7F1DQDJBf2vINjG5XSwM+sY0v3lhHavi1i7SimllBoeBmqI4JnAY8aYVmPMVmATcNgAHUsppQ6Id4eVYGWMnxvRdsfMPQOAnUufiWi7SimllBr6IpFgfVdEVonIP0RkjL0sHygN26bMXrYPEblKRJaJyLKKiooIhKOUUn3jqlqPlxjc6cURbffIg2exwkzCvVYTLKWUUmq06TXBEpE3RWRNF7czgb8CE4C5QDnwf/sbgDHmPmPMPGPMvMzMzP3dXSmlDlhq42Z2xxaBI7Kd+UkeNxsyTyHbu5lQ+eqItq2UUkqpoa3XbxXGmBONMTO7uD1vjNltjAkaY0LA/ewdBrgDKAxrpsBeppRSQ4LXH2RsoISmlMgVuAg35rDz8RsnO9//54C0r5RSSqmhqb9VBHPDHp4FrLHvvwCcLyKxIlIMTAKW9udYSikVSVu3l5IttUh25ApchDv2oGkskUNIXf8YtDYOyDGUUkopNfT0d1zMH0RktYisAo4DrgcwxnwOPAGsBV4FvmOMCfbzWEopFTF7tqwEIGXs7AFp3+N2snvW/5IYaqDyvfsG5BhKKaWUGnr6lWAZYy42xswyxsw2xpxhjCkPW3erMWaCMWaKMeaV/oeqlFKR02JXEMyaMHfAjnHiyafzUWg67o/vhtaGATuOUkoppYaOgSrTrpRSQ5q7cj1NxOMaU9j7xgcoIzGWTbN/QJK/mp3//q5eeFgppZQaBTTBUkqNSmlNm9kdNx5EBvQ45555No/HX0DetufY+rfzaSpZDsHAgB5TKaWUUtGjCZZSatRp9PopCm2nJXVgKgiG87idnPTt23ks6VLyy98g4aHjWfu3ywb8uEoppZSKDk2wlFKjzrZtWxgjjTgHqIJgZ+lJHhb84M+sOe+/lDnyyaj8aFCOq5RSSqnB54p2AKrvjDH4AyF8vhZ8Lc34W5vxt7YQ8LUQaG0m4GvFHwgQCAYxxiCEEMBhDGA9Bgc4XeBwYRwucLhxxcTgcrmJiYkhJiYWtzsWd1wCMZ54YmM8OJ2ah6uRpW7bKgASCgemgmBXRISDZ0zl1Q/P5ZSyP2PqdyLJeYN2fKWUUkoNDk2woqCluZmaip3UVe6kuaacQMMeaKrCeOuQ1nocvgZc/gZiAg3EBpuIDzUSb5rxmFY84idmEGMNGAeNxOAlFp/E0Cqx+CUWn8QScMTid3oIOT0E7X9DLg+4PBh3HGLfHO44HDFxuGLiccbG44qNx+WJJyY2Abcnjtj4BGI9icTFJxDrdiEDPCdGqcCutQBkjJ876Mc2BfOgDKo2/JeMQ88d9OOrvYLBEE0tTbQ0NeJtbsTf2kzQ20TQ10LI10SotZmg30sw6CcUCBAK+AgG/GCCSNAPoSBiAkgogJgAhEIYu5BJCLHuiyAA4kAEBLGm/YkgCMbhBHHa/7owDidi/wAmDlf7D2IO+19xtD12Ik4X4nQjDhfidOJwuK1/nS4cTjficOJwuXHY65wuqx2Hy4XDYf3rdLhwOZ04HOB0CA4RnA7BKYLDoZ/FSil1IDTBiqBQMEjV7lIqd26hcU8JvqpSpL4MT/Mu4nxVJAZqSAnVkizNxAGdf7sOGaFR4mmSeFocCbQ6E2mMzabWPZFQTBLijgN3HMYZC+44xOVB3LFITBxOdxxOdyxOpwuX04E4HBgjGOt/dAwOjP0fvgStLwgE/UjITzDgJxDwEwz4rC8Rfi8EvOBvAX8LjqAXCbTgCHhxBL04g15cQS+xIS/uQC1uXysxxrrF4sOD74Bfw1bjxksMrRJDECchcRG0byGcBMVaFhKntUxchBwujP0v4rQTNMFgfzmQtvv2TbBel7ZtpG2d1c9nLbX3MCFrqQnZEZqwZW09gwZMyG49ZFeKs9ZLW8+hfb/zfm3ttq3bu529LPwYYcv2PrvwNtueAWFxddo3bFvppd22deFMh/uy70LM3uX77Nvd8q4fd9jedHn3gNoHmGMaqJFkxozJ6aa1gTN22uH4PnRS88WHmmD1gzGGltZW6qv20FSzi5a6PfgaKvE31RJorsN468Bbj9PXgDvQQGyw0f7Bqol402T9YIWPZDEkRzCukBEcMryqRQaNEMBJCAd+nHhxEMRBEKf9r3U/hMP67MWJwcHet5x0/JxtTyo7fcaKvS3tn4Btn0rQ6VOtV71W5OxDK32q6tnNNqaX9WEE07fn1EuT4Z/JXW3S+TO7L9t0eZw+vC69pd59OQ59eJ/0JcXv7ViReD6Wvp3r/h6nT+do//6iBvQ4kXlOvR/ndddxTDhnIcdNzerDEaNPE6z91NxYS/mWtdTu2EDr7o04a7eS3FxKqn83GaEqMiVIZvj2xFLhyKTBlc6exCns9KRjEjJxJWUTm5JN/JgcEjLyiE/JJDEplWSnM6L/2UeFMRh/C/7WFlq9Tfiam/B5rZu/tdkaztjabP1K3NpMyN+C8bVg/C0QsJI5CbRgggFMMIDD+JFQEIcJhN2CuINenFj3nSaA0wRwYCU/QHuC0/G/766TCwnbJtSeFrWlTHvXhsK2bvsyEMIBEr6dvSy8DZEOR2q/tS/v6kuGo/0LSnikbVXvOmwvex+3r5O9+9HhWF1tYw0DNe3JZtv2EP7xuXeJ2ft9KWxN+xE7feJ2aEk6LtvnvljRWcs7H8F03F46r+si1i7+E68FKJrPmH3WDLwpBZmspYik8uVROPrQZoyhvrGFmj2lNFSU4a0uxV9XDg27cDRX4m6tweOvITFQS4qpI1WaiO+hvUb2/mDldSbijUmnwT2OgDsJ404AtwdHTDxOu3ddYuIRe5nDbS1zxsbhdsfgdsXgdrtxxcTidLkQu5fI4XRbPUJONw6HE4fdO9XpiWHsW8gYQiHrX2MMJhQgFLRuBINWb1kwQKjt34Df2ibQcbkJBjGhsPtBazvrFrQ+P0NWm23LsNcTClo3E7QqWoYC1n17nbTdNyG7dy7YvlxMEAkFaPtBCGOs9MHs/UHImL0/GIXfb7P3E8/6NHLYn57t643BiNDpVewo/MOky3VtP5j1puc22n+Y2y/S5d1ej9lhk/07ZtszNX3arfeNuvvBan/a6VsK0P9YDIT9f3Xg+vKcB+t1icRxoC9/D32JNVKvS//a8CQWkhLv7vdxBosmWD3YsWUdZStewexaTUr9RjJ9pWRQy4SwbSoYQ4U7j9LEOWxNysOZUoAncywp2cVk5E8gMSWdcaNtyJsIEhNPTEw8MUnp0Y5GqSHF5XSwM2k2xza+BL5miOkpRRhZvK0+9uwsoXbHJloqthCs3oY0lhPbsodEXwVjglWkU09Kp6TYb5zUSRKNzlRa3KnUxk+hMi6dUFw6Ep+OMykTd3ImcclZJKaMISk1g7jEFBIdThKj9Fw7EEHshGHfGa2xgx+PUkoNM4dEO4D9pAlWD8qWvcjha2+lCQ+lrmI2p3yJjWPGE5M1iTGFU8ktnk5mYkqHHiullOqNY+qpeJY9S/mKl8g94uvRDidiQiHD7oo9VGxdQ+PODfiqS3DVl5LUsoM0/26yTQVjJcjYsH2qSabWlUFLXBZl8bMoTczBkZJHbGo+8ZmFpGYVkpyeQ4bDSUbUnplSSinVd2L6NAZ5cMybN88sW7Ys2mG0q63cRVN9LXlFkxCHM9rhKKVGiPLqemL/PI3KjMOY/L1nox3OfvN6W9i+eS0VJZ/TumsD7trNpDZvIzewgwyp67BttaRS7c6lKS4Pf1IhjrRxxGWNJzV3AhkFE3DHjp4ePKWUUiOLiCw3xszrvFx7sHqQmpFDasbgT4JXSo1suWnJvJpyCidWPYuvupSYtMJoh9SlYMDPzs1rqNzyKb6dq4mt3kBG8xZyQruZLCEm29vVSAoVsWMpG3M029MnEpczhbSx08gsmERabAJpUX0WSiml1ODSBEsppaIg5ZjvYF54ltLnbmHCFX+PaiwmFKKqfBvlG5fTXLoaZ+U6xjRupCBQSqH4KcSqNFfmyGd3/CTKxpyKJ2cKGUUzyB0/kzHxY6JSMEQppZQaijTBUkqpKDji4IP4z5uncfr2J6lds4DUmf8zKMdtrK+hbMNy6ktWwu7PSar/gjzfVjJoap/jtIc0dnnGsyLjCBy5MxhTNJfCyQcxLj6BcYMSpVJKKTV8aYKllFJRICJMvOCPbH7gE9Ke+RYtY/5DXP7MiLXv8wco27KWyk3L8e9cTVzNerJbNpFvdjPV3qbRxFEaU8T6tBMxWdNIHDuH/MmHkJWRzfC40ohSSik19GiRC6WUiqK331vMzLcuJc4RoO6oX1Jw7DdhP4rqeFtb2Vmygaptn+MtX4+jehNpjRsZFyghXloBa3jfDmc+lQmT8KVPw1Mwm6yJB5NTOAmHc9/C4UoppZTqXXdFLvqVYInI48AU+2EqUGuMmSsiRcA6YIO97iNjzNW9tacJllJqNPrgk2UkvnQNc/iCGscYdmTMx2TPhORcnLGJmGAQX2sT/sYaAnU7kcZdxLbsIb11B7mhcmIk2N5WDcmUeybQlDoFV+5MUscfRP7Eg4iJS4jiM1RKKaVGngGpImiMWRB2gP8DwuvzbjbGzO1P+0opNRoceeg86mZ8wKsv/4vkDU8xefe7ZOx5sdvtq0mmzplBTUIxu1NOwJU1mZTCaeSOn8WY1CwtOKGUUkpFUUTmYImIAOcBx0eiPaWUGm1S4mM45dwrgSvx+oNsKduGr74Cf0s9DqeL2LgEEpJSycgdS1qMR0ufK6WUUkNUpIpcHAXsNsZsDFtWLCKfAvXAz4wx73e1o4hcBVwFMHbs2AiFo5RSw5fH7WR88XhgfLRDUUoppdR+6jXBEpE3ga6utvtTY8zz9v0LgEVh68qBscaYKhE5BHhORGYYY+o7N2KMuQ+4D6w5WPv7BJRSSimllFJqqOg1wTLGnNjTehFxAWcDh4Tt0wq02veXi8hmYDKgFSyUUkoppZRSI1Yk6vOeCKw3xpS1LRCRTBFx2vfHA5OALRE4llJKKaWUUkoNWZGYg3U+HYcHAhwN/EpE/EAIuNoYU91bQ8uXL68UkW0RiCmSMoDKaAehBo2e79FDz/Xooed6dNHzPXrouR5dhuL5HtfVwiF1oeGhSESWdVXfXo1Mer5HDz3Xo4ee69FFz/fooed6dBlO5zsSQwSVUkoppZRSSqEJllJKKaWUUkpFjCZYvbsv2gGoQaXne/TQcz166LkeXfR8jx56rkeXYXO+dQ6WUkoppZRSSkWI9mAppZRSSimlVIRogqWUUkoppZRSEaIJVg9E5BQR2SAim0Tkx9GOR0WOiBSKyDsislZEPheRa+3laSLyhohstP8dE+1YVWSIiFNEPhWR/9iPi0XkY/v9/biIxEQ7RhUZIpIqIk+JyHoRWSciX9L39sgkItfbn+FrRGSRiHj0vT1yiMg/RGSPiKwJW9ble1ksd9rnfZWIHBy9yNX+6uZc/9H+HF8lIs+KSGrYup/Y53qDiJwclaB7oAlWN0TECdwDnApMBy4QkenRjUpFUAC4wRgzHTgC+I59fn8MvGWMmQS8ZT9WI8O1wLqwx78HbjfGTARqgG9GJSo1EP4MvGqMmQrMwTrv+t4eYUQkH/g+MM8YMxNwAuej7+2R5CHglE7LunsvnwpMsm9XAX8dpBhVZDzEvuf6DWCmMWY28AXwEwD7+9r5wAx7n7/Y39uHDE2wuncYsMkYs8UY4wMeA86MckwqQowx5caYFfb9BqwvYPlY5/if9mb/BL4WlQBVRIlIAfBV4O/2YwGOB56yN9FzPUKISApwNPAAgDHGZ4ypRd/bI5ULiBMRFxAPlKPv7RHDGPMeUN1pcXfv5TOBfxnLR0CqiOQOSqCq37o618aY140xAfvhR0CBff9M4DFjTKsxZiuwCet7+5ChCVb38oHSsMdl9jI1wohIEXAQ8DGQbYwpt1ftArKjFZeKqDuAm4CQ/TgdqA374Nb398hRDFQAD9pDQv8uIgnoe3vEMcbsAG4DtmMlVnXAcvS9PdJ1917W720j2xXAK/b9IX+uNcFSo5qIJAJPA9cZY+rD1xnrGgZ6HYNhTkROA/YYY5ZHOxY1KFzAwcBfjTEHAU10Gg6o7+2RwZ57cyZWUp0HJLDvECM1gul7eXQQkZ9iTe14NNqx9JUmWN3bARSGPS6wl6kRQkTcWMnVo8aYZ+zFu9uGFNj/7olWfCpijgTOEJESrKG+x2PN0Um1hxWBvr9HkjKgzBjzsf34KayES9/bI8+JwFZjTIUxxg88g/V+1/f2yNbde1m/t41AInIZcBpwodl78d4hf641wereJ8AkuxpRDNZkuheiHJOKEHsOzgPAOmPMn8JWvQBcat+/FHh+sGNTkWWM+YkxpsAYU4T1Pn7bGHMh8A5wrr2ZnusRwhizCygVkSn2ohOAteh7eyTaDhwhIvH2Z3rbudb39sjW3Xv5BeASu5rgEUBd2FBCNQyJyClYw/vPMMY0h616AThfRGJFpBirsMnSaMTYHdmbDKrOROQrWHM3nMA/jDG3RjciFSkiMh94H1jN3nk5N2PNw3oCGAtsA84zxnSeYKuGKRE5FvihMeY0ERmP1aOVBnwKXGSMaY1ieCpCRGQuVkGTGGALcDnWD4r63h5hROQWYAHW8KFPgSux5mLoe3sEEJFFwLFABrAb+CXwHF28l+0k+26sYaLNwOXGmGVRCFsdgG7O9U+AWKDK3uwjY8zV9vY/xZqXFcCa5vFK5zajSRMspZRSSimllIoQHSKolFJKKaWUUhGiCZZSSimllFJKRYgmWEoppZRSSikVIZpgKaWUUkoppVSEaIKllFJKKaWUUhGiCZZSSimllFJKRYgmWEoppZRSSikVIZpgKaWUUkoppVSEaIKllFJKKaWUUhGiCZZSSimllFJKRYgmWEoppZRSSikVIZpgKaWUUkoppVSEaIKllFJDjIgUiYgREVe0Y1Gjg4h8LiLHRjsOpZQaCTTBUkopNeyJyL0i0mjffCLiD3v8SrTjG+qMMTOMMYsj3a6InCgiK0SkSUTKROS8SB9DKaWGGjHGRDsGpZQaUUTEZYwJ9GP/ImAr4O5PO6OViCwEJhpjLupiXb/OzWAaTrF2RUSmA4uBS4E3gBQg1RizOZpxKaXUQNMeLKWUigARKRGRH4nIKqBJRFwicoSI/FdEakXks/AhWCKyWET+n4gsFZF6EXleRNK6aftyEVknIg0iskVE/rfT+jNFZKXdzmYROcVeniIiD4hIuYjsEJHfiIizl+cxQUTeFpEqEakUkUdFJDVsXbWIHGw/zhORirbnJSJn2EPNau3nN63T6/NDEVklInUi8riIePb/ld5/3ZwbIyITw7Z5SER+E/b4NPs1rbXP4ew+HutYu6fmZvv1KxGRC8PWf1VEPrXPVamdDLataxsa+k0R2Q68bS9/UkR22a/beyIyo1PcfxGRV+zeug9EJEdE7hCRGhFZLyIH9fE1OrEvz3E//Az4mzHmFWNMwBhTpcmVUmo00ARLKaUi5wLgq0AqkA28BPwGSAN+CDwtIplh218CXAHkAgHgzm7a3QOcBiQDlwO3hyU5hwH/Am60j3s0UGLv95Dd7kTgIOAk4MpenoMA/w/IA6YBhcBCAPvL8Y+AR0QkHngQ+KcxZrGITAYWAdcBmcDLwIsiEhPW9nnAKUAxMBu4rMsARObbiU13t/m9PIeutJ+b3nqF7ITkH8D/AunA34AXRCS2j8fKATKAfKzem/tEZIq9rgnrvKfa8VwjIl/rtP8xWK/9yfbjV4BJQBawAni00/bnYSUzGUAr8KG9XQbwFPCnPsbdJRH5cU/no4ddj7D3X20n+Y909yOCUkqNJJpgKaVU5NxpjCk1xrQAFwEvG2NeNsaEjDFvAMuAr4Rt/7AxZo0xpgn4OXBeVz1MxpiXjDGbjeVd4HXgKHv1N4F/GGPesI+zwxizXkSy7WNdZ4xpMsbsAW4Hzu/pCRhjNtlttRpjKrC+nB8Ttv5+YBPwMVZi+FN71QLgJXtfP3AbEAd8udPrs9MYUw28CMztJoYlxpjUHm5LenoO3Qg/N725Cqvn5WNjTNAY80+sxOWI/Tjez+3X8F2sRPs8AGPMYmPMavtcrcJKSo/ptO9C+5y12Pv8wxjTYIxpxUp254hIStj2zxpjlhtjvMCzgNcY8y9jTBB4HCu5PmDGmN/1dD562LUAuBg4BytBjAPu6k8sSik1HGiCpZRSkVMadn8c8PVOv/TPx0pKutp+G+DG6nXoQEROFZGP7OF5tViJU9t2hUBXw67G2e2Vhx3/b1i9IN0SkWwRecweUlgPPNJFTPcDM4G77C/9YPV4bWvbwBgTsp9ffth+u8LuNwOJPcUSYaW9b9JuHHBDp3NXiPUc+6LGTprbbGvbV0QOF5F37KGVdcDV7Pv6tscqIk4R+Z1YQz/r2ds7Gb7P7rD7LV08HszXOVwL8KAx5gtjTCPwWzr+wKCUUiOSJlhKKRU54VWDSrF6qMJ/7U8wxvwubJvCsPtjAT9QGd6gPSztaaweoWy7x+BlrKF8bceZ0EUspVi9Lhlhx082xszoYttwv7WfxyxjTDJWT1zbsRCRROAO4AFgYdiQr51YiUnbdmI/vx29HG8fInKU7K0A2NXtqN5b2Ufnik7NQHzY45yw+6XArZ3OXbwxZlEfjzVGRBLCHo/Fen0A/g28ABQaY1KAewl7fbuI9RvAmcCJWEUiiuzlnfcZMPZ8sm7PRw+7rqLjc9GqWkqpUUETLKWUGhiPAKeLyMl2L4THLoBQELbNRSIy3Z7P9CvgKXtYV7gYIBaoAAIicirWXKo2DwCXi8gJIuIQkXwRmWqMKccaSvh/IpJsr5sgIp2Ho3WWBDQCdSKSjzW3K9yfgWXGmCuxhr7day9/AviqHYcbuAErwftvby9UZ8aY940xiT3c3t/fNruwEviGfW5OoeMwvfuBq+3eJhGRBLGKUyRBe2GJh3pp/xYRibGTwdOAJ+3lSUC1McZrz5/7Ri/tJGG9jlVYCeFv9+M5RoQx5rc9nY8edn0Q629zvP03/mPgP4MTtVJKRY8mWEopNQCMMaVYPQ83YyVHpVjJSvjn7sNYhSh2AR7g+12002AvfwKowfpC/kLY+qXYhS+AOuBd9vYkXYKVoK21932KjkMUu3ILcLDd1kvAM20rRORMrCIV19iLfgAcLCIXGmM2YPV23YXVC3c6cLoxxtfL8aLlWqwYa4ELgefaVhhjlgHfAu7Get020bEgRyHwQQ9t77L324lVkOJqY8x6e923gV+JSAPwC6zz2pN/YQ0x3IF1Hj/q7YkNFcaYf2DF/zHWc2ili79xpZQaafQ6WEopFQUishh4xBjz92jHovrOror4GTDbLubRef2xWOe1oPM6pZRSo4Mr2gEopZRSw4XdIzet1w2VUkqNWjpEUCmlRhkRubebggX39r63Go5EZGwPhSrGRjs+pZQaSXSIoFJKKaWUUkpFiPZgKaWUUkoppVSEDKk5WBkZGaaoqCjaYSillFJKKaVUj5YvX15pjMnsvHxIJVhFRUUsW7Ys2mEopZRSSimlVI9EZFtXy3WIoFJKKaWUUkpFiCZYSimllFJKKRUhmmAppdR+CoYMT3xSSkVDa7RDUUoppdQQM6TmYHXF7/dTVlaG1+uNdihqmPF4PBQUFOB2u6Mdihphnl1RRuXzN/PgR4dx0/e+F+1wlFJKKTWEDPkEq6ysjKSkJIqKihCRaIejhgljDFVVVZSVlVFcXBztcNQIs/HzT/iJ6wWoeoGGyq+RlFEY7ZCUUkopNUQM+SGCXq+X9PR0Ta7UfhER0tPTtedTDYj0XR+039+x/NUoRqKUUkqpoWbIJ1iAJlfqgOjfjRoohS3rqHZlUWsSMCXvRzscpZRSSg0hQ36IoFJKDSUtviCpwRq8yXlsa3QwtnpNtENSSiml1BAyLHqwok1EuOGGG9of33bbbSxcuDB6AYX56KOPOPzww5k7dy7Tpk1rj2vx4sX897//7Vfbp5xyCqmpqZx22mkRiFSpkaG8roUsqSGUkEVt0iSyWrdB0B/tsJRSSik1RGiC1QexsbE888wzVFZWRrRdYwyhUKhfbVx66aXcd999rFy5kjVr1nDeeecBkUmwbrzxRh5++OF+taHUSFPT7CNT6iAph0DGNNwECFRsjHZYSimllBoihtUQwVte/Jy1O+sj2ub0vGR+efqMHrdxuVxcddVV3H777dx6660d1lVUVHD11Vezfft2AO644w6OPPJIFi5cSGJiIj/84Q8BmDlzJv/5z38AOPnkkzn88MNZvnw5L7/8MnfffTevvPIKIsLPfvYzFixYwOLFi1m4cCEZGRmsWbOGQw45hEceeWSfeUV79uwhNzcXAKfTyfTp0ykpKeHee+/F6XTyyCOPcNdddzF16tRu49y8eTObNm2isrKSm266iW9961sAnHDCCSxevLjH1+bJJ5/klltuwel0kpKSwnvvvYfX6+Waa65h2bJluFwu/vSnP3Hcccfx0EMP8dxzz9HU1MTGjRv54Q9/iM/n4+GHHyY2NpaXX36ZtLQ07r//fu677z58Ph8TJ07k4YcfJj4+vsNxjzjiCB544AFmzLDO3bHHHsttt93GvHnzeoxXqf5qaWoiWZppSMwiJn46bIaaktVk5kyPdmhKKaWUGgL63YMlIoUi8o6IrBWRz0XkWnt5moi8ISIb7X/H9D/c6PnOd77Do48+Sl1dXYfl1157Lddffz2ffPIJTz/9NFdeeWWvbW3cuJFvf/vbfP755yxbtoyVK1fy2Wef8eabb3LjjTdSXl4OwKeffsodd9zB2rVr2bJlCx988ME+bV1//fVMmTKFs846i7/97W94vV6Kioq4+uqruf7661m5ciVHHXVUj3GuWrWKt99+mw8//JBf/epX7Ny5s8+vy69+9Stee+01PvvsM1544QUA7rnnHkSE1atXs2jRIi699NL2an5r1qzhmWee4ZNPPuGnP/0p8fHxfPrpp3zpS1/iX//6FwBnn302n3zyCZ999hnTpk3jgQce2Oe4CxYs4IknngCgvLyc8vJyTa7UoAg27AJAknJIK5wGQEP5hmiGpJRSSqkhJBI9WAHgBmPMChFJApaLyBvAZcBbxpjficiPgR8DP+rPgXrraRpIycnJXHLJJdx5553ExcW1L3/zzTdZu3Zt++P6+noaGxt7bGvcuHEcccQRACxZsoQLLrgAp9NJdnY2xxxzDJ988gnJyckcdthhFBQUADB37lxKSkqYP39+h7Z+8YtfcOGFF/L666/z73//m0WLFnXZ69RTnGeeeSZxcXHExcVx3HHHsXTpUr72ta/16XU58sgjueyyyzjvvPM4++yz25/T9+yLr06dOpVx48bxxRdfAHDccceRlJREUlISKSkpnH766QDMmjWLVatWAVYS9rOf/Yza2loaGxs5+eST9znueeedx0knncQtt9zCE088wbnnntuneJXqr2D9bgBcyTmMy82iwqQQqNwS5aiUUkopNVT0O8EyxpQD5fb9BhFZB+QDZwLH2pv9E1hMPxOsaLvuuus4+OCDufzyy9uXhUIhPvroIzweT4dtXS5Xh/lV4ddjSkhI6NPxYmNj2+87nU4CgUCX202YMIFrrrmGb33rW2RmZlJVVbXPNt3FCfuWM9+f8ub33nsvH3/8MS+99BKHHHIIy5cv73H78OfkcDjaHzscjvbnd9lll/Hcc88xZ84cHnrooS4Txvz8fNLT01m1ahWPP/449957b59jVqo/Qi1WL3ZM0hhSkmL5lGzS6kqiG5RSSimlhoyIFrkQkSLgIOBjINtOvgB2Adnd7HOViCwTkWUVFRWRDCfi0tLSOO+88zoMWTvppJO466672h+vXLkSgKKiIlasWAHAihUr2Lp1a5dtHnXUUTz++OMEg0EqKip47733OOyww/oc00svvYQxBrCGHjqdTlJTU0lKSqKhoaHXOAGef/55vF4vVVVVLF68mEMPPbTPx9+8eTOHH344v/rVr8jMzKS0tJSjjjqKRx99FIAvvviC7du3M2XKlD632dDQQG5uLn6/v72drixYsIA//OEP1NXVMXv27D63r1R/BL1Wz29cQgoiQnVsPsktZVGOSimllFJDRcQSLBFJBJ4GrjPGdKhEYawMwHS1nzHmPmPMPGPMvMzMzEiFM2BuuOGGDtUE77zzTpYtW8bs2bOZPn16e0/KOeecQ3V1NTNmzODuu+9m8uTJXbZ31llnMXv2bObMmcPxxx/PH/7wB3Jycvocz8MPP8yUKVOYO3cuF198MY8++ihOp5PTTz+dZ599lrlz5/L+++93GyfA7NmzOe644zjiiCP4+c9/Tl5eHmAlf1//+td56623KCgo4LXXXgOsYYlt861uvPFGZs2axcyZM/nyl7/MnDlz+Pa3v00oFGLWrFksWLCAhx56qEPPVW9+/etfc/jhh3PkkUcyderU9uUvvPACv/jFL9ofn3vuuTz22GPtlROVGgzGZyVYMXGJADQnjCU1WAl+b0+7KaWUUmqUkLbej341IuIG/gO8Zoz5k71sA3CsMaZcRHKBxcaYHrsx5s2bZ5YtW9Zh2bp165g2bVq/Y1Rd61ztcKTRvx8VaS8/cAtfKf0T3LgZEjJ49qE/cVbJLZhvf4xkTe29AaWUUkqNCCKy3BizT5W1SFQRFOABYF1bcmV7AbjUvn8p8Hx/j6WUUtEmvibrTozVg+XKGA9AQ7leC0sppZRSkakieCRwMbBaRFbay24Gfgc8ISLfBLYBOo5rCFq4cGG0Q1BqWBF/E0EcOF3WsNek3EmAlWAlz4lmZEoppZQaCiJRRXAJ0F3ZuRP6275SSg0lTn8zLRJHol1tMyungEbjwV+xOcqRKaWUUmooiGgVQaWUGukcgSZaZe+18PLT4ik1mUjd9ihGpZRSSqmhQhMspZTaD+5gMz7H3gQrJc7NLkc2nkYt1a6UUkopTbCUUmq/xASb8TvjOiyrj80lpbUcIlCVVSmllFLDmyZYffTcc88hIqxfv77bbUpKSpg5c2bEjrlhwwaOPfZY5s6dy7Rp07jqqqsA6yLBL7/8cr/avuKKK8jKyopovEqNBjGhFgKu+A7LWhIL8ZgWaK6OUlRKKaWUGio0weqjRYsWMX/+fBYtWtTl+kAg0O9jBIPBDo+///3vc/3117Ny5UrWrVvH9773PSAyCdZll13Gq6++2q82lBqNYrtIsEgdC4CpKRn8gJRSSik1pESiTPvgeeXHsGt1ZNvMmQWn/q7HTRobG1myZAnvvPMOp59+OrfccgsAixcv5uc//zljxoxh/fr1vP766wQCAS688EJWrFjBjBkz+Ne//kV8fDxvvfUWP/zhDwkEAhx66KH89a9/JTY2lqKiIhYsWMAbb7zBTTfdxPnnn99+3PLycgoKCtofz5o1C5/Pxy9+8QtaWlpYsmQJP/nJTzjttNP43ve+x5o1a/D7/SxcuJAzzzyThx56iGeffZa6ujp27NjBRRddxC9/+UsAjj76aEpKSnp83u+++y7XXnstACLCe++9R2JiIjfddBOvvPIKIsLPfvYzFixYwOLFi/nlL39Jamoqq1ev5rzzzmPWrFn8+c9/pqWlheeee44JEybw4osv8pvf/Aafz0d6ejqPPvoo2dnZHY57/vnnc/HFF/PVr34VsJLB0047jXPPPbdv51SpAWKMIc548bkTOyyPzSiGzdC0ZwuJBYdEKbqhraymme88/AnnFzdzwemnRjscpZRSasBoD1YfPP/885xyyilMnjyZ9PR0li9f3r5uxYoV/PnPf+aLL74ArGF93/72t1m3bh3Jycn85S9/wev1ctlll/H444+zevVqAoEAf/3rX9vbSE9PZ8WKFR2SK4Drr7+e448/nlNPPZXbb7+d2tpaYmJi+NWvfsWCBQtYuXIlCxYs4NZbb+X4449n6dKlvPPOO9x44400NVkXQ126dClPP/00q1at4sknn2TZsmV9ft633XYb99xzDytXruT9998nLi6OZ555hpUrV/LZZ5/x5ptvcuONN1JeXg7AZ599xr333su6det4+OGH+eKLL1i6dClXXnkld911FwDz58/no48+4tNPP+X888/nD3/4wz7HXbBgAU888QQAPp+Pt956qz3ZUiqavP4Q8eLFuBM6LE/OnQBAQ7mWau/OIx9t5wcVP+OC5edT/+kz0Q5nSAuGDLXNvmiHoZRS6gANrx6sXnqaBsqiRYvae3LOP/98Fi1axCGHWL9SH3bYYRQXF7dvW1hYyJFHHgnARRddxJ133sn//M//UFxczOTJkwG49NJLueeee7juuusAK6HoyuWXX87JJ5/Mq6++yvPPP8/f/vY3Pvvss322e/3113nhhRe47bbbAPB6vWzfbpWM/p//+R/S09MBOPvss1myZAnz5s3r0/M+8sgj+cEPfsCFF17I2WefTUFBAUuWLOGCCy7A6XSSnZ3NMcccwyeffEJycjKHHnooubm5AEyYMIGTTjoJsHre3nnnHQDKyspYsGAB5eXl+Hy+Dq9dm1NPPZVrr72W1tZWXn31VY4++mji4uL22U6pwdbkCxCPl5qYjglWTlYWtSYBX1VJdAIbBtZ8sYkfO1cB4HvvDjjo7OgGNITd8MRKtq1Zwu+PSWDyiZeDdHepydFtS0Uj1z++knNmJnPJIdmQlN37TkopNQi0B6sX1dXVvP3221x55ZUUFRXxxz/+kSeeeAJjVwtLSOj4RUs6/UfY+XFXOrcRLi8vjyuuuILnn38el8vFmjVr9tnGGMPTTz/NypUrWblyJdu3b2fatGkHHE+bH//4x/z973+npaWFI488sscCHwCxsbHt9x0OR/tjh8PRPkfte9/7Ht/97ndZvXo1f/vb3/B6vfu04/F4OPbYY3nttdd4/PHHu01AlRpsTV4/CXihU4JVMMa6FpajbluUIhvagiHDmIqlACzhINJqVkNLbXSDGqIqG1t5aeV2Hnb+hskfXA8rH412SEPW/e9vZXfZFs5+538wdx8CLTXRDkkppQBNsHr11FNPcfHFF7Nt2zZKSkooLS2luLiY999/v8vtt2/fzocffgjAv//9b+bPn8+UKVMoKSlh06ZNADz88MMcc8wxvR771Vdfxe/3A7Br1y6qqqrIz88nKSmJhoaG9u1OPvlk7rrrrvak79NPP21f98Ybb1BdXd0+D6qtd60vNm/ezKxZs/jRj37EoYceyvr16znqqKN4/PHHCQaDVFRU8N5773HYYYf1uc26ujry8/MB+Oc//9ntdgsWLODBBx/k/fff55RTTulz+0oNpObmJpxicMR2nIOVEuem3JFNnF4Lq0s7a1uYxSYCjliWZC7AQQi2fxTtsIakz0prOdKxmkSxfnwKfvrvKEc0dH28tYqz4j4lUbxIawOseDjaISmlFKAJVq8WLVrEWWed1WHZOeec0201wSlTpnDPPfcwbdo0ampquOaaa/B4PDz44IN8/etfZ9asWTgcDq6++upej/36668zc+ZM5syZw8knn8wf//hHcnJyOO6441i7di1z587l8ccf5+c//zl+v5/Zs2czY8YMfv7zn7e3cdhhh3HOOecwe/ZszjnnnPbhgRdccAFf+tKX2LBhAwUFBTzwwAMA3Hvvvdx7770A3HHHHcycOZPZs2fjdrs59dRTOeuss5g9ezZz5szh+OOP5w9/+AM5OTl9fj0XLlzI17/+dQ455BAyMjLaly9btowrr7yy/fFJJ53Eu+++y4knnkhMTEyf21dqILU21wPg9CTus64hNo9k3y69FlYXSqqaGCt78CWNxVP8ZQLGgX/70miHNSStKqtjtmMrAA8ETsVR+qGW/+9CTZOPLRVNnJ+6ni0mnx2eybDx9WiHpZRSAIgZQl8G5s2bZzoXYVi3bl37cDe1fx566CGWLVvG3XffHe1Qokb/flQkfbxiOYe/cDxb599G8Ynf6rDu0bt+xoVVd8ENGyCp7z86jAYPf7SNQ14+nfETJvPuvLuZ+PixpBfPJvXyJ6Id2pDzvw8v46JtP+XLSRVctPt8FsXcChc+DZNOjHZoQ8qn22s46y//Zf2Y6/jEMYcKfxxnh16HH28HV2zvDSilVASIyHJjzD7FDQa8B0tEThGRDSKySUR+PNDHU0qpgeJrtobmxsQn7buy/VpYOg+rs20VjYyT3cRmjmdSViIbTCHOyg3RDmtIKq1uYQrbcObNpip5OiEEdizvfcdRZnd9Kwm04GnZA+mTeaNpPAS8kb+UywgSDBn+/v4Wlm7VHlGlBtqAJlgi4gTuAU4FpgMXiMj0gTym2uuyyy4b1b1XSkWa3x4i6I5L3mddbIZVEbNp95ZBjWk4aK7dQ4J4kbTxFKbFs5kCEpq2g3/fIjej3c6aRtIDeyBtPIU52ZQ6CmDnimiHNeRUNHgZL9YlQuJyp7ImNM5asWdtFKMa2h77ZDu/eWkd37j/I2qa9DIASg2kge7BOgzYZIzZYozxAY8BZ+5vI0NpGKMaPvTvRkVa0NsIgCdh3wRrTJ59Lazdei2sfTTstP5NzsPtdFCTONEqdFH5RXTjGmLqWvx4vBU4CUJKAZOyk1gTyMdU9FzBdTTaXd/KBIeVYGUWz6TMZBJwxsGedVGObOh6YaX1PgyEDG+s2x3laJQa2QY6wcoHSsMel9nL2onIVSKyTESWVVRU7NOAx+OhqqpKvyyr/WKMoaqqCo/HE+1Q1AgSbLUSrNj4fROsvKwMKkwy/sqSQY5qGGi0P9sTswAIZUyxHuuX4Q521LSQL5XWg5SxTMpK5ItgPtRsA19zdIMbYvY0eJkQa/Uo54+biNvlYo+nSHuwuuELhPh0ey1Xzi+mYEwcr63ZFe2QlBrRon6hYWPMfcB9YBW56Ly+oKCAsrIyukq+lOqJx+OhoKAg2mGoESRkJ1hdzcEqTItno8kis1bnYHXm9tqf3wmZACTmTsW33Ylz9+c4oxjXULOnwbs3wUotZHJcEm+ZfAQDVRshd050AxxC9jS08uWYBggm4IpLZmJmIpt8Y8nbszLaoQ1J26qa8AVDzMxPockX5KVVOzHGINv+C9v+C0d+X4uDKBVBA51g7QAKwx4X2Mv6zO12U1xcHNGglFLqQBg7wZKYfcu0J8a62OPMYmyzJljhgiGDx1dl/W9j92AVZ6eyxeRRuHMt3V9mffSpaGglX6qsB8n5TBAPm4w96KPiC02wwuyubyXXWQfx2QCMz0xgdUkeR/teg6YqSEiPcoRDy8Y91mfXxKxEWgNBFi3dzrbSUooePguCrdBaDyf9OspRKjVyDPQQwU+ASSJSLCIxwPnACwN8TKWUGhi+JuvfmK7TggZPPim+3RAKDmJQQ1tts4906gk4PGAnphOyEtlicqFqU5SjG1oqGlvJkhpMbBLEJhIf48KfUkwQB+g8rA4qGrxkUAuJVoJVnJHAx43Z9kodetrZxt2NiMCEzETmFo4BoHLFC1ZylToWVj4KAS18oVSkDGiCZYwJAN8FXgPWAU8YYz4fyGMqpdRAEX+TVTbbHdflen9SAS4C0FA+yJENXVVNPjKkDp8nHUQAKE5PYKvJIa6xFIKBKEc4dFQ0tJLrrEfspAGgMGsM5Y5c0LL27fzBEFVNPsaEqjskWOtD9oAZndu3j80VjRSMiSMuxsnErERiXQ4829+FhCw45XfQXAXbP4x2mEqNGAN+HSxjzMvGmMnGmAnGmFsH+nhKKTVQnP4mvOJpTxQ6c6QVARCsLhm8oIa4ysZWMqgjGJ/Zviwl3s1udwEOEwCds9austFHjrPB+tJrG5+RwIZgHqZCE6w2lY2tGAOJ/o4J1h5SCbgStDplF3bWtlCQGg+A0yFMyEwku+4zKDoSiuaDOGDbB1GOUqmRY8ATLKWUGilcgWa8Et/t+oSs8QDUl+vQtzaVjT4ypQ5JzOqw3JdqvVZUaVn7NhUNXjKltn2uGtg9M8FcqN4CQX/0ghtC9tS3EouPmEADJO1NsECoiRsLlRujG+AQVF7nJTd1b1Xd2ZkOMoO7IXsmeFKs+X0lmmApFSmaYCmlVB+5gs34nF0PDwTrWlghIzTu0osNt6lqbCVD6nAlZ3dY7s6YZG+gyWibioZWxpjaDglWUUYCW00uEgpY5doVexparUQU2nuwUuNjGBPvZoezQP+mOgmGDLvrveSm7E2wDk3YA0DzmMnWgvxDYNcqCIWiEaJSI44mWEop1UfuYAt+R/c9WIWZY9jNGAI6RLBddUMLadQTm9IxwcrMzqPWJBCo0N6GNnUNDcSHGjskWOMzEtgSyrUeaOIAwO56L1nUWg8Sc9qXF2cksDGYA3Wlet2wMFWNrQRChpyUvT8OTXeWAbC5rdBzziyrkqAO2VUqIjTBUkqpPooJNeN3dd+DlZvqYYfJwFVf2u02o01LfQVOMR0KNwAUZyay1eTSulvnywB4/UFivNXWg7A5WHmpcZQ57FLtVZqMgtWDleWotR506u37rNme61etvchtyuu8AOQm7+3Byje78BknnzenWgtyZln/7lo9yNEpNTJpgqWUUn3kCbUQdHV/5Sa300GlK5eE5v263N+IFqjfbd1JyOiwvDgjgS0mB0e1zsECq9pi52FvYBUkSEnPpsGRrD1YtooGL8Wx1nWdSNrbgzU+I4EVzfbfmSaj7crrWgA6zMFK8pZTTgabKqx1ZE23Cl1ogqVURGiCpZRSfRAKGTzGS8jV/RBBgOb4fFICFVqQwGYarbkedCpyUZSRwNZQLnEt5TqcC2v+VYbUWQ8SMzusK85IYLvkQaUmWGBdZHhsTIOVEMTvvaBwcUYiW42dcOlr1a69BytsiKDUbqPancOmCjtRdcdBxmRNsJSKEE2wlFKqD7yBIPHixXRzkeE2gZRCnISgrmyQIhvaXM2V1p2EjglWYqyLylh7/ocO56KioZXM9gSr83DKBNb7szHagwXAngYv+a46SMgEh7N9eXFGAi14aInL1R6sMLvqvMS4HIyJd+9dWLuNloQCNrclWGANE9QES6mI0ARLKaX6oLE1QAK9J1ju9GIAWis0aQCI9VZYdzr1YAEEx7SVatfEoe16YYCVOIQZn5HA5mAO0rgLWhuiEN3QsrveTkY7JaJFGVbvckVsoZZqD1NeZ1UQlLbr9/maoakCkzqWspoWvP6gtTxnFtSXQUtN9IJVaoTQBEsppfqgscVPAl4csUk9bpeQMxGA2h16YdgWX5DkUC1BcVvX2ukkJtN6rTTB2jtE0HhSwRXbYV1xRiKbjVYSBKvkeFVjK2mhmn0SrPgYFznJHrZLvvU6GROlKIeW8rqWDiXaqd0OQFzmeIyBrZVN1vLMada/e9YPcoRKjTyaYCmlVB80NTfhkhCO2MQet8vIH4/XuPHu0up4VU1WT4M3Nh3afj0Pk5+TSblJw79HexsqG1vJc9Xvc0FmsHpmtrYnWKO7KEhVYyshA0mB6vaLDIcrzkhgvT/LKjneNv9vlLN6sMKqn9oJVlq+9QPHpj32MMGsqda/FesGMzylRiRNsJRSqg9aGusBcHt6TrDGpSdSYnJ0XhFQ1egjgzoCcRldri9OT2BrKAf/Hk1GKxtbyXXW79MrA5CZGEtlTD4hZNQPfdtd34oQwuOr6vK1Ks5MYHmTVhJsE7IvMpzToQfLutZVzrgpiLB3HlZKIcQkag+WUhGgCZZSSvWBt8maH+NKSO5xu7SEGMocucQ3bB2MsIa0yka7Ml4XvTJgVxI0ubhqRnevDFhDBLOo6VB2vI2IkJ8xhipn1qgfIrinwUsaDThMsMNFhtuMz0hgtdf+exvlyShAZVMr/qDpNERwGzhj8aTmUjAmjs0V9hBBEcicoj1YSkVAvxIsEfmjiKwXkVUi8qyIpIat+4mIbBKRDSJycr8jVUqpKPI3WhO/Y+PH9LidiFAXN44xrTshGBiM0IastnlFri6GcgEUpVvXworx10Fz9SBHN7RUNrQyJlTdZa8MtF03LG/U98rs6VBtcd/EvTgjgR0mnZAzdtQno2BVEISOJdqp2QapY8HhYEJmIpv3hFUSzJymPVhKRUB/e7DeAGYaY2YDXwA/ARCR6cD5wAzgFOAvIuLsthWllBriAi21AMQm9ZxgAQRSi3ERgLrtAxzV0FZR30I69cSm7tvTABAX46Qmbpz1YJR/GfY21hBjWiEpt8v1xRkJrPNlYao2j+riDbvrvWSLXeWui96+4owEDA4a4seN+r8pgJ21bQlWpyIXqWMBmJiZyJbKRkIh+28qayo07Rn1P3go1V/9SrCMMa8bY9p+ov0IKLDvnwk8ZoxpNcZsBTYBh/XnWEopFU2BZutXc08fEixX5iQAWneP7t6GxtoKXBLCldx1rwxAKG2CdWcUfxlu8QVJ8Nnl7LtIGgDGZ1q9feJrhMbdgxjd0LKnoZUJsXYPVnLePusL0+JxOoRd7gIdIohVQRAgLzW8yMU2GGP9sDEhKxGvP8SOWmu7vZUEdZigUv0RyTlYVwCv2PfzgdKwdWX2MqWUGpaM1/pSFxOf2uu2yQVTAKgpG91DbXx1u6w73czBAkjInoAf56hOsCobW8mSWutBNwlW+xBBGNWJw576Vopj6wHpcg6W2+lgbFq89VrVlEDAN+gxDiU7a1uIDb/IsLfeus6V3YM1IdMq2tNe6EIrCSoVEb0mWCLypois6eJ2Ztg2PwUCwKP7G4CIXCUiy0RkWUVFxf7urpRSg8NrVRHs6npOneXlj6PBxOHdNbqvhRVqK5Od0H2CNS4zme2hrFFdqr2isZVs2oa9dT1EsCjDqrgIjOpkdE+Dl0JnjXUxZldMl9sUZySwpjULTNBKskaxnbVe8lPj9l5k2C7RTqrdg5VpXTi9vdBFcj7EJus8LKX6ydXbBsaYE3taLyKXAacBJxjTPjB8B1AYtlmBvayr9u8D7gOYN2/e6B1YrpQa0sTXYN3p5ULDAEUZiWwx2SSP8lLt0mT/aNZDD1ZRegJbTQ55FRtxD1JcQ01lQ+veeUXdFLlI9rjxJeThD8XgHsUJ1u56L9kx1ZC07/DANsUZCSzbnAZOrKIgmZMHL8AhZmddS8fhgW0Jp51gpSXEkBrv3tuD1V5JUBMspfqjv1UETwFuAs4wxjSHrXoBOF9EYkWkGJgELO3PsZRSKppcvga8xIKz9zQgIdbFLlc+iY0lAx/YEGWMIdZrJ1gJmd1uV2yXanfXbYVQaJCiG1oq7CGCoZhE6OFC1kWZiex05o3aHix/MMSehlYyQlVdzr9qU5yRwDq/naiO4uGUYA0R7FDgotq+JEL6eMCqejoxM3HvxYYBMqfqHCyl+qm/c7DuBpKAN0RkpYjcC2CM+Rx4AlgLvAp8xxgT7OexlFIqalz+BpodCX3evj5+HKn+3aN2DkhDa4DUUC1BcUFc94VBCtPirWthBb3QsHMQIxw69tRbPVjSxZyicMUZCWwM5o7apGFPQyvGQLK/oscEa3xGAvUk4POkj+qy9r6AlZB26MGq2gxxaR3ekxMyE9lSEZZgZU2D5kpo1GkbSh2o/lYRnGiMKTTGzLVvV4etu9UYM8EYM8UY80pP7Sil1FDnDjTQ6uy+d6GzYNoEnIRglA4TrLCvV9Qam2ENO+qGx+20SmrDqO2ZKatpocBVhyR3Pf+qTXFGIuv9WZiaEgj6Bye4IWRXXQux+Ij113U7Vw2g2J5XVBM3DipH598UWMMpjYH88ASregukT+iw3YSsBCobfdQ22z8GZWqhC6X6K5JVBJVSasTyBBrwuXqff9XGnW2VO24s+3ygQhrSKhpayaOSQA9zZdpIxkTrzihNsEprmsl21HVbQbBNcUYCW0K5yCgt3rCz1kuO2NdnSu6+MHF2koc4t5MdzoJR+zcFtJdez+ucYKV1SrDaKwnahS6y2kq16zwspQ6UJlhKKdULYwxJoTp8sb1fA6tNWtFMQkaoLV09gJENXbvrveRJFZJS2Ou2KVljaSEWM0p7G3ZUN5Mequq2wEWb8ZnWfDVgVCYOu+q85LYnWN33YDkcQlFGAhsDOdZQt5aaQYpwaNleZU2NL0yzEyxfM9Tv2KcHa2KWnWC1zcNKyrWqpWoPllIHTBMspZTqRYs/yBjqCcSl93mfCXmZlJkMArtG55eU0qpGcqUaT8bYXrctzkxkSyhnVJZq9wdDBOrLcRsfjCnqcduxafFsZfQmWOV1Xsa6aq0HPfRggZU0rGjOsB6M0sR9S2UTbqdQMCbeWlCz1fo3bXyH7QrGxBPjdHSqJDhNe7CU6gdNsJRSqhfVja2kUQ/xGX3eJz81ji1SSFzN6EsaAGoqyokVP+4xvSdYk7IT2WpyCY7C4g3ltV7ysYsJ2KWzu+NxO0lMzaTRmQKVXwxCdENLaU0zk+Ps69H1MAcLYHJWIksb7B9ERmmhi62VjYxLT8DpsOdAVrVVEOzYg+V0CMUZCXsTLLAuOFyxDoxePUepA6EJllJK9aK+rpoYCeJM7HuCJSJUxxeT5t0OwcAARjc0tVaWWHdSCnrddnJ2EltMDrGNZRBoHdjAhpjSmmbGin1B5l56sMCaL7NVCqFi9F3EuqSyiSkxlVbZ/x7K2QNMzkmi1GRixDVqqy5uqWiiOCOs8mlbifZOc7DAKnTRPgcLrB6slhpou1i4Umq/aIKllFK9aKzeBYA7qfvrOXXFN2YybvyjsiCBu67EupNW3Ou2WUmx7HAV4TDBUdczU1bTTGFbgpXae2/f1JwkVrXmYfasHVW9C8GQYVtVM2Mp32eIW1cmZycRwEVDfMGo7MFqe73GhydYe9ZZF2j2JO+z/YTMRLZVNdEasK+ok6WVBJXqD02wlFKqFy21uwHwpPZchKCz2LzpADTtWBPxmIYyfzBESst2DAJjek+wRARfuv2FbpRd4LS0uoVix25MUh64Pb1uPyUnibWhAqS1AepKByHCoWFnbQu+YIhM/44ue2A6G5sWT6zLwU732FHZ29f2eo3PDEuwdq2BnJldbj8xK5GQgW12YQwytZKgUv2hCZZSSvWiucbqYUjN6HneR2fp46wvMzXbRlclwfJaL+NkF81xOX1KGgAS86fix4nZPbrK2pfWNDPNVY5kTu7T9lNyklgfsiszjqJkdEtlEx5aiffu6VMPltMhTMxKtF6rqk3gbxmEKIeODbsagL0l2Am0QuUGyO46wWov1d5WSTAxy7oYsfZgKXVANMFSSqleBOt2ABCX1vt8onDjC3IoMxn4R1klwa1VTRTLLvwpvfdetZmYM4ZNoTx8O0dXb9/GXQ0UsQMypvRp+4lZiWwSeyjhKEpGt1Y0Mkms9yEZk/q0z+TsJJY254IJQcXo6olZtaMOh8D0PHs44O7PIRSA3Nldbt82V0srCSoVGZpgKaVUL1wNO/Dj6vU6RZ3lpcSxlQI8o6yS4BfldUyQnXhypvZ5n8nZSWwwhaOqB8sfDNFYsY040wKZfUuwYl1OMjMyqXJmwZ61Axzh0LGlsok5MXaC1U0vTGeTs5P4sMnudd49el4rgFVltUzKSiI+xmUtKPvE+rfg0C63T4h1kZfi6VjoQisJKnXANMFSSqlexLXsosaZDo79+8h0OISquGLSW0ogFByY4IagirKNJEkLnsI5fd5ncnYiG0Jj8TSXQ0vtwAU3hJRUNjHJ2Ncmypre5/2m5CTxhSkcVUnDuvJ6Dk/YBa64PhVOAetvapvJJuT0jKrePmMMq8vqmFWQsndh6cdWgYseqnpOyEpk056wUu2Z08BbBw27BjBapUYmTbCUUqoXyb5dNMTmHNC+3rSpxOCD6q0RjmroCu2y55z1sacBID0xlp2x9hfnUTKca92uBmY5tlrFQHJm9Xm/qdlJrPTlYSq/gKB/ACMcGkIhw+c765np2AZZ08Dh7NN+k7OTCOGgJnEC7B49Q0931LZQ1eRjTluCZQyULIFxX+pxvwmZiWyuaMS09VhpJUGlDpgmWEop1QOvP0hGsBJ/Yt4B7e/Os5KMptLPIhnWkOX1B0mpXUcIh/VleD+Ytsplo6S34bPSWmY7SjAZU3q9rlO4tkIXEvJbBRxGuC2VTbT6fBS0rOt2iFtX8lPjiI9xss1VPGr+pgA+2FQJwLyiNGvBnnXQuBvGH9fjfhOyEmn2BdlV77UWaCVBpQ5YxBIsEblBRIyIZNiPRUTuFJFNIrJKRA6O1LGUUmqwbK+oJVeqkNRxB7R/xvg5BI1Qu/XTCEc2NK0tr2cuX9CQOhViEnrfIUxa3gQaTBxmlAx9W761knnOTTgKDtmv/abmJLPBjJ5CF8tKqpksZbiDLfuVYDkcYl03zJ8PzZWj5qK5izdUkJPsYWpOkrVg42vWvxN6SbDsku6b99jzsBIzIT5de7CUOgARSbBEpBA4CdgetvhUYJJ9uwr4aySOpZRSg6lq23pcEiI2t+8FG8JNyc9ki8kjuGt0DFH6ZEsFBzk24R53xH7vOz0vhQ2mkNadI7+sfbMvQOuutSSbeiiav1/7FoyJo9xdQBDnqEiwlm6t5vg4+wLUhYft177T85J5v84uTjMKhgn6gyGWbKzkmMmZiIi1cO3zkHdwj/OvACbapdo37WnYuzBz2qi6HIBSkRKpHqzbgZuA8FIzZwL/MpaPgFQR2b+LyCilVJTVl1lfYNPH9X2OTLjs5Fg2O8aRWDs6htmUrfmARPESP2n/kgawvgyvDxXirFg74iuXfby1miOwv/CPO3K/9nU4hOLsNMpcY2HXqgGIbugwxvDB5kpO8ayzrn81Zv96kmfkpfBpqz28dxQko+9vrKChNcDx07KsBXvWw85PYcZZve6bmRRLksfFpoqwQhdZU60LNY/w96NSkdbvBEtEzgR2GGM6TzDIB8IvM19mL+u8/1UiskxEllVUVPQ3HKWUiij/buvX26SC/ZtP1EZEqEmaTJqvHLz1kQxtyGlsDZC5+31r/lUv8z26MjErkXUU4/Y3QE1J5AMcQt5cu5uTXJ8Sypi830kDwNScJFYGxmHKR3aC9fnOeurq65nW+hlMOH6/95+em0w1yXg9mTAKepEfW1pKRmIMx02xE6zlD4LDDXMu6HVfEWFydhJf7AqvJDgVWuuhfscARazUyNSnBEtE3hSRNV3czgRuBn5xoAEYY+4zxswzxszLzMw80GaUUmpAJNWuZ48rd7/nE4UzWTMACI3wuUUfbq7iBFlGY+YciE/b7/09bicNqXYiO4J7ZoIhwydrN3OYrMMx5dQDamNKThKf+sciTXtGdBntV9fs4jjnZ7iCLTDt9P3ef0pOEg6BnZ7JUD6yC81srWzirfV7OOeQAmJcDmisgBX/gpnnWPOp+mBqThLrd9WHVRK0Lx+ghS6U2i99SrCMMScaY2Z2vgFbgGLgMxEpAQqAFSKSA+wACsOaKbCXKaXUsNDiCzLR/wXVqX0vN96VxLHW9aBGeqGLpZ98xAzHNuLnfv2A2/DkzyKAA0Zwz8x7X1RwWPNinARh5rkH1MaMvBQ+DxVZD0Zo4hAMGZ7/bAdXJn0MCZkwbv+HnXrcTiZkJvI5xVC5AXzNAxDp0PCHV9cT43Twzfn25Q7e/CUEfXDUDX1uY2pOEvXeAOV1diXBtkqgWuhCqf3SryGCxpjVxpgsY0yRMaYIaxjgwcaYXcALwCV2NcEjgDpjTHn/Q1ZKqcGxduNG8qUSR37/iqAWFk2i3sSP6FLtdc1+8jcvIogT1+xzDridyQWZbArl4ytbGbnghphFH5dwuftNQtkz9+v6V+Gm5yWz1thDC0doMvrG2l1QU8LB3o/gkMvA6TqgdmbkJfNBYz6Y0Iidh/XQB1t5Zc0uvnPcBLKSPLDlXVj5KHzpu5A5uc/tTM1NBmDDLrvQRXwaJGRpD5ZS+2kgr4P1MlYP1ybgfuDbA3gspZSKuJ2fvQVA3qxj+9XO5JxkNphCHCP4V+BnPvqcc+UdGiaeAUkHdlFmsObMfG7GYUboEMHtVc3wxatMoBTHl78PbZXe9lNirIvsjAx2u/Nh18hL3I0x/PXdLXwv4R3rwsLzrjjgtqbnJfNeoz0FvHxlZAIcQj4pqWbhi2s5YWoW1xw7Eaq3wJOXQfpEOOam/WprcrZV2n3drrD5ollTtQdLqf0U0QTL7smqtO8bY8x3jDETjDGzjDHLInkspZQaaLGl79Mk8SQW719p6M4SYl2UxYwnrXHjiKzG1eIL0rjkfhLFS+rx1/WrrWm5yXweKia2ZQ807I5MgEPI/722ju+4niOYXGjNjemHGfkprA4Wj8ghgh9urqKydCNnh15DZpwNyQd2oW+A6bkp7CQdf2zaiEuw/MEQP312Nfmpcdz1jYNw7voMHvwqYOAbT+z33NGUODd5KZ69PVhglWrXSoJK7ZeB7MFSSqlhq77Zy+zmj9mZeugBD00K15w6lbhQE9SV9r7xMPPw6x9xefApaguOh7y5/WprTEIMu+LtIU0jrBdrxfYa4j9/lDmyGedxP+n339XMvGSWtRZA7XZoqYlQlNHnD4a45cW1/Dr+MZwOB5xwwHW0AKsHC4TdCVNGXDL69/e3smV3LX85uIz4126Av59g9fhd+h9In3BAbU7NTWZ9eViClTUVfI0j8rNLqYGiCZZSSnVhxXsvkSPVuOYcWBGCzpy5VqGM1h0j6yK6G8rrKVx6C7GOIKln/19E2nTm2fOSRtCX4abWAL9f9Do/cT9GYOyRMPcb/W5zZn4Kn5si68EImof15zc3MqXiVY4PfYgcdQOkFva+Uw/SEmLITfGwXsZbF80NtEYo0uhas6OO29/4gocy/82c/34PPn0UDroYrloMOQdemGdKThKbKxrxBULWArsK6kidv6bUQNAESymlumBWP0kzHoq+3L9hXG3Sx1uVBGu2rIhIe0NBvdfPG//8Nac6PsY3/0fWhWAjoDg/j20mi+DOkZFghUKGm5/4mJ83/ZZ4twPXmXcd8NyrcDPykvdWEhwhvX2vrC7nzXff5o+ef0DhETD/+oi0Oz03mY9aCiAUgD3D/3IJVY2tfOffK7jc8w7zG161Xqebd8Dpd0BCRr/anpqTRCBk2Nx2weFsu1T7rpH145BSA0kTLKWU6qSkvIKDG9+lJPN4pB/Xvwo3qTCPbaEsfDtHxpeU1kCQv//9Hv635QGq848n4bi+l4LuzXQ7cQjsGP4JljGG377wKed88SNmOLbh+vo/DnjoVmep8THEj8mmxpU5Inqw/ru5kj89/gqLPL8nJiEVzv1HRIbngvU39WZtrvVgmPeM1rX4ueKhT5hbv5gfh+6HiSfC8T8HV2xE2p+a06mSYGyS9eOJJlhK9ZkmWEop1cma/9xFijSTe8I1EWtzbFo8G2UccTXDv9yx1x/k/r/dwXcqfkN96jTSLv4nOCL338mMvBTWhIqIbdgG3rqItTvYfIEQv35iCScs/w5HO1fDGXfC5JMieoyZeSmsNUXDPml4dc0ubn/w3zzpXkhKrCAXPwcp+RFrf1Z+CiWhTAIxSbBzZcTaHWy7670s+NuHHLT7Ke5w3YkUHArn/cuadxUh4zMTcDuF9eGFLrJnaoKl1H7QBEsppcJU1TVwSNnDbImfw5ipR0esXYdDqEyYRLq3FPwtEWt3sO2qbeGx23/It/f8moYx00j/3xfBkxzRYxSMiaPEPdE+4PD8Ulde18KNf1nExZ9/k0NdGzFn3YccfEnEjzMzP5ml3rGYyi+gtaH3HYaYYMhw++sbeGfRbTzi+jVJyWNwfPMNq7BCBM0tTAWEPQlTh20yunRrNefe+RaX1NzFQueDyKST4aJn9rtSYG/cTgcTMhNZH16qPWc21Gwdln9jSkWDJlhKKRXmwyduI1eq8Rx/Y8TbDmRMw0EIM0wv2vnOslVsvONULmv+B3sKTyHjO69bFyKNMBFB8qw5a+z8NOLtDyRjDC+vKmPRHT/ij1XfJy8ugOvyl5A5CwbkeDPyUvjMTEAww+61Wldez2X3vML097/N79334xp3OM5vvQkZEyN+rKxkD3kpHtZRbBVrCPojfoyB0uwL8P9eXsdv//4ojwRv4hvyunUB4fMfhdjEATnmtNzkjqXa24pmaKELpfokMoOblVJqBNi0bTvzy+5nc9I8JhxyWsTbjyuYDduhYdtKkvMPinj7A6Wywcsri+7iqzvuIEF8VBz1a3KO+25EhwV2VjSuiO07ssjfvhTnlwfsMBG1o7aFfz7+JKft+BNfcWylsfhkEs+9BxIzB+yYM/KTWRmy53SVLYPiyPW6DhSvP8idb66j6YO/c5frSZLcrZgTfo3zSwP7NzV3bCrvbSvkhGAr7F4DeUP/PfjuFxX8/tn/8vWGR3na/SaSmAVfew4mHDegx52Sk8Szn+6grtlPSrwbcuzKnrtWw9gjBvTYSo0EmmAppRRWpbftj91AsTQj5/4pIlXeOssrnk7zB7HUb1tJ8jBIGrz+IK+89jJFy37NxWygPGk6iRc9SGZOZIdvdWV2QSorQxPIKV1G5GaXDIy6Fj+PvvoeuZ/ewc2O92jyZBL86v0kzv76gPwdhctK8hCfksmeUD5ZO5YP6LH6KxQyvPjZDt555Un+1/sA01yl+AuPxHnabXsr1Q2guYWpPLi6iFs8QOnSIZ1grSuv5/9eWUPu5sd5zP00Se4m5JDLrGuCxY0Z8ONPyUkCYP2ueg4fnw7J+eBJtRJTpVSvNMFSSingrRf+xf+0vM7aCVcyvWjOgBxjal4qG0wh2UO8pHYwZHj9vSXIe3/kzOB71DtT2X3M/5F71BUD2sMQbk5BKveFJnJG04dQXw7JuYNy3P1R7/XzzOKlJHx0O98yb4PTScPB3yHppJ9YldcGycHjxrB800ROLfsEjBnwpG5/BUOGV9aU8/7rz3J2/b+4w7Eeb1IBfPVh3NNOH7R45xSkUk463rgcPKUfw+H/OyjH3R9bK5v4y5trca9exC3uF8h3VxAqOho55f/169pW+2uaXUlw/a4GK8ESsXqxhumcSKUGmyZYSqlRr6S0lDmf/pLSmGKmnX/rgB1nTEIMb7onM73+bQgGIlaCOlJCIcOSjz+i9e3fc5JvMQGJYefMqyg4/WcRL2TRm5wUD9vipkEA2LEMkk8f1OP3pKKhlSfe+oiUT//KBbyJUwx1My4i/ZSf4I5CIjhv3Bg+/LyIU0PvQl1Zvy/MGymtgSDPLC/j43ee5/zmf/N7xzpa4rMIHfsHPIdcCm7PoMYzqyAFp0PYFj+TKaVLB/XYvVmzo477315H4vrHuc71AvnuSgK5h8Dxf8Ux8cRBT5qzk2NJiXN3rCSYMwuWPTgkP7uUGmr0HaKUGtWCIcO2R77Hl6We+gVPIgP8pa8hfQ6xe16GivWD+ot0TwLBEO/897/w3m0c71uMX9xsm3wZxWfeTEFiVtTiShh3MP7NLlylS5Fp0U+wSqubeeb1Nylcez9XyQc4xFA/+euM+crPSE8dG7W45hWl8WRoivVg2weQen7UYgFobA3w74+2sum9Jzjf/wwXODbhjc8kdOzviTvkskFPrNrEx7iYnJ3E0uAkptS9CfU7ITkvKrGAVRDlwy1V/OPtNYwteYqfuF4mx12FP/cQOOFvuCacELXeSBFhak5Sx0qCuXMh0DKkPruUGqr6nWCJyPeA7wBB4CVjzE328p8A37SXf98Y81p/j6WUUpH25jP3c3LrO6yb+l2mTTx0wI/nKToc9kDTlo9JiPKXFK8/yFuL3yb2ozs4PvABfnGzdeIlFJ1xM+NTcqIaG8C8ibms2DiRuZsWExvZy0ftlw27Gnj15WeZUfIg1zpW4HN6aJ51GSnHX8eYKCZWbabmJFHiLqbZmUL8lsUwJzoJVlVjKw8v+YLajx7m4tALXOUox5tciDnqj3gOviRqiVW4g8am8tLKQi4WYNt/Yda5gx5DKGR4Y91u/v32cg7Z/QT/53qTFHcjgYIj4Nj7cU84fkgM85yRl8KjH2/DHwzhdjqgYJ61ouwTTbCU6kW/EiwROQ44E5hjjGkVkSx7+XTgfGAGkAe8KSKTjTHB/gaslFKRsnnrVuat/jXbPJOZeu4vB+WYRZNmUvtxAi2bPyLhy98clGN21tQa4K3Xnift03v4qllOi8RROvUKxn71JiYmRz+xavOl8em8EJzJYXuehubqASkJ35PlJVV88Mq/OaL8Ya51bKDZnUzDoTeSdNQ1xCSkD2osPXE5HcwpTGPZnlkcveXdQZ+HtaO2hX+9swr3pw9yibxCltTSnDkDjrsVz7Qzh9RwsvkTM3js47H4U8bg3vTmoCZY/mCI51fu5IV33uek2ie5z/U+MS4/oSlfhfnX4io8bNBi6Yu5Y1P5xwdb2bCrgZn5KZA2HuLSrCG78y6PdnhKDWn9/dS7BvidMaYVwBizx15+JvCYvXyriGwCDgM+7OfxlFIqIvyBILsWfZtCacZxwd8RV8ygHHdWYSorzASml68YlOOFq21qZfFLiyhcey9nsI4GRzLbZl3H2FOupWiQk5e+mJiVyGrPwUjwKdiyGGaePeDHNMbw/oZyVr/yACfWPMb3HWXUx+XQfOStxB9xecQv6hop8ydl8GrJFI72L4GqTZAxacCPuXF3A/9+cym56//B9xxvkehoobngaDjuB8SPP3ZI9MJ0duTEDMThZHPSoUzd9CaEQgNeuKXFF+SxT7azZPFrnO19moecn2BiXMicC5Ajv49zEM7VgZhbkArAZ2W1VoIlYvVilS2LbmBKDQP9TbAmA0eJyK2AF/ihMeYTIB/4KGy7MnvZPkTkKuAqgLFjoz/UYqgwoRBNTfU01lbSXFdFc1MDrc0NhHzNhHzN4GvG+JrB34wEWggFA5hggFAogAkGERPEQci+BTE4MOLA4MSIg5C4MOIAcSJOJ+J0g8uDuDwQE4fDHYcjJg6H24MzJh5nTByu2DhcsfHExiXYt0Ti4hOIdbuQIfgfqVI9eeOJe/iK77+sn3UjUweoamBXkjxutifO4Zjmh6FxDwzCHKc9tU3898UHmLLpAb4mJVQ7Mymd9wsKT7iapCGaMIA1DyRp/GE0bIwncctiZAATrGDI8MbKzWx/816+2vQMR0sV1UkT8R7/V5Lnfh2c7gE7diQcPzWLq16zh21temtAE6xPt9fw7OtvM6PkX/zE+T4up8E7+Qw49nri8+YO2HEjISXOzdzCVF5pmsXUptdh12cDVq69psnHv/5bwsYPn+Mb/me53LkWvycJOew6HEdcDUlDp7e4K4VpcaQlxLByey0XHj7OWpg/Dza+Ad468KREN0ClhrBeEywReRPo6lPgp/b+afD/27vvuLrq84Hjn+dO9iYEAgnZgUCWWRqjiXXEOqJ11q1trR2/qt271m612traWq17b41baxI1amKm2XsAAcLeXLjj+/vjXAhJyOTCBfK8X17vPet7nsPhkPPc7zhMB6YAz4vIsKMJwBjzAPAAwOTJk83RbNuXBPx+qipKqSkrpKFyNy3VJfjrSpCGPdg91bi9tbh99UT564kx9cSaRmLEz5E+o91vBD92/GIjgB1/e2plJ4AgGOztCZe1Rtu03QSwybH/6D3GiQc3HnHTGnx5bW68tgh89gj89ggC9ggCjkiMIxKckeCIRFyRiCsKmysKhysKe0Q0DncUrsgYXO4onJExuCOjrcTO4cThdOJwuLDbe/tTcULAGOuFARMIvoKf6bis7byZvdvt85n9Ph9qvb3lGRMIvpu9r+D6JhD8bKxt2jY3wc8muB0I7Xsx7Xtr/9z+at9+77s1T/Ytc7/wDRAwwf0Cxkh7PNb6HbY3Hco1UFdTxkmb/syOqDzGXPizw52NkPMOOx3WPkHLxndwT76m2/ZTWFbN8tf/xYSCx7lAStnjzqLkpLtIP/laknqoxq6rZuek89HGPM5c/ybOc/4a8kSn1RfgzSVrqFt4H+e3vskcaaAseRLeM/9F0uizemUtTGdGp8Xij8+mMDCcrDXPw/SbQlq+MYZFWyt4/915nLznKW63L8fncuMbfy22md8jKmloSPfXnU4ZmcoTH4zgFrcgm94OeYJVWNXEIx9voX7589zAPG62FdAamwYzfofzhOt6fETOYyUiTMhKYFVhzd6ZmZMBY/XDGnF6uELr93z+AI0tfpq8Puu91UdTUxPephq8jTV4mxvwehoJtDYHv2hvQrzNiK8Zm68Zm8+Dzd+M3d+CzfiwGT9240OC73b2zrMZPzb8iDF7/50GQIL/SfDPYNu0NQ8RAuIgIHaM2DE2O6Zt2mYHsaaxOcBmD77v/Sw2B9gd2OzWfLE7we5E7E5sdmva5nAhdgd2hxNv3BDSR0wgIapv/Nt12ATLGHPQK0hEvgW8bKy7qc9FJACkALuBjuPEZgbn9VuehhrKCrdQU7Kd5vIdBKoLcDUUEeMpIdFXQaKpJUX8pOy3XSMR1Eo8TfZYPI44yiMGUuqOJ+COh8hEbFGJOKMScEfH4Y6KxRERjcMdjTMiGldEDK6oaFzuKBwOR5cexmn8PrwtTbR6rJe3pQmvpxFviwd/axO+lib8rc3Wq8WqRTOtzRhvc3stmvXyYPd7cPg9uP0eor31uFo8uEwL7uArUlq78qMmYATrz4OVSPrE0Z4u+sWOHwd+sWPd4ls32gTfO063JQAARvbOo8M6gkEIIMYEPxtsWMmHDSvpsbF3mRDAFry9twUTlv2XS3BboWOZ5oDpcJL93vujZnGRcMV/rT/2PWx4/knsWZOAfPEWA7ohwdpUWMKG1+9l+p5nuECqKYoaTdmpvyNt6kVhOd6uOHPsQH70yimc4/kctv4PRp8dknLrPF7e+HAxziX3ca7/AyKlldKML+Gf8xMGDJkWkn30JBHhjNw0nlx6Ej/b/QSUb4bUUV0u1+cP8M7aYlb87znm1D7H7bZNeNzxtE77Ea6TbsIRvf+/ar3fWXlp3PO/eEqSppGx8ik45cch6Se2dnctjy5cR/yGZ/ia/S0G2SpoSRwJp/wLV/4l0Ee+1OhocnYi8zeWUVbvYUBsBAw+Eexuq5ZUE6zDCgQMdR4vFQ2tVDa0UNnYSk1tLZ7acgINZdBYga25EqenEndrNW5vHW5/PVGBRuKkiViaiJcmMmkiQrxHtW8PLrziwhe8J7K+hLful/zYCcjeaStJsrUnUtL+ZWWHL1k7fFFqTPB+xwS/yg8maXbTVrofu9n7dX/bl/pte3fJ0Q/J8LBvDqmX3MN548M38ufR6OpflFeB2cACERkFuIAKYB7wtIjcjTXIxUigdz104hh4W5op2bGOyl3r8JRswl69jfjGnaT5dpNAPYOBtkaOLcZJmS2VWvdAdsWMYHv0ACQ2DVd8OpHJGcSlZJGUNojo6Hh6QwMdsTtwRcXhiuqBb9aMwdvSRHNTAy3NDbQ0NdLqacTracTnacTX0oSvtZFAMJHD14rxeyHgh4AXAj5MwIcEpyXgg4AfMb72z3az/x8i6y+DBGs7pLPan+DnvZV5xkp3xGZtIR1SIZFgKTaQDmlR23yxBZO0tu3pUM6+yzpuQ/Bbob3l7l1u/eULbtuWELYta/+8d55gJY5tqeK+61r/k46JpexdTzqWh63D4rbt9/ZZkI6fOxTVMTkTMftOB4tq37vst6y9sLbptvT4wPJEpD1VlvbjNR2+daPD8rZpIWn0iaRl5RAOU4cm8yYTOXf3R+D3hqxWZuXGbRS8fQ+n1LzCaGlgZ9wJVJ7xYzLz+05NzP5i3A5cOXOo2PwgSSuewNbFBKu4ppm333+HtLX/5VI+BbFRMfwCIub8iIEDxoQo6vC4fGoWV386nZ/Yn8L2xdNw+m3HXFZji4+Xlmyl6OMnuLjlFc617aYxKh3fKX8iYvK1vbYv2pEYMzCO3PQ4Hmo5jV81/hG2vAtjzjmmstpq9p6dv4xRhc/xS/v7JDgaaM2YBqf+E/fIs3rs4dzd4ZSRqdzxziY+3lzBRSdkgisKhs6ELe/BnD+FO7ywCQQMFY0tlNZ6gq9mqqoqaakqgvpiHI17iPLsIc5bzgCqSZUa0qkjT+qIlpZOy/TipNkRS4srFp8zFp8zjYA7lkZ3HI3ueCQyHntkPI6oeJxR8bgionFFROOIiMLuirZaBzmjgq2EIoiw2Qj/uJ17BQIGX8DgCwTwBAw+nx9fawt+vw+f14vf14rf78XnbSXg9+L3ejE+L36/l4DPyxhXAsOH9r6+wgfT1QTrYeBhEVkLtALXBmuz1onI88B6rMdEfqcvjiC4c/1SSj5/GVf5WtKatpAeKGWwmPYkqpxEylxZbEqcjT9hMK7kbGLShpEyaARJaZlk2e30jsc99jIiOCOsWjhIC3c0SvW4SJedmqwziChagHfTuzhzzz3msowxfLpiFdUf/J3ZjW8xUVrYlnIqjrN/SvaIk0IYdfhccMIQXlw/kxs3vw1V263RzI7S+qJqPnvnSfILnuRrto14bJFU532d1NNvYWB8p12E+5wxA+MYPGQYiyqmMHPZw8iMWyAy4ajKKKvz8MLC5dhXPMzF5j1SpI76xNEETnuA6Lyv9Pq+aEfqupOy+dlL1fwoaSARn90Ho798VF9CtPj8vL2mlPnz3+PUmhf5m30xTocP78izYeatuAb3vVrQzuSmx5ES4+KjLeVWggUw8kx4+8dQuQ2Sh4c3wG7i9QcoqfFQWN1EYVUTBZWNVFeUYKp24K4vJM5TTAZlZEkZw6WKGVLVaeLU7I6jOSINX9RAiMrDE5uKiR9AREIajpgBEJ0CUckQnYrTHYuzj34RdiRsNsFlE1y0feHghF6VAoaWGBPepkgdTZ482Sxb1ntGp/n8xbuZuva37JaBlEaNpCVhJM600SRk5ZIxPI/ouL6TSSulepcPN+xmzLMnIQNyGPCdd456e68/wCcfvguf3cfJrZ+AwK70s8k452dEZuZ3Q8ThEwgYrvr7PB6q/QbOkbNxXPHsEd0M+/wBFn6xhZIPH+GU6pcYYiujxjUQM/WbJM644aiTj77gw83l/PmRF3jT/QtsJ1wD5/39sNsYY/h8eyWffvQu2Tue4Rz5FIcEqMv6EgmzvwdDT+mzNaAH0+Lz86W/fshl5l3+z3M/fOW/MO6Sw25XVN3Es59to2zZK1zse4Optk147VHYJl6JffpNkDKiB6LvWbc+t4oPN5ez9BenY7eJlVj9YxKc9Sc48dvhDu+Yef0BCqqa2FbWwPaKRnaUNdBQUYCjehvxTTsZSjFZUkaWlJMl5UTtl0A1u5JpicmC+EG4EgcRkZSFLT4DYtMhLt16d0aG6ehUTxGR5caYyQfM1wTr4BrqqvEHAsQn9J7nnSil+odAwPDwHbfydc8j+K56FceI2Ue0XVlNPUvfeYpBmx5hgtlIA9EUD7+UoefcijNpSDdHHT5Ltlfy/kO/4pfOpwjM+gW2U3900Jv+gvJ6li58lZgNzzLLvwS3eCmOG0/87FuIHnd+r3ouU3e46YnlnLD5br5hf8NqJjjjlk5/ViW1zSz4fBUNy55ldvP7jLTtptUWiSfvq8Sd+t1+WzvRZv7GPXzj0SX8L/EvZPu2I5c+DiPPOGC95lY/CzfuYdniBWQVvMb59k9Ikgaao7Nwz7gJ26Sr+/WIem+tKeHbT63gia9NZebIVGvmf04Fnwe+vbjXJ98NLT42ldazrbyBbeUNFJRV492ziai67WSbYobZihkuxQyzlRKNp307rz2K1tjBSNIQIlKHYUsaCglDIHEIJAzu081kVehogqWUUr3MgjW7yH7hDJIiIP67CyGu8867Pn+AlSs+p+6zRxhX+TapUkuZfSA147/OiDO+iS2yb4xK1lX3/m8Tgz+8hQvsn1KTdTqxs76HPT2f2hZD4c5N7N7wOa5dHzLe8zlJ0kCjxFA5bC4Zs2/EkTkh3OH3mNomL1c88AnfqfwjX7YvoT7jZMyka2iKyWZPbSOlO9bTuGslYxqXkmvbBUBF4gRip1+Le/zFfWaUu1D42/8289T/lvJc9F1kB3bRPOYiWkaeQ7kks6u4lPJdG4jas4yT+II0qcEnLlpHnk3UlKth+Gl9btCYY9Hi8zP1Dx9wyqhU/vHV4IiLK5+C174N18yDYaeGN8AgYwyldR7WF9dZr5I6dhcXEluzkVzZRY6tgLG2XQyXYhzs7bXSEjMIW+ponANGWY83SB4JKaOsYfR7efKowk8TLKWU6oX+/cxLXL3x2/hdsfhP+QmJ48+FyEQqy4vZuW4pzVs+ZFDZhwyjCB82tsbPIGHGDQycPPe4uLnryBjDk4t3sufdu7nJPE+MeA5Yp05iKRkwk5QTLiB54lxw9t82/odS09TK7a+vI2HNQ9xkf50BUrPPch929sRPwJ17FiknfKVHHkzcW72xupi75i3jGs9TXG5fcEBTsCZ7HE2ZM0kc/2XsOef2y6alh/P7N9bzyKc7WfCDWQxOjgJvM9ydCxkT4KqXezwR8foDbC9vZH1JLeuL69hQXE1D8WYGtWwn17aTHCkg31FAqqlq38YXnY4tPQ9b+jgYkAupoyFpuDVwh1LHSBMspZTqhXz+AI+/Mo8pq39Dvm3nActbjZ1tURNg1FkMnXU1EYl9Y4ja7lTb5OWjdTtp2Tyf2OYi4iIcxCQPYnDuVOKzxh53ieehlNQ2s6aggpai1SR595AQE0HWsDHEDco9bpPPzvj8AVYU1FBYWk5M7SbS7A0MGpBEyuAcJD6rT48EGAp76jzMvGMBZ+Smcd8Vk6yZn90H7/4cLnoI8i/utn3Xe7xsLK1vr5naXrwHKVvPKLODHClgrH0XY6SQCKzEOCAOTMoo7OnjYGAeDMyHtHyI1u4eKvQ0wVJKqV5sV0UDa5f8D3vpF0SYJlzRiaQMn0D22Om4ohPCHZ5S6jj3jw+28Nf3N3PPZeO5cGKm9eiUh86Eyq1w3RtWItMFxhhKaj3tzfvW766lvHgHcXWbgk38dpFvLyCL0vZnRfpd8djS85CB46z9D8yD1DHgcIfikJU6LE2wlFJKKaXUMfH6A1z90BKW76rmDxfkc8nkTKR6Jzx6Dnib4Px/QM55R1RWY4uPrWUNbN5Tbw1AsbsMb+k6Mlu3M1oKybEVkGsrJI6G9m188UOwZ4xD0vL3JlPxWdpPSoWVJlhKKaWUUuqY1Xm8fPPx5Xy2vZLpw5K4bEoWJyc1kPrW12HPGhg02WouOOgEPFHplLZGUFrbTEl1A6Wlu6ncU0xDVTHRjYVkyx6GyB6G2vYwSMr31ko5oiEtF/vAsTBgbLCJ39jjavAV1XdogqWUUkoppbrEHzA88dlO7v9wO6V11kAziW64xrWQC3xvM9QUHlE5Xmcc/sRhuFKHYRuQYyVRA3KtodCP8z5vqu/QBEsppZRSSoWEP2DYUFLH4u2V7K5pprqxFQMMDFQw2LedDKki2dVKXKSTuEg3cckDccSkQnQKJGZDVFK4D0GpLjtYgtW/n7aolFJKKaVCzm4T8gbFkzeo/z5kWaljpXWwSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIdKrBrkQkXJgV7jj2E8KUBHuIFSP0fN9/NBzffzQc3180fN9/NBzfXzpjed7iDEmdf+ZvSrB6o1EZFlno4Oo/knP9/FDz/XxQ8/18UXP9/FDz/XxpS+db20iqJRSSimllFIhogmWUkoppZRSSoWIJliH90C4A1A9Ss/38UPP9fFDz/XxRc/38UPP9fGlz5xv7YOllFJKKaWUUiGiNVhKKaWUUkopFSKaYCmllFJKKaVUiGiCdQgiMkdENonIVhH5abjjUaEjIlkiskBE1ovIOhG5OTg/SUTeF5EtwffEcMeqQkNE7CKyUkTeCE4PFZElwev7ORFxhTtGFRoikiAiL4rIRhHZICIn6rXdP4nIrcG/4WtF5BkRidBru/8QkYdFpExE1naY1+m1LJZ7g+d9tYhMCl/k6mgd5FzfGfw7vlpEXhGRhA7LfhY815tE5KywBH0ImmAdhIjYgfuAs4Fc4KsikhveqFQI+YAfGGNygenAd4Ln96fAB8aYkcAHwWnVP9wMbOgw/RfgHmPMCKAa+FpYolLd4e/AO8aYMcB4rPOu13Y/IyKDgO8Bk40xeYAduBy9tvuTR4E5+8072LV8NjAy+LoR+HcPxahC41EOPNfvA3nGmHHAZuBnAMH7tcuBscFt/hW8b+81NME6uKnAVmPMdmNMK/AsMDfMMakQMcaUGGNWBD/XY92ADcI6x48FV3sMuCAsAaqQEpFM4Bzgv8FpAU4DXgyuoue6nxCReOAU4CEAY0yrMaYGvbb7KwcQKSIOIAooQa/tfsMY8xFQtd/sg13Lc4HHjWUxkCAi6T0SqOqyzs61MeY9Y4wvOLkYyAx+ngs8a4xpMcbsALZi3bf3GppgHdwgoLDDdFFwnupnRCQbmAgsAdKMMSXBRaVAWrjiUiH1N+DHQCA4nQzUdPjDrdd3/zEUKAceCTYJ/a+IRKPXdr9jjNkN3AUUYCVWtcBy9Nru7w52Let9W/92A/B28HOvP9eaYKnjmojEAC8Btxhj6jouM9YzDPQ5Bn2ciJwLlBljloc7FtUjHMAk4N/GmIlAI/s1B9Rru38I9r2Zi5VUZwDRHNjESPVjei0fH0TkF1hdO54KdyxHShOsg9sNZHWYzgzOU/2EiDixkqunjDEvB2fvaWtSEHwvC1d8KmRmAOeLyE6spr6nYfXRSQg2KwK9vvuTIqDIGLMkOP0iVsKl13b/czqwwxhTbozxAi9jXe96bfdvB7uW9b6tHxKR64BzgSvN3of39vpzrQnWwS0FRgZHI3JhdaabF+aYVIgE++A8BGwwxtzdYdE84Nrg52uB13o6NhVaxpifGWMyjTHZWNfxfGPMlcAC4OLganqu+wljTClQKCKjg7O+BKxHr+3+qACYLiJRwb/pbedar+3+7WDX8jzgmuBogtOB2g5NCVUfJCJzsJr3n2+MaeqwaB5wuYi4RWQo1sAmn4cjxoORvcmg2p+IfBmr74YdeNgY84fwRqRCRUROBj4G1rC3X87PsfphPQ8MBnYBlxpj9u9gq/ooEZkF/NAYc66IDMOq0UoCVgJXGWNawhieChERmYA1oIkL2A5cj/WFol7b/YyI/Ba4DKv50Erg61h9MfTa7gdE5BlgFpAC7AF+A7xKJ9dyMMn+J1Yz0SbgemPMsjCErY7BQc71zwA3UBlcbbEx5qbg+r/A6pflw+rm8fb+ZYaTJlhKKaWUUkopFSLaRFAppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSimllFJKqRDRBEsppXoZEckWESMijnDHoo4PIrJORGaFOw6llOoPNMFSSinV54nI/SLSEHy1ioi3w/Tb4Y6vtzPGjDXGLAx1uSJyuoisEJFGESkSkUtDvQ+llOptxBgT7hiUUqpfERGHMcbXhe2zgR2AsyvlHK9E5DZghDHmqk6Wdenc9KS+FGtnRCQXWAhcC7wPxAMJxpht4YxLKaW6m9ZgKaVUCIjIThH5iYisBhpFxCEi00XkUxGpEZEvOjbBEpGFIvInEflcROpE5DURSTpI2deLyAYRqReR7SLyzf2WzxWRVcFytonInOD8eBF5SERKRGS3iPxeROyHOY7hIjJfRCpFpEJEnhKRhA7LqkRkUnA6Q0TK245LRM4PNjWrCR5fzn4/nx+KyGoRqRWR50Qk4uh/0kfvIOfGiMiIDus8KiK/7zB9bvBnWhM8h+OOcF+zgjU1Pw/+/HaKyJUdlp8jIiuD56owmAy2LWtrGvo1ESkA5gfnvyAipcGf20ciMna/uP8lIm8Ha+s+EZGBIvI3EakWkY0iMvEIf0anH8kxHoVfAv8xxrxtjPEZYyo1uVJKHQ80wVJKqdD5KnAOkACkAW8CvweSgB8CL4lIaof1rwFuANIBH3DvQcotA84F4oDrgXs6JDlTgceBHwX3ewqwM7jdo8FyRwATgTOBrx/mGAT4E5AB5ABZwG0AwZvjnwBPikgU8AjwmDFmoYiMAp4BbgFSgbeA10XE1aHsS4E5wFBgHHBdpwGInBxMbA72Ovkwx9CZ9nNzuFqhYELyMPBNIBn4DzBPRNxHuK+BQAowCKv25gERGR1c1oh13hOC8XxLRC7Yb/tTsX72ZwWn3wZGAgOAFcBT+61/KVYykwK0AJ8F10sBXgTuPsK4OyUiPz3U+TjEptOD268JJvlPHuxLBKWU6k80wVJKqdC51xhTaIxpBq4C3jLGvGWMCRhj3geWAV/usP4Txpi1xphG4FfApZ3VMBlj3jTGbDOWD4H3gJnBxV8DHjbGvB/cz25jzEYRSQvu6xZjTKMxpgy4B7j8UAdgjNkaLKvFGFOOdXN+aoflDwJbgSVYieEvgosuA94MbusF7gIigZP2+/kUG2OqgNeBCQeJYZExJuEQr0WHOoaD6HhuDudGrJqXJcYYvzHmMazEZfpR7O9XwZ/hh1iJ9qUAxpiFxpg1wXO1GispPXW/bW8LnrPm4DYPG2PqjTEtWMnueBGJ77D+K8aY5cYYD/AK4DHGPG6M8QPPYSXXx8wY8+dDnY9DbJoJXA1chJUgRgL/6EosSinVF2iCpZRSoVPY4fMQ4JL9vuk/GSsp6Wz9XYATq9ZhHyJytogsDjbPq8FKnNrWywI6a3Y1JFheSYf9/werFuSgRCRNRJ4NNimsA57sJKYHgTzgH8GbfrBqvHa1rWCMCQSPb1CH7Uo7fG4CYg4VS4gVHn6VdkOAH+x37rKwjvFIVAeT5ja72rYVkWkisiDYtLIWuIkDf77tsYqIXUT+LFbTzzr21k523GZPh8/NnUz35M+5o2bgEWPMZmNMA/BH9v2CQSml+iVNsJRSKnQ6jhpUiFVD1fHb/mhjzJ87rJPV4fNgwAtUdCww2CztJawaobRgjcFbWE352vYzvJNYCrFqXVI67D/OGDO2k3U7+mPwOPKNMXFYNXFt+0JEYoC/AQ8Bt3Vo8lWMlZi0rSfB49t9mP0dQERmyt4RADt7zTx8KQfYf0SnJiCqw/TADp8LgT/sd+6ijDHPHOG+EkUkusP0YKyfD8DTwDwgyxgTD9xPh59vJ7FeAcwFTscaJCI7OH//bbpNsD/ZQc/HITZdzb7HoqNqKaWOC5pgKaVU93gSOE9EzgrWQkQEB0DI7LDOVSKSG+zPdDvwYrBZV0cuwA2UAz4RORurL1Wbh4DrReRLImITkUEiMsYYU4LVlPCvIhIXXDZcRPZvjra/WKABqBWRQVh9uzr6O7DMGPN1rKZv9wfnPw+cE4zDCfwAK8H79HA/qP0ZYz42xsQc4vXx0ZbZiVXAFcFzM4d9m+k9CNwUrG0SEYkWa3CKWGgfWOLRw5T/WxFxBZPBc4EXgvNjgSpjjCfYf+6Kw5QTi/VzrMRKCP94FMcYEsaYPx7qfBxi00ewfjeHBX/Hfwq80TNRK6VU+GiCpZRS3cAYU4hV8/BzrOSoECtZ6fh39wmsgShKgQjge52UUx+c/zxQjXVDPq/D8s8JDnwB1AIfsrcm6RqsBG19cNsX2beJYmd+C0wKlvUm8HLbAhGZizVIxbeCs74PTBKRK40xm7Bqu/6BVQt3HnCeMab1MPsLl5uxYqwBrgRebVtgjFkGfAP4J9bPbSv7DsiRBXxyiLJLg9sVYw1IcZMxZmNw2beB20WkHvg11nk9lMexmhjuxjqPiw93YL2FMeZhrPiXYB1DC538jiulVH+jz8FSSqkwEJGFwJPGmP+GOxZ15IKjIn4BjAsO5rH/8llY5zVz/2VKKaWOD45wB6CUUkr1FcEauZzDrqiUUuq4pU0ElVLqOCMi9x9kwIL7D7+16otEZPAhBqoYHO74lFKqP9EmgkoppZRSSikVIlqDpZRSSimllFIh0qv6YKWkpJjs7Oxwh6GUUkoppZRSh7R8+fIKY0zq/vN7VYKVnZ3NsmXLwh2GUkoppZRSSh2SiOzqbL42EVRKKaWUUkqpENEESymllFJKKaVCRBMspZQ6DJ8/EO4QlFJKKdVH9Ko+WJ3xer0UFRXh8XjCHYrqYyIiIsjMzMTpdIY7FNWHldV5uOael5iRN5xfXTQ93OEopZRSqpfr9QlWUVERsbGxZGdnIyLhDkf1EcYYKisrKSoqYujQoeEOR/Vh76wu5MXA94lZ46H6lA0kpmaEOySllFJK9WK9vomgx+MhOTlZkyt1VESE5ORkrflUXdawczkxYv0eFS15OczRKKWUUqq36/UJFqDJlTom+nujQiGm9PP2z7ZtC8IYiVJKKaX6gl7fRFAppcIpobmAOnsSq+x55NStCXc4SimllOrl+kQNVriJCD/4wQ/ap++66y5uu+228AXUweLFi5k2bRoTJkwgJyenPa6FCxfy6aefHnO5u3btYtKkSUyYMIGxY8dy//33hyhipfoOYwzRviqaXUnUJ4wh1b8HmmvCHZZSSimlejGtwToCbrebl19+mZ/97GekpKSErFxjDMYYbLZjz3OvvfZann/+ecaPH4/f72fTpk2AlWDFxMRw0kknHVO56enpfPbZZ7jdbhoaGsjLy+P8888nI0M7+KvjR2Orn0RTizciGXt6HpRBXcEXxI0+NdyhKaWUUqqX0hqsI+BwOLjxxhu55557DlhWXl7ORRddxJQpU5gyZQqffPIJALfddht33XVX+3p5eXns3LmTnTt3Mnr0aK655hry8vIoLCzkRz/6EXl5eeTn5/Pcc88BVoI0a9YsLr74YsaMGcOVV16JMeaA/ZeVlZGeng6A3W4nNzeXnTt3cv/993PPPfcwYcIEPv7440PGefXVV3PiiScycuRIHnzwQQBcLhdutxuAlpYWAoHOnwN07733kpuby7hx47j88ssBqKqq4oILLmDcuHFMnz6d1atXt+/r2muvZebMmQwZMoSXX36ZH//4x+Tn5zNnzhy8Xi8At99+O1OmTCEvL48bb7zxgOMOBAJkZ2dTU1PTPm/kyJHs2bPnUKdRqaNWUd9CMnUEolKIHzoRgMptK8MclVJKKaV6sz5Vg/Xb19exvrgupGXmZsTxm/PGHna973znO4wbN44f//jH+8y/+eabufXWWzn55JMpKCjgrLPOYsOGDYcsa8uWLTz22GNMnz6dl156iVWrVvHFF19QUVHBlClTOOWUUwBYuXIl69atIyMjgxkzZvDJJ59w8skn71PWrbfeyujRo5k1axZz5szh2muvJTs7m5tuuomYmBh++MMfAnDFFVccNM7Vq1ezePFiGhsbmThxIueccw4ZGRkUFhZyzjnnsHXrVu68885Oa6/+/Oc/s2PHDtxud3vC85vf/IaJEyfy6quvMn/+fK655hpWrVoFwLZt21iwYAHr16/nxBNP5KWXXuKOO+7gwgsv5M033+SCCy7gu9/9Lr/+9a8BuPrqq3njjTc477zz2vdps9mYO3cur7zyCtdffz1LlixhyJAhpKWlHfY8KnU0qptaGSW1VMakkpE5jCbjxlu+NdxhKaWUUqoX0xqsIxQXF8c111zDvffeu8/8//3vf3z3u99lwoQJnH/++dTV1dHQ0HDIsoYMGcL06dYDSxctWsRXv/pV7HY7aWlpnHrqqSxduhSAqVOnkpmZic1mY8KECezcufOAsn7961+zbNkyzjzzTJ5++mnmzJnT6T4PFefcuXOJjIwkJSWF2bNn8/nn1qhpWVlZrF69mq1bt/LYY491WkM0btw4rrzySp588kkcDkf7MV199dUAnHbaaVRWVlJXZyXGZ599Nk6nk/z8fPx+f3u8+fn57ce3YMECpk2bRn5+PvPnz2fdunUH7Peyyy5rr+179tlnueyyyw75M1fqWLQ01RMtLRCVyqDEKHaZNOzV28MdllJKKaV6sT5Vg3UkNU3d6ZZbbmHSpElcf/317fMCgQCLFy8mIiJin3UdDsc+zeo6Po8pOjr6iPbX1kQPrOZ/Pp+v0/WGDx/Ot771Lb7xjW+QmppKZWXlAescLE44cDjz/aczMjLIy8vj448/5uKLL95n2ZtvvslHH33E66+/zh/+8AfWrDn0KGttx2Sz2XA6ne37stls+Hw+PB4P3/72t1m2bBlZWVncdtttnT7L6sQTT2Tr1q2Ul5fz6quv8stf/vKQ+1XqWHjrywGwxQzAYbexxzmIMY0FYY5KKaWUUr1Zl2uwRCRLRBaIyHoRWSciNwfnJ4nI+yKyJfie2PVwwyspKYlLL72Uhx56qH3emWeeyT/+8Y/26bamcNnZ2axYsQKAFStWsGPHjk7LnDlzJs899xx+v5/y8nI++ugjpk6desQxvfnmm+19lLZs2YLdbichIYHY2Fjq6+sPGyfAa6+9hsfjobKykoULFzJlyhSKiopobm4GoLq6mkWLFjF69Oh99h0IBCgsLGT27Nn85S9/oba2loaGBmbOnMlTTz0FWH3JUlJSiIuLO6LjaUumUlJSaGho4MUXX+x0PRHhwgsv5Pvf/z45OTkkJycfUflKHQ1/YxUA9ugkABqiB5PsLQF/5192KKWUUkqFoomgD/iBMSYXmA58R0RygZ8CHxhjRgIfBKf7vB/84AdUVFS0T997770sW7aMcePGkZub2z6c+UUXXURVVRVjx47ln//8J6NGjeq0vAsvvJBx48Yxfvx4TjvtNO644w4GDhx4xPE88cQTjB49mgkTJnD11Vfz1FNPYbfbOe+883jllVfaB7k4WJxgNfObPXs206dP51e/+hUZGRls2LCBadOmMX78eE499VR++MMfkp+fD8DXv/51li1bht/v56qrriI/P5+JEyfyve99j4SEBG677TaWL1/OuHHj+OlPf8pjjz12xMeTkJDAN77xDfLy8jjrrLOYMmVK+7L7779/n7gvu+wynnzySW0eqLqN32N9SeGKigXAGz8UJz5MbWE4w1JKKaVULyadjUzXpQJFXgP+GXzNMsaUiEg6sNAYM/pQ206ePNksW7Zsn3kbNmwgJycnpDGqvW677bZ9BsPob/T3R3XFu68+wVmrvkvDVe8QM+JE3pj3POeu+Ab1Fz9PbN5Z4Q5PKaWUUmEkIsuNMZP3nx/SQS5EJBuYCCwB0owxJcFFpUCnQ7yJyI0iskxElpWXl4cyHKWU6pJAizUQjDsqBoC4QWMAqNm9KWwxKaWUUqp3C9kgFyISA7wE3GKMqes4UIIxxohIp1VlxpgHgAfAqsEKVTzqyNx2223hDkGpXsu0NALgjLSaCKYPyqbJuGnZsyWcYSmllFKqFwtJDZaIOLGSq6eMMS8HZ+8JNg0k+F4Win0ppVSPabUSLJzWyJ9ZydHsMgOw13Q+aI1SSimlVChGERTgIWCDMebuDovmAdcGP18LvNbVfSmlVI/yBhMsl5VgRTjtlNkHEtlYFMaglFJKKdWbhaIGawZwNXCaiKwKvr4M/Bk4Q0S2AKcHp5VSqs8QbxMBBJyR7fPqIjNJbCmGEA8QpJRSSqn+oct9sIwxiwA5yOIvdbV8pZQKF7uvCQ8RRHXoU+qNHYy7qQUayiC207F7lFJKKXUcC+kogv3Zq6++ioiwcePGg66zc+dO8vLyQrbPTZs2MWvWLCZMmEBOTg433ngjYD0k+K233jrmcj0eD1OnTmX8+PGMHTuW3/zmN6EKWal+xeZrotUWsc88SRoKgLdS+2EppZRS6kCaYB2hZ555hpNPPplnnnmm0+U+n6/L+/D7/ftMf+973+PWW29l1apVbNiwgf/7v/8Dup5gud1u5s+fzxdffMGqVat45513WLx4cZdiV6o/cvqbabFF7jMvKm0YANW7dSRBpZRSSh1IE6wj0NDQwKJFi3jooYd49tln2+cvXLiQmTNncv7555ObmwtYidaVV15JTk4OF198MU1NTQB88MEHTJw4kfz8fG644QZaWloAyM7O5ic/+QmTJk3ihRde2Ge/JSUlZGZmtk/n5+fT2trKr3/9a5577jkmTJjAc889R2NjIzfccANTp05l4sSJvPaaNZ7Io48+yty5c5k1axYjR47kt7/9LQAiQkyM9Vwfr9eL1+ul47D6bV544QXy8vIYP348p5xyCmDVfl1//fXk5+czceJEFixY0L6vCy64gDPOOIPs7Gz++c9/cvfddzNx4kSmT59OVVUVAA8++CBTpkxh/PjxXHTRRe0/n46mT5/OunXr2qdnzZrF/g+gVqonOPzNePerwUrMGAFAY+nWcISklFJKqV4uZM/B6hFv/xRK14S2zIH5cPahx9947bXXmDNnDqNGjSI5OZnly5dzwgknALBixQrWrl3L0KFD2blzJ5s2beKhhx5ixowZ3HDDDfzrX//iu9/9Ltdddx0ffPABo0aN4pprruHf//43t9xyCwDJycmsWLHigP3eeuutnHbaaZx00kmceeaZXH/99SQkJHD77bezbNky/vnPfwLw85//nNNOO42HH36Ympoapk6dyumnnw7A559/ztq1a4mKimLKlCmcc845TJ48Gb/fzwknnMDWrVv5zne+w7Rp0w7Y/+233867777LoEGDqKmpAeC+++5DRFizZg0bN27kzDPPZPPmzQCsXbuWlStX4vF4GDFiBH/5y19YuXIlt956K48//ji33HILX/nKV/jGN74BwC9/+Useeuih9pq5NpdddhnPP/88v/3tbykpKaGkpITJkw94SLZS3c4VaMbn3LcGKystiVKTSKBKmwgqpZRS6kBag3UEnnnmGS6//HIALr/88n2aCU6dOpWhQ4e2T2dlZTFjxgwArrrqKhYtWsSmTZsYOnQoo0aNAuDaa6/lo48+at/msssu63S/119/PRs2bOCSSy5h4cKFTJ8+vb3mq6P33nuPP//5z0yYMIFZs2bh8XgoKCgA4IwzziA5OZnIyEi+8pWvsGjRIgDsdjurVq2iqKioPQnb34wZM7juuut48MEH25svLlq0iKuuugqAMWPGMGTIkPYEa/bs2cTGxpKamkp8fDznnXceYNW87dy5E7CSsJkzZ5Kfn89TTz21T01Vm0svvZQXX3wRgOeff56LL76405+PUt3NHWjG54jaZ15abARFZgDOuoIwRaWUUkqp3qxv1WAdpqapO1RVVTF//nzWrFmDiOD3+xER7rzzTgCio6P3WX//pnadNb3b3/5ldJSRkcENN9zADTfcQF5eXqeJkDGGl156idGjR+8zf8mSJYeNJyEhgdmzZ/POO+8cMEDH/fffz5IlS3jzzTc54YQTWL58+SGPw+12t3+22Wzt0zabrb2P2nXXXcerr77K+PHjefTRR1m4cOEB5QwaNIjk5GRWr17Nc889x/3333/I/SrVXdzGg3+/BMtmEypdGQxvPvBaVEoppZTSGqzDePHFF7n66qvZtWsXO3fupLCwkKFDh/Lxxx93un5BQQGfffYZAE8//TQnn3wyo0ePZufOnWzdavXZeOKJJzj11FMPu+933nkHr9cLQGlpKZWVlQwaNIjY2Fjq6+vb1zvrrLP4xz/+gQk+l2flypXty95//32qqqpobm7m1VdfZcaMGZSXl7c3+Wtubub9999nzJgxB+x/27ZtTJs2jdtvv53U1FQKCwuZOXMmTz31FACbN2+moKDggMTuUOrr60lPT8fr9baX05nLLruMO+64g9raWsaNG3fE5SsVKv6AIdJ4COyXYAE0RWcR76sA34E1ykoppZQ6vmmCdRjPPPMMF1544T7zLrroooOOJjh69Gjuu+8+cnJyqK6u5lvf+hYRERE88sgjXHLJJeTn52Oz2bjpppsOu+/33nuvfZCJs846izvvvJOBAwcye/Zs1q9f3z7Ixa9+9Su8Xi/jxo1j7Nix/OpXv2ovY+rUqVx00UWMGzeOiy66iMmTJ1NSUsLs2bMZN24cU6ZM4YwzzuDcc88F4Ne//jXz5s0D4Ec/+hH5+fnk5eVx0kknMX78eL797W8TCATIz8/nsssu49FHH92n5upwfve73zFt2jRmzJixT1I3b948fv3rX7dPX3zxxTz77LNceumlR1y2UqHU1OojSlrAeWCC5Y8fjA0DNYVhiEwppZRSvZm01Xr0BpMnTzb7jxa3YcMGcnJywhRR3/boo4/uMxjG8Uh/f9SxKqvzEPPXwewcehm51/1jn2WvzXuJuStuoPGS54geOydMESqllFIqnERkuTHmgJHYtAZLKaU60dTiJUpaEPeBfSRjBw4HoLZYn4WllFJKqX31rUEu1FG57rrruO6668IdhlJ9UnOT1c9RXDEHLBuQMQSPceIp29bTYSmllFKql+sTNVi9qRmj6jv090Z1RUswwbJ3UoM1OCWGQjMAqd7Zw1EppZRSqrfr9gRLROaIyCYR2SoiPz3a7SMiIqisrNSbZXVUjDFUVlYSERER7lBUH9UaTLAcEQfWYMVFOCmxpRHRoINcKKWUUmpf3dpEUETswH3AGUARsFRE5hlj1h9pGZmZmRQVFVFeXt5dYap+KiIigszMzHCHofqo1uYGABwRsZ0ur40YRELLRjAGjuB5d0oppZQ6PnR3H6ypwFZjzHYAEXkWmAsccYLldDoZOnRoN4WnlFKd83msGixnZOcJlicmi0hPEzRXQ1RST4amlFJKqV6su5sIDgI6tqEpCs5rJyI3isgyEVmmtVRKqd7C52kEwB11YBNBAJKyAQhU7uihiJRSSinVF4R9kAtjzAPGmMnGmMmpqanhDkcppQAwLVYTQXd0XKfLIwcEh2ov2dxjMSmllFKq9+vuBGs3kNVhOjM4TymlejV/W4J1kCaCCekjAGgo2dpjMSmllFKq9+vuBGspMFJEhoqIC7gcmNfN+1RKqS4zrU0A2DsZRRAgMy2VchOHt6L/NhFcUVDN9vKGcIehlFJK9SndmmAZY3zAd4F3gQ3A88aYdd25T6WUColWqw8WzqhOF2ckRFJoBuCo29WDQfWcxdsreez+O2j4x0yKl74W7nCUUkqpPqO7RxHEGPMW8FZ370cppUJJvFYNFq4DHzQM4HLYqHBkMKSpf/bBevbDL/id8xHipJn6d26G8acf9GehlFJKqb3CPsiFUkr1RjZvIy24wGY/6Dr1UYNI8JaB39uDkXU/nz9AxI73iJNmXh/wLWL91fg3vh3usJRSSqk+QRMspZTqhM3XhEciDrmOL24IdgJQW9RDUfWMLWUNTDFraHElISd+mz0mgfoVL4U7LKWUUqpP0ARLKaU64fQ102qLPOQ6jmTrIeitFdt7IqQes7qohmm2jfiyTmLaiDQWBfJx7/4MjAl3aCFnjOGOdzby0/+8SOnGxeEORymlVD+gCZZSSnXC7m+i1XboGqyY4FDtNbv7Vz+sLTsLyZQKIrMnkxrrpiBmHJHeaqjqX4kkwPvr9/DRh+/zx+KvM/DZs2Ddq+EOqVsYY/j9G+u54b63KPnoUWipD3dI3ea1Vbu5bd46aoo27h2sph96d10pd727idqGRmisDHc4SqkONMFSSqlOuALNeO2HrsFKSc+m1dhpLutfiUdj0WoAbAPzAZDB0wEI7Po0bDF1l1dX7eYnEa/gdURRahLxvvcbCATCHVbIfbChjMcWbeEne35E+vybMU9d0i+Pc0VBNTc/u4qaxU8S998T4Z9ToaEs3GGF3JqiWr75xHKeWrACuWcs3D2m3zVVVqov0wRLKaU64Qp48Ns7H6K9TVZKDEUmFVO1s2eC6gHGGGKqN1oTA/Ost2HjqDHRNG79JIyRhV6Lz8/yTbs4kS9oHX81f/J+FWftTtj5cbhDC7mXVxZxcdRKRtuK+NSfixR8BpveDHdYIffEZ7tIioDfxbxAvYmAuiL48I5whxVyj3yyg9gIB/cPnk+cvxr8rbB9YbjDUkoFaYKllFKdcAWa8TsOnWClxrjZLWm46gt6KKruV1bfwuBAES2OWIhJAyAvM5HlgVFQuCTM0YXWil01TPR9gcP4iB1/AaWDTrdGjtzUv54s0tji44MNZVwXs4RAXBZfD/ycemcKrHo63KGFlD9g+HBzOd/KLCC2tZzv+77N+gHnwhfPgrc53OGFjD9geH/DHr6cm8Lkhvm86Z9KkzMRdnwU7tCUUkGaYCml1H4CAUOE8RA4yEOG24gItRGDiPPs7qHIut/28kaypZTW+GEgAsDItBi+YCSx9dvBUxvmCENnfUkdU2ybMI4IGHQC00Zm8qk/l8Cmd8MdWkit3V1LwNfK8KZV2EbP4aRRA3krcCJm6/+gtSnc4YXM6qIaqhpbOd35BTijaM46hUcbp0FrPWx5P9zhhcz64jrqPT7OTSrC3lTB+sQvsVTyYPuH/XIgGqX6Ik2wlFJqP01eP1HSgnEe/sG6nrihxATq+00n8x0VjQy1lWJLGd4+z+2wUxM/1pooWR2myEJvQ0kd051bkIxJ4HAxfVgyiwJ52Gp2QF1xuMMLmXXFdUyQrTh8TTBsFqeOSuXt5hzE3wqF/WfkxE+3Wdfg4NqlkD2T2blZvFSZTcAVA9sXhDm60Fm83TrOiYF1gJCYdyZvN46GhlKo2BLe4JRSgCZYSil1gMYWH1F4ENeha7AAbKmjAGgp3dDdYfWIgrJKMqgkcuDofeY7syYCYEpWhSGq7rG5uIpRZhdkngDApCGJrJQx1sKC/pN4rC2u5cTIYDPWrGlMHZrM54ExBMRh1Xr0E2t31zImEexVWyFzCtOHJePHTlniCf2q+dySHVUMTYkmZs9SGJBL7rDBfBbItRbuWhTe4JRSgCZYSil1gEaPlyhaEHfMYdeNzbRqdqp2re3usHpEU+k2bGKwpYzYZ372kGyKTRLNu1aEKbLQ8voD+Mq24MQLadZoiRFOO6Tl4xF3v0qw1hfXMS2yCGLTISaVkQNicEXFsjMyF3b0nwRrXXEdZyQFRwxMH09uRhyxEQ6W2/KgcivU9o+mvOuKaxk/KA52L4esqeSkx7HLpNHsTICi5eEOTylFFxMsEblTRDaKyGoReUVEEjos+5mIbBWRTSJyVpcjVUqpHtLU1IRDAtjch28imDFkBB7jpLm4f9RgURlsYpQ8fJ/ZYzPiWBsYSqB4ZRiCCr3t5Y2MMLusibSx7fPzBqewKjAS00+aznm8fraUNTA6sB0GjgPAZhOmZCfxkTcHildBc3V4gwyBOo+XgqompkQUWjPSx2O3CVOzk3itNvhlQT8YHbKqsZWSWg/Tkhqs/pDp40mMdpEQ5aIgIgd2Lwt3iEopul6D9T6QZ4wZB2wGfgYgIrnA5cBYYA7wLxGxd3FfSinVIzwN1g2nLTLhsOsOS41ju8nAVtn3+z74A4aYxmDSkbRvgpUzMI61ZijR9Tv7xUNqN5TUMcZWgLE5IWVU+/zxmQks8Y+E0jX94jg3ldbjCLSQ5NkF6ePb508bmsS7jSMAA0V9/6Z8fXEdAKP82yBmIMRaI2BOyErg/apUAhGJsKPvJ1gbSqzjnOBoSyStpDk7OZrVjIDyTeCpC1d4SqmgLiVYxpj3jDG+4ORiIDP4eS7wrDGmxRizA9gKTO3KvpRSqqe0BhMsZ1T8YdeNdNkpdmQR07Cju8PqdrurmxlsSmh2J0NE3D7LIl12KmJzEIyVfPRxG0rqyLUVWsmVw9U+f3xWAisCoxATgN19vznk2uJaxkgBNuNvvxkHq7/Z6sAwDNIvEqx1wQQrpX7DPonkhMEJGGzUJE/sF48ZaEsks31bQewwwOp7NSwlmk892YCB4r7/e6tUXxfKPlg3AG8HPw8CCjssKwrOU0qpXs/bXAOAMzrhiNavi8kmyVsCXk/3BdUDdlRaIwh644d2vkLGBOu9eFVPhdRt1pfUkWcvQIIPU24zLCWarc7gAB/9oLnVuuI6TnAH/zkeuDfBGpsRh9ceTXnkMKsvTx+3rriWzBhwVG3ZJ8Eal5kAwCZXjtX8takqTBGGxvqSOtLjI4isWGd9OeCMBCA7JZoP6rOslfpBwqxUX3fYBEtE/iciazt5ze2wzi8AH/DU0QYgIjeKyDIRWVZeXn60myulVMj5GmsAcMckHdH6gaSR2DCYyq3dGFX321nRyFApxZk6otPlWVlD2WMSaC3q+/2wiouLSTGV+/S/Aqt/UnbWIHbbMvpFDda63bWcFLUbIhIgYXD7fLfDTm5GHGsZbiVYffz5SeuL6zgrpRxMYJ8EKz7SybDUaD5uDjZ5LVoapghDY31xHbnpcVC6ep8ayaEp0dQRQ0v8UOgn/SSV6ssOm2AZY043xuR18noNQESuA84FrjSm/S/0biCrQzGZwXmdlf+AMWayMWZyampqlw5GKaVCIRB8mG5EbOIRrR+RYTXTqSno2yMJ7t5TxgCpIWK/IdrbjM2IY01gKL4+nmCV17eQ2hxMhtPyDlg+PjOBpd5hmKJlfTrx8PoDbCitJ4cd1s148MHRbSYOTmBh42BoroKq7WGKsuvaBvKYHllkzWiraQ2akJXAvPI0jNj7dDNBj9fP1vIGTkjxQX3JPjWSI9OsEU/LY3Kg5ItwhaiUCurqKIJzgB8D5xtjOj4Ofh5wuYi4RWQoMBL4vCv7UkqpnhJoqgEg8ggTrJQhOQSMUFfUt0cSbNljDdQh+40g2CYn3RroIqJ2G7Q29mRoIbWhpI4xEnwuVGcJVlYCKwPDkYbSPv3A4W3lDQR8rQz0bNvnZrzNxMGJLPUGz3Ufbia4eU89/oBhjNkBUckQt2+PhAlZCRQ1Ct7UsVDYd29F2o5zsnvfAS7AqsGy24StjhFQW9hvHnyuVF/V1T5Y/wRigfdFZJWI3A9gjFkHPA+sB94BvmOM8XdxX0op1SP8zVYNlkQcfpALgGHpqew2KfjLNnVnWN3OXr3N+pDceRPB1Fg3he5R2AhAad+trdtQUkeOFBCISm0fba6j8ZkJrAq0JR59tz/Lut11DJdi7IHWfZrNtZmYlcBmk4nPHtGnE6y2AS4GNG60jnO/mroJWQkAFMeOs47T79u/iD6h7ThHBoK1jQPz25e5HXaGJEexvDXYDLSkb9cyK9XXdXUUwRHGmCxjzITg66YOy/5gjBlujBltjHn7UOUopVRvIp46/NjAdfgHDYOVeOySQUTW9N2h2r3+AElN2wlgP2iCBeAfGLxRL1nVM4F1gw0ldYxzFmIbOLbT5QPjI6iIHoVPnH16wIC1xbVMcAZr6jqpwcpMjCQxJopd7tF9+jjXFdeS5Da4Kjd1mkiOGRiHy2FjFaPB2wR7+uaXA+uKa4mNcJBQt9HqTxe5bw37qAGxLKzLsCb6wUA0SvVloRxFUCml+gVbax1NEnXAN+EHIyJURg8nxbOrz347XljVxAiKaIgeDA73QdcblDWUchOPf3ff/YZ8S3EVI0xBpzfjbXKyUtki2X16oIt1xXXMiC4GRySkjDxguYgwcbDV34zS1eBrCUOUXbeuuI4zUquQgLfTc+py2BibEcd7dcHanT7aTHDtbmuACyleCekTDlg+Ki2GdVUQSBzWp78AUao/0ARLKaX24/DW47EfWe1VG29KDk68mD76wOGdlY2MlCL8yaMOuV5uRgJrA9l4++hAFy0+P7bKTTjp/Ga8zYSseBa3DsMUr4RA32vhHggY1hfXkW/bCQPzwGbvdL2JgxP4sHEw+Fv7ZLNPf8CwsaSemVFt/ZImdLre+MwEFpS6MbHpfXKgC58/wIaSOqakAdU7YdCkA9YZkRZLwEB94lgo1oEulAonTbCUUmo/Ud4amp0JR7VNRKZ1s169Y1XoA+oBW4qrGCJ7iBx04KAPHeVmxLHGDMVVvQW8zT0UXehs2dPAGIIPhT7IzThYz0/6IjAc8TZC+caeCS6EdlQ20tzSQpZnE2QceDPeZmJWIqsCwSahfbC/2Y6KRpq9fsaaLdYAF4nZna43ISuBZm+A+tRJUNT3arC2VzTS4gtwYmSwyWfGxAPWGRUcSbAochTUFvT5Z34p1ZdpgqWUUvuJC9TQ4jqyZ2C1yRiRj9fYqd25qnuC6mZVu9bhkED7kPMHMyQpii22EdiMv0/WeKwsrCFPdhBwxkDiQR6oDIzLjGeVaXt2Ut9LPFYV1DBSduPwN0Pm5IOuNy4znj2SRIMzpU8e57pia0Ca9Ib1MOiEgzbrbRvoYqs7F2oKoK6kp0IMibW7reMc7Q8ORNPJlwNtIwmuNcOsGfo8LKXCRhMspZTqwOP1k0gtvsiUo9puZEYK20wG7FnXTZF1L/+e9daHATmHXM9mE1oHBEcv64P9PFYV1DDeUYCk54Pt4P8EJkS5MInDaLTF9smanS+KapjmDI42N+iEg64X7XYwemA8Gxxj+mTNzqrCGpKdLbirNx/yOIckR5EQ5eSz1rakuW8d65rdtUQ4bSTVroWk4RCZcMA6boed7OQoPm3MtGb0wetTqf5CEyyllOqgprGVZOrwH2WCFRvhpMA5lPi6zd0UWfdpavWR0LDtsCMItknLHE6VicX0wZHK1hSUkyO7kEM0D2wzPiuRNWZ4nxzoYlVhDafG7ILIJEgadsh1Jw5OYGHzUKtvT0NZzwQYIst2VjN3QBmCgUEHr6kTEcZnJvB2xQCwu/vcQBdLd1YxMTMBW/HKTpsHthmVFsvqSqymkn3w+lSqv9AESymlOqitqcQtPmwxqUe9bX38KJJ8e6C5JvSBdaNNpfWMk200xo845AiCbXIz4lkTGNrnBrqobfYSVbkOt/HA4GmHXX9cZjxLvMMwZeuhpaEHIgwNj9fPhpI68szWQzabazMxK4HPWoI1O30o8Who8bGuuJbZ0cF+SZ0M/NDR+KwE1pd58KdP6FPHWdvsZV1xHWdleKC+GAZPP+i6IwfEsKuy0XqcgtZgKRU2mmAppVQHtRVW34yIhAMfQHs4kmYNENFS3Lf6Jq0vrmGCbStyBEkHWANdrDXZOCo3gdfTzdGFzuqiGqbZNlgTg0867Prjs6wHDosJQEnfGZVtdVEtUf56Upu3Q+aUw64/cXAi60w2fpuzT42wt7KgmoCBsd7VkDIaog7db3JCVjwBA3vig8lHH/ndXbqjCmPgFFfwd3foKQddd2RwJMGK2Byrr5kOdKFUWGiCpZRSHdRVFAMQmzzwqLeNH2o13anc1realFVsX02cNBM9/MQjWn9UWizrzDBsxgdlfafP2YpdVoLlTxoBsYdPoMdmxLGWvjfC3keby5lpX2c1mxs++7DrD0uJxh0Rxe6IUVC0tAciDI2lO6qIkFYSy5cd0XGOz0wAYI2Mtoal7yNJ8+LtlbgdNobULYOYNEg5+KMUctJjAdhsC/7eai2WUmGhCZZSSnXQUmU9TydhwJCj3nZo9nBqTDSeotWhDqtb+QusWgvJOrIarAinneaU4EAXfaifx6db9jDNsRn70JOPaP0ol4PkARmU2QfC7uXdHF3ofLSlnAviNoE7/pBDtLex2YQJgxNZ6h9pjTzna+2BKLtu8fYqvpK6G/E1w7DDJ1jJMW6ykiKZ3xi8tvtIbd3iHZVMykrAvmsRZM88ZJPP7ORo3A4bSzzBgS760PWpVH+iCZZSSnUgtVaC5UwafNTbDkmJYSPZuCv6ThPBsnoPWQ1rrOd+HWYwhI4yhoyi1kRj+kgtQEOLj9ailUSbJhhyZAkWWLUey/3DMUV9I8GqbGhhze4apgZWwbBTwO44ou0mZiUwv2EI+DxQuqZ7gwyB6sZWlu2qYm7MZrA5IHvGEW03ISuRhbsFk5jdJ0YSbOt/dc7AGmjYA0NnHnJ9h93G6IGxrKwQSBiiNVhKhYkmWEop1YGrcTcNEg0RcUe9rd0mlESNIbVpK/i93RBd6C3eVsk02wZa06ccdjCEjiYOSWJ1YCgtBX2jOeSiLRWcIZ9jxA4jvnTE243PSmCpdxhSVwT1pd0YYWgs2lrBMIqJaymF4acd8XYTByew1B9setYHEo/5G8sIGBjXvAQyp4I79oi2m5KdyJ66FpoGnGANdGFMN0faNQs2lmEMnGYWAwKj5hx2m5yBcWwoqcdkTNAaLKXCJGQJloj8QESMiKQEp0VE7hWRrSKyWkQO305BKaXCLMZTSrXz6Ae4aNM6IB8XXgJtz5Xq5bav+5zBtnJi8r98VNtNyEpgrRmKs3ID+Fq6KbrQeWt1Mec4lmKyZx52MISOJmcnsioQHGGvDzQT/GBDGZe6l2CO8Ga8zYSsBMpIpN49sE80nXt//R5OitlDZPVGGHvhEW83Jds695tduVaNUM2u7goxJN5YXUJ6fATpu9+BISdB7OH7huakx1LV2EpDUp51fDrQhVI9LiQJlohkAWcCBR1mnw2MDL5uBP4din0ppVR3McaQ6N1DU2TGMZcRk2097LRya++vBfAHDO5t7xJAsI8556i2HZYSzTbHcOzGB2UbuinC0PB4/ezauIwhlGDLPf+oth2RGkORewQ+cfT6xKOhxcd760u42PUpMuxUiDvy3+OEKBfDUqNZ78iBwt490EWdx8vCzWV8M2kFiB3GXnDE245KiyU2wsHHnmBz2F48XHudx8tHm8u5ZoQHKT/yRDIn3ap93+ZoG+iibzTjVao/CVUN1j3Aj4GOde1zgceNZTGQICLpIdqfUkqFXGltE1nsIZBw9ANctMkelU+9iaRhR++v7fh8RxUn+ZZQmzTuiEbV68hmE0zbw3p7eT+PDzaUcXbgI4zYYMy5R7WtzSbkZw9ko4yAXZ92U4Sh8faaEnJ9m0huLYZxlx319hOzEvmoeSjUFUFNYTdEGBqvrdxNi9fHiU0LYNgsiBlwxNvabcIJQxJ5ozQBXDG9OsGat6qYVn+Ar8hCK5HMOe+IthsTTLCWe4P9SHv59alUf9TlBEtE5gK7jTH7f0UyCOj4F7ooOG//7W8UkWUisqy8vLyr4Sil1DEr3LGZKGnBNXDMMZcxamA868nGVdb7RxJcvGwJ423biR4/95i2z8jOodrE4NvVu2t2nv50E191LIDR5xx1IgkwOTuJD1tHYYpXQmtjN0TYdcYYnli8i29FL8A4o4/4ZryjiYMT+KA52A9r56IQRxgaxhie/ryQr6VuwNVQBBOvOuoypmQnsbm8Ge/ASb22VtIYw+Of7WRyhpMBW5+D3POPqHkgQHykk0EJkayqsEPCYO2HpVQYHFGCJSL/E5G1nbzmAj8Hfn2sARhjHjDGTDbGTE5NTT3WYpRSqstqC6zR/5Ky84+5DKfdRknkGFIbt4DfF6rQQq6xxUfyhifxY8c16cpjKmPSkCSWBUbj3fFJiKMLnXXFtQwqfIN4GpDpNx1TGVOyE/k8kIMEfL32hnzZrmqqdm/lS/5FyOTrj3jQh44mDk5gk8mk1RnfaxOsRVsr2FBSxzftb1ij5OUcXZNP2NsPqzAmH/ashZaGUIfZZYu2VrB5TwM/z1iFeGph+rePavuc9Dg2lNRB+gStwVIqDI4owTLGnG6Mydv/BWwHhgJfiMhOIBNYISIDgd1AVodiMoPzlFKqV/Lu2QhAwuBjT7AAWtPycdFKoBf3TXp16RbmmgXUDj37iL8Z39+kwYksNaOJrN8F9XtCHGFo/Gf+Rr7jeB3/gDwYcmRDee8vPzOe1bYxBLD3ymaCxhjufm8zN0e8hYjtqG/G24xOiyXC6WRb1ATY+VFogwwBYwx3v7+Z82K3kFrzBZz43SMehr6jcZnxuOw2PvcNBxPodYOXGGO4673NDI0TJu582BolMXPKUZWRmx7L9vIGvGnjoXonNFd3T7BKqU51qYmgMWaNMWaAMSbbGJON1QxwkjGmFJgHXBMcTXA6UGuMKel6yEop1T2iKtdRZUtColO6VE77QBdbemf/jlZfgJqP/kO8NJE067vHXE58lJM9CcEBYgt6X+KxsqCahA1PMURKsZ/+66Mahr4jt8POiMyBbHUMh529r7Zu4aZyqnes5CLzPnLCtRB/QGv8I+Kw2xiXGc9H3jFQUwDVvWuEvXfXlbK6oJLfuZ+A+MEw6epjKifCaWd8VjyvVQQHAellw9K/vbaULwpruDf7E6ShBM64/ah/d3PS4wgYKIwINvks6f1NlpXqT7rzOVhvYdVwbQUeBI7tKzWllOoBrb4Agz2bqIgb2+WyhowaT4OJoGHnshBEFnovfbKWK1uep3LgTBhyYpfKih8+mSbjJrCzdyVYPn+Ae15dxPedL+EbcjKMPLNL5Z04LJmFnpGY3cvA2xyiKLuuscXHr15ZzR1RjyORCTD7F10qb/qwZF6pGWpN7Oo9yWS9x8tt89bz48QPSWjYCmf9HpyRx1zeicNTWFwSwJ88Ggp6T7PPOo+X2+at44wB9eRtf8jqS3cM12jbSIJf+LOtGdpMUKkeFdIEK1iTVRH8bIwx3zHGDDfG5BtjeuedhlJKAVsLdzNMigmkT+xyWaMGxrOBbJxla0IQWWiV1XtgwR+IkyaS5v6xy+WdMHQAKwMjaNnee27GAR74aBtXld9DrK0Vx7l3H3PtVZuTRqSwJDAG8bdCUe/55+wPb23gvMYXGOdfj5z5u6N6xldnZoxIYVMgk1ZXIuz4OERRdo0xht+8to7Ehs18o+Vx6/lex9D3qqOTR6RgDOyOn2Q1+/S1hijaY2eM4VevrqWmoZG/ue9HHG44+85jKmtwUhTRLjtfVNqt2j4d6EKpHtWdNVhKKdVnFK9eCEDSmJO7XJY10MVoUhs396qBLowxPPrkE3yVd6jLvx5JH9flMqdkJ7HUjCaicj14akMQZdct3l5J9Qd/40z7cmxf+hWkju5ymRMHJ/CFfazVD2v7ghBE2XUvLi9ix9K3+aHzBesZSROObbCSjiZkJRDhdLIlajzs/BiMOfxG3ezpzwv4YOUmno77F7bIBDj/n11OmCdkJRDptLPIjAdvY69oJvj4Z7t4bVUxL2bPI7p8JZx7D8Qd29NtbDZh9MBY1pfUQcZ4rcFSqodpgqWUUoBv+8d4cZCa0/UEC8AzYBxu04Ip7z0DXTw//3OuKf0DNVFDSDjvDyEpMyMhku2R4xFMr2hqtWVPPc8++R9+6nga7+jzkBOPvY9ZR26HnZzsTNbbR8G2+SEpsys+2VrBwy+/xYPuv2NLHgnn/b3LSQeAy2Fj6tAk3mseA7WFULE5BNEeuwUby/jjayt4Lv4fJHhL4bInIKbrIw63HefT5UOsZ0xt/SAE0R67t9eUcNvr67grfT7jSl6EGTdD3le6VGbbSIImfQJUbe81X4AodTzQBEspddzz+QNk1Sxld1QO4ooOSZlRQ6cDULmxd/RN+mjtdsZ8eBMJtmbirn4aXFEhKztu5Em04CSwLbw1O9vLG/jnA//mjsBf8Q3Ix/mV+8EWun/mZoxI4V3PWEzxKmisDFm5R+vzHVXc9fhLPO36PVFR0ciVz0NEfMjKnzEimRdrc6yJLe+HrNyj9c7aEm554hOeiforo1vXIRf8GwZPD1n5J49IYW2FoTV9cliT5vkb93Dzs6v4TfJ8Lq7+L+RdBF/6TZfLzc2Io97joyI2eC5L9n9cqVKqu2iCpZQ67q3fsoWxsh1P9pdCVmb2yDwqTSxN2xeHrMxjtWRjIZEvXEGebSdy0X+xpeeFtPxpozP53D+alk3/C2m5R2PLnnoe+M/fucN/B4GU0bivfw3cMSHdx4zhKXwUGGfV1oWpmeAHG/Zw98NP8Kj9d8RGR2O74W1IHBLSfZw0PIXdpFIXOxy2hifBevbzAn751EKei7qDfP865MIHIP/ikO7jpBHJAGyJnWolH40VIS3/SLyysogbH1/KH2Nf5LqG/0LuBXDhA2Czd7nsvAwr6V4dCA5aov2wlOoxmmAppY57pcvmAZA+5YKQlTlqYBxfmJFElYX3GTufrN2KPHMpk2QTjefcjzvvvJDv46ThyXwUGEdkzWao7fnHHX64qYxX//Vz/ui7E/+APCKufx0iE0O+n9yMOHa5R9Foj+vxJmXGGB74aBtvPnkPT9hvJyY+BfsNb0Ly8JDvKzc9jpQYN0sdJ1gDQPTgg3j9AetZVw+98jZvRd3GaLMdufgRGHdJyPeVMzCO5GgX73hyAQPbF4Z8HwfjDxjufHcjv3huCc/E3cfFnhfhhOvgov8e07O9OjN6YCx2m7Cywg7xWdoPS6kepAmWUuq4F7XzAypsqcRnTwhZmS6HjdLYPFI8u8L2kM9XF3zKgBfOZ6JspvHcfxM35bJu2U9yjJvdScGhpHuwZicQMDwyfxUNT17Fj+RxWkZ8mahvvA3Ryd2yP7tNOHHEAD4J5GO2ze+xASDqPF5ufWox0e/9iLud/8Y25ETsN86HpGHdsj+bTfjSmAE8UzUa/K3WYBc9oKzOw1UPLqZk4YO8GfErUiMCyHVvwdgLumV/Npswa/QAntyViIlMhK09UwNbVufhukc+Z/7C+SyIv53JLYthzp/h3L+B3Rmy/UQ47YwcEMPa4lpIH681WEr1IE2wlFLHte0l5Uz0rqAiY1ZIBgnYR9ZUAFp39ewIZR6vn0cfe4BTF15Chr0W3xUvETf58m7dZ+aYyZSZBHxbeqZmp7KhhdsfeJLTFl7CHPtSWmb/hsgrnuzSs5GOxBm5abzfOhZpKIXS7h+Gf/muKv7vb0/xrc3f4ErHB5iTbsZ+zStdHo79cM7ITeOjlhH4HNGw5b1u3RfAx1vKufzvb3Hl7tu50/kAruxpyE0fQ+YJ3brf03MGUO0JUJE+Gza9DX5vt+7vvXWlzLlnIbm7nuCNiF8zwNmMXPUSTP9W6P/+AHmD4lm7uxaTPh6qtulAF0r1kNDUQyulVB+1cdErDJMWUqeGvglS2pgTCWwQyjd8wqAxZ4W8/M5sLa1h+SM/4LqWF9kTPZLY657BMWBkt+93xshUPl6cz/nbFkDAH5I+JAfzzhcF7Hjt9/zc/yKtUQOwXfE27hAOfnAop40ZwJ/MCQSwY1v/GoRgqPvOeLx+7n57LRGf38t/Ha9CVDxc/BIy4vRu2d/+ZoxIweZ0syV6Mjmb3oYv39Ut57Shxcef3tpAxdKXeMH9KEn2Opj1S5j5/W79HWozc1QqLruNhbZpXOJ5GXZ8BCNC1xezTb3Hyx/f2sCipct4KOYxJppVMHIOzL0PolNCvr82eRlxvLi8iJqEsSQClKyGoTO7bX9KKYvWYCmljmtRW96gVuJIHhv6m6oJI7LYZDLxF/ZMDdbbH31C7b/P5LKWFykefhlpt37cI8kVwNTsJD6T8ThbqmF39/Q7q2ho4U8PPcPgl87lW4HnaB55HjHf+xTpoeQKICHKxYjsbFbZ82D9q93STHD5rmpuufthLlx2Jd93vAi5c3H+3+fQQ8kVQKTLzskjUnmmaTLUl1h9sULsw83lXH73PE5a8QP+47qHxAGZyI0L4NQf9UhyBRDjdjB9eDL/2Z2NcUbDhnkh38e760qZ89cFxK/4F/Mjf8oE2Qbn3A1ffbZbkyuwarAA1rQNdKH9sJTqEVqDpZQ6bhXuqWRyyxIKB32Z+BB1LO8oOcbNp65cvlSzqFtrdaoaPLz/+B84b89/MDYHtXPuI2PaVd2yr4OJdNkxI86kdfv9ONa+jC3YPDIUjDG8sWIHZa/fzo/Ma7REJOG/4Cnic88N2T6Oxhm5aby4azKTKh+CPetgYGhGZaxpauWeN1eS8cW93Od4C390Csx9BueYL4ek/KN1Zm4av96Qx29iorCveSFkNR9l9R7+9MY6HGuf5SnXM8Q6W2DWr7DNuDmkfZCO1PnjM/jhC+VUj5lF0vp5cPYd4HB3udzSWg+/mbeW4vWf8VjUw4xwbIeR58CX74T4QSGI/PBy0uMQgZWVTk6JG6T9sJTqIVqDpZQ6bq3/+GVixEPy1Eu7bR+1A6cTFWjE7F7RLeUv/Hw5W/56OpeV3UtF0kQibv6c+B5Ortp8aeIoFvgn4Fv9kpVQhsCuykb++u9/kf/aHL7GKzTmXEL0rcuwhym5Ajh3XDrvm6n4xQ6rnu5yecYYXlhawB/v+hM3rb2cbzreIDD+ClzfWwphSq4A5uQPBGckq2NOhvWvgbe5S+X5A4bHPt3Jd+96hGs2fJM7nQ8QOygH27cWwSk/DEtyBXB23kCiXHZe4TRoroINr3epPJ8/wKOf7OArd7/FjC138pr71wyPbIJLn4CvPt1jyRVAtNvBsJRo1uyuhfQJWoOlVA/RBEspddyK2PI6dRLHgPwzum0f0TmnEzBC5Rdvh7Tc6oYWnvn37zjhzXMYZ7ZQcsqfGfy9d7AnZIZ0P0dj9ugBvCsn42oug12fdKmsFp+fh99axIa/X8gPy35OYowb/5WvEH/5A90yBPvRGBAXweTckbxvpmNWPtGlYcw376nn1vteIH3e5dwRuJvElHS44T2cF94HkQmhC/oYxEU4+XJ+OvdWnwieGvjimWMua2VBNVfc+za2t37As/IzxkVXwwX/xnbDu5A6OnRBH4Not4Oz89L5+45BBBKyYdnDx1zWZ9sqOf/eD9nw1n28Y7+Fq23vYpt8PfLdzyH3/NAFfRTGZSawqrDGGuiicit46sISh1LHky4nWCLyfyKyUUTWicgdHeb/TES2isgmEemZ3t1KKXWEisorOcGzhKKBXwrZc2c6c2LeKFaboXg3h2YIaGMM73/8CVvvms1X99xFbUIOju9+Rvpp3TMK2dGIdNmR0XOoIxr/Z/855nIWbSrm4Tu+z2VLvsJp9pXUn/RT4r+/DPvI00IYbddcOW0ID7ScgbTUHVPiUefxctfry1jwz29xZ8VNTHUXEJhzBxHf/ggGT+uGiI/NFVMHs6BlFOWxufDpP4+6ZrKszsNPXljB8//5Pf+puZGrHPORqTdi/95ymHAF2HrH97xXTh9MXUuAJUnnW18OFC49qu2La5r5ztMruPO/j3N33Q/4i/NBYjNzkW9+COfeDRHx3RT54Z0wJJGKhhbKYnOsGaWrwxaLUseLLt1ViMhsYC4w3hjTIiIDgvNzgcuBsUAG8D8RGWWMCU2bEaWU6qL1H73KmeIhZWr3PBuqzcD4CBZETWFc3QvW87C6UPtSWF7L4idv4/yaJ/DZXJTM/AuZs27sNTepAJedNJpHN5zB9za/CuWbjqp2oqi6iVdffJwzCv/Bt2xFVGaeRvTF9+BKzO62eI/VScOT+U3yBNY3jybno7uQcZdBRNxht/P5Azy7eBtF//s3Xw+8QIq9jpa8y3HP+T3EpPZA5EdncnYSM0akcFfxHP4SuBtWPgknXHvY7Zpb/Tz40TY2fPQC35enGOncjT9zOnLuXTAwvwciPzqTBicya3Qq398xmU+iB2B79+fwtfcO+6VFQ4uPhz7ewVsffsL/yXOc6/4UE5MOZz6E5F0U9i89ACZnW39zPm8ZzHlg9cPKPjmcISnV73X1X+VvAX82xrQAGGPKgvPnAs8aY1qMMTuArUDoejwrpVQXRWx+jVqJY8C47mse2CYw4kxsBGhcfWx9O/wBw6tvvk7jP0/mktqHKUk7lYhblpN+2k29KrkCmJKdyPKBl+HBhW/+n45omzqPl4dfnMfOe87ku7t/QloUtF78JMnfeAV6YXIF1kNqf3jWGH7adBU07IEPbj/k+oGA4Z01u/njXX9ixrvn8FPzEJHpOfD1D3Bf/J9emVy1+cGZo3m+aRLboyfCe7+EmsKDruvx+nni0x18/877mPbR1fzbdgfZiW649HHsX3unVyZXbb5/xihKmh28nnwDFH0Onz9w0HU9Xj8PLdrBJX95kZSFP+Et+6182bUSZv4Q+e4yyL+4VyRXAKMGxBIb4eDTUhvEZVrHppTqVl1tFzMKmCkifwA8wA+NMUuBQcDiDusVBecdQERuBG4EGDx4cBfD6V/8fj8NtdU01FbSVF+Np6kRf2sj/tYmAq3NmNYmjLcZWpsw/lYCfj9+v49AIIAYPzZM8D2AYADBb3NgxIEROwGxgzgQhwOb3Ynd7sDmjECcEdhcUdhcUdjdkdjd0ThckTgjonBGxBARGY07MpqICDcuuw3pJf+IKHWkSiqrmORZwq70Od0yeuD+Jp10BgWrU7EvfoLoadcc1bYbdxax+dmfc17zPOocSVSe/QjZk7/STZF2nYjwf+dO5/7/nsstG16GdXNh7IWdrtvY4uPtD+YTufQfXBf4mGZnLLUn/46EmTeBw9XDkR+9OXkDeWnMSTy+9SyuXfogJAyGk/5vnxtrj9fP+6u2s2P+w5zb+DJzbKU0JIzEnHMv0aPO6jU34YcyaXAiN54ygms+vpb5UT/H+fhc5OqX90l+qxtbeXXpVrZ+/AKXeF/jats2vFHJ8KW/4px0bdgGsDga4zITuGHGUG79JMCEzFkMfueniCvGasoYPE9Vja08s2QXKz59j7ktr/OGfQnismOb/HWY+UOITQvzURzIZhNOGJLI0p3VMOxU2Phmtz+rTqnj3WHvLETkf8DAThb9Irh9EjAdmAI8LyLDjiYAY8wDwAMAkydPDv0DRXoJEwhQX11BVXkRDRXFNNeU4qstJdBQhrO5HEdrHS5fPZH+eiIDDcSYRmJME/FiONaW2z5jpVYBbASwYSOAnQBOCU1LTa+x04CLFlx4xI1X3LSKG68tAq8tAr/djd8egd8eiXFEEHBEgtN6iTMKcUVhc0VYCZw7Cqc7CkdENE53DK7IKCLcEUS43ThcTuwOF06nG5vd0SduSLqdMcHn7xzluwl0mMfhtzlgt8YqJngOjDGYtnCCSXx70eydhwlOB9dHZO+uMB22kb1lsrecvdtbE20xtMXT/iMBAm1lwgHL2uLcueR1zhQPcSeE/uHCncnJiOep2LO5svpxzJ51SNrYw25T3eBh4XN/Y2bBfYySegqGXcaQS/+ChHnggyMxOTuJ96fezPJlaxj/4jewNVZim3x9+w3djuJyVi98nqTNL3AxK/FIBJXjbiT1yz8L+wAWR0NE+Osl4/nqf24ipaqac97/FTVr3qJhxFz2+KLZXbidiN2f8SWzkihpoTopD/9pfyAm78I+d3P7w7NGs72ikcs3/JgnAnfh/sdUSgefwy57NmVV1URWruMSWU2MeGiOG4w59W6cE66w/ub3IT/78hiKqpuYs/4aXoqtIPe1b1P18YNsi53M1iov9pqdXGhbzXekCl9ELPbJ34Zp37SS615sSnYSCzdtouGUU4hZ9ZTVTDDzhHCH1e8ZY2jxBWjwtNJUX0NTQx2epnpamxto9TQSaGnGeJvA2wStzeBrRrzNiK8Z/F5MwAt+LwR8SMCHzfixGR9248Nm2qb9wX8vTfu/l22sf6oFEZDgtCDWv5/iwIjNerfZ9/mM2Pd+tjnAZkfEjrE5EZsNbA7E7kBsdsTmALsDsVkvm92attn3Tovdgd1uR+zWF/rWl/p2xBH8ct/uwG53YnNY72K3B7dzWtM2GzZnBA6nG5utb9wDiunCQxJF5B3gL8aYBcHpbVjJ1tcBjDF/Cs5/F7jNGPPZocqbPHmyWbZs2THHE05N9dWUF26lpnQHnvKd+GsKcTYUEd1cSpKvjCRTjauTxMZr7NRIHA22ODz2GFodsbS64gi44jARCUhEPLboRFxR8bgiorG7o3C0v6JxRUTjjIjC5Y7E5XJit9mtf7gPlYS03WgHfBDw4fO20ur10trSQmurB6+nEV9LMz5PI77WJgItTQS8zfhbmgh4mzCtHgKtTdaQvW1/DPwebD4PDr8Hu78ZR6AFZ8CD07TgMi24TQsRtOCk68ldq7Hjw4EfGz5x4Cc4LXYC7D32QLAFrEEw1p8W6yZb2j7LgcuDf4RsBMAYbMFbfen4CmYGbcva300A2rZt30MgWLL1vu86Zu++2tfvNKr2de3BdVXX1RBL/C+3Iz1UU/LmkrWc+taXqE8/kfSbXj3oel5/gA/efoXMZX8gj20UROeTeNE9xA6b0iNxhorPH+C25z/h7PU/YYZ9HfX2BEpcQ6ClgSH+AtzipcaeRNP468g4/f8gKincIR+zOo+XP8xbTeQXj/Ftx2sMkJq9y+xJNA0/mwEnXYVtyIl9+guiQMDw30Xbeeujz7jC8zxz7EuJkyYAql3pyLBTSZhyOQw9pc8lkB35A4anl+ziPws2c3rj61xmX0iOrQCAJkcC/qwTiR13HuTOBXdMeIM9Qkt3VnHJ/Z/xwEVDOfPNk2D2L6wHOqsj4vH6qWnyUl1XT0NVKc21e2it3YOvvgIaK8BTja2lHpevDpevgUh/A5GmkRjTSBxNxNCMTY7ufttvBJ848GHHH7zHabvfCYjdmi+O4L1O8O9Kh7eOX06CleztFcBu/NgJWEkaAewE340f684q0D7fgR/7UcYfao/4ziL10r9x7riMsMaxPxFZboyZfMD8LiZYNwEZxphfi8go4ANgMJALPI3V7yojOH/k4Qa56O0JVnNDLSXb11FduJ6WPZtx1GwnoWkXab5i4tl3mN5WY6fclkqtawCNEen4ogYgMQNwxqcTkTCQ2JQMEgcMIiYhFenD/xAdNb8PX0sjLZ5GPE0NtDY30uppxOdpxOtpwtdiNYG0Xq34fG3f3njB77PeA14kmBxKwIcEp20BHxh/8I+IQczeJAZj2hMVYJ9ESTrMwxgrFRIhYGzByhebVeOyTyK2N71qW9ZxvjXPFpy3d1l7YrfPNtb7vp8J3ojtXR+x7f0cjLhtnb3lAWJr375tH9Z6bccjSHCdjvvuWJZVlHVs+98Oihg6zt37rVjHldpL7bDd3um2n3nH8veeB9nnEDF799G+v+DMtq33KVsOtd+9scUNm0rm+Nn0FH/A8MRfv891jQ9TM/tPJJz67X2Wt3p9fPzeyyQu/zuTAmupsiXjmX0bGSdf3Wdvyo0xvL+ulE0fPsfI6oVkmD3YXNEEUnPInHo+Sbmn9ekb8f1VNrSwqaQOf9UO0iK8ZGcNwZU4qM+ev4PxBwy7q5upa25lUEQLifFxfa6m6kgYYyirb6GmycvAGDvxLsAVFe6wjonPH+CE3/+PL+UM4O7qm60HKX/tvXCHFVaBgKGqqZU9tc1UVeyhobyAlqrdmLpibA2lRDSXEu2tItZfTYKpI0nqiZXOnwUXQGiSKJpsMbTYY2hxxOJ1xuJ3xuJ3x0FEPOKOwx4ZhzMiGmdEdPBL82jsEVE43dFWC57IGFwR0Ygjslf1rw0EDP5AAL/fh8/nxe/14fe14vf7rJfPh9/vJeDz4vf7Cfi8BPzWPOP3B999BAI+Aj4fxu9rn257x+8jEPBb93zGb93nGT8ErM97oseQd/J5jEyLDfePYx/dlWC5gIeBCUArVh+s+cFlvwBuAHzALcaYwz4EprclWFu/WET5kheIrFpPhmcbA6jcZ3mppFLuyqQxZgiB+CE4kwYTmzaU5EHDSU7LwmbvPzcOSqmu21xSQ8n9F3KqrGBHxjnIqLOoamyladcKssv+RyZlVNmSqBj/LUae/V2kj97MKaV6n5ufXcnHWypYOnMl9oV/gO+tgqSh4Q6r23i8fnbXNFNcUWu1LirbiqnahauhkOjmEuJ9FaRRRZpUEyHeA7avtSXQ4EzB40rCF5GEiUrGFpOKIzYVd/wAohLSiE5KxxWXCu74XpUQqZ7TLQlWqPW2BOvzl/7GpNW/pdAxmIrokbQmjsI9cBRJWTlkDBtLRFTfaBqglOo9Nu0uZ+3jP+IMzzvEBb8N9Ro7W6MmIBO/yuhZV2pipZQKuXfWlnDTkyt4+tJMTnp9ljUox2m/CHdYXdLU6mNnRRNFpXuo3b0R355N2Gp2Et1USKqvlEwpZyBV+zRv8+GgxjmA5og0vNEDITYdZ+IgolKyiE3NwpWYCTED+8RAOyr8NME6Bs2N9YjNRkRkdLhDUUr1I8YYNuyuoq5wHckxEQwZmYcrQpMqpVT3afUFOPFPHzAlO4n75U9Qth5uXt2tD1oPlTqPl03FNRTt3Ext4XpM5VZiG3aQ4S1kmK2EgVK9z/o1jlSaogbhixuMPTmbqAHDiE0fgSMpG+Iy+lXTZBVeB0uwev9VFUaR0b2rnadSqn8QEXIzkyHzlHCHopQ6TrgcNi4+IZMHP95O6YVXMHDr9bDiUZjy9XCH1s7rD7CjopHtu3ZRs2MVpnQtMXWbGezdQZ4UMUVa29dtssVQl5CNN/FUStNGEZ+VS+TAHEjMJsEZQUL4DkMpTbCUUkoppY4HX585jMc+28nvNg/hviEnw4I/Qt5FPf54BGMM5fUtbNxdQfm2VbTsXou7agNpzdsYLQXMkdr2devtCdQkjaJ8wCnEZuWRkJWLpIwiKjqFqH42gIzqPzTBUkoppZQ6DqTGuvn2rBHc/f5mLvvyrZxSeBm89HX46nPd1lSwqdXH5tJ6Cndson7XF9jL15FQv5nhgV2cJKU4xHr8SKu4qIwZSlPybEoH5ZM0bCKujHxiYwag7YlUX6N9sJRSSimljhNef4BL//MZ64vreGPGVkYu+SXknA8X/Avcx57K+AOGgqomthaVULH9C/wla4mu3khmq1UrFddhiPNKVwaN8aOwDcwjYegEYrLGQ9KwPtEfTKmOdJALpZRSSilFZUMLVzy4hC1l9fx72GecWXwfEpsBJ98CY78C0ckH3bbVF2BXRT2FBTupLtyAt3wzzurtJHl2MdTsJtu2p33dZls0VTEj8afmEj14PInZE7ENzO1SIqdUb6IJllJKKaWUAqChxcef3trAM58XMImN/C7qWXL8mwGoi8ikOmqI9eBc48Db2oxpbSaqtZLEQBWpVOMSf3tZreKiOmIwrQnDcWbkkTh0Eu5B+ZAwuN89aFupjjTBUkoppZRS+yiobOL11cUs2V6Jv3gVk1qWMloKyZZSYmjGLT58NjcBuxuPOwlfVBqOhAxiUoeQPCSHiLTREJepD9pVxyVNsJRSSiml1CH5A4Zmrx+nXXDZbYjWQCl1UPocLKWUUkopdUh2mxDj1ttDpbpC63OVUkoppZRSKkQ0wVJKKaWUUkqpENEESymllFJKKaVCpFcNciEi5cCucMexnxSgItxBqB6j5/v4oef6+KHn+vii5/v4oef6+NIbz/cQY0zq/jN7VYLVG4nIss5GB1H9k57v44ee6+OHnuvji57v44ee6+NLXzrf2kRQKaWUUkoppUJEEyyllFJKKaWUChFNsA7vgXAHoHqUnu/jh57r44ee6+OLnu/jh57r40ufOd/aB0sppZRSSimlQkRrsJRSSimllFIqRDTBUkoppZRSSqkQ0QTrEERkjohsEpGtIvLTcMejQkdEskRkgYisF5F1InJzcH6SiLwvIluC74nhjlWFhojYRWSliLwRnB4qIkuC1/dzIuIKd4wqNEQkQUReFJGNIrJBRE7Ua7t/EpFbg3/D14rIMyISodd2/yEiD4tImYis7TCv02tZLPcGz/tqEZkUvsjV0TrIub4z+Hd8tYi8IiIJHZb9LHiuN4nIWWEJ+hA0wToIEbED9wFnA7nAV0UkN7xRqRDyAT8wxuQC04HvBM/vT4EPjDEjgQ+C06p/uBnY0GH6L8A9xpgRQDXwtbBEpbrD34F3jDFjgPFY512v7X5GRAYB3wMmG2PyADtwOXpt9yePAnP2m3ewa/lsYGTwdSPw7x6KUYXGoxx4rt8H8owx44DNwM8AgvdrlwNjg9v8K3jf3mtognVwU4GtxpjtxphW4FlgbphjUiFijCkxxqwIfq7HugEbhHWOHwuu9hhwQVgCVCElIpnAOcB/g9MCnAa8GFxFz3U/ISLxwCnAQwDGmFZjTA16bfdXDiBSRBxAFFCCXtv9hjHmI6Bqv9kHu5bnAo8by2IgQUTSeyRQ1WWdnWtjzHvGGF9wcjGQGfw8F3jWGNNijNkBbMW6b+81NME6uEFAYYfpouA81c+ISDYwEVgCpBljSoKLSoG0cMWlQupvwI+BQHA6Gajp8Idbr+/+YyhQDjwSbBL6XxGJRq/tfscYsxu4CyjASqxqgeXotd3fHexa1vu2/u0G4O3g515/rjXBUsc1EYkBXgJuMcbUdVxmrGcY6HMM+jgRORcoM8YsD3csqkc4gEnAv40xE4FG9msOqNd2/xDsezMXK6nOAKI5sImR6sf0Wj4+iMgvsLp2PBXuWI6UJlgHtxvI6jCdGZyn+gkRcWIlV08ZY14Ozt7T1qQg+F4WrvhUyMwAzheRnVhNfU/D6qOTEGxWBHp99ydFQJExZklw+kWshEuv7f7ndGCHMabcGOMFXsa63vXa7t8Odi3rfVs/JCLXAecCV5q9D+/t9edaE6yDWwqMDI5G5MLqTDcvzDGpEAn2wXkI2GCMubvDonnAtcHP1wKv9XRsKrSMMT8zxmQaY7KxruP5xpgrgQXAxcHV9Fz3E8aYUqBQREYHZ30JWI9e2/1RATBdRKKCf9PbzrVe2/3bwa7lecA1wdEEpwO1HZoSqj5IROZgNe8/3xjT1GHRPOByEXGLyFCsgU0+D0eMByN7k0G1PxH5MlbfDTvwsDHmD+GNSIWKiJwMfAysYW+/nJ9j9cN6HhgM7AIuNcbs38FW9VEiMgv4oTHmXBEZhlWjlQSsBK4yxrSEMTwVIiIyAWtAExewHbge6wtFvbb7GRH5LXAZVvOhlcDXsfpi6LXdD4jIM8AsIAXYA/wGeJVOruVgkv1PrGaiTcD1xphlYQhbHYODnOufAW6gMrjaYmPMTcH1f4HVL8uH1c3j7f3LDCdNsJRSSimllFIqRLSJoFJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIj8Pxo0NdEk13CfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2058,31 +2058,31 @@ " 48\n", " True\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " bAP.soma.v\n", - " 0.00549\n", - " 2.86e-07\n", + " 0.00554\n", + " 2.01e-07\n", " \n", " \n", " 49\n", " True\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step1.soma.v\n", - " 0.125\n", - " 7.9e-07\n", + " 0.0844\n", + " 1.03e-07\n", " \n", " \n", " 50\n", " True\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step3.soma.v\n", - " 0.0533\n", - " 2.78e-07\n", + " 0.0555\n", + " 1.1e-06\n", " \n", " \n", "\n", @@ -2090,14 +2090,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "48 True 6 0.0537 0.0124 bAP.soma.v \n", - "49 True 6 0.0537 0.0124 Step1.soma.v \n", - "50 True 6 0.0537 0.0124 Step3.soma.v \n", + "48 True 6 0.0562 0.0128 bAP.soma.v \n", + "49 True 6 0.0562 0.0128 Step1.soma.v \n", + "50 True 6 0.0562 0.0128 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "48 0.00549 2.86e-07 \n", - "49 0.125 7.9e-07 \n", - "50 0.0533 2.78e-07 " + "48 0.00554 2.01e-07 \n", + "49 0.0844 1.03e-07 \n", + "50 0.0555 1.1e-06 " ] }, "metadata": {}, @@ -2105,7 +2105,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACh+UlEQVR4nOzdeXwV9b3/8dfnnOw7JGFHgijIkogKiAXc2utSF7Ra0bqh13rV2qp1rW0ttdff7bW21u1KbW21ahHrbrVaN1SsGyjiggtI2GQJCSQkZDnL9/fHTMIhZIOccBLyfj6cR2b5znc+M5MTz4fvd75jzjlERERERESk8wKJDkBERERERGRPoQRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiEg3YWZFZubMLCnRsezpzGymmc1PdBzdjZlNM7PPEx2HiEhPpgRLRER6NDObZWYhM6uOma5JdFw9kXPuDefcqHjW6Sdt1c0mZ2anxPM4IiLdhf6VVEQkTswsyTkXTnQcvdRc59xZiQ6iq/Tk3y3n3BtAVuOymR0OPAM8n6CQRES6lFqwREQ6wcxKzexaM1sM1JhZkplNNrN/m9lmM/vQ/0LZWH6emf2Pmb1rZlVm9pSZ9W2l7vPMbImZbTGzr8zsv5ptn25mi/x6lpnZMf76XDO718zWmtkaM/tvMwu2cx4jzOwVMys3s41m9pCZ5cVsqzCzA/3lQWZW1nheZnaimX3in+88Mxvd7PpcZWaLzazSzOaaWdrOX+mdZ2bX+ddli5l9amYnt1LOzOxWM9vgX8uPzGycvy3VzG4xs5Vmtt7MZptZegePf59f/kU/htfMbFjM9tvMbJV/zIVmNi1m2ywze9TMHjSzKmCmmU0ys7f867zWzO40s5SYfZyZXWJmX/rH+5V/7/7tH+OR2PKtxHy4ma3uyPl1wrnAo865mi4+johIQijBEhHpvDOA44A8oD/wLPDfQF/gKuAxMyuMKX8OcD4wEAgDt7dS7wbgeCAHOA+4NSbJmQT8FbjaP+6hQKm/331+vfsABwBHARe0cw4G/A8wCBgNDAVmATjnlgHXAg+aWQbwF+B+59w8MxsJzAEuBwqB54Bnmn2RPw04BhgOlAAzWwzAbKqfPLQ2TW3nHJpbBkwDcoFf+vEPbKHcUXjXb6Rf9jSg3N/2a3/9eLzrORi4YSdiOBP4FVAALAIeitn2nl9vX+BvwN+bJZ/TgUfx7u9DQAS4wq/rEOCbwCXNjnc0cBAwGbgGuAc4C+9+jsP7Xd1lfqLc2v35vw7snwmcCtzfmThERLo155wmTZo0adrFCS+pOT9m+VrggWZlXgDO9efnAb+O2TYGaACCQBHggKRWjvUkcJk//wfg1hbK9AfqgfSYdWcAr+7keZ0EfNBs3dPAR8BiINVf93PgkZgyAWANcHjM9TkrZvvNwOw434NZ/jXcHDMNaqHcImC6Pz8TmO/PHwl8gZeUBGLKG1ADjIhZdwiwvINx3Qc8HLOchZckDW2l/CZg/5hzer2d+i8HnohZdsCUmOWFwLUxy78Fft9OnYcDq+N5f5rVfzawHLCuOoYmTZo0JXrSM1giIp23KmZ+GPBdMzshZl0y8Gor5Vf42wuaV2pmxwK/wGtBCQAZeAkOeC0Sz7UQyzC/vrVm1rgu0OyYOzCz/sBteC0+2f4+m5oV+yNeknWhc67eXzfIPwcAnHNRM1uF19LTaF3M/FZ/n3h7xDV7BsvMzgF+jJe4gpfg7HCdnXOvmNmdwF3AMDN7HK/lMQ3vmi+MuZaGlwx3VNN1d85Vm1kF3vmvMrOrgP/0lx1eS2VBS/v65zMS+B0wwY8rCS+JirU+Zr62heUBOxF7VzgX+KtzziU4DhGRLqMugiIinRf7ZXEVXgtWXsyU6Zz7dUyZoTHzewEhYGNshWaWCjwG3AL0d87l4SVUjd/0VwEjWohlFV4LVkHM8XOcc2PbOYf/559HsXMuB69b2baswiwL+D1wLzDLtj039jVeUtdYzvzzW9PO8XZgLY82FztNa7+WprqG4SWElwL5/vX7OPacYjnnbnfOHYTXojgSr+vlRrykZGzMtcx1zmW1VEcrmu61fw37Al/753INXnfEPn58lc3ia56E3A18Buzr36PrWzufruI/a9fa/Zndzr5D8VrI/rpbghURSRAlWCIi8fUgcIKZHW1mQTNL8wcOGBJT5iwzG+M/z3Qj3gP/kWb1pACpQBkQ9luzjorZfi9wnpl908wCZjbYzPZzzq0F/gX81sxy/G0jzOywduLOBqqBSjMbjJdgxLoNWOCcuwDvGbPGL9OPAMf5cSQDV+IleP9u70I157whwrPamN7Yieoy8RKUMvAGDMF7BmkHZjbRzA72468B6oCocy6Kl6Tdamb9/LKDzezomH2dxQxi0oJv+8+WpeA9i/W2c24V3vUO+/ElmdkNeC1YbckGqoBqM9sPuLid8nHnnBvbxv25qJ3dzwb+7bxn+kRE9lhKsERE4sj/8jwdr3WhDK9F6Wq2/3v7AN7zOevwuqH9qIV6tvjrH8Hrqvc9vO55jdvfxR/4Aq/l4zW2tSSdg5egferv+yjegBpt+SVwoF/Xs8DjjRvMbDreIBWNX+h/DBxoZmc65z7Ha+26A6/F5wTgBOdcQzvH61LOuU/xnjl6C6+bXDHwZivFc/ASqU143R3Lgd/4264FlgJv+6P5vQSMgqYWmS1s67bZkr/hdfOswBt8orEb4wt4w5R/4R+zjna6ceJ1W/yef8w/AnPbKd/dnIMGtxCRXsDUDVpEZPcxs3nAg865PyU6FukcMzsLr/vgT1rZfh/egBE/262BiYhIQmmQCxERkV3gnHsw0TGIiEj3oy6CIiK9hHkvvd3pwQlkz2Jm17fye/DPRMcmIrInUBdBERERERGROFELloiIiIiISJx0q2ewCgoKXFFRUaLDEBERERERadPChQs3OucKm6/vVglWUVERCxYsSHQYIiIiIiIibTKzFS2tVxdBERERERGROFGCJSIiIiIiEidKsEREREREROKkWz2D1ZJQKMTq1aupq6tLdCjSDaSlpTFkyBCSk5MTHYrsgZ7/eB2Pv7+aO753AKlJwUSHIyIiIj1Qt0+wVq9eTXZ2NkVFRZhZosORBHLOUV5ezurVqxk+fHiiw5E90K8efZOLww/xxWunUvzN7yU6HBEREemBun0Xwbq6OvLz85VcCWZGfn6+WjOly8zgRc5Kepn8Rf+X6FBERESkh+r2CRag5Eqa6HdBulKuqwQgp2YFOJfgaERERKQn6hEJlohIV4tGHemRGgCyolVQtSbBEYmIiEhPpASrA8yMK6+8smn5lltuYdasWYkLKMbhhx/e5suZTzrpJCZPnrzdulmzZjF48GDGjx/PuHHjePrpp7s6TJFur6YhTJbVNi1H1y9JYDQiIiLSUynB6oDU1FQef/xxNm7cGNd6nXNEo9G41hlr8+bNLFy4kMrKSr766qvttl1xxRUsWrSIv//975x//vldGodIT1BTHyGLWsoChQBUrluW4IhERESkJ1KC1QFJSUlceOGF3HrrrTtsKysr45RTTmHixIlMnDiRN998E/BaiW655ZamcuPGjaO0tJTS0lJGjRrFOeecw7hx41i1ahVXX30148aNo7i4mLlz5wIwb948Dj/8cE499VT2228/zjzzTFwrz4Q88MADTa1R7777btP6xx9/nBNOOIHTTz+dhx9+uMV9R48eTVJS0nbJ43XXXceYMWMoKSnhqquuAqC0tJQjjzySkpISvvnNb7Jy5UoAZs6cycUXX8zkyZPZe++9mTdvHueffz6jR49m5syZTXVefPHFTJgwgbFjx/KLX/xihzgqKysZNmxYU6JXU1PD0KFDCYVCLcYtEm/V9WGyrZbNGUU0uCDVSrBERERkF3T7Ydpj/fKZT/j066q41jlmUA6/OGFsu+V+8IMfUFJSwjXXXLPd+ssuu4wrrriCqVOnsnLlSo4++miWLGm7a9GXX37J/fffz+TJk3nsscdYtGgRH374IRs3bmTixIkceuihAHzwwQd88sknDBo0iClTpvDmm28yderUHerbunUrixYt4vXXX+f888/n448/BmDOnDnccMMN9O/fn1NOOYXrr79+h33feecdAoEAhYXev9qXl5fzxBNP8Nlnn2FmbN68GYAf/vCHnHvuuZx77rn8+c9/5kc/+hFPPvkkAJs2beKtt97i6aef5sQTT+TNN9/kT3/6ExMnTmTRokWMHz+em266ib59+xKJRPjmN7/J4sWLKSkpaYojNzeX8ePH89prr3HEEUfwj3/8g6OPPlrvu5LdZmtDmGy2kpy1N2uqCrCKFYkOSURERHogtWB1UE5ODueccw633377dutfeuklLr30UsaPH8+JJ55IVVUV1dXVbdY1bNiwpuei5s+fzxlnnEEwGKR///4cdthhvPfeewBMmjSJIUOGEAgEGD9+PKWlpS3Wd8YZZwBw6KGHUlVVxebNm1m/fj1ffvklU6dOZeTIkSQnJzclXgC33nor48eP56qrrmLu3LlNo/Pl5uaSlpbGf/7nf/L444+TkZEBwFtvvcX3vue9F+jss89m/vz5TXWdcMIJmBnFxcX079+f4uJiAoEAY8eObYr5kUce4cADD+SAAw7gk08+4dNPP93hPGbMmNHUgvfwww8zY8aMNq+jSDxV13vPYKVl5vE1haRUr050SCIiItID9agWrI60NHWlyy+/nAMPPJDzzjuvaV00GuXtt98mLS1tu7JJSUnbPdcU++6mzMzMDh0vNTW1aT4YDBIOh1ss13zocjPjkUceYdOmTU0v5K2qqmLOnDncdNNNgPcMVmP3v+Zxv/vuu7z88ss8+uij3HnnnbzyyisdijMQCGwXcyAQIBwOs3z5cm655Rbee+89+vTpw8yZM1t8l9WJJ57I9ddfT0VFBQsXLuTII49s87gi8VTb4D2DtTUtm4rkARTXLkx0SCIiItIDqQVrJ/Tt25fTTjuNe++9t2ndUUcdxR133NG0vGjRIgCKiop4//33AXj//fdZvnx5i3VOmzaNuXPnEolEKCsr4/XXX2fSpEk7FVdjq8/8+fPJzc0lNzeXOXPm8Pzzzzc997Vw4cJWn8OKVV1dTWVlJd/+9re59dZb+fDDDwH4xje+0bT/Qw89xLRp0zocX1VVFZmZmeTm5rJ+/Xr++c9/tlguKyuLiRMnctlll3H88ccTDAY7fAyRzgqFQ2RZHZaaQ036YHIimyBU2/6OIiIiIjE6nWCZ2VAze9XMPjWzT8zsMn/9LDNbY2aL/OnbnQ838a688srtBoS4/fbbWbBgASUlJYwZM4bZs2cDcMopp1BRUcHYsWO58847GTlyZIv1nXzyyZSUlLD//vtz5JFHcvPNNzNgwICdiiktLY0DDjiAiy66iHvvvZfS0lJWrFix3fDsw4cPJzc3l3feeafFOr797W/z9ddfs2XLFo4//nhKSkqYOnUqv/vd7wC44447+Mtf/kJJSQkPPPAAt912W4fj23///TnggAPYb7/9+N73vseUKVOatt1www3bDRM/Y8YMHnzwQXUPlN0uUrvFm0nPIZwz1JvfvDJxAYmIiEiPZK2NTNfhCswGAgOdc++bWTawEDgJOA2ods7d0tb+sSZMmOCav9NpyZIljB49ulMxyp5FvxPSFf7xxrsc//J/UHHkb3h+Qx++9/EFRM54hOCooxMdmoiIiHRDZrbQOTeh+fpOt2A559Y6597357cAS4DBna1XRGR3cqF6AAIpGaQXes8ubtFQ7SIiIrKT4voMlpkVAQcAjf3QLjWzxWb2ZzPr08o+F5rZAjNbUFZWFs9wREQ6LBLyBl4JpqTSp/8QGlyQ2jIN1S4iIiI7J24JlpllAY8BlzvnqoC7gRHAeGAt8NuW9nPO3eOcm+Ccm9D4LiYRkd2tsQUrmJzK4D6ZrHd9iVSuSXBUIiIi0tPEJcEys2S85Ooh59zjAM659c65iHMuCvwR2Lmh8UREdqNo2GvBSkpJY1BeOl+TT6BKCZaIiIjsnHiMImjAvcAS59zvYtYPjCl2MvBx831FRLqLxhaspOR0MlOT2BgoIK12XYKjEhERkZ4mHi8angKcDXxkZov8ddcDZ5jZeMABpcB/xeFYIiJdwoX9QS6SvZeGV6f2J6f+bYhGIaBXBoqIiEjHxGMUwfnOOXPOlTjnxvvTc865s51zxf76E51za+MRcKI8+eSTmBmfffZZq2VKS0sZN25c3I45c+ZMHn300Va3X3755QwePJhoNNq07r777qOwsJDx48czZswY/vjHP8YtHpE9WWOCRVIKAA2ZA0kiDDUafEdEREQ6Tv8s20Fz5sxh6tSpzJkzp8Xt4XC408eIRCIdLhuNRnniiScYOnQor7322nbbZsyYwaJFi5g3bx7XX38969ev73RsInu8iJ9gBVO9nzn+2yb0HJaIiIjsBCVYHVBdXc38+fO59957efjhh5vWz5s3j2nTpnHiiScyZswYwEu0zjzzTEaPHs2pp57K1q1bAXj55Zc54IADKC4u5vzzz6e+3vsyV1RUxLXXXsuBBx7I3//+9x2O/dJLLzFhwgRGjhzJP/7xj+2OPXbsWC6++OJWk75+/foxYsQIVqzYNtT07bffzpgxYygpKeH0008HoKKigpNOOomSkhImT57M4sWLAZg1axbnnnsu06ZNY9iwYTz++ONcc801FBcXc8wxxxAKhQC48cYbmThxIuPGjePCCy+k+curo9EoRUVFbN68uWndvvvuq8RPupemFiwvwUrpMxSAhopViYpIREREeqB4PIO1+/zzOlj3UXzrHFAMx/66zSJPPfUUxxxzDCNHjiQ/P5+FCxdy0EEHAfD+++/z8ccfM3z4cEpLS/n888+59957mTJlCueffz7/93//x6WXXsrMmTN5+eWXGTlyJOeccw533303l19+OQD5+fm8//77LR67tLSUd999l2XLlnHEEUewdOlS0tLSmDNnDmeccQbTp0/n+uuvJxQKkZycvN2+X331FV999RX77LNP07pf//rXLF++nNTU1KaE5xe/+AUHHHAATz75JK+88grnnHMOixYtAmDZsmW8+uqrfPrppxxyyCE89thj3HzzzZx88sk8++yznHTSSVx66aXccMMNAJx99tn84x//4IQTTmg6ZiAQYPr06TzxxBOcd955vPPOOwwbNoz+/ft3+DaJdLnI9glWRuEwALZsKCU/UTGJiIhIj6MWrA6YM2dOU2vP6aefvl2L0aRJkxg+fHjT8tChQ5kyZQoAZ511FvPnz+fzzz9n+PDhjBw5EoBzzz2X119/vWmfGTNmtHrs0047jUAgwL777svee+/NZ599RkNDA8899xwnnXQSOTk5HHzwwbzwwgtN+8ydO5fx48dzxhln8Ic//IG+ffs2bSspKeHMM8/kwQcfJCnJy6/nz5/P2WefDcCRRx5JeXk5VVVVABx77LEkJydTXFxMJBLhmGOOAaC4uJjS0lIAXn31VQ4++GCKi4t55ZVX+OSTT3Y4jxkzZjB37lwAHn744TbPWSQRLNzgzfhdBPP7DaTOJVO3cWUCoxIREZGepme1YLXT0tQVKioqeOWVV/joo48wMyKRCGbGb37zGwAyMzO3K++NWt/6ckua19FefS+88AKbN2+muLgYgK1bt5Kens7xxx8PeMnMnXfe2WJ9zz77LK+//jrPPPMMN910Ex991HaLYGqq92UzEAiQnJzcFE8gECAcDlNXV8cll1zCggULGDp0KLNmzaKurm6Heg455BCWLl1KWVkZTz75JD/72c/aPK7I7mZRP8HyB7kYlJfBWteXJL1sWERERHaCWrDa8eijj3L22WezYsUKSktLWbVqFcOHD+eNN95osfzKlSt56623APjb3/7G1KlTGTVqFKWlpSxduhSABx54gMMOO6xDx//73/9ONBpl2bJlfPXVV4waNYo5c+bwpz/9idLSUkpLS1m+fDkvvvhi0/NerYlGo6xatYojjjiC//3f/6WyspLq6mqmTZvGQw89BHjPdhUUFJCTk9Oh+BqTqYKCAqqrq1sd9dDMOPnkk/nxj3/M6NGjyc9XpyvpXgLh7Qe5GJCbxjqXT7D66wRGJSIiIj2NEqx2zJkzh5NPPnm7daecckqrA0uMGjWKu+66i9GjR7Np0yYuvvhi0tLS+Mtf/sJ3v/tdiouLCQQCXHTRRR06/l577cWkSZM49thjmT17NtFolOeff57jjjuuqUxmZiZTp07lmWeeabGOCy64gAULFhCJRDjrrLMoLi7mgAMO4Ec/+hF5eXnMmjWLhQsXUlJSwnXXXcf999/fwasDeXl5fP/732fcuHEcffTRTJw4sWnb7NmzmT17dtPyjBkzePDBB9U9ULqlQLSBKAZB71nGtOQg5UkFpOtlwyIiIrITrPmIb4k0YcIEt2DBgu3WLVmyhNGjRycoIumO9DshXeGp3/wnx9Y8Tcqsbe+9mvu/3+fU2kcJ3rARAsEERiciIiLdjZktdM5NaL5eLVgiIngtWCHbfiTOhoxBBIlCtV4pICIiIh2jBEtEBAhGGog0S7As13/ZsAa6EBERkQ7qEQlWd+rGKIml3wXpKkHXQCiQst265L7ey4ZryzVUu4iIiHRMt0+w0tLSKC8v1xdrwTlHeXk5aWlpiQ5F9kDBaIiIbZ9gZffbC4DqshWJCElERER6oG7/HqwhQ4awevVqysrK2i8se7y0tDSGDBmS6DBkD5TkGogEtu8iWFAwgK0ulXq9bFhEREQ6qNsnWMnJyQwfPjzRYYjIHi4p2kC0WRfBgXnprHV9SalcnaCoREREpKfp8i6CZnaMmX1uZkvN7LquPp6IyK5IciEigdTt1g3ITWMt+SRVr01QVCIiItLTdGmCZWZB4C7gWGAMcIaZjenKY4qI7IpkQkSDzQa5CAaoCPYjo04vGxYREZGO6eoWrEnAUufcV865BuBhYHoXH1NEZKc450hyIVyzLoIAten9yQ6XQySUgMhERESkp+nqBGswsCpmebW/TkSk2whHHakttGABhDIHEsDBFrViiYiISPsSPky7mV1oZgvMbIFGChSRRGgIR0khhAum7rDNcr1RK50GuhAREZEO6OoEaw0wNGZ5iL+uiXPuHufcBOfchMLCwi4OR0RkR6FIlBQL41powUrN996FVauh2kVERKQDujrBeg/Y18yGm1kKcDrwdBcfU0RkpzSEo6QSgqQdW7Cy+xUBsGWDXjYsIiIi7evS92A558JmdinwAhAE/uyc+6QrjykisrPqw1FyCUELLViFhQVscek0VKgFS0RERNrX5S8ads49BzzX1ccREdlVDRHvGSyS0nbYNijXe9lwWtXXCYhMREREepqED3IhIpJooXCEFMJYC10EC7NTWUc+ydVKsERERKR9SrBEpNdrCDUQMNdighUMGJuT+5FZtz4BkYmIiEhPowRLRHq9cH0tAJa8Y4IFsDVtADmRCgjX786wREREpAdSgiUivV64vg4Aa+EZLIBo9iBvRs9hiYiISDuUYIlIrxcOeQlWoJUWrGDfYQBEKjRUu4iIiLRNCZaI9HqRBq/rX7CVBCuj/wgAKr/+crfFJCIiIj2TEiwR6fUifgtWMLnlLoL5g4YTckG2rl+2O8MSERGRHqjL34MlItLdNSVYKS0nWHsV5LDGFWAVy3dnWCIiItIDqQVLRHq9aEPbLVgDc9NZTT9SqlbuzrBERESkB1KCJSK9XshPsFJS01vcHgwYFSmDyK5dvTvDEhERkR5ICZaI9HrhxgQrreUWLICtmUPJilZBXeXuCktERER6ICVYItLrRdppwQKI5nlDtbNJQ7WLiIhI65RgiUiv1/gerNZeNAyQXOgN1V67QSMJioiISOuUYIlIr+catnozrQxyAZA7aF8AqvQuLBEREWmDEiwR6fWsodqbSclutcyg/v3Z5LKoL/tqN0UlIiIiPVGnEiwz+42ZfWZmi83sCTPL89cXmVmtmS3yp9lxiVZEpAsEQn6ClZrVapmhfTNY6foR2Fy6e4ISERGRHqmzLVgvAuOccyXAF8BPYrYtc86N96eLOnkcEZEukxSqIUIA2ngGKzc9mbWB/qRXr9qNkYmIiEhP06kEyzn3L+dc2F98GxjS+ZBERHavpPBW6iwDzNostyVtCLkNayEa2U2RiYiISE8Tz2ewzgf+GbM83Mw+MLPXzGxaHI8jIhJXyZEa6oMZ7ZZryNmLJCJQqRcOi4iISMuS2itgZi8BA1rY9FPn3FN+mZ8CYeAhf9taYC/nXLmZHQQ8aWZjnXNVLdR/IXAhwF577bVrZyEi0gkpka00JLWfYAUL9oYNECn/imCfYbshMhEREelp2k2wnHPfamu7mc0Ejge+6Zxz/j71QL0/v9DMlgEjgQUt1H8PcA/AhAkT3E7GLyLSaWnRjiVYWQNGwqdQueZz+u5zxG6ITERERHqazo4ieAxwDXCic25rzPpCMwv683sD+wIa21hEuqU0t5VwUusjCDYqGDycepdMzbqluyEqERER6YnabcFqx51AKvCieQ+Hv+2PGHgocKOZhYAocJFzrqKTxxIRibto1JHhaokkZ7Zbtqggm1WukJQK/XuRiIiItKxTCZZzbp9W1j8GPNaZukVEdoetoQiZVkd1cvstWP2yU/mUAYytWrEbIhMREZGeKJ6jCIqI9DiVtSGyqMXaeMlwo0DA2Jw2mNy61eD0yKiIiIjsSAmWiPRqlTX1ZFFLID23Q+Vrs4eR5uqgekMXRyYiIiI9kRIsEenVqjdvIGiOYFZBh8pb370BcBXLujIsERER6aGUYIlIr7Z103oAUnP7d6h8ev8RAGz5+ssui0lERER6LiVYItKr1W32uvpl9ulYgtV30D5EnLFlnRIsERER2VFnh2kXEenRQlu8BCur74AOlR/Wrw9fuwJcmboIioiIyI7UgiUivVqkeiMAwazCDpUf3CedFfQnWUO1i4iISAuUYIlIr2ZbvQSLjI4NcpEcDLAxZRA5W1d1YVQiIiLSUynBEpFeLbmughrLhKSUDu+zNXMYmdEqqN3UhZGJiIhIT6QES0R6tayGDVQmd6x7YCPXp8ibqVge/4BERESkR1OCJSK9lnOOvuH1bE0fuFP7pfTbB4Ct65Z2RVgiIiLSgynBEpFeq6KmgYFsJJw1eKf2yxs0EoCqrz/virBERESkB1OCJSK91tqNm8i3LQT6DN2p/YYOKGC9y6Oh7KsuikxERER6KiVYItJrbVrnJUjpBcN2ar+9+mawwvUnWFnaBVGJiIhIT6YES0R6ra0bSgHIHTB8p/bLSEliQ3AgWTUruyAqERER6ck6lWCZ2SwzW2Nmi/zp2zHbfmJmS83sczM7uvOhiojEV6jCS5Cy+xft9L6V6UPJDW+Ehq1xjkpERER6sqQ41HGrc+6W2BVmNgY4HRgLDAJeMrORzrlIHI4nIhIXgao1RDECOTs3yAVAKGcv2ApsXgH9Rsc/OBEREemRuqqL4HTgYedcvXNuObAUmNRFxxIR2SWpNV+zOZgPweSd3jfYtwiA6CZ1ExQREZFt4pFgXWpmi83sz2bWx183GFgVU2a1v24HZnahmS0wswVlZWVxCEdEpGNyGtazJWXALu2b3s97bmvLer1sWERERLZpN8Eys5fM7OMWpunA3cAIYDywFvjtzgbgnLvHOTfBOTehsLBwZ3cXEdkl9eEIBZEN1GUO2qX98wcMpd4lUbtBQ7WLiIjINu0+g+Wc+1ZHKjKzPwL/8BfXALEvlhnirxMR6RbWb65lkFWwPGfILu0/pE8mX7t8ktVFUERERGJ0dhTBgTGLJwMf+/NPA6ebWaqZDQf2Bd7tzLFEROKpbP1qUi1Ecv5eu7T/4D7prHaFJFWtar+wiIiI9BqdHUXwZjMbDzigFPgvAOfcJ2b2CPApEAZ+oBEERaQ7qfJfMpxZuHMvGW6UkZJEeVJ/xtd+EM+wREREpIfrVILlnDu7jW03ATd1pn4Rka5SX+517eszaMQu11GdPojsrS9DqBaS0+MVmoiIiPRgXTVMu4hItxbZ7HXtS93FLoIA4Wx/cNTK1fEISURERPYASrBEpFdK3rKGraRDWt4u19H4Liy3aUV8ghIREZEeTwmWiPRKGbXr2JzcD8x2uY60Qv9dWBqqXURERHxKsESkV+oTXk9N2sD2C7ahb/+9CLkgW/WyYREREfEpwRKRXmdLXYj+biOh7F17yXCjwflZrHV9CVeoi6CIiIh4lGCJSK+zbuMmCqwKyxvafuE2DM7z3oUVrNIgFyIiIuJRgiUivc6mNZ8DkFq4T6fqyU5LpizYj8zaNfEIS0RERPYASrDaUFdbQ319baLDEJE4q1/3BQBZg/frdF2V6UPJCW2EuqpO1yUiIiI9X6deNLynW/z8vey/6EY+S9mXyvzxBIdOIL+omMEjxpGSlpHo8ERkF7nyZQD0HTKq03VtyR0JtcCGJbDXwW0f1zneWrKSQX2zKBqQ3+lji4iISPejBKsNfYvG88G6U8krX8QBax8hZd3f4D2IOGNNoD/lKYNpSCsgmtkPy+4PmYWkpGeTkp5FcnoWlpJJMCWdYDBIMBAgKRgA8/aPRiESbsBFQkQjIaLhely4cT5EJNxANNS4vYFoOIQLN4BfnnADLhqCiD9FQ1jjz2gYizR4P12YQDSERUMEXIhANELAhQi6MOYimHPgooAjgMOIgmucb5yi2+adIxCzHMDhWrl+jp0b/rq18i2t3/ljtla39EYHuWo2Wh4FGbmdrssGFMM6CK39mOQ2EqwPl63h0yd+zYlb5vJ+xlSKrn2808fu6RoaGqjetIGazWXUVm+irrqShq2VhGqridRWQaiGQKiGYKiaQGgrgUg9Fm3AIiGC0QYC0QaC0QaSXJgkQiS7EEmEMRf1/z5Fm/6GBZvWecuBmPnGvw7b/h5Y098SBzHz2/6OuI6WsW1liCnjYsq0ru2/oTv7N7aj+7Zf764fV0RkVzwbPJKiU3/FN0f3T3QoHaIEqw37HHAo+xxwKAD1dVtZvnQR5aWfUL/uM1I3LyO3bg2FlSvou3kzqRZOWJxRZ4RIIkSQCEFClkSYJCIkEbYkIubNR/z5UCCJukAaWBBnQcwMzPvqgRnOAv7/YL15/C8J3vbYbQYEmv5fazHvE7JWUpfW1reW6pjbcevO17F706iuOVoPSQW7IMyuOnMbPo2CONSz94j9qPogg4al71Bw8H/usH35+k2899jvOWL9X9jfKtlMJmNqF4JznXoHV3cUiTo2bapg8/pVVJevoq5iDdHKr6F6PUm1G0lu2Ex6qJKsaBU5bgs5tpW+QN+26nTGVtKotXQaLIWIJRO2ZCKBZCKWQjQ5i9pAMhFLJhJIIRpIxlkAM+/vFYGYefPTKvNTLH85luG8ewPskAq57VMwR+Pfl5jfUue21dO43rnt/m4ZDue2pTEt/45HY+psq5xrYXbHktv/GWz9U9Xub2Qbf0+9a7Jn/U5L5+xhf+IkgdIy9yU/KzXRYXSYEqwOSk3LYPi4bzB83Dd22BYOR6jYXE7NpnXU1VRSW1NNpK4aQjW4UB3OOSLRCNGo9z/cABAwsGAyBJP8nylYIBlLSiYQTCGYnEwgKZVgUjLB5BRvSkohKSWVpKQUgsmpJCcnk5ySRlJSEikBI1V/yUR2uwOL+vBGdByHr3gZolEIeF/YV2zYzJtP/oEpa/7EabaB1bnj2Tr9f1gw/1W+tfxmQuWlJBcMT3D0O6c+FGL9mpVsWvMlNeu/IlJRStKWVWRuXUNuqIx8V0GB1e2QuNa6FDYH8tialEtdai5lKcNYm5pHNK0PZPQlkNmXlMw+pGbmkp6VR0ZWHhnZOaRm5JCUmkm2GdkJOWMREekOJiY6gJ2kBCsOkpKC9C3oR9+CfokORUR2s37ZaXyRdyjHbXmXhk+eYknyWJa9ch8Hr5/L92wj6zL2pfKY3zOk5NteC3FpNSyHis/n078bJlgNoQhrVn9F2fKPqf16CYGKL8mqXkHfhrUMcGXsZSH2iilfbnlUJA9kc84oNmb2h+wBJOUOIr3vYLIKhpDXfy8ysvuQrn8AEhGRXkIJlohIJ4076lyW/P0RRj82k/2B/YEV2ePZ/K3fM6DkuKZWLYChoydQ83oqW5a+Rf8pZycs5sotNaz56hM2r/yYhvWfk7J5GX23ljI4sprhVktj6reVNNYnD6YyZ182Zn+TQN9hZPTbmz6D9yF/8D7kp2ai4TpERES2UYIlItJJ/1G8F29EHuHV9+6jIDuNEVNOYdjQkhbLjhzQhwW2D4PWLejyuKJRx9p1X7P+q4+oXrMENn5BRtUyCutXMtitZ4xte86nzArYmDaML3OPJ1A4kpwhY+g/ooTM/KEMV+uTiIhIh3UqwTKzuUDjOMd5wGbn3HgzKwKWAJ/72952zl3UmWOJiHRn08aPhvH/2265QMBY2/dgJlX8mYYNS0np17mXHQPU1dez+qvPKF/xMfXrPiNp01JyakoZFFrFYNvCYL9cA0msTRpCZc4oyvseR0r//eg7bBz9isZQmJFLYacjERERkU4lWM65GY3zZvZboDJm8zLn3PjO1C8isicqmPafhJ68n9VP/Jy9L/xbh4baqquv5+uVSylf/QVb13+FK/+KjC3LKaxfweDoWvaxCI2p2iZy2ZC6FyvyjmBFwb5kDB5Dv+HjyBu4D8OC6rggIiLSleLyf1rzxuc+DTgyHvWJiOzJvjF+LE+8+j2+s/YBPrttOqFRJxDI6kcoEqGhuoJw1XoiWzYQqF5Pdt0a8kPr6O82srdF2duvI0SQ9cFBVGQW8WHekST334+8IWMYMKKYPjkF9EnoGYqIiPRe8fqnzGnAeufclzHrhpvZB0AV8DPn3Bst7WhmFwIXAuy1114tFRER2aOYGUdd8jue+VMKh5f9jex3XtuhTMQZmwN5bEoeQFleCWuy9yI5fzg5A0dQOHQUOf2LGBJMYkgC4hcREZHWmWvnJaxm9hIwoIVNP3XOPeWXuRtY6pz7rb+cCmQ558rN7CDgSWCsc66qrWNNmDDBLVjQ9Q9+i4h0F1U1W/l66UeEt24iORggMzef7PyB5PTtjwWCiQ5PREREWmFmC51zE5qvb7cFyzn3rXYqTgK+AxwUs089UO/PLzSzZcBIQNmTiEiMnMwMcvY/ONFhiIiISJwE2i/Srm8BnznnVjeuMLNCMwv683sD+wJfxeFYIiIiIiIi3VY8nsE6HZjTbN2hwI1mFgKiwEXOuYo4HEtERERERKTb6nSC5Zyb2cK6x4DHOlu3iIiIiIhIT9LuIBe7k5mVASsSHUczBcDGRAchu43ud++he9176F73LrrfvYfude/SHe/3MOdcYfOV3SrB6o7MbEFLo4PInkn3u/fQve49dK97F93v3kP3unfpSfc7HoNciIiIiIiICEqwRERERERE4kYJVvvuSXQAslvpfvceute9h+5176L73XvoXvcuPeZ+6xksERERERGROFELloiIiIiISJwowRIREREREYkTJVhtMLNjzOxzM1tqZtclOh6JHzMbamavmtmnZvaJmV3mr+9rZi+a2Zf+zz6JjlXiw8yCZvaBmf3DXx5uZu/4n++5ZpaS6BglPswsz8weNbPPzGyJmR2iz/aeycyu8P+Gf2xmc8wsTZ/tPYeZ/dnMNpjZxzHrWvwsm+d2/74vNrMDExe57KxW7vVv/L/ji83sCTPLi9n2E/9ef25mRyck6DYowWqFmQWBu4BjgTHAGWY2JrFRSRyFgSudc2OAycAP/Pt7HfCyc25f4GV/WfYMlwFLYpb/F7jVObcPsAn4z4REJV3hNuB559x+wP54912f7T2MmQ0GfgRMcM6NA4LA6eizvSe5Dzim2brWPsvHAvv604XA3bspRomP+9jxXr8IjHPOlQBfAD8B8L+vnQ6M9ff5P/97e7ehBKt1k4ClzrmvnHMNwMPA9ATHJHHinFvrnHvfn9+C9wVsMN49vt8vdj9wUkIClLgysyHAccCf/GUDjgQe9YvoXu8hzCwXOBS4F8A51+Cc24w+23uqJCDdzJKADGAt+mzvMZxzrwMVzVa39lmeDvzVed4G8sxs4G4JVDqtpXvtnPuXcy7sL74NDPHnpwMPO+fqnXPLgaV439u7DSVYrRsMrIpZXu2vkz2MmRUBBwDvAP2dc2v9TeuA/omKS+Lq98A1QNRfzgc2x/zh1ud7zzEcKAP+4ncJ/ZOZZaLP9h7HObcGuAVYiZdYVQIL0Wd7T9faZ1nf2/Zs5wP/9Oe7/b1WgiW9mpllAY8BlzvnqmK3Oe8dBnqPQQ9nZscDG5xzCxMdi+wWScCBwN3OuQOAGpp1B9Rne8/gP3szHS+pHgRksmMXI9mD6bPcO5jZT/Ee7Xgo0bF0lBKs1q0BhsYsD/HXyR7CzJLxkquHnHOP+6vXN3Yp8H9uSFR8EjdTgBPNrBSvq++ReM/o5PndikCf7z3JamC1c+4df/lRvIRLn+09z7eA5c65MudcCHgc7/Ouz/aerbXPsr637YHMbCZwPHCm2/by3m5/r5Vgte49YF9/NKIUvIfpnk5wTBIn/jM49wJLnHO/i9n0NHCuP38u8NTujk3iyzn3E+fcEOdcEd7n+BXn3JnAq8CpfjHd6z2Ec24dsMrMRvmrvgl8ij7be6KVwGQzy/D/pjfea32292ytfZafBs7xRxOcDFTGdCWUHsjMjsHr3n+ic25rzKangdPNLNXMhuMNbPJuImJsjW1LBqU5M/s23rMbQeDPzrmbEhuRxIuZTQXeAD5i23M51+M9h/UIsBewAjjNOdf8AVvpoczscOAq59zxZrY3XotWX+AD4CznXH0Cw5M4MbPxeAOapABfAefh/YOiPtt7GDP7JTADr/vQB8AFeM9i6LO9BzCzOcDhQAGwHvgF8CQtfJb9JPtOvG6iW4HznHMLEhC27IJW7vVPgFSg3C/2tnPuIr/8T/GeywrjPebxz+Z1JpISLBERERERkThRF0EREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhHpJsysyMycmSUlOpY9nZnNNLP5iY6juzGzaWb2eaLjEBHpyZRgiYhIj2Zms8wsZGbVMdM1iY6rJ3LOveGcGxXPOv2krbrZ5MzslHgeR0Sku9C/koqIxImZJTnnwomOo5ea65w7K9FBdJWe/LvlnHsDyGpcNrPDgWeA5xMUkohIl1ILlohIJ5hZqZlda2aLgRozSzKzyWb2bzPbbGYf+l8oG8vPM7P/MbN3zazKzJ4ys76t1H2emS0xsy1m9pWZ/Vez7dPNbJFfzzIzO8Zfn2tm95rZWjNbY2b/bWbBds5jhJm9YmblZrbRzB4ys7yYbRVmdqC/PMjMyhrPy8xONLNP/POdZ2ajm12fq8xssZlVmtlcM0vb+Su988zsOv+6bDGzT83s5FbKmZndamYb/Gv5kZmN87elmtktZrbSzNab2WwzS+/g8e/zy7/ox/CamQ2L2X6bma3yj7nQzKbFbJtlZo+a2YNmVgXMNLNJZvaWf53XmtmdZpYSs48zs0vM7Ev/eL/y792//WM8Elu+lZgPN7PVHTm/TjgXeNQ5V9PFxxERSQglWCIinXcGcByQB/QHngX+G+gLXAU8ZmaFMeXPAc4HBgJh4PZW6t0AHA/kAOcBt8YkOZOAvwJX+8c9FCj197vPr3cf4ADgKOCCds7BgP8BBgGjgaHALADn3DLgWuBBM8sA/gLc75ybZ2YjgTnA5UAh8BzwTLMv8qcBxwDDgRJgZosBmE31k4fWpqntnENzy4BpQC7wSz/+gS2UOwrv+o30y54GlPvbfu2vH493PQcDN+xEDGcCvwIKgEXAQzHb3vPr7Qv8Dfh7s+RzOvAo3v19CIgAV/h1HQJ8E7ik2fGOBg4CJgPXAPcAZ+Hdz3F4v6u7zE+UW7s//9eB/TOBU4H7OxOHiEi35pzTpEmTJk27OOElNefHLF8LPNCszAvAuf78PODXMdvGAA1AECgCHJDUyrGeBC7z5/8A3NpCmf5APZAes+4M4NWdPK+TgA+arXsa+AhYDKT6634OPBJTJgCsAQ6PuT5nxWy/GZgd53swy7+Gm2OmQS2UWwRM9+dnAvP9+SOBL/CSkkBMeQNqgBEx6w4BlncwrvuAh2OWs/CSpKGtlN8E7B9zTq+3U//lwBMxyw6YErO8ELg2Zvm3wO/bqfNwYHU870+z+s8GlgPWVcfQpEmTpkRPegZLRKTzVsXMDwO+a2YnxKxLBl5tpfwKf3tB80rN7FjgF3gtKAEgAy/BAa9F4rkWYhnm17fWzBrXBZodcwdm1h+4Da/FJ9vfZ1OzYn/ES7IudM7V++sG+ecAgHMuamar8Fp6Gq2Lmd/q7xNvj7hmz2CZ2TnAj/ESV/ASnB2us3PuFTO7E7gLGGZmj+O1PKbhXfOFMdfS8JLhjmq67s65ajOrwDv/VWZ2FfCf/rLDa6ksaGlf/3xGAr8DJvhxJeElUbHWx8zXtrA8YCdi7wrnAn91zrkExyEi0mXURVBEpPNivyyuwmvByouZMp1zv44pMzRmfi8gBGyMrdDMUoHHgFuA/s65PLyEqvGb/ipgRAuxrMJrwSqIOX6Oc25sO+fw//zzKHbO5eB1K9uWVZhlAb8H7gVm2bbnxr7GS+oay5l/fmvaOd4OrOXR5mKnae3X0lTXMLyE8FIg379+H8eeUyzn3O3OuYPwWhRH4nW93IiXlIyNuZa5zrmslupoRdO99q9hX+Br/1yuweuO2MePr7JZfM2TkLuBz4B9/Xt0fWvn01X8Z+1auz+z29l3KF4L2V93S7AiIgmiBEtEJL4eBE4ws6PNLGhmaf7AAUNiypxlZmP855luxHvgP9KsnhQgFSgDwn5r1lEx2+8FzjOzb5pZwMwGm9l+zrm1wL+A35pZjr9thJkd1k7c2UA1UGlmg/ESjFi3AQuccxfgPWPW+GX6EeA4P45k4Eq8BO/f7V2o5pw3RHhWG9MbO1FdJl6CUgbegCF4zyDtwMwmmtnBfvw1QB0Qdc5F8ZK0W82sn192sJkdHbOvs5hBTFrwbf/ZshS8Z7Heds6twrveYT++JDO7Aa8Fqy3ZQBVQbWb7ARe3Uz7unHNj27g/F7Wz+9nAv533TJ+IyB5LCZaISBz5X56n47UulOG1KF3N9n9vH8B7PmcdXje0H7VQzxZ//SN4XfW+h9c9r3H7u/gDX+C1fLzGtpakc/AStE/9fR/FG1CjLb8EDvTrehZ4vHGDmU3HG6Si8Qv9j4EDzexM59zneK1dd+C1+JwAnOCca2jneF3KOfcp3jNHb+F1kysG3myleA5eIrUJr7tjOfAbf9u1wFLgbX80v5eAUdDUIrOFbd02W/I3vG6eFXiDTzR2Y3wBb5jyL/xj1tFON068bovf84/5R2BuO+W7m3PQ4BYi0guYukGLiOw+ZjYPeNA596dExyKdY2Zn4XUf/Ekr2+/DGzDiZ7s1MBERSSgNciEiIrILnHMPJjoGERHpftRFUESklzDvpbc7PTiB7FnM7PpWfg/+mejYRET2BOoiKCIiIiIiEidqwRIREREREYmTbvUMVkFBgSsqKkp0GCIiIiIiIm1auHDhRudcYfP13SrBKioqYsGCBYkOQ0REREREpE1mtqKl9eoiKCIiIiIiEidKsEREREREROJECZaISAcsXLGJD1ZuSnQYIiIi0s11q2ewWhIKhVi9ejV1dXWJDkV6mLS0NIYMGUJycnKiQ5EezjnH2X96i+9Gn2fM1deRmjco0SGJiIhIN9XtE6zVq1eTnZ1NUVERZpbocKSHcM5RXl7O6tWrGT58eKLDkR5uS32YoyOv88uU+9n4fITU0+9KdEgiIiLSTXX7LoJ1dXXk5+cruZKdYmbk5+er5VPiYlNNA8cH3wagbtOaBEcjIiIi3Vm3T7AAJVeyS/R7I/FSUdNArtUAkLVpSYKjERERke6sRyRYIiKJtGlrA1nUApDXsA7qtyQ4IhEREemulGB1gJlx5ZVXNi3fcsstzJo1K3EBxXj77bc5+OCDGT9+PKNHj26Ka968efz73//uVN3HHHMMeXl5HH/88XGIVKTnqqwNkWW11JPir1id2IBERESk21KC1QGpqak8/vjjbNy4Ma71OueIRqOdquPcc8/lnnvuYdGiRXz88cecdtppQHwSrKuvvpoHHnigU3WI7AnqQ1GyqGVtqjdgitu8MsERiYiISHfV6VEEzWwo8FegP+CAe5xzt5nZLOD7QJlf9Hrn3HOdOdYvn/mET7+u6kwVOxgzKIdfnDC2zTJJSUlceOGF3Hrrrdx0003bbSsrK+Oiiy5i5UrvC9fvf/97pkyZwqxZs8jKyuKqq64CYNy4cfzjH/8A4Oijj+bggw9m4cKFPPfcc9x5553885//xMz42c9+xowZM5g3bx6zZs2ioKCAjz/+mIMOOogHH3xwh+eKNmzYwMCBAwEIBoOMGTOG0tJSZs+eTTAY5MEHH+SOO+5gv/32azXOZcuWsXTpUjZu3Mg111zD97//fQC++c1vMm/evDavzd///nd++ctfEgwGyc3N5fXXX6euro6LL76YBQsWkJSUxO9+9zuOOOII7rvvPp588klqamr48ssvueqqq2hoaOCBBx4gNTWV5557jr59+/LHP/6Re+65h4aGBvbZZx8eeOABMjIytjvu5MmTuffeexk71rt3hx9+OLfccgsTJkxoM16RXVEfipBJHatz9oGyz6nZsJyskYmOSkRERLqjeLRghYErnXNjgMnAD8xsjL/tVufceH/qVHKVaD/4wQ946KGHqKys3G79ZZddxhVXXMF7773HY489xgUXXNBuXV9++SWXXHIJn3zyCQsWLGDRokV8+OGHvPTSS1x99dWsXbsWgA8++IDf//73fPrpp3z11Ve8+eabO9R1xRVXMGrUKE4++WT+8Ic/UFdXR1FRERdddBFXXHEFixYtYtq0aW3GuXjxYl555RXeeustbrzxRr7++usOX5cbb7yRF154gQ8//JCnn34agLvuugsz46OPPmLOnDmce+65TaP5ffzxxzz++OO89957/PSnPyUjI4MPPviAQw45hL/+9a8AfOc73+G9997jww8/ZPTo0dx77707HHfGjBk88sgjAKxdu5a1a9cquZIuE2moJdkiBAr2ocEFqd5QmuiQREREpJvqdAuWc24tsNaf32JmS4DBna23Je21NHWlnJwczjnnHG6//XbS09Ob1r/00kt8+umnTctVVVVUV1e3WdewYcOYPHkyAPPnz+eMM84gGAzSv39/DjvsMN577z1ycnKYNGkSQ4YMAWD8+PGUlpYyderU7eq64YYbOPPMM/nXv/7F3/72N+bMmdNiq1NbcU6fPp309HTS09M54ogjePfddznppJM6dF2mTJnCzJkzOe200/jOd77TdE4//OEPAdhvv/0YNmwYX3zxBQBHHHEE2dnZZGdnk5ubywknnABAcXExixcvBrwk7Gc/+xmbN2+murqao48+eofjnnbaaRx11FH88pe/5JFHHuHUU0/tULwiu6TBG9QiJy+ftS6f5E3qIigiIiIti+uLhs2sCDgAeAeYAlxqZucAC/BauTa1sM+FwIUAe+21VzzDibvLL7+cAw88kPPOO69pXTQa5e233yYtLW27sklJSds9XxX7PqbMzMwOHS81NbVpPhgMEg6HWyw3YsQILr74Yr7//e9TWFhIeXn5DmVaixN2HM58Z4Y3nz17Nu+88w7PPvssBx10EAsXLmyzfOw5BQKBpuVAINB0fjNnzuTJJ59k//3357777msxYRw8eDD5+fksXryYuXPnMnv27A7HLLLT6rwEKzevLx+7Avau0ruwREREpGVxG+TCzLKAx4DLnXNVwN3ACGA8XgvXb1vazzl3j3NugnNuQmFhYbzC6RJ9+/bltNNO267L2lFHHcUdd9zRtLxo0SIAioqKeP/99wF4//33Wb58eYt1Tps2jblz5xKJRCgrK+P1119n0qRJHY7p2WefxTkHeF0Pg8EgeXl5ZGdns2XLtqGkW4sT4KmnnqKuro7y8nLmzZvHxIkTO3z8ZcuWcfDBB3PjjTdSWFjIqlWrmDZtGg899BAAX3zxBStXrmTUqFEdrnPLli0MHDiQUCjUVE9LZsyYwc0330xlZSUlJSUdrl9kp4W8z1JWTh5rrYD02o53oxUREZHeJS4Jlpkl4yVXDznnHgdwzq13zkWcc1Hgj0DHs4Zu7Morr9xuNMHbb7+dBQsWUFJSwpgxY5paUk455RQqKioYO3Ysd955JyNHtvxE/Mknn0xJSQn7778/Rx55JDfffDMDBgzocDwPPPAAo0aNYvz48Zx99tk89NBDBINBTjjhBJ544gnGjx/PG2+80WqcACUlJRxxxBFMnjyZn//85wwaNAjwkr/vfve7vPzyywwZMoQXXngB8LolNj5vdfXVV1NcXMy4ceP4xje+wf77788ll1xCNBqluLiYGTNmcN99923XctWeX/3qVxx88MFMmTKF/fbbr2n9008/zQ033NC0fOqpp/Lwww83jZwo0lWs3nvJsKXmUJU6kKyGjRAJJTgqERER6Y6ssfVjlyvw+pPdD1Q45y6PWT/Qfz4LM7sCONg5d3pbdU2YMMEtWLBgu3VLlixh9OjRnYpRWtd8tMM9jX5/JB7+et/dnFN6HXz/FWY/8jQXVf4eLlsMfYYlOjQRERFJEDNb6JzbYZS1eDyDNQU4G/jIzBb5664HzjCz8XhDt5cC/xWHY4mI7HYWrvVmkjOJ5gyBSqBylRIsERER2UE8RhGcD7Q0KkKPHpa9t5g1a1aiQxDp/sL13s+kVJL6DIVVEK38Wm9qFxERkR3o+4GISDss7I8CmpRGZsFQALaWr0pgRCIiItJdKcESEWlPpMH7mZRKQX4+W1w6dRWrExuTiIiIdEtKsERE2hGIbOsiODA3jfWuD+HNeheWiIiI7EgJlohIOwKNLVjBVAbkpLHO9SG4ZW1igxIREZFuSQlWBz355JOYGZ999lmrZUpLSxk3blzcjvn5559z+OGHM378eEaPHs2FF14IeC8Jfu65zo0hcv7559OvX7+4xiuypwpE64kQgGAS+VmpbKAvqbXrEx2WiIiIdENKsDpozpw5TJ06lTlz5rS4PRwOd/oYkUhku+Uf/ehHXHHFFSxatIglS5bwwx/+EIhPgjVz5kyef/75TtUh0lsEIw2ELMWbDxhbUgrJbNgI0WiCIxMREZHuJh7vwdp9/nkdrPsovnUOKIZjf91mkerqaubPn8+rr77KCSecwC9/+UsA5s2bx89//nP69OnDZ599xr/+9S/C4TBnnnkm77//PmPHjuWvf/0rGRkZvPzyy1x11VWEw2EmTpzI3XffTWpqKkVFRcyYMYMXX3yRa665htNP3/Yu5rVr1zJkyJCm5eLiYhoaGrjhhhuora1l/vz5/OQnP+H444/nhz/8IR9//DGhUIhZs2Yxffp07rvvPp544gkqKytZs2YNZ511Fr/4xS8AOPTQQyktLW3zvF977TUuu+wyAMyM119/naysLK655hr++c9/Ymb87Gc/Y8aMGcybN49f/OIX5OXl8dFHH3HaaadRXFzMbbfdRm1tLU8++SQjRozgmWee4b//+79paGggPz+fhx56iP79+2933NNPP52zzz6b4447DvCSweOPP55TTz21Y/dUJM4CroGIn2AB1Kf3J1gdgZoyyO7fxp4iIiLS26gFqwOeeuopjjnmGEaOHEl+fj4LFy5s2vb+++9z22238cUXXwBet75LLrmEJUuWkJOTw//93/9RV1fHzJkzmTt3Lh999BHhcJi77767qY78/Hzef//97ZIrgCuuuIIjjzySY489lltvvZXNmzeTkpLCjTfeyIwZM1i0aBEzZszgpptu4sgjj+Tdd9/l1Vdf5eqrr6ampgaAd999l8cee4zFixfz97//nQULFnT4vG+55RbuuusuFi1axBtvvEF6ejqPP/44ixYt4sMPP+Sll17i6quvZu1a71mUDz/8kNmzZ7NkyRIeeOABvvjiC959910uuOAC7rjjDgCmTp3K22+/zQcffMDpp5/OzTffvMNxZ8yYwSOPPAJAQ0MDL7/8clOyJZIIwUg94cC2BCuaNdCb2fJ1giISERGR7qpntWC109LUVebMmdPUknP66aczZ84cDjroIAAmTZrE8OHDm8oOHTqUKVOmAHDWWWdx++238x//8R8MHz6ckSNHAnDuuedy1113cfnllwNeQtGS8847j6OPPprnn3+ep556ij/84Q98+OGHO5T717/+xdNPP80tt9wCQF1dHStXrgTgP/7jP8jPzwfgO9/5DvPnz2fChAkdOu8pU6bw4x//mDPPPJPvfOc7DBkyhPnz53PGGWcQDAbp378/hx12GO+99x45OTlMnDiRgQO9L54jRozgqKOOAryWt1dffRWA1atXM2PGDNauXUtDQ8N2167Rsccey2WXXUZ9fT3PP/88hx56KOnp6R2KWaQrJLmG7RKsQN5gWAdUrYVBByQuMBEREel21ILVjoqKCl555RUuuOACioqK+M1vfsMjjzyCcw6AzMzM7cqbWZvLLWleR6xBgwZx/vnn89RTT5GUlMTHH3+8QxnnHI899hiLFi1i0aJFrFy5ktGjR+9yPI2uu+46/vSnP1FbW8uUKVPaHOADIDU1tWk+EAg0LQcCgaZn1H74wx9y6aWX8tFHH/GHP/yBurq6HepJS0vj8MMP54UXXmDu3LmtJqAiu0tSNEQ0JsFK7+t13a2r0MuGRUREZHtKsNrx6KOPcvbZZ7NixQpKS0tZtWoVw4cP54033mix/MqVK3nrrbcA+Nvf/sbUqVMZNWoUpaWlLF26FIAHHniAww47rN1jP//884RCIQDWrVtHeXk5gwcPJjs7my1btjSVO/roo7njjjuakr4PPvigaduLL75IRUVF03NQja1rHbFs2TKKi4u59tprmThxIp999hnTpk1j7ty5RCIRysrKeP3115k0aVKH66ysrGTw4MEA3H///a2WmzFjBn/5y1944403OOaYYzpcv0hXSHINRGISrJzCQYRdgK0blWCJiIjI9pRgtWPOnDmcfPLJ26075ZRTWh1NcNSoUdx1112MHj2aTZs2cfHFF5OWlsZf/vIXvvvd71JcXEwgEOCiiy5q99j/+te/GDduHPvvvz9HH300v/nNbxgwYABHHHEEn376KePHj2fu3Ln8/Oc/JxQKUVJSwtixY/n5z3/eVMekSZM45ZRTKCkp4ZRTTmnqHnjGGWdwyCGH8PnnnzNkyBDuvfdeAGbPns3s2bMB+P3vf8+4ceMoKSkhOTmZY489lpNPPpmSkhL2339/jjzySG6++WYGDBjQ4es5a9Ysvvvd73LQQQdRUFDQtH7BggVccMEFTctHHXUUr732Gt/61rdISUlpqSqR3cI5R5ILEQ1ua6EdkJvJBvII6WXDIiIi0ow1tnp0BxMmTHDNB2FYsmRJU3c32Tn33XcfCxYs4M4770x0KAmj3x/prPpwhEU3foPBfTIZcsUrAKwor6HitkMZ1K+A/pe+kOAIRUREJBHMbKFzbofBDdSCJSLShoZwlFQacDEtWP1z0ljn+pBco5cNi4iIyPZ61iiCslNmzpzJzJkzEx2GSI9WH46SShiXtC3BSksOsjlYQEb9pwmMTERERLqjHtGC1Z26MUrPod8biYeGcJQUQtu1YAFsTetHWrQG6re0sqeIiIj0Rl2eYJnZMWb2uZktNbPrdnb/tLQ0ysvL9WVZdopzjvLyctLS0hIdivRwDeEoqRaCpO0TrHCm/7LhqrUJiEpERES6qy7tImhmQeAu4D+A1cB7Zva0c67D/WqGDBnC6tWrKSsr66owZQ+VlpbGkCFDEh2G9HD14SiZhNjarAXLcgdBObDlaygcmZjgREREpNvp6mewJgFLnXNfAZjZw8B0oMMJVnJyMsOHD++i8ERE2uYNchGiNnn71tCUPt773MKbv9bDrCIiItKkq7sIDgZi38S52l/XxMwuNLMFZrZArVQi0t00RCKkEMKStk+wMguGAlBdtjIRYYmIiEg3lfBBLpxz9zjnJjjnJhQWFiY6HBGR7dQ3REizEJa8fRfBwr59qHQZNGxanaDIREREpDvq6gRrDTA0ZnmIv05EpEdoCNUBYM26CA7ITWOd60u08utEhCUiIiLdVFcnWO8B+5rZcDNLAU4Hnu7iY4qIxE2ovh6AYLMWrAE5aax3fQhWaxRBERER2aZLEyznXBi4FHgBWAI84pz7pCuPKSIST5FQLQDBZi1YuenJlFk+aXUbEhGWiIiIdFNdPviVc+454LmuPo6ISFcI1/sJVkr6duvNjOrUfmSGKiAShqDGEhQREZFuMMiFiEh3FmnwnsFq3oIF0JDRnwBRqF6/u8MSERGRbkoJlohIGyL+IBdJqek7bHPZA72ZLXoOS0RERDxKsERE2tDYgpXcQoKVlOe91i9aqaHaRURExKMES0SkDVG/BSs5ZccughkFRQDUlJXuxohERESkO1OCJSLShqg/imDz92ABFBQOoMalUruhdDdHJSIiIt2VEiwRkTZEQ957sAim7rBtSH4Ga1wBkU0rd3NUIiIi0l0pwRIRaYML+wlW0o4J1uC8dNa4ApK2rNnNUYmIiEh3pQRLRKQtYe8ZLJJ27CKYnZZMWbCQzNqvd3NQIiIi0l0pwRIRaUtTC1ZKi5tr0gaREamC+urdGJSIiIh0V0qwRETa0pRg7diCBRDOGeLNaKh2ERERQQmWiEibLNL6M1gAgby9AHCbNdCFiIiIKMESEWmThVsfRRAgvbAIgFq9C0tERERQgiUi0qZAOy1YffoPJeSC1GxYvhujEhERke5KCZaISBss2kCIZDBrcfuQvtmsdX0JV6iLoIiIiCjBEhFpU1K0nnCg5REEAQb3SWeNKyRQtWo3RiUiIiLdlRIsEZE2pERqqQ9ktLq9T0Yy66yQ9K16F5aIiIh0MsEys9+Y2WdmttjMnjCzPH99kZnVmtkif5odl2hFRHazlGgNoWDrCZaZUZ02kKzQRgg37MbIREREpDvqbAvWi8A451wJ8AXwk5hty5xz4/3pok4eR0Rkt3POkRatJZyU2Wa5huzBBHBQtWY3RSYiIiLdVacSLOfcv5xzYX/xbWBI50MSEeke6sNRMqklktx2gkWu9y4sKvUcloiISG8Xz2ewzgf+GbM83Mw+MLPXzGxaazuZ2YVmtsDMFpSVlcUxHBGRzqmuD5NJLdHkrDbLpfrvwqrfqKHaRUREeruk9gqY2UvAgBY2/dQ595Rf5qdAGHjI37YW2Ms5V25mBwFPmtlY51xV80qcc/cA9wBMmDDB7dppiIjEX019mCzqiKa0nWDlDigi4owt676i5bdliYiISG/RboLlnPtWW9vNbCZwPPBN55zz96kH6v35hWa2DBgJLOhswCIiu0tNfYQBVkt1atsJ1uD8XNbRl0B56e4JTERERLqtzo4ieAxwDXCic25rzPpCMwv683sD+wJfdeZYIiK7W01DmEzqsNTsNssNyUtntSskoGewREREer3OPoN1J5ANvNhsOPZDgcVmtgh4FLjIOVfRyWOJiOxWNVu3kmphAmltJ1gFWamspZC0Go0iKCIi0tu120WwLc65fVpZ/xjwWGfqFhFJtPqaSgCS0ttOsAIBoyp1INkNb0IkBMHk3RGeiIiIdEPxHEVQRGSPEtq6BYDkjJx2y9ZnDSFAVO/CEhER6eWUYImItKKhZjMAqZm57Rfu478La/PKrgtIREREuj0lWCIirWjYshGAjLx+7ZZNLdjb22djaVeGJCIiIt2cEiwRkVa4Gu/l55bZfoKV238YEWdUr9eAqSIiIr1Zpwa5EBHZkwW3ei1YZBa0W3Zwfg5rySdJLVgiIiK9mlqwRERaEawrJ0oA0vu0W3ZInwzWuAKsUs9giYiI9GZKsEREWpHWUEF1MAcCwXbL9stOZY3ehSUiItLrKcESEWlFWkMFtcl9O1TWexfWILIbNnjvwhIREZFeSQmWiEgLquvD5EYrCad1LMECqM8arHdhiYiI9HJKsEREWrB2cy2DbCOR7CEd3ylX78ISERHp7ZRgiYi0YG1FJQPYRDB/eIf3SS30yobKS7soKhEREenulGCJiLSgau1SAuZI7793h/dpehfWOr0LS0REpLdSgiUi0oKt65cBkDNw3w7vM6CP9y6sUMXyrgpLREREujklWCIiLQiXLQUgqWBEh/fpn5PKOtcXqtZ2VVgiIiLSzSnBEhFpQd7mJVQG+0JWvw7v0z8njXWuD8lb13dhZCIiItKdKcESEWmmqi7E8PBSNuXst1P7ZaYmsSmQT0bdhi6KTERERLq7TiVYZjbLzNaY2SJ/+nbMtp+Y2VIz+9zMju58qCIiu8f7S1ezr60hafD+O73v1rRCUqNboX5LF0QmIiIi3V1SHOq41Tl3S+wKMxsDnA6MBQYBL5nZSOdcJA7HExHpUmsXv0qSRek37sid3jecOQDqgS3rIDU7/sGJiIhIt9ZVXQSnAw875+qdc8uBpcCkLjqWiEhcpax8gzBJpOw9Zed3zhro/az6Or5BiYiISI8QjwTrUjNbbGZ/NrM+/rrBwKqYMqv9dTswswvNbIGZLSgrK4tDOCIiu25DZS0Hbv03X+ceCCmZO71/Up73py6qkQRFRER6pXYTLDN7ycw+bmGaDtwNjADGA2uB3+5sAM65e5xzE5xzEwoLC3d2dxGRuHrzzVcZHlhH2vhTdmn/zHwvwaotX9VOSREREdkTtfsMlnPuWx2pyMz+CPzDX1wDDI3ZPMRfJyLSbTnnSPrwQRpIpt/Bp+1SHfl9+1Ll0gltWsPOt3+JiIhIT9fZUQQHxiyeDHzszz8NnG5mqWY2HNgXeLczxxIR6WqLPl/KEXUvs3rgUZDRd5fq6JeTygbXh0ilnsESERHpjTo7iuDNZjYecEAp8F8AzrlPzOwR4FMgDPxAIwiKSHe38bn/ocTqGXjCz3a5jn7Zaaxwfcjbsi6OkYmIiEhP0akEyzl3dhvbbgJu6kz9IiK7y+JPPubQyqf4bMAJjB00ZpfrKcxO5V36UFK7NI7RiYiISE/RVcO0i4j0GM45Nv7jl5jB8FN+1am60pKDbA4WkNGwEaLROEUoIiIiPYUSLBHp9d59720O2/oiy4adTka/ok7XV5vWjyQXhtqKzgcnIiIiPUpnn8ESEenRIlFHw4u/ot5S2eeUX8SlznBGP6jDe9lwZkFc6uzuolFH5ZZqqjauYmvFOmq2bCZUs5lAwxYsvJVoJIKLRjCDpIARSEqD5HQCqZkkpWeRlpFNamYe6dl9SM/OIyMrD0tOS/RpiYiI7DQlWCLSq702718cGXqTz/e7hFE5/eJTac4gqAC2rIOBJfGpsxuIRh2r1q5jY+lHbP16CWz8koyqr8iuX0ffSBkFVkWf9qvpsHqS2Uo6tYFMagOZNAQzCSVlEk7OJpqSRTQlB0vLIZCWTTA9138xtAHgzJrmAZyLQiSEi4YgEoJIGBcJYVFvHheCSASL+uuiYX8+4u3rouAi/s+o3/3TYdEI4C87B0RxzuHwF31Nkdi2mGK3ucYS1qy8v81a2Na4z3Y12g4zjXs3K7gj12aBlre1uU8rm3blOG3v18Y+rW6Kw3FavvDb3eLGe7vjbfd/P237atr6PWlc31L52oyBjDv1p2Sm6x8lRLoDJVgi0muFIlGy5v8/Ki2HfadfF7d6k3MHAeC2rG3vO2235Zxj+dfrWPnRv6lfuZCs8o8YWvc5w2w9w/wyIRdkbXAQVWmDWJ01jpVZg7DcQSTn9Ccjuw9p2X1ISs8hkJpNcnISwWCQiDNC4SgN9VsJ19UQqq2mvnYLdVu3ENpaSaS2imhtFa6+CqvfQqBhC8FQNcnhalLD1WSE1pJes5RMt5UstpJk8X/OLeqMEEHCBIkQJEKAKIbDiBDAEcBhRAngzP/plyEmsdvhO3JsxhXD+xLe+raWqrBWyvulWqnLbVdi+7pbr6/1dKOtfTp2PttrP+6O1rcrsbWlQ/XtRLWt17fzcQdw5FkNL/49g/845ycdD0JEuowSLBHpteb96yn+I7qIL8dfS256btzqTe/rJVj1FavpKf+eHIk6Pi9dxcpFL2GlbzK0aiH7uVL2Nu9L3YZAP8r6jGVx/9PJGDKWvsOK6TNoH/ZKSklYzOFwhMqaamq2bKJ2yyZcQ01MEuP9NPxVBoGkFALBZCyYTDAphUBSMpaUTCDozQeCSf76JIJmBANGsv8zYGCttSqIdDHn/147ty0Fa2wpxTm+vOVQDvjqbrZU/hfZubv2Dj8RiR8lWCLSK9WFIuS8eyubLY99vn15XOsuyMumzOWQsmlNt06wNlXXseidV6j95DmGVbzJfm45Y8zRQDKrMsfx6aCL6LPvIQwc/Q36ZRcSpw6UcZOUFCQ3N5fc3FygKNHhiHSZxuTeWuuWeNRNFDw9nXf//ksmXXDb7g1ORHagBEtEeqVXX36OY92HLD/gWvJSMuJad7/sVDa4Pgys/Dqu9cbDV2vWs/Stp0he9iLFW9/mCKsiQoCVGWP5cujF9Cv5Fn1HTmGEBpgQ6TH2OfBw3p53FAeueoC1yy5g4IjiRIck0qspwWrDssX/puz9f5C73zT23n8aqelZiQ5JROIgEnXkvvd7qiyHomN+GPf6+2WnUur6MLh6Xdzr3lnOOT5dsY4v3niU/NJnmRRewN4WYotlsqZwClvHfZshE05keFZ+okMVkU4Yfvot1P/hYKoeuYgB18zDgsmJDkmk11KC1YaNn77G5NK7oPQuGv4Z5POkvdmcvS+ucDQZg8eQO2BvCgcPJyM7nuNmxUck6giFQoRC9YRDIcINdYRCDURCDYTDDURCISKheiL+vIuEINrgja4VDQPO/8/5nb4bR8Vyfl9wfz0upm94YzlvX++B3J1/mLh91t6T0h2vZ5e3bq/tUbFaqb/FXeL0jEfcnhVpvZ6dPcTOXqM2jrxzB25B5YZVHBFZwOdjLycnNbvT9TXXLyeNt10fUmoXx73ujlq+toyPX3uMrKVPc3BoAWOtns2BviwfdioFk75L4ejD2C+o/wWI7Cn6DxrGGyU/Z9pH17Pw/qs56PzfJzqkLuOcIxwOU19bTX1tNaG6GkJ1W/3vPQ2EQw1EIyEIeyOHukg4ZhTRMC4aJhr1vq9Eo9u+x5j/vWbbgCKu2SAmbodRIrct2HbrXWO3zqZSbY1C2WxFs1FQO7R/W8drcXTR7b+hmW2/HcBZ89flbj8i5o7f8JrH2PY57PC9oI3yWzOHMGLcZAbk9ozeFfq/axsOPv0nbN54Hl998Cp1X71JXsVi9tn8Jvmbn4Mvt5XbQjqbAn2pC2ZRH8wmnJxNKDkTF0jBBZIgdsLAhb33wUQj4CJYNAwuikXDmPOGCQ5EQ/5ymEA0TNCFCLgwARcmuN0UIYmwNzlvzKtkIiQTJs1ct37+QySR1tgA9jnxmi6pOys1iU3BfNIbKrx/tNhN/5K8tqKKD+c9QdpnjzOh/m1OsDoqA7ms2Ws6A77xPfJGHUpeILhbYhGR3W/qdy7hzRVvMmXlX/jwscHsf8rViQ6pRZFIlMrN5VSVraKm/GtqqypoqNmEq92M1W0m0FBFsKGKlIYqUiNbSI7UkhKtI8XVkerqSaeBVAuRDKhvUe/wl/DRbMoeyfElgxIdSocowWpHXsEADvyPM4AzmtaVb1jD+q8+ZuvGFTRUrMKqvia1bgPJoWpSwlXk1K8l09U0DfCb5CIk+fNBc4Rc47C/AcIEiVqACEGieD8jFiRsyURJImJBopZEJJBMNJBC2DKIBpKIWjIukIQLxPwMJvuJXDIumIIFvXkLJkNw24hZFkjxRtNKSo4ZRSsV/PIukOQ9UGuGYZg1/otFAGscScti5hvLABYIxPwLhLXwrxGd18pIx3GuZGcOsgsBtbhLnFr7XGsDPu9SZa0dYqfs7LDIrZaOy8339BkykmBqZtzqa642tRBrcLBlLeTt1WXH2VRdx3tv/BM+epQJNfM4xqrZYlmsHnws/SafQd+x3yRXLVUivYKZMeEHf+a9353ExI/+m/cr13DAub/Zbd0F68MR1ldUUbF2BVs2rqKuYjWRyrUkVa8jrX4D2Q1l5EXKKXAV9LV6WhrvMOqMasug2rLYGsiiLphFbUp/oknpRJMzICmdaFI6LikdUjKwZO9nICmNpORkgsmpBIPJWDAJS/K+C1nQGyWUoDeSaCAYJBAIEAgECJphAWsaSMTFtABtG4u08V1ytm17zP+OHNteF+Hcto0uZqVr6/9fMdtcs2X/quxQfrvWJ9fseLFzrvnMDtE1tc5tf4hmMTT2UGo8ZmMtzv+qt7Pfq3Yov/2yNdv+jbS+DBhS2M4xug/9X3cX5PcbTH6/wTu9n/N/C5MB9YwW2bPV5xTBRqB8adwTrJr6MO+8/QZ1C+ewf+XLHGUbqSOFFYWH0zDpDAYceDz7JXD4dBFJnNTUNMZd/gTzZ3+fqSv/wsr/eYWtU65l1KGndSrRqqtvoGzdGjatX0FN+SoaKtbgtqwlWL2e9PoN5IQ2UuDK2cuqaf4Xr4FkNgXzqUoupDJrNBsz+hPNGkAgdzCpef3JzCskOzefrLwCUjNzyQkEyencZRBJKCVYu5HeoSLSeyQP2A82giv7HBtxZKfrq6kP8977C6ha+Hf2K3uBI20VYQKsyDuYVQf+nCGTT2FUFzxPJiI9T3p6OlMuf4DXn7mPvd//f+z32iVUvnYNy7MnEBqwP2n9RhDM6AvJGVggSCBSR/3Wauq3VuK2bCBavQGrKSO5biMZDeV+q9MmhlqUoTHHiWBstj5UJRdQmzOU1RkTWJM7iLQ+g8ksGEpe/73IyB9CSnof+pvRP2FXRGT3UoIlItIFBgwaRtVHGSR9vYRdHQR+U3U97737BnWLn2Tkptc43FYCsCKzmNLi77PX1O8xIrvndJkQkd3HzDj0xPOoO/p7/PvFh+GzfzBiy0L6b5m33XPkLYk4Y7PlUBXsw9aUfL5O34fVWQMI5g4ire9gcgr3ou/AvUjPG0R+MAmNQSqyPSVYIiJdYJ9+2XzhhjDy6w93ar9V68v57J0XqP/8JYqr53OUrSeKsSq7hOX7ncPQQ77LsPyirglaRPY4aampfOP4c+H4cwEoKytj4+rPiWythHAtLhImEkwjLSOLjKwc0vsMILfvQPJTkpU4ieyiTiVYZjYXGOUv5gGbnXPjzawIWAJ87m972zl3UWeOJSLSk4wbksv9bhwHbnwSajZCZkGL5TZUVvP5orfZ8tnLFKx/k/0jnzLUQjSQxJq8CawuvoLBB3+HYdnqXCMinVdYWEhhoVq+RbpSpxIs59yMxnkz+y1QGbN5mXNufGfqFxHpqXLSklnb/0gCGx8n9PYfSf7mT6iurWf5siWULVtEZOW75G/6kP0iXzLN6gFYk1zEsqEz6FtyLAOKj2B4SteNcigiIiJdIy5dBM0bveE0oPNPcouI7CGOO/oYnv3rJI5749dUvnEnqa6eYgsBECbI6tR9WD7oZDJHHMKQ8d9icJ8h7Pz4pCIiItKdxOsZrGnAeudc7GOTw83sA6AK+Jlz7o2WdjSzC4ELAfbaq+veFSMisrtN2beQN874M8+8cQ/5dStJy8gibeBoCvfen4J9DqRILVQiIiJ7HGvzxWeAmb0EDGhh00+dc0/5Ze4GljrnfusvpwJZzrlyMzsIeBIY65yrautYEyZMcAsWLNj5sxAREREREdmNzGyhc25C8/XttmA5577VTsVJwHeAg2L2qQfq/fmFZrYMGAkoexIRERERkT1WIA51fAv4zDm3unGFmRWaWdCf3xvYF/gqDscSERERERHptuLxDNbpwJxm6w4FbjSzEBAFLnLOVcThWCIiIiIiIt1Wu89g7U5mVgasSHQczRQAGxMdhOw2ut+9h+5176F73bvofvceute9S3e838Occzu8WK5bJVjdkZktaOnhNdkz6X73HrrXvYfude+i+9176F73Lj3pfsfjGSwRERERERFBCZaIiIiIiEjcKMFq3z2JDkB2K93v3kP3uvfQve5ddL97D93r3qXH3G89gyUiIiIiIhInasESERERERGJEyVYIiIiIiIicaIEqw1mdoyZfW5mS83sukTHI/FjZkPN7FUz+9TMPjGzy/z1fc3sRTP70v/ZJ9GxSnyYWdDMPjCzf/jLw83sHf/zPdfMUhIdo8SHmeWZ2aNm9pmZLTGzQ/TZ3jOZ2RX+3/CPzWyOmaXps73nMLM/m9kGM/s4Zl2Ln2Xz3O7f98VmdmDiIped1cq9/o3/d3yxmT1hZnkx237i3+vPzezohATdBiVYrTCzIHAXcCwwBjjDzMYkNiqJozBwpXNuDDAZ+IF/f68DXnbO7Qu87C/LnuEyYEnM8v8Ctzrn9gE2Af+ZkKikK9wGPO+c2w/YH+++67O9hzGzwcCPgAnOuXFAEDgdfbb3JPcBxzRb19pn+VhgX3+6ELh7N8Uo8XEfO97rF4FxzrkS4AvgJwD+97XTgbH+Pv/nf2/vNpRgtW4SsNQ595VzrgF4GJie4JgkTpxza51z7/vzW/C+gA3Gu8f3+8XuB05KSIASV2Y2BDgO+JO/bMCRwKN+Ed3rPYSZ5QKHAvcCOOcanHOb0Wd7T5UEpJtZEpABrEWf7T2Gc+51oKLZ6tY+y9OBvzrP20CemQ3cLYFKp7V0r51z/3LOhf3Ft4Eh/vx04GHnXL1zbjmwFO97e7ehBKt1g4FVMcur/XWyhzGzIuAA4B2gv3Nurb9pHdA/UXFJXP0euAaI+sv5wOaYP9z6fO85hgNlwF/8LqF/MrNM9Nne4zjn1gC3ACvxEqtKYCH6bO/pWvss63vbnu184J/+fLe/10qwpFczsyzgMeBy51xV7DbnvcNA7zHo4czseGCDc25homOR3SIJOBC42zl3AFBDs+6A+mzvGfxnb6bjJdWDgEx27GIkezB9lnsHM/sp3qMdDyU6lo5SgtW6NcDQmOUh/jrZQ5hZMl5y9ZBz7nF/9frGLgX+zw2Jik/iZgpwopmV4nX1PRLvGZ08v1sR6PO9J1kNrHbOveMvP4qXcOmzvef5FrDcOVfmnAsBj+N93vXZ3rO19lnW97Y9kJnNBI4HznTbXt7b7e+1EqzWvQfs649GlIL3MN3TCY5J4sR/BudeYIlz7ncxm54GzvXnzwWe2t2xSXw5537inBvinCvC+xy/4pw7E3gVONUvpnu9h3DOrQNWmdkof9U3gU/RZ3tPtBKYbGYZ/t/0xnutz/aerbXP8tPAOf5ogpOBypiuhNIDmdkxeN37T3TObY3Z9DRwupmlmtlwvIFN3k1EjK2xbcmgNGdm38Z7diMI/Nk5d1NiI5J4MbOpwBvAR2x7Lud6vOewHgH2AlYApznnmj9gKz2UmR0OXOWcO97M9sZr0eoLfACc5ZyrT2B4EidmNh5vQJMU4CvgPLx/UNRnew9jZr8EZuB1H/oAuADvWQx9tvcAZjYHOBwoANYDvwCepIXPsp9k34nXTXQrcJ5zbkECwpZd0Mq9/gmQCpT7xd52zl3kl/8p3nNZYbzHPP7ZvM5EUoIlIiIiIiISJ+oiKCIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIt2EmRWZmTOzpETHsqczs5lmNj/RcXQ3ZjbNzD5PdBwiIj2ZEiwREenRzGyWmYXMrDpmuibRcfVEzrk3nHOj4lmnn7RVN5ucmZ0Sz+OIiHQX+ldSEZE4MbMk51w40XH0UnOdc2clOoiu0pN/t5xzbwBZjctmdjjwDPB8gkISEelSasESEekEMys1s2vNbDFQY2ZJZjbZzP5tZpvN7EP/C2Vj+Xlm9j9m9q6ZVZnZU2bWt5W6zzOzJWa2xcy+MrP/arZ9upkt8utZZmbH+OtzzexeM1trZmvM7L/NLNjOeYwws1fMrNzMNprZQ2aWF7OtwswO9JcHmVlZ43mZ2Ylm9ol/vvPMbHSz63OVmS02s0ozm2tmaTt/pXeemV3nX5ctZvapmZ3cSjkzs1vNbIN/LT8ys3H+tlQzu8XMVprZejObbWbpHTz+fX75F/0YXjOzYTHbbzOzVf4xF5rZtJhts8zsUTN70MyqgJlmNsnM3vKv81ozu9PMUmL2cWZ2iZl96R/vV/69+7d/jEdiy7cS8+Fmtroj59cJ5wKPOudquvg4IiIJoQRLRKTzzgCOA/KA/sCzwH8DfYGrgMfMrDCm/DnA+cBAIAzc3kq9G4DjgRzgPODWmCRnEvBX4Gr/uIcCpf5+9/n17gMcABwFXNDOORjwP8AgYDQwFJgF4JxbBlwLPGhmGcBfgPudc/PMbCQwB7gcKASeA55p9kX+NOAYYDhQAsxsMQCzqX7y0No0tZ1zaG4ZMA3IBX7pxz+whXJH4V2/kX7Z04Byf9uv/fXj8a7nYOCGnYjhTOBXQAGwCHgoZtt7fr19gb8Bf2+WfE4HHsW7vw8BEeAKv65DgG8ClzQ73tHAQcBk4BrgHuAsvPs5Du93dZf5iXJr9+f/OrB/JnAqcH9n4hAR6dacc5o0adKkaRcnvKTm/Jjla4EHmpV5ATjXn58H/Dpm2xigAQgCRYADklo51pPAZf78H4BbWyjTH6gH0mPWnQG8upPndRLwQbN1TwMfAYuBVH/dz4FHYsoEgDXA4THX56yY7TcDs+N8D2b513BzzDSohXKLgOn+/Exgvj9/JPAFXlISiClvQA0wImbdIcDyDsZ1H/BwzHIWXpI0tJXym4D9Y87p9Xbqvxx4ImbZAVNilhcC18Ys/xb4fTt1Hg6sjuf9aVb/2cBywLrqGJo0adKU6EnPYImIdN6qmPlhwHfN7ISYdcnAq62UX+FvL2heqZkdC/wCrwUlAGTgJTjgtUg810Isw/z61ppZ47pAs2PuwMz6A7fhtfhk+/tsalbsj3hJ1oXOuXp/3SD/HABwzkXNbBVeS0+jdTHzW/194u0R1+wZLDM7B/gxXuIKXoKzw3V2zr1iZncCdwHDzOxxvJbHNLxrvjDmWhpeMtxRTdfdOVdtZhV457/KzK4C/tNfdngtlQUt7eufz0jgd8AEP64kvCQq1vqY+doWlgfsROxd4Vzgr845l+A4RES6jLoIioh0XuyXxVV4LVh5MVOmc+7XMWWGxszvBYSAjbEVmlkq8BhwC9DfOZeHl1A1ftNfBYxoIZZVeC1YBTHHz3HOjW3nHP6ffx7FzrkcvG5l27IKsyzg98C9wCzb9tzY13hJXWM5889vTTvH24G1PNpc7DSt/Vqa6hqGlxBeCuT71+/j2HOK5Zy73Tl3EF6L4ki8rpcb8ZKSsTHXMtc5l9VSHa1outf+NewLfO2fyzV43RH7+PFVNouveRJyN/AZsK9/j65v7Xy6iv+sXWv3Z3Y7+w7FayH7624JVkQkQZRgiYjE14PACWZ2tJkFzSzNHzhgSEyZs8xsjP880414D/xHmtWTAqQCZUDYb806Kmb7vcB5ZvZNMwuY2WAz2885txb4F/BbM8vxt40ws8PaiTsbqAYqzWwwXoIR6zZggXPuArxnzBq/TD8CHOfHkQxciZfg/bu9C9Wc84YIz2pjemMnqsvES1DKwBswBO8ZpB2Y2UQzO9iPvwaoA6LOuSheknarmfXzyw42s6Nj9nUWM4hJC77tP1uWgvcs1tvOuVV41zvsx5dkZjfgtWC1JRuoAqrNbD/g4nbKx51zbmwb9+eidnY/G/i3857pExHZYynBEhGJI//L83S81oUyvBalq9n+7+0DeM/nrMPrhvajFurZ4q9/BK+r3vfwuuc1bn8Xf+ALvJaP19jWknQOXoL2qb/vo3gDarTll8CBfl3PAo83bjCz6XiDVDR+of8xcKCZnemc+xyvtesOvBafE4ATnHMN7RyvSznnPsV75ugtvG5yxcCbrRTPwUukNuF1dywHfuNvuxZYCrztj+b3EjAKmlpktrCt22ZL/obXzbMCb/CJxm6ML+ANU/6Ff8w62unGiddt8Xv+Mf8IzG2nfHdzDhrcQkR6AVM3aBGR3cfM5gEPOuf+lOhYpHPM7Cy87oM/aWX7fXgDRvxstwYmIiIJpUEuREREdoFz7sFExyAiIt2PugiKiPQS5r30dqcHJ5A9i5ld38rvwT8THZuIyJ5AXQRFRERERETiRC1YIiIiIiIicdKtnsEqKChwRUVFiQ5DRERERESkTQsXLtzonCtsvr5bJVhFRUUsWLAg0WGIiIiIiIi0ycxWtLReXQRFRERERETiRAmWiIiIiIhInCjBEhFpQSSqEVZFRERk53WrZ7BaEgqFWL16NXV1dYkORXqYtLQ0hgwZQnJycqJDkR6mvLqeY297g/+aNoz/PHTfRIcjIiIiPUi3T7BWr15NdnY2RUVFmFmiw5EewjlHeXk5q1evZvjw4YkOR3qYxasr+e7WuXz35Wdg4meQnpfokERERKSH6PZdBOvq6sjPz1dyJTvFzMjPz1fLp+ySNeWVXJ38CDlWS8Oq9xMdjoiIiPQg3T7BApRcyS7R743sqtqqTU3zm79amMBIREREpKfpEQmWiMhu1VDdNBtasyhxcYiIiEiPowSrA8yMK6+8smn5lltuYdasWYkLKMbbb7/NwQcfzPjx4xk9enRTXPPmzePf//73Lte7YsUKDjzwQMaPH8/YsWOZPXt2nCIW6f6sYUvTfHDz8gRGIiIiIj1Ntx/kojtITU3l8ccf5yc/+QkFBQVxq9c5h3OOQGDX89xzzz2XRx55hP33359IJMLnn38OeAlWVlYW3/jGN3ap3oEDB/LWW2+RmppKdXU148aN48QTT2TQoEG7HKtIT9GYYH1NP7Jr1yY4GhEREelJ1ILVAUlJSVx44YXceuutO2wrKyvjlFNOYeLEiUycOJE333wTgFmzZnHLLbc0lRs3bhylpaWUlpYyatQozjnnHMaNG8eqVau4+uqrGTduHMXFxcydOxfwEqTDDz+cU089lf32248zzzwT53Z8L8+GDRsYOHAgAMFgkDFjxlBaWsrs2bO59dZbGT9+PG+88UabcZ599tkccsgh7Lvvvvzxj38EICUlhdTUVADq6+uJRqMtXpvbb7+dMWPGUFJSwumnnw5ARUUFJ510EiUlJUyePJnFixc3Hevcc89l2rRpDBs2jMcff5xrrrmG4uJijjnmGEKhEAA33ngjEydOZNy4cVx44YU7nHc0GqWoqIjNmzc3rdt3331Zv359W7dRpMOCIa+L4JqU4WSHKyCkwVJERESkY3pUC9Yvn/mET7+uimudYwbl8IsTxrZb7gc/+AElJSVcc801262/7LLLuOKKK5g6dSorV67k6KOPZsmSJW3W9eWXX3L//fczefJkHnvsMRYtWsSHH37Ixo0bmThxIoceeigAH3zwAZ988gmDBg1iypQpvPnmm0ydOnW7uq644gpGjRrF4YcfzjHHHMO5555LUVERF110EVlZWVx11VUAfO9732s1zsWLF/P2229TU1PDAQccwHHHHcegQYNYtWoVxx13HEuXLuU3v/lNi61Xv/71r1m+fDmpqalNCc8vfvELDjjgAJ588kleeeUVzjnnHBYtWgTAsmXLePXVV/n000855JBDeOyxx7j55ps5+eSTefbZZznppJO49NJLueGGGwA4++yz+cc//sEJJ5zQdMxAIMD06dN54oknOO+883jnnXcYNmwY/fv3b/c+inREoKEGgIqsEVDxDlSuhoJ9EhyViIiI9ARqweqgnJwczjnnHG6//fbt1r/00ktceumljB8/nhNPPJGqqiqqq6tbqcUzbNgwJk+eDMD8+fM544wzCAaD9O/fn8MOO4z33nsPgEmTJjFkyBACgQDjx4+ntLR0h7puuOEGFixYwFFHHcXf/vY3jjnmmBaP2Vac06dPJz09nYKCAo444gjeffddAIYOHcrixYtZunQp999/f4stRCUlJZx55pk8+OCDJCUlNZ3T2WefDcCRRx5JeXk5VVVeYnzssceSnJxMcXExkUikKd7i4uKm83v11Vc5+OCDKS4u5pVXXuGTTz7Z4bgzZsxoau17+OGHmTFjRpvXXGRnJIW9z0Zdn1EARDetTGQ4IiIi0oN0ugXLzIYCfwX6Aw64xzl3m5nNAr4PlPlFr3fOPdeZY3WkpakrXX755Rx44IGcd955Teui0Shvv/02aWlp25VNSkrarltd7PuYMjMzO3S8xi564HX/C4fDLZYbMWIEF198Md///vcpLCykvLx8hzKtxQk7DmfefHnQoEGMGzeON954g1NPPXW7bc8++yyvv/46zzzzDDfddBMfffRRh84pEAiQnJzcdKxAIEA4HKauro5LLrmEBQsWMHToUGbNmtXiu6wOOeQQli5dSllZGU8++SQ/+9nP2jyuyM5ICnstWNZ/LCyD6rLl5Oyb4KBERESkR4hHC1YYuNI5NwaYDPzAzMb42251zo33p04lV91B3759Oe2007j33nub1h111FHccccdTcuNXeGKiop4/33vBaXvv/8+y5e3PBLZtGnTmDt3LpFIhLKyMl5//XUmTZrU4ZieffbZpmeUvvzyS4LBIHl5eWRnZ7Nly7aR0FqLE+Cpp56irq6O8vJy5s2bx8SJE1m9ejW1tbUAbNq0ifnz5zNq1Kjtjh2NRlm1ahVHHHEE//u//0tlZSXV1dVMmzaNhx56CPCeJSsoKCAnJ6dD59OYTBUUFFBdXc2jjz7aYjkz4+STT+bHP/4xo0ePJj8/v0P1i3REcriGKEbmwP2IOGPrhtJEhyQiIiI9RKcTLOfcWufc+/78FmAJMLiz9XZXV155JRs3bmxavv3221mwYAElJSWMGTOmaTjzU045hYqKCsaOHcudd97JyJEjW6zv5JNPpqSkhP33358jjzySm2++mQEDBnQ4ngceeIBRo0Yxfvx4zj77bB566CGCwSAnnHACTzzxRNMgF63FCV43vyOOOILJkyfz85//nEGDBrFkyRIOPvhg9t9/fw477DCuuuoqiouLAbjgggtYsGABkUiEs846i+LiYg444AB+9KMfkZeXx6xZs1i4cCElJSVcd9113H///R0+n7y8PL7//e8zbtw4jj76aCZOnNi0bfbs2dvFPWPGDB588EF1D5S4S4nUUGfpDCrIZT19CFesSHRIIiIi0kNYSyPT7XJlZkXA68A44MfATKAKWIDXyrWphX0uBC4E2GuvvQ5asWL7LzJLlixh9OjRcYtRtjdr1qztBsPY0+j3R3bFi7/+LgeF3id41Wd88T/fYHDfbAZd/kqiwxIREZFuxMwWOucmNF8ft0EuzCwLeAy43DlXBdwNjADGA2uB37a0n3PuHufcBOfchMLCwniFIyKyy1IitTQE0shNT2a99SN969eJDklERER6iLgM025myXjJ1UPOucf/f3t3HmZVdeZ7/PvuM9Q8UxRQxVBGJpkFkYgaNDi1RuMQNY8mQTptzNh6u9OZTWJuP08Su9O3E01sjcZOX+MQTdSbGINjEhJRQVBRBEEKKCygqHk+07p/nENxCmoA6tT8+zxPUXuvvfZeb9VmV+239tprATjn9idtvwf4XSraktT6zne+M9QhiAw7Phci4gUBaEorITf0EsRi0I9JwUVERGRs6PfdgsWHgbsX2OKc+1FS+cSkapcDm/vblojIYPDFwsQSCVYocyI+otBS3cdeIiIiIql5grUc+ATwppltSpR9Hfi4mS0kPnR7BfCZFLQlIjLgAi5ENJFgudyJUA807oUcTWYtIiIivet3guWcWwtYN5tG/LDsIjI2+V2YmC8HgEB+GeyGSMP7+EtPHeLIREREZLjTCwUiIkfwu8NdBDOLpwDQXK2h2kVERKRvSrCO0eOPP46Z8c477/RYp6Kigrlz56asza1bt7JixQoWLlzI7NmzufHGG4H4JMFPPXXiDwjb29tZunQpCxYsYM6cOXz7299OVcgio0LAhXG+NADyiycRdj7aDu4Z4qhERERkJFCCdYwefPBBzjzzTB588MFut0cikX63EY1Gu6x/6Utf4pZbbmHTpk1s2bKFL37xi0D/E6y0tDSef/55Xn/9dTZt2sTTTz/NunXr+hW7yGgRicYIEupMsCbmZ7KfAqINGqpdRERE+qYE6xg0Nzezdu1a7r33Xh566KHO8hdffJGzzjqLSy+9lFNOOQWIJ1rXXXcds2fP5qqrrqK1tRWA5557jkWLFjFv3jxWr15NR0cHANOmTeMrX/kKp556Kr/+9a+7tFtVVUVZWVnn+rx58wiFQtx66608/PDDLFy4kIcffpiWlhZWr17N0qVLWbRoEU888QQA999/P5dddhkrVqxg+vTpfPe73wXAzMjOzgYgHA4TDoeJDwbZ1a9//Wvmzp3LggULOPvss4H4068bbriBefPmsWjRIl544YXOtj760Y9y3nnnMW3aNO644w5+9KMfsWjRIpYtW0ZtbS0A99xzD6eddhoLFizgyiuv7Pz+JFu2bBlvvfVW5/qKFStYv379MZ8vkf4IRWMELYLzxbsITszNYJ8rxGtSgiUiIiJ9S8k8WIPmD1+FfW+m9pgT5sFF3++1yhNPPMGFF17IjBkzKCoqYsOGDSxevBiA1157jc2bN1NeXk5FRQVbt27l3nvvZfny5axevZqf/vSnfOELX2DVqlU899xzzJgxg09+8pP87Gc/4+abbwagqKiI11577ah2b7nlFs4991zOOOMMzj//fG644Qby8/O57bbbWL9+PXfccQcAX//61zn33HO57777qK+vZ+nSpaxcuRKAV155hc2bN5OZmclpp53GxRdfzJIlS4hGoyxevJjt27fz+c9/ntNPP/2o9m+77Tb++Mc/UlpaSn19PQB33nknZsabb77JO++8w/nnn8+2bdsA2Lx5Mxs3bqS9vZ2TTz6ZH/zgB2zcuJFbbrmFX/7yl9x8881cccUV/MM//AMA3/zmN7n33ns7n8wdcs011/DII4/w3e9+l6qqKqqqqliy5KhJskUGREc4RpAw+ONPsHIz/FRTRHlr5RBHJiIiIiOBnmAdgwcffJBrr70WgGuvvbZLN8GlS5dSXl7euT558mSWL18OwPXXX8/atWvZunUr5eXlzJgxA4BPfepT/PnPf+7c55prrum23RtuuIEtW7bwsY99jBdffJFly5Z1PvlKtmbNGr7//e+zcOFCVqxYQXt7O7t37wbgvPPOo6ioiIyMDK644grWrl0LgM/nY9OmTVRWVnYmYUdavnw5q1at4p577unsvrh27Vquv/56AGbNmsXUqVM7E6xzzjmHnJwciouLycvL4yMf+QgQf/JWUVEBxJOws846i3nz5vHAAw90eVJ1yNVXX82jjz4KwCOPPMJVV13V7fdHZCB0RGKkEYZEF0EzoyltPNmhanBuiKMTERGR4W5kPcHq40nTQKitreX555/nzTffxMyIRqOYGbfffjsAWVlZXeof2dWuu653RzryGMkmTZrE6tWrWb16NXPnzu02EXLO8dhjjzFz5swu5S+//HKf8eTn53POOefw9NNPHzVAx1133cXLL7/M73//exYvXsyGDRt6/TrS0tI6lz3P61z3PK/zHbVVq1bx+OOPs2DBAu6//35efPHFo45TWlpKUVERb7zxBg8//DB33XVXr+2KpFIoEqOACBY4/P85lFFCWmM7tNdDRsHQBSciIiLDnp5g9eHRRx/lE5/4BLt27aKiooI9e/ZQXl7OX/7yl27r7969m5deegmAX/3qV5x55pnMnDmTiooKtm/fDsD//M//8KEPfajPtp9++mnC4TAA+/bto6amhtLSUnJycmhqauqsd8EFF/CTn/wEl/jr+saNGzu3PfPMM9TW1tLW1sbjjz/O8uXLqa6u7uzy19bWxjPPPMOsWbOOan/Hjh2cfvrp3HbbbRQXF7Nnzx7OOussHnjgAQC2bdvG7t27j0rsetPU1MTEiRMJh8Odx+nONddcww9/+EMaGhqYP3/+MR9fpL86whHS7HAXQYBozsT4QqPewxIREZHeKcHqw4MPPsjll1/epezKK6/scTTBmTNncueddzJ79mzq6ur47Gc/S3p6Or/4xS/42Mc+xrx58/A8j5tuuqnPttesWdM5yMQFF1zA7bffzoQJEzjnnHN4++23Owe5+Na3vkU4HGb+/PnMmTOHb33rW53HWLp0KVdeeSXz58/nyiuvZMmSJVRVVXHOOecwf/58TjvtNM477zwuueQSAG699VaefPJJAL785S8zb9485s6dyxlnnMGCBQv43Oc+RywWY968eVxzzTXcf//9XZ5c9eV73/sep59+OsuXL++S1D355JPceuutnetXXXUVDz30EFdfffUxH1skFUKheDdcLynB8hfEB5vRSIIiIiLSF3PD6J2CJUuWuCNHi9uyZQuzZ88eoohGtvvvv7/LYBhjkf7/yPHa+O5uFj0wj+0Lv8rJH/0aAL954SWu+NOFNJ737+Qu//QQRygiIiLDgZltcM4dNRKbnmCJiCSJhNoB8ILpnWV548qIOaNVkw2LiIhIH0bWIBdyXFatWsWqVauGOgyRESUSagPACxxOsEoKczlIHuH6vUMVloiIiIwQI+IJ1nDqxigjh/7fyImIJN7B8ieNIjgxL50qV4hpkAsRERHpw7BPsNLT06mpqdHNshwX5xw1NTWkp6f3XVkkyaEnWL5gRmdZYVaQagoJtu4bqrBERERkhBj2XQTLysqorKykurp6qEORESY9PZ2ysrKhDkNGmFjnE6zDybmZ0RgcT3bHO0MVloiIiIwQA55gmdmFwH8CPuDnzrnjmi04EAhQXl4+ILGJiBwpGo4PcuELdn362Z5RQmZTM4RaINjz5OAiIiIytg1oF0Ez8wF3AhcBpwAfN7NTBrJNEZH+OJRgBY5IsGLZhyYbrhrskERERGQEGeh3sJYC251z7znnQsBDwGUD3KaIyAlzhxKsI97f8/JKAYg1VA56TCIiIjJyDHSCVQokTxxTmSgTERmWYpFD72BldClPL5oMQIvmwhIREZFeDPkogmZ2o5mtN7P1GshCRIaaCycSrCO6COaMnwJAy8Hdgx6TiIiIjBwDnWDtBSYnrZclyjo55+52zi1xzi0pLi4e4HBERHrnIvEugvjTupSXFBVQ77II16qLoIiIiPRsoBOsV4HpZlZuZkHgWuDJAW5TROTERULxz0ckWBMSkw3TpEEuREREpGcDmmA55yLAF4A/AluAR5xzbw1kmyIi/eES72Dh65pgjctKYz9F+FuUYImIiEjPBnweLOfcU8BTA92OiEgqWDSRYPmDXco9z2gMjCOr/bUhiEpERERGiiEf5EJEZFiJHuoimH7Uprb0CWRH6w53IxQRERE5ghIsEZEkFu0ghoF39AP+SPYEPBw07xuCyERERGQkUIIlIpLEoiHCBMDsqG1e3iQAXMPeo7aJiIiIgBIsEZEuvGgHYQt2uy2t8NBcWJpsWERERLqnBEtEJIkXCxGxQLfbsovjCVZztSYbFhERke4pwRIRSeLFwkR7SLDGjSumxaURqtMTLBEREemeEiwRkST+WAdRr/sughPzM9jnCvUOloiIiPRICZaISBIvFiLSQ4JVnJ1GJcWkNVUOclQiIiIyUijBEhFJ4ouFifWQYPl9HjX+CWS3vz/IUYmIiMhIoQRLRCSJ34Vwvu4TLICWjFKyow3Q0TyIUYmIiMhIoQRLRCTBOUfAhYj50nqsE8mdHF+o10iCIiIicjQlWCIiCeGoI0Ck1ydYXuFUAKK1FYMUlYiIiIwkSrBERBLaI1GChKGXJ1iZ408CoHn/jsEKS0REREYQJVgiIgnt4ShphHt9gjWupJQ2F6SteucgRiYiIiIjhRIsEZGEjnCMoEXAn95jnbKCTCpdMbHaXYMYmYiIiIwUSrBERBLaw1GyaYNgVo91Sgsy2OOKCTTtGcTIREREZKToV4JlZreb2Ttm9oaZ/dbM8hPl08yszcw2JT7uSkm0IiIDqD0UJYt2CGb3WCcz6Oegv4Tstr2DGJmIiIiMFP19gvUMMNc5Nx/YBnwtadsO59zCxMdN/WxHRGTAdYTaCFgU0npOsACaM0rJiDZDW/3gBCYiIiIjRr8SLOfcGudcJLG6Dijrf0giIkMj3NoIgJfee4IVyUnMhdWgboIiIiLSVSrfwVoN/CFpvdzMNprZn8zsrJ52MrMbzWy9ma2vrq5OYTgiIscnlEiw/Om5vdbzJebCcnUVAx2SiIiIjDB9Jlhm9qyZbe7m47KkOt8AIsADiaIqYIpzbhHwv4BfmVm3dyzOubudc0ucc0uKi4v7/xWJiJygQwlWMLP3BCsjMRdWy/73BjwmERERGVn8fVVwzq3sbbuZrQIuAT7snHOJfTqAjsTyBjPbAcwA1vc3YBGRgRJubQAgLSuv13rjiifQ7NJpO7CT3jsTioiIyFjT31EELwT+BbjUOdeaVF5sZr7E8knAdEB/6hWRYS3a3gxAenbvT7DKCrPic2HVaS4sERER6arPJ1h9uANIA54xM4B1iREDzwZuM7MwEANucs7V9rMtEZEBFWlrAiCY0fsTrNKCDF5xxRQ37h6MsERERGQE6VeC5Zw7uYfyx4DH+nNsEZHB5jriT7B6m2gYIC8jwAFvPFlt74BzEP8Dk4iIiEhKRxEUERnZQvEnWKTl9Fm1OaOU9FgrtNUNcFAiIiIykijBEhFJsFBLfCHY99AVkdzEXFj1eg9LREREDlOCJSKS4O+oo93SwR/ss65XEJ8LCw10ISIiIkmUYImIJKSH6mj2FRxT3UNzYbVV7xzIkERERGSEUYIlIpKQHamjLZh/THXHjy+hwWXSdkAzUIiIiMhhSrBERIBYzJETayCUVnRM9UvzM6h0xUTVRVBERESSKMESEQEa28MUWSOR9GNMsAoy2OPGE2jcM8CRiYiIyEiiBEtEBDjQ2E4hjXjZ446pflFWkH1WTFbb3vhcWCIiIiIowRIRAWB/dTVpFiE9r+SY6psZTRmlBGId0FI9wNGJiIjISKEES0QEaKqOd/XLLJp0zPuEcw7NhbV7IEISERGREUgJlogI0JEYbj13wsnHvI9XOC2+UFeR+oBERERkRFKCJSICWH18NMDAuPJj3idzfLxuqKZiIEISERGREUgJlogIEGjaQwdByD62d7AASsYVUeNyNBeWiIiIdFKCJSICZLZWUh+cAGbHvE/nXFi1FQMXmIiIiIwoSrBEZMxr7ohQFtlDa86xdw8EKCvIZI8rxt9YOUCRiYiIyEijBEtExryd+2ootypixbOPa7/xOWlUUUxm2/sQiw1QdCIiIjKS9CvBMrPvmNleM9uU+Pi7pG1fM7PtZrbVzC7of6giIgOj6t038FuMrCnzj2s/zzNa0ifgd2FoPThA0YmIiMhI4k/BMf7DOfdvyQVmdgpwLTAHmAQ8a2YznHPRFLQnIpJSdTs3ADD+A4uPe99o9iSoAxr3Qvb4FEcmIiIiI81AdRG8DHjIOdfhnNsJbAeWDlBbIiL9kn5gE22WiVc8/bj39ReUxRca9qY4KhERERmJUpFgfcHM3jCz+8ysIFFWCuxJqlOZKDuKmd1oZuvNbH11dXUKwhEROXY1zR2c1LGFmry54PmOe/+McVMAiNRroAsRERE5hgTLzJ41s83dfFwG/Az4ALAQqAL+/XgDcM7d7Zxb4pxbUlxcfLy7i4j0y6Yde5lle/CmLDmh/QuKJxFyPlqqd6U4MhERERmJ+nwHyzm38lgOZGb3AL9LrO4FJidtLkuUiYgMKwfe/jMBizLulHNOaP+ywmz2uUIyavf0XVlERERGvf6OIjgxafVyYHNi+UngWjNLM7NyYDrwSn/aEhEZCIHKl4jiESz/4AntX5qfQRVF0Ph+iiMbvmLRGM65oQ5DRERkWOrvKII/NLOFgAMqgM8AOOfeMrNHgLeBCPB5jSAoIsNNezjKtKaN7M+ZxaS0nBM6xvjcNF5zhcxuqUhtcEPEOUfFvoNUbXuNtt0b8dVuI7P1ffJD+yiM1ZJBO1nWQcj56LA0mr0c6tNKieVPI2PqYibN/RDpk+aAp2kWRURkbOpXguWc+0Qv2/4V+Nf+HF9EZCBt3rWfebaDqtJPnvAx0gM+6nzFZIZeiU82PMISi0g0xtYdO9j3xnP4dv+V0sZNlLtKyi0+cXIr6Rz0T6ApayK70ucTC2QR86fjohFioVa8thpy2/Yy6f01FFT9BtZBk2Wzr2AJaTPOpfTUC/EVzwCzAf06nHM0tkeora2h+eAeOprrCLc2Em1vgnAr/kgrRgwwHIZnRiCYhpeWjT8zl2BGLunZuWRm55GVU0B6dj740wY0ZhERGZ1SMQ+WiMiIVLl5LUssQuGcE3v/6pDWjIn42yLQUg05JSmKbuAcqG/irZeeJrrlKcobXmaO7WUO0EIGu7Pms3XihWRPW0LJjKVkFk9jyjEkR7XNHfzt7dep37aWYOVLzKp5jbJ1L8K6W6nzj6NxwhkUzFlJ7ikrIa/bQWV75JyjsS3Mgf3vU7dvJ83VlYTq9mCN7xNo3Ud2xwEKogcpoZZyazuxb0o3OgjQapm0WybtvixCvmwigSyigRyigWzC/ixinh8zDxIfDo+oi0EkDNEOLBbGomGIhfBiYSwWxouG8VwYLxbG58J4sQg+F8HnwvhcBD9h/C6Cnwh+FyFABIBYole/w4hhYPFk0QEOjxiGw8OZEcNLLHvx/cw61w/ViX/2HV7GiCXqOw6f83gL8a4qXf4nJHUTPVTnyOVk1qVb6dH13VHHOVzLemiLHto6Pv04hktVDMfbZlfN/jwmfvphJhYXDW4sItItJVgiMma5ir8CkDv9zH4dJ5I9EdqAxsphmWA559i2+312/u23ZFSsYVH7q5xjrXQQZFfuIt6eci0l81dSdPJSZvtO7NdCYXYaZyxdCkvjUx7WNXfw7Osbqd28hvx9L7F4zwvkVj4Jf4T3fWXUZ59Ee1YpkczxeMEMol4asXAHLtxGpKMFWg6S1l5NVuggedE6xlPHdAt3aTOKR4NXQFNwPO2Z09mTOQGXOwlfXinBnCKCGTmkZeXiS8+BQBbO4rfs5iASi9Le3k5HSxOhtgbCrU2EWhuJtMWfern2Buhowgs14w834480kxZuJr2jntxYK1m0kk0bfmJ41v0Ndtj5CJufEAEi+IlYgKj5ieIn4gWIWoCY+Yn6AkS8TEJegJjnx3lBnOfHeQHwBYl5/kMnElwskdi4w+uQKI+/G2cu2rluic9Hrhvx5UPrHg7PxTCi+IjhEeuSZCWnVl2+Wksu76FOotwdUefwMa2z3Iwj0idLqtp7W93+GeCowqNrJSdyvbHuWrCuMfS2d28lve3f/dd1uDQYa+PUjld5Ye1vmXj5p/uMREQGnhIsERmTnHOMr99IVVo5EzML+3ew3FKoJj7QRenilMSXCntrGtj0/KNkbn2MD4ZfYaaFqbc89kxYSc6CS5m8+CJmpGUPSNsF2WmsXL4Mli8jFnO8/X49f3pjHYHdf6Gkdj1F9TuYVv8ymdbR7f6NZNPgL6Q1rYj6jGnUZpfgzy8jY9xk8kumkl8yFV/OBAp9fvp59vrFOUckGiPmHLFYPLEJ+jw8f5CAGQEgcwjjk9HPRcM0fm8aGTvXAEqwRIYDJVgiMibt2N/IfLeN/SUf6fexgkVTYAdE6ys5/qmKU6upLcTLa5/Fbfy/LGn5ExdbM42Wy66pVzL+g9dRMHM5+ScwoXJ/eJ4xt6yAuWUXARd1lkciURpaGmlracaLhUhPyyCYmUVaeha5Pj+5gxrliTEz/P5D30/9SpXBZ74A7+R+kFmNf8NFw5gvMNQhiYx5+m0gImPSe5tf5mRro2VG/7oHAuQVTqDDBQgf3M3APA/q23t79/P6H+5hxp5fs9IqaCdIxfhzCS+7nvELLyR3GN50+f0+8vIKyMsrGOpQREa0tvLzyX/9Gao2/5mJCz481OGIjHlKsERkTGp/by0A4/s5wAXAhPx0qlwheYM82bBzjtc3vkLdCz9hSeOzXG5tVKWfxO5Tv8fkD32KWel5gxqPiAyNk5Z9lI5NX6N6w2+VYIkMA0qwRGRMyqveQI2vmKKCKf0+1vicdKpcEXmNe1MQWd/CkSjrXvwdwZfv4PTwK3QQYMf485l03ueYOH35gA+JLiLDy+SJ43k1MJ+yvc/FBz/RzwCRIaUES0TGnKa2ELNCm6kefzqpGNR4Ql462yhkXst7KThazxpb21n31C+Z9NbdnOXepcFyePPkzzL9kls4JX/4jV4oIoOntmwlp1X8kMbKt8idPHeowxEZ00bWjJiDbPvrf+WlX3yFt9b+P9pbGoc6HBFJkXff3kSJ1eObtjwlxyvMDLKfIjI69kMsmpJjJqs8UMPv7/vf1P1gAedv/jLFXjNbF99Kzle3Mu/675Ou5EpkzJv6wSsB2PHnh4Y4EhHRE6xe1LzzF06v+C+8XXcRecZju38adVknEx03i4xJs8kpKWdc6Unk5Bdj3vDJVaMxRzgcJhxqJxwOEw13EA6HiIZDRMMdRCLh+HIkRCwSTnwO4cUiuFgYi0VwLj7HSnwORQfE4tOuAC4xD4s7VJCYjyV5Hzs0T0tKJ2BMmvjyBHs/uO5nFOm+tWObVOWE2z/hI/W360dKuo6k7vvQYwt9VjnxGELvvghAyeJLTvgYyTzPaE6bgC8STUw2PCElx31j23vs+uOP+eDBx7jYGtmdMZPdy29lyvJrKRnkkQBFZHibNXMWb/rnUrrjIVzkVswfHOqQBp2LRmhra6G1pYX2tmYiHW1EQ224cCvRcAexSJhYNEo0GsZFI0SjUVw0TCwaIRaNYLEo5iLxueToMpd2fL2btUN1errbsaR/j5zPDUuaXa3LL73k+52kOd/s8NEclrSLdfkcn0+uu+1HHK9LedJ9bFK4zixpDrju9x0MrdlT+MD8M5iUnzGo7Z4oJVi9OP2ar9JQ+2l2bnqe1h1/I7fmDaY2rmd84xpI6gnU5oLUeQW0edl0+LMJ+7MJ+bNwXiA+UaTnx5kPfP74f/hYFFwUi0USEz9GIBb/bLEonosnOV4sjOcinR++WBSfC+Mjgs9F8bkIPiL4ieJ3EfyJ5QBR0s2RPnTfOpFh7z1fOSdN+EDKjhfJngD1QMPefiVY0Zhj7Suv0vKnH7OidQ3zrYPtBWdgK/+JKXM+rHcrRKRHNQs+w7wNX2Tb879kxvkjb06s1vZ26qr30VK3j7b6/YQb9xNpOki0rQHaG/BCzQQiTQQjzaRFm8mItpDhWshw7aS5DgIWJRPNPTca/SJyAQ35s5VgjRZ5heNYeO7VcO7VnWUNtQepeu8NWqp3E6rdg2vcS7CtGn+4mWCkiZy2SjJirfiI4iOKnwg+F8NHFA9HFI8IPmLmEcVHjMRn84jhI2p+ouYjagGi5idmfqJeOhG/n6gFcJ4fZ36cFyDm+cF3KJELgM8PXgDnC2C+AOYFwBfA8yfW/UE8XwDPH8T88XKfPy0+b4YvcQzPh5mHmXX+BcTMEh9efB2L3+h1rgPm4XmGHep5mti/v0874lwPyyd6jD5qdle128ITi+GEj3TMMfRSLwVfR7+P0EcMfYfY/69h/MRp/T5GMn/B5HiC1VgJHP9kw62hCC88+xRZG37GWZGXiJmPikkXUXrxVzi5bF5KYxWR0WnZBR9nx4YfkvXyj4ituA4vODxuRqPRKNX79lJTtZPmAxWE6yrxGvcSbK0io6OarHAdebEGCqypx+SojSAtZNHqZdLuZdHuy6YpMJ5wIJtYIAv86VggAwtm4Atk4AXjHxZIB38G5k/D5w/g+fzxex+fH8/vx59Y9vsDmM8Png9nvs4nOtb5NMe6rMfLjlzoRpdHXO7wby93eNm5WFJ1d9S+zh3uEXTU70fnEmWdR4u345K2d9NO8u9RFzv6HqvrMQ+3E//6j4hxEP7wd3ZaPsWTige8nVRRgnUC8grHkVd47lCHISLDSMHED8BO6DiwnbRTjn2/3dWNvLLmV5z07i+4mHdotmwqZn2aqRfdwvT80oELWERGnfRggMql3+RDr3yGt371Feas+vGgtOuco7aulv27ttBQuY1I9XYCjRXktO4hP7yf4lgNEyxC8rP9kPNT7RXR4C+mNusDVGcUQeY4vOzx+HOLCeaVkJlfQnZhCXn5RWQE0xke6aJI35RgiYikwNSyUnbHismpeJW0PurGYo6X39jMgRfvZmnd77jKaqnxl7Dn1FuZ/OEbyU7LGZSYRWT0Ofuia3jurSf5cMV/8+7vT2L6xTen7NgNdTXsq3ibxr1bCR3Yjr9hJ9ktexgf2Usx9V1GZa0hn+rAJPblzKUyaxJefikZ46aQVzKNwkknkVUwgVIz9GckGY2UYImIpMCsCTlscNM5r2p9j10mdlYd5I0XHqVg+2OcEV2PZ45dBcuoO/szFC34CEU+/UgWkf4xM5Z85r9Y9+MrWPbqt3lr16uUXv498ieedEz7N9TXsn/nWzTs3Ur4wLv4GyrIad1FSXgvhTSSPH15NYUcDJayu3A5FQXlpJfMIL9sJiVTZ1OUlZeSaTBERiL9NhcRSYHJhZk8mrWQrPa/QeWrMHkpAHsO1PHmX58iuPVxlrat5TJrpd4rYOfMv2fqeZ+jvPjYbnpERI5VXm4Op9zyOGvu/WfO2f8wvrt+z3vBk2nIm0U0awIukAnREC7UgmurJ61tP7mhAxRED1JAU5ck6gCFVAfL2F74IVxBOWklMygom0nJ1FkUZ+Uyct6KERk85vrxwruZPQzMTKzmA/XOuYVmNg3YAmxNbFvnnLupr+MtWbLErV+//oTjEREZSnf+cRPX/e3viGQUsyXvTAI125gXfp0s66CVDPZMWMn45Z+g4JQPxwekEREZYDu2vUXli/eRe+BVpoR3UmSH5/XscH5aLJNaXzHNwWI6Mkpw+VNJLzmZ/MmzmDB1NulZuUMYvcjwZmYbnHNLjirvT4J1RAP/DjQ4525LJFi/c84d11TiSrBEZCRrDUW48+d384n9P2QcDVQHJlJbcgbFiy5l/ILzIKBXtEVk6MRijo5whI72FoJp6aQH0/A8Tf0gcqJ6SrBS8idUi89adjWgofVEZMzKDPr58uc+R3voRjwPJvr9TBzqoEREEjzPyEgLkJGWP9ShiIxqXt9VjslZwH7n3LtJZeVmttHM/mRmZ/W0o5ndaGbrzWx9dXV1isIRERk66cH4/CoiIiIy9vR5B2Bmz0KXqQsO+YZz7onE8seBB5O2VQFTnHM1ZrYYeNzM5jjnGo88iHPubuBuiHcRPN4vQEREREREZLjoM8Fyzq3sbbuZ+YErgMVJ+3QAHYnlDWa2A5gB6AUrEREREREZtVLRRXAl8I5zrvJQgZkVm5kvsXwSMB14LwVtiYiIiIiIDFupeEngWrp2DwQ4G7jNzMJADLjJOVfb14E2bNhw0Mx2pSCmVBoHHBzqIGTQ6HyPHTrXY4fO9dii8z126FyPLcPxfE/trjBlw7SPVma2vrvhF2V00vkeO3Suxw6d67FF53vs0LkeW0bS+U7VKIIiIiIiIiJjnhIsERERERGRFFGC1be7hzoAGVQ632OHzvXYoXM9tuh8jx0612PLiDnfegdLREREREQkRfQES0REREREJEWUYImIiIiIiKSIEqxemNmFZrbVzLab2VeHOh5JHTObbGYvmNnbZvaWmf1jorzQzJ4xs3cTnwuGOlZJDTPzmdlGM/tdYr3czF5OXN8Pm1lwqGOU1DCzfDN71MzeMbMtZvZBXdujk5ndkvgZvtnMHjSzdF3bo4eZ3WdmB8xsc1JZt9eyxf04cd7fMLNThy5yOV49nOvbEz/H3zCz35pZftK2ryXO9VYzu2BIgu6FEqwemJkPuBO4CDgF+LiZnTK0UUkKRYB/cs6dAiwDPp84v18FnnPOTQeeS6zL6PCPwJak9R8A/+GcOxmoA/5+SKKSgfCfwNPOuVnAAuLnXdf2KGNmpcCXgCXOubmAD7gWXdujyf3AhUeU9XQtXwRMT3zcCPxskGKU1Lifo8/1M8Bc59x8YBvwNYDE/dq1wJzEPj9N3LcPG0qwerYU2O6ce885FwIeAi4b4pgkRZxzVc651xLLTcRvwEqJn+P/TlT7b+CjQxKgpJSZlQEXAz9PrBtwLvBooorO9ShhZnnA2cC9AM65kHOuHl3bo5UfyDAzP5AJVKFre9Rwzv0ZqD2iuKdr+TLgly5uHZBvZhMHJVDpt+7OtXNujXMuklhdB5Qlli8DHnLOdTjndgLbid+3DxtKsHpWCuxJWq9MlMkoY2bTgEXAy0CJc64qsWkfUDJUcUlK/R/gX4BYYr0IqE/6wa3re/QoB6qBXyS6hP7czLLQtT3qOOf2Av8G7CaeWDUAG9C1Pdr1dC3rvm10Ww38IbE87M+1EiwZ08wsG3gMuNk515i8zcXnMNA8BiOcmV0CHHDObRjqWGRQ+IFTgZ855xYBLRzRHVDX9uiQePfmMuJJ9SQgi6O7GMkopmt5bDCzbxB/teOBoY7lWCnB6tleYHLSelmiTEYJMwsQT64ecM79JlG8/1CXgsTnA0MVn6TMcuBSM6sg3tX3XOLv6OQnuhWBru/RpBKodM69nFh/lHjCpWt79FkJ7HTOVTvnwsBviF/vurZHt56uZd23jUJmtgq4BLjOHZ68d9ifayVYPXsVmJ4YjShI/GW6J4c4JkmRxDs49wJbnHM/Str0JPCpxPKngCcGOzZJLefc15xzZc65acSv4+edc9cBLwBXJarpXI8Szrl9wB4zm5ko+jDwNrq2R6PdwDIzy0z8TD90rnVtj249XctPAp9MjCa4DGhI6kooI5CZXUi8e/+lzrnWpE1PAteaWZqZlRMf2OSVoYixJ3Y4GZQjmdnfEX93wwfc55z716GNSFLFzM4E/gK8yeH3cr5O/D2sR4ApwC7gaufckS/YyghlZiuAf3bOXWJmJxF/olUIbASud851DGF4kiJmtpD4gCZB4D3gBuJ/UNS1PcqY2XeBa4h3H9oIfJr4uxi6tkcBM3sQWAGMA/YD3wYep5trOZFk30G8m2grcINzbv0QhC0noIdz/TUgDahJVFvnnLspUf8bxN/LihB/zeMPRx5zKCnBEhERERERSRF1ERQREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERS5P8DHEatK8VYVQEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACexElEQVR4nOzdeXxU5d3//9dnZrKvJGEHAReQVVBAvIG6tYp1QasVrQtorV+1tmpdam2r6F1/t7f1rnVpS21tXYtYd+u+oaIiAiIKuIBEQFlCIAnZMzPX749ziENISCATJsv7+XiMOct1rvM5czJxPlzLMeccIiIiIiIi0nqBRAcgIiIiIiLSWSjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSLSTpjZQDNzZhZKdCydnZnNMLN5iY6jvTGzyWb2WaLjEBHpyJRgiYhIh2ZmM82szszKY17XJDqujsg597Zzbkg86/STtvIGL2dmp8bzPCIi7YX+lVREJE7MLOScCyc6ji5qjnPu7EQH0VY68u+Wc+5tIHP7upkdATwLvJigkERE2pRasEREWsHMCs3sl2a2FKgws5CZTTCzd82sxMw+8r9Qbi8/18z+x8wWmFmZmT1tZnlN1H2ema0ws21m9qWZ/b8G+6ea2RK/nlVmNsXfnmNm95rZejP72sx+Z2bBZq5jPzN73cyKzWyzmT1sZrkx+7aY2cH+eh8zK9p+XWZ2kpkt8693rpkNbfD+XGVmS82s1MzmmFnq7r/Tu8/MrvXfl21mttzMTmminJnZ7Wa2yX8vPzazEf6+FDO7zczWmNlGM5tlZmktPP99fvlX/BjeNLMBMfvvMLO1/jkXmdnkmH0zzewxM3vIzMqAGWY23sze89/n9WZ2t5klxxzjzOwSM/vCP99/+/fuXf8cj8aWbyLmI8xsXUuurxWmA4855yra+DwiIgmhBEtEpPXOBI4HcoGewHPA74A84CrgcTPrHlP+XOB8oDcQBu5sot5NwAlANnAecHtMkjMeeAC42j/vd4BC/7j7/Hr3B8YAxwAXNHMNBvwP0AcYCvQHZgI451YBvwQeMrN04J/A/c65uWY2GJgNXA50B54Hnm3wRf50YAowCBgFzGg0ALNJfvLQ1GtSM9fQ0CpgMpAD3OjH37uRcsfgvX+D/bKnA8X+vlv87aPx3s++wPW7EcNZwH8DBcAS4OGYfR/49eYB/wL+3SD5nAo8hnd/HwYiwBV+XYcBRwOXNDjfscAhwATgGuAe4Gy8+zkC73d1j/mJclP3588tOD4DOA24vzVxiIi0a845vfTSSy+99vCFl9ScH7P+S+DBBmVeAqb7y3OBW2L2DQNqgSAwEHBAqIlzPQVc5i//Fbi9kTI9gRogLWbbmcAbu3ldJwMfNtj2DPAxsBRI8bf9Fng0pkwA+Bo4Iub9OTtm/63ArDjfg5n+e1gS8+rTSLklwFR/eQYwz18+CvgcLykJxJQ3oALYL2bbYcDqFsZ1H/BIzHomXpLUv4nyW4GDYq7prWbqvxx4MmbdARNj1hcBv4xZ/z/gj83UeQSwLp73p0H95wCrAWurc+ill156JfqlMVgiIq23NmZ5APBDMzsxZlsS8EYT5b/y9xc0rNTMjgNuwGtBCQDpeAkOeC0SzzcSywC/vvVmtn1boME5d2JmPYE78Fp8svxjtjYo9je8JOtC51yNv62Pfw0AOOeiZrYWr6Vnuw0xy5X+MfH2qGswBsvMzgV+gZe4gpfg7PQ+O+deN7O7gT8BA8zsCbyWx1S893xRzHtpeMlwS9W/7865cjPbgnf9a83sKuDH/rrDa6ksaOxY/3oGA38AxvpxhfCSqFgbY5arGlnvtRuxt4XpwAPOOZfgOERE2oy6CIqItF7sl8W1eC1YuTGvDOfcLTFl+scs7wPUAZtjKzSzFOBx4Dagp3MuFy+h2v5Nfy2wXyOxrMVrwSqIOX+2c254M9fw//nXMdI5l43XrezbrMIsE/gjcC8w074dN/YNXlK3vZz51/d1M+fbiTU+21zsa3LztdTXNQAvIbwUyPffv09irymWc+5O59wheC2Kg/G6Xm7GS0qGx7yXOc65zMbqaEL9vfbfwzzgG/9arsHrjtjNj6+0QXwNk5C/AJ8CB/j36Lqmrqet+GPtmro/s5o5tj9eC9kDeyVYEZEEUYIlIhJfDwEnmtmxZhY0s1R/4oB+MWXONrNh/nimm/AG/Eca1JMMpABFQNhvzTomZv+9wHlmdrSZBcysr5kd6JxbD7wM/J+ZZfv79jOzw5uJOwsoB0rNrC9eghHrDmChc+4CvDFm279MPwoc78eRBFyJl+C929wb1ZDzpgjP3MXr7d2oLgMvQSkCb8IQvDFIOzGzcWZ2qB9/BVANRJ1zUbwk7XYz6+GX7Wtmx8Yc6yxmEpNGfN8fW5aMNxZrvnNuLd77HfbjC5nZ9XgtWLuSBZQB5WZ2IHBxM+Xjzjk3fBf356JmDj8HeNd5Y/pERDotJVgiInHkf3meite6UITXonQ1O/69fRBvfM4GvG5oP2+knm3+9kfxuur9CK973vb9C/AnvsBr+XiTb1uSzsVL0Jb7xz6GN6HGrtwIHOzX9RzwxPYdZjYVb5KK7V/ofwEcbGZnOec+w2vtuguvxedE4ETnXG0z52tTzrnleGOO3sPrJjcSeKeJ4tl4idRWvO6OxcDv/X2/BFYC8/3Z/F4FhkB9i8w2vu222Zh/4XXz3II3+cT2bowv4U1T/rl/zmqa6caJ123xR/45/wbMaaZ8e3MumtxCRLoAUzdoEZG9x8zmAg855/6e6FikdczsbLzug79qYv99eBNG/GavBiYiIgmlSS5ERET2gHPuoUTHICIi7Y+6CIqIdBHmPfR2tycnkM7FzK5r4vfghUTHJiLSGaiLoIiIiIiISJyoBUtERERERCRO2tUYrIKCAjdw4MBEhyEiIiIiItKkRYsWbXbOdW9sX7tKsAYOHMjChQsTHYaIiIiIiEiTzOyrpvapi6CIiIiIiEicKMESERERERGJEyVYIiIiIiIicdKuxmA1pq6ujnXr1lFdXZ3oUKQdSE1NpV+/fiQlJSU6FOmEqusi/OSBhZx16ACmjOiV6HBERESkA2r3Cda6devIyspi4MCBmFmiw5EEcs5RXFzMunXrGDRoUKLDkU7oo7UlfP7F59y3fhlTRpyf6HBERESkA2r3CVZ1dbWSKwHAzMjPz6eoqCjRoUgntW5LBe+nXgphoOw4yO6d6JBERESkg+kQY7CUXMl2+l2QtlRRtrV+uXbT5wmMRERERDqqDpFgiYjsDdXl3yZYW79ZmcBIREREpKNSgtUCZsaVV15Zv37bbbcxc+bMxAUU44gjjtjlw5lPPvlkJkyYsMO2mTNn0rdvX0aPHs2IESN45pln2jpMkQ6htmLLt8ubVycwEhEREemolGC1QEpKCk888QSbN2+Oa73OOaLRaFzrjFVSUsKiRYsoLS3lyy+/3GHfFVdcwZIlS/j3v//N+eef36ZxiHQU0aqy+mW3dU0CIxEREZGOSglWC4RCIS688EJuv/32nfYVFRVx6qmnMm7cOMaNG8c777wDeK1Et912W325ESNGUFhYSGFhIUOGDOHcc89lxIgRrF27lquvvpoRI0YwcuRI5syZA8DcuXM54ogjOO200zjwwAM566yzcM41Gt+DDz5Y3xq1YMGC+u1PPPEEJ554ImeccQaPPPJIo8cOHTqUUCi0Q/J47bXXMmzYMEaNGsVVV10FQGFhIUcddRSjRo3i6KOPZs0a78vnjBkzuPjii5kwYQL77rsvc+fO5fzzz2fo0KHMmDGjvs6LL76YsWPHMnz4cG644Yad4igtLWXAgAH1iV5FRQX9+/enrq6u0bhF2kJSnZdgVbskQtu+TnA0IiIi0hG1+1kEY9347DKWf1PWfMHdMKxPNjecOLzZcj/96U8ZNWoU11xzzQ7bL7vsMq644gomTZrEmjVrOPbYY1mxYsUu6/riiy+4//77mTBhAo8//jhLlizho48+YvPmzYwbN47vfOc7AHz44YcsW7aMPn36MHHiRN555x0mTZq0U32VlZUsWbKEt956i/PPP59PPvkEgNmzZ3P99dfTs2dPTj31VK677rqdjn3//fcJBAJ0794dgOLiYp588kk+/fRTzIySkhIAfvaznzF9+nSmT5/OP/7xD37+85/z1FNPAbB161bee+89nnnmGU466STeeecd/v73vzNu3DiWLFnC6NGjufnmm8nLyyMSiXD00UezdOlSRo0aVR9HTk4Oo0eP5s033+TII4/kP//5D8cee6yedyV7VbB2GwCr6UP36vi2WIuIiEjX0OoWLDPrb2ZvmNlyM1tmZpf52/PM7BUz+8L/2a314SZOdnY25557LnfeeecO21999VUuvfRSRo8ezUknnURZWRnl5eW7rGvAgAH146LmzZvHmWeeSTAYpGfPnhx++OF88MEHAIwfP55+/foRCAQYPXo0hYWFjdZ35plnAvCd73yHsrIySkpK2LhxI1988QWTJk1i8ODBJCUl1SdeALfffjujR4/mqquuYs6cOfWz8+Xk5JCamsqPf/xjnnjiCdLT0wF47733+NGPfgTAOeecw7x58+rrOvHEEzEzRo4cSc+ePRk5ciSBQIDhw4fXx/zoo49y8MEHM2bMGJYtW8by5ct3uo5p06bVt+A98sgjTJs2bZfvo0i8JYW9z+76UF9S67Y2U1pERERkZ/FowQoDVzrnFptZFrDIzF4BZgCvOeduMbNrgWuBX7bmRC1paWpLl19+OQcffDDnnXde/bZoNMr8+fNJTU3doWwoFNphXFN1dXX9ckZGRovOl5KSUr8cDAYJh8ONlms4dbmZ8eijj7J169b6B/KWlZUxe/Zsbr75ZsAbg7W9+1/DuBcsWMBrr73GY489xt13383rr7/eojgDgcAOMQcCAcLhMKtXr+a2227jgw8+oFu3bsyYMWOH92O7k046ieuuu44tW7awaNEijjrqqF2eVyTeksNeC1ZxSn8yK9+FSB0E1YoqIiIiLdfqFizn3Hrn3GJ/eRuwAugLTAXu94vdD5zc2nMlWl5eHqeffjr33ntv/bZjjjmGu+66q359yZIlAAwcOJDFixcDsHjxYlavbnxGssmTJzNnzhwikQhFRUW89dZbjB8/frfi2t7qM2/ePHJycsjJyWH27Nm8+OKL9eO+Fi1a1OQ4rFjl5eWUlpby/e9/n9tvv52PPvoIgP/6r/+qP/7hhx9m8uTJLY6vrKyMjIwMcnJy2LhxIy+88EKj5TIzMxk3bhyXXXYZJ5xwAsFgsMXnEImHlHAFNZZCbXovb0NlcWIDEhERkQ4nrpNcmNlAYAzwPtDTObfe37UB6NnEMRea2UIzW1hUVBTPcNrElVdeucOEEHfeeScLFy5k1KhRDBs2jFmzZgFw6qmnsmXLFoYPH87dd9/N4MGDG63vlFNOYdSoURx00EEcddRR3HrrrfTq1Wu3YkpNTWXMmDFcdNFF3HvvvRQWFvLVV1/tMD37oEGDyMnJ4f3332+0ju9///t88803bNu2jRNOOIFRo0YxadIk/vCHPwBw11138c9//pNRo0bx4IMPcscdd7Q4voMOOogxY8Zw4IEH8qMf/YiJEyfW77v++ut3mCZ+2rRpPPTQQ+oeKAmRGi2nOpCBZfbwNlS0/79JIiIi0r5YUzPT7XZFZpnAm8DNzrknzKzEOZcbs3+rc26X47DGjh3rGj7TacWKFQwdOjQuMUrnoN8JaSsv33QiY0KrmDvkRn748QWEf/Q4ocHfTXRYIiIi0s6Y2SLn3NjG9sWlBcvMkoDHgYedc0/4mzeaWW9/f29gUzzOJSLSVoLRGiKBFJJzvQb3ii0bEhyRiIiIdDTxmEXQgHuBFc65P8TsegaY7i9PB55u7blERNpSkqslEkghI683AJVb1zdzhIiIiMiO4jGL4ETgHOBjM1vib7sOuAV41Mx+DHwFnB6Hc4mItJkkV0M0mEJubh41Lom6MjW8i4iIyO5pdYLlnJsHWBO7j25t/SIie0M4EiWZOlwwi4KsVDaTTXTbxkSHJSIiIh1MXGcRFBHpqKrDUVKoIxpMoSArhc0uh0DV5uYPFBEREYmhBEtEBKipi5BKLS6USkZykK3kkKQES0RERHaTEqwWeuqppzAzPv300ybLFBYWMmLEiLidc8aMGTz22GNN7r/88svp27cv0Wi0ftt9991H9+7dGT16NMOGDeNvf/tb3OIR6cy2t2ARSsXMKE/qRmrtlkSHJSIiIh2MEqwWmj17NpMmTWL27NmN7g+Hw60+RyQSaXHZaDTKk08+Sf/+/XnzzTd32Ddt2jSWLFnC3Llzue6669i4UeNIRJpTXRchxeqwpBQAapLzyApvhTg9K1BERES6BiVYLVBeXs68efO49957eeSRR+q3z507l8mTJ3PSSScxbNgwwEu0zjrrLIYOHcppp51GZWUlAK+99hpjxoxh5MiRnH/++dTU1AAwcOBAfvnLX3LwwQfz73//e6dzv/rqq4wdO5bBgwfzn//8Z4dzDx8+nIsvvrjJpK9Hjx7st99+fPXVV/Xb7rzzToYNG8aoUaM444wzANiyZQsnn3wyo0aNYsKECSxduhSAmTNnMn36dCZPnsyAAQN44oknuOaaaxg5ciRTpkyhrq4OgJtuuolx48YxYsQILrzwQho+vDoajTJw4EBKSkrqtx1wwAFK/KRdqamLkkothNIAqEstIEQYqksTHJmIiIh0JPGYpn3veeFa2PBxfOvsNRKOu2WXRZ5++mmmTJnC4MGDyc/PZ9GiRRxyyCEALF68mE8++YRBgwZRWFjIZ599xr333svEiRM5//zz+fOf/8yll17KjBkzeO211xg8eDDnnnsuf/nLX7j88ssByM/PZ/HixY2eu7CwkAULFrBq1SqOPPJIVq5cSWpqKrNnz+bMM89k6tSpXHfdddTV1ZGUlLTDsV9++SVffvkl+++/f/22W265hdWrV5OSklKf8Nxwww2MGTOGp556itdff51zzz2XJUuWALBq1SreeOMNli9fzmGHHcbjjz/OrbfeyimnnMJzzz3HySefzKWXXsr1118PwDnnnMN//vMfTjzxxPpzBgIBpk6dypNPPsl5553H+++/z4ABA+jZs2eLb5NIW6sOR0ihDktKBcBlFMBWoGIzpOUmNDYRERHpONSC1QKzZ8+ub+0544wzdmgxGj9+PIMGDapf79+/PxMnTgTg7LPPZt68eXz22WcMGjSIwYMHAzB9+nTeeuut+mOmTZvW5LlPP/10AoEABxxwAPvuuy+ffvoptbW1PP/885x88slkZ2dz6KGH8tJLL9UfM2fOHEaPHs2ZZ57JX//6V/Ly8ur3jRo1irPOOouHHnqIUMjLr+fNm8c555wDwFFHHUVxcTFlZWUAHHfccSQlJTFy5EgikQhTpkwBYOTIkRQWFgLwxhtvcOihhzJy5Ehef/11li1bttN1TJs2jTlz5gDwyCOP7PKaRRKhptbrIhjwE6xAZg8ATdUuIiIiu6VjtWA109LUFrZs2cLrr7/Oxx9/jJkRiUQwM37/+98DkJGRsUN5M9vlemMa1tFcfS+99BIlJSWMHDkSgMrKStLS0jjhhBMAL5m5++67G63vueee46233uLZZ5/l5ptv5uOPd90imJLijUcJBAIkJSXVxxMIBAiHw1RXV3PJJZewcOFC+vfvz8yZM6murt6pnsMOO4yVK1dSVFTEU089xW9+85tdnldkb6ur8brzbm/BSs7pBUBVyQaa/oSKiIiI7EgtWM147LHHOOecc/jqq68oLCxk7dq1DBo0iLfffrvR8mvWrOG9994D4F//+heTJk1iyJAhFBYWsnLlSgAefPBBDj/88Bad/9///jfRaJRVq1bx5ZdfMmTIEGbPns3f//53CgsLKSwsZPXq1bzyyiv1472aEo1GWbt2LUceeST/+7//S2lpKeXl5UyePJmHH34Y8MZ2FRQUkJ2d3aL4tidTBQUFlJeXNznroZlxyimn8Itf/IKhQ4eSn5/fovpF9pa62ioAgsneGKy0bl4X1oqt6xMWk4iIiHQ8SrCaMXv2bE455ZQdtp166qlNTiwxZMgQ/vSnPzF06FC2bt3KxRdfTGpqKv/85z/54Q9/yMiRIwkEAlx00UUtOv8+++zD+PHjOe6445g1axbRaJQXX3yR448/vr5MRkYGkyZN4tlnn220jgsuuICFCxcSiUQ4++yzGTlyJGPGjOHnP/85ubm5zJw5k0WLFjFq1CiuvfZa7r///ha+O5Cbm8tPfvITRowYwbHHHsu4cePq982aNYtZs2bVr0+bNo2HHnpI3QOlXQo3SLCy83oRdUZtiboIioiISMtZwxnfEmns2LFu4cKFO2xbsWIFQ4cOTVBE0h7pd0Lawgtvvcdxr0+h+Ht3kD9xBp9t2EbBX4aybd/vM3D6PYkOT0RERNoRM1vknBvb2D61YImIsHMLVkFmMptdjjeLoIiIiEgLtXmCZWZTzOwzM1tpZte29flERPZEtNYbTxjyE6zc9GSKySapSgmWiIiItFybJlhmFgT+BBwHDAPONLNhu1tPe+rGKIml3wVpK67Oa8FKSvESrGDA2BbsRkpNcSLDEhERkQ6mrVuwxgMrnXNfOudqgUeAqbtTQWpqKsXFxfpiLTjnKC4uJjU1NdGhSCcUrfNbsFLS67dVJeWRXrc1USGJiIhIB9TWz8HqC6yNWV8HHBpbwMwuBC4Eb8a8hvr168e6desoKipqwzClo0hNTaVfv36JDkM6oWjd9jFY3ybwtakFpNdWQF01JCmxFxERkeYl/EHDzrl7gHvAm0Ww4f6kpCQGDRq01+MSkS7Gb8Ei9G0iFU3PhzKgoghy+ycmLhEREelQ2rqL4NdA7LeSfv42EZH2JVzj/YxJsCyzh7dQoRZ0ERERaZm2TrA+AA4ws0FmlgycATzTxucUEdl94Z1bsELZPQGoLt2QiIhERESkA2rTLoLOubCZXQq8BASBfzjnlrXlOUVE9oQ1kmCl5noJVuWWDWgEloiIiLREm4/Bcs49Dzzf1ucREWkNi2xPsFLqt2Xm9QagqkQtWCIiItIybf6gYRGRjsAitd5CTAtWt9xcKlwK4bKNCYpKREREOholWCIiQCBSRZggBL9t2C/ITGGzy8GVa5ILERERaRklWCIiQDBSS50l77AtPzOZYrIJVCrBEhERkZZRgiUiAgSiNdRZyg7bUkJBSgK5pFRvTlBUIiIi0tEowRIRAUKRGsKB5J22bwt1J7NWCZaIiIi0jBIsEREg6GoJ284JVmVqdzKiZVBXnYCoREREpKNRgiUiAoSiNYQDKTttr03v5S1sW7+XIxIREZGOSAmWiAiQFK0lEty5BSuQ7T0LSwmWiIiItIQSLBERIMnVEm2kBSupWz8Aqres29shiYiISAekBEtEujznHCFXSzSYutO+zO5eglVetGZvhyUiIiIdkBIsEenyasJRUqnFhXZuwcrL606lS6F2y9cJiExEREQ6mlYlWGb2ezP71MyWmtmTZpYbs+9XZrbSzD4zs2NbHamISBuprI2QTB0W2rkFq1dOGhtcNyJlGoMlIiIizWttC9YrwAjn3Cjgc+BXAGY2DDgDGA5MAf5sZsFWnktEpE1U1ITJsGpccsZO+3rlpLKJbgQrlGCJiIhI81qVYDnnXnbOhf3V+UA/f3kq8IhzrsY5txpYCYxvzblERNpKVV2EDKohJXOnfenJIYoD+aRWbUpAZCIiItLRxHMM1vnAC/5yX2BtzL51/radmNmFZrbQzBYWFRXFMRwRkZaprAmTQTWWktXo/vLk7mTVFYFzezkyERER6WiaTbDM7FUz+6SR19SYMr8GwsDDuxuAc+4e59xY59zY7t277+7hIiKtVl1RRsAcgSYSrNr0XiS5OqjcspcjExERkY4m1FwB59x3d7XfzGYAJwBHO1f/z7tfA/1jivXzt4mItDu1lWUABNMaT7BcZi8oAbZ9Axn5ey8wERER6XBaO4vgFOAa4CTnXGXMrmeAM8wsxcwGAQcAC1pzLhGRtlJX5SVYoSYSrFCu18M5UvrNXotJREREOqZmW7CacTeQArxiZgDznXMXOeeWmdmjwHK8roM/dc5FWnkuEZE2EfYTrKS0nEb3p+Vvf9jwWnKG7LWwREREpANqVYLlnNt/F/tuBm5uTf0iIntDpGobACnp2Y3uzy7wEqzK4nU0noKJiIiIeOI5i6CISIcUrfESrOSMxhOsnnnZFLlswiXr9mZYIiIi0gEpwRKRLi9S7SVYSWmNJ1i9c1LZ6PKwMo3BEhERkV1TgiUiXV7UT7Caeg5WXkYyG8gnuXLD3gxLREREOiAlWCLS5W1PsEjJbHS/mVGW3JPMmo17MSoRERHpiJRgiUiXF6wpJUIAkhtPsACq0nqRHi2HmvK9GJmIiIh0NEqwRKTLS6kroTyQA97jJhoVyezjLZTpmekiIiLSNCVYItLlpdWVUJmUu8sywW7eVO1RzSQoIiIiu6AES0S6vIxIGTVJu37CVWrBPgCUFxXuhYhERESko1KCJSJdWjgSJduVEU7ptsty2d33IeqMqqI1eykyERER6YiUYIlIl1ZWHSbPthFJzdtluV7dsikih7qta/dSZCIiItIRKcESkS5tY2kV3dhGMLNgl+V656ay3uVjmuRCREREdkEJloh0aUWbNxGyKKk53XdZLi/de9hwSuX6vRSZiIiIdERxSbDM7Eozc2ZW4K+bmd1pZivNbKmZHRyP84iIxFvpJq/LX2Z+312WCwS8hw1n1WwE5/ZGaCIiItIBtTrBMrP+wDFA7Mjv44AD/NeFwF9aex4RkbZQU+z96crqObDZslVpvUhx1VBd0rZBiYiISIcVjxas24FrgNh/0p0KPOA884FcM+sdh3OJiMRVpMQbUxXM2XULFkA0yy9TqnFYIiIi0rhWJVhmNhX42jn3UYNdfYHYqbbW+dsaq+NCM1toZguLiopaE46IyG4LlX9DFIPsPs2WDeTqYcMiIiKya6HmCpjZq0CvRnb9GrgOr3vgHnPO3QPcAzB27FgNbBCRvSqtagNlwTxyg0nNl83vD0Dl5q/IbOvAREREpENqNsFyzn23se1mNhIYBHxkZgD9gMVmNh74GugfU7yfv01EpN1wzpFdu5HKrB7ktqB8Ts/+hF2Ays1rlWCJiIhIo/a4i6Bz7mPnXA/n3EDn3EC8boAHO+c2AM8A5/qzCU4ASp1zmttYRNqVkso6erKF2vTmuwcC9M7NYCPdCOthwyIiItKEZluw9tDzwPeBlUAlcF4bnUdEZI99U1LJACtmcwsmuADolZPKGpdP321qkBcREZHGxS3B8luxti874KfxqltEpC0UFRUx3KopzevXovIFGSksIJ99K9WCJSIiIo2Ly4OGRUQ6om1FXwGQ0X1Ai8p7DxvuQWbNJj1sWERERBqlBEtEuqzqzf5DhluYYAFUp/Um2dVCZXFbhSUiIiIdmBIsEemyXKn3PKtgt/7NlPxWZPvDhss0DktERER2pgRLRLqsUPnXRAhAZmOP+mtcUq4346Ar+6atwhIREZEOTAmWiHRZ6dUbKQ0VQLDl8/2k5XsTYlQUrWmrsERERKQDU4IlIl2Sc47c2o1UpLa89Qogu3s/wi5AVfG6NopMREREOjIlWCLSJW2pqKU3m6nLaNlDhrfrmZtBEbnUlWgMloiIiOxMCZaIdEnrSyrpZVsgp2XPwNquZ3YqG103bNv6NopMREREOjIlWCLSJW3euI4UC5Ocv89uHdcjK4X1Lo/kCiVYIiIisjMlWCLSJVX4DxnO7NHyZ2ABJAUDlIa6k15T1BZhiYiISAenBEtEuqTaYm8WwOyeg3b72Kq0HqRFy6GmPN5hiYiISAenBEtEuiTzHzIcyG35Q4a3C6f7Mw9qHJaIiIg00OoEy8x+ZmafmtkyM7s1ZvuvzGylmX1mZse29jwiIvGUVLGealIgrdvuH5zjzzyohw2LiIhIAy1/umYjzOxIYCpwkHOuxsx6+NuHAWcAw4E+wKtmNtg5F2ltwCIi8ZBZvZ6SpJ70MtvtY5O7eTMP1pV8TVK8AxMREZEOrbUtWBcDtzjnagCcc5v87VOBR5xzNc651cBKYHwrzyUiEhfOOXLDRVSk7d5DhrfLLPC6FVYUrYlnWCIiItIJtDbBGgxMNrP3zexNMxvnb+8LrI0pt87fthMzu9DMFprZwqIizcolIm2vrDq8Rw8Z3i6/Wy4lLoOareviHJmIiIh0dM12ETSzV4HG/pn31/7xecAEYBzwqJntuzsBOOfuAe4BGDt2rNudY0VE9sSmraUcYCVs2c2HDG/XKyeVDS6P3FKNwRIREZEdNZtgOee+29Q+M7sYeMI554AFZhYFCoCvgdipufr520REEm7rBu8ZWMl5uz+DIECv7FQ+ct3Iq9gQz7BERESkE2htF8GngCMBzGwwkAxsBp4BzjCzFDMbBBwALGjlufY6F41QV1eb6DBEJM4qN64CILPnfnt0fE5aEkWWR1rVxniGJSIiIp1AaxOsfwD7mtknwCPAdOdZBjwKLAdeBH7aEWcQXPDv37P6fyey7rPFiQ5FROIoWvwlADn9Bu/R8WZGWUovMuqKoa5qt45du6WSqtoO9+dQREREWqhVCZZzrtY5d7ZzboRz7mDn3Osx+252zu3nnBvinHuh9aHufck5vSgIr6fHv77He/deReW2LYkOSUTiIFT6FbWESOm2Z2OwAMqz9ieAg81ftKh8YdE27p/1P1T/cSxvPfL7PT6viIiItG+teg5WZzdmygw2HXQ0H//rZxy29m+U/N9sPur9A/Y5+gL67n9QosNrlnOOmnCU2kiUmpo6wjWVRGu3vypw4ToikTqikQiRaAT8ny4SJhqNEo2EiUYjmIuCi4CLesvR7f/67vzzNFxubB2cizYWJA1nNrGdtnQmu//MpfZi++OiXAe+hu26b13MxkAv+geCe1xHsNdQ2ALRTSsI9B7VZLnN26p58ckHOHjl3UwPfAUBqP7mFeDaPT53VxKNRKiqLKe2toZwXQ3hulqidXVEwtVEwnVE6mqIhmtx4Voi4Vqi4TCRaIRoJII3PDjq/SFyDiMK0aj3F8ZF/ZfD4SAa9f/2uPq/ac7RzF+j3fkstKys263nshktKb57f1Hj9/neg0fM7SXtM7D2+36JJF5pzlAOPvhQumUkJzqUFlGC1YwevfvT48qnWLFoLjWv/S/jvnmI0EMPsDbQl2/yDyOp3xgy+o+i18Ch5HQr2O2/kLV1ESqrq6isKKe6chvVVRXUVpVTW1VBXXU5kepKwrUVuJoKIrWVUFvpdUkKVxHwX8FINaFoNUmRalJcDcmuhhRqSKt/1ZJtdW30Dol0TIuzjmTPprjw5O8zlNplQarXLCX7oGk77S+tquOl5x7jgI//wNn2OcWpfSg9+s98/PYzjKx4x/vS34m/UUWijtLSrWzbsoHKkiKqyoqpKd9KpLwYV1VCsKaEUF0ZobpyQpFKQpEqkiLVJEerSHbVpLoa0lwVqVZHBpCR6AsSEZGE+e+6s8kfOFIJVmcz9JAj4JAj2PT1V6x8434y1r3JyE3Pkl70GHzolalzQbZaDhWBLKKBEBFChAliRElydQRd2P9ZSxJ1pLpaUqkh16Lk7mY8tSRRYynUWip1gVTqgqmEk1KJBLOIBHtQHUqlMphGNJSGS0oD/6cLpeGS0omGUrFgChYMYBYkEAwRCAYIBIJYIEQwGCAQDGGBEBYIeq0WgaD3wsC8f/nf/v3QDGx7j1OL/bHjv7BawGKL+HVZI/+e2LG/eDb+L8Ydt2XOxTRFdoYWRuccw/fZs/FX243oX8AyN4gBq+busL20spaXX3iSPh//idP5iJJQPpsm3UKP71wAwSRKl60mp/xFXMlXWLeBrYohEZxzbCkpoWjdKso2fEnt1nVEt20kULGJ5KoiMmqLyY5sIc9tJc9qyGuinloXoswyqbR0agJp1AZSqQxlUxbsSTSUTjSURjQpHZIysKQ0AqFkCCZDMAkLJWMxPwOhZCyUQjCYRCCURCAYJBgIYIEAYP7PAFjA+3sUCHh/rwIBDPP+Ltn2/f7fKP/vUsO/WDHvRIvfsxZ/ZtzufLb8lrc419myYs3/48BunVZ2+Bvb3rTfyKQrOTstn969shIdRospwdpNPfoOoMfZ1wNQW1vHV4XLKSn8iKqi1YTLNpFcs4WkujKI1BF0EYKEiVqAWksibMlEAyEslAKhFAilQXI6lpRGMDmDQEo6odRMginpJKdmkpyeQUpqBinpWaSmZ5KUkgFJaZCURnIgSMfI4UU6p2G9s/lz6FDGlDwMxatYGy3g3RceZsiqf/BD+4KyQC4bxv+GXkdf6n1ut+szBtbAli8WkD9+YMLib4pzjuKycorWfMa2bz6jZnMhVrKGlIqvyareQPfIRvKtjPwGx5WSSWmwGxVJ+RRnjmBjendcZg+CGd1JysonNSufjNwCMnO6k5mbT3JyOgWduAVPRES6LiVYrZCcnMSAwQcxYHD7H48lIvEVCBiph5xB2YIncHcdTqZzTLNyNif35pvxv6PPEReQHZtY+fofOJba94KUrFxA/vjTExC5p6omzNqvVlG8ZhnV6z/Dtqwko7yQnrVr6csmCuzbf7euJomiQE/KUnpRmDGMwtz+JOcPJLPnvuT2HEBO977kJKeRk7CrERERaT+UYImI7KFzj53E45V/5IDVD5KR1Y3ooT+k4KDjIdj0n9YD+3XnMwaQ9c3CNo/POceGjRvZuHoZ275ZQbToC1JKV5NXvYZ+0W8YbDX1ZatIYWNSP0q7Dae421RCPQ4gs/cQCvrvT1ZeH/qrtUlERKRFlGCJiOyh5FCAM394BnDGbh2zOve/OKH0YaJb1xLo1pqpNjwVlVV8vfpTtqxZRu3GzwhuWUVOZSG96tbR20rp7ZeLOGNjsBdb0wfwWc4Egj0Gk933QHoOGk5a/j4MVBIlIiLSakqwRET2sowJ03EvPsxXT9zAvj/+R4uOKa+sZP1XX7D16y+o3PQlbPmSjG2r6V6zhr5uI4Pt24cXbyWbopT+rM2ZzFf5+5Pe+0AKBo6goP9g+oRS6NNWFyYiIiJKsERE9rYjDx3HM/NO5eS1j7H8rjKig4/DMgqorYtQu62IyLaNRMo2EazYQHb1NxSEN9DDbeGAmHFRtYTYEOpLSdb+bM49luSeg8npP4yeg0bQLbuAbgm8PhERka5MCZaIyF4WCBiHX3Q3z/0jlSM3/5v04ld2KlNHkBLrxtbkXqzPGsva7H1ILhhEdu/96bHPEDIK+rNPIMg+CYhfREREmmbt6dkLY8eOdQsXtv3AbxGR9qJkWwUbVi4hXL2N1FCQ9NwCsgr6kJXTHQKBRIcnIiIijTCzRc65sY3ta1ULlpmNBmYBqUAYuMQ5t8C8JzXeAXwfqARmOOcWt+ZcIiKdUW5WBrljJiY6DBEREYmT1v7z6K3Ajc650cD1/jrAccAB/utC4C+tPI+IiIiIiEi719oEywHZ/nIO8I2/PBV4wHnmA7lm1ruxCkRERERERDqL1k5ycTnwkpndhpes/Ze/vS+wNqbcOn/b+oYVmNmFeK1c7LOPhmuLiIiIiEjH1WyCZWavAr0a2fVr4GjgCufc42Z2OnAv8N3dCcA5dw9wj3+uIjP7aneO3wsKgM2JDkL2Gt3vrkP3uuvQve5adL+7Dt3rrqM93usBTe1o1SyCZlYK5DrnnD+xRalzLtvM/grMdc7N9st9BhzhnNupBau9M7OFTc0QIp2P7nfXoXvddehedy26312H7nXX0dHudWvHYH0DHO4vHwV84S8/A5xrngl4iVeHS65ERERERER2R2vHYP0EuMPMQkA1/lgq4Hm8KdpX4k3Tfl4rzyMiIiIiItLutSrBcs7NAw5pZLsDftqautuRexIdgOxVut9dh+5116F73bXofncdutddR4e6160agyUiIiIiIiLfau0YLBEREREREfEpwRIREREREYkTJVi7YGZTzOwzM1tpZtcmOh6JHzPrb2ZvmNlyM1tmZpf52/PM7BUz+8L/2S3RsUp8mFnQzD40s//464PM7H3/8z3HzJITHaPEh5nlmtljZvapma0ws8P02e6czOwK/2/4J2Y228xS9dnuPMzsH2a2ycw+idnW6GfZn7n6Tv++LzWzgxMXueyuJu717/2/40vN7Ekzy43Z9yv/Xn9mZscmJOhdUILVBDMLAn8CjgOGAWea2bDERiVxFAaudM4NAyYAP/Xv77XAa865A4DX/HXpHC4DVsSs/y9wu3Nuf2Ar8OOERCVt4Q7gRefcgcBBePddn+1Oxsz6Aj8HxjrnRgBB4Az02e5M7gOmNNjW1Gf5OOAA/3Uh8Je9FKPEx33sfK9fAUY450YBnwO/AvC/r50BDPeP+bP/vb3dUILVtPHASufcl865WuARYGqCY5I4cc6td84t9pe34X0B64t3j+/3i90PnJyQACWuzKwfcDzwd3/d8J7d95hfRPe6kzCzHOA7wL0Azrla51wJ+mx3ViEgzX9cTDqwHn22Ow3n3FvAlgabm/osTwUecJ75QK6Z9d4rgUqrNXavnXMvO+fC/up8oJ+/PBV4xDlX45xbjfdYqPF7LdgWUILVtL7A2pj1df426WTMbCAwBngf6BnzUOwNQM9ExSVx9UfgGiDqr+cDJTF/uPX57jwGAUXAP/0uoX83swz02e50nHNfA7cBa/ASq1JgEfpsd3ZNfZb1va1zOx94wV9u9/daCZZ0aWaWCTwOXO6cK4vd5z/PTc8x6ODM7ARgk3NuUaJjkb0iBBwM/MU5NwaooEF3QH22Owd/7M1UvKS6D5DBzl2MpBPTZ7lrMLNf4w3teDjRsbSUEqymfQ30j1nv52+TTsLMkvCSq4edc0/4mzdu71Lg/9yUqPgkbiYCJ5lZIV5X36Pwxujk+t2KQJ/vzmQdsM45976//hhewqXPdufzXWC1c67IOVcHPIH3eddnu3Nr6rOs722dkJnNAE4AznLfPry33d9rJVhN+wA4wJ+NKBlvMN0zCY5J4sQfg3MvsMI594eYXc8A0/3l6cDTezs2iS/n3K+cc/2ccwPxPsevO+fOAt4ATvOL6V53Es65DcBaMxvibzoaWI4+253RGmCCmaX7f9O332t9tju3pj7LzwDn+rMJTgBKY7oSSgdkZlPwuvef5JyrjNn1DHCGmaWY2SC8iU0WJCLGpti3yaA0ZGbfxxu7EQT+4Zy7ObERSbyY2STgbeBjvh2Xcx3eOKxHgX2Ar4DTnXMNB9hKB2VmRwBXOedOMLN98Vq08oAPgbOdczUJDE/ixMxG401okgx8CZyH9w+K+mx3MmZ2IzANr/vQh8AFeGMx9NnuBMxsNnAEUABsBG4AnqKRz7KfZN+N1020EjjPObcwAWHLHmjiXv8KSAGK/WLznXMX+eV/jTcuK4w3zOOFhnUmkhIsERERERGROFEXQRERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESEWknzGygmTkzCyU6ls7OzGaY2bxEx9HemNlkM/ss0XGIiHRkSrBERKRDM7OZZlZnZuUxr2sSHVdH5Jx72zk3JJ51+klbeYOXM7NT43keEZH2Qv9KKiISJ2YWcs6FEx1HFzXHOXd2ooNoKx35d8s59zaQuX3dzI4AngVeTFBIIiJtSi1YIiKtYGaFZvZLM1sKVJhZyMwmmNm7ZlZiZh/5Xyi3l59rZv9jZgvMrMzMnjazvCbqPs/MVpjZNjP70sz+X4P9U81siV/PKjOb4m/PMbN7zWy9mX1tZr8zs2Az17Gfmb1uZsVmttnMHjaz3Jh9W8zsYH+9j5kVbb8uMzvJzJb51zvXzIY2eH+uMrOlZlZqZnPMLHX33+ndZ2bX+u/LNjNbbmanNFHOzOx2M9vkv5cfm9kIf1+Kmd1mZmvMbKOZzTKztBae/z6//Ct+DG+a2YCY/XeY2Vr/nIvMbHLMvplm9piZPWRmZcAMMxtvZu/57/N6M7vbzJJjjnFmdomZfeGf77/9e/euf45HY8s3EfMRZrauJdfXCtOBx5xzFW18HhGRhFCCJSLSemcCxwO5QE/gOeB3QB5wFfC4mXWPKX8ucD7QGwgDdzZR7ybgBCAbOA+4PSbJGQ88AFztn/c7QKF/3H1+vfsDY4BjgAuauQYD/gfoAwwF+gMzAZxzq4BfAg+ZWTrwT+B+59xcMxsMzAYuB7oDzwPPNvgifzowBRgEjAJmNBqA2SQ/eWjqNamZa2hoFTAZyAFu9OPv3Ui5Y/Dev8F+2dOBYn/fLf720XjvZ1/g+t2I4Szgv4ECYAnwcMy+D/x684B/Af9ukHxOBR7Du78PAxHgCr+uw4CjgUsanO9Y4BBgAnANcA9wNt79HIH3u7rH/ES5qfvz5xYcnwGcBtzfmjhERNo155xeeumll157+MJLas6PWf8l8GCDMi8B0/3lucAtMfuGAbVAEBgIOCDUxLmeAi7zl/8K3N5ImZ5ADZAWs+1M4I3dvK6TgQ8bbHsG+BhYCqT4234LPBpTJgB8DRwR8/6cHbP/VmBWnO/BTP89LIl59Wmk3BJgqr88A5jnLx8FfI6XlARiyhtQAewXs+0wYHUL47oPeCRmPRMvSerfRPmtwEEx1/RWM/VfDjwZs+6AiTHri4Bfxqz/H/DHZuo8AlgXz/vToP5zgNWAtdU59NJLL70S/dIYLBGR1lsbszwA+KGZnRizLQl4o4nyX/n7CxpWambHATfgtaAEgHS8BAe8FonnG4llgF/fejPbvi3Q4Jw7MbOewB14LT5Z/jFbGxT7G16SdaFzrsbf1se/BgCcc1EzW4vX0rPdhpjlSv+YeHvUNRiDZWbnAr/AS1zBS3B2ep+dc6+b2d3An4ABZvYEXstjKt57vijmvTS8ZLil6t9351y5mW3Bu/61ZnYV8GN/3eG1VBY0dqx/PYOBPwBj/bhCeElUrI0xy1WNrPfajdjbwnTgAeecS3AcIiJtRl0ERURaL/bL4lq8FqzcmFeGc+6WmDL9Y5b3AeqAzbEVmlkK8DhwG9DTOZeLl1Bt/6a/FtivkVjW4rVgFcScP9s5N7yZa/j//OsY6ZzLxutW9m1WYZYJ/BG4F5hp344b+wYvqdtezvzr+7qZ8+3EGp9tLvY1ufla6usagJcQXgrk++/fJ7HXFMs5d6dz7hC8FsXBeF0vN+MlJcNj3ssc51xmY3U0of5e++9hHvCNfy3X4HVH7ObHV9ogvoZJyF+AT4ED/Ht0XVPX01b8sXZN3Z9ZzRzbH6+F7IG9EqyISIIowRIRia+HgBPN7FgzC5pZqj9xQL+YMmeb2TB/PNNNeAP+Iw3qSQZSgCIg7LdmHROz/17gPDM72swCZtbXzA50zq0HXgb+z8yy/X37mdnhzcSdBZQDpWbWFy/BiHUHsNA5dwHeGLPtX6YfBY7340gCrsRL8N5t7o1qyHlThGfu4vX2blSXgZegFIE3YQjeGKSdmNk4MzvUj78CqAaizrkoXpJ2u5n18Mv2NbNjY451FjOJSSO+748tS8YbizXfObcW7/0O+/GFzOx6vBasXckCyoByMzsQuLiZ8nHnnBu+i/tzUTOHnwO867wxfSIinZYSLBGROPK/PE/Fa10owmtRupod/94+iDc+ZwNeN7SfN1LPNn/7o3hd9X6E1z1v+/4F+BNf4LV8vMm3LUnn4iVoy/1jH8ObUGNXbgQO9ut6Dnhi+w4zm4o3ScX2L/S/AA42s7Occ5/htXbdhdficyJwonOutpnztSnn3HK8MUfv4XWTGwm800TxbLxEaited8di4Pf+vl8CK4H5/mx+rwJDoL5FZhvfdttszL/wunluwZt8Yns3xpfwpin/3D9nNc1048Trtvgj/5x/A+Y0U769ORdNbiEiXYCpG7SIyN5jZnOBh5xzf090LNI6ZnY2XvfBXzWx/z68CSN+s1cDExGRhNIkFyIiInvAOfdQomMQEZH2R10ERUS6CPMeervbkxNI52Jm1zXxe/BComMTEekM1EVQREREREQkTtSCJSIiIiIiEiftagxWQUGBGzhwYKLDEBERERERadKiRYs2O+e6N7avXSVYAwcOZOHChYkOQ0REREREpElm9lVT+1rdRdDM+pvZG2a23H/C+2X+9jwze8XMvvB/dmvtuURERERERNqzeIzBCgNXOueGAROAn5rZMOBa4DXn3AHAa/66iIiIiIhIp9XqBMs5t945t9hf3gasAPoCU/n2ie33Aye39lwiIu3FvC8288XGbYkOQ0RERNqZuI7BMrOBwBjgfaCnc269v2sD0LOJYy4ELgTYZ599dtpfV1fHunXrqK6ujmeo0gWkpqbSr18/kpKSEh2KdDI14Qg/u/cVxmVt4Z5f/zTR4YiIiEg7ErcEy8wygceBy51zZWZWv88558ys0QduOefuAe4BGDt27E5l1q1bR1ZWFgMHDiS2TpFdcc5RXFzMunXrGDRoUKLDkU6mcHMl/5c0i6PqllBbehrJOY3++5GIiIh0QXF5DpaZJeElVw87557wN280s97+/t7Apj2pu7q6mvz8fCVXslvMjPz8fLV8SptYvbmCfcz7k1b24VOJDUZERETalXjMImjAvcAK59wfYnY9A0z3l6cDT7fiHHseoHRZ+r2RtlJaVUspGQBEvno3wdGIiIhIexKPLoITgXOAj81sib/tOuAW4FEz+zHwFXB6HM4lIpJwpVV19LZib6Xsm8QGIyIiIu1KPGYRnOecM+fcKOfcaP/1vHOu2Dl3tHPuAOfcd51zW+IRcCKYGVdeeWX9+m233cbMmTMTF1CM+fPnc+ihhzJ69GiGDh1aH9fcuXN5993W/cv6lClTyM3N5YQTTohDpCKdx7bKanqyFYDkyg0JjkZERETak7iMwersUlJSeOKJJ9i8eXNc63XOEY1GW1XH9OnTueeee1iyZAmffPIJp5/uNRTGI8G6+uqrefDBB1tVh0hnFC3bQNAcFaSSUb0RXKNz+IiIiEgXFNdp2tvajc8uY/k3ZXGtc1ifbG44cfguy4RCIS688EJuv/12br755h32FRUVcdFFF7FmzRoA/vjHPzJx4kRmzpxJZmYmV111FQAjRozgP//5DwDHHnsshx56KIsWLeL555/n7rvv5oUXXsDM+M1vfsO0adOYO3cuM2fOpKCggE8++YRDDjmEhx56aKdxRZs2baJ3794ABINBhg0bRmFhIbNmzSIYDPLQQw9x1113ceCBBzYZ56pVq1i5ciWbN2/mmmuu4Sc/+QkARx99NHPnzt3le/Pvf/+bG2+8kWAwSE5ODm+99RbV1dVcfPHFLFy4kFAoxB/+8AeOPPJI7rvvPp566ikqKir44osvuOqqq6itreXBBx8kJSWF559/nry8PP72t79xzz33UFtby/7778+DDz5Ienr6DuedMGEC9957L8OHe/fuiCOO4LbbbmPs2LG7jFckHiJVJQAUBgYwPPoZVG2F9LzEBiUiIiLtglqwWuinP/0pDz/8MKWlpTtsv+yyy7jiiiv44IMPePzxx7nggguareuLL77gkksuYdmyZSxcuJAlS5bw0Ucf8eqrr3L11Vezfr33+LAPP/yQP/7xjyxfvpwvv/ySd955Z6e6rrjiCoYMGcIpp5zCX//6V6qrqxk4cCAXXXQRV1xxBUuWLGHy5Mm7jHPp0qW8/vrrvPfee9x00018803Lx5TcdNNNvPTSS3z00Uc888wzAPzpT3/CzPj444+ZPXs206dPr5/N75NPPuGJJ57ggw8+4Ne//jXp6el8+OGHHHbYYTzwwAMA/OAHP+CDDz7go48+YujQodx77707nXfatGk8+uijAKxfv57169cruZK9JlpTCcCmFP/ZfRqHJSIiIr4O1YLVXEtTW8rOzubcc8/lzjvvJC0trX77q6++yvLly+vXy8rKKC8v32VdAwYMYMKECQDMmzePM888k2AwSM+ePTn88MP54IMPyM7OZvz48fTr1w+A0aNHU1hYyKRJk3ao6/rrr+ess87i5Zdf5l//+hezZ89utNVpV3FOnTqVtLQ00tLSOPLII1mwYAEnn3xyi96XiRMnMmPGDE4//XR+8IMf1F/Tz372MwAOPPBABgwYwOeffw7AkUceSVZWFllZWeTk5HDiiScCMHLkSJYuXQp4SdhvfvMbSkpKKC8v59hjj93pvKeffjrHHHMMN954I48++iinnXZai+IViQerqwBgW/o+UAWUbwRGJDQmERERaR86VIKVaJdffjkHH3ww5513Xv22aDTK/PnzSU1N3aFsKBTaYXxV7POYMjIyWnS+lJSU+uVgMEg4HG603H777cfFF1/MT37yE7p3705xcfFOZZqKE3aeznx3pjefNWsW77//Ps899xyHHHIIixYt2mX52GsKBAL164FAoP76ZsyYwVNPPcVBBx3Efffd12jC2LdvX/Lz81m6dClz5sxh1qxZLY5ZpLUCdV4LVm1WfygGKuI7PlNEREQ6LnUR3A15eXmcfvrpO3RZO+aYY7jrrrvq15csWQLAwIEDWbx4MQCLFy9m9erVjdY5efJk5syZQyQSoaioiLfeeovx48e3OKbnnnsO5w+w/+KLLwgGg+Tm5pKVlcW2bduajRPg6aefprq6muLiYubOncu4ceNafP5Vq1Zx6KGHctNNN9G9e3fWrl3L5MmTefjhhwH4/PPPWbNmDUOGDGlxndu2baN3797U1dXV19OYadOmceutt1JaWsqoUaNaXL9IawXCXoLlcgcCULdtYwKjERERkfZECdZuuvLKK3eYTfDOO+9k4cKFjBo1imHDhtW3pJx66qls2bKF4cOHc/fddzN48OBG6zvllFMYNWoUBx10EEcddRS33norvXr1anE8Dz74IEOGDGH06NGcc845PPzwwwSDQU488USefPJJRo8ezdtvv91knACjRo3iyCOPZMKECfz2t7+lT58+gJf8/fCHP+S1116jX79+vPTSS4DXLXH7eKurr76akSNHMmLECP7rv/6Lgw46iEsuuYRoNMrIkSOZNm0a99133w4tV8357//+bw499FAmTpzIgQceWL/9mWee4frrr69fP+2003jkkUfqZ04U2VuCfoKVkteXGheiaqumahcRERGPuXY0vfDYsWPdwoULd9i2YsUKhg4dmqCIOr+Gsx12Nvr9kbZwx81XcFndP5h78gcMfvJYUgcfTd5Zf090WCIiIrKXmNki51yjM6ypBUtEZDclRaoAyMnJodhlEy3flOCIREREpL3QJBdd3MyZMxMdgkiHkxypIhIIkZ+dxSqXQ99KTXIhIiIiHrVgiYjspuRoFXWBNPIzkykmh6TqnWfuFBERka5JCZaIyG4IR6KkumrqgmmkJwcpsRzSardAOxrPKiIiIomjBEtEZDdUh6OkWw2RUDpmRlVyPiFXCzXbmj9YREREOj0lWCIiu6G6LkIaNURCaQDUpeZ7OyqKEhiViIiItBdtnmCZ2RQz+8zMVprZtW19vrby1FNPYWZ8+umnTZYpLCxkxIgRcTvnZ599xhFHHMHo0aMZOnQoF154IeA9JPj5559vVd3nn38+PXr0iGu8Il1BVW2EDKsmGkoHIJquBEtERES+1aYJlpkFgT8BxwHDgDPNbFhbnrOtzJ49m0mTJjF79uxG94fD4VafIxKJ7LD+85//nCuuuIIlS5awYsUKfvaznwHxSbBmzJjBiy++2Ko6RLqimnCEVGpxfguWZXT3dijBEhEREdp+mvbxwErn3JcAZvYIMBVYvke1vXAtbPg4ftEB9BoJx92yyyLl5eXMmzePN954gxNPPJEbb7wRgLlz5/Lb3/6Wbt268emnn/Lyyy8TDoc566yzWLx4McOHD+eBBx4gPT2d1157jauuuopwOMy4ceP4y1/+QkpKCgMHDmTatGm88sorXHPNNZxxxhn1512/fj39+vWrXx85ciS1tbVcf/31VFVVMW/ePH71q19xwgkn8LOf/YxPPvmEuro6Zs6cydSpU7nvvvt48sknKS0t5euvv+bss8/mhhtuAOA73/kOhYWFu7zuN998k8suuwwAM+Ott94iMzOTa665hhdeeAEz4ze/+Q3Tpk1j7ty53HDDDeTm5vLxxx9z+umnM3LkSO644w6qqqp46qmn2G+//Xj22Wf53e9+R21tLfn5+Tz88MP07Nlzh/OeccYZnHPOORx//PGAlwyecMIJnHbaaS27pyJtqLouSgq1uFAqAEk5vQBw5UVYIgMTERGRdqGtuwj2BdbGrK/zt9UzswvNbKGZLSwqap//Avz0008zZcoUBg8eTH5+PosWLarft3jxYu644w4+//xzwOvWd8kll7BixQqys7P585//THV1NTNmzGDOnDl8/PHHhMNh/vKXv9TXkZ+fz+LFi3dIrgCuuOIKjjrqKI477jhuv/12SkpKSE5O5qabbmLatGksWbKEadOmcfPNN3PUUUexYMEC3njjDa6++moqKioAWLBgAY8//jhLly7l3//+NwsXLmzxdd9222386U9/YsmSJbz99tukpaXxxBNPsGTJEj766CNeffVVrr76atavXw/ARx99xKxZs1ixYgUPPvggn3/+OQsWLOCCCy7grrvuAmDSpEnMnz+fDz/8kDPOOINbb711p/NOmzaNRx99FIDa2lpee+21+mRLJNG8MVi1WJLXgpWa0wOAurKNiQxLRERE2omEP2jYOXcPcA/A2LFjdz3PcTMtTW1l9uzZ9S05Z5xxBrNnz+aQQw4BYPz48QwaNKi+bP/+/Zk4cSIAZ599NnfeeSff+973GDRoEIMHDwZg+vTp/OlPf+Lyyy8HvISiMeeddx7HHnssL774Ik8//TR//etf+eijj3Yq9/LLL/PMM89w2223AVBdXc2aNWsA+N73vkd+vjdG5Ac/+AHz5s1j7NixLbruiRMn8otf/IKzzjqLH/zgB/Tr14958+Zx5plnEgwG6dmzJ4cffjgffPAB2dnZjBs3jt69ewOw3377ccwxxwBey9sbb7wBwLp165g2bRrr16+ntrZ2h/duu+OOO47LLruMmpoaXnzxRb7zne+QlpbWophF2lpVXYRUq4Vk73eyW1YGJS6DYMlGkhMcm4iIiCReW7dgfQ30j1nv52/rMLZs2cLrr7/OBRdcwMCBA/n973/Po48+ivOfeZORkbFDeTPb5XpjGtYRq0+fPpx//vk8/fTThEIhPvnkk53KOOd4/PHHWbJkCUuWLGHNmjUMHTp0j+PZ7tprr+Xvf/87VVVVTJw4cZcTfACkpKTULwcCgfr1QCBQP0btZz/7GZdeeikff/wxf/3rX6murt6pntTUVI444gheeukl5syZ02QCKpII1XVRUqklkORNclGQmcJml0N426YERyYiIiLtQVsnWB8AB5jZIDNLBs4Anmnjc8bVY489xjnnnMNXX31FYWEha9euZdCgQbz99tuNll+zZg3vvfceAP/617+YNGkSQ4YMobCwkJUrVwLw4IMPcvjhhzd77hdffJG6ujoANmzYQHFxMX379iUrK4tt27595s6xxx7LXXfdVZ/0ffjhh/X7XnnlFbZs2VI/Dmp761pLrFq1ipEjR/LLX/6ScePG8emnnzJ58mTmzJlDJBKhqKiIt956i/Hjx7e4ztLSUvr29XqJ3n///U2WmzZtGv/85z95++23mTJlSovrF2lr1XXeJBeBZG8MVl5GMsVkQ4USLBEREWnjBMs5FwYuBV4CVgCPOueWteU542327NmccsopO2w79dRTm5xNcMiQIfzpT39i6NChbN26lYsvvpjU1FT++c9/8sMf/pCRI0cSCAS46KKLmj33yy+/zIgRIzjooIM49thj+f3vf0+vXr048sgjWb58OaNHj2bOnDn89re/pa6ujlGjRjF8+HB++9vf1tcxfvx4Tj31VEaNGsWpp55a3z3wzDPP5LDDDuOzzz6jX79+3HvvvQDMmjWLWbNmAfDHP/6RESNGMGrUKJKSkjjuuOM45ZRTGDVqFAcddBBHHXUUt956K7169Wrx+zlz5kx++MMfcsghh1BQUFC/feHChVxwwQX168cccwxvvvkm3/3ud0lOVscraT+qasOkWh3BZK8FKz8zmc0um2Dl5gRHJiIiIu2BbW/1aA/Gjh3rGk7CsGLFivrubrJ77rvvPhYuXMjdd9+d6FASRr8/Em//mvcpP3r1UMon/4bMo6+mqjbCv2+axumpC0j9zZpEhyciIiJ7gZktcs41OrFBmz9oWESkMwnXVAIQSvFasNKSg5QGckkNl0KkLpGhiYiISDugBKsTmzFjRpduvRJpCw0TLIDqlDxvoULdBEVERLq6DpFgtadujNJx6PdG2kJke4KV/G2CFU7zxxNWtM9n+YmIiMje0+4TrNTUVIqLi/VlWXaLc47i4mJSU1MTHYp0MpFa/9ECSTG/W+lKsERERMST8AcNN6dfv36sW7eOoiJ9cZHdk5qaSr9+/RIdhnQy0TqvBYukb1uwApk9vAUlWCIiIl1eu0+wkpKSGDRoUKLDEBEBIFpb5S2Evm3BSsrpCYAr30TLH+UtIiIinVG77yIoItKu1G5vwUqr35SVnUeNC1FbpocNi4iIdHVKsEREdoML+2OwYlqw8rNS2EwOdaUbExSViIiItBdKsEREdked30UwpgUrLyOZYpdNZJtasERERLo6JVgiIrshEN6eYH07yUVBZgrFLhsqNcmFiIhIV6cES0RkNwTC/his5Iz6bXkZyRSTQ6hKDxoWERHp6pRgiYjshlDEb8FqkGBtdjmk1mwBPbNPRESkS1OCJSKyG5IildRZMgSC9dtSk4JsC+YSdHVQU5bA6ERERCTRlGCJiOyGpGg1dYHUnbbXpuR5CxXqJigiItKVtSrBMrPfm9mnZrbUzJ40s9yYfb8ys5Vm9pmZHdvqSEVEEsw5R3K0inAwfad9dWndvYVyzSQoIiLSlbW2BesVYIRzbhTwOfArADMbBpwBDAemAH82s2CTtYiIdAA14Shp1BAOpe20zzL8BKtCMwmKiIh0Za1KsJxzLzvnwv7qfKCfvzwVeMQ5V+OcWw2sBMa35lwiIolWXRchg2oijSRYoewe3oISLBERkS4tnmOwzgde8Jf7Amtj9q3zt+3EzC40s4VmtrCoSF9MRKT9qqqLkG41REM7dxFM8RMspy6CIiIiXVqzCZaZvWpmnzTymhpT5tdAGHh4dwNwzt3jnBvrnBvbvXv33T1cRGSvqaqNkEYNLiljp33dsjPY6jKpLduYgMhERESkvQg1V8A5991d7TezGcAJwNHO1T8A5mugf0yxfv42EZEOq6ouQjo1uKSdW7AKMpMpdtkklW0iJQGxiYiISPvQ2lkEpwDXACc55ypjdj0DnGFmKWY2CDgAWNCac4mIJFp1XYR0q4ZGEqzuWSkUk010m7o6i4iIdGWtHYN1N5AFvGJmS8xsFoBzbhnwKLAceBH4qXMu0spziYgk1LbqMOnUEEzduYtg98wUilwOVqkES0REpCtrtovgrjjn9t/FvpuBm1tTv4hIe1JeEyaNGqKpmTvt656Vwrsum+TqFQmITERERNqLeM4iKCLSqVVUVJBiYULp3Xbal5OWRInlkBIug3BtAqITERGR9kAJlohIC9WWFwOQnJm70z4zoyYl31up3LwXoxIREZH2RAmWiEgLRSpKAEjOyGt0f11qgbeghw2LiIh0WUqwRERaKFxZAkAgLbfR/ZbpP8tPCZaIiEiXpQRLRKSlqku8n00kWKEsP8EqV4IlIiLSVSnBEhFpqepS72dqTqO7U3J7ARBVgiUiItJlKcESEWmhQE2Zt9BEgpWdk0eNS6KmdMNejEpERETaEyVYIiItlFS76xas7tmpFJFDnRIsERGRLksJlohICwVry6i1FAilNLq/IDOFIpdLZNvGvRyZiIiItBdKsEREWii5rpSaUFaT+70EK4dAxaa9GJWIiIi0J0qwRERaoLI2TDdXSnVKQZNlumd5LVjJVZrkQkREpKtSgiUi0gLF5bV0txLCad2bLJOdGmKL5ZJaVwKRur0XnIiIiLQbSrBERFpgc3kNPawEl9mzyTJmRnVKAYaDis17MToRERFpL5RgiYi0wJbyagooJZDddIIFULu9hatcMwmKiIh0RXFJsMzsSjNzZlbgr5uZ3WlmK81sqZkdHI/ziIgkSlnxRkIWJSW3z64Lbm/hKtdEFyIiIl1RqxMsM+sPHAOsidl8HHCA/7oQ+EtrzyMikkhlm9cBkFXQd5flgtm9vIVyTdUuIiLSFcWjBet24BrAxWybCjzgPPOBXDPrHYdziYgkRF3xVwCEuvXfZbnUbl6CFdWzsERERLqkViVYZjYV+No591GDXX2BtTHr6/xtIiIdUlKZl2DRbdAuy3XLzqbUpVNTsn4vRCUiIiLtTai5Amb2KtCrkV2/Bq7D6x64x8zsQrxuhOyzzz6tqUpEpM1kVqyhKpBBWnreLsttfxZWj9INpO2l2ERERKT9aDbBcs59t7HtZjYSGAR8ZGYA/YDFZjYe+BqI7UfTz9/WWP33APcAjB071jVWRkQkkarrIuTXfUNZVn/SvL93TSrI9BKs7uoiKCIi0iXtcRdB59zHzrkezrmBzrmBeN0AD3bObQCeAc71ZxOcAJQ659RfRkQ6pFVF5QxiPeHcgc2W7Z6VQhE5BCs1i6CIiEhX1FbPwXoe+BJYCfwNuKSNziMi0uZWr1vPgMAmkvse1GzZgsxkilwuydV60LCIiEhX1GwXwZbyW7G2Lzvgp/GqW0QkkUpWLwYgd99Dmi2bmRJiS6AbyZFKqCmHlMy2Dk9ERETakbZqwRIR6TQi6z4EIKkFLVhmRk1KgbdSoW6CIiIiXY0SLBGRXQhHovQt+5AtyX0gq7EJVRs5Jr2Ht1CuBEtERKSrUYIlIrILiwqLGctyKvoc1vKDMrcnWJpJUEREpKtRgiUisgsrFr5OrlVQMPJ7LT4mKdtv6VILloiISJejBEtEZBdSV75AmBBpw7/f4mPSu3UHIFpe1FZhiYiISDulBEtEpAnL123l8No3WV9wGKTmtPi4gqx0trpMqkvVgiUiItLVKMESEWnC4tceobdtIW/iebt1XPesFIpdNnXblGCJiIh0NUqwREQaUVpRy4gv72VLUi8yRp20W8cWZKZQTDbRcj1sWEREpKtRgiUi0oiXn3+M0fYFtYdeCsGk3Tq2e1YKW1wWgUolWCIiIl2NEiwRkQY2lVQw7JNbKQnm0+vwC3b7+LyMZLa4bJJrtrRBdCIiItKeKcESEWng7dn/y3BbTe13fwdJabt9fGZKiBLLJqWuFKLRNohQRERE2islWCIiMRYv+5TvbbiHr3LG02PCmXtUh5lRnZxHgChUbY1zhCIiItKeKcESEfHVRaKUPHUNqVZHzzPuBrM9rys1z1uo0LOwREREuhIlWCIivpf/8yhH1b3JmqH/j9TeQ1pVl0sv8BY00YWIiEiXogRLRATYuKWUoYtvZGOoD/ud8ptW1xfI8BOsCiVYIiIiXUmrEywz+5mZfWpmy8zs1pjtvzKzlWb2mZkd29rziIi0pfn/upl97Rs47lYsOb3V9QWze3gLasESERHpUkKtOdjMjgSmAgc552rMrIe/fRhwBjAc6AO8amaDnXOR1gYsIhJvH3y8jKOL7mdl/nfY/5AT41JnenZ3AMLbNrXuD62IiIh0KK1twboYuMU5VwPgnNvkb58KPOKcq3HOrQZWAuNbeS4RkbiLRB0lz/yaZAvT/4zb41ZvTlY6JS6DmtJNzRcWERGRTqO1CdZgYLKZvW9mb5rZOH97X2BtTLl1/radmNmFZrbQzBYWFWm2LRHZu+a++Srfq3uDNYPPI6XH/nGrNz8jmWKXTXib/q6JiIh0Jc32XDGzV4Fejez6tX98HjABGAc8amb77k4Azrl7gHsAxo4d63bnWBGR1qgNRwnOu41yy2Dfk38d17rzMlLYQhb5nXSSC+ccRSVlbN30NRXF31Bb8g3hso1Eq0oJ1pUTqCsnVFdJKFJBKFIF0TAWjYCLECRCYPtPHA6rf4HhDBwBfx2iBMAalIGYafS9n86sfrn+Z4Op9h2Gmf/TXyfmZ325VkzR3261g//D2l4Koh1c6l5VltaP8Rf+hbQUdUgWaQ+a/SQ6577b1D4zuxh4wjnngAVmFgUKgK+B/jFF+/nbRETajTfffoPvReazevilDErvFte68zKSWelyGNKBJ7lwzrG5rIp1K5dSWriEcNEXpJQV0q16Lb0j6+lhZfRo5LioMyoslUrSqLZ0ai2FaCCEsyDOQkQshToLEiGIg5iUyWEu+m3KE7tMFMMRcJFvv6Q7/z/u2+Px63KA1X/LbrC9/ni3Q/5l7ttyRtf7kr63NExm20wnzJEbk+xqGVP5Lm+9egTfOf6sRIcjIrRykgvgKeBI4A0zGwwkA5uBZ4B/mdkf8Ca5OABY0MpziYjEjXOOlHf/jwrSGHj8lXGvPz8jmQUui6SaVXGvu61U1ob59NPlbFk+l8A3C8kv+5QDXCFjrKa+zOZAAVtS+rEm8wjWZPcjObc3ybm9ScvrQ1ZBX7JyCgikZJBlRlYCr0Wkq3DhWjbePIzuH96FO+5MLKAn8IgkWmsTrH8A/zCzT4BaYLrfmrXMzB4FlgNh4KcdcQbBirKtbF7/FQOGjE50KCISZ+8vXsyk2nf5/IAfc2B6Xtzrz0lLYqtlk1JbCtEotMMvPeFIlI8/+4L1C58h5et3GVK9lIPNa3GrJJX16YNZnf8DQv3GULD/WPL6H0hBcgYFCY5bRL5loWQKD7yAQ1f8D8veeYbhk09OdEgiXV6rEiznXC1wdhP7bgZubk39ifbJ/ZczcvMLfDh2JmNOvCTR4YhIHBW/+VecGfsed1mb1B8IGFVJ3QhEI1BdAm2QxO2JzduqWLpgLtXLXmCfLfMYwyrGAKWBHDbmH8LnA/+LXiOPJnvAQewXCCY6XBFpgYNO+jnfrLiXtDdvwk08EdNnVyShNBpyF/Y99Ua+/Ocqxiz6FYs+f4WBZ/6B/D6DEh2WiLTSN5u3cljpc6zK/w6D8/dps/PUpuRBFVBRlNAEa2NpFe/Oe43AJ49xaOVcjrKtRDHWpA3js30vp+/4k8nZZzQ5nXFiB5EuIDUtnS9HXcGkpb/io//8mYNO+lmiQxLp0pRg7UL3PgPJufp15j/0aw7+6h9E/jqe+T1PYcCUy+i97/BEh9cizjnqwlFqaqqorakmUldNJFxLtLaGSF01LlxDJFxHNBIlEvV/RiK4aIRIJEw0EsFcFFwEXLT+ZS4CzgFR/0TfDgh3MQPLXYNR4i5mcPlO23YsuFck6uvk9lnMOrQWfBm3dnqNlV++x2QrJ3xE234JiaYXeAlW+SboPqRNz9VQaVUd78yfT9XiRzi49FVOCWygjhBrCyayduQp9B17IgMz1dlPpLOYcNKFfLL8IfZf/Ds2H/RdCgYMTXRIbSIaDlNTU0VNVSU1NZXUVlcRqa0iGq4lGqnDRSJEoxFc1PsO4yJhotEwLhqp30c07JeJxtQc88WjwZeXHWe/dI0u7lxuz+3x94M9/l/unh3YWJzWon+o2/3zleYOZcyY8XTLSN7tYxNBCVYzkpOTmXD+7/lq1XkUPX09h2x8jKQH5vBFaAjF/Y6i25BJ9DxgHLkFPVt9rmi4joryEqq2lVBdvpWailJqK0qpqywjXF1OtGYb0eoKXG05VleB1VUQrKskKexNg5wSrSLVVZHsakiijmRXR4gwKRamY/w6iuw9y1NGM2zk0W16jnBmPygGSte16Xm2q66L8M6HH7Pl/dkcWPQy3w98SRRjXbdD2HTwVfQYfxr7psV3tkQRaR9CoRDpZ/yD8INHUXn/D6m49BUy8nonOqx64XCYrVs2sa14AxVbN1JbuolIxWai1WW4qm1QW0agtpxgXTlJ4QpSoxWkRitJdVUkuVqSqSPZ1ZJsEdKAtERfkOxV/113NnkDRnSYBMtcwyaGBBo7dqxbuHBhosPYpY1fr+aLl+6h+zevMiT8ef32zeRSFsqjPJRPTVIOlpRC1JIIWwhzUYLRGgLROgKRGixS6yVEEe8PSLqrJN1VkR4zU9eu1LkglZZKFWnUBNKoDaRRG0ynLphOOJRONJiCC6ZAMBlCKVgwGQulQGj7egoumORtCyZjwSQCwSCBQLD+ZzAYIhAMEAgEMQviLOgN0rcAzoLeLEVmYMFvnzpjMS0W9T9sp4YOr5y/4Bds9N8y2ri7UqJ+851ze+1ZMPXnjHuFzdfYjv60NKpn//1JTc9s03Pc9OQirv/oKDjiOjjil21yjnAkygcrvmTtu3MY8PVzjGM5AXN8nT4URp5Gn4k/wrL7tMm5RaT9+fDNZznw9fPZHOpJ8lkP03Pfg9r0fJFwmM0b17J1/WoqitZQu2UdlK0jqWIDaTWbSY+Ukh0tJcdtI2TRRuuIOqPc0qiydKosnZpgBrX+KxxKIxpMhVAKLpQKwRQsKRVLSiXgvywpFQskYcEQFgjW/wz4y4H69ZD3PSfo/bRAiEBTXzUaeYZezM4my7W+b8we/s+zhf/TbVhqz7+P7Hxci0LYwy8HkbR8+vTuQ2pS+xlfaGaLnHNjG92nBGvPFW38mq9XvE/tuiWwZRWhyiKy6orJiG4j4MIk4b2iGLUkU2felkggyUuKQpnUhTIIhzKJJmfikrMgNYtASg6BtCyS0nNITs8mOT2HtMwc0jKzycjKJSUltYVNsCKSSLPeXMUprx9Ft4OOJ/kHf45bvc45lhZu4PM3H6X7V8/yX9HFJFuETcn9qT7wB/SdfA7B7gfE7Xwi0rEseP0p9n/zUtKoYcU+P2L/E35Bds8Bu11PJFzHlo3r2LJ+NRWb11C7ZS2u9GuSK9aTUbOR3Loi8t1WkmzHiaKrXRKbAwVsS8qnOqkb4dQ8omn5WGYBoazupGb3IL1bL9Jyu5ORk09GRpYm5pAORwmWiEgCPP/xenr9+wQG9+tB5oUvtKou5xwrv9nM8reeIHPls0wILyDDaigJ5rN13xPpM/lcUvof3OYtvyLSMXy95kvWzLmSQ8vfAKAweT9KckcQyRmAy+hOcnIKDgjXVkN1KZGKrUSrtpJcVURm7Sbywl7yFLQdvydWuWSKAgWUJfWgKq0n4cw+BHL6kprfn8weAynoM5Dsbj30PC7p9HaVYGkMlohIG+nfLZ1VrgdDt67eo+Odcyxfu5lP3/0PmSuf5rC6+RxgVWwLZLNhwEn0mvgjcg84nFz9y6+INNB3n33pe/WTfLbsIza+9xBZGxew/6aXyS6qbLR81BnbLIPSQDfKkrtTmLkfKzN6EcjtR2peXzJ7DKCg977k5HVnHyVPIrukBEtEpI3s1yODp9z+nFz1LpR9Ay0YC1UXibL0s5V8vfBZMr96lbHhDxluVVRYBuv7HUN0wpnkDvsuWcGkvXAFItLRDRl+EEOGe+OwIlHH1tKtVJVspKqmhgCQkpJKcmYeOd3yyAmFyElsuCKdghIsEZE2kp4cYlPuaCh/ANbMhxE/2KmMc44v1xez6sO51K16k75b5jPGfcEh5igJ5FG0z/exsaeQNfwY9g+l7P2LEJFOIxgwunXLo1u39vHgc5HOSgmWiEgb6nvgeDZ/kE3We/eQMuxkquqifL7yUzZ99j7hdYvpsfVDRkQ/Zz+rI0KAb9IGs2rQpfQZP5XcfQ4hV11xREREOhQlWCIibeis/9qPvyw4jd9+/Q+23jSAoKvjIKsCIEyA9Sn782WfH5E37Ch6jDic/npOlYiISIemBEtEpA31z0vnB//vBma/tA/7li0gJS2T1F5D6HHgoeQNOoT+yemJDlFERETiSAmWiEgbG943l+HnX5HoMERERGQvUOd+ERERERGROFGCJSIiIiIiEidKsEREREREROLEnHOJjqGemRUBXyU6jgYKgM2JDkL2Gt3vrkP3uuvQve5adL+7Dt3rrqM93usBzrnuje1oVwlWe2RmC51zYxMdh+wdut9dh+5116F73bXofncdutddR0e71+oiKCIiIiIiEidKsEREREREROJECVbz7kl0ALJX6X53HbrXXYfuddei+9116F53HR3qXmsMloiIiIiISJyoBUtERERERCROlGCJiIiIiIjEiRKsXTCzKWb2mZmtNLNrEx2PxI+Z9TezN8xsuZktM7PL/O15ZvaKmX3h/+yW6FglPswsaGYfmtl//PVBZva+//meY2bJiY5R4sPMcs3sMTP71MxWmNlh+mx3TmZ2hf83/BMzm21mqfpsdx5m9g8z22Rmn8Rsa/SzbJ47/fu+1MwOTlzksruauNe/9/+OLzWzJ80sN2bfr/x7/ZmZHZuQoHdBCVYTzCwI/Ak4DhgGnGlmwxIblcRRGLjSOTcMmAD81L+/1wKvOecOAF7z16VzuAxYEbP+v8Dtzrn9ga3AjxMSlbSFO4AXnXMHAgfh3Xd9tjsZM+sL/BwY65wbAQSBM9BnuzO5D5jSYFtTn+XjgAP814XAX/ZSjBIf97HzvX4FGOGcGwV8DvwKwP++dgYw3D/mz/739nZDCVbTxgMrnXNfOudqgUeAqQmOSeLEObfeObfYX96G9wWsL949vt8vdj9wckIClLgys37A8cDf/XUDjgIe84voXncSZpYDfAe4F8A5V+ucK0Gf7c4qBKSZWQhIB9ajz3an4Zx7C9jSYHNTn+WpwAPOMx/INbPeeyVQabXG7rVz7mXnXNhfnQ/085enAo8452qcc6uBlXjf29sNJVhN6wusjVlf52+TTsbMBgJjgPeBns659f6uDUDPRMUlcfVH4Bog6q/nAyUxf7j1+e48BgFFwD/9LqF/N7MM9NnudJxzXwO3AWvwEqtSYBH6bHd2TX2W9b2tczsfeMFfbvf3WgmWdGlmlgk8DlzunCuL3ee8ZxjoOQYdnJmdAGxyzi1KdCyyV4SAg4G/OOfGABU06A6oz3bn4I+9mYqXVPcBMti5i5F0Yvosdw1m9mu8oR0PJzqWllKC1bSvgf4x6/38bdJJmFkSXnL1sHPuCX/zxu1dCvyfmxIVn8TNROAkMyvE6+p7FN4YnVy/WxHo892ZrAPWOefe99cfw0u49NnufL4LrHbOFTnn6oAn8D7v+mx3bk19lvW9rRMysxnACcBZ7tuH97b7e60Eq2kfAAf4sxEl4w2meybBMUmc+GNw7gVWOOf+ELPrGWC6vzwdeHpvxybx5Zz7lXOun3NuIN7n+HXn3FnAG8BpfjHd607CObcBWGtmQ/xNRwPL0We7M1oDTDCzdP9v+vZ7rc9259bUZ/kZ4Fx/NsEJQGlMV0LpgMxsCl73/pOcc5Uxu54BzjCzFDMbhDexyYJExNgU+zYZlIbM7Pt4YzeCwD+cczcnNiKJFzObBLwNfMy343KuwxuH9SiwD/AVcLpzruEAW+mgzOwI4Crn3Almti9ei1Ye8CFwtnOuJoHhSZyY2Wi8CU2SgS+B8/D+QVGf7U7GzG4EpuF1H/oQuABvLIY+252Amc0GjgAKgI3ADcBTNPJZ9pPsu/G6iVYC5znnFiYgbNkDTdzrXwEpQLFfbL5z7iK//K/xxmWF8YZ5vNCwzkRSgiUiIiIiIhIn6iIoIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIi7YSZDTQzZ2ahRMfS2ZnZDDObl+g42hszm2xmnyU6DhGRjkwJloiIdGhmNtPM6sysPOZ1TaLj6oicc28754bEs04/aStv8HJmdmo8zyMi0l7oX0lFROLEzELOuXCi4+ii5jjnzk50EG2lI/9uOefeBjK3r5vZEcCzwIsJCklEpE2pBUtEpBXMrNDMfmlmS4EKMwuZ2QQze9fMSszsI/8L5fbyc83sf8xsgZmVmdnTZpbXRN3nmdkKM9tmZl+a2f9rsH+qmS3x61llZlP87Tlmdq+ZrTezr83sd2YWbOY69jOz182s2Mw2m9nDZpYbs2+LmR3sr/cxs6Lt12VmJ5nZMv9655rZ0Abvz1VmttTMSs1sjpml7v47vfvM7Fr/fdlmZsvN7JQmypmZ3W5mm/z38mMzG+HvSzGz28xsjZltNLNZZpbWwvPf55d/xY/hTTMbELP/DjNb659zkZlNjtk308weM7OHzKwMmGFm483sPf99Xm9md5tZcswxzswuMbMv/PP9t3/v3vXP8Whs+SZiPsLM1rXk+lphOvCYc66ijc8jIpIQSrBERFrvTOB4IBfoCTwH/A7IA64CHjez7jHlzwXOB3oDYeDOJurdBJwAZAPnAbfHJDnjgQeAq/3zfgco9I+7z693f2AMcAxwQTPXYMD/AH2AoUB/YCaAc24V8EvgITNLB/4J3O+cm2tmg4HZwOVAd+B54NkGX+RPB6YAg4BRwIxGAzCb5CcPTb0mNXMNDa0CJgM5wI1+/L0bKXcM3vs32C97OlDs77vF3z4a7/3sC1y/GzGcBfw3UAAsAR6O2feBX28e8C/g3w2Sz6nAY3j392EgAlzh13UYcDRwSYPzHQscAkwArgHuAc7Gu58j8H5X95ifKDd1f/7cguMzgNOA+1sTh4hIu+ac00svvfTSaw9feEnN+THrvwQebFDmJWC6vzwXuCVm3zCgFggCAwEHhJo411PAZf7yX4HbGynTE6gB0mK2nQm8sZvXdTLwYYNtzwAfA0uBFH/bb4FHY8oEgK+BI2Len7Nj9t8KzIrzPZjpv4clMa8+jZRbAkz1l2cA8/zlo4DP8ZKSQEx5AyqA/WK2HQasbmFc9wGPxKxn4iVJ/ZsovxU4KOaa3mqm/suBJ2PWHTAxZn0R8MuY9f8D/thMnUcA6+J5fxrUfw6wGrC2OodeeumlV6JfGoMlItJ6a2OWBwA/NLMTY7YlAW80Uf4rf39Bw0rN7DjgBrwWlACQjpfggNci8XwjsQzw61tvZtu3BRqccydm1hO4A6/FJ8s/ZmuDYn/DS7IudM7V+Nv6+NcAgHMuamZr8Vp6ttsQs1zpHxNvj7oGY7DM7FzgF3iJK3gJzk7vs3PudTO7G/gTMMDMnsBreUzFe88XxbyXhpcMt1T9++6cKzezLXjXv9bMrgJ+7K87vJbKgsaO9a9nMPAHYKwfVwgviYq1MWa5qpH1XrsRe1uYDjzgnHMJjkNEpM2oi6CISOvFfllci9eClRvzynDO3RJTpn/M8j5AHbA5tkIzSwEeB24DejrncvESqu3f9NcC+zUSy1q8FqyCmPNnO+eGN3MN/59/HSOdc9l43cq+zSrMMoE/AvcCM+3bcWPf4CV128uZf31fN3O+nVjjs83FviY3X0t9XQPwEsJLgXz//fsk9ppiOefudM4dgteiOBiv6+VmvKRkeMx7meOcy2ysjibU32v/PcwDvvGv5Rq87ojd/PhKG8TXMAn5C/ApcIB/j65r6nraij/Wrqn7M6uZY/vjtZA9sFeCFRFJECVYIiLx9RBwopkda2ZBM0v1Jw7oF1PmbDMb5o9nuglvwH+kQT3JQApQBIT91qxjYvbfC5xnZkebWcDM+prZgc659cDLwP+ZWba/bz8zO7yZuLOAcqDUzPriJRix7gAWOucuwBtjtv3L9KPA8X4cScCVeAneu829UQ05b4rwzF283t6N6jLwEpQi8CYMwRuDtBMzG2dmh/rxVwDVQNQ5F8VL0m43sx5+2b5mdmzMsc5iJjFpxPf9sWXJeGOx5jvn1uK932E/vpCZXY/XgrUrWUAZUG5mBwIXN1M+7pxzw3dxfy5q5vBzgHedN6ZPRKTTUoIlIhJH/pfnqXitC0V4LUpXs+Pf2wfxxudswOuG9vNG6tnmb38Ur6vej/C6523fvwB/4gu8lo83+bYl6Vy8BG25f+xjeBNq7MqNwMF+Xc8BT2zfYWZT8Sap2P6F/hfAwWZ2lnPuM7zWrrvwWnxOBE50ztU2c7425Zxbjjfm6D28bnIjgXeaKJ6Nl0htxevuWAz83t/3S2AlMN+fze9VYAjUt8hs49tum435F143zy14k09s78b4Et405Z/756ymmW6ceN0Wf+Sf82/AnGbKtzfnosktRKQLMHWDFhHZe8xsLvCQc+7viY5FWsfMzsbrPvirJvbfhzdhxG/2amAiIpJQmuRCRERkDzjnHkp0DCIi0v6oi6CISBdh3kNvd3tyAulczOy6Jn4PXkh0bCIinYG6CIqIiIiIiMSJWrBERERERETipF2NwSooKHADBw5MdBgiIiIiIiJNWrRo0WbnXPfG9rWrBGvgwIEsXLgw0WGIiIiIiIg0ycy+amqfugiKiIiIiIjEiRIsERERERGROFGCJSLShGjUEY1qplURERFpuXY1BqsxdXV1rFu3jurq6kSHIh1Mamoq/fr1IykpKdGhSAd16qx3GZifwe3TRic6FBEREekg2n2CtW7dOrKyshg4cCBmluhwpINwzlFcXMy6desYNGhQosORDqikspaUde9y+6bfEd2ylEDegESHJCIiIh1Au+8iWF1dTX5+vpIr2S1mRn5+vlo+ZY+t21rFNaFHANj66ZsJjkZEREQ6inafYAFKrmSP6PdGWqOkso4BthGAbRsLExuMiIiIdBgdIsESEdnbSqvqSKUWACv+IsHRiIiISEfR6gTLzPqb2RtmttzMlpnZZf72PDN7xcy+8H92a324iWFmXHnllfXrt912GzNnzkxcQDHmz5/PoYceyujRoxk6dGh9XHPnzuXdd9/d43q/+uorDj74YEaPHs3w4cOZNWtWnCIW6RhKKmvqE6yUstUJjkZEREQ6ini0YIWBK51zw4AJwE/NbBhwLfCac+4A4DV/vUNKSUnhiSeeYPPmzXGt1zlHNBptVR3Tp0/nnnvuYcmSJXzyySecfvrpQOsTrN69e/Pee++xZMkS3n//fW655Ra++eabVsUq0pGUVVQSNG+K9tTqTQmORkRERDqKVidYzrn1zrnF/vI2YAXQF5gK3O8Xux84ubXnSpRQKMSFF17I7bffvtO+oqIiTj31VMaNG8e4ceN45513AJg5cya33XZbfbkRI0ZQWFhIYWEhQ4YM4dxzz2XEiBGsXbuWq6++mhEjRjBy5EjmzJkDeAnSEUccwWmnncaBBx7IWWedhXM7P49n06ZN9O7dG4BgMMiwYcMoLCxk1qxZ3H777YwePZq33357l3Gec845HHbYYRxwwAH87W9/AyA5OZmUlBQAampqmkwE77zzToYNG8aoUaM444wzANiyZQsnn3wyo0aNYsKECSxdurT+XNOnT2fy5MkMGDCAJ554gmuuuYaRI0cyZcoU6urqALjpppsYN24cI0aM4MILL9zpuqPRKAMHDqSkpKR+2wEHHMDGjRt3dRtFdktddbn3kxAZdVugkc+fiIiISENxnabdzAYCY4D3gZ7OufX+rg1AzyaOuRC4EGCfffbZZf03PruM5d+UxStcAIb1yeaGE4c3W+6nP/0po0aN4pprrtlh+2WXXcYVV1zBpEmTWLNmDcceeywrVqzYZV1ffPEF999/PxMmTODxxx9nyZIlfPTRR2zevJlx48bxne98B4APP/yQZcuW0adPHyZOnMg777zDpEmTdqjriiuuYMiQIRxxxBFMmTKF6dOnM3DgQC666CIyMzO56qqrAPjRj37UZJxLly5l/vz5VFRUMGbMGI4//nj69OnD2rVrOf7441m5ciW///3v6dOnz07Xcsstt7B69WpSUlLqE54bbriBMWPG8NRTT/H6669z7rnnsmTJEgBWrVrFG2+8wfLlyznssMN4/PHHufXWWznllFN47rnnOPnkk7n00ku5/vrrATjnnHP4z3/+w4knnlh/zkAgwNSpU3nyySc577zzeP/99xkwYAA9ezb6KyayR6I1lQBsDvakd+RrqNkGqdkJjkpERETau7hNcmFmmcDjwOXOuR2yIOc1QTT6z7/OuXucc2Odc2O7d+8er3DiLjs7m3PPPZc777xzh+2vvvoql156KaNHj+akk06irKyM8vLyXdY1YMAAJkyYAMC8efM488wzCQaD9OzZk8MPP5wPPvgAgPHjx9OvXz8CgQCjR4+msLBwp7quv/56Fi5cyDHHHMO//vUvpkyZ0ug5dxXn1KlTSUtLo6CggCOPPJIFCxYA0L9/f5YuXcrKlSu5//77G20hGjVqFGeddRYPPfQQoVCo/prOOeccAI466iiKi4spK/N+JY477jiSkpIYOXIkkUikPt6RI0fWX98bb7zBoYceysiRI3n99ddZtmzZTuedNm1afWvfI488wrRp03b5novsrkhtFQClKV4LMRVFCYxGREREOoq4tGCZWRJecvWwc+4Jf/NGM+vtnFtvZr2BVg9iaElLU1u6/PLLOfjggznvvPPqt0WjUebPn09qauoOZUOh0A7d6mKfx5SRkdGi823vogde979wONxouf3224+LL76Yn/zkJ3Tv3p3i4uKdyjQVJ+w8nXnD9T59+jBixAjefvttTjvttB32Pffcc7z11ls8++yz3HzzzXz88cctuqZAIEBSUlL9uQKBAOFwmOrqai655BIWLlxI//79mTlzZqPPsjrssMNYuXIlRUVFPPXUU/zmN7/Z5XlFdpfzE6yK9L5QudBLsPL3S3BUIiIi0t7FYxZBA+4FVjjn/hCz6xlgur88HXi6tedKtLy8PE4//XTuvffe+m3HHHMMd911V/369q5wAwcOZPHixQAsXryY1asbn4Vs8uTJzJkzh0gkQlFREW+99Rbjx49vcUzPPfdc/RilL774gmAwSG5uLllZWWzbtq3ZOAGefvppqqurKS4uZu7cuYwbN45169ZRVeV9wdy6dSvz5s1jyJAhO5w7Go2ydu1ajjzySP73f/+X0tJSysvLmTx5Mg8//DDgjSUrKCggO7tlXau2J1MFBQWUl5fz2GOPNVrOzDjllFP4xS9+wdChQ8nPz29R/SIt5eq8LoJ1mf28n2Ua4yciIiLNi0cXwYnAOcBRZrbEf30fuAX4npl9AXzXX+/wrrzyyh1mE7zzzjtZuHAho0aNYtiwYfXTmZ966qls2bKF4cOHc/fddzN48OBG6zvllFMYNWoUBx10EEcddRS33norvXr1anE8D/7/7d15fN1Vnf/x1+fe3CX7bdJ0TUuLtKWl6QLpMpalRaAwgjhsZRS0dJSHDoow47gOCDj+firzY36jgPxgwKIiizgCD9HKrtYRsKUUShcs3UvaptmaJrn7+f1xb0OSZmmbm9ws7+fjEXK/53u+5/tJvv1e7ifnfM/56U+ZNm0ac+bM4dprr+WRRx7B6/VyySWX8Ktf/ap1kouu4oTUML8lS5awcOFCbrnlFsaNG8emTZtYsGABs2fP5pxzzuHLX/4yFRUVAHzmM59hzZo1JBIJrrnmGioqKpg7dy433ngjoVCI2267jbVr1zJr1iy+9rWv8fDDD3cV/lFCoRCf/exnmTlzJkuXLmXevHmt++677752cS9btoyf/exnGh4ofcLSCVayeAIAzbVV3VUXERERAcA6m5kuWyorK92aNWvalW3atInp06dnKaKh77bbbms3GcZQo38/cqL+/Yc/4Ms1t/Dakp+z4OVPsP+Mf2L0Jd/KdlgiIiIyAJjZWudcZWf7MjbJhYjIUGLx1BDZ/KJS6l0+8UNaC0tERER6ltFp2mXwue2227IdgsiAdCTBKiospMYVEWxSgiUiIiI9Uw+WiEgnvIlUghUqKuYgxXiaD/ZwhIiIiIgSLBGRTnniqRktC4sKqaUYf7g2yxGJiIjIYKAES0SkEznJCADmy+NwzghyY0evLyciIiLSkRIsEZFO5CRaSOAFr48Wfwl5iUaIR7MdloiIiAxwSrCO0VNPPYWZsXnz5i7r7Nixg5kzZ2bsnFu2bGHx4sXMmTOH6dOnc/311wOpRYJ/85vfnHC74XCY+fPnM3v2bE477TS+9S1NPS3SkS8ZJu4NAhAPpheyblYvloiIiHRPCdYxevTRRznzzDN59NFHO90fj8d7fY5EItFu+8Ybb+Tmm2/mzTffZNOmTXzxi18Eep9gBQIBXnrpJdavX8+bb77JqlWrePXVV3sVu8hQkkg6/C5K3JNKsJJ5I1M7NNGFiIiI9EAJ1jE4fPgwq1ev5sEHH+Sxxx5rLX/llVc466yz+NjHPsaMGTOAVKL1yU9+kunTp3PFFVfQ3NwMwIsvvsjcuXOpqKhgxYoVRCKp5zsmTZrEV7/6VU4//XR+8YtftDtvVVUV5eXlrdsVFRVEo1FuvfVWHn/8cebMmcPjjz9OU1MTK1asYP78+cydO5enn34agJUrV3LppZeyePFipkyZwu233w6AmVFQUABALBYjFothZkf93L/4xS+YOXMms2fP5uyzzwZSvV/XXXcdFRUVzJ07l5dffrn1XB//+Mc5//zzmTRpEnfffTd33XUXc+fOZeHChdTWpiYIeOCBB5g3bx6zZ8/m8ssvb/39tLVw4ULeeeed1u3FixfTcQFqkb4UjiUIWpS4NxcAb346wWqqzmJUIiIiMhgMrnWwfvs12Pd2ZtscUwEXfbfbKk8//TQXXnghU6dOpbS0lLVr13LGGWcA8MYbb7BhwwYmT57Mjh072LJlCw8++CCLFi1ixYoV3HvvvXzhC19g+fLlvPjii0ydOpVPfepT/OhHP+Kmm24CoLS0lDfeeOOo8958882ce+65fPjDH+aCCy7guuuuIxQKcccdd7BmzRruvvtuAL7xjW9w7rnn8tBDD1FfX8/8+fM577zzAHj99dfZsGEDeXl5zJs3j49+9KNUVlaSSCQ444wz2Lp1KzfccAMLFiw46vx33HEHv/vd7xg/fjz19fUA3HPPPZgZb7/9Nps3b+aCCy7g3XffBWDDhg2sW7eOcDjMKaecwve+9z3WrVvHzTffzE9+8hNuuukmLrvsMj772c8C8K//+q88+OCDrT1zRyxbtownnniC22+/naqqKqqqqqis7HShbJE+EYknySVCMifVg5VTNBqAeGP1IHvTFBERkf6mHqxj8Oijj3L11VcDcPXVV7cbJjh//nwmT57cuj1hwgQWLVoEwDXXXMPq1avZsmULkydPZurUqQB8+tOf5g9/+EPrMcuWLev0vNdddx2bNm3iyiuv5JVXXmHhwoWtPV9tPffcc3z3u99lzpw5LF68mHA4zK5duwA4//zzKS0tJTc3l8suu4zVq1cD4PV6efPNN9mzZ09rEtbRokWLWL58OQ888EDr8MXVq1dzzTXXAHDqqady0kkntSZYS5YsobCwkLKyMoqLi7nkkkuAVM/bjh07gFQSdtZZZ1FRUcEjjzzSrqfqiKuuuoonn3wSgCeeeIIrrrii09+PSF+JxBPkEiWZfgYrUDwKgJb6fdkMS0RERAaBwfXH2B56mvpCbW0tL730Em+//TZmRiKRwMy48847AcjPz29Xv+NQu86G3nXUsY22xo0bx4oVK1ixYgUzZ87sNBFyzvHLX/6SadOmtSt/7bXXeownFAqxZMkSVq1addQEHffddx+vvfYazz77LGeccQZr167t9ucIBAKtrz0eT+u2x+NpfUZt+fLlPPXUU8yePZuVK1fyyiuvHNXO+PHjKS0t5a233uLxxx/nvvvu6/a8IpkWiSUJWpRkTmoobdGIkcSdh3D9AQqzHJuIiIgMbOrB6sGTTz7Jtddey86dO9mxYwe7d+9m8uTJ/PGPf+y0/q5du/jzn/8MwM9//nPOPPNMpk2bxo4dO9i6dSsAP/3pTznnnHN6PPeqVauIxWIA7Nu3j5qaGsaPH09hYSGNjY2t9ZYuXcoPf/hDnHMArFu3rnXf888/T21tLS0tLTz11FMsWrSI6urq1iF/LS0tPP/885x66qlHnf+9995jwYIF3HHHHZSVlbF7927OOussHnnkEQDeffdddu3adVRi153GxkbGjh1LLBZrbaczy5Yt4/vf/z4NDQ3MmjXrmNsXyYRIPEmQCC4n9QxWSUEudRSSaDyQ5chERERkoOvzBMvMLjSzLWa21cy+1tfny7RHH32Uv/u7v2tXdvnll3c5m+C0adO45557mD59OnV1dXz+858nGAzy4x//mCuvvJKKigo8Hg+f+9znejz3c8891zrJxNKlS7nzzjsZM2YMS5YsYePGja2TXNxyyy3EYjFmzZrFaaedxi233NLaxvz587n88suZNWsWl19+OZWVlVRVVbFkyRJmzZrFvHnzOP/887n44osBuPXWW3nmmWcA+Jd/+RcqKiqYOXMmH/7wh5k9ezb/+I//SDKZpKKigmXLlrFy5cp2PVc9+fa3v82CBQtYtGhRu6TumWee4dZbb23dvuKKK3jssce46qqrjrltkUw5MkQQXzrByvdz0BXhmjSLoIiIiHTPjvR69EnjZl7gXeB8YA/wF+DvnXMbO6tfWVnpOs4Wt2nTJqZPn95nMQ5lK1eubDcZxnCkfz9yIv6yo5bRD80nePIiRi1/mLqmKBu/u5hTSnIYffMfem5AREREhjQzW+uc63QWtr7uwZoPbHXObXPORYHHgEv7+JwiIr2SegYrBv5UD1Zxro86ivBHarMcmYiIiAx0fZ1gjQd2t9neky5rZWbXm9kaM1tTXa01ZjJp+fLlw7r3SuREReIJgkQwXx4AHo9xOCdEMFqX5chERERkoMv6JBfOufudc5XOucqysrKu6vRzVDIU6N+NnKjUOlhRLN2DBRDxjyA3eRjiRy+VICIiInJEXydYe4EJbbbL02XHLBgMUlNTow/Lclycc9TU1BAMBrMdigxC0WgYnyXw+vNay2LBkakXzTVZikpEREQGg75eB+svwBQzm0wqsboa+MTxNFBeXs6ePXvQ8EE5XsFgkPLy8myHIYNQPNwCgCfwQYKVzCuFBqCpGorGZSkyERERGej6NMFyzsXN7AvA7wAv8JBz7p3jacPn8zF58uQ+iU9EpDOJaDNAux4sT0F6CLOmahcREZFu9HUPFs653wC/6evziIhkiksnWDnB/NayQNEoAGKNB/BlJSoREREZDLI+yYWIyECTjDYBkNNmiGBeyRgAmuv2ZyUmERERGRyUYImIdJCMhoH2QwSLQ2XEnJdww4FshSUiIiKDgBIsEZGOYqkhgtYmwSorClJHIfFD6sESERGRrinBEhHp4MgzWPg+SLBGFgaocUU4TXIhIiIi3VCCJSLSgcVT07ST88E6aiML/NS4QnJatA6WiIiIdE0JlohIR/HUM1j4cluLAjleDnlD+CNKsERERKRrSrBERDpo7cFqM0QQoNlXQn6sNgsRiYiIyGChBEtEpANP7EiClduuPBIcRcCFIdKYhahERERkMFCCJSLSgTdxZIhg+x6seH5qsWEaNZOgiIiIdE4JlohIB55EmCQe8PralVtBarFhDu/LQlQiIiIyGCjBEhHpICcRJmIBMGtX7guNBSBa/342whIREZFBQAmWiEgH3kQLMU/wqPLcEeMBaKrZ298hiYiIyCDRqwTLzO40s81m9paZ/crMQm32fd3MtprZFjNb2utIRUT6iTcRJu4JHFVeXFJGxPmI1ldlISoREREZDHrbg/U8MNM5Nwt4F/g6gJnNAK4GTgMuBO41M28vzyUi0i+8yQhx79E9WCMLg1RTTKJBCZaIiIh0rlcJlnPuOedcPL35KlCefn0p8JhzLuKc2w5sBeb35lwiIv3FnwyT6CTBKisMcMCFsCbNIigiIiKdy+QzWCuA36Zfjwd2t9m3J10mIjKgReNJAi5C0pt71L7SAj8H3Aj8LdVZiExEREQGg5yeKpjZC8CYTnZ90zn3dLrON4E48MjxBmBm1wPXA0ycOPF4DxcRyaiWaII8i+B8oaP2+bweGrwl5EY2939gIiIiMij0mGA5587rbr+ZLQcuBj7inHPp4r3AhDbVytNlnbV/P3A/QGVlpeusjohIf2mKximghaSvoNP9LYEy8iKNEAuD7+hhhCIiIjK89XYWwQuBrwAfc841t9n1DHC1mQXMbDIwBXi9N+cSEekPzdEE+RbGBQo73R/PK0u9OKznsERERORovX0G626gEHjezN40s/sAnHPvAE8AG4FVwA3OuUQvzyUi0uea0z1YdJFguYL0iGklWCIiItKJHocIdsc5d0o3+74DfKc37YuI9LemcIxCa6E+2HmClRMaC7sheahKK7WLiIjIUfT5QESkjWjLIQA8waJO9+eOGAdAc22nj5WKiIjIMKcES0SkjWhTKsHKye08wSoaOZaEM8K17/dnWCIiIjJI9GqIoIjIUBNrbgDAl1fc6f5RRXlUE8I1VPVnWCIiIjJIqAdLRKSNRHqIoC+v8x6sUYVBDrgQNO7rx6hERERksFCCJSLSRqIl1YMVyA91un9UUYD9bgS+5gP9GJWIiIgMFkqwRETaiLU0AuDvYohg0OelzltCMKIES0RERI6mBEtEpI1kugeLQEGXdZoDoyiI10M80j9BiYiIyKChBEtEpA0L16Ve5JZ0WSeaNzr1QosNi4iISAdKsERE2ghEaojig0DnCw0DuIIxqRea6EJEREQ6UIIlItJGMFrHYW8IzLqsk1OcWmzYHdJaWCIiItKeEiwRkTby4vW0+ELd1gmUlAPQUrunHyISERGRwUQJlohIWjyRpChRRyzY9fNXAMUlo4k6Ly01e/spMhERERkslGCJiKTVNEUpoZFkbmm39UYX53KAEcTrlWCJiIhIexlJsMzsn83MmdnI9LaZ2Q/MbKuZvWVmp2fiPCIifam6MUKJHcKTX9ZtvVGFAfa5EuywJrkQERGR9nqdYJnZBOACYFeb4ouAKemv64Ef9fY8IiJ9rab2IPkWwRca0229UUUB9rsQvmZN0y4iIiLtZaIH6z+ArwCuTdmlwE9cyqtAyMzGZuBcIiJ9pnn/dgCCIyd1Wy/Pn0OtZyR54QP9EJWIiIgMJr1KsMzsUmCvc259h13jgd1ttveky0REBqxYbaojvnDMyT3WbQ6UEUg2Q6Sxr8MSERGRQSSnpwpm9gLQ2XiZbwLfIDU88ISZ2fWkhhEyceLE3jQlItIr8dqdAPhLJ/VYN5Y3CqKkFhvuZlFiERERGV56TLCcc+d1Vm5mFcBkYL2lFuQsB94ws/nAXmBCm+rl6bLO2r8fuB+gsrLSdVZHRKQ/eA7tIYYPX/6oHuu6wnFQDzRWwcgpfR6biIiIDA4nPETQOfe2c26Uc26Sc24SqWGApzvn9gHPAJ9Kzya4EGhwzlVlJmQRkb5R1LKbOv9Y8PT81phTnHqs1B3SW5uIiIh8oMcerBP0G+Bvga1AM3BdH51HRCQjmiJxJiZ201g6jZ77ryCvtByAcN0ecvs2NBERERlEMpZgpXuxjrx2wA2ZaltEpK/99f2DzLR97Bh56THVD40oodHlkqhRgiUiIiIfyMhCwyIig92erW+TY0lGnFRxTPVHFQY54ELED2mxYREREfmAEiwREaB51zoASk6ee0z1RxcFOEgxHNZaWCIiIvIBJVgiIkBe9VuELYiVTTum+qOKUj1YOc1KsEREROQDSrBEZNiLJZKUt2xif/6p4PEe0zEFgRzqPCPIjRzs4+hERERkMFGCJSLD3oad+5jBdhLjKo/ruHBgJIFkM0Sb+igyERERGWyUYInIsLf7rd/jtwSlM889ruNiuekJ3Q/v74OoREREZDBSgiUiw57bvpoEHoqnnnV8BxYcSbD0HJaIiIikKMESkWEtkXSMrV9HVe4UCBYd17E5RWNTL9SDJSIiImlKsERkWNu8p5pZvEt43MLjPtY/IpVgReurMh2WiIiIDFJKsERkWNu+/o8ELUbJjMXHfWz+iNHEnYeWuvczH5iIiIgMSjnZDkBEJJvi2/4IQMn0xcd9bFlhLgcpJqdhX4ajEhERkcFKPVgiMmw55xhdt5b3AydDXslxHz+yIEC1K8YdUoIlIiIiKUqwRGTY2ra/nlluC01jFpzQ8SML/VS7EN5mzSIoIiIiKb1OsMzsi2a22czeMbPvtyn/upltNbMtZra0t+cREcm0betXk28RCk9dfELHl+YHOOBC+MMHMxuYiIiIDFq9egbLzJYAlwKznXMRMxuVLp8BXA2cBowDXjCzqc65RG8DFhHJlMh7qwEYXXF8Cwwf4c/xcCinhNxoLSQT4PFmMrysiMWiNNTVcPhQHbGWRhItDSQizcTjcZKJOB6XAJfAQxIwnMcDeMC8qZ/fPJjHi3k84PFi5sU8XvB4MPOAJwfzePF4UseYGebx4DFSr0l9T20fe9zOHd/PeZzVj7v94aDt9bF25Z1fuPb1rdPyY6l/Iu22O/q442hTp/Nmum7/eNs8wd+RN78Mb0Fp55VEpN/1dpKLzwPfdc5FAJxzR8bJXAo8li7fbmZbgfnAn3t5PhGRjCmt+QtVvomMPbJg8AkIB0bijSSguRYKyjIYXd+IxhJs37mNuh0biO7biLd2K/6mKgpj1ZQkayh19Yw0x8hsByoix6zB5dN84zuMLR2R7VBEhN4nWFOBs8zsO0AY+LJz7i/AeODVNvX2pMtERAaEAw3NnBbfyN7xf8vYXrQTyx0FEVKLDQ/ABGvPgRreW/d7ojtepbjmTT4U2cQ0O9S6/zB51OSMoilYxp7gqWzLH40nvxRfXjGeQCGeQAHeQB5enw+vx4fzeHHmwZk31a3jkphL4JIJnEumevJcMrXdpswlk5Cux5Eyl4RkkiSAcyQdOFyqd8lB0rluey466vyv/JnrejqeWIY6183vtX1vn+u0vKuju6zTVZtdh9ihrc4b7jKOLjac6/ncHctdV92fXcRxbL+bDzbyGt7jzPcfYsOaFxi79MoujhaR/tRjgmVmLwBjOtn1zfTxJcBCYB7whJmdfDwBmNn1wPUAEydOPJ5DRURO2Ka33+Aca6H+Q3/Tu4YKRkE9cHgfMDMDkfVOSzTB+vVrqFv/LCVVf2R2/G3KLQbAXm85e8rOomrcbAonVFA2uYKC0nIKjmcsnogMKInwYWL/+2Hcey8BSrBEBoIeEyzn3Hld7TOzzwP/7VJ/nnndzJLASGAvMKFN1fJ0WWft3w/cD1BZWalR7iLSL+q3pkYsjz3tzF614y0anXpxOHszCUbjSV5fu4a61x9j2sHnWGi7AXg/ZwLvTbyS4plLGTvzbMbnl2gogcgQ4w0WsCkwk3E1egpDZKDo7RDBp4AlwMtmNhXwAweBZ4Cfm9ldpCa5mAK83stziYhkTPDAmzRZHvmjpvWqnUBoHADxQ/v6feX29Tv2s/mFh5mx53HOZCsAO/Ir2Dp9ORMWXsa4spMZ188xiUj/Ozh6EYt330tzzV7ySvVnFJFs6+3ngYeAh8xsAxAFPp3uzXrHzJ4ANgJx4AbNICgiA0Uy6RjftJF9hTP4kKd3q1WEQiEaXS5W+z4FGYqvO7FEkpfXvE3t7+/jI03PMtsa2O+fyNYZX+Wks69hUomGWosMN6GZF8Due9n2+rPMvOj6bIcjMuz1KsFyzkWBa7rY9x3gO71pP9vWv/wEkfW/YuY/3EteoWbmERkqtu87yDR2snXMiU3P3tbIggDVrpiSQ/syEFnX6pqiPP/iKgrf/C8+kliN3xLsLjuT5o98idHTzmN0LxNFERm8pp9+JnW/KST27gugBEsk6/p7RMug0rJ3I/Pqfsv+uxayY+kPmLFQ6yWLDAXvb/wfPmQJCj60sNdtjSzwU02IEY37MxDZ0bbsrWXt7x7m1J2PcJX9lRbLZf/UTzD+gpuYUHZKn5xTRAaXgM/HusL5TK/7E8loCx5/brZDEhnWlGB1Y+E1t/HWnxZQ9vwXmbHqKtavPou8877KlDlnZTu0waXttLYu2bp5ZOra1PeBOb/J0QtmZne2tW7PnqWZ4Ho+bf/G1dUip20lt/2BpDPGVnyk1+cbWRBgvQsxvTlzPVjJpGP1W5upeun/cXbD03zCaqkJjGd/5W2MPnsFE4LFGTuXiAwNydmfpPhPL7LllZ8z7YJ/yHY4Q0fHafbbTdXvwLlOp9B3H3zYyegnnGP5f1z3x/dutEPvzm+9+6hi1uufv78owerBrEUX0TJ7LX967N+Ys/sn5D91MVt/fQo1Ey9i1OkXM2l6Jebtu1+jc45IPElTJE5Tc5iW5kNEmhsJNzcRbWkkFj5MvOUw8chhiDZDrAWLNeOJN+ONt+BNpL7nJMP4Ei0EXBh/MozfRfG4BEYCj0viIZn+nki9bt1O4iWB90gZDku/VbT9J+6xY3v7MLKdoojAOcB7vlP4UEFJr9sqKwxwwIUIhN/udVuHI3FeePlFfGvu5yOx3xO0GLtLFnB4yY2UzrwIPN5en0NEhqbTz/kYO/80Fu8bP4ZBnGAlEwkaG2ppOlRLU2M94cY6Ik0NJMMNuHAjRBvxRBohFoZEGOIRPIkwnkSk9cubjOJzqS9P6+ecRLvPNanvSbzug9cekuRY8phjtQ7fpe98O3YNl3zuO8yZEMp2KMdECdYxyC0oZtFn7uRQ/Vd59bcPUPrXJ1iw7Yew7Ye0OD+7cybRkDcRKxxNIm8U5I7A7/eD10/CvCSTSSwRxRIRXCxCPBomEQtDtCmVEMWb8cRa8CZayEm04Eu24E+GCbgwARchjzCFRCi145snJEYOYQJELEjUEyBiuUQ9QaI5BTRbgKTHC+ZNLRhqHlx6G/OAJ12e/p4ktbCoMwPa/PXD2iy9aR+kT0aqT8rS5e2WC7XW/7R2fxypL93o9heUrd/eALtqxxyOo3TORzNyyqDPS7O/lECiKXVP+/OPu41d1Y38edXPmLz1p3zc3iFCgKrJlzF+6ZeYMPa0jMQpIkNb0O9j20lXsWTnf7LttWc5eUFm3uMyIR6LcXD/Hur2baepehex+iqSTQfxtNTgC9cQjNaRH6+nyDUQco0Um6O7fvqkM8L4ieIjan5i5iNqAeLmJ+HxE/cGaPYUEvf4cZaT+qzj6eTzTpvPOq2fh/CkP+ukGLTZPjqVMiP9GafNvqOqWWaysK4Wre4vvTi/dbs8ec+mhhYwpijYixb6l3W5wngWVFZWujVr1mQ7jGOyb892dv7lWZJVb1HUsIWS6F5GJOsJphf0PBZJZ7RYKgFKJUFBYp5cEt4giZw8Ejm5OF8e+PIwfx7mz8cbyMcbLMAXzMcXzMefW0ggr4BgXhH+3ALMn6qPPx+8vj78DYjIEXf95538U92/wWdfhvGnH9MxyaTjf97ezL6XH2BB3TNMsGpqc0YTnruCcUuuh7ze966JyPDS2HiI+v8zD6/Xy+ivrsXbT89ihcMtVO3YQt2eLYT3b8UaduFr3kd+eD+heDUjXR2+Tv5IXE8BhzwhmnNChP0lxIOpL3JH4M0txpdfjD8vRLAwRCAvhC+/mEBeMcGCQvw5OYNmuJgMTWa21jlX2dk+9WCdoDHlkxlT/oV2ZYlEkkOH6wkfOkhTSxgXj+J1CczjxXwBPDkBfP4guXl55OXm4fXnkm/G8f+9W0QGEje6AurAVb2F9ZBg1R2O8PsXf03+Wys5O/4/BCzO7uIzqD/7u5TM/Tj04ZBjERnaCguLeGPBHZzz2vVsumcZp37xSSzHn5G2mw/Xs2/HFhr2biZ84D08ddvJO7yLkdG9jHIHmWyOyem6YefjoKeMBn8Ze/PPYFfBWKy4nGBpOYWjJxEaNYHiktGEcnyEMhKdyMCi/5NnkNfroai4hKJi/eVZZDgpLZ/CoU25eHaupaBy+VH7o/Ekr657k5pXf86Mg6v4uO2m2fJ4/5SrGX/eDUwYO6P/gxaRIemci5ax6v3NXLj7Lrb++xIKL/sPRk+d3+Nxzjka6us4sGMjh97fQrz6PTz12yls2klZbC8jqefkNvXrKeRAzljeL5rNruJJ+Mo+ROG4KZRNOJXisvGUezyU992PKTKgaYigiEgvvVd9mB0/uJi/ydtD3lc2gzeHaDzJGxs3se/1XzFhz685g00A7M6fie+Maxlz5rUn9LyWiEhPkknHK0/+kLnvfI8RdpidOZM4WFyBKxhDwpePJaIkY2E8zQcJhA+QH6lmROIgpTS0a6eaEVT7xnM4fyKJ0CR8ZadQPH4qoydNpyg0Mks/ncjA0N0QQSVYIiIZ8K3vf4/bm/8XW8qWsjeWz5i6dcyw7QDs80+kedplTDjn0/hGntxDSyIimfH+vvfZvOoBSva+xIToNkbQ2Drrb9IZ9VZInaeURn8Z8fwxJEOT8I86heLx0xh10qnkF4ay+wOIDGBKsERE+tgbO2vZ8vAXuSLxW+KWw/68KcROPp8JCy8jOL4ia+uUiYgc0dQSIRltIsefh9/vx+vt3ZpIIsOZEiwRkX7gnCMSiRAMBJRQiYiIDGGaRVBEpB+YGcHg4FmnQ0RERDJPfcMiIiIiIiIZogRLREREREQkQ5RgiYiIiIiIZMiAmuTCzKqBndmOo4ORwMFsByH9Rtd7+NC1Hj50rYcXXe/hQ9d6+BiI1/ok51xZZzsGVII1EJnZmq5mCJGhR9d7+NC1Hj50rYcXXe/hQ9d6+Bhs11pDBEVERERERDJECZaIiIiIiEiGKMHq2f3ZDkD6la738KFrPXzoWg8vut7Dh6718DGorrWewRIREREREckQ9WCJiIiIiIhkiBIsERERERGRDFGC1Q0zu9DMtpjZVjP7Wrbjkcwxswlm9rKZbTSzd8zsS+nyEjN73sz+mv4+ItuxSmaYmdfM1pnZr9Pbk83stfT9/biZ+bMdo2SGmYXM7Ekz22xmm8zsb3RvD01mdnP6PXyDmT1qZkHd20OHmT1kZgfMbEObsk7vZUv5Qfq6v2Vmp2cvcjleXVzrO9Pv42+Z2a/MLNRm39fT13qLmS3NStDdUILVBTPzAvcAFwEzgL83sxnZjUoyKA78s3NuBrAQuCF9fb8GvOicmwK8mN6WoeFLwKY2298D/sM5dwpQB/xDVqKSvvCfwCrn3KnAbFLXXff2EGNm44EbgUrn3EzAC1yN7u2hZCVwYYeyru7li4Ap6a/rgR/1U4ySGSs5+lo/D8x0zs0C3gW+DpD+vHY1cFr6mHvTn9sHDCVYXZsPbHXObXPORYHHgEuzHJNkiHOuyjn3Rvp1I6kPYONJXeOH09UeBj6elQAlo8ysHPgo8F/pbQPOBZ5MV9G1HiLMrBg4G3gQwDkXdc7Vo3t7qMoBcs0sB8gDqtC9PWQ45/4A1HYo7upevhT4iUt5FQiZ2dh+CVR6rbNr7Zx7zjkXT2++CpSnX18KPOacizjntgNbSX1uHzCUYHVtPLC7zfaedJkMMWY2CZgLvAaMds5VpXftA0ZnKy7JqP8LfAVIprdLgfo2b9y6v4eOyUA18OP0kND/MrN8dG8POc65vcC/A7tIJVYNwFp0bw91Xd3L+tw2tK0Afpt+PeCvtRIsGdbMrAD4JXCTc+5Q230utYaB1jEY5MzsYuCAc25ttmORfpEDnA78yDk3F2iiw3BA3dtDQ/rZm0tJJdXjgHyOHmIkQ5ju5eHBzL5J6tGOR7Idy7FSgtW1vcCENtvl6TIZIszMRyq5esQ599/p4v1HhhSkvx/IVnySMYuAj5nZDlJDfc8l9YxOKD2sCHR/DyV7gD3OudfS20+SSrh0bw895wHbnXPVzrkY8N+k7nfd20NbV/eyPrcNQWa2HLgY+KT7YPHeAX+tlWB17S/AlPRsRH5SD9M9k+WYJEPSz+A8CGxyzt3VZtczwKfTrz8NPN3fsUlmOee+7pwrd85NInUfv+Sc+yTwMnBFupqu9RDhnNsH7DazaemijwAb0b09FO0CFppZXvo9/ci11r09tHV1Lz8DfCo9m+BCoKHNUEIZhMzsQlLD+z/mnGtus+sZ4GozC5jZZFITm7yejRi7Yh8kg9KRmf0tqWc3vMBDzrnvZDciyRQzOxP4I/A2HzyX8w1Sz2E9AUwEdgJXOec6PmArg5SZLQa+7Jy72MxOJtWjVQKsA65xzkWyGJ5kiJnNITWhiR/YBlxH6g+KureHGDO7HVhGavjQOuAzpJ7F0L09BJjZo8BiYCSwH/gW8BSd3MvpJPtuUsNEm4HrnHNrshC2nIAurvXXgQBQk672qnPuc+n63yT1XFac1GMev+3YZjYpwRIREREREckQDREUERERERHJECVYIiIiIiIiGaIES0REREREJEOUYImIiIiIiGSIEiwREREREZEMUYIlIiIiIiKSIUqwREREREREMuT/A1kv/Dy2Ma80AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2150,31 +2150,31 @@ " 21\n", " False\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " bAP.soma.v\n", - " 0.00876\n", - " 1.91e-07\n", + " 0.00966\n", + " 2.95e-08\n", " \n", " \n", " 22\n", " False\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step1.soma.v\n", - " 0.00979\n", - " 5.28e-06\n", + " 0.0113\n", + " 2.8e-06\n", " \n", " \n", " 23\n", " False\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step3.soma.v\n", - " 0.00961\n", - " 4.38e-05\n", + " 0.0096\n", + " 8.35e-06\n", " \n", " \n", "\n", @@ -2182,14 +2182,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "21 False 7 0.0847 0.0447 bAP.soma.v \n", - "22 False 7 0.0847 0.0447 Step1.soma.v \n", - "23 False 7 0.0847 0.0447 Step3.soma.v \n", + "21 False 7 0.0589 0.0664 bAP.soma.v \n", + "22 False 7 0.0589 0.0664 Step1.soma.v \n", + "23 False 7 0.0589 0.0664 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "21 0.00876 1.91e-07 \n", - "22 0.00979 5.28e-06 \n", - "23 0.00961 4.38e-05 " + "21 0.00966 2.95e-08 \n", + "22 0.0113 2.8e-06 \n", + "23 0.0096 8.35e-06 " ] }, "metadata": {}, @@ -2197,7 +2197,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAClCElEQVR4nOzdeXyU1fn//9c1M1nJBgmEJUAQFdkiKiBWcGur2KpotaJ1t9aPdlPr0mpbpf5qP/1Yv7VV26KtrWsR913riop1AwREcWEJENawZCXbzJzfH3MnTEI2yCSTkPfz4Twy97nPfc41czNxrpxzn9ucc4iIiIiIiEjH+eIdgIiIiIiIyL5CCZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkW7GzPLNzJlZIN6xSO9gZp+a2THxjkNEZF+gBEtERHo8M5ttZhXeo9bM6qK2X4p3fN2dc26sc25eLNv0kraKqEfQzJ6LZR8iIt2R6UbDIiKxZWYB51ywA8fnA6uBhI6001uZ2Sxgf+fcuc3s69C56Uo9Kda2mJkBq4CbnHMPxDseEZHOpBEsEZEYMLNCM/u5mS0FKs0sYGZTzOy/ZlZiZkuip2CZ2Twz+18z+9DMyszsGTPr10LbF5nZcjMrN7NVZvY/TfbPMLPFXjsrzWy6V55pZvea2UYzW29mvzUzfxuvY6SZvWFm28xsq5k9bGZZUfu2m9mh3vZgMyuuf11mdoo3alHivb7RTd6fa8xsqZmVmtlcM0ve83d6z7VwbpyZ7R9V5z4z+23U9knee1rincOCdvZ1jJkVmdkN3vtXaGbnRO3/tpl97J2rdV4yWL+vfmro981sLfCGV/6YmW3y3re3zWxsk7j/amYveaNE75rZQDP7k5ntMLPPzeyQdr5H32jPa9xLRwE5wBOd2IeISLegBEtEJHbOBr4NZAG5wAvAb4F+wDXAE2bWP6r++cDFwCAgCNzRQrtbgJOADOAi4PaoJGcy8ABwrdfvUUChd9x9Xrv7A4cAxwOXtPEaDPhfYDAwGhgKzAJwzq0Efg48ZGapwL+A+51z88zsQGAOcCXQH3gReM7MEqPaPhOYDowACoALmw3AbKqX2LT0mNrGa2hOw7lpa1TIS0j+CfwPkA3cDTxrZknt7GsgkWRiCHABcI+ZjfL2VRI571lePJeb2alNjj+ayHt/grf9EnAAMABYBDzcpP6ZwK+8PmuA97x6OcDjwB/bGXezzOwXrZ2PdjZzAfCEc66yI7GIiPQESrBERGLnDufcOudcFXAu8KJz7kXnXNg59yqwAPhWVP0HnXPLvC+dvwbObG6EyTn3gnNupYt4C3gFmObt/j7wT+fcq14/651zn5tZrtfXlc65SufcFuB24KzWXoBzboXXVo1zrpjIl/Ojo/b/HVgBfEAkMfylt2sm8IJ3bB1wG5ACfK3J+7PBObcdeA6Y0EIM851zWa085rf2GloQfW7acilwt3PuA+dcyDl3P5HEZcoe9Pdr7z18i0iifSaAc26ec+4T71wtJZKUHt3k2FneOavyjvmnc67cOVdDJNk92Mwyo+o/5Zxb6JyrBp4Cqp1zDzjnQsBcIsn1XnPO/b6189HW8V4yfgaRhF9EZJ+nBEtEJHbWRT0fDny3yV/6pxJJSpqrvwZIIDLq0IiZnWhm73vT80qIJE719YYCK5uJZbjX3sao/u8mMgrSIjPLNbNHvCmFZcBDzcT0d2AccKf3pR8iI15r6is458Le6xsSddymqOc7gbTWYomxdW1XaTAcuLrJuRtK5DW2x44mIzVr6o81s8PN7E1vamUpcBm7v78NsZqZ38x+b5Gpn2XsGp2MPmZz1POqZra78n1uzneA7cBbcY5DRKRLKMESEYmd6FWD1hEZoYr+a38f59zvo+oMjXo+DKgDtkY36E1Le4LIiFCuN2LwIpGpfPX9jGwmlnVERl1yovrPcM6NbaZutN95r2O8cy6DyEhcfV+YWRrwJ+BeYJbtum5sA5HEpL6eea9vfRv97cbMplnj1eeaPqa13cpumq7otBNIjdoeGPV8HXBLk3OX6pyb086++ppZn6jtYUTeH4B/A88CQ51zmcBsot7fZmL9HjAD+AaQCeR75U2P6TTe9WQtno92NHEB8IDTqloi0ksowRIR6RwPASeb2QneKESytwBCXlSdc81sjDeF6mbgcW9aV7REIAkoBoJmdiKRa6nq3QtcZGZfNzOfmQ0xs4OccxuJTCX8f2aW4e0baWZNp6M1lQ5UAKVmNoTItV3R/gwscM5dQmTq22yv/FHg214cCcDVRBK8/7b1RjXlnHvHOZfWyuOdPW2zGYuB73nnZjqNp+n9HbjMG20yM+tjkcUp0qFhYYn72mj/N2aW6CWDJwGPeeXpwHbnXLV3/dz32mgnncj7uI1IQvi7PXiNMeGc+11r56O1Y71/78cC93dNtCIi8acES0SkEzjn1hEZebiBSHK0jkiyEv1790Ei16VsApKBnzbTTrlX/iiwg8gX8mej9n+It/AFUEpkGlb9SNL5RBK0z7xjH6fxFMXm/AY41GvrBeDJ+h1mNoPIIhWXe0U/Aw41s3Occ18QGe26k8go3MnAyc652jb6i5criMRYApwDPF2/wzm3APgBcBeR920FjRfkGAq820rbm7zjNhBZkOIy59zn3r4fAjebWTlwI5Hz2poHiEwxXE/kPL7f1gvrZs4D3vMWSBER6RV0HywRkTgws3nAQ865f8Q7Fmk/b1XEJUCBt5hH0/3HEDmveU33iYhI7xCIdwAiIiI9hTciN7rNiiIi0mtpiqCISC9jZrNbWLBgdttHS09kZsNaWahiWLzjExHZl2iKoIiIiIiISIxoBEtERERERCRGutU1WDk5OS4/Pz/eYYiIiIiIiLRq4cKFW51z/ZuWd6sEKz8/nwULFsQ7DBERERERkVaZ2ZrmyjVFUEREREREJEaUYImIiIiIiMSIEiwREREREZEY6VbXYDWnrq6OoqIiqqur4x2KdAPJycnk5eWRkJAQ71BkH/bwB2t4+8ti/vK9Qwn49XcoERERab9un2AVFRWRnp5Ofn4+ZhbvcCSOnHNs27aNoqIiRowYEe9wZB/26jMPcY7/dT5b8CsKDj8u3uGIiIhID9Lt/zRbXV1Ndna2kivBzMjOztZopnSq6roQ3/O/zjf9C2Hxv+MdjoiIiPQw3T7BApRcSQP9W5DOtq2ylv5WCkDmjk/iHI2IiIj0ND0iwRIR6SrbKmrobyUADK5eAcHa+AYkIiIiPYoSrHYwM66++uqG7dtuu41Zs2bFL6AoxxxzTKs3Zz711FOZMmVKo7JZs2YxZMgQJkyYwLhx43j22Wc7O0yRHmNbRQ05lLLD+pJAELejMN4hiYiISA+iBKsdkpKSePLJJ9m6dWtM23XOEQ6HY9pmtJKSEhYuXEhpaSmrVq1qtO+qq65i8eLFPPbYY1x88cWdGodIT1Jeup1kq2NL5ngAdmxc1cYRIiIiIrsowWqHQCDApZdeyu23377bvuLiYk4//XQmTZrEpEmTePfdd4HIKNFtt93WUG/cuHEUFhZSWFjIqFGjOP/88xk3bhzr1q3j2muvZdy4cYwfP565c+cCMG/ePI455hjOOOMMDjroIM455xycc83G9+CDDzaMRn344YcN5U8++SQnn3wyZ511Fo888kizx44ePZpAINAoefzFL37BmDFjKCgo4JprrgGgsLCQ4447joKCAr7+9a+zdu1aAC688EIuv/xypkyZwn777ce8efO4+OKLGT16NBdeeGFDm5dffjkTJ05k7Nix3HTTTbvFUVpayvDhwxsSvcrKSoYOHUpdXV2zcYt0lnDFFgBqBh4KQPmmFfEMR0RERHqYbr9Me7TfPPcpn20oi2mbYwZncNPJY9us96Mf/YiCggKuu+66RuVXXHEFV111FVOnTmXt2rWccMIJLF++vNW2vvrqK+6//36mTJnCE088weLFi1myZAlbt25l0qRJHHXUUQB8/PHHfPrppwwePJgjjzySd999l6lTp+7W3s6dO1m8eDFvv/02F198McuWLQNgzpw53HjjjeTm5nL66adzww037HbsBx98gM/no3///gBs27aNp556is8//xwzo6SkBICf/OQnXHDBBVxwwQX885//5Kc//SlPP/00ADt27OC9997j2Wef5ZRTTuHdd9/lH//4B5MmTWLx4sVMmDCBW265hX79+hEKhfj617/O0qVLKSgoaIgjMzOTCRMm8NZbb3Hsscfy/PPPc8IJJ+h+V9Ll/JXFACQPnUDdcj+1W9fEOSIRERHpSTo8gmVmQ83sTTP7zMw+NbMrvPJZZrbezBZ7j291PNz4ycjI4Pzzz+eOO+5oVP7aa6/x4x//mAkTJnDKKadQVlZGRUVFq20NHz684bqo+fPnc/bZZ+P3+8nNzeXoo4/mo48+AmDy5Mnk5eXh8/mYMGEChYWFzbZ39tlnA3DUUUdRVlZGSUkJmzdv5quvvmLq1KkceOCBJCQkNCReALfffjsTJkzgmmuuYe7cuQ2r82VmZpKcnMz3v/99nnzySVJTUwF47733+N73vgfAeeedx/z58xvaOvnkkzEzxo8fT25uLuPHj8fn8zF27NiGmB999FEOPfRQDjnkED799FM+++yz3V7HzJkzG0bwHnnkEWbOnNnq+yjSGaw28vnNHZDLRtcPStfFOSIRERHpSWIxghUErnbOLTKzdGChmb3q7bvdOXdbK8fukfaMNHWmK6+8kkMPPZSLLrqooSwcDvP++++TnJzcqG4gEGh0XVP0vZv69OnTrv6SkpIanvv9foLBYLP1mi5dbmY8+uij7Nixo+GGvGVlZcyZM4dbbrkFiFyDVT/9r2ncH374Ia+//jqPP/44d911F2+88Ua74vT5fI1i9vl8BINBVq9ezW233cZHH31E3759ufDCC5u9l9Upp5zCDTfcwPbt21m4cCHHHacbvErXC9dF/m1mpKfzhW8AAyuK4hyRiIiI9CQdHsFyzm10zi3ynpcDy4EhHW23O+rXrx9nnnkm9957b0PZ8ccfz5133tmwvXjxYgDy8/NZtGgRAIsWLWL16tXNtjlt2jTmzp1LKBSiuLiYt99+m8mTJ+9RXPWjPvPnzyczM5PMzEzmzJnDyy+/3HDd18KFC1u8DitaRUUFpaWlfOtb3+L2229nyZIlAHzta19rOP7hhx9m2rRp7Y6vrKyMPn36kJmZyebNm3nppZearZeWlsakSZO44oorOOmkk/D7/e3uQyRWXF0VABZIoSRxIOnVG+IckYiIiPQkMV3kwszygUOAD7yiH5vZUjP7p5n1beGYS81sgZktKC4ujmU4neLqq69utCDEHXfcwYIFCygoKGDMmDHMnj0bgNNPP53t27czduxY7rrrLg488MBm2zvttNMoKCjg4IMP5rjjjuPWW29l4MCBexRTcnIyhxxyCJdddhn33nsvhYWFrFmzptHy7CNGjCAzM5MPPvig2Ta+9a1vsWHDBsrLyznppJMoKChg6tSp/PGPfwTgzjvv5F//+hcFBQU8+OCD/PnPf253fAcffDCHHHIIBx10EN/73vc48sgjG/bdeOONjZaJnzlzJg899JCmB0r8BL3R1YRkdqYOITO0HYI18Y1JREREegxraWW6PW7ILA14C7jFOfekmeUCWwEH/H/AIOfcxa21MXHiRNf0nk7Lly9n9OjRMYlR9g36NyGd6Zm7b2LGxj/BtSt54pF7OX3d7+AniyB7ZLxDExERkW7EzBY65yY2LY/JCJaZJQBPAA87554EcM5tds6FnHNh4O/Ans17ExGJh/oRrEAy/n7DAaje2vwUXxEREZGmYrGKoAH3Asudc3+MKh8UVe00YFnTY0VEuhsLedMBA8mk9s8HoHSTlmoXERGR9onFKoJHAucBn5jZYq/sBuBsM5tAZIpgIfA/MehLRKRT+UI1BPET8AfIzB0GQPW2tXGOSkRERHqKDidYzrn5gDWz68WOti0i0tV8wWpqLZEAMLBfJltdBqGS9fEOS0RERHqImK4iKCLS0/nCNdRZIgC5Gclscv3wVWipdhEREWkfJVgiIlH84RrqLHLD7OQEP9t92STt3BznqERERKSnUILVTk8//TRmxueff95incLCQsaNGxezPi+88EIef/zxFvdfeeWVDBkyhHA43FB233330b9/fyZMmMCYMWP4+9//HrN4RHqDQKiGkC+xYbs8cQBptVviGJGIiIj0JEqw2mnOnDlMnTqVOXPmNLs/GAx2uI9QKNTuuuFwmKeeeoqhQ4fy1ltvNdo3c+ZMFi9ezLx587jhhhvYvFl/fRdpr4CrIehLbtiuSR1IergM6qriGJWIiIj0FEqw2qGiooL58+dz77338sgjjzSUz5s3j2nTpnHKKacwZswYIJJonXPOOYwePZozzjiDnTt3AvD6669zyCGHMH78eC6++GJqaiJLQefn5/Pzn/+cQw89lMcee2y3vl977TUmTpzIgQceyPPPP9+o77Fjx3L55Ze3mPQNGDCAkSNHsmbNriWm77jjDsaMGUNBQQFnnXUWANu3b+fUU0+loKCAKVOmsHTpUgBmzZrFBRdcwLRp0xg+fDhPPvkk1113HePHj2f69OnU1dUBcPPNNzNp0iTGjRvHpZdeStObV4fDYfLz8ykpKWkoO+CAA5T4SbeUEG48ghVOHxx5UqbrsERERKRtsVimveu89AvY9Els2xw4Hk78fatVnnnmGaZPn86BBx5IdnY2Cxcu5LDDDgNg0aJFLFu2jBEjRlBYWMgXX3zBvffey5FHHsnFF1/MX//6V3784x9z4YUX8vrrr3PggQdy/vnn87e//Y0rr7wSgOzsbBYtWtRs34WFhXz44YesXLmSY489lhUrVpCcnMycOXM4++yzmTFjBjfccAN1dXUkJCQ0OnbVqlWsWrWK/fffv6Hs97//PatXryYpKakh4bnppps45JBDePrpp3njjTc4//zzWbx4MQArV67kzTff5LPPPuOII47giSee4NZbb+W0007jhRde4NRTT+XHP/4xN954IwDnnXcezz//PCeffHJDnz6fjxkzZvDUU09x0UUX8cEHHzB8+HByc3PbfZpEukrA1RLyp+zazhoC66B2RxGJ2SPjGJmIiIj0BBrBaoc5c+Y0jPacddZZjUaMJk+ezIgRIxq2hw4dypFHHgnAueeey/z58/niiy8YMWIEBx54IAAXXHABb7/9dsMxM2fObLHvM888E5/PxwEHHMB+++3H559/Tm1tLS+++CKnnnoqGRkZHH744fznP/9pOGbu3LlMmDCBs88+m7vvvpt+/fo17CsoKOCcc87hoYceIhCI5Nfz58/nvPPOA+C4445j27ZtlJWVAXDiiSeSkJDA+PHjCYVCTJ8+HYDx48dTWFgIwJtvvsnhhx/O+PHjeeONN/j00093ex0zZ85k7ty5ADzyyCOtvmaReEp0tYT9u0awknMi98Iq26J7YYmIiEjbetYIVhsjTZ1h+/btvPHGG3zyySeYGaFQCDPjD3/4AwB9+vRpVN/MWt1uTtM22mrvP//5DyUlJYwfPx6AnTt3kpKSwkknnQREkpm77rqr2fZeeOEF3n77bZ577jluueUWPvmk9RHBpKTIamo+n4+EhISGeHw+H8FgkOrqan74wx+yYMEChg4dyqxZs6iurt6tnSOOOIIVK1ZQXFzM008/za9+9atW+xWJB+ccCa6WsH/XNViZAyIJVmXxWnLiFZiIiIj0GBrBasPjjz/Oeeedx5o1aygsLGTdunWMGDGCd955p9n6a9eu5b333gPg3//+N1OnTmXUqFEUFhayYsUKAB588EGOPvrodvX/2GOPEQ6HWblyJatWrWLUqFHMmTOHf/zjHxQWFlJYWMjq1at59dVXG673akk4HGbdunUce+yx/N///R+lpaVUVFQwbdo0Hn74YSBybVdOTg4ZGRntiq8+mcrJyaGioqLFVQ/NjNNOO42f/exnjB49muzs7Ha1L9KVaoJhkqnFBXYlWANysilzqQRLiuIYmYiIiPQUSrDaMGfOHE477bRGZaeffnqLC0uMGjWKv/zlL4wePZodO3Zw+eWXk5yczL/+9S+++93vMn78eHw+H5dddlm7+h82bBiTJ0/mxBNPZPbs2YTDYV5++WW+/e1vN9Tp06cPU6dO5bnnnmu2jUsuuYQFCxYQCoU499xzGT9+PIcccgg//elPycrKYtasWSxcuJCCggJ+8YtfcP/997fz3YGsrCx+8IMfMG7cOE444QQmTZrUsG/27NnMnj27YXvmzJk89NBDmh4o3VZNMEyS1eH8SQ1lAzOS2ej6YeVa5EJERETaZk1XfIuniRMnugULFjQqW758OaNHj45TRNId6d+EdJYt5dUEbhtJ8fCTGHXx3Q3l7846iuGpteRd934coxMREZHuxMwWOucmNi3XCJaIiKemLkwSdRBIalReljCAtBrdbFhERETapgRLRMRTUxckmVpISGlcnpJLRmg7hOriFJmIiIj0FD0iwepO0xglvvRvQTpTdW0tfnP4EpIblYfSB+HDQfmmOEUmIiIiPUW3T7CSk5PZtm2bvlgLzjm2bdtGcnJy25VF9kJddSUAviYjWP7MIZH9O7SSoIiIiLSu0++DZWbTgT8DfuAfzrk9uplVXl4eRUVFFBcXd0p80rMkJyeTl5cX7zBkHxWsqQLYbQQrOXsoAKVb1pIz4oguj0tERER6jk5NsMzMD/wF+CZQBHxkZs865z5rbxsJCQmMGDGis0IUEWlQVxO5l5w/KbVReXpuPgA7t67t6pBERESkh+nsKYKTgRXOuVXOuVrgEWBGJ/cpIrJXgtWRESx/YuMRrP45A9jpkjRFUERERNrU2QnWEGBd1HaRV9bAzC41swVmtkDTAEUknkJ19QlW4xGsgVkpbHJ9oWx9PMISERGRHiTui1w45+5xzk10zk3s379/vMMRkV4s6E0RTGg6RTApQLFlk1C5OR5hiYiISA/S2QnWemBo1HaeVyYi0u2E66oBCCQ1XkXQzChN6E+fGiVYIiIi0rrOTrA+Ag4wsxFmlgicBTzbyX2KiOyVcG1kimBCcupu+6pTBpIZ3ArhcFeHJSIiIj1IpyZYzrkg8GPgP8By4FHn3Ked2aeIyN6qH8FKbDKCBRBMG0SAEFTqWlERERFpWaffB8s59yLwYmf3IyLSUc5b5CKQ1Ge3fb7MwbARgiVFBNJzuzo0ERER6SHivsiFiEh3UT+CRSBpt31J/SKXk5YV615YIiIi0jIlWCIi9YL1CdbuUwTTBgwDoHJLYRcGJCIiIj2NEiwRkXqtjGBl98+jyiVSt21NFwclIiIiPYkSLBERjzWMYCXvtm9QVgpFrj9WogRLREREWqYES0TE4wtWUUcA/Luv/5OVmsBG609ShW7lJyIiIi1TgiUi4vGHqqix3UevwLvZcNIgMms2dHFUIiIi0pMowRIR8fhDVdT6mk+wAKr7DKVPuByqS7swKhEREelJlGCJiHgSQtWtJlj0jawk6Eq0VLuIiIg0TwmWiIgnIVxNXSsJVlJ2PgDlm1Z2UUQiIiLS0yjBEhHxJIarCfp3vwdWvYzB+wNQtlEJloiIiDRPCZaIiCfRVRPytzyCNWjgECpdEjVbV3dhVCIiItKTKMESEfEkuWpCgdQW9+f1S/XuhaVrsERERKR5SrBERADnHMmuhnArI1h9kgJs9uWSXKl7YYmIiEjzlGCJiAA1wTApVkM4oeURLICy5MFk1WwA57ooMhEREelJlGCJiABVtSFSqIFAy4tcANSm5ZHqdkJ1SdcEJiIiIj2KEiwREaA6GCKFWkjs02o96zccgND2wi6ISkRERHqaDiVYZvYHM/vczJaa2VNmluWV55tZlZkt9h6zYxKtiEgn2VlVRYKFsITWR7CSc/YDoGT9V10RloiIiPQwHR3BehUY55wrAL4Ero/at9I5N8F7XNbBfkREOtXOinIAAslprdbLzDsAgIqNSrBERERkdx1KsJxzrzjngt7m+0Bex0MSEel61TvrE6zWpwgOyc1lq8sgtFU3GxYREZHdxfIarIuBl6K2R5jZx2b2lplNa+kgM7vUzBaY2YLi4uIYhiMi0n415dsBSOiT2Wq9wVkprHW5BEoLuyAqERER6WkCbVUws9eAgc3s+qVz7hmvzi+BIPCwt28jMMw5t83MDgOeNrOxzrmypo045+4B7gGYOHGi1j0WkbiordwBQFJadqv1Evw+ihMGk79zeVeEJSIiIj1MmwmWc+4bre03swuBk4CvOxe5MYxzrgao8Z4vNLOVwIHAgo4GLCLSGUI7SwBISm89wQKo6DOMrLK3oa4aElq+MbGIiIj0Ph1dRXA6cB1winNuZ1R5fzPze8/3Aw4AVnWkLxGRzuR2RkawkjP6tVk3lJWPDwclazo7LBEREelhOnoN1l1AOvBqk+XYjwKWmtli4HHgMufc9g72JSLSacy7cXBSn7YTrISckQDs3KyVBEVERKSxNqcItsY5t38L5U8AT3SkbRGRLlVdGvmZ3PoiFwAZQw6ERVBa9AWp407q5MBERESkJ4nlKoIiIj2WVZdQSQr42/6708CBQyhzKdRs0VLtIiIi0pgSLBERIFBbxk5/ervqDs9JY63LxUpWd3JUIiIi0tMowRIRARKCZdT409pVNy0pwEb/IFIr1nZyVCIiItLTKMESEQHSgiXUJPZtd/2ylDz61m6EULAToxIREZGeRgmWiPR6obCjn9tBTXL/dh9Tm5FPgBCUFXViZCIiItLTKMESkV5va3k1A9iBSx/Y7mP83lLtdcVa6EJERER2UYIlIr3eluLNJFmQhIxB7T4mbeABAJSs/7yzwhIREZEeSAmWiPR6pZsji1UkZw9p9zEDhuRT7RKo2qwRLBEREdlFCZaI9HqV2yLXUWX0H9ruY4Zlp7HWDYBtqzorLBEREemBlGCJSK8X3FGfYA1r9zH905NYZ4NIKl/TWWGJiIhID6QES0R6vYSyNQTx4evb/hEsM6MkaQhZNevBuU6MTkRERHoSJVgi0uulVKxlmz8X/Al7dFx1+nCSXA2Ub+qkyERERKSnUYIlIr2ac46+NespT83b42Ot34hIG9u10IWIiIhEKMESkV5tR2UteW4TdRntv/6qXoq3VHvZhq9iHZaIiIj0UEqwRKRXW7eukCyrxD/goD0+NnvISILOR+XGLzshMhEREemJAvEOQEQknkpWfwxA+vCD9/jYYTmZFLn++LRUu4iIiHg6NIJlZrPMbL2ZLfYe34rad72ZrTCzL8zshI6HKiISezUblgEwYOShe3zs4KwU1jKAxNLCGEclIiIiPVUsRrBud87dFl1gZmOAs4CxwGDgNTM70DkXikF/IiIxk7T9c7b7+tIvvf8eH5sY8LE1YQgTq96JLNVu1gkRioiISE/SWddgzQAecc7VOOdWAyuAyZ3Ul4jIXnHOMWDnSram7L/XbexMG0ZquBKqdsQwMhEREempYpFg/djMlprZP82sr1c2BFgXVafIK9uNmV1qZgvMbEFxcXEMwhERaZ/iskpGuHXUZu/5Ahf1wln7RZ5sXx2jqERERKQnazPBMrPXzGxZM48ZwN+AkcAEYCPw//Y0AOfcPc65ic65if377/kUHRGRvbXmy2UkWx3JeeP3uo2k3JEAVG3WSoIiIiLSjmuwnHPfaE9DZvZ34Hlvcz0wNGp3nlcmItJtlKxZDMCA/fd8gYt6WYN33Qsr5bBYRCUiIiI9WUdXERwUtXkasMx7/ixwlpklmdkI4ADgw470JSISa27Tp4TwkTF03F63kTegHxtdP+qKV8QwMhEREempOrqK4K1mNgFwQCHwPwDOuU/N7FHgMyAI/EgrCIpId5NW+iWbA0MYnJCy120M65fKpy6X4aVrYhiZiIiI9FQdSrCcc+e1su8W4JaOtC8i0lnqQmGG1K6mtN9YBnegnfTkBDb6BzO28uOYxSYiIiI9V2ct0y4i0q2t2biF4bYZlzumw21VpOaRHtwONeUxiExERER6MiVYItIrbfgqMuKUPuzgDrcVzBwRebKjsMNtiYiISM+mBEtEeqWd65YCHVtBsF5CTuReWHXFKzvcloiIiPRsSrBEpFcKbF1OFckkeclRR6QNPhCA8o26F5aIiEhvpwRLRHqlvhVfsTl5BPg6/mtwcG4u21w61Zu1VLuIiEhvpwRLRHqdiuo6RoQKqcwaFZP28rNTWeNyse2rYtKeiIiI9FxKsESk11lduIp+VoF/4N7fYDha//QkivxDSS/7CpyLSZsiIiLSMynBakXxhkK+WPAGVeUl8Q5FRGKobM0SANKHj49Je2bGjsyxpIVKoGx9TNoUERGRnqlDNxre1616+98c/vn/wfOw0QawOSmfmrSh+PoOJ7H/CFIHjCBr0H5k5wzE5/fHO1wRaYdw2BHcuAyA7P06voJgPd+QCVACdesWkJCZF7N2JTacc4TCjlCojnBdLeFgLaFwCBcOEw6HCYW85y5EOBQiHArjnCMcDoELY7jIw8DwYT4fDgMzLOoR2fZ52z7AwGdAdD1fVH0/NBwHBpjPh2GYzzDv76BW34bPIvvqj6dx/xaDawpFRKRjlGC1YuQx57Ko3zCqipaRvONz+u4spH/xJ6RvrYKvdtULOWOHpVPmy6IykElVQl/qEjIgMRVfYiqWmEo4kIpLTMUCSQT8AXz1D5+PsPlx+HDm/Q87HALCEA5jLoS5MLgQzvsy4MIhwuEghCNlkZ+R7cgjiIWDOBfCvG3qn3s/zQWjnu96+FwQXBhfOIQRwuciD3PhyHMi9fwN+8KR50Q/DwORLwoOhzkwHI7Iz/p9NNpuvpxmynft6xjX0GpXHbe39q6/SJ9dG2tXv6ett9myrxFkq/UlJ3NAzPrrf8AkqpYlUr7sNQaMO7XFelvKq0lJ8JOenBCzvvclzjnKyisp3VFMddlWaiq2EarYRnBnCaHqSkI1FVBbATWVWF0lvuBOAqGdJIaqSAxXkeBq8LsgAVdHwNWRQJCE+p8ESbLeM4Uz7CK/Les/X67Rb9z6svryXZ9Bh+Gs8f7ersX/7/Sef069/l9BrL57yN6ZyzcZ/N0/MH3coHiH0i5KsFqRM3AYOQPPbVTmnGPr1i1sL/qKyuLV1G1fS7C8GKvcSlLtDlLqdjCgaiXJlTtJdtWkUEPAwnGJP+TMS3383sMXeZifcFS5s8jzsFe+62eAOvPjLDFS5vPjLFLP2a7nmB/n21WGzxf5Cy3s/pfd6F9Rtut/+l5Bk+2I+v/Rt7S/K+3pL1jXJEHcK3t5Tc/e/8+gA/8T2evrj/byNbbQn8P7twe7RgW8f0eRbSNl5NfI2btgm3XEgUOY7wqYvOoVCId3W51w/bYyPnjqLiasvZ9lOUdx3E//HsPeu7eqmjq2bF5P2ZYiqndsoLZ0E5Rvwr9zM4lVxSTVlpAcLKNPuJx0V06m1ZDZRps7SaKKFGp8KdRYCjW+ZGoCaVT6cnC+hMjDn4jzJ0LUw/kTCPsSwRfwRo8io1Fmvl2/u+rLfAb4cRZJOJwzcFF/LHIhnKv/dxj2/vk7r04Yc4ALN5Q17It6Di5yvIv8fyLSRLjxZ8lrv/5j4ojst4b6rkkf9S25Xe00rVPfW9NjHJG+PPV/1FKSBUoxYK/fg33krevsz8E+8jZ1irS0gxnaLzXeYbSbEqw9ZGbk9M8lp38uMLXN+sFQmIqaaoJVFQSrK6itqSYUqiMYDFFXF8SFg5HRI8KYNw0FiyQ95vM3fAHA58fv92N+P35/AJ/Pj6/+eSABnz8Bf8CP35+AP5CA3x/A7/OR6NPHVaQrZKYm8FX/4/nmtt9Ru/RxEiecCcDajVtY9MLdHLbufr5jxdRYAunbX418sbWe//l04TBbizexed0KSjeuJLh9Lf7ydSRXbiCjdjNZoW30c6UMb+YPTeWksMP6UhnIojx5ICWJowgn98VS++HvE3kE+vQjMT2bpLQsUtIySUvPJCkljVSfn57zv1oREemIKfEOYA+Z60YrXk2cONEtWLAg3mGIiOyV91dsIeOBb7CffzPLB86gdscGxlZ9RJpVU5RyECnH/5KPl33GN1b+L5WXvk+fwaPjHXK7uGAt29d/xdY1n1K18SvC21eSWL6O9OpN9A9tJtVqGtWvIoli/wBKEwdSm5KLSxtAIGMgSX2HkNJvEGnZQ8gckEdCclqcXpGIiEjHmdlC59zEpuUawRIRiZEp+w/g8WP/zvZ51zJxw5Ns92WzZuDxDDr2UvJGTQUz+lkerPxfit5/ilHf6T4JlgsF2bphJVvXLGfnxi9wW1eQXF5Iv+p1DAhtJtvCZHt1S10ftvhz2Zo0lI3pU/D3HUbqgBH0HTSSnLz9SUnPYdg+MDonIiKyNzSCJSISY+GwozYUJjlh99VFa4NhVvz2MPok+hl+/UddOk3QhcMUb1zD1jWfUbnhc8LbVpJUWkjf6rUMCm0k0YINdStdEhv8g9mRPIzqjHx8OfvTZ9Ao+g8fw8CBgwkEtHKqiIj0bp0ygmVmc4FR3mYWUOKcm2Bm+cBy4Atv3/vOucs60peISE/h8xnJvuYTkMSAj7UjzmT66t+zZv5chk87K6Z9h0NhthRvoLhwOZUbPie0dQVJpavpW7WWgaENDLAa6tdOrHEJbPAPYlvyMNanHwU5+9Nn4IHkDBtD7pDhHKAkSkREZI91KMFyzs2sf25m/w8ojdq90jk3oSPti4jsi444/Qq+vO0RBr5+NcXZg+k/5qg9Or6quoaNRavYXrSCnVtWEd6xhqSyNWRVr2VQcD0DrZKBXt2g87HJl8v25KEsS58E2fuTOuhAsoeNITdvJCMCAUbE/iWKiIj0WjG5Bssi6x+fCRwXi/ZERPZlmWmpFJ7+AKWPn8HQR09mefrXqBl2NIF+Q7GkdIJ1tYTqqqkt30awbDNUbiVQtZU+tVvoV7eZXLeV/SzMflFtFlsOxUnDWNHveMjen5TcA+g3bAwDho0iLyER3fpYRESka8RqkYtpwGbnXNTtdxlhZh8DZcCvnHPvNHegmV0KXAowbNiwGIUjItK9HTz+YNb0e5tXnvod44tfYNCn/22x7k6SKfFlUR7IZnPmwWzIGEogO5/03P3ol7c/fQeOoH9CMv27MH4RERFpXpuLXJjZa9Aw2yTaL51zz3h1/gascM79P287CUhzzm0zs8OAp4Gxzrmy1vrSIhci0hsFgyHWrVtN1Y5NhKtKSUhKIiExhT6Z2fTtP4TE1PR4hygiIiJN7PUiF865b7TRcAD4DnBY1DE1QI33fKGZrQQOBJQ9iYg0EQj4GTFifxixf7xDERERkQ7yxaCNbwCfO+eK6gvMrL+Z+b3n+wEHAKti0JeIiIiIiEi3FYtrsM4C5jQpOwq42czqgDBwmXNuewz6EhERERER6bY6nGA55y5spuwJ4ImOti0iIiIiItKTtLnIRVcys2JgTbzjaCIH2BrvIKTL6Hz3HjrXvYfOde+i89176Fz3Lt3xfA93zu22iG+3SrC6IzNb0NzqILJv0vnuPXSuew+d695F57v30LnuXXrS+Y7FIhciIiIiIiKCEiwREREREZGYUYLVtnviHYB0KZ3v3kPnuvfQue5ddL57D53r3qXHnG9dgyUiIiIiIhIjGsESERERERGJESVYIiIiIiIiMaIEqxVmNt3MvjCzFWb2i3jHI7FjZkPN7E0z+8zMPjWzK7zyfmb2qpl95f3sG+9YJTbMzG9mH5vZ8972CDP7wPt8zzWzxHjHKLFhZllm9riZfW5my83sCH22901mdpX3O3yZmc0xs2R9tvcdZvZPM9tiZsuiypr9LFvEHd55X2pmh8YvctlTLZzrP3i/x5ea2VNmlhW173rvXH9hZifEJehWKMFqgZn5gb8AJwJjgLPNbEx8o5IYCgJXO+fGAFOAH3nn9xfA6865A4DXvW3ZN1wBLI/a/j/gdufc/sAO4PtxiUo6w5+Bl51zBwEHEznv+mzvY8xsCPBTYKJzbhzgB85Cn+19yX3A9CZlLX2WTwQO8B6XAn/rohglNu5j93P9KjDOOVcAfAlcD+B9XzsLGOsd81fve3u3oQSrZZOBFc65Vc65WuARYEacY5IYcc5tdM4t8p6XE/kCNoTIOb7fq3Y/cGpcApSYMrM84NvAP7xtA44DHveq6FzvI8wsEzgKuBfAOVfrnCtBn+19VQBIMbMAkApsRJ/tfYZz7m1ge5Pilj7LM4AHXMT7QJaZDeqSQKXDmjvXzrlXnHNBb/N9IM97PgN4xDlX45xbDawg8r2921CC1bIhwLqo7SKvTPYxZpYPHAJ8AOQ65zZ6uzYBufGKS2LqT8B1QNjbzgZKon5x6/O97xgBFAP/8qaE/sPM+qDP9j7HObceuA1YSySxKgUWos/2vq6lz7K+t+3bLgZe8p53+3OtBEt6NTNLA54ArnTOlUXvc5F7GOg+Bj2cmZ0EbHHOLYx3LNIlAsChwN+cc4cAlTSZDqjP9r7Bu/ZmBpGkejDQh92nGMk+TJ/l3sHMfknk0o6H4x1LeynBatl6YGjUdp5XJvsIM0sgklw97Jx70iveXD+lwPu5JV7xScwcCZxiZoVEpvoeR+QanSxvWhHo870vKQKKnHMfeNuPE0m49Nne93wDWO2cK3bO1QFPEvm867O9b2vps6zvbfsgM7sQOAk4x+26eW+3P9dKsFr2EXCAtxpRIpGL6Z6Nc0wSI941OPcCy51zf4za9Sxwgff8AuCZro5NYss5d71zLs85l0/kc/yGc+4c4E3gDK+azvU+wjm3CVhnZqO8oq8Dn6HP9r5oLTDFzFK93+n151qf7X1bS5/lZ4HzvdUEpwClUVMJpQcys+lEpvef4pzbGbXrWeAsM0sysxFEFjb5MB4xtsR2JYPSlJl9i8i1G37gn865W+IbkcSKmU0F3gE+Ydd1OTcQuQ7rUWAYsAY40znX9AJb6aHM7BjgGufcSWa2H5ERrX7Ax8C5zrmaOIYnMWJmE4gsaJIIrAIuIvIHRX229zFm9htgJpHpQx8DlxC5FkOf7X2Amc0BjgFygM3ATcDTNPNZ9pLsu4hME90JXOScWxCHsGUvtHCurweSgG1etfedc5d59X9J5LqsIJHLPF5q2mY8KcESERERERGJEU0RFBERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwRkW7GzPLNzJlZIN6xSO9gZp+a2THxjkNEZF+gBEtERHo8M5ttZhXeo9bM6qK2X4p3fN2dc26sc25eLNv0kraKqEfQzJ6LZR8iIt2ROefiHYOIyD7FzALOuWAHjs8HVgMJHWmntzKzWcD+zrlzm9nXoXPTlXpSrG0xMwNWATc55x6IdzwiIp1JI1giIjFgZoVm9nMzWwpUmlnAzKaY2X/NrMTMlkRPwTKzeWb2v2b2oZmVmdkzZtavhbYvMrPlZlZuZqvM7H+a7J9hZou9dlaa2XSvPNPM7jWzjWa23sx+a2b+Nl7HSDN7w8y2mdlWM3vYzLKi9m03s0O97cFmVlz/uszsFG/UosR7faObvD/XmNlSMys1s7lmlrzn7/Sea+HcODPbP6rOfWb226jtk7z3tMQ7hwXt7OsYMysysxu896/QzM6J2v9tM/vYO1frvGSwfl/91NDvm9la4A2v/DEz2+S9b2+b2dgmcf/VzF7yRoneNbOBZvYnM9thZp+b2SHtfI++0Z7XuJeOAnKAJzqxDxGRbkEJlohI7JwNfBvIAnKBF4DfAv2Aa4AnzKx/VP3zgYuBQUAQuKOFdrcAJwEZwEXA7VFJzmTgAeBar9+jgELvuPu8dvcHDgGOBy5p4zUY8L/AYGA0MBSYBeCcWwn8HHjIzFKBfwH3O+fmmdmBwBzgSqA/8CLwnJklRrV9JjAdGAEUABc2G4DZVC+xaekxtY3X0JyGc9PWqJCXkPwT+B8gG7gbeNbMktrZ10AiycQQ4ALgHjMb5e2rJHLes7x4LjezU5scfzSR9/4Eb/sl4ABgALAIeLhJ/TOBX3l91gDvefVygMeBP7Yz7maZ2S9aOx/tbOYC4AnnXGVHYhER6QmUYImIxM4dzrl1zrkq4FzgRefci865sHPuVWAB8K2o+g8655Z5Xzp/DZzZ3AiTc+4F59xKF/EW8Aowzdv9feCfzrlXvX7WO+c+N7Ncr68rnXOVzrktwO3AWa29AOfcCq+tGudcMZEv50dH7f87sAL4gEhi+Etv10zgBe/YOuA2IAX4WpP3Z4NzbjvwHDChhRjmO+eyWnnMb+01tCD63LTlUuBu59wHzrmQc+5+IonLlD3o79fee/gWkUT7TADn3Dzn3CfeuVpKJCk9usmxs7xzVuUd80/nXLlzroZIsnuwmWVG1X/KObfQOVcNPAVUO+cecM6FgLlEkuu95pz7fWvno63jvWT8DCIJv4jIPk8JlohI7KyLej4c+G6Tv/RPJZKUNFd/DZBAZNShETM70cze96bnlRBJnOrrDQVWNhPLcK+9jVH9301kFKRFZpZrZo94UwrLgIeaienvwDjgTu9LP0RGvNbUV3DOhb3XNyTquE1Rz3cCaa3FEmPr2q7SYDhwdZNzN5TIa2yPHU1GatbUH2tmh5vZm97UylLgMnZ/fxtiNTO/mf3eIlM/y9g1Ohl9zOao51XNbHfl+9yc7wDbgbfiHIeISJdQgiUiEjvRqwatIzJCFf3X/j7Oud9H1Rka9XwYUAdsjW7Qm5b2BJERoVxvxOBFIlP56vsZ2Uws64iMuuRE9Z/hnBvbTN1ov/Nex3jnXAaRkbj6vjCzNOBPwL3ALNt13dgGIolJfT3zXt/6NvrbjZlNs8arzzV9TGu7ld00XdFpJ5AatT0w6vk64JYm5y7VOTennX31NbM+UdvDiLw/AP8GngWGOucygdlEvb/NxPo9YAbwDSATyPfKmx7TabzryVo8H+1o4gLgAadVtUSkl1CCJSLSOR4CTjazE7xRiGRvAYS8qDrnmtkYbwrVzcDj3rSuaIlAElAMBM3sRCLXUtW7F7jIzL5uZj4zG2JmBznnNhKZSvj/zCzD2zfSzJpOR2sqHagASs1sCJFru6L9GVjgnLuEyNS32V75o8C3vTgSgKuJJHj/beuNaso5945zLq2Vxzt72mYzFgPf887NdBpP0/s7cJk32mRm1scii1OkQ8PCEve10f5vzCzRSwZPAh7zytOB7c65au/6ue+10U46kfdxG5GE8Hd78Bpjwjn3u9bOR2vHev/ejwXu75poRUTiTwmWiEgncM6tIzLycAOR5GgdkWQl+vfug0SuS9kEJAM/baadcq/8UWAHkS/kz0bt/xBv4QuglMg0rPqRpPOJJGifecc+TuMpis35DXCo19YLwJP1O8xsBpFFKi73in4GHGpm5zjnviAy2nUnkVG4k4GTnXO1bfQXL1cQibEEOAd4un6Hc24B8APgLiLv2woaL8gxFHi3lbY3ecdtILIgxWXOuc+9fT8EbjazcuBGIue1NQ8QmWK4nsh5fL+tF9bNnAe85y2QIiLSK+g+WCIicWBm84CHnHP/iHcs0n7eqohLgAJvMY+m+48hcl7zmu4TEZHeIRDvAERERHoKb0RudJsVRUSk19IUQRGRXsbMZrewYMHsto+WnsjMhrWyUMWweMcnIrIv0RRBERERERGRGNEIloiIiIiISIx0q2uwcnJyXH5+frzDEBERERERadXChQu3Ouf6Ny3vVglWfn4+CxYsiHcYIiIiIiIirTKzNc2Va4qgiIiIiIhIjCjBEhERERERiRElWCIie2nZ+lLeW7kt3mGIiIhIN9KtrsFqTl1dHUVFRVRXV8c7FOlhkpOTycvLIyEhId6hyD7qkn++ywnVL3PQz35N3+zdrnEVERGRXqjbJ1hFRUWkp6eTn5+PmcU7HOkhnHNs27aNoqIiRowYEe9wZB+0szbIhTUPc1nC83z11gD6fudX8Q5JREREuoFuP0Wwurqa7OxsJVeyR8yM7OxsjXxKp9lYWs003ycABDd+EudoREREpLvo9gkWoORK9or+3Uhn2lRaTV8rByCnZGmcoxEREZHuokckWCIi3c3m0ir6EUmw+tdtgLqqOEckIiIi3YESrHYwM66++uqG7dtuu41Zs2bFL6Ao77//PocffjgTJkxg9OjRDXHNmzeP//73vx1qe/r06WRlZXHSSSfFIFKRfUtNVQXJVsfaxJGRgpJ18Q1IREREugUlWO2QlJTEk08+ydatW2ParnOOcDjcoTYuuOAC7rnnHhYvXsyyZcs488wzgdgkWNdeey0PPvhgh9oQ2VfZzsjy7DuyxgFQtWVlPMMRERGRbqLbryIY7TfPfcpnG8pi2uaYwRncdPLYVusEAgEuvfRSbr/9dm655ZZG+4qLi7nssstYu3YtAH/605848sgjmTVrFmlpaVxzzTUAjBs3jueffx6AE044gcMPP5yFCxfy4osvctddd/HSSy9hZvzqV79i5syZzJs3j1mzZpGTk8OyZcs47LDDeOihh3a7rmjLli0MGjQIAL/fz5gxYygsLGT27Nn4/X4eeugh7rzzTg466KAW41y5ciUrVqxg69atXHfddfzgBz8A4Otf/zrz5s1r9b157LHH+M1vfoPf7yczM5O3336b6upqLr/8chYsWEAgEOCPf/wjxx57LPfddx9PP/00lZWVfPXVV1xzzTXU1tby4IMPkpSUxIsvvki/fv34+9//zj333ENtbS37778/Dz74IKmpqY36nTJlCvfeey9jx0bO3THHHMNtt93GxIkTW41XJFZ8VZE/uIQHHQJbnqF041ekjD0xzlGJiIhIvHV4BMvMhprZm2b2mZl9amZXeOX9zOxVM/vK+9m34+HGz49+9CMefvhhSktLG5VfccUVXHXVVXz00Uc88cQTXHLJJW229dVXX/HDH/6QTz/9lAULFrB48WKWLFnCa6+9xrXXXsvGjRsB+Pjjj/nTn/7EZ599xqpVq3j33Xd3a+uqq65i1KhRnHbaadx9991UV1eTn5/PZZddxlVXXcXixYuZNm1aq3EuXbqUN954g/fee4+bb76ZDRs2tPt9ufnmm/nPf/7DkiVLePbZZwH4y1/+gpnxySefMGfOHC644IKG1fyWLVvGk08+yUcffcQvf/lLUlNT+fjjjzniiCN44IEHAPjOd77DRx99xJIlSxg9ejT33nvvbv3OnDmTRx99FICNGzeyceNGJVfSpXxV2wFIGTKOKpdIXfHqOEckIiIi3UEsRrCCwNXOuUVmlg4sNLNXgQuB151zvzezXwC/AH7ekY7aGmnqTBkZGZx//vnccccdpKSkNJS/9tprfPbZZw3bZWVlVFRUtNrW8OHDmTJlCgDz58/n7LPPxu/3k5uby9FHH81HH31ERkYGkydPJi8vD4AJEyZQWFjI1KlTG7V14403cs455/DKK6/w73//mzlz5jQ76tRanDNmzCAlJYWUlBSOPfZYPvzwQ0499dR2vS9HHnkkF154IWeeeSbf+c53Gl7TT37yEwAOOugghg8fzpdffgnAscceS3p6Ounp6WRmZnLyyScDMH78eJYujazEtmzZMn71q19RUlJCRUUFJ5xwwm79nnnmmRx//PH85je/4dFHH+WMM85oV7wisRKo2QFAVs4gNrp+BMrWxzkiERER6Q46nGA55zYCG73n5Wa2HBgCzACO8ardD8yjgwlWvF155ZUceuihXHTRRQ1l4XCY999/n+Tk5EZ1A4FAo+urou/H1KdPn3b1l5SU1PDc7/cTDAabrTdy5Eguv/xyfvCDH9C/f3+2bdu2W52W4oTdlzPfk+XNZ8+ezQcffMALL7zAYYcdxsKFC1utH/2afD5fw7bP52t4fRdeeCFPP/00Bx98MPfdd1+zCeOQIUPIzs5m6dKlzJ07l9mzZ7c7ZpFY8NVGVhDs1y+HQvoytHJznCMSERGR7iCmi1yYWT5wCPABkOslXwCbgNwWjrnUzBaY2YLi4uJYhhNz/fr148wzz2w0Ze3444/nzjvvbNhevHgxAPn5+SxatAiARYsWsXp189OHpk2bxty5cwmFQhQXF/P2228zefLkdsf0wgsv4JwDIlMP/X4/WVlZpKenU15e3macAM888wzV1dVs27aNefPmMWnSpHb3v3LlSg4//HBuvvlm+vfvz7p165g2bRoPP/wwAF9++SVr165l1KhR7W6zvLycQYMGUVdX19BOc2bOnMmtt95KaWkpBQUF7W5fJCbqIn80SUxOZYc/m5RqJVgiIiISwwTLzNKAJ4ArnXONVqJwkQzANXecc+4e59xE59zE/v37xyqcTnP11Vc3Wk3wjjvuYMGCBRQUFDBmzJiGkZTTTz+d7du3M3bsWO666y4OPPDAZts77bTTKCgo4OCDD+a4447j1ltvZeDAge2O58EHH2TUqFFMmDCB8847j4cffhi/38/JJ5/MU089xYQJE3jnnXdajBOgoKCAY489lilTpvDrX/+awYMHA5Hk77vf/S6vv/46eXl5/Oc//wEi0xLrr7e69tprGT9+POPGjeNrX/saBx98MD/84Q8Jh8OMHz+emTNnct999zUauWrL//f//X8cfvjhHHnkkRx00EEN5c8++yw33nhjw/YZZ5zBI4880rByokhXsqA3Kp2QQmXiANJrt4Jr9teciIiI9CLmYvCFwMwSgOeB/zjn/uiVfQEc45zbaGaDgHnOuVaHMSZOnOgWLFjQqGz58uWMHj26wzFK85qudriv0b8f6SzP334Z00sfJTBrO//+8y/43o6/wXWrIbVfvEMTERGRLmBmC51zu62yFotVBA24F1hen1x5ngUu8J5fADzT0b5ERLoLX7CaWkuMbKR7o87lG1s+QERERHqFWKwieCRwHvCJmS32ym4Afg88ambfB9YAmsfVDc2aNSveIYj0SP5QNXUWmfoayIxMqw2WbiCQG7/VTkVERCT+YrGK4HygpWXnvt7R9kVEuiN/uJo6XyTBSs6O3E6hvHgdfZu/3FJERER6iZiuIigi0lskhGoIeglWZv+hAOzcWhTPkERERKQbUIIlIrIXAm5XgtW/byY7XBrB0g1xjkpERETiTQmWiMheCIRrCPkjN+4emJnMJtcXyrTIhYiISG+nBKudnn76acyMzz//vMU6hYWFjBs3LmZ9fvHFFxxzzDFMmDCB0aNHc+mllwKRmwS/+OKLHWr74osvZsCAATGNV6Q3SXS1hP2REay+qQkU04/EKt1sWEREpLdTgtVOc+bMYerUqcyZM6fZ/cFgsMN9hEKhRts//elPueqqq1i8eDHLly/nJz/5CRCbBOvCCy/k5Zdf7lAbIr2Vc45EV0PYnwKAmVGWkENKTXGcIxMREZF4i8Uy7V3npV/Apk9i2+bA8XDi71utUlFRwfz583nzzTc5+eST+c1vfgPAvHnz+PWvf03fvn35/PPPeeWVVwgGg5xzzjksWrSIsWPH8sADD5Camsrrr7/ONddcQzAYZNKkSfztb38jKSmJ/Px8Zs6cyauvvsp1113HWWed1dDvxo0bycvLa9geP348tbW13HjjjVRVVTF//nyuv/56TjrpJH7yk5+wbNky6urqmDVrFjNmzOC+++7jqaeeorS0lPXr13Puuedy0003AXDUUUdRWFjY6ut+6623uOKKK4DIF8i3336btLQ0rrvuOl566SXMjF/96lfMnDmTefPmcdNNN5GVlcUnn3zCmWeeyfjx4/nzn/9MVVUVTz/9NCNHjuS5557jt7/9LbW1tWRnZ/Pwww+Tm5vbqN+zzjqL8847j29/+9tAJBk86aSTOOOMM9p3TkU6WU0wTDK1hAPJDWVVyQPIqNwOoSD4e9avVhEREYkdjWC1wzPPPMP06dM58MADyc7OZuHChQ37Fi1axJ///Ge+/PJLIDKt74c//CHLly8nIyODv/71r1RXV3PhhRcyd+5cPvnkE4LBIH/7298a2sjOzmbRokWNkiuAq666iuOOO44TTzyR22+/nZKSEhITE7n55puZOXMmixcvZubMmdxyyy0cd9xxfPjhh7z55ptce+21VFZWAvDhhx/yxBNPsHTpUh577DEWLFjQ7td922238Ze//IXFixfzzjvvkJKSwpNPPsnixYtZsmQJr732Gtdeey0bN0auO1myZAmzZ89m+fLlPPjgg3z55Zd8+OGHXHLJJdx5550ATJ06lffff5+PP/6Ys846i1tvvXW3fmfOnMmjjz4KQG1tLa+//npDsiXSHVTXhUiyOlxUghVMHYCPMFRqFEtERKQ361l/Zm1jpKmzzJkzp2Ek56yzzmLOnDkcdthhAEyePJkRI0Y01B06dChHHnkkAOeeey533HEH3/zmNxkxYgQHHhi5Qc4FF1zAX/7yF6688kogklA056KLLuKEE07g5Zdf5plnnuHuu+9myZIlu9V75ZVXePbZZ7ntttsAqK6uZu3atQB885vfJDs7G4DvfOc7zJ8/n4kTJ7brdR955JH87Gc/45xzzuE73/kOeXl5zJ8/n7PPPhu/309ubi5HH300H330ERkZGUyaNIlBgwYBMHLkSI4//nggMvL25ptvAlBUVMTMmTPZuHEjtbW1jd67eieeeCJXXHEFNTU1vPzyyxx11FGkpKS0K2aRrlBdFyaFGqoCUf8uMwZDMVC+ETIGxS02ERERiS+NYLVh+/btvPHGG1xyySXk5+fzhz/8gUcffRTnHAB9+vRpVN/MWt1uTtM2og0ePJiLL76YZ555hkAgwLJly3ar45zjiSeeYPHixSxevJi1a9cyevTovY6n3i9+8Qv+8Y9/UFVVxZFHHtnqAh8ASUlJDc99Pl/Dts/na7hG7Sc/+Qk//vGP+eSTT7j77ruprq7erZ3k5GSOOeYY/vOf/zB37twWE1CReKmuC5FMLSTsGsFKzBoCQNV23QtLRESkN1OC1YbHH3+c8847jzVr1lBYWMi6desYMWIE77zzTrP1165dy3vvvQfAv//9b6ZOncqoUaMoLCxkxYoVADz44IMcffTRbfb98ssvU1dXB8CmTZvYtm0bQ4YMIT09nfLy8oZ6J5xwAnfeeWdD0vfxxx837Hv11VfZvn17w3VQ9aNr7bFy5UrGjx/Pz3/+cyZNmsTnn3/OtGnTmDt3LqFQiOLiYt5++20mT57c7jZLS0sZMiTyRfT+++9vsd7MmTP517/+xTvvvMP06dPb3b5IV6iqDZJMLZawawQrJSdyvWRl8dp4hSUiIiLdgBKsNsyZM4fTTjutUdnpp5/e4mqCo0aN4i9/+QujR49mx44dXH755SQnJ/Ovf/2L7373u4wfPx6fz8dll13WZt+vvPIK48aN4+CDD+aEE07gD3/4AwMHDuTYY4/ls88+Y8KECcydO5df//rX1NXVUVBQwNixY/n1r3/d0MbkyZM5/fTTKSgo4PTTT2+YHnj22WdzxBFH8MUXX5CXl8e9994LwOzZs5k9ezYAf/rTnxg3bhwFBQUkJCRw4oknctppp1FQUMDBBx/Mcccdx6233srAgQPb/X7OmjWL7373uxx22GHk5OQ0lC9YsIBLLrmkYfv444/nrbfe4hvf+AaJiYntbl+kK9TUVOM3hy9xV4KVlTOYoPNRtX19HCMTERGReLP6UY/uYOLEia7pIgzLly9vmO4me+a+++5jwYIF3HXXXfEOJW7070c6wwfLV3P43AmsPuwGRpz8cwBWFleQetd4aocdxfDvtzw6KyIiIvsGM1vonNttcYNOH8Eys+lm9oWZrTCzX3R2fyIinS1YvROAQNQIVm5GMptdX3wVm+IVloiIiHQDnZpgmZkf+AtwIjAGONvMxnRmn7LLhRde2KtHr0Q6S11NJMHyJ6U2lKUlBdhq2SRVbY5XWCIiItINdPYI1mRghXNulXOuFngEmLGnjXSnaYzSc+jfjXSWuprIfeYCUQkWQEViDmm1ug+WiIhIb9bZCdYQYF3UdpFX1sDMLjWzBWa2oLh49y8mycnJbNu2TV+WZY8459i2bRvJycltVxbZQ6GaKgASmiRY1cm5pIYroHZnPMISERGRbiDuNxp2zt0D3AORRS6a7s/Ly6OoqIjmki+R1iQnJ5OXlxfvMGQfFPSmCCYkN06wQmkDoZzIzYazR8YhMhEREYm3zk6w1gNDo7bzvLJ2S0hIYMSIETENSkSkI8K19QlWkxuNZw6GjeDKNmBKsERERHqlzp4i+BFwgJmNMLNE4Czg2U7uU0SkU7m6yBTBxCYjWEl9vZsNby3q8phERESke+jUESznXNDMfgz8B/AD/3TOfdqZfYqIdLZwbSTBsoTGCVZ6/8iAfeXWdaR1eVQiIiLSHXT6NVjOuReBFzu7HxGRruLqqiNPAo0XUcnOzqbCJVO3QyNYIiIivVWn32hYRGSfE4yMYJGQ0qh4QHrkZsOuXDcbFhER6a2UYImI7CHzrsFqOoI1ICOJTa4f/sqNcYhKREREugMlWCIie8iC3hTBJiNYSQE/OwLZpFRtiUNUIiIi0h0owRIR2UO+UDUhfOBP2G1fZWJ/0uu2Qjgch8hEREQk3pRgiYjsIV+omlpLanZfXepAAgRh57YujkpERES6AyVYIiJ7qLUEi4xBkZ/lug5LRESkN1KCJSKyhwKhGoK+5hOsBO9mw3UlWqpdRESkN1KCJSKyhxLC1dT5U5rdl9o/H4CyTau7MCIRERHpLpRgiYjsoaRwFcEWEqzs3CHUuABVW9d0cVQiIiLSHSjBEhHZQ4muilALCdbgrD5sdNmES9Z1cVQiIiLSHSjBEhHZA6GwI9nVEAqkNrt/YGYyG1w2gXJdgyUiItIbKcESEdkDVXUhUqghnNB8gpWc4GdbYACpVZu6ODIRERHpDjqUYJnZH8zsczNbamZPmVlW1L7rzWyFmX1hZid0OFIRkW5gZ22QVKuBFhIsgIrkQWTUbYVQXRdGJiIiIt1BR0ewXgXGOecKgC+B6wHMbAxwFjAWmA781cz8HexLRCTuqmpD9KEaEvu0WKcubQg+wlC2oQsjExERke6gQwmWc+4V51zQ23wfyPOezwAecc7VOOdWAyuAyR3pS0SkO9hZG5kiaK0kWL6soQC4Ui10ISIi0tvE8hqsi4GXvOdDgOhvFkVe2W7M7FIzW2BmC4qLi2MYjohI7FVV7STBQlhSywlWUvYwAHYWa6l2ERGR3qbNBMvMXjOzZc08ZkTV+SUQBB7e0wCcc/c45yY65yb2799/Tw8XEelSNTsrAPAnpbVYJz03H4DKzbrZsIiISG8TaKuCc+4bre03swuBk4CvO+ecV7weGBpVLc8rExHp0WqqIglWILnlEayBOf3Y6jKo3b62q8ISERGRbqKjqwhOB64DTnHO7Yza9SxwlpklmdkI4ADgw470JSLSHQQbEqz0FusMzorcC4tS3QtLRESkt2lzBKsNdwFJwKtmBvC+c+4y59ynZvYo8BmRqYM/cs6FOtiXiEjc1VWXA5CQ0vIUwZw+SSwmh0E7tYqgiIhIb9OhBMs5t38r+24BbulI+yIi3U2oOjKClZjS8giWz2eUJeaSUf0JOAeRP0CJiIhILxDLVQRFRPZ5wZ07AEjN6NdqverUwSS5aqja0RVhiYiISDehBEtEZA+EvQTLl9q39XqZ3m0BdS8sERGRXkUJlojIHrCqksiT5KxW6wX6DgegbrvuhSUiItKbKMESEdkDvppSwhgkZbRar0/uCADKN63qirBERESkm1CCJSKyBwK1pVT60sDX+q/P/gMGs9MlUV1c2DWBiYiISLegBEtEZA8kBcuo9re8gmC9wX1TWe9yCJfoZsMiIiK9iRIsEZE9kBIsoybQ+vRAgEFZyRS5HBLLdbNhERGR3kQJlohIOznn6BOuoC6x7QQrKeBnW0Iufao3dkFkIiIi0l0owRIRaaedtSEyqCCUlNm++imD6RMqg5qKTo5MREREugslWCIi7VRcXkN/KyXcJ7dd9YPpQyNPdC8sERGRXkMJlohIO23ZtpV0qyIhc3C76vv7DgMgrHthiYiI9BpKsERE2ql8S2QkKiU7r131U/rnA1BZvLqzQhIREZFuJmYJlpldbWbOzHK8bTOzO8xshZktNbNDY9WXiEg87NwWSbDSBwxtV/2+uUOpcQF2binsxKhERESkO4lJgmVmQ4HjgegbvpwIHOA9LgX+Fou+RETipa5kAwCp2e1LsIb07cMGl01oh6YIioiI9BaxGsG6HbgOcFFlM4AHXMT7QJaZDYpRfyIiXc5XHlly3dLb96tsSN8U1rsc/GW6F5aIiEhv0eEEy8xmAOudc0ua7BoCRC+dVeSVNT3+UjNbYGYLiouLOxqOiEinSa0opMTXF5LS2lU/IznAZl8uqTs3dHJkIiIi0l0E2lPJzF4DBjaz65fADUSmB+4V59w9wD0AEydOdG1UFxGJC+cc2dVrKUkfTlY7jzEzKpIHkV7zBtRVQ0JyZ4YoIiIi3UC7Eizn3DeaKzez8cAIYImZAeQBi8xsMrAeiL5QIc8rExHpcTaWVpPPBrZn7dnfk2rThkANUFoEOft3TnAiIiLSbXRoiqBz7hPn3ADnXL5zLp/INMBDnXObgGeB873VBKcApc65jR0PWUSk660pWke2lZOQO2qPjjPvXliUrm29ooiIiOwTOvM+WC8Cq4AVwN+BH3ZiXyIinWrblx8A0HfkYXt0XFJOPgA1W7WSoIiISG/QrimC7eWNYtU/d8CPYtm+iEi8BNcuIIyRud/kPTouc8Awgs5H5eZVJHVSbCIiItJ9dOYIlojIPsE5R07JErYkDYfkjD06dkh2OpvoR+12TREUERHpDZRgiYi0YeWGrRzqPqNs4BF7fOzgrBQ2un5QpjV+REREegMlWCIibfjsg/+QajXkTPjWHh87ID2ZTS6bpEqt8SMiItIbKMESEWlDyhfPUGUp9Bvb7B0rWuX3GeVJuaTVbganW/2JiIjs65RgiYi04rPVRRxe/Q5FA78Oial71UZN6iASXB1Ubo1xdCIiItLdKMESEWnFqv/8lQyrYtA3f7rXbYTSB0eelBXFKCoRERHprpRgiYi0YF1xCRM3zmFln0NJ2+/wvW7H33coAK5UCZaIiMi+TgmWiEgLFj36vwy07WQd//MOtZOSPQyAncW62bCIiMi+TgmWiEgzPv5kGd/Y8i++6juN7IOnd6itrJxB1LgEqrbqXlgiIiL7OiVYIiJN7KyqwvfUD/AZDDnrzx1ub2BWKhtdP0I71sUgOhEREenOlGCJiERxzvHhPT/m4PBnFE37P1JzR3a4zUGZyWxw2Vj5hhhEKCIiIt2ZEiwRkShvPzmbY3Y8zuLBZ3PA1y+KSZs5aUlsIpvknbrZsIiIyL4u0NEGzOwnwI+AEPCCc+46r/x64Pte+U+dc//paF8iIp3pk0XvMWnpTXyZPI6Ci+6IWbt+n1GamEuf2v9COAQ+f8za7unCoTA7d5ZTtbMCwiEMh48wZoYvIYWUPukkJqWAWbxDFRERaZcOJVhmdiwwAzjYOVdjZgO88jHAWcBYYDDwmpkd6JwLdTRgEZHOsKV4CxnPXkSVL5VBP3gEX0JiTNuvTh2IvzwE5Zsgc0hM2+6OwmHH+s1b2LxqKTWbvyJcUoSVbyC5ahPptcX0CZfTx+0knUrSLExaa205o9qSqLZkyn0Z7PRnUZ2YRTCpL+GUflhqPwJpOSSk9yclsz99svqT3i+XPhl9MSWzIiLSxTo6gnU58HvnXA2Ac26LVz4DeMQrX21mK4DJwHsd7E9EJOZq64IU/uN8DnFb2DjjMbJzhsa8j1DaYCgHytbvcwlW2c5qvly2kNKVH5C4ZSnp5asYVLeWobaD6HeyjD7s8OdQkTyALQkjCCWmE07KgKQMfImpOPMRxo/DcDh8wRrCtTsJ1+3E1e7EV1tBUl0JKXUl9N25mvSKJWS6cgIWbjaukDPKLD2SlAUyqA1k4AIphPzJhP3JuED9IwmHD4iMkjkDMByG4SAcxEK1WDiIhSM/feG6yLYL4gvV4XN1+Fwwss/VP0L4XBC/9/C5EH5Cu7YJEXAh/ATxE4705XFNnjhaY957hvezvqXG5UT/tNbqNbdN1PHWqL1IWzS8f61H2j7Wxit27ajTnnZ21et4TO1px1rcaJ+WDikLZJNw1v0M32/UnjcqIjHX0QTrQGCamd0CVAPXOOc+AoYA70fVK/LKdmNmlwKXAgwbNqyD4YiI7Lm3/nkD36x5j08Pvp6xh3y9U/rw9x0KG4HSIhg6uVP66ArhsGN1UREblryOK/wvfUs+YWRwJROtBoBKktmUOJzNOVPYlHMgfYaMITNvDH0H5ZORkkFGjOMJhULsKNlG2bZN7CwppqqsmLryrYQqt+F2bsdXvYOEmpJIYla9hQRXQ6KrJcnVkEQtydS2mKA1et3OqCNAXSRFos4CBKl/+AlZgBABQuYnaAFvO4mwpRK2AGFfgJDPj7NAZNsCuPptXwKYH3x+fBaZDekzw4j89PloeI7ROOlykdjNOa/Egdv1M/KFPBwpAq8sen/0MZFWd28LjHDjrK/RsZE+okJrKG4uIXDtnu7ZvrSnLQ0xtVHVtVbB7aqze5rlmiTEzadiruG9ahJXVEEzKXaz9Zo+PazyHdbNuZDQdW/hj/Hou4jsuTYTLDN7DRjYzK5fesf3A6YAk4BHzWy/PQnAOXcPcA/AxIkT2/enJhGRGHnr1Wc4bsM9fJr9Tcae1rEbCrem/mbD1dvWktxpvXSOoo2b+eqj/1C38i2Gli5klCtkpDlqSGBd4v58mXsqKcMnMWTckaQNOoiRvq5bP8nv99M3ewB9swfs1fGhsKM2WNeQqEQnJxD5UhxISMbn95NkRlKM4haJpfeevYcjFl3Lgn9dycRL/xrvcER6vTYTLOfcN1raZ2aXA0865xzwoZmFgRxgPTSaGZLnlYmIdBufr17LAfOvojgwkFGX3NupCyn07ZdDhUumbmv3T7CqakMsWbyAkiXPM2DTPMYHPyXPQtSQQFGfcXw25IdkjTmOwWOmsn9id381rfP7DH+i/uIvPduUk3/A/NX/ZeqGh/noxUlM+lZsVkAVkb3T0SmCTwPHAm+a2YFAIrAVeBb4t5n9kcgiFwcAH3awLxGRmKmqCbLl4f9hfyuh/KwXCaRmdmp/g7JS2eiy6VtS1Kn97K3K6loWvfsyVUue5oDSd5limwBYl5DP8vzzyZ7wLQaPm8bIhJQ4RyoiTZkZEy/9K1/+cTkHf3ANn6WlM+aoM+Idlkiv1dEE65/AP81sGVALXOCNZn1qZo8CnwFB4Ec9cQXBz95/mfIPH8YGFpCefyiD9y8gs1//eIclIjHwykO3MiP4X1ZPuI4RB0zp9P4GZSaz2vWjX1n3Gcyvrq3j4/++QtXixxmzYx7TbDu1BFiTOZEVB/4PQw8/jaH9RxD7JT9EJNaSU1LJvfx51tx1PCNfv4xPgnWMP+7seIcl0it1KMFyztUC57aw7xbglo60H28VG7/ioO2vk7n92UiqCOwgg+KEwZSlDqcufSi+zEGk9BtCev880nKGkt5vIMnJPXTKTDgM4WDk4UIQDuLCIULBOoLBIC4cJBgKEq4LEg7VEQ4FCYWChENBwqEQoXCYcNgRDocJO0fYhSNlIW87XH8hefSF040vrm508XTTZbT2yl5O+dqLw5q7QNra09DeTEvb66lsrR8Xywly7b+QPTqAvXrjcRhh53DePydH5HlDGY5wwz6oLt/G8WtvZ1XGJPY75fo973MvDMhI4l2XzWE7P+mS/lpSWxdkyfuvUbnoMUZtf5MjbBs1JLAqawqVBacz4mvf4YCUzh3NE5HOkdmvP8HLX2TN7JMY+9blfLBuKZPP+22vv12BC4epqa2hurKC2uqdBOuqCQXrCNfVEAzWEQ7WEgrWEg7W4YK1hEJ1uGCd912njnD9/0Bw4CIrfjoXVVb/XSZq25zbtfyJi/qO4C1g4+q/IdiulT0byr2VTL0DMGu9fFe7hrP6Gub952vYH310w/9vrfH+hqNb2rb6dr3VRL2Yol9Lw3cfX/128zHUf08wL4aW+nRm1KXkkjdyDNlpPeNKWHOuI19eY2vixIluwYIF8Q6jERcOs2HNV2xfuZCdm77Atq8ktWIt/WuLyGVbs8dUuUQqLZVKXxo1vj5UB9II+RJxvgTC3k/n9376EiIrLXkfRIMmCUfkp89LenzhOsyF8HlLAZsLNjyPXhLY50L4GpYD9pYB9sp8LoyfEJEFkUP4CROgxw0winTIDjJI+sl7pGbndVmf9/72f/h+8BH41RYIdN3/JILBEEsW/peyj/7NqK2vMJit1BJgRfoUAgXfYb8jTyeQmtVl8YhI56qsKOOzuy9iUvlrfJE4lpTT/sSw0T1r9dJgMEh5yVYqS7dRVb6dqvId1FaUEKwqIbSzFFddiq+2nEBdOYG6ChJCOwmEqgmEq0kMV5PgaiKrhbpakqlp12qh0n39K3gC/c/8EycVDI53KI2Y2ULn3MSm5R2dIrjPM5+PISNGMWTE7veWCNbWsG1LEds3raNyaxGhso2wcytUl2E1ZfjrykmoqyApWEHA1eF3dQRcHQEXWdg3wdWRQLDx/Ums4W8f9RFE+vJSoV3LAe/6GTY/IQLUWYCwJRK2VEI+f8NSwGFfAGeRbcxP2BcA8+EsgPP5wBfwlgiO/HS+yHPz+XG+AGZ+8PsjfwHzBTBvH/4APq/M5/fjM1/k4TPM58Nv4PP5vIfh8/miRnSs4V4zkb9oRJfXbxtRf2rZi7O3l3882KvDmlu4t23tvUdLo3b39o8ibRzXXLt7E1+zbbe74p73Z7jIktZRy1sD+Kgvs6ilryNHmEHf4QWk9G1ugdTOU5c1InKV6tavYOC4Tu0rFHYs/WQJxe89zH6bXuIw1hF0Pr5Mm0zJuJ+z/7TvMiatb6fGICLx0Sctg4lXPca7T97JmGV/IOOR41mSdSxpR/+EkYcc26kL+rSkemc5JVs3Ub59MztLNlNTWkyoophw5Tb8VVtJqNlBct0O+gRLyQiXkkkFfc3R2m+pnSRRQR92Wio1vlTq/MnUBPpS5k8mHEgm7E/BJaRAQgoEUrDEFCwhFfMnYIEEzJ+Az5+A+RPxBRLwBRKxQCL+QAI+fyK+hAQCgYSG7y/m83kjSZHvKOYz8O6hZ76okSTzRUakzLfrG54B3qyKXev+eyNhuMb/+2tUL2q/qx8Tixxn9WNkLvp4t6te/WqoDauieklmuL6cxuXONfrpmvzB34W9WKDRKF50Xw11W2rLW7F1V7j1+5vEQOPjD04dxNAR2fQUSrA6IJCYRG7eSHLzRsY7FBHpAXyDCmArhDYuxd8JCZZzjk++XEHR/H+TV/QCh7gvAFiRMp5PD7qYkUefw5is3Jj3KyLdj/l8HHnGFWw/+kz++9hvOXjzk2Q8+wabnhtAUf+pJOdPod8BU8jNPwh/wh6OqDtH1c4KSrZtpmL7Rnbu2EJN6WZCFVugciv+qm0k1mwntW47aaESssKlpFoNA9n9vj8hZ5RaBmW+TKoCWezoM5Li5H6EU7IhtS/+1L4kpGaRlNaX5PS+9EnvS5/MfqSkZZEaSCQ1Vm+YSAxpiqCISBd57KNCTnp+EjUTLiTrtD/EpE3nHJ+tWsfqdx8lp/B5JoaWELAw6xL3o/yAU8k/+nxSB4yISV8i0nOVlmxn2WsPkrLiBQ6sWkKaVQORm2hv8/WlzNeXWn8qwUAqIQt4lxqEsXAIwnUkhSpJCVfSx1WS6naSaM1fWlDr/JRYJmX+vlQlZFGT2I9gSjYuNZtAWn8SMgaQnDmAtL65ZOQMJD0zu9dfIyY9l6YIiojE2ejBffnU5bPfmv92qJ1w2LH0iy8pev8Jcta9wmGhpYy1EMX+gaw44BLyjj6PoUMLYhS1iOwLMrP6ceQZVwBXUFVdy7LlC6ksXEht8SoSKtaTXFeCP7iTxOptJFDnXYIQuVrb+RKoSMxhRyCfYEI64cR0fCmZBPr0IyEzl+TMgaRn55KRPZi0jL4M8PnYu1t/i+wblGCJiHSRMYMy+Kv/UCaWPALlmyC9/deAVVbX8cniD9m+9EUGbnyDCeHlTDDH5sBgVo64gMFTzqT//lPoH4drK0SkZ0lJTmTcIUfAIUfEOxSRfZISLBGRLuLzGZX7nQgrH6Hmw3+R9PWWl4gPhR1fFa5l3aL/EFj9OqMqPmKKRVYuXZ84gi9HXMbQI88id+jB5CqpEhER6TaUYImIdKETjz2Gl7+cxHHzb6du8MEkjDoBfH62bd9G0VdL2LpqMYH1H5JXvpSDbD0HAZWksq7fZHYe+E2GTj6ZIdnD4/0yREREpAVKsEREulBBXhbvTP4N+390CfvPPZsqkqgjQDaV1C9AW0YaGzIK+DTvDHLHH0fOqCM5yJ8Q17hFRESkfZRgiYh0sR+e9DX+u/8rLHzvUQaULycl4PBlDCJ9yGgG7z+BzLzRZPh88Q5TRERE9oISLBGRLmZmHDl6KIy+Ot6hiIiISIzpT6QiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIg55+IdQwMzKwbWxDuOJnKArfEOQrqMznfvoXPde+hc9y46372HznXv0h3P93DnXP+mhd0qweqOzGyBc25ivOOQrqHz3XvoXPceOte9i85376Fz3bv0pPOtKYIiIiIiIiIxogRLREREREQkRpRgte2eeAcgXUrnu/fQue49dK57F53v3kPnunfpMedb12CJiIiIiIjEiEawREREREREYkQJloiIiIiISIwowWqFmU03sy/MbIWZ/SLe8UjsmNlQM3vTzD4zs0/N7AqvvJ+ZvWpmX3k/+8Y7VokNM/Ob2cdm9ry3PcLMPvA+33PNLDHeMUpsmFmWmT1uZp+b2XIzO0Kf7X2TmV3l/Q5fZmZzzCxZn+19h5n908y2mNmyqLJmP8sWcYd33pea2aHxi1z2VAvn+g/e7/GlZvaUmWVF7bveO9dfmNkJcQm6FUqwWmBmfuAvwInAGOBsMxsT36gkhoLA1c65McAU4Efe+f0F8Lpz7gDgdW9b9g1XAMujtv8PuN05tz+wA/h+XKKSzvBn4GXn3EHAwUTOuz7b+xgzGwL8FJjonBsH+IGz0Gd7X3IfML1JWUuf5ROBA7zHpcDfuihGiY372P1cvwqMc84VAF8C1wN439fOAsZ6x/zV+97ebSjBatlkYIVzbpVzrhZ4BJgR55gkRpxzG51zi7zn5US+gA0hco7v96rdD5walwAlpswsD/g28A9v24DjgMe9KjrX+wgzywSOAu4FcM7VOudK0Gd7XxUAUswsAKQCG9Fne5/hnHsb2N6kuKXP8gzgARfxPpBlZoO6JFDpsObOtXPuFedc0Nt8H8jzns8AHnHO1TjnVgMriHxv7zaUYLVsCLAuarvIK5N9jJnlA4cAHwC5zrmN3q5NQG684pKY+hNwHRD2trOBkqhf3Pp87ztGAMXAv7wpof8wsz7os73Pcc6tB24D1hJJrEqBheizva9r6bOs7237touBl7zn3f5cK8GSXs3M0oAngCudc2XR+1zkHga6j0EPZ2YnAVuccwvjHYt0iQBwKPA359whQCVNpgPqs71v8K69mUEkqR4M9GH3KUayD9NnuXcws18SubTj4XjH0l5KsFq2HhgatZ3nlck+wswSiCRXDzvnnvSKN9dPKfB+bolXfBIzRwKnmFkhkam+xxG5RifLm1YE+nzvS4qAIufcB97240QSLn229z3fAFY754qdc3XAk0Q+7/ps79ta+izre9s+yMwuBE4CznG7bt7b7c+1EqyWfQQc4K1GlEjkYrpn4xyTxIh3Dc69wHLn3B+jdj0LXOA9vwB4pqtjk9hyzl3vnMtzzuUT+Ry/4Zw7B3gTOMOrpnO9j3DObQLWmdkor+jrwGfos70vWgtMMbNU73d6/bnWZ3vf1tJn+VngfG81wSlAadRUQumBzGw6ken9pzjndkbtehY4y8ySzGwEkYVNPoxHjC2xXcmgNGVm3yJy7YYf+Kdz7pb4RiSxYmZTgXeAT9h1Xc4NRK7DehQYBqwBznTONb3AVnooMzsGuMY5d5KZ7UdkRKsf8DFwrnOuJo7hSYyY2QQiC5okAquAi4j8QVGf7X2Mmf0GmElk+tDHwCVErsXQZ3sfYGZzgGOAHGAzcBPwNM18lr0k+y4i00R3Ahc55xbEIWzZCy2c6+uBJGCbV+1959xlXv1fErkuK0jkMo+XmrYZT0qwREREREREYkRTBEVERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLRKSbMbN8M3NmFoh3LNI7mNmnZnZMvOMQEdkXKMESEZEez8xmm1mF96g1s7qo7ZfiHV9355wb65ybF8s2vaStIuoRNLPnYtmHiEh3ZM65eMcgIrJPMbOAcy7YgePzgdVAQkfa6a3MbBawv3Pu3Gb2dejcdKWeFGtbzMyAVcBNzrkH4h2PiEhn0giWiEgMmFmhmf3czJYClWYWMLMpZvZfMysxsyXRU7DMbJ6Z/a+ZfWhmZWb2jJn1a6Hti8xsuZmVm9kqM/ufJvtnmNlir52VZjbdK880s3vNbKOZrTez35qZv43XMdLM3jCzbWa21cweNrOsqH3bzexQb3uwmRXXvy4zO8UbtSjxXt/oJu/PNWa21MxKzWyumSXv+Tu951o4N87M9o+qc5+Z/TZq+yTvPS3xzmFBO/s6xsyKzOwG7/0rNLNzovZ/28w+9s7VOi8ZrN9XPzX0+2a2FnjDK3/MzDZ579vbZja2Sdx/NbOXvFGid81soJn9ycx2mNnnZnZIO9+jb7TnNe6lo4Ac4IlO7ENEpFtQgiUiEjtnA98GsoBc4AXgt0A/4BrgCTPrH1X/fOBiYBAQBO5ood0twElABnARcHtUkjMZeAC41uv3KKDQO+4+r939gUOA44FL2ngNBvwvMBgYDQwFZgE451YCPwceMrNU4F/A/c65eWZ2IDAHuBLoD7wIPGdmiVFtnwlMB0YABcCFzQZgNtVLbFp6TG3jNTSn4dy0NSrkJST/BP4HyAbuBp41s6R29jWQSDIxBLgAuMfMRnn7Komc9ywvnsvN7NQmxx9N5L0/wdt+CTgAGAAsAh5uUv9M4FdenzXAe169HOBx4I/tjLtZZvaL1s5HO5u5AHjCOVfZkVhERHoCJVgiIrFzh3NunXOuCjgXeNE596JzLuycexVYAHwrqv6Dzrll3pfOXwNnNjfC5Jx7wTm30kW8BbwCTPN2fx/4p3PuVa+f9c65z80s1+vrSudcpXNuC3A7cFZrL8A5t8Jrq8Y5V0zky/nRUfv/DqwAPiCSGP7S2zUTeME7tg64DUgBvtbk/dngnNsOPAdMaCGG+c65rFYe81t7DS2IPjdtuRS42zn3gXMu5Jy7n0jiMmUP+vu19x6+RSTRPhPAOTfPOfeJd66WEklKj25y7CzvnFV5x/zTOVfunKshkuwebGaZUfWfcs4tdM5VA08B1c65B5xzIWAukeR6rznnft/a+WjreC8ZP4NIwi8iss9TgiUiEjvrop4PB77b5C/9U4kkJc3VXwMkEBl1aMTMTjSz973peSVEEqf6ekOBlc3EMtxrb2NU/3cTGQVpkZnlmtkj3pTCMuChZmL6OzAOuNP70g+REa819RWcc2Hv9Q2JOm5T1POdQFprscTYurarNBgOXN3k3A0l8hrbY0eTkZo19cea2eFm9qY3tbIUuIzd39+GWM3Mb2a/t8jUzzJ2jU5GH7M56nlVM9td+T435zvAduCtOMchItIllGCJiMRO9KpB64iMUEX/tb+Pc+73UXWGRj0fBtQBW6Mb9KalPUFkRCjXGzF4kchUvvp+RjYTyzoioy45Uf1nOOfGNlM32u+81zHeOZdBZCSuvi/MLA34E3AvMMt2XTe2gUhiUl/PvNe3vo3+dmNm06zx6nNNH9PabmU3TVd02gmkRm0PjHq+DrilyblLdc7NaWdffc2sT9T2MCLvD8C/gWeBoc65TGA2Ue9vM7F+D5gBfAPIBPK98qbHdBrverIWz0c7mrgAeMBpVS0R6SWUYImIdI6HgJPN7ARvFCLZWwAhL6rOuWY2xptCdTPwuDetK1oikAQUA0EzO5HItVT17gUuMrOvm5nPzIaY2UHOuY1EphL+PzPL8PaNNLOm09GaSgcqgFIzG0Lk2q5ofwYWOOcuITL1bbZX/ijwbS+OBOBqIgnef9t6o5pyzr3jnEtr5fHOnrbZjMXA97xzM53G0/T+DlzmjTaZmfWxyOIU6dCwsMR9bbT/GzNL9JLBk4DHvPJ0YLtzrtq7fu57bbSTTuR93EYkIfzdHrzGmHDO/a6189Hasd6/92OB+7smWhGR+FOCJSLSCZxz64iMPNxAJDlaRyRZif69+yCR61I2AcnAT5tpp9wrfxTYQeQL+bNR+z/EW/gCKCUyDat+JOl8IgnaZ96xj9N4imJzfgMc6rX1AvBk/Q4zm0FkkYrLvaKfAYea2TnOuS+IjHbdSWQU7mTgZOdcbRv9xcsVRGIsAc4Bnq7f4ZxbAPwAuIvI+7aCxgtyDAXebaXtTd5xG4gsSHGZc+5zb98PgZvNrBy4kch5bc0DRKYYridyHt9v64V1M+cB73kLpIiI9Aq6D5aISByY2TzgIefcP+Idi7SftyriEqDAW8yj6f5jiJzXvKb7RESkdwjEOwAREZGewhuRG91mRRER6bU0RVBEpJcxs9ktLFgwu+2jpScys2GtLFQxLN7xiYjsSzRFUEREREREJEY0giUiIiIiIhIj3eoarJycHJefnx/vMERERERERFq1cOHCrc65/k3Lu1WClZ+fz4IFC+IdhoiIiIiISKvMbE1z5ZoiKCIiIiIiEiNKsERERERERGJECZaISBvqQuF4hyAiIiI9RLe6Bqs5dXV1FBUVUV1dHe9QpIdJTk4mLy+PhISEeIciPdiKLRVcf9cDnH38VL4ztSDe4YiIiEg31+0TrKKiItLT08nPz8fM4h2O9BDOObZt20ZRUREjRoyIdzjSg731+UYe813PjtczYeraeIcjIiIi3Vy3nyJYXV1Ndna2kivZI2ZGdna2Rj6lw8o3rQSgryslVFIU52hERESku+v2CRag5Er2iv7dSCz4tn7R8Hz7yoVxjERERER6gh6RYImIxEtO1eqG56Vrl8UxEhEREekJlGC1g5lx9dVXN2zfdtttzJo1K34BRXn//fc5/PDDmTBhAqNHj26Ia968efz3v//d63bXrFnDoYceyoQJExg7diyzZ8+OUcQiPUtm3VbKLY1il0mo+Mt4hyMiIiLdXLdf5KI7SEpK4sknn+T6668nJycnZu0653DO4fPtfZ57wQUX8Oijj3LwwQcTCoX44ovIdKZ58+aRlpbG1772tb1qd9CgQbz33nskJSVRUVHBuHHjOOWUUxg8ePBexyrSEwXC1QR9yawK92dw6cp4hyMiIiLdnEaw2iEQCHDppZdy++2377avuLiY008/nUmTJjFp0iTeffddAGbNmsVtt93WUG/cuHEUFhZSWFjIqFGjOP/88xk3bhzr1q3j2muvZdy4cYwfP565c+cCkQTpmGOO4YwzzuCggw7inHPOwTm3W/9btmxh0KBBAPj9fsaMGUNhYSGzZ8/m9ttvZ8KECbzzzjutxnneeedxxBFHcMABB/D3v/8dgMTERJKSkgCoqakhHG7+PkB33HEHY8aMoaCggLPOOguA7du3c+qpp1JQUMCUKVNYunRpQ18XXHAB06ZNY/jw4Tz55JNcd911jB8/nunTp1NXVwfAzTffzKRJkxg3bhyXXnrpbq87HA6Tn59PSUlJQ9kBBxzA5s2bWzuNInslEK6hzpfMjoRBpNVsinc4IiIi0s31qBGs3zz3KZ9tKItpm2MGZ3DTyWPbrPejH/2IgoICrrvuukblV1xxBVdddRVTp05l7dq1nHDCCSxfvrzVtr766ivuv/9+pkyZwhNPPMHixYtZsmQJW7duZdKkSRx11FEAfPzxx3z66acMHjyYI488knfffZepU6c2auuqq65i1KhRHHPMMUyfPp0LLriA/Px8LrvsMtLS0rjmmmsA+N73vtdinEuXLuX999+nsrKSQw45hG9/+9sMHjyYdevW8e1vf5sVK1bwhz/8odnRq9///vesXr2apKSkhoTnpptu4pBDDuHpp5/mjTfe4Pzzz2fx4sUArFy5kjfffJPPPvuMI444gieeeIJbb72V0047jRdeeIFTTz2VH//4x9x4440AnHfeeTz//POcfPLJDX36fD5mzJjBU089xUUXXcQHH3zA8OHDyc3NbfM8iuypQLiaYEIS1YkDySifB6Eg+HvUr04RERHpQhrBaqeMjAzOP/987rjjjkblr732Gj/+8Y+ZMGECp5xyCmVlZVRUVLTa1vDhw5kyZQoA8+fP5+yzz8bv95Obm8vRRx/NRx99BMDkyZPJy8vD5/MxYcIECgsLd2vrxhtvZMGCBRx//PH8+9//Zvr06c322VqcM2bMICUlhZycHI499lg+/PBDAIYOHcrSpUtZsWIF999/f7MjRAUFBZxzzjk89NBDBAKBhtd03nnnAXDcccexbds2ysoiifGJJ55IQkIC48ePJxQKNcQ7fvz4htf35ptvcvjhhzN+/HjeeOMNPv300936nTlzZsNo3yOPPMLMmTNbfc9F9lZCuIaQP5lQ2iD8hKFCI6UiIiLSsh71Z9j2jDR1piuvvJJDDz2Uiy66qKEsHA7z/vvvk5yc3KhuIBBoNK0u+n5Mffr0aVd/9VP0IDL9LxgMNltv5MiRXH755fzgBz+gf//+bNu2bbc6LcUJuy9n3nR78ODBjBs3jnfeeYczzjij0b4XXniBt99+m+eee45bbrmFTz75pF2vyefzkZCQ0NCXz+cjGAxSXV3ND3/4QxYsWMDQoUOZNWtWs/eyOuKII1ixYgXFxcU8/fTT/OpXv2q1X5G9leiqCfnT8GUNhY1Qt2MdCZlD4h2WiIiIdFMdHsEys6Fm9qaZfWZmn5rZFV55PzN71cy+8n727Xi48dWvXz/OPPNM7r333oay448/njvvvLNhu34qXH5+PosWLQJg0aJFrF69muZMmzaNuXPnEgqFKC4u5u2332by5MntjumFF15ouEbpq6++wu/3k5WVRXp6OuXl5W3GCfDMM89QXV3Ntm3bmDdvHpMmTaKoqIiqqioAduzYwfz58xk1alSjvsPhMOvWrePYY4/l//7v/ygtLaWiooJp06bx8MMPA5FryXJycsjIyGjX66lPpnJycqioqODxxx9vtp6Zcdppp/Gzn/2M0aNHk52d/f+3d+fxcVR3vvc/v17UWq3NkmVJ3sDYeJEX8BYMwWYAkwmJQ1jnBgJ4Eh4SMrlwk0zIAgPMzX2yzJO5k4GEBy4JSYawBBLwTIBA2EnYbDDYxpgYLK+SJVnWrt7P/aNbsqzFslFr/75f1qurTlWd+knlkvrX59Q5x1S/yPFwzpHmwsR96WROnApA44FdwxyViIiIjGSp6CIYBb7mnJsLrACuM7O5wI3AM865k4Bnkuuj3te+9jXq6uo613/yk5+wYcMGFixYwNy5czuHM7/wwgupr69n3rx53H777cyaNavX+i644AIWLFjAwoULOeuss/jhD39ISUnJMcfz61//mtmzZ7No0SKuuOIK7rvvPrxeL5/61Kf4/e9/3znIRV9xQqKb3+rVq1mxYgU33XQTpaWlbNu2jeXLl7Nw4ULOPPNMvv71r1NRUQHAF77wBTZs2EAsFuPyyy+noqKCxYsX89WvfpW8vDxuueUWNm7cyIIFC7jxxhv55S9/eczfT15eHl/84heZP38+a9asYenSpZ3b7rzzziPivvTSS/mP//gPdQ+UQROKxskgTNybzoRJ0wBoqa0c3qBERERkRLPeRqYbUIVmjwG3J79WOeeqzGwy8LxzbvbRjl2yZInbsGHDEWXbtm1jzpw5KY1RDrvllluOGAxjrNH/HxmIxrYITd+fQ7B0OXbBnUz+6YlUzbyMmVf8pP+DRUREZEwzs43OuSXdy1M6yIWZTQcWA68Bk5xzVclN1UCvQ7yZ2TVmtsHMNtTW1qYyHBGRAQlGY6RbCPwZlORlUO0KsKZ9wx2WiIiIjGApG+TCzLKBR4DrnXNNXQdKcM45M+u1qcw5dxdwFyRasFIVjxybW265ZbhDEBmxgpEYBUTAl052wMdmm0h5W1X/B4qIiMi4lZIWLDPzk0iu7nPO/S5ZfCDZNZDka00qziUiMlSCkTjphLG0TAAa/MVkBzVMu4iIiPQtFaMIGnAPsM059+Mum9YDVyaXrwQeG+i5RESGUnsoiN9ieNIyEusZk5gQq09MNiwiIiLSi1S0YK0ErgDOMrNNya+/Bb4PnGNmfwXOTq6LiIwakfZWAMyfaMGKarJhERER6ceAn8Fyzr0MWB+b/2ag9YuIDJdIMJFgeQKJFizvhFKoglhTFV5NNiwiIiK9SOkogmPZo48+ipnx3nvv9blPZWUl8+fPT9k5t2/fzqpVq1i0aBFz5szhmmuuARKTBD/++OMfud5gMMiyZctYuHAh8+bN45/+6Z9SFbLImBIJtQHgSz6DFShIJFXNNbuHLSYREREZ2ZRgHaP777+f008/nfvvv7/X7dHowJ/JiMViR6x/9atf5YYbbmDTpk1s27aNf/iHfwAGnmAFAgGeffZZ3n77bTZt2sSTTz7Jq6++OqDYRcaiWCjRguUNJBKs7IlTAWitU4IlIiIivVOCdQxaWlp4+eWXueeee3jggQc6y59//nnOOOMMPv3pTzN37lwgkWh97nOfY86cOVx00UW0tSU+AX/mmWdYvHgxFRUVrFu3jlAoBMD06dP55je/ySmnnMJvf/vbI85bVVVFeXl553pFRQXhcJibb76ZBx98kEWLFvHggw/S2trKunXrWLZsGYsXL+axxxLjidx7772sXbuWVatWcdJJJ3HrrbcCYGZkZ2cDEIlEiEQidB1Wv8Nvf/tb5s+fz8KFC/n4xz8OJFq/rr76aioqKli8eDHPPfdc57k+85nPcM455zB9+nRuv/12fvzjH7N48WJWrFhBfX09AHfffTdLly5l4cKFXHjhhZ0/n65WrFjB1q1bO9dXrVpF9wmoRYZCNNQOgD89C4CC4smEnZfQIc2FJSIiIr1L2TxYQ+KJG6F6c2rrLKmATxx9/I3HHnuM8847j1mzZlFYWMjGjRs59dRTAXjzzTfZsmULM2bMoLKyku3bt3PPPfewcuVK1q1bx09/+lO+8pWvcNVVV/HMM88wa9YsPv/5z/Ozn/2M66+/HoDCwkLefPPNHue94YYbOOusszjttNM499xzufrqq8nLy+O2225jw4YN3H777QB8+9vf5qyzzuLnP/85DQ0NLFu2jLPPPhuA119/nS1btpCZmcnSpUv55Cc/yZIlS4jFYpx66qns2LGD6667juXLl/c4/2233cYf//hHysrKaGhoAOCOO+7AzNi8eTPvvfce5557Lu+//z4AW7Zs4a233iIYDDJz5kx+8IMf8NZbb3HDDTfwq1/9iuuvv57PfvazfPGLXwTgu9/9Lvfcc09ny1yHSy+9lIceeohbb72VqqoqqqqqWLKkxyTZIoMu3tFFMNmCVZKbSQ35uKb9wxmWiIiIjGBqwToG999/P5dddhkAl1122RHdBJctW8aMGTM616dMmcLKlSsBuPzyy3n55ZfZvn07M2bMYNasWQBceeWVvPjii53HXHrppb2e9+qrr2bbtm1cfPHFPP/886xYsaKz5aurp556iu9///ssWrSIVatWEQwG2b070YXpnHPOobCwkIyMDD772c/y8ssvA+D1etm0aRN79+7tTMK6W7lyJVdddRV33313Z/fFl19+mcsvvxyAk08+mWnTpnUmWKtXryYnJ4eioiJyc3P51Kc+BSRa3iorK4FEEnbGGWdQUVHBfffdd0RLVYdLLrmEhx9+GICHHnqIiy66qNefj8hgi4YTCVYgI9GCVZgdoMbl42upHs6wREREZAQbXS1Y/bQ0DYb6+nqeffZZNm/ejJkRi8UwM370ox8BkJWVdcT+3bva9db1rrvudXRVWlrKunXrWLduHfPnz+81EXLO8cgjjzB79uwjyl977bV+48nLy2P16tU8+eSTPQbouPPOO3nttdf4wx/+wKmnnsrGjRuP+n0EAoHOZY/H07nu8Xg6n1G76qqrePTRR1m4cCH33nsvzz//fI96ysrKKCws5J133uHBBx/kzjvvPOp5RQaLiyS6CKYluwh6PUaDbyJlQXURFBERkd6pBasfDz/8MFdccQW7du2isrKSPXv2MGPGDF566aVe99+9ezevvPIKAL/5zW84/fTTmT17NpWVlezYsQOAX//615x55pn9nvvJJ58kEokAUF1dzcGDBykrKyMnJ4fm5ubO/dasWcO///u/45wD4K233urc9vTTT1NfX097ezuPPvooK1eupLa2trPLX3t7O08//TQnn3xyj/N/8MEHLF++nNtuu42ioiL27NnDGWecwX333QfA+++/z+7du3skdkfT3NzM5MmTiUQinfX05tJLL+WHP/whjY2NLFiw4JjrF0klF04kWJ7kKIIArYFiJkTqhiskERERGeGUYPXj/vvv54ILLjii7MILL+xzNMHZs2dzxx13MGfOHA4dOsSXvvQl0tPT+cUvfsHFF19MRUUFHo+Ha6+9tt9zP/XUU52DTKxZs4Yf/ehHlJSUsHr1at59993OQS5uuukmIpEICxYsYN68edx0002ddSxbtowLL7yQBQsWcOGFF7JkyRKqqqpYvXo1CxYsYOnSpZxzzjmcf/75ANx8882sX78egG984xtUVFQwf/58TjvtNBYuXMiXv/xl4vE4FRUVXHrppdx7771HtFz155//+Z9Zvnw5K1euPCKpW79+PTfffHPn+kUXXcQDDzzAJZdccsx1i6RaRwsW/ozOskjGJDJcG4Sa+zhKRERExjPraPUYCZYsWeK6jxa3bds25syZM0wRjW733nvvEYNhjEf6/yMDsf6um/n0/n+Db3wIWYUAPHLvj7mw8la47g0omjXMEYqIiMhwMbONzrkeI7GpBUtEpA8WDSYW/OmdZb7cxGTD7fV7hiMkERERGeGUYI1hV1111bhuvRIZKOvoIug73EUwY2JibrqmGiVYIiIi0tOoSLBGUjdGGT30/0YGymJBwvjBc/hX5YSiKQC0H9w7XGGJiIjICDboCZaZnWdm281sh5ndeLzHp6enc/DgQb1ZluPinOPgwYOkp6f3v7NIH7yxIGE7chCX4sICmlwm0QYN1S4iIiI9Deo8WGbmBe4AzgH2Am+Y2Xrn3LvHWkd5eTl79+6ltrZ2sMKUMSo9PZ3y8vLhDkNGMW8sSNhzZIJVkpvOXpePt6VqmKISERGRkWywJxpeBuxwzn0IYGYPAGuBY06w/H4/M2bMGKTwRET65osFidiRraCZaT7qPIVMbTswTFGJiIjISDbYXQTLgK5Pgu9NlnUys2vMbIOZbVArlYiMJL54iKin5zxvzf4iMkP6fSUiIiI9DfsgF865u5xzS5xzS4qKioY7HBGRTv54iKi353N8wfRicmMHIR4bhqhERERkJBvsBGsfMKXLenmyTERkxEtzIWLeni1YsewSvMShVa1YIiIicqTBTrDeAE4ysxlmlgZcBqwf5HOKiKSE34WI99KC5cktBdBIgiIiItLDoCZYzrko8BXgj8A24CHn3NbBPKeISCo45wi4EHFvRo9tafmJ0Smba3cPdVgiIiIywg32KII45x4HHh/s84iIpFIoGiedMO2+ni1Y2RMTCVZL3V7yhzowERERGdGGfZALEZGRKBSJk2FhnL9nC1ZBcTlR5yFcv3cYIhMREZGRTAmWiEgvgtEYAcLQSwvWpLwsaskj3rR/GCITERGRkUwJlohIL4KRGBmEwZ/ZY1thVho1Lh9fS/UwRCYiIiIjmRIsEZFeBIMh/BbDeuki6PEYDb6JZARrhiEyERERGcmUYImI9CIUbAXAk9YzwQJoDRSRE9E8WCIiInIkJVgiIr2IdCZYPbsIAkQyS8hyrRBuHcqwREREZIRTgiUi0otIsA0Ab6D3Fqx4zmQAXKMmGxYREZHDlGCJiPQiEkokWH21YHnzpwLQVlc5VCGJiIjIKKAES0SkF9FQoutfWnpWr9vTi6YD0FL94VCFJCIiIqOAEiwRkV5Ek10E+0qwcounEXUeQnW7hjIsERERGeGUYImI9CKa7CKYltF7gjU5P4dqCogfUoIlIiIihynBEhHpRTyZYAUysnvdPjkvnX1uIr7mvUMZloiIiIxwA0qwzOxHZvaemb1jZr83s7wu275lZjvMbLuZrRlwpCIiQygWSSRY/kDvg1z4vR7qfSVktVcNZVgiIiIywg20BetpYL5zbgHwPvAtADObC1wGzAPOA35qZt4BnktEZMi4cHtiwZ/e5z5tmZPJjdZBLDJEUYmIiMhIN6AEyzn3lHMumlx9FShPLq8FHnDOhZxzO4EdwLKBnEtEZEglW7Dw996CBRDNmYKHODTtH6KgREREZKRL5TNY64AnkstlwJ4u2/Ymy3ows2vMbIOZbaitrU1hOCIiH50n0pJYCOT0uY+vIDEXVuSgBroQERGRhH4TLDP7k5lt6eVrbZd9vgNEgfuONwDn3F3OuSXOuSVFRUXHe7iIyKDwRVqI4ANfoM99MotmANBQ9cFQhSUiIiIjnK+/HZxzZx9tu5ldBZwP/I1zziWL9wFTuuxWniwTERkVfNFW2i0T/1H2yS89AYC22sohiUlERERGvoGOInge8I/Ap51zbV02rQcuM7OAmc0ATgJeH8i5RESGkj/aStDT9/NXAOVFeRxwecTq1UVQREREEvptwerH7UAAeNrMAF51zl3rnNtqZg8B75LoOnidcy42wHOJiAyZQKyNkPfoCVbJhHTecUUUai4sERERSRpQguWcm3mUbd8DvjeQ+kVEhktavJWIP+uo+/i8Hur9k5jS9uEQRSUiIiIjXSpHERQRGTPS421E/dn97teaUUpepAbi8SGISkREREY6JVgiIt0458iItxM/hgQrmjMFP1FoqR6CyERERGSkU4IlItJNazhGtrXjAv0nWN6CaQCE6nYOdlgiIiIyCijBEhHppqk9Qhbt2FEmGe6QWZyYC6txv+bCEhERESVYIiI9NLeFyLIQ3vT+E6z80sRYP601asESERERJVgiIj20NdUB4Mks6HffsqJ8al0usfrKQY5KRERERgMlWCIi3QQPHQDAl1Pc776TJqSz1xXja9oz2GGJiIjIKKAES0Skm2BjIsHKyJ/U775ej1HvLyGrfd9ghyUiIiKjgBIsEZFuQk2JBCt3Yukx7d+a2TEXVmwwwxIREZFRQAmWiEg3seZaAAIT+u8iCBDJKU/MhdWsubBERETGOyVYIiLdWFtikAsyC49pf0/+dABCBysHJyAREREZNVKWYJnZ18zMmdnE5LqZ2U/MbIeZvWNmp6TqXCIig8nXXk+z5YDXd0z7Z3TMhVWlubBERETGu5QkWGY2BTgX2N2l+BPAScmva4CfpeJcIiKDLTNcS4uv/yHaO+SXnghA+wElWCIiIuNdqlqw/hX4R8B1KVsL/MolvArkmdnkFJ1PRGRQOOcoiBygOePYf12VFuZxwOURq981iJGJiIjIaDDgBMvM1gL7nHNvd9tUBnSdGGZvsqz78deY2QYz21BbWzvQcEREBuRQW4TJ1BKbMOWYjynJTWevK8LbrLmwRERExrtjesDAzP4ElPSy6TvAt0l0D/xInHN3AXcBLFmyxPWzu4jIoNpbfYAF1kJdwYxjPsbv9XDQV8K0NnURFBERGe+OKcFyzp3dW7mZVQAzgLfNDKAceNPMlgH7gK4fAZcny0RERqy6vTsAyCo54biOa80oJa/1L4m5sDzewQhNRERERoEBdRF0zm12zhU756Y756aT6AZ4inOuGlgPfD45muAKoNE5VzXwkEVEBk+oejsABWWzjuu4SE45PmLQrF9zIiIi49lgzoP1OPAhsAO4G/jyIJ5LRCQlrHYbcYz00rnHd1z+NACi9ZWDEJWIiIiMFilNsJItWXXJZeecu845d6JzrsI5tyGV5xIRGQxZDdup8ZWCP+O4jksvTnQpbNy/YzDCEhERkVFiMFuwRERGlWAkxpTITponHF/3QID8yYlBMdpqdqY6LBERERlFlGCJiCS9v7OS6VZNvPSU4z62tDCPapevubBERETGOSVYIiJJ+za/AEDxvI8f97GleRmJubCaNBeWiIjIeKYES0QkKV75Z8L4yJ+5/LiPTfd7qfVOIrNNs1GIiIiMZ0qwRERIPH81u+kV9uQsPu4BLjq0ZJSSFzkAsWiKoxMREZHRQgmWiAiwdevbzLR9RE9c85HrCGeX4SUOLdUpjExERERGEyVYIiLAgQ2PAVC2fO1HrsNyywFwjXtTEpOIiIiMPkqwRGTci8biFOx9lmr/FLInH/8Q7R3SC6cC0FqrkQRFRETGK99wByAiMtxe3/Iey91mdp547YDqySmeBkDLgUqyUxHYCBSOxtm3t5KDlZtpObATa96Hv60GT6QNfzxI3Lw4XwYEJmD5U8medCJT5y4jq3gGmA13+CIiIoNOCZaIjHsH/vIbvOaYuurzA6qnuKiYJpdBuH5sDNUejzve37WH6s3P4Xa/woSGbUyLfMgMa2JGl/0ayabdMglZAA9x0uJBclwLmQdC8B7wAtRbHtUTFuCZdS7TV6ztbO0TEREZa5Rgici41h6OcWL1E+zLOImykrkDqqs0L4MqV0hG0+h9Bmv3gTo+eP0J+OBZShveZJbbxcnmiOBlX9oMqorPZN+keWSVzad46knkFE8j159Bbrd64rE4NbX72fvhuzR88AZpVW9yYsNbTH7jRXjju+xJO4GWKauZvHQteSetBO/Q/TkKR+McqG/kYNUu2g7uJd60j3hLHbFgM95IC95IK75oK554GBePYzg85vAAzuMj6gkQ92Vg/gw8aZl4A5l403PwZeSQlplLIGsC6Vm5ZGTnkZmTizc9B9JyhvR7BCAeh3gEF4sQi0aIRsJEomFikcRy1EE05ojGwTwePGZ4PR7M68FrHjwew+MxvB4vHq8Xr9eLx+PF6/UkyjxeME+3L1NLpYiMe0qwRGRce2XD65xlO6ic880B11WYlcY2CjmppSoFkQ2NWNyxZdu77H/jMfL2PMui6NtMtTBB0tidVcG28vOZOG81xXNWMv04hq/3eD0Ul5RTXFIOp50LQDAc5fVNr1G/6b8ornqBih334v/gHlosiz0FH8M/62xK551BZukc8Hg/0vcTjcaoqavlUPVOmmv2EKrfQ6yxCl/rfjLaa5gQqaPQHWSKNTGll+MjeGkjg3bLIGp+HB4chgPiGB4XI+BCBAgTcCEyLXTMsYVIo90yCHoyCXkyCHkyCXsziXgzwQ5/vw5H8h/g8MYjeOIRPC6CLx7G66J4XRifi+JzkcQXkcQ6MXxE8RLDm6zBSPyx9wHpH+mnenzizohjODPieEimqMnXRFniNbHewZLxHl6nz210WT/acce8r+ttW/dz9r6tr/16SzP7rrNrfX3r6/gGm0DD559j5gknHOVoERkqA06wzOwfgOuAGPAH59w/Jsu/Bfx9svyrzrk/DvRcIiKp1vTGA8Qxppw5sO6BAB6P0ZhWTFZoQwoiGzzxuOPtbdvZ9+f7mLb/CRbyVxYCNd4Sdk67iPxFn6Kk4ixm+VP7djw9zceyZSth2Uqcc2yr3MvuN/5AYOczzK97jaKDf4JXoI109qfPpD2rnGhOOfFAHpaWifkzwMWIhduJhdoIt7fgaaslEKojM3yQCdF6ClwDpRaitNu5D1kujb6JtOeUUJW1iOoJZaQVlJFRWE5G4RRyCicTyMzD7wuQa9ajRa4vwXCU5pZmWpsbaW9pJNjSSKitkXBbI9H2ZmLBZlywGcIteMKtWKSFtFgbgXgb6bE20qP1TIjvSyRV9HxzbUDE/ETNT8z8RMxP0JNF3PKIefzELI24x0/c48d5/Tjz4zw+zOuDZJl5vOD1Yx4/5vVj3sR2r8eD1xxeA3C4eJx43OGI4+KOuHPgHC4ewzmHc3Hi8TjEYzgXBxdPvMYdEMOcg2T5EcvEk8uuc7kzxXLuiCSrZ3bRdVtvP51j2NZt3ZkdUeo6l+3YYrFeduiz1a63dO9oZa5rYe/7mh2xmzce4rSa+3n3xV8w84R/7iMOERlKA0qwzGw1sBZY6JwLmVlxsnwucBkwDygF/mRms5xzsYEGLCKSKo2tYSrqn2JPziKm5ZWnpM72jBImNB+CSBBSnKAM1F9372fH8/9BUeV6Fse2sNgcewMn8u6JNzD1tIsoLptH8RB17zIz5s6YwtwZ1wLX0hIM8+rbb9C043X8B96ioOWvTGzfwKS6p/BZvM96Gsmm0ZtPi7+QmqwKDmQWYbllBArKySmaSv7kaeRMnEK+L0D+IHwf6Wk+0gvyKSoYjNpFjs22721i2u7f4+K3Yh4NEC0y3AbagvUl4PvOuRCAc64mWb4WeCBZvtPMdgDLgFcGeD4RkZR55S/PcZ7tZ9/Cr6SszmhOOTQDTfug8MSU1ftRtQYj/Pn5J+DNX3J66CVOshDVvlL+OvNapp55BeVl84Y7RACy09NYsXwlLF/ZWeaco7k9RKi1mXCwlXCwBY/HS1p6FhmZ2eROyCHX6z/m1iaRsaph1iXM2XorH2x6gRNPWT3c4YiMewNNsGYBZ5jZ94Ag8HXn3BtAGfBql/32Jst6MLNrgGsApk7VqFIiMnQimx4kipfS0y5LWZ2+/HLYD7FDe/AOY4K1Y89+tj/5/zNr7yOca3toJ53d5Z9k0qprKJm5gpJRMBCBmTEhMx0y04Gi4Q5HZMSae/ZVtG35PvV/vkcJlsgI0G+CZWZ/Akp62fSd5PEFwApgKfCQmR3XE5bOubuAuwCWLFnS9xOlIiIpdKCxjVNbnmN3wcc4IaswZfUGJiYGMG868AH5M1elrN5jEY3Fee6NTbS/eDurWh9nprWzK+Nkdp3yv5j68SuYnT5hSOMRkaGRm1/AG3mrmVv3NA0Ha8grLB7ukETGtX4TLOfc2X1tM7MvAb9zzjngdTOLAxOBfXDEAE3lyTIRkRFh40uP87dWT/WSv0tpvXklM4g4L8EDO1Ja79G0haM8/dxzpL1+O2dHX8Jjjp2Tzsat+QbTTlw2ZHGIyPApOud/kPXwk7z22A9Zvu5fhjsckXFtoF0EHwVWA8+Z2SwgDagD1gO/MbMfkxjk4iTg9QGeS0QkZbxbHyFIgJKlF6S03skFOexzE/HVV6a03t4cbA7y7JMPU7r1btayiSAB9p/035jyia8xs3BG/xWIyJgxff5y3nx8JXN330fjoRvJzZ843CGJjFsDTbB+DvzczLYAYeDKZGvWVjN7CHgXiALXjcYRBHdt28iBrS9QcOISymadQkZW9nCHJCIpUF3fxLK2F9ldvIpZaVkprXtybjpvuWJObtyV0nq72l3bxKv/dQ9zK3/JxbaTRm8++xZ8jbJzvsK0zIJBO6+IjGwTzruJzEc+wcb7v8myL98z3OGIjFsDSrCcc2Hg8j62fQ/43kDqH25VG/+TFTv+FbZAzBn7PUXUp5URzJlGPG863oknkF00jfzicgonleNNG1lDMg+XeNwRc45YPPEVjTviyVc650aJQTwGLoa5eOcyLobF+x6SuVO/D+j3vd31+2z/UXbo57w2gLi6191zz48WV/8xHbtU1ZTK8RWcg7hzJP57JV7jLjGrUDzuEv/lnDu8D44dr/6BNdZCy5LUDW7RISfdT7WvlKWtf04El8JvduvO/Wx7/HZW1DzIJVZHTWAqNaf9kOKVV5I7woaEF5GhN3PBx/jLCxew/MAj7Np8FdMqzhjukEYVF4sSCbUTCQeJRsJEolGi0QjRSOI1Ho8SjyXfr8SiiTnh4jGci3X+rXFwxHLH3wAjMdda50pyrecUbgaW3NM8if066jCAxDD85knU2DFXmnmso0Y6KjYzLLn/EfUm93cddXVu6ziXHZ72rXObh8QUbJYMxJJVepK7Jw/wdHyndkS9Hdus85xdfhTJAju8SOdPqGPZ5ycjIwu/d3RMQzDgiYbHsuX/7Wb2VV5K9ftvEN3/Dt6GneS07aas9hny65qh2yMWjWTRYPm0ebOJ+LKJ+rKIp2UT82cT92WC1w/eNDxeP+bzY94AeH04vEBiEsbEzIIOl1w2Di+7WCIxcfFY503dNVHpKKdLwmIuBvF44tXFkhNAHk5qOpaN5GtyuydZ5nFxPC6G0eWVeKKcWJflxJe3l9dAl2WvaRwTGX4nkpg/qfzUTw5K/c25s8ho+CM07oG8gY2O6pzjlbffpfZP/8aq5v9knrWxZ8JCGs76/yhe+GnQnDci0sXsv/sBdbc/T9rv/p7gtFdIn5C6QXxGkkgkQkN9DS2HamhvPEi4rYFIexOuvYl4sAlCzVi4GU+4BV+kBV+0BV8siCcewhcP43ch0lyENMIEXJg0IvgtRhqJ511kZPlFdA1Fl/xvzl/QfRr5kUkJ1lGYx0PZCXMoO2HOEeXOORoP1XFwz3aa6/bQXr+faNMBfO21pAfr8EVbSI82kRauJqOljSzXTiZBPIOcXERdIs2JWUe6c/grhhfXtdwSKU9HmTMvcfPgksvOk3w1f/LVQzT5yhGv3sQbPPMm1j1eMA/mSWwzT6IcT2I5bp7O+jpf6bZuXo72k+q3PcAd7eijXwM76vZ+rt9Rzws2gLj63360wxypaHtyHzWGQdTRQGR2+JPAzs/wOj8ws859oOODPWPCCUvJ9QUGJS4rqYAGiFVtxvsRE6xwNM4LLz2He+UOzgy9gN9i7Cw+C99532DKiR9LbcAiMmYUTizmrXPuZN5Tf8eHP/0sM6//A7700fGIQyzYTMOB3Rw6sJvWuj2ED+0n2lKLtdWTFj5ERqSBrFgjOfFmcmmhyNxRJ3BodQHaLJM2yyTkySTiSSfim0C7Nx3nDRDzBognv5w3QNyXDt5A4sNwnw+Px4/H68Xj9eHx+hLvaZJfzpLr5sE8vkQrTsffm86/Q8m/m+7wX3HX+XfZdb5t6Pzr2vGBOsn3DM4d/tubXKdjjy7rdPkwnuSxXde719vbtsPBHN7mXNcP+umyX9eYAOI9zoMjeWyXXkldjz3i++75LqfrWyaHozj7ZE6ePHpGwlWC9RGYGbkFReQWHN+8LPFolHAkRDgcIpL8ctFwolXJ40ncjh1Nq+ZJ3qiexH86j+Hz+PD4fHi9XnzJm73jFY9HF1NkhMibvoj4NqPxgzcomHN8rWQNrUH+8seHmLj5bs5x7xAkwJ4ZFzP1b7/OicUzByliERlLFq9cwwtVt3H65u/y4b+uofSLD5A1cUr/Bw6WeJxYSw0NVR/SVL2T4ME9RBr3Y83VpLXXkB2uJS92kCzaKQS6trmFnY9Gm0CLN5c2Xy51GbOpDuTjMgqxrAJ82RNJyykgLTOPQFYu6dl5pGfnk5UzgSx/Gql9ylbk2Jjr51P3obRkyRK3YcOG4Q5DRGRAtlU1EfrZKqYUZFN4/YvHdMzWD3bx/tP3UFH1MDNtH/WeQhoqrmbGmuswDVwhIh/BC7+/i6WbvkvIAuxZeD0V51+HDcLzmrFQGwerPqSxaiftdbuI1u/C27SP9Lb9TAgfoCBWS4DIEceEnJ8a8mnwFtKSNpFIxiTiOSX4cieTXlDOhOIpTCyZSn5+Iaau0DJCmdlG59ySHuVKsEREUss5x93/8//hC7GH8PyPbTBhcq/7NbaGef3FP+Db9Cs+FnyJdIuwL2MWrPgyZSs/Bz49CSAiA7P17ddx/3k986NbaSKbDyetIX32WZTPP53siVMSXd764OJxWhpraTiwh+a6fQQPVRFprMY17SfQup+cUBUF0RoKaDriuLgzasinzltEc6CE9szJxHPK8RZMJXPiNHJLplNcPJn8rLSUDsQkMtT6SrDUq0xEJMXMjNCci4hv/i2tT/+/5Fz4k85trcEIb7/+PM1vPszJh57jHDtAKxnsmvIZys6+lrLpPX5Pi4h8ZPMWLiM2/2X+/KdHsE33cUr1etIPPAIvJp7drvfkE/JkEsNL3Lz4XIRAvI0M106mayfH4uR0q7PVBaj1FtHon0Rt9hyiOWV486eQPnEaOcUzKCqbzqTsLEqUPMk4pRYsEZFBUNXYzjM/vprL7Qk+mLiag74SrHE309q2UmwNRPFSOWEJgUWXUL7yMiwwOh5CF5HRrb6xmZ1b/kJz5Vt4mveT1laNRdrxEMPnokQ9acR8WcT92bi0LCy7CF/uZDLyS8mZWEZecTm5ufnqtieCugiKiAy5Nz6s4a8PfJuzQ0+TSZBGbz71+QvJmLWaaSsvxp89NodPFhERGQ+UYImIDJPWUJQ0n2fUTJAoIiIi/dMzWCIiwyQroF+1IiIi44U+ThUREREREUkRJVgiIiIiIiIpogRLREREREQkRUbUIBdmVgvsGu44upkI1A13EDJkdL3HD13r8UPXenzR9R4/dK3Hl5F4vac554q6F46oBGskMrMNvY0OImOTrvf4oWs9fuhajy+63uOHrvX4Mpqut7oIioiIiIiIpIgSLBERERERkRRRgtW/u4Y7ABlSut7jh671+KFrPb7oeo8futbjy6i53noGS0REREREJEXUgiUiIiIiIpIiSrBERERERERSRAnWUZjZeWa23cx2mNmNwx2PpI6ZTTGz58zsXTPbamb/PVleYGZPm9lfk6/5wx2rpIaZec3sLTP7r+T6DDN7LXl/P2hmacMdo6SGmeWZ2cNm9p6ZbTOzj+neHpvM7Ibk7/AtZna/maXr3h47zOznZlZjZlu6lPV6L1vCT5LX/R0zO2X4Ipfj1ce1/lHy9/g7ZvZ7M8vrsu1byWu93czWDEvQR6EEqw9m5gXuAD4BzAX+zszmDm9UkkJR4GvOubnACuC65PW9EXjGOXcS8ExyXcaG/w5s67L+A+BfnXMzgUPA3w9LVDIY/g140jl3MrCQxHXXvT3GmFkZ8FVgiXNuPuAFLkP39lhyL3Bet7K+7uVPACclv64BfjZEMUpq3EvPa/00MN85twB4H/gWQPL92mXAvOQxP02+bx8xlGD1bRmwwzn3oXMuDDwArB3mmCRFnHNVzrk3k8vNJN6AlZG4xr9M7vZL4DPDEqCklJmVA58E/k9y3YCzgIeTu+hajxFmlgt8HLgHwDkXds41oHt7rPIBGWbmAzKBKnRvjxnOuReB+m7Ffd3La4FfuYRXgTwzmzwkgcqA9XatnXNPOeeiydVXgfLk8lrgAedcyDm3E9hB4n37iKEEq29lwJ4u63uTZTLGmNl0YDHwGjDJOVeV3FQNTBquuCSl/jfwj0A8uV4INHT5xa37e+yYAdQCv0h2Cf0/ZpaF7u0xxzm3D/gXYDeJxKoR2Iju7bGur3tZ79vGtnXAE8nlEX+tlWDJuGZm2cAjwPXOuaau21xiDgPNYzDKmdn5QI1zbuNwxyJDwgecAvzMObcYaKVbd0Dd22ND8tmbtSSS6lIgi55djGQM0708PpjZd0g82nHfcMdyrJRg9W0fMKXLenmyTMYIM/OTSK7uc879Lll8oKNLQfK1Zrjik5RZCXzazCpJdPU9i8QzOnnJbkWg+3ss2Qvsdc69llx/mETCpXt77Dkb2Omcq3XORYDfkbjfdW+PbX3dy3rfNgaZ2VXA+cDn3OHJe0f8tVaC1bc3gJOSoxGlkXiYbv0wxyQpknwG5x5gm3Pux102rQeuTC5fCTw21LFJajnnvuWcK3fOTSdxHz/rnPsc8BxwUXI3XesxwjlXDewxs9nJor8B3kX39li0G1hhZpnJ3+kd11r39tjW1728Hvh8cjTBFUBjl66EMgqZ2Xkkuvd/2jnX1mXTeuAyMwuY2QwSA5u8Phwx9sUOJ4PSnZn9LYlnN7zAz51z3xveiCRVzOx04CVgM4efy/k2ieewHgKmAruAS5xz3R+wlVHKzFYBX3fOnW9mJ5Bo0SoA3gIud86FhjE8SREzW0RiQJM04EPgahIfKOreHmPM7FbgUhLdh94CvkDiWQzd22OAmd0PrAImAgeAfwIepZd7OZlk306im2gbcLVzbsMwhC0fQR/X+ltAADiY3O1V59y1yf2/Q+K5rCiJxzye6F7ncFKCJSIiIiIikiLqIigiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikyP8FOdZGk0wxA+QAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACh+ElEQVR4nOzdeXxU1f3/8ddnZrKvJGEPEFRAVhEBseJaq1gXtFrRuqDWWm1t1a9LW9sq9Vu/336tv9qqbalV61rEfalLXVGxooIiKqCChn0JgSRkz8yc3x9zEychG2SSScL7+XiMmXvPued8Zi4T55Nz7rnmnENEREREREQ6zhfvAERERERERHoLJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERLoZMyswM2dmgXjHInsHM/vUzI6MdxwiIr2BEiwREenxzGyumZV7j1ozq4vafiHe8XV3zrmxzrkFsWzTS9rKox5BM3s2ln2IiHRHphsNi4jElpkFnHPBDhxfAHwFJHSknb2Vmc0B9nPOndNMWYfOTVfqSbG2xcwM+BK4wTl3f7zjERHpTBrBEhGJATMrNLOfmdkyoMLMAmY2zcz+Y2YlZvZR9BQsM1tgZv9rZu+ZWZmZPW1mOS20fYGZrTCznWb2pZn9sEn5TDNb6rWz2sxmePuzzOxuM9tkZhvM7Ldm5m/jdexrZq+ZWbGZbTOzh8wsO6psu5lN8rYHmVlR/esys5O9UYsS7/WNbvL+XG1my8ys1Mzmm1ny7r/Tu6+Fc+PMbL+oOvea2W+jtk/03tMS7xxOaGdfR5rZejO7znv/Cs3s7KjyE8zsQ+9crfOSwfqy+qmh3zeztcBr3v5HzWyz9769aWZjm8T9FzN7wRsletvMBpjZH81sh5mtNLMD2/keHdOe17iHDgfygMc7sQ8RkW5BCZaISOycBZwAZAP9geeA3wI5wNXA42bWN6r+ecCFwEAgCNzWQrtbgROBTOAC4NaoJGcqcD9wjdfv4UChd9y9Xrv7AQcCxwIXtfEaDPhfYBAwGhgCzAFwzq0GfgY8aGapwD+A+5xzC8xsJDAPuALoCzwPPGtmiVFtnwHMAIYDE4Dzmw3AbLqX2LT0mN7Ga2hOw7lpa1TIS0juAX4I5AJ/A54xs6R29jWASDIxGJgN3Glmo7yyCiLnPduL51IzO6XJ8UcQee+P87ZfAEYA/YAPgIea1D8D+JXXZw3wjlcvD3gM+EM7426Wmf28tfPRzmZmA4875yo6EouISE+gBEtEJHZuc86tc85VAecAzzvnnnfOhZ1zLwOLgW9H1X/AOfeJ96Xz18AZzY0wOeeec86tdhFvAC8Bh3nF3wfucc697PWzwTm30sz6e31d4ZyrcM5tBW4FzmztBTjnVnlt1Tjnioh8OT8iqvzvwCrgXSKJ4S+9olnAc96xdcAtQArwjSbvz0bn3HbgWWBiCzEsdM5lt/JY2NpraEH0uWnLxcDfnHPvOudCzrn7iCQu03ajv1977+EbRBLtMwCccwuccx9752oZkaT0iCbHzvHOWZV3zD3OuZ3OuRoiye4BZpYVVf9J59wS51w18CRQ7Zy73zkXAuYTSa73mHPud62dj7aO95Lx04kk/CIivZ4SLBGR2FkX9XwY8N0mf+mfTiQpaa7+GiCByKhDI2Z2vJkt8qbnlRBJnOrrDQFWNxPLMK+9TVH9/43IKEiLzKy/mT3sTSksAx5sJqa/A+OA270v/RAZ8VpTX8E5F/Ze3+Co4zZHPa8E0luLJcbWtV2lwTDgqibnbgiR19geO5qM1KypP9bMDjaz172plaXAJez6/jbEamZ+M/udRaZ+lvH16GT0MVuinlc1s92V73NzvgNsB96IcxwiIl1CCZaISOxErxq0jsgIVfRf+9Occ7+LqjMk6vlQoA7YFt2gNy3tcSIjQv29EYPniUzlq+9n32ZiWUdk1CUvqv9M59zYZupG+x/vdYx3zmUSGYmr7wszSwf+CNwNzLGvrxvbSCQxqa9n3uvb0EZ/uzCzw6zx6nNNH4e13coumq7oVAmkRm0PiHq+DripyblLdc7Na2dffcwsLWp7KJH3B+CfwDPAEOdcFjCXqPe3mVi/B8wEjgGygAJvf9NjOo13PVmL56MdTcwG7ndaVUtE9hJKsEREOseDwElmdpw3CpHsLYCQH1XnHDMb402huhF4zJvWFS0RSAKKgKCZHU/kWqp6dwMXmNk3zcxnZoPNbH/n3CYiUwn/n5llemX7mlnT6WhNZQDlQKmZDSZybVe0PwGLnXMXEZn6Ntfb/whwghdHAnAVkQTvP229UU05595yzqW38nhrd9tsxlLge965mUHjaXp/By7xRpvMzNIssjhFBjQsLHFvG+3/xswSvWTwROBRb38GsN05V+1dP/e9NtrJIPI+FhNJCP9nN15jTDjn/qe189Hasd6/96OA+7omWhGR+FOCJSLSCZxz64iMPFxHJDlaRyRZif69+wCR61I2A8nAT5tpZ6e3/xFgB5Ev5M9Elb+Ht/AFUEpkGlb9SNJ5RBK05d6xj9F4imJzfgNM8tp6DniivsDMZhJZpOJSb9d/AZPM7Gzn3GdERrtuJzIKdxJwknOuto3+4uVyIjGWAGcDT9UXOOcWAz8A7iDyvq2i8YIcQ4C3W2l7s3fcRiILUlzinFvplf0IuNHMdgLXEzmvrbmfyBTDDUTO46K2Xlg3cy7wjrdAiojIXkH3wRIRiQMzWwA86Jy7K96xSPt5qyJ+BEzwFvNoWn4kkfOa37RMRET2DoF4ByAiItJTeCNyo9usKCIiey1NERQR2cuY2dwWFiyY2/bR0hOZ2dBWFqoYGu/4RER6E00RFBERERERiRGNYImIiIiIiMRIt7oGKy8vzxUUFMQ7DBERERERkRYtWbJkm3Oub3Nl3SrBKigoYPHixfEOQ0REREREpEVmtqalMk0RFBERERERiRElWCIiIiIiIjGiBEtERERERCRGutU1WM2pq6tj/fr1VFdXxzsU6QaSk5PJz88nISEh3qFIL+ac47J/fsikYX34/vTh8Q5HREREepBun2CtX7+ejIwMCgoKMLN4hyNx5JyjuLiY9evXM3y4vvRK51m3vYoRK27nO5+/hPvGOsynwX4RERFpn27/raG6uprc3FwlV4KZkZubq9FM6XRfbN3JFYEn6GPlbN/webzDERERkR6k2ydYgJIraaB/C9IVdhatb3i+Y9V7cYxEREREepoOJ1hmNsTMXjez5Wb2qZld7u3PMbOXzewL72efjocrItL5QqUbG57XrV8av0BERESkx4nFCFYQuMo5NwaYBvzYzMYAPwdedc6NAF71tnskM+Oqq65q2L7llluYM2dO/AKKcuSRR7Z6c+ZTTjmFadOmNdo3Z84cBg8ezMSJExk3bhzPPPNMZ4cp0qPUVuxoeO4vXRvHSERERKSn6XCC5Zzb5Jz7wHu+E1gBDAZmAvd51e4DTuloX/GSlJTEE088wbZt22LarnOOcDgc0zajlZSUsGTJEkpLS/nyyy8blV155ZUsXbqURx99lAsvvLBT4xDpacKVkQRrBxkkVW2OczQiIiLSk8T0GiwzKwAOBN4F+jvnNnlFm4H+LRxzsZktNrPFRUVFsQwnZgKBABdffDG33nrrLmVFRUWcdtppTJkyhSlTpvD2228DkVGiW265paHeuHHjKCwspLCwkFGjRnHeeecxbtw41q1bxzXXXMO4ceMYP3488+fPB2DBggUceeSRnH766ey///6cffbZOOeaje+BBx5oGI16772vrxd54oknOOmkkzjzzDN5+OGHmz129OjRBAKBRsnjz3/+c8aMGcOECRO4+uqrASgsLOToo49mwoQJfPOb32Tt2shf9c8//3wuvfRSpk2bxj777MOCBQu48MILGT16NOeff35Dm5deeimTJ09m7Nix3HDDDbvEUVpayrBhwxoSvYqKCoYMGUJdXV2zcYt0pnBVKQBr/QWk1WyNczQiIiLSk8RsmXYzSwceB65wzpVFL0bgnHNm1mx24Jy7E7gTYPLkyc1nEJ7fPPspyzeWxSpkAMYMyuSGk8a2We/HP/4xEyZM4Nprr220//LLL+fKK69k+vTprF27luOOO44VK1a02tYXX3zBfffdx7Rp03j88cdZunQpH330Edu2bWPKlCkcfvjhAHz44Yd8+umnDBo0iEMPPZS3336b6dOn79JeZWUlS5cu5c033+TCCy/kk08+AWDevHlcf/319O/fn9NOO43rrrtul2PfffddfD4fffv2BaC4uJgnn3ySlStXYmaUlJQA8JOf/ITZs2cze/Zs7rnnHn7605/y1FNPAbBjxw7eeecdnnnmGU4++WTefvtt7rrrLqZMmcLSpUuZOHEiN910Ezk5OYRCIb75zW+ybNkyJkyY0BBHVlYWEydO5I033uCoo47iX//6F8cdd5zudyVxYTWRBGtrynDGlK+AcBi0VLuIiIi0Q0y+MZhZApHk6iHn3BPe7i1mNtArHwj06D8DZ2Zmct5553Hbbbc12v/KK69w2WWXMXHiRE4++WTKysooLy9vta1hw4Y1XBe1cOFCzjrrLPx+P/379+eII47g/fffB2Dq1Knk5+fj8/mYOHEihYWFzbZ31llnAXD44YdTVlZGSUkJW7Zs4YsvvmD69OmMHDmShISEhsQL4NZbb2XixIlcffXVzJ8/v2F1vqysLJKTk/n+97/PE088QWpqKgDvvPMO3/ve9wA499xzWbhwYUNbJ510EmbG+PHj6d+/P+PHj8fn8zF27NiGmB955BEmTZrEgQceyKeffsry5ct3eR2zZs1qGMF7+OGHmTVrVqvvo0hnSQzuJISP8vThJBCEyuJ4hyQiIiI9RIdHsCzyzfxuYIVz7g9RRc8As4HfeT+f7mhf7Rlp6kxXXHEFkyZN4oILLmjYFw6HWbRoEcnJyY3qBgKBRtc1Rd+7KS0trV39JSUlNTz3+/0Eg8Fm6zVdutzMeOSRR9ixY0fDDXnLysqYN28eN910ExC5Bqt++l/TuN977z1effVVHnvsMe644w5ee+21dsXp8/kaxezz+QgGg3z11VfccsstvP/++/Tp04fzzz+/2XtZnXzyyVx33XVs376dJUuWcPTRR7far0hnSQ6WU+VLh8yBsBnCpRvwpfeNd1giIiLSA8RiBOtQ4FzgaDNb6j2+TSSx+paZfQEc4233aDk5OZxxxhncfffdDfuOPfZYbr/99obtpUuXAlBQUMAHH3wAwAcffMBXX33VbJuHHXYY8+fPJxQKUVRUxJtvvsnUqVN3K676UZ+FCxeSlZVFVlYW8+bN48UXX2y47mvJkiUtXocVrby8nNLSUr797W9z66238tFHHwHwjW98o+H4hx56iMMOO6zd8ZWVlZGWlkZWVhZbtmzhhRdeaLZeeno6U6ZM4fLLL+fEE0/E7/e3uw+RWEoJ7aTKn05C5gAAKnZsauMIERERkYgOj2A55xYCLd399Zsdbb+7ueqqq7jjjjsatm+77baG67OCwSCHH344c+fO5bTTTuP+++9n7NixHHzwwYwcObLZ9k499VTeeecdDjjgAMyMm2++mQEDBrBy5cp2x5ScnMyBBx5IXV0d99xzD4WFhaxZs6bR8uzDhw8nKyuLd999t9k2vv3tb3PXXXdhZsycOZPq6mqcc/zhD5FBydtvv50LLriA3//+9/Tt25d//OMf7Y7vgAMO4MADD2T//fdnyJAhHHrooQ1l119/PZMnT+bkk08GItMEv/vd77JgwYJ2ty8SaynhcmoSM0juMxCAiuJNZMQ5JhEREekZrKWV6eJh8uTJruk9nVasWMHo0aPjFJF0R/o3IZ3tgzlTyc5IZ+sJ/2DawxMonHQtBSf/Mt5hiYiISDdhZkucc5ObK9OyWCIiTSS5GkKBVHL65FDpkgiV9eg1ekRERKQLKcESEYkSDIVJdjU4fzJ56UkUu0woV4IlIiIi7aMES0QkSnUwTLLV4hJSyE5JYBtZ+Ku2tX2giIiICEqwREQaqa4LkUINLpCCz2eU+fuQVKP7YImIiEj7KMESEYlSVRsimTpIiNxkuzIhh9S67XGOSkRERHoKJVgiIlGqa4OkWg2WmAJATXIu6aFSCIfiHJmIiIj0BEqw2umpp57CzFq9P1VhYSHjxo2LWZ/nn38+jz32WIvlV1xxBYMHDyYcDjfsu/fee+nbty8TJ05kzJgx/P3vf49ZPCJ7g5rqKgB83ghWOKUvfsJQqVEsERERaZsSrHaaN28e06dPZ968ec2WB4PBDvcRCrX/L+ThcJgnn3ySIUOG8MYbbzQqmzVrFkuXLmXBggVcd911bNmypcOxiewtaqvKAfAnRRIs0vMAcOX6HImIiEjblGC1Q3l5OQsXLuTuu+/m4Ycfbti/YMECDjvsME4++WTGjBkDRBKts88+m9GjR3P66adTWVkJwKuvvsqBBx7I+PHjufDCC6mpqQGgoKCAn/3sZ0yaNIlHH310l75feeUVJk+ezMiRI/nXv/7VqO+xY8dy6aWXtpj09evXj3333Zc1a9Y07LvtttsYM2YMEyZM4MwzzwRg+/btnHLKKUyYMIFp06axbNkyAObMmcPs2bM57LDDGDZsGE888QTXXnst48ePZ8aMGdTV1QFw4403MmXKFMaNG8fFF19M05tXh8NhCgoKKCkpadg3YsQIJX7SLdXUVADg8xKsQMYAAKpL9e9VRERE2haIdwC75YWfw+aPY9vmgPFw/O9arfL0008zY8YMRo4cSW5uLkuWLOGggw4C4IMPPuCTTz5h+PDhFBYW8tlnn3H33Xdz6KGHcuGFF/KXv/yFyy67jPPPP59XX32VkSNHct555/HXv/6VK664AoDc3Fw++OCDZvsuLCzkvffeY/Xq1Rx11FGsWrWK5ORk5s2bx1lnncXMmTO57rrrqKurIyEhodGxX375JV9++SX77bdfw77f/e53fPXVVyQlJTUkPDfccAMHHnggTz31FK+99hrnnXceS5cuBWD16tW8/vrrLF++nEMOOYTHH3+cm2++mVNPPZXnnnuOU045hcsuu4zrr78egHPPPZd//etfnHTSSQ19+nw+Zs6cyZNPPskFF1zAu+++y7Bhw+jfv3+7T5NIVwlWRxKsgJdgJWdHEqzybRtJGRW3sERERKSH0AhWO8ybN69htOfMM89sNGI0depUhg8f3rA9ZMgQDj30UADOOeccFi5cyGeffcbw4cMZOXIkALNnz+bNN99sOGbWrFkt9n3GGWfg8/kYMWIE++yzDytXrqS2tpbnn3+eU045hczMTA4++GD+/e9/Nxwzf/58Jk6cyFlnncXf/vY3cnJyGsomTJjA2WefzYMPPkggEMmvFy5cyLnnngvA0UcfTXFxMWVlZQAcf/zxJCQkMH78eEKhEDNmzABg/PjxFBYWAvD6669z8MEHM378eF577TU+/fTTXV7HrFmzmD9/PgAPP/xwq69ZJJ6+TrDSAEjLGwRAdenmuMUkIiIiPUfPGsFqY6SpM2zfvp3XXnuNjz/+GDMjFAphZvz+978HIC0trVF9M2t1uzlN22irvX//+9+UlJQwfvx4ACorK0lJSeHEE08EIsnMHXfc0Wx7zz33HG+++SbPPvssN910Ex9/3PqIYFJSEhAZhUpISGiIx+fzEQwGqa6u5kc/+hGLFy9myJAhzJkzh+rq6l3aOeSQQ1i1ahVFRUU89dRT/OpXv2q1X5F4CdZEpvUmJEc+l1nZedS4AHWaIigiIiLt0OkjWGY2w8w+M7NVZvbzzu4v1h577DHOPfdc1qxZQ2FhIevWrWP48OG89dZbzdZfu3Yt77zzDgD//Oc/mT59OqNGjaKwsJBVq1YB8MADD3DEEUe0q/9HH32UcDjM6tWr+fLLLxk1ahTz5s3jrrvuorCwkMLCQr766itefvnlhuu9WhIOh1m3bh1HHXUU//d//0dpaSnl5eUcdthhPPTQQ0Dk2q68vDwyMzPbFV99MpWXl0d5eXmLqx6aGaeeeir/9V//xejRo8nNzW1X+yJdLdwkweqbmUwxmbjyrfEMS0RERHqITk2wzMwP/Bk4HhgDnGVmYzqzz1ibN28ep556aqN9p512WosLS4waNYo///nPjB49mh07dnDppZeSnJzMP/7xD7773e8yfvx4fD4fl1xySbv6Hzp0KFOnTuX4449n7ty5hMNhXnzxRU444YSGOmlpaUyfPp1nn3222TYuuugiFi9eTCgU4pxzzmH8+PEceOCB/PSnPyU7O5s5c+awZMkSJkyYwM9//nPuu+++dr47kJ2dzQ9+8APGjRvHcccdx5QpUxrK5s6dy9y5cxu2Z82axYMPPqjpgdKthWojCVail2DlpCVS7DLxVRbFMywRERHpIazpim8xbdzsEGCOc+44b/sXAM65/22u/uTJk93ixYsb7VuxYgWjR4/utBil59G/CelM//rnHZz4+S8JX/ouvv77A7BwzpEMT6lk8M/ei3N0IiIi0h2Y2RLn3OTmyjp7iuBgYF3U9npvXwMzu9jMFpvZ4qIi/YVYROKszrvRcP19sIDyhBxS6nSjYREREWlb3FcRdM7d6Zyb7Jyb3Ldv33iHIyJ7OeclWCR8nWDVJOWSEdwBnTjiLyIiIr1DZydYG4AhUdv53r7d0pnTGKVn0b8F6WxW5y0WE0hu2FeXkkcCQaguiU9QIiIi0mN0doL1PjDCzIabWSJwJvDM7jSQnJxMcXGxvlgLzjmKi4tJTk5uu7LIngrWj2ClNOyytH6RJ+WaxiwiIiKt69T7YDnngmZ2GfBvwA/c45zb9S60rcjPz2f9+vXo+iyBSMKdn58f7zCkF/MHq6klgUSf/+t9GZHpyzWlm0nqOzJeoYmIiEgP0Ok3GnbOPQ88v6fHJyQkMHz48BhGJCLSMl+omhpLIjFqX1LWAADKt28iKT5hiYiISA8R90UuRES6E1+omjprnEal5AwCoHrHpniEJCIiIj2IEiwRkSiBUBV1vsbX+WXl9CPkjNrSLXGKSkRERHoKJVgiIlECoWqC/sYJVl5mKtvJJLxza5yiEhERkZ5CCZaISJRAuIZgkxGsvPQktrksfJVabEdERERapwRLRCRKoqsh7G9yDVainx2WRUL1tjhFJSIiIj2FEiwRkSiJ4RpCgZRd9pcHckipLY5DRCIiItKTKMESEfEEQ2GSqcE1k2BVJ+WSFtwRh6hERESkJ1GCJSLiqaoLkUxtswlWXXIuya4GasrjEJmIiIj0FEqwREQ8VXUhkq0GEpJ3KQun9Ys8qdBKgiIiItIyJVgiIp6q2hAp1EJC6i5l/oxIghUs072wREREpGVKsEREPFW1QVKowZe46xTBxKz+AFRs39TVYYmIiEgPogRLRMRTXVWJ3xyWlL5LWUqfgQBU7lCCJSIiIi3rUIJlZr83s5VmtszMnjSz7KiyX5jZKjP7zMyO63CkIiKdrK6yFABfMwlWZm4kwaot1RRBERERaVlHR7BeBsY55yYAnwO/ADCzMcCZwFhgBvAXM/N3sC8RkU5VV7UTAH9K5i5luZlp7HDphHQNloiIiLSiQwmWc+4l51zQ21wE5HvPZwIPO+dqnHNfAauAqR3pS0SkswWrygAINJdgpSexzWVhFUVdHZaIiIj0ILG8ButC4AXv+WBgXVTZem/fLszsYjNbbGaLi4r0xUVE4qe1BCszOUAxWQSqt3V1WCIiItKDtJlgmdkrZvZJM4+ZUXV+CQSBh3Y3AOfcnc65yc65yX379t3dw0VEYiZcHZkimJS6a4JlZpQH+pBcU9zVYYmIiEgPEmirgnPumNbKzex84ETgm8455+3eAAyJqpbv7RMR6bZC3ghWSkZ2s+UViXlk1CwB58CsCyMTERGRnqKjqwjOAK4FTnbOVUYVPQOcaWZJZjYcGAG815G+REQ6W8gbwUpsZoogQE3qAJJdNdSUdWVYIiIi0oO0OYLVhjuAJOBli/w1d5Fz7hLn3Kdm9giwnMjUwR8750Id7EtEpFO5mvLIk2aWaQdwGYNgO1C6AZKzui4wERER6TE6lGA55/Zrpewm4KaOtC8i0qVqvQQrsfkEK9AnH9ZAzfZ1JPUf04WBiYiISE8Ry1UERUR6NF/tTqpIBl/zt+1LzRsKQNnWNV0ZloiIiPQgSrBERDyBYAXVvtQWy/v0H0rYGdXb1nZhVCIiItKTKMESEfEk1ZVR7W9+eiDAgD4ZFJFFsESLooqIiEjzlGCJiHhSQ2VUJ7S8eMWArGQ2uVz85Ru7MCoRERHpSZRgiYh4MsI7qU3IbrE8OcFPsS+P5MrNXReUiIiI9ChKsEREgNpgmEx2Ekzu02q98qR+ZNRu7aKoREREpKdRgiUiAmwvryGHnVhqbqv1alIHkuIqobq0iyITERGRnkQJlogIUFxSQpLVEUjPabVeOGNQ5EmZrsMSERGRXSnBEhEBdu6ITPtLzMxrtV5iTj4AtdvXdXpMIiIi0vMowRIRASp3bAEgNbNfq/VScocBULqlsLNDEhERkR5ICZaICFBTGkmw0nMHtFovu19+5GbDxRrBEhERkV0pwRIRAcLeNVUpufmt1uufk8k2sgjpZsMiIiLSDCVYIiJAoDxybyurX8SiBQOzUtjocvDtVIIlIiIiu4pJgmVmV5mZM7M8b9vM7DYzW2Vmy8xsUiz6ERHpLAmVmymxLAgktlovJTFys+GkKt1sWERERHbV4QTLzIYAxwJro3YfD4zwHhcDf+1oPyIinSm1egtlia0vcFGvPLEfGTW62bCIiIjsKhYjWLcC1wIuat9M4H4XsQjINrOBMehLRCTmwmFHVnAbNSntS7CqUweS6iqhuqyTIxMREZGepkMJlpnNBDY45z5qUjQYiF5ia723r7k2LjazxWa2uKioqCPhiIjskW07qxlMEaGM1he4qOcydbNhERERaV6bCZaZvWJmnzTzmAlcB1zfkQCcc3c65yY75yb37du3I02JiOyRTVs2kWmV+HKHt6t+QrZ3s+EdWqpdREREGgu0VcE5d0xz+81sPDAc+MjMAPKBD8xsKrABGBJVPd/bJyLS7ZRu+ByA1AEj2lU/OW8oADu3FJI7qtPCEhERkR5oj6cIOuc+ds71c84VOOcKiEwDnOSc2ww8A5znrSY4DSh1zm2KTcgiIrG1c9MXAPQdun+76mf3G0rYGZXb1rZdWURERPYqbY5g7aHngW8Dq4BK4IJO6kdEpMNCRasASMrbp131B+TqZsMiIiLSvJglWN4oVv1zB/w4Vm2LiHSmjJ1fUBQYSN/E1HbVH5iVzOcuhxzdbFhERESaiMmNhkVEeqrquhCDa9dQlrFfu49JTQxQ7MsjuVI3GxYREZHGlGCJyF7ty807GG6bCPdt3/VX9XYm9iejVjcbFhERkcaUYInIXm3zV5+QYCHS88ft1nE1qQNJcZVQXdpJkYmIiEhPpARLRPZq5es+ASBvnwN367hwpnfv9FJdhyUiIiJfU4IlInu3opWE8JHQf/duaJXQJ5Jg6WbDIiIiEk0Jlojs1TJ3rmJbwiBISN6t41LyhgFQtmVNZ4QlIiIiPZQSLBHZa1XVhsivW8PO3VhBsF5O/yGEnFG1TQmWiIiIfE0JlojstVZvKqbANkO/3VtBEKB/nwyKyNbNhkVERKQRJVgistfa9OUnBCxM+pDxu33swKwUNrlc/Ds3dkJkIiIi0lMpwRKRvVbFBm8FweETdvvYlEQ/23x5JFdtinVYIiIi0oMpwRKRvZbPW0Ew0G/3VhCstzPJu9mwczGOTERERHoqJVgistfK2rmKbYmDIZC0R8fXpQ4k2VVDdUlsAxMREZEeSwmWiOyVymuC5AfXUp45Yo/bCGcOijzRzYZFRETE0+EEy8x+YmYrzexTM7s5av8vzGyVmX1mZsd1tB8RkVhavXFbZAXBvru/gmC9hJyhANRsXx+rsERERKSHC3TkYDM7CpgJHOCcqzGzft7+McCZwFhgEPCKmY10zoU6GrCISCxs+eoTDjBHxpBxe9xGWt4QAMq2fEXfMbGKTERERHqyjo5gXQr8zjlXA+Cc2+rtnwk87Jyrcc59BawCpnawLxGRmKna8CkAOQW7v4Jgvax+Qwg6H9XFa2MVloiIiPRwHU2wRgKHmdm7ZvaGmU3x9g8G1kXVW+/t24WZXWxmi81scVFRUQfDERFpH/+2+hUER+5xG4P6pLOFPrrZsIiIiDRoc4qgmb0CDGim6Jfe8TnANGAK8IiZ7bM7ATjn7gTuBJg8ebLWOhaRLpFVvpqixHwG7OEKggADspL5xOXSv1w3GxYREZGINhMs59wxLZWZ2aXAE845B7xnZmEgD9gADImqmu/tExGJu+q6EPl1a9iZPabZvx61V3KCn23+vgyv/CpmsYmIiEjP1tEpgk8BRwGY2UggEdgGPAOcaWZJZjYcGAG818G+RERi4qtNxQy1LbgOrCBYrzhpKH1qN0NddQwiExERkZ6uownWPcA+ZvYJ8DAw20V8CjwCLAdeBH7cE1cQ3LD6Yz5+6+l4hyEiMVZU+DF+c6Tm7/kKgvUqs/bFRxiKV8UgMhEREenpOrRMu3OuFjinhbKbgJs60n68rX/uZg7e/gzL3j4IO+Qyxh02E/P54x2WiHRQ3ablAOQUHNDhtlIGjoYtULN5BUkDOp6wiYiISM/W4RsN92YH/GAu/9n3SoZUf8H41y9g43+PZtFdV7J62UJcOBzv8ERkDwWKP6MOP6kD9nwFwXoD9hlPrfOzY/X77apfWRskGNLvDxERkd6qQyNYvV1yShrfOHcONdXX8t7LD5L6yUNMWfcP/OvvYesTOWzMnEgofypZIw5lyKiJJKVmxjvkZjnnqA0GqamupKaqkrrqSmprqqirriRYW0WwppJQbRUuWAPBGsLhIC4YxIWDuJD3CAch/PU+wkEIhxp+mgvicyFwDvAWg3ThJj8jZYaLqucw5yJHuMhxjcs7+NqxDrexR/1aR/rd82Pj9no71G8HXu8evs/7lLzPJv8ghgYS97jveqOH9mOZ25dha99ptd728hpefOpB9vn875SOPZfjZv24w33vDYLBIBXlOykvL6O6soxgVTnB6nJCNRWEqssJ11URqqshXFdLKFhLOFiLhWqxcN3XP8N1+MJ1WDiIc2EsHMbhIByKbANGGGv4HRXGvN9N9c8BcFH/1q3+N5R5RRb1G8sa/XQYWP3zJnXMoj4/Tep4ZQa71rH6/buylj5T1uJGC1Xa/nxFV4n+PdDSkfX1d/d3Rrx+t4lI9/Bp9pF864RZDMlJjXco7aIEqx2SklOZetLFcNLFbNuyga/efgxb/Rr5ZR8xYPlrkSvNgK3ksCUhn6rkfrjUPCy9H6Tm4ktKxZ+YSkJyOoGkFMAIOwcuHEkxnJdQhOsI11YTqq0iVFdNuK6acG01LljtJT/VEKzBgtVYqAZ/qBpfqAZ/uIZAuBZ/uIaEcA0Jro4EV0MitSS5WhKpI8mC7Pli1K2rdX5C+Anja/iS4byvLM7qv3hEfwnZdbve19teOx1IVKzZrx7tPXbPdaTfjiSV1oFuO/ZexefuCh2NeXX+GQyNQRyDspJ5OTCOA0ufhqodkNKnUXllbZAXn32UIcv+xPdsBfjg46+eAPauBKuqupYd2zZRXryRyh0bqS3dSqiimFBlCVTtwF9TSlKwjJRgGSnhnWSEy0lxVaRaDVlA1h70GXZGHYHIwwINv6eAyO8rq/9d4yNsDWkWDp/3e8xHOOr30dcpTtM06ev0qum/S8M1u4/641x0mhbZ9/Vxu9aP3rZGe1tX30/77V79zvw9sLttG04JmUgv88r2fpRW1TVaorw7U4K1m/L6DybvO5cDlxMOO9at+ZytK/9D1aaVJJV+SXblOnLLPya7rIRUq4lp32Fn1JBAjSVSRyK1lkidJRL0JRH0JRIMpFLr60PYn0zYn4TzJxEOJEMgCQIpEEjCElKwhGR8iSn4EpLxJybjT0zFn5iCPyEZX0ISvkACPn8Avz8Rf0KAgD8BXyCAPyGRgN+PP5BAQkIiPn8A8/np+BiASNfLiVE7Zkb5fifh//wJKhfdS+pRVwJQWlHD6y88wpBP/sJ3WE5JIJeib/w3ny99mwN2vgnhMPh6/iztUNixrbiY7RtXUbG1kNriNVC6Hl/FVpKqt5FWV0yf8A5yKGVQC38FKCeVckun0p9BlT+DHcl92ZqYSTghA0tMx5JS8Sdn4E9Kw5eUjj85DX9SOoHkdAJJqSQmpZCYlERiUjKJickkJCbhC0R+RyVBp/1xSUREusYv4x3AblKC1QE+nzFk+CiGDB+1S5lzjtLSEqrLiqiuqqSuupza6kqC1RWYeVM4zLzpEoaZ4XwJ+JNSSExKIZCYQmJyKknJKd4jDX8ggRQzUrr8lYpIa4775rd4a+V4pr75v3y8cSvbtm1jv+0LOMW2UuLPZe3kOQw95hJISGHp1hDpn71IWeGHZO5zULxDb5fqyp1s+moFJetXUrN1FeGSdSSWbyCzdgv9w0X0twr6R9Wvc352+LLZGcihKnUA61PGsyatL5ben0DWQJKyB5DWZwBZOf3IyM4l3Z9AetxenYiISGwpweokZkZWdh+ysvu0XVlEerQR/TNYdsxtLHv1UqZ88RdqSGBd+ng2HPwrBh8yi+yE5Ia6/SZ+m/DK37DhvSe7VYJVXVnO5sJIElW95Qt8O74krXwNfWvX04/tDI+qW0Ya2wP9KE8bxJfpU3CZg0nIHUZavwL6DNqP7LxB9PMH6Be3VyMiIhI/5nZ7XnbnmTx5slu8eHG8wxAR2SPlNUFKtm9jQF4OgYTmJ8+Gwo7l/30wOf4qBl/3UZdOE6ypqWJz4Up2rF1B9ZbP8W1fTVrFGnJrNjCAbY3qbieTLQmDKU8dSl3WcBL6jSA7fxT9CsaQlZ3bZTGLiIh0R2a2xDk3ubkyjWCJiMRIelKA9IEDWq3j9xkbR53L+JW/YvVr97DvMRfFNIbauiAb165i+5rlVG3+DNu+irSdheTWrmdgeAvDzDHMq7uDDLYEBrMuaxJfZg0nsd9+ZA7an/4FY8jJyYvZdWoiIiJ7E41giYh0scrqGlb/32Hs49ZSfsp99J943G4dX1JWxpa1X1CyaTXVW7/ElawldWchuTXrGBzeRLLVfd0XSWwK5FOaMpTarH0I9BtBZv5o+heMIStHk/hERET2hEawRES6kdTkJPyz7qPo4VMpeOoMVr46jephRxPokw9JGYTqaqmrraZuZxHBsi1Y+VYSqreRUbOFvNAW+rGD7Kj26giwxT+QHWlD+STzcPx99yNt0P70KxhLdr8h7Nuh+7KJiIjI7tAIlohInKzfso1PH/st47c+yyDb1mK9naRS6uvDzsS+VKbm47KHkJg3nMwB+9JvyAhSc4f0iiXfRUREeorWRrCUYImIxFkwGGL9+q+oKN4ENTsJJCaSmJhCRk4/+vTLx5+omzOIiIh0J5oiKCLSjQUCfgoK9oOC/eIdioiIiHRQh+aUmNlEM1tkZkvNbLGZTfX2m5ndZmarzGyZmU2KTbgiIiIiIiLdV0cn7d8M/MY5NxG43tsGOB4Y4T0uBv7awX5ERERERES6vY4mWA7I9J5nARu95zOB+13EIiDbzAZ2sC8REREREZFuraPXYF0B/NvMbiGSrH3D2z8YWBdVb723b1PTBszsYiKjXADlZvZZB2OKtTyg5eW9pLfR+d576FzvPXSu9y4633sPneu9R3c818NaKmgzwTKzV4ABzRT9EvgmcKVz7nEzOwO4GzhmdyJzzt0J3Lk7x3QlM1vc0goh0vvofO89dK73HjrXexed772HzvXeo6ed6zYTLOdciwmTmd0PXO5tPgrc5T3fAAyJqprv7RMREREREem1OnoN1kbgCO/50cAX3vNngPO81QSnAaXOuV2mB4qIiIiIiPQmHb0G6wfAn8wsAFTz9bVUzwPfBlYBlcAFHewnnrrt9EXpFDrfew+d672HzvXeRed776FzvffoUefanHPxjkFERERERKRX6OgUQREREREREfEowRIREREREYkRJVitMLMZZvaZma0ys5/HOx6JHTMbYmavm9lyM/vUzC739ueY2ctm9oX3s0+8Y5XYMDO/mX1oZv/ytoeb2bve53u+mSXGO0aJDTPLNrPHzGylma0ws0P02e6dzOxK73f4J2Y2z8yS9dnuPczsHjPbamafRO1r9rPsLax2m3fel5nZpPhFLrurhXP9e+/3+DIze9LMsqPKfuGd68/M7Li4BN0KJVgtMDM/8GfgeGAMcJaZjYlvVBJDQeAq59wYYBrwY+/8/hx41Tk3AnjV25be4XJgRdT2/wG3Ouf2A3YA349LVNIZ/gS86JzbHziAyHnXZ7uXMbPBwE+Byc65cYAfOBN9tnuTe4EZTfa19Fk+HhjhPS4G/tpFMUps3Muu5/plYJxzbgLwOfALAO/72pnAWO+Yv3jf27sNJVgtmwqscs596ZyrBR4GZsY5JokR59wm59wH3vOdRL6ADSZyju/zqt0HnBKXACWmzCwfOAHvXn1mZkRuLfGYV0XnupcwsyzgcCI3vsc5V+ucK0Gf7d4qAKR4qxmnApvQZ7vXcM69CWxvsrulz/JM4H4XsQjINrOBXRKodFhz59o595JzLuhtLiJyX12InOuHnXM1zrmviKxaPrXLgm0HJVgtGwysi9pe7+2TXsbMCoADgXeB/lH3bNsM9I9XXBJTfwSuBcLedi5QEvWLW5/v3mM4UAT8w5sSepeZpaHPdq/jnNsA3AKsJZJYlQJL0Ge7t2vps6zvbb3bhcAL3vNuf66VYMlezczSgceBK5xzZdFlLnIPA93HoIczsxOBrc65JfGORbpEAJgE/NU5dyBQQZPpgPps9w7etTcziSTVg4A0dp1iJL2YPst7BzP7JZFLOx6KdyztpQSrZRuAIVHb+d4+6SXMLIFIcvWQc+4Jb/eW+ikF3s+t8YpPYuZQ4GQzKyQy1fdoItfoZHvTikCf795kPbDeOfeut/0YkYRLn+3e5xjgK+dckXOuDniCyOddn+3eraXPsr639UJmdj5wInC2+/rmvd3+XCvBatn7wAhvNaJEIhfTPRPnmCRGvGtw7gZWOOf+EFX0DDDbez4beLqrY5PYcs79wjmX75wrIPI5fs05dzbwOnC6V03nupdwzm0G1pnZKG/XN4Hl6LPdG60FpplZqvc7vf5c67Pdu7X0WX4GOM9bTXAaUBo1lVB6IDObQWR6/8nOucqoomeAM80sycyGE1nY5L14xNgS+zoZlKbM7NtErt3wA/c4526Kb0QSK2Y2HXgL+Jivr8u5jsh1WI8AQ4E1wBnOuaYX2EoPZWZHAlc75040s32IjGjlAB8C5zjnauIYnsSImU0ksqBJIvAlcAGRPyjqs93LmNlvgFlEpg99CFxE5FoMfbZ7ATObBxwJ5AFbgBuAp2jms+wl2XcQmSZaCVzgnFsch7BlD7Rwrn8BJAHFXrVFzrlLvPq/JHJdVpDIZR4vNG0znpRgiYiIiIiIxIimCIqIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiEg3Y2YFZubMLBDvWGTvYGafmtmR8Y5DRKQ3UIIlIiI9npnNNbNy71FrZnVR2y/EO77uzjk31jm3IJZteklbedQjaGbPxrIPEZHuyJxz8Y5BRKRXMbOAcy7YgeMLgK+AhI60s7cysznAfs65c5op69C56Uo9Kda2mJkBXwI3OOfuj3c8IiKdSSNYIiIxYGaFZvYzM1sGVJhZwMymmdl/zKzEzD6KnoJlZgvM7H/N7D0zKzOzp80sp4W2LzCzFWa208y+NLMfNimfaWZLvXZWm9kMb3+Wmd1tZpvMbIOZ/dbM/G28jn3N7DUzKzazbWb2kJllR5VtN7NJ3vYgMyuqf11mdrI3alHivb7RTd6fq81smZmVmtl8M0ve/Xd697VwbpyZ7RdV514z+23U9onee1rincMJ7ezrSDNbb2bXee9foZmdHVV+gpl96J2rdV4yWF9WPzX0+2a2FnjN2/+omW323rc3zWxsk7j/YmYveKNEb5vZADP7o5ntMLOVZnZgO9+jY9rzGvfQ4UAe8Hgn9iEi0i0owRIRiZ2zgBOAbKA/8BzwWyAHuBp43Mz6RtU/D7gQGAgEgdtaaHcrcCKQCVwA3BqV5EwF7geu8fo9HCj0jrvXa3c/4EDgWOCiNl6DAf8LDAJGA0OAOQDOudXAz4AHzSwV+Adwn3NugZmNBOYBVwB9geeBZ80sMartM4AZwHBgAnB+swGYTfcSm5Ye09t4Dc1pODdtjQp5Cck9wA+BXOBvwDNmltTOvgYQSSYGA7OBO81slFdWQeS8Z3vxXGpmpzQ5/ggi7/1x3vYLwAigH/AB8FCT+mcAv/L6rAHe8erlAY8Bf2hn3M0ys5+3dj7a2cxs4HHnXEVHYhER6QmUYImIxM5tzrl1zrkq4Bzgeefc8865sHPuZWAx8O2o+g845z7xvnT+GjijuREm59xzzrnVLuIN4CXgMK/4+8A9zrmXvX42OOdWmll/r68rnHMVzrmtwK3Ama29AOfcKq+tGudcEZEv50dElf8dWAW8SyQx/KVXNAt4zju2DrgFSAG+0eT92eic2w48C0xsIYaFzrnsVh4LW3sNLYg+N225GPibc+5d51zIOXcfkcRl2m7092vvPXyDSKJ9BoBzboFz7mPvXC0jkpQe0eTYOd45q/KOucc5t9M5V0Mk2T3AzLKi6j/pnFvinKsGngSqnXP3O+dCwHwiyfUec879rrXz0dbxXjJ+OpGEX0Sk11OCJSISO+uing8DvtvkL/3TiSQlzdVfAyQQGXVoxMyON7NF3vS8EiKJU329IcDqZmIZ5rW3Kar/vxEZBWmRmfU3s4e9KYVlwIPNxPR3YBxwu/elHyIjXmvqKzjnwt7rGxx13Oao55VAemuxxNi6tqs0GAZc1eTcDSHyGttjR5ORmjX1x5rZwWb2uje1shS4hF3f34ZYzcxvZr+zyNTPMr4enYw+ZkvU86pmtrvyfW7Od4DtwBtxjkNEpEsowRIRiZ3oVYPWERmhiv5rf5pz7ndRdYZEPR8K1AHbohv0pqU9TmREqL83YvA8kal89f3s20ws64iMuuRF9Z/pnBvbTN1o/+O9jvHOuUwiI3H1fWFm6cAfgbuBOfb1dWMbiSQm9fXMe30b2uhvF2Z2mDVefa7p47C2W9lF0xWdKoHUqO0BUc/XATc1OXepzrl57eyrj5mlRW0PJfL+APwTeAYY4pzLAuYS9f42E+v3gJnAMUAWUODtb3pMp/GuJ2vxfLSjidnA/U6raonIXkIJlohI53gQOMnMjvNGIZK9BRDyo+qcY2ZjvClUNwKPedO6oiUCSUAREDSz44lcS1XvbuACM/ummfnMbLCZ7e+c20RkKuH/M7NMr2xfM2s6Ha2pDKAcKDWzwUSu7Yr2J2Cxc+4iIlPf5nr7HwFO8OJIAK4ikuD9p603qinn3FvOufRWHm/tbpvNWAp8zzs3M2g8Te/vwCXeaJOZWZpFFqfIgIaFJe5to/3fmFmilwyeCDzq7c8Atjvnqr3r577XRjsZRN7HYiIJ4f/sxmuMCefc/7R2Plo71vv3fhRwX9dEKyISf0qwREQ6gXNuHZGRh+uIJEfriCQr0b93HyByXcpmIBn4aTPt7PT2PwLsIPKF/Jmo8vfwFr4ASolMw6ofSTqPSIK23Dv2MRpPUWzOb4BJXlvPAU/UF5jZTCKLVFzq7fovYJKZne2c+4zIaNftREbhTgJOcs7VttFfvFxOJMYS4GzgqfoC59xi4AfAHUTet1U0XpBjCPB2K21v9o7bSGRBikuccyu9sh8BN5rZTuB6Iue1NfcTmWK4gch5XNTWC+tmzgXe8RZIERHZK+g+WCIicWBmC4AHnXN3xTsWaT9vVcSPgAneYh5Ny48kcl7zm5aJiMjeIRDvAERERHoKb0RudJsVRURkr6UpgiIiexkzm9vCggVz2z5aeiIzG9rKQhVD4x2fiEhvoimCIiIiIiIiMaIRLBERERERkRjpVtdg5eXluYKCgniHISIiIiIi0qIlS5Zsc871ba6sWyVYBQUFLF68ON5hiIiIiIiItMjM1rRUpimCIiIiIiIiMaIES0REREREJEaUYImIdJK3V21jyZrt8Q5DREREulC3ugarOXV1daxfv57q6up4hyI9THJyMvn5+SQkJMQ7FNkL1YXCnH3XuxTYJl676fv4fBbvkERERKQLdPsEa/369WRkZFBQUICZvqBI+zjnKC4uZv369QwfPjze4cheaPnGMk72vc1tiX9m04cDGXjQCfEOSURERLpAt58iWF1dTW5urpIr2S1mRm5urkY+JW7W7ahkpv8/AFR8/kacoxEREZGu0u0TLEDJlewR/buReNq2s4YxvsgKrqlbdPsJERGRvUWPSLBERHqabeW1ZFEBQFb56jhHIyIiIl1FCVY7mBlXXXVVw/Ytt9zCnDlz4hdQlEWLFnHwwQczceJERo8e3RDXggUL+M9//tOhtmfMmEF2djYnnnhiDCIV2bts31lBqtVQSwJpwRKoq4p3SCIiItIFlGC1Q1JSEk888QTbtm2LabvOOcLhcIfamD17NnfeeSdLly7lk08+4YwzzgBik2Bdc801PPDAAx1qQ2RvVVkWWZ59Q6K3yErphjhGIyIiIl2l01cRNLMZwJ8AP3CXc+53e9rWb579lOUby2IWG8CYQZnccNLYVusEAgEuvvhibr31Vm666aZGZUVFRVxyySWsXbsWgD/+8Y8ceuihzJkzh/T0dK6++moAxo0bx7/+9S8AjjvuOA4++GCWLFnC888/zx133MELL7yAmfGrX/2KWbNmsWDBAubMmUNeXh6ffPIJBx10EA8++OAu1xVt3bqVgQMHAuD3+xkzZgyFhYXMnTsXv9/Pgw8+yO23387+++/fYpyrV69m1apVbNu2jWuvvZYf/OAHAHzzm99kwYIFrb43jz76KL/5zW/w+/1kZWXx5ptvUl1dzaWXXsrixYsJBAL84Q9/4KijjuLee+/lqaeeoqKigi+++IKrr76a2tpaHnjgAZKSknj++efJycnh73//O3feeSe1tbXst99+PPDAA6Smpjbqd9q0adx9992MHRs5d0ceeSS33HILkydPbjVeka5SVV4CQHHafgyv/RzK1kPefvENSkRERDpdp45gmZkf+DNwPDAGOMvMxnRmn53lxz/+MQ899BClpaWN9l9++eVceeWVvP/++zz++ONcdNFFbbb1xRdf8KMf/YhPP/2UxYsXs3TpUj766CNeeeUVrrnmGjZt2gTAhx9+yB//+EeWL1/Ol19+ydtvv71LW1deeSWjRo3i1FNP5W9/+xvV1dUUFBRwySWXcOWVV7J06VIOO+ywVuNctmwZr732Gu+88w433ngjGzdubPf7cuONN/Lvf/+bjz76iGeeeQaAP//5z5gZH3/8MfPmzWP27NkNq/l98sknPPHEE7z//vv88pe/JDU1lQ8//JBDDjmE+++/H4DvfOc7vP/++3z00UeMHj2au+++e5d+Z82axSOPPALApk2b2LRpk5Ir6V6qSgAozxoJQLhkXRyDERERka7S2SNYU4FVzrkvAczsYWAmsHxPGmtrpKkzZWZmct5553HbbbeRkpLSsP+VV15h+fKvX05ZWRnl5eWttjVs2DCmTZsGwMKFCznrrLPw+/3079+fI444gvfff5/MzEymTp1Kfn4+ABMnTqSwsJDp06c3auv666/n7LPP5qWXXuKf//wn8+bNa3bUqbU4Z86cSUpKCikpKRx11FG89957nHLKKe16Xw499FDOP/98zjjjDL7zne80vKaf/OQnAOy///4MGzaMzz//HICjjjqKjIwMMjIyyMrK4qSTTgJg/PjxLFu2DIgkYb/61a8oKSmhvLyc4447bpd+zzjjDI499lh+85vf8Mgjj3D66ae3K16RrmI1OwGoyxkFhVC1bR1p8Q1JREREukBnJ1iDgeg/264HDo6uYGYXAxcDDB06tJPD6ZgrrriCSZMmccEFFzTsC4fDLFq0iOTk5EZ1A4FAo+urou/HlJbWvq9ZSUlJDc/9fj/BYLDZevvuuy+XXnopP/jBD+jbty/FxcW71GkpTth1OfPdWd587ty5vPvuuzz33HMcdNBBLFmypNX60a/J5/M1bPt8vobXd/755/PUU09xwAEHcO+99zabMA4ePJjc3FyWLVvG/PnzmTt3brtjFukKiXVl4Ifk7AGUulRCZVuVYImIiOwF4r7IhXPuTufcZOfc5L59+8Y7nFbl5ORwxhlnNJqyduyxx3L77bc3bC9duhSAgoICPvjgAwA++OADvvrqq2bbPOyww5g/fz6hUIiioiLefPNNpk6d2u6YnnvuOZxzQGTqod/vJzs7m4yMDHbu3NlmnABPP/001dXVFBcXs2DBAqZMmdLu/levXs3BBx/MjTfeSN++fVm3bh2HHXYYDz30EACff/45a9euZdSoUe1uc+fOnQwcOJC6urqGdpoza9Ysbr75ZkpLS5kwYUK72xfpbKGwIykcGSFOz85lm8sitHNrnKMSERGRrtDZCdYGYEjUdr63r8e66qqrGq0meNttt7F48WImTJjAmDFjGkZSTjvtNLZv387YsWO54447GDlyZLPtnXrqqUyYMIEDDjiAo48+mptvvpkBAwa0O54HHniAUaNGMXHiRM4991weeugh/H4/J510Ek8++SQTJ07krbfeajFOgAkTJnDUUUcxbdo0fv3rXzNo0CAgkvx997vf5dVXXyU/P59///vfQGRaYv31Vtdccw3jx49n3LhxfOMb3+CAAw7gRz/6EeFwmPHjxzNr1izuvffeRiNXbfnv//5vDj74YA499FD233//hv3PPPMM119/fcP26aefzsMPP9ywcqJId1FeEySDyLLsWdm5FJMJFbFdhVRERES6J6sf/eiUxs0CwOfAN4kkVu8D33POfdpc/cmTJ7vFixc32rdixQpGjx7daTHu7Zqudtjb6N+PxMPGkioeueVHXBF4gtKrt/Cf/zuRgzO3k3PNB/EOTURERGLAzJY455pdYa1Tr8FyzgXN7DLg30SWab+npeRKRKS3qB/BqgukkZmWxA6ySKpZFe+wREREpAt0+n2wnHPPA893dj+yZ+bMmRPvEER6nfKaIJlUEErMIMGMyoQcUoIlEA6Bzx/v8ERERKQTxX2RCxGR3qa8OkiGVRFOzAKgNikHHw4qt8c5MhEREelsSrBERGKswhvBIjkTgFBqnldQFMeoREREpCsowRIRibHymiAZVoklR0awLDU3UqAES0REpNdTgiUiEmORa7Aq8aVEEixfRv9IgRIsERGRXk8JVjs99dRTmBkrV65ssU5hYSHjxo2LWZ+fffYZRx55JBMnTmT06NFcfPHFQOQmwc8/37F1Qy688EL69esX03hFJKLCG8EKpGYDkJTdD4A63WxYRESk11OC1U7z5s1j+vTpzJs3r9nyYDDY4T5CoVCj7Z/+9KdceeWVLF26lBUrVvCTn/wEiE2Cdf755/Piiy92qA0Rad7O6joyqcTvjWClZfUl5Iyqki1xjkxEREQ6W6cv0x5TL/wcNn8c2zYHjIfjf9dqlfLychYuXMjrr7/OSSedxG9+8xsAFixYwK9//Wv69OnDypUreemllwgGg5x99tl88MEHjB07lvvvv5/U1FReffVVrr76aoLBIFOmTOGvf/0rSUlJFBQUMGvWLF5++WWuvfZazjzzzIZ+N23aRH5+fsP2+PHjqa2t5frrr6eqqoqFCxfyi1/8ghNPPJGf/OQnfPLJJ9TV1TFnzhxmzpzJvffey5NPPklpaSkbNmzgnHPO4YYbbgDg8MMPp7CwsNXX/cYbb3D55ZcDYGa8+eabpKenc+211/LCCy9gZvzqV79i1qxZLFiwgBtuuIHs7Gw+/vhjzjjjDMaPH8+f/vQnqqqqeOqpp9h333159tln+e1vf0ttbS25ubk89NBD9O/fv1G/Z555Jueeey4nnHACEEkGTzzxRE4//fT2nVOROKutKidgYfCuwcpJT2Y7mfhLlWCJiIj0dhrBaoenn36aGTNmMHLkSHJzc1myZElD2QcffMCf/vQnPv/8cyAyre9HP/oRK1asIDMzk7/85S9UV1dz/vnnM3/+fD7++GOCwSB//etfG9rIzc3lgw8+aJRcAVx55ZUcffTRHH/88dx6662UlJSQmJjIjTfeyKxZs1i6dCmzZs3ipptu4uijj+a9997j9ddf55prrqGiogKA9957j8cff5xly5bx6KOPsnjx4na/7ltuuYU///nPLF26lLfeeouUlBSeeOIJli5dykcffcQrr7zCNddcw6ZNmwD46KOPmDt3LitWrOCBBx7g888/57333uOiiy7i9ttvB2D69OksWrSIDz/8kDPPPJObb755l35nzZrFI488AkBtbS2vvvpqQ7Il0hOEK0siT7xVBHPTE9nmMgmVa4qgiIhIb9ezRrDaGGnqLPPmzWsYyTnzzDOZN28eBx10EABTp05l+PDhDXWHDBnCoYceCsA555zDbbfdxre+9S2GDx/OyJEjAZg9ezZ//vOfueKKK4BIQtGcCy64gOOOO44XX3yRp59+mr/97W989NFHu9R76aWXeOaZZ7jlllsAqK6uZu3atQB861vfIjc3soLZd77zHRYuXMjkyZPb9boPPfRQ/uu//ouzzz6b73znO+Tn57Nw4ULOOuss/H4//fv354gjjuD9998nMzOTKVOmMHDgQAD23Xdfjj32WCAy8vb6668DsH79embNmsWmTZuora1t9N7VO/7447n88supqanhxRdf5PDDDyclJaVdMYt0B+HqssgTbwQrNy2JDS6TfpXFcYxKREREuoJGsNqwfft2XnvtNS666CIKCgr4/e9/zyOPPIJzDoC0tLRG9c2s1e3mNG0j2qBBg7jwwgt5+umnCQQCfPLJJ7vUcc7x+OOPs3TpUpYuXcratWsZPXr0HsdT7+c//zl33XUXVVVVHHrooa0u8AGQlJTU8Nzn8zVs+3y+hmvUfvKTn3DZZZfx8ccf87e//Y3q6upd2klOTubII4/k3//+N/Pnz28xARXprqymNPIkqX6KYCLFZBKoVoIlIiLS2ynBasNjjz3Gueeey5o1aygsLGTdunUMHz6ct956q9n6a9eu5Z133gHgn//8J9OnT2fUqFEUFhayatUqAB544AGOOOKINvt+8cUXqaurA2Dz5s0UFxczePBgMjIy2LlzZ0O94447jttvv70h6fvwww8byl5++WW2b9/ecB1U/ehae6xevZrx48fzs5/9jClTprBy5UoOO+ww5s+fTygUoqioiDfffJOpU6e2u83S0lIGDx4MwH333ddivVmzZvGPf/yDt956ixkzZrS7fZHuwFfjfT69EayMpAAlZJJUuz2OUYmIiEhXUILVhnnz5nHqqac22nfaaae1uJrgqFGj+POf/8zo0aPZsWMHl156KcnJyfzjH//gu9/9LuPHj8fn83HJJZe02fdLL73EuHHjOOCAAzjuuOP4/e9/z4ABAzjqqKNYvnw5EydOZP78+fz617+mrq6OCRMmMHbsWH796183tDF16lROO+00JkyYwGmnndYwPfCss87ikEMO4bPPPiM/P5+7774bgLlz5zJ37lwA/vjHPzJu3DgmTJhAQkICxx9/PKeeeioTJkzggAMO4Oijj+bmm29mwIAB7X4/58yZw3e/+10OOugg8vLyGvYvXryYiy66qGH72GOP5Y033uCYY44hMTGx3e2LdAf+2vopgpFrsMyMqsQckkMVEKyJY2QiIiLS2ax+1KM7mDx5smu6CMOKFSsaprvJ7rn33ntZvHgxd9xxR7xDiRv9+5F4+N8br+EX4Tvhqs8gI/IHiNtvvo6fVP4ZrlwOWYPjHKGIiIh0hJktcc41u7CBRrBERGIsMVgeeZKU2bAvlBJZbIbKbXGISERERLpKz1pFUHbL+eefz/nnnx/vMET2KqGwIyVcTsgfwJ/w9eqXlpYHxUBFUfyCExERkU7XI0awutM0Ruk59O9G4qGiNkgGldQG0iFq1U5/hndD7QqtJCgiItKbdfsEKzk5meLiYn1Zlt3inKO4uJjk5OR4hyJ7mYqaIJlWSTAhs9H+5Kx+ANTt1M2GRUREerNuP0UwPz+f9evXU1SkaTWye5KTk8nPz493GLKXKa+OjGCFEjMa7U/LyqXO+aku2UJCnGITERGRztehBMvMfg+cBNQCq4ELnHMlXtkvgO8DIeCnzrl/70kfCQkJDB8+vCNhioh0mXJvBCuclNdof256EtvJIKFMfywSERHpzTo6RfBlYJxzbgLwOfALADMbA5wJjAVmAH8xM38H+xIR6fYqakJkUNloBUGA3PREil0W4QpNERQREenNOpRgOedecs4Fvc1FQP18rJnAw865GufcV8AqYGpH+hIR6QnKa+rItEosuXGClZOWRLHLwCq1yIWIiEhvFstFLi4EXvCeDwbWRZWt9/btwswuNrPFZrZY11mJSE9X7o1g+VOzG+3PTU+kmEwSqpRgiYiI9GZtJlhm9oqZfdLMY2ZUnV8CQeCh3Q3AOXenc26yc25y3759d/dwEZFupaKyinSrJtAkwcpIClBCJkm12+MTmIiIiHSJNhe5cM4d01q5mZ0PnAh80329lvoGYEhUtXxvn4hIr1ZXVQZAYnp2o/1mRlViH5JClVBXDQm6hYCIiEhv1KEpgmY2A7gWONk5VxlV9AxwppklmdlwYATwXkf6EhHpCYKVpQAEUrJ3KatNyo08qdzWhRGJiIhIV+rofbDuAJKAl80MYJFz7hLn3Kdm9giwnMjUwR8750Id7EtEpNsLV5ZEniRn7VLmUnKhEqgogizdo01ERKQ36lCC5Zzbr5Wym4CbOtK+iEhP46ojI1g0WUUQwKX1hWKgQgtdiIiI9FaxXEVQRGSvF66qT7B2HcFKyOgXeVKhFVNFRER6KyVYIiKxVL0j8rOZBCspO5Jg1e3UzYZFRER6KyVYIiIxFKgpiTxJydmlLD0zh1rnp7pkS9cGJSIiIl1GCZaISAwl1pYQwg9JGbuU5aQnUUwWwZ2aIigiItJbKcESEYmRUNiRGiqlOiELIiurNpKXnsh2l0G4XAmWiIhIb6UES0QkRsqq6simnNrE7GbLc9KSKHaZmO6DJSIi0mspwRIRiZEdlbX0sXJCyX2aLc9JS6SYTALV27s4MhEREekqSrBERGKkpKqOPuzENbPABUBmcoAdZJFcqwRLRESkt1KCJSISIyXeCJYvtfkEy8yoTuxDYrgKaiu7ODoRERHpCkqwRERiZEd5LdnsJJCe12Kd2iQv+dJ1WCIiIr2SEiwRkRipLN1KooVI7DOoxTrhVC/5qtBKgiIiIr2REiwRkRipK90EQFKfwS1XSqtPsIq7ICIRERHpakqwRERiJFgSSbB8GQNarBPI6Bt5oimCIiIivZISLBGRWCnfHPnZSoKVnBUpC+7c0hURiYiISBdTgiUiEiOBCi9paiXBysjMptolUF2iBEtERKQ3UoIlIhIDzjmSq7dS5c+AhJQW6+WkJ1FMJnVlWuRCRESkN1KCJSISAzsq6xgQ3kJFaisLXAC5aYkUu0zC5UqwREREeiMlWCIiMbB2eyVDbSuhzGGt1stNT6LYZeLTIhciIiK9UkwSLDO7ysycmeV522Zmt5nZKjNbZmaTYtGPiEh3ta64nCFWRCBveKv1ctIS2U4mgRot0y4iItIbBTragJkNAY4F1kbtPh4Y4T0OBv7q/RQR6ZWKN68lyepgwH6t1stMDrCDLJJrdoBzYNZFEYqIiEhXiMUI1q3AtYCL2jcTuN9FLAKyzWxgDPoSEemWajd/BkBSv9YTLDOjMqEPCa4Gaiu6IjQRERHpQh1KsMxsJrDBOfdRk6LBwLqo7fXevubauNjMFpvZ4qIiXfQtIj2TFS2PPOk3ps26dUk5kScV+p0nIiLS27Q5RdDMXgGau6nLL4HriEwP3GPOuTuBOwEmT57s2qguItLt1IXCZO/8gorEbNLS+7VZP5SaB1VAxTbIaf2aLREREelZ2kywnHPHNLffzMYDw4GPLHINQT7wgZlNBTYAQ6Kq53v7RER6ndVF5YxkDZXZo0hrzzVVaX2hGNBKgiIiIr3OHk8RdM597Jzr55wrcM4VEJkGOMk5txl4BjjPW01wGlDqnNsUm5BFRLqX5Wu3MtrWEBhyULvqBzL6Rp5oiqCIiEiv0+FVBFvwPPBtYBVQCVzQSf2IiMRdyar3SLQQ/pHT21U/MTMyjTC0cyv+zgxMREREulzMEixvFKv+uQN+HKu2RUS6M1v7DgD+oe27G0VWZiblLhlf2VZSOzMwERER6XIxudGwiMjealt5DWMq36MofRSk5bXrmJy0JLa7DIJlWzs5OhEREelqSrBERDpg4bLPOcg+x+33rXYf0yctgWKyCJVrkQsREZHeRgmWiEgH7Hx/HgEL03fame0+JjctiW0uE59WERQREel1lGCJiOyhrWXVTCx+ns2po7AB49t9XJ+0BLa7TBKqlWCJiIj0NkqwRET20Cuvv8p431cEJp29W8f1SU2kmEySaneA0/3VRUREehMlWCIie6CyNkjeh7dTZankfePc3To2we+jItAHvwtCdWknRSgiIiLxoARLRGQPPPfyyxzLO+yY8H1Izdnt42uTvGMqi2McmYiIiMSTEiwRkd1UVFbNsPf+mwpfOoNmXLVHbYRSciNPKopiGJmIiIjEmxIsEZHd9NJDv2eqfUrl4ddDSp89a6T+nllKsERERHoVJVgiIrvh1bfeYubmO9iQNYm+h/9gj9vxp/eLPKnQSoIiIiK9iRIsEZF2WrV+C0NfuYSQL5H+598Pvj3/FZqYFUmwnEawREREehUlWCIi7VBSUc36ey9gX9tA6NS7CPQZ0qH2stPTKHOp1JZtjVGEIiIi0h0owRIRaUN1XYi3/3wJRwbfZt1BPydnwnEdbjMnLZFtLpNg2ZYYRCgiIiLdhRIsEZFWhMOO5/72S06ofJIv9z2XYSf+LCbt5qRHbjYcKtc1WCIiIr2JEiwRkVY89eBtnLbtr3zZ9xj2OftPYBaTdnNSEyl2WVilEiwREZHeRAmWiEgLnn/mEU5YfSNr0g9g+MUPgs8fs7Zz0xMpdpkkVCnBEhER6U2UYImINOOtt99k+pLLKU4cRP6lT2MJKTFtPzctiWIySKwtgXA4pm2LiIhI/HQ4wTKzn5jZSjP71Mxujtr/CzNbZWafmVnHrwgXEekiH69cyT4vXUDIn0TOD5/Fn7aHNxNuRUqin52+bHyEoWpHzNsXERGR+Ah05GAzOwqYCRzgnKsxs37e/jHAmcBYYBDwipmNdM6FOhqwiEhn2lK0jYSHz6SPlVN3zr9IzivotL5qk3OhFqgogrTcTutHREREuk5HR7AuBX7nnKsBcM7V39BlJvCwc67GOfcVsAqY2sG+REQ6VXVtkNV/P48RrpDt376TrH2mdGp/oZS8yBPdbFhERKTX6GiCNRI4zMzeNbM3zKz+28hgYF1UvfXePhGRbsk5x7/v+jXfqH2bVQdcTf7UmZ3epy9dCZaIiEhv0+YUQTN7BRjQTNEvveNzgGnAFOARM9tndwIws4uBiwGGDh26O4eKiMTM6/9+ihO2zOWLvKMYdeovu6RPf0a/yJMKrSQoIiLSW7SZYDnnjmmpzMwuBZ5wzjngPTMLA3nABmBIVNV8b19z7d8J3AkwefJk1/7QRURio3DdOsa+cyVFgYHsc9F9MbvXVVtSsvoSdoZVFNE1PcZPKOzYuqOE4o2FVG1bQ+3OIurKt0PlDhJrS0ioK8MXqsHCtfhDNfjCtfjDdfgI4TDAcBb5CYYDMB/OfDh8OPN7236cr3478nDmiyyxb37w+byf/kY/zecDXwDz+b9u1zvWmb+hD+eVtci1/r8x18pWu+1yWKza2f22WqptexpTs+18/elo/aNpLW5FjnPN1GqlBWta5u1wrlHZLu1FBdl6X67Fei2+Tmv+NYbyRjHhsJlYF/3uEpHWdWiRC+Ap4CjgdTMbCSQC24BngH+a2R+ILHIxAnivg32JiMRcMBSm8MHLONTKKJk1H39KVpf1nZOewnYyyCjbSlKX9dq5SiqqWb1qJSWFHxHasoLkHZ+TV72WvuGtDLRSBjZzTBWJ7CSdWkskaAkELZGgL5GQJVBnCZEvog4i/3GYq/8ZwufCGGF8LoS5MD7C3s8QPsL4vH2Nn4fwE8aHw0/Ye+79NP2dT3qmJb75HDR9RrzDEBE6nmDdA9xjZp8QWQtrtjea9amZPQIsB4LAj7WCoIh0RwueuptjahawcvRl7D/y4C7tOy89iWKXSUoPTbBCYcdnazawZtmbuLXvklvyEfsHP+Mgq2yos82XR3HKMDamj2FjVj6JOUNJzhtGap/+ZPbpR0pmLikJKcT2LmPtEw47Qs4RCjtqwpGfoVCYYKgOwiHwkrb657gQFg6DC2OtjGLt3iDCno047NrHHrbTdsN7EEuLrbdL9CCgi+rAuZbH/xof0yRJrt80a/GYXY5r/mlUHPUx7Rp/WzE1OmaXmKLqtdJedKkL1pBx/7FkLfgl4WnH4At09KudiHRUhz6Fzrla4JwWym4CbupI+yIinWn9lm2MX3YTa5L2Y9RpN3R5/zlpiWx3mQwq39p25W5ibVEZH7/3KqEvXmNYyTuMc6sYY44wxsbE4azvN4MtQyaRO3wiOQXjyEvpQ168g26Bz2f4MBL8TUt6Yrore7P3D/o5U5Zcy7tP387Bp10Z73BE9nr6M0cr1n/xEZtWvsOUE3/YZddkiEjX+eCfczjZdrB15n1YILHL+89NT+QrMvFVburyvtvLOceHX27iq0VPkf3Vi0ype58TrJIQPjak7M8XQy6h37ijyBl5CPnJmeTHO2CRvdDkE37A8o/vZ/+Pf8+myScwcNjIeIcksldTgtWKDf/+Iwdve4IPVz5D3qk3M2S/cfEOSURi5N2lH/Gtkvms6n8s+409Ii4x5KUn8Y7rQ1LVUu/C+e7zh5xV67ey/I35pH/5PNOCS5hkNez0ZbJp0LeoOeDb9J1wLENTc+IdpogA5vPR58w78d/3TUofPI/cq14nMTkeE29FBJRgteqgH97Jf+YNYdLqvxB44DDe73MsfY+9ioIxumeySE8WCjsqnrsenznyz/h93OLISUtkE3kEQtVQtQPinLBsLKniPwtfJfnjhzi8egH7WSUlvj5sKjiFAYfMImPEEWT49b8Nke5o4D5jWTL1txz0/lUs+cs5TLrikciqmCLS5fR/ylYEEhL4xnk3sm3zRXzxxG85cMsTJD/yIp8HRrFj5HcZefh36TOgIN5hdkvhsCMUDhMKh3HeReHOhSI/G7YduDA4t8tFyZGLea3JhcbO+9ncX/l33efMWhgQiF5Ct5URA7M2r9Fua8ChrfGIr5fUbb5m28e31X8zFaKXEI7BgElbyyY3utDbe+5wUc+/vrDbRdVhN+q6qKWcm+5v7tiVS97imLoFfDbyh4zKK9iNVxtbCX4fFckDI0sBlayNS4JVXRfipcUr2fbOgxxc8hyn+9ZQQyLrB32L8PTvkz36SLL1JU2kRzjohIv4T9GXfKPwzyy5/Rwm/vh+/IGEeIfVrTkXWdwmFA7ignUQDhIOR76jRB7131u8584RduHI/1sa9oVxYQeEm1/4JPp/lGZN/t8c/V2lyf+1d/ke8vWxzpo2bY2+3UTKGleK/m/D7oayJt9HDO/WGNFNNP/9yZrE2fS7h/ma3l7A12JZ44ai3htfgIRAIr5d6ndP1nRVnniaPHmyW7x4cbzDaNGOok2s+PffGfTloxSE1wLwpX84RblTSB42mbyRBzNg+Dj88VjBJ1gLdRXUVVdQU1VObVXkZ111ZF+oppJQTQXh2krCNZWE66qgrhLqqrBgFVZXBeE6LFSLheowV4eF6vC5IL5wHX5CBFzkZ0L9T4L4CWHOeUsfO4zIc7+WOpZurtj6kP2zj/EnZ8Q1jp/dfj//V/wTmPUQjD6xy/pdsbGERa89Tb9Vj3CMe5ckq2Nr+v4EDppNzrTvQUp2l8UiIrHjwmHevvsapm+4i09TDmLIRQ+RmdvcDRK6P+ccOyvK2bmjmJry7dTs3EFdxQ7qqkpwlSWEqssJ11biaiuhrhJfsApfqIpAqJpAqJrEcDUJ4WoC1OF3QQIu8r3FT5CACxEgRIAgiaaFrru7/647h5MuuYmJQ7LjHUoDM1vinJvcXJlGsHZDn74D+cY51+PCv+KLTxezafGz5GxawPgtT5O69RF4H+qcny2+vhQnDKAyqS8uuQ++1D6QkoULpODzB/D5E/AFAoQJEA4FcaEaXKgOgrW4UB0uVIsFayK/LOoq8QUrCQQrCYQqCYSqSAxVkeiqSQpXk+yqSKaGBIIAJHiP9qhxCVSRSBVJ1BK5/0zIAoR9CYQtQMiXQNCfjPMlEPYlEjZ/1M8EnC8hcjNP78acmA8zX+SGnWaRZYzNh/n8kdTLfFD/03zeX0Yi+4Amf/34ekSi8c0id03crNk/EuyyUO8ubdUf1vwNMZs/vkmVDmlYObiFP3K0I4J2tR/NWlkCuL1ttL9C1E00W/jrnO166qPKmr9ZZ6M/BEY9afz3wJb2f91h9sSTyY1zcgWQmDMUioHSdZ3eV2VtkFffXUrpO/dzWPkLXODbSpUvjR0jzqT/ERfRb9DETo9BRDqX+XxM/8H/Y+H8QUxZ/r9U3T6FjydexdgTL8PXDUazXLCGsuJNlBVtoLx4IzUlmwnt3AzlWwlUFpFUU0xacDtpoZ2kuUoyrY7MNtqscQlUWxI1lkSNJVNnSdT6kgkGUqj2ZRP2JeJ8Ae/7TAL4AuBLwPkCmD/yfQZ/gLAFcBbwvtPQ8F3GYZHvM3y9j/oRHfN5/2PyNfx/K/r/U9H/i7dd5+tE/a+y8Wwec43/F2uu0WL/jX5G163/TuNcM3VbuEl50+9DLur51+XRN8ZuXNZoe5fbJOxyw4E9Kts/ewoDs5KbvoBuSwnWHjCfjxHjpzJifORarJraGlas+JCdq9+nbutnJJavJ6tmI33LPyK9bCfpVrVH/dS6AFWWRBUp1FgyNb5kanwpVPr7EPSnEvSnEAqkEkpIxQVSISEVl5iGLyEFX1Iq/qRU/IlpBJLTCCSlkZiSRmJKOknJ6SSlppKclEhagp9sf8v3cxGRztUnbwBln6eSVvQZnTUR75N121j66nzyv3qMb/MhfnNsyp1MxTd+Q9rEU0lJ0MXwIr3N9FlXsfKjQ6l95iomLJ3Dpo/+wsZ9ZzHs8HPIG7p/TPsKB+so2baJsm0bqdi+gZqSzQRLN0NFEYGqIpJrtpFWt52s0A6y2UkW0PSW7mUulR2WTVkgh41J+xBKysaSs/CnZONPy8aXkk0gNZvE9GyS0nNITu9DSkY26WkZJAUCurmCdCuaItgFqqurqSwrJlhXS7Culrq6WkLBOnwuhD+QgD8hiUBCEoGEBPyJySQmJJGQmEQgUb8uRHq7x5asZ8jTpzFhUDopl7was3ZLKmtZ8PbbBJc8wBFVr9DXSikN5FI5ZhYDjrgIy903Zn2JSPcVDIb48OWHSP7g74yvWwbABt9AijNGU5szksS++5KY2Y/kzDwSEhPx+QIEHdRVVxKs3kmwupzqip3UlW/HVRThq9xGoGY7yTXFpNbtIDNcQrbbia+ZGSYVLokd1oeyQB8qE3OpTcojlNYXS+9PQlZ/UvoMIj1vMNl9B5OdkdFjrq8RAU0RjLvk5GSSkwfHOwwR6YbGDc5kUXgok4oWQjgMvj0fUQ6FHYuWf8XaNx9g/y3Pcop9EblfVb8jqDj8IrLGzCBLqwCK7FUCAT9Tjj8Pjj+PL1YuY8uSZ0le9xYDSj8hv/Q1+Gr32it1aZT6sij3Z1OcPJQtSRMJpeZhGf0JZA4gpc9A0vMGkd13MFlZfUjrRrefEOkq+j+tiEgc7dc3nft9w0kIvQRFK6H/mN1uo3BrGYsXPE3GyvkcEVrEoVbH1pThbDrgVwycfh5DM/p3QuQi0tOM2H8CI/af0LBdUrKDLeu/orp0K7XlxYSDdYTDIQLm8CWm4EtKJyE5ndSMDDKy+5GZ25+spJRdpveJSGNKsERE4ijg91Hc/1Ao+ht8/mK7E6x123ayZOELBFY8xcHVCzndSqmwdLbsczoDj/o+/YZM7lY3LhaR7ic7uw/Z2X3iHYZIr6MES0QkzqYeMIGlL+3DmCUPkviNn0Iz0/iccyxfu4Uv338B/6qXmVK1kFOslBqS2NhvOoEpZ9DnwFNIS+g5qyyJiIj0RkqwRETi7OQDBvHfL53CbSV/oO7FX5JwzK9xiWms2bCRwk/eofKr98jd+g4TwysYa3XUkMT6fodhB32XvEknMTwxLd4vQURERDxaRVBEpBt45P211DxzJef6XyGMUeWSSLPqhvKNiQWU5x9BvwNPIHv/I0AjVSIiInGjVQRFRLq5M6YMZXHenfzj7efov2MJOYFqkrMH0HfEFAbuP41B6XnxDlFERETaQQmWiEg3MXl4LpOHnwecF+9QREREZA/t+Q1XREREREREpBElWCIiIiIiIjGiBEtERERERCRGutUqgmZWBKyJdxxN5AHb4h2EdBmd772HzvXeQ+d676LzvffQud57dMdzPcw517e5gm6VYHVHZra4pSUYpffR+d576FzvPXSu9y4633sPneu9R08715oiKCIiIiIiEiNKsERERERERGJECVbb7ox3ANKldL73HjrXew+d672LzvfeQ+d679GjzrWuwRIREREREYkRjWCJiIiIiIjEiBIsERERERGRGFGC1Qozm2Fmn5nZKjP7ebzjkdgxsyFm9rqZLTezT83scm9/jpm9bGZfeD/7xDtWiQ0z85vZh2b2L297uJm9632+55tZYrxjlNgws2wze8zMVprZCjM7RJ/t3snMrvR+h39iZvPMLFmf7d7DzO4xs61m9knUvmY/yxZxm3fel5nZpPhFLrurhXP9e+/3+DIze9LMsqPKfuGd68/M7Li4BN0KJVgtMDM/8GfgeGAMcJaZjYlvVBJDQeAq59wYYBrwY+/8/hx41Tk3AnjV25be4XJgRdT2/wG3Ouf2A3YA349LVNIZ/gS86JzbHziAyHnXZ7uXMbPBwE+Byc65cYAfOBN9tnuTe4EZTfa19Fk+HhjhPS4G/tpFMUps3Muu5/plYJxzbgLwOfALAO/72pnAWO+Yv3jf27sNJVgtmwqscs596ZyrBR4GZsY5JokR59wm59wH3vOdRL6ADSZyju/zqt0HnBKXACWmzCwfOAG4y9s24GjgMa+KznUvYWZZwOHA3QDOuVrnXAn6bPdWASDFzAJAKrAJfbZ7Defcm8D2Jrtb+izPBO53EYuAbDMb2CWBSoc1d66dcy8554Le5iIg33s+E3jYOVfjnPsKWEXke3u3oQSrZYOBdVHb67190suYWQFwIPAu0N85t8kr2gz0j1dcElN/BK4Fwt52LlAS9Ytbn+/eYzhQBPzDmxJ6l5mloc92r+Oc2wDcAqwlkliVAkvQZ7u3a+mzrO9tvduFwAve825/rpVgyV7NzNKBx4ErnHNl0WUucg8D3ceghzOzE4Gtzrkl8Y5FukQAmAT81Tl3IFBBk+mA+mz3Dt61NzOJJNWDgDR2nWIkvZg+y3sHM/slkUs7Hop3LO2lBKtlG4AhUdv53j7pJcwsgUhy9ZBz7glv95b6KQXez63xik9i5lDgZDMrJDLV92gi1+hke9OKQJ/v3mQ9sN459663/RiRhEuf7d7nGOAr51yRc64OeILI512f7d6tpc+yvrf1QmZ2PnAicLb7+ua93f5cK8Fq2fvACG81okQiF9M9E+eYJEa8a3DuBlY45/4QVfQMMNt7Pht4uqtjk9hyzv3COZfvnCsg8jl+zTl3NvA6cLpXTee6l3DObQbWmdkob9c3geXos90brQWmmVmq9zu9/lzrs927tfRZfgY4z1tNcBpQGjWVUHogM5tBZHr/yc65yqiiZ4AzzSzJzIYTWdjkvXjE2BL7OhmUpszs20Su3fAD9zjnbopvRBIrZjYdeAv4mK+vy7mOyHVYjwBDgTXAGc65phfYSg9lZkcCVzvnTjSzfYiMaOUAHwLnOOdq4hiexIiZTSSyoEki8CVwAZE/KOqz3cuY2W+AWUSmD30IXETkWgx9tnsBM5sHHAnkAVuAG4CnaOaz7CXZdxCZJloJXOCcWxyHsGUPtHCufwEkAcVetUXOuUu8+r8kcl1WkMhlHi80bTOelGCJiIiIiIjEiKYIioiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaISDdjZgVm5swsEO9YZO9gZp+a2ZHxjkNEpDdQgiUiIj2emc01s3LvUWtmdVHbL8Q7vu7OOTfWObcglm16SVt51CNoZs/Gsg8Rke7InHPxjkFEpFcxs4BzLtiB4wuAr4CEjrSztzKzOcB+zrlzminr0LnpSj0p1raYmQFfAjc45+6PdzwiIp1JI1giIjFgZoVm9jMzWwZUmFnAzKaZ2X/MrMTMPoqegmVmC8zsf83sPTMrM7OnzSynhbYvMLMVZrbTzL40sx82KZ9pZku9dlab2Qxvf5aZ3W1mm8xsg5n91sz8bbyOfc3sNTMrNrNtZvaQmWVHlW03s0ne9iAzK6p/XWZ2sjdqUeK9vtFN3p+rzWyZmZWa2XwzS979d3r3tXBunJntF1XnXjP7bdT2id57WuKdwwnt7OtIM1tvZtd571+hmZ0dVX6CmX3onat1XjJYX1Y/NfT7ZrYWeM3b/6iZbfbetzfNbGyTuP9iZi94o0Rvm9kAM/ujme0ws5VmdmA736Nj2vMa99DhQB7weCf2ISLSLSjBEhGJnbOAE4BsoD/wHPBbIAe4GnjczPpG1T8PuBAYCASB21podytwIpAJXADcGpXkTAXuB67x+j0cKPSOu9drdz/gQOBY4KI2XoMB/wsMAkYDQ4A5AM651cDPgAfNLBX4B3Cfc26BmY0E5gFXAH2B54FnzSwxqu0zgBnAcGACcH6zAZhN9xKblh7T23gNzWk4N22NCnkJyT3AD4Fc4G/AM2aW1M6+BhBJJgYDs4E7zWyUV1ZB5Lxne/FcamanNDn+CCLv/XHe9gvACKAf8AHwUJP6ZwC/8vqsAd7x6uUBjwF/aGfczTKzn7d2PtrZzGzgcedcRUdiERHpCZRgiYjEzm3OuXXOuSrgHOB559zzzrmwc+5lYDHw7aj6DzjnPvG+dP4aOKO5ESbn3HPOudUu4g3gJeAwr/j7wD3OuZe9fjY451aaWX+vryuccxXOua3ArcCZrb0A59wqr60a51wRkS/nR0SV/x1YBbxLJDH8pVc0C3jOO7YOuAVIAb7R5P3Z6JzbDjwLTGwhhoXOuexWHgtbew0tiD43bbkY+Jtz7l3nXMg5dx+RxGXabvT3a+89fINIon0GgHNugXPuY+9cLSOSlB7R5Ng53jmr8o65xzm30zlXQyTZPcDMsqLqP+mcW+KcqwaeBKqdc/c750LAfCLJ9R5zzv2utfPR1vFeMn46kYRfRKTXU4IlIhI766KeDwO+2+Qv/dOJJCXN1V8DJBAZdWjEzI43s0Xe9LwSIolTfb0hwOpmYhnmtbcpqv+/ERkFaZGZ9Tezh70phWXAg83E9HdgHHC796UfIiNea+orOOfC3usbHHXc5qjnlUB6a7HE2Lq2qzQYBlzV5NwNIfIa22NHk5GaNfXHmtnBZva6N7WyFLiEXd/fhljNzG9mv7PI1M8yvh6djD5mS9Tzqma2u/J9bs53gO3AG3GOQ0SkSyjBEhGJnehVg9YRGaGK/mt/mnPud1F1hkQ9HwrUAduiG/SmpT1OZESovzdi8DyRqXz1/ezbTCzriIy65EX1n+mcG9tM3Wj/472O8c65TCIjcfV9YWbpwB+Bu4E59vV1YxuJJCb19cx7fRva6G8XZnaYNV59runjsLZb2UXTFZ0qgdSo7QFRz9cBNzU5d6nOuXnt7KuPmaVFbQ8l8v4A/BN4BhjinMsC5hL1/jYT6/eAmcAxQBZQ4O1vekyn8a4na/F8tKOJ2cD9TqtqicheQgmWiEjneBA4ycyO80Yhkr0FEPKj6pxjZmO8KVQ3Ao9507qiJQJJQBEQNLPjiVxLVe9u4AIz+6aZ+cxssJnt75zbRGQq4f8zs0yvbF8zazodrakMoBwoNbPBRK7tivYnYLFz7iIiU9/mevsfAU7w4kgAriKS4P2nrTeqKefcW8659FYeb+1um81YCnzPOzczaDxN7+/AJd5ok5lZmkUWp8iAhoUl7m2j/d+YWaKXDJ4IPOrtzwC2O+eqvevnvtdGOxlE3sdiIgnh/+zGa4wJ59z/tHY+WjvW+/d+FHBf10QrIhJ/SrBERDqBc24dkZGH64gkR+uIJCvRv3cfIHJdymYgGfhpM+3s9PY/Auwg8oX8majy9/AWvgBKiUzDqh9JOo9IgrbcO/YxGk9RbM5vgEleW88BT9QXmNlMIotUXOrt+i9gkpmd7Zz7jMho1+1ERuFOAk5yztW20V+8XE4kxhLgbOCp+gLn3GLgB8AdRN63VTRekGMI8HYrbW/2jttIZEGKS5xzK72yHwE3mtlO4Hoi57U19xOZYriByHlc1NYL62bOBd7xFkgREdkr6D5YIiJxYGYLgAedc3fFOxZpP29VxI+ACd5iHk3LjyRyXvOblomIyN4hEO8AREREegpvRG50mxVFRGSvpSmCIiJ7GTOb28KCBXPbPlp6IjMb2spCFUPjHZ+ISG+iKYIiIiIiIiIxohEsERERERGRGOlW12Dl5eW5goKCeIchIiIiIiLSoiVLlmxzzvVtrqxbJVgFBQUsXrw43mGIiIiIiIi0yMzWtFSmKYIiIiIiIiIx0uEEy8yGmNnrZrbczD41s8u9/Tlm9rKZfeH97NPxcEVERERERLqvWIxgBYGrnHNjgGnAj81sDPBz4FXn3AjgVW9bRKTHCoW16qqIiIi0rsPXYDnnNgGbvOc7zWwFMBiYCRzpVbsPWAD8bHfbr6urY/369VRXV3c0VNnLJCcnk5+fT0JCQrxDkV7g9c+28sP7l/DwD6cxaagG5EVERKR5MV3kwswKgAOBd4H+XvIFsBno38IxFwMXAwwduuu9DtevX09GRgYFBQWYWSzDlV7MOUdxcTHr169n+PDh8Q5HeoF3P/yI1wM/5vU3rmPSuRfFOxwRERHppmK2yIWZpQOPA1c458qiy1zkbsbNzq1xzt3pnJvsnJvct++uKx1WV1eTm5ur5Ep2i5mRm5urkU+JmeSijxlsxZyz+qp4hyIiIiLdWEwSLDNLIJJcPeSce8LbvcXMBnrlA4GtHWi/40HKXkf/biSWEis3f70RrIlfICIiItKtxWIVQQPuBlY45/4QVfQMMNt7Pht4uqN9iYjES3rNlobnoR1r4xiJiIiIdGexGME6FDgXONrMlnqPbwO/A75lZl8Ax3jbPZKZcdVVX08LuuWWW5gzZ078AoqyaNEiDj74YCZOnMjo0aMb4lqwYAH/+c9/9rjdNWvWMGnSJCZOnMjYsWOZO3dujCIW6Xmcc+QEv06wdm5aFcdoREREpDuLxSqCC4GW5mJ9s6PtdwdJSUk88cQT/OIXvyAvLy9m7TrncM7h8+15njt79mweeeQRDjjgAEKhEJ999hkQSbDS09P5xje+sUftDhw4kHfeeYekpCTKy8sZN24cJ598MoMGDdrjWEV6qrLqIP0pZqN/MINCG6jYsprseAclIiIi3VLMFrnozQKBABdffDG33nrrLmVFRUWcdtppTJkyhSlTpvD2228DMGfOHG655ZaGeuPGjaOwsJDCwkJGjRrFeeedx7hx41i3bh3XXHMN48aNY/z48cyfPx+IJEhHHnkkp59+Ovvvvz9nn302kbVCGtu6dSsDBw4EwO/3M2bMGAoLC5k7dy633norEydO5K233mo1znPPPZdDDjmEESNG8Pe//x2AxMREkpKSAKipqSEcDjf73tx2222MGTOGCRMmcOaZZwKwfft2TjnlFCZMmMC0adNYtmxZQ1+zZ8/msMMOY9iwYTzxxBNce+21jB8/nhkzZlBXVwfAjTfeyJQpUxg3bhwXX3zxLq87HA5TUFBASUlJw74RI0awZcsWRDpDeU2QXMrYlj6KGhegbvuaeIckIiIi3VRMl2nvbL959lOWbyxru+JuGDMokxtOGttmvR//+MdMmDCBa6+9ttH+yy+/nCuvvJLp06ezdu1ajjvuOFasWNFqW1988QX33Xcf06ZN4/HHH2fp0qV89NFHbNu2jSlTpnD44YcD8OGHH/Lpp58yaNAgDj30UN5++22mT5/eqK0rr7ySUaNGceSRRzJjxgxmz55NQUEBl1xyCenp6Vx99dUAfO9732sxzmXLlrFo0SIqKio48MADOeGEExg0aBDr1q3jhBNOYNWqVfz+979vdvTqd7/7HV999RVJSUkNCc8NN9zAgQceyFNPPcVrr73Geeedx9KlSwFYvXo1r7/+OsuXL+eQQw7h8ccf5+abb+bUU0/lueee45RTTuGyyy7j+uuvB+Dcc8/lX//6FyeddFJDnz6fj5kzZ/Lkk09ywQUX8O677zJs2DD692/2TgAiHVZVGyLDqqlJzaS4JJPQzqJ4hyQiIiLdlEaw2ikzM5PzzjuP2267rdH+V155hcsuu4yJEydy8sknU1ZWRnl5eattDRs2jGnTpgGwcOFCzjrrLPx+P/379+eII47g/fffB2Dq1Knk5+fj8/mYOHEihYWFu7R1/fXXs3jxYo499lj++c9/MmPGjGb7bC3OmTNnkpKSQl5eHkcddRTvvfceAEOGDGHZsmWsWrWK++67r9kRogkTJnD22Wfz4IMPEggEGl7TueeeC8DRRx9NcXExZWWRxPj4448nISGB8ePHEwqFGuIdP358w+t7/fXXOfjggxk/fjyvvfYan3766S79zpo1q2G07+GHH2bWrFmtvuciHVFVGyKFGpLTMil2mfgqlGCJiIhI83rUCFZ7Rpo60xVXXMGkSZO44IILGvaFw2EWLVpEcnJyo7qBQKDRtLro+zGlpaW1q7/6KXoQmf4XDAabrbfvvvty6aWX8oMf/IC+fftSXFy8S52W4oRdlzNvuj1o0CDGjRvHW2+9xemnn96o7LnnnuPNN9/k2Wef5aabbuLjjz9u12vy+XwkJCQ09OXz+f5/e3ceX1dZ73v889tj5qQZ2tKk0AJt6ZCmhXSQUmiRSUEQihSPqKVHuSqK4nREBZFzvFflXs+5CsqBA1Y9ldEjcA+DIFKg5wiYDkChFAqUDnTI0MzZ2dNz/9i7adIm6ZCd7N3k+3698tp7PetZz/qlq2tn/fbzrGcRjUYJhUJ86UtfoqamhvHjx3PzzTf3+iyrD33oQ2zevJna2loefvhhvv/97/e7X5GB6AhHyaGTpqxcmj1FFIUOPsdEREREQD1YR6S4uJgrrriCu+++u6vsvPPO4xe/+EXX8r6hcBMmTGDt2rUArF27lvfee6/XNhcuXMj9999PLBajtraW559/nrlz5x52TI899ljXPUpvv/02Xq+XoqIi8vPzaWlpOWScAI888gihUIj6+npWrVrFnDlz2L59Ox0dHQDs3buX1atXM2XKlB77jsfjbNu2jcWLF/OTn/yEpqYmWltbWbhwIStXrgQS95KVlpZSUFBwWL/PvmSqtLSU1tZWHnrooV7rmRmXXnopX//615k6dSolJSWH1b7I0egIteOzOJ5AHu3+UWRHGtIdkoiIiGQoJVhH6Bvf+AZ1dXVdyz//+c+pqalh5syZTJs2rWs68yVLltDQ0MD06dO57bbbmDx5cq/tXXrppcycOZOqqirOPvtsfvrTnzJ27NjDjud3v/sdU6ZMYdasWXz6059m5cqVeL1ePvaxj/HHP/6xa5KLvuKExDC/xYsXM3/+fG688UbGjRvHxo0bmTdvHlVVVZx11ll885vfpLKyEoDPfe5z1NTUEIvFuOqqq6isrGT27Nlcd911FBUVcfPNN7NmzRpmzpzJd77zHX7zm98c9u9TVFTE5z//eWbMmMH555/PnDlzutbdcccdPeJeunQp//7v/67hgTLooqHEcFpvVi6hQAn50UboZdIZEREREettZrp0qa6udjU1NT3KNm7cyNSpU9MU0fB3880395gMY7jR/x9JhSf+62985OlzqFt8Ky+8tplL6/4VbtgBwbx0hyYiIiJpYGZrnHPVva1TD5aIyCFEQ20A+LPzILcsUdi2J40RiYiISKY6pia5kNS7+eab0x2CSMaLhRL3M/qz8/DmJxKszqbdBItPTGdYIiIikoHUgyUicgixZA9WIDufQGHieWttDbvSGZKIiIhkKCVYIiKH4MKJBMuXlU920XEAtO9VgiUiIiIH0xBBEZFDiIfbE2/8ORSUFgMQbjr4wdsiIiIiSrBERA7BIokeLAI5lPgKaHY5xFqUYImIiMjBNETwMD388MOYGW+++WafdbZs2cKMGTNSts9NmzaxaNEiZs2axdSpU7nmmmuAxEOCH3/88aNuNxQKMXfuXKqqqpg+fTo/+MEPUhWyyPDU1YOVS0legDpXgLXX9b+NiIiIjEiDnmCZ2QVmtsnMNpvZdwZ7f4Pl3nvv5YwzzuDee+/tdX00Gh3wPmKxWI/l6667juuvv57169ezceNGvvKVrwADT7CCwSB/+ctfeOWVV1i/fj1PPvkkL7744oBiFxnOPNH9PVg5AS97rRBfhxIsEREROdigJlhm5gVuBz4CTAM+aWbTBnOfg6G1tZXVq1dz9913c99993WVr1q1ioULF3LxxRczbVri14pGo3zqU59i6tSpXH755bS3J775fuaZZ5g9ezaVlZUsX76czs5OACZMmMA//MM/cOqpp/Lggw/22O/OnTupqKjoWq6srCQcDnPTTTdx//33M2vWLO6//37a2tpYvnw5c+fOZfbs2TzyyCMArFixgksuuYRFixYxadIkfvjDHwJgZuTlJR6QGolEiEQimNlBv/eDDz7IjBkzqKqq4swzzwQSvV9XX301lZWVzJ49m2effbZrXx//+Mc599xzmTBhArfddhs/+9nPmD17NvPnz6ehoQGAu+66izlz5lBVVcWSJUu6/n26mz9/Pq+//nrX8qJFizjwAdQiQ8kT6Ui88WVjZrR5iwiG96Y3KBEREclIg30P1lxgs3PuXQAzuw+4BHjjqFp74juw67XURQcwthI+8uN+qzzyyCNccMEFTJ48mZKSEtasWcNpp50GwNq1a9mwYQMTJ05ky5YtbNq0ibvvvpsFCxawfPlyfvnLX/LlL3+ZZcuW8cwzzzB58mQ+85nP8Ktf/Yqvfe1rAJSUlLB27dqD9nv99ddz9tlnc/rpp3Peeedx9dVXU1RUxC233EJNTQ233XYbAN/97nc5++yzueeee2hsbGTu3Lmcc845ALz88sts2LCBnJwc5syZw4UXXkh1dTWxWIzTTjuNzZs3c+211zJv3ryD9n/LLbfwpz/9ifLychobGwG4/fbbMTNee+013nzzTc477zzeeustADZs2MC6desIhUKcfPLJ/OQnP2HdunVcf/31/Pa3v+VrX/sal112GZ///OcB+P73v8/dd9/d1TO3z9KlS3nggQf44Q9/yM6dO9m5cyfV1b0+KFtkSHhjHYQsSJYn8Z1UR2AUOeFNaY5KREREMtFgDxEsB7Z1W96eLOtiZteYWY2Z1dTW1g5yOEfn3nvv5corrwTgyiuv7DFMcO7cuUycOLFrefz48SxYsACAq666itWrV7Np0yYmTpzI5MmTAfjsZz/L888/37XN0qVLe93v1VdfzcaNG/nEJz7BqlWrmD9/flfPV3dPPfUUP/7xj5k1axaLFi0iFAqxdetWAM4991xKSkrIzs7msssuY/Xq1QB4vV7Wr1/P9u3bu5KwAy1YsIBly5Zx1113dQ1fXL16NVdddRUAp5xyCieccEJXgrV48WLy8/MpKyujsLCQj33sY0Ci523Lli1AIglbuHAhlZWVrFy5skdP1T5XXHEFDz30EAAPPPAAl19+ea//PiJDxRttJ2zZXcuRYDF58WaIx9MYlYiIiGSitM8i6Jy7E7gToLq62vVb+RA9TYOhoaGBv/zlL7z22muYGbFYDDPj1ltvBSA3N7dH/QOH2vU29O5AB7bR3bhx41i+fDnLly9nxowZvSZCzjn+8Ic/MGXKlB7lL7300iHjKSoqYvHixTz55JMHTdBxxx138NJLL/HYY49x2mmnsWbNmn5/j2Aw2PXe4/F0LXs8nq571JYtW8bDDz9MVVUVK1asYNWqVQe1U15eTklJCa+++ir3338/d9xxR7/7FRls/niIsHd/ghXLLsHbFIdQI+QUpy8wERERyTiD3YO1AxjfbbkiWXbMeOihh/j0pz/N+++/z5YtW9i2bRsTJ07khRde6LX+1q1b+etf/wrA73//e8444wymTJnCli1b2Lx5MwC/+93vOOussw657yeffJJIJALArl27qK+vp7y8nPz8fFpaWrrqnX/++fziF7/AuUR+um7duq51Tz/9NA0NDXR0dPDwww+zYMECamtru4b8dXR08PTTT3PKKacctP933nmHefPmccstt1BWVsa2bdtYuHAhK1euBOCtt95i69atByV2/WlpaeG4444jEol0tdObpUuX8tOf/pSmpiZmzpx52O2LDAZ/rIOIZ3+C5ckrAyDempm97iIiIpI+g51g/Q2YZGYTzSwAXAk8Osj7TKl7772XSy+9tEfZkiVL+pxNcMqUKdx+++1MnTqVvXv38sUvfpGsrCx+/etf84lPfILKyko8Hg9f+MIXDrnvp556qmuSifPPP59bb72VsWPHsnjxYt54442uSS5uvPFGIpEIM2fOZPr06dx4441dbcydO5clS5Ywc+ZMlixZQnV1NTt37mTx4sXMnDmTOXPmcO6553LRRRcBcNNNN/Hoo4lD9K1vfYvKykpmzJjB6aefTlVVFV/60peIx+NUVlaydOlSVqxY0aPn6lD+8R//kXnz5rFgwYIeSd2jjz7KTTfd1LV8+eWXc99993HFFVccdtsigyXgQsS69WD58kcD0LZ3Z7pCEhERkQxl+3o9Bm0HZh8F/gXwAvc4537UV93q6mp34GxxGzduZOrUqYMa43C1YsWKHpNhjET6/yOpsOamOZQUFTDh688A8Oxzz7D42cvYef6dHPeh3u+hFBERkeHLzNY453qdhW3Q78Fyzj0OHP1Dm0RE0igai5NNJ3Hf/h6svFFjAeho3J2usERERCRDpX2SCxk8y5YtY9myZekOQ+SY1hGJkU2ImC+nqyy/ZAwAkWbdgyUiIiI9DfY9WCkx2MMYZXjS/xtJhY5wjBzrxAX2z/ZZUpBPk8vBte1JY2QiIiKSiTI+wcrKyqK+vl4Xy3JEnHPU19eTlZWV7lDkGJfoweoE//4erFE5fhpcAbTXpzEyERERyUQZP0SwoqKC7du3k6kPIZbMlZWVRUVFRbrDkGNce2eUcjqxbj1YPq+HJk8h+aGGNEYmIiIimSjjEyy/38/EiRPTHYaIjFChUDs+i+MJ9nwgeLuviNKwhgiKiIhITxk/RFBEJJ3CHa0AByVYHYFicqONaYhIREREMpkSLBGRfoTbEwmW74AEK5pVTEG8CeLxdIQlIiIiGUoJlohIP6KhRILlzcrrUe5ySvESh1BjGqISERGRTKUES0SkH/sSLH92fo9yT14ZAJ3Nug9LRERE9lOCJSLSj/0JVs8eLH9+IsFqqd855DGJiIhI5lKCJSLSj1i4DYCsnJ49WFlFYwBoa9g95DGJiIhI5lKCJSLSD5fswQoc0IOVVzwWgFCzEiwRERHZTwmWiEg/4skerO4PGgYoLDkOgEizHoIuIiIi+ynBEhHphwu3J974eyZYJYV5NLscXKsSLBEREdlPCZaISH8iyQQrkNOjOCfgpZ5CvO1KsERERGS/ASVYZnarmb1pZq+a2R/NrKjbuhvMbLOZbTKz8wccqYhIGngi7cQx8GX3KDczGr3FBDvr0hSZiIiIZKKB9mA9Dcxwzs0E3gJuADCzacCVwHTgAuCXZuYd4L5ERIacJ9pO2ILgOfjjstVfQk5YCZaIiIjsN6AEyzn3lHMumlx8EahIvr8EuM851+mcew/YDMwdyL5ERNLBG+ug07J6XdcRLKUw2jDEEYmIiEgmS+U9WMuBJ5Lvy4Ft3dZtT5YdxMyuMbMaM6uprdW9DCKSWfzRdiKe7F7XRbPLyKEDkjMNioiIiBwywTKzP5vZhl5+LulW53tAFFh5pAE45+50zlU756rLysqOdHMRkUHlj3cQ8fbeg+XyEs/Cci27hjIkERERyWC+Q1Vwzp3T33ozWwZcBHzYOeeSxTuA8d2qVSTLRESOKdnxNiK+/F7XeQvGANBW/wF5JScNZVgiIiKSoQY6i+AFwLeBi51z7d1WPQpcaWZBM5sITAJeHsi+RESGmnOOnHg7EX9er+sDReMAaKnbPpRhiYiISAY7ZA/WIdwGBIGnzQzgRefcF5xzr5vZA8AbJIYOXuuciw1wXyIiQyoci5NHO53+gl7X5xQnEqzOvTuHMiwRERHJYANKsJxzJ/ez7kfAjwbSvohIOjV3RCmwNmqzek+wikrHEHFeos1KsERERCQhlbMIiogMK03tYfLpwPpIsErysqmjEFp3D3FkIiIikqmUYImI9KG5tRm/xfDmFPW6flSOnz2uCG/bnqENTERERDKWEiwRkT60NyceIuzPLep1vc/rockzimCobgijEhERkUymBEtEpA8dyQQrK29Un3Va/SXkRpRgiYiISIISLBGRPnS2NgKQnV/cZ52OYCn5sSaIa6JUERERUYIlItKncFsjADkFfSdYkZzReIhDW+0QRSUiIiKZTAmWiEgfXHs9AN7ckr4r5Y1JvLbsGoKIREREJNMpwRIR6YO3PXlvVW5p33UKxgIQaVaCJSIiIkqwRET65A/VE8EHWUV91gmMGgdAW92OIYpKREREMpkSLBGRPgTDDbR4i8Cszzp5xeUAdDQowRIRERElWCIifcoON9Dm63uKdoCyUfk0ulwNERQRERFACZaISK+cc+TH9hLO6meCC6AsP8geVwQtu4cmMBEREcloSrBERHqxtz1CMU247L4nuAAozQtSSxG+diVYIiIiogRLRKRXuxrbKaMRS84S2Be/10OTt5iszrohikxEREQyWUoSLDP7hpk5MytNLpuZ/dzMNpvZq2Z2air2IyIyVBr2bCVoUfwlJxyybnuglLxIPTg3BJGJiIhIJhtwgmVm44HzgK3dij8CTEr+XAP8aqD7EREZSu27twCQO3rCIet2ZpcRcGEINQ1uUCIiIpLxUtGD9c/At4HuX91eAvzWJbwIFJnZcSnYl4jIkIg0JL4zKhh70iHrutzRiTetug9LRERkpBtQgmVmlwA7nHOvHLCqHNjWbXl7sqy3Nq4xsxozq6mtrR1IOCIiKRPfm0iw/MWHHiLoyU98f+Radg5qTCIiIpL5fIeqYGZ/Bnq7y/t7wHdJDA88as65O4E7Aaqrq3UDg4hkhEDzFpo9hRQE8w5ZNzhqHABt9TvJO3GwIxMREZFMdsgEyzl3Tm/lZlYJTAReMTOACmCtmc0FdgDju1WvSJaJiGQ85xyjQ+/RkH8iBYdRP6c4kWC1N+zg0OmYiIiIDGdHPUTQOfeac260c26Cc24CiWGApzrndgGPAp9JziY4H2hyzmnsjIgcE3Y1dXAi2+kcdfJh1S8uLiXk/IQbPxjkyERERCTTHbIH6yg9DnwU2Ay0A1cP0n5ERFLu/a3vMd/aqR879bDqjy7MZo8rguZdgxuYiIiIZLyUJVjJXqx97x1wbaraFhEZSnVvvQxA2UmH9wi/svwgbzKK49o0i6CIiMhIl5IHDYuIDCfx7WuJ4SF/4pzDqp8X9NFgRQRCdYMcmYiIiGQ6JVgiIt045yhufI09wRPgMGYQ3KfVX0puWAmWiIjISKcES0Skm621jcxyG2kZXX1E23VmlZITb4VIxyBFJiIiIscCJVgiIt28u24VeRYie+qRPeIvljMm8aZV92GJiIiMZEqwRES66dj0Z6J4qJh9ZAmW5ScTrBYlWCIiIiOZEiwRkaRwNE5F/Ytsz5mGZRcd0ba+wuMA6GzUI/9ERERGMiVYIiJJr7zxJjN4h9jExUe8bXZxOQCt9dtTHZaIiIgcQ5RgiYgk1b98Hx5zjFvwySPetqBkLDFndO79YBAiExERkWOFEiwRESAWd1TseJytgZPJHjf9iLcfXZhLPYXEmncNQnQiIiJyrFCCJSICrH9lDTPc27RNufSoti/LD7LHFWkWQRERkRFOCZaICFD3378n7oyJiz5zVNuX5AaopYhAR22KIxMREZFjiRIsERnxQuEok/c8wXu5VWSVHH9UbXg8RrOvhOxOJVgiIiIjmRIsERnx1rz0HBPtA+IzLh9QO+3BMvKijRCLpiYwEREROeYowRKREa+t5j4i+DjxrE8NqJ1I9hg8xKFNvVgiIiIjlRIsERnRmjs6mdn4Z94pnI83t3hAbbn8sYk3LXrYsIiIyEjlG2gDZvYV4FogBjzmnPt2svwG4O+T5dc55/400H2JiKTauucf5yxroGP20gG35S08DoBY80685QNuLuPEYjHaW5vobG2is6OZznAn8bjDAxjxxKvHcJ4AXl8Arz+AL5CF1x/E6w/iD2bh8/rx+zyYWbp/HRERkUExoATLzBYDlwBVzrlOMxudLJ8GXAlMB8YBfzazyc652EADFhFJJffag7STxYTTlwy4raxRiayqrW47BQNubWjF4o6tH3zA7ndfpfODN7D6zQTaPiA3XEdhtI5i10iehcgH8gewn7gzwvgI4yOKjxge4uYhhpc4XuLm2f9qXhzJV/MC4ADDAWDOJVt1B+3HupV1vXfdy/rasj+Hqn1w0mhHuIcja32gFY/O4TefukB6bSljfs+jb/Dw9nHoWnuzxjP52gfJDvqPNCoRGQQD7cH6IvBj51wngHNuT7L8EuC+ZPl7ZrYZmAv8dYD7ExFJmcbWDma0vMCWkjOYFsgdcHv5JccRc0aoYUfGJ1h7GlvYvH41zZv/Sl7tOiaGNjLRapmYXB/GR52njBZ/GXtzp7M7u4yYPx+CeRDMx4J5+P0BzDxgicTJYTgXh3gEohGIduJiYYhFINaZfA1jsTAWD2OxCMSj4GIQj0M8irkYuBgWT74mfzwuxr4LTdf9gtP2lXXXd73uF6v71ve4fD3EtWxfq/tLo3rEcWDNAeRfR7upG1DOd/DG6YnjMNo/7MKjrnZYNfv5HiAlceTHmqhqfpaXX36WuQvPO/KdiEjKDTTBmgwsNLMfASHgm865vwHlwIvd6m1Plh3EzK4BrgE4/vijmx5ZRORorPmvp/iwNdNe9fGUtFdamEcdhcSaPkhJe6kUicV55fUN7Fn7GPnbn6Mqsp7TrQOAWu9odhfPpH5MFfnjp1M6sZL8sSczzuNNc9Qiciih5noi/2cS0Q0PgxIskYxwyATLzP4MjO1l1feS2xcD84E5wANmduKRBOCcuxO4E6C6unqQv88SEdkvtOFRIvgYP+/ilLQ3Oj/IbjeK0gyZ5CIWd/zt1depfel+jt/5BNW8DUC9t5Qd4y6g/pRzqahaRFlROWVpjlVEjk5WQQmvZp/KCXv+jIvHMY/mLxNJt0MmWM65c/paZ2ZfBP7DOeeAl80sDpQCO4Dx3apWJMtERDJCQ2snM5pfYFtRNSdmFaakzbL8IG+6URzXvufQlQfR9tq9rH96JWPfvo+58Q14zLE9eBJvTfo65R9aQsm46ZRokgmRYSMy+SLKX/0Bb65/gVNOPSvd4YiMeAMdIvgwsBh41swmAwGgDngU+L2Z/YzEJBeTgJcHuC8RkZSpqfkr59ludsy4LmVtZvm97PUWk935bsraPFyRWJy/vvwirf99D/Oan+Qia6HWO4Z3TvkSx5/5aSqOmzrkMYnI0Jh09lW0v/I/aXnhX0EJlkjaDTTBuge4x8w2AGHgs8nerNfN7AHgDSAKXHssziAYjYSJOwgEAukORURSLPTaIwCMm3dZStttD5SRF26EaBh8g//Z0dQW5pmnHqHs1V9xpltDFC/vlp5FfOHnKZt5AWUaLiQy7BUUlfJS8flUNTxBc/0eCkpGpzskkRFtQAmWcy4MXNXHuh8BPxpI++lW88CPGfPOH2j/8P9k+oIL0x2OiKRIOBrnxLrn2Jo7jeMLxqW27ewxia+bWndB0eBN3LOjoZX/fuy3TNp8D5fZ2zR7Cnl3+lc44bwvM7mgt9tmRWQ4Kz37y2T94VFe+c9/Zt5n/1e6wxEZ0Qb8oOHhLHvMJLLebmPi03/Hm6um0XHa/2DGh/8Ov189WiLHsldef5059g5vn/SNlLcdLzwBmoCG9wYlwdq0fTev/ue/Ur1zJZ+wXdQFxrFr3j8x9sy/pyCQk/L9icix4aTKeax9/ENMe+/XNNd/lYISfdEiki5KsPpRdc4nCZ1+ES8/8n8pf+u3nPLiV9n74o28XXI2ubMuY8rcc/EFdUEjcqxpXv8oAOXzB/5w4QMFx06CrRDe/RaBE1NzL4RzjpqN77L1Tz/nzMb/4BPWzI7cqdQvuoXS6stB06mLCJB/4T+S8+C5rLvvBqqv/XW6wxm+nAMXB+dwyaeVdX+uW4/HnCdXHDRNdreJhqxH8f5n9lm3uma91ZFMpQTrELJy8pn7ye8TjfwD61c9SOSVB5hR9wQ5zzxM55/9bMqaTkvpLHIqZjLqxNmMnTgNfyBr6AN1jmi4g86OdjpDbYRD7URC7UQ6Ez+xzg5i4XZi4Q5cuJ14uAMX7cBFQrhICIsmfjyxxKs3FsLiEYj3fNCnEcebfO8hjocYHhfH2/2VGF7i7Ps4sR6P2XSY21eeWEe31/31+69z5PP5H92HkTuK7Y7mWQNHt5+h+4Dtc1/9hDDo/3Y9/pgd2b4W0sl2bzkV46Yd0XaHo3TcRNpdkNAHGykeYFuxuOO5l9fQuurnfLjjSeZYJ1tKFpB93rcon7Koxx9oEZFJM+bwX6suZ0Htg7z5wkWcsjD1XyJlglB7K62NdbQ276W9tZHOtmZiHc3EQy24cAvW2QrhVjyRVoh2QrQTi3XiiYXxxDvxxCJ4XRi/C+N3Efwu3HUd42Hf9U08uezwEMebLPMSx2Pdr1l6vg6luOt+dUW39z2j6XkV1t3BD17vr62D293fQl/1erTV429WXzH17jY+ycWfu4nKitTM+jvYlGAdJp/fz6xz/w7O/TvaW5tY89//ScdbzzF279+YvP13+HfE4KVE3b0UUO8to8VfSiyQjwvk4/w5xHy5OG8Aj8fwmIEZsbgj7hzEInhinVg8jCcWxmLhxHKyzBfrxBvvxBfvTHwgxDsJuDABOgm6MEEi+MzhA3KP8HeLOSNEgE4ChC1IpwWIWJCY+XDmw5kH5/ERx0/cvITNQ9x8OPPiku8xD3HzJso8ieXENy4ejOTJkzyxXDJtSkimX8lF1/2jqkf9fcW9n5wHL3V3tI9XO4rt3NGkfgd/+3Uk28HhR2pH9Tsd8YrDXD8w3f8HdZVZosS6V+j5FsMwc+TN/NigJCgTy/J5z42lbM9bR91GezjKs88+RdbLv+Ss6H+BGe9XXEjFR7/NhPLKFEYrIsPNrKv/hXf/90uMfear7Bl3EqNPmpXukPrlnKOpLcTePdtoq32fzvqtRJt2EW9rgI4GvKEGgpEmcqON5MVbKHTNZFuYLBLPBepLzBntZCWuafATsQAxCxD1BIh5/ES92bRbATFPkJjHn7je8XjBvIlRAeYBjw8zD3g8YF6cx4vD03X9s+/6pLe/JNbH36DEcre/373+qez+DaI7svID2u66xqDn9UbP8t7q7/+yu/c/566P4I8s9gOvZfr6q1xeVMWoXH8fazOPuaO4IBws1dXVrqamJt1hHLGOjg62bFpHy/uvEK57D2/rB+SE9pAfqSUYayPLhch2IXKss9924s7oxE8YP2HzE8FP1PxEkx8IUQsS9QaJeoLEvUFi3iycN4u4Lwt8WeDPxnxB8GfjCWRj/my8gWy8wRy8gWx8wVz8wRz8WTkEkj/B7FyyAkF8Pg0xEkmFUCTG/7vlUi4Mrifnu1sSf5gP067GdlY/8XtO2HQPc3idNsth96RPcsJHv463qGLwghaRYeXtja9QdN/FeDxGx5J/p2LGGWmLJRSOsnvXDvbufJfW2veJNGzDmncQaNtJfuduimO1jKEBn8UP2raJPFo8BXT4Cgn5CwkHiogGi4lnj8KTXYwvp5BAbgHBnAICOYUEcgoSy7mFZGXn4de1jQwiM1vjnKvubZ16sFIgOzubqbNOh1mn91vPxaJEoxEisRiRaBwzh98Mn9fw+oJ4fH6yzcgeorhFJPWy/F52FMwmp+05qNsEo/t//pRzjg3vbOWtp/6Nqt0Pcbl9QINvNFtnf4/xH/4fKXsIsoiMHJOmVvH6ZQ8w6o+fYvSDl/Dq+s8zbcn38GXnp3Q/Lh5nb0MddR+8R/PuLXTWbyXetB1/6wfkhHYxKrKH0a6eEyzCCd22C+OjwVNKc3AMDTnV1OaNw4oq8I86npyy4ykoq6CweDSFPj/6BJRjkRKsIWReH36vj2Ong1NEjob3xIXw2r8QeuNxsvpIsJraw6x+/il8a1dwZudzVFqYHblTqTvje5TOW0qxV58UInL0plfNY+fo56j5zRc4ffOvaPvJCjaOOY/s6R+lYsZCskaN63eYtIvHaK7fRf2u92mt3UZH/XbiTR/gad1JdscuCiK7KYvVUWyhHvebRp2Hek8xTf7RNBROY09eOd6iCrJLj6dwzARGjZtIsGAMYz0eNM+hDFcaIigikmJrt+6l866PUpnbQN71NRBMfGscisSoqXmRljUPMKn2aU62HXSQxbaKCxl3zpfIm9DrSAMRkaPmnONvq58i9Ne7qG57vut2hRAB9nqK6fDkdU0+YPEo2fE2cl0bua4dr/W8Row7Y68V0uAroy04hnDuOKywnEDJ8eSNPoHicSdRVFaO6QsiGQH6GyKoBEtEJMWcc/zTL/+N7+75FvW5J7G1aD6dTbs4vvU1xttu4hhbcqsIzrqC8oWfhqyCdIcsIiNAXWMTm9evJrx1DbR8QKBtF/5YW2KiAQfm9RL2FxIL5Ce+GModTWBUBbllFYwaczwlY8bjDwTT/WuIZAQlWCIiQ6y2pZOVK27notq7KLc62j157CqYQeDkRUxYeCX+ovJ0hygiIiJHSQmWiEiahCIxPGYEfIc/m6CIiIhkNs0iKCKSJll+TRMsIiIykugrVRERERERkRRRgiUiIiIiIpIiSrBERERERERSJKMmuTCzWuD9dMdxgFKgLt1ByJDR8R45dKxHDh3rkUXHe+TQsR45MvFYn+CcK+ttRUYlWJnIzGr6miFEhh8d75FDx3rk0LEeWXS8Rw4d65HjWDvWGiIoIiIiIiKSIkqwREREREREUkQJ1qHdme4AZEjpeI8cOtYjh471yKLjPXLoWI8cx9Sx1j1YIiIiIiIiKaIeLBERERERkRRRgiUiIiIiIpIiSrD6YWYXmNkmM9tsZt9JdzySOmY23syeNbM3zOx1M/tqsrzYzJ42s7eTr6PSHaukhpl5zWydmf1ncnmimb2UPL/vN7NAumOU1DCzIjN7yMzeNLONZvYhndvDk5ldn/wM32Bm95pZls7t4cPM7jGzPWa2oVtZr+eyJfw8edxfNbNT0xe5HKk+jvWtyc/xV83sj2ZW1G3dDcljvcnMzk9L0P1QgtUHM/MCtwMfAaYBnzSzaemNSlIoCnzDOTcNmA9cmzy+3wGecc5NAp5JLsvw8FVgY7flnwD/7Jw7GdgL/H1aopLB8H+BJ51zpwBVJI67zu1hxszKgeuAaufcDMALXInO7eFkBXDBAWV9ncsfASYlf64BfjVEMUpqrODgY/00MMM5NxN4C7gBIHm9diUwPbnNL5PX7RlDCVbf5gKbnXPvOufCwH3AJWmOSVLEObfTObc2+b6FxAVYOYlj/Jtktd8AH09LgJJSZlYBXAj8W3LZgLOBh5JVdKyHCTMrBM4E7gZwzoWdc43o3B6ufEC2mfmAHGAnOreHDefc80DDAcV9ncuXAL91CS8CRWZ23JAEKgPW27F2zj3lnIsmF18EKpLvLwHuc851OufeAzaTuG7PGEqw+lYObOu2vD1ZJsOMmU0AZgMvAWOcczuTq3YBY9IVl6TUvwDfBuLJ5RKgsdsHt87v4WMiUAv8Ojkk9N/MLBed28OOc24H8L+BrSQSqyZgDTq3h7u+zmVdtw1vy4Enku8z/lgrwZIRzczygD8AX3PONXdf5xLPMNBzDI5xZnYRsMc5tybdsciQ8AGnAr9yzs0G2jhgOKDO7eEhee/NJSSS6nFALgcPMZJhTOfyyGBm3yNxa8fKdMdyuJRg9W0HML7bckWyTIYJM/OTSK5WOuf+I1m8e9+QguTrnnTFJymzALjYzLaQGOp7Nol7dIqSw4pA5/dwsh3Y7px7Kbn8EImES+f28HMO8J5zrtY5FwH+g8T5rnN7eOvrXNZ12zBkZsuAi4BPuf0P7834Y60Eq29/AyYlZyMKkLiZ7tE0xyQpkrwH525go3PuZ91WPQp8Nvn+s8AjQx2bpJZz7gbnXIVzbgKJ8/gvzrlPAc8Clyer6VgPE865XcA2M5uSLPow8AY6t4ejrcB8M8tJfqbvO9Y6t4e3vs7lR4HPJGcTnA80dRtKKMcgM7uAxPD+i51z7d1WPQpcaWZBM5tIYmKTl9MRY19sfzIoBzKzj5K4d8ML3OOc+1F6I5JUMbMzgBeA19h/X853SdyH9QBwPPA+cIVz7sAbbOUYZWaLgG865y4ysxNJ9GgVA+uAq5xznWkMT1LEzGaRmNAkALwLXE3iC0Wd28OMmf0QWEpi+NA64HMk7sXQuT0MmNm9wCKgFNgN/AB4mF7O5WSSfRuJYaLtwNXOuZo0hC1HoY9jfQMQBOqT1V50zn0hWf97JO7LipK4zeOJA9tMJyVYIiIiIiIiKaIhgiIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiK/H/bUtUncSCZmAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2242,31 +2242,31 @@ " 51\n", " True\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " bAP.soma.v\n", - " 0.00684\n", - " 3.51e-06\n", + " 0.0075\n", + " 9.92e-06\n", " \n", " \n", " 52\n", " True\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step1.soma.v\n", - " 0.00783\n", - " 6.1e-06\n", + " 0.0109\n", + " 7.61e-07\n", " \n", " \n", " 53\n", " True\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step3.soma.v\n", - " 0.00772\n", - " 6.05e-06\n", + " 0.00785\n", + " 1.24e-06\n", " \n", " \n", "\n", @@ -2274,14 +2274,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "51 True 7 0.0847 0.0447 bAP.soma.v \n", - "52 True 7 0.0847 0.0447 Step1.soma.v \n", - "53 True 7 0.0847 0.0447 Step3.soma.v \n", + "51 True 7 0.0589 0.0664 bAP.soma.v \n", + "52 True 7 0.0589 0.0664 Step1.soma.v \n", + "53 True 7 0.0589 0.0664 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "51 0.00684 3.51e-06 \n", - "52 0.00783 6.1e-06 \n", - "53 0.00772 6.05e-06 " + "51 0.0075 9.92e-06 \n", + "52 0.0109 7.61e-07 \n", + "53 0.00785 1.24e-06 " ] }, "metadata": {}, @@ -2289,7 +2289,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcdbn48c8zfXvP1iSb3kOAEEA6emkKiCiBS+cqP/XasKDXqxi913u9wBVFUCxcUcDQmyggLTRBUkgCqaRskk3d3qee7++Pc3aZJNvCzu7szD7vF/PKaXPOM3NmlvPM9/t9jhhjUEoppZRSSik1dK5kB6CUUkoppZRS6UITLKWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUUkoppZRKEE2wlFJqlBCRahExIuJJdizpTkSuEZHXkx3HaCMip4jIpmTHoZRSqUwTLKWUUilNRJaISERE2uMeNyY7rlRkjHnNGDMj0fsVkTNFZJWItIrINhG5PtHHUEqp0UITLKWUShBteUqqB40x2XGPm5MdUCKl8mdLRLzA48CvgTxgMfBTETkqqYEppdQw0QRLKaWGQERqROTbIrIW6BARj4icICJ/F5FmEVkjIqfHbb9MRP5bRN52fs1/UkQK+9j3tSKyQUTanF/9/98h6y8UkdXOfraKyDnO8jwRuVtE9orIbhH5TxFxD/A6pojISyLSICL1InK/iOTHrWsUkWOc+QoRqet+XSJygYisc17vMhGZdcj7800RWSsiLSLyoIgEjvydPnIi8h3nfWkTkfUiclEf24mI3CYiB5z38l0Rmeus84vIrSKyU0T2i8hdIpIxyOPf42z/vBPDKyIyMW79z0Vkl3PMlSJySty6JSLyiIjcJyKtwDUiskhE3nTe570icoeI+OKeY0TkiyLyvnO8/3DO3d+dYzwUv30fMZ8uIrWDeX1HoBDIBe41tuXABmB2go+jlFKjgiZYSik1dJcBHwfygVLgL8B/Yl9YfhN4VERK4ra/CrgOKAeiwO197PcA8Ansi9NrgdvikpxFwB+BbznHPRWocZ53j7PfqcDRwFnAZwd4DQL8N1ABzALGA0sAjDFbgW8D94lIJvB74A/GmGUiMh1YCnwNKAH+Cvz5kAv5S4BzgEnAfOCaXgMQOdlJHvp6nDzAazjUVuAU7FaTHzrxl/ey3VnY7990Z9tLgAZn3U+c5Quw389K4KYjiOFy4D+AYmA1cH/cuuXOfguBPwEPH5J8Xgg8gn1+7wdiwA3Ovk4EPgp88ZDjnQ0cC5wA3Aj8BrgC+3zOxf6sfmhOotzX+fllb88xxuzH/oxcKyJuETkRmAjoGDilVHoyxuhDH/rQhz4+5AM7qbkubv7b2L/Ux2/zHHC1M70M+EncutlAGHAD1YABPH0c6wngq870r4HbetmmFAgBGXHLLgNePsLX9UngnUOWPQW8C6wF/M6y7wMPxW3jAnYDp8e9P1fErb8ZuCvB52CJ8x42xz0qetluNXChM30N8LozfSawGTspccVtL0AHMCVu2YnA9kHGdQ/wQNx8NnaSNL6P7ZuAo+Je06sD7P9rwONx8wY4KW5+JfDtuPn/BX42wD5PB2oTeX6c/Z4P7MdO/KPA5xJ9DH3oQx/6GC0PbcFSSqmh2xU3PRH4TPwv+8DJ2K1VvW2/A/Bit0ocRETOFZG3nO55zcB5cduNx26hOdREZ397447/a2Bcfy9AREpF5AGnS2ErcF8vMf0WuxXkF8aYkLOswnkNABhjLOf1VcY9b1/cdCd2opFoDxlj8uMee0TkKrG7UHa/D3Pp5X02xrwE3AHcCRwQkd+ISC52i1wmsDJuH886ywer51wbY9qBRuz3DKfr5Aan62QzdutZcW/PdbafLiJPi8g+5xz9Vy+vZ3/cdFcv88Px3vdLRGYCD2C33PqAOcCNIvLxkY5FKaVGgiZYSik1dCZuehd2C1b8xX6WMeYncduMj5ueAESA+vgdiogfeBS4FSg1xuRjd7+TuONM6SWWXdgtWMVxx881xswZ4DX8l/M65hljcrG7lXUfCxHJBn4G3A0skQ/Gje3BTuq6txPn9e0e4HiHEbtEeHs/j1MG3kvPviZiJ4RfAoqc9++9+NcUzxhzuzHmWOwWxenYXS/rsZOSOXHvZZ4x5kiSlJ5z7byHhcAe57XciN0dscCJr+WQ+OI/VwC/AjYC05xz9N2+Xs9wEXusXV/n564+njYX2GyMec4YYxljNmF3oz135CJXSqmRowmWUkol1n3A+SJytjPeJOAUDqiK2+YKEZntjGf6EfCIMSZ2yH58gB+oA6Iici72WKFud2OPafmoiLhEpFJEZhpj9gJ/A/5XRHKddVNE5LQB4s4B2oEWEanETjDi/RxYYYz5LPbFcffF9EPAx504vMA3sBO8vw/0Rh3K2CXCs/t5vHYEu8vCTlDqwC4Ygn2hfxgROU5Ejnfi7wCCgOW0xv0We+zbOGfbShE5O+65RuKKmPTiPGdsmQ97LNZbxphd2O931InPIyI3YY+1608O0Aq0O61CXxhg+4Qzxszp5/x8vo+nvQNME7tUu4jIFOyxhWtHLnKllBo5mmAppVQCORfPF2K3LtRhtyh9i4P/3t6LPT5nHxAAvtLLftqc5Q9hj835Z+wxUN3r38YpfIHd8vEKH7QkdXfFWu889xEO7qLYmx8Cxzj7+gvwWPcKEbkQu0hF9wX914FjRORypzXiCuAX2C0+5wPnG2PCAxxvWBlj1mOPOXoTu5vcPOCNPjbPxU6kmrC7OzYAtzjrvg1sAd5yuuW9AMwAEJHxQBv2uLS+/An4AXbXwGOx3yuwx+U9iz32awd2Urertx3E+Sb256DNiffBAbYfFYxdJOU67GIurdif1UeB3yUzLqWUGi5izKE9EJRSSg0XEVkG3GeM0YvLFCciV2B3H/y3Ptbfg10w4nsjGphSSqmkStkbFyqllFLJZIy5L9kxKKWUGn20i6BSSo0RYt/09kiKE6g0JCLf7eNz8EyyY1NKqXSgXQSVUkoppZRSKkG0BUsppZRSSimlEmRUjcEqLi421dXVyQ5DKaWUUkoppfq1cuXKemPMYTefH1UJVnV1NStWrEh2GEoppZRSSinVLxHZ0dty7SKolFJKKaWUUgmiCZZSSimllFJKJYgmWEoppZRSSimVIKNqDFZvIpEItbW1BIPBZIeiRoFAIEBVVRVerzfZoag09Nr7dTz47DL+/dMnUl5elexwlFJKKZWCRn2CVVtbS05ODtXV1YhIssNRSWSMoaGhgdraWiZNmpTscFQaevjl5dzR8Fl23zcbvvVmssNRSimlVAoa9V0Eg8EgRUVFmlwpRISioiJtzVTD5qi6PwNQ2bEe2vYnORqllFJKpaJRn2ABmlypHvpZUMPFGENGuL5nvnX980mMRimllFKpKiUSLNW3rkiMUDSW7DCUSnntoSi5Viv7vZW0mQyaN72W7JCUUkoplYI0wRoEEeEb3/hGz/ytt97KkiVLkheQIxqzOO3UU3n7b49hRXrvNvfJT36SE0444aBlS5YsobKykgULFjB37lyeeuqpkQhXqVGtvj1MIa24ssexxkzFv1dveq6UUkqpI6cJ1iD4/X4ee+wx6uvrB974CBhjsCzrQz8/GLHwEiNDwljNtYetb25uZuXKlbS0tLBt27aD1t1www2sXr2ahx9+mOuuu25IcSiVDjrDUQqkDSujiL1Zsyjq2g7RcLLDUkoppVSK0QRrEDweD9dffz233XbbYevq6uq4+OKLOe644zjuuON44403ALuV6NZbb+3Zbu7cudTU1FBTU8OMGTO46qqrmDt3Lrt27eJb3/oWc+fOZd68eTz44IMALFu2jNNPP51Pf/rTzJw5k8svvxxjzEHHDsViuIlx76N/YeHpH2fu3Lm8/fbbPesfe+wxzj//fC699FIeeOCBXl/brFmz8Hg8ByWP3/nOd5g9ezbz58/nm9/8JgA1NTWceeaZzJ8/n49+9KPs3LkTgGuuuYYvfOELnHDCCUyePJlly5Zx3XXXMWvWLK655pqefX7hC19g4cKFzJkzhx/84AeHxdHS0sLEiRN7Er2Ojg7Gjx9PJBLp+8QolUChqEWhtBHLKCRSNBMPMajfnOywlFJKKZViRn2Z9ng//PM61u9pTeg+Z1fk8oPz5wy43b/+678yf/58brzxxoOWf/WrX+WGG27g5JNPZufOnZx99tls2LCh3329//77/OEPf+CEE07g0UcfZfXq1axZs4b6+nqOO+44Tj31VADeeecd1q1bR0VFBSeddBJvvPEGJ598cs9+wlELwdDRFWL18w/w6oYDXHfddbz33nsALF26lJtuuonS0lIuvvhivvvd7x4Wyz/+8Q9cLhclJSUANDQ08Pjjj7Nx40ZEhObmZgC+/OUvc/XVV3P11Vfzf//3f3zlK1/hiSeeAKCpqYk333yTp556igsuuIA33niD3/3udxx33HGsXr2aBQsW8OMf/5jCwkJisRgf/ehHWbt2LfPnz++JIy8vjwULFvDKK69wxhln8PTTT3P22Wfr/a7UiAmFYxTQxoFAIf6S+VALrTtWk1s2N9mhKaWUUiqFaAvWIOXm5nLVVVdx++23H7T8hRde4Etf+hILFizgggsuoLW1lfb29n73NXHixJ5xUa+//jqXXXYZbreb0tJSTjvtNJYvXw7AokWLqKqqwuVysWDBAmpqag7aT8wyiMBFn7oIgFOOP5rW1laam5vZv38/77//PieffDLTp0/H6/X2JF4At912GwsWLOCb3/wmDz74YE91vry8PAKBAP/yL//CY489RmZmJgBvvvkm//zP/wzAlVdeyeuvv96zr/PPPx8RYd68eZSWljJv3jxcLhdz5szpifmhhx7imGOO4eijj2bdunWsX7/+sPdl8eLFPS14DzzwAIsXL+73fVQqkSJdLfgkBlnFVEyeS8h4aK1ZneywlFJKKZViUqoFazAtTcPpa1/7GscccwzXXnttzzLLsnjrrbcIBAIHbevxeA4a1xR/76asrKxBHc/v9/dMu91uotHoQeuNZVcPdHkCRIwbV6gTsItyPPTQQzQ1NfXckLe1tZWlS5fy4x//GLDHYHV3/zs07rfffpsXX3yRRx55hDvuuIOXXnppUHG6XK6DYna5XESjUbZv386tt97K8uXLKSgo4Jprrun1XlYXXHAB3/3ud2lsbGTlypWceeaZA75HSiWK1dkMgATymF5RyBZTSe6BdckNSimllFIpR1uwjkBhYSGXXHIJd999d8+ys846i1/84hc986tXrwagurqaVatWAbBq1Sq2b9/e6z5POeUUHnzwQWKxGHV1dbz66qssWrRocAHF7ITrsaeeJoiP1954nby8PPLy8li6dCnPPvtsz7ivlStX9jkOK157ezstLS2cd9553HbbbaxZswaAj3zkIz3Pv//++znllFMGFyN2cpeVlUVeXh779+/nmWee6XW77OxsjjvuOL761a/yiU98ArfbPehjKDVUsbD9A4Xbn0VRtp8a9yRyW3QMllJKKaWOTEq1YI0G3/jGN7jjjjt65m+//fae8VnRaJRTTz2Vu+66i4svvpg//vGPzJkzh+OPP57p06f3ur+LLrqIN998k6OOOgoR4eabb6asrIyNGzcOHIyxE6zMjAw+cvbFmGiI//vD/dTU1LBjx46DyrNPmjSJvLw8/vGPf/S6q/POO4/f/e53iAgXXnghwWAQYww//elPAfjFL37Btddeyy233EJJSQm///3vB/uWcdRRR3H00Uczc+ZMxo8fz0knndSz7qabbmLhwoVccMEFgN1N8DOf+QzLli0b9P6VSoRYyG5V9fjt1ujW3GnktSyDzkbILExiZEoppZRKJXJoZbpkWrhwoVmx4uB7z2zYsIFZs2YlKaLRrXbvPqrMXiiezr6GZsrMASiZBd7AwE9OYfqZUMPhmWee4tx/XEnzpx4gf/653H/vb7h867cw1z2HTDhh4B0opZRSakwRkZXGmIWHLh9yF0ERGS8iL4vIehFZJyJfdZYvEZHdIrLaeZw31GOpg4mxx2DhcmM8TlIV7UpeQEqlsO6bdXudFqys8pkAtNb2XxVUKaWUUipeIroIRoFvGGNWiUgOsFJEnnfW3WaMubWf56ohcJsYCODy4PJlYMJApAvJKEh2aEqlnO4xWL6AXYSmZMJ0wsZN2+4N5CUzMKWUUkqllCEnWMaYvcBeZ7pNRDYAlUPdrxqY4FQpFDd+r4cQXrzhLrQ0hFJHzjgtWB6f3YI1uTSPHaYMf50WulBKKaXU4CW0iqCIVANHA92VFL4kImtF5P9ERJtVEsgYg2BhEBAh4HUTwgvRULJDUyolGee7I94MAMpyA+yQCjJae68AqpRSSinVm4QlWCKSDTwKfM0Y0wr8CpgCLMBu4frfPp53vYisEJEVdXV1iQon7VkGXBg7wQJ8HhdhvLisMIyiwiVKpQoTccYveux7uYkIzRkTKAjW9twSQSmllFJqIAlJsETEi51c3W+MeQzAGLPfGBMzxljAb4Feb+5kjPmNMWahMWZhSUlJIsIZEyxjEAyIfQpdIkRdfntZLJzk6JRKQRGn9deT0bMonD8FD1Fo3pGkoJRSSimVahJRRVCAu4ENxpifxi0vj9vsIuC9oR4rmZ544glEpN/7U9XU1DB37tyEHfOaa67hkUce6XWdMYZ//8F/Mv6Yj2FZzlgst597HnyKkvJKFixYwOzZs/ntb3+bsHiUSmcSs8dgdbdgAXjG2fevC+/XcVhKKaWUGpxEtGCdBFwJnHlISfabReRdEVkLnAHckIBjJc3SpUs5+eSTWbp0aa/ro9GhdyGKxWKD3jYas/jLs89TVVHGK6+8AoB47QvDSz51IatXr2bZsmV897vfZf/+/UOOTam01z1+0fPBfeTyxs8GoGnXumREpJRSSqkUNOQEyxjzujFGjDHzjTELnMdfjTFXGmPmOcsvcKoNpqT29nZef/117r77bh544IGe5cuWLeOUU07hggsuYPZs+0IsGo1y+eWXM2vWLD796U/T2WmXfn7xxRc5+uijmTdvHtdddx2hkH0xV11dzbe//W2OOeYYHn744cOO/cILL7Bw4UKmT5/O008/3bP8lWXLmDV9Kv/v6kt7kj6v14eFgGUnauPGjWPKlCns2PFB96bbb7+d2bNnM3/+fC699FIAGhsb+eQnP8n8+fM54YQTWLt2LQBLlizh6quv5pRTTmHixIk89thj3HjjjcybN49zzjmHSCQCwI9+9COOO+445s6dy/XXX8+hN6+2LIvq6mqam5t7lk2bNk0TPzWquGJBYrjA7e1ZNr5yPE0mm+DeTUmMTCmllFKpJBH3wRo5z3wH9r2b2H2WzYNzf9LvJk8++STnnHMO06dPp6ioiJUrV3LssccCsGrVKt577z0mTZpETU0NmzZt4u677+akk07iuuuu45e//CVf+tKXuOaaa3jxxReZPn06V111Fb/61a/42te+BkBRURGrVq3q9dg1NTW8/fbbbN26lTPOOIMtW7YQCAR46MEH+MyF5/HJj3+M7//PBUQiEXweFxHcGMtuTdu2bRvbtm1j6tSpPfv7yU9+wvbt2/H7/T0Jzw9+8AOOPvponnjiCV566SWuuuoqVq9eDcDWrVt5+eWXWb9+PSeeeCKPPvooN998MxdddBF/+ctf+OQnP8mXvvQlbrrpJgCuvPJKnn76ac4///yeY7pcLi688EIef/xxrr32Wv7xj38wceJESktLj/h0KTVcXLEQEfHiFulZNqk4i/WmnNKmLUmMTCmllFKpJKFl2tPV0qVLe1p7Lr300oO6CS5atIhJkyb1zI8fP56TTjoJgCuuuILXX3+dTZs2MWnSJKZPt8dzXH311bz66qs9z1m8eHGfx77kkktwuVxMmzaNyZMns3HjRsLhMM89+yznn3Mmubm5HH/88Tz33HP4PW6ieHj4ib+yYMECLrvsMn79619TWFjYs7/58+dz+eWXc9999+Hx2Pn166+/zpVXXgnAmWeeSUNDA62trQCce+65eL1e5s2bRywW45xzzgFg3rx51NTUAPDyyy9z/PHHM2/ePF566SXWrTu8O9XixYt58MEHAXjggQf6fc1KJYOdYPkOWpbhc7PPO56c9prkBKWUUkqplJNaLVgDtDQNh8bGRl566SXeffddRIRYLIaIcMsttwCQlZV10PYS9+t3b/O9OXQfA+3vueeeo6WlmeM/9klEhM5gmIyMDD7+8Y8Txc0lF/wTd969FFyH589/+ctfePXVV/nzn//Mj3/8Y959t/8WQb/fHtflcrnwer098bhcLqLRKMFgkC9+8YusWLGC8ePHs2TJEoLB4GH7OfHEE9myZQt1dXU88cQTfO973xvwfVFqJLmtENFDEiyA9uxq8lpegmArBHKTEJlSSimlUom2YA3gkUce4corr2THjh3U1NSwa9cuJk2axGuvvdbr9jt37uTNN98E4E9/+hMnn3wyM2bMoKamhi1b7G5G9957L6eddtqgjv/www9jWRZbt25l27ZtzJgxg6VLl/LzO+9i01vPsfWdV9m+fTvPP/88XV1dGJfbvjNW7PAbDluWxa5duzjjjDP4n//5H1paWmhvb+eUU07h/vvvB+xxZcXFxeTmDu5CsjuZKi4upr29vc+qhyLCRRddxNe//nVmzZpFUVHRoPav1Ehxx0JEXf7Dlpuiafa/9e+PdEhKKaWUSkGaYA1g6dKlXHTRRQctu/jii/usJjhjxgzuvPNOZs2aRVNTE1/4whcIBAL8/ve/5zOf+Qzz5s3D5XLx+c9/flDHnzBhAosWLeLcc8/lrrvuwrIsnn32WT529rm4nPtgZWVlcfLJJ/PnP/8ZXM4A/egHCdZnP/tZVqxYQSwW44orrmDevHkcffTRfOUrXyE/P58lS5awcuVK5s+fz3e+8x3+8Ic/DPr9yc/P53Of+xxz587l7LPP5rjjjutZd9ddd3HXXXf1zC9evJj77rtPuweqUclthXtNsDLLZwDQUrthpENSSimlVAqSQyu+JdPChQvNihUrDlq2YcMGZs2alaSIRq+G9hB5LRuRzALcBRN6lu9v7qC0czMmpxzJKUtihMNHPxNqOLz2wzOZFGin6ttvH7T8zU27WfSnOeyZ90XGf/q/khSdUkoppUYbEVlpjFl46HJtwUpRlgHBIHLwKfR6vUSMGyty+DgopVTfvCaE1UsL1qSyInaZccTqtIugUkoppQamCVaKMsbgwiCHFLLwe1yE8GKih4/BUkr1zWvCxNyHJ1iluX5qpJJA67YkRKWUUkqpVJMSCdZo6sY4WhhjEAGk9wTL1UuRi3SgnwU1HIwx+EwYq5cES0RoypxIYXBnz028lVJKKaX6MuoTrEAgQENDg15YH8IYC+CwLoJulxARHy4Tg1g0GaENG2MMDQ0NBAKBZIei0kwoahEggvEcnmABhPKm4DNhaNk1wpEppZRSKtWM+vtgVVVVUVtbS11dXbJDGVVaOoM0hQ9ARgT8DQeva22lyWqGhvegjwvGVBUIBKiqqkp2GCrNhCIWfsKE3b0n795xM2AfhPZtxF9QPbLBKaWUUiqljPoEy+v1MmnSpGSHMer8z9Jn+famxXDhL2HW5Qet++97n+Lftl4Jn7wL5l2WpAiVSh2haAy/RAh5ek+wcsfPgbXQuHMd5bPOGeHolFJKKZVKRn0XQdU7010l0Hv4BWFe+VSixkX4wOYRjkqp1BSMWPiJ9Pp9AhhfVUWTySa0d9MIR6aUUkqpVKMJVooy4S57wpNx2Lrq0gJ2mnF07d04wlEplZpC0RgBwkgfXWqri7PZairwNGqpdqWUUkr1TxOsVBV1EqxefnGfXJLFdlMODVtHOCilUlMoEiMgEcR7+A8WAAGvm/3eKnI6akY2MKWUUkqlnGFPsETkHBHZJCJbROQ7w328MSPaTwtWkZ1gZbbXgGWNbFxKpaBQyP4+ufroIgjQnjOZvFgjdDWPUFRKKaWUSkXDmmCJiBu4EzgXmA1cJiKzh/OYY4VEnPtc9XJBGPC6aQhMxGuFoHX3CEemVOqJDCLBMkXTAbDqtJugUkoppfo23C1Yi4Atxphtxpgw8ABw4TAfc0yQWN8tWADRgsn2RINeDCo1kGioEwC3r/fvE0BGxUwAWmrXjUhMSimllEpNw51gVQLxd+asdZb1EJHrRWSFiKzQe10NnivadwsWgL9sBgCmfstIhaRUyupuweovwSqdMIOIcdO2e8NIhaWUUkqpFJT0IhfGmN8YYxYaYxaWlJQkO5yU4Yo5Zdr7aMEqKZtAuwloJUGlBiEaHjjBmlyazw5TiqnT2x8opZRSqm/DnWDtBsbHzVc5y9QQua2+74MFMHlcNttMOSG9F5ZSA4o5LVgef98JVkmOnx1SSUbrtpEKSymllFIpaLgTrOXANBGZJCI+4FLgqWE+5pjgjjldBPtowZpcks12U463SUu1KzWQmNOC5e0nwRIRmjKrKQzWQiwyUqEppZRSKsUMa4JljIkCXwKeAzYADxljdIR4AnisEBYucHt7XV+eG2CnVJDVtRciwRGOTqnUYjnfEY8/s9/tIoXT8RDVe8wppZRSqk/DPgbLGPNXY8x0Y8wUY8yPh/t4Y4ExBq8VIuryg0iv27hcQkd2NYKBRu3SpFR/LKcFyzdAguWvnAdA2861wx6TUkoppVJT0otcqCMXiRn8hIm5/f1vWDTN/rdBKwkq1Z+Y04Ll9vV9HyyAcZPnETUummtWj0BUSimllEpFmmCloGA0RoAwMVf/F4OZFfaNUaNa9UypfplI933l+v9OTa8spsaUYe1fPwJRKaWUUioVaYKVgkIRi4AM3IJVVTqOfaaAzj1aql2pfoXtGw3j7b+LYEm2n23uiWS16I8WSimllOqdJlgpKBSNESCCNcCv7ZNLstlqVWAd2DRCkSmVmiTiJFi+/hMsEaEleyqF4T0Q7hiByJRSSimVajTBSkHBiEWAEKaPEu3dpo7LZrOpIrN1CxgzQtEplXpc0e4WrKwBt42VzMaFwdqvLcNKKaWUOpwmWCkoGImRJUEsT/8Xg9l+D/WBanyxTmipHaHolEo97mgnUdzg8Q24bfb4+QA0aaELpZRSSvVCE6wU1BWJkUkI/AP/2h4unGFP1Omv7Ur1xR0LEpL+u9x2q5g0ky7j01LtSimllOqVJlgpqCMUJYsg4ssecNtAxWwArAMbhjsspVKWO9ZFeICqnN2ml+ez2VThqtNKgkoppZQ6nCZYKagzHCNTgrgGuCkqwPjKKupMHh21741AZEqlJm+si7Cr/zGN3bL9Hmq91RS0bdaxjUoppZQ6jCZYKagzbHcRdAdyBtx2amk271uVxHRAvlJ98llBooNswQJoLZhDTqwZWvcMX1BKKaWUSkmaYKWgrlCIDAnjCQzcRbCnkmCLVhJUqi8+q4uoe3AtWADeqqMB6NyxYrhCUkoppVSK0gQrBYU62wHwZgzcgpUb8HLAX40v1gGtu4c7NKVSkt8EiQ1w24N4JdMWEjNC45blwxiVUkoppVKRJlgpKBpsA8AziC6CAOHC6fbEAe0mqNShjDH4TeiIEqw5E8t431Rh7X5nGCNTSimlVCrSBCsFxYIdAIhv4DLtAP6KOYBWElSqN8GIRQYhjGfgojHdirP9bPVMJb95nXa9VUoppdRBhpRgicgtIrJRRNaKyOMiku8srxaRLhFZ7TzuSki0CoBYyG7BYpAJVlVlFXUml87d64YxKqVSU1swQqaEBv196taSP4fcWBO07R2myJRSSimViobagvU8MNcYMx/YDPxb3LqtxpgFzuPzQzyOimM5LViDvSCcXprNFquK2D69b49Sh2oNRskghHsQtz2I56laAEDXzpXDEJVSSimlUtWQEixjzN+MMVFn9i2gaughqQGF7SIXDOJGwwDTSnPYbCrJ0EqCSh2mrTNItgRxBXKP6HnjptuFLho2/2OYIlNKKaVUKkrkGKzrgGfi5ieJyDsi8oqInNLXk0TkehFZISIr6urqEhhO+pKeBGtwLVi5AS8HAlpJUKnedLU1AuDOKjyi582fVMlWU0GsVgtdKKWUUuoDAyZYIvKCiLzXy+PCuG3+HYgC9zuL9gITjDFHA18H/iQivf48bIz5jTFmoTFmYUlJydBf0RjgDjXbExkFg35OpHCmPaGFLpQ6SMhJsDxZg/8+ARRm+djim0VR8xqwrOEITSmllFIpyDPQBsaYj/W3XkSuAT4BfNQYu/+ZMSYEhJzplSKyFZgO6F05E8AXbrYnMgf/i3ugai4cgNi+dbin/dPwBKZUCoq02wmWP6foiJ/bNu5Ysve8gKnfjIybmejQlFJKKZWChlpF8BzgRuACY0xn3PISEXE705OBacC2oRxLfcAfaSXsygCPf9DPmVBZxT5TQGftu8MYmVKpJ9rRBEAg58i6CAJkTf0IAPUbX0toTEoppZRKXUMdg3UHkAM8f0g59lOBtSKyGngE+LwxpnGIx1JANGaRZbUS8h7ZgPwZpTlstqqw9mslQaXiWV12gpXxIVqwps8+hkaTTfv7byQ6LKWUUkqlqAG7CPbHGDO1j+WPAo8OZd+qd63BKHm0E/blH9Hzpo7L5j4zgY+0PA9WDFzu4QlQqRRjuloAcGUe2RgsgKnjcnhFZjDngJZqV0oppZQtkVUE1Qho7gxTIO1Y/vwjel6Gz01D5mQ8JgyN2ltTqW7dLVhk5B/xc10uoS5vAeNCO6GjIbGBKaWUUiolaYKVYpo6I+TTjsk48vEikZLZ9sQB7SaoVDfT1UQYL3gzPtTzXRNPAKBj298TGZZSSimlUpQmWCmmri1EvrTjOcJ79gDkVM7BMkJ037phiEyp1OQJNtPpyfvQz6+c/RHCxk39+lcSGJVSSimlUpUmWCmmoaWNQtrwFVQc8XMnV5aww4yjc5dWElQKwBhDVqSBLt+RF7jodtTkMtaYqXh3aqELpZRSSmmClXI663fhEkNm8YQjfu6M0hw2mQlInd5sWCmwu9wW0Uw0o/hD7yPT56EmZyGlHRuhqzlxwSmllFIqJWmClWKizbsAcOVXHfFzJxVn8T7jyWrfAZFgokNTKuXsawlSIi2QXTqk/ZhJp+LGomOzdhNUSimlxjpNsFJNy27739wjT7B8Hhct2VNxYUH9pgQHplTq2d/SSTEtePLKhrSf6qNOpcv4qH/3+QRFppRSSqlUpQlWinG1OQlWXuWHer41rruSoHYTVKqxYT9eiZFRUD6k/SyYVMYqZpBR+3qCIlNKKaVUqtIEK4WEojFyg7vp9OSDL+tD7aOwaiYh4yGy973EBqdUCuqot3+wyC488qIx8XweF7vyFzEuuB3a9iciNKWUUkqlKE2wUsiuxk6mSy2dedM+9D6mlhewzVTQVauVBJWKNtsJlif/w7UIx/NMOR2A1g0vDXlfSimllEpdmmClkG0H2pkmtZhxsz70PmaU5bDRjMddvzGBkSmVmqS1u8vtkY9pPNT0BSfRajJpWqfjsJRSSqmxTBOsFLKz5n1ypYvcCfM/9D4mFGaylQlkBfdpSWk15vk69mDhgpyhjcECmFNVyAqZTfaevycgMqWUUkqlKk2wUkio5h8A+Ccc86H34XYJ7fnT7Zk6bcVSY1tOaB9t3iJwe4a8L7dL2Fd0IkWRvdCwNQHRKaWUUioVaYKVIiIxi8L65YRcGVB21JD25S7triS4PgGRKZWagpEYRbF6OgNDb73q5pt5NgBNq59O2D6VUkoplVqGlGCJyBIR2S0iq53HeXHr/k1EtojIJhE5e+ihjm2rahpZZK2ltWThkH9tL6maSpvJILRbKwmqsauuLUS5NBDJTlyCtfDoY9hiVdC1/q8J26dSSimlUksiWrBuM8YscB5/BRCR2cClwBzgHOCXIuJOwLHGrLXvvMkU115yFlw45H3NKMtls6kitEcrCaqxa19LFxXSgCSgwEW36uIsVvoWUtKwEkLtCduvUkoppVLHcHURvBB4wBgTMsZsB7YAi4bpWGkvFI2Rse5BorgJzBt6gjW9LIfNVhW+pvcTEJ1Sqamxbi8BieArmpDQ/QYnfQwvEcLvv5zQ/SqllFIqNSQiwfqSiKwVkf8TkQJnWSWwK26bWmeZ+hCeW76RC6wXaZx4LmSPG/L+KvIC7HJVEgg3QWdjAiJUKvV01u0AILukOqH7rT76o7SZDOrf+XNC96uUUkqp1DBggiUiL4jIe708LgR+BUwBFgB7gf890gBE5HoRWSEiK+rq6o706WmvKxyj84X/Jlu6KD772wnZp4jQmTfVnqnblJB9KpVqIo07AcgsSWwL1vHTynmT+WTteAGsWEL3rZRSSqnRb8AEyxjzMWPM3F4eTxpj9htjYsYYC/gtH3QD3A2Mj9tNlbOst/3/xhiz0BizsKSkZKivJ+3c96c/8Jno09RNvxRXxYe//9WhXCUz7Il6TbDU2NR9k2HJGz/Alkcm4HWzd/x55EUbCG9ZltB9K6WUUmr0G2oVwfjyWxcB3WXpngIuFRG/iEwCpgFvD+VYY9HDf/4Li7d/l8asKZRefEtC951fMYUu4yO6X++FpcYmf8cewnghqzjh+64+8VO0mgzq3/hjwvetlFJKqdFtqHfXvFlEFgAGqAH+H4AxZp2IPASsB6LAvxpjtK/MIIWjFo8v/TUf37KEsDeXwuufBH9OQo8xZVwu20w5E/ZuJLF7Vio1ZIX20+IdR4lIwvf9kZlVPC0nct7OZ+1qgv7shB9DKaWUUqPTkFqwjDFXGmPmGWPmG2MuMMbsjVv3Y2PMFGPMDGPMM0MPdWx4Z+0aXv+fT7J463dozaom/8uv4M5PXBnpblPGZbHFVOJq2JzwfSs12hljyI8eoCNQNiz797pdtM66DL8J0vzG3cNyDKWUUkqNTsNVpl0dgZhlePvNl3nplkuZ8+gZfCTyJttm/ysVX38NV17FsByzuiiLraaCzM49EO4clmMoNVo1dUYopz6hNxk+1MfOPp9/WLNwv/FT6GoatuMopZRSanTRBCtJLMuwYd1qlv3fv7PpPxay6LlP8pGOF9la9Un48komX/Jf4PEN2/EDXjfNmZMQDDTo/bDU2LKvqZ1SmiDBBS7iVeZnsHHBdwlE29jzu3/GdDXT3NbBX596iDXvrhm24yqllFIquYY6BksdgabGBra98yIdm16hsu4VZpldzAJqvFNZN/u7TPvY55iVUzhi8VhF0+zi+nWbofyoETuuGrxgJEZbZ5CO1ka6WpsItTcQ7mgm1NVONNiBFelCIl0QDSKRIBIL4ooGMcbCsixcAiL2LykuESyXG8sdIOYKIL4AXn8m3kA23pwiArnFZOSWkFVQQm5BCX7f8CX4ydaybxtuMXiLqof1OP984Sf4Q+3XuLb+p4T+ZxoZxnCeRFj93rEw76VhPbY6ctGYRVtXmM72FsJdrYQ72ogE24h2tRGNhIiGQ0TCIbCiiBVBrCguK4IRwcKNJW5wufF4vHi9Xrz+DNyBXDwZOfiy8vBl5pKTV0hedhYyDGP/lFJKjQ6aYA2j+rr9bF/5AuFtr1HcsJyp0a0cK4aIcbM9Yy5rpl5O9UmXUF0+JSnxZZXPILZHcNVtQv9XP7yMMbQFIzQ1NdPWtI+upn2EWvYTbavDdDTg6qzDG2rEG27FH20jw2ony3SQQycl0sVgb2AQQwjhx3Iapw1g4s6uhxh+Qrgx/e7HMkKD5NLkLqbdP45IZhkmtwJvQRVZxRMpKK+msLwatz/rQ74jyRXaZ9+eIKti5rAex+t2ce2Xvs+LLx2Pf8MjBLwe5ux7ksnhTWCMnf2qhAuHIzQ3HaCl4QAdzQfoamkg3FaP1dWIq6sJd6gZX7gZf6SVzGgLAdNJhtVJJkEKJETBMMfXZXw0SR5t7nw6vUWE/YVEM0sgqwRfXhmZRZXkllRSVDaezOwC/ZwopVSK0QQrgQ7s3UXNqheIbnudcU0rmRyroVgMIeNle2Amqyr/hdyZp1G94HSmZ+YmO1yqywrZYUop27uBzGQHk6KMMTS1ddJ4YBdtB3bR1bibaMseaN2Lt3M//lADmdEmcmItFNLKRAn3up8gPloll05PHmF/DhHvROp9uRzw5yGBPCQjD3dmPt7MAnzZBQSycsjIzCaQkYXHn4nbnwmeDNxuL5kDXYwZA7EIVqSL9o522ltb6GipI9RaR7itgVh7A1ZnI9K+H3/XPnKCeynqeJf8+vbDdtVCNk2ecXQESglnVSB5FfgKJ5AzbiKFFZPJKp4AHn8i3urEatgCQP74WcN+KLdLOOtjZ8PHzgbg5T+Uc8b2/yXcvBdfwfCMsUxH4UiUhrq9NB7YTUf9boLNe7HaDiCdB/B11ZMZric72kS+1US+aWWcGMb1sp8YQhvZdLhy6HDnEvQX0+bLwXizwJ+D+LNx+bMRfw6uQA5ufzbujGy8Pj9+nx+vz4/L40PcXozbg7h8iIBYUcRYGCtKMBQmHA4TDnYS6Wol1tWKFWrDCrYR7WrFdDbi7mrAH6wnL3KA3OAm8ptb8Ih1WLydxk+Tq4A2bxFBfzHRrFIkuxRffjmBwkrySqooKB2PN7sEXKnZ698YQygcJhTstN+zYBfhcBeRYBfRcJBo2P43Fu7CigSJhUOYaBcmEsSKhiEShGgQoiEkFkKsEB4rjMuKIiaGGAuMZU9jId3Txoqbt3ARQ5yfpAxi/1Al3UsEIy5M9xbOciMue133tuK2l4krbtr51+XGiBvi1kv3Mlf3cntaXPHT3evt6Z6HuMDtRsSDuF2Iy4PL5QKXB5ezD3F5cLndiNuNS5xpZ5nL7Xa2s1tfDWK3wmKwLIMxFsaynH8NxhgwMYxlYRkDxgIrhsHYyywDWGBZGGMwJgbG3s8Hy+xzYSz7+QZj78N0/+jn7Bdj/2cs+/9Zxtg/C/asMz3/2nFhH9sYDAbp/jd+P860/VyLg35nlO6jS89M93nu+ZwiSM/noft59rz0PNfZmXyw/qD9da84ZL/07PuDdR8s72Pf8bF2H0fiXswhR+h+e+NCP3gB9nsjPVsfvE7i5qWfdb3Nx0d80H7NweEedAxz8D7asquZccxpjC9MjStWTbCGYP+eHdSs/Bux7a9T0bSCalPLOOz/IW7PmMOK8nPJn3Uak446lZn+0feBmFKSzVZTSWmd3my4N8YYGppbqK/dSuv+7QTrazDNtbg69pERqic3Uk+h1UixtHBox86ocdkXRZ4CghlFNASmU59ZjCu7GE/OOPx5pWQVlJJdVE5m/jgCvmwCI/UrtQh4fLg8PnIz8sgtrhzU01rbWqjbU0Prvh101O/Eaq7F3babQNd+cjv2UtH2LgX7D0/Cmsml3Z1H0JNH2J9P1J9PzJ+PFSjA5c/G48/EG8jC7c9CfBm4vBm4vD7cLsHt8uByu8C5eLEQojFDLBq2H5Ew0WgUKxbGioaJRaJYsQgmZl90mWgQE7EfOBdkEgsyvvEdWskiN6e3S/Dh5SqfD9uhYesKyhdeMOLHH41aO7vYV7uD1gPbCTbsIta0G3f7bvyd+8gOHaAgVk+xaaJcLA4tSxLCS5MU0O4poCOjgqbAfKzMEiSrGF9OEYG4bq9Z+aW4M/LId7nIT8YL7YexYrQ319F4YDdtdbV0Nu4m2rIP2vfh6TxARqiegvYtFLa+TY50Hfb8KG6aJJ8WdwEhdw4RbzaWNwvLm23f5sOfjfFmIW4fLo8XcXsRjw+3x4PL7QWX174M674Adv7FuciOxWLEYlGsaAgTCWGiQYiGIRqCWAhiYSQWxhUL2f9a9rTLiuB2Eh63ieA1IbwmgteE8RLBZyL4CRMQQ2CI72EYD2F8RPAQFh9RPFi4epIHIy4s3BgRDG4scTmJjwsLL5b44y5F7Yt0+68OdpKGnaBhwOVcsPds0/Ov5aRmFi4T/2/MnsbCOXrPejdx/0r/vQuUGqt+Hz2b4LijNMFKR/X7d1Oz/C/Etr1GedMKJpg9lALtZLA9Yx7LKy+mcPYZVM87iTne0T9+ZUpJFg+bCs5sXQOxKLjH1schGrM40NhIw85NdOzfSrhhB7TUEujYTW5oH8WxAxRLC/G3obWM0OTKp9VTRGdWGbsyj2JndhmevHL8hVXkFFWSXzaBzPwySlzuQXftSwW5OXnkzjgKZvQ+Xi9mGfY2NtKwZzut+3cQatiJadmNr3Mf3lAzvkgLmaFaCsx68mkno4/WvOFiGSGIj5D4iOBlY/HZLEpC16vcSUfD36F9xzswRhKsto5O9u/aQsueLQTrtkLTDvxtO8kO7qMgdoBi08z0Qy4su/BT7yqh1TeO2tzJ7Mwqw5VbSiC/nKyiCvJLKskrrsSfkUdZGnShE5eb7MIysgvLYOaxfW5nWYaGlmYa9u+ivW43nY27ibTshfb9BIJ1ZIYb8EXbyY00ErA6yTSdZBHEK8N3K8qIcRPGQ0S8RLAfUXEeLh9R8RF2ZxJz+7FcPiy3D8sdwLj94PZhPAHE4wdvAJfHj3gCuHwBXF4/Hl8Gbl8Gbl8Ary8Djz+A15+Br/sRyMLrDyBuPz6Xi9H/f96+GWOIWcZOZK0Y0WjUno7FsGJR+2HF4pbFsKwoVszCikUxcesw9nJj2c8xzrYmFsNY9sMyFsRiGCuKS+yET4w9dtduPRNnrKDL/tflRkQQJzEVlwvBnheXncCK2NuKy223hLhcPevFaaGz1zv7FMHlctPdUoPTIohIz7Hs5YJg76dnvctlJ78i0H1cZ58Hb4u9H8SOAxfdA5RFxGnRgu6E2Z4yBy23W8o+mI47aQf/e9B6q+99dLfUmJ6jfdAq50wL3a1zcfvoddvu/ccd/6AWskOaiQ5r4Yrfll67JPeEIIds28t+zCHz3c87tI3L3m9vXeWl1+Od5culYNzI/yj6YY2tK+ojZMVibFnzBvXv/Jmiva8wLbKZYjG0kcG2jKPYW7mY4rlnMmnuiczzeJMd7hErzPKxxzset4lC8w4oSs5YsOEUiVns3l/PgR0baN+ziVj9VrytNeR37aQstpcKaSK+k1YQH/XuElr9ZezKmsXOvPF4iyaQXTqZooop5JSMp8jjoyhpr2j0cruE8uIiyouLgIX9bhuKxmjs6KCrvZWOjg6CXW1Egx2YSBcm3ImJRYlZMSzLLtbR3cXHJeBxCS6PF7fHi8vjw+3x4XZ7cHl9eDw+PF57ndufidsbwJeRTSAjA5/XT6bL1dMdNll/pqdPqGSHGYfZuzZJESSeMYam1jb2bnuP1l3ridRtwd2yg6zOWkqieykz9UyNS6DCxs1+dxmtvlJq8z5CbU4F3sIqMosnkFNaTUHZJDKy8hmfBolTorlcQlFBAUUFBTBz/qCeE47EaOrsINrVSjQaIRoOE4uGiETCWNEo0WgYYpGeC1xxLq4RNy5n2uP24PW68XgD+PwZeP0BvP4APl+GXdBjeF/2mCAiuN2C253KaaJSCjTB6tfbf/ohJ2z9OVON8L53Om9PvJ6ioz/O5HkncZQn9d86ESFUMB0agQPrUzrBCkZibN9ZS/321XTtXoe7YTMFHVupjO6kWpqpjtu2SfJpDFRRl/0R9udPxjtuKjllUymumkpGfilVelE37PweN/68XMhL/ljEkZbl97DKO4XpzRuSHcoRs2IWu/fsYt/WtbTvXo80vE9O+3ZKwzupMHUUxiVRjZJPo6+C+pyj2Zc7EU9RNVllUymqmk5+6QTGj7EW82Tyed34xuj3TSmlkkH/D9ePqhMvYXleBVNOOJ8Z4wY3TiXVZI2fT6TBjXvXClyzzk92OAOyLMPOAw3s2bic9p2rcddvJL99K+Nju5glzT3bdRFgv38iBwpO4kDRFDLLp1M4fhb5ldMoCOQNe5UwpfrTWLiA0gNvYlr3ILmjr9CFMYb9LV3UbFlH2/YVuPetpaB1A9XhLYyXNrrvHhbExz7veBrz53GgcBr+spnkT5hD6cRZFGbkHDY2USmllBoLNMHqR9XUuVRNnZvsMIbVgsnlrHtnIlO3/4PsZAdziGAkxsZdB9j3/grCO1eS1fAelV2bmEot1U61LTuRqqau+GQaxs0id8JcSiYvIKNwAtUpWlFLpb+MGR+FA79i9zvPUXXatUmNxRjDvuYOtm1cTeu2Fbj2raW4bQPTzHZOcIopRPCw21tNTclp1IybQ+74OZRPmU9m8UT9nimllFKH0ARrjDuuuoBnrOnM3b8MIl3gzUhKHOGoxfu769i18W2CO1aRWb+W8cHNzJVaFjjJVIsrjwN5s9g87hyyqhdSNmMRGUV6gadSz4LjTuLAq/mE1j4BI5hgGWPY19TK9g2raNu2AveBtZS0bWSa2cFJEgIghI99GVPZU3Q+DeOPpnjaInImzKPa4z+oq61SSimleqcJ1hhXnpfBe5mL8ISfhe2vwfSzhv2YMcuwdU89uza8TeeOlQTq36WqaxMz2MUcJ5lqdeXRUDibHWXnkTflOIqmLSIvbzx5Oj5KpYFxuZn8OetMzm14kljrPty5ZQk/hjGGvQ1N7NywgrbtK/AeeJdx7RuZYnZSLlEAOslgX+Y0aoo/TcbEYyifcTyB8llM1PFRSiml1Iem/xdV5M86nfbVt+Bb8zC+BCdYMcuwfW89uzYup3PHSjLq1lLeaXfzm+6UDW515VGfP4vtZeeQP2URxdMXkZs3nlxNplQayz75c/DcE+x4/IdMvvpXQ9qXMYY9Bz740cJ3YC2lHZuYZGqpcH60aJNs9mbN4P2SU8mceAwVM08gs3Qak7UFWCmllEooTbAUFyycwqMrT+aK9Y9DyxLI+3AFPWKWoWbPPnZvfJuOHasI1K+jvHMTU9jNVCeZapFc6vJmsa30bHKnLKJ0xvHk5msypcaeU084kWdeOZfzti9l75unU37i4kE9Lxaz2LlzG/s2vU2wdi0ZDeso7drCRLOXSqeKX5Pksy97ButLziar+lgqZ51ATkk1Ofo9U0oppYadGHP4rcIG/WSRB4EZzmw+0GyMWSAi1cAGYJOz7i1jzOcH2t/ChQvNihUrPnQ86sMxxnDDr5/kv/d9DsYfT8bVj4LH3+9zWtqD1GzdQMOOd4nuXU9m03oquzYzkX09d6JvchVQnz2T6Lh55E1ZSOnME3Hnj+/1JnZKjUU799XRfNd5zGczG4rPwnf0peRUTMcdyKOjvYXWpjq6GmoJHtiCq2kb2e07GB/ZTqG09exjn6uUhuzpRMfNJbt6IRWzTiCjsFK/Z0oppdQwE5GVxpjDbv45pATrkAP8L9BijPmRk2A9bYw5ohJ8mmAlz/b6Du658z/4ofkVDRnVNE75FLGiqYRiLoJdHYSa9mBaavF17KE4tJMJ1h78Eul5/gHXOOpzZmKVzid/ynGUzViEJ3/0lZ9WarSp3V/Pmj99nzObHyFDwn1u10wO9b5KWnOmIWVzKZhyLJUzFuLN0psOKKWUUskwrAmWiAiwEzjTGPO+Jlipqaa+g8cevJsz99/DAtfWw9YH8dHkLqYpYwLhgmkEymZRNGk+xdVzkUy9yFNqKPY1NLFr7atEmvfgDrfhzsgmM6eIzKJyxk2cTWZecbJDVEoppVSc4U6wTgV+2n0AJ8FaB2wGWoHvGWNe6+O51wPXA0yYMOHYHTt2DDkeNTRNHWH27NlFtGkXGR4XGZmZFJdNICOvRLsdKaWUUkopxRASLBF5AeithvC/G2OedLb5FbDFGPO/zrwfyDbGNIjIscATwBxjTGt/x9IWLKWUUkoppVQq6CvBGrCKoDHmYwPs2AN8Cjg27jkhIORMrxSRrcB0QLMnpZRSSimlVNpKxA1QPgZsNMbUdi8QkRIRcTvTk4FpwLYEHEsppZRSSimlRq1E3AfrUmDpIctOBX4kIhHAAj5vjGlMwLGUUkoppZRSatRKWJn2RBCROmC0VbkoBuqTHYQaMXq+xw4912OHnuuxRc/32KHnemwZjed7ojGm5NCFoyrBGo1EZEVvg9dUetLzPXbouR479FyPLXq+xw4912NLKp3vRIzBUkoppZRSSimFJlhKKaWUUkoplTCaYA3sN8kOQI0oPd9jh57rsUPP9dii53vs0HM9tqTM+dYxWEoppZRSSimVINqCpZRSSimllFIJogmWUkoppZRSSiWIJlj9EJFzRGSTiGwRke8kOx6VOCIyXkReFpH1IrJORL7qLC8UkedF5H3n34Jkx6oSQ0TcIvKOiDztzE8SkX843+8HRcSX7BhVYohIvog8IiIbRWSDiJyo3+30JCI3OH/D3xORpSIS0O92+hCR/xORAyLyXtyyXr/LYrvdOe9rReSY5EWujlQf5/oW5+/4WhF5XETy49b9m3OuN4nI2UkJuh+aYPVBRNzAncC5wGzgMhGZndyoVAJFgW8YY2YDJwD/6pzf7wAvGmOmAS868yo9fBXYEDf/P8BtxpipQBPwL0mJSg2HnwPPGmNmAkdhn3f9bqcZEakEvgIsNMbMBdzApeh3O53cA5xzyLK+vsvnAtOcx/XAr0YoRpUY93D4uX4emGuMmQ9sBv4NwLleuxSY4zznl851+6ihCVbfFgFbjDHbjDFh4AHgwiTHpBLEGLPXGLPKmW7DvgCrxD7Hf3A2+wPwyaQEqBJKRKqAjwO/c+YFOBN4xNlEz3WaEJE84FTgbgBjTNgY04x+t9OVB8gQEQ+QCexFv9tpwxjzKtB4yOK+vssXAn80treAfBEpH5FA1ZD1dq6NMX8zxkSd2beAKmf6QuABY0zIGLMd2IJ93T5qaILVt0pgV9x8rbNMpRkRqQaOBv4BlBpj9jqr9gGlyYpLJdTPgBsBy5kvAprj/nDr9zt9TALqgN87XUJ/JyJZ6Hc77RhjdgO3AjuxE6sWYCX63U53fX2X9botvV0HPONMj/pzrQmWGtNEJBt4FPiaMaY1fp2x72Gg9zFIcSLyCeCAMWZlsmNRI8IDHAP8yhhzNNDBId0B9budHpyxNxdiJ9UVQBaHdzFSaUy/y2ODiPw79tCO+5Mdy2BpgtW33cD4uPkqZ5lKEyLixU6u7jfGPOYs3t/dpcD590Cy4lMJcxJwgYjUYHf1PRN7jE6+060I9PudTmqBWmPMP5z5R7ATLv1up5+PAduNMXXGmAjwGPb3Xb/b6a2v77Jet6UhEbkG+ARwufng5r2j/lxrgtW35cA0pxqRD3sw3VNJjkkliDMG525ggzHmp3GrngKudqavBp4c6dhUYhlj/s0YU2WMqcb+Hr9kjLkceBn4tLOZnus0YYzZB+wSkRnOoo8C69HvdjraCZwgIpnO3/Tuc63f7fTW13f5KeAqp5rgCUBLXFdClYJE5Bzs7v0XGGM641Y9BVwqIn4RmYRd2OTtZMTYF/kgGVSHEpHzsMduuIH/M8b8OLkRqUQRkZOB14B3+WBcznexx2E9BEwAdgCXGGMOHWCrUpSInA580xjzCRGZjN2iVQi8A1xhjAklMTyVICKyALugiQ/YBlyL/YOifrfTjIj8EFiM3X3oHeCz2GMx9LudBkRkKXA6UAzsB34APEEv32Unyb4Du5toJ3CtMWZFEsJWH0If5/rfAD/Q4Gz2ljHm8872/449LiuKPczjmUP3mUyaYCmllFJKKaVUgmgXQaWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUUkoppZRKEE2wlFJKKaWUUipBNMFSSimllFJKqQTRBEsppZRSSimlEkQTLKWUGiVEpFpEjIh4kh1LuhORa0Tk9WTHMdqIyCkisinZcSilVCrTBEsppVRKE5ElIhIRkfa4x43JjisVGWNeM8bMSPR+ReRMEVklIq0isk1Erk/0MZRSarTQBEsppRJEW56S6kFjTHbc4+ZkB5RIqfzZEhEv8DjwayAPWAz8VESOSmpgSik1TDTBUkqpIRCRGhH5toisBTpExCMiJ4jI30WkWUTWiMjpcdsvE5H/FpG3nV/znxSRwj72fa2IbBCRNudX//93yPoLRWS1s5+tInKOszxPRO4Wkb0isltE/lNE3AO8jiki8pKINIhIvYjcLyL5cesaReQYZ75CROq6X5eIXCAi65zXu0xEZh3y/nxTRNaKSIuIPCgigSN/p4+ciHzHeV/aRGS9iFzUx3YiIreJyAHnvXxXROY66/wicquI7BSR/SJyl4hkDPL49zjbP+/E8IqITIxb/3MR2eUcc6WInBK3bomIPCIi94lIK3CNiCwSkTed93mviNwhIr645xgR+aKIvO8c7z+cc/d35xgPxW/fR8yni0jtYF7fESgEcoF7jW05sAGYneDjKKXUqKAJllJKDd1lwMeBfKAU+Avwn9gXlt8EHhWRkrjtrwKuA8qBKHB7H/s9AHwC++L0WuC2uCRnEfBH4FvOcU8Fapzn3ePsdypwNHAW8NkBXoMA/w1UALOA8cASAGPMVuDbwH0ikgn8HviDMWaZiEwHlgJfA0qAvwJ/PuRC/hLgHGASMB+4ptcARE52koe+HicP8BoOtRU4BbvV5IdO/OW9bHcW9vs33dn2EqDBWfcTZ/kC7PezErjpCGK4HPgPoBhYDdwft265s99C4E/Aw4cknxcCj2Cf3/uBGHCDs68TgY8CXzzkeGcDxwInADcCvwGuwD6fc7E/qx+akyj3dX5+2dtzjDH7sT8j14qIW0ROBCYCOgZOKZWejDH60Ic+9KGPD/nATmqui5v/NvYv9fHbPAdc7UwvA34St242EAbcQDVgAE8fx3oC+Koz/Wvgtl62KQVCQEbcssuAl4/wdX0SeOeQZU8B7wJrAb+z7PvAQ3HbuIDdwOlx788VcetvBu5K8DlY4ryHzXGPil62Ww1c6ExfA7zuTJ8JbMZOSlxx2wvQAUyJW3YisH2Qcd0DPBA3n42dJI3vY/sm4Ki41/TqAPv/GvB43LwBToqbXwl8O27+f4GfDbDP04HaRJ4fZ7/nA/uxE/8o8LlEH0Mf+tCHPkbLQ1uwlFJq6HbFTU8EPhP/yz5wMnZrVW/b7wC82K0SBxGRc0XkLad7XjNwXtx247FbaA410dnf3rjj/xoY198LEJFSEXnA6VLYCtzXS0y/xW4F+YUxJuQsq3BeAwDGGMt5fZVxz9sXN92JnWgk2kPGmPy4xx4RuUrsLpTd78NcenmfjTEvAXcAdwIHROQ3IpKL3SKXCayM28ezzvLB6jnXxph2oBH7PcPpOrnB6TrZjN16Vtzbc53tp4vI0yKyzzlH/9XL69kfN93Vy/xwvPf9EpGZwAPYLbc+YA5wo4h8fKRjUUqpkaAJllJKDZ2Jm96F3YIVf7GfZYz5Sdw24+OmJwARoD5+hyLiBx4FbgVKjTH52N3vJO44U3qJZRd2C1Zx3PFzjTFzBngN/+W8jnnGmFzsbmXdx0JEsoGfAXcDS+SDcWN7sJO67u3EeX27BzjeYcQuEd7ez+OUgffSs6+J2Anhl4Ai5/17L/41xTPG3G6MORa7RXE6dtfLeuykZE7ce5lnjDmSJKXnXDvvYSGwx3ktN2J3Ryxw4ms5JL74zxXAr4CNwDTnHH23r9czXMQea9fX+bmrj6fNBTYbY54zxljGmE3Y3WjPHbnIlVJq5GiCpZRSiXUfcL6InO2MNwk4hQOq4ra5QkRmO+OZfgQ8YoyJHbIfH+AH6oCoiJyLPVao293YY1o+KiIuEakUkZnGmL3A34D/FZFcZ90UETltgLhzgHagRUQqsROMeD8HVhhjPot9cdx9Mf0Q8HEnDi/wDewE7+8DvVGHMnaJ8Ox+Hq8dwe6ysBOUOrALhmBf6B9GRI4TkeOd+DuAIGA5rXG/xR77Ns7ZtlJEzo57rpG4Iia9OM8ZW+bDHov1ljFmF/b7HXXi84jITdhj7fqTA7QC7U6r0BcG2D7hjDFz+jk/n+/jae8A08Qu1S4iMgV7bOHakYtcKaVGjiZYSimVQM7F84XYrQt12C1K3+Lgv7f3Yo/P2QcEgK/0sp82Z/lD2GNz/hl7DFT3+rdxCl9gt3y8wgctSd1dsdY7z32Eg7so9uaHwDHOvv4CPNa9QkQuxC5S0X1B/3XgGBG53GmNuAL4BXaLz/nA+caY8ADHG1bGmPXYY47exO4mNw94o4/Nc7ETqSbs7o4NwC3Oum8DW4C3nG55LwAzAERkPNCGPS6tL38CfoDdNfBY7PcK7HF5z2KP/dqBndTt6m0Hcb6J/Tloc+J9cIDtRwVjF0m5DruYSyv2Z/VR4HfJjEsppYaLGHNoDwSllFLDRUSWAfcZY/TiMsWJyBXY3Qf/rY/192AXjPjeiAamlFIqqVL2xoVKKaVUMhlj7kt2DEoppUYf7SKolFJjhNg3vT2S4gQqDYnId/v4HDyT7NiUUiodaBdBpZRSSimllEoQbcFSSimllFJKqQQZVWOwiouLTXV1dbLDUEoppZRSSql+rVy5st4Yc9jN50dVglVdXc2KFSuSHYZSSimllFJK9UtEdvS2XLsIKqWUUkoppVSCaIKllFJKKaWUUgmiCZZSSvUjGInx2KpaOsPRZIeilFJKqRQwqsZg9SYSiVBbW0swGEx2KKNSU0cYHxGysrKSHcqoEwgEqKqqwuv1JjsUlcLueWM7c1+8iuXv/hOnXf3DZIejlFJKqVFu1CdYtbW15OTkUF1djYgkO5xRJRiJkbl/HxNdB4jlFOHOGZfskEYNYwwNDQ3U1tYyadKkZIejUtiWLRv5vHsdbF8Hrf8PciuSHZJSSimlRrFR30UwGAxSVFSkyVUvQlGLPOkAwHTUJzma0UVEKCoq0pZPNWSFjWt6pts2vJDESJRSSimVCkZ9ggVoctWHcDRGJiEAPFYIYjpGJJ5+blQilHVuJIKHdhOgddOryQ5HKaWUUqNcSiRYqneRmMFNjJD4nQUdyQ1IqTRjjCE72kKXt4DlZib+fauSHZJSSimlRjlNsAZBRPjGN77RM3/rrbeyZMmS5AXksCyL5avWcPInLmfBP13KrKMW9sS1bNky/v73vw9p/+eccw75+fl84hOfSEC0SqWeUNQiVzqJenM4kDGV/M4dEIskOyyllFJKjWKaYA2C3+/nscceo74+seOcjDFYlvXhn29FufprP+COn93KW397lNWv/oVLLrkESEyC9a1vfYt77713SPtQKpWFIhY5dBLx5hAsnIGHKDRsTXZYSimllBrFRn0VwXg//PM61u9pTeg+Z1fk8oPz5/S7jcfj4frrr+e2227jxz/+8UHr6urq+PznP8/OnTsB+NnPfsZJJ53EkiVLyM7O5pvf/CYAc+fO5emnnwbg7LPP5vjjj2flypX89a9/5Y477uCZZ55BRPje977H4sWLWbZsGUuWLKG4uJj33nuPY489lvvuu+/gcUVWjAMNjVRVVRJCyDYRZs+eQ01NDXfddRdut5v77ruPX/ziF8ycObPPOLdu3cqWLVuor6/nxhtv5HOf+xwAH/3oR1m2bFm/783DDz/MD3/4Q9xuN3l5ebz66qsEg0G+8IUvsGLFCjweDz/96U8544wzuOeee3jiiSfo6Ojg/fff55vf/CbhcJh7770Xv9/PX//6VwoLC/ntb3/Lb37zG8LhMFOnTuXee+8lMzPzoOOecMIJ3H333cyZY5+7008/nVtvvZWFCxf2G69SR6IrEiNHOon5KvGWzYa9ENrzHv5xM5MdmlJKKaVGKW3BGqR//dd/5f7776elpeWg5V/96le54YYbWL58OY8++iif/exnB9zX+++/zxe/+EXWrVvHihUrWL16NWvWrOGFF17gW9/6Fnv37gXgnXfe4Wc/+xnr169n27ZtvPHGGwfvyIpyw+cuZ+4xJ3DZv3yF3/7hTwQ7O6murubzn/88N9xwA6tXr+aUU07pN861a9fy0ksv8eabb/KjH/2IPXv2DPp9+dGPfsRzzz3HmjVreOqppwC48847ERHeffddli5dytVXX91Tze+9997jscceY/ny5fz7v/87mZmZvPPOO5x44on88Y9/BOBTn/oUy5cvZ82aNcyaNYu77777sOMuXryYhx56CIC9e/eyd+9eTa5UwgUjMXLoJObLoWjiXGJGaN6xNtlhKaWUUmoUS6kWrIFamoZTbm4uV111FbfffjsZGRk9y1944QXWr1/fM9/a2kp7e3u/+5o4cSInnHACAK+//jqXXXYZbreb0tJSTjvtNJYvX05ubi6LFi2iqqoKgAULFlBTU8PJJ5/csx8xMW664Xouv+5fefipp1n6xMM88NfXWPbK4ZXO+ovzwgsvJCMjg4yMDM444wzefvttPvnJTw7qfTnppJO45ppruOSSS/jUpz7V85q+/OUvAzBz5kwmTpzI5s2bATjjjDPIyckhJyeHvLw8zj//fADmzZvH2rX2het7773H9773PZqbm2lvb+fss88+7LiXXHIJZ511Fj/84Q956KGH+PSnPz2oeJU6EsFojGLpotOXy5SKYmpMGYF965IdllJKKaVGsSEnWCIyHvgjUAoY4DfGmJ+LyBLgc0Cds+l3jTF/HerxkulrX/saxxxzDNdee23PMsuyeOuttwgEAgdt6/F4DhpfFX8/pqysrEEdz+/390y73W6i0YPLsLtMDIAp06Zx9b/8P7552UcpOeqfaGhoOGxffcUJh5czP5Ly5nfddRf/+Mc/+Mtf/sKxxx7LypUrB/2aXC5Xz7zL5ep5fddccw1PPPEERx11FPfcc0+v3RQrKyspKipi7dq1PPjgg9x1112DjlmpwQo6Y7A6/LlMLMrkJcazsGlzssNSSiml1CiWiC6CUeAbxpjZwAnAv4rIbGfdbcaYBc4jpZMrgMLCQi655JKDuqydddZZ/OIXv+iZX716NQDV1dWsWmWXdF61ahXbt2/vdZ+nnHIKDz74ILFYjLq6Ol599VUWLVo0qHhcxuIvL7yGERduX4BN23bidrnIz88nJyeHtra2AeMEePLJJwkGgzQ0NLBs2TKOO+64QR0fYOvWrRx//PH86Ec/oqSkhF27dnHKKadw//33A7B582Z27tzJjBkzBr3PtrY2ysvLiUQiPfvpzeLFi7n55ptpaWlh/vz5g96/UoMVCnbilygEcvG6XdRnTKIgWAvRULJDU0oppdQoNeQEyxiz1xizypluAzYAlUPd72j1jW9846BqgrfffjsrVqxg/vz5zJ49u6cl5eKLL6axsZE5c+Zwxx13MH369F73d9FFFzF//nyOOuoozjzzTG6++WbKysoGFYtgce+jf2HGrDl89OQTuOqrN/HHX/0vbreb888/n8cff5wFCxbw2muv9RknwPz58znjjDM44YQT+P73v09FRQVgJ3+f+cxnePHFF6mqquK5554D4KabbuoZb/Wtb32LefPmMXfuXD7ykY9w1FFH8cUvfhHLspg3bx6LFy/mnnvuOajlaiD/8R//wfHHH89JJ53EzJkfFBN46qmnuOmmm3rmP/3pT/PAAw/0VE5UKtGiHU0ASEY+AKH8KbiwoKkmeUEppZRSalQTY0zidiZSDbwKzAW+DlwDtAIrsFu5mnp5zvXA9QATJkw4dseOHQet37BhA7NmzUpYjOnCGEPdnu2USCtSsYBgJEbowBay3THcZbMH3oHj0GqH6UY/P2ooXnvzDU557jxqz7idqtOu5g8PP8LV6/6F2OI/4Z718WSHp5RSSqkkEpGVxpjDqqwlrIqgiGQDjwJfM8a0Ar8CpgALgL3A//b2PGPMb4wxC40xC0tKShIVTtqzDLgwGOzxUj6PixBeXFYYEpg0KzWWRYOdAHgC2QDkVthdXVt3b0paTEoppZQa3RJSRVBEvNjJ1f3GmMcAjDH749b/Fng6EcdSNmMMggGxc2SXCDGXDzEGYmHwDK5L3pIlS4YxSqVSWyxkJ1jegH0ftoryCppNFl3736cgmYElyUMrdrGvJciXz5x6RMVwlFJKqbFkyC1YYv9f9m5ggzHmp3HLy+M2uwh4b6jHUh84tAULALeTVOkAfKUSIhruAsDnt2/NMKk4ixpTBo3bkhlWUoSjFv/5yJsctew6Gh78UrLDGXF1bSG+8dAaNm0Ze1UkjTH83+vbeWVz3ZjsIfHWtgbueWM7iRxSoZRKb4noIngScCVwpoisdh7nATeLyLsishY4A7ghAcdSDuuQFiwAcVqtTEwTLKUSwXISLG/AvrVCSY6fWikjo21Hf09LS+v2tHCO+21Oc6+leON9EGwZ+Elp5I9v1rDunb8z477j4PWfJTucEbVpfxs/eno9q//4LcwvT4DOxmSHNGIsy3Dpb97ix39eS8PSL8Bfb0x2SEqpFJCIKoKvG2PEGDM/viS7MeZKY8w8Z/kFxpi9iQhY2YwxdgtWXDcdt9dPzAgmogmWUolgRZwWLKeLoIjQnDGBvPD+MddSvLOxkymy54MFW19KXjBJsHpXM+e7/w6AeWEJxN3nMN29/r5dOfeL7qeQuo3w5p1JjmjkvH+gHYBTXWso3rwU3v41tO0f4FlKqbEuYUUu1MiyjF2mPb4Fy+9xEcaLFQn280yl1GAZ57vk8n5wg+5oXrVTqn1stWLtbLATrL2+iYTwwu7+byqebrYcaOc0zzoAu/dAw/tJjmjk1DR0UEojXrFvbs+ON5Ib0Aja0dABwDTX7g8Wbn42SdEopVKFJliD9MQTTyAibNy4sc9tampqmDt3bsKOuWnTJk4//XQWLFjArFmzuP766wH7JsHPPvNXXBiIG4PVnWDJILoIXnfddYwbNy6h8SqVdqJ2CxbejJ5F7uKpAMTqx84FNkBDR5hp7r0E86ez2aokvHttskMaMZZlqGsLMd7dxHLLuadh7fLkBjWCdjd18bFiu1vgdv9MO7keIz/k7Wm2/waclt/AAQowGYVj6twrpT4cTbAGaenSpZx88sksXbq01/XRaHTIx4jFYgfNf+UrX+GGG25g9erVbNiwgS9/+cuAnWA99+yzh43B8npchPDgsiIDDkS+5pprePZZ/RVOqf6YsHMR6fmgBSvHKdXesntsFTto7QpTTj2+4mo2WBNh/7pkhzRimrsiYEXIjTWxQubR5c6G3auSHdaI2d3cxYTMCACvmQV2pdr6sfH539sSxOdxMdW1h/djFURKZo+pz75S6sNJSJn2EfPMd2Dfu4ndZ9k8OPcn/W7S3t7O66+/zssvv8z555/PD3/4QwCWLVvG97//fQoKCti4cSN/+9vfiEajXH755axatYo5c+bwxz/+kczMTF588UW++c1vEo1GOe644/jVr36F3++nurqaxYsX8/zzz3PjjTdy6aWX9hx37969VFVV9czPmzePcDjMTTfdRGdXF/947SW+87UvcsE//wtf/vKXee+99+js7OTH3/gXLrxyFvfct5THH3+clpYWdu/ezRVXXMEPfvADAE499VRqamr6fd2vvPIKX/3qVwF77Mmrr75KdnY2N954I8888wwiwve+9z0WL17MsmXL+MEPfkB+fj7vvvsul1xyCfPmzePnP/85XV1dPPHEE0yZMoU///nP/Od//ifhcJiioiLuv/9+SktLDzrupZdeypVXXsnHP27fyPWaa67hE5/4BJ/+9KcHd06VSpTY4QlWRXkFLSaTrn1j4wKzW7irHR9RcgvL2GS68AVfgY4GyCpKdmjDrq4tRAktCAbJrWBXsIrpYyTBAGjsCFOaY7fkvNxRzVVe7ASrfH5yAxsBe1qClOcFyAsfYJeZw6TMyVRsWQpWDFzuZIenlBqltAVrEJ588knOOeccpk+fTlFREStXfjD2YNWqVfz85z9n82b7f7abNm3ii1/8Ihs2bCA3N5df/vKXBINBrrnmGh588EHeffddotEov/rVr3r2UVRUxKpVqw5KrgBuuOEGzjzzTM4991xuu+02mpub8fl8/OhHP+Kiiz/N8r89zCWfuoAf//jHnHnmmbz99ts88vgTfOs/fkZHi92d4+233+bRRx9l7dq1PPzww6xYsWLQr/vWW2/lzjvvZPXq1bz22mtkZGTw2GOPsXr1atasWcMLL7zAt771LfbuteuXrFmzhrvuuosNGzZw7733snnzZt5++20++9nP8otf/AKAk08+mbfeeot33nmHSy+9lJtvvvmw4y5evJiHHnoIgHA4zIsvvtiTbCk1kiR6eIJVXZLFdlOGNI2xUu2dTQBkF5Sw21VpL2vcmsSARk5dW4hSsV9/RvF4NkVKoWFLkqMaOa3BKHli3xNuVWyyfXuQMdJFtrkzTEGGF2+4mSZy2O6ZaHcdbqpJdmhKqVEstVqwBmhpGi5Lly7tacm59NJLWbp0KcceeywAixYtYtKkST3bjh8/npNOOgmAK664gttvv51/+qd/YtKkSUyfbvfdv/rqq7nzzjv52te+BtgJRW+uvfZazj77bJ599lmefPJJfv3rX7NmzRrA7gEoGHC5+Nvf/sZTTz3FrbfeSjRmEQyF2bHdvvj7p3/6J4qK7F+YP/WpT/H666+zcOHCQb3uk046ia9//etcfvnlfOpTn6KqqorXX3+dyy67DLfbTWlpKaeddhrLly8nNzeX4447jvJy+/ZnU6ZM4ayzzgLslreXX34ZgNraWhYvXszevXsJh8MHvXfdzj33XL761a8SCoV49tlnOfXUU8nIyDhsO6WGm8RCRPDgdX3wW1RJtp/lUs7EtrGVYLlC9o82kllIrMAPrUDDVhi/KLmBjYC69iClYr/+7OIJbNhcxvltr0CoDfw5SY5ueIWiMcJRi1w6sFw+WsiiK6uKzDFS5KM1GGWcP4xYETo8eawLlXIS2J/9oinJDk8pNUppC9YAGhsbeemll/jsZz9LdXU1t9xyCw899FDPDQezsrIO2l7iyqb3Nt+bQ/cRr6Kiguuuu44nn3wSj8fDe+/Z92s22DcaFhGMMTz66KOsXr2aZX9fzva3n2Hm1AkfOp5u3/nOd/jd735HV1cXJ510Ur8FPgD8fn/PtMvl6pl3uVw9Y9S+/OUv86UvfYl3332XX//61wSDhw+UDgQCnH766Tz33HM8+OCDfSagSg03VzRIWPwHLRurpdq9oWZ7IqOQQOlkYrjGTCtOQ3uYErHv+1VcNp6tptxZkf6vvy1o/+3OMe0QyAOEOv+EMTMGqz0Yodxrd4/05xSzvDXfXjEGzr1S6sPTBGsAjzzyCFdeeSU7duygpqaGXbt2MWnSJF577bVet9+5cydvvvkmAH/60584+eSTmTFjBjU1NWzZYv9BvvfeeznttNMGPPazzz5LJGIPLN63bx8NDQ1UVlaSk5NDe1tbT5GLs88+m1/84hcYY/B5XLz93hYs515Yzz//PI2NjT3joLpb1wZj69atzJs3j29/+9scd9xxbNy4kVNOOYUHH3yQWCxGXV0dr776KosWDf4X7JaWFior7e5Ff/jDH/rcbvHixfz+97/ntdde45xzzhn0/pVKJHcsSER8hy0fi6XavSHnxsKZhVSX5LHLjCPWMDa6CLaHouRid5GrKi9lm6mwV9Sn/0V2d4KVabXjysinLDfAdirt1z4G7gXWFoxS4rLvhZVVUMo79R7w542Z7rFKqQ9HE6wBLF26lIsuuuigZRdffHGf1QRnzJjBnXfeyaxZs2hqauILX/gCgUCA3//+93zmM59h3rx5uFwuPv/5zw947L/97W/MnTuXo446irPPPptbbrmFsrIyzjjjDDZt3MAxZy3mocf+zPe//30ikQjz58/nhGMXsOSWO3tKtS9atIiLL76Y+fPnc/HFF/d0D7zssss48cQT2bRpE1VVVdx9990A3HXXXdx1110A/OxnP2Pu3LnMnz8fr9fLueeey0UXXcT8+fM56qijOPPMM7n55pspKysb9Pu5ZMkSPvOZz3DsscdSXFzcs3zFihV89rOf7Zk/66yzeOWVV/jYxz6Gz3f4Ba5SI8FthYm6/IcvL7G7BkXHwAV2N3+02Z7IKGBScRbbrVKiB8ZGN7H2YJQCTxDcPipLCtlJKRauMdGK0xa0f+TLiLVDRj6TS7JYHymzxyG11iY5uuHXFoxS5LYTrNzCMuo7wsQKJ9tdBJVSqg+pNQYrCbrHDsX7yle+0jN9+umn90xXV1f32Y3uox/9KO+8885hy/ur5PfTn/6Un/70p4ctLyws5NmXXqOscxPkVEBGBr/+9a8BsIyhfk8NLqsZjKGqqoonnnjisH30lSDGJ37dhSkOdcstt3DLLbcctOz0008/6L1YtmxZr+suvPBCLrzwwsP2uXDhQn73u9/1zHu9XhobG3s9vlIjxWOFiLoPT7ByK2bCe9CyexNFs85LQmQjKxSNkWO1gRvIKKS6uIM1poxTml9zBoQOvutxKmoLRpnl7gJ/LgGvm+K8XBpjZRSPgXFI3S1Y/mgr5JQyMTOLlXudH8fqNkP+hCRGN7yiMYuuSIxCsROsknFlQBNtmRPJrx87ZfqVUkdOW7BSlXG6ZhxyYeMSIeby2bcftoZ+by6lxjK3FSLmOrwFtbLCLtUeHCOl2tuCUfKlnYg7Azw+qouy2GbK8UQ7oX1/ssMbdu2hKPmuIARyAZhUnEUNFWOki6DdguWLtEIgn0nFmazpLLFXpnk3ufaQ/f/QfNoAKCu3u7fv91ZBy64xc7NlpdSR0wQrRZmeBOvwU2icX9yvuXwxd9xxx0iGpVRa8ZowMXfgsOXVxdlsN2Vpf4HZrS0YJZsuol67Yl5Bppf9XqdU+xgY7N8ajJDnsluwAKqLM9kUKcE0bR/wpu6prtVpwXKHWyEjn4lFWdSTS8yblfbd5A4q8AFMcKrk1pgywGipdqVUn1IiwTJp/j+wD6WfBMvltRMsEx3bv67p50YNldeEsHrpIliY5WO3q4LMtrFR5KItGCFburC82YBdSdHKn2yvbEz/cvXtoSg5dDpV9KC6KIvNkXFIuB066pIc3fCykwyDK9QKgTwmFWcBQlvmhLQ/990JVpbpBF8OGQEfZbkB1oedLpJj4McFpdSHM+oTrEAgQENDg14sH6r7/ehl7IPH6yNmXD2VBMciYwwNDQ0EAoe3Pig1GJZl8JkwVi8tWCJCa8YE8iL7x0Q3ofZglGyCmLh7PmWWTCSCJ+0vssF+/Tl09HQRrC7KYocptVem+etvD0bJIoiYGATymVCYCUCdtzLtX3tPgQ/T2XO/s+riTFa1FdgbpPnrV0p9eKO+yEVVVRW1tbXU1aX3r4RHqqWtneZYI9Qb8O47aF0wEmN3Rz0edzOunPYkRZh8gUCAqqqqZIehUlQoahEggvH0nqRH8ifh6nK6CY2bObLBjbDWYJRi6QL/uJ5lE4pz2bW5hOqGbaP/l7ohagtGybQ67PLc2BfZNfEJ1oQTkhjd8GoLRijzOT8iZOQT8LqpyAuww5QyrXkZxKLgHvWXEh9KT4GPWPtB4++eW9cOGYWaYCml+jTq/yp6vV4mTZqU7DBGnf/61e/47v5vwFVPwuRjDlq3q7GT1bd9gzNyasm+cV2SIlQqtQUjMfyECXsO7yII4CmZBnshUvc+3jRPsNqCEarpwuVcZAJUF2ex3Sqjsm4Lvb9D6aM9FCXD/UELVlVBJnsowcKNK80vstuCUcp9QYjS00VyYlEWG9tK+JgVhZadUDg5uUEOk7aQU+Aj1vFBC1ZRFo0dYaKlk/GMkTGYSqkjN+w/PIrIOSKySUS2iMh3hvt4Y4V0d0vyZBy2riI/g52Uk9m5B6LhEY5MqfTQFYkRkAj00YKVWzkdgJba3m/NkE7aQ1GypQt3RlyCVZTJDlOKuzm9Cz3ELENnKIzf6uwpchHwuinJy6HRW5r2rRhtoQjjfE5380A+YCfX73QU2ssa0vf1tzstWN5oR1yBkywAWjPGQ+P2pMWmlBrdhjXBEhE3cCdwLjAbuExEZg/nMccKiXXZE97DL/7cLqEtawIuLGgeG4PwlUq0YCRGgDDSR4JVWV5Bo8kmuH9s3Asph048mXk9yyYWZVFjSp1S7QeSGN3w6gjbFRSBnhYsgIlFmeySsvRPsIJRSryd9kxGPmAn12s7nUIPafz6D6qg6LRgTXISrAPeCmipHRNjMJVSR264W7AWAVuMMduMMWHgAeDwu8yqIyZR5xfFPi7+rIKp9kSal9FVargEIxZ+Ioj38FZicO6FZMpwjYFuQm1dYbLpwh1X5KI428d+d4U9k8YX2e1Ocgn0tGKAnWC+HymxW3DSuAWvNRil2N2dYH7QRbCOPGKezLS+VUFbMIrXLXa1SOezP6EwExHYbpUCRn/EVEr1argTrEpgV9x8rbOsh4hcLyIrRGSFFrIYPFes/wQrUDYNAEvLyCr1oQQjEfwSQXy9J1j5mT52uyrJ6kj/C6xQsB23mJ6LTLArKUbGQKn2tmCUHDm8Bau6KJNN4RIItUBXU5KiG35twQgFPQlWPkBPqfb2rPQu1d4eipAT8CLB1p7k0i7ykcH6kHOzZf0RUynVi6QXfzLG/MYYs9AYs7CkpCTZ4aQMV8zpltDHr+ulZRU0myw6920ewaiUSh/hoH1R6eqlG2631qwJ5EXqINw5UmElRaSz1Z6IS7AAMsdVE8Wd1q0Y7aFIny1YNWOgVHtbMEqBdADS8/q7S7UfSPNS7W3BKHl+gUjHQZ/9ScVZWqpdKdWv4U6wdgPj4+arnGVqiNwDtGB1d1+KHNAWLKU+jHCwAwB3Hy1YALEx0IIDEOtqsyfiEgyA8cW51JoSrDQudNAajJIjToJ1UBXFTGpMmT2Txue/LRghr/seYC77kiHD56Y8L8BOU2bfpiAWTW6Qw6QtGGWc364kGP/Zry7O5N1GFyaQn9bnXin14Q13grUcmCYik0TEB1wKPDXMxxwT3NbACdZ2U4a3WascKfVhREJ2C5bbn9nnNt5xdlfccF16F7qwgi32xCEtWNVFmdRYpUTr0veHnIPHYH1Q5GNCYSa1pgSDpO1FdiRmEYxYZNPR0z2w28SiTDZGSsCKQsuu3neQ4tqDUUq8zv9r4z771UVZtAajxPInpe25V0oNzbAmWMaYKPAl4DlgA/CQMUZvzJQAHiuEhQvc3l7Xl+YEqJVysoJ7tcqRUh9CNGRfVHv6acHKrbTvf5Xupdol1N2CdXCC1d1NzpXGpdr7GoOV6fOQn5tDs7ckbct1d99oN8tq7xmD1G1ScRbvtDul2tO0i2hrMEKxz7nVySFdBAFaMiek7WtXSg3NsI/BMsb81Rgz3RgzxRjz4+E+3lhgjMFrhYi6/CDS6zYul9CRPRHBQFN6/s9fqeEUdVqwPP20YE0oG0edySOU5qXaJdxuTxzWgmV3RfZE2qGzIQmRDb/2UITcXsZggZ1g7pbytG3FaAva3eMyYm09Jdq7TSzKYm1nkT2Txglmoaf7HmAH32QbYL/HKdXeXdVXKaUcSS9yoY5cJGbwESHm8vW/YeEU+1+tcqTUEetuwfL6+27Bqi7OZLspw9WUnhfY3dzh7has7IOWj8vxs8dVbs+k6d+ZtmCUXOnEuH2H3XewuijTLtWetgmW3YIViLUf1kWwuiiLA+RjeTLS+PVHKHQ5rZdxyfX4gkxcAjVWKRgLmncmKUKl1GilCVYKCkXtG6DG3H1XNwMIlE0HIFafvuMjlBousbDdtdYX6LsFKyfgZZ+7gpw0LtUeswzemF3w49AWHJdLiOZNsmfS9iI7SqGnCznktYPdirMxXAKd9dA9Ti2NtDotWL5I62FdBKuLMwGhLXNCWibXxhjaQ1Hy3N1jsD44/z6Pi6qCTDaEnJstp+HrV0oNjSZYKSgUtQhIGMvt73e7irIy6k0unXu1VLtSR8pEuluw+k6wAFqzqsmJNqblBTZAeyhKNt2/4ucctt5fUk0MV1onWAWu4EFdxLpVH1SqPf26yXW3YHnCLYd3ESy0u8nVpWmp9s5wDMtAXncFyUO7xxZnsbJdS7UrpXqnCVYKCkUt/EQGTLC6KwnG6jaNUGRKpQ/LKQ4j/dwHCyBaaFcSpC49f8hoC0bIliAxlxc8h//NGV+Sz25TjEnTi8z2UIQ8V9dhLThgV9Lbkcal2tuCUfyE7RvbH9JFMMPnpiw3wE7Ss1R7d3KZI06RqEMSrElFmaxt9GD8uWl57pVSQ6MJVgoKRWJkELL7vvdjSkk2W6xK/M3aRVCpIxULO602A3zPAhWzAejck54FUrtbsKKe7F7XT3RKtUfStFS7PQar67DukdCdYI2zZ9LwIrs9GFfgo5cEs7o4k42RcWBFoLV2hKMbXu0hu3tkJp0gLvBlHbS+ujiL9lCMqJZqV0r1QhOsFBSKWmRKCMvTf9elwiwfe7wTyIg0Q0d6VvhSariYSHeC1X9LcdmEGYSMh9Zd6ZlgtQWjZEsXlq/3BGuSU0nQ1bQtLUu12wlmZ69dBHMCXrKyc2n1FKVtF8FcccbfZRQctr66KIvVHc7yNBuH1Npdot502K1Xh1Ts7S7V3poxXku1K6UOowlWCuoMx8gkdNgvar0J5juVBOu1m6BSR8J03z/OO0BLcVk+NaaM2IH0/I61BSPk0IXxHT7+CmBicRY7TCmecCt0NY1wdMOvLRh1LrIPb8EBp1S7Kz1LtbeFopR4uu8Bln/Y+uriLNZ0dJdqT6/X39LllKi3Ons995PiS7U374RoeETjU0qNbppgpaCucIwMgsggEixPqX0jVHQcllJHxBV1ukYN8D2rzM9gu1SS0ZK+XeSy6UJ6acEBKM8NsKu7VHuaXWSD/fozrI5eW7DA7ia4NToOGtLv/LcFI5T6nB8aeusiWJTJfgqw3IG0a8FrdRIsf6yj1+IulfkZeFzCdlNml2pv2TXSISqlRjFNsFJQRzhKloQQX/9dBAGKKqbQafx07d0wApEplT7cEadrlLf/75nLJTRlTiI/tBe6W73SSGtXhBzpxBXovQXL5RJi3aXa0zDJ6AyFCFidvY7BAnus67uhUug4AF3NIxvcMGvtijLO63ymD6kiCHbrHQjtWRPSrptcdxdBX7S11+Ta43YxoTCT9UGnVHsa/riglPrwNMFKQXYLVgh3oPcxEfGmluayzZQT0gRLqSPiiXYSkgC43ANuGymYhgsr7S4ywe4qlUcHnqzCPrfJLJtGFHfatZRHYhae7kS7jxasaeOy2WIq7Jn69Kok2dwV/iDB6qWL4MQi+8eHOl/6lWrvbsHyhFp7HX8GTqn2tnx7Jg1/XFBKfXiaYKWgzlCUTIK4/YNIsJz/+Xsb3x+ByJRKH55YJyFX/+OvuvnLZwEQTMMfMlq6IuRJB+7M3i8yASaV5rPNSr9xaO3BKDndVfT6aMGaVprD+6bKnkmzBLO5M0Kxu+8qgpk+D6W5fnYap1S7FRvZAIdRa1cEv8eFK9jca3IJdpGPNU0+TCA/7c69UmpoNMFKQaFgB24xeDIGTrAq8jLYIVVkBfdCqH0EolMqPfhiXYRdA3fDBSicOAfLCM073hvmqEZea2eQXOns8yITun/IqSS6P70SzLZglBzpLvLQe4I1viCDA65SouKDuo0jGN3wa+mKkO/qsrvJeny9blNdlMWGSCnEwnaSlSZagxFyM7wQbO6zBWtScSZdEYtI4QxNsJRSB9EEKwVFgnaXFW8fYyLiuVxCe65TSbBBW7GUGiyf1UnEPbgWrMnlxdSaYiL70+sCGyDc7lQG7GUMTrepJdm8byrxtdRANDQicY2EtlCEXJwugn20YHncLqpLctjrqUq7LoItnRHypaPX1qtuk0uyebPNuRdYGiWYrV1RCvxAuL3Pz361U0mwKWsy1G1Iy9sUKKU+HE2wUlA0aLdEuf0DVxEEkJIZ9kRdev3PX6nhFLC6iA5wr7luEwsz2UYl/qb0+47FOpvtiX5asCaXZLHVVCJYaTUWxU4wnJb/zL7HoE0dl81mqyKtWjEiMYu2UJQcOvo999NLs3mny0mwDqRPC2ZLV4TKgPNjQV9jsIrs/wfXeibYtyjoqB+p8JRSo5wmWCkoFmyzJwZRRRAgr2IGUeMikmbdd5QaLjHLkEGQ2CATLI/bxf6MKRR27YBYZJijG2FdA7dgBbxu2nOclvI0SjKaOiMU9CRYRX1uN21cDmtDpZjmndB9g+oU113kITvWd5EHgOmlObSTSSizPK3OfWswQpmv73uAAVTkZ+Bzu+zkGtKqBU8pNTRDSrBE5BYR2Sgia0XkcRHJd5ZXi0iXiKx2HnclJFoFgBVyuqz4Bh6DBTCprIAdppTOPZpgKTUYXZEYmQSJeQf3HQPoyp+BhyjUp1dXXFeoxZ7o5yIbwDduOjFcaXWR3dgZphDnB62MvluwppVms8WqRDBpc/67b7SbGW2CrH6Sy1L7O1KX4XSTSxOtXRFKPN0l6nv/7LtdwsSiTN7pKrUXaIKllHIMtQXreWCuMWY+sBn4t7h1W40xC5zH54d4HBUvPLj783Sb5gxAd6XZ+AClhktnKEqmhDCDuJl3N3fFPABCe9YOV1hJ4Qk12xP9dBMDmFhexC4zDutA+lxkNneEKZA2jDez3x4D08bZY9CAtBmH1ewkWIFIE2QW97ldSbaf/Ewv26XKTi7TpJJgc1eEku4Kiv203k4uyWJFY8Aeo5dGPy4opYZmSAmWMeZvxpioM/sWUDX0kNRATHeCNcgughOLsthGJZkdadh9Salh0BqMkk0XriNIsMZNmkPEuGnevmYYIxtZkZhFINbdgpPf77ZTS7J530qvSoJNnRHGuduRfroHgv03tlbKsdKoBa+lM4ILC2+oGbL6TrBEhOnjcng3XA7RYFpUEozELJo7I5R6nP/X9tN6O6Msl5qGTqzi6dqCpZTqkcgxWNcBz8TNTxKRd0TkFRE5pa8nicj1IrJCRFbU1dUlMJz05Qo7YwL6qGp1KJ/HRUvWZNwmBg3pdyNUpRKtNRix7zU3iEqd3aZXFLPFVBDb++4wRjayWrsiFEsLBum3FQPs+0FtMRV4mrZBLNrvtqmiqTNMibu93wIXYP+NrSjOp85bnjYX2S1dEfJpt7s9Dnjus3mjtcSeSYPX39AeBqBEmu0F2aV9bjuzLAfLQHPWlLRJrpVSQzdggiUiL4jIe708Lozb5t+BKHC/s2gvMMEYczTwdeBPItJrNmCM+Y0xZqExZmFJScnQX9EY4O7ustPPmIBDmZ5Kgqn/Pz+lhltbezs+ieHJGHyCNaEwky1MIKs5PbqIATR0hCmhhbAvH9yefredXup0RTYRaNw2MgEOs6bOMEWu9n4LXHSbNi6bzVZV2lTSq28PUSit9kw/LVhgF7pYHSyzZ9Lg9de329UDC0wzeLPA3/dYzJll9t+IXe7x0HEAOhtHIkSl1Cg3YIJljPmYMWZuL48nAUTkGuATwOXG2DeBMMaEjDENzvRKYCswfdhexRjjiziDzvu5N8mhsirtG6FG9q0fpqiUSh/BtgYAvNkDX1h3c7uEhuxp5EX2f1B5L8UdaA1RLC3EMgf+8SvT56Et1/kzf2DdMEc2Mg60hiikdVA/Zk0bl82qUCWmcSuEO0cguuF1oC1EmdvpLTFAgjWtNJsOMgimSSXBOifByok1Qfa4fredWJRFwOtiXVQrCSqlPjDUKoLnADcCFxhjOuOWl4iI25meDEwD0uMnzVHAH2kl6M4a8BfleJMritllSujcnR4XPkoNp2ib3V3Zl9v/heWhYsWz7Ik0+BUfYH9rkGJpQQa4yOwWqJhtVxLc994wRzYy9rd0URBrgJyyAbedWprDemsiYqy0qKa3ryXIpEynit4AXQSnl9qtOOlSSbC+zU6wMsMNAyZYbpcwvTSHt9qcboT79f+xSqmhj8G6A8gBnj+kHPupwFoRWQ08AnzeGKPt5gkQjlpkmzbCnsG3XoF9n5bNpgrRX9eUGlC0zf5zlZF7ZN2WMycsAKBtZ3oUujjQFqKEZry5AycYAFMritliVRBNg3FooWiMWGcjXhOG3MoBt59ems0GM8GeSYMEc39rkMn+Znsmt6LfbYuz/RRl+dgm4+0b2qf4GLx6ZwyWP1g/YIIFMKM0h7/X+exiGPtS/7OvlBq6oVYRnGqMGX9oOXZjzKPGmDnOsmOMMX9OTLiqpStCHh1E/EeWYFUXZ7KFKrLaa7SSoFIDMJ31wJG3YE2YOIUWk0n7jnRJsIIUSyue3L4H+cebWZbDBjMBKw0SrAOtIcrE6eqZWz7g9pOLs9nnGkfIlZkWrRgH2kJM8DSBJ2PAe6ABzCzPYWWwEmIhaEjte4HVt4fI8LpxdRyArEEkWGU51HdECBfPgf2pn1wrpYYukVUE1Qho6QqTL+3E/PlH9Dy/x01T1hTcJqqVBJUagNVht2ANVJ77UDPKc9loJuCqS4+xjq3NDWRKCHIGl2DNKs9lgzURX8eelB/sv7clSJnYY/EG04Ll87iYMi6PnZ7qlL/INsawryVIOQ1265XIgM+ZVZbLy83O5yTFW/D2tQSZmGOgqxHyBj73s8rtGl51WdNh//q0uReYUurD0wQrxXSXzh3ML4qHMsUz7Yk06COv1HAy3cnBEVTqBLur1A53NXlt74Nd8yelSfNOeyJ/4qC2ryrIYLtnkj2T4q04+1qDH7Rg5QzcggUwqzyHNdEqO8FK4fPfForSFYlRGKsfVIIBTnIdLcO4fLAvtW+2vbOxkwV5ToGPQXz2ZziVBLe4JkK0S3/EVEppgpVq6trC5EkHnswjT7CyK2dhGUmrG4EqNRw8wUZCEgBv4Iif25o3g4DVCd3JSQrztu2yJ/InDGp7EcEqmWPPpHgrzv6WIBVSjxHXoIpcAMwuz+WdUBUEW6CldpgjHD77WuziFnmRA5BbNajnzCrPJYqH1pwpKX/udzR0MCfgJNeDSLCKs/0UZ/tYFXTeq/2p30VWKTU0mmClmIaWNgppw1fQ/6Dj3lSXF7PTjKOzNrV/WVZquPnCTXS6B3cj70O5yuwEI5big91D0RiZnU6SUFA96OeVVU2kgTxMir/+3c1dTHXvty+w3d5BPcfuIukkoymcZGyv78BPmEDX/kEn11PHZeN1Czt9k1O6i2BzZ5jWYJTJXqd7aMHgWm9nluXyanMRuDwp/fqVUomhCVaK6WzYjUsMmcXjj/i500tzeN9UIdpFUKk+GWPIj9bT6R9cafJD5VcfBUBLzeoERjXydjZ0UkUdEXfmEXVJnlmWy7rYBCJ7Urub2Na6dmZ4DiBFUwb9nJllOWwyzt/mFE6wtta1Uy37EAwUTxvUc3weF1NKsnk3OsG+4W77gWGOcnjsbLTvOFPJfrvAR9bgKonOKMth/YEgpnh6Sp97pVRiaIKVYqLN9i/KrkH2i483qTiL900lme01EA0nODKl0kNrMMr/Z+++w+OozsWPf89slbS76r1blmTJvWIwPXQIJRAgoQS4CeEXchO4qaQScnNDAgkpJCEhJCSBUELvHQMGG/fei6rV66psnfP7Y1ZGtiVLslbaXft8nmcf7c7OnDmzo5XmnXPOezJpw5sw9lZigKl5WVTrGXjrY/sia19rL1NEA/7EolElORhQkW1kEjS17ojpdN27Gt3k6fshdeqot0l12EhwJtFqyY3pVoy9Lb3MizfmgiOtbNTbVWa7WDYwH1SMtmBWtxkBVlr/XiO4HOXv/rQsJ96AjjtpWkyfe0VRwkMFWLGme7/xcxRZrQ5ltwxkEgxCuxqEqyhDaerqJ1e0oY8w989wSjOcbJcFWNtiu6W4qq2XMq0Oc/aMMW1XnmVkEjTpvphN193t8YN7PzbZP6YAC4xugjsoiOlWjD0tPcwdCLDGcPwV2S4+7Al9b2L0+Pe19gIQ37kTMipHvV1ljtGluNY6Fdz7obdtQuqnKEpsUAFWjBHugQDr6C7+gmnlxhM14bCiDGn//jpswo89reioto+zmmi0l5DcXwP+/vBWbhJV1+8nW7RjzRlbgOWwmel0hVo9YvRO/u7mHmZoVcaLrJlj2rYi28VqTw6ybQ/4+sJfuQmm65I9zT1UajXG2Dtr/Ki3rch20YUDb3xWzJ77TfVdzEqTaO4GyKgY9XalGU4sJsHGwEAX0dhswVMUJTxUgBVDgrokvq/BmMjSdnQD8J25FQSlINgY23fXFWWidDTsBSApq/ioy/CmVqChx/SNjP7a0BiqjOlj3jYuuwIf5pi9yNzW0M1MbZ+RQXDMAZaTrcECY/xSc+zNh7anpYduT4Bi73bInT+mbSuyjXTlTXGlMdmCJaVkfW0n56c0GQuyRn9zwWrWKM1wsswdyjgZowGmoijhoQKsGLK/s59i6uhxThnTmIjBirPTjUyCMT4+RFEmir95NwAJmVOOugxrrnFR7q2PzUQPPd4A2d3rjRe588a8fXluCrv0XIINsRlgrdjbzkLLPmP8kTVhTNtWZrvYIkOZ52JwHNKqqg7S6CLB0wg5Yzv3qQ4bGU4bOyiElh3g90xQLSdGY7eHFreXxeZdgIC8hWPavjLHxcdNAunIiskAU1GU8FEBVgypbuujVKsnmFp+1GVMzXCwS+bF9J11RZlIlo6dBNEQYxjcf6isomn0SRvdVRvCWLPJs6G2kwViB72uqRA/tsmWwQgytslC9BgMsKSUrNzdxDyxHVG4ZMzbF6cl0GzKxGNKiMkAa3VVO2fH7zReFCwe8/YV2S5W9ueADMbc/5m11Z0AlHg2Q+Z0sCeOafvpOS5ae3z40ipVC5aiHOdUgBVDquvryRIdxOeOfuDtoUrSHSqToKIcQXLPHiML3FFMMjygPDuZnTIXPUYvsj7cXs9CbQfWkpOPavvKHGM+KEt/C/S0hLl2E2tPSw95fVux6/0w5bQxb282aZRnuthnmhJzAZaUkpVV7VyUsN0ILnLmjrmMimwX73WFMgnGWCvOW9uayIoL4mxaCUWnjHn7ymyj635jXKkRXKr/sYpy3FIBVgzp3LsWAEf+rKMuI85qol1lElSUIbX1eMkPVNOXOLbMcYcqSIlnF4U4unaAlGGq3eTp3PouDuHBUnHBUW2fmxRHtSXUxbIxtrpJvrezlXNNq5GaBYpPPaoyKrKdrPPnI5u2gK6HuYYTZ3ujm4aOHuZ5P4aSM0EzjbmMimwnu4OZ6Oa4mGrF8QV03trWxJfzahBBL5SfN+YyKkKZBLdTCLofWneEu5qKosQIFWDFkLjGVegIyB9bv/BD6QNdDJtVogtFGWzbvhpKtAa0vLHfuR/MpAk6nWUkBDpjbsLVHY1uZne/a0wwfJQBhhDikwQBMdaK8dK6Gi61rkSUnDmmCZYHq8h2sc6Xh/D3Qse+MNdw4ry0cT9LtK3E+dph+meOqozpOS50NDocsZXoYvneNtyeABfIDyA+FQpOGnMZLruFgpR4Pu4LZfmNoQBTUZTwUgFWjKjr6GNq/0Y6HVOP+p/+gPjcSoJSoDepAEtRBmvb/hEAadOOrmvcYMH0UFfeGLrIBHhh5XYuNK0gWHkZWOKOupyC3Hz2y9SYGoe1ub6L5Ib3ydBbYM7njrqcimwXW/Ui40WMtOD5AjpPrq7j60kfGP9jSs8+qnKKUhOwmTWqzcVGF8kYacF9cnUtJfZuMhregVlXgdl6VOVUZrt4r8UJZnvMffcVRQmfcQVYQog7hRD1Qoj1occFg967QwixWwixQwhx7virenz7aEsVJ2jbECVnjLuskuxUqmWmyiSoKIcIVn1EEI2E4hPGXZajYDYAPTWxk+iiq89P3Jq/4BAe7CfePK6yKnNcbNELCdTHzvE/+P4ebrW8hO7IhmkXHXU5FVkudslcgsIcM+Ownl1XR0rPLub1fwTzbzjq4Nps0ijPcrIhkA+eTuiuD2s9J0JNWx+vbmrgl5lvIaQOJ9xy1GVNz3Gxp91LML0iZoJrRVHCLxwtWPdJKeeEHq8ACCEqgauB6cB5wB+FEGPvzK0c0Lr2eWwiQNK8y8ZdVmmGk90y10ijqygKAF39fsrcK9jvnAU2x7jLKy7Ip0Gm0FcbOwHGw++s43pewl10LuTMGVdZldkutspCLB27Y2LC5c31XXg3P898sR3t1G+AyXLUZSXGW0hPctFoLYyJAKvHG+C+N3Zyt+MJY47Fk742rvIqsly83x0780H94vXtFJvbmNf6Asy9FpILj7qsytA4rHZHmXHsMdKCpyhKeE1UF8FLgMellF4p5T5gN7BogvZ1zKtu62V+63N02XIR+eO/s16SkcAemUNcTzUEA2GooaLEvlUbtzBDq0IcZdeoQ03LcrJDz8fUEhuTzW5v7Cbv45/iEB6c5/1o3OVNzXCwkyIEetRPuOsL6Pz0Px/xv5aHCWbONFpwxmlalpMtekFMBFj3vr6DhX3vMte/DnHad44qNf9gFdlOVvZlGy+ifLLpt7Y28crGeh5OeRhhssKp3xpXedNzjNTue0xToL8duveHo5qKosSYcARYXxVCbBRC/E0IMTA4KBeoHbROXWjZYYQQNwshVgshVre0xFY638ny2qvPc4K2HbHoi0eV1elQ8VYzrfZCTDIAndVhqKGixD73micByDrhs2EpL9Vho8ZchKu3KupvZPR6Azz7z99xuel9vCfe/kmCinGwmjX6U6YbL6I4yJBS8vOXNvLltrtJEW5Ml/5hXK1XA4z5oPLA3RDVqepf2dTAB8s/5F7b3yB/MSz60rjLrMh20Usc/Y78qD731W29fOM/G7gr6RXyu9bA+b+AxLxxlZnpspGSYGWdN1SOGoelKMelEQMsIcRbQojNQzwuAf4ElABzgAbgV2OtgJTyL1LKBVLKBenp6WPd/Ji3rb6dxTvvxW1OxXXKl8NWbiC5xHjSuitsZSpKrOru91HR9CL1cWWYM49+Iu9D9SWVYZE+aN8btjLDzeMP8vu/P8z/9P6GrrR5xJ11R9jKTs2bSg/xUXuRLaXknte2Ur76x5xpWo924b2QPTssZVdku4wWLIjaVpyPdrdy7xNv8ETcL7DGJcAVfwtLcDktNB9Ug31q1HYRbOr2cMPfV/FZ3uA6z79h9udhzjXjLlcIwfQcF+90hq5novR3X1GUiTVigCWlPEtKOWOIx/NSyiYpZVBKqQMP8kk3wHogf1AxeaFlyhj0egNsfvg2Zmt74LyfgzUhbGVbQxeRsnVn2MpUlFi16p1nmSZq0Bd8MazlmrKMFpxgU3R2kevzBfjjA7/n6w134HHkk3jT02G5wB5QkZPEFr0AXxQmupBS8n8vbGDGR7dxtXkp8pRvwoKbwlZ+RbaTrXpoLE8UXmS/trmBex5+gictd5JiDSCuexYSh+xoMmaJcRZyk+LYLguNmwu+3rCUGy57Wnq48oGPuLz7X/xAPgil58LFvwMhwlJ+ZbaLDc06MrkoKs+9oigTb7xZBLMHvbwMGLhV9QJwtRDCJoQoBkqBlePZ1/Gmxxvg2T98h8/6n6eh/HqcC64Ka/nZWTm0ShfeRpXoQjm+SSlJXPcA7SKJvFO/ENayU4pmEJSC7qr1YS03HPa1uPn3fd/i66130p9cRuL/e33cY28OVZnjYqteiKk5uibc7erz8/2/vchFa27kAtNK5Dk/Q3zqh2HdR2FqAj5LIp3WzKi6yPYFdO56YQtv/Ps3PG7+CcnOeLQbXoasmWHdT0W2ixW92YCEKLrB8OKG/Vx//+t8v/8evqo9ZbRaXf1oWG8sVOa48AV13InTVBdBRTlOmce5/S+FEHMACVQBXwaQUm4RQjwJbAUCwK1SyuA493XcqGpoYevDX+Na7yvU55xD7pX3hX0fxekJ7JXZVDTvwB720hUldqxd9SELAmvZVP7fpFjC+20oy82gSmaRsD96LrKklLy8bBXpb93GF8UWmvPPIeP6h8PaQj6gItvF07IQU+B1Y8Ld1JKw72Os3t7awKqn7+N7gX9isZqRn/kXovLisO/HpAnKs5zs7i5iQZQEWDub3Pz08aVc13of51jXoOefiHbVv8AR/u75ldlOnt2eBTaMLpL5C8O+j7Fo7fHyf69so3n9azxv/wupdMGn7oQlt4Wt5WrA9FAmwVpbCdOrXjda8Cbg+6UoSvQaV4AlpbzuCO/9DPjZeMo/3vR5/bz33F+p3HofF4gmqsv/i8Kr7glLYotDTUlL4CM9h1kd0dd1R1EmU+/S39KPjbILvx72skszHbwr8zmhPTpaivc0drDs3z/nsq5/YtGg41O/JmPJTWG/wByQGGehzVEGXow5gSIYYO3v7OefzzzPeVW/5LvaHnpyFmO76kFIKpiwfVZku1jTksf81lUIf/+4Jm4ej64+P799cyv6qr9xv/k/OCx+OOt/0RZ/ZUL+v4Bx7L+TaQStLkwRHIcVCOo8+nEN/35jGV8L/osLrSuQKeWIzzwz7qkIhlOc5sBu0dgUKGD6QAtehANMRVEm13hbsJQwaG7rYONrD5G/6xHOZx/11iLaL36KwpnhSRc9lLzkeKpFDnbfu9DfAXHJI2+kKMeY7Tt3sLj3bXbkXcFMV/jv4tstJprtU0jyrDbmgorQBXZ7r4/XnnuURTvv4Quinv3pS8i6+n7i0qZM+L7t2dMJVJkwN26C6eOfx2+suj1+Hn9zOUmr7uNb4l08tmT8F/wZx5yrJiywHFCZ7WTZ6nyENZSqPnf+hO7vUEFd8p9VNSx7/Qm+HniYUnM9/oJTMX36XkgPXzKXoVRkuwBBm6OMjIb1E7qv4Szf08Y9L67m1NbHedH8EmabBid/D7HkaxP6XTRpgmlZLpa5s7gajJsLKsBSlOOKCrAipKu7h83LnoOtLzDDvYyzRC81lmKqTvglRWf8F5gm9tSYNEGPoxj6gdbd6o+/clyqff23lKFTdOE3J2wf3tRytEbdmNh7gu6YD6fHG+CVl5+jYMN9fF5sptWWS+cF/yRn9sUTHlwMKMtLY/feHEr3b2QyZ5vv9wV54r11mD78NV+Qb6CZoG/2f+E894cQlzQpdajIdvEXOSjRxSQFWEFd8tLG/Sx97Rmu7nuEq7XteJOK4ILHsJSfPynnviAlngSriZ3mMjIan4KAD8zWCd8vwOqqdv7w+kbKax7jb5aXSTK7kdM/gzj7LkjKH7mAMKjMcfHSBjfSnohQ47AU5bijAqxJogd19u3cQOOGNzHXLKOydyVLRD9u4tmXdirpp36JglmfmrSLHgDSSo3Zytp2qQAryvgCOu5+H253J/1drXjd7Xh72gn0dhDo6yTo7UX39kGgHy3oQQt4MAU9mIMeTLoXZBApJRqgCRBIhBDowoxfs+LX7GC2o1ni0ewJiLgUzM40LM407K50EpIzSMvMwx4XH+mPYsLUN7WwqPU5dqScTkVO2YTtx5YzAxrBu38TtkkKsLyBIK+//gqpq+7lStbTbU6m5YQfk37mrWC2TUodBlRmu9gii5jSMDkBli+g88xHW+ha+nuuCT5PvPDRVX4FyRf8EMsEdgccyrRsF3UyHa8pAdskjMPSdclLmxp45/XnudL9T+4zbcUTn4E845fY5t84aQEOgBYag7bSV8TJQZ+R7CF33oTuc21NB394fSNFVU/wK8uLpFi6CZacBWd+DzHJrYfTc1z8++MavLmV2Bs2Tuq+FUWJPBVgTRCp61Tv3sL+DW9irl5GUc9aSuigBGgRqexNPwvH3M9QvOhCZlkm94JngCO7BF+NCXPLzrDMOK0Mz+MP0tLeSWdbA33tjfg6G/G7m6G3Ba2vFau3jThfB3GBLuL1Hpz0kkQvqUKOWLYPM15s+ITx8Gs2pNAwwiqQUiClkYnGJANYpTf08GHDiw3/sGW3kkSHOZ1eWyb+hGxIzMWWWoAzo5jU3Cm40vImvLV1omx86Y+cL3rxnf2NCd1PVlEl3jUWuqo2kLFg2GGrYeEP6ryz9G3iP/wFF+urcGtO9s/7LjnnfC1ig+wrc1z8XS/k8r4PjAl3JyChAhhB5XPLt+J+734+63+BRNFHe9F5OC66i+QJ7g43HIfNTH6Kgxp9CqUTGGDpuuTVzY288foLXN79L35j2oQ3Pg399J9jX3BjxLqmVmS7eG1DLv8DsH/thAVYG2o7uf/NzeTseZK7Lc+TbukkWHw6nPl9TPmLRtp8QlQOzAXmqKR41z8nrItwny/Avz+u4cUN+/nJJTOYk58U9n0cyzz9vbg7WujtbAndzGzF39OO7ulG+nrB14vm60Hz92IK9GEO9mEN9mHV+7HoPkwEMMuA8ZMgZmn8tApjcvmA1JAIgmjoQjN+YiKICZ+w4dXi8Gt2fKY4AqY4gqZ4pCUeaU+CuCS0hBTMCSnYnGnYE9OIT0zDmZyOLc41uTfklTGLzSujKCSlpHbvDurXv4FW/QGF3WspopUioI0kalzzqS06mdy555JVVEl6FHwxpqQnUSMzyWnYzrHbTjGx/EGd1rY2Opqq6Wmpxdteh961H1NPIzZPE/G+NpzBDpJlN/min6E6p/Rjo0tLotecjDc+jS5bCZ22RAj9gTXHJ2FOSMbmTMXuTCbOlUqCIxGTNQ4scVg1E+O5Lx3w++hub6ans5n+zha87mZ8Xa0EuhrQ3PXY+xtJ6q8mrWcNjuZ+GDQ3dUBqtGmpdFkz6Y/PRnfmYk7OJyGjmKTsYpKzixH2pKj7R9Dl7mNGzSPsi59BceUpE7qv8pxktsl8cvavn7B9+IM6b733HvYPf8m5wY/oEQlUz7qNwgu+gdPumrD9jkZuUhxVltBYr8aNMPVTYS3f4w/y3Eeb6Xv/91wReAmX6Kc1/2zkBd8nJWduWPd1NGbnJ7FmVwFTG95BhLmbnK5LXt/SyGuvv8SlXf/it6YNeONS0E/7KbaFXwRrZP+yT89J5NGPkwgmp2KqXwth7iixqa6L+9/cTNrup/ip5XmyLG0EC5YYgVXRkvDubIymZbnQBKzXplOs+6F+DRSdHLbyu/r9/Gt5Fa8v+5jP+57iPtMOfv7E9/jDbddgNR+ft0ylrtPV1U5XSz3u1v14OhsIdDUie5rR+lqxeDuxBbqIC3Tj0Ltxyh7ihA87MNxtH6+00CfseLDj0eLwavH4THH0WZIJanakZkbXLEjNAiYzMvRcamakFCCDCBlESB2kjpBBpB5EBv1oAQ/mYB8WvR9roJ94XxdW6SFO78dBH3HCN+yx+qSZbuGgV3PSb3bhMScSsCYStCdBXLLRK8WRgtWZit2ZSkJSOo6kdBKcSWimyeysPXq6LvEFAvi9/fh9Xvw+LwGfB7/PQ8DnwWtykJM/heSEyWuJHw8VYI1DY30VVatfg73vk9e1mgKaKAA6cFHtnEt9wclkzzmH7JJZpGrR9wevOD2BPTKH7NZdI698HJJS0tbZRXPdbrob9uJt3YfsrMXS20i8t5mkQCtpsp1s0U/2Idu6iafDlEavNY0Oez7t8emYnOlYnJnYkjKJT87ClZZNXFIWcdYEInN/2WC2WEnJzCMlM++I60kpaWtvpbVuL93NVXhaq5GdtZh7G3B4Gkjt2EBm+ztYag6ekaEPO24tkT5zIl5rEn5rMgFbMro9Cc3uxGxLwByXgMkaj7DGo1nj0UxWzCYNzWzGJDSjnyMaQQSBoE4g4CPo9xMM+ND9PoIBP8GgHz3gQw8YPwl4jLvGAQ/S148MeBGBfkTAg623njmimZpTfzGBn6yhICWej5hKRecy0INhzdrmC+i8+d57WD76NecGPsAj7Oyt+ArFn/42jvjoSFwjhEBmzUJvFGh1q8MWYHn8QZ7+YAO+Zb/ns8FXcAgPrQXnIS/4HmnZs8Oyj3BYWJTMe5umcrX1ZWjYEJbu2LoueXNbE2+++iwXdz3Kb02b8NkT0U+9E9uiL4HNEYaaj9+i4mRA0OScTk79mrCVu7m+iz++uZmMXY9zl+UlMi3tBPNOgE89jKn41LDtZzzirCampDt4t3cKlyGg+qOwBFhtPV4eWraP95cv5wb9GZ4zLUOzgJA6P+i+i1+9VM4dl0am1W6i6EGdtvYWOhqq6GmuCt3IrMfU14zN00K8vx1XoIMU2UmS8JN0yPZBKegUibg1F31mF932HNqslQTtyci4JLT4FMwJqVidKcQlphPvSiXBlUxcQiI2m41I9DEKBHXa3W56Olvo62rF092Kz91GsLcNva8d0d+B5u3C4uvE5u/G6WkgoW8nTukmQXiPWLZHWugXdrzY8Ao7Ps2GT7MT0OzomtUIDoWGFKaDHggTUtMwusQMBIz6gedIiZBBYzlGMGmWfky6H5MMPXQ/ZunHHGr5s+DHLANY8WMhgF3ow04d9LfAeWRceR8XzcoJ/wc+AVSANQZdHW3s+fhFfLuWkt2+ikJZRxbQTQJ7E+bSkH8DWXPOJq9sHskTlPo2nIrTElgtsznLvR6CgZjt6nW0pJS0d/fSXLuT7obdeFv2ITtrsPXU4fI2kBZoIkN0kjZoGz8mOkQK3dY0ehJK6YzPRLiysSTnEp+aT2JmIUkZBTjtDpwRO7KJIYQgNTWd1NR04IQh1+nu81C1v4aOhn30tVQT7KzB0tOA2duB1ddJXG87Se4qEnHjEv2TWn+fNOMRVnxY8QkbK9IuZ/Hiic9qp2mCtqQZ2LrfgNadkFEx7jJ9AZ03332LuOW/5vzgCrzCRm3FFyn49HeZkpA2cgGTrCg3l20NRVTs+wDt9O+Mq6x+X5CnP1hHcNnvuUJ/lTjho73oAhIu+D5pmdPDVOPwmV+YzO/0acaL6g/HFWAFdckrG/fz4ZvPcKn7Ue7VtuGJT0U/+SdYF/0X2KLrr05JuoOUBCtrmUZOy/vgbgJn5lGXt6a6gwff2kjB3se4y/IKaZYuAvknwunfwTTl9KhrKZ+e42LlvnZkZiWi+sNxldXY5eHP7+/h45XLuZln+KZpOVgtaAtvgZO+Bp3V5P/tfKav+RGPZf+Zz51QGKajmFhSSrp7+miq2Un3/p30t9Uguuow9zYS52kiyd9Mmt5KuvAe1MqkS0GncNFlSqbXkkJ9QjE18WmQkIE5MRNbUjYJKTkkpuWQlJpFqtlMasSOcuzMJo2UpERSkhKBqWPa1tPfR3dHq9ErpasVb08bAXc7wb42hLcHAn1o/n5EoB9TsB9ToB+L7iE+6EYL+NGkjkYQTQ50ZvzkuYaORKBjdH3UhXbQc0noEVoeEBYCwoKuWfCJOHTNeqDFTzdZjdY+k82Y6NtkRZqsCLMVYbIizDbjucWGZrYxI6mEoqKUifnAJ8DxdUV9FOr3bqFm+TM4q9+i3LuJeSJIr7SzJ34WH+d+loxZZ1NYeQJzzLH3UaYmWKk352OSAeisjopJQCdCR4+H2urddNRsxdu0E1PHXhy91WT568ilmVShH1jXj4kWLYMuWzb1yadQl1iANa0IZ9YUUnNLcaTlkaGZyIjg8UQzV7wd19QymHrkpBGBoE5Xv4feXjd9PW76+3oIeHqRvh6krx896Ceo6+h6EKkbd8ZAYkLHrIFmtmIyW9HMltBzC2azFZPFeFgsVkzWeEy2OOxxCdjjErCaDu5KOZn3wMzFJ8GGX+Pf8wGWcQRY3kCQt95+HdfHv+ZCfRV9Io6a6bdQeOE3KYzCwGrA4ikpfPRxBRW1bx31pKu93gBPv7cGbfnvuVx/HZsI0D7lIhLO/z5pGdMmoNbhMS3Lhc+eSoOtmOzdb8HJt425DH9Q54V19ax6+0k+2/sYd2u76I9LJ3ja/xljrCLcFXA4QggWFaXwVE0pFwHsfRdmXz2mMqSUrNjbzl/fWs+0msf5ueVVki1uAkWnw+nfxhzhroBHsqg4hefX76erdAFJO/5zVJkUq1p7eeC9PWxa+xFf0Z7lh6aPjQRFi26FE//7k4DVlY1++ve4eOn/8pcX7+BR+X9cs7go/Ad1FNweP/XNrbTX7qC/aTd62x6s3dW4+utI9+8nm1YSB403DkpBu5ZChzmDDsdUWhJOgcQcLMn5ONILScoqIjkjnxSLldi53J489rh47HEFZORMblIf5WCxFxVMohWP3sXiXb8iF6jW8lmbew2Jsy+iZO7pzLJGJjFFOAkh8CZNhU6MFNIxHmC1uvup3r2VzqoNBBu3EN+5k0zvPvJlI7PEJ4kc+rHRYs2jJ6WSLUkXYUqfiiO7jNS8UpypueRopkm9+D4emU0aiY54Eh3xkHn0d7RjRfm0mdStTyNu21uknnjzmLfv9QZ4+80XSVvzOy6Ua+kRDqpmfo3C8/+HoijpCngkJ5em8U8xny/pr8Dut6DyklFv29bj5bl3PiRh7QNcKd/BKoK0T72UuPO/R1pa6QTWOjxMmuCsikxe3jaH/6p+AdHXDvGjuyz0BoI8vbqWTe88xtWeJ7lc20t/Qjb66fcSN+86sAzXmSZ6nFmRwXe2ZONPTsey7cVRB1hSSt7f1crDb61lzv7H+I35dZyWPoJTz4HTvo05BjLfnl2RyQ+e28wH+hw+7f8H7F0KZeeMatvtjd388d09NGx6ly+bX+Juyxp0SwLaCbfDibfCEDdUzKd9k4C7kZvX/JWnXnZzR/UP+f6l83DYJvZST0pJq9tLfUMdHaEgSnTsw95TTbKnnlzZyDTRddA2XcJJqyWX9pQ5NCcWYU4vwZFVSmreVFxpuaSbLMOOi1KUWKACrCPInn8hH2sa+Ysvp7C4gthocB+buLwZBDo1TPVrEdMuiHR1RsUbCLKnpo7m7cvx1m/C1r6D9P69FMs65g/qe9xsyqTdWcKu5NOwpJeRmF9BemElcUm5FERZVxLl2LawOJWX5Swuq/sAfH2jbnFo7/Gy9JXHyN36IBezmW7NRdWs/6Hw/Ntw2BMnuNbhE281Yy1eQkeNi8T1j6ONIsCq6+jj5ddfJW/rg9wgViCFia6yz2A/77ukxdjNoPNnZnPf+oV80fYsbHwSFt9yxPW7+vw8sXwnbR/9kyv9z/N5rYE+Zz7yzN8RN/tzk5pufbzOnZ7F9581sdZ5Bifseg562yBh+M5a/qDOyxsbePm9ZZzc+h/+aH6fOLOXYPlFcNq3ME3yXHLjkeGyMzc/iT/X27nInoTY8NiIAdbamg7+9M5O5M7XudXyInOtO9HtyXDCd9BOuOXIwbkQmC+8Bz0hlSve/wXzt1zLj3d8gbJTr+TyBQWkOY7+xnBQl+xv76Gxfh+d9TvxN+9G66wivreWNF8deTQx55Bu322mNLoS8mh1nkFbajH2jKkk55fjyi4lMS6J2PkLpihjJ6QcOQ30ZFmwYIFcvXp1pKtxXPnP6lpmvHABBYXFJPzXC5GuzmF6vAF21DTStGMlgdo1uNo3UeTbQZFoPLBOu5ZMW1wJ3pRybDkzSC2ZTXLBTESEs6cpymD3PPAg32r8Jv5L/4JlzlVHXLemuYO1Lz9IZdU/KRO1dJhS6Z33ZfLOujVqEhiM1RtbGtn52Le51fwC4taPYYjU6VJK1uxrYd3bT1JZ+xhLtM30awl4Zl9P8hlfB9eh6WRig8cf5NRfvssjfI/ShH7ErauGbH2qbuvlP0tXE7fxn1zFG6SJbtzJ03GccRti+mdidpzs/3tkDQ271/Ms30CcfBucdedh63T2+XhiZQ3rPnyVyzzPcbZpjTGwfuaVmJb8N2RWTnq9w+HJ1bV8+6mNLJ31FkW7HoZbVxpzUA7iC+i8urmBxz/YQknjK9xoeYMS6tFd+WhL/hvmXjv2brV7l+J57nbs3Xup0dN5Qy6kPnkRCfmzyCuYQoojjpQEI5mQALz+ID3uTnxdjfi7mwh01KN11RDfW0uidz8ZwSZyaMEqPkliFMBEqzkLd3w+gcRCzGklOLJLSc0vx5o2JWLTAyjKZBJCrJFSLjhsuQqwjm/7WntZ/ptruMK+GusdVRH9B+4P6uysb6N622r6q1YR37qBYu8OSkUdplD/7DZTOq2J09Gz55E09QQySxegOaJ37ImiDFi2s5nsR04lzZVA4u0rjEG9gwR1yZr1a2l+768s7HyFTNHJftsUtCVfI+uka2Kq1WIoui65+r4X+av7FuxZZVhvfPFAUobm7n6Wf/wRPauf4FOeN8gSHXRb0uCEW3CdfDPEUGvdcP61oppXXniCx6w/My6YL/otmMx09fl5f/Medq94kRktr3CGth6z0HEXnIXzjNuMzHMx3uK+dX83n75/GY+k/I3Ffe8iPvcElJ6FNxBk+e5W3v94JQm7X+JS8R4lWgN+axLmRV9EnPAlcGZFuvrjEgjqnHPf+yT423ie29FSiuG6Z5FxyWzZ382La6uoW/8Wp3rf52LzcuLwEsycZQSV0y877O/EmAQDsPU5elY+gr1uGWZpdJXXpaCHOHqxYyaAlQB2fNhCczcN1i1cdNqy6YvPQyYVYE2fQmJuOcm5ZZiS8mM26FeUcFEBljIkKSXfvesufiF/DTe9AQVDZ4ebiP3Wtvawe/s6uvd8jK1pAzl9W5lG9YE/8m7NRVvidGT2PJJKF5M0dREixv/ZKscvKSV333cvd3T/L60lnyH10p/jtyazc9tGate8THrdmyyQmwmiUZ10Iklnfo2UmefG/MX1YNsauvnTn37Dr7X76DUnsy9+Fv0eD3ne3eSLFnQEjeknk3LqzdgrLzimLt4CQZ1b/72Wyh3383Xzs7SbM6gSeVi87UwTtVhEkF5LKsz5HAkn3AhpY8scFu0e/nAfv35xFc/E/S9TZTVV5ik0+uPJp4Fc0QZAb9YiEhZdDzMuj9rEHUdjY10n1zz4MSfL1fxOuw+fsLKVYrSgl3JRi0N4CJrj0WZegVhwI+TMDf/33uuGxs3oTVvpaavH19OOv99NcGAOJ3McZkc6lsQMbImZONJyEclFUZeZUlGijQqwlGF981/vcfeeS9FO/CrauT+dkH20uT3s3LGF9l0r0BrWkd69hWlyLw7hAaBfxNGcMA1/1lySpp5AatkJxh/3Y+jiUlFq2/t4/Y+388XA44e912jJo7P0corP+iK2lGM3+9POJjfPPPcUS5oeIV/fj9lsxpNYgmP6OWTOvwSRmBvpKk4YX0DnXyuqaV39LCf2vEGuaMOUkIItfy6Zcy9EKzzxmAoqD7V0RzP/+XAb85qeZL7cRorZgy2tkJTKT2EpPwuSiyJdxQmzu7mHB97bQ0/1Oj7rf5EirQlHnJ3EwpnYp50LxaceU0GlohwvVIClDOv1LY1oj3+e0+KrsH5rG5jHlyGxx+Nn564dNO/4GH3/OlI6N1Ma3E2qcAPgw0xj3FT60+eQULyQzIqTsGSUh3UCVkWJVm6Pn/feewdL7TJcoo+EjGKKF5yNM/vwMUmKoiiKokSv4QKscd0qE0I8AQxcFSQBnVLKOUKIImAbsCP03gop5ZHTJikRc0Z5Bt+wX8zZ3h8TeP8+zGd+d9Tbuvt97N27k/bdqwjUrSOxYzNT/LuYJ7oBCKLRaC2kNfMMugsWkFlxEvF5symI8fEkinK0nHYLF517LnBupKuiKIqiKMoEGFeAJaU8kApLCPErYPBEB3uklHPGU74yOaxmjQsuvornn3ydT79/N90+P66TbwGHMQuFlJKWjnaaavbQ2bCHQON2TG07Se7bQ2GwltmiDzCCqQZLAc2Zp9CeN4/M8hNILJ5H7lFMKqooiqIoiqIosSgsXQSFEAKoAc6UUu4KtWC9JKWcMZZyVBfByPrX+9tIfes2LtBWANCJiwAaVunDFQqiBnQKFy32YjzJpVizKkmZuoi0qfMQKphSFEVRFEVRjgMT0kVwkFOAJinlrkHLioUQ64Bu4AdSyg+GqdjNwM0ABQXH7sDuWHDdqRXUzniWJ5d/gKv2bRz9+7FooFntaK5s4tIKSM6aQmrRDJISM0mKdIUVRVEURVEUJcqM2IIlhHgLGCo39vellM+H1vkTsFtK+avQaxvgkFK2CSHmA88B06WU3Ufal2rBUhRFURRFURQlFhx1C5aU8qwRCjYDnwHmD9rGC3hDz9cIIfYAZYCKnhRFURRFURRFOWZpYSjjLGC7lLJuYIEQIl0IYQo9nwKUAnvDsC9FURRFURRFUZSoFY4xWFcDjx2y7FTgLiGEH9CBW6SU7WHYl6IoiqIoiqIoStSKqomGhRAtQHWk63GINKA10pVQJo0638cPda6PH+pcH1/U+T5+qHN9fInG810opUw/dGFUBVjRSAixeqjBa8qxSZ3v44c618cPda6PL+p8Hz/UuT6+xNL5DscYLEVRFEVRFEVRFAUVYCmKoiiKoiiKooSNCrBG9pdIV0CZVOp8Hz/UuT5+qHN9fFHn+/ihzvXxJWbOtxqDpSiKoiiKoiiKEiaqBUtRFEVRFEVRFCVMVIClKIqiKIqiKIoSJirAOgIhxHlCiB1CiN1CiO9Guj5K+Agh8oUQ7wohtgohtgghvh5aniKEeFMIsSv0MznSdVXCQwhhEkKsE0K8FHpdLIT4OPT9fkIIYY10HZXwEEIkCSGeEkJsF0JsE0KcqL7bxyYhxO2hv+GbhRCPCSHs6rt97BBC/E0I0SyE2Dxo2ZDfZWH4Xei8bxRCzItczZWxGuZc3xP6O75RCPGsECJp0Ht3hM71DiHEuRGp9BGoAGsYQggT8AfgfKAS+JwQojKytVLCKAB8Q0pZCSwGbg2d3+8Cb0spS4G3Q6+VY8PXgW2DXv8CuE9KORXoAP4rIrVSJsJvgdeklNOA2RjnXX23jzFCiFzga8ACKeUMwARcjfpuH0seBs47ZNlw3+XzgdLQ42bgT5NURyU8Hubwc/0mMENKOQvYCdwBELpeuxqYHtrmj6Hr9qihAqzhLQJ2Syn3Sil9wOPAJRGukxImUsoGKeXa0HM3xgVYLsY5/kdotX8Al0akgkpYCSHygAuBv4ZeC+BM4KnQKupcHyOEEInAqcBDAFJKn5SyE/XdPlaZgTghhBmIBxpQ3+1jhpTyfaD9kMXDfZcvAf4pDSuAJCFE9qRUVBm3oc61lPINKWUg9HIFkBd6fgnwuJTSK6XcB+zGuG6PGirAGl4uUDvodV1omXKMEUIUAXOBj4FMKWVD6K1GIDNS9VLC6jfAtwE99DoV6Bz0h1t9v48dxUAL8PdQl9C/CiESUN/tY46Ush64F6jBCKy6gDWo7/axbrjvsrpuO7bdBLwaeh7151oFWMpxTQjhAJ4GbpNSdg9+TxpzGKh5DGKcEOIioFlKuSbSdVEmhRmYB/xJSjkX6OWQ7oDqu31sCI29uQQjqM4BEji8i5FyDFPf5eODEOL7GEM7Ho10XUZLBVjDqwfyB73OCy1TjhFCCAtGcPWolPKZ0OKmgS4FoZ/NkaqfEjZLgIuFEFUYXX3PxBijkxTqVgTq+30sqQPqpJQfh14/hRFwqe/2secsYJ+UskVK6Qeewfi+q+/2sW2477K6bjsGCSFuAC4CrpGfTN4b9edaBVjDWwWUhrIRWTEG070Q4TopYRIag/MQsE1K+etBb70AfCH0/AvA85NdNyW8pJR3SCnzpJRFGN/jd6SU1wDvAleEVlPn+hghpWwEaoUQ5aFFnwK2or7bx6IaYLEQIj70N33gXKvv9rFtuO/yC8D1oWyCi4GuQV0JlRgkhDgPo3v/xVLKvkFvvQBcLYSwCSGKMRKbrIxEHYcjPgkGlUMJIS7AGLthAv4mpfxZZGukhIsQ4mTgA2ATn4zL+R7GOKwngQKgGrhSSnnoAFslRgkhTge+KaW8SAgxBaNFKwVYB1wrpfRGsHpKmAgh5mAkNLECe4EbMW4oqu/2MUYI8RPgKozuQ+uAL2KMxVDf7WOAEOIx4HQgDWgCfgw8xxDf5VCQfT9GN9E+4EYp5eoIVFs5CsOc6zsAG9AWWm2FlPKW0PrfxxiXFcAY5vHqoWVGkgqwFEVRFEVRFEVRwkR1EVQURVEURVEURQkTFWApiqIoiqIoiqKEiQqwFEVRFEVRFEVRwkQFWIqiKIqiKIqiKGGiAixFURRFURRFUZQwUQGWoiiKoiiKoihKmKgAS1EURVEURVEUJUxUgKUoiqIoiqIoihImKsBSFEVRFEVRFEUJExVgKYqiKIqiKIqihIkKsBRFURRFURRFUcJEBViKoiiKoiiKoihhogIsRVGUKCGEKBJCSCGEOdJ1OdYJIW4QQiyLdD2ijRDiFCHEjkjXQ1EUJZapAEtRFEWJaUKIO4UQfiFEz6DHtyNdr1gkpfxASlke7nKFEGcKIdYKIbqFEHuFEDeHex+KoijRQgVYiqIoYaJaniLqCSmlY9Djl5GuUDjF8u+WEMICPAv8GUgErgJ+LYSYHdGKKYqiTBAVYCmKooyDEKJKCPEdIcRGoFcIYRZCLBZCfCSE6BRCbBBCnD5o/aVCiJ8LIVaG7uY/L4RIGabsG4UQ24QQ7tBd/y8f8v4lQoj1oXL2CCHOCy1PFEI8JIRoEELUCyH+VwhhGuE4SoQQ7wgh2oQQrUKIR4UQSYPeaxdCzAu9zhFCtAwclxDiYiHEltDxLhVCVBzy+XxTCLFRCNElhHhCCGEf+yc9dkKI74Y+F7cQYqsQ4rJh1hNCiPuEEM2hz3KTEGJG6D2bEOJeIUSNEKJJCPGAECJulPt/OLT+m6E6vCeEKBz0/m+FELWhfa4RQpwy6L07hRBPCSEeEUJ0AzcIIRYJIZaHPucGIcT9QgjroG2kEOIrQohdof39NHTuPgrt48nB6w9T59OFEHWjOb4xSAFcwL+kYRWwDagM834URVGiggqwFEVRxu9zwIVAEpAJvAz8L8aF5TeBp4UQ6YPWvx64CcgGAsDvhim3GbgI4+L0RuC+QUHOIuCfwLdC+z0VqApt93Co3KnAXOAc4IsjHIMAfg7kABVAPnAngJRyD/Ad4BEhRDzwd+AfUsqlQogy4DHgNiAdeAV48ZAL+SuB84BiYBZww5AVEOLkUPAw3OPkEY7hUHuAUzBaTX4Sqn/2EOudg/H5lYXWvRJoC713d2j5HIzPMxf40RjqcA3wUyANWA88Oui9VaFyU4B/A/85JPi8BHgK4/w+CgSB20NlnQh8CvjKIfs7F5gPLAa+DfwFuBbjfM7A+F09aqFAebjz88ehtpFSNmH8jtwohDAJIU4ECgE1Bk5RlGOTlFI91EM91EM9jvKBEdTcNOj1dzDu1A9e53XgC6HnS4G7B71XCfgAE1AESMA8zL6eA74eev5n4L4h1skEvEDcoGWfA94d43FdCqw7ZNkLwCZgI2ALLfsh8OSgdTSgHjh90Odz7aD3fwk8EOZzcGfoM+wc9MgZYr31wCWh5zcAy0LPzwR2YgQl2qD1BdALlAxadiKwb5T1ehh4fNBrB0aQlD/M+h3A7EHH9P4I5d8GPDvotQSWDHq9BvjOoNe/An4zQpmnA3XhPD+hcj8NNGEE/gHgS+Heh3qoh3qoR7Q8VAuWoijK+NUOel4IfHbwnX3gZIzWqqHWrwYsGK0SBxFCnC+EWBHqntcJXDBovXyMFppDFYbKaxi0/z8DGUc6ACFEphDi8VCXwm7gkSHq9CBGK8jvpZTe0LKc0DEAIKXUQ8eXO2i7xkHP+zACjXB7UkqZNOixXwhxvTC6UA58DjMY4nOWUr4D3A/8AWgWQvxFCOHCaJGLB9YMKuO10PLROnCupZQ9QDvGZ0ao6+S2UNfJTozWs7Shtg2tXyaEeEkI0Rg6R/83xPE0DXreP8Trifjsj0gIMQ14HKPl1gpMB74thLhwsuuiKIoyGVSApSiKMn5y0PNajBaswRf7CVLKuwetkz/oeQHgB1oHFyiEsAFPA/cCmVLKJIzud2LQfkqGqEstRgtW2qD9u6SU00c4hv8LHcdMKaULo1vZwL4QQjiA3wAPAXeKT8aN7ccI6gbWE6Hjqx9hf4cRRorwniM8Thm5lANlFWIEhF8FUkOf3+bBxzSYlPJ3Usr5GC2KZRhdL1sxgpLpgz7LRCnlWIKUA+c69BmmAPtDx/JtjO6IyaH6dR1Sv8G/VwB/ArYDpaFz9L3hjmeiCGOs3XDn54FhNpsB7JRSvi6l1KWUOzC60Z4/eTVXFEWZPCrAUhRFCa9HgE8LIc4NjTexhxIH5A1a51ohRGVoPNNdwFNSyuAh5VgBG9ACBIQQ52OMFRrwEMaYlk8JITQhRK4QYpqUsgF4A/iVEMIVeq9ECHHaCPV2Aj1AlxAiFyPAGOy3wGop5RcxLo4HLqafBC4M1cMCfAMjwPtopA/qUNJIEe44wuODMRSXgBGgtICRMATjQv8wQoiFQogTQvXvBTyAHmqNexBj7FtGaN1cIcS5g7aVYlASkyFcEBpbZsUYi7VCSlmL8XkHQvUzCyF+hDHW7kicQDfQE2oV+n8jrB92UsrpRzg/twyz2TqgVBip2oUQogRjbOHGyau5oijK5FEBlqIoShiFLp4vwWhdaMFoUfoWB/+9/RfG+JxGwA58bYhy3KHlT2KMzfk8xhiogfdXEkp8gdHy8R6ftCQNdMXaGtr2KQ7uojiUnwDzQmW9DDwz8IYQ4hKMJBUDF/T/A8wTQlwTao24Fvg9RovPp4FPSyl9I+xvQkkpt2KMOVqO0U1uJvDhMKu7MAKpDozujm3APaH3vgPsBlaEuuW9BZQDCCHyATfGuLTh/Bv4MUbXwPkYnxUY4/Jewxj7VY0R1NUOVcAg38T4PXCH6vvECOtHBWkkSbkJI5lLN8bv6tPAXyNZL0VRlIkipDy0B4KiKIoyUYQQS4FHpJTq4jLGCSGuxeg+eMcw7z+MkTDiB5NaMUVRFCWiYnbiQkVRFEWJJCnlI5Gug6IoihJ9VBdBRVGU44QwJr0dS3IC5RgkhPjeML8Hr0a6boqiKMcC1UVQURRFURRFURQlTFQLlqIoiqIoiqIoSphE1RistLQ0WVRUFOlqKIqiKIqiKIqiHNGaNWtapZSHTT4fVQFWUVERq1evjnQ1FEVRFEVRFEVRjkgIUT3UctVFUFEURVEURVEUJUxUgKUoiqIoiqIoihImKsBSFEUZgi+gR7oKiqIoiqLEoKgagzUUv99PXV0dHo8n0lVRYozdbicvLw+LxRLpqigx5oX19Wx4+hdceOm1zJu/KNLVURRFURQlhkR9gFVXV4fT6aSoqAghRKSro8QIKSVtbW3U1dVRXFwc6eooMebj9Zv4mekf8OI/YE4rmFSQriiKoijK6ER9F0GPx0NqaqoKroYgpaS2vY+29jZQE0YfRAhBamqqavlUjoq1ed2B5/7aNRGsiaIoiqIosSbqAyxABVfD8AZ0ZF8HqZ4aAu7mSFcn6qjfG+Vo5ffvOPC8eeNbEayJoiiKoiixJiYCLGVo3oCOS/QaL/raIlsZRTlGBHVJZmA/zdYCtuv5yOqPIl0lRVEURVFiiAqwRkEIwTe+8Y0Dr++9917uvPPOyFUoxBcIsmnNSk646HoWfOoyKioqDtRr6dKlfPTR0V8YVldXM2/ePObMmcP06dN54IEHwlRrRYlu3f1+HPSDPZHdpmKcXTtG3khRFEVRFCUk6pNcRAObzcYzzzzDHXfcQVpaWtjKlVIipUTTji7O9QclX7z9Bzzy5/tYWFlE0FXIjppGwAiwHA4HJ5100lGVnZ2dzfLly7HZbPT09DBjxgwuvvhicnJyjqo8RYkV7X0+HKIfbOn0aNNI7Hwf+tohPiXSVVMURVEUJQaoFqxRMJvN3Hzzzdx3332HvdfS0sLll1/OwoULWbhwIR9++CEAd955J/fee++B9WbMmEFVVRVVVVWUl5dz/fXXM2PGDGpra/nWt77FjBkzmDlzJk888QRgBEinn346V1xxBdOmTeOaa65BHpLIQtd1mtvaScspQpcggh4qKyupqqrigQce4L777mPOnDl88MEHR6znddddx4knnkhpaSkPPvggAFarFZvNBoDX60XXh54T6He/+x2VlZXMmjWLq6++GoD29nYuvfRSZs2axeLFi9m4ceOBfX3hC1/glFNOobCwkGeeeYZvf/vbzJw5k/POOw+/3w/AXXfdxcKFC5kxYwY333zzkMddVFREZ2fngWWlpaU0NTWN4mwqypH1egNGC5bNiZY1HYBAw+YI10pRFEVRlFgRUy1YP3lxC1v3d4e1zMocFz/+9PQR17v11luZNWsW3/72tw9a/vWvf53bb7+dk08+mZqaGs4991y2bdt2xLJ27drFP/7xDxYvXszTTz/N+vXr2bBhA62trSxcuJBTTz0VgHXr1rFlyxZycnJYsmQJH374ISeffPKBcqQe4PYvXcO8k87glMXzOe+s07npq9+iqKiIW265BYfDwTe/+U0APv/5zw9bz40bN7JixQp6e3uZO3cuF154ITk5OdTW1nLhhReye/du7rnnniFbr+6++2727duHzWY7EPD8+Mc/Zu7cuTz33HO88847XH/99axfvx6APXv28O6777J161ZOPPFEnn76aX75y19y2WWX8fLLL3PppZfy1a9+lR/96EcAXHfddbz00kt8+tOfPrBPTdO45JJLePbZZ7nxxhv5+OOPKSwsJDMzc8TzqCgj8QZ0UkU/0uokIX82bIeOfetJLzk10lVTFEVRFCUGqBasUXK5XFx//fX87ne/O2j5W2+9xVe/+lXmzJnDxRdfTHd3Nz09PUcsq7CwkMWLFwOwbNkyPve5z2EymcjMzOS0005j1apVACxatIi8vDw0TWPOnDlUVVUdXJAe4Ee338yKD97mtNNO4fGnn+e8884bcp9Hqucll1xCXFwcaWlpnHHGGaxcuRKA/Px8Nm7cyO7du/nHP/4xZAvRrFmzuOaaa3jkkUcwm80Hjum6664D4Mwzz6StrY3ubiMwPv/887FYLMycOZNgMHigvjNnzjxwfO+++y4nnHACM2fO5J133mHLli2H7feqq6460Nr3+OOPc9VVVx3xM1eU0fL4gzjpR9qc5OUX0S4deOo3RrpaiqIoiqLEiJhqwRpNS9NEuu2225g3bx433njjgWW6rrNixQrsdvtB65rN5oO61Q2ejykhIWFU+xvoogdgMpkIBAIHvS/0IABlpWVce/0NfP2aC0mffQ5tbYdnFByunnB4OvNDX+fk5DBjxgw++OADrrjiioPee/nll3n//fd58cUX+dnPfsamTZtGdUyapmGxWA7sS9M0AoEAHo+Hr3zlK6xevZr8/HzuvPPOIeeyOvHEE9m9ezctLS0899xz/OAHPzjifhVltLw+o4tgv91FSaaTjXoBU1qP3CqtKIqiKIoyQLVgjUFKSgpXXnklDz300IFl55xzDr///e8PvB7oCldUVMTatWsBWLt2Lfv27RuyzFNOOYUnnniCYDBIS0sL77//PosWLRpdhWSQl9/6AISGbrKza18NJpNGUlISTqcTt9s9Yj0Bnn/+eTweD21tbSxdupSFCxdSV1dHf38/AB0dHSxbtozy8vKDdq/rOrW1tZxxxhn84he/oKuri56eHk455RQeffRRwBhLlpaWhsvlGtUhDQRTaWlp9PT08NRTTw25nhCCyy67jP/5n/+hoqKC1NTUUZWvKCMJeHrQhESzu3DYzNRZi0nu2a0m81YURVEUZVTGHWAJIfKFEO8KIbYKIbYIIb4eWn6nEKJeCLE+9Lhg/NWNvG984xu0trYeeP273/2O1atXM2vWLCorKw+kM7/88stpb29n+vTp3H///ZSVlQ1Z3mWXXcasWbOYPXs2Z555Jr/85S/JysoaVV00GeRfT79M+cw5nHX22Vz3tR/y6EMPYDKZ+PSnP82zzz57IMnFcPUEo5vfGWecweLFi/nhD39ITk4O27Zt44QTTmD27NmcdtppfPOb32TmzJkAfPGLX2T16tUEg0GuvfZaZs6cydy5c/na175GUlISd955J2vWrGHWrFl897vf5R//+MeoP9+kpCS+9KUvMWPGDM4991wWLlx44L0HHnjgoHpfddVVPPLII6p7oBJWwX6jO6tmN24K9DmLsUkPuBsjWS1FURRFUWKEODRD25gLECIbyJZSrhVCOIE1wKXAlUCPlPLeI20/2IIFC+Tq1asPWrZt2zYqKirGVcdjVWN9NVmiHbJm0dLrJ7V7OySkoSXljbqMO++886BkGMca9fujjNVLby/log8uofPCP5O08Gr+9ejDXLfr6+jXv4g2RSW6UBRFURTFIIRYI6VccOjycbdgSSkbpJRrQ8/dwDYgd7zlKiMThIJjoWEzm/BgQff3R7ZSihLjpMdowbLEJQLgzDUC9M46NQ5LURRFUZSRhTXJhRCiCJgLfAwsAb4qhLgeWA18Q0rZMcQ2NwM3AxQUFISzOsc0XUoEOhKBEAKbRaMfC7aAd0zl3HnnnRNTQUWJUdJrZNc0xzkByCkowSMt9OzfgZpqWFEURVGUkYQtyYUQwgE8DdwmpewG/gSUAHOABuBXQ20npfyLlHKBlHJBenp6uKpzzJNSoiGRGFn4rCYNH1Y06Qc59KTAiqKMTPr7ALDYjGyfUzKc7JNZ0LorktVSFEVRFCVGhCXAEkJYMIKrR6WUzwBIKZuklEEppQ48CIwyNZ4yGro0ughKYZxCIQRBzWqEWwFfROumKLFM9xutwJrVmNIgNcFKnZZDnHvoTKCKoiiKoiiDhSOLoAAeArZJKX89aHn2oNUuAzaPd1/KJwZasBg8Z5U5NG/WGLsJKooySCA0jtFsBFhCCLriCkn27oegP4IVUxRFURQlFoRjDNYS4DpgkxBifWjZ94DPCSHmABKoAr4chn0pIboEDZ3BMbKw2MAPMuBBkBi5yilKDJP+0MTW5k8m5fYnT8HcH4TOGkgtiVDNFEVRFEWJBeHIIrhMSimklLOklHNCj1eklNdJKWeGll8spWwIR4Uj5bnnnkMIwfbt24ddp6qqihkzZoRtnzt27OD0009nzpw5VFRUcPPNNwPGJMGvvvLKQV0EASxmCwGpoQ9cIA7D4/GwaNEiZs+ezfTp0/nxj38ctjorSqwTgYEAy3ZgmTXDmMfO07gjElVSFEVRFCWGhC3JxbHuscce4+STT+axxx4b8v1AIDDufQSDwYNef+1rX+P2229n/fr1bNu2jf/+7/8GjADrtddePayLoM2s4cWCHKGLoM1m45133mHDhg2hsl5jxYoV466/ohwLxMD3xxJ3YFlinpGqvaNWpWpXFEVRFOXIVIA1Cj09PSxbtoyHHnqIxx9//MDypUuXcsopp3DxxRdTWVkJGIHWNddcQ0VFBVdccQV9fUZGsrfffpu5c+cyc+ZMbrrpJrxe4yKuqKiI73znO8ybN4///Oc/B+23oaGBvLxPJg2eOXMmPp+PH/3oRzz91H846ZzLePL5V+nt7eWmm27ijFOWcOK5V/Diy68B8PDDD3PJJZdw+umnU1payk9+8hPAGFPicDgA8Pv9+P1+xOCxXCH/+c9/mDFjBrNnz+bUU40JVj0eDzfeeCMzZ85k7ty5vPvuuwf2demll3L22WdTVFTE/fffz69//Wvmzp3L4sWLaW9vB+DBBx9k4cKFzJ49m8svv/zA5zPY4sWL2bJly4HXp59+OodOQK0oE0UEQy1Ypk9asPLy8uiQDtWCpSiKoijKiMI6D9aEe/W70LgpvGVmzYTz7z7iKs8//zznnXceZWVlpKamsmbNGubPnw/A2rVr2bx5M8XFxVRVVbFjxw4eeughlixZwk033cQf//hHvvrVr3LDDTfw9ttvU1ZWxvXXX8+f/vQnbrvtNgBSU1NZu3btYfu9/fbbOfPMMznppJM455xzuPHGG0lKSuKuu+7ioxUr+e0Pb8Vis/Ojn/2MM888k4ceeohd2zZx0UWf5pwrbgBg5cqVbN68mfj4eBYuXMiFF17IggULCAaDzJ8/n927d3PrrbdywgknHLb/u+66i9dff53c3Fw6OzsB+MMf/oAQgk2bNrF9+3bOOeccdu7cCcDmzZtZt24dHo+HqVOn8otf/IJ169Zx++23889//pPbbruNz3zmM3zpS18C4Ac/+AEPPfTQgZa5AVdddRVPPvkkP/nJT2hoaKChoYEFCw6bJFtRJoQIevFhwap9cv+pKDWBrTKLtI49EayZoiiKoiixQLVgjcJjjz3G1VdfDcDVV199UDfBRYsWUVxcfOB1fn4+S5YsAeDaa69l2bJl7Nixg+LiYsrKjHEcX/jCF3j//fcPbHPVVVcNud8bb7yRbdu28dnPfpalS5eyePHiAy1fxgxYEiEEb7zxBnfffTdz587lsis/h8fro2afcSF49tlnk5qaSlxcHJ/5zGdYtmwZACaTifXr11NXV3cgCDvUkiVLuOGGG3jwwQcPdF9ctmwZ1157LQDTpk2jsLDwQIB1xhln4HQ6SU9PJzExkU9/+tOA0fJWVVUFGEHYKaecwsyZM3n00UcPaqkacOWVV/LUU08B8OSTT3LFFVcMc2YUJfxMQQ9+YT1omd1iotmSh7O3OkK1UhRFURQlVsRWC9YILU0Tob29nXfeeYdNmzYZc00FgwghuOeeewBISEg4aP1Du9oN1fXuUIeWMVhOTg433XQTN910EzNmzDgQCElJaAyWhpSSp59+mvLychpa2sn2V0NyMR+v3TBifZKSkjjjjDN47bXXDkvQ8cADD/Dxxx/z8ssvM3/+fNasWXPE47DZPulSpWnagdeaph0Yo3bDDTfw3HPPMXv2bB5++GGWLl16WDm5ubmkpqayceNGnnjiCR544IEj7ldRwknTfQQOCbAAehxFJHctBV8fWOMnv2KKoiiKosQE1YI1gqeeeorrrruO6upqqqqqqK2tpbi4mA8++GDI9Wtqali+fDkA//73vzn55JMpLy+nqqqK3bt3A/Cvf/2L0047bcR9v/baa/j9xrw7jY2NtLW1kZubi9PppMftRoQCrHPPPZff//73xtxYFhvrNm9HhjKhvfnmm7S3t9Pf389zzz3HkiVLaGlpOdDlr7+/nzfffJNp06Ydtv89e/ZwwgkncNddd5Genk5tbS2nnHIKjz76KAA7d+6kpqaG8vLyUX+ebreb7Oxs/H7/gXKGctVVV/HLX/6Srq4uZs2aNeryFWW8zEEPfs122HKZYqRnl+2qm6CiKIqiKMNTAdYIHnvsMS677LKDll1++eXDZhMsLy/nD3/4AxUVFXR0dPD//t//w2638/e//53PfvazzJw5E03TuOWWW0bc9xtvvHEgycS5557LPffcQ1ZWFmeccQY7tm9n4Tmf5clnX+KHP/whfr+fWbNmcdqJC/nBL/90IFX7okWLuPzyy5k1axaXX345CxYsoKGhgTPOOINZs2axcOFCzj77bC666CIAfvSjH/HCCy8A8K1vfYuZM2cyY8YMTjrpJGbPns1XvvIVdF1n5syZXHXVVTz88MMHtVyN5Kc//SknnHACS5YsOSioe+GFF/jRj3504PUVV1zB448/zpVXXjnqshUlHEy6j6B2eAtWXFYpAJ21w0/VoCiKoiiKIqSUka7DAQsWLJCHZovbtm0bFRUVEapR9Gru9pDu3gaOTERizoHlvd4AsnUXdovGI68sZ/Xq1dx///0RrGlkqd8fZaze/8lZlNg6yf3uwX+Llm+r5sQnZlE955sUXvrDCNVOURRFUZRoIYRYI6U8LBObasGKUVJKYwos7eBTaDVr+LAggr7IVExRYpxFegmaDm+VLcrJoFEm42/ZFYFaKYqiKIoSK1SAFaOk1IHDk1aYNYEfCyYZ4IbrrzuuW68U5WiYpQ99iDFYmU47NWRj7dwbgVqFz96WHi786WO88q97jWw5iqIoiqKEVUwEWNHUjTFqhAIsxMGnUAiBbgqNHwklujheqd8bZayklFilD91kP+w9TRO02fJJ6q+NQM3C54nVtdzh+z0X7PkpnqW/inR1FEVRFOWYE/UBlt1up62tTV0sH2KgBWvIU2gOXRwGvJNWn2gjpaStrQ27/fALZUUZjj8oseFHmodO3OJxFePSO6G/Y3IrFka7q6o5UdsKgH/tvyNcG0VRFEU59kT9PFh5eXnU1dXR0tIS6apEla6ePjoDrRCvg7X5oPe6+310eJuhyYuwJ0aohpFnt9vJy8uLdDWUGOIJBLHhG3IMFoCWNhVawdu0C1vRokmu3fhJKQk2bMakSZbqczndvQ46ayCpINJVGzOPP8jnH1zBJfb1XH/RmYiM2E1ms7Guk6kZDuKtUf8veViBoE57n48MZ2zf1OrzBRAI4qymSFdFUZQYFvV/zS0WC8XFxZGuRtT5+UNPcEftzXDVo1Bx0UHvPb++ntzXPoOr7BRc1zwcmQoqSgzy+nXswk+PZeiLREduOWyHtppt5MRggNXa4yM3WA8afJxyMad3roO6VTEZYL26uYHe2o18wfY9+CPwrT2QkBbpao3ZCxv287XH1vJo6sMsmV0BZ90JWuxd3N/xzCb+s6aO1+evpDw/GxbdfFgSpmjX6w1w9q/fI6BLlp7TRHz3XjjzB3DIWGdFUZSRxNZfP+UTgX7j5xAXgsVpCezTs9Db1ISoijIWHr/RgsUQY7AAMgumEZSCvobYnAurrqOPErGfoCkOWXIGfmlCb9gU6WodlZX72rna9O4nC7a/HLnKjMMTq2qYL3aypPdN+Oh3sPutSFdpzDz+IC9s2M9UUUf5lt/Aa9+BfUsjXa0xW7qjhf1dHlJ7dhL/8lfgg3thzzuRrpaiKDFowgMsIcR5QogdQojdQojvTvT+jhsDCSzMcYe9VZSWwD6ZTVz3PpUlTFHGwBvQseMf8sYFQFFWCvUyDb01Nm9e1HX0Uywa8CdNYWpOOntkDp66DZGu1lHZUNvFiQn72W6ppFlLh11vRLpKYyalZENtFzenbsAnTQSFBTY/Helqjdnamg68AZ2bkgf9Lq1/LHIVOkor9rbhsJm5yLnzk4Xr1ThFRVHGbkIDLCGECfgDcD5QCXxOCFE5kfs8Xgj/QIB1+IWgy26hxZqLLeCGvrZJrpmixC6PL4ANH9pwXQRtZupNucS5qya3YmHS2OUhU3RiSs6jNMPBNlmA1rwl0tU6Kg2dfRT599KXUsF7/kpkzYqYu6HU7PbS4w0wy1LHdm0qax2nwd73Yu449rT0AnCGo5ZtegFNhRfDvtg7jl3NbsoyHZxh20U1WcgZn4WqD2LuOBRFibyJbsFaBOyWUu6VUvqAx4FLJnifxwURDAVYw1wIehND49ZUN0FFGTWv34dJSMQw3yuAzvgCUr01MXnR1drrJV10YnZlMTXDwTa9AHt/E/S1R7pqY+INBEnwNGDXe7HmzmKzXoToawV3Y6SrNiZ7mnsASO3fR7ejhI+8U6CnEbpiayqAfS29xFlMZPqq2SNz2ahNg54m6KiKdNXGZHdzD6UZTgoC+9gQLKY5bZFxHK1qcnFFUcZmogOsXGDwf4q60LIDhBA3CyFWCyFWq0yBo6cFh2/BAjCllRpP2nZPUo0UJfYFPMadeM16eNfbA+skTiFe9iN7moddJ1p1uPtJEW6EI4MEm5mW+DLjjabNka3YGDV3e8mlFYDU/HK26oXGG42xNZ5sT2svyXRj9bQh08p4syd0HLUrI1uxMdrX2kN5qhmts4aOhGI+8Ewx3qhbFdmKjUFXn5/WHh+laVYSPA1UyUzW66EblY0bI1u5o+ANBOno9UW6Gopy3Ip4kgsp5V+klAuklAvS09MjXZ2YIQbGYFmGvhBMzJ6KX5rwNu8c8n1FUQ7n9xrfK9Mw3ysAc4Zx86K7PvYSXXjdrZjQISEDgGDmdOONxtgKsJq6PWQKo9UtI6eYveYi443G2BpPVt3aS7nFCNQduRXs0PORwhxzAe++1l4WJnYAEj21lHfaUkCzxNRxNHQbiaNKrJ0IqdOgZbHKnRFzxwHgD+pc/PsPOfHut9m6vzvS1VGU49JEB1j1QP6g13mhZco4mYKhSYSHacEqykikRmbgaVQBlqKMVsA7cgtWUp4x31J7zdZJqVM4SXeT8cRh3MzKzM6nXTrRW2IrWGzq9pIVCrBMiTnkZmbSaM6BhthqaWhyeymPN7oJ5hSU4MdMZ0IRNMXO75aUkv2dHsqsxuTbzqwS6roDBFPLYuo4mrqN/6m5sgEAmVzMtpZ+SC+PuRsQq6ra2dHkxuPX+efyqkhXR1GOSxMdYK0CSoUQxUIIK3A18MIE7/O4YNJDAdYwd9qnpCewT2apMViKMgZ+r3EX23yEACunsBSvNONpir1xGVpvqBu2IxOA0kwnu2QuvobYuRAGowUrS3QgLQlgd1Ge6WRzsDDmugg2d3soshotDBm5xbjsZmrMhdC8LcI1G72ufj++oE62qQuA7LwiADqcpdAcO79XTV1G63VawBjHl5A5lR2NPZA5I+ZasN7Z1ozVpHH+jCxe3tRAIKhHukqKctyZ0ABLShkAvgq8DmwDnpRSxmbKqihj1kNdBE22Id8vSImnSmYT31MFuvrjqiijEfAZ3yuLffgAKy/VSS2ZaO2xN77R4jXGLQ10ESzNcLBLz8XUujOmknY0dXvI1jrAlQNAeZaTdb586NgHntjpEtXs9pJr7gSTFRGfyrRsF5sDedBVEzPH0ew2bvZlyDZAMKW4BIAqUxF010N/R+QqNwZN3cZ33+VvAaGRk1dIa4+X3uRp4G6A3tjJyLupvosZuS7On5mN2xNgW4M70lVSlOPOhI/BklK+IqUsk1KWSCl/NtH7O16YdB8BYQVt6FNot5joiMvHonuNfw6Koowo6O0DwGKLH3YdkyZosuTh6KmerGqFRZ8vQFIwdLEb6iJYkuFgl8zD4u+CGEra0dTtIc/ciXBlAzAty8VOmWe82Ro73aKbuz1GV0dnFghBWaaD5T2ZoTdjoxWrOdS1LinYBo4MMhITSI63sMkfymcVI90Em9wekuMtmHubwJFJaVYSAFWWUMKOpthpHa1p76MoNYFFRSkAfLyvDQI+eP378PI31E1XRZkEEU9yoYxdIKhjlT4C2tCtVwfWSwr9Y1CZBBVlVIKhFizrEQIsALejmHR/HQQDk1GtsGjr8ZEmughqVrC5AGPOvNa4ImOFGBqH1dTtJYsOcBotWGVZjk8CrBgJTHq9AXp9QVL19gPHUZ7pZL03FJjEyPxkzW7jO+Pwt4IzGyEEZZlOPurJCq0QGwFWY5eXTJcd3EaANS3LCcAGf+j3KkbGYXn8QRq7PRSkxpOVaCc3KY71tZ2w+SlYfj+s+iusfzTS1VSUY54KsGKQL6hjx0dwmO6BAywZRgpmqQIsRRmVoN8Yg3WkFiyAQEo5VgIE2vZORrXCorXHS5rowmdPByE+eSO93PjZsiMyFTsKzd19pOhtEGrBSnfY6Lbl4BfWmAkUB7rWufwtB46jNNNJvUwlYE6InZafUAuWrb8JnMZxlGU6WdFiRdqToCl2AkUjwGoEZzbpThuJcRY2d1ohIR1aYiNwr+voQ0ooTDX+hk3PcbG1oRvW/hPSpxljytY8HNlKKspxQAVYMcjr17ELH0HT8JOhAqRmF9IvrfSrTIKKMirSZwRYmvXI3y1bjpFJsK0qdrLWtfX4SKcLPeHg6TDSMgvokgnIGAlMAPzdzZgIHmj5EUJQkplInSk/ZgIsY8yPJN7T/ElLXKYTiUZ7/JSYOY5mt4cEqwlTT+OBQLEs04HbG8SXOi1mjqOp20Omy2Z0qXdmhVriHOxqchuBSXNsHEd1m9HNuSAlAYDKHBf7WzuQdauh7FyYfinUr4ZuNXRAUSaSCrBikDdgtGDJEVqwitOdVMksvI2x8Y9BUSJN9x95Au8BaUUzAHDXxka3IYC2Xi/pogvNkXHQ8qkDmQQbY6PFpMcbwOkPJesIXdCD0fqzNZCDjJEL4Wa3Fyf9mIL9xhgsICXBSprDRpWWHzNdHZvdXnKdJuhrO9CCVZppdK9ri5tidBGM8gQqgaBOi9tLtsMMfa0HzsfUDCc7m3qQ6aFAMcqPAz4JsD5pwUpkFnsQuh8KToSpZ4dW/DBSVVSU44IKsGKQNxDEjg99hBasknQHu2QulvbYSyetKBERGF2AVZSdSZ1MQzbHTre6tl5jDJYlMfOg5SWhTIIiRroINnV7yA7NgTXQ8gNGRsQt/hxEd11MZOBrHjRZ8kA2RDBafzb5c4wL/d7WCNVu9Fq6vZSG5vIa3EUQYJ9WAJ4uo9tdFGvr9aFLKLQNHIcRYJVlOujq9+NOLANfD3TVRrCWo1PT3keC1URqghUwWrCma1XGm7nzjS6ClnioWxW5SirKcUAFWDHIG9CJF150y5HHieQmxVEl8kjo3w++vkmqnaLELjnKFqzkBCvVIo/4rtgZ39ju7ieFbszOgwOsqRkOdstcrN72mLigb+r2kClC2RAPasEalOgiBoLFFreXPHOn8cL5yXGUZTpZ4Q5144yBVqxmt4cSeyigDR2H0RJnZZMvdFxRnuhiIEV7rtmYywuHEWCVZhiBYrVWYCyPgdbR6rZeClITEKFxljmJdiosjfSZnMZYMpMZcuapAEtRJpgKsGJQny9IPB7kCAGWpgl6XCUIJLSpVixFGdFAC5blyAEWQFv8FNI9VaAHJ7ZOYeLpasYk5IG78wPSHTbqLaELyBgITJq6PWSIDiTiwHxeYFwM75KhDHwxkJCg2e2l1B6an8h1cIC1yRdq0YqB8UvNbi/5llCANTjgzXDykTt0fqL8OAYSdWQQCtwHtWABMRMoAlS391GY8sm1gRCC6dYmqrW8T5Lb5C2Aho0wcENJUZSwUwFWDOrzBYjHC1bHiOuK9GnGkxi4cFKUSBPB0bVgAXiSpmLFB501E1yr8JDuJuPJIUkuhBAEUgcyCUb3hTAYF8MZdCITMoy78SGZLhudBzIJRv/fu6ZuD0XWUIvJQS1YDhpJIWBxRH0LVo83QJ8vSK42EJgcfBxrWjRkQnrUByYDLVipcqDraSg7pdOGy25mS4dmLIvy70dQl9S19x8YfzWgQK9jqy8LXQ+NIctbCLofGjZEoJaKcnxQAVYM6vMGiRdetBFSSQMk5pYTkBq+xuj+R60o0cAc6CeACTTzyOtmGpkE+/bHRhpqOTCRsCPzsPeSM4voxR4zgUmuqRPNdXBLnBCCkgwXdebYSBDR7PaSa+oCexJY4g4sNxJECFrjoj+TYHMoMEmnHUw2iEs+8F5ZlpNeXxBvclnUd61r7vYgBDh8LSA0SEgDODCn167mnlAmwej+vWrs9uAL6hQMDrD6O3AG2tkRyKK+08iSSt5C46fqJqgoE0YFWDGoz290EdRsI7dgTclKpkpm0V8fGxeBihJJ5mAfHi3+4HmihuHKNzIJdlbHRiZBS39ofNUhWQQhlElQz8XfFN0XkADN3V6yTZ0HtZYMKM1wsi2QG/WBCQxKcjEowQVAYpyFLJfdyCQY5ccxMJdXUqDV6B446HszkOjiQKAYxRn4mt1e0hw2tN4mo9upZjrwXmkoVbvMqDBuQOh6BGt6ZNVtvQAUhlK0A9BqjBPdI3PY0RjqkurMNMaZNW6a7CoqynFDBVgxqM9rdBE02Z0jrjs1w8lumYvWpubCUpSRWIN9eLW4kVcECnOzaZTJ+GMgvXlQl8T5jhBghTIJxkKK88ZujzFWZoiWuNJMhzF+qbveyF4Xpfp9Qbo9AWOy5KECxUwHG305RurznpYI1HB0BrrWObzN4Mo96L2yUIKIvSI/6jPwNXV7yHDaoHv/YQFvaYaTjj4/PYmlEOiHzqrIVHIUag5J0Q5Aq/G/f4/MYUeT+5PlWTOhKTZuDilKLFIBVgzyeDxYRBCLfeQWrMLUePaQS0JPDQR8k1A7RYldNr0PnzZy11uAwtQEdss8bO3RH5S09/pIpQu/yT7k2M0DmQT7m6G/IwI1HL3Wrh6cetcwgcngRBfRe1NpIDBx+VoOSgwxoCzTyfKBTIJRnLCjscs4Dlt/02HnIzHeQobTxgZf6HxEcfe6ZreXTJcduuoh8eBAsTSU6GKfyA+tHL3HUd3eh1kTZCcOGkPauhNMVnRXIdsbBwdYM4yWxYB38iuqKMcBFWDFIH+/kbHJHDdyC5bFpNHlKEEjCO17JrpqihLTrHo/fvPoAiyrWaMxbiqpvXshGJjgmo1Pa4+XdNGJz54+ZPfHvOR49mkDKc6jNzCRUqK7m9E4PBsiGHNhfZKqPXovhBu7PZgIYve1HTSX14DyTCdb/AOBSfQG8I3dHhKsGpq7YdhA8aNuYzxTNAcmTd1eMl0DLViHtMSFujpu8Q9kEoze46hp6yM/JR6zadClXetOSCmhNDuJHY2D5ofLmgl6IOq7oSpKrFIBVgwKeIx+1mZbwghrGmRamfFE/SFVlCOy630EzKP7XgF4Uyuw4Ie26J4Pq8XtJY0u9PjDuwcCmDSBLyn6/0509vmNbnUwZICVnWinw5qNT9iiOjBp6vaQTidC6kMGJqWZDppJwm9xRXeg2OWh1OmHoPewwASM41jfAtKZE7WBSSCo09brJTcuAD73YceR4bThtJvZ0iYhMbrHxVW391KQcsgNotadkFZKWZaTvS29+AKhMWRZs4yfjaqboKJMBBVgxaCgJzTbvHV0F4KOnAp0KQg0Re8/BkWJtEBQJ072o48hwLLlGRcpPTXrJ6hW4WG0YHWhOYcOsACSc6bgIbpTnDd2e8gQncaLIQKsgUyC9eb8qA5MDposeYgWrIFMgi1xxVEdKDZ2e5iWMJA4YegWrH5/EE9yadSej9YeH1JCkSWUov2QLoIHMgk29UBGRdQGilJKqlv7Dh5/FfBB+z5IK2NalpOALtnbGrp+SJkC5jiV6EJRJsi4AiwhxD1CiO1CiI1CiGeFEEmh5UVCiH4hxPrQ44Gw1FYBQPeNLcAqyk6jTqbRpzIJKsqwer1BHHiQo5hfbkBm8Sx80kTnvrUTWLPxG+giaEk8PCgZUJGbzG49B18UJ+04ODA5/IIejG6C2wI5UR0oNnV7KbAMzIF1+Dlx2MzkJsWxTxQYgUmUZuBr6vJQYh2YZPjwQHGge12zfUooA1/0Tco9MB4uZ+D3ypV32DqlGQ52NrmR6dOMFqEo7BLc4vbi9gYoSR/096tjH8ggpJVRnmWciwOZBDUTZE5XiS4UZYKMtwXrTWCGlHIWsBO4Y9B7e6SUc0KPW8a5H2UQ3Wt0ERxtgDU1w8EumRfVFxyKEmk9vgDxwoMY5fcKYFpeGrtlXtR3s2nr6iVF9Bw5wMp2sUvmokfx34n9nR4yRAdSaIdNmDygPMsZ9ZkEm7o9TLWHLnSHCEzAmKh3oy/LSDrS0zSJtRsdXZc0u73kWzqNBUMcx0CCiD0iHwIe6KiavAqO0kCAlSFDWTaHOI6KbBcdfX66HFMh6IP2vZNZxVHZ3WLceD0owBqY4Dm9nClpDsyaODzRRePGqA3gFSWWjSvAklK+IaUcuJWzAjj81o8SdsIXCrAso7sQLEk3MoTFu6ui8s6bokSDHk8ABx7EKKY/GJDutLHXVISzK3q7cQF4u4wLdDFEivYBFdkudum52Hv3g9c97HqRVNfRR7boPGyuosEqs11sk6GMb03R2Wrf1O2h0NoJmgXi04ZcpyzTyQfu0MV+w8bJq9wotfZ6CeiSLNEBiCHT5rvsFrIT7Wzwho4jCrvXNYYCrORAaJLhIVpGK3NcAOwiehOo7GkOBVgZg64LmrcZx5RejtWsUZLu+KQFC4xEF54u6Kqb5NoqyrEvnGOwbgJeHfS6WAixTgjxnhDilOE2EkLcLIRYLYRY3dISvfN9RBVf6A/kKCYaBrBbTHQmFGOWvqi8g6go0aCnvw+b8KONIcAC6EosJzHQBr2tE1Sz8fN1NhpPhrgIHpDmsNFsLzZeROGFMEBdRz9TLG2IpPxh16nMcbFFDx1Hw4ZJqtnY7O/0kKt1Gt0DtaH/DZdlOtkYCB1nY/QdR1OXkd47TW815lYzWYZcrzTTyQedqcaLKPy9qm3vw2bWiPc0GpPvmsyHrTMt1L1uTW8GIKAp+rrR7mnpJcFqIss1KEV781ZjrJXFmNuvLMt5SIA1kOhCjcNSlHAbMcASQrwlhNg8xOOSQet8HwgAj4YWNQAFUsq5wP8A/xZCuIYqX0r5FynlAinlgvT0obt8KAczezuNJ3Epo94mmDrNeBKFd94UJRp4eo0LD/Mo5pc7SOYMAIL7o6+VYYDoDt2hTjxyJ4NgZuiCK0oDk7qOPvJEKyQVDLtOUrwVa1I2XabUqDwOX0CnoaufbNl0xOMoy3TSQzy9jsKoPI7aDmNS2yR/07DdHAEqspxsbgkiU6ZAw/pJqt3o1bT3UZASj+iuH/Y4nHYLhanxbGz2QVpZVJ6PjXWdTMt2IQZPw9C0FTIqD7ycluWkvrMft8dvLMioBIQKsBRlAowYYEkpz5JSzhji8TyAEOIG4CLgGimNjrxSSq+Usi30fA2wByibsKM4zlh9oXEFcUmj3iYhbzoAgSgewK4okeTt6QTAEjfkvaBhJRfPA6Bt75pwVyksgrokvq/eeJE4fMsPQGZeCW3SRbB+3STUbOwaOnpICzZDUuER16vMcbGNoqi8EK7v7EeXkOpvgOSiYdebmuFAE1BnK43K49jXanRVj++tNVpJhjE9NxFfUKc7aXpUHkdNe7+R2nyISYYHq8x2sa3BDTlzoi5Q9AaCbK7vZn5h8icL/f3GWLFBAVZ5KOnIzqZBvWBSpkCTCrAUJdzGm0XwPODbwMVSyr5By9OFEKbQ8ylAKRB9o0JjlC3QhVeLH7ZLxlCKcjKo1dPpq4/uwfiKEil+t9HFz+IaW0t62ZRiGmUy/VGaqr2p20MOzfhNCRCXfMR1K3MT2awX4a+LvgDLGwiiuRswEYTkEQKsbBervPnIlh3GhWYUqWnvw4aPOE8zJBcPu16c1URZppMNwULorDGSXUSRqtZesh0aWteRA6wZofFLVbZS6KqNqq60Ukpq2/soSLYZn/ERAt6KbBdVbb1402eBuwHc0ZN4ZG9LL76gzozcxE8WtuwApJFaPmQgk+D2Q8dhqRYsRQm78Y7Buh9wAm8eko79VGCjEGI98BRwi5SyfZz7UgB/UCdBd+OxJI1pu7JMJztkXlT2gVeUaOALBViOpOETQQxlSloC25hCXFt03ryo6+gnT7Tic+TC4O5DQ6jMdrJZFmFt3wl+zyTVcHT2d3oo0JqNFyO0YE3PcbFZL0bIYNSNl6lp66VAhI4jZfgAC2BGbiLvdUdnoot9rb0sTO4FqR8xUCxKTSDBamKtv8hYsH/9pNRvNDr6/PR4A1TEdxuTJadOHXbdymwXUkKVNbROFLViDbRIlWUOkUEwc/qBRXnJcSRYTYeMw5phjM32dE9CTRXl+DHeLIJTpZT5h6Zjl1I+LaWcHlo2T0r5Yniqq3T1+0mil4AtceSVB5mSnsBu8klw74Ogf4JqpyixK9hjBFi2xLEFWJomaHZWkuapjsrse8a4pWZIHn68z4Ci1AS2ixI0GYDm6MrAV9veR4nYb7xIKz3iupU5LjbrRcaLKLoQBqhu66PUHGr9GCHAmpWXyEd9oW5rUda9rqqtlznxofumRzgOTRNU5rh4p2sgUIye1tGadqPjzVRTKAnMEQKs6blGS9xKTz4gYH/0HMfOJjdmTTAlbVCAtX+dkWl4UPArhBg+0UWUZtxUlFgVziyCyiTo7POTJHoI2pLGtJ3NbKIjYQomGYC2PRNTOUWJZX1txs/41DFvqmfNRkMS2B9dF8EA9e09FItGbJkjD4M1mzS86TONF1F2Qb+ruYcSsR9pSQDX8GNlAHKT4uiNy6bX5Iq649jX2svC+FCAlVZ+xHVn5CbSgYv+uGxjvqIo4fb4ae3xMc08EPAe+Tim5ySyujGU6CKKWrCqQuPI8vTQGMUjBFhZLjsZThtrGnxGgB9Fx7GjsYfitASs5kGXdLUrIXfeYVkRp2U52dHkRg7MfRVK0qMmHFaU8FIBVozp6veRRM+IYymGEkxTmQQVZThafztBNLCPrXUYILFkAQDtu1aFu1rj1rF/L3bhx5wxbVTr5xSW0ykT0OvXT2zFxmhHYzcVlgZEetmIXR2FEMzOT2aHmBJ1Adb2RjczrQ2QWDDiVBuV2S5MmqDOHl0X9FWtRstPQaDaSP2fcOSbErPyEun3B3GnzIyq49je6MZiEqT27QF70rCTV4PxOzUnP4kNdV2QPSeqWka3N3ZTljVoeglfrxEw5S86bN3yTCedfX6a3UaafVw5RkbiKArgFeVYoAKsGNPi9pEkejAljD5F+wBnbiVBKQg0qK4AinIoi6+DXs057AS2R1JWMpUGmUJ/9eoJqNn4BJp3GE/SRpfIdU5BMpv1Iry1ayewVmO3o6mHclE3YmvJgDn5Saz05CObt0LAO8G1G52ufj/1nf0U6TUwioDXbjFRmuFgo14MbbuNSWGjwK5mo4tZWt+eg5IoDGdugXFDcI95KnTXRU2ii51NbkrSHZiaNhvJHkYI3GfnJ7GvtZf+9JlRk+iiq99PXUc/03MGZT+t/gj0ABSdfNj65VnGegcSXQihEl0oygRQAVaMaetyk0wPtqTDZ5sfSXFOOtUyk756FWApyqHsvg76zGNvvQIoTnOwjSnEt0bXRUpQlyR07TJepI8+MNksp2Bt2x41gYmuSzqaakjW2yF79qi2mVOQxDq9BBH0RU2CiB2Nbmz4SOnb90nXrBHMykvkTXchIKEuOgL4jXVdOC0SW8cOyJg+4vpFqfEkxVtY6QmNA4yS8UvbGrqpyIwzxh8NjEU6grn5SQDs0KIn0cW2BiM5RWX2oABrz7tgskHBiYetP5BJcEfjoKQWWTONBFjBwITWVVGOJyrAijF9bXVoQhKfNvKA9UOVZTrYJfMQLdsnoGaKEruklDgCHXitY28ZBjBpgmbHNFK9NVGV6GJfay/T2EdvXDbEj+7YClPj2WUpwyT9UXNXe19bL1MDu40XOXNGtc2cvCTW6qFkGHUrJ6ZiY7S5vovpospIIpI7f1TbzMlPZllfARIBddHRBXVTfRcXZLQhAh7IG/k4hBDMzU/i1fZMQEB95OeMa+jqp6HLw2nJHRDwQPbIAdbMvESEgA9780CYouJ8bNkfCrAGWrCkhO0vQvGpYIk7bP2UBCvpThs7Gns+WZg10/gM2nZPRpUV5bigAqwYE+ioA0A7woSIwylOS2AX+ST0VEfNnWlFiQadfX4yZSt+R85RlxHMmoOGJBhFiS421nUyU+xFz5oz6m2EEASyjTFl1EZHYLKmqoPZ2h6k0IyLwVFITrCSkJpLqzkzao5jdXU7pyXUGC9GGWDNL0ymh3i6naVRcRz+oM6W/V2cFh86jryFo9pubkEyG1p0gumVUPvxBNZwdNZWdwKwwLTTWJB/wojbOO0WpqY7WNPgNdKbR8FxrNrXTm5SHBlOu7Ggfo0xp9f0y4bdxkh0cUgLFqhEF4oSRirAijXdoWxHiXlj3tRmNtGZMAWNILTuCnPFFCV27e/oIUu0I47iezUgscS40GzfFfmL4AE799UwRWskvmh0F/MDioqnUi/T8NdEx7GsqmrnZPN2o3ugzTnyBiFz8pNYG5yKjIKWBiklq6o6OMO+E5IKwDW6bt6lGQ6cNjM7LNOMLoK6PsE1PbINtZ14/Dpz5FZwZkNi/qi2m1uQhJTQnDQ7dBzBCa7pka2p7sBu0cjpWmck6jjCJMODzclPYn1tJzJvEdStiWi3uqAuWb63jSVTByUZWfkgWB1QcdGw25VnOtnV1ENQD2USTCsDk1UlulCUMFIBVowRAwGW6+jutMv00IBkNeGwohzQ1lSHVQSxph55AtsjKSspibpEF3273gPAVHzKmLYzxi9NRa+J/B16gA37GpjFbsQQg/aPZE5+Est9U4y/m131E1S70dnb2ku7u49png0w5fRRb6dpgjkFSSzzFIO3C1p3TlwlR+HD3W1oQierbYVxHCMkhhgwOz8JIWCzVg7ebohwV/UPd7cyPz8Rbd97RjKIMRxHe6+P9pS54O/9ZELfCNiyv4uufj9LpqYZC5q3wab/wNxrj5gNtTzLiTegU9VmpKnHZIH0adCoWrAUJVxUgBVD/EEdh2c/HpNzTHdxB3PmVeKXJgKNkfunoCjRpqe5CgBnZtFRl1GS7mBLFCW6qO/sZ0rPWvyaHXLmjWnb2aHxS7be/dDdMEE1HJ3dzT0UdK7Egh9KzhzTtnMKkgeNw4psK9bb25qYJ3ZhDbhhyhlj2nZeQTKvdIZaVyM8nuy9nc1cmt6E1t8+pvPhCnWve7snNPFtBLvX1bb3saPJzWdz26C3BUrPHfW2c0KJLtbKUFbOCB7Hst1GNsaT8u3w9l3w6GfB7oJTv33E7T5JdDF4wmGVSVBRwkkFWDGkrqOfqaKeHlfJUZcxNTuZKplFX726U6UoA3xtVQC4MouPugyTJmhxVJDirQVP98gbTLAPdjRzlmkt3vwlYLaOaduUBCv7naFxGRG+oH9jayPnaKvRrU4oHFsLVkW2k93aFPzCFvEA682tTVzjWm9kdys9e0zbzitMZo+ejd+aGNFxWA1d/ayt6eRa53rQLFB6zpi2n1uQxBsNccj4tIgex1vbjPTqpwdXGMkqpp416m3Ls5zYLRoftsSBIyuyx7G1iYpsF+kb/gQf/Mro6njNUyPOS1aa4USIIQKs3uaoSD2vKMcCFWDFkKq2XkpFHTJ9dBOGDqUs08kOmYfWqroIKsoA0bobHYGWOmVc5ehZs6Mm0cXODR+SJ1pJmH3pUW0fXzAHH+aIBiZSSt5av4dPW1aiVV485kDRZjZRlpvCHnNJRC+Ea9r62FjVxLnB943gaow9EObkJ4HQqE+YHtFU7S9taMBMgFmdbxqtV3FJY9p+bkEy7X1++jPnR6zlR0rJk6vrmJGVQNKe543jGCEgGcxi0piTn8Samk5jIt8IHUdVay9razq5ZHYWbHzSaBX90tuQt2DEbeOsJopSE9jZdEiABdCkWrEUJRxUgBVDqqurSRVuHHkjzzsynKLUBPbIPBJ668DXF8baKUrscrr30G7OGjKt8ZjKmWJc3HTsjmyrT4vby9Tap/ALG2La8IPdj2RGQQab9GJ8VZHrArW+tpPKlleJk/2w4L+Oqoz5Bcks805BNqyPWPbUJ1bXcJFpBXGBTlj4xTFvnxhnoTTDYXR3bNkekQmHdV3y75U13JqxBXNv41Edx9yCJAD2xs2A9r0RmXB4fW0n2xq6+XbRLuiqhXnXjbmMhUUpbG3oxpuzEDqrI9Lq89jKGjQBV7o2G3UY43GUZToObsHKDF1XqG6CihIWKsCKIb37jIu2uPy5R12G1azR6SxFIKF1R7iqpigxy+MPku2vods5vtYrMBJd7Jcp9NdEdp6fF1Zs41JtGX3ll456/qtDzSkwxmGZGtdDwBfW+o3W35ft5XrzWwQzZ0Lu2MaRDVhQlMLqwFRjwuEIXDz2eAM8srya/3a8a2RrG0OCi8HmFSTzalc+kZpw+K1tTexr7eELplchpWRM3eoGlGY4cdjMLPeFvmsRaFX824dVxFs1ljT9G1KmwFHcgJhfmExQl+wwh3qTTHI32q4+P4+sqOaiWTmkrPsTJBVCxSVjKqM800lVWy8efyibY1yykRFSJbpQlLBQAVaMkFLiaFpJAPOougAcUUbon0KzmnBYUfY2djBFNCBTy8Zd1tR0B1soIb4lcneBPf4g7uUPES+8JJ76laMupzLbxUZKMem+iHQb2tXkRtvyFGWiFtNJXx11lrdDLSgalOgiAt25/r5sHyf5PqTIuwNOvPWoj2NeYTIfeYqNucAm+TiCuuS+t3bx+cTNpHRshBO/AtrYLx9MmmBuQRIvtmQaY7gm+Tg213fx4ob9/KSiAVPDWlj8FdBMYy5nXmEyQsB77hwjvfkkH8dDH+6j1xfkGyX1xr5P/CqYzGMqozzLhS6NJDIHZM1Uc2EpSpioACtG7GhyMyuwmc6k6ePuxpSYW45Xmgk0bglT7RQldjXvWoNN+LEXjW7C1CMxmzSaHdNI9dZELNHFE0vXcWPwKTpyToGcOUddjt1iMsbKANRO7jgsKSU/f34t37E8QSBzFsy88qjLSnPYSEjLo8WcDdUfhbGWI6vr6OOhpdv43/jHIXMGzB17d7QB8wqS6SWODmf5pB/Hv1fWsLehle+b/gXpFTDvC0dd1qKiFDY1+4zzOomBia5L/vflrWTG6Xym6beQWgrzrj+qslx2C+WZTlbW9kLOXJjE6QyqWnt54L09XDojlcIVPzJa4Y7iOMqzHMAhiS4yZxjTAPj7w1VdRTlujSvAEkLcKYSoF0KsDz0uGPTeHUKI3UKIHUKI0edAVYa0cuNW5mq7sVWeN+6ySrOS2Stz6K9XAZai9O1bAUBm5dgy1A1Hz5xt/IxAoov6zn7il/0fDuEh+bJfjbu8ouJSGmQKwUmeD+uJVbV8qua3ZNGO+YJfHFVryWALCpNZEShD1qwAKcNUyyML6pJvPLmBO7R/kBpogvPuPqrWkgFT0hJIirew1TLDSDwySd02dze7+b+Xt/GHtKdJ6KuD839hzJt0lBYUpSAl7HfNgvq14PeEsbbD+8fyKlbsbeefha9h6qyCC+8Fs+2oy1tYlMLa6g70vBNg/7pJGdMcCOp8++mNWE0aP0t8Dtr3wIW/Aot9zGUVpiZgNWmHJLqYAVJX82QqShiEowXrPinlnNDjFQAhRCVwNTAdOA/4oxDi6P+zHOeklPSvfRIA59zLx11eWaaDnTIPrVV1EVSUhOZ1tGspmJMLwlKeq8RoCWvfPblBSSCo89g//sBnxdv0zrsF0svHXeb8wmTW6lMJ1EzeGJMNtZ2sfunPXGN+G076GhSeNO4yFxal8IG/DNHXCq27wlDLkd3z+g6yql/gKvGWcRxjnOz5UJommJufxJu9JRDwQMP68FT0CHq8Ab7673Vcal7OWT0vGl3Rppw2rjLn5CdhMQlWykoIeqF+4seTrdjbxv+9so3v5m+hvOoRWPTlox4LN2BBUTK9viA1rnmg+ycl2+YvXtvOyn3t/HVhHQlr/mQkGhnj3HADLCaNkgwHO5oOacEC1U1QUcJgoroIXgI8LqX0Sin3AbuBRRO0r2Pemn2tnN33Mi3Jc8Jy0VSUlsA+mUN8f4PKJKgc13wBnSLPVpoTZx312JhDlU2ZQr1MxVOzNizljdaf//MSN7f/ivbE6bgu+ElYyjQCrFJsPXXgbgxLmUdS297HX/7+V36uPYA/70TEmT8IS7nzi5JZpYfGnlZ/GJYyj+Sfy6vY+MHz/Mr2F2ThSfCpH4Wl3EXFqbzUWWi8mOBugr6Azi3/WkN6ywp+Jv4ABSfCp3487nLjrCZm5CbyYkchIKBqYs/H7mY3tzyyhs+4tvPl9nsg/wQ453/HXe6CIiN5zIe+qSC0Cf+9evD9vTz4wT5+OKOdxeu/B3kL4dz/G1eZ5YdmEkwuBqtDJbpQlDAIR4D1VSHERiHE34QQyaFluUDtoHXqQssOI4S4WQixWgixuqWlJQzVObZIKVn14gNM0Rpxnva1sJRpMWl0JRQbmQTb94SlTEWJRbv27qVQNCFzxz/+asDUDAdb5RTiWjaGrcyR/POV9/jMtq8jrPGk3Pj4mOeLGk6Gy06tY5bxYoIv6Hc3u/n5nx7kHv2X6KllWK59ImzHMSUtga64AtymZKhZHpYyh/P3D/ex9KVHeNh2L6a0UsTV/x5Xl7rBFk9JoY1EehzFE3oc/b4gX/7Xasx73+Rh271oqVPhc4+F7XwsKkph+X4dPWM6VC8LS5lD2dbQzVV/XsGJbObnvl8g0svh8+H5vcpNiiMn0c5H9X7ImjWhgeLfP9zHz17Zxv+U7Oemmu8aWQM/98S4ujiCkeiioctDV7/fWKBpRrp2lapdUcZtxABLCPGWEGLzEI9LgD8BJcAcoAEYc6d/KeVfpJQLpJQL0tPTx7r5Me+1lZu4ov0vtLimY591WdjKlWmhrFqtO8NWpqLEmsatxsVdWsWSsJVpMWk0OipJ9dZCf2fYyh2KlJJ/PP8a53z8BVymAPE3PgtJ4enqOMBZvIA+7MgJDLA21Hby5z/9mt/470JLLsB2w7NgTwxb+UIIFhSlsJZpUD0xgYmuS3728lY2v/wAD1p+jTmzEnHDy0b66zCZkZtIgtXENttMI8DS9bCVPaDZ7eG6hz4mZffT/M12H6bMaXDDS2E9jgVFKfiCOs0pC4wEKhMwnuy9nS1c9eflXMJ7/JGfGZOIX/dcWI9jflEKq6vakYVLQuPiwjvPWlCX3P3qdn7y4lZ+ULCF/264A5FcBF94YUyTIw9nINHFrkO7CTZtmbSxiopyrBoxwJJSniWlnDHE43kpZZOUMiil1IEH+aQbYD2QP6iYvNAyZQx21DWT+cp/4RIekq5+YNwDvQeLzy5DlwK9RQVYyvFLr11FABNppeHtwRzInmOUX78urOUO5vEH+f1DD3Hx2v8izqJh+9KrmHJmhX0/c4rSWROcin/fxNyhf3lDHcv/ehv3yF+jZ8/D/qU3wJkV9v0sKErmXU8pdNVAZ+3IG4xBrzfA1/+9ipzld/Ir6wNoRUvQbngxLBfBg1lMGguKUnint8SYbLg5vImK1lS3c8lvl3Jpw2/4leUBtMIT4QsvQkJaWPezoNAIctZp0yHQD/vD151WSsmD7+/lS3//iB/Z/s2Pgr9HFC6Bm14L+3EsLEqmqdtLa+qC0Hiy8M1/197r44a/r+Sh93bwaN6zfLH5Z4j8RXDDy2H7fpRlOgEOHoeVNRO8XdBZE5Z9KMrxarxZBLMHvbwMGOi4+wJwtRDCJoQoBkqByZ9RMIZt3ltDx18/wzyxk74L/4glzBdOBRmp1Mk0+htUogvl+JXSsYE6awnCmhDWchNDiS46d68Ia7kDmrr6eeQ33+Ertd9CJqTj+n9vYc6eMSH7ml+QzEp9GpbWbdDfEbZyfQGd+55dRtJTV3KLeJb+GZ/HftMLRz0x8kgWFqWwcmAcVtUHYSt3e2M3X/zdM1y/86vcaH4dufhWxHXPgt0Vtn0MtnhKKs92hibq3bs0LGVKKfnn8ir+5y8v8mf9Tq7VXjcSWlz3XFhbEgckJ1gpzXDwYlexsaAqPN0Eu/r8fPWxdfztlWW8mng3V3ifMxJBXPPUhBzHiVOMAPoDbynhHE+2vraTi373AVV7d/FR1q9Y0vofOOH/hVrgksKyDzC6OTps5oPHYWXNNH6qboKKMi7jbRL5pRBikxBiI3AGcDuAlHIL8CSwFXgNuFVKGRznvo4Lui555eVncPzjbBawlZZP/YbkhZ8N+36mpDvYI3NUC5Zy3Grr7qM8uIue9DlhL7u8qIC9ehbe6vBnFvt46x42/OZyvtj7IO15Z5Ly9Q8QqVPCvp8B5VlOtlpnGGM2w9S9bleTm7t++3s+v/4aFpl3EbjofuKu+NO45/g7kpm5idTZpuA2p8Dut8Zdnq5L/r5sL3/7w895sPfrzPv/7d15fFTV3fjxz5l9kkz2PQFCCBBkX6RQAUGx4lKtllqrba3Wtv7q0z5dnsflsZu12tpNbattrbZ2UdxAtCoqihVEBFlkJ4Qt+55MJpPJrPf8/phBAUG2SSYk3/frlVdm7sy9c25OTnK/95zzPbZauPIR1IJ7TnrR15MxozSTRrLoSh0Zl/No7vJz42Pv8f6//8gy222Mt9TAZx+FC+/u1fM4pyybFdVhjJwxsP+t0z7eO3taWXD/W9h2LObNlDsoNaph4V+jaczjNHfsSGW5KeS67KyoDkVTnO9787SOFzE0D/1nD5/70zvMN1bzZsod5Pj2wsK/wUW/iPt5KKUYdWSii9wxgJJMgkKcptP666m1PuaqiVrru4G7T+f4g4nWmrXr3iH0+t1cHFpNqyWProWLyRkzr1c+rzQnmaW6kFmdb0bH8cdx+KEQZ4Ld295jpvLjHD4j7scelefiZco4rzV+a2GFIgZLFi9i9vYfMFV10jz9VnIX3NbrbddsUiSXzsC314Fzz+uo8ouPv9MxGIbmXyt3YFnxUKyzPgAAIHxJREFUI35meh1v6gis174UvTjtZRaziZkjcli1fyIX7V2BMiKnvC5VTbuPO59exWfqfsP15rWEij6BeeHDkFES30IfxcF5WJvtU5lVtQSC3XCKPbAvbWng18+t5tbIn1lgW4ceMhN1xZ8hY1icS/1R547O4bF3DlCbM5uhu/4ana94Cr0zgXCEX79aweJVm7kv5e+ca1kD+WfDFX+GrBFxL/ehlFLMKsvmP7tb0DMvRK2+D3ztp9QLe6C1m+8/s5l9VVU8mf0kU73/gaKp0fM4OGe6F4zOT+XlrQ1orVFKRX+XskZID5YQp0muqhOsw93JisUP8/7PZjNj2cVMDW1gV/nNZN2ygYxeCq4AspJt1FmGYDX84JHpcWLw6ayMJm0oHj8n7se2mk20po3DFWqFztrTPl5FXQvP/+qrfG77zVjsyYSvf5Xci/+vz26MzBhVxNuRsYR3vXLKk99rO3zc/cdHOHfFZ7ja9Aa+ad8k5dvv9ElwddDskTks849F9XREF7k9SVprnnqvml88cD93N3yDiywb0Of/GOtXl/VJcAXR362ZI7J52j0KIsFTGl7n9gX59qJNPPfkX1jM/3ChZRPMvzOalKMPgiuIDq+zW0wsj0wFI3xKvXEbqzu49HdvU7X6aVam3MYcvQHm/wRueLXXg6uDZo3Mpr07SGXGLNCRkz4Pw4gOz7zogVUUNb3JmrQ7mOJbHU3tf8NrvRpcAYwpcNHZE6LRc8iCz/njpQdLiNPUe/3/4piampupeHsx9t0vMb5nHeepAM2mXLaWf4fyi2+mPDW318uglCKQNgI6iWYSTB9y3H1E/xQxNMGwQTAUIRDsIej3EQqHCUc0ZgUWE5hVtCfCbLFhsjmxWB047RZslsF7j8XeuJFOlUpablnvfMCwT8K2PxHc8xa2qdee0iHCEYNnli1n4nu3sFAdoHrE1Qy9+ren3GNxqmaVZfOQMZlPeR+B5p2Qd9YJ72sYmidW7yL8+l3cwct0pxShrnqJpJL4ZW48UfPKc/nV0gkYmDDtfgWGnHh6/pp2H/cuXsWnqu/jQfMaglnlmBc+DwUTe7HER3fJhHxu21lKJCUJ866XYNSFJ7zvK9sauH/par4deJiLbWvROWehrnz4w7k3fcRhNfOJ0iwer7FyQ1I2qmIZjF94Qvv6gmF+89pulq7ezN3OJ1hgWwnZE+CKP0XTjPeh88vzsJoVixtzuT05FyqWwYSrTmjfPc1d3LZ4K3urqvhL5rPM8r0OGePhMy/02Y2H8vzoXMFdDV0UpMWG6OaNg+3Pgd/Ta3MJhRjoJMDqA+3tbezbsJxA5Uqy29ZRFt5DntK0qQwq8i8lY+qVlEy7iNxTHK5yqix5o2MBViWUnd+nny0+FAhH6Oj04Gmtp9vdhs/TSrC7A+1zY/jdmPydmIMerCEPtpAHR8SL1fBjNQI4CGAniIMgLoKkqRPrXTC0wo+NbmwElAOvOZUeSyoBazohewaGIwNzaj7OrCG48krIKRqOKyMvbovxJlooYjDUt43GtPGk9dI5DRszndatqbD9NbJPIcDa09DBun/+gIXdiwhYXHgu+ydDJ17WCyU9vqFZSVRnzoKuR2D3KyccYO1p7uLxJ/7OV9ofYJipGe/4L+O69OdgT+nlEh9dUbqT0SVD2dQyninbno0uZHyc+o/E5lpVvv4oP1N/x2XxY8y5Hdvs7/Xa3J7jOX9MHtrsYEfqLMbvfAEu/vVxy9Lk8fOjpVtxVTzDM7bHSbYGYe4PUOd8J27rdJ2sS8cXcMviFtrGzSO78tXowve2pI/d5509rdy2eAtnd77KqqQncOoeOPdWmP0/CamPtCQrs8qyeXFrE7eNWYDavgQC3o/9HQ+GDf701l7+sKKSz1lX87jrX9j8XphzC8z53z49j/KCaCbBHQ0e5pXHbu4eDLabtsOwmX1WlsHMH4rg8Yfo8ofx+sN4A2G8vh78XjdBXychnwfD70EFuzAHvZhD3VjDXsxhH8oIYooEMRlBLDqEVYewEsKiwyil0ZgwmRQmZcJkin4pkxltcWCyJ2O2J2N1JGF1pOBIcuFwZZKSkYs5OROcmdEhr7aUAfP/v69IgNULOtrb2LvhdQKVb30QUE1TmqA2s88xho1FX6Vg6sUUj59LVh8HVYfKyy/GXZFMctMuEvPvdeDqCYRoba7D3VyLt70Bv7uJSFczyteG1d+GI9hOcriD1EgnGXSSr/wcK/GugcJLMj5TMj1mFwFrCmFrBiGLk26zA8PiQFscaGsSWBwoixOzxYxSCkODQXSandYabYQxhf2oiB8d7CES9EGwG1uwE0e4kwxfBSleD6m6G9MRwZpfW2kzZ+Ox5eJ35hNxFWPJKCY5ZxjpBcPJLCjFnJTe2z/auNi9/wBjVT27iuOfQOagqSVZrDLGcn7NquiwuhP852QYmudfWUb52tu4RlVRW3wxRV/4HSolsesEzpw0jo1vlTF+0yKss777secTihg8tnwD2e/8lB+bVtLlKkEv/Dcpw+M/HPNkXT65kCeen8nUyJ+i2QQ/pkw76j3c/8yrXNP6e240byZQMA3zFQ9CbnkflvijUh1W5ozK5pGa6TwQfg12PA8Tjv67HDE0i9ZV8+SyFdyuH+Uc61aM4hmYLvs95Izq45If7pIJBfz0xR08FZrNzYFnYPsSmPzFo763pSvAL5btYsOm97jP+RhTbVuhcAZ8+oGE18elEwr5/jOb2ZJ9CROD/4Btz8LUrxz1vRuqOvi/JVvxN1fy74x/Mdq3EfKmR8/jJHqG4yXVYaUo3cmuo2USbNomAdYpMAxNhy9IqzdIe3eQDl+Qji4ffncTIU8Tke42tK8Ns78da8CNPegmVXvIoIsM1UWW8jKSLpLUia2rFsZMSFkJYyWsrIRiX2EsaFQ0QZHWaG1E/xdpA6UNbARxEsBJALsKH+czLPRY0gjYMgg7s9BJ2ZhTcrCl5eJMz8OWmoNKzo0uhZCUBY70QT+3XwKsOHB3tLFn/TECKvsYNhR9lfQx8yiZNJdyZ2Lu3B7NiNxoJsHRjRUSYJ2gQChMc0sr7uZqultrCLbXYXjqMXc34uhpJiXUQkakjSztZoiKcOTAyzBmOlUaXks6PY5MOhwltDqyUCk5WFw52FzZJKdl4kzNJjk1C7srE5PNRarJRF8O1DDCYVpb6mir34e3uZpAew26sw5rdz0pgSbyO9aT074cS/XhC516SaLDkoPXnkcwpQiVVoQprRhHei4p6bmkZubiTMtFOdIS8sdXGwaBgJ+W9c8BkDlhQa99VkayjZr06SR3rYGWXbHsXB+vsr6VzY/fwWe8T+O1pOO+5G8UT7my18p4Mi6fVMRDK+Yxpf0v0axvpXOP+r7Vu5tY+9zvuM73d9JNPrpnfA/X+beC1dG3BT6GS8YX8MsXz6HL/CSuVb+FktkfCRY7uoM8+Or7ZG36PX8wv4zJbkPPvxf79K+dcmKMeLv2E8O4YWc5d2UNJ/Xt+2DclR8p23sH2vnV8+uY3/IPllpewWRzwqd+g2nqDf3i4ifZbuHTEwv5/aYI38gbg+Xt+2DC1YdlLwxFDP6xpopHlr/PV4wl3Ot4BbPVARfcB1O+0i/O45IJBfzy1V3cszWJpwomwtv3wcRrDuuJauz0c+8ru1i+qZL/TX6ZLzpfxBxxwCW/hanXJ/Q8xhSksqvB8+EGV0G056JxS8LK1B8ZhqbdF6TJ46e5K0Czx097hxt/Rz0hdz3K24TF14Iz2EKWdpOrol9lyk0WXR+5aXmQ35pCwJpO0J5BxDEUw5FJZ1Im3qR0rEnp2JLTsCWnY01KBXtqtDfJ7op+2ZKxmMyndDGvtaY7GKHFF8Tt7cHr7cLr6cTnacXf2Uqwuw2jux162rH43dhDHbgCnWR6O8ikimzlIVX5jnrsCGZ6rOkE7ZlEnFmQlI3ZlYM1NReLKweLK/pdJWWBxQHWpOj/CIuzV7OX9qWBcRZ9zNvlZu/6N+iueJOslrWMCO9hmjIOC6jSxsxjeD8LqI5UmpPC+0YhYzt2JLoo/YY/GKKxvpqO+r34mvYTaq/C0lVDkq+ejGAjubqFISrwkcCpiyTc5iy8tlwanaXUJRdgSivAnl5ASlYh6dmFuLIKsDjTyVKK+C4/Gn8mi4XsgmFkFxx7wnt3j5+a+iraG/bT01pFuL0a1VWP09dAqq+JIu8usps8R903gsKDi4DJQUg5CJkdhE0OQiYHYbMDrSzRjFYmEygTGhMoFV0cW2uUEUYZoeh3HcZkhDHpECYjEn2uw9h0EJsOYNVBbASx6yB2QjiUZi7QTho5oz7ROz/AmNRxF8KaB/BsWkLqhXcc833+UIQXlj7JlG13s1DVcWDI5Qy75gFUUkavlu9kDM1KInjWQpp2P0vGqz/C9vUVh/0jrGr1snjxIj5V9we+ZzqAO3sK5qseJDkBd+U/TnqSjS/NGs19Kz/Nj/b9E7Y8BROvBqDLH+LpdypoWvkoX9NLyDO7CY69CsuCu3pl8ePTMXd0DhOGZHJ325Xc2/0bWPlrmHsrADsbPPxl+ftkVSziT9aXyLB4YPIXUef/CFJ6f47vybjp3FIWb6jlz5ZruLnxh7DiLrjgTiKG5qWtDTz6+vuc3f4ir9pfIlW5YcI1MP/H/ao+HFYzN507gjv/vYM18/4fM9fcBG/cCRfeTUtXgH+sOcCiVdu5khWsdb1IcqgDJnwe5t8JqQXH/4BeNqbAxZsVzfhDERxWc/SGQ/44aBw8iS601nh6wtS6fdS7/dS7e2jo6MLbWkukowart54UfyN5tFKo2ihUbUxSbWQo70eOFbFY6LFnE3LmoJNHoVz5+NLycWQUYEnNiw27y4oOvXNm4DBbScTtJ6UUKXYLKXYLxRlJcAJXJoFwhPbuIG3eIBu8Ado9XnwdTQQ6mwh7WtC+Vky+NuyBNpz+DjL8HrI8bWSynyzlwaV6jvsZYcwEsBNQNiLKQgQzEUy8YZ9PyRU/Zs6oxI7mOFESYJ0AI2KwZ+s7tGz8N1kNKxkRrGCiihDSZvbaR7Ox8HpSx8yjdPK8fh1QHWlYVhJLKMThfwv8nb2yEGN/EzE09a1uGqt20l2/G6NtD7bO/aT46sgINZKvWylRIUoO2aeTFNqt+Xhdw3G7ZmFKLcKWWURyVjGpeUNJyxmCy56CK1EnlSDJTgfDR4xm+IjRR309FDGo73DT1VSD191ET2crga4W8LVj9ndgDbhRYR/msB9TpAdrKIBDd+DUfswY0WEM6NiXgemDxxDBQkSZiSgLhrJ88F0rM4bJQdhkwWeyEzbZMcx2tCV2Z8xiB6sTZXGQMfocMnu5N2L21Emsfnss4zb+C+bf+pE7c1prVr+/lcBLd3BVeCVttnw8n15EyYRTT4Xem7514XjurbiO3zbdj/epGzFf8BO213vYvuZlJtQ/w/dMe+hy5hG86C+kT/xcvx2zf9PcEXx225W851nP1Oe+SeWmlVQEsgk2bOMKvZZM5aWn4Gy45OfYTiIRRl9SSnHvZ8fz2Yc8zLOcy4L/3EPl1nd531+AzbOfO02bcFl7iAybjbrwLiicnOgiH9WwrGRuWTCan71kUJ55Eeevvp9dW9fxjreAnFAdT5g3k2ztQQ+bAxf8tN+exxdnDOOlLQ186S3Fvwo+w4w1f2Db5vdY1VXAKBpZZd2C0/BB0ezoeRRNSXSRPzCmIJWIodnV2MWkIenRjXnjYf2jEAkPmB6FiKGpd/dQ1eZjf1s3B1q7aWluJNK2D0dXNfmRBoapJoaZmjhLtZBPO+ZDe50sELCkEkguwEgdgTl9HqHsoVjTi6I3LlLywZWP2ZFOSj/oWe0NdouZgjTnhwlRyAWOvg6j1prOnhCt3iDN3gA7vEE8Xi/42jD5WjH1tGLyu9GhHkxhP2YjgCXix2L4sRgBLEYAsw5jIoJJG4SdBdEbAGcIpU8x5W5vmDZtml6/fn2ii/GB3RvfouPtRyhpf5s82jG0Yo91JO15M0kpP4+yKefhSD6zM+zcfs+9/Dx4D9y4AoqnJro4cdPh9VO1rwJPzVaCTZWY3ftI7a4mL1xLIW2HddV34qLVWkC3s4iwqxhT5lCScoaTXjiCrKIyzM4zu45FYj3059/zzYYf0H3e3STP+a8Ptu/YV83upT9nfucSbCpC4/ibGHrZHb262G48vL6jie1P/pBvqacPa0cd9iIss76Na8Z1/f4cAOrdPfzwqXe4qPZ+Ljetxqoi+JWTnpL5ZMz9ZjQL5Blgc42bHz73Puc3P8aXzcvJUF66bVlYR1+IbcaN0bWU+jmtNY+vreZ3y3dxlf8ZvmJ5jQzVRciRjb38AtT0r/XbwOpQHn+Iu/69g5e31nFdZCk3WF8lgy50cg6WkfPh7K/2q8DqoCaPn0/c8wZ3XDyGr82JXSxveRqWfA2+sTIhmTJPldaahk4/+1q6Pwii6lo6iLRUkuLZSwm1DFcNDFVNlKgm0lX3Yfv7HTmE00qwZA3HnjUUlT4E0oohtRjSiqLD8oQ4hFJqg9Z62ke2S4B1bO8tfZAxm+5it+tsjLJPMeKTV5CRW5zoYsXVLQ8v5Zf118Gl98O06xNdnJPW6QtyYH8l7fu3EGzYhr1jNzk9+ygxakg+ZIKol2Ra7cV0pwxDZ5bizB9NenE5GcVjMCX3n2FYYuDZ3eih8aFLmWnazr7yr9NhzsG/fw3TuleSovzsz72AooW/wNZb6eJ7Qb27hzVr3yG7ZS25qUmUjP8kzmHT+sV8mJPV7PET8nvJdRhYU7LPyHMA6OwJ4bAo7CbO2B4HrTU9oQh2ixmzqX/2fp6IUMQgFDFwWqPJhs4Ec3/1JmW5Lh65Lnad2FkL942FC++BmTcntnBHcTCQ2t3URWWTl8rmLg40tmFq2UlRqJoyUx1lqo6RpnqGqOboqAjAwBSdH5xZii1nBCpzOGSWQubw6Fp2fbwEhjjzSYB1Cvw93ZhMZmz2/jE5uzc8sHw3X3p7HikTLsf22YcSXZxj0lpT7/axv2ILXfvWYWncTG7XDoYbVYdNsuxQ6bQmlRLIGIWlYCwZw8aTPWwc5pTsfjtcSQx8q7bsIfLcTczV7wHQjZOa/Asovuh7pAzr/3fmhRAD263PbuGV7Y1s+uEFmA4Gtw9Mii50fO0zCS1bMGywp9nLjgYPO+o97GjoZG99K8WBvYwz7We82s9ky35Kqf0wkDJZiWSUYskbg8oZDdmjIKccssr6TcIdMTAcK8A6M29z9RGHc+DfyZg2PJPNK0cwvXodiVnR5aO01tS0+di9ezude9dia9pMnncH5Xofs2ITJP3YqHeMpDrzYqz5Z5FRMpHs0klkpGQj/VGiv5k9oYzAWa9SUVWFS/kpKBlNeT/JRieEENOHZ/LU+hq213sYXxybjz1qAaz/KwS6+mxoXDBssKvRw+baTrbUuNle76G6uY2RxgHGmfYzyXyAL1sPMIQazPYIAEZSNqbCSVBwVXQ4Y+4YTBnDMZ2hPbliYJDfvkFu0pB0HtLlzOt8CroaE5KZqbXLT0VlBa2716LqN5Hl2c4YvZf5sew8ISw0OctoyP407UOnkTdmBs6CsZTKH09xBrFbzIwecfTJwEIIkUjzynOxmBQvbq3/MMA66zJY+0fY+SJM+kLcPzNiaPa2eNlc42ZLbSdbat3sa2ijzNjPONN+Ztmq+JblAMXWakxEgymdlI0qnAQFC6FwEhROxpRaJCNURL8jV6iDXLLdQnXWLOh8CiqXw5Qv9erneQNhdlbupWX3uxi1G0h3b2dUZA/nKDcAEUw0OUppz76AnpKzyS2fiTV/LMUWe6+WSwghhBisMpNtzB6ZzXMb6/ju/FHRbG1DZ0aH1q39Y3Qpg9MIYrTW1LT3sLnWzZZaN5trO9lT18Kw0D7GmfYz2XKAG60HGGKt+TCYch4Mpj77QTClJJgSZwgJsATlE2dS/Z8ccjc8gSOOAZY/FKHiQDWNO9cQrt1Iavs2SkO7OVu1AWCgaLINxZ07i56hU8kbMxNH8SQKz4AMZEIIIcRAcuPsUq59ZC1PrK3mhlnDo4HMJ78NL/wXbH7yhHuxtNbUd/rZWtvJ1jo3W+s8VNY0ke+PzpmaaD7AtdYDDDF9OMzvaD1TEkyJM5kEWILLJxfx+Ir53Fq3CGrWwZDpJ32MYNhg74EDNOx6l2DNRlLatzMsWMlE1cLBBK+NliLcudPYUzyF3PKZpJZMpcCeQuKXWRRCCCEGt0+OyGL2yGx+8couxhSkMnNEFky6Bjb9C176HiRnw8gLDtvHMDS1HT3sbPSwra6TLbWd1NbWkO+vZKw6wDhTFZ+3VlOs6zHZowkoJJgSg8FpZRFUSj0FHFxlNB1wa60nKaVKgJ1ARey1d7XWNx3veP0ti+Bg8pNn1/KNrVeT5koh6caXIX3IUd+ntaaprYPays10Vm/DaN5FiqeSYcE9FMZ6pgAaLYW408aiCieSPXI6mWXTUUmSfkIIIYTorzq6g3zuz2s40NrN5ZOKmFeeQ5Gli/LXvoTTXUFz5lT2us6mKpBCXVcEf1c7KUYXxaqZ4aqJMnMjqbrrg+Pp1GJUwQTInwD546MBlQRTYgDp9TTtSqnfAJ1a65/GAqwXtdbjTuYYEmAlTpc/xE8e/Bt3en6IzWRQlXEOXa5SAoaJSNCHxdtIkr+RzHAzhbR+sMBoGDNN1mLcqaOhcDLZZdPJHTUN5UxP7AkJIYQQ4qS5fUF+89punttUhzcQBsBOkC+Zl3O1+U3KTPWHvV+jCCXnY84eiTmnLJoKPW9sNKhKykzEKQjRZ3o1wFLRlfSqgfO01pUSYJ2Z/KEIjy97i4wtf2F6aB0FtGFWmoC20mHKwGPLJZhcQDijjOTiseSNmERqUTmYrYkuuhBCCCHiyB+KsLfFS0d3iLBhkOa0kuOyk20N4oh4IRwARzo400GWnRCDVG8HWHOA3x78gFiAtR3YDXiAH2itVx1j368DXwcYOnTo1KqqqtMujzh9EUPjCwRJslkxm02JLo4QQgghhBD9yikvNKyUeh042uJId2itn489/gKw6JDXGoChWus2pdRUYKlSaqzW2nPkQbTWDwMPQ7QH6/inIvqC2aRwOSU1uhBCCCGEECfjuAGW1nr+x72ulLIAVwJTD9knAARijzcopfYCowAZ/yeEEEIIIYQYsOIx9ms+sEtrXXtwg1IqRylljj0uBUYC++LwWUIIIYQQQgjRb8VjHayrOXx4IMAc4KdKqRBgADdprdvj8FlCCCGEEEII0W/FLU17PCilWoD+luUiG2hNdCFEn5H6HjykrgcPqevBRep78JC6Hlz6Y30P01rnHLmxXwVY/ZFSav3RsoOIgUnqe/CQuh48pK4HF6nvwUPqenA5k+pb8m8LIYQQQgghRJxIgCWEEEIIIYQQcSIB1vE9nOgCiD4l9T14SF0PHlLXg4vU9+AhdT24nDH1LXOwhBBCCCGEECJOpAdLCCGEEEIIIeJEAiwhhBBCCCGEiBMJsD6GUmqBUqpCKbVHKXVbossj4kcpNUQp9aZSaodSartS6r9j2zOVUsuVUpWx7xmJLquID6WUWSm1SSn1Yuz5cKXU2lj7fkopZUt0GUV8KKXSlVLPKqV2KaV2KqVmStsemJRS3439Dd+mlFqklHJI2x44lFJ/VUo1K6W2HbLtqG1ZRf0uVu9blFJTEldycbKOUde/iv0d36KUek4plX7Ia7fH6rpCKXVhQgr9MSTAOgallBl4ELgIOAv4glLqrMSWSsRRGPi+1vosYAZwc6x+bwPe0FqPBN6IPRcDw38DOw95fi9wn9a6DOgAvpqQUone8ADwita6HJhItN6lbQ8wSqki4NvANK31OMAMXI207YHkMWDBEduO1ZYvAkbGvr4O/LGPyiji4zE+WtfLgXFa6wnAbuB2gNj12tXA2Ng+D8Wu2/sNCbCObTqwR2u9T2sdBJ4ELk9wmUScaK0btNYbY4+7iF6AFRGt47/H3vZ34DMJKaCIK6VUMXAJ8EjsuQLOA56NvUXqeoBQSqUBc4BHAbTWQa21G2nbA5UFcCqlLEAS0IC07QFDa70SaD9i87Ha8uXAP3TUu0C6UqqgTwoqTtvR6lpr/ZrWOhx7+i5QHHt8OfCk1jqgtd4P7CF63d5vSIB1bEVAzSHPa2PbxACjlCoBJgNrgTytdUPspUYgL1HlEnF1P3ALYMSeZwHuQ/5wS/seOIYDLcDfYkNCH1FKJSNte8DRWtcBvwaqiQZWncAGpG0PdMdqy3LdNrDdACyLPe73dS0BlhjUlFIpwGLgO1prz6Gv6egaBrKOwRlOKXUp0Ky13pDosog+YQGmAH/UWk8GujliOKC07YEhNvfmcqJBdSGQzEeHGIkBTNry4KCUuoPo1I7HE12WEyUB1rHVAUMOeV4c2yYGCKWUlWhw9bjWeklsc9PBIQWx782JKp+Im3OAy5RSB4gO9T2P6Byd9NiwIpD2PZDUArVa67Wx588SDbikbQ8884H9WusWrXUIWEK0vUvbHtiO1Zblum0AUkp9BbgUuFZ/uHhvv69rCbCO7T1gZCwbkY3oZLoXElwmESexOTiPAju11r895KUXgOtij68Dnu/rson40lrfrrUu1lqXEG3HK7TW1wJvAgtjb5O6HiC01o1AjVJqdGzT+cAOpG0PRNXADKVUUuxv+sG6lrY9sB2rLb8AfDmWTXAG0HnIUEJxBlJKLSA6vP8yrbXvkJdeAK5WStmVUsOJJjZZl4gyHov6MBgUR1JKXUx07oYZ+KvW+u7ElkjEi1JqFrAK2MqH83L+j+g8rKeBoUAVcJXW+sgJtuIMpZSaC/yP1vpSpVQp0R6tTGAT8EWtdSCBxRNxopSaRDShiQ3YB1xP9IaitO0BRil1J/B5osOHNgE3Ep2LIW17AFBKLQLmAtlAE/BjYClHacuxIPsPRIeJ+oDrtdbrE1BscQqOUde3A3agLfa2d7XWN8XefwfReVlhotM8lh15zESSAEsIIYQQQggh4kSGCAohhBBCCCFEnEiAJYQQQgghhBBxIgGWEEIIIYQQQsSJBFhCCCGEEEIIEScSYAkhhBBCCCFEnEiAJYQQQgghhBBxIgGWEEIIIYQQQsTJ/wd0k/y1iGRDiQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADbb0lEQVR4nOzdd3hc1bXw4d+aot6rZVXbuHewDcQ2xST0Gorh0gyXcCEhARJKQhLi5N7cm4+QkFACISEhAWJMh9CrMabaxr03WZIty+pdmra/P85IHsmSJVsjjUZe7/PM45lz9tlnTfVZ2k2MMSillFJKKaWU6jtbqANQSimllFJKqaFCEyyllFJKKaWUChJNsJRSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYJEEyyllFJKKaWUChJNsJRSapAQkQIRMSLiCHUsQ52ILBCRZaGOY7ARkbkisiXUcSilVDjTBEsppVRYE5GFIuIWkYaA212hjiscGWM+McaMDXa9IjJPRL4WkToR2SkiNwb7HEopNVhogqWUUkGiLU8htdgYExdwuy/UAQVTOH+2RMQJvAz8GUgE5gO/F5GpIQ1MKaX6iSZYSinVByJSKCJ3i8haoFFEHCJygoh8JiI1IrJGRE4JKL9ERP5PRL7y/zX/VRFJ6abu60Rkk4jU+//q/1+d9l8gIqv99ewQkTP92xNF5AkRKRWRPSLyPyJi7+F5jBKRD0WkUkQqROQZEUkK2FclIsf6Hw8XkfK25yUi54vIBv/zXSIi4zu9PneIyFoRqRWRxSISdfiv9OETkR/7X5d6EdkoIhd1U05E5AER2e9/LdeJyCT/vkgRuV9EikSkTEQeE5HoXp7/SX/59/wxfCwi+QH7/ygixf5zrhSRuQH7ForICyLytIjUAQtEZJaIfO5/nUtF5GERiQg4xojId0Vkm/98/+1/7z7zn+O5wPLdxHyKiJT05vkdhhQgAXjKWJYDm4AJQT6PUkoNCppgKaVU310BnAMkAZnAG8D/YF1Y3gG8KCLpAeWvAa4HsgAP8GA39e4HzsW6OL0OeCAgyZkF/BO403/ek4BC/3FP+us9BpgOnA7c0MNzEOD/gOHAeCAXWAhgjNkB3A08LSIxwN+BfxhjlojIGGARcBuQDrwJ/LvThfxlwJnACGAKsKDLAETm+JOH7m5zengOne0A5mK1mvzSH39WF+VOx3r9xvjLXgZU+vf9xr99GtbrmQ3cexgxXAn8N5AGrAaeCdi33F9vCvAv4PlOyecFwAtY7+8zgBe43V/XicBpwHc7ne8M4DjgBOAu4HHgKqz3cxLWZ/WI+RPl7t6fP3V1jDGmDOszcp2I2EXkRCAf0DFwSqmhyRijN73pTW96O8IbVlJzfcDju7H+Uh9Y5h3gWv/9JcBvAvZNAFyAHSgADODo5lyvALf67/8ZeKCLMplAKxAdsO0K4KPDfF4XAqs6bXsNWAesBSL9234OPBdQxgbsAU4JeH2uCth/H/BYkN+Dhf7XsCbgNryLcquBC/z3FwDL/PfnAVuxkhJbQHkBGoFRAdtOBHb1Mq4ngWcDHsdhJUm53ZSvBqYGPKelPdR/G/BywGMDzA54vBK4O+Dx74A/9FDnKUBJMN8ff73nAWVYib8H+E6wz6E3velNb4Plpi1YSinVd8UB9/OBSwP/sg/MwWqt6qr8bsCJ1SrRgYicJSJf+Lvn1QBnB5TLxWqh6SzfX19pwPn/DGQc6gmISKaIPOvvUlgHPN1FTH/BagV5yBjT6t823P8cADDG+PzPLzvguH0B95uwEo1ge84YkxRw2ysi14jVhbLtdZhEF6+zMeZD4GHgEWC/iDwuIglYLXIxwMqAOt72b++t9vfaGNMAVGG9Zvi7Tm7yd52swWo9S+vqWH/5MSLyuojs879H/9vF8ykLuN/cxeP+eO0PSUTGAc9itdxGABOBu0TknIGORSmlBoImWEop1Xcm4H4xVgtW4MV+rDHmNwFlcgPu5wFuoCKwQhGJBF4E7gcyjTFJWN3vJOA8o7qIpRirBSst4PwJxpiJPTyH//U/j8nGmASsbmVt50JE4oA/AE8AC+XAuLG9WEldWznxP789PZzvIGJNEd5wiNvcnmtprysfKyG8BUj1v37rA59TIGPMg8aY47BaFMdgdb2swEpKJga8lonGmMNJUtrfa/9rmALs9T+Xu7C6Iyb746vtFF/g5wrgUWAzMNr/Ht3T3fPpL2KNtevu/Xmsm8MmAVuNMe8YY3zGmC1Y3WjPGrjIlVJq4GiCpZRSwfU0cJ6InOEfbxLlnzggJ6DMVSIywT+e6VfAC8YYb6d6IoBIoBzwiMhZWGOF2jyBNablNBGxiUi2iIwzxpQC7wK/E5EE/75RInJyD3HHAw1ArYhkYyUYgf4IrDDG3IB1cdx2Mf0ccI4/DifwI6wE77OeXqjOjDVFeNwhbp8cRnWxWAlKOVgThmBd6B9ERGaKyPH++BuBFsDnb437C9bYtwx/2WwROSPgWCMBk5h04Wz/2LIIrLFYXxhjirFeb48/PoeI3Is11u5Q4oE6oMHfKnRzD+WDzhgz8RDvz03dHLYKGC3WVO0iIqOwxhauHbjIlVJq4GiCpZRSQeS/eL4Aq3WhHKtF6U46/t4+hTU+Zx8QBfygi3rq/dufwxqb8x9YY6Da9n+Ff+ILrJaPjznQktTWFWuj/9gX6NhFsSu/BI711/UG8FLbDhG5AGuSirYL+h8Cx4rIlf7WiKuAh7BafM4DzjPGuHo4X78yxmzEGnP0OVY3ucnAp90UT8BKpKqxujtWAr/177sb2A584e+W9z4wFkBEcoF6rHFp3fkX8AusroHHYb1WYI3Lextr7NdurKSuuKsKAtyB9Tmo98e7uIfyg4KxJkm5Hmsylzqsz+qLwF9DGZdSSvUXMaZzDwSllFL9RUSWAE8bY/TiMsyJyFVY3Qd/0s3+J7EmjPjZgAamlFIqpMJ24UKllFIqlIwxT4c6BqWUUoOPdhFUSqmjhFiL3h7O5ARqCBKRe7r5HLwV6tiUUmoo0C6CSimllFJKKRUk2oKllFJKKaWUUkEyqMZgpaWlmYKCglCHoZRSSimllFKHtHLlygpjzEGLzw+qBKugoIAVK1aEOgyllFJKKaWUOiQR2d3Vdu0iqJRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSDagxWV9xuNyUlJbS0tIQ6FDUIREVFkZOTg9PpDHUoagj6bHsFT3y4nv+77DgykuJDHY5SSimlwtCgT7BKSkqIj4+noKAAEQl1OCqEjDFUVlZSUlLCiBEjQh2OGoL+sWwbT+y9gB3Pnk3GTYtCHY5SSimlwtCg7yLY0tJCamqqJlcKESE1NVVbM1W/GVf5PgCj9r0Z4kiUUkopFa4GfYIFaHKl2ulnQfWnjJadBx5UdznzqlJKKaXUIYVFgqWUUgPB7mpov99SvCqEkSillFIqXGmC1Qsiwo9+9KP2x/fffz8LFy4MXUABTjnllEMuznzhhRdywgkndNi2cOFCsrOzmTZtGpMmTeK1117r7zCVGvRcHh9RvgaqJQmA2qINoQ1IKaWUUmFJE6xeiIyM5KWXXqKioiKo9Rpj8Pl8Qa0zUE1NDStXrqS2tpadO3d22Hf77bezevVqnn/+ea6//vp+jUOpcFDb7CaOZpqjMthrUmjdtznUISmllFIqDGmC1QsOh4Mbb7yRBx544KB95eXlXHzxxcycOZOZM2fy6aefAlYr0f33399ebtKkSRQWFlJYWMjYsWO55pprmDRpEsXFxdx5551MmjSJyZMns3jxYgCWLFnCKaecwiWXXMK4ceO48sorMcZ0Gd9TTz3V3hr11VdftW9/6aWXOO+887j88st59tlnuzx2/PjxOByODsnjj3/8YyZMmMCUKVO44447ACgsLGTevHlMmTKF0047jaKiIgAWLFjAzTffzAknnMDIkSNZsmQJ119/PePHj2fBggXtdd58883MmDGDiRMn8otf/OKgOGpra8nPz29P9BobG8nNzcXtdncZt1LB1urxEi/N2KIT2WmGE1G9LdQhKaWUUioMDfpp2gP98t8b2Li3Lqh1ThiewC/Om9hjue9973tMmTKFu+66q8P2W2+9ldtvv505c+ZQVFTEGWecwaZNmw5Z17Zt2/jHP/7BCSecwIsvvsjq1atZs2YNFRUVzJw5k5NOOgmAVatWsWHDBoYPH87s2bP59NNPmTNnzkH1NTU1sXr1apYuXcr111/P+vXrAVi0aBH33nsvmZmZXHzxxdxzzz0HHfvll19is9lIT08HoLKykpdffpnNmzcjItTU1ADw/e9/n2uvvZZrr72Wv/3tb/zgBz/glVdeAaC6uprPP/+c1157jfPPP59PP/2Uv/71r8ycOZPVq1czbdo0fv3rX5OSkoLX6+W0005j7dq1TJkypT2OxMREpk2bxscff8ypp57K66+/zhlnnKHrXakB4/L4iKcZE5FFeUQq05s/DXVISimllApD2oLVSwkJCVxzzTU8+OCDHba///773HLLLUybNo3zzz+furo6GhoauqnFkp+f3z4uatmyZVxxxRXY7XYyMzM5+eSTWb58OQCzZs0iJycHm83GtGnTKCws7LK+K664AoCTTjqJuro6ampqKCsrY9u2bcyZM4cxY8bgdDrbEy+ABx54gGnTpnHHHXewePHi9tn5EhMTiYqK4j//8z956aWXiImJAeDzzz/nP/7jPwC4+uqrWbZsWXtd5513HiLC5MmTyczMZPLkydhsNiZOnNge83PPPcexxx7L9OnT2bBhAxs3bjzoecyfP7+9Be/ZZ59l/vz5h3wdlQqmVo+PeJrwRSTQHJNDrK8eWmpDHZZSSimlwkxYtWD1pqWpP912220ce+yxXHfdde3bfD4fX3zxBVFRUR3KOhyODuOaAtduio2N7dX5IiMj2+/b7XY8Hk+X5TpPXS4iPPfcc1RXV7cvyFtXV8eiRYv49a9/DVhjsNq6/3WO+6uvvuKDDz7ghRde4OGHH+bDDz/sVZw2m61DzDabDY/Hw65du7j//vtZvnw5ycnJLFiwoMu1rM4//3zuueceqqqqWLlyJfPmzTvkeZUKJpfHR5w00xgZhy8xD+qAmiIYNjnUoSmllFIqjGgL1mFISUnhsssu44knnmjfdvrpp/PQQw+1P169ejUABQUFfP311wB8/fXX7Nq1q8s6586dy+LFi/F6vZSXl7N06VJmzZp1WHG1tfosW7aMxMREEhMTWbRoEW+//Xb7uK+VK1d2Ow4rUENDA7W1tZx99tk88MADrFmzBoBvfOMb7cc/88wzzJ07t9fx1dXVERsbS2JiImVlZbz11ltdlouLi2PmzJnceuutnHvuudjt9l6fQ6m+anV7iacJE5FARFqBta286++tUkoppVR3+pxgiUiuiHwkIhtFZIOI3OrfvlBE9ojIav/t7L6HG3o/+tGPOkwI8eCDD7JixQqmTJnChAkTeOyxxwC4+OKLqaqqYuLEiTz88MOMGTOmy/ouuugipkyZwtSpU5k3bx733Xcfw4YNO6yYoqKimD59OjfddBNPPPEEhYWF7N69u8P07CNGjCAxMZEvv/yyyzrOPvts9u7dS319Peeeey5Tpkxhzpw5/P73vwfgoYce4u9//ztTpkzhqaee4o9//GOv45s6dSrTp09n3Lhx/Md//AezZ89u33fvvfd2mCZ+/vz5PP3009o9UA04T2sTDvFBVAJxWccAUFe6PcRRKaWUUircSHcz0/W6ApEsIMsY87WIxAMrgQuBy4AGY8z9hzo+0IwZM0znNZ02bdrE+PHj+xSjGlr0M6H6wydfr2fua7Mp+cb/UDbmSsb8fQI1Yy4h98qHQx2aUkoppQYhEVlpjJnReXufx2AZY0qBUv/9ehHZBGT3tV6llBpI3tYmAGyRMeSmxlBi0omr3h3iqJRSSikVboI6BktECoDpQFs/tFtEZK2I/E1Ekrs55kYRWSEiK8rLy4MZjlJK9ZrX1QyAIyKa9LhI9kgGkY0lIY5KKaWUUuEmaAmWiMQBLwK3GWPqgEeBUcA0rBau33V1nDHmcWPMDGPMjLa1mJRSaqB53dbMlvaIaESE2sgsElr2Qh+7USullFLq6BKUBEtEnFjJ1TPGmJcAjDFlxhivMcYH/AU4vKnxlFJqALUlWI4Ia8mFltgcokwLNFWGMiyllFJKhZlgzCIowBPAJmPM7wO2ZwUUuwhY3/lYpZQaLHyujgmWScy1dtQUhSokpZRSSoWhYCw0PBu4GlgnIqv92+4BrhCRaYABCoH/CsK5lFKqX/j8LVjOyGgAIlLzoRBaKgqJyj42hJEppZRSKpz0uQXLGLPMGCPGmCnGmGn+25vGmKuNMZP928/3zzYYtl555RVEhM2bN3dbprCwkEmTJgXtnAsWLOCFF17odv9tt91GdnY2Pp+vfduTTz5Jeno606ZNY8KECfzlL38JWjxKDWXG0zHBih82EoC6Ml1sWCmllFK9F9RZBIeyRYsWMWfOHBYtWtTlfo/H0+dzeL3eXpf1+Xy8/PLL5Obm8vHHH3fYN3/+fFavXs2SJUu45557KCsr63NsSg11xtMKgDisBCsjfRgNJorWisIQRqWUUkqpcKMJVi80NDSwbNkynnjiCZ599tn27UuWLGHu3Lmcf/75TJgwAbASrSuvvJLx48dzySWX0NRkra3zwQcfMH36dCZPnsz1119Pa6t1MVdQUMDdd9/Nsccey/PPP3/Qud9//31mzJjBmDFjeP311zuce+LEidx8883dJn0ZGRmMGjWK3bsPrOXz4IMPMmHCBKZMmcLll18OQFVVFRdeeCFTpkzhhBNOYO3atQAsXLiQa6+9lrlz55Kfn89LL73EXXfdxeTJkznzzDNxu90A/OpXv2LmzJlMmjSJG2+8kc6LV/t8PgoKCqipqWnfNnr0aE381KBi/F0EcUQAkJsSwx6TBjXFIYxKKaWUUuEmGGOwBs5bP4Z964Jb57DJcNZvDlnk1Vdf5cwzz2TMmDGkpqaycuVKjjvuOAC+/vpr1q9fz4gRIygsLGTLli088cQTzJ49m+uvv54//elP3HLLLSxYsIAPPviAMWPGcM011/Doo49y2223AZCamsrXX3/d5bkLCwv56quv2LFjB6eeeirbt28nKiqKRYsWccUVV3DBBRdwzz334Ha7cTqdHY7duXMnO3fu5Jhjjmnf9pvf/IZdu3YRGRnZnvD84he/YPr06bzyyit8+OGHXHPNNaxevRqAHTt28NFHH7Fx40ZOPPFEXnzxRe677z4uuugi3njjDS688EJuueUW7r33XgCuvvpqXn/9dc4777z2c9psNi644AJefvllrrvuOr788kvy8/PJzMzs9dukVH8TfwsWDmuSi7S4SDaSzriGPSGMSimllFLhRluwemHRokXtrT2XX355hxajWbNmMWLEiPbHubm5zJ49G4CrrrqKZcuWsWXLFkaMGMGYMWMAuPbaa1m6dGn7MfPnz+/23Jdddhk2m43Ro0czcuRINm/ejMvl4s033+TCCy8kISGB448/nnfeeaf9mMWLFzNt2jSuuOIK/vznP5OSktK+b8qUKVx55ZU8/fTTOBxWfr1s2TKuvvpqAObNm0dlZSV1dXUAnHXWWTidTiZPnozX6+XMM88EYPLkyRQWFgLw0UcfcfzxxzN58mQ+/PBDNmzYcNDzmD9/PosXLwbg2WefPeRzViokvG0tWJEA2GxCTUQmcS37QhiUUkoppcJNeLVg9dDS1B+qqqr48MMPWbduHSKC1+tFRPjtb38LQGxsbIfy1qz13T/uSuc6eqrvnXfeoaamhsmTJwPQ1NREdHQ05557LmAlMw8//HCX9b3xxhssXbqUf//73/z6179m3bpDtwhGRrZdbNpwOp3t8dhsNjweDy0tLXz3u99lxYoV5ObmsnDhQlpaWg6q58QTT2T79u2Ul5fzyiuv8LOf/eyQ51VqoInHZd3xt2ABtMRkE1dXB60NEBkXosiUUkopFU60BasHL7zwAldffTW7d++msLCQ4uJiRowYwSeffNJl+aKiIj7//HMA/vWvfzFnzhzGjh1LYWEh27dvB+Cpp57i5JNP7tX5n3/+eXw+Hzt27GDnzp2MHTuWRYsW8de//pXCwkIKCwvZtWsX7733Xvt4r+74fD6Ki4s59dRT+X//7/9RW1tLQ0MDc+fO5ZlnngGssV1paWkkJCT0Kr62ZCotLY2GhoZuZz0UES666CJ++MMfMn78eFJTU3tVv1IDRbz+LoL2yPZtvoQc606tjsNSSimlVO9ogtWDRYsWcdFFF3XYdvHFF3c7scTYsWN55JFHGD9+PNXV1dx8881ERUXx97//nUsvvZTJkydjs9m46aabenX+vLw8Zs2axVlnncVjjz2Gz+fj7bff5pxzzmkvExsby5w5c/j3v//dZR033HADK1aswOv1ctVVVzF58mSmT5/OD37wA5KSkli4cCErV65kypQp/PjHP+Yf//hHL18dSEpK4jvf+Q6TJk3ijDPOYObMme37HnvsMR577LH2x/Pnz+fpp5/W7oFqULJ5W3HjANuBn0Vnah4Arsrd3R2mlFJKKdWBdJ7xLZRmzJhhVqxY0WHbpk2bGD9+fIgiUoORfiZUf3jztws4peltYn5xYMzVm5+u5Oz35lF+8v+Sfur3QhidUkoppQYbEVlpjJnRebu2YCmlFGDzufBIRIdtqcPycBk7zeWFoQlKKaWUUmEnvCa5UEqpfmLvIsHKSY2j1KRCtY7BUkoppVTvhEUL1mDqxqhCSz8Lqr84fK14bB0TrMz4SPaShqO+JERRKaWUUircDPoEKyoqisrKSr2wVhhjqKysJCoqqufCSh0mm891UILlsNuocg4jtqU0RFEppZRSKtwM+i6COTk5lJSUUF5eHupQ1CAQFRVFTk5OqMNQQ5DTuPB16iII0BSdRULDR+BxgePg/UoppZRSgQZ9guV0OhkxYkSow1BKDXEOnwuv/eAEypOQg63BQF0JpIwMQWRKKaWUCieDvougUkoNBKdx47VFHrTdkZwPgEcnulBKKaVUL/R7giUiZ4rIFhHZLiI/7u/zKaXUkXAYNz77wQlWTHoBALWlOwc4IqWUUkqFo35NsETEDjwCnAVMAK4QkQn9eU6llDpcPp8hAhemiy6CyVkFADTt3zXAUSmllFIqHPV3C9YsYLsxZqcxxgU8C1zQz+dUSqnD4vL6iMSN6aIFKzstiTKThKd6dwgiU0oppVS46e8EKxsIHLhQ4t/WTkRuFJEVIrJCZwpUSoVCq8dHpLgxjoOXAMhKjGaPScNep2thKaWUUqpnIZ/kwhjzuDFmhjFmRnp6eqjDUUodhVweHxG4wXFwC1aEw0alI5OYZl0LSymllFI96+8Eaw+QG/A4x79NKaUGjVaPl0jc0EUXQYCGqCwSXfvB5xvgyJRSSikVbvo7wVoOjBaRESISAVwOvNbP51RKqcPS6rHGYImz6wTLHZeDEzc0lA1wZEoppZQKN/2aYBljPMAtwDvAJuA5Y8yG/jynUkodrpZWF07xIl2MwQKwJecB4K0qHMColFJKKRWO+n0MljHmTWPMGGPMKGPMr/v7fEopdbhaW1sAsDm7TrAiMo8BoL5064DFpJRSSqnwFPJJLpRSKtQ8LU0A2CO6TrCSso7Ba4SmfdsHMiyllFJKhSFHqANQSqlQc7naEqzoLvdnpyWy16RhKnYMZFhKKaWUCkPagqWUOuq5W1uB7luwcpNjKCIDZ60uNqyUUkqpQ9MESyl11PO0Wi1Yzu7GYDlslEdkE99cNJBhKaWUUioMaYKllDrqefyTXDgiu+4iCNAcm0ectw6aawYoKqWUUkqFI02wlFJHPa+7GQDnIRIskzzS+rdq14DEpJRSSqnwpAmWUuqo53VZY7AiomK6LROVMQqAxn3bBiQmpZRSSoUnTbCUUke99hasbia5AEjKGQtA3V5dC0sppZRS3dMESyl11PO5rTFY0s0kFwB5w9IpM0m4ynWqdqWUUkp1TxMspZTyJ1jYI7stkpsSTZHJxF5TODAxKaWUUiosaYKllDrqibvRuhMR222ZSIed/c5s4pt0qnallFJKdU8TLKXUUc/WlmBFxh2yXGNsHkmeCnA1DUBUSimllApHmmAppY56drc/YYo4dILlSbZmEqRyez9HpJRSSqlwpQmWUuqo5/A24sIJduchy0UOGwdAw56NAxGWUkoppcKQJlhKqaOew9NEi637NbDapOaNx2uE2uINAxCVUkoppcJRnxIsEfmtiGwWkbUi8rKIJPm3F4hIs4is9t8eC0q0SinVD5yeRlpt0T2WGzkslSKTgbds8wBEpZRSSqlw1NcWrPeAScaYKcBW4CcB+3YYY6b5bzf18TxKKdVvnN4mXL1owcpOjmYXOUTW6lpYSimllOpanxIsY8y7xhiP/+EXQE7fQ1JKqYEV4WvC7eh+ivY2dptQGZ1PSnMR+LwDEJlSSimlwk0wx2BdD7wV8HiEiKwSkY9FZG53B4nIjSKyQkRWlJeXBzEcpZTqnUhfMz5Hzy1YAK3Jo3Hihprd/RyVUkoppcJRjwmWiLwvIuu7uF0QUOangAd4xr+pFMgzxkwHfgj8S0QSuqrfGPO4MWaGMWZGenp635+RUkodBo/XR4xpxufsuQULwJkxFoDWUh2HpZRSSqmDOXoqYIz55qH2i8gC4FzgNGOM8R/TCrT6768UkR3AGGBFXwNWSqlgamz1EiMtNPawBlabpLwJsBaqi9YzbOLZ/RydUkoppcJNX2cRPBO4CzjfGNMUsD1dROz++yOB0cDOvpxLKaX6Q32rmziakV4mWPk52ZSbRFpLN/VzZEoppZQKR30dg/UwEA+812k69pOAtSKyGngBuMkYU9XHcymlVNDVN7usBCu6y17MBxmRFssOMxxH9fZ+jkwppZRS4ajHLoKHYow5ppvtLwIv9qVupZQaCPU1FdjFYI9L61X5SIedsoh8Jjd+CsaASD9HqJRSSqlwEsxZBJVSKuw0Ve8HIDKh95PsNCWMJNZXD40V/RWWUkoppcKUJlhKqaNaS521PERMYkavj5F0ayZBz36dSVAppZRSHWmCpZQ6qrnrrVao2OTMXh8TlzMBgJqiDf0Sk1JKKaXClyZYSqmjms/fzc8Z37sxWADD846h0UTSuGdjf4WllFJKqTClCZZS6ujW5J/gNCa114eMyohnp8lCKrb2U1BKKaWUCleaYCmljmr2lipcOCEittfHJEY7KbHnEdegy/sppZRSqiNNsJRSR7Wo1grq7UmHPd16fdwIUtxl4Grsn8CUUkopFZY0wVJKHdUSXfupjxx22Md5U0cDYLSboFJKKaUCaIKllDpqtbi9pPnKccUcfoIVM3w8AHXFOpOgUkoppQ7QBEspddTaX9tCllThS8g+7GPT88fjMTbqinUmQaWUUkodoAmWUuqoVb5/D1Hixpmce9jHjspKpchk4N2/pR8iU0oppVS40gRLKXXUqt+/G4CY9LzDPjYjPpLdkkN03Y5gh6WUUkqpMKYJllLqqNVSYSVYicNGHPaxIkJ1TAGpLcXg9QQ7NKWUUkqFKU2wlFJHLV9NCQAxaQVHdLwreTQOPFCzO4hRKaWUUiqcaYKllDpq2Rv2WIsMx6Yd0fERw8YC0LhHZxJUSimllKVPCZaILBSRPSKy2n87O2DfT0Rku4hsEZEz+h6qUkoFV3TTPqod6Ye9yHCblLxJAFQXaYKllFJKKYsjCHU8YIy5P3CDiEwALgcmAsOB90VkjDHGG4TzKaVUUCS499MQk0nmER5fkDOc/SYJ977NQY1LKaWUUuGrv7oIXgA8a4xpNcbsArYDs/rpXEopddhcHh/pvgpaY7KOuI7clBh2mGwiqrcFMTKllFJKhbNgJFi3iMhaEfmbiCT7t2UDxQFlSvzbDiIiN4rIChFZUV5eHoRwlFKqZ2U1jWRSBUewyHAbu02oiMojuWkXGBPE6JRSSikVrnpMsETkfRFZ38XtAuBRYBQwDSgFfne4ARhjHjfGzDDGzEhPTz/cw5VS6ohU7CvGIT6cKYe/yHCg5sRjiDFN0FAWpMiUUkopFc56HINljPlmbyoSkb8Ar/sf7gECr1py/NuUUmpQqCvbBUBsen6f6rFnjIVycO3bRET8sGCEppRSSqkw1tdZBAMHL1wErPfffw24XEQiRWQEMBr4qi/nUkqpYGqptNauSso6/EWGAyXkTgSgavf6HkoqpZRS6mjQ11kE7xORaYABCoH/AjDGbBCR54CNgAf4ns4gqJQaTHw1VqN6TFpen+rJyRtFvYmmee+mYISllFJKqTDXpwTLGHP1Ifb9Gvh1X+pXSqn+4mjYSxPRxEQl9ameEelxbDFZJFduDU5gSimllApr/TVNu1JKDWrRzfuocR75IsNtopx2Sp35xDfuClJkSimllApnmmAppY5KSe4yGqOCMylFQ/wIkj0V0FIXlPqUUkopFb40wVJKHXWaXV4yTCXu2CNfZDiQSR8HgHf/5qDUp5RSSqnwpQmWUuqos7eqhjRqkcScoNQXnTsdgJody4NSn1JKKaXClyZYSqmjTnXJNmxicKaNDEp9WXnHUGniaSn6Oij1KaWUUip8aYKllDrqNO/bBkB89rig1HdMZjzrfSOIKlt1yHItbi+LXn2dz1auCcp5lVJKKTX4aIKllDrqmAorwUrOHR+U+hKjnWyJnkZq0w6o39dlmZVbCnnv/13BFauuxPHWD4NyXqWUUkoNPn1daHhI271pJfvWfYhxNWJczeBuRNxN2DzN2DzNOLzNOHwt2Hwe7MaDzVj/2vFgN17/fS8OrH8xHesX/wYJ2NHVhNEGMIhVUqz7pr2kdNzf1X1pKyf++qRDGauawG3+ctLxMe31dayLg85hPT4Qc6fj/eUOPPsDz61jGQLK9m0q7f4gmM5vachJECMKVk1iBturBKNbi6khnqT41KDV6R1xKmz5J+7N7+CceW379voWNy8v/hvf2vkbpkkNpaQz1rMZjOnzFPFDSUuri9rqCuprKmhtqMLdUIW3qRpfcx2e1ib/73ATxt2EzdNi/f56W3D4WnB6WxD/b7D4f3ttxosNLw7jxY7X/1vspdtPtmn7p/v3xABGbO2/rZ1/Uzv/ZnV83M3vtHRX/sDvcHe/7x3KSmAcB/8Wd1VHoO4+inKIAl0d0tNHWgKPkq7rOBzB/M0LraHyPPr+ng4eQ+M9GYz/Bx+JldHfYNz5P+SEkcH7f7s/aYJ1CPvWfcDxGw+slewyDpolkhaicEkkrbZoPLZIvOLAZYvBZ3PgEwfG5sT472Nz4LM5weZAJDAp6SzwP53A/ca6EAP/v/7/ho3/4t74OpYz1n7jL9vhuPYvmWnfFri/bbt1dp9/d9fntuoL2N9pH7R9qa3zGjj4v3gDgq9Tgmk4cPnS8XLgcH4iBuoHfjAmfsGOKVi1DabXqtaRxu7hczkhiHVOnzWX7ZuGk/LJY6QcdzU+hPc//QzHR7/iGt8X7I8eiWv+s2z69CPmbf8/WvbvJCpzVBAjGFx8Xh/V1eVUlRVTX7GHlupS3LX7sDWWE9FSTpSrklh3NbHeOuJMA/HSTBSQeag6jdAikbQQSatYN5dE4bZF4JMIjD0GIw6Mzd7+22vEjk8c+MSOETsGW/uFvfV3oQOX/IJp//kNvCZp+/2yfiP9v1sdfjcD9x9Ip9oqOvCbd/Dvo7Xd156qdT5eAn57239DA3+PO5+j/bfZ1+G39kB5/zfRmIDvZNe/rl1u7WKj6fKBOdSmoBpMvy19MTQug9sMlfdEn8dg4fO04vWFz7dEE6xDmHjmd6g46XIio+OIjokjwhlBBJAY6sCUUoPO8SPT+GPCZdxW9we2/PF8KhtbOdW9Eo842Xvsjxh+9t3giMReVAfboXLbF2SHcYLV6nZTVrKLqj07aNq/C3d1Efa6EqKbS0lxl5HuKydVWuj8t0Y3dqoliVp7Co0RadREHIMvMhGik7BHJ+GIS8YRm4wjNoXIuBSi4pKIiUsgJjYeR0Q0MSLEhOQZK6WUCpXgjJgeOJpgHUJcQjJxCcmhDkMpFQZEhIsW3Mmiv5Zybs1rpNpj2X3MVYy84B6GJxxY0DjzmOm0fuigqXA5zLkyhBH3zOv1sXdvMeWFG6nfuxlTuZ3oul2ktpaQ49tLnrjJCyhfQzzVzkzq4wqojP0GvoQcIpOyiE4dTlJ6DskZOThjU8gQISNkz0oppZTqX5pgKaVUkOSnxZH/48fx+f5MvE1I66LM6KxUNlBA/L7VAx1etzxeH0UlJezfvpLmknU4KjaR1rSdbE8JudJErr+cGztl9ixqYvPYkDAbST2G6IwRpGSPIjVrJEnR8SSF8okopZRSg4AmWEopFWQ2W/f93e02YW/cRE5peBtcTRAxcB3ejDGUV9dSvHUVdbvXQNlGEuq2kuMuZKRU07YqWC3xlEaNZFvqWdjSjiF2+DjSCyaQlDWKHLuT4CzPrJRSSg1NmmAppdQA844+i6jVr1K26g0yj7+0X87R2OKicPtGKneuwlO6gejqzWS27CTf7CXDmvWAVpzsdeazL+1E9mVOJDF/KsNGH0ti8nASdYZDpZRS6ohogqWUUgPs2JPPZf+qJFo+fRT6mGB5fYaSPcXs27qSppK1OCs2kdK4nXxvEROlFbBm3ytzDKMq4RjWpZ5DdO4Uhh1zLInZYxlh1/8GlFJKqWDq0/+sIrIYGOt/mATUGGOmiUgBsAnY4t/3hTHmpr6cSymlhoqs5HheyLyaS/Y/RNH7j5H3zZ5/Hj0eL3v2llCxewONezcj+zcRX7eVbNcu8qWWfH+5GkmgLGok25Ivwpk1idSR08kYNZWsqHiy+vdpKaWUUgoQE6QFyETkd0CtMeZX/gTrdWPMpMOpY8aMGWbFihVBiUcppQazyrpGdv7hLGb61rA5+VTco89E4rPw+Xw01VfhrtkH9fuIaCghsbmIbO8e4qW5/fgWItjjLKAuYTSSOZGEvClkjTmO6OQsXcBYKaWUGgAistIYM6Pz9qD0DRFrBd3LgHnBqE8ppYa61IRYWr/7Km8+fQ8nVr1G8lcfHVTGY2xU2NKoispla8I0bKmjiMseR0b+BBKHj2aUzR6CyJVSSil1KEFpwRKRk4Dft2Vw/hasDcBWoA74mTHmk26OvRG4ESAvL++43bt39zkepZQKJ3WNjezZuRHTWIlNhPjEZJIycolNygSbLdThKaWUUqoL3bVg9Zhgicj7wLAudv3UGPOqv8yjwHZjzO/8jyOBOGNMpYgcB7wCTDTG1B3qXNpFUCmllFJKKRUOjriLoDHmmz1U7AC+DRwXcEwr0Oq/v1JEdgBjAM2elFJKKaWUUkNWMPqefBPYbIwpadsgIukiYvffHwmMBnYG4VxKKaWUUkopNWgFY5KLy4FFnbadBPxKRNyAD7jJGFMVhHMppZRSSiml1KAVtGnag0FEyoHBNstFGlAR6iDUgNH3++ih7/XRQ9/ro4u+30cPfa+PLoPx/c43xqR33jioEqzBSERWdDV4TQ1N+n4fPfS9Pnroe3100ff76KHv9dElnN5vnf9XKaWUUkoppYJEEyyllFJKKaWUChJNsHr2eKgDUANK3++jh77XRw99r48u+n4fPfS9PrqEzfutY7CUUkoppZRSKki0BUsppZRSSimlgkQTLKWUUkoppZQKEk2wDkFEzhSRLSKyXUR+HOp4VPCISK6IfCQiG0Vkg4jc6t+eIiLvicg2/7/JoY5VBYeI2EVklYi87n88QkS+9H+/F4tIRKhjVMEhIkki8oKIbBaRTSJyon63hyYRud3/G75eRBaJSJR+t4cOEfmbiOwXkfUB27r8LovlQf/7vlZEjg1d5OpwdfNe/9b/O75WRF4WkaSAfT/xv9dbROSMkAR9CJpgdUNE7MAjwFnABOAKEZkQ2qhUEHmAHxljJgAnAN/zv78/Bj4wxowGPvA/VkPDrcCmgMf/D3jAGHMMUA38Z0iiUv3hj8DbxphxwFSs912/20OMiGQDPwBmGGMmAXbgcvS7PZQ8CZzZaVt33+WzgNH+243AowMUowqOJzn4vX4PmGSMmQJsBX4C4L9euxyY6D/mT/7r9kFDE6zuzQK2G2N2GmNcwLPABSGOSQWJMabUGPO1/3491gVYNtZ7/A9/sX8AF4YkQBVUIpIDnAP81f9YgHnAC/4i+l4PESKSCJwEPAFgjHEZY2rQ7/ZQ5QCiRcQBxACl6Hd7yDDGLAWqOm3u7rt8AfBPY/kCSBKRrAEJVPVZV++1MeZdY4zH//ALIMd//wLgWWNMqzFmF7Ad67p90NAEq3vZQHHA4xL/NjXEiEgBMB34Esg0xpT6d+0DMkMVlwqqPwB3AT7/41SgJuCHW7/fQ8cIoBz4u79L6F9FJBb9bg85xpg9wP1AEVZiVQusRL/bQ11332W9bhvargfe8t8f9O+1JljqqCYiccCLwG3GmLrAfcZaw0DXMQhzInIusN8YszLUsagB4QCOBR41xkwHGunUHVC/20ODf+zNBVhJ9XAgloO7GKkhTL/LRwcR+SnW0I5nQh1Lb2mC1b09QG7A4xz/NjVEiIgTK7l6xhjzkn9zWVuXAv+/+0MVnwqa2cD5IlKI1dV3HtYYnSR/tyLQ7/dQUgKUGGO+9D9+ASvh0u/20PNNYJcxptwY4wZewvq+63d7aOvuu6zXbUOQiCwAzgWuNAcW7x3077UmWN1bDoz2z0YUgTWY7rUQx6SCxD8G5wlgkzHm9wG7XgOu9d+/Fnh1oGNTwWWM+YkxJscYU4D1Pf7QGHMl8BFwib+YvtdDhDFmH1AsImP9m04DNqLf7aGoCDhBRGL8v+lt77V+t4e27r7LrwHX+GcTPAGoDehKqMKQiJyJ1b3/fGNMU8Cu14DLRSRSREZgTWzyVShi7I4cSAZVZyJyNtbYDTvwN2PMr0MbkQoWEZkDfAKs48C4nHuwxmE9B+QBu4HLjDGdB9iqMCUipwB3GGPOFZGRWC1aKcAq4CpjTGsIw1NBIiLTsCY0iQB2Atdh/UFRv9tDjIj8EpiP1X1oFXAD1lgM/W4PASKyCDgFSAPKgF8Ar9DFd9mfZD+M1U20CbjOGLMiBGGrI9DNe/0TIBKo9Bf7whhzk7/8T7HGZXmwhnm81bnOUNIESymllFJKKaWCRLsIKqWUUkoppVSQaIKllFJKKaWUUkGiCZZSSimllFJKBYkmWEoppZRSSikVJJpgKaWUUkoppVSQaIKllFJKKaWUUkGiCZZSSimllFJKBYkmWEoppZRSSikVJJpgKaWUUkoppVSQaIKllFJKKaWUUkGiCZZSSimllFJKBYkmWEoppZRSSikVJJpgKaXUICEiBSJiRMQR6liGOhFZICLLQh3HYCMic0VkS6jjUEqpcKYJllJKqbAmIgtFxC0iDQG3u0IdVzgyxnxijBkb7HpFZJ6IfC0idSKyU0RuDPY5lFJqsNAESymlgkRbnkJqsTEmLuB2X6gDCqZw/myJiBN4GfgzkAjMB34vIlNDGphSSvUTTbCUUqoPRKRQRO4WkbVAo4g4ROQEEflMRGpEZI2InBJQfomI/J+IfOX/a/6rIpLSTd3XicgmEan3/9X/vzrtv0BEVvvr2SEiZ/q3J4rIEyJSKiJ7ROR/RMTew/MYJSIfikiliFSIyDMikhSwr0pEjvU/Hi4i5W3PS0TOF5EN/ue7RETGd3p97hCRtSJSKyKLRSTq8F/pwyciP/a/LvUislFELuqmnIjIAyKy3/9arhORSf59kSJyv4gUiUiZiDwmItG9PP+T/vLv+WP4WETyA/b/UUSK/edcKSJzA/YtFJEXRORpEakDFojILBH53P86l4rIwyISEXCMEZHvisg2//n+2//efeY/x3OB5buJ+RQRKenN8zsMKUAC8JSxLAc2AROCfB6llBoUNMFSSqm+uwI4B0gCMoE3gP/BurC8A3hRRNIDyl8DXA9kAR7gwW7q3Q+ci3Vxeh3wQECSMwv4J3Cn/7wnAYX+457013sMMB04Hbihh+cgwP8Bw4HxQC6wEMAYswO4G3haRGKAvwP/MMYsEZExwCLgNiAdeBP4d6cL+cuAM4ERwBRgQZcBiMzxJw/d3eb08Bw62wHMxWo1+aU//qwuyp2O9fqN8Ze9DKj07/uNf/s0rNczG7j3MGK4EvhvIA1YDTwTsG+5v94U4F/A852SzwuAF7De32cAL3C7v64TgdOA73Y63xnAccAJwF3A48BVWO/nJKzP6hHzJ8rdvT9/6uoYY0wZ1mfkOhGxi8iJQD6gY+CUUkOTMUZvetOb3vR2hDespOb6gMd3Y/2lPrDMO8C1/vtLgN8E7JsAuAA7UAAYwNHNuV4BbvXf/zPwQBdlMoFWIDpg2xXAR4f5vC4EVnXa9hqwDlgLRPq3/Rx4LqCMDdgDnBLw+lwVsP8+4LEgvwcL/a9hTcBteBflVgMX+O8vAJb5788DtmIlJbaA8gI0AqMCtp0I7OplXE8CzwY8jsNKknK7KV8NTA14Tkt7qP824OWAxwaYHfB4JXB3wOPfAX/ooc5TgJJgvj/+es8DyrASfw/wnWCfQ29605veBstNW7CUUqrvigPu5wOXBv5lH5iD1VrVVfndgBOrVaIDETlLRL7wd8+rAc4OKJeL1ULTWb6/vtKA8/8ZyDjUExCRTBF51t+lsA54uouY/oLVCvKQMabVv224/zkAYIzx+Z9fdsBx+wLuN2ElGsH2nDEmKeC2V0SuEasLZdvrMIkuXmdjzIfAw8AjwH4ReVxEErBa5GKAlQF1vO3f3lvt77UxpgGownrN8Hed3OTvOlmD1XqW1tWx/vJjROR1Ednnf4/+t4vnUxZwv7mLx/3x2h+SiIwDnsVquY0AJgJ3icg5Ax2LUkoNBE2wlFKq70zA/WKsFqzAi/1YY8xvAsrkBtzPA9xARWCFIhIJvAjcD2QaY5Kwut9JwHlGdRFLMVYLVlrA+ROMMRN7eA7/638ek40xCVjdytrOhYjEAX8AngAWyoFxY3uxkrq2cuJ/fnt6ON9BxJoivOEQt7k919JeVz5WQngLkOp//dYHPqdAxpgHjTHHYbUojsHqelmBlZRMDHgtE40xh5OktL/X/tcwBdjrfy53YXVHTPbHV9spvsDPFcCjwGZgtP89uqe759NfxBpr193781g3h00Cthpj3jHG+IwxW7C60Z41cJErpdTA0QRLKaWC62ngPBE5wz/eJMo/cUBOQJmrRGSCfzzTr4AXjDHeTvVEAJFAOeARkbOwxgq1eQJrTMtpImITkWwRGWeMKQXeBX4nIgn+faNE5OQe4o4HGoBaEcnGSjAC/RFYYYy5AeviuO1i+jngHH8cTuBHWAneZz29UJ0Za4rwuEPcPjmM6mKxEpRysCYMwbrQP4iIzBSR4/3xNwItgM/fGvcXrLFvGf6y2SJyRsCxRgImMenC2f6xZRFYY7G+MMYUY73eHn98DhG5F2us3aHEA3VAg79V6OYeygedMWbiId6fm7o5bBUwWqyp2kVERmGNLVw7cJErpdTA0QRLKaWCyH/xfAFW60I5VovSnXT8vX0Ka3zOPiAK+EEX9dT7tz+HNTbnP7DGQLXt/wr/xBdYLR8fc6Alqa0r1kb/sS/QsYtiV34JHOuv6w3gpbYdInIB1iQVbRf0PwSOFZEr/a0RVwEPYbX4nAecZ4xx9XC+fmWM2Yg15uhzrG5yk4FPuymegJVIVWN1d6wEfuvfdzewHfjC3y3vfWAsgIjkAvVY49K68y/gF1hdA4/Deq3AGpf3NtbYr91YSV1xVxUEuAPrc1Dvj3dxD+UHBWNNknI91mQudVif1ReBv4YyLqWU6i9iTOceCEoppfqLiCwBnjbG6MVlmBORq7C6D/6km/1PYk0Y8bMBDUwppVRIhe3ChUoppVQoGWOeDnUMSimlBh/tIqiUUkcJsRa9PZzJCdQQJCL3dPM5eCvUsSml1FCgXQSVUkoppZRSKki0BUsppZRSSimlgmRQjcFKS0szBQUFoQ5DKaWUUkoppQ5p5cqVFcaYgxafH1QJVkFBAStWrAh1GEoppZRSSil1SCKyu6vt2kVQKaWUUkoppYJEEyyllFJKKaWUChJNsJRSqgden+HV1Xuoa3GHOhSllFJKDXKDagxWV9xuNyUlJbS0tIQ6FBVmoqKiyMnJwel0hjoUFebeXFfKmuf/j/gcB/Nu/kOow1FKKaXUIDboE6ySkhLi4+MpKChAREIdjgoTxhgqKyspKSlhxIgRoQ5HhbktpXXc63wKygD3b8AZFeqQlFJKKTVIDfougi0tLaSmpmpypQ6LiJCamqotnyooTPmW9vuunZ+EMBKllFJKDXaDPsECNLlSR0Q/NypYYmo2td+v2/FVCCNRSiml1GAXFgmWUkqFkqepDgCvEVrLtvRQWimllFJHM02wekFE+NGPftT++P7772fhwoWhCyjAF198wfHHH8+0adMYP358e1xLlizhs88+61PdZ555JklJSZx77rlBiFSp8OX0NgKw1ozCWbU9xNEopZRSajDTBKsXIiMjeemll6ioqAhqvcYYfD5fn+q49tprefzxx1m9ejXr16/nsssuA4KTYN1555089dRTfapDqaEgwtMEwDb7KBIaC8GY0AaklFJKqUGrz7MIikgu8E8gEzDA48aYP4rIQuA7QLm/6D3GmDf7cq5f/nsDG/fW9aWKg0wYnsAvzpt4yDIOh4Mbb7yRBx54gF//+tcd9pWXl3PTTTdRVFQEwB/+8Admz57NwoULiYuL44477gBg0qRJvP766wCcccYZHH/88axcuZI333yThx9+mLfeegsR4Wc/+xnz589nyZIlLFy4kLS0NNavX89xxx3H008/fdC4ov3795OVlQWA3W5nwoQJFBYW8thjj2G323n66ad56KGHGDduXLdx7tixg+3bt1NRUcFdd93Fd77zHQBOO+00lixZcsjX5vnnn+eXv/wldrudxMREli5dSktLCzfffDMrVqzA4XDw+9//nlNPPZUnn3ySV155hcbGRrZt28Ydd9yBy+XiqaeeIjIykjfffJOUlBT+8pe/8Pjjj+NyuTjmmGN46qmniImJ6XDeE044gSeeeIKJE6337pRTTuH+++9nxowZh4xXqSMR5WukxRZDY0w+UQ3vQFMlxKaFOiyllFJKDULBaMHyAD8yxkwATgC+JyIT/PseMMZM89/6lFyF2ve+9z2eeeYZamtrO2y/9dZbuf3221m+fDkvvvgiN9xwQ491bdu2je9+97ts2LCBFStWsHr1atasWcP777/PnXfeSWlpKQCrVq3iD3/4Axs3bmTnzp18+umnB9V1++23M3bsWC666CL+/Oc/09LSQkFBATfddBO33347q1evZu7cuYeMc+3atXz44Yd8/vnn/OpXv2Lv3r29fl1+9atf8c4777BmzRpee+01AB555BFEhHXr1rFo0SKuvfba9tn81q9fz0svvcTy5cv56U9/SkxMDKtWreLEE0/kn//8JwDf/va3Wb58OWvWrGH8+PE88cQTB513/vz5PPfccwCUlpZSWlqqyZXqN9G+Jlz2WExSnrWhpii0ASmllFJq0OpzC5YxphQo9d+vF5FNQHZf6+1KTy1N/SkhIYFrrrmGBx98kOjo6Pbt77//Phs3bmx/XFdXR0NDwyHrys/P54QTTgBg2bJlXHHFFdjtdjIzMzn55JNZvnw5CQkJzJo1i5ycHACmTZtGYWEhc+bM6VDXvffey5VXXsm7777Lv/71LxYtWtRlq9Oh4rzggguIjo4mOjqaU089la+++ooLL7ywV6/L7NmzWbBgAZdddhnf/va325/T97//fQDGjRtHfn4+W7duBeDUU08lPj6e+Ph4EhMTOe+88wCYPHkya9euBawk7Gc/+xk1NTU0NDRwxhlnHHTeyy67jNNPP51f/vKXPPfcc1xyySW9ilepw2WMIco04XbE4kjJhxLwVhdhzz421KEppZRSahAK6kLDIlIATAe+BGYDt4jINcAKrFau6mCeb6DddtttHHvssVx33XXt23w+H1988QVRUR0XHnU4HB3GVwWuxxQbG9ur80VGRrbft9vteDyeLsuNGjWKm2++me985zukp6dTWVl5UJnu4oSDpzM/nOnNH3vsMb788kveeOMNjjvuOFauXHnI8oHPyWaztT+22Wztz2/BggW88sorTJ06lSeffLLLhDE7O5vU1FTWrl3L4sWLeeyxx3ods1KHw+01xNGM2xFLbIa1aHXD/l0khjgupZRSSg1OQZvkQkTigBeB24wxdcCjwChgGlYL1++6Oe5GEVkhIivKy8u7KjJopKSkcNlll3Xosnb66afz0EMPtT9evXo1AAUFBXz99dcAfP311+zatavLOufOncvixYvxer2Ul5ezdOlSZs2a1euY3njjDYx/wP22bduw2+0kJSURHx9PfX19j3ECvPrqq7S0tFBZWcmSJUuYOXNmr8+/Y8cOjj/+eH71q1+Rnp5OcXExc+fO5ZlnngFg69atFBUVMXbs2F7XWV9fT1ZWFm63u72ersyfP5/77ruP2tpapkyZ0uv6lTocrR4vcdKM1xlHWnomDSaK5vLdoQ5LKaWUUoNUUBIsEXFiJVfPGGNeAjDGlBljvMYYH/AXoMuswRjzuDFmhjFmRnp6ejDC6Vc/+tGPOswm+OCDD7JixQqmTJnChAkT2ltSLr74Yqqqqpg4cSIPP/wwY8aM6bK+iy66iClTpjB16lTmzZvHfffdx7Bhw3odz1NPPcXYsWOZNm0aV199Nc888wx2u53zzjuPl19+mWnTpvHJJ590GyfAlClTOPXUUznhhBP4+c9/zvDhwwEr+bv00kv54IMPyMnJ4Z133gGsbolt463uvPNOJk+ezKRJk/jGN77B1KlT+e53v4vP52Py5MnMnz+fJ598skPLVU/++7//m+OPP57Zs2czbty49u2vvfYa9957b/vjSy65hGeffbZ95kSl+kOrx0csLXgdsWQnx7DHpGF0DJZSSimluiGmj9MNi9Wf7B9AlTHmtoDtWf7xWYjI7cDxxpjLD1XXjBkzzIoVKzps27RpE+PHj+9TjKp7nWc7HGr086P6qqS6Cf4wGXfubDKv+Rtf/PdpTE5sJv2Or0IdmlJKKaVCSERWGmMOmmUtGGOwZgNXA+tEZLV/2z3AFSIyDWvq9kLgv4JwLqWUGlCtHh9pNFHpjCUmwkGFI5PY5s9DHZZSSimlBqlgzCK4DOhqVoSwnpb9aLFw4cJQh6DUoNbq9hGFG5zWWmyN0VnENNVBawNExoU4OqWUUkoNNkGb5EIppYaiFreHSHEjEdYMnJ44/yoUtcUhjEoppZRSg5UmWEopdQiuVmuJBZvTWv/OlmwtNqwTXSillFKqK5pgKaXUIXhaGwGw+VuwotPyAWiu0ARLKaWUUgfTBEsppQ7B3dIMgN1pJVhJmbl4jI1GXQtLKaWUUl3QBKuXXnnlFUSEzZs3d1umsLCQSZMmBe2cW7Zs4ZRTTmHatGmMHz+eG2+8EbAWCX7zzb7NIXL99deTkZER1HiVGoo8LivBckRYXQSHJ8exjxQ8VdqCpZRSSqmDaYLVS4sWLWLOnDksWrSoy/0ej6fP5/B6vR0e/+AHP+D2229n9erVbNq0ie9///tAcBKsBQsW8Pbbb/epDqWOBm0Jlj3SmkVweFIUpSYFqdsTyrCUUkopNUgFYx2sgfPWj2HfuuDWOWwynPWbQxZpaGhg2bJlfPTRR5x33nn88pe/BGDJkiX8/Oc/Jzk5mc2bN/Puu+/i8Xi48sor+frrr5k4cSL//Oc/iYmJ4YMPPuCOO+7A4/Ewc+ZMHn30USIjIykoKGD+/Pm899573HXXXVx++YG1mEtLS8nJyWl/PHnyZFwuF/feey/Nzc0sW7aMn/zkJ5x77rl8//vfZ/369bjdbhYuXMgFF1zAk08+ycsvv0xtbS179uzhqquu4he/+AUAJ510EoWFhYd83h9//DG33norACLC0qVLiYuL46677uKtt95CRPjZz37G/PnzWbJkCb/4xS9ISkpi3bp1XHbZZUyePJk//vGPNDc388orrzBq1Cj+/e9/8z//8z+4XC5SU1N55plnyMzM7HDeyy+/nKuvvppzzjkHsJLBc889l0suuaR376lSQeTt1IKVFhvJl6RxTJN2EVRKKaXUwbQFqxdeffVVzjzzTMaMGUNqaiorV65s3/f111/zxz/+ka1btwJWt77vfve7bNq0iYSEBP70pz/R0tLCggULWLx4MevWrcPj8fDoo4+215GamsrXX3/dIbkCuP3225k3bx5nnXUWDzzwADU1NURERPCrX/2K+fPns3r1aubPn8+vf/1r5s2bx1dffcVHH33EnXfeSWOjNTD/q6++4sUXX2Tt2rU8//zzrFixotfP+/777+eRRx5h9erVfPLJJ0RHR/PSSy+xevVq1qxZw/vvv8+dd95JaWkpAGvWrOGxxx5j06ZNPPXUU2zdupWvvvqKG264gYceegiAOXPm8MUXX7Bq1Souv/xy7rvvvoPOO3/+fJ577jkAXC4XH3zwQXuypdRA8/kTLGekfxZBm1AfkUm8az/4fKEMTSmllFKDUHi1YPXQ0tRfFi1a1N6Sc/nll7No0SKOO+44AGbNmsWIESPay+bm5jJ79mwArrrqKh588EG+9a1vMWLECMaMGQPAtddeyyOPPMJtt90GWAlFV6677jrOOOMM3n77bV599VX+/Oc/s2bNmoPKvfvuu7z22mvcf//9ALS0tFBUZI0P+da3vkVqaioA3/72t1m2bBkzZszo1fOePXs2P/zhD7nyyiv59re/TU5ODsuWLeOKK67AbreTmZnJySefzPLly0lISGDmzJlkZWUBMGrUKE4//XTAann76KOPACgpKWH+/PmUlpbicrk6vHZtzjrrLG699VZaW1t5++23Oemkk4iOju5VzEoFm89tTdPu9HcRBGiJzcJR64bGcojP7O5QpZRSSh2FtAWrB1VVVXz44YfccMMNFBQU8Nvf/pbnnnsOYwwAsbGxHcqLyCEfd6VzHYGGDx/O9ddfz6uvvorD4WD9+vUHlTHG8OKLL7J69WpWr15NUVER48ePP+J42vz4xz/mr3/9K83NzcyePfuQE3wAREZGtt+32Wztj202W/sYte9///vccsstrFu3jj//+c+0tLQcVE9UVBSnnHIK77zzDosXL+42AVVqILQlWA7/NO0AJt7fdbeuJBQhDWk3/nMFF/3pU9xebR1USikVnjTB6sELL7zA1Vdfze7duyksLKS4uJgRI0bwySefdFm+qKiIzz//HIB//etfzJkzh7Fjx1JYWMj27dsBeOqppzj55JN7PPfbb7+N2+0GYN++fVRWVpKdnU18fDz19fXt5c444wweeuih9qRv1apV7fvee+89qqqq2sdBtbWu9caOHTuYPHkyd999NzNnzmTz5s3MnTuXxYsX4/V6KS8vZ+nSpcyaNavXddbW1pKdnQ3AP/7xj27LzZ8/n7///e988sknnHnmmb2uX6lgM/4ES5wHWlEdKdZiw96a4pDENFRVN7r4cOMefr7vB1Q/cx34vD0fpJRSSg0ymmD1YNGiRVx00UUdtl188cXdziY4duxYHnnkEcaPH091dTU333wzUVFR/P3vf+fSSy9l8uTJ2Gw2brrpph7P/e677zJp0iSmTp3KGWecwW9/+1uGDRvGqaeeysaNG5k2bRqLFy/m5z//OW63mylTpjBx4kR+/vOft9cxa9YsLr74YqZMmcLFF1/c3j3wiiuu4MQTT2TLli3k5OTwxBNPAPDYY4/x2GOPAfCHP/yBSZMmMWXKFJxOJ2eddRYXXXQRU6ZMYerUqcybN4/77ruPYcOG9fr1XLhwIZdeeinHHXccaWlp7dtXrFjBDTfc0P749NNP5+OPP+ab3/wmERERva5fqWAzbmsMFo4DLVix6dZiww37daKLYFq/t5ZjZC/H2raTsfMV2Ls61CEppZRSh03aWj0GgxkzZpjOkzBs2rSpvbubOjxPPvkkK1as4OGHHw51KCGjnx/VVy88/r9csvf/wW3rISkXgCWbyzh+0STqJl1N5qW/D3GEQ8ffP93Fhjcf5X7nn60NZ/wvnPi90AallFJKdUNEVhpjDprcQFuwlFLqULz+cYIBLVjDk2PYa1LxVusYrGAqq2tlsm03LRLFPsmAoi9CHZJSSil12DTBGsIWLFhwVLdeKRUUnlbrX8eBSVyyEqPYa1Kx1+tiw8G0v66FUc5K6qJzWefJxVexLdQhDWkuj48b/rGCPy3ZHupQlFJqSAmLBGswdWNU4UM/NyoYpK0FK2CSi/goJ+X2dKKbS0MU1dBUVt9Chq0O4jIoNJlQvUvXGutHn2wr5/1NZdz39hYaV70IZRtCHZJSSg0J/Z5giciZIrJFRLaLyI8P9/ioqCgqKyv1YlkdFmMMlZWVREVF9VxYqUOweVvxYQNbx2UDmyKHEeepAo8rRJENPeX1raRSgyMhk90mE5unBRr2hTqsIevromoAzrV9Tuyr18Oiy3s4QgXD8sIq/rRkOz6fXtcoNVT160LDImIHHgG+BZQAy0XkNWPMxt7WkZOTQ0lJCeXl5f0VphqioqKiyMnJCXUYKszZPK24xElUpzXk3HHDsbUaqN8LyQWhCW6IqWl0keCtxpOcRaFJsDZW7YSE4aENbIjasb+RnORoTmlYa22oKYKqXZBy8ALwKjiMMVz39+U0tHoYkxHPNyfoQuVKDUX9mmABs4DtxpidACLyLHAB0OsEy+l0MmKE/tgrpULD5mvFI10sFZCUA5VA7R5NsILE21KH0+HCkTSMMkeStbFqJxTMCWlcQ9XOigbGDUtg8u491EgqSd5KKFmuCVY/Kq5qpqHVA8DbG/ZZCdbG1yD7WEjUPwgqNVT0dxfBbCBwJc4S/zallAoLdp8Lty3yoO2RKdaU7a1VuhZWMLS4vSR4rS5rEpeBIykXDw6o3BHiyIau0toWcpMiGGGK+UBOAHsk7Fsb6rCGtNUlNQAMT4xidXEN7FsPz10ND0wE/6LmSqnwF/JJLkTkRhFZISIrtBugUmqwsfta8crBCVZ8RgEADWWaYAVDXbObVGqtB7HpDE+JY58t02rBUkHX4vZS3+JhREQNEaaVlc3D8GVMgFJNsPpTUWUjAOdNHc7O8gbca547sLNkeYiiUkoFW38nWHuA3IDHOf5t7YwxjxtjZhhjZqSnp/dzOEopdXicvlY8toO7CGampVJt4mitLApBVENPbbObZGmwHsSkkpsSww5vJkYTrH5R0WAtP5BlrwNgn0mmPmEM7N8UyrCGvJLqZtLiIpiel4zPQEvhV5A2FsQGhZ+EOjylVJD0d4K1HBgtIiNEJAK4HHitn8+plFJB4zAufPaDW7CGJ1lrYVGniw0HQ22zm6S2BCs6iZzkaHZ6061JF3QW2aCraLBmv8ywWQlWhUlkvzMbGvdDa0MoQxvS9tQ0k50cw4QsaxIXe/VOGD4dMidB8Zchjk4pFSz9mmAZYzzALcA7wCbgOWOMLrShlAobTp8Lb1ctWAlRlJpUnA17QxDV0FPb7CYBq/sU0cnkJEdTbDIQdyM0VYY2uCGovN5qwWrrlllhEilimLWzeleowhry9tY0MzwxiuFJUcTbXcS0lEHqKMiYAOVbQx2eUipI+n0MljHmTWPMGGPMKGPMr/v7fEopFSzGGJy48dkPXk/NabdR48wgtkXXaQoGqwWrESM2iIgnJzmGYuPvNl6t49yCra2LYIKvBoDWqBS2uPyvt04s0m8qG12kx0fisNuYleAfc5gyEtLHWEs+tNaHNkClVFCEfJILpZQarFo9PqJwYRwHdxEEaI7OIsbXoBdFQVDb7CaRRkxUEths5CbHUGwyrJ01mmAFW1sLVoy7CiITyEpNYk1TirVTx731C7fXR02Tm9RY6/dkSrzVPZPkEZA2xrpfoa1YSg0FmmAppVQ3Wt0+InFjuhiDBeCN9y+AW7uny/2q99rGYEl0EgCJMU6qI7OsnZpgBV1FQysJUQ4cTRUQm05+Sixba4DYDE2w+klVozXuLTXO6nI8Ksoa62biM62JLgAqtoUkNqVUcGmCpZRS3Wj1eInEhXEc3EUQwJZsTZJqaou73K96r7bZTYqtCYlObt+WkpxKvS1Buwj2g8oGF2nxkdBYDrHp5KXGUFLdhEkZaU0sooKurVtmWpz1B5scZx0+I+z3JVqLO9scUL4llCEqpYJEEyyllOpGs9tLpLiRbroIRqfmA9C4Xy9I+8pKsBohKql9W25yNHvJ0BasflDV6CI1NgIa9kNcOvkpMbi9hqa4PG3B6idtMzem+VuwMqSGKuLZVe0Cu9Mai6VdBJUaEjTBUkqpbrT4uwiKM7rL/YnD8nEZO01lekHaV3XNbhKlEQJasHKSY9jlTcVoC1bQVTW6SI6J8LdgZZCXEgNAZUS2NdmCqynEEQ49lf4WrFR/C1aSt4pyk8Ru/+LDpI3RBEupIUITLKWU6kaz20sULsTZdRfB3NR49pg0PJXagtVXNU1uEkwD+MdgAeSmRFPoTYfaYvD5QhfcEFTV5CItxgbNVe1dBAFKpG2q9sLQBTdEVXZqwYpuLaecJHZV+JPZtNFW66HXE6oQlVJBogmWUkp1o8XlIUrc2LpLsFKsme4cdUUDHNnQU9fUSqzp2IKVmxxDiUlHvC5o0Onwg8UYQ3Wji+ER/gv7uHSyEqNx2oXtnrap8fWPBsFW0dBKhMNGXKQDAGkoozEijaIqfwtWykjweXTxcqWGAE2wlFKqGy2tzQDYIrruIhgX6WC/YxhxTXpB1Fee5jps+DqMwcpJiT4wVbt2Ewya+lYPHp8hy+5fXiA2A7tNyEmOYX1z21TtmmAFW0WDi7TYCETEapFtKMMdk8HuSn+imzzC+lfHwCkV9jTBUkqpbrhbrATLEdF1CxZAY0wOMd46aKkbqLCGJGmpse50asFqX2xYJ7oImmr/dOGZNv9Ct7HWa5ybEsPmGgdEJmoXwX5Q2dhqzdwIVtdMnwdb/DCKKpswxlgtWKDJrVJDgCZYSinVDXer9ZdlR0RMt2W8idZMgpoAHLkWt5dorz9BDRiDFRvpoCnav9aYtmAFTdt6TCn4X/M4q5UwLyWaoupmSM7XLoL9oLLBP3MjQL3V5TUqeTj1rR6qm9wQnwX2SG3BUmoI0ARLKaW60d6CFdl1F0EAZ2oBAF6d6OKI1TT5ZxCEDi1YAJkpiVTbUjSBDaLqJivBSjTV1gZ/C1ZeSgw1TW7ciQXaitIPKhpa22cQbBtTmJCeA2DNJGizWethaeuhUmFPEyyllOqGx2UlWM5uxmABxA07BoC60u0DEtNQVN3kIomuE6yclBhKyNAWrCCqanQDEO+psVpMIuMByEuJBaAmKhtqisDnDVWIQ44xhoqG1vZFhqkvAyBtWB4ARVUB47C0BUupsKcJllJKdcPTal30O6O77yKYmTmMOhNNy369KDpSNU1ukqTBehAwyQVATnI0Oz2pGG3BCpq2MVjRrkqre6AIQPtaWPvsWeBzQ92ekMU41NQ2u3F7DRnxHVuwsnIKAA5MdJEy0mo9NCYEUSqlgkUTLKWU6k6rddHviErotkheaizFJgOj3XqOWG2zi8T2FqykDvtyk2PY7Uu3Lva97oEPbgiqanLhtAuO5or27oFA+1pYhV7/Nu0mGDTl9dYiw+nxAS1YkQlEx8aTER8ZkGCNAE9z+xgtpVR40gRLKaW647KmsRZ/F6quZCVGU0IGEQ3FAxXVkFPd5CZZ6vE5osHZsTtm21pjYnxQq9PhB0N1o4uU2AiksbxDghUX6SA1NoKNrWn+gppgBUtbgtXeRbChDOIyAchPjQlYC8s/Vbu+9kqFNU2wlFKqOy7/RU9kXLdF7DahJiKLhJa92q3nCNU0uUmROohNO2hfbnI0JTpVe1BVNrpIjomAxnKIS++wLzclhvX1cWBz6mQLQVTe0KkFq6EM4ocB1tg3XQtLqaGlTwmWiPxWRDaLyFoReVlEkvzbC0SkWURW+2+PBSVapZQaQLa2BCui+wQLoCUujwjjsi6a1GGraXaRLvVIFwlWdrIuNhxs1Y0uUmMcVoIV2zHBykuJYXd1KyTlaRfBIDq4i+C+Di1Y++tbaXZ5rddd7PraKxXm+tqC9R4wyRgzBdgK/CRg3w5jzDT/7aY+nkcppQacze2feOEQLViAtW4Q6F/8j1BNo5t0Wz0Sc3CCFemw44vLwotdW7CCpLLRRW5UC/g8ED+8w768lBj21DTjSy7QbmpBVF7fSoTDRkKUw2rpDmjByvePfSuqagK7E5JytQVLqTDXpwTLGPOuMcbjf/gFkNP3kJRSanAQd+9asCIzrKnam8t0qvYjUdPsIrWbLoIAw1PiqbSnWVOHqz4xxlBW18LIKGt8IfGZHfbnpcbg9RkaY3KhqlC7vQZJeUMr6XGRiAi01oO7qb0Fq232xt2VbeOwRmpyq1SYC+YYrOuBtwIejxCRVSLysYjMDeJ5lFJqQNhcDbRKJNjshyyXNHwUXiPU7906QJENLVUNrSSZOohJ7XJ/XkoMxb507SIYBPWtHppcXnKdtdaG+KwO+9su9sudw6G1FpqrBzrEIam8vjWge2Cp9a//tc9PtdYf07WwlBo6ekywROR9EVnfxe2CgDI/BTzAM/5NpUCeMWY68EPgXyLS5TzHInKjiKwQkRXl5eV9f0ZKKRUkDk8jLbbu18Bqk5OWRCmpeCp2DEBUQ099fS0RuLptwcpLjWG7J03XwgqC/XUtAAyz1Vgb4jq1YPkTrGL827UlJSg6JFg1/hlHk3IBSI5xEh/p6LgWVkstNFWFIFKlVDD0mGAZY75pjJnUxe1VABFZAJwLXGmM1ZfAGNNqjKn0318J7ADGdFP/48aYGcaYGenp6V0VUUqpkHB6G3Hbe06w8lNj2O3LxF5b2P9BDTHGGHz1+60HsV3/H9DWgiUNZeBqGsDohp6yOv904cbfMuUfB9QmMyGKCLuNrW5/squTLQRFhwSr1p9gJVqjKkSEvNQYdlcFJFigr71SYayvswieCdwFnG+MaQrYni4idv/9kcBoQNu7lVJhJcLbhKcXCVZ8lJN9juHENuo6TYerodVDkqfCepAwvMsyeSkxFLXNJKitWH1S5m/BSvRUQHQKOCI77LfbhJyUaDY0JVkbdOKWPmtyeahsdJGd5F/jrbbYmikwoHtmfmoMxVUBiw2Dth4qFcb6OgbrYSAeeK/TdOwnAWtFZDXwAnCTMUbbupVSYcPj9RFtmvE6e5hB0K8hJoc4b43VtUf12v76VoaJ/7+HhOwuy1gJVluXtcKBCWyIamvBimnaY00J3oW8lBi21xir+6Be5PdZSXUzADnJbQlWifVZDxjbmZcSS0l1E16fgeQCa6OOw1IqbDn6crAx5phutr8IvNiXupVSKpQaWj3E0Yw3outxQZ15EgugEatbz/Bp/RnakLK/LjDB6roFKz0+kjKHvyubdpvqk7K6FuIjHThqiyBjfJdl8lJiWLm7GpM7AqkqHNgAh6C2lqm28W1U724ff9UmPzUGt9ewt6aZ3JQYa/p8/awrFbaCOYugUkoNGfUtHpKlHl9USq/KO9NHAeCp1L86H4799S1kSRU+ZxxExndZRkSIT86kWWK0BauPdlc2kpccZU1537Z+Wyd5KTHUt3hwJ+RpC1YQtM0OmNuWYFVuh9RRHcrkp8R0KEvKSG3BUiqMaYKllFJdqGt2kUodppupwzuLzxoNoFO1H6a9NS0MkypMN61XbfJSY9ljG6YX/H20u7KJqcmt4G2FpO4TLICqiGyo2wvuloEMccgprmom2mknNTbCmva+qQJSO3YAykttWwurLcEq0M+6UmFMEyyllOpCXV0tUeLGFte72U2zMzMoNwm07NfFhg/H7spGRtgrsCd3PR6oTW5KDDs9aRhtwTpiHq+P4uomJkVXWhuSR3RZru1if69tGGB0gec+KqpqIjcl2lpkuNK/lEPq6A5lshKjcdqF3VUBiw03lEFrwwBHq5QKBk2wlFKqC3WV1mKg0UmZPZS05KdaEzGIjps4LLvKG8iXfZAy6pDl8lJi2OnNsMav+HwDFN3QsremBbfXMNa2x9qQPrbLcm0tWDu9/j8uaEtKn+wob2BEmrWYMBX+Fu5OLVh2m5CbHENRZcBiw6BdYpUKU5pgKaVUF5pqygCIS+ldgpURH0kJmUQ3FvdnWENOQ+Ueok3zQRecneWnxlBsMhBvK9TvHaDohpZdlVbryHBPEUTEta/D1FlMhIP0+EjWN+taWH3V5PJQWNnI+KwEa0PpWnDGHDQGC6yWww6LDYOOw1IqTGmCpZRSXXDVWovfRif2LsESEWqic4l37dcxK73U7PIS2+Bf1yp15CHL5qXEsFunau+TzaV1AKQ17bRar0S6LZufEsPGWidExOtFfh9s3lePMTChPcFaA5mTOkzR3iY/JYaiqiaMMboWllJhThMspZTqgre+HACJ7d007QDuhHxsGF0Mt5cKKxsZ3dZdrdOYlM5ykgMWG9YWlSOybk8tOYmROPevsy7yDyEvNYaiqmadbKGPNvmT2vFZCeDzwr51kDWly7J5qbE0tHqoanRBVCLEpGpyq1SY0gRLKaW64GjaZ92J610LFoDN363H6EVRr2zYW8ck2YU3MrHbRW/bRDnteOKG48WuLVhHaP2eWk7LqIeWGsiZeciy+Smx7KtrwZtUoAltH6wrqSUhymEtMrxvHbjqIfeELsu2TdW+uypgHJb+ligVljTBUkqpLsQ1l1JnT4KImF4fEzvMGkfUsG9bP0U1tKzcXc1URyG24dMP2V2tTXZqAuX2DG1ROQI1TS4KK5s4Kcb/2vWUYPlnEqyNyrFaZH3e/g5xSPp8ZyWzRqRaMwgWLrM2Fszusmzba14UOA5LF3pWKixpgqWUUp0YY0h2l1Ibeei1mTrLyMqh3kTTtE+nau+NjbtLGUMxMnxar8rnpcRS5EvXFqwj8Ol2a2r26e5VEJsOaWMOWb5tqvZ99uHgdUHdnn6PcajZU9PM7somThzlX0tv27vW697Nmm9tCxEfmOhiBNQWg6d1IMJVSgWRJlhKKdVJZaOLYb79uONzD+u4vNRYikwGvkptYelJXYubxPKVOPDAiLm9OiYvJYZtnnSMdlk7bEu3lpMUZSO5dBkc802wHfq//7buaoVtE4voa37Y3ttgdTM+ZWw6NFVZLVjjzum2fJTTzrCEKIqqAmcS1HXIlApHmmAppVQnO/fXM1wqcaTkH9ZxOcnRFJlMIusK+yewIWRlYTWzbevw2ZyQd2KvjslLjabIl4E0V0FLbT9HOHS4vT4+2FzGfw4vtl67sWf1eExKbARxkQ42t/pbX7Rb5mH799pSxmbGMyo9DtY9D8YLEy865DHW5CL+xYbb1sLScVhKhR1NsJRSqpPyok1EiofYrK4XYu1OpMNOZUQ2CS17dcxKD95ZX8o59q8wBSdBRGyvjtGp2o/M0q3lVDS4uMTxMUQmwugzejxGRMhLiWFdfSzYnNqCdZjWltSwcnc1l87IsX4Llv8Vhk+HrKmHPC4/pau1sPS1VyrcaIKllFKdtJasBSBp5LGHfWxzXJ7V7U3HrHSrxe1l34Yl5Eg59skX9/q4vJRYinWq9sP25GeFTIqtZVjxWzD9KnBG9eq4/NQYdle1QnKBtqIcpseX7iQ+0sH8mblW61XFVph9a4/H5afGsL++lWaXF2LTrAWh9bVXKuxogqWUUp3I/o14sWHPHH/4B7ctEKoJQLdeW7OXSzxv4nHGw8QLe31cWlwEZY4s64G2YPXKFzsr+WRbBQ+k/RuxOeDE7/b62LzUGIqrmzDJI7SL4GH4alcVr68t5aoT84n3VMPbP4Hs42D8BT0em5dqteYWVTVZM2um6GuvVDjSBEsppQL4fIbUug1URuaBM/qwj49ILQDAXVkY3MCGCJfHx9vvv8fZ9i+xz7qh190Dweq2lpqSRr0tUS86e6HJ5eHuF9dydcJqRpe9Cd/4PiTm9Pr4/JRY3F5DQ2yuNV24Mf0X7BBR2+zm7hfXkpMczfdPzoOXbgRXI1z4aI8Ti0DAWliVAeOwtAVLqbDTpwRLRBaKyB4RWe2/nR2w7ycisl1EtohIzx2+lVJqENheVss0s4WGzBlHdHzCsHx8Rqgv0wSgK3/5aAu3ND2CJyIJmdNzl6nOclNi2COZ2kLYA6/P8OMX1xFTtYlfmEetFpST7z6sOtrWZapwZlkL5DZV9keoQ0ZDq4f/emoFJdVN/P6iscS8+h3Y+RGc+3tI7914zva1sAJnEqzWdciUCjeOINTxgDHm/sANIjIBuByYCAwH3heRMcYY/YVQSg1qW9d+zhhpomXMSUd0fHZqEmUkI5W7gxxZ+PtsWzlJS3/GsfbtcP7fIDr5sOvIS4lh+850xlYX0vPSxEenFreXn768nj1rP+Ll2D/giE6AS/4OjojDqifP35pSRBYjwEpqY9OCH/AQUFzVxHf+uYJt+xv4yxnRzProCihdC2f+xhr31ktJMREkRDk6TnThc0NtCSQf3qymSqnQ6a8ughcAzxpjWo0xu4DtwKx+OpdSSgVN84a3AEifcvoRHZ+dHM0ek4bUFgczrLD35Y5yNj99O1fa38d1wg9gUu8ntwiUnxrDLm+6dcHpdQc5yvC3o7yBKx9dQu7aP/B85P8QlZAKC944oovz4UnROO3CFpc/qdKuagdxeXw88tF2vvXAx7RW7+Xjye8yb8nFUFMMVyyCE24+7DqtqdoDFhsG7RKrVJgJRgvWLSJyDbAC+JExphrIBr4IKFPi33YQEbkRuBEgLy8vCOEopdSRqW1yM65mKXviJ5KdkHVEdWTGR7LSpHFMY2FwgwtTxhj+9cFXZC29m+ttq2iasoCY0395xPXlpcTwpslAjBdqiw9MZX2UK69v5c8fbKBxxSIedLxMtqMcJl8K5/wOohKPqE67TchOimZDUzQgepEfoL7FzeLlxfztk52k1G/ir2mfMrvpA2SrB6ZdCd/6FcSkHFHd+SmxbCytsx60T9W+E0aeEpzglVL9rscES0TeB4Z1seunwKPAfwPG/+/vgOsPJwBjzOPA4wAzZszQEbRKqZD56stP+JZtFyUTf3bEdTjsNmojhhHf+qU1bsJmD2KE4WXd7jK+fOEBLqn7JzF2Ny2n/S8xs79rzY52hHJTYijy+dfCqtp1VCdYxhjWlNTy5pJlxG99kZts75PmqMOTOQXOehIK5vT5HLkpMeyqcUNC9lE/7s3t9bFsWwUvfV3C9k2rONX3Bc9Ff0FOZBE0R8H0q+HE70HqqD6dJzclhnc37sPrM9jjh4M98qh/7ZUKNz0mWMaYb/amIhH5C/C6/+EeIDdgd45/m1JKDUrGGFq+/BsuHAw/6bo+1dUSm429zgv1+yCxy8b7IcsYw4rNu9j57p+ZXfUCN0gF+1NnknjFn5D0MX2uPyc5miL8a2EdhVO1G2PYvr+BT1auoWn1y8xp+ZB7bDvx2YWW/Hlw8q04RpzUpyQ2UG5KDOvXlUJuAdQcfeMK61rcfLa9gs827qZh8wcc61rJjx1rybaXgx0Y/g2Y8kOYcMERt1h1lpcSg9trKKtrYXhStK5DplQY6lMXQRHJMsaU+h9eBKz3338N+JeI/B5rkovRwFd9OZdSSvWnZZuKOan5A0qzv0V+XN8G8pvEXKjD6sJ2lCRYpZXVrPzwRRxbXuck92fMlFb2JE6j6azHyBj3zaBd8Ec57Uh8Fm53BM6jpMtai9vLF9vK2LHqQyJ2fcAM1wqutxUBUJU0npbjfknUtEuJ6YfPWl5KDNVNblwJuUQULgl6/YONMYaNpXUs2byfwg1fkVb2CSfJGn5u24JTvHiiYrGNPBlGfxNGfwuSgj+0ITfFWh6iuKrJSrBSRhyVf0xQKpz1dQzWfSIyDauLYCHwXwDGmA0i8hywEfAA39MZBJVSg9nOtx5irjQR883v97kuZ2o+FIOnajeOvBOCEN3gVF5ZyeZPXsS55XUmNX3JudJCg8SxL+8chp9+K9m50/rlvDmpcZTtzyRnCHeb2lPTzGdrNlG77i2G71/KbFnLKdKEBzsVacdSN3EBCVPOIyUIrYKH0jaTYE3kcDLqS8HdAs6ofj3nQKtpcvHJtgq+2rgDz/YPObZ1BZfY15IpNeCAxuTx2MbfAqO/hSP3+MOejfFw5SYfmKr9+JGpVjfYXZ9Y65AF6Q8VSqn+1acEyxhz9SH2/Rr4dV/qV0qpgbBi2x7OrlvM3tRZDB85u8/1xWcWANBQtpOkPtc2uBSV7GH7py8Qt+NNprauZK64qSKRncPOIvOES8mc/C3iBuACdHdZBjlDqMuax+tj5a4KNq/6GNv295nS/BWX2qxuYfWRaTTknkP09HOJGD2PYVEJAxZX28V+qWRaHTNriqCfk7r+5vMZ1u2pZemWfRRv+Iys8k85ybaGhbbt2DG4ohPwjTwVxp0Bo+YRe4QT3hyp4UnR2ASKq5utDckjwN0IDfshPnNAY1FKHZlgzCKolFJhbesbf2SG1NJ6zsKg1DcsLY1KE4+nIvwTAGMMm7bvpOTz50kpepup7rXkiZdyWxqbsi8mecbF5E2dR4p94P47yUuJYZsrjW9Uf4aE8V/1qxtdLFu3lfLVb5O+bwnfMKs5XurxYWN/8mQqx91NyrRziB82hfgQPce2FqxCXzpTwRqHFYYJVmVDK59sq2D5hq3Ijg+Z6VnBlba1pEgDxiE0pU9Fxt8Fo79FRPaxIZ2cJsJhIysxmuLAxYbBGoelCZZSYUETLKXUUW194T6+Vb2I4uTjyR3V99YrOLAWVkZNUVDqG2hen2Hthg3s+/J5hu15lym+TUwQwz57FpsKribzhMvIHHsi6bb+Wkrx0HJTollvMpDWemiuDtrkAgNhx/56Vi1fhmvT24yp+4yzZRt2MTTaE6nJPpXmqWcTPf4Mhg2S55QY4yQ+ysGW1lhrQ5iMBTLGsHlfPR9sLGX3uk/JrviEU2xrON+2ExuGlphUGHU2jD8DGXkqsbGpoQ65g9yUwAQrYC2s/BNDF5RSqtc0wVJKHdU2//sBJkkdjefeG7Q6sxKj2GzSyGkIn8lTXR4fX69dQ9VXz5G77z2msw2APc4CNhf8FznfuJxhBdMYNghai9rWwgKsi85Bkox0xeP18fWu/exY/jaxO95kpns5l0gVAPvix1E++vtkHHsesTnHETtIp/TPS4lhY10EOKIGdYLV6vHyxc4qlm7YTdPGd5nR8ilX2NaQKvVWK1XGdJjwExhzOlHDpkKI/kDQG7nJMSzdVm49SMwFsetMgkqFEU2wlFJHrR179nNKxb8oTDqegmP6vmZQmyinnSpnJnEtawf1wPQWt5evVq2mesULjNz/LiewHYCiyDFsPuZ28mbPJ3v4+K5XiQ+hvJQYikzAVO3Zx4U0ns4aWz18sqmYPSveIKPkXU4yy5klTbRIFGXD5lA1+RxSpp7NsPiulpgcfPJSYthSVg9J+YNuqvaGVg/vbdzH0jU7iNj5LqeYL7nDtoZocdEalYg55gyYcBYyah6xgzgR7ywvJYayulZa3F6inBGQmKNrYSkVRjTBUkodtda99kculDoizv550Otujh5ORGMrNFVCbN+mfQ8mn8+wcsMmyj59mtx973KSv6WqOGos20bfQd7c/yAvo28Lpfa39PhI9tv9Y1EGSYtKi9vLko0l7PriVfL3vMEpsooYaaXJFk9V7uk4Z1xMzLhvke+MDnWohy03JYYPNu/HjMtHBsHr3eL28tHm/by7ejvOrW9yDsv4rX0DDpuX1ugM7BOugYnnE5k/GwZwbGAw5frHvpVUN3NMRpw1DktbsJQKG+H5y6OUUn1UUl7N8fv+RWHCsRSMnRv0+n2JudCINetaiBMsYwyb9tSwfumLZG5fzGzvChzioyRqNDvH3kHunP8gN31wJ1WBRIS0lBRqG5NJDOEFv89n+GpXJV9/+g4pO1/hDPMZZ0oDjc4k6kZ+m8hZlxIz8iRi7M6QxRgMuSkxuDw+muJyiS36LCStsh6vj0+2VfDG6iKaNr3Hmb6P+T/7SqLsLlrjcrBPuQXGn0dk9nGDuutfbwWuhWUlWCNgw8shjkop1VuaYCmljkqr/v0o50kVld96tF/qd6TkwV7w1RRhyz62X87Rk9pmN+9/vpyWL59kXst7XCZV1NqSKBxzHTnzbiQna1xI4gqG3ORo9jRmhiTBKq5q4q1lX+FY8wynuZfwXdt+3BJBdf7peE+8mtjRpxEb5klVoLaZBCsi84h1NUD9PhigqcuLq5p4bkUxq7/6mNNa3uMex+ekSD3umGTsk66CqZcTmTtr0HbDPVJtLVjF1QEzCTZXW7fo5BBGppTqDU2wlFJHndr6JqbufpKi6HHkTT6jX84Rm27N/NW4v5D4if1yii4ZY1i1u5x1HyxiZNGLXMRaEChN/wb13/hPEqecR2I/r1M1EPJSYthRmM74ql0MxKW12+vjww172bT0BaaWvcQNNut1rcg8gdbj7yVy0gVkDOD6VAMpN9lqTSmS4eQDVG7r1wTL7fXxwaYyXvpiC6m7/s3l9g/5kW0n3ohIGHcWTL0c56jT+n3B31BKj4skymljd6U/wUr2zyRYtQuyNcFSarDTBOsQ9uzcxL4tX+BtacC4GvG1NoKrCdyNiLsZu6cRu7cVm3EjPg9248bm82AzHuzGg8N4sGHdtxuvv1bTXr+0/2sCzhp4n4ASbaUEI9J+lEHa97fXIB23tZcJOA6R9u0douiwXTBy4PwEHC8IyIG6OxwnB2JtO+ZAHLTXFfjYdHW+Dq9O95dQXb1ig1P4RHpIJvyfR2pzIQVSRvEp/6/f/vKdnpFJg4miaf8u4vvlDB3Vtbj5YNlnuJf/g1Nb3uNYqaMmIoPyST8g8+QbyE7KG4AoBk5uSgzbPRlQu8z6XY6I6ZfztLVW2Vc/xTneDzhDqmmITqdh+m0knHg9GUPsde1KdnI0IrDFM4y5ABXbYMRJQT9PUWUTzy4vYu3yjzm79W0ecHxGrLMFd+o4mPVb7FMuPWpab0SEUelxbC2rtzak+rvwVm6HELWIh4NWj5e6Zg91zS7qG+pprqugta4CT1MtvtYG/3VcIzZ3I+JqxOZpwu6/ic+NzefGbtpu1nWcdQ3nxmE8OPAAxlp/r+OVWeCVTKerMovxXzfR6Sih7botoFzb0dLxeogOZQOO73BNdmDfgTo4UK79ejAwFn/90vG6sT0m6eq6LOCZHxR/xzoCn2/H59C5XOC1bcf6NsYez4Szb+a4/PD4DdAE6xBKlr/G8Zv+96DtTSaSFomkVaJolUi84sQrDrziwCcO3LYYWm0OfOLE2Bz4bE5rilXp+CWx7nZMProiGP9FrTlwcWt8/r3WNsFYH2Bz4ON54BgO2iaBdfmPC/xoH6gnoM628xgQDpxfAs8ZEG/gT4gBbJ1+gNq/Vp3KdkypDhwT/pf1cKhEMZxOeajPa7j4LP0yvnH8hf1Wf3ZyLHtMGgk1xf12DmMMa3btY8MHz3BMyYtcJBvxYmNv5sk0n3wjSePPCOmCqf0pLyWGF02u9XtRvjmoF53dtVZVDT8J79wbiRt7ZthOnnAkIh128lJi+Lo6GiLiYf/GoNXt8vh4b2MZr3yxifTdr3OF/QPushXijYxCJn0bZlyHM2fmkOsC2Btjh8WzbFuF9SD1GLBHwr61MOWy0AY2gDxeH5WNLvbXtVJRV09d+V6aq/firS2F+n04m/cT66og1lNDjK+eBNNAkjSQQwOR4u6xfi82mrGu5TwSgVcceAKu6Tw2J16JpFXiaBIHRhztf6wWaUtIrDF/RgRjrP8fff7/I31W1kPbdZVp+9/THLhmartvoD1xM/5jOl6rHdh34PrsQDkx/jo6XLu1Fzpw3dV+MXXg2rHTn+kR4ws4rmNK2KZzItnxOtC65jtQrmMcnY+RTnUeiO/Adpcrm7qWnt/TweLo+R/iCIw+9Wp2Tj6VqOgEImPiiI6NJyo6jhi7nf75W6lSaqDk93P92cnRfGqGMat2R9Drrmtxs+STj/Eu/wentH7INGmgKjKLfVPuYthJ15M7QONjQml8VgJbTK71YP/GoCRY3bVWNU6/jfgTryftKGit6s6k7ETWFNdA1hTYu7rP9e2qaOTZ5UWsX/4x57je5o+Oz4lxtuBOGw+z7sc++VKITurzecLZuGHxvPT1HqobXSTHRkDmBChdE+qwgqrF7aWkuomiqiZK91dSX7YDd0Uh9rpiElr2kurZR66UM0yqmEg9tgPZAWAlMA32JJoiknFFJOKJyKQ+Kpn66GRsMSk44pKJiEvFGZdCRFQcETEJRETHYYuKh4hY7I4o4kSIC9HzV733n6EO4DBpgnUIKRnDSckYHuowlFJhKC7SwS57Ad9q+hrczdDH6bmNMazduZctH/6T0SUvcb5sxY2DvVmnEXXKjaSMmTckZk/rrZzkaOqisnERRUTpWph+ZPVYrVV72LT0xU6tVXPxzv2vo661qjuTsxN5Y20pLRMmE7XmSfB6Dvt1aXF7eXdjGS99voVhxa9zpf0DfmLbZbVWTb4YjrsOZ86Mo7K1qivjhllj+jbsrWPO6DTImmrNJOjzhlXLdKvHy66KRraWNbBrXzXNZduQyu3ENewk01XMKNnLVCljntR3OM4lkdTHDaclNoeWhOMpSxhGVGoOcanZOBOzIH4Ytth0EuxOhuboRxXO9H8NpZTqJzXxY7DV+6wubMOPLAOoa3bx6ZK38a16hrmtHzNVmtkflcfeqT9l+MnXkz+I1tgaSCLChOwUNu0bw9Tdnx328UWVTby57Escq5/mXJ+2VvVkcnYiADujxjPB0wJ7v4bcWb06dlNpHYuXF7Ph60853/MOjzg+JdbZjKd9bNVlR31rVVeOzU/GbhM+21FhJVj5c2Dlk1C6etAtrg1WAr2zvJFt++vZUVpNw54NOMs3ktK0g5HsZaLs5WwpwyG+9mMaojNoThiBL2UmDRmjiM0cgSQXQFIeEbHppGqyrcKUJlhKKdVPonKnwkbwlqzEfhgJlsfr46v1m6n49B9MKPs3Z8keWohkb/a3cJz6X2QcM1f/yo91AfpB4Vimlj0PjRU9rjfW0OrhvdU7KP3iBSZVvMWNtvUHxladdCNxY7S1qjtTchKJsNt4o3EcE8QOW985ZIJV2+zmjbWlvP3lGkaXvc2ljmUslEK8kZHYJl4EM67HMQSnVw+muEgH03OTWLa9grsARp0KCGx7L6QJljGGfXUtbNxbx8a9dewuKcZXup6Uhi2Ml92MlyLOkhIixJrcy+Nw0hSXD2nTYfh4yBgLaaMh9RjiohK0e54akvR/EqWU6icFx0yiZEMaCRveJWHWDYcsa4xhU+Eeti59jtTC1znRtwqH+NgdO4niY79Pzpz/YGRU4gBFHh7OmjSMH304nR86nod1z8MJNx9Uxu31sWxLKRs/e52cotc4XZYTK63UxWTROE1bq3orPsrJSWPSeGlTHT/Kn41tzbNw8t0dpkpvdnl5f1MZ767ahmP7e5wnn/B3+1rsTh+eYdNg2v+zWqtiUkL3RMLMNydk8pu3NrNxbx0ThqfBiLmw8h8w54fgiKCh1cPSreVsKq3jP+eMICkmuFPXu70+dpQ3sHFvHZv2VFNdshnb/g3kuXcyQXZzia2ILKmyCjugJTINb8ZEbDkXWOP1hk3GkXoMCfqHC3WUETOIplyeMWOGWbFiRajDUEqpoNhf38J7913Jpc5Pibhz00FTTPt8hrXbd1H8xSuk7n6T4zyriBQP1fY0qo+5iOxT/pPIrPEhin7wM8Zw5h8+4Xf1dzAhtg7bfy2FuAxqm9x8un4b+1a/Q/reD5hjVpEsDTTb42kYdS5p37gayTvxqBqzFgwfbd7PdU8u5/fTy/n2plsxJ3yXPTN+zKc7qti8bjkUfcHJZgXfsG8gAg+u2Cyc069Apl4O6WNDHX5Yqm12843/+4AJwxN4/OoZJO79BNsz32ZH9gU8wnyWF1ZzjCkkChcxUy7k/vnTrdntjkBVo4vNpXVs2lfPrpJSXHvXElu9mdGmkAm2IsZICTHSCoBP7LQmHoMjezLO4VYiReZkiEsP5tNXatATkZXGmBkHbe9LgiUii4G2X80koMYYM01ECoBNwBb/vi+MMTf1VJ8mWEqpoWbhXxazcM+N1Iy5hNjzfsPe6iZ2b/ySlu2fklXxKRPMduxiqLSnsT/3THJmX0H8qG/oxX8vfbmzkv/56794IeKXeGxR7CKbWE81I2xlADTaE6nNOYX0mZfgHHcGOCJDHHH4MsZw++LVvLJ6D/dFPcllvIfb2BFM+7ia5vg8Iieej238OZB7gn6Og+C1NXu59dlVANhFuNW2mO87Xjmo3MOeC3Cd9FNumTeaCEf3r3tdi5vdFU1sL69n895ayvdsx162nuEtOxhvK2K87Cbftr+9vMuZgCd9IlE5U7FlTbaSqfRx+l1Sin5KsDqd4HdArTHmV/4E63VjzKTDqUMTLKXUULO7spF3HrqFG3mpw3Yfwu6ocbTmn0LOzAuIG3m8XoweoU+3V/DOB+9ySuVihtnriIhJIqpgBlmTT8Wed3xYzbg22Hl9hn+v2cuXOysZ3/gFx5pNDEuOJTV/MpIzA1JG6riqfrCptI53NuzD5fFRkBbLidHF5DRusFqrMibgW70I26p/8qjnPF6JuogJo0eRER+Jwy40NLtw1VfSWlVMRM1OMl1FjLLtZaSUMlJK21ulDEJLfAG2rMlE5kyxWqSGTYKEbH1PlepGvyZYYrVHFwHzjDHbNMFSSqkDyupaWLn0dWIq1pEYE0nqyGnkjD8RW2x4rEivlBrkvG7Ma99H1izCh1BBMi3GgRMPaVKLE297UYPQHDMckzqa6OHjsaWPsZKpzAkQERvCJ6FU+OnvBOsk4PdtJ/AnWBuArUAd8DNjzCfdHHsjcCNAXl7ecbt37+5zPEoppZRSR53yLbDxNajaCT4P2J0Qmw4J/7+9+46vqr4fP/5635F1QwjJzSADEqZAWAqIIgruVXFV7ddtW78dfh1fra0dam39fa3a2jpaq1Wx7r0VN3WCsmSDAQIEErL3urn38/vjnMQLJBDITW5y834+HoF71ue87z05yXnnszJgUDokjYTkkd2el08pZTnoBEtEPgDSO9j0G2PMa/Y+/wDyjTF/tpejgXhjTLmIHAa8CkwwxtTs61xag6WUUkoppZTqDzpLsPY7bqYx5vj9FOwCzgbaJ2UwxjQDzfbrpSKyCRgDaPaklFJKKaWUilih6FF9PLDeGFPYtkJEUkTEab8eAYwGNofgXEoppZRSSinVZ4Vi5rcLgGf2WHc0cJuI+IAA8BNjTEUIzqWUUkoppZRSfVafmmhYREqBvjbKhRcoC3cQqtfo9R449FoPHHqtBxa93gOHXuuBpS9e7+HGmL1m2O5TCVZfJCJLOuq8piKTXu+BQ6/1wKHXemDR6z1w6LUeWPrT9dZZLZVSSimllFIqRDTBUkoppZRSSqkQ0QRr/x4KdwCqV+n1Hjj0Wg8ceq0HFr3eA4de64Gl31xv7YOllFJKKaWUUiGiNVhKKaWUUkopFSKaYCmllFJKKaVUiGiCtQ8icrKIbBCRfBH5VbjjUaEjItki8rGIrBWRNSJyjb0+SUTeF5Fv7f+HhDtWFRoi4hSR5SLypr2cKyKL7fv7ORGJCneMKjREJFFEXhSR9SKyTkSO0Hs7MonIdfbP8NUi8oyIxOi9HTlE5FERKRGR1UHrOryXxXKvfd1Xisih4YtcHahOrvVd9s/xlSLyiogkBm27yb7WG0TkpLAEvQ+aYHVCRJzAA8ApwHjgByIyPrxRqRBqBa43xowHZgI/t6/vr4APjTGjgQ/tZRUZrgHWBS3/CbjHGDMKqAR+GJaoVE/4G7DAGHMIMBnruuu9HWFEJBO4GphmjMkDnMAF6L0dSeYDJ++xrrN7+RRgtP11JfCPXopRhcZ89r7W7wN5xphJwEbgJgD7ee0CYIJ9zN/t5/Y+QxOszs0A8o0xm40xLcCzwLwwx6RCxBhTZIxZZr+uxXoAy8S6xo/buz0OnBmWAFVIiUgWcBrwL3tZgGOBF+1d9FpHCBEZDBwNPAJgjGkxxlSh93akcgGxIuIC4oAi9N6OGMaYT4CKPVZ3di/PA/5tLIuARBEZ2iuBqm7r6FobY94zxrTai4uALPv1POBZY0yzMWYLkI/13N5naILVuUxge9Byob1ORRgRyQGmAouBNGNMkb2pGEgLV1wqpP4K3AgE7OVkoCroB7fe35EjFygFHrObhP5LRDzovR1xjDE7gLuBbViJVTWwFL23I11n97I+t0W2K4B37Nd9/lprgqUGNBGJB14CrjXG1ARvM9YcBjqPQT8nIqcDJcaYpeGORfUKF3Ao8A9jzFSgnj2aA+q9HRnsvjfzsJLqDMDD3k2MVATTe3lgEJHfYHXteCrcsXSVJlid2wFkBy1n2etUhBARN1Zy9ZQx5mV79a62JgX2/yXhik+FzCzgDBEpwGrqeyxWH51Eu1kR6P0dSQqBQmPMYnv5RayES+/tyHM8sMUYU2qM8QEvY93vem9Hts7uZX1ui0AichlwOnCh+W7y3j5/rTXB6tzXwGh7NKIorM50r4c5JhUidh+cR4B1xpi/BG16HbjUfn0p8Fpvx6ZCyxhzkzEmyxiTg3Uff2SMuRD4GDjX3k2vdYQwxhQD20VkrL3qOGAtem9Hom3ATBGJs3+mt11rvbcjW2f38uvAJfZogjOB6qCmhKofEpGTsZr3n2GMaQja9DpwgYhEi0gu1sAmX4Ujxs7Id8mg2pOInIrVd8MJPGqMuT28EalQEZGjgE+BVXzXL+fXWP2wngeGAVuB84wxe3awVf2UiMwBbjDGnC4iI7BqtJKA5cBFxpjmMIanQkREpmANaBIFbAYux/qDot7bEUZEfg+cj9V8aDnwI6y+GHpvRwAReQaYA3iBXcAtwKt0cC/bSfb9WM1EG4DLjTFLwhC2OgidXOubgGig3N5tkTHmJ/b+v8Hql9WK1c3jnT3LDCdNsJRSSimllFIqRLSJoFJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJK9REikiMiRkRc4Y4l0onIZSLyWbjj6GtEZLaIbAh3HEop1Z9pgqWUUqpfE5FbRcQnInVBXzeGO67+yBjzqTFmbKjLFZFjRWSZiNSIyGYRuTLU51BKqb5CEyyllAoRrXkKq+eMMfFBX3eGO6BQ6s/fWyLiBl4B/gkMBs4H/iIik8MamFJK9RBNsJRSqhtEpEBEfikiK4F6EXGJyEwR+UJEqkTkGxGZE7T/QhH5PxH5yv5r/msiktRJ2ZeLyDoRqbX/6v/fe2yfJyIr7HI2icjJ9vrBIvKIiBSJyA4R+aOIOPfzPkaKyEciUi4iZSLylIgkBm2rEJFD7eUMESlte18icoaIrLHf70IRGbfH53ODiKwUkWoReU5EYg78kz5wIvIr+3OpFZG1InJWJ/uJiNwjIiX2Z7lKRPLsbdEicreIbBORXSLyoIjEdvH88+3937dj+I+IDA/a/jcR2W6fc6mIzA7adquIvCgiT4pIDXCZiMwQkS/tz7lIRO4XkaigY4yI/ExEvrXP9wf72n1hn+P54P07iXmOiBR25f0dgCQgAXjCWL4G1gHjQ3wepZTqEzTBUkqp7vsBcBqQCKQBbwF/xHqwvAF4SURSgva/BLgCGAq0Avd2Um4JcDrWw+nlwD1BSc4M4N/AL+zzHg0U2MfNt8sdBUwFTgR+tJ/3IMD/ARnAOCAbuBXAGLMJ+CXwpIjEAY8BjxtjForIGOAZ4FogBXgbeGOPB/nzgJOBXGAScFmHAYgcZScPnX0dtZ/3sKdNwGysWpPf2/EP7WC/E7E+vzH2vucB5fa2O+z1U7A+z0zg5gOI4ULgD4AXWAE8FbTta7vcJOBp4IU9ks95wItY1/cpwA9cZ5d1BHAc8LM9zncScBgwE7gReAi4COt65mF9rx40O1Hu7Pr8vaNjjDG7sL5HLhcRp4gcAQwHtA+cUioyGWP0S7/0S7/06yC/sJKaK4KWf4n1l/rgfd4FLrVfLwTuCNo2HmgBnEAOYABXJ+d6FbjGfv1P4J4O9kkDmoHYoHU/AD4+wPd1JrB8j3WvA6uAlUC0ve53wPNB+ziAHcCcoM/noqDtdwIPhvga3Gp/hlVBXxkd7LcCmGe/vgz4zH59LLARKylxBO0vQD0wMmjdEcCWLsY1H3g2aDkeK0nK7mT/SmBy0Hv6ZD/lXwu8ErRsgFlBy0uBXwYt/xn4637KnAMUhvL62OV+D9iFlfi3Aj8O9Tn0S7/0S7/6ypfWYCmlVPdtD3o9HPh+8F/2gaOwaqs62n8r4MaqldiNiJwiIovs5nlVwKlB+2Vj1dDsabhdXlHQ+f8JpO7rDYhImog8azcprAGe7CCmh7FqQe4zxjTb6zLs9wCAMSZgv7/MoOOKg143YCUaofa8MSYx6GuniFwiVhPKts8hjw4+Z2PMR8D9wANAiYg8JCIJWDVyccDSoDIW2Ou7qv1aG2PqgAqszwy76eQ6u+lkFVbtmbejY+39x4jImyJSbF+j/9fB+9kV9Lqxg+We+Oz3SUQOAZ7FqrmNAiYAN4rIab0di1JK9QZNsJRSqvtM0OvtWDVYwQ/7HmPMHUH7ZAe9Hgb4gLLgAkUkGngJuBtIM8YkYjW/k6DzjOwglu1YNVjeoPMnGGMm7Oc9/D/7fUw0xiRgNStrOxciEg/8FXgEuFW+6ze2Eyupa9tP7Pe3Yz/n24tYQ4TX7eNr9v5LaS9rOFZCeBWQbH9+q4PfUzBjzL3GmMOwahTHYDW9LMNKSiYEfZaDjTEHkqS0X2v7M0wCdtrv5Uas5ohD7Piq94gv+PsK4B/AemC0fY1+3dn76Sli9bXr7Po82MlhecBGY8y7xpiAMWYDVjPaU3ovcqWU6j2aYCmlVGg9CXxPRE6y+5vE2AMHZAXtc5GIjLf7M90GvGiM8e9RThQQDZQCrSJyClZfoTaPYPVpOU5EHCKSKSKHGGOKgPeAP4tIgr1tpIgcs5+4BwF1QLWIZGIlGMH+BiwxxvwI6+G47WH6eeA0Ow43cD1WgvfF/j6oPRlriPD4fXx9egDFebASlFKwBgzBetDfi4hMF5HD7fjrgSYgYNfGPYzV9y3V3jdTRE4KOtZI0CAmHTjV7lsWhdUXa5ExZjvW591qx+cSkZux+trtyyCgBqiza4V+up/9Q84YM2Ef1+cnnRy2HBgt1lDtIiIjsfoWruy9yJVSqvdogqWUUiFkPzzPw6pdKMWqUfoFu/+8fQKrf04xEANc3UE5tfb657H65vwXVh+otu1fYQ98gVXz8R++q0lqa4q11j72RXZvotiR3wOH2mW9BbzctkFE5mENUtH2QP+/wKEicqFdG3ERcB9Wjc/3gO8ZY1r2c74eZYxZi9Xn6EusZnITgc872T0BK5GqxGruWA7cZW/7JZAPLLKb5X0AjAUQkWygFqtfWmeeBm7Bahp4GNZnBVa/vAVYfb+2YiV12zsqIMgNWN8HtXa8z+1n/z7BWIOkXIE1mEsN1vfqS8C/whmXUkr1FDFmzxYISimleoqILASeNMbow2U/JyIXYTUfvKmT7fOxBoz4ba8GppRSKqz67cSFSimlVDgZY54MdwxKKaX6Hm0iqJRSA4RYk94eyOAEKgKJyK87+T54J9yxKaVUJNAmgkoppZRSSikVIlqDpZRSSimllFIhErI+WCLiBJYAO4wxp4tILtbEgslYs8lfvL9Rpbxer8nJyQlVSEoppZRSSinVI5YuXVpmjNlr8vlQDnJxDbCO7+bx+BNwjzHmWbt9/w+xJknsVE5ODkuWLAlhSEoppZRSSikVeiKytaP1IWkiaE+geRr2nBYiIsCxWHOvADwOnBmKcymllFJKKaVUXxWqPlh/BW4EAvZyMlBljGm1lwuBzI4OFJErRWSJiCwpLS0NUThKKaWUUkop1fu6nWCJyOlAiTFm6cEcb4x5yBgzzRgzLSVlryaMSikVFq3+wP53UkoppZTaQyj6YM0CzhCRU4EYrD5YfwMSRcRl12JlATsOpnCfz0dhYSFNTU0hCFUNJDExMWRlZeF2u8MdiupnKupbOPbPC7nyyCx+dvz4cIejlFJKqX6k2wmWMeYm4CYAEZkD3GCMuVBEXgDOxRpJ8FLgtYMpv7CwkEGDBpGTk4PVtUup/TPGUF5eTmFhIbm5ueEOR/UzX20p57e++zjp06/hyLUQlxTukJRSSinVT/TkPFi/BP5XRPKx+mQ9cjCFNDU1kZycrMmVOiAiQnJystZ8qoOyq6yCc52fMEgaqc//ItzhKKWUUqofCeUw7RhjFgIL7debgRmhKFeTK3Uw9PtGHazm2rL211X5i/BMOj2M0SillFKqP+nJGiyllOqXmmvL21+bohXhC0QppZRS/Y4mWF0gIlx//fXty3fffTe33npr+AIKsmjRIg4//HCmTJnCuHHj2uNauHAhX3xx8E2btm7dyqGHHsqUKVOYMGECDz74YIgiVqrv89dXAVBpBhFd0+EcgkoppZRSHQppE8FIFR0dzcsvv8xNN92E1+sNWbnGGIwxOBwHn+deeumlPP/880yePBm/38+GDRsAK8GKj4/nyCOPPKhyhw4dypdffkl0dDR1dXXk5eVxxhlnkJGRcdCxKtVfmKYKADa5RzO5eRUEAtCN+1QppZRSA4c+MXSBy+Xiyiuv5J577tlrW2lpKeeccw7Tp09n+vTpfP755wDceuut3H333e375eXlUVBQQEFBAWPHjuWSSy4hLy+P7du384tf/IK8vDwmTpzIc889B1gJ0pw5czj33HM55JBDuPDCCzHG7HX+kpIShg4dCoDT6WT8+PEUFBTw4IMPcs899zBlyhQ+/fTTfcZ58cUXc8QRRzB69GgefvhhAKKiooiOjgagubmZQKDjOYHuvfdexo8fz6RJk7jgggsAqKio4Mwzz2TSpEnMnDmTlStXtp/r0ksvZfbs2QwfPpyXX36ZG2+8kYkTJ3LyySfj8/kAuO2225g+fTp5eXlceeWVe73vQCBATk4OVVVV7etGjx7Nrl279nUZleoyd0sNAKXx43Djg9qiMEeklFJKqf6iX9Vg/f6NNazdWRPSMsdnJHDL9ybsd7+f//znTJo0iRtvvHG39ddccw3XXXcdRx11FNu2beOkk05i3bp1+yzr22+/5fHHH2fmzJm89NJLrFixgm+++YaysjKmT5/O0UcfDcDy5ctZs2YNGRkZzJo1i88//5yjjjpqt7Kuu+46xo4dy5w5czj55JO59NJLycnJ4Sc/+Qnx8fHccMMNAPzXf/1Xp3GuXLmSRYsWUV9fz9SpUznttNPIyMhg+/btnHbaaeTn53PXXXd1WHt1xx13sGXLFqKjo9sTnltuuYWpU6fy6quv8tFHH3HJJZewYsUKADZt2sTHH3/M2rVrOeKII3jppZe48847Oeuss3jrrbc488wzueqqq7j55psBuPjii3nzzTf53ve+135Oh8PBvHnzeOWVV7j88stZvHgxw4cPJy0tbb/XUamuiGmtBaA+OQ+qwFRuQQZnhjcopZRSSvULWoPVRQkJCVxyySXce++9u63/4IMPuOqqq5gyZQpnnHEGNTU11NXV7bOs4cOHM3PmTAA+++wzfvCDH+B0OklLS+OYY47h66+/BmDGjBlkZWXhcDiYMmUKBQUFe5V18803s2TJEk488USefvppTj755A7Pua84582bR2xsLF6vl7lz5/LVV18BkJ2dzcqVK8nPz+fxxx/vsIZo0qRJXHjhhTz55JO4XK7293TxxRcDcOyxx1JeXk5NjZUYn3LKKbjdbiZOnIjf72+Pd+LEie3v7+OPP+bwww9n4sSJfPTRR6xZs2av855//vnttX3PPvss559//j4/c6UORJy/Bj9OnEPzAKgtyg9zREoppZTqL/pVDVZXapp60rXXXsuhhx7K5Zdf3r4uEAiwaNEiYmJidtvX5XLt1qwueD4mj8fTpfO1NdEDq/lfa2trh/uNHDmSn/70p/z4xz8mJSWF8vLyvfbpLE7YezjzPZczMjLIy8vj008/5dxzz91t21tvvcUnn3zCG2+8we23386qVau69J4cDgdut7v9XA6Hg9bWVpqamvjZz37GkiVLyM7O5tZbb+1wLqsjjjiC/Px8SktLefXVV/ntb3+7z/MqdSDiArU0OAcxJGMkfiPUFeeTEO6glFJKKdUvaA3WAUhKSuK8887jkUe+mzP5xBNP5L777mtfbmsKl5OTw7JlywBYtmwZW7Zs6bDM2bNn89xzz+H3+yktLeWTTz5hxoyuTx/21ltvtfdR+vbbb3E6nSQmJjJo0CBqa2v3GyfAa6+9RlNTE+Xl5SxcuJDp06dTWFhIY2MjAJWVlXz22WeMHTt2t3MHAgG2b9/O3Llz+dOf/kR1dTV1dXXMnj2bp556CrD6knm9XhISuvZ42pZMeb1e6urqePHFFzvcT0Q466yz+N///V/GjRtHcnJyl8pXqitiA/U0O+PJ8iZQRDL+8o7vX6WUUkqpPWmCdYCuv/56ysq+m4T03nvvZcmSJUyaNInx48e3D2d+zjnnUFFRwYQJE7j//vsZM2ZMh+WdddZZTJo0icmTJ3Psscdy5513kp6e3uV4nnjiCcaOHcuUKVO4+OKLeeqpp3A6nXzve9/jlVdeaR/korM4wWrmN3fuXGbOnMnvfvc7MjIyWLduHYcffjiTJ0/mmGOO4YYbbmDixIkA/OhHP2LJkiX4/X4uuugiJk6cyNSpU7n66qtJTEzk1ltvZenSpUyaNIlf/epXPP74411+P4mJifz4xz8mLy+Pk046ienTp7dve/DBB3eL+/zzz+fJJ5/U5oEq5FyBFlod0WQNiWNbIBVX9bZwh6SUUkqpfkI6GpkuXKZNm2aWLFmy27p169Yxbty4MEUU+W699dbdBsOINPr9ow7GJ7ccw6j4ZjJ+sYhXf382xzmWMeh3BeEOSymllFJ9iIgsNcZM23O91mAppdQe3KYFv8PqL1gfO5RB/krwNYY5KqWUUkr1B90e5EJEsoF/A2mAAR4yxvxNRJKA54AcoAA4zxhT2d3zqdC69dZbwx2CUn1Kqz+Am1aMMx4A/6BMaABqdkLyyPAGp5RSSqk+LxQ1WK3A9caY8cBM4OciMh74FfChMWY08KG9rJRSfVqLP0A0LQSc9oiXidkAmOrt4QxLKaWUUv1EtxMsY0yRMWaZ/boWWAdkAvOAttENHgfO7O65lFKqpzX7AkTjw9gJVox3GAD1JVvDGZZSSiml+omQ9sESkRxgKrAYSDPGFNmbirGaEHZ0zJUiskRElpSWloYyHKWUOmAt/gBRtILLmjMuMS0HgLqSgvAFpZRSSql+I2QJlojEAy8B1xpjaoK3GWuowg6HKzTGPGSMmWaMmZaSkhKqcJRS6qA0+wJEiw9cVg1WenIipWYwvkptIqiUUkqp/QtJgiUibqzk6iljzMv26l0iMtTePhQoCcW5wuXVV19FRFi/fn2n+xQUFJCXlxeyc27YsIE5c+YwZcoUxo0bx5VXXglYkwS//fbbB11uU1MTM2bMYPLkyUyYMIFbbrklVCEr1e+1+P1E09KeYGUmxrLDJCPVhWGOTCmllFL9QbcTLBER4BFgnTHmL0GbXgcutV9fCrzW3XOF0zPPPMNRRx3FM8880+H21tbWbp/D7/fvtnz11Vdz3XXXsWLFCtatW8f//M//AN1PsKKjo/noo4/45ptvWLFiBQsWLGDRokXdil2pSNFk98FqbyIY56ZEvEQ37AxzZEoppZTqD0JRgzULuBg4VkRW2F+nAncAJ4jIt8Dx9nK/VFdXx2effcYjjzzCs88+275+4cKFzJ49mzPOOIPx48cDVqJ14YUXMm7cOM4991waGhoA+PDDD5k6dSoTJ07kiiuuoLm5GYCcnBx++ctfcuihh/LCCy/sdt6ioiKysrLalydOnEhLSws333wzzz33HFOmTOG5556jvr6eK664ghkzZjB16lRee83KZefPn8+8efOYM2cOo0eP5ve//z0AIkJ8vDUEtc/nw+fzYeXJu3vhhRfIy8tj8uTJHH300YBV+3X55ZczceJEpk6dyscff9x+rjPPPJMTTjiBnJwc7r//fv7yl78wdepUZs6cSUVFBQAPP/ww06dPZ/LkyZxzzjntn0+wmTNnsmbNmvblOXPmsOcE1Er1lLY+WOK2arBEhNrodBKad0EfmphdKaWUUn1Tt+fBMsZ8Buz9dG45rrvl7+adX0HxqpAWSfpEOGXfud9rr73GySefzJgxY0hOTmbp0qUcdthhACxbtozVq1eTm5tLQUEBGzZs4JFHHmHWrFlcccUV/P3vf+eqq67isssu48MPP2TMmDFccskl/OMf/+Daa68FIDk5mWXLlu113uuuu45jjz2WI488khNPPJHLL7+cxMREbrvtNpYsWcL9998PwK9//WuOPfZYHn30UaqqqpgxYwbHH388AF999RWrV68mLi6O6dOnc9pppzFt2jT8fj+HHXYY+fn5/PznP+fwww/f6/y33XYb7777LpmZmVRVVQHwwAMPICKsWrWK9evXc+KJJ7Jx40YAVq9ezfLly2lqamLUqFH86U9/Yvny5Vx33XX8+9//5tprr+Xss8/mxz/+MQC//e1veeSRR9pr5tqcf/75PP/88/z+97+nqKiIoqIipk3ba5JspXpEc3MLbvHjsJsIAjTFZRBd1QSNlRCXFMbolFJKKdXXhXQUwUj1zDPPcMEFFwBwwQUX7NZMcMaMGeTm5rYvZ2dnM2vWLAAuuugiPvvsMzZs2EBubi5jxowB4NJLL+WTTz5pP+b888/v8LyXX34569at4/vf/z4LFy5k5syZ7TVfwd577z3uuOMOpkyZwpw5c2hqamLbtm0AnHDCCSQnJxMbG8vZZ5/NZ599BoDT6WTFihUUFha2J2F7mjVrFpdddhkPP/xwe/PFzz77jIsuugiAQw45hOHDh7cnWHPnzmXQoEGkpKQwePBgvve97wFWzVtBQQFgJWGzZ89m4sSJPPXUU7vVVLU577zzePHFFwF4/vnnOffcczv8fJTqCa2+JgAc7pjvViZkWv9rPyyllFJK7Ue3a7B61X5qmnpCRUUFH330EatWrUJE8Pv9iAh33XUXAB6PZ7f992xq11HTuz3tWUawjIwMrrjiCq644gry8vI6TISMMbz00kuMHTt2t/WLFy/ebzyJiYnMnTuXBQsW7DVAx4MPPsjixYt56623OOyww1i6dOk+30d09Hd/8Xc4HO3LDoejvY/aZZddxquvvsrkyZOZP38+Cxcu3KuczMxMkpOTWblyJc899xwPPvjgPs+rVCi1NlnNVh3u2PZ17qRs2AYtFduIGjopXKEppZRSqh/QGqz9ePHFF7n44ovZunUrBQUFbN++ndzcXD799NMO99+2bRtffvklAE8//TRHHXUUY8eOpaCggPz8fACeeOIJjjnmmP2ee8GCBfh8PgCKi4spLy8nMzOTQYMGUVtb277fSSedxH333Yex+4csX768fdv7779PRUUFjY2NvPrqq8yaNYvS0tL2Jn+NjY28//77HHLIIXudf9OmTRx++OHcdtttpKSksH37dmbPns1TTz0FwMaNG9m2bdteid2+1NbWMnToUHw+X3s5HTn//PO58847qa6uZtIkfaBVvafVZ9USO6O+q8HypOYAULOrIAwRKaWUUqo/0QRrP5555hnOOuus3dadc845nY4mOHbsWB544AHGjRtHZWUlP/3pT4mJieGxxx7j+9//PhMnTsThcPCTn/xkv+d+77332geZOOmkk7jrrrtIT09n7ty5rF27tn2Qi9/97nf4fD4mTZrEhAkT+N3vftdexowZMzjnnHOYNGkS55xzDtOmTaOoqIi5c+cyadIkpk+fzgknnMDpp58OwM0338zrr78OwC9+8QsmTpxIXl4eRx55JJMnT+ZnP/sZgUCAiRMncv755zN//vzdaq725w9/+AOHH344s2bN2i2pe/3117n55pvbl88991yeffZZzjvvvC6XrVQo+JsbAXAGNRFMTsui2bhoKtsarrCUUkop1U+I6UOjYk2bNs3sOVrcunXrGDduXJgi6t/mz5+/22AYA5F+/6gD9daHH3Pap2dSdepDJM6w+kdur2gg8NfJkHUYw698dj8lKKWUUmogEJGlxpi9RmLTGiyllArib7FrsKK/64OVPjiGnXhx1epcWEoppZTaN02wIthll102oGuvlDoYAXsUQXdU0CAXTgcVrlTimorCFZZSSiml+ol+kWD1pWaMqv/Q7xt1MAL2IBeu6Jjd1jfGpjPYVwb+1nCEpZRSSql+os8nWDExMZSXl+vDsjogxhjKy8uJiYnZ/85KBTF2DVbwIBcAvvhMHASgrjgcYSmllFKqn+jz82BlZWVRWFhIaWlpuENR/UxMTAxZWVnhDkP1M6bVSrBkjwTLkZgFuyBQuR3HYP2+UkoppVTH+nyC5Xa7yc3NDXcYSqkBwrRaTQRx7Z5gxXqHwwaoLdnC4JwjwhCZUkoppfqDHm8iKCIni8gGEckXkV/19PmUUqpb7BosnFG7rU5IywGgrqSgd+NRSimlVL/SowmWiDiBB4BTgPHAD0RkfE+eUymluqWTGqy0lBSqTRy+iu1hCCq8dtU0cdrfPuFfC9eFOxSllFKqz+vpGqwZQL4xZrMxpgV4FpjXw+dUSqmDJv62BCt6t/WZQ2LZabxITWEYogqvF5cWMqfkCX60cCYtX/873OEopZRSfVpPJ1iZQPCfewvtdUop1Td1UoOVEONml3iJrh94c2Gt2F7Fic4lAPi+/GeYo1FKKaX6trAP0y4iV4rIEhFZoiMFKqXCzRFosV7s0QcLoDY6jfjmgTdMe3FJMXmOAlqME0/FaqjdFe6QlFJKqT6rpxOsHUB20HKWva6dMeYhY8w0Y8y0lJSUHg5HKaX2zdHahA83OPb+8dgcl0F8oBaa68IQWXj4/AFiK7/FSYBnXGdaK3cuD2tMSimlVF/W0wnW18BoEckVkSjgAuD1Hj6nUkodNEegBZ+4O9wWGGy3cK7Z0eH2SFRU1US6sVoX7Ew/1lq5a1UYIwqPf326mVn/9yEbVnwOgUC4w1FKKdWH9WiCZYxpBa4C3gXWAc8bY9b05DmVUqo7HIEWWmXv5oEA7iHDAGgq29abIYVVaV0TWWIlWNEZeWwzqQSKVoc5qt5ljOGfn2zm2LrXGfvqqfCfP4U7pF5XXtfMhf9axBNfFkBLQ7jDCYvFm8t5Ycl2jDHhDkUp1cf1+ETDxpi3gbd7+jxKKRUKTn8zrY6OEyxP6nAAqos3EzOuN6MKn9LaFrKklNZYL9lpyawPZJO+ay0df0KRacOuWkprm/lR9DsAmC8fQI7+BTh7/Fdon/Hkom18nl/O2IInMR++gFzyOgw7PNxh9ZrqRh/nP7QIgEN3PsNIdzkcdwtExYU5MqVUXxT2QS6UUqovcQZaOk2wktOH4zdCY9nWXo4qfMrqmsmSMgKDsxmR4mGLScdZVTCgmsmt2VHDEGoYLrtYGchFWmqh6Jtwh9WrFm8pJ5oWbnY9gbQ2wQe3hjukXvX1lgoAEqhj5LLbYfGDsOSRMEellOqrNMFSSqkgLtOM3xHd4bahSQnsYgiBqoEz2XBZXTPpUoErMYtcbzxbTTrOQMuA6oeWX1rHYa7NADzUerq1cutnYYyod/kDhuXbqrg2z5rCoDR6GGxfDE01YY6s9yzdVonLIVyVsfG7lWteDVs8Sqm+TRMspZQK4gr4CHRSg5WWEEOxScZZu7OXowqfsrpmUh3VOAalMyTOTanbHuijYnN4A+tFm0rqmO6xhqZf6ppCRVQG7FwR3qB6UXFNE40+P9OjCgB4Jvo8MH7Y+kV4A+tFqwqrGTc0gVmeHdSZGOpm3gA7lg6oJFMp1XWaYCmlVBCXaSHQwRxYAE6HUOFKI65x4Ew2XFVTRyJ1EJ+KiGCSRlgbBlCCtaOqkVFRlRCdQGraUAoc2VC6Idxh9ZqdVY0AZDVtpNaVxBNVE60NxQNnNMnCygaGJceR3bKFjSaLzdHjAANFK8IdmlKqD9IESymlbP6AIQofxtlxE0GA+th0BvtKYICMJOarKbFexKcCkJA6nGbcULEpjFH1ruLqJjIog8HZjEzxsKZlKJR/C/7WcIfWK3ZUWgnW4KYdNCXkUtrixpcwHEoGxqDAgYBhZ3UTWYNjiK/ewPrAMJb5c62NO5aFNzilVJ+kCZZSStmafH6iadlngtXqySAKH9SX9WJkYVRnNY0jPg2A4d5BbA2k4i8bGDVYTT4/5fUtpPhLIDGbkSnxLG9KB3/LgKnF22HXYEXXFeJKskbSLPeMgl1rwxlWrymrb6alNcCI+BYcTZWURg/nm3InDB4GuwbWlAVKqa7RBEsppWxNPj9RtGJcMZ3u4xiSBYC/cmDMheVqsObAaqvByvHGsdWk01qWH8aoek9JjTWwQ0JLMSQOY2SKh43G+h6gdF0YI+s9O6oaSY1z4KjdSXya1UR0mysHyvPB1xTe4HpBWw1ejssaSVCShrGuqAZSxkLp+nCGppTqozTBUkopW1NrgGh80EkfLIAor9U0qKY48hOMxhY/g/zWQyUeK8EanuyhwKThqi4YEEO1F1U3kkA9Ua11MDibESnx5JtMDAIlA+PhekdlI5MS6sEEcCfnkDE4hnWBLGugi7LI74vWVoOXifXHhvi0XDaX1hPwjoGybyHgD2d4Sqk+SBMspZSyNfn8xEgLuGM73WfQ0FEA1A+ABKusrpkUqqyFthqs5DgKTDpOfzPURv5gH0XVTWSK3Rw0MZvhyXG0SDTV0RkDpvZiR1Uj42MrrYXEYYxIieer+nRreQA0E2yrwfL6reaySUNH0+IPUBk3AlqboGpg1GYrpbpOEyyllLI1+wLE0QTuuE73GZqSQplJoLVsSy9GFh6ldc2kSDW+qERwWf3SEuOiBtRQ7bslWIOHEe1ykp0Ux3bXsAExkqAxhp1VjYyKsmsyhwxnRIqHzysTrb6KA2Cgi51VjQyKcRFTvwOi4snMGApAgcNuKlq2cR9HK6UGIk2wlFLK1uRrJY5miPJ0us/QxFi2mVSriVyEK6ttJkWq8Mel7LY+MMQeQW0AjCRYXN3IiKi22ptsAEamxLOhNc16/xHeTLKqwUdDi59sRxmIAxIyGeH1UNVs8A/JtZrIRbgdVY1kJsZC1XYYnE1uSjwA63xWojVQajKVUl3XrQRLRO4SkfUislJEXhGRxKBtN4lIvohsEJGTuh2pUkr1sObmRlwSQPaRYMVHuyhyDMVTv70XIwuPthosGZS22/q4lOG04BowNVijoyrBFQMeK9EcmeLhmwav1TyspjDMEfastv5Hqf5dkJAJTnd7glHtGRgJVmGlnWBVb4PEYSR7okiIcbG+2mGNrlmqNVhKqd11twbrfSDPGDMJ2AjcBCAi44ELgAnAycDfRcTZzXMppVSPam2sB8AR3XmCBVAdk2nNhdXa0hthhU1ZbQspVOFKSN9t/XDvILYFUgmUDYAarJomhrnKreRCBIBcbzwbW+3ai/LI7ovXlmAlNu+ExGEAjPBa90eRKwsqCyL+PthR1UjmkFirr1ViNiJCbko8W8rqdSRBpVSHupVgGWPeM8a0zbS4CLAbJDMPeNYY02yM2QLkAzO6cy6llOpprU11ADij4/e5X8ug4TgIQHVk12KV1TaR6qjGuWeClexhi0mndQAkWDurmhhqytqbBwLkej1sNvZnUh7Zn0HbAA8xDTvaE6zMxFiiXQ42BYZaIwlWRm5/xJomH7VNreTGt0JTdftnMNLrYXNpPXjHWJNOD5CJx5VSXRPKPlhXAO/YrzOB4CePQnudUkr1Wf5mO8GK2XcNlsMeqj1QHtlN5Gprq4iluX0EwTY5yXFsNWk4q7ZEdB+kltYAZXXNJPlLYHBW+/pcr4dSEvE54yK+idzOqkYGuQM4aovakwuHQ8j1eljZZH9fRPBnsNOuwWvvhzfYSrRzvR6KqptoGTzCSrwGysTjSqku2W+CJSIfiMjqDr7mBe3zG6AVeOpAAxCRK0VkiYgsKS0tPdDDlVIqZPxNVhNBV8y+a7A8aaMBqC2K7L4XgRp7GPb43ftgWXNhpeP0N0X0UO27apqIwkd8S1n7gzVAWkI0sW4XpdHDBkQTwckJ9QimPcECGJHiYVFNsrVQHrkJVlsNXpbYzyeJwwEYYfdDK3LbiXcEfwZKqQO33wTLGHO8MSavg6/XAETkMuB04EJj2uvIdwDZQcVk2es6Kv8hY8w0Y8y0lJSUjnZRSqle0VaD5d5PgpUydBiNJoqGCJ8Ly9SWWC/2qMHyxkdR5MywFiJ4oIudVY2kiT08eVANloiQ4/WwjaEDIsGa4Km2FoISrFyvh/WVYOLTIroGq32Qj9Zia8UQK8HKtfuh5QcGRl88pdSB6e4ogicDNwJnGGMagja9DlwgItEikguMBr7qzrmUUqqntSVYMZ5B+9xvuNfDNpNKoKKgF6IKD2MMjoa2BGv3PlgiQmviSGshgodqL65pIlPKrYWgBAusgR7W+1KtgQ98TWGIrnfsrGpkdNscWME1WN54/AFD0+AREZ9gRTkdxDcUQlQ8xFm1djlea668dfUJ4IyO6M9AKXXgutsH635gEPC+iKwQkQcBjDFrgOeBtcAC4OfGGH83z6WUUj2q1W4iGBW77wQrIzGWbaQRVbu1N8IKi6oGH0MCdr+TPZoIAnhSsq2h2iN4kIedVU1k0DbJcPZu23K8caxoTAFMxA7y0Njip6yuhWFBc2C1yU2xanDKo4dbE+1G6CAPOyobyUiMQaq2Wc0D7ZEk46JcZAyOYVN5EySN0BospdRuXN052Bgzah/bbgdu7075SinVmwJ2DRbuuH3u53Y6qIjKIKFxjfVgaT90RZLimiZSpIqAuHDEDtlr+zBvAtvy0xhZvonIe/eW4upGctsGN0jYfZymXG88//GnW79Fy/MhdVzvB9jDCiuthinpphQGZYDT3b6tbaj27Y5MspqqoKEcPN5whNmjtle2DdG+FYbk7LYtN8XD5rJ68I6C0g3hCVAp1SeFchRBpZTq10yLVYPFPiYabtMYP4xo0wR1u3o4qvAormkihWpaY5PBsfevipzkOLYE0vFF8FDtO6ubGOmuAk8quGN225brjaOgfaj2yKy92G4nWENainZrHgiQGBdFkieK9a32ZxChTeS2VzQwbEicNd/XHgnWCG88W0rrMEmjoGIL+Fs7LEMpNfBogqWUUm1a7K6k+6nBAggMGWG9qIjM5mG7qpvIkDJMQsczbFgjCUb2UO1F1Y1kO8v26n8FVg1WHXE0RHmhLDITrEJ7BL24hp17JVhgDfSwrN6utYrAUfRqm3xU1LcwNqEZfA3tIwi2yfV6qGlqpW5QLgR8Vi2XUkqhCZZSSrUTXx0BHOCO3e++0SnWIA+NuyLvwRKgqLqJTCnDlTS8w+05dg2O098MtTt7ObqeZ4xha3kD6aYMBu+dZA6Jc5MQ42KXOytya7AqGvC4AjjqOk+wvq702IM8RN6UBVvLrT+4jI6yBzoZskeClfJdM0kgYr8PlFIHThMspZSyRftqqHcM6lKfqqTMkbQaB3UROhdWSXUDmY5ynEP2frAGSBsUQ6HDHqI6Aodqr2zwUd/UQlLLTmsQgz2ICLkp8WyJ4KHat1c0MnVwHWICeyUXYCVYxXWt+JNGRGQt3rYKK8Eahj2a5h41WCO91nQOG3yRP+GyUurAaIKllFK22NYaGl0JXdo32zuYQpNCa2lk9kFqqCwiita9Rs9r43AIvsF24hGBIwkWlNeTIWU4jQ+SOx7PKTc5jrXNqdBQBo2VvRxhzysor2eaxx5F0Ttmr+0j7RqcOk9ORDYRbKvBSvXbk2nvkWRmDoklyulgfY0bYpMi8jNQSh0cTbCUUsrm8dfQ5BrcpX2HJcex1aThqo7MPli+crs/SQdNw9p4vMNowR2Rc2FtK29gpNgP1p0lWN54lje09UGKrM/A5w+wqbSOSTF27U0Hn0GuXYOzKyrb6ovY2tKbIfa4reX1JHmiiK781vpDwx6D3zgdwvDkODaX1oN3dETW4imlDo4mWEophdXnJt7U0hLVtQQrIcZNkXMo8fXbI24OoJbWAHF1BdZCB83j2gz3xrPVpGEiLLkA2FxWzwjHvhOsHG8cW4zdTDLCmgluKavH5zeMYAd4UiAuaa99hifHIQKbyQTjt0baiyDrimsZmzYIStZDyiEd7pPr9bClrB6SR0fc94BS6uBpgqWUUkBDi5/Bpo5AdGKXj6nzDCM2UBdxzcO2VdSTw04C4tpraOpgw70etgTSaI3Aodo3FNcwLaYIYodYCUYHRnjj2W5SCYgz4vrfbCiuBSC1aTN4x3a4T4zbSWZiLGua7T5IEdRErtUfYH1RDROGxkHZBkjtJMFK8bC1vN7qh1ZXDE01vRypUqov0gRLKaWA8roWBksdErf3pLqdaR2ca72IsEEeNpXWM1J20pIwfLfJZfeUk2yPJFhVEHFDta8rqmWCczuk5XU66EmONw4fLmpiMiKu9mLjrlqiHAFiK9bD0Mmd7pfr9fBVTbK1EEEjCW4pq6e5NcCMQRXgb4HU8R3uN9Ibj89vKI+2+2dF2PeBUurgaIKllFJAWW0dCdKIy7N3U6jOuFOs5nP+COt7sdlOsJwpo/e5X06yhwKTjsPfDDWFvRRdz6tt8lFYUUembwukT+x0v0Exbrzx0RS5siKuD9aG4lqOSqxEWhth6KRO9xvh9bCmAkx8WkT1QVpbZNVE5Yl9XTMO7XC/EfZAH5tpayoaWd8HSqmDowmWUkoBNRXWaGlRg5K7fEzC0FEEjFBXFDlNowC27ypjpKMId0bnD9YAGYmxbJcMayGCHizXF9cySnbgDjRD+r4/g1xvHJv86dZAHxFUi7dmZw1zB9lJ835qsOqaW/EljoyoJoJrd9YQ5XSQVrsWouKtQSw6MDLFGuhjbVMyiCOiPgOl1MHTBEsppYDGih0AxA5J7/IxWSlJ7CSZ5l2R85d7gMbt3+AkABlT9rmf0yE0tzWTjKCmUSu2VTHNYTd3y56xz31zvR5WNaWAryFiJlzeWdXIjqpGZjg3Qkxip32wAEbYCUZl3PCIaiK4srCaMenxOAsXQ8ZUcDg73G+IJ4ohcW6+LfdZI25GWF88pdTBCVmCJSLXi4gREa+9LCJyr4jki8hKEem4fl0ppfoAf5WVYHlS9p5QtTPDkuPYGkhDqiKnD1ZNk4+EytXWwtAp+91/kDebRmIiKsH6cnM5c2I3WYNb7GMURYAcr4eVTfYgGBHyGXxdUAFATv03MOwIcHT+qJDrtZrI7XBmWYO91Jf3Sow9qcnnZ+m2SuZku6B4NeQes8/9R6TEs7m0TkcSVEq1C0mCJSLZwInAtqDVpwCj7a8rgX+E4lxKKdUTAtVWghWd1PHEuh1JT4hhO+l46rbtf+d+YsW2KqY7NtAcmwYJGfvdPyclns0mHRMh/W9a/QG+2lLOTFZBzlGdDnDRZoTXw+ZAZA3V/kV+OYfEVBBdvRlyj97nvhmJsUS5HHzrb/sM+n8NztKtlbS0BjgpbiNgIHf2Pvcf4fWwqbTeGs6/fFPETduglDpwoarBuge4EQj+qTIP+LexLAISRWRoiM6nlFKhVbMTPw6I73oTQadDqI7NIq61Chqreiy03rRsawUzHWtxjDh6v8kFWDU4mwPp+COkadQ3hdUMb9lEQms5jD5xv/vneD3sYgitztiIGOQhEDB8uL6EH6ZssFaMOWmf+zsdQm6yh+UNdi1eBDQT/HBdCVFOB4dUfwKxSZA5bZ/7j0iJp6yumcbBueCrh5rIaCqqlDp43U6wRGQesMMY880emzKB7UHLhfa6PY+/UkSWiMiS0tLS7oajlFIHJbqhmGpnEjhdB3Rc8+Ac60XlltAHFQYFaxbjlRrco+Z0af/cZA+bTQbOmu3Q2tyzwfWCd9cUc5rrK4w4YNQJ+90/J9kDCBUx2RFRg7VsWyVldc0c6//cmlw3eeR+j8n1elhS5QFndL/vg2SMYcHqIo4bNQh3/nsw9tT9/kxoG0lwhzPLWhEBtXhKqe7pUoIlIh+IyOoOvuYBvwZuPtgAjDEPGWOmGWOmpaR0PJmjUkr1JGMMCS27aIhOO+BjnclWHx1T0f8TrO0VDeSWfUQAB4w5uUvHDE+OY3MgHTEB6Oefgc8f4I3lhXw/ahEyYg7E7/93UozbScbgGAqdWRGRYL24tJBDokpJrlgGk87r0jG5KR4KKpoxSbn9/jP4clM5O6ub+GHyamiu6dJnMNJOsL5ttX9+9PPPQCnVfV1KsIwxxxtj8vb8AjYDucA3IlIAZAHLRCQd2AEEd2bIstcppVSfUt3oYxg7aUro+gAXbTzp1vDNTbv6/1+t3165g3mOL2jJOgI83i4dk5EYS6HDbpzQzx8sF6wu5pD6xaT4i2HKhV0+LjfFYz1cV23t17V4VQ0tvP7NTn7j/QQcbpj8X106LtfroTVgaEgY2e+bCP77y60kxTo5tPAJSBoJOfvufwUwLMmD0yGsqY0HtycimooqpbqnW00EjTGrjDGpxpgcY0wOVjPAQ40xxcDrwCX2aIIzgWpjTFH3Q1ZKqdDaVlxGppRjkkcd8LEZKcnsMok0FPfvBMsYQ8HXb5Pj2EXM9Eu7fJzTIbQOsUfa68cJljGGRz/dxI0xr2ISMmH8vC4fm5PsYUVDMpgAVBb0XJA97NHPtjCkpZhZ1W9aNTcJXes23VaDUxo9zHr/fl8PRtlzNhTXsmBNMbeMKcBRshqOuXGfIyi2iXI5GJYUx+byeqtJpTYRVGrA68l5sN7GquHKBx4GftaD51JKqYNWvGUNAIOzxh/wscOTPRSYdKjo30O1f7KxlHNqn6QhOvWAkguAFG8qFZLYrxOsd9fsImvnAsYFvkXm/gac7i4fm+v1sKa5fzcP21pez4OfbOZvKa/hEAfM/XWXj831WnNhFTAUAq39Msk0xvDHt9bijQlweunD1oiAeed2+fgRXg+b20cS7J/fA0qp0AlpgmXXZJXZr40x5ufGmJHGmInGmCWhPJdSSoVK/Q4rwUrOyTvgY7OTYtkaSCOmdmuow+o1/oDh4zeeZJpjI+5jfwnumAM6Pic5jk2B/jtUe3Wjj3vfWMQt0U9j0vJg8gUHdHyu106yoV8+XAcCht++uppTnV8zrfYjmHU1DM7q8vFD4twMjnWzzmd/Bv2wmeBTi7fx6bdl/Hv4ApwV+XDKnQc04M2IFA9byuoJJI+Cqm39uqmoUqr7erIGSyml+oW40m9oIhpn6iEHfmyUi9KoTDwtZdBS3wPR9bx/f/QNP6p9gDrPMNyHXXLAx+d4PWzypxPoh02jAgHDr15Yzo2N95AkdciZfweH84DKyPV6qMFDU1RyvxxF744F69mZ/w13uv8JmYfB7BsO6HgRYUSKhyV1dr+9fvYZLNtWyW1vruWmzG8Yv/VJmP4jGHXcAZUxIiWe5tYAlbHDraai/bxGWynVPZpgKaUGNGMMGbWr2BE39oCahQVrGjTMetEPR9Fbsa2CtP/cyFCpwHPBI+CKOuAycr0etpihOBvK+tV8YIGA4Q9vrGbuxj8yx7ECx6l/gqGTD7ic7KQ4nA6hLDrLmmi2H3ns8y289+nnvOK5A3d0HJz72EF/D6ytADyp/SrBWr2jmssf+5oLPMu4svLP1qAWJ/2/Ay5nhNfqh7YFe3LufliTqZQKHU2wlFID2rbSSsaYLTSnHXrQZTiG5FgvqvpXM8FNJbWsfewqTnUupuWY3yHZMw6qnByvhy1tTeQq+keC4fMH+M3zi5m+5H85z/UfzDG/hGlXHFRZbqeD7CGxbJXMfvNg7fMHuOOd9bz31gu8GXsrg6JALnkNhhz4SJpgJRhF1U34k0f3m0Ee3l1TzAUPfckPHW/x++a7kMzD4PwnwRV9wGWNSLH6oa1rbptwuX98BkqpnnFgM2oqpVSEKVj1BcOllYTRRx50GbGpI6AAWisK+s0P1W8KSiiY/2P+i4VUTfohiXOuO+iyhibEsN1h99kpy7eamfVhO6oaueOJN/jv0tuZ4NyKOfGPyBFXdavMHK+H9SWpzGosgaZqiBkcomhDb3tFA9c8vYQjip7gyaiXcCSNRv7rWUjKPegy2wa6qI4bTtLWBaEKtUc0tvj5w1trWbB4NQ8Pms8RvkUw7gw4+yFwxx5Umd74KBJiXGyoAuLT+02irZTqGf3lWUAppXpE/aZFAAydcPRBl5GalkG9icZXvInEEMXVU4wxvPHp16R9eA3zZC2VM25gyCm/BZGDLtPhEGRIDoFaB44+/GBpjOGFr7ZQ8M5fudM8gzM6Bvn+czDmpG6Xnev1sHyzF5xYD9d9MMkMBAzPL9nOq2+9wW3yCHnuTTDhbPje3yAmoVtlj7CHai9yZ5PUWAH15eBJDkXYIfXlpnJufmUFh1W+w6fxLxIXqIcTb4eZP+vSkOydsfqhxVsjCXpHaw2WUgOcJlhKqQEtvmwFpc40UgZ3bc6fjgxL9rDdpJJc3rebCJZUN/D203/jzOL7iHH4qTn5AYYcflFIys5MSaS4LpWMPphgGWP4LL+M9996ngsr/s55jkIaco4n6twHYFB6SM6R6/XwSWuanWBt6lMJljGGLzeV89Bbn3F62SM86/wEf6wXTp8PE84KyTlykq0EKz8wlAlgNRPsQwnWhuJa/vbhRspWf8z9MU8x1r0Zhs6E0/4M6Qc+emhHRqR4+CK/HCaOhLWvh6RMpVT/pAmWUmrAamhpZVTzWsq9h5LSjXKGJcex0nhJrd4WsthCqaU1wPtvPM2IFXdxmRRQnJBHwiWPE5Ny4BMrdybX6yE/P42h5fkcfF1YaBlj+Dy/nHfefpWTyuZzm3MVdfFZBE5/krhxp3er1m5PuV4ryTbiQPpI7YUxhv9sLOXZ9z9nVvGTPORaiNMtmCOuxTn7+m7XWgWLjXKSMTiGVU2pzAOrBmfYzJCVf7BW76jmvg83UrP+Y65xv8bM6NWYQZlw4qNW7V0IvwdGpsTz8rIdNCeOJLqxAhoqIC4pZOUrpfoPTbCUUgPWug0bOEzKqRs2vVvlpMRHUyRpeBo+AWNC+tDWHcYYliz6GPngVk7zf0OpO53SufeTfsSF3WoO1ZGcZA/5gaEcVf4JEubPoK3G5p23X+WE0vnc7lxFU+wQWmf/nviZPzngeb66IifZQwtu6mIyGBTmWjxjDB+uK+GF9z9hbumT3O/6FHELZsqFOI++/qAHstifESnxLK12gzMq7HNhrdhexX0fbKT12w+4JupVDo3aQMCTCrNuR6ZdAVFxIT9n20iCRc4scsBOMg8P+XmUUn2fJlhKqQGrZN1nAKSPP/j+V2D1v2iIyyS6qQEaK/vEX61XfLOM+nduZVbTf6gigY2H/pYxp159UCOkdUWON463zVAcvgaoLYKEjB45z/58uamct99+mZNKHuMPzjU0xibhm/17Yg7/MUR5euy8GYmxRLkclERlhS3BCgQM764p5pX3P+akyqd4wPkFEuWCQ6/AOfvaA5o8+GDkej28tqIKkzISCdNnsKSggvs+3EjUpnf536jXmBC1iUBCJhx1N46pFx30IBZd0TaSYH4gzUqwyvM1wVJqgNIESyk1YMmOr2nBRULuwQ/R3qY1YRg0YQ3VHsYEa9WGbyl64w/MqX0Tv7hYOeLHjD3nN4zxDOnR8+YGD9Vent/rCdbizeW889ZLnFAy/7vE6ug/EDvjRz1SW7Enp0MYnhTHZpPByPJ3e7Um0x8wvLlyJ2998CHfq36KB52LCUTFINN/inPW1SHrZ7Y/uV4PNU2ttCSOILoXa7CMMXy5uZz7P9jAkK0L+E3Ua4yJ2kogMQdm34tj8g8Oam6vAzU8OQ6HwKqGIRzvcPeb4eqVUqGnCZZSakAyxpBWvYqdsWPJCUGtjis5B0rAVG5FMqZ2P8ADtG7rTja88ieOr3yWcdLCt1lnkXvOH5iUlNkr508bFMNOp32u8nzI7V6tYFd9tbmc995+geNL5nOrYx0Nscn4jv4jsTN+2CuJVbBcr4e1O1I4wVffK7V4rf4Ar63YyYIP3uPsuqd5yPk1rdFxcPi1uI68CjzeHj3/nnLtkQTLY4aTUfku+H0HPXl3Vxhj+PTbMu7/YD0ZhW9ze9Rr5EbtIJA8Go5+CEfeOeDsvcecGLeTrCFxbCprsoa874W+eNsrGvj7wk28v7aYJ390OIekh65fnVLq4HX7J4+I/A/wc8APvGWMudFefxPwQ3v91caYd7t7LqWUCpVtpVWMM5vYknpBSMqLT8uFddBQshnPhJAU2SX5RRUseflvHFfyGOOkmvyU4xh69u2MyxjXe0FgDdUek5RNc0000WU93zxsyZZy3n/rWY4reZzfOjZQH5uC75j/I2765T3aDGxfRqbGs3RDMrjp0Vq8Vn+AV1fs5P333+bc+md42LkMX8wgzMxf4DriZ2GrQR1pz4W13ZFJRqAVKgusIct7wOf5ZfxlwRpGFL3Jn91vkB1VRCB1PBz9Rxzj54HD2SPn3Z8RKR5rqPbUUdZokj2kpKaJ+z7K592vV3OF423+Jvks/OYBDknv/T/uKKX21q0ES0TmAvOAycaYZhFJtdePBy4AJgAZwAciMsYY4+9uwEopFQoFa75iuPgYNOqIkJSXlppOtYmjpWQLPdfT5zs7Khv44KWHOXrb37nAUUzh4CnUnXEHo0L0fg7GcO8gCmuHMrIH+9+s2FbJe68/xfElj3GTI5+62DRajrkTz/RLe2TwigMxJi2eV/1Dv0uwQlyL11Zj9eH7b/L9+qf5p/MbfDGDMbN+jfvw/4bYxJCe70BlDonF7RTWt6ZzOFg1OCFOsL7ZXsVfFqwms+Bl7nO/QYa7hED6ZDjmbhxjTw354C0HaoQ3nsWbKzDjRiP5H4C/NaS1aNUNPv75ySZe/nwll/Imn0a/R3SgEYBV616HkzTBUqov6O5d/1PgDmNMM4AxpsRePw941l6/RUTygRnAl908n1JKhUT9JuvHUfqE2SEpLzspjkKTgreiICTldaa6wccbrz/HxHV/4VLZRIlnJLWnPEXWxNPCPnphjtfDxm/TGNEDQ7VvKq3jpdde4Zht93OjYz21sem0zL2b+GmX9NjAHQdqdOogihmC3xmDM4TNwwIBwxsrd/Lqux/yg7r5/N25lJbYIZjZt+Ce/qOQDrfeHU6HMDzZw7K6OC4FeyTBU0NSdn5JHX95dx2uda/wx6gXyXbvIpBxGMy5H8foE8P+vd9mRIqHRp+fqviRDPG3QMUmSBnb7XIbW/w89sUWHl+4hnN9b/Jx9FvEBBqQcWfBMTdS8cg55FW8T5Pvt8S4w1N7p5T6TncTrDHAbBG5Hat79w3GmK+BTGBR0H6F9rq9iMiVwJUAw4YN62Y4SinVNZ7S5VQ4kkkakh2S8rKGxPKpSWVo7faQlLenJp+fN957j/Sv/8RFLKfKnULl3L+SesQlYWsOtadcbxybAulQuSRk/W9Kapp46q0PGL/ur9zo+Jr66CSa5/6JQTOu6JWBCw7EqNR4RByUxuaSvmtNSMr89NtSHnnzE06vmM8jzk/xR3sws39L1MyfQnR8SM4RSiO8HtaW1YMnNSSDPOysauRv72+kdMUb3Oh6nkOituJPzYPj78cx+oQ+k1i1GWH3Q9viHM4QgF1rupVgtbQGeO7rbfz9w3Uc37iA96JfY7C7EkafCsf+FtKs9sj1o87giNUP8unKdcw5LDQTJyulDt5+EywR+QDoaAii39jHJwEzgenA8yIy4kACMMY8BDwEMG3aNHMgxyql1MFo8vkZ0bSWkqRJJIXoAc0T7aLMlUZ848qQjiDnDxje+/xrzMe3c47/PzQ6PZTM+A2px/1P2PoadSYn2cPiwFDE+Lvd/6amycdT731J8pJ7uFo+ptUVS/0Rv8Rz9NV9MrEAa5CDYUlx5DtySd+1uFvfB6sKq/n7W4uYtv0xHnK9j9PtQA6/Cvfs/+0T0wB0ZkRKPB9vKCEwchSObvTFq6xv4e8L81n55Xtc73iWGe51+AcPh+MfwTnh7LA3BezMSHuo9jUtQzlUnFaClXf2AZfjDxhe/2YHf31vA5OrP+SV2JdJdxdB1pFw/K17Df+eftRFONf8g4qvngdNsJQKu/0mWMaY4zvbJiI/BV42xhjgKxEJAF5gBxD8Z+Ese51SSoXdt/kbmSglrM++PKTl1nuyiaprDskIcsYYPl+1kV1v/T9Ob3oTEaEo78dknv5rPLE9O+T6wTokPYEtZqi1UJ5/UAlWc6uf5z5Zhf+Tv3C5eRuXw1A/+YcknHgT0b08Kt7BGJM2iGU7sjiq+e2D+j7YWl7PvQtWkLn2Ue52v0msq8WaIHjur3p8HqtQmJg5GJ/fUBk7nORtCw44yaxvbuXRz7bwwSefcFXgKX7jWoo/LhXm/hnn1Ev6XK3lnlIHRRMf7SK/wgcph8DO5Qd0fNsk0XctWE962ec8Gvs8I6O2YLx5cPx9MOr4Dj9P99A8iqJzyd21gMaWW4iN6hu12koNVN1tIvgqMBf4WETGAFFAGfA68LSI/AVrkIvRwFfdPFef4W9tpaG+huaGOpob6/G3NuP3NeP3tdDa2kKg1UegtYWArwW/34dptf83fNcvwbRV1pmgr+/+242AiKPtBSICOBCxJjhFHO3rJXgfkfbjRARxiHX+9vVWuWLvb0Rw2OUJ9v5t5eD4rgwRu0wrBkRwtL/+rjwRh31Oqwx7h73/b38Npv0XR0f7dY3ptXpQg+nwgvXgGfdxOgnxGw9NaV0vxfTehbP+ygukTD4ppOU2DxkDdUDp+m4lWKsLiln18p84rfpZPNLEjuFnknXWbWSGqDljTxkc58Y3ZCQ0ACVrYewpXT7WHzC8sXQzO979Kxf5XmSQNFI9+iyGnHYrCUOG91zQIXbI0AQWrs/k6iig8GsYP69Lx5XVNfPAB+toXfI4v3K+RIq7Gt+Y03GccAukjOnZoENocvZgAL51jiC5sRIqNkPyyP0e19Ia4JmvtvHsh4u4pPlZXnH9BxPrgaN+h3PmT3t0kuhQEhFGpcazrqgWsqfD6lcgEOhSjduizeXcuWA9vu3L+L/Y5zg0ahVm0HA49l9I3jn7LaN1/DlMXX43b3z5Nd87Zmao3lK/Z4yhxdeCr6WZ1uYmfC1NtLY00eqznt1aW5rw+5oJ+Jrx+1sJBAyYAMYErF+6JgAEIGDs31PB68EgGBz244yj/TkIrGczHNYzlbGf1b57BnO0b2vfx2E9b7HHvu3PXY625y/rmch67gMQsJ+3gre17xP0LNa2f/AzW3BZElSOadtbgrYLSPsz2e6/t3d7Jgr6nb77r/d9/K63d+zoeSAQFc+Q5FTiovrHDFPdjfJR4FERWQ20AJfatVlrROR5YC3QCvy8P44guGzBfOKXPEBUoJHoQBMxNBFrmogRH4OAQeEOUCl1UIYCpSSRMqL7EwwHi8sYD9uhuWgd0SOPPeDjt5XW8NmL9zK3+BF+IBVsTzma2LP/j2EZ/afJT252FgUbM8nZtrhL+xtj+HhdEcve/Cc/qH+CM6WcisxjcJxxO0PSJ/ZwtKE3PWcIfw/k4nfG4iz4fL8JVn1zK//6ZDObP32Ga+QZRriKaMmcCSf/EXf29F6KOnQyE2Pxxkfxn6YxzATY+sU+E6y2pnAPvrucM+qe51XXu7ijAjhm/ARm3wCe5F6LPVQOz03i0c+30DJtGlFL50Ppuva+Uh1ZvaOaO9/dwJZvV/O72Bc5MfpzTEwyHP0nZFrX+xpmzb4Ilt9N+ZdPYY4+vP3Bub/z+XxUV5ZRV1lCQ3UpzTVltNSWYerLMY0VSFMVjpZ6XP4G3K31uAONxAQaiAk0EksjcaaJaPHTN4bCUQfrsdaTSDnvr5w+qXcnsT9Y3UqwjDEtwEWdbLsduL075Yebwx1DkyuBemcara44Aq44jDvO+ktalAdHVBwSFYfDFY3D6UJc0ThcbhyuKJwuNw53FE5nFE63vdz+1yfZ7b/vXrStD/qhaKzaLWOM9VcV+y8nAdP2FxYItP+VxWDsdab99Xf7GbDW2eVYRQfvZ9fIBC0H7P/byrBisbabtviCztv2OjhuY78W2mpZ7OX21yCY3Wr1rOWg15jgD2z/eu33igT92wf0wC/U7pZo+uR1g+SRh5ES4s9rWPZwKhbFE9i26oB+mZfUNPL+K/M5fPN9/JfsYOegPBrOmE/2mGNCGl9vmJw1mC/WjGHYtkU4Av59DsDx9ZZy3n/9Cc4q/xc3OLZTlTSRwOmPkTSy/73vNocOG4JxuNnmmUju5o87bSLn8wd49uvtLHz/dX7me5xrHN/SMmQ0nPQMUWNP6XODN3SViHDESC/PfWu40ZOCbPoQDr14r/2MMXywroR7313N9LJXeD7qNQa7ajATv48c+1sYktP7wYfIESOT+ecnm1nmmmIlmRve6TDB2lxax5/f38iXKzdwQ8xrnB/zPg6HG2bdgMy65oBHh5SkXIq9R3BG6cu8v/x/OPHQvl3zGfAHKC3ZSWXRZurLCmmp2oGpKcZZV0x0UwnxvjIS/RUkmWq8YuiogXCrcVAnHhokjmZHLC2OOHyueCpdafhdcQTc8Ri3B6JiEWcUOKPAFY24ouxnNuu1wx2D0x2Fw+HC6XTYrWmc7bVCOJztLXvAgTgcQbU7BjEAfkzAemYxAavWy/rfBD0bWc9PEvR8tuc2q2bMIIGA/RgUtI2g2h37mU1oe+aDtucu63/r2Wqv4/hu37ZaOOuRqy3O4HLsjVZJtD2a7f5jbR8/q4J+jgXvFfxcsNfRnfzsyx40krFZiZ2fq4/pH/VsYTLluAvguNBMQqqUinxjhyawOpDLxKIlXdq/uqGF9954mjFr7+NCyac0JpuqEx8l49Cz++0D9pyxqfzlnYn8V/PHUPAZjNg7WVpXVMPrr73A0Tv+xa+da6mNz6b15EdJnNh/33cbT7SLI0cm83LxVK6v+ScUr4Shk9u3+/wBXl2+g48+eIvz6p/mEec3tMSnwXH3EjXlwpDOmRQup+al88Y3O9k18njSN74GjVXtc3S19TG6/4M15O16nYej3iTdXYrJOQZOuA3JmBLO0ENiRm4SnignL2wMMDPzMFj9Esy+vv17e3NpHfd/lM8nK9bx31HvcE/c+7hNM3LoxXDMryBh6EGf23vm/+H61xxK3/4/GvP+Ffa+WJWVFZRuW0fNzk20lG+Bqm3E1hWS2LKTVP8u0qSZtKD9A0aokMFUO5Opi0qhInYCmzwpODxenJ5k3IO8xCakEJeYwqCkVOIThpDocJIYrjeoVCf6/09ypZTqI4YlxfG2ewJH1T4HDRWdjvZW3eDj/bdfZMTqv/J91lPhTqNs9l2kHHVFv3/AHpUaT2HK0TTUPEzs0vlIUIK1bGsF/3nnBY7c+Si/dKynISaZlrl3MmjG5X1+8IIDcdbUTH7//GFc64nB+Z874fwnqW/x8/ry7Sz5+BXmNbzMP5yraIkbgjnqFqIO/+9+08eoK+aMTSUhxsU9VUfxJ98z8OndtBx7G++tLea5hcsYu+ttHopaQKq7nEDGdJj7IDLyuH6fXLeJi3Jx9qFZPLdkO7866WJSPrwWVr3IN0NO4LHPt7Bm5ddc6PqYO2I/wh1otuaymvOrkMyX5cqaSsmIs7lg0ys8/NRs/vuyy3u8qaDfH6BoRwElW1bRsGMtUvYt8XWbSW3ZxlDKCR6Sp45YSp3p1MRmUxp/JDJkONHe4Xi82SSmDiMxNROvy91hbZVS/Yn0Zsfy/Zk2bZpZsqRrf/lVSqm+6G+PPs41264mcNbDOCaft9u2kpoG/vPmk+RueIRpsp4qZzINM68jY+6VfWay3FB4/IsCat++matcr1E661ZW+EdQvHohM2veZbRjB3VRKThnX0fszCv63FDzodDqD3D6fZ9xcuUzXCtPszZuOvn1MRzGWjKlnOboZKKOvtbqX9NHh5zvrqcXb+PXr6zikSH/5rjGBXxNHgRamOrYhAs/gWFH4pjzS8g9JmISq2A7qho5/d5PiXEYnnbdSnbTBr70jyPdUcVoKcSIE5n4fatmK9SDmDTXUv7X2TgaSnl+zF1cccEFuJ3dH9a+obGRws1rqdy6mpbiDbgrvyWxoYDM1u0Mksb2/eqJocidTa1nBK3Jo3GnjiYhfRQpw8YwKDElIq+3GrhEZKkxZtpe6zXBUkqp0Hl75Q7GvziXxORUEq9aiHE4WfXtFjZ9/DiTdj7PSNlJhSuNluk/If3Yn0ZkguHzB7jm31/wg82/ZLZzdfv6XQkTSTzqx0RPPR/cMWGMsOftrGrkFy+sYMrWx7jY9RExLiBjCoNnXIgccmpEJdQdMcbw+BcFPPF5Phe1vMAJziXEJwwhYfQsHFN+AKnjwh1ij1u9o5o73llPWWkx17tf5FDHtwxOycQ16liY+H2IT+2xc5uKLVT+83Q8TcW8HHM2Q0++nqMmjcG1n0TLHzAUFe2kpGA19TvWQtm3xNVuxtu0jYxAMW75bryyUkmmNHoYjQkjkZSxxGeNI23EJAanDtMkSg0YmmAppVQv8AcMd9/5e37ZdA/bokdR63My2p9PlPjZETsG91FXkzrzAnC6wx1qjzLGsHhzGS0Fi8nx+MgeNx3pB/M4hZoxJmJGc1P9TEMFRc9cxdDtb+EzTlYxinLPaHxxqTij4nAYH47WBtzNVcQ1FTPYV4o3UMYQqWsvosW4KHJlUhk3HF/iSNxph5A4LI+hI/OI9iSG770p1UdogqWUUr2ksLKBD5+8k8Mr3wR3DIGMaeTMvYy4YVPCHZpSaoDx7VxF4X/mI4Vf4W3YTLz5LoHyY43CV+lKpT46lWZPBo6kXOIyxuHNzWPI0FFIP+8XqlRP0gRLKaWUUmqg8/vA19g+ZLk251Pq4HWWYOmfJZRSSimlBgqnO+KbKCsVbt0fVkYppZRSSimlFKAJllJKKaWUUkqFjCZYSimllFJKKRUifWqQCxEpBbaGO449eIGycAeheo1e74FDr/XAodd6YNHrPXDotR5Y+uL1Hm6MSdlzZZ9KsPoiEVnS0eggKjLp9R449FoPHHqtBxa93gOHXuuBpT9db20iqJRSSimllFIhogmWUkoppZRSSoWIJlj791C4A1C9Sq/3wKHXeuDQaz2w6PUeOPRaDyz95nprHyyllFJKKaWUChGtwVJKKaWUUkqpENEESymllFJKKaVCRBOsfRCRk0Vkg4jki8ivwh2PCh0RyRaRj0VkrYisEZFr7PVJIvK+iHxr/z8k3LGq0BARp4gsF5E37eVcEVls39/PiUhUuGNUoSEiiSLyooisF5F1InKE3tuRSUSus3+GrxaRZ0QkRu/tyCEij4pIiYisDlrX4b0slnvt675SRA4NX+TqQHVyre+yf46vFJFXRCQxaNtN9rXeICInhSXofdAEqxMi4gQeAE4BxgM/EJHx4Y1KhVArcL0xZjwwE/i5fX1/BXxojBkNfGgvq8hwDbAuaPlPwD3GmFFAJfDDsESlesLfgAXGmEOAyVjXXe/tCCMimcDVwDRjTB7gBC5A7+1IMh84eY91nd3LpwCj7a8rgX/0UowqNOaz97V+H8gzxkwCNgI3AdjPaxcAE+xj/m4/t/cZmmB1bgaQb4zZbIxpAZ4F5oU5JhUixpgiY8wy+3Ut1gNYJtY1ftze7XHgzLAEqEJKRLKA04B/2csCHAu8aO+i1zpCiMhg4GjgEQBjTIsxpgq9tyOVC4gVERcQBxSh93bEMMZ8AlTssbqze3ke8G9jWQQkisjQXglUdVtH19oY854xptVeXARk2a/nAc8aY5qNMVuAfKzn9j5DE6zOZQLbg5YL7XUqwohIDjAVWAykGWOK7E3FQFq44lIh9VfgRiBgLycDVUE/uPX+jhy5QCnwmN0k9F8i4kHv7YhjjNkB3A1sw0qsqoGl6L0d6Tq7l/W5LbJdAbxjv+7z11oTLDWgiUg88BJwrTGmJnibseYw0HkM+jkROR0oMcYsDXcsqle4gEOBfxhjpgL17NEcUO/tyGD3vZmHlVRnAB72bmKkIpjeywODiPwGq2vHU+GOpas0wercDiA7aDnLXqcihIi4sZKrp4wxL9urd7U1KbD/LwlXfCpkZgFniEgBVlPfY7H66CTazYpA7+9IUggUGmMW28svYiVcem9HnuOBLcaYUmOMD3gZ637XezuydXYv63NbBBKRy4DTgQvNd5P39vlrrQlW574GRtujEUVhdaZ7PcwxqRCx++A8AqwzxvwlaNPrwKX260uB13o7NhVaxpibjDFZxpgcrPv4I2PMhcDHwLn2bnqtI4QxphjYLiJj7VXHAWvRezsSbQNmikic/TO97VrrvR3ZOruXXwcusUcTnAlUBzUlVP2QiJyM1bz/DGNMQ9Cm14ELRCRaRHKxBjb5Khwxdka+SwbVnkTkVKy+G07gUWPM7eGNSIWKiBwFfAqs4rt+Ob/G6of1PDAM2AqcZ4zZs4Ot6qdEZA5wgzHmdBEZgVWjlQQsBy4yxjSHMTwVIiIyBWtAkyhgM3A51h8U9d6OMCLye+B8rOZDy4EfYfXF0Hs7AojIM8AcwAvsAm4BXqWDe9lOsu/HaibaAFxujFkShrDVQejkWt8ERAPl9m6LjDE/sff/DVa/rFasbh7v7FlmOGmCpZRSSimllFIhok0ElVJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQuT/AxrATSAEfGxlAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2334,31 +2334,31 @@ " 24\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " bAP.soma.v\n", - " 0.0158\n", - " 2.04e-07\n", + " 0.00774\n", + " 4.38e-07\n", " \n", " \n", " 25\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step1.soma.v\n", - " 0.072\n", - " 6.72e-07\n", + " 0.0947\n", + " 1e-07\n", " \n", " \n", " 26\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step3.soma.v\n", - " 0.103\n", - " 6.99e-07\n", + " 0.0863\n", + " 5.83e-07\n", " \n", " \n", "\n", @@ -2366,14 +2366,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "24 False 8 0.07 0.0122 bAP.soma.v \n", - "25 False 8 0.07 0.0122 Step1.soma.v \n", - "26 False 8 0.07 0.0122 Step3.soma.v \n", + "24 False 8 0.0708 0.0267 bAP.soma.v \n", + "25 False 8 0.0708 0.0267 Step1.soma.v \n", + "26 False 8 0.0708 0.0267 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "24 0.0158 2.04e-07 \n", - "25 0.072 6.72e-07 \n", - "26 0.103 6.99e-07 " + "24 0.00774 4.38e-07 \n", + "25 0.0947 1e-07 \n", + "26 0.0863 5.83e-07 " ] }, "metadata": {}, @@ -2381,7 +2381,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD9iElEQVR4nOzdd3wc5bXw8d/Zqt5ldVtyxRUDpoUOCSUBHEKCIYR6CRfSSSGdQG6SNzdwQ0IJDgmEUGJ6Cy2hGTAB3HAvuMlVttXb9t3n/WNW8lpWs73SStrz/XyEd9ozZ2e0Ys4+z5wRYwxKKaWUUkoppQ6fLdEBKKWUUkoppdRIoQmWUkoppZRSSsWJJlhKKaWUUkopFSeaYCmllFJKKaVUnGiCpZRSSimllFJxogmWUkoppZRSSsWJJlhKKTXEiEiliBgRcSQ6FpUcRGS1iJye6DiUUmok0ARLKaXUsCcic0WkLfoTEJFgzPSriY5vqDPGTDXGzI9nmyKSJyJPiEi9iNSJyGMikhXPfSil1FCkCZZSSsWZ9jwNPmPMDcaYDGNMBvAb4ImOaWPMeR3rDadzM5xi7cGvgFygChgHFAG3JjIgpZQaDJpgKaVUHIhItYj8UERWAO0i4hCRE0TkPyLSJCLLY4dgich8Efl/IrJQRFpE5AURyeuh7WtEZK2ItIrIZhH57y7LZ4vIsmg7m0Tk3Oj8bBF5QERqRGSniPxKROx9vI9xIvJWl16HnJhlDSJydHS6VERqO96XiFwYHWrWFH1/k7scn++LyAoRaY72bKQc/JE+eD2cGyMi42PWeUhEfhUzfX70mDZFz+GMfu7rdBHZISI/iR6/ahG5PGb550Tk4+i52i4it8Ys6xga+l8isg14Kzr/KRHZHT1u74rI1C5x/0lEXo321r0vIsUi8gcRaRSRdSJyVD+P0af78x4PQhXwvDGmxRjTDDwHTO1jG6WUGvY0wVJKqfi5DPgckIP1bf3LWN/i5wHfB54RkcKY9a8ErgVKgBBwVw/t7gXOB7KAa4A7Y5Kc44CHgR9E93sqUB3d7qFou+OBo4Czgev6eA8C/D+gFJgMVBDtdTDGbAJ+CDwqImnA34C/G2Pmi8hEYB7wHaAQeAX4p4i4Ytq+BDgX68J7BnB1twGInBxNbHr6ObmP99CdznNjjAn1egCshORB4L+BfODPwIsi4u7nvoqBAqAMuAq4X0QmRZe1Y533nGg8N4rI57tsfxrWsT8nOv0qMAEYBSwFHuuy/iXAz6L79AMfRNcrAJ4Gft/PuLslIj/q7Xz0sum9wPkikisiucDF0feilFIjmiZYSikVP3cZY7YbY7zAV4BXjDGvGGMixpjXgcXAZ2PWf8QYs8oY0w78HLikux4mY8zLxphNxvIO8G/glOji/wIeNMa8Ht3PTmPMOhEpiu7rO8aYdmPMXuBO4NLe3oAxZmO0Lb8xphbr4vy0mOV/ATYCH2Elhj+NLpoDvBzdNgjcAaQCn+pyfHYZYxqAfwIze4hhgTEmp5efBb29hx7Enpu+XA/82RjzkTEmbIz5O1bicsJB7O/n0WP4DlaifQmAMWa+MWZl9FytwEpKT+uy7a3Rc+aNbvOgMabVGOPHSnaPFJHsmPWfM8YsMcb4sHqJfMaYh40xYeAJrOT6kBljftvb+ehl06WAC6iP/oSBPx1OLEopNRxogqWUUvGzPeb1GOBLXb7pPxkrKelu/a2AE6vXYT8icp6IfBgdnteElTh1rFcBbOomljHR9mpi9v9nrF6QHolIkYg8Hh1S2AI82k1MfwGmAXdHL/rB6vHa2rGCMSYSfX9lMdvtjnntATJ6iyXOtve9SqcxwPe6nLsKrPfYH43RpLnD1o5tReR4EXk7OrSyGbiBA49vZ6wiYheR34o19LOFfb2TsdvsiXnt7WZ6MI9zrCeBT4BMrN7XTVi/T0opNaJpgqWUUvFjYl5vx+qhiv22P90Y89uYdSpiXo8GgkBdbIPRYWnPYPUIFUV7DF7BGsrXsZ9x3cSyHavXpSBm/1nGmL7ugflN9H1MN8ZkYfXEdewLEckA/gA8ANwq++4b24WVmHSsJ9H3t7OP/R1ARE6RfRUAu/s5pe9WDmC6THuAtJjp4pjX24Ffdzl3acaYef3cV66IpMdMj8Y6PgD/AF4EKowx2cBcYo5vN7F+GZgNfBrIBiqj87tuM2Ci95P1eD562XQmVk9guzGmDeu9fraX9ZVSakTQBEsppQbGo8AFInJOtBciJVoAoTxmna+IyJTo/Uy/BJ6ODuuK5QLcQC0QEpHzsO6l6vAAcI2InCUiNhEpE5EjjDE1WEMJ/09EsqLLxolI1+FoXWUCbUCziJRh3dsV64/AYmPMdVhD3+ZG5z8JfC4ahxP4HlaC95++DlRXxpj3YioAdvfz3sG22Y1lwJej5+Zc9h+m9xfghmhvk4hIuljFKTKhs7DEQ320f5uIuKLJ4PnAU9H5mUCDMcYXvX/uy320k4l1HOuxEsLfHMR7jAtjzG96Ox+9bLoIuE5EUkUkFWvo5YrBiVoppRJHEyyllBoAxpjtWD0PP8FKjrZjJSuxf3cfwSpEsRtIAb7VTTut0flPAo1YF+QvxixfSLTwBdAMvMO+nqQrsRK0NdFtn2b/IYrduQ04OtrWy8CzHQtEZDZWkYobo7O+CxwtIpcbY9Zj9XbdjdULdwFwgTEm0Mf+EuXbWDE2AZcDz3csMMYsBr4K3IN13Dayf0GOCuD9XtreHd1uF1ZBihuMMeuiy74G/FJEWoFbsM5rbx7GGmK4E+s8ftjXGxtCrsXqcduBFf9YrKIfSik1ookxXUdNKKWUGmgiMh941Bjz10THovovWhVxOTAjWsyj6/LTsc5reddlSimlksNwf4ihUkopNWiiPXKT+1xRKaVU0tIhgkoplWREZG4PBQvm9r21Go5EZHQvhSpGJzo+pZQaSXSIoFJKKaWUUkrFifZgKaWUUkoppVScDKl7sAoKCkxlZWWiw1BKKaWUUkqpXi1ZsqTOGFPYdf6QSrAqKytZvHhxosNQSimllFJKqV6JyNbu5usQQaWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTgZUvdgdScYDLJjxw58Pl+iQ1FDQEpKCuXl5TidzkSHokawp5fs4JWPVvPby09lVHZqosNRSiml1DAy5BOsHTt2kJmZSWVlJSKS6HBUAhljqK+vZ8eOHVRVVSU6HDWCLXz5QR6M/B/vPHU9o667PdHhKKWUUmoYGfJDBH0+H/n5+ZpcKUSE/Px87c1UA6qhPcD5wX8DcNTOf0AokOCIlFJKKTWcDPkEC9DkSnXS3wU10DbVtjHWVkMAJ1mmjabNCxMdklJKKaWGkWGRYCml1GCpqWuklHq2Vn4JgD0r305wREoppZQaTjTB6gcR4Xvf+17n9B133MGtt96auIBinH766b0+nPnzn/88J5xwwn7zbr31VsrKypg5cybTpk3jxRdfHOgwlRo2wrUbsYkhf/KpbIqU4NipPVhKKaWU6j9NsPrB7Xbz7LPPUldXF9d2jTFEIpG4thmrqamJJUuW0NzczObNm/dbdtNNN7Fs2TKeeuoprr322gGNQ6nhJNK8E4CcknFsdY0nu+WTBEeklFJKqeFEE6x+cDgcXH/99dx5550HLKutreXiiy/m2GOP5dhjj+X9998HrF6iO+64o3O9adOmUV1dTXV1NZMmTeLKK69k2rRpbN++nR/84AdMmzaN6dOn88QTTwAwf/58Tj/9dL74xS9yxBFHcPnll2OM6Ta+Rx55pLM3auHCfd+2P/vss1xwwQVceumlPP74491uO3nyZBwOx37J449+9COmTJnCjBkz+P73vw9AdXU1Z555JjNmzOCss85i27ZtAFx99dXceOONnHDCCYwdO5b58+dz7bXXMnnyZK6++urONm+88UZmzZrF1KlT+cUvfnFAHM3NzYwZM6Yz0Wtvb6eiooJgMNht3EoNlGB7IwC2tFzasydSENoN/tYER6WUUkqp4WLIl2mPdds/V7NmV0tc25xSmsUvLpja53pf//rXmTFjBjfffPN+87/97W9z0003cfLJJ7Nt2zbOOecc1q5d22tbGzZs4O9//zsnnHACzzzzDMuWLWP58uXU1dVx7LHHcuqppwLw8ccfs3r1akpLSznppJN4//33Ofnkkw9oz+PxsGzZMt59912uvfZaVq1aBcC8efO45ZZbKCoq4uKLL+YnP/nJAdt+9NFH2Gw2CgsLAaivr+e5555j3bp1iAhNTU0AfPOb3+Sqq67iqquu4sEHH+Rb3/oWzz//PACNjY188MEHvPjii1x44YW8//77/PWvf+XYY49l2bJlzJw5k1//+tfk5eURDoc566yzWLFiBTNmzOiMIzs7m5kzZ/LOO+9wxhln8NJLL3HOOefo867UoIt4m60X7ixsxVOhHtq2ryJj/ImJDUwppZRSw4L2YPVTVlYWV155JXfdddd+89944w2+8Y1vMHPmTC688EJaWlpoa2vrta0xY8Z03he1YMECLrvsMux2O0VFRZx22mksWrQIgOOOO47y8nJsNhszZ86kurq62/Yuu+wyAE499VRaWlpoampiz549bNiwgZNPPpmJEyfidDo7Ey+AO++8k5kzZ/L973+fJ554orM6X3Z2NikpKfzXf/0Xzz77LGlpaQB88MEHfPnLXwbgiiuuYMGCBZ1tXXDBBYgI06dPp6ioiOnTp2Oz2Zg6dWpnzE8++SRHH300Rx11FKtXr2bNmjUHvI85c+Z09uA9/vjjzJkzp9fjqNRAcASjX+KkZJM9xvoSoGHLxwmMSCmllFLDybDqwepPT9NA+s53vsPRRx/NNddc0zkvEonw4YcfkpKSst+6Dodjv/uaYp/dlJ6e3q/9ud3uztd2u51QKNTtel1Ll4sITz75JI2NjZ0P5G1paWHevHn8+te/Bqx7sDqG/3WNe+HChbz55ps8/fTT3HPPPbz11lv9itNms+0Xs81mIxQKsWXLFu644w4WLVpEbm4uV199dbfPsrrwwgv5yU9+QkNDA0uWLOHMM8/sdb9KDQRXsJUATlzOFEoqJ9Fu3AR2rep7Q6WUUkop4tCDJSIVIvK2iKwRkdUi8u3o/FtFZKeILIv+fPbww02svLw8LrnkEh544IHOeWeffTZ333135/SyZcsAqKysZOnSpQAsXbqULVu2dNvmKaecwhNPPEE4HKa2tpZ3332X44477qDi6uj1WbBgAdnZ2WRnZzNv3jxee+21zvu+lixZ0uN9WLHa2tpobm7ms5/9LHfeeSfLly8H4FOf+lTn9o899hinnHJKv+NraWkhPT2d7Oxs9uzZw6uvvtrtehkZGRx77LF8+9vf5vzzz8dut/d7H0rFizvchteeAcDo/Aw2mApc9b0P+1VKKaWU6hCPHqwQ8D1jzFIRyQSWiMjr0WV3GmPu6GXbYed73/se99xzT+f0XXfd1Xl/VigU4tRTT2Xu3LlcfPHFPPzww0ydOpXjjz+eiRMndtveRRddxAcffMCRRx6JiPC73/2O4uJi1q1b1++YUlJSOOqoowgGgzz44INUV1ezdevW/cqzV1VVkZ2dzUcffdRtG5/97Gf561//iogwe/ZsfD4fxhh+//vfA3D33XdzzTXXcPvtt1NYWMjf/va3fsd35JFHctRRR3HEEUdQUVHBSSed1LnslltuYdasWVx44YWANUzwS1/6EvPnz+93+0rFkzvchteWQTbgtNvY6a5kXNuiRIellFJKqWFCeqpMd8gNirwA3AOcBLQdTII1a9Ys0/WZTmvXrmXy5MlxjVENb/o7oQbSh7edRmmKn9E//BCAJ++6mUsa/gw3b4G0vARHp5RSSqmhQkSWGGNmdZ0f1yIXIlIJHAV0dJN8Q0RWiMiDIpIbz30ppdRASDPtBByZndNSMA6AcN2mRIWklFJKqWEkbgmWiGQAzwDfMca0APcB44CZQA3wfz1sd72ILBaRxbW1tfEKRymlDkmGaSfg3JdgZRRPAqBx+4GVL5VSSimluopLgiUiTqzk6jFjzLMAxpg9xpiwMSYC/AXotnKDMeZ+Y8wsY8ysjmcxKaVUIkQihjS8hB0ZnfNGjZlE2Aitu9YnMDKllFJKDRfxqCIowAPAWmPM72Pml8SsdhGgdY6VUkOaPxQhhQA4UzvnjS3OZ4cpJFK7IYGRKaWUUmq4iEcVwZOAK4CVIrIsOu8nwGUiMhMwQDXw33HYl1JKDRhfMExalwQrN93FGlsJla3ViQtMKaWUUsPGYSdYxpgFgHSz6JXDbVsppQaT1x8gV4JITIIF0JQ6hjzf62AMSHd/7pRSSimlLHGtIjiSPf/884hIr8+nqq6uZtq0aXHb59VXX83TTz/d4/LvfOc7lJWVEYlEOuc99NBDFBYWMnPmTKZMmcJf/vKXuMWj1Ejn83kAENf+CVYgu4pU44W2vYkISymllFLDiCZY/TRv3jxOPvlk5s2b1+3yUCh02PsIh8P9XjcSifDcc89RUVHBO++8s9+yOXPmsGzZMubPn89PfvIT9uzZc9ixKZUM/J42AGyu9P3m2wvHA+DdrYUulFJKKdU7TbD6oa2tjQULFvDAAw/w+OOPd86fP38+p5xyChdeeCFTpkwBrETr8ssvZ/LkyXzxi1/E47G+EX/zzTc56qijmD59Otdeey1+vx+AyspKfvjDH3L00Ufz1FNPHbDvN954g1mzZjFx4kReeuml/fY9depUbrzxxh6TvlGjRjFu3Di2bt3aOe+uu+5iypQpzJgxg0svvRSAhoYGPv/5zzNjxgxOOOEEVqxYAcCtt97KVVddxSmnnMKYMWN49tlnufnmm5k+fTrnnnsuwWAQgF/+8pcce+yxTJs2jeuvv56uD6+ORCJUVlbS1NTUOW/ChAma+KkhJ+hrB8Du3r8HK6vMerB1wzYt1a6UUkqp3sWjyMXgefVHsHtlfNssng7n/bbXVV544QXOPfdcJk6cSH5+PkuWLOGYY44BYOnSpaxatYqqqiqqq6tZv349DzzwACeddBLXXnstf/rTn/jGN77B1VdfzZtvvsnEiRO58sorue+++/jOd74DQH5+PkuXLu1239XV1SxcuJBNmzZxxhlnsHHjRlJSUpg3bx6XXXYZs2fP5ic/+QnBYBCn07nftps3b2bz5s2MHz++c95vf/tbtmzZgtvt7kx4fvGLX3DUUUfx/PPP89Zbb3HllVeybNkyADZt2sTbb7/NmjVrOPHEE3nmmWf43e9+x0UXXcTLL7/M5z//eb7xjW9wyy23AHDFFVfw0ksvccEFF3Tu02azMXv2bJ577jmuueYaPvroI8aMGUNRUVG/T5NSgyHQkWB16cEqqhiP3zjw7v4kEWEppZRSahjRHqx+mDdvXmdvz6WXXrpfj9Fxxx1HVVVV53RFRQUnnXQSAF/5yldYsGAB69evp6qqiokTJwJw1VVX8e6773ZuM2fOnB73fckll2Cz2ZgwYQJjx45l3bp1BAIBXnnlFT7/+c+TlZXF8ccfz7/+9a/ObZ544glmzpzJZZddxp///Gfy8vI6l82YMYPLL7+cRx99FIfDyq8XLFjAFVdcAcCZZ55JfX09LS0tAJx33nk4nU6mT59OOBzm3HPPBWD69OlUV1cD8Pbbb3P88cczffp03nrrLVavXn3A+5gzZw5PPPEEAI8//niv71mpROnowXK40/abX1mYxTZThDRsSkRYSimllBpGhlcPVh89TQOhoaGBt956i5UrVyIihMNhRITbb78dgPT0/b/pli4VxrpOd6drG321969//YumpiamT58OgMfjITU1lfPPPx+wkpl77rmn2/Zefvll3n33Xf75z3/y61//mpUre+8RdLvdgNUL5XQ6O+Ox2WyEQiF8Ph9f+9rXWLx4MRUVFdx66634fL4D2jnxxBPZuHEjtbW1PP/88/zsZz/rdb9KJULIbw3pdabu/5lMddmpcZQxoW1rd5sppZRSSnXSHqw+PP3001xxxRVs3bqV6upqtm/fTlVVFe+9916362/bto0PPvgAgH/84x+cfPLJTJo0ierqajZu3AjAI488wmmnndav/T/11FNEIhE2bdrE5s2bmTRpEvPmzeOvf/0r1dXVVFdXs2XLFl5//fXO+716EolE2L59O2eccQb/+7//S3NzM21tbZxyyik89thjgHVvV0FBAVlZWf2KryOZKigooK2trceqhyLCRRddxHe/+10mT55Mfn5+v9pXajCF/VYPlqtLDxZAS9po8v07INL/YjRKKaWUSj6aYPVh3rx5XHTRRfvNu/jii3ssLDFp0iTuvfdeJk+eTGNjIzfeeCMpKSn87W9/40tf+hLTp0/HZrNxww039Gv/o0eP5rjjjuO8885j7ty5RCIRXnvtNT73uc91rpOens7JJ5/MP//5z27buO6661i8eDHhcJivfOUrTJ8+naOOOopvfetb5OTkcOutt7JkyRJmzJjBj370I/7+97/38+hATk4OX/3qV5k2bRrnnHMOxx57bOeyuXPnMnfu3M7pOXPm8Oijj+rwQDVkhf1eAFypB/Yqh3LH4iKIad4+2GEppZRSahiRrhXfEmnWrFlm8eLF+81bu3YtkydPTlBEaijS3wk1UF5/4k98Zu2P8f/3h7hL9v8de/nFJ/nc0q/S8sUnyZp2ToIiVEoppdRQISJLjDGzus7XHiyllIqKBK1htq6UA4cI5lRYCVfjdi3VrpRSSqmeaYKllFIdgtYQQXEdOESwrLyKNpNCYI+WaldKKaVUz4ZFgjWUhjGqxNLfBTWgoj1YOFIOWFSel8YWU4KjUUu1K6WUUqpnQz7BSklJob6+Xi+sFcYY6uvrSUk58OJXqbgIRh8x4Ew9YJHDbmOPq4Ks9urBjUkppZRSw8qQfw5WeXk5O3bsoLa2NtGhqCEgJSWF8vLyRIehRigJeQngxGWzd7u8LaOK3Kb3rKGE3SRhSimllFJDPsFyOp1UVVUlOgylVBKwh70ExIWrh+WRvPHYmgyRuo3YSqYPamxKKaWUGh6G/BBBpZQaLLawD7/0PAQ1peQIQCsJKqWUUqpnA55gici5IrJeRDaKyI8Gen9KKXWo7CEfIZu7x+V5FVaC1bZj7WCFpJRSSqlhZkATLBGxA/cC5wFTgMtEZMpA7lMppQ6VI+Ij2EuCVVkyip0mn3CtlmpXSimlVPcGugfrOGCjMWazMSYAPA7MHuB9KqXUIXFE/IRsPQ8RLMpys5VS3M2bBzEqpZRSSg0nA51glQHbY6Z3ROd1EpHrRWSxiCzWSoFKqURyRvyE7T0nWCJCfcpocr1bQR8doZRSSqluJLzIhTHmfmPMLGPMrMLCwkSHo5RKYk7Te4IF4M0aS5rxQNveQYpKKaWUUsPJQCdYO4GKmOny6DyllBpy3MZPpI8Ey1Y4AYDgXr0PSymllFIHGugEaxEwQUSqRMQFXAq8OMD7VEqpgxaJGFKMH+Po/QHC6aWTAWjctnowwlJKKaXUMDOgDxo2xoRE5BvAvwA78KAxRq9KlFJDji8UJkUCtDl778EqrhiH17jw1KwbpMiUUkopNZwMaIIFYIx5BXhloPejlFKHwxsIk0IAnGm9rjeuKItqU0xq3YZBikwppZRSw0nCi1wopdRQ4A12JFi992BlpTjZ5SgnvVVLtSullFLqQJpgKaUU4PP5cEoY6aMHC6Alczz5wRoIeAYhMqWUUkoNJ5pgKaUU4PO2AWBz951ghQuOwIYhvHf9QIellFJKqWFGEyyllAJ8Hqs3yuHqO8FKr5gBQP3mpQMak1JKKaWGH02wlFIKCHpbAXCkZPS5bmnVFPzGSfv2VQMdllJKKaWGGU2wlFIKCHhaAHCmZfa57vjibDaYMmy1awY6LKWUUkoNM5pgKaUUEPZZ92A5U7P6XDfd7WC7s5Ls1o0DHZZSSimlhhlNsJRSCgj5rB4sd3rfCRZAa9YEcsJ14GkYyLCUUkopNcxogqWUUkDEb/VgufsxRBDAjJoKQGj36gGLSSmllFLDjyZYSikFGH/HEMH+JVg5lVYlwbpNHw9YTEoppZQafjTBUkopgICVYIm7f0MEx42dSLNJo32HVhJUSiml1D6aYCmlFCD+duuFK71f61cVZrCB0bjqdIigUkoppfbRBEsppQBbqJ0gDnC4+7W+3SbsSjuCUe0bIBwa4OiUUkopNVxogqWUUoA92I5PUg5qG3/hdNz4iexdN0BRKaWUUmq40QRLKaUAe8iDT9IOapvUylkANGxaOBAhKaWUUmoYOqwES0RuF5F1IrJCRJ4TkZzo/EoR8YrIsujP3LhEq5RSA8QeaidgTz2obUZPmEGbSaFt86IBikoppZRSw83h9mC9DkwzxswAPgF+HLNskzFmZvTnhsPcj1JKDShX2EPIfnA9WBOLs1ltKnHtXTFAUSmllFJquDmsBMsY829jTMfd3R8C5YcfklJKDb7UcBtBV/9KtHdIcdrZmXYEBW2faKELpZRSSgHxvQfrWuDVmOkqEflYRN4RkVN62khErheRxSKyuLa2No7hKKVU/4TCETJNKyF37kFvGxw1AxcBInvXDkBkSimllBpu+kywROQNEVnVzc/smHV+CoSAx6KzaoDRxpijgO8C/xCRbr8aNsbcb4yZZYyZVVhYePjvSCmlDlKLL0SutBFJyTnobbPHHQ9A7foP4xyVUkoppYYjR18rGGM+3dtyEbkaOB84yxhjotv4AX/09RIR2QRMBBYfbsBKKRVvLe0+RuOhJvXge7AmTJ5By1uptG5eSNHpXx2A6JRSSik1nBxuFcFzgZuBC40xnpj5hSJij74eC0wANh/OvpRSaqC0tTRgE4M9Pe+gt60qyGSlTCRjr35/pJRSSqnDvwfrHiATeL1LOfZTgRUisgx4GrjBGNNwmPtSSqkB4Wm27v90ZBx8gmWzCbuzj6LYtxm8jfEOTSmllFLDTJ9DBHtjjBnfw/xngGcOp22llBos/pZ6ANyZBYe0fWT0CbDyIbyb/kPqtM/FMzSllFJKDTPxrCKolFLDkr/VSrBSsw8twSqdchIBY6d2zfw4RqWUUkqp4UgTLKVU0vO3WEMEs/OKDmn7o8eVsdqMxbbtg3iGpZRSSqlhSBMspZRqrQHAnlV8SJunuuxsyzySora1EPTGMzKllFJKDTOaYCmlkp7TswePpII785DbMBUn4CREe/WiOEamlFJKqeFGEyylVNJL9dfSbD+0+686lM04g4gRdi9/I05RKaWUUmo40gRLKZX0MoN1tLsLD6uN6ROqWEMljup34hSVUkoppYYjTbCUUkktFI6QF6knkDrqsNpJcdrZlHkcZW0rwd8ap+iUUkopNdxogqWUSmrb6tsoohFbVslhtxWuOh0HYdrWzz/stpRSSik1PGmCpZRKaju2bcEtIdKKxx12W2NmnoHXuKhf8a84RKaUUkqp4UgTLKVUUmvY+QkA+eWTDrut6WOKWMwU0rbrfVhKKaVUstIESymV1Hx7NwGQXnT4PVguh42a/BMp9G/DNG077PaUUkopNfxogqWUSmrSuJUINsiuiEt7mdPOAWDPkn/GpT2llFJKDS+aYCmlkpYxhkxPNc2uInC44tLmMcecQHWkCP/ql+LSnlJKKaWGF02wlFJJq7bNz5jITtozx8atzVHZqXycdiKlDQu1XLtSSimVhDTBUkolrY17WhgrNVA4Ma7tBsZ/Fich2la/Ftd2lVJKKTX0aYKllEpau7dvIlUCZJRNiWu7Rxz7aepNJg1Lnotru0oppZQa+g4rwRKRW0Vkp4gsi/58NmbZj0Vko4isF5FzDj9UpZSKL++OVQBkV0yNa7szRufxoeNYCmrmQzgY17aVUkopNbTFowfrTmPMzOjPKwAiMgW4FJgKnAv8SUTscdiXUkrFjb1uHQBSFN8eLBGhfey5pEXaaV/777i2rZRSSqmhbaCGCM4GHjfG+I0xW4CNwHEDtC+llDokOa0baHQUQmpu3NuedNJFNJgMGt7/e9zbVkoppdTQFY8E6xsiskJEHhSRjquUMmB7zDo7ovMOICLXi8hiEVlcW1sbh3CUUqpv7f4QFaFqWjInDEj7M8YU8rbzVIpq3gJv04DsQymllFJDT58Jloi8ISKruvmZDdwHjANmAjXA/x1sAMaY+40xs4wxswoLCw92c6WUOiSb9zQzXnYRKTxiQNoXEcyMy3ARpPY/Dw/IPpRSSik19Dj6WsEY8+n+NCQifwE6nqy5E6iIWVwenaeUUkPC7urVTJcgaeUzBmwfp59xNh8vnkDlR3+C078G9j7/5CqllFJqmDvcKoIlMZMXAauir18ELhURt4hUAROAhYezL6WUiqeOCoJ5VTMHbB8FmSksHX01uYEaGhc/MWD7UUoppdTQcbj3YP1ORFaKyArgDOAmAGPMauBJYA3wGvB1Y0z4MPellFJxY69dSxgbzuKBGSLY4eyLrmadGY28/gu9F0sppZRKAoeVYBljrjDGTDfGzDDGXGiMqYlZ9mtjzDhjzCRjzKuHH6pSSsVPVusGap2l4Ewd0P1U5GfwwdRbyQjWs/sfX4NIZED3p5RSSqnE0hsCkpwnEKKxPUBLSwue1ga8rY342xoJtDcR9jYT9rYSCfoxYT+EAhD2I+EgJhIkFAF/xEZE7CB2ImInKG489kxCzkxIyUZScyB9FKm5oyjLTac8N43y3FQKM9zYbJLot6+SVCgcoSxYTXP+JIoHYX+XXfR5/rFlPlduf5ht915IyZfvwZlfOQh7VkoppdRg0wRrhAmGIzQ2NdFct5u2xt14m/YQaNlLpK0O8dTh8DXgDjSQHmwiI9JMFu2MwkuZ9H8EZwQbIewIYCeMjb6/kfcbB7tNHjXk854pZCulNKRVEs6fSH7FJCaX5TG5JIvK/HTsmnipAbZ9bz1j2M36gs8Pyv5SnHYu/MYdPPbXDC6v/xPr/34Dk7772qDsWymllFKDSxOsYSIcjtDQUEvj7u201m3H37iTUHMNtrY9uLx7SAvUkR2qJ880MUr8jOqmjSAOmiWLNkcu/rRcWt1jaE3JwZaajT01G0daDq70HFIyc0nNzCUtMxdbSiY4UsDuBLsbHG5sNjuu2IYjETBhiIQg6AVfE/iarR9vE7TtRRq3kVu3jeymHcxoXUea/13wA7sgsNNOtSlmrangJRmNJ3ci7tLplFdNZlp5LhOKMnDaB+qZ2CoZ1W5ZSZUY3GXTB22fOeluvvyt3zD/ji0c0/oeGAOiXyYopZRSI40mWENAJByhvm4X9Ts307ZnC4GGbdC0A6dnN2n+WrJC9RSYBgolQNcnhbWRSqMtn3ZXPvUZM9ibVohkFOLMKMSdPYq0vCKy80rIyCvCmZJNgQgF8X4DNhtgs5IwZyqk5R2wiiv608nXAvUboPYTbHvXU7xzFaW1aznf8yE0A83gWeNmgynjRUbTnDkee/FU8qpmMmHcOMaPysShSZc6RL6OCoKVRw7qfkWEtoKZZG59lUj9ZmwF4wZ1/6r/AsEQba3NeNua8bU3429vwe9pIehtsYZO+9sg6MWE/NAxhDrkh3AAiQSwhQPYTRB7JIjNhACDMQDGSq4xYMAmBhtgRIiInYg49v3YHGBzgN2J2JyIwwkONzjTwJmKONMQVxp2Vxp2dzo2dxqOlHSc7nTcqRmkpKWTkpZBWnomdrs9ocdTKaWSiSZYgyAQCLJ35yaadn6Cp3Yr4cZt2Fp2kuatITuwh8JI7QHJkxcX9bYCWp0F1KVPY3daEZJVhDOnjPT8crJHjSa3qJyM1CwyEvbODkNKFpQdA2XH4ACyOub726B2PZE9qwluW07JrtWMa1xBRvt82ARsgobXM1hKBXVp4wgXTCFj9HSKxs2korSEzBRnwt7SkBEJQ8hPOOjH72vH5/Pi93kJ+L2EAn5Cfi/hoI9IyE8k6MME/URCAUzQ13mxaEIBTDiEiYSIhEMQCWMiIUwkDOEQYsL7/dhi/rWZMEIEY11N0nlNCZ0XmCYmXIl9JfumBYiIDYONiFhJfMe0kehPzDJj61hmBxHr35h1iZlfWL8Iv3GSUz5pwE9HV87Rx8BWqF3/H4o0wRpQ/kCA5oa9tDXV4mmuw99SR6CtgXB7PcbThPiacASacAVaSA23kB5pJc20k2Z8pImfA78q6lnYCAFxEsRJqPNfB0Gc1n2qCEYk+vttvQYwRohEPxB2E8JuQjgIYzchbIRxmDB2QtgJ4TBh3ASxiekhip75jBOvpODHTcDmJiAphGxuQvYUQvZUwvZUjCMV47T+FVca4krF5srA7k7D7k7D5k7D7rQSObsrFbvDhcvlwu504XC6cbn2/WtzuMFmT2gvrTEGEzFEImEikQiRSBgTiRCOhK3XYWt+ONzx980QNmFMOEQkEsFEIkTCIUwkgjHW60gkgjHh6LIwdLyOhCESIRIJRfcbtv5emgiRcCS6Xji6LATGap9IGGOs9jteE4lgImHERACDcPDnu/MYcGjHXzr/0yH6hWbs+ZT9X4jYelxm/XHvuq3Q8YnYtyzm/widL612Oz4z+8dm65zX+fnq2FDotf2u86Sz4X3/I5L9fn8FkY5jKvstN51xxbynXpjOL1p6Wh671y7Lut3M9PB6f9L5RU/v0fW6tHNxP34vu+ysxy36Doq2jDFMOPIkynIGtjBVvGiCFSdBv4fd1etp3LEez54N0LCF1LZt5Pp3UhzZQ7mEKY9Zv44cGhyjqEsfT03GqUhOBe78MWQVV1FQNo7M3CLKk3H4kDsDyo/BVn4M2cfEzG+vI7J7NfVbltO2fTkldeuY5nmTtO0vwXbgfdhl8tgshbS5iwilF2PPLsWRW05KTjEZOQVk5xWSm1eAIzV7cP+nHwlbQydDPkzQQ8DbTsDnIej3EPS2EfR7Cfk9hAMewv52IgEv4YAXE/Ra20W3tYW82MI+bGE/jrAPe8SHI+LHGfHjMn7cJoCTAI7oPXF2IC36c6jCRghhJ4KNsNgJd7zGTkRsMa877sazXkewdR5jobv/r0ZnmM7/xL6MLrMuLGxEEBOx/iWCzUQOmG+lVmFrfue8fetFUzHsMfcLrs04nsn2wU/IKyfPwvuui5aNH1J00hWDvv/hzuP10Lh3Fy11O2lvqCHQvJtwy17EsxeHt57UQD0ZoUZyIk3k0sooMd0OmQZoIZ12WwYeexY+Vxb1jlL2uDIxzgxwpSPuDGwpmdhTMnGkZuJMyyIlPZuU9Czcadm4UtNxuVNwuFKx2+ykAgP9v/5wOILH78XvbcfvbSPgbSPobSfsbyfkbyfk9xDp+DfggYD1N4WQBwl6kZAPe8iDPezDHvbhDHlIDTRE/4b4SDF+UvDjOoj7cnsTMHZCOAjhICISky50vO64QJWYeVhfhiCdX8rYiPl7gLH+FmAQY7B3/G3oXG/f644eQqXU8Pa30Dm05U4ZNgmWmH5kjYNl1qxZZvHixYkOo1ctTbXs+mQZzdtXE9mzlrSWTYzyb6UoUrvft4ptJpU9jlKaU8sJZY/BljeW1FFjySkbT0FpFe6Uw7nsVQAYQ7hxG3s2LKV1+wqoXY+jrYY03x5ywnWk4u92sxA22kiPfoPrImRzEen4sVv/Ivu+gzLR4TydHxVjEBPCHglaQ4BMEIexhgHtmxfCYUJEv8c+pLcXNoIXNz5c+HHhw0VQ3ATETdDmImRLIWxPIWxzE3akErGngMONOKL3yjnciDMFu8uN3ZmCw5mCzenG7nRjc6XicLqxOVOwu1JwuKyLRIfbjdOZgtOdgsvpwumwj7yiI5EImEjCvl0PRwzLbjuBgnQnY25eMOj7H6qMMTQ3N1K7q5qWPVvx1m0n3LwDW9tuUr27yQrWkh+uI19aut3eQwrNthzaHHn4XHkEUvIJpxUi6QU4MvJxZeaTmpVPenYhWbmjSM3Ks34H1AEiEYPX58PracfnacPva8XvaSPs8xAJtmMCHiJBH5FQsPPHhP2YsPWaSBDCAau3OzpE0hYJIUQ6h0ea6BcoHf9iTOff2o5hlALYMNEe6GhPNALR6c55IiD2zvXomEfMtK1jfTs2IdqjbQOb3ep5scW8FhtisyNiB5sgNkfnOiJ2xGYtR2zYbNY0Nju2ju2i82w2G2JzgE2i6zmseWLDZrdjs9nBZsNut7axiR2x27FH2xd7NIZD/Tt1iNd3Hb0r+zoqoq8iJmaN6BdjEbNvG2L+f2nN7Fh93zbGxEwTsw3Rfe57Hbts378xDce+v85to/+v3i/+fV+sde6z871EusR44L47vwTsWGdfI/uOR5dvCI0xXXq/etLzOvtv3nW9braL2aD3XUs/fqV6X2Hf9geud8CcLjvrad/7elu7XyGSkkNBccWQG6kkIkuMMbO6ztcerF7U7apmy9I3CO1YQlbjGor81RTQ1DmczWec7HKUszNjGltyxmEvGE926QRGjTmC3IISxtn0e7MBJYI9bwylx4+B4y/af5kxeFsbadxdTWtDDZ7menyt9QTbGoh4GnEEWpCQDwn7sUUC2MJ+7MEAjkgbToL7/h9g7ShmOIM1GcJBSByEJIUwGdHXLozDScTuBJsLY3cidhfGkULEkYI4Uqz7JlxpiDMVmzO1c+iNw5WGK8W6f8Kdav2kulNIdTnIcNrId9j6+cda9anjnsEEsduEPdkzmNHyLMbXjKRkJyyWwRSJGPbW17Fn63radm8iXL8Fe/M20jw7yAnUkB+uI0c85HTZrolMmhyFtKeOojp1OpsyirFlFuPOKSY9r4SsghJyCspIS808rN5atY/NJqSnpZKelgrxv2tXKaVGPE2werHxnXmcsP63BIyDakcVm7JPZEP+RFLLpjBq7JEUV0xgrMPB2EQHqg4kQmpWnvUttVJDjP2I83AufJLdS1+m+FNfTnQ4cRMOR9izewf1W1fTvmstkfotOFu2keXbSWFoN8XSut9zx9pIpdZeTEtqObXpxyFZpbhyy0kvHE1ucSW5RWPIcacdkHQppZRSQ5kmWL0Yf8blbJxyKmMmH8NEV0qiw1FKjRAzTjyb2o+yaVv8OAzDBMvraWf7xtXUbV2Ff/c63M2byfVupTS0k1JppzS6XtDY2WsrpMldRnXeFKpzq0gbNZaskvHkV0wkI7OADO2ZVUopNcJogtWLguLRFBSPTnQYSqkRpiQ3g5ezz+GchqcJNmzDmTc0/86EQ0F2bl5N3aaPCexahbthHYWeTZREdjNRDBOj69VJHnXu0WzKPxvyJ5BScgT5Y6ZSWDaeMoeDsoS+C6WUUmpwaYKllFIJkHPqjZh/PsP2F/6Hsdf8JaGxmEiEut3bqPlkCZ4dK7DXriW3bSMVoW2MliCjsYqu7LKVsDdtAjvyPkdK8SQKKqdRMnYaBalZeqeOUkopFaUJllJKJcCJRx/FS298lvO3PkXb2svImHzmoOy3taWRneuX0ly9DPasIqNlA2WBLRTS1vksvlpyqUkZy8cFx2ErnkZu1UwqJs6kIi2DikGJUimllBq+tEy7UkolyMrNu8j4+xlkO0JkXP8KrqL4Pfg4EAiybfMaGjYtJbhrJamN6yjybqTM7Olcp82kssNZSXPWBBg1hYyKGZRNOoacguJeWlZKKaUU9FymXRMspZRKoNfeeJ1j37sGh03wnvUbij91ebSUfP94vT62b15Dw7Y1+Havx9GwkYL2DYwJbyVVAoA1vG+nvYy69AkE8o8gtXwGheOOpmTMROsZPkoppZQ6aAOSYInIE0DHV645QJMxZqaIVAJrgfXRZR8aY27oqz1NsJRSyeit9/9D0b+/xlTZQp29kN2FJ0PRFCSzGJsrg1DIT8DnIdTeSLi5BltbDW7vXgoCOyiJ7MEh+x6k2SjZ7HaPpT1nEvaSaeSOPZrS8TNxpaYn8B0qpZRSI8+APGjYGDMnZgf/BzTHLN5kjJl5OO0rpVQyOPOkT1E/4wNefulB8jc9x6Sa18nd/Vy360aM0CDZNDsKqEufSE3OubiKJpE3ejJFY6eRm1lA7iDHr5RSSql94lLkQkQEuAQYnLu0lVJqhMnPTOVzl30d+Doef5AN26sJtNYS9rXhdLlJTcsgNSuX/FHlFDhdWrVPKaWUGqLiVUXwFGCPMWZDzLwqEfkYaAF+Zox5r7sNReR64HqA0aOH5rNglFJqMKW5nUwYPwGYkOhQlFJKKXWQ+kywROQNoLuSUj81xrwQfX0ZMC9mWQ0w2hhTLyLHAM+LyFRjTEvXRowx9wP3g3UP1sG+AaWUUkoppZQaKvpMsIwxn+5tuYg4gC8Ax8Rs4wf80ddLRGQTMBHQChZKKaWUUkqpESse9Xk/DawzxuzomCEihSJij74eizXOZXMc9qWUUkoppZRSQ1Y87sG6lP2HBwKcCvxSRIJABLjBGNPQV0NLliypE5GtcYgpngqAukQHoQaNnu/koec6eei5Ti56vpOHnuvkMhTP95juZg6pBw0PRSKyuLv69mpk0vOdPPRcJw8918lFz3fy0HOdXIbT+Y7HEEGllFJKKaWUUmiCpZRSSimllFJxowlW3+5PdABqUOn5Th56rpOHnuvkouc7eei5Ti7D5nzrPVhKKaWUUkopFSfag6WUUkoppZRScaIJllJKKaWUUkrFiSZYvRCRc0VkvYhsFJEfJToeFT8iUiEib4vIGhFZLSLfjs7PE5HXRWRD9N/cRMeq4kNE7CLysYi8FJ2uEpGPop/vJ0TElegYVXyISI6IPC0i60RkrYicqJ/tkUlEbor+DV8lIvNEJEU/2yOHiDwoIntFZFXMvG4/y2K5K3reV4jI0YmLXB2sHs717dG/4ytE5DkRyYlZ9uPouV4vIuckJOheaILVAxGxA/cC5wFTgMtEZEpio1JxFAK+Z4yZApwAfD16fn8EvGmMmQC8GZ1WI8O3gbUx0/8L3GmMGQ80Av+VkKjUQPgj8Jox5gjgSKzzrp/tEUZEyoBvAbOMMdMAO3Ap+tkeSR4Czu0yr6fP8nnAhOjP9cB9gxSjio+HOPBcvw5MM8bMAD4BfgwQvV67FJga3eZP0ev2IUMTrJ4dB2w0xmw2xgSAx4HZCY5JxYkxpsYYszT6uhXrAqwM6xz/Pbra34HPJyRAFVciUg58DvhrdFqAM4Gno6vouR4hRCQbOBV4AMAYEzDGNKGf7ZHKAaSKiANIA2rQz/aIYYx5F2joMrunz/Js4GFj+RDIEZGSQQlUHbbuzrUx5t/GmFB08kOgPPp6NvC4McZvjNkCbMS6bh8yNMHqWRmwPWZ6R3SeGmFEpBI4CvgIKDLG1EQX7QaKEhWXiqs/ADcDkeh0PtAU84dbP98jRxVQC/wtOiT0ryKSjn62RxxjzE7gDmAbVmLVDCxBP9sjXU+fZb1uG9muBV6Nvh7y51oTLJXURCQDeAb4jjGmJXaZsZ5hoM8xGOZE5HxgrzFmSaJjUYPCARwN3GeMOQpop8twQP1sjwzRe29mYyXVpUA6Bw4xUiOYfpaTg4j8FOvWjscSHUt/aYLVs51ARcx0eXSeGiFExImVXD1mjHk2OntPx5CC6L97ExWfipuTgAtFpBprqO+ZWPfo5ESHFYF+vkeSHcAOY8xH0emnsRIu/WyPPJ8Gthhjao0xQeBZrM+7frZHtp4+y3rdNgKJyNXA+cDlZt/De4f8udYEq2eLgAnRakQurJvpXkxwTCpOovfgPACsNcb8PmbRi8BV0ddXAS8MdmwqvowxPzbGlBtjKrE+x28ZYy4H3ga+GF1Nz/UIYYzZDWwXkUnRWWcBa9DP9ki0DThBRNKif9M7zrV+tke2nj7LLwJXRqsJngA0xwwlVMOQiJyLNbz/QmOMJ2bRi8ClIuIWkSqswiYLExFjT2RfMqi6EpHPYt27YQceNMb8OrERqXgRkZOB94CV7Lsv5ydY92E9CYwGtgKXGGO63mCrhikROR34vjHmfBEZi9WjlQd8DHzFGONPYHgqTkRkJlZBExewGbgG6wtF/WyPMCJyGzAHa/jQx8B1WPdi6Gd7BBCRecDpQAGwB/gF8DzdfJajSfY9WMNEPcA1xpjFCQhbHYIezvWPATdQH13tQ2PMDdH1f4p1X1YI6zaPV7u2mUiaYCmllFJKKaVUnOgQQaWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUGmJEpFJEjIg4Eh2LSg4islpETk90HEopNRJogqWUUmrYE5G5ItIW/QmISDBm+tVExzfUGWOmGmPmx7NNEckTkSdEpF5E6kTkMRHJiuc+lFJqKNIESyml4kx7ngafMeYGY0yGMSYD+A3wRMe0Mea8jvWG07kZTrH24FdALlAFjAOKgFsTGZBSSg0GTbCUUioORKRaRH4oIiuAdhFxiMgJIvIfEWkSkeWxQ7BEZL6I/D8RWSgiLSLygojk9dD2NSKyVkRaRWSziPx3l+WzRWRZtJ1NInJudH62iDwgIjUislNEfiUi9j7exzgReatLr0NOzLIGETk6Ol0qIrUd70tELowONWuKvr/JXY7P90VkhYg0R3s2Ug7+SB+8Hs6NEZHxMes8JCK/ipk+P3pMm6LncEY/93W6iOwQkZ9Ej1+1iFwes/xzIvJx9FxtF5FbY5Z1DA39LxHZBrwVnf+UiOyOHrd3RWRql7j/JCKvRnvr3heRYhH5g4g0isg6ETmqn8fo0/15jwehCnjeGNNijGkGngOm9rGNUkoNe5pgKaVU/FwGfA7Iwfq2/mWsb/HzgO8Dz4hIYcz6VwLXAiVACLirh3b3AucDWcA1wJ0xSc5xwMPAD6L7PRWojm73ULTd8cBRwNnAdX28BwH+H1AKTAYqiPY6GGM2AT8EHhWRNOBvwN+NMfNFZCIwD/gOUAi8AvxTRFwxbV8CnIt14T0DuLrbAEROjiY2Pf2c3Md76E7nuTHGhHo9AFZC8iDw30A+8GfgRRFx93NfxUABUAZcBdwvIpOiy9qxzntONJ4bReTzXbY/DevYnxOdfhWYAIwClgKPdVn/EuBn0X36gQ+i6xUATwO/72fc3RKRH/V2PnrZ9F7gfBHJFZFc4OLoe1FKqRFNEyyllIqfu4wx240xXuArwCvGmFeMMRFjzOvAYuCzMes/YoxZZYxpB34OXNJdD5Mx5mVjzCZjeQf4N3BKdPF/AQ8aY16P7menMWadiBRF9/UdY0y7MWYvcCdwaW9vwBizMdqW3xhTi3VxflrM8r8AG4GPsBLDn0YXzQFejm4bBO4AUoFPdTk+u4wxDcA/gZk9xLDAGJPTy8+C3t5DD2LPTV+uB/5sjPnIGBM2xvwdK3E54SD29/PoMXwHK9G+BMAYM98YszJ6rlZgJaWnddn21ug580a3edAY02qM8WMlu0eKSHbM+s8ZY5YYY3xYvUQ+Y8zDxpgw8ARWcn3IjDG/7e189LLpUsAF1Ed/wsCfDicWpZQaDjTBUkqp+Nke83oM8KUu3/SfjJWUdLf+VsCJ1euwHxE5T0Q+jA7Pa8JKnDrWqwA2dRPLmGh7NTH7/zNWL0iPRKRIRB6PDilsAR7tJqa/ANOAu6MX/WD1eG3tWMEYE4m+v7KY7XbHvPYAGb3FEmfb+16l0xjge13OXQXWe+yPxmjS3GFrx7YicryIvB0dWtkM3MCBx7czVhGxi8hvxRr62cK+3snYbfbEvPZ2Mz2YxznWk8AnQCZW7+smrN8npZQa0TTBUkqp+DExr7dj9VDFftufboz5bcw6FTGvRwNBoC62weiwtGeweoSKoj0Gr2AN5evYz7huYtmO1etSELP/LGNMX/fA/Cb6PqYbY7KweuI69oWIZAB/AB4AbpV9943twkpMOtaT6Pvb2cf+DiAip8i+CoDd/ZzSdysHMF2mPUBazHRxzOvtwK+7nLs0Y8y8fu4rV0TSY6ZHYx0fgH8ALwIVxphsYC4xx7ebWL8MzAY+DWQDldH5XbcZMNH7yXo8H71sOhOrJ7DdGNOG9V4/28v6Sik1ImiCpZRSA+NR4AIROSfaC5ESLYBQHrPOV0RkSvR+pl8CT0eHdcVyAW6gFgiJyHlY91J1eAC4RkTOEhGbiJSJyBHGmBqsoYT/JyJZ0WXjRKTrcLSuMoE2oFlEyrDu7Yr1R2CxMeY6rKFvc6PznwQ+F43DCXwPK8H7T18HqitjzHsxFQC7+3nvYNvsxjLgy9Fzcy77D9P7C3BDtLdJRCRdrOIUmdBZWOKhPtq/TURc0WTwfOCp6PxMoMEY44veP/flPtrJxDqO9VgJ4W8O4j3GhTHmN72dj142XQRcJyKpIpKKNfRyxeBErZRSiaMJllJKDQBjzHasnoefYCVH27GSldi/u49gFaLYDaQA3+qmndbo/CeBRqwL8hdjli8kWvgCaAbeYV9P0pVYCdqa6LZPs/8Qxe7cBhwdbetl4NmOBSIyG6tIxY3RWd8FjhaRy40x67F6u+7G6oW7ALjAGBPoY3+J8m2sGJuAy4HnOxYYYxYDXwXuwTpuG9m/IEcF8H4vbe+ObrcLqyDFDcaYddFlXwN+KSKtwC1Y57U3D2MNMdyJdR4/7OuNDSHXYvW47cCKfyxW0Q+llBrRxJiuoyaUUkoNNBGZDzxqjPlromNR/RetirgcmBEt5tF1+elY57W86zKllFLJYbg/xFAppZQaNNEeucl9rqiUUipp6RBBpZRKMiIyt4eCBXP73loNRyIyupdCFaMTHZ9SSo0kOkRQKaWUUkoppeJEe7CUUkoppZRSKk6G1D1YBQUFprKyMtFhKKWUUkoppVSvlixZUmeMKew6f0glWJWVlSxevDjRYSillFJKKaVUr0Rka3fzdYigUkoppZRSSsWJJlhKKaWUUkopFSeaYCml1EHYWt/Oa6tq0AqsSimllOrOkLoHqzvBYJAdO3bg8/kSHYoaZlJSUigvL8fpdCY6FDWC/OivL3JT+50snX0PxxxzXKLDUUoppdQQM+QTrB07dpCZmUllZSUikuhw1DBhjKG+vp4dO3ZQVVWV6HDUCFHb6ufStoc5zr6edW/9BI55I9EhKaWUUmqIGfJDBH0+H/n5+ZpcqYMiIuTn52vPp4qr6vp2PmVbDcC49o8h4ElwREoppZQaaoZ8ggVocqUOif7eqHjbvreRQmmmOm06TkI0bfgg0SEppZRSaogZFgmWUkoNBS17rMddRKZeRMQI9WveSXBESimllBpqNMHqBxHhe9/7Xuf0HXfcwa233pq4gGJ8+OGHHH/88cycOZPJkyd3xjV//nz+85//HFbb5557Ljk5OZx//vlxiFSp4U+atwNQNP5otptCzN41CY5IKaWUUkONJlj94Ha7efbZZ6mrq4tru8YYIpHIYbVx1VVXcf/997Ns2TJWrVrFJZdcAsQnwfrBD37AI488clhtKDWSuNp3ApBeWMk2x2jSWjYmOCKllFJKDTVDvopgrNv+uZo1u1ri2uaU0ix+ccHUXtdxOBxcf/313Hnnnfz617/eb1ltbS033HAD27ZtA+APf/gDJ510ErfeeisZGRl8//vfB2DatGm89NJLAJxzzjkcf/zxLFmyhFdeeYV77rmHV199FRHhZz/7GXPmzGH+/PnceuutFBQUsGrVKo455hgeffTRA+4r2rt3LyUlJQDY7XamTJlCdXU1c+fOxW638+ijj3L33XdzxBFH9Bjnpk2b2LhxI3V1ddx888189atfBeCss85i/vz5vR6bp556ittuuw273U52djbvvvsuPp+PG2+8kcWLF+NwOPj973/PGWecwUMPPcTzzz9Pe3s7GzZs4Pvf/z6BQIBHHnkEt9vNK6+8Ql5eHn/5y1+4//77CQQCjB8/nkceeYS0tLT99nvCCSfwwAMPMHWqde5OP/107rjjDmbNmtVrvEodDrd3r/Uiq5TmjHEUtiyDcBDs+igApZRSSlm0B6ufvv71r/PYY4/R3Ny83/xvf/vb3HTTTSxatIhnnnmG6667rs+2NmzYwNe+9jVWr17N4sWLWbZsGcuXL+eNN97gBz/4ATU1NQB8/PHH/OEPf2DNmjVs3ryZ999//4C2brrpJiZNmsRFF13En//8Z3w+H5WVldxwww3cdNNNLFu2jFNOOaXXOFesWMFbb73FBx98wC9/+Ut27drV7+Pyy1/+kn/9618sX76cF198EYB7770XEWHlypXMmzePq666qrOa36pVq3j22WdZtGgRP/3pT0lLS+Pjjz/mxBNP5OGHHwbgC1/4AosWLWL58uVMnjyZBx544ID9zpkzhyeffBKAmpoaampqNLlSA84eaMEvbnC4CeVPwkmISN2mRIellFJKqSFkWPVg9dXTNJCysrK48sorueuuu0hNTe2c/8Ybb7Bmzb77MFpaWmhra+u1rTFjxnDCCScAsGDBAi677DLsdjtFRUWcdtppLFq0iKysLI477jjKy8sBmDlzJtXV1Zx88sn7tXXLLbdw+eWX8+9//5t//OMfzJs3r9tep97inD17NqmpqaSmpnLGGWewcOFCPv/5z/fruJx00klcffXVXHLJJXzhC1/ofE/f/OY3ATjiiCMYM2YMn3zyCQBnnHEGmZmZZGZmkp2dzQUXXADA9OnTWbFiBWAlYT/72c9oamqira2Nc84554D9XnLJJZx99tncdtttPPnkk3zxi1/sV7xKHQ57sA2fLQ03kFY2FbZAQ/UKCoqOSHRoSimllBoihlWClWjf+c53OProo7nmmms650UiET788ENSUlL2W9fhcOx3f1Xs85jS09P7tT+329352m63EwqFul1v3Lhx3HjjjXz1q1+lsLCQ+vr6A9bpKU44sJz5wZQ3nzt3Lh999BEvv/wyxxxzDEuWLOl1/dj3ZLPZOqdtNlvn+7v66qt5/vnnOfLII3nooYe6TRjLysrIz89nxYoVPPHEE8ydO7ffMSt1qFyhNgLODAByR08jYoT2HSspOP6SBEemlFJKqaHisIcIikiFiLwtImtEZLWIfDs6P09EXheRDdF/cw8/3MTKy8vjkksu2W/I2tlnn83dd9/dOb1s2TIAKisrWbp0KQBLly5ly5Yt3bZ5yimn8MQTTxAOh6mtreXdd9/luOOO63dML7/8MsYYwBp6aLfbycnJITMzk9bW1j7jBHjhhRfw+XzU19czf/58jj322H7vf9OmTRx//PH88pe/pLCwkO3bt3PKKafw2GOPAfDJJ5+wbds2Jk2a1O82W1tbKSkpIRgMdrbTnTlz5vC73/2O5uZmZsyY0e/2lToUxhjc4XZC0QRrdHGBVUmwdl2CI1NKKaXUUBKPe7BCwPeMMVOAE4Cvi8gU4EfAm8aYCcCb0elh73vf+95+1QTvuusuFi9ezIwZM5gyZUpnT8rFF19MQ0MDU6dO5Z577mHixIndtnfRRRcxY8YMjjzySM4880x+97vfUVxc3O94HnnkESZNmsTMmTO54ooreOyxx7Db7VxwwQU899xzzJw5k/fee6/HOAFmzJjBGWecwQknnMDPf/5zSktLASv5+9KXvsSbb75JeXk5//rXvwBrWGLH/VY/+MEPmD59OtOmTeNTn/oURx55JF/72teIRCJMnz6dOXPm8NBDD+3Xc9WX//mf/+H444/npJNO4ogj9g29evHFF7nllls6p7/4xS/y+OOPd1ZOVGog+YIR0vEQcmYCMCrTTbWUktLc/ZcnSimllEpO0tH7EbcGRV4A7on+nG6MqRGREmC+MabXboxZs2aZxYsX7zdv7dq1TJ48Oa4xqn26VjscafT3R8VLfZuf2t8dQ2rxBMZ87TkAXvjN5ZwdfIvUW3bBQQytVUoppdTwJyJLjDEHVFmLaxVBEakEjgI+AoqMMTXRRbuBonjuSymlBpMnECZTPERcWZ3zfJmjSTUeaI/vM/KUUkopNXzFrciFiGQAzwDfMca0xBZKMMYYEem2q0xErgeuBxg9enS8wlH9dOuttyY6BKWGBV8wTBFe6tyZnfNseWOhHsL1m7FnFCYwuqHFGMPqXS2MK8wg1WVPdDhKKaXUoIpLD5aIOLGSq8eMMc9GZ++JDg0k+u/e7rY1xtxvjJlljJlVWKgXKEqpockbCJKBF9z7erBSiycA0Lzrk0SFNSS9tmo3t9zzIM/f91MIehMdzpBijGHVzmYCoUjfKycZYwy1rf5EhzEk+YJhWnzBRIehlOqneFQRFOABYK0x5vcxi14Eroq+vgp44XD3pZRSieLztGITg6TsS7DyyycQMUJbzYYERjb0vLxiFw+47uCyxvto/eBviQ5nSHli0XauufslFt53PbR1+71j0vrta+s49dcv8fG/HoaW/j/wfqQzxvCluR9w0m/fpOGjeVCvDzdXaqiLRw/WScAVwJkisiz681ngt8BnRGQD8OnotFJKDUtBTwsAtpR9QwRHF+VRQx7hus2JCmtIatm1jlyxHmQe/PjxBEcztLy8soYfOh/n5PqnCL/47USHM2QYY3h84XZudLzIUR98E174eqJDGjLW1LSwcmczs4OvkffqDfD45RDnAmVKqfg67HuwjDELgJ7KZ511uO0rpdRQEPJaCYMjJaNzXklWCgtNEeUt1QmKaujxBcOUNn0MTng58inOa/wQ/G3gzuh74xEuEjEs297IXPtCAGTj6xBoB1f/Hj4/ku1o9NLsDXKqezUAZtPbSMsuyCpNcGSJt3qn9eXO2c7l1ozatbB7JZTo8x+VGqriWkVwJHv++ecREdat6/mhotXV1UybNi1u+1y/fj2nn346M2fOZPLkyVx//fWA9ZDgV1555bDavvbaaxk1alRc41VqJAv52wFwuvddDNtsQoO7lCzv9kSFNeTUNPuolN2EbU5W5J2DjQjULEt0WEPC7hYfGb69pOPjX5FjsUWCsPU/iQ5rSFi1s5k0fMyQzbwePhrBwJb3Eh3WkLCxtg2XQzjaUc1/IlOtmfp7o9SQpglWP82bN4+TTz6ZefPmdbs8FAod9j7C4fB+09/61re46aabWLZsGWvXruWb3/wmEJ8E6+qrr+a11147rDaUSiZBn5VguVL3723wpo8mK9wE/tYERDX07G3xUSL1BNKKcYw5DoDI9sV9bJUcapp9jLftBODdjM8SxgbbPkxwVEPDtgYPY2QPNsK8ED6JgD0NdixKdFhDwoY9rRyX7ycj1MC/wrMIZJTDNk2wlBrK4lamfVC8+iOrWzyeiqfDeb3fHtbW1saCBQt4++23ueCCC7jtttsAmD9/Pj//+c/Jzc1l3bp1/Pvf/yYUCnH55ZezdOlSpk6dysMPP0xaWhpvvvkm3//+9wmFQhx77LHcd999uN1uKisrmTNnDq+//jo333wzl156aed+a2pqKC8v75yePn06gUCAW265Ba/Xy4IFC/jxj3/M+eefzze/+U1WrVpFMBjk1ltvZfbs2Tz00EM899xzNDc3s3PnTr7yla/wi1/8AoBTTz2V6urqXt/3O++8w7e/bd0jICK8++67ZGRkcPPNN/Pqq68iIvzsZz9jzpw5zJ8/n1/84hfk5OSwcuVKLrnkEqZPn84f//hHvF4vzz//POPGjeOf//wnv/rVrwgEAuTn5/PYY49RVLT/I9IuvfRSrrjiCj73uc8BVjJ4/vnn88UvfrF/51SpARAJRHuwUvcf6hbJGwtNYBq2IDpkh72tfkqkHpNZRkVZOTXL8sjauRIdBAc1zV4miJVgRUpmsn1zCZW1PY+KSCY1zT7GuRoBaE0tZ6v7CCbs1MQcrGNzRlojNMNmU8LurGmM3vVxosNSSvVCe7D64YUXXuDcc89l4sSJ5Ofns2TJks5lS5cu5Y9//COffGKVaV6/fj1f+9rXWLt2LVlZWfzpT3/C5/Nx9dVX88QTT7By5UpCoRD33XdfZxv5+fksXbp0v+QK4KabbuLMM8/kvPPO484776SpqQmXy8Uvf/lL5syZw7Jly5gzZw6//vWvOfPMM1m4cCFvv/02P/jBD2hvty4GFy5cyDPPPMOKFSt46qmnWLy4///DuuOOO7j33ntZtmwZ7733HqmpqTz77LMsW7aM5cuX88Ybb/CDH/yAmhrredLLly9n7ty5rF27lkceeYRPPvmEhQsXct1113H33XcDcPLJJ/Phhx/y8ccfc+mll/K73/3ugP3OmTOHJ598EoBAIMCbb77ZmWwplSgRvwcAV5cEK2XUeABatJIgYCVYpVKPPbeC8aMy2BgpJbx3faLDGhJqmqzePeNIpbysglWhcsJ7Vic6rCFhd7OPSanNAGQUVbIqMhr2roOIlrNv9gYpszcB0GDLZzMV0LTNun9PKTUkDa8erD56mgbKvHnzOntyLr30UubNm8cxxxwDwHHHHUdVVVXnuhUVFZx00kkAfOUrX+Guu+7iM5/5DFVVVUycOBGAq666invvvZfvfOc7gJVQdOeaa67hnHPO4bXXXuOFF17gz3/+M8uXLz9gvX//+9+8+OKL3HHHHQD4fD62bdsGwGc+8xny8/MB+MIXvsCCBQuYNWtWv973SSedxHe/+10uv/xyvvCFL1BeXs6CBQu47LLLsNvtFBUVcdppp7Fo0SKysrI49thjKSkpAWDcuHGcffbZgNXz9vbbbwOwY8cO5syZQ01NDYFAYL9j1+G8887j29/+Nn6/n9dee41TTz2V1NTUfsWs1EDp7MFy798Xk11mfa5bdn1C9tGDHtaQU9vSThGNOPKsBOs5U8bxze9ZVc+kp3pIyWFXs5cZ9nZIy+OIkiyWRyr4XONCLXQB1LT4ON/ZCEE3paXlLN4+iovsXmjeBrmViQ4voRo9AYrF6t3LKKxgub+V0wFq10OZ/tFRaijSHqw+NDQ08NZbb3HddddRWVnJ7bffzpNPPomJlkhNT9//f4rS5QKi63R3urYRq7S0lGuvvZYXXngBh8PBqlWrDljHGMMzzzzDsmXLWLZsGdu2bWPy5MmHHE+HH/3oR/z1r3/F6/Vy0kkn9VrgA8Dtdne+ttlsndM2m63zHrVvfvObfOMb32DlypX8+c9/xufzHdBOSkoKp59+Ov/617944oknekxAlRpMJhB9YK4rbb/55cVFNJgMgnv12TQAnsZanBJGMkvISXOx2zUaV9ijzzXC6qUpcniQ1DwmFmWy3pRbxRxqtYdvT7OPMqmH7DImleSwLmR9WZfsx8YXDOMLRigw9eBIpby4hAXN1pemyX5slBrKNMHqw9NPP80VV1zB1q1bqa6uZvv27VRVVfHee91XN9q2bRsffPABAP/4xz84+eSTmTRpEtXV1WzcuBGARx55hNNOO63Pfb/22msEg9aT23fv3k19fT1lZWVkZmbS2rrvhvpzzjmHu+++uzPp+/jjfWOzX3/9dRoaGjrvg+roXeuPTZs2MX36dH74wx9y7LHHsm7dOk455RSeeOIJwuEwtbW1vPvuuxx33HH9brO5uZmysjIA/v73v/e43pw5c/jb3/7Ge++9x7nnntvv9pUaKBK0hgji7JJg5aax1RRjb64e/KCGIF9rnfUiLQ+AQI41hJI6vRhsaA+QZ2uHtFxKc1LZIqOtBXvXJjawIaDREyDPNEBGMWML09lorP9PJHsS0eSxrgFywg2QVcK4ogyWtuVhbE6rXLtSakjSBKsP8+bN46KLLtpv3sUXX9xjNcFJkyZx7733MnnyZBobG7nxxhtJSUnhb3/7G1/60peYPn06NpuNG264oc99//vf/2batGkceeSRnHPOOdx+++0UFxdzxhlnsGbNGmbOnMkTTzzBz3/+c4LBIDNmzGDq1Kn8/Oc/72zjuOOO4+KLL2bGjBlcfPHFncMDL7vsMk488UTWr19PeXk5DzzwAABz585l7ty5APzhD39g2rRpzJgxA6fTyXnnncdFF13EjBkzOPLIIznzzDP53e9+R3Fxcb+P56233sqXvvQljjnmGAoKCjrnL168mOuuu65z+uyzz+add97h05/+NC6Xq9/tKzVgOhOs/Yeruhw2ap2lZHi0VDtAxGMNZSIlBwBHkdWbTu0niQloCGn2BsmmFVLzsNsE8qoIiAv2rkl0aAnlC4bxhyJkRFohLY+q/HSaycDjyk/6xLzREwAgM1gLmSVU5qcTxo4/e2zSJ59KDWXD6x6sBOi4dyjWt771rc7Xp59+eufrysrKHofRnXXWWfv1LHXorZLf73//e37/+98fMD8vL49Fi/YvX/vnP/+52zbKy8t5/vnnD5jfU4IYm/h1FKbo6vbbb+f222/fb97pp5++37GYP39+t8tmz57N7NmzD2hz1qxZ/PWvf+2cdjqdNDQ0dLt/pRJBQl4iCDZHygHL2tMqyGldAKEAOJL7CwHxW4UKSM0BYFRxOU1r0kndvRZ3z5slhWZvkMxIS2fv3pjCLLa2lzMhySsJNnutXprUUAuk5pCT5iQrxcFu12jGJnli3pFgpQabIX0KlfnWLQUN6eMorU3uxFypoUx7sJRSqh/sYR9+cXdbqCGUU4mdiFXZK8k5OxOsXACqCjPYaMoI7NbhTM0eP2lhqwcLoKognfWhYkz9xgRHllgdw+DcoRZIzUNEqCpIZ7Mps3qwosPfk1Fz9Ni4gs2QmktlgTVEebu9Ahq3QsCTyPCUUj3QBGsEu/rqq7nnnnsSHYZSI4I95CEg3ffBOAvGAdC+O7lLtUciBlewxZqIDhGsLEin2hTjaNqSuMCGAF8wjCPYio1IZw9WVUE6myLFVmIe8ic4wsRp9gZxE8Ae9nUm5pUF6awMFIOvGdr2JDjCxGn0BAGD3d8EqbmkuRyMynTzSbgYMNCY3J8rpYaqYZFgmST+9kodOv29UfFkD/sI2g4cHgiQVXYEAE07k3uoV1sgRDZt1kRKNgCj89KoNsWk+vYm9XN7WrxBciV6bGJ6sDZHihETgcbqxAWXYE2eANlEfzc6Eqz8dJa1R6vl1Sdvhc4mb4BU/Eg4sF/yucITvYc5yXs/lRqqBjzBEpFzRWS9iGwUkR8d7PYpKSnU19frxbI6KMYY6uvrSUnp/oJYqYPl7CXBKiktp9Wk4t+T3Bc7zZ4g2dJOwJEBdusWX5fDRlt6tFpew+YERpdYTd4guR3JZ0wP1hYTLUdel7y9n03eIDmdyWdHEpHGpo5j05DECZYnSJEzOgywY9htfjofNluvNcFSamga0CIXImIH7gU+A+wAFonIi8aYft+ZWV5ezo4dO6itrR2oMNUIlZKSQnl5eaLDUCOE0/gI2bp/4PWYgnQ2myIyk3wYXIsvSLa0EXZl7zc/kjcOarB6IoqnJya4BGvyBMmR6OM1oj1YozLd7HZG/0Yl8YVyS2zyGdODtcsUELE5sSVxD1Zje4Bytx9C7Dfs9ol2G5GCoqQ+NkoNZQNdRfA4YKMxZjOAiDwOzAb6nWA5nU6qqqoGKDyllOofZ8RHuJsKggBpLgc19lKK2rYOclRDi1WGvJ1w9EKwQ0rRBKgBU7+J/j/qfGRp7qYHS0TIzy+kuTmX7CROsJo8Qev5YLCvl6YgnQg2WlLKyUnmY+MNUur2WQlWZ/JpFbrwZlaRrgmWUkPSQA8RLANiHw6zIzqvk4hcLyKLRWSx9lIppYYqt/ETtnffgwXQklZBbqAGwqFBjGpoafGGyJb2zvuvOpQXFbLH5ODbk7wlt5s8gZh7sHI751cVpLGVkqS+z6jZG6TYtf8wuJw0F9mpTmocZck9tNQToNjltSZi7sECqHNXJHXPp1JDWcKLXBhj7jfGzDLGzCosLEx0OEopdYBwxJBifEQcPSdYwewqHIShOXlLtbd4g+TQji3aQ9OhKlpJMFibvBeDzV5riKARW+dQL4Ax+emsCxYldan2Jm+QIuf+SQRYicTmSJGVYEUiCYousRo9QUY59k8+x0R7sHZICXjqwNuUoOiUUj0Z6ARrJ1ARM10enaeUUsOGNxgmlQDG2XOC5YiWag/sTd4LZeserHYc6bn7za8qSGdLpBhnEt+j1uQJkidtVnJl2/e/3qp8q1S7tO+1SpInoSZPgAK7B2xOcKV3zq/KT2O1rxBCPmhJzkuHJk+QfPv+CVaay0FRlpv1oSJrfhIXAVFqqBroBGsRMEFEqkTEBVwKvDjA+1RKqbjyBEKkiB/jTOtxnYzSiQA07lw/WGENOc2eANm04UzfvwerNDuV7VJCaqAefC0Jii6xmrwBCu3tSJfevcqCdLaYYmsiSYcJtnijSURq7n4P8q4sSOdjT7RUexImEcYYa2ipzQN2N8R8wVOZn86yzlLtyXdslBrqBjTBMsaEgG8A/wLWAk8aY1YP5D6VUirefIEIafiRXhKs4tIxtBs3vt3Je5+Rx9OGW0JI2v49WDab4M2stCaS8EIZrJ6IAnt7ZwXBDpX5aWzuKEeepMMEO8u0p+7/e1OZb/V8AkmZRLQHwoQihmxaD0g+qwrSWdiYBWJL2t8bpYayAb8HyxjzijFmojFmnDHm1wO9P6WUijdPIEgqAcTVc4I1Jj+draYYaUjeYXChtnrrRZcqggAmb6z1IgkvlCFaRVDaOisIdijMdFPnLCVC8l4oN3uDZJtuEqyCdPaQS9iekpS/N43tAQAyIt0fm90eQyRLC10oNRQlvMiFUkoNdV6vB5sYbDH3h3SVk+Zkh62E1CQu1R7xNFkvulwMAqQXW0Mow3XJd6EMHUlE6wE9WCJCaX4OdY6ipLxQjkQMzd4gGab1gN+bqvx0DDaaUiqSsuezyRMEID3cAqk5+y2rzLf+FrVnViZl8qnUUKcJllJK9SHotcpr290992CJCM0pFeT6dyVvqXZfk/Vvl4tBgNFF+ewyeXiTdAhlkydIRqT1gB4siBYBMSVJmWC1+kIYA6nhlgMSrOw0Jzlp0VLtSZhENHmtHqyU0IHHprLA+ltU66qwjo0xgx6fUqpnmmAppVQf/F7rIaiOXhIsgED2GByEoGXHYIQ15EhHgtXNEMGqwnSqI8WE65IviQDwetpxG1+3vXtj8tNYGxiFScIL5Wav1UuTEjwwiQCrp2ZTuAgatyTdFxeN0R4sZ7D5gGMzJs/qwdpGMQRaoW3voMenlOqZJlhKKdWHoM9KsOwpGb2uZysYD0AoSYfBOQLRMuPdXCh3PAvL3VI9uEENAZGIwe5vtCa66cGqLIiWag+0QdueQY4usZq8AZyEcIY9kNb9780qXwFEQkn3jLkmj9WD5fA3HfCZSnXZKclOYX1QS7UrNRRpgqWUUn0I+awhgs6Unu/BAsgsnQRA0/a1Ax7TUOTqTLByDliWn+5il72UlGATeBoGNa5Ea/WFyMH6Hep6DxbEDBEEqNswiJElXrM3GHNsuu/B+rg9Wqq9fvMgRpZ4TZ4gLoJI0NPtZ6oyP52lHWXsk3B4qVJDmSZYSinVh1C0B8vVR4JVVl6Jx7hpq0mui2QAXzBMumkjgh3cWQcsFxH8WZXWRENyXShbFQRbrYluerDG5KfFlCNPrgvlRk+QbOklwSpIozpJy9g3egKUuP3WRA/HZkljOthdSXdslBrqNMFSSqk+RAJWguVOy+x1vXFFmVSb4qS82GnyWD0RQWfmfs/riSXRIZTJVrCgyRvotQerMMNNs2sUQUm+C+VmT6DPHqw6sgg50pNuGFyzJ0hFis+a6OnYeMKEcyqT7jOl1FCnCZZSSvUh4rcSLGcfRS6yUpzssJeT0ZpcPTRgJRHZ0k7Ind3jOpklE4gYIVSbXD18zR0P0oVue7BEhDEFmexOwmp5TZ4gOWJ9vnpKIkBoTKlIumPT6AlQ6vZaE932YFk96m3plUl3bJQa6jTBUkqpvgSsi2NbSu89WAAtGWPJC9ZA0DvQUQ0pTZ4g2bQTcef0uM7oUbnsNAV4kqxUe7M3SG4vPVhgJRKbI8nX+9nkDVLk8FgT3SQR2WlOctOc7LKXJd2xafQEKXZFe7C6q8wZTbD2usqtYbeR8CBGp5TqjSZYSinVl2iC1d29RV2F88Zjw2CSrFhBU8e9NN3cjN/BKuZQbJUjTyJWL00bxpEKzpRu16ksSGN1YBQmycqRN3mCFLl67qUBq6dmY7gImrdDKDCI0SVWszdIoaPnYzM6Lw0R2EoxhP3QnJyPh1BqKNIESyml+mDvTLD67sFKKZkMQMv21QMZ0pDT7A2QTTv29O57aMC6UK42xaS0VCfV856sHqzuHzLcoaMHSyIhaNo6iNElVpMnwCiHF6T74igAVfnRUu0mAo3VgxtgAjV6AuTbeh4+meK0U5KVwrqAlmpXaqg5rARLRG4XkXUiskJEnhORnJhlPxaRjSKyXkTOOexIlVIqQWzBNoI4wOHuc92CymmEjdCyI7kSrI57aZzp3fdCgHWPWq2rHHe4DTz1gxhdYrV4g+TZ2pHeEqyCdDZHkq9aXpM3SIE92vPZQ3GUyoJ0Pm4vsCaS5NhEIobm6O8NYusx+awsSGdxW0epdk2wlBoqDrcH63VgmjFmBvAJ8GMAEZkCXApMBc4F/iQi9sPcl1JKJYQt0IZPUnu8AIw1tiSP7WYU4T3rByGyoaPZ4yWbdhyZhb2uF+go1Z5EF4NNno4kovcerC0m+Uq1N3kC5EsrpBX0uM64wox9xyZJemmavEGMgWzarPuvbN1fro0tTGdJgxPjykiq3xulhrrDSrCMMf82xnQMFv8QKI++ng08bozxG2O2ABuB4w5nX0oplSjOUDs+W+/PwOpQnJVCtZSR2pwcF4Idgm0N2MQgvVwoA9gLO0q1J8/FoPUcrLZehwgWZLgIuXPx2DOT7tjkmBZIy+9xnQlFGTSTQcCZnTTHpr7Nev5Vlmnt8d40gPGFGbT6woRyqpLm2Cg1HMTzHqxrgVejr8uA7THLdkTnHUBErheRxSKyuLa2No7hKKVUfLjCbQQc/UuwRISGtCpyfduSqqpXpLXOetFLEgGQXTKegLHj37NuEKIaGho8AXJM7z1YIsL4okx22MqT5kLZGEOTJ0hmpBnSe06wKvPTsduEOnfylGqva7OKeWSEGiG9517h8aOs+0KbU0cnzbFRajjoM8ESkTdEZFU3P7Nj1vkpEAIeO9gAjDH3G2NmGWNmFRb2PrREKaUSwRX2ELT3/gysWP6ccbgIJtUN+Xij91T10hMBMGZUDltMCf6dyXOPWkOrhwzTe5ELgAmjMvgkVJQ0F8qt/hChiCE91NTrEEGXw8aY/DSqpQzqkqPEf3271YOVEmiE9F6GT46yvvjZZS+ziqMkUZVFpYayPhMsY8ynjTHTuvl5AUBErgbOBy43prMs1E6gIqaZ8ug8pZQadlKNh7Azo9/rO4usSoLemrUDFdKQY/M2WC/6SLDGFqazwZRjr0+ee9RCbfXYiED6qF7XmzAqk7WBUdCyEwLtgxRd4tS3BRAipASb+/y9mTAqgxWBEmjbA+0jv0BKXauVYDl99b32YBVnpZDhdrAhXJR0VRaVGsoOt4rgucDNwIXGGE/MoheBS0XELSJVwARg4eHsSymlEsEfCpNmvIRd/U+wckZPBaBp68qBCmvIsfuiCVYv37aD9eyeT0w56Z4dSZFE+ENh3P5oQpDR+yiN8UUxxRySoBerttVPDm0IkT5/byaMyuSjtmg58tqR/8VFfXsAh0QQb+8JlogwrjCd5Z7o8UuSIiBKDXWHew/WPUAm8LqILBORuQDGmNXAk8Aa4DXg68aY5LkZQSk1YrT5QmSIF1x9P2S4Q1VFGTUmD/+u5BgGF4kYnB0JVi/3GYH17J661LHWRO3Ivw+roT1AoTRbExlFva47YVQGW0zylGqvbfWTJ63WRB/FUSYUZbA2HK2jtXfkJ1h1bQEq0/wIptcEC2DcqAw+bMqxJpLg90ap4eBwqwiON8ZUGGNmRn9uiFn2a2PMOGPMJGPMq721o5RSQ1WrL0QWHkjp+yHDHSrz09lgKkhpGPkJBFhFHPJoJmBPB2dKn+sH8ydZL/aO/ONT1xqggGiC1ccQwdLsVPY6S62JpOjB8sUkn30kEYUZ7CaPoCMjKRKs+jY/49K81kQfvXvjCjP4pNVJJDVPEyylhoh4VhFUSqkRp729jVQJIH30zMSy24Ta9PEUeLdAODiA0Q0Ne1v8jJJGAqm9JxAd0ovH48eJSYIL5bo2PwX9TCJsNqF8VAF19sKkKOZQ2+anxNZkTWSW9rruuMIMRITa1LFJ0fNZ3x5gtDs6hLaPHqzxo6zhy97MyqRIzJUaDjTBUkqpXnib9gJgy+j9W+SuAvmTcRDC1G0YiLCGlL2tPoqkiUhGcb/WryzMZlOklEDNmgGOLPFqowmWsbvB3fcw0/GjMlkfqYA9I394aW2rn7HuFmsis/ffnVSXnYrcNDbbRsPeNdBZU2tkqmvzM9oRTcyzek8+OxKsWlfylLFXaqjTBEsppXrhabYSrNTsg3uMRErZDABati6Ld0hDzt4WP0U0Ys8u6df6R5Rk8Ykpw+wd+QlWXZufImnEZBSBSJ/rTyjKYHmwHFO3fsSX3K5t9TPa2QzOdHD3PQR3wqgMVvhLwNtoVRMcwerbApTaovc1Zvb+uRqdl4bTLmyVUmjdBf62QYhQKdUbTbCUUqoX/hbrAehpOf0b/taheNx0gsZOc/WyAYhqaNnb4mWUNOLOK+/X+pOLs/gkUk6KpwZ8LQMcXWLtafYx2taALaei75WBI4ozWRsZjURCUDeyS9l3DhHMKulX8nlESSb/aY1+Dkfw8NIWX5A2f4hiqYfUXHD1/gw+p93GmPx01vqjXwI1bB6EKJVSvdEESymlehFsrQMgPffgEqwjygrYaEqTYqhXa1MdbgnhyO59KFOH7DRnTCXBkZ1EbG/0Um6vh+z+JZ9TSrJYY8ZYE7tXDWBkiVfT5KOQxj57aDpMKclOikqCOxqs4hYFkXrIKuvXNuMLM1jcFr1PVEu1K5VwmmAppVQvTPShps4+ChR0lZvuYpujkszmkV+sINS43XrRzwtlAIqsZ4WxZ2Q/K2xXQysFkbp+J1iFmW7a0kYTFBfsGbkJlicQor49QEF4T/+Tz9Is6snG58qFvSP3i4vtjdZjRTMDe/u8/6rD+FEZfNiUbU1oJUGlEk4TLKWU6o234/lOuQe9aXPWRHJDe617RkYwe/NW60VuZb+3KSifQLNJJ7xr+cAENQQYY/A31WAn0u8kQkSYWJpLtW30iE6wdjZ6cRMgw78Xcqv6tc2YvDTSXHZ2uceN6N69HY1WD1ZK+85+92CNG5VOW8RNML1YC10oNQRogqWUUr1weOtplQywOw5+46JpAAR3jdyLQWMMztZt1sRBJFhHlGazJjKGwPZlAxLXUNDoCZIf3G1NZPfvHiywhgkuD5ZjRvDw0h1NXsql1nqQbj9/b2w2YXJJFisjlVYlwRFaBGRHo4dSlxebrxHyx/Vrm/GFVpGQlrQx2oOl1BCgCZZSSvUi3b+HFufB3X/VIbtyJgANm5fGMaKhpckTpDhUg8+RBak5/d5uSkkmq0wlrvq1EA4NXIAJtL3Bw1hbjTWRP77f200uyWJ1uAJpr4XWkVktr7qunQqxKnSS178eLLCSzwVtZRAOjNjnYW1v8DIrM9rrnde/BGvcqHQAahxl2oOl1BCgCZZSSvUgEjHkhGrxpvbv+U5dVVaOp9Zk4dv+cZwjGzqq69sZLXvxZ44+qO0q89P5RKqwR/wj9qG61fXtjJUaInY35PT/+EwpzWJtR6GLETpMcFNtG5NcVoXOg+n5nFKaxeJA9FjuXhH/wIaAbQ3tTE+z7v3sbw9WmstBWU4qG8PF1rBmT8MARqiU6osmWEop1YP69gDF1BPO7N+N5l2NHZXBWlNFSt3IvEgGK4kYb9uJFEw4qO0cdhveAmsI5Ui9UF6/u5UJtl2QNxZs9n5vN7YgnU22Smti98gsArJpbzvHpOyG1DxI738BmSklWVSbIkKONKgZeffv+YJhNtW2M821F8QGOWP6ve3YwnRWeKPHMgkecK7UUKYJllJK9WB3fSMF0oItu383mnfltNvYnT6RfM9mCPnjHN3QsGX7LsqknvSKGQe9bd7oyfiME7NrWfwDGwLW7W5lsqMGW+HEg9rOYbdRXFRCrb1oRCYRxhg27G1lkmyzqkn24xlYHSYVZ2Kz2dmdOmFEHpsNe9oIRwxjI1ugYCI4U/q97fhRGbzbHE2wRnCVRaWGg7glWCLyPRExIlIQnRYRuUtENorIChE5Ol77UkqpwdC426qOl1pwcMPfYgUKp+MgjNmzJl5hDSntO6zeJ3vxtIPedkpZPmvNGPwjtNDFjl01lEZqoPjgk8/JJZksD1dhdo284aV7W/3Ut/koDWyBUVMOatsUp51xhemsY6zVuxcJD1CUibF6VzMA+W3roXj6QW07flQGGwO5RFyZSfH8PaWGsrgkWCJSAZwNbIuZfR4wIfpzPXBfPPallFKDxbPbujcoq/TgeiBipY+xvltq2rw4LjENJcYYUuqiiWPHc60OwrSybFZHxmCvXQXGxDm6xGryBMhvixZhKJ150NtPLc1mSbASadwy4sr8r9zRzFipwRn2QsnBJ59TSrL4wFsGQc+IK+iwelcL5W4vjtadnVVI+2tcYQYgtGZP0gRLqQSLVw/WncDNQOz/IWcDDxvLh0COiBzEUyiVUiqxQnusC+TM8oP7lj3WmPFTaTFptG4ZeQnWjkYvk4JraHeP6vcDUWNNLMpkPVU4g63QWB3/ABNoUXUjMyV68V9y1EFvP708m5UmWl1vhA2FW1jdwPH26D1CFccf9PZTSrN4vz36XLERdmxW72rmgtzod9UVxx3UtuNHZQCwyz3WSrBG2JcWSg0nh51gichsYKcxputfuTJge8z0jui8rttfLyKLRWRxbW3t4YajlFJx42rcRItkIekFh9zG5JJsVptKnHtHXqGLhVsaONq2gXDZcQd1H00Hl8NGW370W/oRdqH8n011fMq+hkjhEZCef9DbTynJYg1jrYkRNkzwP5vq+ExmtfXw7oMoX99hSkk2G00pEZsLapbFPb5E8QRCrNzZzGmpG8HugtKDu7MiP91FTpqTdWY0+FugeXvfGymlBkS/EiwReUNEVnXzMxv4CXDLoQZgjLnfGDPLGDOrsLD/lYSUUmogGWPI91bTmFZ5WO2kuuzsSplAfvsnI+55TxvXLqNc6siYeOoht5FRMZ0QNkzNyKokuGjjbo61r8dWdWjHJsVpp6iohD2OkhGVYDV5Aqze1cyx4Y+h6tRDSsynlWURwkFd+vgRVYFy4ZYGgmHDNN9SKD/2oApcAIgIk4oy+cgTHSykwwSVSph+JVjGmE8bY6Z1/QE2A1XAchGpBsqBpSJSDOwEYh9dXx6dp5RSQ96uxnYmsQVv/qEPD+zgK5iGywSgfuSUTo5EDLbNbwJgm3j2IbczuWIUGyJl+LaNnIcx723xkV/7ESnGD+POOuR2ZpRlszxUOaKqLC7YWMdktpIRqIUJh/Z7k5PmYnReGutlrNXzOUKGwr21bi+VzgYyGtfCxHMOqY3JJVm8WR/tMR2hz1BTajg4rCGCxpiVxphRxphKY0wl1jDAo40xu4EXgSuj1QRPAJqNMTWHH7JSSg28T1YvJkN8pFUd/D0iXaWMtob6tIyg+7CWbmvk1NB/aMkYC3lVh9zOtLIsVkWqsO1eNmIulF9cvovzbB8RcWbA2NMPuZ3p5dFCF01bR8yDY59ZsoNLUhdhxA4TDi2JAJhRns0HnnLwNY+I+/fCEcNrq3bz9aJo0ZhJnz2kdo4ozqQ24CKYNUZ7sJRKoIF8DtYrWD1cG4G/AF8bwH0ppVRcNX/yHwBKp5x02G2Vj5+B17hoHkGVBN/8cDHH29bhPnrOYbUzqTiTVTIOd6ARmrb1vcEw8NrHG7nQ+RG2KRcc9DCvWDPKs1lhRs59WLubfbz/SQ1fcLyPjDsDMg79toAZ5dm80x4dJLNr+Pd+vruhlr2tPs4Jvmnde3WQD+7uMKk4E4CGjAmaYCmVQHFNsKI9WXXR18YY83VjzDhjzHRjzMi5slBKjXjZuz+gyZaHY9Shl2jvMKU8l7VmNLYRcr9IsydI6doHCWPHfcxXDqstt8NOU260VPcIuFBeVN3AEXteIc144ZirD6utScWZrJeOSoLLDju2RHtm6Q4+Jx+QFdgLx11/WG3NKM9hvakgbHPBzuH/e/Pggi2cnb6RrOb1cPSVh9zOxKJMRKDaUQX1GyHojWOUSqn+GsgeLKWUGpZ2N7YzI/AxuwtPPKSb8LvKTHGyzTWevNb1EInEIcLEevKdj/kib9I68SLILj/s9tLLjySAAzMCLpTvf2sNX3O+RKRs1iGVII/ldtgpKy5ht6N02PdgtftD/O29TXw37RXr4cKHeP9Vh2ll2YTFwZ70I2DnkjhFmRj/2VjHextquS3zBUgrgCMvPeS20t0OxuSlsTxQBiYCteviGKlSqr80wVJKqS6Wvf8K+dJKzpHnx63N9vxppEbaoak6bm0mQm2rn5QP7yRVAuR85ua4tDl5dAFrIqPxbxveAx3e/aSWyZv+Rim12M76eVyS8+nl2XwcqsQM8wRr7jub+Iz/X1SEtsIp3zvsY5PhdjCuMIPVMt4qdDFMK3QaY/jff63nsoxllDQthTN+As7Uw2rziOIs3mspsiZ0mKBSCaEJllJKdWFb/Qxe3BTPmh23Nl3l1sNm26uH97ftf3/qaS7nVZqnXQWFk+LS5vSybFZExuHYvXzY9vA1eQLc9/SrfN35IuHJsw+ruEWsGWXZLA1WIs07oL0uLm0OttW7mnnunUXc4n7cKs0+7eK4tDujLJt32ysg6Bm2PTWPfriVbdu38XPHw1bP3tFXHXabk4oz+U9jJsaZpgmWUgmiCZZSSsVYu7WGEz3z2V78GXClx63dkgkzCRo7jZuGby/N0++t4IvVt9HuHkX2+b+KW7tHFGeyinE4Qu3DspR9JGL46eMf8D/+32JLycR+3v/Gre3p5dms7Cx0sSxu7Q6WxvYANz36IXNdfyDFbuD8P8SlZw+sQhfveUZbE8NwmODy7U38v5dX8fecB0gNNsJFc8HuOOx2J5dkEjY2vDkTYffKOESqlDpYmmAppVSMja/dS6Z4KTkrvoVPp1SM4hNTjqlZHtd2B8uCNVupeP16ymwNpF7+MKRkxa3tFKed5txp1sQwuw/LGMNvXvyYL2/5MWOlBuclf4Oskri1P7Eok09sw7OSoCcQ4qt/+w8/aLudaWYD8oX7IX9c3NqfXp5DtSkm6MwadgnWhj2tXPfQR/zO/SAzfIuQ8/4XSo6MS9tHFFufzd0p46werBHy+AOlhhNNsJRSKmpnXQPH73qETelHkTnh8Muzx8pLd7HZOZ6c5rXD7oLn3RWbSH3iS8yyrSd44T04xpwQ933kjJ5KOymYYXSh7A+F+Z+n3uesJV/nU/Y1yEX3wdjT4roPp91GRUkxOx0VsHP49H42tge4+v53+MbeW/iMbRGc9zuYfEFc9zG1NAu7zcaOtMnDqgLlyh3NXHX/u/wqchfnh9+E034Es66NW/uj89JIddpZz2jwNkDr7ri1rZTqH02wlFIqavFTtzNKmsg692cD0n5bzhQyw03QOjyeuR6JGB59+U1GPT2bGbIJ74V/Ie3oQ69w1pujxhSwMlI1bApd7Gry8r17n+Qrq/6LYx0b4Av3I4dR/a03M8qyWRgch9mxaFgk56t2NnPj3U9xW+1NnGZbARfeA8f/d9z3k+K0M7Eok+VmHOxZAwFP3PcRT8YYnl26g6//+SXui/wP55gFcNYv4PQfxXU/NpswsTiTRZ5Sa4beh6XUoNMESymlgLXr13HW7gfZlH0ChdM/PSD7sJfNBMC7beh/217f6uOB+/6X2Qsvp8LRTHjO42Qc/cUB29/RY3JZHhmLs3YVhAIDtp94eGf9Hh7940+4o+GblKUGcFzzEjLjkgHb3/TybBaGxiGeemjYPGD7OVyhcIQ/vb2Bx+/7H/7q+z4T3E3Il5+Eo68YsH0eWZ7NW60VYMIwhJ8zt7fFx1cfXsLrT9/Py44fMsO+Fb74IJzy3bjdkxZrcnEmbzQUWBN7VsW9faVU7zTBUkolvUAoQt3TN+GQCIWX3jNg+ymccAwRIzRsXDRg+zhckYjhxXc+ZO3/ncNXa/8fnpyJpH3rP6RM/syA7nd8YQYbHBOwR4JD9oKwrs3P//1tHpmPfZabzYOEx5yC+xsfwuj4D5mMdVRFDksjE6yJHUOzh2/J1ka+dfeTHPXWlfzK8RfcFUfhuPE9mHh4z7vqy/TybD7wjrEmhuDwUmMMz328g6t//xRf3vQD7nP9kYyS8cgN78WtmmJ3jijOZJvXTTizTHuwlEqAwy9Xo5RSw9y/n32A84P/YcP07zKhZMKA7WfKmBI2mVLcO4ZmD9ba6p2sfOpXnN/2DDabUHvSbRSd+U2w2Qd83zabECw9DnYB2z6EsqMHfJ/91eYP8Y83F5Hz0e3cxFt43bkEzr2X9KMvH5Deh67Gj8qgPrUKH2mk7FgIR84Z8H321/YGD/e89CGTP7mPuxxvYlLS4Ny7cB595aAcm2PG5FJLDu2ppaRv+xBO/PqA77O/Fm5p4I8vL+LE3Y/xnONVnG4nnPEr5PgbwO4c0H1Piha6aMqcSP4Q/cJCqZFMEyzVo2A4gscfpj0QwhMI0eYP4/EF8Hq9BIN+wkaIiI0wQtjYARtOpx2X3UaG20FWqoOsFCdZqU6yU53YbQP/P1ulDtb6jRv51Orb2J4ygQmzfzyg+xqV6eZD+yQ+3bjEupdmEC5A+2PT7kYWPvtHPr3nQS6RZraVnkPFJbeTkjtmUOMYO3YiW3eOonTzezhPjG8Vx0PhD4V5+t0VBN77A1+JvIpbgrQceR055/0cUrIHLQ4R4ZiqAlZtGc+sbR8N2n5709Ae4KE3lyOL7udntn+S7ggQPvpKnGf+BDJGDVocE0dlkp3qZJ17Bsdsfd96jpotsYNz1u9u5Q+vfEzlpse4z/lPshztRKZ9EdtnfgnZZYMSwxHFmQD/n737Do+juh4+/r2zXb1a1Wqusi13G4MxvYYeCJDQSSA9gfRKCG964xcCCQmhhU7oYEKxwWADNrj3btnqvWv73PePWQm5y9aq2efzPPt4p905o9HKc/Y2djuKSK16H4LePk9gLITovT4nWEqpbwJfB8LAfK31DyLrfwx8MbL+W1rrN/t6LnH0/KEwdS0dtDZU09FYjb+lhmBbLWZHE6a3GfytGP5W7ME2nKE2Ysx24nQnccqLhxCJBHESwqHCBz2HqRXtuGkjhnbtoY0YtugEqnQKdSqFgCcDM3EkKn0syWnZ5KbEMCo9jjEZcbjs/f8NuRD78gVCND/9ZfKVH+OaR8Du7NfzKaWoT5lGbMM7UL8N0sf26/kOp7y+hQ9f/Duzyx7m80YNZQlTab/09+SN6t8mbwczPT+JZYuKuWzPR4P6oBwMm8z/ZAuNC/7C54KvEqt8tIy+mJjz7yApbfSgxDS7MJV3No9nZs2z1oTDsWmDEkddm5/H312Nc8W/+CKvk2jrxDfqPIzz/h/GIPw+G4ZiVkEyCyrHMsP/hjXhcMaEAY8DYGtNGw8sXE/cxif5f/aXSXO0EB59Lpz1c4zMkgGNJTnWSWaCm1XhQqbrMFSthbwTBjQGIY5nfUqwlFKnA5cAU7TWfqXUiMj6CcDVwEQgG1iglBqrtT7407k4Ku1ePw015bTW7sHbUE6guQqzvQ7VWYfD14A70ER8uIlk3Uw2HeSqA49A5cdJpxGL3xZHwBNPyJFG2JFAszMO5XBhc7ixOVzYnG4cTjeG3YmBRmFi6DBKm2AG0b42YvyteHxtpPuaGeutw+XdjCvUDgGgzno161h26iw2mdm8pkbSkjQBV+40RuXlMDEnkQlZCbgdknSJ/rXwsd9wQWg522b+gjF5kwbknEbeHGgA384luAcpwSqrbWLlK/cyo+wRrlT1VMWOpfXcPzJyysWDWqs2dWQSL+vxXOl/b1AelH3BMK9+uAbf4r9xSfB/JCgv9XnnEnfhL0jOmDigsexrdkEKPzMnAc/CzkVQ0n8DjhxITauP/yxcRdyqf/Il9Qbxykt74Xlw9o9xZ08d0Fj2Nbswhf9sHsUPXUDpkgH/vVlf0cJDb68ie9vj/Nj+Bin2NoIj58LZv8A2iEnN+Kx4FjTm8EWwhrGXBEuIAdPXGqyvAr/TWvsBtNa1kfWXAE9H1u9SSm0HZgMf9fF8x5XWlkYaKnfTUrubzoYKws0VqLYqnN4a4gO1JIcbSKOZfGXufyxxtNqS8DqS8cWNpjwmjcq4dOzxI3AkZuBJziI+OZPYpDQMTyIuuwtXf15MoANaq6C5FOq3EVu7hfHVW5jQuAm3731oAzZB2YZ01usCFukCWpMn4M6bxuiiMUwdmURRWiyGNDMUUbLs4w85c889bEucw5gLbh+w846dMI2GlfEENi8m64TozX3TGzsqaln7yj2cWP04l6gm9sROpOHs/yNr6oVDorlivNtBY9osaPknlC4esAfldn+IV979EOfH93Jx+B0cKkRd3nnEn/8j0gY5eehSnBXPLudYvEYcngFMsMqbOnly4cckrf03X1Nv4TECdI6+EM76EXGZA/OlxOHMLkzlNzqdzpgcYkrfhxNuHZDzflLayGNvL2PC7se5y76QOIeXQNHZcNr3cPTzwCe9MXVkEn/dWoeZmoExzCbwFr2jtSZkaoJhk2BIEwwFCQX96KAfzABafzqzg9agsRYUCrsNbDaFw+bA5nBid7ixO53YbTbUEPj/YLjra4I1FpinlPo14AO+p7X+BMgBlvbYrzyybj9KqVuBWwHy8vL6GM7wYYZN6uqqqCvfTlvVDkKNu7G1luHurCTRX016uIYE1UnCPse1EkuzLZUO9wiqPWOpiMvESMjGlZxDbPpIkkbkkpCaRYLdtd+xg8oZC2mjrdfos3AA3V18Oxqgeg26cg2pZas4pXIN57d/YiVdG6BufQKbzHyW2ArwpkwgZuRU8sZNZkr+CFJi+7dJlzg8rTWmhnA4jBkOYYaDmGaYcDgM4RBh09puao0JhE0d+UOvUIrIy0ABhjL2XqesZnVKGSjDZr1sNgzDhsLaz4j8R2CoSHk93x/kP4mWtg4SXv86PsPDyJseHtDkYnp+Ch/oscyo/HjAzrlxVwWbX/s/Tql/mstUK6Xx02g891/kTTp7SCRWPRUXT2LnR1nkbXwNez/MndRTU0eAV99eQOrqv3Ol/gCUQcOYyxlx3g/IGKSmgAdjtxnMKEjlk/JJzNv5Lqqf+/BtqmrlxbfeZdT2h7nNWIzdMPGOvQTjrB8SN6K43857NEpyEkmKcbDGOY0TdyyCoA8c7n45l9aaRVvreHHBYk6oeoI/2t/HYQ8TnnApnPJdnEMk6QSYnpeM1tCUVELqMJqI+VgWDJu0eIO0tnfQ0VKPt7UBf1sjwfZGwp1NmP52CHRgBDowQh3YQp3YQ504wp04w524TC8u7cWhgzgIYieEixAOQsQRxHaQVkpHFKO2EcJmla7shJSDsLITVC6ChpugzUPI5iZsiyFs96DtMWiHB+2IwXDGolyx2Fwx2Fyx2N1xON1xODxxuGNicXkScMfE4fTEWX0Ch9j/P9F02ARLKbUAyDzApp9Gjk8B5gCzgGeVUkVHEoDW+l/AvwBmzpw59GdQPAIdHR3U7NlMS/kW/LXbMJp24W4vJyFQTXq4lgzlJ6PH/u14qLNl0OLOoj52Bjo+G0dKLnGpI0nMzCctM48ET/zQSpyiITYVRp2BGnUGMV3rfK1Qsx6zcjXO3auZVLmOE9vexNH4KjSCf7WdbTqXj+15eOPyUalFxGWNI72gmKKRucR7jvHES2vCoSA+bztebycBbwd+n5eAr4OAz0vI32m9Al7CAS9mwIsZ9KKDPlTIhwr7sYV9qLAPWziAzbT+tZt+7GYAu/bj0AGc2o9dBzF0GAMTG2EMbUbef/qvXZkMdIPOkDYIRxqqhjEIYGBirTOtxquR913Ltu5lFwGKVS27z3qApOTsAY3b47SxO/EEzmr7O9RtgfRx/XaulZu2s/uNv3Ja8wtMUO2UJp+A47yfUjD+1H47Z1+dNj6D/y2ZxVf3zIfORohJifo5qlq8vPm/l8nf9E+uVyvxKTeNk77IiHO+Q0bCwP4+HImzJ2Qyf3sJp4SXQuWqqI+0qLVm6c5G3n7rVWZXPs6PjOWE7Q4Ck6/FeeptxKYURvV80WIzFKePG8F/tkzjRPM12P42FF8U1XMEwyavrqnk7XcXcl7z09xtWwoOG+bUazDmfRsj5YgefQbElJFJAGy1jebEhgXgbQZP0mCGdEwJm5rmzgANbV5aG6rpbKrG31JNsLUW2muxeetx+BpxBlvxhNuIMdtIoJ0k2klT/sOW78WFV3nwGx4ChoegI4agLRmvPZtOmxttc6BtLjAcaJsTbE6IrNM2B9pwAAZEvnjs+lcBJtaUHGGt0eEwhAMQDqLCATCDkeUAOhRAR9YbYR+OsA9HyIszUI9T+3BpHx7tx4Mflwoe8c/Qiws/LvyGm6ByEbB5CBluwjYPYbsHs/sVQ23KDMacciWj0uOO+DyD4bAJltb6oDNuKqW+CrygtdbAx0opE0gDKoCRPXbNjaw75oTDYap3b6Zh1zo6q7dC405i2neT5i8nQ9dR1OPbhBYdS609kyZPPjVxczGS8/CMKCQps4i03DHExacQdwxn80fEnQD5J2Hkn0TiiZF14SDUb8NfsYaGHStJrFxLdvtWkloXY7Rq2AV8CK3awy6VQps9Ba8rnVDMCIz4DNyJ6bjiknDHJeOOSyI2IYW4hCRsDrc1ZK7NCYaj9x3rTRPCfgj5rT9GIR+EAoSDPgK+Tvx+L0G/l6DfRyjgs5Idv5dQj2RHR/61jrWSHyPkwwj7MUx/JOGxkh6H9uPQQevPkQ5gU5pYIPYofrxBbARwEMBJQDkJKBch5SSonAQNF15bAu2Gm7DhxLQ5QdnBZkMZdlA2a9huZYBhQytbZJ0Bhh2tbChlQxtWrROoSI2SxuhRawVgtVbQ6Eg7Bt29Snc3ZcDUoE3QptXXT4dROmxNLKo1KrKsDrBPz3Vdy0qH8WKyKf8Wiuf23+Swh2KOvwA++Tsda14i9qwfRrVsrTXLVq6iaeHdnNrxJtOVn11pp+C84KcUFA1+s6XDmTYyibudJ/N18xXYPD+qk9RurGhhyRtPMXX3w9xobKbdnkj99O+RdvrXcfdDIhdtZ0/I4HcvzebX6lHsq5+MWoIVNjVvra/ikwXPcG7z09xhbMbnSiAw6zu4534VR1x6VM7Tn84qzuBbq8YSSEzBuf6FqCVY7f4QTy/bzcrF87nc9wL/sK0i6IyB2V/HdtI3sMUf6PvnoSHR42DMiDje843mRIDdH8D4CwY7rCFPa01jR4Caplaaa/bQXl9OoLEMWiuxd1Tj9tURE2wk0WwhVbUwmjaMA9QcBbHTZiTgtSXg9yQQdObR4kqi2Z2I8qRgi03CEZeKO956xSam4oxJQLniwBGDx7AxXMZ9NE1NZyCAt7MdX0cbvs5WAt52gt52gr4Ogr4OTH8HIX8nBNoxA15UsBMV9KLCXoxgJ7awD7vpxRH04fQ34NE+3NqPGyuBW7G7EXPs+cdOgnUYLwGnA+8qpcYCTqAeeAV4Uin1F6xBLsYAA9ceph9oM0xt2TZqtq+mo2IDtvrNJHfsIDdURo4KdLd/bCWWGnsO1YmTKU8qwpE+mrjssYzIn0BCyggSJYE6ejYHZEzAlTGB7Omf/3R9yE+4sZT63ZtoKt9MoH4nqr0Gt6+ONO9GkjuW4KkL9Po0YQxC2AljQ6F7vMxIfYnGxv793rrDBDyR12HPpRU+nPhwEsCBX7msJEc58SsXnbY4QvZUTJsL0+ZC291gc6MdbpTdjXJ6MBxuDIcHm8uD3eXB7ozB4fLgcMficsXg9MTgcsfg9sRid3nA7sFhs+Pg6JIz0XenzpzCqmWjGRnFBCsYNnl/8TsYH97DPP9iUIpdORcw8oIfUpgzdJotHY7dZjB2ylzKVo4gc/UzOPqYYGmt+WBLBZvf/DfzGv7LrUY5La4RNJ14F8knf4k45/D5FKTHu5hYmMe71bM5a/1zqHN/Dfaj7z3rC4Z5aXkpOxf9h896n+d8o4yOmEyC836Ne+aN4BoeDzIAZxaPINbt4mPPyZy89Q3wtfRpKP26Nj+PLdlO7bKnuMZ8lS8ZpQRikjFP/CmOE24BT3IUo+8/0/OS+e/6bH7oiEVtXygJFtDqC1LW0E5t5W7aqnYQbizF1laBs7OaWH8tyeF6Mmhggmrd71gfLlrtqXhjUgm4R9HgSaMhfgSO+BG4kjKJTckiLiUTe0IGDncSKcfJM59hKGLcLmLcLkhJjXr5obDJNWET+yBPwXAk+ppgPQQ8pJRajzVG3A2R2qwNSqlngY1ACPj6cBxBcNvqxdQvfZKEhnUUBLeRga+7SV8tKdS6C1mXNgsyJhCXO5HMggkkp2WSMIx+AY4Jdhe2EePIGDGOjFkH2K417W1N1NdW09bShK+9iUBHC8HOZsLeVsIBHzocjFSLB63qcDMAZhirTt3Y52WtU8roruEJGy604ewecdGIjLhod3qwOV04nB4r6XHF4HRbL5c7BrfbjdthkOCw4bDJ783xYmxGPP+OOZlpbY9Aww5IHXXUZbV6A7z31oukrf4HZ+pVdOJhR9F1FF70fcakjDx8AUPQ52aN5MmPz+CHe562hpfOmnzEZQTDJm99so7GRfdzvvc1Tlat1CWMo/OU+0icfmW/D8nfX244KZ/HnpzL2eYSWPccTLvmiMuoafXx4uJVqBUPc1n4Ta5WzbQljcE8/R/ETv5cv0+C2x/cDhuXTsvhTx+fyMmOV+CTB2Hed464nE1VrTy7eB2edY9znfEGWaoRX/IomPd/OKdcPezmkppdmMIzy8toyzuRhB0LBzucAREImVQ2e6mqrqK5Ygu+up2opj242stI9FeSadYwWtUzUYX2Oq7VSKDNkY43IYvG2Gk0J+bgTMklLi2PhIw8HEm5uN2JuI+TpGkosdsM7MPsGalPCZbWOgBce5BtvwZ+3ZfyB1vTrlXMqHqWUkcR61I/g86cRFL+ZLLHTGNEchoDN5Wi6BOliEtIIS5h6DcBEscP1/TPE/jgMVoX3E3aVfce8fGV9Y2seO3fjNr1JBepXbQYSeyc9B0KzvsW42KHx7frBzMxO5H7Cq+kpfxVYt74GY4bX+51Z+iaFi+LFs4ndv3jnB1egksFqcw4lcA53yF91KnDvlP1WcUZ/DZpDlt8oxn7zq9QxRdZTaoPQ2vNyt2NLHznTcbsepKbjI9wqRBNOaeiT/8m8aPPGvY/m1vmFXH6sj1sjJvDhCV3w9RrID7jsMcFwyZvbajh/ffeZnLNS3zPtoRYmx9vzlw49Tbco88a9MmLj9ap46zmnSsd0zmtaUGfv9AZKkxTU93qY2d1A/V7ttBZtQWjYTtxHbvIDJZTqKooUG17HdNmJNDiycYfV0J5ch7utCISs0cRmzEKlTSSBIfn2OvjLgaN0nrojCsxc+ZMvXz58sEOo5uvsx3DZsfp6p/RiIQQx682X5C3fv95LtHvYPvqElQvhiQ3Tc3yNWtofO9+Zje9Sopqp9JZgJ51Kzmn3Tzsvl0/lPUVLfz3H7/gl/aHMc+8E2PewYfSD4RMlq3fQtWSx5lS+zLjjDK8ykND0aVkn/sdjBGDO6FztL27uZZ7Hn2S512/RI3/DOqKhw7aVLC2zcfCT9bT/smTnNzxFsVGGX4jBv+kq0k45evWyK7HkD+/tYX5777P256fYsudAdc+D86YA+67pbqNNz9ZT+fqF/hM8G0mG7usDvYTLsU19+tHVXM6FF1y3wek+it4qPUWOOdXcNI3BzukXtNaU9XiY1N5AzU71xGsXEts82ZGeHeSryvJVXV7jZzXakumNbaAQGIRthFjic8aS2LOGGzJ+b36IkKII6WUWqG1nrnfekmwhBBicDz97grOXnQJKjaVlK++ddBv23eVV7Lz/SdJ2f4C08wNhDHYnjyPlNO/SXrJ8K95OJgH3ttB5oKvcZFtKR3FnyP2zB91JwR1zW1sW7uUho2LyKx+h+l6EzalqYotxjn7ZlLnfB5c8YN8Bf3nrlc3opf+nV84HiMwYjLOs38B+ScRtrnZsruMnes/pnP7EoqaP2Sa2oZNaeoSS0iYcz2uaVcfsw+bwbDJFx5YSlbZfP7quI9wchH2s38BRafRqWLYsL2U7ZtW07HjAya0L+MEw/q9aUscR+xJX8KYfOUxN9LeYx+V8vOXN7Bh5B+JxQdf+2hI/s3wh8Jsq2lnx+49NO9aiapZT2LrFkabpYxWFbgiTfqCOGjwFOBPLMKWPpb43PEk5BSj0kb3qd+dEEdDEiwhhBhiTFNz7yOP8KXdP0TbnDSU3IJ71Fw6TActNaW07VlLcvWHjA9txq5MKm05tIy9nKIzv4grrWCwwx8QD763Be+C3/Fl42UcKky7iiWkDZL4tPlPtTMf7+gLyJ37eRw5x0atw+GYpuavC7exZdFT/Mr+b9IiHfJD2sDeY/L56thinMXnkXLC5/t1SoChpMMf4ofPr6V5/Vv8xv5v8ow6AEyt9hrtrSm2CGfJpcROuQwyS4Zk0hENrb4gs3+9gF/lreaKit9ZtXqjDzpA9ICob/ezqaKJyp3r8ZWvxVW/kQzvNsarPWSpxu792uwptCWOx8iaRFLhdNy5UyBtzLDsJyiOTZJgCSHEEBQImTw1/01Gr/g1c411e20ztWKXYzRtufPIOeFy0sfPPWYfAg+lvKmTBctWkVD6Fgmdu4mxaRyJmaTmTyRnymm4Uo6fSer3Vd7UyYJ1ZThLF5HUvp1kR4D4pDSyx84gZdRMiDt+ewtvrm5lyeZK1J6l5Hg3kWoPkJCazciiscQUnXhc/Wx+8uI6Xlq+izXJP8QRlwq3LAJbX8c5O7xQ2KS0oYMtuyto2rkKXb2O+OYtFIR3Mk6V41HWCL8hbDTFFOJPLcYzcipJhdOxZU06ru6RGJ4kwRJCiCGszRdk9eathCvXEWvXxKaNpGjsRNxxw3vACiHE4Ktv93PGnxZxQ9Iavtv8a5jzNTjvt1E9R6svyObKFsp3bqRj92oc9RtI79jGOLWbXFXfvV+7LZGWhHGojEkkFk4jNm+qVbvahykHhBgsB0uw+v/rCyGEEIcV73Ywb+pEmDpxsEMRQhxj0uJc3HnxRL7zbIipGZdz5tK/W83szvj5ETe366qV2rF7D62lqwlXbyC2eQu5wVImqjJmKz8AJgaNMSPxpsyiNncyyUXTcWRPJi4+i7jjsCZeHF8kwRJCCCGEOMZ9dnoujR0Bbn39Mv4c08alH/yV4IZXsc/+IqroNEgphMjE26GwSX1zG1VV5dTXlNNZswvduBNXaylJvnJGqQrOVc3dZbcbCTQnj6FpxImE8qeSUDANY0QxaQcZwVGIY500ERRCCCGEOE4s3dnAb1/fRHrlO3zD/iJTjZ3d2zpxAxqldXf/qJ5ajSRaY0YSTi7CmV1CatFUnNklEJdxXPYPFUL6YAkhhBBCCLTWbK9tZ+muRlqrtpNQt5LkYA1x4RbsNoXHaccWk4wnOZPktCySs0fjSCs6Zof3F+JoSR8sIYQQQgiBUooxGfGMyYgH8oEzBzskIY4pxmAHIIQQQgghhBDHCkmwhBBCCCGEECJKJMESQgghhBBCiCgZUoNcKKXqgN2DHcc+0oD6w+4ljhVyv48fcq+PH3Kvjy9yv48fcq+PL0PxfudrrdP3XTmkEqyhSCm1/ECjg4hjk9zv44fc6+OH3Ovji9zv44fc6+PLcLrf0kRQCCGEEEIIIaJEEiwhhBBCCCGEiBJJsA7vX4MdgBhQcr+PH3Kvjx9yr48vcr+PH3Kvjy/D5n5LHywhhBBCCCGEiBKpwRJCCCGEEEKIKJEESwghhBBCCCGiRBKsQ1BKnaeU2qKU2q6U+tFgxyOiRyk1Uin1rlJqo1Jqg1Lq25H1KUqpt5VS2yL/Jg92rCI6lFI2pdQqpdRrkeVCpdSyyOf7GaWUc7BjFNGhlEpSSj2nlNqslNqklDpRPtvHJqXU7ZG/4euVUk8ppdzy2T52KKUeUkrVKqXW91h3wM+ystwTue9rlVLTBy9ycaQOcq//GPk7vlYp9aJSKqnHth9H7vUWpdS5gxL0IUiCdRBKKRtwH3A+MAH4vFJqwuBGJaIoBHxXaz0BmAN8PXJ/fwQs1FqPARZGlsWx4dvAph7Lvwfu1lqPBpqALw5KVKI//BV4Q2s9HpiCdd/ls32MUUrlAN8CZmqtJwE24Grks30seQQ4b591B/ssnw+MibxuBf4xQDGK6HiE/e/128AkrfVkYCvwY4DI89rVwMTIMX+PPLcPGZJgHdxsYLvWeqfWOgA8DVwyyDGJKNFaV2mtV0bet2E9gOVg3eNHI7s9Clw6KAGKqFJK5QIXAP+OLCvgDOC5yC5yr48RSqlE4BTgQQCtdUBr3Yx8to9VdsCjlLIDMUAV8tk+Zmit3wca91l9sM/yJcB/tGUpkKSUyhqQQEWfHehea63f0lqHIotLgdzI+0uAp7XWfq31LmA71nP7kCEJ1sHlAGU9lssj68QxRilVAEwDlgEZWuuqyKZqIGOw4hJR9X/ADwAzspwKNPf4wy2f72NHIVAHPBxpEvpvpVQs8tk+5mitK4A/AXuwEqsWYAXy2T7WHeyzLM9tx7abgf9F3g/5ey0JljiuKaXigOeB27TWrT23aWsOA5nHYJhTSl0I1GqtVwx2LGJA2IHpwD+01tOADvZpDiif7WNDpO/NJVhJdTYQy/5NjMQxTD7Lxwel1E+xunY8Mdix9JYkWAdXAYzssZwbWSeOEUopB1Zy9YTW+oXI6pquJgWRf2sHKz4RNXOBi5VSpVhNfc/A6qOTFGlWBPL5PpaUA+Va62WR5eewEi75bB97zgJ2aa3rtNZB4AWsz7t8to9tB/ssy3PbMUgpdSNwIXCN/nTy3iF/ryXBOrhPgDGR0YicWJ3pXhnkmESURPrgPAhs0lr/pcemV4AbIu9vAF4e6NhEdGmtf6y1ztVaF2B9jt/RWl8DvAtcEdlN7vUxQmtdDZQppcZFVp0JbEQ+28eiPcAcpVRM5G96172Wz/ax7WCf5VeA6yOjCc4BWno0JRTDkFLqPKzm/RdrrTt7bHoFuFop5VJKFWINbPLxYMR4MOrTZFDsSyn1Gay+GzbgIa31rwc3IhEtSqmTgcXAOj7tl/MTrH5YzwJ5wG7gSq31vh1sxTCllDoN+J7W+kKlVBFWjVYKsAq4VmvtH8TwRJQopaZiDWjiBHYCN2F9oSif7WOMUuqXwFVYzYdWAV/C6oshn+1jgFLqKeA0IA2oAX4BvMQBPsuRJPterGaincBNWuvlgxC2OAoHudc/BlxAQ2S3pVrrr0T2/ylWv6wQVjeP/+1b5mCSBEsIIYQQQgghokSaCAohhBBCCCFElEiCJYQQQgghhBBRIgmWEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhhBBCCCFElEiCJYQQQgghhBBRIgmWEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhhBBCCCFElEiCJYQQQgghhBBRIgmWEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhxBCjlCpQSmmllH2wYxHHB6XUBqXUaYMdhxBCHAskwRJCCDHsKaXuV0q1R14BpVSwx/L/Bju+oU5rPVFrvSiaZSqlUpRSzyilGpRS9UqpJ5RSCdE8hxBCDEWSYAkhRJRJzdPA01p/RWsdp7WOA34DPNO1rLU+v2u/4XRvhlOsB/ErIBkoBEYBGcCdgxmQEEIMBEmwhBAiCpRSpUqpHyql1gIdSim7UmqOUupDpVSzUmpNzyZYSqlFSqnfKqU+Vkq1KqVeVkqlHKTsm5RSm5RSbUqpnUqpL++z/RKl1OpIOTuUUudF1icqpR5USlUppSqUUr9SStkOcx2jlFLv7FPrkNRjW6NSanpkOVspVdd1XUqpiyNNzZoj11e8z8/ne0qptUqplkjNhvvIf9JH7iD3RiulRvfY5xGl1K96LF8Y+Zk2R+7h5F6e6zSlVLlS6ieRn1+pUuqaHtsvUEqtityrMqXUnT22dTUN/aJSag/wTmT9f5VS1ZGf2/tKqYn7xP13pdT/IrV1HyilMpVS/6eUalJKbVZKTevlz+is3lzjESgEXtJat2qtW4AXgYmHOUYIIYY9SbCEECJ6Pg9cACRhfVs/H+tb/BTge8DzSqn0HvtfD9wMZAEh4J6DlFsLXAgkADcBd/dIcmYD/wG+HznvKUBp5LhHIuWOBqYB5wBfOsw1KOC3QDZQDIwkUuugtd4B/BB4XCkVAzwMPKq1XqSUGgs8BdwGpAOvA68qpZw9yr4SOA/rwXsycOMBA1Dq5Ehic7DXyYe5hgPpvjda69AhfwBWQvIQ8GUgFfgn8IpSytXLc2UCaUAOcAPwL6XUuMi2Dqz7nhSJ56tKqUv3Of5UrJ/9uZHl/wFjgBHASuCJffa/EvhZ5Jx+4KPIfmnAc8Bfehn3ASmlfnSo+3GIQ+8DLlRKJSulkoHLI9cihBDHNEmwhBAieu7RWpdprb3AtcDrWuvXtdam1vptYDnwmR77P6a1Xq+17gB+Dlx5oBomrfV8rfUObXkPeAuYF9n8ReAhrfXbkfNUaK03K6UyIue6TWvdobWuBe4Grj7UBWitt0fK8mut67Aezk/tsf0BYDuwDCsx/Glk01XA/MixQeBPgAc4aZ+fT6XWuhF4FZh6kBiWaK2TDvFacqhrOIie9+ZwbgX+qbVeprUOa60fxUpc5hzB+X4e+Rm+h5VoXwmgtV6ktV4XuVdrsZLSU/c59s7IPfNGjnlIa92mtfZjJbtTlFKJPfZ/UWu9Qmvtw6ol8mmt/6O1DgPPYCXXR01r/btD3Y9DHLoScAINkVcY+HtfYhFCiOFAEiwhhIiesh7v84HP7fNN/8lYScmB9t8NOLBqHfailDpfKbU00jyvGStx6tpvJLDjALHkR8qr6nH+f2LVghyUUipDKfV0pElhK/D4AWJ6AJgE/C3y0A9Wjdfurh201mbk+nJ6HFfd430nEHeoWKKs7PC7dMsHvrvPvRuJdY290RRJmrvs7jpWKXWCUurdSNPKFuAr7P/z7Y5VKWVTSv1OWU0/W/m0drLnMTU93nsPsDyQP+eengW2AvFYta87sH6fhBDimCYJlhBCRI/u8b4Mq4aq57f9sVrr3/XYZ2SP93lAEKjvWWCkWdrzWDVCGZEag9exmvJ1nWfUAWIpw6p1Setx/gSt9eH6wPwmch0lWusErJq4rnOhlIoD/g94ELhTfdpvrBIrMenaT0Wur+Iw59uPUmqe+nQEwAO95h2+lP3ofZY7gZgey5k93pcBv97n3sVorZ/q5bmSlVKxPZbzsH4+AE8CrwAjtdaJwP30+PkeINYvAJcAZwGJQEFk/b7H9JtIf7KD3o9DHDoVqyawQ2vdjnWtnznE/kIIcUyQBEsIIfrH48BFSqlzI7UQ7sgACLk99rlWKTUh0p/pLuC5SLOunpyAC6gDQkqp87H6UnV5ELhJKXWmUspQSuUopcZrrauwmhL+WSmVENk2Sim1b3O0fcUD7UCLUioHq29XT38Flmutv4TV9O3+yPpngQsicTiA72IleB8e7ge1L6314h4jAB7otfhIyzyA1cAXIvfmPPZupvcA8JVIbZNSSsUqa3CKeOgeWOKRw5T/S6WUM5IMXgj8N7I+HmjUWvsi/ee+cJhy4rF+jg1YCeFvjuAao0Jr/ZtD3Y9DHPoJ8CWllEcp5cFqerl2YKIWQojBIwmWEEL0A611GVbNw0+wkqMyrGSl59/dx7AGoqgG3MC3DlBOW2T9s0AT1gP5Kz22f0xk4AugBXiPT2uSrsdK0DZGjn2OvZsoHsgvgemRsuYDL3RtUEpdgjVIxVcjq74DTFdKXaO13oJV2/U3rFq4i4CLtNaBw5xvsHwbK8Zm4Brgpa4NWuvlwC3AvVg/t+3sPSDHSOCDQ5RdHTmuEmtAiq9orTdHtn0NuEsp1QbcgXVfD+U/WE0MK7Du49LDXdgQcjNWjVs5VvxFWIN+CCHEMU1pvW+rCSGEEP1NKbUIeFxr/e/BjkX0XmRUxDXA5MhgHvtuPw3rvubuu00IIcTxYbhPYiiEEEIMmEiNXPFhdxRCCHHckiaCQghxnFFK3X+QAQvuP/zRYjhSSuUdYqCKvMGOTwghjiXSRFAIIYQQQgghokRqsIQQQgghhBAiSoZUH6y0tDRdUFAw2GEIIYQQQgghxCGtWLGiXmudvu/6IZVgFRQUsHz58sEOQwghhBBCCCEOSSm1+0DrpYmgEEIIIYQQQkSJJFhCCCGEEEIIESWSYAkhxCGETU0obA52GEIIIYQYJoZUH6wDCQaDlJeX4/P5BjsUMcy43W5yc3NxOByDHYoYpkxT86X7XiPDV8qdt30Nt8M22CEJIYQQYogb8glWeXk58fHxFBQUoJQa7HDEMKG1pqGhgfLycgoLCwc7HDFMbaxq5ct1v2aOsYnl7yQz89xrBzskIYQQQgxxQ76JoM/nIzU1VZIrcUSUUqSmpkrNp+iTrWXVzFRbAIhf/9ggRyOEEEKI4WDIJ1iAJFfiqMjvjeirQOV67MqkzpZBfttKCPkHOyQhhBBCDHHDIsESQojB4G2qAmBXzsW4CdC+65NBjkgIIYQQQ50kWL2glOK73/1u9/Kf/vQn7rzzzsELqIelS5dywgknMHXqVIqLi7vjWrRoER9++OFRl7t7926mT5/O1KlTmThxIvfff3+UIhZi+NBtVoJlK/4MAPXbJMESQgghxKEN+UEuhgKXy8ULL7zAj3/8Y9LS0qJWrtYarTWGcfR57g033MCzzz7LlClTCIfDbNli9RdZtGgRcXFxnHTSSUdVblZWFh999BEul4v29nYmTZrExRdfTHZ29lHHKsRw4/HVY2KQPX429W8kEKpYNdghCSGEEGKIkxqsXrDb7dx6663cfffd+22rq6vj8ssvZ9asWcyaNYsPPvgAgDvvvJM//elP3ftNmjSJ0tJSSktLGTduHNdffz2TJk2irKyM73//+0yaNImSkhKeeeYZwEqQTjvtNK644grGjx/PNddcg9Z6v/PX1taSlZUFgM1mY8KECZSWlnL//fdz9913M3XqVBYvXnzIOK+77jpOPPFExowZwwMPPACA0+nE5XIB4Pf7Mc0DzwN0zz33MGHCBCZPnszVV18NQGNjI5deeimTJ09mzpw5rF27tvtcN9xwA/PmzSM/P58XXniBH/zgB5SUlHDeeecRDAYBuOuuu5g1axaTJk3i1ltv3e+6TdOkoKCA5ubm7nVjxoyhpqbmULdRiCMWG6yn3ZZEZlIsW1QhMY2bBjskIYQQQgxxw6oG65evbmBjZWtUy5yQncAvLpp42P2+/vWvM3nyZH7wgx/stf7b3/42t99+OyeffDJ79uzh3HPPZdOmQz+Ebdu2jUcffZQ5c+bw/PPPs3r1atasWUN9fT2zZs3ilFNOAWDVqlVs2LCB7Oxs5s6dywcffMDJJ5+8V1m3334748aN47TTTuO8887jhhtuoKCggK985SvExcXxve99D4AvfOELB41z7dq1LF26lI6ODqZNm8YFF1xAdnY2ZWVlXHDBBWzfvp0//vGPB6y9+t3vfseuXbtwuVzdCc8vfvELpk2bxksvvcQ777zD9ddfz+rVqwHYsWMH7777Lhs3buTEE0/k+eef5w9/+AOXXXYZ8+fP59JLL+Ub3/gGd9xxBwDXXXcdr732GhdddFH3OQ3D4JJLLuHFF1/kpptuYtmyZeTn55ORkXHY+yjEkUgMN9LhSSVBKRpjCpnh/R+YJvSh1lkIIYQQx7Y+PyUopUYqpd5VSm1USm1QSn07sv5OpVSFUmp15PWZvoc7eBISErj++uu555579lq/YMECvvGNbzB16lQuvvhiWltbaW9vP2RZ+fn5zJkzB4AlS5bw+c9/HpvNRkZGBqeeeiqffGL185g9eza5ubkYhsHUqVMpLS3dr6w77riD5cuXc8455/Dkk09y3nnnHfCch4rzkksuwePxkJaWxumnn87HH38MwMiRI1m7di3bt2/n0UcfPWAN0eTJk7nmmmt4/PHHsdvt3dd03XXXAXDGGWfQ0NBAa6uVGJ9//vk4HA5KSkoIh8Pd8ZaUlHRf37vvvssJJ5xASUkJ77zzDhs2bNjvvFdddVV3bd/TTz/NVVdddcifuRBHKmxqEs1m/K5UAELJo3FrP7q1YpAjE0IIIcRQFo0arBDwXa31SqVUPLBCKfV2ZNvdWus/HeLYI9Kbmqb+dNtttzF9+nRuuumm7nWmabJ06VLcbvde+9rt9r2a1fWcjyk2NrZX5+tqogdW879QKHTA/UaNGsVXv/pVbrnlFtLT02loaNhvn4PFCfsPZ77vcnZ2NpMmTWLx4sVcccUVe22bP38+77//Pq+++iq//vWvWbduXa+uyTAMHA5H97kMwyAUCuHz+fja177G8uXLGTlyJHfeeecB57I68cQT2b59O3V1dbz00kv87Gc/O+R5hThSrd4gsfgxnfEAODLGQQW0lW8kIWnkIEcnhBBCiKGqzzVYWusqrfXKyPs2YBOQ09dyh6KUlBSuvPJKHnzwwe5155xzDn/729+6l7uawhUUFLBy5UoAVq5cya5duw5Y5rx583jmmWcIh8PU1dXx/vvvM3v27F7HNH/+/O4+Stu2bcNms5GUlER8fDxtbW2HjRPg5Zdfxufz0dDQwKJFi5g1axbl5eV4vV4AmpqaWLJkCePGjdvr3KZpUlZWxumnn87vf/97WlpaaG9vZ968eTzxxBOA1ZcsLS2NhISEXl1PVzKVlpZGe3s7zz333AH3U0px2WWX8Z3vfIfi4mJSU1N7Vb4QvdXqC+JRfgxnDACJI60veJrL9q9RFUIIIYToEtWOBEqpAmAasCyy6htKqbVKqYeUUskHOeZWpdRypdTyurq6aIbTL7773e9SX1/fvXzPPfewfPlyJk+ezIQJE7qHM7/88stpbGxk4sSJ3HvvvYwdO/aA5V122WVMnjyZKVOmcMYZZ/CHP/yBzMzMXsfz2GOPMW7cOKZOncp1113HE088gc1m46KLLuLFF1/sHuTiYHGC1czv9NNPZ86cOfz85z8nOzubTZs2ccIJJzBlyhROPfVUvve971FSUgLAl770JZYvX044HObaa6+lpKSEadOm8a1vfYukpCTuvPNOVqxYweTJk/nRj37Eo48+2uvrSUpK4pZbbmHSpEmce+65zJo1q3vb/fffv1fcV111FY8//rg0DxT9whsME4MP5bRqnLNz8mjRMQRqtgxyZEIIIYQYytSBRqY7qoKUigPeA36ttX5BKZUB1AMa+H9Altb65kOVMXPmTL18+fK91m3atIni4uKoxCj2d+edd+41GMaxRn5/xNFataeJ4gfHUFt8A3lX/5lAyGT9XbNITUoi/zsLBzs8IYQQQgwypdQKrfXMfddHpQZLKeUAngee0Fq/AKC1rtFah7XWJvAA0Pt2b0IIMci8/gBuFeyuwXLaDaodeSR2lA5uYEIIIYQY0vo8yIWyRil4ENiktf5Lj/VZWuuqyOJlwPq+nktE35133jnYIQgxJAV9HQAYrpjude1xhSS1vAP+NnDFD1ZoQgghhBjCojGK4FzgOmCdUmp1ZN1PgM8rpaZiNREsBb4chXMJIcSACHitBMvuiuteZ6YUQgvohh2o7KmDFJkQQgghhrI+J1ha6yWAOsCm1/tathBCDJaQz5onzu7+NMFyZ4yFXdBauYVESbCEEEIIcQBRHUVQCCGOFSF/JMHyfDpvXfLI8QC0VchIgkIIIYQ4MEmwhBDiAMK+TgAcPWqw8jPSqNIpBOu2D1ZYQgghhBjiJMHqpZdeegmlFJs3bz7oPqWlpUyaNClq59yyZQunnXYaU6dOpbi4mFtvvRWwJgl+/fWjb4Hp8/mYPXs2U6ZMYeLEifziF7+IVshCHDPMgNUHy+n5NMHKTfawR2fgaD7wxOFCCCGEEJJg9dJTTz3FySefzFNPPXXA7aFQqM/nCIfDey1/61vf4vbbb2f16tVs2rSJb37zm0DfEyyXy8U777zDmjVrWL16NW+88QZLly7tU+xCHGu6Eiy769MmgnabQZ0zlwRv2WCFJYQQQoghThKsXmhvb2fJkiU8+OCDPP30093rFy1axLx587j44ouZMGECYCVa11xzDcXFxVxxxRV0dlrNjBYuXMi0adMoKSnh5ptvxu/3A1BQUMAPf/hDpk+fzn//+9+9zltVVUVubm73cklJCYFAgDvuuINnnnmGqVOn8swzz9DR0cHNN9/M7NmzmTZtGi+//DIAjzzyCJdccgmnnXYaY8aM4Ze//CUASini4qxv5YPBIMFgEGu0/b3997//ZdKkSUyZMoVTTjkFsGq/brrpJkpKSpg2bRrvvvtu97kuvfRSzj77bAoKCrj33nv5y1/+wrRp05gzZw6NjY0APPDAA8yaNYspU6Zw+eWXd/98epozZw4bNmzoXj7ttNPYdwJqIfqd30qwcMbutbojLp+EcBP4WgchKCGEEEIMddEYpn3g/O9HUL0uumVmlsD5vzvkLi+//DLnnXceY8eOJTU1lRUrVjBjxgwAVq5cyfr16yksLKS0tJQtW7bw4IMPMnfuXG6++Wb+/ve/841vfIMbb7yRhQsXMnbsWK6//nr+8Y9/cNtttwGQmprKypUr9zvv7bffzhlnnMFJJ53EOeecw0033URSUhJ33XUXy5cv59577wXgJz/5CWeccQYPPfQQzc3NzJ49m7POOguAjz/+mPXr1xMTE8OsWbO44IILmDlzJuFwmBkzZrB9+3a+/vWvc8IJJ+x3/rvuuos333yTnJwcmpubAbjvvvtQSrFu3To2b97MOeecw9atWwFYv349q1atwufzMXr0aH7/+9+zatUqbr/9dv7zn/9w22238dnPfpZbbrkFgJ/97Gc8+OCD3TVzXa666iqeffZZfvnLX1JVVUVVVRUzZ+43SbYQ/Svotf51xOy1WqeMgubIUO050wY+LiGEEEIMaVKD1QtPPfUUV199NQBXX331Xs0EZ8+eTWFhYffyyJEjmTt3LgDXXnstS5YsYcuWLRQWFjJ27FgAbrjhBt5///3uY6666qoDnvemm25i06ZNfO5zn2PRokXMmTOnu+arp7feeovf/e53TJ06ldNOOw2fz8eePXsAOPvss0lNTcXj8fDZz36WJUuWAGCz2Vi9ejXl5eXdSdi+5s6dy4033sgDDzzQ3XxxyZIlXHvttQCMHz+e/Pz87gTr9NNPJz4+nvT0dBITE7nooosAq+attLQUsJKwefPmUVJSwhNPPLFXTVWXK6+8kueeew6AZ599liuuuOKAPx8h+lUwUru6T4LlzhgDQFuljCQohBBCiP0Nrxqsw9Q09YfGxkbeeecd1q1bh1KKcDiMUoo//vGPAMTG7t18aN+mdgdqerevfcvoKTs7m5tvvpmbb76ZSZMmHTAR0lrz/PPPM27cuL3WL1u27LDxJCUlcfrpp/PGG2/sN0DH/fffz7Jly5g/fz4zZsxgxYoVh7wOl8vV/d4wjO5lwzC6+6jdeOONvPTSS0yZMoVHHnmERYsW7VdOTk4OqamprF27lmeeeYb777//kOcVoj8YoUiC5dw7wUrOtb4oaavcTMJAByWEEEKIIU9qsA7jueee47rrrmP37t2UlpZSVlZGYWEhixcvPuD+e/bs4aOPPgLgySef5OSTT2bcuHGUlpayfbs1tPNjjz3Gqaeeethzv/HGGwSDQQCqq6tpaGggJyeH+Ph42trauvc799xz+dvf/obWGoBVq1Z1b3v77bdpbGzE6/Xy0ksvMXfuXOrq6rqb/Hm9Xt5++23Gjx+/3/l37NjBCSecwF133UV6ejplZWXMmzePJ554AoCtW7eyZ8+e/RK7Q2lrayMrK4tgMNhdzoFcddVV/OEPf6ClpYXJkyf3unwhosUIdWKiwO7ea31eRhqVOoVQ3Y5BikwIIYQQQ5kkWIfx1FNPcdlll+217vLLLz/oaILjxo3jvvvuo7i4mKamJr761a/idrt5+OGH+dznPkdJSQmGYfCVr3zlsOd+6623ugeZOPfcc/njH/9IZmYmp59+Ohs3buwe5OLnP/85wWCQyZMnM3HiRH7+8593lzF79mwuv/xyJk+ezOWXX87MmTOpqqri9NNPZ/LkycyaNYuzzz6bCy+8EIA77riDV155BYDvf//7lJSUMGnSJE466SSmTJnC1772NUzTpKSkhKuuuopHHnlkr5qrw/l//+//ccIJJzB37ty9krpXXnmFO+64o3v5iiuu4Omnn+bKK6/sddlCRJM95MWv3LBPrW9OkofdOhNH885BikwIIYQQQ5nqqvUYCmbOnKn3HS1u06ZNFBcXD1JEw9sjjzyy12AYxyP5/RFH63+/vYqTgstIvKN0v22v/OpznK6XEf/zPQMfmBBCCCGGBKXUCq31fiOxSQ2WEEIcgD3sI2i4D7itIzaf+HALeJsHNighhBBCDHmSYB3DbrzxxuO69kqIvnCaXoK2AydYOrnI+rdB+mEJIYQQYm/DIsEaSs0YxfAhvzeiL5ymj5DNc+BtkaHaO6q2DmRI/U5rzS9eWsef/3Y3LY31gx2OEEIIMSwN+QTL7XbT0NAgD8viiGitaWhowO0+cA2EEIfj0P6DJlipI8dhakVr5eYBjqp/ba5uw/PJvXy34U46Hr4U5O+uEEIIccSG/DxYubm5lJeXU1dXN9ihiGHG7XaTm5s72GGIYUhrjVv7MO1pB9w+ckQKlaRi1m0f4Mj617tbavmCbSEA2W3roGo1ZE8b3KCEEEKIYabfEyyl1HnAXwEb8G+t9RHNFuxwOCgsLOyX2IQQ4kD8IRMPfkx7zAG3j0zx8InOYFRz6cAG1s+2bd1EnlHHysIvU7Lz33hXPkfCMZRghU3NH9/cQlqomi+eOxvlPPD9Hc5avEESPY7BDkMcBa01ap9pIYQQw1O/NhFUStmA+4DzgQnA55VSE/rznEII0VfeQJgY5Uc7DvwA7rLbqHfkkNB5bA3Tnli3AoCkGZ9lpR5DaPt7gxxRdL22tpIV78/n+uWfpe0fZ0PQN9ghRdU9C7cx75cv8uFDP4TdHw52OFHV0hnknLvf47q7X8D3wf3gbRrskKLqoSW7KLnzLd5YvBQ+eRDCwcEOSQjRB/3dB2s2sF1rvVNrHQCeBi7p53MKIUSf+EJhPPjhIAkWQEdcPrFmK3Q2DmBk/aczECLZuxsTg7wxU1jDOBKbN0Kgc7BDi5o31lfzLfd8nCpMQtN62PzaYIcUNf5QmH++t4Mf2Z/kpD33o5+9Efxtgx1W1Dz1yR621rRzS+NfcL/9Q3j+S4MdUtT4Q2H+8vZWgv5OTlr4WZj/HXj/j4MdlhCiD/o7wcoBynosl0fWdVNK3aqUWq6UWi79rIQQQ4E3YCVYh2pCFk4eZb1p3DlAUfWvnXUdFKoqvLE52F0e6lOmYSMMlasGO7SoWbWzhhPYwMdpl1GpUzHXPDPYIUXNuvIWwoFOrnB+xA4zC9VRAxteGuywouadTbWcm9nOKbZ1eHHD9gVQu2mww4qK5aVNtPtD/GxsBQl0YCo7LPsnhAKDHZoQ4igN+iiCWut/aa1naq1npqenD3Y4QgiB1+/HpUJwiATLnTEagM6qLQMVVr8qbeigSFWhU6zE0TlyOgDhqrWDGVbUNLT7yfFuxql92Meexdvh6ejSJcdMU6zlu5uYpHbhNH38zX49TfYRsOV/gx1WVIRNzfrKFi5IsL7MuNH/fWvDltcHMaro+XhXI0rB5xI30qxjeXHUr8DXDLveH+zQhBBHqb8TrApgZI/l3Mg6IYQYsgKdVtMqwxl70H2ScrqGaj82EqzqZi8FqhpHupU4FhUUUa8TaN99bNRgbattZ5xRDkDRpBP5yJyILdR5zNTQrSlr5rR46/pcebNYpKfBrvfADA9yZH23q76DzkCYyeZGgu5UlunxtCUVw/aFgx1aVGyrbSM/JQZ33Tp2u8bydPN4sLlg57uDHZoQ4ij1d4L1CTBGKVWolHICVwOv9PM5hRCiT/y+DgBs7riD7lOQkUwlqQSPkaHaW5obiVM+nKn5AIzLSmCTmYeuXj/IkUXHttp2xqhyTEcsSVlFVCVNtTbsWTqocUXLnsZOZtp3QUIu48eM5n1vEQTaoW74fwGwobIFgEzvDoycaThsBhvd06B8+THRjG5rTTvjR7ihdhO+1EmsqvQSzp5xzA1UIsTxpF8TLK11CPgG8CawCXhWa72hP88phBB9FfS2A2BzHbwGKy8lhl1mJo7mXQMVVr/yN1q1HyohG4BR6XFs1vnEtWyDcGgwQ4uKbTVtTLCVo0YUg1Lk5uRTo9Kgas1ghxYV5U1ecqmG9LFMzk1itbZqIqlYPriBRUFpfScKE1fLTmwjxlOSk8gSbx6E/VA3vPthBUImpfUdzI5vADNIXME0QqamMnGq9bt5DA0yI8TxpN/7YGmtX9daj9Vaj9Ja/7q/zyeEEH3VlWA53AdPsNwOG7VdQ7VrPVCh9RvdGmm9HUmw3A4b9bFjsOsANGwbxMiiY0ddO0W2WlSqlXhMyklkTSifcOXqwQ0sCtp8QVq8QVKD1ZCUx4SsBPaQgc8Wb9XyDHMVzZ1MjmtDhbyQNpYZ+cm8Xp8V2bhycIPro131HYRMzQS3NRppzqhJAGxSo0GHoUa+kxZiOBr0QS6EEGKoCUWaCDo8B28iCNARV0CM2X5MDNVua6+23sRnda8LpE+03hwDzQSrmzpINRsgyeoWXJKTyDqzEKNxx7Afzryi2YsHH55gEyTl4XHaGDUige2OsVCxYrDD67OKZi8zYiOjDKeNYUJ2AjvCaYRdSVA5vBOsPY1WDVWuqgcgKWs0GQkulnoj3derVg9SZEKIvpAESwgh9hH2WzVYLk/8IfdTqUUA6Ibh3Q9La43HV2Mt9EiwEnInEtA2QlXrBimy6NBaY7ZUYGBCovXgOikngfW6EIWG6uF9feWNXnIiD+gkWX3oJmUnsjRQCLUbIfL7PFyVN3kZ74p8iZFSRHFWAqBoSJwIFcN7kJKKJivBSglWgyMWYlIozkrgwzoXxKQeM01YhTjeSIIlhBD7MP1WDZYr5tAJVmzWOADahvlIgq2+EGlmA15HEjjc3etHZSWzQ2fjrRjeNViNHQHSwpEakMRcAJJinNTFWfdvuD/Eljd1MlJFrq8rwcpJ5CNfPmhzWDczM01NVbOPPFsD2JwQO4KitDgcNsU2+1grgRzG/ZQqW3w47QaejnJIygOlmJCVwPa6DszMycP+d1OI45UkWEIIsQ8z8sBmdx18HiyAjLxxhLWipXzzQITVb2pafWSoRgIxmXutH5sRx1Y9EtswH0igqsXXo4Ynr3v9iOwCGlTysH+ILW/yUmjf+/qKsxLYaBZY66qH71xmde1+AmGTTF1nJceGgdNuMHpEPCuCeVY/pWE84XBFs5ecJA+qZU/3vZuQnUDI1DQkFFvXFvIPcpRCiCMlCZYQQuxDB6waLHWIebAARmWlUKHTCNXvGIiw+k1Nq49M1YQZl7XX+qK0OLbrkcR4K8HXOkjR9V1Fc48mdAk53euLs+JZH87DHOZNIMubvIx3N4PdDXEjAJiQlUAVKfjsCcO6CWR5kxeA5GB1d/NOgOLMeN5ttq51OCeQFU1espPc0LRnr+QYYLsxCszgsE4ghTheSYIlhBD7UMFIkyPnYWqwElyUqWycLcN7qPbqFqsGy56Us9d6p92gOT4y3Pcwnk+pKpJgmZ60ve6pVcuTB/VbhvV8SuXNnVYNVuJIUAqAxBgH2Yke9jhHQc3wbeJZHumjFOut6h6gBKx7t7otEe2MG9bXV9nsZVR8CPwt3QlWQWosHoeNFf7I9Q7jBFmI45UkWEIIsa+g9a05jkPXYCmlaPaMJMVXNqyHaq9vaSNdteJOzd1/Y0ax9W/txoENKooqW3zkGg2opL2vb0JkMmXDDA7roejLm7xk6bq9mj+ClYSsC+VBzUYww4MUXd9UNHtxEsTeWQOJn17f+Kx4NAZtieOG7SiX/lCY2jY/41xN1orI/bMZinGZ8XzQGAuOmGHdh06I45UkWEIIsQ8j2EkIG9idh93XlzQaj+6E1soBiKx/dNZbc2A5kvZPsFJzxtChXQSrh+9DXmWzlzxbA6pHDQhAfmosu2yF1sIwfUhv8wVp7gySGqqG5Py9thVnJbC0MwtCXmgYns1YK5q8FHtarIUe9298ptWMrsw12kpATHMwwuuT6hYfAAX2BmtFj/tXnBXP5ppO9IgJw7qGTojjlSRYQgixDyPciV+5erWvLVLD0zGMR9oLtXRNMpy137ZxmYls07n4hvH1VTZ1kkndXjUgYNUUODLGEcABNcOzGVZFs5dYvHiCzQeswVofjjy0D9N+ShXNXkriIv3/evTBSo93kRbnYmM4DwJt0Lx7kCI8ehWR/mXZeu8RIMG6d02dQbwpxVYTwWFcQy7E8UgSLCGE2Ic95CWg3IffEUjMnwxAU+nwfIAFMNoitW8JOfttG5cZzxZzJI6G4TtSYkdLPW7t7x6ivadx2clsJxc9TGuw9p4Da98EK57tOoewsg/bfjzlTV7GuputhX1qIIuz4vmoI/KlwDCs5alothKs1FA1OOPAk9y97dMaulHga4bWisEIUQhxlCTBEkKIfdjDXgKGp1f75o3Mo04nEKwavk3oXJ3V1puE7P225afGskONxO1vgI76AY6s70JhE2d7ubWwzwM6wISseNaH8jCHaQJS0ewlV+1fAwLWvbM7XNS5C4dlAqK1pqLJazWhU8Z+XwCMz4xnYWMqWhnDsolnV4IV663sngOry7hMaw6+jeFI0jwMr0+I45kkWEIIsQ+X2UnAdugBLrrkp8SwXefiatzaz1H1j7CpiQvUEjBiwJWw33aboehIGmstDMPhomva/GQTSQwPUINVnJXAJp2HrbMe2msHOLq+K2/q7DEH1t4JVtdgCZvJH5Y1WE2dQbzBMFnUQXwW2Bx7bR+XmUBLyEEwcXgmkJXNXkbEu7C1lO1X+5jocZCT5OGjtgxrxTBtwirE8UoSLCGE2IfH7CBgj+vVvnabQbW7iJTOncOyo319u58RNOL1jNjrG/Se7JkTrTfDMMGqbPaS3dWEbp8+WADjsxLYrLtqCYbfQ6w1B1YT2D0Qm7bf9uKsBD72ZkN7zbBLILv6KKWGavfqf9VlfKSWpz52zLDsY1be5CUn2QPNe/ZLsMBqArm6LmwlzjKSoBDDiiRYQgixD4/ZQdDRuwQLwJc0Brf2QktZP0bVP6pafGSpRkKx+w9w0SU7J58mHYe/cnjWEuSoeky7G2JS9tse57LTmjjeWhiGtSDlTV4K7Q37NTHrMiErnlWB4TmfUtccWHG+qgM27xw9Ig6bodhuK7KSFF/LQIfYJ+VNXsYmhPeaA6un8ZkJ7KjrIJwxSZoICjHMSIIlhBA9hMImcXRiOuN7fYwjUsPjrRx+3zJXNXvJVI0YSfsPcNFlbFYCW3UugWGYYFVEEqyek/DuKzc7m1qVOiwfYsubOsnStQd8QIeuyZS7RhIcXglWRbMXAxNHR9UBa7DcDhtFabGs8kd+d4dRLU/Y1FQ2eyn2NFsr9mneCdZcX2FT0xA7Bhp3QKBzYIMUQhw1SbCEEKKHNl+IOLzoA/RHOpjUoikANOxa019h9Zuq5g4yaMKdsv8DbJfxkZEEXU1bh91w0eVNXgptdRgphQfdp2tC3uE20EW7P0RTZ5DUYM1BE6zxWQm0EEebK2PY1dCVN3kpcrWizNABa7DAur53miP9lIZRglzd6iNkakY5InNgHaQGC2C7UQDaHJZNdIU4XvUpwVJK/VEptVkptVYp9aJSKimyvkAp5VVKrY687o9KtEII0c/avEHi8KJcva/BGp2XS7VOJjgMa7Da6iuwKxN36sETrMwEN7vt+ThDbcNuQuWyhg7yVA0kHzzBmhAZ6ELVb4OQfwCj65uKJi9xdOIOtew3yXCXOJed/NQYdtmLhl0NVnmTl6lxzdbCAWp4wEr+17R4MD0pw2ogiLJGqzYqm0i/uAMkWIVpsbjsBqt8XTV0w+f6hDje9bUG621gktZ6MrAV+HGPbTu01lMjr6/08TxCCDEg2ttbsCsTW0xir4/JTfawgzxcTVv6MbL+4W+0hjBXBxiivYtSikDyOGuhduNAhBU1bU01xGgvJBccdJ/irAQ2mfkoHYK64XMPyxo7Gdk9RPuBa7AAijMTWB0YCfVbIegdoOj6bk9jB5M9kQFKUkcdcJ/irHhA0Z40fljVYHUlWOmhGnDG7zUHVpeuUSCXNsVb82QNoyaQQhzv+pRgaa3f0lqHIotLgf3HwBVCiGGko60JALun900ElVLUxY4h3bsLwsH+Cq1f6K4aqUMkWADObKufma4ZPgmWaWrsLbuthUM0EcxN9lDmjGwfRs3oShs6KFJV1kLq6IPuV5yVwEed2cOqmZlpanY3dDLGUQs25wH7YIE1VDtAuXOUdW1meCDDPGrlTV6UgtjOMqv28SD9A8dnxrOxuh2dMXFYJZBCHO+i2QfrZuB/PZYLlVKrlFLvKaXmHewgpdStSqnlSqnldXV1UQxHCCGOnL+9GQBn7P7fKB/yuLSJOAiih8kDbBdne+QBPeHgg1wA5OfmUKlT8JWv7v+goqS2zU+2GZlE+RBNBJVSeDLG4sc1rB5id9V3UOyKNDFLOXAND1i1PBuG2UAX1a0+/CGTHLPKqn00bAfcLzvRTbzbzgYzD0JeaNgxsIEepbKmTjIT3Ngat0PamIPuV5yVQENHAG9KsVWDNcz6QApxvDpsgqWUWqCUWn+A1yU99vkpEAKeiKyqAvK01tOA7wBPKqUO+HWw1vpfWuuZWuuZ6enpfb8iIYTog0CHNdSzKzbpiI5zj5wGQPPOFdEOqd/4Q2GS/OXWJMMxqYfcd2xGPOvNQsyK1QMTXBSUN3WSr2qshYP0UeoyPjuJrToXPUwSELASrImuWkjIBWfMQfcrzkqgTKcTtMUMmxq60voOAFL9ZYdMHpVSTMxOYElbprVimMyHVd7kpTDJDk2lkHrwBKtroIsKZ5E1nHvzngGKUAjRF4dNsLTWZ2mtJx3g9TKAUupG4ELgGq2tr1a01n6tdUPk/QpgBzC2365CCCGiJNjeCIA7LumIjssdXUKndtG6a/gkWFYfnlq8cbkHbaLUZWJ2AuvMQmLadoG/bYAi7JuddR3kqVpCsZng8Bxy3+KsBNaHIyMJDpNagtL6DoqoPmj/pC65yR7i3E4qXKOGTQ3WroYOFCYxbXsOe32Tc5NYUJ+MNhzDKoGcGttkNdtMO/jjUddkyhvCw3MuMyGOV30dRfA84AfAxVrrzh7r05VStsj7ImAMsLMv5xJCiIGgO61O9THJmUd03IScZDbpPGw1w+MbdIBd9Z3kq1r0IZrPdYl3O6hPKEahoWp4XOPWmjYKbLXYUg9/fcWRkQRtviZoqxqA6PrGGwhT2eIlI1R2yP5XYNXyFGcmsFHnW00gTXOAojx6uxs6GWlvRoV9kFJ0yH0n5STSETLwJY0eFk08WzqD1Lb5mRITad6ZdvD7lxzrJCvRzeK2LFA2qFw1QFEKIfqir32w7gXigbf3GY79FGCtUmo18BzwFa11Yx/PJYQQ/U63WwmWPf7Imix7nDYq3GNIbd86LB5gAXbVtTJS1eIZcegH9C62HKsZJFWr+y+oKNpW206RUYs6zAM6wLjMeLbo4dNPaXdjBym04Q61HTbBAqsf1tKObAi0QfPuAYiwb3bVdzA7odlaOMz9m5xjjfhZ5Rlj/W4O8RrIbbVWDfBoFRlg5hBNBAGm5CaxvNIHGROgYnl/hyeEiIK+jiI4Wms9ct/h2LXWz2utJ0bWTddavxqdcIUQon+pzjqC2MHd+2Hau3hTJ+LRXmja1Q+RRV9T1S7cKogro3cJVmFBEVU6Bd/u4fGQV1NTTapuhPRxh93X7bDRnjIBEwMqVg5AdH2zq66Dwq4RBA8xSEKX4qwEVgeHTzOzHXXtTI059BDtXfJTY4h321nDWOioG/IJ5NaadgAyg+XW4DKuuEPuP2VkErsbOvFnTIeKVcPmCxwhjmfRHEVQCCGGPYevkTYj8bB9kg7EPXI6AM07h0cC0j3iYXpxr/afnJvIerOQcMXQb6bU7g+R0LrVWhgxsVfHFOVkskPlQfkn/RhZdGyubmOM0VUDcugEBKwEa4seiansQ74G0hsIU1rfwSR7GbgSDjpEexelFJNzE1nUHpkLrHxof/621rQR47QR07qzV7WPU0ZaX/bsco2zBrpo2N7fIQoh+kgSLCGE6METbKTTkXRUx+aMm0ZQ24ZNghXbEnlQ60UND8CErATW60Ji2kqH/EAX22vbGWtYkygzoncJZHFWPJ8Ei9Dly4d8LcH6ihZOjKmwJqBNKjjs/uMy4wkZLmpixkDZx/0fYB9sq23D1JAf3AkZk3r1ZceknETerE9B2z1DPsHaXtvO2HQPqm4zpI8/7P4lOYkoBZ8EI4l0xfAZSEeI45UkWEII0UNsqBm/M+Woji3OTWerzkUN8RoCgKaOAFmBUjqcaRDTu+uNddmpjx8eA11srWljoiol7Eo+7CTKXYqzElilR6OGQS3B+soWJtt3Q+ZkMA7/X7nbYWNCVgKrGWM9oIdDAxDl0dlY2YrCJLF1C2RO6tUxk3OS8IUNOtImD+kaSK01m6pamZvcDMEOyJ562GPi3Q7GjIhjUWOSlVBLgiXEkCcJlhBCRHgDYZJ1C2HP0SVYsS47u1zjSWvdOPRrQCpbmKh2EUibcETH2SLNIPUQf8hbX9HCdNsOjNzpvW7uOSU3iZVmpD/TEH5Ir23zUd/aSa5/B2RN6fVxM/KTWdBWAMFOqN3QfwH20co9TUz31GAEOyF7Wq+OmZaXBMBO13hrLqyQvx8jPHrlTV4aOgKc5CmzVvTy+qbkJrGqvA2dPVUGuhBiGJAESwghIurbvGSoJsz4nKMuoy11MrFmOzTuiGJk0bdpTzVjVTme/FlHdFxRfiG7zRH4dn7UT5FFx8bd1YxR5aicGb0+JiXWCSmj6TRih3SCtb6ihWK1G4fpg9yZvT5uen4ySwORZmZDuJng8t1NXJwSad458oReHZOd5CEnycPSQBGEA0N2II9VZc0AjA9vsWqjDjEHVk9TRibR2BGgLXWqNRR90Nd/QQoh+kwSLCGEiGiqLcOlQqikvKMuw1VgPRA2b1sarbD6ReuuldiUxp3f+wd0gKl5yazQY1HlHw/Z4bA7AyE8NSsxMCH3yBLIaQWprDFHo4dwgrVsZyNz7JEBPPJO7PVxM/KTqSCNTlf6kE2wGtr97Kzr4AT7dohJPewQ7T3NyE/m5bosa2GI9sNaXtqIx2Ejpe5jK3k0bL06burIJAA228eCGYSqNf0YpRCiryTBEkKIiKZKq9YpPqPgqMsoGD+Ndu2mZfuHUYoq+rTWuCqXWQsjZx/RsROzE1ijxuH21w/Z4eiX7WxkttqAVjbI730CAtZD+sehUVC7Efzt/RRh3yzeVs85sdshKR8Se1/bmp3oJjPBw1ZHMZQPzQRr+e4mQFPU9gkUnHxEo3nOKkhmQ3scobjsIXt9H+5o4Mw8wxrgIv+kXh83PjOeWKeNhR2RhHPP0P37IoSQBEsIIbp11JYCkJrTu3mhDmRibjLrdRGO6tXRCaofbKttZ3JwHc3xYyA27YiOddgMOjMitV5DtBbk/W11nGJbh86eBq74Izp2Rn4yK80xKG0Oyb4uDe1+tlU1MjW4GkafeUTHKqWYkZ/MEl8RNJVCe22/xNgXi7bUUuKsxtlZDUWnH9GxM/KtvpNViVNg94dDroa1stnL9tp2PpsQmR5hVO+vz24zmFGQwqIyDWnjrOsTQgxZkmAJIUSE2bgHAFdq/lGX4bLbqIidwIiOrUO2n8TSLeXMNjZjKzrlqI7PHDWVNu0hWDr0+mFprVm3aQtT1A6Msecd8fGj0+PY4iy2Jhwu/aAfIuyb97fVcYKxCWe4E0affcTHT8tL4p2OAmthz9BqxmqamgWbark1bb21YsyRXd+4zHjiXXZWMBHaqqBxZz9EefReX2dNDD07+AnEjoCs3g1w0eWEwhS21LThy5lj3Tsz3B9hCiGiQBIsIYSIcLftotlIAndCn8oJZU7HTojQEB3KvHbNm3hUgPjJFx7V8dML01hpjiGwa+h9i762vIXilveshfGfOeLjDUMxoSCXrUYR7B56CdYrqyu5xv0h2pUAo8444uNn5CezThcRsnmgdEk/RHj0VpU1U9fm47TAe5A/FxJzj+h4m6GYlp/May2RZnRD7P69traKWZk24krfhuILezW8fk8nFFo1dFvdJeBvhZr1/RGmECIKJMESQoiIEb5SGjy971R/MIlj5gBQv3noJSAN7X4Kahfit8VC/slHVcb0yEAXMc3bwNsc3QD76MWV5XzevojwiBIYcWRD0HeZU5TC+4Fx1oTDQ6gWsqHdz/Jt5ZzJMtSkz4LDfcRlTMpJxOF0URozacglWM+vLGeKvYz49p0w6fKjKmNWfjIL6hMxY9KHVA1kWWMnq8ua+fqItRDywdRrj7iMktxEXHaDdzojTZilmaAQQ5YkWEIIAdS3+SjQZfiSx/S5rOJx46nWyXhLh14fpTdW7uA842M6R18EdudRlZHocVCTONWacHgI9cMKhEy2rVnCBFWKbeYNRzRAQk9zilJZahajwv4hNVz7cyvKOVctxWn6YPLVR1WGw2YwsyCF9wLjrbmwOuqjHOXRafeHeHlVBd9P/xgMO0y49KjKmVGQDCjqUmcOqRqsZz4pQyk4sfUNSB8POdOPuAyX3ca0vCQWVNqtAU6G0PUJIfYmCZYQQgDbt28hQXnxZB9drUdPeSkxbFRjiK9f3ffAokhrTfMHDxGnfCSf/MU+leUpmkNQ2zB3LY5SdH33wspyLgm8TtjmgpLPHXU5E7MT2eyYiIkaMg+xgZDJo0t2cLvndUgvhrw5R13WiUWpzG+NzIc1RGqxnvmkDE+gkZNa58OUqyE29ajKmZ6XjNNusEpNgJYyaNod5UiPnDcQ5vFlu/lqQQ2u6hUw/eiT/xMKU9lY2Uog98QhOZCHEMIiCZYQQgBN26xhy0eMO7JhvQ9EKUVDUglpgQrobOxzedHy7sZKLvG9SH3ytCMenn1f00Zls1KPwbdtUXSC66Ng2OSVhYu43L4YY+ZN4Ek66rJshqK4cCQ7jMIhlIDsYUbHe+SEyuDUHxz1AzrAiaNSWauLCNlihsT1eQNh/rFoB3ekvYMRDsDc24+6LLfDxoy8ZF5qLrRWDIEE+ZEPS2nuDPIV/QzEZcCMG4+6rBMKUzA17IiZAp0NULMheoEKIaJGEiwhhACMqhUEsROXPzUq5anIBLedu4bGSG2mqVn92v3kqnqSzv5en8s7sSiVpeYE3PXrh0Q/rCeW7ua6zv+g7W7UvL5f35yiVKsfVtkng94Pq6kjwH1vreNnnufQ6eOPuvlcl0nZCbhdbnbGlEDp4NdA3vPONuI6Srmw82Wr5jHt6KdJAJg7OpU3a5MwPamw870oRXl06tv9/P3d7XwnbwcJ1Uvh5NvBGXPU5U3LS8ZhUywMTLRW7Hw3SpEKIaJJEiwhxHFPa01q01qq3KPA7opKmZkT5hLSBg2bBv8BFuDlpRu4vvMRGlOmYj+K0fX2NSLBTWn8dAzMQe9sX97Uyao3/8P5tk+wzbsd4tL7XOacolSWmJNQYR+UDW6S/Lv/beaLoafJCFejLvjzEY8+ty+7zWBWQTLv+cdB3eZBnQ9rfUULD7y/nQdSnsRweOCcX/W5zLmj09AYVKbOgR3vDFozOq01d7y8Hmeoja913GcNujKzj01znTYm5ybxdoUd0sbCDkmwhBiK+vRXWil1p1KqQim1OvL6TI9tP1ZKbVdKbVFKndv3UIUQon9sq6ijRG/Fm330/Vr2VVKYxQZdgCpbFrUyj1Zlsxfe+inJqp2kK+7p8wN6l8QxJ+LXDsK73o9KeUcjGDb51VML+bl6kED6JNTJR9+8rKcJ2QlscJYQUnbYvjAqZR6NV9ZUUr3yNb5km2/13Sk4upEf93XiqFRebhtrLex4JyplHql2f4jvPLua293zGdOxAs7+JcRn9LnckpxE4l12PmIKdNQO2nDmz3xSxuvrqngm60nsnbVwyb1HPbBMTyePTmNdeTP+vFOsLzeG0EiXQghLNP6XvVtrPTXyeh1AKTUBuBqYCJwH/F0pZYvCuYQQIup2rHwHlwqROumsqJWZ6HGw3TWB9NYNEA5GrdwjFQiZPP/wn7iMRbTP/AZG9pSolT1rdA4rzDH4B7Ef1u9fXc1Xqu8g0R7E+bl/g80RlXJthmJyYTZrVfGg1RKsr2jhX8//j3tdf7dqP877bdTKnjs6jQ26AJ8zFba9HbVyeytsam57ehVF9Yv4mn4aJl3Rp75JPdltBnNGpfJkfaSp4SAkkB/uqOeOlzfw5xFvMrp+IZz1S8iZEZWyTxmbhqlhjWs6hLwwBL7EEULsrb+aCF4CPK219mutdwHbgb71qBZCiH5i2/4WAeykTTw9quV2jJiBS/vQ1YPzDbrWmoce/w+3Nv+V+tSZJJ7/i6iWP6cohQ/NicQ0boKOhqiW3Rv3L9zAKSu+xRRjF44rHoARxVEtf96YdN72T4SaddBWE9WyD2dHXTs/fegVHjZ+RYzHjbr6cXDGRq38CVkJpMd7WOOeATsWghmOWtmHY5qan764Dt+Whdzn/BsqZwZc9Nc+Ddyxr7mjUlnV7CaQOn7AE6z1FS3c+p8V3B73Npe3/scaUv+kb0at/Cm5ScS77bzaPMoa0l76YQkx5EQjwfqGUmqtUuohpVRyZF0OUNZjn/LIuv0opW5VSi1XSi2vq6uLQjhCCNF7Xn+IcS1L2BU/E1zxUS07fsxcABo3D3w/LNPU/OOp57hm149oi8kl7Yv/BZs9qudIjXNRlnyCtTCAD3laa+5/ex3jF32Vk23r0Rf/DYovjPp5ThuXzvvmZGthAB/S11e08IN//Jf7w3eS4tbYbngFUvo+AXZPSilOG5fO863F4G2CylVRLf9gAiGT7z+3ltoVL/Ow+y8YI8bCNf8FV1xUzzN3dBoAOxNmw+6PINAZ1fIP5uNdjXz+gY/4imM+X/U/CBMugUvui2ryaLcZnDw6jQU7O9C5swatiacQ4uAOm2AppRYopdYf4HUJ8A9gFDAVqAL+fKQBaK3/pbWeqbWemZ7e947JQghxJFasXEq+qsE2/oKol10yYQKVOoWOHQM7CETY1Dz4+KNcu+WbhN1JpH5lPsSk9Mu5MsbPoUnHE9zyZr+Uv69AyOT3/13EiYuv5xTbWswL/4ox/bp+OVd+aizelGJajaQBe4hdtKWWP//rIR42f0q6R2G74WXI6PvcbAdy+rgRvOWbgFbGgDQTbGj3c+2/l+JZ8zD/dv4Fe0Yx6rqXwJN82GOP1OgRceQkeXi9cyKE/QMyXPuLq8q58cEP+ZXjEb4RetQa7fHyB6P+xQZYtatVLT4as06FqjXQWhn1cwghjt5hEyyt9Vla60kHeL2sta7RWoe11ibwAJ82A6wARvYoJjeyTgghhpSWlS8BkH/SZVEve1R6HOuN8cTXroh62QfT6gvy7/t+y/U7vksgJovEry1AJR6wAUFUnFacxXtmCea2BWCa/XYegLo2P7/8+8Nct+GLFNsr4aonsM+8oV/Pecq4DN4NTUJvXwDhUL+dxzQ1972zjQ8f+wUPqP+HJyUb+60LISt6feb2NXdMGu1GApWxE2B7/yZYm6tbufLed7i68rf8yvEwxpizUDfOh7gR/XI+pRRnT8jg4YostCMWNr/WL+cBK+m/4+X1/PaZRTwX8zsuCf4P5n4brng4an0C93XqOOsL6YXMtFZseb1fziOEODp9HUUwq8fiZUBXR4NXgKuVUi6lVCEwBvi4L+cSQohoC4RMCusWsMdTjCN55OEPOEJKKRpTZ5AcqoXGXVEvf1/bKht458838OWG39OcOpW0b72DSszt13POKkhhmTEdl78Rqlb323k+3F7HU//3fe5s+D5JsR6ct7yFURz9Wsd9nTYunddDM1Hexn6rBalu8fHVB95m7Ltf5if2J1Hjzsdx60JIzu+X83VJcDuYkZ/MwtAUqFgJrVVRP4fWmseW7uZ79z3NP30/4DJjMZz6Q/j801FvFrivcyZk0BayU51xCmye3y/9zMqbOrn6Xx9RuuwV3o37GcV6J1z2Lzj7rqiN1nkgOUkeJmYn8MyuGKv56GZJsIQYSvr66f+DUmqdUmotcDpwO4DWegPwLLAReAP4utZ64HrQCiFEL6xavZwJ7MI79pJ+O4djzBkANG1Y0G/n0Frz8rsf0PHPc7k0OJ+KCV8k4+tv9EvTq305bAbhUWcRwkBvfDXq5QdCJn9/aRHh/1zGt8KP4i08h9hvftCvNTs9nTgqlZXOGfiVGza+HPXyX19XxW/v/jO/qvwSZ9jXoM/7HbarHwd3YtTPdSBnjB/Boy1TAQ0bXoxq2XVtfr708FKqXv01L9p+QpGnA3Xtc3D6T8Do/4GFZxWmkOhx8LY+ATrqYE/05jPTWvPEst1cdvebXFXzF/7j/D2xKVmoWxfBlKuidp5DOXdiJivLmuksPBd2vQ/+tgE5rxDi8PqUYGmtr9Nal2itJ2utL9ZaV/XY9mut9Sit9Tit9f/6HqoQQkRX48dPA1Bwyhf67RzjJk6nWifTsbl/5lJq7vDz2N9/xZmLPssYo5KWCx8g58q/9FvTpAM5YeIYPgxPJLD2v1Gd1HXNnib+/uefc92qq5lt307gvD+RcMNT4EmK2jkOx2W3ccakAhaZU9CbXo1aLUhTR4CfPrkY77Nf4q/8gYT0XGxfXoSa89WoDohwOBdMzmKHzqEudiysfz4qZWqteWFlOV/+yxN8e/fX+YHjGezF52N8fRmMjt5UCIfjsBmcMX4E/6wsQttcUUsgy5s6ufbBZcx/+Wled/yQK9VCa5TAW96B9LFROUdvnDcpE63hQ10CZhAqVw/YuYUQhxb9npfimKS1xhsM0+EP0xkI4Q+ZmFpjmmBq3f1M5bArnDaDWJedBLcDt8NADeDDghC95Q+FGV37Fjs9JRSl9l9TrOLsRF5TJZxZ/aHVRymKzYaWrd1M4KWvc725nIqUWWRd/zBGPzR1PJwzxo/g9/okTmn7J1Su7PN8P52BEP9+9T0mr/kltxlraMyYQ/zn/wnJBdEJ+AhdMjWbx1bO4dyOZbB9AYw996jL0lrz8qoKlr76b243HybN3kZ43g9xnfK9qExCe6Ryk2OYXZjCCw0n8uWKR6FxZ59GLNzT0MkvXlzBhF3/4WnHi9g8cXDhQ6iJnx3QxLHLBSVZvLiqguoxZ5O19lmr6Z4z5qjKMk3Nkx/v4e+vf8x31BNc4XwXnTQadcljkHdClCM/vDEj4ijOSuDhXXAWWCNBFs4b8DiEEPuTBOs4orWm3R+iqaWN9sYqOppr8Lc24G9vJtTZRNjbAr5WlL8Ve7ANd7gdt9mJzQxg00GcBHESwqWCJBBGowhjENYGYQxC2GjHQ42OoY0YWnUMbSqOFnsaXk8mRlIOntQ8ktJzyE2JITc5hoK0WOJc8msoBt6KT5ZyEmVsLb6pX89jMxTNGScRV/M+ZuUajNxpfS6zpTPAq0/dx3l7/kKC8lI55w5yzrm9X/t8HEpyrJOOos8Q3PMgttVPYfQhwVq8qYINz/+GW4LPYthteM/8PSkn3jpo1wZwQlEq3405iWb9OEkfP3DUCdaehk7ufe4NLiz/C7+zrcM7ogTbZfdC9tToBnyEPjsth7tfmMWtnidQy/4J5//+iMsIhU0e+mAXH739PHcYD1HoqEIXX4K64E/9NpBFb5w2Lp3MBDcPB87gJ/7XrFq6oxh1cl15C3e8tJYxVS/zpusZ4nQHnPhN1Ok/BYenHyI/PKUUV88ayS9e2UAgNRtnP/aBFEIcGXmyPQYEQ2EaGmpoqd5DR2Ml3uYaQq216I46DG8DLn8jscFGEsxmkmkjT3kPWV6nisFrxOK3xxOwxaJtcWB3gc2FsrsI252EbQ4MBYY2cegQLm2idIjkQBv2QBu2YBX2QDuuUAs2HYJOrFcltGs3O3Q2W3Q2r5vZtMYVYWSVkJE3jkm5SUzMTiAtzjUgPztx/Gpd/gxhVL82D+ySNv0igq//kcZlT5HRxwTrvU9Wo17/Ltfq5VTFjUdf8yDZ2ZOiFOnRu/CE8by6aw4Xr3wC4/SfHPGw8DWtPp597inOK/0j84wKGvPPJeXyv0A/D9LRGzZDcdnMAh5Zchrf3v4CqmEHpI7q9fEd/hD/Wrgex9J7+JV6GVxuzLP+gGf2lwakL9LhXDA5i9/+L4OPYk/npJX/sQahOIL79+H2eu59eTFfaL6fh21LCSUWwIXPo8YMXHPAg7HbDK6cNZK/vePle5ljcS77J0y9ptcJe0tnkD+9tYUVH7/Hb52PMsWxBZ17IuqCv/Tb8PlH4tKpOfzm9U1st41igjQRFGLIkARriGtvb6W+spSWmj10NpQTbK5AtVXj6KwhLlBHUriedN1EpgqSuc+xIQxaVSLt9mS8Mcm0uQto8aSh4tKxxaXjTByBJzGd+IQUYhOSMWKSwBlPjGFwdA0oDsA0obMBWiugtQLdXIajdjujajYxtnE7Hu8S8AOl0Lorhg1mAS/pfCrcYyBrCplFJUzOS2NybiKxUtMlosQXCDG2/m1K46YxKinr8Af00ckl41gyv4TpW14G83dHVRvT0OZl4WO/4fyaB3CoMFWzf0bWubf3yxw7R+Os4gxuirmCz/qXoD9+AHXaD3t1nD8U5pkFH5Ly0W/5pvqAFk8WgUueJmXC+f0b8BG68aQCLl18Nl9V83G9fQdc/cRhj9Fa88rqcta89k++FHqCbKMR7/jP4rngdxCfMQBR906828EXTy7klwvO5E3X27DkL3DOrw57XFljJ39+dTlF2x7kQfv/cDo0+pQfY597Gzjc/R94L11/Yj4PLt7J487PcXPNr2H1E4etxQqGTZ5dXsbjb37IF4NPcpdzMTomFc65HzXl6kFp7nggiTEOLp6SzVvrsplgLAZfy4ANkCKEOLih8T/zcSoYClFTWUZDxXY663YRbtyDra0cT0cliYFqUs16Euhg34FsvbhoNFJpd6bTED+Z6thMVHwWjuQcYpKzSEjPJiktB2dsMimGQf9ML9pLhgFx6dYreyoKcEVegDXqUf1WqF6Hq2w1k8pXMavxXeyh/0EZ+PY42KzzeEkX0BA7DnvWBNJHTWVCUR7jMuKx2wav2ZA4MlprTG312evqt6cUGEqhsJq7GIoB6bO3dsUHzFaVbJnwlX4/F1gPQZvTzuH0xj8Q2v0R9sK5vT42bGreXPgW2R/8nCvZwp7kE8i85n6y0o++n0x/sBmKz5x5JgtencapH/wNx4wbIH7fr30+ZZqaBau2Uv/Gb7kq8BrKUDTPvI2ks3941H1k+tOIBDcXnTyVvyy5jB9vfsoaFnv8Zw64r9aaxVtrWTz/CS5tfoRLjN10pE+BCx/HU9D7ez+QbpxbwINLRvG2+zzO+ug+1PiLDtqvqLrFxz8XrMVY/Tg/N14k1d5KeMJl2M76BaQUDnDkh5cW5+KWU4q4a0GIz+ZMJ2nhL2HMOQdMck1TM39dFQ+/sZRz2p7nZftb2J0KdcI3UfO+MyAjcx6p607M58+rCsCJNelw4SmDHdJxr6vfekt7J22tTXjbWgh6Wwl2thD2thL2taH91ssItKMCHRihTgj5MMJ+bGYAuxnArgPYzSB2HcChAzgIYtMhFCaG1ig0Bqb1fygmBhoDDWjC2AgrgzA2TGyElQ1TWe/NrvfKTshwEbK5CRtutN2NaXej7R6UwwMON4bDg+GMwebyYHPGYHfFYnfH4nTH4vTE4fTE4vbE4nTHYbhiwO4eMl9ADCalozjiU1/NnDlTL1++fLDDiBqtNfV11dTv2UxH1VZCdTswWsvwdFaSFKxhhFmHS+09cWUrsdTbRtDqysIfkwkJ2TiSsolJHUniiJGkZhXgjE06tn95wyFo2A5Va/CWrcK3ZxWehg24w58OQVulU9jOSOpjRhFKHo1nRCGpuWPJzR9DTmoChnEM/3y6aA3hIGbQi9/bid/Xgc/bTtDXScDbSdDfSSjyCge8mAEv4aAXFfKhgj6MsA8V9qFCfpQZBDOEMoMoM4QyQxg6GPk3jKFDGDqETYew6TA2Qth1CMP6s939B12hMfSn76278Ol71f2+53YiR1v/TZjd/02o7uWubZ/+22MfdZD1kf9cTPZ5KYNks5F8XUXoO1twJw5M/5B31+xg1gsn0TLydHK+9HSvjlm3ZTvlL/yMc3xv0GFLoOO0X5I178Yh+/kPm5qv3vMM9zR/A7Kn477xpf2SpVDY5P1V66l/+6+c75tPrPJRV3gpGZf+GvpxQuRoaPeHuOyed7m343uMdjZg+/yTez3M+oJhFq7ezq7FT3FW83OMN8po9+QQc/4vMSZdPqj9yHrj5dUV/OTpj3g//qekOE3UVY9B3pzu7RsrW5n//ofEbHyaL6i3SVbt+HNPwnX+r/o8sEl/8wXDXP6PD3E3bOJZ+8+xpY2BKx/tburZ7g/x8qpyPly8gLktr3GFfTEOwlDyOdSZP4ekvEG+goMzTc28u15gMV/EOPWHcPqPBzukY0oobNLY7qexsZ72xko6m+vwtdRhdjaCtwnD14Td34wr2Iw71EpcuJV43UYi7cQqf6/O4cOJDxdB5SKkHAQNJyHlJGQ4CSsnYcNJ2HARtjnBsIOygTLQyvqbojHQkf8Lu9YpHUaZIWvkUx3qfq90CGVG/l83gzi0H7vpx2H6ceoATvy4dAA3ARzq6EZN9Vml4FduAoaLoOHeK5Ez7W5MuwcdeeHwoJwetD0GHFZ3FMPmxLA7MOwuDIeLcEIuOaMmkxw78IMBHYpSaoXWeuZ+6yXB6rvWxlqqdq6ltWIrodrt2Ft2keAtIyNUSZLq2GvfOpJptGfQ4ckiFJ+LLTmfmBEFJGWNIiWnEFfs0Pt2bEjQ2mpiWLOR5t1raduzFnvDZtI6d+Ek0L1bSBvUkEqdPROfK5WwJw3i0nEmjMCTnElMYjoxcYnExiUSG5+I4YoFR2zfH3y0hnAAgl4I+SHkJRzwEvB1EvB1EPB5uxOecMBLyO/FDPgwg53ooA8z6I0c67O+wQpZCZAR9mML+7CbkT+AOoBTW38EXfixcfSfX6924sNJAAdhZY9822XvfpmRl1Y2TCPy3nCgu9/bMZUNrezWA7+yRozUKJQyQKlIbVTk38iraxs9Uyyt0ZgorUGboCPv2fu90tYLtPUz15EUTJugdff7rn8NHY4cE4584/fp+47sk5h03Z/6dt+PgGlqnvrtzXw++CLhL72DI3f6Qfctr21gxfN/4bTqh4hVPnYXXUPRFf8PFTP0/z7srGvnn3//I7/Vf6Ujvgjb6T8gnDGFstom9mz4iNgdr3OCuQqb0lTlnEvWBT/Blj15sMPute21bdz2r/n8LXgnhaqKyrS5VMdPpKm1A2fDRmbp9bhVkKa40cSf+X3sky8f0CHz++qehdt4ZcE7POb6I1nUUZ48mzJ7Po3NTRT6tzHB2I2Jwld0DjGnfQdGnjBkE/59lTd1cu2/l5HfvIz7XX/FqQOUJp3IjmAqgdZapqqt5Kp6woYTNe1ajJO+cUR97QbTtf9exk+rvklxZjzc0j9TQhxLtNY0dgSoaWyipWYP7fWVBFuq0O21GJ11OLz1xAQbSAg1kKRbSKd5vy/Eu4QxaFdxdNgS8NkT8TsSCbmSMN3JKE8SNk8C9sjLEZOAMyYRZ0wC7rgk3LGJGO74Ifk3Ihg28fr9+Ds78HZ24Pd1EPB2EPRZL+sL3A50wIsZ6EQHOiHUiYo8yxghL0bIhz3sxRb24dA+HGFf93OMS/tx48eDH7cKHjaeh0Pnkn7l/3Hh5OwBuPrekwQrCloba6jYtorW3evQdZuJbdlOVqCUNJq79wlrRY0xgkZXLt74fHRyIa6MMSTmjCMjbxyemNjBu4BjkRmG1graq7ZTX76VjpodhBt3E9NZQUzAGtgjjs7DFuPHaVWjR2o8tLLqZrpqPJTWGIQxdBgbYWw6HKkP6ap8N/t0GX5tx48z8q2PE79yElQugspJ0HARNtyEbS5MmwvTZlXja7vbqop3eDCcnkg1vlWFb3PF4HDF4HDH4HR5cHpicbljcbo/XWe3yRD6A+3tFVuY8so52DxJpH7r3f0GEiivqmbdq/cys+I/pKsWdiXMZsRVdxObM/iDWByJLdVtPPqfB7il/X4KjZq9tjXa0mgpupiRZ38N+4gxgxRh31S3+Pi/+SvJ3PQQl6j3KTRqCGFQ58xDF8wjc+51GHmzh03isa/F2+r419vrmFP1H85Qyxmp6gnbXHQkjSV58gV4plwGyf03tUF/avUFuWfBNhav2sAX/M8wz1jPCKOVkDMenTmZpGmXoMZfOKBzrUXD3xdtx//2b7jN8QLqBzuPeJCZY4nWmvr2AOV1jTRVl+Kt20OouRyjrRJXRyWx/lpSwnVk0kCyat/v+DAGbUYibfYUfK5Ugp50dGw6RlwGzsQMYpJGEJc8gtjEdIzYFHAlDPna6aFKa40/ZOIPhPD5Ogj7rcQtHAwQCvoJh4KEg37MoJ9OZyqFYyYxImHo9O8ESbCOyq4Ny6he+hye+rXkejfvlUh1aDcVjnxa44sIpYzFlTWBlJHjySoYj9M1tG7+8S7g89JQW0FTXSXe5lr83naC3jZC3nbC/nZUoB1b2Ic2Q2gzDGbY+leHMbSJTZmAgWlYtTVaGVatTqR2Rxs9/rW7UQ43RNovGw631W7Z4cHm8uBwxWB3eXC4YnG6Pbjcsbg8MbicdmKcdtx2Q/qVHeP++cij3Ljru7Q7UmgruZFQchG1VWXYdi9mSseHuFWQHXEzSDr/p6ROPHOwwz1qYVPz0bYq6rYsI8W3m4T4BAqKZ5CcV3LMPIwEQib17X5cKkxKfAzqGLmuLsGwiS8YJs5lPya/jGn3h3DYFC774I/k2Fdbqtv44V8f4iXXHXD5g1ByxWCH1K9aOoOUNbRRV7mL9urthBpKsbXsJrajnNRgJTnUkK5a9zuuVSXQ5kyn05NJKC4bIzEHd0oucem5JKTm4EjMhJjUITG6pxgeJME6Ch8/fzcz1/6SMlsutXHFBNMmEJM7kczR08jILULJB1AIcYTCpuaZF5+nZO2vKVE7u9c3kcDuzHPJOe1m0sefNIgRCiGGG601p/1hAa/6v0jCuFPgqscHO6Q+6/CH2FXXTsWe7bRXbMKs24q7ZQfJ/nKyzRpyVR3OHn2Ewhg02jNo9+QQTMjDlpyHJz2PhBEFxKbnoRJyhuQAOmJ4kwTrKHS0NaO1Ji5h6Pd7EEIML22+IOs3b8HeWUdeThYZeeOGbZMyIcTg+78FW3EvuosvO15H3bZ2SMwhdzhaayqaveysbqRx93r8VZuxN20nrr2UnFAZRaqKmB4DRXSqGJrcI/HF56OS83GlF5GYPZa4zFHW9Q7Bvkzi2HawBEuGaT+E2PikwQ5BCHGMinc7OHHq8OpbJYQYuq6elceV75zNrXo+avnDcObPBzukvbT7Q2ypaqWsdAvtu9dgq9tActs2RuvdzFVV2JT1hb+JosmRQXtiETWpp+LJGkdK/iScGeOJiRtBjHwRJYYBSbCEEEIIIYa5zEQ3c6ZPZcHaGZy19H6MmTcPytQHYVOzp7GTbXsqadi1mnDVemKbt5AT2Ml4tYcZytu9b6Mrm46kcVRlXk78yEkkjJyIkTqaVIeH1AGPXIjokQRLCCGEEOIY8L1zx3HDuus4Nfh9HK/dhvH5Z/p1UJnmzgCbK5up3LmRzvI1OOo3kdqxjbF6N+cYdd37eY1YmpLG0JJ+GeH8KSQVTENlTCDFFc/xO96hOJZJgiWEEEIIcQwYEe/mlkvO5HfPX8kvtj1G6NXbsF90d59HxfOHwuys66B0zx6aS1ejq9cT37KVvNAupqhy5ihrPkoTgwbPSLzJ06nOnkxK0TScOSV4EkfikaZ94jgiCZYQQgghxDHis9Nzaer4Dve92cLXVz1K0+7VxF34GxyFcw85kI7WmubOIKX17dRU7Ka1cjPB2q04mnaS6d/JOLWHYtXcvX+bLYmW1LE0jDiVhPwpxBdMxUgfT7rDMwBXKcTQ1qdRBJVSzwDjIotJQLPWeqpSqgDYBGyJbFuqtf7K4cobaqMICiGEEEIMR+9vqWXxC3/nK75/k6raaDBSKY+dRKsnF689EQ0EA35MfxseXz0xwQZSzEZGqjrilK+7nKBy0OgpJJBajCt3MsmF03Bkl0DciMG7OCGGiH4fpl0p9WegRWt9VyTBek1rfURDZEmCJYQQQggRHWFTs2TTbhqXPc2I2g8p8G8mXTfgJNS9TxA7rbYUOl1pmDHpkFyAJ3MMSbnFODPGQkLuMTM5uBDR1q/DtCtrivcrgTOiUZ4QQgghhOgbm6E4dWIBTPzRpyu1hmCn9d5w4LA5SFVKRu0TIoqi9ZXEPKBGa72tx7pCpdQqpdR7Sql5BztQKXWrUmq5Ump5XV3dwXYTQgghhBB9pRQ4Y62X3SkTnAvRDw5bg6WUWgBkHmDTT7XWL0fefx54qse2KiBPa92glJoBvKSUmqi1bt23EK31v4B/gdVE8EgvQAghhBBCCCGGisMmWFrrsw61XSllBz4LzOhxjB/wR96vUErtAMYC0sFKCCGEEEIIccyKRhPBs4DNWuvyrhVKqXSllC3yvggY8//bu7cQq+oojuPfH2NaGjSZIOVYGklhUikRRiFiQVri9BA1YWRWhBBkUYSTD1HQQxTdqIRQ00C0MKshMBIT6kXLSTDTLNG84TXTIsELrh72XzyNc7TLbvbM3r8PDOf8/3vPmQWLddhrzv+/D7A5h79lZmZmZmbWbeVxk4sW/ro8EGAM8LykY8AJYFpEHDjbC7W3t++XtDWHmPI0ANhfdBDWZZzv6nCuq8O5rhbnuzqc62rpjvm+rLPJ3G7TXlaSVnd2+0UrJ+e7Opzr6nCuq8X5rg7nulp6Ur79xQZmZmZmZmY5cYNlZmZmZmaWEzdYZ/dO0QFYl3K+q8O5rg7nulqc7+pwrqulx+Tbe7DMzMzMzMxy4k+wzMzMzMzMcuIGy8zMzMzMLCdusM5A0nhJGyVtkjSj6HgsP5IGS1ohab2k7yVNT/P9JS2T9FN6vLDoWC0fkhokrZH0aRoPlbQq1ff7knoXHaPlQ1KjpMWSfpC0QdKNru1ykvREeg9fJ2mhpHNd2+Uhaa6kvZLW1cx1WsvKvJHyvlbSqOIit3+qTq5fSu/jayV9JKmx5lhryvVGSbcVEvQZuMGqQ1ID8BYwARgO3CtpeLFRWY6OA09GxHBgNPBoyu8MYHlEDAOWp7GVw3RgQ834ReDViLgC+BV4qJCo7P/wOvBZRFwFXEuWd9d2yUgaBDwGXB8RI4AGoAXXdpnMA8Z3mKtXyxOAYennEWBWF8Vo+ZjH6bleBoyIiGuAH4FWgHS91gJcnX7n7XTd3m24warvBmBTRGyOiKPAIqC54JgsJxGxKyK+Tc9/J7sAG0SW4/nptPnAnYUEaLmS1ATcAcxOYwHjgMXpFOe6JCRdAIwB5gBExNGIOIhru6x6AedJ6gX0BXbh2i6NiPgSONBhul4tNwPvRWYl0Cjp4i4J1P6zznIdEZ9HxPE0XAk0pefNwKKIOBIRW4BNZNft3YYbrPoGAdtrxjvSnJWMpCHASGAVMDAidqVDu4GBRcVluXoNeBo4kcYXAQdr3rhd3+UxFNgHvJuWhM6W1A/XdulExE7gZWAbWWN1CGjHtV129WrZ123l9iCwND3v9rl2g2WVJul84EPg8Yj4rfZYZN9h4O8x6OEkTQT2RkR70bFYl+gFjAJmRcRI4A86LAd0bZdD2nvTTNZUXwL04/QlRlZiruVqkDSTbGvHgqJj+bvcYNW3ExhcM25Kc1YSks4ha64WRMSSNL3n5JKC9Li3qPgsNzcBkyT9TLbUdxzZHp3GtKwIXN9lsgPYERGr0ngxWcPl2i6fW4EtEbEvIo4BS8jq3bVdbvVq2ddtJSTpAWAiMDlOfXlvt8+1G6z6vgGGpbsR9SbbTNdWcEyWk7QHZw6wISJeqTnUBkxJz6cAn3R1bJaviGiNiKaIGEJWx19ExGRgBXBXOs25LomI2A1sl3RlmroFWI9ru4y2AaMl9U3v6Sdz7dout3q13Abcn+4mOBo4VLOU0HogSePJlvdPiojDNYfagBZJfSQNJbuxyddFxFiPTjWD1pGk28n2bjQAcyPihWIjsrxIuhn4CviOU/tyniHbh/UBcCmwFbg7IjpusLUeStJY4KmImCjpcrJPtPoDa4D7IuJIgeFZTiRdR3ZDk97AZmAq2T8UXdslI+k54B6y5UNrgIfJ9mK4tktA0kJgLDAA2AM8C3xMJ7Wcmuw3yZaJHgamRsTqAsK2f6FOrluBPsAv6bSVETEtnT+TbF/WcbJtHks7vmaR3GCZmZmZmZnlxEsEzczMzMzMcuIGy8zMzMzMLCdusMzMzMzMzHLiBsvMzMzMzCwnbrDMzMzMzMxy4gbLzMzMzMwsJ26wzMzMzMzMcvIn/06p1R3E2+UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADLi0lEQVR4nOzdeXxU1f3/8ddnJvu+koQESEBAtogKqAXcat3qWlvRultrtZtal+6t9Ve/7bf1W1uXVm2tWrWIu9Z9RcWqCAjIJrKENUBIyL5nzu+PmYQQsmEmmSzv5+MRM/fcc8/5zFwnzGfOueeacw4RERERERHpOU+oAxARERERERkslGCJiIiIiIgEiRIsERERERGRIFGCJSIiIiIiEiRKsERERERERIJECZaIiIiIiEiQKMESEelnzCzXzJyZhYU6FhkazGylmR0b6jhERAYDJVgiIjLgmdk9ZlYZ+Kk3s4ZW2y+HOr7+zjk3yTk3P5htmlmKmc0zs2Iz221mj5pZQjD7EBHpj5RgiYgEmUae+p5z7irnXJxzLg74H2Be87Zz7pTmegPp3AykWDvwWyAZyAPGABnAzaEMSESkLyjBEhEJAjMrMLMfm9lyoMrMwszsSDP7r5mVmtmy1lOwzGy+mf3OzBaaWbmZPWdmKR20fZmZrTazCjPbYGbfabP/TDNbGmhnvZmdHChPNLP7zazQzLaZ2W/NzNvF8xhjZm+1GXVIarWvxMwOC2wPN7Oi5udlZmcEppqVBp7fhDavzw1mttzMygIjG1EH/kofuA7OjTOzg1rVedDMfttq+7TAa1oaOIf53ezrWDPbamY/C7x+BWZ2Qav9XzWzTwLnaouZ3dxqX/PU0G+Z2WbgrUD5E2a2I/C6vWtmk9rE/VczezkwWve+mWWa2Z/NbI+ZrTGzQ7v5Gp3Qned4APKAZ51z5c65MuAZYFIXx4iIDHhKsEREgud84KtAEv5v61/E/y1+CnAD8JSZpbeqfzFwOZAFNAJ3dNDuLuA0IAG4DLi9VZIzA/gXcGOg36OBgsBxDwbaPQg4FDgRuKKL52DA74DhwARgBIFRB+fceuDHwCNmFgM8ADzknJtvZuOAucC1QDrwEvAfM4to1fa5wMn4P3jnA5e2G4DZrEBi09HPrC6eQ3tazo1zrrHTF8CfkPwT+A6QCtwLPG9mkd3sKxNIA7KBS4D7zGx8YF8V/vOeFIjnajM7q83xx+B/7U8KbL8MjAWGAUuAR9vUPxf4RaDPOuCDQL004EngT92Mu11m9pPOzkcnh94NnGZmyWaWDJwTeC4iIoOaEiwRkeC5wzm3xTlXA1wIvOSce8k553POvQ4sAk5tVf9h59wK51wV8Evg3PZGmJxzLzrn1ju/d4DXgNmB3d8C/umcez3Qzzbn3Bozywj0da1zrso5twu4HTivsyfgnFsXaKvOOVeE/8P5Ma32/x1YB3yEPzH8eWDXHODFwLENwG1ANPClNq/PdudcCfAfYGoHMSxwziV18rOgs+fQgdbnpitXAvc65z5yzjU55x7Cn7gceQD9/TLwGr6DP9E+F8A5N98592ngXC3Hn5Qe0+bYmwPnrCZwzD+dcxXOuTr8ye4hZpbYqv4zzrnFzrla/KNEtc65fznnmoB5+JPrL8w59/vOzkcnhy4BIoDiwE8T8NeexCIiMhAowRIRCZ4trR6PAr7R5pv+WfiTkvbqbwLC8Y867MPMTjGzDwPT80rxJ07N9UYA69uJZVSgvcJW/d+LfxSkQ2aWYWaPBaYUlgOPtBPT34HJwJ2BD/3gH/Ha1FzBOecLPL/sVsftaPW4GojrLJYg29J1lRajgOvbnLsR+J9jd+wJJM3NNjUfa2ZHmNnbgamVZcBV7P/6tsRqZl4z+735p36Ws3d0svUxO1s9rmlnuy9f59YeB9YC8fhHX9fj//9JRGRQU4IlIhI8rtXjLfhHqFp/2x/rnPt9qzojWj0eCTQAu1s3GJiW9hT+EaGMwIjBS/in8jX3M6adWLbgH3VJa9V/gnOuq2tg/ifwPKY45xLwj8Q194WZxQF/Bu4Hbra9141tx5+YNNezwPPb1kV/+zGz2bZ3BcD2fmZ33cp+XJvtaiCm1XZmq8dbgFvbnLsY59zcbvaVbGaxrbZH4n99AP4NPA+McM4lAvfQ6vVtJ9ZvAmcCJwCJQG6gvO0xvSZwPVmH56OTQ6fiHwmscs5V4n+up3ZSX0RkUFCCJSLSOx4BTjezkwKjEFGBBRByWtW50MwmBq5nugV4MjCtq7UIIBIoAhrN7BT811I1ux+4zMy+bGYeM8s2s4Odc4X4pxL+n5klBPaNMbO209HaigcqgTIzy8Z/bVdrfwEWOeeuwD/17Z5A+ePAVwNxhAPX40/w/tvVC9WWc+69VisAtvfz3oG22Y6lwDcD5+Zk9p2m93fgqsBok5lZrPkXp4iHloUlHuyi/d+YWUQgGTwNeCJQHg+UOOdqA9fPfbOLduLxv47F+BPC/zmA5xgUzrn/6ex8dHLox8AVZhZtZtH4p14u75uoRURCRwmWiEgvcM5twT/y8DP8ydEW/MlK67+7D+NfiGIHEAX8sJ12KgLljwN78H8gf77V/oUEFr4AyoB32DuSdDH+BG1V4Ngn2XeKYnt+AxwWaOtF4OnmHWZ2Jv5FKq4OFP0IOMzMLnDOfYZ/tOtO/KNwpwOnO+fqu+gvVK7BH2MpcAHwbPMO59wi4NvAXfhft3XsuyDHCOD9TtreEThuO/4FKa5yzq0J7PsucIuZVQC/wn9eO/Mv/FMMt+E/jx929cT6kcvxj7htxR//aPyLfoiIDGrmXNtZEyIi0tvMbD7wiHPuH6GORbovsCriMiA/sJhH2/3H4j+vOW33iYjI0DDQb2IoIiLSZwIjchO6rCgiIkOWpgiKiAwxZnZPBwsW3NP10TIQmdnIThaqGBnq+EREBhNNERQREREREQkSjWCJiIiIiIgESb+6BistLc3l5uaGOgwREREREZFOLV68eLdzLr1teb9KsHJzc1m0aFGowxAREREREemUmW1qr1xTBEVERERERIJECZaIiIiIiEiQKMESEREREREJkn51DVZ7Ghoa2Lp1K7W1taEORfqBqKgocnJyCA8PD3UoMoi9unIH/353BX+84EsMS4gJdTgiIiIygPT7BGvr1q3Ex8eTm5uLmYU6HAkh5xzFxcVs3bqVvLy8UIcjg9gTb/yXh/ZcxvvPXsOwi28JdTgiIiIygPT7KYK1tbWkpqYquRLMjNTUVI1mSq87uWweABM2PRLiSERERGSg6fcJFqDkSlro/wXpbbUNTQxr2AZASlMxVJeEOCIREREZSAZEgiUi0ld2lNWSZuU0BGZQlxUsDW1AIiIiMqAoweoGM+P6669v2b7tttu4+eabQxdQK8cee2ynN2c+66yzOPLII/cpu/nmm8nOzmbq1KlMnjyZ559/vrfDFBkwKusaSbUyNsRPA2BPwbIQRyQiIiIDiRKsboiMjOTpp59m9+7dQW3XOYfP5wtqm62VlpayePFiysrK2LBhwz77rrvuOpYuXcoTTzzB5Zdf3qtxiAwktfUNpFJO07AplLsY6gpXhTokERERGUCUYHVDWFgYV155Jbfffvt++4qKijjnnHOYPn0606dP5/333wf8o0S33XZbS73JkydTUFBAQUEB48eP5+KLL2by5Mls2bKFG2+8kcmTJzNlyhTmzfNfXD9//nyOPfZYvv71r3PwwQdzwQUX4JxrN76HH364ZTRq4cKFLeVPP/00p59+Oueddx6PPfZYu8dOmDCBsLCwfZLHn/zkJ0ycOJH8/HxuuOEGAAoKCjj++OPJz8/ny1/+Mps3bwbg0ksv5eqrr+bII49k9OjRzJ8/n8svv5wJEyZw6aWXtrR59dVXM23aNCZNmsSvf/3r/eIoKytj1KhRLYleVVUVI0aMoKGhod24RXpLQ2UxYeYjNjWL9WQTWbo+1CGJiIjIANLvl2lv7Tf/Wcmq7eVBbXPi8AR+ffqkLut973vfIz8/n5tuummf8muuuYbrrruOWbNmsXnzZk466SRWr17daVuff/45Dz30EEceeSRPPfUUS5cuZdmyZezevZvp06dz9NFHA/DJJ5+wcuVKhg8fzsyZM3n//feZNWvWfu1VV1ezdOlS3n33XS6//HJWrFgBwNy5c/nVr35FRkYG55xzDj/72c/2O/ajjz7C4/GQnp4OQHFxMc888wxr1qzBzCgtLQXgBz/4AZdccgmXXHIJ//znP/nhD3/Is88+C8CePXv44IMPeP755znjjDN4//33+cc//sH06dNZunQpU6dO5dZbbyUlJYWmpia+/OUvs3z5cvLz81viSExMZOrUqbzzzjscd9xxvPDCC5x00km635X0OV9lEQCeuGGUhGcxoubzEEckIiIiA0mPR7DMbISZvW1mq8xspZldEyi/2cy2mdnSwM+pPQ83dBISErj44ou544479il/4403+P73v8/UqVM544wzKC8vp7KystO2Ro0a1XJd1IIFCzj//PPxer1kZGRwzDHH8PHHHwMwY8YMcnJy8Hg8TJ06lYKCgnbbO//88wE4+uijKS8vp7S0lJ07d/L5558za9Ysxo0bR3h4eEviBXD77bczdepUbrjhBubNm9eyOl9iYiJRUVF861vf4umnnyYmxn+T1Q8++IBvfvObAFx00UUsWLCgpa3TTz8dM2PKlClkZGQwZcoUPB4PkyZNaon58ccf57DDDuPQQw9l5cqVrFq1/7SrOXPmtIzgPfbYY8yZM6fT11GkN7iWBCudqphskht3QlNjiKMSERGRgSIYI1iNwPXOuSVmFg8sNrPXA/tud87d1smxB6Q7I0296dprr+Wwww7jsssuaynz+Xx8+OGHREVF7VM3LCxsn+uaWt+7KTY2tlv9RUZGtjz2er00Nrb/Ia/t0uVmxuOPP86ePXtabshbXl7O3LlzufXWWwH/NVjN0//axr1w4ULefPNNnnzySe666y7eeuutbsXp8Xj2idnj8dDY2MjGjRu57bbb+Pjjj0lOTubSSy9t915WZ5xxBj/72c8oKSlh8eLFHH/88Z32K9IbXJ3/C5Lw2EQaE0bgLfdBxXZIGhniyERERGQg6PEIlnOu0Dm3JPC4AlgNZPe03f4oJSWFc889l/vvv7+l7MQTT+TOO+9s2V66dCkAubm5LFmyBIAlS5awcePGdtucPXs28+bNo6mpiaKiIt59911mzJhxQHE1j/osWLCAxMREEhMTmTt3Lq+88krLdV+LFy/u8Dqs1iorKykrK+PUU0/l9ttvZ9ky/wpqX/rSl1qOf/TRR5k9e3a34ysvLyc2NpbExER27tzJyy+/3G69uLg4pk+fzjXXXMNpp52G1+vtdh8iweKrrwIgIiqOsJRcAGp2bejkCBEREZG9grrIhZnlAocCHwWKvm9my83sn2aW3MExV5rZIjNbVFRUFMxwesX111+/z4IQd9xxB4sWLSI/P5+JEydyzz33AHDOOedQUlLCpEmTuOuuuxg3bly77Z199tnk5+dzyCGHcPzxx/OHP/yBzMzMA4opKiqKQw89lKuuuor777+fgoICNm3atM/y7Hl5eSQmJvLRRx+128app57K9u3bqaio4LTTTiM/P59Zs2bxpz/9CYA777yTBx54gPz8fB5++GH+8pe/dDu+Qw45hEMPPZSDDz6Yb37zm8ycObNl369+9at9lomfM2cOjzzyiKYHSsj46qsBiIqJJzZjDACl29eFMiQREREZQKyjlekOuCGzOOAd4Fbn3NNmlgHsBhzw/4As59zlnbUxbdo01/aeTqtXr2bChAlBiVEGB/0/Ib3prX/9luM3/BHf9etYvttH/oPjKZj8XUZ/439CHZqIiIj0I2a22Dk3rW15UEawzCwceAp41Dn3NIBzbqdzrsk55wP+DhzYvDcRkVBo8I9geSJjyU5LopAUXMmmEAclIiIiA0UwVhE04H5gtXPuT63Ks1pVOxtY0fZYEZH+xhNIsAiLIi0ugu2kE16xJbRBiYiIyIARjFUEZwIXAZ+a2dJA2c+A881sKv4pggXAd4LQl4hIr7LGGmqIJNrjwYA94VkcVPNpqMMSERGRAaLHCZZzbgFg7ex6qadti4j0NWuspY5IogPb1THDSSyfD00N4NWNr0VERKRzQV1FUERkoPM2VlPn2Xtfu6aEHDw4KN8WwqhERERkoFCCJSLSSlhTLfW294bZYckjAKgr3hyqkERERGQAUYLVTc8++yxmxpo1azqsU1BQwOTJk4PW56WXXsqTTz7Z4f5rr72W7OxsfD5fS9mDDz5Ieno6U6dOZeLEifz9738PWjwiQ0FYUw31nuiW7ej0XABKd+hmwyIiItI1JVjdNHfuXGbNmsXcuXPb3d/Y2NjjPpqamrpd1+fz8cwzzzBixAjeeeedffbNmTOHpUuXMn/+fH72s5+xc+fOHscmMlSE+2pp9O6dIpiUORqAmiIt1S4iIiJdU4LVDZWVlSxYsID777+fxx57rKV8/vz5zJ49mzPOOIOJEycC/kTrggsuYMKECXz961+nutq/5PObb77JoYceypQpU7j88supq6sDIDc3lx//+MccdthhPPHEE/v1/cYbbzBt2jTGjRvHCy+8sE/fkyZN4uqrr+4w6Rs2bBhjxoxh06a9HwzvuOMOJk6cSH5+Pueddx4AJSUlnHXWWeTn53PkkUeyfPlyAG6++WYuueQSZs+ezahRo3j66ae56aabmDJlCieffDINDQ0A3HLLLUyfPp3Jkydz5ZVX0vbm1T6fj9zcXEpLS1vKxo4dq8RP+qUIXy2NrUawhqcns9sl0KR7YYmIiEg3BGOZ9r7z8k9gR5CXS86cAqf8vtMqzz33HCeffDLjxo0jNTWVxYsXc/jhhwOwZMkSVqxYQV5eHgUFBXz22Wfcf//9zJw5k8svv5y//vWvfP/73+fSSy/lzTffZNy4cVx88cX87W9/49prrwUgNTWVJUuWtNt3QUEBCxcuZP369Rx33HGsW7eOqKgo5s6dy/nnn8+ZZ57Jz372MxoaGggP33eFsw0bNrBhwwYOOuiglrLf//73bNy4kcjIyJaE59e//jWHHnoozz77LG+99RYXX3wxS5cuBWD9+vW8/fbbrFq1iqOOOoqnnnqKP/zhD5x99tm8+OKLnHXWWXz/+9/nV7/6FQAXXXQRL7zwAqeffnpLnx6PhzPPPJNnnnmGyy67jI8++ohRo0aRkZHR7dMk0lciXC2VYXtHsDISoljjUomv0CIXIiIi0jWNYHXD3LlzW0Z7zjvvvH1GjGbMmEFeXl7L9ogRI5g5cyYAF154IQsWLOCzzz4jLy+PcePGAXDJJZfw7rvvthwzZ86cDvs+99xz8Xg8jB07ltGjR7NmzRrq6+t56aWXOOuss0hISOCII47g1VdfbTlm3rx5TJ06lfPPP597772XlJSUln35+flccMEFPPLII4SF+fPrBQsWcNFFFwFw/PHHU1xcTHl5OQCnnHIK4eHhTJkyhaamJk4++WQApkyZQkFBAQBvv/02RxxxBFOmTOGtt95i5cqV+z2POXPmMG/ePAAee+yxTp+zSChFuDp83r0jWOFeD7vDMoiqLgxhVCIiIjJQDKwRrC5GmnpDSUkJb731Fp9++ilmRlNTE2bGH//4RwBiY2P3qW9mnW63p20bXbX36quvUlpaypQpUwCorq4mOjqa0047DfAnM3fddVe77b344ou8++67/Oc//+HWW2/l0087HxGMjPSvpubxeAgPD2+Jx+Px0NjYSG1tLd/97ndZtGgRI0aM4Oabb6a2tna/do466ijWrVtHUVERzz77LL/4xS867VckVCJdPa7VCBZAVVQmSTWfgHPQjfe0iIiIDF0awerCk08+yUUXXcSmTZsoKChgy5Yt5OXl8d5777Vbf/PmzXzwwQcA/Pvf/2bWrFmMHz+egoIC1q1bB8DDDz/MMccc063+n3jiCXw+H+vXr2fDhg2MHz+euXPn8o9//IOCggIKCgrYuHEjr7/+esv1Xh3x+Xxs2bKF4447jv/93/+lrKyMyspKZs+ezaOPPgr4r+1KS0sjISGhW/E1J1NpaWlUVlZ2uOqhmXH22Wfzox/9iAkTJpCamtqt9kX6knOOSPZPsBrisolydVCzJ0SRiYiIyEChBKsLc+fO5eyzz96n7JxzzulwYYnx48dz9913M2HCBPbs2cPVV19NVFQUDzzwAN/4xjeYMmUKHo+Hq666qlv9jxw5khkzZnDKKadwzz334PP5eOWVV/jqV7/aUic2NpZZs2bxn//8p902rrjiChYtWkRTUxMXXnghU6ZM4dBDD+WHP/whSUlJ3HzzzSxevJj8/Hx+8pOf8NBDD3Xz1YGkpCS+/e1vM3nyZE466SSmT5/esu+ee+7hnnvuadmeM2cOjzzyiKYHSr9V1+gjkgYIi9x3R5L/XlhNe3QvLBEREemctV3xLZSmTZvmFi1atE/Z6tWrmTBhQogikv5I/09Ib9lTWUvybRl8MvoqDr34f1vKX3r1JU794Hz2nPEgyYed3UkLIiIiMlSY2WLn3LS25RrBEhEJqK3zT7O18H2nCCZk+heyqdipmw2LiIhI55RgiYgE1FVXAeCNiN6nfFhGNrUunPpiTREUERGRzg2IBKs/TWOU0NL/C9Kb6mqbR7D2TbCGJ8ewzaVBme6FJSIiIp3r9wlWVFQUxcXF+mAtOOcoLi4mKiqq68oiX0B9IMHyRu6bYMVFhrHLk0ZklRIsERER6Vy/vw9WTk4OW7dupaioKNShSD8QFRVFTk5OqMOQQaqhtgaAsDZTBAHKIzKJr1vc1yGJiIjIANPrCZaZnQz8BfAC/3DOHdDdgsPDw8nLy+uV2EREWmsILHIRHhmz377a2OEk7XkdGuv2X8ZdREREJKBXpwiamRe4GzgFmAicb2YTe7NPEZEvqrHOP4IVHrn/CJZLCIyclmuaoIiIiHSst6/BmgGsc85tcM7VA48BZ/ZynyIiX0hjvX8EK6ydEazw5JEAVO7a2KcxiYiIyMDS2wlWNrCl1fbWQFkLM7vSzBaZ2SJdZyUiodRU7x/BiojaP8GKGeafqlxWqARLREREOhbyVQSdc/c556Y556alp6eHOhwRGcKaE6zI6P0TrJThuQDU7t7UlyGJiIjIANPbCdY2YESr7ZxAmYhIv+OrrwUgMip2v31ZqYnsckk0lW7Zb5+IiIhIs95OsD4GxppZnplFAOcBz/dynyIiX4hr8I9gedtZpj0tNpLtpBFesbWvwxIREZEBpFeXaXfONZrZ94FX8S/T/k/n3Mre7FNE5Ityjf4RrPaWYfd4jNLwDLJqNvdxVCIiIjKQ9Pp9sJxzLwEv9XY/IiI91tCcYO0/ggVQFZVJUuXH4ByY9WFgIiIiMlCEfJELEZH+wjoZwQJoiM8hknqo3NmHUYmIiMhAogRLRCTAGmuoJbLj0alk/1Lt9UXr+zAqERERGUiUYImIBHgbq6m1qA73Rw47CIDy7Wv7KiQREREZYJRgiYgEhDXV0OBpf3ogQNLwMTQ5o2bnuj6MSkRERAYSJVgiIgFhTbXUe9pf4AJg1LBkCkmlafeGPoxKREREBhIlWCIiAeG+Who6SbAyE6LY4jIIL9/Uh1GJiIjIQKIES0QkINxXQ5O342uwPB6jJDKbhBrdbFhERETapwRLRCQg0tXS1ME9sJrVxI0k3lcGteV9FJWIiIgMJEqwREQCIl0dTWExnVcKLNXuSnQdloiIiOxPCZaICNDQ5COKOlwXI1hRGWMAKNv+eV+EJSIiIgOMEiwREaC6vokYaiG88xGs5JzxgO6FJSIiIu1TgiUiAtTUNxFNPUR0nmCNyMyk2MXTUKQpgiIiIrI/JVgiIkB1XT3RVo91kWANT/Iv1R5WVtA3gYmIiMiAogRLRASora4EwCJiO60X5vVQFJFNfPWWvghLREREBhglWCIiQF2NP8HyRnaeYAFUxOaS0rgT6qt7OywREREZYHqUYJnZH81sjZktN7NnzCwpUJ5rZjVmtjTwc09QohUR6SX11f77WoVFxXVZ15c61v97t1YSFBERkX31dATrdWCycy4fWAv8tNW+9c65qYGfq3rYj4hIr6qv3ANAeFxyl3Wjh08AYM/mlb0ak4iIiAw8PUqwnHOvOecaA5sfAjk9D0lEpO81J1jR8Sld1h2WOwmfMyq2rurtsERERGSACeY1WJcDL7fazjOzT8zsHTObHcR+RESCrrG6FICYxNQu647JSmWLS6dp12e9HJWIiIgMNGFdVTCzN4DMdnb93Dn3XKDOz4FG4NHAvkJgpHOu2MwOB541s0nOufJ22r8SuBJg5MiRX+xZiIj0UFMgwYrqxhTBlNgIVnqyGVOue2GJiIjIvrpMsJxzJ3S238wuBU4Dvuycc4Fj6oC6wOPFZrYeGAcsaqf9+4D7AKZNm+YOMH4RkaBwtaUAWFRSt+qXxuSRVv0C+Hzg0YKsIiIi4tfTVQRPBm4CznDOVbcqTzczb+DxaGAsoK96RaTf8tSV04QHIrpeRRCgIXkMEdRDme6HJSIiInv19GvXu4B44PU2y7EfDSw3s6XAk8BVzrmSHvYlItJrvPXlVFlst0ejwjMOBqBimxa6EBERkb26nCLYGefcQR2UPwU81ZO2RUT6UnhDObXeOBK6WT951CRYAns2rSR+8im9GpuIiIgMHLpwQEQEiGysoM4b3+36o3JGssfFUbdjTS9GJSIiIgONEiwRESCuqYy68O6OX0F2cgwbGU7Ens97MSoREREZaJRgiciQ19jkI8XtoS46vdvHeDzGzsg8Uqo3gNMCqCIiIuKnBEtEhrziyjrSKYO4jAM6rippLPG+cqgq6qXIREREZKBRgiUiQ97u4t1EWgPe+ANLsDzDJgBQt31lb4QlIiIiA5ASLBEZ8sp2bQUgOjnrgI5LGDEFgOKNy4Iek4iIiAxMSrBEZMirLtkOQGxq9gEdN3JUHmUuhrpC3QtLRERE/JRgiciQV1daCEBi+oElWLlpcXzuRhBW/FlvhCUiIiIDkBIsERnyvOWbAQhPGXVAx0WEedgRmUty1XqtJCgiIiKAEiwREcIrtlJmCRAZd8DH1iSNJc5XAZW7eiEyERERGWiUYInIkBdfu43SiANb4KKZN2MioJUERURExE8JlogMaY1NPtIbd1ATm/OFjk8cpZUERUREZC8lWCIypG0vqWI4u3FJI7/Q8aNG5rHHxVGrESwRERFBCZaIDHE7t3xGpDUSnnHwFzo+Ny2WdS6H8BKtJCgiIiJKsERkiCvd7B95Ssmd9IWOD/N62BmVR0r1Bq0kKCIiIkqwRGRoq9/pH3lKHvHFEizwryQY66uEyp3BCktEREQGqB4lWGZ2s5ltM7OlgZ9TW+37qZmtM7PPzOyknocqIhJ8kXs+p9SThMWkfOE2wjImAFCzbUWwwhIREZEBKhgjWLc756YGfl4CMLOJwHnAJOBk4K9m5g1CXyIiQeOcY1jNBkpixvSoncRR+QAUb1wejLBERERkAOutKYJnAo855+qccxuBdcCMXupLROQLKSytZgxbqEv9YgtcNMsblUuJi6OuUCsJioiIDHXBSLC+b2bLzeyfZpYcKMsGtrSqszVQth8zu9LMFpnZoqKioiCEIyLSPZvWryLW6ojMntKjdkamxrKOEURoJUEREZEhr8sEy8zeMLMV7fycCfwNGANMBQqB/zvQAJxz9znnpjnnpqWnpx/o4SIiX1h5gf/mwOljDu1RO16PsSsqj5QqrSQoIiIy1IV1VcE5d0J3GjKzvwMvBDa3ASNa7c4JlImI9Bu+nf4pffE5k3vcVm3SWGJ3vgQVhZAwvMftiYiIyMDU01UEs1ptng00L6H1PHCemUWaWR4wFljYk75ERIItruxzdnqzIDKux215MycCUK2VBEVERIa0nl6D9Qcz+9TMlgPHAdcBOOdWAo8Dq4BXgO8555p62JeISNA0+RxZdRsojR8blPaScw8BoGTD0qC0JyIiIgNTl1MEO+Ocu6iTfbcCt/akfRGR3rK5aA+5FLI2/bSgtJc3ciTbXCpN2z4JSnsiIiIyMPXWMu0iIv3a9s+XEmY+YnN6toJgsxHJMaxkNLHFmiIoIiIylCnBEpEhqWKz/6bAGQcdFpT2PB5jR8wE0uo2Q21ZUNoUERGRgUcJlogMSd6iVdQTRlTmuKC12Zjpvw7Lt21p0NoUERGRgUUJlogMSQnln7MzYhR4w4PWZspBRwBQsk6LpoqIiAxVSrBEZMipbWhiZGMBFYnBG70CmDw2l82+dGo3fhjUdkVERGTgUIIlIkPOxq1bybISbNiEoLY7Oi2ORZ4ppO76EJoag9q2iIiIDAxKsERkyCkt8C9wETvikKC26/EY5dnHEO2rpHHTB0FtW0RERAaGHt0HS0RkIKrf/ikAqWMODXrb2dNPo2Lr76lc8CBZo2fvt7/J5zD8yZj0L845fE1N+JrqaWpswOccPgdNTT58DhxggOEwDPM0b4PH8JcZgR/DzPB4PIG6hpnHX9us49+m/y9ERAY6JVidWP3By5Qvfhx8jeBrxOOaMF8jHhd47HyAz//bOcBhzofRdnvv79ZlHlzgH2of5tz+AbT6h7b1Xv/Hs30qtruvbYv7Htdxvdb7Wj/cv1//7vbK9zt4nzg62t3xBwv/x5n2yzvsu51dbu/ebrbTUTxB8gUaClrfX6CXDvsOYlB98fzGNRZSQQzxaSOD3vbsSXm8+PxsztjwHG73T7G0gwBoaPLx+svPELfwdqpyZnPKlb8Let+Dlc/nqKiuprq8hJryEuoqS2ioKqWhuhRfdSm+mjJ89VW4+hpoqIbGGryNtYT7agnz+X9H+GqJcHUtf7/DaMLrGv2/8W+H04TXHF4geEuffDFNgX8dXEtKR6vtjh7762G23/7mtNAZtE4T99b3BN57bcvba6fVY+tifydtOWtdp/3n1ZsM16t/b6yP/lr3Ctd78e/9d3gAvz7S5xZGzWT8mTfwpTFpoQ6lW5RgdaKycC3jdr+ODy+NeGkyL77A7ya8ODz4zIPD/62ka/5HqvkfDfO0/PjMPxvT4QHztPyj1DrNav2PSes/PPv+Edr3D9K+//x0dEybbddBeTvt7y1uv7z5+LZ727a7X2LTQXsd9dFe7XaT0naj2b+8dQ1zYNbZMe0nlh05oI8EX/DzQ3/9krv9NLjTA4LYd/dVhA2nMOdoDuuFFzIq3Is7+iZq3n6P+r+fxZ7Df8iOXTuJ3/Ayp/pWgge2FO4GhnaCVVFZQfGOLVSW7KC2dAf15btwFbvwVBcRVltMVH0JsQ17iPOVE+eqSLQ6Ertos86FU2uR1FskdYHfDZ4oGjyRlIcl4PNE4vOEY94wnCfcv4KkJwznCQNPGD4LlHvCcObFPB7/SBTNI1JAYCTLNf9latn2/1lz0PIFW/Nv59y+Za0eu1b18AXqt9Tzdb+N1uWuJaI2seBvsyVGX3PA4JpTrL3/IoH/72zL45byDtKhduu2Oc61KnN7v2RsbrP5X8TmD/i9nWTRknD2jt5PIXr39emN13/fl7yf/mMm/dDASsjNHcAH3d42bdo0t2jRolCHISLSI845/vnvf3Pq2l+QZSUAFHqHUzn5IgqLSzl6673UX7OKiOTsEEfaOyqrqti9fQNlOzZRs3szTaVbsIpComoKia/bRWpTESlW0e6xVURRaklUhCVTG55MQ2QyRCVi0UlYdCLe6GS8sUmExyYTGZdMVHwKMfHJxMbGExYe6nEnEREZSsxssXNuWttyjWCJiASZmfGtCy5g065TWbJpFSOzs8nKGgVmFL37Gmy9l61LXmH0l78V6lC/EOccRbt2ULR5DeXb19KweyNhZQXEV28hvbGQYa6E3DajwmXEUeJNpzJqGBti8lkXP5zwxCwiEjOJSckkPjWLxLQsYqPiiA3R8xIREQkGJVgiIr1k1LBkRg2buU/ZpGnHUPRmIvUrX4J+nmDtKa9iy4ZVlG5agStaTVTpOpJrNpHRWMgwq2JYq7rFlkxxxHAKE6azJWEU3uSRxKSNJDEzl9SsPBJj4ruc4iciIjIYKMESEelDiTGRvB03kyNK3qKpeg/emOSQxuOcY/eeMratX075lpU07VxDTNk60moLGOEKybemlrq7LI2iyFF8npIPKblEDxtLSs540keOIzU6ntQQPg8REZH+QgmWiEgfizjyCmLefIlVz/+Jief9vz7p0zlH0e7dbF+3lIotK/AVrSW2fB0ZdZvIdrtID0zpa8LY6c1iT/xoVqV8hcisCaSMmkJ67mSGRSfsM2olIiIi+1OCJSLSx46aeTz/fe8oDltzD6UFXycpN3g3PG5q8rF9+xaKNi6natsqPEWfEVexnsyGTWSwpyVBqieMwrAc9iROYnfq2UQPn0h63hRSRk5geHg0w4MWkYiIyNDSowTLzOYB4wObSUCpc26qmeUCq4HPAvs+dM5d1ZO+REQGC4/HSPn6Xyh/9EQiHjqdXWf9nWGHnNTt451zlJdXsGvLWoq3rqVm51rCiz8nqWoD2Y1bGGEVjAjUrSKKwvCRbE8+gm1p44jOnkTGmENIHn4Qo7xadU9ERCTYgrZMu5n9H1DmnLslkGC94JybfCBtaJl2ERlKFn78IWkvXM5o28b66CmUZx9NWNoYiE7Ga1BbV0d9VSmuche+ip14qnYRV7OdYY2FZASWf29WSgK7IkdRlTAG0scTmzORjNGHkJiR239vnCYiIjKA9eoy7WZmwLnA8cFoT0RkKJgx/Ui2j3qXl5+9nbHbn+fQdXfDuvbr1rswSj1JlEZkUZh4JFuSRhGeNpqk7HFkjJpAUlIGSX0avYiIiLQnKCNYZnY08KfmDC4wgrUSWAuUA79wzr3XwbFXAlcCjBw58vBNmzb1OB4RkYHGvwhFESU7NkFNCY0+Iyoqitj4JGJThxOfkIJ5PKEOU0RERAI6GsHqMsEyszeAzHZ2/dw591ygzt+Adc65/wtsRwJxzrliMzsceBaY5Jwr76wvTREUEREREZGB4AtPEXTOndBFw2HA14DDWx1TB9QFHi82s/XAOEDZk4iIiIiIDFrBmG9yArDGObe1ucDM0s3MG3g8GhgLbAhCXyIiIiIiIv1WMBa5OA+Y26bsaOAWM2sAfMBVzrmS/Y4UEREREREZRIK2THswmFkR0N9WuUgDdoc6COkzOt9Dh8710KFzPbTofA8dOtdDS38836Occ+ltC/tVgtUfmdmi9i5ek8FJ53vo0LkeOnSuhxad76FD53poGUjnW2v+ioiIiIiIBIkSLBERERERkSBRgtW1+0IdgPQpne+hQ+d66NC5Hlp0vocOneuhZcCcb12DJSIiIiIiEiQawRIREREREQkSJVgiIiIiIiJBogSrE2Z2spl9ZmbrzOwnoY5HgsfMRpjZ22a2ysxWmtk1gfIUM3vdzD4P/E4OdawSHGbmNbNPzOyFwHaemX0UeH/PM7OIUMcowWFmSWb2pJmtMbPVZnaU3tuDk5ldF/gbvsLM5ppZlN7bg4eZ/dPMdpnZilZl7b6Xze+OwHlfbmaHhS5yOVAdnOs/Bv6OLzezZ8wsqdW+nwbO9WdmdlJIgu6EEqwOmJkXuBs4BZgInG9mE0MblQRRI3C9c24icCTwvcD5/QnwpnNuLPBmYFsGh2uA1a22/xe43Tl3ELAH+FZIopLe8BfgFefcwcAh+M+73tuDjJllAz8EpjnnJgNe4Dz03h5MHgROblPW0Xv5FGBs4OdK4G99FKMEx4Psf65fByY75/KBtcBPAQKf184DJgWO+Wvgc3u/oQSrYzOAdc65Dc65euAx4MwQxyRB4pwrdM4tCTyuwP8BLBv/OX4oUO0h4KyQBChBZWY5wFeBfwS2DTgeeDJQRed6kDCzROBo4H4A51y9c64UvbcHqzAg2szCgBigEL23Bw3n3LtASZvijt7LZwL/cn4fAklmltUngUqPtXeunXOvOecaA5sfAjmBx2cCjznn6pxzG4F1+D+39xtKsDqWDWxptb01UCaDjJnlAocCHwEZzrnCwK4dQEao4pKg+jNwE+ALbKcCpa3+cOv9PXjkAUXAA4Epof8ws1j03h50nHPbgNuAzfgTqzJgMXpvD3YdvZf1uW1wuxx4OfC4359rJVgypJlZHPAUcK1zrrz1Pue/h4HuYzDAmdlpwC7n3OJQxyJ9Igw4DPibc+5QoIo20wH13h4cAtfenIk/qR4OxLL/FCMZxPReHhrM7Of4L+14NNSxdJcSrI5tA0a02s4JlMkgYWbh+JOrR51zTweKdzZPKQj83hWq+CRoZgJnmFkB/qm+x+O/RicpMK0I9P4eTLYCW51zHwW2n8SfcOm9PficAGx0zhU55xqAp/G/3/XeHtw6ei/rc9sgZGaXAqcBF7i9N+/t9+daCVbHPgbGBlYjisB/Md3zIY5JgiRwDc79wGrn3J9a7XoeuCTw+BLgub6OTYLLOfdT51yOcy4X//v4LefcBcDbwNcD1XSuBwnn3A5gi5mNDxR9GViF3tuD0WbgSDOLCfxNbz7Xem8Pbh29l58HLg6sJngkUNZqKqEMQGZ2Mv7p/Wc456pb7XoeOM/MIs0sD//CJgtDEWNHbG8yKG2Z2an4r93wAv90zt0a2ogkWMxsFvAe8Cl7r8v5Gf7rsB4HRgKbgHOdc20vsJUBysyOBW5wzp1mZqPxj2ilAJ8AFzrn6kIYngSJmU3Fv6BJBLABuAz/F4p6bw8yZvYbYA7+6UOfAFfgvxZD7+1BwMzmAscCacBO4NfAs7TzXg4k2XfhnyZaDVzmnFsUgrDlC+jgXP8UiASKA9U+dM5dFaj/c/zXZTXiv8zj5bZthpISLBERERERkSDRFEEREREREZEgUYIlIiIiIiISJEqwREREREREgkQJloiIiIiISJAowRIREREREQkSJVgiIiIiIiJBogRLREREREQkSJRgiYiIiIiIBIkSLBERERERkSBRgiUiIiIiIhIkSrBERERERESCRAmWiIiIiIhIkCjBEhHpZ8ws18ycmYWFOhYZGsxspZkdG+o4REQGAyVYIiIy4JnZPWZWGfipN7OGVtsvhzq+/s45N8k5Nz+YbZpZipnNM7NiM9ttZo+aWUIw+xAR6Y+UYImIBJlGnvqec+4q51yccy4O+B9gXvO2c+6U5noD6dwMpFg78FsgGcgDxgAZwM2hDEhEpC8owRIRCQIzKzCzH5vZcqDKzMLM7Egz+6+ZlZrZstZTsMxsvpn9zswWmlm5mT1nZikdtH2Zma02swoz22Bm32mz/0wzWxpoZ72ZnRwoTzSz+82s0My2mdlvzczbxfMYY2ZvtRl1SGq1r8TMDgtsDzezoubnZWZnBKaalQae34Q2r88NZrbczMoCIxtRB/5KH7gOzo0zs4Na1XnQzH7bavu0wGtaGjiH+d3s61gz22pmPwu8fgVmdkGr/V81s08C52qLmd3cal/z1NBvmdlm4K1A+RNmtiPwur1rZpPaxP1XM3s5MFr3vpllmtmfzWyPma0xs0O7+Rqd0J3neADygGedc+XOuTLgGWBSF8eIiAx4SrBERILnfOCrQBL+b+tfxP8tfgpwA/CUmaW3qn8xcDmQBTQCd3TQ7i7gNCABuAy4vVWSMwP4F3BjoN+jgYLAcQ8G2j0IOBQ4Ebiii+dgwO+A4cAEYASBUQfn3Hrgx8AjZhYDPAA85Jybb2bjgLnAtUA68BLwHzOLaNX2ucDJ+D945wOXthuA2axAYtPRz6wunkN7Ws6Nc66x0xfAn5D8E/gOkArcCzxvZpHd7CsTSAOygUuA+8xsfGBfFf7znhSI52ozO6vN8cfgf+1PCmy/DIwFhgFLgEfb1D8X+EWgzzrgg0C9NOBJ4E/djLtdZvaTzs5HJ4feDZxmZslmlgycE3guIiKDmhIsEZHgucM5t8U5VwNcCLzknHvJOedzzr0OLAJObVX/YefcCudcFfBL4Nz2Rpiccy8659Y7v3eA14DZgd3fAv7pnHs90M8259waM8sI9HWtc67KObcLuB04r7Mn4JxbF2irzjlXhP/D+TGt9v8dWAd8hD8x/Hlg1xzgxcCxDcBtQDTwpTavz3bnXAnwH2BqBzEscM4ldfKzoLPn0IHW56YrVwL3Ouc+cs41Oecewp+4HHkA/f0y8Bq+gz/RPhfAOTffOfdp4Fwtx5+UHtPm2JsD56wmcMw/nXMVzrk6/MnuIWaW2Kr+M865xc65WvyjRLXOuX8555qAefiT6y/MOff7zs5HJ4cuASKA4sBPE/DXnsQiIjIQKMESEQmeLa0ejwK+0eab/ln4k5L26m8CwvGPOuzDzE4xsw8D0/NK8SdOzfVGAOvbiWVUoL3CVv3fi38UpENmlmFmjwWmFJYDj7QT09+BycCdgQ/94B/x2tRcwTnnCzy/7FbH7Wj1uBqI6yyWINvSdZUWo4Dr25y7EfifY3fsCSTNzTY1H2tmR5jZ24GplWXAVez/+rbEamZeM/u9+ad+lrN3dLL1MTtbPa5pZ7svX+fWHgfWAvH4R1/X4///SURkUFOCJSISPK7V4y34R6haf9sf65z7fas6I1o9Hgk0ALtbNxiYlvYU/hGhjMCIwUv4p/I19zOmnVi24B91SWvVf4JzrqtrYP4n8DymOOcS8I/ENfeFmcUBfwbuB262vdeNbcefmDTXs8Dz29ZFf/sxs9m2dwXA9n5md93Kflyb7WogptV2ZqvHW4Bb25y7GOfc3G72lWxmsa22R+J/fQD+DTwPjHDOJQL30Or1bSfWbwJnAicAiUBuoLztMb0mcD1Zh+ejk0On4h8JrHLOVeJ/rqd2Ul9EZFBQgiUi0jseAU43s5MCoxBRgQUQclrVudDMJgauZ7oFeDIwrau1CCASKAIazewU/NdSNbsfuMzMvmxmHjPLNrODnXOF+KcS/p+ZJQT2jTGzttPR2ooHKoEyM8vGf21Xa38BFjnnrsA/9e2eQPnjwFcDcYQD1+NP8P7b1QvVlnPuvVYrALb3896BttmOpcA3A+fmZPadpvd34KrAaJOZWaz5F6eIh5aFJR7sov3fmFlEIBk8DXgiUB4PlDjnagPXz32zi3bi8b+OxfgTwv85gOcYFM65/+nsfHRy6MfAFWYWbWbR+KdeLu+bqEVEQkcJlohIL3DObcE/8vAz/MnRFvzJSuu/uw/jX4hiBxAF/LCddioC5Y8De/B/IH++1f6FBBa+AMqAd9g7knQx/gRtVeDYJ9l3imJ7fgMcFmjrReDp5h1mdib+RSquDhT9CDjMzC5wzn2Gf7TrTvyjcKcDpzvn6rvoL1SuwR9jKXAB8GzzDufcIuDbwF34X7d17Lsgxwjg/U7a3hE4bjv+BSmucs6tCez7LnCLmVUAv8J/XjvzL/xTDLfhP48fdvXE+pHL8Y+4bcUf/2j8i36IiAxq5lzbWRMiItLbzGw+8Ihz7h+hjkW6L7Aq4jIgP7CYR9v9x+I/rzlt94mIyNAw0G9iKCIi0mcCI3ITuqwoIiJDlqYIiogMMWZ2TwcLFtzT9dEyEJnZyE4WqhgZ6vhERAYTTREUEREREREJEo1giYiIiIiIBEm/ugYrLS3N5ebmhjoMERERERGRTi1evHi3cy69bXm/SrByc3NZtGhRqMMQERERERHplJltaq9cUwRFRERERESCRAmWiIiIiIhIkCjBEhH5AraUVPPi8kK0EquIiIi01q+uwWpPQ0MDW7dupba2NtShyAATFRVFTk4O4eHhoQ5FBqHfPfY6E7Y/zcdR/8OMcdmhDkdERET6iX6fYG3dupX4+Hhyc3Mxs1CHIwOEc47i4mK2bt1KXl5eqMORQcY5x8Qdz/H9sGdZ9oaDcf8KdUgiIiLST/T7KYK1tbWkpqYquZIDYmakpqZq5FN6RXFVPdluBwBZxR+FOBoRERHpT/p9ggUouZIvRP/fSG8pqqhjnG0FYFjTDqjZE+KIREREpL8YEAmWiEh/sqeqloNsO1vCcwGo2rQktAGJiIhIv6EEqxvMjOuvv75l+7bbbuPmm28OXUCtfPjhhxxxxBFMnTqVCRMmtMQ1f/58/vvf//ao7ZNPPpmkpCROO+20IEQqMnhUlpcRaQ3sHvYlAPZsXh3iiERERKS/UILVDZGRkTz99NPs3r07qO065/D5fD1q45JLLuG+++5j6dKlrFixgnPPPRcIToJ144038vDDD/eoDZHBqKq8GIDo4ROpd15qdxeENiARERHpN/r9KoKt/eY/K1m1vTyobU4cnsCvT5/UaZ2wsDCuvPJKbr/9dm699dZ99hUVFXHVVVexefNmAP785z8zc+ZMbr75ZuLi4rjhhhsAmDx5Mi+88AIAJ510EkcccQSLFy/mpZde4q677uLll1/GzPjFL37BnDlzmD9/PjfffDNpaWmsWLGCww8/nEceeWS/64p27dpFVlYWAF6vl4kTJ1JQUMA999yD1+vlkUce4c477+Tggw/uMM7169ezbt06du/ezU033cS3v/1tAL785S8zf/78Tl+bJ554gt/85jd4vV4SExN59913qa2t5eqrr2bRokWEhYXxpz/9ieOOO44HH3yQZ599lqqqKj7//HNuuOEG6uvrefjhh4mMjOSll14iJSWFv//979x3333U19dz0EEH8fDDDxMTE7NPv0ceeST3338/kyb5z92xxx7LbbfdxrRp0zqNVyQYaiv811xlZWayzaVhpQWhDUhERET6jR6PYJnZCDN728xWmdlKM7smUJ5iZq+b2eeB38k9Dzd0vve97/Hoo49SVla2T/k111zDddddx8cff8xTTz3FFVdc0WVbn3/+Od/97ndZuXIlixYtYunSpSxbtow33niDG2+8kcLCQgA++eQT/vznP7Nq1So2bNjA+++/v19b1113HePHj+fss8/m3nvvpba2ltzcXK666iquu+46li5dyuzZszuNc/ny5bz11lt88MEH3HLLLWzfvr3br8stt9zCq6++yrJly3j++ecBuPvuuzEzPv30U+bOncsll1zSsprfihUrePrpp/n444/5+c9/TkxMDJ988glHHXUU//qXf6nrr33ta3z88ccsW7aMCRMmcP/99+/X75w5c3j88ccBKCwspLCwUMmV9Jn6ylIAEpNS2eEZRmTlttAGJCIiIv1GMEawGoHrnXNLzCweWGxmrwOXAm86535vZj8BfgL8uCcddTXS1JsSEhK4+OKLueOOO4iOjm4pf+ONN1i1alXLdnl5OZWVlZ22NWrUKI488kgAFixYwPnnn4/X6yUjI4NjjjmGjz/+mISEBGbMmEFOTg4AU6dOpaCggFmzZu3T1q9+9SsuuOACXnvtNf79738zd+7cdkedOovzzDPPJDo6mujoaI477jgWLlzIWWed1a3XZebMmVx66aWce+65fO1rX2t5Tj/4wQ8AOPjggxk1ahRr164F4LjjjiM+Pp74+HgSExM5/fTTAZgyZQrLly8H/EnYL37xC0pLS6msrOSkk07ar99zzz2XE088kd/85jc8/vjjfP3rX+9WvCLB4GpL/Q+iEimNyGJS7cKQxiMiIiL9R48TLOdcIVAYeFxhZquBbOBM4NhAtYeA+fQwwQq1a6+9lsMOO4zLLruspczn8/Hhhx8SFRW1T92wsLB9rq9qfT+m2NjYbvUXGRnZ8tjr9dLY2NhuvTFjxnD11Vfz7W9/m/T0dIqLi/er01GcsP9y5geyvPk999zDRx99xIsvvsjhhx/O4sWLO63f+jl5PJ6WbY/H0/L8Lr30Up599lkOOeQQHnzwwXYTxuzsbFJTU1m+fDnz5s3jnnvu6XbMIj3lqa/wP4hMpDY2h4Q9r0F9NUTEdH6giIiIDHpBXeTCzHKBQ4GPgIxA8gWwA8gIZl+hkJKSwrnnnrvPlLUTTzyRO++8s2V76dKlAOTm5rJkiX/p5iVLlrBx48Z225w9ezbz5s2jqamJoqIi3n33XWbMmNHtmF588UWcc4B/6qHX6yUpKYn4+HgqKiq6jBPgueeeo7a2luLiYubPn8/06dO73f/69es54ogjuOWWW0hPT2fLli3Mnj2bRx99FIC1a9eyefNmxo8f3+02KyoqyMrKoqGhoaWd9syZM4c//OEPlJWVkZ+f3+32RXrK25xgRSXgSxzhf1y2JXQBiYiISL8RtATLzOKAp4BrnXP7rETh/BmA6+C4K81skZktKioqClY4veb666/fZzXBO+64g0WLFpGfn8/EiRNbRlLOOeccSkpKmDRpEnfddRfjxo1rt72zzz6b/Px8DjnkEI4//nj+8Ic/kJmZ2e14Hn74YcaPH8/UqVO56KKLePTRR/F6vZx++uk888wzTJ06lffee6/DOAHy8/M57rjjOPLII/nlL3/J8OHDAX/y941vfIM333yTnJwcXn31VcA/LbH5eqsbb7yRKVOmMHnyZL70pS9xyCGH8N3vfhefz8eUKVOYM2cODz744D4jV135f//v/3HEEUcwc+ZMDj744Jby559/nl/96lct21//+td57LHHWlZOFOkr4Y3NI1gJhKfkAlC1c0PoAhIREZF+w5pHP3rUiFk48ALwqnPuT4Gyz4BjnXOFZpYFzHfOdTqMMW3aNLdo0aJ9ylavXs2ECRN6HKO0r+1qh4ON/v+R3vDsH77FqdXPEXHzbt74aCknvHwMhbNuJeuE74c6NBEREekjZrbYObffKmvBWEXQgPuB1c3JVcDzwCWBx5cAz/W0LxGR/iCiqZIaj/9aypTMEdS5MOp3tz8NWERERIaWYKwiOBO4CPjUzJYGyn4G/B543My+BWwCNI+rH7r55ptDHYLIgBPeVEO917+gxfCkWApdKpRtDXFUIiIi0h8EYxXBBUBHy859uafti4j0N+G+WhrD/StypsdH8jEp5FQWdnGUiIiIDAVBXUVQRGQoCPfV0uj1J1hej1EaNoyY2p0hjkpERET6AyVYIiIHKNzV4/PuvadcdVQGCQ1F4GsKYVQiIiLSHyjBEhE5AE0+R6SrwxcW3VLWEJdFGE1Q1f9vNSEiIiK9SwlWNz377LOYGWvWrOmwTkFBAZMnTw5an5999hnHHnssU6dOZcKECVx55ZWA/ybBL730Uo/avvzyyxk2bFhQ4xUZCmobmohm3wTLk5gNgNNCFyIiIkOeEqxumjt3LrNmzWLu3Lnt7m9sbOxxH01N+04v+uEPf8h1113H0qVLWb16NT/4wQ+A4CRYl156Ka+88kqP2hAZimoamoiiHsL3ThEMTx4JQGXR5lCFJSIiIv1EMJZp7zsv/wR2fBrcNjOnwCm/77RKZWUlCxYs4O233+b000/nN7/5DQDz58/nl7/8JcnJyaxZs4bXXnuNxsZGLrjgApYsWcKkSZP417/+RUxMDG+++SY33HADjY2NTJ8+nb/97W9ERkaSm5vLnDlzeP3117nppps477zzWvotLCwkJyenZXvKlCnU19fzq1/9ipqaGhYsWMBPf/pTTjvtNH7wgx+wYsUKGhoauPnmmznzzDN58MEHeeaZZygrK2Pbtm1ceOGF/PrXvwbg6KOPpqCgoNPn/c4773DNNdcAYGa8++67xMXFcdNNN/Hyyy9jZvziF79gzpw5zJ8/n1//+tckJSXx6aefcu655zJlyhT+8pe/UFNTw7PPPsuYMWP4z3/+w29/+1vq6+tJTU3l0UcfJSMjY59+zzvvPC666CK++tWvAv5k8LTTTuPrX/96986pSC+qqW8i2uppaDWCFZ8xCoDKXQXEhyowERER6Rc0gtUNzz33HCeffDLjxo0jNTWVxYsXt+xbsmQJf/nLX1i7di3gn9b33e9+l9WrV5OQkMBf//pXamtrufTSS5k3bx6ffvopjY2N/O1vf2tpIzU1lSVLluyTXAFcd911HH/88ZxyyincfvvtlJaWEhERwS233MKcOXNYunQpc+bM4dZbb+X4449n4cKFvP3229x4441UVVUBsHDhQp566imWL1/OE088waJFi7r9vG+77Tbuvvtuli5dynvvvUd0dDRPP/00S5cuZdmyZbzxxhvceOONFBb6l6detmwZ99xzD6tXr+bhhx9m7dq1LFy4kCuuuII777wTgFmzZvHhhx/yySefcN555/GHP/xhv37nzJnD448/DkB9fT1vvvlmS7IlEmrNI1gWEdNSlpaeRa0Lp65EUwRFRESGuoE1gtXFSFNvmTt3bstIznnnncfcuXM5/PDDAZgxYwZ5eXktdUeMGMHMmTMBuPDCC7njjjv4yle+Ql5eHuPGjQPgkksu4e677+baa68F/AlFey677DJOOukkXnnlFZ577jnuvfdeli1btl+91157jeeff57bbrsNgNraWjZv9k9V+spXvkJqaioAX/va11iwYAHTpk3r1vOeOXMmP/rRj7jgggv42te+Rk5ODgsWLOD888/H6/WSkZHBMcccw8cff0xCQgLTp08nKysLgDFjxnDiiScC/pG3t99+G4CtW7cyZ84cCgsLqa+v3+e1a3bKKadwzTXXUFdXxyuvvMLRRx9NdHT0fvVEQqGmPpBghe/9fzIrOZpCl6KbDYuIiIhGsLpSUlLCW2+9xRVXXEFubi5//OMfefzxx3HOARAbG7tPfTPrdLs9bdtobfjw4Vx++eU899xzhIWFsWLFiv3qOOd46qmnWLp0KUuXLmXz5s1MmDDhC8fT7Cc/+Qn/+Mc/qKmpYebMmZ0u8AEQGRnZ8tjj8bRsezyelmvUfvCDH/D973+fTz/9lHvvvZfa2tr92omKiuLYY4/l1VdfZd68eR0moCKhUFtXS7g14YlsNYIVG8lOUgnTzYZFRESGPCVYXXjyySe56KKL2LRpEwUFBWzZsoW8vDzee++9dutv3ryZDz74AIB///vfzJo1i/Hjx1NQUMC6desAePjhhznmmGO67PuVV16hoaEBgB07dlBcXEx2djbx8fFUVFS01DvppJO48847W5K+Tz75pGXf66+/TklJSct1UM2ja92xfv16pkyZwo9//GOmT5/OmjVrmD17NvPmzaOpqYmioiLeffddZsyY0e02y8rKyM72r7j20EMPdVhvzpw5PPDAA7z33nucfPLJ3W5fpLfVVfun33pbTRH0eIzS8GHE6mbDIiIiQ54SrC7MnTuXs88+e5+yc845p8PVBMePH8/dd9/NhAkT2LNnD1dffTVRUVE88MADfOMb32DKlCl4PB6uuuqqLvt+7bXXmDx5MocccggnnXQSf/zjH8nMzOS4445j1apVTJ06lXnz5vHLX/6ShoYG8vPzmTRpEr/85S9b2pgxYwbnnHMO+fn5nHPOOS3TA88//3yOOuooPvvsM3Jycrj//vsBuOeee7jnnnsA+POf/8zkyZPJz88nPDycU045hbPPPpv8/HwOOeQQjj/+eP7whz+QmZnZ7dfz5ptv5hvf+AaHH344aWlpLeWLFi3iiiuuaNk+8cQTeeeddzjhhBOIiIjodvsiva2hLpBgtRrBAqiJyiCxUTcbFhERGeqsedSjP5g2bZpruwjD6tWrW6a7yYF58MEHWbRoEXfddVeoQwkZ/f8jwfbqgg846Y2TKTrhL6TPurSl/PG/3cy5O2+HH62BhKzQBSgiIiJ9wswWO+f2W9xAI1giIgegqa4agLA2I1jNNxv2lWqhCxERkaGs1xMsMzvZzD4zs3Vm9pPe7k/2uvTSS4f06JVIb2is9SdY4VH7JliRqSMAqCja1OcxiYiISP/RqwmWmXmBu4FTgInA+WY28UDb6U/TGGXg0P830ht8Df4EKyIqbp/yuHT/zYarlGCFTH2jj1dWFFJd3xjqUEREZAjr7RGsGcA659wG51w98Bhw5oE0EBUVRXFxsT4sywFxzlFcXExUVFSoQ5FBxlff/ghW+rDAzYaLNUUwVO57dz3XP/I+Dzz2ODTWhTocEREZonr7RsPZwJZW21uBI1pXMLMrgSsBRo4cuV8DOTk5bN26laKiol4MUwajqKgocnJyQh2GDDKuvgYAC983wcpKima7S8XKlWCFytNLtnFL+IOcs+E9mt5ag/fEW0IdkoiIDEG9nWB1yTl3H3Af+FcRbLs/PDycvLy8Po9LRKQ9rsGfYBEevU95SmwEn5NKdpVuNhwKZdUNbN5dxknRn4CDpqXz8J7wa/B4Qx2aiIgMMb09RXAbMKLVdk6gTERkYOogwTIzSiN0s+FQWburgnzbQJyr5LWmw4mo3gE7V4Q6LBERGYJ6O8H6GBhrZnlmFgGcBzzfy32KiPQaa2w/wYLmmw3v1s2GQ2DtzgrGeLYD8Hz4Kf7C7Z+EMCIRERmqejXBcs41At8HXgVWA48751b2Zp8iIr3JWkawYvbb1xg3HC8+qNQoVl/btqeGgzw7cJ5wKod/iQqLg21LQh2WiIgMQb1+Hyzn3EvOuXHOuTHOuVt7uz8Rkd7kaarFh4E3Yv99Sf6bDTeVaiZ0X9tZXsfB4TuxlNGMzUrm06Zc3I5PQx2WiIgMQb2eYImIDCbexlrqLRLM9tsXmeJfCbV8Z0EfRyW7KmrJsx2QehDjMuL53JeF2/056BYfIiLSx5RgiYgcAK+vhnpr//5qCRn+mw1X7tbNhvvazvJa0txuSMwhLy2WDW44nvoKTdcUEZE+pwRLROQAeJvqaPDsPz0QIC0tkxoXQUPJlnb3S+8pLysjxlcF8ZmMSo1lvRvu37H789AGJiIiQ44SLBGRAxDuq6XR0/4I1vBk/82GKdM1WH2ptqGJ6Lpd/o2E4aTFRbAjPHCHkGIlWCIi0reUYImIHIBwXy2N3vYTrMTocHZZKuG62XCf2lVeR4bt8W/EZ2JmRKfmUGeRsHtdaIMTEZEhRwmWiMgBCHf1NHUwgmVmlIUPI65O1/30pZ0VtWRQ4t+I908NHJUWz2ayYPfaEEYmIiJDkRIsEZEDEOGrpamDESyA2ugMEhqLoamxD6Ma2naW15LZPIKVkAVAXlosnzVm+lcSFBER6UNKsEREuqnJ54iiHl9YdId1dLPhvrczMEXQhcdCZDxAYKGLLCjbDI11IY5QRESGEiVYIiLdVNfYRCT1uLCOR7C8if6bDTeWaiXBvrKrvJbhnj2QMLylLDc1hgJfJuZ8ULo5hNGJiMhQowRLRKSbauqbiLVafOGxHdaJTM8FoHzHxj6KSnaW15IdVoYFpgcCjEyNYZPL8G+UbAhRZCIiMhQpwRIR6abq+iZiqYWIuA7rxGeM9tfdqQ/1fWVneZ1/kYv4vQlWelwkO8P9o4lKsEREpC8pwRIR6aaqugZiqcUT2XGClZGexm6XQGNJQd8FNsTtKq8mxbdvgmVmxCdnUG0xSrBERKRP9SjBMrM/mtkaM1tuZs+YWVKrfT81s3Vm9pmZndTjSEVEQqymqhyPOSwqvsM6mYlRbHXphJVt6sPIhraGit2E0bhPggUwKi2WrZalBEtERPpUT0ewXgcmO+fygbXATwHMbCJwHjAJOBn4q5l5e9iXiEhI1VRVABAW3XGClRAVTqEng+iqrX0V1pBWWddIfH2RfyOwwEizUamxfN44DKcES0RE+lCPEizn3GvOueabvXwI5AQenwk85pyrc85tBNYBM3rSl4hIqNVXlQEQHp3Qab2KqOEk1u8EX1NfhDWk7SqvJdOK/RutVhEEGJkSwwZfBuzZBE0NIYhORESGomBeg3U58HLgcTbQeo3irYGy/ZjZlWa2yMwWFRUVBTEcEZHgqq8pByC8kxEsgIb4kf4pa+Xb+yKsIW1HeS1ZVuLfSNj3n5nc1Fg2uQzMNWmpdhER6TNdJlhm9oaZrWjn58xWdX4ONAKPHmgAzrn7nHPTnHPT0tPTD/RwEZE+01jtT7CiYhM7redJGQWATwtd9LodZbVkWTHOEwax+/4bMio1hgJf81LtWjZfRET6RlhXFZxzJ3S238wuBU4Dvuycc4HibcCIVtVyAmUiIgOWr85/DVZkXOdTBGMyDoLPoHzHOpJGz+6L0IaswrJaMq0E4jLBs++lvlmJUf5FLkALXYiISJ/p6SqCJwM3AWc456pb7XoeOM/MIs0sDxgLLOxJXyIioearrQQgootrsFKzR9PkjMod6/sirCGtsKyGEd49WOL+s9DDvB6ik7OosyglWCIi0me6HMHqwl1AJPC6mQF86Jy7yjm30sweB1bhnzr4PeecrvYWkQHN1fkTrM5uNAwwIi2RQlJpLC7o/aCGuMLSWoZ79kDCuHb3j0yNZVttFqOVYImISB/pUYLlnDuok323Arf2pH0RkX6l3j9FkE5uNAwwPCmaxS6dnHItrNDbCktrSHfF+y1w0WxUagzrNg8jr2QD1sexiYjI0BTMVQRFRAY1b30FPqzLEaxwr4eS8CzianTpaW+rKisi0tXtt0R7s5EpMaxvHAZ7CrRsvoiI9AklWCIi3RReV0q1xe63mEJ7qmOzSWrcDQ21fRDZ0FTb0ER07S7/RgcJVm5qLAUuE/M1QJlu/iwiIr1PCZaISDdFNpRR5e18ifZmTYn+pdop29J5RfnCCgNLtAOdThEs8GX6N3QdloiI9AElWCIi3RTdWEZtePcSrPC00QDU7NJKgr1l254aRtlO/0Zybrt1RqTEUOCa74WlcyEiIr1PCZaISDfF+ipoiOhegpWQNRaA0m1rezOkIW3D7kpG2U58EXH73WS4WVS4F29CJvUWqZsNi4hIn1CCJSLSDbUNTSS6Cpoik7tVPyNrJNUukjqNYPWa9bsqOci7E0sdA9bxGoEjUuMo9GZpiqCIiPQJJVgiIt1QVtNAklXiolO6VX9kaiybXWD1OukVG3ZX+ROslNGd1huVGsOGpmFKsEREpE8owRIR6YbiskrirQZPbPcSrMSYcAo9GURVapGL3rJlZzEZvp2Q1v5NhpuNSo1lbUM6rmQj+Hx9FJ2IiAxVSrBERLqhtHgHAJEJad0+pjwqm6S6beBcb4U1ZFXXNxJXsR4PPhg2sdO6o1Jj2OQysaY6qNjeRxGKiMhQpQRLRKQbqnb7R6JiUkd0+5i6+FFEuVqoKuqtsIasDUVVTPBs9m9kTO607qiU2FYrCWqaoIiI9C4lWCIi3dCwx3+T2oSMUd0/KCUXgKZirV4XbCu3lzHRNuELi4KUvE7rjkyNYZNPCZaIiPQNJVgiIt3gyrYBEJnS/RGsmGFjACjfrqXag23pljKmha3Hhh8GHm+ndROjw6mJzqTBIpRgiYhIrwtagmVm15uZM7O0wLaZ2R1mts7MlpvZYcHqS0Skr3kqd9BAGMR0/xqspOyD8Dmjcse6XoxsaFq1eScT2IiNmNGt+iPS4tnlzVSCJSIivS4oCZaZjQBOBDa3Kj4FGBv4uRL4WzD6EhEJhYjqHZSGpYGn+382R6Qns4NkGjVFMKj2VNUTu2sJYTTByCO7dcyolBg2ugwoVoIlIiK9K1gjWLcDNwGtl8o6E/iX8/sQSDKzrCD1JyLSZ5xzJNdtpyoq84COG54UzRY3jPCygt4JbIj67/pijvYsx+cJh9xZ3TomNzWGz+rScCUbtKqjiIj0qh4nWGZ2JrDNObesza5soPUNYLYGytoef6WZLTKzRUVFWmlLRPqf0uoGctlGTcKYAzou3Othd/hw4mq29VJkQ9Obq3fwlbAl/tGryPhuHTMqNZaNLhNrrIGKHb0coYiIDGXdSrDM7A0zW9HOz5nAz4BffdEAnHP3OeemOeempaenf9FmRER6zcbNm0mxSsIzOr+hbXuqYkaQ1LgbGmp6IbKhp66xiU2rP2YM2/BMPLPbx+WmxbJJS7WLiEgfCOtOJefcCe2Vm9kUIA9YZmYAOcASM5sBbANaL7eVEygTERlQdm78FICUUZ3fb6k9TYmjoALYswmGHRzkyIaeV1fu5KuNb+KLCMcz6exuHzc6rc29sHJn9lKEIiIy1PVoiqBz7lPn3DDnXK5zLhf/NMDDnHM7gOeBiwOrCR4JlDnnCnsesohI36rfuhyA5FFTDvjY8PTRANQWrQ9qTEORc44nFqzg3LB3sYlnQWz3V3RMjo2gKjKLJrwawRIRkV7Vm/fBegnYAKwD/g58txf7EhHpNXHFyyn1JGFJIw/82KyxgO6FFQzvfr6bGYWPEkc1NvOHB3z8yPQEdoVpqXYREeld3Zoi2F2BUazmxw74XjDbFxHpa1V1jYyqXU1R8iSS/FOhD0hmZjaVLoraXfpQ3xO1DU08+MxL3Bf2Ak2Tv4E3K/+A2xidFsvG4gyylGCJiEgv6s0RLBGRAW/ZmrUcZNsIG9W9+y21NTI1li1uGOwpCG5gQ8wf/7OE66v+hItMwHvK/36hNnLTYvmsPl1LtYuISK9SgiUi0ondy18BIPOwU7/Q8ckx4Wy1DKIrN3ddWdr10HtrOeqTG5no2UzEOfdAbOoXaicvLZYCl4nVV0LlriBHKSIi4qcES0SkA845Eja9SZknkegRh32hNsyMsqhsEuu2g88X5AgHN5/PcddLHzPmtUs5wfsJ7tQ/wriTvnB7zQkWACVadERERHqHEiwRkQ6s2byTGQ0fsyP7JPB88T+XdXEjiXD1ULkziNENboVlNfzfPfdwzkfncpR3DY2n/xXvjCt61GZumv9mwwAUK8ESEZHeEdRFLkREBpN1bz3IBKsja9ZFPWrHUvKgGFzJBiwhK0jRDU4VtQ0888a7ZH78v9xoH1EaNxrPN5/Gsg/tcdtxkWHUx2bT1OjFqxGsL6S2oYl1uypZu7OCnXvKaSjbSWV1FZgXT2waiYnJHJ6bwiEjEokM84Y6XBGRkFCCJSLSjrLqesYW/JvCyFyyxs3uUVvRGWPgc6jYsY4E3eC2XaXV9bz26gskLruPC9yHNHgiKZ1+PUlfuRHCo4PWz8j0BHbuymS4RrC61ORzfLajguXrNlG0diFWtIr06nWMty0cY7tItYr9jil1sSzxjeVP3kOJOux8zjsmn6zE4J0/EZGBQAmWiEg7PnjxIU62TWz90v/BF1ievbXkrDH4nFG5Yx0JQYpvMGjyOT74dA2F7z3MxKIXOdcKqPbEUjL5O6R/5UdExWcEvc/RabGs35HBcC3Vvp/ahiY+2bSHtWs+pXbjf0nevYQp7jPOta14zL/qYnVkMtXJ4wlLP4qGtBGEJ2ZCWBQ4H1TtJnrHGmYUfMDxFQ9Qu/gRnlh8AhEn/JxvzJyMx9Oz95GIyEChBEtEpI09FTXkrbyTwrBscmZf2uP2ctIT2U4qbrc+1Pt8jlXrC9j04dPEb3iZo3xLCLcmtseOZ8eh/4/Moy8jJjK+1/rPTYtlbUMGs0rewZzrcfI8kDU0+Vi+ZQ+rly+kcd18skqXcJh9xlFWBkCtN5aytKlU5J1HwtijsMwpxMQNI6aTNiMDPxQup/G9v3LBqnnseWMBd316A9/61veJjdTHDhEZ/PSXTkSkjQXzbuN0NrHt2LvA2/M/kznJMSzxDSOvbFMQoht46hqb+GTZJxQvfpbMwreY6lvFZHOUeNPYctAljDjuWwwfPrlPYslLi+U9l4k1VENFISQM75N++wOfz7FqexmrVnxCzdq3GFb8MdNZyeFWDkBpVBY1WcdQPW42MWO+RNSwCUR5vuB1VFn5xJ17D67wu7i53+GHu37NM7d/wsyr7mZYUlwQn5WISP+jBEtEpJVlqz/jmC1/ZX38NMbMvDAobUaFeykKy2JK9ZKgtDcQlFXX88nC+dQsf54xxe9wpPnvA7YtIo+1o75N9hFfJ2X0dFJ6sDrjF5GXFsvDrVcSHMQJlnOO9UVVLF+xjMo1b5Oy60OmuRWca3sAKItIpzLrWKomfpnY8ceRlDyKpCDHYFn5pP1wPlvn/YizP3+ERXdspPHKeQzPHPiLvTQ0+di2q5idm9dSU1RAffkumip34akuJqx2D15fPV7XgNdXD85RaxE0emNwYdE0RCZRH5NFZOoIEjLHkJE3kTEZSXg1jVJkUFCCJSISUF5TR/0T3ybCGsn45l1BnT5WETuC+Mo3oa4CenEKXChtKy5j5fsvYJ+9zOTK9znWSmjCw6a4KXw+9puM/NI3yB52ENkhjHFkSsy+98LK69kCJv3Nnqp6Pli9iR3LXiNh27tMb1zC1zz+mypXepMozTyKsoOPJ3HC8SSmjiGxL6ZIhkWSc8HdbHojn0MW/JTCe49n+wWPM/ygKb3fdxA0NDayaf1qdq37hLptK4gqW0d8zVYymnaQa2XktqlfTzgVnkQaPJE0WThNYeEYRoSrJayphoiGWmKrK/HscbANWA51LozPyaYoejR1qROJGXUooyYdyfDhOdgQnsYqMlApwRIRwf9t/1v3/5KzfMvYNPN3jBo+IajtNyWOgkpgTwFkDowPll1xzrG6YBsbP3iW2I2vcVj9Qk60GmqJYHPKUdRNPo2RR3yN0XFpoQ61RVS4F09iNo114YQNgpUEm3yO5VtKWPXJf/F9/gYHVSzkBPuMCGuizqIoyjySkoN/QPKkE4gbNoG4EH5YH3XCd9iQPJqk/1xG2CMnUXjGP8g67NSQxdOe6qpyNn76ARUbFmK7VpFUsY6cxk0cZHUcFKiz05NOaWQO2+OPZWdKLtHDxpCQOZqEtCwiE4YRERlPalevc1MDVO6kqmgTe7asoXrrp3iL1nBw5QrSt73tT7z+CztJZWfseBqHTSZ5zHRyJh5BePLIIX3toMhA0OMEy8x+AHwPaAJedM7dFCj/KfCtQPkPnXOv9rQvEZHe8uabL/PVon+wLv3LHHTC1UFv35s6GrZB4+4NhA3gBKuxyccnq9awY+EzpG17ncObljPRmiizRLYPP5HqQ88ic+rJjIvobCmE0BqVnsD27ZmMHKArCVbUNvDeqs1sX/wi6dve5EvuEw4NLEyxK34se0ZfQdrUrxI56khywiJDHO2+Rh/+FdbFvQJzzyf3+QvYtecWhn35ByGJxTU1snPDcgpXLaBp8yKSSz9lVGMBk8wHQAkJFEaOZlXamYRlTSZt9CFkHXQoGTGJ9Hh9S284JOYQm5hD7EH73rqhoWI3W1d/RMm6Rbgdy0mtWMPIDR/g3XgfvAEVFs/u+PE0pE8heuShDBs3ncj0gyAsoqdRiUiQ9CjBMrPjgDOBQ5xzdWY2LFA+ETgPmAQMB94ws3HOuaaeBiwiEmwbtxUy7r1rKQ1LJe+y+3vl2+HYrLGwHCoK15LcN+s5BE1Dk48lSxdT8vGTZO94i+msBWBX2HA2jrqQjCPOIWncLBK/6IIIfSwvLZa1W7IYUfQZA2UcYFd5Le8tXU3psv+QWzSf4205UdZAtSeOkuFHUzXlFGInnsiw+MxQh9qlg8ZPZt23XuO//7yQo9/7BbuL1pD2jT/7k47e4hy1JZvZtmIBFes/InrXMnJq15BJLZlAuYthU+R4FmVeTHTeEWRPmkla1ihSei+iDoXHp5E346vkzfhqS9nO3cWs+/QjSjcsImzXCoaXfs64soeJXP8AvA3llkDpec8zcnzPb8gtIj3X0xGsq4HfO+fqAJxzuwLlZwKPBco3mtk6YAbwQQ/7ExEJqvpGHxv+9T2OtV3sOedZvLHJvdJPVkYmJS6Oup0DY1pafaOPhUuXsWfhPEbvepUj8I/2bIoaz2djrmXkUV9nWPZkhg3AqUq5qbGsaMzhyyWLoL4a+ulo25aSat76eDmNnz5Ffvl8zrbP8ZijLCqTsjHfJPzwrxGTN5OY3kxMeslBI7LwXv0Mj9z7Qy5c8wg77lxFxpy/YFn5wemguoSSdQsp+uwD2LaE9PIVpPhKGAPUOy/rvaNZknQyNmIaww6eyejx+UwJ679XTWSkpZJx3KlwnH9KZWOTj4JdZWxft4yajR/ypQ1/puGp7+B+/D42AP9/EBlsevrXZBww28xuBWqBG5xzHwPZwIet6m0NlO3HzK4ErgQYOXJkD8MRETkwL869i7Pr3mTdxO9x0MRje62fESkxbHYZZOzZ2Gt99JRzjuVr1rJlwb/J2fYys/gMgM1RB/PZ+J8w6uhvMip1VIij7Lm89Fge843EnA+K1kD2YaEOqUVxZR1vLl7FnkVPkV/6Jhd5VuMxR1H8OEoOvpbUaWeTmJnfN4tT9LK8YQkkX38f/3hgPOfsugt379EUjzqF1NnfxkYfA90ZEXUOqnZTt2M1u9Z+RN2mRSSUfMqwhm2kACnARpfJiuip1A6bSsLYoxg9+QgmJCf29tPrVWFeDwdlJXNQ1rEw+1jeeSaZY5bdxLLHfsMhF/w21OGJDHldJlhm9gbQ3pyDnweOTwGOBKYDj5vZ6AMJwDl3H3AfwLRp09yBHCsi0hMfL1vO8et+x+bYSRx0zi292ldmQhRLyCC3sqBX+/kiCnaWsvztx0n//DFmNC7hEHNsixzD+vE/YsSsCxk5bEyoQwyqvNRY1rjAF3o7V4Y8waqsa+TNTzdR+OETHLzrZc62Twm3JvbEjaIi/3oSp80hPX1cSGPsLUkxEXzruz/h2Q/PoOKNP3JGwWvYppeo9cZRNewwIjLG403MJizCfy1ZTXUl9WU7qC/bCWVbSKzcSJyvnEhgBLDdpbDaO5YP004lYsThDJ94FAfnjSQvrG9vB9DXZp95JR+sfZHpa+9m48IvkTejfy0eIjLUdJlgOedO6GifmV0NPO2cc8BCM/MBafjXvxnRqmpOoExEpF8oq6zF++xVhJuPYZf8Kyg3FO6M12Psicwmvu5DaKwP+QXpVXWNvPXBR9QtfIijq17lDCulxJPK2rFXMPLYS8nOGWAXih2AnORotlsG9Z4oInauDEkMzjk+LtjD/Hfnk7l+HmfYeyRZFaXRWZRPvIrUI84nOWPykFgtzsw4+6hJ1E67n2c/3sD2hc+QUfwhh237nJHbPyLG6lrqRgDVLpIal8AOUlkccSTVSWPwDDuYYWMPZ+K4sRwTHxW6JxMiHo8x9lv/ZPPdx5L20hWUZLxByqiJoQ5LZMjq6SeKZ4HjgLfNbBz+v327geeBf5vZn/AvcjEWWNjDvkREgmb+g7/kTLeSLUffxoiMg7o+IAjqk8bgLfL57780LLjLwHfXys1FLH/zUXILnuR0+5QmPGxJm0nJzCtIOeQ0Uno50ewPwrweRqbGsaU+jzE7V/Rp33uq6nnu488p+nAuX65+mZs862j0hlOWezK+WVeQlHc09PHNl/uLqHAv531pLHzpJipqG1hdWMGLRZU01JRRV1+POUdifDzxiUlkJUaRPyyOGeEDY2GVvpCWlkbxuXNpfOwU6h86i4orXyI+s2/+tonIvnr6L+k/gX+a2QqgHrgkMJq10sweB1YBjcD3BuIKguWlxZQWbcPX2EBjYwOuqQFfYwPO14BrasL5mnA+Hz7n/93y07LdhHO+Vo8dBMpwPnAOw+e/DgDYd36ktVO2l2tVZ+8h7X3T2X6d5lIXeLTvodamejvt7tdX62Nsb7udhmLt7LR9mnZtDmo3HrO2tfapYu3G27b/Vn22edH3Owf77d+3oO3xXRzerRjaHtVVjPsf7rrY38XxXbTf03i76nG/4w/wNW673VBZwqlF97M2/QTGHXdF540FUcTwyVAE9ds/JaIPE6yqukbmv/9f6j9+gNnVb3C+lVMSkcG2ydcx/NgryE3M6bNY+otDcpJYtiab0TsXY8716kiRc46PNpbw3ruvk7P+Cc7xvE+81VCWMJr6I39LxKHfJDU2tdf6H4jio8KZkZfCjLxQrOM3cI2fMIWFX3mAca9fQt19J1J/8XOk5g7c20L0BuccdXV11NZUUlddSV1NJfW11TTUVtJYW01TfTW+xvq9n/ma6nFNjfiaGnBNjdDk32e+Rv+Pa2r1Oc7t/QfKOXC+wL8/gXIH4NvnM4uZ4cwT+BtkYIEvWPYrs71lbfb5H/q/bHDm8X++McOaj/N4WtW1vW1gWGBf83GudX+eQB97g/Uf02rTdWO7uY22n+Gat23fgtavTsujmtgc8iZNJyNhYIxQ9yjBcs7VAxd2sO9W4NaetB9qq1/9O0es/l2owxCRXrDLm86oS+7t0ylY6bn5NC71UFqwjGFTz+31/lZu2snKNx8hb9MTfNVW04iXrRnHEn30laRM/Er3FhEYpA4dmcTC5bl8zb0BxesgbWzQ+yiurOP5hasp++jfnFDzKjd6CmgIi6R67Okw69skjjhiSEwBlL41Y9ZX+NAzl4NevYioB7/CpuP+wKhjLg51WEHhnKOmrp6y4p1UFm+ntnQHtZUlNFSV4mrKoK4cqyvHW19BeGMlEY2VRDZVEu2rIsrVEuXqiKKOKPMRrI/pTc6flPh/mu3dbv6iuPVvZ4ZzBFIPfy1PSyv4v3wHPM2/TUsUPNB4Ertj/8xp+cNDHUq3DP65ID2QdejJLIpOxMLC8XgjMG845g0DbzgeTxh4vJjHg6f5t3nweL2YeTCPF4/Hg9frAWt+7AXzl5nHG/iGoNW3EC3/bfNGMtr5yr71dwTt7QeHr/VGS7stNVu+ZWn/GLdPeavHvlbtttu32/94t+8xrt0hCNfmmPZGQVxLXfD/YdovzlYF+263Kt+nHzBz7P+tyl77fQTqan+7Ze2NxnXWx37jcl0c33n7XcZ3wP11vr+rDruKd//vsTqPrzt9tN5MzRiDNyq+3VB7y9jsVNa5bBK3L+u1PqrqGnl3wTs0fPwgR9e8ySSrYndENlvzbyL72G+ROwDuk9QXpo5I5n5fYBRx4ztBS7B8PscH63fz0bsvkbvpSc6zD4m2ekqTDqb+qD8SMfVcEqOTgtKXSEeO/NIxrE17hZq5l3HI2z9g9dKnGXnu/xKbNT7Uoe3H53OUVNZQvGs7FcXbqS7ZTn3ZTnwVO/FUFxFZW0xMQzEJTXtI8pWSQjlZHSQcPmdUWzRVFkONJ5Zabyw1EWlUhOfSFB6LLywawqIhIgYLj8bCY/BExOCJjCYsMpawyBi8kTF4wiIIC4/AG+b/CQuPICw8nLCwCMIiIggLi8AbHoHHG4a3D76ocs7h8zmc8+Hz+fbOjnL7lvl8zSNlTfvWxwc+h/M5HE2Ber7ALCyHOX9bBH4bzv9Zr2UEriUQ9v2Mt3cOjz9h3He79ec6h8Oc26+9vZ/HfHvbaecf+COjUsgamdbDV7LvKMHqxMhxUxk5bmqowxCRQSI3NYYnGcdZxR+BrymoI0irNhWy+o2HGLP5KU6xtdQTxrbMLxN27HdIG3/ckL2upyMThydQFjWCPd5hJH/+Bkzv2VTRooo6/vPhCqo+foSTal/lR55t1IXFUHvwN4ieeQVJww/VaJX0qXHjJlJ2/Xxee+SXzCz8FxH3HsWa1ONJmnUFmfkn9PrCPrV1dRTv2k5Z0TaqS7ZTV7qDpoqdWFURYTW7iaovJq6xhBRfKSlUkNZO0lRHBKWeZCrDU6iNzmFr1FQ2xaRjcel4EzKJTMggNimN2IQU4hJTiIxJJM7jIa5Xn1nfMzO8Xv+YlgwMSrBERPpImNfD7pRpRJW+CTtXQNYhPWqvuq6BBe++QdPifzGz5m0mWg07I0ey5ZCfk3Ps5eTFDpxv+/qa12McPyGTF1ZN58J1r2E1eyD6wG4y3djkY/7qHaxc8Cxjtz3LBZ7FRFojJan5NHzpJiLzv05k5GD7qCcDSWJcNCdedRsrP7uSbS/+nhm7XyHpudepeC6WzYmH4zIPITJ7Cqk5Y0lKG44nNq39xMvXRH1NJZWVZdSUlVBbtouash3UlhXRWFEEVbvx1hYTWVdCfGMJib49JLlKss3tdxPU2uakKSyF2riRbI0+jK1xwwhLyCAyKYu41CwS07OJTsoiMjKeDDMy+uTVEgkeJVgiIn0oZvxx+D78AzWf/ofYL5BgOef49PMNbJn/IGO3PcuJtpk6Itgy/EQ8x11FxthZGinpptMOyeKPn8zkosgXYfGDMOu6bh23blcFry/4kIhP53KK721OsBKqIxOpmXgpkTMvJyVjUu8GLnKAJo0fx6Tx/2T77hI+efdJwja8yajSTxhZ9i6B+4kD/il29RaOD0/gx4iknkgaiMB/49P2VBBNhSVSEZZMWfRIiqMPw8Wm44nLIDI5g5iU4SSmZZOUnk1UVDyZ+hslg5y1fy1MaEybNs0tWrQo1GGIiPSaNTvK2XP3SUyMryTxhqXdnia4ffcelr79JLGfPc1RDR8RYU1sipqAO/RCRh19Iabreg6Yz+c4+S/v8v8qb2ZG2Drs6v9C0oh2624rreG9hYupWfY0h1bMZ6pnPT48FGfOInnWtwg7+BQIi+zbJyDSA41NPrbt3E3xxk8o37mZpspdhNXsxjXU4HFNeM1/LU6jRUBELJ6IWMKiYvHEJOGNSyMmKYPE1ExS0rOIio4J9dMRCQkzW+ycm7ZfuRIsEZG+9Yf/+x03VfyehtPuInzaRR3W21pUwqr3niVy7fMcVvMh8VZDuSeRwlFnkH38lcSNyO/DqAen/67bzU/vf55Xon5OeEI6Yaf+L4w+looGWLvuczav+hg2vc9BVYuZ4ikAoCh+AtGHnEPc9G9CYtsJUCIiMlQowRIR6ScWrN1F1CNfZYp3M74z7iR68hkQHkVZ2R7WrVzEntXvkLzjfSbWryDa6im3eLZkfJn0I85jWP5Xev3i9KFm7sLNPP38M/zZ+xeyrXi//Q2EUZQ4hahJp5Iy7RuQkheCKEVEpL9RgiUi0o88+OoHHP7+VUzxFNCIl1oiiKOmZf827wiKM2eScdjpZEw9CbzhIYx28NtWWsMLSwoI3/QOObWfkxwJccNGMXJcPrF5R0B4dKhDFBGRfkYJlohIP7NiSzGr33uSpOJPiaKWyIR0YnMmM/qQ2USnjQx1eCIiItKJjhIszTMREQmRySNSmfzN74Q6DBEREQki3bFMREREREQkSJRgiYiIiIiIBIkSLBERERERkSDpV4tcmFkRsCnUcbSRBuwOdRDSZ3S+hw6d66FD53po0fkeOnSuh5b+eL5HOefS2xb2qwSrPzKzRe2tDiKDk8730KFzPXToXA8tOt9Dh8710DKQzremCIqIiIiIiASJEiwREREREZEgUYLVtftCHYD0KZ3voUPneujQuR5adL6HDp3roWXAnG9dgyUiIiIiIhIkGsESEREREREJEiVYIiIiIiIiQaIEqxNmdrKZfWZm68zsJ6GOR4LHzEaY2dtmtsrMVprZNYHyFDN73cw+D/xODnWsEhxm5jWzT8zshcB2npl9FHh/zzOziFDHKMFhZklm9qSZrTGz1WZ2lN7bg5OZXRf4G77CzOaaWZTe24OHmf3TzHaZ2YpWZe2+l83vjsB5X25mh4UucjlQHZzrPwb+ji83s2fMLKnVvp8GzvVnZnZSSILuhBKsDpiZF7gbOAWYCJxvZhNDG5UEUSNwvXNuInAk8L3A+f0J8KZzbizwZmBbBodrgNWttv8XuN05dxCwB/hWSKKS3vAX4BXn3MHAIfjPu97bg4yZZQM/BKY55yYDXuA89N4eTB4ETm5T1tF7+RRgbODnSuBvfRSjBMeD7H+uXwcmO+fygbXATwECn9fOAyYFjvlr4HN7v6EEq2MzgHXOuQ3OuXrgMeDMEMckQeKcK3TOLQk8rsD/ASwb/zl+KFDtIeCskAQoQWVmOcBXgX8Etg04HngyUEXnepAws0TgaOB+AOdcvXOuFL23B6swINrMwoAYoBC9twcN59y7QEmb4o7ey2cC/3J+HwJJZpbVJ4FKj7V3rp1zrznnGgObHwI5gcdnAo855+qccxuBdfg/t/cbSrA6lg1sabW9NVAmg4yZ5QKHAh8BGc65wsCuHUBGqOKSoPozcBPgC2ynAqWt/nDr/T145AFFwAOBKaH/MLNY9N4edJxz24DbgM34E6syYDF6bw92Hb2X9bltcLsceDnwuN+fayVYMqSZWRzwFHCtc6689T7nv4eB7mMwwJnZacAu59ziUMcifSIMOAz4m3PuUKCKNtMB9d4eHALX3pyJP6keDsSy/xQjGcT0Xh4azOzn+C/teDTUsXSXEqyObQNGtNrOCZTJIGFm4fiTq0edc08Hinc2TykI/N4VqvgkaGYCZ5hZAf6pvsfjv0YnKTCtCPT+Hky2Aludcx8Ftp/En3DpvT34nABsdM4VOecagKfxv9/13h7cOnov63PbIGRmlwKnARe4vTfv7ffnWglWxz4GxgZWI4rAfzHd8yGOSYIkcA3O/cBq59yfWu16Hrgk8PgS4Lm+jk2Cyzn3U+dcjnMuF//7+C3n3AXA28DXA9V0rgcJ59wOYIuZjQ8UfRlYhd7bg9Fm4Egziwn8TW8+13pvD24dvZefBy4OrCZ4JFDWaiqhDEBmdjL+6f1nOOeqW+16HjjPzCLNLA//wiYLQxFjR2xvMihtmdmp+K/d8AL/dM7dGtqIJFjMbBbwHvApe6/L+Rn+67AeB0YCm4BznXNtL7CVAcrMjgVucM6dZmaj8Y9opQCfABc65+pCGJ4EiZlNxb+gSQSwAbgM/xeKem8PMmb2G2AO/ulDnwBX4L8WQ+/tQcDM5gLHAmnATuDXwLO0814OJNl34Z8mWg1c5pxbFIKw5Qvo4Fz/FIgEigPVPnTOXRWo/3P812U14r/M4+W2bYaSEiwREREREZEg0RRBERERERGRIFGCJSIiIiIiEiRKsERERERERIJECZaIiIiIiEiQKMESEREREREJEiVYIiIiIiIiQaIES0REREREJEiUYImIiIiIiASJEiwREREREZEgUYIlIiIiIiISJEqwREREREREgkQJloiIiIiISJAowRIR6WfMLNfMnJmFhToWGRrMbKWZHRvqOEREBgMlWCIiMuCZ2T1mVhn4qTezhlbbL4c6vv7OOTfJOTc/mG2aWYqZzTOzYjPbbWaPmllCMPsQEemPlGCJiASZRp76nnPuKudcnHMuDvgfYF7ztnPulOZ6A+ncDKRYO/BbIBnIA8YAGcDNoQxIRKQvKMESEQkCMyswsx+b2XKgyszCzOxIM/uvmZWa2bLWU7DMbL6Z/c7MFppZuZk9Z2YpHbR9mZmtNrMKM9tgZt9ps/9MM1saaGe9mZ0cKE80s/vNrNDMtpnZb83M28XzGGNmb7UZdUhqta/EzA4LbA83s6Lm52VmZwSmmpUGnt+ENq/PDWa23MzKAiMbUQf+Sh+4Ds6NM7ODWtV50Mx+22r7tMBrWho4h/nd7OtYM9tqZj8LvH4FZnZBq/1fNbNPAudqi5nd3Gpf89TQb5nZZuCtQPkTZrYj8Lq9a2aT2sT9VzN7OTBa976ZZZrZn81sj5mtMbNDu/kandCd53gA8oBnnXPlzrky4BlgUhfHiIgMeEqwRESC53zgq0AS/m/rX8T/LX4KcAPwlJmlt6p/MXA5kAU0And00O4u4DQgAbgMuL1VkjMD+BdwY6Dfo4GCwHEPBto9CDgUOBG4oovnYMDvgOHABGAEgVEH59x64MfAI2YWAzwAPOScm29m44C5wLVAOvAS8B8zi2jV9rnAyfg/eOcDl7YbgNmsQGLT0c+sLp5De1rOjXOusdMXwJ+Q/BP4DpAK3As8b2aR3ewrE0gDsoFLgPvMbHxgXxX+854UiOdqMzurzfHH4H/tTwpsvwyMBYYBS4BH29Q/F/hFoM864INAvTTgSeBP3Yy7XWb2k87ORyeH3g2cZmbJZpYMnBN4LiIig5oSLBGR4LnDObfFOVcDXAi85Jx7yTnnc869DiwCTm1V/2Hn3ArnXBXwS+Dc9kaYnHMvOufWO793gNeA2YHd3wL+6Zx7PdDPNufcGjPLCPR1rXOuyjm3C7gdOK+zJ+CcWxdoq845V4T/w/kxrfb/HVgHfIQ/Mfx5YNcc4MXAsQ3AbUA08KU2r89251wJ8B9gagcxLHDOJXXys6Cz5/D/27vv8Liqa+HDvz0z6hoVqxdLcpHkJveKbbAdauglQEIngY92KSHJhSQQIJcUyA03lOAAJtTQwTi0UGxjG7CN3Lsk27IlW7230bT9/XFGsmxJlmyNNCrrfR49zGn7LM3RmLNm77N2J9pem67cDPxDa71Oa+3SWr+MkbjMPoHzPeB5D7/GSLQvB9Bar9Rab/Ncq60YSelpxxz7kOeaNXmOeVFrXae1bsZIdicppcLb7P+B1nqD1tqG0Utk01q/orV2AW9hJNcnTWv9p+Ndj+McuhHwByo8Py7g7z2JRQghBgJJsIQQwnsK2rxOBX50zDf98zCSko72PwD4YfQ6HEUpdY5Saq1neF41RuLUst9wYG8HsaR62itqc/5/YPSCdEopFaeUetMzpLAWeK2DmJ4HJgBPeW76wejxOtCyg9ba7fn9ktocV9zmdSMQerxYvKyg611apQL3HnPthmP8jt1R5UmaWxxoOVYpNUsptcIztLIGuIX2729rrEops1LqT8oY+lnLkd7JtseUtHnd1MFyX77Pbb0N5ABWjN7XvRh/T0IIMahJgiWEEN6j27wuwOihavttf4jW+k9t9hne5nUK4ADK2zboGZb2HkaPUJynx+ATjKF8LecZ1UEsBRi9LtFtzh+mte7qGZg/eH6PLK11GEZPXMu5UEqFAv8HLAEeUkeeGzuMkZi07Kc8v9+hLs7XjlJqvjpSAbCjn/ldt9KOPma5EQhusxzf5nUB8Ogx1y5Ya/1GN88VqZQKabOcgvH+APwLWAYM11qHA4tp8/52EOtPgAuB04FwIM2z/thjeo3nebJOr8dxDp2M0RPYoLWux/hdf3ic/YUQYlCQBEsIIXrHa8D5SqmzPL0QgZ4CCMlt9rlaKTXO8zzTI8C7nmFdbfkDAUAZ4FRKnYPxLFWLJcANSqkfKKVMSqkkpdQYrXURxlDC/1VKhXm2jVJKHTsc7VhWoB6oUUolYTzb1dbfgGyt9c8whr4t9qx/GzjXE4cfcC9GgvdtV2/UsbTWq9tUAOzoZ/WJttmBzcBPPNfmbI4epvc8cIunt0kppUKUUZzCCq2FJV7qov2HlVL+nmTwPOAdz3orUKm1tnmen/tJF+1YMd7HCoyE8A8n8Dt6hdb6D8e7Hsc59HvgZ0qpIKVUEMbQy619E7UQQviOJFhCCNELtNYFGD0Pv8ZIjgowkpW2/+6+ilGIohgIBO7soJ06z/q3gSqMG/Jlbbavx1P4AqgBvuZIT9K1GAnaTs+x73L0EMWOPAxM9bT1MfB+ywal1IUYRSpu9az6OTBVKXWV1noPRm/XUxi9cOcD52ut7V2cz1fuwoixGrgKWNqyQWudDdwEPI3xvuVxdEGO4cA3x2m72HPcYYyCFLdorXd7tt0GPKKUqgMexLiux/MKxhDDQxjXcW1Xv1g/ciNGj1shRvwjMYp+CCHEoKa0PnbUhBBCiN6mlFoJvKa1fsHXsYju81RF3AJM9BTzOHb7AozrmnzsNiGEEEPDQJ/EUAghhOgznh65sV3uKIQQYsiSIYJCCDHEKKUWd1KwYHHXR4uBSCmVcpxCFSm+jk8IIQYTGSIohBBCCCGEEF4iPVhCCCGEEEII4SX96hms6OhonZaW5uswhBBCCCGEEOK4NmzYUK61jjl2fb9KsNLS0sjOzvZ1GEIIIYQQQghxXEqpAx2tlyGCQgghhBBCCOElkmAJIYQQQgghhJdIgiWEEF2QaqtCCCGE6K5+9QxWRxwOB4WFhdhsNl+HIgaYwMBAkpOT8fPz83UoYgDbXVzL/yx+mUt/MJeL50/1dThCCCGE6Of6fYJVWFiI1WolLS0NpZSvwxEDhNaaiooKCgsLGTFihK/DEQPYp5vyeY3fUrvcCvMLfR2OEEIIIfq5fj9E0GazERUVJcmVOCFKKaKioqTnU/TcoQ0AhOk6bMU5Pg5GCCGEEP1dv0+wAEmuxEmRvxvhDdGVG1pfl+7+1oeRCCGEEGIgGBAJlhBC+Ep4cxG1KoxmbaHx4BZfhyOEEEKIfk4SrG5QSnHvvfe2Lv/lL3/hoYce8l1Abaxdu5ZZs2YxefJkxo4d2xrXypUr+fbbk/+2/cCBA0ydOpXJkyczfvx4Fi9e7KWIhRhYgl31NPkPYy/J+Ffs9HU4QgghhOjn+n2Ri/4gICCA999/n/vvv5/o6Givtau1RmuNyXTyee51113H22+/zaRJk3C5XOzZswcwEqzQ0FBOOeWUk2o3ISGB7777joCAAOrr65kwYQIXXHABiYmJJx2rEANRqK7D7hdGkSuCSQ25vg5HCCGEEP2c9GB1g8Vi4eabb+aJJ55ot62srIxLL72UGTNmMGPGDL755hsAHnroIf7yl7+07jdhwgTy8/PJz88nMzOTa6+9lgkTJlBQUMAvf/lLJkyYQFZWFm+99RZgJEgLFizgsssuY8yYMVx11VUdzsVTWlpKQkICAGazmXHjxpGfn8/ixYt54oknmDx5MqtXrz5unNdccw1z5swhPT2d559/HgB/f38CAgIAaG5uxu12d/jePPnkk4wbN46JEydy5ZVXAlBZWclFF13ExIkTmT17Nlu3bm0913XXXcf8+fNJTU3l/fff51e/+hVZWVmcffbZOBwOAB555BFmzJjBhAkTuPnmm9v93m63m7S0NKqrq1vXpaenU1JScrzLKMQJ01pj1fXY/cJoDE4i0lkCLqevwxJCCCFEPzagerAe/vcOdh6u9Wqb4xLD+N3547vc7/bbb2fixIn86le/Omr9XXfdxT333MO8efM4ePAgZ511Frt27TpuW7m5ubz88svMnj2b9957j82bN7NlyxbKy8uZMWMGp556KgCbNm1ix44dJCYmMnfuXL755hvmzZt3VFv33HMPmZmZLFiwgLPPPpvrrruOtLQ0brnlFkJDQ/nFL34BwE9+8pNO49y6dStr166loaGBKVOmcO6555KYmEhBQQHnnnsueXl5PP744x32Xv3pT39i//79BAQEtCY8v/vd75gyZQpLly5l+fLlXHvttWzevBmAvXv3smLFCnbu3MmcOXN47733eOyxx7j44ov5+OOPueiii7jjjjt48MEHAbjmmmv46KOPOP/881vPaTKZuPDCC/nggw+44YYbWLduHampqcTFxXV5HYU4Ec1ON+GqgQb/cFz+KZhr3VB3GCJSfB2aEEIIIfop6cHqprCwMK699lqefPLJo9Z/+eWX3HHHHUyePJkLLriA2tpa6uvrj9tWamoqs2fPBmDNmjX8+Mc/xmw2ExcXx2mnncb3338PwMyZM0lOTsZkMjF58mTy8/PbtfXggw+SnZ3NmWeeyb/+9S/OPvvsDs95vDgvvPBCgoKCiI6OZuHChaxfvx6A4cOHs3XrVvLy8nj55Zc77CGaOHEiV111Fa+99hoWi6X1d7rmmmsAWLRoERUVFdTWGonxOeecg5+fH1lZWbhcrtZ4s7KyWn+/FStWMGvWLLKysli+fDk7duxod94rrriitbfvzTff5Iorrjjuey7EyWi0uwijAWdAOP7Rxnxq9cV7fRyVEEIIIfqzAdWD1Z2ept509913M3XqVG644YbWdW63m7Vr1xIYGHjUvhaL5ahhdW3nYwoJCenW+VqG6IEx/M/p7Hho0qhRo7j11lu56aabiImJoaKiot0+ncUJ7cuZH7ucmJjIhAkTWL16NZdddtlR2z7++GNWrVrFv//9bx599FG2bdvWrd/JZDLh5+fXei6TyYTT6cRms3HbbbeRnZ3N8OHDeeihhzqcy2rOnDnk5eVRVlbG0qVL+e1vf3vc8wpxMpqam0lSTeiACELjRwNQdTiX0DELfRyZEEIIIfqrHvdgKaWGK6VWKKV2KqV2KKXu8qwfppT6QimV6/lvZM/D9a1hw4Zx+eWXs2TJktZ1Z555Jk899VTrcstQuLS0NDZu3AjAxo0b2b9/f4dtzp8/n7feeguXy0VZWRmrVq1i5syZ3Y7p448/bn1GKTc3F7PZTEREBFarlbq6ui7jBPjwww+x2WxUVFSwcuVKZsyYQWFhIU1NTQBUVVWxZs0aMjMzjzq32+2moKCAhQsX8uc//5mamhrq6+uZP38+r7/+OmA8SxYdHU1YWFi3fp+WZCo6Opr6+nrefffdDvdTSnHxxRfz85//nLFjxxIVFdWt9oU4Ec11VQDowHCikkbg0orm0o4/y0IIIYQQ4J0hgk7gXq31OGA2cLtSahxwH/CV1jod+MqzPODde++9lJeXty4/+eSTZGdnM3HiRMaNG9dazvzSSy+lsrKS8ePH8/TTT5ORkdFhexdffDETJ05k0qRJLFq0iMcee4z4+Phux/Pqq6+SmZnJ5MmTueaaa3j99dcxm82cf/75fPDBB61FLjqLE4xhfgsXLmT27Nk88MADJCYmsmvXLmbNmsWkSZM47bTT+MUvfkFWVhYAP/vZz8jOzsblcnH11VeTlZXFlClTuPPOO4mIiOChhx5iw4YNTJw4kfvuu4+XX365279PREQEN910ExMmTOCss85ixowZrdsWL158VNxXXHEFr732mgwPFL3GUV9pvAiKIDEyjCKioPqAb4MSQgghRL+mOqpM16MGlfoQeNrzs0BrXaSUSgBWaq0zj3fs9OnTdXZ29lHrdu3axdixY70aozjioYceOqoYxmAjfz+iJ7Znf82Ejy5g56mLGbvwSr5/aA4JVj+G/2K1r0MTQgghhI8ppTZoracfu96rRS6UUmnAFGAdEKe1LvJsKgY6LPGmlLpZKZWtlMouKyvzZjhCCNEjDlsjAJbAYJRSVPolYG067OOohBBCCNGfea3IhVIqFHgPuFtrXdu2UILWWiulOuwq01o/BzwHRg+Wt+IR3fPQQw/5OgQh+i1ncwMAfoHBANQHJxFRuxyczWAJON6hQgghhBiivNKDpZTyw0iuXtdav+9ZXeIZGojnv6XeOJcQQvQVV7PRg+UfGAqAMzTZ2FB7yFchCSGEEKKf80YVQQUsAXZprf/aZtMy4DrP6+uAD3t6LiGE6EuuZqOSpn+gMbWCOdJIsFxVBT6LSQghhBD9mzd6sOYC1wCLlFKbPT8/BP4EnKGUygVO9ywLIcSA4bIbQwQDgowEKzA6DYDaEinVLoQQQoiO9fgZLK31GkB1svkHPW1fCCF8RTuMHqzAYGOIYHhcKgCNZQcY8BP7CSGEEKJXeLWK4GC2dOlSlFLs3r27033y8/OZMGGC1865Z88eFixYwOTJkxk7diw333wzYEwS/Mknn5x0uzabjZkzZzJp0iTGjx/P7373O2+FLMSgou3GM1h+AUEAxEdFUKbDccgQQSGEEEJ0QhKsbnrjjTeYN28eb7zxRofbnU5nj8/hcrmOWr7zzju555572Lx5M7t27eK//uu/gJ4nWAEBASxfvpwtW7awefNmPvvsM9auXduj2IUYjLTDBoDyM6oIJoQHclhHYa4t9GVYQgghhOjHJMHqhvr6etasWcOSJUt48803W9evXLmS+fPnc8EFFzBu3DjASLSuuuoqxo4dy2WXXUZjo/EN+FdffcWUKVPIysrixhtvpLm5GYC0tDT++7//m6lTp/LOO+8cdd6ioiKSk5Nbl7OysrDb7Tz44IO89dZbTJ48mbfeeouGhgZuvPFGZs6cyZQpU/jwQ6OeyEsvvcSFF17IggULSE9P5+GHHwZAKUVoqDHkyeFw4HA4aFtWv8U777zDhAkTmDRpEqeeeipg9H7dcMMNZGVlMWXKFFasWNF6rosuuogzzjiDtLQ0nn76af76178yZcoUZs+eTWVlJQDPP/88M2bMYNKkSVx66aWt709bs2fPZseOHa3LCxYs4NgJqIXoC8rZhAMLmI3R1NZAP0pVNIGNRV0cKYQQQoihymvzYPWJT++D4m3ebTM+C845fv2NDz/8kLPPPpuMjAyioqLYsGED06ZNA2Djxo1s376dESNGkJ+fz549e1iyZAlz587lxhtv5O9//zt33HEH119/PV999RUZGRlce+21PPvss9x9990AREVFsXHjxnbnveeee1i0aBGnnHIKZ555JjfccAMRERE88sgjZGdn8/TTTwPw61//mkWLFvHiiy9SXV3NzJkzOf300wFYv34927dvJzg4mBkzZnDuuecyffp0XC4X06ZNIy8vj9tvv51Zs2a1O/8jjzzCf/7zH5KSkqiurgbgmWeeQSnFtm3b2L17N2eeeSY5OTkAbN++nU2bNmGz2Rg9ejR//vOf2bRpE/fccw+vvPIKd999N5dccgk33XQTAL/97W9ZsmRJa89ciyuuuIK3336bhx9+mKKiIoqKipg+vd0k2UL0OuW0YcMfvzbr6gLisTZvBa2hgy8mhBBCCDG0SQ9WN7zxxhtceeWVAFx55ZVHDROcOXMmI0aMaF0ePnw4c+fOBeDqq69mzZo17NmzhxEjRpCRkQHAddddx6pVq1qPueKKKzo87w033MCuXbv40Y9+xMqVK5k9e3Zrz1dbn3/+OX/605+YPHkyCxYswGazcfDgQQDOOOMMoqKiCAoK4pJLLmHNmjUAmM1mNm/eTGFhYWsSdqy5c+dy/fXX8/zzz7cOX1yzZg1XX301AGPGjCE1NbU1wVq4cCFWq5WYmBjCw8M5//zzAaPnLT8/HzCSsPnz55OVlcXrr79+VE9Vi8svv5x3330XgLfffpvLLrusw/dHiN6mnDYc6ugJhW3BiQRqGzRV+SgqIYQQQvRnA6sHq4uept5QWVnJ8uXL2bZtG0opXC4XSikef/xxAEJCQo7a/9ihdh0NvTvWsW20lZiYyI033siNN97IhAkTOkyEtNa89957ZGZmHrV+3bp1XcYTERHBwoUL+eyzz9oV6Fi8eDHr1q3j448/Ztq0aWzYsOG4v0dAwJEbUZPJ1LpsMplan1G7/vrrWbp0KZMmTeKll15i5cqV7dpJSkoiKiqKrVu38tZbb7F48eLjnleI3mJ2NWE/JsFyhydBNcZkw8HDfBKXEEIIIfov6cHqwrvvvss111zDgQMHyM/Pp6CggBEjRrB69eoO9z948CDfffcdAP/617+YN28emZmZ5Ofnk5eXB8Crr77Kaaed1uW5P/vsMxwOBwDFxcVUVFSQlJSE1Wqlrq6udb+zzjqLp556Cq01AJs2bWrd9sUXX1BZWUlTUxNLly5l7ty5lJWVtQ75a2pq4osvvmDMmDHtzr93715mzZrFI488QkxMDAUFBcyfP5/XX38dgJycHA4ePNgusTueuro6EhIScDgcre105IorruCxxx6jpqaGiRMndrt9IbzJ7GrGYTo6wbJEpgDgqDzoi5CEEEII0c9JgtWFN954g4svvviodZdeemmn1QQzMzN55plnGDt2LFVVVdx6660EBgbyz3/+kx/96EdkZWVhMpm45ZZbujz3559/3lpk4qyzzuLxxx8nPj6ehQsXsnPnztYiFw888AAOh4OJEycyfvx4HnjggdY2Zs6cyaWXXsrEiRO59NJLmT59OkVFRSxcuJCJEycyY8YMzjjjDM477zwAHnzwQZYtWwbAL3/5S7KyspgwYQKnnHIKkyZN4rbbbsPtdpOVlcUVV1zBSy+9dFTPVVd+//vfM2vWLObOnXtUUrds2TIefPDB1uXLLruMN998k8svv7zbbQvhbRa3DecxCVZwtDEXlkw2LIQQQoiOqJZej/5g+vTp+thqcbt27WLs2LE+imhge+mll44qhjEUyd+P6InNv59LiL+J9P8+0mP9TW4p018bS/mEG0n60eM+jE4IIYQQvqSU2qC1bleJTXqwhBCiE/5uGy5z4FHrEiKCKdJRuKtlsmEhhBBCtCcJ1iB2/fXXD+neKyF6yk834z4mwUqMCOKwjsJSd8hHUQkhhBCiP+v1BEspdbZSao9SKk8pdd/JtNGfhjGKgUP+bkRP+Ws72nJ0ghXoZ6bCEktQU7GPohJCCCFEf9arCZZSygw8A5wDjAN+rJQadyJtBAYGUlFRITfL4oRoramoqCAwMLDrnYXogNutCaQZtyWo3baGwHjCHOXgcvogMiGEEEL0Z709D9ZMIE9rvQ9AKfUmcCGws7sNJCcnU1hYSFlZWS+FKAarwMBAkpOTfR2GGKCaHC4CsUMHCZYjNAlTkxvqiiBiuA+iE0IIIUR/1dsJVhLQ9knwQmDWiTTg5+fHiBEjvBqUEEJ0pcnhwood5d8+wTJFJEMZ6JoClCRYQgghhGjD50UulFI3K6WylVLZ0kslhOgvmmx2ApQT/NonWAGeubAaSg/0dVhCCCGE6Od6O8E6BLT9ejfZs66V1vo5rfV0rfX0mJiYXg5HCCG6x2ZrAMDcQQ9WeFwaAPWlMtmwEEIIIY7W2wnW90C6UmqEUsofuBJY1svnFEKIHmtuNBIsk39wu23x0dFU6VDslQf7Oqx+qayumb9+vodD1U2+DkUIIYTwuV5NsLTWTuAO4D/ALuBtrfWO3jynEEJ4g721B6t9gpUUacyFRY3MhQXwyL93YF31EPZn5oGt1tfhCCGEED7V689gaa0/0VpnaK1Haa0f7e3zCSGENzg8CZYloH2CFRnsR7GKJqDhcF+H1e84XW5Kd3/LTZZPGOHIo2HFX3wdkhBCCOFTPi9yIYQQ/ZGjuREAS2D7BEspRZ1/HNZmmWx4d3Ed011bANjhTsW54yMfRySEEEL4liRYQgjRAaenB8svMKTD7baQRILd9UN+SNzmgmrmmHZgjx7PJ6bTCK/fCzWFvg5LCCGE8BlJsIQQogOOZqNgg38nCZYOSzJe1A7t57AOVDQwxlSIX/IU6uJmGisPbfBtUP2Iy619HYIQQog+JgmWEEJ0wN1s9GD5dzBEEMAvMgUAe8XQngursryEaFWDislkWOpEXFrhPLzV12H1C+v3VzL54c944YVnoE6GkwohxFAhCZYQQnTA7TB6sAKCQjvcHhKbBkBN8dCeC8tckWu8iMlkZFIMe3UiTQWbfRpTf/G3r3I43/kFPyv8Nc6nZ4O90dch9QtNdhcPLdvBq2sPgNPu63D6lez8SnYcrvF1GEKIHpIESwghOuC2GwlWR1UEAYbFpeDUJprKh/ZcWCF1e40X0elkxIWyS6diLpXZOBqanazfX8m9IZ8CYGmugi1v+Diq/uGlb/N56dv98NHPcf05DfZ97euQ+oX1+yu5bPF3XPbUcqrfvgM2vOzrkIQQJ0kSLCGE6IjD09tgCepwc1JUKMUMw1VV0IdB9S/1zU4iHcW4MUH4cEZEh7BLpxLcVASNlb4Oz6fW51cS7y4myn6YVyJuo8CUBLs/9nVY/cI72QWcF1PONZYvMTsa4JNfgpZn1V5daww3vsX8IRE7X4V/3wkH1/k4KiHEyZAESwghOqDsxjNYBHQ8RDAhPIgiHY2lbugmWIeqmkhW5diC4sDsR4DFTGVoprGxZGj3Yu04VMNck/EeqFEL+dI+AX3gG/AMPR2qSuts7Ctv4KbIbJxYeMZ8NZTvgUMbfR2aT7ndmm/yyrlkSiLXBq5mncpCBw2Ddc/6OjQhxEmQBEsIITqgnI24UZ32YJlNigr/RKyNQzfBKqxqJEmV4w4b3rrOHTfeeFGy3UdR9Q97yxqYFXAQAsNJzZjMt+7xKKcNirb4OjSf+n5/FQDpDRupiJrKcw2nolGQ94WPI/OtnUW1VDbYOTe2nEhnOe/a51CTeibkfQUuh6/DE0KcIEmwhBCiAyZHAzYCwdT5P5MNIcOJcFUM2V6JwqomklQ5lqjU1nXxCSlU6VBcJbt8GJnv5ZXWk2U5CPETmZQSyRb3KGPD4c0+jcvXsg9UMszPQVDlbvzSZlNDKFXhY2H/Kl+H5lObDhqJ5zR2A7DalcUG/5nQXAuF3/syNCHESZAESwghOmB2NNJsCjzuPu6INAB0VX7vB9QPHa6oJYEKAtokWOnxVvJ0Is3FQzfBcrs1+8tqSXHmQ9wEwoP8CI1Jpto8DIo2+zo8n9pVVMsPo4pR2kVE+lysgRZ2+mcZScQQ7qnJKanHGmAhvGorhMZjCk/iq4YRxsbCbN8GJ4Q4YZJgCSFEByyuJuymjocHtvCPMXolGory+iKkfqe+vACz0qjIIwnWqJhQ8txJR8q3D0FFtTaGOYrxd9sgbhwA4xPD2aFHwOFNPo7Od7TW7CmuY0ZQEQCmxElMSo7gm8YUcNmhdOgm5XtK6siIt6IObYKkqYxPCmdtqQkiUmTibiEGoB4lWEqpx5VSu5VSW5VSHyilItpsu18plaeU2qOUOqvHkQohRB/yczdiN3dcor1FeFIGADWHc/oipH7HXeWZZDn8yDNYI2NCyNNJBNiroKHCR5H51t7Sekapw8ZCtFH0IzMulGx7Kro8B1oKqAwxZfXNVDU6yDQVQmAEWOOZmBzOF1UJxg5DtHdPa01OSR3jY/ygIg8SJjEhMZz95Q04EqYO+QIgQgxEPe3B+gKYoLWeCOQA9wMopcYBVwLjgbOBvyulzD08lxBC9Bl/VxPOLhKsxIQkanUQzaVDswfLr67QeBGR0rou2N9CZXCasVC+p++D6gfyjkqw0gHIiLOyzT0Cpd1QvM2H0flOTnE9AIn2/RA7DpRiTEIYe92xuPxCh+zzaWV1zVQ3OpgeUgpoiB3HhKQwtIbikLFQcxDqy3wdphDiBPQowdJaf661dnoW1wLJntcXAm9qrZu11vuBPGBmT84lhBB9KcDdhNNy/AQrJSqEgzoOU3V+3wTVj9Q3O4m0FxsL4clHbdOeXhvKhmiCVVbPOL9idHA0BA8DYEx8GNvdacYORVt9F5wP5ZTUAZrQ2jyIHQPAmHgrGhOVYWOHbIXFnBIj8Rxr8nxhETuWCUnhAGxjtLHusPRiCTGQePMZrBuBTz2vk4C2tYsLPevaUUrdrJTKVkpll5XJNzRCCN/TWhOom3D7HT/BCvQzU2JOILhh6JVqP+SpIGgLjAFLwFHbIuNH0KgD0EM1wSqtZ4xfMSo6o3VdcmQQNX4xNJmtUDY0nzXKLa0nI6gOU3ON0YMFjIgOwd9sYp/faKO0v8vZRSuDz56SOgCSHPlgDoDIEcRaA4gODWB1fRKgZJigEANMlwmWUupLpdT2Dn4ubLPPbwAn8PqJBqC1fk5rPV1rPT0mJuZEDxdCCK+zOdwEq2a0X0iX+9YFJzHMXgRuVx9E1n8UVjWSYirFGZbabtvIWCt7dQLNxbt9EJnv7S2tJ8Vd2Do8EMBkUmTEWTloThmyxRzySuuYH1FuLMQYPVh+ZhOjYkPZ5EgFp21IDivNKa5jWIg/wdW5EJMBZgtKKcYmWNlW5oRhI6B0aE/cLcRA02WCpbU+XWs9oYOfDwGUUtcD5wFXaa2157BDwPA2zSR71gkhRL/XYHcSgg38u06wHGFpWHBC7dD6J66wqokUVYIlemS7baNiQsnTSaiyoZdgVTXYcTeUE+qqgTY9WACZ8Va2OxKNBKv1f5dDg9aa3NJ6pgZ6hpXGjm3dNjbeyuqaOGNhCCafOaV1ZMSFGr+7p2cPIDPOSm5JPTp2HJTs9GGEQogT1dMqgmcDvwIu0Fo3ttm0DLhSKRWglBoBpAPre3IuIYToK43NLoKxgX9ol/uao4wEw162t7fD6leKKqqIp4qAmA4SrFijVHtAYxE01/sgOt/ZW1bPSGWUIT82wcqIs7LFngi2aqgr7vvgfKiiwU51o4N0CiAkFkKiW7dlxltZXx+FNlmgZGj11GityS2pJytaQW1ha88eQEa8lWanm2prOlTuA3vjcVoSQvQnPX0G62nACnyhlNqslFoMoLXeAbwN7AQ+A27XWg+t8TNCiAGrvrGRAOXEFNB1ghWaYAwDqyocWkObbGX5mJRGDRvRblusNYBDFs8ghvKhVcI+r7SejJZiBTHte7BytacgyBB7DivXU8gh3p7fWuCixZiEMBxYaAobOeR6sAqrmqhvdjIjuKVn70gPVkacFYADljRAwxDsERZioOppFcHRWuvhWuvJnp9b2mx7VGs9SmudqbX+9HjtCCFEf9Jcb8zfpIIiutw3Jmkkdm2mqWRolWrXlfuNF5HtEyylFI5IT/WzIZhgjTUfQvuHQnjKUdsy4qzscXsSzyGWSOSV1qFwE1qbe1QSAUYlQYCSgKH3rFGOp8BFJp455eIntG5LjzW+4Nlm99QIK5VhgkIMFN6sIiiEEIOCrdZ4EN8/NKrLfVNjwijQseiKfb0dVr+htcav9qCxEJnW4T5B8Rk4MQ+5Uu05pfVM8j+MihkDpqP/FxtrDcAZOIx6S+SQu1nOLa1nTEAVJkfjUcPgwHhfIoL9yFUpUH0Qmut8FGXf211s/K4Jtjxj8uWwIwWXQwIsDB8WxPraCLAEynNYQgwgkmAJIcQxmmuNHqzA8K4TrMhgPwpNiQTV5fdyVP1HWV0zCe5iHOZACI3tcJ+02HD2u+Nxlg6tYU17imoYpQ9A3Lh225QyKgnmm1JgiL0vuSX1LAj3PJuWMPGobUopMmKtbGpKMFYMofcmp6SOxPBA/Mt2QnwWKHXU9sw4K3tKGyEmc8j17gkxkEmCJYQQx7DXVwIQEtb11BFKKaqDUohsLgS3u7dD6xf2lTeQokqxh6a0uyFsYVQSTMRZMnR6sKob7bjqyowKgrHtEyyA9DgrW+2J6LLdQ6aSoFFBsI7p/gWgzBA7vt0+GfGhrKzxfN6GUO/enuI6xsQFG79z3IR22zPirOwra8AVI5UEhRhIJMESQohjuBuMHqzgiO7NzWcPH0mAboa6w70ZVr+xv7yBFFWCqYMCFy1GxRql2v1r88Fp77vgfCinpJ4Mk2fS6TZlyNvKiAtluyMRZa+HmqExQXVJbTPl9XYy2W+8L36B7fbJjLOy2xZpTO49RJ5Pc7jc7C2rZ1ZEHTgaj3r+qkVGnBWnW1MZMhoaSqGh3AeRCiFOlCRYQghxDN1UBYApOLJb+5tjjEqCzcVDo6DDgdIaRqgiAhI6TiIAUqOC2acTMWmXUWJ6CNhTUkemakmwOu7BMgpdeCoJDpFEYkthNaCJq98NCZM63CcjzorGRH1Y+pAZCre7qA6HSzMt0FN1spMeLIA8k2dC7yFWxl6IgUoSLCGEOIayVePCBAFh3do/LCkTgMrCoXHD3FC0B3/lwtTBc0YtAixm6q2jjIUhUl56x6Eapvnlo0NiIaTj3s/0uNAjpdqHyFC4bYU1JJiq8bOVHzfBAijyTxsyiefmAuOLnEzHbjAHdNjrOTImBLNJsbk50VgxRP5mhBjoJMESQohjWJqraVCh7arAdSZh+AgadQBNRUPjeSPd8ixIJ8PgWlhiPfNADZFS7dkHqphlyUWlzOr02bSY0ADMwRHU+MUMmWIOWw/VcFakZ56nThKsyBB/YqwB7HYPh4YyqC/rwwh9Y9PBaqJDAwgt+R6SpoEloN0+gX5m0qKC2VzpD8FR0oMlxAAhCZYQQhzDr7mKRkv3eq8A0qKt5Ot4TJV7ezGq/qGsrpl4Wx5uZYbojOPuOzw+hkIdjXsIlGqvarBTU1pAjLMYhs/qdD+lFOlxVvaplCHRG6G1ZlthNQuDcsHsD/ETO903M87KhqZ4Y2EIvDebC6qZnRyAKtoCqXM63S8z3kpOaYMx7HQIvC9CDAaSYAkhxDHCHGU0+nevwAUY89UUmRMJrs/vvaD6ia2F1UxU+2iKzOywWEFbo2JCyHMn4Swe/D01Gw5UMc2UaywMn33cfTPiQtnSnIAuzwG3qw+i853c0nqqGh1MtG82Ek//4E73zYizsqJqaFQSrGyws6+8gTPCDoJ2Qcopne6bHmslv6IBZ8xYo9dziFQrFWIgkwRLCCHasDlcRLsrsQfHn9BxtSGpDLMXgcvRS5H1D1sKqplk2ot/yowu920p1W6uyhv0N4XZB6qYac5BWwI7HQbXIiPOyg5nIsppg6r8vgnQR77bW0EktUTW7oYRpx1334y4UAocobgChw36BGt1rjEEcqZpNygTDJ/Z6b6Z8Va0hpLAUeBogOr8PopSCHGyJMESQog2SmtsxKoqCEs4oeOckaOw4ILqg70UWf9Qtn8r4aoRv24kWCNjjFLtZpcNagb3+7LhQCWnBeSgEqeCxf+4+6bHWtnjHm4sDPJEYk1eOeda84yFkV0kWPFWQFFjTR/0cz59vaeMyGA/4kvXQMJkCOx8SHJLAZAcUowVg/y9EWIw8FqCpZS6VymllVLRnmWllHpSKZWnlNqqlJrqrXMJIURvKS87TIByYolIOqHjAmJHA1B3aPBWQHO5NWHF3xkLafO63H9YiD8l/p6bwrLBW+iiutHOoYP7GOXMg/TTu9w/Iy6UXO35+xrEhS5sDherc8u42Lob/K2QePzbgPTYUAAK/dOMypODtNfT7dZ8nVPGRWlO1OGNMO6C4+6fFhWMv9nEhqY4Y8UgT8qFGAy8kmAppYYDZwJtv6I8B0j3/NwMPOuNcwkhRG+qLTX+GQuOSj6h4yJTjIp61YWD94Z5c0E1U51baAxKgMi0bh2jo40S9pQP3kIXX+0qZZHKNhYyzu5y/6jQAIJDwqjwSxjUN8urcsrQDhuT6lbC2PPAbDnu/tZAP5IigtjpSgZ7/aDt9dxwsIqKBjuXBm00Voy78Lj7W8wmRsWGsqPMZXzupJKgEP2et3qwngB+Beg26y4EXtGGtUCEUurExtwIIUQfay4/AEBY3IgTOi45cTjVOgR7yeDtqVm14wDzTNswZ57daRnyY8XFJVJBOAziSoKfbi/iJ/6r0XHjO51g+FjpcaHsVSmDeo6wDzYd4uKgrVgc9TDpym4dkxEXyrr6lkqCg7M3+J3sAkL8zYyt+sqoqjhsZJfHZMSFklNSb0xGPIiTciEGix4nWEqpC4FDWustx2xKAgraLBd61h17/M1KqWylVHZZ2eCf90II0b+5yoxKcCEJxy9BfqzkYcHk6wQs1ft6I6x+oWbHF4SoZgImnNftY0bFhpDrTsQ5SIfCFdfYOJSzgXE6DzXlmm4nnhlxVra2VBJ02ns5yr5XVtfMV7tK+an1OwhLgrT53TouI97KyqooY2EQJhINzU4+2lrEraOrMB/eCJN+3K3jMuKsHKpuojlqDFTkgaOplyMVQvREtxIspdSXSqntHfxcCPwaePBkA9BaP6e1nq61nh4T0/2yyEII0RsCavZRo8JRwZEndJyf2USZfzKhDQd6KTLf2lZYw6za/9DkP6zLanBtjYoJJc+daPRgad31AQPMG+sPcqX6Em3yh4lXdPu49Dgr2xyJKLcTBuH8aa9+l88onU967Xcw5Rowmbt1XGaclSpXIA5r8qAs5vD6ugM02l1c5f4QAsNh6jXdOi7TU+ii0H8UaPeg7vkUYjDoVoKltT5daz3h2B9gHzAC2KKUygeSgY1KqXjgEDC8TTPJnnVCCNFvRTYdoDIo9aSOrQ9NI8pZOii/Xf5k9VpON23ENOlKMPt1+7hRnkqCFnst1Jf2YoR9r6bJwWffrOcnlpWoSVdA8LBuH5sRG0qObqkkOLiGwpXXN7NkzX7+Z9inRnGL2bd0+9iWinlVIaMG3fvSaHfy3Kp9/Di1jsj8z2D6jRBg7daxmfHGfjtdnr8ZeQ5LiH6tR0MEtdbbtNaxWus0rXUaxjDAqVrrYmAZcK2nmuBsoEZrXdTzkIUQondU1TeTqguxR3T9TERH9LBRALjLB1ePRGmdjeG7nkeZFAHz7jihY5Mjg8hXnoIhg6zQxeKv9/Iz51uYzSZYcN8JHZsRZ2WfTsCNadAlEv/3ZQ5TXVuZVv81zLkNgrrfGzw6NhSlIN+cBuU5g2peuSe/yqO8vplf8wIERcCc/+r2sUkRQYT4m9lYFw6WIEmwhOjnenMerE8werjygOeB23rxXEII0WP79+0hStWhupgotjOB8ekAVBcOrhvmVz5dzWVqBY3jroTwEytfbzGbaI4wStgPpkIXu4tr2bl6KT+yrMI06/9B+AlWnQzxJ8xqpdw/eVA9a/RNXjnvr83hb6EvwbBRMO+eEzo+0M9MWlQIO5xJ4HYYzxsNAlsLq3l+9T6eGJGNteR7OP1hCInq9vEmkyIj3squkgaIHQsl23sxWiFET3k1wfL0ZJV7Xmut9e1a61Fa6yytdbY3zyWEEN5WmrMOgPgxs0/q+GGeUu21hwZPIrG1oIqZ2x9Bm/0IO+PEemlaRMan0kCQ0SMxCNQ3O3nwteU85vcPnMMyYOGvT6qdjLhQchk+aBKs4hob9761kX+EPkekvQgueAr8gk64nYy4UL6t88z5NAh6aiob7Nz62kYWheRzUcnTMPoM47m0E5QZZ2VPcZ1RrbJkx6B8plGIwaI3e7CEEGJgKczGhYmw1MkndXhaQjwlOgKnpxLhQFff7GTla3/gVNNW3D94CCKGd3lMR0bHhZHnTsBVOvATT5vDxZ0vreKB2oeINjdh+dGSk0oiANJjrWywJaEr94O9wbuB9rGqBjvXv7iOO+wvMt+5FnXmo5A296TayoizsqY6Em2yDPjks6bRwTVL1jGsPodnTX9GhSfBJc+B6cRvvzLjrVQ1OqiPyITGikH3TKMQg4kkWEIIAWitSan5ngNB48E/+KTaiAsL4CAJ+A+CUu1Ol5vn/vkCt9leoCpxAUFzbj7ptjLijEIX7gFeqt3mcHHfqyu469C9jDcfxHz5S5Aw8aTby4izst2ZhELDAH5vimtsXP2P1dxY9X9crT6FOXfA7FtPur2MOCtNbgvN4SMHdCXB4hobVy1Zy7DSdbwf/Ecs/sFwzdITKobSVkslwXyzZ44+GSYoRL8lCZYQQgC5Bw4yxr2PxuTuzdfTEaUUFQHDCW866MXI+l6z08VzS57ltqLfUmcdReS1r57UN+4t0mOt5LqT8GssAVuNFyPtOwWVjfzq2be4M/8OxlsOYbrydcg8u0dtZsSFskunGAsD9GZ57b4Kbnjq3zxS82suNy2H+b+AM/+n2/OBdaSlYl558OgBO0QwO7+SC55azZyyd3nZ74/4hcXBDZ/AsBObwLytlvdlsz3RWDFA3xshhgKLrwMQQoj+YP/3/yFDaRKmnNOjdprCRhBe/jk0VRuVwgaY0pom3nnhj9xc+zTVYRnE3PIxBIb1qM0R0SHsb5lnvjwXkqd7IdK+obXm7e8PsOejJ3lMvYIKCsNy1TJIObnn9NpKj7NSqGOwm4PxH2A3yw3NTv786S6q17/Jm/4vY/VzwIVLIOuyHredFhWCn1mx15RKcs0nRlIeGO6FqHufzeHiiS9y+Gj1ep4OepGZps0w+ky49IUe/w5RoQFEh/qztcIM1kRJsIToxyTBEkIIwLR/JQ0EEZU5p0ftqOjRUA6Osjz8UgZOIgGwIfcgJW/cwe3urymPO4WYG9/qcXIF4G8xYYtIhwaMCVIHSIJVVNPEP95exnkFf+EKUw62lNMIuPwFCI31SvvhQX7EhgVx2JxG2gB51khrzYo9pbzywUf8rGkJ8/x34EqchunixRCT4ZVz+FtMjIgOYbM9idPAKGPvhYS2N2mt+XhbEU98uoXzat9hReBH+JnNcM7/wvSf9qhHr63MeCs5JXUQNw5KJcESor+SBEsIMeTVNtqY2PANhcNmknkCk+h2JCQhA3ZDxcFdxA+QBKvW5uCTd57ntLzHmaKqKJv2c2LO/S2YzF47R2j8KOx7LfgPgFLt9c1O3vrP11izn+a3aiWOgDDc5zxD4OSf9GioZEcy4qzsKk0hrWSdURXOSzfivWHDgSr++eka5hYu4UXLStxB4bDoMcwzfubVvxUw3pfVB+O4C4zhk/04wdpwoJLHPtrE2MNLedP/E2L8ymHsRXDm7yEixavnyoiz8ub6AnTGeNT+VcY8YT38N0sI4X2SYAkhhryNqz5mgaqmcdKPetxWTMoY3FrRcLj/Fy1wutx8vvwLrN/8iSvZSHHQKJov/xcxI3vWi9eRUfER7M9NYHTpHrx7K+491Y12ln25nKiNT3O9XoPbbKFp4g1Yz/rtSRcm6Ep6rJXsA/GcY6qCuiIIS+yV85wsrTWrcst554vVnFL0Kk9Yvsbkp9Azb8Wy4FcnNInwiciMs/LR1mB0eBiqHw6F01rz3d4KXl6xmfT8N1ns9x8i/WrRyXNg0Usw4uSf5TyeMfFWmhwuKkLTiXbZjXnCYsf2yrmEECdPEiwhxJDn3vYujQSSdsolPW4rLW4YhToa3Y8nSNVas37dGhxfPcoPHd/RoEIonnE/8Wfd22vfhqfHhpKrExlRurvfJVildTY++uxThm//O9eq9dhUIBVZNxN75r34WeN69dwZcaG87xgOARgV8/pJguVyaz7bXsyyr1ZwZuW/+D/zNyg/M+4p12Kefw9Epvbq+TPirYCiIWIMof2okqDLrfl8RzFvrvieOaVv8b+Wrwj1a8I16gw49V5Uqve/nGgrw1NJcA8pRIPxHJYkWEL0O5JgCSGGtLLqeqbUryI/5jTG+Yf0uL2IYH92mRIZXrvfC9F5l9aa9eu/w/7VH5nbvJomFUju2NsYfcGvCOmlnogWGXFWPtNJ+NV+Dw4b+AX26vm6o7CqkU8++ZCMPf/gRtMmGs0hlE+5i+gf3E1gL/VYHSs9zspu7ZlfrGQ7pJ/eJ+ftjN3p5oNNhXy9/DPOq3+HZ83f4/YPRE2/BfPcOzGHJfRJHC2JRHHgSEYXfezz4ZPNThfvbzzEv1d+y7m1b/O8ZRUWiws97iI49eeY47P6JI6W92VzQwxzTX7G34wXCosIIbxLEiwhxJC2eeX7nKHqaZpxpdfarApKYZLtK5/fFLbQWrMu+3tsXz7KqbavsakAdo/+GekX3096aFSfxJAWHcw+klC4oSIX+uiGtCN5JXV88ck7TN7/PDebdlLvF07VjPuJXHArwX1crS49LpRaQqkLiMPqw6FwDc1O3lh3gB2r3ucK+3v83bQLR2AYzPo5ljm3QUh0n8aTMiyYAIuJHFIYba+D6oO93mvWkVqbg3+tO8jXq1dwZfN7vGpeC/5m1OSrMM29E6JG9Wk8IQEWhg8LYmeZDWIypZKgEP2UJFhCiCHNsvsD6lQIidPO81qbzeEjCW76NzSUea3i3MnQWrN2wwYav/gjp9mW41QW9oy6ntEX/ZpxYX0bV4DFTG1YJjQCxdt8kmBtL6xm1SevM7vwRW415VEXEE3tKQ8TNvcm8ELv5ckIC/QjMTyQg5YRjPdBJcHqRjuvrMmj5LvXudr1IT8zFdAcGo+e9yh+066DAGufxwRgNiky462sa0zgh2D01PRhglVaZ+PFNflsX/s517vf5xbzJlwBIZhm3I6aczv0UU9eRzLjwsgproPUcXDgW5/FIYToXI8TLKXUfwG3Ay7gY631rzzr7wd+6ll/p9b6Pz09lxBCeFNBSQUzmr6lIOFsxlr8vdauJWY0FENj8R6CR/d9gqW15ruNm6n7/I8ssn2JW5nYO/InjLzot4wN992NYVBCJk17Awk6vAkm/6TPzpu9v5y1H7/MwtKXuc10gJqgBOrnP4Z11nX9YqjihKRwthQkMb5sGTjt4MW/xc5UN9p5eeUOmtb9k2v4iCRVQdOwDFiwmIAJl/ZJDF3JSgrnky3RPGSyoAqzYcy5vX7O/PIG/rFqHwc2fsHtpne5z7QDZ3AknPIbzDNv6rWiHidibIKVFXtKsU8bi/+2t6Gpql/EJYQ4okcJllJqIXAhMElr3ayUivWsHwdcCYwHEoEvlVIZWmtXTwMWQghv2f71u5yjbETP8e7NvjVxDGyDyoO7CB7dO9XEOqK15tvN26j5zx85vek/oBT5aZeTdvEDZEYk9VkcnRkdF8723FSmHtrUJ4UuvssrZ83HL3NexUvcYTpIVUgqjQufInzaj/tVaeuspHDW7k7gJ/4OKNsFCZN67Vw1jQ5e/no7rrXPcT3LiFT1NCbMgoXPEpR+Zr8Y0tpiYnI4r68zYx8+joDC73v1XAcrGnlyeS4HN3/F3eb3OMWyHVdwDMx7FMv0G3zWw9mRycMjcLk1e01pjAUo3t5rVQuFECenpz1YtwJ/0lo3A2itSz3rLwTe9Kzfr5TKA2YC3/XwfEII4TWhuUupMkUSk+XdwgLxqek0awu2ol1ebfd4NuzM5dBHf+DMhn9jUW7yUy8h9aIHSB/W98+tdGZCUjhb3SOZWrwCXE4w984o9XV7y1n58Wv8sPyf/NKUT01oCs2nLyZy8uVen6/JG7KSw3nD7Zmk98B3vZJgGYnVDhxrn+d6PiRK1VGfsgjOuJ/g4TO9fj5vmJBkPA93yDqRkQXv98rfTEFlI08vz2P/pi+NxMrPk1jN/wPmaTeAf7BXz+cNU1KM3qpvbSlGglX4vSRYQvQzPf2XKgOYr5R6FLABv9Bafw8kAWvb7FfoWdeOUupm4GaAlBTvTsgnhBCdySs4zEz79+xLvYxIL990p8WEsVcnEVze+3Nhbd93kNylf+aMmneZrOwcSD6X4Rc/wujokb1+7hM1OSWCT9wjMLs+hfIciBvn1fa/31/BVx+9wdllL/Lfpr3UhiRjP/0Zwidf2WvJnDdkJYVzmGhqAxMJO/ANzL7Fa23XNDl45etd2NY+z/V6KTGqlvrhp8GZDxA6fIbXztMbMuKsBFhMbNLpjHQ0Gs9hJU72StuHqpt4enkeezd8yV3m95jrt63fJ1YthoX4MyI6hO8Ow0+jM6Bgna9DEkIco8v/4yilvgTiO9j0G8/xw4DZwAzgbaXUCf1fXWv9HPAcwPTp0/WJHCuEECcr5+u3GK0cxJ1yldfbDvQzU2BJZWZd7yVYeYWlbH3/cRZW/IsJqp59saeTdMnvGZng3aTFm2KtgZSGjgE7cHiT1xKsDfmVfP7x25xesoT7TDnUBcdjX/R/hE27ul8NBexMVGgAI6ND2KrHM+/At16pPllrc/Dyqt00fPsCN+qlxKpq6pPnwVkPEJoy20uR9y4/s4lpqZEsK0/iUjB6anqYYBXVNPH3FXvJyf6CO00DK7Fqa0pKBKtyytBZs1G7PuzVHmEhxInr8tOote507IxS6lbgfa21BtYrpdxANHAIGN5m12TPOiGE8DmtNcP2L6PMHEdM5rxeOUdVaDqRtaugqRqCIrzWbkFpFd+//wTzil7mElXN/mGn4H/h7xmZNt1r5+hNw1LGU5MXSviBb2FKz5Lb7YdqWLbsHRYVvcD9pl3UB8ViX/i/WKdf2y+KNJyIuaOj+WzjSOaZvjB692IyT6qdWpuDV1blUPPtC/xUf0C8qqIhcTac9SChaXO9HHXvm5cezWOfleOKTsS8byXMvOmk2imptfHsyr3sXv8F/2V6h99btuMKjoZ5j2KefuOASaxaTEuN5P2NhyiJmUP8plfg8Ebop0M9hRiKevp1x1JgIbBCKZUB+APlwDLgX0qpv2IUuUgH1vfwXEII4RU5+w8wzbmFvFHXEtNLD/XbosdDLejDm1GjFvS4vdLqeta89wwzDz7HJaqcg2FTqD3vEUZkntrzYPvQrFHRrNkzjrPyvsJykj01uSV1fLDsA+Yc/Ae/Nm+nITAK+2l/JHTmjf2iKuDJmJcezaPrxkAAsHfFCSdYdTYHL6/OpeqbJfxUv0+iqqQhfgac/SAhIwbW30hb80ZH8xiKA9HzGbn3oxOepLq0zsbilfvYue5zbje9y0OWbbiComH+wEysWvxgTBy/YTvLajO4WZlgz6eSYAnRj/Q0wXoReFEptR1j0Md1nt6sHUqpt4GdgBO4fSBWEKwqK6Li8F5cTgdulxOX0wkuO9rlRLudoF243W602w1uF1pr3NoFbjdaa7TbjdZutNsF2rOfNtahNaBR2o3CjdIazbEjJI/ceGjUUes7H0vZ5hilWpeOOt5zQ6M62a/d7U6bG6C229oed1R7KI5t5Kg9j9pm6uBUHd9wHX0fpo78t8PdVQfHHN12yzZ9bAMdvLnHrmp/rY5/QHfGvrY7R7uD9HG3tz9H12dt18aJ/VodtHfi52z3e3V1zm5dn+OzHN5ApnIRe8rVXex58kJHzYJ9UJnzDVE9SLCq6m2sXPo8k3L/ziXqMIXBY6g85xlSss7qVxXfuusHY+P420eTOLd+PRRtOaEhXwcqGnj/38uYvPdZfmXeQmNgJLb5jxAy52bwC+q9oPvAnFFRFJsSKA4cTfz297r9HFadzcErq3Oo+OYlbtTvk6zKaYybBme9SMjIBQPyb6StCYnhxFoDeL9xMr9wvAV7PoEJl3R5XFldM8+t2sv2tZ9zm3qXBwdJYtUiPjyQ6amRfLCniZtHLoRt78CiB8Bk6vpgcVxut6bR4aKuoYHG+lqaG+tx2Opx2hpwNdfjam7E3VyPtjeCvRG3sxm304Fy21FuJ7gcKLcT5XYYP9qJye3A5HaC536v7Z2HcUenj7qzU57/UbascyuTsYcyedaajrxWxmuNCVTLPia0UuBZr5XJeK2UZ5updRst+ynPa0zGrZVSbbYr4z5OKUCh1JHXKIVSnr+7o16b2uxnvNbKOLa1LXV0W0qZWv/JMrW+QQoT0BiaxqiJc0iMGBj/1vcowdJa24EO71C01o8Cj/akfV/LWf4ys3b90ddhCCF6Qb5lBGmjpvVa+5PTU8n9TxKh+06ueGpNo53l/36NMTv/xsUqn6LAEZT+YAnJMy4d0DfNiRFB5McswlH9T/y2vt2tBKuopokPli1lfO6z3GPaQmNAOI2nPEjwvFv6VfnsnggL9OOcrHhe2z2bXxS+ZiSfx6kmWNPo4PVv9lD97T+5zv0BSaqCxtjJcOY/CB79gwH9N9KWyaS4YsZw/r6iibujk7Gsfw7GX9zp71dSa2Pxyjz2f/8Jt6j3+Y15lyex+h9PYjU4/l4AfpiVwCMf7aQg64cM3/uVUQQkYaKvw+o33G5NdZODipp6aiuLaKosormmGFdtCe7GKrBV42evwc9RR6CzjiBXHSG6HquuJ4wGEpTz5M6LwoEFJ2acWHBiwaWM19qTfBjp1FEpVWvKdST9OuorbYwUy0jQTLg9R7iN9R2tw1hnOma55b/mbn3123/803kWNRFjhkaCNdglz7iITZHJmCz+mCwWlMmCyeKPMllQFj+UMmEyWcBkwmQyYTaZUJ7XSpkxmc0opTCbTZhMZs+6lu3GtwdHf2ugjvw/Qx/9sTui7fpj6GP2a11u09/iWXdkV32kyQ560dr2SLTvYemoK0F30LPi7ij8Ds7VJr52XUAdxKHb9yO1baN9aB29j7rD58mV5oRvUNq1ccyKjlprd8wxe7XffmwDJxFXuyaOH2dXMXbSaBdtev+96cqxx6eGx/XqTeiomFDeNE3k0vLlYG/s9jfm9c1OPv/oHUZse4KL2UOZXwJFp/6NhHnX9MsS4yfjjGlj+Ozz6fxww8uYT/0FBA/rcL+9pXV8/ulSsvb+g9tM22jwj6B+9m8JnX8LBFj7OOred9WsVH66eQH/FfIBAV/8Dq75oN3faGmtjX+t3IJrwytcxcfGM1bx0+GM5wketWjQJFZtXTkzhWdX7mVp8KVcdvBvsOODdr1YeaV1vLomh9pNS7lOfcxk816cIfEw74+Yp103qBKrFj+ansxTy3P5S040fwOjmuAQSLC01tQ2OSmqaaCipJCG0nyaKw5CdQF+DUUENJcT6qgi3F1FtKohXdV32I4bRYMKodEUis1spTkgjCa/ROoDwjkUEI4p0Io5IARzQAimgFBMntd+gaFYAkPwD7LiHxRCQGAwfn7+YPYHsx8mk5kAjNG+/Z7WoN0d/BhpXut2tGdklnGf6PaM1HK7225zozH2cWvtuR9sGdHlat3Wcq/pdruPvHZ57hM1uD33drr1Hs+4T5vvH0FsUoyP3qgTJwnWcSSNHEPSyDG+DkMIMQAppahJOQP/g5/iyPkCvwkXHnf/uiY7qz55k4Rtz3AJu6k0R3Nozh9IWnjzgKiEdyKumpXK9Ssv54eO9bj+fQ/mH73Ymjy63Jr1uw+Qu+I1ppa8w62mfOr9I6ie/QAR82+BgFAfR997ZqRFMm/CSP6w5woe3vcifPxzOP1hbOYQ1u3OZ+c3HxF/6AtuNa0lQDloSDwFzrifkLT5gzKxapEUEcQdi0Zz35cO5kWPI+7D21H2BsqSFvBtbiW7Nq4itnQNd5m/YZi5DkdYKpz6BJbJV4FlQNzmnhRroB8/PzOTB5Zu43+s0YQWrEOdZBGQ/qbO5uBAeQMlhw9QdzgHZ3ke5pqDBDcVEeEoIV6XM1JVMEYd/fRJE4HUWYbRGByFPTCDkuBoSkPj8AuLIyAijuCoRKzDEvELjcIUEIbVZGLwfVVzApQCZYZuTP3etk9tcHzV17tUd56Z6CvTp0/X2dnZvg5DCCG8YuWuQ6S/OZ+A6BFE3/FlhzfBhytqWP/JS2TmvchYlU+FOYamGbeT/INbBvxzRcfzybYitr71MPdZ3qA8YiLFsfMpq2kgoGwr01zbCFAOyoJGETTvFkJnXDUoeyA6Utlg55oX1nJ+2T+4xfIRbhR1Ophw1QCAzRyKfeylhM2/xevziPVnDpebX76zhW827+S5gCeYonKP2u5U/rhGn07ArJ/CyEVD5lkkrTW/W7aDadm/5JzgPfj/d96A+d2b7C72ltZxsGA/9Yd24yrfS0BtPmGNBSS6i0hVxYSo5tb9XZiosURTHxiPPSQRwofjPyyFkNhUwuJH4BeZAoHhg/rLBtH/KKU2aK3blfGVBEsIIXqJ26159vH7uL1pMfWLHiX01DsAsDtcbFq/iprst5ha+THRqpYS/+E4Zt9F8qnXDbgS4ydr2ZbDbFn2DNc43iHNVIJLK0r9kmlKXUjS3CsJGHHKkLxZsjlcvJ1dwKEd3zK+YS1Jfg0Mi08hKetU/EfOG3Q9mt2lteabvApW5ZQQX7WRcWo/KdFhJIzKQqXMGfCFK06W3enmN488yOOmp+BnX0Fy/5qyoTWROrif2oJt6JLdhNTmkmDPJ10dIsLz5QGAEwuVAYk0hqSgh40iIHY0EcmZBMenQ/jwIfu3L/ovSbCEEMIHNh2ooGrJZSwybaTYbzjVpgiibAXEqGpcKPIi5jPstP9HzKQfDphvnr3J5dYcqmoCt5PEcH8s/gOzzLoQvnTvKyt5dN9lWKZcheXCv/kkhka7k70l9UcSqdLdhHaSSNWbwqgOHYUrKpOgpHFEpIzHP2a0kUQNkmdNxdAgCZYQQvjI9oJytn/4fyRXrSdC1WO3JhOQvpCMeZfgFxbn6/CEEAPct3vLOfjPn3KZ/1osd22A8OReO1ej3UleSR0FB/OpLdiKLt1DSG0uiZ0kUjWho3BGZRKcNI7ItElY4sdBSMyQ7J0Wg48kWEIIIYQQg5DWmnuf/zd/OHQjzpS5hF7/Hph7VsespsnBvtI6DhXmU3dwG7psNyE1eSQ62idSDa09UhkEJU0gMm0ilrixEBoriZQY1CTBEkIIIYQYpEpqbfzzbw9wn+s5SqLnEPnj5/CPSjnuMbU2B4WVTZSUllB9aA9NJXmYKvcR3FBAgquQDFVIuGps3b81kYrOJChpPMNSJ2KWREoMYZJgCSGEEEIMYoerm3h3yZ/4f7VPY1ZudvlPpCI0nWb/SBz44bI3oe0NBNkrCbaXE+muIkFVEKXqjmqnxhJNQ0gKrugxBCaOY1iaJ5GSoX1CHEUSLCGEEEKIQc7t1qzbuAn7uucZXrWORGcBgdhbt7swUWeOpNE/GkdwDIQl4RczCmtiJtaEdIhMGzLTIgjRU50lWDLRsBBCCCHEIGEyKeZMnwrTnz2y0tEELgf4BWE2WYhQigifRSjE4CcJlhBCCCHEYOYXNKgnLheiv+nxpCtKqclKqbVKqc1KqWyl1EzPeqWUelIplaeU2qqUmtrzcIUQQgghhBCi//LGrJaPAQ9rrScDD3qWAc4B0j0/NwPPdni0EEIIIYQQQgwS3kiwNBDmeR0OHPa8vhB4RRvWAhFKqQQvnE8IIYQQQggh+iVvPIN1N/AfpdRfMBK2Uzzrk4CCNvsVetYVtT1YKXUzRg8XQL1Sao8XYvKmaKDc10GIPiPXe+iQaz10yLUeWuR6Dx1yrYeW/ni9Uzta2a0ESyn1JRDfwabfAD8A7tFav6eUuhxYApze3ai01s8Bz3V3/76mlMruqPyiGJzkeg8dcq2HDrnWQ4tc76FDrvXQMpCud7cSLK11pwmTUuoV4C7P4jvAC57Xh4DhbXZN9qwTQgghhBBCiEHJG89gHQZO87xeBOR6Xi8DrvVUE5wN1GitizpqQAghhBBCCCEGA288g3UT8DellAWwceR5qk+AHwJ5QCNwgxfO5Qv9dvii6BVyvYcOudZDh1zroUWu99Ah13poGTDXW2mtfR2DEEIIIYQQQgwK3hgiKIQQQgghhBACSbCEEEIIIYQQwmskwToOpdTZSqk9Sqk8pdR9vo5HeI9SarhSaoVSaqdSaodS6i7P+mFKqS+UUrme/0b6OlbhHUops1Jqk1LqI8/yCKXUOs/n+y2llL+vYxTeoZSKUEq9q5TarZTapZSaI5/twUkpdY/n3/DtSqk3lFKB8tkePJRSLyqlSpVS29us6/Cz7Cmq9qTnum9VSk31XeTiRHVyrR/3/Du+VSn1gVIqos22+z3Xeo9S6iyfBH0ckmB1QillBp4BzgHGAT9WSo3zbVTCi5zAvVrrccBs4HbP9b0P+EprnQ585VkWg8NdwK42y38GntBajwaqgJ/6JCrRG/4GfKa1HgNMwrju8tkeZJRSScCdwHSt9QTADFyJfLYHk5eAs49Z19ln+Rwg3fNzM/BsH8UovOMl2l/rL4AJWuuJQA5wP4Dnfu1KYLznmL977tv7DUmwOjcTyNNa79Na24E3gQt9HJPwEq11kdZ6o+d1HcYNWBLGNX7Zs9vLwEU+CVB4lVIqGTgXzzx9SimFMa3Eu55d5FoPEkqpcOBUjEnv0VrbtdbVyGd7sLIAQZ5KxsFAEfLZHjS01quAymNWd/ZZvhB4RRvWAhFKqYQ+CVT0WEfXWmv9udba6VlcizGnLhjX+k2tdbPWej9GxfKZfRZsN0iC1bkkoKDNcqFnnRhklFJpwBRgHRDXZr62YiDOV3EJr/o/4FeA27McBVS3+YdbPt+DxwigDPinZ0joC0qpEOSzPehorQ8BfwEOYiRWNcAG5LM92HX2WZb7tsHtRuBTz+t+f60lwRJDmlIqFHgPuFtrXdt2mzbmMJB5DAY4pdR5QKnWeoOvYxF9wgJMBZ7VWk8BGjhmOKB8tgcHz7M3F2Ik1YlACO2HGIlBTD7LQ4NS6jcYj3a87utYuksSrM4dAoa3WU72rBODhFLKDyO5el1r/b5ndUnLkALPf0t9FZ/wmrnABUqpfIyhvoswntGJ8AwrAvl8DyaFQKHWep1n+V2MhEs+24PP6cB+rXWZ1toBvI/xeZfP9uDW2WdZ7tsGIaXU9cB5wFX6yOS9/f5aS4LVue+BdE81In+Mh+mW+Tgm4SWeZ3CWALu01n9ts2kZcJ3n9XXAh30dm/AurfX9WutkrXUaxud4udb6KmAFcJlnN7nWg4TWuhgoUEplelb9ANiJfLYHo4PAbKVUsOff9JZrLZ/twa2zz/Iy4FpPNcHZQE2boYRiAFJKnY0xvP8CrXVjm03LgCuVUgFKqREYhU3W+yLGzqgjyaA4llLqhxjPbpiBF7XWj/o2IuEtSql5wGpgG0eey/k1xnNYbwMpwAHgcq31sQ/YigFKKbUA+IXW+jyl1EiMHq1hwCbgaq11sw/DE16ilJqMUdDEH9gH3IDxhaJ8tgcZpdTDwBUYw4c2AT/DeBZDPtuDgFLqDWABEA2UAL8DltLBZ9mTZD+NMUy0EbhBa53tg7DFSejkWt8PBAAVnt3Waq1v8ez/G4znspwYj3l8emybviQJlhBCCCGEEEJ4iQwRFEIIIYQQQggvkQRLCCGEEEIIIbxEEiwhhBBCCCGE8BJJsIQQQgghhBDCSyTBEkIIIYQQQggvkQRLCCGEEEIIIbxEEiwhhBBCCCGE8JL/D4n2cdhyccI9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2426,31 +2426,31 @@ " 54\n", " True\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " bAP.soma.v\n", - " 0.00856\n", - " 9.17e-07\n", + " 0.00604\n", + " 3.15e-07\n", " \n", " \n", " 55\n", " True\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step1.soma.v\n", - " 0.0617\n", - " 1.65e-06\n", + " 0.0244\n", + " 9.16e-07\n", " \n", " \n", " 56\n", " True\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step3.soma.v\n", - " 0.061\n", - " 9.18e-07\n", + " 0.0553\n", + " 1.18e-06\n", " \n", " \n", "\n", @@ -2458,14 +2458,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "54 True 8 0.07 0.0122 bAP.soma.v \n", - "55 True 8 0.07 0.0122 Step1.soma.v \n", - "56 True 8 0.07 0.0122 Step3.soma.v \n", + "54 True 8 0.0708 0.0267 bAP.soma.v \n", + "55 True 8 0.0708 0.0267 Step1.soma.v \n", + "56 True 8 0.0708 0.0267 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "54 0.00856 9.17e-07 \n", - "55 0.0617 1.65e-06 \n", - "56 0.061 9.18e-07 " + "54 0.00604 3.15e-07 \n", + "55 0.0244 9.16e-07 \n", + "56 0.0553 1.18e-06 " ] }, "metadata": {}, @@ -2473,7 +2473,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACwcklEQVR4nOzdeXxU9b3/8ddnspOQBMK+Bq0gq6iAWsGtvS6ta21F6+7PerW1Va9LW9sqtdd7e62trcut1draqxZx37V1Q8W6gSIiiIKEfQlbFsg2M5/fH+cQJyEJwUyYhLyfj8c8OHPO93zP55yTCfPJdznm7oiIiIiIiEjbRVIdgIiIiIiIyJ5CCZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwRkQ7CzIrNzM0sPdWx7OnM7Dwzm5XqODoaM5tiZotSHYeISGemBEtERDo1M5tmZnVmVpnwuibVcXVG7v6Gu49Idr1mdoKZzQ/vzb/MbFSyjyEi0lEowRIRSRK1PKXUDHfPS3jdlOqAkqkz/2yZ2T7AA8DFQCHwNPBUZz4nEZGWKMESEWkDMysxsx+b2Txgq5mlm9nB4V/pt5jZh2Z2REL5mWb232b2rpmVm9mTZtazmbrPN7OFZlZhZp+b2b832n6Smc0N61liZseG6wvM7B4zW2Nmq8zsP80sbSfnsbeZvWJmG81sg5k9YGaFCds2mdkB4fsBZla6/bzM7EQz+zg835lmNrLR9bnKzOaZWZmZzTCz7F2/0rvOzH4SXpcKM1tgZqc0U87M7BYzWx9ey4/MbEy4LcvMbjaz5Wa2zszuNLOcVh7/3rD8i2EMr5nZ0ITtfzCzFeEx55jZlIRt08zsETO738zKgfPMbJKZvRVe5zVmdruZZSbs42b2fTP7LDzer8J796/wGA8llm8m5iPMbGVrzm8XHAO84e6z3D0K/A8wEDg8yccREekQlGCJiLTdGcA3Cf463xd4FvhPoCdwFfComfVOKH8OcAHQH4gCtzZT73rgeCAfOB+4JSHJmQT8H3B1eNzDgJJwv3vDer8C7A8cDVy4k3Mw4L+BAcBIYDAwDcDdlwA/Bu43s27AX4G/uftMMxsOTAcuB3oDzwFPN/oifxpwLDAMGAec12QAZpPD5KG51+SdnENjS4ApQAHwyzD+/k2UO5rg+g0Py54GbAy3/TpcP57geg4ErtuFGM4EfgX0AuYStORs915Yb0/g78DDjZLPk4BHCO7vA0AMuCKs6xDga8D3Gx3vGOBA4GDgGuAu4CyC+zmG4Gf1SwsT5ebuz/+2tGujZQvjERHZ4yjBEhFpu1vdfYW7VxF8mX3O3Z9z97i7vwjMBr6RUP4+d5/v7luBXwCnNdXC5O7PuvsSD7wG/JMgYQD4f8Bf3P3F8Dir3P0TM+sbHutyd9/q7uuBW4DTWzoBd18c1lXj7qXA70hoYXD3u4HFwDsEieHPwk1TgWfDfeuAm4Ec4KuNrs9qd99E0D1sfDMxzHL3whZeLU1KcVqjL/sD3P3h8Lhxd58BfAZMamLfOqA7sC9g7r7Q3deYmQEXAVe4+yZ3rwD+a2fXspFn3f11d68huGaHmNng8Hzvd/eN7h51998CWUDi+Ke33P2JMP4qd5/j7m+H5UuAP7FjK9BN7l7u7h8D84F/uvvn7l4GPE+QcH9p7j6uhfvTONnb7iXg8LB1LBO4FsgEurUlFhGRjkoJlohI261IWB4KfCfxyz4wmSApaar8MiCDoFWiATM7zszeDrvnbSFInLaXG0zQQtPY0LC+NQnH/xPQp6UTMLO+ZvagBV0Ky4H7m4jpboJWh9vChAGCFq9l2wu4ezw8v4EJ+61NWN4G5LUUy5f0UKMv+6vN7BwLulBuvw5jaOI6u/srwO3AHcB6M7vLzPIJWuS6AXMS6nghXN9a9ffa3SuBTQTXjLDr5MKw6+QWgtazXk3tG5YfbmbPmNna8B79VxPnsy5huaqJ9+1x7Vvk7p8A5xJc4zUEMS8Akt0VUUSkQ1CCJSLSdp6wvIKghSrxy36uu/86oczghOUhBC0oGxIrNLMs4FGCFqG+7l5I0P1ue1erFcDeTcSyAqgBeiUcP9/dR+/kHP4rPI+x7p5P0BJX363LzPKA3wP3ANPsi3FjqwmSuu3lLDy/VTs53g4smCK8soXXlJ3XUl/XUIKE8FKgKLx+82nYVa2eu9/q7gcCowi6BF5NcE+qgNEJ17LA3XclSam/1+E17AmsDs/lGoLuiD3C+MoaxZf4cwXwR+ATYJ/wHl3b3Pm0FwvG2jV3f+5sbj93f8Tdx7h7EXA9UEzQRVJEZI+jBEtEJLnuB04ws2PMLM3MssOuUYMSypxlZqPC8Uw3AI+4e6xRPZkEXcZKgaiZHUcwVmi7e4DzzexrZhYxs4Fmtq+7ryHoSvhbM8sPt+1tZjubUKA7UAmUmdlAggQj0R+A2e5+IcEYs+1fph8CvhnGkQFcSZDg/WtnF6qxcIrwvBZeb+xCdbkECUopBBOG0MyYHzObaGYHhfFvBaqBeNgadzfB2Lc+YdmBZnZMwr5uCZOYNOEb4diyTIKxWG+7+wqC6x0N40s3s+sIxtq1pDtQDlSa2b7AJTspn3TuPrqF+3Nxc/uZ2YHh56E3wbiwp8KWLRGRPY4SLBGRJAq/PJ9E0LpQStCidDUNf9/eRzARxVogG/hRE/VUhOsfAjYD3wWeStj+LuHEFwQtH6/xRUvSOQQJ2oJw30do2EWxKb8EDgjrehZ4bPsGMzuJYJKK7V/o/wM4wMzOdPdFBK1dtxG0+JwAnODutTs5Xrty9wXAb4G3CLrJjQXebKZ4PkEitZmgu+NG4Dfhth8TjD17O+yW9xLhOKlwLFUF8FELofydoMVmE8HkE2eF6/9B0N3w0/CY1TTqEtiEqwh+DirCeGfspHxH8gdgC7CI4Dp/L6XRiIi0I3Nv3ANBRETai5nNBO539z+nOhZpGzM7i6D74E+b2X4vsNLdf75bAxMRkZTSQ/5ERES+BHe/P9UxiIhIx6MugiIiXYQFD73dpckJZM9jZtc283PwfKpjExHZE6iLoIiIiIiISJKoBUtERERERCRJOtQYrF69enlxcXGqwxAREREREWnRnDlzNrj7Dg+f71AJVnFxMbNnz051GCIiIiIiIi0ys2VNrVcXQRERERERkSRRgiUiIiIiIpIkSrBERERERESSpEONwWpKXV0dK1eupLq6OtWhSAeQnZ3NoEGDyMjISHUosodxd6584E2+2XsDXzvm5FSHIyIiIp1Uh0+wVq5cSffu3SkuLsbMUh2OpJC7s3HjRlauXMmwYcNSHY7sYVZsqmLyov/ma4tnEZswl7Qi/YyJiIjIruvwXQSrq6spKipSciWYGUVFRWrNlHaxtrya0VYCwPo5T6Y2GBEREem0OnyCBSi5knr6WZD2Ul5VR64FyXt08aspjkZEREQ6q06RYImItLetFVsYZBsAyNuyKMXRiIiISGelBKsVzIwrr7yy/v3NN9/MtGnTUhdQgiOOOKLFhzOffPLJHHzwwQ3WTZs2jYEDBzJ+/HjGjBnDU0891d5hinR4VVvLAFhnvelRuwaqy1IckYiIiHRGSrBaISsri8cee4wNGzYktV53Jx6PJ7XORFu2bGHOnDmUlZXx+eefN9h2xRVXMHfuXB5++GEuuOCCdo1DpDOoqdoGwNruowHwdQtSGY6IiIh0UkqwWiE9PZ2LLrqIW265ZYdtpaWlnHrqqUycOJGJEyfy5ptvAkEr0c0331xfbsyYMZSUlFBSUsKIESM455xzGDNmDCtWrODqq69mzJgxjB07lhkzZgAwc+ZMjjjiCL797W+z7777cuaZZ+LuTcZ333331bdGvfvuu/XrH3vsMU444QROP/10HnzwwSb3HTlyJOnp6Q2Sx5/85CeMGjWKcePGcdVVVwFQUlLCUUcdxbhx4/ja177G8uXLATjvvPO45JJLOPjgg9lrr72YOXMmF1xwASNHjuS8886rr/OSSy5hwoQJjB49muuvv36HOMrKyhg6dGh9ord161YGDx5MXV1dk3GLJFu8Lhx/1TtIsCpWfZLKcERERKST6vDTtCf65dMfs2B1eVLrHDUgn+tPGL3Tcj/4wQ8YN24c11xzTYP1l112GVdccQWTJ09m+fLlHHPMMSxcuLDFuj777DP+9re/cfDBB/Poo48yd+5cPvzwQzZs2MDEiRM57LDDAPjggw/4+OOPGTBgAIceeihvvvkmkydP3qG+bdu2MXfuXF5//XUuuOAC5s+fD8D06dO57rrr6Nu3L6eeeirXXnvtDvu+8847RCIRevfuDcDGjRt5/PHH+eSTTzAztmzZAsAPf/hDzj33XM4991z+8pe/8KMf/YgnnngCgM2bN/PWW2/x1FNPceKJJ/Lmm2/y5z//mYkTJzJ37lzGjx/PjTfeSM+ePYnFYnzta19j3rx5jBs3rj6OgoICxo8fz2uvvcaRRx7JM888wzHHHKPnXclu49EgwcruN4LYYqNi7WLyUxyTiIiIdD5qwWql/Px8zjnnHG699dYG61966SUuvfRSxo8fz4knnkh5eTmVlZUt1jV06ND6cVGzZs3ijDPOIC0tjb59+3L44Yfz3nvvATBp0iQGDRpEJBJh/PjxlJSUNFnfGWecAcBhhx1GeXk5W7ZsYd26dXz22WdMnjyZ4cOHk5GRUZ94Adxyyy2MHz+eq666ihkzZtTPzldQUEB2djb/7//9Px577DG6desGwFtvvcV3v/tdAM4++2xmzZpVX9cJJ5yAmTF27Fj69u3L2LFjiUQijB49uj7mhx56iAMOOID999+fjz/+mAULdux+NXXq1PoWvAcffJCpU6e2eB1FksnragEo6lnEau9FbOPnO9lDREREZEedqgWrNS1N7enyyy/ngAMO4Pzzz69fF4/Hefvtt8nOzm5QNj09vcG4psRnN+Xm5rbqeFlZWfXLaWlpRKPRJss1nrrczHjooYfYvHlz/QN5y8vLmT59OjfeeCMQjMHa3v2vcdzvvvsuL7/8Mo888gi33347r7zySqvijEQiDWKORCJEo1GWLl3KzTffzHvvvUePHj0477zzmnyW1Yknnsi1117Lpk2bmDNnDkcddVSLxxVJqrAFq6ggn3fpw15ly1IckIiIiHRGasHaBT179uS0007jnnvuqV939NFHc9ttt9W/nzt3LgDFxcW8//77ALz//vssXbq0yTqnTJnCjBkziMVilJaW8vrrrzNp0qRdimt7q8+sWbMoKCigoKCA6dOn88ILL9SP+5ozZ06z47ASVVZWUlZWxje+8Q1uueUWPvzwQwC++tWv1u//wAMPMGXKlFbHV15eTm5uLgUFBaxbt47nn3++yXJ5eXlMnDiRyy67jOOPP560tLRWH0OkrSxWA0BGVg6lGQPpXrUixRGJiIhIZ6QEaxddeeWVDSaEuPXWW5k9ezbjxo1j1KhR3HnnnQCceuqpbNq0idGjR3P77bczfPjwJus75ZRTGDduHPvttx9HHXUUN910E/369dulmLKzs9l///25+OKLueeeeygpKWHZsmUNpmcfNmwYBQUFvPPOO03W8Y1vfIPVq1dTUVHB8ccfz7hx45g8eTK/+93vALjtttv461//yrhx47jvvvv4wx/+0Or49ttvP/bff3/23Xdfvvvd73LooYfWb7vuuusaTBM/depU7r//fnUPlN0vbMEiPYttuYPJi5VrqnYRERHZZdbczHSpMGHCBG/8TKeFCxcycuTIFEUkHZF+JqQ9/PVPN3P+ml/BD97j/mde4Kxlv4B/fx3675fq0ERERKQDMrM57j6h8fo2t2CZ2WAze9XMFpjZx2Z2Wbh+mpmtMrO54esbbT2WiEh7iUSDLoKkZ5LZay8AqtYvSWFEIiIi0hklY5KLKHClu79vZt2BOWb2YrjtFne/uYV9RUQ6hO1jsEjPpmDACJgD5as+JUcNWCIiIrIL2pxgufsaYE24XGFmC4GBba1XRGR3sngwTTvpWfTrk80mz6N2Q9OT04iIiIg0J6mTXJhZMbA/sH0mhUvNbJ6Z/cXMejSzz0VmNtvMZpeWliYzHBGRVktLaMEa1COHVd4LK9NMgiIiIrJrkpZgmVke8ChwubuXA38E9gbGE7Rw/bap/dz9Lnef4O4TevfunaxwRER2SWR7C1ZaFj1zM1ljfcjauiq1QYmIiEink5QEy8wyCJKrB9z9MQB3X+fuMXePA3cDu/ZwJxGR3Sg9XkMdGRCJYGZUZPUnv2YNdKCZVkVERKTjS8YsggbcAyx0998lrO+fUOwUYH5bj5VKTzzxBGbGJ5980myZkpISxowZk7RjnnfeeTzyyCPNbr/88ssZOHAg8Xi8ft29995L7969GT9+PKNGjeLuu+9OWjwie7JIvIaoZdS/r8kbSJbXwLaNKYxKREREOptktGAdCpwNHNVoSvabzOwjM5sHHAlckYRjpcz06dOZPHky06dPb3J7NBpt8zFisViry8bjcR5//HEGDx7Ma6+91mDb1KlTmTt3LjNnzuTaa69l3bp1bY5NZE+XHq8lGsn8YkXBkODfLctSE5CIiIh0Sm1OsNx9lrubu49z9/Hh6zl3P9vdx4brTwxnG+yUKisrmTVrFvfccw8PPvhg/fqZM2cyZcoUTjzxREaNGgUEidaZZ57JyJEj+fa3v822bdsAePnll9l///0ZO3YsF1xwATU1wYD64uJifvzjH3PAAQfw8MMP73Dsl156iQkTJjB8+HCeeeaZBscePXo0l1xySbNJX58+fdh7771ZtuyLL4i33noro0aNYty4cZx++ukAbNq0iZNPPplx48Zx8MEHM2/ePACmTZvGueeey5QpUxg6dCiPPfYY11xzDWPHjuXYY4+lrq4OgBtuuIGJEycyZswYLrroIho/vDoej1NcXMyWLVvq1+2zzz5K/KRDSYvXEbUvEqysXsUAbF1fkpqAREREpFNKxnOwdp/nfwJrP0punf3GwnG/brHIk08+ybHHHsvw4cMpKipizpw5HHjggQC8//77zJ8/n2HDhlFSUsKiRYu45557OPTQQ7ngggv43//9Xy699FLOO+88Xn75ZYYPH84555zDH//4Ry6//HIAioqKeP/995s8dklJCe+++y5LlizhyCOPZPHixWRnZzN9+nTOOOMMTjrpJK699lrq6urIyMhosO/nn3/O559/zle+8pX6db/+9a9ZunQpWVlZ9QnP9ddfz/77788TTzzBK6+8wjnnnMPcuXMBWLJkCa+++ioLFizgkEMO4dFHH+Wmm27ilFNO4dlnn+Xkk0/m0ksv5brrrgPg7LPP5plnnuGEE06oP2YkEuGkk07i8ccf5/zzz+edd95h6NCh9O3bt9W3SaS9ZXgt0bQvEqz8fsHDhsvXLiE3VUGJiIhIp5PUadr3VNOnT69v7Tn99NMbtBhNmjSJYcOG1b8fPHgwhx56KABnnXUWs2bNYtGiRQwbNozhw4cDcO655/L666/X7zN16tRmj33aaacRiUTYZ5992Guvvfjkk0+ora3lueee4+STTyY/P5+DDjqIf/zjH/X7zJgxg/Hjx3PGGWfwpz/9iZ49e9ZvGzduHGeeeSb3338/6elBfj1r1izOPvtsAI466ig2btxIeXk5AMcddxwZGRmMHTuWWCzGscceC8DYsWMpKSkB4NVXX+Wggw5i7NixvPLKK3z88cc7nMfUqVOZMWMGAA8++GCL5yySCuleQyyhi2D/fv0o9xxqN6iLoIiIiLRe52rB2klLU3vYtGkTr7zyCh999BFmRiwWw8z4zW9+A0BubsO/bQdzfjT/vimN69hZff/4xz/YsmULY8eOBWDbtm3k5ORw/PHHA0Eyc/vttzdZ37PPPsvrr7/O008/zY033shHH7XcIpiVlQUErVAZGRn18UQiEaLRKNXV1Xz/+99n9uzZDB48mGnTplFdXb1DPYcccgiLFy+mtLSUJ554gp///OctHldkd0vzKPGEBCt4FlZvcsuWpzAqERER6WzUgrUTjzzyCGeffTbLli2jpKSEFStWMGzYMN54440myy9fvpy33noLgL///e9MnjyZESNGUFJSwuLFiwG47777OPzww1t1/Icffph4PM6SJUv4/PPPGTFiBNOnT+fPf/4zJSUllJSUsHTpUl588cX68V7NicfjrFixgiOPPJL/+Z//oaysjMrKSqZMmcIDDzwABGO7evXqRX5+fqvi255M9erVi8rKymZnPTQzTjnlFP7jP/6DkSNHUlRU1Kr6RXaXdK8jHvmim21BTgZrrTdZlXoWloiIiLSeEqydmD59OqecckqDdaeeemqzE0uMGDGCO+64g5EjR7J582YuueQSsrOz+etf/8p3vvMdxo4dSyQS4eKLL27V8YcMGcKkSZM47rjjuPPOO4nH47zwwgt885vfrC+Tm5vL5MmTefrpp5us48ILL2T27NnEYjHOOussxo4dy/7778+PfvQjCgsLmTZtGnPmzGHcuHH85Cc/4W9/+1srrw4UFhbyve99jzFjxnDMMccwceLE+m133nknd955Z/37qVOncv/996t7oHRIaR4lnjBNu5lRntWf7noWloiIiOwCazzjWypNmDDBZ8+e3WDdwoULGTlyZIoiko5IPxOSbPG488G0ifTq2YOhl79Yv/6hW6/htE1/gh+XQE6P1AUoIiIiHY6ZzXH3CY3XqwVLRLq8unicDKJ4pOFMnB4+C8u3aByWiIiItI4SLBHp8upiTgYxPPFBw0B272IAtq5bmoKoREREpDPqFAlWR+rGKKmlnwVpD9FY2IKV1rAFq3v9s7A+T0VYIiIi0gl1+AQrOzubjRs36ou14O5s3LiR7OzsVIcie5igBSsKaQ1bsPr2HcA2z6JmQ0lqAhMREZFOp8M/B2vQoEGsXLmS0tLSVIciHUB2djaDBg1KdRiyh6mLxcmwKLFIw1+Jg3rmstJ7kaFnYYmIiEgrdfgEKyMjg2HDhqU6DBHZg0VjTg5Rqhu1YBXkZDAv0oe99SwsERERaaUO30VQRKS91cbiZBCDRmOwAMoz+5FfsyYFUYmIiEhnpARLRLq8aDhNe+MxWADVeQPJi1dATUUKIhMREZHOpt0TLDM71swWmdliM/tJex9PRGRX1UWDSS6siQTLCvUsLBEREWm9dk2wzCwNuAM4DhgFnGFmo9rzmCIiu6ouFiPTYlj6jl0EM4uKAajQVO0iIiLSCu3dgjUJWOzun7t7LfAgcFI7H1NEZJdEa2sAmmzB0rOwREREZFe0d4I1EFiR8H5luK6emV1kZrPNbLamYheRVIhFawGw9B0TrL4DBlPjGXoWloiIiLRKyie5cPe73H2Cu0/o3bt3qsMRkS4o2kKCNbBHLqu8CLas2GGbiIiISGPtnWCtAgYnvB8UrhMR6TDidUGClZaetcO27tkZrIv0IWvryt0dloiIiHRC7Z1gvQfsY2bDzCwTOB14qp2PKSKyS2J14RisJlqwAMqz+tO9Ws/CEhERkZ1r1wTL3aPApcA/gIXAQ+7+cXseU0RkV8WiQYIVaWIWQYDq3IEUxLdAXdVujEpEREQ6o/T2PoC7Pwc8197HERH5slrqIghAwWDYFDwLy3qP2I2RiYiISGeT8kkuRERSLR5OcpGW0XQXwazexQCUaap2ERER2QklWCLS5W1PsCLNtGB17xs+C2vNkt0Wk4iIiHROSrBEpMvzMMFKz2g6weo9oJg6T6N6w7LdGZaIiIh0QkqwRKTLq2/Bymh6kotBRXms8Z6wRQmWiIiItEwJlohIrOUWrG6Z6ayP9CGrUo/xExERkZYpwRKRLi8WrQMgvZlJLgA2Zw2goFoJloiIiLRMCZaIdHkePt/KMnKaLbMtbyiF8c1QU7G7whIREZFOSAmWiHR5tv0Bwi0kWLEewUyC8Q2aSVBERESapwRLRCS6PcHq1myRzD77AFC+etHuiEhEREQ6KSVYItLl1bdgpWc3W6b7wOEAbF2jBEtERESapwRLRLq8SGznLVgDe/dirfcgVqougiIiItI8JVgi0uVFotXEiEBa08/BAhjUI4dl3pf0sqW7MTIRERHpbJRgiUiXF4lVU2tZYNZsmeyMNNamDaT71uW7MTIRERHpbJRgiUiXl7Y9wdqJytyhdI9thury3RCViIiIdEZtSrDM7Ddm9omZzTOzx82sMFxfbGZVZjY3fN2ZlGhFRNpBRqyK2kjzE1xsF+0xLFjYpHFYIiIi0rS2tmC9CIxx93HAp8BPE7Ytcffx4eviNh5HRKTdpMdrqIvsvAVr+1Tt1es+a++QREREpJNqU4Ll7v9092j49m1gUNtDEhHZvTLiNcRa0YJVOHAEAOWrNFW7iIiINC2ZY7AuAJ5PeD/MzD4ws9fMbEpzO5nZRWY228xml5aWJjEcEZHWyfBqomk7T7CG9Ctijfekdr1asERERKRp6TsrYGYvAf2a2PQzd38yLPMzIAo8EG5bAwxx941mdiDwhJmNdvcdRoa7+13AXQATJkzwL3caIiJfXma8hlha3k7LDS3K5aN4P4Zt0VTtIiIi0rSdJlju/vWWtpvZecDxwNfc3cN9aoCacHmOmS0BhgOz2xqwiEgyxeNOhtfg6Tk7LZuXlc7a9AGM3frebohMREREOqO2ziJ4LHANcKK7b0tY39vM0sLlvYB9gM/bciwRkfawrS5GDrVYxs4TLIDKvKHkxcqgakv7BiYiIiKdUlvHYN0OdAdebDQd+2HAPDObCzwCXOzum9p4LBGRpKusjpJjNZDRrVXlo4V7BQub9DcjERER2dFOuwi2xN2/0sz6R4FH21K3iMjuUFkTpR/VVGbltqp8dt99YAXUrP+MrIEHtHN0IiIi0tkkcxZBEZFOZ+u2beRZNZbTo1XlCwYGz8IqW/1pe4YlIiIinVSbWrBERDq76vKg93Ikt2eryg/pU8Rq70l8/eL2DEtEREQ6KbVgiUiXVlu5EYC0ViZYxb1yWe59Sdtc0o5RiYiISGelBEtEurTtCVZ296JWlc/LSmdt2gDyti1vz7BERESkk1KCJSJdWk1FkGDlFfZu9T6VuUPoHt0ENRXtFZaIiIh0UkqwRKRLi20NxmBl5/dq9T7xwmHBwqal7RGSiIiIdGJKsESkS4tt2wyA5RS2ep/MPnsDUFOqiS5ERESkISVYItKlWdUW4hhkF7R6n/wBIwAoW6Wp2kVERKQhJVgi0qXl1JRSGcmHSFqr9xnSvw+lXkCNpmoXERGRRpRgiUiXVlC7ji2Z/XZpn6FF3SjxvkQ2awyWiIiINKQES0S6rHjcKYqtZ1tO/13ar3t2BmvTBpBbqanaRUREpCElWCLSZW2orKY/G4jnD9rlfctzBlMYXQ91Ve0QmYiIiHRWSrBEpMtat34duVZDeuHgXd63Jn9IsLB5WZKjEhERkc5MCZaIdFlb1nwOQHbvobu8rxUGCZaXrUhqTCIiItK5tSnBMrNpZrbKzOaGr28kbPupmS02s0VmdkzbQxURSa6q0hIAevTfa5f3zSoKkrJtpWrBEhERkS+kJ6GOW9z95sQVZjYKOB0YDQwAXjKz4e4eS8LxRESSIrY5aH3K6ztsl/ct7DuYOk9j2/ql5CY7MBEREem02quL4EnAg+5e4+5LgcXApHY6lojIl5JWsYpaMrDc3ru874Aeeaz1nkQ3ayZBERER+UIyEqxLzWyemf3FzHqE6wYCiQMTVobrREQ6jJxta9iY3gfMdnnfAQXZrKaISPmqdohMREREOqudJlhm9pKZzW/idRLwR2BvYDywBvjtrgZgZheZ2Wwzm11aWrqru4uIfGn5teuozNq1hwxv1ysvizX0Imvb6iRHJSIiIp3ZTsdgufvXW1ORmd0NPBO+XQUkzns8KFzXVP13AXcBTJgwwVtzLBGRtqqJxujjpWzKHf6l9o9EjLLMfnSveQviMYikJTlCERER6YzaOotg/4S3pwDzw+WngNPNLMvMhgH7AO+25VgiIsm0dlMFfdkMBbv+kOHtqrsNII0YVKxNYmQiIiLSmbV1FsGbzGw84EAJ8O8A7v6xmT0ELACiwA80g6CIdCQb1pQw1Lx+uvUvI54/EMqBspVQoGGmIiIi0sYEy93PbmHbjcCNbalfRKS9VKwrAaB73+IvXUd6jyGwEuJblhMZclByAhMREZFOrb2maRcR6dCqNwQPCO4xYNcfMrxdbp9iALaFDywWERERUYIlIl3TluBJEpk9h3zpKnr17Mlmz6tP1kRERESUYIlIl5S5dRVbrAAycr50HQMKc1jtRcS3rExiZCIiItKZKcESkS4pt3otZZl921RHv4JsVnsv0iuUYImIiEhACZaIdDnuTs/oeqpy+u+8cAuKcjNZQ2+6Va1JUmQiIiLS2SnBEpEuZ1NlDf3ZQCy/bVOrmxmV2f3IjlVCdVmSohMREZHOTAmWiHQ569auIs+qSetZ3Oa6anIHBAtl6iYoIiIiSrBaVLZ5A6tLFqU6DBFJsoqVCwDI7rdv2yvb/oBhJVgiIiJCGx80vKf75MW/cNCCG/ks7StsGHIMfcd/g+LRBxFJz0h1aCLSBrXrPwWgx+BRba4ro6gYlkF8ywr9xUpERESUYLVkyEEn8XZ1BT2W/4NDlt4BS++g8vEcluaMYWvP0WT1H03PYePoNXg4ud17gFm7xuPxODU11dTUVFFbvZW66irqasJXbRWx2ipitdX1/8brqvG6KryuBo9WY7EaiEchHsPiUfB4sOzB8vZ15lEsHv7rccxjgANg9UuE7794Zx4sexPbGu61o8Qr5zR3HW3Hwk2vaHq9Nay/8V7NHvdL3Nfm6mr+3Hatnvb+WdvTDdq6hBrPIL/fsDbX1bPPIGo9jer1S8lPQmxdXU1tDZVlm9lavomq8k3UbN1MrHpr+HttG15bhddVQV34b7SaSLQai9WGv7Ni4DEiHsPi4b/h77LI9vXEdxpHg89eE4sNP5sNfhOGhWyHz6/Xf24tYb/tv9calU1Y71j4u7fR/vW77FhP/T6NjukNdxRJiua+F4gky/KsEXQ/6j/4+qi2zf67uyjBakH/oSPof86vgF+xftUySt7/B7Glb9Jvywfsu/J9MlbFYHZQtoosNlkPytJ6UpeeSywtB0/PIZaeTczSw184Xp+E4I7FaojEa4nEakiL15AWryU9XkuG15Luwb+ZXksmdWR6LdlWRzaQ3YZzirsRI0KMCHEiRC2NOBFiJPxrEeL1/0Zw0ohbwy8TiVpKGhp/CWm6TGKJ5n4xN72+2fI7rG7+a4V/ieM2V1dLMe36ue1a/bJrPuz1DSaltf1X4D798lnhfei+dtFOE6xY3Hnjg/n07ZnPyGFD23zsjq62tpbNG9ZQXrqGrZvXUL1lHXUV62FrKelVG8iu3UROXRnZ8Upy4lvJ863kWg1ZQFErj1HlmdRYJnVkELP0hN9jaV/8Hqtf3v5qoReCN/yMNfVp+2K715dv8Ln0L94bHvyOqd/sCXWEy97wSIn1J6ZFQdmEY9M4jUusO4gjeE9CWf3+kPbn+iOgJNmK6mw2bq1JdRitpgSrlfoMHEqfgRcBFwFQXV3F0s8+onz5R9RtWka8fB2ZVevJrdtEt2gZ6bXryIpXk001kfq/ln7x35tj1IVfCuoimUQtk2gki7r0blRHehCPZBJLy8K3v9KzIC0bMrKx9GwsIwvLyCGSkUMkM5v0zBzSMrNJy8wmI7Mb6Vk5ZGTlkJndjczsHDKzcsjIyCaSnk4EUCdH6eqGJKme4X2686oP4+ulHzZbpiYa47WZr8Dbt3N0dCazMw6En72SpAhSo6a2hvWrSti8ZilbNyynbtMKKF9N9rY1dK8tpSheSi/fQl9zGv+9sc7TKIvkUx4pZFt6IZuze1Oa0R3P7A7ZBVh2PmndCsnIDV/Z3cnIziEjK5eM7G5k5uSSnZNHRmY2OZEIX/5R0SIi0hkk6//s3UUJ1peUnZ3D8LGTYOykVIciIilU0C2DzzNHklfzLyhb9cWkF8D68m3MeuEhBi68h6N9HlVh+/OEujkQi0ISWtDai7tTWr6N1SWfUrbqE2rWLSa9bCn525bTu3YlA3w9gy3G4IR9tpLNprTeVGT1YUXOcJbm9se69yGzoC85PfqRX9Sfwl4DycnvSS8zeqXs7ERERNpPx/3fXUSkk4jsNQU+u4e6uQ9hky/j3Q/nsenNv7Lfhmf5lpWyJa2IpWOvpvjoH/DKs3/nqI+vpWzZXAr2mpDq0NlcUcWq5Z+xZcUnVK/7jMjmz8nbuoxetasYxDr6WKy+bBXZrM8YQFn+CNbnH4v1GEq33kPo0W8YRQOGkZtbSK66BomISBenBEtEpI0OPfRw3vhkDIe8+itWvvonvsoaAJbkT6T0kF/Se9J3KEzPBKDbVybDx7Bx/su7LcGqqKph9fIlbFy+kOp1nxLZ9DndKpdRVLuSQb6OMRatL1tFFqUZA6nsMZxFhceQ2XcfCgfuS9GQkeQU9GeoEigREZEWmfuXH/BqZjOAEeHbQmCLu483s2JgIbD9IVJvu/vFO6tvwoQJPnv27C8dj4hIqjw16wO6/+u/6ZO2lfShBzHsiHPI7FW8Q7nKmihrbhxHRmF/iv/j5aQdv7KqmlUln7J55SKq1y/GNn1OTuUKimpWMMjXkWV19WVryGRd+gAqcocQLdyLjF57UzBoX3oPHUVmj4GapVJERKQVzGyOu+/w19I2tWC5+9SEA/wWKEvYvMTdx7elfhGRzuLEyfvD5Id2Wi4vK52FBVP4RvlD1Kz+mKwBo1tV/7aaWtatXsbmNSVsKy0hunkFaWXLydu6gqLalfT3UkYkdOerJpP16f2p6F7MwsIjSe/1FfIHjaDP0FFk9xzMkIie2iUiItIektJF0MwMOA04Khn1iYjsyfod+x9sfegpqu85ldJxF2NFw6iLxamrqiRaUUqsohS2bSC9aiN5NWvpEV1PH9/EMIuR+OSuSrqxPn0Am/JHUlpwHBl9vkL+gOH0Ld6XnB6DlESJiIikQLLGYE0B1rn7ZwnrhpnZB0A58HN3f6OpHc2sfu7zIUM62ySMIiK7btLoEfzzkD+x71tXMeaD65sss5VsyiKFlGf0pjRvf9bmDyS9x2Byeg2hoN8wivoPIy+3J3nqziciItKh7HQMlpm9BPRrYtPP3P3JsMwfgcXu/tvwfRaQ5+4bzexA4AlgtLuXt3QsjcESka6kuraOksULiW5ZQUZ6Blk5ueT17EthUX/Ss3NTHZ6IiIi04EuPwXL3r++k4nTgW8CBCfvUADXh8hwzWwIMB5Q9iYiEsjMz2HfUOGBcqkMRERGRJElGB/2vA5+4+8rtK8yst5mlhct7AfsAnyfhWCIiIiIiIh1WMsZgnQ5Mb7TuMOAGM6sD4sDF7r4pCccSERERERHpsNqcYLn7eU2sexR4tK11i4iIiIiIdCZtetBwsplZKbAs1XE00gvYkOogZLfR/e46dK+7Ft3vrkP3uuvQve5aOuL9HuruvRuv7FAJVkdkZrObmh1E9ky6312H7nXXovvddehedx26111LZ7rfegqliIiIiIhIkijBEhERERERSRIlWDt3V6oDkN1K97vr0L3uWnS/uw7d665D97pr6TT3W2OwREREREREkkQtWCIiIiIiIkmiBEtERERERCRJlGC1wMyONbNFZrbYzH6S6ngkecxssJm9amYLzOxjM7ssXN/TzF40s8/Cf3ukOlZJDjNLM7MPzOyZ8P0wM3sn/HzPMLPMVMcoyWFmhWb2iJl9YmYLzewQfbb3TGZ2Rfg7fL6ZTTezbH229xxm9hczW29m8xPWNflZtsCt4X2fZ2YHpC5y2VXN3OvfhL/H55nZ42ZWmLDtp+G9XmRmx6Qk6BYowWqGmaUBdwDHAaOAM8xsVGqjkiSKAle6+yjgYOAH4f39CfCyu+8DvBy+lz3DZcDChPf/A9zi7l8BNgP/LyVRSXv4A/CCu+8L7Edw3/XZ3sOY2UDgR8AEdx8DpAGno8/2nuRe4NhG65r7LB8H7BO+LgL+uJtilOS4lx3v9YvAGHcfB3wK/BQg/L52OjA63Od/w+/tHYYSrOZNAha7++fuXgs8CJyU4pgkSdx9jbu/Hy5XEHwBG0hwj/8WFvsbcHJKApSkMrNBwDeBP4fvDTgKeCQsonu9hzCzAuAw4B4Ad6919y3os72nSgdyzCwd6AasQZ/tPYa7vw5sarS6uc/yScD/eeBtoNDM+u+WQKXNmrrX7v5Pd4+Gb98GBoXLJwEPunuNuy8FFhN8b+8wlGA1byCwIuH9ynCd7GHMrBjYH3gH6Ovua8JNa4G+qYpLkur3wDVAPHxfBGxJ+MWtz/eeYxhQCvw17BL6ZzPLRZ/tPY67rwJuBpYTJFZlwBz02d7TNfdZ1ve2PdsFwPPhcoe/10qwpEszszzgUeBydy9P3ObBMwz0HINOzsyOB9a7+5xUxyK7RTpwAPBHd98f2Eqj7oD6bO8ZwrE3JxEk1QOAXHbsYiR7MH2WuwYz+xnB0I4HUh1LaynBat4qYHDC+0HhOtlDmFkGQXL1gLs/Fq5et71LQfjv+lTFJ0lzKHCimZUQdPU9imCMTmHYrQj0+d6TrARWuvs74ftHCBIufbb3PF8Hlrp7qbvXAY8RfN712d6zNfdZ1ve2PZCZnQccD5zpXzy8t8PfayVYzXsP2CecjSiTYDDdUymOSZIkHINzD7DQ3X+XsOkp4Nxw+Vzgyd0dmySXu//U3Qe5ezHB5/gVdz8TeBX4dlhM93oP4e5rgRVmNiJc9TVgAfps74mWAwebWbfwd/r2e63P9p6tuc/yU8A54WyCBwNlCV0JpRMys2MJuvef6O7bEjY9BZxuZllmNoxgYpN3UxFjc+yLZFAaM7NvEIzdSAP+4u43pjYiSRYzmwy8AXzEF+NyriUYh/UQMARYBpzm7o0H2EonZWZHAFe5+/FmthdBi1ZP4APgLHevSWF4kiRmNp5gQpNM4HPgfII/KOqzvYcxs18CUwm6D30AXEgwFkOf7T2AmU0HjgB6AeuA64EnaOKzHCbZtxN0E90GnO/us1MQtnwJzdzrnwJZwMaw2NvufnFY/mcE47KiBMM8nm9cZyopwRIREREREUkSdREUERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBGRDsLMis3MzSw91bHs6czsPDObleo4Ohozm2Jmi1Idh4hIZ6YES0REOjUzm2ZmdWZWmfC6JtVxdUbu/oa7j0h2vWZ2gpnND+/Nv8xsVLKPISLSUSjBEhFJErU8pdQMd89LeN2U6oCSqTP/bJnZPsADwMVAIfA08FRnPicRkZYowRIRaQMzKzGzH5vZPGCrmaWb2cHhX+m3mNmHZnZEQvmZZvbfZvaumZWb2ZNm1rOZus83s4VmVmFmn5vZvzfafpKZzQ3rWWJmx4brC8zsHjNbY2arzOw/zSxtJ+ext5m9YmYbzWyDmT1gZoUJ2zaZ2QHh+wFmVrr9vMzsRDP7ODzfmWY2stH1ucrM5plZmZnNMLPsXb/Su87MfhJelwozW2BmpzRTzszsFjNbH17Lj8xsTLgty8xuNrPlZrbOzO40s5xWHv/esPyLYQyvmdnQhO1/MLMV4THnmNmUhG3TzOwRM7vfzMqB88xskpm9FV7nNWZ2u5llJuzjZvZ9M/ssPN6vwnv3r/AYDyWWbybmI8xsZWvObxccA7zh7rPcPQr8DzAQODzJxxER6RCUYImItN0ZwDcJ/jrfF3gW+E+gJ3AV8KiZ9U4ofw5wAdAfiAK3NlPveuB4IB84H7glIcmZBPwfcHV43MOAknC/e8N6vwLsDxwNXLiTczDgv4EBwEhgMDANwN2XAD8G7jezbsBfgb+5+0wzGw5MBy4HegPPAU83+iJ/GnAsMAwYB5zXZABmk8PkobnX5J2cQ2NLgClAAfDLMP7+TZQ7muD6DQ/LngZsDLf9Olw/nuB6DgSu24UYzgR+BfQC5hK05Gz3XlhvT+DvwMONks+TgEcI7u8DQAy4IqzrEOBrwPcbHe8Y4EDgYOAa4C7gLIL7OYbgZ/VLCxPl5u7P/7a0a6NlC+MREdnjKMESEWm7W919hbtXEXyZfc7dn3P3uLu/CMwGvpFQ/j53n+/uW4FfAKc11cLk7s+6+xIPvAb8kyBhAPh/wF/c/cXwOKvc/RMz6xse63J33+ru64FbgNNbOgF3XxzWVePupcDvSGhhcPe7gcXAOwSJ4c/CTVOBZ8N964CbgRzgq42uz2p330TQPWx8MzHMcvfCFl4tTUpxWqMv+wPc/eHwuHF3nwF8BkxqYt86oDuwL2DuvtDd15iZARcBV7j7JnevAP5rZ9eykWfd/XV3ryG4ZoeY2eDwfO93943uHnX33wJZQOL4p7fc/Ykw/ip3n+Pub4flS4A/sWMr0E3uXu7uHwPzgX+6++fuXgY8T5Bwf2nuPq6F+9M42dvuJeDwsHUsE7gWyAS6tSUWEZGOSgmWiEjbrUhYHgp8J/HLPjCZIClpqvwyIIOgVaIBMzvOzN4Ou+dtIUictpcbTNBC09jQsL41Ccf/E9CnpRMws75m9qAFXQrLgfubiOluglaH28KEAYIWr2XbC7h7PDy/gQn7rU1Y3gbktRTLl/RQoy/7q83sHAu6UG6/DmNo4jq7+yvA7cAdwHozu8vM8gla5LoBcxLqeCFc31r199rdK4FNBNeMsOvkwrDr5BaC1rNeTe0blh9uZs+Y2drwHv1XE+ezLmG5qon37XHtW+TunwDnElzjNQQxLwCS3RVRRKRDUIIlItJ2nrC8gqCFKvHLfq67/zqhzOCE5SEELSgbEis0syzgUYIWob7uXkjQ/W57V6sVwN5NxLICqAF6JRw/391H7+Qc/is8j7Hunk/QElffrcvM8oDfA/cA0+yLcWOrCZK67eUsPL9VOzneDiyYIryyhdeUnddSX9dQgoTwUqAovH7zadhVrZ673+ruBwKjCLoEXk1wT6qA0QnXssDddyVJqb/X4TXsCawOz+Uagu6IPcL4yhrFl/hzBfBH4BNgn/AeXdvc+bQXC8baNXd/7mxuP3d/xN3HuHsRcD1QTNBFUkRkj6MES0Qkue4HTjCzY8wszcyyw65RgxLKnGVmo8LxTDcAj7h7rFE9mQRdxkqBqJkdRzBWaLt7gPPN7GtmFjGzgWa2r7uvIehK+Fszyw+37W1mO5tQoDtQCZSZ2UCCBCPRH4DZ7n4hwRiz7V+mHwK+GcaRAVxJkOD9a2cXqrFwivC8Fl5v7EJ1uQQJSikEE4bQzJgfM5toZgeF8W8FqoF42Bp3N8HYtz5h2YFmdkzCvm4Jk5g04Rvh2LJMgrFYb7v7CoLrHQ3jSzez6wjG2rWkO1AOVJrZvsAlOymfdO4+uoX7c3Fz+5nZgeHnoTfBuLCnwpYtEZE9jhIsEZEkCr88n0TQulBK0KJ0NQ1/395HMBHFWiAb+FET9VSE6x8CNgPfBZ5K2P4u4cQXBC0fr/FFS9I5BAnagnDfR2jYRbEpvwQOCOt6Fnhs+wYzO4lgkortX+j/AzjAzM5090UErV23EbT4nACc4O61Ozleu3L3BcBvgbcIusmNBd5spng+QSK1maC740bgN+G2HxOMPXs77Jb3EuE4qXAsVQXwUQuh/J2gxWYTweQTZ4Xr/0HQ3fDT8JjVNOoS2ISrCH4OKsJ4Z+ykfEfyB2ALsIjgOn8vpdGIiLQjc2/cA0FERNqLmc0E7nf3P6c6FmkbMzuLoPvgT5vZfi+w0t1/vlsDExGRlNJD/kRERL4Ed78/1TGIiEjHoy6CIiJdhAUPvd2lyQlkz2Nm1zbzc/B8qmMTEdkTqIugiIiIiIhIkqgFS0REREREJEk61BisXr16eXFxcarDEBERERERadGcOXM2uPsOD5/vUAlWcXExs2fPTnUYIiIiIiIiLTKzZU2tVxdBERERERGRJFGCJSIiIiIikiRKsEREduKtJRv5ZG15qsMQERGRTqBDjcFqSl1dHStXrqS6ujrVoUgnk52dzaBBg8jIyEh1KNKJRWNxfvrnx7k14w78yqexgkGpDklEREQ6sA6fYK1cuZLu3btTXFyMmaU6HOkk3J2NGzeycuVKhg0blupwpBNbtmkb30t7jnGRz9n4xp8pOn5aqkMSERGRDqzDdxGsrq6mqKhIyZXsEjOjqKhILZ/SZpu31jLY1gNQs2JuaoMRERGRDq/DJ1iAkiv5UvRzI8lQXl3HvpEVAORv/DDF0YiIiEhH1ykSLBGRVKmojpJNDQB50U1QtTnFEYmIiEhHpgSrFcyMK6+8sv79zTffzLRp01IXUIK3336bgw46iPHjxzNy5Mj6uGbOnMm//vWvNtV97LHHUlhYyPHHH5+ESEU6p/LqKDnUsiwjHMtX+mlqAxIREZEOTQlWK2RlZfHYY4+xYcOGpNbr7sTj8TbVce6553LXXXcxd+5c5s+fz2mnnQYkJ8G6+uqrue+++9pUh0hnt3VbNRkWo6xwNAA1axekOCIRERHpyDr8LIKJfvn0xyxYndxn0YwakM/1J4xusUx6ejoXXXQRt9xyCzfeeGODbaWlpVx88cUsX74cgN///vcceuihTJs2jby8PK666ioAxowZwzPPPAPAMcccw0EHHcScOXN47rnnuP3223n++ecxM37+858zdepUZs6cybRp0+jVqxfz58/nwAMP5P77799hXNH69evp378/AGlpaYwaNYqSkhLuvPNO0tLSuP/++7ntttvYd999m41zyZIlLF68mA0bNnDNNdfwve99D4Cvfe1rzJw5s8Vr8/DDD/PLX/6StLQ0CgoKeP3116muruaSSy5h9uzZpKen87vf/Y4jjzySe++9lyeeeIKtW7fy2WefcdVVV1FbW8t9991HVlYWzz33HD179uTuu+/mrrvuora2lq985Svcd999dOvWrcFxDz74YO655x5Gjw7u3RFHHMHNN9/MhAkTWoxXZFfFa6sASO8zgtr1z1O++lN6pzgmERER6bjUgtVKP/jBD3jggQcoKytrsP6yyy7jiiuu4L333uPRRx/lwgsv3Gldn332Gd///vf5+OOPmT17NnPnzuXDDz/kpZde4uqrr2bNmjUAfPDBB/z+979nwYIFfP7557z55ps71HXFFVcwYsQITjnlFP70pz9RXV1NcXExF198MVdccQVz585lypQpLcY5b948XnnlFd566y1uuOEGVq9e3errcsMNN/CPf/yDDz/8kKeeegqAO+64AzPjo48+Yvr06Zx77rn1s/nNnz+fxx57jPfee4+f/exndOvWjQ8++IBDDjmE//u//wPgW9/6Fu+99x4ffvghI0eO5J577tnhuFOnTuWhhx4CYM2aNaxZs0bJlbSPaJBgFRYUstp7Ed1Qktp4REREpEPrVC1YO2tpak/5+fmcc8453HrrreTk5NSvf+mll1iw4IsuQ+Xl5VRWVrZY19ChQzn44IMBmDVrFmeccQZpaWn07duXww8/nPfee4/8/HwmTZrEoEHBQ03Hjx9PSUkJkydPblDXddddx5lnnsk///lP/v73vzN9+vQmW51aivOkk04iJyeHnJwcjjzySN59911OPvnkVl2XQw89lPPOO4/TTjuNb33rW/Xn9MMf/hCAfffdl6FDh/Lpp8G4lSOPPJLu3bvTvXt3CgoKOOGEEwAYO3Ys8+bNA4Ik7Oc//zlbtmyhsrKSY445ZofjnnbaaRx99NH88pe/5KGHHuLb3/52q+IV2VVetz3BymeO92ZE+YoURyQiIiIdWadKsFLt8ssv54ADDuD888+vXxePx3n77bfJzs5uUDY9Pb3B+KrE5zHl5ua26nhZWVn1y2lpaUSj0SbL7b333lxyySV873vfo3fv3mzcuHGHMs3FCTtOZ74r05vfeeedvPPOOzz77LMceOCBzJkzp8XyiecUiUTq30cikfrzO++883jiiSfYb7/9uPfee5tMGAcOHEhRURHz5s1jxowZ3Hnnna2OWWSXhAlWTrc81kX6sP+2D1IckIiIiHRkbe4iaGaDzexVM1tgZh+b2WXh+mlmtsrM5oavb7Q93NTq2bMnp512WoMua0cffTS33XZb/fu5c+cCUFxczPvvvw/A+++/z9KlS5usc8qUKcyYMYNYLEZpaSmvv/46kyZNanVMzz77LO4OBF0P09LSKCwspHv37lRUVOw0ToAnn3yS6upqNm7cyMyZM5k4cWKrj79kyRIOOuggbrjhBnr37s2KFSuYMmUKDzzwAACffvopy5cvZ8SIEa2us6Kigv79+1NXV1dfT1OmTp3KTTfdRFlZGePGjWt1/SK7JOwiaBk5VOQMJC+6GWq3pTgoERER6aiSMQYrClzp7qOAg4EfmNmocNst7j4+fD2XhGOl3JVXXtlgNsFbb72V2bNnM27cOEaNGlXfknLqqaeyadMmRo8eze23387w4cObrO+UU05h3Lhx7Lfffhx11FHcdNNN9OvXr9Xx3HfffYwYMYLx48dz9tln88ADD5CWlsYJJ5zA448/zvjx43njjTeajRNg3LhxHHnkkRx88MH84he/YMCAAUCQ/H3nO9/h5ZdfZtCgQfzjH/8Agm6J28dbXX311YwdO5YxY8bw1a9+lf3224/vf//7xONxxo4dy9SpU7n33nsbtFztzK9+9SsOOuggDj30UPbdd9/69U899RTXXXdd/ftvf/vbPPjgg/UzJ4q0B6sLW58zcqjrPjhY3rI8dQGJiIhIh2bbWz+SVqHZk8DtwKFApbvf3Np9J0yY4LNnz26wbuHChYwcOTKpMcoXGs92uKfRz4+01R//8mcuWX4lnP8Cf35zGRd++u/4dx/Chu84NlBERES6DjOb4+47zLKW1FkEzawY2B94J1x1qZnNM7O/mFmPZva5yMxmm9ns0tLSZIYjItJmkbCLIBnZ5PQJHjZctf7zFEYkIiIiHVnSJrkwszzgUeBydy83sz8CvwI8/Pe3wAWN93P3u4C7IGjBSlY80jrTpk1LdQgiHVokFnYRTM+hV79+VHsGW9cvpVvLu4mIiEgXlZQWLDPLIEiuHnD3xwDcfZ27x9w9DtwNtH7mBhGRDiISrQkWMnIY1LMbq7wXsY1NT1ojIiIikoxZBA24B1jo7r9LWN8/odgpwPy2HktEZHdLi38xycWgwiDBilSsSm1QIiIi0mElo4vgocDZwEdmNjdcdy1whpmNJ+giWAL8exKOJSKyW6VFt3cRzCY/K531kd4csG1uSmMSERGRjqvNCZa7zwKaejLtHjEtu4h0bYktWGZGRXZ/8mpegbpqyNjxwd0iIiLStSV1FsE92RNPPIGZ8cknnzRbpqSkhDFjxiTtmIsWLeKII45g/PjxjBw5kosuuggIHhL83HNty18vuOAC+vTpk9R4RfZEafFaYkQgLQOAuryBwYZydRMUERGRHSnBaqXp06czefJkpk+f3uT2aDTa5mPEYrEG73/0ox9xxRVXMHfuXBYuXMgPf/hDIDkJ1nnnnccLL7zQpjpEuoJIvI6oZda/t8JBwULZyhRFJCIiIh1Z0qZp3y2e/wms/Si5dfYbC8f9usUilZWVzJo1i1dffZUTTjiBX/7ylwDMnDmTX/ziF/To0YNPPvmEf/7zn0SjUc4880zef/99Ro8ezf/93//RrVs3Xn75Za666iqi0SgTJ07kj3/8I1lZWRQXFzN16lRefPFFrrnmGk4//fT6465Zs4ZBgwbVvx87diy1tbVcd911VFVVMWvWLH76059y/PHH88Mf/pD58+dTV1fHtGnTOOmkk7j33nt5/PHHKSsrY9WqVZx11llcf/31ABx22GGUlJS0eN6vvfYal112GQBmxuuvv05eXh7XXHMNzz//PGbGz3/+c6ZOncrMmTO5/vrrKSws5KOPPuK0005j7Nix/OEPf6CqqoonnniCvffem6effpr//M//pLa2lqKiIh544AH69u3b4Linn346Z599Nt/85jeBIBk8/vjj+fa3v926eyqSRJF4HTH74ldldtFQWAK1m5aTuVcKAxMREZEOSS1YrfDkk09y7LHHMnz4cIqKipgzZ079tvfff58//OEPfPrpp0DQre/73/8+CxcuJD8/n//93/+lurqa8847jxkzZvDRRx8RjUb54x//WF9HUVER77//foPkCuCKK67gqKOO4rjjjuOWW25hy5YtZGZmcsMNNzB16lTmzp3L1KlTufHGGznqqKN49913efXVV7n66qvZunUrAO+++y6PPvoo8+bN4+GHH2b27NmtPu+bb76ZO+64g7lz5/LGG2+Qk5PDY489xty5c/nwww956aWXuPrqq1mzZg0AH374IXfeeScLFy7kvvvu49NPP+Xdd9/lwgsv5LbbbgNg8uTJvP3223zwwQecfvrp3HTTTTscd+rUqTz00EMA1NbW8vLLL9cnWyK7W8QbJlgFfYYSd6NiXUnqghIREZEOq3O1YO2kpam9TJ8+vb4l5/TTT2f69OkceOCBAEyaNIlhw4bVlx08eDCHHnooAGeddRa33nor//Zv/8awYcMYPnw4AOeeey533HEHl19+ORAkFE05//zzOeaYY3jhhRd48skn+dOf/sSHH364Q7l//vOfPPXUU9x8880AVFdXs3z5cgD+7d/+jaKiIgC+9a1vMWvWLCZMmNCq8z700EP5j//4D84880y+9a1vMWjQIGbNmsUZZ5xBWloaffv25fDDD+e9994jPz+fiRMn0r9/MDv/3nvvzdFHHw0ELW+vvvoqACtXrmTq1KmsWbOG2traBtduu+OOO47LLruMmpoaXnjhBQ477DBycnJaFbNIskXidcQjGfXv+xUVUEoB8U3LUhiViIiIdFRqwdqJTZs28corr3DhhRdSXFzMb37zGx566CHcHYDc3NwG5YPHgjX/vimN60g0YMAALrjgAp588knS09OZP3/Hx4m5O48++ihz585l7ty5LF++nJEjR37peLb7yU9+wp///Geqqqo49NBDW5zgAyArK6t+ORKJ1L+PRCL1Y9R++MMfcumll/LRRx/xpz/9ierq6h3qyc7O5ogjjuAf//gHM2bMaDYBFdkd0ryOWOSLv0UNKMxmtffCNAZLREREmqAEayceeeQRzj77bJYtW0ZJSQkrVqxg2LBhvPHGG02WX758OW+99RYAf//735k8eTIjRoygpKSExYsXA3Dfffdx+OGH7/TYL7zwAnV1dQCsXbuWjRs3MnDgQLp3705FRUV9uWOOOYbbbrutPun74IMP6re9+OKLbNq0qX4c1PbWtdZYsmQJY8eO5cc//jETJ07kk08+YcqUKcyYMYNYLEZpaSmvv/46kyZNanWdZWVlDBwYzML2t7/9rdlyU6dO5a9//StvvPEGxx57bKvrF0m2tHiUuCW0YOVns9qLyKzULIIiIiKyIyVYOzF9+nROOeWUButOPfXUZmcTHDFiBHfccQcjR45k8+bNXHLJJWRnZ/PXv/6V73znO4wdO5ZIJMLFF1+802P/85//ZMyYMey3334cc8wx/OY3v6Ffv34ceeSRLFiwgPHjxzNjxgx+8YtfUFdXx7hx4xg9ejS/+MUv6uuYNGkSp556KuPGjePUU0+t7x54xhlncMghh7Bo0SIGDRrEPffcA8Cdd97JnXfeCcDvf/97xowZw7hx48jIyOC4447jlFNOYdy4cey3334cddRR3HTTTfTr16/V13PatGl85zvf4cADD6RXr17162fPns2FF15Y//7oo4/mtdde4+tf/zqZmZlNVSWyW0Q82qCLYHpahLLMvnSvWQvhHzVEREREtjPvQF8QJkyY4I0nYVi4cGF9dzfZNffeey+zZ8/m9ttvT3UoKaOfH2mrl39xBKPzq+h39Tv16/7y2x9zQcWdcPUSyO3Vwt4iIiKypzKzOe6+w+QGasESEWlGLO5kECUeadiKGs8PHzZctiIFUYmIiEhHpgRrD3beeed16dYrkbaqi8XJIAaRhhOupvccAkBsixIsERERaahTJFgdqRujdB76uZG2qo3FybAonpbRYH233sUAbF1fsvuDEhERkQ6twydY2dnZbNy4UV+WZZe4Oxs3biQ7OzvVoUgnVheNk0EUb9RFsHfv/lR5JlWlehaWiIiINNThHzQ8aNAgVq5cSWlpaapDkU4mOzubQYMGpToM6cTqYk4mO7ZgDejRjdVeRM5mdREUERGRhjp8gpWRkcGwYcNSHYaIdEHBGKwopDVswRpQmM0H3osRFXoWloiIiDTU7l0EzexYM1tkZovN7CftfTwRkWSp3Z5gRRq2YHXPzqA0rTfdqtakKDIRERHpqNo1wTKzNOAO4DhgFHCGmY1qz2OKiCRLXSxOusWwRl0EAbZm96d7dCNEa1IQmYiIiHRU7d2CNQlY7O6fu3st8CBwUjsfU0QkKeqiwRisxl0EAerywmdhlauboIiIiHyhvROsgUDiKPCV4bp6ZnaRmc02s9mayEJEOpLaWCzoIpi+Y4IVKQwnUClbuZujEhERkY4s5dO0u/td7j7B3Sf07t071eGIiNSrjToZRLH0HbsIZvUaCkD1Bk3VLiIiIl9o7wRrFTA44f2gcJ2ISIe3fRbBSFrWDtvy+xQDUKmHDYuIiEiC9k6w3gP2MbNhZpYJnA481c7HFBFJirpojEyLYU10EexfVMB6L6R2o1qwRERE5Avt+hwsd4+a2aXAP4A04C/u/nF7HlNEJFmi4QyBkSYSrIGFOaz2IvpoDJaIiIgkaPcHDbv7c8Bz7X0cEZFki9bVAk0nWL27Z/EBvRi8dfXuDktEREQ6sJRPciEi0lHFaoMWrLQmEqy0iFGW2ZfuNWvBfXeHJiIiIh2UEiwRkWbEomELVsaOCRZAdbcBZHoNbNu0O8MSERGRDkwJlohIM+Lbuwhm7DiLIIB3Dx/rV7aiye0iIiLS9SjBEhFpRiy6vYtg0wlWetGQoNxmJVgiIiISUIIlItIMr60CIC0zp8nt3foMA6Bi3ZLdFpOIiIh0bEqwRESaEw0SrPSsphOs3r37U+E5VK//fHdGJSIiIh2YEiwRkebUVQMQaaYFa1DPbiz3PvimpbszKhEREenAlGCJiDQnbMGyjG5Nbh7YI4fl3oesiuW7MyoRERHpwJRgiYg0J5zkgmYmuchKT2NjxkC6V6+GeHw3BiYiIiIdlRIsEZFmWDToIkh6010EAbblDSLDa6FizW6KSkRERDoyJVgiIs0JuwiSkd1skXhBcbCwuaTdwxEREZGOTwmWiEgzrG7nLVgZvfcCILpRMwmKiIiIEiwRkeZt7yLYQgtWfr9hRD1C5drFuykoERER6ciUYImINKM1Y7AGFRWw2ouoK9XDhkVEREQJlohIsyKxGmJEIC292TKDwqnabcuy3RiZiIiIdFRtSrDM7Ddm9omZzTOzx82sMFxfbGZVZjY3fN2ZlGhFRHajSKyaWmt6ivbt+hdks5K+5FSu2E1RiYiISEfW1hasF4Ex7j4O+BT4acK2Je4+Pnxd3MbjiIjsdmmxaqKRlhOs9LQIm7MHkhvdDDUVuykyERER6ajalGC5+z/dPRq+fRsY1PaQREQ6hrR4LXU7acECqO0+JFjQVO0iIiJdXjLHYF0APJ/wfpiZfWBmr5nZlOZ2MrOLzGy2mc0uLS1NYjgiIm2THq8hmrbzBIsexcG/m5a2azwiIiLS8TU/cjtkZi8B/ZrY9DN3fzIs8zMgCjwQblsDDHH3jWZ2IPCEmY129/LGlbj7XcBdABMmTPAvdxoiIsmXEa8hvpMuggDZfb4CS6Bu4+dk7Ia4REREpOPaaYLl7l9vabuZnQccD3zN3T3cpwaoCZfnmNkSYDgwu60Bi4jsLhleQ6wVLVh9+/Rli+dia5dQsBviEhERkY6rrbMIHgtcA5zo7tsS1vc2s7RweS9gH+DzthxLRGR3qo3GyaaGeHq3nZYd3DOHZd6X2Eb9mhMREenq2joG63agO/Bio+nYDwPmmdlc4BHgYnff1MZjiYjsNhXVdeSzlVhm/k7LDurRjRXeh/QyPQtLRESkq9tpF8GWuPtXmln/KPBoW+oWEUmliuoo+baNquydd/rrnZfFKutLbvV7EI9BJG03RCgiIiIdUTJnERQR2WNUVEcpYCvWigQrEjEqcwaR5jEoX7UbohMREZGOSgmWiEgTKrdWkmO1RLr1aFX5aIGehSUiIiJKsEREmlRduQWA9G6FrSqf1nNYsKAES0REpEtTgiUi0oSaymBensy8nq0q371vMVGPULNBDxsWERHpypRgiYg0oW7rZgCyureui+CgonxWeS+q1y9pz7BERESkg1OCJSLShNrKIMHK6d66FqzBPXNY7n3wTSXtGJWIiIh0dEqwRESaUBd2EUxv5SQX25+FlVWxvD3DEhERkQ5OCZaISFO2rg/+zevTquI9umWwNtKPnLrNUFPRjoGJiIhIR6YES0SkCdnb1lJLJuS0rgXLzKjJGxi8KdOzsERERLoqJVgiIk3Iq11PWUZvMGv1PlYQJljlK9spKhEREenolGCJiDQSjzs9oqVsy+67S/tl9RwMgKsFS0REpMtSgiUi0si6imr6spFo9wG7tF9B3yHE3ajeuKKdIhMREZGOTgmWiEgjy0vL6MtmMnoM3qX9BhXlU0oBVRs0k6CIiEhXpQRLRKSRzcs/IcNidBswapf2G9SjG2u8J7EtGoMlIiLSVSnBEhFppGLFPAAKi/fbpf0G98xhjReRXrm6PcISERGRTqBNCZaZTTOzVWY2N3x9I2HbT81ssZktMrNj2h6qiMjuYesXECNCep8Ru7Rf9+wMNqf1Iqd6XTtFJiIiIh1dehLquMXdb05cYWajgNOB0cAA4CUzG+7usSQcT0Sk3cTiTv/Kj9mQM4y+Gdm7vP+2nP5kV22D6jLILmiHCEVERKQja68ugicBD7p7jbsvBRYDk9rpWCIiSfPp6k2MZxGV/Q/6UvvXdusXLJSrm6CIiEhXlIwE61Izm2dmfzGzHuG6gUDiPMUrw3U7MLOLzGy2mc0uLS1NQjgiIl/eojkzybUaeo468kvtH+se/qrTs7BERES6pJ0mWGb2kpnNb+J1EvBHYG9gPLAG+O2uBuDud7n7BHef0Lt3713dXUQkqSKLnqGOdHqM/XJDR9MLgmdnecWaZIYlIiIincROx2C5+9dbU5GZ3Q08E75dBSQ+QGZQuE5EpMNaur6MCVtnsqroIIq/5Pip7B5BF8GaLWvZ9RFcIiIi0tm1dRbB/glvTwHmh8tPAaebWZaZDQP2Ad5ty7FERNrbvJceYIBtouDQC790HT0LCyj3blRv1hgsERGRrqitswjeZGbjAQdKgH8HcPePzewhYAEQBX6gGQRFpCPbWhNl0Kf3sSGtL732P+lL19M7L4tSL6CwfG0SoxMREZHOok0Jlruf3cK2G4Eb21K/iMju8twzj/MdFrDygGshkval6+nVPYtSCims1LOwREREuqL2mqZdRKTT2FhRzT7z/ofNaUUM+rcftqmu7S1Y6VWaFVVERKQrSsaDhkVEOrVXHr+b79hnrDvsZsjs1qa6CnIy2EAh2TXzkhTdnqE2GmdrVQ1bt1YSrauGeBTidWRnZdMtN4/cbnmkpWeAWapDFRERaRMlWCLSpa3csIVJS25jTfYw+k+5oM31RSLG1sxeZMW2Qe1WyMxNQpQdWzzurC7dyOpliyhbvZj4xqVkVi4nb9tqsus2kxcro5AKCthKD/Nm66nzNDZbARXpPanO7Ek0pxee15eMwoHkFA2isM9gCvoOIS2/P6Rl7MYz/IK7UxuLE4vFqautIVZbRSwWIxqLEYvFwZ2IxYngpJljOJG0DCJp6Vh6JpG0NNLSM0hLzyA9LYNIxDAllSIiexQlWCLSpb338G85xdax8dgH2jT2KlFtdm/YClSug557JaXOjqK6NsqSRfMo/WwOtavnk1u2iEG1nzOY9QxKSJ62kc2G9L5UZRexLWsQFTk9KMnuQSSrO5aWiadl4JZGrK6GaE0VsdoqqK0kvXoTmdUbyK7eRI+tS+i9YQsZtuMcSVsihVRk9KImuw81OX2o69YPz+1NWlYumVk5kJFDLC0TAIvHwONEYzGidXXU1dUSr91KvGYb1G3F6rYFr2gVkboq0mLbSItVkxarIT1eQ0a8hgyvIdNryaKGbOrIppZuLSSLrVXnacSIECONKGnELUKchJel1f/rRIhbBN++jggxIjiGESRz5g5ByeDccczjGGDEw21hmbCshe+D8tttrytcDpcMx7fXm7Bueznq1zXNm92ys20t2fU6E+trXKKlOHZ2SNtJgcbnYa17s9NDl0UKiX7rz4waNa7Z/URk91GCJSJd1mfLVnH42r+wtGACw8Z/M2n1xnO3J1jrO3WCFYs7ny5bwar5s4iveI/CTR+yT90iRltlsJ0I69IHsqXnaOb3OpWcfiPoNXg4hQP2oVtuL4a0sWXG3dmytYZ161ZRtm45lRtXUbdpJVSsJX3bWrrVlFKwZTV9tnxMEeVE2pDwVHkm1ZZNtWVRa9nURbKIRrKJZXZnW1ovPC2beHo2lpGDp2cTD9+TloWlpRGxCBaJ4BYkPHG3IAlyB49hsSgej2Ieg3gUi9dBPAax4F+L1+HxWLDdY8E2j2PxaPDe41j99oT0yoPWMjcLUyfDLUinwIhbMNTaiYCFaVG43RO3AZhhEO4PkNi6Zl9030xcF37d9wbrmrkPvuP67WusiXXbJSZ6reI7LDRXYAfbk8UmS3gze3vz+3gT5Zpe5S2eXeNdG5c9YOvrfPzkNfjI59UiKtIBKMESkS5r4eO/5kSrJP3kXyd17I917wfrCVqwOpFY3FmwdCUr575E2rI3GFo+m5EsYyQQx1iVMZQVfb/GqsET6TtiEr2KxzIgsxsD2ikeM6NHXjY98vaGvfdusoy7UxONs3lbFVVl69m2rZLqbVshWk0kVhN83Y+kgaWRnp5OVmYGWZlZZObkkdUtj+xu3cnIyiUnEiGnnc5DpL3Nuf8XTFx8Kx+98ThjD/tWqsMR6fKUYIlIl7RwyTKO2Pwwi3sdyVf2mpjUurMK+gEQr1jX4adqXb+lko/feZGaRS/Rf9O7jPbFjLU4NWSyIm8sCwadSK+RU+g94mAGZxcwONUBN2JmZGekkV2QBwV5qQ5HJCVGn/oTVt70MD1evZbaiceQmbPnj/0U6ciUYLXgk3dfouLNu8na71uMnHwSGZnZqQ5JRJKk5OlfM8KqiZx8Q9LrLujVj6hHqNm0io72Ncfdmf/5Cpa+9SR5y17igNr3ONK2EiXCypx9WTL4e/TZ79/oMXwKX8nQ7zyRziA7J5fSw/+L/Weez+wHrmXChX9IdUgiXZoSrBZUrPmUEWWvk//6C5S/fjkfdTuA6JCv0nfc1xk0/EDS0jvv5fN4nHg8TiwWJRatIxqtIx6LEYvWEY8H62LRYMxALBZt0AF8h27kHm/0vmGBlnuWBxoMDG52oK816MVVv2hNr98+ULnhti/GDOzQI8waRPFF/IkFPXGxuUHMO45BcP+i/h0uX4M6W6q/+XvQYL8dtrV075ou12TZZra1tN+Oh2u60h2P9SXPtaVjJ6zYVlbKYZsf5dPe/8a+g5M/KLxPQS6lFJK9aWWHSLCisTgfzvuA9bOfoPfqV9kvvoCxFqM8ks+afkdSMfabDDzgGxR3K0x1qCLyJe1/xLf41/sP8dWV9/LZm4ezz6Fdq6uguxOLRqmrraG2tppobTXRuhqitbXEYrV4PA7xOHF3PB7D3XGPg8eD5Xi8fn2D7zVm9eMTwbDI9n4JwRhFSygTLH4xBtIiCdvD7zAWjmc02z7+MVxvDcc8BvuGdSWMf7T67zwJ6xss7yYtfUloj8OlZ5PXsx/ds1Mzg+yuMt/NF6glEyZM8NmzZ6c6jAZqaqr4+I2niH38JAO3zGaAB2MqajyDVRmD2ZK7N7X5xWQUDiCzR3/SCwaQk1dITl53cnPzycrJDaYT9i9macKdWDxOTXUVtTVbqauuoq4meEVrq4jVVhOrDZbjtVXEa6uJ11XjdVUQrYa6aohVY9EaLFZDJFpNJF5DJFZDWryW9HgN6fFaMryWDK8hw2vJpI4sr2X73FNNzcol0pVUeSa1F/2LgoH7JL3uD1dsoe7uf2Ovfj3p+f1/JL3+1qiujfL+7Dep+OBxiktfYQTLAFidMZTyoV9nwMRTyN/nq0mbOVFEUq+svIzSWw6jr69ny6kPM3js5FSH1Cx3p3JrJRWb1rO1bAPVZaXUVm4kWrmR+LbNxGsqsdqtRKLbSKvbSkZsG+mxbWTFqsj0KrLjVWRQR7pHySBKJnWkJWFmT+mY/hGbQMnX7+LfD296PG6qmNkcd5+ww3olWLtm1dJFrPrwZaJrPqLblk/pX7OUvmzc7XFUewa1lkktGdRZJrWWRdQyiUYyiUayiEUyiUWyiKcFL0/PJh7JDAZ7R9IxS8Mj6VgkPfiCFb6C9+lYJA3S0olE0rBIWv1sU/Ua/aXEGre27PCXlJZGonwxQ1TzP45Nb7NG67e3kNTPBNWoRWP7bFTNzQK1wzb3HebETWyHanzelrB3g0vg3uiS2A7lm6unQcuae7N/pWqhQW4n61s3HXBLM1O19tiNC+9YrPlJjpu6fk1ta+3f8HKLJ9B/xA6/E5NiXXk17/zmZI7ovpL8a+a3yzGaUra1hg/eeZmaeU+y7+aZDLW1xDGW5oyldp9vUHzod8jp+5XdFo+I7H4lny8i/f+Op4BK1n79dvaZfOpuPX48Wsfm9avYsm4ZWzeuoGbTKuLla0jfuoasqlK61W2kW6yCAq8gx2qbr8eNbZZNFdnUWA41kRxq03Koi+QQTe9GLL0bnpZFPC0z+EN2WiZEMiE9C9IysPRMLD0LSwueP+eRtPD/sbSgdcgiYJFgnUWwSPhvOOOmmYWtWdu/WXjCH8u9ftHDRxo4jnvYh8UB4uFXhYTyJNTnX6y3cN/wzL84VH15b/h9J3z0AoTfFxrMtLkbW7J2Y6vZ1pz+9Nv/WPbtl7/bjtkazSVYnbePW4oMHDaCgcNGNFhXXV3N+rUr2LphJdGytdRVlVNXvZVodfCXl4gHrUUNunxZBMvIxtKzsYxsIpk5RDKyScvMJi0jh/TsHNIycsjIyiEjqxuZOd3IzO5GdnY3MjKzyY5E0OgIkY6pV14Wq+lNt6rZEI9DpP2muli9qYKP3noBFj7NuIo3OMI2ESWNpfkH8tnIH1B86GnsHU66ISJ7vuK9RlBy9tOsuf90hr90AR9+8DCDTrqeoiEj21Svx+OUb9nI5rUlVGxYQfXGVcTKVhGpXEvmtnXk1pZSGN1AT99CkTlFCfvWeRobrQdb0oooy+zPpuxRLM/uATk9iOQWkZ7Xk6zuvcjO70VuYR+6F/Yiu1seeZEImrpGOiMlWEmQnZ3NkOJ9oDj5XY1EpPNJixgVmX1Jj9XB1vXQPXkJjruzaMVaPnvrGTI//ycTqt/iGKughkxKeh5CzdiTGHLQt9gnt0fSjikinUvx3vtSdsUbzLzvxxyy/iGy/vI8izP3ZUvviWQO2o/soiFk5xUSj2TgbnhtJTVby9hWUUZNxQaoWEvatvVkVJWSU7OB7tGNFMU3UWC1FDQ61ma6sznSk4rM3mzKG85nuX2xggFkFg4kt9dgCvsOpajvAPqlp6M/9UhXoQRLRKQd1BQUwyagdFGbE6yyqjrmfTiHyo+eo2jNTPaLfcy+FmWrdWNV38Op3f8U+h94PCMyO8KUGiLSERTkd+eIH/wvy0uuZOlLf6JozWuMW/l3Mlfd16r9y+nGZutJZUZP1uaNZmW3PpA/gIzCAeQUDaagzxB69htCj2656M85Ig21KcEysxnA9v5yhcAWdx9vZsXAQmBRuO1td7+4LccSEelMbMB42AS+6n1sr8N3ad+aaIyPFixg3byXyFz5L4ZXzWWKrQdgdcYQlg49k74TTqTHiMMYnp7ZDtGLyJ5iSPHeDLnwJgAqt1aydOknbCtdTl1VBWnUEcGJpeeS1S2f3O6FdO/Zm4Jeg8jPyaVjjXYR6TzalGC5+9Tty2b2W6AsYfMSdx/flvpFRDqroYMGs2xeH3otfYfcKc2Xc3dKN5ex9ON3KV/yDpnrPqR42zwmWDBjaaXlsbboQEr2voQBk05mQO+9GLCbzkFE9ix5uXmMGDMBaJ8JfkQkkJQughZMy3IacFQy6hMR6ewOH96bN54Zw2klr0DZSigYxOaKbawp+YTNy+dTvXoh6Zs/o++2xezty+kTPjphixWwrnAsnw67gIHj/428IeP5iqZSFxER6TSSNQZrCrDO3T9LWDfMzD4AyoGfu/sbSTqWiEiHN7hnN+YXn8upK16n9pYDqSKLQi+nR8JzWjZGerIxd28W9j6SbsMmMmjMoRT2HELh7n5gpIiIiCTNTp+DZWYvQZMTv/zM3Z8My/wRWOzuvw3fZwF57r7RzA4EngBGu3t5E/VfBFwEMGTIkAOXLVvWhtMREek4yqvrePK5Zxm27FGy0o307r3J7L03BUNG03/vcaR109BwERGRzqrdHjRsZunAKuBAd1/ZTJmZwFXu3uJThDvDg4ZFRERERESaS7CS8fTLrwOfJCZXZtbbzNLC5b2AfYDPk3AsERERERGRDisZY7BOB6Y3WncYcIOZ1QFx4GJ335SEY4mIiIiIiHRYbU6w3P28JtY9Cjza1rpFREREREQ6kzaPwUomMysFOtosF72ADakOQnYb3e+uQ/e6a9H97jp0r7sO3euupSPe76Hu3rvxyg6VYHVEZja7qcFrsmfS/e46dK+7Ft3vrkP3uuvQve5aOtP9TsYkFyIiIiIiIoISLBERERERkaRRgrVzd6U6ANmtdL+7Dt3rrkX3u+vQve46dK+7lk5zvzUGS0REREREJEnUgiUiIiIiIpIkSrBERERERESSRAlWC8zsWDNbZGaLzewnqY5HksfMBpvZq2a2wMw+NrPLwvU9zexFM/ss/LdHqmOV5DCzNDP7wMyeCd8PM7N3ws/3DDPLTHWMkhxmVmhmj5jZJ2a20MwO0Wd7z2RmV4S/w+eb2XQzy9Zne89hZn8xs/VmNj9hXZOfZQvcGt73eWZ2QOoil13VzL3+Tfh7fJ6ZPW5mhQnbfhre60VmdkxKgm6BEqxmmFkacAdwHDAKOMPMRqU2KkmiKHClu48CDgZ+EN7fnwAvu/s+wMvhe9kzXAYsTHj/P8At7v4VYDPw/1ISlbSHPwAvuPu+wH4E912f7T2MmQ0EfgRMcPcxQBpwOvps70nuBY5ttK65z/JxwD7h6yLgj7spRkmOe9nxXr8IjHH3ccCnwE8Bwu9rpwOjw33+N/ze3mEowWreJGCxu3/u7rXAg8BJKY5JksTd17j7++FyBcEXsIEE9/hvYbG/ASenJEBJKjMbBHwT+HP43oCjgEfCIrrXewgzKwAOA+4BcPdad9+CPtt7qnQgx8zSgW7AGvTZ3mO4++vApkarm/ssnwT8nwfeBgrNrP9uCVTarKl77e7/dPdo+PZtYFC4fBLwoLvXuPtSYDHB9/YOQwlW8wYCKxLerwzXyR7GzIqB/YF3gL7uvibctBbom6q4JKl+D1wDxMP3RcCWhF/c+nzvOYYBpcBfwy6hfzazXPTZ3uO4+yrgZmA5QWJVBsxBn+09XXOfZX1v27NdADwfLnf4e60ES7o0M8sDHgUud/fyxG0ePMNAzzHo5MzseGC9u89JdSyyW6QDBwB/dPf9ga006g6oz/aeIRx7cxJBUj0AyGXHLkayB9NnuWsws58RDO14INWxtJYSrOatAgYnvB8UrpM9hJllECRXD7j7Y+Hqddu7FIT/rk9VfJI0hwInmlkJQVffowjG6BSG3YpAn+89yUpgpbu/E75/hCDh0md7z/N1YKm7l7p7HfAYweddn+09W3OfZX1v2wOZ2XnA8cCZ/sXDezv8vVaC1bz3gH3C2YgyCQbTPZXimCRJwjE49wAL3f13CZueAs4Nl88FntzdsUlyuftP3X2QuxcTfI5fcfczgVeBb4fFdK/3EO6+FlhhZiPCVV8DFqDP9p5oOXCwmXULf6dvv9f6bO/ZmvssPwWcE84meDBQltCVUDohMzuWoHv/ie6+LWHTU8DpZpZlZsMIJjZ5NxUxNse+SAalMTP7BsHYjTTgL+5+Y2ojkmQxs8nAG8BHfDEu51qCcVgPAUOAZcBp7t54gK10UmZ2BHCVux9vZnsRtGj1BD4AznL3mhSGJ0liZuMJJjTJBD4Hzif4g6I+23sYM/slMJWg+9AHwIUEYzH02d4DmNl04AigF7AOuB54giY+y2GSfTtBN9FtwPnuPjsFYcuX0My9/imQBWwMi73t7heH5X9GMC4rSjDM4/nGdaaSEiwREREREZEkURdBERERERGRJFGCJSIiIiIikiRKsERERERERJJECZaIiIiIiEiSKMESERERERFJEiVYIiIiIiIiSaIES0REREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIR6SDMrNjM3MzSUx3Lns7MzjOzWamOo6MxsylmtijVcYiIdGZKsEREpFMzs2lmVmdmlQmva1IdV2fk7m+4+4hk12tmJ5jZ/PDe/MvMRiX7GCIiHYUSLBGRJFHLU0rNcPe8hNdNqQ4omTrzz5aZ7QM8AFwMFAJPA0915nMSEWmJEiwRkTYwsxIz+7GZzQO2mlm6mR0c/pV+i5l9aGZHJJSfaWb/bWbvmlm5mT1pZj2bqft8M1toZhVm9rmZ/Xuj7SeZ2dywniVmdmy4vsDM7jGzNWa2ysz+08zSdnIee5vZK2a20cw2mNkDZlaYsG2TmR0Qvh9gZqXbz8vMTjSzj8PznWlmIxtdn6vMbJ6ZlZnZDDPL3vUrvevM7CfhdakwswVmdkoz5czMbjGz9eG1/MjMxoTbsszsZjNbbmbrzOxOM8tp5fHvDcu/GMbwmpkNTdj+BzNbER5zjplNSdg2zcweMbP7zawcOM/MJpnZW+F1XmNmt5tZZsI+bmbfN7PPwuP9Krx3/wqP8VBi+WZiPsLMVrbm/HbBMcAb7j7L3aPA/wADgcOTfBwRkQ5BCZaISNudAXyT4K/zfYFngf8EegJXAY+aWe+E8ucAFwD9gShwazP1rgeOB/KB84FbEpKcScD/AVeHxz0MKAn3uzes9yvA/sDRwIU7OQcD/hsYAIwEBgPTANx9CfBj4H4z6wb8Ffibu880s+HAdOByoDfwHPB0oy/ypwHHAsOAccB5TQZgNjlMHpp7Td7JOTS2BJgCFAC/DOPv30S5owmu3/Cw7GnAxnDbr8P14wmu50Dgul2I4UzgV0AvYC5BS85274X19gT+DjzcKPk8CXiE4P4+AMSAK8K6DgG+Bny/0fGOAQ4EDgauAe4CziK4n2MIfla/tDBRbu7+/G9LuzZatjAeEZE9jhIsEZG2u9XdV7h7FcGX2efc/Tl3j7v7i8Bs4BsJ5e9z9/nuvhX4BXBaUy1M7v6suy/xwGvAPwkSBoD/B/zF3V8Mj7PK3T8xs77hsS53963uvh64BTi9pRNw98VhXTXuXgr8joQWBne/G1gMvEOQGP4s3DQVeDbctw64GcgBvtro+qx2900E3cPGNxPDLHcvbOHV0qQUpzX6sj/A3R8Ojxt39xnAZ8CkJvatA7oD+wLm7gvdfY2ZGXARcIW7b3L3CuC/dnYtG3nW3V939xqCa3aImQ0Oz/d+d9/o7lF3/y2QBSSOf3rL3Z8I469y9znu/nZYvgT4Ezu2At3k7uXu/jEwH/inu3/u7mXA8wQJ95fm7uNauD+Nk73tXgIOD1vHMoFrgUygW1tiERHpqJRgiYi03YqE5aHAdxK/7AOTCZKSpsovAzIIWiUaMLPjzOztsHveFoLEaXu5wQQtNI0NDetbk3D8PwF9WjoBM+trZg9a0KWwHLi/iZjuJmh1uC1MGCBo8Vq2vYC7x8PzG5iw39qE5W1AXkuxfEkPNfqyv9rMzrGgC+X26zCGJq6zu78C3A7cAaw3s7vMLJ+gRa4bMCehjhfC9a1Vf6/dvRLYRHDNCLtOLgy7Tm4haD3r1dS+YfnhZvaMma0N79F/NXE+6xKWq5p43x7XvkXu/glwLsE1XkMQ8wIg2V0RRUQ6BCVYIiJt5wnLKwhaqBK/7Oe6+68TygxOWB5C0IKyIbFCM8sCHiVoEerr7oUE3e+2d7VaAezdRCwrgBqgV8Lx89199E7O4b/C8xjr7vkELXH13brMLA/4PXAPMM2+GDe2miCp217OwvNbtZPj7cCCKcIrW3hN2Xkt9XUNJUgILwWKwus3n4Zd1eq5+63ufiAwiqBL4NUE96QKGJ1wLQvcfVeSlPp7HV7DnsDq8FyuIeiO2COMr6xRfIk/VwB/BD4B9gnv0bXNnU97sWCsXXP3587m9nP3R9x9jLsXAdcDxQRdJEVE9jhKsEREkut+4AQzO8bM0swsO+waNSihzFlmNiocz3QD8Ii7xxrVk0nQZawUiJrZcQRjhba7BzjfzL5mZhEzG2hm+7r7GoKuhL81s/xw295mtrMJBboDlUCZmQ0kSDAS/QGY7e4XEowx2/5l+iHgm2EcGcCVBAnev3Z2oRoLpwjPa+H1xi5Ul0uQoJRCMGEIzYz5MbOJZnZQGP9WoBqIh61xdxOMfesTlh1oZsck7OuWMIlJE74Rji3LJBiL9ba7ryC43tEwvnQzu45grF1LugPlQKWZ7QtcspPySefuo1u4Pxc3t5+ZHRh+HnoTjAt7KmzZEhHZ4yjBEhFJovDL80kErQulBC1KV9Pw9+19BBNRrAWygR81UU9FuP4hYDPwXeCphO3vEk58QdDy8RpftCSdQ5CgLQj3fYSGXRSb8kvggLCuZ4HHtm8ws5MIJqnY/oX+P4ADzOxMd19E0Np1G0GLzwnACe5eu5PjtSt3XwD8FniLoJvcWODNZornEyRSmwm6O24EfhNu+zHB2LO3w255LxGOkwrHUlUAH7UQyt8JWmw2EUw+cVa4/h8E3Q0/DY9ZTaMugU24iuDnoCKMd8ZOynckfwC2AIsIrvP3UhqNiEg7MvfGPRBERKS9mNlM4H53/3OqY5G2MbOzCLoP/rSZ7fcCK93957s1MBERSSk95E9ERORLcPf7Ux2DiIh0POoiKCLSRVjw0NtdmpxA9jxmdm0zPwfPpzo2EZE9gboIioiIiIiIJIlasERERERERJKkQ43B6tWrlxcXF6c6DBERERERkRbNmTNng7vv8PD5DpVgFRcXM3v27FSHISIiIiIi0iIzW9bUenURFBERERERSRIlWCIiIiIiIkmiBEtEpBHNrioiIiJfVocag9WUuro6Vq5cSXV1dapDkU4mOzubQYMGkZGRkepQpJO59vH5fLpkCQ9edhwZmVmpDkdEREQ6kQ6fYK1cuZLu3btTXFyMmaU6HOkk3J2NGzeycuVKhg0blupwpJNZ9N5LPJY1jeXPXMaQb92Q6nBERESkE+nwXQSrq6spKipSciW7xMwoKipSy6fssnjcOS1tJgDdFj+b0lhERESk8+nwCRag5Eq+FP3cyJdRWRslz4LEvHvVCojVpTgiERER6Uw6RYIlIrK7lG2roxtBgpXlNVC6KMURiYiISGeiBKsVzIwrr7yy/v3NN9/MtGnTUhdQgrfffpuDDjqI8ePHM3LkyPq4Zs6cyb/+9a8vXe+yZcs44IADGD9+PKNHj+bOO+9MUsQiHVtZVR25Vk2F5QJQu+6TFEckIiIinYkSrFbIysriscceY8OGDUmt192Jx+NtquPcc8/lrrvuYu7cucyfP5/TTjsNaHuC1b9/f9566y3mzp3LO++8w69//WtWr17dplhFOoPKmig51LA+d1/ibmxZPj/VIYmIiEgnogSrFdLT07nooou45ZZbdthWWlrKqaeeysSJE5k4cSJvvvkmANOmTePmm2+uLzdmzBhKSkooKSlhxIgRnHPOOYwZM4YVK1Zw9dVXM2bMGMaOHcuMGTOAIEE64ogj+Pa3v82+++7LmWee2eSzedavX0///v0BSEtLY9SoUZSUlHDnnXdyyy23MH78eN54440W4zz77LM55JBD2Geffbj77rsByMzMJCsrmJ66pqam2UTw1ltvZdSoUYwbN47TTz8dgE2bNnHyySczbtw4Dj74YObNm1d/rHPPPZcpU6YwdOhQHnvsMa655hrGjh3LscceS11dMNblhhtuYOLEiYwZM4aLLrpoh/OOx+MUFxezZcuW+nX77LMP69ata+k2irRKXSxOLtWk5/Vipfeidp26CIqIiEjrdfhp2hP98umPWbC6PKl1jhqQz/UnjN5puR/84AeMGzeOa665psH6yy67jCuuuILJkyezfPlyjjnmGBYuXNhiXZ999hl/+9vfOPjgg3n00UeZO3cuH374IRs2bGDixIkcdthhAHzwwQd8/PHHDBgwgEMPPZQ333yTyZMnN6jriiuuYMSIERxxxBEce+yxnHvuuRQXF3PxxReTl5fHVVddBcB3v/vdZuOcN28eb7/9Nlu3bmX//ffnm9/8JgMGDGDFihV885vfZPHixfzmN79hwIABO5zLr3/9a5YuXUpWVlZ9wnP99dez//7788QTT/DKK69wzjnnMHfuXACWLFnCq6++yoIFCzjkkEN49NFHuemmmzjllFN49tlnOfnkk7n00ku57rrrADj77LN55plnOOGEE+qPGYlEOOmkk3j88cc5//zzeeeddxg6dCh9+/bd6X0U2Zm6WJxuVkNabj4LvT8jt3ye6pBERESkE1ELVivl5+dzzjnncOuttzZY/9JLL3HppZcyfvx4TjzxRMrLy6msrGyxrqFDh3LwwQcDMGvWLM444wzS0tLo27cvhx9+OO+99x4AkyZNYtCgQUQiEcaPH09JSckOdV133XXMnj2bo48+mr///e8ce+yxTR6zpThPOukkcnJy6NWrF0ceeSTvvvsuAIMHD2bevHksXryYv/3tb022EI0bN44zzzyT+++/n/T09PpzOvvsswE46qij2LhxI+XlQWJ83HHHkZGRwdixY4nFYvXxjh07tv78Xn31VQ466CDGjh3LK6+8wscff7zDcadOnVrf2vfggw8yderUFq+5SGvVRp1uVJOW053S9H7kVq1JdUgiIiLSiXSqFqzWtDS1p8svv5wDDjiA888/v35dPB7n7bffJjs7u0HZ9PT0Bt3qEp/HlJub26rjbe+iB0H3v2g02mS5vffem0suuYTvfe979O7dm40bN+5Qprk4YcfpzBu/HzBgAGPGjOGNN97g29/+doNtzz77LK+//jpPP/00N954Ix999FGrzikSiZCRkVF/rEgkQjQapbq6mu9///vMnj2bwYMHM23atCafZXXIIYewePFiSktLeeKJJ/j5z3/e4nFFWqsuGqMbNVRkdmNbt4Hkbi2DmgrI6p7q0ERERKQTUAvWLujZsyennXYa99xzT/26o48+mttuu63+/faucMXFxbz//vsAvP/++yxdurTJOqdMmcKMGf+/vfuOj7O8Ej3+O9NHvUtWsWXjbssFF4wLYAdCDT0YNrABdiE9N6TsJtklIezuvYFks3ezkHAhEFLAQCABQkIHA4ZgsDG44N7UextJ0+e5f8xYSLZky9ZIo3K+H+ujefuRX73SHD3Pc57HCYfDNDQ08Oabb7J06dIBx/SXv/yle4zS3r17sVqtZGRkkJqaisfjOWGcAM888ww+n4+mpibWr1/PkiVLqKysxOv1AtDS0sKGDRuYMWNGr2tHIhEqKipYvXo1d911F21tbXR0dLBq1SoeeeQRIDqWLCcnh7S0tAF9PUeSqZycHDo6OnjyySf73E9EuOKKK/jmN7/JrFmzyM7OHtD5lTqRcNCPXcJYHCmE0ydGV7aWJzYopZRSSo0ammCdpG9961u9qgn+/Oc/Z9OmTcybN4/Zs2d3lzO/6qqraG5uZs6cOdxzzz1Mnz69z/NdccUVzJs3j/nz57NmzRruvvtuCgoKBhzP7373O2bMmMGCBQu44YYbeOSRR7BarXzmM5/hT3/6U3eRi/7ihGg3v9WrV7Ns2TJuv/12CgsL2blzJ2eccQbz58/n7LPP5tvf/jZlZWUA/OM//iObNm0iHA5z/fXXU1ZWxsKFC/n6179ORkYGd9xxB5s3b2bevHl897vf5Te/+c2Av56MjAxuueUW5s6dy/nnn8+SJUu6t91333294l67di2///3vtXugiisTiHadFVcK9qxSAMLNhxIXkFJKKaVGFemrMt1JnUCkBPgtkA8Y4H5jzH+LyB3ALUBDbNfvG2P+erxzLV682GzatKnXup07dzJr1qxBxaj6d8cdd/QqhjHW6PePOllPvfY3rnrzAjzn/xevhU/nslfOpuXsfydz9dcSHZpSSimlRhAR2WyMWXz0+niMwQoB3zLGfCAiqcBmEXk5tu2/jDE/Pc6xSik1sgQ6AbA6U8hLK6bLOOmqO0BmgsNSSiml1Ogw6ATLGFMD1MRee0RkJ1A02POq4XHHHXckOgSlRpZgFxBNsIqzkqg0ObhbDic4KKWUUkqNFnEdgyUipcBCYGNs1VdFZKuIPCQiff4BWERuFZFNIrKpoaGhr12UUmrYmKAfAJvDRUG6iyqTi6OjMsFRKaWUUmq0iFuCJSIpwFPAN4wx7cAvgdOABURbuP6zr+OMMfcbYxYbYxbn5ubGKxyllDolJhxNsCw2O3arhWZ7AaneqgRHpZRSSqnRIi4JlojYiSZXjxhj/ghgjKkzxoSNMRHgAWDgtceVUipBIqEgAGKLztnWlVxEUqQDfO2JDEsppZRSo8SgEyyJzhT7ILDTGPOzHusn9NjtCmD7YK+llFJDzYQC0RdWOwCRtOLocpt2E1RKKaXUicWjBWsFcAOwRkQ+jH1cBNwtIttEZCuwGrgtDtdKmKeffhoRYdeuXf3uc+jQIebOnRu3a+7evZtzzjmHBQsWMGvWLG699VYgOknwX/963Ir3x+Xz+Vi6dCnz589nzpw5/PCHP4xXyEqNeiZ8JMFyAGDLLAEg3KKTDSullFLqxOJRRXADIH1sOvUMYARat24dK1euZN26dfzoRz86ZnsoFBr0NcLhMFartXv561//OrfddhuXXXYZANu2bQOiCdamTZu46KKLTuk6TqeT1157jZSUFILBICtXruTCCy9k2bJlg/4alBr1wtEugliiLVjJeaUAtNcdJHNmgmJSSiml1KgR1yqCY1VHRwcbNmzgwQcf5LHHHutev379elatWsWll17K7NmzgWii9bnPfY5Zs2Zx9dVX09UVLfn86quvsnDhQsrKyrj55pvx+6MD6UtLS/nnf/5nTj/9dP7whz/0um5NTQ3FxcXdy2VlZQQCAX7wgx/w+OOPs2DBAh5//HE6Ozu5+eabWbp0KQsXLuSZZ54B4OGHH+ayyy7jnHPOYdq0ad2JoYiQkpICQDAYJBgMEu3p2dsf/vAH5s6dy/z58znrrLOAaOvXTTfdRFlZGQsXLuT111/vvtbll1/OeeedR2lpKffccw8/+9nPWLhwIcuWLaO5uRmABx54gCVLljB//nyuuuqq7v+fnpYtW8aOHTu6l8855xyOnoBaqaHySQtWNMHKyp9IwFjxNhxKXFBKKaWUGjXiMdHw8Hn+u1C7Lb7nLCiDC3983F2eeeYZLrjgAqZPn052djabN29m0aJFAHzwwQds376dyZMnc+jQIXbv3s2DDz7IihUruPnmm/nFL37BV7/6VW688UZeffVVpk+fzt///d/zy1/+km984xsAZGdn88EHHxxz3dtuu401a9awfPlyPv3pT3PTTTeRkZHBnXfeyaZNm7jnnnsA+P73v8+aNWt46KGHaG1tZenSpZx77rkAvPfee2zfvp2kpCSWLFnCxRdfzOLFiwmHwyxatIh9+/bxla98hTPOOOOY69955528+OKLFBUV0draCsC9996LiLBt2zZ27drFpz/9afbs2QPA9u3b2bJlCz6fj6lTp3LXXXexZcsWbrvtNn7729/yjW98gyuvvJJbbrkFgH/913/lwQcf5Gtf+1qv665du5YnnniCH/3oR9TU1FBTU8PixcdMkq3U0DjSghXrIliclUytyYKWigQGpZRSSqnRQluwBmDdunVce+21AFx77bWsW7eue9vSpUuZPHly93JJSQkrVqwA4Prrr2fDhg3s3r2byZMnM336dAA+//nP8+abb3Yfs3bt2j6ve9NNN7Fz504++9nPsn79epYtW9bd8tXTSy+9xI9//GMWLFjAOeecg8/no7w8Ol7kvPPOIzs7G7fbzZVXXsmGDRsAsFqtfPjhh1RWVnYnYUdbsWIFN954Iw888ADhcBiADRs2cP311wMwc+ZMJk2a1J1grV69mtTUVHJzc0lPT+czn/kMEG15O3ToEBBNwlatWkVZWRmPPPJIr5aqI6655hqefPJJAJ544gmuvvrqPv9/lBoK0p1gRVuwCjPcVJODzaOl2pVSSil1YqOrBesELU1Dobm5mddee41t27YhIoTDYUSEn/zkJwAkJyf32v/ornZ9db072tHn6KmwsJCbb76Zm2++mblz5/aZCBljeOqpp5gxY0av9Rs3bjxhPBkZGaxevZoXXnjhmAId9913Hxs3buQvf/kLixYtYvPmzcf9OpxOZ/dri8XSvWyxWLrHqN144408/fTTzJ8/n4cffpj169cfc56ioiKys7PZunUrjz/+OPfdd99xr6tUXB3VRdBlt9JozWeGd2cCg1JKKaXUaKEtWCfw5JNPcsMNN3D48GEOHTpERUUFkydP5q233upz//Lycv72t78B8Oijj7Jy5UpmzJjBoUOH2LdvHwC/+93vOPvss0947RdeeIFgMPrX9NraWpqamigqKiI1NRWPx9O93/nnn8///M//YIwBYMuWLd3bXn75ZZqbm/F6vTz99NOsWLGChoaG7i5/Xq+Xl19+mZkzjx29v3//fs444wzuvPNOcnNzqaioYNWqVTzyyCMA7Nmzh/Ly8mMSu+PxeDxMmDCBYDDYfZ6+rF27lrvvvpu2tjbmzZs34PMrNWiR3l0EATrdBaQFGyA8+GI241UwHCESMYkOQymllBpymmCdwLp167jiiit6rbvqqqt6dRPsacaMGdx7773MmjWLlpYWvvSlL+Fyufj1r3/NZz/7WcrKyrBYLHzxi1884bVfeuml7iIT559/Pj/5yU8oKChg9erVfPzxx91FLm6//XaCwSDz5s1jzpw53H777d3nWLp0KVdddRXz5s3jqquuYvHixdTU1LB69WrmzZvHkiVLOO+887jkkksA+MEPfsCzzz4LwHe+8x3KysqYO3cuy5cvZ/78+Xz5y18mEolQVlbG2rVrefjhh3u1XJ3Iv/3bv3HGGWewYsWKXknds88+yw9+8IPu5auvvprHHnuMa665ZsDnVioe5KgqggChlCKsRMBTk6CoRreWzgBn/p/X+NFTGyF0bDdnpZRSaiyRI60eI8HixYvN0dXidu7cyaxZsxIU0ej28MMP9yqGMR7p9486WY/f/SXWdj0KP2yFWJfaxx79Ndfu+QaRG5/HUro8sQGOQs9trearj25hi/NW0otnYrnl1USHpJRSSg2aiGw2xhxTiU1bsJRSqgcxIULYupMrAFduKQCe+gMJimp021/fyQSayJQOLFWboK0y0SEppZRSQ0YTrDHsxhtvHNetV0qdCkskQEh61/9JLygFoKPu0PAHNAbUtvs409KjYuihtxMXjFJKKTXERkWCNZK6MarRQ79v1KmwRIJEjkqwJuRm02xSCDaXJyiq0a2+3cei1BYAIlih/tjpGZRSSqmxYsQnWC6Xi6amJn2zrE6KMYampiZcLleiQ1GjjMWECYu917qiDDfVJgdp07mwTkWdx8cEeyetkkaVYxLUa8l7pZRSY9eInweruLiYyspKGhoaEh2KGmVcLhfFxcWJDkONMtZIkLCl94/GVJedOksuuV2aYJ2Kls4g2XYPXlsmuyPFlGiCpZRSagwb8QmW3W5n8uTJiQ5DKTVOWE2QiOXYH40dzgLS/dvBmF4FMNSJdfhDpNvaCLgy2dWWy6dCbyGhANgcJz5YKaWUGmVGfBdBpZQaTlYTJHJUF0EAf3IhLuMFX1sCohq9jDF0+EOkhtsgKYdD4RwEA20ViQ5NKaWUGhJDnmCJyAUisltE9onId4f6ekopNRgWEyJsOTbBIr0EANOqhS5OhjcYJhwxJIVasKbmUhHJi25oOZTQuJRSSqmhMqQJlohYgXuBC4HZwHUiMnsor6mUUoNhMyFMH10EndmTAOhsODzcIY1qHl8ICxFcwTbc6XmUm1iC1ar/j0oppcamoW7BWgrsM8YcMMYEgMeAy4b4mkopdUqMMVhNiIjl2LFBKfmlALTXHhzmqEY3jy9EGp0IhtTMfOrIJCw2aNEESyml1Ng01AlWEdCzo31lbJ1SSo04oYjBThjTxxisvIIS/MaGv0kTg5Ph8QVJlS4AHCmZZCa7aLEXaAuWUkqpMSvhRS5E5FYR2SQim7QUu1IqkYLhCHYJYazHdhEsykqm2mRjWrU4w8mItmB5owvONIqzkqiWfB2DpZRSaswa6gSrCijpsVwcW9fNGHO/MWaxMWZxbm7uEIejlFL9C4YNdkKYPopcZCbZqZVc7B06F9bJ6PCHuluwcKZSnOnmUDhHuwgqpZQas4Y6wXofmCYik0XEAVwLPDvE11RKqVMSDEeiXQStx47BEhHaHPmk+GoTENno5fEFSTnSguVKoyQzid3+LPA2g9+T2OCUUkqpITCkCZYxJgR8FXgR2Ak8YYzZMZTXVEqpUxVNsELQRxVBAJ97AunhJggFhjmy0cvjC5HKkRastFgLVqy3grZiKaWUGoP6fhcRR8aYvwJ/HerrKKXUYIXCBicBjNXV5/ZIWjGWdgOeasgsHd7gRimPL0SK9BiDlWmoMLEEq/UwFMxNXHBKKaXUEEh4kQullBopAuEITglibM4+t9uyJgLgbdSWl4Hq8IfItvqiC640SrKSqOxOsHTSZqWUUmOPJlhKKRUTDEdwEIJ+EqykvFIAWmsODGNUo1uHL0SWzQ9WB9icFGW4aSaVgMWtXQSVUkqNSZpgKaVUTLSLYBCsfSdYWRMmA+BtODSMUY1uHf4QmVYvONMAcNmt5KW6aLYXaAuWUkqpMUkTLKWUigmEIzgJIPa+E6zCnCwaTBrhFp0La6A8/hDpFi84U7vXlWQlUUWeTjaslFJqTNIESymlYoKBAFYxYOu7yEVeqpNqk4utXROsgerwBUkVH7jSuteVZLo5GMqOtmAZk8DolFJKqfjTBEsppWIiwWgxBulnDJbFIjTaJ5DirRzOsEa1Dn+sTLvzkwSr+MhcWP528LYkMDqllFIq/jTBUkqpmHAwWk5c7H23YAF43MVkBWshHBqusEa1Dl+IJNM7wSrJclMeyYku6DgspZRSY4wmWEopFRMO+AGwHCfBCqRNwkoE2rSb4EB4/CGSTOdRXQSTqDR50QUdh6WUUmqM0QRLKaViTKyLoKWfMVgAkh2tJBho3D8sMY1mxhg6/CGcka5jilxU6FxYSimlxihNsJRSKiYciHYRtPRTRRAgKX8aAJ7qvcMS02jWFQhjjMEZ7uzVRXBCuotOSwo+a4rOhaWUUmrM0QRLKaViQoFoC5bNmdTvPlkFk/AbO966fcMV1qjV6Q/hxo/FhHu1YNmsFgrSXDTadC4spZRSY48mWEopFROKtWA5nP13ESzOSqbC5GJaDg1TVKOXxx8ilej/ac8xWBAtdFFFro7BUkopNeZogqWUUjHhWAuW4zgtWAXpLspNPs52TQxOpMMXIlW6ogvOoxKszCT2B3UuLKWUUmOPJlhKKRUTjhW5sDvd/e5jt1podBSS5qvUxOAEOnq2YB2dYGUlscefBcEu6GxMQHRKKaXU0NAESymlYiKxFqzjFbkA6EwuwRXxamJwAp6eLVhHdREsznT3qCSorYFKKaXGjkElWCLyExHZJSJbReRPIpIRW18qIl4R+TD2cV9colVKqSEUibVgcZwy7QCRjGipdloODnFEo1uHP0Qa/XQRzEqiUhMspZRSY9BgW7BeBuYaY+YBe4Dv9di23xizIPbxxUFeRymlhpwJHUmwjt+C5cqbAkCg4cBQhzSqdfiCZIonupCU3WtbdLLhWIKlpdqVUkqNIYNKsIwxLxljQrHFd4HiwYeklFKJYUL+6IsTJFhpE6YSMUJ7zZ5hiGr0avUGyeRIgpXVa1teqpOgLZkuW7q2YCmllBpT4jkG62bg+R7Lk0Vki4i8ISKr+jtIRG4VkU0isqmhoSGO4Sil1EkaYIJVnJtJLZkE6vcPQ1CjV0tngAJ7bJJhq73XNotFKM5wU2+doC1YSimlxpQTJlgi8oqIbO/j47Ie+/wLEAIeia2qASYaYxYC3wQeFZG0Y88Oxpj7jTGLjTGLc3NzB/8VKaXUKbKEYuOF7P2XaQeYmJVEucnH2npo6IMaxZq7guRZu8Cd2ef24qwkyk2ejmVTSik1pthOtIMx5tzjbReRG4FLgE8ZE61ZbIzxA/7Y680ish+YDmwabMBKKTVUHKFOAthxnKAFKyvZQbUUMKdr2zBFNjq1dAbItnYcM/7qiJJMN3vKszkr+DaEQ2A94a8kpZRSasQbbBXBC4B/Ai41xnT1WJ8rItbY6ynANEBHgyulRjRHqAOfJfmE+4kIHncxqcFGCHSdcP/xqqUrEB2DddT4qyMmZiWxJ5gDJgztlcMcnVJKKTU0BjsG6x4gFXj5qHLsZwFbReRD4Engi8aY5kFeSymlhpQz3InPeuIECyCQNjH6ouXQ0AU0yrV0Bkgz7f23YMW6WkZ3PjR8gSmllFJDaFD9MYwxU/tZ/xTw1GDOrZRSw80Z6cTvGFiCZcuZAvUQaT6EJX/2EEc2OjV3+Um1t0JSTp/bJ2YlUR7Ji+18EKacM2yxKaWUUkMlnlUElVJqVHOFOwnZUga0b3JB9O9LHbX7hjKkUavDH8IR9OCI+CCtsM99SjKTqCWLsNi0BUsppdSYoQmWUkoBkYghyXQRdqQOaP/8/EI8xk2XlmrvU02rlwkS6xneT4KVnmQnxeWgxTFBEyyllFJjhiZYSikFePwhUvBiHANrwZqUnUyFySPSpCXG+1Ld5uuRYBX1u19JVhLVUqCl2pVSSo0ZmmAppRTg8QVJES84B9aCVZjhpsLk4vCUD3Fko1N1q5eCE7RgQXQc1sFwjrZgKaWUGjM0wVJKKcDjDZJKF+JKH9D+DpuFZkchab5qiE4BqHqoafVSKM0YBFIL+t2vJCuJnb5s8LWBt2UYI1RKKaWGhiZYSikFeDo82CSCLWlgCRaAN6UEh/FDR/0QRjY6VbX6mOFoQNKLwWrvd7+SrCQOhHOjC9qKpZRSagzQBEsppYCOljoAnKl9lxTvU2Zp9LMmBseoaOlimqUacqYfd7+STPcnc2E16zgspZRSo58mWEopBfibqwBwZ/c/XuhoztwpAPgatJJgT8YY9ta2URyuhNwZx923JCuJCqMtWEoppcYOTbCUUgoIttUAkJJdPOBjMiacBoCnRufC6qne4yfZVxvtPnmCFqyiDDdd4qbTnqUJllJKqTFBEyyllALoqAXAlj5hwIeU5GVSY7IINGrXtp521XqYL7FWvQnzj7uvy24lP9VFg03nwlJKKTU2aIKllFKAeOoIY4Hk3AEfMzEriXKTh6X10NAFNgptPtzCYssejM0NBWUn3H9iVhIVJk/nwlJKKTUmaIKllFKA3VuPx5oJFuuAj0l326m15JPUWTmEkY0+7x5o4iznHqRo0XErCB5RnOVmXzAb2iohHByGCJVSSqmhowmWUmrcM8aQ5q+j0znw1isAEaHNWUhqsAFCgSGKbnRp9wWpK9/HaeEDMO28AR0zMSuJXb5MMBForx7iCJVSSqmhpQmWUmrca/eGmEg13tTJJ31sMLkAC6Z7DNd49/KOOs7jb9GFmZcM6JiSzCSqTXZ0oU1bA5VSSo1ummAppca98vomCmnCZE896WNNaqyse3tNnKManR7beJAbHa9hJp4JOQP7/yzMcH+SYLVXDWF0Siml1NAbVIIlIneISJWIfBj7uKjHtu+JyD4R2S0i5w8+VKWUGho1Bz/GIobU4lknfawjowiAUJsmBu/sb6S06lmKTQ2y7EsDPq4g3UWNtmAppZQaI2xxOMd/GWN+2nOFiMwGrgXmAIXAKyIy3RgTjsP1lFIqrjoqtgOQM2nuSR+blDMRgM6GctLjGtXo4guG+fmf3uQ++zoiRYuxzLp0wMcWpLnowoXPloZLW7CUUkqNckPVRfAy4DFjjN8YcxDYBywdomsppdSgOBu2EsSGLf/kW7CycnLxGTu+5vHb8hIKR/jeIxv4YfsPSLFFsFz+CxAZ8PFuh5U0l41WWx5oS6BSSqlRLh4J1ldFZKuIPCQimbF1RUBFj30qY+uOISK3isgmEdnU0NAQh3CUUmrgwhFDdvtO6txTweY46eML0pOoNVmEW8dnYtDuC3LHr5/hywe+xHRrDbbrHoHcGSd9noJ0F/WWbGgfv4mqUkqpseGECZaIvCIi2/v4uAz4JXAasACoAf7zZAMwxtxvjFlsjFmcm3tyJZKVUmqwdla1MJsDBPPnndLxBeku6sjEMs6qCBpjeOmjgzzx069ye8UtlDg7sd7wRzht9SmdLz/NRVUkW1uwlFJKjXonHINljDl3ICcSkQeA52KLVUBJj83FsXVKKTWi7N+xkbnSRWjGWad0fGaSnXqymO49HOfIRqZwxLDhw4+peO1+zvf8kU9LO81TPkPWFXdDWuEpn7cgzcXBqgyINEOgCxxJ8Qt6hDLGUNXqZVt5A9X7thGs30OS5xBJvlocoQ7sRAjaU4ikFZM5/UxOP+szpCaP/f8XpZQa7QZV5EJEJhhjjtQmvgLYHnv9LPCoiPyMaJGLacB7g7mWUkoNhcC+twDImn1qLS8igseeS0pgExhzUmOPRpMDhw+zd/0jZB/6Kysj27GKoSp3OaGLvk/WlFWDPn9Buot9/nSwE51seIAl3keTYDjC1spWtm/fSteBd0lv/oiZ4T2skcM4Jdi9X6c1jYA7jYhYsAc9pLW8DBt/TevGFLaedj1zrv4+Vvd4LqmilFIj22CrCN4tIgsAAxwCvgBgjNkhIk8AHwMh4CtaQVApNdIYY8hu2kSjfQI56cWnfB6vOx97RwC6miE5O44RJlZLYy07X38U955nKQt8xBSJUGsrYv/0LzDlnL+naMKcuF0rP83F+91zYVWOiQQrEjF8XNPO1h076Nj9OrmNG1nCDhZJIwABcdGSPZv24pvIOG0J9rzpkDWFZFcayT3OY3xt7H//RVo2PMSS/ffR9NOncF31S5Jnn5eYL6wP3kCYmuZWmuuq8DTXYu1qwoQDREwEiwiu1CzScgopKZ1KSmpGosNVSqkhNagEyxhzw3G2/QfwH4M5v1JKDaVDjZ3Mj3xMa95qcgZxnnDyBOgAPNWjPsGqrath35tPkLLvWeb4trBcwlRbCtheeiMTz7qegimnUzAErXQFaa5PJhsexeOwKpq7eGf7Ptp3vEx23ducHtnO31nqAOiypdFecAZdM9eQNG0VjtxZ5FtP/GtYXOlMXXUNZuVnef7FPzPtb99l8hPX0LbqX0lf881hbTUNhCLsKq+hbs8mgpVbcLTsIbWrnOJINVOkiSkDOEeVFNCSOh0pXUnxogtJn1iWsJZfXzBMY3sXrU31dLbWYbqaIeAlEg4QCQWQSAirw43dlYIrOZXMzCyy8ifiSs0as63VSqnBi8c8WEopNSrt3vY+F4iH0LRTG391hKQXQh3QXgMFZfEJbhgdrq5l31uPk7b/Oeb7N7NSwtRIHluK/o6cM65lyrwVFA7xm8mCdBd1JlaItr16SK8VT8FwhE0Hm9nx4TvI3pco877HVbIXm0TwWlJoLViCZ+ZXSJ25hqS8OSRZTr14r4hw4QWXsrF0IQfW/QOffutO2ut3kvbZX5xSBcyBqG/tZO+2d+ncuwFn/YcUeXczl2rmiQGgQ1Jock3Ek7aMjzNLcWYUk5RVgC0lB4vdidViJRgO09HagKexmq76A1gbPia/bRcTt74JW/83zZYs6nOXk152IQULL0Ti+EeKQChCdWML9RV7aK/ZT7DxIJa2cpI6K8kOVlNAI4V0Uhz7egbKj50WSyYd9lz8SQWQXoQjs4SUvFKyCifjzJoIybkwiPsdDAbxtDbS2daEt70Zf0cTwY4WQl3NmK5W8LZiCbRi87cTNpC19hdMmXjqLfFKqfjRBEspNW517nkDgLyyTw3qPI7M6CwUwdZK7IOOangcrq5j95tPkLL/ORYFNjNJgjRYctlRch05Z6ylZO4qJgzjX+jz01z4ceC1Z+Ie4aXa27qCvLa9gpotfyW/+lVWsIUzpQWAxvSZeKZ/lYz5F+MuWox7AC1UJ+uMmSXsuPVx7v/Vd7h19x/oeLCClBvWQVLWoM9d19zK7g/eoHPPW2Q2bmJ2eBcrxAtAkyWbpoxZ7C+8nIzTlpI9bSkpaRNIGcD3ydE1gkPhCNt376Dqgxdxl6+nrHY9mXXPEXlFqEqaTWjKarKnn0lq6emQOuG4rUWdnR3UHN5HS80+OusPE24px9lRQaq3ivxIHaXSQmmP/QPYabJPoCO9iOqURdQk52FLycaeloslORubMxmrzYHV7gSLFb/PS8DbgbfLQ0drE8G2Guiow9ZZh9tXT0bzDgqa38R1KNgrriA2Wmw5eBz5BOxpRKwuQlYXYYsDEwljwkFMOASRILaQF2fIgyvsISnSSYrpJEW8ZAH93VW/seGRZLySTImp5oXXf8uUz3//hPdCKTX0NMFSSo1bmQ3v0WLNITNr8qDOk5xdRMQIXY2VjOTSAxX1Lex4848k7fkTS/wbmSQBmizZ7Jl4DflnXkvezJXkDuIv7oORnezAbhXa7Hm4R2AXwbauIK9uO0j1+39mUv0rnCtbSBUvPmsyrYUr8c2/GNfM88lJLRiWeOYUZZL8lf/mzv9XyHer78X7y9W4r/sNFC44qfO0trWxZ/NrdO5+g6zG95gZ2sNZsYIb1fZJVE24iKapqyict4bs7EnEq23JZrUwd3YZc2eXAd+mtqWTF997Hf/OF5jY8jfmbbsXy/Z7APDhxGPLpNOaQUSshA1Ywn7cYQ8ppoM0Ouk5Yi+M0GzJodVVSGPKChozJ+HOO43MomlkFk3FkVLAhDh+nxtjaPD42FVTRUv1QToaDhNsrsDeWUOqv5YMbwOurnKSTQAnfpwEiGAlLFbCYiOCFb/Fjc+aQru7mCZ7GhFnGjjTEXcGlqQM7MlZOFKzcKVmk5SeRUp6DklJKeRYLGAM1f8+m/yqlwFNsJQaCTTBUkqNS3VtXspC22kqWE7mIFtqcjNSaSINWkZey0tTexcb1z+H7eMnOcP7FhdIF22SxsHiy8ld/jlyZ51FdoKSqp4sFiEv1UWDJZeCEdJFsK0ryMvbK6h6/1mm1/2VC2ULbgnQ5UjHO+VSzOKrcU05h4Ih6p53IqU5yXzha9/ne/9vAv/UfheOBz6FWXwzthVfh4ySPo9pb6xi30fv0LHvbbIa3mNacDdLJUTYCIed09hduJb0medQMn81hSk5nHrh/ZNTkJlMwfmXwPmX4A2E+duewzQf+IBQ9VacHRW4A80kh9qwEMEqILZkmt2lRFwZkJyDI3sS6QWnkVMylbTcieRa7ce0mg0VESEvzU1e2lSYkYDiLCKU532KRdWP0tXWSFL6YEaUKqXiQRMspdS4tHP7Fs6RNnxTBzf+CiA/zUmtySS/vebEOw+DUDjCOx9up2XDr1ja/Gcukma6cFNRsIbAGX9H7vzzSbeOvM6ME9JdVHsyKWvflrAYIhHDhr0NvPv2qxQcfJqLLW+TLR46HZl0TluLa8nVJE1aSdIQdP07FflpLm7/yj/ww8dnsGz/z7nm/V/B+/fTmjYDb9pp+MRBKODHeOrI9h4i2zRzOhA2wkHHNLaXXEfqzNWULljDlJTMRH85ALgdVlbMnQJzpwBXJzqcUcE573LsNb9jz9tPMueiLyY6HKXGvZHxG0IppYaZZ/d6AArmDW78FUBeqovNJouiztpBn2sw9tV5eO/1p8nb/QhnR97DLmH2p59B9Rmfp3DJFcwY4ZP3Fma4OdicCcE28HeAM2XYrl3R3MWf391B6IPfc2HgZf7JUkXI5sBT+mnMshtInvopkkdgUgqQkeTgv29aw4a98/jO629TXPEci1p2MbF1My4JEjJWWqxZ7Eo6nWBuGbnTlnDa/OVMHSEJlRq8OYtXU/tCNrLzz6AJllIJpwmWUmpcSq3bSKslk4y86YM+V2aSnUYycfn2xyGykxMKR1j/0V6q33iI5S3P8neWajosqVTN+DxF532F03JHz3xShRlu9nrTor+Z2qshd/D35ngCoQgv7KjlvbdfYV71k9xsfQeXBGnOWUhw2bexl11JpjtjSGOIp5XTclg57TJ8wUuobvXSFQxjc9lJc9spcY/M5FDFh8NuZWfm2Sxv/TNhnwerKzXRISk1rmmCdRwd7c14OzzkFk5KdChKqTjq8geZ4dtKbc4iMuJQKU9E6HDmkRRqg6AP7K44RHl89R4fr776EslbH+a88Fu4JUBtehntK75H2qLPkmJ3D3kM8VaY4eKDcGYswaocsgSrrt3H4+/sofm9x7g89DyXWg4QcLgJzrkOVtxK1igstd+Ty25lSu7wtf6pkcE17wqcb/6RXRv+yMxzP5/ocJQa1zTBOo6PX3yIxdv/nZ3OOXimXEzBoksoOW0uMgIGhCulTt3ubZtYKM20Txn8+Ksj/O588ACeGhhkVcL+GGPYvL+GXa88TFn1k1xn2Y9fnDRMuZwJ536FgqIFQ3Ld4VKY7qb6SJ26OBe6MMbw/qEW/vLG2xTvf4wbLOvJlA46M04jsvxuHAuuxeEayTUglTq+hSsuoOnNdAIfPg6aYCmVUJpgHUfxoovY6KmjoPIFZu26C3bdRQOZVKSdTjB/AakT51Iw9XQy8ycOe9IVCYfx+7z4fV0EYh9Bv5dQIPo5HPAS8nuJBL2EAz5M0AchHyYSgki4x0cIY6KfiUSQSBBMBImEwIQRE9svRjhqMkbTc/noiRo/WRYzsEkczVGtCcInywbos62h3xYI6fXpmPUne54Brjf9Noj0s/9JrleDl+w5CMCExZfF7ZzhlIIhS7C6AiFe3fAOwY2/Yo3vFRZLJw1JpTQu+TdyVnye4jGSGBRmuKk/MtlwW3wqMnYFQjy7pYKdbz7F6vZn+ZH1IyJWK97TLoSVXyC5dNVx51hSarRwOR1szL+cVbW/penQdrJL5yY6pCET8nvpam+ms7MdX1cHvi4P/q5OwoEuTKALE+jEBLwQ7MKEA5hQkEg4gAmHkEgIMdHPFhP9kEg4+tlEou9cjIm9gzGxf6bX+53e70yOXnf072/p3tjn3rGfP0eOkV7H97hS98ueV+9xjPRxTOxdVK93YP3sd8y1e4RoOOo9rvTc4ajzyFG79eNkfuwKUOOeSvbZX2TVtOGqDzo4mmAdR+GU2RRO+QnG3E3V/m1UbnkJy+G3mdS+hbz2V2Ev8Cr4jJ1mSxYeWzYeezZhewrGnoQ4kjA2NxGxEf22++Rb3EQiEA4gIS8S9mMJB7CEfVjCAawRP9ZIAFskgN34sZkAdhPAEftwEsQpQdxAvDoBhYyFMFbCWAhjISLR5QiW7o9P9H4qeqVYxzwxff0Y6tvRR5pe245O7PpZf4Kr9f8897f/yZ2n//0HlmDG+zyqfx+knMXp+aVxO581vQhqiGvLy4G6Vt5/8VEmHniUz7CNEFaqCs/FtebL5E49e8wlBkUZbgLY8bgKSG3aN6hz7avv4OkNW3Bs/T1Xmle4VhrpSsojuPSfsS+5ieS0CXGKWqmRY/LF3yLw4KNUPvdjsr/6+0SHc0KRcIT29mbaGqrobK7B31pDqL2eiKce8bUgvjZswXZcoXbc4Q6STSeppgOXBEkD0k7iWmEjhLESEmv0MzZCHHltJSLW3u91pK+k49ik5OjfytJrZc+UyvT63PuYY/9Y3StF607ujj1f731P/npHXvf8I7aYvq9zvHNLNA09NqGLkwZp4WDjDZpgjSUiQtHUeRRNnQd8G4CGuiqq9mzBW7Ud01KOtbOOpEAjeb5DOL1dOI0fl/HjkmC/5w0YKwFxEMBOAAdBcRC0OAiJg5DFScCWhM+SQdjiJGJzYazO6IfNBbEPsTsRuwuL3Y3F4cbmcGG1u7E63didSdgcLuzOZOyu6DaL1Y7VZsNqtWG12bFZbVisVmwi+s2gxpWsOJ/PmVkEQLC1ksGUEwhHDG9v2kzzhgdZ1vY8a6WFZlseVWXfpHDNF5g0TBPZJkKa20aq00a1YzIz6ned9PHBcISXd9Ty3ht/YWH9H/m6ZSMOCdM2YTlm1X+SNPNiGKGVAJWKh4kTJ/Fm1qWsaPgjldveoLjs7ITFEgxHqGtupaV6Px11Bwg1HsTSVo6ro4JUfy0poRayTCsZEiTjqGMjRmiXZDolGa81Fb8tlWZXPvWOVMKONIwzA1xpWF2p2F3J2F3JONwp2JzJ2JxJ2FypONxJ2JzJOF0uHA4nNpsNK5CYWevUYF2S6ABOkr6nPkW5+UXk5hdxvFtujCEcDoM50sVOYn/9EEQEh9WqD7pSY0Rubj4NJg1H1cecSoe9/bUtbH3tMQr2PsbKyEcgcDhrOa1n3ULWvM/ACJl3aSiJCDMKUtnVUcSMxmchHBrQ1723zsPz735E5KMnuCD0GhdZKvA7UgjN/wccZ95C+hBXI1RqJJn1ubuovedNLE9/Ed+kt3ClDd3Ew22dPmorD9BcuRdv/QFMy0GcHZWk+arIC9dRLC0U99g/YGzUWfNptefjSZlMpTsHk5KHLTUfR0Y+7swJpGUXkZ6TT4bDeUzipdRoMfZ/YyeQiGC12dD/ZqXGvukFaeyMTGJezdYBH9Pa6eP9N/5CZOsfWOJ9iyukg2ZrLvtnfpnS877A5KzxV8F01oQ03t1SwGUSgIad0E9FvwaPn5c+OkD1xj+xqPVFvmzZik0itOXMI7LiOzjLrgZH8jBHr1Ti5ebk8s5ZP2PRGzdR/z+fIuPGP5BadGp/ZAiHI9TXVdJYvhdP3T5CTQextpWT3FVFVrCGAtPIDPlknHYEodGSQ5uzkMaUFTRkTsSWPZnk/NPIKppGSnYxJRYLJfH6YpUaofSdv1JKxcFpecm8zSSWt78I4WC/XdHqW9v56O0XCO18ngWe9ZwnzfhwUlmwGsuZ15NVdiFZ46C1qj+LJmXyH+/O5n+7BNn9fK8Eq6K5i9c/3EPbR39mWvMbXGn5CLcE6EjKJzD/a9iWXK+tVUoBy9dcymu++1i68Ws4HjiTj/Iuxjn7Egqnn05qbhFic2FCPro8rbS2NOJprMLXWE6gqRzTXoWjo5r0QA354VomiJ+eIxZbSKfZUUBrxlya0iZizykltWAq2SXTSMmdTJ7NQV7CvnKlRoZB/RYXkceBGbHFDKDVGLNAREqBncDu2LZ3jTE6tbhSasxy2qzUZyzA5nkO9r0KMy4AwBcIsf3jbdRtfYWMyteY59/CeeIlgI3yzGWUL1xLybIrmerUeYsAVs/M4zvWTPa75lL63kN8ZJnDzopGTPm7TOvawnWyB7uE8bjz8E27Dveiq0gpXQU6fYZSvay56LPsnjaP+md+yOl1L5Bc/wys/2S7AMmxj57aSKbZmovHXURT6jIkczLuvMlkFU0nt2Qqme40Mofvy1BqVBIzwPLZJzyRyH8CbcaYO2MJ1nPGmJOqEbp48WKzadOmuMSjlFLD7YH1u7j09fOxudP4OGMNlpb9nObbQYE0A9BsyaYm7ywyFlxC4cLzEWdqgiMemf7vK3t45dUX+YPjTtwSAKJdj5pSZ+CYfi7pC6+EwoWaVCk1QG1tbezd+g7eqh2Yrkas4QDG6iTiTMWVnI4rcwLunInkFZ1GeoamT0oNlIhsNsYsPmZ9PBIsERGgHFhjjNmrCZZSajzyBcP81/0P8A/1/4ds2miy5dGQPg/b5OWULDiXpOKyMVdafSgYY3hnfxPNNYeYEdpFadEEHCWLwJ2R6NCUUkqpbkOdYJ0F/OzIBWIJ1g5gD9AO/Ksx5q1+jr0VuBVg4sSJiw4fPjzoeJRSKpG8/hBOq8Fi05LgSiml1FjVX4J1wjFYIvIK0NfEK/9ijHkm9vo6YF2PbTXARGNMk4gsAp4WkTnGmPajT2KMuR+4H6ItWCf+UpRSamRzO8dvkQqllFJqvDvhuwBjzLnH2y4iNuBKYFGPY/yAP/Z6s4jsB6YD2v9PKaWUUkopNWbFY4TwucAuY0zlkRUikisi1tjrKcA04EAcrqWUUkoppZRSI1Y8+rFcS+/ugQBnAXeKSBCIAF80xjTH4VpKKaWUUkopNWLFrUx7PIhIAzDSqlzkAI2JDkING73f44fe6/FF7/f4ofd6/NB7Pb6MxPs9yRiTe/TKEZVgjUQisqmv6iBqbNL7PX7ovR5f9H6PH3qvxw+91+PLaLrfOkujUkoppZRSSsWJJlhKKaWUUkopFSeaYJ3Y/YkOQA0rvd/jh97r8UXv9/ih93r80Hs9voya+61jsJRSSimllFIqTrQFSymllFJKKaXiRBMspZRSSimllIoTTbCOQ0QuEJHdIrJPRL6b6HhU/IhIiYi8LiIfi8gOEflfsfVZIvKyiOyNfc5MdKwqPkTEKiJbROS52PJkEdkYe74fFxFHomNU8SEiGSLypIjsEpGdInKmPttjk4jcFvsZvl1E1omIS5/tsUNEHhKRehHZ3mNdn8+yRP08dt+3isjpiYtcnax+7vVPYj/Ht4rIn0Qko8e278Xu9W4ROT8hQR+HJlj9EBErcC9wITAbuE5EZic2KhVHIeBbxpjZwDLgK7H7+13gVWPMNODV2LIaG/4XsLPH8l3AfxljpgItwD8kJCo1FP4beMEYMxOYT/S+67M9xohIEfB1YLExZi5gBa5Fn+2x5GHggqPW9fcsXwhMi33cCvxymGJU8fEwx97rl4G5xph5wB7gewCx92vXAnNix/wi9r59xNAEq39LgX3GmAPGmADwGHBZgmNScWKMqTHGfBB77SH6BqyI6D3+TWy33wCXJyRAFVciUgxcDPwqtizAGuDJ2C56r8cIEUkHzgIeBDDGBIwxreizPVbZALeI2IAkoAZ9tscMY8ybQPNRq/t7li8Dfmui3gUyRGTCsASqBq2ve22MeckYE4otvgsUx15fBjxmjPEbYw4C+4i+bx8xNMHqXxFQ0WO5MrZOjTEiUgosBDYC+caYmtimWiA/UXGpuPq/wD8BkdhyNtDa4we3Pt9jx2SgAfh1rEvor0QkGX22xxxjTBXwU6CcaGLVBmxGn+2xrr9nWd+3jW03A8/HXo/4e60JlhrXRCQFeAr4hjGmvec2E53DQOcxGOVE5BKg3hizOdGxqGFhA04HfmmMWQh0clR3QH22x4bY2JvLiCbVhUAyx3YxUmOYPsvjg4j8C9GhHY8kOpaB0gSrf1VASY/l4tg6NUaIiJ1ocvWIMeaPsdV1R7oUxD7XJyo+FTcrgEtF5BDRrr5riI7RyYh1KwJ9vseSSqDSGLMxtvwk0YRLn+2x51zgoDGmwRgTBP5I9HnXZ3ts6+9Z1vdtY5CI3AhcAnzOfDJ574i/15pg9e99YFqsGpGD6GC6ZxMck4qT2BicB4Gdxpif9dj0LPD52OvPA88Md2wqvowx3zPGFBtjSok+x68ZYz4HvA5cHdtN7/UYYYypBSpEZEZs1aeAj9FneywqB5aJSFLsZ/qRe63P9tjW37P8LPD3sWqCy4C2Hl0J1SgkIhcQ7d5/qTGmq8emZ4FrRcQpIpOJFjZ5LxEx9kc+SQbV0UTkIqJjN6zAQ8aY/0hsRCpeRGQl8BawjU/G5Xyf6DisJ4CJwGHgGmPM0QNs1SglIucA3zbGXCIiU4i2aGUBW4DrjTH+BIan4kREFhAtaOIADgA3Ef2Doj7bY4yI/AhYS7T70BbgH4mOxdBnewwQkXXAOUAOUAf8EHiaPp7lWJJ9D9Fuol3ATcaYTQkIW52Cfu719wAn0BTb7V1jzBdj+/8L0XFZIaLDPJ4/+pyJpAmWUkoppZRSSsWJdhFUSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKE02wlFJKKaWUUipONMFSSimllFJKqTjRBEsppZRSSiml4kQTLKWUUkoppZSKk/8P4iQFZm49kpAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgDklEQVR4nOzdd5wV9b3/8dfnbF+20buABaWKCogRrIlgLGg0orF7E39qTNRriTGJkuSam2tMTCyJMTHRqEGMGrsmNlSMqKCICBbQpZdlYRtbz57P748Z1gW2wZ7lbHk/H4+VOTPf+c5nZvYcz2e/ZczdERERERERkdaLJDoAERERERGRzkIJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBGRdsLMhpqZm1lyomPp7MzsAjObm+g42hszm2JmnyQ6DhGRjkwJloiIdGhmNtPMasysrN7PdYmOqyNy9zfcff9412tmJ5nZ4vDe/MfMRsb7GCIi7YUSLBGROFHLU0LNdvesej+3JDqgeOrIv1tmth/wEHAJkAc8DTzVkc9JRKQpSrBERFrBzPLN7AdmtgjYambJZjYp/Ct9kZl9YGZH1Ss/x8z+18zeMbMSM3vSzHo0UveFZrbUzErN7HMz+387bJ9uZgvDepab2bRwfa6Z3Wtm68xsjZn9j5klNXMe+5jZK2ZWaGabzOwhM8urt22zmR0cvh5gZgXbzsvMTjazj8LznWNmI3a4PteY2SIzKzaz2WaWvutXeteZ2fXhdSk1syVmdmoj5czMbjOzjeG1/NDMRofb0szsVjNbaWYbzOxuM8to4fHvC8u/GMbwmpkNqbf9d2a2KjzmAjObUm/bTDN71MweNLMS4AIzm2hmb4XXeZ2Z3WlmqfX2cTO7zMw+C4/38/De/Sc8xiP1yzcS81Fmtrol57cLpgJvuPtcd48C/wcMBI6M83FERNoFJVgiIq13FnACwV/n+wLPAv8D9ACuAR4zs971yp8HXAT0B6LA7Y3UuxE4EcgBLgRuq5fkTAT+BlwbHvcIID/c776w3n2Bg4DjgG83cw4G/C8wABgBDAZmArj7cuAHwINmlgn8Fbjf3eeY2XBgFnAl0Bt4Dnh6hy/yZwDTgGHAWOCCBgMwmxwmD439TG7mHHa0HJgC5AI/DePv30C54wiu3/Cw7BlAYbjtl+H6cQTXcyBw4y7EcDbwc6AXsJCgJWebd8N6ewB/B/6xQ/I5HXiU4P4+BNQCV4V1HQYcC1y2w/GmAocAk4DrgHuAcwju52iC39XdFibKjd2f3ze16w7LFsYjItLpKMESEWm92919lbtXEHyZfc7dn3P3mLu/CMwHvl6v/APuvtjdtwI/Ac5oqIXJ3Z919+UeeA34N0HCAPBfwF/c/cXwOGvc/WMz6xse60p33+ruG4HbgDObOgF3XxbWVeXuBcBvqNfC4O5/ApYBbxMkhj8KN80Ang33rQFuBTKAr+xwfda6+2aC7mHjGolhrrvnNfHT1KQUZ+zwZX+Au/8jPG7M3WcDnwETG9i3BsgGDgDM3Ze6+zozM+Bi4Cp33+zupcAvmruWO3jW3V939yqCa3aYmQ0Oz/dBdy9096i7/xpIA+qPf3rL3Z8I469w9wXuPi8snw/8kZ1bgW5x9xJ3/whYDPzb3T9392LgeYKEe7e5+9gm7s+Oyd42LwFHhq1jqcANQCqQ2ZpYRETaKyVYIiKtt6re8hDgm/W/7AOTCZKShsqvAFIIWiW2Y2bHm9m8sHteEUHitK3cYIIWmh0NCetbV+/4fwT6NHUCZtbXzB62oEthCfBgAzH9iaDV4Y4wYYCgxWvFtgLuHgvPb2C9/dbXWy4HspqKZTc9ssOX/bVmdp4FXSi3XYfRNHCd3f0V4E7gLmCjmd1jZjkELXKZwIJ6dbwQrm+punvt7mXAZoJrRth1cmnYdbKIoPWsV0P7huWHm9kzZrY+vEe/aOB8NtRbrmjgdVtc+ya5+8fA+QTXeB1BzEuAeHdFFBFpF5RgiYi0ntdbXkXQQlX/y343d/9lvTKD6y3vRdCCsql+hWaWBjxG0CLU193zCLrfbetqtQrYp4FYVgFVQK96x89x91HNnMMvwvMY4+45BC1xdd26zCwL+C1wLzDTvhw3tpYgqdtWzsLzW9PM8XZiwRThZU38TGm+lrq6hhAkhJcDPcPrt5jtu6rVcffb3f0QYCRBl8BrCe5JBTCq3rXMdfddSVLq7nV4DXsAa8NzuY6gO2L3ML7iHeKr/3sF8AfgY2C/8B7d0Nj5tBULxto1dn/ubmw/d3/U3Ue7e0/gJmAoQRdJEZFORwmWiEh8PQicZGZTzSzJzNLDrlGD6pU5x8xGhuOZfgY86u61O9STStBlrACImtnxBGOFtrkXuNDMjjWziJkNNLMD3H0dQVfCX5tZTrhtHzNrbkKBbKAMKDazgQQJRn2/A+a7+7cJxpht+zL9CHBCGEcKcDVBgvef5i7UjsIpwrOa+HljF6rrRpCgFEAwYQiNjPkxswlmdmgY/1agEoiFrXF/Ihj71icsO9DMptbb163eJCYN+Ho4tiyVYCzWPHdfRXC9o2F8yWZ2I8FYu6ZkAyVAmZkdAFzaTPm4c/dRTdyfSxrbz8wOCd8PvQnGhT0VtmyJiHQ6SrBEROIo/PI8naB1oYCgRelatv+8fYBgIor1QDrw/QbqKQ3XPwJsAb4FPFVv+zuEE18QtHy8xpctSecRJGhLwn0fZfsuig35KXBwWNezwOPbNpjZdIJJKrZ9of9v4GAzO9vdPyFo7bqDoMXnJOAkd69u5nhtyt2XAL8G3iLoJjcGeLOR4jkEidQWgu6OhcCvwm0/IBh7Ni/slvcS4TipcCxVKfBhE6H8naDFZjPB5BPnhOv/RdDd8NPwmJXs0CWwAdcQ/B6UhvHObqZ8e/I7oAj4hOA6fyeh0YiItCFz37EHgoiItBUzmwM86O5/TnQs0jpmdg5B98EfNrL9PmC1u/94jwYmIiIJpYf8iYiI7AZ3fzDRMYiISPujLoIiIl2EBQ+93aXJCaTzMbMbGvk9eD7RsYmIdAbqIigiIiIiIhInasESERERERGJk3Y1BqtXr14+dOjQRIchIiIiIiLSpAULFmxy950ePt+uEqyhQ4cyf/78RIchIiIiIiLSJDNb0dB6dREUERERERGJEyVYIiIiIiIicaIES0REREREJE7a1RishtTU1LB69WoqKysTHYq0A+np6QwaNIiUlJREhyKd0KayKq6f9Rbf/9pIxg7tk+hwREREpANq9wnW6tWryc7OZujQoZhZosORBHJ3CgsLWb16NcOGDUt0ONIJzf1sE39eM53P/j4CbpiX6HBERESkA2r3XQQrKyvp2bOnkivBzOjZs6daM6XNrC0qB2C/6qWgh7CLiIjIbmj3CRag5Erq6HdB2lJp0aYvXxR8nLhAREREpMPqEAmWiMiekFa5sW65esOnCYxEREREOiolWC1gZlx99dV1r2+99VZmzpyZuIDqOeqoo5p8OPMpp5zCpEmTtls3c+ZMBg4cyLhx4xg9ejRPPfVUW4cp0iGkV3zZglWy4YsERiIiIiIdVasTLDMbbGavmtkSM/vIzK4I1880szVmtjD8+Xrrw02MtLQ0Hn/8cTZt2tR84V3g7sRisbjWWV9RURELFiyguLiYzz//fLttV111FQsXLuQf//gHF110UZvGIdJRZFQX1C1XbFqZwEhERESko4pHC1YUuNrdRwKTgO+a2chw223uPi78eS4Ox0qI5ORkLr74Ym677badthUUFHDaaacxYcIEJkyYwJtvvgkErUS33nprXbnRo0eTn59Pfn4++++/P+eddx6jR49m1apVXHvttYwePZoxY8Ywe/ZsAObMmcNRRx3F6aefzgEHHMDZZ5+NNzLo/oEHHqhrjXrnnXfq1j/++OOcdNJJnHnmmTz88MMN7jtixAiSk5O3Sx6vv/56Ro4cydixY7nmmmsAyM/P55hjjmHs2LEce+yxrFwZfPm84IILuPTSS5k0aRJ77703c+bM4aKLLmLEiBFccMEFdXVeeumljB8/nlGjRnHTTTftFEdxcTFDhgypS/S2bt3K4MGDqampaTBukbaQWV0IQIHn4sWrExyNiIiIdEStnqbd3dcB68LlUjNbCgxsbb0N+enTH7FkbUlc6xw5IIebThrVbLnvfve7jB07luuuu2679VdccQVXXXUVkydPZuXKlUydOpWlS5c2Wddnn33G/fffz6RJk3jsscdYuHAhH3zwAZs2bWLChAkcccQRALz//vt89NFHDBgwgMMPP5w333yTyZMn71RfeXk5Cxcu5PXXX+eiiy5i8eLFAMyaNYsbb7yRvn37ctppp3HDDTfstO/bb79NJBKhd+/eABQWFvLPf/6Tjz/+GDOjqKgIgO9973ucf/75nH/++fzlL3/h+9//Pk888QQAW7Zs4a233uKpp57i5JNP5s033+TPf/4zEyZMYOHChYwbN46bb76ZHj16UFtby7HHHsuiRYsYO3ZsXRy5ubmMGzeO1157jaOPPppnnnmGqVOn6nlXskelRrdSS4TPYgMZtnVdosMRERGRDiiuY7DMbChwEPB2uOpyM1tkZn8xs+7xPNaelpOTw3nnncftt9++3fqXXnqJyy+/nHHjxnHyySdTUlJCWVlZk3UNGTKkblzU3LlzOeuss0hKSqJv374ceeSRvPvuuwBMnDiRQYMGEYlEGDduHPn5+Q3Wd9ZZZwFwxBFHUFJSQlFRERs2bOCzzz5j8uTJDB8+nJSUlLrEC+C2225j3LhxXHPNNcyePbtudr7c3FzS09P5r//6Lx5//HEyMzMBeOutt/jWt74FwLnnnsvcuXPr6jrppJMwM8aMGUPfvn0ZM2YMkUiEUaNG1cX8yCOPcPDBB3PQQQfx0UcfsWTJkp3OY8aMGXUteA8//DAzZsxo8jqKxFuktpIaS6EwqRcZFRsSHY6IiIh0QHF70LCZZQGPAVe6e4mZ/QH4OeDhv78GLmpgv4uBiwH22muvJo/RkpamtnTllVdy8MEHc+GFF9ati8VizJs3j/T09O3KJicnbzeuqf6zm7p169ai46WlpdUtJyUlEY1GGyy349TlZsYjjzzCli1b6h7IW1JSwqxZs7j55puBYAzWtu5/O8b9zjvv8PLLL/Poo49y55138sorr7Qozkgksl3MkUiEaDTKF198wa233sq7775L9+7dueCCCxp8ltXJJ5/MDTfcwObNm1mwYAHHHHNMk8cVibdIrJoaS2VrSi+61bwVPAtLjwYQERGRXRCXFiwzSyFIrh5y98cB3H2Du9e6ewz4EzCxoX3d/R53H+/u47d1U2uvevTowRlnnMG9995bt+64447jjjvuqHu9cOFCAIYOHcp7770HwHvvvccXXzQ8I9mUKVOYPXs2tbW1FBQU8PrrrzNxYoOXqlHbWn3mzp1Lbm4uubm5zJo1ixdeeKFu3NeCBQsaHYdVX1lZGcXFxXz961/ntttu44MPPgDgK1/5St3+Dz30EFOmTGlxfCUlJXTr1o3c3Fw2bNjA888/32C5rKwsJkyYwBVXXMGJJ55IUlJSi48hEg9JtVVELZWq9N6keA1UbEl0SCIiItLBxGMWQQPuBZa6+2/qre9fr9ipwOId9+2Irr766u0mhLj99tuZP38+Y8eOZeTIkdx9990AnHbaaWzevJlRo0Zx5513Mnz48AbrO/XUUxk7diwHHnggxxxzDLfccgv9+vXbpZjS09M56KCDuOSSS7j33nvJz89nxYoV203PPmzYMHJzc3n77bcbrOPrX/86a9eupbS0lBNPPJGxY8cyefJkfvOb4Jbecccd/PWvf2Xs2LE88MAD/O53v2txfAceeCAHHXQQBxxwAN/61rc4/PDD67bdeOON200TP2PGDB588EF1D5SEiMSqqbVUYpl9ghVlG5veQURERGQH1tjMdC2uwGwy8AbwIbCtT9wNwFnAOIIugvnA/wsnxGjU+PHjfcdnOi1dupQRI0a0KkbpXPQ7IW3llZ8fz8ikNbww9Fou+PRyOO9J2PuoRIclIiIi7ZCZLXD38Tuuj8csgnOBhgYpdNhp2UWka0qOVVObkkpqXtAAX1W0jrRm9hERERGpL66zCIqIdGQpXk1tUhoZ3QcAUF6oqdpFRERk1yjBEhEJJXsNHkmle/eeVHgqVUVrEh2SiIiIdDBKsEREAHcnxauJJaXRKzudAs8lVqpnYYmIiMiuUYIlIgJEY04aNcSS0uiTnUYBeZhmERQREZFdpARLRASoisZIpQZPSqNHt1Q2eh4pFUqwREREZNcowWqhJ554AjPj448/brRMfn4+o0ePjtsxL7jgAh599NFGt1955ZUMHDiQWCxWt+6+++6jd+/ejBs3jpEjR/KnP/0pbvGIdGZVNbWkWQ0kp5GcFKE0uQeZ1YWJDktEREQ6GCVYLTRr1iwmT57MrFmzGtwejUZbfYza2toWl43FYvzzn/9k8ODBvPbaa9ttmzFjBgsXLmTOnDnccMMNbNigcSQizamKxkijBpKCidkrUnuRWVsC0aoERyYiIiIdiRKsFigrK2Pu3Lnce++9PPzww3Xr58yZw5QpUzj55JMZOXIkECRaZ599NiNGjOD000+nvLwcgJdffpmDDjqIMWPGcNFFF1FVFXxpGzp0KD/4wQ84+OCD+cc//rHTsV966SXGjx/P8OHDeeaZZ7Y79qhRo7j00ksbTfr69OnDPvvsw4oVK+rW3X777YwcOZKxY8dy5plnArB582ZOOeUUxo4dy6RJk1i0aBEAM2fO5Pzzz2fKlCkMGTKExx9/nOuuu44xY8Ywbdo0ampqAPjZz37GhAkTGD16NBdffDE7Prw6FosxdOhQioqK6tbtt99+SvykXalLsFKCBKs6s3ewQeOwREREZBe0+kHDe9Tz18P6D+NbZ78xcPwvmyzy5JNPMm3aNIYPH07Pnj1ZsGABhxxyCADvvfceixcvZtiwYeTn5/PJJ59w7733cvjhh3PRRRfx+9//nssvv5wLLriAl19+meHDh3Peeefxhz/8gSuvvBKAnj178t577zV47Pz8fN555x2WL1/O0UcfzbJly0hPT2fWrFmcddZZTJ8+nRtuuIGamhpSUlK22/fzzz/n888/Z999961b98tf/pIvvviCtLS0uoTnpptu4qCDDuKJJ57glVde4bzzzmPhwoUALF++nFdffZUlS5Zw2GGH8dhjj3HLLbdw6qmn8uyzz3LKKadw+eWXc+ONNwJw7rnn8swzz3DSSSfVHTMSiTB9+nT++c9/cuGFF/L2228zZMgQ+vbt2+LbJNLWqsMEy5LTAfBufWALQYKVNzixwYmIiEiHoRasFpg1a1Zda8+ZZ565XYvRxIkTGTZsWN3rwYMHc/jhhwNwzjnnMHfuXD755BOGDRvG8OHDATj//PN5/fXX6/aZMWNGo8c+44wziEQi7Lfffuy99958/PHHVFdX89xzz3HKKaeQk5PDoYceyr/+9a+6fWbPns24ceM466yz+OMf/0iPHj3qto0dO5azzz6bBx98kOTkIL+eO3cu5557LgDHHHMMhYWFlJSUAHD88ceTkpLCmDFjqK2tZdq0aQCMGTOG/Px8AF599VUOPfRQxowZwyuvvMJHH32003nMmDGD2bNnA/Dwww83ec4iiVBVEyXNarCwBSuS3S/YULY+gVGJiIhIR9OxWrCaaWlqC5s3b+aVV17hww8/xMyora3FzPjVr34FQLdu3bYrb2ZNvm7IjnU0V9+//vUvioqKGDNmDADl5eVkZGRw4oknAkEyc+eddzZY37PPPsvrr7/O008/zc0338yHHzbdIpiWFn7ZjERISUmpiycSiRCNRqmsrOSyyy5j/vz5DB48mJkzZ1JZWblTPYcddhjLli2joKCAJ554gh//+MdNHldkT6uuDn5vt7VgpXUfAEBV0TrSEhaViIiIdDRqwWrGo48+yrnnnsuKFSvIz89n1apVDBs2jDfeeKPB8itXruStt94C4O9//zuTJ09m//33Jz8/n2XLlgHwwAMPcOSRR7bo+P/4xz+IxWIsX76czz//nP33359Zs2bx5z//mfz8fPLz8/niiy948cUX68Z7NSYWi7Fq1SqOPvpo/u///o/i4mLKysqYMmUKDz30EBCM7erVqxc5OTktim9bMtWrVy/KysoanfXQzDj11FP57//+b0aMGEHPnj1bVL/InlIT/i5HUjIAyOzej5gb5ZvXJjIsERER6WCUYDVj1qxZnHrqqdutO+200xqdWGL//ffnrrvuYsSIEWzZsoVLL72U9PR0/vrXv/LNb36TMWPGEIlEuOSSS1p0/L322ouJEydy/PHHc/fddxOLxXjhhRc44YQT6sp069aNyZMn8/TTTzdYx7e//W3mz59PbW0t55xzDmPGjOGggw7i+9//Pnl5ecycOZMFCxYwduxYrr/+eu6///4WXh3Iy8vjO9/5DqNHj2bq1KlMmDChbtvdd9/N3XffXfd6xowZPPjgg+oeKO1StDr4A0VS2EWwZ043NpNNTdG6RIYlIiIiHYztOONbIo0fP97nz5+/3bqlS5cyYsSIBEUk7ZF+J6QtvPr2Ao5+/hjWHfUr+h91MYvXFJP0x8PpMWg4fS9+PNHhiYiISDtjZgvcffyO69WCJSICRKu37yLYOzuNAs8jslXTtIuIiEjLKcESEQFqwy6CyWlBgtWjWyoF5JFWWZDIsERERKSD6RAJVnvqxiiJpd8FaSu1YQtWckowi2BKUoTS5B5kVheCfu9ERESkhdo8wTKzaWb2iZktM7Prd3X/9PR0CgsL9cVacHcKCwtJT09PdCjSCcVqqgBICVuwACrTepHsNVBZlKCoREREpKNp0+dgmVkScBfwNWA18K6ZPeXuS1pax6BBg1i9ejUFBeqmI0HCPWjQoESHIZ1QrCZowaqfYNVk9IFKoHQDZHRPUGQiIiLSkbT1g4YnAsvc/XMAM3sYmA60OMFKSUlh2LBhbRSeiEjAwwQrOfXLFlLP6gNbgLIN0OeABEUmIiIiHUlbdxEcCKyq93p1uK6OmV1sZvPNbL5aqUQkUTwaJFiW/GWClZTTL1go25CIkERERKQDSvgkF+5+j7uPd/fxvXv3TnQ4ItJFeTgGi+S0unVp3fsDUF2shw2LiIhIy7R1grUGGFzv9aBwnYhIu7KtBYt6LVi5uT2p9BQqNyvBEhERkZZp6wTrXWA/MxtmZqnAmcBTbXxMEZFdZrU7t2D1yc1go+dRU7w2QVGJiIhIR9Omk1y4e9TMLgf+BSQBf3H3j9rymCIiuyW6c4LVLyedAvLIKNUYLBEREWmZtp5FEHd/DniurY8jItIaVlsdLNTrItg3J40vPI9h5ZqAR0RERFom4ZNciIi0B1ZbSS0RiHz5d6fcjBQKrTvplUqwREREpGWUYImIAJHaKqKkgFndOjOjMq0nmbUlX3YhFBEREWmCEiwRESCptpqaSOpO66MZfYKFrWrFEhERkeYpwRIRASKxaqK2c4Ll2X2DBU10ISIiIi2gBEtEBEiKVRFtoAUrNbcfAF62fk+HJCIiIh2QEiwRESApVk2tpey0Pr37AAAqN+tZWCIiItI8JVgiIkByrIpYUtpO63N6BQnWViVYIiIi0gJKsEREgGSvIdZAF8G+3bMp9Gyqi9RFUERERJqnBEtEujx3J9UriSZn7LStX046Gz0PL1WCJSIiIs1TgiUiXV5VNEYmVcSSM3fa1js7jQLPI6l8YwIiExERkY5GCZaIdHlVNTEyqWwwwUpPSaIkqTtplZsSEJmIiIh0NEqwRKTLq6ipJdOq8JSduwgClKf1JqumENz3cGQiIiLS0SjBEpEur7KmlgyqIKVbg9ujmb1JoQYqi/ZsYCIiItLhKMESkS6vsiZKJlWQunMXQQC69Q3+Ld2w54ISERGRDkkJloh0eZWVFSRbDEttuAUrKW8gANGi1XsyLBEREemAlGCJSJdXU7EVgEhawwlWes+9ACjduGKPxSQiIiIdU6sSLDP7lZl9bGaLzOyfZpYXrh9qZhVmtjD8uTsu0YqItIGayjIAImlZDW7P7bcXMTcqNinBEhERkaa1tgXrRWC0u48FPgV+WG/bcncfF/5c0srjiIi0mZryUgBS0htOsPp1z6aAXKJbVu3JsERERKQDalWC5e7/dvdo+HIeMKj1IYmI7FlVFUGClZaZ3eD2/rkZrPMeRErW7smwREREpAOK5xisi4Dn670eZmbvm9lrZjalsZ3M7GIzm29m8wsKCuIYjohIy1Q3k2DlpCdTYL1Iq1i3J8MSERGRDii5uQJm9hLQr4FNP3L3J8MyPwKiwEPhtnXAXu5eaGaHAE+Y2Sh3L9mxEne/B7gHYPz48XqKp4jscbWVwSQX6ZkNdxE0M0pS+5JdtSh42LDZngxPREREOpBmEyx3/2pT283sAuBE4Fh393CfKqAqXF5gZsuB4cD81gYsIhJv0apgkovkRsZgAVRl9ie9uBIqiyEjbw9FJiIiIh1Na2cRnAZcB5zs7uX11vc2s6RweW9gP+Dz1hxLRKTNVIaN6+m5jRapzR4QLJSs2QMBiYiISEfV2jFYdwLZwIs7TMd+BLDIzBYCjwKXuPvmVh5LRKRNJFUVBQsZ3Rstk9x9MIBmEhQREZEmNdtFsCnuvm8j6x8DHmtN3SIie0pqdRE1JJOSktlomYxe2x42nE/3A/ZUZCIiItLRxHMWQRGRDimlupiySE6Tk1fk9RlM1CNUbFq5ByMTERGRjkYJloh0eWk1JVQk5zRZZkCPLDbQndotq/dQVCIiItIRKcESkS4vo7aE6pTGJ7gA6JebznrvQaRUk1yIiIhI45RgiUiXVhtzsmKlRNOaTrBy0lMosF6kV6zfQ5GJiIhIR6QES0S6tOKKGnKtjFha4zMIblOS1pfs6o3Bw4ZFREREGqAES0S6tM1lVXSnDMtsPsGqyuxPqldDeeEeiExEREQ6IiVYItKlbdxUQIZVk5o3oNmyrocNi4iISDOUYIlIl1a8IZh2vVuvQc2W3faw4Ro9bFhEREQaoQRLRLq08s3BtOs5fQY3Wzaz9xAAyjasaNOYREREpONSgiUiXVrNlrUApOYNbLZs9z4DqfYkKgv1sGERERFpWHKiAxARSaiycNr1rL7NFh2Ql8l674EVqYugiIiINEwtWCLSpaWWr6fCMiEtq9my/XLTWUdPkkvX7oHIREREpCNSgiUiXZa7k1O9gdK0fi0qn52ewiY9bFhERESaoARLRLqs4ooaBngBld2an6J9m9K0vmRXF0As1oaRiYiISEelBEtEuqw1RRUMtAI8t/kZBLep6tafZKKwdWMbRiYiIiIdlRIsEemyNhZsItfKSekxpMX7eHY422CxHjYsIiIiO2tVgmVmM81sjZktDH++Xm/bD81smZl9YmZTWx+qiEh8lW34HIBufYa2eJ+UHnrYsIiIiDQuHtO03+but9ZfYWYjgTOBUcAA4CUzG+7utXE4nohIXFRuCh4YnN137xbv023bw4YLVtC9TaISERGRjqytughOBx529yp3/wJYBkxso2OJiOye4qAVKtJ9rxbv0qNXPyo9hcpNetiwiIiI7CweCdblZrbIzP5iZtv+oDsQqN9/ZnW4bidmdrGZzTez+QUFBXEIR0SkZVLK1hIluUUPGd5mQPcM1npPYsWr2zAyERER6aiaTbDM7CUzW9zAz3TgD8A+wDhgHfDrXQ3A3e9x9/HuPr537967uruIyG7rVrGWopQ+EGn535r65WawznuSpIcNi4iISAOaHYPl7l9tSUVm9ifgmfDlGqD+vMeDwnUiIu1CbczpEd1IeVbLHjK8TVZaMpsiPRld8XEbRSYiIiIdWWtnEexf7+WpwOJw+SngTDNLM7NhwH7AO605lohIPBWUVjHANlGTNWiX9y1L7UNWTaEeNiwiIiI7ae0sgreY2TjAgXzg/wG4+0dm9giwBIgC39UMgiLSnqzdUsI4trCie8sfMrxNVUYfkmpqoXwTZPVpg+hERESko2pVguXu5zax7Wbg5tbULyLSVorWrSBiTlqvobu8b21WfygBStcpwRIREZHttNU07SIi7Vp5wRcA5PYdtsv7JuUEvaO9ZF1cYxIREZGOTwmWiHRJtZuD51hl9hm6y/um9RgAQOUWTdUuIiIi21OCJSJdUqQ0mNjUcnd9kousngOJuVGxSZOjioiIyPaUYIlIl5S+dQ3FkTxIydjlfXvnZVFIDtVFSrBERERke0qwRKRLyqnaQHHqrj0Da5s+2els8O7BJBciIiIi9SjBEpEupzbm9IptpDJzwG7t3zcnjfXeneStG+IcmYiIiHR0SrBEpMspKKlkAJuI5uz6+CuArLRkCq0H6ZUb4xyZiIiIdHRKsJoRq9XzkUU6m4INq8mwapK677Vb+5sZW9N6kxXdArU1cY5OREREOjIlWE1YPPcZlv3vJNZ98VGiQxGROCpb9ykA6X333e06qjP6Bgsla+MRkoiIiHQSSrCa4NFK+kbXkH3/sSx45h48Fkt0SCISBzUblwOQN/CA3a6jOjd8QHHhsniEJCIiIp1EcqIDaM/GHHU6KwePpnzW+Rwy/1o+XnQ/saN+xMjDjgezRIfXZjwWI1YbJVZbg9dGiXkMj4ETI+bgHsNjXvdvzMP1xCDmxNzBHfBtNe7wuj3Y+f5ZA+va7vCtP1arakjA729DVzxRkgo+otaNnP5773Yd6f32h1VQs/EzUvY9ttnysZjz8rsfsHnOXWTtfRgnfPOi3T62NM1ro9RGa4hGq6mpidZ9Jpl78DnljofrnHAZxx0Mx2PbXsf48vMr+ATzuo+xcF17+ljbJbbdPx3Jdp/VHeT/xc2H2f7OY/cjSuC5xPPQHeR3q2U6/rl4SibZuT1IT0lKdCgtogSrGXvtcwC1189l7qO/ZcTHd9Dz32ex4uW9WD/4RPqNP5HBBxxKJLntLmNNtJby8jIqykqoLC+hamsZVRUl1FSUEa0spbZyK7VVZXjVVqjeCjVlRGoqiES3khytILm2grRYBWleSapXkuS1RLyWCLUkESPZoySFy0nUkkwtSeYkAR3jV1hk1/UC1kT6MTA5bbfr6DtgL0o9g+japXRvolxtzHnpnQ8of+VWjq96gXSrYenHHwBdK8GKRmspKilia3EhVaVFVG/dTLS8iNryImIVxVhlMbHqcrymHKKVWE0FkWglSbWVJMeqSPVKUryKVK8madvnlteGn19RkjxGMlGSiRExJ5ngf3DpiT5xERFptb9Gp9L7jN9y4tjdm/13T1OC1QJJySlMPvNaKrZewpvP/ZmenzzMofm/h/zfU+kprEkZwub0vajN7EWkW288PQ9LSq77idXW4jUVeE0l1FRCtDL8ArGVSLScpJoKkmvLSYlVkFpbQapXku4VZHgVmVSSa05uC2OtIoVK0qi0DKoj6VRHMqhOymBrpDfFSenELBkiyRBJwiPblr/8iVmw3i0JtySIJAEGFgn+mGOGYVjwInhttv36um2w7a8mTr31Cbfzn5z35B+hLQ5/8m51DQn/s3uijw899p3Yqv337p3N596fgeuXNLi9Ohrj1Tf/Q9XcO5ha/TLJVsuaIaewubiYA4rfgNooJHXsj+CqmiiFG9dSvCGf8k2rqSpeT7R0I1ZWQEpVIZnVm8mKbiHPi8jxMnpZjF5N1Bf1SPj5lUaNpVJt6UQjaVRH0qhKymZrpBc1loZHUvB6n2EeSQZLDq5nJBmLJENSCkSSiUSSgs+eus+f7T+jHMMs7C1f95lluO1Y1r4sAtstd9Q/dCf8Y6DVOsYJNHedrR2eh+92TAk8l/Z3GduFeHznaA8GZO/LAQNb+m048Tr2/933sIxu2Rz+zauAq1i7ZiWr3n2WmjXvk1PyGQO3fkRuaTHdrLJFdVV6ChWWQYWlU23pVCdlUBPJoCwlj9rkDGpTuuEpmZDSDUvrRiS1G5H0bJLTu5Gcnk1qRhapmTmkZ2aTnpVDRmY2yelZpCWlkAYtTshEZPfs3y+bB20UowpfgKoySMsCYEtZFa+++BQ9F/2Rr8XmE7Uk1g87hUEn/Zi9eg7j09l3kl78MlvXLKbbXuMSexLNKN26lY0rP6N4zSdUbFpJbdEqksvWklm5gR7RjfT1QgZYDTv+PXErGRRH8ihL7k5pt70oTDsIz+hBJCOPpMw8Ipl5JGfmktKtO2lZ3cnI7kF6dne6ZXYjK2JkJeRsRURE4kMJ1m4aMHAvBgy8dKf1ZVvLqCzdTCwaJRqtobY2SnJSEinpmaSmZ5KWnklqajrpkQjp0GTXIhFpv1KTI2zqO4XkjU9TPv8hPsoYz+q3/sGYjU/xDVtDaSSHlaMvY8i0K9gru2/dfulDJ8JSKFjyRsITrFjMWb+5mA0rPqF4zcfUbFpOanE+OeUr6V2zhv5ewD725V8/a90ojPSkOLUvRVmjKOg2AHIHktpjLzJ7DiKvz0DyevWnW1o3uiXwvERERBLJvB01HY4fP97nz5+f6DBERFrkrc82kvzACUyIfFq3bmW30aSOP59+h58DqZk77bOptJLaW/entO+h7HvZI20eo7uzqaiE9Ss+pnjVx1QXLCO56AuyylfRt2Y1/SkkUi+JKqMbG1MHUpq5FzW5w0jutQ/d+u9L74H7kttnEJaU0uYxi4iIdARmtsDdx++4vlUtWGY2G9g/fJkHFLn7ODMbCiwFPgm3zXP3S1pzLBGR9uaw/frw9oyHmTP/QXr3yGPf8cexV/8RTe7TKzudl1PGMn7TPIhWQ3Jqq+Nwdwq2bGHjio8pWfMp0YJlRIryyd66kj41q+nLZnrXS6KKyaYwbSCbcw6hsPsw0vvuR/fBI+g5+ACyuvUgq6MOKhIREWkHWpVgufuMbctm9muguN7m5e4+rjX1i4i0d4eO2gdG3bRL+5QecAa5i19n/Wt/ot+x323RPuWVVWxYu4Li9V9QtuELagrzSSn+gpzyVfSNrqWvbaFPvfJbyGFT6iA29hjPuu57k953X7oPOoDeQ0aQm9VT4zRFRETaSFzGYFkwpdwZwDHxqE9EpDM7YtoZvLv4D4x94yYWr16O7XUoJKdTXlFOTWkBXraJ2q0FpGzdQFbVenpGN9LHCxlm2z/svNC6U5g6kHV5X2FN92Gk9dmXvEEH0HuvA+ie1V1jPEVERBIgLmOwzOwI4Dfb+iCGXQQ/Aj4FSoAfu/sbjex7MXAxwF577XXIihUrWh2PiEh7t3R5PptnXcykmndIsp0/h2tICiaUSOlHRWZ/otkDSeo+mIxeQ+gxYG96DdiHSEZOAiIXERERaHwMVrMJlpm9BPRrYNOP3P3JsMwfgGXu/uvwdRqQ5e6FZnYI8AQwyt1LmjqWJrkQka7E3Vm5dj3la5YQq60hMyOdrO79yO7Zl/RueR33AUsiIiJdwG5PcuHuX22m4mTgG8Ah9fapAqrC5QVmthwYDih7EhEJmRlDBvaHgf0THYqIiIjESSQOdXwV+NjdV29bYWa9zSwpXN4b2A/4PA7HEhERERERabfiMcnFmcCsHdYdAfzMzGqAGHCJu2+Ow7FERERERETarVYnWO5+QQPrHgMea23dIiIiIiIiHUlcZhGMFzMrANrbNIK9gE2JDkL2GN3vrkP3uuvQve5adL+7Dt3rrqU93u8h7t57x5XtKsFqj8xsfkOzg0jnpPvddehedx26112L7nfXoXvdtXSk+x2PSS5EREREREQEJVgiIiIiIiJxowSrefckOgDZo3S/uw7d665D97pr0f3uOnSvu5YOc781BktERERERCRO1IIlIiIiIiISJ0qwRERERERE4kQJVhPMbJqZfWJmy8zs+kTHI/FjZoPN7FUzW2JmH5nZFeH6Hmb2opl9Fv7bPdGxSnyYWZKZvW9mz4Svh5nZ2+H7e7aZpSY6RokPM8szs0fN7GMzW2pmh+m93TmZ2VXhZ/hiM5tlZul6b3ceZvYXM9toZovrrWvwvWyB28P7vsjMDk5c5LKrGrnXvwo/xxeZ2T/NLK/eth+G9/oTM5uakKCboASrEWaWBNwFHA+MBM4ys5GJjUriKApc7e4jgUnAd8P7ez3wsrvvB7wcvpbO4Qpgab3X/wfc5u77AluA/0pIVNIWfge84O4HAAcS3He9tzsZMxsIfB8Y7+6jgSTgTPTe7kzuA6btsK6x9/LxwH7hz8XAH/ZQjBIf97HzvX4RGO3uY4FPgR8ChN/XzgRGhfv8Pvze3m4owWrcRGCZu3/u7tXAw8D0BMckceLu69z9vXC5lOAL2ECCe3x/WOx+4JSEBChxZWaDgBOAP4evDTgGeDQsonvdSZhZLnAEcC+Au1e7exF6b3dWyUCGmSUDmcA69N7uNNz9dWDzDqsbey9PB/7mgXlAnpn13yOBSqs1dK/d/d/uHg1fzgMGhcvTgYfdvcrdvwCWEXxvbzeUYDVuILCq3uvV4TrpZMxsKHAQ8DbQ193XhZvWA30TFZfE1W+B64BY+LonUFTvg1vv785jGFAA/DXsEvpnM+uG3tudjruvAW4FVhIkVsXAAvTe7uwaey/re1vndhHwfLjc7u+1Eizp0swsC3gMuNLdS+pv8+AZBnqOQQdnZicCG919QaJjkT0iGTgY+IO7HwRsZYfugHpvdw7h2JvpBEn1AKAbO3cxkk5M7+Wuwcx+RDC046FEx9JSSrAatwYYXO/1oHCddBJmlkKQXD3k7o+Hqzds61IQ/rsxUfFJ3BwOnGxm+QRdfY8hGKOTF3YrAr2/O5PVwGp3fzt8/ShBwqX3dufzVeALdy9w9xrgcYL3u97bnVtj72V9b+uEzOwC4ETgbP/y4b3t/l4rwWrcu8B+4WxEqQSD6Z5KcEwSJ+EYnHuBpe7+m3qbngLOD5fPB57c07FJfLn7D919kLsPJXgfv+LuZwOvAqeHxXSvOwl3Xw+sMrP9w1XHAkvQe7szWglMMrPM8DN9273We7tza+y9/BRwXjib4CSguF5XQumAzGwaQff+k929vN6mp4AzzSzNzIYRTGzyTiJibIx9mQzKjszs6wRjN5KAv7j7zYmNSOLFzCYDbwAf8uW4nBsIxmE9AuwFrADOcPcdB9hKB2VmRwHXuPuJZrY3QYtWD+B94Bx3r0pgeBInZjaOYEKTVOBz4EKCPyjqvd3JmNlPgRkE3YfeB75NMBZD7+1OwMxmAUcBvYANwE3AEzTwXg6T7DsJuomWAxe6+/wEhC27oZF7/UMgDSgMi81z90vC8j8iGJcVJRjm8fyOdSaSEiwREREREZE4URdBERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIRaSfMbKiZuZklJzqWzs7MLjCzuYmOo70xsylm9kmi4xAR6ciUYImISIdmZjPNrMbMyur9XJfouDoid3/D3fePd71mdpKZLQ7vzX/MbGS8jyEi0l4owRIRiRO1PCXUbHfPqvdzS6IDiqeO/LtlZvsBDwGXAHnA08BTHfmcRESaogRLRKQVzCzfzH5gZouArWaWbGaTwr/SF5nZB2Z2VL3yc8zsf83sHTMrMbMnzaxHI3VfaGZLzazUzD43s/+3w/bpZrYwrGe5mU0L1+ea2b1mts7M1pjZ/5hZUjPnsY+ZvWJmhWa2ycweMrO8ets2m9nB4esBZlaw7bzM7GQz+yg83zlmNmKH63ONmS0ys2Izm21m6bt+pXedmV0fXpdSM1tiZqc2Us7M7DYz2xheyw/NbHS4Lc3MbjWzlWa2wczuNrOMFh7/vrD8i2EMr5nZkHrbf2dmq8JjLjCzKfW2zTSzR83sQTMrAS4ws4lm9lZ4ndeZ2Z1mllpvHzezy8zss/B4Pw/v3X/CYzxSv3wjMR9lZqtbcn67YCrwhrvPdfco8H/AQODIOB9HRKRdUIIlItJ6ZwEnEPx1vi/wLPA/QA/gGuAxM+tdr/x5wEVAfyAK3N5IvRuBE4Ec4ELgtnpJzkTgb8C14XGPAPLD/e4L690XOAg4Dvh2M+dgwP8CA4ARwGBgJoC7Lwd+ADxoZpnAX4H73X2OmQ0HZgFXAr2B54Cnd/gifwYwDRgGjAUuaDAAs8lh8tDYz+RmzmFHy4EpQC7w0zD+/g2UO47g+g0Py54BFIbbfhmuH0dwPQcCN+5CDGcDPwd6AQsJWnK2eTestwfwd+AfOySf04FHCe7vQ0AtcFVY12HAscBlOxxvKnAIMAm4DrgHOIfgfo4m+F3dbWGi3Nj9+X1Tu+6wbGE8IiKdjhIsEZHWu93dV7l7BcGX2efc/Tl3j7n7i8B84Ov1yj/g7ovdfSvwE+CMhlqY3P1Zd1/ugdeAfxMkDAD/BfzF3V8Mj7PG3T82s77hsa50963uvhG4DTizqRNw92VhXVXuXgD8hnotDO7+J2AZ8DZBYvijcNMM4Nlw3xrgViAD+MoO12etu28m6B42rpEY5rp7XhM/TU1KccYOX/YHuPs/wuPG3H028BkwsYF9a4Bs4ADA3H2pu68zMwMuBq5y983uXgr8orlruYNn3f11d68iuGaHmdng8HwfdPdCd4+6+6+BNKD++Ke33P2JMP4Kd1/g7vPC8vnAH9m5FegWdy9x94+AxcC/3f1zdy8GnidIuHebu49t4v7smOxt8xJwZNg6lgrcAKQCma2JRUSkvVKCJSLSeqvqLQ8Bvln/yz4wmSApaaj8CiCFoFViO2Z2vJnNC7vnFREkTtvKDSZoodnRkLC+dfWO/0egT1MnYGZ9zexhC7oUlgAPNhDTnwhaHe4IEwYIWrxWbCvg7rHw/AbW2299veVyIKupWHbTIzt82V9rZudZ0IVy23UYTQPX2d1fAe4E7gI2mtk9ZpZD0CKXCSyoV8cL4fqWqrvX7l4GbCa4ZoRdJ5eGXSeLCFrPejW0b1h+uJk9Y2brw3v0iwbOZ0O95YoGXrfFtW+Su38MnE9wjdcRxLwEiHdXRBGRdkEJlohI63m95VUELVT1v+x3c/df1iszuN7yXgQtKJvqV2hmacBjBC1Cfd09j6D73bauVquAfRqIZRVQBfSqd/wcdx/VzDn8IjyPMe6eQ9ASV9ety8yygN8C9wIz7ctxY2sJkrpt5Sw8vzXNHG8nFkwRXtbEz5Tma6mrawhBQng50DO8fovZvqtaHXe/3d0PAUYSdAm8luCeVACj6l3LXHfflSSl7l6H17AHsDY8l+sIuiN2D+Mr3iG++r9XAH8APgb2C+/RDY2dT1uxYKxdY/fn7sb2c/dH3X20u/cEbgKGEnSRFBHpdJRgiYjE14PASWY21cySzCw97Bo1qF6Zc8xsZDie6WfAo+5eu0M9qQRdxgqAqJkdTzBWaJt7gQvN7Fgzi5jZQDM7wN3XEXQl/LWZ5YTb9jGz5iYUyAbKgGIzG0iQYNT3O2C+u3+bYIzZti/TjwAnhHGkAFcTJHj/ae5C7SicIjyriZ83dqG6bgQJSgEEE4bQyJgfM5tgZoeG8W8FKoFY2Br3J4Kxb33CsgPNbGq9fd3qTWLSgK+HY8tSCcZizXP3VQTXOxrGl2xmNxKMtWtKNlAClJnZAcClzZSPO3cf1cT9uaSx/czskPD90JtgXNhTYcuWiEinowRLRCSOwi/P0wlaFwoIWpSuZfvP2wcIJqJYD6QD32+gntJw/SPAFuBbwFP1tr9DOPEFQcvHa3zZknQeQYK2JNz3UbbvotiQnwIHh3U9Czy+bYOZTSeYpGLbF/r/Bg42s7Pd/ROC1q47CFp8TgJOcvfqZo7Xptx9CfBr4C2CbnJjgDcbKZ5DkEhtIejuWAj8Ktz2A4KxZ/PCbnkvEY6TCsdSlQIfNhHK3wlabDYTTD5xTrj+XwTdDT8Nj1nJDl0CG3ANwe9BaRjv7GbKtye/A4qATwiu83cSGo2ISBsy9x17IIiISFsxsznAg+7+50THIq1jZucQdB/8YSPb7wNWu/uP92hgIiKSUHrIn4iIyG5w9wcTHYOIiLQ/6iIoItJFWPDQ212anEA6HzO7oZHfg+cTHZuISGegLoIiIiIiIiJxohYsERERERGROGlXY7B69erlQ4cOTXQYIiIiIiIiTVqwYMEmd9/p4fPtKsEaOnQo8+fPT3QYIiIiIiIiTTKzFQ2tVxdBERERERGROFGCJSIiIiIiEidKsEREdtF7K7fw4eriRIchIiIi7VC7GoPVkJqaGlavXk1lZWWiQ5EOJj09nUGDBpGSkpLoUKQTcXe+8fv/EDFY/ouvY2aJDklERETakXafYK1evZrs7GyGDh2qLzLSYu5OYWEhq1evZtiwYYkORzqRTWXVHBb5iEuTnmLLknR6jDo20SGJiIhIO9LuuwhWVlbSs2dPJVeyS8yMnj17quVT4m5LeTVnJb3CEUkfUr3oiUSHIyIiIu1MqxMsMxtsZq+a2RIz+8jMrgjX9zCzF83ss/Df7q04RmvDlC5IvzfSFrZsrSaH8uBFUX5CYxEREZH2Jx4tWFHgancfCUwCvmtmI4HrgZfdfT/g5fC1iEiHtqW8hhzbCkBa6coERyMiIiLtTasTLHdf5+7vhculwFJgIDAduD8sdj9wSmuPlShmxtVXX133+tZbb2XmzJmJC6ieefPmceihhzJu3DhGjBhRF9ecOXP4z3/+06q6p02bRl5eHieeeGIcIhXpHIorvmzByqpYC7FYgiMSERGR9iSuY7DMbChwEPA20Nfd14Wb1gN9G9nnYjObb2bzCwoK4hlO3KSlpfH444+zadOmuNbr7sRa+eXs/PPP55577mHhwoUsXryYM844A4hPgnXttdfywAMPtKoOkc6mtDJKjgUJVopXQ9mGBEckIiIi7UncZhE0syzgMeBKdy+pP/7F3d3MvKH93P0e4B6A8ePHN1hmm58+/RFL1pbEK2QARg7I4aaTRjVZJjk5mYsvvpjbbruNm2++ebttBQUFXHLJJaxcGXQV+u1vf8vhhx/OzJkzycrK4pprrgFg9OjRPPPMMwBMnTqVQw89lAULFvDcc89x55138vzzz2Nm/PjHP2bGjBnMmTOHmTNn0qtXLxYvXswhhxzCgw8+uNO4oo0bN9K/f38AkpKSGDlyJPn5+dx9990kJSXx4IMPcscdd3DAAQc0Gufy5ctZtmwZmzZt4rrrruM73/kOAMceeyxz5sxp8tr84x//4Kc//SlJSUnk5uby+uuvU1lZyaWXXsr8+fNJTk7mN7/5DUcffTT33XcfTzzxBFu3buWzzz7jmmuuobq6mgceeIC0tDSee+45evTowZ/+9Cfuueceqqur2XfffXnggQfIzMzc7riTJk3i3nvvZdSo4N4dddRR3HrrrYwfP77JeEVaqyoaI4etrEseSP/omiDByumf6LBERESknYhLC5aZpRAkVw+5++Ph6g1m1j/c3h/YGI9jJcp3v/tdHnroIYqLt3+46BVXXMFVV13Fu+++y2OPPca3v/3tZuv67LPPuOyyy/joo4+YP38+Cxcu5IMPPuCll17i2muvZd26oOHv/fff57e//S1Llizh888/580339yprquuuor999+fU089lT/+8Y9UVlYydOhQLrnkEq666ioWLlzIlClTmoxz0aJFvPLKK7z11lv87Gc/Y+3atS2+Lj/72c/417/+xQcffMBTTz0FwF133YWZ8eGHHzJr1izOP//8utn8Fi9ezOOPP867777Lj370IzIzM3n//fc57LDD+Nvf/gbAN77xDd59910++OADRowYwb333rvTcWfMmMEjjzwCwLp161i3bp2SK9kjolXlpFsNWzKGBCu2ts+WdxEREUmMVrdgWdCkci+w1N1/U2/TU8D5wC/Df59s7bGaa2lqSzk5OZx33nncfvvtZGRk1K1/6aWXWLJkSd3rkpISysrKmqxryJAhTJo0CYC5c+dy1llnkZSURN++fTnyyCN59913ycnJYeLEiQwaNAiAcePGkZ+fz+TJk7er68Ybb+Tss8/m3//+N3//+9+ZNWtWg61OTcU5ffp0MjIyyMjI4Oijj+add97hlFNOadF1Ofzww7ngggs444wz+MY3vlF3Tt/73vcAOOCAAxgyZAiffvopAEcffTTZ2dlkZ2eTm5vLSSedBMCYMWNYtGgRECRhP/7xjykqKqKsrIypU6fudNwzzjiD4447jp/+9Kc88sgjnH766S2KV6TVKoNW9LKsYVD6H2KlG9r/8y5ERERkj4lHF8HDgXOBD81sYbjuBoLE6hEz+y9gBXBGHI6VUFdeeSUHH3wwF154Yd26WCzGvHnzSE9P365scnLyduOr6j+PqVu3bi06XlpaWt1yUlIS0Wi0wXL77LMPl156Kd/5znfo3bs3hYWFO5VpLE7YeTrzXZne/O677+btt9/m2Wef5ZBDDmHBggVNlq9/TpFIpO51JBKpO78LLriAJ554ggMPPJD77ruvwYRx4MCB9OzZk0WLFjF79mzuvvvuFscs0hpWFbRiV+XtA+ugqngDGc3sIyIiIl1HPGYRnOvu5u5j3X1c+POcuxe6+7Huvp+7f9XdN8cj4ETq0aMHZ5xxxnZd1o477jjuuOOOutcLFy4EYOjQobz33nsAvPfee3zxxRcN1jllyhRmz55NbW0tBQUFvP7660ycOLHFMT377LO4B0PXPvvsM5KSksjLyyM7O5vS0tJm4wR48sknqayspLCwkDlz5jBhwoQWH3/58uUceuih/OxnP6N3796sWrWKKVOm8NBDDwHw6aefsnLlSvbff/8W11laWkr//v2pqampq6chM2bM4JZbbqG4uJixY8e2uH6R1kiqClqwkvMGUO5pVBatT3BEIiIi0p6oZ8suuvrqq7ebTfD2229n/vz5jB07lpEjR9a1pJx22mls3ryZUaNGceeddzJ8+PAG6zv11FMZO3YsBx54IMcccwy33HIL/fr1a3E8DzzwAPvvvz/jxo3j3HPP5aGHHiIpKYmTTjqJf/7zn4wbN4433nij0TgBxo4dy9FHH82kSZP4yU9+woABA4Ag+fvmN7/Jyy+/zKBBg/jXv/4FBN0St423uvbaaxkzZgyjR4/mK1/5CgceeCCXXXYZsViMMWPGMGPGDO67777tWq6a8/Of/5xDDz2Uww8/nAMOOKBu/VNPPcWNN95Y9/r000/n4Ycfrps5UWSPqAmegZWVnccmzyFaolkERURE5Eu2rfWjPRg/frzPnz9/u3VLly5lxIgRCYqo89txtsPORr8/Em933X0n313/I/K/8QybH72Swf360Puy5xMdloiIiOxhZrbA3XeaZU0tWCIiuyJaAUBudjabPJekcs0iKCIiIl+K23OwpGOaOXNmokMQ6ViiwYQ1Odk5FJJDWlXD4ytFRESka1ILlojILrDaKgCSUjPYmtyDjJoiiNUmNigRERFpN5RgiYjsAosGCRbJaVSl9SJCDMo7/CSpIiIiEidKsEREdkFSbfhMu5QMopm9guWtGxMXkIiIiLQrSrBERHZBJFYdLCSl4d36BMtlSrBEREQkoASrhZ544gnMjI8//rjRMvn5+YwePTpux/zkk0846qijGDduHCNGjODiiy8GgocEP/fcc62q+6KLLqJPnz5xjVekK0iuraTGUiESITknTLC2aiZBERERCSjBaqFZs2YxefJkZs2a1eD2aDTa6mPU1m4/UP773/8+V111FQsXLmTp0qV873vfA+KTYF1wwQW88MILrapDpCtKjlVRG0kFIC2vPwA1etiwiIiIhDrWNO3PXw/rP4xvnf3GwPG/bLJIWVkZc+fO5dVXX+Wkk07ipz/9KQBz5szhJz/5Cd27d+fjjz/m3//+N9FolLPPPpv33nuPUaNG8be//Y3MzExefvllrrnmGqLRKBMmTOAPf/gDaWlpDB06lBkzZvDiiy9y3XXXceaZZ9Ydd926dQwaNKju9ZgxY6iurubGG2+koqKCuXPn8sMf/pATTzyR733veyxevJiamhpmzpzJ9OnTue+++/jnP/9JcXExa9as4ZxzzuGmm24C4IgjjiA/P7/J837ttde44oorADAzXn/9dbKysrjuuut4/vnnMTN+/OMfM2PGDObMmcNNN91EXl4eH374IWeccQZjxozhd7/7HRUVFTzxxBPss88+PP300/zP//wP1dXV9OzZk4ceeoi+fftud9wzzzyTc889lxNOOAEIksETTzyR008/vWX3VKQNJcWqiUbSAMjO6UG1J1FZtJ6UBMclIiIi7YNasFrgySefZNq0aQwfPpyePXuyYMGCum3vvfcev/vd7/j000+BoFvfZZddxtKlS8nJyeH3v/89lZWVXHDBBcyePZsPP/yQaDTKH/7wh7o6evbsyXvvvbddcgVw1VVXccwxx3D88cdz2223UVRURGpqKj/72c+YMWMGCxcuZMaMGdx8880cc8wxvPPOO7z66qtce+21bN26FYB33nmHxx57jEWLFvGPf/yD+fPnt/i8b731Vu666y4WLlzIG2+8QUZGBo8//jgLFy7kgw8+4KWXXuLaa69l3bp1AHzwwQfcfffdLF26lAceeIBPP/2Ud955h29/+9vccccdAEyePJl58+bx/vvvc+aZZ3LLLbfsdNwZM2bwyCOPAFBdXc3LL79cl2yJJFK0NkYqVdQmpQPQKzudQnKpKVYLloiIiAQ6VgtWMy1NbWXWrFl1LTlnnnkms2bN4pBDDgFg4sSJDBs2rK7s4MGDOfzwwwE455xzuP322/na177GsGHDGD58OADnn38+d911F1deeSUQJBQNufDCC5k6dSovvPACTz75JH/84x/54IMPdir373//m6eeeopbb70VgMrKSlauXAnA1772NXr27AnAN77xDebOncv48eNbdN6HH344//3f/83ZZ5/NN77xDQYNGsTcuXM566yzSEpKom/fvhx55JG8++675OTkMGHCBPr3D7pM7bPPPhx33HFA0PL26quvArB69WpmzJjBunXrqK6u3u7abXP88cdzxRVXUFVVxQsvvMARRxxBRkZGi2IWaUtV0Rhp1BALuwj2yk5jk+fQv0xjsERERCTQ5i1YZjbNzD4xs2Vmdn1bHy/eNm/ezCuvvMK3v/1thg4dyq9+9SseeeQR3B2Abt26bVfezJp83ZAd66hvwIABXHTRRTz55JMkJyezePHincq4O4899hgLFy5k4cKFrFy5khEjRux2PNtcf/31/PnPf6aiooLDDz+8yQk+ANLS0uqWI5FI3etIJFI3Ru173/sel19+OR9++CF//OMfqays3Kme9PR0jjrqKP71r38xe/bsRhNQkT2tsqaWdKqJhS1YPbulUui5WPmmBEcmIiIi7UWbJlhmlgTcBRwPjATOMrORbXnMeHv00Uc599xzWbFiBfn5+axatYphw4bxxhtvNFh+5cqVvPXWWwD8/e9/Z/Lkyey///7k5+ezbNkyAB544AGOPPLIZo/9wgsvUFNTA8D69espLCxk4MCBZGdnU1paWldu6tSp3HHHHXVJ3/vvv1+37cUXX2Tz5s1146C2ta61xPLlyxkzZgw/+MEPmDBhAh9//DFTpkxh9uzZ1NbWUlBQwOuvv87EiRNbXGdxcTEDBw4E4P7772+03IwZM/jrX//KG2+8wbRp01pcv0hb2taC5cnBHw96ZaVRSA6plUqwREREJNDWLVgTgWXu/rm7VwMPA9Pb+JhxNWvWLE499dTt1p122mmNzia4//77c9dddzFixAi2bNnCpZdeSnp6On/961/55je/yZgxY4hEIlxyySXNHvvf//43o0eP5sADD2Tq1Kn86le/ol+/fhx99NEsWbKEcePGMXv2bH7yk59QU1PD2LFjGTVqFD/5yU/q6pg4cSKnnXYaY8eO5bTTTqvrHnjWWWdx2GGH8cknnzBo0CDuvfdeAO6++27uvvtuAH77298yevRoxo4dS0pKCscffzynnnoqY8eO5cADD+SYY47hlltuoV+/fi2+njNnzuSb3/wmhxxyCL169apbP3/+fL797W/XvT7uuON47bXX+OpXv0pqamqL6xdpS1XRGOn2ZQtWRmoSxZE80qs3Q/gHDhEREenazNvwS4GZnQ5Mc/dvh6/PBQ5198vrlbkYuBhgr732OmTFihXb1bF06dK67m6ya+677z7mz5/PnXfemehQEka/PxJPH68vofr3R9BvwF70ueQpAH7/iyu4rPo++OFqSMtObIAiIiKyx5jZAnffaXKDhM8i6O73uPt4dx/fu3fvRIcjItKoqpoY6VRDypeTrkTTgklkKNuYoKhERESkPWnrBGsNMLje60HhOtkDLrjggi7deiUSb1XRMMFKTq9bF+sW/mFoq8ZhiYiISNsnWO8C+5nZMDNLBc4EntrVStqyG6N0Xvq9kXiritaSZjVYypcJVlJ2n2Bhq1qwREREpI0TLHePApcD/wKWAo+4+0e7Ukd6ejqFhYX6siy7xN0pLCwkPT29+cIiLbSti6DV6yKYlhMkWLWlSrBERERkDzxo2N2fA57b3f0HDRrE6tWrKSjQgzxl16SnpzNo0KBEhyGdyLZp2mvrtWBl9ghm0awo2kBWogITERGRdqPNE6zWSklJYdiwYYkOQ0SEqpoo6VZDZeqXLVjds7Mo8m7EitcnMDIRERFpLxI+i6CISEdRU10JQFK9LoK9slLZ5LnqIigiIiKAEiwRkRarrSoHICmtXoKVnUYhOZhmERQRERGUYImItFhtdQUAyfW6CPbqlsYmzyG5QgmWiIiIKMESEWmxbQlWUmpm3bqcjGQ2k0dadWGiwhIREZF2RAmWiEgLxWrCBKteF0EzoyK1BxnREqitSVRoIiIi0k4owRIRaaFYOMkFyds/X60mvUewoHFYIiIiXZ4SLBGRFvKwBWvHBKs2s3ewsFUzCYqIiHR1SrBERFrIow23YHm34GHDlG7YwxGJiIhIe6MES0SkpWrCBCtl+wQrtXt/AGKl6/Z0RCIiItLOKMESEWkha6QFq1uPAQBUbl6zp0MSERGRdkYJlohISzWSYPXKy2GzZ1G5ZW0CghIREZH2RAmWiEgLWe22LoIZ263vm5PGBu9ObbG6CIqIiHR1rUqwzOxXZvaxmS0ys3+aWV69bT80s2Vm9omZTW11pCIiCfZlF8G07db3yU6nwPOIlK1PQFQiIiLSnrS2BetFYLS7jwU+BX4IYGYjgTOBUcA04PdmltTKY4mIJFRjY7D6hC1YqRUFCYhKRERE2pNWJVju/m93j4Yv5wGDwuXpwMPuXuXuXwDLgImtOZaISKIlRyuIEdkpwUpLTqIkuSeZ1ZsgFktQdCIiItIexHMM1kXA8+HyQGBVvW2rw3U7MbOLzWy+mc0vKNBff0Wk/UquLacqkglmO22rzOhDErVQXpiAyERERKS9aDbBMrOXzGxxAz/T65X5ERAFHtrVANz9Hncf7+7je/fuvau7i4jsMWmxcmqSMhrcFs3sEyzoWVgiIiJdWnJzBdz9q01tN7MLgBOBY93dw9VrgMH1ig0K14mIdEixmJMeK6cmuVuD2yM5/aEQKF0P/cfu2eBERESk3WjtLILTgOuAk929vN6mp4AzzSzNzIYB+wHvtOZYIiKJVBmtpRuV1DaSYKXm9QcgphYsERGRLq3ZFqxm3AmkAS9aMCZhnrtf4u4fmdkjwBKCroPfdffaVh5LRCRhyqtrybRKalNyG9zerVcwx09F4RoaTsFERESkK2hVguXu+zax7Wbg5tbULyLSXpRX1ZJFJZ4yoMHtvXJz2OJZxLasVYIlIiLShcVzFkERkU6rvCZKNyrw1KwGt/cNn4UVK1m7hyMTERGR9kQJlohIC2ytqqWbVUJaYwlWOhs9j0jZhj0cmYiIiLQnSrBERFqgojqY5CLSSILVKyuNjXQntWLjHo5MRERE2hMlWCIiLVBWXkGGVZOckdPg9tTkCCXJPcmsLoRYbA9HJyIiIu2FEiwRkRYoKysGIDWz4QQLoCq9D0nUQvmmPRWWiIiItDNKsEREWqCybAsA6Vl5jZap7dY3WChdvwciEhERkfZICZaISAtES4NWqdSc3o2WieT0CxY00YWIiEiXpQRLRKQFYlsLAbDMXo2WSc0LnpFVW6yp2kVERLoqJVgiIi0QKQ8SLDJ7Nlomo+dAACo2r9kTIYmIiEg7pARLRKQFkiqDMVhk9mi0TM/cHLZ4FlVb1IIlIiLSVSnBEhFpgZTqzcSIQHpeo2X65KSxwbsTK9EkFyIiIl2VEiwRkRZIqdpCeVIORBr/2OydlcZGzyOyVQmWiIhIVxW3BMvMrjYzN7Ne4Wszs9vNbJmZLTKzg+N1LBGRPak25mTUFFGV2r3Jcr2z09hId1IrNu6hyERERKS9iUuCZWaDgeOAlfVWHw/sF/5cDPwhHscSEdnTCrdW0de2UJ3R+AyCAOkpSRQn9SCzahPEYnsoOhEREWlP4tWCdRtwHeD11k0H/uaBeUCemfWP0/FERPaYjSVVDLRN1GYPbrZsRXofkqiFis17IDIRERFpb1qdYJnZdGCNu3+ww6aBwKp6r1eH60REOpSCohL6UERS9+YTrJrMPsFC6bo2jkpERETao+SWFDKzl4B+DWz6EXADQffA3WJmFxN0IWSvvfba3WpERNpM4dp8IuZ06zus+cJZ/WAzULoe+o1p89hERESkfWlRguXuX21ovZmNAYYBH5gZwCDgPTObCKwB6v+5d1C4bse67wHuARg/frzvuF1EJNFKN3wOQHYLEqyUvAGwErx0HdbWgYmIiEi706ougu7+obv3cfeh7j6UoBvgwe6+HngKOC+cTXASUOzu6jMjIh1P4XIArHvzCVZm9wEAetiwiIhIF9WiFqzd9BzwdWAZUA5c2IbHEhFpM7mln1ERySQjr/luzD3yctjiWdiWtaTvgdhERESkfYlrghW2Ym1bduC78axfRGRP21oVZWD152zJ3YcMa77TX5/s4GHDvYrVgiUiItIVxe1BwyIindFHa4rY31bhvUe2qHzv7DQ2eHesbEMbRyYiIiLtkRIsEZEmrPzkffJsK9n7Htai8n2y0ykgj9TyjW0cmYiIiLRHSrBERJpQ/tkbAOQccGSLyudkJLPZ8kir3gKuiVFFRES6GiVYIiKNqIrW0r/wPxSn9IEWzCAIYGZUpXQnxauguqyNIxQREZH2RgmWiEgjFny2jsNZRMleX4UWTHCxTTSjZ7CwdVMbRSYiIiLtlRIsEZFGfDF3FplWRZ9Dz9il/TxTCZaIiEhXpQRLRKQBZVVRRq5+hILUwaTt27LxV9tEsvoEC+VKsERERLoaJVgiIg146eUXOcg+peqgCyGyax+VKTlBguVlmklQRESkq1GCJSKyg8qaWrq/+2vKLZNBR/3XLu+fkRckWFXFBfEOTURERNo5JVgiIjt46unHOdLfZdOBl0JG3i7v3z03j62eRkWxHjYsIiLS1SjBEhGp54uNxYz84GaKk3qy19ev3q06emalstlzqC1VF0EREZGuRgmWiEjI3Zn30M8ZbV/A8f8Hqd12q55eWWkUkoNrFkEREZEuRwmWiEjopf+8zSlF97Oyz9HkHnL6btfTMyuVQs8holkERUREupxWJ1hm9j0z+9jMPjKzW+qt/6GZLTOzT8xsamuPIyLSlorLq8l56Vo8ksTAb921Sw8W3lGPzFQKySG1anMcIxQREZGOILk1O5vZ0cB04EB3rzKzPuH6kcCZwChgAPCSmQ1399rWBiwi0hb+/fAdfNMXsfbw/2FA3sBW1ZWcFKE8OY+Mmi3g3qpkTURERDqW1rZgXQr80t2rANx924ju6cDD7l7l7l8Ay4CJrTyWiEibWPrFCo5e8VtWZ45iwLHfjUud1Wk9SPYaqCqNS30iIiLSMbQ2wRoOTDGzt83sNTObEK4fCKyqV251uG4nZnaxmc03s/kFBXpmjIjsWe7Oqkd+SHcrI/eMO3f5ocKNiab3DBa26nNNRESkK2m2i6CZvQT0a2DTj8L9ewCTgAnAI2a2964E4O73APcAjB8/3ndlXxGR1poz9zW+Wv4cnw07m/2HHhy3eq1bbygCyguh5z5xq1dERETat2YTLHf/amPbzOxS4HF3d+AdM4sBvYA1wOB6RQeF60RE2o3qaIzIq7+gIpLBvqf/LK51R7J7BwuddKr2aG2MwqIiStYtZ+umNVQUbyBashHfWkBq1WaSo1tJilaQUltOSqyCtFgFKV5NxGuJECOJGJHtfoK/rzng4SvHiGGA4dhO23b+aXw7QMx2bp3cndFxTe7TgvF2iRyR1+CxExhQqw/dwvGN7W0U5C7F04LCRcl96H7u/QwaMGB3QxKROGrVJBfAE8DRwKtmNhxIBTYBTwF/N7PfEExysR/wTiuPJSISV3NeeY7jYm/z+Zgr2DurZ1zrTs/tA0BNyQZS4lrznrW5rIrPP/uIoi/exzYuJr0kn5zKNfSt3UBfK6LvDuWjHqHYcii3TKoj6VRHMqhOzmFrcj88KQ23pPAnglsS1PsXCCYFqZ8yeZBmBesJ18W2pUzBvx4L06tg/8h25WP16vFtNYS8oX+a5I2+aGx/335bC/tptLg7RwMFd60rSMtKt7Z7ice5f0rj1bXsgrRJd5k4H8dbuLcBE8rf4u3Hb2TQ5X9uxRFFJF5am2D9BfiLmS0GqoHzw9asj8zsEWAJEAW+21FnECwvKyYzKzfRYYhInNXUxsibdwtFlsuwE66Je/2ZeUHqUV60gY7yCbK1KsqSTz5l09LXSFn9Nr3KPmafWD7jrQII0pmCSG+K0weyIesI1ubuRaTHUNJ7DCKnV3/yeg0kPbsnPSMR4puuikhT3vrduUwoeJzilVeSu9foRIcj0uW1KsFy92rgnEa23Qzc3Jr6E23+M/ew1/z/Zf03HmLvsV9JdDgiEkdz577K0bEPWDb2GvLSc+Jef/fcXMo8nerijc0XTpDqaIwPPv2cggVPkrb6TfapXMwE2wBABWmsyxjOyh4nkTpwLL33O4S8IQfSN7XbTq1WIpJYfab/nIq/vkTBo1eT+9//SnQ4Il1ea1uwOrUeQw8kNj9Cv8dOYcHnP+Hgk7+LxWmGMRFJLH/r91SQzt5TL2+T+ntmpbLZs0kpa1+zCC4vKOO9DxZSs+RZ9imcwyF8TLLFKLZcNvY8iGVDLqLf6KPJGnoweyd15M6NIl3HPkOH8nS/Czlpw11sXPA0fQ45KdEhiXRpSrCasPfoQ9nY/RXy7zubQxb+mA8/eZLsE25m6OhDEx1axxV2xHd33OuNTYh3B/0W2K1Bz7v5wNi2f87s9gew9vRg2/YUS+jjpR8xueJVlu31TUZ2694mx+iVlcYmcum/NbEtWLGYs2h1Ee+9+waRT55jQuV/+GZkBQAbMvZmxbD/R79DTyN3yHhy2+G9EpGWmTDjer743eOkPvcDasd8jaTU9ESH1HHs8B0k+I7SRmP1GrAnPnkt0vZHaVffPRLMPAFfbBszfvx4nz9/fqLD2EltbS3zZv2CMZ/9nhwrZ1HmocTGnMmIo75JWkb2HokhFnO2VlSwtayI8pIiKsuKqNpaRE15CV5ZgleXYlVlUL0VolVQWxX8G60iUltFJFZFpLaapFg1KV5NkteQ7DV1M3qZx4hQS8RjJFH75cxe9V5vm/Vr29tn21Dx+kPG67+1ItZ+frdEdlTlKVR/dz7ZfYa2Sf3l1VFe+/k0JmUX0P26D9rkGI2pqY3x9rKNfDL/JTKXv8Dh0XnsFSkIxlDljSNt9MnkHTRd08eLdDJvPj+Lw9++hA+7f43R35uNRZISHVKDPBajrLSI0i0FVJQVUV1eQk15CdHKUmorS4lVluFVZVh18L3GohVQW02ktppIrJokryYpVkOSV5McC77PbPsxPPyuEnxvMZyIfzlb6bZ/t21P0neVDuGv0an0PuO3nDi2fc2UaWYL3H38juvVgtUCSUlJHH7OTygqvIS5j/+S4Wsep8/bV1E971o+SR1OSfeRWM+9Se4xjNTsnqRn5ZGRnYeZEauN4V5LbW0t1ZXl4YdIKTUVJdRWlFBbFXyIUFVKpKaMpOoykqNlpEa3kla7lXQvJ8PL6eYVZFs1LUnnqj2JGlKoshSipFBjqUQthWgkjRpLpTaSQrVlErNkYpYMkfqzeSVDJJzRK5KEW3LdbF91/25Lowy2Pat6+z9aWPhf236D2Xbbg3+sbtH35F8+duvzdHc/hPfwh/cePFxzh7J4BhPnPwal7XckB7dRcgWQmZrMhkgfsioWBbG38e93VbSWtz5ezRdvP0P3VS8yxecz2UqpsRQ29f8K5QedSuboE+ib1adN4xCRxDn8+LN4afUivrrm93x4++nsf/HfSM3cM38Irqwop3D9Koo3rqS8cBU1W9biZRuJVG4mpbqI9OoiMmtLyIqVkOulZFu02e80UY9QTjpVlhZ8j6n7Cb7X1EbSqUnOpjaSSiySSiySEiSVdbOTWt33FrcIWBIersOCdAuLhJ/PFn5MW93Xk07THrNHGlPa9hh5WaPZr8+e+V2OB7Vg7YZoTQ2L33qBrR89T4/CBQyuWUFWOMvW7qr2JLZaNyosk8pIJlVJ3ahJ7kY0JYtYShaemgVpOUQycoik55CSmUNqt1xSM3NJCX/SMnNJy8wiLTVFzbQi7cDtN/8336+5F65dDt16xb3+yppa/vPhp6x790n6rn2Zr/ABmVZFRaQbWwYdQ8/xp5G2/9cgLSvuxxaR9sljMV796485auXv2ZDUh00TruOAY88hZTe7DMZqa9lcsIaiDSspK1hF1ZY1xIrXkbR1HWkVG8muLiAvVkgPSnfaN+oRSiyb0kgOFck5VKbkUZOaR216DyyzO5HMniRn5pKUkU1qZg6pmbmkZeaQnpVDZlYe6ekZGvsu7ZpasOIoOSWFcUecBEcEg0hjtTHWbVhD2frlQbe9si3UVJQCDpaERSKYGUmpGSRn5pCamUN6Zg7p3XLJyMolMyuX1LQMUoG2GQ0iIomwNbM/FANFK+OWYG2tijLvvffZ/N4TDN74KkewlGSLUZTSm83DvknyhG+Qsc8RZGiCCpEuySIRjvmvX/DOq4fS4/WfMObtqyl++yZWZo2joveBpPQcDBk9SElJxSIRohVlRCtKqK0oJlpWSFL5RtIqNpJZvYm86CZ6eBG9LEb9T7CYG5stly1JvShJ78+mjAOJZfUnKbc/6T0Gkd17MD36DiG7R296RJLokbCrIZIYSrDiIJIUof+AwTBgcKJDEZF2pCZr0JcJ1sCDd6sOd+eLjSUsefdl+PQFhhe/ybG2GoANGcNYu88lDJh0OnmDDiZPLdciEpp49HSqD/86773xBFUfPMrAkg8YUzYXvmh6vy3kUBTpQWlqL77I2odl3foRye5HavdBZPUeRG6fwfTsO5heKanEv11epHNQgiUi0lZ6DadmdRLJa97DRp3S4t0qqmt5f9H7bFj0Et3W/IcJ0QWcaGVESWJVzjhW7H8+gw79Bn1779t2sYtIh5eamsLBx34Tjv0mAEVFW9i8fiW1WzdTXVNDLFZLWkY2qVl5ZGbn0b1HL7qnpqs3jUgrKcESEWkjIwb3YdH7ezPy8zfJaKLclrJKPv3oPQo+eYuMtW8xvGIhX7Hg+VnFkTw2DTya2gNPoteB0xiWnrtngheRTicvrzt5eUqfRNqaEiwRkTYyae+ePBUbwbgNz0LBJ8R6Dmf95i2sWfYhm/M/xNYvolfJR+xXu5xDw4lySi2btT0OZtneRzL4kKnk9h+l51OJiIh0IEqwRETayOAemSzf+1y2rniJ9Lu+QrF3ox8lDAifu1JNMmvT9mVl/xNJHTKewaMmk91/JPtr1iwREZEOSwmWiEgb+um3jubxf/2FofmPkp1Uw9q8gWQMGMGAfcaQNXAkQ5PTEh2iiIiIxJESLBGRNpSdnsL5048Hjk90KCIiIrIHtLofipmNM7N5ZrbQzOab2cRwvZnZ7Wa2zMwWmdnuzVEsIiIiIiLSQcSjo/8twE/dfRxwY/gagj/X7hf+XAz8IQ7HEhERERERabfikWA5kBMu5wJrw+XpwN88MA/IM7P+cTieiIiIiIhIuxSPMVhXAv8ys1sJEravhOsHAqvqlVsdrltXf2czu5ighQugzMw+iUNM8dQL2JToIGSP0f3uOnSvuw7d665F97vr0L3uWtrj/R7S0MoWJVhm9hLQr4FNPwKOBa5y98fM7AzgXuCrLY3K3e8B7mlp+T3NzOa7+/hExyF7hu5316F73XXoXnctut9dh+5119KR7neLEix3bzRhMrO/AVeEL/8B/DlcXgMMrld0ULhORERERESkU4rHGKy1wJHh8jHAZ+HyU8B54WyCk4Bid1/XUAUiIiIiIiKdQTzGYH0H+J2ZJQOVfDme6jng68AyoBy4MA7HSoR2231R2oTud9ehe9116F53LbrfXYfuddfSYe63uXuiYxAREREREekU4tFFUERERERERFCCJSIiIiIiEjdKsJpgZtPM7BMzW2Zm1yc6HokfMxtsZq+a2RIz+8jMrgjX9zCzF83ss/Df7omOVeLDzJLM7H0zeyZ8PczM3g7f37PNLDXRMUp8mFmemT1qZh+b2VIzO0zv7c7JzK4KP8MXm9ksM0vXe7vzMLO/mNlGM1tcb12D7+VwUrXbw/u+yMwOTlzksqsaude/Cj/HF5nZP80sr962H4b3+hMzm5qQoJugBKsRZpYE3AUcD4wEzjKzkYmNSuIoClzt7iOBScB3w/t7PfCyu+8HvBy+ls7hCmBpvdf/B9zm7vsCW4D/SkhU0hZ+B7zg7gcABxLcd723OxkzGwh8Hxjv7qOBJOBM9N7uTO4Dpu2wrrH38vHAfuHPxcAf9lCMEh/3sfO9fhEY7e5jgU+BHwKE39fOBEaF+/w+/N7ebijBatxEYJm7f+7u1cDDwPQExyRx4u7r3P29cLmU4AvYQIJ7fH9Y7H7glIQEKHFlZoOAEwif02dmRvBYiUfDIrrXnYSZ5QJHEDz0Hnevdvci9N7urJKBjHAm40xgHXpvdxru/jqweYfVjb2XpwN/88A8IM/M+u+RQKXVGrrX7v5vd4+GL+cRPFMXgnv9sLtXufsXBDOWT9xjwbaAEqzGDQRW1Xu9OlwnnYyZDQUOAt4G+tZ7Xtt6oG+i4pK4+i1wHRALX/cEiup9cOv93XkMAwqAv4ZdQv9sZt3Qe7vTcfc1wK3ASoLEqhhYgN7bnV1j72V9b+vcLgKeD5fb/b1WgiVdmpllAY8BV7p7Sf1tHjzDQM8x6ODM7ERgo7svSHQsskckAwcDf3D3g4Ct7NAdUO/tziEcezOdIKkeAHRj5y5G0onpvdw1mNmPCIZ2PJToWFpKCVbj1gCD670eFK6TTsLMUgiSq4fc/fFw9YZtXQrCfzcmKj6Jm8OBk80sn6Cr7zEEY3Tywm5FoPd3Z7IaWO3ub4evHyVIuPTe7ny+Cnzh7gXuXgM8TvB+13u7c2vsvazvbZ2QmV0AnAic7V8+vLfd32slWI17F9gvnI0olWAw3VMJjkniJByDcy+w1N1/U2/TU8D54fL5wJN7OjaJL3f/obsPcvehBO/jV9z9bOBV4PSwmO51J+Hu64FVZrZ/uOpYYAl6b3dGK4FJZpYZfqZvu9d6b3dujb2XnwLOC2cTnAQU1+tKKB2QmU0j6N5/sruX19v0FHCmmaWZ2TCCiU3eSUSMjbEvk0HZkZl9nWDsRhLwF3e/ObERSbyY2WTgDeBDvhyXcwPBOKxHgL2AFcAZ7r7jAFvpoMzsKOAadz/RzPYmaNHqAbwPnOPuVQkMT+LEzMYRTGiSCnwOXEjwB0W9tzsZM/spMIOg+9D7wLcJxmLovd0JmNks4CigF7ABuAl4ggbey2GSfSdBN9Fy4EJ3n5+AsGU3NHKvfwikAYVhsXnufklY/kcE47KiBMM8nt+xzkRSgiUiIiIiIhIn6iIoIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIi7YSZDTUzN7PkRMfS2ZnZBWY2N9FxtDdmNsXMPkl0HCIiHZkSLBER6dDMbKaZ1ZhZWb2f6xIdV0fk7m+4+/7xrtfMTjKzxeG9+Y+ZjYz3MURE2gslWCIicaKWp4Sa7e5Z9X5uSXRA8dSRf7fMbD/gIeASIA94GniqI5+TiEhTlGCJiLSCmeWb2Q/MbBGw1cySzWxS+Ff6IjP7wMyOqld+jpn9r5m9Y2YlZvakmfVopO4LzWypmZWa2edm9v922D7dzBaG9Sw3s2nh+lwzu9fM1pnZGjP7HzNLauY89jGzV8ys0Mw2mdlDZpZXb9tmMzs4fD3AzAq2nZeZnWxmH4XnO8fMRuxwfa4xs0VmVmxms80sfdev9K4zs+vD61JqZkvM7NRGypmZ3WZmG8Nr+aGZjQ63pZnZrWa20sw2mNndZpbRwuPfF5Z/MYzhNTMbUm/778xsVXjMBWY2pd62mWb2qJk9aGYlwAVmNtHM3gqv8zozu9PMUuvt42Z2mZl9Fh7v5+G9+094jEfql28k5qPMbHVLzm8XTAXecPe57h4F/g8YCBwZ5+OIiLQLSrBERFrvLOAEgr/O9wWeBf4H6AFcAzxmZr3rlT8PuAjoD0SB2xupdyNwIpADXAjcVi/JmQj8Dbg2PO4RQH64331hvfsCBwHHAd9u5hwM+F9gADACGAzMBHD35cAPgAfNLBP4K3C/u88xs+HALOBKoDfwHPD0Dl/kzwCmAcOAscAFDQZgNjlMHhr7mdzMOexoOTAFyAV+Gsbfv4FyxxFcv+Fh2TOAwnDbL8P14wiu50Dgxl2I4Wzg50AvYCFBS84274b19gD+Dvxjh+RzOvAowf19CKgFrgrrOgw4Frhsh+NNBQ4BJgHXAfcA5xDcz9EEv6u7LUyUG7s/v29q1x2WLYxHRKTTUYIlItJ6t7v7KnevIPgy+5y7P+fuMXd/EZgPfL1e+QfcfbG7bwV+ApzRUAuTuz/r7ss98Brwb4KEAeC/gL+4+4vhcda4+8dm1jc81pXuvtXdNwK3AWc2dQLuviysq8rdC4DfUK+Fwd3/BCwD3iZIDH8UbpoBPBvuWwPcCmQAX9nh+qx1980E3cPGNRLDXHfPa+KnqUkpztjhy/4Ad/9HeNyYu88GPgMmNrBvDZANHACYuy9193VmZsDFwFXuvtndS4FfNHctd/Csu7/u7lUE1+wwMxscnu+D7l7o7lF3/zWQBtQf//SWuz8Rxl/h7gvcfV5YPh/4Izu3At3i7iXu/hGwGPi3u3/u7sXA8wQJ925z97FN3J8dk71tXgKODFvHUoEbgFQgszWxiIi0V0qwRERab1W95SHAN+t/2QcmEyQlDZVfAaQQtEpsx8yON7N5Yfe8IoLEaVu5wQQtNDsaEta3rt7x/wj0aeoEzKyvmT1sQZfCEuDBBmL6E0Grwx1hwgBBi9eKbQXcPRae38B6+62vt1wOZDUVy256ZIcv+2vN7DwLulBuuw6jaeA6u/srwJ3AXcBGM7vHzHIIWuQygQX16nghXN9Sdffa3cuAzQTXjLDr5NKw62QRQetZr4b2DcsPN7NnzGx9eI9+0cD5bKi3XNHA67a49k1y94+B8wmu8TqCmJcA8e6KKCLSLijBEhFpPa+3vIqghar+l/1u7v7LemUG11vei6AFZVP9Cs0sDXiMoEWor7vnEXS/29bVahWwTwOxrAKqgF71jp/j7qOaOYdfhOcxxt1zCFri6rp1mVkW8FvgXmCmfTlubC1BUretnIXnt6aZ4+3EginCy5r4mdJ8LXV1DSFICC8HeobXbzHbd1Wr4+63u/shwEiCLoHXEtyTCmBUvWuZ6+67kqTU3evwGvYA1obnch1Bd8TuYXzFO8RX//cK4A/Ax8B+4T26obHzaSsWjLVr7P7c3dh+7v6ou492957ATcBQgi6SIiKdjhIsEZH4ehA4ycymmlmSmaWHXaMG1StzjpmNDMcz/Qx41N1rd6gnlaDLWAEQNbPjCcYKbXMvcKGZHWtmETMbaGYHuPs6gq6EvzaznHDbPmbW3IQC2UAZUGxmAwkSjPp+B8x3928TjDHb9mX6EeCEMI4U4GqCBO8/zV2oHYVThGc18fPGLlTXjSBBKYBgwhAaGfNjZhPM7NAw/q1AJRALW+P+RDD2rU9YdqCZTa23r1u9SUwa8PVwbFkqwVisee6+iuB6R8P4ks3sRoKxdk3JBkqAMjM7ALi0mfJx5+6jmrg/lzS2n5kdEr4fehOMC3sqbNkSEel0lGCJiMRR+OV5OkHrQgFBi9K1bP95+wDBRBTrgXTg+w3UUxqufwTYAnwLeKre9ncIJ74gaPl4jS9bks4jSNCWhPs+yvZdFBvyU+DgsK5ngce3bTCz6QSTVGz7Qv/fwMFmdra7f0LQ2nUHQYvPScBJ7l7dzPHalLsvAX4NvEXQTW4M8GYjxXMIEqktBN0dC4Ffhdt+QDD2bF7YLe8lwnFS4ViqUuDDJkL5O0GLzWaCySfOCdf/i6C74afhMSvZoUtgA64h+D0oDeOd3Uz59uR3QBHwCcF1/k5CoxERaUPmvmMPBBERaStmNgd40N3/nOhYpHXM7ByC7oM/bGT7fcBqd//xHg1MREQSSg/5ExER2Q3u/mCiYxARkfZHXQRFRLoICx56u0uTE0jnY2Y3NPJ78HyiYxMR6QzURVBERERERCRO1IIlIiIiIiISJ+1qDFavXr186NChiQ5DRERERESkSQsWLNjk7js9fL5dJVhDhw5l/vz5iQ5DRERERESkSWa2oqH16iIoIiIiIiISJ0qwRERERERE4kQJlohII2pqY4kOQURERDqYdjUGqyE1NTWsXr2aysrKRIciHUx6ejqDBg0iJSUl0aFIB7SmqIJzb32Eq6aO4qQp4xMdjoiIiHQQ7T7BWr16NdnZ2QwdOhQzS3Q40kG4O4WFhaxevZphw4YlOhzpgObnb+aV5O/Dy8CU4kSHIyIiIh1Eu+8iWFlZSc+ePZVcyS4xM3r27KmWT9ltKwvLv3xRo98jERERaZl2n2ABSq5kt+j3Rlpj69bSumVfo8dHiIiISMt0iARLRGRPs5K1dctlaz9JYCQiIiLSkSjBagEz4+qrr657feuttzJz5szEBVTPvHnzOPTQQxk3bhwjRoyoi2vOnDn85z//2e16V6xYwcEHH8y4ceMYNWoUd999d5wiFukYkreuq1suL1iZwEhERESkI2n3k1y0B2lpaTz++OP88Ic/pFevXnGr191xdyKR3c9zzz//fB555BEOPPBAamtr+eST4C/tc+bMISsri6985Su7VW///v156623SEtLo6ysjNGjR3PyySczYMCA3Y5VpCPJqNxQt1y9ZXUCIxEREZGORC1YLZCcnMzFF1/MbbfdttO2goICTjvtNCZMmMCECRN48803AZg5cya33nprXbnRo0eTn59Pfn4++++/P+eddx6jR49m1apVXHvttYwePZoxY8Ywe/ZsIEiQjjrqKE4//XQOOOAAzj77bNx9p+Nv3LiR/v37A5CUlMTIkSPJz8/n7rvv5rbbbmPcuHG88cYbTcZ57rnncthhh7Hffvvxpz/9CYDU1FTS0tIAqKqqIhZr+HlAt99+OyNHjmTs2LGceeaZAGzevJlTTjmFsWPHMmnSJBYtWlR3rPPPP58pU6YwZMgQHn/8ca677jrGjBnDtGnTqKmpAeBnP/sZEyZMYPTo0Vx88cU7nXcsFmPo0KEUFRXVrdtvv/3YsGEDIvGSGg3GYK2I9SFSuraZ0iIiIiKBVrdgmdlg4G9AX8CBe9z9d2bWA5gNDAXygTPcfUtrjvXTpz9iydqS1gW8g5EDcrjppFHNlvvud7/L2LFjue6667Zbf8UVV3DVVVcxefJkVq5cydSpU1m6dGmTdX322Wfcf//9TJo0iccee4yFCxfywQcfsGnTJiZMmMARRxwBwPvvv89HH33EgAEDOPzww3nzzTeZPHnydnVdddVV7L///hx11FFMmzaN888/n6FDh3LJJZeQlZXFNddcA8C3vvWtRuNctGgR8+bNY+vWrRx00EGccMIJDBgwgFWrVnHCCSewbNkyfvWrXzXYevXLX/6SL774grS0tLqE56abbuKggw7iiSee4JVXXuG8885j4cKFACxfvpxXX32VJUuWcNhhh/HYY49xyy23cOqpp/Lss89yyimncPnll3PjjTcCcO655/LMM89w0kkn1R0zEokwffp0/vnPf3LhhRfy9ttvM2TIEPr27dvsfRRpqaTaYObAFfRlZPn6BEcjIiIiHUU8WrCiwNXuPhKYBHzXzEYC1wMvu/t+BE+SuT4Ox0qYnJwczjvvPG6//fbt1r/00ktcfvnljBs3jpNPPpmSkhLKysqarGvIkCFMmjQJgLlz53LWWWeRlJRE3759OfLII3n33XcBmDhxIoMGDSISiTBu3Djy8/N3quvGG29k/vz5HHfccfz9739n2rRpDR6zqTinT59ORkYGvXr14uijj+add94BYPDgwSxatIhly5Zx//33N9hCNHbsWM4++2wefPBBkpOT687p3HPPBeCYY46hsLCQkpIgMT7++ONJSUlhzJgx1NbW1sU7ZsyYuvN79dVXOfTQQxkzZgyvvPIKH3300U7HnTFjRl1r38MPP8yMGTOavOYiuypSWw3AhqQBdKvamOBoREREpKNodQuWu68D1oXLpWa2FBgITAeOCovdD8wBftCaY7WkpaktXXnllRx88MFceOGFdetisRjz5s0jPT19u7LJycnbdaur/zymbt26teh427roQdD9LxqNNlhun3324dJLL+U73/kOvXv3prCwcKcyjcUJO09nvuPrAQMGMHr0aN544w1OP/307bY9++yzvP766zz99NPcfPPNfPjhhy06p0gkQkpKSt2xIpEI0WiUyspKLrvsMubPn8/gwYOZOXNmg8+yOuyww1i2bBkFBQU88cQT/PjHP27yuCK7KilWRZRktqb1JqOyLHgWVsrO7x8RERGR+uI6BsvMhgIHAW8DfcPkC2A9QRfChva52Mzmm9n8goKCeIYTdz169OCMM87g3nvvrVt33HHHcccdd9S93tYVbujQobz33nsAvPfee3zxxRcN1jllyhRmz55NbW0tBQUFvP7660ycOLHFMT377LN1Y5Q+++wzkpKSyMvLIzs7m9LSL5/j01icAE8++SSVlZUUFhYyZ84cJkyYwOrVq6moqAD+f3t3HiZVde57/PtWVVdVz00PjM2kAjI0gzZIRCI4oYmKiornRqNyojeJSa5m1CQa43lyboznyTkn0cRroiExxiEkUU8GhzjEkAQNCioyKCoC0kBDD/Rc07p/VNE0PQJV3dXD7/M8POy99tprv8Vmd++31tprQ3V1NatXr2bKlCmHHTsWi7Fjxw4WL17MnXfeSW1tLfX19SxcuJCHHnoIiD9LVlxcTF5e3hF9noPJVHFxMfX19axatarTembGxRdfzBe/+EWmTp1KUVHREbUvcqS80RARj59IZkm8oEG9WCIiItKzlCVYZpYD/Aa40Tl32INSLp4BdJyhIb7tPudcuXOuvKSkJFXh9JovfelL7Nu3r3X9Bz/4AWvXrmXmzJlMmzatdTrzZcuWUVVVxfTp07n77ruZPHlyp+1dfPHFzJw5k1mzZnHGGWfwve99j5EjRx5xPA8++CBTpkxh9uzZXHXVVTz00EN4vV4uuOACfve737VOctFVnBAf5rd48WLmz5/PrbfeyujRo9m0aROnnHIKs2bN4vTTT+fLX/4yZWVlAHzqU59i7dq1RKNRrrzySsrKypgzZw5f+MIXKCgo4Pbbb+fVV19l5syZ3Hzzzfz85z8/4s9TUFDAddddx4wZM1iyZAlz585t3XbvvfceFvfy5cv55S9/qeGB0iu8sRYiHj8ue3i8oL5/fwEkIiIi/YN1NjPdUTdilgH8HnjaOff9RNkWYJFzrsLMRgEvOuemdNdOeXm5W7t27WFlmzZtYurUqUnHKJ27/fbbD5sMY7DR/x85Vr/91lLODGziNyf8X1ZsXIG74lfYiR9Pd1giIiLST5jZq8658vblSfdgWfwhmvuBTQeTq4QngasTy1cDTyR7LBGRvuKLhYh6/AQK4j3KLTWaSVBERER6looXDS8ArgLeNLP1ibKvA98FHjOzfwU+AC5PwbEkxW6//fZ0hyDS70RjDj9hYp4A2cPi75lrqq5AU1yIiIhIT1Ixi+BqwLrYfGay7YuI9LVQJEaAEDFvgML8XKpdDqHaip53FBERkSEvpbMIiogMBi2RKAHCxLwBinMC7HP5xOo0i6CIiIj0TAmWiEg7LZEYQQvhvAGKc/1Uuny8mqZdREREjoASLBGRduJDBMM4X5DCLD/7yCejueMLvEVERETaU4J1hB5//HHMjM2bN3dZZ9u2bcyYMSNlx9yyZQuLFi1i9uzZTJ06leuvvx6IvyT4j3/84zG329zczLx585g1axbTp0/nW9/6VqpCFhkUDg4RdL4APq+HOl8hWaF9Pe8oIiIiQ54SrCP08MMPc9ppp/Hwww93uj0SiSR9jGg0etj6F77wBW666SbWr1/Ppk2b+PznPw8kn2AFAgGef/55Xn/9ddavX89TTz3FmjVrkopdZDBpDsd7sPDF5w1s9hcRiDVBqCHNkYmIiEh/pwTrCNTX17N69Wruv/9+HnnkkdbyF198kYULF3LhhRcybdo0IJ5ofeITn2Dq1KlceumlNDY2AvDcc88xZ84cysrKWLFiBS0tLQBMmDCBr33ta5x00kn8+te/Puy4FRUVlJaWtq6XlZURCoW47bbbePTRR5k9ezaPPvooDQ0NrFixgnnz5jFnzhyeeCL+yrGVK1eydOlSFi1axKRJk/j2t78NgJmRk5MDQDgcJhwOE3+d2eF+/etfM2PGDGbNmsVHP/pRIN77de2111JWVsacOXN44YUXWo910UUXcfbZZzNhwgTuvvtuvv/97zNnzhzmz59PVVUVAD/5yU+YO3cus2bNYtmyZa3/Pm3Nnz+ft956q3V90aJFtH8BtUhvCkVjBCyM+QIARLJK4hvq9RyWiIiIdC8V78HqO3+6GXa/mdo2R5bBed/ttsoTTzzBueeey+TJkykqKuLVV1/l5JNPBuC1115jw4YNTJw4kW3btrFlyxbuv/9+FixYwIoVK/jRj37E5z73Oa655hqee+45Jk+ezCc/+Ul+/OMfc+ONNwJQVFTEa6+91uG4N910E2eccQannnoq55xzDtdeey0FBQXccccdrF27lrvvvhuAr3/965xxxhk88MAD1NTUMG/ePM466ywAXnnlFTZs2EBWVhZz587l4x//OOXl5USjUU4++WS2bt3KDTfcwCmnnNLh+HfccQdPP/00Y8aMoaamBoB77rkHM+PNN99k8+bNnHPOObz99tsAbNiwgXXr1tHc3MwJJ5zAnXfeybp167jpppv4xS9+wY033sgll1zCddddB8A3v/lN7r///taeuYOWL1/OY489xre//W0qKiqoqKigvLzDS7JFek1LOD5NeyQj3oMVyxoO1UBDJRROTG9wIiIi0q+pB+sIPPzww1xxxRUAXHHFFYcNE5w3bx4TJx664Ro7diwLFiwA4Morr2T16tVs2bKFiRMnMnnyZACuvvpqXnrppdZ9li9f3ulxr732WjZt2sRll13Giy++yPz581t7vtp65pln+O53v8vs2bNZtGgRzc3NbN++HYCzzz6boqIiMjMzueSSS1i9ejUAXq+X9evXs3PnztYkrL0FCxZwzTXX8JOf/KR1+OLq1au58sorATjxxBMZP358a4K1ePFicnNzKSkpIT8/nwsuuACI97xt27YNiCdhCxcupKysjIceeuiwnqqDLr/8clatWgXAY489xqWXXtrpv49Ibzn4DJYnMUTQmzcivqF+TxqjEhERkYFgYPVg9dDT1Buqqqp4/vnnefPNNzEzotEoZsZdd90FQHZ29mH12w+162zoXXvt22hr9OjRrFixghUrVjBjxoxOEyHnHL/5zW+YMmXKYeUvv/xyj/EUFBSwePFinnrqqQ4TdNx77728/PLL/OEPf+Dkk0/m1Vdf7fZzBAKB1mWPx9O67vF4Wp9Ru+aaa3j88ceZNWsWK1eu5MUXX+zQzpgxYygqKuKNN97g0Ucf5d577+32uCKpFgpHCVoYjz+eYPkLRsbLa/fgT2dgIiIi0u+pB6sHq1at4qqrruKDDz5g27Zt7Nixg4kTJ/LXv/610/rbt2/nH//4BwC/+tWvOO2005gyZQrbtm1j69atADz44IOcfvrpPR77qaeeIhwOA7B7927279/PmDFjyM3Npa6urrXekiVL+OEPf4hzDoB169a1bnv22WepqqqiqamJxx9/nAULFlBZWdk65K+pqYlnn32WE088scPx3333XU455RTuuOMOSkpK2LFjBwsXLuShhx4C4O2332b79u0dErvu1NXVMWrUKMLhcGs7nVm+fDnf+973qK2tZebMmUfcvkgqhEPxnmJPRiYA2cNGEHNGU9WudIYlIiIiA4ASrB48/PDDXHzxxYeVLVu2rMvZBKdMmcI999zD1KlTqa6u5jOf+QzBYJCf/exnXHbZZZSVleHxePj0pz/d47GfeeaZ1kkmlixZwl133cXIkSNZvHgxGzdubJ3k4tZbbyUcDjNz5kymT5/Orbfe2trGvHnzWLZsGTNnzmTZsmWUl5dTUVHB4sWLmTlzJnPnzuXss8/m/PPPB+C2227jySefBOArX/kKZWVlzJgxg1NPPZVZs2bx2c9+llgsRllZGcuXL2flypWH9Vz15N/+7d845ZRTWLBgwWFJ3ZNPPsltt93Wun7ppZfyyCOPcPnllx9x2yKpEgnFJ1/xJp7BKsrLpopcQgd2pzMsERERGQDsYK9Hf1BeXu7azxa3adMmpk6dmqaIBraVK1ceNhnGUKT/P3IsfvvSa1zy/GIOnHkneQs/zRs7a/DfdxqFY6cw/LrfpDs8ERER6QfM7FXnXIeZ2Hq9B8vMzjWzLWa21cxu7u3jiYgkK9quB6s4J0Cly8fToGnaRUREpHu9mmCZmRe4BzgPmAb8i5lN681jyiHXXHPNkO69EjlW0VAzAL5AFgBFOX72kU9G8/50hiUiIiIDQG/3YM0Dtjrn3nPOhYBHgKVH20h/GsYoA4f+38ixioUTCZY/PslFwOel1juMrJZ9oP9XIiIi0o3eTrDGADvarO9MlLUys+vNbK2Zra2srOzQQDAYZP/+/bpZlqPinGP//v0Eg8F0hyIDUCzcBIA3kWABtPiLyHAtEKpPV1giIiIyAKT9PVjOufuA+yA+yUX77aWlpezcuZPOki+R7gSDQUpLS9MdhgxALjFNO75DM2SGMksgBNTvhUBuegITERGRfq+3E6wPgbFt1ksTZUcsIyODiRMnpjQoEZHuuGh8iCC+Nj2g2SVQSzzBKjo+LXGJiIhI/9fbQwT/CUwys4lm5geuAJ7s5WOKiCTFhQ8mWId6sCx3ZHyhfk8aIhIREZGBold7sJxzETP7HPA04AUecM691ZvHFBFJlkUODhE81IMVyI8nWNG6PXjTEZSIiIgMCL3+DJZz7o/AH3v7OCIiKROJT3LRtgcru3A4UWc0VVeQk6awREREpP9L+yQXIiL9jSfasQerKDeLKvLw1u5OU1QiIiIyEPT2M1giIgOORTvOIlic46fSFRCr0zNYIiIi0jUlWCIi7XT2DFZxToBKl4+nYW+aohIREZGBQAmWiEg7nlgovnBYD1aAfeST0bQvTVGJiIjIQKAES0SkHU+0hZD5way1LDvgo9qGkRnaD67DO9FFREREACVYIiIdeGMtRMzfobw5UIjPhaG5Ng1RiYiIyECgBEtEpB1vLETE0zHBCgVL4gv1eg5LREREOqcES0SkHV8sRMQCHcotZ3h8QRNdiIiISBeUYImItON3zUQ76cHKyB8ZX6jXVO0iIiLSOSVYIiLt+GMtRLyZHcozC0cBEKpVgiUiIiKdU4IlItKGc44gzUR8HROsgsIRhJ2XxqpdaYhMREREBgIlWCIibYSjjiAtxDrpwRpZkMV+8gjV7k5DZCIiIjIQJJVgmdldZrbZzN4ws9+ZWUGbbbeY2VYz22JmS5KOVESkD4SiMTIJEe2kB2tEXoBKl0+sTkMERUREpHPJ9mA9C8xwzs0E3gZuATCzacAVwHTgXOBHZuZN8lgiIr2uKRQlixZcRmcJVpBKV4C3sTINkYmIiMhAkFSC5Zx7xjkXSayuAUoTy0uBR5xzLc6594GtwLxkjiUi0heaQlGC1gIZWR225QYzqPEUEGjel4bIREREZCBI5TNYK4A/JZbHADvabNuZKBMR6dcawxGyaMH8HRMsgKZAMdnhKojF+jgyERERGQh8PVUwsz8DIzvZ9A3n3BOJOt8AIsBDRxuAmV0PXA8wbty4o91dRCSlGlsiZBLC00WCFQkW4w1FobkGsgr7NjgRERHp93pMsJxzZ3W33cyuAc4HznTOuUTxh8DYNtVKE2WdtX8fcB9AeXm566yOiEhfaW5uwmMOjz+78wq5I+AA8ZcNK8ESERGRdpKdRfBc4KvAhc65xjabngSuMLOAmU0EJgGvJHMsEZG+EGqsA8AX6DzB8uXFO/RjBzSToIiIiHTUYw9WD+4GAsCzZgawxjn3aefcW2b2GLCR+NDBG5xz0SSPJSLS61qa6gHwBnM63R4cNhqAhv3byT2hz8ISERGRASKpBMs51+XthXPuO8B3kmlfRKSvhZsbAPBndt6DlVMSf1a0cd8OcvssKhERERkoUjmLoIjIgBc5mGB10YNVUjSMGpdNuHpnX4YlIiIiA4QSLBGRNqItB3uwOk+wRuYFqXCFUFfRl2GJiIjIAKEES0SkjVhzfJKLjMzOBwCW5AbYQyEZ9bv7MiwREREZIJRgiYi0Yc018YXMgk63Z3g9VHtLyGzRLIIiIiLSkRIsEZG2DiZYwYIuqzQFS8iJVEM03CchiYiIyMChBEtEpA1vS218oYseLIBw9ig8OKjTMEERERE5nBIsEZE2fKFami0I3owu67jcUfGFA7v6KCoREREZKJRgiYi0kRE+QKO3+zdcZQwbC0C4RlO1i4iIyOGUYImItJEZOUCLr/sEK7sonmDVV27vi5BERERkAFGCJSLSRmasnnBGfrd1CopKaHJ+WqrUgyUiIiKHU4IlIpLQHI6S6+qJ+PO6rTeyIJPdbhjR2g/7KDIREREZKJRgiYgk7KtvYZjVY5nDuq03Mi/IbleEV7MIioiISDspS7DM7Etm5sysOLFuZvYDM9tqZm+Y2UmpOpaISG+orG2kmFosb1S39fIzM6i0QoJNSrBERETkcClJsMxsLHAO0PaJ7/OASYk/1wM/TsWxRER6S+2+Xfgshn/YmG7rmRl1/uHkhPdBLNZH0YmIiMhAkKoerP8Evgq4NmVLgV+4uDVAgZl1/7WwiEgaNSUmrcgqKu2xbkvmCHwuDI37ezssERERGUCSTrDMbCnwoXPu9XabxgA72qzvTJSJiPRLoar4pBU5JeN6rBvNHR1fqNPLhkVEROQQ35FUMrM/AyM72fQN4OvEhwceEzO7nvgQQsaN6/mmRkSktxx8cbCvoOfvgrx5o2AXuNoPsVGzejs0ERERGSCOKMFyzp3VWbmZlQETgdfNDKAUeM3M5gEfAmPbVC9NlLVv+z7gPoDy8nLXfruISF/x1u0igg9fdkmPdYPF8R9vzft3kNnbgYmIiMiAkdQQQefcm8654c65Cc65CcSHAZ7knNsNPAl8MjGb4Hyg1jlXkXzIIiK9o6DxA/b7R4PH22Pd3OIxRJyHxv162bCIiIgcckQ9WMfoj8DHgK1AI3BtLx5LRCQpzeEoo6Mf0jDsuCOqP7Igm70U4KlWgiUiIiKHpDTBSvRiHVx2wA2pbF9EpLds3V3LJNvDjqIje6R0RG6QPa6QUZrkQkRERNpI2YuGRUQGsh3vbiBgYXJLpx9R/eF5Afa6AnyNlb0cmYiIiAwkSrBERIDw+38HoHjqwiOqH8zwUusdRmZI78ESERGRQ5RgiYgABXv/SY3l4y2ZfMT7NAZKyI7UQCTUe4GJiIjIgKIES0SGvGjMcVzTG+zMnQ3xV04ckXCwOL7QoGGCIiIiEqcES0SGvK1bt1DKXmLjPnJU+8Wyh8cX6vf0QlQiIiIyECnBEpEhr+KN5wEYOfOMo9rPkzcyvlC/N9UhiYiIyAClBEtEhjzb/ncayGT4CeVHtZ8/fxQAoRpN1S4iIiJxSrBEZEiLxRxjDqxne/ZM8HiPat/swniC1VStBEtERETilGCJyJD23o4dnMAOwmPnH/W+Rfm5VLscQjW7eyEyERERGYiUYInIkLZj/XMAjJi++Kj3LcmNv2w4VqcES0REROKUYInIkBbb9jdayGD4iUc3gyBAcU6ASpePp0GTXIiIiEicEiwRGbKcc4ysXseOzGlYRvCo9y/K8VNJAf4mvQdLRERE4pJOsMzs82a22czeMrPvtSm/xcy2mtkWM1uS7HFERFLtvV17meLeo2XMKce0f4bXwwFvIZmh/eBciqMTERGRgciXzM5mthhYCsxyzrWY2fBE+TTgCmA6MBr4s5lNds5Fkw1YRCRVtq1/geMtRtG0RcfcRnOgGH9LC7QcgGB+6oITERGRASmpBAv4DPBd51wLgHPu4IMIS4FHEuXvm9lWYB7wjySPJyKSMuH3VhPBw4hpC4+5jUjWcGgh/rLhAZpgtUSi7N6zh7rd7xHa9z7h2t1EG6pwTdV4W2rwR+rxxlrwRMN4XIgMF8ZLDIcRwwAjZh4chsODMwM8uINlFl9uLTPDmRcS20hsix1ctoNtWMo/a7ct9ni4rit0vcX1wqdIHDOJeI9+L9fD9qQO2SNLouHeiDe5j5nEZ+li11CgkKn/604yg4FjbltEUifZBGsysNDMvgM0A192zv0TGAOsaVNvZ6JMRKRfcM5RUvUaHwYnMT6Yd8ztxLJHQDVQvweKJ6UuwF4Qizm27dzJ7s1raNj+BpnVmxje+C4jY7sZb40d6jcSoM5yabRsIh4/Ucsg6smg2TKJ4sUOpljOHbYMMTwuAs7hcbE2dWLxeokyT5t9PURbt3lweIj1/T9QL0hm4Ogx79tLo1V7L1XsfwbSgN8MIhTbAf7yl49y+pJL0h2OiHAECZaZ/RkY2cmmbyT2LwTmA3OBx8zsuKMJwMyuB64HGDdu3NHsKiJyzLbtrWVa7B0+GHFZUu148xI/HvvhVO2RaIxNW99j9/pn8Oz4O2Pr1jPZdnDwh/R+K2Rv5vG8m1+Od9h4fEXjCRZPJK9kLPlFw8kKZJKV1k8gIhD/Qqgr0aYDhO+ciG19FpRgifQLPSZYzrmzutpmZp8BfuviV/4rZhYDioEPgbFtqpYmyjpr/z7gPoDy8vKB9KWRiAxgW99cw0QLUTB5QVLtBIeNAqClZjf9YXBObWOIdWv/Rv0bv6d030vMdO9QZo5GMvkwt4wNYy4ib9JHGD15LkV5wylKd8Ai0iPrZjyoLyufDcGZjN3/tz6MSES6k+wQwceBxcALZjYZ8AP7gCeBX5nZ94lPcjEJeCXJY4mIpEzz+/FRzMOTeP4KILegmBbno7l6V9oSrIaWCGte+TtNax9mVs2fWWTxx2G3B0/knQk3MPzkCxh2XDmTvMn+yBeR/mj/qI8yY9t/c2DPNvJGTEh3OCJDXrK/bR8AHjCzDUAIuDrRm/WWmT0GbAQiwA0DdQbBluZGAkENkhEZbHIr11HlKaKwYGzPlbtRkhekkgKCB/p2iKBzjte3vMu25x9g8p4/cKZtI4qHD/LL2Vb2RcbOu4hx+aP6NCYRSY/iOR+Hbf/N+/94nFkX3ZjucESGvKQSLOdcCLiyi23fAb6TTPvp9trTDzJ8zXeIXv5Lxk8tT3c4IpIizeEox7VspLJoJoU9T8XWreKcAPtcPqV1e1IUXffqmkL87YXfk7Hu55wWWs1si7Az60Q+mHErY0/7BMcpqRIZck6cMZddvyvBs/UZ4MZ0hyMy5Gm8SDeyi0YTdE1kPvJx1s7+JicvvQHzJP1uZhFJs3fefYcy28vm0muTbqskN8AbroBxjXt7rpyEje/vYOuzP2Xqh6s413bSYFlsn3AZpWffQGlpWa8eW0T6N6/Xw/vDTuWk6qcINdTgzy5Id0giQ5oSrG5MKT+TihHPs/cXn6T89W+ycfMqfGffyuTyLuf9GHScc8RiDheLgoviXHzqZBeLz0fiiNE6uVFiwTmHS0xye6jeoXXXpu22+/UrnXZq9P0UxUfeudK7sR1z60n2DvVWczXr/geA4rJzkm6rMNvPXgoINL+fdFvtNYWirH7pWVh7Pwua/sI0a2FH1onsKL+TsQuvYpI/O+XHFJGBKTj3k2Q+8wRvPn0fZZd8Nd3hDAgH73EisSg4h4vFAAcudti6O7ju2mw72Ea7Sf0P3RP1dPSj/IXWpro7hl+Gh++SzDvyknmPmx377l4/gWAWGd6B0dGhBKsHo8Yez/CbX+Jvv/4Ppm3+IcN+v4wtT0+jbtJFHL9wOcNGTejV4zvnaAmFaKirobGuhub6Wpobagk1HiDSVEO0qR4L1WGhejzhBog0QzSERVrwRFuwaCj+gtBYGF+sBV/iJaE+F8ZLFI+L4km8j8ZDDC8xvG3KvMTw2eB4H43IQQuBKvIpPv6kpNvK8Hqo9xWSGa6GaARSMJHEu7v28ubTKzn+g0c4m3dpIsD20o8x5szPMva4eUm3LyKDz5z5Z7Lh2ckUvbUSLvoyDMARN7FImPqafdTX7KPxwH5a6vcTqq8i3HiASHMDLtyIhZvwhBvxRBvxRprxRZvwRpvxxZrxxCKYi+BN/PERwecieIniI0IGEXwuGr//weExhxfwpvuDS49+FllCyeX/xfkzR6c7lCOiBOsIeL1eFlzxNerrPs3qx/+LMe+tonzjv8PGf2evFbErexrh3PHE8kZjOSX4M3PxZ+bgPBnxbzqiYWIuSiQUItJUR7T5ALHmemiTGHnD9fgijWREGgjEGgjEmsh0jWS7JjItRBB6nE65xflowU/YMgiRQcT8RMxP+OALQn2ZhCyPqCdAzOPDmQ/n8YF5cB4vmBc6/O0D8+LM0/qn9euH1q9DDn0jYR22HVrubls6eoeOTt/3sh1px57161dipjC2FH/MvBNOoTBFNyAtgRI8zQ4aKiHv2J6Bag5HWf3yyzT/46ecVv8UF1kDu/3j2DbrW4w/YwVTMgtSEquIDE4ej1E5/VpmbLiFt5/5f0w+9zPpDolYNEZN1R5qKndSv28XzdUVRA7sgfo9+JoqCbbsIydSTVasnhxXTw5N5AHdvfo94jw0WYBmgjRbkJAFCHmChD0BnDczfn/jycC1+TtmPmJtyuL3NobHPJjHg5kHZ/HXpWPx3wvOEmmXxV+FHr/XscS60eaupsMtjPVwT3O0v7fb1j6W3/mH308c+y/TZO43nEtu/5LcE5k6qrv/Gf2LEqyjkJObz2lXfQvnbuOdDf9kz+tP46tYx6iGzYysW0OgInzUbTY5P42WSbNl0uzJIuTNpjFQwgFfDtGMHJw/BwI5WCAPb2Yuvsw8MjLzCWTnEcguIJCThz+7gGBWPn6/n0CKh2SJSM9C2SOgGajdedQJ1uYde3nz+UcY8/4qzuJ1InjZNnwxtvgGRk5dnPJhliIyeJ269DrWb3yQ49fcQcPJHyO7ZHyvHi8UibGnspL9O9+mYc+7RPZvw1u7nazGnQxrqWBEbA+F1kJhu/1aXAbVngIO+Ao54B/Jfn8eUX8+sWABlpmPJ6uQjJxC/DmFZOYVkZ1bQE5uPpnZufh8fnLNyO3VTyaSHCVYx8DMmFQ2j0llh4bqhCNR9lftpqmmkqaGA7Q01kEsjHl8mMeLeX1k+PwEsnMJ5uSTmVNAVnYemb4MMtP4WUQkebHh02E/uIrXsbFze6xfVd/CK399Gl7/FR9p+gsnWiPVvhK2T7uR0jP/NyfkD4whECLSvwQyMuDCu/H87jxq7z2P8L/+DwWjjz/m9pxzVB+oY/f2t6ndtZXmve9DzQcE63dQEKpgZGwPY62eti+7qCeTSt9IDmSNpTL3VMgrJaNgNJmFo8gpGsOw4aVk5xUy0oyRyX9kkX5JCVaKZPi8FA0fA8PHpDsUEeljY8ZPompjDv5ta8mZ96lO69Q2hPjnP/5M4xtPUFb7Iufabprxs3PU2XgWXsuwqWcwzKMnAUQkObNnn8xf9/+U2S9dj+e+Baw//hrGn34Vw0qndvpcVn1dLVW73uPA7vdpqNxGpGo7vrod5DTuojhSwQirPqwHKoSPfd4RHMgaw/bc2WwvGE+wZCK5I0+gaOwkcnKLyVHPuwxx5vrRDG7l5eVu7dq16Q5DROSobPiwlsp7L2Bezj6yv/wGeH0453j3wz28/crTeLY+y6yGvzHKqojgYWfeyWTMvpzRpy7HgvnpDl9EBqEtb71O7RNfYV7oZQCa8bPPU0LY/JiLku3qyY41kGUth+0XdcY+TzHV/lE0ZZcSyx9HoOQ48kafQMnYyWQOGzMgJ9AQ6Q1m9qpzrsPLctWDJSKSpOmj87g16zwWN32XTfdeya5wNkW1G5gee4cTLEozfrYXfoTQjAsZ95FLmJDV/okEEZHUmjJ9Fkx/hs2bN7Jn3R+wfVvJbN6NJxbGPB4qfLkQzMeTXYS3YCyBkgkUjz6O4WMmMsKXwYh0fwCRAUw9WCIiKfD3d/ay51efYWnsOUKWwZ7g8dSPPpURs5dQPPWjkKGnLUVERAYT9WCJiPSiUycNJ3brKkKhZoL+AOM1hEZERGRIUoIlIpIiHo8RDKqnSkREZCjTV6wiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpEi/mkXQzCqBD9IdRzvFwL50ByF9Rud76NC5Hjp0rocWne+hQ+d6aOmP53u8c66kfWG/SrD6IzNb29n0izI46XwPHTrXQ4fO9dCi8z106FwPLQPpfGuIoIiIiIiISIoowRIREREREUkRJVg9uy/dAUif0vkeOnSuhw6d66FF53vo0LkeWgbM+dYzWCIiIiIiIimiHiwREREREZEUUYIlIiIiIiKSIkqwumFm55rZFjPbamY3pzseSR0zG2tmL5jZRjN7y8z+T6K80MyeNbN3En8PS3eskhpm5jWzdWb2+8T6RDN7OXF9P2pm/nTHKKlhZgVmtsrMNpvZJjP7iK7twcnMbkr8DN9gZg+bWVDX9uBhZg+Y2V4z29CmrNNr2eJ+kDjvb5jZSemLXI5WF+f6rsTP8TfM7HdmVtBm2y2Jc73FzJakJehuKMHqgpl5gXuA84BpwL+Y2bT0RiUpFAG+5JybBswHbkic35uB55xzk4DnEusyOPwfYFOb9TuB/3TOnQBUA/+alqikN/w38JRz7kRgFvHzrmt7kDGzMcAXgHLn3AzAC1yBru3BZCVwbruyrq7l84BJiT/XAz/uoxglNVbS8Vw/C8xwzs0E3gZuAUjcr10BTE/s86PEfXu/oQSra/OArc6595xzIeARYGmaY5IUcc5VOOdeSyzXEb8BG0P8HP88Ue3nwEVpCVBSysxKgY8DP02sG3AGsCpRRed6kDCzfOCjwP0AzrmQc64GXduDlQ/INDMfkAVUoGt70HDOvQRUtSvu6lpeCvzCxa0BCsxsVJ8EKknr7Fw7555xzkUSq2uA0sTyUuAR51yLc+59YCvx+/Z+QwlW18YAO9qs70yUySBjZhOAOcDLwAjnXEVi025gRLrikpT6L+CrQCyxXgTUtPnBret78JgIVAI/SwwJ/amZZaNre9Bxzn0I/AewnXhiVQu8iq7twa6ra1n3bYPbCuBPieV+f66VYMmQZmY5wG+AG51zB9puc/F3GOg9BgOcmZ0P7HXOvZruWKRP+ICTgB875+YADbQbDqhre3BIPHuzlHhSPRrIpuMQIxnEdC0PDWb2DeKPdjyU7liOlBKsrn0IjG2zXpook0HCzDKIJ1cPOed+myjec3BIQeLvvemKT1JmAXChmW0jPtT3DOLP6BQkhhWBru/BZCew0zn3cmJ9FfGES9f24HMW8L5zrtI5FwZ+S/x617U9uHV1Leu+bRAys2uA84FPuEMv7+3351oJVtf+CUxKzEbkJ/4w3ZNpjklSJPEMzv3AJufc99tsehK4OrF8NfBEX8cmqeWcu8U5V+qcm0D8On7eOfcJ4AXg0kQ1netBwjm3G9hhZlMSRWcCG9G1PRhtB+abWVbiZ/rBc61re3Dr6lp+EvhkYjbB+UBtm6GEMgCZ2bnEh/df6JxrbLPpSeAKMwuY2UTiE5u8ko4Yu2KHkkFpz8w+RvzZDS/wgHPuO+mNSFLFzE4D/gq8yaHncr5O/Dmsx4BxwAfA5c659g/YygBlZouALzvnzjez44j3aBUC64ArnXMtaQxPUsTMZhOf0MQPvAdcS/wLRV3bg4yZfRtYTnz40DrgU8SfxdC1PQiY2cPAIqAY2AN8C3icTq7lRJJ9N/Fhoo3Atc65tWkIW45BF+f6FiAA7E9UW+Oc+3Si/jeIP5cVIf6Yx5/at5lOSrBERERERERSREMERUREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRT5/yOev8A1If1hAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2518,31 +2518,31 @@ " 27\n", " False\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " bAP.soma.v\n", - " 0.00907\n", - " 1.36e-07\n", + " 0.01\n", + " 2.04e-06\n", " \n", " \n", " 28\n", " False\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step1.soma.v\n", - " 0.0101\n", - " 9.56e-06\n", + " 0.0115\n", + " 4.11e-06\n", " \n", " \n", " 29\n", " False\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step3.soma.v\n", - " 0.0321\n", - " 1.09e-06\n", + " 0.00971\n", + " 9.06e-07\n", " \n", " \n", "\n", @@ -2550,14 +2550,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "27 False 9 0.125 0.0545 bAP.soma.v \n", - "28 False 9 0.125 0.0545 Step1.soma.v \n", - "29 False 9 0.125 0.0545 Step3.soma.v \n", + "27 False 9 0.0731 0.0741 bAP.soma.v \n", + "28 False 9 0.0731 0.0741 Step1.soma.v \n", + "29 False 9 0.0731 0.0741 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "27 0.00907 1.36e-07 \n", - "28 0.0101 9.56e-06 \n", - "29 0.0321 1.09e-06 " + "27 0.01 2.04e-06 \n", + "28 0.0115 4.11e-06 \n", + "29 0.00971 9.06e-07 " ] }, "metadata": {}, @@ -2565,7 +2565,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACyXklEQVR4nOzdd3gc1dn38e+9u2qWbMmWe5UxYFwxYFOCqckTTOghwRA6IQQSEuAJ4UklDm943rwJCQmQxCkkJECMCT2UhGpaaDYYU0xxkXuVrGbV3b3fP3Ykr2U1o5VXsn6f69pLO2fOnLlnxivvrXPmjLk7IiIiIiIi0nmhdAcgIiIiIiKyt1CCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0SkmzGzIjNzM4ukOxbpHczsPTM7Nt1xiIjsDZRgiYhIj2dmc82sKnjVm1lD0vIT6Y6vu3P3Se6+IJVtmtkIM3vYzErNbK2ZXZ7K9kVEuivTg4ZFRFLLzCLuHu3E9kXASiCjM+30VmY2B9jX3c9rYV2nrs2e1JNibYmZPQe8DXwbmAg8B5zp7s+lNTARkS6mHiwRkRQws2Iz+x8zWwJsN7OImR1uZv8xszIzezt5CJaZLTCz/2tmr5tZRfCX/gGttH2xmS01s0ozW2FmX222/jQzWxy0s9zMZgXl+WZ2u5ltMLN1ZvYTMwu3cxzjzOxZMysxs61mdreZFSStKzWzg4Pl4Wa2pfG4zOzUYKhZWXB8E5qdn2vNbImZlZvZfDPL3v0zvftauTZuZvsm1bnDzH6StHxycE7Lgms4tYP7OjborflecP6KzezcpPUnmdlbwbVaEySDjesah4Z+2cxWA88G5f8ws43BeXvBzCY1i/u3ZvZE0Fv3spkNNbNfmdk2M/vAzA7q4Dn6TEeOsYPnIQ84FrjR3Rvc/W3gPuCSVO1DRKS7UoIlIpI65wAnAQXAEOAx4CfAAOBa4H4zG5RU/wISXziHAVHgllba3QycDPQDLgZuTkpyDgX+RqKXoAA4GigOtrsjaHdf4CDgs8Cl7RyDAf8XGA5MAEYBcwDcfTnwP8BdZtYH+AvwV3dfYGb7A/OAq4FBwOPAP80sM6nts4BZwFhgKnBRiwGYzQwSm9ZeM9s5hpY0XZv2eoWChOTPwFeBQuD3wCNmltXBfQ0FBgIjgAuBP5jZ+GDddhLXvSCI5wozO73Z9seQOPcnBMtPAPsBg4E3gbub1T8L+EGwzzrglaDeQBJJzS87GHeLzOw7bV2P1jZr9rPx/eTOxCIi0hMowRIRSZ1b3H2Nu9cA5wGPu/vj7h5396eAhcDnkurf6e7vuvt24IfAWS31MLn7Y+6+3BOeB54EjgpWfxn4s7s/Fexnnbt/YGZDgn1d7e7b3X0zcDNwdlsH4O7Lgrbq3H0LiS/nxySt/yOwDHiNRGL4/WDVbOCxYNsG4CYgB/hUs/Oz3t1LgX8C01qJ4SV3L2jj9VJbx9CK5GvTnsuA37v7a+4ec/e/kkhcDt+N/f0wOIfPk0i0zwJw9wXu/k5wrZaQSEqPabbtnOCa1QTb/NndK929jkSye6CZ5SfVf9DdF7l7LfAgUOvuf3P3GDCfRHL9ibn7T9u6Hq1sUwm8DPzQzLKDPwicCfTpTCwiIj2BEiwRkdRZk/R+DPDFZn/pn0kiKWmp/iogg0Svw07M7EQzezUYnldGInFqrDcKWN5CLGOC9jYk7f/3JHpBWmVmQ8zsnmBIYQVwVwsx/ZFET8StwZd+SPR4rWqs4O7x4PhGJG23Mel9NZDXViwptqb9Kk3GAN9qdu1GkTjGjtgWJM2NVjVua2aHmdlzwdDKcuBydj2/TbGaWdjMfmqJoZ8V7OidTN5mU9L7mhaW9+R5TnYuid7KNcDvSPxbWpumWERE9hglWCIiqZM8a9AaEj1UyX/tz3X3nybVGZX0fjTQAGxNbjAYlnY/iR6hIUGPwePsGHq1BhjXQixrSPS6DEzafz93n9RC3WT/GxzHFHfvR6InrmmYV3Bvza+A24E5tuO+sfUkEpPGehYc37p29rcLMzvKdswA2NLrqPZb2UXzGZ2q2bk3ZWjS+zUk7h1KvnZ93H1eB/fV38xyk5ZHkzg/AH8HHgFGuXs+MJedh9E1j/VLwGnAZ4B8oCgob75NlwnuJ2v1erS2nbuvcveT3X2Qux9GIil8fU/FLSKSLkqwRES6xl3AKWZ2QtALkR1MgDAyqc55ZjYxuJ/pBuC+YFhXskwgC9gCRM3sRBL3UjW6HbjYzD5tZiFLTI19gLtvIDGU8Bdm1i9YN87Mmg9Ha64vUAWUm9kIEvd2Jfs1sNDdLyUx9G1uUH4vcFIQRwbwLRIJ3n/aO1HNufuL7p7XxuvF3W2zBYuBLwXXZhY7D9P7I3B50NtkZpZrickp+kLTxBJ3tNP+j80sM0gGTwb+EZT3BUrdvTa4f+5L7bTTl8R5LCGREP7vbhxjSrj7/7Z1PVrbzswmmFnf4DycR+LfbafuBxMR6QmUYImIdAF3X0Oi5+F7JJKjNSSSleTfu3eSmIhiI5ANfLOFdiqD8nuBbSS+kD+StP51gokvgHLgeXb0JF1AIkF7P9j2PnYeotiSHwMHB209BjzQuMLMTiMxScUVQdF/Aweb2bnu/iGJ3q5bSfTCnQKc4u717ewvXa4iEWMZiaFsDzWucPeFwFeA20ict2XsPCHHKBL3F7VmY7DdehITUlzu7h8E674G3GBmlcD1JK5rW/5GYojhOhLX8dX2DqwbOQFYQeJcXA7MCu7rExHZq+k5WCIiaWBmC4C73P1P6Y5FOi6YFfFtYGowmUfz9ceSuK4jm68TEZHeIZLuAERERHqKoEduQrsVRUSk19IQQRGRXsbM5rYyYcHc9reWnsjMRrcxUcXodMcnIrI30RBBERERERGRFFEPloiIiIiISIp0q3uwBg4c6EVFRekOQ0REREREpE2LFi3a6u6Dmpd3qwSrqKiIhQsXpjsMERERERGRNpnZqpbKNURQREREREQkRZRgiYiIiIiIpIgSLBERERERkRTpVvdgtaShoYG1a9dSW1ub7lCkG8jOzmbkyJFkZGSkOxTZS60prebq+Yu57oTxHLZPYbrDERERkR6m2ydYa9eupW/fvhQVFWFm6Q5H0sjdKSkpYe3atYwdOzbd4che6ul31/D19d8lMj8LvvtkusMRERGRHqbbDxGsra2lsLBQyZVgZhQWFqo3U7pUdPkLHB9ezCF1rxGr2prucERERKSH6fYJFqDkSpro34J0tfj2kqb3Je89l8ZIREREpCfqEQmWiMieEq4ra3pfteK19AUiIiIiPZISrA4wM771rW81Ld90003MmTMnfQElOfbYY9t8OPPpp5/O4YcfvlPZnDlzGDFiBNOmTWPy5Mk88sgjXR2mSI8RqS8HYHl8GGz9MM3RiIiISE+jBKsDsrKyeOCBB9i6NbX3Y7g78Xg8pW0mKysrY9GiRZSXl7NixYqd1l1zzTUsXryYf/zjH1xyySVdGodIT5LVUE5NKI/VkSJyK1emOxwRERHpYZRgdUAkEuGyyy7j5ptv3mXdli1bOPPMM5kxYwYzZszg5ZdfBhK9RDfddFNTvcmTJ1NcXExxcTHjx4/nggsuYPLkyaxZs4Zvf/vbTJ48mSlTpjB//nwAFixYwLHHHssXvvAFDjjgAM4991zcvcX47rzzzqbeqNdff72p/IEHHuCUU07h7LPP5p577mlx2wkTJhCJRHZKHr/zne8wceJEpk6dyrXXXgtAcXExxx9/PFOnTuXTn/40q1evBuCiiy7iiiuu4PDDD2efffZhwYIFXHLJJUyYMIGLLrqoqc0rrriC6dOnM2nSJH70ox/tEkd5eTljxoxpSvS2b9/OqFGjaGhoaDFuka7SJ1pBbUY/ynLHMrB+HUTr0h2SiIiI9CDdfpr2ZD/+53u8v74ipW1OHN6PH50yqd16X//615k6dSrXXXfdTuVXXXUV11xzDTNnzmT16tWccMIJLF26tM22Pv74Y/76179y+OGHc//997N48WLefvtttm7dyowZMzj66KMBeOutt3jvvfcYPnw4Rx55JC+//DIzZ87cpb3q6moWL17MCy+8wCWXXMK7774LwLx587j++usZMmQIZ555Jt/73vd22fa1114jFAoxaNAgAEpKSnjwwQf54IMPMDPKysoA+MY3vsGFF17IhRdeyJ///Ge++c1v8tBDDwGwbds2XnnlFR555BFOPfVUXn75Zf70pz8xY8YMFi9ezLRp07jxxhsZMGAAsViMT3/60yxZsoSpU6c2xZGfn8+0adN4/vnnOe6443j00Uc54YQT9Lwr2aPcnb5eRV2kHw0FYwlXxqFsDQzcN92hiYiISA+hHqwO6tevHxdccAG33HLLTuVPP/00V155JdOmTePUU0+loqKCqqqqNtsaM2ZM031RL730Eueccw7hcJghQ4ZwzDHH8MYbbwBw6KGHMnLkSEKhENOmTaO4uLjF9s455xwAjj76aCoqKigrK2PTpk18/PHHzJw5k/3335+MjIymxAvg5ptvZtq0aVx77bXMnz+/aXa+/Px8srOz+fKXv8wDDzxAnz59AHjllVf40pe+BMD555/PSy+91NTWKaecgpkxZcoUhgwZwpQpUwiFQkyaNKkp5nvvvZeDDz6Ygw46iPfee4/3339/l+OYPXt2Uw/ePffcw+zZs9s8jyKpFo07+VZFfUY+GYWJZ63VblnRzlYiIiIiO/SoHqyO9DR1pauvvpqDDz6Yiy++uKksHo/z6quvkp2dvVPdSCSy031Nyc9uys3N7dD+srKymt6Hw2Gi0WiL9ZpPXW5m3HvvvWzbtq3pgbwVFRXMmzePG2+8EUjcg9U4/K953K+//jrPPPMM9913H7fddhvPPvtsh+IMhUI7xRwKhYhGo6xcuZKbbrqJN954g/79+3PRRRe1+CyrU089le9973uUlpayaNEijj/++Db3K5JqddE4BVTRkDmWvKHjACjbsIyhEz6b5shERESkp1AP1m4YMGAAZ511FrfffntT2Wc/+1luvfXWpuXFixcDUFRUxJtvvgnAm2++ycqVLd8sf9RRRzF//nxisRhbtmzhhRde4NBDD92tuBp7fV566SXy8/PJz89n3rx5/Otf/2q672vRokWt3oeVrKqqivLycj73uc9x88038/bbbwPwqU99qmn7u+++m6OOOqrD8VVUVJCbm0t+fj6bNm3iiSeeaLFeXl4eM2bM4KqrruLkk08mHA53eB8iqVDXECPXaoln5DJ42BjqPUz1Zk10ISIiIh3X6QTLzEaZ2XNm9r6ZvWdmVwXlc8xsnZktDl6f63y46fetb31rpwkhbrnlFhYuXMjUqVOZOHEic+fOBeDMM8+ktLSUSZMmcdttt7H//vu32N4ZZ5zB1KlTOfDAAzn++OP52c9+xtChQ3crpuzsbA466CAuv/xybr/9doqLi1m1atVO07OPHTuW/Px8Xnut5ef6fO5zn2P9+vVUVlZy8sknM3XqVGbOnMkvf/lLAG699Vb+8pe/MHXqVO68805+/etfdzi+Aw88kIMOOogDDjiAL33pSxx55JFN666//vqdpomfPXs2d911l4YHSlrUReNk0gCRLEYP7Mt6H4iXFqc7LBEREelBrLWZ6TrcgNkwYJi7v2lmfYFFwOnAWUCVu9/U1vbJpk+f7s2f6bR06VImTJjQqRhl76J/E9JVVm7dzqBb92HjvrMZd96veW3OUYzIjTHqulfSHZqIiIh0M2a2yN2nNy/vdA+Wu29w9zeD95XAUmBEZ9sVEdnT6qIxMmnAIlmYGduyhtGvdn26wxIREZEeJKX3YJlZEXAQ0DgO7UozW2Jmfzaz/q1sc5mZLTSzhVu2bEllOCIiu6WuPkqmxbCMxGQttbkjyY+XQX11egMTERGRHiNlCZaZ5QH3A1e7ewXwO2AcMA3YAPyipe3c/Q/uPt3dpzc+i0lEJB3q6xKzW4YiiVlB4/mjAPCy1WmLSURERHqWlCRYZpZBIrm6290fAHD3Te4ec/c48Edg96bGExHZwxrqawAIBz1YmYVFAFRv0rOwREREpGNSMYugAbcDS939l0nlw5KqnQG823xbEZHuJNrYg5WR6MHKHbIPAGUblWCJiIhIx6TiQcNHAucD75jZ4qDse8A5ZjYNcKAY+GoK9iUi0mUa6hMJVjgzkWANGjqaBg9TV7IqnWGJiIhID5KKWQRfcndz96nuPi14Pe7u57v7lKD8VHffkIqA0+Whhx7CzPjggw9arVNcXMzkyZNTts+LLrqI++67r9X1V199NSNGjCAejzeV3XHHHQwaNIhp06YxceJE/vjHP6YsHpG9XTRIsCJBgjWiMI+NPgAvW5POsERERKQHSeksgnuzefPmMXPmTObNm9fi+mg02ul9xGKxDteNx+M8+OCDjBo1iueff36ndbNnz2bx4sUsWLCA733ve2zatKnTsYn0BrGGoAcrGCLYv08GG20gGVWaql1EREQ6RglWB1RVVfHSSy9x++23c8899zSVL1iwgKOOOopTTz2ViRMnAolE69xzz2XChAl84QtfoLo6Mb3zM888w0EHHcSUKVO45JJLqKurA6CoqIj/+Z//4eCDD+Yf//jHLvt++umnmT59Ovvvvz+PPvroTvueNGkSV1xxRatJ3+DBgxk3bhyrVu0Y3nTLLbcwceJEpk6dytlnnw1AaWkpp59+OlOnTuXwww9nyZIlAMyZM4cLL7yQo446ijFjxvDAAw9w3XXXMWXKFGbNmkVDQwMAN9xwAzNmzGDy5MlcdtllNH94dTwep6ioiLKysqay/fbbT4mfdDvxZj1YZkZZ5lBya3t0B7yIiIjsQam4B2vPeeI7sPGd1LY5dAqc+NM2qzz88MPMmjWL/fffn8LCQhYtWsQhhxwCwJtvvsm7777L2LFjKS4u5sMPP+T222/nyCOP5JJLLuG3v/0tV155JRdddBHPPPMM+++/PxdccAG/+93vuPrqqwEoLCzkzTffbHHfxcXFvP766yxfvpzjjjuOZcuWkZ2dzbx58zjnnHM47bTT+N73vkdDQwMZGRk7bbtixQpWrFjBvvvu21T205/+lJUrV5KVldWU8PzoRz/ioIMO4qGHHuLZZ5/lggsuYPHixQAsX76c5557jvfff58jjjiC+++/n5/97GecccYZPPbYY5x++ulceeWVXH/99QCcf/75PProo5xyyilN+wyFQpx22mk8+OCDXHzxxbz22muMGTOGIUOGdPgyiewJHk384aMxwQKoyRlGQcXzEItCuGf9yhQREZE9Tz1YHTBv3rym3p6zzz57px6jQw89lLFjxzYtjxo1iiOPPBKA8847j5deeokPP/yQsWPHsv/++wNw4YUX8sILLzRtM3v27Fb3fdZZZxEKhdhvv/3YZ599+OCDD6ivr+fxxx/n9NNPp1+/fhx22GH8+9//btpm/vz5TJs2jXPOOYff//73DBgwoGnd1KlTOffcc7nrrruIRBJfFl966SXOP/98AI4//nhKSkqoqKgA4MQTTyQjI4MpU6YQi8WYNWsWAFOmTKG4uBiA5557jsMOO4wpU6bw7LPP8t577+1yHLNnz2b+/PkA3HPPPW0es0i6NA0RzMxqKov3G0GYOFSqF0tERETa17P+HNtOT1NXKC0t5dlnn+Wdd97BzIjFYpgZP//5zwHIzc3dqX5i1vrWl1vSvI322vv3v/9NWVkZU6ZMAaC6upqcnBxOPvlkIJHM3HbbbS2299hjj/HCCy/wz3/+kxtvvJF33mm7RzArK/FFMxQKkZGR0RRPKBQiGo1SW1vL1772NRYuXMioUaOYM2cOtbW1u7RzxBFHsGzZMrZs2cJDDz3ED37wgzb3K5IWjT1YGTt6sCL9R8NaqNm6ipyCUemKTERERHoI9WC147777uP8889n1apVFBcXs2bNGsaOHcuLL77YYv3Vq1fzyiuvAPD3v/+dmTNnMn78eIqLi1m2bBkAd955J8ccc0yH9v+Pf/yDeDzO8uXLWbFiBePHj2fevHn86U9/ori4mOLiYlauXMlTTz3VdL9Xa+LxOGvWrOG4447j//2//0d5eTlVVVUcddRR3H333UDi3q6BAwfSr1+/DsXXmEwNHDiQqqqqVmc9NDPOOOMM/vu//5sJEyZQWFjYofZF9iSP1QM7noMF0Gdwooe6bIOehSUiIiLtU4LVjnnz5nHGGWfsVHbmmWe2OrHE+PHj+c1vfsOECRPYtm0bV1xxBdnZ2fzlL3/hi1/8IlOmTCEUCnH55Zd3aP+jR4/m0EMP5cQTT2Tu3LnE43H+9a9/cdJJJzXVyc3NZebMmfzzn/9ssY1LL72UhQsXEovFOO+885gyZQoHHXQQ3/zmNykoKGDOnDksWrSIqVOn8p3vfIe//vWvHTw7UFBQwFe+8hUmT57MCSecwIwZM5rWzZ07l7lz5zYtz549m7vuukvDA6Xb8oZEDxaRHUMEBwxPJFjVW4rTEJGIiIj0NNZ8xrd0mj59ui9cuHCnsqVLlzJhwoQ0RSTdkf5NSFd58C8/54xVP4FvLoYBicRqc0UtGb8Yx+bRn2P8l/VcOREREUkws0XuPr15uXqwREQaxXbtwRqYl8UGBhKuWJumoERERKQnUYIlItIomrgHi/COBCsUMrZFBpNTo1kERUREpH09IsHqTsMYJb30b0G6kjX1YGXuVF6VM4yCBj0YW0RERNrX7ROs7OxsSkpK9MVacHdKSkrIzs5uv7LIJxCK79qDBRDNG0GuV0NteRqiEhERkZ6k2z8Ha+TIkaxdu5YtW7akOxTpBrKzsxk5cmS6w5C9lMUaE6yMncpDBaNgI9SVrCZrxJQ0RCYiIiI9RbdPsDIyMhg7dmy6wxCRXsBi9dSRSVazB3xnDxwDwLb1yxiqBEtERETa0O2HCIqI7CnheD1Ry9ilvGDYOAAqNxXv4YhERESkp+nyBMvMZpnZh2a2zMy+09X7ExH5pEKtJFiDh4+i3sM0lK5OQ1QiIiLSk3RpgmVmYeA3wInAROAcM5vYlfsUEfmkWuvBGtIvhw0UYuV6FpaIiIi0rat7sA4Flrn7CnevB+4BTuvifYqIfCKJBCtzl/JIOERJeDBZ1evTEJWIiIj0JF2dYI0A1iQtrw3KmpjZZWa20MwWaqZAEUmnsDcQC+3agwVQkTWUfnUb93BEIiIi0tOkfZILd/+Du0939+mDBg1Kdzgi0otF4vXEQrv2YAHU546gf7wUYg17OCoRERHpSbo6wVoHjEpaHhmUiYh0Oxne0GqCRf5IwsRpKNOvMBEREWldVydYbwD7mdlYM8sEzgYe6eJ9ioh8IhGvJ95KgpVVOBqA0vUr9mRIIiIi0sN0aYLl7lHgSuDfwFLgXnd/ryv3KSLySUW8odUEq++QfQAo36gES0RERFoX6eoduPvjwONdvR8Rkc7KoIF4uOUEa+DIRIJVv7V4D0YkIiIiPU3aJ7kQEekO3J0Mb8Bb6cEaWjiAjd4f27ZyD0cmIiIiPYkSLBERIBZ3MonirfRgZUZCbAwNJbtqTYvrRUREREAJlogIAA0xJ8sa8HBWq3W2ZY2goFazCIqIiEjrlGCJiAD10TiZNBBvI8GqyRtF/3gJNNTuwchERESkJ1GCJSIC1MfiZBKFSCvPwQLi+WMI4cS2rdqDkYmIiEhPogRLRASoi8bIpAFrowcrY9A4AMrXfbinwhIREZEeRgmWiAhQW1dPxOKEMltPsPoO2w+Aqo3L9lRYIiIi0sMowRIRAerqEvdVhSKtJ1iDh46k2rOo36Kp2kVERKRlSrBERIC62moAwpnZrdYZ0b8Pq30w4fLiPRSViIiI9DRKsEREgPraGgAiGa0nWDmZYTaGh5KjZ2GJiIhIK5RgiYgADY09WFl92qxXnj2C/vXrwX1PhCUiIiI9jBIsERGgobYKgHB2Xpv16vuOJsvroGrTnghLREREehglWCIiQLyuEoCMnL5t1gsV7gNAdOvyLo9JREREeh4lWCIiQLxuOwAZ7fRg9RmyLwDb1n7U5TGJiIhIz9OpBMvMfm5mH5jZEjN70MwKgvIiM6sxs8XBa25KohUR6SLxusQQwczcfm3WGzhyP6Ieonrjx3siLBEREelhOtuD9RQw2d2nAh8B301at9zdpwWvyzu5HxGRrhX0YGXltJ1gjR5cwDofiJfoYcMiIiKyq04lWO7+pLtHg8VXgZGdD0lEJA0aEglWKKvtIYKD+2ax2oaRWbFqT0QlIiIiPUwq78G6BHgiaXmsmb1lZs+b2VGtbWRml5nZQjNbuGXLlhSGIyLScVafSLDIzG27nhnbskZSULNGU7WLiIjILiLtVTCzp4GhLaz6vrs/HNT5PhAF7g7WbQBGu3uJmR0CPGRmk9y9onkj7v4H4A8A06dP17cVEUmLUNCDRUbbz8ECqO47hj4l26G6BHIHdnFkIiIi0pO0m2C5+2faWm9mFwEnA592T/w5193rgLrg/SIzWw7sDyzsbMAiIl0hFK2mhixyQh3o2O+/D5SAlyzHlGCJiIhIks7OIjgLuA441d2rk8oHmVk4eL8PsB+wojP7EhHpStawnTrL6VDdnKH7AVCx/sOuDElERER6oHZ7sNpxG5AFPGVmAK8GMwYeDdxgZg1AHLjc3Us7uS8RkS4TaqimLtSxBKv/iP2IuVG1/iPyuzguERER6Vk6lWC5+76tlN8P3N+ZtkVE9qRIrIaGcMcSrNGDElO1s1VTtYuIiMjOUjmLoIhIj5UZ20400v4EFwAj+udQzDAyy4u7NigRERHpcZRgiYgAfeOV1GcUdKhuRjhESeYI+tWs1lTtIiIishMlWCLS6zXE4hRQQUP2gA5vU503mj7x7VCt20tFRERkByVYItLrVVTXM4BK4jkdT7Bi/fdJvCnVBKkiIiKygxIsEen1SsrKyLIGwnkdf6ZV1uDEHD/Vmz7qqrBERESkB1KCJSK9XkXJRgCy+g3q8DYFw/cn5kblOj0LS0RERHbo7HOwRER6vKrSRILVp2Bwh7cZPbiA9T4Q27K8q8ISERGRHkg9WCLS69WWbwagX+GwDm8zprAPK30oGeUruyosERER6YGUYIlIrxet2ARAn4IhHd6mT2aEzRnD6Vu9uqvCEhERkR5ICZaI9HqRqnXEMSx/5G5tV9VnNH1ilZqqXURERJoowRKRXi97+zq2hQZAJHO3tov2H5t4o6naRUREJKAES0R6vbzaDVRkDd3t7TIH7QdA/ZZlqQ5JREREeiglWCLSqzXE4gyMbaauz/Dd3rZg+H7ENVW7iIiIJFGCJSK92rqSSoazFQpG7/a2IwcXsJ5C6jerB0tEREQSlGCJSK+2ac1HZFqMjCHjd3vbosJciuNDCJdpqnYRERFJ6FSCZWZzzGydmS0OXp9LWvddM1tmZh+a2QmdD1VEJPUqVr8HQP8xk3Z72/59MlgXGk7e9lWpDktERER6qEgK2rjZ3W9KLjCzicDZwCRgOPC0me3v7rEU7E9EJGXqN34AwIDRk3d7WzOjqs9I+tQ8BbUVkN0v1eGJiIhID9NVQwRPA+5x9zp3XwksAw7ton2JiHxi2WUfJaZozyn4RNt7/qjEm/I1qQtKREREeqxUJFhXmtkSM/uzmfUPykYAyd821gZluzCzy8xsoZkt3LJlSwrCERHpmFjcGVa7nJK8/T5xGxmFRYm2SjVMUERERDqQYJnZ02b2bguv04DfAeOAacAG4Be7G4C7/8Hdp7v79EGDBu3u5iIin1jx5jLGsZbooN2//6pR36H7AFCxcXmqwhIREZEerN17sNz9Mx1pyMz+CDwaLK4DRiWtHhmUiYh0G+uXvc04i5I7+qBP3MbQoSOp8UyqN6+kf/vVRUREZC/X2VkEhyUtngG8G7x/BDjbzLLMbCywH/B6Z/YlIpJqVasWAzB4v0M+cRujCnNZ64OIb1udoqhERESkJ+vsLII/M7NpgAPFwFcB3P09M7sXeB+IAl/XDIIi0t2ENr9LPRlkfYJnYDUalp/NywxkfKUmuRAREZFOJljufn4b624EbuxM+yIiXWlA5UdsyBrLmPAn/1UYCYcozRhKXu2rKYxMREREeqqumqZdRKRbq6ypZ2xsJdv7T+h0W9V9RpAXK4e6yhREJiIiIj2ZEiwR6ZWWr1zBQKsgMnxKp9uK9wvm9CnTMEEREZHeTgmWiPRKW5ctAqBw3Cef4KJRJHgWVkNpcafbEhERkZ5NCZaI9EoN65cAMGCfTz5Fe6PcwWMBqNy4stNtiYiISM+mBEtEeqXcbUvZEh6C5XT+6VUDh46k1jOo2bwiBZGJiIhIT6YES0R6nVjcGV67jNK8/VPS3qgBuazzgXoWloiIiCjBEpHeZ9WmrYxlPbHBk1LS3tD8bNYyiMxKJVgiIiK9nRKsNmxa/TFLnn+AmsqydIciIim0ZfnbhM3JGXVgStrLCIfYlDGagupiiMdT0qaIiIj0TJ160PDebsULd3PEspuJPhvio8g4thVMIjJsCvljD2Lo/oeQ17cg3SGKyCdQt/ZtIDUzCDYqzxtHVvmjUL4a+helrF0RERHpWZRgtWHa6dfw9sKpbP/4BfpvWciErU/Sr+QheDexfj2D2JY5jNrckdT3HYUVjCQ7fwh5/YdSMHAIuf2HkJ2bj4W6tqPQ4zFiDXU01NfT0FBHQ30d0YY64g31NDTUE2uoI9ZQTyyaeB+PNhCP1hGLNuDReuLReuKxejxaj0cbIF6Pxxog2gCxeog3YLGGxM94A3gcPI55HNwxGpc98ZMWykksh4JywzF812PBmi3vYC2tt52XaWP7lta3tM/WWWtNtLuP3a7brNhbW9HCJs2PubUt2jrundto75w233hHjXbrtrnf3VnZ3uqd146pW8V2suk3bL+OBdYBkWGToByiG98jogQrpdydqu3bqSwrobqilIbqUqI1VURrq4jVVROv206srhoatkN9DTRUY9FqwrFaLF5PKB4lFI9iHiXsDYlljxHyKBFvIEyUsMcSv7NI/ItP/H7ynZd952XDW/ysNH623HYtY6fffI31LKleS20ZWHI0O7eX+JG8/Y52LbmN4L21EJuR/Ps0KVZj1zaa1XN2jSf594tbB87BTu2za9kuv4dsR9ku/w+0Ynd/IXU7PfsAenb0km7v9DmMiSddyfSiAekOpUOUYLUhJy+fA4/9PBz7eQDisTirij9i6/JFRNe/Q2TbMnK2r2PUtlcYvO1xaOH2iwYPU0cm9ZZJvWU1/YxZOPFfQ9J/rASpB+7Bf/iNr1jTF4AIUcIkfkYal82JkLiYOSk+B3E3GoK9NliEGBHihBIpkoUa06bEf3bBcuIVwi355473TfWb/YfZPOHa5Wt9s9/Ou9Zv/uu7rfZartOalpLBlloxT/1/Ie3tu+VIWl5ss80WTtDupIqd2abdNlPdaDiDD4d+kYNT+MePweMOIrbUKPv4VQZOOCll7e5t3J3KqkpKN6+nYus6qrdtpL58M1a9mUj1VjLqSsloqCCzoZKcWCW5vp08305fq6dvB9qPu1FLJrWWRZ1lESWDmEWaXvHgFQ1lEAtl4BYhHsogbpGkf2jWlPTsmigkJwnWtI15ItlqTLoa/7AUbIn7jqRtx/rEukS1pM9k8rbJ9YKf1rwsad87mtm5/i6xNSWLjWU01Wkq2ym25NRtx7HsnCrtaDPprDWdn1bX4Un3K+xaz/Bm63bel8ie0xX/w+1ZPfUIGmLj2F4fS3cYHaYEazeEwiHGjDuAMeMO2GVdfW01pRuLqSjZSFXpJmrLt0BNKeHabXhDDURrsWgt4VgtkXgdIY9B8BfRxP9fO1IOC0GdRYiHEl8E3DKIhyJ4KNL0ZYBQBMIZeCgDC2dAOAPCmVg4A4tkYOHMxCuSSTiSgUWyCEUyCEcyCWcE7zOyiGRkNv2MZGQFr0wyMrPIyMwiHI6QZUbWHj7XIl1tTIrbGz9mOIt9X8asWNBqnfLqel5+4UlGj9mHyRMmpjiC9ItGo2zasJat61dQtXkVsbK1WOUGsqs3kFu3mX7RrfSPl9HPaunXwvbbyabc8tke7ktduC+l2YPZktkPz+qH5fQnlFNAJDefUE5/In36kpGVS2afvmTl5JLdpy/ZffLIzOpDn1CIPnv86EVEpKt8Od0B7CYlWCmSmd2HoUUTGVq0931pEpH2jRuUy58zDuagsn/AtuKd7sNauW4T7/zrj+y/+l4+Z6tY8uY0mPB8ukL9xDweo2LLOras+ZDKDR8T3bqScPkq+lSvpV/DFgbGSxhhMUYkbVNPhK02kPKMQWzqO4l1OQOx3EFE+g0hp2AoeYVD6Vc4nLzCYeRm5ZKbtqMTERFJDSVYIiIpYGZEp51Pw8IHqJx3BTWfupaVKz4m/tGTHFLzH061GtZl70t1fQ5T6xfj9duxzO6XTtTXVLFl9UdsW/cRNZuXw7ZisitXk1+7jsHxjeTTQH5QN+7GJiukNGMo6/oeyJq84UT6jyJ30GgKho6hYOhYsvMHM9yM4Wk9KhERkT3HvAvuGfmkpk+f7gsXLkx3GCIin0hlbQN/+tX1XFXzO0KW+N1aQR7rhhzL0OOvoP/+R/Lc4/M57o2vsvaEPzHyiC/u8Rg9Hmfb1g1sWf0BVRs+Jrp1OZHyVeRtX0NhwwYGsm2n+lWezcbwMMqzhlPbdzT0LyJ78D4UjBjP0FH7kpvb/ZJEERGRPcHMFrn79F3KO5Ngmdl8YHywWACUufs0MysClgIfButedffL22tPCZaI9HTV9VFeWfQmOeXLGDViFCMnHp64TzKwuawSv3kyFfkT2O+//9UlMdTWN7BxzQq2rfuQmk3L8JIVZFeuIr92LUOiG+hrNTvV30QhWzKGU9VnFNH8MWQMHEve0H0ZOPoABg0aRiisRyaKiIg011qC1akhgu4+O2kHvwDKk1Yvd/dpnWlfRKSn6ZMZ4dNHHAoc2uL6wQV9eWLoWZy46Q8sf3Iu4z7b7t+edlG1fTub166gbOMKarYUE9u2hkjlOvrUbKB/wyaG+haKrIGioH69h9kcHsK2rJEsHXAw3r+I7MH7kj9yPENGj2dIn1yGfOIjFhERkWQpGSJoZkZikvLj3f3joAfrUXefvDvtqAdLRHqD8spqlv/qBA6OLeHjvOlsH3sCkf6jIbMP8Wg99TVVNNRUEd9eAlWbCddsIauuhNyGUvrHShlkZbu0WWL92RYZzPac4TT0HUF44Dhyh+7LgFEHUDhsHyysW25FRERSqUuGCCY1fjTwy8YdBAnWe8BHQAXwA3d/sZVtLwMuAxg9evQhq1at6nQ8IiLd3dayCl6/5385eMN8hlppq/XqPcK2UAGV4f7UZBXSkD2IaN8RZAwYTe6gIgaMGMeAoUWEMrP3YPQiIiLyiRMsM3saGNrCqu+7+8NBnd8By9z9F8FyFpDn7iVmdgjwEDDJ3Sva2pd6sESkt4lGY6xZtYzaso3E67YTimSSk9eXPrn9yC0YTG6/AV3wpGURERHprE98D5a7f6adhiPA54FDkrapA+qC94vMbDmwP6DsSUQkSSQSZuy48eyYL0hERER6slRMDfUZ4AN3X9tYYGaDzCwcvN8H2A9YkYJ9iYiIiIiIdFupuOv5bGBes7KjgRvMrAGIA5e7e+s3GYiIiIiIiOwFOp1guftFLZTdD9zf2bZFRERERER6kpTMIpgqZrYF6G7TCA4EtqY7CNljdL17D13r3kPXunfR9e49dK17l+54vce4+6Dmhd0qweqOzGxhS7ODyN5J17v30LXuPXStexdd795D17p36UnXOxWTXIiIiIiIiAhKsERERERERFJGCVb7/pDuAGSP0vXuPXStew9d695F17v30LXuXXrM9dY9WCIiIiIiIimiHiwREREREZEUUYIlIiIiIiKSIkqw2mBms8zsQzNbZmbfSXc8kjpmNsrMnjOz983sPTO7KigfYGZPmdnHwc/+6Y5VUsPMwmb2lpk9GiyPNbPXgs/3fDPLTHeMkhpmVmBm95nZB2a21MyO0Gd772Rm1wS/w981s3lmlq3P9t7DzP5sZpvN7N2kshY/y5ZwS3Ddl5jZwemLXHZXK9f658Hv8SVm9qCZFSSt+25wrT80sxPSEnQblGC1wszCwG+AE4GJwDlmNjG9UUkKRYFvuftE4HDg68H1/Q7wjLvvBzwTLMve4SpgadLy/wNudvd9gW3Al9MSlXSFXwP/cvcDgANJXHd9tvcyZjYC+CYw3d0nA2HgbPTZ3pvcAcxqVtbaZ/lEYL/gdRnwuz0Uo6TGHex6rZ8CJrv7VOAj4LsAwfe1s4FJwTa/Db63dxtKsFp3KLDM3Ve4ez1wD3BammOSFHH3De7+ZvC+ksQXsBEkrvFfg2p/BU5PS4CSUmY2EjgJ+FOwbMDxwH1BFV3rvYSZ5QNHA7cDuHu9u5ehz/beKgLkmFkE6ANsQJ/tvYa7vwCUNitu7bN8GvA3T3gVKDCzYXskUOm0lq61uz/p7tFg8VVgZPD+NOAed69z95XAMhLf27sNJVitGwGsSVpeG5TJXsbMioCDgNeAIe6+IVi1ERiSrrgkpX4FXAfEg+VCoCzpF7c+33uPscAW4C/BkNA/mVku+mzvddx9HXATsJpEYlUOLEKf7b1da59lfW/bu10CPBG87/bXWgmW9GpmlgfcD1zt7hXJ6zzxDAM9x6CHM7OTgc3uvijdscgeEQEOBn7n7gcB22k2HFCf7b1DcO/NaSSS6uFALrsOMZK9mD7LvYOZfZ/ErR13pzuWjlKC1bp1wKik5ZFBmewlzCyDRHJ1t7s/EBRvahxSEPzcnK74JGWOBE41s2ISQ32PJ3GPTkEwrAj0+d6brAXWuvtrwfJ9JBIufbb3Pp8BVrr7FndvAB4g8XnXZ3vv1tpnWd/b9kJmdhFwMnCu73h4b7e/1kqwWvcGsF8wG1EmiZvpHklzTJIiwT04twNL3f2XSaseAS4M3l8IPLynY5PUcvfvuvtIdy8i8Tl+1t3PBZ4DvhBU07XeS7j7RmCNmY0Pij4NvI8+23uj1cDhZtYn+J3eeK312d67tfZZfgS4IJhN8HCgPGkoofRAZjaLxPD+U929OmnVI8DZZpZlZmNJTGzyejpibI3tSAalOTP7HIl7N8LAn939xvRGJKliZjOBF4F32HFfzvdI3Id1LzAaWAWc5e7Nb7CVHsrMjgWudfeTzWwfEj1aA4C3gPPcvS6N4UmKmNk0EhOaZAIrgItJ/EFRn+29jJn9GJhNYvjQW8ClJO7F0Gd7L2Bm84BjgYHAJuBHwEO08FkOkuzbSAwTrQYudveFaQhbPoFWrvV3gSygJKj2qrtfHtT/Pon7sqIkbvN4onmb6aQES0REREREJEU0RFBERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSIiIiIikiJKsERERERERFJECZaIiIiIiEiKKMESERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwRES6GTMrMjM3s0i6Y5HewczeM7Nj0x2HiMjeQAmWiIj0eGY218yqgle9mTUkLT+R7vi6O3ef5O4LUtmmmY0ws4fNrNTM1prZ5alsX0SkuzJ3T3cMIiJ7FTOLuHu0E9sXASuBjM6001uZ2RxgX3c/r4V1nbo2e1JPirUlZvYc8DbwbWAi8Bxwprs/l9bARES6mHqwRERSwMyKzex/zGwJsN3MImZ2uJn9x8zKzOzt5CFYZrbAzP6vmb1uZhXBX/oHtNL2xWa21MwqzWyFmX212frTzGxx0M5yM5sVlOeb2e1mtsHM1pnZT8ws3M5xjDOzZ82sxMy2mtndZlaQtK7UzA4Oloeb2ZbG4zKzU4OhZmXB8U1odn6uNbMlZlZuZvPNLHv3z/Tua+XauJntm1TnDjP7SdLyycE5LQuu4dQO7uvYoLfme8H5Kzazc5PWn2RmbwXXak2QDDauaxwa+mUzWw08G5T/w8w2BuftBTOb1Czu35rZE0Fv3ctmNtTMfmVm28zsAzM7qIPn6DMdOcYOnoc84FjgRndvcPe3gfuAS1K1DxGR7koJlohI6pwDnAQUAEOAx4CfAAOAa4H7zWxQUv0LSHzhHAZEgVtaaXczcDLQD7gYuDkpyTkU+BuJXoIC4GigONjujqDdfYGDgM8Cl7ZzDAb8X2A4MAEYBcwBcPflwP8Ad5lZH+AvwF/dfYGZ7Q/MA64GBgGPA/80s8ykts8CZgFjganARS0GYDYzSGxae81s5xha0nRt2usVChKSPwNfBQqB3wOPmFlWB/c1FBgIjAAuBP5gZuODddtJXPeCIJ4rzOz0ZtsfQ+LcnxAsPwHsBwwG3gTublb/LOAHwT7rgFeCegNJJDW/7GDcLTKz77R1PVrbrNnPxveTOxOLiEhPoARLRCR1bnH3Ne5eA5wHPO7uj7t73N2fAhYCn0uqf6e7v+vu24EfAme11MPk7o+5+3JPeB54EjgqWP1l4M/u/lSwn3Xu/oGZDQn2dbW7b3f3zcDNwNltHYC7LwvaqnP3LSS+nB+TtP6PwDLgNRKJ4feDVbOBx4JtG4CbgBzgU83Oz3p3LwX+CUxrJYaX3L2gjddLbR1DK5KvTXsuA37v7q+5e8zd/0oicTl8N/b3w+AcPk8i0T4LwN0XuPs7wbVaQiIpPabZtnOCa1YTbPNnd6909zoSye6BZpafVP9Bd1/k7rXAg0Ctu//N3WPAfBLJ9Sfm7j9t63q0sk0l8DLwQzPLDv4gcCbQpzOxiIj0BEqwRERSZ03S+zHAF5v9pX8miaSkpfqrgAwSvQ47MbMTzezVYHheGYnEqbHeKGB5C7GMCdrbkLT/35PoBWmVmQ0xs3uCIYUVwF0txPRHEj0RtwZf+iHR47WqsYK7x4PjG5G03cak99VAXluxpNia9qs0GQN8q9m1G0XiGDtiW5A0N1rVuK2ZHWZmzwVDK8uBy9n1/DbFamZhM/upJYZ+VrCjdzJ5m01J72taWN6T5znZuSR6K9cAvyPxb2ltmmIREdljlGCJiKRO8qxBa0j0UCX/tT/X3X+aVGdU0vvRQAOwNbnBYFja/SR6hIYEPQaPs2Po1RpgXAuxrCHR6zIwaf/93H1SC3WT/W9wHFPcvR+JnrimYV7BvTW/Am4H5tiO+8bWk0hMGutZcHzr2tnfLszsKNsxA2BLr6Pab2UXzWd0qmbn3pShSe/XkLh3KPna9XH3eR3cV38zy01aHk3i/AD8HXgEGOXu+cBcdh5G1zzWLwGnAZ8B8oGioLz5Nl0muJ+s1evR2nbuvsrdT3b3Qe5+GImk8PU9FbeISLoowRIR6Rp3AaeY2QlBL0R2MAHCyKQ655nZxOB+phuA+4JhXckygSxgCxA1sxNJ3EvV6HbgYjP7tJmFLDE19gHuvoHEUMJfmFm/YN04M2s+HK25vkAVUG5mI0jc25Xs18BCd7+UxNC3uUH5vcBJQRwZwLdIJHj/ae9ENefuL7p7XhuvF3e3zRYsBr4UXJtZ7DxM74/A5UFvk5lZriUmp+gLTRNL3NFO+z82s8wgGTwZ+EdQ3hcodffa4P65L7XTTl8S57GEREL4v7txjCnh7v/b1vVobTszm2BmfYPzcB6Jf7eduh9MRKQnUIIlItIF3H0NiZ6H75FIjtaQSFaSf+/eSWIiio1ANvDNFtqpDMrvBbaR+EL+SNL61wkmvgDKgefZ0ZN0AYkE7f1g2/vYeYhiS34MHBy09RjwQOMKMzuNxCQVVwRF/w0cbGbnuvuHJHq7biXRC3cKcIq717ezv3S5ikSMZSSGsj3UuMLdFwJfAW4jcd6WsfOEHKNI3F/Umo3BdutJTEhxubt/EKz7GnCDmVUC15O4rm35G4khhutIXMdX2zuwbuQEYAWJc3E5MCu4r09EZK+m52CJiKSBmS0A7nL3P6U7Fum4YFbEt4GpwWQezdcfS+K6jmy+TkREeodIugMQERHpKYIeuQntVhQRkV5LQwRFRHoZM5vbyoQFc9vfWnoiMxvdxkQVo9Mdn4jI3kRDBEVERERERFJEPVgiIiIiIiIp0q3uwRo4cKAXFRWlOwwREREREZE2LVq0aKu7D2pe3q0SrKKiIhYuXJjuMERERERERNpkZqtaKtcQQRERERERkRRRgiUiIiIiIpIiSrBERHZTSVUdj7+zAc3CKiIiIs11q3uwWtLQ0MDatWupra1NdyjSw2RnZzNy5EgyMjLSHYrsZX78yDt8eukPWVzyFQ469vPpDkdERES6kW6fYK1du5a+fftSVFSEmaU7HOkh3J2SkhLWrl3L2LFj0x2O7GUy1r7GaeH/UPfCW6AES0RERJJ0+yGCtbW1FBYWKrmS3WJmFBYWqudTusRB1S8DkBWvgWhdmqMRERGR7qTbJ1iAkiv5RPTvRrpCPO70j21tWvYtH6QxGhEREeluekSCJSLSXVTWRcmjhhqyAChf836aIxIREZHuRAlWB5gZ3/rWt5qWb7rpJubMmZO+gJK8+uqrHHbYYUybNo0JEyY0xbVgwQL+85//dKrtWbNmUVBQwMknn5yCSEX2DuXVDeRZDev7jCfmRoUSLBEREUmiBKsDsrKyeOCBB9i6dWv7lXeDuxOPxzvVxoUXXsgf/vAHFi9ezLvvvstZZ50FpCbB+va3v82dd97ZqTZE9jZlNfXkUUM4bzBrfDBs/TDdIYmIiEg30u1nEUz243++x/vrK1La5sTh/fjRKZParBOJRLjsssu4+eabufHGG3dat2XLFi6//HJWr14NwK9+9SuOPPJI5syZQ15eHtdeey0AkydP5tFHHwXghBNO4LDDDmPRokU8/vjj3HbbbTzxxBOYGT/4wQ+YPXs2CxYsYM6cOQwcOJB3332XQw45hLvuumuX+4o2b97MsGHDAAiHw0ycOJHi4mLmzp1LOBzmrrvu4tZbb+WAAw5oNc7ly5ezbNkytm7dynXXXcdXvvIVAD796U+zYMGCNs/NP/7xD3784x8TDofJz8/nhRdeoLa2liuuuIKFCxcSiUT45S9/yXHHHccdd9zBQw89xPbt2/n444+59tprqa+v58477yQrK4vHH3+cAQMG8Mc//pE//OEP1NfXs++++3LnnXfSp0+fnfZ7+OGHc/vttzNpUuLaHXvssdx0001Mnz69zXhFOquqLkqh1RDJK+BDhrBfxep0hyQiIiLdSKd7sMxslJk9Z2bvm9l7ZnZVUD7HzNaZ2eLg9bnOh5s+X//617n77rspLy/fqfyqq67immuu4Y033uD+++/n0ksvbbetjz/+mK997Wu89957LFy4kMWLF/P222/z9NNP8+1vf5sNGzYA8NZbb/GrX/2K999/nxUrVvDyyy/v0tY111zD+PHjOeOMM/j9739PbW0tRUVFXH755VxzzTUsXryYo446qs04lyxZwrPPPssrr7zCDTfcwPr16zt8Xm644Qb+/e9/8/bbb/PII48A8Jvf/AYz45133mHevHlceOGFTbP5vfvuuzzwwAO88cYbfP/736dPnz689dZbHHHEEfztb38D4POf/zxvvPEGb7/9NhMmTOD222/fZb+zZ8/m3nvvBWDDhg1s2LBByZXsEXXROH2pxrL7si1zKHm1G9IdkoiIiHQjqejBigLfcvc3zawvsMjMngrW3ezuN6VgHwDt9jR1pX79+nHBBRdwyy23kJOT01T+9NNP8/77O+7BqKiooKqqqs22xowZw+GHHw7ASy+9xDnnnEM4HGbIkCEcc8wxvPHGG/Tr149DDz2UkSNHAjBt2jSKi4uZOXPmTm1df/31nHvuuTz55JP8/e9/Z968eS32OrUV52mnnUZOTg45OTkcd9xxvP7665x++ukdOi9HHnkkF110EWeddRaf//znm47pG9/4BgAHHHAAY8aM4aOPPgLguOOOo2/fvvTt25f8/HxOOeUUAKZMmcKSJUuARBL2gx/8gLKyMqqqqjjhhBN22e9ZZ53FZz/7WX784x9z77338oUvfKFD8Yp0Vn1DlDxqqc3qR02O07eyDOqrIbNPu9uKiIjI3q/TCZa7bwA2BO8rzWwpMKKz7XZHV199NQcffDAXX3xxU1k8HufVV18lOzt7p7qRSGSn+6uSn8eUm5vbof1lZWU1vQ+Hw0Sj0RbrjRs3jiuuuIKvfOUrDBo0iJKSkl3qtBYn7Dqd+e5Mbz537lxee+01HnvsMQ455BAWLVrUZv3kYwqFQk3LoVCo6fguuugiHnroIQ488EDuuOOOFhPGESNGUFhYyJIlS5g/fz5z587tcMwinRGt3U7IHMvuS7xfX6gEytfCoP3THZqIiIh0Aymd5MLMioCDgNeCoivNbImZ/dnM+reyzWVmttDMFm7ZsiWV4aTcgAEDOOuss3YasvbZz36WW2+9tWl58eLFABQVFfHmm28C8Oabb7Jy5coW2zzqqKOYP38+sViMLVu28MILL3DooYd2OKbHHnsMdwcSQw/D4TAFBQX07duXysrKduMEePjhh6mtraWkpIQFCxYwY8aMDu9/+fLlHHbYYdxwww0MGjSINWvWcNRRR3H33XcD8NFHH7F69WrGjx/f4TYrKysZNmwYDQ0NTe20ZPbs2fzsZz+jvLycqVOndrh9kc7w2sR9oKHsfmQUFgFQX1KcvoBERESkW0lZgmVmecD9wNXuXgH8DhgHTCPRw/WLlrZz9z+4+3R3nz5o0KBUhdNlvvWtb+00m+Att9zCwoULmTp1KhMnTmzqSTnzzDMpLS1l0qRJ3Hbbbey/f8t/3T7jjDOYOnUqBx54IMcffzw/+9nPGDp0aIfjufPOOxk/fjzTpk3j/PPP5+677yYcDnPKKafw4IMPMm3aNF588cVW4wSYOnUqxx13HIcffjg//OEPGT58OJBI/r74xS/yzDPPMHLkSP79738DiWGJjfdbffvb32bKlClMnjyZT33qUxx44IF87WtfIx6PM2XKFGbPns0dd9yxU89Ve/7P//k/HHbYYRx55JEccMABTeWPPPII119/fdPyF77wBe65556mmRNF9oi6xB8uwjn55A0pAqBs44o0BiQiIiLdiTX2fnSqEbMM4FHg3+7+yxbWFwGPuvvkttqZPn26L1y4cKeypUuXMmHChE7HKC1rPtvh3kb/fiTV/vn4I5zy+vlUnjmP93MO4ZA7D2D95K8y+os/TXdoIiIisgeZ2SJ332WWtVTMImjA7cDS5OTKzIYlVTsDeLez+xIRSbv67QBEsnMZPqAvGxlAfJumahcREZGEVMwieCRwPvCOmS0Oyr4HnGNm0wAHioGvpmBfkmJz5sxJdwgiPYo31AGQkZXD0Pxs3vSBjKhal+aoREREpLtIxSyCLwEtTTv3eGfbFhHpbuINiRlBwxnZWDhEaWQI+1cvTXNUIiIi0l2kdBZBEZG9XqweAIskHnlQlTOc/OhWiLX8GAURERHpXZRgiYjsjmjwTLtIYmbMaN5wQsShamMagxIREZHuQgmWiMhu8GjiHqzGBCtcMBKAeNnadIUkIiIi3YgSrA566KGHMDM++OCDVusUFxczeXKbM9Hvlg8//JBjjz2WadOmMWHCBC677DIg8ZDgxx/v3C1ul1xyCYMHD05pvCK9QrMEK6dwFACVm4vTFJCIiIh0J0qwOmjevHnMnDmTefPmtbg+Gu38/RexWGyn5W9+85tcc801LF68mKVLl/KNb3wDSE2CddFFF/Gvf/2rU22I9EYWCxKscCLB6jtkLABVm1elKyQRERHpRlIxTfue88R3YOM7qW1z6BQ4se0HhFZVVfHSSy/x3HPPccopp/DjH/8YgAULFvDDH/6Q/v3788EHH/Dkk08SjUY599xzefPNN5k0aRJ/+9vf6NOnD8888wzXXnst0WiUGTNm8Lvf/Y6srCyKioqYPXs2Tz31FNdddx1nn3120343bNjAyJEjm5anTJlCfX09119/PTU1Nbz00kt897vf5eSTT+Yb3/gG7777Lg0NDcyZM4fTTjuNO+64gwcffJDy8nLWrVvHeeedx49+9CMAjj76aIqLi9s87ueff56rrroKADPjhRdeIC8vj+uuu44nnngCM+MHP/gBs2fPZsGCBfzoRz+ioKCAd955h7POOospU6bw61//mpqaGh566CHGjRvHP//5T37yk59QX19PYWEhd999N0OGDNlpv2effTbnn38+J510EpBIBk8++WS+8IUvdOyainShpgQr6MEaMmgQVZ5NfemaNEYlIiIi3YV6sDrg4YcfZtasWey///4UFhayaNGipnVvvvkmv/71r/noo4+AxLC+r33tayxdupR+/frx29/+ltraWi666CLmz5/PO++8QzQa5Xe/+11TG4WFhbz55ps7JVcA11xzDccffzwnnngiN998M2VlZWRmZnLDDTcwe/ZsFi9ezOzZs7nxxhs5/vjjef3113nuuef49re/zfbtiYehvv7669x///0sWbKEf/zjHyxcuLDDx33TTTfxm9/8hsWLF/Piiy+Sk5PDAw88wOLFi3n77bd5+umn+fa3v82GDRsAePvtt5k7dy5Lly7lzjvv5KOPPuL111/n0ksv5dZbbwVg5syZvPrqq7z11lucffbZ/OxnP9tlv7Nnz+bee+8FoL6+nmeeeaYp2RJJN4vVEyUMoTAAIwb0YYMXQoWehSUiIiI9rQernZ6mrjJv3rymnpyzzz6befPmccghhwBw6KGHMnbs2Ka6o0aN4sgjjwTgvPPO45ZbbuG//uu/GDt2LPvvvz8AF154Ib/5zW+4+uqrgURC0ZKLL76YE044gX/96188/PDD/P73v+ftt9/epd6TTz7JI488wk033QRAbW0tq1evBuC//uu/KCwsBODzn/88L730EtOnT+/QcR955JH893//N+eeey6f//znGTlyJC+99BLnnHMO4XCYIUOGcMwxx/DGG2/Qr18/ZsyYwbBhwwAYN24cn/3sZ4FEz9tzzz0HwNq1a5k9ezYbNmygvr5+p3PX6MQTT+Sqq66irq6Of/3rXxx99NHk5OR0KGaRrhaK1dFgmU2/PPtlZ/CODaRo+/q0xiUiIiLdg3qw2lFaWsqzzz7LpZdeSlFRET//+c+59957cXcAcnNzd6pvZm0ut6R5G8mGDx/OJZdcwsMPP0wkEuHdd9/dpY67c//997N48WIWL17M6tWrmTBhwieOp9F3vvMd/vSnP1FTU8ORRx7Z5gQfAFlZWU3vQ6FQ03IoFGq6R+0b3/gGV155Je+88w6///3vqa2t3aWd7Oxsjj32WP79738zf/78VhNQkXQIxeuJWsZOZRWZg8mr25SmiERERKQ7UYLVjvvuu4/zzz+fVatWUVxczJo1axg7diwvvvhii/VXr17NK6+8AsDf//53Zs6cyfjx4ykuLmbZsmUA3HnnnRxzzDHt7vtf//oXDQ0NAGzcuJGSkhJGjBhB3759qaysbKp3wgkncOuttzYlfW+99VbTuqeeeorS0tKm+6Aae9c6Yvny5UyZMoX/+Z//YcaMGXzwwQccddRRzJ8/n1gsxpYtW3jhhRc49NBDO9xmeXk5I0aMAOCvf/1rq/Vmz57NX/7yF1588UVmzZrV4fZFulo4Xk+DZe5UVtdnGPmxbTtmGBQREZFeSwlWO+bNm8cZZ5yxU9mZZ57Z6myC48eP5ze/+Q0TJkxg27ZtXHHFFWRnZ/OXv/yFL37xi0yZMoVQKMTll1/e7r6ffPJJJk+ezIEHHsgJJ5zAz3/+c4YOHcpxxx3H+++/z7Rp05g/fz4//OEPaWhoYOrUqUyaNIkf/vCHTW0ceuihnHnmmUydOpUzzzyzaXjgOeecwxFHHMGHH37IyJEjuf322wGYO3cuc+fOBeBXv/oVkydPZurUqWRkZHDiiSdyxhlnMHXqVA488ECOP/54fvaznzF06NAOn885c+bwxS9+kUMOOYSBAwc2lS9cuJBLL720afmzn/0szz//PJ/5zGfIzMxsqSmRtAjH64k168GK9xueeFOhYYIiIiK9nTX2enQH06dP9+aTMCxdurRpuJvsnjvuuIOFCxdy2223pTuUtNG/H0m1Bf/nRMaH1zPsezvuh3zkgbs4dcnXqTn3EXL2a793WkRERHo+M1vk7rtMbqAeLBGR3RD2emKhnXtVcweNAaB848p0hCQiIiLdSM+aRVB2y0UXXcRFF12U7jBE9iqReD3xZglWwdDEbJjVW1enIyQRERHpRnpED1Z3GsYoPYf+3UhXyPAGYuGsncqGDSqkzHOJblubpqhERESku+j2CVZ2djYlJSX6siy7xd0pKSkhOzs73aHIXibDd+3BGtw3iw1eSLhSDxsWERHp7bp8iKCZzQJ+DYSBP7n7bj0teOTIkaxdu5YtW7Z0SXyy98rOzmbkyJHpDkP2IvG4k0kD3qwHKxIOURoZRFH1xjRFJiIiIt1FlyZYZhYGfgP8F7AWeMPMHnH39zvaRkZGBmPHju2qEEVEOqw+FieTBuLhXR8dsD1rCP1qP0pDVCIiItKddPUQwUOBZe6+wt3rgXuA07p4nyIiXaI+FifLGvBI1q7rcofT1yuhvjoNkYmIiEh30dUJ1ghgTdLy2qCsiZldZmYLzWyhhgGKSHdW1xAnkyi00INFfuJXW6xME12IiIj0Zmmf5MLd/+Du0919+qBBg9IdjohIq+pjcbKoh8iuk6dkDRgN6FlYIiIivV1XJ1jrgFFJyyODMhGRHqeuIUYmUayFIYJ5gxMPG67YXLyHoxIREZHupKsTrDeA/cxsrJllAmcDj3TxPkVEukR9NEYWDVgLPVgDRyQm46kt0cOGRUREerMunUXQ3aNmdiXwbxLTtP/Z3d/ryn2KiHSVuvp6QuZYxq49WEMH5LPF+xEvUye9iIhIb9blz8Fy98eBx7t6PyIiXa2hrgaAUMauPVh9szNYbQPJrNqwp8MSERGRbiTtk1yIiPQU0bpaAEIt9GABlGcMpk+tHjYsIiLSmynBEhHpoGh96z1YADU5Qylo2LwnQxIREZFuRgmWiEgHxeoTPVjhzJYTrGjeCHKphtryPRmWiIiIdCNKsEREOqixByucmdPieuufmKp9+6bleywmERER6V6UYImIdFCsIdGDFWklwcoetA8AZRuUYImIiPRWSrBERDooXt+YYLU8yUW/YeMAqN60Yo/FJCIiIt2LEiwRkQ6KNdQBkNFKD9bQIcOo9BxiJcV7MCoRERHpTpRgiYh0UDwYIpiR1XKCNahfNmt9EJGK1XsyLBEREelGlGCJiHSQRxuHCLY8i2A4ZGzNGEqfmnV7MiwRERHpRpRgiYh0UDyaGCJokZYTLIDKrOEMqN8A7nsqLBEREelGlGCJiHRUMESQSMuTXADU9R1FttdCdckeCkpERES6EyVYIiIdFUv0YLWVYFGQeBZWtGTlHghIREREuhslWCIiHdXQfoKVNWgsABUblu2JiERERKSbUYIlItJRjT1Y4dYTrMZnYW3frB4sERGR3kgJlohIB4UaahJv2pjkYuiggZR6noYIioiI9FKdSrDM7Odm9oGZLTGzB82sICgvMrMaM1scvOamJFoRkTQKR7dTYzkQav1X5/CCHNb4YMLlehaWiIhIb9TZHqyngMnuPhX4CPhu0rrl7j4teF3eyf2IiKRdRnQ7taGWHzLcqE9mhE2hIfTZvnYPRSUiIiLdSacSLHd/0t2jweKrwMjOhyQi0j1lxKqpD/Vpt15F9nDy6zdBPLYHohIREZHuJJX3YF0CPJG0PNbM3jKz583sqBTuR0QkLTLj1dSH20+w6vqOJoMGqNywB6ISERGR7iTSXgUzexoY2sKq77v7w0Gd7wNR4O5g3QZgtLuXmNkhwENmNsndK1po/zLgMoDRo0d/sqMQEdkDsuLVRMO57dYLDSiCLRAvWUkoXx37IiIivUm7CZa7f6at9WZ2EXAy8Gl392CbOqAueL/IzJYD+wMLW2j/D8AfAKZPn+67Gb+IyB6T4zVEMwa0X2/IvvAhVG5cRv4+6sAXERHpTTo7i+As4DrgVHevTiofZGbh4P0+wH7Ais7sS0QknaKxOH28hnhGXrt1Bwzfh5gbVRuX74HIREREpDtptwerHbcBWcBTZgbwajBj4NHADWbWAMSBy929tJP7EhFJm+31MfKslq0dSLBGDcxnA4XE9SwsERGRXqdTCZa779tK+f3A/Z1pW0SkO6moaaCQWkqz2k+whhdks8gHU1Sxag9EJiIiIt1JKmcRFBHZa5Vvr6WP1RHO6ddu3axImK2RYeRVr9sDkYmIiEh3ogRLRKQDqirLAcjI6duh+ttzR9EvVgr127syLBEREelmlGCJiHTA9orEbaSZeQUdqh/LH5N4s03DBEVERHoTJVgiIh1QX7EZgKz8IR2qnzFwbGK7rZpAVUREpDdRgiUi0gHxyi0A9OnfsQSr79D9AChf/3GXxSQiIiLdjxIsEZEO8O2NPVhDO1R/yNBhVHoOdZv1LCwREZHeRAmWiEgH2PatiZ+5AztUf1RhLmt9EJQVd2FUIiIi0t0owRIR6QCr3kodmZDZ/nOwAAblZbHWhpBVuaaLIxMREZHuRAmWiEgHZNRupSpSAGYdqm9mlGcNJ79uPbh3bXAiIiLSbSjBEhHpgD4NpdRkFu7WNrV5o8n0eqja1EVRiYiISHejBEtEpB3b66IMj2+kNnfk7m3YvwgAL12Z+qBERESkW1KCJSLSjo1lVYy0rcQKinZru8zgWVg1m/UsLBERkd5CCZaISDs2rv6YDIuRNXjcbm2XN6QIgO1bVnVBVCIiItIdKcESEWlH6ZqPABg0+oDd2m5IYX+2eR71pZpJUEREpLdQgiUi0o7YxncByB0xabe2G5qfw0YfABXruiIsERER6YaUYImItCO/7D1KwoMgb/BubTe4bxYbvJCM7Ru6KDIRERHpbjqVYJnZHDNbZ2aLg9fnktZ918yWmdmHZnZC50MVEdnzquqijKn7iNJ+E3Z724xwiLKMQeTWapp2ERGR3iIVPVg3u/u04PU4gJlNBM4GJgGzgN+aWTgF+xIR2aPe+eBD9rENRMYc9om2r84eSm6sHOqrUxyZiIiIdEddNUTwNOAed69z95XAMuDQLtqXiEiX2fr2vwAYetDn2qnZsmje8MSbSg0TFBER6Q1SkWBdaWZLzOzPZtY/KBsBJE+btTYo24WZXWZmC81s4ZYtW1IQjohIarg7fVc9SVloADmjpn2iNiw/SLDK16YuMBEREem22k2wzOxpM3u3hddpwO+AccA0YAPwi90NwN3/4O7T3X36oEGDdndzEZEu886yVRwRXcjmMSdB6JP9PSq7cDQANSWaql1ERKQ3iLRXwd0/05GGzOyPwKPB4jpgVNLqkUGZiEiPUfzU75hqUYYf++VP3Ebe4DFA4mHDOakKTERERLqtzs4iOCxp8Qzg3eD9I8DZZpZlZmOB/YDXO7MvEZE9adX6zRy+6R5W5h1M3piDPnE7g/oXUOp5NOhhwyIiIr1Cuz1Y7fiZmU0DHCgGvgrg7u+Z2b3A+0AU+Lq7xzq5LxGRPWbJvTdwipVRevINnWpnaL9sNvkA8ivWpygyERER6c46lWC5+/ltrLsRuLEz7YuIpMNrC1/nM9vms2zwf7HvAUd1qq3B/bJ4xfszsHpjiqITERGR7qyrpmkXEemR1pVW0ufRrxG1DEaefXOn28vOCFMaHkhO7eYURCciIiLdnRIsEZFAbUOMhX/4OlP4mOrP/pzswlHtb9QB1dlDyItug2h9StoTERGR7quz92CJiOwV3J2H/vxTzq59mNX7XcDoT52bsrbr+wyBWqBqIxSMTlm7PZW7U1G1na0bVlOxZQ01JWuJVZdCXRXUV0H9djLitWCGWeLvgJaRTSg7n1CfAiJ98snMKyR/8BgKh48ls28hmKX5qERERBKUYImIAE88/hCfX/8LVvU/jDEpGBq4k77DoBSo2NCrEqyKqirWfrSYbaveo27zx2SUr2RA7RqGxdYzwCrJb2W7GrKoIxMHQsQxhyzqybKGFuvXkklpeCBVmYOpyx2O9xtBRv9R9BlcxIBh48gbPBrL7tdlx9kR8bhTH41RV1dLQ10N9bXVROtqiDbU0FBbQ6yhhlh9HbF4DHPHPY7h4PFEAx4nMZ+UYaEIoXCEUCQj8TOcQTgSIRyUNf6MBO8jkQxCkQiRcIRwJEw4FMHCYSwUAQt/4me8pZR70k9v9pP2yzqknSS83SS949u7e9L7HeuTI92pTrP2Q2aEDGynmNrYfyiceIlIt6AES0R6vcXvvMOhr3+T0oyhjPrKfAin9ldjRsEIWAWx8nXsjV+B3J3VGzax9r3/ULNmMdkl7zOk+iOK4muZaDsmkN0aGkhJ1ihW5h7Pir4jiBQMp0/hSPoNGkmf/kPIyetHRnZfckLhXZ4ZFo87FdXbqSwrZXt5CdUVW9i+dW1i+vuK9WRVbyCvbhOF1a8xZEspYdv5S3cFeWzLGERF5hAaMgvwrHwsJx/LKSCe2Y9QJBOLZBCOZGLhDGKEiceieLSeeDyKx+qJR6PEovXE66vx+u1YfTXWUE0oWk04WkM4VkNGrIaMeA2Z8Voy47VkU0umN5BFPdnWQPYeuB6fRIOHiRMiRog4IeK2473hGCQSvqT3jeUkvW8sp4X3u5ZBqMPJUc/SwbQoZbbRj/Wn/J1Jh3RuUh4RSQ0lWCLSq20oKSXn/vPItihcfB+h3P4p30fjvVzVJWvom/LW97yauijvL32Hze+/QOb6NxhZtYR9fTVjgqSmxAawqc9+LCk8nswRUxk09kAGjzmAgVm5DPyE+wyFjH55efTLy4ORrfcCxuPO1srtbFm/moqNK6nZWkysbC2RynXk1m6kf81mCrcvJ8+308+qP2E0CTE3aiybWrKpD2VRb9nUh3KIRnLYHh5ARaQP8UgOHsnBI9kQyYJIFhbJxjKyEz8zswlnZBPKyCGckUkoHAl6QgwslHjfuIzhOMRjxKJRPNZAPBYlHvz0WDRIBhtfMTzegMdjEIsSj8cgHgNPvCweA49jHsM9RsgT6y0oM4+Dx5pSouQUqrG3Zucymq3fkYLttC455bDQjjStqbfGknp7knrXLHn7xm121G/OWlloOfnxFhMhayr1Njq4DGshUUyuv1O+32IsnrSn4Kc78aDA3RPXIOj12rGcqDtp/f0UPnoxFaNfoN+g4a0FKiJ7iBIsEem16qIx3vvjZRzvq9h48h0MHzGxS/YzoHAIdZ5BTcnaHplg1TbEeOfdd9n6zr/pu+4l9qt9m0OsDIDt5LAudzLvDz+JfvsezogDDqMwfyiFaYo1FDIG5+cxOH8iTGj9esbjTnlNHVUVpcRrKog21BFrqCMWbSAWrSdMjEjQmxXJyCAUziAUySQ7K4vsPnlk9+lLOCObPDPy9uDxibTk/UWnsM8jZ1D8py+S/d/PkJnVXftKRXoHJVgi0ms9dsfP+HztUyyb+DX2nXF6l+1naEEOG70/mWU942HD7s7Hq9eyauG/sRXPMa5qITMs8Ryv0tAA1g88jLKiIxgx9VjyRk1l/x5470coZOTnZpOfOxzQX/ylZ5t4yFG8suZGjlh8Ha/fdi6HXHUP4UhGusMS6bWUYLXhnRceIPbK76kfdSQFE4+naOKhZGZmpjssEUmBBQue4qQ1v2Bl/qHs+8WfdOm+BvfLYiUDKKra0KX76YyGWJwlS95ky8KHGbThWQ6Mvc/+FqeaHNYUHMzH+3yZEdM/x4DhkxigGftEup0jTv8qr1Ws5rAVt7H4119g0jfuJSMzK91hifRKSrDa0FBVxqDa1Yz66FX46BfUPpjBRxn7sC1/AvHBk+g74gCGFE1k4PCxWA/8C26qeCxKLNpA3J14PE48Hkt674lx5PF4Yux48xmigve2S3lHdeCLnlkHZnDeuULL9a3lMfrW8kLLtVttvMV2Wh/yby2uba2krePfcZt6UlnjOP+k/SVP3NXsDe6714Yn1/TkH0E7LdRrKmu896OlWbqatLyvxrLKym2Me+5rVIbzGfWVv3f57FsDc7N4xQs5oHpFl+5nd1XV1LHklaeoefdRxpa+wCGsA2BtRhEfjb2EwQefzMADZjI+rL+Ei/QEh11wIy/9LcLMFb/iw5uOZ+BFd1M4vCjdYXVLHo8Rbainvr6e+oYo0Wg9Ho/tuJ8xFsPjiXscPR4L7nFMfJeJ+47/W6zZ/7M7fQtoLLMW6iXdc2ihHf+nW3DvpQWVm7YL6ljjfYehUOJuRGssT9wHaY33JBoYoab9JNaHdrS7U92k5WBWUQvabKxjyQfTdM9lEEuz+ydbfN/+FWl7tYWJZGQSCXeDWU87wHzXbyZpM336dF+4cGG6w9iJu7Nx7Qo2LnmGutVvklf6HqMbltGPHTdH13kGG8JDqMgYTH3WAGJ9BmF5g7E+hYRz+pKR3ZeMnFyy+vQjMycPC2cSCoexUKhputxwKIyFjFgsSiwaJCzRKNFYA/Fo4hWLNSRuZm5oIB6tD+rUE4/VJ35G6/FoAx5rwKP1eKweYollYvUQj2LBz1C88WcDFvwMeeJn2KOEPbEc8ShhjxIhSpjEcoQYGcTIICi37vNvSKSj6j3MtrMeZsikPTPr1u3/5ytcHLuP0A82JiY7SJNNJaUsfelhIh89xqSqV+lvlTQQZmXuQcT2O4GiT51JzuBxaYtPRDrvlYd/z9Q3f0idZbHu0B8wedalPfYPwdHa7ZSXbKKqopSqijLqq8uJ1lQSq63AayvwuiqsvpJQfRXhhipC0VpCsTrC8ToyvI5IvJ4MbyDT68iggUzqyfZ6Mi2a7kOT3fCX6AkMOutXnDy1ew3pNrNF7j69ebl6sNphZgwbNY5ho3Z84fB4nK3rl7OxeCkV6z/Ct64gd/tqcus2M7ByLf3Ly8ix+jRGvauoh2iwCDEiNBAhZmGiZBCzMDHLIGYRYhYhbhHioQjxUB4NoQj1loGHMoiHM/BQBEKZifWWWI6HEj/dIom/rlgo+KtHqOkvHo0vT54JK3mGqeSZocx26sloW/uJnUFL3RvNtvbWVuxc2EK5t7HU8k7bi6X1Om3tucUyb7F0J81nvmr6W1Py6fcWyprVs+SYW+l9M7zdmb5ai6e1GcB2WW7adwv/ipr9dTF/3yMYtYeSK4DteUWEyuOwrRgGjd9j+3V3lq9eQ/F/7idv5b85sG4Rx1o9leRSXDiTrZNPZuxhp7B/F8yeKCLpccRpX6V4/Azq//EVprx+HR+/+ScaDvs644/9EuGM9N3qEK2roWLbZqpKN7K9bAt15ZtpqNpKvGoroZpSwrXbyKzfRk60jNxYBfleQQ51FEKbE+fUeQbbLYcay6HecmgIZRELZRIN51EXyiIWTrzi4Sw8lIVHsvBwFhbOxILnxlkoDI3PhguHwSJYKAShSNM6C4UwCzV2EDVJntGRpvee9D6pXuNonaQZIXf8h+1J2+38zLemDpHk0UBJ2+zY5473FjxHz4N67jsek5Bcf+fn0AHEk+L2nfaR/KiFxD52GrsCBP8H+86PaNihre93ra8r7DuRA4am93mGu0MJ1idgoRADR+7HwJH7tbje43HKy8vYXr6F2uoK6qorqK/eTkNNJfG6SohHIe64xxLT53oMj8cTQ+XCiQ9xKJQB4cTDJC0cwUKJB0paJINQKJKYzjcjk0gkk3BGFpGMxM+MzEwiwXJGZhYZGVmEI5lEQiFdbJE0igzeF8rBS5ZhXZxgxeLOknffYdMbDzJ43VNMjb3HvhZna6iQj0ecRv+Dz2TktE8zJaJ7SkX2VkUHHEz9d17jP4/8lqJ3bmX4y1ex7eUfsmrAkdi44xh6wKEMHDP5E0+GEa2rprJ0M5Vlm6ku20ptxRYaKrcS216CVZfsSJYaysiNldPPK8ijhgHAgBbaK/dcKkL9qAr1oyJjIFv77EssewCeU0godwAZuQXk5OaTmZdPVp9+ZOcVkJ1XQJ+8fLIys9HdZtKd6Dt3F7BQiPz+A8jv39KvEBHpjfoNPwA+hup175N7wEkpb7+8up7Fb7zI9ncfo2jLcxxE4n6vdZHRLC26hGGHfYGB+x/OQE1QIdJrZGZE+NSZ36T25Mt5Y8H9xJfcy/iSFygofQLegHqPsDnUn+2RAWzPGEAsnI2FgpEsDuFYLeF4HZFYLeFYLZmxanLjlfTzSnKsnv5AS33f2z2bcutHVTif6kg+2/qMIZrVP0iWCon0HURWv0Hk5A+i74Ch5A8YTH5ONvl7+gSJdBElWCIie8CYkcNZHh9G/5WvkJuC9tydFWvWUvzaY4RWPMPE6tc5Jng2VXHORJbu89+M+tQXGTFiIiNSsD8R6bmyszKZccI5cMI51NXX8d77b1Kx8k1sywdY5QayarfSt3YjkeD+6zAxQjj1lkm9ZdEQyiIayqYuO5+SzAlEswrw7P7QZwCRvEKy+w6kT8FAcgcMpWDAEHL75Kbk95xIT6UES0RkD5g8PJ8nfTynbXwD4vGmmZp2x9pNW/n4zQXULnuBYaWvMTn+EeMsTqXlsq7wCGomnsCoGadQlD+sC45ARPYGWZlZTJp2BEw7It2hiOy1OpVgmdl8oPFmggKgzN2nmVkRsBT4MFj3qrtf3pl9iYj0ZP1zMynOP5zsqgWw7GnY/7Nt1q9viLFs+Uds+vBVYqvfYPC2RRwQ+5iRFiNGiHXZ+/LhyEsZdNBJDD5gJgeE9fcyERGR7qBT/yO7++zG92b2C6A8afVyd5/WmfZFRPYmQw87kw1P/4Hcf36XfpdOhPyRuDtbS0tZt+wdyta8T3zzB+SXvceYuo+ZaOVMBKKEWZ21Px+OvoABE49l+JRjGZ1TkO7DERERkRak5E+elnj62FnA8aloT0Rkb3T2EeO4ceG3+H7Zj+DmSZSTR4Y3MMjqGBTUiWGsi4xh/aAj2TTiIAaPP4KB+x7MPpm6o0FERKQnSNWYkqOATe7+cVLZWDN7C6gAfuDuL7a0oZldBlwGMHr06BSFIyLS/WRFwnzvyit4+Lmp5Cx7jAH1G4hk5xLJKyR3+AEMKprIgJEHMDqzD/ptKCIi0jOZt/NQUzN7Ghjawqrvu/vDQZ3fAcvc/RfBchaQ5+4lZnYI8BAwyd0r2trX9OnTfeHChbt/FCIiIiIiInuQmS1y9+nNy9vtwXL3z7TTcAT4PHBI0jZ1QF3wfpGZLQf2B5Q9iYiIiIjIXmv35wne1WeAD9x9bWOBmQ0ys3Dwfh9gPwieeikiIiIiIrKXSsU9WGcD85qVHQ3cYGYNQBy43N1LU7AvERERERGRbqvde7D2JDPbAqxKdxzNDAS2pjsI2WN0vXsPXeveQ9e6d9H17j10rXuX7ni9x7j7oOaF3SrB6o7MbGFLN6/J3knXu/fQte49dK17F13v3kPXunfpSdc7FfdgiYiIiIiICEqwREREREREUkYJVvv+kO4AZI/S9e49dK17D13r3kXXu/fQte5desz11j1YIiIiIiIiKaIeLBERERERkRRRgiUiIiIiIpIiSrDaYGazzOxDM1tmZt9JdzySOmY2ysyeM7P3zew9M7sqKB9gZk+Z2cfBz/7pjlVSw8zCZvaWmT0aLI81s9eCz/d8M8tMd4ySGmZWYGb3mdkHZrbUzI7QZ3vvZGbXBL/D3zWzeWaWrc/23sPM/mxmm83s3aSyFj/LlnBLcN2XmNnB6Ytcdlcr1/rnwe/xJWb2oJkVJK37bnCtPzSzE9ISdBuUYLXCzMLAb4ATgYnAOWY2Mb1RSQpFgW+5+0TgcODrwfX9DvCMu+8HPBMsy97hKmBp0vL/A252932BbcCX0xKVdIVfA/9y9wOAA0lcd3229zJmNgL4JjDd3ScDYeBs9Nnem9wBzGpW1tpn+URgv+B1GfC7PRSjpMYd7HqtnwImu/tU4CPguwDB97WzgUnBNr8Nvrd3G0qwWncosMzdV7h7PXAPcFqaY5IUcfcN7v5m8L6SxBewESSu8V+Dan8FTk9LgJJSZjYSOAn4U7BswPHAfUEVXeu9hJnlA0cDtwO4e727l6HP9t4qAuSYWQToA2xAn+29hru/AJQ2K27ts3wa8DdPeBUoMLNheyRQ6bSWrrW7P+nu0WDxVWBk8P404B53r3P3lcAyEt/buw0lWK0bAaxJWl4blMlexsyKgIOA14Ah7r4hWLURGJKuuCSlfgVcB8SD5UKgLOkXtz7fe4+xwBbgL8GQ0D+ZWS76bO913H0dcBOwmkRiVQ4sQp/tvV1rn2V9b9u7XQI8Ebzv9tdaCZb0amaWB9wPXO3uFcnrPPEMAz3HoIczs5OBze6+KN2xyB4RAQ4GfufuBwHbaTYcUJ/tvUNw781pJJLq4UAuuw4xkr2YPsu9g5l9n8StHXenO5aOUoLVunXAqKTlkUGZ7CXMLINEcnW3uz8QFG9qHFIQ/NycrvgkZY4ETjWzYhJDfY8ncY9OQTCsCPT53pusBda6+2vB8n0kEi59tvc+nwFWuvsWd28AHiDxeddne+/W2mdZ39v2QmZ2EXAycK7veHhvt7/WSrBa9wawXzAbUSaJm+keSXNMkiLBPTi3A0vd/ZdJqx4BLgzeXwg8vKdjk9Ry9++6+0h3LyLxOX7W3c8FngO+EFTTtd5LuPtGYI2ZjQ+KPg28jz7be6PVwOFm1if4nd54rfXZ3ru19ll+BLggmE3wcKA8aSih9EBmNovE8P5T3b06adUjwNlmlmVmY0lMbPJ6OmJsje1IBqU5M/sciXs3wsCf3f3G9EYkqWJmM4EXgXfYcV/O90jch3UvMBpYBZzl7s1vsJUeysyOBa5195PNbB8SPVoDgLeA89y9Lo3hSYqY2TQSE5pkAiuAi0n8QVGf7b2Mmf0YmE1i+NBbwKUk7sXQZ3svYGbzgGOBgcAm4EfAQ7TwWQ6S7NtIDBOtBi5294VpCFs+gVau9XeBLKAkqPaqu18e1P8+ifuyoiRu83iieZvppARLREREREQkRTREUEREREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERLoZMysyMzezSLpjkd7BzN4zs2PTHYeIyN5ACZaIiPR4ZjbXzKqCV72ZNSQtP5Hu+Lo7d5/k7gtS2aaZjTCzh82s1MzWmtnlqWxfRKS7MndPdwwiInsVM4u4e7QT2xcBK4GMzrTTW5nZHGBfdz+vhXWdujZ7Uk+KtSVm9hzwNvBtYCLwHHCmuz+X1sBERLqYerBERFLAzIrN7H/MbAmw3cwiZna4mf3HzMrM7O3kIVhmtsDM/q+ZvW5mFcFf+ge00vbFZrbUzCrNbIWZfbXZ+tPMbHHQznIzmxWU55vZ7Wa2wczWmdlPzCzcznGMM7NnzazEzLaa2d1mVpC0rtTMDg6Wh5vZlsbjMrNTg6FmZcHxTWh2fq41syVmVm5m880se/fP9O5r5dq4me2bVOcOM/tJ0vLJwTktC67h1A7u69igt+Z7wfkrNrNzk9afZGZvBddqTZAMNq5rHBr6ZTNbDTwblP/DzDYG5+0FM5vULO7fmtkTQW/dy2Y21Mx+ZWbbzOwDMzuog+foMx05xg6ehzzgWOBGd29w97eB+4BLUrUPEZHuSgmWiEjqnAOcBBQAQ4DHgJ8AA4BrgfvNbFBS/QtIfOEcBkSBW1ppdzNwMtAPuBi4OSnJORT4G4leggLgaKA42O6OoN19gYOAzwKXtnMMBvxfYDgwARgFzAFw9+XA/wB3mVkf4C/AX919gZntD8wDrgYGAY8D/zSzzKS2zwJmAWOBqcBFLQZgNjNIbFp7zWznGFrSdG3a6xUKEpI/A18FCoHfA4+YWVYH9zUUGAiMAC4E/mBm44N120lc94IgnivM7PRm2x9D4tyfECw/AewHDAbeBO5uVv8s4AfBPuuAV4J6A0kkNb/sYNwtMrPvtHU9Wtus2c/G95M7E4uISE+gBEtEJHVucfc17l4DnAc87u6Pu3vc3Z8CFgKfS6p/p7u/6+7bgR8CZ7XUw+Tuj7n7ck94HngSOCpY/WXgz+7+VLCfde7+gZkNCfZ1tbtvd/fNwM3A2W0dgLsvC9qqc/ctJL6cH5O0/o/AMuA1Eonh94NVs4HHgm0bgJuAHOBTzc7PencvBf4JTGslhpfcvaCN10ttHUMrkq9Ney4Dfu/ur7l7zN3/SiJxOXw39vfD4Bw+TyLRPgvA3Re4+zvBtVpCIik9ptm2c4JrVhNs82d3r3T3OhLJ7oFmlp9U/0F3X+TutcCDQK27/83dY8B8Esn1J+buP23rerSyTSXwMvBDM8sO/iBwJtCnM7GIiPQESrBERFJnTdL7McAXm/2lfyaJpKSl+quADBK9DjsxsxPN7NVgeF4ZicSpsd4oYHkLsYwJ2tuQtP/fk+gFaZWZDTGze4IhhRXAXS3E9EcSPRG3Bl/6IdHjtaqxgrvHg+MbkbTdxqT31UBeW7Gk2Jr2qzQZA3yr2bUbReIYO2JbkDQ3WtW4rZkdZmbPBUMry4HL2fX8NsVqZmEz+6klhn5WsKN3MnmbTUnva1pY3pPnOdm5JHor1wC/I/FvaW2aYhER2WOUYImIpE7yrEFrSPRQJf+1P9fdf5pUZ1TS+9FAA7A1ucFgWNr9JHqEhgQ9Bo+zY+jVGmBcC7GsIdHrMjBp//3cfVILdZP9b3AcU9y9H4meuKZhXsG9Nb8Cbgfm2I77xtaTSEwa61lwfOva2d8uzOwo2zEDYEuvo9pvZRfNZ3SqZufelKFJ79eQuHco+dr1cfd5HdxXfzPLTVoeTeL8APwdeAQY5e75wFx2HkbXPNYvAacBnwHygaKgvPk2XSa4n6zV69Hadu6+yt1PdvdB7n4YiaTw9T0Vt4hIuijBEhHpGncBp5jZCUEvRHYwAcLIpDrnmdnE4H6mG4D7gmFdyTKBLGALEDWzE0ncS9XoduBiM/u0mYUsMTX2Ae6+gcRQwl+YWb9g3Tgzaz4crbm+QBVQbmYjSNzblezXwEJ3v5TE0Le5Qfm9wElBHBnAt0gkeP9p70Q15+4vunteG68Xd7fNFiwGvhRcm1nsPEzvj8DlQW+TmVmuJSan6AtNE0vc0U77PzazzCAZPBn4R1DeFyh199rg/rkvtdNOXxLnsYREQvi/u3GMKeHu/9vW9WhtOzObYGZ9g/NwHol/t526H0xEpCdQgiUi0gXcfQ2JnofvkUiO1pBIVpJ/795JYiKKjUA28M0W2qkMyu8FtpH4Qv5I0vrXCSa+AMqB59nRk3QBiQTt/WDb+9h5iGJLfgwcHLT1GPBA4wozO43EJBVXBEX/DRxsZue6+4ckertuJdELdwpwirvXt7O/dLmKRIxlJIayPdS4wt0XAl8BbiNx3pax84Qco0jcX9SajcF260lMSHG5u38QrPsacIOZVQLXk7iubfkbiSGG60hcx1fbO7Bu5ARgBYlzcTkwK7ivT0Rkr6bnYImIpIGZLQDucvc/pTsW6bhgVsS3ganBZB7N1x9L4rqObL5ORER6h0i6AxAREekpgh65Ce1WFBGRXktDBEVEehkzm9vKhAVz299aeiIzG93GRBWj0x2fiMjeREMERUREREREUkQ9WCIiIiIiIinSre7BGjhwoBcVFaU7DBERERERkTYtWrRoq7sPal7erRKsoqIiFi5cmO4wRERERERE2mRmq1oq1xBBERERERGRFFGCJSIiIiIikiJKsERE2hCLa6ZVERER6bhudQ9WSxoaGli7di21tbXpDkV6mOzsbEaOHElGRka6Q5Eean1ZDWf86t98Y0Zfzjvp0+kOR0RERHqAbp9grV27lr59+1JUVISZpTsc6SHcnZKSEtauXcvYsWPTHY70UG+sLOEhv4Zhb5TCCVsgkpnukERERKSb6/ZDBGtrayksLFRyJbvFzCgsLFTPp3RKxeolDLNSAEo/fjXN0YiIiEhP0O0TLEDJlXwi+ncjnVVbvrnpffn7z6QxEhEREekpekSCJSKSDl5TvuP9pvfSGImIiIj0FEqwOsDM+Na3vtW0fNNNNzFnzpz0BZTk1Vdf5bDDDmPatGlMmDChKa4FCxbwn//85xO3u2rVKg4++GCmTZvGpEmTmDt3booiFuk5rC6RYC1jNNkVK9IcjYiIiPQE3X6Si+4gKyuLBx54gO9+97sMHDgwZe26O+5OKPTJ89wLL7yQe++9lwMPPJBYLMaHH34IJBKsvLw8PvWpT32idocNG8Yrr7xCVlYWVVVVTJ48mVNPPZXhw4d/4lhFeppwfQUAxdkTOLr2OYjHIBROc1QiIiLSnakHqwMikQiXXXYZN9988y7rtmzZwplnnsmMGTOYMWMGL7/8MgBz5szhpptuaqo3efJkiouLKS4uZvz48VxwwQVMnjyZNWvW8O1vf5vJkyczZcoU5s+fDyQSpGOPPZYvfOELHHDAAZx77rm47/o8ns2bNzNs2DAAwuEwEydOpLi4mLlz53LzzTczbdo0XnzxxTbjPP/88zniiCPYb7/9+OMf/whAZmYmWVlZANTV1RGPx1s8N7fccgsTJ05k6tSpnH322QCUlpZy+umnM3XqVA4//HCWLFnStK8LL7yQo446ijFjxvDAAw9w3XXXMWXKFGbNmkVDQwMAN9xwAzNmzGDy5Mlcdtlluxx3PB6nqKiIsrKyprL99tuPTZs2tXUZRXZbRn0FcYzSgslkUg/la9IdkoiIiHRzPaoH68f/fI/311ektM2Jw/vxo1MmtVvv61//OlOnTuW6667bqfyqq67immuuYebMmaxevZoTTjiBpUuXttnWxx9/zF//+lcOP/xw7r//fhYvXszbb7/N1q1bmTFjBkcffTQAb731Fu+99x7Dhw/nyCOP5OWXX2bmzJk7tXXNNdcwfvx4jj32WGbNmsWFF15IUVERl19+OXl5eVx77bUAfOlLX2o1ziVLlvDqq6+yfft2DjroIE466SSGDx/OmjVrOOmkk1i2bBk///nPW+y9+ulPf8rKlSvJyspqSnh+9KMfcdBBB/HQQw/x7LPPcsEFF7B48WIAli9fznPPPcf777/PEUccwf3338/PfvYzzjjjDB577DFOP/10rrzySq6//noAzj//fB599FFOOeWUpn2GQiFOO+00HnzwQS6++GJee+01xowZw5AhQ9q9jiK7IytaSW0oFyvcFzZC/daVZPYvSndYIiIi0o2pB6uD+vXrxwUXXMAtt9yyU/nTTz/NlVdeybRp0zj11FOpqKigqqqqzbbGjBnD4YcfDsBLL73EOeecQzgcZsiQIRxzzDG88cYbABx66KGMHDmSUCjEtGnTKC4u3qWt66+/noULF/LZz36Wv//978yaNavFfbYV52mnnUZOTg4DBw7kuOOO4/XXXwdg1KhRLFmyhGXLlvHXv/61xR6iqVOncu6553LXXXcRiUSajun8888H4Pjjj6ekpISKikRifOKJJ5KRkcGUKVOIxWJN8U6ZMqXp+J577jkOO+wwpkyZwrPPPst77+06ucDs2bObevvuueceZs+e3eY5F/kk+sSrqIv0JW9I4llq5Rt0H5aIiIi0rdM9WGY2CvgbMARw4A/u/mszmwN8BdgSVP2euz/emX11pKepK1199dUcfPDBXHzxxU1l8XicV/9/e/cdHld1J/7/fe4UjUZtNKPeLNnYxkUuuIIx2A51AyF02EAAb2BJQtiQbCGFhJAnv90ku8l3E9iwsBAIS8DgJIYNiekOmIBBbthG7pYlWb2X0dR7fn/MWEiy5KaRRpI/r+fRo1vP+YyurjSfOeee88EHOByOfsdardZ+3er6zseUlJR0UvUd7aIHke5/oVBo0OOmTJnCl7/8Ze68804yMzNpbm4+5pih4oRjhzMfuJ6Xl8fs2bN59913ue666/rte+WVV3jnnXf4v//7P370ox+xY8eOk3pNhmFgs9l66zIMg1AohM/n4ytf+QplZWUUFhby4IMPDjqX1bnnnsv+/ftpbGxk3bp1fPe73z1uvUKcjiTdjd+SjCe3GFMruhsOkhnvoIQQQggxpsWiBSsEfFNrPRNYCnxVKTUzuu/nWut50a9hJVdjgdvt5oYbbuCJJ57o3XbJJZfwy1/+snf9aFe44uJitmzZAsCWLVs4dOjQoGUuX76cNWvWEA6HaWxs5J133mHx4sUnHdMrr7zS+4zSvn37sFgsuFwuUlJS6OzsPGGcAC+99BI+n4/m5mY2bNjAokWLqK6upqenB4DW1lY2btzI9OnT+9VtmiZVVVWsXLmSH//4x7S3t9PV1cXy5ct59tlngcizZBkZGaSmpp7U6zmaTGVkZNDV1cXatWsHPU4pxdVXX803vvENZsyYgcfjOanyhTgVybqLgC2FwiwX9aQTbqmMd0hCCCGEGOOGnWBprWu11luiy51AOZA/3HLHqm9+85s0NTX1rv/iF7+grKyMOXPmMHPmzN7hzK+99lpaWlqYNWsWDz/8MNOmTRu0vKuvvpo5c+Ywd+5cVq1axU9+8hNycnJOOp5nnnmG6dOnM2/ePG699VaeffZZLBYLV155JX/4wx96B7kYKk6IdPNbuXIlS5cu5YEHHiAvL4/y8nKWLFnC3LlzufDCC/nHf/xHSktLAfjSl75EWVkZ4XCYW265hdLSUubPn8+9996Ly+XiwQcfZPPmzcyZM4f777+fp59++qRfj8vl4s4772T27NlceumlLFq0qHffo48+2i/uG2+8kf/93/+V7oFiRJimxomPoCWJ7BQHNToDa2d1vMMSQgghxBinBhuZ7rQLU6oYeAeYDXwDuB3oAMqItHK1DnLOXcBdAEVFRQsOHz7cb395eTkzZsyIWYyivwcffLDfYBgTjfz+iNPlC4ap+mEpKutszrrn97z2wys5x9hHxnd2xzs0IYQQQowBSqnNWuuFA7fHbJALpVQy8Dvg61rrDuBXwBRgHlAL/Mdg52mtH9NaL9RaL8zMlKcbhBBjQyBskkAArJHnBrsdubiCDZG5sIQQQgghhhCTYdqVUjYiydWzWuvfA2it6/vsfxz4YyzqErH14IMPxjsEIcakYMjErkL4LXYAAsn5WLvD0FkHaRO2F7QQQgghhmnYLVgqMgzcE0C51vpnfbbn9jnsamDncOsSQojREgib2AmCJTqap6sIALNVBroQQgghxNBi0UVwGXArsEoptS369TfAT5RSO5RSHwMrgftiUJcQQoyKQMjETqi3i6AjYxIAnfUH4hmWEEIIIca4YXcR1FpvBNQgu8b9sOxCiDNXJMEKoqIJ1tHJhrsbK0mLZ2BCCCGEGNNiNsiFEEJMJP5gCLsK97ZgZXvctOpkgjIXlhBCCCGOQxKsk7Ru3TqUUuzePfQQzRUVFcyePTtmde7Zs4cVK1Ywb948ZsyYwV133QVEJgn+059Ov4HQ5/OxePFi5s6dy6xZs/j+978fq5CFmDCCgcik10dbsPJcidRqD6rjSDzDEkIIIcQYJwnWSXruuec4//zzee655wbdHwqFhl1HONx/+Od7772X++67j23btlFeXs7XvvY1YPgJVkJCAm+99Rbbt29n27ZtrF+/ng8++GBYsQsx0YSiCZZhcwCQ7rRRhwd7d208wxJCCCHEGCcJ1kno6upi48aNPPHEEzz//PO92zds2MDy5cv53Oc+x8yZM4FIovWFL3yBGTNmcN111+H1egF48803mT9/PqWlpaxevRq/3w9AcXEx//Iv/8I555zDiy++2K/e2tpaCgoKetdLS0sJBAJ873vfY82aNcybN481a9bQ3d3N6tWrWbx4MfPnz+ell14C4KmnnuKqq65ixYoVTJ06lR/84AcAKKVITk4GIBgMEgwGiQwG2d+LL77I7NmzmTt3LhdccAEQaf264447KC0tZf78+bz99tu9dX3+85/n4osvpri4mIcffpif/exnzJ8/n6VLl9LS0gLA448/zqJFi5g7dy7XXntt78+nr6VLl7Jr167e9RUrVlBWVnbS10uIWAj5jyZYkRYspRSd9myS/fXHO00IIYQQZ7iYzIM1av58P9TtiG2ZOaVw+b8d95CXXnqJyy67jGnTpuHxeNi8eTMLFiwAYMuWLezcuZOSkhIqKirYs2cPTzzxBMuWLWP16tX813/9F/fccw+33347b775JtOmTeOLX/wiv/rVr/j6178OgMfjYcuWLcfUe99997Fq1SrOO+88LrnkEu644w5cLhcPPfQQZWVlPPzwwwB8+9vfZtWqVTz55JO0tbWxePFiLrroIgA+/PBDdu7cidPpZNGiRXz2s59l4cKFhMNhFixYwP79+/nqV7/KkiVLjqn/oYce4tVXXyU/P5+2tjYAHnnkEZRS7Nixg927d3PJJZewd+9eAHbu3MnWrVvx+XycddZZ/PjHP2br1q3cd999/OY3v+HrX/8611xzDXfeeScA3/3ud3niiSd6W+aOuvHGG3nhhRf4wQ9+QG1tLbW1tSxceMwk2UKMqHCwf4IF4HXmktzRAYFusCfFKzQhhBBCjGHSgnUSnnvuOW666SYAbrrppn7dBBcvXkxJSUnvemFhIcuWLQPglltuYePGjezZs4eSkhKmTZsGwG233cY777zTe86NN944aL133HEH5eXlXH/99WzYsIGlS5f2tnz19dprr/Fv//ZvzJs3jxUrVuDz+aisjDyIf/HFF+PxeEhMTOSaa65h48aNAFgsFrZt20Z1dXVvEjbQsmXLuP3223n88cd7uy9u3LiRW265BYCzzz6bSZMm9SZYK1euJCUlhczMTNLS0rjyyiuBSMtbRUUFEEnCli9fTmlpKc8++2y/lqqjbrjhBtauXQvACy+8wHXXXTfoz0eIkRQO9ABgiXYRBDBT8iIL7fIclhBCCCEGN75asE7Q0jQSWlpaeOutt9ixYwdKKcLhMEopfvrTnwKQlNT/U+yBXe0G63o30MAy+srLy2P16tWsXr2a2bNnD5oIaa353e9+x/Tp0/tt37Rp0wnjcblcrFy5kvXr1x8zQMejjz7Kpk2beOWVV1iwYAGbN28+7utISPj0k37DMHrXDcPofUbt9ttvZ926dcydO5ennnqKDRs2HFNOfn4+Ho+Hjz/+mDVr1vDoo48et14hRkI4GPkww+iTYFlcBXAEwm1VWDKnxSs0IYQQQoxh0oJ1AmvXruXWW2/l8OHDVFRUUFVVRUlJCe++++6gx1dWVvL+++8D8Nvf/pbzzz+f6dOnU1FRwf79+wF45plnuPDCC09Y9/r16wkGgwDU1dXR3NxMfn4+KSkpdHZ29h536aWX8stf/hKtNQBbt27t3ff666/T0tJCT08P69atY9myZTQ2NvZ2+evp6eH111/n7LPPPqb+AwcOsGTJEh566CEyMzOpqqpi+fLlPPvsswDs3buXysrKYxK74+ns7CQ3N5dgMNhbzmBuvPFGfvKTn9De3s6cOXNOunwhYuVoF8G+LViJ0cmGOxoq4hGSEEIIIcYBSbBO4LnnnuPqq6/ut+3aa68dcjTB6dOn88gjjzBjxgxaW1v58pe/jMPh4Ne//jXXX389paWlGIbB3XfffcK6X3vttd5BJi699FJ++tOfkpOTw8qVK/nkk096B7l44IEHCAaDzJkzh1mzZvHAAw/0lrF48WKuvfZa5syZw7XXXsvChQupra1l5cqVzJkzh0WLFnHxxRdzxRVXAPC9732Pl19+GYB/+qd/orS0lNmzZ3Peeecxd+5cvvKVr2CaJqWlpdx444089dRT/VquTuSHP/whS5YsYdmyZf2Supdffpnvfe97vevXXXcdzz//PDfccMNJly1ELJnRFiyb/dMEKy27CFMrehplLiwhhBBCDE4dbfUYCxYuXKgHjhZXXl7OjBkz4hTR+PbUU0/1GwzjTCS/P+J0/fnlNVy+5S46b1pHytkrAdhT14nrV7PxF6+i6I5fxzlCIYQQQsSTUmqz1vqYkdikBUsIIQahQ5EugraET1uwcl0OarUHo6MmXmEJIYQQYoyTBGsCu/3228/o1ishhuNoF0Gr3dm7LdVho0FlkOCVyYZjrarFy+66jniHIYQQQgzbuEiwxlI3RjF+yO+NGJZwJMGy2Po/Y9iVkE1KoB7k9ytmtNZc9+hfue4/X6etsyve4QghhBDDMuYTLIfDQXNzs7xZFqdEa01zczMOh+PEBwsxmGgLlrL2T7D8SXk4tA96WuMR1YS0q6aD+g4/a23fJ+k/p0FnXbxDEkIIIU7bmJ8Hq6CggOrqahobG+MdihhnHA4HBQUF8Q5DjFM62oLFgARLp+ZDK9BxBJzu0Q9sAtrX0EkWrZxtVEEI2PMnWLg63mEJIYQQp2XMJ1g2m42SkpJ4hyGEONOEogmWpX+CZfcUwmHwNVfiyCmNQ2ATT2VzD/Mt+z/dUPGeJFhCCCHGrRHvIqiUukwptUcptV8pdf9I1yeEELGgwoHIwoAWrJTMYgA66itGN6AJrLLFy+KEakwM3tIL0dUfxjskIYQQ4rSNaIKllLIAjwCXAzOBm5VSM0eyTiGEiIkhugi6swsIagu+JplsOFYau/wU2dvxJXj4OFwEbVUQ9MU7LCGEEOK0jHQL1mJgv9b6oNY6ADwPXDXCdQohxLCpcAATBUb/ntR57mTqtBuzrSpOkU08bd4AWbRiJmVx0MxFoaH1ULzDEkIIIU7LSCdY+UDfdyHV0W29lFJ3KaXKlFJlMpCFEGKsMMIBgthAqX7bs1MSqMWDtUsmG46VVm8Aj27FkprLIZ0b2di8//gnCSGEEGNU3Idp11o/prVeqLVemJmZGe9whBACAMP0E1K2Y7ZbLQat1kwSe2Qo8Vhp8wZxhVtIcOdTbUiCJYQQYnwb6QTrCFDYZ70guk0IIcY0IxwgqOyD7vM6ckgLNoJpjnJUE08obOL1+UkKtWKk5JCenkG7xS0JlhBCiHFrpBOsj4CpSqkSpZQduAl4eYTrFEKIYTPM4KAtWADB5HyshKC7YZSjmnjae4J46Ig8d5WcxSSPk0qVB80H4h2aEEIIcVpGNMHSWoeAe4BXgXLgBa31rpGsUwghYsFiBggbgydYhisygbXZVj2aIU1Ird4gbtUZWXFmMMmTxJ5gFlpasIQQQoxTI/4Mltb6T1rraVrrKVrrH410fUIIEQsWHSA0RBdBhyfS87lT5sIatjZvgPTeBMtNkdvJ3lA2qrsRetriGpsQQghxOuI+yIUQQoxFVjOAaQyeYKXmFAPQ2VgxegFNUG3eIC66IiuJ6RS5nRzW2dGdh+MXmBBCCHGaJMESQohBWHWQ8BAJVlZWLt06gWCTJADD1eoN4FJHEyw3RR4nVTorurMibnEJIYQQp0sSLCGEGIRVD92ClZceSQJUuyRYw9XmDZJ+tAXL6aYgPVESLCGEEOOaJFhCCDEIqw5iWoboIuiwUauycHTJIBfD1dYTwG10oa2JYEvEabeSkJxOtyVNEiwhhBDjkiRYQggxCJsOoodowQJod+Th8teA1qMY1cTT6g2SafWiEtN7txW6E6kzsiXBEkIIMS5JgiWEEAOEwiZ2gughWrAAAsmFOHQPeFtGMbKJp80bIMPSDU5377Yit5MKM0sSLCGEEOOSJFhCCDFAIGxiVyG01TH0Qa5JAGhJAoalzRvErbqgbwtWupM9AQ+6rRLMcByjE0IIIU6dJFhCCDFAIGSScIIWLEf2ZAA6amVC3OFo9QZJo3+CVeR2ctjMQpkh6DgSx+iEEEKIUycJlhBCDBAIRboIYkkY8hhX3lkAdNYdGK2wJqR2b4AUs7NfF8ECdyKVMpKgEEKIcUoSLCGEGMAfMrETQlmHbsHKy8qiRScTbD40ipFNPK3eAE6zAxL7P4MlQ7ULIYQYryTBEkKIAfzBMAkEwTp0C9bR+ZqMtspRjGxi8QXDWINdWHS4XwtWbloijcpDWFkkwRJCCDHuSIIlhBADBIIBDKUxjpNgOWwWGq05OL0yF9bpau8Jkqaikwz3eQbLYihy0pNpscpQ7UIIIcYfSbCEEGKAoK87smB3Hve4rsQ8XIF6MM1RiGriaekOkM7RBMvdb19hupNqJMESQggx/kiCJYQQAwS8nQAYCSnHPS6YUoSNIHTWjkZYE05Ld4B0FflZ9+0iCFDodnIglCEJlhBCiHFHEiwhhBgg2BN5029LTDrucRZ3MQABGejitLR0B3BxbBdBgEJ3IvsCGeBtBl9HHKITQgghTs+wEiyl1E+VUruVUh8rpf6glHJFtxcrpXqUUtuiX4/GJFohhBgFQd/RBOv4LVhJ2ZGh2tuO7B3xmCaiVm+ADBVNnpIy++2LjCQY3dZ2eJQjE0IIIU7fcFuwXgdma63nAHuBb/XZd0BrPS/6dfcw6xFCiFET6m3BSj3ucZ6CKZha4a0/OBphTTjNXQE8qh1tWMHh6revMN0pc2EJIYQYl4aVYGmtX9Nah6KrHwAFww9JCCHiK+yLdFuzn6AFqyDDRQ0ezGZJsE5HqzdArrUL5cwAo/+/oyK3JFhCCCHGp1g+g7Ua+HOf9RKl1Fal1F+UUstjWI8QQowoMxAZRdCRfPwEKyslgSqdja1T5sI6HS3dAXItnZCcecw+l9OGmeCix5IiCZYQQohxxXqiA5RSbwA5g+z6jtb6pegx3wFCwLPRfbVAkda6WSm1AFinlJqltT7mSWWl1F3AXQBFRUWn9yqEECKGtD/SgmVzHD/BMgxFa0IuM3u2jEZYE05LdwCP6oCk/GP2KaUodDup786hWBIsIYQQ48gJEyyt9UXH26+Uuh24AviM1lpHz/ED/ujyZqXUAWAaUDZI+Y8BjwEsXLhQn2L8QggRc9ofacFS9uQTHutNKiSt7Q0IdIP9+KMOiv5augO4aYek+YPuL3InUtmZKQmWEEKIcWW4owheBvwz8DmttbfP9kyllCW6PBmYCshDCkKIcUEFj040fOKEyXQVA6AlCThlde09pIZbISlj0P2F6U72BDzotkoww6McnRBCCHF6hvsM1sNACvD6gOHYLwA+VkptA9YCd2utW4ZZlxBCjAoj6CWMAdaEEx5rz5wCQHfdgZEOa0LxBkKonhbs2g9pg4+PVORxciichQoHZDJnIYQQ48YJuwgej9b6rCG2/w743XDKFkKIeDGCXnpUIslKnfDYtNzIn8GOmr0kzx3pyCaOmjYfeSr6uVvqsc9gQaQF67W+IwkOkYgJIYQQY0ksRxEUQogJQQW78avEkzo2JyePDu3E3yi9oE9FbXsPeaopsjJE4lQoQ7ULIYQYhyTBEkKIAWyhToIW50kdW+hJolJnYbRVjGxQE0xtm4881RxZSSsc9JiC9ERqtAcTA1oPj2J0QgghxOmTBEsIIQZICrfTY08/qWOTE6zUGTkkdleNcFQTS017D/mqCW1JGHKQC4fNgic1iTZblrRgCSGEGDckwRJCiD601qSa7QROMsEC6EzMJ91fC6Y5gpFNLLVtPqbaGlHpk+A4z7oVpjs5onKg9dAoRieEEEKcPkmwhBCij55gmHQ6CSe6T/ocf+okbARlpLtTUNHczVSjFjKmHfe4IreTQyGPdBEUQggxbkiCJYQQfbR7/aTTiU70nPQ5FncJAKFmGejiZFXUt5EbrjlhglXgjsyFRXdDZDJnIYQQYoyTBEsIIfpob2nCqkyM5MGfCxqMMzsyF1ZHzb6RCmtCaekOkNxThYXwCROswvREKs2jIwlKK5YQQoixTxIsIYToo62pDgCHK/ukz/HkTyGkDbrr9o9UWBPK7roOSlX0maqc0uMeW9R3qPY2SbCEEEKMfZJgCSFEH10tkQQrJf3kE6zCzDRqtIewdBE8Kduq2phrHEDbnJA147jHFrqdVMlcWEIIIcYRSbCEEKKPQGs1AGlZg8/NNJicVAdVZGPvrBypsCaUbZVtnGs/gMqbD4bluMdmpzrosqThN5ySYAkhhBgXJMESQog+jI5IkmTzFJ/0ORZD0WzPI6XnyAhFNXGEwiblBw8xzTwAJRec8HiLochPd9JozZEESwghxLggCZYQQvRh66iiQ6VCQsopnedNKiQl3Ab+zpEJbILYWtXGOYEtGGg466KTOqcgPZEqsmWQCyGEEOOCJFhCCNFHck8NrQm5p3yedk2KLEgry3H9cXsNV1vfx0zJhbz5J3VOkdvJ/oA78rPVemQDFEIIIYZJEiwhhIjyBcNkhurwJxWc8rn2zMhQ7d76A7EOa8Lo9AV5f+t2lhvbMebedMLnr44qdDvZF8yAUA90NYxwlEIIIcTwSIIlhBBR1Q3NTFJ1mJ7jz800mOScswDorJW5sIby7KZKvhj6HYYyYNGXTvq8wvQ+Q7VLC6EQQogxThIsIYSIOrJ3KxalcRbNO+VzMzIy6dIOAi1VsQ9sAmjs9PP+hj/xt9a3UIv+DtJOvpWwqO9Q7TIXlhBCiDFuWAmWUupBpdQRpdS26Nff9Nn3LaXUfqXUHqXUpcMPVQghRlZHxVYAcqcvOuVzc1xOarUH2qtjHda4FzY1D655l++bjxBOzoXPPHBK5xe6E6nWmZEVacESQggxxlljUMbPtdb/3neDUmomcBMwC8gD3lBKTdNah2NQnxBCjAhHwza6VRJJnpJTPjcrJYG/4mF6d80IRDZ+hU3ND194lzsr/5kiawvW69ed8giNaYk2bAlOOmwZpEqCJYQQYowbqS6CVwHPa639WutDwH5g8QjVJYQQwxYImUzxbqc6ZR4Yp/6n0WYxaLFkkeSrj31w41R1q5cHf/U0qz9ZzWxLJdYbn4ZJ551yOUopCtITaTCyoU0mcxZCCDG2xSLBukcp9bFS6kmlVHp0Wz7Q90GE6ui2Yyil7lJKlSmlyhobG2MQjhBCnLqPy3czWdWgJp172mV0O3JICbVAyB/DyMYffyjMi29v4r3/90UebPg6GU4D69+th+mXn3aZ+a5EqnSGJFhCCCHGvBN2EVRKvQHkDLLrO8CvgB8COvr9P4DVpxKA1vox4DGAhQsXygQnQoi46ChbA0D+0mtPu4xAUi70AB1HwD05RpGNH13+EK++9Rbqo8e5Mvw2VmXinbualMsfBEfqsMouSE9kX4WblaH3IBwCSyx6uI9fWms6/SH8QRONxu20Y7XIuFVCCDEWnPA/lNb6opMpSCn1OPDH6OoRoLDP7oLoNiGEGHO01uRX/R8HrWcxOX/m6ReUVghNRAa6OEMSrLCp2bzjE6r/+jxFda9xrdpNAButZ32erM9+hxT3qT/PNpj89EQOBd1gC0FnLbgKT3zSBKC15khbD9sP1VO/fyvWhh0kdR7E6asnQzfjoQMLJhVYabek05NajKV4GaUXXkOy+9QnzBZCCDF8w/oIUCmVq7Wuja5eDeyMLr8M/FYp9TMig1xMBT4cTl1CCDFS9uzcwtnmAbZM+8dhlWN3F8IBCLRUYY9NXjEmaa3Zt28PVe89R0blehbr3SwG6hwlHCn9F/JX3U220x3TOgvSnbx7dCTB9qoJm2D5gmG2V7ZyYN9OAgc24mkqY2p4P5eqI1iVCUBA2el0ZONPzCbgKCGkrJgBH+neeqa1v03K9lcIbnuA3ZmfYdLnvk1i0fw4vyohhDizDLePxU+UUvOIdBGsAP4eQGu9Syn1AvAJEAK+KiMICiHGqrr3/pdpWnHWqtuGVU5SZhEA3Q0V2GMR2BhimppPyndQ/8EL5Bx5lVnmXqYBlbbJ7D7rXkouuJmc3GG0/p1AviuRIzojstJWeVqDZYxFobDJjuo2du/4iJ5975DdupmFqpwlqg2ALksabRlzaCm4GveUBVjz5mB3FeMZYiAWHQ6x5+P3OfKXJ1nYuJ6EJ1fSOO0GMj//bxDjpDeWfMEwNa1emhuOEOioJ9DdQdjfhc30o5UVm91KkjMZpzuX7Nwi0tIzQKl4hy2EEIMaVoKltb71OPt+BPxoOOULIcRIC4bCTKn7E3ud8zg7q2hYZWW5XTTpVMITZLLhsKn5ePsWmj56kfza15itDzAbqLBNZdvUf6Do/JspKpwxKrEUpPdNsMb3z7ey2ct7O/fRset1surfZSkfM1+1ANCRkIU3dznd0y8kaepykjOnk3wKiYSyWJk+fznT5y+nbPch9r/4ANfuWUvXz98k8fpHsUy7eKRe1gmFwiaHm7uoPrSH9sqdhOvLSe48QLq/hkyziXzVwmQVOqmyekig1lpIV9pUEvJmkTVtMelTFo2pJDIYNunsCdLZ2UFXVzs93Z1ofxcq6EWHg5gmgMZms5Bgs2FLTMXuTCY5JR2Xy4XVnihJpBDj1Jn9lLAQ4oy37YM3WUQdu2bdO+yyslMd1GgP2e3jNwEIhU0+3r6Z5g/XUFT3OvOpAOBQwtnsnPJNipbfTHHu1FGPy51kR9kcdNo8pLQdHvX6hyMYNik71MyeLRsw9r9OqW8zN6gDWJSmx5pMa875dM2+lOSzP0Oqq4jUGL2pXnh2CdP/6df88oV1XLH/+0z77XV4563G+Tc/ArszJnUMRWtNVbOXfXu207F/E/a6reR7P2EalUxRn46y2Wa4aXUW4E+ez+HUPKzphVhTc3AkubA6U8GSgGmG8ft9dHV14Wuro6flCKHWapI6D5DX9AHZzX+GHZHyWmw5dLpn4Zy0AM9ZizHy50NSRkxfm2lqmrp6aK6roa2xCm/zEQJtNejOeqzeehz+JlKCzWToVjJVG24VPK16AljpUKl0WdLw2dIJOTyoJA/WlCwcrkxS3TmkenKxJGdCat6wB5IRQsSOJFhCiDNaV9lz+LExdcXfDrusnDQH72kPBd21Jz54DAmGTbZt30zzhy9SXPcq50STqgOOWXwy9X5KLriJksz4PlQWmQvLSaM/i5RxMFR7tz/EW58coeKjV8mseZ0V+iPOVa2YGDSlz6Zj2n2kz7mcxLxzSBzBERFTHDa+8cXr+cOH5/D+H7/LbduexLf/DRzX/BImr4hZPR2+ILv27Kdh93twZAuZHTuZqffzGdUNgI8E6lNmcCTzehLzZ5FRMhdH7gxcTjeuYdTrD4XZfqiS6l0f4KvcTErrLqbW7iSz/s3eJ7/bbdl0umdi5szFljODFHcezvQcDKcLDCsYVoKmic/bib+7i47OdjpaG/G11hHqqEd3NWB4G0nwNZEcbMZltpBBO1nRZ+L66lLJdNo89KRm0O2YQrszE5werI4UbInJkJAMNifKYscwQGkIhE0CwQAhXzfhng5CPZ0Eejowezqw+pqx+1tI9LeR4q0hvaWDVOU9pt4Adhpu20hByfRh/DSFELEiCZYQ4ozV4e2htPVN9qcvY1Zy+olPOIHkBCuNRiZJPZ/EILqRFQqbbN6+leZNL1Bc/yqLOATAQcdsyqd/m+LlNzMlY3hdJmMt35VIdV0mk8doC2GXP8TbOyup/vBl8mpfZ4XawpXKS0A5aMm/AN/8z+OYeTlZcejGdvXiKeyd9BjffPpp7un4BSW/uYrArBuwr7ofPFNOqSytNdV1DVTs2EjXoTKSm7YzObCHc1UTAGEM6h2Tacq8jO6SxWSdfR6O7JlMGoFEMsFqYe7UEuZOLQFuRmtNZYuXl/cdpmHfR6jabWR37WZG7W6m1L8N2wcvxxb9SgEGtneFtEG7kUaXxYXXmUlD4tk0pORgS8sl0Z1PalYhaZkFWFJzSLYlkhzzVxmhtaajJ0R5SzvNjTW0N9XR3VJPuL2aG4/8mOo3H6XgSz8fodqFEKdCEiwhxBlr64Z1XKja6TjnppiV6U3MIcHnBV87ONJiVm6s7D1czb63nyH/8DqW6N0AVDhmsHv6/RRf8LdM9kyKc4RDK0hP5EBlOhe0fwCmCUMM9DCafMEwb3xSw55N6ymqfoVL1SZSlRevLZXu4ssJL7wG+5RV5Ixwl7yTMS07hYf+4W7+c/15pH/0c1bv/APmrrV0Fa0kec5VGJPOBXcJWGy95+iAl4bqA9Qe2EF3TTmWxk/I7ipnkq6hUEWmrmy0ZNOSOZ+DRYvImXEezknnkGdPistrVEoxyZPEJM9MWDoTuA3TjAx1/0FdPT0NB/C1NYC3CWuwAzMcwqZM7IZC2RNRCUk4nCkkpXpIycgjLTOfpLQsPIaBJy6vqP9rS3PaSHNmQEEGMKd335Z/fZOzjqxDh36Msk60IXaEGH8kwRJCnLl2rKWLJErO/XzMigwl54GPyFxYYyTBamz3snnDH3DsXMPSwF+ZpoLU2IrYM/2bFF94K8Vx7v53svLTEzkQdAMB6KqH1PjM86S15uPqdv7y3ruk7V7DJfo9rlAt+K1OOksuw1x6C87JF+Icg5MhJyVY+fZV51C++BEeeuNDCvY+zZWH/0pq5ZtApPXJZzgJYcFh9pBAgGwgO3p+k0qnNnkmO3I+T/rUJeTPWkZmcgaZcXtFJ2YYikK3k0J3CcwcH7/rp8pb+kUyyr7Gvvd+z9QLY/eBkRDi9Iy9v/5CCDEKahqbWeDdyOGcS5llS4xZucp1dLLhI5A9K2blniqtNWUf76R+w3+zoOUVLlMtdKpkDhVeTd6KL5E3ZfG4G6GsIN3Jh0fnwmqrHPUEq6HTx8ubK2jY9CKf6f4j9xq7CWOhreBCzKW3kDD9chLGQEvVyZiRm8qPbr2Ixs7lvLu3gbW7y0ho2km6r4pE04tDhVCOVAxnOomeAtyTZlJ41lwyXBnHdKET8XfORTdQ/9H3CWx6AiTBEiLuJMESQpyRdr69hkuUj4zzhpxt4rQkZhTBfgi2VGI78eEx1+4N8Nc3fk/Sx09xXnAThtIcdC2lZslt5C2+hhnWhDhEFRv5rkSq+86FVbRkxOvUWvPBwRZeefcD8g6s4XrjbTJVB11J+fiWfA/HotvwxHiUutGUmZLANQsKYUEhcHW8wxGnyelwsLngGpYf+R+qyjdROGPk7w0hxNAkwToOb1c7WmuSUlzxDkUIEWMpe9fRbHjILl0V03LTsgoIaYOuxgqGP2zGySs/VMn+1x5nVs1aLlc1dKhUDky9g+JL7+GszMmjGMnIKew3F1bFiNbV6Quybkslu9/9A6u6/shDlm1gUXiLL4Jlf0/ylFVj4hkwIY6aefU/0/7L5+h45fswY328wxHijCYJ1nHsfPXXzP/4IfbYp9GcuQRH8SIKZ51LZt7kcde1RgjxqQOHK1kQLGNfyRfwGJaYlp3rSqYON/bmkR/pzh8K8967bxHe9DjLejYwQ/k57JxN1ZJ/pnDZzaTaHCMew2jKSE4gbHHSbs8mrXHviNSxt76T372zhcQdv+U69Qa3qiZ6nBmYC7+BddEdJLsKR6ReIYbLk5HN24VfZGX1rzj44Z+YvPhv4h2SEGcsSbCOI2P6Uj5q+gLuxg9ZfOQ3WGuegr9CKylU26fQnVyM8pTgzJlKUs5UXNmTcKVnYljGx6eaWmvCYZNgMEAg4CcU9BMK+AkFAwQDfsKhAOGgn3DQTygYxAxFljFDEA6gwkG0NiNfponWGkwTEzMywpfWmDqyrNEo0wQ0ChM0ke9olD52LpH+Isms7pfUfrqsGWR7n00aherdHi2LT1cHO1/1LbdvverYek811VZDnHEqOftQxw4n7T/6M9F6kH366DHH7tSDHTjIvoHl9l3Xgywde9yxRw3cpfv9XgwiWpilbhtTVJisZbHtHgiRbmw12kNxR3XMyz6qqqGF7a8+RdGB51jFXnzYOZz/WfIuuodJkxeOWL3xZhiK/PREqsxJpDWUx6zcYNjk1Z21lP3ljyxo/D3fND7CboTpzD0Pzv8PEs/+bL+R9YQYq8654dsc/tk6nOu/Tqh0OdbElHiHFHdmOIyvpwt/jxe/r5ugr5uAr4egv5uQ30vY30M44MUM9BAOBtBmCMwwOhyKvN/R0e9mGMwQ6uiyDqPNPv9pjn37EVk/zj9mhULT971I9EtFS1KDr/e++1Dq0wp6jx1iPwo1oLyj6/roOUfL71OmOs5+3TdGov93+60fu//T1znYT2tonSklTJ1/IYXu8fGcqyRYxzF59lImz14KgK+7gwPlH9K8rwxbw8e4OvdR2PIGrpYu2PfpOQFtoU2l0WlNx2t1EbAmY1oT0VYn2BLRNiemJQGlDDCMyG1iGCjDggJMrSEcQpthMIMQDqHMINoMo8wgmGGUjnw3wgGUjuw3zCCGGcLQke8WHcSiQ9GvIFYiyzZCWHQYG5FlmwpjBWL3iL8Q48Mh6xRKzloU83KzUx1s1R6mdx+KablhU/PB5jI63n2cJe2vcIXqos5WwME536X4M19iunM0OyTGz7TsZHZW5jO76RUIh2AYI/XVtfv4/V934f3oWT4XWs8VxhH8CSmYc78E595JSsbUGEYuxMhLS01l1wU/4bx3bmXX/6xm1j0vjPseN1prOrs66Wiuo6ulHl97Pf6OJsJdTeiedpS/AyPQiTXUiS3URUKom0SzG6fuxqm9JCk/TiBWb8uD2oKJQRhjwAe0p/i6IJpeHU2rdL91BqwP3G+oQT9GnLB+HboUb+ZcSbAmGkdSKtMXXgQLL+rdprWmubmB+opy/A37CbTVYHY2YvQ0YfM1kxxqJTXQgN3sIQE/idpPogqcct0hbRDCQhhL5Ls6umwlpGyRdWUjrKyYykpY2fBbHGhlxTRsaMOKadjRhhVtsaENe2T2eosdLDaUxQYWO8pqR1lskRnmrXYMqw1lTcCw2rBYE7DYbBjWhMgcGxYryrBhWKwow0AphWFYMKKJo8VQKMOCYRgYfRJIlEHk0xMj+slKZF2rvp9ofPpHQ+lj2ioGNIUMtr3/tmPaPaLHafTA5pfjltXvkyr6lDGYU9s8eKtRzMoevNWpX7udGtAa17fR7uhnYf229V/o2yrX+8HXgLL7UoOUP9inf4OV8em2gXXrYz4MG7ysyPfilKwReeNhtxo0JZaQ5v8r+DrAkTqs8hrautn0+gt4yp/h3PAWTKU46FmBueLL5JRePO7fPJ2q0vw03i/P5SZ7ABp2Qe7cUzo/FDb5y54GPnx3PVOrf8cdxgckqgDtGXMwz/8WCbOvhXEyEqAQgzlv1ed4de/fc2ndf7Prqa8x67ZfjMnnBbVp0tlST0tdBZ0NFfibqzHbj2DpqsXqa8YRbCM53I5Lt5Oq/Az1l9RLAl6ceI0kfJZkArZkWm05NNpSMO2pmLYksCWCLRHDnohhS8SSkIhhd2K1O7EmJGJzJGFzOLHbE7BYI+9trFY7ymLFarVhWCPrhmFgi9PPUmuNjr5tMbUmDNF1HX1/Evmu0dFjdbSXUeQ8+q4T+fkffR+k0XD03L5lEOmZFHkb0bdcUEqD/jTpi1YCA9f7dDVRvcdE2+4iBZ3U67/YnkJ6ZlZMfpajQRKsYVBK4cnIxpORDaw44fFaa4LhMOGAD22ahLVJOGximibaDGOaJlZDYdjsWK02rNbod4shF0qIcaTbPRvqgLodULzslM8PhU02b9tM08anmdvyZ65UTbQabg7M/ArFl3yFaekFsQ96nCgtcPGMOTOycvAvJ51gVbd6een9Xfg3P8dng6/yGaMav91JYMZNcN7fkZY3b+SCFmKUrfy7f+XtX9ax8vAz7H64lsl3PIY9ZfSmSjZDIVoba2itq6Cr8TCBlip0ew3W7lqcvnrSgo14zGZSVbBf4hTSBs3KRaclHZ/dTUNCCbUONzopAyMpA1tqJo60bJLSs0hx55CS5sZpscWsdWosU0r1yUXOrA/WxiN53z6KlFLYrFZs1uR4hyKEGEGOSedAHfQcLiPxJBMsrTXlFdUc3PC/FFSuY4nejYmiIm0xDef9f2QtuoZ0eQ6Ic4pctFozaHRMInPfa7Ds3iGPbfMGeG17BTUfrmNm03ruNLZhV2HaPKWElv0TCaXXkZAgf4/FxGO3WVj2tV/zpye+zcW1j9P9H/PYNfV2zr7sThI9RcMqO+jvobmukrb6Srqbqgi2VkNHDbbuWpL8DbiCjXh0Cx4Vpm9KF9BWGg0P7dZMjiTPpMKZi0rLw5ZeQFJmEWnZxWRkF5Jtt/VObC3EeKUG6z4ULwsXLtRlZWXxDkMIIYblo4oWXE+ejycrF/c9bw55nNaa8gMVVL6/Ftfh9cwPbidBBamxFdE5/XqKV91BgltGrRvo758po/TQk9xjPgt3bYC8+b37mrr8vLfzADVb/kRO3QYuVh+RrHx02TLQs68hZfEtp9ytUIjx7MP3N2B96wecE9wCwEHbWXSkz8J0T8WemgmJ6ZHHAjAJBEMEfZ1obztmTythbztGTzOJvgaSg42kh1tIp+OYOnq0nUYjgw5bFj2J2YSScjDS8rG7C0jOnIQrdxKejDwMS2xHbRUi3pRSm7XWx4wuNawESym1BpgeXXUBbVrreUqpYqAc2BPd94HW+u4TlScJlhBiIgiETJ740d18Wa+Bu9+DnNm9+9q6evhk87t0lr9BZsN7zA3vwqI0jZZsmgouJn/5F0mdsviMe7bqVHxU0cKXHn2dvyTdj8NuZ//U1VR2gr9uN3ndn7BA7cWqTHosKfRM+SzpS29GFS+HGA/JL8R4obVm5/Yy6j9aS2b9XykMHsStuk54XkBb6FAptFoy6LJn4kvMQifnYE3Lw+EuICWrEHfuZFJdHtQYfM5LiJE2IgnWgAr+A2jXWj8UTbD+qLWefYLT+pEESwgxUTzx2kd87r1rSbBZOJR9KV09fpI79lMc3E+a8gJQbSuho/gS8s+9gbSSBZJUnYInNx7ipT//iX+3PMJU4wgAQay0JE/DOGslnnlXYhQuGtYog0JMVKFQmMamBtpbGtDeZkKhMCYKh81CgjMFe7IbZ6qbtJRUSZyEOI4RTbBUZIivSmCV1nqfJFhCiDNdKGzy3y+8xJLd/8pMKjCVhXpbAV73LJLOXkHhOZdhS8uJd5jjWps3wIGGTlKCTRSnJ2BPz5f5qoQQQoyaoRKsWH20txyo11r3mRGKEqXUVqAD+K7W+t0Y1SWEEGOe1WLw1ZuvJhi+imDYJNluRYZTiC2X086CYg8weqOjCSGEECdywgRLKfUGMNjHrN/RWr8UXb4ZeK7PvlqgSGvdrJRaAKxTSs3SWh/zZKRS6i7gLoCiouGNbCOEEGONzWJgs0gXGyGEEOJMccIES2t90fH2K6WswDXAgj7n+AF/dHmzUuoAMA04pv+f1vox4DGIdBE8leCFEEIIIYQQYiyJxceqFwG7tdbVRzcopTKVUpbo8mRgKnAwBnUJIYQQQgghxJgVi2ewbqJ/90CAC4CHlFJBwATu1lq3xKAuIYQQQgghhBizxtREw0qpRuBwvOMYIANoincQYtTI9T5zyLU+c8i1PrPI9T5zyLU+s4zF6z1Ja505cOOYSrDGIqVU2WDDL4qJSa73mUOu9ZlDrvWZRa73mUOu9ZllPF1vGdpKCCGEEEIIIWJEEiwhhBBCCCGEiBFJsE7ssXgHIEaVXO8zh1zrM4dc6zOLXO8zh1zrM8u4ud7yDJYQQgghhBBCxIi0YAkhhBBCCCFEjEiCJYQQQgghhBAxIgnWcSilLlNK7VFK7VdK3R/veETsKKUKlVJvK6U+UUrtUkr9Q3S7Wyn1ulJqX/R7erxjFbGhlLIopbYqpf4YXS9RSm2K3t9rlFL2eMcoYkMp5VJKrVVK7VZKlSulzpV7e2JSSt0X/Ru+Uyn1nFLKIff2xKGUelIp1aCU2tln26D3sor4RfS6f6yUOid+kYtTNcS1/mn07/jHSqk/KKVcffZ9K3qt9yilLo1L0MchCdYQlFIW4BHgcmAmcLNSamZ8oxIxFAK+qbWeCSwFvhq9vvcDb2qtpwJvRtfFxPAPQHmf9R8DP9danwW0An8Xl6jESPhPYL3W+mxgLpHrLvf2BKOUygfuBRZqrWcDFuAm5N6eSJ4CLhuwbah7+XJgavTrLuBXoxSjiI2nOPZavw7M1lrPAfYC3wKIvl+7CZgVPee/ou/bxwxJsIa2GNivtT6otQ4AzwNXxTkmESNa61qt9ZbocieRN2D5RK7x09HDngY+H5cARUwppQqAzwL/E11XwCpgbfQQudYThFIqDbgAeAJAax3QWrch9/ZEZQUSlVJWwAnUIvf2hKG1fgdoGbB5qHv5KuA3OuIDwKWUyh2VQMWwDXattdavaa1D0dUPgILo8lXA81prv9b6ELCfyPv2MUMSrKHlA1V91quj28QEo5QqBuYDm4BsrXVtdFcdkB2vuERM/T/gnwEzuu4B2vr84Zb7e+IoARqBX0e7hP6PUioJubcnHK31EeDfgUoiiVU7sBm5tye6oe5led82sa0G/hxdHvPXWhIscUZTSiUDvwO+rrXu6LtPR+YwkHkMxjml1BVAg9Z6c7xjEaPCCpwD/EprPR/oZkB3QLm3J4boszdXEUmq84Akju1iJCYwuZfPDEqp7xB5tOPZeMdysiTBGtoRoLDPekF0m5gglFI2IsnVs1rr30c31x/tUhD93hCv+ETMLAM+p5SqINLVdxWRZ3Rc0W5FIPf3RFINVGutN0XX1xJJuOTennguAg5prRu11kHg90Tud7m3J7ah7mV53zYBKaVuB64AvqA/nbx3zF9rSbCG9hEwNToakZ3Iw3QvxzkmESPRZ3CeAMq11j/rs+tl4Lbo8m3AS6Mdm4gtrfW3tNYFWutiIvfxW1rrLwBvA9dFD5NrPUForeuAKqXU9OimzwCfIPf2RFQJLFVKOaN/049ea7m3J7ah7uWXgS9GRxNcCrT36UooxiGl1GVEuvd/Tmvt7bPrZeAmpVSCUqqEyMAmH8YjxqGoT5NBMZBS6m+IPLthAZ7UWv8ovhGJWFFKnQ+8C+zg0+dyvk3kOawXgCLgMHCD1nrgA7ZinFJKrQD+UWt9hVJqMpEWLTewFbhFa+2PY3giRpRS84gMaGIHDgJ3EPlAUe7tCUYp9QPgRiLdh7YCXyLyLIbc2xOAUuo5YAWQAdQD3wfWMci9HE2yHybSTdQL3KG1LotD2OI0DHGtvwUkAM3Rwz7QWt8dPf47RJ7LChF5zOPPA8uMJ0mwhBBCCCGEECJGpIugEEIIIYQQQsSIJFhCCCGEEEIIESOSYAkhhBBCCCFEjEiCJYQQQgghhBAxIgmWEEIIIYQQQsSIJFhCCCGEEEIIESOSYAkhhBBCCCFEjPz/s/1blVFmjEsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi30lEQVR4nOzdeXxU5fn//9c1k32HEHYE3FlFC4gKirZVrAtaW8G6W2u1tVU/LrW2tdRv7acf66+2alu0tdWqxV2rVWvdULFugIALLqCssoSwhOzJzPX74xxiCAkJZpJJwvv5eIw559z3uc81c5hxrrnvcx9zd0RERERERKTtIskOQEREREREpLtQgiUiIiIiIpIgSrBEREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtEpJMxsyFm5maWkuxYZPdgZu+Z2eRkxyEi0h0owRIRkS7PzGaaWVn4qDGz2gbrTyc7vs7O3Ue4++xEtmlmA8zsn2a20cxWmdmFiWxfRKSzMt1oWEQkscwsxd3r2rD/EOBTILUt7eyuzGwGsLe7n9FEWZvOTUfqSrE2xcxeBBYCVwLDgReBU9z9xaQGJiLSztSDJSKSAGa2zMx+ZGaLgHIzSzGzCWb2XzPbbGYLGw7BMrPZZva/ZvammZWGv/T3bKbtc81ssZltNbNPzOy7jcqnmtmCsJ2lZjYl3J5vZneY2RozW21mvzSzaAvPYy8ze8HMSsxsg5nda2YFDco2mtlB4Xp/Myve9rzM7MRwqNnm8PkNa/T6XGFmi8xsi5ndb2YZu/5K77pmzo2b2d4N6txpZr9ssH58+JpuDs/h6FYea3LYW3NN+PotM7PTG5QfZ2Zvh+dqZZgMbivbNjT022a2Angh3P6gma0NX7eXzWxEo7j/aGZPh711r5pZXzP7nZltMrMPzOzAVr5GX2nNc2zl65ADTAaud/dad18IPAScl6hjiIh0VkqwREQS5zTgOKAA6AM8CfwS6AlcATxsZkUN6p9F8IWzH1AH3NxMu+uB44E84FzgpgZJznjg7wS9BAXA4cCycL87w3b3Bg4EjgbOb+E5GPC/QH9gGDAImAHg7kuBHwH3mFkW8DfgLnefbWb7ArOAS4Ei4CngCTNLa9D2qcAUYCgwGjinyQDMJoaJTXOPiS08h6bUn5uWeoXChOSvwHeBQuA24HEzS2/lsfoCvYABwNnA7Wa2X1hWTnDeC8J4LjKzkxrtfwTBa39MuP40sA/QG5gP3Nuo/qnAT8NjVgOvhfV6ESQ1v21l3E0ys6t3dj6a263R323LI9sSi4hIV6AES0QkcW5295XuXgmcATzl7k+5e9zdnwXmAl9rUP9ud3/X3cuBnwGnNtXD5O5PuvtSD7wE/AeYFBZ/G/iruz8bHme1u39gZn3CY13q7uXuvh64CZi+syfg7kvCtqrdvZjgy/kRDcr/DCwB3iBIDH8SFk0Dngz3rQVuBDKBQxu9Pp+5+0bgCWBMMzHMcfeCnTzm7Ow5NKPhuWnJBcBt7v6Gu8fc/S6CxGXCLhzvZ+Fr+BJBon0qgLvPdvd3wnO1iCApPaLRvjPCc1YZ7vNXd9/q7tUEye4BZpbfoP6j7j7P3auAR4Eqd/+7u8eA+wmS6y/M3X+9s/PRzD5bgVeBn5lZRviDwClAVltiERHpCpRgiYgkzsoGy4OBbzb6pX8iQVLSVP3lQCpBr8N2zOxYM3s9HJ63mSBx2lZvELC0iVgGh+2taXD82wh6QZplZn3M7L5wSGEpcE8TMf2ZoCfilvBLPwQ9Xsu3VXD3ePj8BjTYb22D5QogZ2exJNjKlqvUGwxc3ujcDSJ4jq2xKUyat1m+bV8zO9jMXgyHVm4BLmTH17c+VjOLmtmvLRj6WcrnvZMN91nXYLmyifWOfJ0bOp2gt3Il8CeCf0urkhSLiEiHUYIlIpI4DWcNWknQQ9Xw1/5sd/91gzqDGizvAdQCGxo2GA5Le5igR6hP2GPwFJ8PvVoJ7NVELCsJel16NTh+nruPaKJuQ78Kn8cod88j6ImrH+YVXlvzO+AOYIZ9ft3YZwSJybZ6Fj6/1S0cbwdmNsk+nwGwqcekllvZQeMZnSrYvjelb4PllQTXDjU8d1nuPquVx+phZtkN1vcgeH0A/gE8Dgxy93xgJtsPo2sc67eAqcBXgHxgSLi98T7tJryerNnz0dx+7r7c3Y939yJ3P5ggKXyzo+IWEUkWJVgiIu3jHuAEMzsm7IXICCdAGNigzhlmNjy8nuk64KFwWFdDaUA6UAzUmdmxBNdSbXMHcK6ZfdnMIhZMjb2/u68hGEr4/5lZXli2l5k1Ho7WWC5QBmwxswEE13Y19HtgrrufTzD0bWa4/QHguDCOVOByggTvvy29UI25+yvunrOTxyu72mYTFgDfCs/NFLYfpvdn4MKwt8nMLNuCySlyoX5iiTtbaP8XZpYWJoPHAw+G23OBje5eFV4/960W2skleB1LCBLCX+3Cc0wId//Vzs5Hc/uZ2TAzyw1fhzMI/t226XowEZGuQAmWiEg7cPeVBD0P1xAkRysJkpWGn7t3E0xEsRbIAH7YRDtbw+0PAJsIvpA/3qD8TcKJL4AtwEt83pN0FkGC9n6470NsP0SxKb8ADgrbehJ4ZFuBmU0lmKTionDT/wAHmdnp7v4hQW/XLQS9cCcAJ7h7TQvHS5ZLCGLcTDCU7bFtBe4+F/gOcCvB67aE7SfkGERwfVFz1ob7fUYwIcWF7v5BWPY94Doz2wpcS3Bed+bvBEMMVxOcx9dbemKdyDHAJwSvxYXAlPC6PhGRbk33wRIRSQIzmw3c4+5/SXYs0nrhrIgLgdHhZB6NyycTnNeBjctERGT3kJLsAERERLqKsEduWIsVRURkt6UhgiIiuxkzm9nMhAUzW95buiIz22MnE1Xskez4RES6Ew0RFBERERERSRD1YImIiIiIiCRIp7oGq1evXj5kyJBkhyEiIiIiItKsefPmbXD3oqbKOlWCNWTIEObOnZvsMERERERERJplZsubK9MQQRERERERkQRRgiUiIiIiIpIgSrBEREREREQSpFNdg9WU2tpaVq1aRVVVVbJDkU4gIyODgQMHkpqamuxQpBtbWlzG/zywkBtOGc1+fXOTHY6IiIh0IZ0+wVq1ahW5ubkMGTIEM0t2OJJE7k5JSQmrVq1i6NChyQ5HurGXFi7h/9Z9l1ee/iH7nXtBssMRERGRLqTTDxGsqqqisLBQyZVgZhQWFqo3U9pd7Zp32T+ykvOXX5nsUERERKSL6fQJFqDkSurp34J0hJrNaz5fqdqSvEBERESky+kSCZaISEfKrFpXv1xd/GkSIxEREZGuRglWK5gZl19+ef36jTfeyIwZM5IXUAOTJ0/e6c2ZTzrpJCZMmLDdthkzZjBgwADGjBnDyJEjefzxx9s7TJEuJbumuH5582cfJzESERER6WqUYLVCeno6jzzyCBs2bEhou+5OPB5PaJsNbd68mXnz5rFlyxY++eST7couu+wyFixYwIMPPsh5553XrnGIdDX5dSWUkgNA5bolSY5GREREupI2J1hmNsjMXjSz983sPTO7JNze08yeNbOPw7892h5ucqSkpHDBBRdw00037VBWXFzMKaecwrhx4xg3bhyvvvoqEPQS3XjjjfX1Ro4cybJly1i2bBn77bcfZ511FiNHjmTlypVceeWVjBw5klGjRnH//fcDMHv2bCZPnsw3vvEN9t9/f04//XTcvcn47r777vreqDfffLN++yOPPMIJJ5zA9OnTue+++5rcd9iwYaSkpGyXPF599dUMHz6c0aNHc8UVVwCwbNkyjjrqKEaPHs2Xv/xlVqxYAcA555zDRRddxIQJE9hzzz2ZPXs25513HsOGDeOcc86pb/Oiiy5i7NixjBgxgp///Oc7xLFlyxYGDx5cn+iVl5czaNAgamtrm4xbpL24Oz1iGynOGMwWzyK2cVmyQxIREZEuJBHTtNcBl7v7fDPLBeaZ2bPAOcDz7v5rM7sauBr4UVsO9Isn3uP9z0rbHHBDw/vn8fMTRrRY7/vf/z6jR4/mqquu2m77JZdcwmWXXcbEiRNZsWIFxxxzDIsXL95pWx9//DF33XUXEyZM4OGHH2bBggUsXLiQDRs2MG7cOA4//HAA3n77bd577z369+/PYYcdxquvvsrEiRN3aK+iooIFCxbw8ssvc9555/Huu+8CMGvWLK699lr69OnDKaecwjXXXLPDvm+88QaRSISioiIASkpKePTRR/nggw8wMzZv3gzAD37wA84++2zOPvts/vrXv/LDH/6Qxx57DIBNmzbx2muv8fjjj3PiiSfy6quv8pe//IVx48axYMECxowZw/XXX0/Pnj2JxWJ8+ctfZtGiRYwePbo+jvz8fMaMGcNLL73EkUceyb/+9S+OOeYY3e9KOlx1XZxsKrDM/qyv6EGkbF3LO4mIiIiE2tyD5e5r3H1+uLwVWAwMAKYCd4XV7gJOauuxkikvL4+zzjqLm2++ebvtzz33HBdffDFjxozhxBNPpLS0lLKysp22NXjw4PrroubMmcNpp51GNBqlT58+HHHEEbz11lsAjB8/noEDBxKJRBgzZgzLli1rsr3TTjsNgMMPP5zS0lI2b97MunXr+Pjjj5k4cSL77rsvqamp9YkXwE033cSYMWO44ooruP/+++tn58vPzycjI4Nvf/vbPPLII2RlZQHw2muv8a1vfQuAM888kzlz5tS3dcIJJ2BmjBo1ij59+jBq1CgikQgjRoyoj/mBBx7goIMO4sADD+S9997j/fff3+F5TJs2rb4H77777mPatGk7fR1F2kNZdR1ZVBNJy2ZjpICUypJkhyQiIiJdSEJvNGxmQ4ADgTeAPu6+ba7jtUCftrbfmp6m9nTppZdy0EEHce6559Zvi8fjvP7662RkZGxXNyUlZbvrmhreuyk7O7tVx0tPT69fjkaj1NXVNVmv8dTlZsYDDzzApk2b6m/IW1payqxZs7j++uuB4BqsbcP/Gsf95ptv8vzzz/PQQw9x66238sILL7Qqzkgksl3MkUiEuro6Pv30U2688UbeeustevTowTnnnNPkvaxOPPFErrnmGjZu3Mi8efM46qijdnpckfZQVRsjw2qoTc2iLKWQrBpdgyUiIiKtl7BJLswsB3gYuNTdtxvH58HFQ01eQGRmF5jZXDObW1xc3FSVTqNnz56ceuqp3HHHHfXbjj76aG655Zb69QULFgAwZMgQ5s+fD8D8+fP59NOmp3qeNGkS999/P7FYjOLiYl5++WXGjx+/S3Ft6/WZM2cO+fn55OfnM2vWLP7973/XX/c1b968Zq/DaqisrIwtW7bwta99jZtuuomFCxcCcOihh9bvf++99zJp0qRWx1daWkp2djb5+fmsW7eOp59+usl6OTk5jBs3jksuuYTjjz+eaDTa6mOIJEpVbZxMqiE1k8q0nuTUbUp2SCIiItKFJCTBMrNUguTqXnd/JNy8zsz6heX9gPVN7evut7v7WHcfu+06oM7s8ssv325CiJtvvpm5c+cyevRohg8fzsyZMwE45ZRT2LhxIyNGjODWW29l3333bbK9k08+mdGjR3PAAQdw1FFHccMNN9C3b99diikjI4MDDzyQCy+8kDvuuINly5axfPny7aZnHzp0KPn5+bzxxhtNtvG1r32Nzz77jK1bt3L88cczevRoJk6cyG9/+1sAbrnlFv72t78xevRo7r77bn7/+9+3Or4DDjiAAw88kP33359vfetbHHbYYfVl11577XbTxE+bNo177rlHwwMlaarrYmRSA6mZ1GYWkemVUFOe7LBERESki7DmZqZrdQPB+LS7gI3ufmmD7b8BShpMctHT3a9qphkAxo4d643v6bR48WKGDRvWphile9G/CWlP85aV8KU792TZyB8wb0sup6z8FfxwAfQcmuzQREREpJMws3nuPrapskT0YB0GnAkcZWYLwsfXgF8DXzWzj4GvhOsiIp1abXUFAJaWRSQvuHS0rnRtMkMSERGRLqTNk1y4+xzAmin+clvbFxHpSHVVwXDASFoWqRn9ACgr+YyCIUkMSkRERLqMhE1yISLSHdSGCVY0PYvsHsH1kBUb1+xsFxEREZF6SrBERBqIVW9LsLLJKexH3I2aLUqwREREpHWUYImINLAtwUrJyKFXXjYbySW+tclJUEVERER2oARLRKSBeE0lACnpWRTmpFHs+UTKlWCJiIhI6yjBaqXHHnsMM+ODDz5ots6yZcsYOXJkwo55zjnn8NBDDzVbfumllzJgwADi8Xj9tjvvvJOioiLGjBnD8OHD+fOf/5yweER2B/GwBystI4fc9BRKKCC1snPfBF1EREQ6DyVYrTRr1iwmTpzIrFmzmiyvq6tr8zFisVir68bjcR599FEGDRrESy+9tF3ZtGnTWLBgAbNnz+aaa65h3bp1bY5NZLdRG0zTnpqZjZlRltKTjJqSJAclIiIiXYUSrFYoKytjzpw53HHHHdx3333122fPns2kSZM48cQTGT58OBAkWqeffjrDhg3jG9/4BhUVwZe1559/ngMPPJBRo0Zx3nnnUV1dDcCQIUP40Y9+xEEHHcSDDz64w7Gfe+45xo4dy7777su//vWv7Y49YsQILrroomaTvt69e7PXXnuxfPny+m0333wzw4cPZ/To0UyfPh2AjRs3ctJJJzF69GgmTJjAokWLAJgxYwZnn302kyZNYvDgwTzyyCNcddVVjBo1iilTplBbWwvAddddx7hx4xg5ciQXXHABjW9eHY/HGTJkCJs3b67fts8++yjxk07Ja4L3bEp6NgCV6T3JqdsEbbwpu4iIiOwe2nwfrA719NWw9p3Ettl3FBy783sg//Of/2TKlCnsu+++FBYWMm/ePL70pS8BMH/+fN59912GDh3KsmXL+PDDD7njjjs47LDDOO+88/jjH//IxRdfzDnnnMPzzz/Pvvvuy1lnncWf/vQnLr30UgAKCwuZP39+k8detmwZb775JkuXLuXII49kyZIlZGRkMGvWLE477TSmTp3KNddcQ21tLampqdvt+8knn/DJJ5+w995712/79a9/zaeffkp6enp9wvPzn/+cAw88kMcee4wXXniBs846iwULFgCwdOlSXnzxRd5//30OOeQQHn74YW644QZOPvlknnzySU466SQuvvhirr32WgDOPPNM/vWvf3HCCSfUHzMSiTB16lQeffRRzj33XN544w0GDx5Mnz59Wn2aRDpMXVXwNzUTgNqMXqRXVkNNGaTnJjEwERER6QrUg9UKs2bNqu/tmT59+nY9RuPHj2fo0KH164MGDeKwww4D4IwzzmDOnDl8+OGHDB06lH333ReAs88+m5dffrl+n2nTpjV77FNPPZVIJMI+++zDnnvuyQcffEBNTQ1PPfUUJ510Enl5eRx88ME888wz9fvcf//9jBkzhtNOO43bbruNnj171peNHj2a008/nXvuuYeUlCC/njNnDmeeeSYARx11FCUlJZSWlgJw7LHHkpqayqhRo4jFYkyZMgWAUaNGsWzZMgBefPFFDj74YEaNGsULL7zAe++9t8PzmDZtGvfffz8A9913306fs0hS1QaTXJCSAUA8q1ewXq7rsERERKRlXasHq4WepvawceNGXnjhBd555x3MjFgshpnxm9/8BoDs7Ozt6pvZTteb0riNltp75pln2Lx5M6NGjQKgoqKCzMxMjj/+eCBIZm699dYm23vyySd5+eWXeeKJJ7j++ut5552d9wimp6cDQS9UampqfTyRSIS6ujqqqqr43ve+x9y5cxk0aBAzZsygqqpqh3YOOeQQlixZQnFxMY899hg//elPd3pckaSJBcN3tyVYkdygpzW+dT2RnnsmKyoRERHpItSD1YKHHnqIM888k+XLl7Ns2TJWrlzJ0KFDeeWVV5qsv2LFCl577TUA/vGPfzBx4kT2228/li1bxpIlSwC4++67OeKII1p1/AcffJB4PM7SpUv55JNP2G+//Zg1axZ/+ctfWLZsGcuWLePTTz/l2Wefrb/eqznxeJyVK1dy5JFH8n//939s2bKFsrIyJk2axL333gsE13b16tWLvLy8VsW3LZnq1asXZWVlzc56aGacfPLJ/M///A/Dhg2jsLCwVe2LdDTbNkQwTLDS8voCULFRNxsWERGRlinBasGsWbM4+eSTt9t2yimnNDuxxH777ccf/vAHhg0bxqZNm7jooovIyMjgb3/7G9/85jcZNWoUkUiECy+8sFXH32OPPRg/fjzHHnssM2fOJB6P8+9//5vjjjuuvk52djYTJ07kiSeeaLKN888/n7lz5xKLxTjjjDMYNWoUBx54ID/84Q8pKChgxowZzJs3j9GjR3P11Vdz1113tfLVgYKCAr7zne8wcuRIjjnmGMaNG1dfNnPmTGbOnFm/Pm3aNO655x4ND5ROzeqqqSUFIsHHY2bPfgCUb1KCJSIiIi2zxjO+JfwAZlOA3wNR4C/u3uw4v7Fjx/rcuXO327Z48WKGDRvWrjFK16J/E9Ke/n3jOUwqf4bsnwcJ1Wsfr+GQe/dnxehL2OPr1yU5OhEREekMzGyeu49tqqxde7DMLAr8ATgWGA6cZmbD2/OYIiJtEY1VU2vp9eu98nLY6DnEtuq2AiIiItKy9h4iOB5Y4u6fuHsNcB8wtZ2PKSLyhUXi1dRZWv16r5x0Nng+lGkWQREREWlZeydYA4CVDdZXhdvqmdkFZjbXzOYWFzf9Baa9hzFK16F/C9LeovEaaiOf92DlZ6ZSQj6pVUqwREREpGVJn+TC3W9397HuPraoqGiH8oyMDEpKSvTFWnB3SkpKyMjISHYo0o2lxKuJRT7vwYpEjK0pPUmvLkliVCIiItJVtPd9sFYDgxqsDwy3tdrAgQNZtWoVzfVuye4lIyODgQMHJjsM6cZS4jXEGvRgAVSm9SSnen6SIhIREZGupL0TrLeAfcxsKEFiNR341q40kJqaytChQ9sjNhGRHaR4NbFo5nbbajJ6kVlVAbWVkJrZzJ4iIiIi7TxE0N3rgIuBZ4DFwAPu/l57HlNEpC3SvAaPbt+D5Vm9goWy9UmISERERLqS9u7Bwt2fAp5q7+OIiLSVu5PqNcQbJViW0ycoL1uP9RicjNBERESki0j6JBciIp1FdV2cdGrxlO0nUknLDxKs8k1rkxGWiIiIdCFKsEREQtW1cTKsBholWJk9+gJQsfGzZIQlIiIiXYgSLBGRUFVdjHRqIWX7IYK5hf2D8s3rkhGWiIiIdCFKsEREQlW1MTKo2WGmwMKCPEo9i7pSJVgiIiKyc0qwRERCVbXBNViR1O2HCPbKSafY87EyJVgiIiKyc0qwRERCVdVVpFgca9SDVZCZSjE9SK1UgiUiIiI7pwRLRCRUW1kGQCQte7vtkYixJaUXmVW6D5aIiIjsnBIsEZFQbVWYYKVn71BWntGbvNoScO/osERERKQLUYIlIhKqCxOsaHrWjmVZfUmlFipKOjosERER6UKUYImIhGLbEqyMnB3KPLdfsFCqe2GJiIhI85RgiYiEYtUVAKQ2kWCl9hgAQOXG1R0ak4iIiHQtSrBERELxmnIAUjN2vAYru9cgALYWr+jQmERERKRraVOCZWa/MbMPzGyRmT1qZgUNyn5sZkvM7EMzO6bNkYqItDMPE6y0zB17sPKLBhJ3o6pkVUeHJSIiIl1IW3uwngVGuvto4CPgxwBmNhyYDowApgB/NLNoG48lItKu4uEQwbTM3B3K+vTIZQP5xLZoiKCIiIg0r00Jlrv/x93rwtXXgYHh8lTgPnevdvdPgSXA+LYcS0Sk3YU9WNEmpmnvm5fBWu9BpGxtR0clIiIiXUgir8E6D3g6XB4ArGxQtirctgMzu8DM5prZ3OLi4gSGIyKya+I1QQ8WaTtO056ZFmVjpCfpFes6OCoRERHpSlpMsMzsOTN7t4nH1AZ1fgLUAffuagDufru7j3X3sUVFRbu6u4hI4tSGCVbqjgkWwNa0InJq1ndgQCIiItLVpLRUwd2/srNyMzsHOB74srt7uHk1MKhBtYHhNhGRzqumglpSSI2mNllcndGHnNJSqK2C1IwODk5ERES6grbOIjgFuAo40d0rGhQ9Dkw3s3QzGwrsA7zZlmOJiLQ3qyun2ppPnGI54c2Gt67poIhERESkq2nrNVi3ArnAs2a2wMxmArj7e8ADwPvAv4Hvu3usjccSEWlX0bpKaiLNJ1jRgv4A1GkmQREREWlGi0MEd8bd995J2fXA9W1pX0SkI6XXlVEd3fEeWPXlPYKJUsuKV1EwtKOiEhERka4kkbMIioh0aRnxMqpTdrwH1ja5RXsAULZhZbN1REREZPemBEtEJJQTL6M2Na/Z8qKiIso9ndqNSrBERESkaUqwRESAulicHC8nltZ8gtWvIIu13hNKdQ2WiIiINE0JlogIUF4dI88qiKc3n2D1yEplLb1IK9csgiIiItI0JVgiIkBZdQ15lENGQbN1zIwtab3JrlrXcYGJiIhIl6IES0QEKCvdTNQcy8zfab2KjL7kxUogVttBkYmIiEhXogRLRAQo27QBgLScnjutV5fTnwgOW9d2RFgiIiLSxSjBEhEBykpLAMjM23mCFS0YAEBs86p2j0lERES6HiVYIiJAdWkxANn5vXZaL71wEABl65e1d0giIiLSBSnBEhEB6kqDiSuye/bfab3c3kMBKC9e3u4xiYiISNejBEtEBIiUrwcgJb/fTusV9epFqWdSu0k3GxYREZEdKcESEQGi5euoIRUydj6LYL/8DNZ4IWzRzYZFRERkRwlJsMzscjNzM+sVrpuZ3WxmS8xskZkdlIjjiIi0l9TKYjZHe4LZTuv1zE5jHYWkVWgWQREREdlRmxMsMxsEHA2saLD5WGCf8HEB8Ke2HkdEpD1l15RQkbbzCS4guNlwaVpvsquUYImIiMiOEtGDdRNwFeANtk0F/u6B14ECM9v5hQ0iIklSF4uTHyuhNrOoVfWDmw1vgrrqdo5MREREupo2JVhmNhVY7e4LGxUNABpeAb4q3NZUGxeY2Vwzm1tcXNyWcEREvpB1pVUMsA3E8wa2qn4sN5xpsPSzdoxKREREuqKUliqY2XNA3yaKfgJcQzA88Atz99uB2wHGjh3rLVQXEUm44rWrGGDVRHoOaVV9KxgIayC+eRWRnkPbNzgRERHpUlpMsNz9K01tN7NRwFBgoQUXhQ8E5pvZeGA1MKhB9YHhNhGRTqd0zRIAsvrs3ar6mT2Dj7etxcvJ33NSu8UlIiIiXc8XHiLo7u+4e293H+LuQwiGAR7k7muBx4GzwtkEJwBb3H1NYkIWEUmsbQlW7z32bVX9nD5DAKjYsGLnFUVERGS302IP1hf0FPA1YAlQAZzbTscREWmzug1LAUgtbN1wvz6FPdns2dRs1M2GRUREZHsJS7DCXqxtyw58P1Fti4i0p9zSJWxI7UevtKxW1d92s+Fs3WxYREREGknIjYZFRLqqipo6BtQuZ2tu666/guBmw2spJK1CI59FRERke0qwRGS3tmTtJva0z/CiYa3ex8zYktaHnGrdbFhERES2pwRLRHZrny19jzSLkbPHqF3aryqjDzmxUqipaKfIREREpCtSgiUiu7XyVe8AUDj0gF3aTzcbFhERkaYowRKR3Vqk+ANiRIgW7bdL+1n+QADiW1a1R1giIiLSRSnBEpHdWv7WJZSk9YfUjF3aL7PXHgCUFS9vj7BERESki1KCJSK7rS0VtQyOLacsv3U3GG4ot/dgACqKdbNhERER+ZwSLBHZbX38WTFDbC3WZ/gu79u3sIASz6V2k242LCIiIp9TgiUiu611SxcSNSd/8K5NcAHQN7zZMKW62bCIiIh8TgmWiOy2qla/C0CPIbueYPXMCm42nF6ue2GJiIjI55RgichuK7VkMTWkYj332uV9IxGjNK2I7Op17RCZiIiIdFVKsERkt+TuFJYvYUPGEIimfKE2KjP6kR3fCjXliQ1OREREuqw2J1hm9gMz+8DM3jOzGxps/7GZLTGzD83smLYeR0QkkYq3VrOnr6Six67d/6qhupx+wYJuNiwiIiKhL/azbcjMjgSmAge4e7WZ9Q63DwemAyOA/sBzZravu8faGrCISCIsXbGKQ2wjy/rt+gyC20QLBsJa8C2rsV77JDA6ERER6ara2oN1EfBrd68GcPf14fapwH3uXu3unwJLgPFtPJaISMKUfLoQgB5DDvzCbaT3HARAxQbdbFhEREQCbU2w9gUmmdkbZvaSmY0Ltw8AGt4cZlW4bQdmdoGZzTWzucXFxW0MR0SkderWBDMIfpEp2rfJ670HAOW62bCIiIiEWhwiaGbPAX2bKPpJuH9PYAIwDnjAzPbclQDc/XbgdoCxY8f6ruwrIvJFZW76gHLLJjuv/xduo6hnPhs8j9pNqxIYmYiIiHRlLSZY7v6V5srM7CLgEXd34E0ziwO9gNXAoAZVB4bbRESSzt0pqvyE4uy9yDb7wu30y89gjfekp242LCIiIqG2DhF8DDgSwMz2BdKADcDjwHQzSzezocA+wJttPJaISEIUl1axt6+gug0zCAIU5aSz1gtJK9csgiIiIhJoa4L1V2BPM3sXuA842wPvAQ8A7wP/Br7fFWcQLN2wlhUfL0p2GCKSYMuWLSHPKkjtN7JN7aREIxSnDSS/ciXE4wmKTkRERLqyNk3T7u41wBnNlF0PXN+W9pPt/fuu5qDiJ3h90FkM+/o15PcsSnZIIpIApcuDGQQLhn7xCS62qcjbk7RNNbBlJfQY3Ob2REREpGtr842Gu7O9T/kFC/OOYMKqv5L6+xG88cfvsOKDeckOS0TayNa/D0CPIW1PsCJF+wLgGz5qc1siIiLS9bWpB6u769VvML0uf4RP3vkvG569iYPWPUzqfQ/waXQIawccQ+/RRzN49ERS0jKSHWpiuBOP1VFbV0NdTQ11dXXU1dVQV1tLrK6Wurrgb6yuFo/VQbwOj9dBrDb4G48Td8c9jruHjzgeb7AcbsfjgIM7wRQD25Yd2LZtZ5qpEU5Y0OppC5qo2NK+/oUmRdjVfXZe35oo/2Jx7apWHsOaXWmVXX8uu1a/sPh1NlhPemX13MXj7ChnwDD4CLauWETePl9tc3uyC9ypq62hurqKmppqaqorqa2porammtrqauJ11XisFmI1eF0NxGqJx+PE4zHwOPH4ts+oGO7h9rgT93jweeRxjDjmwQS3ZuBs+5ixBo/6jZ//U7QI296p2z7RbLsyGnxeNdzXtqvz+aeh1R9/+3131Pjzwa2pT4xm3jXNvPearttsSdPa9X3dEZ9/IpIsFXl7Mmz4KPIzU5MdSqsowWqFPUcdyp6jDqVk3Uo+eP7v9Pz0Xxyy4jZYcRsVT6SzJH1vyvL2gd7DSO+9N1k9B5DfeyA9ivoTjUa/8HFjsThVVRVUVVZQXVVOTWU5NVUV1FZVUFtdTl1VBbGaCmI1lcRrKvGaCry2Cuoqsbqq4BGrIlpXSTRWTTReRUq8mpR4NWleTVq8mjRqSPca0qkhgxoi5qQD6Yl7+UQ6pQVZh9ErAe3sM3QInzzfl+wlr5D35cubrVdVG+PZF5+Ht/5C7pemMXnKKQk4etfk7pRXVLC5ZD1bN62nYksxtWUbiVdsxCs3EanaTKS6FKutIFpXTrSuktRYJWnxStLjlWRQRaZXkUk1KRYnBchO9pMSEZF28/9qzyCj9/WMGVSQ7FBaxdw7z62nxo4d63Pnzk12GK1SvP4zls39D7FPXyF302IG1C6jwMq3q1PnESotg2rSqbIMaiydeCTIac09/CUy+JU01WtJpYa08G+615JutV84vlqiVJNOtaVRSxo1kQxqI+nURdKJRdKJRTPqH/FoOvFoBrFoOh5NJxJNgUgKFk3BoqnB30gKkWgqkXCdyLY6UTySgkVSsYhhFsHMwkeEiBlYBItAxCJBeSTy+S+f9vmvwB4ue8NfhXdJ+Iq2+E86rNBExZZ3/SLvl13bx1o4RtOlHfQ+buXz3/avu6Xn0tzeu77Lru3jOAP2HkNuQeGuH6uR2licx677BsenvEHmNcshuv3vVlsra5j97OPkvz2Tw/0tABZkHcqYq55u87E7m8rKSorXrmDz+lWUb1hN9eY1ULae1Mp1ZFRvIKemhLzYRvJ9K1lW3Ww7dR6hzLKoJJOaSAY1kSxqo5nEUrKoS8kilhIsx1OyICUDUtKJpKQRSUknkppGNPxr0TQ8mopFg2WiKUSiUcyiWMSIRiJYJEokEiUSLgfbjEgkihPBiYBZ/ed1sBD+C/dtnznx8G/Dz5btP2c+/39tuB7f1mL883re+DOscXuN2mjNP/v6/9e0omq89Z8uju/w/m6ynm/ruNrF9/Uuvac7z/cYEWkfNTkD2WvoXmSnd56+ITOb5+5jmyrrPFF2MUW9+1P0tXOAcwCIx+J8tmY5Wz5bSuXG1dRuWYNvXUusqoxoXSUpseBBPJxM0YLkwsLlOksjFgkSHE9Jh5QMLCUDS03HUjOIpGYQScsmmp5JSnoWKelZpKZnk5aZRWpGFunp2aRlZpOekUUkLYvUaAqpQE5SXh2R3UdqNMKavkeSue55ahY9RNqB0wFYuXYDc5+5m70/uZsTbCmllsfKUT9g3dKF7Fv5djDrYKTrXAYbjzvrSitZvXolpWuWULfhE2zzMjLKVpJftZqiujX08Y3sYc4ejfbdRB6bo4WUp/ZkVc5QlmcWYlk9iWb3JD23kMzcQjLye5GRV0h2fhEZ2fkURCIUJOOJioiItJF6sERE2ui1JcUU/P0oBkdLeL/fVGpLljOyaj65Vsn61IHUjLuQgZO/DWlZ/OcfN3H0RzPYctbz5O/Z5A9fSVNTF2d18UbWr/qY0tUfU1vyKSlblpNdsYpetWsYyDqyG/U8bbCebEzrT3nWQGrz9iCaP4Csnv3JLRpIYd+BZBb0g2jXGDMvIiLSWurBEhFpR4fsXcS9h/6RsteuZMzq+9kQLWJVv6PpPfFMeg//8nY9Vf3GTaXuw+v47NV/JCXB2lpZw+pVy9m4+iMq1i7FN31K2taV5Feupk98LUNtI0Mb1K8ijZLU/pT32IMV+ZNI67UnOX33pmDAPqQX7Umv1MyEXMsmIiLSXagHS0QkQWpjcWJxJyO1+clt3J03r/8K+8U+JvuKhaRm90hoDPG4s37TZtav+JjSNR9TU/wJ0c2fklm+ip41n9Hf1+9w/dOGSCFb0gdQlTsIegwhs/deFAzYlx4D9sFy+nyB2d9ERES6N/VgiYh0gNRohJ3kVgCYGbEjfkzec99gyZ/PYp/vP4ClZrb6GO7O5tKtlKz+hNK1S6lc/wnxTStIK1tJbtVn9KpbR1/bTN8G+1SQwYaUfmzNG8LHeYeTUjiUnH5702vQfmT33pNeqRnqhRIREUkQJVgiIh3s0Elf4YnFl3DCZ79jw/+OZOUeJ5HSbyRk5BGJpFBVWUZtRSmxis1Y+ToiZetJq1pPTm0JBbGN9LbNNOz3qvUoG6JFbEnvx2c9J/FZ/h6k996Lgv77UDhoP7LyerOHeqFEREQ6hIYIiogkQTzuvPj0g/SYfwsH1L1D1Jr+LI65sckKKE0ppDK9F7VZRcRzBxLtOZis3ntSNGhf8nsPCm6fICIiIh1iZ0MElWCJiCSRu7Nh0yY2rPgAry7HY7WkZ+eRnZNPbn4Psnv0VfIkIiLSybTbNVhmNgaYCWQAdcD33P1NMzPg98DXgArgHHef35ZjiYh0R2ZGUc+eFPU8NNmhiIiISAK09S6XNwC/cPcxwLXhOsCxwD7h4wLgT208joiIiIiISKfX1gTLgbxwOR/4LFyeCvzdA68DBWbWr43HEhERERER6dTaOrD/UuAZM7uRIFnbNsZlALCyQb1V4bY1jRswswsIernYY4892hiOiIiIiIhI8rSYYJnZc7DdLVW2+QnwZeAyd3/YzE4F7gC+sisBuPvtwO3hsYrNbPmu7N8BegEbkh2EdBid792HzvXuQ+d696LzvfvQud59dMZzPbi5gjbNImhmW4ACd/dwYost7p5nZrcBs919VljvQ2Cyu+/Qg9XZmdnc5mYIke5H53v3oXO9+9C53r3ofO8+dK53H13tXLf1GqzPgCPC5aOAj8Plx4GzLDCBIPHqcsmViIiIiIjIrmjrNVjfAX5vZilAFeG1VMBTBFO0LyGYpv3cNh5HRERERESk02tTguXuc4AvNbHdge+3pe1O5PZkByAdSud796FzvfvQud696HzvPnSudx9d6ly36RosERERERER+Vxbr8ESERERERGRkBIsERERERGRBFGCtRNmNsXMPjSzJWZ2dbLjkcQxs0Fm9qKZvW9m75nZJeH2nmb2rJl9HP7tkexYJTHMLGpmb5vZv8L1oWb2Rvj+vt/M0pIdoySGmRWY2UNm9oGZLTazQ/Te7p7M7LLwM/xdM5tlZhl6b3cfZvZXM1tvZu822Nbkezmcufrm8LwvMrODkhe57KpmzvVvws/xRWb2qJkVNCj7cXiuPzSzY5IS9E4owWqGmUWBPwDHAsOB08xseHKjkgSqAy539+HABOD74fm9Gnje3fcBng/XpXu4BFjcYP3/gJvcfW9gE/DtpEQl7eH3wL/dfX/gAILzrvd2N2NmA4AfAmPdfSQQBaaj93Z3cicwpdG25t7LxwL7hI8LgD91UIySGHey47l+Fhjp7qOBj4AfA4Tf16YDI8J9/hh+b+80lGA1bzywxN0/cfca4D5gapJjkgRx9zXuPj9c3krwBWwAwTm+K6x2F3BSUgKUhDKzgcBxwF/CdSO4d99DYRWd627CzPKBw4E7ANy9xt03o/d2d5UCZIa3i8kC1qD3drfh7i8DGxttbu69PBX4uwdeBwrMrF+HBCpt1tS5dvf/uHtduPo6MDBcngrc5+7V7v4pwW2hxndYsK2gBKt5A4CVDdZXhdukmzGzIcCBwBtAnwY3xV4L9ElWXJJQvwOuAuLheiGwucEHt97f3cdQoBj4Wzgk9C9mlo3e292Ou68GbgRWECRWW4B56L3d3TX3Xtb3tu7tPODpcLnTn2slWLJbM7Mc4GHgUncvbVgW3s9N9zHo4szseGC9u89LdizSIVKAg4A/ufuBQDmNhgPqvd09hNfeTCVIqvsD2ew4xEi6Mb2Xdw9m9hOCSzvuTXYsraUEq3mrgUEN1geG26SbMLNUguTqXnd/JNy8btuQgvDv+mTFJwlzGHCimS0jGOp7FME1OgXhsCLQ+7s7WQWscvc3wvWHCBIuvbe7n68An7p7sbvXAo8QvN/13u7emnsv63tbN2Rm5wDHA6f75zfv7fTnWglW894C9glnI0ojuJju8STHJAkSXoNzB7DY3X/boOhx4Oxw+Wzgnx0dmySWu//Y3Qe6+xCC9/EL7n468CLwjbCaznU34e5rgZVmtl+46cvA++i93R2tACaYWVb4mb7tXOu93b01915+HDgrnE1wArClwVBC6YLMbArB8P4T3b2iQdHjwHQzSzezoQQTm7yZjBibY58ng9KYmX2N4NqNKPBXd78+uRFJopjZROAV4B0+vy7nGoLrsB4A9gCWA6e6e+MLbKWLMrPJwBXufryZ7UnQo9UTeBs4w92rkxieJIiZjSGY0CQN+AQ4l+AHRb23uxkz+wUwjWD40NvA+QTXYui93Q2Y2SxgMtALWAf8HHiMJt7LYZJ9K8Ew0QrgXHefm4Sw5Qto5lz/GEgHSsJqr7v7hWH9nxBcl1VHcJnH043bTCYlWCIiIiIiIgmiIYIiIiIiIiIJogRLREREREQkQZRgiYiIiIiIJIgSLBERERERkQRRgiUiIiIiIpIgSrBEREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSLSyZjZEDNzM0tJdiyyezCz98xscrLjEBHpDpRgiYhIl2dmM82sLHzUmFltg/Wnkx1fZ+fuI9x9diLbNLMBZvZPM9toZqvM7MJEti8i0lmZuyc7BhGRbsXMUty9rg37DwE+BVLb0s7uysxmAHu7+xlNlLXp3HSkrhRrU8zsRWAhcCUwHHgROMXdX0xqYCIi7Uw9WCIiCWBmy8zsR2a2CCg3sxQzm2Bm/zWzzWa2sOEQLDObbWb/a2Zvmllp+Et/z2baPtfMFpvZVjP7xMy+26h8qpktCNtZamZTwu35ZnaHma0xs9Vm9kszi7bwPPYysxfMrMTMNpjZvWZW0KBso5kdFK73N7Pibc/LzE4Mh5ptDp/fsEavzxVmtsjMtpjZ/WaWseuv9K5r5ty4me3doM6dZvbLBuvHh6/p5vAcjm7lsSaHvTXXhK/fMjM7vUH5cWb2dniuVobJ4LaybUNDv21mK4AXwu0Pmtna8HV72cxGNIr7j2b2dNhb96qZ9TWz35nZJjP7wMwObOVr9JXWPMdWvg45wGTgenevdfeFwEPAeYk6hohIZ6UES0QkcU4DjgMKgD7Ak8AvgZ7AFcDDZlbUoP5ZBF84+wF1wM3NtLseOB7IA84FbmqQ5IwH/k7QS1AAHA4sC/e7M2x3b+BA4Gjg/BaegwH/C/QHhgGDgBkA7r4U+BFwj5llAX8D7nL32Wa2LzALuBQoAp4CnjCztAZtnwpMAYYCo4FzmgzAbGKY2DT3mNjCc2hK/blpqVcoTEj+CnwXKARuAx43s/RWHqsv0AsYAJwN3G5m+4Vl5QTnvSCM5yIzO6nR/kcQvPbHhOtPA/sAvYH5wL2N6p8K/DQ8ZjXwWlivF0FS89tWxt0kM7t6Z+ejud0a/d22PLItsYiIdAVKsEREEudmd1/p7pXAGcBT7v6Uu8fd/VlgLvC1BvXvdvd33b0c+BlwalM9TO7+pLsv9cBLwH+ASWHxt4G/uvuz4XFWu/sHZtYnPNal7l7u7uuBm4DpO3sC7r4kbKva3YsJvpwf0aD8z8AS4A2CxPAnYdE04Mlw31rgRiATOLTR6/OZu28EngDGNBPDHHcv2Mljzs6eQzManpuWXADc5u5vuHvM3e8iSFwm7MLxfha+hi8RJNqnArj7bHd/JzxXiwiS0iMa7TsjPGeV4T5/dfet7l5NkOweYGb5Deo/6u7z3L0KeBSocve/u3sMuJ8guf7C3P3XOzsfzeyzFXgV+JmZZYQ/CJwCZLUlFhGRrkAJlohI4qxssDwY+GajX/onEiQlTdVfDqQS9Dpsx8yONbPXw+F5mwkSp231BgFLm4hlcNjemgbHv42gF6RZZtbHzO4LhxSWAvc0EdOfCXoibgm/9EPQ47V8WwV3j4fPb0CD/dY2WK4AcnYWS4KtbLlKvcHA5Y3O3SCC59gam8KkeZvl2/Y1s4PN7MVwaOUW4EJ2fH3rYzWzqJn92oKhn6V83jvZcJ91DZYrm1jvyNe5odMJeitXAn8i+Le0KkmxiIh0GCVYIiKJ03DWoJUEPVQNf+3PdvdfN6gzqMHyHkAtsKFhg+GwtIcJeoT6hD0GT/H50KuVwF5NxLKSoNelV4Pj57n7iCbqNvSr8HmMcvc8gp64+mFe4bU1vwPuAGbY59eNfUaQmGyrZ+HzW93C8XZgZpPs8xkAm3pMarmVHTSe0amC7XtT+jZYXklw7VDDc5fl7rNaeaweZpbdYH0PgtcH4B/A48Agd88HZrL9MLrGsX4LmAp8BcgHhoTbG+/TbsLryZo9H83t5+7L3f14dy9y94MJksI3OypuEZFkUYIlItI+7gFOMLNjwl6IjHAChIEN6pxhZsPD65muAx4Kh3U1lAakA8VAnZkdS3At1TZ3AOea2ZfNLGLB1Nj7u/sagqGE/5+Z5YVle5lZ4+FojeUCZcAWMxtAcG1XQ78H5rr7+QRD32aG2x8AjgvjSAUuJ0jw/tvSC9WYu7/i7jk7ebyyq202YQHwrfDcTGH7YXp/Bi4Me5vMzLItmJwiF+onlrizhfZ/YWZpYTJ4PPBguD0X2OjuVeH1c99qoZ1cgtexhCAh/NUuPMeEcPdf7ex8NLefmQ0zs9zwdTiD4N9tm64HExHpCpRgiYi0A3dfSdDzcA1BcrSSIFlp+Ll7N8FEFGuBDOCHTbSzNdz+ALCJ4Av54w3K3ySc+ALYArzE5z1JZxEkaO+H+z7E9kMUm/IL4KCwrSeBR7YVmNlUgkkqLgo3/Q9wkJmd7u4fEvR23ULQC3cCcIK717RwvGS5hCDGzQRD2R7bVuDuc4HvALcSvG5L2H5CjkEE1xc1Z22432cEE1Jc6O4fhGXfA64zs63AtQTndWf+TjDEcDXBeXy9pSfWiRwDfELwWlwITAmv6xMR6dZ0HywRkSQws9nAPe7+l2THIq0Xzoq4EBgdTubRuHwywXkd2LhMRER2DynJDkBERKSrCHvkhrVYUUREdlttHiJoZoPCGZHet+AGk5eE23ua2bNm9nH4t0fbwxURkbYys5nNTFgws+W9pSsysz12MlHFHsmOT0SkO2nzEEEz6wf0c/f54QXA84CTCMarb3T3X5vZ1UAPd/9RG+MVERERERHptNrcg+Xua9x9fri8FVhMcN+TqcBdYbW7CJIuERERERGRbiuhk1yY2RDgZYIbUK7Ydof38H4om5q647uZXQBcAJCdnf2l/fffP2HxiIiIiIiIJNq8efM2uHtRU2UJS7DCm0++RHBzxkfMbHPDhMrMNrn7Tq/DGjt2rM+dOzch8YiIiIiIiLQHM5vn7mObKkvIfbDCm0o+DNzr7tvumbIuvD5r23Va6xNxLBERERERkc4qEbMIGnAHsNjdG96h/XHg7HD5bOCfbT2WiIiIiIhIZ5aIHqzDgDOBo8xsQfj4GvBr4Ktm9jHwlXBdRKRbc3cemb+KLRU73INWREREdgNtvtGwu88BrJniL7e1/draWlatWkVVVVVbm5LdTEZGBgMHDiQ1NTXZochu5NUlJdz24BMs278X/3P2N5MdjoiIiHSwNidY7W3VqlXk5uYyZMgQgtGIIi1zd0pKSli1ahVDhw5NdjiyG5m7fCPPpF8NnwL+DdDnloiIyG4lIZNctKeqqioKCwuVXMkuMTMKCwvV8ykdbt3m8vplL/4giZGIiIhIMnT6BAtQciVfiP7dSDJENi+rX6746OXkBSIiIiJJ0SUSLBGRriKv9OP65fLiZckLRERERJJCCVYrmBmXX355/fqNN97IjBkzkhdQA6+//joHH3wwY8aMYdiwYfVxzZ49m//+979tanvKlCkUFBRw/PHHJyBSkd1DtHIjAFWeSt3GFUmORkRERDqaEqxWSE9P55FHHmHDhg0JbdfdicfjbWrj7LPP5vbbb2fBggW8++67nHrqqUBiEqwrr7ySu+++u01tiOxurKYUgA98ENHSVUmORkRERDpap59FsKFfPPEe739WmtA2h/fP4+cnjNhpnZSUFC644AJuuukmrr/++u3KiouLufDCC1mxIvil+ne/+x2HHXYYM2bMICcnhyuuuAKAkSNH8q9//QuAY445hoMPPph58+bx1FNPceutt/L0009jZvz0pz9l2rRpzJ49mxkzZtCrVy/effddvvSlL3HPPffscF3R+vXr6devHwDRaJThw4ezbNkyZs6cSTQa5Z577uGWW25h//33bzbOpUuXsmTJEjZs2MBVV13Fd77zHQC+/OUvM3v27J2+Ng8++CC/+MUviEaj5Ofn8/LLL1NVVcVFF13E3LlzSUlJ4be//S1HHnkkd955J4899hjl5eV8/PHHXHHFFdTU1HD33XeTnp7OU089Rc+ePfnzn//M7bffTk1NDXvvvTd33303WVlZ2x13woQJ3HHHHYwYEZy7yZMnc+ONNzJ27NidxivSntydjFgZsdQoyxjA0MqPkh2SiIiIdDD1YLXS97//fe699162bNmy3fZLLrmEyy67jLfeeouHH36Y888/v8W2Pv74Y773ve/x3nvvMXfuXBYsWMDChQt57rnnuPLKK1mzZg0Ab7/9Nr/73e94//33+eSTT3j11Vd3aOuyyy5jv/324+STT+a2226jqqqKIUOGcOGFF3LZZZexYMECJk2atNM4Fy1axAsvvMBrr73Gddddx2effdbq1+W6667jmWeeYeHChTz++OMA/OEPf8DMeOedd5g1axZnn312/Wx+7777Lo888ghvvfUWP/nJT8jKyuLtt9/mkEMO4e9//zsAX//613nrrbdYuHAhw4YN44477tjhuNOmTeOBBx4AYM2aNaxZs0bJlSRdVW2cXCqoieayKbUPuTXFEI8lOywRERHpQF2qB6ulnqb2lJeXx1lnncXNN99MZmZm/fbnnnuO999/v369tLSUsrKynbY1ePBgJkyYAMCcOXM47bTTiEaj9OnThyOOOIK33nqLvLw8xo8fz8CBAwEYM2YMy5YtY+LEidu1de2113L66afzn//8h3/84x/MmjWryV6nncU5depUMjMzyczM5Mgjj+TNN9/kpJNOatXrcthhh3HOOedw6qmn8vWvf73+Of3gBz8AYP/992fw4MF89FHwS/6RRx5Jbm4uubm55Ofnc8IJJwAwatQoFi1aBARJ2E9/+lM2b95MWVkZxxxzzA7HPfXUUzn66KP5xS9+wQMPPMA3vvGNVsUr0p4qaurItQrqUnOoivQiUh6Hio2QU5Ts0ERERKSDdKkEK9kuvfRSDjroIM4999z6bfF4nNdff52MjIzt6qakpGx3fVXD+zFlZ2e36njp6en1y9FolLq6uibr7bXXXlx00UV85zvfoaioiJKSkh3qNBcn7Did+a5Mbz5z5kzeeOMNnnzySb70pS8xb968ndZv+JwikUj9eiQSqX9+55xzDo899hgHHHAAd955Z5MJ44ABAygsLGTRokXcf//9zJw5s9Uxi7SXipoYeVRQm5ZHPLUXlAPl65VgiYiI7EY0RHAX9OzZk1NPPXW7IWtHH300t9xyS/36ggULABgyZAjz588HYP78+Xz66adNtjlp0iTuv/9+YrEYxcXFvPzyy4wfP77VMT355JO4OxAMPYxGoxQUFJCbm8vWrVtbjBPgn//8J1VVVZSUlDB79mzGjRvX6uMvXbqUgw8+mOuuu46ioiJWrlzJpEmTuPfeewH46KOPWLFiBfvtt1+r29y6dSv9+vWjtra2vp2mTJs2jRtuuIEtW7YwevToVrcv0l4qa2PkWgXxtFwsp3ewsbw4uUGJiIhIh1KCtYsuv/zy7WYTvPnmm5k7dy6jR49m+PDh9T0pp5xyChs3bmTEiBHceuut7Lvvvk22d/LJJzN69GgOOOAAjjrqKG644Qb69u3b6njuvvtu9ttvP8aMGcOZZ57JvffeSzQa5YQTTuDRRx9lzJgxvPLKK83GCTB69GiOPPJIJkyYwM9+9jP69+8PBMnfN7/5TZ5//nkGDhzIM888AwTDErddb3XllVcyatQoRo4cyaGHHsoBBxzA9773PeLxOKNGjWLatGnceeed2/VcteT//b//x8EHH8xhhx3G/vvvX7/98ccf59prr61f/8Y3vsF9991XP3OiSLJV1MTIpYJ4Wh7RvCDB8jIlWCIiIrsT29b70RmMHTvW586du922xYsXM2zYsCRF1P01nu2wu9G/H+lIry0tYY+/jyN178k8M+AHnPnyZCqP+iWZh/8g2aGJiIhIApnZPHdvcoY19WCJiCRIZW0duVRgGfnkFvSi1qNUbV6b7LBERESkA2mSi93cjBkzkh2CSLdRUV1HDlXUZuRSmJtBCXlEStcnOywRERHpQO3eg2VmU8zsQzNbYmZXt/fxRESSpbqqgog50fRseuWkU+J5eJkSLBERkd1JuyZYZhYF/gAcCwwHTjOz4e15TBGRZKmtDO4tl5qRQ2FOGiWeR7RyQwt7iYiISHfS3j1Y44El7v6Ju9cA9wFT2/mYIiJJUVsVJliZOfTMSqOYfFKrNiY5KhEREelI7Z1gDQBWNlhfFW4TEel2YlWf92ClRCOUR3uQWVMCnWi2VhEREWlfSZ9F0MwuMLO5Zja3uLjz3i/msccew8z44IMPmq2zbNkyRo4cmbBjfvjhh0yePJkxY8YwbNgwLrjgAiC4SfBTTz3VprbPO+88evfundB4RXZ3sepyACwtG4Cq9ELSvBpqypMZloiIiHSg9k6wVgODGqwPDLfVc/fb3X2su48tKipq53C+uFmzZjFx4kRmzZrVZHldXV2bjxGLxbZb/+EPf8hll13GggULWLx4MT/4QXAvnUQkWOeccw7//ve/29SGiGwvvi2RSssCoDajMFgv77w/HomIiEhitfc07W8B+5jZUILEajrwrS/c2tNXw9p3EhRaqO8oOPbXO61SVlbGnDlzePHFFznhhBP4xS9+AcDs2bP52c9+Ro8ePfjggw/4z3/+Q11dHaeffjrz589nxIgR/P3vfycrK4vnn3+eK664grq6OsaNG8ef/vQn0tPTGTJkCNOmTePZZ5/lqquuYvr06fXHXbNmDQMHDqxfHzVqFDU1NVx77bVUVlYyZ84cfvzjH3P88cfzgx/8gHfffZfa2lpmzJjB1KlTufPOO3n00UfZsmULq1ev5owzzuDnP/85AIcffjjLli3b6fN+6aWXuOSSSwAwM15++WVycnK46qqrePrppzEzfvrTnzJt2jRmz57Nz3/+cwoKCnjnnXc49dRTGTVqFL///e+prKzkscceY6+99uKJJ57gl7/8JTU1NRQWFnLvvffSp0+f7Y47ffp0zjzzTI477jggSAaPP/54vvGNb7TunIokiddUBgupQQ+WZ/eCLQQJVs+hyQtMREREOky79mC5ex1wMfAMsBh4wN3fa89jtod//vOfTJkyhX333ZfCwkLmzZtXXzZ//nx+//vf89FHHwHBsL7vfe97LF68mLy8PP74xz9SVVXFOeecw/33388777xDXV0df/rTn+rbKCwsZP78+dslVwCXXXYZRx11FMceeyw33XQTmzdvJi0tjeuuu45p06axYMECpk2bxvXXX89RRx3Fm2++yYsvvsiVV15JeXnwS/qbb77Jww8/zKJFi3jwwQeZO3duq5/3jTfeyB/+8AcWLFjAK6+8QmZmJo888ggLFixg4cKFPPfcc1x55ZWsWbMGgIULFzJz5kwWL17M3XffzUcffcSbb77J+eefzy233ALAxIkTef3113n77beZPn06N9xwww7HnTZtGg888AAANTU1PP/88/XJlkhn5o16sKI5vYP1cs0kKCIisrto9xsNu/tTQNvGs23TQk9Te5k1a1Z9T8706dOZNWsWX/rSlwAYP348Q4d+/sv0oEGDOOywwwA444wzuPnmm/nqV7/K0KFD2XfffQE4++yz+cMf/sCll14KBAlFU84991yOOeYY/v3vf/PPf/6T2267jYULF+5Q7z//+Q+PP/44N954IwBVVVWsWLECgK9+9asUFgbDlL7+9a8zZ84cxo4d26rnfdhhh/E///M/nH766Xz9619n4MCBzJkzh9NOO41oNEqfPn044ogjeOutt8jLy2PcuHH069cPgL322oujjz4aCHreXnzxRQBWrVrFtGnTWLNmDTU1Ndu9dtsce+yxXHLJJVRXV/Pvf/+bww8/nMzMzFbFLJJMVlsRLKQGCVZqfpBg1ZWt113dRUREdhNJn+Sis9u4cSMvvPAC559/PkOGDOE3v/kNDzzwAB7OCpadnb1dfTPb6XpTGrfRUP/+/TnvvPP45z//SUpKCu++++4Oddydhx9+mAULFrBgwQJWrFjBsGHDvnA821x99dX85S9/obKyksMOO2ynE3wApKen1y9HIpH69UgkUn+N2g9+8AMuvvhi3nnnHW677Taqqqp2aCcjI4PJkyfzzDPPcP/99zebgIp0NpFGCVZmQV8AqjatTVZIIiIi0sGUYLXgoYce4swzz2T58uUsW7aMlStXMnToUF555ZUm669YsYLXXnsNgH/84x9MnDiR/fbbj2XLlrFkyRIA7r77bo444ogWj/3vf/+b2tpaANauXUtJSQkDBgwgNzeXrVu31tc75phjuOWWW+qTvrfffru+7Nlnn2Xjxo3110Ft611rjaVLlzJq1Ch+9KMfMW7cOD744AMmTZrE/fffTywWo7i4mJdffpnx48e3us0tW7YwYEAwU/9dd93VbL1p06bxt7/9jVdeeYUpU6a0un2RZIrUhQlWOESwZ14upZ5JzZb1SYxKREREOpISrBbMmjWLk08+ebttp5xySrOzCe6333784Q9/YNiwYWzatImLLrqIjIwM/va3v/HNb36TUaNGEYlEuPDCC1s89n/+8x9GjhzJAQccwDHHHMNvfvMb+vbty5FHHsn777/PmDFjuP/++/nZz35GbW0to0ePZsSIEfzsZz+rb2P8+PGccsopjB49mlNOOaV+eOBpp53GIYccwocffsjAgQO54447AJg5cyYzZ84E4He/+x0jR45k9OjRpKamcuyxx3LyySczevRoDjjgAI466ihuuOEG+vbt2+rXc8aMGXzzm9/kS1/6Er169arfPnfuXM4///z69aOPPpqXXnqJr3zlK6SlpbW6fZFkitaFk1ykBENae2anUeJ51G1VgiUiIrK7MO9EN8AcO3asN56EYfHixfXD3WTX3HnnncydO5dbb7012aEkjf79SEe697oz+ab/h7SfrwNgyfoyNt96JIP79KTo+88kOToRERFJFDOb5+5NTmygHiwRkQRJjVdSG82oX++VE/RgRStLkhiViIiIdCRNbNWNnXPOOZxzzjnJDkNkt5Ear6I2+vmMl3kZqWwkn7TqT5IYlYiIiHSkLtGD1ZmGMUrXoX830pFqY3EyvIpYgwQrEjEqUnuQVbsZ4vHkBSciIiIdptMnWBkZGZSUlOjLsuwSd6ekpISMjIyWK4skQEVNjCyqiaVkbbe9Jr2QCHGo3JSkyERERKQjdfohggMHDmTVqlUUFxcnOxTpYjIyMhg4cGCyw5DdRGVNjEyrJp6St932WFYhVALlxZBdmJzgREREpMN0+gQrNTWVoUOHJjsMEZGdqqipI5NqPHX7HizPKoISggSL/ZMSm4iIiHScTj9EUESkK9g2RJC07O22p+T2DhbK1QsvIiKyO1CCJSKSABXhEEFrlGCl5wcJVm2pbjYsIiKyO1CCJSKSAOU1dWRRTSRt+yGCOT2KiLtRuWVtkiITERGRjtTpr8ESEekKKmtiZFJNLH37HqyeOVlsJBfboh4sERGR3YF6sEREEqCisop0qyMlY/sEqzAnjRLPI16mBEtERGR3oARLRCQBairLAEjJyNlue6+cdEo8DyvfkIywREREpIO1KcEys9+Y2QdmtsjMHjWzggZlPzazJWb2oZkd0+ZIRUQ6sZqqIMFKy8zdbnvP7DRKyCOlqiQZYYmIiEgHa2sP1rPASHcfDXwE/BjAzIYD04ERwBTgj2YWbeOxREQ6rbr6HqzthwhmpUXZbAVk1GxMRlgiIiLSwdqUYLn7f9y9Llx9HRgYLk8F7nP3anf/FFgCjG/LsUREOrNYdTnADtO0mxmVaT3JiJVBXXUyQhMREZEOlMhrsM4Dng6XBwArG5StCrftwMwuMLO5Zja3uFg34hSRrsmrtwYLaTk7lNVm9AwWdLNhERGRbq/FBMvMnjOzd5t4TG1Q5ydAHXDvrgbg7re7+1h3H1tUVLSru4uIdA7VpcHfjLwdimJZwc2G0UyCIiIi3V6L98Fy96/srNzMzgGOB77s7h5uXg0MalBtYLhNRKRbimzrwUrP37EwWwmWiIjI7qKtswhOAa4CTnT3igZFjwPTzSzdzIYC+wBvtuVYIiKdWbR2W4KVu0NZSn4/ALxsXUeGJCIiIknQYg9WC24F0oFnzQzgdXe/0N3fM7MHgPcJhg5+391jbTyWiEinlbotwWpiiGBGj74AVG9eQ0ZHBiUiIiIdrk0JlrvvvZOy64Hr29K+iEhXEa0rJ0aUaMqOKVRhfi6bPRs2faYES0REpJtL5CyCIiK7rdTaMqqiORD05m+nV046xV5ArHRtEiITERGRjqQES0Skjdyd9FgZNSnZTZYX5aZT7PmYJrkQERHp9pRgiYi0UXVdnCyvoC51xwkuIOzBooCUSt0HS0REpLtTgiUi0kallbXkWQXxZhKsgsxUNlBARvUGqL+bhYiIiHRHSrBERNqotKqWXCrxJqZoB4hEjIq0QtLiVVBT1sHRiYiISEdSgiUi0kZbKmvpYVvxzJ7N1qnOKAoWdB2WiIhIt6YES0SkjUoraunJViI5vZqt49m9gwXdbFhERKRbU4IlItJGZVs3k261pOQUNVvHcvuElZVgiYiIdGdKsERE2qh8U5A0ZfXo02yd1Px+APhWJVgiIiLdmRIsEZE2qtoSXFeVkd+72To5PXpT5xGqN+tmwyIiIt2ZEiwRkTaqLQ3ub2XZzV+D1Ss3gw3kU7P5s44KS0RERJJACZaISBt5xYZgIauw2TpFuekUez4xDREUERHp1pRgiYi0UUpl0INFdvOTXBTlpFPsBVi5pmkXERHpzpRgiYi0UW71OsqjeZCe02ydXmGClbotGRMREZFuSQmWiEgb1Mbi9KxdR3l68zMIAuRnplJiBWRWb4R4vIOiExERkY6WkATLzC43MzezXuG6mdnNZrbEzBaZ2UGJOI6ISGezZnMV/a2E2pwBO60XiRiVaYVEiEHlxg6KTkRERDpamxMsMxsEHA2saLD5WGCf8HEB8Ke2HkdEpDNatamC/raBSMGgFuvWZIbXaOlmwyIiIt1WInqwbgKuArzBtqnA3z3wOlBgZv0ScCwRkU5lzfr15FsFmUWDW6zr2eF9spRgiYiIdFttSrDMbCqw2t0XNioaAKxssL4q3NZUGxeY2Vwzm1tcrIu/RaRrqfzsfQByBgxrsW40N7xOq0wzCYqIiHRXKS1VMLPngL5NFP0EuIZgeOAX5u63A7cDjB071luoLiLSqdSt+wCAlD4tJ1jpPYKO/PjWdZphSEREpJtqMcFy9680td3MRgFDgYVmBjAQmG9m44HVQMMLEgaG20REupX0zR9Ta6mkFrQ8RDAvrwcVnk5k8xoyOiA2ERER6Xhf+EdUd3/H3Xu7+xB3H0IwDPAgd18LPA6cFc4mOAHY4u5rEhOyiEjnUFkTY0D1UjZnDoFoi79X0Ssvg2LPp2aLPg5FRES6q5a/EXwxTwFfA5YAFcC57XQcEZGkeWfVJg6wpWzte3yr6hflpFNMAflbNcmFiIhId5WwBCvsxdq27MD3E9W2iEhntPTDhYy3CqL7HNaq+kW5aXzs+exbrkkuREREuitdZy0i8gVVfzQbgJzWJlg5GRR7AWlVG9oxKhEREUkmJVgiIl9AeXUdA0v+y6a0flC4d6v2yctMYaMVkFG7Beqq2zlCERERSQYlWCIiX8B/Fy/nUHuH6iFHQTCTaovMjMr0XsFKue77JyIi0h0pwRIR+QI+e+MRsqyaXhNO26X96jKLgoUyTXQhIiLSHSnBEhHZRSVl1Qxb/TCb0vqRMqR1119t4zm9g4UyTXQhIiLSHSnBEhHZRc89+xTjI4up+9K3IbJrH6PR3D7BgnqwREREuiUlWCIiu2BLeQ17Lfw/SiMFFE2+aJf3z+zRF4C47oUlIiLSLSnBEhHZBU88+GfGspiKQ6+A9Jxd3r9HXi6bPIeazWvaIToRERFJNiVYIiKt9Ob7H3PMp//Husy96Tv5u1+ojaLcdIo9n9otaxMcnYiIiHQGKckOQESkK9hUWk7soe9QYOXEvvUEpKR9oXZ65aRT7AX01TVYIiIi3ZJ6sEREWlBXF+OdmWdzSPxt1h72/8gYdMAXbqswO41i8olW6D5YIiIi3ZESLBGRnXB35tz2Aw6veJZ39/0eg776vTa1Vxj2YKVVFoN7gqIUERGRzkIJlojITrx413VMLr6XBb1PZuRpv2pzewWZqWwgn9R4FdSUJSBCERER6UyUYImINOPFh2Yy+dObeDfvcA747l/ArM1tRiJGZVqvYEU3GxYREel2lGCJiDRhzn8e4rB3rmFp5kiGXfwAFk3cnEC1GUXBgia6EBER6XbanGCZ2Q/M7AMze8/Mbmiw/cdmtsTMPjSzY9p6HBGRjjLv9dmMefVi1qYOYtD3HyealpnQ9mPZvYMFJVgiIiLdTpt+kjWzI4GpwAHuXm1mvcPtw4HpwAigP/Ccme3r7rG2Biwi0p4Wv7+IwU+fRUUkhx7ffYKM3J4JP0Yktw8UoyGCIiIi3VBbe7AuAn7t7tUA7r7t28JU4D53r3b3T4ElwPg2HktEpF0tW7mKjAemk2Yxomc9Qm7RHu1ynMz8ImqJqgdLRESkG2prgrUvMMnM3jCzl8xsXLh9ALCyQb1V4bYdmNkFZjbXzOYWF+u+MCKSHBtLyyj52zQGso7yk/9O4dDR7XasHjkZbPB8YqVKsERERLqbFocImtlzQN8min4S7t8TmACMAx4wsz13JQB3vx24HWDs2LG6KYyIdLhYLM6imecxOf4uy4+4icEHfLldj1eYk0ax59OzdC3Rdj1S1+DuVFdXU12xlZrKMmqqyqiprSMWqyOCY3jw1+MYYNEoRFKxaBSLpEIkSiSaQjQlNfgbTcVSgvWUlFQikRSi0QgRA0vATJAiIiI702KC5e5faa7MzC4CHnF3B940szjQC1gNDGpQdWC4TUSk03nmnhv5WsUzvL/3dxl+5HntfrzC7OBmw/tsXdvux0oWd6e4tJw1K5ay9bOP8I2fEtn6GZGKYtKrS8is2UhebBM5Xk4mVWRYjIx2jCfmRh0R4hjx8K8TIW4Nlhttd6x+HWDbL4DGjr8FNrWtpTrWxI2mW9OOdH2tzfN3Xs3q/6xJ3YOB332Iwp6Jv2ZURHZdW+cdfgw4EnjRzPYF0oANwOPAP8zstwSTXOwDvNnGY4mIJNybr83mqE9uYEnuWIZ/63875JiFOWks9Xwi5Ys75HjtbXN5FR9/+C5bPn2b+Jp3yNvyAf1qltOfYnrb53Mb1XmEzZbP1mgBFak9WJezB2sy8omnZOOpWZCaBWnZWFpW2PMUwS1IiLw++QGLx/B4HRavg3gMPPwbr4NYHR5vsB6PYfFa3OPg8bB+PFgPl4NHDNzB45gH2z/vNYuz41dd22F1x9Rox1H43mhPD79pb7etUduN16Vrc3yHfywe/sc/X9t+yZtZxol6HYeUP89r913NId+7vZ2iFpFd0dYE66/AX83sXaAGODvszXrPzB4A3gfqgO931RkE3V1DSkS6qY2lZRQ+czHlkVwGfedeiHTMgL3C7DRep4DUqg0Qj0Ok69yS0N35ZE0JSxa+Qu0n/6Vw43yG173POKsAIEaENSmD2NJjOIsLhpDWe29y++1Dbv99ye01kF7RFHol+TmIdDev33I2B697gA/mTmP/se07xFlEWtamBMvda4Azmim7Hri+Le0n29tP/w1/9xH2/vZfyOvZJ9nhiEgCuTtz7vwpJ7KSlcf8jcL8pi41bR/BEMF8Ih6Dyo2Q3blTjpKtVcx/6xUq3n+GgRv+y0j/kL2sDoDPUvdgVf9jWL/HWIr2HkvBkAMYmJrJwCTHLLI7GXHWTay/6VWyn7yYLXu+RH7P3skOSWS31tYerG6tZut6Dix7ldKbx/PWyB8y5sSLSU1LT3ZYIpIAr7z2X44puZslvb/K3hO+3qHHzstMYSM9gpWydZ0uwXJ3Ply5nk9ff4z0T/7DyMq5fNU2A7AqfW8+7X86PYYdQe/hh9M/p4j+yQ1XZLeXm9+T1V/7I3s+OZ0Pb5vGfv/zNGnp7XlVo4jsjBKsnTj41B+xZNEkYk9cxrh3r2P1e7exar9zGXnsBWTnFyY7PBH5gsqrash59kpqIukMOeOWDj++mRHLLgoGVpetgz4jOjyGxmJx560la/jkv49RtOJJDo29xf5WTanlsqboEKqHH8OALx3HwPx+yQ5VRJqw//ijeXP1DMYv/Blv//7rDL/kYdLTM5MdlshuSQlWC/YefSg+8jUWzn6QrP/eyMEf/JrKxb9lbv7hpA0/jqETTiC3oCjZYbZJPO7UxOLUxuLUxpza2lpqq8qpq64gVl1BvKaCupoK4tUVxGsricdi4UXkwYXiHq/D4w5eh8fDi8Xjsfrl+ovJ4zHcvf5i3mbtcO14a2bnauY6uZ1cPtd80Y4l3qrr8Fp3rd7OLli3HRa+eFtNtNp8DUtcW11B1ZrFHOHvsezQ/2VIkhKGlLx+wZRAZetbrNte3J23P13HB68+TsEnTzAp/hYTrJKtkTzW7HEChQdPp8ewI8mL6n8VIl3B+JN/yBvV5Rz8wa/54P/7Mr2/fT89+wxqeceuzp14TSVV1ZVUV1VSU1VJdXUlNdVV1FZXEautgrpq4nXVUFeNx2qJx2LE49u+w8TweIx4+NdjMcCxeAwjFkx24/HtD7n94Zsv267EdrJGM9NLNv5StGMbDf//3fT/zxvt06hOU200feymVmy7fba1s/1kPs3sU1/e9D4Nv9ttKBjNwRMm0Suna4wk0/81W8EiEQ44ahp+5Km8P38OW//7Z/YreZ6C15+j7rXL+SR1KJvzh+P9DiCz/3Dy++5FYf/BZGQk5pejuliciuoaqirKqagoo7qijJqqCmqqyqitqqCuOkiG4tUVxGoq8ZoKqKuC2gqorSJSV0kkVkUkVkVKrIqUeBWp8WrSvJo0ryGDajKshkxqyKaG9PDaCpHu7J2MsYz6yoVJO35W4bYEq2NvNuzuvLeqhPfmPE7OkieYVPc6B1kF5ZFcSoYcS+oh3yJ3n8nkRlM7NC4RSYyDp/+Y1//ZkzHzf0L1nybw3rifMvzY72KddDKdmro4m8oqKN24jqrNxdSUrqeuvBgvK4GKEiJVm6GmjEhtOdG6ClJiFWTEKkj3SjK9kkyqyPIqIuZkAVnJfkLSLv5f7RkM2G9sl0mwzJu4D0eyjB071ufOnZvsMFqluqaGj+a/RNk7T5FV/DaDqz+mwMrqy+NubLFcKiLZVEayqYrkEA9viEnwewhxIkTidaR4DVEP/8ZriXoNKfFa0qgmPUyAvmjSU0sK1ZZOraVRYxnURdKpi2YQi2YQj2YQSwn+xlMy8WgGnvr5X0vNhPBhqVlE0jKJpGVi0RQikSiRSBSLRLBICpFoFLNIcONPixKJpGDRCBaJEo2kYBHDIilEo9HgZp/N9IR4c71VZjv8QvT5Ps1s38m/7aAXbcfypndpxXuk1e+jncXkLdbZ1WO2qr/JW9fWLsXVypk3k/Xp4w49+wwkJSV5vzHd+MyHXPTfSWQecj6RKb9q9+N9vGYTC+f8i8wP/8mhta/Rw8qosCzWD/gqvQ+ZTtZ+X4GUtHaPQ0Q6xsfvzaX6kYsZGVvMiugebBz9HfaefAY5+e17r6xY3Nm0eROlG9exdeMaqjatp2ZrMbGyYqjYSLSyhPSaTWTWbiY3vpl830o+5USs6f8jlHsGFZZJVSSLmkgmNdEsaqOZ1EWzqEvJJpaSRSwtB1IysJQMoqlpRFIziKZmEE1NJ5oW/LWUDCw1nUhKOpaSRjQaJRoNvr9EoymN1qNYJAUsEnxvi0TAIvXfXayJHhcL47dGPTr1Wvj/bFPfWbxxr1mjOo1HBAXljes0WvdG9+Br1Eh9/QZ1fIc62xU0iKvxjQYabAs3bjvNO3znadQl2PjV8PQ8Cgp6kJbSeX4oMLN57j62yTIlWIkRi8X5bPnHbF71AVUbluGbV+LlxVjVFtJjZaTHyol4XdjdHCeKE7E4MVKos9TgEUkjHknDI6l4SjrxlExIyYDULCw1E0vLJJqWSSQtm5T0LFIzskjJyCYtI5v0zGzSM3NIz8wmNT0bUjMgJRM0tEekU5r15goO/tdX6bvPl8g68x/tcozlxaW8/cqTpH7wGBOqX6XQtlJpmazrdxS9Dp5OzohjIKVr/BooIruupraOuU/cRu93bmdvX0aNR/k4YxTVfQ4kdeAYegzcj4LeA8nu0Rdr1Gvt8Tg1tdVUlJdTXbaRqi0bqNhSTFVpCTVbNxAr34hVlpBStZG0mk1k1W4mL76FfC8l02qajKeOKFssj7JoPlWpPahN70EssxDLKiSSU0RKTi9S84pIz+9DVkFvcnr0IS1dn1HSOSnBEhHpZOYt38iav0znqLzPyLry3YS1+8m6zbz76pOkfvQEYytfpchKqSKdNX0m02P8dApGHxv0TIvIbqOuLsYH815g64LH6LXuVYbEVpBq29+etNaj1JJCzKKkUkua1zXbq7RNORlssXwqUvKpTO1BTXpPPLMnlt2LaE4R6flFZPfoS27PPuQV9iWaWdDqEQ4ind3OEix1b4iIJMGwfnk863tyfPkbULERsr7YsB135/2VxSx+7SmyljzJhJr/cqKVUUkGq/scTmTsNygcczxD07IT/AxEpKtISYky8uCvwsFfBWDL1jJWfzSf0rWfULdlLVRswGI1RGI1mNcRs7RgOF1qJpG0DCwjH7J6kJnbi6weReT36EN+zyKy0zPRJ4vIjpRgiYgkQVZaChvyRkAFsPy/MOz4Vu9bVRvj7ffeY8P8J8lf9SIHxRYywqqosCzW9DsCH/tNCkcfy95putxbRHaUn5tD/pcOBw5Pdigi3ZISLBGRJCkcdgQb5uaRN/8fpO0kwaqpi7P4k2WsXfQ8vuxVhmydxyG2AoAN0d6sHTyV3l86gbzhX2WvVN1cVEREJJmUYImIJMlJY4dw/xuT+f7HjxNf9CCRUd8g7rBy7XpWf7yQsuXziKxdyB7l73KAreQAoJo0PssbxdK9pjNg3FR69R9BL13TICIi0mlokgsRkST633/O59h55zMmspQq0qjzKDlWWV++1XJYlzuc+KBDKRp5FD32maCZ/0RERJJMk1yIiHRSV594IE/v8Qgfzr2fosql5KQ4aT0HUjBgX/rtP4HcXkPIVQ+ViIhIl6EES0QkicyMrx04BA78UbJDERERkQToPLdDFhERERER6eKUYImIiIiIiCSIEiwREREREZEE6VSzCJpZMbA82XE00gvYkOwgpMPofO8+dK53HzrXuxed792HzvXuozOe68HuXtRUQadKsDojM5vb3BSM0v3ofO8+dK53HzrXuxed792HzvXuo6udaw0RFBERERERSRAlWCIiIiIiIgmiBKtltyc7AOlQOt+7D53r3YfO9e5F53v3oXO9++hS51rXYImIiIiIiCSIerBEREREREQSRAmWiIiIiIhIgijB2gkzm2JmH5rZEjO7OtnxSOKY2SAze9HM3jez98zsknB7TzN71sw+Dv/2SHaskhhmFjWzt83sX+H6UDN7I3x/329macmOURLDzArM7CEz+8DMFpvZIXpvd09mdln4Gf6umc0yswy9t7sPM/urma03s3cbbGvyvWyBm8PzvsjMDkpe5LKrmjnXvwk/xxeZ2aNmVtCg7Mfhuf7QzI5JStA7oQSrGWYWBf4AHAsMB04zs+HJjUoSqA643N2HAxOA74fn92rgeXffB3g+XJfu4RJgcYP1/wNucve9gU3At5MSlbSH3wP/dvf9gQMIzrve292MmQ0AfgiMdfeRQBSYjt7b3cmdwJRG25p7Lx8L7BM+LgD+1EExSmLcyY7n+llgpLuPBj4CfgwQfl+bDowI9/lj+L2901CC1bzxwBJ3/8Tda4D7gKlJjkkSxN3XuPv8cHkrwRewAQTn+K6w2l3ASUkJUBLKzAYCxwF/CdcNOAp4KKyic91NmFk+cDhwB4C717j7ZvTe7q5SgEwzSwGygDXovd1tuPvLwMZGm5t7L08F/u6B14ECM+vXIYFKmzV1rt39P+5eF66+DgwMl6cC97l7tbt/Ciwh+N7eaSjBat4AYGWD9VXhNulmzGwIcCDwBtDH3deERWuBPsmKSxLqd8BVQDxcLwQ2N/jg1vu7+xgKFAN/C4eE/sXMstF7u9tx99XAjcAKgsRqCzAPvbe7u+bey/re1r2dBzwdLnf6c60ES3ZrZpYDPAxc6u6lDcs8uIeB7mPQxZnZ8cB6d5+X7FikQ6QABwF/cvcDgXIaDQfUe7t7CK+9mUqQVPcHstlxiJF0Y3ov7x7M7CcEl3bcm+xYWksJVvNWA4MarA8Mt0k3YWapBMnVve7+SLh53bYhBeHf9cmKTxLmMOBEM1tGMNT3KIJrdArCYUWg93d3sgpY5e5vhOsPESRcem93P18BPnX3YnevBR4heL/rvd29Nfde1ve2bsjMzgGOB073z2/e2+nPtRKs5r0F7BPORpRGcDHd40mOSRIkvAbnDmCxu/+2QdHjwNnh8tnAPzs6Nkksd/+xuw909yEE7+MX3P104EXgG2E1netuwt3XAivNbL9w05eB99F7uztaAUwws6zwM33budZ7u3tr7r38OHBWOJvgBGBLg6GE0gWZ2RSC4f0nuntFg6LHgelmlm5mQwkmNnkzGTE2xz5PBqUxM/sawbUbUeCv7n59ciOSRDGzicArwDt8fl3ONQTXYT0A7AEsB05198YX2EoXZWaTgSvc/Xgz25OgR6sn8DZwhrtXJzE8SRAzG0MwoUka8AlwLsEPinpvdzNm9gtgGsHwobeB8wmuxdB7uxsws1nAZKAXsA74OfAYTbyXwyT7VoJhohXAue4+NwlhyxfQzLn+MZAOlITVXnf3C8P6PyG4LquO4DKPpxu3mUxKsERERERERBJEQwRFREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0SkkzGzIWbmZpaS7Fhk92Bm75nZ5GTHISLSHSjBEhGRLs/MZppZWfioMbPaButPJzu+zs7dR7j77ES2aWYDzOyfZrbRzFaZ2YWJbF9EpLMyd092DCIi3YqZpbh7XRv2HwJ8CqS2pZ3dlZnNAPZ29zOaKGvTuelIXSnWppjZi8BC4EpgOPAicIq7v5jUwERE2pl6sEREEsDMlpnZj8xsEVBuZilmNsHM/mtmm81sYcMhWGY228z+18zeNLPS8Jf+ns20fa6ZLTazrWb2iZl9t1H5VDNbELaz1MymhNvzzewOM1tjZqvN7JdmFm3heexlZi+YWYmZbTCze82soEHZRjM7KFzvb2bF256XmZ0YDjXbHD6/YY1enyvMbJGZbTGz+80sY9df6V3XzLlxM9u7QZ07zeyXDdaPD1/TzeE5HN3KY00Oe2uuCV+/ZWZ2eoPy48zs7fBcrQyTwW1l24aGftvMVgAvhNsfNLO14ev2spmNaBT3H83s6bC37lUz62tmvzOzTWb2gZkd2MrX6CuteY6tfB1ygMnA9e5e6+4LgYeA8xJ1DBGRzkoJlohI4pwGHAcUAH2AJ4FfAj2BK4CHzayoQf2zCL5w9gPqgJubaXc9cDyQB5wL3NQgyRkP/J2gl6AAOBxYFu53Z9ju3sCBwNHA+S08BwP+F+gPDAMGATMA3H0p8CPgHjPLAv4G3OXus81sX2AWcClQBDwFPGFmaQ3aPhWYAgwFRgPnNBmA2cQwsWnuMbGF59CU+nPTUq9QmJD8FfguUAjcBjxuZumtPFZfoBcwADgbuN3M9gvLygnOe0EYz0VmdlKj/Y8geO2PCdefBvYBegPzgXsb1T8V+Gl4zGrgtbBeL4Kk5retjLtJZnb1zs5Hc7s1+rtteWRbYhER6QqUYImIJM7N7r7S3SuBM4Cn3P0pd4+7+7PAXOBrDerf7e7vuns58DPg1KZ6mNz9SXdf6oGXgP8Ak8LibwN/dfdnw+OsdvcPzKxPeKxL3b3c3dcDNwHTd/YE3H1J2Fa1uxcTfDk/okH5n4ElwBsEieFPwqJpwJPhvrXAjUAmcGij1+czd98IPAGMaSaGOe5esJPHnJ09h2Y0PDctuQC4zd3fcPeYu99FkLhM2IXj/Sx8DV8iSLRPBXD32e7+TniuFhEkpUc02ndGeM4qw33+6u5b3b2aINk9wMzyG9R/1N3nuXsV8ChQ5e5/d/cYcD9Bcv2Fufuvd3Y+mtlnK/Aq8DMzywh/EDgFyGpLLCIiXYESLBGRxFnZYHkw8M1Gv/RPJEhKmqq/HEgl6HXYjpkda2avh8PzNhMkTtvqDQKWNhHL4LC9NQ2OfxtBL0izzKyPmd0XDiksBe5pIqY/E/RE3BJ+6Yegx2v5tgruHg+f34AG+61tsFwB5OwslgRb2XKVeoOByxudu0EEz7E1NoVJ8zbLt+1rZgeb2Yvh0MotwIXs+PrWx2pmUTP7tQVDP0v5vHey4T7rGixXNrHeka9zQ6cT9FauBP5E8G9pVZJiERHpMEqwREQSp+GsQSsJeqga/tqf7e6/blBnUIPlPYBaYEPDBsNhaQ8T9Aj1CXsMnuLzoVcrgb2aiGUlQa9LrwbHz3P3EU3UbehX4fMY5e55BD1x9cO8wmtrfgfcAcywz68b+4wgMdlWz8Lnt7qF4+3AzCbZ5zMANvWY1HIrO2g8o1MF2/em9G2wvJLg2qGG5y7L3We18lg9zCy7wfoeBK8PwD+Ax4FB7p4PzGT7YXSNY/0WMBX4CpAPDAm3N96n3YTXkzV7Pprbz92Xu/vx7l7k7gcTJIVvdlTcIiLJogRLRKR93AOcYGbHhL0QGeEECAMb1DnDzIaH1zNdBzwUDutqKA1IB4qBOjM7luBaqm3uAM41sy+bWcSCqbH3d/c1BEMJ/z8zywvL9jKzxsPRGssFyoAtZjaA4Nquhn4PzHX38wmGvs0Mtz8AHBfGkQpcTpDg/belF6oxd3/F3XN28nhlV9tswgLgW+G5mcL2w/T+DFwY9jaZmWVbMDlFLtRPLHFnC+3/wszSwmTweODBcHsusNHdq8Lr577VQju5BK9jCUFC+KtdeI4J4e6/2tn5aG4/MxtmZrnh63AGwb/bNl0PJiLSFSjBEhFpB+6+kqDn4RqC5GglQbLS8HP3boKJKNYCGcAPm2hna7j9AWATwRfyxxuUv0k48QWwBXiJz3uSziJI0N4P932I7YcoNuUXwEFhW08Cj2wrMLOpBJNUXBRu+h/gIDM73d0/JOjtuoWgF+4E4AR3r2nheMlyCUGMmwmGsj22rcDd5wLfAW4leN2WsP2EHIMIri9qztpwv88IJqS40N0/CMu+B1xnZluBawnO6878nWCI4WqC8/h6S0+sEzkG+ITgtbgQmBJe1yci0q3pPlgiIklgZrOBe9z9L8mORVovnBVxITA6nMyjcflkgvM6sHGZiIjsHlKSHYCIiEhXEfbIDWuxooiI7LY0RFBEZDdjZjObmbBgZst7S1dkZnvsZKKKPZIdn4hId6IhgiIiIiIiIgmiHiwREREREZEE6VTXYPXq1cuHDBmS7DBERERERESaNW/evA3uXtRUWadKsIYMGcLcuXOTHYaIiIiIiEizzGx5c2UaIigiIiIiIpIgSrBEREREREQSRAmWiEgrxOKOZl0VERGRlnSqa7CaUltby6pVq6iqqkp2KNLFZGRkMHDgQFJTU5MdinRxNXVxjrxxNl8d3ocZJ45IdjgiIiLSiXX6BGvVqlXk5uYyZMgQzCzZ4UgX4e6UlJSwatUqhg4dmuxwpIv7ZEMZV5f/H/6WET/uKSJRdf6LiIhI0zr9t4SqqioKCwuVXMkuMTMKCwvV8ykJsWxDBSdEX+fE6GtsXvxissMRERGRTqzNCZaZDTKzF83sfTN7z8wuCbf3NLNnzezj8G+PNhyjrWHKbkj/biRRNmzZWr+8ZcU7SYxEREREOrtE9GDVAZe7+3BgAvB9MxsOXA087+77AM+H6yIiXY6Vr69frin+JImRiIiISGfX5gTL3de4+/xweSuwGBgATAXuCqvdBZzU1mMli5lx+eWX16/feOONzJgxI3kBNfD6669z8MEHM2bMGIYNG1Yf1+zZs/nvf//7hdtdvnw5Bx10EGPGjGHEiBHMnDkzQRGLdD3RBglWpHRFEiMRERGRzi6hk1yY2RDgQOANoI+7rwmL1gJ9mtnnAuACgD322COR4SRMeno6jzzyCD/+8Y/p1atXwtp1D6Z9jkS+eJ579tln88ADD3DAAQcQi8X48MMPgSDBysnJ4dBDD/1C7fbr14/XXnuN9PR0ysrKGDlyJCeeeCL9+/f/wrGKdFWpFUGCVUwPsstXJTkaERER6cwSNsmFmeUADwOXuntpwzIPbh7T5A1k3P12dx/r7mOLiooSFU5CpaSkcMEFF3DTTTftUFZcXMwpp5zCuHHjGDduHK+++ioAM2bM4MYbb6yvN3LkSJYtW8ayZcvYb7/9OOussxg5ciQrV67kyiuvZOTIkYwaNYr7778fCBKkyZMn841vfIP999+f008/vcl78Kxfv55+/foBEI1GGT58OMuWLWPmzJncdNNNjBkzhldeeWWncZ555pkccsgh7LPPPvz5z38GIC0tjfT0dACqq6uJx+NNvjY333wzw4cPZ/To0UyfPh2AjRs3ctJJJzF69GgmTJjAokWL6o919tlnM2nSJAYPHswjjzzCVVddxahRo5gyZQq1tbUAXHfddYwbN46RI0dywQUX7PC84/E4Q4YMYfPmzfXb9tlnH9atW7ez0yjyhWVUBf+2Pkzdn/yatUmORkRERDqzhPRgmVkqQXJ1r7s/Em5eZ2b93H2NmfUD1jffQuv84on3eP+z0pYr7oLh/fP4+Qkt39fm+9//PqNHj+aqq67abvsll1zCZZddxsSJE1mxYgXHHHMMixcv3mlbH3/8MXfddRcTJkzg4YcfZsGCBSxcuJANGzYwbtw4Dj/8cADefvtt3nvvPfr3789hhx3Gq6++ysSJE7dr67LLLmO//fZj8uTJTJkyhbPPPpshQ4Zw4YUXkpOTwxVXXAHAt771rWbjXLRoEa+//jrl5eUceOCBHHfccfTv35+VK1dy3HHHsWTJEn7zm9802Xv161//mk8//ZT09PT6hOfnP/85Bx54II899hgvvPACZ511FgsWLABg6dKlvPjii7z//vsccsghPPzww9xwww2cfPLJPPnkk5x00klcfPHFXHvttQCceeaZ/Otf/+KEE06oP2YkEmHq1Kk8+uijnHvuubzxxhsMHjyYPn2a7CQVabNodfC5U5K5J9mlr0FdDaSkJTkqERER6YwSMYugAXcAi939tw2KHgfODpfPBv7Z1mMlU15eHmeddRY333zzdtufe+45Lr74YsaMGcOJJ55IaWkpZWVlO21r8ODBTJgwAYA5c+Zw2mmnEY1G6dOnD0cccQRvvfUWAOPHj2fgwIFEIhHGjBnDsmXLdmjr2muvZe7cuRx99NH84x//YMqUKU0ec2dxTp06lczMTHr16sWRRx7Jm2++CcCgQYNYtGgRS5Ys4a677mqyh2j06NGcfvrp3HPPPaSkpNQ/pzPPPBOAo446ipKSEkpLgy+oxx57LKmpqYwaNYpYLFYf76hRo+qf34svvsjBBx/MqP+/vTuPr6us9z3++e05c9okHdPSIm3pkE60pYdSaJFJRQEZikfQUoUjTgeOwxEUBLy8rsK9nnsUlQuiKCIFUUs9IDILPdcCHaFQCoXOY5p0yLDn/dw/9m6aNEOH7GSnyff9eu3X3utZaz3rl66uZP3286znqarixRdf5O2332513Hnz5jW19i1cuJB58+Z1+G8u0hmWCJPEQ6wg3VpMQ3VuAxIREZEeKxstWLOAa4C3zGxVpuwW4IfA42b2BWATcGVnD3Q0LU1d6cYbb2Tq1Klce+21TWWpVIqlS5cSCoVabOvz+Vp0q2s+H1NBQcFRHe9gFz1Id/9LJBJtbveRj3yEG264geuuu46KigpqampabdNenNB6OPPDl4cMGcKECRN49dVXufzyy1use+qpp3jllVf4y1/+wl133cVbb3U8hPXBn8nj8eD3+5uO5fF4SCQSRCIRvvzlL7Ns2TKGDRvG7bff3uZcVv/0T//E+vXrqa6uZtGiRXzve9/r8LgineFNNBIhhK94AOyAZN1uvCVDcx2WiIiI9EDZGEVwiXPOnHMTnXOTM6+nnXM1zrmPOudGOefOdc7VZiPgXOrfvz9XXnklDz74YFPZ+eefz09/+tOm5YNd4UaMGMGKFSsAWLFiBRs2bGizztmzZ/PYY4+RTCaprq7mlVdeYcaMGUcd01NPPdX0jNL777+P1+ultLSUoqIi6uoOzd3TXpwATz75JJFIhJqaGl5++WWmT5/O1q1bCYfDAOzdu5clS5YwZsyYFsdOpVJs2bKFuXPn8qMf/Yj9+/dTX1/P7NmzeeSRR4D0s2Tl5eUUFxcf1c9zMJkqLy+nvr6eJ554os3tzIxLL72Uf/u3f2Ps2LGUlZUdVf0ix8ObDBPzBAkUDwKgvnZ7jiMSERGRniprg1z0Fd/4xjfYs2dP0/JPfvITli1bxsSJExk3blzTcOaXXXYZtbW1jB8/nnvvvZfRo0e3Wd+ll17KxIkTmTRpEueccw533303gwYNOup4Hn74YcaMGcPkyZO55ppreOSRR/B6vXzyk5/kz3/+c9MgF+3FCelufnPnzmXmzJnceuutDBkyhLVr13L66aczadIkzj77bL75zW9SVVUFwBe/+EWWLVtGMpnk6quvpqqqiilTpvD1r3+d0tJSbr/9dpYvX87EiRP5zne+w29+85v2wm+ltLSU6667jgkTJnDBBRcwffr0pnX33Xdfi7jnzZvH7373O3UPlC7nS4aJWohQv/S12Vi74wh7iIiISF9lbY1MlyvTpk1zy5Yta1G2du1axo4dm6OIer/bb7+9xWAYvY3+/0g2/OOuC6i03Wz/9GJOXziBjZO/xYhL1C1VRESkrzKz5c65aW2tUwuWiMgR+FNhEp4QZf1LaXBBknWaEkBERETaltWJhuXEc/vtt+c6BJEeL5CKkPAWUlEYZI8rwdV3etYJERER6aXUgiUicgRBFyHhy6Mkz08NJfjCe468k4iIiPRJSrBERI4g6KI4bx5mxgFvP0LR1lMhiIiIiIASLBGRDqVSjhBRkr58AMKB/uTHT/hZJ0RERKSLKMESEelANJEinygE0glWNFROYeoAJNue+FtERET6NiVYR2nRokWYGe+++26722zcuJEJEyZk7Zjr1q1jzpw5TJ48mbFjx3L99dcD6UmCn3766eOuNxKJMGPGDCZNmsT48eP5/ve/n62QRXqdcDxJHlHw5wGQyq/Ag4NGPYclIiIirSnBOkqPPvooZ555Jo8++mib6xOJzn+bnUwmWyx//etf56abbmLVqlWsXbuWr33ta0DnE6xgMMiLL77I6tWrWbVqFc888wxLly7tVOwivVU4EsFvSfAXAGCFAwA0kqCIiIi0SQnWUaivr2fJkiU8+OCDLFy4sKn85ZdfZvbs2XzqU59i3LhxQDrR+uxnP8vYsWO5/PLLaWxsBOCFF15gypQpVFVVsWDBAqLRKAAjRozg3//935k6dSp/+MMfWhx3x44dVFZWNi1XVVURi8W47bbbeOyxx5g8eTKPPfYYDQ0NLFiwgBkzZjBlyhSefPJJAB566CEuvvhi5syZw6hRo7jjjjsAMDMKCwsBiMfjxONxzKzVz/2HP/yBCRMmMGnSJM466ywg3fp17bXXUlVVxZQpU3jppZeajnXJJZdw3nnnMWLECO69915+/OMfM2XKFGbOnEltbfqZlQceeIDp06czadIkLrvssqZ/n+ZmzpzJ22+/3bQ8Z84cDp+AWqS7RBvrALBMF0FfUTrBatyrubBERESktRNrHqy/fgd2vpXdOgdVwcd+2OEmTz75JBdeeCGjR4+mrKyM5cuXc9pppwGwYsUK1qxZw8iRI9m4cSPr1q3jwQcfZNasWSxYsICf//znfPWrX2X+/Pm88MILjB49ms997nP84he/4MYbbwSgrKyMFStWtDruTTfdxDnnnMMZZ5zB+eefz7XXXktpaSl33nkny5Yt49577wXglltu4ZxzzuFXv/oV+/btY8aMGZx77rkAvP7666xZs4b8/HymT5/OJz7xCaZNm0YymeS0005j/fr1fOUrX+H0009vdfw777yTv/3tbwwdOpR9+/YB8LOf/Qwz46233uLdd9/l/PPP57333gNgzZo1rFy5kkgkwimnnMKPfvQjVq5cyU033cRvf/tbbrzxRj796U9z3XXXAfC9732PBx98sKll7qB58+bx+OOPc8cdd7Bjxw527NjBtGltTpQt0uWi4QYAvJkEK690EAB1tTsoyFlUIiIi0lOpBesoPProo1x11VUAXHXVVS26Cc6YMYORI0c2LQ8bNoxZs2YBcPXVV7NkyRLWrVvHyJEjGT16NACf//zneeWVV5r2mTdvXpvHvfbaa1m7di1XXHEFL7/8MjNnzmxq+Wru2Wef5Yc//CGTJ09mzpw5RCIRNm/eDMB5551HWVkZeXl5fPrTn2bJkiUAeL1eVq1axdatW5uSsMPNmjWL+fPn88ADDzR1X1yyZAlXX301AKeeeionnXRSU4I1d+5cioqKqKiooKSkhE9+8pNAuuVt48aNQDoJmz17NlVVVTzyyCMtWqoOuvLKK3niiScAePzxx7n88svb/PcR6Q6xSLqV1RtMP4NV0H8wAJF9O3MWk4iIiPRcXd6CZWYXAv8JeIFfOuc6bi7qyBFamrpCbW0tL774Im+99RZmRjKZxMy45557ACgoaPkd9uFd7drqene4w+tobsiQISxYsIAFCxYwYcKENhMh5xx//OMfGTNmTIvy11577YjxlJaWMnfuXJ555plWA3Tcd999vPbaazz11FOcdtppLF++vMOfIxgMNn32eDxNyx6Pp+kZtfnz57No0SImTZrEQw89xMsvv9yqnqFDh1JWVsabb77JY489xn333dfhcUW6UiySbsHyBdIJVr+ycuLOS+KAnsESERGR1rq0BcvMvMDPgI8B44DPmNm4rjxmtj3xxBNcc801bNq0iY0bN7JlyxZGjhzJq6++2ub2mzdv5h//+AcAv//97znzzDMZM2YMGzduZP369QA8/PDDnH322Uc89jPPPEM8Hgdg586d1NTUMHToUIqKiqirq2va7oILLuCnP/0pzjkAVq5c2bTuueeeo7a2lnA4zKJFi5g1axbV1dVNXf7C4TDPPfccp556aqvjf/DBB5x++unceeedVFRUsGXLFmbPns0jjzwCwHvvvcfmzZtbJXYdqaurY/DgwcTj8aZ62jJv3jzuvvtu9u/fz8SJE4+6fpFsi2dasHyZFqzyohA1FJOqr85lWCIiItJDdXUXwRnAeufch865GLAQuLiLj5lVjz76KJdeemmLsssuu6zd0QTHjBnDz372M8aOHcvevXu54YYbCIVC/PrXv+aKK66gqqoKj8fDl770pSMe+9lnn20aZOKCCy7gnnvuYdCgQcydO5d33nmnaZCLW2+9lXg8zsSJExk/fjy33nprUx0zZszgsssuY+LEiVx22WVMmzaNHTt2MHfuXCZOnMj06dM577zzuOiiiwC47bbbWLx4MQDf+ta3qKqqYsKECZxxxhlMmjSJL3/5y6RSKaqqqpg3bx4PPfRQi5arI/nBD37A6aefzqxZs1okdYsXL+a2225rWr788stZuHAhV1555VHXLdIVErEwAP5QuqW5X36AGleMN6xh2kVERKQ1O9jq0SWVm10OXOic+2Jm+RrgdOfcV5ttcz1wPcDw4cNP27RpU4s61q5dy9ixY7ssxt7soYceajEYRl+k/z/SWS89tZC5b/wLe658kvJxcwD4xx1nURmKMezfNb2BiIhIX2Rmy51zbY7ClvNBLpxz9zvnpjnnplVUVOQ6HBGRFg62YAVDh56VbPT1IxTfm6uQREREpAfr6kEutgHDmi1XZsqkG8yfP5/58+fnOgyRE1oqk2AFQnlNZdFgGUX1SrBERESkta5uwXoDGGVmI80sAFwFLD7WSrqyG6P0Xvp/I9mQih9MsA61YCXzyggRhVhDrsISERGRHqpLEyznXAL4KvA3YC3wuHOu9cRHHQiFQtTU1OhmWY6Jc46amhpCoVCuQ5ETnMu0YJn/UAsWBenuzK5eQ7WLiIhIS10+D5Zz7mng6ePdv7Kykq1bt1JdrSGR5diEQiEqKytzHYac4Fwikv7gO5Sse4sHAhDet4v8/iPb2k1ERET6qC5PsDrL7/czcqRuYEQkRzJdBGnWghUsSSdYdTU7yD85F0GJiIhIT5XzUQRFRHoyS0ZIYeANNJXl9xsEQHjvzlyFJSIiIj2UEiwRkQ5YIkqcAJg1lRWXDQYgdkDPYImIiEhLSrBERDrgSUSIWaBFWXm/EupcHsk6JVgiIiLSkhIsEZEOeFJR4p5gi7L+BQFqXDHWqMF3REREpCUlWCIiHfAlIyQOa8Hyez3s95TgC9fkKCoRERHpqZRgiYh0wJuKkvAGW5XX+/oRitXmICIRERHpyZRgiYh0wJ+KkPDmtSqPBPpTkNibg4hERESkJ1OCJSLSgWAqQrKNBCseKqM4tR9SyRxEJSIiIj2VEiwRkQ6EXISkr3WClSwYiJcUNOzJQVQiIiLSUynBEhFpRyyRIkSUVBstWFacnmw4um97d4clIiIiPZgSLBGRdoRjSfItigsUtFoXKElPNlxXvaW7wxIREZEeTAmWiEg7GmIJ8oli/vxW60L9KwForN3W3WGJiIhID9apBMvM7jGzd83sTTP7s5mVNlt3s5mtN7N1ZnZBpyMVEelmjbEkeUQh0DrBKi4fCkB8r7oIioiIyCGdbcF6DpjgnJsIvAfcDGBm44CrgPHAhcDPzczbyWOJiHSrxkgYvyXxBgtbrSsrLaLGFZGq25mDyERERKSn6lSC5Zx71jmXyCwuBSozny8GFjrnos65DcB6YEZnjiUi0t0iDfUAeIKtn8EqKwiw2/XD26AES0RERA7J5jNYC4C/Zj4PBZo/+b01UyYicsKIhQ8A4Au1bsEK+b3UWD+C4eruDktERER6MN+RNjCz54FBbaz6rnPuycw23wUSwCPHGoCZXQ9cDzB8+PBj3V1EpMvEGtMtWP5Q62ewAOr85eTHVndnSCIiItLDHTHBcs6d29F6M5sPXAR81DnnMsXbgGHNNqvMlLVV//3A/QDTpk1zbW0jIpIL8UgmwcoranN9OFhOcUMtpFLg0aCsIiIi0vlRBC8Evg18yjnX2GzVYuAqMwua2UhgFPB6Z44lItLdEpEGAAJtdBEEiOUNxEsKGvd0Z1giIiLSgx2xBesI7gWCwHNmBrDUOfcl59zbZvY48A7proNfcc4lO3ksEZFulYymW7CCBW0nWK5wIOwB6nZC4YBujExERER6qk4lWM65UzpYdxdwV2fqFxHJpdTBLoKhtrsIeoqHAJDYvx3f4IndFpeIiIj0XHpoQESkHRZNjyJoef3aXB/sPxiA+po2HzEVERGRPkgJlohIO7yx/ekPoZI21xeVpaf+C9ds7a6QREREpIdTgiUi0g5P9ABJPBBo+xmsAf2KqXWFJPbv6ObIREREpKdSgiUi0g5v7ACNlt/uEOwDi4Pscv3Sg1yIiIiIoARLRKRdvtgBIt62B7gAKCsMUk0pvsZd3RiViIiI9GRKsERE2hFM1hP1td09EMDrMQ74ysmLVHdjVCIiItKTKcESEWlHKFlPwl/c4TaNwQqKEjWQSnVTVCIiItKTKcESEWlDJJ6k0DWQDHacYMXzB+IlBY17uikyERER6cmUYImItGF/OE6JNeBCpR1vWDQo/V6nkQRFRERECZaISJv2NkTpT127kwwf5CsZCkB8nyYbFhERESVYIiJtqttXQ9DieA62ULUjryydYNVXb+mOsERERKSHU4IlItKGyN50lz9f6eAOtyuuGErKGeFatWCJiIiIEiwRkTZF920HoKD/kA63G1BSRA3FJDLbi4iISN+mBEtEpA2R2nTCVFJR2eF2A4uD7HL9sPqd3RGWiIiI9HBZSbDM7Btm5sysPLNsZvYTM1tvZm+a2dRsHEdEpLskD6QTJm9xx89g9csPUE0/Ao27uyMsERER6eE6nWCZ2TDgfGBzs+KPAaMyr+uBX3T2OCIi3cnTsIsYfgiVdLydxzjgLycvWt1NkYmIiEhPlo0WrP8Avg24ZmUXA791aUuBUjPr+ElxEZEepDiyldrAYDA74rbhYAWFyb2QjHdDZCIiItKTdSrBMrOLgW3OudWHrRoKNB+zeGumrK06rjezZWa2rLpa3wCLSO6lUo4BiR3U5w87qu0TBYPw4KBe3QRFRET6Ot+RNjCz54G2HkL4LnAL6e6Bx805dz9wP8C0adPcETYXEely1XURhrGbLcVnHtX2VjQIqoG6nVDS5ndJIiIi0kccMcFyzp3bVrmZVQEjgdWW7kJTCawwsxnANqD5V7+VmTIRkR5v4+ZNnG4RggM+clTb+0rTSVVs71YClad1ZWgiIiLSwx13F0Hn3FvOuQHOuRHOuRGkuwFOdc7tBBYDn8uMJjgT2O+c25GdkEVEutaeDW8CUHbS+KPaPr88PZR7/Z6tXRaTiIiInBiO2IJ1nJ4GPg6sBxqBa7voOCIiWZfc/hYAJSOOboaJ0vLBJJyHyF4lWCIiIn1d1hKsTCvWwc8O+Eq26hYR6U4Fe99hn6cfpUUDj2r7gSX57KaU5D411IuIiPR1WZloWESkt4jEkwyNvEdN4eij3mdgUYjdrh9Wv7MLIxMREZETgRIsEZFm3v5wC6PZght2+lHvU5zno5r+BMIapl1ERKSvU4IlItLM9rf+jsccAyfMPep9zIz6QDkFUc3lJyIi0tcpwRIRaca36e/E8FP0kZnHtF8kVEFB6gDEI10UmYiIiJwIlGCJiGQ0RBOMOrCULcVTIZB/TPsm8jPzses5LBERkT5NCZaISMbyZUs5xbbhHXPBse9cPDj9XqcES0REpC9TgiUikhFd8XsSeKg887PHvK+/NJ1gxWo1F5aIiEhfpgRLRASIxOKMr/kb7xdOx1cy6Jj3z+s3BID6Ws2FJSIi0pcpwRIRAVa++jRD2INNuuq49i8tH0TceYnu257lyEREROREogRLRASIr3yUBkKMOmvece1fUZTHHkpIHNiV5chERETkRKIES0T6vOrafUype5kPyz+KN1hwXHUMKA5S7Uqwek02LCIi0pcpwRKRPu/Nlx6jyML0P+Oa466jf36APZTiC2uyYRERkb5MCZaI9HmF7z7BHk8ZQyeff9x1eDxGna8/edE9WYxMRERETjSdTrDM7Gtm9q6ZvW1mdzcrv9nM1pvZOjM7jkllRES63voNG5kaW86OYReBx9upusLBcgoTtZBKZSk6EREROdH4OrOzmc0FLgYmOeeiZjYgUz4OuAoYDwwBnjez0c65ZGcDFhHJpg1/f5hTLEnlnGs7XVcirwJvOAXhWigoz0J0PUNjuJHq7Zs4sHszicZ9JMMHSEbqcNE6SEQxHDiHceiVMh/OE8B5A+DzY94geAPgC2DeAB5fAPMFMJ8fr9ePx+fH6/Pj8frxen14fX68/gBenw+vL4DP68Xr8WBmOJdOYB2Ac+l3wGXiaCpIr868N9un+btzhzZqV/vrrRP7nujMrJ3yw5axNte1vXfH+xy+X3sxtD5W+wduL6bD6265rt3qOvzBWtRxHD/j4VU3rQqVYKHi9g8sIt2qUwkWcAPwQ+dcFMA5d/Dp7ouBhZnyDWa2HpgB/KOTxxMRyZpUyjFo01/Y7D+Z4SOndL7CggFQC9TvOuESrLpwlE3rVlOzcTWJnWspPPABZdHN9E/uoT8HOCnXAYpIu/ZSROSrqxlcXpbrUESEzidYo4HZZnYXEAG+6Zx7AxgKLG223dZMWStmdj1wPcDw4cM7GY6IyNFb9fbbTHXreOeUf81Kfb6SQbAFkgd24R04Pit1dpXNu2rZuPIFYh8uoaRmFWMS7zHBGgFIYezyDGRPcDgf5FexvmgQvtKhhPpXEigsI1BQQqighFBhCYFgCMyTfmG4TM9zl4qRSsRIxqLE41FS8QjJeIxkPNb0OZWIkUzGSSXiuEScVCpOKpkglUykl5NxXDKBS2XKmrcWWcu2gINf7RvgmrcNmKfZ5xZvhxV01J7S8Xp3pF2PWPcJyLX5saPNDmsodO1u13JF+9u113h4eHH723UQeQc/39Eet3lJRw2drp2VrUrbiSnYuIOztj/If/+/PzH4U9e1fyAR6TZHTLDM7HlgUBurvpvZvz8wE5gOPG5mJx9LAM65+4H7AaZNm9Z7+1KISI+z7f89xlTg5LM+m5X6gqWDAWio3UZP66wTiSdZtXoF+1Yupv/OV5mYWMNwi5PE2OY/mc1DLsQzbAblp5xGxYjxDA4UMLhTR/QB+dkJXkTa5ZIJqn/wJ0LvPglKsER6hCMmWM65c9tbZ2Y3AH9y6a9fXjezFFAObAOGNdu0MlMmItIjROJJhu74G9uDH2HI4DFZqbOwfAgAjbXbe0SCFYknWbZiOfuWPc7Ju59npm0AYLtvGB+edAXF4y9gyMRzGJ7XE6IVkeNhXh8fDjiPybv+zN7aPfTrf2J1TxbpjTrbRXARMBd4ycxGAwFgD7AY+L2Z/Zj0IBejgNc7eSwRkax5Y/UaZrOODaNvzFqd/fuVUefyiO/N3fdJzjlWfriDD1/6DWO2/IEz7QMANheMZ/2Ymxl2xjyGVIxkSM4iFJFsKz/jGoKLHmfl3+5n5mduyXU4In1eZxOsXwG/MrM1QAz4fKY1620zexx4B0gAXzkRRxCMNByg7sA+Kgbr2TCR3qZm2R8BGDrrM1mrc0BRkO2ujIL9W7JW59Ha2xDjmVf+G++KX3N+7HmmWgM7QyP4YNzNDJ/9GYb31zAVIr3VyZNms/a/xjL8vYdIJr6N19fZ2zsR6YxOXYHOuRhwdTvr7gLu6kz9ubbyt99m3K7FvD7pZk771Jfxejs3R46I9AyJZIrhO59le3AkQwadmrV6K4qC/MOVMaGh+1qw3t5aw7JnF3LyxoV8xvMmCbxsH3IugXO+yqBTZrce/1lEeh0zo/G0Gxj72tdZ+exvmPLxL+Q6JJE+rdMTDfdmlR/9Ett8JzFj9ffYetck3lh0L9FoONdhiUgnrV67jsnuXepP/kRW6w35vez2DqAgvCOr9R4unkzx7Gur+f09X6P0gel8fvMtVAV3Uj39m/i+8Q7D/+Vx8kedpeRKpA+ZdO4/s8EznIFv/Ih4tDHX4Yj0aWpD7sCw0ZNxtyxh1TO/pmjZT5m+6rvsW/U/WV1xAUXTP8OYqXPw+Py5DrPHc6kUKedIpVKkXCo9D2jKwcFJQZvegcwkpS3LjqzVfWSmwDoYHrnlPu1P5Hj0Bz3iDkdRZQczYGbpGG0c9Bj3Or5jHEPxsR/jGP+d9i3/Ix5zWe0eeFBdcDD50QMQrYdgYVbr3r0/zN+ff5KSNb9lbmopfkuytWwmDWf/B6UTPgFe/UoX6at8fj+1s+/ktL/PZ9nC25n2+btzHdIJLZVMkcpMEZFKxkklk6Qc6fuYVPo95VzmNiZ9v2KWeW9+T3PwfqRpm/SaFn95PdZsXfNpJqzVcsv9Dy23cSN06FOr5pRm90jt7Nd2vYfdLzSfBPvwg7SYILvte5uDP+/h65q27/Q9Ue7or/ERmMfL5I9/EXfhAt569c+EX3+YibsXE3r6j9Q9nc/6gqkkhkyn6KTJDBk9jeIBld0aXyrliMQThBsbiIbriYUbiEYaiUcaMq9GUrEGErFGUtFGUvEwxMIQD0MijCcRxpuK4kuG8aWi+JIRAqko5hJ4XAKPS6ZfJDGXwpv57CWJl1TmPYnPHVr24PDYoeTIAG/mJdITfBTY7B3G8MoJWa87UTwMqoG9G2BQVafrc86xav1m3n/uV0ze+QRXeLbS4Clk56mfY+i5X6GyYlTngxaRXmHqnEt4bdk5nPbhA2xY9lFGTrsg1yFlTSqZpK5uHw37a2g4sI9IXS3Rhn0kw/txkf0QqYNYfeb+JoIlIlgygjcZxZ+K4k1F8bsY/lSUgIum71dc5n7GJfFk7mF8B98tpW5ePcgP4ldz0b/8D6YM75frUI6KEqyjZB4PVWdfBmdfRt2+Gt5c8mdS619k+P43GPL+EngfeB7qyWOPp5wD/gHEgv0hWETKX0DKXwCBArweDxg4Z+lWHQekkniSUSwZhUQk80ove5JRvMkIvlQEXyr9S8LvogQzrxAx8i12XLPNJPASIUjUAsQIErUgcU+QuAVJWADnzceZN/3y+HAeH5gX5/HizEeq+TpLl7nMhKNm1jTBZ/qzNb2Dp+lLCJf59sRlvolpnpa5w75ZaXdSyI5mY2xPOxNeHm2bmR1D69qx1Xz87HiO0R0/Rzcc45h/dgdlkz9+zMc5qlgGjodqSO1cg6cTCVY4luSVV18m8fovOTvyIlMswo7CMeyZ+b8pn/nPFAQ0x5SItGRmjPrCL9n2kzMp/a8vsr3wjww5dUauw2pTPJFkb/V2DuzeRGPtTqL7dxOvq4bGPXjCNfije8mL76UouY8Sd4BC10iJOUo6qDPljAgBYhYgagESFiDe7N4m4i2h3hMk6QngvAHweMHjA48P8/jAk76nSdmh+x0y9ziYFzvYgmSGh/S94eFcpvWl5btrWdbGPYhzLf+WOdL3Gm3dobRa1+rvbPNZqVuua/n38vB1B3dxrdYbrkVVLduSDju+a/8YHa1rfozD26pGlZ7OoJIQJwprbwbxXJg2bZpbtmxZrsM4Zrt2bmP7e8sJb16Fd/8mAo07KYruIj95gFCqkQIiBC1+xHpSzojiJ2Z+YgRImJ+4BYh7giQ8IZKeIAlviJQvj5Q3hPPl4fwhzJ8H/nw8gTw8gXy8gXy8wXx8oQL8wXz8oUKCoXwCeYUE8/MJhAowfz541b1RJNsWLv2QS/46g9iUBRRfcuxddN7dvJO1z/+Gkzf/gUm8Tww/W4Z+jCHnfpW8ETNOqC4SIpIbH7y7moKFl5JHlB1z/4NTz76yW4+fSCTYs2sre3dsoL56M/HarbgD2/A37CQ/uovSeDUVroagJVrtG3de9lsx9d4SGv2lRPz9iAf740KlWKgYT34J/vxSgoX9CBWUEixMf84rKiWUV4THq3Yn6R5mttw5N63NdUqwup5zjngsSiRcTzSeBBw+jwcvYB6H1+fH48/D5wvg86kjnciJbM22/ST+7xwqK8oo/9rzR7XPgXCMpf/9Iollv+XM8IsUW5hdgeFEJl7D8LlfwArKujhqEelt1q9bg3vsakalNvB28WxKzvsmlRPO7vSXNMl4jD27NrN35yYaqjcTq90KmeSpILqT0ng15W4vfms5O0/M+dI9fAIVhEMDSRQOgZKh+EqHklc6iKKyQZSUD6GgqF+bLUMiPY0SLBGRbpJMOX59x3yutb/g/db70E5yFIknee2N1zjwxkLG1z7LybaDGH42DzqfgXP/haLRGgVQRDqnsbGBpQ9/n+nbf0eRhdntqWB7v+nEy8dTUDGcYMkgfHmF+DxGLJkkGg6TaNhLsnEf0fpaEvU1eBt2EQzvojBWTb9kDf3c/hbPWQOEXYA9nnL2BwYQCQ0kWTgYK6kkVF5J8YAR9B88gqJ+A5U4Sa+iBEtEpBvd/evH+fam64ie9V2C53y7qby2PsKbr79E+O2/ctKeVxhnG0hhbCqcgmfi5Qw/8zNYfv8cRi4ivdGePXtY/fzvKN7wV0ZG1lJu+49631qK2estoz5QkU6eCgbiKRlCXlklRQNGUDZkJMWl5UqepM9RgiUi0o1Wb97Lzgeu4KPeFbw/6BPsS4YI7PuAkbF19Ld6knjYkjeW1NiLGT77s/j6de/ooyLSd7lUij27trJz22aiB3bjYg0kUg6/10sgGMRf0A9/QRnF/croX1aBL3DiDCwg0p2UYImIdLNFS9fi/dt3OCv1On6S7PYPoaH/BArHncuwaZ/EU6jnqkRERE5UHSVYGqZdRKQLXDJzLKkZi4glUwR9HkboeSoREZE+QQmWiEgX8XiMkEcjg4qIiPQleiJRREREREQkS5RgiYiIiIiIZIkSLBERERERkSzpUaMImlk1sCnXcRymHNiT6yCk2+h89x06132HznXfovPdd+hc9x098Vyf5JyraGtFj0qweiIzW9beEIzS++h89x06132HznXfovPdd+hc9x0n2rlWF0EREREREZEsUYIlIiIiIiKSJUqwjuz+XAcg3Urnu+/Que47dK77Fp3vvkPnuu84oc61nsESERERERHJErVgiYiIiIiIZIkSLBERERERkSxRgtUBM7vQzNaZ2Xoz+06u45HsMbNhZvaSmb1jZm+b2b9myvub2XNm9n7mvV+uY5XsMDOvma00s//KLI80s9cy1/djZhbIdYySHWZWamZPmNm7ZrbWzP5J13bvZGY3ZX6HrzGzR80spGu79zCzX5nZbjNb06yszWvZ0n6SOe9vmtnU3EUux6qdc31P5vf4m2b2ZzMrbbbu5sy5XmdmF+Qk6A4owWqHmXmBnwEfA8YBnzGzcbmNSrIoAXzDOTcOmAl8JXN+vwO84JwbBbyQWZbe4V+Btc2WfwT8h3PuFGAv8IWcRCVd4T+BZ5xzpwKTSJ93Xdu9jJkNBb4OTHPOTQC8wFXo2u5NHgIuPKysvWv5Y8CozOt64BfdFKNkx0O0PtfPAROccxOB94CbATL3a1cB4zP7/Dxz395jKMFq3wxgvXPuQ+dcDFgIXJzjmCRLnHM7nHMrMp/rSN+ADSV9jn+T2ew3wCU5CVCyyswqgU8Av8wsG3AO8ERmE53rXsLMSoCzgAcBnHMx59w+dG33Vj4gz8x8QD6wA13bvYZz7hWg9rDi9q7li4HfurSlQKmZDe6WQKXT2jrXzrlnnXOJzOJSoDLz+WJgoXMu6pzbAKwnfd/eYyjBat9QYEuz5a2ZMullzGwEMAV4DRjonNuRWbUTGJiruCSr/g/wbSCVWS4D9jX7xa3ru/cYCVQDv850Cf2lmRWga7vXcc5tA/4XsJl0YrUfWI6u7d6uvWtZ92292wLgr5nPPf5cK8GSPs3MCoE/Ajc65w40X+fScxhoHoMTnJldBOx2zi3PdSzSLXzAVOAXzrkpQAOHdQfUtd07ZJ69uZh0Uj0EKKB1FyPpxXQt9w1m9l3Sj3Y8kutYjpYSrPZtA4Y1W67MlEkvYWZ+0snVI865P2WKdx3sUpB5352r+CRrZgGfMrONpLv6nkP6GZ3STLci0PXdm2wFtjrnXsssP0E64dK13fucC2xwzlU75+LAn0hf77q2e7f2rmXdt/VCZjYfuAj4rDs0eW+PP9dKsNr3BjAqMxpRgPTDdItzHJNkSeYZnAeBtc65HzdbtRj4fObz54Enuzs2yS7n3M3OuUrn3AjS1/GLzrnPAi8Bl2c207nuJZxzO4EtZjYmU/RR4B10bfdGm4GZZpaf+Z1+8Fzr2u7d2ruWFwOfy4wmOBPY36wroZyAzOxC0t37P+Wca2y2ajFwlZkFzWwk6YFNXs9FjO2xQ8mgHM7MPk762Q0v8Cvn3F25jUiyxczOBF4F3uLQczm3kH4O63FgOLAJuNI5d/gDtnKCMrM5wDedcxeZ2cmkW7T6AyuBq51z0RyGJ1liZpNJD2gSAD4EriX9haKu7V7GzO4A5pHuPrQS+CLpZzF0bfcCZvYoMAcoB3YB3wcW0ca1nEmy7yXdTbQRuNY5tywHYctxaOdc3wwEgZrMZkudc1/KbP9d0s9lJUg/5vHXw+vMJSVYIiIiIiIiWaIugiIiIiIiIlmiBEtERERERCRLlGCJiIiIiIhkiRIsERERERGRLFGCJSIiIiIikiVKsERERERERLJECZaIiIiIiEiW/H/pQ642qJz82gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2610,31 +2610,31 @@ " 57\n", " True\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " bAP.soma.v\n", - " 0.00725\n", - " 3.27e-07\n", + " 0.00788\n", + " 3.73e-07\n", " \n", " \n", " 58\n", " True\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step1.soma.v\n", - " 0.00818\n", - " 5.83e-07\n", + " 0.0109\n", + " 8.39e-08\n", " \n", " \n", " 59\n", " True\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step3.soma.v\n", - " 0.0286\n", - " 4.25e-07\n", + " 0.00791\n", + " 1.39e-05\n", " \n", " \n", "\n", @@ -2642,14 +2642,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "57 True 9 0.125 0.0545 bAP.soma.v \n", - "58 True 9 0.125 0.0545 Step1.soma.v \n", - "59 True 9 0.125 0.0545 Step3.soma.v \n", + "57 True 9 0.0731 0.0741 bAP.soma.v \n", + "58 True 9 0.0731 0.0741 Step1.soma.v \n", + "59 True 9 0.0731 0.0741 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "57 0.00725 3.27e-07 \n", - "58 0.00818 5.83e-07 \n", - "59 0.0286 4.25e-07 " + "57 0.00788 3.73e-07 \n", + "58 0.0109 8.39e-08 \n", + "59 0.00791 1.39e-05 " ] }, "metadata": {}, @@ -2734,47 +2734,47 @@ " \n", " \n", " False\n", - " bAP\n", - " 0.0969\n", - " 0.0153\n", + " bAP\n", + " 0.12\n", + " 0.0406\n", " Spikecount\n", - " 6\n", - " 6\n", + " 1\n", + " 1\n", " 0\n", " 0\n", " \n", " \n", " time_to_first_spike\n", - " -34.4\n", - " -34.4\n", - " 0\n", - " -0\n", - " \n", - " \n", - " time_to_second_spike\n", - " -12.4\n", - " -12.2\n", - " 0.2\n", - " -1.61\n", + " 0.9\n", + " 1\n", + " 0.1\n", + " 11.1\n", " \n", " \n", " time_to_last_spike\n", - " 67.8\n", - " 68.2\n", - " 0.4\n", - " 0.59\n", + " 0.9\n", + " 1\n", + " 0.1\n", + " 11.1\n", " \n", " \n", - " Step1\n", - " 0.0969\n", - " 0.0153\n", + " Step1\n", + " 0.12\n", + " 0.0406\n", " Spikecount\n", - " 8\n", - " 8\n", + " 4\n", + " 4\n", " 0\n", " 0\n", " \n", " \n", + " time_to_first_spike\n", + " 1.8\n", + " 1.9\n", + " 0.1\n", + " 5.56\n", + " \n", + " \n", " ...\n", " ...\n", " ...\n", @@ -2787,109 +2787,109 @@ " \n", " \n", " True\n", - " Step1\n", - " 0.125\n", - " 0.0545\n", + " Step1\n", + " 0.0731\n", + " 0.0741\n", + " time_to_first_spike\n", + " 3.8\n", + " 3.9\n", + " 0.1\n", + " 2.63\n", + " \n", + " \n", " time_to_last_spike\n", - " 2.6\n", - " 2.7\n", + " 3.8\n", + " 3.9\n", " 0.1\n", - " 3.85\n", + " 2.63\n", " \n", " \n", - " Step3\n", - " 0.125\n", - " 0.0545\n", + " Step3\n", + " 0.0731\n", + " 0.0741\n", " Spikecount\n", - " 2\n", - " 2\n", + " 1\n", + " 1\n", " 0\n", " 0\n", " \n", " \n", " time_to_first_spike\n", - " 1.7\n", - " 1.8\n", - " 0.1\n", - " 5.88\n", - " \n", - " \n", - " time_to_second_spike\n", - " 16.4\n", - " 16.5\n", - " 0.1\n", - " 0.61\n", + " 2.1\n", + " 2.1\n", + " 0\n", + " 0\n", " \n", " \n", " time_to_last_spike\n", - " 16.4\n", - " 16.5\n", - " 0.1\n", - " 0.61\n", + " 2.1\n", + " 2.1\n", + " 0\n", + " 0\n", " \n", " \n", "\n", - "

205 rows × 4 columns

\n", + "

200 rows × 4 columns

\n", "" ], "text/plain": [ - " Neuron \\\n", - "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 6 \n", - " time_to_first_spike -34.4 \n", - " time_to_second_spike -12.4 \n", - " time_to_last_spike 67.8 \n", - " Step1 0.0969 0.0153 Spikecount 8 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 2.6 \n", - " Step3 0.125 0.0545 Spikecount 2 \n", - " time_to_first_spike 1.7 \n", - " time_to_second_spike 16.4 \n", - " time_to_last_spike 16.4 \n", - "\n", - " Arbor \\\n", + " Neuron \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 6 \n", - " time_to_first_spike -34.4 \n", - " time_to_second_spike -12.2 \n", - " time_to_last_spike 68.2 \n", - " Step1 0.0969 0.0153 Spikecount 8 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 2.7 \n", - " Step3 0.125 0.0545 Spikecount 2 \n", + "False bAP 0.12 0.0406 Spikecount 1 \n", + " time_to_first_spike 0.9 \n", + " time_to_last_spike 0.9 \n", + " Step1 0.12 0.0406 Spikecount 4 \n", " time_to_first_spike 1.8 \n", - " time_to_second_spike 16.5 \n", - " time_to_last_spike 16.5 \n", - "\n", - " abs_diff Arbor to Neuron \\\n", - "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 0 \n", - " time_to_first_spike 0 \n", - " time_to_second_spike 0.2 \n", - " time_to_last_spike 0.4 \n", - " Step1 0.0969 0.0153 Spikecount 0 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 0.1 \n", - " Step3 0.125 0.0545 Spikecount 0 \n", - " time_to_first_spike 0.1 \n", - " time_to_second_spike 0.1 \n", - " time_to_last_spike 0.1 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \n", - "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 0 \n", - " time_to_first_spike -0 \n", - " time_to_second_spike -1.61 \n", - " time_to_last_spike 0.59 \n", - " Step1 0.0969 0.0153 Spikecount 0 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 3.85 \n", - " Step3 0.125 0.0545 Spikecount 0 \n", - " time_to_first_spike 5.88 \n", - " time_to_second_spike 0.61 \n", - " time_to_last_spike 0.61 \n", - "\n", - "[205 rows x 4 columns]" + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 3.8 \n", + " time_to_last_spike 3.8 \n", + " Step3 0.0731 0.0741 Spikecount 1 \n", + " time_to_first_spike 2.1 \n", + " time_to_last_spike 2.1 \n", + "\n", + " Arbor \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.12 0.0406 Spikecount 1 \n", + " time_to_first_spike 1 \n", + " time_to_last_spike 1 \n", + " Step1 0.12 0.0406 Spikecount 4 \n", + " time_to_first_spike 1.9 \n", + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 3.9 \n", + " time_to_last_spike 3.9 \n", + " Step3 0.0731 0.0741 Spikecount 1 \n", + " time_to_first_spike 2.1 \n", + " time_to_last_spike 2.1 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 0.1 \n", + " time_to_last_spike 0.1 \n", + " Step1 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 0.1 \n", + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 0.1 \n", + " time_to_last_spike 0.1 \n", + " Step3 0.0731 0.0741 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 11.1 \n", + " time_to_last_spike 11.1 \n", + " Step1 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 5.56 \n", + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 2.63 \n", + " time_to_last_spike 2.63 \n", + " Step3 0.0731 0.0741 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + "\n", + "[200 rows x 4 columns]" ] }, "metadata": {}, @@ -3063,70 +3063,70 @@ " 0\n", " 1\n", " 60\n", - " 0.278\n", - " 2.15\n", + " 0.417\n", + " 3.23\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 16.7\n", + " 25\n", " \n", " \n", " time_to_first_spike\n", " 60\n", - " 0.0583\n", - " 0.0497\n", + " 0.0467\n", + " 0.0503\n", + " 0\n", " 0\n", " 0\n", - " 0.1\n", " 0.1\n", " 0.1\n", " 60\n", - " 3.26\n", - " 3.77\n", - " -0.334\n", + " 2.92\n", + " 3.54\n", + " 0\n", " 0\n", " 0\n", - " 7.14\n", + " 5.56\n", " 11.1\n", " \n", " \n", " time_to_last_spike\n", " 60\n", - " 0.325\n", - " 1.26\n", + " 0.307\n", + " 1.31\n", " 0\n", " 0\n", " 0.1\n", - " 0.2\n", - " 9.7\n", + " 0.3\n", + " 10.2\n", " 60\n", - " 3.28\n", - " 4.18\n", + " 2.91\n", + " 4.92\n", " 0\n", " 0\n", - " 0.648\n", - " 7.14\n", - " 19\n", + " 0.67\n", + " 4.55\n", + " 30.9\n", " \n", " \n", " time_to_second_spike\n", - " 25\n", - " 0.116\n", - " 0.0554\n", - " 0\n", + " 20\n", + " 0.115\n", + " 0.0366\n", + " 0.1\n", " 0.1\n", " 0.1\n", " 0.1\n", " 0.2\n", - " 25\n", - " 1.54\n", - " 2.82\n", - " -1.61\n", - " 0.621\n", - " 0.813\n", - " 1.33\n", - " 10\n", + " 20\n", + " 0.812\n", + " 0.246\n", + " 0.521\n", + " 0.657\n", + " 0.746\n", + " 0.852\n", + " 1.59\n", " \n", " \n", "\n", @@ -3137,25 +3137,25 @@ " count mean std min 25% 50% 75% \n", "efel \n", "Spikecount 60 0.0167 0.129 0 0 0 0 \n", - "time_to_first_spike 60 0.0583 0.0497 0 0 0.1 0.1 \n", - "time_to_last_spike 60 0.325 1.26 0 0 0.1 0.2 \n", - "time_to_second_spike 25 0.116 0.0554 0 0.1 0.1 0.1 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \\\n", - " max count mean std min \n", - "efel \n", - "Spikecount 1 60 0.278 2.15 0 \n", - "time_to_first_spike 0.1 60 3.26 3.77 -0.334 \n", - "time_to_last_spike 9.7 60 3.28 4.18 0 \n", - "time_to_second_spike 0.2 25 1.54 2.82 -1.61 \n", - "\n", - " \n", - " 25% 50% 75% max \n", - "efel \n", - "Spikecount 0 0 0 16.7 \n", - "time_to_first_spike 0 0 7.14 11.1 \n", - "time_to_last_spike 0 0.648 7.14 19 \n", - "time_to_second_spike 0.621 0.813 1.33 10 " + "time_to_first_spike 60 0.0467 0.0503 0 0 0 0.1 \n", + "time_to_last_spike 60 0.307 1.31 0 0 0.1 0.3 \n", + "time_to_second_spike 20 0.115 0.0366 0.1 0.1 0.1 0.1 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \\\n", + " max count mean std min \n", + "efel \n", + "Spikecount 1 60 0.417 3.23 0 \n", + "time_to_first_spike 0.1 60 2.92 3.54 0 \n", + "time_to_last_spike 10.2 60 2.91 4.92 0 \n", + "time_to_second_spike 0.2 20 0.812 0.246 0.521 \n", + "\n", + " \n", + " 25% 50% 75% max \n", + "efel \n", + "Spikecount 0 0 0 25 \n", + "time_to_first_spike 0 0 5.56 11.1 \n", + "time_to_last_spike 0 0.67 4.55 30.9 \n", + "time_to_second_spike 0.657 0.746 0.852 1.59 " ] }, "metadata": {}, @@ -3226,55 +3226,55 @@ " \n", " False\n", " Step3\n", - " 0.121\n", - " 0.0319\n", + " 0.0553\n", + " 0.0212\n", " time_to_last_spike\n", - " 51.1\n", - " 41.4\n", - " 9.7\n", - " 19\n", + " 33\n", + " 22.8\n", + " 10.2\n", + " 30.9\n", " \n", " \n", " True\n", " Step1\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " time_to_last_spike\n", - " 52\n", - " 53.9\n", - " 1.9\n", - " 3.65\n", + " 51.7\n", + " 52.4\n", + " 0.7\n", + " 1.35\n", " \n", " \n", - " False\n", - " Step3\n", - " 0.07\n", - " 0.0122\n", + " False\n", + " Step1\n", + " 0.0553\n", + " 0.0212\n", " time_to_last_spike\n", - " 50.7\n", - " 51.5\n", - " 0.8\n", - " 1.58\n", + " 31.8\n", + " 32.4\n", + " 0.6\n", + " 1.89\n", " \n", " \n", - " bAP\n", - " 0.0969\n", - " 0.0153\n", + " 0.0708\n", + " 0.0267\n", " time_to_last_spike\n", - " 67.8\n", - " 68.2\n", - " 0.4\n", - " 0.59\n", + " 46.7\n", + " 47.3\n", + " 0.6\n", + " 1.28\n", " \n", " \n", + " True\n", " Step3\n", - " 0.0508\n", - " 0.0136\n", + " 0.0799\n", + " 0.0189\n", " time_to_last_spike\n", - " 45.7\n", - " 46.1\n", + " 50.8\n", + " 51.2\n", " 0.4\n", - " 0.875\n", + " 0.787\n", " \n", " \n", "\n", @@ -3283,35 +3283,35 @@ "text/plain": [ " Neuron \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False Step3 0.121 0.0319 time_to_last_spike 51.1 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 52 \n", - "False Step3 0.07 0.0122 time_to_last_spike 50.7 \n", - " bAP 0.0969 0.0153 time_to_last_spike 67.8 \n", - " Step3 0.0508 0.0136 time_to_last_spike 45.7 \n", + "False Step3 0.0553 0.0212 time_to_last_spike 33 \n", + "True Step1 0.0562 0.0128 time_to_last_spike 51.7 \n", + "False Step1 0.0553 0.0212 time_to_last_spike 31.8 \n", + " 0.0708 0.0267 time_to_last_spike 46.7 \n", + "True Step3 0.0799 0.0189 time_to_last_spike 50.8 \n", "\n", " Arbor \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False Step3 0.121 0.0319 time_to_last_spike 41.4 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 53.9 \n", - "False Step3 0.07 0.0122 time_to_last_spike 51.5 \n", - " bAP 0.0969 0.0153 time_to_last_spike 68.2 \n", - " Step3 0.0508 0.0136 time_to_last_spike 46.1 \n", + "False Step3 0.0553 0.0212 time_to_last_spike 22.8 \n", + "True Step1 0.0562 0.0128 time_to_last_spike 52.4 \n", + "False Step1 0.0553 0.0212 time_to_last_spike 32.4 \n", + " 0.0708 0.0267 time_to_last_spike 47.3 \n", + "True Step3 0.0799 0.0189 time_to_last_spike 51.2 \n", "\n", " abs_diff Arbor to Neuron \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False Step3 0.121 0.0319 time_to_last_spike 9.7 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 1.9 \n", - "False Step3 0.07 0.0122 time_to_last_spike 0.8 \n", - " bAP 0.0969 0.0153 time_to_last_spike 0.4 \n", - " Step3 0.0508 0.0136 time_to_last_spike 0.4 \n", + "False Step3 0.0553 0.0212 time_to_last_spike 10.2 \n", + "True Step1 0.0562 0.0128 time_to_last_spike 0.7 \n", + "False Step1 0.0553 0.0212 time_to_last_spike 0.6 \n", + " 0.0708 0.0267 time_to_last_spike 0.6 \n", + "True Step3 0.0799 0.0189 time_to_last_spike 0.4 \n", "\n", " rel_abs_diff Arbor to Neuron [%] \n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False Step3 0.121 0.0319 time_to_last_spike 19 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 3.65 \n", - "False Step3 0.07 0.0122 time_to_last_spike 1.58 \n", - " bAP 0.0969 0.0153 time_to_last_spike 0.59 \n", - " Step3 0.0508 0.0136 time_to_last_spike 0.875 " + "False Step3 0.0553 0.0212 time_to_last_spike 30.9 \n", + "True Step1 0.0562 0.0128 time_to_last_spike 1.35 \n", + "False Step1 0.0553 0.0212 time_to_last_spike 1.89 \n", + " 0.0708 0.0267 time_to_last_spike 1.28 \n", + "True Step3 0.0799 0.0189 time_to_last_spike 0.787 " ] }, "metadata": {}, @@ -3371,54 +3371,54 @@ " \n", " \n", " \n", - " 0\n", + " 25\n", " False\n", - " 0\n", - " 0.0969\n", - " 0.0153\n", - " bAP.soma.v\n", - " 0.0407\n", - " 3.2e-06\n", - " \n", - " \n", - " 31\n", - " True\n", - " 0\n", - " 0.0969\n", - " 0.0153\n", + " 8\n", + " 0.0708\n", + " 0.0267\n", " Step1.soma.v\n", - " 0.0348\n", - " 1.6e-06\n", + " 0.0319\n", + " 1.12e-06\n", " \n", " \n", - " 1\n", + " 13\n", " False\n", - " 0\n", - " 0.0969\n", - " 0.0153\n", + " 4\n", + " 0.0553\n", + " 0.0212\n", " Step1.soma.v\n", - " 0.0204\n", - " 2.42e-06\n", + " 0.0279\n", + " 4.75e-07\n", " \n", " \n", - " 32\n", - " True\n", + " 2\n", + " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step3.soma.v\n", - " 0.0196\n", - " 6.55e-06\n", + " 0.0132\n", + " 1.07e-05\n", " \n", " \n", - " 2\n", + " 1\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", - " Step3.soma.v\n", - " 0.0166\n", - " 5.35e-05\n", + " 0.12\n", + " 0.0406\n", + " Step1.soma.v\n", + " 0.0109\n", + " 3.88e-06\n", + " \n", + " \n", + " 16\n", + " False\n", + " 5\n", + " 0.0799\n", + " 0.0189\n", + " Step1.soma.v\n", + " 0.00924\n", + " 1.05e-05\n", " \n", " \n", "\n", @@ -3426,18 +3426,18 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "0 False 0 0.0969 0.0153 bAP.soma.v \n", - "31 True 0 0.0969 0.0153 Step1.soma.v \n", - "1 False 0 0.0969 0.0153 Step1.soma.v \n", - "32 True 0 0.0969 0.0153 Step3.soma.v \n", - "2 False 0 0.0969 0.0153 Step3.soma.v \n", + "25 False 8 0.0708 0.0267 Step1.soma.v \n", + "13 False 4 0.0553 0.0212 Step1.soma.v \n", + "2 False 0 0.12 0.0406 Step3.soma.v \n", + "1 False 0 0.12 0.0406 Step1.soma.v \n", + "16 False 5 0.0799 0.0189 Step1.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "0 0.0407 3.2e-06 \n", - "31 0.0348 1.6e-06 \n", - "1 0.0204 2.42e-06 \n", - "32 0.0196 6.55e-06 \n", - "2 0.0166 5.35e-05 " + "25 0.0319 1.12e-06 \n", + "13 0.0279 4.75e-07 \n", + "2 0.0132 1.07e-05 \n", + "1 0.0109 3.88e-06 \n", + "16 0.00924 1.05e-05 " ] }, "metadata": {}, @@ -3462,7 +3462,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fine dt (0.001): test_l5pc OK! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are 0.00523 (0.05), 0.000141 (0.0005).\n" + "Fine dt (0.001): test_l5pc OK! The mean relative Arbor-Neuron L1-deviation and error (tol in brackets) are 0.00378 (0.05), 0.00015 (0.0005).\n" ] } ], @@ -3478,7 +3478,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5hkZZX48e+p0NU559zTMz05wQxBggQXUImrgq4K6Cor6hpWdF3Xn6K77romFFERZcUFJIgkASMwIhJnYHLs7umcc6z8/v641T09Mx1nqqequ87nefrpqls3nEq37rnv+54rxhiUUkoppZRSSp08W6QDUEoppZRSSqnFQhMspZRSSimllAoTTbCUUkoppZRSKkw0wVJKKaWUUkqpMNEESymllFJKKaXCRBMspZRSSimllAoTTbCUUipKiEi5iBgRcUQ6lsVORG4UkRcjHUe0EZHzRORApONQSqmFTBMspZRSC5qI3CoiPhEZmvD3hUjHtRAZY/5qjFke7vWKyAYR2SYiI6H/G8K9DaWUihaaYCmlVJhoy1NEPWSMSZ7w961IBxROC/mzJSJxwBPAfUAG8EvgidB0pZRadDTBUkqpkyAidSLyryKyExgWEYeInCUiL4lIn4jsEJELJsy/RUT+W0ReE5EBEXlCRDKnWPeHRGSfiAyKSK2I/NMxj18lIttD66kRkctC09NE5G4RaRWRZhH5TxGxz/A8KkXkORHpFpEuEblfRNInPNYjIqeF7heKSOfY8xKRK0VkT+j5bhGRlce8PreIyE4R6ReRh0Qkfu6v9NyJyBdDr8ugiOwVkWummE9E5DYR6Qi9lrtEZE3oMZeIfEdEGkSkXUTuFJGEWW7/ntD8fwrF8BcRKZvw+A9EpDG0zW0ict6Ex24VkUdE5D4RGQBuFJEzROTl0OvcKiJ3TExSQt1LPy4ih0Lb+4/Qe/dSaBsPz5TUiMgFItI0m+c3BxcADuD7xhiPMeZ2QICLwrwdpZSKCppgKaXUyXsf8E4gHcgDngb+E8gEbgF+IyI5E+a/HvgwUAD4gdunWG8HcDmQCnwIuG1CknMG8H/A50PbPR+oCy13T2i9S4GNwCXAR2Z4DgL8N1AIrARKgFsBjDE1wL8C94lIIvAL4JfGmC0iUgU8AHwGyAGeAX57zIH8tcBlQAWwDrhx0gBEzg0lD1P9nTvDczhWDXAekAZ8LRR/wSTzXYL1+lWF5r0W6A499s3Q9A1Yr2cR8JU5xPB+4D+AbGA7cP+Ex14PrTcT+BXw62OSz6uAR7De3/uBAPDZ0LrOBi4GPn7M9i4FTgfOAr4A3AV8AOv9XIP1WT1hoUR5qvfnx1MsthrYaYwxE6btDE1XSqlFRxMspZQ6ebcbYxqNMaNYB7PPGGOeMcYEjTF/ArYC75gw/73GmN3GmGHg/wHXTtbCZIx52hhTYyx/Af6IlTAA/CPwv8aYP4W202yM2S8ieaFtfcYYM2yM6QBuA9473RMwxlSH1uUxxnQC3wPeOuHxnwHVwKtYieG/hx66Dng6tKwP+A6QALzlmNenxRjTA/wWK6mYLIYXjTHp0/xNV5Ti2mMO9guNMb8ObTdojHkIOAScMcmyPiAFWAGIMWafMaZVRAS4CfisMabHGDMI/NdMr+UxnjbGvGCM8WC9ZmeLSEno+d5njOk2xviNMd8FXMDE8U8vG2MeD8U/aozZZox5JTR/HfBTJrxHId8yxgwYY/YAu4E/GmNqjTH9wO+wEu4TZoxZN837c2yyNyYZ6D9mWj/Wa66UUovOgu3TrZRSUaRxwu0y4D0icsWEaU7g+Snmrw89nn3sSkXk7cBXsVpQbEAisCv0cAlWa9GxykLra7XyAwgt2zjJvBO3lQf8ACuBSwkt03vMbD8DngRuCiUMYLV41Y/NYIwJikgjVkvPmLYJt0dCy4Tbw8aYD0ycICLXA/8ClIcmJTPJ62yMeU5E7gB+BJSJyKNYLY/xWK/5tgmvpQDTdrc8xvjrbowZEpEerOffKCK3YCXKhYDBaqnMnmzZ0POpwkp8N4XicgDbjtle+4Tbo5Pcz59D7OEyhPXcJkoFBiMQi1JKzTttwVJKqZM3setTI1YL1cQz+0nGmG9OmKdkwu1SrBaUrokrFBEX8BusFqE8Y0w6VkI1dqTfCFROEksj4AGyJ2w/1RgzU3es/wo9j7XGmFSslrgjWYVIMvB94G7gVjkybqwFK6kbm09Cz695hu0dR6wS4UPT/J0381rG11WGlRB+EsgKvX67Jz6niYwxtxtjTgdWYSW0n8d6T0aB1RNeyzRjTPIcntb4ex16DTOBltBz+QJWd8SMUHz9x8Q38XMF8BNgP7As9B59aarnM1/EGms31ftz5xSL7QHWyYQsFaur6J75j1gppU49TbCUUiq87gOuEJFLRcQuIvGhwgHFE+b5gIisCo1n+jrwiDEmcMx64rC6jHUC/lBr1iUTHr8b+JCIXCwiNhEpEpEVxphWrK6E3xWR1NBjlSJybFeyY6VgtTT0i0gRVoIx0Q+ArcaYj2CNMRs7mH4YeGcoDifwOawE76WZXqhjhUqEJ0/z99c5rC4JK0HpBKtgCNYYpOOIyGYROTMU/zDgBoLGmCBWknabiOSG5i0SkUsnLGtkQhGTSbwjNLYsDmss1ivGmEas19sfis8hIl/h+FaeY6UAA8CQiKwAbp5h/rAzxqye5v352BSLbcEaP/YpsYqGfDI0/blTErRSSp1immAppVQYhQ6er8JqXejEalH6PEfvb+/FKkTRhtUN7VOTrGcwNP1hrK56/4DVPW/s8dcIFb7Aavn4C0dakq7HStD2hpZ9BGvc1HS+BpwWWtfTwKNjD4jIVVhFKsYO6P8FOE1E3m+MOYDV2vVDrBafK4ArjDHeGbY3r4wxe4HvAi9jdZNbC/xtitlTsRKpXqzujt3At0OP/SvW2LNXxKrm92dC46RCY6kGOdJtczK/wurm2YNVfGKsG+MfgN8DB0PbdDNDN06sbov/ENrmz4CHZpg/KoQ+C1djfS77sAq8XB3pz4hSSs0XObqoj1JKqfkkIluA+4wxP490LOrkiMgHsLoP/tsUj98DNBljvnxKA1NKKRVRWuRCKaWUOgHGmPsiHYNSSqnoo10ElVIqRoh10du5FCdQi5CIfGmKz8HvIh2bUkotBmHrIigidVj9wgOA3xizKVRl6iGsErl1wLXGmGPL/iqllFJKKaXUohDuFqwLjTEbjDGbQve/CDxrjFkGPBu6r5RSSimllFKLUrhbsDYZY7omTDsAXGCMaRWRAmCLMWb5VOvIzs425eXlYYlHKaWUUkoppebLtm3buowxOcdOD2eRCwP8UUQM8FNjzF1YF8dsDT3eBuQdu5CI3ATcBFBaWsrWrVvDGJJSSimllFJKhZ+I1E82PZwJ1rnGmObQxRj/JCL7Jz5ojDGh5Itjpt8F3AWwadMmrRmvlFJKKaWUWrDCNgbLGNMc+t8BPAacAbSHugYS+t8Rru0ppZRSSimlVLQJS4IlIkkikjJ2G7gE2A08CdwQmu0G4IlwbE8ppZRSSimlolG4ugjmAY+JyNg6f2WM+b2IvA48LCL/CNQD1851xT6fj6amJtxud5hCVQtZfHw8xcXFOJ3OSIeiFqHHn3qS3IP3c/onfonLFR/pcJRSSim1AIUlwTLG1ALrJ5neDVx8MutuamoiJSWF8vJyQgmcilHGGLq7u2lqaqKioiLS4ahFaONrn6PM1sHrf/w/Nl9xU6TDUUoppdQCFO7rYIWd2+0mKytLkyuFiJCVlaWtmWpe9Pf3USKdACTseSDC0SillFJqoYr6BAuI+eQqEAzS1dePz+eNdCgRF+ufBTV/OjvbsYlhiESqRnfiGemPdEhKKaWUWoAWRIIV6wYH+skeqSXQVRPpUJRatEaHBwA4lHURceKn5rU/RjgipZRSSi1EmmDNgojwuc99bvz+d77zHW699dZTtn2bdxCAeOMm4PMc9dgFF1ww7cWZr776as4666yjpt16660UFRWxYcMG1qxZw5NPPhn+oNUp0zfi5aVDbZEOY8FzjwwBkLjiYvzGRv+hlyIckVooRr0B+kd8kQ5DRaEhj5+9h2rBPRDpUFSU8fqDvNHQG+kw1DzRBGsWXC4Xjz76KF1dXWFdrzGGYDA484xB//hN73DfrNff19fHtm3b6O/vp7a29qjHPvvZz7J9+3Z+/etf8+EPf3h2caio9O1H/8bG+9bSfdfVkQ5lQfOOWCcykjPzqXNUkNz1ZoQjUgvF3T/6L9q+tYmh5r2RDkVFmX9/dCfL7zsNz4/OiXQoKsr81zP7eOyntzL0vdOh7sVIh6PCTBOsWXA4HNx0003cdtttxz3W2dnJu971LjZv3szmzZv529/+BlitRN/5znfG51uzZg11dXXU1dWxfPlyrr/+etasWUNjYyOf//znWbNmDWvXruWhhx4CYMuWLVxwwQW8+93vZtO5b+N9n/wy3qAN4xk6LoZ77713vDXqtddeG5/+6KOPcsUVV/De976XBx98cNLntnLlShwOx1HJ4xe/+EVWrVrFunXruOWWWwCoq6vjoosuYt26dVx88cU0NDQAcOONN3LzzTdz1llnsWTJErZs2cKHP/xhVq5cyY033ji+zptvvplNmzaxevVqvvrVrx4XR39/P2VlZeOJ3vDwMCUlJfh8elZ4Jl11u0gQL1ktz0O3diM9Ub7RUEtxYgrd6WupcO8n6PfPsJSKdYNuH8t6trCcOnqeujXS4ago03LgNexicA02QOfBSIejoshfD3Vyhf1lkgeqYdsvIx2OCrNwXQfrlPjab/ewtyW8zeyrClP56hWrZ5zvE5/4BOvWreMLX/jCUdM//elP89nPfpZzzz2XhoYGLr30Uvbt2zftug4dOsQvf/lLzjrrLH7zm9+wfft2duzYQVdXF5s3b+b8888H4M0332TPnj2kMsglV7+PLVv3ceEZx8c6MjLC9u3beeGFF/jwhz/M7t27AXjggQf4yle+Ql5eHu9617v40pe+dNyyr776KjabjZycHAC6u7t57LHH2L9/PyJCX18fAP/8z//MDTfcwA033MD//u//8qlPfYrHH38cgN7eXl5++WWefPJJrrzySv72t7/x85//nM2bN7N9+3Y2bNjAN77xDTIzMwkEAlx88cXs3LmTdevWjceRlpbGhg0b+Mtf/sKFF17IU089xaWXXqrXu5pBMGhIdLePf5PNoT8iWTdHNqgFyu+2Tl7EJ6UgJWeQ3P049Ye2U7ZyU4QjU9Gstd9NhljJeVb7SxAMgM0e4ahUNPD4A6z17Yaxn7HqP0FOVURjUtHBGENrv5ssrGNac+gPiO47FhVtwZql1NRUrr/+em6//fajpv/5z3/mk5/8JBs2bODKK69kYGCAoaHjW5kmKisrGx8X9eKLL/K+970Pu91OXl4eb33rW3n99dcBOOOMMyguLsZhM6xbvZL61g6c+An6j64m+L73vQ+A888/n4GBAfr6+mhvb+fQoUOce+65VFVV4XQ6xxMvgNtuu40NGzZwyy238NBDD41X50tLSyM+Pp5//Md/5NFHHyUxMRGAl19+mX/4h38A4IMf/CAvvnikOfuKK65ARFi7di15eXmsXbsWm83G6tWrqaurA+Dhhx/mtNNOY+PGjezZs4e9e4/vSnPdddeNt+A9+OCDXHfdddO+jgq6hj3kG6v1sdOkMnLwhQhHtID5RgBwxqeQt+pcADr2abcNNb2WvlGKpRMvDpKCg5jWnZEOSUWJnmEvqTIMQJPJxl2j+xNlGfYGGPEGyLf102eSEHc/dGkL52KyoFqwZtPSNJ8+85nPcNppp/GhD31ofFowGOSVV14hPj7+qHkdDsdR45omXrspKSlpVttzuVwA2E0Qm91BIPR2+dzDuJLjxuc7tnS5iPDwww/T29s7fkHegYEBHnjgAb7xjW8A1hisse5/x8b92muv8eyzz/LII49wxx138Nxzz80qTpvNNn577L7f7+fw4cN85zvf4fXXXycjI4Mbb7xx0mtZXXnllXzpS1+ip6eHbdu2cdFFF834GsW63mEfBdKN257Cq95VXNi6I9IhLVgylmAlJFGcVcGASURatkc2KBX1egaGyaOXPZl/x7qeP9JXu5WMoo2RDktFge4hL8mM4rEl8opvFVc0vgLGgF5uJOYNuf248JLECI8Fz+Ea+9+g5U3IXRnp0FSYaAvWHGRmZnLttddy9913j0+75JJL+OEPfzh+f/v27QCUl5fzxhtvAPDGG29w+PDhSdd53nnn8dBDDxEIBOjs7OSFF17gjDPOOGoeG0EQwRFnJS8Bz8hRj4+1+rz44oukpaWRlpbGAw88wO9///vxcV/btm2bchzWRENDQ/T39/OOd7yD2267jR07rAP2t7zlLePL33///Zx33nkzrmvMwMAASUlJpKWl0d7ezu9+97tJ50tOTmbz5s18+tOf5vLLL8du16bymbh9AQqlC19yIYfsS0gabYaRnkiHtSDZ/Nb3SuKSsNttNMZVkDygZxTV9GSwFbsYHEvOZ8Ak0l/7eqRDUlGiZ9hKsHClsI8KXJ4eGNSKrwqGPD6ysa61uNuxGo8tAfSE3qKiCdYcfe5znzuqIMTtt9/O1q1bWbduHatWreLOO+8E4F3vehc9PT2sXr2aO+64g6qqyftdX3PNNaxbt47169dz0UUX8a1vfYv8/Pzxx40x2AlgEOw2Gx6c412ZxsTHx7Nx40Y+9rGPcffdd1NXV0d9ff1R5dkrKipIS0vj1VdfnTSOd7zjHbS0tDA4OMjll1/OunXrOPfcc/ne974HwA9/+EN+8YtfsG7dOu69915+8IMfzPo1W79+PRs3bmTFihX8wz/8A+ecc6Sa0le+8pWjysRfd9113Hfffdo9cJY8/iDpMkwgPpPhzDXWRG3FOiE236h1w2l1ix1IXU6xtxajFTbVNMRtHSQVFRaz15QT17F7hiVUrBjx+kkWK8Eaygi1TLTr50PBoNtPtlj7joTMIg7ZllgtWGrRWFBdBCNl4piqvLw8RkaOJDjZ2dnjLUgTJSQk8Mc/Tn6h0oljoUSEb3/723z7298+ap4LLriACy64gGAggE3gu//zXyRnFzHUVo0rODo+35YtWybdRnNz83HTxlrUzjzzzOMee+aZZ8ZvT6xEOKasrGzSroL33HPP+O3y8vKjntvExybenujrX//6Ufff/e53Y4yZdF51PLcvQCZecCbgzNsIPRBs2YGt8sJIh7bg2AMjjBJHwtgg47zVJHc/SkfTIXJLl0c2OBW1Al7r9yAhMYnmhCpOG3kGAn6w689rrPP4g6QziolLwZm5FgaAtl2w7O8iHZqKsGFPgCyxClxk5xXzekcpq9u2ILrvWDS0BSvKmbFrYIUO+oL2eJz4MQEtX66sH/D4UIJVXlJMYzCH0YZtkQ5rQbL7R3FzZCxlWrk1jqbt4NQX8lbKjBdHSWIkaw1xxquD1RUAHl+QJHFDfArlRYU0mWw8zVoERVldBJOwxqKXFOSxI1CB+Eeh60CEI1PhoglWlBsvlBEaFCtxVvcln2d0qkVUDHH7AsSLF3EmsLIglT2mHLSK2QlxBEZxy5EiLSUrTiNohNEmfT3V1IzX2heLMwFXyQYAhuv0JIeyyrQnM4q4UlhZkMreYBmB1l2RDktFgUG3H5dYJ8or8rPYa8qsB9r1YuWLxUknWCJSIiLPi8heEdkjIp8OTb9VRJpFZHvo7x0nH27sGe8uJ9Zb5YhLACDg1QRLHWnBssUlUJWXwiFTRMJQI/g9kQ5twXEERvHIkRaslNQMmm35uLr1B09NY8LYvfyKNXiMg74GTcoVuH1BkmUUW3wqK/JT2GfKiO+vPfKZUTFr2OPHhZVgFedk0CgFBLFpC9YiEo4WLD/wOWPMKuAs4BMisir02G3GmA2hv2emXoWaijFWC9ZYKfY4l4uAEYzuoBWhFiy82OMSiHfa6UuqwEYAemojHdqCYw968EncUdM64peQNayvpZqGfyzBimdZQTp1Jp9gp3YRVFYLVgoj2BJSyUp20Ry3xKoK3Lk/0qGpCBuakGDFuRIoyEqj01kInZpgLRYnnWAZY1qNMW+Ebg8C+4Cik12vsoxXMAu1YNltNrwShwS0hUJNbMGyuo4GM0PVKnUnPWe2oI+AOI+aNpK+jIJACwHv8ddtUwo4ugUrNZ46KSKxvyayMamo4PFZXQRtrhQAglmh/XNXdQSjUtHA7QsSH+oiiCOeZbnJVJsiHb+5iIR1DJaIlAMbgbFa4J8UkZ0i8r8ikjHFMjeJyFYR2drZ2RnOcBaHUBdBkSNvVcDmwhnUBEuB1+PGIUHsLivBSixcSdAIQU2w5swW9BOQo6s32fNX4ZAgHYe1tLKanPhDybcjHhGhL7GCdE+zdtNVBL0j2MUgoQQrqWApfmwY7QYW8zz+AIm2UBEzh4tluSns9ORhumtAi5gtCmFLsEQkGfgN8BljzADwE6AS2AC0At+dbDljzF3GmE3GmE05OTnhCifsHn/8cUSE/funbtqvq6tjzZo1YdvmjTfeyKOPPWbdmXDld+OIx0GAT3/6UxQVFR0phIFVDj0nJ4cNGzawatUqfvazn4UtHhV9xsbijY3NKyvIptlkM9Ks44bmym58BGxHdxFMK10HQPdhvbaYmpxtvIug9R30ZizFTlC76SqCoRL+Y9fWK8/LpCGYi7dNuwjGOq8/SKLNB3YXiLA0N5lDgUIk6IOew5EOT4VBWBIsEXFiJVf3G2MeBTDGtBtjAsYaRPQz4IxwbCtSHnjgAc4991weeOCBSR/3+/0nvY1AIHDcNDNJC5Y44wkGgzz22OOUlJTwl7/85ahlrrvuOrZv386WLVv40pe+RHt7+0nHpqJT0GP9gEvo4K4yJ5kaU4jRFqw5sxsfwWO6CBYvXYvf2PC07olQVCra2QNu/NjBbn124vKtC8q6W/dFMiwVBca7Fjus6qRj++dAh+6fY53HHyTB5geHVVhp6VgXQdBCF4tEOKoICnA3sM8Y870J0wsmzHYNsGD72AwNDfHiiy9y99138+CDD45P37JlC+eddx5XXnklq1ZZdT38fj/vf//7WblyJe9+97vHL0r87LPPsnHjRtauXcuHP/xhPB6r+0h5eTn/+q//ymmnncavf/3r47b9/Ja/sOnt72fdho089dRTgNVaseWlraxcvoybb755yqQvNzeXyspK6uvrx6fdfvvtrFq1inXr1vHe974XgJ6eHq6++mrWrVvHWWedxc6dVgWsW2+9lRtuuIHzzjuPsrIyHn30Ub7whS+wdu1aLrvsMnw+qxn761//Ops3b2bNmjXcdNNNx10oOBgMUl5eTl9f3/i0ZcuWaeIXBkHf0WfPrZ10IfEDh2FCy6aamd34CdqOTrDSUpJplALierRfvJqcPeDGO6G8f2aplWD1NWhSHuvG98+hg+jKXCvBcvUfhuDxJ1RV7PD6gySI76jku5ZC60E9QboohONy0ecAHwR2icj20LQvAe8TkQ2AAeqAfzrpLf3ui9ZV0MMpfy28/ZvTzvLEE09w2WWXUVVVRVZWFtu2beP0008H4I033mD37t1UVFRQV1fHgQMHuPvuuznnnHP48Ic/zI9//GM++clPcuONN/Lss89SVVXF9ddfz09+8hM+85nPAJCVlcUbb7wx6bbrGxp47el72dfn5NLL3kF1dTVxrnh+9fgfeM/Vl3PNNdfwpS99CZ/Ph9N59MFhbW0ttbW1LF26dHzaN7/5TQ4fPozL5RpPeL761a+yceNGHn/8cZ577jmuv/56tm/fDkBNTQ3PP/88e/fu5eyzz+Y3v/kN3/rWt7jmmmt4+umnufrqq/nkJz/JV77yFQA++MEP8tRTT3HFFVeMb9Nms3HVVVfx2GOP8aEPfYhXX32VsrIy8vLyZv02qckd6YJiJVhpCU7aXWU4A27ob4CM8sgFt8DYje+4BAugM6GComEtWqAmZ1WfPJJglRfk0mSyMe3aghXrjC80Di90EF2QGk+jrRi78UFfPWQuiWB0KpI8/iAJcqQFKyHOTmZGFr3eHDK00MWiEI4qgi8aY8QYs25iSXZjzAeNMWtD0680xrSGI+BIeOCBB8Zbe9773vce1WJ0xhlnUFFRMX6/pKSEc845B4APfOADvPjiixw4cICKigqqqqwKQjfccAMvvPDC+DLXXXfdlNv++6uuwGazsWxZFUuWLGH//v34/X6eef5vXHnp+aSmpnLmmWfyhz/8YXyZhx56iA0bNvC+972Pn/70p2RmZo4/tm7dOt7//vdz33334XBY+fWLL77IBz/4QQAuuugiuru7GRgYAODtb387TqeTtWvXEggEuOyyywBYu3YtdXV1ADz//POceeaZrF27lueee449e44/c3vdddfx0EMPAfDggw9O+5zV7BnfWBeUhPFpvvRl1g0tFT0nDuPH2I9PsEbSqigItGLGklmlJnAE3PhsR66fVpaVRI0pIq5XK8XFOjOhAAqAzSZ40iutabp/jmkef6iKoOPIyZmluckcplhbsBaJcLRgnToztDTNh56eHp577jl27dqFiBAIBBARvv3tbwOQlJR01PwyoRjFZPcnc+w6jlr+mPWICH/4wx/o7x/kjAuvBLuTkZEREhISuPzyywErmbnjjjsmXd/TTz/NCy+8wG9/+1u+8Y1vsGvX9C2CLpf15bfZbDidzvE4bDYbfr8ft9vNxz/+cbZu3UpJSQm33norbvfxJa3PPvtsqqur6ezs5PHHH+fLX/7ytNtVszN+PTTnkQO8uIKV0A2mcz9SdUmEIlt4HMaHmaQFy5a/CluboaNuN7lVC3ooqZoHjqAHv/PIQVKcw0anq5SzRv5kddO1hbVYr1pAjpwAO/L5cOYthwGsctzLL4tMYCriPP5AKME68ttdmZPErtp8Nna9gOi+Y8HTd28GjzzyCB/84Aepr6+nrq6OxsZGKioq+Otf/zrp/A0NDbz88ssA/OpXv+Lcc89l+fLl1NXVUV1tndG89957eetb3zqr7T/25FMEg0FqDx+mtraW5cuX88ADD/DD275F3atPcbimmsOHD/OnP/1pfLzXVILBII2NjVx44YX8z//8D/39/QwNDXHeeedx//33A9a4suzsbFJTU2cV31gylZ2dzdDQEI888sik84kI11xzDf/yL//CypUrycrKmtX61fRkrILZhBaswoJCukyqDrKfIwf+SROs9NK1gFYSVJOLM278E1qwAEZSl+IybhhoilBUKiqMleqfcBBdkF9Ip0nFr4UuYprXH8R1TAtWZU4yBwKFiG8YBpojGJ0KB02wZvDAAw9wzTXXHDXtXe9615SFJZYvX86PfvQjVq5cSW9vLzfffDPx8fH84he/4D3veQ9r167FZrPxsY99bFbbLy4q5Ix3fpArrriSO++8k2AwyO9//3sue/s7AfB53SQlJXHuuefy29/+dtJ1fOQjH2Hr1q0EAgE+8IEPsHbtWjZu3MinPvUp0tPTufXWW9m2bRvr1q3ji1/8Ir/85S9n/fqkp6fz0Y9+lDVr1nDppZeyefPm8cfuvPNO7rzzzvH71113Hffdd592DwynY4pcwJGB1L4O7YIyF1YXwbjjphcvXYvX2PG0aNECdTxn0EvA7jpqmuQuByDQruW4Y5kJHD0GC0LFDEwhHi3VHtM8/iAujmnByk2mJhgqdKHjsBa8hdVFMAKef/7546Z96lOfGr99wQUXjN8uLy+f8jpZF198MW+++eZx08fGMU3mnnvuYaizkWRfF6Zgw3j3vJ6eHkZHhqGvD79nhLiEZB599NHx5W688caj1vPzn/98/PaLL7543HYyMzN5/PHHj5t+6623HnV/aGho0sf+8z//k//8z/88bvljk8hNmzYdV2FQnaSxPv4TE6ycZLYEC1jfuz0yMS1QTvzjpbYnykxNoloKtZKgmpTLuAnYs4+allq8EvZBb+NespdrN91YJZO0YFXmJvFGsJCNPdsiFJWKBl5/kDiOb8GqMWMJ1iFYenGEolPhoC1YUc8QNMeP5YpzxRM0E/p4q5hkm+QMaX6oUlW8rxdGeiIU2cJijAklWMe3YAF0xFeQqZUE1TECQetzY45pwSouKqXPJDHaqt3AYtlk++fyrCRqKCTO1w/D3RGKTEWaxx/AZbxHJd+ZSXEEErIYtSdD96EIRqfCQROsaGcMhuMLZdjtdnziRMZ24Co2HVOlCqxKVaNpofK/XbqTng2/349DgsgUCdZo+jLyg20Yz9Ckj6vY5PUHceHFOI5OsCpzk6k1Bdi6tdUzlkng+P1zvNPOQFKo8rB2A4tZ3kAQ5zEtWACVuSk02or1s7EILIgEK7a7lQUxMvnb5BcXjmBsJVix/Vk4ni3otW4ckxjYcqxLAuhOena83tD3aIoEy5ZnXUi8t37BXi9dzQO3L0AcfjimBSs9MY4mewnJQ3WRCUxFBVsgtH92HF0ExWSFLqWh++eY5fEFiTumBQtChS78+XpydBGI+gQrPj6e7u7umD2wFmOY6pkH7S6rtHQweEpjihRjDN3d3cTHx888c4yY6gc8o3ApHuPQQhez5PVYCZY4Jk+w0krXAdCllQTVBG5/gDg5/iw0wGBSOWn+LnAPRCAyFQ3sweO7CAKkFyzBY5wYvRZWzPL4gziMd5IWrCT2evNhsFX3HQtc1Be5KC4upqmpic7OzkiHEhGegU7sQS+O/uNLbntGBnF5ewl078LunPzAcLGJj4+nuLg40mFEjfEWrGN20hW5qdSZfApa93F82QZ1LP/YWMYpWrCKl67CYxxaSVAdxeMLko6PoUkSrGDWUhjCGktRdPqpD05FlDEGe9BrncY+5vOxJDeNWpNPefsBEiZfXC1yXn8Qp23yFqyHTIF1R/cdC1rUJ1hOp5OKiopIhxEx2779BTJGD1P2leO7Ju3ZuoWVf7iWXef+iJVv+0AEolORZgt4Cdrt2Gz2o6aPVSMq7K6OUGQLy1gLlm2KFqyc1CQOShFOrSSoJnD7rS6CMkmClVCwAuphqHk/yXqQFHO8gSBxeAliw2Y7+lCrMieJGlNImbZgxSyPP4DDMUkL1rGVBHXfsWBFfRfBWGcLegnI5G0QhZVWtyV3i15QNhYFgwaH8eK3HZ8UVGQncdgUkDjcAAFfBKJbWPy+6RMsEdFKguo4Hp9V5MLmPL7bcnbJCvzGxkCTtnrGorHrHAVscXBMFeCxaxXGDzUeuRixihn+QJCgMaEugkfvO4ozEmi1FRAQu47DWuA0wYpytqBv0gNogIyMTNrIwtajX8JY5AldRyM4yecj3mmnN7EcuwlAb92pD26BmSnBAhhJW0ZusAOj/eJViNvjwS5m0hasivwMGkwuAR0HGZOs5NtH0H78ZyMrKY42Rwk2gtBTG4HoVCSNX2QYjmvBcthtFGen0uEo1CIoC5wmWFHOEfQQkKkP+jriSkkd0h10LPKEuidNlmABBDKXWjd0Jz2jgNcag2Wb5EB5jD1vJQD9jVpJUFm8oc+NPe74z01xRiKHKcLVr/vnWOTxB0ItWMd/NkQEb0aldUdbKWKO96gE6/jW7yXZ1mUe9LOxsGmCFeXsxkfANnWZguHUSgr9jTFTSVAd4fYFcYmPwBSFGRLyVwAQ1H7+M/KHyrTbpikWk1YWqiRYq5UElcXvHgHA5jy+VIHdJvTEl5LhboBg4FSHpiJsbP987EWox7jylls39ARYzJmuBQusSoK7PXmYnhoI+E9xdCpc5j3BEpHLROSAiFSLyBfne3uLjSPonbKFAkBylpOEm67WulMXlIoKVgvW1D/gxQX5dJh0Rlv3n+LIFp6xLoJ259QtWCVLVuE2TrxaSVCFjF0/zRE3+aUjPOmVOI0P+hpOZVgqClgtWF6CU7SKl+Tn0mIy8bYfOMWRqUjz+q3kG5i0BasyJ5nqYAES8EJf/SmOToXLvCZYImIHfgS8HVgFvE9EVs3nNhcbh/ERmOIAGiC5yOq21F6z81SFpKKE2xfEhR8zRQtWZU4SNcFC/B36Az6TgH/mBCsvPZFairWSoBrn944CYJ+kyAWAI9e64Ldejy72jLdSTPH7XZmTRG2wAJ8mWDFnLPkGJm/BykmmJjihkqBakOa7BesMoNoYU2uM8QIPAlfN8zYXFYfxYaZpwcpfuh6Aoea9pyokFSXGd9JT/YDnJlNjCojvq4EYvVD3bAV81o+dY5ouglYlwXKtJKjG+UNjsByuyROslGLrfGJfo7Z6xpqxIhdmkhYKOFJJME73zzHHM9MYrFAZf8C6FpZakOY7wSoCGifcbwpNGyciN4nIVhHZGqsXE55OHF7MNJXNsnKLGSAR6dKzYLHG7QsSJ/5Jz4CBVamqxVGCyz8AI92nOLqFJRjqIuiYpgULYCR9GVnBLnD3n4qwVJQbK47ijJv8crElxSX0mmTtphuDPP7AtPvn0sxE6ijC6R+CofZTHJ2KJLcvMG2ClRLvJD41i0F7ho7RW8AiXuTCGHOXMWaTMWZTTk5OpMOJOk4zdRcwALHZaHWWkjSolapizdgYLKa5dpMnbYl1R7sZTGsswbJPMZZmjD3PapEYaNg17zGp6Bf0hRIs1+QJ1pLQRUPtesHvmOMOXSNNpmjBctptDKZUWHf0IDqmeI4agzVVF9JkGmyF+tu9gM13gtUMlEy4XxyapmbJiQ/s0x/0DSYvIc+rg6hjjTvUBWWqH3AAe2gMiP6AT8/4xrp6JU47X2rZWgC6D2slQXWkBcsxSZl2gGSXg1ZHMSnDh09lWCoKjJVplynG5wHYcnT/HIvGPhvApC1YYCVY+3z5GP1sLFjznWC9DiwTkQoRiQPeCzw5z9tcNPwB60KyZppr8wAEs5aRQx89XR2nKDIVDcaugzXZRU7HZBZW4jZOPO3aRWk6xm8VK5iqJWJMScUKRowLj1YSVEAwVBxlupMcg8kVpPp7tFtpjBkbZ2ObpttxZn45w8ZFsFNbKWKJJ9S6CUzTgpXEPl8+MtINw9rFfyGa1wTLGOMHPgn8AdgHPGyM0SOTWfL4/MRJAJmmiyBAQqFVSbBVKwnGFLfPSsCn+wFfkpvKYZOPu1XH6E3HjI3BmmIszZjC9CRqKcLZo6+ngqDPSsynOkgCMFnLrP/a1SemjHUDm64FqzI3hVpTgLtNT4DFkpmKXMCRIiiAFrpYoOZ9DJYx5hljTJUxptIY84353t5i4nFbP97TtVAA5FRYF0Dt10pVMcXjD+ASH7Zpf8BDY0B6dAc9rYDV1SsufvoEy2YTOhOWkDGsYx4VmFD1yakqeQIkFFgX/B5s0kqvscTttbqB2ac5aTM2Rk80+Y4pY7/dwLRjsMYTLP18LEgRL3KhpubzWAd9050BA8grrcJrHAQ79ax6LDnSgjX158OqVFVI4nAzhLozqUmEXps4V9KMs3oyq8gM9mBGeuY7KhXljN/aR0/XgpVbthyfsTPQtO8URaWiwViluOkSLOtaWIUkjDSDd+QURqciaTYtWPmp8fQ68/FLnI7RW6A0wYpiXu/sWrDE7qTFUURiv16fJ5aMDZSdrvKd025jIKkcGwHo0YH2UxG/m4ARbA7njPO6ClYD0FGzfZ6jUlFv7KTFNN24K/IyaDC5egIsxoz6rOsU2qf5/U5PjKPDVWrd6dHf71gxdo00YMqTMzabUJ6TQqtDKwkuVJpgRbGxFqzpWijG9CWWk+Oum+eIVDSxWrD82Gf4fIyNAdGzYFMTvxsPcSAy47w5ldbFvbWSoJKxFizn1NUnC1LjOSxFxPfrCY5Y4vH6iJPAlC0UY/yZS60bun+OGbOpIghWN8FDgQL9bCxQmmBFMa/H6jIwXRGDMf7MKgpNOwNDQ/MdlooSPq8HpwSQaQ7u4EgRlECHDqSeii3gwSszt14BLKlcwZCJx9uqY2pinS1UfRLn1N3AbDahN6GcDHcjBPynKDIVaT7vzN1HARLylxNEtJUihnj8QeJl+iqCYCVYu715mN467eK/AGmCFcXGWrAcM1z8FMCVvwK7GJpqds93WCpKBN2hZHqagzuA0vxcGoM5jDbrZ2MqtoDHasGahUSXkwZ7KfG9elYx1tkDYy1Y038H3elV1jUNe7Q4SqwIescqTE7/+12Wl0lTMBuPVhKMGR5/kERbwCqOM02vicqcZGqChYjRLv4LkSZYUcwbSrCcrpkTrKxy6wKo/XVaqj1WBMYGRcdN34JVmZPEAVOM6dBB9lOxBTz4ZHYJFkBvUiW5bv3Bi3X2wAgeiZ+xa6kt32pF9rToSY5Y4ffOXMIfYGluModMMYE2bRGPFR5fgCSbd8bkuzI3aUIlQT2ht9BoghXFxnbQs2nByqtch9/YCLRpqfZYEfAMWzdm6CK4JCeZg6aExIFaCPhOQWQLjz04twQrmL2cTPoZ6m2bx6hUtLMH3PhsM3fhzipfS9AIfXU6bi9WBMe7CE7/+708P4WDphhXf43un2OExx+0EqwZTo6WZyVxmFCCpUVyFhxNsKKY3zvWgjV99xMAe1wCLfZCEvv0LEesMGMtWDMkWGkJTtpc5diNH7q1UtVkbAGPVQ53lpJKrBbj5gNvzFdIagFwBNz4bDPvn5cV5VBn8vBqK0XMCMziItRgleNucJTp/jmGePxBksQ74293vNNOVkYm3c586NB9x0KjCVYU83usHXTcNNfRmKgraSm5bu3jHyuMd3YtWACBbKuLku6kJ2cLevHPoiViTMHSDQD01e+ap4jUQhAXHMVvn7mHQXlWEtWUkNCrZ6FjhfGFihLM0IIlIvgyrYtR6/45Nrh9AZLEDXEzX3exMieJQ6YUtIv/gqMJVhQLhHbQrvjZJVjejOUUBtsZGeqfz7BUtBirYDZDNwOA5KKVBIwQbNcf8Mk4Ah4Cttm3YOUXL2GAJKRdx9TEKmMMcUEPAfssehjYhO7EJVYlQZ/7FESnIm02F6Eek1i0kgCC0QQrJox4AySJZ1YJVlVeCts9BZjuQ+D3noLoVLhoghXFxqoQxcXPfAANEFe4BpsYWg5un8eoVLQQ31gXwZkP8JYWZlNn8hlp1jF6k3EYDwH77FuwxGajLm4ZmQN6QBSrPP4g8XgJOGZ3AsyXtQI7QejWctyxwPhn14IFUFmQTV0wH49Weo0JI14/iXhm1fukKi+FvYESJOjXfccCowlWNPNaZbjjElNnNXvmkg0ADDRsn6eAVDQ5cg2emc+CrchP5aAp1i4oU3AEvQTnkGABDGSsodR3eLwrr4oto94ACeLGzDLBSihaA8Bwkx5ExwLxz65MO1gH0ftNCUZ7GMSEYU+ABGbXRbAqL4UDpti6o5+PBUUTrCgmoQTLFp8yq/kLK1YxYlwEdSB1TJjNRU7HLMtL5pApIXGoQbsoTcJpvJhZjKWZKK70dOIkQOOBrfMUlYpmI74ACXgxszgLDZBbvgqvsWslwRjh9Id6GLiSZ5y3Ki+Zg8ES4ocaYKx4kVq0Rn0B4s3sEqyluckcppCA2PUE6QKjCVYUs/nGihjM/CUEiHM6aLCXktivlQRjgX18DNbMn494p53e5KXYCOr1NCYRhxczxxas/BVnAdB98NX5CElFuVGvnwQ8szrBAbC8KJvDpkDHQcaIuEDo99s18wnSrGQXra4KBANdWghlsRv2+HEZ96y6CCbE2cnPSKXdWaIJ1gJzUgmWiHxbRPaLyE4ReUxE0kPTy0VkVES2h/7uDEu0McbmG2aEeLDN/m3qSaok362lXhc7YwyOwFgL1uzOoJM7VqlKqxEdK954MLM8UB5TXL6CPpIxzW/OU1Qqmo14AySIB5nl9y8v1UWtrZQkPQG26AWChvjgWAvW7HqgBHNC+2dNwBe9EW8AV3B0VidHwWrhPGA0wVpoTrYF60/AGmPMOuAg8G8THqsxxmwI/X3sJLcTk+z+Edwyt25LnqwVZJp+PP16AdTFzBsI4sKDQWZVpQogo3glXmPH16ZjQCby+f0k4SYYN7uxjmNsdhsN8cu10EWMGvFaXQRtrtkdJIkI/clLyfS2wtglFtSiNOTxkyKj1v55lj1QUouq8BinjsNa5IwxjHq9OI131gnWsrwU3hgtgL4G8AzOc4QqXE4qwTLG/NEY4w/dfQUoPvmQ1BiHf4RRmdtZdVehNZC6vVrPqi9mbm+QRDz47QkgMqtlqgozqTGFjDRpJcGJRocHsInBxM08VuJYI1lrKfXX4x4ZmofIVDQb6yJom8VlEsYEQ9ejMx375yssFQWGPH6SGcXnSJp1D5Sq/AyqTSHuFj0Btph5/EHiTajC5Cxbv5fnpbAvWGLd0X3HghHOMVgfBn434X6FiLwpIn8RkfOmWkhEbhKRrSKytbOzM4zhLHwO/xBe2+x/vAGylpwGQL8OpF7UhkJlXgNzKMywIj+Fg6YER5d2EZzIPdgLgImfWwsWQHzZJpwS4PBeHYcVazwjQ9jFYI+ffWKeWGKdAOur3z5PUaloMOj2kcwoAcfsWigAqvKtSoLSqfvnxWzYEyrRDnNowUpmvxlLsPQE6UIxY4IlIn8Wkd2T/F01YZ5/B/zA/aFJrUCpMWYj8C/Ar0Rk0qMXY8xdxphNxphNOTk5J/+MFhFnYBSffW4JVnlZGd0mBdOuX8LFrH/ER6qM4HelzXqZ0sxEaqWUpNEW7WYwwWgowXIkzP61HFO8+i0A9Gmhi5jjHuwGwJmSNetliipWMmriGGzYNV9hqSgw5PaTLCME59AqXpWXYlUSHG2H0d55jE5F0rAnQKKEKvnOMsGqzEmmlWy8tgQdQ72AOGaawRjztukeF5EbgcuBi40xJrSMB6wU3RizTURqgCpA6xnPQVxwBL9r9j/eAC6ng72OctJ0IPWi1j/qI40hgq70WS9jswkjactgEKubQcnmeYtvIRkd7APAmZQ+52WzC5fQQSbOVt21xRpPKMFKSJ39ProqP51DpogMPUha1AbdflIYnXWBC4Bkl4Oe5ErryKljH5S9Zf4CVBHTN+olmbEEa3YJeLzTTmlWCs2+cir05PmCcbJVBC8DvgBcaYwZmTA9R0TsodtLgGVA7clsKxa5gqMEZjlAdqK+lGXke+ogGAx/UCoqDLh9pMsQkpAxp+VsBautG9rNYJxnuA8AV9LcW7AQoTFpDcVDO8MblIp6/mGrlSEuOXPWy6QlOml0lJM6eGi+wlJRYNDjJ1lGEdccux3nhvbPehC9aPWO+MiQUA+SxNnvO5blJrMvWKSVBBeQkx2DdQeQAvzpmHLs5wM7RWQ78AjwMWNMz0luK6YYY0gwo5gTSLCCOatIxM1wh+a0i1X/qI90hrElzi3Byi2pYti4GGnSgdRjfCN9ACSkzO21HDOav4l800l/e0MYo1LRLjhi/aTN9STHYNoy0vzdMKI/iYvVoNtHEm5sCXNLsPKKljBgEgm0aYK1WPWNeMkglGAlzD7BqspLYdtoIYx0w1DHPEWnwulkqwguNcaUHFuO3RjzG2PM6tC004wxvw1PuLFj1BcgidFZNyFPlFyyFoC2Q9vCHZaKEgOjPtJkGEfy3LqQrihI46ApwduiY0DG+Ef6AUg8wQQrdanVladx15YwRaQWAhnts27MMcEiZxUAfj2IXrQG3X5SZARHwuy7CAIsL0hlvynB3az758Wqb8TqfQLMqQWrKj+FfcFQoW5txVoQwllFUIXR4PAIqTKKmcMZjjGFy6xKgsON2m1psRocGSVVRnDOoXsSwPL8FA4Ei3H1HJinyBae4OgAAMmpc/+uASxZ9xY8xom79uVwhqWinM3TZ92IT5/Tcqll6wDoPbw9rPGo6NEz5CGTQexJczsBtrIghQPBEpzdB8Aa0q4Wmb4RH5njLVizPzlTlZfMwfFS7TqGcyHQBCtKDfe2WzeS515ZsSgvh0aTi02/hIuWd8ga/2GbwxkwgOxkF01xFST4erWbQYjxDBA0QnzS3M42j0lOSqLasYzULr32XCxxePsJYJtTIQOA0rJK+kwSI03aSrFYDQ70Ei8+JDlvTsuVZyVRLaXE+Qehv2meolOR1DviJdcxDK40sDtnvVxFdhK9tnRGHBk6Rm+B0AQrSg12twHgSs2d87I2m9DiWkLakA6kXqzcA1YFszl3TwI8mSusG7qTtgx3MyhJiM1+wqvozVpPuecQfs/IzDOrRcHp7WfUnjLrC32PWZo3dj06vWDoYhUcHDtBOrcEy2G3MZy+3Lqj3cAWpf5RHzmOEZjj+GmXw055ViINjjJtwVogNMGKUiN9VoKVmJl/QssPp1VR4G/C+NzhDEtFCe9g6KLcJ5BguQqti50G2/UHHMDh7mbAfmLjr8bElZ9NnPhp2KPdBGOBMYZEXy9u59w/N/FOO61xFWQMV2s3sMVqrHfACfRAiSvQSoKLWe+Il2zb0JwKXIypykthT6DYSrC0SnTU0wQrSnn7rTNgqVmFJ7S8LX8VDoL0NuhOejFyDrdaN1Ln/vkoKi6l06RqF6WQBG8Po3FzGytxrOJ1bwWg58CL4QhJRbneER95dOFJKjih5YfSq0gMDsNAc5gjU9HAMRI6ATbHFiyAsqJCmk0W3hat9LoYdQx4yJIBSJz7b86yvBS2juSDbxj6tWpttNMEK0oFQi0UqVkn1oKVVr4egI7qN8IWk4oOxhgSRq0WTtKK57z82GBZLQVsvZapgV588dkntZ6CojKaycXZrBccjgXtA26KpJtgStEJLe/ItyoJ6kH04uMPBIlzd1l3kubexd8qRFSCT/fPi1Jz3yg5gQ5IL5nzssvzrCJVgHYTXAA0wYpSMtyJDwe2hPQTWr5s2Xq8xo6nWX/AF5tBj5/cYCdeexLEz/3iuEtzUzhgSkjsPxTz3QwG3H4y6cMknVyCJSI0p6yjaGiXdvuKAR29/eRIP/b0uZ/gAEgPnQDr0UqCi077oIcsegmKfU5luMesLEjloCkhvq8aAr55iFBFypDHj390gMTAAKSXznn5qrxkDprQPke7kEY9TbCiVNxwCz22rDkPoB6TmZpEnRQT16NnORabxp4RCqUbT9KJdR9NS3DS6qrAGRiFvvowR7ewtHf3kSqjOFLn3pXnWP7CzWTTS2ejFpdZ7HrarO45iTlzP0gCWFJSTKvJxNuiB0mLTWPPCGXSjiepCE6gcE5uiosGZzl244fu6nmIUEVKS98oRRJq3TyBBKs8OwmPPYn+uAJtwVoANMGKUhnuJnrj596EPFFnYiVZI7VhikhFi9rOYQqlC0k7se5JAN6xSoIxXqmqp7MFgPj0E+uKO1H2inMBaNq55aTXpaJbf5u1X03Lqzih5cuzkzhkionT69EtOk29o1RIGyaz8oSWFxH8WSutO9pKsag0905MsMrmvLzTbqMiO4k6e1nM/3YvBJpgRSGvP0hBsBV3yty/gBO5M1aQG+wkMNIbpshUNDjcOcgSaSU+v+qE1xFfZI0BifVKgkOdVgteUtaJdfWaqGLNGQybePz1WklwsZNOq8S65Cw/oeWddhsdCaETYAF/OENTEVbfNUS5tBGXt+yE15FUtBK/sWFifP+82BzuGqZcQuOnT6AFC6xCF7t8RdB1EPzeMEanwk0TrCjU2tZChgwhmSd2dnRMXKFV7rWjZnsYolLRYqC1miTx4ChYe8LrKCvIpyGYgzvGKwl6uhsBSC84ue8agNMZR41rJVk9esHhxS5t4CAjtuQTquI5xp2xHCc+6D0cxshUpLU0HiZZ3DiyTzzBKs/L5LApwNuqLViLyb7WATbGNWGSciBp7iX8AapyU9g6mgdBP/TUhDlCFU6aYEWhluodAKQUrzyp9aSXWK0UfU3aV3cx8bWEkqK81Se8jqq8ZA6YUoIx3s1ABpoAcGae2NnEYw3kbqLcX8fogLYaL1b9Iz6KfXX0Ji874TGyAM7Q9ehGm2P7JMei07bd+p+/5oRXsSQniVpTQKBLx2AtJntbB1jnaEDy153wvmN5fjL7g6HfK+1CGtU0wYpCw7WvAVC06uyTWk9h+XJ8xo63XQfdLxZ9I15yB/cQEDvknHgCviw3hUOmiISBwzHdRckx1MKwJJ5QNcbJJC19CzYx1O14PizrU9Fna00bq6UOW9H6k1pPVvlaAkbor9sRpshUpHUOeqhw7yMoDijYcMLrWZKTTK0pwDVQF9P758XE7QvQ0N5Dib8e8k+898myvBQOm3wMAt3aghXNTirBEpFbRaRZRLaH/t4x4bF/E5FqETkgIpeefKixI6FzO522HFwZJ17EACAzJZEmycPRq1/CxWJbfS9vse1lJHsDxCWe8HrSEp10u4qtSlX9jeELcIFJcrfR55j7tWqmUrH+AvzGxtAhveDwYtWy568kiJes1W87qfWU5WXRbLLxdxwMU2Qq0l6q6WKz7QDuzBUntX8uSI2n0VYY2j/rBWUXg611vaw3+6z3tPzcE15PWWYixh7PQFyeVpmMcuFowbrNGLMh9PcMgIisAt4LrAYuA34sInOvVxqD3F4/S0d20J564mc4xogIHXElpA7HdinuxeSl3dWskxoSll940usKZiyxbsRwP+50XwfD8SdfQXB8fRmZ1NiXkNyhFxxerJyHnyOIjbjKEz9IAijJTKSWQpx9Wul1sXh5dzWn2w6SsPLkzinbbIInLVSFULsJLgp/PdTJBfadGHsclL3lhNfjsNtYkpNEk60wpn+7F4L56iJ4FfCgMcZjjDkMVANnzNO2FpXtr79AnvTiXHFZWNY3nFxOrr855i8ouxh4/UHY8zh2MThWX3XS63PlLrVu9MTmIHu3L0Ce6cKXfOKFCibTmbGRcvc+gj6t8LTY7G7q45zRLbRlnQkJGSe1rninnQ5nMWmj9Xpx6kXA7QsQV/0MDoLIinee9PrsuaEqsd3axX+hCwQNT29v5Jq415AlF0Bc0kmtryovhf2+XKsFS/cdUSscCdYnRWSniPyviIz94hQBE/sdNYWmqRmMvvEQfmxUnH1NWNYXzFyKCx+ebm3FWuj+vLeNvw/+gaG0ZSfVh3tMdn4pQyYed3tsdlFq7+4lWwYwqSdfon0iW9lZJOClef8rYV2virw3n/s1JbZO0s/6YFjWN5JSTnxwFAbbwrI+FTm/2dbIu4J/ZCRtGRSddtLry88toM8kEejUBGuh+8vBDpYPvUJWoBPWv++k11eVl8xudw64+2GkOwwRqvkwY4IlIn8Wkd2T/F0F/ASoBDYArcB35xqAiNwkIltFZGtnZ+dcF19U2ru6Wd/1NPvTzicuLTzjQsauldRRp9VmFjJ/IMjrv7+X1bZ6Es7/9ElVLxuzJDeZepOHJ0aLoPS01gHgyjq5C3ofq3DdBQB07f1LWNerIquld5j1NT+hz5FD4sb3hGWdwcxQK7KOpVjQvP4gu59/iPW2WhLO+0SY9s8p1JoCPG16MeqFLBA0/PBP+/m863FMWimsvOKk11kVKnQB6L4jis2YYBlj3maMWTPJ3xPGmHZjTMAYEwR+xpFugM3AxKOW4tC0ydZ/lzFmkzFmU07OiV0XYLHY/ej/kCmD5PzdZ8O2zqxSq1T7YLOWal/Ifv7HN/jI8E8ZTFmKfcN7w7LOiuxk6kwethi9Ds9wZx0AibnlYV1vWVkljeThaHo1rOtVkRMMGp7/5X+wTmoIXPQVcMSFZb0JBdaFikda94dlfSoyfv77V/mM+8cMpy5BNn4gLOtckpPEYVOATYtULWg/+2stp7U9zApTg1z8/8DuPOl1WglWgXVHKwlGrZOtIlgw4e41wO7Q7SeB94qIS0QqgGXAayezrcVu7xt/5dzmu9md+lby1lwQtvUWl5QzZOLxd+qXcKH60/ZqTn/54+RJPynX3RWWHTRAcUYC9RSQONIYk6WAvaGLDGfkLwnrekWExuR1FA3t1P7xi4Axht/cdwfX9f6UxtwLyDo7PN0DAbILlzBq4hhq1gRroXpq60FOe+2zZNpGSPqH/wvb/rk8O4nDwXziR9vBOxKWdapT6/kDHez60718yfkAZvk7YG14Wr5LMhPpsOVZl2vRMXpR62THYH1LRHaJyE7gQuCzAMaYPcDDwF7g98AnjDGBk9zWotVSX03Kkx9hQFIpv/GusK47JSGOZinA2R+brRQLmTGGR/78IrmPXstptkP4rvoJFJ8etvU77TaGEkuxm0BslmoPPefE7PB2EQTwFp5Bpumnp0kPnBeywVEPT/7oX7mm5iu0pKyl+B/vC0v3rzEVOcnUmXwCXXqQtNAEgob/e/p5Sp68js22A5gr7wjL2NgxqfFOuuJC40N7tNLkQmKM4d6Xannpvq9zu+MHmMLTkGt+GrZ9h90mFGYm0+ko0M9GFHOczMLGmClP5RljvgF842TWHwv2vfk3Up74EBkM0HPNg+Rkhq9k9JgeVxFlo5pgLSRvHKyn5on/5h1DjyIOB96r7yFh3clXDjxWIGMJtGGVe82sCPv6o5lzuJVuySDL4Qr7ugvWXgAHv0Hdtj+TWXLiF4RWkeHx+XjpD78mb+t3uIoaqnMupvIj9yCulLBupyQzkWdNPmfrCbAFwxjDa3trqXvqW7xr5DFsDgf+v78X15rLw76tQMYS6MHaP+evCfv6VXgZY3ippps/P/0IV3T/jA/aq/EtvRTne+6GMO87yrOSaGjKJ18TrKh1UgmWOnFDg/3sePDrbGr6JYOSTPc1D1O2/vx52dZISjm5XS9b3cDs+pZHq+7+IV594XfIrl9zrucFTpNRGgovpeTabyEZ5fOyzfjcpdAGwe5abEvnZRNRK9ndRp8zl6x5WPeyVafT+5sUgof/AvzzPGxBhVsgaDiweyttr/yaJS2/5UJa6LJl03D+91n61hvD2nI1xuWw0+kqJdW9FQK+sHUvU+HX1NXP9r/9HueeX3OO56+cKW6aCy+h8LrvIenhbwUHiMtdZiVYOs4mqnUMuvnr69vpeuNxzhn4HV+11TGSkIu59Ic4N35wXvYd5dlJ7K/NYXPPi4gx87INdXL0aPsU62hvZf/TP2Rlw684h162p11I5Q0/JjsrvNfiOUpmBY6uAKNdh0nIWzZ/21FzMjA8wqFdr9Fz8CWSml5krecN3iGjuHHRVHQpjss+Q2lp+LoETia7oJShHfFI20FO7socC0+ar4Ph1Mp5WbfNbudQ6llU9b9C0O/H5tBdbbTx+HzUH9pDx56/YBpepnTwTVbRxiqgxrWKA6ffQtWF7yfbGT+vcYymVmDvCUJvPWTH2FmOKGWMobN3gMN7XqXv4Eskt73KWu+bXC6jjJBAW8llON9+C0VF4esSOJnCvBw696WR3lmNpt7Ro2fIw659e2nf/zKO5tdYPfI677I1WY+lr8B39rdJ3HQ9zOO+ozwrkepALuIdhOEuSI7tInHRSH/1T4HhoQH2/eXX2PY8yurhVzlffOyL30jf237Ghk1/N+/bj8+rgoPQVb+XEk2wTjnPUA8ttXvpatzPaHsN0nuYjOFalgZqOV18AHTbsqjLv4TM9e+k6PR3sDTM3QmmsiTHKtVe0FEdUwmWzx8gz3SyP+m8eduGLH876a//iX2vPsPKc66ct+2o6fn8fjqa6+hq2MtAwy7sHXvJGDpIqb+eKvFQBQyQTFPKenYu+Qhlb7mWyryyUxafLXsp9IDpOohognVqGYO7r5WOuv10Ne5npK0a6TtM+kgDS00dZ4pV/KfLnkNT4aXkbHgnORvfyZKTvFDsbJVnJXHY5LNaE6yIcHu8tDXV0FG/n/7mQ/i6a0kbOERV4BBvlX4A/DhoydhI56oPkbPxcjJzV5yS2MqyknjWhC7n01OrCVYU0gRrHvh9Xmp2vEjPnj+T3PIyS9272SReukhnR941lFz8MVYun9+WiYmySq0xIIMtsXlB2XlnDN6+FrobDzDQchBvZw22vjoShxrI9DSTxiAVwNgIp15Jo9tVyr6s95BQfibFa88lK6+SrAg08VdkJ/GGyackxkoBd3W1UyAeJD28FxmeaPUF1zLw2pcZffWXoAnWvDHG0D0wTHvjIQaaD1jfv97DJA41kultojDYTpH4xq90308yLfFL2ZdzNc7CNeSuPI+CyvWssp1szacTk1y4Ag7CcOsBkle8IyIxLGbG76WnpZbuxv0Mt1UT7KklbqCe1NEmcvxtJOKmFCgFAkbosucwkFTCwez3E19xFiVrzyM7q4TsCMRekZ3E7mA+63r3RmDri5/VUtlDZ8NBBlsOhX6760kabiTT20K+6aBc/JSH5vdjpzOumO6ccxkt30T+yrcQV7SeUmfCKY+9IjuJ+rFrYfXUQumZpzwGNT1NsMIgGAhQu+dVunb9iYSmv1E5spPlMgrAYVsZO3OvJHXj37P8jEvJjkBXocLiMoZMPIGu2DqIDifrR7qansYDjBz3I91KPF4KgAKsH+kWcmh3FNCQ8lbIqCAxfynZpSsorFhBRlI6GZF+QiH5qfHUSzHJI6+D3wPzUPAhGvW1HqYAiMsqnbdtJCal8FLelZzZ/hAN+16ndOVmAOoP7SIhMYXcovJ52/ZiM+L20NpUR0/zIUY6DhPsqcM52EjyaCtZ/jYK6CJbguPzj+Kiw1FAf1I5u1IvQLIqSMxbSuGy00jLLSEtisYrFBUW0W1SCLTsJznSwSxQo0P9tNfvp7/5AJ4O6wRXwlAjGZ5mcoMdZElwfKyl2zhpseXTGVdIfepmTEY5cbmV5JatpHTJCvLi4smL6LM5ojw7kadMPvHuv4BnCFz6CZkrt9dPa0sjPU0HGG49RLCnjrhB67c7z99KrvSRO2H+QRLpdBTSl1pFV+rfYc+uIKVgGUUVq4nPKqHA7qBgyq2dOgVp8bTbcgliw6aFLqKSJlgnwASD1B/cTvuOP+JseJElw2+ylCGWAo1SyJ7sS3BUvpXy0y+lIq+YSNdmS02IY7/ka6n2GQwP9oW6AhzE21k93gpl/Uh3kiVm/Ed61MTRInm0uoqpTj2TYHo5zuxKUguXkVuyjMKMFEps0XMQNxWbTRhMrsA2ErQGUuetinRIp8RwRx0ASTnz2xVs2bu+Qv9PniHu4ffxUvl7SWjbysbRl9nl2kjuv22Z120vJH6/n46WerqbDjHcUYuvuw7HQCOJIy1k+trIM51USoCJI+a6JZPeuAL609bTk1aOM6eSlMIqsktXkJBRSFkUJVHTWZJtXVC2tLs60qFErWAgSFd7E12NBxhqPUSguxZnfx3Jo03k+FrIon+8lQGgzyTT7iigKWkltSmXYcuqICFvKZnFy8kvLmeJ00l4r343PxLjHPQmlIAfq5WiYF2kQ4o6Vgv2EO0Nh+hvPoinsxZbn9WCneFtoSDYRoV4xo/DgkbosmXR6yqiKeNcGtMrcOUsIa2oiuyS5aSkZpOyAPYdDruN/MxUekbzyO7VY7topAnWLLU1VtOw9RlstVsoH9xGOX2UA23kcCj9PKg4n9LTL6WkuJL5qSd0cnpcxVSMxPaX0BhDT1c7HfX7GGo5gL+rBmff4aN+pCcmw70mhXZHAY1Ja6hOKcWWtYSE3KVklFRRUFRBZZyD+SmRcGoFsqpgBOg6EDMJlrfHugZWZsH8Hmbl5BWx/4p7SXrqZt5y+Id0kw5ApTv2uvyMDPXTVme1Mng7DmHrPUz8cDPp3jbygh0Uip+JpX66Sac3Lp+etNV0pJbgzConKa+SrOJlpOWXk+VMmJcKkKdaYXoCr1LI8sHdkQ4lonx+P62NtfQ07me07SCmu5b4wXrS3E3kB9rIFfd4S0PQCB2STXdcITUZ53EwvRxn9hJSCqvILV1BemY26QvgIHk2ghkV0IlVqj1GE6xg0NDe3UN7/X4GWw7i66wO/XY3kutrJZ8usuXIRd3dxNHhKGAwqYiDqW/BllVBYt4yskqWk1G4hFxnwlGtVgtVeVYS9U15ZGuVyaikCdY0Dm3/Kz0v/oKCnlcoDTaTD3SRTn3q6RwuO4/CjZdRWL6c/Aj13Z+LkeQycrpjo1T7QE8HzbV76G/aj6+zmrj+OtJGG8j3t5AlQ+MHZdaPdBZdcUXjP9JxOVYrVHbpStIzsshYJD/S00nIX06wQTAdB7GvjnQ08ycYNLR2dtFetwdH40t4jZ3U7Hms3hmy4vQLMBv3MDDQQ2ZqBi/f+xXOPnwHwwM9JKVmzvv2T6WRwR5aavfR02h99xx9h0kZaSTH10wOvUe1GvSQQpejgM7k5bSkXIw9s4zEnAoyipaRU1xJVnzyokigZmK3Cf0JpaR4toB7AOJTIx3SvPH6/DQ31NBZvxd3+yHoqSVxsJ5MTyOFwTZKxcdYp12PcdJmz6cvvog9KWdAZugEV3EVuSVV5McnEP6rRkaf+NylVoK1yA+ig0FDS2c37XV7GGo5iL+rhrj+w6SONpLvb6FAeo/qmtcraXTHFdKdspGOjHLiso+0QsVnFFEaA7/d5VlJ7KvN47SulxZ1qfZg0NDSN0xDcwuFBUWUZy+MklyL+0j7JPXV7WRd5285lLCelpLryNtwGeUrN5O9ABKq42QuwdEdwNNdhyt34VeqMsEgba0NdNbsYKR5D9J1gJTBGgq89WQwwNghStAInbZsul3FHMr4O0xGBfH5y0grWkFe2XLyE5Ji4kd6OiV5WTSbbDJa9i6KMSD+QJDGlhbaa3Yw3GR9NtKGaijwNVAk3ePFDqrjlrPUZj8lMYnNRmq6NUzelbccDkNr7R6Wbpi/KobzqaejmbbqHQw178F0HCB5oJpcTz059DBx79JFOl1xRdSln01NegXO3EpSC5eTW76SzPQsFld6eeK86ZXQjtVKUbgx0uGctKFRN401e+mr34WvbR9xvQfJGjlMcaCJCvGO9xTw4KTdXkBfUim7U89HsipJKqgiu3QlWYUVlNnsnLp6jtGpMDeH9t3pZHRUExfpYMIgEDQ0tzTTVrODoea92LoOkDxYS4G3nmLpYmLZoR7JoNtVRHvGW2jNrCQ+bykZxcvJLllBRmL0jGWOlIrsRPYFiqxS7f1NME/XYztVAkFDfWc/TbV7GWjYQ7BjH8kDNeR561hCC/2mgKcvfJRPXLgwjmE1wZrG2ktvRC77EOviEyMdyklLLKiCQ9Bas4vyBZZgDfa207jnFQbrd2A6D5A6VEORr4ECGR4/ozVAEs3OMg5kvBWTuZSE/CpyylaSV7acPFdi1AxajkYV2UnUmEJO7zwQ6VDmJBA0NLS20VG9jdHGXUjXkc9GhfSNH8SN4qI9royu7M10ZFWRWLCcrLJVVJZEpjtkZvkaeAV663ZClCdYw/3dNO57lYG6NzEdoZMYvnoyGRxPjoaNi2ZHKYdTN3Mocynx+VVklqwkv3wF2UlpEam+ttDE5VVBO/g7D+FYQAlWMBCgqXYvHYe2MtqyB2fPIbJHD1MSbGZlqMQ5QJvk0hVfxp70M7HnVpFatJycslWk5pRRarMxf6VmFr6K7CRqgoWsb9+3oBKsQNBQ39ZF+6GtuBu34+jaT8pQLUW+ekqlf/w9dxNHm7OUnqzT6c6uIqFgBVmlK8koriLTlaInYaaxoiCVJ4OhlLRj34JJsIJBQ3PvMI21+xioe4Ng+34S+6vJ99ZRQStLQpevAeiy59KXtoT6zPNwFa3j/WcunL2FJljTiE9YGM2Qs5G/bBO8AIN12+DsayIdzqRMMEhnczWt+1/D3bid+K7d5I8eJM90M3Yo3EMq7a5yDqZfgslZQVLRavKWricrt5iVC7FlMQpUZCfxmCnk3IHnIRiAU9SqMxdur5/qmoN0HtqKr3kHyb37KPJUUyHt44nUCPG0xpXTlnMObTkrSClZTf7SDSRkV1AeRZ+N0mXrGTCJmMZXgU9EOhyLMXS11tG6/1VGGt7E1bWH3OGDFJp2xq7qMkASLc4yDmVeQDCrioSi1eRWrCWveClV9uh5fRei3LIVBHcIPfV7yF0f6Wgm5x4ZovHANnprtmHadpHav59Sby2lYpU5Dxqh3Z5HT1IFezIuwJG3koyyteRXriU/MS3mewqcqOX5KfzBVHBm958g4AN79F0Ry+0LUF1XT/vB1/E2bSepZw+F7moqaGFJaGzUIIm0x5XRnHM+LTlVJJesIW/JOpJzl0TV/nkhWVmQysGxNr/23VB1SWQDmsSoN8CBpg6aD23H3fgmrq69FIweoop6SkLVtgE67Pn0p1dyOOtikopXk7NkPfEFK8l2pSzYk3SaYMWIsqIC6ijA1vJmpEMBIOD30XRoB13Vr+Nv3kFy716KPTXkMkQuVqnzRlsRDckbqM5ZQ1LZaRQt30ROfrGe0QqzrGQXLfHLcPh/Bx17IX9tROPpHxrl8P436Kt9A9O2i7T+/ZT7a1gjQ+PztNoL6ctcxa7ca0kq3Uj+stNJzCmjcgH0QbfZ7RxOWE1e7xsR2X7Q76fl8G46Dr6Or2kHSb17KHJXk83A+A9ZoxTQmriCuux3kVi2kYLlZ5BbUMoKPRCaF+vL86kzeTibdkQ6FAD6Olto3vcqQ/Vv4ujcQ9bQAUoCTSwLHSwPmQQaXJXszr0cW8FaMitPo7hqIwUJKVFRwnoxKc1MpC5uGfbg01YrRYQLXfSPeKk5tI/u6tcxrTtI6dtPua+aNdLDmtA8XbYcutNXcCDvShJLN5K3/AxSsssXRHW+hSTZ5SAzK492TxF5Ta9HOhz6R30crK2js3orvuadJPXupcRTwxppZkPoMhqjkkBHchWt2VfTXbye7KWnk1y0mty4pEVReGQiTbBihN0mtCWvYtnQNjjFgyFHhwdp2Pc6fbXbkLadpA/sp9R3mDLxUYZ1XZIGRzn7My4imL+W9CWnU7JyM+XJqUeV3lXzJ1j2Fqi5HVP/EnKKEixjDB29/TTse52Bw2/g6NhJzuB+lgTr2RDqIuDBSUtcBU1ZF9NWuJ6spaeTu3QjBfFpC/pAbrT4HNZXf5+m6t0UL10z8wInyOMepmn/NnpqXse07iKtfx8l3sMUi4diwGvsNDjKOZh+LsHctaRWnEbxyjMoSc+Mymqoi1VJZgJP2FdzSddrEAzCKUpkTTBIa2MNrQdew9v4JgnduykcOUAuPaF6l9BKNm0Jy2jNupT4knXkLjuDgrIqVtmjr6V7MRIRTNHp0Ag0vHLKEixjDB19Q9QdeJOB2m1I+24yB/dTGajlNBkBIICNNmcJvTmb6S9YR0blZnKXnU52UvaCbXVYaDaWpvPK3mVc2fjqKS100TngprrmAD3V2zCt20nv30eFv4bN0j0+T489h96s5dTnX056xWlkVm4iIaOcshg5UacJVgzxlL6VrL3P0nnwVXKWnzUv2+jtbKFp36sM17+Jo2MP2cPWmc/loTOfAyTRELeUN/Pejb3IOntRUrWBKudC6l2++CyrWkVTdTZpe/9Iypn/FPb1B4OG+tZ2Wva/zkjDG8R37iJv5CBLTCN5oTNbgyTRklDF/qxrcZWcRv7yzWSUrKZiEVa9rLjgeoKHfkDT8z+jeOkPwrLO/q5Wmve/xmD9duwdu8gePEBxoIlKCVIJDJoEGuMq2Zl7JbaC9WQu3UTJ8g0sdSWwsEZlLj4iQn/emSS2PYu/aRuO0s1h34bX56e+eg/d1a8TaNpOcu8eSryHKGSQQkK9BuzFNKSeRk3uOpLLNlK04gwKcvIX9MmMxWDJsjXU1BdQuPcZEs68KezrDwQNdS1ttB7YykjDduK69pA7fIBK08iZ4ye74mh1LaEx7+20F60jp+oMMso3UBSXOF44SJ16b63K4YXtK7iKLdD8BhSfHtb1B4OG+u4h6g7tYaBuG462nWQN7mNp8DBny4A1D0KHs4SBvM3UFK4na+lmK6FKiu1CRid15CIiDwHLQ3fTgT5jzAYRKQf2AWOj5l8xxnzsZLalTl7JmVcT2PNVWv52/0knWB6vl4aavfTUbMPfvIOk3n0UuqvJpWe8sk8b2bQljp353Ehe1WYKSpexJkbOXiwkl67O57GnzuLDDb+DoU5IzjnhdQ25vdRX76O3bgfu5l3E9xygyH2QMtqoCCXavZJOW/Jy9uS8jcSy0ylYcSYpeZUsj5EuJHnFlWxLPo91TQ/QXPsxipasnPWyfp+Xptp9dNZsw9e0g8TefRSOHiKXHtJC87STSVvCUlozL8ZVsoHcZZspLF+hrQ5RrOiMq/A88W26/voLit5/4gmWMYbOri6aDr7BYMNO6NhHxsB+Kvy1LJNRlmG1XDY6y6nNfCs1+etIW7KJkhXaayBavWNdAU//8TT+seEPMNAKqSee8g65fdTVHqCrehv+FqsbV5G7hkppH7+u44Ck0J5UxaHsc0ko3Uj+ijNIyl9B+SI82bXQnb8sh6/JJvzixLHzoZNKsEa9AWqaWmg9tJ3hpl04uveTO3yIFRymIjReyo+dNlcF3ZkXMliykdyqM0gqWU++K1nHWR5DjDEzzzWbFYl8F+g3xnw9lGA9ZYyZU9+XTZs2ma1bt4YlHjW5l755BevdrxO4+VVS82YugDs0PExr7W4GGnfjb9uPvfcQGcOHKQo0Ex86s+UzdpocJXQlVxHIWUNy+UaKV5xBerZ+3RaSr//icf697kZG17yP5Hf/eNquBsYYuvsHaWs4SG/jfjxt+3H1HCB7pJayYCOJ4hmft8OWS3fKCgJ560gpP438lWfiSi9atNfsmK2Ww/tJ+uVFDEsSXWd9iaXnXENicjoAoyPD9LTV09/RwGBrNYHOgyT015AxWk9hoIU4CQDgNzYa7aV0Jy/Dl7uGpNKNFC7fTHbe/F/fS4WX2xfg2f9+F28L/g3+6QVcBdMn3X5/gNbWpvELp0vnfpIHDlHgOUwBXePzjRV/GchYjRRuIGvpZgqXbcQeFz/fT0mF0S13PcH/tNyAd/V7SXjPndPOa4yhZ2CYptp99DXuxte+H1dvNZmj9ZQEm0idUFyg1V5Ib8pygnlrSS3fSP7yzcRlFMf8/nkh+cIjOzh755e5yvkqtptfguzp+yT0D3upa2qgs34vI60HsXcfIGOohrJAPUVyZN/hFhddCUtxZ68hoew0cqrOIK5gNThc8/2UFhQR2WaM2XTc9HAkWCIiQANwkTHmkCZY0Wvf7jco+fU7GLSl0rrieuIK1mBE8A334h7ogv4m4oaaSRppJsPXRq7pwRZqdQgaoc2WS1d8OZ70pTjzV5JZeToFyzbgdC38UvaxrrFnhD/d/k98mCepybqAkbK3EXClMur14x/shKF2GGwnebSJXF8LBXSNfzbAumZJR8IS3BlVOApWk1m+nvzK9dgS0qbZamw7+MZfSPrtRyky7QCMGBd2grgmlKkF6yRGi72AnvgyRtMqicurImvJaRRVbSRuEVxGQlmef3076596Jzabnfol78XkrMRvhIB7CH9/G2aoA9dIKxnuRvIDrSSLe3xZLw6aHaX0JVcSzFlJcslaCpadTmpexSkb06Xmz6H2Qbb8+BN8VJ6gLvNcBiveji8+A+/IEP6RPvz9bTiHmklyt5LlayefLpyhEzEA3ZJFd0I57vRKHHkryFq6idzKjcgivrB1rGjpG+XDtz/Bg8FbiHM6aap8L6MZyxnxC57hPvwD7QQHO0gYaSHL10KJaSNlQpLtw0GHq4zB1GVI7koyKtaTXbEBW0aZ7jtmYb4TrPOB741tIJRg7QEOAgPAl40xf51i2ZuAmwBKS0tPr6+vP+l41PS2/e0PpD37BZYG6457LGCEDsmmJy6f0cQiTFopzrwqUkvWkL9kDYlJKac+YHXK7G7qZdcDX+btQ4+RLsNHPRY0Qr8tle64QkYSSwhkVBCXu5S0oiryy9fgSNFhzSfC5/Ox52+/ZaRuK3Z3D0GxY4tPxZZWSHxGEVlFS8ktXY4jTs8axoItL75A2rP/yvrgvqNOYIB1TbduWza9rmI8qWXYsitJKVhGTtkq0gqXIlFYwluFzxt1Xez79df4u6EnyZW+ox4LGqHHlkFf6Lc7kFaCK38FmWVrySlfrSe6FrkDbYPc9chTXNvxfTbLgeP2HW7i6HXkMphYgje1DGfOUjKKqsgqXYk9awlo988TdsIJloj8GSbtWvnvxpgnQvP8BKg2xnw3dN8FJBtjukXkdOBxYLUxZmC6bWkL1qkTDBqa6w4y0H4YuxgcSRlkZuWQnlOCTQtOxLy+YTddjQcw3lES4+yk5xSQmJ6nB3BKnQLGGFo7OhnuOIzTDq74JDLySohP0oNkBZ39I/S1HEQ8AyQlp5KUmklKRi7i1G6fsa532Et3dzuBvhZSnIbk1HRSsgoRV4p2+5wn89aCJSIOoBk43RjTNMU8W4BbjDHTZk+aYCmllFJKKaUWgqkSrHB0rnwbsH9iciUiOSJiD91eAiwDasOwLaWUUkoppZSKWuHodPle4IFjpp0PfF1EfEAQ+JgxpicM21JKKaWUUkqpqHXSCZYx5sZJpv0G+M3JrlsppZRSSimlFpKwXQcrHESkE4i2MoLZMOGiImqx0/c7duh7HVv0/Y4d+l7HDn2vY0s0vt9lxpicYydGVYIVjURk62SD19TipO937ND3Orbo+x079L2OHfpex5aF9H7rFcSUUkoppZRSKkw0wVJKKaWUUkqpMNEEa2Z3RToAdUrp+x079L2OLfp+xw59r2OHvtexZcG83zoGSymllFJKKaXCRFuwlFJKKaWUUipMNMFSSimllFJKqTDRBGsaInKZiBwQkWoR+WKk41HhIyIlIvK8iOwVkT0i8unQ9EwR+ZOIHAr9z4h0rCo8RMQuIm+KyFOh+xUi8mro+/2QiMRFOkYVHiKSLiKPiMh+EdknImfrd3txEpHPhvbhu0XkARGJ1+/24iEi/ysiHSKye8K0Sb/LYrk99L7vFJHTIhe5mqsp3utvh/bjO0XkMRFJn/DYv4Xe6wMicmlEgp6GJlhTEBE78CPg7cAq4H0isiqyUakw8gOfM8asAs4CPhF6f78IPGuMWQY8G7qvFodPA/sm3P8f4DZjzFKgF/jHiESl5sMPgN8bY1YA67Hed/1uLzIiUgR8CthkjFkD2IH3ot/txeQe4LJjpk31XX47sCz0dxPwk1MUowqPezj+vf4TsMYYsw44CPwbQOh47b3A6tAyPw4dt0cNTbCmdgZQbYypNcZ4gQeBqyIckwoTY0yrMeaN0O1BrAOwIqz3+Jeh2X4JXB2RAFVYiUgx8E7g56H7AlwEPBKaRd/rRUJE0oDzgbsBjDFeY0wf+t1erBxAgog4gESgFf1uLxrGmBeAnmMmT/Vdvgr4P2N5BUgXkYJTEqg6aZO918aYPxpj/KG7rwDFodtXAQ8aYzzGmMNANdZxe9TQBGtqRUDjhPtNoWlqkRGRcmAj8CqQZ4xpDT3UBuRFKi4VVt8HvgAEQ/ezgL4JO279fi8eFUAn8ItQl9Cfi0gS+t1edIwxzcB3gAasxKof2IZ+txe7qb7Lety2uH0Y+F3odtS/15pgqZgmIsnAb4DPGGMGJj5mrGsY6HUMFjgRuRzoMMZsi3Qs6pRwAKcBPzHGbASGOaY7oH63F4fQ2JursJLqQiCJ47sYqUVMv8uxQUT+HWtox/2RjmW2NMGaWjNQMuF+cWiaWiRExImVXN1vjHk0NLl9rEtB6H9HpOJTYXMOcKWI1GF19b0Ia4xOeqhbEej3ezFpApqMMa+G7j+ClXDpd3vxeRtw2BjTaYzxAY9ifd/1u724TfVd1uO2RUhEbgQuB95vjly8N+rfa02wpvY6sCxUjSgOazDdkxGOSYVJaAzO3cA+Y8z3Jjz0JHBD6PYNwBOnOjYVXsaYfzPGFBtjyrG+x88ZY94PPA+8OzSbvteLhDGmDWgUkeWhSRcDe9Hv9mLUAJwlIomhffrYe63f7cVtqu/yk8D1oWqCZwH9E7oSqgVIRC7D6t5/pTFmZMJDTwLvFRGXiFRgFTZ5LRIxTkWOJIPqWCLyDqyxG3bgf40x34hsRCpcRORc4K/ALo6My/kS1jish4FSoB641hhz7ABbtUCJyAXALcaYy0VkCVaLVibwJvABY4wnguGpMBGRDVgFTeKAWuBDWCcU9bu9yIjI14DrsLoPvQl8BGsshn63FwEReQC4AMgG2oGvAo8zyXc5lGTfgdVNdAT4kDFmawTCVidgivf63wAX0B2a7RVjzMdC8/871rgsP9Ywj98du85I0gRLKaWUUkoppcJEuwgqpZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJhogqWUUkoppZRSYaIJllJKKaWUUkqFiSZYSimllFJKKRUmmmAppVSUEJFyETEi4oh0LIudiNwoIi9GOo5oIyLniciBSMehlFILmSZYSimlFjQRuVVEfCIyNOHvC5GOayEyxvzVGLM83OsVkQ0isk1ERkL/N4R7G0opFS00wVJKqTDRlqeIesgYkzzh71uRDiicFvJnS0TigCeA+4AM4JfAE6HpSim16GiCpZRSJ0FE6kTkX0VkJzAsIg4ROUtEXhKRPhHZISIXTJh/i4j8t4i8JiIDIvKEiGROse4Picg+ERkUkVoR+adjHr9KRLaH1lMjIpeFpqeJyN0i0ioizSLynyJin+F5VIrIcyLSLSJdInK/iKRPeKxHRE4L3S8Ukc6x5yUiV4rIntDz3SIiK495fW4RkZ0i0i8iD4lI/Nxf6bkTkS+GXpdBEdkrItdMMZ+IyG0i0hF6LXeJyJrQYy4R+Y6INIhIu4jcKSIJs9z+PaH5/xSK4S8iUjbh8R+ISGNom9tE5LwJj90qIo+IyH0iMgDcKCJniMjLode5VUTumJikhLqXflxEDoW29x+h9+6l0DYenimpEZELRKRpNs9vDi4AHMD3jTEeY8ztgAAXhXk7SikVFTTBUkqpk/c+4J1AOpAHPA38J5AJ3AL8RkRyJsx/PfBhoADwA7dPsd4O4HIgFfgQcNuEJOcM4P+Az4e2ez5QF1runtB6lwIbgUuAj8zwHAT4b6AQWAmUALcCGGNqgH8F7hORROAXwC+NMVtEpAp4APgMkAM8A/z2mAP5a4HLgApgHXDjpAGInBtKHqb6O3eG53CsGuA8IA34Wij+gknmuwTr9asKzXst0B167Juh6RuwXs8i4CtziOH9wH8A2cB24P4Jj70eWm8m8Cvg18ckn1cBj2C9v/cDAeCzoXWdDVwMfPyY7V0KnA6cBXwBuAv4ANb7uQbrs3rCQonyVO/Pj6dYbDWw0xhjJkzbGZqulFKLjiZYSil18m43xjQaY0axDmafMcY8Y4wJGmP+BGwF3jFh/nuNMbuNMcPA/wOunayFyRjztDGmxlj+AvwRK2EA+Efgf40xfwptp9kYs19E8kLb+owxZtgY0wHcBrx3uidgjKkOrctjjOkEvge8dcLjPwOqgVexEsN/Dz10HfB0aFkf8B0gAXjLMa9PizGmB/gtVlIxWQwvGmPSp/mbrijFtccc7BcaY34d2m7QGPMQcAg4Y5JlfUAKsAIQY8w+Y0yriAhwE/BZY0yPMWYQ+K+ZXstjPG2MecEY48F6zc4WkZLQ873PGNNtjPEbY74LuICJ459eNsY8Hop/1BizzRjzSmj+OuCnTHiPQr5ljBkwxuwBdgN/NMbUGmP6gd9hJdwnzBizbpr359hkb0wy0H/MtH6s11wppRadBdunWymlokjjhNtlwHtE5IoJ05zA81PMXx96PPvYlYrI24GvYrWg2IBEYFfo4RKs1qJjlYXW12rlBxBatnGSeSduKw/4AVYClxJapveY2X4GPAncFEoYwGrxqh+bwRgTFJFGrJaeMW0Tbo+Elgm3h40xH5g4QUSuB/4FKA9NSmaS19kY85yI3AH8CCgTkUexWh7jsV7zbRNeSwGm7W55jPHX3RgzJCI9WM+/UURuwUqUCwGD1VKZPdmyoedThZX4bgrF5QC2HbO99gm3Rye5nz+H2MNlCOu5TZQKDEYgFqWUmnfagqWUUidvYtenRqwWqoln9pOMMd+cME/JhNulWC0oXRNXKCIu4DdYLUJ5xph0rIRq7Ei/EaicJJZGwANkT9h+qjFmpu5Y/xV6HmuNMalYLXFHsgqRZOD7wN3ArXJk3FgLVlI3Np+Enl/zDNs7jlglwoem+Ttv5rWMr6sMKyH8JJAVev12T3xOExljbjfGnA6swkpoP4/1nowCqye8lmnGmOQ5PK3x9zr0GmYCLaHn8gWs7ogZofj6j4lv4ucK4CfAfmBZ6D360lTPZ76INdZuqvfnzikW2wOskwlZKlZX0T3zH7FSSp16mmAppVR43QdcISKXiohdROJDhQOKJ8zzARFZFRrP9HXgEWNM4Jj1xGF1GesE/KHWrEsmPH438CERuVhEbCJSJCIrjDGtWF0JvysiqaHHKkXk2K5kx0rBamnoF5EirARjoh8AW40xH8EaYzZ2MP0w8M5QHE7gc1gJ3kszvVDHCpUIT57m769zWF0SVoLSCVbBEKwxSMcRkc0icmYo/mHADQSNMUGsJO02EckNzVskIpdOWNbIhCImk3hHaGxZHNZYrFeMMY1Yr7c/FJ9DRL7C8a08x0oBBoAhEVkB3DzD/GFnjFk9zfvzsSkW24I1fuxTYhUN+WRo+nOnJGillDrFNMFSSqkwCh08X4XVutCJ1aL0eY7e396LVYiiDasb2qcmWc9gaPrDWF31/gGre97Y468RKnyB1fLxF460JF2PlaDtDS37CNa4qel8DTgttK6ngUfHHhCRq7CKVIwd0P8LcJqIvN8YcwCrteuHWC0+VwBXGGO8M2xvXhlj9gLfBV7G6ia3FvjbFLOnYiVSvVjdHbuBb4ce+1essWeviFXN78+ExkmFxlINcqTb5mR+hdXNswer+MRYN8Y/AL8HDoa26WaGbpxY3Rb/IbTNnwEPzTB/VAh9Fq7G+lz2YRV4uTrSnxGllJovcnRRH6WUUvNJRLYA9xljfh7pWNTJEZEPYHUf/LcpHr8HaDLGfPmUBqaUUiqitMiFUkopdQKMMfdFOgallFLRR7sIKqVUjBDrordzKU6gFiER+dIUn4PfRTo2pZRaDLSLoFJKKaWUUkqFibZgKaWUUkoppVSYRNUYrOzsbFNeXh7pMJRSSimllFJqWtu2besyxuQcOz2qEqzy8nK2bt0a6TCUUkoppZRSaloiUj/ZdO0iqJRSSimllFJhogmWUkoppZRSSoWJJlhKKTWNtrZm/vrsk2jFVaWUUkrNRlSNwZqMz+ejqakJt9sd6VAiJmgMI6MeElxO7HZ7pMNZMOLj4ykuLsbpdEY6FLWA7b7vX3nb0G953XcHmy/7YKTDUUoppVSUi/oEq6mpiZSUFMrLyxGRSIcTEb19fWSMHMYtDuILVkQ6nAXBGEN3dzdNTU1UVFREOhy1gMUNtwCQ+uZdoAmWUkoppWYQ9V0E3W43WVlZMZtcAdi9AwDEm1ECPm+Eo1kYRISsrKyYaPkc9vjZ1dQf6TAWpWDQkBXoAqDSvRv3QFeEI1JKKaVUtIv6BAuI6eQKwAQD47e9I32RC2SBiZXPzbcfe4W8n62j476PRjqURWdg1EuJdFDvXIJDgtS/+WykQ1JKKbWAvXSghWd/8VUCejy3qC2IBCvWifHjw4nf2DCeoUiHo6JMS80OcqWP3OqHoa8h0uEsKr097aTKKF2lb8dvbAzWvBLpkJRSSi1grzz8bS6u/z4Nj38t0qGoeaQJ1iyICJ/73OfG73/nO9/h1ltvPWXbt5kgRuy4bYk4/SNHPfbKK69w5plnsmHDBlauXDke15YtW3jppZdOaruXXXYZ6enpXH755Se1HjV/jDEkjrYduV+tLSzhNNTTAUBCbgWH7eUkdGyPbEBKKaUWLLcvwAW+FwBIqH8uwtGo+aQJ1iy4XC4effRRurrCO/7CGEMwGJxxPhtBgmIj6EjAiQ8T8I8/dsMNN3DXXXexfft2du/ezbXXXguEJ8H6/Oc/z7333ntS61Dzq2fYS46xPpfDxsXoob9EOKLFxesZBSAuPomutDWUuvcf1WVXKaWUmq3uYS8ZDAKQ76mDoY7IBqTmTdRXEZzoa7/dw96WgbCuc1VhKl+9YvW08zgcDm666SZuu+02vvGNbxz1WGdnJx/72MdoaLC6Zn3/+9/nnHPO4dZbbyU5OZlbbrkFgDVr1vDUU08BcOmll3LmmWeybds2nnnmGe644w5+97vfISJ8+ctf5rrrrmPLli3ceuutZGdns2v7NjauX8vP7v4F+MDrHsaVlAZAR0cHBQUFANjtdlatWkVdXR133nkndrud++67jx/+8IesWLFiyjhramqorq6mq6uLL3zhC3z0o9ZYnosvvpgtW7ZM+9r8+te/5mtf+xp2u520tDReeOEF3G43N998M1u3bsXhcPC9732PCy+8kHvuuYfHH3+c4eFhDh06xC233ILX6+Xee+/F5XLxzDPPkJmZyc9+9jPuuusuvF4vS5cu5d577yUxMfGo7Z511lncfffdrF5tvXcXXHAB3/nOd9i0adO08S423cNeCqUbjy2Rl3wrOatlR6RDWlSCXivBsjkT8BecRkrvk3Q37COrfE2EI1NKKbXQ9Ax5KZQR6hxLKPfX0nfwb6Sfdk2kw1LzQFuwZukTn/gE999/P/39R1dr+/SnP81nP/tZXn/9dX7zm9/wkY98ZMZ1HTp0iI9//OPs2bOHrVu3sn37dnbs2MGf//xnPv/5z9Pa2grAm2++yfe//312Pv8Yh+ubeP0N6+A54BkeX9dnP/tZli9fzjXXXMNPf/pT3G435eXlfOxjH+Ozn/0s27dv57zzzps2zp07d/Lcc8/x8ssv8/Wvf52WlpZZvy5f//rX+cMf/sCOHTt48sknAfjRj36EiLBr1y4eeOABbrjhhvFqfrt37+bRRx/l9ddf59///d9JTEzkzTff5Oyzz+b//u//APj7v/97Xn/9dXbs2MHKlSu5++67j9vuddddx8MPPwxAa2srra2tMZdcAXh8QQqkB29SAfuoIHnwMOg4vbAZS7DscQmkLj0LgI79f4tkSEoppRaonmEPqYwwUPAWvMZOz8GT62mkoteCasGaqaVpPqWmpnL99ddz++23k5CQMD79z3/+M3v37h2/PzAwwNDQ9Ae4ZWVlnHWWdbD24osv8r73vQ+73U5eXh5vfetbef3110lNTeWMM86gqKgI09LF2jWraG5uxrs8B3yj4+v6yle+wvvf/37++Mc/8qtf/YoHHnhg0lan6eK86qqrSEhIICEhgQsvvJDXXnuNq6++elavyznnnMONN97Itddey9///d+PP6d//ud/BmDFihWUlZVx8OBBAC688EJSUlJISUkhLS2NK664AoC1a9eyc+dOwErCvvzlL9PX18fQ0BCXXnrpcdu99tprueSSS/ja177Gww8/zLvf/e5ZxbvYuP0BMmWAQEIWg6xEBg2074HSMyMd2qIQDH3X7K54yis2Mmri8DTtjHBUSimlFqKBgX6cEiC3oJSa+iIS2ndHOiQ1TxZUghVpn/nMZzjttNP40Ic+ND4tGAzyyiuvEB8ff9S8DofjqPFVE6/HlJSUNKvtuVwujAliE4Pd7iAQCOCzuXAGjr62U2VlJTfffDMf/ehHycnJobu7+7h1TRUnHF/OfC7lze+8805effVVnn76aU4//XS2bds243MaY7PZxu/bbDb8fmts2Y033sjjjz/O+vXrueeeeyZNGIuKisjKymLnzp089NBD3HnnnbOOeTHx+IKk4gVnIpK+HgbBtO5ANMEKi4DX+q454hJJS45nv60EV8+BCEellFJqIfIO9wCQmJrJLmcFpw/ui3BEar5oF8E5yMzM5Nprrz2qy9oll1zCD3/4w/H727dvB6C8vJw33ngDgDfeeIPDhw9Pus7zzjuPhx56iEAgQGdnJy+88AJnnHHG+OMmEBpQH0p6AvZ4nHjHB9o//fTTGGMAq+uh3W4nPT2dlJQUBgcHZ4wT4IknnsDtdtPd3c2WLVvYvHnzrF+TmpoazjzzTL7+9a+Tk5NDY2Mj5513Hvfffz8ABw8epKGhgeXLl896nYODgxQUFODz+cbXM5nrrruOb33rW/T397Nu3bpZr38x8fgDxOMFZzwFpZX0mGTcjW9GOqxFw/itBMvpslqtu5MqyRmtiWRIEffMz7/GX795FV6ff+aZF6ntb7zKQEdTpMOImI4BN9UdgzPPuEgFg4Yd+w4Q8IzMPLNSE41aw0wcyRkMpS8j098Bo32RjUnNC02w5uhzn/vcUdUEb7/9drZu3cq6detYtWrVeEvKu971Lnp6eli9ejV33HEHVVVVk67vmmuuYd26daxfv56LLrqIb33rW+Tn548/bsxYK1ioVcmZgACB0NiQe++9l+XLl7NhwwY++MEPcv/992O327niiit47LHH2LBhA3/961+njBNg3bp1XHjhhZx11ln8v//3/ygsLASs5O8973kPzz77LMXFxfzhD38ArG6JY+OtPv/5z7N27VrWrFnDW97yFtavX8/HP/5xgsEga9eu5brrruOee+45quVqJv/xH//BmWeeyTnnnMOKFSvGpz/55JN85StfGb//7ne/mwcffHC8cmIscvuCxONFnAmsKEhjT7Acf7MWuggXE+oiOJZg+bNWkG16cA+Et6LoQuEPBHlH0/c4z72FmmePHxsZC7Yd7mDDk5dgu/OsSIcSMS/9+Cbif7SB7rpdkQ4lIh57dT/rHzqDhp+/P9KhqAXGhBIsZ2IG9nyrWNJIs3YTXIxkrPXjhFcgUgL8H5AHGOAuY8wPRORW4KNAZ2jWLxljnpluXZs2bTJbt249atq+fftYuXLlScW4kPk8Izi7DzCUUERyRi4jw0Mk9h/CnVRMfFrOSa//2GqHi81i//w8+kYT5z5xDgmr34H/nT/g0f++nuvjnsf55Vaw6fmTk/XC/d/k/EP/zein9pOQWcCrf3yIM1+6icNX/JqK0y+JdHinXHX7AAU/XkqSeNiddQlr/vnXkQ7plHvy8Qe5cvs/ATD68TdIyK2McESnVv+Ij/5vrqTU1sm+ihtYecPtkQ7plHvgjv/H+7pCz/vLneCIi2xAasH4zYM/5137P4f5yHO80Cq89ekLaXrLNyi+5JORDk2dIBHZZow5rspaOI7A/MDnjDGrgLOAT4jIqtBjtxljNoT+pk2u1ORM0EqARay3yulKIGgg6HNPt5iKER6/1YJli0sgIymO9rhSnEE3DDRHOrTFwT92HSyrBStryQYABhpi88x9e/0BksQDQHZvbBb7cDa9Mn67dUfsXdi7pnOQTLG6Bya2vhrhaCIjdeDg+G1P3WsRjEQtNHaPdakhSUinqHQZAyYBT0ts/p4sdidd5MIY0wq0hm4Pisg+oOhk16ss410EQ2OwnA47HnEi/vAkWLfeemtY1qMiw+0L4MJLMM66Tpg3vRJ6gK6DkF4S2eAWA7+VTNhDr29JWSUDJhHTvne6pRatQLc1/uyNhLdw2uhLBIe6sCVnRziqU0vcvQyTgDGG0frpi/osRj2drSSLmxHiKXYfBO8IxCXOvOAiEu/tpZ9k0hii/dBrlC49N9IhqQVCvKEq064UStOS2GVKyO3eH9mg1LwIax8iESkHNgJjp7U+KSI7ReR/RSQjnNuKFWMJlkzo7uUTF/agJ1IhqSji9flwiR9HnNXCEpdvjVkzXQenW0zNkgTcBI2A3QmAy+mg3l5KUn9svr6eYavlwldoFeLpOhx74/3iPH2MONKptlWQ2B17Z54DXbUA7Eu/ADtBPO2x9V3wBYIkB/vpTqqk06Ti0aJCag7GCifhiCfOYaMtrpS0kfrIBqXmRdgSLBFJBn4DfMYYMwD8BKgENmC1cH13iuVuEpGtIrK1s7Nzslli2pExckfeKmN34TS+CQUwVKzye6ydtS2UYOUVlNBvEvG06hmxcBC/G484x1uQAfoSK8hxx+YPonfUSrDSl40lWLHXTdDl78fjTKUruYq80Vo4yXHMC40JdT8OVl4IQHtNbCXZXUMeMhnEkZzLQakgsVf3tWr2JNQrAod1yZyRlCWkBnq1kuAiFJYES0ScWMnV/caYRwGMMe3GmICxsoCfAWdMtqwx5i5jzCZjzKacnJMv2rDojLdgTbg2lTMeEfB7dRxWrAt6rTLBdpd1bbXK3GSqTRHedr1WUzjYAh48HD2A/f+zd99hclZl48e/Z/ps772XbJLNbhJSACEQOkgJSAm+Uv0pryh2xfKKIr6+KmCjKIoIFqQISBFBaihCgPReNsn23sv0mfP745ndbDbbd3ZnZ+Z8ritXdqc8z71Tn/s597mPK6mEBNmDpy/yOgl6HFp5S27pUgakGVdz5B1cRnv7cJsScCeWEIUdX29TsEOaU167NockfeHH8Egd/fWR1QGtz+EhUfThi0qiK6qQZEcN+NTJTmWSPE58HK2KECkl2sVtB4MZlTILZpxgCW1V2oeAvVLKXwy7PHPYzS4DIutTOECk/4N7sMkFgN7obxnttAclJmX+GGzXP3g2rDg1hkO+LAxdVUGMKnzoPE7cIxIsU7rWlbLlcOSN3nidWoIVFRNPnS4HS3dkvc5cHh9x9OM2xWNK19b266jdHeSo5pbHn2BlZ+VQSwa6jsgqEbQ53STSh7Qm40oowSKdqqmQMmnC68DN0aqI6Eztc6SrTi04HG4CMYJ1CnAtcKYQYpv/38eBO4UQO4UQO4AzgK8GYF9B8+yzzyKEYN++sc/YVldXs2TJkoDtc//+/Zx/4TqWnXM1y05YwU033QTA7n37+dfr7w6t0TMdn/70p0lLSwtovMrc87n9C136k+7sBCs1IpsoZxs4eoIYWXjQ+Zy4xbEJVlJBBQDdtRF4zsg1oP1vjKLdWkCKozqo4cw1u8tLoujHY04kMa8cgO4IS7BwamWiekssjcY84vsPBzmgueXq70AvJESlDCXZfQ3q4FiZHJ3XiWfYd0p6wUK8UtCvXkNhZ8YJlpTyXSmlkFJWDm/JLqW8VkpZ4b/8En+3wZD12GOPceqpp/LYY4+Ner3H45nxPrxe7zG/f+lLX+ILn7+Jba8+zo7t2/jiF78IwK6dO3nhjfeGOpxNxw033MDLL788o3iV4JPuoxNmAXQ6wUCcf12e9sgaXZgNep8T14gEK7eoDLs04W6JvPI4vceOU5hBp8ceX0yKrx3p6A12WHPG5nIRzwA+SwK5+SUMSDPuCCuTFK5+XBhBb6Q3ppg0dz14XMEOa854/aXBuugkEvO0FWk6Iy3JVqZN53Xh1h39TilMT6JOpuFT39dhZ8Zt2ufUS9+G5gB3bcqogAt+Ou5N+vv7effdd3nzzTe5+OKL+eEPfwjAhg0buO2220hMTGTfvn288soreDwePvWpT7FlyxbKy8v585//TFRUFK+//jrf+MY38Hg8rFq1it/+9reYzWYKCgpYv349r776KrfeeitXX3310H6bmprIzsgAtBLBiooKXC4XP/jBD7AN9PPeh1v57vd/yEUXXcQXv/hFdu3ahdvt5vbbb2fdunU88sgj/OMf/6Cnp4eGhgauueYafvCDHwBw2mmnUV1dPe7f/dZbb/HlL3/Zv3/B22+/TUxMDLfeeisvvfQSQgi+973vsX79ejZs2MAPfvADEhIS2LlzJ1dddRUVFRX8+te/xm638+yzz1JcXMwLL7zA//7v/+JyuUhOTubRRx8lPT39mP1effXVXHvttVx44YWAlgxedNFFXHHFFZN/XiOEHCwR9I9gAehSS2EArVV7zorgBBYm9F4nHt2xCVac1cx+XTbmrsirmTd47TiFFTOgS10ITdBTt4eE0pOCHdqccPR1oRMSaUkkJdbMXpGFsftQsMOaUwaPDacuChPgSS5F3+3D23EIfXr4Lug+nNuulckarXHk5hbSJ604m9WcV2Vy9L5jR7ASo03s1mVR1HskiFEpsyGgbdrD1XPPPcf555/PggULSE5OZvPmo2ufbNmyhV//+tccOKDVoe/fv5/Pf/7z7N27l7i4OH7zm9/gcDi44YYbeOKJJ9i5cycej4ff/va3Q9tITk5my5YtxyRXAF/96le58NIrueCaW/j1PffQ3d2NyWTijjvu4BPrLmLrq4+z/qqr+PGPf8yZZ57Jhx9+yJtvvsk3v/lNBga0Up4PP/yQp59+mh07dvD3v/+dTZs2Tfrvvvvuu7n//vvZtm0b77zzDlarlWeeeYZt27axfft2XnvtNb75zW/S1KQNTm7fvp0HHniAvXv38pe//IUDBw7w4Ycf8pnPfIZ7770XgFNPPZWNGzeydetWrr76au68887j9rt+/XqefPJJAFwuF6+//vpQsqWM4Dl2DhZAXGYpLqnH06q+9GfK4HMd82U4qN1SQLI98r4QjV4bLp32WovJ9Z+9r4mcVuWuAa3sVlhiEULQZs4nIcJaLJu8Azh12rpXlkwtqeqKoNeAx6l9txqtMWQnRVFNJkY151WZJL3PiXfESbvuqHySnLWqWUqYCa0RrAlGmmbLY489NjSSc/XVV/PYY4+xYoU2MrB69WoKCwuHbpubm8spp5wCwDXXXMM999zDOeecQ2FhIQsWLADg+uuv5/777+crX/kKoCUUo7nxxhs5dVUl77zyPM9ueIc//OEhtm/3t8TVGdAh8XqcvPLKKzz//PPcfffdADgcDmprawE455xzSE5OBuATn/gE7777LitXrpzU333KKafwta99jU996lN84hOfICcnh3fffZdPfvKT6PV60tPTOf300/noo4+Ii4tj1apVZGZqvU2Ki4s599xzAaioqODNN98EoL6+nvXr19PU1ITL5TrmsRt0wQUX8OUvfxmn08nLL7/MaaedhtVqPe52CjC4psawEazC9HhqZAYZjXuIDVJY4UIvXceNYAE4EkpIa3oT6exDmCPnUTb6HHj8r7WMfG3ugKM5ckbynP7RC4M5BgBbXDGpbRsiarFds8+Gy6j9rUn+Ernehv1EynLTXn8nTbM1Br1O0GLKI2sgMhceV6ZO73Pj05uPucydUITF5oS+JojPDlJkSqCpEawJdHZ28sYbb/CZz3yGgoIC7rrrLp588smh9amio6OPub0Ytl7OaL+PZuQ2hsvMSOfTV1/Ks88+i8FgYNcubWK90OkBcDvtSCl5+umn2bZtG9u2baO2tpZFixZNO55B3/72t/nDH/6A3W7nlFNOGbfBB4DZfPRDQ6fTDf2u0+mG5qh98Ytf5JZbbmHnzp387ne/w+E4vtW8xWJh7dq1/Pvf/+aJJ54YMwFVQIyYgwVQlBLDYZkJHZFVujQb9D43PmE87nJdmragc1dtZB1YmX123Hp/Q5XkeBpIhc7IeZ0NlocZrFqCpfO3WLa1RE6SafbZcBu076y8zDRaZQKetsgZwfH6l8YwR2knVgZiC0n2th5tAKMo4zBIF17dsQmWMa0UgP7GyJrPGe5UgjWBp556imuvvZaamhqqq6upq6ujsLCQd955Z9Tb19bW8v777wPwt7/9jVNPPZWysjKqq6upqtK+hP7yl79w+umnT7jvl19+GbfLhZTQ0tJCR0cH2dnZxMbGMmDTSsN8LgfnnXce995771DSt3Xr0ZXlX331VTo7O4fmQQ2Ork3GoUOHqKio4Fvf+harVq1i3759rFmzhieeeAKv10tbWxtvv/02q1ePusTZqHp6esjO1s7Q/OlPfxrzduvXr+fhhx/mnXfe4fzzz5/09iON8B6fYBWmRnNYZhLVXwM+7xj3VCZDL934dMcnWHG5Wge59urIKY0CMEsHXoM2emHQ62g25BDTXx3coObQ4DpgRouWYERnaV3k2qsjp8mBVdrx+F8DqTFmasjE3BM55bI+f4mgyeo/MZo8uI5R5CSZyvQZpQuffsS83hzt+6RLNUsJKyrBmsBjjz3GZZdddsxll19++ZjdBMvKyrj//vtZtGgRXV1d3HzzzVgsFh5++GGuvPJKKioq0Ol0fO5zn5tw36+88gqrTzuHZees5/zzz+euu+4iIyODM844g/3797P0nKv5+1NPcdttt+F2u6msrKS8vJzbbrttaBurV6/m8ssvp7Kykssvv3yoPPCTn/wkJ598Mvv37ycnJ4eHHnoIgAceeIAHHngAgF/96lcsWbKEyspKjEYjF1xwAZdddhmVlZUsXbqUM888kzvvvJMMfyOOybj99tu58sorWbFiBSkpR4tKNm3axGc+85mh388991zeeustzj77bEym40u0FI1usETQcPSMWIzZQIc5F710Q3dkzQ8JNIP0HFfOAZBVtBiP1OFsipzWul6fxDIswQLojc4n1VUP/pM74c7t0EYvjBZtBCslV6sUGGiOjLWgvD5JlLTjNWp/vxCCLksu8fbaIEc2d6R/aQxh0hIsa4ZW+t9Vr0YflPF5vD7MuJEjvlOy8wqxSTOOCPkciRShNQcrCAbnDg33pS99aejntWvXDv1cUFAwZhndWWeddczI0qDxOvn94he/4I5vfwmrpwd91tKhy5OSkvjoo4+wN+4FIbBarfzud78bdRs5OTk8++yzx10+VoI4PPEbbEwx0l133cVdd911zGVr16495rHYsGHDqNetW7eOdevWHbfNlStX8oc//GHod6PRSGdn56j7V44SXn975GEjWADuhBLoQGvVnlQ094GFCYN0I0cZwcpIjOMIGRg6Iqc0zO72EoUDr/FoguVNLMba68Db24Q+PiuI0c0Nr78MzOwfvcjL0krkZIS0WHa4vUQLB13+BAvAFltIQvsr4OgFS1wQo5sjrmPXHkzJ08qFexv2kxqsmJSQ4PInWCNP2uUmxVAlM7B0RdaacuFOjWDNd1IiGX3elFdnwiAjZ/0R5XhHE6xjR/lM/rOqMoISgNlgwI3UH59gCSFoMeUTPxA5X4g2l4co4UQOS7BM/rkDHTWRMRdN+svDzFFaghFlMlCvy8LSWx3EqOaOzaUl2RiPzhvWpWjr7rnaIuSzZmhxd+19kJ+ZTotMwBspf78ybS6PDzOu40awTAYdLaYcYgYip9Q2EqgEa54T+MZMsKTBghEvPu/oixzfcMMN3HfffbMZnhJkOp8/wRrxgZ2RkU23jMah1meZESNu5ChdBAH64opJ8zREzCKrDpcPK85jDq4T/CVyPQ2RUSrp849eWKOPjtR0W/NIctQFK6Q5ZXd5seIC09HXQFSmNg+tM0Iavug8dtwYwH/iJSnaRJ3IxKzWMVIm4PT4MAs30nB82Xl/dAHJ7uaI+T6JBCGRYMkIqe8f1TgjWDqjVhbmdtrnMqKQEQmvGzGUYB2bBBSlaZ0E3S2qpnsmjNJz3GM7JGUBBnw4IqSDnM3lJhoHwnz04DorrwSnNOKKkMdAurURLP2wluzOuAISZDc4eoIU1dyxOxwYhRed6eiyECm5ZfikYKAxMj5rdB47TnG0JHtwHlqCPTKSbGX6tBEs93El/QC+pGL0+PB1qkQ9XMz7BMtisdDR0RERB8ujGzvB0pu0N6nXpRKskaSUdHR0YLEc/0EWTgw+F15hAN2xb+XilBgOyywM3ZHTQjvQpJQY8SDHSLCisrU1gFqP7JjLsILGbrehF3Jocj9AWnwUtaSj74qQ15nb/1k7rEzSkKqVSfY1hP9oscPeBxybYBZkJNNIMr4ImYem99hxiWNHIBxxhcT7uiMiyVamz+nxYsJ9TFOqQeYMbSS4qy4yRoIjwbxvcpGTk0N9fT1tbW3BDiUoXD0tCHwYe47PhaWU0NOGS2/DHNsRhOjmN4vFQk5OTrDDmDUerw+DdOPRmdGPuC470UotmUQ53gZnP5hjRt2GMja3x4cJD8IweoKVVlgJwEBDZHwhum3awbVu2GtJCEGbKZd8W4R0kXPbcWHApD/61RmdVQY7oaN2D7HFk1+yIhS5bNoIns58NMFKiDKxT2SSHSElcnqvA7f+2BN3uuQSaAVHy0Es+SuDFJky3zn9I1hilBGsxLzF8D701u0hecVlo9xbCTXzPsEyGo0UFhYGO4yg2fF/N2OSThb+z/ujXl/zwytwRRex6Bv/nOPIlGBzenyYGH2dJr1O0B9bCDagowqyls15fKHO5XFjEvK4+W2D8jJSaJAp0Bb+IxcArsFFdi3HLow+EJNPWtdH2pprupGpfnjRu204MTM85U7P17rI2SKgHNftb/JhMB/7Guiy5rHE8ZbWrn8Ki9mHIqPPjnvEAXJ0dhns1ZLsbJVgKWNwur1YhBthPD7BKsjOok3G42kL/8+RSDHvSwQjnV66Rj2AHtRhySfBptY6ikRO/wiLb4wmDCRppUt0REbpTqC5HFo5mDCM/v6zGPXUG3KJ6YuMToJux2CCFXvM5b6kYox4cHWE/+eQzmvHqTv24Cg3LZlGmYxoD/8ySZddS7CMlqhjLnfGFRIj+8EW/pUURp8Dj956zGVpeQv989Ai42SLMj1ul7ZupW6UEsG0WDPVZGFWZf1hQyVY85zB58Y71gE04IgvIsvbiNfjnsOolPnA6fFiEu7jVoUfFJNVgk8K1T54mtwuJwBijBEsgO6oIlKdteDzzVVYQeP1J1hG67Hlphb/3IH2COgip82/OTbBMhl0NOqzsfaHf4LpcQwmWMe+BkRKCQDOCBjFM/sc+EYkWIPz0GSHOjhWxuZ2+hMs0/EjWEIIOix5JNrD/3MkUsx6giWEOF8IsV8IUSWE+PZs7y/cGKRr7BEKQJ+6AJPw0FIT/l9syrEcbq1EcKw24nnpWgmbrWn0xa+V8Q0lWMaxEyxPUikWnPi6wv9L0ev0J1gjDq6T8rRW7X314d+q3eBz4NYd/3roicojxVmrlciFscGFlo0jykRjsyKjVbuUEpN04jUcm2BFmQw0RtB6aMr0DDYk0xuto15vjysi1tcLts65DEuZJbOaYAkh9MD9wAXAYuCTQojFs7nPcGOQ7nETrLjccgDaanbOVUjKPOH0eDHjRo4yYRagODWawzITGSHdvQLN4/8y1I3R5ALAlKklFx01u+YkpmDy+kcvzMPWgALIzcmnT1rxRMBIqcF7fHkYgDu+kBg5gAzzEjmPf0mQwYWWB6XlLcAt9Qw0hfeJPqfHhxUHcpQD5J6oPJKddWGfZCvT5/GvozfaCBaASNHK+p0t6qRoOJjtEazVQJWU8rCU0gU8Dqyb5X2GFaN0j9kmGiCruAIAW6N6Q0Yap1ubgzXWOk1FqdpaWJbew+pLfxpcTv8I1ij18oOS87X3X09t+CdY0j96YRoxgpUQbaZOZGLsDv8uciafA4/++IOjwVbt3fXh/Tk8uNCyyXzsHKyCtATqZCp0hvfJHLvLi1W4kMao465zxQ/OQ1OjD8rovP45WPoxEqyYbK1hTleYjwRHitlOsLKB4avv1fsvGyKEuEkIsUkIsSlSW7GPx8D4CVZ8cjqdxKHvCP+zx8qxHG4vZuEes8tdvNVIqykHk9cGfc1zHF3o87gHvwzHTrDyc3Nol3F4WyNgcrt/kV2d5fiW/+3mXOLt4d+q3SSdx82/AYjN9pfI1YV3meRgkq0bkWDFmA006LOJ6gvvUlmb20sUTsQoCdZgkt3bEN5JtjJ9RxOs0UsE0/MW4pJ6dcI8TAS9yYWU8vdSypVSypWpqanBDmfeMU0wggXQbMojpr96bgJS5o3BLoKMU8Lmii/WflAJ+JR5/HOwDOM8vknRJqpFNpbu8D5zD4BLm4PFKAeX9thCUr0t4HHOcVBzyywd+AzH//2Z+QvxSoGzObxL5OQoCy0P6rXmkeSsC+uGL3aXBwtOMEUfd128f/ShQ40+KGPw+U/aGcdIsArS4qiRGer7OkzMdoLVAOQO+z3Hf5kyCVJKjIw9QjFoIKaQDHettvCwEjEG18Ear4TNkLZA+0G1ap8yr3v8cg7wd36yFpJsPxL2ZZjCPydttINLkVKCDom9JXwPDHw+qTU0MRx/cJSVHEc9aYjOMG/Z79ZKBBllDpIzvhCLdEJf0xwHNXdsDgcm4UVvOj7BzMgvwyN12MM8yVamb7DJhcE8eoIVazHSoM8mui/8y60jwWwnWB8BpUKIQiGECbgaeH6W9xk2PD7pH6EYP8GSyaUk0UtHmyoDiyQOt9e/Kvw4c4SyCrBLE87mCChhCzCP2wWAYZwuggCOhBJt7kV/61yEFTQ6jw0P+lHn/EUNtmqvCd+z93a3FytOGOXg2qDX0WLIJjrMKwmEZ+wRLEOq1qrdFsafNU6bNoqrMx9/kiEnRUuydeGeZCvTJt3aCL9xnJN23VEFJDkbwOuZq7CUWTKrCZaU0gPcAvwb2As8KaXcPZv7DCcutwej8I7ZxGBQVJbWyazpkOokGEkGR7B0o6wKP6goNY4jMhNHGB/0zJbBESzDOF+GAPo0rTSovyG8P9r0ngEcwgJCHHddSr72GdTfGL5n720uf4I1Rovlvug8Ul31YT2SKdx2f5J9/OLbsYMT9MN4HprLriVYenPkJtnK9EnPxFURnkRt4Xa6w3s+YySY9TlYUsp/SSkXSCmLpZQ/nu39hROnQztbON4IBUBq4RIA+hrC94tNOZ620LAH3TgjLEX+Vu26LrUA5lR5B+dgTTCCFZ+rvf+6wrxV+2iL7A7Ky86kTcbhaw/fEkG7XSsPG63BAYAnoQgrDny94VtJoPc4cInR3w+ZecU4pBFHc/i+Blz20RdaHtQbnU9KmCfZyvRJ/0k7MUqZ8SBjulbW36+O50Je0JtcKGNz+dccGW+hU4C03FJc0oCvTY1SRJLBhYbHG8HKTYqimkyiBxrA45rD6EKf118iOF45B0BOfjF90oqzKby/EA1eO07d6AcGUSYDDbpsLL3hO3fAYe8DRi8PAzCmaV3kwrmToMFrG/M1kJ8cS7XMQIRxq3a3Q3sNjFxoeZA3oTDsk2xlBgabAI1z0jwhV1sqtrsufMutI4VKsOYxt2vwbMf4CZbQG2kyZGPtUbXfkcTp8WLCg36cBNyo19EbXYAOL3SF78HvbPD5yzmM5vETrNykKA7LLAyd4XvmHsDks+PWjTN3wJJLkiN8W7U7/KMXo5WHwdEuct1hnGAZvXZcYyRYVpOeZkMW0f3hW9rkcWpNPozW0UewzP7Rh/ba8C4XVqZnsEQQwzgnRbNz6JQxuFrUCfNQpxKseczt1N6M441QDOqOyifFGb4HN8rxnG4fZtzoJ3h9+JK0yeeEcfnWbBickGwyj3+Cw6DX0WLOI34gvE9wGH123PrRkwsAR3whib4ucPbNYVRzx+0fwdKbRz+4zipYgEvqcbaG7/tMew2MXd7UG5VPkqsxbCfoex1akm0eI8FKyNXmIob7gtPKNHknHsHSTthlY1Rl/SFPJVjz2FQSLHdiCVm+Zvpt9tkOS5knXC4nRuFFjNLVbDhrpnZm3dcWvg0IZoP0d0wzjlESNtxAbDGJ3g5w9Mx2WEFj8TnwjDN3QJ+ilcj1helCq4PzbwyW0d9v6fHR1JGOvit8E22Lz45nnATLl1SEEQ+yp24Oo5o7Xqf2GjCNkWBl55XglAZcYbxcgTJ9YqhEcOxjOqNeR6splzhb9dwEpcwalWDNY+7BNRNM459BBzCll2EUXhoOq9KESOFzjd0yebicjDQaZRL2hvBuwhBwg10Ex5hvMZzwdxJ0NodvedhYi+wOivGXyLWH6UKr7glGL3Q6Qasxl9iB6jmMam6ZpAPvOK8Bq79df7h2EpT+BEs3ylpwAKnxUdSHeZKtTJ+YxAgWgC2ukHhvV1ifsIsEKsGax1zOybWJBkjMKwfCv5OZcpTXobUMHqtt9KCi1BgO+nLwtYbnQc9sEW5/AjvOqM2g+Dytk2Db4fBcKkFKiYXxD66zCrXyqIHG8Jw74PKXCJqssWPepje2iDR3A3jdcxXWnJFSYpUOvIaxTzgk52kT9LvCNMn2DS60PEbVgBDCXy6s5rsqx9N5ndoyBzr9+LfzVwO4W1TVSShTCdY85vZ3ETSaJj7AyyhZpt2nKTy/2JTj+Vz+L/sJRrCKUqI5IHOw9hwCn3cOIgsPOq8dD7pR1/wZKbdoIU5pwBama2E5PT6icCDHea3lpCXTIFOgIzzLo7z+BgeWqLETDF/KQox4wnIelsPtI0qMP4pZkF+gddQM1wNDp/+klmn0UUyAvphi0jwNRzvGKYqf8Dpxi/HXNQWIy9FOmLerE+YhTSVY85jHNfkRLKM1lkaRjqUrPM8eK8cbOps6wQhWUrSJBmMeBp9TLV44BTqPAyfmURfWHSk/NZ5qMhEd4XlgaXd5icIJY5RGAeh1gkZjPrG94Tk52+MvEbREjT2CFZ2tHRi1HtoxJzHNJbt78DUwdoKVHGOmWmRj7gq/BBNA7544wfKmLMSAD1dreH4WKNOn8zjxTCLByixapJ2wq1cJVihTCdY8NrjQqWmCNtGD2qxFpNhV7XekkM7BcpXx5wgJIXAnaXMjaA3PBgSzQee142TiL0PQJia3mPKI6w/P0iC704VFuCccLe2NLSbDXRuWI6XC2QuA3ho/5m0yipfik4L+MDwwsrk82ijmOMmFEII2axHJYfo9pHP34xBm0BvGvI01WyuT7DgSfkm2MjM6nxOPbuLvlOL0BA7LLESbKusPZSrBmse8/jUTTOaJSwQB7IkLyPE2DK2fpYQ5z+RGsACsWdqZdanmYU2a3uvAKSZuMDPIFldCiqcZ3OHXydNu0+YfiQmSeV/qIsy4sYdjF7XB9vPmsUewCjJTqCcVwnDR9wGbA7PwjNngYZA9YQEJvm7kQPscRTZ3jJ4BnGL8kwwp+eV4pWCgPjzLhZXp03snl2BZjHoajPnE94Xvot2RQCVY85jXPwfLZJlcgqVLX4xReGk6HH5nT5XjiaEughO/PvKzM2iQydgb1Ry9ydJ7nbh1k0+wdGll6PHR3xh+o4S2fm30xjBGB71B0Tlas4/WQ9tnPaa5pnP34UOMWx5mMuhoNOQRE4YHRvaByb0GDBnaCE5Pbfg1fDF5bTj14yeY+RnJ1Mh0RFv4fQ4oM2P22XBP8PoZ1BdXSrKnJWzXFYwEKsGaz1z+tsBRcZO6eUJ+JQCdR8Lv4EY5nm5oBGviD+yy9FiqfNl4W1SCNVkGnwOXmFx5LhztJNh6OPxKgxz93QAYo8YujwNIL14KQH99+B1cG9z92ETUhHPyemOLSXfVht1iu7YBrWW0YZwuigAJBRVAeH4Pmb0DuMZZbBsgzmKkVp8blkm2MjMWnx3POE1ihpOp2rIX7jBe+iPcqQRrPnNpE2r1lvG/0AZll1TikTrcTao0IRIIz+RHsBakx6hOglNk8DrwTGEEK6u4QisNagi/JNbV3wWAKTpx3NvlZaRSJ1PD8uy9wd2PY4LyMABfShkmPDjbwqvZh2NAO5M+1jpgg/LzS+mV1rDsaGvxDeAxjv/3A3RFF5PsrAePaw6iUkKB1yexYh93mYPhYnMHT1Rsm8WolNmkEqx5TOfWRrAmamIwKDo6hnpdJubO8Kv/V46n9/rn2k3QeAAgIcpEi7lAdRKcAoPPiVc/+RGsnNREGkhD1x5+3cPcA90AWGKTxr2dUa+jwZhPXG/4zcEyeQdwTKK8J2qwTPJweI3gDL4GzBMk2enxFg6TiznMOtr6fBKrnNwBsi+lDANefO1qFEvR2N1eonHgm0TFCUBW4ULs0sRAGDbMiRQzSrCEEHcJIfYJIXYIIf4hhEjwX14ghLALIbb5/z0QkGgjjM5jw4lxUuvwDGq1FJFsC88OTsqxjiZYk5uj50lWnQSnwuRzTCnB0hYZzSe2P/zefx6bNoIVFTv+wTVocwfS3fVht9iuyTsw4fwb0DoJAvTVhdeBkXegEwBLXPK4t9M6CRZq30NSzkVoc8Lu9hKDHd84c/AGxfiT7I7q8EqylemzuTxEi8knWMXp8VTJLHTt4XWiIpLMdATrVWCJlLISOAB8Z9h1h6SUy/z/PjfD/UQkvXsAO5M/wAMYSFhAprcJ32ALbyUsebw+zHKwRHByNd1R/jV6fKqT4KSYpBOfYXLJ6yBbXDEZnnpkmCUXPrs2/8Y6wQgWAKnaYrsDzeE1kmf1Tq48LD8zlXqZEnZlkj57NzDxKCaALaGUWF8vDLTNclRzp9+pHSCP16Z+UEZxJT4p6FELxSp+dpc2gjVek5zhLEY9DaZCEtRcvpA1owRLSvmKlHJwJu9GIGfmISmDDB4bDjG1Azx9+iJ0QtJeE36TzJWjHB4fFlzaHCHd5N7GBf5OgmrxwskxSScYpnaCQ6QtxISHzrrwOrjGvwaULiphwpvG5mnNdpoPbp3NiOaUlBKLtOEzTjwf1mzQU2/IJybMyiSFo1v73zrxKKYxQzuZ0xtGnQS7bC5isY+7Dtqg0uwUamQasjX85qEp02NzerQEa5xlHkbqjyshwdsO9q5ZjEyZLYGcg/Vp4KVhvxcKIbYKId4SQqwZ605CiJuEEJuEEJva2sLnbFcgGLw2nLqpJVhx+Vp5SmeY1f8rx7I5PViZ2hyhsvRYDvpy1AjWJPh8EgtO5CRHBwfFFywDoLVqyyxEFTzC2YMH3aRGS3NKtcV2wymR73d6iME26YOj3rgF/k6C4TOSKRzaKCbWhAlvm1SofQ+1h9EE/a7ePszCjWESXX2jTAbqjIXE9YbXKK4yffaBPnRCojNPrkQQgNRFAGHZMCYSTJhgCSFeE0LsGuXfumG3+R/AAzzqv6gJyJNSLge+BvxNCDHqp5KU8vdSypVSypWpqakz/4vCiMFjwz1BS9iRcovLcUoDTtVJMKz1OjzEiMl3JAIo9XcSjOo9rDoJTsDu9mLBhTBObQQrt+wEvFLgqA+vVu0GVy8DInrCFuUAWSlJ1JKBvj18Evlum5tY7Oisk1syQ6YtwoQHe3P4zJ/Qu3pwYALDxJ01iwqK6JIxuBvDJ8m2dWsngE2xaZO6fW9cKSnuxrBceFyZuoG+bgBMk1x2ByAu399JsDq8vk8ixYQJlpTybCnlklH+PQcghLgBuAj4lJTajFYppVNK2eH/eTNwCFgwa39FmDJ6p55gJcdFUy1yMHeEz8GNcrxeh5sEBvBaEiZ9nyiTgfaoIq2TYFf1rMUWDgZs/ZiFB2me/JchQFJ8HDUiG2NHeJUIGtx92HWTmzug0wmaLIUk9oVPiVx3TzdRwokuOmVSt4/N00ZwWqq2zWJUc8vo6sGmm9wIXmqchSqRjyWMOtrau1sBsCZMLsGSaYvR48PZpL6LFbD1ayPA5piESd8nt6CMfmnBFobrCkaCmXYRPB+4FbhESmkbdnmqEELv/7kIKAXCr7XWLDP77PimWKIE0G4tJEl1EgxrPXY38WIAOYUEC8CXoi1eiJobMC5Hr9YxjSk+vgCt1mJSBsInuQAwe/px6CeXYAEMxJeR7m1EOvtnMaq5M9DVAoAhbnIH19klFXikjoG68CnVNrp7sRsmd8JBCEF7VDFpjsPg881yZHPD06clWFGTTLDi/Ul2uJULK9PjGNDmsVqjJ3/SrigthoMyB317eJ2wixQznYN1HxALvDqiHftpwA4hxDbgKeBzUsrOGe4r4likHd8USsAG2RPLSPO1DXX+UsJPr91NPAPooiaecD5cTI42+dzTrBKs8dh62gEwxkzt8QVwJC8iw9eCx9Yd4KiCJ8rTjcs48eT+QbqMJeiQdIVJsx1nj5ZgmeMnd3Cdm5pEDRnowujAyOLpw22c/MGhO3kRVmnH1xUe6+75BjoAME0yyc4pKccpjdjCrFxYmR6XTTsei4qZ/Oeo2aCn2VxAQn94LVoeKWbaRbBESpk7sh27lPJpKWW5/7ITpJQvBCbcyOHx+rAyuZawIxkztYPoNtXoImz1OjwkiH70U0ywirLTqfWlqpKDCTj6tPNBpphJtCUfwZSprYETLl30pJQk+LpwWSc/RzaxcBkAbYfC4zFw+xOs6MSMSd1eK5MsCpsySa9PEuvrxWOe/OeNOVubP9JxODxeAwxoJ12IGn8dsEH5qfFUkY0hjJJsZfp8/nXk9NFT+07pjy8lztcN/aoJXKgJZBdBJYD6HW5isYF56glWkv/gpuPwtsAGpcwbvTYXcQxgjJncl/2gsvRY9stcCLM1egLN2aedrbbETu3xBUgpOQGAziPhcWDZa3OTSg/e6PRJ36egpBy7NOEKkyYH3n7t4HqyCRaALX4Bad7msCiT7La5SBddeKbwGkgrWQ5AT014nOjTOzrxIWASbeoB9DpBi6WYpP7wSLKVmRH2wQR9cvM4B+nSFgPgUo3LQo5KsOap/t5uzMKDb4pvRoCC4jIGpBm3KgMLW/aBPszCgyF6aiNYhSnRVJFLdN9h8LhmKbrQ5x7Q1h2JTpj6+y+/qIw+acUbJl+IHZ1tmIUbXezkD64TY60c0eVi7gyPRF7YtIMjwyQ7yAHoM/1lkrWhn2R2dPeSKPohdvIJZmluBjW+NGRz6P/9AEZnFwO6WNDpJ30fW8ICEn2dYFMzJCKd0eF/DUyyUc6ghAJtXcH2I+FxoiKSqARrnhrobAZAHzP11vWxVjPVujwsXeHTwUk5lqvf/2E9ybOpg0wGHT0xxeilFzpVXfdYfDYtwYpJmPr7z2w0UG0oJLo7PJKL3vYGAEzxkz+4BmiLKiHNVjUbIc0530AbTkxgmvyc2MTBA6MwKJPsbKkFwJKUPen7xJgN1BgKiA2TtaCinG0MGKc2om3I0soku6u3zUJESigxOTqxiahJLXMwXH5+ET0yCkdDeJywiyQqwZqn+ru0BMuaOPmzxsN1RheRaledBMOV3V/CNp0udzJNW7wQteDw2OzdAJinMQcLoCumlCznYdBWrghp/f4EKyo5a0r3cyYtJEH24O1tmY2w5pTV1kS3IXVS64ANKihZgl2acIZBmeRAez0AMSm5U7pfT1wpqa56cDtmI6w54/R4SfG2Yo+a2nsgeahcP/STbGVmrO4u+vUJU75ffkoMVTIXY5hUA0QSlWDNU/buqU2qHsmVtJAk2Y27tzWQYSnzhM/fMniq5QYAsdmL8UqBO0xK2GaFo5t+oqZUDjScL62cGGz0tx4JcGBzz9ahHVynZEzt4HqwyUFr1eaAxzTXEt3N9FmndnCd5C+TNIXBmmiOLi3Jjk+b2mvAl1aOHh+ultA+mdPU7SBbtOONy5nS/YoKi+mSMbga1WdtpLN6unBOoUnMIKNeR7OlkMSB8DhhF0lUgjVPefyJUUJK5rTub8nWOgm2hkF5inI8s61J+yFu8iU7g4oyk6mWGdhUycGYDI4O+nSTb6c7UnSuVh7WfDD0kws6tSTRmlo0pbulFmvNPrqrQ3vuQK/DTZZsxRUztYNrgA5rESlhsCahr0srETQmTu0xiPG/D9pDfC2oprZ2EkU/xqT8Kd0vOdbCYZGPtSv0k2xl+nodbhJ8PXitUz8hCmBPWECMrw/6mgMcmTKbVII1T/kGtJac1oTplQimFC0DoKtarcERbrw+SazTX3YVN7Wz6gAlaTEckDno2kL7rPJsinO20GOafEODkbIWaMlFf21oJxcAlr4a2nUpYLRO6X5FBQW0yXi8zaGdyDe1tZMiehGJBVO+ryNpIcmyE29/R+ADm0OWnsP06OKnPOczp3gJTmlkoC60v4d6mrQkOTq9cMr37Ygp0RZcVqMPEaux206q6EbETO94zpChdRK0NYR+uXEkUQnWPCVsbdiwTPmgZlB+fjHdMhqv6iQYdjoGnGTQgd2UPOUJswAFydEcJJfogdqQnxsxWxK9bTis0yvPBchKT6NepqFvDf33X4Kzni7L1EdvLEY9NYYCYnpCu8lBR53WZtuaWjDl+5qz/GuihfAIjpSSJEctXZa8Kd+3KF1bC0rfHtonc5wtWsOohKzSKd/Xk1xGlLTjDZMFl5Wpa2lrI0X0YkiZeoIOkFCwFIDOI9sCGJUy21SCNU9FDTTQYZj+AZ7FZKDWkE90iB/cKMer6bCRJTpwx0x99Aq0ToJd0cXo8EG7en2M5HS7SZWd0358AYQQNFqKQ36hWYfbS7a3EXtswbTu3x1TSqbzCPi8gQ1sDvX613EaXNdpKlKLtfuEcplk54CLPNmIM6F4yvc16nU0mopCfi0o2bIHH2JoJGEqrDlamWRrCCfZysz0NWrdVGMySqZ1/8L8fDpkLM7G0D9hF0lUgjVPpbga6I2a+lnj4bqji8lwHFGlCWHmSNsA2aIdQ8L0Xx8ydaH2g+okeJzmhjpMwoshYerz24brTygjw1uPdNsDFNncO3S4imTRizF90bTu70tbhBkXjpbQbdcuWnbhxkBU5tQfg8JCrZLAE8INZapra0gVPejTyqZ1/4GEMhK8nTAQumWScb0H6DBmTqlN/6D0wQWXQzjJVmbG1a6VmMZmTn0EFCA3MYoqcjF3qROioUQlWPPQgMNNlmzBHTe1CbUjeVIWEsMAjs66AEWmzAc1rV0UiGYsWVM/mzooLmsRLqnH26LOiI3U2qAlA7FpM3v/6TOXYMBH25GdgQgrKNoOfABA0oITp3X/wSYHzSHcSTChbz/NpnwwmKZ833CoJGjd+x4AqWUfm9b99Zlaw6WB+tBMMLptLgo8R+iPn16CWZSTSb1MgTAoF1amqUtLsHRJ0ysR1OkE7dYikm1qLl8oUQnWPNRYfwSrcKFLnlrXrpEsWf5OgodDe4KxcixH014MwocuffoJVlFGAodlFnY1afY49gbtQCiloGJG20nyr4HTfih0kwtP3Wa8CNJKV07r/lmly/FKwUBtaH4GtffaWOTZT2/S9F8LXTGlZIRwkwNv3Ud40RFfvGpa908s1EZwOkK0o+3uAwcp0jVD7upp3d9i1FNnLCQ2hJNsZWZiu/fTpU8Ba8K0t2FPKMMqbdBTH7jAlFmlEqx5qPmg9kWUlLdkRttJytMOwPsa9884JmX+8A6WG6WXT3sbqpPg2ETbPpwYiZ/GhPbh8ksrcEgjrobQHMGSUpLS/iH1phKEOXZa28hNT6GWjJB9ne3c9DZxwkbsorOmvQ1vyiJisGHvqA1gZHPD65Nkd2+i0VIyrfI4gMKCIjpkLK7G0HwfNG57DYCspWdPexu9caWku+vA4wpUWEqIGHB6KHIdoDN++t/XAEZ/iXJ/fWi+jyKRSrDmIVftJgAyF02vLGdQdm4hNmnG0xa68x+UYzV22yl07sGtt0Ly9CbMAhSnxnBIZmG1NapOgiNE9RykyZCL0BtmtJ24KAtHdPlYOkNzDZzaxmaWePfRm33atLeh1wkazUUk9ofm2XvbnlcAyFl2zrS3EZWrjX41HQi9kcwdB6uplPux5Z857W1kJVipIg9zZ2ie6Iut38CALgZz7gnT30jaYgx4sTWF5meBMn07quoo1jWhy556k5zh4nO0BKu7PjTfR5FoRgmWEOJ2IUSDEGKb/9/Hh133HSFElRBivxDivJmHGjliOnbQqM9GHzX1Vb+Hi7WaqBcZmLpDf6FLRbOppouTdXtwZK4GvXHa27Ga9PRF5SKQ0K3aBw9yub3kOqvojV8QkO11RBeTaj8SkG3NtYPvPIlB+Eg94ZIZbac/fgFpniZwDQQosrnh8vgobX+NI9Yl6OKnt+A7QJa/yUFfbeideW54/0n0QpJ94iemvQ0hBO1RJaTaD4HPF8DoZt+h5k5Odm+kMf0MmMEJl9j8ZQC0qE6CEadl+78BSK84Y0bbyc7Oo19acLaqE+ahIhAjWL+UUi7z//sXgBBiMXA1UA6cD/xGCKEPwL7CXs+AnTLnTtoTlwVkex3mXOLtqslFuPho+04W6BqIKpvZhzUASf45fp2hmQDMhsMHd5MmuiF3ZqPHg9xJpSTLTtwDXQHZ3lyRUpJ08Cla9BlklE9/BAtAl7EEHZKe2tCa7/fhf15jATW4F08/uQDIycqiWSaFXJMDh9tLdvUzNBlziSmc3vyjoW0lL8Iinciu0Pqs2fXqX4gXNlI/9qkZbSe3pBKX1GML8QWXlakzHXkdm4giqviUGW0nNzmaGpmOLsTeQ5FstkoE1wGPSymdUsojQBUws0/oCLHj/VdIEANEV3x84htPgi22gDRvM3g9AdmeEjwDTg+xVc8DoF88s1EFAHOaNsdIdh6a8bbCRcuuNwBIK18bkO2ZMrSyjpbDodVB7aONb3OCdwdtpetBN7OviYRCbZHMtkOhc/ZeSol8714GsFJ89mdmtC2dTtBgKiQ+xNZEe/eNF1nOPuyV14MQM9qWJVubTxxK64H12l2UHHqEVmM2CeUzK8LJSYmjmmwMIb7gsjI1B+pbOcX1Lk3pp8+o4gS0ZikthiyiB0JvLmekCkSCdYsQYocQ4o9CiMGatmxg+LBJvf+y4wghbhJCbBJCbGprawtAOKHNt+MpHJgoWHVRYDaYXIwBL/Y2VSYY6v61o54reI2+lGWQPPVFP0dKT8ugV0Zhb1YlB4OMR96kS8STUbwsINtLzNfm33TXhM7ojcfjRbz+Q/qIYsGFX5nx9vJLyrFJM84Qavbx5usvscb5NjXFn0JvjZ/x9vrjS8l014bMia4Bu5OsjbfTLRIoPPfmGW8vrWgZPinorg6dToL/fuxeyjmM65SvzfgkgxCCZkshSQPqszaS7Hz5IeKFjZTTZnaSZlBfVB6JrqaQ+RyJdBN+agghXhNC7Brl3zrgt0AxsAxoAn4+1QCklL+XUq6UUq5MTU2d6t3DSl1jMyf0vMqB5DPRRyUEZJvWDG3tjrbq0CpPUY7lcHs5+NrDFOmaiT79ywHZZkFqDNUyHZdqggJA34CNJbYPqU1ZM+MDqkG5hWU4pBF3c+icuX7nqXtZ5dlMfcUXMcUmzXh7qbFWDotczB2h8Ri0dnZS9O7XaNelsPDy2wKyTZFWjhk3nXWh0eTgjT/9iMXyEJ1rfogwx8x4ewtyM6iVacjm0FhweduevZxT83Pqo5eQc9qNAdnmQEIZqd5WcPQEZHvK/HawvpUT6/5AfdQi4mfQhXQ4T0IhRjzQq1q1h4IJjyKklGdLKZeM8u85KWWLlNIrpfQBD3K0DLAByB22mRz/Zco4Dj77Y2KFnezzvx6wbSblLQSgX7VqD2m/+9dGPut4mN6kCnTl6wKyzcIUraZb310dkO2Fuj0b/k6csGGpvCxg24yNslCry8bSFRrlYTs2v8fqvf/HfstSFl56a0C2KcTgIpnzf+6Aw+XmwO9vpIAmXBfdhy5AJ7ri87UFl1tCYC2oDS8/xflNv6Eq4VSKzrg+INuMjzJSrc8numf+vw+a2zvR/f16LMJN0qceAl1gpo/r/Mtq9NaoeVjhzunxUvXoV8gR7cRd8pMZl9gOMqZolSsDTfP/faTMvIvg8NZKlwGDdTDPA1cLIcxCiEKgFPhwJvsKd7s+fIPTWv7K9qTzSC4N3HS1nOw8+qQVT4eaZxOqXvxoH2s330KCzk7cVQ8E7As/O8FKLRlE2RvA6w7INkOZccdfaReJlJ4cmAR2ULulkCR7dUC3ORt2bNtE5vOfxK6LJuvTf5lxm/rhnEkLSJRd+Po7ArbNQLM5HGy853pOdWxgz+KvkXXCBQHbdvaCZXilwFE/vw+u3/z3P1jx/i00G3PI/+xfA3ZgCNAbW0KKqx48zoBtM9Dqm1up+e0nWOI7QNvZ9xCVtTBg244r0OYidhzZFrBtKvOP0+3hld9+nQvsL3Ko9EbiFgagIZVfXI5WkdRVHxoj4ZFupnUwdwohdgohdgBnAF8FkFLuBp4E9gAvA1+QUnpnuK+w1VB9kMR//TcduiRKb/htQLcdYzHSIDIw9lQHdLvK7JNS8sQrb5P3wnrKdTX4Ln8YMma2+PRwBr2O/qg89NILPZHdabKu+hBLHR9xJOdSdIaZTUYeyZ5QQrqvBensD+h2A+mjDS+Q+49LMegkvmufJTYtP6DbN2dqi563zdNmH40tLey5++Os7X+RnUWfYfGV3w/o9pMT4qkTGRg75mclgdvr49mH7+Tk9z5LrzGF5P9+AWP0zJYJGcmXUoYeH57W+bkm2s49u7H97hxWeLdTt+Zn5J76yYBuP7+wjD5pxdUYOvMxlalpbG3jPz9fz8UdD3Mg4yKKr747oNvPzC7ALk2qVXuImNEpSinlteNc92PgxzPZfiTYv30jMf+4ljj66P7E34mKSw74PjotORTYVZOLULL9UB37n/kJF/U/BQYjnsv/iqU8MJ0lh/MlFkIz0Hn4aNv2CHToX78kGyg6+78Dvm1D2kJogvaa3aQuCEz790BxOJ1sfPjbrGl6mCZ9FtE3Pk1a7qKA7ye5aClsgo7qHaRXTn/R2kCTUvLe689R8O43WSo72Lf6x1RceEvA9yOEoMVSRM48bHLQ2NxI1Z9u4VL76xyJW0HuZx/HEJcW8P1E5ZTDYf9rIKsi4NufLrfHy5tP/YYT9/4EvZA0fvzP5K++OOD7yUywsoMcYjvnZ4KpTF9rZwe7n/s1ldUPczp9HFx0Mwuu+r+AzeUdlJccQ41Mx6Q6/4aEwNWAKFPisA+w+fH/44Tq32MTUXRe9iT5FWtmZV+26HzSOt7TOs8EsOxHCaxeu5P/vP0a3m2Ps8b2GkuFjdrMc8hd/3NEYmBHFAaZ00qgGWTnEQJXDBRa2tvbOaHlaXYnnEZFfuCTi7j8JbBdO7CcTwnWlnf+Sdyb/8NaXzXbUj7Owht/gyUmsKMWgwqLyuiXFtzN86fZTl1dNYce/xZrB16mUZdFy7qnWbg0cOU8Iw3ELyCj5T2ky4YwRc3afibL5fby/j/upWL33XyMAfaUfZ7FV/9vwEqQR8oorMD7lqCvdifpH5uVXUzZls0f4n7pO5zr2cRh62JSr32YvOzAlQUOJ4SgzVpIvu2jWdm+Mrf6ervZ/d6LeHe/wNLeNzlDONgXvQLvJf9L6cLZeYFbTXqaDVks7Fet2kOBOtqeYz093ex48QGKDvyRU2hhR+wpFFz3e/LTcmZtnyKpAEOHF2dnLebUyB2lmG9cbi9VB3fTuOsdDNUbKB/4gAtEDy4M1Gacg/H8r5JXOLsH5KkZudi2m5HNB4me1T3NX7te+BVrhY2kcwLT1GGk7KJy3FKPs3F+JBfVh/bS+sy3WT2wgRaRyp4197PsrGtmdZ8xFiN79LmYu4M/Obuzq4ttT9/J6rqHOQUXuwquY9Enf4LeMvNueePRZZSjb5G0V+8kJYiJts/rY+Nrfyfxgzs53VfFQctiXJffy+IFK2d1v8VZKVTLDER78OePHKmu5sizP2JN1z9wCjMHln6bBetunbXkcpAjoYSE5lfA1glRM+/QqcwNn09SV3uI1r3v4a79iJj2bZS59nKScDOAhQMpZ5N2+mdYWDl7J2gG9VpzSR7YDD7vrL9elZlRCdYc8Ho87N34ErbNj1PW+SZrxABVxgXsOf0uKk8N7IT60ZjTS+EgtNXsJUclWHNO+rx0NNfQdHgP3Q0H8LRVEdN7kCLnPhaLXhYDfURTm3Qy9ooLyT1xHSXRgS8VHU1BqlZykN5aFZEJVl9/P4tr/so+6wksXHLqrOwjNT6GwyIDY5A7CTYc2U/tcz9iRde/yEDHR4X/zdL13yfdOruJxaCuqCIWDgSv11Fvbzdbn/45S6of4UzRy+7Yk0m74ucsKSifk/3HFSyD7dB5eEtQEiwpJVvefhHzO//Hxzy7adGlsu+kn1F27mcRc3CgFm02UG/IY2Fv8Mokq2trOPTs/3Fyxz/Iw8We9Eso/eTPWJCYOfGdA0Cfvgiaoa9uJ7Flp8/JPpXJ8fkkrT02WhoO09+wB0/LfkxdB4nvP0yGq4Z80Uc+4JJ6ao1F7My6ktiKCyhdeS7LTZY5i9OTUIhxwAO9DZCQN2f7VaZOJVizpKX+ELWbXoIjb1HY8yFL6GZAWtiXcBqJp/83JcvPCmiHpvEk5mglD72N+4EL52SfEcfrwdFRS0ftXnobD+BpP4yh5wgxA7WkehpJwU2K/6ZuDLQYsqhLWUNT3ioyy08luXA55UEo3yxIjmaXTCe7KzJrurf883ecThd9p987a/sQQtBqzie/PzjzIGsP7aH5nz9meedLpCLYmX4pRZd+j1VZc3uyxZ1cRnL/v3H2tWOOTZn4DgHS0dnBzud+TUXNI5xOD3ujV2A77zbKZ7EccDR5xdqCy66Gue0k6PF4+fCNZ7B+eC8rPNtpF4lsr7yNiotuIX0ODwwBemJLSOn5SOskaDDP2X5rao5Q9fydnNT+NLm42JtyLtnrfkBF3twk14MS8itgO7Qf2aESrDkmpaSzz05zYw3djVXYW48gu2sw9tUT62gk1dNMJh1kiKP92LqJocmYx+GUM6hJX0x86UnkLDqREkvwSnwNqaXQAANN+4lWCda8phKsAOnpbOXwRy/hPPgmWR0fkicbSAe6iONwzAnUla9j0elXsiIqds5jy87VOs942yPzIDpQpMdJZ0MVnXX7sDUfxNdxGHNvDfGOOtK8LVjwkA1kAw5ppJYMGs3ZHEk5GUNKMfHZZWQWLSYps4gcnZ7ZKwqdvKwEK/8km3NtW7RW7frAdtCbz1xuD/n7HuKIsYTiEy+a1X0NxJaQ3r5xTg8sD+zeSvu/f8aqnlfIQLAldR3Fl93GiuzgjGJbsxZDDTQe3EbhCWfP+v4aG2o5+PzdLG1+irVigL3WFfSc/V0WrZj9fY8mJS6KnSKPqM65WXDZ4XTx0UuPkLrjAT7mO0SHSGTH4m+y6JKvkDLL5ZBjkSll6Ht8eFr3Y8iqnPX97dm5hfZXf8GJPS+Ti4c9yeeQve4HLMkPXDfWqcgv1OYiOprmR7lwuOm1OWiqr6arsQpH6xF8XTUY+uqJtTeS7Gkmg3aSxbENrTtFIt3mTPrjl7IvPg9TSj4xWYtILqwkIT6dhDk6ET5ZsdmLYBv01O0hetE5wQ5HGYdKsKbJPtDHwU2vMbDvdVJaN1LsqWK5kNikmSprJY2560mtPI/CxatYoQ9unWxCtIUqkY6huyaocYQCh62f1tp9dNfvx9lSheg6QlR/DUnOelJ9bSQLyWDxXp+00qjLoNZcxP7EtcjEQszppSRkl5GZU0BpjAUxzz6cR9LrBL3RBegdXuiqgZSSYIc0Zza/8jdOpoE9q34566PJIq0MfbuPvob9xObP3oGllJJdH7yG861fcILtffIxsCPzcgou+R9OzCqYtf1ORlrxMngfumt2wCwmWIf376DppbtY0fUSa/CwO/5U+s/+Bosq187aPierxVrCibZ3QcpZe831D/Sz9fn7yd//R9bQTIMui10r/pfF532W5DkesRrJml0Oh6Cjeifps5RgSSnZ/N5reN75Favt/8EtDOxLv4jcC29lSf7iWdnnZGUmWNlFNtHztF3/fGd3OGmuP0xXYxW21mq8ndUY+hqItjeQ7GkhXbZTdlwClUC3KZPeuCV0x+VhSCkkJr2QpOwSYtIKSTJaCaXZcJk5+fRJK85m9Rqa71SCNUlej4dDO/5Dx46XiGv8D6XOPVQKDy6pp8q0iA/yP0ti+dkULz+dyiB/iY2m3ZRNjk11ngHo7+uhuXoPvfX7cLZWoe8+QvRALamuBtLoJA8YHHjvljE0G7Koia7gQGw+uuQirBmlJOcuJCMzhzJT6L+FPEkl0Ai0H4iYBEtKSdyW39As0lh01pirTQRMTE457IG2I9tnJcHyeb1sf+NxzB/cR4VnDz3EsKXg/1F2yddYkZwd8P1NR05BKQPSjKc58CM4Ukr2bNqAbcMvOKH/HXLQsyv142R//FYqiuZPS3B70iJiG15C9jYg4gM7ht3a2sLeF35Jed3fWEMPh4wL2HfybZSdfjXZ86R7bFZxJZ63dPTU7CD9Y58K6LbdHi8fvvokMZvuZ6V3J71Es6Pw05Re/HWWzpP3gBCCJmspHxuY3SQ7VPm8XtqajtBZu4++lsN4O2rQ99YRZW8kyd1MmuygUPgoHHafDpFIlzGD7oQltMflYkzKJzq9mOScEmLTC0gyRYdUAjWR/OQYDshMEjvn35IPyrHmx6fuPNXeXMuR9/6B7sibFPd9xAK0hUIP6YvYknElUQvPomTVOSyOSQhuoJMwEJ1HatcW8PkCvjbDfORw2Kk/vJeO2j24Wg5i6DpEzEAtae460ulkeBrRTgJtxiyq41dTFV+AMbWEmKwFpOYtJDklbd6VCASaKa0MGsHXdgDdwsCvtTXfdPYOsPudZ1jj3cvW8u+QMQdlkRlFFfikwNYQ2NIgm22A7S/+jqw9D7Fc1tMkUvlo4beouPgLrIyOD+i+ZspoMHDQUEhcd+AeA4/Hy6Y3niLqo/uodO+gjyi25F5H6cXf4IT0+Tc/wZKzFBqg9eBm0lcGJsE6cGAvDf/+Favan+N0YWd31Cq6T/8aJasvmHcH8AuyUzhMFqIpcAtOD9jsbHrxD2TveZBTZA1tIoUd5d9k0YVfZFnU/HoPAPQlVRDT+DKy8zAiuXjG25NSsmvrRno2P0nBubeQkz/zbc4mh9NJQ/V+uuv34/BXiVj7a0h01pPpbSFduEn339YnBW26JLqNGbQkLKMxLg9DUh5RaUUkZxeTlFVEstHK3LSEmh+sJj1NhhxyByJjBMvn9dHUUE1b9S5aO3vIWHkxlTkJwQ5rUlSCNY5DGx7lxH0/pY1EDsafiig5k6ITL6I4LZv5/RF2PF9CAeYuF+6eBoyJucEOJ2D6ertoPLiN3tqd+Fr2Yu2pIsVRQ7qvlRIhhxKpbmJpMeZQn7Ca6sQijGmlxGeXkV6wmJS4ROZuyv38k5mRTqtMIKZpL8FfnScwpJS0dvVSf3AHPbU7kK17iemtItVZS65sZo3w0kUciy/8/JzEk5OWTD2p6AJUGtTS0szef95Ded2jnEw3hw1FbFl+N5XnXk+m0RSQfcyG5vhKTun8B3hcYJh+nP0D/Wz554Nk7XuYk2QNbSKZTWVfp/yiL7IqdnbW8gqEgvLV+DYKOg9sJH3l9DvISinZ+t4ruN69n5W2dyhGsifpLFLOu5XyhfNnrbWRTAYdtVEVnNT3zoxP9jU0NrDvX/ezuP5xTqeDWkM+e1bcyaJzbiB1DhtoTFVs8WpohOY9/yFzzfSPJJxuDx+8+neit/yOFZ6tAOz86yYyv70BfZCnJQD0drbQWLWd/rpd+Fr3Y+09RKKjjgxfK8XCN3Q7uzTRbMii25pPc9zpiKQiotJLSMopIy2nkHSTZSjhUjQ9Ufkk9b8NrgEwhUf/X6fbTd2RA7Qf3o6raTemzgMk2Q6T5WkgW9jJBg77Mngp/mSVYIWD0jOv40jFmRQsWkVqiI/6mNNL4Qi01uwlOwQTLKe9n7r9W+g4sh1P016iew+S7jhCJm2UDd5GGqnT59IYU05twsWY0kpJzFtEZuESEuKSSQjmHzCPFaZEc8iXRXlraJ4R6+odoO7gdrprduBt2UtU90HSnEfIlc2k+7/IPeho0WfRFVfM7sTzMGeUkbX8PMxRcXMSo14naDYVkDHDFtUHd35I2+v3sqzr36wVTvZYV9B12lcoPfEiRAh8RvlyTsTc+SQt+zeSXn7alO/fWHuIIy/9mkVNz3AafdQaCti5/CcsPvf/kWqcvwfVg4pzMtlLIVEN/5nW/R0OB1v//WcSdjzICd4D9BHFzrxPUfzxr1GRGRpLcDgyVxJz+CWcjbsw50ytXFZKya5tH9D95r2s7HmFs4SLA1HLsZ1yN8Ufu2zejdiNZmHlSfS8HUX/vjdgzXVTvn9bZzfb//U7Cqv+zGnU0yGS2LHgS3gNVpbv+Rlv/uFWzvjvn89C5MeTPh9tjUdoPbxDG51v309s32HSXTUk0cvgp6tdmmgw5NAcs4iG+AswpRYTm1VGat5C4lJzKAyBz675RJe6APrB116FLmtpsMOZEo/HS31tFW2HtmFv2IWxYz+JA4fJ9dZSIpxDJ8XbRBKt5gL2Ji9DpJQSk72ItMIlfD5EPudAJVjjSkrLJiltftRuz1Rq4VLYCD2Ht5K97NxghzMuW18ndXs+oPfwZnQtO0ju3UuOt54S4aMEcEkDjYYcmuIqqE0qw5S1hJSipWTmL6TEGDld8AKlICWaN2UmJ/R8NK/nBfh8ktqWdur3fshAzRbM7btIHzhAkaylUngA8CJo1mfRHV/C7uQLsWYtIa14KQm5i8k2mAnmu9mWtoy8ht/j6G7GkpAx6fu53W62v/EE5s0PUuHaRq40sjflPDLO+TKLF66exYgDr3TVeXi2f5OWzc9NOsHyeX1sff9VPO//lhP63yYDHztjPkbnaV+gZPXH5+3rdTQ6naA+cTVndj+Fz9aNLiphUverqa3m0L8fYHHDk5xMBw26TLYt+S6LP34zy+foJEGgpFSeB4d/RM3GZ1hwxeQSLLvDxZY3niRq64Msd2/DgZH9aReQee5XWFC6YpYjDqzclFg26CtZ2jz5eVhSSvbv2UbLG7+hsv1fnC36qTGVcGDl3ZSeeR3JBjNIyc57t3NG0x9443eCNf/vpxgNgTnE87hdNNXsp+PIDhyNe9F3HiB+4AhZ7jrShJ00/+16iKbRmMfBhDV4kxdgzVpMamElmfmllMyDUbVwkZC7WDthfmQXGfM4wXK6XNTs30571Ud4G7cT172XPNchCkQ/Bf7bdIhEWi2F7E+4FH36YhLzK0kvWUpqbDKpwQw+AFSCFSEKi0pokYl4G7YGO5Rj9Ha0ULdnI/3VmzC27iStfz85snFoVKqNROotC2hIPhtzzlIyS5aRWVhOgcE49AZVZiYzzkKNIR+z+3XoqZsXixd6fZKa+joa936Ao24rlvbdZNkPUkAjBUIC0CPiaIlewL7kUzFmV5JavJyU/HKyjdagJlJjiSk/Hxp+z6H3nqX845+b8PZNNQc49NofKKz7BytppYVkPij6IosuvIXlyZNP0OaT/NxcthiWkFHzEvjuGrdErL21if2v/IGMQ39nhayhnyh2ZF1F7vlfYWn+wjmMOrDMleswvv04h95+lOLzvzDm7dweD9veeg656WGW294jX3jZb11O14k/YeFpV5A9B4sDz4aVFeXseHYBSQeeA/mDcROM/Xt30rjhDyxseYFT6KBNJLNtwRdZ8PEvsjQhNAvHhBD05p9H0pEf0r3nDRLKzxrztj39Nra++jfid/+Z5Z7tFEs9+xNPx772ZvKXnnPsYycE5Z//Kzt/cw1nNj3Izp/8h4GTb2X56RdhnsSJRyklnV2dNFfvo7d+N96W/Vh6qki2HSHb20Cu8DBY+9JKEi3mfHYlXggpZcRkLya9uJKU9Bzi1WjUrMstW4bjLSP9hz+AUwLbLGa67LYBavZtoqtqEzTvIKFnLwWeIywQLhagVRjVmwo4knoWRzIriM9fSlbpCSTHp4TtHDohpQx2DENWrlwpN23aFOwwwtbmn5xLmqeR3Nt2BWX/7Y01NO7biK1mC5b2nWTYDpAh24aubySNpqgyHKlLiMpbTtbCE0nLyp/3rc7Dwfd/9zfuaLoZPvEgVF41p/t2e30cqT5My76NuOu2ENO1hxzHAbJEx9Bt2nSptMeU4U2vILZgBZkLT8SUlBtSoxduj4fW/12IzZJB6bffHfU2/f297HrjCaJ2P8YSxxZ0QrLXshzPihtZfMZ/oTeE/gjtG3+/nzN3f5eDa35F6Vk3HnOd3TbAjrefRex4gqUD/8EsPFQZS7GV/xcLz/l/mOZZ447psDs91P3kBOL0LtJu3YLOfHTmo/T52L/9P7RtfJyillfIppVuYjmSfQl559xMcsH86Yg4Ey88cicXV/+Y2rMfIO/UTx5zXUtLMwfefoLYA0+zzL0dnxTsj1mJbsX1lK5Zj24ezzGcrMNNbSQ+sIzuuDIKv/b6MZ9jDpebHe//G9fWJynveoNE0UerLpWG4vWUnHczsSkTNEeRkl0v/oaszT8jSfbQJhM4YlmEI64QLPHojGY8Xh96Vy96ZzcGewcJriZSvS0k0je0GZ8UNOnSabcUYE8oRpe2iPjccjJLlhKXEK6HxKHB4/Wx9Y6TyYwxkPPN6ZUbz0R/Xw+1ez6g59Am9C3bSenbS563DoO/JL8PK/XmUvoTF2PMXkbaglVkFFWGxXt3NEKIzVLKlcddrhKsyPHWH/+H02vvY+ALO4hOzZ+1/Uifj6aaA7Qc+ABH7VaiOneTbT9ACt2A9sFdr8ukNWYh7tQKYgpXkLPoJBJTQvOMZDj4zRv7ufat0zEuvQLLJ+6btf043F4OH66ibf8HeBq2ENu1m3znQdJFF+D/Ujdk0xm3CDIqSSheSWbZagyx4dGG5M0//ZAzjvyCnSv/j4qLtNGLtsZqDn34MsaD/2RR/4dECSctIoXDOZdScNZnySwI3dGa0dgdLmp+diI5sol9ZV9Al5iLs+0whsbNLLJtIkY46CGGgxkfJ/W0z5C/eP42bZiu1198grM+uomDlgq6FqzH47Kja95OdvcmcmnGI3UcjD4BT+V/seiM/8JgtgY75IDq6bPR/POPkUMT+0o+gzcqA3d7FTFtW1ns2oVReGnRpdFUeDlF5/w3cRmFE280xDz3hx+xrv5u9safhq3wHGz9feibt1La9xGpohs7Jg4mrCHuxGsoOHEdTHHE0uO0cWDDo3j2vkxi3wEyvA0YObpGlEfq6BfR9Ovi6TZnYovKRiTmE5VWSGJeOWkF5Rgs4dFAIRw9e9dnuXDgGYzfPgyW2Tvx1NPdRe2ejfQd/ghD607S+veS661H768k6SCeBmsZ9qTFmPOWk1F2Iul5CxAhOsI+HSrBUti8aSMr/nkeu5f/gPJ1XwvINp0uJ3UHttNVtQlf03ZiuvaQ6zpEHAOA9iFep8+jPXYh3vRK4opWkrtoFbHx4bQyRejb29TLod9cydmWfVi+dXBGHd4G2ZwuDh3cR/uhzXjqtxHfvZsC10HSRDcAPgSNhly64hZD1jKSSleTsWAVemtozSmZCpvdzqGfn02FZxetJKPDO3TioY1EDqecQeKKT1C6+gLEPFm7aDZUHzmA7a/Xsti7b+iyJpFGQ/LHsC69lEUnfRxdCDStmC4pJa89/mtW7ruLRKEt/9FLNLXRS3AWX8CCtZ8kNik0y0An68CB/dif/H8s9ewE/N8VxgI6M9eQtvpKcstPCeslRRwuD28+9F1Ob36EKOEEoJs4quNXYV58ASVrrsIYyDbzUiI9TtwuB0a9DmGODakKAOVYz73wLOs2X0/bWb8idc2NE99hAj6fpLGxgcYDm7DVbsXStpMM2z7yfI3o/MlUO4k0RJXhSKnAmn8CWQtPJiWrIOJfR7OSYAkhnoCh6TIJQLeUcpkQogDYCwy2JdsopZxw0oFKsGaXx+Ol+sfLsegl2d/ZOqUDOJ/XS2vDIZqrtjHQsBtd+wES+w9S4KnGItwAOKSRWmMhXfGLIGMpicUryVu4AktUzGz9SUoAff+un3PHwB14Lr4Pw4rJL77r8viorauj9dAWHA07MbTvI3mginxvDTHCAYAXHU3GPLoTFqPLWkZy6Ymkla7QvuQjzMDAADue+zX6lu0IoceTupiM8jUUVJ4aUWf9fF4fzbX7sfV1kZZdRFyIziubCbfLSVvdQcyWKJIy8yPq+Qct0WxpqkM6+0nKyMNsjbzvit7+fnpb64mNiSY+NSfiD1aVyWnutuP45TJM1hiybv1wSiOcnd09NFdto692O96m3UT37CfTWU2av5IEoE0k0xS9EEfKEqLyV5C16GSSMoI/P3s+mvURLCHEz4EeKeUd/gTrn1LKJVPZhkqwZt+GZx5k7Y5vsC39Eyy85udYYo+OJDmcLjqbjtDTdIi+5kO4249g6K0h0VZNjqdu6CwbQAcJtFoKGEhcjD57Kcklq8gqrsAQpjW2keCVXY2kPHkxiwzNuNb9jvgl54HeiJSS3n4bnW0NdDTXMNB4EG/HYcy9R0iw15HpbSRJHK3d7xGxtFiKGUgow5JVTlrJCSQVLUeYI+/gSVEURVFmw98f+TVXVn+f/ZnryLv8R1hTtKkfXq+X9tYG2psbsLUcwt12CLoOE91fQ4qrngzZPlTi55BGGoz59MaWQHo5cflLySpbjTUpM5h/WkiZ1QRLaF0IaoEzpZQHVYI1f/m8Pjbc/9+c2fkkbqmnTZeMRBAtB4iVA0NvOhhcRT2ZNnM+A3HFyNSFJOQtIXvBMmIT1XypcPTgC29x5kf/TbGuCSdG7GjtfxPEwHG3bRWpdFmysccWYEgtJS5/KemlJ2BOyFJnYRVFURRlFjlcHl67/4tc1PM3AAaw4JV6orAPNZwY1E0MbcZsBqLz8CUWYcwqJ6lwGZkF5egC1M4/Us12gnUa8IvBHfgTrN3AAaAX+J6U8p0x7nsTcBNAXl7eipqamhnHo4xPSsnOD96kd8fzmPob0AuJyxiH3pqALiEXY2ohyVklZOSVYDBZgh2uMsf217dS8/4/iGrbisHrxKjXQXQKurgMYpKzSM5dSGJ2KcIUNfHGFEVRFEWZFVJKtm/5gN5dL6Hvb8aAB2mORR+XgTUhk5j0ApJyFxGXlDbxxpRpmXaCJYR4DRitOP5/pJTP+W/zW6BKSvlz/+9mIEZK2SGEWAE8C5RLKXvH25cawVIURVEURVEUJRSMlWBNOC4opTx7gg0bgE8AQ8upSymdgNP/82YhxCFgAaCyJ0VRFEVRFEVRwlYgeqCeDeyTUtYPXiCESBVC6P0/FwGlwOEA7EtRFEVRFEVRFGXeCsTMtquBx0ZcdhpwhxDCDfiAz0kpOwOwL0VRFEVRFEVRlHlrXi00LIRoA+Zbl4sUoD3YQShzRj3fkUM915FFPd+RQz3XkUM915FlPj7f+VLK1JEXzqsEaz4SQmwabfKaEp7U8x051HMdWdTzHTnUcx051HMdWULp+Q7EHCxFURRFURRFURQFlWApiqIoiqIoiqIEjEqwJvb7YAegzCn1fEcO9VxHFvV8Rw71XEcO9VxHlpB5vtUcLEVRFEVRFEVRlABRI1iKoiiKoiiKoigBohIsRVEURVEURVGUAFEJ1jiEEOcLIfYLIaqEEN8OdjxK4AghcoUQbwoh9gghdgshvuy/PEkI8aoQ4qD//8Rgx6oEhhBCL4TYKoT4p//3QiHEB/739xNCCFOwY1QCQwiRIIR4SgixTwixVwhxsnpvhychxFf9n+G7hBCPCSEs6r0dPoQQfxRCtAohdg27bNT3stDc43/edwghTghe5MpUjfFc3+X/HN8hhPiHECJh2HXf8T/X+4UQ5wUl6HGoBGsMQgg9cD9wAbAY+KQQYnFwo1ICyAN8XUq5GDgJ+IL/+f028LqUshR43f+7Eh6+DOwd9vvPgF9KKUuALuD/BSUqZTb8GnhZSrkQWIr2vKv3dpgRQmQDXwJWSimXAHrgatR7O5w8Apw/4rKx3ssXAKX+fzcBv52jGJXAeITjn+tXgSVSykrgAPAdAP/x2tVAuf8+v/Eft88bKsEa22qgSkp5WErpAh4H1gU5JiVApJRNUsot/p/70A7AstGe4z/5b/Yn4NKgBKgElBAiB7gQ+IP/dwGcCTzlv4l6rsOEECIeOA14CEBK6ZJSdqPe2+HKAFiFEAYgCmhCvbfDhpTybaBzxMVjvZfXAX+Wmo1AghAic04CVWZstOdaSvmKlNLj/3UjkOP/eR3wuJTSKaU8AlShHbfPGyrBGls2UDfs93r/ZUqYEUIUAMuBD4B0KWWT/6pmID1YcSkB9SvgVsDn/z0Z6B72wa3e3+GjEGgDHvaXhP5BCBGNem+HHSllA3A3UIuWWPUAm1Hv7XA31ntZHbeFt08DL/l/nvfPtUqwlIgmhIgBnga+IqXsHX6d1NYwUOsYhDghxEVAq5Ryc7BjUeaEATgB+K2UcjkwwIhyQPXeDg/+uTfr0JLqLCCa40uMlDCm3suRQQjxP2hTOx4NdiyTpRKssTUAucN+z/FfpoQJIYQRLbl6VEr5jP/ilsGSAv//rcGKTwmYU4BLhBDVaKW+Z6LN0UnwlxWBen+Hk3qgXkr5gf/3p9ASLvXeDj9nA0eklG1SSjfwDNr7Xb23w9tY72V13BaGhBA3ABcBn5JHF++d98+1SrDG9hFQ6u9GZEKbTPd8kGNSAsQ/B+chYK+U8hfDrnoeuN7/8/XAc3MdmxJYUsrvSClzpJQFaO/jN6SUnwLeBK7w30w912FCStkM1AkhyvwXnQXsQb23w1EtcJIQIsr/mT74XKv3dngb6738PHCdv5vgSUDPsFJCJQQJIc5HK++/REppG3bV88DVQgizEKIQrbHJh8GIcSziaDKojCSE+Dja3A098Ecp5Y+DG5ESKEKIU4F3gJ0cnZfzXbR5WE8CeUANcJWUcuQEWyVECSHWAt+QUl4khChCG9FKArYC10gpnUEMTwkQIcQytIYmJuAwcCPaCUX13g4zQogfAuvRyoe2Ap9Bm4uh3tthQAjxGLAWSAFagB8AzzLKe9mfZN+HViZqA26UUm4KQtjKNIzxXH8HMAMd/pttlFJ+zn/7/0Gbl+VBm+bx0shtBpNKsBRFURRFURRFUQJElQgqiqIoiqIoiqIEiEqwFEVRFEVRFEVRAkQlWIqiKIqiKIqiKAGiEixFURRFURRFUZQAUQmWoiiKoiiKoihKgKgES1EURVEURVEUJUBUgqUoiqIoiqIoihIgKsFSFEVRFEVRFEUJEJVgKYqiKIqiKIqiBIhKsBRFURRFURRFUQJEJViKoiiKoiiKoigBohIsRVEURVEURVGUAFEJlqIoyjwhhCgQQkghhCHYsYQ7IcQNQoh3gx3HfCOEWCOE2B/sOBRFUUKZSrAURVGUkCaEuF0I4RZC9A/7d2uw4wpFUsp3pJRlgd6uEGKZEGKzEMLm/39ZoPehKIoyX6gES1EUJUDUyFNQPSGljBn2785gBxRIofzaEkKYgOeAvwKJwJ+A5/yXK4qihB2VYCmKosyAEKJaCPEtIcQOYEAIYRBCnCSEeE8I0S2E2C6EWDvs9huEED8RQnwohOgVQjwnhEgaY9s3CiH2CiH6hBCHhRD/PeL6dUKIbf7tHBJCnO+/PF4I8ZAQokkI0SCE+F8hhH6Cv6NYCPGGEKJDCNEuhHhUCJEw7LpOIcQJ/t+zhBBtg3+XEOISIcRu/9+7QQixaMTj8w0hxA4hRI8Q4gkhhGXqj/TUCSG+7X9c+oQQe4QQl41xOyGE+KUQotX/WO4UQizxX2cWQtwthKgVQrQIIR4QQlgnuf9H/Ld/1R/DW0KI/GHX/1oIUeff52YhxJph190uhHhKCPFXIUQvcIMQYrUQ4n3/49wkhLhveJLiLy/9vBDioH9/P/I/d+/59/HkREmNEGKtEKJ+Mn/fFKwFDMCvpJROKeU9gADODPB+FEVR5gWVYCmKoszcJ4ELgQQgHXgR+F8gCfgG8LQQInXY7a8DPg1kAh7gnjG22wpcBMQBNwK/HJbkrAb+DHzTv9/TgGr//R7xb7cEWA6cC3xmgr9BAD8BsoBFQC5wO4CU8hDwLeCvQogo4GHgT1LKDUKIBcBjwFeAVOBfwAsjDuSvAs4HCoFK4IZRAxDiVH/yMNa/Uyf4G0Y6BKwB4oEf+uPPHOV256I9fgv8t70K6PBf91P/5cvQHs9s4PtTiOFTwI+AFGAb8Oiw6z7ybzcJ+Bvw9xHJ5zrgKbTn91HAC3zVv62TgbOAz4/Y33nACuAk4Fbg98A1aM/nErTX6rT5E+Wxnp/fjHG3cmCHlFIOu2yH/3JFUZSwoxIsRVGUmbtHSlknpbSjHcz+S0r5LymlT0r5KrAJ+Piw2/9FSrlLSjkA3AZcNdoIk5TyRSnlIal5C3gFLWEA+H/AH6WUr/r30yCl3CeESPfv6ytSygEpZSvwS+Dq8f4AKWWVf1tOKWUb8Avg9GHXPwhUAR+gJYb/479qPfCi/75u4G7ACnxsxOPTKKXsBF5ASypGi+FdKWXCOP/Ga0px1YiD/Swp5d/9+/VJKZ8ADgKrR7mvG4gFFgJCSrlXStkkhBDATcBXpZSdUso+4P8meixHeFFK+baU0on2mJ0shMj1/71/lVJ2SCk9UsqfA2Zg+Pyn96WUz/rjt0spN0spN/pvXw38jmHPkd+dUspeKeVuYBfwipTysJSyB3gJLeGeNill5TjPz8hkb1AM0DPish60x1xRFCXshGxNt6IoyjxSN+znfOBKIcTFwy4zAm+Ocfsa//UpIzcqhLgA+AHaCIoOiAJ2+q/ORRstGinfv70mLT8A/33rRrnt8H2lA79GS+Bi/ffpGnGzB4HngZv8CQNoI141gzeQUvqEEHVoIz2Dmof9bPPfJ9CelFJeM/wCIcR1wNeAAv9FMYzyOEsp3xBC3AfcD+QLIZ5BG3m0oD3mm4c9lgIYt9xyhKHHXUrZL4ToRPv764QQ30BLlLMAiTZSmTLaff1/zwK0xHelPy4DsHnE/lqG/Wwf5feMKcQeKP1of9twcUBfEGJRFEWZdWoES1EUZeaGlz7VoY1QDT+zHy2l/Omw2+QO+zkPbQSlffgGhRBm4Gm0EaF0KWUCWkI1eKRfBxSPEksd4ARShu0/Tko5UTnW//n/jgopZRzaSNzRrEKIGOBXwEPA7eLovLFGtKRu8HbC//c1TLC/4witRXj/OP/WTLyVoW3loyWEtwDJ/sdv1/C/aTgp5T1SyhXAYrSE9ptoz4kdKB/2WMZLKWOm8GcNPdf+xzAJaPT/LbeilSMm+uPrGRHf8NcVwG+BfUCp/zn67lh/z2wR2ly7sZ6fB8a4226gUgzLUtFKRXfPfsSKoihzTyVYiqIogfVX4GIhxHlCCL0QwuJvHJAz7DbXCCEW++cz3QE8JaX0jtiOCa1krA3w+Eezzh12/UPAjUKIs4QQOiFEthBioZSyCa2U8OdCiDj/dcVCiJGlZCPFoo009AghstESjOF+DWySUn4GbY7Z4MH0k8CF/jiMwNfRErz3JnqgRvK3CI8Z5987U9hcNFqC0gZawxC0OUjHEUKsEkKc6I9/AHAAPimlDy1J+6UQIs1/22whxHnD7ivFsCYmo/i4f26ZCW0u1kYpZR3a4+3xx2cQQnyf40d5RooFeoF+IcRC4OYJbh9wUsrycZ6fz41xtw1o88e+JLSmIbf4L39jToJWFEWZYyrBUhRFCSD/wfM6tNGFNrQRpW9y7OftX9AaUTSjlaF9aZTt9PkvfxKtVO+/0MrzBq//EH/jC7SRj7c4OpJ0HVqCtsd/36fQ5k2N54fACf5tvQg8M3iFEGIdWpOKwQP6rwEnCCE+JaXcjzbadS/aiM/FwMVSStcE+5tVUso9wM+B99HK5CqA/4xx8zi0RKoLrdyxA7jLf9230OaebRRaN7/X8M+T8s+l6uNo2eZo/oZW5tmJ1nxisIzx38DLwAH/Ph1MUMaJVrb4X/59Pgg8McHt5wX/a+FStNdlN1qDl0uD/RpRFEWZLeLYpj6KoijKbBJCbAD+KqX8Q7BjUWZGCHENWvngd8a4/hGgXkr5vTkNTFEURQkq1eRCURRFUaZBSvnXYMegKIqizD+qRFBRFCVCCG3R26k0J1DCkBDiu2O8Dl4KdmyKoijhQJUIKoqiKIqiKIqiBIgawVIURVEURVEURQmQeTUHKyUlRRYUFAQ7DEVRFEVRFEVRlHFt3ry5XUqZOvLyeZVgFRQUsGnTpmCHoSiKoiiKoiiKMi4hRM1ol6sSQUVRFEVRFEVRlABRCZaiKIqiKIqiKEqAqARLURRlBCklbq8v2GEoiqIoihKC5tUcrNG43W7q6+txOBzBDkUJMRaLhZycHIxGY7BDUULMK3/4HqUNzxJ18+tkpGcEOxxFURRFUULIvE+w6uvriY2NpaCgACFEsMMJGpfHi8mgD3YYIUNKSUdHB/X19RQWFgY7HCXElDU8TQFNbHr+f8n47H3BDkdRFEVRlBAy70sEHQ4HycnJEZ1c9dkcuFoO0N9eH+xQQoYQguTkZDXyqUyZw+3F7dM+GjMbXwW1GLuiKIqiKFMw7xMsIKKTKwA50E6McBDjakP61LyQyYr0140yPT02J7miFTsWsmUz7bV7gh2SoiiKoighJCQSrIjn8wz96LL1BDEQZT762/tV/P3H19C585VghxIW+tobsAg3e9IvAqBm24bgBqQoiqIoSkhRCdYkCCH4+te/PvT73Xffze233z5n+5c+Dx70+KTA6+g75rqNGzdy4oknsmzZMhYtWjQU14YNG3jvvfemvc+amhpOOOEEli1bRnl5OQ888MBM/gRlFr397ttc6X6BpKevBGffxHdQxuXoqAPAXHYOfVjx1H4Y5IgURVGUSNHaa+eeu7/Pf159OtihKDMw75tczAdms5lnnnmG73znO6SkpARsu1JKpJTodOPnuTrpwycMuBDo3f3HXHf99dfz5JNPsnTpUrxeL/v37we0BCsmJoaPfexj04otMzOT999/H7PZTH9/P0uWLOGSSy4hKytrWttTZo9xoOnoL0fehoUXBi+YMGAb0JLUqLhEqs0LSe3eEeSIFEVRlEjx0Yfv86X+X8N/gDVngyU+2CEp06BGsCbBYDBw00038ctf/vK469ra2rj88stZtWoVq1at4j//+Q8At99+O3fffffQ7ZYsWUJ1dTXV1dWUlZVx3XXXsWTJEurq6vjmN7/JkiVLqKio4IknngC0BGnt2rVcccUVrDjtfK77wrdw660YpfOYeVitra1kZmYCoNfrWbx4MdXV1TzwwAP88pe/ZNmyZbzzzjvjxnnttddy8sknU1payoMPPgiAyWTCbDYD4HQ68Y0x9+uee+5h8eLFVFZWcvXVVwPQ2dnJpZdeSmVlJSeddBI7duwY2tf111/PmjVryM/P55lnnuHWW2+loqKC888/H7fbDcAdd9zBqlWrWLJkCTfddBNyRJMBn89HQUEB3d3dQ5eVlpbS0tIymaczrPQ7PSS4W4d+dx14PYjRhAevyw6AyWylJ2U5+Z4jOG29QY5KURRFiQTdLdVDP7duV6X/oSqkRrB++MJu9jQG9kBncVYcP7i4fMLbfeELX6CyspJbb731mMu//OUv89WvfpVTTz2V2tpazjvvPPbu3Tvutg4ePMif/vQnTjrpJJ5++mm2bdvG9u3baW9vZ9WqVZx22mkAbN26ld27d5NEF2dceh0fbNnJuUtzcLtsGC0xAHz1q1+lrKyMtWvXcv7553P99ddTUFDA5z73OWJiYvjGN74BwH/913+NGeeOHTvYuHEjAwMDLF++nAsvvJCsrCzq6uq48MILqaqq4q677hp19OqnP/0pR44cwWw2DyU8P/jBD1i+fDnPPvssb7zxBtdddx3btm0D4NChQ7z55pvs2bOHk08+maeffpo777yTyy67jBdffJFLL72UW265he9///sAXHvttfzzn//k4osvHtqnTqdj3bp1/OMf/+DGG2/kgw8+ID8/n/T09Amfx3DT2usgS3TgwcBmXwmLajZhCnZQIc7nT7AMJium/BPRN/yRml3vUbT6/CBHpiiKooQ7Z1fj0M89u18l7cQrgxiNMl1qBGuS4uLiuO6667jnnnuOufy1117jlltuYdmyZVxyySX09vbS398/xlY0+fn5nHTSSQC8++67fPKTn0Sv15Oens7pp5/ORx99BMDq1avJycnBIKByyWLqm7SRCo9jYGhb3//+99m0aRPnnnsuf/vb3zj//NEPAseLc926dVitVlJSUjjjjDP48ENtzklubi47duygqqqKP/3pT6OOEFVWVvKpT32Kv/71rxgMhqG/6dprrwXgzDPPpKOjg95eLTG+4IILMBqNVFRU4PV6h+KtqKiguroagDfffJMTTzyRiooK3njjDXbv3n3cftevXz802vf444+zfv36cR/zcGVzeckUHTit6ez0FRLVtQ+8nonvqIxJurXW/kazlazFWolt1+GPghmSoiiKEiEsjjYAdlKCuX1XkKNRpiukRrAmM9I0m77yla9wwgkncOONNw5d5vP52LhxIxaL5ZjbGgyGY8rqhq/HFB0dPan9mc1mpJTo8aHTGwAdXqlD+s+wDyouLubmm2/ms5/9LKmpqXR0dBy3rbHihOPbmY/8PSsriyVLlvDOO+9wxRVXHHPdiy++yNtvv80LL7zAj3/8Y3bu3Dnh3wTaKJTRaBzal06nw+Px4HA4+PznP8+mTZvIzc3l9ttvH3Utq5NPPpmqqira2tp49tln+d73vjfufsOV0+MjnW480Rm0yoUYHC9Bx0FIWxTs0EKW9GivN4PJSnZmLm0kQIv6klMURVFmX5SrHZsumoaoCkr7/wU+L+j0wQ5LmSI1gjUFSUlJXHXVVTz00ENDl5177rnce++9Q78PlsIVFBSwZcsWALZs2cKRI0dG3eaaNWt44okn8Hq9tLW18fbbb7N69eqh66WU6IUPEOh0Aqcwo/MeTbBefPHFoTlKBw8eRK/Xk5CQQGxsLH19RzvKjRUnwHPPPYfD4aCjo4MNGzawatUq6uvrsdu1/XR1dfHuu+9SVlZ2TOw+n4+6ujrOOOMMfvazn9HT00N/fz9r1qzh0UcfBbS5ZCkpKcTFxU34+MLRRDQlJYX+/n6eeuqpUW8nhOCyyy7ja1/7GosWLSI5OXlS2w83TrcXq3AgTdF40yu1C5u2BzeoECc9TgAMFitCCJrMRST0VQU5KkVRFCUSxLnb6TMk40mrwIITV+uBYIekTINKsKbo61//Ou3t7UO/33PPPWzatInKykoWL1481M788ssvp7Ozk/Lycu677z4WLFgw6vYuu+wyKisrWbp0KWeeeSZ33nknGRkZQ9dLn1f7wT/S49VbMEkn+JOqv/zlL5SVlbFs2TKuvfZaHn30UfR6PRdffDH/+Mc/hppcjBUnaGV+Z5xxBieddBK33XYbWVlZ7N27lxNPPJGlS5dy+umn841vfIOKigoAPvOZz7Bp0ya8Xi/XXHMNFRUVLF++nC996UskJCRw++23s3nzZiorK/n2t7/Nn/70p0k/vgkJCXz2s59lyZIlnHfeeaxatWrougceeOCYuNevX89f//rXiC0PBG0Ey4IbDBaS8hZjlyZcdVuCHVZIE/4RLJPZCkB/3AKy3TVIrzuYYSmKoigRIN7Xjd2cQmzBcgBa9qsS9VAkRnZoC6aVK1fKTZs2HXPZ3r17WbQocsudPC4Hhva99FsyiUnKoLezhThHI96UhehN1hlv//bbbz+mGUa4CffXz8u7mlj45Okklp7EppV3kfjYxynNTCL25leDHVrIeueP32FN7W+Q/9OCMFp47+l7+NjO22i57h3SiyqDHZ6iKIoSpjxeH3t/uJzo5Fy8V/6JvN8toKb0ehZc84tgh6aMQQixWUq5cuTlagRrnhtKgIX2VA0mVW6nLVghKfOIw+3DIlwIk5WFmXHs8+Vh7FTlBDMh/CWCwqDNF4wvWAZAW9XWYIWkKIqiRACHx4cZNxjM5KclUiVzMLWNP7ddmZ9m3ORCCJEL/BlIByTweynlr4UQtwOfBdr8N/2ulPJfM91fpBla88pfImj0ly35XMc3fpiO22+/PSDbUYLD6fFiwYXOZCUr3kKtPheL+w0YaIfowC2KHVG8DhwYsfjfczkly/BKgbNBLTisKIqizB6nW/tOdxvMmAw66s1FrO5X86pDUSBGsDzA16WUi4GTgC8IIRb7r/ullHKZ/59KrqZBSi3BEv4RLKPBgEsawBOYBEsJbQ63T0uwjFpDBkd8kXZFuxrFmi6d14lr2Gpi8fFx1ItMNTKoKIqizCqnx4dZaPOqAeyxRSR6O8ChFrsPNTNOsKSUTVLKLf6f+4C9QPZMt6toRpYICiFw60zofc4gRqXMF063B4twYzBHAaBPW6hdoRKsadMSLOMxl7Vb84m3VQcnIEVRFCUiOIdKBLUES5daql3eor7TQ01A52AJIQqA5cAH/otuEULsEEL8UQiROMZ9bhJCbBJCbGpraxvtJhHt6AjW0bWpfDozRuka6iSoRC6PU2ulr/cnWElZRVonweZ9wQwrpOm8TtzCdMxljvgSMj0NeD2qk6CiKIoyO5wer5ZgGbUEKyZHKwhrr1ZrMYaagCVYQogY4GngK1LKXuC3QDGwDGgCfj7a/aSUv5dSrpRSrkxNTQ1UOOFjMMHSDXuqjBZ0SDxuNYoV6bwurdmJ3qQlWMVpcRyWmTia9gYzrJCm9zlxCfMxlxnSyzAJLy3VKnFVFEVRZofT5cUqXOj8CVZW4SI8Ukd/g/pODzUBSbCEEEa05OpRKeUzAFLKFimlV2pDMA8Cq8fbxnz37LPPIoRg376xD7Cqq6tZsmRJwPa5f/9+zvv4xSw752qWr1jFTTfdBMCuvQf51+vv4plmJ0GHw8Hq1atZunQp5eXl/OAHPwhYzMrc8rn8i077ywlK0mKoktnoOw8GMarQpve6jhvBisvVziK2VatuToqiKMrscPkbmAmj1tCsID2JOpmK6FDf6aFmxgmW0GrXHgL2Sil/MezyzGE3uwwI6fHNxx57jFNPPZXHHnts1Os9Hs+M9+H1eo/5/Utf+hK33PzfbHv1cbZt3cIXv/hFAHbv3c+/3ngXn3t6jS7MZjNvvPEG27dvZ9u2bbz88sts3LhxxvErc8/r9idY/g/j/OQojsgsomyN4FKt/KdD73PiGZFgZRUvA8DeqM4iKoqiKLPDPVj27x/Bshj1NBpyie47EsywlGkIxAjWKcC1wJlCiG3+fx8H7hRC7BRC7ADOAL4agH0FRX9/P++++y4PPfQQjz/++NDlGzZsYM2aNVxyySUsXqyd4fZ4PHzqU59i0aJFXHHFFdhs2kHu66+/zvLly6moqODTn/40TqdW3ldQUMC3vvUtTjjhBP7+978fs9+mpiaysrQ8VQgdFRUVuFwu7rjjDp54/lVOOu1snnjiCQYGBvj0pz/N6tWrWb58Oc899xwAjzzyCOvWrWPt2rWUlpbywx/+0L8tQUxMDAButxu3233MHK9Bf//731myZAlLly7ltNNOA7TRrxtvvJGKigqWL1/Om2++ObSvSy+9lHPOOYeCggLuu+8+fvGLX7B8+XJOOukkOjs7AXjwwQdZtWoVS5cu5fLLLx96fIY76aST2L1799Dva9euZeQC1IpGjhjBMup19MQUIZDQeSiIkYUuvXTh0R2bYMUnJtNGYtiMDEopeePu/+KN34fnAuOKoiihaDDB0vlPmgL0xhSQ6qoDn3esuynz0IzXwZJSvgscf3QOgW/L/tK3oTnAJToZFXDBT8e9yXPPPcf555/PggULSE5OZvPmzaxYsQKALVu2sGvXLgoLC6murmb//v089NBDnHLKKXz605/mN7/5Dbfccgs33HADr7/+OgsWLOC6667jt7/9LV/5ylcASE5OZsuWLcft96tf/SoXXnI5H1tZwZkXrOOzn72JhIQE7rjjDja+9Sq/+r/vYclcxHe/+13OPPNM/vjHP9Ld3c3q1as5++yzAfjwww/ZtWsXUVFRrFq1igsvvJCVK1fi9XpZsWIFVVVVfOELX+DEE088bv933HEH//73v8nOzqa7uxuA+++/HyEEO3fuZN++fZx77rkcOKB1t9m1axdbt27F4XBQUlLCz372M7Zu3cpXv/pV/vznP/OVr3yFT3ziE3z2s58F4Hvf+x4PPfTQ0MjcoPXr1/Pkk0/ywx/+kKamJpqamli58rhFshWAESNYAKSUQj3Qtl97fStTYvC5sBvij7u81ZRHbH94nEXcUVXNmf0vQj+0HLmB9MLAlTYriqIo0zM49UNvPvqd7kksxdTrxtdViy65MFihKVMU0C6C4eqxxx7j6quvBuDqq68+pkxw9erVFBYefcHn5uZyyimnAHDNNdfw7rvvsn//fgoLC1mwYAEA119/PW+//fbQfdavXz/qfm+88UY2v/8WV150Nm+//Q4nnXTS0MiXT+iHOgm+8sor/PSnP2XZsmWsXbsWh8NBbW0tAOeccw7JyclYrVY+8YlP8O677wKg1+vZtm0b9fX1Q0nYSKeccgo33HADDz744FD54rvvvss111wDwMKFC8nPzx9KsM444wxiY2NJTU0lPj6eiy++GICKigqqq6sBLQlbs2YNFRUVPProo8eMVA266qqreOqppwB48sknueKKK8Z4ZhTpPnYECyA6qwyvFHjbVFvX6TBKF94RI1gAA3HFZLlrjy7+HcI6d/x76Of6j14IYiSB8fr7H/LPH67jwOY3gh3KjLV2dPCXP/2Wptb2YIcyYy2dPbz9x+/S1tYc7FBmrLXXzkt/+ikddfuDHYoSxryDJYKmo9/plowyADprQ3qmTcSZ8QjWnJpgpGk2dHZ28sYbb7Bz506EEHi9XoQQ3HXXXQBER0cfc/uRpXajld6NNHIbw2VkpPPpqy/l+i/dxtJly44mQjo9enx4vW6klDz99NOUlZUdc98PPvhgwngSEhI444wzePnll49r0PHAAw/wwQcf8OKLL7JixQo2b9487t9hNh/tvKbT6YZ+1+l0Q3PUbrjhBp599lmWLl3KI488woYNG47bTnZ2NsnJyezYsYMnnniCBx54YNz9RjIxuOD0sBGs/LQk6mQaKY17iAlSXKHMIN2jJlikLiCu/RlamutIz8qf+8ACSLTtxycFHSIefWPol9+aN/wvZ8m32LHBCyvODHY4M/LRUz/n2qb72fmXF8n8+j+DHc6MbHjuYdbX3s/hR/5D6jffCnY4M/LSs3/l+iM/oeGxf8CtH0x8B0WZBo9/br3BdPQ7PTG/HD6A7rq9pCy/OFihKVOkRrAm8NRTT3HttddSU1NDdXU1dXV1FBYW8s4774x6+9raWt5//30A/va3v3HqqadSVlZGdXU1VVVVAPzlL3/h9NNPn3DfL7/8Mm6XNmLV0tpKR0cH2dnZxMbG0m/T3oQep53zzjuPe++9d2hR4q1btw5t49VXX6WzsxO73c6zzz7LKaecQltb21DJn91u59VXX2XhwoXH7f/QoUOceOKJ3HHHHaSmplJXV8eaNWt49NFHAThw4AC1tbXHJXbj6evrIzMzE7fbPbSd0axfv54777yTnp4eKisrJ739iDPKCFZRagyHZSayPTzmC801g3QhR0mwYrIWAdB8aPtchxR4/a306uI4bK0kvTe0OyNKKUl1VgNQ0vfR0VHdEGVt106ilfR9iJxmI6P5IrFJ+54sGtiGdA0EOZqZya/XRnqzbfuQtq4gR6OEK5+/OZVhWIlgfk4e3TIaT4saPQ0lKsGawGOPPcZll112zGWXX375mN0Ey8rKuP/++1m0aBFdXV3cfPPNWCwWHn74Ya688koqKirQ6XR87nOfm3Dfr7zyCqvXnM3Ss9dzwQUXcNddd5GRkcEZZ5zBgf0HWHbO1Tzx+OPcdtttuN1uKisrKS8v57bbbhvaxurVq7n88suprKzk8ssvZ+XKlTQ1NXHGGWdQWVnJqlWrOOecc7jooosA+P73v8/zzz8PwDe/+U0qKipYsmQJH/vYx1i6dCmf//zn8fl8VFRUsH79eh555JFjRq4m8qMf/YgTTzyRU0455Zik7vnnn+f73//+0O9XXHEFjz/+OFddddWktx2JhNe/FtqwEazi1GgOy0ysvdUQBuVsc80gPfj0xydYGSVLAcJiPRKLq4NeQxKO5IVk+lrw2PuCHdK0NXbbyJNNNIs0onDQfuj4+ayhwuP1kevSmtNYcdK2790gRzR9UkpKnHtwST0ALfveD3JE0+f2+oh3NOKTWgVI50HVdVeZHYPdoU3mo5VNKbFmakQWph7VuCqUhFaJYBAMdskb7ktf+tLQz2vXrh36uaCgYMx1ss4666xjRpYGDc5NGs0vfvEL7vjOl4lydaHLXjZ0eVJSEh9+tAnZtB2HMQGr1crvfve7UbeRk5PDs88+e8xllZWVo8YCWmOLv7a9iQAAV0ZJREFUQc8888xx1w8miyPdcMMN3HDDDaP+XcOvu/nmm7n55puPu/8ll1zCJZdcMvR7enp6QFrfh7uhBMtwNMlNiDLRYszF4HNAbwMk5AYputBkxAM643GXJ6bnY8MMYTC3Lc7byYApCWP6IqiH5iO7yFl8crDDmpb2hsNkCxe7ss8no/7PtB7cROrCU4Id1rQ0dfRQRAMfJa9jVcdztB74iLSKs4Md1rS09DpJpYsdCWezsuff9Ox/l4zK0Pxb2vqcZIk29sSfxpLet2g/sJHkpRcEOywlDPn862ANH8ESQtBhzifXNvpxmzI/qRGs+U5K5CjzuHQ6gUuY0A0eYCsR6WiCZTnmcldCsfaDWpxwyozSjdQfn2AJnY4mQx4xfaF/FjHe24XDnERinjbvsqt6R5Ajmj5Hq/Z8xJefS6+Mwt0QuiWc/V0t6IXEkncCHTIWX0vojpY2tbUTK+zE5i6hXqYgW45vaBQq2rp7SRfdmLMrOCwzEY3bgh2SEqakf1718CYXAPb4QpJ8HeAM3WqDSKMSrPlOSuSoXfDBqzNhkK4x73rDDTdw3333zVZkyjyg8/qf/xElbaZ0rWMl7VVzHFHoM+JB6kcve+2NKSLNVTs03zEkSUmi7MFpTiG7pByP1OFqHn3kPRTYe7VueylpWVQbCojuDt15Co7uFgAs8enUGfKJ7gndEySOrkYALEnZNBjyieo9HOSIpq+3WVuewZpWSL2xkNj+0D/JosxTo8yrBtCllAJgawrdz7dIExIJVkgfzMyQYOwES+otGPHgU4vPjSoSXjdiMMEyHJsQpGbm0SetOFtC98A5GKTPh0l4EKPMwQLwJZeQSQcdXZ1zHFnguB19RAknXmsKcdHR1ItMjF2heyDv7O8GIC4hma6oQlKcdcENaAZcva0AmOPT6IkpJt1ZDSH6OebuaQLAlJBJf1wR6a7akF0o1d6hvaaiU/Poiy0izd0AnrFPbirKdA01thmRYMVma3PW22tCdyQ40sz7BMtisdDR0RERB8ujkr4xEyxh1N6AHmdod82aDVJKOjo6sFgsE984hOl9/hLBESMuxWmxHJaZOJtDf77QXHK7B0cEjy8RBLBkLQagsSp0O+8NdHdoP1gTAWizFJBoC90FlD3+jm6G6EQ8iUUkyh68A6HZ5c3b1waANSEdT1IZMdhwdIZmwujzJ1jWxEy8yWWYceFsrw5uUNPk6tNOqMQkpkPyAvT4cLWrUSxlFoxR9p9RsBifFNga1UnTUDHvm1zk5ORQX19PW1tbsEMJCldPKzrpwdCjP+46t8uJ0daKq9mNyRobhOjmN4vFQk5OTrDDmFU6nwuvwYBed+y5kqLUGLbJTEq6VIngVLhcDkxw3IjgoLTCJfAO9NbvgdVr5zK0gLH1dZEA6KMSALDHF5PRvBHpcSLG+LvnM+HoxosOvSkWU1oZ1EJr9U4yy08LdmhTJge0cseYpAysOeVwBFqqtpGfnBfkyKZODGjf2dEpOVgy/3975x0e2VXe/8+ZrpmRNOq919X24l5wwbGpBlKA0CGUBAJJIISSkF9CCL13EnoMxsYBDDEETA+uu95epFXvXZre7/n9MaO1vFYZSSPNHel8nkfPSjP3nnvO3rlz7/ec9/2+u6AbpvpOUV3alOGerR0tNA+A2e7CXtUO3TDdd5rK8l2Z7Zhi23GptuVl38U1ZYUMUwwz6p6eLeheYJnNZhoaGjLdjYxx4kNvIyc2Q/M/Pr3IbyDgx/rhmzhW+zr2v+7jGeidIpPENXmpKO7l8rumIIcfUYkj+AeIBMBiz0gfs41YOHFzE6alQwSLa3cRkwbiWRx6GfQmVncsjnwARGkb5ok400OdFDdkX805U8RLQNjJNRhw1eyCozA3eDYrBZYIzhCTBmy5BRQ3HIDfg2/oDFz1/FX31R3BxOfM7CikqH5vYizDZ+GqF66yo/4QQXfilxwXpfV74bfJsSgUaUbEll7BspqMjJuqKfdmb7TBTkP3IYI7HYMWIS6WDley2x2MGsoxz6sZjZ1IOBbHQoz4EkVxTUYDXmdyYmJWhbKkykJhb8MyAkuYrEyYKrBlcT2SsH8eeFJg5VYlwh6n+89kqksbwhJ1EzQmVvCrG3YRlUYiWRoaawrNMC/yEAYjtTU1TMs8tKnsFPMi7MZPDhiM1FVXMSldyMnsHIsh4kZDgCWXhqpSRmQR2jYo16DQHyIeJo5hyTB1t72ekvBQ1uZl7jSUwNI5RhlZ8gF6gWlrHa5A/9Z1SKEbQlENK1G0ZT4fsrA58ct09hoYbDXRyMIK1vKhcnP2BkpC/VvUo/QT8Sdm43McLgDKGhJW7dnqTmWN+QgZnQAU5DkYFmWY5rJTAJvD8/gMCbFoMxsZMVaR48nOGWtjxItfJIqlOq0mBgw12D3ZeV6MEQ8B4QCDAbvFxIixmpwsdkVU6BdDPERUmGGJ8jzxwiZyCBF3j2agZ4q1ogSWzjFpUbQlip4uEMxvpDI2gqaK8u44wrE4FhFFW8bxzlHZBkB8SgmsVFkQWMutYAFEC1qokWO4vYGt6lZaiQWSAis3YXJRVlLClHQhsrRmWk7cR9Scd+nvaWst+Vk66WReJBYB5u11FIUGM9ij9WOOep8ylrmc5FiycPbdEvUSfMp5qackPJCVY1HoG6MWJiqWvv8slF+ZUU6CWcGmCywhxB1CiE4hRLcQ4l2bfbzthjGZY7MchpI2rCLK+FB2Phwp1k84qmEhilzm81FbVsSwLCY4lp1hOZkgthAiaF5+BctS0YFZxBnuzc6QunjIA4AjrxBIFC0fM1fj9GXnSolDPlVgBXLrKY2NZqUluDXmJWx60rAokt9EgZxHC2SfK6Il/lSxGHY14pQ+SBp5ZBPWmIew8cnzEnU1YZdBpHcsg71SbEeM8QixZQRWYe1uAOaHzm1llxTrZFMFlhDCCHweeBbQAbxUCNGxmcfcbphkBM2w/MNefk3iv3OqL3ttoxXrI5TMwVquKG5jiZNerYK4yhVImVg0IbCMKwiswvq9AMwNZKfAkiEPmhQ48/IvveZxJGP7s4xQNE4ufjTrkwJLFrVgJYpnIvtCuHI0PzHzkw/y5uSM9fRA9j1QXb6yaC5NjMU7koVj0XxELIvGUpaIDpgfOp+pLim2KQYtTGyZZ77quiYC0kpkQt3Ts4HNXsG6EuiWUvZKKSPA3cCdm3zMbYVZRpHLhIABVDQlXL+Co+qLfqcRTuZgLWcp3lTioFdWJHI4VChLSsRXMbkAKG1ICKzYeJZec2EPfmwYjU96T8YKmnDhJezJrnIYnlCUfPxIm+vSa/aKREHOqb7sE8B26SO+6EHeVZOYsZ4bzL6QILvmI255UizmViUszWcGs0tgaZrEqfmImxefl8RYZrNsLAr9Y15BYBU5bQyKCszz2ZnLuNPYbIFVBSyeFh1OvnYJIcQbhBBHhRBHd2qtq5Uws7LAchWXM0de1uZPKNZPKBrHKqJPKzK8gMtuYcJcgyXuB9/EFvcuO4knLXKNK5hcGG1Oxg1lWOez85ozRHwExFNt+63JGfnJLBMlXr+fHBHBkPPkalxJfcK0wzeSXQJYi2s4ZQAWrcZVNrQRkwZC49kV5huLazgJPGVlsbKulbA0E86ykGVvOEaeeOpYquqaCUoLkYnsNIZR6BfTCsZmQghmrDW4AgNb3CvFesi4yYWU8itSyiNSyiMlJSWZ7o7usKyyggUwbq4hN0vzJxTrJxzTsBCDFVZbIq7GxC/TKqQgFeILIYIW24rbzebUUxTs34IepR9j1EvI8FSBVVCbCDXOttj+gHsWAKO94NJrVVU1uKUDmWXumV6/F4uIg22RWMzPZViUYZzNrnBHbzBKHn6E7UlRUl3kpF+WY8wyh0dPMEoeAchxXXqtIt9OPxWYVAkMRZpJCKzl7z+BvEaK4xOwUC9LoVs2W2CNADWL/q5OvqZIASklZpZfoVjAl9tIeXQQqcLAdhQJgRVd0VLcVJpYmVBW7amxECK4Ug4WQLighVptGH8w+25ylpiPkNHxlNeqGtqJSCPRLJuRD3kTAsvkeFJgWS7Zm2eXKPFdEotPCiwhBFOWGvKyzBXR45nHKCSGRaLEbDQwbqnOuslAj8+PXYQRi8ZiMAimLLVZd14U+sesRdBWeOYTxS0Y0fCPq3u63tlsgfU40CKEaBBCWICXAPdv8jG3DTFNJlcoVn7Yk0UtFOJhZmp8i3qm0AOhaBwrUYR5+dmuosp6gtJCaDy7HpwzxUKIoMW68jVnKtuFTUQZ6suucCcAS9xPZJG7G0CuPYcRUY55PrtESdiXECVWZ8FTXr9kCZ5FBNwzAJjtTx2L39lAaXQENC0T3VoXfk9SLC4SJQA+RwPF0VGIRTLQq/UR8CTOy2IRD+DPrac4Np5VY1Hom7gmsRJZMWrJUZnIMc22cO6dyKYKLCllDHgL8L/AeeAeKWX2ZetmiEg0hlnEVwwBA7BXJcJ7xnpObUW3FDphYQXLsIIAbyrNo09WEFYCKyUWQgTNq4QIFtQl8nxm+7PPvdMWDxAzO5/2+rStlvwsi+2P+RP25dbcwqe8HnE1USxn0YKeTHRrXQS8ibFYnK6nvC6Lm7ERwT/Vv/WdWieBpMC6fCxaUWL2PTaTPUJ+YZXUcpnAoqgZIxqR6e4M9EqxHQnHEpOm0rT8/ac0WRjeP5p9k3s7jU3PwZJSPiClbJVSNkkpP7DZx9tOhEPBxC/GlR/2FlzNvMPZlT+h2BihaByLiK1Ys6mxxEmvrMA4px4CUkGLpSawypr2AxDOQidBu/QTX0JgBXIbKI9nV/2omH8eAHte0VNeNy2YdvRnzyxv2JcQWAsFoBewVyQc6yayqBRHOCl8bZcJ35ykw2M2FUoNJ4Wv1fnUsdiTKwlT/dkzFoW+CUW1xArWCgKrpryMSelCKmGvezJucqFYnkg4IbBWeoAGKKluJizNaKre0Y7i0grWCiGCNQU59FOJPTCqkmJTQIsmwn0s1pUFltlRwLQoxDKbXdeclBK7DCAX2WcvIIpbsBBjfjR7btwyOA9AzmUP8vnVCVEyl0U22tFLYvGpYyltSFi1+4azR8xHlhGLRfWJaAtPFo0lmizynHOZiC+uy77zotA3oWgcm1i+9AqAxWRg1FiN3Zs9q8A7FSWwdEwkHAJY0cQAQBhNjJmyL6lbsTEWwglWcrwzGQ14nA0Y0CDLnMgygRZLTWABTNkaKAxkV8J+KBzFIcKwyN1tAcelGfnsWfUhNA+AyHnqg3xFw27iUmRVaGws+SDvzH+qwKqqqsMj7WhZZFSzMBbHZaKkvrKSKZmfVZOBWnIslwvfuqoKpmQ+cbWSoEgT4VhiBUussIIF4HbUUhzOrhzTnYgSWDomFkkIrJVWKBaYd9RTGurf5B4p9EQomrBpN67y+dAKmxO/ZNEDWqaQCyYXlpXzHgFCrmZq4kOEIrHN7lba8HoSD4uGJQTWQv2obIrtF2EPYcxw2TVQ7MplRJRmVWisFkrki9kuC0VbcEW0ubNngmQh9+1y85ECh4VBUYU1i8Yig24ADJeZjzitJoYM2XVeFPomFeMqgJiriXzpJe6b2aKeKdaDElg6JhIOAKuHCAJEC5qplBN4fL7N7pZCJ0QjYcwijjDbV9xuIVcgPpk9D84ZI5ZcNTY7VtkQDGXtOEWIof7sEa4B74K729MFVmVlNXPSmVX1o0wRDwHx9HMlhGDSUkueP4tWGENuYhgQlqePZz6njsJsckUMJUSJWFTTa4G5nDoKg1lkppIcC8uMpSiURWNR6JpQJIZNrBz2D2DOwhzTnYgSWDommgwRNK2ScA9gLW/HKCTDPSrhdqegRRICHHPOitvVlJUwLIsJjqjPxmoYYkHiCDCaV902v3YfALN9Jza5V+nD75kHwGx/+sOiyWhg1FSNPYtCjS1RDwHj0/PJAHzOBsqyyN7cEPbgFw4Q4mnvRVyNlMpp4qHsmEAzhN1EllhZBAi7GsmTHgjMZqBna8cYdhPFBEuEbUVcjeRLDzJLxqLQN5FQ4p6+1CTLYi4Vhh9U93Q9owSWjlnIwTJbVl/BKkraRs8PZI/TlGJjXHrYsqy8gtVY4qRLq0ZOqmTs1TDEQoSwLvmQeznlLYcBiIxmT3mEcNJIwexwLfn+fE4dReGhrevQBrHGvIRNSwssWZSwNw/OZMcKgynqJbjEahyAqawVgMn+7DDtMEa8S64sAphKE2PxZInrrSnqwW/IXfI7wVSSGItbGV0o0kA05AXAYF1ZYFU1dBCWZqJZ6GK7k1ACS8fEIgkXQaNl5RUKgLLGfcSlID6eHTctxcaJX1rBWllgNZU46JLJlYl49uQLZQJDPEiY1Sc0AGy5BYyJUmwz2XOTiyQFVo7j6StYANGCRP2oWGB+6zq1AXI0LxHT08Md4UlL8Ime7Jh0skS9hJYRi67qxIz1bJbMWJujXkLGpR8S85NjyRardmvMQ8j49LIGAHlJt8rZAXXfVWychUnT1QRWYW4OfaIK61z2mPjsRJTA0jELJhcW2+oCy2RzMGqsxD6vLridgkwxRNBltzBmqccoo8pJcBWMsSBhkZrAAhjPaaYkkD1GCvEFy+n8oiXfNydXFyZ6syO23675iVuWFlhFSdMO70h2PPxa4z4ipqUf5Csb96BJQWgsO/IobTEPoWWEb2V9OxFpJDSeHWOxxnyElxtLwy7C0kR4LDvEokLfxEJ+AIyrCCyACVsDRX51P9czSmDpmAWBZU5hBQtgOqeRkqC64HYKMpL4MiYFQ4ZYUWI2n6nsWW3JBMZ4iIhYPedxgWBBG9XxEaJJQxq9E0+uTF1emHeBosZEAeXZ/pNb1aV1E47FycWPZl364be2po5Z6UROZIfAytF8xMxLr2AVuPIZF8WYZrPDgMSueYlaXEu+V1WUyxBlGGZ7trZT6yRH8xFd5rxUFubSSxXmGTWxqdg48XDinm7KWXqiZTGB/BaKtSlIuo8q9IcSWDomHk1YRltTqMkDECpso0obIxTIjkRoxQaJJkJIV1vBArBXd6BJgTahBNZKmLQwUUPqK1iG8r2YhMZ4t/4FCYAMLl00dYG6pj2EpJnIqP5XsLzBKPn4Ice15PtWs4lBUwMOt/5rLmmaxCEDaMusxgGMWRoo8OtflMQ1Sa7mJWZdOgzVaBCMW2rJzYJCqdG4Rq70EV9GxBsNInFefNkhfBX6RksKLHMKK1iUJsJTfcNq9VSvKIGlY7RkDlYqIYIApordGIVktDt7ku4V60dEk6smq5hcADRVlDAkS5ST4CqYtNCaBJar8SAA833HN6tLacUQchPEumzx8hybhUFjLTlZENvv8bgxCQ1DztIP8gDzuc1UhPt07yToDcVw4UO7rGDyYjx5LVTGhiBZDFuveIJRXMKPtC0/Fl9eC6WxEYiGtrBna8cbipEnAshlxCKAL7+FovjUk3buCsU60ZJRKZYUVrBya/YC2eViu9NQAkvPRBIrUdYlLJWXorA+Ed4zP5Ads+mKjWGILaxgrS6wWstz6ZLKSXA1LFqImCH1EMHapt0EpYVoljgJGsJufGLlm/eMo5mykP5XFwLuKQCM9sJlt4kX78JOiOB0/xb1an3MuuexizBGx9IriwBaaQcm4nhH9H0Nz/kC5IkAYoXzQtluTGh4dT7h4wlEyCOAWGaVFMBQnjDt8A/rf9VXoW9keEFgLR2SupjK+jaC0kJ4VN/X0E5GCSw9kxRYBtvqsxkAVY27CUuTchLcIYhY6iGCrWW5XJTV5Hj7IB7d5J5lL2YtTMyYusCy26z0G+vImc2OhH1zxENwmbpRC0SK2imScwTnJ7eoV+sj7EkILFNu8bLbOJK1ysYuPrElfVov3rnE/7XJufxY7NWJsUz36nu11OueAcDoXF5gueoPADDVrfPz4nVjFnEM9uVX4wqSE5tTPfo+Lwr9s7CClYrJRU2Rk25ZhWlW/9EGOxUlsHSM8VIIWGoCy2azMWiszorwHsXGMcUXBNbqX8ZOq4npnAaMMgYz+s/jyBQWGSK+BoEFMJfbSkWoG6TcpF6lj4S728oCy16dCD0Z7Tq2FV1aNxHPNADWvNJlt6loToRw+gb1vcLoTwosW17JsttUNO0lKo0Eh/VtOx9MCiyLc/nVuJrmRK5fcFjf5yXgTnzGTI7lBVZ9Uzs+aSOk89U4hf65ZFy1SqFhALPRwJilngKfup/rlQ0JLCHER4UQF4QQp4QQPxBCuJKv1wshgkKIE8mfL6WltzsMEfUTwgIGY8r7TOc0KSfBHYIpnsxfSGEFC0CWJJJilZPg8lhlGGlK7f9zAa10Ny68zE/qv0BvjuYlal455Lg0KUrcOg81jnomAHAWli27TXV5GSOyGKHzz3woGe5oL1heYNWWuOijEqPex5IUvjl5y6/GVRQ46RE1WKb1PZbA/DgANlf5sttUuuyJsWTJKrZCv8gUa1su4M9vwRWfgaR5kUJfbHQF6xfAHinlPqALePei93qklAeSP2/a4HF2JKaYnyBre9gLFbRRJqeI+dUFt52JxjUsMimwTKmtuDirO5LFqPX9UJNJLDKS8s1tgby6RIjQSOfjm9GltOLQfMRXSNgHqK5pZF46Qef25nFfYqUkr3D5h1+jQTBqaSDfq2+Xt6gvIUpyC5YXiwaDYCKnSfeOdRFvYiz2/OUFlhCCyZwminVeQy40nxDxuYUVy24jhGA6p5GigFpJUGwMEQ2gIVKeNBVlify/8Ji+v6t3KhsSWFLKn0spY8k/HwGqN94lxQKmWICgYW0Cy1SRuOAmek5sQo8UeiEYjZNDhKjBBobULuPmymIGZBn+EZWMvRSxuIaNMCLFm9sCNbuuBMA3cGITepU+guGkU51tBfMBwGg0MGRuINejb3tzGZghjgHjCvkxAJ78ViqiQ7rOPVwQiyuFCEJiAq1Um0QL6texTvMmwh3tK4gSgFBhOwXaHNI3tRXdWhdxT2IsjhVEPCTOS77mRvr0nbeo0DciGiAirCBEStvn1ybCuad7T2xirxTrJZ05WK8Ffrro7wYhxHEhxG+FEDcst5MQ4g1CiKNCiKNTU/r9os0ExliAyBoF1pNOgvqObVdsjEA4jp0QcWPqn4+28oTRhVBOgkviD4SwiDgiBdv7xRQUlTJOMaYpfedguD1z2EUY6Vz5IR7AnddCZUTf9ubG0AxekbvqBIOhrAMzMeaH9DvLKwIJgcUKNu0A1srEA9WkjifQpC+x6mPMXX41DsCSHIuezSGkP/FMIhwrXzOWyj0AzOjcgEShbxLPfKnnANc0tOGTNoLKwVKXrCqwhBAPCiHOLPFz56Jt3gvEgLuSL40BtVLKg8DfAd8RQixZqU9K+RUp5REp5ZGSktVv/DsJc9xPdA0P0AC1jYkLLj6u74c9xcbwhKLkiiBxy+p2rgs0Fju5SA0O3wDEwpvYu+zEnyzQbbSs7ZoDGLe3UOzTt7mMb2YUAINzeVOIBWTpbhyEmBvV7yqWNTyHz7h6CQtXfSKnbLxLvyGc5tA0HpEHJsuK25Uk8+NmevXrvmcMTOITjlXDnIqbDgEwp+MacsbgDGGsq5oOlDQfBmCu5+hWdEuxTbHE/UQMKRQZTlJf7KBHVmGa0fe9Z6eyqsCSUj5TSrlniZ8fAQghXg08F3iZlAkbLSllWEo5k/z9GNADtG7aKLYplniQmDH1iw0gN8dKv6EWm7Lu3Na4g1Hy8aPZXCnvYzEZcDubMRCHaX3ncWSCkC+Rt7hS4dpl9y3aTXV8hIDfk+5upQ3fzBgAVtfKoVsAuQ2JB8bxC49tap82giM6S8C88ooPQOOuQ4SkmdCgfkWJMzKJ27S8694CDU3tuKWd2Ih+DUhsoSm8ppXDUAGaGhqYknnEx/TrimgJz+A15q8astVYX8ewLEaO6ve8KPSPPe4ltIoJ0WJMRgPjtkYK/Sr/T49s1EXwDuCdwPOllIFFr5cIIYzJ3xuBFkBZ260RqxYknoIF9+XMOpooDfVtQo8UesETjOISPliDwAIgmRSLChN8GiFPsn6P3bXmfW01BzAKycB5/c5g+5MrWK6SqlW3rd91hIg0EhrUp1W7lJLC+DTBnJVzYwDynTn0GBuwz+g3jCY3Oo3PsnoEh81iotfUTN6cfiMUnNFZgpbVxaLTaqLP1EjuvH6/ixzRWYKW1cVins1Mr6mZ/Hn9nheFvpFS4tS8hC1rm+ALuFrJ0+ZBx7mMO5WN5mB9DsgFfnGZHfuNwCkhxAng+8CbpJSzGzzWjsMmg2hrdDSDRKFQl3QTSVrMKrYf7mCUPPyIVRL8L6egup2INBIZ0+/DZqaIJo0GTCvU71mO8raE0YW7V5+CBCDiTnwfFJat7kXkysulz1BHzrQ+VxfcgTClzCJzK1Pafjp3F1XBLl3mlEXjGkXaDHHHyjlLC8zmd1AV6YVYZJN7tnbCsTgubY5YTmrh/rN5u6kI90E0tMk9WzuaJinRpgikIOIB3K4OyqLDENKvAYlCv4RjGvn4iFtca9rPWL4bAL/Oa8rtRDbqItgspay53I5dSnmflHJ38rVDUsofp6e7O4dwLGFikErBucuxVSUSbie69RvbrtgYCytYJsfqs6uLaaksoldWElBJsU8jnixtYHau7f8UoKymBQ8OGNenIAHQvONoCCy5qT38TjnbqQh06bKA8vjoEGYRx1KQmnFtvGw/DoJ4dZhTNj7noxg3Ii81sSjL92MhhkeHxZMn3SHKxRxyFYOLS1QewEQc7+CJTe3XepjyhqhgGi03tc+YoSqRH+ft128oqkK/eEMxCoRvTWH/AAVJY7NZ5SSoO9LpIqhII95ghDz8YHWted/SpsQX/bzOC4Uq1o87ECEf/5rFQFtZLl2yGpPOC3xmgnggIbBsuWtfwRIGA8PWJlwe/RYbtfpHmTUUgtGU0vax8v3k48U7ob/o7tmxfgDsJXUpbZ/fdASA0QsPb1aX1s3k+BBGIbEUrB66CZDffEViv85HN7Nb62J2ahi7CGMobEhp+6KWqwGYuPDIZnZrXYyOj+EQYUyFtSltX9KSWMXW43lR6J9Zb4A8EUA41nb/qa9rYEbmEh5V4al6QwksneKfn8IoJNKxfLHG5airq2dG5iEn1AW3XQn73RiFxGhfm8CqLsihT9TiDI5A2LdJvctOYv5EFHN+4frcTH2uDuqifUSj+qy3lBcaZc6yusHFAgtGF6Pn9ffwG5geBKCgPDWB1bDrCGFpJjSgvxBO72ii2K6zvCml7Rtb9uKRdiJDOhzLeCLZ3lbSmNL2LS1tzMhcokP6W/WZG02MxVmamlhsa2piTBYSGzmxib1SbFfcc4kcqrVOmlYV2OmhBtusfif3dipKYOkU32yilogpb3VL5cuxmowMmupwuJVT3HYl4k2tbs7lGAwCnytp6DmlnCYXowXmiEkDdqdrXfubqvaTIyIMXtRf6BZASXwcf07qteDrOq4kKo0EdShK5Ezi4TevoiWl7QvzHPQY6sjRodFFbCrxPV1Ysyul7YtybVw0NuLQ4Vh8Y4nzUlLTltL2LoeVbmMzubP6C60NTPYDUFiZmljMt5vp0bkBiUK/+OcTAsuWu7ZJdYNBMGlvpijYq8sc052MElg6xT+XsFS2u1KMZb8Md25zInlYXXDbktAlgeVa877GS06C+i28mhFCc3iFE7FK4drlKE7Wwpm6qL96Sx6/nzI5SyyvJuV9il359BlqsE7pTzDmeHqZE/lrMnmZcrZTqcOcMjHbSwwj1qLUVuMAZvM6qAj36M7oIjaTcK+1laS26gMJ047ySD9Eg5vUq/UhZhLC11qWmogHmHd1UBYdgrB3s7ql2KYEPdMAOFxrj6AIF7SRI4PgHkp3txQbQAksnRKaT6xgOYtSD+lZjFa8CzshAlPKrn07InxJh0jn2gV4cU0rQWkhNKK/GfBMYgp78BtSL9x8OVUtB4lIE9qo/gTJYM8FDEJiL0stDG2BSUc75ToUJfmBAaYsqYtFSBhdOPHjHdfXyr7F08+UqSLl3DgAKg5iIYZ3SF+fNbunhxljCVjW4H5beQATGt4BfZky5bi7mTEUgy1122xD5QEMSDz9+hqLQv/E54YBcBSnHmWwgKUyYWzmGVR593pCCSydEvcmlovzi1Jzlroce+0+AMaVk+C2JCeYWOEkf+1fxs1leXTJasKjSmAtxh6ZwZ9C4drlMJotDJnrceqwrs9cf+JBvKh+35r2i5buo0C6L+U86YFAOEpFbJhIfmqhWwvkNiXMIcZ0lFMWjWtURvrwOlNf8QEobNHfWDRNUhXuZcaZ+ooPQGHLVQBMXtCPOURck5SE+ph3ru0zVrwwFmV0oVgj0j0CgKkgNVOVxRQ3JpwE5/qUwNITSmDpFOlPLBdb1hiPu0BFc8JJ0KdDK1/FxgjH4riik8SFCRxrz9FrKcvloqzGPKtysBZTEJ/Cb11fSO4Cs3ntVIcvInUWmhsfO40mBSXJG3GqOBsS7nsj5/Xjvtfb202x8GCs3Lum/RaKJ+spp6xvdJIGxoiXrU34NrfvwyNziOjIHGJkxk0jI0SLOta0X1tLO9Myj+iwjs7LpJsmRtCKWte0X1tzC5PSRWxETWwq1obFP0pA5KxpxXSBppoKhmUxsXE1aaonlMDSKUb/OPMif21hI4uoKS9jRBYjVJ7NtmPcHaJCzBC0lcE68oUq8230iVrs4SkIqPrfAPG4Rok2Q9SxvpDcBWTZXgrxMjasr9Bc+3wnY8YKDDbnmvar7biCmDTg7zu6ST1bOzMXE6s2hUmL71QpceXSa6jDpqOcsvGuoxiEJDcpZFMl326lx9SEY1Y/D1Q9Zx/HLOLk1R9Y034uh5WLxmZyZ/VjDjHceQy7CGNvuHJN++XbzXSbmsnT0XlRZAeO4Bjz5jIQYs37ljit9Ipa7PP6q/O3k1ECS6fkBYeZsawvPBASzjKjlnryfd1p7JVCD/RN+6kUM8gUC5NejhACvysZxjOlrF0BpidHsIoohvzUahEth6sxYXQx3vlYOrqVFmKxOHWBc8zkpeZSt5iyokL6RLWujC7ig0eJYaC0ZW2iBGAit4OqwAXdmP+E+hJisax9bWIRYDZvN1U6MrrwX/wdABV7nrHmfedcSaOLSCDNvVofvu7Eim3JrhvWvO+saw/l0UFldKFImVhcwxWdIJizvgk+IQSzjmaKQ4MQ12eZkJ2IElg6REpJSXSUgGNtSdyX48troSI6pC64bUbftJ9aMYm5qH7dbRjKdid+USucAEyP9gOQU7z2+PfF1LRfgSYFwaETG+9UmujsPEuZmMVQd9269h9zdFDhP68LowspJaUzjzJoa0esxUghSbz8IE4CeEf1ER7rGn+YEVMNZtfaJ0tEVcLoYiG/LtPkTR5lyliWcmHexYiKAxjR8A2cSH/H1kHO2CPMGwuxFK8tNw7AUHUYAxJ3j/7cRBX6ZHQuQL0YR3Ol7iR6ObHidszEkNP6MvHZySiBpUOm3T4qmCbuqt9QO6JsN2ZiuIf1l3SvWD/j42NUiFmsSeeg9VBa1YBH2lX19yS+iV4A8svWf4MDyMl1MWqowDatn//X8VMPAlB94JZ17R8p24dLeghN9aexV+uja2CIXVo3wZob17W/q/kaAEbO/SGd3VoXk3PzdETPMFu69tUrgKJkiOTEhcyPZWzWzf7IcaZK1jeWwtaEOcREZ+ZNO/onPRyOPsFU2fXrC9dqS3zGprr0k7eo0DcDvefJFUEsVWvLxVxMTlXieWBuQB8TLgolsHTJWP8FjEJiKWneUDuO6kRI0HS/igffTkSSokgsrEKtg+bSXDplNRHlJAhAbDIRu15ct37RusCks5XyoH5i4fMHfs6kKMa1xtyYBRzJPJTR8w+lsVfrY/iR+zAKScWR569r/6aOQwSklfBA5lcXzv7+hzhFiIKDd65r/+a2PbilnagOjC5O/O4n5IkgRYdfsK79W5vamJJ5uhjLhUd/hkv4yd/3nHXtv6u5gSFZgjac+bEosoPpnoQpStk6wp4XKG9M3Lvmh9SEul5QAkuHTCcLlZa3Ht5QO8W1CTenwLh+HvYUGyMW1zBNJUVR6drcuhbTUuakS6vBopwEATDOdjMtCsjJW79N+wKR4j1UyQnm56bT0LONMT09xZ7gUYbKblnXbDxA7a4riEgjgb7M5pVJKXF1/4gJQxmFrdeuq418Zw7dxkac05mf5bWe/T4ekUvVwdvXtb/DZqbb1ELeXOYnSXLO34NPOCg78Kx17V/gtNJtbCZv7nSae7Z2zGfvwU8OpYfWJ+KdVhO95lYK5jN/XhRZwtgJ4hiwVW5g0rSylBFZdGmyUJF5lMDSIWL0CcJYKKxfm6Xy5VRXlDMl82FaGV1sFy6MezkgzxHIqYB1mlwAVBfYGRSVWKNu5SQI5Pt7mbLWp6UtR12iRMLw+cwbXZz/+VexiSgl171y3W1UFuVzUdRn3H3v3JnjHI4dZ7zxResWiwDT+XupDndnNDf1fGcnV4Qeor/6ToTJsu525l17qIr0IaPBNPZubZzpusg1oT8wWPkcMOesu53Z/N2URQYh4k9j79bGhd4+rgv+hqGqZ62tWPJleAr3UhIbR/qm0tg7xXYkrknqPEcZzWkD69pcXheTbzczbKjC5tGXg+1OZkMCSwjx/4QQI0KIE8mfZy96791CiG4hRKcQYn1TdDuUYvdphq3NYDRvqB2z0cCYsZIc30CaeqbINI/2TnON4Ryy/oYNPWQaDYJIXn3ij9md/YUcjUapiQ0RyG9KS3uVuxIhdd6+zIYIhUJBGrq+Ro+5hdo916+7HSEE445dVPgz6743978fIoyZ5mf99cYaqjyIlQiz/Zkryjnw4w8ihKThOX+zoXYM1YcwEWemN3OftcEffxiziFH3nLdvqB1RmXmji4H7P4RNRKm6Y2NjMdckok/mulXBYcXKHL84yF7ZTbhm/d/RC8zn1FIUGtSFIZEiPStYn5RSHkj+PAAghOgAXgLsBu4AviCEMKbhWNue3sEhOuKd+KvW5/h1OfM5dRSGBtPSliLzdB/7JYXCh2PXH224LWNxY+KX2d4Nt5XNDHc9gVMEkVUbC8ldoKislmlcT4ZyZoiH7/0U1UwQuv5dGxLjAOGy/TgIEJnKjEPVycd+xTXen3O+6s9wFG3MSr84aUIwkSGji+OP/4FbvffTXXknueUtG2qruG3B6CIz5hAnnniU2zz/TVf5c3FUtm+orcKWxMTEZIaMLk6cOMZNc9/nbOlzya3ZWC5mecc1aFIw05V50w6Fvhl++B7MIk7lVS/acFsRVxMO6Qd/5sPTFZsXIngncLeUMiyl7AO6gbVV7Nuh9D70g0QS9xUvTEt74fwGCuU8MuROS3uKzDEw42fv9E+JGmzQtr5ch8U4K5rRpCA23ZOG3mUvU+f/D4DSddS8WY4RazNF3szlt40O97Ov+wtctO1l941/vOH2chsTX9/jGTC68Pr95P70bcwaCmh/yQc23F5z2x7mpJPY0LE09G5t+ANBbD99Gz7hoP7FH91wey3N7czIvIwYKgRCIcRP/oaQsFGbhrG0NSeNLoaPp6F3a8MXDKPd/zbiwkTjSzY+lvbaSnqpRIxu/VgU2UMwEqe2/z6mTBXYG6/ZcHvm0sSEjWdElV/RA+kQWG8RQpwSQnxNCLGQIV4FDC3aZjj52tMQQrxBCHFUCHF0ampnxytrmqT44j1MGMouWb1uFFPSiXBuSBWUzXbu/e1xXmT8PZFdL9pQrPYCNSWFjFJEcGJnJ8WK4ceZI5eapvUnGF+Or2AX1bEB4tGtLwIbi8WY/PbrcBAk708/t+HVK4C6tkMEpYVA/9E09DB1tLjGya+8nkY5yPwtH8aWu3ETErvVTI+5dcsNFTRNcvQrf8ku7SJTN/wbtvySDbdps5joNbeQP7+1ZQE0TfLQl97Cfu0ck9f9K/aC9RVIXcyC0YVzdmtXfjVN8oev/A2HtNOMX/d+cgrXn9u6gM1spM/aTonnjArXUizLr3/+Qw5xnsCB16Xlezq/OmF8NTOgBJYeWFVgCSEeFEKcWeLnTuCLQBNwABgDPr7WDkgpvyKlPCKlPFJSsvEbTjbz6EO/5ED8NNNtLwVDehYXc6sSVu2zg+qCy2a6JrxUn/gEZqHhuHlj+QEL1Bc7GNDKiE/v7BDBMs8p+nP2INJ0zQEYKvZiEXFGe7bWGEKLazz8xTdxIHyU8/veRVnTgbS0W1Ocy3nRgG1y6/KWpJT89qvv5Hr3//BE3etoueHP0tb2fMEeqqL9yC0yVJBS8qv/fBfPmP8BJ6pfTuutr0pb257CrR/LL772Tzxz/l7OVv0ZTbf9Rdrans3voDwyAJFA2tpcCSklP/vav3D73Hc4X/lCGm97Q9raDhTvI1+bR7qHVt9YseMYn5mn6ei/MGMopva2v0xLm1V1rYSlmdC4cgfWA6s+UUgpnyml3LPEz4+klBNSyriUUgP+gyfDAEeAmkXNVCdfUyxDOBIm99f/iJtc2p73t2lrt7y+HU2KHb9Kkc2EonHu/fYXeInhl4SPvAGKN1YfbYHGYgcDsgyrpz8t7WUjnpkJarURgmXpyb9aoKgh4SQ407N1oVvxuMavv/AWbpi5lycqXszBF6VHiEPC6GLCsYuKQBfEY2lrdzmisTi//NybuXn0PzhZeAcHX7XxsK3FGGuOYEJjsmvz62HF4xq/+dLf8szRL3G68Hb2v+bTaW3fVH0YI5KJrs1fXYzF4jz45Xdw+/BnOeu6mY7XfiGt7W+l0UU8rvHzL/8Dzx7+JBdcN9L+uv9Ia/u2+isAmNqC/Li4Jnn4sUeIROObfizFxvEHw5z/8itpY4DIsz6GSENECkBVkZMhSjHM7exJU72wURfBxXEBLwQW1vbvB14ihLAKIRqAFiDznsU65uFvvIc98fMMXfXPmOyutLVbUVzIOIUw25+2NhVbRyAS4/Nf/hzv8H4Ed+E+7Lf/v7S1XeCwMG6qJCc6Bzs0R6//5G8AyGtZX12l5aht3UdEGomMbk0YWigU4rHPvIxbZ+7idPmLOPT6L6Ul5GQxkbIDWAkTndjcQpY+n5dHP/FnPDM5ln1v+Q7CkF6PpPL2xPme3mQTAq9nnsc+/sfcPPF1ThY/lz1v/g7CaErrMcraE0YXmz0Wt8fLw596KbeN/ydnim6n4y33IDbodHs5RUmji4lNNrrw+Hz87pMv5/bxL3O26Hba3nxv2sdSk6wf5+7ZXCfBGbeXX33sZVzzwO08fN+nNvVYio0zNTXFyU+9iJsjv6Vn/zvSlm8PCXfgSXMVDuUcrQs2+k3/ESHEAUAC/cAbAaSUZ4UQ9wDngBjwZimlmlpZAiklv/vOB7lp9D85WXA7+5/1+rS2bzQIJkyV5Pn609quYvM51TvK2bv/ib8N34fbtYuC198PZltajxHOqwcPCav2ygNpbTsbCPQ+QkwaqN+3cYvcxdhsNnqMNeTMbX6oxvBAN55vvZxr4ud5vO4vuOLVH0u7uAJwNl4JvTB54WGqKvemvX2Angsnid/zGq6N93Km7c3sfekHNmUsTY1NjMlCGN48o4uucycw3vtKrtIGOdH6Fg689P1pC/1eTGNjCxOyAEY2b7X0zInHsP7o9dwg+znZ9Eb2v/zDm3Je2lt2MS3ziGyiAcmZ08cx//druVn2cqbxdex5+cc25by0VBbTSR2O8c0zujh95iTc93puk534pZWC3vuB9K1cK9JHJBLl0fu/TOOZT3GVnObC/nfS/sL3pv04AWcdxfMnEiU1NuFzrUidDQksKeUrVnjvA8DGLZ+2MT6flxNf/WueMfcDTjmvY89ffmtTjuPJqaHBnxlLYsXakFJyvGuAngf/g2dM/hf7xDwTzX9C2Ys/AxZH2o9nKGxMCqzeHSmwcqeeoM/UQEtuftrbnnY00+DbXBexo7+8l4bf/x0FRDhz7Se54o9eu2nHamjdi+cXOQT7jwLpy1WBRLjWw/d8jEMXPkZMmOi8+SvsuSl9OVeXYzEZ6LO20+BOv6FCLBbnD9/7CFd0fZKoMHPxtq9z4Pr0zVJfjsVkYMDaQpU7/UYX8bjGb+/+GNd0fZSwsNF729fYf93GXSmXI99h4VFTM9WzmzOWX33vU1zd+RGkMNJ9y5fZc+NL0n6cBcxGA8P2dm70/SbtD7uxWJzf3/Nxruz8GFIYGbzl84x1HePI0NeZGh+mpLw6bcdSbIzui+cY/M23aBr5ITcwRp+pifHn/wft+27elONpBY3Y5iNE3SOYC2pW30GxaaQ3VkGREpFIlCd++lXqj3+U65nmWOWfc/A1n8Jgtm7O8fLrcfkeQAbnETmuTTmGYv1omqSzt5fhx+7H1PsLro4+ziERYThvP4EXfIeypvTURFsKZ0UL9EN0uof0Bsjon3gsSkPoPCeLn8vGqhEtTaSog1LvgwTc09jzi9Patnt+lvPffCtXz/2YAWMdkZd+mz3N+9N6jMupL87lcRqpmkqv0UVfbxczd/8V10ce52zOYcpf+TV2Vdan9RhL4SvaR8XYQ2j+WQyOwrS02d/Tydzdb+QZ0eOcsx+h4lVfpa28Pi1tr4S3cC8VY4+jBd0YctIzWdDTdRb3vX/NLdFjXHAcpvq136SxePMf2OZduzkyc1fC6MJiT0ub3RfP4bnnLdwWPUa3fR9lr/4WzWUNaWl7JcIlB7APPkB8uhtjaWta2uzp7Wb2u2/i5ujjdNoPUvGqr1Nb3oAoacH4va9x7ld38Yw//4e0HEuxNrS4xuhAF+Pn/0Co72GqZx6mWQ7TDFy07eX8kXfRfssr0h7yvJicshbog8n+81QpgZVRlMDaQqbHhzj/86/R0HsXVzNBj6mJrts+x+GrNl7TaCVMxU0wAnMjXRQ2q3JkmWbWG2Cw6xTzFx/CMHqMMs8ZdtHPLmDOUMBo/QuovPmNVNcf2fS+VJcVMS4LyBm7SPrXcPTNwPmjNIowpvrNuSbsNXuhH0Y6j9Fy5e1pa/fkb39A6a/fwRVyhkerXsGBV34Yqy39q5uXYzAIJnI7OOT7AcTCYNrYhFA0GuXh732EQxc/S4WIcWrve9j7wnds6sPHYqx1R2AMxs4/RNWR526orXAkzKN3f4hDPV+gVEhOHfhn9j7/b9LqTLkS5tojGMa/ykjnY1QduG1DbYXCER7+7r9zVd8XqBCC03vfzZ4X/v2WnRdT9UGMM99mpucYRRusTReKRPm/736Eq3s/Q6WAU/v+kX0vePuWhU45Gq+AQZi88BAVGxRYoUiUP3zvY1zR/RmqRIyz+9/D7jv//tJYatqvZNhYQ2n3vUj5TsQmhHAqEkhNY3p8iIm+UwRGL6BNdWFz91ATvkg1HqqBsDTTY9/H0bqX0nz9n9JS3bYlfSuobYdHYH74AlUH/2hLjqlYGiWwNpnxoR4GHvsx9q4f0RE6zg1C0mXp4MwV76XjlpdjMG7+TctZ0QonYXboghJYW0U0iH+ih7G+c3hGu4hN9WD1DlAYHqFCTnJAaAB4sTPq6OBs9XOpOHInhU1HKNjCuOmGpJNgy3T3lh1TL0yd/z2NQOXumzal/bLmw/B78PQfhzQIrOmJUbq/83dc7f4pQ4Yqep99H1cduTUNPV0DlQcxd91LcPgUOUmXtPXQfeph4ve/lRtjXZx3HKH0pZ9nX017Gju6OlUd18IjMHfx0Q0JrFOP/oqc/307N2q9nHVcRdmff5Z9W/QwtUDFrqvhMZi9+OiGBNbpY3/A/D9v42btIudyr6byZV9kb0VjGnu6OiUdN8BJmD73mw0JrDPHH0L+5O08M36OTucRyl72ZfZVpseBNVXq2w8R+LUVX++jcOOr193Oicd/j/mnb+dWrZOL9gMUv/QL7K69rG6fEEzvegUHzvw7Tzz8IIeu3ZjQ3slocY2ZyWHmxnrxTfQRnRlAuIew+kfJDY9REhunRARZKCwUkFbGzNX0F15PX+UhXM1XU99xBR2W9OZMp0JNXQthaSI6eXHLj614KkpgpZm5qTF6j/6MWPdvqJx9jBo5SjkwIsp5vObVVF7/Clrb02sJvRqldYlaWKGJnfcQvZnEA/PMDHcyP9RJaKobMduLzTtIQXiYYm0GB7BwO3dLB5PmSmbyO5gueC455W2Utl9LYW0HbRlMRK0vdvATrYJ9nhMZ60OmMIw8zjQuKuvTE7pzOZXVDczJXJjYWD6JFo/z6A8+y64zH+WwDPJ41SvY+/IPYbOnx9p3LZS0XQNdMHruYZrWIbDc8/Oc/s67uXribjzCyYkrPsqBZ79+UwwTVqOhupJeWYlpnSYEMzPTnPuvd3Dd7A+ZEy7OXvcZdj/zlZkZS209o7IYw8j6rNpnZmc4c9e7uXb6+/iEg/PXfpKO216TkbG0NjbRJ8thcH1OgjMz05z5zru5LjmWzqs+RNsdb8rIWBpL83mCRkrXWT9uenaG0//1bm6YuRefcHLhmo/S/kfLXy+7nvVG/Gc+SeD3nwclsJbF5/MyNdLL/Hg/oelB4vNDmDzD2IOjFEQnKNWmKBHRSwIKwCtzmDKW4rGUM114CFnUgr2yg5KG3ZRWNtC0BZPlqZDvsNEryjHO92W6KzseJbA2iM8zR8/RnxPs/DUl04/SFO/lMOCXNrrt+xmpfgll+2+nvuNKqjL0IF1ZWsSEdCWMDBSpIyW+2TEmB87jG7tIdKobo3sAp3+Q4sgoLjyUAqXJzadkPmPGCsZsBwnn1iEKG8mvaqWycTcV5ZXkG/QXspFnMzNhqSUn+msIzII9Pbko2UCF5xRDjt0Ub9J1aTAaGLI0kO+5sO42es48RviHf8M1sbNcsOzG8aLPcEX75oeOLkdH+x5m73cSGlhb/SgtrvHIT79J/dEPcD1THCt+Li0v+yQHCktX33mTMBoEw/Z2dnvX9vCrxTUe+slXaT3+Aa6T85ws/xN2vfyj7M4t2KSero7JaOCi4yAH3Y+AFocUw/nicY2Hfvgl2k5/hGcwx4nS59H6sk+wy5W582IzGxlwHuQK928hHoUU7dNjsTh/+NFX2HX6w9wg5zlVdietf/5R2jI4lkRY7S72+X4MsQiYLCntF49r/P5/vkXrE+/nZqYTY3n5J2jPWzmX0+pw0VX7x1wzcBfnTh+lY2/mvisyRSwSZnp8gLmxPvyT/URmhzB4R7D6x8iNTFAYn6IQL5dPT03jYtZcxrSzlVHnzZBfg7W4ntyyBoqrmskrKCI3S8IuZ61VlARVgetMowTWGgkFA/Q88Ws85x+kYOIRmiKd7BdxwtJMt7WDR6rfhGvPbTTtv4H9ls0xrVgrZqOBcWMlDq+qjXA5WjzO1Egv00Od+Me60Gb7sHr6yQ8OUxYfxUno0hexJgXjopgpcyXjeTcSza/HWNxEbkULxTXtlJcWUWLMPlvUQF4jzAPTF6H2qkx3Z0uYmhiiWo4zUr55LmIA3qL97Br7DuGAB6s9L+X9fF43p+56L1eMfQe/sPPEgfdz8Plv3rI8mOXId1g4ZmmjdDr1VZ+ec0fx//DtXBs5Qb+xnt5nfYHDR/SRGxCtOEJR76+YHThHYV3HqtufP/EQsf/5B66PnqLP1ET4zm9xcO+NW9DT1YnX30zeuV8w1fkwJbtWLztw9sTDxH/yDm6InaHH3Er4+d/igE7GEm18Jo7TP2X63G8o3rv6SsyZk48T/fHbeUbsJH3mZiJ3fpsDezaWv5UuTA03YDn930ydeZCSA89edftTTzxC9IF3cVPsOEOmOoaf9xX27U89FLjxBf9I5DP3Mv/A+5F7frjtcrH87hlmhrpwj3cTmR5Auocx+UaxhyYoiE5SJOcoF5LyRft4sTNjKMFrLaPHvpfuvCpMhTU4iutwVTRQVFFPsdVOeq2IMkcwtz7xHa2s2jOKElirIDWN/gvHmDj+APah39ESPMVuESEuBd3mVo5Vvxxn+600H76V3RkI2UmV+ZwaqoNrm3XeLkRjMcaHepkZPE9wogtmerB5+ykMDVMeH6dMRClLbhuRRsYNZcxaqxkvOIQsaMBa0kReVRtlta1U5jqpzOho0o8oaUsKrK4dI7AGT/6OEiC/bfMcGgFymm/APP5tzp/4HbuuXT3PJx6P89j9X6Lx5Me4llkeL3wObS/7BIeKy1fdd6vw1dzE4d6PMzNwhqK6PctuNzMzRefd7+HKye8TEDk8sfs9HHjh32Ew6cevsuG6P4XejzD4f3dRWLd8VZGJ8RG6734XV8/9GK9wcnzf+zhw51vTXpx2I9Rf8wLCZ9/HxEN3rSiwxkeHuPj993HNzA/xCzunDv4Le5/7lrQXQN4ITVc/j9CpdzHx8N0rCqyR4UG6v/8+rp27n5Cwcmb/+9j9/Lfpaiyt1z4P/6l3MfvYPSsKrNHxMS7c/V5unPsBQWHj7L530/H8v0OkuOq1gKOwglONr+Da3v/kkd/+D1fftDEDl60mHPAwOXiRudGLBCd70WYHsfqGyA+PUhofJ5cAiy19gtLClKGYeXMpvflXcjG3GqOrGltxLa7yeoorG8nNKyA3YyPaegxFjeRMR5ibHKRgC1xMFUujn28hHXL0J1+h7ui/08AcDcCAoZpTpc/H2vZMGo/8EW2uokx3MWUieXUU+f8XIv5NqaekBzyzk4x2n8A7dI7odDcWdx+FwUEqtHFqRIQFw9KwNDNmrGDWVstY3o2Iwkbs5S0U1bZTWtVIrdlMbUZHsrW4KhoJd5kRExdY2608O4hrkpGJKSb7TuMbPoucvkjl9B+ISiMNe6/d1GM3Hr6V6O+N+M/+DFYRWKce+QWWX7yXa+KddJta8NzxFa44or88itobXorW8wn6H/wKRa/7zNPeD/i9PPH9j7G796tcjY9jxc+n9aUf4lCx/qYmGptaOWHcS2X33cSj78N4WakM9/wcJ//7I+wf+CZXEeRExZ/S/pJ/56CrZJkWM0djTRUP2a5m99CPiQc/hPEyu3a3x82Jez7I4aFvcC0hTpW9gNaXfoR9BZkLoVuOxqoyfmt/BkdG/4d4YA6j/anhl263hyfu/SBHhr7OdYQ5U/4CWl78AfYU6u8z1lBRwoO2G7lu9AGi3mnMuU9dJ5mdn+f4fR/j0OA3eAY+zlS8iNYXf5DdBWXLtLg6HX/6z4x/9H7Kf/NOZg/eSGF+6qvnW4Hf52W07xye4fNEJ7swzffi9A9SGhmmEDc1cOl+HZJmJo1lzFsqOFuwHy2vFlNRA86yRgqrmykpqaDWaNhR9+zVsFe0QidM9p1TAiuDKIG1AjkFVQzmHqC/4WZqrngOdTXN1GW6U+vEUNQEY+AZ6SKv4WCmu7NupJRMTY4z3nMS/9BpmLqA09NNRaSfYuZZuI1EpJEJYznz9lrO5l2HKGrCUdFGcd0uiiobqTcYqc/kQHREfUkevbKcqrHzWS2wpJSMTk4z1n0Sz9AZmDpPrqebisgAtWLq0g04hoFJYzln6l/JwZzNXXV2FRRz3HaQytGfIzVtSdvu/gvHmfzx/+NK/2+YpoDjhz/Igee8MePhgMvR0NDCI45nsHfoe8yMvJWiqoSVi3t+llMPfJnWrq9wPbOctR/B97x/44qOazLc45UJXvlmSh9+E8e/808cfNVHABgf6efi/36JjsHvcCNuzjivpvAFH+Jwi86/O697G/m/+lNOf/Nv2fvGr4IQjI0M0vXAZ9kz/D2eIdyczrue0hf+OwcbN7du2kYxX//X2H7+S85//S3s/stvIQxGRoYHufizz7N36LvcLNyczbuW0hd+iAM6H4v9prdh+dmDdH3rzez6y++CwcDgQC89v/gP9g7dxa3CzQXnFUTu/CD7W9fvzrmAKSeP4O2foOGnL+ehL7+KK/7u+5hNW/t9IuMxZke6mew9jW+sE2a6yfH2Uxweopzpp9QenKKASXMVnfnXEc+vw1JUT25FMyW1rRSVVlNrUAJqLZTUJRwmvSPngdXDUvWK1OJMj3Qz1nUc//Bpxj1hnLf+Pbd1rH/yYSsRUspM9+ESR44ckUePrs8FSbEyRx/5DUd+dicXb/g0Lbe+OtPdSYl4LMrIxZNMXXyc+MgJ7POdlIX7KGH+0jYBaWXYXIfb2USsqBVb5W5K6vdSUdeCUUehSHrm3KiH3i/+CTfnjeH4+9OZ7k5KzPpC9HaextN/DDF2ilxPF+XhfqrF1KVtIpgYN9fgzW1GK24lp2oPxQ37cFW2ppxsng4e+9GXuPL4P3D6us+y97ZXXnq978Jxpv/n3zjk+SVhLJytezl7X/zP2Bz6r0jW13Wa4rtuw29w0lN2B1bfMO3eR3CKIF3mXWi3vI/2a7Ljxq7FNR75xJ9wrf+XdJnbQIvTGOvFJDTO5hzBfvs/0XDgpkx3MyWklPzqM2/g1rl7GDJUE8VIfXwQg5CcdVyF/dZ30nDomZnuZsr84nN/zW3T32LYUEUEE3XxQYxCcs5+BfZb30n9YX3k8q2GlJIHPv93PGf6awwbKgljoS4+iElodOYcxH77P1FzIP0lF058530c6Po0v8t/Hlf+1VexWdOfFx4NBxnvO8NM/2ki4xcwz17E5e+jMjaMVUQvbeeWDibMVXjsdcQLm7CWtpBXvYvS+g6ceZkziNmOxOMa/n+torvsdg791Tcy3Z2UiIe8jHUdY7bnGPGxU+TNn6ciMoCd0KVtzhtaOPPsH/CnR/RVQFkIcUxK+TRHGSWwdggTcx5cn2qgs/7P2feaz2a6O08jHPIzfOEYsz2PI0dP4nKfpzbahy35BR2UFoZMdXhym5El7Tiqd1PSdIDiykbdzvRnC4FIjP/817/gLaYfYXjPCFjsme7SJaSUTM55GDh/FE/fExgmT1Pk7aRJ68cpEl+8UYyMmmrwOJuJl7TjrN5NWeMBcitbQQe5GKFwmPEPH8alzdHV8Ta0SJDcgZ+zO3qGgLRyqvLPaHvReygo0V9400qcfuSXWH/xTppjPUyKYoYLjlBwwxtpOnhTRiyxN0IkEuGx776fouEH0Yw2/MX7qb3ldZQ37s1019ZMLBbjofs+TV7vA2AwESvbS9V1L6NC76tvSxCLxXnkB58nt+d+NGFCK91D5fXZO5b/++GXcHX/AIPBQKRkH/W3vIbiut2r77xepOTkN/6G/QPf4KxxF/E7PszeIzeu2fhCSsnc7AwTvafwDp0lPnUBu7uHomA/Fdo4RpF4jtSkYEyUMGmtJ5DfBMWtOKs6KG/aS2lpxZYV3lbAifdfT54pSuO7H810V55GcHaE0QuP4e1/AsPEGYp8nVTERjEkP0fz0sGguRFPfiuitIOChgPUtB4kV6dpOUpgKTj3L4cxWJ20v+u3Ge2HzzPL0NlH8fQfwzh+iiJfJzWxxGwegEfaGbQ243F1YKzcT1HLldS27MNiyeYANn3zvo9+jH/1vx9e9RNoyIz7lpSSkfEJRs4/in/wCSxTZynzd1IvRzCLOAABbIzltBAs6sBafZDilisoqNsLJn04di7HwMVT8N0/p05LWOcOi0pGGv6Y1jv+koLSqgz3boNImXWCSqHYSZz73/+g4uF/pQAP541tTJVei63uCI7iGhx5BWiaJBaNogVm8c9NEHJPINxD2HyDOAPDFMfGKMR7qb2INDJirGImp56wqxlTWTuu2j1UNu0hN1f/K/A7gQc/+VpucP8Y6z+ObGnExlOQkrmRTsYvPEpo8Di2mTOUBS5SKOcvbTJMKaO2ZgIFHViq91PScgV1Da1YzNkzcb6cwMr89K5iy5gr2MvB2QfQIiEMW1RhfGZiOPHAPPAE1qnTlPq7qJZj7Eq+P42LEVsLj5XdhKXmIGWtV1JV386eLLQ7z2asDdeinRbI/ocwboHAimuSgeEhxjofIzTwBDnTZ6gKdVLHONXJbWaFi0lnG+eLn4m9/hAVbVfiKGuhKQtnQeta9hF/70mG+s5hzyuiuqSC6u0iSrbLOBSKbUrH7a8ndO0fc+wnn6Wg536uHf0mprGvr7hPTBqYMJQwa66ku+gWcNWRU7GLwvo9lNW102C20LBF/VesHX/F1Vjd9+Hr/gPO9ps3/XhaPM5Y31mmuh4lOnwC5+wZqkNdFBCggIQo7zfUcs5xNdGS3TjqDlLZdoSq8vLtcy+8DLWCtYP4vwfu4vrH/oqBZ/8XdVc+L61tS01jbKCTic7HCA8fJ2fmHBXBi5Qye2mbUVHKuL2NcPFucmoPUdl+NSWVtduuTkc28sDpMWruvYP6knxy//p3aW07EtPo6e9nsusxokPHcMyepTp0kRoxeWmbCUMp07ntxEr3kdd4mIr2q7EVZFfInEKhUGQDkYCH4a4nCMyOEva5MRiMGE1GsLlwFJZRUFyJq7RGVyUVFGvjRPcgu799gL6WV9L68k+lte1wJMJg10lmLj6OHDtB/tw5aiPdOEUw8b4002+qZzp3F1r5fvIaDlO36wiuvO1plr8pIYJCiO8Bbck/XcC8lPKAEKIeOA90Jt97REr5ptXaUwJrc5mcncPx6TZ6i25i71vvWXc7Hs88Q10nme8/CeOnEvlSkR5ykxdXXAoGjTXMOFuJle7FWX+I2l1Xk1ekPztgRYJQNM7n/u2tvEP8F/zVI1C6a/WdLkNKydSch+GLJ/AMnkZOnMXp7qI60kuFeFJojxsrmM7tQFbsI7/xCBXtV2HO1Z/ttUKhUCgU2YimSR76t2eyl4vkv7sLzGuPWpJSMjU+zGjXMfxDpzBOnafAd5Ga2CB2EQYS+fGDlibm83dBxQEKm6+kpu0gNtvWREnpgU0JEZRSvnjRAT4OuBe93SOlPLCR9hXppbSwgF8V3ckzZu5l6OSvqdm//LKxFtcYHxtgaqCTwNh5mOrE4emhJNhHBVMspOUGsDJsbuBc8R3I8r0UNB6mtv0IDQ6nCh/IImxmI8aDf47n+H3I77+N/Df8eNm8plAkxtjoENODFwiMXyQ+00OOu4eyUC+1cozSZC5dFBNj5lpmiq9ktmIfhc1XUtZ6hHJ7Afopm6tQKBQKxfbCYBB4D76R/GOvp/u7b6f5FZ9bNpw7HA4x2t/JzOAFQhNdiNle8nw9VEb6KcXNwtT4LPmM2Ro5V/ICTFUHKW69isqmvbSplc4lSUuIoEjEeA0Ct0gpLyZXsH4ipdyzlnbUCtbmMzExRviLN1EqZ7hQcBOhgnakABFyIwNzOEJjuCJjlMYnLzn4QaLY37CxhnlHI7GiFhxVHZQ1HaCkrgOhA6c2xcbxhqJ8/lPv512hTzNlqmCo6FqiplwisTjG4DS28DTOyDQV2vil1UqAOIJJYzmzjmZiRe3YqvdS2nSQgppdYFRfvAqFQqFQbDWRmMavPvEq7gjcT7+5iSnXfuIGK1o8ijU0RU5omvzYFGVy+pLJGIAPO+PmauacLVDagbN2H1WtR8jLMqfbrWJTXQSFEDcCn1g4QFJgnQW6AA/wj1LK3y+z7xuANwDU1tYeHhgY2HB/FCszNNjH0PffQ5v7/ygSHgCi0ohXOJg1leK2VhLJrcZUWI+jrJGi+r2UVDVjMCkhtd2Z9Uf46X9/k9a+b9Me78JGBAS4RT4eYyEhazGRvFoMRY3YK9ooqmnHVdmE0LmLn0KhUCgUO41gOMYf7v0k5X33JdyaiaEJI/PChc9cTMhWQiSvDnNpM3lVbZTVd5BbWKHMi9bAugWWEOJBWDKi571Syh8lt/ki0C2l/HjybyvglFLOCCEOAz8EdkspPSsdS61gbS1S0wgG/RiQWGxODMq5T6FQKBQKhUKhSIl152BJKVcs+y6EMAEvAg4v2icMhJO/HxNC9ACtgFJPOkIYDNgd29PVRaFQKBQKhUKhyATpWLJ4JnBBSjm88IIQokQIYUz+3gi0AL1pOJZCoVAoFAqFQqFQ6JZ0JNW8BPjuZa/dCPyrECIKaMCbpJSzT9tToVAoFAqFQqFQKLYRGxZYUspXL/HafcB9G21boVAoFAqFQqFQKLKJtLgIpgshxBSgNxvBYmA6051QbBnqfO8c1LneWajzvXNQ53rnoM71zkKP57tOSlly+Yu6Elh6RAhxdCl3EMX2RJ3vnYM61zsLdb53Dupc7xzUud5ZZNP5Vr7cCoVCoVAoFAqFQpEmlMBSKBQKhUKhUCgUijShBNbqfCXTHVBsKep87xzUud5ZqPO9c1DneuegzvXOImvOt8rBUigUCoVCoVAoFIo0oVawFAqFQqFQKBQKhSJNKIGlUCgUCoVCoVAoFGlCCawVEELcIYToFEJ0CyHelen+KNKHEKJGCPFrIcQ5IcRZIcTbkq8XCiF+IYS4mPy3INN9VaQHIYRRCHFcCPGT5N8NQohHk9f394QQlkz3UZEehBAuIcT3hRAXhBDnhRDXqGt7eyKE+Nvkd/gZIcR3hRA2dW1vH4QQXxNCTAohzix6bclrWST4TPK8nxJCHMpczxVrZZlz/dHk9/gpIcQPhBCuRe+9O3muO4UQt2ek0yugBNYyCCGMwOeBZwEdwEuFEB2Z7ZUijcSAt0spO4CrgTcnz++7gF9KKVuAXyb/VmwP3gacX/T3h4FPSimbgTngdRnplWIz+DTwMyllO7CfxHlX1/Y2QwhRBbwVOCKl3AMYgZegru3txDeAOy57bblr+VlAS/LnDcAXt6iPivTwDZ5+rn8B7JFS7gO6gHcDJJ/XXgLsTu7zheRzu25QAmt5rgS6pZS9UsoIcDdwZ4b7pEgTUsoxKeUTyd+9JB7Aqkic428mN/sm8IKMdFCRVoQQ1cBzgP9M/i2AW4DvJzdR53qbIITIB24EvgogpYxIKedR1/Z2xQTkCCFMgB0YQ13b2wYp5e+A2cteXu5avhP4lkzwCOASQlRsSUcVG2apcy2l/LmUMpb88xGgOvn7ncDdUsqwlLIP6Cbx3K4blMBanipgaNHfw8nXFNsMIUQ9cBB4FCiTUo4l3xoHyjLVL0Va+RTwTkBL/l0EzC/64lbX9/ahAZgCvp4MCf1PIYQDdW1vO6SUI8DHgEESwsoNHENd29ud5a5l9dy2vXkt8NPk77o/10pgKXY0QggncB/wN1JKz+L3ZKKGgapjkOUIIZ4LTEopj2W6L4otwQQcAr4opTwI+LksHFBd29uDZO7NnSREdSXg4OkhRoptjLqWdwZCiPeSSO24K9N9SRUlsJZnBKhZ9Hd18jXFNkEIYSYhru6SUv538uWJhZCC5L+TmeqfIm1cBzxfCNFPItT3FhI5Oq5kWBGo63s7MQwMSykfTf79fRKCS13b249nAn1SyikpZRT4bxLXu7q2tzfLXcvquW0bIoR4NfBc4GXyyeK9uj/XSmAtz+NAS9KNyEIime7+DPdJkSaSOThfBc5LKT+x6K37gVclf38V8KOt7psivUgp3y2lrJZS1pO4jn8lpXwZ8GvgT5KbqXO9TZBSjgNDQoi25Eu3AudQ1/Z2ZBC4WghhT36nL5xrdW1vb5a7lu8HXpl0E7wacC8KJVRkIUKIO0iE9z9fShlY9Nb9wEuEEFYhRAMJY5PHMtHH5RBPikHF5Qghnk0id8MIfE1K+YHM9kiRLoQQ1wO/B07zZF7Oe0jkYd0D1AIDwJ9JKS9PsFVkKUKIm4B3SCmfK4RoJLGiVQgcB14upQxnsHuKNCGEOEDC0MQC9AKvITGhqK7tbYYQ4l+AF5MIHzoO/AWJXAx1bW8DhBDfBW4CioEJ4J+BH7LEtZwU2Z8jESYaAF4jpTyagW4r1sEy5/rdgBWYSW72iJTyTcnt30siLytGIs3jp5e3mUmUwFIoFAqFQqFQKBSKNKFCBBUKhUKhUCgUCoUiTSiBpVAoFAqFQqFQKBRpQgkshUKhUCgUCoVCoUgTSmApFAqFQqFQKBQKRZpQAkuhUCgUCoVCoVAo0oQSWAqFQqFQKBQKhUKRJpTAUigUCoVCoVAoFIo08f8ByL6zYTmEtTsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADYXElEQVR4nOzdd5xcdb3/8ddnZrb3lk3ZTSUJqQRIAgihWQClihIQUOQqP/RiQQXLtaD3en/3hyiKeMWCooABBAQUUEAIEKQlEEIqaZtetmR7mfb9/XFmN5vN1uxsZsv7+WDYmVO+5zPnzG7OZ77NnHOIiIiIiIhI//kSHYCIiIiIiMhwoQRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiMggYWYTzcyZWSDRsQx3ZnaNmS1LdByDjZktMrMNiY5DRGQoU4IlIiJDmpndYmYhM6tv97g50XENRc65l51z0+NdrpnNM7MVZtYY+zkv3scQERkslGCJiMSJap4S6kHnXGa7x62JDiiehvJny8ySgceB+4A84A/A47HlIiLDjhIsEZF+MLMyM/u6ma0CGswsYGYnm9m/zKzazN4xszPbbb/UzP6vmb1hZrVm9riZ5XdR9qfNbJ2Z1ZnZFjP7Px3WX2RmK2PlbDazc2PLc8zsbjPbY2a7zOy/zMzfw/uYYmbPm1mlmVWY2f1mlttuXZWZnRB7PdbMylvfl5ldaGZrYu93qZnN6HB+vmZmq8ysxsweNLPUvp/pvjOzb8TOS52ZrTWzS7rYzszsdjPbHzuX75rZ7Ni6FDO7zcy2m9k+M7vLzNJ6efx7Yts/G4vhRTOb0G79z8xsR+yYK8xsUbt1t5jZw2Z2n5nVAteY2UIzezV2nveY2Z3tk5RY89LPm9nG2PH+M3bt/hU7xkM9JTVmdqaZ7ezN++uDM4EA8FPnXItz7g7AgLPjfBwRkUFBCZaISP9dAXwEyAWKgSeB/wLyga8Bj5hZUbvtPwlcC4wBwsAdXZS7HzgfyAY+DdzeLslZCPwRuCl23NOBsth+98TKPQY4HvgQ8Jke3oMB/xcYC8wASoFbAJxzm4GvA/eZWTrwe+APzrmlZjYNWAJ8GSgCngL+2uFG/jLgXGASMBe4ptMAzE6LJQ9dPU7r4T10tBlYBOQA34/FP6aT7T6Ed/6mxba9DKiMrfuf2PJ5eOdzHPDdPsRwJfCfQCGwEri/3bo3Y+XmA38C/twh+bwIeBjv+t4PRIAbY2WdArwf+HyH450DnAicDNwM/Bq4Cu96zsb7rB6xWKLc1fX53y52mwWscs65dstWxZaLiAw7SrBERPrvDufcDudcE97N7FPOuaecc1Hn3LPAcuDD7ba/1zm32jnXAHwHuKyzGibn3JPOuc3O8yLwDF7CAPBvwO+cc8/GjrPLObfezIpjx/qyc67BObcfuB24vLs34JzbFCurxTlXDvwEOKPd+t8Am4DX8RLD/4itWgw8Gds3BNwGpAHv63B+djvnqoC/4iUVncWwzDmX282ju0EpLutwsz/WOffn2HGjzrkHgY3Awk72DQFZwLGAOefWOef2mJkB1wE3OueqnHN1wH/3dC47eNI595JzrgXvnJ1iZqWx93ufc67SORd2zv0YSAHa93961Tn3WCz+JufcCufca7Hty4Bf0e4axdzqnKt1zq0BVgPPOOe2OOdqgKfxEu4j5pyb28316ZjstcoEajosq8E75yIiw86QbdMtIjKI7Gj3fALwcTO7oN2yJOCFLrbfFltf2LFQMzsP+B5eDYoPSAfeja0uxast6mhCrLw9Xn4AsX13dLJt+2MVAz/DS+CyYvsc6LDZb4AngOtiCQN4NV7bWjdwzkXNbAdeTU+rve2eN8b2ibeHnHNXtV9gZp8EvgJMjC3KpJPz7Jx73szuBH4BTDCzR/FqHlPxzvmKdufSgG6bW3bQdt6dc/VmVoX3/neY2dfwEuWxgMOrqSzsbN/Y+5mGl/jOj8UVAFZ0ON6+ds+bOnk9ug+xx0s93ntrLxuoS0AsIiIDTjVYIiL9177p0w68Gqr23+xnOOf+p902pe2ej8erQaloX6CZpQCP4NUIFTvncvESqtY7/R3AlE5i2QG0AIXtjp/tnOupOdZ/x97HHOdcNl5N3MGswiwT+ClwN3CLHew3thsvqWvdzmLvb1cPxzuMeUOE13fzWNRzKW1lTcBLCG8ACmLnb3X799Sec+4O59yJwEy8hPYmvGvSBMxqdy5znHOZfXhbbdc6dg7zgd2x93IzXnPEvFh8NR3ia/+5AvglsB6YGrtG3+rq/QwU8/radXV97upitzXAXGuXpeI1FV0z8BGLiBx9SrBEROLrPuACMzvHzPxmlhobOKCk3TZXmdnMWH+mHwAPO+ciHcpJxmsyVg6EY7VZH2q3/m7g02b2fjPzmdk4MzvWObcHrynhj80sO7Zuipl1bErWURZeTUONmY3DSzDa+xmw3Dn3Gbw+Zq030w8BH4nFkQR8FS/B+1dPJ6qj2BDhmd08Xu5DcRl4CUo5eAOG4PVBOoyZLTCzk2LxNwDNQNQ5F8VL0m43s1GxbceZ2Tnt9nXWbhCTTnw41rcsGa8v1mvOuR145zsciy9gZt/l8FqejrKAWqDezI4FPtfD9nHnnJvVzfW5vovdluL1H/uieYOG3BBb/vxRCVpE5ChTgiUiEkexm+eL8GoXyvFqlG7i0L+39+INRLEXrxnaFzsppy62/CG8pnqfwGue17r+DWIDX+DVfLzIwZqkT+IlaGtj+z6M12+qO98HToiV9STwaOsKM7sIb5CK1hv6rwAnmNmVzrkNeLVdP8er8bkAuMA5F+zheAPKObcW+DHwKl4zuTnAK11sno2XSB3Aa+5YCfwotu7reH3PXjNvNL/niPWTivWlquNgs83O/AmvmWcV3uATrc0Y/wH8HXgvdsxmemjGidds8ROxY/4GeLCH7QeF2GfhYrzPZTXeAC8XJ/ozIiIyUOzQQX1ERGQgmdlS4D7n3G8THYv0j5ldhdd88JtdrL8H2Omc+/ZRDUxERBJKg1yIiIgcAefcfYmOQUREBh81ERQRGSHMm/S2L4MTyDBkZt/q4nPwdKJjExEZDtREUEREREREJE5UgyUiIiIiIhIng6oPVmFhoZs4cWKiwxAREREREenWihUrKpxzRR2XD6oEa+LEiSxfvjzRYYiIiIiIiHTLzLZ1tlxNBEVEREREROJECZaIiIiIiEicKMESERERERGJk0HVB6szoVCInTt30tzcnOhQZBBITU2lpKSEpKSkRIciw0w0EmHpHf9G08zFfOSc8xIdjoiIiAxRgz7B2rlzJ1lZWUycOBEzS3Q4kkDOOSorK9m5cyeTJk1KdDgyzGzbvpWza/4Cr/6FyPsr8AeUxIuIiEjfDfomgs3NzRQUFCi5EsyMgoIC1WbKgNi9d2/b863vvprASERERGQoG/QJFqDkStrosyADJdpU0/b8wIaXExiJiIiIDGVDIsESERlovubqtuf+3ZqPT0RERI6MEqxeMDO++tWvtr2+7bbbuOWWWxIXUDtnnnlmt5MzX3zxxZx88smHLLvlllsYN24c8+bNY/bs2TzxxBMDHabIoGctXg3WLt9Ycus3JzgaERERGaqUYPVCSkoKjz76KBUVFXEt1zlHNBqNa5ntVVdXs2LFCmpqatiyZcsh62688UZWrlzJn//8Z6699toBjUNkKPC11AKwN3suJZFdhELBBEckIiIiQ5ESrF4IBAJcd9113H777YetKy8v59JLL2XBggUsWLCAV155BfBqiW677ba27WbPnk1ZWRllZWVMnz6dT37yk8yePZsdO3Zw0003MXv2bObMmcODDz4IwNKlSznzzDP52Mc+xrHHHsuVV16Jc67T+O6999622qg33nijbfmjjz7KBRdcwOWXX84DDzzQ6b4zZswgEAgckjx+4xvfYObMmcydO5evfe1rAJSVlXH22Wczd+5c3v/+97N9+3YArrnmGj73uc9x8sknM3nyZJYuXcq1117LjBkzuOaaa9rK/NznPsf8+fOZNWsW3/ve9w6Lo6amhgkTJrQleg0NDZSWlhIKhTqNWyTe/EEvwQqNXUCyhdm9dV2CIxIREZGhaNAP097e9/+6hrW7a+Na5syx2Xzvglk9bvfv//7vzJ07l5tvvvmQ5V/60pe48cYbOe2009i+fTvnnHMO69Z1f2O2ceNG/vCHP3DyySfzyCOPsHLlSt555x0qKipYsGABp59+OgBvv/02a9asYezYsZx66qm88sornHbaaYeV19jYyMqVK3nppZe49tprWb16NQBLlizhu9/9LsXFxVx66aV861vfOmzf119/HZ/PR1FREQCVlZX85S9/Yf369ZgZ1dXVAHzhC1/gU5/6FJ/61Kf43e9+xxe/+EUee+wxAA4cOMCrr77KE088wYUXXsgrr7zCb3/7WxYsWMDKlSuZN28eP/zhD8nPzycSifD+97+fVatWMXfu3LY4cnJymDdvHi+++CJnnXUWf/vb3zjnnHM035UcNYFgLU0umZzJ82EtVGxZxYRpxyU6LBERERliVIPVS9nZ2Xzyk5/kjjvuOGT5c889xw033MC8efO48MILqa2tpb6+vtuyJkyY0NYvatmyZVxxxRX4/X6Ki4s544wzePPNNwFYuHAhJSUl+Hw+5s2bR1lZWaflXXHFFQCcfvrp1NbWUl1dzb59+9i4cSOnnXYa06ZNIykpqS3xArj99tuZN28eX/va13jwwQfbRufLyckhNTWVf/u3f+PRRx8lPT0dgFdffZVPfOITAFx99dUsW7asrawLLrgAM2POnDkUFxczZ84cfD4fs2bNaov5oYce4oQTTuD4449nzZo1rF279rD3sXjx4rYavAceeIDFixd3ex5F4ikQrKWWdCZM95Kqlj2Hf0ZFREREejKkarB6U9M0kL785S9zwgkn8OlPf7ptWTQa5bXXXiM1NfWQbQOBwCH9mtrP3ZSRkdGr46WkpLQ99/v9hMPhTrfrOHS5mfHQQw9x4MCBtgl5a2trWbJkCT/84Q8Brw9Wa/O/jnG/8cYb/POf/+Thhx/mzjvv5Pnnn+9VnD6f75CYfT4f4XCYrVu3ctttt/Hmm2+Sl5fHNddc0+lcVhdeeCHf+ta3qKqqYsWKFZx99tndHlcknpLDtdSRQXFWHnutiKSq9xIdkoiIiAxBqsHqg/z8fC677DLuvvvutmUf+tCH+PnPf972euXKlQBMnDiRt956C4C33nqLrVu3dlrmokWLePDBB4lEIpSXl/PSSy+xcOHCPsXVWuuzbNkycnJyyMnJYcmSJfz9739v6/e1YsWKLvthtVdfX09NTQ0f/vCHuf3223nnnXcAeN/73te2//3338+iRYt6HV9tbS0ZGRnk5OSwb98+nn766U63y8zMZMGCBXzpS1/i/PPPx+/39/oYIv3li7TQQjIA+1ImkN/U+e+siIiISHeUYPXRV7/61UMGhLjjjjtYvnw5c+fOZebMmdx1110AXHrppVRVVTFr1izuvPNOpk2b1ml5l1xyCXPnzuW4447j7LPP5tZbb2X06NF9iik1NZXjjz+e66+/nrvvvpuysjK2bdt2yPDskyZNIicnh9dff73TMj784Q+ze/du6urqOP/885k7dy6nnXYaP/nJTwD4+c9/zu9//3vmzp3Lvffey89+9rNex3fcccdx/PHHc+yxx/KJT3yCU089tW3dd7/73UOGiV+8eDH33XefmgfKUWfREGHzKvXrMycxJrwTuhhYRkRERKQr1tXIdIkwf/5813FOp3Xr1jFjxowERSSDkT4TMhA2/+hMahqbOeF7r/HK/f/FqRt/RO0N68guHJvo0ERERGQQMrMVzrn5HZf3uwbLzErN7AUzW2tma8zsS7Hlt5jZLjNbGXt8uL/HEhEZKL5oiIh5o1amFk0BYP929cMSERGRvonHIBdh4KvOubfMLAtYYWbPxtbd7py7rZt9RUQGBYuGiZo3ambuuGMAqN2zETgzcUGJiIjIkNPvBMs5twfYE3teZ2brgHH9LVdE5GjyuxDRWA3W6AnTAQiWb0lkSCIiIjIExXWQCzObCBwPtI6kcIOZrTKz35lZXjyPJSISTz4XJurzvnPKyMymglx81WWJDUpERESGnLglWGaWCTwCfNk5Vwv8EpgCzMOr4fpxF/tdZ2bLzWx5eXl5vMIREekTvwsR9SW1va5IGkt6464ERiQiIiJDUVwSLDNLwkuu7nfOPQrgnNvnnIs456LAb4BOJ3dyzv3aOTffOTe/qKgoHuGIiPSZLxrG2cFW0w1p4ygI7k5gRCIiIjIUxWMUQQPuBtY5537SbvmYdptdAqzu77ES6bHHHsPMWL9+fZfblJWVMXv27Lgd85prruHhhx/ucv2Xv/xlxo0bRzQabVt2zz33UFRUxLx585g5cya/+c1v4haPyHAWIHxIDVYoZzyjXAXNzc0JjEpERESGmnjUYJ0KXA2c3WFI9lvN7F0zWwWcBdwYh2MlzJIlSzjttNNYsmRJp+vD4XC/jxGJRHq9bTQa5S9/+QulpaW8+OKLh6xbvHgxK1euZOnSpXzrW99i3759/Y5NZLjzuzCuXYIVKJiE3xz7dm5KYFQiIiIy1PQ7wXLOLXPOmXNurnNuXuzxlHPuaufcnNjyC2OjDQ5J9fX1LFu2jLvvvpsHHnigbfnSpUtZtGgRF154ITNnzgS8ROvKK69kxowZfOxjH6OxsRGAf/7znxx//PHMmTOHa6+9lpaWFgAmTpzI17/+dU444QT+/Oc/H3bs5557jvnz5zNt2jT+9re/HXLsWbNm8bnPfa7LpG/UqFFMmTKFbdu2tS274447mDlzJnPnzuXyyy8HoKqqiosvvpi5c+dy8skns2rVKgBuueUWPvWpT7Fo0SImTJjAo48+ys0338ycOXM499xzCYVCAPzgBz9gwYIFzJ49m+uuu46Ok1dHo1EmTpxIdXV127KpU6cq8ZNBxe/COP/BBCtztDcX1oGdmgtLREREei8e82AdPU9/A/a+G98yR8+B8/6n200ef/xxzj33XKZNm0ZBQQErVqzgxBNPBOCtt95i9erVTJo0ibKyMjZs2MDdd9/NqaeeyrXXXsv//u//csMNN3DNNdfwz3/+k2nTpvHJT36SX/7yl3z5y18GoKCggLfeeqvTY5eVlfHGG2+wefNmzjrrLDZt2kRqaipLlizhiiuu4KKLLuJb3/oWoVCIpKSkQ/bdsmULW7Zs4Zhjjmlb9j//8z9s3bqVlJSUtoTne9/7HscffzyPPfYYzz//PJ/85CdZuXIlAJs3b+aFF15g7dq1nHLKKTzyyCPceuutXHLJJTz55JNcfPHF3HDDDXz3u98F4Oqrr+Zvf/sbF1xwQdsxfT4fF110EX/5y1/49Kc/zeuvv86ECRMoLi7u9WUSGWgBwtCuBquw1BuqvXn/5kSFJCIiIkNQXIdpH66WLFnSVttz+eWXH1JjtHDhQiZNmtT2urS0lFNPPRWAq666imXLlrFhwwYmTZrEtGnTAPjUpz7FSy+91LbP4sWLuzz2ZZddhs/nY+rUqUyePJn169cTDAZ56qmnuPjii8nOzuakk07iH//4R9s+Dz74IPPmzeOKK67gV7/6Ffn5+W3r5s6dy5VXXsl9991HIODl18uWLePqq68G4Oyzz6ayspLa2loAzjvvPJKSkpgzZw6RSIRzzz0XgDlz5lBWVgbACy+8wEknncScOXN4/vnnWbNmzWHvY/HixTz44IMAPPDAA92+Z5FECHBoDVbB6AkEXYBoVVnighIREZEhZ2jVYPVQ0zQQqqqqeP7553n33XcxMyKRCGbGj370IwAyMjIO2d4b86Pr153pWEZP5f3jH/+gurqaOXPmANDY2EhaWhrnn38+4CUzd955Z6flPfnkk7z00kv89a9/5Yc//CHvvtt9jWBKSgrg1UIlJSW1xePz+QiHwzQ3N/P5z3+e5cuXU1payi233NLpoACnnHIKmzZtory8nMcee4xvf/vb3R5X5KiKRgkQxXwH/ySaP8B+/yiS63YkMDAREREZalSD1YOHH36Yq6++mm3btlFWVsaOHTuYNGkSL7/8cqfbb9++nVdffRWAP/3pT5x22mlMnz6dsrIyNm3yOsvfe++9nHHGGb06/p///Gei0SibN29my5YtTJ8+nSVLlvDb3/6WsrIyysrK2Lp1K88++2xbf6+uRKNRduzYwVlnncX/+3//j5qaGurr61m0aBH3338/4PXtKiwsJDs7u1fxtSZThYWF1NfXdznqoZlxySWX8JWvfIUZM2ZQUFDQq/JFjoqo158Qf/Ihiw8kjyWneWcCAhIREZGhSglWD5YsWcIll1xyyLJLL720y4Elpk+fzi9+8QtmzJjBgQMH+NznPkdqaiq///3v+fjHP86cOXPw+Xxcf/31vTr++PHjWbhwIeeddx533XUX0WiUv//973zkIx9p2yYjI4PTTjuNv/71r52W8ZnPfIbly5cTiUS46qqrmDNnDscffzxf/OIXyc3N5ZZbbmHFihXMnTuXb3zjG/zhD3/o5dmB3NxcPvvZzzJ79mzOOeccFixY0Lburrvu4q677mp7vXjxYu677z41D5TBJ9KaYB3aj7E5s5RR4b2HDdwiIiIi0hUbTDcO8+fPd8uXLz9k2bp165gxY0aCIpLBSJ8JiTfXWIXdOokXJn6Fs675XtvyN+77Hgs3/ZQDX9hEXoEmQhcREZGDzGyFc25+x+WqwRKRES8UDAJggUNrsFJGeUO179++4ajHJCIiIkOTEiwRGfFCIW9eOgsc2gcrZ4w3xUHtHk02LCIiIr0zJBKswdSMURJLnwUZCKGgl2D5OvTBKhrvzYUVrNhy1GMSERGRoWnQJ1ipqalUVlbqxlpwzlFZWUlqamqiQ5FhJtxFDVZGTgG1ZOCr3paIsERERGQIGvTzYJWUlLBz507Ky8sTHYoMAqmpqZSUlCQ6DBlmwrE+WL4Ow7QDlAfGkNagodpFRESkdwZ9gpWUlMSkSZMSHYaIDGOtTQT9SYcnWLVp4yio33i0QxIREZEhatA3ERQRGWjhcKwGK3B4ghXOKqU4up9QOHy0wxIREZEhSAmWiIx4kW5qsHwFk0ixMPt2bT3aYYmIiMgQpARLREa81hosfyc1WOmxubAqd6qZoIiIiPRswBMsMzvXzDaY2SYz+8ZAH09EpK+iodYarJTD1uWVTAOgce/moxqTiIiIDE0DmmCZmR/4BXAeMBO4wsxmDuQxRUT6KhwOAZ03ESwaN4WoMyJVaiIoIiIiPRvoGqyFwCbn3BbnXBB4ALhogI8pItIn0VAzAIGkw+dY8yenUu4rIKl2+9EOS0RERIaggU6wxgE72r3eGVvWxsyuM7PlZrZcc12JSCK0NhFMSj68iSDAgeQxZDXtOpohiYiIyBCV8EEunHO/ds7Nd87NLyoqSnQ4IjIShb0aLH/y4TVYAI0ZpRSG9xzNiERERGSIGugEaxdQ2u51SWyZiMigcbAGK63z9TnjGcUBampqj2ZYIiIiMgQNdIL1JjDVzCaZWTJwOfDEAB9TRKRPXCSWYKV2nmAlFU4GYP+O945aTCIiIjI0DWiC5ZwLAzcA/wDWAQ8559YM5DFFRPos7CVYgS6aCGaOmQpAzW4lWCIiItK9wEAfwDn3FPDUQB9HROSIxSYaTknpPMEaNdGbXSK4X5MNi4iISPcSPsiFiEjCRVoIOj/Jgc6/c8rKK6aWDPwHthzlwERERGSoUYIlIhIOEiQJn886X2/G3sA4Muq3Hd24REREZMhRgiUiI55FWgiR1O02NWmlFAZ3HqWIREREZKhSgiUiEgkSsu4TrJacyYyKVhBuaTxKQYmIiMhQpARLREY8iwR7rMEKFB6Dzxz7t60/SlGJiIjIUKQES0RGPF80SLiHGqzskukAVG5fdzRCEhERkSFKCZaIjHi+SEuPCdboibMAaNqrubBERESka0qwRGTE80eDhH3dJ1h5BUVUkYVVbT5KUYmIiMhQpARLREY8XzRExJK73cbM2B8o0VDtIiIi0i0lWCIy4vldkEgPNVgAtRkTNFS7iIiIdEsJloiMeP5oiIgvpcftInmTGEUVDXU1RyEqERERGYqUYInIiBdwQaL+7psIAqQUeyMJ7tmyeqBDEhERkSFKCZaIjHgBF8L5ek6wcktnAlCzc+1AhyQiIiJDlBIsERnxklwI14sarLGTZxF1RmifhmoXERGRzvUrwTKzH5nZejNbZWZ/MbPc2PKJZtZkZitjj7viEq2IyABIoncJVmp6JvuskKRqDdUuIiIinetvDdazwGzn3FzgPeCb7dZtds7Niz2u7+dxREQGTJprJhLI6NW25akTyGkoG9iAREREZMjqV4LlnHvGOReOvXwNKOl/SCIiR08kHCLNgrjk3iVYjVmTGBPehYtGBzgyERERGYri2QfrWuDpdq8nmdnbZvaimS3qaiczu87MlpvZ8vLy8jiGIyLSs/q6au9JSnbvdiiYSoY1U7FHEw6LiIjI4XpMsMzsOTNb3cnjonbb/AcQBu6PLdoDjHfOHQ98BfiTmXV69+Kc+7Vzbr5zbn5RUVH/35GISB80xxIsf2pWr7bPGHcsAPu2vjtQIYmIiMgQFuhpA+fcB7pbb2bXAOcD73fOudg+LUBL7PkKM9sMTAOW9zdgEZF4aq6vBsCX1rsarMKJswFo2L0euHCAohIREZGhqr+jCJ4L3Axc6JxrbLe8yMz8seeTganAlv4cS0RkIDQ31gCQ1MsEq3jsJBpcClRsHMiwREREZIjqsQarB3cCKcCzZgbwWmzEwNOBH5hZCIgC1zvnqvp5LBGRuAs2xBKs9N4lWD6/jz2BEtJr9Z2RiIiIHK5fCZZz7pgulj8CPNKfskVEjoZwUy0AKRk5vd6nOn0C4+pXD1RIIiIiMoTFcxRBEZEhJ9xUD0BqRm6v9wnmHkNxtJyW2L4iIiIirZRgiciI5pq9Gqy0zN7XYCUXT8Nnjj1b1w5UWCIiIjJEKcESkREtEkuwMrJze71PTslMAA5sXzMQIYmIiMgQpgRLREY011xLs0siJSW11/uMmeIN1d6y972BCktERESGKCVYIjKiBZoqqfbl9mmfzKwc9lFA4MDmgQlKREREhiwlWCIyoqUEK6nz5/Z5v/3JpWQ3bI1/QCIiIjKkKcESkREtI3SAxqT8Pu/XkDWJ0eGduGh0AKISERGRoUoJloiMaNmRA7SkFPR5P1cwlWwaqSrfOQBRiYiIyFClBEtERiwXjZLraginFfZ53/SxxwKwf4smHBYREZGDlGCJyIhVfaCCZIvgzyzq875FE72RBOt3rYt3WCIiIjKEKcESkRGrYs92AFLzRvd53+LSY2hyyUQrNsY7LBERERnClGCJyIhVu38bABlFE/u8r9/vZ49/LKk1W+IclYiIiAxlSrBEZMRqqfQSrNyxk45o/6rUUvJadsUzJBERERnilGCJyIjlqncQcUb+qAlHtH8ws4RRkX0aql1ERETa9CvBMrNbzGyXma2MPT7cbt03zWyTmW0ws3P6H6qISHwl1e2iwleALyn5iPZ3uRNItRB1FarFEhEREU88arBud87Niz2eAjCzmcDlwCzgXOB/zcwfh2OJiMRNevNeDgRGHfH+KUVe08LynRroQkRERDwD1UTwIuAB51yLc24rsAlYOEDHEhE5InmhvTSkjTni/XPGTAGgfu/meIUkIiIiQ1w8EqwbzGyVmf3OzPJiy8YBO9ptszO27DBmdp2ZLTez5eXl5XEIR0SkZ9FIhKJoBcGMTv809UphyVQAQpVb4xWWiIiIDHE9Jlhm9pyZre7kcRHwS2AKMA/YA/y4rwE4537tnJvvnJtfVNT3yT5FRI5E1f6dJFsEX27JEZeRm5NDhcvBV7M9jpGJiIjIUBboaQPn3Ad6U5CZ/Qb4W+zlLqC03eqS2DIRkUGhavcWCoGUgiMbQRDAzNgfGE1qg/68iYiIiKe/owi277xwCbA69vwJ4HIzSzGzScBU4I3+HEtEJJ7q95cBkD36yObAalWXOpa8lt1xiEhERESGgx5rsHpwq5nNAxxQBvwfAOfcGjN7CFgLhIF/d85F+nksEZG4CcUmGS4oOaZf5bRkllDY8BJEI+DTYKkiIiIjXb8SLOfc1d2s+yHww/6ULyIyUFzNTupcGtk5+f0rKHcCSfsi1JZvJ7u4f7VhIiIiMvQN1DDtIiKDWmrDLir8ozCz/pUTmwurcsd78QhLREREhjglWCIyImW27KM2pbjf5eSM8YZqr9+nubBERERECZaIjFAFkf00p4/tdzmjSqcQdUaoQnNhiYiIiBIsERmBGutryKOOaPaRz4HVKjcrg/3k46vZ0fPGIiIiMuwpwRKREad8l1fblJQ/vt9lmRnlgdGkN+zsd1kiIiIy9CnBEpERp3bvFgAyRk2MS3l1aWPJC+6JS1kiIiIytCnBEpERp6nCmwMrb8zkuJQXyiqlIFqJC7fEpTwREREZuvo70fCwtvxvv2b0ip9Qm1RIU0oh4fRiyBqDZY4ikJFHSmYeaTn5ZGQXkJlTQHpGNuY7ejmri0aJRMJEIiEi4RCRcJhoOEQkEiIaCRONRIhGI7hIhHAkQjQSwbnIweXRCJGItz4abV0WxUUj4CLgouCimIuAc7i2Ax/8cXCZO7is44Y96myYbG9ZdyNoO7NO9zykhF4NwX34Nu13cz2s71hGV1G5wzftJJKuV7YOJ+66eE/9G2x84AzGuGz7q0ScUThmQlzKSyqYhG+PY8+OTYyZNCsuZcqhXDRKS0szwcY6WprqCDbWEWquI9RUR7ilhVC4hXCwhXAoiAuHsGgIoiGIhrFoCIuEcS6Kc67t75n3NHrI3y2L/aa2/pp5f0d83jMD8LVbaWC+dtu0LjPAYr+zhjNfbBdve6+og9sd/Nl+O8PayiR2nA5ld3Ks1uVmHY/lO3w9B597f+dayzvCa9Trv/kddzzC/Y7UERyv3xH2+d9FEWkvEkij4NhFlOanJzqUXlGC1Y2UnGL2Zc4grbmc4vr15Nf+i/R9XX9DHXFGkCRClkSo3c+wJRGxQNuf1a7++TIXxUcEv4u0/fQTwUcUP97zgIvgj70OWJQAuogiR2KHbyylSclxKatg/LGwGvZueqfHBGv7ptWkpWdRNDY+yd1QEw62UF2xm9rynTQe2EdzbQXB+kpc4wF8zdUEgtUkh2pIDdWSHq0jJdpEmmsijRZSLUpqot+AiIgcde9Fx/FU6K/8nzOmJDqUXtG9eTfmLLoIFl3U9tpFo9TUVlNfsZOmumqa66poqT9ApPEAkaZqrKUWwkEs0gKRIBYJ4osG8UWC+Akf8sVVx++wDHDmI+oL4MyPswDO5wfz41qX+QKx10ng84Mv0O5n+4cffH7MApjfh5n/4E+fH/P5MF8An88Xe+3H136533AWwMwX++a19efB+pX2X3J2TBit9RtTev4ytPMvEltrw7r5pq83XwJ28y1ld7Vs7Y9rna3vuKjdgm6O2NMG3b7fnmsFB+m3ooM0LICC0ulxK6t05kmEn/QR3P4m8IlOt9m1eTW7H7+FBbXP8m7KCRR984W4HX8wcNEotQfKqdy1mfp9m2mp3E64di/++n2ktJSTGaoiL1pFrquj0ByFnZRRRzp1lkWDL4vmQBb1qcVEkzJxSRlEk9IhKQOXnIElp2MpmfhTMvCnZOJPSSU5OZXk5BSSk1PwJyXhCyTj8ydj/iR8gSTvpz+Az8DvM+/vn4HfDF9bzVGsVssM11rLFXU4orioV2ff/rXDebX+4NWMRb0aMu/R7jlRiMb+rrXuH1tH+1o174CxfVy7bdofu3Xb9rVx3jpr3Scabdu/dT+ItjtGbP+2slrrr2LH6ufk20ekwzHjGUFnZXXVEqDbcvodlLX7v4j0RTSQxkXHjEt0GL2mBKsPzOcjJzefnNz8RIciIoNIemYO7/knkVX+1mHrdmxZz54nvs8JB/5OPgEwmNr8bgKi7L/Gxnr2bV1D9Y51tJRvgertpDTsJie4l+LIPnKsmZx22wednwO+PGr9BdSljqMy7Tgi6cVYVjFJOWNIyy0mM7+I3PxisnILyPInkZWwd+fRza+IiPSXEiwRkTioKDqZBXsfoHpvGTnFE9j49ovUvvAz5tUuZRR+3hx1KVM/+l3eevZuTt3yU+oP7Cczb1Siwz5MMBRh584yyreupnH3OvxVm8isL6M4uI0xrpxJdrBaspYMKvzF1KaVUJ5xEi6nlKSCCWSMmkzBuMkUFI6h2O+jOIHvR0RE5GhTgiUiEgejP3ADdt8S6n79YWowpkV3UufSeGvMYqZc+HVOGTsJgLIxM2AL7N64kmkLP5SweOsaGti1eQ0Htq8luG89SQc2kdu4jZLITiZbI63jKzaTzJ5AKfuz57ArdzL+4ulkjZtB8YQZ5OQVkJ2wdyAiIjI4KcESEYmDyVNn8vpJPyV3xc9pCeTw5pRPMv2cz7Iw59AmxRNnngSvQNWGZTDACZZzjvL9u9m3+V3qd60lWr6RtNrNFDZvZ6zbx7EWbdu2wvKpSJ3A5uwP4yuaSnbJLIonzyG9cDyTjuLoqCIiIkOduX4Mj2pmDwKtPcVzgWrn3DwzmwisAzbE1r3mnLu+p/Lmz5/vli9ffsTxiIgMBZt+MI9QIIMZ33olLuU1NzWwe+saDmxbR8u+9/Af2ER2wzZGh3aSZ3Vt27W4JPYExlKdPpFQ3jGkjJ5O/oTZFE+aRVJ6blxiERERGSnMbIVzbn7H5f2qwXLOLW53gB8DNe1Wb3bOzetP+SIiw1F56Tmcsu0utqx8icnzTu/VPrU1Vezf/h61e7fQXL4V/4EtpNdtpaBlB6Oj5Uxu1zeqgjzKU0rZknMW0cJpZIw9lsKJcygqOYaJfjVcEBERGUhx+ZfWvBkLLwPOjkd5IiLD2bEX3UzFHQ+Q/djVvL7us6SPmwUYkZYGgjX7iNTtwxrKSW3cQ1bLXooi+8im4ZD+Tg0uld2BEnZnzmFb3hSSR00jt/RYxkyeRWFWfqfDoIuIiMjAi9dXmYuAfc65je2WTTKzt4Fa4NvOuZc729HMrgOuAxg/fnycwhERGbzy8gvY/PGHsUc/y0kbfnSwMXU7daRT4SukJmUMFRnzcNklJBdNIrt4MkUlU8guHMdU9Y0SEREZdHrsg2VmzwGjO1n1H865x2Pb/BLY5Jz7cex1CpDpnKs0sxOBx4BZzrna7o6lPlgiMpK4aJQ9O7dSves9fD4f/uQ0sgrHklc0lpTU9ESHJyIiIt044j5YzrkP9FBwAPgocGK7fVqAltjzFWa2GZgGKHsSEYkxn4+x46cwdvyURIciIiIicRKP9iUfANY753a2LjCzIjPzx55PBqYCW+JwLBERERERkUErHn2wLgeWdFh2OvADMwsBUeB651xVHI4lIiIiIiIyaPU7wXLOXdPJskeAR/pbtoiIiIiIyFDSr4mG483MyoFtiY6jg0KgItFByFGj6z1y6FqPLLreI4eu9cihaz2yDMbrPcE5V9Rx4aBKsAYjM1ve2eggMjzpeo8cutYji673yKFrPXLoWo8sQ+l6axIVERERERGROFGCJSIiIiIiEidKsHr260QHIEeVrvfIoWs9suh6jxy61iOHrvXIMmSut/pgiYiIiIiIxIlqsEREREREROJECZaIiIiIiEicKMHqhpmda2YbzGyTmX0j0fFI/JhZqZm9YGZrzWyNmX0ptjzfzJ41s42xn3mJjlXiw8z8Zva2mf0t9nqSmb0e+/1+0MySEx2jxIeZ5ZrZw2a23szWmdkp+t0enszsxtjf8NVmtsTMUvW7PXyY2e/MbL+ZrW63rNPfZfPcEbvuq8zshMRFLn3VxbX+Uezv+Coz+4uZ5bZb983Ytd5gZuckJOhuKMHqgpn5gV8A5wEzgSvMbGZio5I4CgNfdc7NBE4G/j12fb8B/NM5NxX4Z+y1DA9fAta1e/3/gNudc8cAB4B/S0hUMhB+BvzdOXcscBzeddfv9jBjZuOALwLznXOzAT9wOfrdHk7uAc7tsKyr3+XzgKmxx3XAL49SjBIf93D4tX4WmO2cmwu8B3wTIHa/djkwK7bP/8bu2wcNJVhdWwhscs5tcc4FgQeAixIck8SJc26Pc+6t2PM6vBuwcXjX+A+xzf4AXJyQACWuzKwE+Ajw29hrA84GHo5toms9TJhZDnA6cDeAcy7onKtGv9vDVQBIM7MAkA7sQb/bw4Zz7iWgqsPirn6XLwL+6DyvAblmNuaoBCr91tm1ds4945wLx16+BpTEnl8EPOCca3HObQU24d23DxpKsLo2DtjR7vXO2DIZZsxsInA88DpQ7JzbE1u1FyhOVFwSVz8FbgaisdcFQHW7P9z6/R4+JgHlwO9jTUJ/a2YZ6Hd72HHO7QJuA7bjJVY1wAr0uz3cdfW7rPu24e1a4OnY80F/rZVgyYhmZpnAI8CXnXO17dc5bw4DzWMwxJnZ+cB+59yKRMciR0UAOAH4pXPueKCBDs0B9bs9PMT63lyEl1SPBTI4vImRDGP6XR4ZzOw/8Lp23J/oWHpLCVbXdgGl7V6XxJbJMGFmSXjJ1f3OuUdji/e1NimI/dyfqPgkbk4FLjSzMrymvmfj9dHJjTUrAv1+Dyc7gZ3Ouddjrx/GS7j0uz38fADY6pwrd86FgEfxft/1uz28dfW7rPu2YcjMrgHOB650ByfvHfTXWglW194EpsZGI0rG60z3RIJjkjiJ9cG5G1jnnPtJu1VPAJ+KPf8U8PjRjk3iyzn3TedciXNuIt7v8fPOuSuBF4CPxTbTtR4mnHN7gR1mNj226P3AWvS7PRxtB042s/TY3/TWa63f7eGtq9/lJ4BPxkYTPBmoadeUUIYgMzsXr3n/hc65xnarngAuN7MUM5uEN7DJG4mIsSt2MBmUjszsw3h9N/zA75xzP0xsRBIvZnYa8DLwLgf75XwLrx/WQ8B4YBtwmXOuYwdbGaLM7Ezga865881sMl6NVj7wNnCVc64lgeFJnJjZPLwBTZKBLcCn8b5Q1O/2MGNm3wcW4zUfehv4DF5fDP1uDwNmtgQ4EygE9gHfAx6jk9/lWJJ9J14z0Ubg08655QkIW45AF9f6m0AKUBnb7DXn3PWx7f8Dr19WGK+bx9Mdy0wkJVgiIiIiIiJxoiaCIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiMkiY2UQzc2YWSHQsw52ZXWNmyxIdx2BjZovMbEOi4xARGcqUYImIyJBmZreYWcjM6ts9bk50XEORc+5l59z0eJdrZvPMbIWZNcZ+zov3MUREBgslWCIicaKap4R60DmX2e5xa6IDiqeh/Nkys2TgceA+IA/4A/B4bLmIyLCjBEtEpB/MrMzMvm5mq4AGMwuY2clm9i8zqzazd8zszHbbLzWz/2tmb5hZrZk9bmb5XZT9aTNbZ2Z1ZrbFzP5Ph/UXmdnKWDmbzezc2PIcM7vbzPaY2S4z+y8z8/fwPqaY2fNmVmlmFWZ2v5nltltXZWYnxF6PNbPy1vdlZhea2ZrY+11qZjM6nJ+vmdkqM6sxswfNLLXvZ7rvzOwbsfNSZ2ZrzeySLrYzM7vdzPbHzuW7ZjY7ti7FzG4zs+1mts/M7jKztF4e/57Y9s/GYnjRzCa0W/8zM9sRO+YKM1vUbt0tZvawmd1nZrXANWa20MxejZ3nPWZ2Z/skJda89PNmtjF2vP+MXbt/xY7xUE9JjZmdaWY7e/P++uBMIAD81DnX4py7AzDg7DgfR0RkUFCCJSLSf1cAHwFygWLgSeC/gHzga8AjZlbUbvtPAtcCY4AwcEcX5e4HzgeygU8Dt7dLchYCfwRuih33dKAstt89sXKPAY4HPgR8pof3YMD/BcYCM4BS4BYA59xm4OvAfWaWDvwe+INzbqmZTQOWAF8GioCngL92uJG/DDgXmATMBa7pNACz02LJQ1eP03p4Dx1tBhYBOcD3Y/GP6WS7D+Gdv2mxbS8DKmPr/ie2fB7e+RwHfLcPMVwJ/CdQCKwE7m+37s1YufnAn4A/d0g+LwIexru+9wMR4MZYWacA7wc+3+F45wAnAicDNwO/Bq7Cu56z8T6rRyyWKHd1ff63i91mAaucc67dslWx5SIiw44SLBGR/rvDObfDOdeEdzP7lHPuKedc1Dn3LLAc+HC77e91zq12zjUA3wEu66yGyTn3pHNus/O8CDyDlzAA/BvwO+fcs7Hj7HLOrTez4tixvuyca3DO7QduBy7v7g045zbFympxzpUDPwHOaLf+N8Am4HW8xPA/YqsWA0/G9g0BtwFpwPs6nJ/dzrkq4K94SUVnMSxzzuV28+huUIrLOtzsj3XO/Tl23Khz7kFgI7Cwk31DQBZwLGDOuXXOuT1mZsB1wI3OuSrnXB3w3z2dyw6edM695JxrwTtnp5hZaez93uecq3TOhZ1zPwZSgPb9n151zj0Wi7/JObfCOfdabPsy4Fe0u0Yxtzrnap1za4DVwDPOuS3OuRrgabyE+4g55+Z2c306JnutMoGaDstq8M65iMiwM2TbdIuIDCI72j2fAHzczC5otywJeKGL7bfF1hd2LNTMzgO+h1eD4gPSgXdjq0vxaos6mhArb4+XH0Bs3x2dbNv+WMXAz/ASuKzYPgc6bPYb4AnguljCAF6N17bWDZxzUTPbgVfT02pvu+eNsX3i7SHn3FXtF5jZJ4GvABNjizLp5Dw75543szuBXwATzOxRvJrHVLxzvqLduTSg2+aWHbSdd+dcvZlV4b3/HWb2NbxEeSzg8GoqCzvbN/Z+puElvvNjcQWAFR2Ot6/d86ZOXo/uQ+zxUo/33trLBuoSEIuIyIBTDZaISP+1b/q0A6+Gqv03+xnOuf9pt01pu+fj8WpQKtoXaGYpwCN4NULFzrlcvISq9U5/BzClk1h2AC1AYbvjZzvnemqO9d+x9zHHOZeNVxN3MKswywR+CtwN3GIH+43txkvqWrez2Pvb1cPxDmPeEOH13TwW9VxKW1kT8BLCG4CC2Plb3f49teecu8M5dyIwEy+hvQnvmjQBs9qdyxznXGYf3lbbtY6dw3xgd+y93IzXHDEvFl9Nh/jaf64AfgmsB6bGrtG3uno/A8W8vnZdXZ+7uthtDTDX2mWpeE1F1wx8xCIiR58SLBGR+LoPuMDMzjEzv5mlxgYOKGm3zVVmNjPWn+kHwMPOuUiHcpLxmoyVA+FYbdaH2q2/G/i0mb3fzHxmNs7MjnXO7cFrSvhjM8uOrZtiZh2bknWUhVfTUGNm4/ASjPZ+Bix3zn0Gr49Z6830Q8BHYnEkAV/FS/D+1dOJ6ig2RHhmN4+X+1BcBl6CUg7egCF4fZAOY2YLzOykWPwNQDMQdc5F8ZK0281sVGzbcWZ2Trt9nbUbxKQTH471LUvG64v1mnNuB975DsfiC5jZdzm8lqejLKAWqDezY4HP9bB93DnnZnVzfa7vYreleP3HvmjeoCE3xJY/f1SCFhE5ypRgiYjEUezm+SK82oVyvBqlmzj07+29eANR7MVrhvbFTsqpiy1/CK+p3ifwmue1rn+D2MAXeDUfL3KwJumTeAna2ti+D+P1m+rO94ETYmU9CTzausLMLsIbpKL1hv4rwAlmdqVzbgNebdfP8Wp8LgAucM4FezjegHLOrQV+DLyK10xuDvBKF5tn4yVSB/CaO1YCP4qt+zpe37PXzBvN7zli/aRifanqONhsszN/wmvmWYU3+ERrM8Z/AH8H3osds5kemnHiNVv8ROyYvwEe7GH7QSH2WbgY73NZjTfAy8WJ/oyIiAwUO3RQHxERGUhmthS4zzn320THIv1jZlfhNR/8Zhfr7wF2Oue+fVQDExGRhNIgFyIiIkfAOXdfomMQEZHBR00ERURGCPMmve3L4AQyDJnZt7r4HDyd6NhERIYDNREUERERERGJE9VgiYiIiIiIxMmg6oNVWFjoJk6cmOgwREREREREurVixYoK51xRx+WDKsGaOHEiy5cvT3QYIiIiIiIi3TKzbZ0tVxNBERERERGROFGCJSIiIiIiEidKsEREulFXV8PSV18nGtWIqyIiItKzQdUHqzOhUIidO3fS3Nyc6FBkiElNTaWkpISkpKREhyJD2Fv3fosz99/HS80PcPpZ5yU6HBERERnkBn2CtXPnTrKyspg4cSJmluhwZIhwzlFZWcnOnTuZNGlSosORISy5ficAWW/dBUqwREREpAeDvolgc3MzBQUFSq6kT8yMgoIC1XxKv7WEIgCMqVuT4EhERERkKBj0CRag5EqOiD43Eg/pkVoARlNOzf7tCY5GREREBrshkWCJiCRKRrSeRlIB2LX+zQRHIyIiIoOdEqxeMDO++tWvtr2+7bbbuOWWWxIXUDuvvfYaJ510EvPmzWPGjBltcS1dupR//etf/Sr73HPPJTc3l/PPPz8OkYoMTVmujp0ZcwCo2bEuwdGIiIjIYKcEqxdSUlJ49NFHqaioiGu5zjmi0Wi/yvjUpz7Fr3/9a1auXMnq1au57LLLgPgkWDfddBP33ntvv8oQGcpawhGyaaA5ZzK1ZOCr2pjokERERGSQG/SjCLb3/b+uYe3u2riWOXNsNt+7YFa32wQCAa677jpuv/12fvjDHx6yrry8nOuvv57t272+GT/96U859dRTueWWW8jMzORrX/saALNnz+Zvf/sbAOeccw4nnXQSK1as4KmnnuLOO+/k6aefxsz49re/zeLFi1m6dCm33HILhYWFrF69mhNPPJH77rvvsH5F+/fvZ8yYMQD4/X5mzpxJWVkZd911F36/n/vuu4+f//znHHvssV3GuXnzZjZt2kRFRQU333wzn/3sZwF4//vfz9KlS7s9N3/+85/5/ve/j9/vJycnh5deeonm5mY+97nPsXz5cgKBAD/5yU8466yzuOeee3jsscdoaGhg48aNfO1rXyMYDHLvvfeSkpLCU089RX5+Pr/5zW/49a9/TTAY5JhjjuHee+8lPT39kOOefPLJ3H333cya5V27M888k9tuu4358+d3G69IXzQ0BcmlkWhqDnsCJWTUlyU6JBERERnkVIPVS//+7//O/fffT01NzSHLv/SlL3HjjTfy5ptv8sgjj/CZz3ymx7I2btzI5z//edasWcPy5ctZuXIl77zzDs899xw33XQTe/bsAeDtt9/mpz/9KWvXrmXLli288sorh5V14403Mn36dC655BJ+9atf0dzczMSJE7n++uu58cYbWblyJYsWLeo2zlWrVvH888/z6quv8oMf/IDdu3f3+rz84Ac/4B//+AfvvPMOTzzxBAC/+MUvMDPeffddlixZwqc+9am20fxWr17No48+yptvvsl//Md/kJ6ezttvv80pp5zCH//4RwA++tGP8uabb/LOO+8wY8YM7r777sOOu3jxYh566CEA9uzZw549e5RcSdw1NxzAZ45oah61GRMZ1aJBLkRERKR7Q6oGq6eapoGUnZ3NJz/5Se644w7S0tLalj/33HOsXbu27XVtbS319fXdljVhwgROPvlkAJYtW8YVV1yB3++nuLiYM844gzfffJPs7GwWLlxISUkJAPPmzaOsrIzTTjvtkLK++93vcuWVV/LMM8/wpz/9iSVLlnRa69RdnBdddBFpaWmkpaVx1lln8cYbb3DxxRf36ryceuqpXHPNNVx22WV89KMfbXtPX/jCFwA49thjmTBhAu+99x4AZ511FllZWWRlZZGTk8MFF1wAwJw5c1i1ahXgJWHf/va3qa6upr6+nnPOOeew41522WV86EMf4vvf/z4PPfQQH/vYx3oVr0hfRBu9L1RcSjbh3CmMqvkHTfU1pGXmJDgyERERGayGVIKVaF/+8pc54YQT+PSnP922LBqN8tprr5GamnrItoFA4JD+Ve3nY8rIyOjV8VJSUtqe+/1+wuFwp9tNmTKFz33uc3z2s5+lqKiIysrKw7bpKk44fDjzvgxvftddd/H666/z5JNPcuKJJ7JixYput2//nnw+X9trn8/X9v6uueYaHnvsMY477jjuueeeThPGcePGUVBQwKpVq3jwwQe56667eh2zSG+Fg7Hf26RUkkZPh22wd8tqJs09NbGBiYiIyKClJoJ9kJ+fz2WXXXZIk7UPfehD/PznP297vXLlSgAmTpzIW2+9BcBbb73F1q1bOy1z0aJFPPjgg0QiEcrLy3nppZdYuHBhr2N68skncc4BXtNDv99Pbm4uWVlZ1NXV9RgnwOOPP05zczOVlZUsXbqUBQsW9Pr4mzdv5qSTTuIHP/gBRUVF7Nixg0WLFnH//fcD8N5777F9+3amT5/e6zLr6uoYM2YMoVCorZzOLF68mFtvvZWamhrmzp3b6/JFeisc8hIsXyCFnJIZANTsXNvdLiIiIjLC9TvBMrNSM3vBzNaa2Roz+1Js+S1mtsvMVsYeH+5/uIn31a9+9ZDRBO+44w6WL1/O3LlzmTlzZltNyqWXXkpVVRWzZs3izjvvZNq0aZ2Wd8kllzB37lyOO+44zj77bG699VZGjx7d63juvfdepk+fzrx587j66qu5//778fv9XHDBBfzlL39h3rx5vPzyy13GCTB37lzOOussTj75ZL7zne8wduxYwEv+Pv7xj/PPf/6TkpIS/vGPfwBes8TW/lY33XQTc+bMYfbs2bzvfe/juOOO4/Of/zzRaJQ5c+awePFi7rnnnkNqrnryn//5n5x00kmceuqpHHvssW3Ln3jiCb773e+2vf7Yxz7GAw880DZyoki8RUJBAPyBZMZOmglAcL9GEhwI3qiqLtFhiIiI9Ju11n4ccQFmY4Axzrm3zCwLWAFcDFwG1DvnbuttWfPnz3fLly8/ZNm6deuYMWNGv2KUrnUc7XC40edH+mPd688w4+mP8+7Zf2TO6RdRfstEtuW/j/lf/FOiQxt2vn3XEqbUL+ear/wI86lxRbyVVTQwPj8dn6/3TcCld1rCEcIRR0aKel2IjDRmtsI5d9goa/3+V8w5t8c591bseR2wDhjX33JFRBItEmsi6E9KBqAiUExaw65EhjQsNTU18V97r+fT9b+lbMPKRIcz7Ly6uZL6O97Hmt9+NtGhDEvf+c2jtPzfyYT2rE50KCIySMT1a0IzmwgcD7weW3SDma0ys9+ZWV4X+1xnZsvNbHl5eXk8w5FeuOWWW4Zt7ZVIf0VjTQR9sQSrPnUsecG9iQxpWNq16+Dw9/vWHT4dhfTPxpUvMdtXxpzdf4Z+tlqRQzUGw8zb9SfyqaHq5d8mOhwRGSTilmCZWSbwCPBl51wt8EtgCjAP2AP8uLP9nHO/ds7Nd87NLyoqilc4IiL9Fg17CVYgyetDGMwqpShajot0PqKnHJn66oNfrvl3dz8SqfRd1p5X256Hq7YlMJLhZ29NM8f7vH6Z4b0aAEdEPHFJsMwsCS+5ut859yiAc26fcy7inIsCvwF6PzSeiMggEA23AOBP8qY38OeNJ8kiVO7VTWo8NdceHDgos25zAiMZnqylpu151cbXEhjJ8LOvtoUcawAgv3qNaghFBIjPKIIG3A2sc879pN3yMe02uwRQ42QRGVJcW4LlNRFMK5oEQOXOTQmLaTgK1nlz95UFJpEf3J3gaIafQLCOYGzay9rd7yU4muGlvL6FdLy/E2nRemg6kOCIRGQwiEcN1qnA1cDZHYZkv9XM3jWzVcBZwI1xOJaIyFHTsYlgzpgpANTv25KwmIajcEMVADV5cyiKVtLc1JjgiIaXpFAd1YFRVLhswuX67MZTUzBMGi3sShrvLajqfM5LERlZ4jGK4DLnnDnn5jrn5sUeTznnrnbOzYktv9A5tyceASfKY489hpmxfv36LrcpKytj9uzZcTvmhg0bOPPMM5k3bx4zZszguuuuA7xJgp966ql+lX3ttdcyatSouMYrMty4WIKVlOw1ERxV6iVY4aqyRIU0PLV+6z92Hj5z7N6mWpZ4SonUE0nOYreNJqlWzVvjqbm5hRQLU5vtzXXZsFfz5IlInEcRHM6WLFnCaaedxpIlSzpdHw73v9N7JBI55PUXv/hFbrzxRlauXMm6dev4whe+AMQnwbrmmmv4+9//3q8yRIa71iaCgViClZ6RRQW5+Gp2JDKsYSfQUk2QAOmlcwGo3qUEK15awhHSXQPhpGyqUsaS07wz0SENK+EWr/+VFXsTkdfs3pDIcERkkBhas+I9/Q3Y+258yxw9B877n243qa+vZ9myZbzwwgtccMEFfP/73wdg6dKlfOc73yEvL4/169fzzDPPEA6HufLKK3nrrbeYNWsWf/zjH0lPT+ef//wnX/va1wiHwyxYsIBf/vKXpKSkMHHiRBYvXsyzzz7LzTffzOWXX9523D179lBSUtL2es6cOQSDQb773e/S1NTEsmXL+OY3v8n555/PF77wBVavXk0oFOKWW27hoosu4p577uEvf/kLNTU17Nq1i6uuuorvfe97AJx++umUlZV1+75ffPFFvvSlLwFgZrz00ktkZmZy88038/TTT2NmfPvb32bx4sUsXbqU733ve+Tm5vLuu+9y2WWXMWfOHH72s5/R1NTEY489xpQpU/jrX//Kf/3XfxEMBikoKOD++++nuLj4kONefvnlXH311XzkIx8BvGTw/PPP52Mf+1jvrqlIvERCAASSk9sWVQRGk96oubDiKSlYSy1Z5JVMByC4XwNdxEtDS4RsGommjKPRX0J+1YsQboFASqJDGxbCzfUA5BaMZq/LI1KhJpgiohqsXnn88cc599xzmTZtGgUFBaxYcXAY4bfeeouf/exnvPee943rhg0b+PznP8+6devIzs7mf//3f2lubuaaa67hwQcf5N133yUcDvPLX/6yrYyCggLeeuutQ5IrgBtvvJGzzz6b8847j9tvv53q6mqSk5P5wQ9+wOLFi1m5ciWLFy/mhz/8IWeffTZvvPEGL7zwAjfddBMNDd63am+88QaPPPIIq1at4s9//jPLly/v9fu+7bbb+MUvfsHKlSt5+eWXSUtL49FHH2XlypW88847PPfcc9x0003s2eO1/nznnXe46667WLduHffeey/vvfceb7zxBp/5zGf4+c9/DsBpp53Ga6+9xttvv83ll1/OrbfeethxFy9ezEMPPQRAMBjkn//8Z1uyJXI0ucihTQQB6tPGkqu5sOIqJVxLgy+DglElNLlkqC5LdEjDRnMoQpY1EknOJpI7ER+OqIZqj5tIrAYrNzePba6YQE1ZYgMSkUFhaNVg9VDTNFCWLFnSVpNz+eWXs2TJEk488UQAFi5cyKRJk9q2LS0t5dRTTwXgqquu4o477uCDH/wgkyZNYto0r432pz71KX7xi1/w5S9/GfASis58+tOf5pxzzuHvf/87jz/+OL/61a945513DtvumWee4YknnuC2224DoLm5me3bvYk7P/jBD1JQUADARz/6UZYtW8b8+fN79b5PPfVUvvKVr3DllVfy0Y9+lJKSEpYtW8YVV1yB3++nuLiYM844gzfffJPs7GwWLFjAmDHe4JFTpkzhQx/6EODVvL3wwgsA7Ny5k8WLF7Nnzx6CweAh567Veeedx5e+9CVaWlr4+9//zumnn05aWlqvYhaJJ2vtg5V08Nv+YGYJo2pfJBoO4wsMrT+hg5U/0kTQ0jCfj73+0aTWqwlmvDSFIoyikf0p2SQVTIYt3kiCuaOmJTq0YSEaS7BS07PY4xvDjIZVCY5IRAYD1WD1oKqqiueff57PfOYzTJw4kR/96Ec89NBDuNhcFxkZGYds741a3/XrznQso72xY8dy7bXX8vjjjxMIBFi9+vDR7p1zPPLII6xcuZKVK1eyfft2ZsyYccTxtPrGN77Bb3/7W5qamjj11FO7HeADICXl4E2oz+dre+3z+dr6qH3hC1/ghhtu4N133+VXv/oVzc3Nh5WTmprKmWeeyT/+8Q8efPDBLhNQkQEXCdLiAvj9B/9U+vImkGQRKjQXVtz4Iy2E/N7fi6rkceSqn1DcNDUHybImXEoOWWO9pKp2j/q4xU3QS7BISqc2rYTscOXBZSIyYinB6sHDDz/M1VdfzbZt2ygrK2PHjh1MmjSJl19+udPtt2/fzquvvgrAn/70J0477TSmT59OWVkZmzZ5c+fce++9nHHGGT0e++9//zuhkNcHZO/evVRWVjJu3DiysrKoq6tr2+6cc87h5z//eVvS9/bbb7ete/bZZ6mqqmrrB9Vau9YbmzdvZs6cOXz9619nwYIFrF+/nkWLFvHggw8SiUQoLy/npZdeYuHC3s8hXVNTw7hx4wD4wx/+0OV2ixcv5ve//z0vv/wy5557bq/LF4mraJBwh4r+tFFerWvVLo0WFi9J0WYiPi/BasosZVRknyZsjZNwU633JDWL4jGlNLoUQhUaSjxuWpOp5AxasmJDtVdvT1w8IjIoKMHqwZIlS7jkkksOWXbppZd2OZrg9OnT+cUvfsGMGTM4cOAAn/vc50hNTeX3v/89H//4x5kzZw4+n4/rr7++x2M/88wzzJ49m+OOO45zzjmHH/3oR4wePZqzzjqLtWvXMm/ePB588EG+853vEAqFmDt3LrNmzeI73/lOWxkLFy7k0ksvZe7cuVx66aVtzQOvuOIKTjnlFDZs2EBJSQl33303AHfddRd33XUXAD/96U+ZPXs2c+fOJSkpifPOO49LLrmEuXPnctxxx3H22Wdz6623Mnr06F6fz1tuuYWPf/zjnHjiiRQWFrYtX758OZ/5zGfaXn/oQx/ixRdf5AMf+ADJ7QYYEDmaLBIiZIcmWLltc2HpJjVekqItRPxePzeXU0o6zTTWlCc4quEh2OQlAP6UDMblZbDLFYJGwYyf0MEaLH/eBACcEiyREc/cIPqWcP78+a7jIAzr1q1ra+4mfXPPPfewfPly7rzzzkSHkjD6/Eh/vPnzq5hYuYyiW8raljU31pN66zhem3A9J3/6/yUuuGFk5/ePZV/WTE78yqO8/uQfOOnNL7LjY09ROrv3Ne7SuWWvv8FpT3+QHWf8lNKzPs0r3z+TiakNjPv6m4kObVj4xU//k3+vvg2+8BZLVlZwxcsfovED/4/003r+ElVEhj4zW+GcO2xwA9VgiYh0wSKhw5oIpqZnenNh1aoWIF6SXAtRvzeQTeboyQDU7NVw1/EQbmkEIJDind/alDFkt+xJZEjDii/c5D1JSidvVCktLkDDftVui4x0GgJrGLvmmmu45pprEh2GyJDli4YI2+F/Jis1F1ZcpbggLuA1ESwo8ZpgtpSXJTCi4aN1ItxAqjeYUkvmOLIq6qClHlIyExnasOBvTbCS0ynJh92ugNQqNREUGemGRA3WYGrGKEOHPjfSX75okJAd3gewPm0seUHVAsSDc45UWiDJS7CKCkdT79JwNbpJjYfWeZqS0mLJVK43EEP0gM5vPPgjXg0hSRmU5KWxyxXiV+22yIg36BOs1NRUKisrdbMsfeKco7KyktTU1J43FumCLxoi0kkNVjCrhKJoBZHY9ANy5ELhKKkWgqR0APx+H/t9RSTXq4YwHqJBr4YlOdU7vykF3kAMtXs3Jyym4SQQbiZsSeAPkJOWxH7fKNIadyc6LBFJsEHfRLCkpISdO3dSXq4RpaRvUlNTKSkpSXQYMoR1lWD58iaSvDvCvt1bKR4/NQGRDR9NTQ0kAwQOfhlSnTyavGbVEMZDNOjVsCTHmghmx/q41e7dSm6ighpGkqJNhAKpBPDmmaxLHUtWywsQam6rlRWRkWfQJ1hJSUlMmjQp0WGIyAjkdyEilnTY8rTiKbDGmwtLCVb/tDTVA2BJaW3LmjLGcUzVmkSFNKy4WA1WIMVLsIrGjKfFBWipLEtgVMODc47kaDMhfxqtn95Q1jhoAWp2QuExiQxPRBJo0DcRFBFJFG+Qi8P7YOWN85KqBjWz6rdgs9dHyJLT25ZFs0vJpoGW+gOJCmvYcKHWUe68FGBcXga7XQGmuZr6LRRxpNJMxH/wywFfrI8b6kMoMqINeIJlZuea2QYz22Rm3xjo44mIxIvfhYj6Dq/BGlUyhYgzIlVlRz+oYSbY5DVh8ycfvElNKpgIQPnOTYkIaVixcOsgDN75zUgJsN83iuQG9XHrr6ZghHRaiAQOfjmQUjTRW1dRlpigRGRQGNAEy8z8wC+A84CZwBVmNnMgjykiEi9+F+40wUpJSWW/FRCo1bfU/RWK1WD52tVgZRZ7zcJr92gurH4LHZynqVVNyhiym/cmKKDhoykUId1aiAYOfjmQVzyRsPPRoHncREa0ga7BWghscs5tcc4FgQeAiwb4mCIicRHoogYLoDJpLJmNO49yRMNP60S4/pSDCUD+OK/vSlO5blL7yxduIowf/Ac/x80Z48iNVnkDMcgRawpFSKOFaLvkdWxBFnvJJ1i1LYGRiUiiDXSCNQ5oPyHEztiyNmZ2nZktN7PlGilQRAYTL8E6vA8WQEP6OApCGumuv1oTrKTUg7UAo4rH0eSSiR7QfEL95Yu0EOzQj9DllHo/a3R++6O1iSBJGW3LWufC8tXoyxeRkSzhg1w4537tnJvvnJtfVFSU6HBERNoEXBjn63yw1VD2eAo5QDjWxE2OTDg2jHggJbNtWSDgZ7+viKR63aT2lz/SRNAOHS48uW0uLNUQ9kdTKEyatUC75q0FGcnsoYi0RvVxExnJBjrB2gWUtntdElsmIjLoJRHC+TuvwQrkezepGoihfyKtNVjtmggCHEgeTWaTJmztL3+kmaAv5ZBlmcXeXFg1SrD6pSkYJZ1mLPlgDZY3F9YYsoLlEAklMDoRSaSBTrDeBKaa2SQzSwYuB54Y4GOKiMRFgDCuiyaC6aO9fkLVu5Vg9YcLtjYRPDTBakofS354XyJCGlYCkWbCHRKswrHeQAwt5VsTFNXw0BTymgj62iVYAC2ZJfiIQq2+IBAZqQY0wXLOhYEbgH8A64CHnHOaPVJEhoQkF+6yBit/3DQAmvZrLqz+iMZGuUtOyzxkeSS7lHxqCTbWJSKsYSMQbSHsO7SJ4LjYQAyuWn2w+qMpGCTVQvhTDk2wLDfWcEdzjYmMWAPeB8s595Rzbppzbopz7ocDfTwRkbhwjhQLHTL6Wnujxoyn2SUR1VxY/dI6EW5K2qE3qW1NMHcpge2PZHfoRLgA2alJ7LUikuvVYr8/wk1e/0t/hy8HUmLzuLVUlh3liERksEj4IBciIoORa+0/0UUNVnKSnz2+YpLrVAvQL0EvwUrt0EQwc5Q3F1b1HiVY/ZEUDRLxpxy2vDp5DJnNGgWzP0JNXu1q+wFaAHJGe5/d+n1qgikyUinBEhHpRCjYAoAFDr85bXUgeQyZTaoF6JdwExFnBJIPbcbWNhfWft2kHinnHCmu+ZCJcFs1pY8lL1KhgRj6Idzi1WAldajBGluYwz6XS7CiLAFRichgoARLRKQTwViC1VUTQYCmjBKKwqoF6A8LNdFCMpgdsnzU2AkEnZ/oAfVjOVKhiCOVIK6TBMvllOIniqvVFwRHKtJSD0Ag9dDmrSV56exyhaB5xkRGLCVYIiKdCLd4Tde6aiIIQO4Esmikobri6AQ1DFmkmWY7vJYwEAiw31dEoE5zYR2pplCEVAviAqmHrQvE+gmpGduRc7EaLF/yoTVYRZkp7KGI1AaNIigyUinBEhHpRCjUcxPBlKIpAOzfvuGoxDQc+cLNBOn8HB9IGk2G5sI6Ys2hCGm0QNLhNVhtfdx2q4/bkYoGY5OMJx/af9DnM2pSxpDVshei0QREJiKJpgRLRKQT4bY+WF3XYOWOa50La+NRiWk48ibC7fwcN6aPIT+kubCOVHMoQipBLCn9sHUFY70Eq1n9hI5cbJJsOjm/LRnjCBCG+r1HOSgRGQyUYImIdCIcbAbAn9R1glU84VgAWjQX1hHzRVoI2uFN2AAiWaUUUUWo9UZW+qSpJUiKhbHkwxOAcYW57HV56uPWDy7UWoOVcfjK3PHeT82FJTIiKcESEelEOOzVYPk6GeK6VVZOPgfIxqrLjlJUw08g2kzY1/k59hVMBmD/9veOZkjDRktTax+hw5sI5qQlsZPRpNRtO9phDR+hrmuwUotjo2Du23Q0IxKRQUIJlohIJyLBIACW1HWCBbA/MJb0en1LfaSSukmwssZOA+DATvVxOxLBJm+UO38nNVhmRlXKWLKbNIjIkfIFYwlWJ+c3b+wUIs6o260vB0RGIiVYIiKdiMQGufD3kGDVp5dSGNRQ10cqEA0S9nfeRHBUrAlm0171cTsSoWavBsuf0kkTNqApczz5kQoINR3NsIYNC7fWYB1+fkuLctntCglVqPmwyEikBEtEpBORkNcHy9fNIBcA4ZyJjHIVNDepn9CRSIq2EOmiBquwaAy1Lh13QEOJH4lQbKqBQMrhNSwALs9rghmt1Pk9Ev5IExH80MnfiAkFGWxzo/Cr+bDIiKQES0SkE63DtCcld1+DFSiagt8ce7epKdCRSHbNnU6EC2A+H/sCY0hTP6EjEo7VYCWldl6DlTLKm2agepeaYB6JQLiJoK/zz25mSoD9gbFkNWqyYZGRSAmWiEgnIrFh2pNTOr+BapU1ZioAB3STekRSXQuuk3maWlWnlpLXoiaYRyLc0n2ClTvOa4JZo35CRyQp2kSoi+atAHXppWREaqCp+ugFJSKDghIsEZFOhGNNBFNSur6BAhg1YQag0cKORDQSJYNGXHJWl9sEsydQHNlHNBw6ipEND62jCKZldJ5glYwdQ7XLIFyufkJ9FY06kqNNRPydN78EiOR6c42hJq4iI06/Eiwz+5GZrTezVWb2FzPLjS2faGZNZrYy9rgrLtGKiBwlrTVYPSVYOYVjaCAVq9JNVF81NNaTbBFcSnaX2/gKJpNkESp2Kwnoq0hzHQApaZ2f37G5aWx3xfhryo5iVMNDczhCOi2EA10nWElFXh83DXQhMvL0twbrWWC2c24u8B7wzXbrNjvn5sUe1/fzOCIiR1U06H37n5zWde0KxPoJ+ceQqqHa+6yprhoAS+36HGeM9ppgVmxbfzRCGl6aa7yfqTmdrvb7jIrkcWSqn1CfNbREyLJGIt3UvmaP9T67tbs0CqbISNOvBMs594xzLhx7+RpQ0v+QREQSz1q8OYRSMrtPsABq0krJb9F8Qn3VVH8AAH9a5wkAQOF4r59Qo5pg9pm11HpPukiwABrSSykI7YWImmD2RWMwTDaNRJK7PrclxUWUuxxa9uuzKzLSxLMP1rXA0+1eTzKzt83sRTNbFMfjiIgMOAs2EHVGcje1K61C2RMYHd1HMKib1L5oqfdqWALdJFjF4ybS7JKIVqqZVV/5WmqJYpCc2eU2kbxJ+IniqlWL1RcNLRGyrQGX2nXz1vH5GZS5YqxazYdFRpoeEywze87MVnfyuKjdNv8BhIH7Y4v2AOOdc8cDXwH+ZGad/hUys+vMbLmZLS8vL+//OxIRiQML1dNIKubr+XsoX8EUUizM3l1bjkJkw0eowavBCmTkdrmN3+9nj38MybUaqr2vkkK1NFoGdPMZTi7yhmqv3a1RMPuiIVaDZd0kWIWZyey20WSo+bDIiNPjnYNz7gPOudmdPB4HMLNrgPOBK51zLrZPi3OuMvZ8BbAZmNZF+b92zs13zs0vKiqK09sSEekff7iBJut+gItWmbG+FpXb1U+oL4JNXhO2lIyua7AAqlPGkdusJph9lRSuo8nfde0VQPY477Nbs0tDtfdFbX0TmdaMPz2vy23MjNq0UrJD5RBqOorRiUii9XcUwXOBm4ELnXON7ZYXmZk/9nwyMBXQV7siMmQEwo00WfdzYLUqHD8dgMa96szeF5HGagBSMru+SQVoyppAcXgPLho9ClENHynheoI9JFhjxk2iySXTsl9NMPuivs6rfU3J6P6zG8ye6D05oBpYkZGkv32w7gSygGc7DMd+OrDKzFYCDwPXO+eq+nksEZGjJhBuoNnX9RDM7RWMnkTQBXBV+h6pL0KNXh+snJz8brez/EmkWZAD+9VPqC/SovUEk7rvQ1iSn8429RPqs+Y675YmJav7z26g0JsLK6I+hCIjSqA/Ozvnjuli+SPAI/0pW0QkkQLhBoK9TLDMH2CffzSpdepr0RfhWIKVldN9LUBa8VRYD+Xb1pM/esLRCG3Ii0YdGdEGwkndN71PCfjZHxjDVPUT6pNQbATM1KzuP7sZY6bCWqjbs5HcGUcjMhEZDOI5iqCIyLCRFGnqdhLRjqpTS8hRP6E+saYD3iTNgeRut8sr9Zpg1u9RP6HeqmkKkWWN3Q7R3qo2vZT84G5QE8xeC8Wat/rScrvdbnTxOGpdOs1qPiwyoijBEhHpRGq0kUhSRq+3b8kaz5jIHiIR3aT2VlJzJTW+7msAAEaPn0rY+QhXqAlmb1XUNZNPHZbefRM2gHDORFIIQv3eoxDZ8OAaY70eUnO73W58QQbb3CjcATXBFBlJlGCJiHQi1TUSTep+gID2rGAymdbM3j2qxeqt9GAltYGeE4CU5BT2+YpIqikb+KCGiQMHqki3FgLZo3vcNlA4GYAG1bL0mr9hn/cka0y3243NTWW7Kya1ToNciIwkSrBERDpwzpHmmiG59zVY6aO94a4rtq8bqLCGnaxIFU3JPSdYAFXJ48hsUvLaW/WVuwBIyR/X47aZsc9utYZq77WUpv2ECUAPNYQBv48DKSVkN++BSPgoRSciiaYES0Skg6bmJjKsBdeL/iutCtr6CakWoLdyowcIpvZu/sOGjFJGhXcPcETDR8sBL8FKL+g5wSoYN4Ww89G0TyPd9VZ6sIL6pAIw63Hb5qzx+IlA7a6jEJmIDAZKsEREOqiv9PqiuPTeT35eOG4qEWdEKtVPqDdCwWZyqSeaXtir7SO5E8mlnsbaygGObHiI1OwBIKugpMdtxxfmsNsVgPoJ9UpzKEJepJLm1FG92yHfG6pd51dk5FCCJSLSQV2seVVSTnGv9/Elp1LuKyK5tmyAohpe9u725rRKzum5jxBAUqyfUPn2DQMW03ASqfO+JPDldN9HCCAnPYldvtGkaJqBXtlf20KxHSCc0bsEK22U99lt2r9pIMMSkUFECZaISAf1Vd63/+l5vbv5b3UgZRzZ6ifUKxU7vP4+mcWTe7V91hivn1DtbvUT6g1/3S6aLRVSsnu1/YGUceRqmoFe2V7ZwGirIpDTc/NLgPwxkwg6P/W71XxYZKRQgiUi0kHLAe/b/+zC3t1AtWrKGs/o8G6iUTcQYQ0rjXu9RKlwQu9mXy0afywAwXL1E+qN/KbtVKaU9qqPEEBz5niyorXQXDPAkQ19+/fuINuaSBszrVfbjy/MYocbRVjNh0VGDCVYIiIdROq8IZjzR/UtwSJvEvlWx/6K/QMQ1fDiKjcTcn7yx07p1fYF+flUuBx8B8oGNrBhoDEYpiSyk4asib3ex+V520Yr1U+oJ427vZFCM8fN7NX24/PT2e5GkVSjodpFRgolWCIiHdXvp5EUUjN617yqVfKoYwCo2qF+Qj1JrS1jn3805k/q1fZmxv7AaNIadgxwZEPf1j2VlFgFFEzt9T4po7xEt2aP+gn1JLhvPQD+ot7VYGWlJrE/MIbMRjXBFBkplGCJiHSQ0rCbSl/vRrdrLyvWZEgTtvZsVNNmKtIm9mmf+pTRZLXsG5iAhpGd772Nzxx542f3ep/c0V5fuNq9qsHqjnOO9OqNtPjSILv3NdxN6WNJjTZAc+0ARicig4USLBGRDvKad1CVOr7P+xWUeglWRM2sulVTuY/xbjfNo+b1ab9Q5lgKouXg1MetOy1lrwFQOOPUXu8zdvQYGlwKwSqNJNidfbUtzIqsoypnNvj6cAvVmoxpLiyREUEJlohIO9FIhDGR3TRnT+rzvpnZeVSQQ1KNEqzulK16GYDMKSf3aT/LKSGVELVVewcirGEjc/9bVPkLsNwJvd5nXH46e1wB1KgZW3fefG87M2w7vgl9++wG8r0vbKIH1MRVZCRQgiUi0s7enZtJtRBW0LvBFzoq948mrWF3nKMaXhrXPUPQBTjm+DP6tF9qoZcw7N+pkQS7sruqnrnBt6kqXNDrEQQBUgJ+KvyjSNFnt1t7Vz5DwKIUzX5/n/ZLK/ASrPrysgGISkQGm34lWGZ2i5ntMrOVsceH2637ppltMrMNZnZO/0MVERl4u997C4C8CXOOaP/6lFFkBTWKYFcikSil5S+yLu14UjNy+rRvdvFEQP2EuvPOv/5OodWSMfeiPu9bl1Ksz243guEoo3c9Q6MvC9+k0/q0b86oUsLOR1O5RhIUGQniUYN1u3NuXuzxFICZzQQuB2YB5wL/a2b+OBxLRGRANZe9QcQZ42f3rQlQq1B6MbnRqjhHNXys+tfTlLi9uJkX93nfohKvVrGlUv2EOuOcI/mde2kkjTHzL+zz/s3pY8iLVkG4ZQCiG/r++fYG3u9eo3rSedDL0S9bjc7LZC/5hNVEUGREGKgmghcBDzjnWpxzW4FNwMIBOpaISNxkVaxke2AiKel9q105WMAYsmikqV4TtnbG/evn1JLBzA9e0+d9s/NH0+yScOon1KnXVqxgUfBldk64BFIy+7x/JMsbiMHVaCCGjqJRR+Xzd5BuLYx+/xf6vP+YnFT2uHz8dfrsiowE8UiwbjCzVWb2OzPLiy0bB7T/mmZnbNlhzOw6M1tuZsvLy8vjEI6IyJFpbmrkmOY1VOTNO+IykvO8P3UVe8riE9QwsvyFxzih6VXWT/oUyWl9TwDM56PcV6R+Qp1obAnB018nYgEmXfLtIyrDn1fqlVWhZmwdPfH8y3y08RF2jf0QvrFz+7x/fkYyeykkpVEDtIiMBD0mWGb2nJmt7uRxEfBLYAowD9gD/LivATjnfu2cm++cm19UVNTX3UVE4mbDm8+SYc2kzDj3iMtILygBoHqfmgK1t2f7Rsa/eCM7fWM5fvF/HHE5NcnFZDTrJrW9aNTx4q+/yimR5eydfxNJub2fn6m9tNggInX7yuIY3dC3csMWZr78OZwvibGLbz+iMsyM2uTYPG7RaJwjFJHBJtDTBs65D/SmIDP7DfC32MtdQGm71SWxZSIig1bz2w/T5JKZdvKHe964C9mjvNHCmirVFKjVvu0babnnYgpoov6jD5CU2vfaq1ZNaWOYUP1aHKMb2pqDIZb+6qucV/kH1o2+kBkf+doRl9U6iEizarDavL7yHbL+8kkm2D6Clz2E5ZQccVnN6aMJ1IahYT9kjY5jlCIy2PR3FMEx7V5eAqyOPX8CuNzMUsxsEjAVeKM/xxIRGUgNddXMrnqG1XnvJzUj+4jLKRzj1QKEa9SMDed455k/kvS7symIVLLr3N8xefZJ/SoykjWGAneAYDAYpyCHrndXrWDdre/n3Mo/sK74Ao797O/6NDR7R8X5OVS4bCLV+nKgpqGZJ3//f5n6lw8zwfbReMkfyJpxdr/KjGaN9Z5osmGRYa/HGqwe3Gpm8wAHlAH/B8A5t8bMHgLWAmHg351zkX4eS0RkwKx57o8stGayTrm2X+WkZubSQCrUjtwEyznH6tf/CUv/m+OaV7DFN5HA5X/g2Gnz+l12IGccfnPs27uDseOPbK6yoW7tu8upfuZHLKh9lhZLYf2C/2TGh7/Qr+QKoDg7lS0uj7T6kdsEs6aukVf/djcTN/yGj7CNssy5jLry1+SNndHvsgO542AXRGt24xt3YhyiFZHBql8JlnPu6m7W/RD4YX/KFxE5GiKRCPnv/o5tvlKmL+hVq+huVfkKSG4aefMJNdRVs+6f95K6+k/MCa+lhkxemXoTCy+7maSk5Lgco7WPW+XebSMqwaqsqmTdc38k770/Myu8hmaSeHfsxzj249/l2Pwjb7bWXmqSn0pfPlOa9sWlvKEiGIqw+q1l1Lx2H7OqnuFcq2ZPUik7Fv2ciYuu7nfi2iqj0Os50VCxg6y4lCgig1V/a7BERIa8FU/fw8LoVt6e/yMm+Po/uGpdUhEZLSMjwdpXWcn6V54gsOFvzKt/mfnWwk7fGN6acRMzz/8Cp/ZxMuGeZBV7fdwaKob/ICK7d25l+78eIXXLM8xoeovTLMQOXwlvHPMlZn34ek7IHxv3Y9YljyIjOPxb9FfUNvDuq88SWv80x1S9zAm2ixB+NuaeSvPJn2b8SRdDHP4WtJdTNNabbLhqlxIskWFOCZaIjGjhUIjiFT9hm288x53bv+aBrZpTR1FcszIuZQ02zjk2b9nEjtceJbPsWeYGV3KGhagjnQ1F55B84lXMXPhBSvwDM81i4eiJALRUDb9+LOFwhHUrX6Vy5V8Zved5jo28x1hgtxWzasylFJ18OROPO5PSONWodKYlrZismmqIhPo8me5g5pxj3dbtbH/9CdLKnuO45jc5yxoI46csax7rpn2WSWdcxcycgRvNeHROBvvJherh99kVkUMpwRKREW3F337NSW4n75zycyYE4vMnMZI5msLqKkLhCEkBf1zKTKRwOMLqla9y4K3HKd77PDOjmzgG2OsbzbqSj5F/wsWUHnc2JwTi0wywO2m5xYTw44ZJH7eqygo2vPpXou89wzG1rzGHKgA2JU3nzQn/TvGCj1I6/QTGxrk2pSvRzNH4ahzU7YXc0p53GMSaWsK8s+IVqlc9yah9LzM3up6ZFqXacthdfBa1cz5C6YKPcExqfGtZuzImJ5VdLp/RdXuOyvFEJHGUYInIiBVsaaFk1c/Y7J/C3A9cFbdy/dmjSbEwe8r3MmbMkc1JlGh19XWs+9fTtKx9kinVy5hHBQCbk49l5cQvUnLyRxk9aR6jB7A2pVM+Hwd8+QQahuZADC4aZevaN9mz4q9k73yRY4NrOMUi1JHO1uyF7Jv6QSafchHHFCYmufHnjIVdEKreRdIQTLB27d3Hxtf+im16jul1r3OyeQnr9pRjeK/0M4xZcDF5U08m13f0v/goyEzhbfIo1WTDIsOeEiwRGbHeeuJOTnb7ePe0H2JxrCFIzvOSqgP7dwypBGvf7u1s/tejJG9+hhmNy1loLTSRwqasBVRNO4fJ77uUKQWJfz91SYWkt5QnOoxea25qYOO/nqB57VOMr3yFyVQyGdjqn8TK0qvJP+4jTJp3JnPjNBBIf6TGBsyo2bedwoknJziankWjjvWrl7Nv+WPk7XqJWeE1jLMI9aSzPe8k6macy4SFFzI+L/791frK77NY/8y1iQ5FRAaYEiwRGZGam5uYsOZ/2ZB0LLPPuDSuZWcWejep9eU7gMF9k7pz4yp2vPIA+TufZXr4PYqBfVbI+lEfIWPu+Ryz4FzmpGYkOsxDtKSOIqdmU6LD6Fb5gVrWv/I4gfWPM7tuGXOsiXqXxoaM+Wyb8n4mn3wRk8ZNZlKiA+0ga9TBQUQKExxLV4LhKKveeZPqNx9i4r5nmOm2MxPYFpjEmomfZNQJ5zN29hnMHIR9yJrTikmrb4CWekg58gm3RWRwU4IlIiPSyr/+kpOpoGrRrXGtvQLIG+U1rWquGpz9hPZuXsmOZQ9QuP3vTIpspQR4LzCN1yd+jjELL6H02AUUH6U+P0cikjmGouo3qWsOkZU6eG6i91fX8s7Sxwisf5wTm/7FImuklkw2FJxN0pxLmX7KhzkxNS3RYXZr1KgxtLgkggcG12TDDS1h3lzxJvVv/ZmpFc8xn21EnbEpbQ4rp17N5NMWM6F4AhMSHWgPIpmjoR6o2wMpUxMdjogMECVY3aiu2EvtgX0UjJ5ARlZuosMRkTgJh4KUrr2LjYGpzDztkriXnz3Kq8GK1g6SzuzOUbl1JduXLaFg298ZH9nGKGesS5rJv6Z+jUmnf4JppUNnTil/zliydzWysaKKrJLihMZSXdfAypcehzV/4fiGZXzQGqkng+3F7yfjhI8xfv55zA+kJDTGvhiTl84+l4sbBJ/d5lCEV99czoHlDzG98jnOtDIAtqbPYcO0bzNh0eVMKxha/cT82WNhL7ja3VihEiyR4UoJVjc2PH8fJ639TwDqXBpV/gLqkwppTC4knJKDS8nB0vLwp+cRyMwjOS2LQHIa/pQ0klLSSEpOJSklnaSUNMy8b4PNgNhzzPufGbioIxIOEg2HCUdCRMNhIpEQ0XCIaCREJBwmGgkTjYSIRsK42CMaCXk/o2GIeNvgwrhIBBf1HrjW59FDXlvb+ihEw95PF4FoBJ+LYkS9ZR055/1ovwgwHLH/Ou7Q7Xnuvot892tdNx3sW9e4Lspo3bWz9e2XdBa9tduiuxh6x7p43vWi9lrjP8pDDfTeIAwsqWEf890+3jnpe3GvvQKw5AzqyMBXn9ib1AM717PtxXsp3PoEJeHt5DljdWAmZcfczORFlzNrwtBJqtpLjfUDq9pTBglIsOqbmnnnpceJvPsX5tS9zJlWTz3pbBt1JvULFjPuhPOYOYSSqvYyUwJs8BWQn6CBGEKRKMvfXkn5Gw8yed8znGVbANiROYuyGd+m5NTLmZQ3tJKq9lJifdyaKneSPjnBwQwDzU0NNNRV01hXQ1N9Nc0NtQQbagg310FLHQTrcaEmCLXgIkEIt0CkBYsE8UVD+KMh/C6I34Vj9zYOcwfvfcxFgSiGw5zDZ613BIbDcOY75CeHLfPFlpn33Nptawb4cOZt03ZT0na/aB3WdfhphsWO0/ocs9g9i7WLxyvX4ev6fsV1dqfTybJOtrNO75K6uO/rdP/2e8Wi72S7hqR80s/6KqdMKei87EFGCVY3Sud/mOWp6YSqd2N1e0lq3EtGSwXj6t8ls66eTNfY7pdt6As7H1F8RDj40/sjcPi2XSUtXd1Nd7191zr/pT201J7L6H7fnqLqLAbXw/reHb+T/TspqudzIEdqTcpxzDn78gErvyIwmoymo99EsHb/DjYvvZfsTY8xJbiBPGCVfybvTb6JSYsuZ+6kY456TPGWNdpLDBv3bwFOOirHbG5p4Z1lTxJ85xFm17zIqVZHA2lsLTyD2hM/zvgF5zMrKfWoxDLQDiSNZmLz0RuIIRp1rFz9LntffYDSPf/gFLz+dTvSZ1A245uUnnYFpfmDvfFf72QUTwSgYd9m0hMbyqDjnKOqupoD+7bTVLmTlgO7CNVW4BorsaYq/M1VpASrSY/UkBWtI8fVkmZBUoHe3HIHnZ+wBQiRRMiSCJFEOPYzYoFDEqPWJMZLXrxEyQHh2L/K3hfK7mDi5UKx51G8Ox6HEcXnvJ+t2/tak7XYtl7a1boPB8uM/dvvraPdslja5A5uY23Rte57cPvW57H0CsN1eT/W2fLO70A62663+3a1bc/3iFsYx+t7PqsEazgYO3kmYyfP7HJ9NBKhtq6K+gMVNNZUEGyqJxJqJhL0HtFQEy7UTDTUHPtQ0yF7d20vzcB8AfAnYb4A5g8c/HnI8yR8/gC+2E9r99wX8OPzJeHz+/H7A5jPj88fwO8PHFzm9+P3+wn4A4esM59fHwYZUWYNcPm1qWPIa9g+wEfx1FWXs3Hpn0hd/xemN63keHO8Z5NZOv4Gxp52FXOmHosd7eHUB1DeuGkARCs2D+hxgsEQq//1FE0rH+bYA0s5yWppIJXN+adTefylTD75ImYnD+4+VUeiPr2UvJoXvW/7B6gmzjnH+vfWs2PZEkbv/DsnuA0AbE+ZxnvTb2LCok9QWjT8qniK83PZ7fLxDfBndzCqq69n7/aN1O3dTLBiK656J/6GvaQ27ycrWE5+tIoCa+g0Waomk3pfNo2BHJrTRlObPIOy1DxIycVSs/CnZpGUnk1y7JGakUNSejYp6dmkpGeSkpJKss9P4sfplCM1O/YYKnRP3Q8+v5/s3CKycwdu5ncRGZpaMko4pu5NXDQ6IM0QmxrqWPviQ/jXPMLM+tc5wcLssDH8a9ynKTrlSqbPPpFpwyipai+QM5ZmkgnUbIt72eFQiHVvPEP9ij8ztep5TqCGRlLYmHsa5cddytRTL2FuyvCue4jmTsJX43AHyrCi6XEr1znHxk0b2b5sCaN2PM3c6DpmANuTp7D2mC8z6fQrGT96WtyONxiNz89gU3Q0kw9sTXQocReNOsoryinf+i4Ne9YTqdyKv2Y7mU07KQjtZZSrYmq7Vj9h56PS8qgNFFKbMZHK9JMgewyBnLEk540js3Ac2QVjyc4rIjeQRG7i3ppInynBEhEZANGcUjL2tVBduZfcovjMwVNfV836l/8C655gRu2/ONGaKSePFcWXkrPwCo49/gxK/YN39L+4MWNfYCwZjfGpIQy2tLDutadofOcxjqlayhyqaXQpbMh+H3vmfpTpp32U49JGzpDaaWOmwjavD19+HBKsrZvWUfbKgxRs/wezw+uYZo7tSZN495gbmHD6VYwvmRGHqIeGwsxklvlHM7vh7biUF4lE2Ljin1SvXcrED13P6LHj41Jud1pCIXaWbaZy27s07V6Pv2ojWfVbGRvaTrFV09orMuqMCl8+VUlj2J23gJ0540kqnET6qCnkjptKfvF4igMBEjtMjcjAUIIlIjIAkoqOgfegYuu7/UqwDlTu572XHyJ5w5PMaHyT+RbiANmsLfggaScuZsZJ53FKYOT9Ka9MncC4hnVHvH9zUwNrlz1BePVjTKtZxnHUe0lV1snsnHUxM07/GMdnZMcx4qGjYPxseA1qyt4h//iL+rx/JBJl3Zq3qXjzYcbseobp0U1MwpunavXU6xm/6ErGT5gT/8CHADOjLmsKWXXPQ90+yOp7elFdV8/aV58muvYJple/xLFUA/D6H95m1M1P4ovTlyw1dXXs3LSamh1rCO/bQHL1JvKayiiJ7GKKtdA6RE4tGexLnsDOwlPZXjCVlNHHkls6k+Lx0xiVksaouEQjMrSMvH+VRUSOgjEz3wevQM3m12DhOb3eLxIOs/mdl6l652ly97zMMcH1nGRR9lHAO8WXkH38JUxb8EEWBAbP/E+JUF90AmPqX6Rm3zZyinseAMFFo5S9t4o9K/5Gxo6lTGt6hxMsSC3pvJeziKTZFzL91Is5Pn3k1FR1ZfrEUt6LjiNp+6u93ufAgSo2vvE04Q3PML7qVWazD4DNSdNYMeVLTFx0ORPGd92neSRpHjMf6n5DqOxVkuZc3OP2oUiUdWtXUf72k2TvfJGZLSt5n7XQSCrvZZ/Mjunn46vazEmbf8lzd32Z06/7CclJvbu9i0ai7Nmzk/1bV9Gwez2u4j3Sa7cyqmU7Y90+ZrVr0rfXRlGVNoENOQvxjZpOduksRk+eQ3beGLKHaXNkkSPVrwTLzB4EWtsP5ALVzrl5ZjYRWAdsiK17zTl3fX+OJSIylIwZW8pOignsXt7tduFgC1vXvEblupdJ2vUGUxpWMI16os7YnHQMy0s/RdGJlzD5uEWDevLfo61g1pmw9Xa2vvk0884//J+XaCTKjk2r2Ld6Kex4ndLqN5lEOZOAHb5xrCq+mPSZ53Ds+85nfvLwGP0vXnLSk/hX+lzOqF4KoSZIOnwgj/KKcratXErz5mXklC9nemgdCy1CIylszjiRqmM+y8T3fYwpxZOO/hsY5CbPOZWmDclUr/oHYzpJsIKhCJvfW03F2qW4ba8xoe4t5po3bP5e32g2jrmArNnnMnHBR5gX6w/oohFW/3IHHyj/Axv/+0V2TPwY2RPmkZZbBC5KqLmeltoqglXbcDW7SKrfTW7TdsaEdzLOGhgXO3YzSewNlFCVPYP9+ReQPHoGBRNmMWriLEanZTH6KJ0jkaHOXKdj3x9BQWY/Bmqccz+IJVh/c871acCP+fPnu+XLu78ZEREZKl792dUcX/U0zde/Se6YSYSCzezc+A7lm94mtPtdcg+8w+SWDaRZEIB9Vsi27Pn4pr6fyQvPJ39UfPpuDUehUIg9/z0HMz/Ry/5INBqlquxdQrtXkVq5jvFNa8inDoADZLEtYy6hiWdTuvB8Rk84NsHRD35PPP4QF779Wd6b9EmST/o01ft3Ub/jHQL715Bfu44p0TL85og4Y1vSFA6Mfh9Zc85l8ryzCaQMv5EV46kxGOa5/76Ec3mNvRf8kUZfNpU7NxDZ/S5pVWuZ2LyOIqsBoI4MdmUdR2TyWZQuuIDscccenC+pI+dY88zd5LzxU0oiO7o8ftj5qPQVUJUylqbsyVAwlYxxMymePIfc0ZNBX+SI9JqZrXDOzT9seTwSLPPG/90OnO2c26gES0QENq5fxfglZxO0AA1kUOAOkGQRwJuTZVvSFCryjiNp4imMP+4sRpUMv2GpB9LyZ5Yw55UbSLFw27Kw87HDX0Jlzixc6ckUzz6T0mPmDshIjsNZUzDCv267lPcHXzhkeRXZ7E2bSlPxfLKmL2LC3EWkZOQmJsgh7KmXX+eE5xYz2g60LYs4Y3eghAM5s7DxJ1M8+wxGTZ53RAlPw74t7N66lmBtOfj8JKVmkpKZR/7YyWQVjAO/eoiIxMNAJ1inAz9pPUAswVoDvAfUAt92zr3cxb7XAdcBjB8//sRt2+I/7K6ISKKsXb6Uuld+g0XDuMzR+MfMYtSU4xl3zHH4kzQrS39t37iKvatfxJecRu646ZRMP4HUtIxEhzUsNAfDrHn1KaxuL+m5oxg77USyi0q6rkGRPinbsZP9q54lJclP4bgpjD7mePzDfAoAkeHmiBMsM3sOOm12+x/Oucdj2/wS2OSc+3HsdQqQ6ZyrNLMTgceAWc652u6OpRosEREREREZCrpKsHqsI3bOfaCHggPAR4ET2+3TArTEnq8ws83ANEDZk4iIiIiIDFvxaJT+AWC9c25n6wIzKzIzf+z5ZGAqsCUOxxIRERERERm04tHL8XJgSYdlpwM/MLMQEAWud85VxeFYIiIiIiIig1bchmmPBzMrBwbbKBeFQEWig5CjRtd75NC1Hll0vUcOXeuRQ9d6ZBmM13uCc66o48JBlWANRma2vLPOazI86XqPHLrWI4uu98ihaz1y6FqPLEPpemtiEBERERERkThRgiUiIiIiIhInSrB69utEByBHla73yKFrPbLoeo8cutYjh671yDJkrrf6YImIiIiIiMSJarBERERERETiRAmWiIiIiIhInCjB6oaZnWtmG8xsk5l9I9HxSPyYWamZvWBma81sjZl9KbY838yeNbP/3959h8dVXYvf/64pGvXeiy3ZuPeKwTa9lxACARI698Il5eZCArmphJCb90dCEhJCEm4IuZBAKAECBBISasAUg43BvVu2ZcvqXZq+3z/OSJbVLFkjjTSzPs+jxzPnnDlnzRwd+azZe6+9I/RvRqRjVeEhInYRWSciL4ael4nI6tD1/aSIxEU6RhUeIpIuIk+LyFYR2SIiJ+i1HZ1E5NbQ3/CNIvK4iMTrtR09ROT3IlItIhu7LevzWhbLfaHzvl5EFkYucjVU/Zzre0J/x9eLyF9EJL3bum+GzvU2ETk7IkEPQBOsfoiIHfgVcC4wE/iciMyMbFQqjPzA14wxM4FlwJdC5/cbwGvGmCnAa6HnKjr8F7Cl2/MfAfcaY44DGoB/i0hUaiT8AnjZGDMdmId13vXajjIiUgR8BVhsjJkN2IEr0Gs7mjwMnNNjWX/X8rnAlNDPTcBvRilGFR4P0/tcvwLMNsbMBbYD3wQI3a9dAcwKvebXofv2MUMTrP4tBXYaY3YbY7zAE8BFEY5JhYkxptIY81HocQvWDVgR1jl+JLTZI8CnIxKgCisRKQbOB34Xei7AacDToU30XEcJEUkDTgIeAjDGeI0xjei1Ha0cQIKIOIBEoBK9tqOGMeYtoL7H4v6u5YuAPxjL+0C6iBSMSqBq2Po618aYfxpj/KGn7wPFoccXAU8YYzzGmD3ATqz79jFDE6z+FQH7uz2vCC1TUUZESoEFwGogzxhTGVp1CMiLVFwqrH4OfB0Ihp5nAY3d/nDr9R09yoAa4P9CXUJ/JyJJ6LUddYwxB4CfAPuwEqsmYC16bUe7/q5lvW+LbjcAfw89HvPnWhMsFdNEJBl4BrjFGNPcfZ2x5jDQeQzGORG5AKg2xqyNdCxqVDiAhcBvjDELgDZ6dAfUazs6hMbeXISVVBcCSfTuYqSimF7LsUFEvo01tOOxSMcyWJpg9e8AUNLteXFomYoSIuLESq4eM8Y8G1pc1dmlIPRvdaTiU2GzHPiUiJRjdfU9DWuMTnqoWxHo9R1NKoAKY8zq0POnsRIuvbajzxnAHmNMjTHGBzyLdb3rtR3d+ruW9b4tConIdcAFwJXm8OS9Y/5ca4LVvw+BKaFqRHFYg+leiHBMKkxCY3AeArYYY37WbdULwLWhx9cCz492bCq8jDHfNMYUG2NKsa7j140xVwJvAJeGNtNzHSWMMYeA/SIyLbTodGAzem1Ho33AMhFJDP1N7zzXem1Ht/6u5ReAa0LVBJcBTd26EqpxSETOwere/yljTHu3VS8AV4iIS0TKsAqbfBCJGPsjh5NB1ZOInIc1dsMO/N4Y88PIRqTCRURWAG8DGzg8LudbWOOwngImAHuBy4wxPQfYqnFKRE4BbjPGXCAik7BatDKBdcBVxhhPBMNTYSIi87EKmsQBu4Hrsb5Q1Gs7yojI94HLsboPrQP+HWsshl7bUUBEHgdOAbKBKuB7wHP0cS2Hkuz7sbqJtgPXG2PWRCBsdQz6OdffBFxAXWiz940xN4e2/zbWuCw/1jCPv/fcZyRpgqWUUkoppZRSYaJdBJVSSimllFIqTDTBUkoppZRSSqkw0QRLKaWUUkoppcJEEyyllFJKKaWUChNNsJRSSimllFIqTDTBUkoppZRSSqkw0QRLKaWUUkoppcJEEyyllFJKKaWUChNNsJRSSimllFIqTDTBUkoppZRSSqkw0QRLKaWUUkoppcJEEyyllFJKKaWUChNNsJRSaowQkVIRMSLiiHQs0U5ErhORVZGOY6wRkZUisi3ScSil1HimCZZSSqlxTUTuFBGfiLR2+/l6pOMaj4wxbxtjpoV7vyIyX0TWikh76N/54T6GUkqNFZpgKaVUmGjLU0Q9aYxJ7vbz40gHFE7j+XdLROKA54FHgQzgEeD50HKllIo6mmAppdQwiEi5iPy3iKwH2kTEISLLRORdEWkUkU9E5JRu278pIv9PRD4QkWYReV5EMvvZ9/UiskVEWkRkt4j8R4/1F4nIx6H97BKRc0LL00TkIRGpFJEDIvI/ImI/yvuYLCKvi0idiNSKyGMikt5tXb2ILAw9LxSRms73JSKfEpFNoff7pojM6PH53CYi60WkSUSeFJH4oX/SQyci3wh9Li0isllELu5nOxGRe0WkOvRZbhCR2aF1LhH5iYjsE5EqEXlARBIGefyHQ9u/EorhXyIysdv6X4jI/tAx14rIym7r7hSRp0XkURFpBq4TkaUi8l7oc64Ukfu7Jymh7qVfFJEdoeP9IHTu3g0d46mjJTUicoqIVAzm/Q3BKYAD+LkxxmOMuQ8Q4LQwH0cppcYETbCUUmr4PgecD6QDecBLwP8AmcBtwDMiktNt+2uAG4ACwA/c189+q4ELgFTgeuDebknOUuAPwO2h454ElIde93Bov8cBC4CzgH8/ynsQ4P8BhcAMoAS4E8AYswv4b+BREUkE/g94xBjzpohMBR4HbgFygL8Bf+1xI38ZcA5QBswFruszAJEVoeShv58VR3kPPe0CVgJpwPdD8Rf0sd1ZWJ/f1NC2lwF1oXV3h5bPx/o8i4A7hhDDlcAPgGzgY+Cxbus+DO03E/gT8OceyedFwNNY5/cxIADcGtrXCcDpwBd7HO9sYBGwDPg68FvgKqzzORvrd/WYhRLl/s7Pr/t52SxgvTHGdFu2PrRcKaWijiZYSik1fPcZY/YbYzqwbmb/Zoz5mzEmaIx5BVgDnNdt+z8aYzYaY9qA7wKX9dXCZIx5yRizy1j+BfwTK2EA+Dfg98aYV0LHOWCM2SoieaFj3WKMaTPGVAP3AlcM9AaMMTtD+/IYY2qAnwEnd1v/ILATWI2VGH47tOpy4KXQa33AT4AE4MQen89BY0w98FespKKvGFYZY9IH+BmoKMVlPW72C40xfw4dN2iMeRLYASzt47U+IAWYDogxZosxplJEBLgJuNUYU2+MaQH+v6N9lj28ZIx5yxjjwfrMThCRktD7fdQYU2eM8Rtjfgq4gO7jn94zxjwXir/DGLPWGPN+aPty4H/pdo5CfmyMaTbGbAI2Av80xuw2xjQBf8dKuI+ZMWbuAOenZ7LXKRlo6rGsCeszV0qpqDNu+3QrpdQYsr/b44nAZ0Xkwm7LnMAb/Wy/N7Q+u+dOReRc4HtYLSg2IBHYEFpdgtVa1NPE0P4qrfwAQq/d38e23Y+VB/wCK4FLCb2mocdmDwIvADeFEgawWrz2dm5gjAmKyH6slp5Oh7o9bg+9JtyeMsZc1X2BiFwDfBUoDS1Kpo/P2RjzuojcD/wKmCgiz2K1PMZjfeZru32WAgzY3bKHrs/dGNMqIvVY73+/iNyGlSgXAgarpTK7r9eG3s9UrMR3cSguB7C2x/Gquj3u6ON5/hBiD5dWrPfWXSrQEoFYlFJqxGkLllJKDV/3rk/7sVqoun+zn2SMubvbNiXdHk/AakGp7b5DEXEBz2C1COUZY9KxEqrOO/39wOQ+YtkPeIDsbsdPNcYcrTvW/xd6H3OMMalYLXGHswqRZODnwEPAnXJ43NhBrKSuczsJvb8DRzleL2KVCG8d4Gfl0ffSta+JWAnhl4Gs0Oe3sft76s4Yc58xZhEwEyuhvR3rnHQAs7p9lmnGmOQhvK2ucx36DDOBg6H38nWs7ogZofiaesTX/fcK4DfAVmBK6Bx9q7/3M1LEGmvX3/l5oJ+XbQLmSrcsFaur6KaRj1gppUafJlhKKRVejwIXisjZImIXkfhQ4YDibttcJSIzQ+OZ7gKeNsYEeuwnDqvLWA3gD7VmndVt/UPA9SJyuojYRKRIRKYbYyqxuhL+VERSQ+smi0jPrmQ9pWC1NDSJSBFWgtHdL4A1xph/xxpj1nkz/RRwfigOJ/A1rATv3aN9UD2FSoQnD/Dz9hB2l4SVoNSAVTAEawxSLyKyRESOD8XfBriBoDEmiJWk3SsiuaFti0Tk7G6vNdKtiEkfzguNLYvDGov1vjFmP9bn7Q/F5xCRO+jdytNTCtAMtIrIdOALR9k+7IwxswY4Pzf387I3scaPfUWsoiFfDi1/fVSCVkqpUaYJllJKhVHo5vkirNaFGqwWpds58u/tH7EKURzC6ob2lT720xJa/hRWV73PY3XP61z/AaHCF1gtH//icEvSNVgJ2ubQa5/GGjc1kO8DC0P7egl4tnOFiFyEVaSi84b+q8BCEbnSGLMNq7Xrl1gtPhcCFxpjvEc53ogyxmwGfgq8h9VNbg7wTj+bp2IlUg1Y3R3rgHtC6/4ba+zZ+2JV83uV0Dip0FiqFg532+zLn7C6edZjFZ/o7Mb4D+BlYHvomG6O0o0Tq9vi50PHfBB48ijbjwmh34VPY/1eNmIVePl0pH9HlFJqpMiRRX2UUkqNJBF5E3jUGPO7SMeihkdErsLqPvjNftY/DFQYY74zqoEppZSKKC1yoZRSSh0DY8yjkY5BKaXU2KNdBJVSKkaINentUIoTqCgkIt/q5/fg75GOTSmlooF2EVRKKaWUUkqpMNEWLKWUUkoppZQKkzE1Bis7O9uUlpZGOgyllFJKKaWUGtDatWtrjTE5PZePqQSrtLSUNWvWRDoMpZRSSimllBqQiOzta7l2EVRKKaWUUkqpMNEESymllFJKKaXCRBMspZTqwRhDMKgVVpVSSik1dGNqDFZffD4fFRUVuN3uSIeixpn4+HiKi4txOp2RDkWNI8YY7v/5/zCPbZx0q84jq5RSSqmhGfMJVkVFBSkpKZSWliIikQ5HjRPGGOrq6qioqKCsrCzS4ahxpL7Vw382/QSAyoo9FBTr749SSimlBm/MdxF0u91kZWVpcqWGRETIysrSlk81ZDXlG7oeV6x5MYKRKKWUUmo8GvMJFqDJlTom+nujjkWgpebwk/0fRC4QpZRSSo1L4yLBUkqp0RL0dgDgNk7Sm7ZGOBqllFJKjTeaYA2CiPC1r32t6/lPfvIT7rzzzsgF1M3777/P8ccfz/z585kxY0ZXXG+++SbvvvvuMe937969LFy4kPnz5zNr1iweeOCBMEWs1NgW9FndSne6ZlDsKyfo90c4IqWUUkqNJ5pgDYLL5eLZZ5+ltrY2rPu1SkEHh7WPa6+9lt/+9rd8/PHHbNy4kcsuuwwYfoJVUFDAe++9x8cff8zq1au5++67OXjw4LBiVWo8MD6rBasxYw4J4qVq75YIR6SUUkqp8UQTrEFwOBzcdNNN3Hvvvb3W1dTUcMkll7BkyRKWLFnCO++8A8Cdd97JT37yk67tZs+eTXl5OeXl5UybNo1rrrmG2bNns3//fm6//XZmz57NnDlzePLJJwErQTrllFO49NJLmT59OldeeSXG9J6Xp7q6moKCAgDsdjszZ86kvLycBx54gHvvvZf58+fz9ttvDxjn1VdfzQknnMCUKVN48MEHAYiLi8PlcgHg8Xj6TQTvu+8+Zs6cydy5c7niiisAqK+v59Of/jRz585l2bJlrF+/vutY1157LStXrmTixIk8++yzfP3rX2fOnDmcc845+Hw+AO666y6WLFnC7Nmzuemmm3q972AwSGlpKY2NjV3LpkyZQlVV1UCnUalB6WzBsuXPAaB23+ZIhqOUUkqpcWbMl2nv7vt/3cTmg81h3efMwlS+d+Gso273pS99iblz5/L1r3/9iOX/9V//xa233sqKFSvYt28fZ599Nlu2DPyN944dO3jkkUdYtmwZzzzzDB9//DGffPIJtbW1LFmyhJNOOgmAdevWsWnTJgoLC1m+fDnvvPMOK1asOGJft956K9OmTeOUU07hnHPO4dprr6W0tJSbb76Z5ORkbrvtNgA+//nP9xvn+vXref/992lra2PBggWcf/75FBYWsn//fs4//3x27tzJPffcQ2FhYa/3cvfdd7Nnzx5cLldXwvO9732PBQsW8Nxzz/H6669zzTXX8PHHHwOwa9cu3njjDTZv3swJJ5zAM888w49//GMuvvhiXnrpJT796U/z5S9/mTvuuAOAq6++mhdffJELL7yw65g2m42LLrqIv/zlL1x//fWsXr2aiRMnkpeXd9TzqNTRGL+VYGWUzYdPoKNye2QDUkoppdS4oi1Yg5Samso111zDfffdd8TyV199lS9/+cvMnz+fT33qUzQ3N9Pa2jrgviZOnMiyZcsAWLVqFZ/73Oew2+3k5eVx8skn8+GHHwKwdOlSiouLsdlszJ8/n/Ly8l77uuOOO1izZg1nnXUWf/rTnzjnnHP6POZAcV500UUkJCSQnZ3NqaeeygcfWJXTSkpKWL9+PTt37uSRRx7ps4Vo7ty5XHnllTz66KM4HI6u93T11VcDcNppp1FXV0dzs5UYn3vuuTidTubMmUMgEOiKd86cOV3v74033uD4449nzpw5vP7662zatKnXcS+//PKu1r4nnniCyy+/fMDPXKlBC7VgZReW0WwSMfW7IxyQUkoppcaTcdWCNZiWppF0yy23sHDhQq6//vquZcFgkPfff5/4+PgjtnU4HEd0q+s+H1NSUtKgjtfZRQ+s7n/+fgbbT548mS984QvceOON5OTkUFdX12ub/uKE3uXMez4vLCxk9uzZvP3221x66aVHrHvppZd46623+Otf/8oPf/hDNmzYwEA635PNZsPpdHYdy2az4ff7cbvdfPGLX2TNmjWUlJRw55139jmX1QknnMDOnTupqanhueee4zvf+c6Ax1VqsDpbsJzxiVQ5i0hsKY9sQEoppZQaV7QFawgyMzO57LLLeOihh7qWnXXWWfzyl7/set7ZFa60tJSPPvoIgI8++og9e/b0uc+VK1fy5JNPEggEqKmp4a233mLp0qWDjumll17qGqO0Y8cO7HY76enppKSk0NLSctQ4AZ5//nncbjd1dXW8+eabLFmyhIqKCjo6rMH+DQ0NrFq1imnTph1x7GAwyP79+zn11FP50Y9+RFNTE62traxcuZLHHnsMsMaSZWdnk5qaOqj305lMZWdn09raytNPP93ndiLCxRdfzFe/+lVmzJhBVlbWoPav1NFIqAXLGZdAc+IEsjwVEY5IKaWUUuOJJlhD9LWvfe2IaoL33Xcfa9asYe7cucycObOrnPkll1xCfX09s2bN4v7772fq1Kl97u/iiy9m7ty5zJs3j9NOO40f//jH5OfnDzqeP/7xj0ybNo358+dz9dVX89hjj2G327nwwgv5y1/+0lXkor84wermd+qpp7Js2TK++93vUlhYyJYtWzj++OOZN28eJ598Mrfddhtz5liD/v/93/+dNWvWEAgEuOqqq5gzZw4LFizgK1/5Cunp6dx5552sXbuWuXPn8o1vfINHHnlk0O8nPT2dG2+8kdmzZ3P22WezZMmSrnUPPPDAEXFffvnlPProo9o9UIWVBNy4jZM4px1fWhl5pgaPuz3SYSmllFJqnJC+KtMNaQciJcAfgDzAAL81xvxCRO4EbgRqQpt+yxjzt4H2tXjxYrNmzZojlm3ZsoUZM2YMK0bVvzvvvPOIYhjRRn9/1FCte+BGyipfIu3OA3z4wgMsXfcN9n/uTUqmLYh0aEoppZQaQ0RkrTFmcc/l4WjB8gNfM8bMBJYBXxKRmaF19xpj5od+BkyulFJqLJCAGw9xiAhJBVbLc9OBrRGOSimllFLjxbCLXBhjKoHK0OMWEdkCFA13v2p03HnnnZEOQakxxRbw4sMJQNYEa9yhp3pXJENSSiml1DgS1jFYIlIKLABWhxZ9WUTWi8jvRSQjnMdSSqmRYAu48UgcADk5hbSaeEzD3ghHpZRSSqnxImwJlogkA88AtxhjmoHfAJOB+VgtXD/t53U3icgaEVlTU1PT1yZKKTVq7EEPvlCCZbfbqLLl4WrdH+GolFJKKTVehCXBEhEnVnL1mDHmWQBjTJUxJmCMCQIPAn3WHjfG/NYYs9gYszgnJycc4Sil1DGzB7xdCRZAY3whqe6DEYxIKaWUUuPJsBMssWaKfQjYYoz5WbflBd02uxjYONxjKaXUSLMH3Xi7JVgdSSXkBg7BMCuuKqWUUio2hKMFazlwNXCaiHwc+jkP+LGIbBCR9cCpwK1hOFbEPPfcc4gIW7f2X02svLyc2bNnh+2Y27Zt45RTTmH+/PnMmDGDm266CbAmCf7b3469KKPb7Wbp0qXMmzePWbNm8b3vfS9cISs17jmCXvw2V9dzkz6BBDy0NRyKYFRKKaWUGi/CUUVwFSB9rIqqsuyPP/44K1as4PHHH+f73/9+r/V+v3/YxwgEAtjt9q7nX/nKV7j11lu56KKLANiwYQNgJVhr1qzhvPPOO6bjuFwuXn/9dZKTk/H5fKxYsYJzzz2XZcuWDfs9KDXeOYyXQLcWrLjsSbATavdvIymzYIBXRr+Hn30Rr7udmz5/WaRDUUoppcassFYRjFatra2sWrWKhx56iCeeeKJr+ZtvvsnKlSv51Kc+xcyZ1tRffr+fK6+8khkzZnDppZfS3t4OwGuvvcaCBQuYM2cON9xwAx6PB4DS0lL++7//m4ULF/LnP//5iONWVlZSXFzc9XzOnDl4vV7uuOMOnnzySebPn8+TTz5JW1sbN9xwA0uXLmXBggU8//zzADz88MNcdNFFnHLKKUyZMqUrMRQRkpOTAfD5fPh8Pqyenkf685//zOzZs5k3bx4nnXQSYLV+XX/99cyZM4cFCxbwxhtvdB3r05/+NGeeeSalpaXcf//9/OxnP2PBggUsW7aM+vp6AB588EGWLFnCvHnzuOSSS7o+n+6WLVvGpk2bup6fcsop9JyAWqmRYgv6CNqcXc9TCyYD0FwZ26Xa3b4AF33yH9y0/Ub2f/JmpMOJuIr6Nox2G1VKKdWHYbdgjaq/fwMObQjvPvPnwLl3D7jJ888/zznnnMPUqVPJyspi7dq1LFq0CICPPvqIjRs3UlZWRnl5Odu2beOhhx5i+fLl3HDDDfz617/my1/+Mtdddx2vvfYaU6dO5ZprruE3v/kNt9xyCwBZWVl89NFHvY576623ctppp3HiiSdy1llncf3115Oens5dd93FmjVruP/++wH41re+xWmnncbvf/97GhsbWbp0KWeccQYAH3zwARs3biQxMZElS5Zw/vnns3jxYgKBAIsWLWLnzp186Utf4vjjj+91/Lvuuot//OMfFBUV0djYCMCvfvUrRIQNGzawdetWzjrrLLZv3w7Axo0bWbduHW63m+OOO44f/ehHrFu3jltvvZU//OEP3HLLLXzmM5/hxhtvBOA73/kODz30EP/5n/95xHEvv/xynnrqKb7//e9TWVlJZWUlixf3miRbqRFhN/4jEqyckikAeGt3RyqkMWFvdRPTpBWAmq2rKJl3SmQDiqC333uHRS9fzKolP2XlBVdHOpyIqW5285MH/pfPTnWy5NNfjHQ4EeMLBHnol3dximsH07/wWKTDUUqNAdqCNQiPP/44V1xxBQBXXHEFjz/+eNe6pUuXUlZW1vW8pKSE5cuXA3DVVVexatUqtm3bRllZGVOnTgXg2muv5a233up6zeWXX97nca+//nq2bNnCZz/7Wd58802WLVvW1fLV3T//+U/uvvtu5s+fzymnnILb7Wbfvn0AnHnmmWRlZZGQkMBnPvMZVq1aBYDdbufjjz+moqKiKwnrafny5Vx33XU8+OCDBAIBAFatWsVVV10FwPTp05k4cWJXgnXqqaeSkpJCTk4OaWlpXHjhhYDV8lZeXg5YSdjKlSuZM2cOjz322BEtVZ0uu+wynn76aQCeeuopLr300j4/H6VGgh0/xnb4u6esjExqTRrSuC+CUUVeXdXh9++s+iSCkURe9aa3SBQPJ6y5JdKhRNSadR/x4/Y7WPLxN8Hf+/+mWPHJ/kZubryX6VUvEqiN7ZZupZRlfLVgHaWlaSTU19fz+uuvs2HDBkSEQCCAiHDPPfcAkJSUdMT2Pbva9dX1rqee++iusLCQG264gRtuuIHZs2f3mQgZY3jmmWeYNm3aEctXr1591HjS09M59dRTefnll3sV6HjggQdYvXo1L730EosWLWLt2rUDvg+X63BhAJvN1vXcZrN1jVG77rrreO6555g3bx4PP/wwb775Zq/9FBUVkZWVxfr163nyySd54IEHBjyuUuHUswVLRKhx5JHQVhHBqCKvtcZKsHw4yGzuv9hPLJCGcgAc+DHuZiQ+NbIBRUjzvvVdj9v2riVp8okRjCZy9uzbS2cfi+oPnqHgvK9HNB6lVORpC9ZRPP3001x99dXs3buX8vJy9u/fT1lZGW+//Xaf2+/bt4/33nsPgD/96U+sWLGCadOmUV5ezs6dOwH44x//yMknn3zUY7/88sv4fD4ADh06RF1dHUVFRaSkpNDS0tK13dlnn80vf/nLrvEA69at61r3yiuvUF9fT0dHB8899xzLly+npqamq8tfR0cHr7zyCtOnT+91/F27dnH88cdz1113kZOTw/79+1m5ciWPPWZ1gdi+fTv79u3rldgNpKWlhYKCAnw+X9d++nL55Zfz4x//mKamJubOnTvo/Ss1XA7jh24JFkBzfBHpntieC8vWUgnA1oQF5PgPQjAY4YgiJ8O9t+tx7e6PIxdIhPmbD1fWrN3c9/+JscBUbe567D3wceQCUUqNGZpgHcXjjz/OxRdffMSySy655Ihugt1NmzaNX/3qV8yYMYOGhga+8IUvEB8fz//93//x2c9+ljlz5mCz2bj55puPeux//vOfXUUmzj77bO655x7y8/M59dRT2bx5c1eRi+9+97v4fD7mzp3LrFmz+O53v9u1j6VLl3LJJZcwd+5cLrnkEhYvXkxlZSWnnnoqc+fOZcmSJZx55plccMEFANxxxx288MILANx+++3MmTOH2bNnc+KJJzJv3jy++MUvEgwGmTNnDpdffjkPP/zwES1XR/ODH/yA448/nuXLlx+R1L3wwgvccccdXc8vvfRSnnjiCS67TKuVqdHlwI/pkWB5kovJDtZAYPjVQscrZ5uVYDXnLiEOP+11+yMcUeQUBirZbZsIQHP5uqNsHb0c7TUANJlEvIe2RDiayHE31wJQZTJwNeyIcDRKqbFAxlIVpMWLF5ue1eK2bNnCjBkzIhTR+Pbwww8fUQwjFunvjxoq/50ZvJVzJad96fB189bj93DStv+h+eaPSM2fHMHoIued//0Kxx/8I+tW/pYlq/6d3ec/xaQlZ0c6rIio/t5EdqYvZ17jq+wr/Swzrv9VpEOKiOf+53LOCL7LjkAeGakplH7tjUiHFBG/v+9Obqi/l7ccyzk+sAbXdw+BTb+/VioWiMhaY0yvSmz6F0AppToFgzgIIvYjW7DicyYBUFexPRJRjQnia6ND4kkrsor1tB6KzW/qPf4AKbQTn5xBBXnYmvYe/UVRKtlXT3tcFnVxxaS2x26LptPbBEBV+jxcxgNNsftZKKUsmmBFseuuuy6mW6+UGrKgNebR9EiwUgutUu1th2K3Qpj42umQBPJKpuA3NvwxWra+rd1NgnghPpW6uEKS2mLzZjoYNKSbRtyuLDqSJ5AeqAWfO9JhRUScrwkfToK51nyYgfryyAaklIq4cZFgjaVujGr80N8bNWQBK8Hq2YKVVzyZgBF8tXsiEdWYYPe345F40pITOSTZOJpjs2x9R0sDABKfSkdSMVm+SojBvzXtvgBZNOF1ZWEyyrBhYjaxSPA302FPITHXauluOrgzwhEppSJtzCdY8fHx1NXV6c2yGhJjDHV1dcTHx0c6FDWOmIDXemCPO2J5ekoih8jG3hSbSQWAw9+O15YAQLWjkOQYbblpb2kEwB6fSjB9Igl4CLRURzaoCGjz+EkWNyYuhfi84wCo3x+b5fsTAy10OFPJKpxEwAjt1bH7RYxSyjLm58EqLi6moqKCmpqaSIeixpn4+HiKi4sjHYYaR7xeDy7A1qMFS0SodeaT1H4gMoGNAc5gBz67lWC1JhQxqTU2y3J72hoBcCSl4yQNyqG+Yjs5M/MiGtdoa/P4ycNNkyvpiHF5ORGOKxKSgi14nWkUZaVSSRb+GG3JU0odNuYTLKfTSVlZWaTDUErFAL/PiwsQR1yvdS3xhZS0fTD6QY0RcYEOvM4sALyppaS3vIRxNyHxaRGObHR5QwmWMzGNlNRsABoP7iBn5soIRjX62tw+ksSDuFIoyC+m2STgr4m9MYq+QJA0WvE5J1CclsA6k01RS2y27iqlDhvzXQSVUmq0+LweoPcYLABvygQyTQPG2z7aYY0JLtNBwJEIgC3TmgOqqTL2bqj97VbFOFdSOrklVvETd03sFfxob2sGwB6fTEFGAvtMHo6m8sgGFQFtHj8ptBOMSyXOYaPWURDTLd1KKYsmWEopFeLzWmOwbI7ek2dLZikALVWxdzMNEG/cBEMJVlKeNZi/4UDsJViBjkYAXMkZ5GdncMhkIA3lEY0pEjydCVZCKk67jRpHAYntFRGOavS1evwkihvikgFoTygkzV8Lfk+EI1NKRdKIJ1gico6IbBORnSLyjZE+nlJKHauAz7opsjl6t2B1Vgirr4jN+Z8SjJtgXBIAGYVWUYP26thLsILuFgASU9Nx2m1U2/OIb4m94ifeDivBciakANCWWEiG9xAEg5EMa9S1eQIk40Zc1rXhS5uADQNNsZdsKqUOG9EES0TswK+Ac4GZwOdEZOZIHlMppY6Vz9fZgtV7DFZ6kZVUtFXFXlLh8QdIwA1O6yayoKCINuMiUB+Dk+y6rS6CickZADS5ikj1VEYyoojwtVuJpivRSrD8qROIwwdtsVVRsbWjA5f4kHjrc3CEus/66sojGJVSKtJGugVrKbDTGLPbGOMFngAuGuFjKqXUMfGHxmDZ+0iw8gtLcRsngRi8cWpv7yBOAl3f0qckxFEpuThicDC/8bThM3bscVZFRW9yMZnBWgj4IxzZ6PJ3dCZYqQA4Ql1oY208mieUaDpCCVZi3mQAmmNwfKJS6rCRTrCKgO7/A1eElnURkZtEZI2IrNFS7EqpSAr4rRYsu7N3gpWWGMdBycUegxPstrdZrTa2UBdBgHpnPkntByMVUsSIvx23uEDEep4xAQdB3HWx9XsRCHWVdCVZVSQ7E4tY60LrDV0bnQlWVv5EfMZOe3VsJZpKqSNFvMiFMea3xpjFxpjFOTmxOIOGUmqs8HeNweqdYAHUOgpI7oi9sRWeNutm2haf3LWsPbGQTN+hSIUUMeJtwy0JXc9dOdY0IjUV2yMVUkQEPa0A2EOJRWaRlWDF2iS7nS1YcaGWvOKsFCpNJsEYLHyilDpspBOsA0BJt+fFoWVKKTXmdLZgOZy9qwgCtCUWkeWNvaTC3aMbFEAgdQIptBFsb4hUWBFh97fjkfiu5+kF1ti8loOx1SXMeKzfCUKtmiW5WdSYNAIxNsmuP1TsIy40Fq0gLZ4KcnE0x94XMUqpw0Y6wfoQmCIiZSISB1wBvDDCx1RKqWMS6Cxy0UcXQbAG8ifThomxpMLbmWAlHE6wOsfcNFTGVlcoe6Adr/1wC1Z+yWQCRvDG2Ng88bZZD0IJVmZSHAfIxRljFRV9HUd2lXTYbdQ780nu0O+SlYplI5pgGWP8wJeBfwBbgKeMMZtG8phKKXWsgp0tWP10EbSHkoqmyp2jFdKY4Ov8lr5bF8HE/NBcWDE25sYZ6MBnT+x6npmaRBVZSFNsVVQUX2eCZf1OiAgNcQUkd8TWuLyg2+oqGdfty4e2xCLSAvXg64hUWEqpCBvxMVjGmL8ZY6YaYyYbY3440sdTSqlj1dmC5Yzru4tg50D+xgOxlVT4OqybyM6KcQBZobL17TFWNc4Z7CDQrQVLRKh15JPQFlstFjZfG16cYD88Z1x7YhGZ/moIBiIY2egKhrpKiuvwlw+B1AnWg8bYas1TSh0W8SIXSik1VphA5xisvluwMos7J9iNraQiECpo4Eo6/C19YX4hrSaeQH1s3UTGB90EnIlHLGtNCE2yG0Ps/nY8tiM/h2DaRBwEMDE0ya7xHtmSB+DItgqfeGtjq+CHUuowTbCUUiqkq4tgPy1YRfkFNJqkmBvI39kNKiHpcAtWfJyDQ5KLM8bmwoo3HRjHkYmFN2UCWcE6jM8doahGnzPQjseWcMSyuOxSAJoOxc4XEDavdW3QbQqD5HyrpbvpYGx1JVZKHaYJllJKhRi/DwBnXN8tWEkuB5WSR1yMzYXVWZI7vlsXQSDmxtx4/AES8BxxMw1gz5yATQz1lbHTYhEXaMdvPzLRTAklFo0HY6cL7eGxaId/J3LzJ+A2TjpirPusUuowTbCUUiqkswXL6Yzvd5smV0HsVQjztgNgcx2ZWLQnFZHlj52ucW2eAIm4j+gOBpCUZxX8qI+hsXlxwQ58PVrycoonEzSCO4a60Np9oYmnbfauZSVZSVSYHEyMtXQrpQ7TBEsppUKCoTFYLlffLVgA7uQSsgNVEAyOVlgRJ75WvDigR3XFYGoJKbTjb62PUGSjq629A5f4eyWaGYVTrPVVsZFYBIOGBNNOwHHk51CcnU4lmdAQOy28jkAb3h5dJXOSXRwgF1drbHWfVUodpgmWUkp18ltjaOLik/rfJmMiLnx0NMRO1zjxtdNBQq/lzqxSAGpjpFR7W6tVrt7uOrIFK794Ej5jxxcjc2F1+AIk4sH0KPaREGenypZHXGvsFLlw+jvw2o78e2GzCQ2uAlLdMdbSrZTqogmWUkqFiN+Nz9iRbqWne0rIsbqD1ezbPlphRZxVMa53t8mUUNe4xhgZzO9utxIsR8KRN9QJ8XFUSTaO5thosWjz+EnCTbBHV0mwutCmxVBiERdsw+fo/eVDR1IJicE26IitScmVUhZNsJRSKkT8bjzSf/dAgPSiqQA0xNBAfru/Ha/0vonMKrE+i46a2Cju4GltBMCekN5rXX1cPkntsZFYtHkDJEkHEte7pdeTVExGsA5C4xmjmTEGV7CDQI+xaAAmfaL1oCG2JqBWSlk0wVJKqRBbwI2HgROs/InWeJtYmuPGGejAa++dYOXn5tFiEjAN5aMfVAR425sAcCWl9VrXnlBMpi82Cn5YLVgexJXSa53JmIgNgy8GxmG5fUEScBN09m7JiwvNhRVrc+YppSyaYCmlVIjN78Z7lAQrLSWFajKRxtj5Zjou0I7P3vtbeofDzkFbAfEt0X8zDeAPdRGMS0rvtS6QVkI2DXg72kY5qtHX1tGBS3zY43snFvE5VmJRXxH9XWhbPD6ScWOcvVvyUgusScmbK2Oj+6xS6kiaYCmlVIg94MZr63uS4e7qnPkktsXOQP6EYCv+Pr6lB6h3FZPujo2xR/4OqwUrMSW91zpHZikANTFQ8MMTSjTt8b1bsNI6E4sYmGy41e0nUdzg6n1tFOTl02QS8cRQS7dS6jBNsJRSKsQe9OCToydYbQlFZHorRyGisSHRtBOI630zDdCeMpHcQBUE/KMc1egLdliJRUJyeq91yaFJdutjIcFqsxJNR2LvrpJ5xZPwGjveGBiX1xoq9iF9FPsoyUxgv8nF1lg++oEppSJOEyyllApxBDz4j1LkAsCfVkquqcUdA93BfIEgybQT7CfBIqMMBwHctdHfZTLothIsW3xqr3XZE6YD4K6O/i5h/rZGAJzJGb3W5acnUUk20hT9vw+tHT6ScPfZVTItwclBWx7xMVSyXil1mCZYSikV4gh68A2ii6Aj5zhsYqjau3UUooqsNrePZDrA1TupAIjLtbqE1e7fMpphRYR4WqwHfRR3yMkrps24oCH6W24C7VbpcVcfCZbdJtTa80iIgS60bR3tOCSIPaH374OI0BxfRLqnEoKBCESnlIokTbCUUirEYTwEBpFgpRZbrRWN+6M/wWptacYuBuljvA1ARon1WbQcjP6iBuJtpYN4sNl7rbPZbRyyFxDfEv0tN8GOzmqKmX2ub04oIsMT/RNxd5btj+sjwQLwpEzEiQ9aYqc7sVLKMqwES0TuEZGtIrJeRP4iIumh5aUi0iEiH4d+HghLtEopNYKcQQ9++9ETrLzSmQC4q6J/vE1Hq9VaYe+jWxxAUVEp7caFvyb6u8bZfa102HpXU+zU4CqKiUl2gx2NQN9jsADcqaWkmyYIdamMVr4269qIS8nuc70tqxSAQF30F/xQSh1puC1YrwCzjTFzge3AN7ut22WMmR/6uXmYx1FKqREXZ7yDasFKy8ylgRRsDbtGIarIcoe+pXckpve5Pj0pjv2Sj7OpfNRiihSnvxWPvXdJ7k4dyRPICxyCYHAUoxp9JtSCRXzfCZYtcxIAbYei+wuIQFs9AK6UvlvyEvOsOfNaYmhScqWUZVgJljHmn8aYztJR7wPFww9JKaUiI854CNrjB7VtlaOIxNbo7w7m7Sxo0MfkumCNNamLKyK1PfrnwnIFWvucD6xLZhkufDTXRHfZevGEEqx+xuUl5lnj8qJ9LizTbiVYzuS+W7CyCifjM3ZaozzRVEr1Fs4xWDcAf+/2vExE1onIv0RkZX8vEpGbRGSNiKypqakJYzhKKTU0TrzgHFyC1Zw4gWxP9A/k94QSLFdS74IGnVqTJpDtj/7B/EnBFjzO9H7Xx+dapdpro3xsnt3TTIckgt3R5/rM4mkAdER5F9rOYh8k9H1tTMhO5YDJJlgX/YVPlFJHOmqCJSKvisjGPn4u6rbNtwE/8FhoUSUwwRizAPgq8CcR6fOrLmPMb40xi40xi3Nycob/jpRS6hgYY3AZL+JMGNT2/vQy8qjD09EywpFFlq/daq1ISO67BQsgmF5GHH78DdHbcmOMIc004XP1n2imFk4FoC3KC344fc102PueeBqgKD+HGpNKMMrHHpmjJFgF6fHsJxdnc/S3dCuljnTUBMsYc4YxZnYfP88DiMh1wAXAlcYYE3qNxxhTF3q8FtgFTB2xd6GUUsPk8fqIk8CgEyxnjjW+oqo8usuT+1vqAEjNzO13G1duZ5ewbaMSUyS0evxk0Eogoe/xNgAFE6fgM3b8tdE9Ns/lb8Xr6D/BSktwckDyiYvyxELcoQSrn7FoTrvN6j7bEf0t3UqpIw23iuA5wNeBTxlj2rstzxERe+jxJGAKEN1fZSmlxrX29lYA7HEDjLHpJqXI6gbVEOXdwaTd6rrtTOk/wUotskq1Nx+I3gSrrqmFFOlAEvsebwOQmphApWRjj+JJdo0xpASb8MT135LXOS4vrSN6WzQBnN4m2m1JfZbt79SeVEJSsAU6GkYxMqVUpA13DNb9QArwSo9y7CcB60XkY+Bp4GZjTP0wj6WUUiOmo9UqKW1z9V8lrrv8slkAeKJ8nImto44WksAR1+82BSVluI0TbxSXam+qqwIgLnXgruw1ziJSojixaPMGyKYRX3z/iSZAe9IEMgK14PeMUmSjz+VrwuPov+ssQDCj1HrQUD7i8Silxo6+R6gOkjHmuH6WPwM8M5x9K6XUaHKHusLZ+ilH3lN6RhZ1pCEN0d04H+eup8WeTt9TqVry0xLZSR72xvLRCmvUtdRbCVZ82sAJVmtiCVObXh2NkCKivtVLtjRxMKn/Fk0Ak1mKrcEQqC/HnjttlKIbPW5fgNRgE15X+oDbuXImQzm0V+0ksXDBqMSmlIq8cFYRVEqpccvbajWy2xP77/rUU5WjiOQoL9We4GugzTHwZ2KzCTXOIpLbordUe0dTNQDJGXkDbudPKyWFtq45kqJNXUM9yeLGkTrw5xCfa41RbKyIzi60dW1ecqURX+LAn0NagfU9dHOUFz5RSh1JEyyllAJ8oQTLkdx/EYOeWpImkO09MFIhjQkpgUa8A1TO69SaGPosonSSXX+z1YKVkpU/4HZxOdYku7X7ojOxaKo5CIArvWDA7dKLrbpW0ZpY1LV6yJd6TPLAn0NhXi41JhVfjZZqVyqWaIKllFJAsL0RAFdy1qBf40+fRA71uNuaRyiqyAoGDemmEX/80T8Tf/pEXHgxrYdGIbLRZ2u2EgtnRsmA26UUWC03DVFaUbG9wfockrMKB9yuqLCEFpOAtyY6u9A2NDaTLm3Y0osG3G5CViL7TB62Rk2wlIolmmAppRTgb7dasBJTB9+CFReaWPZQlJZqr21qIYMWSBm4GxSAM8tquWk6EJ1FPxytB2iRZHANNBoNcidaFRXd1dFZ8MMTSrBSjpJgFaQlsI88HFGaWLTVWoVM4jOKB9wuNd7JIVs+iW3RW/hEKdWbJlhKKQUEQi1Y6ZmDn/A8rdC6mW6siM4Eq7piF3YxxGWVHnXbzkl2Gw5EZ5ewpI6DNDqPnmjmZ2VSZTKQKK0aZ+qthMmWWTrgdjabUOssJKk9OhOL5hprvGFa3sAtmgAtCcWk+aqjuqKiUupImmAppRRgOhppM/HEx8cP+jV5pTOB6C3V3lxptcKk5E8+6rY5JZMJGInKlhtjDOm+KtoTBh5vA1ZiUe0oIKE1Ogt+uFr20WpLgYT0o27bnlRClu8QBAMjH9goC9RbxW0cGROOuq0vrRQbBhqjM9lUSvWmCZZSSgHibqTVljyk16RlZFJDOvYoLdXuqbVaK7JLjl5muzg7jYNkR+V8Pw1tXgqpIZAy8HibTk3xxWR4oq/4iTGGDM8BmuKP3moD1hhFJ35MU/QlFvFNu/Bjh855rgZgzyoDIFC3a4SjUkqNFZpgKaUUEOdtpM028PiavlQ7i0hui9JS7Q178WMnPuvoN9Quh50qez4JLdHXcrN/7y5SpWPQ8zl5UyeSY+ow3vYRjmx01bR6KDaH8KZOHNT2nRUVG6Os26gxhvT2vdS7isHuPOr2yflW4ZNoHZ+olOpNEyyllAJSvDW0xA1+/FWn1sSJ5ERpqfbEpp1U2QvAZh/U9s3xxaR7Do5wVKOvdvc6ALImzR/U9p0tFg0Ho6u75N6DVRRLLeRMGdT2aUVWQhptCVZ1i4eSYAXu1LJBbZ9TMIF246KjWluwlIoVmmAppRSQGaihYxBjbHoKZJSRRSPutqYRiCpyAkFDsWcnDakzBv0ab+oE0k0jeFpGLrAI8BzcCEBW2fxBbZ8cKtVetz+65sI6tO1DbGLImLxkUNvnF0/CY5x4qqIr0dxeUU2ZHMKWN2tQ20/ITmKfycXUR2dXYqVUb5pgKaVinrujjUyaMSlDT7A6B7nXVETXzVN5RQVFUgv5swf9Glum9Y1+e3V0fRap9RuotWUjSYObIy2zxKou2X4ouhIL976PAEifvHRQ2xdlJrGfHGyN5SMY1eir2voeTgmQMe3EQW2fnxpPBXm4orD7rFKqb5pgKaViXtUBq5jD0SaR7UtSbikATYeia76fQ5tXAZA2yJtpgMT84wCo3Rc9LTetbh/T3Oupzlw06NcUFhTSYhII1kfX70RW/Uc0OHIgJX9Q2zvtNqodhSS2RtcYRf/e1QAkTVo2qO3tNqHBVUia+wAYM5KhKaXGCE2wlFIxr7HSuhFOyjl6yeWeMgqtgfzu2vJwhhRx3u1v4sVB4ZyTB/2azGJrLqy2KGq52fTJh+RIE3GTVgz6NS6ng4O2AlzN0ZNY7K5qZFHgE2rzlg/pdS2JJWR5D0ZNYuH2BShtfJ+q+DJIyh7861ImEGc80Fo1gtEppcYKTbCUUjGvc+6m9KKpQ35tdkEpfmMj0BA9paj9gSAl9e+wL3E2dlfSoF9XUlhIo0kiUBc9LTeNHz0LQPHxFw3tda4i0twVIxFSRHzy7sukSTtZ884b0uu8KRNJwA1tNSMU2eh6b9MuFrEVz6SzhvQ6k2F1n9VxWErFBk2wlFIxz1RtpcPEkVcyuOpo3cXFxVEjmThaoudmeuO69ziO/XimXDCk16XEOzkoecRFScuN2+tnctXLlCfMJD5rcKXJO3WkTCA3UBUVk+waY0jc8jQdkkDm/AuH9FoJjcuLlsm4D779B5wSoOCEK4b0uvhca7Lu9igr+KGU6tuwEiwRuVNEDojIx6Gf87qt+6aI7BSRbSJy9vBDVUqpkZHQtJODjhJs9sGVI++p3plHYkdlmKOKnLq3HsSHndKTrxrya+tdRaR0REfZ+vdefZbj2I9//rVDfm0wvRQnftx1479l88ON2zjZ8yYHi8+DuMQhvdaVZ43Lazw4/ku1769t4fiaZziUNA1nycIhvTajcDIBI7QcjI5EUyk1sHC0YN1rjJkf+vkbgIjMBK4AZgHnAL8WkWO7c1FKqRGW5ymnKXlwc9r0pS2+gHRfdIyt2LV7Jyc0/Y3tueeQlDn0qoqepCIyA9XjfsxNu8dL9of3UCdZTD5t6AlWXI7VYjHeS7V7/UEOvfg/OCVAyQVfH/Lr0/KtxKKzG+549vYzv+I420Fcp3xtyK8tyUmnkiz8UdR9VinVv5HqIngR8IQxxmOM2QPsBAZfikoppUZJXfUB8qnFlzP4cuQ9+VOKyA7WEfT7wxjZ6DPBINVP34YTP0Wf+u4x7UPSinHhw9tcHeboRte7j97FHLOd5hO/gTgThvz61EKru2lr5fhusXj6mcc53/0iBydfTlze9CG/viArjSoyCDaM7xLl76/7hLMP3s+B5NlkLPrskF8/ITORvcE8HFFWsl4p1bdwJFhfFpH1IvJ7EckILSsCuveLqAgt60VEbhKRNSKypqYmOgbBKqXGj30b3gEgZdKxfwck6SU4JUB99fi+iXznz/dyQvsbbDjuP0gvHvwEw93FZVqVGOsP7gpnaKNq1avPc9K+X7Mp7STKzrjxmPaRWzQZr7Hjqx2/LRZrPv6EszZ/g7r4CZRcds8x7SM/LZ6DJht7y8EwRzd6dlZUkfL8dcSLn+wrfwe2od86JcY5qHYUkNw+/ruMKqWO7qh/JUTkVRHZ2MfPRcBvgMnAfKAS+OlQAzDG/NYYs9gYszgnJ2eoL1dKqWFp2f0BQSNMmju4SUP70lkAoWEcJxWr//YISzf/kM3xC5n/uR8c834Sc60Eq7mqPEyRja5X//ZnFrx9I9WOIibf8HsQOab95KYlUkUW0jw+b6hXr/mAgr98BpcESL76T+BKOab9OO026h2543aM4pY9e2l76EKmU077Bb/BVXBsXzwAtCWVkBxoBE9L+AJUSo1JjqNtYIw5YzA7EpEHgRdDTw8A3WfsLA4tU0qpMSW1Zg37nKWUJmccfeN+JOdaCVZbzfi7mQ4Ggrz/+A9YsuMX7ImbQtkXn8XmOOp/Df3KKLDGHrlrx1clQa/Pz9uP/oCTy39JdVwRWV94mfi0Y//Sz2YTau25pLaNr//6AkHDK0//Lydu+j7G5sB/1QukFB9791mA1vh80tpXQzB4TK0/kWCM4ZV//JVZ732VXGng0Jm/pmjxxcPaZyBtArQCDXshf3ifqVJqbBtuFcHuI6AvBjaGHr8AXCEiLhEpA6YAHwznWEopFW5uj4cpns3UZS0a1n6yC0oB8DSMr1Lthyr2sO4n53Hizp+xKfkESr7yMgmpx55oAuTnFeI2TgKN4+ez2PzJanbcvZLT9/6cHaknkHvLWyRk9tmrfUha4gtI846f4idbtm3lg7vP45zN/01DfAm2m/9FxuTFw96vL7kQJ75xMxfW/gMHefmn13Pae9fidNhpueJ5ipZ/btj7jQu1dPuiaM48pVTfjv1rSsuPRWQ+YIBy4D8AjDGbROQpYDPgB75kjBn/k4EopaLKrvXvMks8OCetGNZ+0jNz8BgnpvlQmCIbWR2tTax5+ics2PMgs/GzdsZtLLzs20gYWhcSXA7KJQdHy9hvudmzexuVz32P45teplWS2LDkbuacd/MxdwvsyZtUREb7axDwgd0Zln2OhD3797H72R+wov4vGBE2zfwqMz/zTcQRF5b9S1oJVINp2o+k5IVlnyOhpr6BNc/cy7KKhziLNnaXXMJxV/4USUgPy/6Tc0sBq/ts1rH3NFRKjQPDSrCMMVcPsO6HwA+Hs3+llBpJDVv+BcCE+acPaz9is1Fry8TRNrYTrI7Gara9cA9lu//ESlrZlHQ8GZf+nEWTZob1OI3OHJI7xu5nsWvzGmr+8TMWNP6DImBd4RVMv+z7zMkI782/pBdjrwniqd+PK2dSWPcdDuU7t7D3bz9lUd1fmYCHzTnnUXrpD5iVPzmsx3FlTYAd0FJVTmrx8FvEwq284gDbX/w5iyqf4FxpZlfKQoIX/4Qpk4fXst1TVl4xPmOno2Z8dZ9VSg3dcFuwlFJq3EqsXM0BWwFFeROGva9mZw4J7rHZHaylag+7X7ibaQeeZT5eVrtOIPn025m1dHiJZX/aXAUUt42tXuEmGOSTt/8K793PfPcHFBknm/IupOyib7O4aMqIHNOVXQo7oPbALorGSIJljGHD6tdwv3Ufi9reoggb27JOp+hT32FO6bwROWZKnjXHXGv1HlJH5AhDZ4zh401bOPTKL1je+DxnSQdbU5bhOfPrTJ43MtdFUWYyh0wmgUbtIqhUtNMESykVk4KBIGUdG9iVsbLvOSSGqCM+l9yWzWHYU/g0lH/CwZfuZmrNP5hp4P3k00k743aOXzCy0xL6kgvJbGnA+L1h62Z2rNxuN+v+/nuyNzzI/OBu6klldenNTL/gFhZmD30i5aFILbCSqpZDkS/V7vP5WPvPx0hZ97/M9W+mhUTWFV/F5PO/yuzCkU3+cnPyaDXxeOsiP42BPxDk3bdfI/je/Sx3v808CbIj+3QC536T6ceNbOtaflo8n5BF4TjoPquUGh5NsJRSMWnPto+ZTAtMOCEs+/Mn5ZPd9DbBQBCbPbKV0g5seJOmV+5hZvMqXMbFWxmfpvjc21k5bXQGftjSi7EdMjTX7ic1zN3NBquuroZNf72PqeWPcQJ17LMV89G87zP73Js4Pj5xVGLIKbISF09d+agcry8tzY2sf/E3TNz+MMs4RKXk8tGM/2bm+V9kcXL6qMRQlJHIQZNFXFPkWm5aOzy8//dHyd7wO04ym2kjgZ2ln6PsvK8yLW90fkddDjt19lwmd4zvyaeVUkenCZZSKibVbHqTyUDBnJPDsj9baiHxlT5q6qrJyc0Pyz6HxBh2vPsXzNv3MtW9nkSTzKt51zP5wq9yesnwu0AOhSvLOl5D5e5RT7D27N7Ovr/9lEU1z3OSdLAlfh4NJ/yI6Ss/wwSbfVRjyc1Ip8akQdPoV1SsPriPHS/+jFkH/sxyaWW7czobln6LWad+ngLH6BbcSE90slFymNw2+pMNV9XUsv7F+5m+90+cQRXV9jy2zv4mU8++mRmJ6aMeT3tCHmnt746rkvVKqaHTBEspFZNsFatpIJXCSXPCsj9XhtXRsL5y76gmWEG/jw2vPELq2l8xxb+bQ2TxeumtzLnwPzkjK2vU4uguJa8UgNZRnGx407p3aXrtZyxpeZ0JBNmYcRqZZ9zGjNnHPoH0cNltQo09l7jW0esStnvrOqpe/ikLG17mBPysT1lB8qm3MHXRoKa0HBEiQrMrjxT3+6N2zJ3bN1Hx8s9ZVPdXzpQOdsXPZs+Jd1K2/DJy7ZG79fElF+Fo90NbNaRE4IsYpdSo0ARLKRWTCpo/YW/SHDLC9C1yUo41t3pLzV7g+LDscyDu9lbWv/gbirc8yDxTRbkU8fas77Pw/Js4LXF0usD1J7uza1z9yHYJCwaCfPTW89jeu5+F3jV04GJD4aWUXXA780aocMVQNbvyKfHsHtFjGGPY+N4/8L79Cxa0v0cRDjbknE/Rubcxf3J4vkAYLk9iISmNTeBth7iR+f00xvDRB2/h+de9LG37F6XAlszTyD3zq0yeuXxEjjlU9rRiqIZgw35smmApFbU0wVJKxZzayn2UmEoOFlwRtn1m5pcC4K4f2daKpvoaNr9wL1PLH2UpTWxzTOWDRd9h4Zmfp9QxNv6kZ2dk0miSRqxrnMfrYe3fHyb7k/9lcXAX9aTx0eQvMf1Tt7IwLWdEjnmsPImFZHWsBmPCNr9WJ7/Px0ev/ImUj37NHP9WGklmzcR/Y9qFX2VxTjhKt4SPSSuBRjBNFUjO1LDu2+cP8P5rfyHxw/tZ5F9HG/FsKPk8ky64jTn5ZWE91nC5ciZaJeur95A2YUmkw1FKjZCx8b/xGLX9o39Rt+4Fa2xFZhHJOSWk500gPbsQu310+/IrpcJn3yevkw2kT18Ztn2m5ZYQNEJwhJKKygPl7H7hHuYdeoYTpIP18YupXHErs048LywTBIeTzSbU2HJwhblrXFNTI+v/+ism73yYE6mmwlbEx/OtwhULXZFtteuPSSshvs6Lu6mK+PTwtFi0trbw8YsPMGHbQyw1lRyUPNbO/Cazzv8iS5PGSiH0I7myJsBeaKspJzlMCVZrh4fVLz1M4ab/ZaXZRb2ks376fzHtgltYkJwZlmOEW0qooEbboZ2khWmfPn+AjZs3MWfmLBwOvTcZMmMg6CcY8BMIBgj4/fgDQYJ+P/6An4AJEPQHMCaImAAC2ETAZkOwgc2GTQQRG2ITROwggths1jIRxCbYbHbg8HKbCGKzW+tD26vooQnWABp2fsDx+x7CJuaI5QEjNEoSrZJMuy0FjyMFrzOVoCORoN2Fcbgwdhc44hGHCxwukMMXjnT/FlMEEDBBTNAPwQAE/BD0WY9NaFnQD0E/EvRbF3jXv9Y2tm7LbATBBBBjQn8MgthCfxhsBBETtLbvXE4QW+ixjcM/doLAke9dejw/YlnvVUd97dEN/I2vOcoXwuZorz/q+r5J1/rh7n9432gP9/Wxaqpx48ZJ2ZzwdRsSZzw1tkxcLeHtFrd723qq/v5jFjX8nVwCfJJ2Kuln3s7cOZEbWzQYda5iJrjDU5780IF97Hzxp8w5+GdWShvb4maxadn3mXnK5RSPcuGKoYrLmgi7oa5iJ0XDTLBqqg6y9a/3MqviCVbQzC7HFNYv+TmzT7+KwlEuXDFUyaG5sJoO7iB55lnD2ldNfSMf//XXTNvzMKdTRaW9kK0L7mLa2TeR6UwIR7gjJj83hyqTjr9m+JUEWzo8vP+3P5K74bcsYBurdv2IFRffHIYoxy5jDO0dHTTWHqKjsQp3cw3etmb87Y0EOpoJeprB3YLN24LD30Kcvw1HwI096MVhvDiDHpzGixMvccaHCy/x4gPAFvqJ5JUUNNadkkEIYt0fdj7u/P/eIASl83n3dZ2vtXXto/sP0rnP3sT0fbfT99b938v1d583lPu//rbdJ4VsPutPXH1C6aD3FUmaYA3g+Mtux+f9CtVVFTRW7aW9tgJvwwGkrRpxN2L3NuP0NePyN5PWXkVc0ENc6KKNw0ucBIYdg9/YCGDHj/VvQOzWv6EUKCD2rn8Ntq5/g2LHiM260MSG3+YgKHbAhulc1+1fxAZix9hCy0OvM90Tw56P+uzuIl2rDNLr4jyWFKtfJjisl/d3EZvQH5r+UpfOV/X1+u5/o/pcP4jj97mzASNRx6RoMUtd8WHdZa2zkNSO4SdYJhhk8+p/4n7rPha0v0sxdtbnXEDR+V9nYdmsMEQ68lqTJ5Fb+y74PdaXTMdg+6aPqP3nT1nU+A9OxM+GlBUkn/ZVpi08LczRjpyUPGs8WtOhXRTNXnFM+9i5bQOH/vEzFta9xErxsDFxKXUn38KUpeeFvdvhSMkpnkybceGt3HLM+9hXcYCtL97LwsqnOFOaKHdNY/fyO5m04nIKxnii3WliViLrTQET6nce8z4q6xpY99cHmLHnEc6USqrs+TT6k3Du+DswPhMsv99PbdUBGg6V01qzD299BbaWg9g7anF6GkjwNZAcaCQt2ESKdJA0wL7cxkm7JNIuibhtiXhsCXjtiXTYMzB2F0F7HMYeTzD0OGhzgc0BNjvY7IjYrZYlm+3wv133SzaMESCIMQYxQQwGMQZjgtb/28aE7k9C/xoDBPtebui2zvR4jenjtVYyZB0zeMQ2Vgyhe4tu6w4/t9Kx/u9u+lgu/Syn7y94hQHuTPr9W9V7uUF6bd7iyGJC1kBnfmzRBOsonHEu8ksmk18y9FLDAb8fr6cDr7u966bdGHP4MSZ0fRnsItgdcdidThwOJ3aHE7vNgcNuwwEc2+2JUmo0tSQUM7np2Cul+XxeNrzyR5I/eoBZ/u00kczaCdcx5YKvsjhvdEutD5c9bxqO2iANFdvIKJ076NeZYJB17/6DwKr7WNTxHhNxsDH3fIrPu515ZbNHMOKRkVk6E7+xEazcOKTXBYOGte++QuCd+1jSvooJ2NiYdTb559zG7KmLRijakTM5N5WtppiMmqElWMYYNn7yIfVv3M/ixpc5SzxsSz0e7+m3UTrvzHGTYHZKjHNQHVfC7Lb3hzwub/uunex6+Vcsrn6G86SJffFTKT/xO5SuuIJ1v7qaaXX/oqOjg4SEsdeK5/EHOHDgAA37NtJeuQ1b3S5cbRUkuqvI8NeQZerJlwDd23h9xk6DpNFqT6PdmUF1YhGV8ZmYpGzsydnYk3NwJmfjSskgMSWDpJR0klIziI+LJx4Ym51EVazQBGsE2R0OEhwpJCSlRDoUpdQo8KVNJLvp77jbmohPGvwIi5pD+9n28gNMLn+ChdSyXwpYPeNbzLvgCywZo2NqjiZ9wmzYBFW71g0qwWpqamTjy78jb9ujLAzuoYlk1pX+G1Mu/CqLssdWwYahyM/MYAfFxNduGNT2LS3NrP/H/5G1+Q8sCe6klUTWT7iGSRd8jYV5E0c42pET77RT5SpjUuuaQSUWbo+XD155kuSPH2Khfx1eHGzLOZvC877GtEnjL8Hsri19Gsm1/4TGfZAx8Dn1+gJ8uOplzAcPsrT9LaZKgB1pyzCn38aEuWd0fY7xCz5L+mt/451XH2f5hTeMxtvoHas/yL7qeir3bKb1wFao20FC8x6y3PsoDh5gkrQe3tbYqbbl0hSXy8GkhexPzseWVoQrq4Tk3Alk5ZeRkpVPrs1ObkTejVLDowmWUkqFSULxXNgH+ze9z5SlZw+4rd/vZ9O7LxL44PfMblnFCgmwxTWX6sV3MfvUyykZIxUBj9WE6Ytp/Vs8vl1vwenX9rmNCQbZvv49at5+iLm1f2e5tLPHXsbaud9jzjk3sihx/H85ZbcJlYnTWND8Qb+Tyxpj2LhuNXWrfs/8uhdZLm3st5ewfu53mHHOjSyIwIS4I6E5ay6ph14lUL0Ne970XuuNMWzdupHKf/0fUw/9lZOopkay+GTqfzLl3C8xJ6MgAlGPgAknQu0vad72L1KXXdPnJhUHD7L51YeZsPsplrOHFhLZXHw5k879ClOKZ/TafvqJn6Lq9RwyPn4A/7nXjmixi5YOL/v27qJ27ybclduw1+8kpa2cAn8FZdRwXLdx6/W2TOoTJrA/9Sz2Zx9HQv50sibOJKPwOIrtTopHLEqlImt8/w+ulFJjSMHsk+FdaNmxCvpIsEwwyK5Nq6l65zFKD/2DeVTTSDJr8y6j+PT/YMa0BRGIemRkpSXzYdwcSg6t6pVYVOzdQfkbj1C47wWmBfcyydjZlHEaKStuZvKi0ykbZ92+jqaj5GTSt79C/ebXyZx9eMLf8vJd7P/XH8jf+zxzgnvwGTtb0k+idvl/cNyScyiJss8hY/4F8PLPOPD+00y46Dtdyw9VHWLz64+TufMZ5gc2MM0IOxLns33Jd5ly0hXkOOIiGHX4zVt0Ig1rk2n5+IUjEqz6pmY++dezxG/6Mwvd73OW+KlwlrFt/l0cd/oNzI/v/wsHsTuoXvAV5nz0Xd74872c+rnbhhWjMYaaujoO7tpAS8UW/DXbcTXtIdO9l5LgQWaJp2vbDuKpcRXTnj6PHdnHkVQ4g+zSWSTkTSUzPlW76qmYJOaoA+lHz+LFi82aNWsiHYZSSh0TYwzld83F50hk6rfeBxH8Pi/b175BwycvUVz1GhODFfiNjS2JiwjMvowZp1+JK378DNwditef/AWnbbmDT6Z8GVvxIpp2vEtu5ZtMDVgV1LY7p9M89RKmnXEtKRl5EY525OyvqiPt17OpcxXTOO9GWg9uJe/Qv5gasAod7HRMoWXaJUw74zoSo6WVpg9tHj9b/t8KpkoFOxd8i9a6A6QefJtZ3o04JUClvZDqyZdQdvq/kZo3tuavCidjDE/d/W981vMsm+Z8g4aOAK6Kd5jdsYYk8dAgaewtPJ/Ck68nd8qSQY/TMgE/235yJpPaP+G9qbex7LLbcTkHronX3t7KgT1bqd+/DU/1Duz1O0ltKyfXW0GeNHRtFzRCtT2PhoSJ+NIn4cybRlrxdHLLZuNILx53Y+GUChcRWWuMWdxr+XASLBF5EpgWepoONBpj5otIKbAF2BZa974x5qilbTTBUkqNd2/96W5O2v7/+CRpOSboZ1LHRlJpw29s7IifTdPkC5l+6lWk5xRGOtQR5/b62HzPWSz0fQRYN2k746bRWHI6pSddSW7p+KiIGA7/fPq3nLzhm7jET9AIO+Km0zrhNCas+Bw5ZXMiHd6oefvdd5j6jyu7bt4r7CVUF55G/vGXUjhrZczcqG/cuRcevZjZ7AKgVrLYn3sKmQsvYsKic5FjbLVztzSw+9eXMLNjLQfIZU/a8QRSCrE7XRi/D7u7DntHHQmeGnJ8B8kzdUdMRdNEMtVxE2hNnojJmkJiwXSyS2eRVTINGeMl8JWKhBFJsHoc4KdAkzHmrlCC9aIxZkglnzTBUkqNdz6flw8f+AJT616l2ZZGXeosbFPPYuqJF5KSnh3p8Eadz+9n6wevYCdI8bRFpGaFZ7Ld8aiqqpLWmgoKJxxHQmpGpMOJmKbmFur3byansIzkjNgtYdDu9nBw10ays3NIzy0JW3JpgkG2vf5H/Oseo6RtE2kcLi7RRjxNkk6bM5PmhGL86aW4co4jrXga+aUzSUiP3fOh1LEY0QRLrJlz9wGnGWN2aIKllFJKKRV5xtdBwO/H4XCCM7xz/ykV6/pLsHqXMzo2K4EqY0z3qcnLRGSdiPxLRFYOENhNIrJGRNbU1NSEKRyllFJKKSXOBBwJKZpcKTWKjlpFUEReBfrq0/FtY8zzocefAx7vtq4SmGCMqRORRcBzIjLLGNPccyfGmN8CvwWrBWuob0AppZRSSimlxoqjJljGmDMGWi8iDuAzQNfMf8YYD+AJPV4rIruAqYD2/1NKKaWUUkpFrXB0ETwD2GqMqehcICI5ImIPPZ4ETAF2h+FYSimllFJKKTVmhWOi4Ss4snsgwEnAXSLiA4LAzcaY+qPtaO3atbUisjcMMYVTNlAb6SDUqNHzHTv0XMcWPd+xQ8917NBzHVvG4vme2NfCMTXR8FgkImv6qg6iopOe79ih5zq26PmOHXquY4ee69gyns53uKoIKqWUUkoppVTM0wRLKaWUUkoppcJEE6yj+22kA1CjSs937NBzHVv0fMcOPdexQ891bBk351vHYCmllFJKKaVUmGgLllJKKaWUUkqFiSZYSimllFJKKRUmmmANQETOEZFtIrJTRL4R6XhU+IhIiYi8ISKbRWSTiPxXaHmmiLwiIjtC/2ZEOlYVHiJiF5F1IvJi6HmZiKwOXd9PikhcpGNU4SEi6SLytIhsFZEtInKCXtvRSURuDf0N3ygij4tIvF7b0UNEfi8i1SKysduyPq9lsdwXOu/rRWRh5CJXQ9XPub4n9Hd8vYj8RUTSu637ZuhcbxORsyMS9AA0weqHiNiBXwHnAjOBz4nIzMhGpcLID3zNGDMTWAZ8KXR+vwG8ZoyZArwWeq6iw38BW7o9/xFwrzHmOKAB+LeIRKVGwi+Al40x04F5WOddr+0oIyJFwFeAxcaY2YAduAK9tqPJw8A5PZb1dy2fC0wJ/dwE/GaUYlTh8TC9z/UrwGxjzFxgO/BNgND92hXArNBrfh26bx8zNMHq31JgpzFmtzHGCzwBXBThmFSYGGMqjTEfhR63YN2AFWGd40dCmz0CfDoiAaqwEpFi4Hzgd6HnApwGPB3aRM91lBCRNOAk4CEAY4zXGNOIXtvRygEkiIgDSAQq0Ws7ahhj3gLqeyzu71q+CPiDsbwPpItIwagEqoatr3NtjPmnMcYfevo+UBx6fBHwhDHGY4zZA+zEum8fMzTB6l8RsL/b84rQMhVlRKQUWACsBvKMMZWhVYeAvEjFpcLq58DXgWDoeRbQ2O0Pt17f0aMMqAH+L9Ql9HcikoRe21HHGHMA+AmwDyuxagLWotd2tOvvWtb7tuh2A/D30OMxf641wVIxTUSSgWeAW4wxzd3XGWsOA53HYJwTkQuAamPM2kjHokaFA1gI/MYYswBoo0d3QL22o0No7M1FWEl1IZBE7y5GKorptRwbROTbWEM7Hot0LIOlCVb/DgAl3Z4Xh5apKCEiTqzk6jFjzLOhxVWdXQpC/1ZHKj4VNsuBT4lIOVZX39Owxuikh7oVgV7f0aQCqDDGrA49fxor4dJrO/qcAewxxtQYY3zAs1jXu17b0a2/a1nv26KQiFwHXABcaQ5P3jvmz7UmWP37EJgSqkYUhzWY7oUIx6TCJDQG5yFgizHmZ91WvQBcG3p8LfD8aMemwssY801jTLExphTrOn7dGHMl8AZwaWgzPddRwhhzCNgvItNCi04HNqPXdjTaBywTkcTQ3/TOc63XdnTr71p+AbgmVE1wGdDUrSuhGodE5Bys7v2fMsa0d1v1AnCFiLhEpAyrsMkHkYixP3I4GVQ9ich5WGM37MDvjTE/jGxEKlxEZAXwNrCBw+NyvoU1DuspYAKwF7jMGNNzgK0ap0TkFOA2Y8wFIjIJq0UrE1gHXGWM8UQwPBUmIjIfq6BJHLAbuB7rC0W9tqOMiHwfuByr+9A64N+xxmLotR0FRORx4BQgG6gCvgc8Rx/XcijJvh+rm2g7cL0xZk0EwlbHoJ9z/U3ABdSFNnvfGHNzaPtvY43L8mMN8/h7z31GkiZYSimllFJKKRUm2kVQKaWUUkoppcJEEyyllFJKKaWUChNNsJRSSimllFIqTDTBUkoppZRSSqkw0QRLKaWUUkoppcJEEyyllFJKKaWUChNNsJRSSimllFIqTP5/gpShUukAwxwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3523,31 +3523,31 @@ " 0\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " bAP.soma.v\n", - " 0.0407\n", - " 3.2e-06\n", + " 0.000729\n", + " 2.09e-05\n", " \n", " \n", " 1\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step1.soma.v\n", - " 0.0204\n", - " 2.42e-06\n", + " 0.0109\n", + " 3.88e-06\n", " \n", " \n", " 2\n", " False\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step3.soma.v\n", - " 0.0166\n", - " 5.35e-05\n", + " 0.0132\n", + " 1.07e-05\n", " \n", " \n", "\n", @@ -3555,14 +3555,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "0 False 0 0.0969 0.0153 bAP.soma.v \n", - "1 False 0 0.0969 0.0153 Step1.soma.v \n", - "2 False 0 0.0969 0.0153 Step3.soma.v \n", + "0 False 0 0.12 0.0406 bAP.soma.v \n", + "1 False 0 0.12 0.0406 Step1.soma.v \n", + "2 False 0 0.12 0.0406 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "0 0.0407 3.2e-06 \n", - "1 0.0204 2.42e-06 \n", - "2 0.0166 5.35e-05 " + "0 0.000729 2.09e-05 \n", + "1 0.0109 3.88e-06 \n", + "2 0.0132 1.07e-05 " ] }, "metadata": {}, @@ -3570,7 +3570,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcdb34/9d7+vbeeyqpJBCKEqToFVCKiBIQFeSrXLBjuVe9FvRe7/WnXFHUK6goChhCkw4qKk2lJBAglbTdbJJNsr3M7tTz+f1xzm52k20hszu7O+/n47GPnTn1PWdmds/7fD6f9xFjDEoppZRSSimljp0r2QEopZRSSiml1EyhCZZSSimllFJKJYgmWEoppZRSSimVIJpgKaWUUkoppVSCaIKllFJKKaWUUgmiCZZSSimllFJKJYgmWEopNcWISK2IGBHxJDsWlRpEZKOInJnsOJRSaibQBEsppdS0JyK3iEiP8xMRkeig508kO76pzhizyBjzdCK3KSJ+Efm1iHSJyH4R+UIit6+UUlOV6I2GlVIqsUTEY4yJHcP6tcAuwHss20lVInIDMMcY8+Fh5h3TezOZplOswxGR/wFWAhcCpcDfgKuMMU8mNTCllJpg2oKllFIJICL1IvLvIvI6EBQRj4icKiL/EJEOEXltcBcsEXlaRP5HRF5yrvA/JCL5I2z7YyKyWUS6RWSniPzrYfMvEpH1znZ2iMi5zvQcEblNRJpEZK+I/JeIuMd4HbNF5K8i0ioiLSJyl4jkDprXJiInOM/LRaS5/3WJyIVOV7MO5/UtOOz4fElEXheRThFZIyKBoz/SR2+E98aIyJxBy9wuIv816Pn5zjHtcN7DpePc15kiskdEvuYcv3oRuWLQ/PeKyKvOe9XoJIP98/q7hv4/EdkN/NWZfq/TAtQpIs+KyKLD4v4/EXnCaa37u4iUisiPRKRdRLaIyPJxHqN3jec1HoUrgf80xrQbYzYDvwSuSvA+lFJqytEESymlEudy4L1ALlACPAb8F5APfAm4X0SKBi3/UeBqoAyIATePsN2DwPlANvAx4KZBSc7JwO+ALzv7fQdQ76x3u7PdOcBy4N3Ax8d4DQL8D1AOLACqgBsAjDE7gH8H7hSRdOA3wG+NMU+LyDxgNfB5oAh4HHhERHyDtn0pcC5QByxlhJNtEVnpJDYj/awc4zUMZ+C9GatVyElIfg38K1AA3Ao8LCL+ce6rFCgEKrCTjF+IyHxnXhD7fc914rlORN532PpnYB/7c5znTwBzgWLgFeCuw5a/FPi6s88w8E9nuULgPuCH44x7WCLyldHejxHWycP+XL82aPJrwKLhlldKqZlEEyyllEqcm40xjcaYPuDDwOPGmMeNMZYx5s/AWuA9g5a/wxizwRgTBL4BXDpcC5Mx5jFjzA5jewb4E3C6M/v/Ab82xvzZ2c9eY8wWESlx9vV5Y0zQGHMQuAm4bLQXYIzZ7mwrbIxpxj45P2PQ/F8C24EXsU+g/8OZtQp4zFk3CtwIpAFvP+z47DPGtAGPAMtGiOF5Y0zuKD/Pj/YaRjD4vRnLNcCtxpgXjTFxY8xvsROXU49if99wjuEz2In2pQDGmKeNMW8479Xr2EnpGYete4PznvU56/zaGNNtjAljJ7vHi0jOoOX/YIxZZ4wJAX8AQsaY3xlj4sAa7OT6LTPGfG+092OE1TKd352DpnUCWccSi1JKTQeaYCmlVOI0DnpcA3zwsCv9K7GTkuGWbwC82K0OQ4jIeSLygtM9rwM7cepfrgrYMUwsNc72mgbt/1bsVpARiUiJiNztdCnsAu4cJqZfAouBnzgn/WC3eDX0L2CMsZzXVzFovf2DHvdy6CR8MjSOvciAGuCLh713VdivcTzanaS5X0P/uiJyioj8zela2Qlcy5HHdyBWEXGLyPfE7vrZxaHWycHrHBj0uG+Y55N5nPv1OL+zB03LBrqTEItSSk0qTbCUUipxBlcNasRuoRp8tT/DGPO9QctUDXpcDUSBlsEbdLql3Y/dIlTitBg8jt2Vr38/s4eJpRG71aVw0P6zjTFjddH6b+d1LDHGZGO3xPXvCxHJBH4E3AbcIIfGje3DTkz6lxPn9e0dY39HEJHT5VAFwOF+Th97K0c4vKJTL5A+6HnpoMeNwHcPe+/SjTGrx7mvPBHJGPS8Gvv4APweeBioMsbkALcw6PgOE+uHgIuAdwE5QK0z/fB1JowznmzE92O4dYwx7UATcPygyccDGycjZqWUSiZNsJRSamLcCVwgIuc4rRABpwBC5aBlPiwiC53xTN8B7nO6dQ3mA/xAMxATkfOwx1L1uw34mIi8U0RcIlIhIscZY5qwuxL+r4hkO/Nmi8jh3dEOl4Xd+tApIhXYY7sG+zGw1hjzceyub7c40+8B3uvE4QW+iJ3g/WOsA3U4Y8xzxpjMUX6eO9ptDmM98CHnvTmXod30fglc67Q2iYhkiF2cIgsGCkvcPsb2vy0iPicZPB+415meBbQZY0LO+LkPjbGdLOzj2IqdEP73UbzGhDDG/Pdo78coq/4O+LqI5InIccAnsMcFKqXUjKYJllJKTQBjTCN2y8PXsJOjRuxkZfDf3TuwTzj3AwHgs8Nsp9uZfg/Qjn1C/vCg+S/hFL7AHuPyDIdakj6KnaBtcta9j6FdFIfzbeAEZ1uPAQ/0zxCRi7CLVFznTPoCcIKIXGGM2Yrd2vUT7Fa4C4ALjDGRMfaXLJ/DjrEDuAJ4sH+GMWYtdjLwU+zjtp2hBTmqgL+Psu39znr7sAtSXGuM2eLM+yTwHRHpBr6J/b6O5nfYXQz3Yr+PL4z1wqaQb2F3X23A/lz+QEu0K6VSgd4HSymlkkBEngbuNMb8KtmxqPFzqiK+Bix1inkcPv9M7Pe18vB5SimlUoMn2QEopZRS04XTIrdgzAWVUkqlLO0iqJRSKUZEbhmhYMEtY6+tpiMRqR6lUEV1suNTSqmZRLsIKqWUUkoppVSCaAuWUkoppZRSSiXIlBqDVVhYaGpra5MdhlJKKaWUUkqNat26dS3GmKLDp0+pBKu2tpa1a9cmOwyllFJKKaWUGpWINAw3XbsIKqWUUkoppVSCaIKllFJKKaWUUgmiCZZSSimllFJKJciUGoM1nGg0yp49ewiFQskORU0BgUCAyspKvF5vskNRM9TeXVsJ3X0Vnot+TM3Ck5MdjlJKKaWmmSmfYO3Zs4esrCxqa2sRkWSHo5LIGENrayt79uyhrq4u2eGoGWrjn27j3eFNND/wUVi4JdnhKKWUUmqamfJdBEOhEAUFBZpcTaLuvggd+7bTG+xOdihDiAgFBQXamqkmVEnrSwAUxZoIte9LcjRKKaWUmm6mfIIFaHI1yfq628ilm0DnDjAm2eEMoZ8FNdEqIrvYQi0A+179Y3KDUUoppdS0My0SLDW5AjG75cqFwYpqa5FKHcFQlGzTTVvJaQSNn+DOF5MdklJKKaWmGU2wxkFE+OIXvzjw/MYbb+SGG25IXkCDnHnmmaPenPl973sfp5566pBpN9xwAxUVFSxbtozFixfz8MMPD8yzjMFjokSwi0hE+romJnClpqD2jnZ8Eicjr4R6dw2+Vh2DpZRSSqmjownWOPj9fh544AFaWloSul1jDJZlJXSbg3V0dLBu3To6OzvZuXPnkHnXX38969ev59577+Xqq68eiCMat/AQx/KkEzVuCPdMWHxKTTXBjmYAXBkFtKbPoTS0fcp1k1VKKaXU1KYJ1jh4PB6uueYabrrppiPmNTc3c8kll3DSSSdx0kkn8fe//x2wW4luvPHGgeUWL15MfX099fX1zJ8/n49+9KMsXryYxsZGvvzlL7N48WKWLFnCmjVrAHj66ac588wz+cAHPsBxxx3HFVdcgRnhRO+OO+4YaI166aWXBqY/8MADXHDBBVx22WXcfffdw667YMECPB7PQPIYtwxf/+8fsvz0c1j+Lx/kq9/8TwDq6+s5++yzWbp0Ke985zvZvXs3AFdddRXXXXcdp556KrNmzeLpp5/m6quvZsGCBVx11VUD+7nuuutYsWIFixYt4lvf+tYRcXR2dlJTUzOQ6AWDQaqqqohGo8O/KUpNgFCX/T3wZhYQKVxAjukm0tGU5KiUUkopNZ1M+TLtg337kY1s2pfYLmsLy7P51gWLxlzuU5/6FEuXLuXf/u3fhkz/3Oc+x/XXX8/KlSvZvXs355xzDps3bx51W9u2beO3v/0tp556Kvfffz/r16/ntddeo6WlhZNOOol3vOMdALz66qts3LiR8vJyTjvtNP7+97+zcuXKI7bX29vL+vXrefbZZ7n66qvZsGEDAKtXr+ab3/wmJSUlXHLJJXzta187Yt0XX3wRl8tFUVERAAcPHuShJ//G62v/QSgSxWprAGPxmc98hiuvvJIrr7ySX//613z2s5/lwQcfBKC9vZ1//vOfPPzww1x44YX8/e9/51e/+hUnnXQS69evZ9myZXz3u98lPz+feDzOO9/5Tl5//XWWLl06EEdOTg7Lli3jmWee4ayzzuLRRx/lnHPO0ftdqUkVdhKsQHYB/oo0qIcD29dRdVJ5cgNTSiml1LShLVjjlJ2dzUc/+lFuvvnmIdOfeuopPv3pT7Ns2TIuvPBCurq66OkZvVtdTU3NwLio559/nssvvxy3201JSQlnnHEGL7/8MgAnn3wylZWVuFwuli1bRn19/bDbu/zyywF4xzveQVdXFx0dHRw4cIBt27axcuVK5s2bh9frHUi8AG666SaWLVvGl770JdasWTNQnS87M4OA38e/fvZLPPzkX8hIC2BFQ/zzn//kQx/6EAAf+chHeP755we2dcEFFyAiLFmyhJKSEpYsWYLL5WLRokUDMd9zzz2ccMIJLF++nI0bN7Jp06YjXseqVasGWvDuvvtuVq1aNepxVCrRosFWANJyiyiavRyA7vr1SYxIKaWUUtPNMbdgiUgV8DugBDDAL4wxPxaRG4BPAM3Ool8zxjx+LPsaT0vTRPr85z/PCSecwMc+9rGBaZZl8cILLxAIBIYs6/F4hoyvGnzvpoyMjHHtz+/3Dzx2u93EYrFhlzu8dLmIcM8999De3j5wQ96uri5Wr17Nd7/7XcAeg/WlL33piG25BV567A7+9GoD9/zhEX7zi5/zxBNPjCtOl8s1JGaXy0UsFmPXrl3ceOONvPzyy+Tl5XHVVVcNey+rCy+8kK997Wu0tbWxbt06zj777FH3q1SixYPtAGTmFpGTXUaTyYeDG5MclVJKKaWmk0S0YMWALxpjFgKnAp8SkYXOvJuMMcucn2NKrqaC/Px8Lr30Um677baBae9+97v5yU9+MvB8/fr1ANTW1vLKK68A8Morr7Br165ht3n66aezZs0a4vE4zc3NPPvss5x88slHFVd/q8/zzz9PTk4OOTk5rF69mieffHJg3Ne6detGHIc1WHdXO53dPbz3ve/hf2/6Ea9t2oYV7ePtb3/7wPp33XUXp59++rjj6+rqIiMjg5ycHA4cODBiwpaZmclJJ53E5z73Oc4//3zcbve496FUIrhCHQCkZRUS8LrZ66kmvWvn6CsppZRSSg1yzAmWMabJGPOK87gb2AxUHOt2p6ovfvGLQ6oJ3nzzzaxdu5alS5eycOFCbrnlFgAuueQS2traWLRoET/96U+ZN2/esNu7+OKLWbp0Kccffzxnn3023//+9yktLT2qmAKBAMuXL+faa6/ltttuo76+noaGhiHl2evq6sjJyeHFF4e/r8973vMe9u3bR09XF+df+TmWrXgb7zzrTL73rX9DYn385Cc/4Te/+Q1Lly7ljjvu4Mc//vG44zv++ONZvnw5xx13HB/60Ic47bTTBuZ985vfHFImftWqVdx5553aPVAlhSsaJGrcuHx2i3RXeg2F4T1aSVAppZRS4yYjVaZ7SxsTqQWeBRYDXwCuArqAtditXO3DrHMNcA1AdXX1iQ0NDUPmb968mQULFiQsRjW69uYm8qL7oXgReHx07dtGOiE85UuSHdoA/UyoifLPn32CJc2PkHnDfgD+9OsbePfum7C+uA1XVnGSo1NKKaXUVCIi64wxKw6fnrAiFyKSCdwPfN4Y0wX8HJgNLAOagP8dbj1jzC+MMSuMMSv6K9mpJDLOuDGxPxqW24+HGFjxJAal1CSJh4ngG3jqLZ4LQEuDjsNSSiml1PgkJMESES92cnWXMeYBAGPMAWNM3BhjAb8Ejm5gkUqOgQTLLpxhPHbRChMLJysipSaNKxYiLIcSrOzK4wDo2LMlWSEppZRSapo55gRL7BJ2twGbjTE/HDS9bNBiFwMbDl9XTT2C02XUacFyee2xKLHIkVX/lJpp3PEwsUEJVkXNfKLGTeTAm0mMSimllFLTSSJuNHwa8BHgDRFZ70z7GnC5iCzDLt1eD/xrAvalJpqxsBBcTguW1xnsH4+G0Fv+qpnOZYWIyqFbDZTkZrCLEtztWklQKaWUUuNzzAmWMeZ5QIaZNe3LsqckY2EGvZ0+r5eocUNMW7DUzOeJh4m6DiVYIsJBbyUVwYZR1lJKKaWUOiRhRS7UzCAYzKCPhcftIiJeJB5JYlRKTQ6PFSY2KMEC6MmsoTi6FwbdOFwppZRSaiSaYI3Tgw8+iIiwZcvIg93r6+tZvHhxwvZ51VVXcd999404//Of/zwVFRVYg078br/9doqKili2bBkLFy7kl7/85VHtU4yFkaENknHx4bY0wVIzn8dEiLuHJljxvFn4iRDr2JOkqJRSSik1nWiCNU6rV69m5cqVrF69etj5sVjsmPcRj4+/FLplWfzhD3+gqqqKZ555Zsi8VatWsX79ep5++mm+9rWvceDAgXFv127BGppg2aXa42Ad+2tUairzWmGswxIsf4l9k/CWhk3JCEkppZRS04wmWOPQ09PD888/z2233cbdd989MP3pp5/m9NNP58ILL2ThwoWAnWhdccUVLFiwgA984AP09vYC8Je//IXly5ezZMkSrr76asJhu+x5bW0t//7v/84JJ5zAvffee8S+n3rqKVasWMG8efN49NFHh+x70aJFXHfddSMmfcXFxcyePZvBN2+++eabWbhwIUuXLuWyyy4DoK2tjfe9730sXbqUs8//IG9s3gbADTfcwJVXXsl7LvoANSe/h/vuXcO//du/sWTJEs4991yi0SgA3/nOdzjppJNYvHgx11xzDYffvNqyLGpra+no6BiYNnfu3KNK/JSaDD4TxnIFhkzLrbJvat25d3MyQlJKKaXUNJOIKoKT54mvwP43ErvN0iVw3vdGXeShhx7i3HPPZd68eRQUFLBu3TpOPPFEAF555RU2bNhAXV0d9fX1bN26ldtuu43TTjuNq6++mv/7v//j05/+NFdddRV/+ctfmDdvHh/96Ef5+c9/zuc//3kACgoKeOWVV4bdd319PS+99BI7duzgrLPOYvv27QQCAVavXs3ll1/ORRddxNe+9jWi0She79A6fzt37mTnzp3MmTNnYNr3vvc9du3ahd/vH0h4vvWtb7F8+XIefPBBHrvnN1z92a/y2ob3AbBjxw4effxxGtf+mbdd9DHuv/9+vv/973PxxRfz2GOP8b73vY9Pf/rTfPOb3wTgIx/5CI8++igXXHDBwD5dLhcXXXQRf/jDH/jYxz7Giy++SE1NDSUlJeN+m5SaDD4iWJ6hCVZl9Sx6jZ/owe1JikoppZRS04m2YI3D6tWrB1p7LrvssiEtRieffDJ1dXUDz6uqqjjttNMA+PCHP8zzzz/P1q1bqaurY948u6vRlVdeybPPPjuwzqpVq0bc96WXXorL5WLu3LnMmjWLLVu2EIlEePzxx3nf+95HdnY2p5xyCn/84x8H1lmzZg3Lli3j8ssv59ZbbyU/P39g3tKlS7niiiu488478Xjs/Pr555/nIx/5CMYYzjrtFFrbO+jq6gLgvPPOIy0ji8XHzSEej3PuuecCsGTJEurr6wH429/+ximnnMKSJUv461//ysaNG494HatWrWLNmjUA3H333aO+ZqWSxW8imMMSrILMAI2U4u3QUu1KKaWUGtv0asEao6VpIrS1tfHXv/6VN954AxEhHo8jIvzgBz8AICMjY8jycliBiMOfD+fwbYy1vT/+8Y90dHSwZMkSAHp7e0lLS+P8888H7GTmpz/96bDbe+yxx3j22Wd55JFH+O53v8sbbxxqETRm0I2GHX6/H5/HQ8zlw+vxDMTjcrmIxWKEQiE++clPsnbtWqqqqrjhhhsIhY4s6f62t72N7du309zczIMPPsjXv/71MY+LUpPJsgx+onBYgiUiNPsrmd1bn5zAlFJKKTWtaAvWGO677z4+8pGP0NDQQH19PY2NjdTV1fHcc88Nu/zu3bv55z//CcDvf/97Vq5cyfz586mvr2f7druL0R133MEZZ5wxrv3fe++9WJbFjh072LlzJ/Pnz2f16tX86le/or6+nvr6enbt2sWf//zngfFeI7Esi8bGRs466yz+v//v/6Ozs5Oenh5OP/107rrrLixjeO4fL1KYn092dvbAem6XEBUvHJZ8AQPJVGFhIT09PSNWPRQRLr74Yr7whS+wYMECCgoKxvX6lZos4WgMvxyZYAEEM+soiu2HeDQJkSmllFJqOtEEawyrV6/m4osvHjLtkksuGbGwxPz58/nZz37GggULaG9v57rrriMQCPCb3/yGD37wgyxZsgSXy8W11147rv1XV1dz8sknc95553HLLbdgWRZPPvkk733veweWycjIYOXKlTzyyCPDbuPjH/84a9euJR6P8+EPf5glS5awfPlyPvvZz5Kbm8sNN9zAunXrWL5sGd/4nx/xy5/ceMQ24i6f/eCwAha5ubl84hOfYPHixZxzzjmcdNJJA/NuueUWbrnlloHnq1at4s4779TugWpK6usLAiDetCNn5s/CQ5xIi3YTVEoppdTo5PCKb8m0YsUKs3bt2iHTNm/ezIIFC5IUUWoJR+O4D24g7s/FX1gzZF5H815yowehZDG4vSNsYXLoZ0JNhKamvZTdupB1C7/CiZd+dci8Z//yKO947gr2vue3VJz8vuQEqJRSSqkpRUTWGWNWHD5dW7DUAMuACwNy5MdCnG5T8eiR46uUmgkiIbsFyzVMC1ZBzSIAurVUu1JKKaXGoAmWGmAZC5cYcB35sXD77AQrFtEES81M0VAfAC7fkQlWVWUl7SaTePO2yQ5LKaWUUtPMtEiwplI3xpnMWJb9YJgWLI/Pj2XAJLkFSz8LaqJEwnaRmP6LCYNlB7zslgoCnToGSymllFKjm/IJViAQoLW1VU+sJ4ExdoIlwyRYPo+bCF6IhSc7rAHGGFpbWwkEjjwBVupYxUL9CVb6sPPb0qrJ69s9mSEppZRSahqa8vfBqqysZM+ePTQ3Nyc7lBkvFI4Q6DtIPBDFHWg7Yn64owW3WHjakleqOhAIUFlZmbT9q5krFrETLI9/+AQrlF1H/oE/Q7gb/FmTGZpSSimlppEpn2B5vV7q6uqSHUZK+NOzz/Huv15K87t/StHyjxwx/8n//QFndT+C/5sHhh2npdR0FgvbY7C8geETLFfRXDgAPU1byKw9adhllFJKKaUm/CxZRM4Vka0isl1EvjLR+1NvXcwZg+L1Zww/P282fiKYrr2TGZZSk8JyWrB8I7RgZZYfB0Bbw6ZJi0kppZRS08+EJlgi4gZ+BpwHLAQuF5GFE7lP9dbF+6/gj3CC6SueA0DHHi1VrWaeeKS/BWv4CwwlNQuwjNC7b8tkhqWUUkqpaWaiW7BOBrYbY3YaYyLA3cBFE7xP9Rb1X8H3jNBFKqfKvrlve6OeYKqZJ+7cgsAXOLJMO0BVST57KYTWHZMZllJKKaWmmYlOsCqAxkHP9zjTBojINSKyVkTWaiGL5BroIjXCFfzyyln0GR+RA29OZlhKTQoTtVuw/GnDf/79Hjf73JVkdO+azLCUUkopNc0kvVKBMeYXxpgVxpgVRUVFyQ4npZmYfQVfvMNfwS/Py6CBUtwdei8gNQP1J1gjtOACdKZXUxBuBL1thFJKKaVGMNEJ1l6gatDzSmeamoKMMwYF7/D3mXK7hGZvJZlBvReQmoFi9udfvCMnWNHc2aTTh+lumqyolFJKKTXNTHSC9TIwV0TqRMQHXAY8PMH7VG+ROCeYeIZvwQLoyayhKLoP4rFJikqpSRINEcUN7pHvXuEpngdAe6MWelFKKaXU8CY0wTLGxIBPA38ENgP3GGM2TuQ+1TGI2l0EGaGLIEA8fzYe4sTbtRVLzSwSCxHBO+oy+TWLAGhr0D9jSimllBrehN9o2BjzOPD4RO9HHbuBFqxREqy0krmwE1obNlJcOGuSIlNq4kk8TET8DF/iwlZTO4c+4yO0Xwu9KKWUUmp4SS9yoaYOVzyMhYDbN+IyuZV2qfaufVsnKyylJoUrHiIiI3/2AYqy02iQMnztmmAppZRSaniaYKkBrniffYIpMuIyVVXVdJk0oge3TWJkSk08dzxMVPyjLiMiHAjMIj+olTSVUkopNTxNsNQAdzxERIavINivKCvAbsrxaql2NcN4rBAx1+gJFkBfzlwKrWYIdU1CVEoppZSabjTBUgO88RAR1+gJlojQ7K8it7d+coJSapK4rTAx1+hdBAFcJXY32c7db0x0SEoppZSahjTBUgO8Vh9R18gFLvr1ZM+mMH4Qwj2TEJVSk8NnhYi6Rr4HVr+c2uMBaN312kSHpJRSSqlpSBMsNcBnhYi5x06wTOF8ACIHtkx0SEpNGr8VIjbKPeD6VdUdR6/xE96npdqVUkopdSRNsNQAvwkRc4/eRRAgrXwhAO312kVKzRwB00fMPXYLVlluOjupwNemlTSVUkopdSRNsNSAgOkjPo4TzKKaBUSMm+C+TZMQlVKTI2BCWONowTpUSXDHJESllFJKqelGEywFgDGGgAkTH8cJ5qySHHaZMqRZr+CrmSONEMY79gUGgL7cueRZbdDbNsFRKaWUUmq60QRLAdAbiZMu4XGdYGYHvOzxVJPRpVfw1cwQjcVII4LlyRjX8r6yRQC0N7w+kWEppZRSahrSBEsBEAzHSCcEvvGdYHZlzqIgug+ioQmOTKmJ19vTg0sM4h/f579wll1JsHnH+gmMSimllFLTkSZYCoCecIw0wrh84+siZRXOx41FvGXbBEem1MTr7bVvGuz2Z45r+dmzj6PLpBPdp4VelFJKKTWUJlgKgGBfCJ/EcY3zCn5GhV1JsFUrCaoZoK+nGwB3YHyf/5wMH9vds0hv01LtSimllBpKEywFQF/QOcEc5xX8klmLiRuhu3HDRIal1KToC9otWJ7A+D7/AC2Z8ykP7YB4bKLCUkoppdQ0pAmWAiDcf4KZNs4uUmUFNJgSzEG92bCa/iJ99gUGb1rWuNeJlyzFT4Sw3nBbKaWUUoMcU4IlIj8QkS0i8rqI/EFEcp3ptSLSJyLrnZ9bEhKtmjDhUA8A3nFewc8OeGnUSoJqhoj02gmWP338LVhZtScAcGDLSxMSk1JKKaWmp2NtwfozsNgYsxR4E/jqoHk7jDHLnJ9rj3E/aoIdOsEc/xX8rsxZFEb2QDw6UWEpNSmizgUGf3r2uNepmnc8fcZH7+51ExWWUkoppaahY0qwjDF/Msb0D0B4Aag89pBUMsT7OgDwZ+SMf52CeXiJEW/dOUFRKTU54iH7AkPaUXz+qwqy2UoN/mYtdKGUUkqpQxI5Butq4IlBz+tE5FUReUZETh9pJRG5RkTWisja5ubmBIajjoZxEqxAduG410nvryS487WJCEmpSSN97QCkZReMex2XSziYMZ/i3q1gWRMVmlJKKaWmmTETLBF5SkQ2DPNz0aBl/gOIAXc5k5qAamPMcuALwO9FZNi+N8aYXxhjVhhjVhQVFR37K1JviTgJlis9b9zrFM06HssIXY2vT1BUSk0OCXUA4MvMP6r1YiVLyDC9hFu0FVcppZRSNs9YCxhj3jXafBG5CjgfeKcxxjjrhIGw83idiOwA5gFrjzVgNTFc4U77QSB33OvMKS9itymGg5snJiilJomEOukhnUz3mH8Sh8ipWwG7oGnzC9QWz5mg6JRSSik1nRxrFcFzgX8DLjTG9A6aXiQibufxLGAuoJd4p7JQB3Fc4B9/kYusgJfdnhoyOrdPYGBKTTx3uIMe1/grCParW3QSIeMluPOfExCVUkoppaajYx2D9VMgC/jzYeXY3wG8LiLrgfuAa40xbce4LzWB3OFOel2ZIHJU63VmzaEo0gix8ARFptTE80W76HOP/+JCv7L8bLa4ZpN+8NUJiEoppZRS09HR9Yc5jDFm2D4xxpj7gfuPZdtqcvWfYB7tKaZVtABPZ5zowTfxli+ZkNiUmmj+WCdh3/grCPYTEfZnL2Vh5wP2RQaPfwKiU0oppdR0ksgqgmoa88e6iHjHfw+gfplViwFo2bk+wREpNXky4t1E30KCBWDKT8RHjJ4GbcVSSimllCZYCohbhgyrh5jv6BOssllLiBo3PY1vTEBkSk08YwyZpgfL/9YSrPzjVgJwYNOziQxLKaWUUtOUJliKzr4ohdJJLG3898DqN6s0n12mFGnWSoJqeurqi5BLDybt6Eq091swfz57TSGxhpcSHJlSSimlpiNNsBRtPSGKacfKKDvqdQNeN/t8tWR3aSVBNT11tuzHK3HIKn1L62cHvGz3LaCgXW+4rZRSSilNsBTQ1rwPn8Tx5JW/pfW7s+dSGGuCSO/YCys1xXQc3A2AP7/yLW+jt3g5hfGDRDv2JiospZRSSk1TmmApOg7YJ5iZhdVvbQPFC3BhCO/XboJq+gm2NAKQVfTWE6zMOacBsPf1pxMRklJKKaWmMU2wFH2t9glmbknVW1o/u3opAM07tIqamn7CbfsAyC+pecvbmLfsNILGT/DNZxIVllJKKaWmKU2wFLF2u1uTL++tXcGvnL2IsPHSu2dDIsNSalJYXXaClZ7/1rrIApTkZbHJfRzZB19OVFhKKaWUmqY0wVL4uxuI4IWsoy9yAVBTmMUOKnC3aBdBNf14g/tplxzw+I5pO80FK6iI7ML0tiUoMqWUUkpNR5pgKfJ6d9HirwKX+y2t73G72O+vI7dnR4IjU2riZfY20uZ9axcXBvPPXokLw/4NTx97UEoppZSatjTBSnEdvREqYnvoy5l9TNsJ5syjIN4Moc4ERabUxIvFLYpi+whlvcUCL4PULn0HYeOhY7OOw1JKKaVSmSZYKW5rYzNVchB38fxj2o67ZAEAQR2HpaaRhuYOymhF8mcd87ZmlRWwUeaS0fRCAiJTSiml1HSlCVaKa9n2Im4x5M4++Zi2k1trVxJs2amVBNX0sXfXm7jFkFk655i3JSLszz+R8tCbmFBXAqJTSiml1HSkCVaKC+/6JwA58047pu1Uz5pPjwkQ2rspEWEpNSm699if18LaRQnZnm/W6XiwOLDpuYRsTymllFLTjyZYKcyyDMWtL3PQV4VkFB7TtiryMthJJd62LQmKTqmJZw7aCVZ6xeKEbG/W8rOIGRctG/+WkO0ppZRSavo5pgRLRG4Qkb0ist75ec+geV8Vke0islVEzjn2UFWivb5rLyeZDXRVnnXM2xIRDqbNoiColQTV9JHR+SbN7hIIZCdke3XlxWxxzSZ97z8Ssj2llFJKTT+JaMG6yRizzPl5HEBEFgKXAYuAc4H/E5G3VgNcTZg3n12DX6KUnXpJQrYXyptHjtUBwZaEbE+piWRZhrLwLtozj62C5mAiQlP+qVSHNmP1diRsu0oppZSaPiaqi+BFwN3GmLAxZhewHTi2KgoqoXrCMeY03EOzt5yMOe9IyDY9pfY4lo6G1xOyPaUm0t7WLurYR6zguIRu1zPvbDxY7HvtTwndrlJKKaWmh0QkWJ8WkddF5NcikudMqwAaBy2zx5mmpog/P3oPJ7CF8AkfB1di8uyCuuMBaN21PiHbU2oi7d25Ab/ESKtMzPirfnNPPJug8dO18c8J3a5SSimlpocxz6xF5CkR2TDMz0XAz4HZwDKgCfjfow1ARK4RkbUisra5ufloV1dvwe6mg5zw+rdp8ZRQ+a5PJWy7tbWz6TAZRPdtTNg2lZoo3bvfAKCwbnlCt1tZmMtrniXk7/97QrerlFJKqelhzATLGPMuY8ziYX4eMsYcMMbEjTEW8EsOdQPcC1QN2kylM2247f/CGLPCGLOiqKjoWF+PGkNXX5htv7mGKg5g3vdz8AYStu2i7AA7pZpA+9aEbVOpCXNwM3FcZFUuTPimW0veTmlsL9HW+oRvWymllFJT27FWESwb9PRiYIPz+GHgMhHxi0gdMBd46Vj2pY5dW1eQF2++kndG/kbD0s9QtPidCd9HS/osivp2gjEJ37ZSiZTZ+SYHPOUJvcjQL2+JXTi14aVHE75tpZRSSk1txzr45vsi8oaIvA6cBVwPYIzZCNwDbAKeBD5ljIkf477UMXh57Us03vRO/qXvCbbNu4a6939nQvYTzptHhgliuoZtsFRqSjDGUBreRXvmnAnZ/oknnMoeU4S1+ZEJ2b5SSimlpi7PsaxsjPnIKPO+C3z3WLavjo0xhjc2vEbrn27ktK7HiYifhjNvZu6ZV07YPr1li2AvdDa8Qe7Sygnbj1LH4kBbJ9XsZ0PBhROy/TS/hw25Z/OuzvswwZZjvpG3UkoppaaPiSrTrpJo3/79PHvPj3j1u2ex6L4zWdn9ONvKL8T7+XXUTGByBZBfuxSA9oY3JnQ/Sh2Lfbs24RZDWlliS7QP5l32QTzEqX/+7gnbh1JKKaWmnmNqwVJTQ0d7K9vXP0vvm89QdPAfzIu9SbkYmlylbJrzCea857MsKqgae0MJUFdTS4vJJtq0aVL2p6Y/YwyhqEVXKEpXT5BgdwfB3iDRUIhoNEQsEiYeDdu/YxEiFkQtwYgbS9wY8RB3+7C8WbjTcwmkZZAZ8JLh95Cf4aU0J42SLD8e96HrSV177UIs+VULJux1vf3tZ1H/TBnWq7+Hcz49YftRSiml1NSiCdY0Yqw4zXt3snfHG3Tt3ojv4OuUBTdRbe1lhRjiRtjpm8+rtf+P8pMuonzR6ZSJTGqMhZk+1koVJR1vTup+VfKFY3E6uoN0tR6gp6OZvq5mIl0txINt0NeOO9SOK9KNJ9qDN9aDN95LwAqSbnpJJ0QufZRI9NjjMB66yOCAyaPJFLDR5HOAfNoDVQSzZ+EunEPhxhc50zuxCVaa38P26lW8a/ePaN70LEULE3NDbzW9GGPoDYXp6mwn2N1Bb3cHfT2dhIKdxPq6MeFuCPcgkR5c0R6IhTCxCGJFMPEYbiuKy8TwmBhCnLhxEcNFHPsCAy43MZefiCuDsCcTy5uFBLIgvQCTWUIgv4K8ogrK8zMoy0kjw6//9pVSaqLpX9qpxhjCXQdprt9IR+Nmoge34e3YSXZvA8WxfRQTodhZtE1y2Zt+HC8XnU/unFOpXXYGczPzkxq+iNCaXseivr/alQQnOcFTiWGMobOnl/aWJnpamwh17CfadRAr2ILpbcPV144n0oE/2kl6rItMq4tseiiRECUjbDOChx7JJOxKJ+zOIOrPIOatoNuXRbcviwOBLNyBLDxp2XgDGXh9frxePx6fH48vgMfnx+f14RbAioGx7N9WDKIhrFAn0d4OYsF2/ME2qrv3U9u9D29wG/5oF8SANoi3uQh5vHS6cshJz53Q47jw/M9w8Ge30/fQlzDznkM8/gndn5pY4XCIztaDdLYfpLejhb6uFqI99kUE09uOO2x/J/zRTtLj3WRY3eSYbjKlj4xxbD+GmzA+YuIhLl4s8RAXDzHxYrk8WOLGhYUbC5eJIyaO24rhiUdIs4L4TXjY7caN0EIOW0wRTa5SOtKqsHLr8BXPJb9yPjVVVdQWpuP3uBN7wJRSKkVpgpUkVl8Xzbs30b57M30H3sTVtoPMngaKI41kEaQS++ZhEeNmr5RywF/FrtxT8RTNJb96IVVzl5BfUEn+FExgwrnzSO99FNO1F8nRQhdTRSwWp729mc7mJnramgh37ifaeRATbMbV24Iv1EpatI3MWAe5poNcCZI7zHbiRuiWTHrc2fS5c4hklNDsm8/BtDwkPR9PRgHe7ELScorIzCkiI68IX1YhPm/6hH5eXYDf+TlCuAfadkDLNtzNW/Ef3IK/PLE3GB5OeXEhTyz8Cudt/gqbf7aK4kt+QEzc5BaW4/cnvjy8OjrhaJS2lgN0NO+jt30/4c4DWN0HIdiCq68VX7iV9Eg7mfF2cqxOciRIMQxc5BosjtBNFkF3Fr3uHMJpRQR9c2jy52ECubjTsvGkZePLyCaQkUNaRg5pmTn4M3PwpWUj/iw8Hj+eY/mOxKMQ7oZwFwRbiXTspadlL32te4h17qOkq5HZwTfJ7nseV5+BJuA1aDeZbDRlHPBV0eu08mZVLKBs1kJmlRYQ8GriNRVZlsEyBsuAwWAMWJZlT7MsjGWwrPjANGMsXC4XLpcHl9tt/4jgEpzfgttlP5cpeG6h1HQiZgrdr2jFihVm7dq1yQ4jYaxomObGrbQ1bKJv/1akbQfp3fUUhhspMG1Dlt1nCjngq6Q7o5Z43iz8JfPIq1pIee08cjLSkvQK3prHH7mX96z7OJ2X3E3OkvOSHc6MF46Eadm/l67mPfS2NBLu2IfVfQB3z378oWYyoi3kxdvINZ34ZPi7JXSQRZc7l15PHmF/AbG0AkgvxJ1dgj+nhEBuKZn5pWTllxLIzAOX1scZL8syPPmrr3PO3p/hFvvv7cs553LS9WuSHNnMZMUtOjra6Di4m56WPYTb9xHrbEJ69uPta8YXaiUj1k621UGu6cYj1pHbMEKHHPpOhHz5RAMFkF6AK6MAb1YBgaxCMnILycorJiuvGHcge/p8L6Ih6GggfHA7bbs3Ez6wBVfbTrKD9eTGWwcWixthL4U0earozqjFyp9NevlxFNUupqZ2DgFfCl+jtSxMtJdIKEioL0jY+YmEgkRDvcRCQWLhXuKRPuLhXky0DyvaC9E+JBbCFQvhjts/YkVxWTFcZtBvE8NtorhNHLeJ4jExPMRwE8frPHZhIYBgcGFwydGfz8WMizguLIb+7n/c/xMXN3E8WOLCErs1tf+3cX4slxcjbnB5MC6P89t+jsuLuDzg9ji/vYjbg2vQY3F57GluL7g9uPuX8XhxOdNdHh9utxeXx4Pb48Hl9uHxekGcbbu94HIjbmd/A/u0t4WzD0EQMYgxiOD8tp8bcyhJtYxld5YwFpZlMCaOFR86n4HE1sLE4xhjMJZlJ7fGwliWvU3LYKw4xtmO6V/fsjDGOMvGwVnfjsOZ7yxjjAVWfOCxGbT+wPPDpuPEYE+3nw95jGW/fgxiLMB57EzHmS7OdPo/ZoLz6RNE7LWciRjpf+w8R4Ysj8ihJF5czixneXHmDzwGwUVvWimzT72I6oL0t/adnSAiss4Ys+KI6ZpgHRsrbrF/Xz1tDRsI7tuCtG4jraue/NBuSq0DAydUAG0miyZPBR1pNURy6vAUzyO78jjKahdQlJ83Y64Y/fONrbzt/pOpP+Er1F741WSHM21ZlqG1tZnWfTvpOVhPtK0R07UPV/Ag/lAzmZFmcq028k3nkM9ZvzZy6HQXEPQVEA4UEc8oRjKK8GYXk5ZXSkZeKTlF5WTmldj/lNSE2rJxPW2vP0Hm5jXkeiJUf1MLwRyt3mAXrXt30nlwN72te4l1NkF3E57eg6SHm8mJtVFg2kiXI7vK9Ro/ba48ejz5hHx5xAKFmIxC3JlF+HKKScstJSO/jKyCMtJziuyTsVQU6iJ6cBstDRvp3rsZ07KN9O5dFIYbSePQce01fva4ymn1VxJJL0Uyi/HmlpOeX0ZGYSWZeSVk5+SRlp6FJCPxjEch2ks8HCTU2024t4dIXzeRvh4ifUHioSCxcA9WxF6GSBAT6UVivbiifbhifbjjfXjifXjjIbymD58VJmBC+O2OnG8tLCOE8BMWH2F8RMRPTLzEne6gltM91Lg8dsLi8mC5fOA8x+UFt89JGtyIuAadsLoO/QYQt33O6nIhCEbEPmE2cftE3orbJ9QmDiaOWHHn5Lv/cdw5OY+DFUOsGDiPXcZ+LiaOmBguK25PM3Hc2I9dzmN3/2/ieOw0beDxcP+7lBrO0/Hj6fng3Zy/tDzZoQyhCdYxivQF2bdrA20NG4ns34qnfTs5wXrKY3vIkNDAcr3Gz153BR1p1YRzZuEqnENm+XyKahdSUlyGyzUzkqjRtAcjBL+/gL6SE5n7yXuSHc6U1RPsoWXvTjr219PX3EC8oxF3917S+vaTHTlIsdVMpvQNWccyQrvk0OEpIOgtJJJWjJVRgjunFF9eBRkFFeSVVJNTWIHL60vSK1Oj+fsvr+fUPb/B+to+vP6pdSUumWLRKAebdtOybwfBA/VE253vQ28TWZEDFMQPkk/3Eev14qfNVUCPt4BQoJhoeglkluDJLSeQV0FWUSV5JVVkZOXpmNBjYQyR9j0c2LXBHh98YCtpXTvJDe0hJ95GOqFhV4saN72SRp+kE3JnEnalDSQOxuXFuOxkwXJ57URh0JV0wW4dsK+kW/aJfDyCy4rgdn48JoLHRPGYCF4TtX+I4OHIlsnRxI3QS4A+/ITFT0j8RCSNqMtP1JVG3B0g5knDcqdhedPBk4Z4A4gvHfGm4fal4fan4/an4/Wn4w1k4Auk4wtkEEjPwp+WQVp6Bl6vLzkJ5xRgjCFmGaJxi0jMIhK3iMbixKIR4rEY8VjUfhyPYsWixJ0fKx4lHothxSLE4zFMPIYVi2Li9jwr7iR6VhSXsRNHl4k60/oTwMHJoJ0cO+0xA+015rDWlUMtKC6nccVJWHHZ53IDrTAue3mX22m0cSOu/oTXhQwkum57OWc+znyXy56GS3CJCxGX/RkZ9NjVnzy73M5zQVyugSRbXIJLnO07011Dlnc50124XG5nn84+BsViNxe5MLic1+I6Yp7dXGUfOYzdNbX/8eDfxvR/B/tbvfqXd34wGKt/mnVoujHO4k5LHs40t4/sgnLSfFOry/JICVaKXqIbnw1/f4TQC7+hMLiVqvheasVQ68xrooiWQDUb8pfjKppLevlxFNQspri8jrnu1Pzj2S8vw8frnjkc174h2aEkVTxucaBpN62NW+nZv51Yyy68XQ1k9e2hKNZEMe1kHrZOO9m0eUrozqimLeNUyKnEn19FenEteWV15BZVUuDxUpCUV6QSwV++CPdew/bN65m/7O3JDmfSWHGL5uYmWhu30NO0nXjrTtydu8nsbSQvup9Cq41yiTP42mQPabS4i+n2lbA9fTFWViXuvErSCqvILa6moLSG9KxcNE2dBCL48quoyq+i6sQju37HQ920Hmikbf9uQm37iPa0Ee/rJB7qRELduCJdeKLd+KwQrlgUl9WLx8Rwmxgeok6VROjviGThwgiYQR3h4tgFP6LiI+YKEHdlE3f5iLt8WG4flsuHcfux3H7w+MGbDr4MXL40XP5MPP4MPIEMPIFMfGmZ+NMy8aVnEkjPIj2QTprfQ5Yntf9/TyQRwesWvG4X6UOu/42nBIxS04smWKMItTZS2f06+9Pn0pR3Du6yheRVLaJ89iLKMrMpS3aAU1h3/lJKml/ABFuQjMJkhzNhYrE4ext30lK/gdD+rUjrdtKCjeSG91Ea30+5RAZOGC0jtLjyafOVsyf7bTRkV+POryajqIbcslkUlNWS508nL6mvSE20usVvg5fhwKZnZ1yCZcUtDu5vpGXnenqatmG17sTbvZvc0B5K4/spkb4hVSYPkk+rt5Q9WctoyKrAnVtFRrHzfSifRWZm3hEXIdTU5A5kUVyzkOKahckORSmlkk4TrFGceP61yIWfpDTZgUxDrrqV0PwL2jb9jYKTPpjscI5ZsKebfTs20N64kej+rXg7dpDb20B5fA81EqLGWa4XPwfcZXSmVdOctRJXfi3pJbPJr5pHUeVcin1pw1YgU6mjoHoh+6SUzIa/AF9JdjhvSU84xs6G3bTXv060aSO+ti3k9uygOtZAqfQM/M0MGy8H3CV0BSrYmrUC8mrxF88mp3wexdXzKE7P0u+DUkqpGUcTrFGkaj/pRKhdupLgi37a3/jztEqwevpC1L/5Bu271mPt30Bmx1ZKQzspMweZO2gw7n4ppjVQzZbsE3AVzyOrYiHFdYvJLqqiTj83ajQi7C87i0V772X//r2UllYkO6IRhaJxdu7Zx8Edr9G79w28LW+SG9xOTXw3S6VjYLkeMmjy17Iz753EixaQVrGI4trFFJXXUO2aWv3llVJKqYmmCZaaEAsq8nnGvYzj9z4FljXlyhdblmHPnt0c2LaWYOMb+Fo3kR/cTm18N4slCjglij2VHMxayJ789+EvPY78mkWU1i2iNC1TWzbVW1byjo/jv3s12574OaUf+69kh0MkZrGr6SD7d7xOb+MbuFq2kNuznapYAwullf5OX30EOBiopSXndNpLF5FVvYSiWcvIzK1grhaQUEoppQBNsNQEERFaqt9DXv236N7yV7IWvitpsXR2d9O49VU6dq3HHNhAVudWKiO7qJZOqp1l2iSXA2lz2Jx3Kr6KJRTOPoHiWUup9qYNLKNUolQct4JNaSewqOF22lo/R35B0aTs1xjDgbYuGretp3P3G5gDm8js3E5FdBdzaWa+00obwcsBfw2d+SfTVbKA7OqlFM1aRlp+DTVT7GKJUkopNdVomXY1YbbuOUDBL1cQzF9MzeeemPD9xWIxGndt5eCOV4nsfQN/62aK+nZQZe0buJloCC/7vLV0Zs9FiheTXXs8ZfNWkJan7VFqcu3e8Hcq7n0vr2SewYnX34/Lk9jrXb19fTRse4O2Xa8RbdpEWsebFId2UmX2D3wfYrjZ762iO2sOFC8gq3oJxbOX4SucDal6HyillFJqnLRMu5p08ytLuC//Uj7Q/itaXr6fwpMuSch2jTEcPNBE05vr6Gl8HXfzJnK7t1EVa6BOQtQ5yzVJCS0Zc1hfcC6ByqWUzj2BgqrjmKU31VVTQPXi03jp1c9w8o6befnHq1j4iV+RkX30NST7C7B0Nm4gemALvrZt5PXuotLaywKJA3Z31wOeMtqy57Cp8L2kVSyhdO4JZJXPp9Kj90tTSimlEumYWrBEZA0w33maC3QYY5aJSC2wGdjqzHvBGHPtWNvTFqyZp+FgO73/dxY17Kfn3B9TfOqqca8bjcVoathO6+5N9O5/E1q3k9m1g7LILoppH1iuk0ya/HUEc+fjKl1Ebs0yyucvx5+hBc/V1GaM4aXffpVT6n9OC7lsK7uQjLkrya1aQHp2AeL2EA52Egl20tXeQm9LA6Z9N67uPfh79lIYbqTcHMTldO2LG2G/q4S29FrCefPxlS+iaNYySuqW4NKbGiullFIJNVILVsK6CIrI/wKdxpjvOAnWo8aYxUezDU2wZqa1b2zCf/9HWMJ26gML6ag6G2/RHNyBLKJxQzzcQ7ing3jnPtzB/fh6D5IT3ke51UTAKTgBdgn0Jk8lnVlzsYoWklG1lPJ5J5JTXAU6wF5NY1vX/pXwU//Nwr51A933RtNOFm2eErrSq4nmzcFXehx5NYspnbUYf0Bv2qmUUkpNhglNsEREgN3A2caYbZpgqcPta+3ilft/wLx9DzKP3SMu10Y27e5CgoFSwtmzcBfNJqP8OErqFpOriZSa4bo7Wtnz5isE920lHu5BrBjiz0QC2WRk55NdUktB+SwCGdnJDlUppZRKeROdYL0D+GH/DpwEayPwJtAFfN0Y89wI614DXANQXV19YkNDwzHHo6YuYwz7Dhyk80AD0d5OfF4XHn8W2Tm55JdU4fWnJTtEpZRSSimlxvSWEywReQqGveXPfxhjHnKW+Tmw3Rjzv85zP5BpjGkVkROBB4FFxpiu0falLVhKKaWUUkqp6eAtVxE0xox6AyMR8QDvB04ctE4YCDuP14nIDmAeoNmTUkoppZRSasZKxB0j3wVsMcbs6Z8gIkUi4nYezwLmAjsTsC+llFJKKaWUmrIScR+sy4DVh017B/AdEYkCFnCtMaYtAftSSimllFJKqSkrYWXaE0FEmoGpVuWiEGhJdhBq0uj7nTr0vU4d+l6nFn2/U4e+16llKr7fNcaYosMnTqkEayoSkbXDDV5TM5O+36lD3+vUoe91atH3O3Xoe51aptP7nYgxWEoppZRSSiml0ARLKaWUUkoppRJGE6yx/SLZAahJpe936tD3OnXoe51a9P1OHfpep5Zp837rGCyllFJKKaWUShBtwVJKKaWUUkqpBNEESymllFJKKaUSRBOsUYjIuSKyVUS2i8hXkh2PShwRqRKRv4nIJhHZKCKfc6bni8ifRWSb8zsv2bGqxBARt4i8KiKPOs/rRORF5/u9RkR8yY5RJYaI5IrIfSKyRUQ2i8jb9Ls9M4nI9c7f8A0islpEAvrdnjlE5NciclBENgyaNux3WWw3O+/76yJyQvIiV0drhPf6B87f8ddF5A8ikjto3led93qriJyTlKBHoQnWCETEDfwMOA9YCFwuIguTG5VKoBjwRWPMQuBU4FPO+/sV4C/GmLnAX5znamb4HLB50PP/D7jJGDMHaAf+X1KiUhPhx8CTxpjjgOOx33f9bs8wIlIBfBZYYYxZDLiBy9Dv9kxyO3DuYdNG+i6fB8x1fq4Bfj5JMarEuJ0j3+s/A4uNMUuBN4GvAjjna5cBi5x1/s85b58yNMEa2cnAdmPMTmNMBLgbuCjJMakEMcY0GWNecR53Y5+AVWC/x791Fvst8L6kBKgSSkQqgfcCv3KeC3A2cJ+ziL7XM4SI5ADvAG4DMMZEjDEd6Hd7pvIAaSLiAdKBJvS7PWMYY54F2g6bPNJ3+SLgd8b2ApArImWTEqg6ZsO918aYPxljYs7TF4BK5/FFwN3GmLAxZhewHfu8fcrQBGtkFUDjoOd7nGlqhhGRWmA58CJQYoxpcmbtB0qSFZdKqB8B/wZYzvMCoGPQH279fs8cdUAz8BunS+ivRCQD/W7POMaYvcCNwG7sxKoTWId+t2e6kb7Let42s10NPOE8nvLvtSZYKqWJSCZwP/B5Y0zX4HnGvoeB3sdgmhOR84GDxph1yY5FTQoPcALwc2PMciDIYd0B9bs9Mzhjby7CTqrLgQyO7GKkZjD9LqcGEfkP7KEddyU7lvHSBGtke4GqQc8rnWlqhhARL3ZydZcx5gFn8oH+LgXO74PJik8lzGnAhSJSj93V92zsMTq5Trci0O/3TLIH2GOMedF5fh92wqXf7ZnnXcAuY0yzMSYKPID9fdfv9sw20ndZz9tmIBG5CjgfuMIcunnvlH+vNcEa2cvAXKcakQ97MN3DSY5JJYgzBuc2YLMx5oeDZj0MXOk8vhJ4aLJjU4lljPmqMabSGFOL/T3+qzHmCuBvwAecxfS9niGMMfuBRhGZ70x6J7AJ/W7PRLuBU0Uk3fmb3v9e63d7Zhvpu/ww8FGnmuCpQOegroRqGhKRc7G7919ojOkdNOth4DIR8YtIHXZhk5eSEeNI5FAyqA4nIu/BHrvhBn5tjPluciNSiSIiK4HngDc4NC7na9jjsO4BqoEG4FJjzOEDbNU0JSJnAl8yxpwvIrOwW7TygVeBDxtjwkkMTyWIiCzDLmjiA3YCH8O+oKjf7RlGRL4NrMLuPvQq8HHssRj63Z4BRGQ1cCZQCBwAvgU8yDDfZSfJ/il2N9Fe4GPGmLVJCFu9BSO8118F/ECrs9gLxphrneX/A3tcVgx7mMcTh28zmTTBUkoppZRSSqkE0S6CSimllFJKKZUgmmAppZRSSimlVIJogqWUUkoppZRSCaIJllJKKaWUUkoliCZYSimllFJKKZUgmmAppZRSSimlVIJogqWUUkoppZRSCaIJllJKKaWUUkoliCZYSimllFJKKZUgmmAppZRSSimlVIJogqWUUkoppZRSCaIJllJKKaWUUkoliCZYSik1xYhIrYgYEfEkOxaVGkRko4icmew4lFJqJtAESyml1LQnIreISI/zExGR6KDnTyQ7vqnOGLPIGPN0IrcpIn4R+bWIdInIfhH5QiK3r5RSU5UYY5Idg1JKzSgi4jHGxI5h/VpgF+A9lu2kKhG5AZhjjPnwMPOO6b2ZTNMp1uGIyP8AK4ELgVLgb8BVxpgnkxqYUkpNMG3BUkqpBBCRehH5dxF5HQiKiEdEThWRf4hIh4i8NrgLlog8LSL/IyIvOVf4HxKR/BG2/TER2Swi3SKyU0T+9bD5F4nIemc7O0TkXGd6jojcJiJNIrJXRP5LRNxjvI7ZIvJXEWkVkRYRuUtEcgfNaxORE5zn5SLS3P+6RORCp6tZh/P6Fhx2fL4kIq+LSKeIrBGRwNEf6aM3wntjRGTOoGVuF5H/GvT8fOeYdjjv4dJx7utMEdkjIl9zjl+9iFwxaP57ReRV571qdJLB/nn9XUP/n4jsBv7qTL/XaQHqFJFnRWTRYXH/n4g84bTW/V1ESkXkRyLSLiJbRGT5OI/Ru8bzGo/ClcB/GmPajTGbgV8CVyV4H0opNeVogqWUUolzOfBeIBcoAR4D/gvIB74E3C8iRYOW/yhwNVAGxICbR9juQeB8IBv4GHDToCTnZOB3wJed/b4DqHfWu93Z7hxgOfBu4ONjvAYB/gcoBxYAVcANAMaYHcC/A3eKSDrwG+C3xpinRWQesBr4PFAEPA48IiK+Qdu+FDgXqAOWMsLJtoisdBKbkX5WjvEahjPw3ozVKuQkJL8G/hUoAG4FHhYR/zj3VQoUAhXYScYvRGS+My+I/b7nOvFcJyLvO2z9M7CP/TnO8yeAuUAx8Apw12HLXwp83dlnGPins1whcB/ww3HGPSwR+cpo78cI6+Rhf65fGzT5NWDRcMsrpdRMogmWUkolzs3GmEZjTB/wYeBxY8zjxhjLGPNnYC3wnkHL32GM2WCMCQLfAC4droXJGPOYMWaHsT0D/Ak43Zn9/4BfG2P+7OxnrzFmi4iUOPv6vDEmaIw5CNwEXDbaCzDGbHe2FTbGNGOfnJ8xaP4vge3Ai9gn0P/hzFoFPOasGwVuBNKAtx92fPYZY9qAR4BlI8TwvDEmd5Sf50d7DSMY/N6M5RrgVmPMi8aYuDHmt9iJy6lHsb9vOMfwGexE+1IAY8zTxpg3nPfqdeyk9IzD1r3Bec/6nHV+bYzpNsaEsZPd40UkZ9DyfzDGrDPGhIA/ACFjzO+MMXFgDXZy/ZYZY7432vsxwmqZzu/OQdM6gaxjiUUppaYDTbCUUipxGgc9rgE+eNiV/pXYSclwyzcAXuxWhyFE5DwRecHpnteBnTj1L1cF7Bgmlhpne02D9n8rdivIiESkRETudroUdgF3DhPTL4HFwE+ck36wW7wa+hcwxljO66sYtN7+QY97OXQSPhkax15kQA3wxcPeuyrs1zge7U7S3K+hf10ROUVE/uZ0rewEruXI4zsQq4i4ReR7Ynf97OJQ6+TgdQ4Metw3zPPJPM79epzf2YOmZQPdSYhFKaUmlSZYSimVOIOrBjVit1ANvtqfYYz53qBlqgY9rgaiQMvgDTrd0u7HbhEqcVoMHsfuyte/n9nDxNKI3epSOGj/2caYsbpo/bfzOpYYY7KxW+L694WIZAI/Am4DbpBD48b2YScm/cuJ8/r2jrG/I4jI6XKoAuBwP6ePvZUjHF7RqRdIH/S8dNDjRuC7h7136caY1ePcV56IZAx6Xo19fAB+DzwMVBljcoBbGHR8h4n1Q8BFwLuAHKDWmX74OhPGGU824vsx3DrGmHagCTh+0OTjgY2TEbNSSiWTJlhKKTUx7gQuEJFznFaIgFMAoXLQMh8WkYXOeKbvAPc53boG8wF+oBmIich52GOp+t0GfExE3ikiLhGpEJHjjDFN2F0J/1dEsp15s0Xk8O5oh8vCbn3oFJEK7LFdg/0YWGuM+Th217dbnOn3AO914vACX8RO8P4x1oE6nDHmOWNM5ig/zx3tNoexHviQ896cy9Buer8ErnVam0REMsQuTpEFA4Ulbh9j+98WEZ+TDJ4P3OtMzwLajDEhZ/zch8bYThb2cWzFTgj/+yheY0IYY/57tPdjlFV/B3xdRPJE5DjgE9jjApVSakbTBEsppSaAMaYRu+Xha9jJUSN2sjL47+4d2Cec+4EA8NlhttPtTL8HaMc+IX940PyXcApfYI9xeYZDLUkfxU7QNjnr3sfQLorD+TZwgrOtx4AH+meIyEXYRSqucyZ9AThBRK4wxmzFbu36CXYr3AXABcaYyBj7S5bPYcfYAVwBPNg/wxizFjsZ+Cn2cdvO0IIcVcDfR9n2fme9fdgFKa41xmxx5n0S+I6IdAPfxH5fR/M77C6Ge7HfxxfGemFTyLewu682YH8uf6Al2pVSqUDvg6WUUkkgIk8DdxpjfpXsWNT4OVURXwOWOsU8Dp9/Jvb7Wnn4PKWUUqnBk+wAlFJKqenCaZFbMOaCSimlUpZ2EVRKqRQjIreMULDglrHXVtORiFSPUqiiOtnxKaXUTKJdBJVSSimllFIqQbQFSymllFJKKaUSZEqNwSosLDS1tbXJDkMppZRSSimlRrVu3boWY0zR4dOnVIJVW1vL2rVrkx2GUkoppZRSSo1KRBqGm65dBJVSSimllFIqQTTBUkoppZRSSqkE0QRLHaE7FOXRZ14kFIklOxSllFJKKaWmlSk1Bms40WiUPXv2EAqFkh1Kyuju7WO2r4Mt61/An1WQ7HDeskAgQGVlJV6vN9mhKKWUUkqpFDHlE6w9e/aQlZVFbW0tIpLscFJCS1MDhcY+1qZ0HuJyJzmio2eMobW1lT179lBXV5fscNQMYIyha/NfyZl9Cvgzkx2OUkoppaaoKd9FMBQKUVBQoMnVJDHGELD6Bp7HQj1JjOatExEKCgq05VMlzCN/e46ce95Pz09PB71Bu1JKKaVGMOUTLECTq0kUtwweYoRc6RgDsb6uZIf0lunnRiXS3leeBCCzeye07UxyNEoppZSaqqZFgqUmT8wyuLEQj58QPiTaN/ZKSs1wxhhqul8deB7d/nTyglFKKaXUlKYJ1jiICF/84hcHnt94443ccMMNyQtokBdeeIFTTjmFZcuWsWDBgoG4nn76af7xj38c9fbiloWHOLg8XPDh6yidv4Lzzz8/wVErNb2090YpNi1s8B3PAZNL15vPJTskpZRSSk1RmmCNg9/v54EHHqClpSWh2zXGYFnWMW3jyiuv5Be/+AXr169nw4YNXHrppcBbT7CseBwRELeHz3zqk9zx4+/oeBOV8po6+8ijm4zcIjZatXBgY7JDUkoppdQUNeWrCA727Uc2smlfYscELSzP5lsXLBp1GY/HwzXXXMNNN93Ed7/73SHzmpubufbaa9m9ezcAP/rRjzjttNO44YYbyMzM5Etf+hIAixcv5tFHHwXgnHPO4ZRTTmHdunU8/vjj/PSnP+WJJ55ARPj617/OqlWrePrpp7nhhhsoLCxkw4YNnHjiidx5551HjCs6ePAgZWVlALjdbhYuXEh9fT233HILbrebO++8k5/85Cccd9xxI8a5Y8cOtm/fTktLC5/57Gf57CUrEbeXs971L7zy1AMYKz7isbn33nv59re/jdvtJicnh2effZZQKMR1113H2rVr8Xg8/PCHP+Sss87i9ttv58EHHyQYDLJt2za+9KUvEYlEuOOOO/D7/Tz++OPk5+fzy1/+kl/84hdEIhHmzJnDHXfcQXp6+pD9nnrqqdx2220sWmS/d2eeeSY33ngjK1asGPW9VOqt6OyNUio9xHKLaGzO4PTgExCPgXta/QlVSiml1CQ45hYsEakSkb+JyCYR2Sgin3Om3yAie0VkvfPznmMPN3k+9alPcdddd9HZ2Tlk+uc+9zmuv/56Xn75Ze6//34+/vGPj7mtbdu28clPfpKNGzeydu1a1q9fz2uvvcZTTz3Fl7/8ZZqamgB49dVX+dGPfsSmTZvYuXMnf//734/Y1vXXX8/8+fO5+OKLufXWWwmFQtTW1nLttddy/fXXs379ek4//fRR43z99df561//yj//+U++/73vsW9/My63B7fPTmpGS7C+853v8Mc//pHXXnuNhx9+GICf/exniAhvvPEGq1ev5sorrxyo5rdhwwYeeOABXn75Zf7jP/6D9PR0Xn31Vd72trfxu9/9DoD3v//9vPzyy7z22mssWLCA22677Yj9rlq1invuuQeApqYmmpqaNLlSE6ajN0wuPbgzCujJnovXRKB9V7LDmnJ2NPcQio7890IppZRKBYm4/BoDvmiMeUVEsoB1IvJnZ95NxpgbE7APgDFbmiZSdnY2H/3oR7n55ptJS0sbmP7UU0+xadOmgeddXV309Ixe2rympoZTTz0VgOeff57LL78ct9tNSUkJZ5xxBi+//DLZ2dmcfPLJVFZWArBs2TLq6+tZuXLlkG1985vf5IorruBPf/oTv//971m9ejVPP/30EfscLc6LLrqItLQ00tLSWLnyNF5av4ELF6/E5/ITNwJm5G6Mp512GldddRWXXnop73//+wde02c+8xkAjjvuOGpqanjzzTcBOOuss8jKyiIrK4ucnBwuuOACAJYsWcLrr78O2EnY17/+dTo6Oujp6eGcc845Yr+XXnop7373u/n2t7/NPffcwwc+8IFRj7lSxyLY1YZbDP7sIlwlldAJ5sBGpHBuskObMtY1tLPul5/itOxmFn16DaTnJzukKWNXS5Cf/+pWLpnv45T3fQq0wumAl3a18dTqm7jorNNY9LZzkx3OlPLkG3vY9+j/cM7FV1Jx3MnJDkcpdRSOOcEyxjQBTc7jbhHZDFQc63anos9//vOccMIJfOxjHxuYZlkWL7zwAoFAYMiyHo9nyPiqwfdjysjIGNf+/H7/wGO3200sFht2udmzZ3PdddfxiU98gqKiIlpbW49YZqQ44fBy5gYRweVyI24hghfMyFekb7nlFl588UUee+wxTjzxRNatWzfu1+RyuQaeu1yugdd31VVX8eCDD3L88cdz++23D5swVlRUUFBQwOuvv86aNWu45ZZbRt2vUsci3GWPv/RnF5LtXYS1Vejds5HMRe9LbmBTyF/eqOffPI9BL/S+9iDpb7s62SFNGfe/uI3vh74Nr4E54QSk5u3JDmnKePDpF/jvyM3wx5th4SbImZGnD2/JH//4ODeF74S774T/OADeI/9/K6WmpoQWuRCRWmA58KIz6dMi8rqI/FpE8kZY5xoRWSsia5ubmxMZTsLl5+dz6aWXDumy9u53v5uf/OQnA8/Xr18PQG1tLa+88goAr7zyCrt2Dd+d6PTTT2fNmjXE43Gam5t59tlnOfnk8V+peuyxxzBOEYpt27bhdrvJzc0lKyuL7u7uMeMEeOihhwiFQrS2tvL83//BSccvAhFEhLjLg4zSgrVjxw5OOeUUvvOd71BUVERjYyOnn346d911FwBvvvkmu3fvZv78+eN+Td3d3ZSVlRGNRge2M5xVq1bx/e9/n87OTpYuXTru7St1tOI9doLlyyqirqyIBlNM394NSY5qagnvO9RCHtzwaBIjmXp6Gg99VtpefTiJkUxB+wbd/mDrn5IYyNQSjVuUdw66YLnn5eQFo5Q6aglLsEQkE7gf+Lwxpgv4OTAbWIbdwvW/w61njPmFMWaFMWZFUVFRosKZMF/84heHVBO8+eabWbt2LUuXLmXhwoUDLSmXXHIJbW1tLFq0iJ/+9KfMmzdv2O1dfPHFLF26lOOPP56zzz6b73//+5SWlo47njvuuIP58+ezbNkyPvKRj3DXXXfhdru54IIL+MMf/sCyZct47rnnRowTYOnSpZx11lmceuqpfOn6z1FeWgTi4vTTT+eqf/0sf/37S1RWVvLHP/4RsLsl9o+3+vKXv8ySJUtYvHgxb3/72zn++OP55Cc/iWVZLFmyhFWrVnH77bcPabkay3/+539yyimncNppp3HccccNTH/44Yf55je/OfD8Ax/4AHffffdA5USlJorpbbMfpOUzpziTbaYSb+uW5AY1xQTa7OPxsjWfzAPrtProIIH2rQDsN3m4dj2T5GimjmjcorJvCzHctJosujb+eeyVUkRDa5BlvEmLq4CYcdG9+S/JDkkpdRTEJOCfoIh4gUeBPxpjfjjM/FrgUWPM4tG2s2LFCrN27doh0zZv3syCBQuOOUY1vMOrHbYfaCQv3gKlx4PLRUdbM7mhPVgFc3H5M5Mc7dHTz49KhNt/cSNX7ftP+OSLmKL5/PqGj3Kl6wk83zgALneyw0s6Ywy//NZHudr9BLf6ruRT4V/B9drdCyAWt7j9hg9zpecp7rLexYddf8Lz9SZwe5MdWtLtae9l4w8vYEVWGy92F3JaZhM5/64twwD/2N5C1u/eSVZhBb0teyiuqKHwXx9JdlhKqcOIyDpjzBFV1hJRRVCA24DNg5MrESkbtNjFgP7VnAYECwMDg7BdTp/vWCQ08kpKzXAS6bMf+NIREXoyqvGYKHTtTW5gU0QoapFjdRHy5hErOd6euP+N5AY1RXT0RSminb5AMe05i+3PTfPWZIc1Jext7yNPunFnFVPvqSOrbw+ERy8SlSpaghEKpIvM/DLeNBX42rYlOySl1FFIRBXB04CPAG+IyHpn2teAy0VkGWCAeuBfE7AvlWA33HDD0AnGYJCBwhdeXwBjwIpqgqVSWMxJsDx2BVGTVwe9QNtOyK1OXlxTRHc4Sq70EPXlkFZ1POyGyL438M3XqnDBcIxceoj5c3GXHQ9dYPa/jpSO2qEjJbT3RphDN5Ixh+7cBbjaDRzcBFVaMa+tO0QBXVh5pez3+cgO/8NOPqdhTxKlUlEiqgg+DwxXc/bxY922SgJjYQY1bPq8HqJ4IBZOYlBKJZcr7lxg8NoJlq94LuyFeMsO3LPOTF5gU0QwHCdX7CSiqrSY/SYP/74t+JId2BTQHYqRKz3EA5XklM8luslNpGkrGcuSHVny9YTj5Ek3roxC3L6F0A7m4GZEEyy6u9rxSwwrt4RwXiG0AC1boeLEZIemlBqHhFYRVNOf3UXwUL7sdgkR8eKKR5IYlVLJ5epvwXISrMKyWsLGS3C/dtuBQ600ViCP2cWZ7LTKMK3bkx3WlBAMx8ijGxPIo7Ykj92mmPB+7SII0Bs6dAPv4qo5hI2HYNObyQ5rSgh3HgDAlVmMv2whAPEDWlhHqelCEyw1hBiDOewmmHGXD7eJaFUwlbJc8RBR8Q4UtKgpzKTBFBM5qEkE2K00edKDScujpiCdespI6xr+1hSppiccI1eCSHo+swoz2GVKcbXtSHZYU0Ik2I5bDN7sIuaU5NBgSjT5dFjdB+0HGYXkV861k8+9G5MblFJq3DTBUkPYLVhDPxbG7ceNBdbwNzpWaqbzxENE5dCtBmoLM2gwpbg7NIkACIai5NKNKz0fv8dNW1oNabFO6C9vn8KCfSGypRdXRgHluWk0UE5GsAGske8vmCpMsBUAT2YhtYUZ7DJluDt2JjmqqcHV59wOJr2Q6qIcdpoyYk2bRl9JKTVlaII1Tg8++CAiwpYtIzfR19fXs3hx4gYub926lTPPPJNly5axYMECrrnmGsC+SfDjjx/bELerr76a4uLiI+IVzEAFwYFpHvvEMq6FLlSK8sRDxNyBgefFWX72SCmZvY16ogyE+rrwSRx3RgEA0ZxZ9gztJkikx04ivJn5uF1CV0YNXiusFSgB6bWPjaQXUJodoEHKyAzuBiue5MiSzxPpth+k5VJbkMF2U4G3XbtPKjVdaII1TqtXr2blypWsXr162Pmx2LG37sTjQ/+pfPazn+X6669n/fr1bN68mc985jNAYhKsq666iieffPKI6WLMES1YWqpdpTqPFSbuOpRg9Zdq91ph6NmfxMimhmh3f0tEvv27eC4ApkVPCONBuxXPl1VoP8+bbc9o1fF7hDrs32m5uFxCd3qNXca+szGpYU0F7mjQfuDLojjLz24pJ6OvCWI6Hlqp6WB6JVhPfAV+897E/jzxlTF329PTw/PPP89tt93G3XffPTD96aef5vTTT+fCCy9k4UJ7EGosFuOKK65gwYIFfOADH6C3txeAv/zlLyxfvpwlS5Zw9dVXEw7bVflqa2v593//d0444QTuvffeIfttamqisrJy4PmSJUuIRCJ885vfZM2aNSxbtow1a9YQDAa5+uqrOfnkk1m+fDkPPfQQALfffjsXXXQRZ555JnPnzuXb3/72wLbe8Y53kJ+fP2R/xpghLVjPPPMMy5YtY+Vpp7H83ZfT1daCMYYvf/nLLF68mCVLlrBmzZqBY3HGGWdw0UUXMWvWLL7yla9w1113cfLJJ7NkyRJ27LDHHDzyyCOccsopLF++nHe9610cOHDgiON92WWX8dhjjw08v+qqq7jvvvvGfJ+UmgiWZfCZ8JAWLAArt85+0KZdmmK9nQD4MvMAyC2fQ9S46W3S8TRWbwcAPif59JceZ09v0dY903/PK18WALGB5FOPjTvuJFj+TFwuIZhRjQsLOhqSG5hSalymV4KVJA899BDnnnsu8+bNo6CggHXr1g3Me+WVV/jxj3/Mm2/aV2q3bt3KJz/5STZv3kx2djb/93//RygU4qqrrmLNmjW88cYbxGIxfv7znw9so6CggFdeeYXLLrtsyH6vv/56zj77bM477zxuuukmOjo68Pl8fOc732HVqlWsX7+eVatW8d3vfpezzz6bl156ib/97W98+ctfJhi0/zi/9NJL3H///bz++uvce++9rF27dsTXaQz2H3CxPxY33ngjP/vZz3j11fU89cDvSPMJDzzwAOvXr+e1117jqaee4stf/jJNTU0AvPbaa9xyyy1s3ryZO+64gzfffJOXXnqJj3/84/zkJz8BYOXKlbzwwgu8+uqrXHbZZXz/+98/Io5Vq1Zxzz33ABCJRPjLX/7Ce9/73qN+35RKhFAsThphLM/QBMtbPAcAq1ULFsRCdncmf1o2ADVFOew2xYS0YAHxkJ1EuAJ2ElFcVkWPCRDcqxXhJGpfgMSXYf8qngeA0eQTX6yXuHigv4t+Xn+3W/17o9R0kIgbDU+e876XlN2uXr2az33uc4DdurJ69WpOPNG+F8XJJ59MXV3dwLJVVVWcdtppAHz4wx/m5ptv5l/+5V+oq6tj3jz7n8eVV17Jz372Mz7/+c8DdkIxnI997GOcc845PPnkkzz00EPceuutvPbaa0cs96c//YmHH36YG2+8EYBQKMTu3bsB+Jd/+RcKCuxxEe9///t5/vnnWbFixbD7s5wWrP4ugqeddhpf+MIXuOKKKzjn7cdTl5XJ888/z+WXX47b7aakpIQzzjiDl19+mezsbE466STKysoAmD17Nu9+97sBu+Xtb3/7GwB79uxh1apVNDU1EYlEhhy7fueddx6f+9znCIfDPPnkk7zjHe8gLS1t2JiVmmh9kTh+iWK5h97gM7+sjsh6N6GmN8lOUmxTRWwgibCPUV1hBltNKSvatQiINdBKYycRtYWZ1JtSyps1iSDS3w3OPjaFpZV0rU/Ds38r6UkMK9mMMfitIBFvBv3/+fzFc2EfWK3b9cq4UtOAfk/H0NbWxl//+lc+/vGPU1tbyw9+8APuuecejFOyPCMjY8jycniBCBnuHsxDHb6NwcrLy7n66qt56KGH8Hg8bNiw4YhljDHcf//9rF+/nvXr17N7924WLFhw1PFYBlyYgRasr3zlK/zqV7+ir6+Pd73vQ2zftnXUUu1+/6Eqay6Xa+C5y+UaGKP2mc98hk9/+tO88cYb3HrrrYRCR47rCgQCnHnmmfzxj39kzZo1IyagSk2GvqjdgmW8Q5P86qJsGk0xkYN6RfnwJKI8N41GSkkP7k752zuYIxKsDOpNCZ5OTT7dsaEJVk1BBg2mJOW/U6GoRTp9RD2Hzg2KS8rpMun0HdCxe0pNB5pgjeG+++7jIx/5CA0NDdTX19PY2EhdXR3PPffcsMvv3r2bf/7znwD8/ve/Z+XKlcyfP5/6+nq2b7evWN5xxx2cccYZY+77ySefJBqNArB//35aW1upqKggKyuL7u7ugeXOOeccfvKTnwwkfa+++urAvD//+c+0tbXR19fHgw8+ONC6NhxjjJNg2UnYjh07WLJkiT1GbPky3ty+i9NXvp01a9YQj8dpbm7m2Wef5eSTTx7ztfTr7OykoqICgN/+9rcjLrdq1Sp+85vf8Nxzz3HuueeOe/tKJVooGieNCHiGJli1zsmgS1tpIDz0RNntErrSq/BZIeg5cpxlShlopbFb94qz/OyVMjJ690I8tW994Y71EhUfuL1A/3dKb3/QE46RSYj4oASrtjCTXaaUqN57T6lpQROsMaxevZqLL754yLRLLrlkxGqC8+fP52c/+xkLFiygvb2d6667jkAgwG9+8xs++MEPsmTJElwuF9dee+2Y+/7Tn/7E4sWLOf744znnnHP4wQ9+QGlpKWeddRabNm0aKHLxjW98g2g0ytKlS1m0aBHf+MY3BrZx8sknc8kll7B06VIuueSSge6Bl19+OW9729vYunUrlZWV3HbbbVgGbr3jHn51+10A/OhHP2Lx4sUsXboUr8/PeWedxoXvPZelS5dy/PHHc/bZZ/P973+f0tLScR/PG264gQ9+8IOceOKJFBYWDkxfu3YtH//4xweev/vd7+aZZ57hXe96Fz6fb9zbVyrR+iIWASLIYS1YpdkB9kgpGdpKg+lPIryHTgjjWgQEAIkOTT7tCpQ1uImnfLU8XzxI1HXoe1WeG2A3paT37YV4NImRJVdvJEYGfcQHfZ9qCtKpN6V4Ujz5VGq6mF5jsJKgf+zQYJ/97GcHHp955pkDj2tra0e8T9Y73/nOIS1L/err60fc9w9/+EN++MMfHjE9Pz+fl19+eci0W2+9ddhtVFZW8uCDDx4xfbgEMRiO8smPfoBwoBhgoDAFQE8wiL/zTcLRMD/4wQ/4wQ9+MGTdM888c8ixePrpp4edd9FFF3HRRRcdse8VK1bwq1/9auC51+ulrU1vUqqSrzcSo1TCxH1DR4XYZaWr8Yd6IdgMmcVJijD5Dk8iAHxFc+CAXQTEVfP2JEWWfK5oEAvBNagF1OTVQR/QtgPyjxyHmgqMMXjjfUT9h75XHreL7vQq3GEn+cyflcQIk6cnHCNTQhhf3sC08tw0HqSU9L4XIBYeKH6hlJqatAVLDTD9N0x1Hfmx8Pj8WAaM3mxYpZi+aJwA0SNasABiubX2gxRvpXH3V4PzHjpZzi2fbZdq35/aY0bcsV4irsCQv6u+kv4KlKn7uemLxkknRMwzdAxyLNdJqlL4O9UbiZNBCPyHCuu4XUJPulOqvV1LtSs11WmCNYNdddVV/PSnPx338sbYCZbIkR8Ln8dNFK995UypFBKKxEgjjMt3ZF0zb5FzopziZaVdsV7CkjYkiagtyqHRFBE6kNrHxhvvJeoa+tkpLq2m1/gJNqXujZh7wjEyCGF5hh4bv3P7A5PC5ciD4RgZ0of4s4ZMj+X1d7tN3WOj1HQxLRIsk+LjGyZLfwvWcAmWS4SoeHFZ0+cu8vq5UYkQioTwiIUncGS1z5yy2cSMi979qXuiDHYSEXEPbeGrKUh3ioCkbktEfze42GEFUmoKM+1qeSlcqj0YjpMuYYxv6PeqoKSSoPGndGIeDMfJJIT7sARr4D5heiNmpaa8KZ9gBQIBWltb9WR5EvS3YA3XRRAg7vLhMZFpMaDfGENrayuBQGDshZUaRbSvDwCP/8gWrJqiXKeVJnW7wRlj8Fm9xNxDj49dqr2MjJ6GafE3YyKEY9aw3eDq+ku1d9QnJ7ApIOi0YBnv0GNTW5hJgyklnMLV8oLhKBn04Uobeoe9kuJSOk16Sv+9UWq6mPAiFyJyLvBjwA38yhhzVHcLrqysZM+ePTQ3N09IfOqQvr4+0sLNWGkWLv/BI+b3dneQHu+C9o3gcichwqMTCASorKxMdhhqmos4N9H1DNNFsKYgne2mlGUp3EoTjlmkmRDxw7p69Zdq94d7IdgCmUVJijB5esIx0ofpBlec5bcrUPauBys+Lf6eJlpPOEYZIcQ/9AbeNQXpbDElVKXw7Q/CfUHcYvCmDW3Bqi2yS7XXHdzOkSNClVJTyYQmWCLiBn4G/AuwB3hZRB42xmwa7za8Xi91dalZZWmyPfLYQ1zw8kfp+cBqMhe854j5Tz50F+e++kk6Vj1I7oKzkhChUpMvHrYLOHiH6SJYnpvGXyjntJ6n7VaacdxYfKYJOklE3HtkAhrPrYMD2AULUjDBssfShDDevCHTXS4hmFGDpy8KXXshtzpJESZPTyhGuhyZYFXmpfNHU8o5va+kbPIZ7bPvc+lNPyzBKshgvSllrpZqV2rKm+gugicD240xO40xEeBu4Mga3WpKsJx72fiGOZEEyKk4DoCOxs2TFpNSyRaP2AmWe5gugoduqNuXsjfUDYbjZEgYM0yC5S3ur5aXmoPy+1uw8B/5NzWeV2s/SNFqecFIjAzCeAJDEyyfx0VnehVuE0vZ+4T1J1iewNAEqyIvjQbKSO9rAq3oq9SUNtEJVgUw+C/kHmfaABG5RkTWisha7QaYXCZi/8H2DnMiCVBaPZew8aT04GOVeiynBUuG6SIIg8pKp2gS0R2OkkZ4yD2w+uU6RUCCKVoExG6lCSO+zCPm+YvmAqlbqj0YCpMuYTyHdYMDiOek9k2q431dAEd8brzOfcIEAx1aql2pqSzpRS6MMb8wxqwwxqwoKkq9LiRTiRW1B/MPd78fgMqCTBopxtWemieSKjX1fy/wDF8wxeOcKKdqZa9g2L5nz3BJRE1xLntNIaEUvReW3UoTwh048tjkl9USMl6CTVuTEFnyhXv7u8FlHzHPUzTbfpCiCVZ/bxL8R35u4il+QUep6WKiE6y9QNWg55XONDUV9Z9IjpBged0uDngqyOjZPYlBKZVcJnLkTXQHyyuvI2w8KVuqPRi2x9K4hjkZrC3MsEu1p+iYke6Q3UXw8HLbYBcsaDAlRFK0Wl6k1y4e4w0ceWwKSqvpM77U7S0RtpNPhmv5LE7tCzpKTRcTnWC9DMwVkToR8QGXAQ9P8D7VWxVz+nSPkGABdKdXUxDZC849s5Sa8ca48FBdmE2jKSacoqWTu8Mjt9KUZQdolNQt1d7XF8IvMbzpwySfBXby6U7R5LN/nNFwiXlNYRb1piRlS7Wb/hasYRKs4pIyOkwG4YOp+fdGqeliQhMsY0wM+DTwR2AzcI8xZuNE7lMdgzG6QgHEcusIEMZ0N01SUEollxkjwaotSGeXKU3ZG+r29oUISHTYsTQul9CdXkUg3gN97UmILrlCvfZYGm/akd3gSrMDNEopGcHGlLxgFQ/1t9IcOXavtiCdBlOKpOh3yhWxW/eGPTaF6dSbUiIHtYugUlPZhI/BMsY8boyZZ4yZbYz57kTvT711Mo4WLJ/TPaFjz5bJCEmppJPY6AlWRW4auym1u86m4IlyuL+k9DAJFkA0hQsWRAaOzZEtES6X0JNejddEIAUvWFnhkZOIqvx0GkwJ6T2pmXxKtH8M1jBdSwsy2GVKcXek3vdJqekk6UUu1NQhcSfBGqUFK7vSLtXe3qgJlkoNrjESLI/bRWd6NV4Thu59kxjZ1BAO2kmEf5hiBQC+FC7VHnPGGQ3XDQ6c+4RBSiafZqCV5shjE/C66QhU4jER+z5hKcYT6+8ieGTyWZlnt+6l9+3XUu1KTWGaYKkBrliICL5Rb5ZaXjWHsPFq/2+VMlz9LbuekVt2B1ppUjGJCI08lgYgp2wulhF6mlKvCMihbnDDH5tDyWfqJViER04iILVbPj2xXmLiAY//iHk+j4uu/lLt7fWTH5xSalw0wVID3PEQEdeRf9AHK89Ld0q1p94/PZWaXPEQFjLsyU6/QOl8IDVbaeIhpyVihCqL1SW57KMgJUu1x0fpBgeQX15HxLhT8j5hA93gRjg2qVyq3RfvJeoa+YLOQKn2ttT7e6PUdKEJlhrgtUJEZPQEy+N2sd9bSVZP/eQEpVSSueNhYuIftWW3qLwuZe9pFAuNnkTUFWZQb5WkZMECM0aCVeNUoIykYAVKV9Q5NiO0fOaW1tq9JZpTq5Jg3DL4rT6inuE/M3BoLLRJwQs6Sk0XmmCpAV6rb9SrZv260mspiu6FeGwSolIquXxWH1H36N+L2cVZ1JvS1CzVPspYGoCSrAB7pIyMYAreP2+Ucttg3ydslylNyfuEeQbGNg6fSNQWZtJgigmnWMtnMBIjQ0LEPcO3CAOUlJTSbjJTMjFXarrQBEsN8Fkhou6RC1z0i+bPxUssNccNqJTjH1eClckuU4qnPQWvKIedGzGP0Erjcgld6dWkxzpTrlT7WN3gygZKte9OufuEeeNBYuIFj2/Y+TUFGTSYUkixls+gc1+5uHf4pBzsSoL1ppRIirXuKTWdaIKlBvisELExTiQBvKULAOjYvWGiQ1IqqaJxizRCxEa5mgxQkOFjj7uKrN5GiEUmKbopor+rl2/kYxTLrbUftKVWS81AN7hRks/u9Gp8Vgh6DkxiZMkVjVukWb1E3SN3g6spSKfelJCWYrc/6AnZLVhmhDGNYN8LS0u1KzW1aYKlBvhNmPg4Eqy86kUAdO/Re0arma0vGied0bvrAIgIwezZuImn3KB8z8BYmuHLtAN4i1KzVLsvNnoXQYB4ClagDIZjZEofUe/w904DSPd56AhU4bXC0LN/EqNLrm6nBWu4e2D1s+8T1l+qvW8So1NKjZcmWAoAYwx+M/aJJEBNeSlNJp/YQb0XlprZQpE46RLGGsf3Qorm2Q+aU+t74Y31J1gjnxDmlM8nbiSlLsoYY/DFewi708HlHnE5r1OwwGpJne5e3aEYmfSN2g0OwMp3quW1ps6x6QnFyKAP1witngB+j5uejCr7iZZqV2pK0gRLARCJW6QTxhrlXj/9ynIC7KKCQEfq/NNTqam/BcsaYSD+YJmVC7GMEGraPAmRTQ3GGLyxHsKu0ZOIquI8GkwJkf2pc2z6onEyTB9Rz+hJRE75bPqMj959qZN89oRjZEkfZpSWPQBfiX1je+tg6lTn7AnHSJcwrsDIFywApMApY59CLZ9KTSeaYCkAguE4aRIecazAYCJCW3od+X0NKTcwW6WW3kjc7q4zju9FbWkRe00hvfs2TUJkU0M4ZpFhekctKQ12qfYdpgJvW+pUPevqi5ElvcRG6QYHUFeYxQ5TTnR/6nxuuvqiZNI3ardSgOKKWrpMWkp9p3qc1j1P2uifm4wyu8U8nkItn0pNJ5pgKcDuE59OGBlloPpgoZw5pJk+6No7wZEplTxB52qyjHGlHWB2USbbTTnSkjpX27v6omRK35hJREm2n11SSVawIWVu79AVspOIsVppZhdnsM1U4G1LnRPlLieJcKWNnmDNKc5ih6kgmkItnz19IQISxTPGsaksK6fNZBJsSr2bVCs1HWiCpQAIhiN2t4RxXKkH8JXaXTeCe1LnyqJKPd0he8C5OzD296IyL42dVJLZXQ9WfOKDmwK6QjGy6cUaI4kQETozZ+E2MWhPjUqC3aEo2dKLGaOVpjQ7QKOrisxQE/TfmHiG6+qLkiW9uMdIImYXZ7LNqsDfnjotn+HebgB8Y7RgzS2x770Xa06dY6PUdKIJlgKgL2j/Y3f5x9eClVezGIC2hjcmLCalkq07FCZNIngDY7dgedwuOjNn4TVh6GiYhOiSrytkt2CN1dULIJafWkVAuvrsVhoJjH5sRITeXLvKIi2p0RrR37rnHSPBKsjwscdbTXqkJWXuoRbt6wLAPcYYrNlFGeywyvF36hgspaYiTbAUAH29doLlGceJJEBNVS0dJoNwCg3oV6kn5Fx4GKu7Tr94QX8SkRonyt2hGFn0IWOcDAJkVNj3z4sdSJEEK2S30rgCOWMu6y6ebz9oTo3upcFgL36J4c0Y/diICH05TvKZIt+pmJNgjTXuMyvgpclfR0akFYKtkxCZUupoaIKlgEPdEsZzpR6gIj+dnVTgTaGuGyr1hHs7AfClj51AAKRX2PeIix5IjQsP3U4LlmuMVhqAuvIS9phCgilSqr3LST696WMnWPmV84kYN30pUswhHOwAwD2u5NPujp4qLZ/x/gRrHMemL68/MU+NvzdKTSfHlGCJyA9EZIuIvC4ifxCRXGd6rYj0ich65+eWhESrJkykz75SP1a/735ul9AcqCWvt34Co1IquaID4yHGd+GhrrKcgyaXnsYNExnWlNHVFyOLXjzpuWMuO780ix1WOSZFWml6evtIl/CYrTQAs0vz2GXKUibBigWd7n7jSMwLKubQZ3yEUuTY0Ou0RqXlj7mot3QhAOagJlhKTTXH2oL1Z2CxMWYp8Cbw1UHzdhhjljk/1x7jftQEi/XaV83GeyIJ0Jc9m2yrA3rbJigqpZIrGrITLNcoN9EdbH5pFlusKszB1DgZ7OkLkSkhfONopaktyGAHlWR07wDLmoTokivcY7d+etLGPjbzSrLYbsrxpEgZe9Pn/M8YRxIxryyH7aY8Ze4vJ/1jzdJyx1y2uKKOLpNO7x4dC63UVHNMCZYx5k/GmP6auy8AlccekkoGK2SfDPizx/6H18/j3AQyle5RolJMb4f9Oy1vXIvXFmSwTarJ6tqeEuXIoz0tAHiyCsdc1udx0ZlZh9cKQ+fuiQ4t6aygfWwkY+xjU5YTYLermszeRoiGJjq0pHP1JxHpBWMue1xpFttNBZ621BiD5Ql32A/Sx/5fPKcki62mkliT/g9WaqpJ5Bisq4EnBj2vE5FXReQZETl9pJVE5BoRWSsia5ubmxMYjjoaxvmH58sYf4KVVW1XEmzd9fqExKRUsrnC/VeTx5dguV1CZ/Z8vCYCbTO/ule8x+7ONJ4kAsAqdMbTHJz542mk106wxpNEiAg92bNxYUHrzG/F8vR/r8aRRBRn+dnjqXbK2HdPcGTJZYzBF+3AwgX+8bV8brMq8be/CcZMQoRKqfEaM8ESkadEZMMwPxcNWuY/gBhwlzOpCag2xiwHvgD8XkSG7WxtjPmFMWaFMWZFUVHRsb8i9Za4nBYsGeeJJEBV7TyCxk/f3tQYb6JSjzvUYT8YR3edAcV2oQsOzPzvRazHuSg2jiQCIKNyKQCRva9NVEhThumv7DbOY0NJ/+dm5hcBOZoES0QI9xdzmOFjjXojcbKsbsLebHCNff07P8PHXl8tgVgn9ByYhAiVUuM15jfYGPMuY8ziYX4eAhCRq4DzgSuMsS+hGGPCxphW5/E6YAcwb8JehTpm0n8iOY7KRf1qCrPYQSXettQYtK5SjztiX3gYbwsWQG7NYmLGRW/jzG/ZNT1Hl0TUVZbSYBUTbJz5CRb9LVjjbN3Lr1pA2HjpbVw/cTFNAcYYfJF24uIe1/3TANxlSwCwmmb2WKO2YIQ86SHqyx33OuH8/uRTuwkqNZUcaxXBc4F/Ay40xvQOml4kIm7n8SxgLrDzWPalJpaEOwnjA29g3Ou4XcIBfx15PfrWqpnJE+kkIj7wpo17nbnlBeww5YT2zPwES/r6E6zxJRHzS7LYbGpwp8DJ4EArzTgKOQAcV5HPVlNJeIZ/bnrCMbKtLsLeXBAZ1zrlNXPpMukEd6+f0NiSrb03Qi7dWIHxX9Dxl9ktn1pJUKmp5VjHYP0UyAL+fFg59ncAr4vIeuA+4FpjjJaam8I8kS563eOvINivN2cOuVabVhJUM5I/2knIM76r7P3ml2axxVTja535Jzzeo+jqBVCVn852qSYz2ACR3rFXmKYiMYu0aAdRVwB86eNaZ0FZNputGvwz/HPT3B22W2n8408i5pflsNlUE0uBFqx86Rn39wmgvLKaFpNNb+PMPjZKTTfHWkVwjjGm6vBy7MaY+40xi5xpJxhjHklMuGqi+KJdhN1HdyIJ4Cqx78PRq+Ow1AwTisbJsHqI+sbfbRagKNNPg6fOHpTf1zExwU0B4Vic9FgnEXcGePzjWsftErpyjrOLOczgK+6twTD50kXYP/4T5fwMH3v9daRH26B75o6naemJUCBdmHG27AHMK8lki6kmo2PrjC7x394boVjacWWXjXudeSVZbLWqiO+f+WP3lJpOEllFUE1jafFuIt6jT7Bya+xB6807U2BMhUoprcEIuQSJH2WCJSL05S+wn8zgrnCtPRGKpOOokggAd6k9nsbM4CIgzd1hiugknjbOAheOSGF/oYuZ2xrR0hOmlDYku2Lc66T7PBxMm4sv3gsd9RMXXJK1d/VQKF34csd/bOYVZ7HZVJPW8SZY8QmMTil1NDTBUoRjcTJND/FxlIU9XE3dPLpNGuF9evVMzSxtPRHyj/JKez9vuTMof//MTSJaesKUSSvRjPFfbQcoqZlHjwnM6GIOzd1hKqQFk310t4ZMr7IvWM3krnDNXX2UShvevKM7NrEiJ/mcwd+pnpa9APjzx59g5aR72eufjdcKQZuOh1ZqqtAES9HRG6VYOoilH32Z/Mr8dHZSgTdFbgKpUkdrMEyptCFH0V2nX2X1LNpNJj0N6xMf2BRxoCtMmbRBTtVRrbewIo8tppro3plbzKG5K0SZtOHJO7pjU1dVxT6TT0/DzO0R0NnahE/iBAqO7thkVi0hboTovpn7uYm07wE4qtY9gGih02KeAiX+lZouNMFStHUFKaALk1l61Ou6XMKBQB35wZl/U1WVWlrbO8iRXnxHeaUdYGF5DlusauIz+Gp7Y2s3pbSRVlh9VOsdV5bFFquKtLYtM/bmqG2tB0mXMIGjPDb9hS5kBnefDDbvBsCVe3Tfq7mVRdSbUnpncIl/07nPfnCUF3UyyuwEy2qZ+TepVmq60ARL0X5gDy4x+POP/kQSoC93HjlWB/TfWFOpGaDbORHMLDq6k2SAuSWZbKWajI43Z+yg/I4DjXjEIlBwdMcnO+ClKW0O/ngPdDZOUHTJ1XNwFwCe3KNswSrMYJvUkNm9E2LhiQgt6eIdznueXX5U6y0oy3ZK/M/cVhpvsMl+cJTHZlZFEXtMIb37Zm7hGKWmG02wFJ3OiWR20dGdDPTzlNhXz3q0TKyaQcKt9ngIT+7RnewA+D1u2rPm4bP6oH1XokObEsIt9QDIUSYRAPEZPp4m2tpgPzjK7pNul9CdMx83cWiemTdwD3Tb/2/IrTmq9ary0tnhqiWzby+EOicgsuQKhmMURxrp8+Ye1Y3NAeaWZLHTKiN+cGZ+ZpSajjTBUoTa/n/27js8rupM/Pj3TNdoJI16b5ZkuRdwo5sOoQdCCZ002LDZkL77SyHZzW7appJACi1LDwTTezdgwIBx7+q9Tu9zfn/ckZBtyWojjUY+n+fxY82de899R6OR7nvPOe/Rxn2n543/Tj1AZqySYHf97B26oRx5ok4twSJt/AkWgMgfqAg3O++4m/r3al9kV437WFusmENwFs6nkVKS6ooVG8ipHvfx+sLZW2Wx3xukONyMz5g5rrWeQBuO7s0cmGs0+6pz1vd4qBTt+NIrx31sTZ6NfbKIFOf+WTvsVlGSjUqwFKL92rhvfcbELiTL59TgVJUElVnG6IoNZcoY34TzAfaKJUSlwDML54yEI1Hs3jpCwjzungiA6tJCGqJ5eBpn3/emxxOkNNKEx5wHlvFXZs2tWIBfGvE0bop/cAlW3+OlSteKL2P8STmAuWQpANH22TdaYn+Xh0pdG7rs8SflaRYj3ZYKrYy9q20KolMUZbxUgqVgddfjFVZIHX8VQYAiewr7KcGkKgkqs4Q/FCHH34DTXACm1Am1Ma80n7pZOil/b5ebObIZb1oF6PTjPn5hUTrbZTmGztnXS1PX7aFKtBCwj/9CGWBeUSY7ZSnB5tn3c7OrzUGVaMWQVzuh40vKq2LVOT+Oc2SJV9fcRoHoI7Vo3oSOjwwkZt3q77CizAQqwTrCSSnJ9NbRYykHISbUhhCCrpRKsr1qDQ5ldqjr9lAp2ghkzJlwG/ML09kpSzF1z76J51uaHczTNaGLzb8cr5LMFPbq5pDmbQS/M87RJdbmhm7mihYsRQsndPy8gjS2Ryuw9m6fdcO9Whr3kS1c2MqWTuj4hcUZbI+WE22dfcmnv2EjAMaS5RM6PiVWSTDSuTNuMSmKMnEqwTrCdbkClMpWAvaJDdkY4LfPJT3qAHdXnCJTlMTZ2+GiSrSin+CddoCMFCOt5ioy/M0QcMcxusRrqt9Loegldc7qCR0vhMCdOTvX7unc+zFWEcA6Z82Ejk+zGGlNmYsl7Jx1VRYD9e8DoCtdMaHja/LS2EEFNsceiITiGVpCSSlJ6Y4ljUUTS7CKistxSivu5tn1eVKUZKUSrCPcnqZWikUPxvyJX0gCGAoWAOBonH2T1pUjT3vDTmzCT1rp4km1M7gAaOfs6sUKNQ5cKE8swQIwFi8DINo2u3ojjG0faF+UrJxwG6G8RdoXbbPn96nDFyKnfzNhYYT8RRNqw2TQ0Zs2D4MMzqqhcHs73dSGduK2loy7+MeA2sJ09shiIu2zrwCIoiQjlWAd4fp2bwAgs3riF0oAmRVaVbDeutlzQaAcufx1WgJhLJv4RTJASmxSfqBl9nwuej1Bivo+IKSzQMHEE9CSsjl0y3S8jbNnPk1Dj4eFgU14zPlgn1hVVoD0smVEpCDUMnuSzw/qejlOtxVP3tFgME+4HVGofabkLErMN+xtZ41uO1SeNOE2qvNs7I6WkNK/Z9YNLVWUZKQSrCNcqOE9ogjSqyc2nGVAZWU1Tmkl2K6GJyjJLRSJktH7iVYhL2/BpNoqqazFJVNw1M+eJOL1nR2crPsYb8kJYDBNuJ35Rdp8msgsKtX+wuYmjtdtRdacPuE5rQBzS/PYL4vwNH4Ux+gS6+Pt21mga8C64MxJtZNXuRCfNM2qxLx5y1ukCx+pC86YcBtWk4GulEpSwg7wdMcxOkVRJkIlWEewcCRKYd+HdFoqJ1ROeKi8dAv7RClmVUlQSXKbmx2sYiuOnOWgN0yqrYXFdnbJUuQsmme0a9N6SkQ3aUvOm1Q7tQVp7JAVpDr2QDgYp+gSq+PjZ0kTPmyLJ/e9WVCUzjZZjnGWVFkMhqPIbesAMM7/zKTaWlCSxU5ZRrBp0+QDmwH6vUFKWp4jJMyI6lMn1VY4OzbUv2t2DUlWlGQ0qQRLCHGrEKJFCLEp9u8zQ577dyHEXiHELiHE5G5ZKVNi054GjmY77rJTJt2WEILugUqCaniCksTe27SZebomUheeNem2CjMs7NeVk+7YPSs+F51OP8X1/yQsTOgWXjCptixGPd1pczHIEHTvilOEiVPX7WFF37P4jHaY5IVyUYaFffoqUv3t4O2NT4AJ9OqODs6JvIYrcyHkTawM+YB5BWlsi5bPmiqLT3+4n3N07+CpOA3MaZNqyxyrXBmZhQsxK0qyiUcP1m+klMti/54FEEIsAC4HFgJnAX8SQox/sRRlStWtfxijiFCy5uK4tOfPnEuadCHdHXFpT1Gmm5SS6PYnAUhZOLk77RCrlpdRS0rUDY7mSbeXaI+++TGf072Ov/YCSLFPuj2Zr83dnA3FHB5/9W3O0G0kuvRK0Bsn1ZYQAn92bHhqks81klLy/mtPsFDXgPXYL026vTSLkXbrXMwRN/TVTz7ABApHonSsv5cs4cZ+4o2Tbq+opAKHtOJumh09n4qSzKZqiOAFwENSyoCUsg7YC6yaonMpE+DyBZnb9CidpjIslcfEpU1TrJJgf0PyXywpR6aPGno50fcKvenzIXdylTUH6Aq1QhCRti1xaS9RHL4QqRv/iFmEsZ32vbi0mV0+H680E0jyRXWber3M3fprojojqSfeHJc2zaVaue5okv/cvLaznQu778BrzkW/7PK4tBkZSMzbk/tvzT837OYq/wP0Zy2FihMm3V5Nfjq7ZQmRDjVEUFESLR4J1s1CiM1CiLuEEJmxbcXA0AU8mmPblBni5WceYanYQ/joL05qMvZQWRVadSdVSVBJVutfeZIlujpSj7khbm1mz1kGQF/dpri1mQj3rnuWy+XzOGsugpzquLQ5vyiTnbKUQHPyFiyIRCV333cv5+rexb/63yC9KC7tVpaW0iKz8TQkb6ELfyjCx0/cxhJdHaaz/guMKXFpN6NiKWGpI9C8KS7tJUK3O4Dn5Z+RL/rJuOhXcfk7XJVrY49UlQQVZSYYNcESQrwshNg6zL8LgNuBKmAZ0Ab873gDEEJ8WQixUQixsatLLVI7HZrauzlqy3/Sbcin6JSvxK3dioo59MtUQmodDiUJbW91srThbjyGTMwrro5bu3PLimmM5uJP4lLtr2xp5NQdPyBstGG/4Gdxa3dBYTrbo+VYepJ3Ps3dL7zHl3p+gdtaStqp34xbuwuK0tkerUjqXpq/PPo0N/r+Sn/uSgzLLotbu7UlueyVxXiTNPmMRCV3//0uro2uo7/2UkRpfAb4pJj0dFpilQTdnXFpU1GUiRk1wZJSnialXDTMvyeklB1SyoiUMgr8lU+HAbYApUOaKYltG679v0gpV0gpV+Tm5k729SijcPtD7Lj7RspFO/KCP4HREre2c9LM1IlSLH2qkqCSfNY98Q/W6j5Bf+xX43anHaAqN5XdlGPuSc5hO5sbe4g8+gUW6howXvRHsOXFre3cNDP1xmpM4eScT/PKpr0c9e7NZOs8pF59f5x/bmzspIJUVx0EvXFrd7o88PIGzt/xbaQpFfvVf4/bSAmAhbEqi+au5KvOKaXktoee4Isd/4UjrQr7xb+Na/uhLFVJUFFmgslWESwc8vAiYGBm5ZPA5UIIsxCiEqgB3p/MuZTJc/oCvPWHL3JG4CXqFtxE7uLT4tq+EIJu6xxyfHVJezdaOTI9+v5+Ptf2vzgtRViO/2pc2zbodXSnVpPtb4SQP65tT7WP9rXSftfnOUO8j2vtf2JaeE5c2xdCEMrVKp/RnlxzjV7auJ2Mf36epbp9RC68Y3AB3HgxGXT0Z8xDRxSSqMy/lJL7n3+D1W9eR4HeScrVD8dt2OSAvDQLDcZqrMGupOqpiUQldzzwCFfu+lf0phQyb/gHmFLjeo5PKwmqBEtREmmyc7B+IYTYIoTYDJwM3AIgpdwGPAJsB54HviqljEzyXMokbN2xg52/OpOzPevYU3kVlZ/7nyk5j98+F5t0I13tU9K+osTbjjYnjqe/T42uhdQLfw0ma9zPEc5dgI4osjM5LnqklDzw8ga493xO4z36T/gRaWu/NiXnSi1bQljqiLYmR6GLcCTK39c9zbwnz2epbh+BC/9KytLPTsm5dANJW5IME/QGw9x+19/4zLufp8DgRn/NP9GXTU19q0DOIu2LJKlA2eMO8Lfb/psbdn8VgyWVtK88B1lz4n6eouJy+qQNd1Ny3bBQlNlmUqtoSilHnKggpfwp8NPJtK9MXl1jI3uf+hXHdGol2fev+Sk1Z341rsM1hjIULIBWcDZtIWNh4egHKEoCufwh/nHPb/mh7hl8y24gZd7ZU3IeW9kyaARH3UfYi5dPyTnipdcT5KF7/sAVnb/Gqg/hO/9O7Mvjs5TDcGqKc9n3fhHFTZuwTdlZ4mNnSw/v3/9jLvM8gM9kJ3rVc1grpq5AbmFZDf27UzE3fUzKyik7TVx8vLeJuoe/y43BZ+lLnUPKDY+iy4l/AjHAWrYMOiHcuglDTXxHY8STlJJXN25FPvttviLfpSNnFfk3PASp2VNyvpr8NHbLEuaqHixFSahJJVjKzOTx+dm6/knCHz/Mcs9bVIoAO7PWUnrZ/zKnID7Vv0aSWbEYPoLe+q1kLDxjSs+lKJMhpeT3DzzBt/y34co7mrRzfz5l5yqtXoj7LQuu+o+wH/+FKTvPZIQjUZ58bT0563/Ev/ARXRkLMV1zL+acmik974LCDLbLcso6Zu4dd28wzBNPPc7Szf/JNaKB1pIzKbz8D4i0/Ck974LiDLZFK1jc/Anxm90VX+39Pl74512c0vAblopu2uddTdFn/wfMU5suV5eV0Ph+Lhn1H5Fx0pSeasKaup28+uCvOa/7r6QJPx0rvkP+2d+Z9Dpph1OVZ2NdtJiljve1ofpTdDNVUZTDUwnWLBCNRNm7ewvtn7xESuMb1Hg+ZLXw4CSVfQWfofisW5hXGd/5ASMpL6ugX6YSVJUElXGSUuILRXD6wjh9QbyBIKGAn0AwSCjoJzTwfzhCUOqQwoDUGZF6A1IY0BlTSLUYsZkNpJoN2MwGslJN5KaZ0esOvch48I3NXFn/H0hLGmnXPAAG05S9tnmFdrbLMoo6Z94CoFJKNmzZRfPT/8P5gaeJ6Ex0rPkB+af925ReCA6Yk5vK41Rykf9t8HRDas6Un3OswpEoz7/xJra3fsoV8n36jTm4zrmbouVTMyTwYPML03lYVrC6/2WIhEE/c/5kO/0hnnhqHfO3/pJrxS66Uirwf+5eiqqOm5bza4UuKjh+BibmXU4/Lz7xd1bu/R3Ximba7UsRV9xBfmytyKlkMxvotMzBEn4FXO2QrkaSKBMnpSQclUSih86r1wmBUS8QKokf1sz5ba2MSSQcpql+N217NxFq+pC07s2UB3YwFxdzgS6RTV3OWlIXnUPVcRez2BS/KoFjUZCRwseUkNW3Z1rPq8wMA0lST78TV18nnr5Ogq5uwu4eot5e8PVDwIkIutCHPBjCHkxhD+aoF4v0YsNHKn7y8KMT4yuUEpJ6+knFKVPpx0aTzOA9mU07ObhTiginlRDOriEnKwsZlaze8G+U6HvQXfkMpBVMzTckJtVsoNlcw2LXqxCNgm6q1ngfOyklb2/ZTefzv+JMzxOsEiHaKy6g6OL/wTqNF2VGvQ6nfR640OYaVZ0ybeceSSgS5ZW33oL1v+Ws0OsEdWZaln+D4rO/FfeiBIeTkWKkPaUaQ+gZ6N4N+VN/gT4afyjCSy8+TfoHv+NqPsRpyKTnxF+Qe/wXpjUBLMuy8qRuDmd7PwC/Eyzp03bukTg8QV566j4qd9zBlWIX3eYSes+4k4KjL57WnqRQVg10olUSVAnWEUdKidMfxuly43V24XP24fc4CHkcBH1OIj4nEb8LAi5E0I0u6EEf9qCPBtBFQ+hlKPZ/GL0MYSCCRBBBRxg9Ean9H8SAByt+fSoBvY2gwYbfaCdgzUekF2HKKiXDnkOh3UplbiplWVaM+sT/7ZsuKsGaoYLObjrrttDftJ1g5x5M/ftI9zSQH26lQoSoAKJS0GgoY1/miTSUraB0ySnkzllKbgLvJggh6EqppNr7bsJiUOInEpX0Opy4etrw9Lbh7+8g5Ook4u5BenvRB/owBByYQ/1YI07Sok7suCkVwRHbDKPDixW/zkpAn0rIlErYmE3YWE6fOY1+cxo6sw290YzeaNL+GcwYjEYMRjMGgx69DGt39KMhiIQgGiLqc2Ly9pHl7SPL38dcbxdmzw5MEQ+EgF7tX7PMoUNmcrR+D95T/wdr+Zpp+V56suZj6XgG+uogu2pazjmcaFTy+kfb6H7ld3zG+yRWEaC+8CxKLvwRxQXzExKTpWQZ7IBo62Z0CUyw/KEIL7/6Itb3fscZkQ0EhYnmmqsov/AHWONYnn48IvlLoBmtymICEyy3P8Rrz/2D/M1/4jy5BZcujY7l3yT/jG9M+XDA4eh0Ak/mAugHOrZC+bHTHsOAtj437zx9Nwv2/o1LRD29xjy6j/0pOSd9ZVp6gQ9mLloInRDt2JHQz5MyeVJKPP4gjp4OXL3teJ3dBJzdBF2xm5bePvSBfozBPiwhp/Z3WLrIwE2pCIzafhg9PqH9PQ7rzEQNRqQwENUZkXozUpcGOj06AUJGEDKCbuBf1Isx1Ik57MYccaOPRCAAuNESfMArzTTLHHbLIl6gmH5rBZGsajJKFlBTVsTCogxKs1JmZS+YSrASSIZ89DTtpKd+G772XYievaS668kNNJGBixK0BcSCUk+LKKDDXEpT9vGYCuaSW7GQ4nmrqLBmUJHg13Ewv72a9PbnZ9xwH0UTCofp6+nC0dWCu68Nf38nYWc7uLvQ+box+XuxhnpJi/SRKR3kCh/DrVAXRoeLNDz6NHyGDIIpRXSaF9KZkonOmoXeloM5PYeU9GxSMnKx2nMx23IwGFNIF4Jpud8sJfgd4GjS1lnq2kVx507yO7YTzL4Q6/E3TUcUABiLl0EHeBo3kZqABCscifLaO+8SfOt3nBZ4FaMI01J4Gubzb2VO0aJpj2eo+VUVtGzPJq3hI9JPmP7zuwNhXnlhHTkf38a58mM8wkrjwq9Q/plvUWFL7PqMWeUL8DcZ0bdswrg0fov1jlWnw8v6Z++jZtefOY+99OmyqD/qPyg/419IM6dNezxDmUqWQT9EWz9Bl4AEa09rLx8+/RdWttzLxaKVDlMpLcf+L8UnXDOlQ45HU1RURu/HNozNW0nsO6QMJxKJ0ufow9Hdiqu7FX9/B0FHJ9LTifB2Y/T3kBLsJS3ch106yMSFbYQRHWH0uIQNjy4dvzGDoLWYHoudnpRMSMlCZ83CkGrHnGrHkppBii0Da5odozUDTDYMBjNpQkz+50RKCPnA2w3ONnC2EHW0QE8Ted11FPTu5QzPR+gDEWgD2qDl/Wx2RUt5SV+O116LqWgx+VWLWFiSy5xc27BD+5OJSrCmWjRKf0c9XfVb8bTuRHbtweysI9vfSG6kkxwhGUhBOmQm7cYS2tLXEs6swlwwF3vZQooraqlMTaEyoS9k7PT586Ed3M1bsdWuTXQ4Rwyfz09PZxP9HU14e1oI9rciXW0YPB1Y/N2khbrIiPZjl07yRISD78dHpcAh0nDqM/Eas+izLaTbmgO2PPS2XEzp+aRkFZCWWUBaVj4mawaZOh2ZCXm1YyQEpNi1fwWLYf55CGD67ylDQfUyAh8acOzdQOoUVuU7mC8Y4Y2XnyL1wz9xavh9wsJAa+WFlJz9bUrza6ctjsNZUZHF9mgFq6a55HZbn5t3nv07lXvu4QJ24dBl0LD0W5Sd+a9UpNinNZaRLC7NZqcso7LhIzKm8bx7W7rY9MxfWNryAJ8VzXQZCmla/T+UnvwFMg3maYxkZKXlc+jako6l4SPSjpm+8368q549L/yR43oe43LRQ5u1hu61fyF/5SWg009fICOoLkhjjyyhVlUSnDZSShweH93tTbi6m/H3thB2tCFc7Rg8HZgD3bEbl/1kSgc5Ishwt59dWHHq7HiNmXitFTgtOdRbc9Cl5mBMz8WcnkNqRh62zFxs9lwMlnQyhUj832EhtCVOTGVgLwO0daCssX+ANtqkrx66dxNq34G1aTPLO7dzovsZDP1PQD+EtunZLwt5njL60mogbwEZ5UuprJ5PTUEaZkPiP19jpRKsOHE6eunYvwVn03YiXbsx9e8jw9tIQaQFO0Hssf3c0kKLroh9KQvYkX4Outy52ErmUVC5iIKcHPKTPGMHsJcthk+gt26TSrDiIBSO0N3VTn97Hd6uBkJ9LUSdbeg9HZj9XdiCXWRGe8mUTkqEpGTIsREp6NPZceiz8Vjy6LcsZL81F91AwpSZjy27iIycIlLteWTq9In/RT1LzS/NZYucQ2nze9Nyvk6Hl7efvY+KXX/jLHbhEjbqFtxI5dm3UJE+tdXvxqsi28qLxipO9XykzdOb4uRme10LO567nZUdD3Ox6KTbWEjz0bdScspXyJiCddAmY0VFFk/LCuZ1vwfRyJRewEsp2bhtN60v/YHj+p/gEuGkzVpD1/G3kbvmihlVZANgQVEG26MVLJuGNdQiUck7GzfieP0PrPW8wHLhp9G+Atdpf6Bw0WdmVLW+6jwbT0RLWNb/rqokGAehcITujhb62+vxdDcR6GtFOtvQeTow+ztJC3WTGekhGyf2g3qaIlLQJ+w4DFl4TVm0matoseYgUnMxpOdhseeTmlWIPbcYW2Y+aUbL7O111BshpwZyajDOO+fTa41wEHr2EmnfirP+E9Jbt3Bc3y7snnegDqgD12spPCHXYL3kT5y7JL4Ll0+VmfXbcoaT0SjdbXV07N+Cu3k7dO8m1VVHfrCRPHoHhzyFpY42XT5dplJaMlchs6uxFs4jq3wBRSUV1Bpn97d9zpwaeqWNQNPHiQ4lKbhcDrpa6nC078fX3Ui0rwm9uxWrrw17qJPcaDeFIsDQqcoRKegVdhyGbLyWfPpSliBt+egzCrFkFmPLLSEzr4y07AJy9MZh75Qp0ysvzcJzhgUscz6jDaUwTk3h7V3NnWx+5i8c3Xo/F4lWug0FNB79I0pP+TJpCZgrMxZCCFwFa9C1PgINb8O8c+J+jmhU8vZHn9D32h9Y636WBcJLY9oSuk/8b3JWfHZG9DwMJ91ipDnjKCzuV6BtExQfHfdzhCJR1r/zFqH1t3GS/zVWihD7s0/AdPo3KZy3dsZeoNcWpPEX3TxOcP4DPD1TsraUOxDm9ZefxvbRnzkh/C5S6KgvOpvis79JWdlRcT9fPKRbjPRa52AOvgzOVsgoTnRIM5aUku6+Prqa9+HsqMff3YDsb8LkacXm7yAz3EG+7KFQhA74GxwdTJyy8abk0WxdTJOtAENGIZasYqzZJdjzSkjNKlR/g0djMEH+AvT5C8heeumn2/1Ooh3b6a3bhLvxE/JCmZQUJE/6Obuv9CepZd9Wmjc+g2jfTJZrF0XhRnIJDM5HcZFCm6GMRvsq9mfWYCqoxV62gMKKBZSmpFCa0OgTp9CewgZdNWXdM68kdSIEgkHam/bT27wbb8deIj11WFyNZARayIu0k4nrgDtWUSno1dnpM+TTb6uhy3YSIqMEU3Yp1twKMgvKsecUk2swDDs3Spm5unNWYehcB/VvQxwXR5VSsmHzdtpf+SMnOJ7ic8JJi7WWzhNvJ2/VpTOu52E4WbXH4W0xE932ArY4Jli+YITXXnsB8we3c1JoPQhoyD8N/VnfpGzO9BQ4mSxj9VrY9Ev8O1/EEscEq9cdYP0Lj5C79U5Olh/jx0Rj2UWUnfNN5hTMi9t5popRr8NZchK6lkeQ+15BLLl09IPGqKnbyfvP3kv1vns5V+zBLWzU1X6RirO/TnVmyegNJJgoXAwNIFs/RhzBCZaUkh6nm/aG3Tjb9hLq2oeuv54UTzMZgVZyIl3kCvcBf0sjCHpFNv2mPHpTF9JhK0ZklGDOKiU1tzT2N7iQbL2RqVkuWgHAko6ufA055WvIgRlXb2A0M/+vbgI1f/gcq3f8Nw5sNJmq+STnfETeXGxFCyioWkJ2fglzZ0C55ZlGCEFvxgJW9T8EQa82LneWc/v8tNXvxNG4jWDnHnT9daS4m8gKtpIf7aRcRCiP7RuSerr0efSZithrX4DMKMWYVUZqXjmZhZVkF1SQYzSrO16zUN6iU/G9YiK4+Sky4pBgeQJh3nz9BUwb/8wJwfUYRJSGnBOwnHYLxfNOnrE9D8M5dVEpb7y8hJN2PQPR30y6R6mlx8kHz99H6Z6/8xl24BUpNNRcQ9nZt1CVXRGfoKfJicsX8NFH1VR98k8sp/77pNvb3dTBluf/xqLmBzlfNNGvy2L/oluoOPNmamzJ9ZuncslxdDVnYPron2RMMsGSUvLx7jr2v/hnVnc/xsWiiy5TEc0rfkLJ2i9QPUN7gIeTVb2KYL2ewN63SZt/bqLDmVJaL1Q/nfXbcDTvIty9D72jnlRvMznBVgrpJmfI0D0/Jjr1BTgthey3LYeMEszZ5aTnV5JdXEVqdjG5eqO6galMikqwDmPeqdfQseZC8kqqWKQSqXGRJavR9z+Ae9+72Oafmuhw4kJKSW93B237t+Bs2kG0axcWx35y/A0UyXZqRGRw335sdBkK6bbNoy39DAw5ldgK5pJTNpfMggqK9EaSYxSxEk+nLCnn9ZeWctLOJyHyqwmXcK7r6Oej5++lqu4+zmY3XlJomHMFZWd/ncq8mjhHPT3Ks1N5IP0Uzvb8HLnvVUTN6eNuIxqVfLBlGx2v/4VVvU9yoeij25BPw7L/R9lpX6HKMp1lIuJneWkmvzGexFHOO7Vy7QWLx91GKBJlwwcbcK//M8e5XmSu8NKWUkX7Mb+h4Lgrsc+QwhXjddbiYtY9fSxXNbw84WGCnkCY9W+8hO7Dv3GC/w2OEiGa0pfRu/YX5C6/YMYOHz2cJZUFbJFzqKx7J9GhxI2MRulsb6Z17yc4m7cju3Zjc9dREGykiG5yhyRR/aTTbSqiN2sZXfZKzLlzSCusIaeslpTMYsrUNZ0yxVSCdRgZ2flkZM+syeDJInfhSYS36Ojc/FLSJVhSStp6+mjb/TGepk3oO7eT4dpNUbCebJyDQwJCUk+boQiHrZItmadjyJuLrXgBeXMWYbfnDhY2UZQBxfYUHsw7l7N7fkRk6zr0Sz835mPDkSjvbdxI39t/Y7XjeS4WDjqNxTQe9SNKT/4CNUmaPAxVedyldL7wZ0yv/C/26tPG3APX5/bz7qtPkPrJPRwX3oBBRNlvP4buE28kZ/l55CThBfJQOp0gdeWVeN69j/DLvyTjqr+P+dimrn4+evkhCnbfzwlyMyEM1OWfCqfeTOHcE5Kql3M4dquJlqrLMNQ/h2/9baSc+aMxH7uzsZ1tL91LTeMjnCn24sNCY9mFlJ75r5SWLJ3CqKfewqIM7tIvYXnv4+DtBWtWokMaF3dvG627NuJq2ITo3I7NtZ+CUBP5eBi4KvNhpsNYSm/WcjqzqjEVzCOrZB655bXYrXb1N1hJKCHl8LX1E2HFihVy48aNiQ5DiYNgOMq2/1xNnhWKv/tBosMZkT8YpmH/Ljr3fUSoZTMpvTsp8O+lTLahj90N82GmyViBw1ZDNKcGa9F8cisWkVc6F50hEQW/lWT2yrZWSh4+nQKbjoyvvzfqENo9TW1se+0hiuoeY5XcQhgdDVnHk33il7EvOQdm0Z1YXzDCHT//FrdE7iJ4wZ8xLb98xH2D4Sjvvf8OrvfvY2nfSxSLblzCRvucSyg782bMSdqTNxKHN8QjP/8iXxLriHz+MfRzRx5i6vAG+XD980Q/eZij3a+TKdz06HPpnX8VlaffiCGjYBojn3p7Olzsuu0SzjR8hPGmNyFv5AWzuxxeNr2xDuO2R1jpf4dUEaDdVE5w+fWUrr0eMUPK88fDb+95gK/X30T0wj+jWzbyZymRQkE/LXs307P/YyKtm7H27aTAt48c+gb36ZYZtJkq8KZXosudS1rJQoqql5KeVz6rfv8pyUkI8aGUcsUh21WCpUyVf/zhe3yu53ZCX/0QY251QmORUtLV20vTzg9xNXyCrnMrdtduKsL1pAvv4H5tugJ6bTWEcxdgKVlKXvVRZBbXql/iStxIKfnF7X/mu53fpavkDHKvvhuGzO2IRiV79u9h3/vPk173HCuCH2ARIboNBfTPu5zyU7+EMQkm2U/Uq9taSH/4Qpbo6nCf+COyTvgiGFOQUtLR1cmej9/Cv+tlynvfZi6NhNFRn7Eay1FXUHLspVNWnXEmePKDPdQ+dSHl+h6Cp/4n6auvBqOFSCRKY+N+Gjavh70vU+18lxLRTQATdTlryTnuGnKWnJ0UxU4m6van3uaSjVdgMRnRnfMrUhefB3oDwVCE+v07aNr8Jsb9r7DA+z45wolLpNJceBYlJ11L2twTk74nbzjPbW5h8WMnYi2YS9ZNzyU0FiklXW1NtO3eiLfpEwzd28ly76E03IgpNrw+IA006Uvpsc0llLMAa9lSCmqOprCoFDEL3x9ldlAJljLt3tz4Ccc8dTLNc6+m8srfTdt5g6EIjft30LX3I4Itn5DSt5N83z5KZTu6WK+UBwut5io89nnoCheRNWc5hTVHoU9J/mFWyszX6wny8B/+g6/4/oZPZ6UuYzVuXRpGXyfZvnoqaAOgT5dJa/FZlBx3BRlzTzhiEv11b28h/4WvcIxuG0EMdOtyMEYD5Mbuaocw0JC6GFn7GSpPumbW9cgczgMvbWDeWzdzlG4PIQz0iQwsUd/gjSIvFprsq0hZfB6lx12GmAVDR8ciEpX8+R9Pcea271ClayOACYdIwxr1YBN+ABwijZbsY7Ef9VmKVl4IRktig55ioUiUu/77Jr4SeQhufBsKFk3Led1eL427Pqa/bhOyfQu2/l2UBPeRjWNwn06yaLNU4c2ch6FoEVmVR1NSsxizeXa/J8rsoxIsZdqFI1Fe/e8LOTGyAcO/vo8hzpW7pJR0d3XSsvtDXI2foOvcjt21h/JwPTbhA7SS5+36ArptcwnnLMBaupSi2hWkF1QdMReryszkDYZ57rmnyNj2d2qD20jFh1OfiddaSrh0DWVHnYF9zoqknGAfD239Xja89hS2xldID3ahM6Wgy6kia85yypedhi4lffRGZqmGbjeb3nwCa/N60sK9GCw2dLk15M9dQdHCExBJWrAiHna09LL7zX+Q2vkhtogDgzUdQ/58ShasIadm9RH3ebrr5Y+55K3PEMlfQuaNz8X17144HKG5YS+d+z7C37wFc88Ocrx7KYu2YBzslTLSbCynL20u0byFpJVpf4MzcgpHaV1RksOUJFhCiIeB2thDO9AvpVwmhKgAdgC7Ys9tkFLeOFp7KsGafV5//0NWPnM2valVlNz8DGKCE20dDietddoq3+H2bVj7d1Ho308B3YP7uLDSZp6Dyz4PfeFisuYsp6hmOYYj+EJMURRFOXIFw1Fu+98f8A3fbfTO+zxZl/wWxpmAh8IRmpvr6dy/FU/rDgzdO8h07aEsXE+G8Azu1yFy6bRWE8iah6l4MbnVR5NfsVDNVVZmtSnvwRJC/C/gkFL+JJZgPS2lHFd/tEqwZqdH7/sT5+/5Pk5DNo5Vt1C8+rNY7AcO6QmHw/R2ttLXXo+nuxFvZx263r2kuhvICzZROCSRCko9rYZS+tJqiOQswFa2hMK5R5ORXzErx9EriqIoykQ1dLt54083c030cbrM5bgWX4O99kSsOaXoLTa8Pj8+j4O+nk5cnQ34epqJOlpIcTWQ6WukKNJCWmxUCICHFFrNc3BlzEXkLySjYhlFc4/GkpZclQoVJR6mNMES2uzDRuAUKeUelWApQ0kpeeb5Z6jd8D1qRBOg/YL2CitSggU/VunDIKIHHOfCSruxFHdqOZHMKsz5c8msXErhnEXojUfuEBhFURRFGY9ud4B1j9zDsQ1/YoGoH3X/KIIukUu3pRR/+hwMeTVklCwgv3IhKbmV6mamosRMdYJ1IvDrgRPEEqxtwG7ACXxfSvnWCMd+GfgyQFlZ2dENDQ2TjkeZmTz+EJvffw3/vvUYXC0Ywm50Oh0RgxWd2YYuowhzZgmpuaXkl1aTllWofokriqIoSpw4fCF2bt+Ev2kTeLrQh7wYTGZ0ZhspaVmk5ZWRXVRJWnbxhBdCV5QjyYQTLCHEy8BwJZr+n5Tyidg+twN7pZT/G3tsBmxSyh4hxNHAOmChlNJ5uHOpHixFURRFURRFUZLBSAnWqItiSClHXs1Qa9gAfBY4esgxASAQ+/pDIcQ+YC6gsidFURRFURRFUWateNTrPA3YKaVsHtgghMgVQuhjX88BaoD9cTiXoiiKoiiKoijKjBWPZd0vBx48aNuJwE+EECEgCtwopeyNw7kURVEURVEURVFmrBm10LAQoguYaVUucmBIjXBltlPv95FDvddHDvVeH1nU+33kUO/1kWUmvt/lUsrcgzfOqARrJhJCbBxu8poyO6n3+8ih3usjh3qvjyzq/T5yqPf6yJJM73c85mApiqIoiqIoiqIoqARLURRFURRFURQlblSCNbq/JDoAZVqp9/vIod7rI4d6r48s6v0+cqj3+siSNO+3moOlKIqiKIqiKIoSJ6oHS1EURVEURVEUJU5UgqUoiqIoiqIoihInKsE6DCHEWUKIXUKIvUKI7yU6HiV+hBClQojXhBDbhRDbhBD/FtueJYR4SQixJ/Z/ZqJjVeJDCKEXQnwshHg69rhSCPFe7PP9sBDClOgYlfgQQtiFEI8KIXYKIXYIIY5Rn+3ZSQhxS+x3+FYhxINCCIv6bM8eQoi7hBCdQoitQ7YN+1kWmt/H3vfNQoijEhe5Ml4jvNe/jP0e3yyEeFwIYR/y3L/H3utdQogzExL0YagEawRCCD3wR+BsYAFwhRBiQWKjUuIoDHxTSrkAWAN8Nfb+fg94RUpZA7wSe6zMDv8G7Bjy+OfAb6SU1UAf8IWERKVMhd8Bz0sp5wFL0d539dmeZYQQxcDXgBVSykWAHrgc9dmeTe4Bzjpo20if5bOBmti/LwO3T1OMSnzcw6Hv9UvAIinlEmA38O8Aseu1y4GFsWP+FLtunzFUgjWyVcBeKeV+KWUQeAi4IMExKXEipWyTUn4U+9qFdgFWjPYe3xvb7V7gwoQEqMSVEKIEOAf4W+yxAE4BHo3tot7rWUIIkQGcCNwJIKUMSin7UZ/t2coApAghDIAVaEN9tmcNKeWbQO9Bm0f6LF8A/F1qNgB2IUThtASqTNpw77WU8kUpZTj2cANQEvv6AuAhKWVASlkH7EW7bp8xVII1smKgacjj5tg2ZZYRQlQAy4H3gHwpZVvsqXYgP1FxKXH1W+A7QDT2OBvoH/KLW32+Z49KoAu4OzYk9G9CiFTUZ3vWkVK2AL8CGtESKwfwIeqzPduN9FlW122z2w3Ac7GvZ/x7rRIs5YgmhLABjwFfl1I6hz4ntTUM1DoGSU4IcS7QKaX8MNGxKNPCABwF3C6lXA54OGg4oPpszw6xuTcXoCXVRUAqhw4xUmYx9Vk+Mggh/h/a1I77Ex3LWKkEa2QtQOmQxyWxbcosIYQwoiVX90sp/xnb3DEwpCD2f2ei4lPi5jjgfCFEPdpQ31PQ5ujYY8OKQH2+Z5NmoFlK+V7s8aNoCZf6bM8+pwF1UsouKWUI+Cfa5119tme3kT7L6rptFhJCXAecC1wpP128d8a/1yrBGtkHQE2sGpEJbTLdkwmOSYmT2BycO4EdUspfD3nqSeDa2NfXAk9Md2xKfEkp/11KWSKlrED7HL8qpbwSeA24JLabeq9nCSllO9AkhKiNbToV2I76bM9GjcAaIYQ19jt94L1Wn+3ZbaTP8pPANbFqgmsAx5ChhEoSEkKchTa8/3wppXfIU08ClwshzEKISrTCJu8nIsaRiE+TQeVgQojPoM3d0AN3SSl/mtiIlHgRQhwPvAVs4dN5Of+BNg/rEaAMaAAulVIePMFWSVJCiLXAt6SU5woh5qD1aGUBHwNXSSkDCQxPiRMhxDK0giYmYD9wPdoNRfXZnmWEED8GLkMbPvQx8EW0uRjqsz0LCCEeBNYCOUAH8CNgHcN8lmNJ9m1ow0S9wPVSyo0JCFuZgBHe638HzEBPbLcNUsobY/v/P7R5WWG0aR7PHdxmIqkES1EURVEURVEUJU7UEEFFURRFURRFUZQ4UQmWoiiKoiiKoihKnKgES1EURVEURVEUJU5UgqUoiqIoiqIoihInKsFSFEVRFEVRFEWJE5VgKYqiKIqiKIqixIlKsBRFURRFURRFUeJEJViKoiiKoiiKoihxohIsRVEURVEURVGUOFEJlqIoiqIoiqIoSpyoBEtRFEVRFEVRFCVOVIKlKIqiKIqiKIoSJyrBUhRFmWGEEBVCCCmEMCQ6FuXIIITYJoRYm+g4FEVRZgOVYCmKoihJTwhxhxDCHfsXFEKEhjx+LtHxzXRSyoVSytfj2aYQwiyEuEsI4RRCtAshvhHP9hVFUWYqIaVMdAyKoiizihDCIKUMT+L4CqAOME6mnSOVEOJWoFpKedUwz03qvZlOyRTrcIQQ/wMcD5wPFACvAddJKZ9PaGCKoihTTPVgKYqixIEQol4I8V0hxGbAI4QwCCHWCCHeEUL0CyE+GToESwjxuhDif4QQ78fu8D8hhMgaoe3rhRA7hBAuIcR+IcRXDnr+AiHEplg7+4QQZ8W2Zwgh7hRCtAkhWoQQ/yWE0I/yOqqEEK8KIXqEEN1CiPuFEPYhz/UKIY6KPS4SQnQNvC4hxPmxoWb9sdc3/6Dvz7eEEJuFEA4hxMNCCMv4v9PjN8J7I4UQ1UP2uUcI8V9DHp8b+572x97DJWM811ohRLMQ4j9i3796IcSVQ54/Rwjxcey9aoolgwPPDQwN/YIQohF4Nbb9H7EeIIcQ4k0hxMKD4v6TEOK5WG/d20KIAiHEb4UQfUKInUKI5WP8Hp02ltc4DtcC/yml7JNS7gD+ClwX53MoiqLMOCrBUhRFiZ8rgHMAO5APPAP8F5AFfAt4TAiRO2T/a4AbgEIgDPx+hHY7gXOBdOB64DdDkpxVwN+Bb8fOeyJQHzvunli71cBy4Azgi6O8BgH8D1AEzAdKgVsBpJT7gO8C9wkhrMDdwL1SyteFEHOBB4GvA7nAs8BTQgjTkLYvBc4CKoEljHCxLYQ4PpbYjPTv+FFew3AG35vReoViCcldwFeAbODPwJNCCPMYz1UA5ADFaEnGX4QQtbHnPGjvuz0Wz01CiAsPOv4ktO/9mbHHzwE1QB7wEXD/QftfCnw/ds4A8G5svxzgUeDXY4x7WEKI7x3u/RjhmEy0n+tPhmz+BFg43P6KoiiziUqwFEVR4uf3UsomKaUPuAp4Vkr5rJQyKqV8CdgIfGbI/v8npdwqpfQAPwAuHa6HSUr5jJRyn9S8AbwInBB7+gvAXVLKl2LnaZFS7hRC5MfO9XUppUdK2Qn8Brj8cC9ASrk31lZAStmFdnF+0pDn/wrsBd5Du4D+f7GnLgOeiR0bAn4FpADHHvT9aZVS9gJPActGiGG9lNJ+mH/rD/caRjD0vRnNl4E/Synfk1JGpJT3oiUua8Zxvh/EvodvoCXalwJIKV+XUm6JvVeb0ZLSkw469tbYe+aLHXOXlNIlpQygJbtLhRAZQ/Z/XEr5oZTSDzwO+KWUf5dSRoCH0ZLrCZNS/uxw78cIh9li/zuGbHMAaZOJRVEUJRmoBEtRFCV+moZ8XQ587qA7/cejJSXD7d8AGNF6HQ4ghDhbCLEhNjyvHy1xGtivFNg3TCzlsfbahpz/z2i9ICMSQuQLIR6KDSl0AvcNE9NfgUXAH2IX/aD1eDUM7CCljMZeX/GQ49qHfO3l04vw6dA0+i6DyoFvHvTelaK9xrHoiyXNAxoGjhVCrBZCvBYbWukAbuTQ7+9grEIIvRDiZ0Ib+unk097Jocd0DPnaN8zj6fw+D3DH/k8fsi0dcCUgFkVRlGmlEixFUZT4GVo1qAmth2ro3f5UKeXPhuxTOuTrMiAEdA9tMDYs7TG0HqH8WI/Bs2hD+QbOUzVMLE1ovS45Q86fLqUcbYjWf8dex2IpZTpaT9zAuRBC2IDfAncCt4pP5421oiUmA/uJ2OtrGeV8hxBCnCA+rQA43L8TRm/lEAdXdPIC1iGPC4Z83QT89KD3ziqlfHCM58oUQqQOeVyG9v0BeAB4EiiVUmYAdzDk+ztMrJ8HLgBOAzKAitj2g4+ZMrH5ZCO+H8MdI6XsA9qApUM2LwW2TUfMiqIoiaQSLEVRlKlxH3CeEOLMWC+EJVYAoWTIPlcJIRbE5jP9BHg0NqxrKBNgBrqAsBDibLS5VAPuBK4XQpwqhNAJIYqFEPOklG1oQwn/VwiRHnuuSghx8HC0g6Wh9T44hBDFaHO7hvodsFFK+UW0oW93xLY/ApwTi8MIfBMtwXtntG/UwaSUb0kpbYf599Z42xzGJuDzsffmLA4cpvdX4MZYb5MQQqQKrThFGgwWlrhnlPZ/LIQwxZLBc4F/xLanAb1SSn9s/tznR2knDe372IOWEP73OF5jXEgp//tw78dhDv078H0hRKYQYh7wJbR5gYqiKLOaSrAURVGmgJSyCa3n4T/QkqMmtGRl6O/d/0O74GwHLMDXhmnHFdv+CNCHdkH+5JDn3ydW+AJtjssbfNqTdA1agrY9duyjHDhEcTg/Bo6KtfUM8M+BJ4QQF6AVqbgptukbwFFCiCullLvQerv+gNYLdx5wnpQyOMr5EuXf0GLsB64E1g08IaXciJYM3Ib2fdvLgQU5SoG3D9N2e+y4VrSCFDdKKXfGnvsX4CdCCBfwQ7T39XD+jjbEsAXtfdww2gubQX6ENny1Ae3n8peqRLuiKEcCtQ6WoihKAgghXgfuk1L+LdGxKGMXq4r4CbAkVszj4OfXor2vJQc/pyiKohwZDIkOQFEURVGSRaxHbv6oOyqKoihHLDVEUFEU5QgjhLhjhIIFd4x+tJKMhBBlhylUUZbo+BRFUWYTNURQURRFURRFURQlTlQPlqIoiqIoiqIoSpzMqDlYOTk5sqKiItFhKIqiKIqiKIqiHNaHH37YLaXMPXj7jEqwKioq2LhxY6LDUBRFURRFURRFOSwhRMNw29UQQUVRFEVRFEVRlDhRCZaiKIqiKIqiKEqcqARLGVY4Ek10CIqiKIqiKIqSdGbUHKzhhEIhmpub8fv9iQ7liOELhhDeHoQlA7MlJdHhTJjFYqGkpASj0ZjoUJQkte3xn5OaaqPijK8mOhRFURRFUZLEjE+wmpubSUtLo6KiAiFEosM5InR2tJEXiWgPCudBEn7fpZT09PTQ3NxMZWVlosNRktD+ti4WfvLfAASXno4pf26CI1IURVEUJRnM+CGCfr+f7OxslVxNI0vENfh1JJScPYdCCLKzs1XPpzJhdR88N/h18zsPJzASRVEURVGSyYxPsACVXE2jqJQYZJgg2rC6kNeR4IgmTv3cKJMR7dwFQJvMQjS8neBoFEVRFEVJFkmRYCnTJxSJYiBC1GglKPUQ9CQ6JEVJiIiriyAGNllWke/4BKRMdEiKoiiKoiQBlWCNgRCCb37zm4OPf/WrX3HrrbcmLqAhNmzYwOrVq1m2bBnz588fjOv111/nnXfeGXd7kahET4TGlnZWnXUFq08+h4ULF3LHHXfEOXJFmdkMgT7cejvBnEVYpRfpaEp0SIqiKIqiJIEZX+RiJjCbzfzzn//k3//938nJyYlbu1JKpJTodBPPc6+99loeeeQRli5dSiQSYdcubVjT66+/js1m49hjjx1Xe5FIBL2QFBUV8+Izj5Nr8OBJq2LR4iWcf/75FBUVTThWRUkmKaF+vIYMTEULoQX66jeTtaws0WEpiqIoijLDqR6sMTAYDHz5y1/mN7/5zSHPdXV1cfHFF7Ny5UpWrlzJ229rczVuvfVWfvWrXw3ut2jRIurr66mvr6e2tpZrrrmGRYsW0dTUxLe//W0WLVrE4sWLefhhbTL966+/ztq1a7nkkkuYN28eV155JXKYIUqdnZ0UFhYCoNfrWbBgAfX19dxxxx385je/YdmyZbz11luHjfPqq6/mmGOOoaamhrv/9lcAzClWzKkZCMDndhCNDr8u1u9//3sWLFjAkiVLuPzyywHo7e3lwgsvZMmSJaxZs4bNmzcPnuvaa6/lhBNOoLy8nH/+85985zvfYfHixZx11lmEQiEAfvKTn7By5UoWLVrEl7/85UNedzQapaKigv7+/sFtNTU1dHR0HP6NVJRxSI048BvtZFcuA6C/fnNiA1IURVEUJSlMugdLCFEK/B3IByTwFynl74QQtwJfArpiu/6HlPLZyZzrx09tY3urczJNHGJBUTo/Om/hqPt99atfZcmSJXznO985YPu//du/ccstt3D88cfT2NjImWeeyY4dOw7b1p49e7j33ntZs2YNjz32GJs2beKTTz6hu7ublStXcuKJJwLw8ccfs23bNoqKijjuuON4++23Of744w9o65ZbbqG2tpa1a9dy1llnce2111JRUcGNN96IzWbjW9/6FgCf//znR4xz8+bNbNiwAY/Hw7Jly7jkuLvIy6igtbOdEy6+lL31Lfzyl78ctvfqZz/7GXV1dZjN5sGE50c/+hHLly9n3bp1vPrqq1xzzTVs2rQJgH379vHaa6+xfft2jjnmGB577DF+8YtfcNFFF/HMM89w4YUXcvPNN/PDH/4QgKuvvpqnn36a8847b/CcOp2OCy64gMcff5zrr7+e9957j/LycvLz80d9HxVlLKSUZEgHPnMZVWXFtMtMwu3bEh2WoiiKoihJIB49WGHgm1LKBcAa4KtCiAWx534jpVwW+zep5CrR0tPTueaaa/j9739/wPaXX36Zm2++mWXLlnH++efjdDpxu92Hbau8vJw1a9YAsH79eq644gr0ej35+fmcdNJJfPDBBwCsWrWKkpISdDody5Yto76+/pC2fvjDH7Jx40bOOOMMHnjgAc4666xhz3m4OC+44AJSUlLIycnh+OOP4/1NW9EZjFRW1bDppUfY+v4b3HvvvcP2EC1ZsoQrr7yS++67D4PBMPiarr76agBOOeUUenp6cDq1xPjss8/GaDSyePFiIpHIYLyLFy8efH2vvfYaq1evZvHixbz66qts23bohe1ll1022Nv30EMPcdlllx32e64o4+ENRsjERcSSRbbNTL0oxdq/O9FhKYqiKIqSBCbdgyWlbAPaYl+7hBA7gOLJtjucsfQ0TaWvf/3rHHXUUVx//fWD26LRKBs2bMBisRywr8FgOGBY3dD1mFJTU8d0PrPZPPi1Xq8nHA4Pu19VVRU33XQTX/rSl8jNzaWnp+eQfUaKEw4qZy6jCCEQOgMmg54gRopybSxatIi33nqLSy655IBjn3nmGd58802eeuopfvrTn7Jly5YxvSadTofRaBw8t06nIxwO4/f7+Zd/+Rc2btxIaWkpt95667BrWR1zzDHs3buXrq4u1q1bx/e///3DnldRxsPh8VEkPDSnZAHQk1rFcs+zEI2ATp/g6BRFURRFmcniOgdLCFEBLAfei226WQixWQhxlxAiM57nSoSsrCwuvfRS7rzzzsFtZ5xxBn/4wx8GHw8MhauoqOCjjz4C4KOPPqKurm7YNk844QQefvhhIpEIXV1dvPnmm6xatWrMMT3zzDODc5T27NmDXq/HbreTlpaGy/XpgsEjxQnwxBNP4Pf76enpYf3b77By6UJaWloJ+P0EhRlnTyfr16+ntrb2gHNHo1Gampo4+eST+fnPf47D4cDtdnPCCSdw//33A9pcspycHNLT08f0egaSqZycHNxuN48++uiw+wkhuOiii/jGN77B/Pnzyc7OHlP7ijIWHrf22dGlaD+3gcxazASgrz6BUSmKoiiKkgzilmAJIWzAY8DXpZRO4HagCliG1sP1vyMc92UhxEYhxMaurq7hdplRvvnNb9Ld3T34+Pe//z0bN25kyZIlLFiwYLCc+cUXX0xvby8LFy7ktttuY+7cucO2d9FFF7FkyRKWLl3KKaecwi9+8QsKCgrGHM///d//UVtby7Jly7j66qu5//770ev1nHfeeTz++OODRS5GihO0YX4nn3wya9as4Vu3/BtFBbns2Lmb1atXc+zp53PaJdfxrW9+g8WLFwPwxS9+kY0bNxKJRLjqqqtYvHgxy5cv52tf+xp2u51bb72VDz/8kCVLlvC9732Pe++9d8yvx26386UvfYlFixZx5plnsnLlysHn7rjjjgPivuyyy7jvvvvU8EAl7gJ+bf03vSkFAGO+9vl1te5KWEyKoiiKoiQHMVxlunE3IoQReBp4QUr562GerwCellIuOlw7K1askBs3bjxg244dO5g/f/6kY1SGd+uttx5QDKOvs5nMcBcULAGdnr7udjKDbcjc+QjjocMLZzr186NMxEebNnHUupPYe+wvqD7jK7z50TZOfPJYmlb/iNKzv5Ho8BRFURRFmQGEEB9KKVccvH3SPVhCm0RzJ7BjaHIlhCgcsttFwNbJnkuZekLG5o0J7UdDF0uqIkFfokJSlGkXCgz0YFkBKCouwy0tBDr3JjIsRVEURVGSQDwWGj4OuBrYIoTYFNv2H8AVQohlaKXb64GvxOFcSpzdeuutB26QUaIIdLHiEwaTBTwQCfnVqtTKESMc8AJgtGgJVmm2lb0yH2vf8HMpFUVRFEVRBsSjiuB6QAzzVFKXZT9iSYkc8naaTCbCUocMBRIYlKJMr8EEy6wlWGaDng5jMYs8DYkMS1EURVGUJBDXKoJK8hNED0iwDDpBECMiohIs5cjxaQ/Wp0squK1lZIXaIRJKVFiKoiiKoiQBlWApBxBSIsWnPxZCCMI6E/poMIFRKcr0isbmHBpTPk2wIvZKDESQ/U2JCktRFEVRlCSgEizlIFEOHvEZ1ZkwEIYhCycrymwmQ1oPlnlID5YxrwaYvaXaQ5Eo7sDwi5kriqIoijJ2KsEao3Xr1iGEYOfOnSPuU19fz6JFh61EPy67du1i7dq1LFu2jPnz5/PlL38Z0BYJfvbZiU9x8/v9rFq1iqVLl7Jw4UJ+9KMfDT4nkMiDfywMZgCiYTVMUDkyDPZgmVMGt9lLtLWw+ptH/h2QzO7562/Y9tPjadryZqJDURRFUZSkphKsMXrwwQc5/vjjefDBB4d9Phye/J3fSCRywOOvfe1r3HLLLWzatIkdO3bwr//6r8DkEyyz2cyrr77KJ598wqZNm3j++efZsGEDoJVpl+LAHixVql050siQ9rMuTJ/2YBUVV+CR5llZqr3XE2Rhy6Os1u0g8NJ/JTqcKbGrpZe//WMdLo830aFMiTaHj3c37yQea1vORI09Xna2OxMdxpTZ1dJLa3dfosNQFCVOVII1Bm63m/Xr13PnnXfy0EMPDW5//fXXOeGEEzj//PNZsGABoCVaV155JfPnz+eSSy7B69X+mL/yyissX76cxYsXc8MNNxAIaL1BFRUVfPe73+Woo47iH//4xwHnbWtro6SkZPDx4sWLCQaD/PCHP+Thhx9m2bJlPPzww3g8Hm644QZWrVrF8uXLeeKJJwC45557uOCCC1i7di01NTX8+Mc/BrR5VTabDYBQKEQoFEIIgZQSgRxcA+sf//gHixYt4rjjT+DEz36BSMiP3+/n+uuvZ/HixSxfvpzXXntt8FwXXnghp59+OhUVFdx22238+te/Zvny5axZs4be3l4A/vrXv7Jy5UqWLl3KxRdfPPj9GWrNmjVs27Zt8PHatWs5eAFqRZlSsQQLw6eLa5dkpdIgC9DPwlLtO5q6OEq3B4AK50bw9Sc2oCnw9oP/wxe3XUv93V9MdChT4sG//Ypj/rmabS/dk+hQ4i4QjvDkH79Fzu0Lad/6eqLDibvmPi+77riS1NsW4u9vT3Q4iqLEQXItbfTc96B9S3zbLFgMZ//ssLs88cQTnHXWWcydO5fs7Gw+/PBDjj76aAA++ugjtm7dSmVlJfX19ezatYs777yT4447jhtuuIE//elP3HzzzVx33XW88sorzJ07l2uuuYbbb7+dr3/96wBkZ2fz0UcfHXLeW265hVNOOYVjjz2WM844g+uvvx673c5PfvITNm7cyG233QbAf/zHf3DKKadw11130d/fz6pVqzjttNMAeP/999m6dStWq5WVK1dyzjnnsGLFCiKRCEcffTR79+7lq1/9KqtXryYqJTokA3OwfvKTn/DCCy+QX1BI3653IBzgj3/8I0IItmzZws6dOznjjDPYvXs3AFu3buXjjz/G7/dTXV3Nz3/+cz7++GNuueUW/v73v/P1r3+dz372s3zpS18C4Pvf/z533nnnYM/cgMsuu4xHHnmEH//4x7S1tdHW1saKFYcskq0oU0aEYwmW8dMhgiaDjk5jEfM9jQmKaup07vsYiwjxQe5nWdn1T1z7NpC26KxEhxU37kCYKucG0MHc7pcg4AazLdFhxU27w895jgdBB7kf/ArOuD7RIcXVxroero38kzThY8cbt1OwaG2iQ4qrjZ98woX6dwDY/dxvmHvFzxMckaIok6V6sMbgwQcf5PLLLwfg8ssvP2CY4KpVq6isrBx8XFpaynHHHQfAVVddxfr169m1axeVlZXMnavN4bj22mt5881P5zlcdtllw573+uuvZ8eOHXzuc5/j9ddfZ82aNYM9X0O9+OKL/OxnP2PZsmWsXbsWv99PY6N2EXj66aeTnZ1NSkoKn/3sZ1m/fj0Aer2eTZs20dzcPJiEDSRYA1UEjzvuOK677jruuvNv+KJ6RCTA+vXrueqqqwCYN28e5eXlgwnWySefTFpaGrm5uWRkZHDeeecBWs9bfX09oCVhJ5xwAosXL+b+++8/oKdqwKWXXsqjjz4KwCOPPMIll1wy8pujKFNAhP0EMYBOf8B2d2oZWaE2iMyuYhCBXu33RcrSiwDo2fN+IsOJux3NPawUu2gylGMmSP/2lxMdUlxtqW+jRteCi1TyQ82zrtJl4+7NpAkfIQxUdr8+6z5/zt1vA+CWKVia1BxIRZkNkqsHa5SepqnQ29vLq6++ypYtWxBCEIlEEELwy1/+EoDU1NQD9hcHzV86+PFwDm5jqKKiIm644QZuuOEGFi1axNatWw/ZR0rJY489Rm1t7QHb33vvvVHjsdvtnHzyyTz//PPUzl+grYMVS7DuuOMO3nvvPZ555hlOOPsnvP/c8PPPBpjN5sGvdTrd4GOdTjc4R+26665j3bp1LF26lHvuuYfXX3/9kHaKi4vJzs5m8+bNPPzww9xxxx2HPa+ixJsI+wkKM6aDtoftlRidYaSjCZFVOeyxyUg42wAoqllG3Yv50PpxgiOKr86W/awUAfYuuIrCT/6Hnl3vYl9+YaLDipueRq3wyr7yS1nWcDfdW18l9/hrExxV/IhWbYj4e0VXc3zr3YTatmEsWZrgqOLH6KgjiuCN9HM5y/UY+J1gSU90WIqiTILqwRrFo48+ytVXX01DQwP19fU0NTVRWVnJW2+9Nez+jY2NvPvuuwA88MADHH/88dTW1lJfX8/evdrk+P/7v//jpJNOGvXczz//PKGQtqhpe3s7PT09FBcXk5aWhsvlGtzvzDPP5A9/+MPg5OaPP/704uill16it7cXn8/HunXrOO644+jq6qK/vx8An8/HSy+9xLx58z4dIhhLsPbt28fq1av5yU9+QnZONm2tLZxw/HHcf//9AOzevZvGxsZDErvDcblcFBYWEgqFBtsZzmWXXcYvfvELHA4HS5YsGXP7ihIP+oifkDg4vQJTbjUw+0q1m7zthNGTlVvCPv0cbI7diQ4prrxdWg9dVe0ydstS9O2bEhtQnEW6tPlz9qMvxidNOOpm15xVo1PrkQvM/ywA3bveTmQ4cZfubcRpzCVUcgx6ogRaDx3ZoShKclEJ1igefPBBLrroogO2XXzxxSNWE6ytreWPf/wj8+fPp6+vj5tuugmLxcLdd9/N5z73ORYvXoxOp+PGG28c9dwvvvgiixYtYunSpZx55pn88pe/pKCggJNPPpnt27cPFrn4wQ9+QCgUYsmSJSxcuJAf/OAHg22sWrWKiy++mCVLlnDxxRezYsUK2traOPnkk1myZAkrV67k9NNP59xzz0VKuPWXf+SZ57XhM9/+9rdZvHgxixYt0sq6L5zLjV+6gWg0yuLFi7nsssu45557Dui5Gs1//ud/snr1ao477jjmzZs3uP3JJ5/khz/84eDjSy65hIceeohLL710zG0rSrxoCdahP9fpxQOl2mdXApLi78RpyAGdDlfaHLKCrTCLlmWI9GkX6Kl55dSbash27khwRPFlcuwHoLhmKfsoRtc9u24AmH0dOPWZlNUso1+m4m/8MNEhxY03GKYw0oo7tYyMcu1mYtf+2dWDrChHouQaIpgAA1Xyhvra1742+PXatWsHv66oqBhxnaxTTz31gJ6lAQNzk4bz61//ml//+teHbM/KyuKDDz44YNuf//znYdsoKSlh3bp1B2xbsmTJsLFEo5L//PZNBFNyAfjnP/85+JzT6US492HQSe6+++5Djr3uuuu47rrrBh8PfV1Dn7vpppu46aabDjn+/PPP5/zzzx98nJ+fH5fS94oyEfpogJDOcsj2opI5+KSJQOfsSbCklNjDXXjS8sgCyK5B74wS7d6HrmBBosOLC52rVfsivRiPvYa07pfB0wOp2YkNLE7M3nbcujRsKem0mSpZ4f4k0SHFjZSStGAXHlselbk2NlFCXs+eRIcVN92uICWiG3faEkor5+KWFvwth04FUBQluageLGWQlFGEYHCI4FAGk3axGQ3NnrvaijISQzRARH9oD5ZWqj0ffd/+BEQ1NVyBMFmyn3Dsxoq5UOtZ7muaPcOULL42PDobmG0Y87TX52/bnuCo4ic13IfHqCWL7owaMiM94O1NcFTx0esJkkcvIWsBBr2ObksFmd7Zs1RCn8dPFk6ELZ/ynDT2yhIMPbNzMXNFOZKoBGsWu+666wZLuY9FVEYBELpDfyxMRgMhqZ9Vw4YUZSSmqJ/IMD1YJoOOdmMJqe7ZU6q93xPCLjzIlEwAssoWAuBunj0JVlqwG7dJSyDtsdfX0zA7egmklKRH+giYswDQ5Wu9jv5ZMo+n2x2kQPQSTSsAwJdRTVrUCZ7uBEcWH67+LgwiiiEtF6NeR5t5DlnufYkOS1GUSUqKBGu2rkw/08iolmAN24Ol1xEURkQkeRIs9XOjTJRRBokYDk2wAFzWMrJDrbOmVLTDFyIDD7pYglVRmEezzCEyS4ZBSilJjToJGLXXV1Beg0+a8LfOjnlY7kCYLJyELFoP1sA8nu79mxIYVfw4XC4yhRuRVqhtyNV6IAPts+P98/d3AGDKyAfAY68hPdoP7s4ERqUoymTN+ATLYrHQ09OjLpanw0AP1jAJFkBEmNBHg9MZ0YRJKenp6cFiGf4iWVEOxyQDRPTD/+yE7FUYiCD7G6Y5qqnhdDkxixD6VC0ByU83U08RFsfsuIvuDoTJwE3EkgFARU4a+2Uh+t7ZMY+n3xsiRziIWrUeupLyapwyhWDr7Oih8zi0nipjmvb60kq0Hrre+s0Jiymegg4twUrJ1HrodPlaD6u/ZXa8PkU5Uk15kQshxFnA7wA98Dcp5bgWsyopKaG5uZmurq4piU/5lM/vJ8XfSTQlgs586Pfb5+ojJeKCfv2wvVwzjcVioaSkJNFhKEkmEpWYZYDACD1YpvwaaAJ36y7SsqumObr48zljF7A2rQdECEG3pZwVvpdAShjDWn4zWb83hF248Vi0BNJi1NNiKONo9yxJsFxuSoWXrlQtASnLtrFNFpM9SxLIgFP7W2ROzwGgoLQajzTPmh7IiFv7/KXGEqz00oWwFfoatlFYe1oiQ1MUZRKmNMESQuiBPwKnA83AB0KIJ6WUY55dbDQaqaycPQt6zmTPPP8052y4EsdF95Ex/7xDn3/ods7Z+T38X3gDS+my6Q9QUaZBIBzBIkL4DSnDPp9RXAsbob95B2mLPzPN0cWf39UDgCUt69Nt6XOwdPnB1QbpRYkKLS76PUHm4sFr/fT1OW2VZDrXQ9ALJmsCo5s8T5/WA2JIzwO0eYIdplIqPbOjByQY+/m0ZmgJVmWujb2ymMye2TGEFY+WQOptWoJcXFqJW1rwtc+S16coR6ip7oZYBeyVUu6XUgaBh4ALpvicygRFAl4ATJbhLzishdoaQD2Ns6f6lqIczBeMYCEII/RgFRWXaUOwOmdHD0HI3QeANf3TkuUitwaA8CyYh+V0OzCLEAbbp68vnFWDDomcBeW+fQ5tro45PXdwm8dWiT3SAwHXSIcljYGfT0usByvVbKDVUEqae3ZUEtT7YsU6rNrPZ2WuLTaEdW8Co1IUZbKmOsEqBpqGPG6ObRskhPiyEGKjEGKjGgaYWNGQHwCjefgEK7dMm1zsaZ1di1gqylD+cJQUAmAcvgerNCuVBlkwa0q1hz1aOW9T2qcJiK1I+6z3Nyf/MCxPv3YBa7J92oNlzq8FwN2S/OWwP+3h+TTBktnVAES7ZsFFuk97fWJID6QrtYLMcKfWA5nkDIF+PCIV9NqAIotRT7uxFNssSSAV5UiV8Ik0Usq/SClXSClX5Obmjn6AMmWiQR8AhhESrLLCPDqknUjP7LiwVJTh+INhLCKEMI4wBytWqj3NMzuKXODTegiw2Ac3FZRU4pMmvG2zIAGJzTEb6AEByC6bD4CzJfkTyJBbS5BTMz5NkK1Fs2ctMzHw8xmrcgkQyZoDgOxJ/gTSEHTi0acdsM1liyWQIV+ColIUZbKmOsFqAUqHPC6JbVNmIDnwy3yEuSfpFiPNogiLs376glKUaeb3aXfFhXHkuTnu1HIyQx0Q6/VNav5+7f8U++Cmytx06mQhdCf/BWwwloBYM/IGt1UU5NAsc2bFEMioV0tAhg6BzCmbT1QKXLMggdQH+gljAJNtcJulQEsgZ0MPpCXsJGBIP2BbNLM6NoQ1+T9/inKkmuoE6wOgRghRKYQwAZcDT07xOZWJGkiwRrhzD9BnKSXT3zTi84qS7EIBDwD6EXpyAcL2OeiQ0Fc/TVFNHX3AQRQB5ozBbZlWI026Qqyu+sQFFicRjzbEzDhkiGBxZgr1shBT/yzojR+mh6eyIJtmmTMrhggagw6th2dINcusUq0H0jELEsiUiIuQMePAbQNDdJvUfGdFSVZTmmBJKcPAzcALwA7gESll8o9ZmKVEOHY3foQeLAB/egX2aB/4ndMUlaJMr5BPS7B0I8zBAjDlaUUg3K3JfwfdGHTg1dlA9+mfAyEEDms5mcFWCCfH2ncjkT6tB2toAqLXCbrNZdh9jVop+iSmC/QTwgBDelxzbCYadcVYnMmfQFpCDnyGAxOQisIcWmR20vdABsNR0qWLiNl+wPacgSGss2AOpKIcqaZ8DpaU8lkp5VwpZZWU8qdTfT5l4kR49B4sfbY29t3XkfzVtxRlOEG/NkTwcD1YGSXaHWbHLBiiZA658B80BwS0BZX1RCHJF1TW+fq1L4YUSQDwpVeSEvWAu3P6g4ojQ9CBR3dgD48Qgt6UcrL8yZ9ApkadBA/q4SnJtM6KHsh+b5AM4UEOGZ4LUFGYNysSSEU5kiW8yIUyc4ylB8tapFXf6m5Ud9aU2Skcq0xmHGG5AoCSoiJ6ZNqsKNWeEnERNKYfst2Qqy3LEGhP7qqhhmA/QUyHVIUUOVovZKQruS9izSEnfsOh718wYw4W6QdnawKiig9/KEK6dB/Sw/NpD2RDUieQfZ4gGXgQQ3pXAfLTzTRQhMWR3AmkohzJVIKlDNJF/ITRD5aLHc7A0AVvW/JfWCrKcAbWgzMcZgHa0ixtDo8hyUu1R6KSVOkiZMo45Dl76eyYB2IKOfDqD01AbEXa77L+puS+WZQScQ6fIOdpCbKvPXl7Wfu9IezCTdSSechzvvRKrFHP4EK9ycjh7MMoIhhTD3x9Qgh6LeWzYgirohypVIKlDNJF/ASF+bD7lBfk0CaziKrqRsosFQ6M3oNlNujpMiV/qXanL0QGHiLmQxOskqIiumU6gY7k7uGxhJz4h0lA8suq8EsjniQuRR+OREmLuggPkyCnlywAoC+JF4bv9wWx40ZYD02wRI6WQIaTuAfS268lh8Yha9AN8GfMIVUmdwKpKEcylWApgwwRP6FREiyb2UCrrlCValdmLRnUilwYrbbD7udNq8Ae6YGAezrCmhL9vhAZwnPAGlgDKnNSqZMF6Hv3TX9gcSKl1ObwmOyHPDcnN406WQDdydsb7/CN3MNTXDoHt7TgS+IE0uFwkSKC6FMPTUBsxdpw9f4kTiD9sTXaUtIPXQNUn6sNYU32IbqKcqRSCZYyyBD1E9SPXOBiQK+lnBx/co99V5SRyFiZdpPl0MIPQw3M4UnmO+j9ngAZeNAN00NgNRnoMJSQ5qmf/sDixOkPY8dN9KA5PABZqSaadMVYXck7zLPPGyIT9yEFPADKBxPk5B1t4HXGenhsh76+gtJqAkneAxl0aQlWqj3vkOfSS7QhrD0NqvCyoiQjlWApg0wRPyHdyAUuBngzqkiTLvB0T0NUijK9ZCjWg2VJPex+qcULAeip3zzlMU0Vt6sfo4hgSD00wQJw2ypIj/Qm7bIMjtgcHpkyzBAzIXBay8kMtEIklIDoJs/hdGIVAfS2Q3t4LEY97cZSbO766Q8sTvwO7W+MJT3nkOcq8zJiPZDJm0BGPdoSAuZhXl9hWQ1+aUzqOXSKciRTCZYyyCT9hPWjJ1i6PG1ohrdV3VlTZh8R1JYrEKbDDxHMr1xASOrxNCfvECWfU1uE1zTMBTpAJKsKANmTnMME+zwB7MNUaRsQtM/RStEn6YLRnsE5PIcOMQNw2yrJCnd8uoh8kgm6tJ9Pq/3Q15eVaqJZV0SKq266w4obOXCT0nro568yNoRVJHECqShHMpVgKYPMY0ywbLE7930NW6c6JEWZdiLWg8VhqggCVBVkanfQu5L3DrPfpd1Bt6QfOgQLIKVAu5nibk3OSnsOlxOzCGEYIYE05Wuvz5+kvQR+p7aGlznt0B4QgGhWNTok0e7kTJDDHi3BMg9TBALAYS0nK9CStD2QOn+/9sUwNwBSTHraDCXY3MmbQCrKkUwlWMogi/QTGUOCVVhWhVta8Lcl50WXohyOLuwjgg4Mh5+PaDMbaDaUYXMl58UrQNitJVjWjOF7QLLL5hGVAmdzciYgPofWw2Ma4QI9IzbPpS9JS7WHnCP38ABYCmOFIJK0l1V6+wAQw/TwAIQyqzAQgf7G6QwrboyBPjwidcSlUVy2CrJDrRAOTnNkiqJMlkqwFEBbD8ci/UQPs8jwgIocG/tlEfre5K2+pSgj0YW9+DGDEKPu67BVkR1shZB/GiKLv7BHu4A1DFPkAqAyP5tmmZO0hTw+rdI2/AV6WXEx3TKdYJJWagvFenhGTpC1BNLZnJwJJD7tBsBwPTwAxthaX94kvdlnDvXjHWaR6AGRzGr0RJF9qhdLUZKNSrAUADzBMFYRQBoPPywKYpOnTWVkuJO3+paijEQX9hEQo1fTBAhnzdUugHqS82aD9GkJFin2YZ8vzkyhnkJM/cn5WQ8N9tAdWqUNoDzbSp0sRN+XnL2QMpZgjdTDU1mUT5vMIpKkCbI+0E8II4zwd8leGlssOklLtVvDDvxG+4jPm2NDdJN9MWxFORKpBEsBwBuIkEIAYTp85bQB7rQqMsNdEHBNcWSKMr30YS9B3dgSrJTi2GKuSTofUQT6tS9G6CHQ6wS9ljIyfY1JuSxDJFalTZ86/Bwzi1FPh7GE9GQtRT+QIA9Tph0gL81MA0WYkzRBNgX78erTR+xNLi0uoVfaCHYmXwIppcQWdRIaZo22AdnliwBwNCVnAqkoRzKVYCkAuP0hrAQQ5tF7sADI1e6shTuTc2iNoozEEPYSGsNcRIDcioVEpMDVlJwJlsHv0OabHaZiYsA+B4v0gattGiOLDznKEDMAd1ol6ZE+8DumKar4MQT68AsLGIZfIF6IgQQ5OdcttISd+I0jD6Erz7bGhqsnXw/kwBptEcvwyTFAeXEBXTKDUJL2QCrKkUwlWAoAXp8Pg4iiG6U09YC0Eu3OfU/dlqkMS1GmnTE6tmqaAFWF2dTLAqKdyVkEwhhy4NWlHXa+mT5P+6z7W5MvidT5+rUvDpNgiWxtwehIEvaCaD08GYfdx58xh1TpAU/XNEUVH+FIlNSo67A9PGaDng5jKRme5Juj1OMOkClc6EbofQQoSLdQTxGmvuTsgVSUI5lKsBQAfB5tqJ9+lMVVBxRWzico9bhb1FpYyuxiivrGVE0TIDvVRIOuBKsjOedgWcJO/Ia0w+5jr1gKQO/+TdMQUXwZg30EhemwJffTShcD0Ff/yXSFFTcpYQd+4+ETLH2uVggikGSFPBy+kNbDY7Yfdj93eo3WA5lkC9/3Ot3YhB+9bfgS+6D1QPYM9EAqipJUVIKlABDwuQEwjjHBqsrPpEEWQHfy3fVVlMMxSz/RMRR7Ae0CyGGrJifQBOHAFEcWX1JKbBEHftPId9ABKsrK6JR2gknYg5US7MWlH7n3CqBozny80oynKbkSrHAkOuocHgDbwGiD+uQabdDnDZIlXCPOLxuUr72+UJL9fDp7OgAwp4+cYAH40qtIj/ZDrKCJoijJYVIJlhDil0KInUKIzUKIx4UQ9tj2CiGETwixKfbvjrhEq0yZoFfrwTJaxjZEMMWkp8VQis2phi4os0coEsUiA0jDGOciApHcBeiJEulIrkpfnmCELByELMNXoBtQkW1ltyzF3JtcPSAAtnDfqAnk3IJ0dstidJ3J9f71x3p4oocZ/ghQWFaDS6YQbE2uBKvXHSALJ8KWf9j9MmI9rD11H09HWHHjia3RNlKJ/QHRWAKZbO+fohzpJtuD9RKwSEq5BNgN/PuQ5/ZJKZfF/t04yfMoUyzo0xIss3VsCRaAyzaHnFCLWgRRmTU8gTA24SNqOvywuaFSy5cB0LPvwymKamp0uwJkCyekHv4Cz6DX0ZFSRbZvP0Qj0xTd5HmDYTJlP6GUw/cQWE0GWoyV2N3JNcyzzxPr4Uk5fAJZmZvGTlmKsTu5EkhXXycGEcWQfvgEq7J8Dj0yjUBLciUggViClZo5/BICA1LLlgHQu/+jqQ5JUZQ4mlSCJaV8UUoZjj3cAJRMPiQlESKxyeBm2yjDMYaI5mhrAIW7kuvCRFFG4vaHyMADlsPPaxmqtGoRPmnC3ZhcQ8y6nV6ycKFPO/wFHoA/sxaTDEJf/dQHFifdriA5woG0Hj7BAnBl1JIW6Qd359QHFic9Li/peDHYDt8DmWLS02yaQ6Z7d1JVEvT3tQBgySw47H5z8mzslqUYu5Or0EzIrc0ZMxxmDhZAaUkZXTJD9WApSpKJ5xysG4DnhjyuFEJ8LIR4QwhxwkgHCSG+LITYKITY2NWVXFWOZhPp00oUm22HH24yVErxQgB6GtQvfmV28HicGEXksFXnDlZdkMFuWYq+M7kKvjh7O9AJiSl99ATLWKh91n0tm6c6rLjpcmkJpC7t8D0gAKIg+YZhObtb0QmJObN41H299nlYox5wNE9DZPHh62sHID3n8K/PqNfRYakiy7sPotHpCC0uhCeWzI/Sg1yVa2OnLMPUrdbCUpRkMmqCJYR4WQixdZh/FwzZ5/8BYeD+2KY2oExKuRz4BvCAEGLYxSyklH+RUq6QUq7IzT38Lxpl6gh/PwA669gvLPMqF2trADUmz0WJohyO36lNJNdbx96DZTHqaTFXkZVkPQSeXm1dK+soPQQAOZVLiUpB7/7k6aXr7+nCKCKYMkZPsDIqlgHQV7dpaoOKI093EwC23NEHjhiKtAVr/UmUIIcdWoJlSB/959OXVYtF+qG/foqjih+zt0Nbg26UBMti1McSyP0QCR92X0VRZo5REywp5WlSykXD/HsCQAhxHXAucKWU2tWFlDIgpeyJff0hsA+YO2WvQpk0EejXvrDYx3xMdXEujTIPkmxyuKKMxN2vDduxpB1+2NXBvFnzSIs6k2oxXr9Du4Nuyyocdd8F5QU0yDxCbclTqc3T2wqAdQyvr7Ksgi6Zjj+J5vEE+rTXl5JVOuq+2XOWA9CzP3kKQciB4Zq2MfSwxhJIb3PyvH8WfydOQzbo9KPuG8ierw3R7VVFpRQlWUy2iuBZwHeA86WU3iHbc4UQ+tjXc4AaQP1mmMGE36HdTTOPfXK/zWygyVCOzbl3CiNTlOkTcGk9WNaM0eftDGUoXAKAp2FTvEOaMtKpzXHR20cfYpafbqZeV05KX/JUEgz2aGsH2fIqR923MieV3bIMU08S3SxyagmWSB89gawtK6IxmksoiYZAmn3tBIQFzMMOfjlAbqVWSbAvSSoJhiNR0kJd+CyjJ48AlhLt94u7cdMURqUoSjxNdg7WbUAa8NJB5dhPBDYLITYBjwI3Sil7J3kuZQoZAg48OhsIMa7jHLYqcoLNqpKgMisEXH0ApNrH14OVXXUUAD37k6eSoIglWKQXjb6vEPSn12qf9aBniiOLj3C/Nt9Ibx99CJ3JoKMzpYpsb/JUStR72sc0xAygJDOFvbpyrL3JUwgiI9COw1Qwpr9JVSUFNETzCLclxzzIDleAfPqIpI6eHAMUVC0lLHVJk0AqijL5KoLVUsrSg8uxSykfk1IujG07Skr5VHzCVaaKIeTCrx97ifYB0Zx5GIgQ7lILDivJL+LVEizLOKppAtSWF9MUzSWcTD0E3jZc+gwwpoxp/2jBEvRECbYkxzwsvbNZS0Bso8/hAQjlLMAkg8ju5KiKavV34hrjEDMhBL2pc8kONELIPw3RTY4/FCEv2onPOnryD1BsT2GvroLU3uQoBNHc6yVf9KKzj+31zSvJYZ8sItqePEN0FeVIF88qgkoSs4SdBA2jD8U4mLVEG/veXZccF12KcjgylmCJcVQRBMhNM7NHV4mtLzmGmEkpSQ904jGPXgBiQEbVKgC693wwVWHFVaqvHacxB/SGMe2fUrECgL59709lWHERiUpyw224raMP7xwQzdMWxI52zPwkpKXfR5HoIZI2ttcnhKAnY6HWwxpbcmQm6+xsI134sOSMPnwVINtmpt5QQXp/8vRAKsqRTiVYCtGoxBp1EzaNvXLagMI5WiVBd6O6s6YkP52/LzYXcXw3G4QQ9KbPIyfYBAHXFEUXP13uAPl0E7SN/QK9ek61VgiiYeYPg/SHImRFOvGljG0IFkDp3GV4pRnnvpmfQLb2+ygTHQTTysd8jLXiaAB69878BLKhrYts4cKSWzH2gwqXARBsnvnD6Dzt2rzl9KKaMR/Tl7GAzHAnuNVyNoqSDFSCpeD0h8jCScQyvrv2AFVFOTTKfOhKjjv3inI4lkAXDl0m6Mb/q1EWLkWHJNi8Kf6BxVlLr5dS0YWwj16BbkBZdio7qcLaM/NvpjT3+agUbYQyKsZ8zLyiTLbLCgwdm6Ysrnhp7OihQPRhyKka8zEVVQvolTY8dTM/wepp1oqp2Aurx3xMVnWsh3X3e1MSUzxFu/cBYMwd++uTRdo8z0DjzL/BoSiKSrAUoM8TpED0EbGN/W7vgBSTniajqiSozA62UA8u4/gqCA7IHLjA2zPzL2C72xqwCT+m/NoxH6PTCTrTasn110HIN4XRTV5rZwf5oh997thXB7EY9TSn1JLr3jXj1xvqadbmvKYXjf0CvbYwnW2yCkvnzB/OHWzXEixr8YIxHzOvqoJmmUOwaeb3YBkcWoVLMivGfEze3FVEpaBn97tTE5SiKHGlEiyFnu4OzCKEPmP8CRaA01ZFbqgFwoE4R6Yo00dKSUa4m0DK2EonH6y2qpp2mUmg8aM4RxZ/zmatxzmjZP64jgvnLUVPlMgMXw+rt0GbZzTe1+fPXYJZBpDdM7scva91/O+fUa+j3TafHN9+CHpHPyCBDL17iCIge+wJZLE9hV2iClvvzP7ZBEjz1NFnyB1zgRmARZXF7JVFhJtVD5aiJAOVYCn0dzYCkJoz9uFCQ8nceeiJEuqY2RclinI4fd4QufQRHWPVuYOVZKawU8zB2jPzKwkG2rXJ8paCeeM6Lq1SKwTRs2dmD8PytGivL61k7D0gANaKlQD0zvBeSH3XdiLoEHnjTJALlqEnSrh1ZvdiZXjq6Dfmg8k65mOEEPRmLJjxhS56PUEqwnW4MsbeewyQn25hj2Eu9r6tIOUURacoSryoBEvB290EQGb+2CdMD5VashhQlQSV5NbW4yBbuNCPYeHW4Qgh6ElfQG6gEQLuOEcXXyn9u/HprGNaA2uoqup59Eob3oaZ3Utn7d1KUJgge+xFBADK5y7BLS2498/cBEtKSZZ7Nz3mknH1gADYq1cD0LN7w1SEFhedLj9VkTrcGWMf3jmoaDkwswtd7Grpplq0Qv6icR/rzFxEeqQPBtawUxRlxlIJlkKwvxUAc9bYK4oNVVC1iLDU4W6a+XfuFWUk3e3avIiU7NEXph1JtEArdBGawWtFeQJhKoJ76EmbN+6FxavybGxnDpauzVMU3eQFw1GKfLvostaMuUT7gNrCDLbJSowzeJ5SQ4+XubIOX+b4eh8B5tbMpV1m4mvYOAWRxceWfc1UiVYMpUeP+9jsGm0eZOcMLnTRuucTjCKCvXL5uI81lmnfE0/dzH3/FEXRqARLweRs1EpTp03szv2cgmwaZD6iS63RoSQvf7tWOCCtcHy9HkPZq7QhZt0zeAjdzpYeFogGwvnLxn2sQa+j3baQXN8+CHriH1wcbGnqZQH1hAuWjvtYi1FPi3UeOe7dEAlNQXSTt3nnTkpENylzjhn3sZXZqeygitTumZsgd+x6D52Q5MxdM+5j582p0Bb8bpy5CUiw7h0A0qvH//oKa1cRknp69qhCF4oy06kESyHdXUe3sQgM5gkdbzHqaTFWkObaF+fIFGX6hLtia9OUjL9nYMDc6ho6pR1/48wdorR387uYRYic2vFf4AGEC4/S5lw2zcxhgvu3vkua8JE178QJHe/PXYKJELJzZi7I69j5FgA5808a97E6naA7Y6E2jNXvjHdocWFoepcoAlP5qnEfW5hhYYe+hozemdkDKaUkq+dD+g25YB//kPxF5XnskqXQMnN/vyiKolEJ1hHOF4xQEGrCbRvbivIjcaZXkRNqhZA/TpEpyvTS9e7DhwUxwZ5cgLIsKztmeKGL8L43ALDVnjyh47NqjwWge9c7cYspnqKx15c275QJHZ9aOVDoYmb2Qma0v4NfpKArWjKh4wfWUwrOwATZ6Q9R4dxIh7UWrFnjPl4IQY99CZmhTnC1T0GEk7OzzcFR0a048laOe3guQEaKkTpTLdnO7arQhaLMcCrBOsLtae+nUrQjxrFezLBy56MnOlidTFGSTbq3gT5LyYQufAYIIei2zSfH3zAjh9B5AmEqHO/TlTIHbBMrR7+geg6N0VyCDTOvEIQ7EKaibz0dljmQlj+hNmpql+CQVlz7Zt7r293uZEXoAzpyjwW9cUJtDMxT6to184aZrd+8h+ViN1RNLPkH0JdpCbK3buYlyNs3vkGucGBfes6E2/DkLCE16oLe/XGMTFGUeFMJ1hGube8mzCJEWtn45ysMZSvVKiJ17Z+ZQzMU5XD6vUGqovW47eMrnTycaKG2VlSoZebNc3l/2x5Wi+34K8+YcBvF9hR26OeS3jPzPuvrP9nBCnYSrj13wm3MLUhjMzVYOmbeMKz3179Ikeglc/kFE25jflUljdFcQk0zbz2lrg/XYRQR8ld9bsJtFM9brc1T2jnzelij254ggo6MxZ+ZcBvWCq3QRf/emZdAKoryKZVgHeG8+7W7mFnzjp9UO4VzFhOSerwtM3dolKKMZPuevRSIPgzF46/sdbCMqlgPwQysZNa+4WEMIkrBsZdNuA0hBH2ZS8gMd4GzLY7RTZ7jnbvRC0nBMVdMuA2DXkdH2iJy/ftnVLl9KSXWHf8gKEykL79owu0UZljYrq8lY4YlyO5AmIXtT9BjKkJXctSE21lcWcB2WQ4tM6vQxfbmPo73v0ZrzvETGv44oGTeCrzSTP+emZdAKoryKZVgHeFS2j/EpctAnz1nUu1U5mfSQAGiSy02rCSfjp3aukAF81ZPuq2aqhq6ZDqBGdZD0O3ys7LjEVpTajFOMpE0xIZhefbPnCRya1MPx/eto9m+En3B+BYYPpgsXoGeKMEZ9B6+t20vZ4Vfo634LLCkT7gdIQS9mUvJDHeCszWOEU7Oa688zwqxE//yL0xqmG66xUi9eR65zm0QjcQxwsnZ8uLdFIpe7Md/YVLtLCjOYoucg6lt5s2hUxTlUyrBOoK19Hk4OrSRztw1k/qDBmAy6Gg1lpOuKgkqScjU9DYhDFjLx7/2zsHKs1PZSRUp3VvjEFn8vPbsQ1SLFgzH3jTpz3vhvDUEpZ7e3W/HKbrJ2/DMvRSLHjJP/tdJt5VTq5VA79wxc15fywu/wSoCFHzme5NuazBB3jczFhwOhCOYN96BV6RQfPKXJ92eL285FulDzpClQzocXpY13EWHuYK0JedPqi2LUU+jdSF5nl2qqJSizGCTSrCEELcKIVqEEJti/z4z5Ll/F0LsFULsEkKcOflQlXj74K0XyBVO0pacF5f2XOk15IZbIeSLS3uKMh2C4ShVrg9osi0BU+qk29PpBJ1p88j110PQO/kA46C510319ttw6LPIO+bzk25vUXkeO2Q5omVm9PDsbeni9Lbb6UqpJHXxxOdfDVhYU8n+aAHhGVLI4+1N2zjd+Tj1uSdjLlo46fZK5q8mII307Fofh+gm7/nnn+KM6Fv0zL96Ur1zA2xV2hIEPTtnRoL88iN/olY0oT/xm6Cb/H3tQMFRGAgTbZ1ZwzwVRflUPHqwfiOlXBb79yyAEGIBcDmwEDgL+JMQQh+HcylxIqXEvOUBfMJC3tETnzB9gLz56JD422bGXUNFGYv3t+5knmggWrk2bm1G8rVCF+G2mTEn8fWHf8tysYfoqbdOeL27oTJSjNSZ55Hj3J7wYViRqOSDB35EuejEdO4vQTf5PzV5aRZ2G2vJ7Psk4eWw+zxBAk9+E4sIUXTJL+LS5pKKPLbKCvStiU+Qm7ocVH9wK336bErO/0Fc2qyev5R+mYp7f+J76N7fupuzmn9La+pCco65Mi5tpldrPaw9M6gHWVGUA03VEMELgIeklAEpZR2wFxj/qoHKlHnnk+2sDb5Ba8k5cbljCJA+WElwU1zaU5TpUL/xOQDKVk68dPLBMqq0IVgzodDFG+99wHntf6QlfSmZx1wTt3a9uTNjGNbj6x7hc+4HaSo5h4yFp8etXWf2MjIiveBojlub4xWNSh6/6+ecEn2XvhW3YMqf5HIaMTazgfqUheS6tkM4GJc2JyIYjrLxrn9joagjeubPEHH6W1STn85WqrF0bIpLexPV5fThf+wmMoSXzCvuiEvyD7Bg7lyaZQ6+GZBAKooyvHgkWDcLITYLIe4SQmTGthUDTUP2aY5tO4QQ4stCiI1CiI1dXV1xCEcZTSgSxfvsDzGKMKXn/b+4tVs4ZxFBqcfTPLPmnijKSILhKPbmV/HoMzCVTL6C4IDq6lq6ZTr+hsT2EGyvbyX32S+h1wlyr75n0nOvhrJWaQVB+nYnbj2lNza8z4mffIdeUxElV90e17bNFdo9wb4EVmt7/IlHubL7t7RmrSH/7O/Gte1AwVGYZJBoe2J+X0ejkkfv/AUX+R6noerzZK+6NG5t63WCjvTF5PrrElYJ0hsM89YdX+NEuZGe428lpWRiC0MPpyo3lW1iLmndM28pAUVRNKMmWEKIl4UQW4f5dwFwO1AFLAPagP8dbwBSyr9IKVdIKVfk5uaO93BlAp75x984Pfgy9bVfwpRXFbd2K/IyqKcQfbcaIqgkh3d2NnCy/ID+irPjdncZoDLHxk4qE1roYk9LJ657PketaCBw3u2YcidXKfRgVXO1YViuBBVKePejTVQ8dxUWXYSM6x9BWDLi2n75/JX4pTFhCeTTzz3N6Zv+FYepgMIvPAB6Q1zbz6g5FoDundM/DysSlTz89z9waevPabKvovyK38b9HLL4aPRECTRO/00OfyjC03/8Np/1PkJj5aXknzr5witDCSHoy1pKZmhmVYJUFOVToyZYUsrTpJSLhvn3hJSyQ0oZkVJGgb/y6TDAFqB0SDMlsW1Kgr30wlOctuMHNFtqqP7cf8W1bYNeR5upggy3qiSoJIfmdx8lVQTIO/aquLar0wk6bfO1tZQSUPRlf0s73X/7HCvZRu/pvyP7qDjNsxxiXlE6W2R1QhbkfX39G1Q+cRHZOjfiyn/EpfDDweaX5rBNVmJsm94L9GhU8o8H7+LkDTcQMNrJvOk5RGp23M8zb+482mUm3mkeZhYIR3jk9h9xWd0PaU9bSMlN/4zLvMCD5dZqCeR0V4J0eAK8/JsvcKnjLhqKPkPZ1XfEted4gKlc60FO1A0ORVEOb7JVBAuHPLwIGLhd+yRwuRDCLISoBGqAmVGO6QgViUqefuh21rzzJdzGLPJvfAIMprifx5VeTU64fcZUT1OUkQTCEcqan6HPmIex8ri4tx8eLHQxvb1Y73z4MaG/nsFKuZmutb8g97j4zbsayqjX0Za2kBzf9C3IG4lKHn/4Tpa/dDkmPUSvfYa02IT/eDMb9DSnLiTfvXPa5in5g2Eevf2HXLTzmzhSyrDf/ArGrLIpOdecXBtbxVxs3ZumpP3hdPY5efnXN3BF1+9ozj2Bkq+9iDCnTcm5BipBRhqnLwHZWd/MJ78+n3O9j7N/zlWUf/G+uPaMD1W2aA0BaZgxlRIVRTnQZOdg/UIIsUUIsRk4GbgFQEq5DXgE2A48D3xVSjlzVvw7wmzdtpm3f3Y+5+78Hr3WSuw3vYjRPuyUuMnL1SoJBtp3TE37ihInGzbv5lg+wVV9QVxKJx8svWoFAN17pqfQhZSSdesepubJCygW3fRdeD/5aye/ptDhRAq1YVjhlqnvxep1+Xj6tzdx0Y5v4EopJvWmV0mviN+8ueH4i1ZjIki4eeOUngdgV30z7/3yfC7t+j3NOcdR+PVXp+73NNowsx77EnKCLeCe+vnP727aTNvvTuUc7zr2zbmaspseB5N1ys6XYzOz3biI3N6PIBqdsvMMePXVF0m5+xSOjbxP06ofMOfq26YsuQJYVJbHdlmJvkXdu1aUmWhSVxVSyqullIullEuklOdLKduGPPdTKWWVlLJWSvnc5ENVxiMcDvPeG0/z5s8/y7xHTmJ18F12zfsqZd98HUt26ajHT5StRBuq071/85SdQ1Hioeu9hzCIKIUnTE0PT3X1PHqlDW/91A8x6+p38+xv/4XzP/4KUVM6hi+9TO6yz4x+4CRlxRbk7dj25pSeZ8P779H065O4wPkg+0o+S/E33sScWzml5wTImHcSUSno2vzylJ0jGpU89eSjpNx9MseF3mX/su9Q8dUn41ZR73BEudZz69n92pSdIxSO8OT//Zb5j59FDU20n3E7VdfcFvc5ZcPpy1tFatSF7Ji65RL6XD7W/fG7HPfGFdj0EVyXP0HpZ741JcMCh7IY9dTZllLg3g5Bz5SeS1GU8Zv633DKtHG6Xez94CVc216guvsVVtOFFwvbSq+g+oLvUptbPuUxFFYuJCT1eFpUJUFlakSiknDsjrRAIAQItMphYowXNf5QhKr252izzKGwKH7VvYaak5vGO6Ka6s6p7d1Zv+Fd7M/fzDnsZVfxRcy99g9TNuzqYCvmV7PrqRJS9r0OxK8i6QC3L8Drf/8Jp7X+mZDOTPPJv6PqpOvifp6RHFU7h51PlZG+/60pab+1q5st936Tc1xP0G0swPO5J5hTe+KUnGs4c5Yeh3NTCv2bXyT1qPhV8RuwY/du+h+5mfPD79GQuoiCa+6ioKA27ucZSca8k6Htv+na8ip5hUvj3v76d98m/YWvcyG72Z9zEmXX3YkhbfqKdflLjse4+1GCdesx1Z45bedVFGV0KsFKUtGopLmpjvbtbxNq/ABb9yZqg9s5SoQIST17bUfRu/DbzD/5CpamTP2d0AEV+RnUyQJ03bun7ZzKzBeKRHF6A7gdvXicffjc/QQ8DoJeByGvg4jPRdTvhKAbXdCFCHkRkSAiGkIXDaOT2v96GQIZJYyBEHrCsX9BDHhIwadLw2fIIGhMx2fKIphahDG7nJysLAozUiiyp1Bkt1BXt5e1Yhf7a78xZa9ZpxO025dzfP/d4OmBOBcq6HV6ePf/fsRpnfcQ1JloPf0Oao+9Iq7nGE22zcybKUdzTv+zWjEPY0rc2t7wwQekPPuvnCt3sDfzeEqv/TMlmSVxa38s8tItvG1Zyjn9z0M4ELdiDOFIlOefeZQlH36fM0UHuyquYO7nf4Uw2+LS/lgtLc/hTRayvDW+lQT9wTAvPnwbJ+79BZUixO6l32XuBd+d0iFzwzlqySLqX8lH7Hkdzrglbu32uby89X8/5syOOwnqzLSc/HvmnHDNlPdaHSxv4VoCuwz0fPIiRSrBUkYRiUr8oQj+UIRAOIqE2ELqEmQUEKDTY9QLrCYDKUY9et30/kzPJirBmumiEVyddXTVbcXZvJNQ5y7MjjryAg2UiV7KgJDU02SsZHvRZ0mZfwZzVpzBfOv0JVVDmQ162ozlzFeVBGetcDhCv9OBs7cTd18nPmc3AWc3EXcP0tuDzt+HPtCPOeTAGnZgi7rIwEUmHrKFHLV9P2YCuhQiwkhEZyRqMBDVGZE6I1JnQAg9esLopB9dNIROhtFFw5gibsxhN7pIFCKAH3ACbdAvU2mWueyVRbwVLSFXOFhrgOLVn53S75WoOB423Y1r9xukLY/PuaSUvPbaCxS/+R3OoYFdOadQedUfScssikv74xWsOAnTrifw712PZf7kF/rt6HXw/n0/4vSe+wgJE3XH/4rqU7847RevA4Klx2Ha9yTBuncx1ayddHvb9+yj7dFvcW7gVTqNhXRe8Bi1i0+bfKATYNTraM85hqyeP0BvHWRNftjlxg/fRz77bc6PbKLeupDsK//G3JIFcYh2/EoyrTxtWsIp3W/HJUGORiWvvfQkpe/+gPNpYG/2SZRf+2fSMgpHP3gKrK4t4SM5lzn1UztEV0ksfzBMX38fbkcPPmcPQXcfIU8vYU8/UZ8D/P3oAk70QSf6sAdd2IcxGsAk/ZiiAUwEMMsgKQSwEMBCFAHohvl7HJY6/JjwY6IfE0FMeEUKLpGOz2gnZM4kmpIFtnyEvRRzTjlZhXMoz8/Cbo1/4bRkphKsGSLk6qajfiv9jTsIde7C2LefdG89+eFW0ggxMODHKa20G0toz1pJW+FS0quPoXT+auakpCY0/qGcaVVk92+I+x1tZWpIKXF6vPR1teLqbsXX10HA2UHU1QneLoy+bizBPmzhPtKj/WRKJzkiRM4I7Xmx4NKl4zekE7Da8ZjKcFoyabBkIqyZGKx2TNZ0zLYMUlLtpKZnkmJLR5jTwWTDojdgmeiLiUYh4ARfH7g7wdEEjiZsvY3M6d5Pdc9uLvRoC8d6rcVYixZN9ExjUr74eHwfm+jd/lpcEqym9m623P9dznQ+hkOfScvpf6P2mM/FIdKJK112+v9v787D26rOxI9/jxZr8SZbsi15j2PHSZyEBFKWQGnYt0CYFhi6TFuG+TH9TXnaztBpoQU6XShdgJa2TJ+nLS20ZQhryw4NIRCmkBBCErLacbzvlmzLm3ad+UMCQkjIgmx5eT/P4ye6V0dXr3J8ru+rexZCe030bX+O8o+QYMXimpeefYiazf/FpaqbhsLzqPzM3czJm7iJHo6GZ9kFBBpvYWDTQ5R8hARrLBjm5f/5CWe03kONCtNY+6/M/dR3UBnpPXfb558Df/8l/dueoeDs64/7OL2+Qd564BbO9j1IRGXQuPxWqi/+2qTftTrYQPkF2JvWEqx/EWvdJcd9nIamFtoe/gbnBl/Aa3DRed5vqT71yrQl/gDZVjMtuSdz2sh9ifWwctLzJYs4etFoDL9/gGFfD2ODvQT9fURG+omP9ENgAFPQR0ZoCFt0kKyYn6z4KNmM4TnCl5NjWBlTWYQNNiJGK1Gzlagxj6DRyrjRStxkQ5tsYLZiNJoxGA3JLvUKrQwkOtprDLEwRIMQDSSu4aJBLJExciJD2KLdZI76sY8EoO/979+vc9mhCvBayhjPnoN21mAvXkBR5ULmeJzYM2ZfujH7PnEaxcMBfO178bXtJthdj/I1kjnaTEGonVxGKCWxYFhYG+lUbnotZTQ5VoCzGrtnPgWVdZSXVTDPmPoZz1JJu2oxDsWJ9DVgLkl9v3dxdMYDAby9Hfj72gn4Oon6u9CjfahxLxlBH7bwAFmxQRxxP7lqjEMt0xrCzJByMGrKI2Bz0WWppcPmRNnzMWU5ych2YctxkZVfSHZeIZZsF3aThYmbG+wIDAawORI/dh10HgAAF9lJREFU+XOAxFoxJg442YVGoL8ee6Zrwi+OFpUXsJUaKjs+2mK14UiMdU/ez6K3b+di1Ud92RXUfOYO8u15KYr0+J1YXcIW5jOv+YVEd5Pj+D/dubeewb98nfNCG+gxF9Nz8f8w78TjvxhOpVPml7NencTpzc9CLHrMkzNorXn11XU419/IJXofTdknYrj6HqrTdFfnYKd97FQaXy3Gsu0xOI4EKxKLs/6pP7Fg6w+4SPWxp/Ai5nzmLqrTdEf1YLWnrWJo/3cY2biGsuNIsEaDYV5+8C5WtPySOSrA3qprmHfV9zFYJ2ec45FYFl0Gr99H/xuPUHDuV9MdzqwUCIbx9XUx7O1gzNdJ2N9NfLgXw1gf5qAXa2SQzKif7Lgfhx7GqWIcqsN4SJvxG3IYMToImHLps5fSY3WA1YHR7sBkd2DOzCMjKw9rVj72XCeZuU7M9lwyjWYm7auaaIj4cDejfc2M9jYz3tdCdKAV20g7iwM7cXnXgxeoh7hWdGoX202lDGdWEs2bi6WwBmfZfEor5+HKsR312OnpRhKsFNPxGL7uFrwtuxjrqkf7GrD6W3CGWimM9VGgNO8Mge3TeXSbS+nOWUk0r4qMolryyhZQMmcBc7JsTPwcWRPDXloHjeBrfhu3JFgpFwoFGejtYKivPXEyH+xED3djHOvDGuojM+wlPzZAHsOUH+JbryGyGTY4GDPnMWifR7/VBZkFGHMKseQWYc/zkO304CgoxmLNoUgpitLwOSeMJRtKl0/KW1nNRnqdp3DKwB+I+7sw5B77RecbWzYTf/abXBTbQldGBb7LH6e27pwJiPb4WM1GWt0XsqL3DsJtm8moOPnIL0rqGxjijTW384ne+6lRUfbMv575n7oZNYXufFtMRnwVq8hufZ1Aw3psx3CXbu++fXQ8fgtnjT+P35BL85k/o+qsa9J61+NgboeNxx3ncPnwn4n7mjE4j/4vz6bNrxN7/hbOj22my1xGz6pHWLD0/AmM9th9bK6bZ4yncm7HixAJgvno7o/H45pXXnySwte/xyrdSHPmEoxX/Yr5lVPrb9oZp53O7r9X4Nz6AJzzlSn1uzWdaa0ZGRvF19WMv7eNwEAn0eFe1GgvpkA/1pCXrMgAjuTf2tJD/K0dwY7f4GDc5GDUVsKQdREtVicqy4Upy0VGTiF2RyFZ+W5ynEVYbDkUKkVhGj7vMTFZMORXkpNfSc78sz74fHiMUG8DvtZdjHbuQXv3UTrcjGvkOWwjQWgD3kzcTGhRRXgzSglkVaCcVVgL55JTWI7TXUG+y41hit9Q+DCSYB2n4PgoHft3Mti2k3BPPZahRhzjrRRHO3Cp0Lvdp0a1lS5jCa22hTTkrMJQUENW8XwK59ThKSigcAYOIPRULSK83shI6zbcZ/xTusOZVsKRKP097Qx2NTHa30JkoB013IFlvIecUA/5sX6c2o9HaQ7s9R/TikHlwG9yMm4rosW6mKYsN6ZcD5a8EjJdJeQUlJHr9OAwZ+BI1wechbKWfhLDS7+n7bUHKb/ohqN+XXuPl7fX3Mq5gw8RVWb2Lb2Rmku/DkbzBEZ7fMo+/hnGHvklvrW/oPxf/nzE8sFwlFf/8hsW7L6LVaqfxrwz8Pzjz1jgmTcJ0R67+R//JEMtP2T4pV8dVTfIXt8g2x6+jdN7/sRcFWXfnM9Sc9UPpsQdx0Oxn3oN8RceoOdvP6f003cfsXxTczNNj93CypFnCCkLDYtvoGb1N1EpmgQklQwGxWjtp7DtWUffq7+n8Ox/O+Jr3tr2FuPPfJuzIq/hMzhpPuNO5px97ZRMXgpzrDzrXM0XB39BrHMrxtIT0x3SlKe1ZnjYj7e7heHeVkK+NqJDHRhHurEGesgK9+GMeclXIxw8mj2ijQwY8hgx5ROwefDbltCcWYghuwiLw4PdWUxuQSmOghKyLZlMjfuckywjE0vZMorLDlqnUGvi/i58HXsZbN9LsHcfxsEmCsfaKBzYjm0gBPveKx7WJnyGfPwmF+MWF305Syi95BssKjlUf5upR2l95EHnk2X58uX6zTcnfkHHYxEMjNG6ZwsjLVuI9+7FOtyEK9iKO9737gDBuFb0GArpt5Qn+p665mH31OKqqMNdUonJlN4+6JMtHI3T8P0TycxxMueGdekOZ0oJhsJ0te9nsKOBUP9+9GAL5pEuMoPdOCL9FGgvGer9a3KPY8VndOHPcBO0uYlleTDmFmPJ85DlKsNRVI7D5UFNwQtvAcPBCO23L8dlM1D0zbeOeJE2PB7ktcd+xQmN9+BRA9QXXUzl1XdgSfNYpA8Tj2v++uPPszr0NLHrNpBRvPiQ5UKRKP/7/Brcb/2cOr2Ptoy5ZFz0Q9zLLpzkiI+N1ppH7voKV438kdFPP0FW7cpDlvMODrLl8bs5oe1+3GqAPY5PUHrFT8gunT+5AR+jUDTG2h9ewQXxDaj//xqmokNPpd7U2sK+J3/KCu9j2FSI+tIrqbny+2TkTu173L6RIO13fJxKk5fcG95CHSbR3bFzO97nf8zpI88TUyZa5v8/ai+/CYN1cmd3PFbrN2/jrGc+QeOJN1N92X+mO5y001ozODhAX1s9I92NBL0tGIZasY11kBvuxhXzkqs+uHbYIDkMmlyMZhQStnvQOR5MjjLsrlJyCspwFJZhy3FOyUR72tOa4f52vO0NjHg7CA10EhvuwjjWiy3YT07Uy7b4XGxX/obz69zpjvZ9lFJbtNYf6BYjCdaH2PTwTzlp1w8xqcSaOwGdQaeplCF7JZG8aizuBeRX1OGpqsNim9on4Mn2tx9dzYrQq2Td2jHrTkb+oQH6Wvcy1NlA2NuEGmrFPtaOM9RFke57XwIV1Qa8BieD5iICNjexrGIMjnJsBeXkuufgLK7Cmi0n9OluzW9+xNVdtzN46R/IO+nQk10EQhE2PHU/1Tt/xlw6aLEuIPvSH+GsWzm5wR6nV9+up+6xswlbCyi8fi2GA9YDGhgaYvsL9+PZex/zdRP9hkL8p/wH1eddl/ZJEI7W7rYe7PeeSa4xguWfn8JempggRWtNw94ddK7/LYt7n6BA+dlvP4GsC79D0ZKp05XzSF56YxtLn7mEiCWf3OuewuqqBCAWi7N90zpGN/2Rjw09j4UI9fln4f6HH5BXXpfeoI/Bo08/zerNn6fbsYzS6x7FkJlIskLhMFs3PEl8y584eXwDcWVgX/HlzL3iu1jzJ3dZgOMVCMfw3zYXX8Ep1F3/ULrDmRTBUJjutkb8HXsI9jagB1vJGOkgJ9RFYbTnAwnUGFb6jW6GrR5C9mJ0TjHmvFLsrnIc7kry3RWYrVNnsjAxfUiCdRwa3noF35a/YC1bhqtmOZ6KWkwm6VV5NJ78w4+4rPV2Il/aiNm9IN3hpFw4HKGztR5vyy4C3XswDjSSM9aCO9JOAUPvKztEFl6Th1F7KdGcCkyuOWS6q8krrSHfXYXBJHeeZrq2Pj/Be1ZQYBzH/m8vYXG9N86l3+tj23O/pWb//VTSRbeplMjKmyk//eppl1g/+NCf+YfdXyNosNNeuJKAIQvjYBO1gW1kqQBdxhJGll/PvPOunZLdyY5k7csvs3T958lTI7Ta6hgzZJE73kaF7iSmFQ3Zp5Bz3n9SckJ6pl3/qB565EEu3vnv2FSYFttCgtpMUbCZAgYJYabedT5ll36LvIqJnX1zIsTjmjX33sGVHbcTVhl02OYTi8UoCe0nV40xTBatZaupvvxGbM7ydId7zDbedj7l8Q6Kb9md7lBSRsfjeHs76GnexWjXXmL9jViGm3EG2yiJ92BRkXfLBrWZPmMRfksxwcwStKMCS0EVuZ65FJTNI9NRMO3Op2J6kARLTKq1f3+d89ZeSOeK2yg5//in/k238UCAjsYd+Fu2EunZg2WokbxAGyWxrved3IfJojejPDFLTn41lsJqcktqKCqvxZ6T2gVmxfT0/LoXWbHhcyhloKngLAKGbDIG91EX2oZFRWnJqCF2ypeZu/JzU3Kc1dHQWrN23YtkbvwpdZGdWAnTbyykP385rhX/RPmyc6f9Rc72vQ30PH8nnuHtZBJg1OohWr6CmrO+QE5RRbrD+8g2b92O7+V7KB3ZhknBWFYF5upPUHvWZ7FkTc0xZEcrHte8smEd8c334gk0og1mgrlV2BacR+2ZV2HMmDqTqxyrv917K+e3383Iv24me4qOZTyccDROe0c7vqathDp3YPbtIX90H55IO9kq8G65iDbSbSrGbysn7KjC4Kohs7gWZ9kC8ovKUIbpOyGCmL4kwRKTqm84QOTOOoIFS5h7/V/THc4RRWNx2jra6GnYQrBjOxne3RSM76cy3oZFRRNltIEeoxuftYJw7lxMRbXkli3AU7UEm6Nw2l84ion3+hsbYd13qQnuJIsAfSYP/UVnUHzaVXgWrZxRv0OhaAyzwYBhBk7kI8RUs2PndhY/eia76m6g7spb0x3OIWmt6fL56dy3leGW7dC3m9yRBsojzRSpoXfLDZFNp6WK0ey5qGQSVVBRR0FpNeoYl0kQYqIdLsGS31QxIQpzbDxtPY3zvGshPAZpXkzzQP6RMVobtjLYvA3ds5Nsfz1l4Saq1BBVyTIDKo9eezW78k7H6FlM3pyleKpPoDTDyvTolS+motNOPhVOfo53vtgqV4rp1xnp6Fhm2eQ+QqRT3cIl7FC1uPaugfjNiTUB02g0GKG5cQ++pq1Eu3diG6ynKLifSt1FSXJcexgT3RmV9BeuoL9wIZllSymsWYYjvwTHDPqyScxOkmCJCRNbuBrL1qfp3biGojOvnfT3j8c17W3N9OzbQqDjbSze3bjGG6mIt7MkOdFEGBNd5kq6XSvoKaojd86JeOadRH5uEfmTHrGYLWbqwopCiPQwGBS9C77A4t3fomnDA1StnJwlUuJxTUd3N10NWxhrfxtj/x6cY/uoiLWy+IDufb2GIgZyqtnjugh72RKKak4iy1NLhdyREjOUdBEUE8Y7EsR7x3LyrAaKvvEWTOCJ1D8yQnv9NoZatqF7dpDtr6c03IxL+d8t06+c9NmrCTkXYi1ZTFHNSeSXL0SZMiYsLiGEEGIyjAZCdP3kZPIZJuurr2N1pHY665GxMdoatjPQvJ1Y906y/PWUhJrwKN97MZBJj20u445azMWLya9aSuHcpSjr9Fi7SIhjNSFjsJRSDwHvLJjhAIa01kuVUpXAHqA++dxGrfWXjnQ8SbBmnof/9N9ctf8m2pZ8jfJPfvcjHy8ajdLRXE///rcIde4gw7eXwkAjpfHud6fTD2Km01yJP6cWVVRHbuUyimuXY80tOMLRhRBCiOlr02vrOeGFK/FleMi+9gly3FVHftFBAsEwHU27GGrZTqR7F+aBBlzj+ymNd2FO9v6IYKTbVMZQ9jx04QJyKk7AM285Vmf5jBpLKsSRTPgkF0qpOwG/1vp7yQTraa31Mc3lKgnWzDMajLDpzk9xTuQVmmu+SOUVt6EsR14zzO8fortpF/7OvYR7GzAPNZE73kp5tJVMFXy3XJfBjdc+l7BzPtaSJRRVn4irYoEsuiuEEGJWevHZxzhl05cxqxh73KuxLLiAgoo6MvPdxDUEwxFCI16G+rsYHegm4mvF5G/BOtJGXqgTd7z33cmd4lrRYyjCa68ikl+LtWQRhdXLcFUumpZLLQiRahOaYKnEgII24Gyt9T5JsMSBOvoH2fa7L7Mq9Axj2GjOXk44p5K4JYtYXKPCY+jgMBmBXrLD/eTFvDjxv+8YfcqJ11LOWE41BncdeXOWUjJvGZZMR3o+lBBCCDFF1e/ZQf9T/8XHxl5535IihzOKjV6jhxF7KbHcSkzuBeSWL8E9dwnWzJxJiFiI6WmiE6wzgbveeYNkgrULaACGgZu11q8e6TiSYM1c4WicDeuexvz2A5SPvY1H92NNnvRD2kRA2RgwOhnNKCRoK4LcMizuWvLLF1BUsZAMe3aaP4EQQggxvfgGBujY/TqjvU2ocR9KKUxGI9rqwJbnxuFyk19STaajSLr2CXEcjjvBUkq9CBxqpOS3tdZPJMv8GmjUWt+Z3LYAWVprn1LqJOCvQJ3WevgQx78OuA6gvLz8pNbW1mP6YGJ6isTiBIJBrGYTZrNZZlUTQgghhBDTyoTdwVJKmYBO4CStdcdhyrwMfF1r/aG3p+QOlhBCCCGEEGI6OFyClYqV6M4F9h6YXCmlCpRSxuTjKqAGaErBewkhhBBCCCHElJWKhYmuBh48aN+ZwPeUUhEgDnxJaz2QgvcSQgghhBBCiCnrIydYWusvHmLfY8BjH/XYQgghhBBCCDGdpGwdrFRQSvUDU22WCxfgTXcQYtJIfc8eUtezh9T17CL1PXtIXc8uU7G+K7TWBQfvnFIJ1lSklHrzUIPXxMwk9T17SF3PHlLXs4vU9+whdT27TKf6TsUkF0IIIYQQQgghkARLCCGEEEIIIVJGEqwj+026AxCTSup79pC6nj2krmcXqe/ZQ+p6dpk29S1jsIQQQgghhBAiReQOlhBCCCGEEEKkiCRYQgghhBBCCJEikmB9CKXUhUqpeqVUo1LqxnTHI1JHKVWmlFqvlNqtlNqllPpqcn++UmqtUmpf8t+8dMcqUkMpZVRKbVVKPZ3cnqOU2pRs3w8ppTLSHaNIDaWUQyn1qFJqr1Jqj1LqNGnbM5NS6t+T5/CdSqkHlVJWadszh1Lq90qpPqXUzgP2HbItq4RfJOv9baXUiemLXByrw9T1T5Pn8beVUn9RSjkOeO6mZF3XK6UuSEvQH0ISrMNQShmBe4CLgIXAp5VSC9MblUihKHCD1nohcCrw5WT93gis01rXAOuS22Jm+Cqw54DtHwM/01pXA4PAtWmJSkyEu4HntdbzgRNI1Lu07RlGKVUCfAVYrrVeBBiBq5G2PZPcB1x40L7DteWLgJrkz3XArycpRpEa9/HBul4LLNJaLwEagJsAktdrVwN1ydf8d/K6fcqQBOvwTgYatdZNWuswsAZYneaYRIporbu11m8lH4+QuAArIVHH9yeL3Q9cnpYARUoppUqBS4DfJbcVcDbwaLKI1PUMoZTKBc4E7gXQWoe11kNI256pTIBNKWUC7EA30rZnDK31BmDgoN2Ha8urgT/qhI2AQynlmZRAxUd2qLrWWv9Nax1Nbm4ESpOPVwNrtNYhrXUz0Ejiun3KkATr8EqA9gO2O5L7xAyjlKoElgGbgCKtdXfyqR6gKF1xiZT6OfANIJ7cdgJDB5y4pX3PHHOAfuAPyS6hv1NKZSJte8bRWncCdwBtJBIrP7AFadsz3eHasly3zWz/DDyXfDzl61oSLDGrKaWygMeAr2mthw98TifWMJB1DKY5pdQqoE9rvSXdsYhJYQJOBH6ttV4GjHFQd0Bp2zNDcuzNahJJdTGQyQe7GIkZTNry7KCU+jaJoR0PpDuWoyUJ1uF1AmUHbJcm94kZQillJpFcPaC1fjy5u/edLgXJf/vSFZ9ImdOBy5RSLSS6+p5NYoyOI9mtCKR9zyQdQIfWelNy+1ESCZe07ZnnXKBZa92vtY4Aj5No79K2Z7bDtWW5bpuBlFJfBFYBn9XvLd475etaEqzD2wzUJGcjyiAxmO7JNMckUiQ5BudeYI/W+q4DnnoS+ELy8ReAJyY7NpFaWuubtNalWutKEu34Ja31Z4H1wBXJYlLXM4TWugdoV0rVJnedA+xG2vZM1AacqpSyJ8/p79S1tO2Z7XBt+Ung88nZBE8F/Ad0JRTTkFLqQhLd+y/TWo8f8NSTwNVKKYtSag6JiU3eSEeMh6PeSwbFwZRSF5MYu2EEfq+1vi29EYlUUUqdAbwK7OC9cTnfIjEO62GgHGgFrtJaHzzAVkxTSqmVwNe11quUUlUk7mjlA1uBz2mtQ2kMT6SIUmopiQlNMoAm4BoSXyhK255hlFLfBf6RRPehrcC/kBiLIW17BlBKPQisBFxAL/Ad4K8coi0nk+xfkegmOg5co7V+Mw1hi+NwmLq+CbAAvmSxjVrrLyXLf5vEuKwoiWEezx18zHSSBEsIIYQQQgghUkS6CAohhBBCCCFEikiCJYQQQgghhBApIgmWEEIIIYQQQqSIJFhCCCGEEEIIkSKSYAkhhBBCCCFEikiCJYQQQgghhBApIgmWEEIIIYQQQqTI/wFDGm6F7ENh4wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADX6klEQVR4nOzdd3xc1Znw8d8zRTPqvRdLrrgbsE2zaUlooYZiCBBKCAvZJMBCenPYZTcvYUMCZENCICRATG+hVwMmNNvYxr3KlmzJ6l2jaef9445k2VazNaNReb4fhGbuPffcZ+7VjO8z59xzxBiDUkoppZRSSqnBs0U7AKWUUkoppZQaLTTBUkoppZRSSqkw0QRLKaWUUkoppcJEEyyllFJKKaWUChNNsJRSSimllFIqTDTBUkoppZRSSqkw0QRLKaWGGREpFhEjIo5ox6LGBhFZJyInRzsOpZQaDTTBUkopNeKJyP0i0hL68YqIr9vzV6Md33BnjJlujFkazjpFxCUiD4lIk4hUish/hLN+pZQarkQnGlZKqfASEYcxxj+I7YuBHYBzMPWMVSKyGJhojLmih3WDOjdDaSTF2hMR+R9gAXAukAO8C1xtjHktqoEppVSEaQuWUkqFgYiUisgPRWQN0CoiDhE5VkT+JSINIrK6excsEVkqIv8jIp+GvuF/QUTSeqn7GhHZICLNIrJdRP7tgPXniciqUD3bROSM0PJkEXlQRCpEZLeI/JeI2Pt5HRNE5B0RqRWRGhF5TERSuq2rE5GjQs/zRKS683WJyLmhrmYNodc39YDjc5uIrBGRRhF5QkTch36kD10v58aIyMRuZR4Wkf/q9vzs0DFtCJ3DWQPc18kiUi4iPwkdv1IRubzb+q+KyOehc1UWSgY713V2Df2miOwC3gktfyrUAtQoIu+LyPQD4v4/EXk11Fr3oYjkiMjvRKReRDaKyJEDPEZfHshrPARXAf9pjKk3xmwAHgCuDvM+lFJq2NEESymlwucy4KtACpANvAz8F5AG3AY8IyKZ3cp/A7gWyAX8wD291FsFnA0kAdcAd3dLcuYDfwe+H9rviUBpaLuHQ/VOBI4ETgOu6+c1CPA/QB4wFSgEFgMYY7YBPwQeFZE44K/A34wxS0VkMrAEuBnIBF4B/ikiMd3qvgQ4AygBZtHLxbaILAglNr39LOjnNfSk69z01yoUSkgeAv4NSAf+BLwoIq4B7isHyADysZKMP4vIlNC6VqzznhKK50YROf+A7U/COvanh56/CkwCsoCVwGMHlL8E+Flonx3AR6FyGcDTwG8HGHePRORHfZ2PXrZJxfq7Xt1t8Wpgek/llVJqNNEESymlwuceY0yZMaYduAJ4xRjzijEmaIx5E1gOnNWt/CPGmLXGmFbg58AlPbUwGWNeNsZsM5b3gDeAhaHV3wQeMsa8GdrPbmPMRhHJDu3rZmNMqzGmCrgbuLSvF2CM2Rqqq8MYU411cX5St/UPAFuBT7AuoH8aWrUIeDm0rQ+4C4gFjj/g+OwxxtQB/wTm9BLDMmNMSh8/y/p6Db3ofm76cz3wJ2PMJ8aYgDHmb1iJy7GHsL+fh47he1iJ9iUAxpilxpgvQudqDVZSetIB2y4OnbP20DYPGWOajTEdWMnubBFJ7lb+OWPMCmOMB3gO8Bhj/m6MCQBPYCXXh80Y8+u+zkcvmyWEfjd2W9YIJA4mFqWUGgk0wVJKqfAp6/Z4HHDxAd/0L8BKSnoqvxNwYrU67EdEzhSRj0Pd8xqwEqfOcoXAth5iGReqr6Lb/v+E1QrSKxHJFpHHQ10Km4BHe4jpAWAGcG/ooh+sFq+dnQWMMcHQ68vvtl1lt8dt7LsIHwpl/RfpMg649YBzV4j1GgeiPpQ0d9rZua2IHCMi74a6VjYCN3Dw8e2KVUTsIvJrsbp+NrGvdbL7Nnu7PW7v4flQHudOLaHfSd2WJQHNUYhFKaWGlCZYSikVPt1HDSrDaqHq/m1/vDHm193KFHZ7XAT4gJruFYa6pT2D1SKUHWoxeAWrK1/nfib0EEsZVqtLRrf9Jxlj+uui9d+h1zHTGJOE1RLXuS9EJAH4HfAgsFj23Te2Bysx6Swnode3u5/9HUREFsq+EQB7+lnYfy0HOXBEpzYgrtvznG6Py4A7Djh3ccaYJQPcV6qIxHd7XoR1fAD+AbwIFBpjkoH76XZ8e4j168B5wJeBZKA4tPzAbSImdD9Zr+ejp22MMfVABTC72+LZwLqhiFkppaJJEyyllIqMR4FzROT0UCuEOzQAQkG3MleIyLTQ/Uy3A0+HunV1FwO4gGrALyJnYt1L1elB4BoR+ZKI2EQkX0SOMMZUYHUl/F8RSQqtmyAiB3ZHO1AiVutDo4jkY93b1d3vgeXGmOuwur7dH1r+JPDVUBxO4FasBO9f/R2oAxljPjDGJPTx88Gh1tmDVcDXQ+fmDPbvpvcAcEOotUlEJF6swSkSoWtgiYf7qf9XIhITSgbPBp4KLU8E6owxntD9c1/vp55ErONYi5UQ/vchvMawMMb8d1/no49N/w78TERSReQI4FtY9wUqpdSopgmWUkpFgDGmDKvl4SdYyVEZVrLS/XP3EawLzkrADXyvh3qaQ8ufBOqxLshf7Lb+U0IDX2Dd4/Ie+1qSvoGVoK0Pbfs0+3dR7MmvgKNCdb0MPNu5QkTOwxqk4sbQov8AjhKRy40xm7Bau+7FaoU7BzjHGOPtZ3/RchNWjA3A5cDznSuMMcuxkoH7sI7bVvYfkKMQ+LCPuitD2+3BGpDiBmPMxtC6bwO3i0gz8Aus89qXv2N1MdyNdR4/7u+FDSO/xOq+uhPr7/I3OkS7Umos0HmwlFIqCkRkKfCoMeYv0Y5FDVxoVMTVwKzQYB4Hrj8Z67wWHLhOKaXU2OCIdgBKKaXUSBFqkZvab0GllFJjlnYRVEqpMUZE7u9lwIL7+99ajUQiUtTHQBVF0Y5PKaVGE+0iqJRSSimllFJhoi1YSimllFJKKRUmw+oerIyMDFNcXBztMJRSSimllFKqTytWrKgxxmQeuHxYJVjFxcUsX7482mEopZRSSimlVJ9EZGdPy7WLoFJKKaWUUkqFiSZYSimllFJKKRUmmmAppZRSSimlVJgMq3uweuLz+SgvL8fj8UQ7FDUMuN1uCgoKcDqd0Q5FjVI7d1ew+rGfUPK1xcycOC7a4SillFJqhBn2CVZ5eTmJiYkUFxcjItEOR0WRMYba2lrKy8spKSmJdjhqlNr45oOc2/Ys7z7fAbf9I9rhKKWUUmqEGfZdBD0eD+np6ZpcKUSE9PR0bc1UEeWu2wDA5JZPCQR1InallFJKHZphn2ABmlypLvq3oCKtsHUdAPlUs2Nnj6OvKqWUUkr1akQkWEopNVSSg/XsshUAUL35oyhHo5RSSqmRRhOsARARbr311q7nd911F4sXL45eQN2cfPLJfU7OfP7553Psscfut2zx4sXk5+czZ84cZsyYwYsvvhjpMJUaMdzGQ2XyHAC8ZZ9HNxillFJKjTiaYA2Ay+Xi2WefpaamJqz1GmMIBoNhrbO7hoYGVqxYQWNjI9u3b99v3S233MKqVat46qmnuPbaayMah1IjhjHEmg58sZlUSwb2+u39b6OUUkop1Y0mWAPgcDi4/vrrufvuuw9aV11dzYUXXsi8efOYN28eH374IWC1Et11111d5WbMmEFpaSmlpaVMmTKFb3zjG8yYMYOysjK+//3vM2PGDGbOnMkTTzwBwNKlSzn55JO56KKLOOKII7j88ssxpucb7h955JGu1qhPP/20a/mzzz7LOeecw6WXXsrjjz/e47ZTp07F4XDslzz+6Ec/Ytq0acyaNYvbbrsNgNLSUk499VRmzZrFl770JXbt2gXA1VdfzY033sixxx7L+PHjWbp0Kddeey1Tp07l6quv7qrzxhtvZO7cuUyfPp1f/vKXB8XR2NjIuHHjuhK91tZWCgsL8fl8PcatVCR0dLRhE4PNFUedu5DU9l3RDkkppZRSI8ywH6a9u1/9cx3r9zSFtc5peUn88pzp/Zb793//d2bNmsUPfvCD/ZbfdNNN3HLLLSxYsIBdu3Zx+umns2HDhj7r2rJlC3/729849thjeeaZZ1i1ahWrV6+mpqaGefPmceKJJwLw+eefs27dOvLy8jjhhBP48MMPWbBgwUH1tbW1sWrVKt5//32uvfZa1q5dC8CSJUv4xS9+QXZ2NhdeeCE/+clPDtr2k08+wWazkZmZCUBtbS3PPfccGzduRERoaGgA4Lvf/S5XXXUVV111FQ899BDf+973eP755wGor6/no48+4sUXX+Tcc8/lww8/5C9/+Qvz5s1j1apVzJkzhzvuuIO0tDQCgQBf+tKXWLNmDbNmzeqKIzk5mTlz5vDee+9xyimn8NJLL3H66afrfFdqSLU2N+ECbDHxtCeVMK7yDXyBIE67fhellFJKqYHRq4YBSkpK4hvf+Ab33HPPfsvfeustvvOd7zBnzhzOPfdcmpqaaGlp6bOucePGdd0XtWzZMi677DLsdjvZ2dmcdNJJfPbZZwDMnz+fgoICbDYbc+bMobS0tMf6LrvsMgBOPPFEmpqaaGhoYO/evWzZsoUFCxYwefJknE5nV+IFcPfddzNnzhxuu+02nnjiia7R+ZKTk3G73Xzzm9/k2WefJS4uDoCPPvqIr3/96wBceeWVLFu2rKuuc845BxFh5syZZGdnM3PmTGw2G9OnT++K+cknn+Soo47iyCOPZN26daxfv/6g17Fo0aKuFrzHH3+cRYsW9XkclQq3tlbrCxyHOwHSJ5IqLVTs2R3lqJRSSik1koyoFqyBtDRF0s0338xRRx3FNddc07UsGAzy8ccf43a79yvrcDj2u6+p+9xN8fHxA9qfy+Xqemy32/H7/T2WO3DochHhySefpL6+vmtC3qamJpYsWcIdd9wBWPdgdXb/OzDuTz/9lLfffpunn36a++67j3feeWdAcdpstv1ittls+P1+duzYwV133cVnn31GamoqV199dY9zWZ177rn85Cc/oa6ujhUrVnDqqaf2uV+lws3Tan05YnfHE5eRD+uhZtd6igoLoxyZUkoppUYKbcE6BGlpaVxyySU8+OCDXctOO+007r333q7nq1atAqC4uJiVK1cCsHLlSnbs2NFjnQsXLuSJJ54gEAhQXV3N+++/z/z58w8prs5Wn2XLlpGcnExycjJLlizhtdde67rva8WKFb3eh9VdS0sLjY2NnHXWWdx9992sXr0agOOPP75r+8cee4yFCxcOOL6mpibi4+NJTk5m7969vPrqqz2WS0hIYN68edx0002cffbZ2O32Ae9DqXAIdLQCYIuJI2Oc9YVO656N0QxJKaWUUiPMiGrBGg5uvfVW7rvvvq7n99xzT9f9WX6/nxNPPJH777+fCy+8kL///e9Mnz6dY445hsmTJ/dY3wUXXMBHH33E7NmzERHuvPNOcnJy2Lhx4Bd1brebI488Ep/Px0MPPURpaSk7d+7cb3j2kpISkpOT+eSTT3qs46yzzuIvf/kLIsJ5552Hx+PBGMNvf/tbAO69916uueYafvOb35CZmclf//rXAcc3e/ZsjjzySI444ggKCws54YQTutb94he/YO7cuZx77rmA1U3w4osvZunSpQOuX6lwCXZYLVgSE09q3gR8xo6p2RrlqJRSSik1kkhvI9MNuAKRQuDvQDZggD8bY34vIouBbwHVoaI/Mca80lddc+fONQfO6bRhwwamTp06qBjV6KJ/EypS1i19mulLv8m6s55l+vwvUX77NCrc45n3g5eiHZpSSimlhhkRWWGMmXvg8nC0YPmBW40xK0UkEVghIm+G1t1tjLmrj22VUmrYCPqsLoJ2l3WfZKO7gGTPnmiGpJRSSqkRZtD3YBljKowxK0OPm4ENQP5g61VKqaFmOvZPsDyJhWQHKgkEB9fSr5RSSqmxI6yDXIhIMXAk0Hmjz3dEZI2IPCQiqb1sc72ILBeR5dXV1T0VUUqpIWG8bQA43Nb0BJJaTLK0UlVVGc2wlFJKKTWChC3BEpEE4BngZmNME/BHYAIwB6gA/ren7YwxfzbGzDXGzO2c7FYppaIi1EXQ4UoEwJ01HoCask1RC0kppZRSI0tYEiwRcWIlV48ZY54FMMbsNcYEjDFB4AHg0MYeV0qpISa+dgCcbquLYEreJACaK7ZFLSallFJKjSyDTrDEmuX2QWCDMea33Zbndit2AbB2sPtSSqlIMgEvPmMnJsYJQGaRNb2Cv3Z7NMNSSiml1AgSjhasE4ArgVNFZFXo5yzgThH5QkTWAKcAt4RhX1Hz/PPPIyJ9zk9VWlrKjBkzwrbPq6++mqeffrrX9TfffDP5+fkEg8GuZQ8//DCZmZnMmTOHadOm8cADD4QtHqVGPb8XHw5iHNZHozMuhXqSsDfujHJgSimllBopwjGK4DJjjBhjZhlj5oR+XjHGXGmMmRlafq4xpiIcAUfLkiVLWLBgAUuWLOlxvd/vH/Q+AoHAgMsGg0Gee+45CgsLee+99/Zbt2jRIlatWsXSpUv5yU9+wt69ewcdm1JjQsCLDzsx9n0fjbXOHOLbyqMYlFJKKaVGkrCOIjhatbS0sGzZMh588EEef/zxruVLly5l4cKFnHvuuUybNg2wEq3LL7+cqVOnctFFF9HWZo1K9vbbb3PkkUcyc+ZMrr32Wjo6OgAoLi7mhz/8IUcddRRPPfXUQft+6623mDt3LpMnT+all17ab9/Tp0/nxhtv7DXpy8rKYsKECezcue/b93vuuYdp06Yxa9YsLr30UgDq6uo4//zzmTVrFsceeyxr1qwBYPHixVx11VUsXLiQcePG8eyzz/KDH/yAmTNncsYZZ+Dz+QC4/fbbmTdvHjNmzOD666/nwMmrg8EgxcXFNDQ0dC2bNGmSJn5q+Al48eLAaZeuRa1xBaR7R/T3Q0oppZQaQuGYaHjovPojqPwivHXmzIQzf91nkRdeeIEzzjiDyZMnk56ezooVKzj66KMBWLlyJWvXrqWkpITS0lI2bdrEgw8+yAknnMC1117L//3f//Gd73yHq6++mrfffpvJkyfzjW98gz/+8Y/cfPPNAKSnp7Ny5coe911aWsqnn37Ktm3bOOWUU9i6dStut5slS5Zw2WWXcd555/GTn/wEn8+H0+ncb9vt27ezfft2Jk6c2LXs17/+NTt27MDlcnUlPL/85S858sgjef7553nnnXf4xje+wapVqwDYtm0b7777LuvXr+e4447jmWee4c477+SCCy7g5Zdf5vzzz+c73/kOv/jFLwC48soreemllzjnnHO69mmz2TjvvPN47rnnuOaaa/jkk08YN24c2dnZAz5NSg2JoA8fTqxbSy3+pHHkNLxHu8dLrDsmisEppZRSaiTQFqwBWLJkSVdrz6WXXrpfi9H8+fMpKSnpel5YWMgJJ5wAwBVXXMGyZcvYtGkTJSUlTJ5s3TB/1VVX8f7773dts2jRol73fckll2Cz2Zg0aRLjx49n48aNeL1eXnnlFc4//3ySkpI45phjeP3117u2eeKJJ5gzZw6XXXYZf/rTn0hLS+taN2vWLC6//HIeffRRHA4rv162bBlXXnklAKeeeiq1tbU0NTUBcOaZZ+J0Opk5cyaBQIAzzjgDgJkzZ1JaWgrAu+++yzHHHMPMmTN55513WLdu3UGvY9GiRTzxxBMAPP74432+ZqWiRQJe/Ad872RLL8EpASrLdSRBpZRSSvVvZLVg9dPSFAl1dXW88847fPHFF4gIgUAAEeE3v/kNAPHx8fuV7/7Nd0/Pe3JgHf3V9/rrr9PQ0MDMmTMBaGtrIzY2lrPPPhuwkpn77ruvx/pefvll3n//ff75z39yxx138MUXfbcIulwuwGqFcjr3fbNvs9nw+/14PB6+/e1vs3z5cgoLC1m8eDEej+egeo477ji2bt1KdXU1zz//PD/72c/63K9S0SABL37ZvyU4IWcCAPXlmymZODUaYSmllFJqBNEWrH48/fTTXHnllezcuZPS0lLKysooKSnhgw8+6LH8rl27+OijjwD4xz/+wYIFC5gyZQqlpaVs3boVgEceeYSTTjppQPt/6qmnCAaDbNu2je3btzNlyhSWLFnCX/7yF0pLSyktLWXHjh28+eabXfd79SYYDFJWVsYpp5zC//t//4/GxkZaWlpYuHAhjz32GGDd25WRkUFSUtKA4utMpjIyMmhpael11EMR4YILLuA//uM/mDp1Kunp6QOqX6mhZAv68B2QYGUUWC3PbVXagqWUUkqp/mmC1Y8lS5ZwwQUX7Lfswgsv7HVgiSlTpvCHP/yBqVOnUl9fz4033ojb7eavf/0rF198MTNnzsRms3HDDTcMaP9FRUXMnz+fM888k/vvv59gMMhrr73GV7/61a4y8fHxLFiwgH/+85891nHdddexfPlyAoEAV1xxBTNnzuTII4/ke9/7HikpKSxevJgVK1Ywa9YsfvSjH/G3v/1tgEcHUlJS+Na3vsWMGTM4/fTTmTdvXte6+++/n/vvv7/r+aJFi3j00Ue1e6AatmxBLwHZv2E/JbcEv7ERrCuNTlBKKaWUGlHkwBHfomnu3Llm+fLl+y3bsGEDU6dqtxy1j/5NqEjZ9P9Owuv1MvPnH+23fM/tUyiLncYx338uSpEppZRSargRkRXGmLkHLtcWLKWUCrEFfQfdgwXQ4MojybM7ChEppZRSaqTRBEsppUJsxk/QdnCC5YkvJMtfcdAcb0oppZRSBxoRCZZe1KhO+regIskR9BLsoQXLpIwjXZqora+LQlRKKaWUGkmGfYLldrupra3VC2uFMYba2lrcbne0Q1GjlL2XFixX1ngAqnZtHuqQlFJKKTXCDPt5sAoKCigvL6e6ujraoahhwO12U1BQEO0w1ChlNz6CtpiDlifnTgSguWILzDluqMNSSiml1Agy7BMsp9NJSUlJtMNQSo0BDuPrsQUrs+gIALzV24c6JKWUUkqNMMO+i6BSSg0Vh/Fj7AcnWO6kDFqIw9awMwpRKaWUUmokiXiCJSJniMgmEdkqIj+K9P6UUupwOfBheugiiAjVjhxiW8uHPiillFJKjSgRTbBExA78ATgTmAZcJiLTIrlPpZQ6XE78GHsPCRbQHJtPqnfPEEeklFJKqZEm0i1Y84Gtxpjtxhgv8DhwXoT3qZRSh8VpfNBDF0EAb2IRucG9eH3+IY5KKaWUUiNJpBOsfKCs2/Py0LIuInK9iCwXkeU6UqBSKmqCAexioJcWLFt6CW7xsXe33oellFJKqd5FfZALY8yfjTFzjTFzMzMzox2OUmqMMv4OAKSXBCs+2xqqvXb3liGLSSmllFIjT6QTrN1AYbfnBaFlSik1rPi8VoKFo+cEKzXfSrBaK7cOVUhKKaWUGoEinWB9BkwSkRIRiQEuBV6M8D6VUuqQ+bweAKSXBCsjfyJBIwTrdgxlWEoppZQaYSI60bAxxi8i3wFeB+zAQ8aYdZHcp1JKHQ5fRyjB6u0erJhYqmxpOJt2DWVYSimllBphIppgARhjXgFeifR+lFJqMHwd7QCIM7bXMnUxeSS261xYSimllOpd1Ae5UEqp4cDflWC5ey3TFldAhr9yqEJSSiml1AikCZZSSgF+bysAEtN7C1YwZRzZ1NHY1DxUYSmllFJqhNEESymlAH9okAubo/cEy5kxHoC9ZZuHJCallFJKjTyaYCmlFBDoaAPA7uo9wUrMnQBAo86FpZRSSqleaIKllFJAMNSCZe/jHqzMoikAdFRvH5KYlFJKKTXyaIKllFJA0GcNcmF3xfVaJjG9AA9OaCgdoqiUUkopNdJogqWUUkDQZ7VgOWJ6b8FChCp7Lu6WsiGKSimllFIjjSZYSikFGG//LVgAje48Ujr2DEVISimllBqBNMFSSikg6LdasJx9DHIB0JFYRE6gkkAgOBRhKaWUUmqE0QRLKaUAE7oHy9lPC5YttZgE8VBVpa1YSimllDqYJlhKKQUEve0EjRAX23eC5c6yhmqv2blpKMJSSiml1AijCZZSSgHG56EDJ3EuR5/l0gqtodqbKzTBUkoppdTBNMFSSikAnwcPMbgcfX8sZhVNJWCEYLVONqyUUkqpg2mCpZRSgPF78OJERPosZ4txs9eeTUyjTjaslFJKqYNpgqWUUoAt4MErrgGVrXMVkdq+M8IRKaWUUmokGlSCJSK/EZGNIrJGRJ4TkZTQ8mIRaReRVaGf+8MSrVJKRYj4O/BJzIDKepJLyA/swe/3RzgqpZRSSo00g23BehOYYYyZBWwGftxt3TZjzJzQzw2D3I9SSkWULeDBbxtYgiUZk4iTDip374hwVEoppZQaaQaVYBlj3jDGdH6F+zFQMPiQlFJq6DkC7fhs7gGVTcg7AoCa0nWRDEkppZRSI1A478G6Fni12/MSEflcRN4TkYW9bSQi14vIchFZXl1dHcZwlFJq4NzBVjrsCQMqm1UyA4A2HapdKaWUUgfoe8IXQETeAnJ6WPVTY8wLoTI/BfzAY6F1FUCRMaZWRI4GnheR6caYpgMrMcb8GfgzwNy5c83hvQyllBqc2GALlY7xAyqbkl1EOy6o0aHalVJKKbW/fhMsY8yX+1ovIlcDZwNfMsaY0DYdQEfo8QoR2QZMBpYPNmCllIqEuGAbPkfigMqKzU6FI5+4ltLIBqWUUkqpEWewowieAfwAONcY09ZteaaI2EOPxwOTAJ00Rik1PBlDPG34YwaWYAE0xo4j07MrgkEppZRSaiQa7D1Y9wGJwJsHDMd+IrBGRFYBTwM3GGPqBrkvpZSKDG8LdoLgShr4JikTyDFVtLe19V9YKaWUUmNGv10E+2KMmdjL8meAZwZTt1JKDRVPSz1uQNzJA94mJnsy9jLDntL1TJg2N3LBKaWUUmpECecogkopNSK1NloN7I64gSdYSQVTAWjYtT4iMSmllFJqZNIESyk15rU21wPgjE8Z8DY5oaHaO/ZujkRISimllBqhNMFSSo15nlCC5TqEBCs+OY1aUnDUb4tQVEoppZQaiTTBUkqNeR0tVoIVm5R2SNtVxRSS2FoagYiUUkopNVJpgqWUGvN8jZUAJGbkHdJ2zQnF5PjKIhGSUkoppUYoTbCUUmNesKmSDuMgMyPnkLYzaRNJpZmGmr0RikwppZRSI40mWEqpMc/Wtpc6SSHGaT+k7dw5UwCoLF0bibCUUkopNQJpgqWUGvNc7TU02tMPebu0Imuo9ubyjeEOSSmllFIjlCZYSqkxL95XQ1vMoSdYOcVT8Rsb/modql0ppZRSFk2wlFJjXkqgjo7YzEPezhnjosKWg6txewSiUkoppdRIpAmWUmpM87c3kUIzgYRDG0GwU627iNS2XWGOSimllFIjlSZYSqkxrXqX1b1P0sYf1vbtSSXkBnYTDATCGZZSSimlRihNsJRSY1pt+SYAkvMmHdb2toxJuMVH9e5t4QxLKaWUUiOUJlhKqTHNs3crANnFUw9r+/j8IwCoKV0XtpiUUkopNXINKsESkcUisltEVoV+zuq27scislVENonI6YMPVSmlIqBuGw0mgYzM7MPaPGvcDABaKzaFMyqllFJKjVCOMNRxtzHmru4LRGQacCkwHcgD3hKRycYYvUlBKTWsJDdtocxZTIrIYW2fmVtIi4mFmi1hjkwppZRSI1GkugieBzxujOkwxuwAtgLzI7QvpZQ6PMEged7tNCZOPuwqxGZjj6OAuGYdql0ppZRS4UmwviMia0TkIRFJDS3LB8q6lSkPLVNKqWGjfs8W4vFgsqcPqp7GuCIyOsr6L6iUUkqpUa/fBEtE3hKRtT38nAf8EZgAzAEqgP891ABE5HoRWS4iy6urqw91c6WUOmx7t6wAIHHcnEHV402ZQFawBm97axiiUkoppdRI1u89WMaYLw+kIhF5AHgp9HQ3UNhtdUFoWU/1/xn4M8DcuXPNQPallFLh0Fq2hqAR8icfOah6nFmTsJUZKneso2ia9oZWSimlxrLBjiKY2+3pBcDa0OMXgUtFxCUiJcAk4NPB7EsppcLNWbOecskmMz19UPUkhYZqryvXkQSVUkqpsW6wowjeKSJzAAOUAv8GYIxZJyJPAusBP/DvOoKgUmq4SW/Zwu7YiRQNsp7c0Bxanqqtgw9KKaWUUiPaoBIsY8yVfay7A7hjMPUrpVSk+NubyQ1UsDX1rP4L9yM5LZN6EpG6HWGITCmllFIjWaSGaVdKqWGtYuvn2MTgzJsZlvqqHXnEtuwKS11KKaWUGrk0wVJKjUl12z8HIGPi4Aa46NQSX0i6t8exfJRSSik1hmiCpZQak/wVa2k1LsZNmBaW+oIpJeSYappbdah2pZRSaizTBEspNSbF129kl6MYl9MZlvpcWROxi6F8h44kqJRSSo1lmmAppcYeY8jt2E594uSwVZlaYNVVr0O1K6WUUmOaJlhKqTGnoaqcZFoIZk4NW51Z46yuhp7KzWGrUymllFIjjyZYSqkxZ892a070xNAEweEQk5xNA0m46jaGrU6llFJKjTyaYPXB5/MSDOj8yEqNNi17rG58GUXhGeACABH2uCeQ2aotWEoppdRYNqiJhke7lc/fy1Fr76BOEmmyp9DmSKU9Jg2fKxVcSUhsMo7YZBzxKcTEpeCIS8YZn4IrNgFXbBzu2DhiY+OxO2JAJNovZx9jCAb8BIMBAsEAQX+g6zGBIIGgtc4EAgSDQYLBAMFAAGMCoe0MJujHdC0PEgwECQb9YIJdy0zAb/0OBiAYHFhoA13Te8HD0+vpkb5XH7R9zyV7r176KdC9Dum7YI+rpO/V/W7fA3PAw9BrMAcu76lsaD89lj2ofM+FupfvfGxMz38QppfKTekHeI2dnKKJPW53uFpTpzJzz1O0ezqIdbvCWrfqm9/bQVtrI56WRjpaG/C2t+H1tuPt8OD3tBH0e8Hvwfg7MP4O8HvA74WAFxMMYEKfdZggYoKA9Vu6nhvEWF+4BUPvRSM2RASwgXQ+t1nvJbFbgXUts8qI2DCh34R+RMR6bOssaw8ts4NNsHUva7N+22y2/fdvs4V+h+oSe+g9vW/bru3pFkvoudg6P2H2fSYJobe3sX5LaHl30teHcb+f03184pve/82QXt7vhyO8/5T0XVsYwz4MEdj5EL2eoTpsQ3d+hu4PYTQdO39MCvlT55GRMDL+bdUEqw+pE45mef0V2NprifHUEuurJ69lHUnNTcSbdmwysL+ogBE6iMErTnw4CWDHhP5xDmL9I2kQDNbvoAhBbIgx2AgiBK21xvptrTX7HhuzrwzWNrZu23Q+t2FwiPWPVuifWP0DUGPWdkcJ4x3hGUGwk7t4Pu6Kf7Bu9ftMP+YrYa171DMGT1szdTWVNNbtpaOxGm9zDcHWWmirQ9rrcXbU4/A14fC3ERNoxR1sI4524kw7bvGRBCQd5u4DZt8nazD0KRsU277HoU9YoOuzlgN+i+n8JO9Mwazfnc8H+m+GUkqp/S0NzKbM9Thnz8qLdigDotfXfZh81Mlw1Mk9rjPBAM1NDTQ31tLaVE9HSz3B9kYC7Y0EvB4C3jaCPg9Bnwd8HiTQgT3oxR7oAGN9S0owYKX9Jtj10/lPvI1gVxJmJWD7fiOhf95D31yazm8/Qz9GbAc8t4e+HbUj2DA2e+jbS7v1rWfnN6a2zm89bYgttI3d3vVNq9hCj0PLrDJ2bDarHrHZsIndWm6zYbPZka6y1oXLQPReav81EqZWwd5aPzq/+xn4l7CHePFkBlj/AeX7DKGX8r2/xgHVhDH7N8J2P/L7nYXeynQ9MV1req+j51a3/fffy456qbOnejIKwzfARafCo88k+K9baFz7OvSSYNXs2YErLpHElIyw7384MsEg9TWV1O8to7W2nI6GPQQaK7G1VOJsryKuo4ZEfy2ppp5YvOQBPf3z2WTiaLYl0mpLxGePo9WdQ5MznoAzgYAzAROTADGJ4ErA7k7E4YrD6YolxuW2Hse4sMfEYo9xY49x43TG4nDH4nTG4LQ7sNtt2CN1DIzBGPAHgwSN2dczIPTbBIIETLCrFc0EgwRN6HfA6gVgbRcI9RIIlQttAwaCQavVJ/RjLQ+CMZjOVrhgEIP1GxO0PhdMsGt952e0MaEWZOu/rp9eP6z6/Czu73O69/Wmr3rD2CskvP1L+qltiDqzHGJfisPfz5B1zhmaHQ3V6xnSPk1D9poiu6PUmCRmjE+P6D7CSROswyQ2O4kp6SSmjJyTrZSKrJSMHDa5plJU/hIB/6+xO/Z9xJau+4S6137N7KZ3WZN0Ekfe+kIUIw2foN9PbWUpdbu30VK1HX/dLmyNZbjb9pDsrSQzUE2aeEk7YLsmE0e9LY0mZzrlCTPZEZuJxGfiTEjHlZyBOymT2OQs4lMySUzLIskZc9itU9EmIohgfRmllFJq1NMESymlwqjlyH9jyic3sfyh75Fz/Nep3vwpcRufZop3HRkmljKTRUHz6miHeUg6PG1Ulm6krmwjnr1bkLptxLfuIsO7m8xgDZkSJLNb+TqSqLFnUx07nt3xJyIpBbhS84lNyyMxs5CUrAKSEpJGbMKklFJK9UUG3nUo8ubOnWuWL18e7TCUUuqwmWCQj353Occ3vdK1bKfkUz7uAqafcxNrXvkTJ267i/obvyA1uyiKke7P7/Wwd+dGass20F65BanbTlxzKWne3WQHq7F3u3+ogQSqHHk0xhbiTSzAnlJEbGYJSbnjySqYQHyCpk5KKaVGPxFZYYyZe+BybcFSSqkwEpuNY296jNXLl9Jes4uUoulMnnY04+zWAAm50xfAtrvY/K8XOOaC7w5pbEG/j+ryLdTsXE9bxSao3WYlUR1lZAWryRdDfqhsk4mn0pHPnoRZ7EwpwZE5keT8KeQUTyclPYuUIY1cKaWUGjkG1YIlIk8AU0JPU4AGY8wcESkGNgCbQus+Nsbc0F992oKllBrtTDDIrv+ahR87RT/+DKczJqz1BwIBqnZvp27nelort0DtFtxNpaR5ysgOVOKUfXP7NZtYKhz5NMYW4U0uwZ45kaS8KWQVTyM9MydsA8kopZRSo1FEWrCMMYu67eB/gcZuq7cZY+YMpn6llBptxGajbt6tHPnJzXzy528z79/+iO1Qhos3hqbGGurKt9JcsZX26h2Y+p3EtOwmuWMPuYEKcsVLbqh4u4lhjz2XSvd4diZ9CVvmRBJyp5BVMo3MrAIm23W+eaWUUiqcwtJFUKyvOS8BTg1HfUopNZodeeY1fLT9Q46rfoqy//6IynHn4MqZgj0uBYIBgt42PK3NBFprkJYqnO3VOD3VJHhryQhUkSTt+w0Q0WJiqXJk0+LOY03S8djSJxKbO5mMcdPIzCthgl1Hr1NKKaWGSlgGuRCRE4HfdjaRhboIrgM2A03Az4wxH/Sy7fXA9QBFRUVH79y5c9DxKKXUcGeCQT5+9RHSV9zDxMC2Xieh7TBOaiWFJkc6npg0OuLzCCYX4UgvJj57PFmFk0lPz7TmsVNKKaXUkOmti2C/CZaIvAXk9LDqp8aYF0Jl/ghsNcb8b+i5C0gwxtSKyNHA88B0Y0xTX/vSe7CUUmNRbU0V1XtK8bfWI3YHtphYkhKTSEzPITEpTZMnpZRSahg67HuwjDFf7qdiB/A14Ohu23QAHaHHK0RkGzAZ0OxJKaUOkJ6RRXpGVrTDUEoppVQYhONr0S8DG40x5Z0LRCRTROyhx+OBScD2MOxLKaWUUkoppYatcAxycSmw5IBlJwK3i4gPCAI3GGPqwrAvpZRSSimllBq2Bp1gGWOu7mHZM8Azg61bKaWUUkoppUaSsIwiGC4iUg0Mt2EEM4CaaAehhoye77FDz/XYoed6bNHzPXbouR5bhuP5HmeMyTxw4bBKsIYjEVne0+gganTS8z126LkeO/Rcjy16vscOPddjy0g63zr2r1JKKaWUUkqFiSZYSimllFJKKRUmmmD178/RDkANKT3fY4ee67FDz/XYoud77NBzPbaMmPOt92AppZRSSimlVJhoC5ZSSimllFJKhYkmWEoppZRSSikVJppg9UFEzhCRTSKyVUR+FO14VPiISKGIvCsi60VknYjcFFqeJiJvisiW0O/UaMeqwkNE7CLyuYi8FHpeIiKfhN7fT4hITLRjVOEhIiki8rSIbBSRDSJynL63RycRuSX0Gb5WRJaIiFvf26OHiDwkIlUisrbbsh7fy2K5J3Te14jIUdGLXB2qXs71b0Kf42tE5DkRSem27sehc71JRE6PStB90ASrFyJiB/4AnAlMAy4TkWnRjUqFkR+41RgzDTgW+PfQ+f0R8LYxZhLwdui5Gh1uAjZ0e/7/gLuNMROBeuCbUYlKRcLvgdeMMUcAs7HOu763RxkRyQe+B8w1xswA7MCl6Ht7NHkYOOOAZb29l88EJoV+rgf+OEQxqvB4mIPP9ZvADGPMLGAz8GOA0PXapcD00Db/F7puHzY0werdfGCrMWa7McYLPA6cF+WYVJgYYyqMMStDj5uxLsDysc7x30LF/gacH5UAVViJSAHwVeAvoecCnAo8HSqi53qUEJFk4ETgQQBjjNcY04C+t0crBxArIg4gDqhA39ujhjHmfaDugMW9vZfPA/5uLB8DKSKSOySBqkHr6VwbY94wxvhDTz8GCkKPzwMeN8Z0GGN2AFuxrtuHDU2wepcPlHV7Xh5apkYZESkGjgQ+AbKNMRWhVZVAdrTiUmH1O+AHQDD0PB1o6PbBre/v0aMEqAb+GuoS+hcRiUff26OOMWY3cBewCyuxagRWoO/t0a6397Jet41u1wKvhh4P+3OtCZYa00QkAXgGuNkY09R9nbHmMNB5DEY4ETkbqDLGrIh2LGpIOICjgD8aY44EWjmgO6C+t0eH0L0352El1XlAPAd3MVKjmL6XxwYR+SnWrR2PRTuWgdIEq3e7gcJuzwtCy9QoISJOrOTqMWPMs6HFezu7FIR+V0UrPhU2JwDnikgpVlffU7Hu0UkJdSsCfX+PJuVAuTHmk9Dzp7ESLn1vjz5fBnYYY6qNMT7gWaz3u763R7fe3st63TYKicjVwNnA5Wbf5L3D/lxrgtW7z4BJodGIYrBupnsxyjGpMAndg/MgsMEY89tuq14Ergo9vgp4YahjU+FljPmxMabAGFOM9T5+xxhzOfAucFGomJ7rUcIYUwmUiciU0KIvAevR9/ZotAs4VkTiQp/pneda39ujW2/v5ReBb4RGEzwWaOzWlVCNQCJyBlb3/nONMW3dVr0IXCoiLhEpwRrY5NNoxNgb2ZcMqgOJyFlY927YgYeMMXdENyIVLiKyAPgA+IJ99+X8BOs+rCeBImAncIkx5sAbbNUIJSInA7cZY84WkfFYLVppwOfAFcaYjiiGp8JEROZgDWgSA2wHrsH6QlHf26OMiPwKWITVfehz4DqsezH0vT0KiMgS4GQgA9gL/BJ4nh7ey6Ek+z6sbqJtwDXGmOVRCFsdhl7O9Y8BF1AbKvaxMeaGUPmfYt2X5ce6zePVA+uMJk2wlFJKKaWUUipMtIugUkoppZRSSoWJJlhKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRSSimllFJhogmWUkoNMyJSLCJGRBzRjkWNDSKyTkROjnYcSik1GmiCpZRSasQTkftFpCX04xURX7fnr0Y7vuHOGDPdGLM0nHWKiEtEHhKRJhGpFJH/CGf9Sik1XIkxJtoxKKXUqCIiDmOMfxDbFwM7AOdg6hmrRGQxMNEYc0UP6wZ1bobSSIq1JyLyP8AC4FwgB3gXuNoY81pUA1NKqQjTFiyllAoDESkVkR+KyBqgVUQcInKsiPxLRBpEZHX3LlgislRE/kdEPg19w/+CiKT1Uvc1IrJBRJpFZLuI/NsB688TkVWheraJyBmh5cki8qCIVIjIbhH5LxGx9/M6JojIOyJSKyI1IvKYiKR0W1cnIkeFnueJSHXn6xKRc0NdzRpCr2/qAcfnNhFZIyKNIvKEiLgP/Ugful7OjRGRid3KPCwi/9Xt+dmhY9oQOoezBrivk0WkXER+Ejp+pSJyebf1XxWRz0PnqiyUDHau6+wa+k0R2QW8E1r+VKgFqFFE3heR6QfE/X8i8mqote5DEckRkd+JSL2IbBSRIwd4jL48kNd4CK4C/tMYU2+M2QA8AFwd5n0opdSwowmWUkqFz2XAV4EUIBt4GfgvIA24DXhGRDK7lf8GcC2QC/iBe3qptwo4G0gCrgHu7pbkzAf+Dnw/tN8TgdLQdg+H6p0IHAmcBlzXz2sQ4H+APGAqUAgsBjDGbAN+CDwqInHAX4G/GWOWishkYAlwM5AJvAL8U0RiutV9CXAGUALMopeLbRFZEEpsevtZ0M9r6EnXuemvVSiUkDwE/BuQDvwJeFFEXAPcVw6QAeRjJRl/FpEpoXWtWOc9JRTPjSJy/gHbn4R17E8PPX8VmARkASuBxw4ofwnws9A+O4CPQuUygKeB3w4w7h6JyI/6Oh+9bJOK9Xe9utvi1cD0nsorpdRoogmWUkqFzz3GmDJjTDtwBfCKMeYVY0zQGPMmsBw4q1v5R4wxa40xrcDPgUt6amEyxrxsjNlmLO8BbwALQ6u/CTxkjHkztJ/dxpiNIpId2tfNxphWY0wVcDdwaV8vwBizNVRXhzGmGuvi/KRu6x8AtgKfYF1A/zS0ahHwcmhbH3AXEAscf8Dx2WOMqQP+CczpJYZlxpiUPn6W9fUaetH93PTneuBPxphPjDEBY8zfsBKXYw9hfz8PHcP3sBLtSwCMMUuNMV+EztUarKT0pAO2XRw6Z+2hbR4yxjQbYzqwkt3ZIpLcrfxzxpgVxhgP8BzgMcb83RgTAJ7ASq4PmzHm132dj142Swj9buy2rBFIHEwsSik1EmiCpZRS4VPW7fE44OIDvulfgJWU9FR+J+DEanXYj4icKSIfh7rnNWAlTp3lCoFtPcQyLlRfRbf9/wmrFaRXIpItIo+HuhQ2AY/2ENMDwAzg3tBFP1gtXjs7CxhjgqHXl99tu8puj9vYdxE+FMr6L9JlHHDrAeeuEOs1DkR9KGnutLNzWxE5RkTeDXWtbARu4ODj2xWriNhF5Ndidf1sYl/rZPdt9nZ73N7D86E8zp1aQr+Tui1LApqjEItSSg0pTbCUUip8uo8aVIbVQtX92/54Y8yvu5Up7Pa4CPABNd0rDHVLewarRSg71GLwClZXvs79TOghljKsVpeMbvtPMsb010Xrv0OvY6YxJgmrJa5zX4hIAvA74EFgsey7b2wPVmLSWU5Cr293P/s7iIgslH0jAPb0s7D/Wg5y4IhObUBct+c53R6XAXcccO7ijDFLBrivVBGJ7/a8COv4APwDeBEoNMYkA/fT7fj2EOvXgfOALwPJQHFo+YHbREzofrJez0dP2xhj6oEKYHa3xbOBdUMRs1JKRZMmWEopFRmPAueIyOmhVgh3aACEgm5lrhCRaaH7mW4Hng516+ouBnAB1YBfRM7Eupeq04PANSLyJRGxiUi+iBxhjKnA6kr4vyKSFFo3QUQO7I52oESs1odGEcnHureru98Dy40x12F1fbs/tPxJ4KuhOJzArVgJ3r/6O1AHMsZ8YIxJ6OPng0OtswergK+Hzs0Z7N9N7wHghlBrk4hIvFiDUyRC18ASD/dT/69EJCaUDJ4NPBVangjUGWM8ofvnvt5PPYlYx7EWKyH870N4jWFhjPnvvs5HH5v+HfiZiKSKyBHAt7DuC1RKqVFNEyyllIoAY0wZVsvDT7CSozKsZKX75+4jWBeclYAb+F4P9TSHlj8J1GNdkL/Ybf2nhAa+wLrH5T32tSR9AytBWx/a9mn276LYk18BR4Xqehl4tnOFiJyHNUjFjaFF/wEcJSKXG2M2YbV23YvVCncOcI4xxtvP/qLlJqwYG4DLgec7VxhjlmMlA/dhHbet7D8gRyHwYR91V4a224M1IMUNxpiNoXXfBm4XkWbgF1jntS9/x+piuBvrPH7c3wsbRn6J1X11J9bf5W90iHal1Fig82AppVQUiMhS4FFjzF+iHYsauNCoiKuBWaHBPA5cfzLWeS04cJ1SSqmxwRHtAJRSSqmRItQiN7XfgkoppcYs7SKolFJjjIjc38uABff3v7UaiUSkqI+BKoqiHZ9SSo0m2kVQKaWUUkoppcJEW7CUUkoppZRSKkyG1T1YGRkZpri4ONphKKWUUkoppVSfVqxYUWOMyTxw+bBKsIqLi1m+fHm0w1BKKaWUUkqpPonIzp6WaxdBpZRSSimllAoTTbCUUkoppZRSKkw0wVJKqUPQ7PHxwrJV+ALBaIeilFJKqWFoWN2D1ROfz0d5eTkejyfaoagRxu12U1BQgNPpjHYoahR5/bm/cdGmW3m15o+cef7Xox2OUkoppYaZYZ9glZeXk5iYSHFxMSIS7XDUCGGMoba2lvLyckpKSqIdjhpFpu18BAD3lhcBTbCUUkoptb9h30XQ4/GQnp6uyZU6JCJCenq6tnyqsMvsKANgUstygkGdqF0ppZRS+xv2CRagyZU6LPp3oyIhLtgKQIFUs7tyb5SjUUoppdRwMyISLKWUGhYCfuLFw1bnZAAqtqyIckBKKaWUGm40wRoAEeHWW2/ten7XXXexePHi6AXUzccff8wxxxzDnDlzmDp1aldcS5cu5V//+teg6j7jjDNISUnh7LPPDkOkSo18QU8TALVpRwHQumtNNMNRSiml1DCkCdYAuFwunn32WWpqasJarzGGYHBwQz1fddVV/PnPf2bVqlWsXbuWSy65BAhPgvX973+fRx55ZFB1KDWaeFsbAGhNmUIbbux1W6MbkFJKKaWGnWE/imB3v/rnOtbvaQprndPykvjlOdP7LONwOLj++uu5++67ueOOO/ZbV11dzQ033MCuXbsA+N3vfscJJ5zA4sWLSUhI4LbbbgNgxowZvPTSSwCcfvrpHHPMMaxYsYJXXnmF++67j1dffRUR4Wc/+xmLFi1i6dKlLF68mIyMDNauXcvRRx/No48+etB9RVVVVeTm5gJgt9uZNm0apaWl3H///djtdh599FHuvfdejjjiiF7j3LZtG1u3bqWmpoYf/OAHfOtb3wLgS1/6EkuXLu3z2Dz11FP86le/wm63k5yczPvvv4/H4+HGG29k+fLlOBwOfvvb33LKKafw8MMP8/zzz9Pa2sqWLVu47bbb8Hq9PPLII7hcLl555RXS0tJ44IEH+POf/4zX62XixIk88sgjxMXF7bffY489lgcffJDp061zd/LJJ3PXXXcxd+7cPuNVajB8rfW4AeNKptqRQ2xrWbRDUkoppdQwoy1YA/Tv//7vPPbYYzQ2Nu63/KabbuKWW27hs88+45lnnuG6667rt64tW7bw7W9/m3Xr1rF8+XJWrVrF6tWreeutt/j+979PRUUFAJ9//jm/+93vWL9+Pdu3b+fDDz88qK5bbrmFKVOmcMEFF/CnP/0Jj8dDcXExN9xwA7fccgurVq1i4cKFfca5Zs0a3nnnHT766CNuv/129uzZM+Djcvvtt/P666+zevVqXnzxRQD+8Ic/ICJ88cUXLFmyhKuuuqprNL+1a9fy7LPP8tlnn/HTn/6UuLg4Pv/8c4477jj+/ve/A/C1r32Nzz77jNWrVzN16lQefPDBg/a7aNEinnzySQAqKiqoqKjQ5EpFnK/Nev8bdyItsQWkeXdHOSKllFJKDTeDbsESkULg70A2YIA/G2N+LyKLgW8B1aGiPzHGvDKYffXX0hRJSUlJfOMb3+Cee+4hNja2a/lbb73F+vXru543NTXR0tLSZ13jxo3j2GOPBWDZsmVcdtll2O12srOzOemkk/jss89ISkpi/vz5FBQUADBnzhxKS0tZsGDBfnX94he/4PLLL+eNN97gH//4B0uWLOmx1amvOM877zxiY2OJjY3llFNO4dNPP+X8888f0HE54YQTuPrqq7nkkkv42te+1vWavvvd7wJwxBFHMG7cODZv3gzAKaecQmJiIomJiSQnJ3POOecAMHPmTNasse5nWbt2LT/72c9oaGigpaWF008//aD9XnLJJZx22mn86le/4sknn+Siiy4aULxKDYa/rQEAcSXjSx7HhKZPaPX4iHfrZNZKKaWUsoSji6AfuNUYs1JEEoEVIvJmaN3dxpi7wrCPYeHmm2/mqKOO4pprrulaFgwG+fjjj3G73fuVdTgc+91f1X0+pvj4+AHtz+VydT222+34/f4ey02YMIEbb7yRb33rW2RmZlJbW3tQmd7ihIOHMz+U4c3vv/9+PvnkE15++WWOPvpoVqzoe1S17q/JZrN1PbfZbF2v7+qrr+b5559n9uzZPPzwwz0mjPn5+aSnp7NmzRqeeOIJ7r///gHHrNThCrRbLVgSm4Q9fTzuch9byncwaeLkKEemlFJKqeFi0F0EjTEVxpiVocfNwAYgf7D1DkdpaWlccskl+3VZO+2007j33nu7nq9atQqA4uJiVq5cCcDKlSvZsWNHj3UuXLiQJ554gkAgQHV1Ne+//z7z588fcEwvv/wyxliTnW7ZsgW73U5KSgqJiYk0Nzf3GyfACy+8gMfjoba2lqVLlzJv3rwB73/btm0cc8wx3H777WRmZlJWVsbChQt57LHHANi8eTO7du1iypQpA66zubmZ3NxcfD5fVz09WbRoEXfeeSeNjY3MmjVrwPUrdbhMu3UPqM2dQkLOJABqyzdHMySllFJKDTNhvQdLRIqBI4FPQou+IyJrROQhEUntZZvrRWS5iCyvrq7uqciwcuutt+43muA999zD8uXLmTVrFtOmTetqSbnwwgupq6tj+vTp3HfffUye3PM33BdccAGzZs1i9uzZnHrqqdx5553k5OQMOJ5HHnmEKVOmMGfOHK688koee+wx7HY755xzDs899xxz5szhgw8+6DVOgFmzZnHKKadw7LHH8vOf/5y8vDzASv4uvvhi3n77bQoKCnj99dcBq1ti5/1W3//+95k5cyYzZszg+OOPZ/bs2Xz7298mGAwyc+ZMFi1axMMPP7xfy1V//vM//5NjjjmGE044gSOOOKJr+YsvvsgvfvGLrucXXXQRjz/+eNfIiUpFWrDDSrAccYlkFFlfGrTv1ZEElVJKKbWPdLZ+DLoikQTgPeAOY8yzIpIN1GDdl/WfQK4x5tq+6pg7d65Zvnz5fss2bNjA1KlTwxKjOtiBox2ONvr3o8Jp19M/peCLP7D8qm3ML0ok8F9ZvJd9Nafe+Ltoh6aUUkqpISYiK4wxB42yFpYWLBFxAs8AjxljngUwxuw1xgSMMUHgAWDg/d6UUmoYCvo78OLA5bSDI4ZqWxbu5l3RDmvMWbe7nnc//izaYSillFI9CscoggI8CGwwxvy22/JcY0xF6OkFwNrB7kuF3+LFi6MdglIjhvF58OLE7bQD0ODKI9lTHuWoxp41D32XywL/ZEf6R5RMmhbtcMaU+hYPX2zazMKjZh7SgEhq8Lz+IJv3NjM9L0mPvVLDXDhasE4ArgROFZFVoZ+zgDtF5AsRWQOcAtwShn0ppVTUGH8HHThxOayPTk98ARmBKsLV1Vr1r7nNw2WBfwJQsfyFKEcz9rz69zs58Z8LWfmvN6Idypjz2D9fp/z+C1nx5pJoh6KU6segW7CMMcuAnr5KGdScV0opNex0JljO0HdTKYVk19RTVd9EVlpydGMbI3aVl9M5I2LC7g+AH0cznDEnu+YjAGI/vQ9OOHiOQhU5MVtf5Qz7Z1Qu3wunfT3a4Sil+hDWUQSVUmpU83fgNQ7cDquLYExGCQBV5TqS4FBpqd0NgB8bma163IdSm9dPnt/qEpvdpL3+h5IxhrhW637PTG85dLREOSKlVF80wVJKqYEK7N+ClZQzHoDGiu3RjGpM8TRUArA1dg7ZwSoCHW1RjmjsqG5sZZKU04GTdFNHsHn4T60yWrR5A+QE9gJgJ0j7zuX9bKGUiiZNsAbo+eefR0TYuHFjr2VKS0uZMWNG2Pa5adMmTj75ZObMmcPUqVO5/vrrAWuS4FdeGVwPzGuvvZasrKywxqvUaCcBL16cuEItWBmF1mTDHTU9TySuws/fZF1ktuYeh00M1aXakjJUGuuqcUiQDXHWoMBVW/Uif6jUtXopsu1lg/tIAGp2rIlyREqpvmiCNUBLlixhwYIFLFnS882lfr9/0PsIBAL7Pf/e977HLbfcwqpVq9iwYQPf/e53gfAkWFdffTWvvfbaoOpQaqyxBTrw4cRus247dacW4McODTpU+5BpqQIgdtJCAOp2aoI1VFoaagDw5lsJVmN57184qvCqbW4jlzrac47GY5x4dIJzpYa1QQ9yMaRe/RFUfhHeOnNmwpm/7rNIS0sLy5Yt49133+Wcc87hV7/6FQBLly7l5z//OampqWzcuJE33ngDv9/P5ZdfzsqVK5k+fTp///vfiYuL4+233+a2227D7/czb948/vjHP+JyuSguLmbRokW8+eab/OAHP+DSSy/t2m9FRQUFBQVdz2fOnInX6+UXv/gF7e3tLFu2jB//+MecffbZfPe732Xt2rX4fD4WL17Meeedx8MPP8xzzz1HY2Mju3fv5oorruCXv/wlACeeeCKlpaV9vu733nuPm266CQAR4f333ychIYEf/OAHvPrqq4gIP/vZz1i0aBFLly7ll7/8JSkpKXzxxRdccsklzJw5k9///ve0t7fz/PPPM2HCBP75z3/yX//1X3i9XtLT03nsscfIzs7eb7+XXnopV155JV/96lcBKxk8++yzueiiiwZ2TpWKEAl48UnMvgU2OzW2TFwtOlT7ULG3VdOBk8xJ8+F1aK/W1sOh0tZoJVhpxTPxbHbir9WusUOluaEOmxjSMnLYtT0Le0NptENSSvVBW7AG4IUXXuCMM85g8uTJpKens2LFiq51K1eu5Pe//z2bN28GrG593/72t9mwYQNJSUn83//9Hx6Ph6uvvponnniCL774Ar/fzx//+MeuOtLT01m5cuV+yRXALbfcwqmnnsqZZ57J3XffTUNDAzExMdx+++0sWrSIVatWsWjRIu644w5OPfVUPv30U959912+//3v09raCsCnn37KM888w5o1a3jqqadYvnzgXTruuusu/vCHP7Bq1So++OADYmNjefbZZ1m1ahWrV6/mrbfe4vvf/z4VFdZ0Z6tXr+b+++9nw4YNPPLII2zevJlPP/2U6667jnvvvReABQsW8PHHH/P5559z6aWXcueddx6030WLFvHkk08C4PV6efvtt7uSLaWiyRb0EhDnfsua3HkkdVT0soUKt5iOOpokmfS0NOpNItJYFu2QxoyO5joACvLyKCcLe8POKEc0djQ3NQCQkJTCXkdu14AXSqnhaWS1YPXT0hQpS5Ys6WrJufTSS1myZAlHH300APPnz6ekpKSrbGFhISeccAIAV1xxBffccw9f+cpXKCkpYfLkyQBcddVV/OEPf+Dmm28GrISiJ9dccw2nn346r732Gi+88AJ/+tOfWL169UHl3njjDV588UXuuusuADweD7t2WR++X/nKV0hPTwfga1/7GsuWLWPu3LkDet0nnHAC//Ef/8Hll1/O1772NQoKCli2bBmXXXYZdrud7OxsTjrpJD777DOSkpKYN28eubm5AEyYMIHTTjsNsFre3n33XQDKy8tZtGgRFRUVeL3e/Y5dpzPPPJObbrqJjo4OXnvtNU488URiY2MHFLNSkWQPduC37T8cuyc+n6zWZfgDQRx2/c4q0hyBNtptcdhsQpU9C1fL7miHNGYEWmsBcCdmUOPMJa9Nj/1QaW9pACAuIYWm2EJS274AY0AnHFZqWNKrgX7U1dXxzjvvcN1111FcXMxvfvMbnnzyya6JRePj4/crf+Ds6gOZbf3AOrrLy8vj2muv5YUXXsDhcLB27cH3GxhjeOaZZ1i1ahWrVq1i165dTJ069bDj6fSjH/2Iv/zlL7S3t3PCCSf0OcAHgMvl6npss9m6nttstq571L773e/yne98hy+++II//elPeDyeg+pxu92cfPLJvP766zzxxBO9JqBKDTV70EfA5tpvmaQUkSP1VNY1RimqscURaMdnt75waXTlktSxJ8oRjR3SEfobj02lNTafdO8e6yJfRVzA0wxATHwS3sQi3KYDWvZGOSqlVG80werH008/zZVXXsnOnTspLS2lrKyMkpISPvjggx7L79q1i48+siZi/Mc//sGCBQuYMmUKpaWlbN1q3ZT6yCOPcNJJJ/W779deew2fzwdAZWUltbW15Ofnk5iYSHNzc1e5008/nXvvvbcr6fv888+71r355pvU1dV13QfV2bo2ENu2bWPmzJn88Ic/ZN68eWzcuJGFCxfyxBNPEAgEqK6u5v3332f+/PkDrrOxsZH8/HwA/va3v/VabtGiRfz1r3/lgw8+4Iwzzhhw/UpFkj3oJWDbv4ugK9Nqha0u3xaNkMYcV6ANnz0OAE98AZmBKr3IHyL2zgTLnYwvaRzxtGHa6qIb1BjRmWA53EnYM6zpITqq9DNHqeFKE6x+LFmyhAsuuGC/ZRdeeGGvowlOmTKFP/zhD0ydOpX6+npuvPFG3G43f/3rX7n44ouZOXMmNpuNG264od99v/HGG8yYMYPZs2dz+umn85vf/IacnBxOOeUU1q9fz5w5c3jiiSf4+c9/js/nY9asWUyfPp2f//znXXXMnz+fCy+8kFmzZnHhhRd2dQ+87LLLOO6449i0aRMFBQU8+OCDANx///3cf//9APzud79jxowZzJo1C6fTyZlnnskFF1zArFmzmD17Nqeeeip33nknOTk5Az6eixcv5uKLL+boo48mIyOja/ny5cu57rrrup6fdtppvPfee3z5y18mJiamp6qUGnIO4yVo2//vMTlnAgBNlXqxMxRigu34Qy1YpBTixktbaG4sFVkx3kZaiQW7E3u69cVCY4WOZjcUTOfEwq4E4nKs6SHqyzdFMSKlVF/EDKNv/ubOnWsOHIRhw4YNXd3d1KF5+OGHWb58Offdd1+0Q4ka/ftR4dT6qzzei/0KZ/1gX+urr24Xzntm8uaEn/CVK38YxejGhl2Lp1CfMoPZNz/Dx68+yrGf/DtlF/6TwpknRju0Ue/9Oy9iqmcVmb/Yyr8+XMrxb55H6Sl/oPikK6Id2qj3jz/9mq9X/A98bxUrG+KY/bcplM34NsUX/3e0Q1NqTBORFcaYgwY30BYspZQaIKfxErTv34LlTMnXubCGkNt4CDqt+1YTc6yuUo2VOlz4UHD42+iwWd0z0wusQZs82k1tSIi3swUrkYKMZCpIJ1CvozgqNVxpgjWKXX311WO69UqpsDKGGHyYAxIsbHZq7Zm4W3UurEgLBA1xeDBO6yI/s8DqKtWhc2ENCWewDW/o/rfc7ExqTSLB+tLoBjVG2HyhBCsmgYwEF3vIxNmsnzlKDVcjIsEaTt0Y1cihfzcqrALWgDM43AetanbnkqxzYUVcu9dPHB0QY7VgZaRn0GDioUHnwhoKMYF2/A4rwUpyO6mQLJzNOlT7ULD7WwlgA4cLm01ocGaT0K4jaCo1XA37BMvtdlNbW6sXy+qQGGOora3F7T74Ylipw+IPTSlwYAsW0BFfQFawig5/YIiDGlvaWpuxiYGYBIDQXFjZuLT1cEi4TTuBUIIF6EX+EHL4W/HY4rrmvWqLyyfZX7Pvix+l1LAS8YmGReQM4PeAHfiLMeaQZgsuKCigvLyc6urqiMSnRi+3201BQUG0w1CjRcBr/Xa4DlolqUXkVNWzvaaB8TnpQxzY2OFptYaqtrv2XeQ3xuSS7dEWrKHgNh6aHfvmbWyLyye1cblOeDsEYvxteG1xdB79QFIh9qYgNO2G1OJohqaU6kFEEywRsQN/AL4ClAOficiLxpj1A63D6XRSUlISqRCVUmpg/B3W7x66CLoyS2AT1JRv1wQrgjxtTQDYXIldyzri88ioXaEX+RHm9QeJw0OTc19yG0wqxN3oxbRWIwlZUYxu9HMF2/DF7Dv2jvRxUA6e6h24NcFSatiJdBfB+cBWY8x2Y4wXeBw4L8L7VEqp8At1ERTHwV0EU3KtubCa9+qIapHkbQ9Nthqb0LUsmFxEHB48TdrLIZLavH7i8CAx+1qwHGlFADRW6N99pLmCbfjs+459fFZoBE099koNS5FOsPKB7n03ykPLuojI9SKyXESWazdApdRw5fdaCZathxas1LyJAHhrSocypDHH2xZKsNz7EqyYjGIAaso2RyOkMaO1w0e8dICr20V+tnWRX1+hw+RHktV62E7Aue/Yp+eVEDRCW1Vp9AJTSvUq6oNcGGP+bIyZa4yZm5mZGe1wlFKqR77OBCvm4ATLlpSHHzvSqHNhRZK/3RqqOiZuXxfBBJ0La0i0h+5/s8XsS27T862W2/YqPfaR1O4NEI+HoHPfsc/PSKaSVJ0LS6lhKtIJ1m6gsNvzgtAypZQaUXwd7QDYehjkAruDOnsmsa368RZJfk8owYpN6lqWHmo91LmwIqu9pREAe7fWw9zsbBpNHMF6/WIhklq8fuLFg+mW3GYmuKggE2ezDvCi1HAU6QTrM2CSiJSISAxwKfBihPeplFJh5/NaCZa9hxYsgGZ3ns6FFWGBDqsVxdWtBSsrK5tGEw8NepEfSV33v7n3HftEt5NKycShE95GVFuHnwTaEde+BEtEqHPm6DD5Sg1TEU2wjDF+4DvA68AG4EljzLpI7lMppSLB32F1EewtwfImFpBjqmjt8A9lWGNKsKMVgNj4fS1Ydpuw15ZFTIte5EdS1/1vsYn7La9z5hKvF/kR1eLxEY8Hce1/7Nvi8knxV0NAP3OUGm4ifg+WMeYVY8xkY8wEY8wdkd6fUkpFQmcLlqOXBEtSi8iRenbXNAxhVGNMKMFyx+9/odnoyiXJo62HkdTZgtX9/jeA9rg80nx7rWHyVUS0e9pxSgBbt+6ZEJoLiyA0a4Kr1HAT9UEulFJqJAh4rXmwemvBis20BluoLtdhkyPGZyVYErP/hWZ7XD4ZAb3Ij6TOAUZcByRYgcQC4mnHtNdHI6wxoaO18/63pP2Wdw6T3673Hyo17GiCpZRSAxAIjSLojIntcX3nXFgtOhdW5Pha8RADNvt+i01yIXF46GjWqT4iJdhhJVju+OT9ltvTxgHQsEdHEowUb5uVYDnj9k+wEkLD5DfoMPlKDTuaYCml1AD4fZ0JVs8tWEm51sWOt0aHTY4Um68NDwcff2d6MQA1ZVuHOKKxI9CZYB3QghWfVQJA/Z4tQx7TWOFr6+yeuX+ClZZnfeboMPlKDT+aYCml1AAEOxMsV1yP6yXRmgvL3qSj2UWK3d9GhxycYHXOhdVUqa2HkWJCCZbNtX/3zNQCa5j8turSoQ5pzAi0NwHgOqD1MD8jlUqTSqBOv9RRarjRBEsppQagM8GKcffcgoXdQb0jk9g2nQsrUuz+NjrsB3fRTA9d5Hv0XpTI8Vr3vxETv9/ivJw8Wo2LoF7kR0zA0zk9wf4tWBkJMewhA6cOk6/UsKMJllJKDUDQZw1y0VsXQYAWdx4pHZUYHWwhIpyBdny2gxOs7MxsmkwcRufCihjxtRJEwLn/8U/QubAizoTmfztwmHYRoV6HyVdqWNIESymlBsD4OwgYIdbl6rWMN7GQXKpobPcNYWRjR0ygDX8PLVgOu82aC0sv8iPG7mu17n8TOWhdnTOHuHYdJj9SOrtnckD3TIC2uDxS/VUQDAxxVEqpvmiCpZRSA2B8Hrw4cbscvZaxhebCKq/SIasjISboIeCI73FdQ0wuSR16kR8pNn8bnh5aDwHaYvNI81UOcURjh3hDCVbMwQlWIKkQBwFo1r99pYYTTbCUUmoAjL8DLw7cDnuvZWKzraHa63braHaR4DbtBJ09X+S3x+eT7q/UubAixOlvw9tLguVPKiSJFkx7w9AGNUbYQvO/cUAXQQBHaJj8Nr3/UKlhRRMspZQaCL+HDmJw2g/uItUptWAKAK17dcjqcAsGDXG0E4hJ6nF9ILmQeDx4m3QurEhwBtrx2nseQdOWbo3iWL9b/+4jwe5rwYsT7M6D1sVlWce+cY+OoKnUcKIJllJKDUTAiw8n0sM9KJ3isycBEKzVeWnCrdXrJ5F2iDn4W3wAR4bVelhbvnEowxozYoLtPd7/BhCXbY3i2LB701CGNGY4/K102HpObjvnwmqr0hYspYYTTbCUUmoAJODFLwd/g7yf+AzaiCWmSYesDreW1lZc4uuxmxRAUp7VethYrhf5keAy7b3e/9bZcuvZq60okeAMtOHtJbnNz0yjyqQQqCsd2qCUUn3SBEsppQZA/B34JKafQkJtTB6JbWVDE9QY0t7SAIDEJve4PmfcFIJG6KjS+9/CzRiDO9hOwNlzK0p+dibVJhnqNMGKhJhAW6/dM625sDJxNutnjlLDiSZYSik1ALbgABIsoCW+iCx/hc6FFWaelkYAHLE9t2BlpSZRQTpSXzqEUY0NHf4gCdKOcR48ih1AvMvBbsnB3azzkEWCK9iO395z66GIUOvMI7FdJzhXajjRBEsppQYgJtDaazed7gLJ48iniuqmtiGIauzoCLVgOXppwRIRqpx5xLdq98xwa/L4SKaVoLvnYw9Q58on2aPzkIVbMGiINW0EnD0nWACt8QXWXFgBnX9PqeFiUAmWiPxGRDaKyBoReU5EUkLLi0WkXURWhX7uD0u0SikVJTGBdry93GjenSNjAi7xs7dcB7oIJ2+b1YIVE9/7RX5zbCHpXv0mP9yaWlqIFS+22JRey7TGF5EeqAZf+9AFNgY0d/iJx0OwhzmwOvmTirAThEbtJqjUcDHYFqw3gRnGmFnAZuDH3dZtM8bMCf3cMMj9KKVUVLmCvQ9T3V1injWSYNOezZEOaUwJhBIsV0Jqr2X8KcWkmCaCbQ1DFNXY0NJQC4AjvvdjH0wptn7rYAth1djmI1HakD5aD+2hYfJbq/RLHaWGi0ElWMaYN4wx/tDTj4GCwYeklFLDj9u04etlFLXuMgqPAKBDR1QLq0C7lWC5E1J6LbNvqHYdSTCc2pvqAHAmpPVaJibLGqq9frd+sRBOjW1eUmiB2N6PfWKudewb9dgrNWyE8x6sa4FXuz0vEZHPReQ9EVkYxv0opdSQizXtBBz9t2C50ovw4YAGnZcmnIKeJgBi+0iwEkNDtdeV6VxY4eRpthKs2MT0Xsuk5E8GoFnnwgqrpuYGXOLH3kdym5VXTIdx4NEWLKWGDUd/BUTkLSCnh1U/Nca8ECrzU8APPBZaVwEUGWNqReRo4HkRmW6Maeqh/uuB6wGKiooO71UopVQkBXy48GH6uA+ii81OtT2buGYdbCGcBtKClTXOaj3U+ZjCy9fSmWD1fpGfn1tAk4nDV6MX+eHU3lQDQExC78ltUWYiu00GRkfQVGrY6DfBMsZ8ua/1InI1cDbwJRMal9gY0wF0hB6vEJFtwGRgeQ/1/xn4M8DcuXN1XGOl1PDjbbF+DyTBAppiC0lt2RPBgMYeW3sd7biIdfY+kmNORjpVJgXq9SI/nPyhe9riUzJ6LZOXGstGk028ttyGVUcowXInZfZaJsnt5AtbNsU6TL5Sw8ZgRxE8A/gBcK4xpq3b8kwRsYcejwcmAfovnlJqRPK2WY3v4hpYguVNHkeeqaTVo8Mmh4uzo44mW+83+gPYbUKlI49YbT0MK9NeD4A9rvdBLhx2mzVMvk6yHVb+ztbDlN4TLIBGdz7JHfqljlLDxWDvwboPSATePGA49hOBNSKyCngauMEYUzfIfSmlVFS09zPJ7YEc6eNJlHbKd+u8QOHi9tbT6kjpt1xTbCFpHXrcw0k8DdaDPkayA2iJKyTNVwkBf5/l1MAFW60RHF19dBEE8CQUkRBshlAyrJSKrn67CPbFGDOxl+XPAM8Mpm6llBou2loaSQYc7qQBlY/PnQRrQoMtTCiJbHBjRLy/gY643ruodfImFZHR8jrG24rE9D/qo+qfs72GZkkg0eHqs5w/uRhHc8CajylN/+7Dwd8a+m46rvf73wAkrRhqIFBXij2/95ZGpdTQCOcogkopNSp5WkMtWHEDS7AyiqzBFlort0QsprEmKdiIz933RSaAPd0aqr1Oh6wOm9iOapod/R97Z6Z17Fsr9O8+XKTNasEitu+kyZ1lHfuG3XrslRoONMFSSql+eFute7BcA0yw4rMmEEQwdXrDfzh4fAFSaSIQ23c3KYCEXGu48PpdOlx4uCT4aml39X0PEEBCaJj8eh2qPWxcniqabUnQT+thamiC8+bKrUMRllKqH5pgKaVUP7zN1khecSlZA9vA6abOlo5LB1sIi7qGemLFi8T330VwX+uhtmCFg9cfJC1Yhy+2/wQrJ38cHuOko0ov8sMlyVtFS0z/nzv5OdnUmQT8NfqljlLDgSZYSinVD39zFQApGT1NCdizBncBKR4dbCEcGvZaI9M5k/s//rk5udSbBNDWw7CoamonSxogIbvfskXpCewyWUi9HvtwsJLbWjyx/R/73GQ35SYLe6N+qaPUcKAJllJK9ae1hmYTS2rywLoIAnQkjiM3WInHF4hgYGNDc6U1y0d81vh+y8Y4bFTacohp0eHCw6Gmphq3+HAMILmNdzmotOcSq8c+LKqaPeRIHYGE3H7LOuw2apy5xLfplzpKDQeaYCmlVD/s7TXUSxJO+8A/MiW9hExppKyyKoKRjQ3eULentPxJAyrf4M4npV0vNMOhM7l1ZRQPqHyju4BU724wJoJRjQ1l1fVkShPO1IIBlW+NK7CGyQ/qlzpKRZsmWEop1Y+YjlqabSmHtE1ctpUMVOtgC4MWbCjDb2wkZhUOqLwnsYiMYJXOxxQGnfeyZRRNHVD5jqRi3KYDWvZGMqwxoXa39cVCQlbxgMr7ksfhIABNuyMYlVJqIDTBUkqpfsR562l19j9MdXfphdaIajpk9eA5msqotWcgdufANkgrwUmAlmq9F2iwAjXWgBWx2T1Oe3kQW7o1/5W3Wge6GCxPxQYAUoqmD6i8M3TsW/dui1hMSqmB0QRLKaX6kRCop8N1aAlWYq7VguWv3R6JkMaUlPZdNLoH1k0KIC40J5C2Hg6eq2kn9bY0cCUOqHx8jvV3X1+ux36wbDVW66E9c/KAyieEPnN0Liylok8TLKWU6kPQ205KsBGT2P+N5vuJTaFJkohp0lG9BqPN00FJcBetKVMGvE1KgVW2RVsPB8UYQ5ZnB/WxRQPeJrNgAgEjtOl8TIPmatxKoz0NYlMGVD4zfzx+Y8NTpS1YSkWbJlhKKdWHuj1bsYnBllZy6Nu68klu1xHVBqN0yzripANH3owBb5NfNIEO48Rfo62Hg7GzqoEpppSOrNkD3qYwM5U9JoNgnR77wahv9VLs20Zz0sAGdgEozEhij0nH1JdGLjCl1IBogqWUUn2oL7O6OsVmD/xCp5MnoYjsQAUdfh3V63Dt3fQpALmT5w94mwR3DHskC6fOCTQo29cvxyU+kiYM/NhnJMRQLtm4mnZFMLLRb13pHo6QXZjCgR/75FgneyQHV7Mee6WiTRMspZTqQ9teq6tTWsHA7oPYT1oxedRQXtMY5qjGDkfZh7QSS8aEow5pu9qYPBK09XBQ2rZ+AEDOtAUD3kZEqHflk6yTbA9Kxfpl2MWQdsTCQ9quzpVHsmdPhKJSSg2UJlhKKdUHX9Vmmk0sBQUDvw+lkytrEnYxVJXpvUCHIxA0FDQuZ2f8bLA7DmnbtvhCMn0VOh/TYTLGkFbxAZXOAuxpxYe0bXtCEYnBJvDoFwuHy7ntLXw4iJ9w/CFt1xZXQFKwATpaIhOYUmpANMFSSqk+JDesZ6dzAk6H/ZC3TQ21ejXpqF6HZd3qzyhhD8EJpx7ytoGUYuJpx9tUHYHIRr8NpeUcFfiCpoKTD3lbkzoegKCOoHlYdte3cWTbh+xOnT/g0Rs7BVPGWQ8atHusUtGkCZZSSvXC+L0UerdSlzyweWgOlJxnJVjBWh3V63DUfPQoQSMUn/j1Q942JsO6yK/etSHcYY0JW97+G27xkb3gqkPe1h2aM6txtw7Vfjg+evsFxtmqSJy76JC3dYT+7lt1FEelompQCZaILBaR3SKyKvRzVrd1PxaRrSKySUROH3yoSik1tMo2LseND0fhod3/00kSc2jHpYMtHIbqugZm732OTUnHkpBReMjbJ+VbyW3jns3hDm3Uq2tuZ1bZo+x2TyJ5/LxD3j4130qwmiq1BetQtXb4yVz7AC22RNLnH3qClZBtzQHXrMdeqagKRwvW3caYOaGfVwBEZBpwKTAdOAP4PxE59P41SikVRXtXvQpA8dwzDq8CEWqduTrYwmFY/cz/kC5NJH/5tsPaPqvAusjvqNHk9lAte+I3lEgFthNvA5FD3r4gJ5t6k4CvZkcEohvdXnn+UU5iBY1H3gDO2EPePis7lzbjoqO2NPzBKaUGLFJdBM8DHjfGdBhjdgBbgYGPNaqUUsNAYtm7bLWVkFdQfNh1NMUVkenTUb0OxRerPuWE8odYn7SQvNlfPqw6MtPSqDOJ0KDJ7aH45KP3+HLZfWxPPJrc4w69BQUgLyWWcpOJrUmP/aH4fOMWTlr/SypdxeSfceth1ZGfGmfNhaV/90pFVTgSrO+IyBoReUhEUkPL8oHu7+7y0LKDiMj1IrJcRJZXV+vNyEqp4aG+opTJnrVU5Bz6AAvd+ZLGkW/20tTuDVNko9uOHVtJf/7rtEss477xx8Oux2YTqu1ZuFp3hzG60e3z1Z9T8No3abPFk3fNI4fVegXgtNuodeYQ36ZDtQ/Uxu07cT1+McnSSuLXHz6s1iuw5iGrIBNXi/7dKxVN/SZYIvKWiKzt4ec84I/ABGAOUAH876EGYIz5szFmrjFmbmZm5qFurpRSEbH1rQewiSH/xEO/yb87R1oRbvFRuUe/Ue7PulUfEfO3M0mhGc8lTxB/GPdeddfkyiWxoyJM0Y1exhiWvvI4Bc+eR6LNg+2yJbjTevxOdMBa4/JJ9VZCMBimKEev995/B9ffTmcC5TSd+1fixx152HWJCA0xOSR49O9eqWjqd2IRY8yA+meIyAPAS6Gnu4Hu/zIWhJYppdSw1+FppXjbP1gdcySzj5g9qLriMksAqK/YDhMmhCO8Uae9rY0VSxYzb9dDtNgSqLngSYqmHTfoejvi88lo/9SaC+swW2NGu61bN7HnuZ9xcusb7HYW4rjycdLGzRh0vYGkQmKafdBaBYk5YYh09Nm6cxelz/ySkxpfoNmeTNtFT5M57eRB19sen0diYyN4WyEmfvCBKqUO2aHN3HgAEck1xnR+TXIBsDb0+EXgHyLyWyAPmAR8Oph9KaXUUFn33G84ijoqFv5+0HWl5lkJVmuV3vB/oOaWZla+8AcmbHmQBVSxKvlkxl9xH0VZg2u56pJSQGyNl5aGvSSk6kV+JxMMsmb5ezR+8ADHNL3OODGsLr6WGV//b+wxh9c17UC2tGLYDe1V24nVBKuLMYY1q5dT8/a9HNv0GiV42Zh3AZMuu5OYpPD04gkkFkAj0LgbMieHpU6l1KEZVIIF3CkicwADlAL/BmCMWSciTwLrAT/w78aYwCD3pZRSEddQvYdJm/7Eiph5HLXgnEHXl5xjtVr567SLIFgX9xtXLaPxw4eYVvMGJ0kr22KOYPOJdzJnwQVh3ZcrvRi2Qk3ZFk2wgB2b11D6r2cp3PU8s4M78OBkY/bZlFzwC2bnhrd1NS7Lqq9+z1ZiJxwf1rpHoh3bN1P6/j/I2vUKs4Ob8OJga/YZ5J/1faYXzwnrvhyp46AcvHWlxGiCpVRUDCrBMsZc2ce6O4A7BlO/UkoNqWCAyoevYrzxknr+/yBh6FYmsSm0EYu9eewmWJ4OL+s/e5vWNf+kqHopU81uPMbJuuSTSF3wLSbMOz0iXfiScqxJVxsrd8CshWGvf7jztTez7bPXaF33GjnVyygJVlIC7HBOZOW0nzHt9G8yOzEtIvtOy7cSrPaqsTkfU1uHl/XL36dp7WtkVi1jun8jJWLY6RzPmsk3Mem0G5iWlheRfcdmjQOguXIH6VMisgulVD8G24KllFKjxvonf8601k95Y8IPOW3aoU+w2iMR6pzZxLaNrZvOd++tZvPHL+HY8hrTmv/FUdKEz9jZHDuHFROvZfKXr+bolIyIxpAZmgvLU10a0f0MG8ZQvX0V5Z+9hGvnO0xsW8MR4qfNuNjgnkP5+GuYeNx5lBRNpSTCoeRnplNtkgnUjY15yIwxbN22lfLlL+Pa+S5T21YwV5oB2BEzidXjbqDopCsYF4b72/qTll2E39hor9ZuyUpFiyZYSikF7Pz0JY7Y8H+8F/clTvn6D8Nad2tsLilNlWGtc7jx+QOsX/UxtatfIXXP+0z3ryNfArQQx46049k79auMP+4Cpiem9l9ZmKSmZ9Fq3NA4elsP25vq2f7Zy3RseIOC2g/JMjVkAtulkI8zLyJ22ulMPeZ0jo4f2sEOMhJiWE0WyU27hnS/Q6m+sZkNn72JZ8MbFNR+xGRKmQTUSQplGSewd8pXKJ5/NiUpQ9s9NS8tkUrSCNSP3r97pYY7TbCUUmNeU2Upya/cyA5bAdO+9RecDntY6/cn5JPb+AXNHh+JbmdY646m6upKtn70EmbrW0xo/JjZUg/ALmcJG8ddQcacM8mddSozHa6oxCc2G9X2LGJaRs98TCYYYMfaT6he9TLJ5UuZ2LGe6RKk2cSyMe5oNhadTMH8cykZP5nxURw5UUSoc+aQ174tajGEm98fYMPalVSvfpWk8veY5v2C46UDH3Z2xM5kzbibyTv6HDImHEWaLRzTjB6enGQ3q00GBc2j5+9eqZFGEyyl1JgW9HVQ9dfLyDFe2r/2Vyakhf+eFFtqEWl7WthUXcuUwpE72EIwEGDL6mXUrHqZtD3vM9m3kePE0EQ8pSnzqZr4ZcYfew5FmeMoinawIU2uHJJG+JxANdVVbP/kBWTLm5Q0fsJ4GhgPbLFN4OPcK0mYcQZHzD2VeW53tEPdT2tcPqlNH0EwALbwfmkxVKqqKtn68csEt77F+KZPmUkNAHvs+WzJO5eE6adRfPQZTI5NinKk+7iddmrs2Uxp3xDtUJQaszTBUkqNaav/ehNHdqznvTl3ctKsMN13dYDYTOum89rd22CEJVi+jjY2ffgiHV88z/j6D5lCE5OMsM05iRXjvknGnLMomX0is+zDs2WuIz6fcW3rMMaEZdCSoWCCQbauW07l8hdJ2f0uU33rmS9BGkhga+IxbJ9wKsXzz2VSXhGToh1sHwJJhTib/NC0B1LCNPR+hPkDQdZ/sYL6Fc+QtecdJvs3kyWGZuIoTZpH7YRTGDfvHPLyJhKZISrCo9WdQ1L7BxDwg10v9ZQaavquU0qNWeve+htH7lnC+6kXcuL510dsPym51mh2LXtLgRMitp9w8bQ2sXnZcwTWvcDkpg+ZgYcmE8fGpOOxTT6Niceew6TM4Xx5uY9JLiS5ppWGhjpSUtOjHU6vOjytbProZdrWvcK4mmVMoppJQKljPKvGXU3qnLMpmXUScx0j559tR3oJlENb1XbihnGC1d7hZ8Vny2j+/Fkm1r7DLKx7l7Y6J7Oy+DoyZp9F8eyFzBymXyL0xJuQj609CM17IGW4tCcrNXaMnE9qpZQKo7071lK87AdssE9h3vV/iGjrRnK2NWabbxiPqNbWVMem959GNr7IlOZPmCVe6kjki5QvETPzAqadcDbz3eGZhHYoxWQUwzaoKts67BKs+oZGNn74PPaNLzKt6UNmSTttxsWW+KPZM/HbjD/uAopzSyiOdqCHKT7bGqq9Yc9W4iafFOVo9tfq8bHyo7dpX/McU+qWskAqCWCjNG4W6yZdSeHxi5iYXRztMA9fShFUg2nYhWiCpdSQ0wSrDzvWf0bV2neJScomNi2HhNRcEtNzSUhOx26P3g2sSqnB8ft81D12HW5jJ+7yR4iNjWziIEl5BLAhjcPrpvPm+r1sfu9JnJv/yRGtKzhS/FSTyqqMs4mbcwFTjzmDY2Nioh3moCTmWROtNu/ZCLOOiXI0UFvfwLr3n8Wx8QVmtX3MceKhkQQ2pH+JmBnnM+W4s5gdO7Qj/kVKel4JQSPDZrjwpjYPq//1Oh1rnmda43sslFr82NmRdDTbpn2HccdfzITkkdWFtzeu9HGwBdqqSokvXhDtcJQaczTB6sPeVW9w7OY7D1ruM3aaJI5Wicdji6fDkYjPkYjXmYjfmYBxxmJzxCJOF7aYOOxON+J0g8MFDjdid2Cz2bDZHNjsdux2G2KzY7PZABtGbAQRjAkiJogJBjEmCJ2/TaDbY+u3CQYxwQCYIMFg5/qAtSzYWUcATAATNNZNx53rjfV8X91WPXQ+D+27+3MJrZeu9QEEAyaA7Lc+9BvTx5Hua13/66W/zftzQMOF6WvlAWt623VPW5nOpX00lHSuMn0VGvAeeys68LKmW0Rg/an0X7b7cTH0/LCnsgfU1+u+eqjd9FaiZ7H+Ro70b+Dzuf/DkeOHYCZOm516eybutj2R31c/6qvK2fb+47i3vswR7as4WoJUkMHyrAtJPOoips47leNGUDe0/mQUW/MOBfZuiloMdfX1rH//GRwbX2Rm28ecKB00kMS27DNIPOoiio8+nXnOkZ3I9qQgM5VKUgnWlUYthsbmNlZ/+BKBdS8wo+kDFkojHTgpTTmGbTPOo/j4i5gUH5nJlqMpKcdqNW/Zu4PRka5Hn98foLmpgdbGatoaa+horqOjrQm/pwXT0YLxtoK3FfG1YfO1Yve3Yfe34wi0I0EfttCP3fhwGD8OOn9bP0782ELXS9L1r+S+x92X27pd+ASNEKTzxxb6ka7fpvO52DCh5QYhgA3DvmWd6zvLG7EeE6rbiG1fFCJdZel8vN/60ONudRjZt5zQvqD7MrFec+h/+y5VBBGh0jWeorO/z5zClCE424M3ev4VjYC5F91GTc0VNNTsobWugo7GvZiWaqStBjqasHmbcfiaifE1k+TbRVxrKwm04jJenBKIdvhhETD73oSB7m9K6f5G7nyD2glK55t3/zer6eeivv+EYrDbD0zfieDBex3o4kOr9xD2xSGlVn3Wc3C9/SS2h7i8c2Xf9Uofzw6NHPRgf5/nXsKcr94wiD0cmmZ3Lkmt0ZkLq2b3NnZ88DgJ219hSsc65oqhTHL5JPdy0uZdzJQ5C8kdpa3yycmpVJJOTMPQDhdeX1/HhvefxrHxRWa0fcoC6aCeZLbknEXq3EsoOuorzB5B9/QcjtQ4JyvJJq1paFtu6xqbWfvB88iGF5nR8i9OlBbacFOadjzNsy6g+NjzmTKMRv2LhLyMNKpNEt7a4dstOdraPR1U791NU/VuPA0V+BorCTbvxdZWjbO9Fqe3AZe/mbhgEwnBFpJoJVWC9DeTX4dx0iZuPLjosMXiFTd+WwxBm5OAIxavzUnQ5iAoToI268eEfiM2xGbDJoKEko7OhAZDV2LTmcgAXV9iiwkgxgDWl9tCsOsLcmHfF96YUFmsxzYT+qK923bSWQ7TVb8tVN5aHvri3FhXhdZ+TWh7gxjrMXSlZ9ay/bazrhYJreskmK6rhM7rBWOg1tZKbUtH+P4AIkwTrD44Ylxk5I0jI2/cIW8b8Ptoa2vB096Gp72NoLeNoK+DoM+DCfoJBAIEgwGCgSDBQIBg0E8w1ErUmcaA1bKFzQbYEZuV9SN2xGZDxA42QWx2JLTMZgv9ttuxiR2x2/cts9mt5TYHYhdsNgd2mz3UoibY7Y5QGQd2u9WiZhdhZA6uq1Tf8od4f57EIsa1vDdkc2FVlG5g17LHSd35KpN9m8gAttvG8VHhN8k65hImTp9HYRTn6hlKFY5CUlojn2DV19ex8b2ncG56gRltn3K8+KiVFDbmnE3qvIspPvIrpI6hEd1EhIa4Iia1fWRdIUXwPseaujrWf/Asjo0vhVoJ22kmjp0ZJ9Iw52sUH3MO02LiIrb/4WZCVjxbTAYpDaN3oue+tLa2Ulm+jfqKUjw1OzGNZTia9xDXXkGSr5qkYD2pppmiHrrAtBkX9bYU2uxJdMQkUevMp8qVQtCVjMSmYotPxRGfRkxCGu6EZGLjk3DFJ+OKTcAdl4jL4SQ6M/+NbmdGO4BDNHY+6YeY3eEkMSmVxKT+vutQSo0FgawZZFa+yJbdpSROiMzg2uWbV7H7X4+TWfY64wPbyQW22Cfwr+J/J++4RYyfMpvxEdnz8FafPJUZtU9hfO2IM7z321VXVbDlg6dwb3mZ6e0rOE581Egq63LOJ3XexZQc+SXSx1BSdaDWjNkklb1OsK4UW3pJWOuurq5i4/tP4dryEjPbl3OieGkgie3Zp5F81IWMm3sGM6I0yXW0xcU4qHHmkd+yNdqhRITH66dizy7qy9bTsXcL1G7F1byLBE8lqf4qMmlgwgHb1JFMnSOTRncBNbFzICELR1IOrpQc3Km5JKbnk5SZS1xcMmMnFVeRMnY/9ZVSagi5C4+ENdCwbTmEKcEKBgJs+fxdGlY8T97edygM7qYA2OiYyr8m3ELRCYuYNH7qsJ4raSjYio7FWbuEvZs+JnvGKYOur3L3LrZ98AQJ219hWsdqjpcAeyWDL3K/Rsrci5hw1JfIGKET64abu3g+lEHFhmXkLxh8grVzx2Z2ffQMiaVvMK1jNQslQI2ksSn3PNLmXUThnC+N+q6XA9WQPJWMumXQVgdxI+8+sw5/gPLdu6kq3UBbxUZM7TZim3aQ1lFOodlDiXjo/IvyGjuVthwaY7IpTZrMjqQCYtKLSMgaR2rueFKzi0lzxTHyjoIaqTTBUkqpIVA07Rj8L9nwbPsXcNlh1+NpbWLTJ6/iWfsSE+veZwoN+IydDe7ZlBdfScnCRRxRMBbbqXqXP+sk+ByqVr1+WAlWIBBg8+p/UbfqJdL2vMdk30ZyxLDHlsvqgsvJnH8xRTMXkD1GulweiplHHUv9+wm0ffEKLLjykLf3+wNs/uJjala8QPaet5kS3Mo4YLctjzUFXyd7/oUUzjyJDD32BwnkzoE68JatIGbKV6IdTo+CQcPemloqd6yjec9G/FVbiGkqJaV9F3mB3UyQlq6WqAA2qu3ZNCQUsTVpHpI+gdicyaQWTiM9bwJFo2hwHjXy6V+jUkoNgZj4ZNa5Z1FY9Q7GmAHPuxUMBNi+9iNqV79G4u73mehZx2zx02Ji2ZR4DNunnMXkE77GrLTMCL+CkWticTErbTPJ2/E8BP87dF9r36r27GLH8tcxW99iYtNHTKURgK2OSawsvo7cYy+h4Ih55EXwvqLRIDc1kddcx3Pi3ncxnkbEndzvNuU7t7Fz+SvYdyxlQstyptEAwNaYI1gx7nsUHHcR+SWzyNdj36fsKcfiX2ujcs3bFEU5wWpoamLPjo00lm/Au3cLjobtJLbuJMe/m1ypJ7db2WpbBnWuQsqSTmNPxgTi844gs3gaCdkTyXHEMDoG0lej3aASLBF5Augc4zgFaDDGzBGRYmAD0Dku7sfGmKEbrksppYah9snnMv2L2/nivWeZefKFPZdpbWHHF8to3rwMd+VyitrWMpFmJgLbbMV8ln0JCdO+zBHHnsnRbr1TYCBEhNqpl3PUuh+x9cU7mXj+j/Zb7/d5Kd+6hsoNH8Guj8hvXEmhqSALaCSB7UnHUDbpy4w/9lwmZhZE50WMZPO+iXvZm+z4x62Mv+aB/Qa78Pl8bF+/kuqNH2Df/Rm5zV9QbKyurvUksSt5HhUTT6X4mPOYmFUYvdcwAs07ophPzTQmb30ZzP9EdJARgLa2Fvbs2Eh92SY6qjYj9TtIaNlJhm83uaaGlG4DStSTTLWrgD0px7M7bQJxuZNJL5pGeuEUMl0J6NdFaqQT09fENodSkcj/Ao3GmNtDCdZLxpgZh1LH3LlzzfLly8MSj1JKDTee9jaq7zyaRNPMjiP+jZjsifjamvDUlhFTu4HUlq0U+Mu6pnnYKfnsTZ6NbfyJjJv3VTJzi6L8CkYuj9fP53eexXH+T9jmmkZTXCE2bwvxnkoK/btwiQ+wEqrSuFl48o8hY9oplMw8HptD7+kZDF8gyCu//RbntT5NhSOfqrhJGL+XZE85eYGKrmPfQCJl8dPpyDuO3KPOJG/KXGskXXXYHv3jf3LF3rto/dpjxM86e1B1+Xw+qvbsonbPNlqrSvHV7cLZWEpC2y4yvLvJNrX7zc/USALVznxa4gsJpEwgJnsyKQVHkF0ynZgEHQBMjQ4issIYM/eg5eFIsMTq67ILONUYs0UTLKWU6tmOzWvwPX41k4P7DxteQQaV7vF40qcRW3IchbNOJD0rL0pRjk51TS2sXPIrcva+R3qwljZbPK3ODFpTpuDMn0XWpHkUTjlSL+ojoK3Dx3tP3kP6zlfIDlTgFydN7jw6ksfjzptB3syFZI2bHvFWlrFmfXktrgcWkGFvxffVe8mYfSY49p/U2tPRQXPdXlrqKmipraCtvhJfUxW07CWmrYIEz15SfXvJMHUHzfFZTxLVzjya4goJpJQQkzWJ5PwpZBdPIz5F26HU6BfpBOtE4LedOwglWOuAzUAT8DNjzAe9bHs9cD1AUVHR0Tt36qR4SqnRzQSDbC/dhqe2HFdCGpk5hSSn6vhWSqnwe+ODDzniraspkiq8OGiSRLzE4DIe3MZDvPQ8eavP2Km2ZdDgzKbNnU0gMR9HaiGxWeNIyxlPev54nPHaEqXGtsNOsETkLejxnsKfGmNeCJX5I7DVGPO/oecuIMEYUysiRwPPA9ONMU197UtbsJRSSimlwqu8uo71HzyHq2I5Md5GnMaL3x6HuOKwuRIhPhNbYhaxqTkkZ+SSlllAbFKatigq1Y+ItWCJiAPYDRxtjCnvpcxS4DZjTJ/ZkyZYSimllFJKqZGgtwQrHBNHfBnY2D25EpFMEbGHHo8HJgHbw7AvpZRSSimllBq2wjEP1qXAkgOWnQjcLiI+IAjcYMz/b+/Ow+Msq8aPf8/MZLLvSbOnSfclaVO6AmWVpcguCCg7LyIqKrzyuouIrz8XVBRReUUQUGQRFFAQQRahQIG2lC60hZamTdPs+55Z7t8fz5M0SbO1mWQmmfO5rlyZedYz8+Rp58x93+c29QE4l1JKKaWUUkqFrDEnWMaYqwZZ9gTwxFiPrZRSSimllFKTScDmwQoEEakBQq2MYBpQG+wg1ITR6x0+9FqHD73W4UWvd/jQax1eQvF6TzfGHDInQUglWKFIRNYPNnhNTU16vcOHXuvwodc6vOj1Dh96rcPLZLregShyoZRSSimllFIKTbCUUkoppZRSKmA0wRrZ74IdgJpQer3Dh17r8KHXOrzo9Q4feq3Dy6S53joGSymllFJKKaUCRFuwlFJKKaWUUipANMFSSimllFJKqQDRBGsYIrJGRHaKyC4R+Xqw41GBIyJ5IvKyiLwvIttE5Mv28hQReUFEPrR/Jwc7VhUYIuIUkXdF5B/280IRecu+vx8VEXewY1SBISJJIvK4iOwQke0icrTe21OTiNxk/xu+VUQeFpEovbenDhG5T0SqRWRrn2WD3stiudO+7ptF5KjgRa4O1xDX+nb73/HNIvI3EUnqs+4b9rXeKSKnByXoYWiCNQQRcQK/Bs4AFgCfEpEFwY1KBZAX+IoxZgGwCviCfX2/DrxojJkNvGg/V1PDl4HtfZ7/GLjDGDMLaAD+KyhRqfHwS+A5Y8w8YDHWddd7e4oRkRzgS8AyY0wR4AQuQe/tqeR+YM2AZUPdy2cAs+2f64DfTlCMKjDu59Br/QJQZIxZBHwAfAPA/rx2CbDQ3uc39uf2kKEJ1tBWALuMMR8ZY7qBR4BzgxyTChBjTIUxZqP9uAXrA1gO1jV+wN7sAeC8oASoAkpEcoEzgd/bzwU4GXjc3kSv9RQhIonA8cC9AMaYbmNMI3pvT1UuIFpEXEAMUIHe21OGMeZVoH7A4qHu5XOBB41lHZAkIlkTEqgas8GutTHmeWOM1366Dsi1H58LPGKM6TLG7AF2YX1uDxmaYA0tByjr83y/vUxNMSJSACwB3gIyjDEV9qpKICNYcamA+gXwVcBvP08FGvv8w63399RRCNQAf7C7hP5eRGLRe3vKMcaUAz8F9mElVk3ABvTenuqGupf1c9vUdg3wT/txyF9rTbBUWBOROOAJ4EZjTHPfdcaaw0DnMZjkROQsoNoYsyHYsagJ4QKOAn5rjFkCtDGgO6De21ODPfbmXKykOhuI5dAuRmoK03s5PIjIt7CGdjwU7FhGSxOsoZUDeX2e59rL1BQhIhFYydVDxpi/2oureroU2L+rgxWfCphjgXNEpBSrq+/JWGN0kuxuRaD391SyH9hvjHnLfv44VsKl9/bUcwqwxxhTY4zxAH/Fut/13p7ahrqX9XPbFCQiVwFnAZeag5P3hvy11gRraO8As+1qRG6swXRPBzkmFSD2GJx7ge3GmJ/3WfU0cKX9+ErgqYmOTQWWMeYbxphcY0wB1n38kjHmUuBl4EJ7M73WU4QxphIoE5G59qKPAe+j9/ZUtA9YJSIx9r/pPdda7+2pbah7+WngCrua4CqgqU9XQjUJicgarO795xhj2vusehq4REQiRaQQq7DJ28GIcShyMBlUA4nIx7HGbjiB+4wxPwhuRCpQRGQ18BqwhYPjcr6JNQ7rMSAf2AtcZIwZOMBWTVIiciJwszHmLBGZgdWilQK8C1xmjOkKYngqQESkBKugiRv4CLga6wtFvbenGBH5HnAxVvehd4FrscZi6L09BYjIw8CJQBpQBXwXeJJB7mU7yb4Lq5toO3C1MWZ9EMJWR2CIa/0NIBKoszdbZ4y53t7+W1jjsrxYwzz+OfCYwaQJllJKKaWUUkoFiHYRVEoppZRSSqkA0QRLKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQDTBUkoppZRSSqkA0QRLKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQDTBUkoppZRSSqkA0QRLKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQDTBUkqpECMiBSJiRMQV7FhUeBCRbSJyYrDjUEqpqUATLKWUUpOeiNwtIq32T7eIePo8/2ew4wt1xpiFxphXAnlMEYkUkftEpFlEKkXkvwN5fKWUClVijAl2DEopNaWIiMsY4x3D/gXAHiBiLMcJVyJyKzDLGHPZIOvGdG0m0mSKdTAi8kNgNXAOkAm8DFxljHkuqIEppdQ40xYspZQKABEpFZGvichmoE1EXCKySkTeEJFGEXmvbxcsEXlFRH4oIm/b3/A/JSIpQxz7ahHZLiItIvKRiHx2wPpzRWSTfZzdIrLGXp4oIveKSIWIlIvI/4qIc4TXMVNEXhKROhGpFZGHRCSpz7p6ETnKfp4tIjU9r0tEzrG7mjXar2/+gPfnZhHZLCJNIvKoiEQd/jt9+Ia4NkZEZvXZ5n4R+d8+z8+y39NG+xouGuW5ThSR/SLyTfv9KxWRS/usP1NE3rWvVZmdDPas6+ka+l8isg94yV7+F7sFqElEXhWRhQPi/o2I/NNurXtdRDJF5Bci0iAiO0RkySjfo1NG8xoPw5XA940xDcaY7cA9wFUBPodSSoUcTbCUUipwPgWcCSQBGcAzwP8CKcDNwBMikt5n+yuAa4AswAvcOcRxq4GzgATgauCOPknOCuBB4H/s8x4PlNr73W8fdxawBDgNuHaE1yDAD4FsYD6QB9wKYIzZDXwN+JOIxAB/AB4wxrwiInOAh4EbgXTgWeDvIuLuc+yLgDVAIbCIIT5si8hqO7EZ6mf1CK9hML3XZqRWITshuQ/4LJAK/B/wtIhEjvJcmUAakIOVZPxOROba69qwrnuSHc/nROS8AfufgPXen24//ycwG5gGbAQeGrD9RcC37XN2AW/a26UBjwM/H2XcgxKRrw93PYbYJxnr7/q9PovfAxYOtr1SSk0lmmAppVTg3GmMKTPGdACXAc8aY541xviNMS8A64GP99n+j8aYrcaYNuA7wEWDtTAZY54xxuw2lv8AzwPH2av/C7jPGPOCfZ5yY8wOEcmwz3WjMabNGFMN3AFcMtwLMMbsso/VZYypwfpwfkKf9fcAu4C3sD5Af8tedTHwjL2vB/gpEA0cM+D9OWCMqQf+DpQMEcNaY0zSMD9rh3sNQ+h7bUZyHfB/xpi3jDE+Y8wDWInLqsM433fs9/A/WIn2RQDGmFeMMVvsa7UZKyk9YcC+t9rXrMPe5z5jTIsxpgsr2V0sIol9tv+bMWaDMaYT+BvQaYx50BjjAx7FSq6PmDHmR8NdjyF2i7N/N/VZ1gTEjyUWpZSaDDTBUkqpwCnr83g68MkB3/SvxkpKBtt+LxCB1erQj4icISLr7O55jViJU892ecDuQWKZbh+vos/5/w+rFWRIIpIhIo/YXQqbgT8NEtM9QBHwK/tDP1gtXnt7NjDG+O3Xl9Nnv8o+j9s5+CF8IpSNvEmv6cBXBly7PKzXOBoNdtLcY2/PviKyUkRetrtWNgHXc+j72xuriDhF5Edidf1s5mDrZN99qvo87hjk+US+zz1a7d8JfZYlAC1BiEUppSaUJlhKKRU4fasGlWG1UPX9tj/WGPOjPtvk9XmcD3iA2r4HtLulPYHVIpRhtxg8i9WVr+c8MweJpQyr1SWtz/kTjDEjddH6f/brKDbGJGC1xPWcCxGJA34B3AvcKgfHjR3ASkx6thP79ZWPcL5DiMhxcrAC4GA/x418lEMMrOjUDsT0eZ7Z53EZ8IMB1y7GGPPwKM+VLCKxfZ7nY70/AH8GngbyjDGJwN30eX8HifXTwLnAKUAiUGAvH7jPuLHHkw15PQbbxxjTAFQAi/ssXgxsm4iYlVIqmDTBUkqp8fEn4GwROd1uhYiyCyDk9tnmMhFZYI9nug143O7W1ZcbiARqAK+InIE1lqrHvcDVIvIxEXGISI6IzDPGVGB1JfyZiCTY62aKyMDuaAPFY7U+NIlIDtbYrr5+Caw3xlyL1fXtbnv5Y8CZdhwRwFewErw3RnqjBjLGvGaMiRvm57XDPeYgNgGftq/NGvp307sHuN5ubRIRiRWrOEU89BaWuH+E439PRNx2MngW8Bd7eTxQb4zptMfPfXqE48RjvY91WAnh/zuM1xgQxpj/N9z1GGbXB4Fvi0iyiMwDPoM1LlAppaY0TbCUUmocGGPKsFoevomVHJVhJSt9/939I9YHzkogCvjSIMdpsZc/BjRgfSB/us/6t7ELX2CNcfkPB1uSrsBK0N63932c/l0UB/M94Cj7WM8Af+1ZISLnYhWp+Jy96L+Bo0TkUmPMTqzWrl9htcKdDZxtjOke4XzB8mWsGBuBS4Ene1YYY9ZjJQN3Yb1vu+hfkCMPeH2YY1fa+x3AKkhxvTFmh73u88BtItIC3IJ1XYfzIFYXw3Ks67hupBcWQr6L1X11L9bf5e1aol0pFQ50HiyllAoCEXkF+JMx5vfBjkWNnl0V8T1gkV3MY+D6E7Gua+7AdUoppcKDK9gBKKWUUpOF3SI3f8QNlVJKhS3tIqiUUmFGRO4eomDB3SPvrSYjEckfplBFfrDjU0qpqUS7CCqllFJKKaVUgGgLllJKKaWUUkoFSEiNwUpLSzMFBQXBDkMppZRSSimlhrVhw4ZaY0z6wOUhlWAVFBSwfv36YIehlFJKKaWUUsMSkb2DLdcugkoppZRSSikVIJpgKaWUUkoppVSAaIKllFLD8Pm10qpSSimlRi+kxmANxuPxsH//fjo7O4MdippkoqKiyM3NJSIiItihqEnqP+99SO0TN5N/wfdZvnhRsMNRSiml1CQQ8gnW/v37iY+Pp6CgABEJdjhqkjDGUFdXx/79+yksLAx2OGqSkv/8kAscr/Diy7+ExfcGOxyllFJKTQIh30Wws7OT1NRUTa7UYRERUlNTteVTjUl+80YAchvXo5OyK6WUUmo0Qj7BAjS5UkdE/27UWEV6WwCYbfZSWVMX5GiUUkopNRlMigRLKaWCIc60UeXIwCGG8g82BDscpZRSSk0CmmCNgojwla98pff5T3/6U2699dbgBdTHunXrWLlyJSUlJcyfP783rldeeYU33njjiI+7d+9ejjrqKEpKSli4cCF33313gCJWanLweDzESwdVyUcB0Lp3U3ADUkoppdSkEPJFLkJBZGQkf/3rX/nGN75BWlpawI5rjMEYg8Nx5HnulVdeyWOPPcbixYvx+Xzs3LkTsBKsuLg4jjnmmCM6blZWFm+++SaRkZG0trZSVFTEOeecQ3Z29hHHqtRk0tbcSBLQmbqAtrqXcdRsD3ZISimllJoEtAVrFFwuF9dddx133HHHIetqamq44IILWL58OcuXL+f1118H4NZbb+WnP/1p73ZFRUWUlpZSWlrK3LlzueKKKygqKqKsrIz/+Z//oaioiOLiYh599FHASpBOPPFELrzwQubNm8ell1466CD76upqsrKyAHA6nSxYsIDS0lLuvvtu7rjjDkpKSnjttdeGjfPyyy/n6KOPZvbs2dxzzz0AuN1uIiMjAejq6sLv9w/63tx5550sWLCARYsWcckllwBQX1/Peeedx6JFi1i1ahWbN2/uPdeVV17Jcccdx/Tp0/nrX//KV7/6VYqLi1mzZg0ejweA2267jeXLl1NUVMR11113yOv2+/0UFBTQ2NjYu2z27NlUVVUNdxmVOixtzfUASHQS1RG5xLXvC3JESimllJoMJlUL1vf+vo33DzQH9JgLshP47tkLR9zuC1/4AosWLeKrX/1qv+Vf/vKXuemmm1i9ejX79u3j9NNPZ/v24b/p/vDDD3nggQdYtWoVTzzxBJs2beK9996jtraW5cuXc/zxxwPw7rvvsm3bNrKzszn22GN5/fXXWb16db9j3XTTTcydO5cTTzyRNWvWcOWVV1JQUMD1119PXFwcN998MwCf/vSnh4xz8+bNrFu3jra2NpYsWcKZZ55JdnY2ZWVlnHnmmezatYvbb7990NarH/3oR+zZs4fIyMjehOe73/0uS5Ys4cknn+Sll17iiiuuYNOmTQDs3r2bl19+mffff5+jjz6aJ554gp/85Cecf/75PPPMM5x33nnccMMN3HLLLQBcfvnl/OMf/+Dss8/uPafD4eDcc8/lb3/7G1dffTVvvfUW06dPJyMjY8TrqNRodbRYRS1cMUm0xuSS2rQzyBEppZRSajLQFqxRSkhI4IorruDOO+/st/zf//43N9xwAyUlJZxzzjk0NzfT2to67LGmT5/OqlWrAFi7di2f+tSncDqdZGRkcMIJJ/DOO+8AsGLFCnJzc3E4HJSUlFBaWnrIsW655RbWr1/Paaedxp///GfWrFkz6DmHi/Pcc88lOjqatLQ0TjrpJN5++20A8vLy2Lx5M7t27eKBBx4YtIVo0aJFXHrppfzpT3/C5XL1vqbLL78cgJNPPpm6ujqam63E+IwzziAiIoLi4mJ8Pl9vvMXFxb2v7+WXX2blypUUFxfz0ksvsW3btkPOe/HFF/e29j3yyCNcfPHFw77nSh0uT1sjAM6YJDyJhWSbaprbO4IblFJKKaVC3qRqwRpNS9N4uvHGGznqqKO4+uqre5f5/X7WrVtHVFRUv21dLle/bnV952OKjY0d1fl6uuiB1f3P6/UOut3MmTP53Oc+x2c+8xnS09Opqzu0nPRQccKh5cwHPs/OzqaoqIjXXnuNCy+8sN+6Z555hldffZW///3v/OAHP2DLli2jek0Oh4OIiIjeczkcDrxeL52dnXz+859n/fr15OXlceuttw46l9XRRx/Nrl27qKmp4cknn+Tb3/72sOdV6nCZjiYAHNFJRKTPJGKfj4/27iJhfnGQI1NKKaVUKBtzC5aI5InIyyLyvohsE5Ev28tvFZFyEdlk/3x87OEGV0pKChdddBH33ntv77LTTjuNX/3qV73Pe7rCFRQUsHGjNUnpxo0b2bNnz6DHPO6443j00Ufx+XzU1NTw6quvsmLFilHH9Mwzz/SOUfrwww9xOp0kJSURHx9PS0vLiHECPPXUU3R2dlJXV8crr7zC8uXL2b9/Px0d1rf1DQ0NrF27lrlz5/Y7t9/vp6ysjJNOOokf//jHNDU10draynHHHcdDDz0EWGPJ0tLSSEhIGNXr6Umm0tLSaG1t5fHHHx90OxHh/PPP57//+7+ZP38+qampozq+UqPW1QhYCVZC9hwAGvbvCGJASimllJoMAtFF0At8xRizAFgFfEFEFtjr7jDGlNg/zwbgXEH3la98hdra2t7nd955J+vXr2fRokUsWLCgt5z5BRdcQH19PQsXLuSuu+5izpw5gx7v/PPPZ9GiRSxevJiTTz6Zn/zkJ2RmZo46nj/+8Y/MnTuXkpISLr/8ch566CGcTidnn302f/vb33qLXAwVJ1jd/E466SRWrVrFd77zHbKzs9m+fTsrV65k8eLFnHDCCdx8880UF1vf3F977bWsX78en8/HZZddRnFxMUuWLOFLX/oSSUlJ3HrrrWzYsIFFixbx9a9/nQceeGDUrycpKYnPfOYzFBUVcfrpp7N8+fLedXfffXe/uC+++GL+9Kc/afdANT66rC60zqg4pk2fB0Bn9e5gRqSUUkqpSUAGq0w3pgOKPAXcBRwLtBpjfjrCLr2WLVtm1q9f32/Z9u3bmT9/fkBjVAfdeuut/YphTDX696OO1Na//C9F225n97U7mJmdQddt03gz9ROc+MXfBTs0pZRSSoUAEdlgjFk2cHlAi1yISAGwBHjLXnSDiGwWkftEJHmIfa4TkfUisr6mpiaQ4Sil1BEzXqu7qtsdBQ4H1c4sYlrLghyVUkoppUJdwIpciEgc8ARwozGmWUR+C3wfMPbvnwHXDNzPGPM74HdgtWAFKh41OrfeemuwQ1AqNHm7AXBHWoVhmqJzSWkrD2ZESimllJoEAtKCJSIRWMnVQ8aYvwIYY6qMMT5jjB+4Bxh95QallAoy4+2iy0QQGeEEoDs+j0x/Fd0eX5AjU0oppVQoC0QVQQHuBbYbY37eZ3lWn83OB7aO9VxKKTVhfF104cLtsv6ZdCRPJ046qag8EOTAlFJKKRXKAtFF8FjgcmCLiGyyl30T+JSIlGB1ESwFPhuAcyml1MTwdtNNBDFOK8GKmTYD3oe6/R8yPS8vyMEppZRSKlSNOcEyxqwFZJBVU6Isu1IqPImvm25cuOwEKyl7FgCtVbuBk4MYmVJKKaVCWUCrCE5lTz75JCLCjh1DTzRaWlpKUVFRwM65c+dOTjzxREpKSpg/fz7XXXcdYE0S/OyzR56/dnZ2smLFChYvXszChQv57ne/G6iQlZoyxN+Fh4je56m5VoLlrSsNUkRKKaWUmgw0wRqlhx9+mNWrV/Pwww8Put7r9Y75HD5f/8HzX/rSl7jpppvYtGkT27dv54tf/CIw9gQrMjKSl156iffee49Nmzbx3HPPsW7dujHFrtRU4/B145GDCZYzJpkWYnE2a6l2pZRSSg1NE6xRaG1tZe3atdx777088sgjvctfeeUVjjvuOM455xwWLFgAWInWpZdeyvz587nwwgtpb28H4MUXX2TJkiUUFxdzzTXX0NXVBUBBQQFf+9rXOOqoo/jLX/7S77wVFRXk5ub2Pi8uLqa7u5tbbrmFRx99lJKSEh599FHa2tq45pprWLFiBUuWLOGpp54C4P777+fcc8/lxBNPZPbs2Xzve98DQESIi4sDwOPx4PF4sGqV9PeXv/yFoqIiFi9ezPHHHw9YrV9XX301xcXFLFmyhJdffrn3XOeddx6nnnoqBQUF3HXXXfz85z9nyZIlrFq1ivr6egDuueceli9fzuLFi7ngggt635++Vq1axbZt23qfn3jiiQycgFqp8ebwdePB3W9ZXUQWse1aqn2g7bv38vptJ/Ha2v8EOxSllFIq6AI2D9aE+OfXoXJLYI+ZWQxn/GjYTZ566inWrFnDnDlzSE1NZcOGDSxduhSAjRs3snXrVgoLCyktLWXnzp3ce++9HHvssVxzzTX85je/4YYbbuCqq67ixRdfZM6cOVxxxRX89re/5cYbbwQgNTWVjRs3HnLem266iZNPPpljjjmG0047jauvvpqkpCRuu+021q9fz1133QXAN7/5TU4++WTuu+8+GhsbWbFiBaeccgoAb7/9Nlu3biUmJobly5dz5plnsmzZMnw+H0uXLmXXrl184QtfYOXKlYec/7bbbuNf//oXOTk5NDY2AvDrX/8aEWHLli3s2LGD0047jQ8++ACArVu38u6779LZ2cmsWbP48Y9/zLvvvstNN93Egw8+yI033sgnPvEJPvOZzwDw7W9/m3vvvbe3Za7HxRdfzGOPPcb3vvc9KioqqKioYNmyQybJVmpcOfzddPVpwQJoi8kmuWl3kCIKXTX/voPj/Rt567UfweoTgh1OSPH4/LR1eUmKcY+8sVJKqSlBW7BG4eGHH+aSSy4B4JJLLunXTXDFihUUFhb2Ps/Ly+PYY48F4LLLLmPt2rXs3LmTwsJC5syZA8CVV17Jq6++2rvPxRdfPOh5r776arZv384nP/lJXnnlFVatWtXb8tXX888/z49+9CNKSko48cQT6ezsZN++fQCceuqppKamEh0dzSc+8QnWrl0LgNPpZNOmTezfv783CRvo2GOP5aqrruKee+7p7b64du1aLrvsMgDmzZvH9OnTexOsk046ifj4eNLT00lMTOTss88GrJa30tJSwErCjjvuOIqLi3nooYf6tVT1uOiii3j88ccBeOyxx7jwwgsHfX+UGk8OfzdeR/8Ey5uQT7apoaWjO0hRhaacWuvfldmdW+jyjL279FTyj/t+wPM/upg9ZfuCHUpIqW7u4O7bv85L/9Z6WAM9/tiDPP3LL+Hzm2CHopQ6QpOrBWuElqbxUF9fz0svvcSWLVsQEXw+HyLC7bffDkBsbGy/7Qd2tRus691AA4/RV3Z2Ntdccw3XXHMNRUVFgyZCxhieeOIJ5s6d22/5W2+9NWI8SUlJnHTSSTz33HOHFOi4++67eeutt3jmmWdYunQpGzZsGPZ1REZG9j52OBy9zx0OR+8Ytauuuoonn3ySxYsXc//99/PKK68ccpycnBxSU1PZvHkzjz76KHffffew51VqPDj93fgkpt8yV8p0osu62VlextxZM4MUWehJ8NQCkCIt7PzoA+bOXRDkiEKDMYaz9t9BhMPHi6/8mcLLvx7skELGjmd+zfVtv2Xv2ifhlI8HO5yQ0dnRzoXvW7061m+6kmVHLQ1yREqpI6EtWCN4/PHHufzyy9m7dy+lpaWUlZVRWFjIa6+9Nuj2+/bt48033wTgz3/+M6tXr2bu3LmUlpaya9cuAP74xz9ywgkjd6N57rnn8Hg8AFRWVlJXV0dOTg7x8fG0tLT0bnf66afzq1/9CmOsb7vefffd3nUvvPAC9fX1dHR08OSTT3LsscdSU1PT2+Wvo6ODF154gXnz5h1y/t27d7Ny5Upuu+020tPTKSsr47jjjuOhhx4C4IMPPmDfvn2HJHbDaWlpISsrC4/H03ucwVx88cX85Cc/oampiUWLFo36+EoFitPfjW9AC1ZshpVU1Zd/GIyQQpLf6yHFNLIjegkA1bsO7e4crg5UHiBCrNb/yANaSKivqCrrC7scU8WBysogRxM6Sre+0fu4Y9MTQYxEKTUWmmCN4OGHH+b888/vt+yCCy4Ysprg3Llz+fWvf838+fNpaGjgc5/7HFFRUfzhD3/gk5/8JMXFxTgcDq6//voRz/3888/3Fpk4/fTTuf3228nMzOSkk07i/fff7y1y8Z3vfAePx8OiRYtYuHAh3/nOd3qPsWLFCi644AIWLVrEBRdcwLJly6ioqOCkk05i0aJFLF++nFNPPZWzzjoLgFtuuYWnn34agP/5n/+huLiYoqIijjnmGBYvXsznP/95/H4/xcXFXHzxxdx///39Wq5G8v3vf5+VK1dy7LHH9kvqnn76aW655Zbe5xdeeCGPPPIIF1100aiPrVQguUw3Puk/biYldzYAHdUfBSOkkNRYU45TDK05ViEcb8Wh3X7DVdv+963fRDGjY0vvl2AKotv2A+ASPxXbXh1h6/DRUlXa+ziq5r3gBaKUGhMJpX/wly1bZgZWi9u+fTvz588PUkST2/3339+vGEY40r8fdaSqbpvDB5FFHPe1v/YuM10tyA9z+XfWZznlsz8JYnSh46NNrzLjybPZcPRvyF/3HXbFHsXRNz8e7LBCws5n72Lu29/izcSPc3TTs1R/cQ/TUlOCHVZIOHDrLBpjC1nQ9jZrC29k9ZXfC3ZIIeHNP36Xo3f/gu0xS4ltLyf/1p3BDkkpNQwR2WCMOaQSm7ZgKaXUIFx48Dv7t2BJZDyNkoirZX+Qogo93Q3WexGRnEN9ZA7xHVrGvoe/pQoAX/5qAMp2a+seAD4PGaaWhsSF1JGEs06TiB6OlnJaTTSt05aTa6pobm4MdkhKqSOgCdYUdtVVV4V165VSYxFhPPgdh5bWbnBnEqdJRC9fSzUA7sRMOmLzSPdWaFc4m2lvoM1EkjmrBIDW8h3BDShEdNXvxymGrrgcqqIKSW7TqQ96RLZVUutIxZW1EIcYKncHeGoapdSEmBQJlv5nrY6E/t2osYgwHozz0PGF7TG5pHor9e/L5utoBiA2IRWTXECGNFBT3xjcoEJFZxPNxJI7y6rQ6qvdFeSAQkNbk1V10hGbRltcAZneA3o/2eK6q2hyTyMlzyoe1Vj+QZAjUkodiZBPsKKioqirq9N/fNVhMcZQV1dHVFRUsENRk1QEg7dgmcQ8sqmlprkjCFGFHn9nMz4jxMYnEDXNqrJYVaZVFgEc3c20EENUbCJ1kkJk055ghxQSOlrqAHDFJEHydJKklfq6muAGFSJifM10RSSTOd1KsLpqtHVPqcko5OfBys3NZf/+/dTU6D++6vBERUWRm5sb7DDUZOT34cIHrkMTrIi0QiJLvVSWlzItUed7oquFVqKJj46gM9uaTL2pfCeUrAhyYMHn7G6mzREPQG1kLkkdOtkwQGdLAwBR8cm4zUz4EKrLdpKaNi3IkQVfrL8VjzuByNgk6knE2Vga7JCUUkcg5BOsiIgICgsLgx2GUiqceLus385DE6z4TKuVpvHAh7BAEyzpaqaVGBKdDtLzrW/dPbXaUgPg9rRQ50wCoC2ugOk1r2CMGdUE9FNZd6uVYEXHpxAfb3XDbanYDUuOC2ZYwef3E2fa8EcmAlDnziG2XQvqKDUZjXsXQRFZIyI7RWSXiOg09kqp0OezEizjOrSLaWrPXFg1pRMZUchyelrpkBgAIuLTaScKh37rDkCUr5Vul9WC5UueQao0U1ervTG8bVaCFZOYyrR8az7ErhqdW87b2YxTDCYyCYDWmFzSPQeCG5RS6oiMa4IlIk7g18AZwALgUyKiX/kqpUKbt9v6PUgLVmRqgfWgfu/ExRPCXN5WOh1WgoUI1a5sYtvKghtUiIjxt+BxWwlWZMYsAGr2aSVBf0cjfiPEJ6YQFZ9ME3E4G/V+amu0xqY5YqwWLF/SdDJMLU2tbcEMSyl1BMa7BWsFsMsY85Expht4BDh3nM+plFJj4u22CliI69AqgkREUe9IIaJVkwgAt7eVTldc7/PWmFxSuvVbd/x+Ykw7Prf1YTnJHp/WXKkFQOhsopVoEqKt+6vWlUV0m3aFa2u2qyvGJAMQkTYTpxiq9unfjFKTzXgnWDlA308h++1lvUTkOhFZLyLrtZCFUioUeLo7gSESLKApMovELk0iACJ9bXidsb3PPfF5ZJlqOrq8QYwqBHS34sQPUQkATMu3EqzuGh2fJl1NtBCL22V9BNGk3NLZbHWdjIi1Eqz4LKvVU0u1KzX5BL1MuzHmd8aYZcaYZenp6cEORyml8HRZLViOiMETrM7YXNJ9VXR7/RMZVkiK8rfjiTjYguVMLSBauqk4EN5dvrzt1odloqwPy1FxyTQSj7MpvN8XAFd3M62Og38znoR8Mk01nV3dQYwq+LpbrS6CkXEpAKRPt8enVev8aUpNNuOdYJUDeX2e59rLlFIqZPW0YDkGKXIBQFI+2dRxoL5lAqMKTbGmDb89zgggxh5rVLc/vLs1tTXVA/ZcT7baiCxitSscEZ4WOhz9k/JI8VJZHt6tex47KY9OSAUgPjWXTiJAx6cpNemMd4L1DjBbRApFxA1cAjw9zudUSqkx8XbZCZZ78ATLnT4Dl/ipDvMPhPg8RNGN6ZNg9VRZbK8K7wlS25utBCsiNql3WUt0LimeiiBFFDrc3ha6+4zbi82wpj6oLw/vpNzX1gRAdILVgoUI1c4sonS8p1KTzrgmWMYYL3AD8C9gO/CYMWbbeJ5TKaXGqqcFy+kevItgoj02orkivJMIX6fdghd5MMFKyrI+LPvrS4MQUejoaOnf3Qus8WmZ/mq6usO7K1y0rw1PRELv89Rca/60jjBPyv2dB6sr9miOyiaxU8enKTXZjPsYLGPMs8aYOcaYmcaYH4z3+ZRSaqy8PQnWEF0Ek7OtBKsrzCfUbbMH5TuiE3uXiTuGOkkhomVfsMIKCT2T6UYlHPyw7EwtJEJ8VJWF95xPsaYVr/tggpWSPQOfEfz14X0/9VRXjI86OD1EV3w+Wf5KvF5fEANTSh2uoBe5UEqpUOPz2AlW5OAJljMpFx8OJMzHRvR0g3NGJ/Rb3uDOIq4jvL9199iT6cb2SbBiM63EvP5AGHeF83mJpQN/5MG/GXG5qXGk424O76Tc0dVMi8TicMjBZSkFxEsHVVXatVSpyUQTLKWUGsBnz4PlihiiyIXLTYMzlai28K7Z09naCEBEnxYsgPbYHNI9FRhjghBVaPB3NAIQn5jauyw1xxqfFs5d4XydzQBIVP+/mYbIbOLDPCl3elpol9h+y6KmzQCgpkxLtSs1mWiCpZRSA/g8XQBEDFHkAqAlKoekMJ8Lq6utEQB3XHK/5b7EAjKppb65LQhRhQbT0USziSYh9uDfUGr2DLzGEdZd4dqarMl0JTqp3/KO2DymeQ+EdVLu9rTQ4eifYCXnWPOntVZqqXalJhNNsJRSagC/nWC5hugiCNAdl0uGqaal0zNRYYWcbrvqWVRs/9YId1ohTjFUloVvS42jq5EWYomKcB5cFuGmOsy7wvWWr48dkJQnFZAmTTQ2NgYhqtAQ6W2hyxXfb1l6npVgeevCNylXajLSBEsppQbwe+0WrMjoIbeR5OlkUU9ZTdNEhRVyvB12Wen4pH7LE+wiIE0V4TvWyNnVTPuA1giwxqfFd4Zv19KOFivBcvcpXw/W1AcA1WHcFS7a14onon+C5YyKp0EScekE1UpNKppgKaXUAH67yIXbPXSCFT1tBg4x1JWHb9cdvz2eJqZPIQeAtFzrW/eumvCtlucaMJluj47YPNK9lUGIKDR0tdjVFeP6/80k2kl5cxgXAIkZUF2xR11EFrEd4ZuUKzUZaYKllFIDGK81T5F7mC6CSXnzAGir2DkhMYUi09mC1ziIj+v/rXt0ah4eXNAQvt+6D9bdC8CfNJ1UmmhqaghCVMHnabded3Ri/wQr3b6fwjYp9/uJNR2YQRKs9pg80nSCaqUmFU2wlFJqIE8nfiNEDjHRMEBctvWB0NSGbwsWXda8PVFuV//lDic1zmlEtZYFJ64QEO0/tLsXgDu9EIDqfeHZUuPtLV+f2m95bFI6LcTgaCwNQlTB5+tsxiEGBlRXBPAl5pNlamhq7QhCZEqpI6EJllJKDeTrohsXkW7nkJtITCotEktkc+nExRViHN0ttEvMoOuaI7NJ7AzfKosx/la87kM/LMdnWqXaw7UrnOlowm+EhMT+RS4QodqVRUxbeCblPcU/BlZXBHClFeISPwfKwvjLHKUmGU2wlFJqAOPtposI3M5h/okUodadR2J7+HaDi+huoW2QcUYAXXF5ZPir8Pj8ExxVCPD7iKe932S6PdLz5wLQVRumFRa7mmghhpjIiENWNUflkBymUx+0NdUB4IoZJCnPspLyxvLwTMqVmow0wVJKqQHE10U3ETgcMux2rbHTyfSWh+3cPW5vCx3OwRMsSSkgVZqprK6b4KiCz9tuVVccOJkuQEJKBm1EIWE6Ps3R1USLxCJy6L3lScgn01+F1+sNQmTB1dFqdZ2MGDCnHBws1d5ZHaZJuVKTkCZYSik1gPi68XDoN+wDeZNnkEUdNY3hWao9ytdCl/PQVhqASHusUe3+8Cu73Wq3Rjhikg5dKUK1M5Oo1v0TG1SIcHW30D5Eq6cjpZBI8VBdXjqxQYWALrt8fdQgCVZsWj5enNAYnkm5UpORJlhKKTWA+LroFveI27mnzcYhhpq94VlJMMbXSvcghRwAknKsbk0tFeGXYLU193T3OvTDMkBTVA7J3eFZdtvtaaZziFbP6AyrVHt9efj9zfRUV4yKTzl0pdNFjWMakS3hOT5NqclIEyyllBrA6Wmj0zH0HFg9EnKsSoKt5TvGO6SQFDvEvD0AaXnzAfDVhl/Z7Z4WrEE/LANd8flk+KrwheH4tEhfC56Iwf9mknOsrnBtleFXzMHX1ghAbMLgfzNNUTkkhfEE1UpNNppgKaXUAC5fO90ycoKVXrAAAE9NGA4+93mIoRN/5KHjjACcsck0Ek9E054JDiz4uuwWrNjE1EHXO1MKiJZuKg/sm8iwQkK0rxXfEEn5tNyZ+Izgqwu/pNzf0QhAXNLgfzNd8Xlk+ivCs2iMUpPQmBIsEbldRHaIyGYR+ZuIJNnLC0SkQ0Q22T93ByRapZSaAJG+drqdg5cf7ysqLpk6knA1hN8HQl97IwAmKmnIbWrdOcS3h18S0d1cA0Bscuag6+Myra5wtfvCr+UzzrRhIgfvVupyR1LpmIa7OfzGGpnOZtpMJHFRg09ublJmkiKtVFTohMNKTQZjbcF6ASgyxiwCPgC+0WfdbmNMif1z/RjPo5RSE8btb8fjGjnBAqhx5xDfXjq+AYWglqZaAJyDFXLo2SZmOume8Cu77W+z3puk1IxB16dNt1o+WyvCa+xeR3s7sdIJMYO30gDUReaRGIZJuXQ10SqxQ1Yujc60uk/W7ds+kWEppY7QmBIsY8zzxpieeqrrgNyxh6SUUsEV6e/A64wd1batcQVM84Tf2IjmequVZrCqZz18SQVkmlqamlsmKqyQIO11tJhoYmIGT9JTc2bhNQ78teE11qipzmp9kdj0IbfpiC+wpj7wh1dXOGdnI+2OwVv2AFLyrPGebZXhVwBEqckokGOwrgH+2ed5oYi8KyL/EZHjhtpJRK4TkfUisr6mpiaA4Sil1JGJNh34IkbXguVPnkE6jTQ2hNd8T+2N1QBEJw79Ydk9bRYOMVTuDa+ucM7OOpokYdC5ngDE5abKmUFUc3iNT2uttxIsV8K0IbcxKTOIlw7qqsPrS4toTx2trqG/rEjNnYPfCCbMknKlJqsREywR+beIbB3k59w+23wL8AIP2YsqgHxjzBLgv4E/i8igo1qNMb8zxiwzxixLTx/6P2qllJoQfr9VvCFi8FLSA0VmWF13Kve8P55RhZyuxkoAYlKyhtwm0a6y2BhmZbfdXQ20OQcv/tGjITqf5M7wKrvd0WD9zUQnDd51Eg52havZG173U7y3gc7IobtOOtzRVDvSiWwunbiglFJHbMQEyxhzijGmaJCfpwBE5CrgLOBSY4yx9+kyxtTZjzcAu4E54/YqlFIqUDzt1m/36LoIpuRb5ciby8NrbISvpQqAhPTsIbeZZldZ7K4KrwQr2ttEe8TQrREAXfGFZPsq6Pb4Jiiq4PM0W62eMUMU/wBItcv7tx4Ir/FpSf5GvNFpw25TF5lLYkf4jU9TajIaaxXBNcBXgXOMMe19lqeLiNN+PAOYDYRfmS2l1KTj67THC7lH14KVYRcs8FSHV9cd01ZLm4kkOXHoRCI6MY0m4nA0lk5cYCEgztdItztp2G0caTOJkS4O7A+f/xp9LVaClZA6dFKeOX0OHuPEF0Zd4TrbmoiRLkzs0F0nAdrippPpPRB249OUmozGOgbrLiAeeGFAOfbjgc0isgl4HLjeGFM/xnMppdS4a29tBECihh5w3pc7OpYqSSOiMXw+KAO4OmqolyQinMP/N1IdkUNcWxiV3fb7SfE30B09/Ifl2Gyr+2Q4VYXzt9XSZSJIGCYpd0W4qXRk4G4qnbjAgqzBHm/mjB/+b8YkzyBR2qirqZyIsJRSY+Aay87GmFlDLH8CeGIsx1ZKqWBoa2kiHnDHDD4Z6mBq3bkkhFnXncjOOpodSSNu1xqTz7Sm98Y/oBDRWn+AOPEhCUO30gBk2N0n2yvCp/uko7WSekcSWSMk5XVReWHVFa6l7gBZQGTS0F0nwR6f9qE1Pi0tY/i/L6VUcAWyiqBSSk167S1NAETFjK4FC6A9vpBMTzn2MNSwEN1dR7s7ZcTtvEkFZJoaWlpbJyCq4Ks9YLVkulPzh90uMbOQblxQFz5d4WI7KmiIGD6JAKtUe1YYdYVrr7GSydjUvGG36xnv2XIgvKpyKjUZaYKllFJ9dDRbk8RGJRxGVdOUGSRJK7U1FeMUVehJ8dXQHTPyh2X3tNk4xVCxNzxaalqqSgGIz5g+/IYOJ5XObKJbSsc9plCR4qmiLXroqpM9JMUan1ZXER5dS7vrSgFIyxu+FljG9Ln4jOCtCZ+kXKnJShMspZTqw2sPxI9JGbqU9EBRWXMBqC4Nj/E0XS11xNOON2H4VhqAhGzrvWnaHx7funfWWaXX07IKR9y2KTqflK794x1SSPB6ukkzdXjjckbcNibLLtUeJuPTHI37aDRxJCUP3yIc4Y6i0jEtrManKTVZaYKllFJ9mFYrwYobppT0QGl2153WMCnVXldmtUa5UgtG3HZagfXedIZJlUXTuI8O4yZ1mPL1PboTC8nxV9DR2T0BkQVXXUUpLvHjSB45KU/Nt8antYVJqfaotv3UODOGnJi6r/rI8BqfptRkpQmWUkr1Ie11NJkYkuJHNw8WwLT88Oq601y5G4C4jJkjbhubNI1mYnE0hEeVxdjmPZQ7s3GMUMgBwJk+i0jxcmDfhxMQWXDV7rOSpehpM0bcNiN3Bt3GFTal2hO6DtAUNbqiFe1hNj5NqclKEyyllOrD0V5LgySOWH68L2dEJJWODCKb9oxjZKGjrdL64JueP4r540WodmUT2xYe37qndJRSFz1y90CAxJzwKdXeUrYFgKxZS0bc1hURwQFHJpHNU/9+8nZ1kOWrxJM0cuIJQMoM4qSD2qrw6Fqq1GSlCZZSSvUR0VlHi3PoeXqGUh9GpaWlZgc1JomsjNF1o2yJySctDMYadXW0kuGvxps86Awmh5hWuBCAzqqpXwBEarbTRCxpmcNXyuvREJVHUkfZOEcVfBUfbSZCfDgyi0a1fXSmPT5t79RPypWazDTBUkqpPqI9DXSOovz4QB3xhWT7DuD3Tf2uO8ktH7A/cuaoxoyAVao9y1TT3tE+zpEF1/4PNuIQQ1T2glFtH5uaSztRSP3ucY4s+BJadlHuLkQco/vY0ZlQQJavAuP3jXNkwVWz610AUmaM3LIHkNoz3jNMxqcpNVlpgqWUUn0k+2rpjj6MEu02R9pMYqWTqsqp3Yrl93ST491Lc+LcUe/jSp+FUwwH9k7tsUZNH64DIHXu0aPbQYQqVzaxrVO7HLmnu4uC7l00J44u8QSQ1FlEiqd3XrGpylO2kU4TQcGcRaPaPiN/Dh7jDJvxaUpNVppgKaWUzdNaRwJtdMePXOlsoJ7S0rWl7wc6rJBStuMt3HiJzC0Z9T4JOVYy1lg2tbs1+creoZYk8gtGn3w2xeSTPsW7T+5673WipZvIGceMep/eUu1T/H5KrVvPLvd8ItyRo9reFeGm0pGBO0zGeyo1WWmCpZRStqq91lxN7mmjG0PTV/p0azxN64GpPd9T3daXAMgpOXXU+0ybPvVLtRu/n/ymDZTFLRpVBcEe3QmFZJkqOjs7xzG64Kp7/2UAZiz92Kj3SbNLtbdXTN3xabW1NRR6P6Ita+Vh7VcflUti59ROypWa7DTBUkopW8N+a1xDUvbsw943LWcGXuPAV1ca4KhCi3vfa+yVbHLzR1cpDyA+JYtWYnDUT93uXvu2v0MGdXhmnHJY+7nSZ+ESP5V7p+6YmpTyl/jIWUjitNG3DGfkFtJh3Pjrpm5SvvuNv+EUQ9qi0w9rv474ArK85VqqXakQpgmWUkrZOqusYgPZBfMOe19xRlDrTMPZMnW/We5ormdO+0bK0k4YdYELoHesUcwUHmtUte4RfEaYvuq8w9ovNtv6W2uYot0naw7sZW7XNqqyR996BeB0OqlwZhHVXDo+gYUA186nqSWJwiUnH9Z+jpQZxEoXNRVTv8qiUpOVJlhKKWVz175POekkJx9+mXaAZncWcZ0HAhxV6Nj2wv24xUfi8osOe9/m6DxSu8vHIarg83i6mb7/KbZELSUje/ph7TutwOoK11k1NQuA7Hr+tzjFkHvCVYe9b0NUHsmdUzOJKNu3h0Wtb7An8wwcTudh7RvdMz5t39Qen6bUZDamBEtEbhWRchHZZP98vM+6b4jILhHZKSKH1/6tlFJBkNq6gwPRo5g8dwidcTmkeaswxgQwqtBg/D5S33+A3Y5CipadeNj7e5IKyfRXT8mxRhufuZcMU4csv+aw901KzaTZxOBomHrdJ1tamphd+jBbo44ib1bxYe/fmVBIhq8Sv9czDtEFV+kzP8OJn8IzvnjY+6ba49PatFS7UiErEC1YdxhjSuyfZwFEZAFwCbAQWAP8RkQO7ysapZSaQO0tDeT6D9CVNroJPwdjEvPIoIGaxpYARhYatj77fxT6Sqkqvm7Ucxn15UqbSYT4qNw3tYoWdLa3kvfeHexxFrDo5EsOe39xOKhw5RDbWhr44IJsw8PfJ41Gok7++hHt70ibiVt81JZPrXFYFR9tY1nlo2xKPJk0uzjO4cjIm0W3lmpXKqSNVxfBc4FHjDFdxpg9wC5gxTidSymlxqxs8ysAxBQeXkWvvtxpBTjEULV/ak0c29JYS/b6n7DdOYcVZ193RMdIyLZKl9eVTa0qi1v/cAPZporWE/8XcRzZ94jNMfmkdU2trnC7Nv6Ho8v/wObEk5m14sg6scTZ49Nq906drnBej4emR67Fg4uci396RMdwuiKodGYSOYXHpyk12QUiwbpBRDaLyH0i0jNwIQfo+7/FfnuZUkqFpKbtr+AxTgoOc8B5XwmZM61jVUyd7l4+r5e9v/s0CaYZc8ZPcLlcR3Scg2ONps637u/89Zcsq/kba6d9muLjzj7i43QlFDLNX4u3qz2A0QVPZdlu4p6+hnpJJv/yu4/4OKn5Vnn/qVKq3e/zs/43/8W87vfZueTbZOTMOOJjNUTmkdQxtZJypaaSERMsEfm3iGwd5Odc4LfATKAEqAB+drgBiMh1IrJeRNbX1NQc7u5KKRUQaRWvsss9l5QjLHABkJZjzZ/VWTM1JgH1e71s/PUVFLW/xVvzvsaCZScd8bES0rJpIwqpnxqte6898lOWvvddtkQexcprfzGmYznTZuEQQ82+yT+mZu+urfjvO4M400bb+feTlJZxxMfKzMqn1URhpsDfjM/r4Y27rmFVw1O8nXMFy8/7wpiO15FQQJbvAMbvC1CESqlAGjHBMsacYowpGuTnKWNMlTHGZ4zxA/dwsBtgOZDX5zC59rLBjv87Y8wyY8yy9PT0sb4epZQ6bPWlm5nh+4iavDPGdJzIlDx8ODCN+wIUWfC0NdWz+edns7zhGd7IuYbVn/ra2A7YW6p9cr83nR1tvPOrKzhux/fZHruM2V/+OxHuyDEdM9buPjnZS7VvfP5PJP/pNGJNG+XnPMysxavHdDyH00GFM3vSl2qvKf+I7befwuqGv7Eh53JWXHvn2A+aMpNo6aauYupOfaDUZDbWKoJZfZ6eD2y1Hz8NXCIikSJSCMwG3h7LuZRSarxUrX0QnxGmHf2psR3I5abekYq7dXKXI9/0nydp/MUqitrWsW7OVzn62p8H5LhN0fmkdE3eecK2v/53qm9fzvK6p3g98wrm/fc/iYqJG/Nx06f3dJ+cnF3hysv2sP5n53HUG1+gxplB25X/Zu7SI2/t7KsxOp+USVqq3ef1sO6xnxL5u2Mp7NzOO4tuY+ln7oLDmUNuCNGZ1mTotfsmd1Ku1FR1ZJ3pD/qJiJQABigFPgtgjNkmIo8B7wNe4AvGGG3HVkqFHmNI2/M0652LWTFr1pgP1xyZScIknQuret8O9j3+LZY1/5v9ksWujz/CqpWBm2WjO7GArObX6OruInKMrT4TxRjDto2v433xB5S0v8F+yWTzSX/g2BM+EbBzZEzLoM4kTLruk411NWz9y20srXiEdPy8Mf16ll9225hb9PrqTiwgo/VV/J4uHBGT42/G5/PzzgsPk/n2D1nlL2N75CISLrmb5TMOv2LgUFLy7FLtFTuBMwN2XKVUYIwpwTLGXD7Muh8APxjL8ZVSarzVbX+NdF8V62d/DgnAN8tdcbmkt7+Dx+cnwjk55nKvq9rH7sdvpaT6SRJw8Fbe1ZRc+r/kRo+9daYvV9pMIvb72LtvF9NnBe7D5njw+Py8sfZFIl6/g2O6X6eZWN7Iv54lF3+H3NjAvi8Oh1DpyiamZXJ096oq38NH//g5CyseZzXtbEo6hdwLfsAx+fMCfi5JnYnrgJ+qsg/ImHH4c2lNJG93F5v/9QeS3v0Nq/x72e/IZsOquzjqtEuPaGqD4WTkzaTLRGBqJ1dSrlS4GGsLllJKTWqVax8kxrhZcNKnA3PAxHwyq//FgfpW8tMTAnPMcbJ3x7tUP/8zFtU9x1H4WJ9yJvmf+B4r82aOy/nisufCJqgv2xGyCVZzewdvPftH0rfdxwlmO21Es3nmZ5l97tc5JiFl3M7bGD2duW3vjNvxA2H7e+toevEOjmp6gRX42RR/PKlrvkFJ0dHjds747LmwBer2bQ/ZBKuxoZ5tz/yambse4ChqKHXksWnpD1m05lpyI9zjck53hIs9jkwim6dGQR2lphpNsJRSYct4u8mteI4NUatYnX3k1c76cqdNx7XLT3X5R+SnlwTkmIFk/H62rfsn3tfupKRjHRkmgk2pHyfrjJtZNXvRuJ572nSr7HZHZeiNNdp/4ADbn7mLhfsf5VSppcqZyQfF32DWadezKCZp3M/fnVhAWuu/8He24IiKH/fzjZbX62XDi3/BveF3LOneSDuRbM44n5yP38zSgvnjfv70AisRbw/Bv5k9H25j//O/pKT6aY6VDna4F3Jg+fdZfPJFFDiPbE60w1EXmcs0LdWuVEjSBEspFbb2vf13ppsWfAs/GbBj9syF1VyxG0pKAnbcseru6mLTv/5A0nu/p8j3IQ0k8Gb+dcw560ZWTpuYaQqT0nNpJxLqQ2eesK2b11P34p0sb3yOU6WLD2NL2HvsD5l+9AVkHOHEwUfCkT4byqG+bCdps5dN2HmH0tTYwOZn7yb/wwdZaQ5QK8lsnHUDc878MsuSp01YHNOmZdNkYqEuNLrC+X1+3nvjWXxv/IYl7W+Qh7A16SQST/oS80pOnNBY2uOmk1G7Hvx+CHAXRKXU2GiCpZQKW83v/JkGE0fJSRcE7JgpPXNh1YZG152muire/8edzNzzZ1ZQzz5HDu8U30LxGZ/l6ABUwDsc4nBQ5cwmOshjjbxeHxteeRLn279lWfc7dONix7Q1ZJ92E7ODlNzE93af3B7UBGvvRzvZ99wvWFT1FMdJG7sj5rB16c9Y8LHLSQtCkQmH02GPTyud8HP31dHezrv//D3p2/7AEv9HNBHHu3lXMvPMGynJKgxKTP6UmUTWemir3UvstODEoJQanCZYSqmw5GlvYnbDq7yddDrHx8cG7Liu5Hz8CBLkubDKP9xE+b/uoLjmWY6WbrZGLqFq1U8oOuET5E9gy8xAjdF5pLQFpzWipbWFTc/cQ/aOP7DS7KOeRDbN/Byzz/wSi1KygxJTj2k9pdorJ36yYeP3s2Xd83St/TVL2taSA2xNPIGkk77EzJKTAlJWfCwao/OZ3rYlKOeuPrCPD569k3n7H+MYmtjnzOPdxbeycM1nWBbgIjCHKypjNnwANaXbNMFSKsRogqWUCks7X3mEIrqJWTrGua8Gcrmpd6YR1TbxYyOM38/ON/+OZ+1dFHe8TZqJYFPyaUw79csULVw54fEMxpNYQFbL63R3e3C7IybknBXle9n1zC9YUP44x0kzpa5Ctiz5IQtOvZoSd/SExDCSzLQUKk0yMoHdJzs7O9j03P2kbPk9i3y7aCaWTbmXUfjxGynJGZ9CJ0eiO6GAaS0v4evuwDlB12vnptdpeOlOjmr6N6vFy5aYldSt/gJzVp1Nfoh0x0vKtcbAtR0IvfFpSoU7TbCUUmFJtv6FA6Sz+JjAzfPUozkym8T2ioAfdyiezja2PncvyVt+zzzfXmpJ5PW865hz1pdYmZE3YXGMhittJu5yH3vLdjF95vgWSdi56Q0aX/oFJU0vciw+tsUdTePxNzBzxceD3iozkMvpoMKVQ0Jr6bifq7aqnJ3P/Io5+x5hFQ2UOXLYUPwdFq65jmWxoVf50pk+C8cBQ8XeHWTNXjJu5/F6PGx68RGiNvwfRZ4ttJtINk87h5w1N1E8c3wLwByJ7PxCOowbb+2uYIeilBpAEyylVNhprqtibtsG1mVdSrYr8P8MdsXnkd32Oh3dPqLd49cdr7n2AB/84w5mlD7CEprZ7SjgzeLvU3LGtRwbEzNu5x2L2Oy58B7U79s+LgmWz+dj04uPELn+/yjqfo92E8mWjPPIPeO/KS4MzdLwPZqi85nRtnbcjr9761vU/vuXlDQ8z7HiYUvUMmqO+TzzV59HXhC7jY4kPnsevAcNZdvHJcFqaqxn2zN3MX3Xn1hmqqiUdN6ZfRPzz7yBZUlpAT9foCRER/KhZOJqDJ2iMUopiyZYw9j4rz8Svf43dLpT8ESl4o9Og9g0HHFpuGOTiIpLJjohlbiEFGITk4mMjg/4ZIKTjTEGv9+P3+/D5/Vi/H58fuv3kPuMeMwRthrpACMZ9otsGfaL7uF2HWnSWrE2GmLf4c8ow5y5376H+S39SDGbAe+1seMw9kXoWW96tzd9HgNI78rh9un/vP/2HLL9KI41IO69r/2F1eInben5w73cI2ZSZ5NZ9Q92V1UxMy/wY3sqdm3iwHM/o6jmnywTDxsiV7L3mM+zePU5zAzxyY0z7LFGbRWBHWvU1tLIln/8htwPHmSpqaBK0nh71o0sOOuLIf0huS9vUiGJrc/iaWsgIjY5IMf0+3xsfvkxnG/fTXH3JrKNm81pHyfztBspnntUQM4x3qYVWH8zgS7vX7ZrK+X/+gXF1X/nGOlkh3sB7y39JkUfu5RM18R0Xx2r5ug8prWXBjuMsObp7qKjvZXujja6Otrp7mzF6+nG5/NgvF78Pg9+nxfj82B8Xvz+g4+N34vf/nxk/fcrvT89/x2b3sf2//9ibyP2Y3EgvT9ifQ7tXS6Iw2n9Fof9GEScvdv228ZhHcchDnAIjp7jOhz91zucOETA4cAhgsPhtM/rwOEQHA6HdQ6H9G5rbWOduyc+60U4hngeWr0MDpcmWMNwOJz4xE1SRxkJbVtIMs04ZehP817joJUYOiUSr7jxiBuvw43P4cbriMQrkfgcEfjFCfYft3E4EXHYf1AODIIfh/3B1Y8YA8aP9Dy2f4vxHVxmr8fY6/AN2M/+4eBvR59j9mzvoP86h73e0fOYg48dxorS0RutHyd+nGJwAk5gcvz3pMJRHtBIPLOXnDAux3dnLYD3oWHfVghUgmUMH6x7lu7XfklR+1skmwg2Jq8h9dSbWLpwaWDOMQGSMvJpIg5n1eaAHK+67AM+evYXLKj4G6toZ6drHhuXfpVFp1xGxjhN8jpe4nPmwX7Y9+EWZpYcP6ZjtTU3sPXZ35Kz80FKTAVVpLJuxpdYcOYXWZ46cWXWA2HatAzqTXxASrUbv59tb/wDzxu/YXHbOjJwsDnpYySf/EXmLR7bex4MvuQZZJSvo7Ori6jIia/yOJl1dnXRXFdFW0MlXc01dLXU4W1vwtveiOlshs5mpLsZl6eFCE8rUf42Iv0duE0nbtNNpOkmii4ixK+fd8aJ3wgGK8l8zSyi/cJHOHNRVrDDGhVNsIZRcuqn4dRP9z73eb00NVbTWl9FW3M9nS0NdLU19t6Mjq4mHN0tiLcT8XXh8Hbh8Hfh9HUR4W0nyjQRYbrtxMXf+1vsBEX6JCwO/PRPbQ4mXv5+iZi93l5mcGDEXicOwHFwe3FixIURJ0YEg9PapvexYMRpJXo9CV+fbxoGrqP3ubWNOKzH0ne9w14nVlxHSpBhG6qO9MgjHdMMu8WA7fs0k4zYKgdDvqKBrS0H4+nfsjPkgYeIYsRXMtSJB8Zhv9m93zVIv18Ht2Pg+v47SL91/TeWIY45MIZ+xxp0/VAxCnEzVpI0Dt0DAZKnFwPQWb4NOG1Mx+ru6mTL838g+b3fMcf7EfUk8FruZ5hz5o0cnZUbgGgnmAj7ouczrWXbER/C+P188M5zdLz2W4pbXiMFYVP8CcSd8EXmLf9YAIOdWLkzi+EtqN5z5AlW+a7N7H/+Vyyo/jsr6WCHaz4bltzMolMvJ8M9OT+AiwhVkdOJb9xxxMdob21i63O/J/39Bynyl9JAAm/nXc2sM7/MsqyCwAU7wdx5S3Af+CMfbFvHnKPG5wujyaSru5u6qv201Oyno64MT2M5prkCaa8jorOOyO4GYr2NJPibSJJWooY5VpuJok1i6HDE0umMo9OVSIsrC78zCp8zGlxRmIgocEUj7mgkIhqHOwanOwZHhBuH04XD6UIcEYjThcPlwuGMsJa73Dh71ktPr4Pevhd2zwzAGPu/ZrsXUN9eIX6/va3B+H32bz9++7m1r7/Pej/G338Z9j4Gazl+e53xW8+NwRgfxg/0LrO26ffbf/Ax9F/Xc46eeHobDzD2Z2Dr9QnGbhywPuECSM/xgM6oPGZOC1zF3/GmCdZhcLpcJKZlk5gW3HK+SqnQlpIzmw4iMRXvHfExqst2see5XzGr/G8spYlSyeWNBd9l8ZnXcVxscMtDj1XntBIWlP6e2toa0tLSR71fR1srW/51L2nb/sBc3x4aTRxvZl3GjDO+zLLps8cx4omRPbOIZmJx7l0LfGHU+/m9Xra++gTyzj0Ud7xDunGyOeEEYk/4IvOXnTx+AU+gxmkrWVF2H61NdcQlpo56v7JdWyl/4VcsqHqaFbSz21nIO4u+R/Gaa1k1wfPAjYeMRafAW9Dw/kswxRMsYwyNzS3Ulu2kpeIDvDW7kca9RLRVEtNVTaK3llTTSLb0H5LgM0KjJNDsSKTdlURt7Cwqo1IhNg2xh31ExKcTGZ9KbEIKsYmpxCckExsRweT5OK9CjSZYSikVYOJ0sSe6iOzGjYe1n8/rZfvrT+F/+/csbH2TVGBLzCrKV15L0XHnU+AM3UIEhyNl8cdx7r2Hj15/nLRzPzfi9nu3raP6P79nTvWzrKCNPY7prFv4XYrP+Ayr4+InIOKJIc4IPoxbTmHjG3g9HlwRw3c8qj2wl90v/p68jx5jkamkmhRez/8sc864gWVZ+RMU9cSIm38Kzv33suuNJyk547+G3ba7q5Nt/3kc2fgAizreIROHlXCu/hxzl5/CzCk0VjorZzqljjwS9v0b+F6wwxkzn99QUVtPZekOWg7sxFOzm4imPSR2lJHpPUAmdST3GarRYqKpc6TS6k6nLG4Ge+OycCZm40rOISY1j/hp+SSnZ5PqdjP6tFypsdMESymlxkFr1tEs+Oguysv2kJM3/CSg+3es58Cr91Nw4BmKqKeORNZlX0HBaV+gpHDuBEU8cQoXn0D106nEbnsYzrl+0MHMDVVl7Hz5T6R9+Bdm+XaTaVxsjj+O2GOuZf6qj1M4hT4k9+UoOp/0da/w3ot/YvGaqw9Z39newvZXHsO55REWtr/DSjG8H7GQ8pL/YfEpl3PsFB2HM3/FqRx4YRrRm+6DNdcc8jdj/H52vbeW+jceYE7Nv1hCCzUk8/b0zzBrzQ0szZ4epMjHX2nOOZxY9msa9r1Pcv6CYIczImMM1fUNVJZup7l8J56aXbgaS0lo30eGt5xcqadv5+cmSaDOnUNt4lIqkwpxps0kJnM2qXnzSU7LIH6SF0NQU5OYUY67mAjLli0z69evD3YYSik1ZpUfbSHzwdW8mXstR1/7s/4rjaFs5wb2v/VXMvY9ywzfHjzGybaY5fiKL2LhyZ8mKio0JsAdL28+9H2O/vCnbFzwdZZc+FWMz0f5hxs4sOkFkkr/xeyubTjEsNs5g6qZn2TOKdeQNi0z2GGPO4/Hw4H/V0KsaaP93PvImrWIqrJdVO14A+fufzO39R2ipZsqUvko52xyT7yGvNmLgx32hHjtzz/kuA9+xKaC/2LuWTfS3tHBgZ3v0L7zZabX/odMU0O3cbElfjWuoz7NguPOJ2KSFTo5Eh98sJ05f17Fuwu+xpKLvhnscAAriWpotJKopv1WEuVs3EN8+z4yPOVkSEO/7RskkTp3Dh1x0zEpM4jOnE1K3jxScuchMYGpqKnUeBCRDcaYZYcsH0uCJSKPAj1fryYBjcaYEhEpALYDPXV41xljrh/peJpgKaWmko23n01R6xtsLf4acdlzaavei7dsPbn1b5JlqgH4wDWH6sLzmPOxK5mWOQmLVhwhT3cn2352JiVd6+nGhdP4equ0fuSYTnnWqeQcfREzilYGOdKJt+O9daT99SLSpKnf8ipS+Sj1RGJLzmPh0R/HOU5FWkKVx+vl7Tsu5ti2f/db3mki2B67DM/MNcw9+VISk0c/rm8qMMZQ/r251MfNZtHNz0zouVua6qncs53GAzvprtqFq/Ej4tr3ke45wDT6J1H1kkStO4f2uOmY5BlEZcwmOW8u6fnzcGoSpSapcUmwBpzgZ0CTMeY2O8H6hzGm6HCOoQmWUmoqqa+ppPL/zmOBd3vvshYTza7oxbQXnsLMYy8gM3dGECMMru7ubtY/9wC+/RsxDjcRWQvJLT6BvBlTr1vk4aqpqWLna4/jb6sjIiGDaXNXUTi7GEeIz3M23vw+Pxvf/BetezfjcjlJmF7CnEWriJoCBSvG4s1fXMbihufxffk94lMCV8ba+H3UVpZRs28nbZUf4q3dg6t5L3Ht+0n3VpBGY7/ta0mm1p1DW1w+/p4kKnceGQXziIhJClhcSoWKcU2wxJr1bB9wsjHmQ02wlFLK4vX62LnlbbpaG0lMzyZv5kLcEeHV8qCUGl8fbNvAzMc+xtaE4yn60l9wRoxuLF5nayN1FaU0Vu2lo7YMb+MBpKWcyPZKkrrKyfRVEiWe3u19Rqh2pFHvzqY9Jg9f8gwip80iOXcemYXziIpNHK+XqFRIGirBCtT/8scBVcaYD/ssKxSRd4Fm4NvGmNcCdC6llJo0XC4nC5ccHewwlFJT2JyFS/lP4Zc5ofQX1Py/+exLXY0nLhunCD6fF+luxdnVgKurkShPI9HeZlL89cRLBzlATp9jNRJHvTON+qjpVMSvRlJmEJ0xk5TcOWTkzSYrMorJMdWrUsEzYguWiPwbGGxk8beMMU/Z2/wW2GWM+Zn9PBKIM8bUichS4ElgoTGmeZDjXwdcB5Cfn7907969Y3g5SimllFLhad3zj+Jcfy+zu7aSJG29yztNBE2SQKsjgc6IRLrdSXRHpeGLy8aZlENsWh6JGdNJyyogepLPs6fURBq3LoIi4gLKgaXGmP1DbPMKcLMxZtj+f9pFUCmllFJq7Do7O/D4DNGRblxhVhBFqYkynl0ETwF29E2uRCQdqDfG+ERkBjAb+CgA51JKKaWUUiOIioomKthBKBWmApFgXQI8PGDZ8cBtIuIB/MD1xpj6AJxLKaWUUkoppULWmBMsY8xVgyx7AnhirMdWSimllFJKqckkvCfUUEoppZRSSqkACthEw4EgIjVAqJURTANqgx2EmjB6vcOHXuvwodc6vOj1Dh96rcNLKF7v6caY9IELQyrBCkUisn6w6iBqatLrHT70WocPvdbhRa93+NBrHV4m0/XWLoJKKaWUUkopFSCaYCmllFJKKaVUgGiCNbLfBTsANaH0eocPvdbhQ691eNHrHT70WoeXSXO9dQyWUkoppZRSSgWItmAppZRSSimlVIBogqWUUkoppZRSAaIJ1jBEZI2I7BSRXSLy9WDHowJHRPJE5GUReV9EtonIl+3lKSLygoh8aP9ODnasKjBExCki74rIP+znhSLyln1/Pyoi7mDHqAJDRJJE5HER2SEi20XkaL23pyYRucn+N3yriDwsIlF6b08dInKfiFSLyNY+ywa9l8Vyp33dN4vIUcGLXB2uIa717fa/45tF5G8iktRn3Tfsa71TRE4PStDD0ARrCCLiBH4NnAEsAD4lIguCG5UKIC/wFWPMAmAV8AX7+n4deNEYMxt40X6upoYvA9v7PP8xcIcxZhbQAPxXUKJS4+GXwHPGmHnAYqzrrvf2FCMiOcCXgGXGmCLACVyC3ttTyf3AmgHLhrqXzwBm2z/XAb+doBhVYNzPodf6BaDIGLMI+AD4BoD9ee0SYKG9z2/sz+0hQxOsoa0AdhljPjLGdAOPAOcGOSYVIMaYCmPMRvtxC9YHsBysa/yAvdkDwHlBCVAFlIjkAmcCv7efC3Ay8Li9iV7rKUJEEoHjgXsBjDHdxphG9N6eqlxAtIi4gBigAr23pwxjzKtA/YDFQ93L5wIPGss6IElEsiYkUDVmg11rY8zzxhiv/XQdkGs/Phd4xBjTZYzZA+zC+tweMjTBGloOUNbn+X57mZpiRKQAWAK8BWQYYyrsVZVARrDiUgH1C+CrgN9+ngo09vmHW+/vqaMQqAH+YHcJ/b2IxKL39pRjjCkHfgrsw0qsmoAN6L091Q11L+vntqntGuCf9uOQv9aaYKmwJiJxwBPAjcaY5r7rjDWHgc5jMMmJyFlAtTFmQ7BjURPCBRwF/NYYswRoY0B3QL23pwZ77M25WEl1NhDLoV2M1BSm93J4EJFvYQ3teCjYsYyWJlhDKwfy+jzPtZepKUJEIrCSq4eMMX+1F1f1dCmwf1cHKz4VMMcC54hIKVZX35Oxxugk2d2KQO/vqWQ/sN8Y85b9/HGshEvv7annFGCPMabGGOMB/op1v+u9PbUNdS/r57YpSESuAs4CLjUHJ+8N+WutCdbQ3gFm29WI3FiD6Z4OckwqQOwxOPcC240xP++z6mngSvvxlcBTEx2bCixjzDeMMbnGmAKs+/glY8ylwMvAhfZmeq2nCGNMJVAmInPtRR8D3kfv7aloH7BKRGLsf9N7rrXe21PbUPfy08AVdjXBVUBTn66EahISkTVY3fvPMca091n1NHCJiESKSCFWYZO3gxHjUORgMqgGEpGPY43dcAL3GWN+ENyIVKCIyGrgNWALB8flfBNrHNZjQD6wF7jIGDNwgK2apETkROBmY8xZIjIDq0UrBXgXuMwY0xXE8FSAiEgJVkETN/ARcDXWF4p6b08xIvI94GKs7kPvAtdijcXQe3sKEJGHgROBNKAK+C7wJIPcy3aSfRdWN9F24GpjzPoghK2OwBDX+htAJFBnb7bOGHO9vf23sMZlebGGefxz4DGDSRMspZRSSimllAoQ7SKolFJKKaWUUgGiCZZSSimllFJKBYgmWEoppZRSSikVIJpgKaWUUkoppVSAaIKllFJKKaWUUgGiCZZSSimllFJKBYgmWEoppZRSSikVIP8f55sjROazTI0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3615,31 +3615,31 @@ " 30\n", " True\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " bAP.soma.v\n", - " 0.00901\n", - " 5.31e-07\n", + " 0.00164\n", + " 2.03e-05\n", " \n", " \n", " 31\n", " True\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step1.soma.v\n", - " 0.0348\n", - " 1.6e-06\n", + " 0.00922\n", + " 3.45e-06\n", " \n", " \n", " 32\n", " True\n", " 0\n", - " 0.0969\n", - " 0.0153\n", + " 0.12\n", + " 0.0406\n", " Step3.soma.v\n", - " 0.0196\n", - " 6.55e-06\n", + " 0.00295\n", + " 0.000155\n", " \n", " \n", "\n", @@ -3647,14 +3647,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "30 True 0 0.0969 0.0153 bAP.soma.v \n", - "31 True 0 0.0969 0.0153 Step1.soma.v \n", - "32 True 0 0.0969 0.0153 Step3.soma.v \n", + "30 True 0 0.12 0.0406 bAP.soma.v \n", + "31 True 0 0.12 0.0406 Step1.soma.v \n", + "32 True 0 0.12 0.0406 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "30 0.00901 5.31e-07 \n", - "31 0.0348 1.6e-06 \n", - "32 0.0196 6.55e-06 " + "30 0.00164 2.03e-05 \n", + "31 0.00922 3.45e-06 \n", + "32 0.00295 0.000155 " ] }, "metadata": {}, @@ -3662,7 +3662,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADgYklEQVR4nOzdeXxU5fX48c+ZJfu+kJAESNi3RFBALOBeQetStRWtG1rrT+2mrdrWtpba+v32a21tXVpra2urFnFf6r6hYt1A2fclQEII2fdktuf3x70JQ8gGmWQSct6v15CZuzz3zEwm3DPP85wrxhiUUkoppZRSSvWeI9wBKKWUUkoppdTRQhMspZRSSimllAoRTbCUUkoppZRSKkQ0wVJKKaWUUkqpENEESymllFJKKaVCRBMspZRSSimllAoRTbCUUmqAEJFcETEi4gp3LEc7EVkkIsvDHcdAIyLzRGRzuONQSqnBTBMspZRSg5qILBYRr4jUB91uDXdcg5Ex5gNjzIRQtysiD4nIZhEJiMiiULevlFIDiX5LqpRSISIiLmOML9xxDFFLjTGXhTuIvnIU/G6tBpYC/xfuQJRSqq9pD5ZSSvWCiBSKyI9EZA3QICIuEZktIv8VkWoRWS0iJwdtv0xE/ldEPhWRWhF5QURSOmn7KhHZKCJ1IrJDRP5fu/Xnicgqu53tIrLAXp4oIg+LSImIFIvIr0XE2c3zGCMi74hIhYiUi8jjIpIUtK5SRI61H2eJSFnr8xKRc0Vkvf18l4nIpHavz80iskZEakRkqYhEHf4rffhE5Mf261InIhtE5PxOthMRuUdE9tuv5VoRmWqvixSRu0Vkt4iUisiDIhLdw+M/Ym//ph3DeyIyKmj9H0Vkj33MlSIyL2jdYhF5WkQeE5FaYJGIzBKRj+zXuURE7heRiKB9jIjcICJb7eP9yn7v/msf48ng7TuJ+WQRKerJ8zscxpgHjDFvA82hblsppQYaTbCUUqr3LgG+AiQBGcDLwK+BFOBm4BkRSQ/a/grgamA44APu7aTd/cDZQAJwFXBPUJIzC/gXcIt93BOBQnu/R+x2xwLTgTOAa7p5DgL8L5AFTAJGAIsBjDHbgR8Bj4lIDPAP4J/GmGUiMh5YAtwIpAOvAC+1O5G/CFgA5AEFwKIOAxCZaycPnd3mdvMc2tsOzAMSgV/a8Q/vYLszsF6/8fa2FwEV9rrf2MunYb2e2cDthxHDpcCvgDRgFfB40LrP7HZTgH8DT7VLPs8DnsZ6fx8H/MBNdlsnAKcBN7Q73nzgOGA2cCvwEHAZ1vs5Fet39YjZiXJn78+fetO2UkodLTTBUkqp3rvXGLPHGNOEdTL7ijHmFWNMwBjzJrACOCto+0eNMeuMMQ3Az4GLOuphMsa8bIzZbizvAW9gJQwA3wT+box50z5OsTFmk4hk2Me60RjTYIzZD9wDXNzVEzDGbLPbajHGlAG/B04KWv9XYBvwCVZi+FN71ULgZXtfL3A3EA18qd3rs9cYUwm8hJVUdBTDcmNMUhe3ropSXNTuZD/LGPOUfdyAMWYpsBWY1cG+XiAemAiIMWajMaZERAS4FrjJGFNpjKkD/qe717Kdl40x7xtjWrBesxNEZIT9fB8zxlQYY3zGmN8BkUDw/KePjDHP2/E3GWNWGmM+trcvBP5C0Htku8sYU2uMWQ+sA94wxuwwxtQAr2Il3EfMGFPQxfvTPtlTSqkhSedgKaVU7+0Juj8K+LqInBO0zA2828n2u+z1ae0bFZEzgV9g9aA4gBhgrb16BFZvUXuj7PZKrPwA7H33dLBt8LEygD9iJXDx9j5V7Tb7K/AicK2dMIDV47WrdQNjTEBE9mD19LTaF3S/0d4n1J5sPwdLRK4AfgDk2ovi6OB1Nsa8IyL3Aw8Ao0TkWayexyis13xl0GspQJfDLdtpe92NMfUiUon1/PeIyM1YiXIWYLB6KtM62td+PuOxEt8ZdlwuYGW745UG3W/q4HHmYcSulFLqCGgPllJK9Z4Jur8Hq4cq+Jv9WGPMb4K2GRF0fyRWD0p5cIMiEgk8g9UjlGGMScJKqFrP9PcAYzqIZQ/QAqQFHT/BGDOlm+fwP/bzyDfGJGD1xB3IKkTigD8ADwOL5cC8sb1YSV3rdmI/v+JujncIsUqE13dxm9d9K21tjcJKCL8DpNqv37rg5xTMGHOvMeY4YDJWQnsL1nvSBEwJei0TjTFxh/G02t5r+zVMAfbaz+VWrOGIyXZ8Ne3iC/69AvgzsAkYZ79Ht3X2fPqKWHPtOnt/HuzPWJRSaqDSBEsppULrMeAcEZkvIk4RibILB+QEbXOZiEy25zPdATxtjPG3aycCa8hYGeCze7POCFr/MHCViJwmIg4RyRaRicaYEqyhhL8TkQR73RgRaT+UrL14oB6oEZFsrAQj2B+BFcaYa7DmmLWeTD8JfMWOww38ECvB+293L1R7donwuC5uHxxGc7FYCUoZWAVDsOYgHUJEZorI8Xb8DViFGALGmABWknaPiAyzt80WkflB+xoJKmLSgbPsuWURWHOxPjbG7MF6vX12fC4RuR2rB6sr8UAtUC8iE4Hru9k+5IwxU7p4f67rbD8RibDnlwngtj8Xeg6ilDoq6R83pZQKIfvk+Tys3oUyrB6lWzj47+2jWIUo9mENQ/teB+3U2cufxBqq9w2s4Xmt6z/FLnyB1fPxHgd6kq7AStA22Ps+jTVvqiu/BI6123oZeLZ1hYich1WkovWE/gfAsSJyqTFmM1Zv131YPT7nAOcYYzzdHK9PGWM2AL8DPsIaJpcPfNjJ5glYiVQV1nDHCuC39rofYc09+1isan5vYc+TsudS1XFg2GZH/o01zLMSq/hE6zDG14HXgC32MZvpZhgn1rDFb9jH/CtW2fPB4g2s3sAvYRXeaMIqLKKUUkcdMab9CASllFJ9RUSWAY8ZY/4W7lhU74jIZVjDB3/SyfpHgCJjzM/6NTCllFJhpUUulFJKqSNgjHks3DEopZQaeHSIoFJKDRFiXfRWixMMcSJyWye/B6+GOzallDoa6BBBpZRSSimllAoR7cFSSimllFJKqRAZUHOw0tLSTG5ubrjDUEoppZRSSqkurVy5stwYk95++YBKsHJzc1mxYkW4w1BKKaWUUkqpLonIro6W6xBBpZRSSimllAoRTbCUUkoppZRSKkQ0wVJKKaWUUkqpEBlQc7A64vV6KSoqorm5OdyhqAEgKiqKnJwc3G53uENRR5nG5mY2/eE8mmdcx5dOPz/c4SillFJqkBrwCVZRURHx8fHk5uYiIuEOR4WRMYaKigqKiorIy8sLdzjqKLNm/QZmN38Myz/GnHou4nCGOySllFJKDUIDfohgc3MzqampmlwpRITU1FTtzVR9or5ib9v93Rs/C2MkSimllBrMBnyCBWhypdro74LqK56afW33S1a9EcZIlFJKKTWYDYoESyml+pqpLwWgBTfRJZ+GORqllFJKDVaaYPWAiPDDH/6w7fHdd9/N4sWLwxdQkJNPPrnLizN/9atfZfbs2QctW7x4MdnZ2UybNo2pU6fy4osv9nWYSg14US3lAGyMmUlaw9YwR6OUUkqpwUoTrB6IjIzk2Wefpby8PKTtGmMIBAIhbTNYdXU1K1eupKamhh07dhy07qabbmLVqlU89dRTXH311X0ah1KDQYynkmriaR52DNlmHzXVleEOSSmllFKDkCZYPeByubj22mu55557DllXVlbGhRdeyMyZM5k5cyYffvghYPUS3X333W3bTZ06lcLCQgoLC5kwYQJXXHEFU6dOZc+ePdxyyy1MnTqV/Px8li5dCsCyZcs4+eST+drXvsbEiRO59NJLMcZ0GN+jjz7a1hv16acHhjY9++yznHPOOVx88cU88cQTHe47adIkXC7XQcnjj3/8YyZPnkxBQQE333wzAIWFhZx66qkUFBRw2mmnsXv3bgAWLVrE9ddfz+zZsxk9ejTLli3j6quvZtKkSSxatKitzeuvv54ZM2YwZcoUfvGLXxwSR01NDaNGjWpL9BoaGhgxYgRer7fDuJUKtRhvFVWSSNzIYwDYtanznmGllFJKqc4M+DLtwX750no27K0NaZuTsxL4xTlTut3u29/+NgUFBdx6660HLf/+97/PTTfdxNy5c9m9ezfz589n48aNXba1detW/vnPfzJ79myeeeYZVq1axerVqykvL2fmzJmceOKJAHzxxResX7+erKws5syZw4cffsjcuXMPaa+xsZFVq1bx/vvvc/XVV7Nu3ToAlixZwu23305GRgYXXnght9122yH7fvLJJzgcDtLT0wGoqKjgueeeY9OmTYgI1dXVAHz3u9/lyiuv5Morr+Tvf/873/ve93j++ecBqKqq4qOPPuLFF1/k3HPP5cMPP+Rvf/sbM2fOZNWqVUybNo0777yTlJQU/H4/p512GmvWrKGgoKAtjsTERKZNm8Z7773HKaecwn/+8x/mz5+v17tS/cYZaKZFosgYexy8Dw27V8PsM8IdllJKKaUGGe3B6qGEhASuuOIK7r333oOWv/XWW3znO99h2rRpnHvuudTW1lJfX99lW6NGjWqbF7V8+XIuueQSnE4nGRkZnHTSSXz2mVUietasWeTk5OBwOJg2bRqFhYUdtnfJJZcAcOKJJ1JbW0t1dTWlpaVs3bqVuXPnMn78eNxud1viBXDPPfcwbdo0br75ZpYuXdpWnS8xMZGoqCi++c1v8uyzzxITEwPARx99xDe+8Q0ALr/8cpYvX97W1jnnnIOIkJ+fT0ZGBvn5+TgcDqZMmdIW85NPPsmxxx7L9OnTWb9+PRs2bDjkeSxcuLCtB++JJ55g4cKFXb6OSoWSI+DFL27ScsZSZ6Jx7D/0d1QppZRSqjuDqgerJz1NfenGG2/k2GOP5aqrrmpbFggE+Pjjj4mKijpoW5fLddC8puBrN8XGxvboeJGRkW33nU4nPp+vw+3aly4XEZ588kmqqqraLshbW1vLkiVLuPPOOwFrDlbr8L/2cX/66ae8/fbbPP3009x///288847PYrT4XAcFLPD4cDn87Fz507uvvtuPvvsM5KTk1m0aFGH17I699xzue2226isrGTlypWceuqpXR5XqVByBry0iAtxONgTMZrE2s3hDkkppZRSg5D2YB2GlJQULrroIh5++OG2ZWeccQb33Xdf2+NVq1YBkJuby+effw7A559/zs6dOztsc968eSxduhS/309ZWRnvv/8+s2bNOqy4Wnt9li9fTmJiIomJiSxZsoTXXnutbd7XypUrO52HFay+vp6amhrOOuss7rnnHlavXg3Al770pbb9H3/8cebNm9fj+Gpra4mNjSUxMZHS0lJeffXVDreLi4tj5syZfP/73+fss8/G6XT2+BhK9ZbTePE7rCGp1fHjyPIUQifzHpVSSimlOqMJ1mH64Q9/eFBBiHvvvZcVK1ZQUFDA5MmTefDBBwG48MILqaysZMqUKdx///2MHz++w/bOP/98CgoKOOaYYzj11FO56667yMzMPKyYoqKimD59Otdddx0PP/wwhYWF7Nq166Dy7Hl5eSQmJvLJJ5902MZZZ53F3r17qaur4+yzz6agoIC5c+fy+9//HoD77ruPf/zjHxQUFPDoo4/yxz/+scfxHXPMMUyfPp2JEyfyjW98gzlz5rStu/322w8qE79w4UIee+wxHR6o+p0j4CUgVoIlKaNJoIHq8n3d7KWUUkopdTDprDJdOMyYMcO0v6bTxo0bmTRpUpgiUgOR/k6ovrD7VwWURoxg5o9eZs3bT1Dwwf9jw1nPMHnW6eEOTSmllFIDkIisNMbMaL9ce7CUUoqDhwimjLQS+Pq9m8IZklJKKaUGoV4nWCIyQkTeFZENIrJeRL5vL18sIsUissq+ndX7cJVSqm84jQ/jiAAgY9QE/Ebwl20Pc1RKKaWUGmxCUUXQB/zQGPO5iMQDK0XkTXvdPcaYu7vYVymlBgQ3XgJ2D5Y7IopixzAiajsuTqOUUkop1ZleJ1jGmBKgxL5fJyIbgezetquUUv3JZbwYx4ELW1dEjiCxcXcYI1JKKaXUYBTSOVgikgtMB1pL1X1HRNaIyN9FJLmTfa4VkRUisqKsrCyU4SilVI+58IHzQILVGDeKTP9eTND17JRSSimluhOyBEtE4oBngBuNMbXAn4ExwDSsHq7fdbSfMeYhY8wMY8yM9PT0UIWjlFKHxc2BOVgAJmUMcTRRVVYcxqiUUkopNdiEJMESETdWcvW4MeZZAGNMqTHGb4wJAH8FDu/quQPM888/j4iwaVPnVcUKCwuZOnVqyI65aNEinn766U7X33jjjWRnZxMI+ob9kUceIT09nWnTpjF58mT++te/hiwepY5axhCBD+M8kGBFZ44DYP+ujeGKSimllFKDUCiqCArwMLDRGPP7oOXDgzY7H1jX22OF05IlS5g7dy5LlizpcL3P5+v1Mfx+f4+3DQQCPPfcc4wYMYL33nvvoHULFy5k1apVLFu2jNtuu43S0tJex6bUUS1gf35dBxKs5BFWqfaGvZvDEZFSSimlBqlQ9GDNAS4HTm1Xkv0uEVkrImuAU4CbQnCssKivr2f58uU8/PDDPPHEE23Lly1bxrx58zj33HOZPHkyYCVal156KZMmTeJrX/sajY2NALz99ttMnz6d/Px8rr76alpaWgDIzc3lRz/6EcceeyxPPfXUIcd+6623mDFjBuPHj+c///nPQceeMmUK119/fadJ37BhwxgzZgy7du1qW3bvvfcyefJkCgoKuPjiiwGorKzkq1/9KgUFBcyePZs1a9YAsHjxYq688krmzZvHqFGjePbZZ7n11lvJz89nwYIFeL1eAO644w5mzpzJ1KlTufbaa2l/8epAIEBubi7V1dVty8aNG6eJnxowjK/ZuhM0RDBz1Hi8xomvfFuYolJKKaXUYBSKKoLLAelg1Su9bfsQr/4Y9q0NbZuZ+XDmb7rc5IUXXmDBggWMHz+e1NRUVq5cyXHHHQfA559/zrp168jLy6OwsJDNmzfz8MMPM2fOHK6++mr+9Kc/8Z3vfIdFixbx9ttvM378eK644gr+/Oc/c+ONNwKQmprK559/3uGxCwsL+fTTT9m+fTunnHIK27ZtIyoqiiVLlnDJJZdw3nnncdttt+H1enG73Qftu2PHDnbs2MHYsWPblv3mN79h586dREZGtiU8v/jFL5g+fTrPP/8877zzDldccQWrVq0CYPv27bz77rts2LCBE044gWeeeYa77rqL888/n5dffpmvfvWrfOc73+H2228H4PLLL+c///kP55xzTtsxHQ4H5513Hs899xxXXXUVn3zyCaNGjSIjI6PHb5NSfcnr8RAB4DrwGYqMiGSPYxgRNVqqXSmllFI9F9IqgkerJUuWtPX2XHzxxQf1GM2aNYu8vLy2xyNGjGDOnDkAXHbZZSxfvpzNmzeTl5fH+PHjAbjyyit5//332/ZZuHBhp8e+6KKLcDgcjBs3jtGjR7Np0yY8Hg+vvPIKX/3qV0lISOD444/n9ddfb9tn6dKlTJs2jUsuuYS//OUvpKSktK0rKCjg0ksv5bHHHsPlsvLr5cuXc/nllwNw6qmnUlFRQW1tLQBnnnkmbreb/Px8/H4/CxYsACA/P5/CwkIA3n33XY4//njy8/N55513WL9+/SHPY+HChSxduhSAJ554osvnrFR/83msHiwJmoMFraXa94QjJKWUUkoNUqG40HD/6aanqS9UVlbyzjvvsHbtWkQEv9+PiPDb3/4WgNjY2IO2t6akdf64I+3b6K69119/nerqavLz8wFobGwkOjqas88+G7CSmfvvv7/D9l5++WXef/99XnrpJe68807Wru26RzAyMhKweqHcbndbPA6HA5/PR3NzMzfccAMrVqxgxIgRLF68mObm5kPaOeGEE9i2bRtlZWU8//zz/OxnP+vyuEr1J6/XGrKLM/Kg5Y1xIxlXvgaMgR58lpVSSimltAerG08//TSXX345u3btorCwkD179pCXl8cHH3zQ4fa7d+/mo48+AuDf//43c+fOZcKECRQWFrJtmzWX49FHH+Wkk07q0fGfeuopAoEA27dvZ8eOHUyYMIElS5bwt7/9jcLCQgoLC9m5cydvvvlm23yvzgQCAfbs2cMpp5zC//3f/1FTU0N9fT3z5s3j8ccfB6y5XWlpaSQkJPQovtZkKi0tjfr6+k6rHooI559/Pj/4wQ+YNGkSqampPWpfqf7g81gJlsN9cA8WKaOJpZmaci3VrpRSSqme0QSrG0uWLOH8888/aNmFF17YaWGJCRMm8MADDzBp0iSqqqq4/vrriYqK4h//+Adf//rXyc/Px+FwcN111/Xo+CNHjmTWrFmceeaZPPjggwQCAV577TW+8pWvtG0TGxvL3Llzeemllzps45prrmHFihX4/X4uu+wy8vPzmT59Ot/73vdISkpi8eLFrFy5koKCAn784x/zz3/+s4evDiQlJfGtb32LqVOnMn/+fGbOnNm27sEHH+TBBx9se7xw4UIee+wxHR6oBhxvJ0MEozK0VLtSSimlDo+0r/gWTjNmzDArVqw4aNnGjRuZNGlSmCJSA5H+TqhQK974MdlL5/PxrHuZfdaVbcsLN68md8mJfH7s/3Dsud8OY4RKKaWUGmhEZKUxZkb75dqDpZQa8vz2HCyH6+AerMxR4/EZB96y7eEISymllFKDkCZYSqkhr20OluvgIhdRUdGUSjpuLdWulFJKqR4aFAnWQBrGqMJLfxdUX/D7PAA43JGHrKuIzCG+sai/Q1JKKaXUIDXgE6yoqCgqKir0xFphjKGiooKoqKhwh6KOMq1DBJ0dJFgNcSMZ5tvb3yEppZRSapAa8NfBysnJoaioiLKysnCHogaAqKgocnJywh2GOsoEWhMs16EJlknKI7GintrK/SSkDOvv0JRSSik1yAz4BMvtdpOXlxfuMJRSR7GAPUTQFXFoghWZMRa2w/7CjZpgKaWUUqpbA36IoFJK9bWAr3WIYMQh65JzJgBQu3dzv8aklFJKqcFJEyyl1JAX8No9WB3MwRqeO4mAEbxl2/o7LKWUUkoNQppgKaWGPONvTbAOLaASHRPLfknFWV3Yz1EppZRSajDq8wRLRBaIyGYR2SYiP+7r4yml1OEy9hwsZ+ShPVgA5RHZxDfu7s+QlFJKKTVI9WmCJSJO4AHgTGAycImITO7LYyql1OEyfmsOlruDIYIADbEjSfcW92dISimllBqk+roHaxawzRizwxjjAZ4AzuvjYyql1OGxe7AiIjq+xpo/OY8UaqmvrezPqJRSSik1CPV1gpUN7Al6XGQvayMi14rIChFZode6UkqFQ+scLHfEoVUEAaKGjQGgtHBjv8WklFJKqcEp7EUujDEPGWNmGGNmpKenhzscpdRQ5PPSYly4Xc4OVydkW6Xaa4q39GdUSimllBqE+jrBKgZGBD3OsZcppdTA4ffgxYXLIR2uzsydBEDL/q39GZVSSimlBqG+TrA+A8aJSJ6IRAAXAy/28TGVUurwBKwES6TjBCsuPolyknBW7eznwJRSSik12Lj6snFjjE9EvgO8DjiBvxtj1vflMZVS6nCJ34Ovmz+HZe5s4hr3dLmNUkoppVSfJlgAxphXgFf6+jhKKXWkxO/FJ13/OayLHcWY6v/2U0RKKaWUGqzCXuRCKaXCLuDFJ+4uN/EmjyGVahprK/opKKWUUkoNRppgKaWGPIffg4+uE6zITKvQRcm2Nf0RklJKKaUGKU2wlFJDngS6HyKYmjsVgJo9Oo1UKaWUUp3TBEspNeQ5Al78jq57sLLyJtJiXPj2b+6nqJRSSik1GGmCpZQa8pzGQ6CbOViREZHsdWYRWb2tn6JSSiml1GCkCZZSashzBHwEHN0XVa2IGkVK065+iEgppZRSg5UmWEqpIc9pvPi76cECaEkaw3B/CT5Pcz9EpZRSSqnBSBMspdSQ5wx4CTgiut3ONWwiLglQsnNDP0SllFJKqcFIEyyl1JDnND6Ms/sEK3HkFAAqd63r65CUUkopNUhpgqWUGvJceAl0U0UQIGtsPgDNJRv7OiSllFJKDVKaYCmlhjyX8WJ6kGAlJCSzjzSclVpJUCmllFId0wRLKTXkufBBD4YIAuyPHEliw84+jkgppZRSg5UmWEqpIS/KtBBwRfVo24b4MWR592ACgT6OSimllFKDkSZYSqkhzQT8xEoLAVdsj7aX9PHESjPlJYV9G5hSSimlBqVeJVgi8lsR2SQia0TkORFJspfnikiTiKyybw+GJFqllAqxlqZ6AExEzxKsuOxJAOzfsabPYlJKKaXU4NXbHqw3ganGmAJgC/CToHXbjTHT7Nt1vTyOUkr1iab6WgAckXE92j5jzDEANBSv77OYlFJKKTV49SrBMsa8YYzx2Q8/BnJ6H5JSSvWf5gYrwZLInvVgpWXkUG3ikLLNfRmWUkoppQapUM7Buhp4Nehxnoh8ISLvici8znYSkWtFZIWIrCgrKwthOEop1b3mRivBckXF92h7cTgojhhFfO3WvgxLKaWUUoNUtwmWiLwlIus6uJ0XtM1PAR/wuL2oBBhpjJkO/AD4t4gkdNS+MeYhY8wMY8yM9PT03j8jpZQ6DC2NdQC4ono2RBCgNn4sWd5dYExfhaWUUkqpQcrV3QbGmNO7Wi8ii4CzgdOMsc42jDEtQIt9f6WIbAfGAyt6G7BSSoWSr8nqwYqI6fA7oA6ZtAkkVL5AZekeUjJH9lVoSimllBqEeltFcAFwK3CuMaYxaHm6iDjt+6OBccCO3hxLKaX6gteuIhgR07MhggBxOfkA7Nv2RZ/EpJRSSqnBq7dzsO4H4oE325VjPxFYIyKrgKeB64wxlb08llJKhZy/2RoiGHUYPVgZY6cB0FC0ri9CUkoppdQg1u0Qwa4YY8Z2svwZ4JnetK2UUv0h0Gz1YEXG9jzBGpZpVRJEKwkqpZRSqp1QVhFUSqlBJ+BpACAmrucJVlslwTqtJKiUUkqpg2mCpZQa0gIt9fiNEB3ds+tgtaqNH0uWRysJKqWUUupgmmAppYY0aa6mTmIRx+H9OTRpE0iggcrS3X0UmVJKKaUGI02wlFJDmrulilpH4mHvF9tWSXBViCNSSiml1GCmCZZSakiL8lTR4Ew67P0yxkwDtJKgUkoppQ6mCZZSakiL9VXT7E467P0yhluVBKVsU+iDUkoppdSgpQmWUmpISwjU0BKZctj7tVYSjKvb1gdRKaWUUmqw0gRLKTVkmUCARFOLP+rwEyzQSoJKKaWUOpQmWEqpIau6qhyXBHDFpR3R/q2VBKv27wlxZEoppZQarDTBUkoNWRWlxQBEJmUc0f4x2VMB2Lf1i5DFpJRSSqnBTRMspdSQVb9/FwDRqSOOaP/MsdMAqCveEKqQlFJKKTXIaYKllBqyWiqtiwQnZOYd0f4Zw0fQYKIw5dtDGZZSSimlBjFNsJRSQ1ag2po7lZqZe0T7i8NBiSuL6PpdIYxKKaWUUoOZJlhKqSHLVVdMOUlEREUfcRs1USNIadYiF0oppZSy9CrBEpHFIlIsIqvs21lB634iIttEZLOIzO99qEopFVrRTfuocA7rVRvNiblkBkrxez0hikoppZRSg1koerDuMcZMs2+vAIjIZOBiYAqwAPiTiDhDcCyllAqZBE8pdZFHVkGwlTN1DC4JsL9oa4iiUkoppdRg1ldDBM8DnjDGtBhjdgLbgFl9dCyllDp8xpAeKKMlNqtXzcRmTQCgcvfGUESllFJKqUEuFAnWd0RkjYj8XUSS7WXZQPCkhCJ72SFE5FoRWSEiK8rKykIQjlJKda+hppxoWjAJOb1qJ33kZAAa92kPllJKKaV6kGCJyFsisq6D23nAn4ExwDSgBPjd4QZgjHnIGDPDGDMjPT39cHdXSqkjUrHXKq0ekTqyV+0My8yh3kRDpZZqV0oppRS4utvAGHN6TxoSkb8C/7EfFgPBV+7MsZcppdSAUFOyE4C4YaN61Y7D6WCfM5OoWi3VrpRSSqneVxEcHvTwfGCdff9F4GIRiRSRPGAc8GlvjqWUUqHUXGFdZDhl+Jhet1UdNYKkFv0OSSmllFI96MHqxl0iMg0wQCHw/wCMMetF5ElgA+ADvm2M8ffyWEopFTKmeg8txk1aRu+KXAC0JIwio+FDjN+HOHv7Z1UppZRSg1mvzgSMMZd3se5O4M7etK+UUn3FVV9MmSOVHFfvEyJHah4R+/yUlewkPWdcCKJTSiml1GDVV2XalVJqQItp2ke1u3fXwGoVm2klVeW7tFS7UkopNdRpgqWUGpKSfftpjMoMSVupIyYC0LBvW0jaU0oppdTgpQmWUmrI8fu8pAUq8MX3fv4VQEZ2Hh7jwl++IyTtKaWUUmrw0gRLKTXkVOzbjVMMjuQR3W/cAy63m32ODCLqtFS7UkopNdRpgqWUGnIq7YsMR6flhqzNqqhsEpv2hKw9pZRSSg1OmmAppYachv1WT1NiZl7o2owfQ5avCOP3hqxNpZRSSg0+esGWfmICAQLG4Pf7Cfh9+P1+/AEfJmAAEIeAOBAERBBxWD8Rax2Cw+EA+7FDBAFEBIdYP5VSPeOttC4ynJY9OmRtSuZUovYvoWTnBoaPPSZk7aqe8Xua8TQ30dLShKelGa/HvrW04PM2I34P+D2YgB9jDBhDwBhM6w3ABDAGHA7r76043TicbsTpxOF043C4cDhdiNOFw+nG6bJ+OlwunPZPl8uNOF24nE6cLjculxuHw4k49PtMpZQaKjTB6sLa91/A89k/EL8Xp/HgCHhxBrw4jXVztd18uPHixocQwGkCCAYHBgcBHARwisEJOEMUW8AIBjAIPlrvO9qWGaTdfeuGvSwgVtJ28HbW/sHLQQiIo20/2rVn5MD2BB2DXuR7IUkVjel1E62vQF+10dPWQ5M6h/n1MIfXRldbheL1mGxqqCWWhPikELRmSRk9HdZA6daVmmAdAU9TPVUV+6it2E9DVSme+nJMQyU0VeJorsLZUoPD24jLV4/b10hEoJGoQCMxpolomokQP9FAdLifSCf8RvDjxG//r+AXp/UT50GPAzgJiOOQZQahsz+vxvpq7oCg7UwnnxjTtqk56PN50PJ2gpe13jeAmODl7Y/Qvq0OtjUdb9tdDJ21JUFrD/xP1v3fnt7/lRxq9Ivd3ujss6k6VuzIZOf8f3LJrJHhDqVHNMHqQkttKcPqN+OTCPziwu+wfrY44wk43AQcERj7Z8DpJiBucDgBBzgcIK03p/3YafU0OZzW/dZtzIEUBxMI+g/C+jbVWm5tY4xBTKDtfuvytjZMwFre+l+FCYABIWi5vV/b8exjWZlWoC3loq19a/9DjkVwO0HHD1Fq0lsd/fE63FbNYe4gHRwhJP9pH2EPZUcnYr1lgmI58tb66P3tYbP7AV/28Rzf6ygOGDVhOi3GhXf3Z8DVHW6zbfWH1L+6mMZh0/nS1XeF8OgDV1NtFfv37qR6/26aKooJ1O7FUV9KRNN+YlrKSPBVkGyqiMZDBtDRlcnqTDT1EkuzI4YWRwweZwyNken43TEE3HEE3LEE3LHgisbhjsDhisThjsThisTpjkBckYgrApyRbX+XHQ6xRwBYvzSt940IAWMI+AMYv5eA30cg4AO/j4Dfh/H7MAHrPgHrMQFrmfXYiwT8mIAfAn6MsX4S8Fk/jfVTWpebABLwIebAMoexljuw7juMv8PXtjWBMO0XdvzAep7t9rbuSdCK9inSwR+q1s+dSPvPoByyzcEH7mz9gRjaEqOOssXW+0HHPTSBPJBZmqAlB7bp+A+EDgBR/S0UZ0lDTaMrjWHxkeEOo8c0werCjLOvhbOvDXcYSqlBICo6hjWRU0nf/+Eh64p376DomduYWf0aDjEU7i4Cjo4Eq6aqkv17tlC7bzue8kKkZjeR9UUkNO8l3V9KAg2MAkYF7VNnoqlypFDrTqModio7o9MhJg1nfAqR8enEJA0jJjGd6KR04pLSiY+KJj5cT1AppZQ6TJpgKaVUiNTlnETBjj+yZ9MKRkycQVnxTrY/fyfT9j9POgE+y/oGAU8TM8pfwO/14HRHhDvkHjEBP+V7d7B/xxoai9Yj5VuIr9tOhnc3SdSTGLRto4mk1JlBTcRw9idNwySOwJ08gri0HJIyRpCcMYL42ERNmJRSSh21NMFSSqkQmbDgemof+Cuy9DLWRI1gYuPnzCDAqpQF5J7/C44fOZGPn/sT7opnKS7cQPa4aeEO+SABn5d9hZsoL1xD094NuCq2ktiwnSzfHtJpId3eroIE9rlHsin5VEjJIzI9j4TMMaRmjyUxNZM8LeiglFJqCNMESymlQiRt2HBWnfIASe/fTlJzEV9kXkjO/BuZMXpy2zYpufmwGvZtXRm2BMvT3ETJjnVU7FqLp2QjEVVbSW7cSbaviCzxkWVvV0oqpZGjWJV0LpI+gbgRU8kcU0DasCxSdeKKUkop1SFNsJRSKoSmnXwBnHwBAB3VOho9ZRZ1z0djti8DvtmnsTTW11C8bQ01u9fiK91EVNVWUpsKGR7YxygJMAqrIuleRwblUbmUpM/FOWwCCSOnkjVmGhnJKR0WnVBKKaVU53qVYInIUmCC/TAJqDbGTBORXGAjsNle97Ex5rreHEsppY4GrohItsQex8iK5fi8Hly9nYdlDDXlxZRsX0Nd0Ub8ZVuIqdlOenMhwyljnL2Z1zgpdmaxP2YMe5IW4M6cRPKofLLGTCUnNp6cXj8zpZRSSkEvEyxjzMLW+yLyO6AmaPV2Y8y03rSvlFJHpWnfYNh/b2DFi/cz48If9GiXhtpKSnZtprpoK57SzbirtpHYuJNMbxGJNLQVmmgyEex15VAcfwyFKWOJHD6ZlNwCsvImkxsZSW6fPSmllFJKQYiGCIqIABcBp4aiPaWUOppNP+0S1n/2ZwrW3Mkn5duIGjMXV2QMPm8L3toy/PXlBGpLiKwvJqHFKneeSD1jg9rYTwr7I0awIfXL+FPGEZs1ifTcqWSOHMsYZ6guaa6UUkqpwyXGhOCSsCInAr83xsywH+cC64EtQC3wM2PMB53sey1wLcDIkSOP27VrV6/jUUqpga6msoxtD1/FMfUf4pLAIeubTAT7nRlUR2TSFJtNIHEUkWl5JGWNIXP0VGITUsIQtVJKKaVaicjK1vznoOXdJVgi8haQ2cGqnxpjXrC3+TOwzRjzO/txJBBnjKkQkeOA54Epxpjaro41Y8YMs2LFip48H6WUOirUVFWyb/sqvF4PEW43McmZxKcOJyEhCdFy50oppdSA1VmC1e0QQWPM6d007AIuAI4L2qcFaLHvrxSR7cB4QLMnpZQKkpicQuIMHV2tlFJKHS1C8fXo6cAmY0xR6wIRSRcRp31/NDAO2BGCYymllFJKKaXUgBWKIhcXA0vaLTsRuENEvEAAuM4YUxmCYymllFJKKaXUgNXrBMsYs6iDZc8Az/S2baWUUkoppZQaTEJSRTBURKQMGGhlBNOA8nAHofqNvt9Dh77XQ4u+30OHvtdDh77XQ8tAfL9HGWPS2y8cUAnWQCQiKzqqDqKOTvp+Dx36Xg8t+n4PHfpeDx36Xg8tg+n91hrASimllFJKKRUimmAppZRSSimlVIhogtW9h8IdgOpX+n4PHfpeDy36fg8d+l4PHfpeDy2D5v3WOVhKKaWUUkopFSLag6WUUkoppZRSIaIJllJKKaWUUkqFiCZYXRCRBSKyWUS2iciPwx2PCh0RGSEi74rIBhFZLyLft5eniMibIrLV/pkc7lhVaIiIU0S+EJH/2I/zROQT+/O9VEQiwh2jCg0RSRKRp0Vkk4hsFJET9LN9dBKRm+y/4etEZImIROln++ghIn8Xkf0isi5oWYefZbHca7/va0Tk2PBFrg5XJ+/1b+2/42tE5DkRSQpa9xP7vd4sIvPDEnQXNMHqhIg4gQeAM4HJwCUiMjm8UakQ8gE/NMZMBmYD37bf3x8DbxtjxgFv24/V0eH7wMagx/8H3GOMGQtUAd8MS1SqL/wReM0YMxE4But918/2UUZEsoHvATOMMVMBJ3Ax+tk+mjwCLGi3rLPP8pnAOPt2LfDnfopRhcYjHPpevwlMNcYUAFuAnwDY52sXA1Psff5kn7cPGJpgdW4WsM0Ys8MY4wGeAM4Lc0wqRIwxJcaYz+37dVgnYNlY7/E/7c3+CXw1LAGqkBKRHOArwN/sxwKcCjxtb6Lv9VFCRBKBE4GHAYwxHmNMNfrZPlq5gGgRcQExQAn62T5qGGPeByrbLe7ss3we8C9j+RhIEpHh/RKo6rWO3mtjzBvGGJ/98GMgx75/HvCEMabFGLMT2IZ13j5gaILVuWxgT9DjInuZOsqISC4wHfgEyDDGlNir9gEZ4YpLhdQfgFuBgP04FagO+sOtn++jRx5QBvzDHhL6NxGJRT/bRx1jTDFwN7AbK7GqAVain+2jXWefZT1vO7pdDbxq3x/w77UmWGpIE5E44BngRmNMbfA6Y13DQK9jMMiJyNnAfmPMynDHovqFCzgW+LMxZjrQQLvhgPrZPjrYc2/Ow0qqs4BYDh1ipI5i+lkeGkTkp1hTOx4Pdyw9pQlW54qBEUGPc+xl6ighIm6s5OpxY8yz9uLS1iEF9s/94YpPhcwc4FwRKcQa6nsq1hydJHtYEejn+2hSBBQZYz6xHz+NlXDpZ/voczqw0xhTZozxAs9ifd71s3106+yzrOdtRyERWQScDVxqDly8d8C/15pgde4zYJxdjSgCazLdi2GOSYWIPQfnYWCjMeb3QateBK60718JvNDfsanQMsb8xBiTY4zJxfocv2OMuRR4F/iavZm+10cJY8w+YI+ITLAXnQZsQD/bR6PdwGwRibH/pre+1/rZPrp19ll+EbjCriY4G6gJGkqoBiERWYA1vP9cY0xj0KoXgYtFJFJE8rAKm3wajhg7IweSQdWeiJyFNXfDCfzdGHNneCNSoSIic4EPgLUcmJdzG9Y8rCeBkcAu4CJjTPsJtmqQEpGTgZuNMWeLyGisHq0U4AvgMmNMSxjDUyEiItOwCppEADuAq7C+UNTP9lFGRH4JLMQaPvQFcA3WXAz9bB8FRGQJcDKQBpQCvwCep4PPsp1k3481TLQRuMoYsyIMYasj0Ml7/RMgEqiwN/vYGHOdvf1PseZl+bCmebzavs1w0gRLKaWUUkoppUJEhwgqpZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppdQAISK5ImJExBXuWI52IrJIRJaHO46BRkTmicjmcMehlFKDmSZYSimlBjURWSwiXhGpD7rdGu64BiNjzAfGmAmhbldEHhKRzSISEJFFoW5fKaUGEv2WVCmlQkREXMYYX7jjGKKWGmMuC3cQfeUo+N1aDSwF/i/cgSilVF/THiyllOoFESkUkR+JyBqgQURcIjJbRP4rItUislpETg7afpmI/K+IfCoitSLygoikdNL2VSKyUUTqRGSHiPy/duvPE5FVdjvbRWSBvTxRRB4WkRIRKRaRX4uIs5vnMUZE3hGRChEpF5HHRSQpaF2liBxrP84SkbLW5yUi54rIevv5LhORSe1en5tFZI2I1IjIUhGJOvxX+vCJyI/t16VORDaIyPmdbCcico+I7Ldfy7UiMtVeFykid4vIbhEpFZEHRSS6h8d/xN7+TTuG90RkVND6P4rIHvuYK0VkXtC6xSLytIg8JiK1wCIRmSUiH9mvc4mI3C8iEUH7GBG5QUS22sf7lf3e/dc+xpPB23cS88kiUtST53c4jDEPGGPeBppD3bZSSg00mmAppVTvXQJ8BUgCMoCXgV8DKcDNwDMikh60/RXA1cBwwAfc20m7+4GzgQTgKuCeoCRnFvAv4Bb7uCcChfZ+j9jtjgWmA2cA13TzHAT4XyALmASMABYDGGO2Az8CHhORGOAfwD+NMctEZDywBLgRSAdeAV5qdyJ/EbAAyAMKgEUdBiAy104eOrvN7eY5tLcdmAckAr+04x/ewXZnYL1+4+1tLwIq7HW/sZdPw3o9s4HbDyOGS4FfAWnAKuDxoHWf2e2mAP8GnmqXfJ4HPI31/j4O+IGb7LZOAE4Dbmh3vPnAccBs4FbgIeAyrPdzKtbv6hGzE+XO3p8/9aZtpZQ6WmiCpZRSvXevMWaPMaYJ62T2FWPMK8aYgDHmTWAFcFbQ9o8aY9YZYxqAnwMXddTDZIx52Riz3VjeA97AShgAvgn83Rjzpn2cYmPMJhHJsI91ozGmwRizH7gHuLirJ2CM2Wa31WKMKQN+D5wUtP6vwDbgE6zE8Kf2qoXAy/a+XuBuIBr4UrvXZ68xphJ4CSup6CiG5caYpC5uXRWluKjdyX6WMeYp+7gBY8xSYCswq4N9vUA8MBEQY8xGY0yJiAhwLXCTMabSGFMH/E93r2U7Lxtj3jfGtGC9ZieIyAj7+T5mjKkwxviMMb8DIoHg+U8fGWOet+NvMsasNMZ8bG9fCPyFoPfIdpcxptYYsx5YB7xhjNlhjKkBXsVKuI+YMaagi/enfbKnlFJDks7BUkqp3tsTdH8U8HUROSdomRt4t5Ptd9nr09o3KiJnAr/A6kFxADHAWnv1CKzeovZG2e2VWPkB2Pvu6WDb4GNlAH/ESuDi7X2q2m32V+BF4Fo7YQCrx2tX6wbGmICI7MHq6Wm1L+h+o71PqD3Zfg6WiFwB/ADItRfF0cHrbIx5R0TuBx4ARonIs1g9j1FYr/nKoNdSgC6HW7bT9robY+pFpBLr+e8RkZuxEuUswGD1VKZ1tK/9fMZjJb4z7LhcwMp2xysNut/UwePMw4hdKaXUEdAeLKWU6j0TdH8PVg9V8Df7scaY3wRtMyLo/kisHpTy4AZFJBJ4BqtHKMMYk4SVULWe6e8BxnQQyx6gBUgLOn6CMWZKN8/hf+znkW+MScDqiTuQVYjEAX8AHgYWy4F5Y3uxkrrW7cR+fsXdHO8QYpUIr+/iNq/7VtraGoWVEH4HSLVfv3XBzymYMeZeY8xxwGSshPYWrPekCZgS9FomGmPiDuNptb3X9muYAuy1n8utWMMRk+34atrFF/x7BfBnYBMwzn6Pbuvs+fQVsebadfb+PNifsSil1EClCZZSSoXWY8A5IjJfRJwiEmUXDsgJ2uYyEZlsz2e6A3jaGONv104E1pCxMsBn92adEbT+YeAqETlNRBwiki0iE40xJVhDCX8nIgn2ujEi0n4oWXvxQD1QIyLZWAlGsD8CK4wx12DNMWs9mX4S+Iodhxv4IVaC99/uXqj27BLhcV3cPjiM5mKxEpQysAqGYM1BOoSIzBSR4+34G7AKMQSMMQGsJO0eERlmb5stIvOD9jUSVMSkA2fZc8sisOZifWyM2YP1evvs+FwicjtWD1ZX4oFaoF5EJgLXd7N9yBljpnTx/lzX2X4iEmHPLxPAbX8u9BxEKXVU0j9uSikVQvbJ83lYvQtlWD1Kt3Dw39tHsQpR7MMahva9Dtqps5c/iTVU7xtYw/Na13+KXfgCq+fjPQ70JF2BlaBtsPd9GmveVFd+CRxrt/Uy8GzrChE5D6tIResJ/Q+AY0XkUmPMZqzervuwenzOAc4xxni6OV6fMsZsAH4HfIQ1TC4f+LCTzROwEqkqrOGOFcBv7XU/wpp79rFY1fzewp4nZc+lquPAsM2O/BtrmGclVvGJ1mGMrwOvAVvsYzbTzTBOrGGL37CP+VessueDxRtYvYFfwiq80YRVWEQppY46Ykz7EQhKKaX6iogsAx4zxvwt3LGo3hGRy7CGD/6kk/WPAEXGmJ/1a2BKKaXCSotcKKWUUkfAGPNYuGNQSik18OgQQaWUGiLEuuitFicY4kTktk5+D14Nd2xKKXU00CGCSimllFJKKRUi2oOllFJKKaWUUiEyoOZgpaWlmdzc3HCHoZRSSimllFJdWrlyZbkxJr398gGVYOXm5rJixYpwh6GUUkoppZRSXRKRXR0t1yGCSimllFJKKRUimmAppZRSSimlVIhogqWUUl347/ZytpfVhzsMpZRSSg0SA2oOVke8Xi9FRUU0NzeHOxQ1yERFRZGTk4Pb7Q53KGqQKi/bz9h/zWSrI4/RP38Hceh3UkoppZTq2oBPsIqKioiPjyc3NxcRCXc4apAwxlBRUUFRURF5eXnhDkcNUoU7NjNDqhlmvmD31tWMnDA93CEppZRSaoAb8F/HNjc3k5qaqsmVOiwiQmpqqvZ8ql5pqqtsu1/yxWthjEQppZRSg8WAT7AATa7UEdHfG9Vb3obqtvvuEr2EhFJKKaW6NygSLKWUCgd/Uw0Ae505JNdtDXM0SimllBoMNMHqARHhhz/8Ydvju+++m8WLF4cvoCAff/wxxx9/PNOmTWPSpEltcS1btoz//ve/vWp7wYIFJCUlcfbZZ4cgUqUGn4CdYFWmTifHX0RTU1OYI1JKKaXUQKcJVg9ERkby7LPPUl5eHtJ2jTEEAoFetXHllVfy0EMPsWrVKtatW8dFF10EhCbBuuWWW3j00Ud71YZSg5lpqQUgMGI2bvFTtG1NmCNSSiml1EA34KsIBvvlS+vZsLc2pG1OzkrgF+dM6XIbl8vFtddeyz333MOdd9550LqysjKuu+46du/eDcAf/vAH5syZw+LFi4mLi+Pmm28GYOrUqfznP/8BYP78+Rx//PGsXLmSV155hfvvv59XX30VEeFnP/sZCxcuZNmyZSxevJi0tDTWrVvHcccdx2OPPXbIvKL9+/czfPhwAJxOJ5MnT6awsJAHH3wQp9PJY489xn333cfEiRM7jXP79u1s27aN8vJybr31Vr71rW8BcNppp7Fs2bIuX5unnnqKX/7ylzidThITE3n//fdpbm7m+uuvZ8WKFbhcLn7/+99zyimn8Mgjj/D888/T0NDA1q1bufnmm/F4PDz66KNERkbyyiuvkJKSwl//+lceeughPB4PY8eO5dFHHyUmJuag486ePZuHH36YKVOs9+7kk0/m7rvvZsaMGV3Gq9ThcHnq8OIiYcwsWAk1u1ZD/vHhDksppZRSA5j2YPXQt7/9bR5//HFqamoOWv7973+fm266ic8++4xnnnmGa665ptu2tm7dyg033MD69etZsWIFq1atYvXq1bz11lvccsstlJSUAPDFF1/whz/8gQ0bNrBjxw4+/PDDQ9q66aabmDBhAueffz5/+ctfaG5uJjc3l+uuu46bbrqJVatWMW/evC7jXLNmDe+88w4fffQRd9xxB3v37u3x63LHHXfw+uuvs3r1al588UUAHnjgAUSEtWvXsmTJEq688sq2an7r1q3j2Wef5bPPPuOnP/0pMTExfPHFF5xwwgn861//AuCCCy7gs88+Y/Xq1UyaNImHH374kOMuXLiQJ598EoCSkhJKSko0uVIh5/Y10CAxZI0pwGuc+EvWhzskpZRSSg1wg6oHq7uepr6UkJDAFVdcwb333kt0dHTb8rfeeosNGza0Pa6traW+vr7LtkaNGsXs2bMBWL58OZdccglOp5OMjAxOOukkPvvsMxISEpg1axY5OTkATJs2jcLCQubOnXtQW7fffjuXXnopb7zxBv/+979ZsmRJh71OXcV53nnnER0dTXR0NKeccgqffvopX/3qV3v0usyZM4dFixZx0UUXccEFF7Q9p+9+97sATJw4kVGjRrFlyxYATjnlFOLj44mPjycxMZFzzjkHgPz8fNassYZfrVu3jp/97GdUV1dTX1/P/PnzDznuRRddxBlnnMEvf/lLnnzySb72ta/1KF6lDkekv55GiSUpMoodzhyiqzaFOySllFJKDXCDKsEKtxtvvJFjjz2Wq666qm1ZIBDg448/Jioq6qBtXS7XQfOrgq/HFBsb26PjRUZGtt13Op34fL4OtxszZgzXX3893/rWt0hPT6eiouKQbTqLEw4tZ3445c0ffPBBPvnkE15++WWOO+44Vq5c2eX2wc/J4XC0PXY4HG3Pb9GiRTz//PMcc8wxPPLIIx0mjNnZ2aSmprJmzRqWLl3Kgw8+2OOYleqpSH8DTQ7r81oenUdOoyZYPVVT38ibf7qRmJmXc9Yp88IdzqCweUchlZUVnDDjuHCHMihU1rew9YMnmXna13FEHPp/m1JKhYsOETwMKSkpXHTRRQcNWTvjjDO477772h6vWrUKgNzcXD7//HMAPv/8c3bu3Nlhm/PmzWPp0qX4/X7Kysp4//33mTVrVo9jevnllzHGANbQQ6fTSVJSEvHx8dTV1XUbJ8ALL7xAc3MzFRUVLFu2jJkzZ/b4+Nu3b+f444/njjvuID09nT179jBv3jwef/xxALZs2cLu3buZMGFCj9usq6tj+PDheL3etnY6snDhQu666y5qamooKCjocftK9VRkoJEWh9Vj7UvKY1hgPz5PS5ijGhzWff4hX2tcylnvnQ323yjVtcp/XcYJ/zmVsqJt4Q5lUHjiuWc5/pPvsOeJG8MdilJKHUQTrMP0wx/+8KBqgvfeey8rVqygoKCAyZMnt/WkXHjhhVRWVjJlyhTuv/9+xo8f32F7559/PgUFBRxzzDGceuqp3HXXXWRmZvY4nkcffZQJEyYwbdo0Lr/8ch5//HGcTifnnHMOzz33HNOmTeODDz7oNE6AgoICTjnlFGbPns3Pf/5zsrKyACv5+/rXv87bb79NTk4Or7/+OmANS2ydb3XLLbeQn5/P1KlT+dKXvsQxxxzDDTfcQCAQID8/n4ULF/LII48c1HPVnV/96lccf/zxzJkzh4kTJ7Ytf/HFF7n99tvbHn/ta1/jiSeeaKucqFSoOQJe/OIGwJU2BpcE2L9HT357onxfUdv92r2bwxjJ4ODxBRhrdgFQ+cHfwhzN4ODYb82JTN31apgjUUqpg4np5TeLIjIC+BeQARjgIWPMH0VkMfAtoMze9DZjzCtdtTVjxgyzYsWKg5Zt3LiRSZMm9SpG1bn21Q6PNvr7o3pj66+OozEilWN+9AYbPnqVya9fzNpT/k7+SReGO7QB78W//y/n7v4NABvn/JFJX14U3oAGuF0VDbjvnUqWVLIlcQ7jb+ryv0sFvPDrizjPZ33xx217IaJnw++VUipURGSlMeaQKmuh6MHyAT80xkwGZgPfFpHJ9rp7jDHT7Jv+b6GUGlScxotxWFNVU0daiXpTqfZg9YSjcX/bfV/xF2GMZHAorqxjGNUApNZpj193jDHkeAvbHvtKdX6kUmrg6HWRC2NMCVBi368TkY1Adm/bVf1j8eLF4Q5BqQHLaXwEHBEApGeOpNFEYip2hDmqwSGiqZw6iWO/ScJZuT3c4Qx4nppSXBKg2JFFdmAvNFZCTEq4wxqwapt9xJpGCl2jyPXvomz7FwwfocVBlFIDQ0jnYIlILjAd+MRe9B0RWSMifxeR5E72uVZEVojIirKyso42UUqpsHAaH8ZhzcFyOB2UOjOJrNsd5qgGhxhPOXWuFMojcohv1NesO47aYgD2JFojTRr2bQlnOANek8dPLM3UJIyn2bhpKl4X7pCUUqpNyBIsEYkDngFuNMbUAn8GxgDTsHq4ftfRfsaYh4wxM4wxM9LT00MVjlJK9ZoLH8bpbntcFZVDUnNRF3uoVgn+aupdKTTHjyLdVwJBl61QHWiqBMCXZfXClO/aGM5oBrxmr58YaSYqLpldJgMqtWdZKTVwhCTBEhE3VnL1uDHmWQBjTKkxxm+MCQB/BXpee1wppQYAt/GB40CC1Rw/kkx/CSbgD2NUg0OUacLrjIGUMUThob58T7hDGtD8HutaicmjCggYoaF0a5gjGtiafVYPljs6nlJnJtH12kuqlBo4ep1giXVV2oeBjcaY3wctHx602fmA9t8rpQYVFz4I6sEiOY8o8VK5T5OF7rhNC35nFJEZYwEo361FCLoS8DQAMDI7m32kgM7161JTs4co8SIRsdRG55Ds2avXW1NKDRih6MGaA1wOnCoiq+zbWcBdIrJWRNYApwA3heBYYfP8888jImza1PlJQmFhIVOnTg3ZMTdv3szJJ5/MtGnTmDRpEtdeey1gXST4lVd6V5Tx6quvZtiwYSGNV6mjiTHGTrAi2pbFtCYLezRZ6E6E8WJcUSRmW9cArC/ROUVdMd4mAGJj49jnHE50vSbxXfE21Vt3IuPwJowiyrRA/f6ud1JKqX7S6wTLGLPcGCPGmILgkuzGmMuNMfn28nPtaoOD1pIlS5g7dy5LlizpcL3P5+v1Mfz+g4cdfe973+Omm25i1apVbNy4ke9+97tAaBKsRYsW8dprr/WqDaWOZr6AwY0PCerBSsqxLnzdoMlCl4wxRNKCcUWRmTMWj3HiL9fy9l0xXmuIoCMimqrIHJJbdK5fV7zNdQA4IuNwpuYB0Fym1SqVUgNDr8u096tXfwz71oa2zcx8OPM3XW5SX1/P8uXLeffddznnnHP45S9/CcCyZcv4+c9/TnJyMps2beKNN97A5/Nx6aWX8vnnnzNlyhT+9a9/ERMTw9tvv83NN9+Mz+dj5syZ/PnPfyYyMpLc3FwWLlzIm2++ya233srFF1/cdtySkhJycnLaHufn5+PxeLj99ttpampi+fLl/OQnP+Hss8/mu9/9LuvWrcPr9bJ48WLOO+88HnnkEZ577jlqamooLi7msssu4xe/+AUAJ554IoWFhV0+7/fee4/vf//7AIgI77//PnFxcdx66628+uqriAg/+9nPWLhwIcuWLeMXv/gFSUlJrF27losuuoj8/Hz++Mc/0tTUxPPPP8+YMWN46aWX+PWvf43H4yE1NZXHH3+cjIyMg4578cUXc/nll/OVr3wFsJLBs88+m6997Ws9e0+VCgGvz0+M+A8aIpg5cixe48RXrsO3uuL1GyLxYpyRJMVFUUgG7uqd4Q5rQBO7Bwt3NM3xI0lqeg1a6iAyPryBDVC+JivBckXFERczBtZDZdFmskZ/KcyRKaVUiMu0H61eeOEFFixYwPjx40lNTWXlypVt6z7//HP++Mc/smWL9Y325s2bueGGG9i4cSMJCQn86U9/orm5mUWLFrF06VLWrl2Lz+fjz3/+c1sbqampfP755wclVwA33XQTp556KmeeeSb33HMP1dXVREREcMcdd7Bw4UJWrVrFwoULufPOOzn11FP59NNPeffdd7nllltoaLDG83/66ac888wzrFmzhqeeeooVK1b0+HnffffdPPDAA6xatYoPPviA6Ohonn32WVatWsXq1at56623uOWWWygpsTonV69ezYMPPsjGjRt59NFH2bJlC59++inXXHMN9913HwBz587l448/5osvvuDiiy/mrrvuOuS4Cxcu5MknnwTA4/Hw9ttvtyVbSvUXr8cLgAkaIhgVGUmppOOuKQxTVINDi89PFB5wRyMi7I/IJr5Rh7x1ye7BwhUFKaMB8GiPTKf8LdYQQVdUHKnZYwkYoalUXy+l1MAwuHqwuulp6itLlixp68m5+OKLWbJkCccdZ5XSnTVrFnl5eW3bjhgxgjlz5gBw2WWXce+99/LlL3+ZvLw8xo+35iJceeWVPPDAA9x4442AlVB05KqrrmL+/Pm89tprvPDCC/zlL39h9erVh2z3xhtv8OKLL3L33XcD0NzczO7dVkWlL3/5y6SmpgJwwQUXsHz5cmbMmNGj5z1nzhx+8IMfcOmll3LBBReQk5PD8uXLueSSS3A6nWRkZHDSSSfx2WefkZCQwMyZMxk+3KptMmbMGM444wzA6nl79913ASgqKmLhwoWUlJTg8XgOeu1anXnmmXz/+9+npaWF1157jRNPPJHo6OgexaxUqHjtE14JSrAAKiKyiG/S4VtdaW7xEC9+xB0FQENMDik166wiBCJhjm5gEn8zLUQQKULksLGwCar2bCIjZ1q4QxuQAq0JVnQ8OenJ7COZQKX2kiqlBgbtwepGZWUl77zzDtdccw25ubn89re/5cknn8TY1YpiY2MP2l7anTy0f9yR9m0Ey8rK4uqrr+aFF17A5XKxbt2hxRiNMTzzzDOsWrWKVatWsXv3biZNmnTE8bT68Y9/zN/+9jeampqYM2dOlwU+ACIjI9vuOxyOtscOh6Ntjtp3v/tdvvOd77B27Vr+8pe/0NzcfEg7UVFRnHzyybz++ussXbq00wRUqb7k87YAHDQHC6AhbiRpvkE9pbTPtTQ1AiBu64sRX/wIYmnCNFaGM6wBTXzNeMRK5pOzxwFQX6pDUTsTaLYSrIjoeFJiIygik8haLdWulBoYNMHqxtNPP83ll1/Orl27KCwsZM+ePeTl5fHBBx90uP3u3bv56KOPAPj3v//N3LlzmTBhAoWFhWzbZk3yfvTRRznppJO6PfZrr72G12sNU9q3bx8VFRVkZ2cTHx9PXV1d23bz58/nvvvua0v6vvjii7Z1b775JpWVlW3zoFp713pi+/bt5Ofn86Mf/YiZM2eyadMm5s2bx9KlS/H7/ZSVlfH+++8za1bPL3FWU1NDdnY2AP/85z873W7hwoX84x//4IMPPmDBggU9bl+pUPF5PNYd18E9WCZpFEnU01hbEYaoBgdPizVEuTXBcqVZPdVVe/XaTp1x+JvxiPWlVFZmBjUmBr/2yHTKeOwEKyYeEaE6cjgJzcVhjkoppSyaYHVjyZIlnH/++Qctu/DCCzutJjhhwgQeeOABJk2aRFVVFddffz1RUVH84x//4Otf/zr5+fk4HA6uu+66bo/9xhtvMHXqVI455hjmz5/Pb3/7WzIzMznllFPYsGED06ZNY+nSpfz85z/H6/VSUFDAlClT+PnPf97WxqxZs7jwwgspKCjgwgsvbBseeMkll3DCCSewefNmcnJyePjhhwF48MEHefDBBwH4wx/+wNSpUykoKMDtdnPmmWdy/vnnU1BQwDHHHMOpp57KXXfdRWZmZo9fz8WLF/P1r3+d4447jrS0tLblK1as4Jprrml7fMYZZ/Dee+9x+umnExER0VFTSvUpn6+1B+vg3z93+hgASndpqfbOeJutHixnhDVEMC7Des2qi7X6Ymec/ha8dg9WRnwUe8jAWaPz1jrlsX7HIqLjAGiKzSHJX3FgLptSSoWRmAF0Yb4ZM2aY9kUYNm7c2DbcTR2eRx55hBUrVnD//feHO5Sw0d8fdaS2b1nLmH/PZfWM/+WYs29oW7551X+Z8PyZrD7hjxwzf1H4AhzA1q7+jPznTmfjl37PpDO+yfaivYz52yTWT/4BUy76RbjDG5A++p8F5JgSRvzUmmf73q8WMMFRROZPDx0WruD1f/yK+bvuhpu3QVw6z//zd3x15x2Yb3+GpI8Pd3hKqSFCRFYaYw4pbqA9WEop1QG/PUTQ4Yo8aHnGKOtaWC37tWJZZ3wtVi+CKyIGgOyMDCpNHIHKwjBGNbC5Ai34HQd+1+pjsknx7oNAIIxRDVymreqi9ZpF2sNQa0r0emtKqfDTBOsotmjRoiHde6VUb/h8VoIlroOLXCQmJVNBAlK9KxxhDQreFnuIYKQ1ByvK7WSfI4OIOh3y1hlXoAWfM6rtsS9+JBF4ob40jFENYL6gsvZAwvCxgCZYSqmBYVAkWANpGKMaPPT3RvWG364i2L4HS0Qocw0npl4rlnXGb8+PcUceuLxCdUQWCc17wxXSgOc2HgJBPVjO1FwAmrSntGP+Fvw42i4EnpE9ihbjxlOmhUGUUuE34BOsqKgoKioq9GRZHRZjDBUVFURFRXW/sVIdCHitHiyn69AiK7XROSR7NFnojL+lCQB35IFLUDTF5ZDmL4WAP1xhDWgRgRb8rgN/r2IyrB6Zaq282CHxteDF3XZdtZyUOIpMGmjPslJqABjwFxrOycmhqKiIsrKycIeiBpmoqChycnLCHYYapAL+1h6sQxMsb/xIhtW+i9/rwenWKpft+T12ghV1oAcrkDgKd4UPb3Ux7pSR4QptwIrAQ2PQEMHUbKvyYqNeC6tDVln7CFpfsSi3k/3ODHLq9SLgSqnwG/AJltvtJi8vL9xhKKWGGL99DbqOEihnah6uvQFKirYxPG9yf4c24AW8VoIVEXWgBysiPQ92QEXRVjI1wTqIzx8gEg8NQT1YOenJ7DPJBKoKwxfYAObwt+CTgz+bdVFZJDV3fI1KpZTqTwN+iKBSSoVDwNf5EMHYzHEAVBbpdZ06YtoSrAM9WIlahKBTzb4AUXjAdeD1SomNYC/DcNdqYZCOOPwt+BwHfzY9cSOIN3XQXBumqJRSytLnCZaILBCRzSKyTUR+3NfHU0qpUDD2hYad7shD1qXmWNfZadynyUKHOujBSs8ZS8CIFiHoQJPHbyVY7gM9WCJCVcRw4puKwxjZwOUMeA5JsCRlFACeCv0dU0qFV58mWCLiBB4AzgQmA5eIiI6nUUoNeAFf6xDBQxOsjJw8WoybQKWeyHWk9RpF4j7QI5OZksg+UpDqwjBFNXA1e3xEiweCXi+AxtgRJPvLwO5NVQdY1w07uIhR9LDRAFQVa2EQpVR49XUP1ixgmzFmhzHGAzwBnNfHx1RKqV4zfuuk1tXRHCynfV2nWq1Y1qG2axQdSBicDmG/M5OoBi1C0F5Ls1XW3tEuwQokjsKBwdToMMH2nMaDv10PVlKWNXS3bp+WtldKhVdfJ1jZQPD/DEX2MqWUGtjsIYKuDnqwAKois0ho1uFbHRFfMx5c4Dj4v5i6qCySWrS8fXttCVbEwQlWRFouALU6b+0QEQEPAefBn82s4dnUmyh85YXhCUoppWxhL3IhIteKyAoRWaGl2JVSA0XbHKyIjq+l1hQ3kmH+EtBr9B3C4W/Gw6E9fy3xI0gJVLYlr8risRMsZ7sEK35467WwNMFqz82hCdawhCiKGIazVi8CrpQKr75OsIqBEUGPc+xlbYwxDxljZhhjZqSnp/dxOEop1UP2EEF3u5PeNsm5xNNEbUVpPwY1ODh81jWK2pPkXBwYGvbr3LVg3uYG4NAEKyM7D49x0lKm18IK5vMHiDAeaJdgORxChTuTmEbtWVZKhVdfJ1ifAeNEJE9EIoCLgRf7+JhKKdV7di+LO7LjIYKRw6wLwZbu3tRvIQ0WjoAHrxz6ukXbr1nFns39HdKA5m2xe7AiYw5anpMaT7FJg2qd6xes2RcgEi/GdWjvckN0Nike7VlWSoVXnyZYxhgf8B3gdWAj8KQxZn1fHlMppUJB7B4sp7vjIYJJ2daE+tq9WrGsPae/Ga/j0AQrKdsa8lZfqkUIgvnsBMvVLsGKjnBS6swkul4LgwRr9vqJFC90kGD5EkYSTTM0VoQhMqWUsvT5HCxjzCvGmPHGmDHGmDv7+nhKKRUSfg8+40Ccrg5XZ4ycAIC3XIdvtefs4CKwAFk5ubQYtxYhaMdvJ1jB1w1rVRuZRaIWBjlI23XDOkiwXKm5ANRrJUGlVBiFvciFUkoNRA5/Cx7cna6PjUugjGScOnzrENY1ig7twUqMiWQvaVqEoB2/x7owszvy0Pl+LfE5JARqoKW+v8MasFp8fiLxIh30LsdkWMNQK4u29HdYSinVRhMspZTqgPhb8ErHvVetyt3DiW3UZKE9l/EcchFYABGh3J1FrBYhOEhrghURfWgPliTnAuCt0MIgrZo9rQnWoUl8mj10t1ELgyilwkgTLKWU6oAj4MXbRQ8WQG3MSNI9miy05w604Hd2XBykISabFI8OeQtmvFaCFdnBEMHI9NEAVBXrXL9WzS1NOMQcct0wgOzMdCpNHIHKwv4PTCmlbJpgKaVUBxx+T4fXcgrmTRpNOpW0NNb0U1SDQwQtBJwdFwfxJYwggXpMU3X/BjWABewerI4ShqQsq0dG5xQd4G2yy9pHxh2yLj7KTYlk4K7d099hKaVUG02wlFKqA1ap8a57sNzDrJPf/Tu1OGqwCOPBuDruwXKl5gFQpRfPPcDXbP10HZpgDR+eRb2JwluuQwRbtV43zBER0+H6qojhxDdrz7JSKnw0wVJKqQ44Ah583SRYSTlTAKjcvbE/QhoU/AHT6TWKAGLtIgQ65C2IPUSQDoo2DE+Kocik49DCIG28zVbBD1dUxwlWY+xI0nyl4Pf1Z1hKKdVGEyyllOpATxKs4aMnETCCp1QrlrVq8VkltDtLsFJzxgPQqNfCamO8nfdgOR1CuXs4MQ16LaxWPjvBckfFd7w+eTQu/PirtMKnUio8NMFSSqkOOAIe/B1cyylYQnwC+yQNZ5UmC62aPH4i8SDuQ5MFgOys4VSbWAIVWuWtlcPXiBcXdHLNtfrobFI8JWBMP0c2MPlbrCGC7g6KgsCBobtVezb0W0xKKRVMEyyllOqAM+Al4Oi6BwugLGIE8Q36TXmrZq+PSPEhnfRgRbqcFDuziarVOUWtnL5GmqXj1wvAn5RLNM2Y+tJ+jGrg8tkXZo6MObTIBUBi9kQA6oq1Z1kpFR6aYCmlVAecPejBAmiMzyXTV6S9C7aWxjrrTkTHvQsA1VEjSG7WKm+tXP5GWhwd9/gBuOwemeoinesHYOwerIhOerCGZ42gzkTjK9N5fkqp8NAESymlOuAyXgI9SLBMyhjiaaSmXK/tBOBtLVkf2fH8GICWxNEMC5RhPI39FNXAFuFvwtNFgpWYPQmAai2mAkDA/r2RiI57sIYnRVNoMnFV6zBUpVR4aIKllFIdcBsPpgcJVnTmBAD2aal2ALxNVgECR2TnPViOtLEAVBVt7peYBjq3vwmvs+OKeADDR46lxbhoKdUeGQDjtRPzTub5uZwOSt3ZxDdq5UWlVHhogqWUUh1wGS8BZ/cJVuqoyQDUFW/q65AGBV+TNUTQ2UmFN4B4e45MxW4tQgAQYZrwdZFgZafEsZsMHFpMBQBpK2vfea9fbcxIkr2l4PP0U1RKKXWAJlhKKdUBN15wdnyx3GDDR43HY5z4db4HcKCEtiuq4+FbABm51vXDmkq0BwsgKtCMz9V5gmX1yOQQV1/Yf0ENZK0JVhfz/HxJeTgJQFVh/8SklFJBNMFSSqkOuI0X4+o+wXK73ex1DCeiRud7AHgbawGIjE3odJvhw9IoNcmYSu2RMcYQbZrwd5FgAdTF5JLmLYaAv58iG7icvkb8OKCLHmZXun29tX3as6yU6n+9SrBE5LcisklE1ojIcyKSZC/PFZEmEVll3x4MSbRKKdUPjDFE4O3yBC5YVfRIUpq0VDuAr9kaIhgdm9jpNk6HsM+VTWxtYT9FNXC1+ALESDPG3XWC5U8eTQQ+AlU6r8jha6JFokCk020Sc6xhqNV7NMFSSvW/3vZgvQlMNcYUAFuAnwSt226MmWbfruvlcZRSqt94fX4i8EEn13Jqrzkhj+H+EgI+Xx9HNvD57SGC0XGdJ1gANTGjSPNoqfZmr58YWjDuzoe7AbgzrB6Zqj1aSdDpb8IrXfcu52RlU2Xi8Ozf1k9RKaXUAb1KsIwxbxhjWs8oPgZyeh+SUkqFV3NjLQ4xBCI6L9QQzJE+jgjxsW+PnsyZltYerM6HCAJ4k0aTZGrwN1T1R1gDVn2zl1iakS6qLgKkjLCKqdTotbBw+RrxODsvcAEwKjWGQpOJs0qH7iql+l8o52BdDbwa9DhPRL4QkfdEZF5nO4nItSKyQkRWlJWVhTAcpZQ6Mp4Gax6R6eQ6O+3FZ1nDkcp3reuzmAYL02L1YElk16+de5hVqr1819CuJFhXX49DDK4uqi4CZOeMpM5E49mvxVSi/XW0uLpO4KPcTva5solrKOyfoJRSKki3CZaIvCUi6zq4nRe0zU8BH/C4vagEGGmMmQ78APi3iHT419AY85AxZoYxZkZ6enrvn5FSSvVSU301AM7oniVYw/KsqniNJVv6KqTBw9tAC25wurvcLMG+eO5QH/LWUG9dmNkd3XWClZkYzS6G4x7iF881xhAbqMcX0XWCBVAXO4pkXxnoBa2VUv3M1d0GxpjTu1ovIouAs4HTjDHG3qcFaLHvrxSR7cB4YEVvA1ZKqb7WYvdguaK6P4kDSB2WQz3RUKFDBB3eBpoliu7qL2blTsRvhJb9QzspbaqrBiAipusEy+EQyiJymNo4tF+vZm+AeBrwReR2u60/eTTUAVU7IWNKn8emlFKteltFcAFwK3CuMaYxaHm6iDjt+6OBccDQ/tpNKTVotDTYvQoxXRdqaCUOB/tc2cTUaSVBl7eBFul6fgxAenICxQzDMcRLtXvqygGIiO9+BEdDXC6pvlLwtfR1WANWbbOXRGnARHb/2Yy0h6E2aM+yUqqf9XYO1v1APPBmu3LsJwJrRGQV8DRwnTGmspfHUkqpfuFrsnqwImJ61oMFVlW8VK2KR5Svhnpn9ye/IsL+iBzi64d2UuqvrwAgKiGt220DqWNxYPCVD92ktK7JQwINEJ3U7baJOdYw1JoiLdWulOpf3Q4R7IoxZmwny58BnulN20opFS6tCVZkF9dyOmSfpNEMr3mHpsZGomO6vqbR0SzGV01LVFKPtq2PHcnk6lfBmC6vaXQ0CzRa3z3GJA3rdtvozPGwDSp3b2BY5uS+Dm1AqmuoJ1J8OGKSut125PAM9pskvEN8GKpSqv+FsoqgUkodFfzNVoIVHZfU430iho3DIYbinUO7Kl58oBZvZHKPtg0kjyaGZjw1+/o4qoFLmqwEyxWX2u22aSOtHpm64qHbI9NYYw2pdMV0/zs2IsUq1e4a4oVBlFL9TxMspZRqzy41Hh3f8x6shNbhSEO4Kp7XHyDR1OKP7j5ZACspBSgbwqXapbESPw7oQa/fyKzhlJuEIT1EsL7KSrBiE7sfUhnldlLqziG+YWgPQ1VK9T9NsJRSqp1ASx1+I8R2U9ktWKZdqr2ldOgOR6qqqydBmpCYlB5tn5hjXT+stnhzX4Y1oDmaK2mQOHB0/99xSmwEe2Q47pqd/RDZwNRUZ81Zi0vsWRJfHzuSBH8V2L3SSinVHzTBUkqpdgLNdTRKNA5nz/9ExiamUkEizqqh27tQW1EKgDOuZ9c0zBo1Hq9x0jKEL57r9lTT4OphtUoRqiJzSGwausVUAjUlAESlZPds+5Qx1p0hXq1SKdW/NMFSSql2nC01Vq/CYdo/xIcj1VdZCVZEDyriAaTEx1Asw3BVDd0emRhfNS3upB5v3xw/ilR/OXib+i6oAcxRbyVYJAzv0faRGRMAaNg7dHtJlVL9TxMspZRqJ9pTQa2rZ8PcgtXH5jLMW9QHEQ0O9eV7AUhIzerR9iJCmTub+MahmZT6/AHS/GU0x2T2eB9JHQ1Ay/6heVHriMZSWojs0Zw1gOScCQSMUDuEC4MopfqfJlhKKdVOnLeSRvfhJ1i+lNGkUU1dzdC87J+nohCA5OwOr+DRofq4UaR791ql2oeY8rpmsqQCf3xOj/eJyRxv7bt7aCYM0c37qHan97is/6iMZPaSirds6A5DVUr1P02wlFKqnaRAJS1RPRvmFixymHXyW7pzfahDGhQcNbvx4iQqpecJg0nKs0q1V5f0YWQDU0nxLiLFR0TqqB7vkzbSKgxSNwSHvAUChgRvOc1R3V8zrFVrqXZ39dAdhqqU6n+aYCmlVJCAz0uSqcMX3bNCDcGSRlgnvzVFQ7N3Iap+D+WOdHA4e7xPRIZdqn330CvVXrXXKryQkDm6x/uMzM6i0sThLx9613Yqr29hOGX443o2/wog0uVkvzuHxMZdQ7KXVCkVHppgKaVUkPLSvTjE4Ers+byYVsNzJxMwgm//0CzVHt9cQk1Uz+ZftUpsvX7YEExKm8usJCkla0yP94mPclMkWUTUDr0emd0lpWRJJaRPOKz9GuLziAnUQ2NFH0WmlFIH0wRLKaWClO+zCi7EJPf8W/JW0bFxlEoa7uqhVxK62eMj21+EJz73sPbLHjUOj3HiGYJFG5xlG/DhxG1fcLmnqqJySGoeesVUSnesASB5VP5h7WdSrB5CUzH0PpdKqfDQBEsppYI0lNrDtob3vFBDsPKILGKb9oYypEFh985NJEkDZvjhnfwmx0WzV4bhGoJzZBJrNrMvYhS4Ig9rv8a4kaT6y8Db3EeRDUyNResASBpVcFj7xaTnAdCwf+j9jimlwkMTLKWUCuK3L3qbOmrSEe3fGD2cFG9pKEMaFEo2fQpAxrhZh7WfVao9h4TG3X0R1oBV0+gl17+ThuTD/z0LJI3GgcFXMbTmYcVUrKNZopDk3MPaLzXH+rKkpmTo9ZIqpcJDEyyllArirNrGflKIi086ov198Tmkmip8nqHVu+Db/Rk+nGSMm37Y+zbEZJE8xJLSTZvWkClVOEccd9j7uoZZCUN18dCpJFjf4mN00xpK4gvA6TqsfUdmplNh4mkpK+yb4JRSqh1NsJRSKkh8fSHlkSOPeH9n0kgcYigvKQxdUAOcMYbsyo/ZHjUFiYg97P398TnE04BprumD6Aam0lWvA5Bz7FmHvW/icKsoRt2+oTPk7bP1W5nAHpx5XzrsfUckx1Bs0pHaPX0QmVJKHapXCZaILBaRYhFZZd/OClr3ExHZJiKbRWR+70NVSqm+5fO0MMq3k4ak8UfcRsywXACq9g6d4Vubt25hotmBZ+RJR7S/M9lKaKtLhkbCYIwhtehtKpzpRA2feNj7D8vIptm48Vbs6oPoBqbKz5/HIYbhM7562PtGuBxUuDOIbigOfWBKKdWBUPRg3WOMmWbfXgEQkcnAxcAUYAHwJxHp+YVRlFIqDHZuWEG0eJARhzePKFjS8KE3oX7vB/8CYMS8bxzR/tHp1oV2q/cNjaR07ZZtzPJ/QenIs0HksPfPSo6h2KQhtUOjkmCz18/Iopcoc2fhzpl2RG00Rmdbw1D1WlhKqX7QV0MEzwOeMMa0GGN2AtuAIz9jUUqpflC+8X0ARhbMO+I2huVYw7e8lUOjaENTcwvj9jzFtqgpJI2YfERtJA23ymg37B8aPTLFb9yHW/zknv6tI9o/yu2k3JlORMPQqFb53ntvM5P1NE697IgSUgBvfA6ReKB+f4ijU0qpQ4UiwfqOiKwRkb+LSLK9LBsIHuxcZC87hIhcKyIrRGRFWVlZCMJRSqkjE7V7GXslg2EjDu9Cpge1ER1LOUk4h0jvwidP/44RlMKXvnfEbWRkjcJjnPgqj/4Ea+PWbcwpf5LNyScRkz3liNupjcwkoWVfCCMbmBpbvCR+eCf1EsvIL19/xO04kq1e0paKwhBFppRSnes2wRKRt0RkXQe384A/A2OAaUAJ8LvDDcAY85AxZoYxZkZ6evrh7q6UUiFRW1fLhMYv2Js+94i/JW9V6RpGdFNJiCIbuLZsXsfMrX9kY/RxjJ238IjbSYyJpJRUHHVH9xyZ5hYP9Uu/RZR4yf76//WqLU9sNsmBSvC1hCi6gen1R37NbLOKihk/RGJSjrid6PRcAGpK9GLDSqm+122tU2PM6T1pSET+CvzHflgMjAhanWMvU0qpAWnrssc5TlqIP/bCXrdVF5lJWtPRPZ+osrwUeeJSEEi/7C+9SkpFhApXBrGNR++QN6/Pz/I/38Dpvs/ZPPMOJmQd2XXW2iTmQAUEqotxpI0OTZADzGsvLuGsvfezI/lLjD7zpl61lZhlDd1tKB06cyOVUuHT2yqCw4Meng+ss++/CFwsIpEikgeMAz7tzbGUUqovRa9bQhGZjJu5oNdteWKzSPeXYQKBEEQ28OzdvZ2yP53JqEARJfMfIi17XK/brI/KJNFzdF4Lq66hgQ//eCWnVz/FhpyLmHDWkQ+nbOVOtQuDHIU9Mv6A4ZUl93PKyu9SFjmCkd98FBy9m9EwPD2dWhODr+ronBvZ7PWHOwSlVJDezsG6S0TWisga4BTgJgBjzHrgSWAD8BrwbWOMfvqVUgPS7q1rmNyymj2jLsDhDEHB04RsYqSF2pqK3rc1gBhj+OTlfxDx91PICRSz6/QHGXvCeSFp2xubRWqgHPy+kLQ3UKz67AOKfncSJ9e9xLrcRUz+5kO9HoIKEG9fDqD2KKtWWVRSwge/vYizNv+UvTETyPjuW7ji03rdbmZiFCUmFak7unpJG5tbeP2RX1P+6/G8+sSfwx2OUsp2eJdDb8cYc3kX6+4E7uxN+0op1R9KXv4/Mo2LcQuuC0l7ESnWCOmK4h0kJh8dc0u3rPmE+ldu5/jmj9npGk3L1//GuAnHhax9kzQC535DU2VR23yZwaxwx2Z2v/g/zKl6gTqJZ8tJDzD1lMtC1n5qVh4BI7SUHx2FQWrq6vjk6XuYWfgQJ1LPhvH/j0kX34k43SFp3+10UOlMI6fx6CgM4vX5+eC1pWSuvJv5Zjv1EsPJG2/nww8nMWfOyeEOT6khr1cJllJKDXbFOzdzbNWrfDHsfGYNHxWSNuOGWQlW7f5dwPEhaTMcTCDAxhXv0PjefcxoWEYd0Xw29vscu/BnON0RIT1WVKp1seGKvTvIGaQJljGGjetWUvPW7ziu+nVyMKwdfiETv/F/jE/ofS9MsOGpiZSRiKne0/3GA9i+0n1s+M+95O9+nDOkmm2x0/GdfxeTx4X+yi71URkktHwU8nb7U2VNLStef4ysjf/gVLOFMkc6O+f9nuHTz6T+vrnkvvFN1qe9ypQJR36xdKVU72mCpZQa0ope/BXpCKO/+tOQtZmcaV1suLlicJ78NlYWs/3Nv5G05Ukm+4toIIqPc65i8oW3MTN5WJ8cMz7Des3qBmERgrLyCta99S9Stj7NMf51NBs3azLPZ/S5P2Fa9tg+OWZ8lJsdkk5c/eCrH+X1+Vn14Wt4P3uE6XXLOFU8bIo9joaTf8DYmV8JyRDKjnhis0hsqgFvM7ij+uQYfcIYtq3+gNL3HmZq5ZucIQ3sd2awcfodTFxwHemuSACavrGUlMe+QvWSSyi6/nVyMkKb1Culek4TLKXUkFW8czPHVr7CF8O+yqzs0FViS80YQcAI/urBM9/D+Dxs/fBZfCv+yfjaj8mXAGsdk9gz9ZdMm38ls+OTu2+kF1KzrNe/pWJwFCHweH188cHLeD9/nOl1yzhFWtjrzGb1+O8yev71zEjt8NKPIVXtziCjafAkpDt27WLHW39j9J5nmUkR9USzMeMrZJ16PRMn9kNPb0I2lIO/phhn2pi+P14v1ZQVsfWtv5O27WnG+neRY9xsTjmZ1LlXkzN9AcPaFf5IHjuTvWc+yKRXr+bDv15K/E0vkhgbGabolRraNMFSSg1Zrb1XeV/9WUjbdbojKJcknPUD/1pYpdu/oPidv5Fb/BLjqWG/Seb99EtIm3sV+cfMQPqoN6G9YakpVJk4qBnYF2jevGkde9/7O+NKXuJ49tNANNsyFpA29yqy808mq59eL4DG6OGk1H4CxvRZr09v1dbXs+adJ4lYt5TpLZ8xWvxsj5zEhvz/Ydxpl3NsdEK/xRKZOgJ2QPW+naQO0ATL62lhw3tPwarHmVz/CTPEz0bnBD6c+DOmzr+KY5K77pXKOv4CCsu2M2/Fr3n2Lz/gvBvvx+kYmL8bSh3NNMFSSg1J+3ZvZXrlK6xKPzekvVetqt3pRDUPzAn1TbVVbHr7EeI3PsFYzyZSjJPPo2fjK7iUaadcyKnR/T98yuV0UOZIxz0Ah7xVVFay/q3HSNjyFNN8axhnhC2x09lYcCvjT/kGx0TGhiUuX3wOEbVeaCiHuIFTTMXvD7D603ep/+Rf5Fe9xVypp1xS2DDqUkac8k3G5E0LS1xxduXFmtJCUqeGJYRObV/3CWUf/J3xpa9wDLWUkcSnmRczbN5VTJxyeF905H7lZnaWrOGC4sd45oljuPAb1/Zh5EqpjmiCpZQakgpf/F9SgVHn3tYn7TdEZpDQUNgnbR8JE/Cz5dPXafj4ESZVvct08bBDRvBe3k2MPe1qjs8ZGe4QqXEPY9gASUq9Pj+rP3yV5hWPMq12GSdKMyWOTL4YewOjT7uGicPD3wPiTB4BxdBUtpPoAZBg7dyxhcJ3HyF3zwscSxHNuNmSfCIVsy5nzPFnkxaiioBHKm24PTeyfGAMQ60o28fmt/5B+ranGeffxgjjZF3cl9g1/TKmnnQBc460kIwIeYseouj3mzlj8+0s+3AKJ8+ZE9rglVJd0gQrlIzBmAABvx+/308g4MNv3zcBP36fD7/xY3wB66ffhwkYAMQhgANEMIj9WBBx2CM/BHE47Mf2cocgbctBxGktE8EhjoO3t+87BOsx2Pvo0AHVM8aYdo+D7ne1XSf7WOtMp+s6P1bv46gpLWJ62YusSlnAzJF9U23LGzuctLqVBAIGRxiH6JTu2Urh239jxK7nmGBKqTPRfJFyJnGzFzF1xsmMdvb2coih0xQznJTqdd1v2Id2bNvInncfZkzxi8yglEai2JJ2Gslzr2LUtNMZPoD+Zkal5QJQvW8H0Xmhr7rXE1XV1ax7+9/EbXqKAs8X5Ilha+QU1k65lvGnXk5BXEpY4upI1jBrGGogjMNQWzwe1rz3PKx6jGPqP+RL4mOHM49PJ9zK+NOv5tj04aE5kDua9Gueovn+eYx84xq2jnibcSOzQtP2YGUMfk8jzY31NDfW09LSQounhYDPi/F78ft9mLb7XvD7CAR8BAKGAAfOrRDscyvrnApx4LDPvcQhIC7E4cDhcCAOF4jgcDpxOIJuTificOJ0OK1tnU4cDhcOpwNn8H2HE6e9LeIAaf3p6PXFt1Xf0gSrC6vfeRI+fQhnwIvTeHAGfDiNB7fx4jJeXPhw4yXCeK2f4kcAp30bqAJGCGAlcgbsn8E3MDgOXScHr8NeHrDStbZ9xV4X/AOALk6gu1nZIxJ8st6LfY9MJ2f5PTr2ER/J3v/IYw/p8z7sY/dOb2JPwocLH9lnh65yYHuSmEVCaSNlVRWkp/ZvNa/mxnrWvbuEyLVLmNL0ORliWBMxjd2Tb2Lq6Zfypbj+m/dyOPwJOcRXNxBoqsXRj3NzaqqrWfv2Y8RvepJjvKsZDWyMms66gh8w4ZRvMK0fYzkciZnW0NaGsv69FtaB3r3HmVb7LvOkiVLHMFbnXcOoU7/JuJGT+jWenoqJcLFL0nHX9e8wVGMMm9etoOyDR5iw/2VmUkUNcazJPJ9h877J6KknEPpByhCZOoqGr/2DkU99jZX/vJR9NzxPZmpiHxyp7xm/j/rq/dRVltJQU05LXRWe+kp8DZUEGquR5mocnhoiPLVE+OtxB5pxB5qJDDQTaZqJooVoWnACsfbtaOBHCOBsO6cL4CCA48B9Cbrf0Xr7fO7A/8fBZ3e03e9sXdsy08Gydj97ukw6aaOQLL748lMsmpN3BK9U/9MEqwt+TyPxvmr84sbniMDrjCXgiCDgjCDgiMA43RhHBMZpLUPcGPtbBnE4rW8XxPp2ou2nw2n3NFnfQIi0fgNhwATsr+PtVMWYtscYY31zb+ztANO6vTH2t/UHt3Fg/4D1u2qvM62p0yHbBgCrLQleHtRua4p1cLvWR7V1W4PYvQodnQAf+Ah29EVw60e0q5Pvrr5ANt20f2gUBx61Rtv1fj1ttPPtOlxzmN+KH3qojvfv6Hl2HcihKw/ZTA6+a3py7C4ObaSLY3UVRw8XdvY0JXs6k8ZM6WRt70UkW9fCKt+7s18SLBMIsOXzd6n56J9MrHiTGTSyj3Q+GfFNRp56DQWjB+ZJbzBX8gjYDZX7dpKWd0yfHsvvD7D2o1dp+vRf5NcsY640s9eRycrRNzD6tKuZlD2uT48fChnDhlFvovBX9s+Qty2b1rL3vUcYW/LSQb17iSdcQd6xZ5AxCL5RL4/IZlw/VV4sLd3Hprf+ybAdTzPJv4WxxsHGuNnsn/4NJs77GjMio/s8hpQpp7Fr7/9w/Ic/5uMHvorv2qXkZPbNpRaOiKcBU1NEXWkhteXFNFWW4KndB/X7cTWVE+WpIN5XRWKghngxxHfSTIOJok7iaHDE0eyMpd6RgM+dgd8Zhd8Vg3HHYFzREBED7hicEdE43JG4XBE4XC7E6UacLsThxuF0gTMCp8tl9TKJWP9FmwAB+3zLmID1M9D62L4FAhjjxwQCYP8MBAIQ8BMI+K39Avb6gK9tH4zP2jdoP0xwW1Yb1nlfAFqXGb/901rfdt+0plTWuV7rfYfxH7JMCNCaNln/p7eSoP+fD/5poON10rr+QFuCYILPU4K24ZA2Wh8GJ37Wv/URaYzL6Ow3YODRBKsLxy5YBAsWhTsMpdQgFJtpzdFp3LsF8mf22XHKiney/e2HySp8lgmBYppMBOuSTiZ65uVMPuErZDoHcn/6waLTrQs9V+/d3mcJ1u7tG9n97sPkFr3INEppIIrNaaeTdMKV5B17OlmDIElolZEYzQ6ThqO274a8lZXvZ+Pbj5K05RkK/OsZa4QtMdNZl/9Du3dv8JzwANTFjCCt+iPw+8AZ+lOg5hYPXyx7Flm9hOkNH3KSeNnlyuXziTcz7stXk98P5fvbG/Xl69ktMGP5bex58GQ+OvUPzJ735b6fIuD34q8pprqkkLr9hbRU7CJQXYSrfi/RTSUkevYTb+oQIMG+ATQbN+UkUuNIZr97GEXxkwnEpuOMG4YzPp2IuBSiElKISUglNjGNhKQ0YiMjj5peKXV00ARLKaX6QMqIyQD4yreFvO2mxgY2LFuCe80TTGlaQboYNrqn8OnU/8ek0y5nZuLAmfdyOBJzrB7F5r3rgQtC1m5lVSUb336chM1Pke9dTY4RNkZPozz/h0w65RKOjRmYQwC743Y6qHBlMLIhtBe0bm5pYdWyZ2H1E0xr+JATxUuxM5svxn2X0addzcTMvhjQ1j+8iXm4qv2Y6l1IamgKlRhjWLd6BRUf/oNJ+1/hBLGGAG4Yfj4ZJ17NqEmzGRXmuXsjT7+e4tQxJLz4/xj19kV8+OGJxMy5limzv0xkxBFcK8sYPDWlVJbsoH5/IU3luzHVe3DW7yW6aR+JnlKSA5U4MaQCqfZu1SaWfaSy2zWM+uhJeGKHE0jIwZ2cQ2xqDsnDsslIS2N4fBQ5Wl5eDWKaYCmlVB9ITB1GlYnHVbU9JO15PB7WLX8Jz+qnmFz9HsdJI/tI49Ocq8g55ZtMGjvA6k4fgZE52ewzyZjSjb1uq6mxkXXvPQ3rnmZq/UfMEQ/Fjkw+zbOGAE7JGfhDAHuiOm4sM2ufAZ8HXEdYdQ5ryOT6zz+g9uNHmVj+BrOlhmri2ZB5HulzFzFi6lyyB1CBjyPlSB8Hu6CuaAMJvUiwjDFs3bqZog8eJbvoFfLNDnzGweb42VQddxnj51zI9Ij+v9xBV7Knn4Fn/BdsePqXTN+5hNh33qPq7Xg2xkymKWkcroRMXDFJGFcU+L0Q8IKnkUBDBTRW4GyuItJTSZJ3P6mBciLxkhnUfpOJYB+pVLqGsSdqBi2xwzEJ2biSRxCTPpKkzDwy0tKYEOPWAlvqqKcJllJK9QERocSdQ0ztjiNuw+fzseGTN6lfuZSJlW9zLLXUE82W5BOJmnEpE044e1ANAexOpMtJsTuX1NotR7R/c3Mz6/77Mv7VTzGp+j1mSiNVJLAx42ySZ19K7rRTyR5EQwB7wptRgLt2Kc171xM1cvph7ev3B9jw+ftUrXiK3NK3KGAfXuNkY8Icyo79BhPmXsCx7iPo3RjAho2dge8zB5VbPiLhmHMOe//CXTspfH8JqYUvke/fwHhge8RE1oy7lTGnXcWUlIFdqS8iNompV95DS8MvWPvfF/BueIXkmo1M3ruCiBJ/h/sEjFBDHLWOBBqcieyJnsiWaCt5cqeMJDptJInDRzNsWCa5UW7yNHlSShMspZTqK9WJk5le8RLG24y4e/ZtdkNtFVs+/g++Da+QV/1fCqimyUSwKXEuxQUXMnHeBRwbGdPHkYdPddIUCsqX4G+sxhmT1O32FeWl7PjoOWTza4yv+4QZ0kg90WxKPpGYYxcy4YRzOPZIryc0CAyfcDxshV1r32dCDxKshsZGNnzyBk3rX2VM+Tvksx+fcbAl9ljWTLiesSdfSkFi+K+p1VfyR2exyYwivujTHm3v9wfYvPYTyla8QPred5jo30KuGHa7RvHFuO+Qe9LljMmZ2MdRh15kbBL5X74SvnwlAH6fj4rqSuqqK8DXjLjcOJxunBHRJKVmkBwVSXKYY1ZqMOlVgiUiS4EJ9sMkoNoYM01EcoGNwGZ73cfGmOt6cyyllBpsJO8koiueYceq9xg9c36H23i9Hrat+YjKDe8QX/wBE5tWM1181BLLlvjjKZr8FSae+HWmxw7O8sqHK2rKWbjfe4ytHz3PuNMWHbK+paWJ7V+8T+X6t0ks+S+TvOuZKQEqSWBL6inETD2bcV86jxlRQ2PKe37+dHa9lIF704vwle8fst7vD7B902r2r3mDqF3vMrHpC2ZKM17jZFPsDMomfp9x8y5icvIAqizXh2IiXOyMLWB+zSuYhnIk9uAKn8YY9uzZxa6Vr2MKP2BszcdMpgyA7e7xrM67nuwTvs7IsccS/ktzh47T5SI1bRipaUPj90CpvibtL8Z5xA2J/A6oMcbcYSdY/zHGHNakgBkzZpgVK1aEJB6llAq36ooyIu6dwraE48m/6QXE4aBifzHFGz6moXAlMfs+ZUzTOuKkCYDdjmz2pp9I/DHnMn7GabiPZPL5IFff1ELt/00m4IzGcfHjeAMBKgrX0rTrc+LKVzGuZQMx0gJAoWs05cNPInnaueQdcyIO19AclPGfe7/HWRX/Yvucu4jMnUVF8Q4a9qwmsmQFoxvXkio1AOyTYRSnzSFm8gLGzDqTiCGStLf36jvvcOb757M161xiTvkhVZXlVO/4HPatIbv2C/KMVZWxgSh2xR2LZ+x8Rp9wAQkZR1NKpZQKBRFZaYyZccjyUCRYYs1W3A2caozZqgmWUkpZlv/tZuYW/ZX9pODCRwq1bet2O3IoTT4O95h5jDz2DFIyR4Ux0oHjg1eXMuvjG4gUX9syvxF2u3MpT5mBc8xJjJ15BgkpGWGMcuDYva+Mpge/zAQOvr7TXslkX9I0ZOQJZB1zGhl5Uw/7mntHI48vwOt/uJZz6p86aHkdMeyKmUpLzpfILDidrEmzEac7TFEqpQaDvk6wTgR+33oAO8FaD2wBaoGfGWM+6K4dTbCUUkebgN/PyhfuRwo/wO+Kxvz/9u47Pq7ySvz/50zRqHdZsrp77wVTYwOhJJQQCJDQ2YQfJHwTSNuQQoBNdklI2XQ2LFmSQAiEngAJhBIgodlg3LtlSbYsq3dNfX5/3CtZltVszWg0o/N+vfTyzK1ndOfK99znec7NmU5q+VJK5qwiIzt+x7qM1p4dm6jb+Hecbg+ZxbMpnr2cxOTYeubSWGprb2fbv/4M3S2kTyqhcMYS0nLGd8GFaAoEgnzw9ksE6veQkpZBwcxl5BbN0ARUKXVMjjvBEpG/wxGVOHt8wxjztL3Mr4Bdxpgf2u89QKoxpkFElgFPAfOMMa39NyIiNwA3AJSWli7bt2/fMX0wpZRSSimllBprgyVYw3ZYN8acOcyGXVhPhFzWZx0v4LVfrxOR3cBM4KjmKWPMr4Ffg9WCNVw8SimllFJKKTVeheOBIGcC24yxR4UCIpInIk779VRgBnD8D4NRSimllFJKqRgQjpJLlwMP95t2GnCXiPiBEHCjMaYxDPtSSimllFJKqXErbGXaw0FE6oDxNggrF6iPdhBqzOjxnjj0WE8serwnDj3WE4ce64llPB7vMmPMURWrxlWCNR6JyNqBBq+p+KTHe+LQYz2x6PGeOPRYTxx6rCeWWDre4RiDpZRSSimllFIKTbCUUkoppZRSKmw0wRrer6MdgBpTerwnDj3WE4se74lDj/XEocd6YomZ461jsJRSSimllFIqTLQFSymllFJKKaXCRBMspZRSSimllAoTTbCGICLniMh2EdklIl+LdjwqfESkREReEZEtIrJZRL5gT88WkRdFZKf9b1a0Y1XhISJOEXlfRP5iv58iIm/b5/cjIpIQ7RhVeIhIpog8JiLbRGSriJyo53Z8EpFb7b/hm0TkYRFJ1HM7fojIb0TkkIhs6jNtwHNZLD+1j/sGEVkavcjVsRrkWN9j/x3fICJPikhmn3m32cd6u4icHZWgh6AJ1iBExAn8AjgXmAt8UkTmRjcqFUYB4EvGmLnAKuBz9vH9GvCSMWYG8JL9XsWHLwBb+7z/HvBjY8x0oAn4t6hEpSLhJ8BfjTGzgUVYx13P7TgjIkXA54Hlxpj5gBO4HD2348kDwDn9pg12Lp8LzLB/bgB+NUYxqvB4gKOP9YvAfGPMQmAHcBuAfb12OTDPXueX9nX7uKEJ1uBWAruMMXuMMT7gj8CFUY5JhYkxpsYY8579ug3rAqwI6xj/1l7st8DHohKgCisRKQY+Cvyv/V6A04HH7EX0WMcJEckATgPuBzDG+Iwxzei5Ha9cQJKIuIBkoAY9t+OGMeY1oLHf5MHO5QuB3xnLW0CmiEwek0DVqA10rI0xLxhjAvbbt4Bi+/WFwB+NMV5jzF5gF9Z1+7ihCdbgioCqPu+r7WkqzohIObAEeBvIN8bU2LMOAvnRikuF1X8DXwVC9vscoLnPH249v+PHFKAO+D+7S+j/ikgKem7HHWPMfuAHQCVWYtUCrEPP7Xg32Lms123x7Xrgefv1uD/WmmCpCU1EUoHHgVuMMa195xnrGQb6HIMYJyLnAYeMMeuiHYsaEy5gKfArY8wSoIN+3QH13I4P9tibC7GS6kIghaO7GKk4pufyxCAi38Aa2vFQtGMZKU2wBrcfKOnzvtiepuKEiLixkquHjDFP2JNre7oU2P8eilZ8KmxOBi4QkQqsrr6nY43RybS7FYGe3/GkGqg2xrxtv38MK+HSczv+nAnsNcbUGWP8wBNY57ue2/FtsHNZr9vikIhcC5wHXGEOP7x33B9rTbAG9y4ww65GlIA1mO6ZKMekwsQeg3M/sNUY86M+s54BrrFfXwM8PdaxqfAyxtxmjCk2xpRjnccvG2OuAF4BLrEX02MdJ4wxB4EqEZllTzoD2IKe2/GoElglIsn23/SeY63ndnwb7Fx+Brjaria4Cmjp05VQxSAROQere/8FxpjOPrOeAS4XEY+ITMEqbPJONGIcjBxOBlV/IvIRrLEbTuA3xpjvRjciFS4icgrwOrCRw+Nyvo41DutRoBTYB1xqjOk/wFbFKBFZDXzZGHOeiEzFatHKBt4HrjTGeKMYngoTEVmMVdAkAdgDXId1Q1HP7TgjIncCl2F1H3of+DTWWAw9t+OAiDwMrAZygVrg28BTDHAu20n2z7G6iXYC1xlj1kYhbHUcBjnWtwEeoMFe7C1jzI328t/AGpcVwBrm8Xz/bUaTJlhKKaWUUkopFSbaRVAppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppcYJESkXESMirmjHEu9E5FoReSPacYw3InKqiGyPdhxKKRXLNMFSSikV00TkDhHxi0h7n5+vRjuuWGSMed0YMyvc2xWRX4vIdhEJici14d6+UkqNJ3qXVCmlwkREXMaYQLTjmKAeMcZcGe0gIiUOvlsfAI8A34t2IEopFWnagqWUUqMgIhUi8u8isgHoEBGXiKwSkX+JSLOIfCAiq/ss/6qI/JeIvCMirSLytIhkD7Lt60Rkq4i0icgeEfn/+s2/UETW29vZLSLn2NMzROR+EakRkf0i8h0RcQ7zOaaJyMsi0iAi9SLykIhk9pnXKCJL7feFIlLX87lE5AIR2Wx/3ldFZE6/38+XRWSDiLSIyCMiknjsv+ljJyJfs38vbSKyRUQuGmQ5EZEfi8gh+3e5UUTm2/M8IvIDEakUkVoRuVdEkka4/wfs5V+0Y/iHiJT1mf8TEamy97lORE7tM+8OEXlMRB4UkVbgWhFZKSJv2r/nGhH5uYgk9FnHiMhnRWSnvb//sI/dv+x9PNp3+UFiXi0i1SP5fMfCGPMLY8xLQHe4t62UUuONJlhKKTV6nwQ+CmQC+cCzwHeAbODLwOMiktdn+auB64HJQAD46SDbPQScB6QD1wE/7pPkrAR+B3zF3u9pQIW93gP2dqcDS4CzgE8P8xkE+C+gEJgDlAB3ABhjdgP/DjwoIsnA/wG/Nca8KiIzgYeBW4A84Dngz/0u5C8FzgGmAAuBawcMQOQUO3kY7OeUYT5Df7uBU4EM4E47/skDLHcW1u9vpr3spUCDPe9ue/pirN9nEXD7McRwBfAfQC6wHnioz7x37e1mA38A/tQv+bwQeAzr+D4EBIFb7W2dCJwBfLbf/s4GlgGrgK8CvwauxDqe87G+q8fNTpQHOz6/HM22lVIqXmiCpZRSo/dTY0yVMaYL62L2OWPMc8aYkDHmRWAt8JE+y//eGLPJGNMBfAu4dKAWJmPMs8aY3cbyD+AFrIQB4N+A3xhjXrT3s98Ys01E8u193WKM6TDGHAJ+DFw+1Acwxuyyt+U1xtQBPwI+1Gf+fcAu4G2sxPAb9qzLgGftdf3AD4Ak4KR+v58DxphG4M9YScVAMbxhjMkc4meoohSX9rvYLzTG/Mneb8gY8wiwE1g5wLp+IA2YDYgxZqsxpkZEBLgBuNUY02iMaQP+c7jfZT/PGmNeM8Z4sX5nJ4pIif15HzTGNBhjAsaYHwIeoO/4pzeNMU/Z8XcZY9YZY96yl68A/oc+x8j2fWNMqzFmM7AJeMEYs8cY0wI8j5VwHzdjzMIhjk//ZE8ppSYkHYOllFKjV9XndRnwCRE5v880N/DKIMvvs+fn9t+oiJwLfBurBcUBJAMb7dklWK1F/ZXZ26ux8gOw160aYNm++8oHfoKVwKXZ6zT1W+w+4BngBjthAKvFa1/PAsaYkIhUYbX09DjY53WnvU64Pdp/DJaIXA18ESi3J6UywO/ZGPOyiPwc+AVQJiJPYLU8JmL9ztf1+V0KMGR3y356f+/GmHYRacT6/FUi8mWsRLkQMFgtlbkDrWt/nplYie9yOy4XsK7f/mr7vO4a4H3BMcSulFLqOGgLllJKjZ7p87oKq4Wq7539FGPM3X2WKenzuhSrBaW+7wZFxAM8jtUilG+MycRKqHqu9KuAaQPEUgV4gdw++083xswb5jP8p/05Fhhj0rFa4g5nFSKpwH8D9wN3yOFxYwewkrqe5cT+fPuH2d9RxCoR3j7Ez6nDb6V3W2VYCeHNQI79+9vU9zP1ZYz5qTFmGTAXK6H9CtYx6QLm9fldZhhjUo/hY/Uea/t3mA0csD/LV7G6I2bZ8bX0i6/v9wrgV8A2YIZ9jL4+2OeJFLHG2g12fO4dy1iUUmq80gRLKaXC60HgfBE5W0ScIpJoFw4o7rPMlSIy1x7PdBfwmDEm2G87CVhdxuqAgN2adVaf+fcD14nIGSLiEJEiEZltjKnB6kr4QxFJt+dNE5H+Xcn6SwPagRYRKcJKMPr6CbDWGPNprDFmPRfTjwIfteNwA1/CSvD+Ndwvqj+7RHjqED+vH8PmUrASlDqwCoZgjUE6ioisEJET7Pg7sAoxhIwxIawk7cciMsletkhEzu6zrpE+RUwG8BF7bFkC1list4wxVVi/74Adn0tEbsdqwRpKGtAKtIvIbOCmYZYPO2PMvCGOz42DrSciCfb4MgHc9nmh1yBKqbikf9yUUiqM7IvnC7FaF+qwWpS+wpF/b3+PVYjiIFY3tM8PsJ02e/qjWF31PoXVPa9n/jvYhS+wWj7+weGWpKuxErQt9rqPYY2bGsqdwFJ7W88CT/TMEJELsYpU9FzQfxFYKiJXGGO2Y7V2/Qyrxed84HxjjG+Y/UWUMWYL8EPgTaxucguAfw6yeDpWItWE1d2xAbjHnvfvWGPP3hKrmt/fscdJ2WOp2jjcbXMgf8Dq5tmIVXyipxvj34C/AjvsfXYzTDdOrG6Ln7L3eR9W2fNY8QJWa+BJWIU3urAKiyilVNwRY/r3QFBKKRUpIvIq8KAx5n+jHYsaHRG5Eqv74G2DzH8AqDbGfHNMA1NKKRVVWuRCKaWUOg7GmAejHYNSSqnxR7sIKqXUBCHWQ2+1OMEEJyJfH+R78Hy0Y1NKqXigXQSVUkoppZRSKky0BUsppZRSSimlwmRcjcHKzc015eXl0Q5DKaWUUkoppYa0bt26emNMXv/p4yrBKi8vZ+3atdEOQymllFJKKaWGJCL7BpquXQSVUkoppZRSKkw0wVJKKaWUUkqpMNEESyml+vEHQ9EOQSmllFIxalyNwRqI3++nurqa7u7uaIeiYkxiYiLFxcW43e5oh6JiSGNzCy/892dwzPsYl37iU9EORymllFIxZtwnWNXV1aSlpVFeXo6IRDscFSOMMTQ0NFBdXc2UKVOiHY6KITvf/weX8zfY/Df8F16MO8ET7ZCUUkopFUPGfRfB7u5ucnJyNLlSx0REyMnJ0ZZPdcw62xp7X+9+/9XoBaKUUkqpmDTuEyxAkyt1XPR7o46Ht72593XLlr9HLxCllFJKxaSYSLCUUmqsBDqbAWiUDJLqPohuMEoppZSKOZpgjYCI8KUvfan3/Q9+8APuuOOO6AXUx1tvvcUJJ5zA4sWLmTNnTm9cr776Kv/617+Oe7v79u1j6dKlLF68mHnz5nHvvfeGKWKlxjenrw2AvalLKezcHuVolFJKKRVrxn2Ri/HA4/HwxBNPcNttt5Gbmxu27RpjMMbgcBx/nnvNNdfw6KOPsmjRIoLBINu3WxeEr776KqmpqZx00knHtd3Jkyfz5ptv4vF4aG9vZ/78+VxwwQUUFhYed6xKxQJPoA0vCXgLlpPb9gqNB/eRXVAW7bCUUkopFSO0BWsEXC4XN9xwAz/+8Y+PmldXV8fFF1/MihUrWLFiBf/85z8BuOOOO/jBD37Qu9z8+fOpqKigoqKCWbNmcfXVVzN//nyqqqr4yle+wvz581mwYAGPPPIIYCVIq1ev5pJLLmH27NlcccUVGGOO2v+hQ4eYPHkyAE6nk7lz51JRUcG9997Lj3/8YxYvXszrr78+ZJxXXXUVJ554IjNmzOC+++4DICEhAY/Hqp7m9XoJhQZ+LtBPf/pT5s6dy8KFC7n88ssBaGxs5GMf+xgLFy5k1apVbNiwoXdf11xzDaeeeiplZWU88cQTfPWrX2XBggWcc845+P1+AO666y5WrFjB/PnzueGGG4763KFQiPLycpqbm3unzZgxg9ra2qEOo1IjkhBop0OSSS1dCEDNrvXRDUgppZRSMSWmWrDu/PNmthxoDes25xam8+3z5w273Oc+9zkWLlzIV7/61SOmf+ELX+DWW2/llFNOobKykrPPPputW7cOua2dO3fy29/+llWrVvH444+zfv16PvjgA+rr61mxYgWnnXYaAO+//z6bN2+msLCQk08+mX/+85+ccsopR2zr1ltvZdasWaxevZpzzjmHa665hvLycm688UZSU1P58pe/DMCnPvWpQePcsGEDb731Fh0dHSxZsoSPfvSjFBYWUlVVxUc/+lF27drFPffcM2Dr1d13383evXvxeDy9Cc+3v/1tlixZwlNPPcXLL7/M1Vdfzfr16wHYvXs3r7zyClu2bOHEE0/k8ccf5/vf/z4XXXQRzz77LB/72Me4+eabuf322wG46qqr+Mtf/sL555/fu0+Hw8GFF17Ik08+yXXXXcfbb79NWVkZ+fn5wx5HpYbjCXbQKSnkT10IL0HH/i3AhdEOSymllFIxQluwRig9PZ2rr76an/70p0dM//vf/87NN9/M4sWLueCCC2htbaW9vX3IbZWVlbFq1SoA3njjDT75yU/idDrJz8/nQx/6EO+++y4AK1eupLi4GIfDweLFi6moqDhqW7fffjtr167lrLPO4g9/+APnnHPOgPscKs4LL7yQpKQkcnNzWbNmDe+88w4AJSUlbNiwgV27dvHb3/52wBaihQsXcsUVV/Dggw/icrl6P9NVV10FwOmnn05DQwOtrVZifO655+J2u1mwYAHBYLA33gULFvR+vldeeYUTTjiBBQsW8PLLL7N58+aj9nvZZZf1tvb98Y9/5LLLLhvyd67USHmC7XQ6Upg0uZRWkwx1O6IdklJKKaViSEy1YI2kpSmSbrnlFpYuXcp1113XOy0UCvHWW2+RmJh4xLIul+uIbnV9n8eUkpIyov31dNEDq/tfIBAYcLlp06Zx00038ZnPfIa8vDwaGhqOWmawOOHocub93xcWFjJ//nxef/11LrnkkiPmPfvss7z22mv8+c9/5rvf/S4bN24c0WdyOBy43e7efTkcDgKBAN3d3Xz2s59l7dq1lJSUcMcddwz4LKsTTzyRXbt2UVdXx1NPPcU3v/nNIfer1EglBTvocqQgDgcH3KWktO2OdkhKKaWUiiHagnUMsrOzufTSS7n//vt7p5111ln87Gc/633f0xWuvLyc9957D4D33nuPvXv3DrjNU089lUceeYRgMEhdXR2vvfYaK1euHHFMzz77bO8YpZ07d+J0OsnMzCQtLY22trZh4wR4+umn6e7upqGhgVdffZUVK1ZQXV1NV1cXAE1NTbzxxhvMmjXriH2HQiGqqqpYs2YN3/ve92hpaaG9vZ1TTz2Vhx56CLDGkuXm5pKenj6iz9OTTOXm5tLe3s5jjz024HIiwkUXXcQXv/hF5syZQ05Ozoi2r9RwPKFOuh3JALSkTCHfuy/KESmllFIqlmiCdYy+9KUvUV9f3/v+pz/9KWvXrmXhwoXMnTu3t5z5xRdfTGNjI/PmzePnP/85M2fOHHB7F110EQsXLmTRokWcfvrpfP/736egoGDE8fz+979n1qxZLF68mKuuuoqHHnoIp9PJ+eefz5NPPtlb5GKwOMHq5rdmzRpWrVrFt771LQoLC9m6dSsnnHACixYt4kMf+hBf/vKXWbBgAQCf/vSnWbt2LcFgkCuvvJIFCxawZMkSPv/5z5OZmckdd9zBunXrWLhwIV/72tf47W9/O+LPk5mZyWc+8xnmz5/P2WefzYoVK3rn3XvvvUfEfdlll/Hggw9q90AVVi7jJ+CwWlqD2TPIpZm25vph1lJKKaWUsshAlemiZfny5Wbt2rVHTNu6dStz5syJUkTx74477jiiGEa80e+POla1d01nd/ISTvryn3jvxT+w9J83seP8J5m57PRoh6aUUkqpcURE1hljlvefPuoWLBEpEZFXRGSLiGwWkS/Y0+8Qkf0ist7++cho96WUUpHmMgFCDjcA2WXzAWiv3hLNkJRSSikVQ8JR5CIAfMkY856IpAHrRORFe96PjTE/GGJdFWV33HFHtENQalxxmgDGTrAKymbhN04CdbuiHJVSSimlYsWoEyxjTA1QY79uE5GtQNFot6uUUtHgJgBOK8FK9HiodEwioXXgIjVKKaWUUv2FtciFiJQDS4C37Uk3i8gGEfmNiGQNss4NIrJWRNbW1dWFMxyllDpmLg63YAE0JBST3lkVxYiUUkopFUvClmCJSCrwOHCLMaYV+BUwDViM1cL1w4HWM8b82hiz3BizPC8vL1zhKKXUcXERwDgTet93pJaRH9gP46ggUKR1dLTzztuvM56KICmllFKxIiwJloi4sZKrh4wxTwAYY2qNMUFjTAi4Dxj5w52UUioaQkGcGMR5uAUrlDWVFLrpbDwQxcDG1tu/+xYrnz+Pd15/IdqhjJlQyGhCqZRSKizCUUVQgPuBrcaYH/WZPrnPYhcBm0a7r2h66qmnEBG2bds26DIVFRXMnz8/bPvcvn07q1evZvHixcyZM4cbbrgBsB4S/Nxzzx33dru7u1m5ciWLFi1i3rx5fPvb3w5XyErFtqDP+rdPC5Zn0nQAavdtjUZEUZHQaP2dS1r7qyhHMjaMMdz733fwh5/cBqFQtMMZE6+/8lee/cG/0dHVHe1QxsS2A4388+4LqFr/crRDUUpNAOFowToZuAo4vV9J9u+LyEYR2QCsAW4Nw76i5uGHH+aUU07h4YcfHnB+IBAY9T6CweAR7z//+c9z6623sn79erZu3cr/+3//Dxh9guXxeHj55Zf54IMPWL9+PX/961956623RhW7UvEgGOhJsA63YGWVzAag/cDgN1fiTaavFoDctolRnr6yroXPtv43VzT/iv2b34h2OGMi9PoP+Wj7Y+x6+nvRDmVMvPn6S5zc/Q+Knro42qEopSaAUSdYxpg3jDFijFlojFls/zxnjLnKGLPAnn6BXW0wJrW3t/PGG29w//3388c//rF3+quvvsqpp57KBRdcwNy5cwEr0briiiuYM2cOl1xyCZ2dnQC89NJLLFmyhAULFnD99dfj9XoBKC8v59///d9ZunQpf/rTn47Yb01NDcXFxb3vFyxYgM/n4/bbb+eRRx5h8eLFPPLII3R0dHD99dezcuVKlixZwtNPPw3AAw88wIUXXsjq1auZMWMGd955JwAiQmpqKgB+vx+/34/VEHmkP/3pT8yfP59FixZx2mmnAVbr13XXXceCBQtYsmQJr7zySu++Pvaxj/HhD3+Y8vJyfv7zn/OjH/2IJUuWsGrVKhobGwG47777WLFiBYsWLeLiiy/u/f30tWrVKjZv3tz7fvXq1fR/ALVSkeD3Weel9GnBKiibaZVqPzQxSrWHgkGmUA1AoanF294Y5Ygi72D14SqRDdv/GcVIxkYoZHAHrL+9qVWvRDmaseE5YNXechCCrqYoR6OUinfheA7W2Hn+a3BwY3i3WbAAzr17yEWefvppzjnnHGbOnElOTg7r1q1j2bJlALz33nts2rSJKVOmUFFRwfbt27n//vs5+eSTuf766/nlL3/JzTffzLXXXstLL73EzJkzufrqq/nVr37FLbfcAkBOTg7vvffeUfu99dZbOf300znppJM466yzuO6668jMzOSuu+5i7dq1/PznPwfg61//Oqeffjq/+c1vaG5uZuXKlZx55pkAvPPOO2zatInk5GRWrFjBRz/6UZYvX04wGGTZsmXs2rWLz33uc5xwwglH7f+uu+7ib3/7G0VFRTQ3NwPwi1/8AhFh48aNbNu2jbPOOosdO3YAsGnTJt5//326u7uZPn063/ve93j//fe59dZb+d3vfsctt9zCxz/+cT7zmc8A8M1vfpP777+/t2Wux2WXXcajjz7KnXfeSU1NDTU1NSxfftRDspUKO5+3m0Q4YgxWenISFTIJV8vEKNXe2VpPqnhZ61rG8sA6Du1cS8mSs6IdVkQ11Vb0vnYdiP+bOTWt3ZSLNaawoHO71S3SEdaiwuPO5I7DrbHNFR+QOWd19IIZQ12+IJWNncwqSIt2KEpNKPH9FzVMHn74YS6//HIALr/88iO6Ca5cuZIpU6b0vi8pKeHkk08G4Morr+SNN95g+/btTJkyhZkzZwJwzTXX8Nprr/Wuc9lllw243+uuu46tW7fyiU98gldffZVVq1b1tnz19cILL3D33XezePFiVq9eTXd3N5WVlQB8+MMfJicnh6SkJD7+8Y/zxhtW9xen08n69euprq7uTcL6O/nkk7n22mu57777ersvvvHGG1x55ZUAzJ49m7Kyst4Ea82aNaSlpZGXl0dGRgbnn38+YLW8VVRUAFYSduqpp7JgwQIeeuihI1qqelx66aU89thjADz66KNccsklA/5+lAq3gN/qIijuhCOm1ycUkzZBSrV3t1l395tyFgPQXBX/Y8/8Ddbfy2pHIRltO6McTeQ1NjZRKI0ckEmkmE5CjfF/8yAx0MYhyQGgce/7UY5m7Hz9yY088bOvUP/sf0Q7FKUmlNhqwRqmpSkSGhsbefnll9m4cSMiQjAYRES45557AEhJSTli+f5d7Qbqetdf/230VVhYyPXXX8/111/P/PnzB0yEjDE8/vjjzJo164jpb7/99rDxZGZmsmbNGv76178eVaDj3nvv5e233+bZZ59l2bJlrFu3bsjP4fF4el87HI7e9w6Ho3eM2rXXXstTTz3FokWLeOCBB3j11VeP2k5RURE5OTls2LCBRx55hHvvvXfI/SoVLgG/dQPD0acFC6A9pZS5TRutUu0jOKdjWXd7MwBJhXPxHnThnQBdIz2dBwHYl76M5c1/jfsWHX/zfgB2Z55MYdOT1FdsYFLutChHFTnBkMET6qQ5bQoJ7d0ED8R0za0RM8bwl/f3sTPxYXgXOP1mSBrwkaRKqTCL3/9BwuSxxx7jqquuYt++fVRUVFBVVcWUKVN4/fXXB1y+srKSN998E4A//OEPnHLKKcyaNYuKigp27bIuVH7/+9/zoQ99aNh9//Wvf8Xv9wNw8OBBGhoaKCoqIi0tjba2tt7lzj77bH72s5/1lhh+//3Dd+defPFFGhsb6erq4qmnnuLkk0+mrq6ut8tfV1cXL774IrNnzz5q/7t37+aEE07grrvuIi8vj6qqKk499VQeeughAHbs2EFlZeVRid1Q2tramDx5Mn6/v3c7A7nsssv4/ve/T0tLCwsXLhzx9pUajd4WLJfniOnBzKkk042vOWaHko6Yt6MVgKT0HGoc+biaK6Ib0BhI6q6lnWT8kxbiwU9bXUW0Q4ooX0czAI7ipQA0Vm2PYjSR19TpI5UuElIy2EMR7ubd0Q5pTDR2+Fjh6FOcZ/vz0QtGqQlGE6xhPPzww1x00UVHTLv44osHrSY4a9YsfvGLXzBnzhyampq46aabSExM5P/+7//4xCc+wYIFC3A4HNx4443D7vuFF17oLTJx9tlnc88991BQUMCaNWvYsmVLb5GLb33rW/j9fhYuXMi8efP41re+1buNlStXcvHFF7Nw4UIuvvhili9fTk1NDWvWrGHhwoWsWLGCD3/4w5x33nkA3H777TzzzDMAfOUrX2HBggXMnz+fk046iUWLFvHZz36WUCjEggULuOyyy3jggQeOaLkazn/8x39wwgkncPLJJx+R1D3zzDPcfvvtve8vueQS/vjHP3LppZeOeNtKjVZvC5bryC6CPaXa6ysnQHc5++LblZxBo6eYjK747xrp8rXRLqkk5c8AoH5ffFdPDHS1ADCpZBbNJoVgfXy3UjZ2+EiRbhyJaTR5ikjrqo52SGNif3MXU+XwTSFT80EUo1FqYomtLoJR0FMlr6/Pf/7zva9Xr17d+7q8vHzQ52SdccYZR7Qs9egZmzSQH/3oR/zoRz86anp2djbvvvvuEdP+53/+Z8BtFBcX89RTTx0xbeHChQPGAlZhix5PPPHEUfN7ksX+rr32Wq699tre930/V995N910EzfddNNR619wwQVccMEFve/z8/PDUvpeqWMRsKsIOvslWOnFs+FtaNm/jcJFZ0QjtDHTc/GdkJJJQ2oZc+rXx33XSFewE68jiYziOQB0HNgR5YgiK9hltVLmZOdQLQV4WvZFOaLIaurwkU8XHYlpeNMyyWp4FQJecI385mAsausOkI3V22VjqJxZBzaRMMw6Sqnw0BYspZSy9TwHy9GvyMXk0hn4jBP/BBiPFOy2Lr4TUzMJZU0lCS/tDfF9x98V7MTnTKawdApdJiHuW3RCdhKdmJpJg6eY9Dhvpezw+kmhG0dSOmSV48Dgq4//wh5t3X6ypRWvK42NoSk4Dm2ybpYopSJOE6w4du211/aWcldKDS9oj8Hq34KVm57Mfibhat4TjbDGVKirJ8HKONw1cl98P2Q5IdiF35lEepKHKinA3VIR7ZAiy2u1aiSlZdGZUkpusBZ6HrIdh7o7O3BJCFdiGomTrGIejdXx3UoJVgtWjrQSSsphlynG5W2Gzvh/rp1S40FMJFhG77io46DfG3WsQv6BuwiKCHUJxaR2xPedfgDxthIwDlJS0sgstgrYtNXE98WoJ9RF0JkMWCX5M7oqoxxRhNkJlnjSCGVNxUmIQGNFdGOKIJ/dYudKTierZGJ8p+FwF0FXWh7VjgJrYmP83yRSajwY9wlWYmIiDQ0NerGsjokxhoaGBhITE6MdioohAfsuvjPh6LEZbSml5Pn3x38XG18bbSST4nFTUDoDv3ESqIvvLnMe00XQbT0uoyO1jEmBGggFoxxV5Dh8rXSTAK6E3lbKeK4k6O+0Ekp3cgZFhaV0GA/+uvjvItjuDZAtrThT8whl2M/r1ARLqTEx7otcFBcXU11dTV1dXbRDUTEmMTGR4uLiaIehYkjI7iLoch09FDyYOYWk5m6CrTU4MwrHOrQx4/C10UESWQ4hIyWJSsnFFedFEJJMNyG31YIVypyCuzGAv6kKd055dAOLEKe/nU5JJhHIKLJbdA5sZ9Ky86MbWIT0jCtMSM4gOT2RHeTjjPduoFhjsHKlDUdqLkn5Uwm1C46m+E8slRoPxn2C5Xa7mTJlSrTDUEpNACG7Bcs1QAtWQt4MqICGyq1MWhC/CZbT30GXJPW+r3cXkdkZv10j/cEQyXSDOxUAT95U2AMN1TsoiNMEy+1vp0ushLKwqIR2k4i/Pn5bNkLddgtWUhqI0OCeTFlnfBduAWjr8pMp7ZCcQ5E7iwO7cihs2D3+uy4pFQf0PFNKKVsoaHcRdB+dYKUXWc9ta6mO365UAM5AFz7H4QSrPbmYXN+BKEYUWR1dXpLFCx6ri2BG0UwAWuO4VLs70E630/q8BRlJVDMprlt0jJ1gkZAGQHtKCTn+A3Hf3beruws3AfCkUZ6TTEUoH3/dxHjIslLRpgmWUkrZTG8XQfdR8yaXTcdnnHgP7RzrsMaUK9iF33E4wQxklJFOO8GOpihGFTmdne0AODxWC1ZByTT8xomvLn5bdBJCnfjtoh5Oh1DnLiSlI35bdIzPOsZ4rAQrlFlOIj5CrQejGFXk9TzTDk86ZTkpVJp87SKo1BiJeIIlIueIyHYR2SUiX4v0/pRS6nj1tGC5PUcXR8nPSKGa/Lgv1e4MdhNwHm7BcuX0lLWOz5a7rnbrIrQnwcrPSGE/eTiaK6IYVWQlBLsI2AkWWK2UOf6auG3Rkd4EyzrG7typADTuj8/vdI9QV0/LXSrluclUmHzc3kboao5qXEpNBBFNsETECfwCOBeYC3xSROZGcp9KKXW8TMAPgHuALoIOh3DIXURKR3yX8E4IdR2RYKVOngFAU5w+N8jbYZfwTrQuvh0O4ZBrMslx3KLj6VPUAyCYXoYHH6YtPlt0nD0JVoJ1jNMLrW6gzXH6ne5h7HL8eNLIT0tkv2Oy9V5bsZSKuEi3YK0Edhlj9hhjfMAfgQsjvE+llDouxm7BcrmPriIIdql2X3yXaveYbkKuwwlWnv3coO5D8Vmq3WuX8HYlpfVOa08qJse3P1ohRVxivwTLlWsVkmqric9j7PQfmWAVlM4gaARvnH6ne/UmWKk4HEIgo8x636gJllKRFukEqwjoW36q2p7WS0RuEJG1IrJWS7ErpaJJAt0AJCQmDTg/mDmFRLyEWuK36EOC8RJyHb74LpiUQ71JxzRVRC+oCPJ19qkwZ/NnlJFm2jGd8TfuLBAMkYQX40rpnZbW00q5Pz7HF7oCHXRLEjisS57J2ekcIBea4/vxAw5/h/XCHnvmzrW6+xKn57JS40nUi1wYY35tjFlujFmel5cX7XCUUhNZ0EfIyIDPwQJw5fVciMbv2I0k0w3uwwmm2+ngoHMyiW3x2TUyYFeY86Rk9E5z5lhjdFrjsEWnoztAMt1IwuEkOq94OiEjcdtK6Q524u0z5szldHDIOZnk9vhNsIIhg6u35c5KsCbn5VBvMjDagqVUxEU6wdoPlPR5X2xPU0qp8Sfow4cLcQz8pzHdfihrc/W2sYxqzJiAD7cEISHliOnNicVkeeNzTFKwN8E63IKVWjAdgMaq+DvO7V2duCSEw3P4GJfkZXGAnLi98PYEO/A5ko+Y1ppcQrY3fi9HOnwBUqTLemO3YJXlpLDPTMJXr6XalYq0SCdY7wIzRGSKiCQAlwPPRHifSil1XCTow8fRJdp7TC6Zjte48NXG5+D4LrtkufRLsHxppeSG6sF+EHM8CXZbnzm5TwtWTolVBKHrUPxdiHZ1tAKHqyYCJCU4OejIx9Menw+U9oQ68btSj5jmTy8jw7Ri4rSiXlt3gFR6Eizrs5fnpLDP5OsYLKXGQEQTLGNMALgZ+BuwFXjUGLM5kvtUSqnjJUEvfhkiwcpKoZpJcfssma4OqzXH6TlyDJojewoODK0H4y/hMD5rnEpiSnrvtOL8SdSZ9Lhs0ek5xj1VE3u0eIrI6I6/Fp1QyJBkugi4j7xp4MixCnu01sTnuLO2bj+p0o1BwP7sZTnJVJlJJHTUxOXNEqXGk4iPwTLGPGeMmWmMmWaM+W6k96eUUsfLEfTiH6IFy+V0UOsqIjVOS7UfTrCOvPhOsrvM1VfGX5c54+1ptevfolNAQhyOO/N2Wi1Y/RMsb1op2aFG8HVGI6yI6fIHSaGbUL8EK3Wy1UrZWBWf4ynb7RasoCu5t7hHYWYS1eQjGGiOv++2UuNJ1ItcKKXUeCFBH34ZuMBFj7bkUquEdyg0RlGNne6ekuWeIy9Gc0pmA9B+MP6KIIivAz8u6FfYpMlTREZ3/I0766mamJB05DGW7HJrfkN8PUi7wxcglU5CCWlHTM+1Hz/QVRt/32mwugim0EWoz40Dp0PoTrNLtcdpK7xS44UmWEopZXOEfASG6CII4LdLtZu2+CvV7uuyusu5k45s3SgqKqPTeAjG2cU3gCPQQReJR03vTi0hJxh/48789jH2JKcfMT1xklXCu6EqvsYXdniDpEj3UYVbigusbqChOPxOA7R5A6RKV28FwR49FTK1VLtSkaUJllJK2UaSYLnzrO5yzXFYqt3X1dO60a+LoMfFAcnH3Rp/Za0d/k68jgGee5Y1FSchvA0VYx5TJAXsLpF9qyYCZBVbXebirZWywxsglW7Ec+TnTXQ7OeiYTGJb/H2nwR6DRTfSr7tv1qQiOo0H0xifiaVS44UmWEopZXOGfAQdQ3cRzCiZA0BTHI5H8tsJlic57ah5TZ4i0rvir8ucOzhwgpWYb93pj7cWnZ7nfiUmHXmMCycX0WaS8NfHV9exrq4uPOLHkTjAdzqxOC4Le4BdRVC6cCQd2VJZnptKpZmEry7+CtYoNZ5ogqWUUjZXyEdwmBas4tJpeI2L7tr4qz420EN3e3SmljApUAPGjHVYEeUKdOIbIMHKtJ951hZnVeZCg7Rg5aUlUs0kXC3x1aLT3dECgDMx/ah53rQyckL14O8e67AirqfIRf/EsiwnmUoziWCctcwqNd5ogqWUUjan8RMYpgWrMCuVKvJxNMXfHeCei+/klKMvRk1mOYn46GqKr7FnCaEuAq7ko6ZPLiqn27jxx9ud/p6qiZ4jj7GI0OAuJLUzvp6F5bOrJrqTj/5OYz9+oDMOn3fW1u0nzdF91HEuy0mh0kyyKmTG2c0SpcYTTbCUUsrmCvkJDZNgORxCXUIxKXFYqt3YLVhJaUe3YHnyrbFndfviq2tkYqiLgPPoBCs3zUM1+TjjbdyZz0qw8BzdZa49pYRcf01cVcgM9JSlHyDBSsq3CnvUV8bfeMo2r/2g4YR+BWsyk6iiAFewC9proxSdUvFPEyyllLI5jY+Qc+gEC6ArtYxJ/gNxdSEKgK+DkBHcA4xXySycAUDrgfgak5RoOgm6U4+aLiLUJxSS2hFfLTpOXzteEsB5dFfYQOZUEvBjWuLnM/u7rC6CnuSjbxrk2OMpOw7GVzdQgLYuPyl0HZVIJ7gcdKSUWG/i8EHaSo0XmmAppZTNbYZvwQIw2VPx4KO7KX4uRAHE306nJILIUfMml80kaARvXfxUHwsEQ6TSiUk4OqEE6Oxp0YmjrlROfwddMkDVRMCd3/Pw3a1jGVJEhYYYV1hUVEybSSJYH39dBLu7O3ERBM8ANw+yyq0XWqpdqYjRBEsppWxu/JgRtGAlFVgXoocq4udCFMDh76B7gGdCAWSmpXJQcnE2x89d73a7G5UZoAACAFnlJNGNr+Xg2AYWQa5AO15HyoDzsoutFp3meEqw7DFn7qSjj3F6UgL74/TxA8Euq2sknqM/d8qkqQQRLdWuVARpgqWUUrYE/BinZ9jlcktnA9BcHV/jkZy+DrodR49H6nEooYS0joqxCyjC2trb8UgAGaBLJICnwKokeGjvprEMK6LcgQ58AxT1ACguLafdJOKvjZ9uoMZrtWAN1JID0JhQRFocPn4g2G0nWAlHf+7ivAxqTA6+OGqNVmq80QRLKaVsbuPHuIZPsErKZ+I1bvyH4uuhrK5gB94BCj70aE+dwmR/Vdx0metsawbANUgLVmbJPABaqreMVUgR5wl24ncN3IJVkJFEBYW4muOny5z0JliDdANNLSUvcBCCgTGMKvJ6CtYMlFiW56SwL5RPoD6+/n4pNZ5ogqWUUoAxhgT8MJIugh43BxwFuFvi6w6wK9A5YEW9HiZnJsl001YXHxUUu9oaAXAmZw44v7h8Bl0mgWBt/FSZ85hOQgMU9QC7sIenhPSO+Oky5/B1WC8GGWcXypqKmwC+xvj4TgOEQganz27BSsw8an55bjIVpgB3HHX3VWq80QRLKaUAv9+PUwyMoIsgQFNiMRld8VXkwhPqJDhI6wZAcqHVZa5278axCimifPZDaBMGqDAHkJHsoVIKccdJi063P0iK6SQ0QLexHp1p5eQGayHgHcPIIscVaMOLB5yuAecn5Fvf6YZ9m8cyrIhq8wbIwE4sk7KOml+clUwFBST4W6CzcYyjU2piGFWCJSL3iMg2EdkgIk+KSKY9vVxEukRkvf1zb1iiVUqpCPF2WxckMoIuggDd6eXkB2oIBYORDGtMJYa6CLoHT7ByyhcA0B4nXeZ6EixPauagy9QnlpHVFR8tOq1dflKle9DWHABypuPA4I2T7q9uXwsdzsE/b2axNZ6y7UD8jKds7fKTKfbzzgZIsBLdTlqTSq03WuhCqYgYbQvWi8B8Y8xCYAdwW595u40xi+2fG0e5H6WUiihvVxcADvfIEixnznQSxU/d/vi4QAmGDMl0YYZo3SgumUK7SSRYFx/PDQp0NgOQOESC1ZU2hbxgLfi7xyaoCGrt9pNKF47EwY9xymSrRae+Mj6SaE+glW7XIFUigcLiUqtUe118JJQALV1+Mhk8wQIIZk21XjTER+usUuPNqBIsY8wLxpiekaFvAcWjD0kppcae127NkMFKdveTWmSVtD5UER8V5trtizIzyAUZgNvlpNpZTFJLfFyU9VRaS0kf/DNL3gychGg/GPuV9Vrb2kkSH47k7EGXyS2bC0D7/vho0UkOtuJzD9wFFCAvLZF9TMbdHB83SuBwC1bIkQDugZ95ljhpGkEc0Bgf57JS4004x2BdDzzf5/0UEXlfRP4hIqcOtpKI3CAia0VkbV1dXRjDUUqpkevusC62nYOU7O4vf5rVXa5zf3zc6W9rbcItwUHvePdoTiojpzs+CgKE7ARrsDFYAMmFViJdHwel2rtarf9jnam5gy5TWlhAncmIi1bKYMiQGmrHnzD48e0p7JHRGR/faTjcghVMzBzwoeEAJXmZHAjl4DsU+8dZqfFo2ARLRP4uIpsG+LmwzzLfAALAQ/akGqDUGLME+CLwBxEZ8LawMebXxpjlxpjleXl5o/9ESil1HPx2dzFn0uAXY33lTCqmlRSoj48LlI4W6+LbkZIz5HLezGnkmzqC3e1jEVZEObqsAf4yRFI5acp8ADoOxP7Dd312gpWQNniClZbopspRRGJL7FeYa+nykyEdmAEq6fXVmVZOTpx0AwWrK2imdEDS4C2VZTkp7DUFBOKoa6RS48mwCZYx5kxjzPwBfp4GEJFrgfOAK4yxHo5ijPEaYxrs1+uA3cDMiH0KpZQaJX+X9dyYhOSRdREUh4MDrhJS2+Kji423tR4AV+rgF2UAbrvqWm0cdI10djXQImmDVpgDKMnP44DJhobYT6QDbdYxTswY+mZmU1IZOd2xX9ijudNHJu1I8tCtsr2FPeIk2WjqtLoIDtUVtLdUe8veuHmunVLjyWirCJ4DfBW4wBjT2Wd6nog47ddTgRlA/HRwVkrFnWCXNQbLnTKyFiyA1tSp5Pvio2uRz7749gzRugGQUWKN0WnaF/tdIz3eRtqdmUMuk+BycMBZTEpr7LfohDoaAEjOnDTkct6MqWSY2C/h3dzaNuyYM4CUydb937o4+E4D1LV5yZZ2nCmDf+7SbDvB8rdBZ8MYRqfUxDDaMVg/B9KAF/uVYz8N2CAi64HHgBuNMbH9l1opFdeCXdZ4nMQhxuP0F8ieTi7NtDXXRyqsMRNoty6yEtOHbt0onDKPkBG8B2O/CEKSv5ku9zCtG0BLSjl53sqYv9Nv7AtpT9rQx9g5yWqlbInxcvyddpdId+rQxzivt7BHfDxQuq7NS740Q2r+oMskJ7hoTiqx3mglQaXCbrRVBKcbY0r6l2M3xjxujJlnT1tqjPlzeMJVSqnIMF6ri+BQz0TqL3GyVQDh4O4NkQhpTPnbrSQxI2fwizKArMwMDkgezsbY706VFmrC6xm6dQPAnzmdFDoJtR4cg6giyG7BYpgWnfRiK+FojPGH73qbawHwpA/9nS4vLqTOpBOMk/GULW1tZNAGaZOHXK63VLtWElQq7MJZRVAppWJWqNtKsFLTRt6ClVNmFUBoqYrtC1GAUIfVySAlY+guggB1CaWkd1REOKLI8gdDZJpWgolDF/UASCiwWnQaKmP7OEt3Ix2SDE73kMsVls/Ca1x018R2YQ9f434AUvNKhlwuOcHF/jgp7AEQaq2xXqQPnWAlTZpKAIe2YCkVAZpgKaUUVoLVYTwkehJGvE7hlNn4jIvgodjvWuTqrKWZtGEvvgHa06ZQEKiGUGgMIouMprYusmiHlOETykx73FlzjCdYyd11tLqG/7zFOWnsowBnjLdsBFsOAJCcM/wjOpuTSsnyVkU6pDHhbLdbWtMKhlyuJDeD6lAegfrYb41WarzRBEsppQC8bXRK8jGt4nYnsN9ZSGJzbF+IAiR319LoGtmjMkzODJLw0loXu5XmGmqrcYjBOUz3MYDi8ul0Gg++2thOpLMCh2jzDH3RDeB0CLXuUtI6YrtFR9oPEkKQYRINAF/GFLJDTZjuljGILHLauv2k+uxniqYVDrlseU4KFaYA/yFNsJQKN02wlFIKcPjb8TqOLcECaEwqI6e7IvwBjbF0by0dI7j4BkgunA3AoYrYbdFprrEuKlPzpw27bF5aEpUU4G6O3WK4Xb4g+aYOf+rQ3cZ6tKdNIc9/AIL+CEcWOZ6uWlodmSNqlXXlzQCguTq2k+iqxi4KxK4pNkwXwbKcZPaaAtwte2K+gItS440mWEopBXj8LXQ50455ve6M6RQEDxLwdkUgqrERDBlyQ/UjvvjOKe2puha7Y3S6DlUAkF00Y9hlRYR6TwnpnbHbYre/oZk8acGROfR4pB6hnOm4COKvj93W2WTvIdoSRtYqm1ZsFaxpiPHCHpWNnUyVAwQSs2GIB2iDlWBVmAJcgU5oPzRGESo1MWiCpZRSQFqgkY6E4cen9OeaNAuXhKitiN1k42BdPRnSgTNz+LEqAEUlU+k0HoIx/GBW01QBQFr+lBEt35k2ldzAQQj4IhhV5NTvt1rfEnPKRrR8kl0hsz5GWym7/UHyAzV4U4pGtPzk8tmEjNB5cEeEI4usqsZOpjlqIHfmsMumJbpp8NjnfIyPt1NqvNEESymlgKxQI97EY0+w0kutSoIN+zaFO6QxU1dlXVQm5ZaPaPkEt9MaexbDVdfcbVU0SSYkjLBbaM40XIToitHxKq37rWOcWTh9RMvnllvf67bq2EywqutbKZVDBLOHb6EEKMzN5gA5SIxX1NtR28Z0Rw2uScMnWADBTLtUe4x/bqXGG02wlFITXtDvJYs2AkmTjnndwqkLAPDGcEnrzv3WRXR6ybwRr9OUWEpWd2WkQoq4jM6Kw3fvRyDFHndWF6MtOsFaK+7M8oUjWr68qIBak0moLjZbdGr2bsEtwd6WuOE4HMIhdzEp7RWRDSzCqqoryaFlRC1YAIl5ZQRwaguWUmGmCZZSasKrr60GwJkxsiIPfWVkZnKQ3Jh+8G7o0DaCRnpbLUbCmzGF/OBBQn5vBCOLjPZuH1ODFXRmjeziGyC33Bp31nYgNosgJDbtoMmRhYygLD1AeqKbKkcRiS2xWdijsXILAJPsGyAj0ZZSxiRfVcwWfOj2B8msf896U7xiROuU5KRTGZpEKIbH2ik1HmmCpZSa8BoPWs+/Sc4euqzxYOoTCknurA5nSGPK3bCdWudkXIkpI17HkTcTpxjqq2Iv4di7aytp0oWrcOQX32VFRdSbdEIxOO4sEAyR17mbpuSpx7ReY1I5Od37YjLhcNauJ4iDxMK5I14nmDWNVDrxtcZmwYf39jWxRLYTcrhh8uIRrVOak8JeU4A/Br/XSo1nmmAppSa89norwUrPPb4EqyO5hFz/gXCGNGaCIUNp11Ya02cf03ppRdby9fu2RCKsiKrf/iYAeTOWj3idRLeT/Y5CEltjr0Vne1Uts9hHoHDZMa3nzZxGmmmHjvoIRRYZxhjymjdwwDMNEkZ+0yCxwOpWF6uPH3hpay1nONdjileCO3FE65RmJ7PP5ONq3huTibRS45UmWEqpCS9od4/JLjm2JKNHIKOMXJrxdrWFM6wxUblnG5OlAX/xqmNar2CKNV6rsyb2WrCk4g06SCJvxgnHtF5zchk5MTjurHrja7glSPbc1ce0ntsulNC6P7aS6IpDLcwN7aQrf8kxrZdVYrV2NVXF3njKDdXNfLDuDabLfpwLPj7i9XqeheUMdkFbTQQjVGpi0QRLKTXhOZr20EIKaVnHXuQCwJ1rlfo+tC/2ko3K9/4GQP781ce0Xl5ePg0mHWmIra5F/kCQKW3vsi91MThdx7ZuxhSyTROmuyUywUVIaOdLBHCSM/uUY1ovw26lbKjcFomwImbH2hdJky7S5511TOsVT5mJ3zjxH9oZocgiY1tNMw/+6jt8J/Qzgu40mDfyBGtSmof9Dvv5d1pJUKmw0QRLKTXhJbXto9ZVjIgc1/qpBVbp6+b9sXVhBpC0+6/USQ6FM0c2KL6HiHDQXUxyjFVd2/DevyjjIMw8totvAKfdohNLCUdju5e5La+yL2MFkphxTOtOKp2B3zjxxlhp+tCWv+DDRcHic49pvbTkJPZLPu6m2Eo0Nr32FN9338dsRxXOs+6A5OwRrysi+DPsZ8E1xl73V6XGq1ElWCJyh4jsF5H19s9H+sy7TUR2ich2ETl79KEqpVT4GWPI81XRkVp63NvILZ0FQPeh2Lowqzt0kIXda9lfcCY4jv2/g9bkUqvqWgxpfvN3BIyDqaddcczrZhRZVQebKmNnjM47rz9HmdSSuOjiY163KDuNapOLoyl2nndWUdvICe1/Z1/OaeBJPeb16z0lpHfFTjfQQDBE+vY/WW+u/xus+PQxbyM5t5QgDmiJ3UI9So034WjB+rExZrH98xyAiMwFLgfmAecAvxQRZxj2pZRSYdV4sIoCGvDnjbyiXH+5uZNpN0nQXBG+wMbAlud+SaL4yT3t345rfV/GFHJME4EYGXt28NAhVjT+he3Za0jMzD/m9fPKrC5z3THShSwYMqSuu5c2SaHw5E8d8/qJbicHnYUkt++LQHSR8cFf7iVb2sldfeNxrd+ZOoX8wAEIhcIcWWT84911rAm+ScX0a6D02MZR9ijKyeCQycK0xNbNEqXGs0h1EbwQ+KMxxmuM2QvsAlZGaF9KKXXc6ra+BoBn6knHvQ2H00GNswBPW+xcoDQ3NzK/4gG2Ji6heM6xFXvo4cqxyn7XV8XGw2g3Pnon6dJJztlfOa71J+dkctBkI40V4Q0sQv7x9z9zSuAtDs6+FjmO1hyA5qRisrz7Y6LC3L4DB1lZeR+VSbPJmn/sXUABgtnTSMRHZ/34b8XyBoIE//4djAglHz2+7zRAcVYSB0w2gSZtwVIqXMKRYN0sIhtE5DcikmVPKwL6XmlU29OOIiI3iMhaEVlbV1cXhnCUUmrkuvf8C69xUzbv+O7+9mhJLCKrO3YuULb+9gtkmVaSzr3zuLeRVjgDgMbq8V/cY/2bL7Cm7g9szP0IBbNPPK5tuJwODjonk9Q+/i++a+sbmP6vr3DIkcf0C7923NvxppWRYjqgszGM0YVfMGTY9eCtTKKJ1At/CMc5njKxwPpO1+0b/91An3/0Ps4KvMqBuZ/BmVVy3NspykrigMkh1Bw7N4iUGu+GTbBE5O8ismmAnwuBXwHTgMVADfDDYw3AGPNrY8xyY8zyvLy8Y11dKaVGJe3QOna4ZpCZnjaq7XhTiskNHYqJO/3vPPdbTmx6hrWFn6J80YeOezt59tizrtrxPfasct8e8v72OeoduUy7+uej2lZLT4vOONbe5WXXfVdTbGoJXPArJDH9+DeWbbVSjucH0Rpj+OvvvscZnc+xY9q1ZB9jtcS+MoutUu3tB8b3TYPX//UGp2+/k8qk2ZR//K5Rbas4K4n9JhdX+4GY+PulVCwYNsEyxpxpjJk/wM/TxphaY0zQGBMC7uNwN8D9QN/bKcX2NKWUGjdC3k5KfTtpyFo86m1JZglJ+GhtGN/Pkvng9WdY9PaX2OWeyeJrfjCqbeVPmkyLSYFxXAShunIvgQcuIItW/B//DcnpOaPani+tlGzTBL6OMEUYXm0dnbzzkys42fsGOxZ+mcLFHx7V9pLyrRadpv3jM+EwxvDXh/6bc/bezY60Vcz+1PdHtb3Ckil0Gg+h+vE7zu71f/2TWX+7gqDDQ/71D4MrYVTbK85M5oDJwRnyxdxDpZUar0ZbRXByn7cXAZvs188Al4uIR0SmADOAd0azL6WUCrf9W/6FmyCu8uPrMtZXgv0srPrq8Xun/+0nf8acv1/HQedk8m78MwmJyaPansMhHHROJrFtfHaZ2/D2y7h+cwYF5hC15z1AyYJTR71Nhz3urK1m/B3nfZUV7PjxuZze/SI759zM7Iu/OeptZhfPIGSErprxN86uq6ubl37+Oc7ddQd7Upcw/XOPIaNMNjKSE6iUySQ0j7+bBqGQ4dk//YZFf7sYt0NwXfcXPHlTR73d9CQXzS77GYBa6EKpsDi2pywe7fsishgwQAXw/wEYYzaLyKPAFiAAfM4YExzlvpRSKqwatr1OCVCyaPWot5VeYCVYbQd3A6eNenvh1N7axMYHbuHExqfYnLiYkhv+RHrO8T1Uub/WxEImd4+vZKOzq4u3f387p+y/nyZHFk2X/pkpx1nIo7/kgumwGRqqtpFWtigs2xwtYwyv/fn3zF/3TQqkk+0n/Bezzv1sWLZdnJfJAXIIjbNnJG364F0cT3+WM0M72FzwMeZ++teIyxOWbdcllDCja3x1e62qOcT233+ej3Y+T3XidHI/8wSJuWVh2baIEEwrgnasUu1FS8OyXaUmslElWMaYq4aY913gu6PZvlJKRZJ7/ztUUEhZ8fEPEO+RW2Q9bNjXMH5KWhtjWPfSnyh+4+ucYOp5p/BTLL3uv3ElhOdCFMCbXkZ+xz8xwQDiHO09u9ExxvDBa0+R8eq3WGOq2JD1YaZeey+pmblh20dOqVWqvePg+Egqt2/5gLanv8KHvG+zzz2FwCefZta0JWHbfn5aIm+ZAspax8f3uqGhno1/+AYn1/+JbvGw/dSfMu+Ma8K6j87UUnIb/wnBAET5O93p9fPa479kyfYfczrNbJ12HbM/eTfiTgzrflzZJVaC1aqjOZQKh+j+5VBKqWgxhqL2jWxOPYny46w41ldWTh6tJhmax0d3uZ0b36b9L99gufddKh3F7Dj3MVauODPs+3FkT8V9MEh9zR5yi2eGffsjtX3TWlr/8i1WdP+L/ZLP9tX/w8LVl4d9P8WTC2k2KVFv0andX8H2x/+DExqeJihO1s/+Iosu+VrYWnF6OBxCfUIRC7reCut2j1VrRwfvPvlzFu76Jatp5oNJ5zP9k/cwK3vy8Csfo1BWOa7GEP6mSty5o++CdzwCgSCvvfA4ue/ewzlmBxWJs2j42IPMmXP8BTyGkpmdT2elh2R92LBSYaEJllJqQmrYt5kc2ggVh+cRfSLCIWc+no7o3gE+WLWbqse/ybKm5+mQJN6bdSsLP/5VXJ7RjbcaTFLBdNgC9ZXbo5JgVe1YT82f/4NlrS/hFQ/rpn+eBZd8naLEpIjsLznBxV4pICFKLTq1B/ax+8nvsPTQk5xEkC155zLlsrtZnFcasX12pJaR1vw36GqGpMyI7WcgPYnVnF2/5gzq2e2Zg/f8B1k0f/Tj6QaTmDcddkNj1TbyxzjBMsbw3j+ewf363Zwe3EKDI4eKk75H+Rk3gCNSjy6F4uwUDoRyKGvYhztie1Fq4tAESyk1IVVveJUcIG9u+MZLtXoKyPYeCNv2jkVdTSU7n/guSw89TjaGtwsuZ95ld7I0Oz+i+80ttkq1j3WXuX3b36fu2e+wpOUlckhgXdGVzL3kGyyLQItGf02eIqZ3jW2VudoDlXZi9QQnEGB99tkUnn87C6fOi/i+Q5ll0IxVLTIpfN0Ph9LW0cG7T/6CWbt+zRnUscczh4o1P2LaCRcc9zOuRiqjyLpR0Fqzi/yx+bhWd95//AXPG99jWWAjdZLNlsXfZM5HbybHHZmbBX31PAurqKlSEyylwkATLKXUhBTc9xbNJoVpc8M3oLs7pYjcrvXWs2QifBHYo/5gJTuf/E8WH3ycE/DzQdZZFF50FyeWzR6T/ecXT8VnnAQbxqbLXMU2K7Fa2voSeSTwTuEVzLzo66ycNOCz7COiK7WU3IaxGaNTW1PJrif/k6W19vHNPpvJ53+LZVPnR3S/fSXkTYcK6Dy4k+TCyGYcbR0dvPvUL5i189ecTh27PXOoWPNDpo5BYtWjoHgKXuPGVxf5QhehkOGd154l8Y3vsTywgQayeG/u11hw4RfIi1Cr80CKs5LYbHI5oW3jmO1TqXimCZZSakLKbVrP3qR5LHGF78+gySghtb6LjpZ6UjIj++D0+ppKdj31XRYffJyVBHg/8ywKL7idpdPG7sIbICHBTaUjH3dLZLvM7dn6HvXPfZdlrS8xiQTeLbySmRfdxoljmFj1MFlTcDUE8Tbuw5M3LSL7OFRTxc4nv8uS2idYhY8Pss5i8vnfYum0BRHZ31CyimfCu9CyfzvJESow197ZxTtP/ZxZO/6H06ljj2c2e1f/kGmrxi6x6lGQkcxe8nA2V0RsH6GQ4a1/PEfiP7/PqsB6GiWT9fP+nXnnf4GliSkR2+9gijKTeMHk4umuB383hLmIhlITjSZYSqkJp7XpEKWhKqryzwvrdhNyymG39SysSCVYhw5Usvup77Ck9glWEGBd5tkUnPcNls9YGJH9jURTQiFp3ZEZe7Zry3s0PPddlre9RAEJrC26kpkXfZ1VeYUR2d9IJOZPg13WuLOiMCdYtTXV7HzyuyytfZxV+NiQ9WEKzv8WS6dF7/iWFeRx0GThrwt/N9CjEquE2exdcw9TV31szBOrHg6HUOcqpLAj/AUfgiHDmy8/TfKbP+Kk4Ac0SQYb532VOed/gcWJqWHf30hlpyRQ77T/ZrXuh5zI3DhQaqLQBEspNeFUvP8KC4GMGeGtyJWabw2Ibz24G+aP/uHFfdXsr2DvU99l6aEnWUGQ9VlnMfn8b7IyCi0a/XWmljK1YUtYu0bu2LyOxue/y4q2lym0x1jN+vjXOSE3eolVj8wia9xZW80O4CNh2eaB/ZXsevpultU+xkn4+CDrTArO+xZLpkf/WVulOcmsN/kUNYevlbK1o4O1T//yiMRqz+p7mHrix6KWWPXVllxCTtvmsH2nA4Egb770BBlv/4hTQltolEw2z/8Ks8+7hQVRTKx6iAi+1GLoxKqEqgnWmDLGEAgECPh9+AM+gv4AgYCPQCBAMOAj4A8gxg+hEIJBREAcOBwOEKf9XhARxOFEHIJTnIjTgcvpQlwunA4nTqcLp9OJy+VCHC4Qx7g43+KRJlhD2PHeqzSsexICPiTkQ4L2T8iHI+THEfTjMH5cIR8u48dp/AgGByHEWCeBwwSPnkao98d6RjOAYJ82YP9roM977Gl9lhGx15Yj50nPMhDCqjrUd3rf9TlqPXt74uidB/S+t+b17NNxxDrWa2t/IzlfjTl6mmAYYPKI1u+JZOD1j5460PrD7XugmPvueyTL9o+o77pmoAWG3cIwc4cLZLi9DLG+HBXFAMuagecOebxG8Lsb6Hc+5Op9JhaYQwRwMHVxeCuR5RRbz8Lqrq8I2zb3V+1l79P/yfK6J8kjyAfZ51B4/jdZPgbFDUYsq5y0hk5aGw+RnjO6oho7PniT5hfuZln7PyiWBN4rvopZF32dlbmRL14xUpPtMTr+MIzRqazYyb5n7mZ5wzOcgp+NWWcw6bzbx0Vi1cPjclLnLmJ25/pRb6upuYX3n/4Jc/c+wOk0sCdhFrtX38O0cZJY9QhklJLS1oXpqEdSj7812h8I8ubf/kjOup9wamg7dZLDlkXfYPZHbiZ7DMdYjYQj006wtFT7iAUCQVpam2lrOEhnSz1dbY142xoJdjYR7GzC4W3F5WvF7W/FFezEGewmIdSFO+QlIeQlgW4SjY9EvHgkgBuIfEmTIwWNEMJBUHquTJ0E+16p2tON/frwv84+750YcVg/9Ly2/kXs+X23Jc7ebfdeNx5xsdD3f3HrdYsrF8dZd3L67MgWbgoXTbCG0LR7LSuqf4cPNwFx4ceNHxcBcRMQN0FxE3RY//ocyQTF1fuF6vlSWYmJ00o+xNl7t8CI0y656qAndcIc/rfvNEuf93aiZgCxlz28Tsj+Lh7enpieRM6AwV7mcAoH9CZ/AmAMDgxCsHf/Yg5v+4h0r2+sve8Hu3SWAV4dPXuwy2YZ4l0P02/+EUsd1//dx7DSMBcHw23JjCrmIRbsN2ugMM1wx2bIbR/bL7b/0qb/kT32AI7tMAGQyc78s5iTmnEsOxtWbm4B7SYxLM/C2r9nC/v+8j2WNTxLPkE25JxL0QXfYln5nDBEGl4Jk6bDLqjdt/W4EixjDFvefRn/K99ncddbtJPE+yVXM/Oi21iRM34Sqx65aYnsYRKuUYw727tzEweevZsVTc9RiGFTzjkUnn8bi6ZEryvgUDpTS8loeQl8HZBw7GOE6hrq2fjUj1hY+SCnSws7ExfQveYnTF153rhKrHo482ZCNbRUbSZzzupjXt/r9/P28w8y6f2fcZrZTa1jEluW3sHsc24iL2F8jm9Kyi0ldEBwTPAEyxhDc3s3jbWVtNZW0N1Yjb+lBtoP4eisw9PdQEqgkYxgM9m0kCM+cgbZVgAHbaTSISl4Hcn4HR4CrlS6nXkYVyIhVxLGnUTImUTImQhON+J0Iw4nON04nFZLkzhd4HAR6rn5bV8LYgzGhKzXGCRk/dszzYRCmFAQEwpCKIgxQQiF7H/tn97XIeu1CSL2cmK/x1iNBNY8a/pg/zpMCDEBHHjt68kQLnM4ZXP2aWToSd36X7vBkdcGBjCOyexu9UbikEeEJlhDWHnxF5FPfFl/SUqpEXE4HdQ5J+FpqzrubVRsfpuGv32fxS0vkYeTjXkfofT8b7B0jKoCHo+sohkAtB7YCUtXj3i9UDDEe/94moQ3f8xC/wc0k8pbZTcy76IvszzCRUJGQ0SoTyiksOPYE6ytG9+l5YXvsbz1JYpwsCn/Asou+DqLo/iQ5pFw5kyFFgjU78ZVOPIk8MDBA2x/+gcsOfBHTpcOtqWuoOvMf2fGkg9HMNrRSypbAu9Dy+53jynBau3oYN2f76Nk+/2cZiqpcRSwdcV/Mvusz5DvSohcwGFQmJ1OrckitzG+n4UVChnqmluoq9xBW81OfPV7MS3VJHTUkOqtJSdYRz6NZEnoiPUCOGiRDNpcWXQl5VDvmUZNUi6kTMKRmktCajaJaTmkpOeQkplLakY2Lk8qWSJkRemzxpMiIDxPrRwbmjsMQSL4UD+lVHyqS55GacfmY1rHhEJs/tdzBP75UxZ3vU2eSeSdgk8y42P/zrLJ5ZEJNIwKpszDa9xIzfsjWt7n7eb9539D5ob7WR7aRT1ZvDvzi8y/4BZWhblVMVLaMucwuW4doa4WHElDxxwMhnjv1SdwvH0vy3zv0omH9YWXM+1jt7E0P3IPCA6nnNI5sAcO7vqA4mESLGMMmzeuo+mln7C8+a+sER+b0k+h45yvM3veyWMU8ejMnjadGpONr+q9ES1/6NBBNv/5J8ytfJg10kSVq5xtK+5h1pnXMdkZG+lKUVYS+00uGY2x/yysUMhQU9/Awb1baT2wHX/dblyt+8jsqiI/cIDJNJAvh9tNfLhocObR7smnMWUF9amFSGYxibllpOaVkjWplKSMPHIcjkFbq5TqSxMspZQKI1/eQgraX6G9sYbUYR5629raxJbn7yN/+++ZH6qkmTTeKruRORd8kRNHOZZpLCUnp7DBNZPMQ+8OuVzNgSp2P/8zZlc9wgk0U+ko5oNFtzPvIzexYpyNRxmOe+qpuOp+R/XGVyleeeGAy7Q0N7Pxb/dTuO0BVphKGsjkvak3MfP8W1ieVTC2AY/S1Hkn0PpKMh3bXoLTrhpwGX8gwLsvP4l77f+wwvcuXtxszTuHyed8kfnTI1TfPULy0jy85prJvPq1gxa6MMaw4b03aXr916xoeo414mVbyjI6T7uFKSecPy67Pg6lOCuJKpPLvDAWM4m0bn+QvQcOcWjPejqrt+Bq3E5G224K/fsoljr6PsShRdJp8BTTlLmc+swpuCdNI23yTPJKZpKYkc9kvamuwkgTLKWUCqOUKStgL1R88Brz11x21HwTCrFj/es0/vO3zK9/jlXSxW7nNN5d9B0WnH0dq5KjX1HseDRNWsW8A7+htXYf6fllvdN9Ph+b/vE45v2HWNDxLyZLkI1JK6g54Ubmn3YRpQ5nFKM+fjOWn0H3W26a1j1+RIJlQiE2vfMybW/+HwubX+IU6WKPayobFv8X8866npxxOv5mOKV56bzuXsy8g/+AgA/6dHer2L2NfS/dx/QDz3ASh2iUDNZPu4kZH/0Ci4e5yTCe1RedSU7ld+jY8xYp0w5XBa1vbGTrS78ne9sfWBTchg8X23LPJO/DX2b27BVRjHh0ijOT+HuomAs7/gXdrZCYHu2QevkCIfYdOMjB3R/QWb0JR/120tt3UxyoZI7U0zMy1YeLWncpLTmLacyZSWLBbHJLZ5NVPJOMpExio31cxQNNsJRSKozmrDidlpdS8K//E/RJsKp2bWLfaw9RWvU0s8x+vMbN5swPkXbqZ5mx7HSmxdjd7v4KPnQ95uH/Y+8fv0zu+XdyqGIz3ZufZ3rDSyylmUbSWV94GaVn3siCaeOnQt7xKszL4ZW0szip9jm2vvQgPmcSrVtfoeTQyyww++nEw7acM8g86TqmLvtwzLVmDKR93qfI/uBmNv3uVhyzP0L9znfIqvo78/ybKRfD1qSlNC/+GnPWfIrshLGuhRZ+s1dfRutvf0jjY1+kas2d1FVuJ3HP35jf8Tanio9qZzHr536F2WffwMKMSdEOd9RyUz3sdEyx3tRuhrLwPmpiJPzBEJVHJFLbSG/bTXFgHzOkkRn2cj7cHEwoozVrGa2TZpNWMp9JUxeRkDuNEqde2qrok6FKMA+7ssgjwCz7bSbQbIxZLCLlwFZguz3vLWPMjcNtb/ny5Wbt2rXHHY9SSo0H//zZv7Gq/nHem3w5wYCXooa3KDEHANiaMJ/2WRcz8/SrycjKjXKk4fXKL/8faw79rvd9l0lgZ9pKZPEVzD7tYtwJnihGF377KnYjD3yEUg4C4DdOdiUtoGv2Rcw54xqS0uJraLs/EOSfP7yU1V1/7522z1VOQ8nZlJ3xGXKKZwyxdmx65sGfcO7OO3FLEIAGsqjIP4O8Ey6ndMmZcZE493Xlj5/iwZZr4Jy7YdVNEduPLxBiX00th3Z/QIedSGW07aIoUEmhNPQu5yWBgwmltKdPhzwrkcqfthhP3lSI0dZvFV9EZJ0xZvlR00eTYPXbwQ+BFmPMXXaC9RdjzPxj2YYmWEqpeNDU1Mi+ez/BYu9aOkwie5Lm0156BtNPuYS80vFdLW40QsEQG//1F3x1e0jOK2fasjNJjNEujyPV0tLMrrUv4klKYcq8E0jJiO8h8MFgiC3rXoXuFoqmLyK7cGq0Q4q43Ts201a1kUklMymcviiuL+y/+5fNXPHuxymZMgvntc+MalvGGOpaOjhYuZOW/dvwH9qJNO4hpX0fRYFKiqS+d1kvCdQmlNJmJ1KpJfPJn7aExLwpcf37VrEvogmWiAhQCZxujNmpCZZSSkF3dxceTyISZ3e5lVLx6e09Dbz7m1v5rPsvOG5+F3KmDbpsKGSob22jsWYfbYf24a3fh6+xCmnbT3LnAfL9+yniUG/rH0AHSdQnFNORPtVOpBZoi5SKaYMlWOHqqHoqUGuM2dln2hQReR9oBb5pjHl9kMBuAG4AKC2NjXK1Sik1EomJsT8ORSk1caycks1vCi+lrfbvmHvPZe/kc+h2puH3+ZDuJhK8jSR6G0gKNJMZaiaXFibJkTfqWyWNZvck2rNmsy3rI7gnTSe9aDa5pXNJycgnRW84qQlg2BYsEfk7MFA92W8YY562l/kVsMsY80P7vQdINcY0iMgy4ClgnjGmdah9aQuWUkoppVT01Ld7+c3Dj/Dh6p8yjz0k2C1QHSTR7Mig05WFNyGbUFIOJr0QZ1YJSbllZBSUk10wBUdifHcLVqqviHURFBEXsB9YZoypHmSZV4EvG2OGzJ40wVJKKaWUir5gyOD1diOhIEmJiaDV+ZQ6SiS7CJ4JbOubXIlIHtBojAmKyFRgBrAnDPtSSimllFIR5nQIyUnazVmp4xGOBOty4OF+004D7hIRPxACbjTGNIZhX0oppZRSSik1bo06wTLGXDvAtMeBx0e7baWUUkoppZSKJY5oB6CUUkoppZRS8SJsDxoOBxGpA/ZFO45+coH6YZdS8UKP98Shx3pi0eM9ceixnjj0WE8s4/F4lxlj8vpPHFcJ1ngkImsHqg6i4pMe74lDj/XEosd74tBjPXHosZ5YYul4axdBpZRSSimllAoTTbCUUkoppZRSKkw0wRrer6MdgBpTerwnDj3WE4se74lDj/XEocd6YomZ461jsJRSSimllFIqTLQFSymllFJKKaXCRBMspZRSSimllAoTTbCGICLniMh2EdklIl+LdjwqfESkREReEZEtIrJZRL5gT88WkRdFZKf9b1a0Y1XhISJOEXlfRP5iv58iIm/b5/cjIpIQ7RhVeIhIpog8JiLbRGSriJyo53Z8EpFb7b/hm0TkYRFJ1HM7fojIb0TkkIhs6jNtwHNZLD+1j/sGEVkavcjVsRrkWN9j/x3fICJPikhmn3m32cd6u4icHZWgh6AJ1iBExAn8AjgXmAt8UkTmRjcqFUYB4EvGmLnAKuBz9vH9GvCSMWYG8JL9XsWHLwBb+7z/HvBjY8x0oAn4t6hEpSLhJ8BfjTGzgUVYx13P7TgjIkXA54Hlxpj5gBO4HD2348kDwDn9pg12Lp8LzLB/bgB+NUYxqvB4gKOP9YvAfGPMQmAHcBuAfb12OTDPXueX9nX7uKEJ1uBWAruMMXuMMT7gj8CFUY5JhYkxpsYY8579ug3rAqwI6xj/1l7st8DHohKgCisRKQY+Cvyv/V6A04HH7EX0WMcJEckATgPuBzDG+Iwxzei5Ha9cQJKIuIBkoAY9t+OGMeY1oLHf5MHO5QuB3xnLW0CmiEwek0DVqA10rI0xLxhjAvbbt4Bi+/WFwB+NMV5jzF5gF9Z1+7ihCdbgioCqPu+r7WkqzohIObAEeBvIN8bU2LMOAvnRikuF1X8DXwVC9vscoLnPH249v+PHFKAO+D+7S+j/ikgKem7HHWPMfuAHQCVWYtUCrEPP7Xg32Lms123x7Xrgefv1uD/WmmCpCU1EUoHHgVuMMa195xnrGQb6HIMYJyLnAYeMMeuiHYsaEy5gKfArY8wSoIN+3QH13I4P9tibC7GS6kIghaO7GKk4pufyxCAi38Aa2vFQtGMZKU2wBrcfKOnzvtiepuKEiLixkquHjDFP2JNre7oU2P8eilZ8KmxOBi4QkQqsrr6nY43RybS7FYGe3/GkGqg2xrxtv38MK+HSczv+nAnsNcbUGWP8wBNY57ue2/FtsHNZr9vikIhcC5wHXGEOP7x33B9rTbAG9y4ww65GlIA1mO6ZKMekwsQeg3M/sNUY86M+s54BrrFfXwM8PdaxqfAyxtxmjCk2xpRjnccvG2OuAF4BLrEX02MdJ4wxB4EqEZllTzoD2IKe2/GoElglIsn23/SeY63ndnwb7Fx+Brjaria4Cmjp05VQxSAROQere/8FxpjOPrOeAS4XEY+ITMEqbPJONGIcjBxOBlV/IvIRrLEbTuA3xpjvRjciFS4icgrwOrCRw+Nyvo41DutRoBTYB1xqjOk/wFbFKBFZDXzZGHOeiEzFatHKBt4HrjTGeKMYngoTEVmMVdAkAdgDXId1Q1HP7TgjIncCl2F1H3of+DTWWAw9t+OAiDwMrAZygVrg28BTDHAu20n2z7G6iXYC1xlj1kYhbHUcBjnWtwEeoMFe7C1jzI328t/AGpcVwBrm8Xz/bUaTJlhKKaWUUkopFSbaRVAppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipM/n/3YUYKcGgJMAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiQElEQVR4nOzdeXwV1f3/8dfnZoewJhCWAEGUnQgKiBVcW5dWRasVrbtf609b22pdam2rtN/6/fZrbW2tttbWVqsWcdfWfaOKdQNEFFABCfsSCFtC9vv5/TFDvIRskBtulvfz8bhyZ+bMOZ+ZyY33k3PmjLk7IiIiIiIi0nyRRAcgIiIiIiLSXijBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSLSSphZnpm5mSUnOpb2zswuMrPZiY6jtTGzKWb2aaLjEBFpy5RgiYhIm2Zm082s0syKY17XJzqutsjd33T3YfGu18zuMbNPzSxqZhfFu34RkdZEfyUVEYkTM0t296pEx9FBzXT38xIdREtpBz9bHwIzgf9LdCAiIi1NPVgiIs1gZgVm9kMzWwCUmFmymU0ys/+Y2VYz+9DMjo4pP8vM/tfM3jOz7Wb2tJn1rKfui81ssZntMLPPzez/1do+1czmh/UsM7MTw/XdzOxeM1tnZmvM7BdmltTIcQwxs9fMbLOZbTKzh8yse8y2IjM7JFzuZ2aFu47LzE41s4Xh8c4ysxG1zs+1ZrbAzLaZ2UwzS9/7M733zOyG8LzsMLNFZnZ6PeXMzG43s43hufzIzEaH29LM7DYzW2lmG8zsbjPLaGL794XlXw5j+LeZDYrZ/jszWxW2OdfMpsRsm25mj5nZg2a2HbjIzCaa2dvheV5nZneaWWrMPm5m3zazJWF7/x1eu/+EbTwSW76emI82s9VNOb694e53ufurQFm86xYRaW2UYImINN85wNeA7kAO8CzwC6AncC3wuJn1iil/AXAJ0BeoAu6op96NwMlAV+Bi4PaYJGci8HfgurDdI4GCcL/7wnoPBMYBxwOXNnIMBvwv0A8YAQwApgO4+zLgh8CDZtYJ+Btwv7vPMrOhwAzgKqAX8Bzwz1pf5M8CTgQGA/nARXUGYDY5TB7qe01u5BhqWwZMAboBPwvj71tHueMJzt/QsOxZwOZw2y/D9WMJzmd/4Ka9iOFc4L+BbGA+8FDMtvfDensC/wAerZV8TgUeI7i+DwHVwNVhXYcDxwHfrtXeCcChwCTgeuAe4DyC6zma4Gd1n4WJcn3X5w/NqVtEpL1QgiUi0nx3uPsqdy8l+DL7nLs/5+5Rd38ZmAN8Nab8A+7+sbuXAD8Fzqqrh8ndn3X3ZR74N/ASQcIA8F/AX9395bCdNe7+iZnlhG1d5e4l7r4RuB04u6EDcPelYV3l7l4I/AY4Kmb7n4GlwLsEieGPw03TgGfDfSuB24AM4Eu1zs9ady8C/kmQVNQVw2x3797Aq6FJKc6q9WW/n7s/GrYbdfeZwBJgYh37VgJdgOGAuftid19nZgZcBlzt7kXuvgP4n8bOZS3Puvsb7l5OcM4ON7MB4fE+6O6b3b3K3X8NpAGx9z+97e5PhfGXuvtcd38nLF8A/ImYaxS61d23u/tC4GPgJXf/3N23Ac8TJNz7zN3zG7g+tZM9EZEOSfdgiYg036qY94OAb5jZKTHrUoDX6ym/ItyeXbtSMzsJuJmgByUCdAI+CjcPIOgtqm1QWN+6ID+AcN9VdZSNbSsH+B1BAtcl3GdLrWJ/Bp4BLgsTBgh6vFbsKuDuUTNbRdDTs8v6mPc7w33i7ZHa92CZ2QXAD4C8cFUmdZxnd3/NzO4E7gIGmdkTBD2P6QTnfG7MuTSgweGWtdScd3cvNrMiguNfZWbXEiTK/QAn6KnMrmvf8HiGEiS+48O4koG5tdrbEPO+tI7lPnsRu4iI7AP1YImINJ/HvF9F0EMV+5f9zu7+y5gyA2LeDyToQdkUW6GZpQGPE/QI5bh7d4KEatc3/VXAkDpiWQWUA9kx7Xd191GNHMP/hMcxxt27EvTEfZFVmGUCvwXuBabbF/eNrSVI6naVs/D41jTS3h4smCK8uIHXlMZrqalrEEFCeCWQFZ6/j2OPKZa73+HuhwIjCRLa6wiuSSkwKuZcdnP3zL04rJprHZ7DnsDa8FiuJxiO2COMb1ut+GJ/rgD+CHwCHBReoxvrO56WYsG9dvVdn7v3ZywiIq2VEiwRkfh6EDjFzE4wsyQzSw8nDsiNKXOemY0M72f6OfCYu1fXqieVYMhYIVAV9mYdH7P9XuBiMzvOzCJm1t/Mhrv7OoKhhL82s67htiFmVnsoWW1dgGJgm5n1J0gwYv0OmOPulxLcY7bry/QjwNfCOFKAawgSvP80dqJqC6cIz2zg9eZeVNeZIEEphGDCEIJ7kPZgZhPM7LAw/hKCiRii7h4lSNJuN7PeYdn+ZnZCzL5uMZOY1OGr4b1lqQT3Yr3j7qsIzndVGF+ymd1E0IPVkC7AdqDYzIYDVzRSPu7cfVQD1+fy+vYzs9Tw/jIDUsLPhb6DiEi7pF9uIiJxFH55nkrQu1BI0KN0Hbv/vn2AYCKK9QTD0L5XRz07wvWPEAzV+ybB8Lxd298jnPiCoOfj33zRk3QBQYK2KNz3MYL7phryM+CQsK5ngSd2bTCzqQSTVOz6Qv8D4BAzO9fdPyXo7fo9QY/PKcAp7l7RSHstyt0XAb8G3iYYJjcGeKue4l0JEqktBMMdNwO/Crf9kODes3csmM3vFcL7pMJ7qXbwxbDNuvyDYJhnEcHkE7uGMb4IvAB8FrZZRiPDOAmGLX4zbPPPBNOetxUvEfQGfolg4o1SgolFRETaHXOvPQJBRERaipnNAh50978kOhZpHjM7j2D44I/q2X4fsNrdf7JfAxMRkYTSJBciIiL7wN0fTHQMIiLS+miIoIhIB2HBQ281OUEHZ2Y31vNz8HyiYxMRaQ80RFBERERERCRO1IMlIiIiIiISJ63qHqzs7GzPy8tLdBgiIiIiIiINmjt37iZ371V7fatKsPLy8pgzZ06iwxAREREREWmQma2oa72GCIqIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ63qHqy6VFZWsnr1asrKyhIdirQC6enp5ObmkpKSkuhQpB1at62Uu/5yD6cdPYnxhx6W6HBERESkDWr1Cdbq1avp0qULeXl5mFmiw5EEcnc2b97M6tWrGTx4cKLDkXZo/ruz+MWOm1jxfB4c+mGiwxEREZE2qNUPESwrKyMrK0vJlWBmZGVlqTdTWkyXghcB6F61KcGRiIiISFvV6hMsQMmV1NDPgrQkL9sGQDeK2VZUmOBoREREpC1qEwmWiMj+EKkornm/fsncBEYiIiIibZUSrCYwM6655pqa5dtuu43p06cnLqAYRx99dIMPZz7ttNOYNGnSbuumT59O//79GTt2LKNHj+aZZ55p6TBF2oTkymLKCSZQKd6wPMHRiIiISFukBKsJ0tLSeOKJJ9i0Kb73Zbg70Wg0rnXG2rp1K3PnzmXbtm18/vnnu227+uqrmT9/Po8++iiXXHJJi8Yh0lakVhezNjUPgMrNBQmNRURERNomJVhNkJyczGWXXcbtt9++x7bCwkLOOOMMJkyYwIQJE3jrrbeAoJfotttuqyk3evRoCgoKKCgoYNiwYVxwwQWMHj2aVatWcd111zF69GjGjBnDzJkzAZg1axZHH300Z555JsOHD+fcc8/F3euM74EHHqjpjXrvvfdq1j/xxBOccsopnH322Tz88MN17jtixAiSk5N3Sx5vuOEGRo4cSX5+Ptdeey0ABQUFHHvsseTn53PcccexcuVKAC666CKuuOIKJk2axAEHHMCsWbO45JJLGDFiBBdddFFNnVdccQXjx49n1KhR3HzzzXvEsW3bNgYNGlST6JWUlDBgwAAqKyvrjFukJaRXl1CW2pNNdCeyfVWiwxEREZE2qNVP0x7rZ/9cyKK12+Na58h+Xbn5lFGNlvvOd75Dfn4+119//W7rv//973P11VczefJkVq5cyQknnMDixYsbrGvJkiXcf//9TJo0iccff5z58+fz4YcfsmnTJiZMmMCRRx4JwAcffMDChQvp168fRxxxBG+99RaTJ0/eo76dO3cyf/583njjDS655BI+/vhjAGbMmMFNN91ETk4OZ5xxBjfeeOMe+7777rtEIhF69eoFwObNm3nyySf55JNPMDO2bt0KwHe/+10uvPBCLrzwQv7617/yve99j6eeegqALVu28Pbbb/PMM89w6qmn8tZbb/GXv/yFCRMmMH/+fMaOHcstt9xCz549qa6u5rjjjmPBggXk5+fXxNGtWzfGjh3Lv//9b4455hj+9a9/ccIJJ+h5V7JfZfhOdiRnUpScQ8bOtYkOR0RERNog9WA1UdeuXbngggu44447dlv/yiuvcOWVVzJ27FhOPfVUtm/fTnFxcT21BAYNGlRzX9Ts2bM555xzSEpKIicnh6OOOor3338fgIkTJ5Kbm0skEmHs2LEUFBTUWd8555wDwJFHHsn27dvZunUrGzZsYMmSJUyePJmhQ4eSkpJSk3gB3H777YwdO5Zrr72WmTNn1szO161bN9LT0/mv//ovnnjiCTp16gTA22+/zTe/+U0Azj//fGbPnl1T1ymnnIKZMWbMGHJychgzZgyRSIRRo0bVxPzII49wyCGHMG7cOBYuXMiiRYv2OI5p06bV9OA9/PDDTJs2rcHzKBJvnbyUqpRMijP60b1ifaLDERERkTao2T1YZjYA+DuQAzhwj7v/zsymA98Cds11fKO7P9ectprS09SSrrrqKg455BAuvvjimnXRaJR33nmH9PT03comJyfvdl9T7LObOnfu3KT20tLSat4nJSVRVVVVZ7naU5ebGY888ghbtmypeSDv9u3bmTFjBrfccgsQ3IO1a/hf7bjfe+89Xn31VR577DHuvPNOXnvttSbFGYlEdos5EolQVVXF8uXLue2223j//ffp0aMHF110UZ3Psjr11FO58cYbKSoqYu7cuRx77LENtisST+5OJqVUp2QSTelC7+2zqaqqIjm5TXX0i4iISILFowerCrjG3UcCk4DvmNnIcNvt7j42fDUruWoNevbsyVlnncW9995bs+7444/n97//fc3y/PnzAcjLy2PevHkAzJs3j+XL656RbMqUKcycOZPq6moKCwt54403mDhx4l7FtavXZ/bs2XTr1o1u3boxY8YMXnjhhZr7vubOnVvvfVixiouL2bZtG1/96le5/fbb+fDDDwH40pe+VLP/Qw89xJQpU5oc3/bt2+ncuTPdunVjw4YNPP/883WWy8zMZMKECXz/+9/n5JNPJikpqcltiDRXZWUlnayc6tQuWPeBpFklRRvWJDosERERaWOanWC5+zp3nxe+3wEsBvo3t97W6pprrtltQog77riDOXPmkJ+fz8iRI7n77rsBOOOMMygqKmLUqFHceeedDB06tM76Tj/9dPLz8zn44IM59thjufXWW+nTp89exZSens64ceO4/PLLuffeeykoKGDFihW7Tc8+ePBgunXrxrvvvltnHV/96ldZu3YtO3bs4OSTTyY/P5/Jkyfzm9/8BoDf//73/O1vfyM/P58HHniA3/3ud02O7+CDD2bcuHEMHz6cb37zmxxxxBE122666abdpomfNm0aDz74oIYHyn5XXrIVgGhKF1KyBgGwdf2yBEYkIiIibZHVNzPdPlVmlge8AYwGfgBcBGwH5hD0cm2pY5/LgMsABg4ceOiKFSt227548WJGjBgRtxil7dPPhLSEorXL6HnPIfxn1M30HjGZAx/7CvMP+w1jT/qvRIcmIiIirZCZzXX38bXXx22SCzPLBB4HrnL37cAfgSHAWGAd8Ou69nP3e9x9vLuP3zWTnYjI/lZZXgqApWTQs/+BwbqiFQ3tIiIiIrKHuCRYZpZCkFw95O5PALj7Bnevdvco8Gdg724sEhHZjyrLdgIQScmgR/cebPdO2HZN1S4iIiJ7p9kJlgVT2N0LLHb338Ss7xtT7HTg49r7ioi0FpUVQQ9WUkoaZsamSDYpJZqqXURERPZOPOYfPgI4H/jIzOaH624EzjGzsQRTtxcA/y8ObYmItIiq8uDRAUmpwSMXtqf2IrNMCZaIiIjsnWYnWO4+G7A6NrX5adlFpOOo3tWDlZoBwM70PgzY9nkiQxIREZE2KG6TXIiItGVVYYKVHCZY1Zl96eFb8aryRIYlIiIibYwSrCZ66qmnMDM++eSTessUFBQwevTouLV50UUX8dhjj9W7/aqrrqJ///5Eo9Gadffddx+9evVi7NixjBw5kj//+c9xi0ekPYtWBkMEk9OCBCvSrT8Rc7ZuWJXIsERERKSNUYLVRDNmzGDy5MnMmDGjzu1VVVXNbqO6urrJZaPRKE8++SQDBgzg3//+927bpk2bxvz585k1axY33ngjGzZsaHZsIu1ddZhgpYQJVlrPXAC2rC9IVEgiIiLSBinBaoLi4mJmz57Nvffey8MPP1yzftasWUyZMoVTTz2VkSNHAkGide655zJixAjOPPNMdu4Mpn5+9dVXGTduHGPGjOGSSy6hvDwYdpSXl8cPf/hDDjnkEB599NE92n7llVcYP348Q4cO5V//+tdubY8aNYorrrii3qSvd+/eDBkyhNiHN99xxx2MHDmS/Px8zj77bACKioo47bTTyM/PZ9KkSSxYsACA6dOnc+GFFzJlyhQGDRrEE088wfXXX8+YMWM48cQTqaysBODnP/85EyZMYPTo0Vx22WXUfnh1NBolLy+PrVu31qw76KCDlPhJq+K1EqzM3nkAlBTqWVgiIiLSdPGYRXD/ef4GWP9RfOvsMwZO+mWDRZ5++mlOPPFEhg4dSlZWFnPnzuXQQw8FYN68eXz88ccMHjyYgoICPv30U+69916OOOIILrnkEv7whz9w5ZVXctFFF/Hqq68ydOhQLrjgAv74xz9y1VVXAZCVlcW8efPqbLugoID33nuPZcuWccwxx7B06VLS09OZMWMG55xzDlOnTuXGG2+ksrKSlJSU3fb9/PPP+fzzzznwwANr1v3yl79k+fLlpKWl1SQ8N998M+PGjeOpp57itdde44ILLmD+/PkALFu2jNdff51FixZx+OGH8/jjj3Prrbdy+umn8+yzz3Laaadx5ZVXctNNNwFw/vnn869//YtTTjmlps1IJMLUqVN58sknufjii3n33XcZNGgQOTk5Tb5MIi0tWpNgdQKgZ988ACq2rE5USCIiItIGqQerCWbMmFHT23P22Wfv1mM0ceJEBg8eXLM8YMAAjjjiCADOO+88Zs+ezaeffsrgwYMZOnQoABdeeCFvvPFGzT7Tpk2rt+2zzjqLSCTCQQcdxAEHHMAnn3xCRUUFzz33HKeddhpdu3blsMMO48UXX6zZZ+bMmYwdO5ZzzjmHP/3pT/Ts2bNmW35+Pueeey4PPvggyclBfj179mzOP/98AI499lg2b97M9u3bATjppJNISUlhzJgxVFdXc+KJJwIwZswYCgoKAHj99dc57LDDGDNmDK+99hoLFy7c4zimTZvGzJkzAXj44YcbPGaRRNjVg5WaFkzTnpXVix2eAdv0sGERERFpurbVg9VIT1NLKCoq4rXXXuOjjz7CzKiursbM+NWvfgVA586ddysfPHe5/uW61K6jsfpefPFFtm7dypgxYwDYuXMnGRkZnHzyyUCQzNx555111vfss8/yxhtv8M9//pNbbrmFjz5quEcwLS0NCHqhUlJSauKJRCJUVVVRVlbGt7/9bebMmcOAAQOYPn06ZWVle9Rz+OGHs3TpUgoLC3nqqaf4yU9+0mC7IvtdOFtgWkbQg5UUMTZFskguWZfIqERERKSNUQ9WIx577DHOP/98VqxYQUFBAatWrWLw4MG8+eabdZZfuXIlb7/9NgD/+Mc/mDx5MsOGDaOgoIClS5cC8MADD3DUUUc1qf1HH32UaDTKsmXL+Pzzzxk2bBgzZszgL3/5CwUFBRQUFLB8+XJefvnlmvu96hONRlm1ahXHHHMM//d//8e2bdsoLi5mypQpPPTQQ0Bwb1d2djZdu3ZtUny7kqns7GyKi4vrnfXQzDj99NP5wQ9+wIgRI8jKympS/SL7TVUZVR4hNSW1ZtW25F50Lte9giIiItJ0SrAaMWPGDE4//fTd1p1xxhn1TiwxbNgw7rrrLkaMGMGWLVu44oorSE9P529/+xvf+MY3GDNmDJFIhMsvv7xJ7Q8cOJCJEydy0kkncffddxONRnnhhRf42te+VlOmc+fOTJ48mX/+85911nHppZcyZ84cqqurOe+88xgzZgzjxo3je9/7Ht27d2f69OnMnTuX/Px8brjhBu6///4mnh3o3r073/rWtxg9ejQnnHACEyZMqNl29913c/fdd9csT5s2jQcffFDDA6V1qiqnnBSSk774tbgzI4fulRsTGJSIiIi0NVZ7xrdEGj9+vM+ZM2e3dYsXL2bEiBEJikhaI/1MSEuYc9fFDNn4Mj1+9sWkFm/86Somr70P++lGLDm1gb1FRESkozGzue4+vvZ69WCJiABWXUGF7T4Tp4UPG96xSRNdiIiISNMowRIRAay6nAp276VK7TkAgKJ1yxMRkoiIiLRBbSLBak3DGCWx9LMgLSUSLafSdk+wMnsNAqC4sCABEYmIiEhb1OoTrPT0dDZv3qwv1oK7s3nzZtLT0xMdirRDkeoKqiK7J1hZ/fIAKN+shw2LiIhI07T652Dl5uayevVqCgsLEx2KtALp6enk5uYmOgxph5Ki5VTVugerV3YOOz0N374mQVGJiIhIW9PiCZaZnQj8DkgC/uLue/W04JSUFAYPHtwisYmI7JIcraCiVg9WUlKEwkgWycV62LCIiIg0TYsOETSzJOAu4CRgJHCOmY1syTZFRPZFUrSCqkjaHuu3pfSmU5keNiwiIiJN09L3YE0Elrr75+5eATwMTG3hNkVE9lqKV1Ad2fNZVzvTc+hepYcNi4iISNO0dILVH1gVs7w6XCci0qokR8uJ1tGDVdW5Lz2jW/DqygREJSIiIm1NwmcRNLPLzGyOmc3RRBYikigpVBJN2jPBsm79SbYoWzdqogsRERFpXEsnWGuAATHLueG6Gu5+j7uPd/fxvXr1auFwRETqluKVeB0JVnrPYNbKovUF+zkiERERaYtaOsF6HzjIzAabWSpwNvBMC7cpIrLXUqnAk/dMsDJ7Bw8b3rFxxf4OSURERNqgFp2m3d2rzOxK4EWCadr/6u4LW7JNEZF9kVpPD1bPvsFjIiqLVu2xTURERKS2Fn8Olrs/BzzX0u2IiOwrr64kxaqxOnqwsrL7UOYpRLetTkBkIiIi0tYkfJILEZFEKy8rDd6kpO+xLZIUYWOkN6k7lGCJiIhI45RgiUiHVxEmWJa8Z4IFsCWtL13L1u7PkERERKSNUoIlIh1eedlOACJ19GABlHbOpVf1+v0ZkoiIiLRRSrBEpMOrLA97sOpJsKLdBtGVEkq2bd6fYYmIiEgbpARLRDq8ivKgByspte4EKyU7mElw06rP9ltMIiIi0jYpwRKRDm9XD1ZSSkad2zP7DAFg27ol+y0mERERaZuUYIlIh1dVUQZAUlrdPVjZuQcBUF64fL/FJCIiIm2TEiwR6fB29WAlp9bdg5WdncMOz8C2rtifYYmIiEgbpARLRDq86opdCVbdPVgWibAhqQ+pxWv2Z1giIiLSBinBEpEOb1eClZLWqd4y29L60a1cz8ISERGRhinBEpEOrzq8Bys1re4hggBlmbn0rt4A7vsrLBEREWmDlGCJiJTvACClU9f6y3QfRAblbN+sXiwRERGpnxIsEenwPEywOmV2q7dMRu8DANiw4tP9EpOIiIi0TUqwRETKiwHolFl/D1ZWOFX7tnVL90tIIiIi0jYpwRIRqSimxNOxSFK9RXIGDQuKblSCJSIiIvVTgiUiHV6kspidVv8EFwDpnbqwgSxStuphwyIiIlK/ZiVYZvYrM/vEzBaY2ZNm1j1cn2dmpWY2P3zdHZdoRURaQFJlCWWNJFgAhWkD6LpTDxsWERGR+jW3B+tlYLS75wOfAT+K2bbM3ceGr8ub2Y6ISItJqtpJeaTxBKskM48+Vav3Q0QiIiLSVjUrwXL3l9y9Klx8B8htfkgiIvtXavVOKpI6N1rOew6hGyVs3bR+P0QlIiIibVE878G6BHg+ZnmwmX1gZv82syn17WRml5nZHDObU1hYGMdwRESaJjW6k8rkTo2WS88ZCsCGgo9bOiQRERFpoxpNsMzsFTP7uI7X1JgyPwaqgIfCVeuAge4+DvgB8A8zq3P+Y3e/x93Hu/v4Xr16Nf+IRET2Unp0J1XJjfdg9Rg4AoAdqz9p6ZBERESkjUpurIC7f7mh7WZ2EXAycJy7e7hPOVAevp9rZsuAocCc5gYsIhJvGV5KNKXxBKvvoOFUeYTqwiX7ISoRERFpi5o7i+CJwPXAqe6+M2Z9LzNLCt8fABwEfN6ctkREWkonLyWaktloudS0NNZFckjZXtDyQYmIiEib1GgPViPuBNKAl80M4J1wxsAjgZ+bWSUQBS5396JmtiUiEnelJTvIsAo8o2eTym9OG0B3TdUuIiIi9WhWguXuB9az/nHg8ebULSKyP2wr2kAGkJSZ1aTyO7vkMbTwQzwaxSJ6VruIiIjsTt8ORKRDKy7aAEBKl6ZNsuNZB9KJcrZuWNmSYYmIiEgbpQRLRDq0nduCx0OkdWtagtWpz0EAbCxY2GIxiYiISNulBEtEOrSK7UGC1albTpPKZw0aBUDxWk3VLiIiIntSgiUiHVrVjk0AdM1qWoLVd8AQyjyF6KalLRmWiIiItFFKsESkQ/OSTUTd6NqjaUMEU5KTWZvUjzRN1S4iIiJ1UIIlIh1baRE7rBNJySlN3qUofQA9SzVVu4iIiOxJCZaIdGhppRsoimTv1T5lXQeTU70er65soahERESkrVKCJSIdWmb5RorTeu/VPpZ9EClWzaZVS1ooKhEREWmrlGCJSIfWo7qQsow+e7VPZr8RAGxa8XFLhCQiIiJtmBIsEemwyspKyfJtRLv03av9euWNBKB03actEZaIiIi0YUqwRKTDKly7kog5Sd1z92q/Pn36s8W7YJs1VbuIiIjsTgmWiHRY2zYUAJCRNWCv9otEjLXJ/cnYsbwFohIREZG2TAmWiHRYJZtWAtC196C93ndbp0Fkl6+Kd0giIiLSxinBEpEOq2rLagCy+g3e630ruh1AthdRXbot3mGJiIhIG6YES0Q6LNuxlp2k0alLj73eN7n3UAAKVyyKd1giIiLShjUrwTKz6Wa2xszmh6+vxmz7kZktNbNPzeyE5ocqIhJfqSXr2RzJBrO93rdrbjBV+5aVSrBERETkC8lxqON2d78tdoWZjQTOBkYB/YBXzGyou1fHoT0RkbjoXL6BHam99mnfPnkjiLpRvv6zOEclIiIibVlLDRGcCjzs7uXuvhxYCkxsobZERPZJz+pCSjP27hlYu/Tq0Y019CJpi6ZqFxERkS/EI8G60swWmNlfzWzXjQz9gdjptVaH6/ZgZpeZ2Rwzm1NYWBiHcEREGldWXk62b6E6s98+7W9mbEzNpUvxijhHJiIiIm1ZowmWmb1iZh/X8ZoK/BEYAowF1gG/3tsA3P0edx/v7uN79dq3oToiIntr87oVJJkT2cuHDMfa3jmP3pWrwD2OkYmIiEhb1ug9WO7+5aZUZGZ/Bv4VLq4BYp/cmRuuExFpFbasX05/ICNr4D7XEe1xIJ22llGxZQ2pPfc9URMREZH2o7mzCMbevHA68HH4/hngbDNLM7PBwEHAe81pS0QknnYWBkP7uuTk7XMdaX12TdX+cSMlRUREpKNo7j1Yt5rZR2a2ADgGuBrA3RcCjwCLgBeA72gGQRFpTXY9ZDi7/wH7XEfPgaMA2LZqcVxiEhERkbavWdO0u/v5DWy7BbilOfWLiLQU276WYjLI7Npzn+voP2gIpZ5K5cYlcYxMRERE2rKWmqZdRKRVS9u5LnjIcDN065TGSutH6tZlcYpKRERE2jolWCLSIWWWb2B7ak6z69mcPpDupSvjEJGIiIi0B0qwRKRD6lldSGmnfXvIcKzSLoPpVb0eqiriEJWIiIi0dUqwRKTDKSvdSTZbie7jQ4ZjWfaBJBNlxzrdhyUiIiJKsESkA9q8rgCApB4DGi7YBF1yhwOwbtlHza5LRERE2j4lWCLS4WxdXwBARva+P2R4l8HDxgGwZdWiJpVft3IpWzZtaHa7IiIi0jopwRKRDqd0U/CQ4W45g5pdV3Z2LzaSRWRjwz1Y5eVlvHXv9fT966Esv+9bzW5XREREWqdmPQdLRKQtqtyyCoDsfvv+kOFYK7scTN6O+eAOZntsXzL/TSLPfJcjossBGFj8YVzaFRERkdZHCVYDFr/7ItvmPAoW+eIFuCUFX6IsglkEtwhmhlukZj2WhO16vwevtdjIcq09zB2vXUetZdujit33Cepo3/b8misS6LHm32yjM90yu8alvvLcL9Fr8Wus+ewD+g87pGZ9WWkJHzxwIxPW/J2t1pUPj7iLnUvf4tD1jxCtqiKSrF/BdakqL6VkexElxdspLSmmoqyE6oqdVFeUEq157cQrS/GqcqLVlUSrq7FoFUSrMK8Gr8ai1ZgH64N10eD3oMf8mrVavyss+I/VXhWzLXhvu281i3m/q4Zg2Q0gErsZx4Iyu+o0w2O21W7HYyLyOrYZ4FZHmd3i2P234m7t7KM6/p4gIhJ329JzGXLsRRyU0yXRoTSJ/u/egB2rFzGy8DnMo0RwDCdCNPxfUrAughPZM5sRkVZufsbhjI1TXQdOOYuKRf/Lipfvov+we/FolHmvzKD32//N4b6O93p8lWEX3MHBPXvxzpb1pG6oYuO6AnoPODBOEbROHq1m+5ZCthauZWfRWkq3bqBq+3qixZuI7NxEpHw7qVU7SKsuJiNaTKdoCZleQrpV0g3oto/tVnoS1USoJokqkqi2SMxv7CAj2JUXNP23d8wfqML3FiZrFrP9i21f7Fd7ndUqW3tdfeUaasfqaEf/bxKR9mJW9cF8OuoMJVjtwcQzroYzrm60nEejuDvRaBT3KNFoNR4N/q2urg56smqpvW7P5do9X7b7XwqbVGfjdbT/Pz62/yOUfXNwUlLc6srpN4h5PY9nYuETvHdnNT22LODQ6mWsjOTy8TH3MfHI02vKduozFBZBYcHCNp1geTTKlsK1bF77OcUbl1O+eSVsXU1qyVoyy9bTo7qQ7r6dbla9R6JU5RG2WRdKIpmURTpTntyFkuQ+VKV2pTq1K57WFUvvRiS9C6npnUhOyyAptRNJaZ1JTssgOa0zKWkZpGR0IjWtE2mpqaSmpBJJSoFIhBQgJREnJUG8jlEPUCt5rCnjMcse/lP30NZG293rPXY17XX+f1HaG11jiZ8pgEXi9//tlqYEKw4sEsGASBy/sIlI23LABXfx8T3nMK7wGVYm5/HeqJ9yyNTvMjA1bbdyucPHw2uwY/kcmDI1QdE2jUejbFq/io0FCyle+ynRTUtI376cHmWr6FO9np5WSc+Y8js9jcKkXmxPzWF5lwOp7tQby+xFctcc0rvn0KlnX7pm9adHdg5ZSUlkJezI2pcmJSv1lNFXYBGR+FOCJSISB917ZDH2hy/h7gwxY0g95Xr27scq60v6hnn7Nb6GRKurWbfiUzYsnUf5mo9ILfqUbjtX0rdqDb2sjF5huQpPZm1SX7amD2B9l8nQfSCpWQPpmjOY7P5D6NazN4MimpxWREQ6NiVYIiJx1JTehHVdxnDg9neorqoiaT9OdOHubFy/hvVL5lGyagFJhYvoXryE3MoV9Ldy+ofl1loOm9IG8nHWIZB1IJ37DiNr0Ehy+g8hTxNziIiINEj/pxQR2c+Shp9Iz/deYtF7LzLyS19rkTZKirez6tN5bF3+IdENC8nc9hn9Kj4nh23khGW20JV1aYNZ2PNUIjmj6Jp3MP0PGke/rj3o1yJRiYiItH9KsERE9rPhU86k5N0bKX/7HmhmghWtrmZdwWI2Lp1H2ZqPSNv8Cb12LqV/dB3Dw1nkyjyFNSl5rOhxBMt7jyBzQD59DjqUHr1z6aHJBkREROKqWQmWmc0EhoWL3YGt7j7WzPKAxcCn4bZ33P3y5rQlItJedO7Sjf/knsOX1vyNeS8/xCFfObfRfaqrqli/cimbVixk59rFJG9aTLcdn+02vC/qxtpIHwo7HcjarK+RnptP7yHj6JM3giFJ+nuaiIjI/mD1Te+61xWZ/RrY5u4/DxOsf7n76L2pY/z48T5nzpy4xCMi0pqV7dzBqt8czeDKz1nQ8wTsoK+Q3KUXeDVlOzZTtWUNvmM96cWr6FG6kn7Va0mzypr9i+jCmtQhlHQbSqTPKLoPHseAoePIiNPDk0VERKRhZjbX3cfXXh+XP2lacFf3WcCx8ahPRKS9S+/UhZwrX+L9B64hf9PzdH7v+T3KlHkKhZFebM4YxIauk0nqdRBd+g8n54Ax9OzVn54a3iciItLqxGvMyBRgg7sviVk32Mw+ALYDP3H3N+va0cwuAy4DGDhwYJzCERFp/bp2z+Lw795HaUkxS5Z9TFVJEW5JZHbrQfc+eXTpls2ASIQBiQ5UREREmqzRIYJm9grQp45NP3b3p8MyfwSWuvuvw+U0INPdN5vZocBTwCh3395QWxoiKCIiIiIibcE+DxF09y83UnEy8HXg0Jh9yoHy8P1cM1sGDAWUPYmIiIiISLsViUMdXwY+cffVu1aYWS8zSwrfHwAcBHweh7ZERERERERarXjcg3U2MKPWuiOBn5tZJRAFLnf3oji0JSIiIiIi0mrFbZr2eDCzQmBFouOoJRvYlOggZL/R9e44dK07Dl3rjkXXu+PQte5YWuP1HuTuvWqvbFUJVmtkZnPqunlN2idd745D17rj0LXuWHS9Ow5d646lLV3veNyDJSIiIiIiIijBEhERERERiRslWI27J9EByH6l691x6Fp3HLrWHYuud8eha92xtJnrrXuwRERERERE4kQ9WCIiIiIiInGiBEtERERERCROlGA1wMxONLNPzWypmd2Q6HgkfsxsgJm9bmaLzGyhmX0/XN/TzF42syXhvz0SHavEh5klmdkHZvavcHmwmb0bfr5nmllqomOU+DCz7mb2mJl9YmaLzexwfbbbJzO7Ovwd/rGZzTCzdH222w8z+6uZbTSzj2PW1flZtsAd4XVfYGaHJC5y2Vv1XOtfhb/HF5jZk2bWPWbbj8Jr/amZnZCQoBugBKseZpYE3AWcBIwEzjGzkYmNSuKoCrjG3UcCk4DvhNf3BuBVdz8IeDVclvbh+8DimOX/A2539wOBLcB/JSQqaQm/A15w9+HAwQTXXZ/tdsbM+gPfA8a7+2ggCTgbfbbbk/uAE2utq++zfBJwUPi6DPjjfopR4uM+9rzWLwOj3T0f+Az4EUD4fe1sYFS4zx/C7+2thhKs+k0Elrr75+5eATwMTE1wTBIn7r7O3eeF73cQfAHrT3CN7w+L3Q+clpAAJa7MLBf4GvCXcNmAY4HHwiK61u2EmXUDjgTuBXD3Cnffij7b7VUykGFmyUAnYB36bLcb7v4GUFRrdX2f5anA3z3wDtDdzPrul0Cl2eq61u7+krtXhYvvALnh+6nAw+5e7u7LgaUE39tbDSVY9esPrIpZXh2uk3bGzPKAccC7QI67rws3rQdyEhWXxNVvgeuBaLicBWyN+cWtz3f7MRgoBP4WDgn9i5l1Rp/tdsfd1wC3ASsJEqttwFz02W7v6vss63tb+3YJ8Hz4vtVfayVY0qGZWSbwOHCVu2+P3ebBMwz0HIM2zsxOBja6+9xExyL7RTJwCPBHdx8HlFBrOKA+2+1DeO/NVIKkuh/QmT2HGEk7ps9yx2BmPya4teOhRMfSVEqw6rcGGBCznBuuk3bCzFIIkquH3P2JcPWGXUMKwn83Jio+iZsjgFPNrIBgqO+xBPfodA+HFYE+3+3JamC1u78bLj9GkHDps93+fBlY7u6F7l4JPEHweddnu32r77Os723tkJldBJwMnOtfPLy31V9rJVj1ex84KJyNKJXgZrpnEhyTxEl4D869wGJ3/03MpmeAC8P3FwJP7+/YJL7c/UfunuvueQSf49fc/VzgdeDMsJiudTvh7uuBVWY2LFx1HLAIfbbbo5XAJDPrFP5O33Wt9dlu3+r7LD8DXBDOJjgJ2BYzlFDaIDM7kWB4/6nuvjNm0zPA2WaWZmaDCSY2eS8RMdbHvkgGpTYz+yrBvRtJwF/d/ZbERiTxYmaTgTeBj/jivpwbCe7DegQYCKwAznL32jfYShtlZkcD17r7yWZ2AEGPVk/gA+A8dy9PYHgSJ2Y2lmBCk1Tgc+Bigj8o6rPdzpjZz4BpBMOHPgAuJbgXQ5/tdsDMZgBHA9nABuBm4Cnq+CyHSfadBMNEdwIXu/ucBIQt+6Cea/0jIA3YHBZ7x90vD8v/mOC+rCqC2zyer11nIinBEhERERERiRMNERQREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsEZFWwszyzMzNLDnRsbR3ZnaRmc1OdBytjZlNMbNPEx2HiEhbpgRLRETaNDObbmaVZlYc87o+0XG1Re7+prsPi3e9ZnaPmX1qZlEzuyje9YuItCb6K6mISJyYWbK7VyU6jg5qprufl+ggWko7+Nn6EJgJ/F+iAxERaWnqwRIRaQYzKzCzH5rZAqDEzJLNbJKZ/cfMtprZh2Z2dEz5WWb2v2b2npltN7OnzaxnPXVfbGaLzWyHmX1uZv+v1vapZjY/rGeZmZ0Yru9mZvea2TozW2NmvzCzpEaOY4iZvWZmm81sk5k9ZGbdY7YVmdkh4XI/MyvcdVxmdqqZLQyPd5aZjah1fq41swVmts3MZppZ+t6f6b1nZjeE52WHmS0ys9PrKWdmdruZbQzP5UdmNjrclmZmt5nZSjPbYGZ3m1lGE9u/Lyz/chjDv81sUMz235nZqrDNuWY2JWbbdDN7zMweNLPtwEVmNtHM3g7P8zozu9PMUmP2cTP7tpktCdv77/Da/Sds45HY8vXEfLSZrW7K8e0Nd7/L3V8FyuJdt4hIa6MES0Sk+c4BvgZ0B3KAZ4FfAD2Ba4HHzaxXTPkLgEuAvkAVcEc99W4ETga6AhcDt8ckOROBvwPXhe0eCRSE+90X1nsgMA44Hri0kWMw4H+BfsAIYAAwHcDdlwE/BB40s07A34D73X2WmQ0FZgBXAb2A54B/1voifxZwIjAYyAcuqjMAs8lh8lDfa3Ijx1DbMmAK0A34WRh/3zrKHU9w/oaGZc8CNofbfhmuH0twPvsDN+1FDOcC/w1kA/OBh2K2vR/W2xP4B/BoreRzKvAYwfV9CKgGrg7rOhw4Dvh2rfZOAA4FJgHXA/cA5xFcz9EEP6v7LEyU67s+f2hO3SIi7YUSLBGR5rvD3Ve5eynBl9nn3P05d4+6+8vAHOCrMeUfcPeP3b0E+ClwVl09TO7+rLsv88C/gZcIEgaA/wL+6u4vh+2scfdPzCwnbOsqdy9x943A7cDZDR2Auy8N6yp390LgN8BRMdv/DCwF3iVIDH8cbpoGPBvuWwncBmQAX6p1fta6exHwT4Kkoq4YZrt79wZeDU1KcVatL/v93P3RsN2ou88ElgAT69i3EugCDAfM3Re7+zozM+Ay4Gp3L3L3HcD/NHYua3nW3d9w93KCc3a4mQ0Ij/dBd9/s7lXu/msgDYi9/+ltd38qjL/U3ee6+zth+QLgT8Rco9Ct7r7d3RcCHwMvufvn7r4NeJ4g4d5n7p7fwPWpneyJiHRIugdLRKT5VsW8HwR8w8xOiVmXArxeT/kV4fbs2pWa2UnAzQQ9KBGgE/BRuHkAQW9RbYPC+tYF+QGE+66qo2xsWznA7wgSuC7hPltqFfsz8AxwWZgwQNDjtWJXAXePmtkqgp6eXdbHvN8Z7hNvj9S+B8vMLgB+AOSFqzKp4zy7+2tmdidwFzDIzJ4g6HlMJzjnc2POpQENDrespea8u3uxmRURHP8qM7uWIFHuBzhBT2V2XfuGxzOUIPEdH8aVDMyt1d6GmPeldSz32YvYRURkH6gHS0Sk+Tzm/SqCHqrYv+x3dvdfxpQZEPN+IEEPyqbYCs0sDXicoEcox927EyRUu77prwKG1BHLKqAcyI5pv6u7j2rkGP4nPI4x7t6VoCfui6zCLBP4LXAvMN2+uG9sLUFSt6uchce3ppH29mDBFOHFDbymNF5LTV2DCBLCK4Gs8Px9HHtMsdz9Dnc/FBhJkNBeR3BNSoFRMeeym7tn7sVh1Vzr8Bz2BNaGx3I9wXDEHmF822rFF/tzBfBH4BPgoPAa3Vjf8bQUC+61q+/63L0/YxERaa2UYImIxNeDwClmdoKZJZlZejhxQG5MmfPMbGR4P9PPgcfcvbpWPakEQ8YKgaqwN+v4mO33Aheb2XFmFjGz/mY23N3XEQwl/LWZdQ23DTGz2kPJausCFAPbzKw/QYIR63fAHHe/lOAes11fph8BvhbGkQJcQ5Dg/aexE1VbOEV4ZgOvN/eius4ECUohBBOGENyDtAczm2Bmh4XxlxBMxBB19yhBkna7mfUOy/Y3sxNi9nWLmcSkDl8N7y1LJbgX6x13X0VwvqvC+JLN7CaCHqyGdAG2A8VmNhy4opHycefuoxq4PpfXt5+ZpYb3lxmQEn4u9B1ERNol/XITEYmj8MvzVILehUKCHqXr2P337QMEE1GsJxiG9r066tkRrn+EYKjeNwmG5+3a/h7hxBcEPR//5ouepAsIErRF4b6PEdw31ZCfAYeEdT0LPLFrg5lNJZikYtcX+h8Ah5jZue7+KUFv1+8JenxOAU5x94pG2mtR7r4I+DXwNsEwuTHAW/UU70qQSG0hGO64GfhVuO2HBPeevWPBbH6vEN4nFd5LtYMvhm3W5R8EwzyLCCaf2DWM8UXgBeCzsM0yGhnGSTBs8Zthm38mmPa8rXiJoDfwSwQTb5QSTCwiItLumHvtEQgiItJSzGwW8KC7/yXRsUjzmNl5BMMHf1TP9vuA1e7+k/0amIiIJJQmuRAREdkH7v5gomMQEZHWR0MERUQ6CAseeqvJCTo4M7uxnp+D5xMdm4hIe6AhgiIiIiIiInGiHiwREREREZE4aVX3YGVnZ3teXl6iwxAREREREWnQ3LlzN7l7r9rrW1WClZeXx5w5cxIdhoiIiIiISIPMbEVd6zVEUEREREREJE6UYImIiIiIiMSJEiwRkSaorI7yxrMz2LF9a6JDERERkVasVd2DVZfKykpWr15NWVlZokORNiY9PZ3c3FxSUlISHYq0A+/OmcOR71/OR0u/zJjvP57ocERERKSVavUJ1urVq+nSpQt5eXmYWaLDkTbC3dm8eTOrV69m8ODBiQ5H2oGiZcEEPHlb305wJCIiItKatfohgmVlZWRlZSm5kr1iZmRlZannU+Imo2gRAF28hGhlRYKjERERkdaq1SdYgJIr2Sf6uZF4yi5ZVvN+/aqlCYxEREREWrM2kWCJiCRaclVxzfsta5ckMBIRERFpzZRgNYGZcc0119Qs33bbbUyfPj1xAcV45513OOywwxg7diwjRoyoiWvWrFn85z//aVbdJ554It27d+fkk0+OQ6QibVtSdRkrkwYAULphWSOlRUREpKNSgtUEaWlpPPHEE2zatCmu9bo70Wi0WXVceOGF3HPPPcyfP5+PP/6Ys846C4hPgnXdddfxwAMPNKsOkfYiOVpOcacBlHsyvmV5osMRERGRVqrVzyIY62f/XMiitdvjWufIfl25+ZRRDZZJTk7msssu4/bbb+eWW27ZbVthYSGXX345K1euBOC3v/0tRxxxBNOnTyczM5Nrr70WgNGjR/Ovf/0LgBNOOIHDDjuMuXPn8txzz3HnnXfy/PPPY2b85Cc/Ydq0acyaNYvp06eTnZ3Nxx9/zKGHHsqDDz64x31FGzdupG/fvgAkJSUxcuRICgoKuPvuu0lKSuLBBx/k97//PcOHD683zmXLlrF06VI2bdrE9ddfz7e+9S0AjjvuOGbNmtXguXn00Uf52c9+RlJSEt26deONN96grKyMK664gjlz5pCcnMxvfvMbjjnmGO677z6eeuopSkpKWLJkCddeey0VFRU88MADpKWl8dxzz9GzZ0/+/Oc/c88991BRUcGBBx7IAw88QKdOnXZrd9KkSdx7772MGhVcu6OPPprbbruN8ePHNxivyL5K9XIqUzPZYNmkbF+d6HBERESklVIPVhN95zvf4aGHHmLbtm27rf/+97/P1Vdfzfvvv8/jjz/OpZde2mhdS5Ys4dvf/jYLFy5kzpw5zJ8/nw8//JBXXnmF6667jnXr1gHwwQcf8Nvf/pZFixbx+eef89Zbb+1R19VXX82wYcM4/fTT+dOf/kRZWRl5eXlcfvnlXH311cyfP58pU6Y0GOeCBQt47bXXePvtt/n5z3/O2rVrm3xefv7zn/Piiy/y4Ycf8swzzwBw1113YWZ89NFHzJgxgwsvvLBmNr+PP/6YJ554gvfff58f//jHdOrUiQ8++IDDDz+cv//97wB8/etf5/333+fDDz9kxIgR3HvvvXu0O23aNB555BEA1q1bx7p165RcSYupjjppVOBJ6WxP6UV62YZEhyQiIiKtVLN7sMxsAPB3IAdw4B53/52Z9QRmAnlAAXCWu29pTluN9TS1pK5du3LBBRdwxx13kJGRUbP+lVdeYdGiRTXL27dvp7i4uK4qagwaNIhJkyYBMHv2bM455xySkpLIycnhqKOO4v3336dr165MnDiR3NxcAMaOHUtBQQGTJ0/era6bbrqJc889l5deeol//OMfzJgxo85ep4binDp1KhkZGWRkZHDMMcfw3nvvcdpppzXpvBxxxBFcdNFFnHXWWXz961+vOabvfve7AAwfPpxBgwbx2WefAXDMMcfQpUsXunTpQrdu3TjllFMAGDNmDAsWLACCJOwnP/kJW7dupbi4mBNOOGGPds866yyOP/54fvazn/HII49w5plnNilekX1RURUlg3I8JYOy9N70K/440SGJiIhIKxWPIYJVwDXuPs/MugBzzexl4CLgVXf/pZndANwA/DAO7SXMVVddxSGHHMLFF19csy4ajfLOO++Qnp6+W9nk5OTd7q+KfR5T586dm9ReWlpazfukpCSqqqrqLDdkyBCuuOIKvvWtb9GrVy82b968R5n64oQ9pzPfm+nN7777bt59912effZZDj30UObOndtg+dhjikQiNcuRSKTm+C666CKeeuopDj74YO677746E8b+/fuTlZXFggULmDlzJnfffXeTYxbZW2WV1WRQAcnpVHXOIWv7G3g0ikU0CEBERER21+xvB+6+zt3nhe93AIuB/sBU4P6w2P3Aac1tK9F69uzJWWedtduQteOPP57f//73Ncvz588HIC8vj3nz5gEwb948li+v+6b4KVOmMHPmTKqrqyksLOSNN95g4sSJTY7p2Wefxd2BYOhhUlIS3bt3p0uXLuzYsaPROAGefvppysrK2Lx5M7NmzWLChAlNbn/ZsmUcdthh/PznP6dXr16sWrWKKVOm8NBDDwHw2WefsXLlSoYNG9bkOnfs2EHfvn2prKysqacu06ZN49Zbb2Xbtm3k5+c3uX6RvVVWWUm6VUJKJ+jSj3SrZMfW+E56IyIiIu1DXP/8amZ5wDjgXSDH3deFm9YTDCGsa5/LzGyOmc0pLCyMZzgt4pprrtltNsE77riDOXPmkJ+fz8iRI2t6Us444wyKiooYNWoUd955J0OHDq2zvtNPP538/HwOPvhgjj32WG699Vb69OnT5HgeeOABhg0bxtixYzn//PN56KGHSEpK4pRTTuHJJ59k7NixvPnmm/XGCZCfn88xxxzDpEmT+OlPf0q/fv2AIPn7xje+wauvvkpubi4vvvgiEAxL3HW/1XXXXceYMWMYPXo0X/rSlzj44IP59re/TTQaZcyYMUybNo377rtvt56rxvz3f/83hx12GEcccQTDhw+vWf/MM89w00031SyfeeaZPPzwwzUzJ4q0lIrSnQBYSjop3YPPx5b1KxIZkoiIiLRStqv3o9kVmWUC/wZucfcnzGyru3eP2b7F3Xs0VMf48eN9zpw5u61bvHgxI0aMiEuMsqfasx22N/r5kXj4rGAFQ+/LZ+HBP4a+BzPqhbP4+Ji/Mfqoryc6NBEREUkQM5vr7nvMshaXHiwzSwEeBx5y9yfC1RvMrG+4vS+wMR5tiYjsb5WlJQBEUjPo1nsgAKVFaxIZkoiIiLRS8ZhF0IB7gcXu/puYTc8AFwK/DP99urltSfxNnz490SGItHpV5UGClZTaiZ59BgBQvU0JloiIiOwpHrMIHgGcD3xkZvPDdTcSJFaPmNl/ASsA3SgjIm1SZXlwD1ZSWic6dcpkC12IFK9PcFQiIiLSGjU7wXL32UB983of19z6RUQSrWpXgpXaCYAtkZ6k7dTDhkVERGRPeoiLiEgjohWlACSnB8+w25HSi04VrX/WUxEREdn/lGCJiDSiOrwHKyUt6MEqy+hNjyo9B0tERET2pASriZ566inMjE8++aTeMgUFBYwePTpubX766accffTRjB07lhEjRnDZZZcBwUOCn3vuuWbVfckll9C7d++4xivSXu3qwUpJDxKsqs596OFbiVZVJjIsERERaYWUYDXRjBkzmDx5MjNmzKhze1VVVbPbqK6u3m35e9/7HldffTXz589n8eLFfPe73wXik2BddNFFvPDCC82qQ6Sj8IrgHqzUjGCIYKRLX5LM2bppbSLDEhERkVYoHrMI7j/P3wDrP4pvnX3GwEm/bLBIcXExs2fP5vXXX+eUU07hZz/7GQCzZs3ipz/9KT169OCTTz7hpZdeoqqqinPPPZd58+YxatQo/v73v9OpUydeffVVrr32WqqqqpgwYQJ//OMfSUtLIy8vj2nTpvHyyy9z/fXXc/bZZ9e0u27dOnJzc2uWx4wZQ0VFBTfddBOlpaXMnj2bH/3oR5x88sl897vf5eOPP6ayspLp06czdepU7rvvPp588km2bdvGmjVrOO+887j55psBOPLIIykoKGjwuP/973/z/e9/HwAz44033iAzM5Prr7+e559/HjPjJz/5CdOmTWPWrFncfPPNdO/enY8++oizzjqLMWPG8Lvf/Y7S0lKeeuophgwZwj//+U9+8YtfUFFRQVZWFg899BA5OTm7tXv22Wdz/vnn87WvfQ0IksGTTz6ZM888s2nXVCTOvDLowUpNCxKs1B79Adi6fgU9+wxKWFwiIiLS+qgHqwmefvppTjzxRIYOHUpWVhZz586t2TZv3jx+97vf8dlnnwHBsL5vf/vbLF68mK5du/KHP/yBsrIyLrroImbOnMlHH31EVVUVf/zjH2vqyMrKYt68ebslVwBXX301xx57LCeddBK33347W7duJTU1lZ///OdMmzaN+fPnM23aNG655RaOPfZY3nvvPV5//XWuu+46SkqCe0bee+89Hn/8cRYsWMCjjz7KnDlzmnzct912G3fddRfz58/nzTffJCMjgyeeeIL58+fz4Ycf8sorr3Ddddexbt06AD788EPuvvtuFi9ezAMPPMBnn33Ge++9x6WXXsrvf/97ACZPnsw777zDBx98wNlnn82tt966R7vTpk3jkUceAaCiooJXX321JtkSSYjK3YcIdsoOnoVVsnl1wkISERGR1qlt9WA10tPUUmbMmFHTk3P22WczY8YMDj30UAAmTpzI4MGDa8oOGDCAI444AoDzzjuPO+64g6985SsMHjyYoUOHAnDhhRdy1113cdVVVwFBQlGXiy++mBNOOIEXXniBp59+mj/96U98+OGHe5R76aWXeOaZZ7jtttsAKCsrY+XKlQB85StfISsrC4Cvf/3rzJ49m/HjxzfpuI844gh+8IMfcO655/L1r3+d3NxcZs+ezTnnnENSUhI5OTkcddRRvP/++3Tt2pUJEybQt29fAIYMGcLxxx8PBD1vr7/+OgCrV69m2rRprFu3joqKit3O3S4nnXQS3//+9ykvL+eFF17gyCOPJCMjo0kxi7SIyjIALCVIsLrlBAlWRZESLBEREdmderAaUVRUxGuvvcall15KXl4ev/rVr3jkkUdwdwA6d+68W3kza3C5LrXriNWvXz8uueQSnn76aZKTk/n444/3KOPuPP7448yfP5/58+ezcuVKRowYsc/x7HLDDTfwl7/8hdLSUo444ogGJ/gASEtLq3kfiURqliORSM09at/97ne58sor+eijj/jTn/5EWVnZHvWkp6dz9NFH8+KLLzJz5sx6E1CR/cWqy6giAkkpAGT17k+VR4hu1z1YIiIisjslWI147LHHOP/881mxYgUFBQWsWrWKwYMH8+abb9ZZfuXKlbz99tsA/OMf/2Dy5MkMGzaMgoICli5dCsADDzzAUUcd1WjbL7zwApWVwSxl69evZ/PmzfTv358uXbqwY8eOmnInnHACv//972uSvg8++KBm28svv0xRUVHNfVC7eteaYtmyZYwZM4Yf/vCHTJgwgU8++YQpU6Ywc+ZMqqurKSws5I033mDixIlNrnPbtm307x/cv3L//ffXW27atGn87W9/48033+TEE09scv0iLSFSVUo5qRD+gSItNZXN1p1IsR42LCIiIrtTgtWIGTNmcPrpp++27owzzqh3NsFhw4Zx1113MWLECLZs2cIVV1xBeno6f/vb3/jGN77BmDFjiEQiXH755Y22/dJLLzF69GgOPvhgTjjhBH71q1/Rp08fjjnmGBYtWsTYsWOZOXMmP/3pT6msrCQ/P59Ro0bx05/+tKaOiRMncsYZZ5Cfn88ZZ5xRMzzwnHPO4fDDD+fTTz8lNzeXe++9F4C7776bu+++G4Df/va3jB49mvz8fFJSUjjppJM4/fTTyc/P5+CDD+bYY4/l1ltvpU+fPk0+n9OnT+cb3/gGhx56KNnZ2TXr58yZw6WXXlqzfPzxx/Pvf/+bL3/5y6Smpja5fpGWYFVlVFjabuu2JGWTXqoES0RERHZnu3o9WoPx48d77UkYFi9eXDPcTfbOfffdx5w5c7jzzjsTHUrC6OdH4uE/t53JkJIPybl5Sc26Of/3VXpVrGLQT+M8s6mIiIi0CWY21933mNxAPVgiIo1IipZTEdm9B6uiUw49qzclKCIRERFprVo8wTKzE83sUzNbamY3tHR78oWLLrqoQ/deicRLcnUZlbWGCEYz+9KFnVTs3FHPXiIiItIRtWiCZWZJwF3AScBI4BwzG7m39bSmYYzSdujnRuIlOVpOVdLuCVZyt34AFK0vSEBEIiIi0lq1dA/WRGCpu3/u7hXAw8DUvakgPT2dzZs368uy7BV3Z/PmzaSnpyc6FGkHUqLlVNUaIpielQvAtg2rEhGSiIiItFIt/aDh/kDst4/VwGGxBczsMuAygIEDB+5RQW5uLqtXr6awsLAFw5T2KD09ndzc3ESHIe1AqpdRmpS127quvYPfVzs3K8ESERGRL7R0gtUod78HuAeCWQRrb09JSWHw4MH7PS4RkV1SohUU1xoimNUnD4DKrWsSEJGIiIi0Vi09RHANMCBmOTdcJyLSZqRRTjQpY7d1Xbv3oNgzYPu6BEUlIiIirVFLJ1jvAweZ2WAzSwXOBp5p4TZFROIqzSvw5N3v5zMzNkeySNm5PkFRiYiISGvUokME3b3KzK4EXgSSgL+6+8KWbFNEJJ7cnXTK8eSMPbbtSMmmc/nGBEQlIiIirVWL34Pl7s8Bz7V0OyIiLaGiqpoM27MHC6A0vTfZOz5IQFQiIiLSWrX4g4ZFRNqystLS4E3Knj1YlZ37kBUtwqPV+zkqERERaa2UYImINKC8tBgAS90zwYp07UeKVbOlcO3+DktERERaKSVYIiINqCgrASBSRw9Was/+ABStX7FfYxIREZHWSwmWiEgDKkrDBCu18x7bMnsFDxsuKdTDhkVERCSgBEtEpAGV5TsBiNQxRLB7Th4A5UVKsERERCSgBEtEpAFV4RDB5LQ9E6yeOblUeBJsU4IlIiIiASVYIiINqKoIerCS0vYcIpicnMxGyyalWJNciIiISEAJlohIAyrLgmnaU9I71bl9S0oOnUrX7c+QREREpBVTgiUi0oBoRTBEMCV9zx4sgJL0PnSv3LA/QxIREZFWTAmWiEgDohW7erDqTrAqM/uTHd2MV1Xsz7BERESklVKCJSLSAA/vwUqtJ8GKdB9AkjlbNqzcn2GJiIhIK6UES0SkAV4Z9GCl1ZNgpffKA6Bo7ef7KyQRERFpxZqVYJnZr8zsEzNbYGZPmln3mG0/MrOlZvapmZ3Q7EhFRBIhTLDSO9WdYHXrMxiAHRsK9ldEIiIi0oo1twfrZWC0u+cDnwE/AjCzkcDZwCjgROAPZpbUzLZERPa/qlKibiSlpNe5uVfuEAAqi1bsz6hERESklWpWguXuL7l7Vbj4DpAbvp8KPOzu5e6+HFgKTGxOWyIiieCVZZRbKpjVub1b124U0QXTw4ZFRESE+N6DdQnwfPi+PxD7bWN1uG4PZnaZmc0xszmFhYVxDEdEpPkiFcXsJKPBMpuTepO2U8/CEhERkSYkWGb2ipl9XMdrakyZHwNVwEN7G4C73+Pu4919fK9evfZ2dxGRFpVUVUxppO6HDO+yI60PXcvX76eIREREpDVLbqyAu3+5oe1mdhFwMnCcu3u4eg0wIKZYbrhORKRNSakqoayRBKuic396lczFo1EsoslZRUREOrLmziJ4InA9cKq774zZ9Axwtpmlmdlg4CDgvea0JSKSCKlVJVQk1T2DYI3uuXS2MrZv3bx/ghIREZFWq7l/ar0T6AK8bGbzzexuAHdfCDwCLAJeAL7j7tXNbEtEZL9Lj5ZQmZzZYJm0ngMB2LR6yf4ISURERFqxRocINsTdD2xg2y3ALc2pX0Qk0TKiO9naSIKV2ecAALZvWA58aT9EJSIiIq2VbhYQEWlAJ3ZSndpwgpWdexAA5YUF+yEiERERac2UYImI1MOjUTp7KdHULg2W657Vh1JPxfUsLBERkQ5PCZaISD1KS0tIsWpIazjBskiEjUm9SStevZ8iExERkdZKCZaISD1KdmwBwNIbTrAAtqX2pUuZHjYsIiLS0SnBEhGpR/G2IMFK7dSt0bJlnfuRXb2hpUMSERGRVk4JlohIPYq3bAIgPbNno2Wruw6gBzso2bGtpcMSERGRVkwJlohIPcq3Bz1S6T1yGi2bkjUIgMLVS1s0JhEREWndlGCJiNSjcvtGADJ79m20bGbv4FlY29Z93qIxiYiISOumBEtEpB5eXAhA16w+jZbNyg2eu162aXmLxiQiIiKtmxIsEZF62M5CdnoaaZ26Nlo2K2cAFZ5MdMvK/RCZiIiItFZKsERE6pFStpmtke5NKhtJSmJjpBepehaWiIhIh6YES0SkHillRRQnd29y+a2pOWSW6llYIiIiHVncEiwzu8bM3Myyw2UzszvMbKmZLTCzQ+LVlojI/tClchNladlNLr8zox89q/QsLBERkY4sLgmWmQ0Ajgdibz44CTgofF0G/DEebYmI7A/R6ig50Q2UZ+Y2eZ/qrgPpxRbKSktaMDIRERFpzeLVg3U7cD3gMeumAn/3wDtAdzNrfK5jEZFWoGjTOjpbOd5tYJP3Se4ZlC1co6naRUREOqpmJ1hmNhVY4+4f1trUH1gVs7w6XFd7/8vMbI6ZzSksLGxuOCIicVG0ZgkAKVl5Td6nU074LKy1y1oiJBEREWkDkptSyMxeAep6EMyPgRsJhgfuE3e/B7gHYPz48d5IcRGR/WJLmGBl5Q5t8j49+gYJVmmhnoUlIiLSUTUpwXL3L9e13szGAIOBD80MIBeYZ2YTgTXAgJjiueE6EZFWr2L9p0Td6Dt4eJP36dV/MFUeoUrPwhIREemwmjVE0N0/cvfe7p7n7nkEwwAPcff1wDPABeFsgpOAbe6u+YtFpE3I2PIJ65L6kJLR+EOGd0lJSaXQskjZvqrxwiIiItIuNakHax89B3wVWArsBC5uwbZEROKqT+lSNnY+cM8bRxuxJaUPncr0tyQREZGOKq4JVtiLteu9A9+JZ/0iIvtDUdFm+kXXszb71L3et6RTPwZsm9sCUYmIiEhbELcHDYuItBcrPniNiDldD5q81/tWZebSyzdTVVHeApGJiIhIa6cES0SkltKlb1LpSeSNPXqv9430HEiSOZvWFcQ9LhEREWn9lGCJiNSSvWE2y9OGkd656RNc7JKWnQfoWVgiIiIdlRIsEZEYK5YvYWh0GTsG1vl0ikZ16zMYgJJNmqpdRESkI1KCJSISY+3sBwDo/6Vv7NP+2X0HAVC5ZXXcYhIREZG2QwmWiEjIo1H6L3+MT1JG0OeA/H2qo0vX7mzzztiOtXGOTkRERNoCJVgiIqFF777EwOgadoz8ZrPq2ZyUTWqJnoUlIiLSESnBEhEJlc6+ix1kMPorFzarnh2pvelcvjFOUYmIiEhbogRLRARYuvB9Dil+k8W5Z5OR2a1ZdZV36kOP6k1xikxERETaEiVYIiLA5hd+SRmpDD/9hmbX5Zl96enbKCsrjUNkIiIi0pYkJzoAEZFE+/zTjxi//VU+6P9Nxmf1aXZ9ST1yiax0CteuZMABw+IQYetWVlZK4dqVFBeto2zreiq3b6CyvJRoVQUWrSSJKJ6cTjS5EykZmWR0zaJz1gC65gygZ1YfkpL0tz4REWk/lGCJSIe38dlf0I9kDjqt+b1XAJ2yBgCwdcPydpVglWzfwsrF77Ht87lEC5fQuaSA7PI19PGNDDDfpzrLPYV11pOi1D6UZPSnukt/Ij0H0an3AXTveyB9cgeTnpYa5yPZO5WVFews3kFVRQnVVdVUV1dRXR3+W1VNNFpNhGoigCUlQySZSFIyFknCklKwSBJJyakkJSWTnJJMUnIKycmpJCUlkRwxIhFL6PGJiEh8NTvBMrPvAt8BqoFn3f36cP2PgP8K13/P3V9sblsiIvG2YslHjN/2EvP7nsX43gPjUmfXnDwAdhauikt9iRCtrqbgk7lsWPAqqevep1fxJ+RWr2VEmEjtoBMbkvuzoetoVnc7gKSeA0jtmkN6jz5k9sghs0tX0tLSSUpOpcqN6opSqsqKKd6xjR1FGyktWkPV1jXYjnUkFa+jc+la+m1/m+xtWyDmEWKVnsRqy6IopQ8lGf2o6pJLcrd+pHXuSnJ6F5IzupKakQlm7Erx3AGvxit3UlW6k6qKnVSXlxAtLyFasZNoxU6sYidWWYJV7iRStZPk6lJSqneSEi0jNVpGWrSUdMrI8HLSrJLm3ZVXv0pPoiJMz6pJIkqEakva7X2UJKIWqfnXw9H9RhTDCS6JE5wBD9ftek/N+kj4L05M2V3v2WO5rn/rXtc0DaXgDdXS9BZ2+aL8vra5a3t9JXavd89S1vDmJmvqrhWRNCq+8Q8GDj903xsTkbhpVoJlZscAU4GD3b3czHqH60cCZwOjgH7AK2Y21N2rmxuwiEg8bfzXf9ObZIac/pO41ZndbzAAlVvbzsOGPRpl5ZIFbPzgWZJX/Ye8kg85gB0cAGykJ2s7DWdNr1PoNGgc/YcfTnbfgXSxpn39SwbolAn0olsjIzCrK0rZtGYZW9cuZefG5VQVrSB5+2o6l66h74736LX9BVjTzIMFKjyJMtIpszTKLIOKSDoVkQx2JndnR3InqpMz8ORORFM6Q0onLLUTpGQEvVORJCJJSUEPVSSZSMSIWhJRN/AqiFZh0Wo8Wg3RaixahUer8GglHq3GqqvwaDUerYJoNUSrwMN/o9Xg1diu/byaiAfv8SjmVZhHgQhuQJgSYWFqtOvfmHVB8hkJv62HwzFr7ftFsrGrDmqWd203iKmXmHYbT1aswVQn5HWV2bee0ebX57sV9d3eROtZX3crsWW8rhJeT/ld77zuqGMPb8KOV/jkuf9l4PDH6igpIvtbc3uwrgB+6e7lAO6+a17iqcDD4frlZrYUmAi83cz2RETiZtWSBRyy9SXm9D2bw3IGxK3e9MzulJAO21v3w4Yrysv49N0X2LHgXwzYNJtBrGMQsNZ6s7T7EVjeZAaM+wo5A4fRu4nJVHMlpWaQM3g0OYNH17k9WlFGUeEaindso7xkG5WlO6gsKwm+bZrtShmCJCGlEynpnUlJzyQ1ozNpnTJJz8gko1Nn0tLSSTWj6345KpGW9fYfLmPChkfZuHoZvXOHJDockQ6vuQnWUGCKmd0ClAHXuvv7QH/gnZhyq8N1ezCzy4DLAAYOjM/wHBGRptj4r1+QTQoHnHZjfCs2oyiSTdrO1vew4Z07S1j05lOw8AmGb3+LMZRS7iks6TyODYMvoe/4qfTLG0q//ZRQ7a1IajrZ/YeQnehARFqRQV+9Bv72KJ8/+d/0/u59iQ5HpMNrNMEys1eAugZ1/DjcvycwCZgAPGJmB+xNAO5+D3APwPjx45sxFkBEpOnWrljKwVtf5v2cb3B4n/j/cWdHWm8yW8nDhqurqlj01tOUznuE4VvfYLztZCuZLOx+LGmjT2X4l77G6E5dEh2miOyjfnnDeK/XVA4tfIaVn81n4NCxiQ5JpENrNMFy9y/Xt83MrgCecHcH3jOzKJBNMEI+drxNLnEZNS8iEh/Ln/8tOThDTr6mReovz8ihb+l7LVJ3Uy1d9hlrXruHoWueZAyb2E4nlvQ4kk6HnMVBk07msNS0hMYnIvEz5Bu/oPwPL7DlyesYcN2LWESPPxBJlOYOEXwKOAZ43cyGAqnAJuAZ4B9m9huCSS4OAhL7TUNEJFSyYxuj1z3BR12mMHZgy0yjHu3Sj+zNWyguLSczY/8lMmUVlcx59XFSPriPQ8vf5UCLsjD9UNYd/BNGHj2NQzM67bdYRGT/ycrJ5Z1h32HSZ7cx959/4NCpVyY6JJEOq7kJ1l+Bv5rZx0AFcGHYm7XQzB4BFgFVwHfa4gyCC996luK5D4NFgheG73ofvtxst+XdX4ZR11+QYucI2jWd7u5bbI+SYO51zCRUe5qjBmZNapEBmC01qrPlRos2aTarJqhzgippE1K3LedQKyHjqO+1WBvJ3fuTbFEK1xaQOaTln4W1vGA5n790N8PWPsFkNrLFurEw7wIGfeUKRuUOb/H2RSTxJky7kUW/fIGh837B8oMOZ/DI9jdte3VVFcXF29lZsoOK0mKqyoqpLCuhurzW4xgqy4lWVVBdVUm0ujKc3XPXv+HLq4lEK8GjuDvuHvM/99qPJOCLZeOL72615uSPnd7fiZl0Z9f72B1iZ+SsVXbPyq3WPrWLRGoWvWa9xexX5057xFD/9i/W1/eYgrpir2+GUd/L+3y3pg9g8JcvY1iftjGcvVkJlrtXAOfVs+0W4Jbm1J9oJRs/Z0jRG1j4/BAjGvzr4b84EXZ/n7SPD9tsy6LeMjfDt+SZ3Pvnqkh7syDjUMYcelyL1Z/eO5jJa9vaJdBCCVZ5ZSVzZz1DZO5fObT0bQZbNZ9mjOPT8T9m6JFn0yMlvUXaFZHWKSkpiewL7qfi3uNIffQcNlz6Ijn9Byc6rLq5U1q8la2FayjevJayLeuo3LaBqpJN+M4tULaN5ModpFdtJ726mM7RYjK9hEwrpRvs87Ppqt2oJolKkqgimWoLvsntnhDsnkh4rWSh9vpdYv+AW9fT2Kye9w1u96bUtXsd3sj2vY4hpo7GtsfG2dQYmvKd7I1oPkvyz2kzCZZ5K/oz/Pjx433OnDmJDqPZPBolGo0SjVZTXV2NRWp/AGP+osCuR5XELNd6Z7b7XxJq/xjGbjcz9vjrhojsd+tWfErfv03k/dE3MeHM+N7ntWb1Sj576U8MWfkYA1nPNjJZnjuVgV/5Dj0HjYprWyLS9nw65zVy/3kO2yJdqTzrYQaN2L89WdHqaoo2rGLT2mWUbCygcvMKbPsaUkvW0qliM12qt9AzuoV0q6xz/2LPoDiSSWkkk7KkLpSndKEypSvVqV3xtG5YeibJaZ2JpAbPqEtK60RSWiZJaZ1ISetMckZnUlLTSUtLIzU1jdTUFFKS04gkp4LuTZM4MrO57j6+9vrmDhGUOlgkQlIkQhLJpCQ6GBFJiOz+QyjzFKxoWVzqq66OMn/2s1S++xfGlcymv1XxWfoYFo27luHHnMfY1Iy4tCMibd+w8ceyNOlRej59LlkPn8A7g7/FmDNuoHOXfe332V3ZzmI2rl7KtrXLKN20gujWVSTtWEPn0rV0r9xIdnQT2Va92+MUtnsnNif1ojilJ2s6DWRFRjbeuTdJXXJI7d6HjB596ZLdn57ZfchMTyMzLpGKJIYSLBGRFpCSnMzKpH6kbm1egrVpw2o+ffHP9F/+KIf6GrbTmYX9ziD3y99m6JCx8QlWRNqdA8cdyaa+b7Hw71cwqeAP7Pj135jb/SgqD/gyfYdPJGfAQaTXmvTGo1FKireyvXAdO7asY2fReso3r8K3riC1eA1dyteTVbWBLLYR+3CLajcKLYstKb1ZmzmaFZn9iXQfQFr2QLrmDCYr90C6dc/Sg72lw1CCJSLSQjZlDmPo9neCm6b3YuhuVWUlC2c/TXTu/Yze8RZHWDWfpYxgfv6VjPrKBRySrr/tikjjsvsMJPv6Z/nk/VfZNvvPDN/yBt3mvQDzgu07PY2dlkES1SR7FWlUkmlVe/QelXkKhZFebE3tw7KuQ1nSJZfkrEF07jWY7v0OoFe/wfRJSa3zoakiHZESLBGRFlLe7zB6bH+JwoKP6TV4TKPlCxbPYc2bDzBk7b84mE0U0YU5Od+g37H/j6HDD9kPEYtIezR8wnEw4TiqK8tZ+ek8NiydQ/XWdVBaRKSyGI+k4JFkPCkVOmWT1KUXqV1707lHH3r2G0zPXv0ZEIns9oBTEamfEiwRkRYycNxX4JP/ZuU7T9SbYBV8toC1b/2DvqueY3B0BQPcWNwpfG7VMWdzeJrurRKR+EhKSWPg6MMZOPrwRIci0q4pwRIRaSGDhubzUfJocj/7O9s3/T+6ZvehZHsRS+b9m9JFL9Jv05vkRVeTByxOGcV/DrqBocecx+g++juxiIhIW6UES0SkhZgZHHcTPV74JtW/H8NGyyTbtzDWnApP5pOMg3kv75sMnnI2I/oPSXS4IiIiEgdKsEREWtCYw0/gk7Qn2PKf+0mqLGFptzy6DpnAgeOPJ7+z5tQSERFpb5RgiYi0sOGHHAWHHJXoMERERGQ/0OOsRURERERE4kQJloiIiIiISJwowRIREREREYkTc/dEx1DDzAqBFYmOo5ZsYFOig5D9Rte749C17jh0rTsWXe+OQ9e6Y2mN13uQu/eqvbJVJVitkZnNcffxiY5D9g9d745D17rj0LXuWHS9Ow5d646lLV1vDREUERERERGJEyVYIiIiIiIicaIEq3H3JDoA2a90vTsOXeuOQ9e6Y9H17jh0rTuWNnO9dQ+WiIiIiIhInKgHS0REREREJE6UYImIiIiIiMSJEqwGmNmJZvapmS01sxsSHY/Ej5kNMLPXzWyRmS00s++H63ua2ctmtiT8t0eiY5X4MLMkM/vAzP4VLg82s3fDz/dMM0tNdIwSH2bW3cweM7NPzGyxmR2uz3b7ZGZXh7/DPzazGWaWrs92+2FmfzWzjWb2ccy6Oj/LFrgjvO4LzOyQxEUue6uea/2r8Pf4AjN70sy6x2z7UXitPzWzExISdAOUYNXDzJKAu4CTgJHAOWY2MrFRSRxVAde4+0hgEvCd8PreALzq7gcBr4bL0j58H1gcs/x/wO3ufiCwBfivhEQlLeF3wAvuPhw4mOC667PdzphZf+B7wHh3Hw0kAWejz3Z7ch9wYq119X2WTwIOCl+XAX/cTzFKfNzHntf6ZWC0u+cDnwE/Agi/r50NjAr3+UP4vb3VUIJVv4nAUnf/3N0rgIeBqQmOSeLE3de5+7zw/Q6CL2D9Ca7x/WGx+4HTEhKgxJWZ5QJfA/4SLhtwLPBYWETXup0ws27AkcC9AO5e4e5b0We7vUoGMswsGegErEOf7XbD3d8Aimqtru+zPBX4uwfeAbqbWd/9Eqg0W13X2t1fcveqcPEdIDd8PxV42N3L3X05sJTge3uroQSrfv2BVTHLq8N10s6YWR4wDngXyHH3deGm9UBOouKSuPotcD0QDZezgK0xv7j1+W4/BgOFwN/CIaF/MbPO6LPd7rj7GuA2YCVBYrUNmIs+2+1dfZ9lfW9r3y4Bng/ft/prrQRLOjQzywQeB65y9+2x2zx4hoGeY9DGmdnJwEZ3n5voWGS/SAYOAf7o7uOAEmoNB9Rnu30I772ZSpBU9wM6s+cQI2nH9FnuGMzsxwS3djyU6FiaSglW/dYAA2KWc8N10k6YWQpBcvWQuz8Rrt6wa0hB+O/GRMUncXMEcKqZFRAM9T2W4B6d7uGwItDnuz1ZDax293fD5ccIEi59ttufLwPL3b3Q3SuBJwg+7/pst2/1fZb1va0dMrOLgJOBc/2Lh/e2+mutBKt+7wMHhbMRpRLcTPdMgmOSOAnvwbkXWOzuv4nZ9AxwYfj+QuDp/R2bxJe7/8jdc909j+Bz/Jq7nwu8DpwZFtO1bifcfT2wysyGhauOAxahz3Z7tBKYZGadwt/pu661PtvtW32f5WeAC8LZBCcB22KGEkobZGYnEgzvP9Xdd8ZsegY428zSzGwwwcQm7yUixvrYF8mg1GZmXyW4dyMJ+Ku735LYiCRezGwy8CbwEV/cl3MjwX1YjwADgRXAWe5e+wZbaaPM7GjgWnc/2cwOIOjR6gl8AJzn7uUJDE/ixMzGEkxokgp8DlxM8AdFfbbbGTP7GTCNYPjQB8ClBPdi6LPdDpjZDOBoIBvYANwMPEUdn+Uwyb6TYJjoTuBid5+TgLBlH9RzrX8EpAGbw2LvuPvlYfkfE9yXVUVwm8fztetMJCVYIiIiIiIicaIhgiIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlItJKmFmembmZJSc6lvbOzC4ys9mJjqO1MbMpZvZpouMQEWnLlGCJiEibZmbTzazSzIpjXtcnOq62yN3fdPdh8a7XzO4xs0/NLGpmF8W7fhGR1kR/JRURiRMzS3b3qkTH0UHNdPfzEh1ES2kHP1sfAjOB/0t0ICIiLU09WCIizWBmBWb2QzNbAJSYWbKZTTKz/5jZVjP70MyOjik/y8z+18zeM7PtZva0mfWsp+6LzWyxme0ws8/N7P/V2j7VzOaH9SwzsxPD9d3M7F4zW2dma8zsF2aW1MhxDDGz18xss5ltMrOHzKx7zLYiMzskXO5nZoW7jsvMTjWzheHxzjKzEbXOz7VmtsDMtpnZTDNL3/szvffM7IbwvOwws0Vmdno95czMbjezjeG5/MjMRofb0szsNjNbaWYbzOxuM8toYvv3heVfDmP4t5kNitn+OzNbFbY518ymxGybbmaPmdmDZrYduMjMJprZ2+F5Xmdmd5pZasw+bmbfNrMlYXv/HV67/4RtPBJbvp6Yjzaz1U05vr3h7ne5+6tAWbzrFhFpbZRgiYg03znA14DuQA7wLPALoCdwLfC4mfWKKX8BcAnQF6gC7qin3o3AyUBX4GLg9pgkZyLwd+C6sN0jgYJwv/vCeg8ExgHHA5c2cgwG/C/QDxgBDACmA7j7MuCHwINm1gn4G3C/u88ys6HADOAqoBfwHPDPWl/kzwJOBAYD+cBFdQZgNjlMHup7TW7kGGpbBkwBugE/C+PvW0e54wnO39Cw7FnA5nDbL8P1YwnOZ3/gpr2I4Vzgv4FsYD7wUMy298N6ewL/AB6tlXxOBR4juL4PAdXA1WFdhwPHAd+u1d4JwKHAJOB64B7gPILrOZrgZ3WfhYlyfdfnD82pW0SkvVCCJSLSfHe4+yp3LyX4Mvucuz/n7lF3fxmYA3w1pvwD7v6xu5cAPwXOqquHyd2fdfdlHvg38BJBwgDwX8Bf3f3lsJ017v6JmeWEbV3l7iXuvhG4HTi7oQNw96VhXeXuXgj8BjgqZvufgaXAuwSJ4Y/DTdOAZ8N9K4HbgAzgS7XOz1p3LwL+SZBU1BXDbHfv3sCroUkpzqr1Zb+fuz8atht195nAEmBiHftWAl2A4YC5+2J3X2dmBlwGXO3uRe6+A/ifxs5lLc+6+xvuXk5wzg43swHh8T7o7pvdvcrdfw2kAbH3P73t7k+F8Ze6+1x3fycsXwD8iZhrFLrV3be7+0LgY+Ald//c3bcBzxMk3PvM3fMbuD61kz0RkQ5J92CJiDTfqpj3g4BvmNkpMetSgNfrKb8i3J5du1IzOwm4maAHJQJ0Aj4KNw8g6C2qbVBY37ogP4Bw31V1lI1tKwf4HUEC1yXcZ0utYn8GngEuCxMGCHq8Vuwq4O5RM1tF0NOzy/qY9zvDfeLtkdr3YJnZBcAPgLxwVSZ1nGd3f83M7gTuAgaZ2RMEPY/pBOd8bsy5NKDB4Za11Jx3dy82syKC419lZtcSJMr9ACfoqcyua9/weIYSJL7jw7iSgbm12tsQ8760juU+exG7iIjsA/VgiYg0n8e8X0XQQxX7l/3O7v7LmDIDYt4PJOhB2RRboZmlAY8T9AjluHt3goRq1zf9VcCQOmJZBZQD2THtd3X3UY0cw/+ExzHG3bsS9MR9kVWYZQK/Be4FptsX942tJUjqdpWz8PjWNNLeHiyYIry4gdeUxmupqWsQQUJ4JZAVnr+PY48plrvf4e6HAiMJEtrrCK5JKTAq5lx2c/fMvTismmsdnsOewNrwWK4nGI7YI4xvW634Yn+uAP4IfAIcFF6jG+s7npZiwb129V2fu/dnLCIirZUSLBGR+HoQOMXMTjCzJDNLDycOyI0pc56ZjQzvZ/o58Ji7V9eqJ5VgyFghUBX2Zh0fs/1e4GIzO87MImbW38yGu/s6gqGEvzazruG2IWZWeyhZbV2AYmCbmfUnSDBi/Q6Y4+6XEtxjtuvL9CPA18I4UoBrCBK8/zR2omoLpwjPbOD15l5U15kgQSmEYMIQgnuQ9mBmE8zssDD+EoKJGKLuHiVI0m43s95h2f5mdkLMvm4xk5jU4avhvWWpBPdivePuqwjOd1UYX7KZ3UTQg9WQLsB2oNjMhgNXNFI+7tx9VAPX5/L69jOz1PD+MgNSws+FvoOISLukX24iInEUfnmeStC7UEjQo3Qdu/++fYBgIor1BMPQvldHPTvC9Y8QDNX7JsHwvF3b3yOc+IKg5+PffNGTdAFBgrYo3PcxgvumGvIz4JCwrmeBJ3ZtMLOpBJNU7PpC/wPgEDM7190/Jejt+j1Bj88pwCnuXtFIey3K3RcBvwbeJhgmNwZ4q57iXQkSqS0Ewx03A78Kt/2Q4N6zdyyYze8VwvukwnupdvDFsM26/INgmGcRweQTu4Yxvgi8AHwWtllGI8M4CYYtfjNs888E0563FS8R9AZ+iWDijVKCiUVERNodc689AkFERFqKmc0CHnT3vyQ6FmkeMzuPYPjgj+rZfh+w2t1/sl8DExGRhNIkFyIiIvvA3R9MdAwiItL6aIigiEgHYcFDbzU5QQdnZjfW83PwfKJjExFpDzREUEREREREJE7UgyUiIiIiIhInreoerOzsbM/Ly0t0GCIiIiIiIg2aO3fuJnfvVXt9q0qw8vLymDNnTqLDEBERERERaZCZrahrvYYIioiIiIiIxIkSLBERERERkThRgiUiUo/qqGZZFRERkb3Tqu7BqktlZSWrV6+mrKws0aFIG5Oenk5ubi4pKSmJDkXaoMcf+TvjFt9Kr6vfpEvXHokOR0RERNqIVp9grV69mi5dupCXl4eZJTocaSPcnc2bN7N69WoGDx6c6HCkDTpi4U30sS28//6rTDjuzESHIyIiIm1Eqx8iWFZWRlZWlpIr2StmRlZWlno+ZZ94NEongp+dypWa2VRERESartUnWICSK9kn+rmRfbVt+za6WikAmZsXJDgaERERaUvaRIIlIrI/lZQU17zPLF2TwEhERESkrVGC1QRmxjXXXFOzfNtttzF9+vTEBRTjnXfe4bDDDmPs2LGMGDGiJq5Zs2bxn//8Z5/rXbFiBYcccghjx45l1KhR3H333XGKWKT1Kw4TrHJSyaoqxF2zCYqIiEjTtPpJLlqDtLQ0nnjiCX70ox+RnZ0dt3rdHXcnEtn3PPfCCy/kkUce4eCDD6a6uppPP/0UCBKszMxMvvSlL+1TvX379uXtt98mLS2N4uJiRo8ezamnnkq/fv32OVaRtqJsZ5BgbUgZwMDKZRRtKaJnz6wERyUiIiJtgXqwmiA5OZnLLruM22+/fY9thYWFnHHGGUyYMIEJEybw1ltvATB9+nRuu+22mnKjR4+moKCAgoIChg0bxgUXXMDo0aNZtWoV1113HaNHj2bMmDHMnDkTCBKko48+mjPPPJPhw4dz7rnn1vlX9I0bN9K3b18AkpKSGDlyJAUFBdx9993cfvvtjB07ljfffLPBOM8//3wOP/xwDjroIP785z8DkJqaSlpaGgDl5eVEo9E6z80dd9zByJEjyc/P5+yzzwagqKiI0047jfz8fCZNmsSCBQtq2rrwwguZMmUKgwYN4oknnuD6669nzJgxnHjiiVRWVgLw85//nAkTJjB69Gguu+yyPY47Go2Sl5fH1q1ba9YddNBBbNiwoaHLKNJkpTtLACjpEsxAuXnNskSGIyIiIm1Im+rB+tk/F7Jo7fa41jmyX1duPmVUo+W+853vkJ+fz/XXX7/b+u9///tcffXVTJ48mZUrV3LCCSewePHiButasmQJ999/P5MmTeLxxx9n/vz5fPjhh2zatIkJEyZw5JFHAvDBBx+wcOFC+vXrxxFHHMFbb73F5MmTd6vr6quvZtiwYRx99NGceOKJXHjhheTl5XH55ZeTmZnJtddeC8A3v/nNeuNcsGAB77zzDiUlJYwbN46vfe1r9OvXj1WrVvG1r32NpUuX8qtf/arO3qtf/vKXLF++nLS0tJqE5+abb2bcuHE89dRTvPbaa1xwwQXMnz8fgGXLlvH666+zaNEiDj/8cB5//HFuvfVWTj/9dJ599llOO+00rrzySm666SYAzj//fP71r39xyimn1LQZiUSYOnUqTz75JBdffDHvvvsugwYNIicnp9HrKNIUZaVBgmXZB0HRKxRvXA5MTGxQIiIi0iaoB6uJunbtygUXXMAdd9yx2/pXXnmFK6+8krFjx3Lqqaeyfft2iouL66klMGjQICZNmgTA7NmzOeecc0hKSiInJ4ejjjqK999/H4CJEyeSm5tLJBJh7NixFBQU7FHXTTfdxJw5czj++OP5xz/+wYknnlhnmw3FOXXqVDIyMsjOzuaYY47hvffeA2DAgAEsWLCApUuXcv/999fZQ5Sfn8+5557Lgw8+SHJycs0xnX/++QAce+yxbN68me3bg8T4pJNOIiUlhTFjxlBdXV0T75gxY2qO7/XXX+ewww5jzJgxvPbaayxcuHCPdqdNm1bT2/fwww8zbdq0Bs+5yN6oKNsJQGb/4QCUb16RyHBERESkDWlTPVhN6WlqSVdddRWHHHIIF198cc26aDTKO++8Q3p6+m5lk5OTdxtWF/s8ps6dOzepvV1D9CAY/ldVVVVnuSFDhnDFFVfwrW99i169erF58+Y9ytQXJ+w5nXnt5X79+jF69GjefPNNzjxz9weuPvvss7zxxhv885//5JZbbuGjjz5q0jFFIhFSUlJq2opEIlRVVVFWVsa3v/1t5syZw4ABA5g+fXqdz7I6/PDDWbp0KYWFhTz11FP85Cc/abBdkb0RrQgSrO79hlLpSUS3rk5wRCIiItJWqAdrL/Ts2ZOzzjqLe++9t2bd8ccfz+9///ua5V1D4fLy8pg3bx4A8+bNY/ny5XXWOWXKFGbOnEl1dTWFhYW88cYbTJzY9KFIzz77bM09SkuWLCEpKYnu3bvTpUsXduzY0WicAE8//TRlZWVs3ryZWbNmMWHCBFavXk1pafAcoC1btjB79myGDRu2W9vRaJRVq1ZxzDHH8H//939s27aN4uJipkyZwkMPPQQE95JlZ2fTtWvXJh3PrmQqOzub4uJiHnvssTrLmRmnn346P/jBDxgxYgRZWZqAQOLHK4Ofw9ROmWyKZJGyQ1O1i4iISNM0O8EyswFm9rqZLTKzhWb2/XB9TzN72cyWhP/2aH64iXfNNdewadOmmuU77riDOXPmkJ+fz8iRI2umMz/jjDMoKipi1KhR3HnnnQwdOrTO+k4//XTy8/M5+OCDOfbYY7n11lvp06dPk+N54IEHGDZsGGPHjuX888/noYceIikpiVNOOYUnn3yyZpKL+uKEYJjfMcccw6RJk/jpT39Kv379WLx4MYcddhgHH3wwRx11FNdeey1jxowB4NJLL2XOnDlUV1dz3nnnMWbMGMaNG8f3vvc9unfvzvTp05k7dy75+fnccMMN3H///U0+nu7du/Otb32L0aNHc8IJJzBhwoSabXffffducU+bNo0HH3xQwwMl/iqDPy6kpHWiKCWHzLJ1CQ5IRERE2gpr7vNdzKwv0Nfd55lZF2AucBpwEVDk7r80sxuAHu7+w4bqGj9+vM+ZM2e3dYsXL2bEiBHNilHqN3369N0mw2hv9PMj++K5+/6Xrxb8Eq5exPt/vYqB2+eRc7NmEhQREZEvmNlcdx9fe32ze7DcfZ27zwvf7wAWA/2BqcCurov7CZIuEZFWz6rC+/5SMqjs3JesaBHR6urEBiUiIiJtQlwnuTCzPGAc8C6Q4+67xtWsB+qcQ9vMLgMuAxg4cGA8w5EmmD59eqJDEGl9diVYyelEuvYjeW2UzZvWkJWj31EiIiLSsLhNcmFmmcDjwFXuvtvDqjwYh1jnWER3v8fdx7v7+F69esUrHBGRfRaJSbBSe+QCsGWdpmoXERGRxsUlwTKzFILk6iF3fyJcvSG8P2vXfVob49GWiEhLs+oyKkiBSITMXkGCVbxJU7WLiIhI4+Ixi6AB9wKL3f03MZueAS4M318IPN3ctkRE9oek6jLKLRWAHjmDACgvUoIlIiIijYvHPVhHAOcDH5nZ/HDdjcAvgUfM7L+AFcBZcWhLRKTFJVWXUWnBQ7F75uRS7UZ0m6ZqFxERkcbFYxbB2e5u7p7v7mPD13Puvtndj3P3g9z9y+5eFI+AE+Wpp57CzPjkk0/qLVNQ8P/bu/f4qq863/+vz9472bmSCwRCEi7hfgu3BoqlF+j0QrWK2mqZnx2lOHZGq572nNGZ6linneM81J7j/Jxp1aNWGbVCb47Fn73aWmvPtKVQKNdCgQYIBAi5X/d1/f7Ym5AEwi072bm8n49HHnt/13d91/eTfPmG/cla37UqmDNnTsLOuWfPHpYtW8b8+fOZOXMmd955JxBbJPiZZ5655Hbb29tZvHgx8+bNY/bs2Xzzm99MVMgiQ4I3EiAYT7C8vhRqLRdPixIsEREROb+ETXIx1K1bt44rr7ySdevWnXV/OBzu9Tki3aaB/vKXv8w999zD1q1b2b17N1/60peA3idYfr+fl19+mXfeeYetW7fy3HPP8cYbb/QqdpGhxBdtJ+Txd2zX+0aR3qbHSEVEROT8lGBdgObmZl577TUeeeQR1q9f31H+yiuvcNVVV/GRj3yEWbNmAbFE61Of+hQzZ87k1ltvpbW1FYCXXnqJBQsWUFZWxpo1awgEAgBMnDiRv//7v2fhwoU88cQTXc5bVVVFSUlJx3ZZWRnBYJD77ruPxx57jPnz5/PYY4/R0tLCmjVrWLx4MQsWLODpp2OPu61du5aVK1eybNkypk6dyv333w+AmZGVlQVAKBQiFAoRe5SuqyeeeII5c+Ywb948rr76aiDW+3XHHXdQVlbGggUL+OMf/9hxro9+9KNcf/31TJw4kYceeojvfe97LFiwgCVLllBbG+vA/MlPfsKiRYuYN28et9xyS8fPp7MlS5awc+fOju1ly5bRfQFqkb7kiwYId0qwWv0FZIWqkxiRiIiIDBYJXQerzz37D3Bse2LbLCyDm759zipPP/00K1asYNq0aYwcOZLNmzdz2WWXAfD222+zY8cOSktLqaioYM+ePTzyyCMsXbqUNWvW8IMf/IAvfvGLrF69mpdeeolp06bx6U9/mh/+8IfcfffdAIwcOZK33377jPPec889XHvttVxxxRXccMMN3HHHHeTm5vLAAw+wadMmHnroIQC+9rWvce211/Kzn/2M+vp6Fi9ezHXXXQfAxo0b2bFjBxkZGSxatIgPfehDlJeXE4lEuOyyy9i3bx933XUXl19++Rnnf+CBB3j++ecpLi6mvr4egIcffhgzY/v27bz77rvccMMN7N27F4AdO3awZcsW2tvbmTJlCt/5znfYsmUL99xzD7/4xS+4++67+fjHP87nPvc5AP7xH/+RRx55pKNn7pTbbruNxx9/nPvvv5+qqiqqqqooLz9jkWyRPpMSDRJJSevYDmaMIb95WxIjEhERkcFCPVgXYN26daxatQqAVatWdRkmuHjxYkpLSzu2x40bx9KlSwG4/fbbee2119izZw+lpaVMmzYNgM985jO8+uqrHcfcdtttZz3vHXfcwe7du/nEJz7BK6+8wpIlSzp6vjp74YUX+Pa3v838+fNZtmwZ7e3tHDp0CIDrr7+ekSNHkp6ezsc//nFee+01ALxeL1u3bqWysrIjCetu6dKlrF69mp/85Ccdwxdfe+01br/9dgBmzJjBhAkTOhKs5cuXk52dTUFBATk5OXz4wx8GYj1vFRUVQCwJu+qqqygrK+PRRx/t0lN1yic/+UmefPJJAB5//HFuvfXWs/58RPpKigsQ8Z7uwXJZY8m1Zpqam5IYlYiIiAwGg6sH6zw9TX2htraWl19+me3bt2NmRCIRzIwHH3wQgMzMzC71uw+1O9vQu+66t9FZUVERa9asYc2aNcyZM+esiZBzjqeeeorp06d3KX/zzTfPG09ubi7Lly/nueeeO2OCjh/96Ee8+eab/P73v+eyyy5j8+bN5/w+/P7TH0g9Hk/Htsfj6XhGbfXq1fz2t79l3rx5rF27lldeeeWMdoqLixk5ciTbtm3jscce40c/+tE5zyuSaKkuQKhTgpWSWwRATdVBsqcmbiIbERERGXrUg3UeTz75JH/1V3/FwYMHqaio4PDhw5SWlvLnP//5rPUPHTrE66+/DsCvf/1rrrzySqZPn05FRQX79u0D4Je//CXXXHPNec/93HPPEQqFADh27Bg1NTUUFxeTnZ1NU9Ppv6TfeOON/Pu//zvOOQC2bNnSse/FF1+ktraWtrY2fvvb37J06VKqq6s7hvy1tbXx4osvMmPGjDPOv3//fi6//HIeeOABCgoKOHz4MFdddRWPPvooAHv37uXQoUNnJHbn0tTUxNixYwmFQh3tnM1tt93Gd7/7XRoaGpg7d+4Fty+SCKkuSNR7eohg+shxADSe0FpYIiIicm5KsM5j3bp1fOxjH+tSdsstt/Q4m+D06dN5+OGHmTlzJnV1dXz+858nLS2Nn//853ziE5+grKwMj8fD3/7t35733C+88ELHJBM33ngjDz74IIWFhSxfvpxdu3Z1THLxjW98g1AoxNy5c5k9ezbf+MY3OtpYvHgxt9xyC3PnzuWWW26hvLycqqoqli9fzty5c1m0aBHXX389N998MwD33XcfGzZsAOArX/kKZWVlzJkzhyuuuIJ58+bxhS98gWg0SllZGbfddhtr167t0nN1Pv/8z//M5ZdfztKlS7skdRs2bOC+++7r2L711ltZv349n/yklk+T/uena4KVM3o8AC01h5IVkoiIiAwSdqrXYyAoLy933WeL2717NzNnzkxSRIPb2rVru0yGMRzp349crEjU0Xh/CYeKbmLe3/wUgPbGGtK+N4nXJt3NlZ++P8kRioiIyEBgZpudc2fMxKYeLBGRToLhKGkEcb7TPVhp2fm0kYprOpbEyERERGQwGFyTXMhFWb16NatXr052GCKDSiAUJteC4Es/XWhGnWckqa3HkxeYiIiIDAqDogdrIA1jlMFD/27kUgQCbbE3KeldyptSCsgIaLFhERERObcBn2ClpaVRU1OjD8tyUZxz1NTUkJaWdv7KIp0E21pjb1K6/ttpSx9NbvhkEiISERGRwaTPhwia2Qrg+4AX+Klz7qIWsyopKaGyspLqav3lWC5OWloaJSUlyQ5DBplQoAUAT7cerGhmIQV1fyIQCuNP0ehqERERObs+/ZRgZl7gYeB6oBJ4y8w2OOd2XWgbKSkplJaW9lWIIiJdhAOxHixPatcEyzOiiDQLUVl9gpKiomSEJiIiIoNAXw8RXAzsc84dcM4FgfXAyj4+p4jIJQv1kGD584sBqD9+sN9jEhERkcGjrxOsYuBwp+3KeFkHM7vTzDaZ2SYNAxSRZAu3xya58HZLsDILxgHQXF3Z7zGJiIjI4JH0SS6ccz92zpU758oLCgqSHY6IDHORYKwHy+vP6FKeVzgBgECtEiwRERHpWV8nWEeAcZ22S+JlIiIDUiQ+RNCX2jXByhoZ63yPNlb1e0wiIiIyePR1gvUWMNXMSs0sFVgFbOjjc4qIXLJoKDZE0NetB8tS0mmwbLwtSrBERESkZ306i6BzLmxmXwSeJzZN+8+cczv78pwiIr0RDcYSrNS0jDP2NXhHkdZ+or9DEhERkUGkzxdzcc49AzzT1+cREUkEF+/BSvGfmWC1+AvIbtViwyIiItKzpE9yISIykLhQOwCp6Zln7AtlFJIfPUk06vo7LBERERkklGCJiHQW6nmIoMsuZBQNnGxq6e+oREREZJBQgiUi0okLx3qwuk9yAeDLG4/XHLVVh/o7LBERERkklGCJiHRi4TZCzot5U87Yl14QWwur8diB/g5LREREBgklWCIinVi4nYClnnVfzthJAARrKvoxIhERERlMlGCJiHTiCQcIcvYEK68wlmBF6w/3Z0giIiIyiCjBEhHpxBPpuQfL48+gjhGkNB3p56hERERksFCCJSLSiTfaTsj8Pe6v8Y0ho+1oP0YkIiIig4kSLBGRTryRwDkTrKa0seSGjvdjRCIiIjKYKMESEenEF20n6Ok5wQpkFFEQqcZFo/0YlYiIiAwWSrBERDrxRYOEz5FgRXPGkWEBmutP9GNUIiIiMlgowRIR6cQXDRDxpvW8P388ALVH9/dXSCIiIjKI9CrBMrMHzexdM9tmZv9pZrmd9t1rZvvMbI+Z3djrSEVE+kFKNIA7R4KVNXoioMWGRURE5Ox624P1IjDHOTcX2AvcC2Bms4BVwGxgBfADM/P28lwiIn0uxQWI+npOsEaVTAGgvfpgf4UkIiIig0ivEizn3AvOuXB88w2gJP5+JbDeORdwzr0P7AMW9+ZcIiL9IcO14VIyetw/alQhLc6P02LDIiIichaJfAZrDfBs/H0x0PnTR2W87AxmdqeZbTKzTdXV1QkMR0Tk4kQiUTJoI5qa3WMdj9fDSW8BKc2V/RiZiIiIDBbnTbDM7A9mtuMsXys71fk6EAYevdgAnHM/ds6VO+fKCwoKLvZwEZGEaW1rIdUikJp1znoNqWPJaj/WT1GJiIjIYOI7XwXn3HXn2m9mq4Gbgb9wzrl48RFgXKdqJfEyEZEBq625gWzA0nruwQJozyxiXM27/ROUiIiIDCq9nUVwBfBV4CPOudZOuzYAq8zMb2alwFRgY2/OJSLS19qbGwDw+Eecu2LuBPJooqGuth+iEhERkcGkt89gPQRkAy+a2VYz+xGAc24n8DiwC3gOuMs5F+nluURE+lSwNZZgedPP3YOVOqoUgBOV7/V5TCIiIjK4nHeI4Lk456acY9+3gG/1pn0Rkf4UbIklWCnp5+7Byi6cDEDj0X1QdnmfxyUiIiKDRyJnERQRGdRCbY0ApGTmnLPe6AnTAAic1GLDIiIi0pUSLBGRuHA8wfJnnKcHK6+QVvxQp8WGRUREpCslWCIicZG2JgBSz9ODhRknvIWktWgtLBEREelKCZaISFw4nmBlj8g7b93GtCJyAlV9HZKIiIgMMkqwRETiou2xSS4ys84zTTsQzCphTOQ40Ui0r8MSERGRQUQJlohInLetlgayMO8FTLCaN5Esa6O6+ljfByYiIiKDhhIsEZG4lEAtjZ7zPH8Vl1YQWwvrZOXevgxJREREBhklWCIicWmhOpq9uRdUN7cotgxg07H9fRiRiIiIDDZKsERE4jLD9bSnnn+CC4CCcbG1sEInK/owIhERERlslGCJiMSNiDYQ9OdfUF1/Vh4NZOFpONTHUYmIiMhgogRLRASIRiLkuCYi6SMv+JgaXyEZrVoLS0RERE5LWIJlZv/DzJyZjYpvm5n9m5ntM7NtZrYwUecSEUm0mpPH8VmUlOyCCz6mKb2YvKDWwhIREZHTEpJgmdk44Aag81iZm4Cp8a87gR8m4lwiIn3hZFUFAP684gs+JpRdQmH0BIFQuI+iEhERkcEmUT1Y/wp8FXCdylYCv3AxbwC5ZjY2QecTEUmoluPvA5A1pvSCj/HmTyTNQhw/quewREREJKbXCZaZrQSOOOfe6barGDjcabsyXiYiMuAEaw4CMLJ48gUfkzEmVrem8r0+iUlEREQGH9+FVDKzPwCFZ9n1deBrxIYHXhIzu5PYEELGjx9/qc2IiPROw2HaXQojRhZd8CG5xbG1sNpOHOirqERERGSQuaAEyzl33dnKzawMKAXeMTOAEuBtM1sMHAHGdapeEi/r3vaPgR8DlJeXu+77RUT6g7/lCNWeAsZ5Lrxjf2RRrAcrUlvRR1GJiIjIYNOrIYLOue3OudHOuYnOuYnEhgEudM4dAzYAn47PJrgEaHDOabotERmQcloPU592caOYfWlZ1JBLSuPh81cWERGRYeGCerAu0TPAB4F9QCtwRx+eS0TkkoVDIUoih9mWs+Sij61JKSSz7YzOeRERERmmEppgxXuxTr13wF2JbF9EpC8cPbiX8RbCM2bGRR/blF7M2KYdfRCViIiIDEYJW2hYRGSwOvl+bBLUnHGzL/rYYPY4CqIniYRDiQ5LREREBiElWCIy7LUd2krUGcXTL7voYy1vPCkWoabq/T6ITERERAYbJVgiMuz5q7dxxFtMRnbeRR+bXjAJgLrKfYkOS0RERAahvpzkQkRkwItEHSVtezmet6DLuhIXKqcothZW64n9iQ1sgGkPhjlaWUFt1fs0150gYj78WXkUTJrL1OIxeDyW7BBFREQGBCVYIjKsVRzYy2Sr4XjxxQ8PBBhdMpmIM8K1BxMcWXIFQ2F2bX6Vum3PkVu9kfHB/UyyRiZ1qxd52XjHM4MjEz7GBz72BUbmZCclXhERkYFCCZaIDGtVO//EZGDUrGsu6fiM9AyqLB/vEFgLq6Gxkd2vPoX33Q1MaXqL+dYEwEFfKUdGX8PRwjmkj5lCTv4YPC5Ma/0JWio2UVjxPAsq/oXD3/spGxf8EytW/j/EF58XEREZdpRgiciw5g6+SRupFE1fdMlt1PlGk956LIFR9Z/21mZ2vfobwjt+w+ym/2KJBahlBO/nL6Vy2vVMWXIzE/IKz3rsSIClt4H7Lkc3bcD3/Ne5aesXePb9V7nic98nJyutX7+Xi+GcIxx1+DymZFBERBJKCZaIDGuj67dy0D+DGb7US26j2V9IcdvuBEbVtyKRCLv+6/cEN/2KGfV/YqG1U8cIdhfcRE75J5lcfgMLfSkX3qAZRYtW4ubfwLtrv8hNR9az8V/3UPTX6ykZe/bkrC9FIxGqDmzn2L6ttB1/j5T698lqPUxGqJ5M10S2a8GDI4yHVnw0Wya13gKa/QWEcybiK5pHwdTLGD95Nqkp+m9SREQujv7nEJFhq6G+nsmRA7xT/JletRPMKmJU82u4aATzeBMUXeJV7N3O4T8+wpSq31HGSRpdBtvzriNz4SeZdcUHKb+YpOosLCWdGZ97hAPPLWTBG9/g4P+5nj1/+RjTp89K0HdwdqGmkxzc/Dz1771OevU7TAi8R7G1URzfX0MuJ1LG0pA5gVp/DqGUEXi8PnxEiYSDeNvryAycYGL7HgpaXsVXFYXN0OTSeTd1Ko35c0kdX07R7CsoHj8V8/TBBLzRKO0Nx6k7fpjmk4dprz1KuLGKaHM10fZmCDaTEm0jNdJGigvgnMM5wGI9cEFLI+hJI+TNIJqSgaVmgT8bT3oOvowcUjNz8GflkZaVR0Z2HhkjYu8tNRN62YPnIiEC7a0E29sItrcSCrQRCrQSDLQTDrYRDrQRCbURCbYTCbXjoq5bC6fPbx4wjw+Px4t5vHi9Xswb2/Z4fXg8HjxeL15vSuzV48Xjje3zen14vd74qw+Pz4vP68Pj9eLMizPD4QWPF0d8OxrFuSi4CNGog/h2rCyKi0Zi29HYNs7F9kWjOE6Xu2gEnIu9dw6HwznDQezLGRg4LP79xr9nT+y9mXVcBzPPmWUYFq9LR7nFTomRmp5JwdjxvbqOIpI4SrBEZNh6f9ufmW9RMiYv7VU7npwS/MdDNNRUkVNQkqDoEqO1pYkdL6wla9d6ZoV2MN4ZuzLKOVZ2LzOXrWJJRlbCzzlpxV1UFkyi8HdraP31B9m04ueUf2B5wtp3oTYqt71C3bbnGVH1fxkfeI8p5gg4HwdTJrGjYAVWtJD8SQsZN2U2I7PyYsMZL0Ak0Mrh97ZQs38T0SNbyanbzoxj60g9/it4C2rIoTJ9Bm0F8/AXzyFnzERyCyeSnV9ISqq/U5AOFwnS1tpMU101LTVHCNQfI1BfRbjxONZ8nNS2ajKC1eSEa8h19aQRZWy3eBpdBq2WQdCTTsCTTtCTTqs3FzMPHosnWS6KLxogN1JLaugI/rY20l0bGa4dj3VPZrqK9eJl0GIZtHkyCZqf2If72Ad3I5YgeKNBUtyprxCpBGNfLoTPoqQBA3dA6PCw+4NPMXPxdckOQ0RQgiUiw1jzvv8CYPz8Zb1qxz9yAgAnjxwYMAlWxd5tVL74MGUnfsdia+GQp5iNk77ElOs/y5yxpX1+/pLLbuJk3rO4X93KzOdu47WTD3Llhy+xpzAa5eS+TVRteZbUQ39iQst2xhGk0HnZ5Z3By2M/S9aMa5l52TKmZWf2Km6vP4Nxc5Yybs7ppDscaOPA7o3U7H0DO/o2BY07KTu4Ec+hrslLxBlBSyWK4XdBfBYlA8g4y3lq3AjqvPk0+kZyPHsy4fTRkF2IL2csafnFZI8qIW9MCfkjRjDiEqfAj0Qi1DfW0VRfS0tjHa1NtQSa64i0NRBta4RAIxZoxBNswhdqJjXcHO8dA4gnb4DHHAFfFhGPn4jHT9SbStSbhvP6cT4/eP2Qkob50vCk+LGUNLyp6Xjjr77UNHz+dFL86aSkpuHxdP7o0fVnGI1GiEQisddwmGgk3LEdjYRjr+EI0Wg4vh3rPYpEwrh4HeeiuEisjotGcJEIHhweopiL4CGKx0UxHC7WZYaZdbyHTu87vqxjH55Ya133eU/XMcMDmLlOfVWn3js6+rUcOFy85+tUmev4uTgXq+tcp/J475jF6xpANEz5tn+ifscLoARLZEBQgiUiw1bWiU0c8oxjfG5Br9rJLpwIQNPxCuDqXsd1qaLhMNtfeQI2/ZR57Zsodl52jLiatCvuZMblKxjfF0PbzmHUpPk0f+GPHP8/H+fKzV/m9X3PMfUvv8OowvMMZXKO5qO7Obz5BaIH/kRJw1uMck2MAvYxntfzVuKdspzJ5Tcwb0zvrt2F8PnTmTT/GibNPz3TZFNDLccrdlN7rIJo/RFcaw3hYDueSAAPUcLedCLeNFL8GXgz8/CNKCQ1p5ARBUWMLCgiPyOdkX08uYbX6yU3bxS5eaP69DySfPt3riX7xFvJDkNE4nqdYJnZl4C7gAjwe+fcV+Pl9wKfjZd/2Tn3fG/PJSKSKNFIlAntu9mffzW9fXJhVFFsdahATXLWwmptbWHL737IuHcfYZ47ygnyeXPC3zDtg19kwZjkPpeRNWoc/r97lY3/8RUWHXmU0A//wNu51+Cffh25JdPJGpFHoK2Z5urDtB3ZCce3M6ZhG6NcLTOBYy6fbVlLCE+4huKFK5gyaQpTBsCixtk5+WTPWwrzeje8VCQRjucuYF7tM0TDITy9fJZSRHqvVwmWmS0HVgLznHMBMxsdL58FrAJmA0XAH8xsmnMu0tuARUQS4dD+HUykCSsp73VbeSPH0Or8uIbKBER24Rrra9jx9L8y9f1fspR69vumsHnB/2bu9X/F6M7PAyVZij+dxXc+xKH37uTI77/LrLqXydn4Imw8XWd0/PWgK+S9jLlsLfoAI+dcx6w587lKM/mJnJNNWEJm7W94f/dGSsuU9IskW2//1/o88G3nXADAOXciXr4SWB8vf9/M9gGLgdd7eT4RkYQ4vuv/MhEomNH7DyPm8XDSO4qU5qO9butC1NbVsvupf2Fu5a+4gjZ2pC2k9ur/zvQP3NzrGeH60vipcxl/969oDwTZvvNtGo5XEGxrxOfPwJ9TSEHpHMYXjmaCt3+HMooMdqULr4MtcGzby0qwRAaA3iZY04CrzOxbQDvwd865t4Bi4I1O9SrjZWcwszuBOwHGj9cUoyLSP6KVm2h1fkqmLUxIew2pY8gO9O1iw03NzWx66nvMPfATllojWzKvJPuGe5kz78o+PW+ipflTKVu4BFiS7FBEhoTCcZM57Ckm69BLwDeSHY7IsHfeBMvM/gCcbaXIr8ePzyf2v+Qi4HEzm3QxATjnfgz8GKC8vPzc88mKiCRIfv02DvqnMTNBzyu0ZpQwrvaPCWmru0AwyOtP/5ipO7/Pck6wJ2MBLTc9wIK5yZtQQ0QGlsOjr2VR1a9pbThJRo4mNhFJpvMmWM65Huf8NLPPA79xzjlgo5lFgVHAEWBcp6ol8TIRkaRrb2ulNHSALUWrEtZmJGciubVNtDXWkT4iLzFtRqK8/vw6Ct/6DsvcQSpSpnDgL/430y//8IAeCigi/S97/kdJOfZLdvz5KRbc/DfJDkdkWOvtQPffAssBzGwakAqcBDYAq8zMb2alwFS6PM4sIpI8FTvfINXC+CcuTlibvoLJAJw4tLvXbTnneOvVZ9j9L0u5cuMXyLAQ7y79PhPvfYtJSz6i5EpEzjBr0XJOkovbtSHZoYgMe719ButnwM/MbAcQBD4T783aaWaPA7uAMHDXYJxBsKHuJI01VXg8Hsy8mMcwjxePx4vHPOCNvXo8XszjxbwePJ5TX17M44nV6+L04o2xzdiigV1quG4jJbtvX2IbZ7RyRrsDUJ/G2Lu2B8FPT3pQv/sVAIrnXJWwNvNLpsNGqD28hwlzrrjkdnZufZ22Z7/JosCb1Fge2+f/E7M/dBdFKakJi1VEhh6v18t7o2+i/Pjj1B47SH7hhGSHNHBFo0QjIYKhEIFAkEgkRDQSBhfBRcK4SCi2iHUkBNEIDog6iLpTCz/Ht08tBN3F6T+Adf5bmMU3LN634cxiNTvKTx9kdnpp6lN7rGN5CsNOLV8drwvd2rKudV338s77O8fo8ZyOpIe2upd3+XNf57bO8nM4XeI6tdvV6bpdGgPzkp45glTf4JgEqVcJlnMuCNzew75vAd/qTfvJ9u4Lj3D57n9JdhgikmBLgBPkM7r4oh4ZPafiSbOJOiNQdWk9WBX73+Xof/4jS5r+QIuls3Xal5n9sa8yMj07YTGKyNA29rovkPLrdex79iEW3/FgssNJmEgkQkPNcZpqqmhtqiXQXEe4tZ5wawOuvQHaG/AEGvGFmvCFW/FGA/ii7aREg6REA6S4AKkuiJ8gfhcgxSJ4gLT4lwx8r0Tm0fyJ9dw8tyjZoVwQLS5yDkULV7ApPQfnouCisddo7D0u0mX7VB2cg2gk9uqiOBc5y3Ae65KZu7Mm8d0Kzc4o67zV8ZeQM47pVIcz6yRqoJHr0yFLfde268O2ZWDLm3J5x9pLiZCeNYJDnrGk1+66qOOqqw6x96kHKK/+T8ZibBl3OzNvvY/5uYmMTkSGg4nT5vJO2iImH3yc1uavk5GVm+yQzikYDFJTVUHD8QraqysI1VfimqrxtFaTGqghM1TLiGg9ea6RfIuS30M7Ieel2TJosUzaPRmELZWQJ402XzYRj5+I10/Um0bUl4bzpeG8aXi8Pjy+lNirx4szL87jA48PzAMeH1GPDzMPFu8pMot/grNYD05HX8qpjxI9DG053cvV6dV12u603zmwjnFJ3fY7h9G9LvHaZ9btGlO8RRftCNnB6facix/T6Zs4W9ydyl28he7fe7cxVWeWOTo+o3buAXRnvDn9NpxezKyxIxgslGCdw7ip8xg3dV6ywxCRQeJ4xlRKWi6sB6ux9gS7n/yflB1Zz+WE2DbqQ5Te+s9cNra0j6MUkaEs9dq/Z+Qzt7Jp/X2U//W/JTWWaNRx7NgRqt/fQfuxd+HkPnzNR8hoqyIvfIICV8tYc4ztdEyr81PvyaXZl0tzehF1/jL2ZxRgmaPwZo8mNSsff1YuaVn5ZI7IJzMnn7T0TPI8HhIzvZBI7ynBEhFJkGjhPMbu/xMnjx5kVNHZn3+or6th12++TdmhX7KIdjaP+AuKVn6ThVPm9nO0IjIUzVx8PW/8+UYWHv4V+7feyuT5fb+cQyAY4GjFHmoqdtBW9S6+2vcY0VLB2NBhiqyJU4O6gs7HCc8oGlLHcCR7EYeyirHcElJHTiBr9ETyxpaSl5tHhibykUHOBtJEB+Xl5W7Tpk3JDkNE5JLs3fYG035zI5vLvsllt/z3LvtOHjvEvt/9L2ZVPsEIa40tEnzTN5kyJ3EzGYqIANRVH6Xt4WtIo52mVU8zYUZiFlRvbKjl6P7tNBzaSfjEHvz1+xnZfpCiyFH8Fu6oV0sO1f7xtGRPglFTSS+aSe742RQUT8GXkpi1B0UGAjPb7JwrP6NcCZaISGJEI1GO/M/ZhD2pFH/lDXwpfvZseoHG/1rLgvoX8RFha/bV5N34VUrLrkx2uCIyhB14dyu56z9MmguwY/qXKFt5N+mZ5580JxQMcOzQe9Qe3k3bsb1YzT4ymw4wOnCI0dR21As7D1XesdSmTyCYMxnfmOmMGDeboslzSddCxzJMKMESEekHbz37Cxa9+SVOkE8qQXJpptX52VnwQQpX/B3jpsxJdogiMkxUVR7g5C8/S1ngbVqdn33pc2nJnghZo/GYBxeN4gnU4W2tITVQTV6gijHRE6TY6ZV1Gl0GVSnjaMwqJZI/lbSxMxg1YQ6FE2fgS9UcfDK8KcESEeknm5/7BbbjCYIpOaROWsq0ZX9JVnZussMSkWHIOceuN1+g6a11jKnbwujoMTJp79jf7lKos1yafHk0p40lmFOKd9QUsoumUTBxFvkFxfH1kUSkOyVYIiIiIsOdc7S1thAFUrweUlLTlECJXKKeEizNIigiIiIyXJiRnpmV7ChEhjT9yUJERERERCRBlGCJiIiIiIgkiBIsERERERGRBBlQk1yYWTVwMNlxdDMKOJnsIKTf6HoPH7rWw4eu9fCi6z186FoPLwPxek9wzhV0LxxQCdZAZGabzjY7iAxNut7Dh6718KFrPbzoeg8futbDy2C63hoiKCIiIiIikiBKsERERERERBJECdb5/TjZAUi/0vUePnSthw9d6+FF13v40LUeXgbN9dYzWCIiIiIiIgmiHiwREREREZEEUYIlIiIiIiKSIEqwzsHMVpjZHjPbZ2b/kOx4JHHMbJyZ/dHMdpnZTjP7b/HyfDN70czei7/mJTtWSQwz85rZFjP7/+LbpWb2Zvz+fszMUpMdoySGmeWa2ZNm9q6Z7TazD+jeHprM7J747/AdZrbOzNJ0bw8dZvYzMzthZjs6lZ31XraYf4tf921mtjB5kcvF6uFaPxj/Pb7NzP7TzHI77bs3fq33mNmNSQn6HJRg9cDMvMDDwE3ALOAvzWxWcqOSBAoD/8M5NwtYAtwVv77/ALzknJsKvBTflqHhvwG7O21/B/hX59wUoA74bFKikr7wfeA559wMYB6x6657e4gxs2Lgy0C5c24O4AVWoXt7KFkLrOhW1tO9fBMwNf51J/DDfopREmMtZ17rF4E5zrm5wF7gXoD457VVwOz4MT+If24fMJRg9WwxsM85d8A5FwTWAyuTHJMkiHOuyjn3dvx9E7EPYMXErvF/xKv9B/DRpAQoCWVmJcCHgJ/Gtw24FngyXkXXeogwsxzgauARAOdc0DlXj+7tocoHpJuZD8gAqtC9PWQ4514FarsV93QvrwR+4WLeAHLNbGy/BCq9drZr7Zx7wTkXjm++AZTE368E1jvnAs6594F9xD63DxhKsHpWDBzutF0ZL5MhxswmAguAN4Exzrmq+K5jwJhkxSUJ9f8CXwWi8e2RQH2nX9y6v4eOUqAa+Hl8SOhPzSwT3dtDjnPuCPC/gEPEEqsGYDO6t4e6nu5lfW4b2tYAz8bfD/hrrQRLhjUzywKeAu52zjV23udiaxhoHYNBzsxuBk445zYnOxbpFz5gIfBD59wCoIVuwwF1bw8N8WdvVhJLqouATM4cYiRDmO7l4cHMvk7s0Y5Hkx3LhVKC1bMjwLhO2yXxMhkizCyFWHL1qHPuN/Hi46eGFMRfTyQrPkmYpcBHzKyC2FDfa4k9o5MbH1YEur+Hkkqg0jn3Znz7SWIJl+7toec64H3nXLVzLgT8htj9rnt7aOvpXtbntiHIzFYDNwOfcqcX7x3w11oJVs/eAqbGZyNKJfYw3YYkxyQJEn8G5xFgt3Pue512bQA+E3//GeDp/o5NEss5d69zrsQ5N5HYffyyc+5TwB+BW+PVdK2HCOfcMeCwmU2PF/0FsAvd20PRIWCJmWXEf6efuta6t4e2nu7lDcCn47MJLgEaOg0llEHIzFYQG97/Eedca6ddG4BVZuY3s1JiE5tsTEaMPbHTyaB0Z2YfJPbshhf4mXPuW8mNSBLFzK4E/gxs5/RzOV8j9hzW48B44CDwSedc9wdsZZAys2XA3znnbjazScR6tPKBLcDtzrlAEsOTBDGz+cQmNEkFDgB3EPuDou7tIcbM7gduIzZ8aAvw18SexdC9PQSY2TpgGTAKOA58E/gtZ7mX40n2Q8SGibYCdzjnNiUhbLkEPVzrewE/UBOv9oZz7m/j9b9O7LmsMLHHPJ7t3mYyKcESERERERFJEA0RFBERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBKsERERERERBLk/we98H3QbUyg2wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3707,31 +3707,31 @@ " 3\n", " False\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " bAP.soma.v\n", - " 0.000783\n", - " 3.19e-06\n", + " 0.00063\n", + " 2.49e-05\n", " \n", " \n", " 4\n", " False\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step1.soma.v\n", - " 0.0101\n", - " 2.51e-06\n", + " 0.000959\n", + " 1.5e-05\n", " \n", " \n", " 5\n", " False\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step3.soma.v\n", - " 0.0165\n", - " 6.39e-06\n", + " 0.00141\n", + " 0.000209\n", " \n", " \n", "\n", @@ -3739,14 +3739,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "3 False 1 0.121 0.0319 bAP.soma.v \n", - "4 False 1 0.121 0.0319 Step1.soma.v \n", - "5 False 1 0.121 0.0319 Step3.soma.v \n", + "3 False 1 0.0592 0.0295 bAP.soma.v \n", + "4 False 1 0.0592 0.0295 Step1.soma.v \n", + "5 False 1 0.0592 0.0295 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "3 0.000783 3.19e-06 \n", - "4 0.0101 2.51e-06 \n", - "5 0.0165 6.39e-06 " + "3 0.00063 2.49e-05 \n", + "4 0.000959 1.5e-05 \n", + "5 0.00141 0.000209 " ] }, "metadata": {}, @@ -3754,7 +3754,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADWHklEQVR4nOzdd3zb1dn//9clyXvGI86wkzh7DwgBCmGVMtoCpbQESpml3NBFaUv3oP3evX+9W+7SXTpoaYGGsKFllb3KSkII2dOZjvfeks7vD8nGSTxj2bLi9/PxUCJ9xvlc0seydemcc33MOYeIiIiIiIgMnCfaAYiIiIiIiBwtlGCJiIiIiIhEiBIsERERERGRCFGCJSIiIiIiEiFKsERERERERCJECZaIiIiIiEiEKMESERlmzGySmTkz80U7FhkZzGy9mZ0W7ThERI4GSrBERCTmmdntZlYfvrWaWVunx09GO77hzjk3xzn3YiTbNLOLzew/ZtZoZhFtW0RkODNdaFhEJLLMzOec8w9g/0nATiBuIO2MVGZ2CzDVOffpLtYN6NwMpViKtStmdiaQBcwEznDOnRbdiEREhoZ6sEREIsDMiszsG2a2FmgwM5+ZnRD+Br/azN7tPATLzF40s//PzN4ys1oze9TMsrpp+2oz22hmdWa2w8z+65D1F5jZmnA7283snPDyDDO7w8yKzWyfmf23mXl7eR5TzOx5M6sws3Izu8fMMjutqzSzY8KPx5lZWfvzMrPzw0PNqsPPb9Yhr8/XzGytmdWY2QozS+z/K91/3ZwbZ2ZTO21zp5n9d6fHHw2/ptXhczi/j8c6zcz2mtm3w69fkZld1mn9R8zsnfC52hNOBtvXtQ8N/YyZ7QaeDy+/38wOhF+3l81sziFx/87Mngz31r1mZmPM7BdmVmVmm8xsUR9fozP78hz7yjn3rHPuPmB/JNsVERnulGCJiETOpcBHgEwgD3gc+G9C3+J/DXjQzHI7bX8FcA0wFvADv+qm3VLgo0A6cDVwW6ckZwnwd+Dm8HFPAYrC+90ZbncqsAg4C7i2l+dgwP8HjANmAQXALQDOue3AN4C7zSwZ+CvwN+fci2Y2HVgOfBnIBZ4A/mlm8Z3avhg4BygE5gNXdRmA2cnhxKa728m9PIeudJyb3nqFwgnJX4D/ArKBPwCPmVlCH481BsgBxgNXAn80sxnhdQ2EzntmOJ4bzOxjh+x/KqHX/uzw4yeBacBoYDVwzyHbXwx8N3zMFuD18HY5wAPAz/sYd5fM7Js9nY+BtC0icjRSgiUiEjm/cs7tcc41AZ8GnnDOPeGcCzrnngFWAh/utP1dzrl1zrkG4HvAxV31MDnnHnfObXchLwH/BpaGV38G+Itz7pnwcfY55zaZWV74WF92zjU450qB24BLenoCzrlt4bZanHNlhD6cn9pp/Z+AbcCbhBLD74RXLQMeD+/bBtwKJAEfOOT12e+cqwT+CSzsJoZXnXOZPdxe7ek5dKPzuenNdcAfnHNvOucCzrm/EUpcTujH8b4Xfg1fIpRoXwzgnHvROfde+FytJZSUnnrIvreEz1lTeJ+/OOfqnHMthJLdBWaW0Wn7h51zq5xzzcDDQLNz7u/OuQCwglByfcSccz/p6XwMpG0RkaOREiwRkcjZ0+n+ROCTh3zTfzKhpKSr7XcBcYR6HQ5iZuea2Rvh4XnVhBKn9u0KgO1dxDIx3F5xp+P/gVAvSLfMLM/M7g0PKawF7u4ipj8Bc4Ffhz/0Q6jHa1f7Bs65YPj5je+034FO9xuB1J5iibA9vW/SYSLw1UPOXQGh59gXVeGkud2u9n3N7HgzeyE8tLIGuJ7DX9+OWM3Ma2Y/sdDQz1re753svE9Jp/tNXTweytdZRGTEU4IlIhI5nasG7SHUQ9X52/4U59xPOm1T0On+BKANKO/cYHhY2oOEeoTywj0GTxAaytd+nCldxLKHUK9LTqfjpzvn5nSxbWf/E34e85xz6YR64tqPhZmlAr8A7gBusffnje0nlJi0b2fh57evl+MdxsyW2vsVALu6Le29lcMcWtGpEUju9HhMp/t7gB8fcu6SnXPL+3isUWaW0unxBN6fh/QP4DGgwDmXAdxOp9e3i1g/BVwAnAlkAJPCyw/dZ9CE55N1ez6GKg4RkVihBEtEZHDcDZxnZmeHeyESwwUQ8jtt82kzmx2ez/Qj4IHwsK7O4oEEoAzwm9m5hOZStbsDuNrMPmhmHjMbb2YznXPFhIYS/p+ZpYfXTTGzQ4ejHSoNqAdqzGw8obldnf0SWOmcu5bQ0Lfbw8vvAz4SjiMO+CqhBO8/vb1Qh3LOveKcS+3h9kp/2+zCGuBT4XNzDgcP0/sTcH24t8nMLMVCxSnSoKOwxJ29tP9DM4sPJ4MfBe4PL08DKp1zzeH5c5/qpZ00Qq9jBaGE8H/68Rwjwjn3Pz2dj+72a/+5B3yAJ/weiBu6yEVEokMJlojIIHDO7SHU8/BtQsnRHkLJSuffu3cRKkRxAEgEvtRFO3Xh5fcBVYQ+kD/Waf1bhAtfADXAS7zfk3QFoQRtQ3jfBzh4iGJXfggcE27rceCh9hVmdgGhIhU3hBd9BTjGzC5zzm0m1Nv1a0K9cOcB5znnWns5XrTcSCjGauAy4JH2Fc65lcBngd8Qet22cXBBjgLgtR7aPhDebz+hghTXO+c2hdd9DviRmdUB3yd0Xnvyd0JDDPcROo9v9PbEhpHLCQ1R/D2hOYNNhJJXEZGjmq6DJSISBRa68Ordzrk/RzsW6btwVcR3gfnhYh6Hrj+N0HnNP3SdiIiMDL5oByAiIhIrwj1ys3rdUERERiwNERQRGWHM7PZuChbc3vveEovMbEIPhSomRDs+EZGjiYYIioiIiIiIRIh6sERERERERCJkWM3BysnJcZMmTYp2GCIiIiIiIj1atWpVuXMu99DlwyrBmjRpEitXrox2GCIiIiIiIj0ys11dLdcQQRERERERkQhRgiUiIiIiIhIhSrBEREREREQiZFjNwepKW1sbe/fupbm5OdqhyDCQmJhIfn4+cXFx0Q5FjlKrtuxi56M/YeEl32dqwdhohyMiIiIxZtgnWHv37iUtLY1JkyZhZtEOR6LIOUdFRQV79+6lsLAw2uHIUars6Z/xiYZ/8O/HEpj6+V9EOxwRERGJMcN+iGBzczPZ2dlKrgQzIzs7W72ZMqhmVr8CwJSyZ9CF2EVERKS/hn2CBSi5kg76WZDBlhkoB2AKe9m7f1+UoxEREZFYExMJlojIUAgEgqS6RrYlzgVgz3svRzkiERERiTVKsPrAzPjqV7/a8fjWW2/llltuiV5AnZx22mk9Xpz5Yx/7GCeccMJBy2655RbGjx/PwoULmTt3Lo899thghykSE+ob6vBZkJoxJxJ0hn/3qmiHJCIiIjFGCVYfJCQk8NBDD1FeXh7Rdp1zBIPBiLbZWXV1NatWraKmpoYdO3YctO6mm25izZo13H///VxzzTWDGodIrGisqwLApY6hxJtHQvXWKEckIiIisUYJVh/4fD6uu+46brvttsPWlZWVcdFFF3Hcccdx3HHH8dprrwGhXqJbb721Y7u5c+dSVFREUVERM2bM4IorrmDu3Lns2bOHm2++mblz5zJv3jxWrFgBwIsvvshpp53GJz7xCWbOnMlll13W7YT7u+66q6M36q233upY/tBDD3HeeedxySWXcO+993a576xZs/D5fAclj9/85jeZPXs28+fP52tf+xoARUVFnHHGGcyfP58PfvCD7N69G4CrrrqKG264gRNOOIHJkyfz4osvcs011zBr1iyuuuqqjjZvuOEGFi9ezJw5c/jBD35wWBw1NTVMnDixI9FraGigoKCAtra2LuMWGQxN4QTLm5RBZXIh2U1F0Q1IREREYs6wL9Pe2Q//uZ4N+2sj2ubscen84Lw5vW73+c9/nvnz5/P1r3/9oOU33ngjN910EyeffDK7d+/m7LPPZuPGjT22tXXrVv72t79xwgkn8OCDD7JmzRreffddysvLOe644zjllFMAeOedd1i/fj3jxo3jpJNO4rXXXuPkk08+rL3GxkbWrFnDyy+/zDXXXMO6desAWL58Od///vfJy8vjoosu4tvf/vZh+7755pt4PB5yc3MBqKio4OGHH2bTpk2YGdXV1QB88Ytf5Morr+TKK6/kL3/5C1/60pd45JFHAKiqquL111/nscce4/zzz+e1117jz3/+M8cddxxr1qxh4cKF/PjHPyYrK4tAIMAHP/hB1q5dy/z58zviyMjIYOHChbz00kucfvrp/Otf/+Lss8/W9a5kSLWEE6y45Axas6Yzte5tahqayEhJinJkIiIiEivUg9VH6enpXHHFFfzqV786aPmzzz7LF77wBRYuXMj5559PbW0t9fX1PbY1ceLEjnlRr776Kpdeeiler5e8vDxOPfVU3n77bQCWLFlCfn4+Ho+HhQsXUlRU1GV7l156KQCnnHIKtbW1VFdXU1JSwtatWzn55JOZPn06cXFxHYkXwG233cbChQv52te+xooVKzqq82VkZJCYmMhnPvMZHnroIZKTkwF4/fXX+dSnPgXA5ZdfzquvvtrR1nnnnYeZMW/ePPLy8pg3bx4ej4c5c+Z0xHzfffdxzDHHsGjRItavX8+GDRsOex7Lli3r6MG79957WbZsWY+vo0iktTTWAOBLySRhzCwSzM+ubeujHJWIiIjEkpjqwepLT9Ng+vKXv8wxxxzD1Vdf3bEsGAzyxhtvkJiYeNC2Pp/voHlNna/dlJKS0qfjJSQkdNz3er34/f4utzu0dLmZcd9991FVVdVxQd7a2lqWL1/Oj3/8YyA0B6t9+N+hcb/11ls899xzPPDAA/zmN7/h+eef71OcHo/noJg9Hg9+v5+dO3dy66238vbbbzNq1CiuuuqqLq9ldf755/Ptb3+byspKVq1axRlnnNHjcUUiLdgUSrDikzNInjgf3oLa3ethweIoRyYiIiKxQj1Y/ZCVlcXFF1/MHXfc0bHsrLPO4te//nXH4zVr1gAwadIkVq9eDcDq1avZuXNnl20uXbqUFStWEAgEKCsr4+WXX2bJkiX9iqu91+fVV18lIyODjIwMli9fzlNPPdUx72vVqlXdzsPqrL6+npqaGj784Q9z22238e677wLwgQ98oGP/e+65h6VLl/Y5vtraWlJSUsjIyKCkpIQnn3yyy+1SU1M57rjjuPHGG/noRz+K1+vt8zFEIsFaQkOQvUkZ5BSGvtAJlPY85FdERESks5jqwRoOvvrVr/Kb3/ym4/GvfvWrjvlZfr+fU045hdtvv52LLrqIv//978yZM4fjjz+e6dOnd9nehRdeyOuvv86CBQswM376058yZswYNm3a1OeYEhMTWbRoEW1tbfzlL3+hqKiIXbt2HVSevbCwkIyMDN58880u2/jwhz/Mn//8Z8yMCy64gObmZpxz/PznPwfg17/+NVdffTU/+9nPyM3N5a9//Wuf41uwYAGLFi1i5syZFBQUcNJJJ3Ws+/73v8/ixYs5//zzgdAwwU9+8pO8+OKLfW5fJGJaQsN7vckZ+JIzKbVsElVJUERERPrBuqtM1+cGzAqAvwN5gAP+6Jz7pZndAnwWKAtv+m3n3BM9tbV48WJ36DWdNm7cyKxZswYUoxxd9DMhg2XN3d9i4bbfUXrTfkZnpLDhJ6fhaWtg5vfejnZoIiIiMsyY2Srn3GHzCCLRg+UHvuqcW21macAqM3smvO4259ytPewrIjJ8+JtpdV4S4uIBaEqdwOSy53HOHTbXUURERKQrA56D5Zwrds6tDt+vAzYC4wfarojIkPO30koc8b7wr8asQkZZHeXlZT3vJyIiIhIW0SIXZjYJWAS0T/T5gpmtNbO/mNmoSB5LRCTiAi204utIsBJHTwXgQFHf50SKiIjIyBaxBMvMUoEHgS8752qB3wNTgIVAMfB/3ex3nZmtNLOVZWX6llhEoscCoR4sryc0HDArfwYAdcUqdCEiIiJ9E5EEy8ziCCVX9zjnHgJwzpU45wLOuSDwJ6DL2uPOuT865xY75xbn5uZGIhwRkSNigRbaiOt4nDshlGC1lm2PVkgiIiISYwacYFlo5vcdwEbn3M87LR/babMLgXUDPZaIyGCyQCtt9n6C5UvOoMoy8NYURS8oERERiSmR6ME6CbgcOMPM1oRvHwZ+ambvmdla4HTgpggcK2oeeeQRzKzH61MVFRUxd+7ciB3zqquu4oEHHuh2/Ze//GXGjx9PMBjsWHbnnXeSm5vLwoULmT17Nn/6058iFo/I0c4TaMXfKcECqIgbR1rjnihFJCIiIrEmElUEX3XOmXNuvnNuYfj2hHPucufcvPDy851zxZEIOFqWL1/OySefzPLly7tc7/f7B3yMQCDQ522DwSAPP/wwBQUFvPTSSwetW7ZsGWvWrOHFF1/k29/+NiUlJQOOTWQk8AQPT7AaUwrIbStmoNcMFBERkZEholUEj1b19fW8+uqr3HHHHdx7770dy1988UWWLl3K+eefz+zZs4FQonXZZZcxa9YsPvGJT9DY2AjAc889x6JFi5g3bx7XXHMNLS0tAEyaNIlvfOMbHHPMMdx///2HHfvZZ59l8eLFTJ8+nX/9618HHXvOnDnccMMN3SZ9o0ePZsqUKezatatj2a9+9Stmz57N/PnzueSSSwCorKzkYx/7GPPnz+eEE05g7dq1ANxyyy1ceeWVLF26lIkTJ/LQQw/x9a9/nXnz5nHOOefQ1tYGwI9+9COOO+445s6dy3XXXXfYB9FgMMikSZOorq7uWDZt2jQlfjLseIJthyVYgcxJjKGcytr6KEUlIiIisSQSFxoeOk9+Ew68F9k2x8yDc3/S4yaPPvoo55xzDtOnTyc7O5tVq1Zx7LHHArB69WrWrVtHYWEhRUVFbN68mTvuuIOTTjqJa665ht/97nd84Qtf4KqrruK5555j+vTpXHHFFfz+97/ny1/+MgDZ2dmsXr26y2MXFRXx1ltvsX37dk4//XS2bdtGYmIiy5cv59JLL+WCCy7g29/+Nm1tbcTFHfzBcMeOHezYsYOpU6d2LPvJT37Czp07SUhI6Eh4fvCDH7Bo0SIeeeQRnn/+ea644grWrFkDwPbt23nhhRfYsGEDJ554Ig8++CA//elPufDCC3n88cf52Mc+xhe+8AW+//3vA3D55Zfzr3/9i/POO6/jmB6PhwsuuICHH36Yq6++mjfffJOJEyeSl5fX59MkMhS8wVYCFn/QsoTRU/DudBTv2kL2/GOjFJmIiIjECvVg9cHy5cs7ensuueSSg3qMlixZQmFhYcfjgoICTjrpJAA+/elP8+qrr7J582YKCwuZPn06AFdeeSUvv/xyxz7Lli3r9tgXX3wxHo+HadOmMXnyZDZt2kRraytPPPEEH/vYx0hPT+f444/n6aef7thnxYoVLFy4kEsvvZQ//OEPZGVldaybP38+l112GXfffTc+Xyi/fvXVV7n88ssBOOOMM6ioqKC2thaAc889l7i4OObNm0cgEOCcc84BYN68eRQVFQHwwgsvcPzxxzNv3jyef/551q9ff9jzWLZsGStWrADg3nvv7fE5i0SLJ9hKwHPwFxXp40KVBGv3b4lGSCIiIhJjYqsHq5eepsFQWVnJ888/z3vvvYeZEQgEMDN+9rOfAZCSknLQ9qGiit0/7sqhbfTW3tNPP011dTXz5s0DoLGxkaSkJD760Y8CoWTmN7/5TZftPf7447z88sv885//5Mc//jHvvddzj2BCQgIQ6oWKi4vriMfj8eD3+2lubuZzn/scK1eupKCggFtuuYXm5ubD2jnxxBPZtm0bZWVlPPLII3z3u9/t8bgi0eBzbQS8B/dg5U4MJVgtpSrVLiIiIr1TD1YvHnjgAS6//HJ27dpFUVERe/bsobCwkFdeeaXL7Xfv3s3rr78OwD/+8Q9OPvlkZsyYQVFREdu2bQPgrrvu4tRTT+3T8e+//36CwSDbt29nx44dzJgxg+XLl/PnP/+ZoqIiioqK2LlzJ88880zHfK/uBINB9uzZw+mnn87//u//UlNTQ319PUuXLuWee+4BQnO7cnJySE9P71N87clUTk4O9fX13VY9NDMuvPBCvvKVrzBr1iyys7P71L7IUPK6VoKeQ4YIZoylkUQ81UXRCUpERERiihKsXixfvpwLL7zwoGUXXXRRt4UlZsyYwW9/+1tmzZpFVVUVN9xwA4mJifz1r3/lk5/8JPPmzcPj8XD99df36fgTJkxgyZIlnHvuudx+++0Eg0GeeuopPvKRj3Rsk5KSwsknn8w///nPLtu49tprWblyJYFAgE9/+tPMmzePRYsW8aUvfYnMzExuueUWVq1axfz58/nmN7/J3/72tz6+OpCZmclnP/tZ5s6dy9lnn81xxx3Xse7222/n9ttv73i8bNky7r77bg0PlGErzrUdlmBhRplvDMn1u6MTlIiIiMQUG06lhxcvXuxWrlx50LKNGzcya9asKEUkw5F+JmSwVP5wIuvTlrL0K3cftHz9zz9KYu1Optxy+PxCERERGZnMbJVzbvGhy9WDJSISFudacYfMwQJoS5/IeFdCfXNrFKISERGRWKIES0QkLA4/wS4SLG/OFBKtjf17dkYhKhEREYklMZFgDadhjBJd+lmQQeMc8bR12YOVOnYaAJV7Ng91VCIiIhJjhn2ClZiYSEVFhT5YC845KioqSExMjHYocjQK+vHgwJtw2KqciaE5f02lW4c6KhEREYkxw/46WPn5+ezdu5eysrJohyLDQGJiIvn5+dEOQ45G/haALnuw0nIn0YYPq9gx1FGJiIhIjBn2CVZcXByFhYXRDkNEjnLO34IB5ju8Bwuvj1JvHkn1u4Y8LhEREYktw36IoIjIUPC3hS6aTRc9WADViQWMat47hBGJiIhILFKCJSICtLWEEiyL66IHC2hJn8i4YDGtbYGhDEtERERizKAnWGZ2jpltNrNtZvbNwT6eiMiRaE+wuipyAeDJnkKqNVO8f/cQRiUiIiKxZlATLDPzAr8FzgVmA5ea2ezBPKaIyJFoHyLo6aYHK3nMdAAq9mwasphEREQk9gx2D9YSYJtzbodzrhW4F7hgkI8pItJv/vYhgl0VuQCyJ8wEoKF4y5DFJCIiIrFnsBOs8cCeTo/3hpd1MLPrzGylma1UKXYRiZb2HixvNz1YWeOm4HcenEq1i4iISA+iXuTCOfdH59xi59zi3NzcaIcjIiOUv7V9iGDXF7I2Xzyl3jwSa4uGMCoRERGJNYOdYO0DCjo9zg8vExEZVgKtPfdgAVQl5JOhUu0iIiLSg8FOsN4GpplZoZnFA5cAjw3yMUVE+i3obwHAG991DxZAU9pExgb2EwwEhyosERERiTGDmmA55/zAF4CngY3Afc659YN5TBGRIxHsZYgggMuaTLo1Ulq6f6jCEhERkRjjG+wDOOeeAJ4Y7OOIiAxEINyD5euhByt5zHTYBGW7NjFmbP5QhSYiIiIxJOpFLkREhoNgWzjB6mEOVlbBDADqizcPSUwiIiISe5RgiYgArr0HKyGp221GF0wn4Iy2su1DFZaIiIjEGCVYIiK8n2DF9TAHyxufSJk3l/gaXQtLREREuqYES0SETglWQvcJFkBF4iRGNe0aipBEREQkBinBEhEB8LcQdEZ8fHyPmzVnTKEgsI/m1rYhCkxERERiiRIsEREAfyut+IjzeXvczJs3g2RrYd8uzcMSERGRwynBEhEBCLTQShwJvp5/LabnzwGgctd7QxGViIiIxBglWCIihOZgteLrNcEaM2UeAE3FG4ciLBEREYkxSrBERAD8LbQRh5n1uFly5hhqScVbsXWIAhMREZFYogRLRAQg0EKbxfW+nRkH4ieQ1rBz8GMSERGRmKMES0QEsEAr/r4kWEB92mTGte7GOTfIUYmIiEisUYIlIkJ7gtVzifZ2LnsaOVZDaWnJIEclIiIisUYJlogI4A22EPD0LcFKHjcbgJIdawczJBEREYlBSrBERIC4QBMt3uQ+bZtbGKokWLdvw2CGJCIiIjFoQAmWmf3MzDaZ2Voze9jMMsPLJ5lZk5mtCd9uj0i0IiKDJCHYSFsfE6zs/Gm0EIcr2TTIUYmIiEisGWgP1jPAXOfcfGAL8K1O67Y75xaGb9cP8DgiIoMqMdhEmy+lT9ua10exL5+k2u2DHJWIiIjEmgElWM65fzvn/OGHbwD5Aw9JRGToJblG/H1MsACqUyaT11I0eAGJiIhITIrkHKxrgCc7PS40s3fM7CUzW9rdTmZ2nZmtNLOVZWVlEQxHRKSPnCOZZgL9SLAC2TMY58oor6wcxMBEREQk1vSaYJnZs2a2rovbBZ22+Q7gB+4JLyoGJjjnFgFfAf5hZuldte+c+6NzbrFzbnFubu7An5GISH+1NeEliItP7fMuSeNn4zHHvm2qJCgiIiLv8/W2gXPuzJ7Wm9lVwEeBD7rwVTedcy1AS/j+KjPbDkwHVg40YBGRSAs21+GBfiVYuYUL4BWo3bMOlpw2aLGJiIhIbBloFcFzgK8D5zvnGjstzzUzb/j+ZGAasGMgxxIRGSwNDdUAeBPT+rxPzoSZtOElqEqCIiIi0kmvPVi9+A2QADxjZgBvhCsGngL8yMzagCBwvXNOExVEZFhqrK0mDfAldTmSuUvmi+eAdzzJNVsHLzARERGJOQNKsJxzU7tZ/iDw4EDaFhEZKk31NQDEJ/c9wQKoTp1MXs0mnHOEv2QSERGRES6SVQRFRGJSc0MowUpMyejXfm1ZMxjvSqiorhmMsERERCQGKcESkRGvrbEW6H+ClTR+Nl5z7N323mCEJSIiIjFICZaIjHj++nIAEjNH92u/3MkLAKjdvS7iMYmIiEhsUoIlIiOeqy8l4IxROXn92i+7YBZ+PARKNg5SZCIiIhJrlGCJiNSXUUk6qYnx/drN4hIp8Y4juXbbIAUmIiIisUYJloiMeL7mCmo9mUdUCbAqZTK5zUWEr7MuIiIiI5wSLBEZ8RJaK2mIG3VE+/qzpjPBFVNeXRfhqERERCQWKcESkREvxV9Fc3zWEe2bNG4OPguyb7sqCYqIiIgSLBERMoPVBJKyj2jfnCmhSoLVqiQoIiIiKMESkRGupb6SVJoIpI47ov2zCmYRwFRJUERERAAlWCIywlXuDVUA9IyaeET7W3wypd6xJNeokqCIiIgowRKREa5qfygxSh0z+cjbUCVBERERCVOCJSIjWmPpDgByC6YfcRttWdOZ4PZTXtMQqbBEREQkRinBEpERzVUVUe8SyRs99ojbSBw7m3gLsHf7+ghGJiIiIrFICZaIjGipNdvY6y3A4z3yX4e5k+cDUL1rbaTCEhERkRg1oATLzG4xs31mtiZ8+3Cndd8ys21mttnMzh54qCIikTemZQcVKVMH1MaoCXMA8JduikRIIiIiEsN8EWjjNufcrZ0XmNls4BJgDjAOeNbMpjvnAhE4nohIRDRXFTPK1dCaM3NA7VhCKiWePJKqt0YoMhEREYlVgzVE8ALgXudci3NuJ7ANWDJIxxIROSLFW1cBkDR+/oDbqkqZokqCIiIiEpEE6wtmttbM/mJmo8LLxgN7Om2zN7zsMGZ2nZmtNLOVZWVlEQhHRKRv6na9C0De1EUDbqstaxqT3H7KalVJUEREZCTrNcEys2fNbF0XtwuA3wNTgIVAMfB//Q3AOfdH59xi59zi3Nzc/u4uInLkSjdQ7jLILziyiwx3ljhuNgnWxp7tGyMQmIiIiMSqXudgOefO7EtDZvYn4F/hh/uAgk6r88PLRESGjbSaLeyJm0TOACoItsueNB9eh+pd78Exx0UgOhEREYlFA60i2PnCMRcC68L3HwMuMbMEMysEpgFvDeRYIiIRFQwwtrWI2vQjv8BwZ6MmzgXAX6IeLBERkZFsoFUEf2pmCwEHFAH/BeCcW29m9wEbAD/weVUQFJHhpGb/FjJoxY2eFZH2LDGdck8uSdXbItKeiIiIxKYBJVjOuct7WPdj4McDaV9EZLAUb11NBpA+cWHE2qxMKSSnbifOOcwsYu2KiIhI7BisMu0iIsNa4561BJ1RMOOYiLXZOmo6hW4fZbVNEWtTREREYosSLBEZkXzlG9lreeRmjep94z5KHDubJGtl987NEWtTREREYosSLBEZkbLqt1GSNCWybRaGLlhcVbQ2ou2KiIhI7FCCJSIjTltLI2MD+2keNTOi7Y6aEKok2HZgU0TbFRERkdihBEtERpx929fjNUfi2BkRbdeSR1HpySK5WkMERURERiolWCIy4lTuCV2rKrNgdsTbLk2ZSUHzJpxzEW9bREREhr+BXgdLRCTmtJRsBWBM4ZyIt904ehHH1P2H0tIDjM4b2/sOMqRaW9toaqqnpamBlqYGAi1NBP3NBPxtBPxtuICfQKCNYCBA0N+GC/oJ+v3gApgLYDggXILfDGcewBNaZBZaZx7MLHTzeDHzhP73evGYB/P6Qsu8PjweL+bx4PF48Xh9oe08Hrzh+x6vF4/Hh8cb3sbjxbw+vF4vHo8Hj9eH1+vDG97PPPreVEQk2pRg9eCdf99N/MrbMQdGEHCYc+E/sKH/22/tHGB9/ubaHXa3c1sd7XF4e10ti4bBj2LwriXkBqXtzj8Lg3sdpMFs33X74OgwPVhBhWWQnZEV8bZTp58E23/LztXPMPrcKyLe/kjV5vdTXVFCY1UJzTWltNRX0dZQjb+xmmBTDa65Fk9rLd62OuLa6kkMNJAYbCDetRDvWkhwLSTQSrwFiI/2kxlEAWcE8YRvofsB8+AwgngPWh40Dy68rcMIWmi9M8PhDa83XMfy8K3jvrefv4f698uk89/S3vbsaxTd/U3tfa++6fvf//61Cz3Hfehh+/fXYXi8Hl09v572Hqzn2J/XubftD9+2//H0XWSe42Hb9jPU/r2/+r7tprhZZF50G0un5fYvoChRgtWj0J+O0B8bHy787WToD44n/GNhuPaRlge92w9+67e3czg77F77dp237vKP2CHtRertOpSXR+35WIP3yX6wE9TBfw3bf/oGo+kuEvqj7Jq5B8ijdcIpZA9C21OOOZO6J5Nh479ACVaP2tpaKS/ZS/WBIhrL9xKo3kewvgxrqiCuuZLE1iqSA1WkB2vIcPXk9vCXvsXF0WDJNHpSaPak0OxNpSohG783CedLxPlC/1tcEhaXhCc+CU98MsQlgS8Rjzcu3DPke7+HyBuH1xeHx+vFPHE4T/vvfQfB8D3nMBfEEQTnQo8BFwziXJBgMIgLBnDBQKf7/tD6YCC8XQACfoIuCMFgx3pcAML74QLgQvsQDN0nGAjtGwyGHnfcD3Q8tnCb7T1wOBf+P7RP52Whm8MI7+fC6Vj78vA2HlrxuCAWXt+/JKubbbtZPFhfJPW/3b5vf1Dbve42PL5E7Pz5pC979aVtC//T9zi6/svc09+fiPzsHdZmz+0eusbR3ee7SOhvGtmP7fsRc3/fL/396qAvgvGZJPi8/Wo5mpRg9WDRWZfDWZdHOwwRiSHeuAS2ZJ7C3KoXqSjdT/bocR3rSnZtYvfjtxI3+QMsPOeaKEY5+AJ+P6XFu6jau4WGkp0EqvdAfTEJjSWktpSRGSgny1Uz1hydB1IGnVFjqdR6MmnwZVKVVEhZYhbB5Bw8Kdl4UkfjS88lITWL5LRRpKSPIi0jm4TEJBKAyPdJiohItC2IdgD9pARLRCTCcs/9Bon/eJrtd15F00d+QPW+rbh3VzC7/nXyzLGlYg3EeoLlHNVl+ziwazN1B7bTVlGEt2Y3yY17GdV6gNHBUsZa4KDkqZpUqjw51MXnUJ02ne2pY/BmjCMhazwpuQVkjJ5AZvZYRsXFEbnLP4uIiAwtJVgiIhE2YcYxvD7zGyzZ9L947/8w+UA5Gbw25nI8DSUcX/cswdZmPPGJ0Q61Vy0N1ZTs3EDlno20lmzGV7Wd9IZd5Pn3kkkTmZ22rSSdct8YSlNnsjftQ3hGTSQpt5DM8VPJGTeFzJTUg7YXERE5GinBEhEZBCde+i12bj2P4o1vkpw7iZmLPsApiUm8+c8/E7fqabatf4upi06JdpgAOH8r5Xu3Ul60nobizVjFVpLrishp3UOuq2QCMIHQ8L0DlkNZfAHvZZ8LWVNIHjOVrPFTyc2fRlZqhoboiYjIiKcES0RkkBROm0vhtLkHLZu+5Cz8Kz2UvbF8yBOs+qoSSra/R+3eDQTKtpBQvZ1RTbvICxwg1wK012aqcmkU+8azPe04NmVOISFvOpkFsxhTOJtxaemM6/EoIiIiI9uAEiwzWwHMCD/MBKqdcwvNbBKwEdgcXveGc+76gRxLRORoMCpvAu+kLWXugYcp3fdNRo+fGNH2m5ubKdm1kerdG2gp2YynYitp9UWMadtNBvWkhrdrcT72ecZSnFjIzvQP4smdRtr4meROmkNe3jhGeY6y0pEiIiJDZEAJlnNuWft9M/s/oKbT6u3OuYUDaV9E5GiUe8F/E3f3Gey78xISrn+YjOwx/dq/qa6KA7s2UbVvGy2l26G6iKT6PWS17mNssJSJFqA9bSsjk5K4AjZknk4gexqJY2aQNWEO4ybNYHJCPJMj//RERERGtIgMETQzAy4GzohEeyIiR7P8afN5+/hbWfDmV2j99SJW5Z6D5R9LQnoOzpcIbY20NNTS1liL1ZfgbThAfFMpKa1lZAXKGUUdhUBhuL0aUinzjaEydToHMs7BO3oGqeNnMrpwHrlZOcTGZRlFRESODpGag7UUKHHObe20rNDM3gFqge86517pakczuw64DmDChAkRCkdEZHg77sNXsa1gJuVP/YQFpf8iqeyhLrcLOKPCMqn2ZlMXP4aK5Pn40ycSnzuZjHHTGD1xBhmjcskY4vhFRESka+Zcz9dbNrNnga7Gr3zHOfdoeJvfA9ucc/8XfpwApDrnKszsWOARYI5zrranYy1evNitXLmy/89CRCSGNbe0cGDXZhpqKzF/C8QlkZKWQWraKNJzxhAXFx/tEEVEROQQZrbKObf40OW99mA5587spWEf8HHg2E77tAAt4furzGw7MB1Q9iQicojEhAQmTZ8f7TBEREQkAjwRaONMYJNzbm/7AjPLNTNv+P5kYBqwIwLHEhERERERGbYiMQfrEmD5IctOAX5kZm1AELjeOVcZgWOJiIiIiIgMWwNOsJxzV3Wx7EHgwYG2LSIiIiIiEkt6LXIxlMysDNgV7TgOkQOURzsIGTI63yOHzvXIoXM9suh8jxw61yPLcDzfE51zh10NZVglWMORma3sqjqIHJ10vkcOneuRQ+d6ZNH5Hjl0rkeWWDrfkShyISIiIiIiIijBEhERERERiRglWL37Y7QDkCGl8z1y6FyPHDrXI4vO98ihcz2yxMz51hwsERERERGRCFEPloiIiIiISIQowRIREREREYkQJVg9MLNzzGyzmW0zs29GOx6JHDMrMLMXzGyDma03sxvDy7PM7Bkz2xr+f1S0Y5XIMDOvmb1jZv8KPy40szfD7+8VZhYf7RglMsws08weMLNNZrbRzE7Ue/voZGY3hX+HrzOz5WaWqPf20cPM/mJmpWa2rtOyLt/LFvKr8Hlfa2bHRC9y6a9uzvXPwr/H15rZw2aW2Wndt8LnerOZnR2VoHugBKsbZuYFfgucC8wGLjWz2dGNSiLID3zVOTcbOAH4fPj8fhN4zjk3DXgu/FiODjcCGzs9/l/gNufcVKAK+ExUopLB8EvgKefcTGABofOu9/ZRxszGA18CFjvn5gJe4BL03j6a3Amcc8iy7t7L5wLTwrfrgN8PUYwSGXdy+Ll+BpjrnJsPbAG+BRD+vHYJMCe8z+/Cn9uHDSVY3VsCbHPO7XDOtQL3AhdEOSaJEOdcsXNudfh+HaEPYOMJneO/hTf7G/CxqAQoEWVm+cBHgD+HHxtwBvBAeBOd66OEmWUApwB3ADjnWp1z1ei9fbTyAUlm5gOSgWL03j5qOOdeBioPWdzde/kC4O8u5A0g08zGDkmgMmBdnWvn3L+dc/7wwzeA/PD9C4B7nXMtzrmdwDZCn9uHDSVY3RsP7On0eG94mRxlzGwSsAh4E8hzzhWHVx0A8qIVl0TUL4CvA8Hw42ygutMvbr2/jx6FQBnw1/CQ0D+bWQp6bx91nHP7gFuB3YQSqxpgFXpvH+26ey/rc9vR7RrgyfD9YX+ulWDJiGZmqcCDwJedc7Wd17nQNQx0HYMYZ2YfBUqdc6uiHYsMCR9wDPB759wioIFDhgPqvX10CM+9uYBQUj0OSOHwIUZyFNN7eWQws+8QmtpxT7Rj6SslWN3bBxR0epwfXiZHCTOLI5Rc3eOceyi8uKR9SEH4/9JoxScRcxJwvpkVERrqewahOTqZ4WFFoPf30WQvsNc592b48QOEEi69t48+ZwI7nXNlzrk24CFC73e9t49u3b2X9bntKGRmVwEfBS5z71+8d9ifayVY3XsbmBauRhRPaDLdY1GOSSIkPAfnDmCjc+7nnVY9BlwZvn8l8OhQxyaR5Zz7lnMu3zk3idD7+Hnn3GXAC8AnwpvpXB8lnHMHgD1mNiO86IPABvTePhrtBk4ws+Tw7/T2c6339tGtu/fyY8AV4WqCJwA1nYYSSgwys3MIDe8/3znX2GnVY8AlZpZgZoWECpu8FY0Yu2PvJ4NyKDP7MKG5G17gL865H0c3IokUMzsZeAV4j/fn5Xyb0Dys+4AJwC7gYufcoRNsJUaZ2WnA15xzHzWzyYR6tLKAd4BPO+daohieRIiZLSRU0CQe2AFcTegLRb23jzJm9kNgGaHhQ+8A1xKai6H39lHAzJYDpwE5QAnwA+ARungvh5Ps3xAaJtoIXO2cWxmFsOUIdHOuvwUkABXhzd5wzl0f3v47hOZl+QlN83jy0DajSQmWiIiIiIhIhGiIoIiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiAwzZjbJzJyZ+aIdi4wMZrbezE6LdhwiIkcDJVgiIhLzzOx2M6sP31rNrK3T4yejHd9w55yb45x7MZJtmtnFZvYfM2s0s4i2LSIynJlzLtoxiIgcVczM55zzD2D/ScBOIG4g7YxUZnYLMNU59+ku1g3o3AylWIq1K2Z2JpAFzATOcM6dFt2IRESGhnqwREQiwMyKzOwbZrYWaDAzn5mdEP4Gv9rM3u08BMvMXjSz/8/M3jKzWjN71Myyumn7ajPbaGZ1ZrbDzP7rkPUXmNmacDvbzeyc8PIMM7vDzIrNbJ+Z/beZeXt5HlPM7HkzqzCzcjO7x8wyO62rNLNjwo/HmVlZ+/Mys/PDQ82qw89v1iGvz9fMbK2Z1ZjZCjNL7P8r3X/dnBtnZlM7bXOnmf13p8cfDb+m1eFzOL+PxzrNzPaa2bfDr1+RmV3Waf1HzOyd8LnaE04G29e1Dw39jJntBp4PL7/fzA6EX7eXzWzOIXH/zsyeDPfWvWZmY8zsF2ZWZWabzGxRH1+jM/vyHPvKOfesc+4+YH8k2xURGe6UYImIRM6lwEeATCAPeBz4b0Lf4n8NeNDMcjttfwVwDTAW8AO/6qbdUuCjQDpwNXBbpyRnCfB34ObwcU8BisL73RludyqwCDgLuLaX52DA/weMA2YBBcAtAM657cA3gLvNLBn4K/A359yLZjYdWA58GcgFngD+aWbxndq+GDgHKATmA1d1GYDZyeHEprvbyb08h650nJveeoXCCclfgP8CsoE/AI+ZWUIfjzUGyAHGA1cCfzSzGeF1DYTOe2Y4nhvM7GOH7H8qodf+7PDjJ4FpwGhgNXDPIdtfDHw3fMwW4PXwdjnAA8DP+xh3l8zsmz2dj4G0LSJyNFKCJSISOb9yzu1xzjUBnwaecM494ZwLOueeAVYCH+60/V3OuXXOuQbge8DFXfUwOeced85tdyEvAf8GloZXfwb4i3PumfBx9jnnNplZXvhYX3bONTjnSoHbgEt6egLOuW3htlqcc2WEPpyf2mn9n4BtwJuEEsPvhFctAx4P79sG3AokAR845PXZ75yrBP4JLOwmhledc5k93F7t6Tl0o/O56c11wB+cc2865wLOub8RSlxO6Mfxvhd+DV8ilGhfDOCce9E59174XK0llJSeesi+t4TPWVN4n7845+qccy2Ekt0FZpbRafuHnXOrnHPNwMNAs3Pu7865ALCCUHJ9xJxzP+npfAykbRGRo5ESLBGRyNnT6f5E4JOHfNN/MqGkpKvtdwFxhHodDmJm55rZG+HhedWEEqf27QqA7V3EMjHcXnGn4/+BUC9It8wsz8zuDQ8prAXu7iKmPwFzgV+HP/RDqMdrV/sGzrlg+PmN77TfgU73G4HUnmKJsD29b9JhIvDVQ85dAaHn2BdV4aS53a72fc3seDN7ITy0sga4nsNf345YzcxrZj+x0NDPWt7vney8T0mn+01dPB7K11lEZMRTgiUiEjmdqwbtIdRD1fnb/hTn3E86bVPQ6f4EoA0o79xgeFjag4R6hPLCPQZPEBrK136cKV3EsodQr0tOp+OnO+fmdLFtZ/8Tfh7znHPphHri2o+FmaUCvwDuAG6x9+eN7SeUmLRvZ+Hnt6+X4x3GzJba+xUAu7ot7b2Vwxxa0akRSO70eEyn+3uAHx9y7pKdc8v7eKxRZpbS6fEE3p+H9A/gMaDAOZcB3E6n17eLWD8FXACcCWQAk8LLD91n0ITnk3V7PoYqDhGRWKEES0RkcNwNnGdmZ4d7IRLDBRDyO23zaTObHZ7P9CPggfCwrs7igQSgDPCb2bmE5lK1uwO42sw+aGYeMxtvZjOdc8WEhhL+n5mlh9dNMbNDh6MdKg2oB2rMbDyhuV2d/RJY6Zy7ltDQt9vDy+8DPhKOIw74KqEE7z+9vVCHcs694pxL7eH2Sn/b7MIa4FPhc3MOBw/T+xNwfbi3ycwsxULFKdKgo7DEnb20/0Mziw8ngx8F7g8vTwMqnXPN4flzn+qlnTRCr2MFoYTwf/rxHCPCOfc/PZ2P7vZr/7kHfIAn/B6IG7rIRUSiQwmWiMggcM7tIdTz8G1CydEeQslK59+7dxEqRHEASAS+1EU7deHl9wFVhD6QP9Zp/VuEC18ANcBLvN+TdAWhBG1DeN8HOHiIYld+CBwTbutx4KH2FWZ2AaEiFTeEF30FOMbMLnPObSbU2/VrQr1w5wHnOedaezletNxIKMZq4DLgkfYVzrmVwGeB3xB63bZxcEGOAuC1Hto+EN5vP6GCFNc75zaF130O+JGZ1QHfJ3Ree/J3QkMM9xE6j2/09sSGkcsJDVH8PaE5g02EklcRkaOaroMlIhIFFrrw6t3OuT9HOxbpu3BVxHeB+eFiHoeuP43Qec0/dJ2IiIwMvmgHICIiEivCPXKzet1QRERGLA0RFBEZYczs9m4KFtze+94Si8xsQg+FKiZEOz4RkaOJhgiKiIiIiIhEiHqwREREREREImRYzcHKyclxkyZNinYYIiIiIiIiPVq1alW5cy730OXDKsGaNGkSK1eujHYYIiIiIiIiPTKzXV0t1xBBERERERGRCFGCJSIiIiIiEiFKsERE+sgfCPLAqr3UNB52fVkRERERYJjNwepKW1sbe/fupbm5OdqhSIxJTEwkPz+fuLi4aIciR4m3n3uQ+a/+gEff/BRXfO670Q5HREREhqFhn2Dt3buXtLQ0Jk2ahJlFOxyJEc45Kioq2Lt3L4WFhdEOR44SbttzTPfsw5WswB/4Nj6vBgGIiIjIwYb9p4Pm5mays7OVXEm/mBnZ2dnq+ZSI8jYcAGCG7WbHrqLoBiMiIiLD0rBPsAAlV3JE9HMjkZbSUkoroSGnB9a9FOVoREREZDiKiQRLRGQ4yAqUsyn1eILOCBSvi3Y4IiIiMgwpweoDM+OrX/1qx+Nbb72VW265JXoBdfLGG29w/PHHs3DhQmbNmtUR14svvsh//vOfAbV9zjnnkJmZyUc/+tEIRCoS45wj21VSkzyBYu9YUqo3RTsiERERGYaUYPVBQkICDz30EOXl5RFt1zlHMBgcUBtXXnklf/zjH1mzZg3r1q3j4osvBiKTYN18883cddddA2pD5GjhGitJoI3WpNGUp0xjTNP2aIckIiIiw9CwryLY2Q//uZ4N+2sj2ubscen84Lw5PW7j8/m47rrruO222/jxj3980LqysjKuv/56du/eDcAvfvELTjrpJG655RZSU1P52te+BsDcuXP517/+BcDZZ5/N8ccfz6pVq3jiiSf4zW9+w5NPPomZ8d3vfpdly5bx4osvcsstt5CTk8O6des49thjufvuuw+bV1RaWsrYsWMB8Hq9zJ49m6KiIm6//Xa8Xi933303v/71r5k5c2a3cW7fvp1t27ZRXl7O17/+dT772c8C8MEPfpAXX3yxx9fm/vvv54c//CFer5eMjAxefvllmpubueGGG1i5ciU+n4+f//znnH766dx555088sgjNDQ0sHXrVr72ta/R2trKXXfdRUJCAk888QRZWVn86U9/4o9//COtra1MnTqVu+66i+Tk5IOOe8IJJ3DHHXcwZ07o3J122mnceuutLF68uMd4RY5US1MdiYAlZhDImsK42leoqW8kIzW5131FRERk5FAPVh99/vOf55577qGmpuag5TfeeCM33XQTb7/9Ng8++CDXXnttr21t3bqVz33uc6xfv56VK1eyZs0a3n33XZ599lluvvlmiouLAXjnnXf4xS9+wYYNG9ixYwevvfbaYW3ddNNNzJgxgwsvvJA//OEPNDc3M2nSJK6//npuuukm1qxZw9KlS3uMc+3atTz//PO8/vrr/OhHP2L//v19fl1+9KMf8fTTT/Puu+/y2GOPAfDb3/4WM+O9995j+fLlXHnllR3V/NatW8dDDz3E22+/zXe+8x2Sk5N55513OPHEE/n73/8OwMc//nHefvtt3n33XWbNmsUdd9xx2HGXLVvGfffdB0BxcTHFxcVKrmRQNdbXAxCXkERi3nR8FmTPDg0TFBERkYPFVA9Wbz1Ngyk9PZ0rrriCX/3qVyQlJXUsf/bZZ9mwYUPH49raWurDH8S6M3HiRE444QQAXn31VS699FK8Xi95eXmceuqpvP3226Snp7NkyRLy8/MBWLhwIUVFRZx88skHtfX973+fyy67jH//+9/84x//YPny5V32OvUU5wUXXEBSUhJJSUmcfvrpvPXWW3zsYx/r0+ty0kkncdVVV3HxxRfz8Y9/vOM5ffGLXwRg5syZTJw4kS1btgBw+umnk5aWRlpaGhkZGZx33nkAzJs3j7Vr1wKhJOy73/0u1dXV1NfXc/bZZx923IsvvpizzjqLH/7wh9x333184hOf6FO8IkeqsbGeLCA+MZlRBRPgLajcuwnmHxPt0ERERGQYiakEK9q+/OUvc8wxx3D11Vd3LAsGg7zxxhskJiYetK3P5ztoflXn6zGlpKT06XgJCQkd971eL36/v8vtpkyZwg033MBnP/tZcnNzqaioOGyb7uKEw8uZ96e8+e23386bb77J448/zrHHHsuqVat63L7zc/J4PB2PPR5Px/O76qqreOSRR1iwYAF33nlnlwnj+PHjyc7OZu3ataxYsYLbb7+9zzGLHInWlkYAfAlJ5EycDUBb6bZohnRUcM5R0dBKTmpC7xuLiIjEgAEPETSzAjN7wcw2mNl6M7sxvPwWM9tnZmvCtw8PPNzoysrK4uKLLz5oyNpZZ53Fr3/9647Ha9asAWDSpEmsXr0agNWrV7Nz584u21y6dCkrVqwgEAhQVlbGyy+/zJIlS/oc0+OPP45zDggNPfR6vWRmZpKWlkZdXV2vcQI8+uijNDc3U1FRwYsvvshxxx3X5+Nv376d448/nh/96Efk5uayZ88eli5dyj333APAli1b2L17NzNmzOhzm3V1dYwdO5a2traOdrqybNkyfvrTn1JTU8P8+fP73L7IkQi0NAHgiU8iLm00DSThq94R5ahi31OPP4j72TTefOfdaIcS8/7x1Ms899KL0Q4j5m3ec4Bf/etNmtsC0Q5FRGJUJOZg+YGvOudmAycAnzez2eF1tznnFoZvT0TgWFH31a9+9aBqgr/61a9YuXIl8+fPZ/bs2R09KRdddBGVlZXMmTOH3/zmN0yfPr3L9i688ELmz5/PggULOOOMM/jpT3/KmDFj+hzPXXfdxYwZM1i4cCGXX34599xzD16vl/POO4+HH36YhQsX8sorr3QbJ8D8+fM5/fTTOeGEE/je977HuHHjgFDy98lPfpLnnnuO/Px8nn76aSA0LLF9vtXNN9/MvHnzmDt3Lh/4wAdYsGABn/vc5wgGg8ybN49ly5Zx5513HtRz1Zv/9//+H8cffzwnnXQSM2fO7Fj+2GOP8f3vf7/j8Sc+8QnuvffejsqJIoMp0BpKsLzxyWBGadx40hp2RTmq2Ddu7W/ItRrqXvtTtEOJaaWV1XzqjfP44AsXUN/cFu1wYtq+e2/iSyvP4rXnH4t2KCISo6y99yNiDZo9CvwGOAmod87d2td9Fy9e7FauXHnQso0bNzJr1qyIxijvO7Ta4dFGPz8SKRuevYvZr36BDRc8wexFJ7H2Fx8ns3odE27ZEu3QYlr5LRPJoZotVsj0H6yJdjgxa/Uz/+CY124I3f/w4xyz5ORe9pDu7L1lOvmU8Er6R1j6lX9EOxwRGcbMbJVz7rAqaxGtImhmk4BFwJvhRV8ws7Vm9hczG9XNPteZ2UozW1lWVhbJcEREIibQFppH6UsIzaFsyyhknCujtqExmmHFtObmJnKoBmBicA91ei2PWEvl3o77DRufiWIksa21LUCGC10OZlzduihHIyKxKmIJlpmlAg8CX3bO1QK/B6YAC4Fi4P+62s8590fn3GLn3OLc3NxIhSN9dMsttxy1vVcikeTCQwR9CaEqonG5U/BZkAO71IN1pOqqQl+qbUmYQ4L52bNtbZQjil2uvhSAGlLxVejyAUeqrGQvadZENWkUBndTW1sV7ZBEJAZFJMEyszhCydU9zrmHAJxzJc65gHMuCPwJ6HvlBhGRYSbYFkqw4sIJVtrYqQBU71OCdaRa6kIVT6tHhy5bUbPjnWiGE9OsoYxq0tifOJVRDSq+cqRq94WS0+3Zp+Exx96t70U5IhGJRZGoImjAHcBG59zPOy0f22mzCwH1tYtI7PKHhgjGJSYDkDshVICluVQfZo9Ua22oB8tTsJigMwIV26McUexKaC6nxjOK+vRpFPh3EwwEe99JDtNaXwmAFYSq6dbu1xcoItJ/kejBOgm4HDjjkJLsPzWz98xsLXA6cFMEjiUiEhUu3IMVH56DlZqdTwtxUNX1JRikd4HG0IdZT8ZYyjzZ+GpUlfFIJbVW0BA3CnKnk2LNHNinn8sj4W+uByB90qLQ4zIl/SLSfwO+0LBz7lWgqyvTHhVl2UVEAMzfTKvzEh8fF1rg8VDqHUNiw96ed5RuBepDQwTjUrKpjB9HepNeyyOVHqiiOHE2aWOmwnoo3b2FcROmRDusmBMMJ1gpWWMpZxRxNUpURaT/IlpF8Gj2yCOPYGZs2tT95OGioiLmzp0bsWNu3ryZ0047jYULFzJr1iyuu+46IHSR4CeeGFj+es011zB69OiIxityVPM300I8Cb73f23WJo4ns3l/FIOKcU2hAgLxaTk0pkwg16/X8kiluTqa4zMZlR+65mJj6bYoRxSbgq0NACQmp1MWP57Uxt1RjkhEYpESrD5avnw5J598MsuXL+9yvd/vH/AxAoGDrxr/pS99iZtuuok1a9awceNGvvjFLwKRSbCuuuoqnnrqqQG1ITKSmL+ZFuLwed7vsG9OLWBssBi/P9DDntKtpipanZfElHRc5kRyqaa6pjraUcWkJJpxvmRyxk8l6IxgRVG0Q4pJriWUYCWlptOQMoHRbUr6RaT/YivBevKb8NePRPb25Dd7PWx9fT2vvvoqd9xxB/fee2/H8hdffJGlS5dy/vnnM3v2bCCUaF122WXMmjWLT3ziEzQ2hq7r8txzz7Fo0SLmzZvHNddcQ0tLCwCTJk3iG9/4Bscccwz333//QcctLi4mPz+/4/G8efNobW3l+9//PitWrGDhwoWsWLGChoYGrrnmGpYsWcKiRYt49NFHAbjzzju54IILOO2005g2bRo//OEPO9o65ZRTyMrK6vF5v/TSSyxcuJCFCxeyaNEi6urqcM5x8803M3fuXObNm8eKFSs6XotTTz2VCy64gMmTJ/PNb36Te+65hyVLljBv3jy2bw+NY//nP//J8ccfz6JFizjzzDMpKSk57LiXXHIJjz/+eMfjq666igceeKCXsyQyuCzQQgvxhOr6hJdlTSLNmigpPRDFyGKXtdRQSwrJCXHE54aGs5Xs2hzlqGJQoI04Arj4ZLzxiZR5somrU8/LEWlrpM15SUhIJJBZSC5V1KlUu4j0U2wlWFHy6KOPcs455zB9+nSys7NZtWpVx7rVq1fzy1/+ki1bQpWGNm/ezOc+9zk2btxIeno6v/vd72hubuaqq65ixYoVvPfee/j9fn7/+993tJGdnc3q1au55JJLDjruTTfdxBlnnMG5557LbbfdRnV1NfHx8fzoRz9i2bJlrFmzhmXLlvHjH/+YM844g7feeosXXniBm2++mYaG0Ldwb731Fg8++CBr167l/vvvZ+XKlX1+3rfeeiu//e1vWbNmDa+88gpJSUk89NBDrFmzhnfffZdnn32Wm2++meLiYgDeffddbr/9djZu3Mhdd93Fli1beOutt7j22mv59a9/DcDJJ5/MG2+8wTvvvMMll1zCT3/608OOu2zZMu677z4AWltbee655/jIRz7S57hFBoPH30KrxR+0LGl0KCko36Ok4Ii0NdHkEkiO95IxbhoANSp732+BcK8LvlCFy8q4saQ17otiRLHLWhtoJBEzI2F06FIMJUW6rpiI9M+Ai1wMqXN/EpXDLl++nBtvvBEI9a4sX76cY489FoAlS5ZQWFjYsW1BQQEnnXQSAJ/+9Kf51a9+xYc+9CEKCwuZPj00Nv7KK6/kt7/9LV/+8peBUELRlauvvpqzzz6bp556ikcffZQ//OEPvPvuu4dt9+9//5vHHnuMW2+9FYDm5mZ27w59e/mhD32I7OxsAD7+8Y/z6quvsnjx4j4975NOOomvfOUrXHbZZXz84x8nPz+fV199lUsvvRSv10teXh6nnnoqb7/9Nunp6Rx33HGMHRuqzj9lyhTOOussINTz9sILLwCwd+9eli1bRnFxMa2trQe9du3OPfdcbrzxRlpaWnjqqac45ZRTSEpK6lPMIoPFE2imlYSDlo0aH3pPNxzYBpwRhahim7U10kQ8SXFecieGyt63lqvsfX81N9aRAlhCKMFqSMlnQtWb0Q0qRnn8jTRbAhlAWvj9Xbt/M8w/MbqBiUhMUQ9WLyorK3n++ee59tprmTRpEj/72c+47777cM4BkJKSctD2nYcPdfW4K4e20dm4ceO45pprePTRR/H5fKxbd/jlxJxzPPjgg6xZs4Y1a9awe/duZs2adcTxtPvmN7/Jn//8Z5qamjjppJN6LPABkJDw/odPj8fT8djj8XTMUfviF7/IF77wBd577z3+8Ic/0NzcfFg7iYmJnHbaaTz99NOsWLGi2wRUZCh5g634Le6gZTkFoV6XtgpVGjsSHn8TzZaIx2MkZ+RSTzLe6qJohxVzmhtDle8sPvS3JJAxkdFU0tRQH82wYpLX30iLhb7Qy50wA4DWcr2/RaR/lGD14oEHHuDyyy9n165dFBUVsWfPHgoLC3nllVe63H737t28/vrrAPzjH//g5JNPZsaMGRQVFbFtW6iq01133cWpp57a67Gfeuop2traADhw4AAVFRWMHz+etLQ06urqOrY7++yz+fWvf92R9L3zzjsd65555hkqKytpamrikUce6ehd64vt27czb948vvGNb3DcccexadMmli5dyooVKwgEApSVlfHyyy+zZMmSPrdZU1PD+PHjAfjb3/7W7XbLli3jr3/9K6+88grnnHNOn9sXGSyeYCt+z8EJli8pnUoy8NVovsuR8PibaLPwFzNmlPrGkKSy9/3W0hj6e+CND/Vg+bJDIwNK9myNWkyxyutvpMWTCEB6Zi61JEO13t8i0j9KsHqxfPlyLrzwwoOWXXTRRd1WE5wxYwa//e1vmTVrFlVVVdxwww0kJiby17/+lU9+8pPMmzcPj8fD9ddf3+ux//3vfzN37lwWLFjA2Wefzc9+9jPGjBnD6aefzoYNGzqKXHzve9+jra2N+fPnM2fOHL73ve91tLFkyRIuuugi5s+fz0UXXdQxPPDSSy/lxBNPZPPmzeTn53PHHXcAcPvtt3P77bcD8Itf/IK5c+cyf/584uLiOPfcc7nwwguZP38+CxYs4IwzzuCnP/0pY8aM6fPrecstt/DJT36SY489lpycnI7lK1eu5Nprr+14fNZZZ/HSSy9x5plnEh8f31VTIkPK00UPFkBF/DhSG5UUHAlvoJnW8IdZgLrE8WS0FEcxotjU2hSag+VLTAUgJS80N7BmvxKs/ooLNNHqeX9IeplXSb+I9J+193oMB4sXL3aHFmHYuHFjx3A36Z8777yTlStX8pvf/CbaoUSNfn4kUop+fCxlNorjvv3sQcvfue0T5Na8S/4t+jDbX/t/PJ/tjGfpd54E4O3br2dO8UMkfP8AXq++/+urra//k2lPf5p3PngPi5Z+lPL9u8j543zenPUtjl/We6Vced/W/15Moy+TBd8Mvc/f+dlHyGoqYuL310c5MhEZjsxslXPusOIG+gsmItIHXtdG0A7vTfVnTGCMK6ehsSkKUcW2uGAzfu/7PVg2aiLJ1kJZiXoM+sPfHJprFZeUBkBWXgHNLg5XpaFt/RUfbMbvfb8HqzU1n9GBUlwwGMWoRCTWKME6il111VUjuvdKJJK8ro2A5/AEy5ddiM+CHNi7LQpRxbY410Kg04fZpNGhuUPlmjvUL/6W0PUW48NDBD1eD6Xe0cTX74lmWDEp0TURCJe7h1DSn2StlCvpF5F+iIkEazgNY5TYoZ8biSSfayPoPTzBShsbulZO9T4lBf0VH2wh6Hs/wWq/FlZ9iUq190d7D1Z8UmrHsqr4caQ36VpY/ZXgmgl2SrAScycDULFX728R6bthn2AlJiZSUVGhD8vSL845KioqSExM7H1jkT7wuTac5/AiFzkFoVLOTSXbhzqk2OYcCbTgOiVYuQWhZNWvsvf9EmwN9WAlJL+fYDWnjCcnUBKtkGJWsmsmGPf+pVMyx4d+JusO6P0tIn037C80nJ+fz969eykrK4t2KBJjEhMTyc/Pj3YYcpSI66YHK2P0BNqcF6qKhj6oWOZvwUsQF/d+b0FCcgZVpONV2ft+cS2hKoJJnRKsYMYEMivqqaupJC0jK1qhxZRgWyvx5of4938mR3dc664oSlGJSCwa9glWXFwchYWF0Q5DREa4ONpwXczBMq+PEm8eCXVKCvqlLdTrYnFJBy2u8OWR1Kihbf3S1kjQGUnJ7/e8xOcUwg4o27OVtIzjoxhc7GhqrCMFIP791zExJYNKJf0i0k+DPkTQzM4xs81mts3MVC9WRGJSHH5cFz1YANUJ48lo3j/EEcU2155gdeotAKhPGk9Wm66F1S9tjTSSQLzP27EobUzoWli1xSq+0lfNDaELNns6JVgA5b4xJOtaWCLSD4OaYJmZF/gtcC4wG7jUzGYP5jFFRCIuGMBLELpJsJpTCxgdKNZc0X5oaQwNazv0w2xb+gTygmW0tvmjEVZMsrZGWkjAzDqW5eSHhrY1l6lgSF+1NNYC4ElIPWh5fdJ4RinpF5F+GOwerCXANufcDudcK3AvcMEgH1NEJLL8LaH/fV0nWC5zIpnWQHm5igr0VXNTqLfAm3BwD5Zn1AQSzE/p/qIoRBWbPP4mmi3hoGWjcsbQ4BKhWkPb+qqlMfwzmXhwgtWWVsDoYBn+trZohCUiMWiwE6zxQOcLcewNL+tgZteZ2UozW6lCFiIyHLn2BMub0OX6xNGhUs5lu1XKua9aGkOlxQ9NsJJHh4a2Vei6Yn3m8TfRYgdXTDWPh1JvHon1GtrWV63hpN+XeHCvqjdrIvEWUNIvIn0W9TLtzrk/OucWO+cW5+bmRjscEZHDtLWGEixPNz1YGeOnA1B/QAlWX7U2hYYI+g4ZjjVqfCjBaixVWey+8gWaaPUcfkmKmoRxpGtuYJ/5m0JJvy8p/aDlSeGkv1LXwhKRPhrsBGsfUNDpcX54mYhIzGhrbQbAfF33YI0OXwurTfNd+qwtfHHcuKSDewtywtcd8lfuGvKYYpUv0ExbFwlWc2o+owMluGAwClHFHn9zqAer8wWbAbLC89kalPSLSB8NdoL1NjDNzArNLB64BHhskI8pIhJRba1NQPcJVmLaKKpJw6NSzn3W1hzqwYo/ZL6LLzGFCkbhq93T1W7ShbhgE35vFxdVz5xAqjVRW1U69EHFoED4emIJyWkHLc8dP4WgMwJK+kWkjwY1wXLO+YEvAE8DG4H7nHPrB/OYIiKR5m8J92DFdZ1gAZT5xpLcoKSgr9o/zCYmpx62riJ+DCm6FlafxQVb8HuTD1senxOeG7hHQ9v64v2fyYMTLF9CEuWWhU9foIhIHw36HCzn3BPOuenOuSnOuR8P9vFERCLt/TlY3SdYdcn5un5TP7R/mI1PTjlsXYOuhdUvCa6JgDfpsOUZY0MJVp2uhdUnriU0bDUxNf2wdZXxY0hpUtIvIn0T9SIXIiLDXaAt1IPl6aEHy59WwJhgKa2tKuXcF4HW0IWGkw7pLQDwpxeQ5ypobmkZ6rBiUoJrIeg7PMHKmRCaG9hSvnOoQ4pJrrWRoDOSkw7vVW1Izier7UAUohKRWKQES0SkF+1FLrw9JFierELiLEDJXhW66ItgS+jDbFLS4T1YvqxJxFmAA3ot+ySRFlxcFz1YmdnUkILVaOhqX1hbA40k4PN5D1sXSJ/AaFdBc3NzFCITkVijBEtEpBf+1vYerC4KCYQljwmXct63eUhiinltTTQRT3KC77BVKWNCQ9uq9mloW6+CARJog7jD52ABlHnHkFSvBKsvPG2Nh12wuZ0vayJecxzYo59JEemdEiwRkV4E2loB8MV1fR0sgOz80LWwmkpUyrkvrK2RZhKI8x7+ZygrfF2xxlL1YPWmNXztpu4SrNrEcWS0amhbX3j8DbTQ9ZcoKeEvUKr3q2CIiPROCZaISC+C4TlYvvjue7Byxk/B7zwEKjTfpS/M331vQdbYQoLOCKosdq+aG0LXbiLh8KGWAC26Flafef1NNHsOH2oJkB2+FlZTqd7fItI7JVgiIr1w4YIMvm4+xAJ4fXGUekfjq1Up574wfzOt3SRYnrgEyjzZxNVpaFtvGhtDCZYvoeseLMucSJK1UlG6dyjDikm+QCOtXVywGSB77CTanJdgZdHQBiUiMUkJlohIL4JtoQsNe3tIsACqE8aRrlLOfeL1N3WbYAFUxY8lrUlJQW9aGmsB8CYeXo0RICmvEIByXQurV3GBJlo93SSq3jjKPDnEK+kXkT5QgiUi0ptwguVL7DnBakmbQF6gmEDQDUVUMc0baKatm+FYAPUpE8nzK1ntTUtDKMHydZNgtc9nqy1WgtWb+GATgS7K3berih9LWrN+JkWkd0qwRER6Ex4iGJfY9bfb7bxZhWRZHfsPlAxFVDEtLthEm7f7OW3+zMnkUENtTeUQRhV72ppCCVZ88uEXxwXImzCDoDP8ZSq+0pv4YDMBX/fv8aaUfLL9em+LSO+UYImI9MbfhN95SIjvfkgbQPLYUG9Bya4NQxFVTIsLNhPsIcGKHx2q2lZatHGoQopJbeEhgnHdJFjxSSmUenKIq1Fxht4kuiaCPSRYwYwJ5FJNbV3NEEYlIrFICZaISC9cayNNJHR5zabOsibMBqB+36ahCCumJQUbaIvrelgbwKiCWQBU79Vr2ZNAc6hMe1JKRrfblMfnk9Goioy9SXQtBLspdw/gGx2qJKikX0R6owRLRKQX5m+imXgSfd4etxsVnu8SLNfFSHuT7JoIxKV2u37MxFCC1VqquUM9CTaHqggmpHbdgwXQkDqRMf594DQ3sDvBQIBka8Hiu59nmTZuJgB1+gJFRHqhBEtEpBfW1kQzCXg81vN28cmUenJJqNVwrB45R7JrgvjuE6yk1HTKyMJbrdeyJ64llGClpHbfg+WyppBOA9XluuBwdxrCxUJ6SrBGh5N+v5J+EemFEiwRkV5YoJmWHkqKd1aVWMCoJpVy7klrUx0ec7iE7ocIApTF55PWoOuK9ai1gVbnJSmp+6FtCXntcwPXD1VUMaepPpSoehK6T/ozMkdRQhaeqh1DFZaIxCglWCIivfD0cs2mzprTCxkf3Edzq3+Qo4pdjXXVAHgSux/WBtCYOkGl2nthrfU0koRZ972rWRNCPS/1+zYPVVgxp7mhGgBPN+Xu25XG5ZPWUDT4AYlITBtQgmVmPzOzTWa21sweNrPM8PJJZtZkZmvCt9sjEq2ISBSErtnUtwTLkzONDGtk335dJLc7TXVVQO8JVnDUZLKpoaqyYijCikmetgYarftrN0GoVLvfefBrbmC3WupDP5Pe5FE9bleXMpHcVr23RaRnA+3BegaY65ybD2wBvtVp3Xbn3MLw7foBHkdEJGp8gWbaPN2XFO8sbdwMAMqKVKq9O+29Bd2VFm+XOCZUta14p17L7vj8DbT0cMFmgMTERIo9ecRXa2hbd1rDCZYvJbPH7fyZkxlFLc215UMQlYjEqgElWM65fzvn2sfBvAHkDzwkEZHhJS7YjL+PCVbOpFCp9sZiDcfqTku4oIAvufvCDACj8lW1rTdef2OvCRZAeUIBGU2az9adQGMowYpPyepxu/jwfLYyzWcTkR5Ecg7WNcCTnR4Xmtk7ZvaSmS3tbiczu87MVprZyrKysgiGIyISGXHBFvw9XBS3s9S8Kfjx4Cq3D3JUsautMXSh1oReEqy8cLLaVqaqbd2JD9TT6u2+MEO7xnCpdhcMDkFUsaetIZRgJWf0nGBl5Ldfn01foIhI93pNsMzsWTNb18Xtgk7bfAfwA/eEFxUDE5xzi4CvAP8wsy7Hgjjn/uicW+ycW5ybmzvwZyQiEmHxrpmgr28JFt44Sr1jSVap9m75G0M9WIk9lBYHiE9KpdSy8dXotexOsr+WlvieX0cAsqaQTAvVZZo/1JVAYzUAaZk5PW43dtIMAs5oK9kyBFGJSKzy9baBc+7Mntab2VXAR4EPOhe6iqFzrgVoCd9fZWbbgenAyoEGLCIy1BJcC/i6L4N9qJrkCWTV6YNsdwJNoR6sxLTMXrctjy8gXaXau5Xuatmb0HNhBoDkcTNgC5QWrWdU3oQhiCy2BJuqaXVe0tN6nheYmZbKbhuNT/PZRKQHA60ieA7wdeB851xjp+W5ZuYN358MTAP020hEYk/ATwpNBBN6/uDVmT+zkAJXTE1jyyAGFrtcYwVBZ2SOGt3rto1pkxjr30f4+zvpJOBvI50GXFLPw9oAsgvaS7VrPluXmmuotxTM0/vHotL4AtIbdg1BUCISqwY6B+s3QBrwzCHl2E8B1prZGuAB4HrnXOUAjyUiMuQCTdUAuMTMPu/jy51OsrWwd7e+V+pSYwU1pJKYEN/rpi57CqOsjrLS4iEILLbUVoXmLVtydq/bjp0wlRYXR0Cl2rvkbamh0dP7XDaAhpSJjG7bC0r6RaQbvQ4R7Ilzbmo3yx8EHhxI2yIiw0FjTTlpgCVl9nmfjPwZsBoqdm+AmbMGLbZYFddcQY0nnd4HtkHymOmwGUqLNjA6b9ygxxZLaitKGAX40npPsOLi4tjpGUOC5rN1Ka6tjuY+FAsB8I+aQnJVMy3V+0kYNX6QIxORWBTJKoIiIkedxtrQRW49vVyAtLOciXMAaDmgifBdSWytpMGX2adtsyeGKgnW7VfVtkM11pQCkJDec2GGdpWJExilUu1dSvVX0hjXt/d4Ynup9iKVaheRrinBEhHpQUtdKMGK6+X6OJ3FjyqghXisUkMEu5LcVk1THz/Mji6Ygd95CKhU+2GaakJDBJMyep/LBtCcPokxgWJcwN/7xiPMqEAlTQl9q2ScURC6PlvtXs1nE5GuKcESEelBS11o+mhCWt8TLDweyuLGkdpQNDhBxbi0YA2tCX17PT1xCZR48zS0rQv+ulCCldqHYiEAnpypxJuf8n26RltnQX8bo1wNbcl9ex3zJ06j2cXhV9IvIt1QgiUi0oPmcIKVltW/6/TVpUwit3UvwaAmwnfmAn4yXB0uqfd5Q+2qEgvIbFLVtsPU7ifojIzcgj5tnjwu1PNStmvDYEYVc6rK9uMxhy99bJ+2z0xJZK+NwVetpF9EuqYES0SkB20NoQRrVFbfvt1uF8yaTAElFFfXD0ZYMasy/GHWm57X532a0wsZF9iP3x8YxMhij7duP+WWSVJSUp+2zw3PDWzcr6FtnVWWhOalJWb1vYhKWXwBGY1K+kWka0qwRER6EGyoosnFMyo9rV/7JeRNJ94CFBep0EVnlXtDw6oScif3eR/LmUaKtXBgX9EgRRWbEhv3U+nte8/qmLEF1LkkqFCp9s5qS/cAkJaT3+d9GlInkuvfD0El/SJyOCVYIiI98DWWUGGZeD3Wr/2yJoSq31VrIvxBGkpC83/SxvQ9wUodNwPQ0LZDpbeWUJ8wps/be7we9vvGk1hXNHhBxaCWilBPVPa4vv9MBrOmEI+/Y18Rkc6UYImI9CC5uaRfvQTtRuWH5ru0laoHq7O28AfS3Pzpfd5n9CQNbTuUCwbJDpTTmtK3eUPtqpMmkt2sUu2d+ap20OASyMjtew9WYt40AMp3bRyssEQkhinBEhHpQXprKXXx/Zt/BWCpo2mwZE2EP1T1LirIID09vc+7ZI6ZRDNxuApVv2tXUVxEsrXgye57rwtAa8Yk8oJlBFqbBimy2JNYu5Ni33jM0/ePRJkFoQuI1+9XgiUih1OCJSLSnWCQrGA5bf3sJQDAjIr4fE2EP0Rq3Q7K4sZj1vchl+bxcsA7jiQNbetQuv0dAFIK5vVrP1/uNDzmKC1Sb2C7US17qU2e2K99CvInUe8SaSvVfDYROZwSLBGRbjTWlBCPH09m34cOHbR/WiFjAvtobtNEeAgNa8tv3UFNxsx+71uTNJHsFg1ta9ewZx0AeVMX9mu/tHCp9oo9ms8GUFdXw7jgAQJZU/u1X2ZKPHtsLPG6PpuIdEEJlohIN8p2hyreJWZPOLIGsqcwnnL2lFVFMKrYdWD3FtKsCfLm9nvf1szJjAseoLmlZRAii0Gl66ggk9zRfS8tDpA3OTSfrbl482BEFXP2bXgDrzl8Bcf2az8zozy+gIwmJf0icjglWCIi3ajb8x4AqRP6NwyrXcKY6XjNUb5HH2YBijf8B4DMyf37MAvgy51KvAXYV6TXEmB87Vp2Jc/p11BLgJzsXMpdBp5KDW0DKN/8OgAT553U730b0iaS4z8A/tZIhyUiMU4JlohIN1qL19Ps4pgwedYR7Z+ZH9qvcb+SAoDWbS9STxJT5n+g3/tmhKsyVu7W3KHivTsZ5w7QOv74fu9rZpTEjSe5QT0vAEn73+CAjSYrr/+91C5rKl6CtFZomKCIHEwJlohIN+Irt7DHW0BqUsIR7Z+ZH7p+k9OFXXHBIOOr3mJH8gJ8cfH93r+9VHtLicre73nzUQDGLjjriPavS55ATuveSIYUk5qbGpnZtJrd2f3vvYL3S7VX7FofybBE5CgwoATLzG4xs31mtiZ8+3Cndd8ys21mttnMzh54qCIiQygYpKBpI+Vp/S/I0M6SRlFlGcTXFEUurhi1Y90bFLhimgo/dET7p2aNpY5kvFVKVhO2/ov9NpoJs/vfgwUQyJhIjquipbE2wpHFlvdefpgUayF17keOaP+sCaHfDXX7t0YyLBE5CkSiB+s259zC8O0JADObDVwCzAHOAX5nZt4IHEtEZEiU7HyXDOppO4JhWJ2Vx+eT2aRS7cUv/5U252Xm6ZcdWQNmlPjGkVw/soe2lezeytymlewdd26/rtvUWdzoUMW8kl0je7ilZ809VJLBjJMuOKL9C8blU+eSaNMQQRE5xGANEbwAuNc51+Kc2wlsA5YM0rFERCJu96qnAZiw6IMDaqc+ZSJ5bftwzkUirJhUU1XGwrJ/si7zdDJyjuCaYmG1SQVkte6PYGSxZ/u/bgUg/0OfP+I20seHhq5W7Bm5wy13bFzNosb/sC3/43iPYMgqwKiUePZaHr4afYEiIgeLRIL1BTNba2Z/MbNR4WXjgT2dttkbXiYiEhOSd/6bXTaeiVP7X1K8s0BmIXlWRU1tTYQiiz3bln+DJJpJP/PmAbXTlj6BMcFS2traIhRZbNm15V2OLXmQd0adzbhJM464nTETQ8VXWkfoRXJdMEjDI1+liQRmfOzrR9yOmVEVP47Uxj29bywiI0qvCZaZPWtm67q4XQD8HpgCLASKgf/rbwBmdp2ZrTSzlWVlZf3dXUQk4mrL9jG9cQ27c0/vdxnsQ8XlFAJQuntkfpjdvPJZFpU8xBvZH2fKvBMG1JY3u5A4C1CyZ3uEoosdrS0ttN53LU2WwKRl/zugtjKycql2qXiqR+bQtjce+iXzWlazbs5XyMjp33XEDtWUUhAq1R4MRig6ETka9JpgOefOdM7N7eL2qHOuxDkXcM4FgT/x/jDAfUBBp2byw8u6av+PzrnFzrnFubm5A30+IiIDtuOpXxNnAfJOvXbAbaWNmQxAzYGRlxQU79pMzr8+wwHPaOZd8bMBt5cyZjoAFXtHVtn7YCDAmt9dwTT/FrYt+X/kjJ00oPbMjBLf2BE5n23tK49x7Hv/zYaEhRx30dcG3J4bNYkE2mitHtlDV0XkYAOtIth5MP2FwLrw/ceAS8wswcwKgWnAWwM5lojIUGhrbaZgx72sjFvM9DmLBtxebkGolHNz2cjqLSjatBr760eIo5XWZfeSnpk94DazC0LD4poOjJyqbc1NDbx128UsqXmKNyZcx+IPXxORdmuSCshqGVml2lc9fTdTn72W/d5xFNzwAB7vwGtvJY6eAkDZnpFdMEREDjbQOVg/NbP3zGwtcDpwE4Bzbj1wH7ABeAr4vHMuMMBjiYgMurWP/ppsV4X3hOsj0l5adj4txEH1yJgIHwwEee3+28hdfi4+2ii98H4mzTwmIm3njJ1Eq/MSrCyKSHvD3bb3XmfvrSdzQv2zrJr8eU64+qcRa7s1fRKjg2UE21oi1uZw1VRfy+u/vZZjX/88e+MmkvlfT5CWGZkRM5njQ72qNftGTtIvIr3zDWRn59zlPaz7MfDjgbQvIjKU6qrLmLL+l7znm8fC0y+KTKMeD2We0STUH/29BVvffZ3GJ77DSS2r2Ji4gNwr/sLU8VMj1r7H56PEO4aEuqM7WS0v2ceWB37EcaX3U2uprF36e4794KciegzLLsS731G6byujJw2skMtwFQwEWP3Enxm76v84kRLeHv0J5l/9CxKS0iJ2jLETphFwRkvZjoi1KSKxb0AJlojI0WTr329koasn7iM/OeJrDHWlNmEs6c3FEWtvuNn07htU/funHF//PHWWzNszv87ii7+JeSJ/+cOqhPFkNB+dyWrpviK2P/5zFuy7l+NpZXXWh5l22W3Mz8mL+LGSx0yH96Byz+ajLsFqaWninaf+xuh3f8fi4C52eAvZdOZyjjvxwxE/VlZ6CvssZ8QWDBGRrinBEhEBtvz7TxxT+Tgvj72SUxadHNG2W1Lzmdi4mWDQ4fEMrCrhcBHw+1n30gP43rqdOS3v0EQ870y4gukXfZ/jMnMG7bjNqRMoLH0PFwxGNAmOFhcMsuHNf9Pyn9uZV/syxxNkdfrpjD7vBxw3feGgHTc7/+ibz7Zz5zaKn/s9M/Y+wAlUs8eTz8rFt3LMuddEZL5VV8yMCt84khuOzqRfRI6MEiwRGfHKi94j/z/fZa13Nouvitw8l3YucwJZZXWUVlYyOmfgxR6ixjmKN7/N/pf/ysT9T7KAKkrI5vXJX2Le+V/i2AjNa+nRqImklTVRXl5Czugjv2hxtJXv3sSO5//C2F3/ZI7bT61LZmXeJ5l4zo0snjx70I8/ZtwEGlwCrjK2e17Kq6pY9/y9pGx6gEWtq5mIY23SEvaf8F/MPeVjFAxCL+qh6lMKmFDzyqAfR0RihxIsERnR/M0NNNz9aTwujrTL/kZyYmLEj5GQWwhboXTP1phMsGpLdrHj+b+Stf1hJviLyHZe1iYfz+4FlzDvjEvIi08YslgS86bCFijbvTHmEqza6jK2PHcXaZsfZEbrOnKAdfHzKZl1A7M/dAUnpmYOWSzxcV52ecaSUFs0ZMeMlOaWVla//BjBNStYWP8yp1kzpZ5c1k26koIPXs/CCTOHNJ5gxkRG1fyLtsYa4pIzhvTYIjI8KcESkRFt3V8+x0J/Ef858XY+MHn6oBwjfUyolHPdgW3AwC62O1RaG2rY8tI/8K27j+kN77DQHOs9M3hp2jeZ8cErWDxmfFTiyhwfGtpWt38rcEZUYuiP5uYmNrz8ILy7grn1/2Gx+SmyfF6Z8DkmnHYVcyfPiFpslQnjGd8cG9fCCgaCrF39GtVv3M2s8qf5gFVRTzLbR59F1omfpmDhhxgdpSGjvpzJsBtKd29h/MzjohKDiAwvSrBEZMRa//RfWFj6CC/lfopTz7l00I6TWxBK3JrLigbtGJHgAm1se+OfNK78B9OrXmIurexhDC+NvZqxS69k9uwFmEV3DtnoCaHXsq1i+A5tCwYCrH/rGerf/gezKp/jGOqpJJ3Voz9O5omXM2PhyUwaBvPHmlInMrr8TQgGYAiG0h2JHds2sfulv1Gw918sdLtpc142p59A9cJLmHryJ1iQkBztEEkfNw1WQ9XezUqwRARQgiUiI1Tprg1Mev1brPfO4vjP3Daox0rMHEMz8VjNMOwtcI49G9+g9JU7mVT8FNOoptqlsCrzHBKP+xQLTjiLAt/w+fCdmJxGGaPwVRdFO5TDbN+wigOv/p3C/U8wj1IaXQKbMpYSd8ylzPrAeZwwhEMp+8KNKiS+3E9TxW6ScgujHU6HsrIDbHrubjK2Pcx8/zomA9sSZrN25neZdvqVzM0cHe0QDzJ6YrhgSOn2KEciIsOFEiwRGXH8fj/ld3+WBOcl9bK/kTgI864OYka5N4+kYVRprGLfDna+8FdG73yECYHd5Dkv7yafwJY5FzPv9E9yckpKtEPsVnncOFIb90Q7DAAO7Cti+/N/Y/TOR5kW3M4kZ2xIOpYDc77KrNMv5ZjU4TsnJyFvKmyF8t2bKYhygtXY2MC6F+/H3ruf+Y1vsNT87PWMZ9XkzzHp9CuZWjC086r6IycnjxqXAlVF0Q5FBotzuEAbwUAbgUCAYDBI0DkCQUfQOVwgSNAFCQSDGOAx8ABmYB4v5vHi8XrxeHxY+H+Px4N5PHiMqI8MkMhTgtWDDW88Rd3K+wAHLhj+32EEMeew8GNwB+/oQo8PXnroNt1s4Q5eZrhD98TcoUu6aH/QRO6XgItwe6E2u2rvyF+brts7cpFvL9IOj2+ofrKGUmJbNce2rWP1ov/HMUM0B6YucSyZjdG9FlZDbSWbnr+HpI0PMLP5XbLNsd43m1dnfIcZZ1zOcXmxUTSiIaWAguq3o3b8mupKNr6wnKSNDzC35R3GmGObbxpvT/86U0+/gnl5BVGLrT8yxoWGW9bu3wzHnjPkxw8EAqx//SkaVv6D2VUvsMQaqCSD98ZeRN7JV1Aw5yTyY+CDp5lR4htLYl0Ue6j9reCLj97xo6y5uZnaqjLqa8ppqaukrb4Kf2M1geY6Ai0NuJZ6XFsj1tqItTXiCTQSF2giLthMfKCJONeC1/nxuja8LoCPNuKcHy8B4vCTYH4M8IZvkRJ0hh8PQTwEOv3vsNBjCy0L4sG1r+u8rP2+eQjixVlou2D4f2ceguaFjvsenHk71tH+OPx/58dmFroRThTpnAiG/j/080HPnxes2/Xvf6495P/2z9pAaWIhhefeyNzxw/dLq86UYPWgYd8mZpQ/Tej0HnwLfUfx/uNDuS7/KPT04dU6/j3sBzb8A37wfl21Nbh/iLp/awyX9iJtuD9fRySfdaTjG+7eyTmPRed/YciO15g+hdn1a2hpayMhLm7Ijutva2XDq4/gX72cWbWvcqy1ssfG8p+Caxl/6lXMmRZ7F5kNZEwkt+ppGhvrSU5OHZJjtrQ0s+6VRwmuuZe5da9ygrWy3/JYOeEz5J96BVOnLhiSOCJpwqSptDgfzSXbhvS429e/Tcmrf2dy8RPMpzw0lDLzVJIWf4oZJ36Uxb6he39ESm3yBPLr3xvSY7Y1VLH9xbuJW38fExvX8e6SWzn2w58Z0hgGQ1sgSGVdI1Wl+2go30tz1T4CNcV46kuIbyohvqWSBH8tif46UoJ1pLgGUqyFRKCnwaN+56HJEmghkWZPEq2WSKsnkWZvKg2ebILeOJwnDueJB28ceONw3niC5gNPHAFPHHh80JF8eEKJh3nAwGOeUCYS/msaDH8HbwTBBUJzHV0Q63S//bEFA6FtwssIBrD2bV1o/86PzQVCSYkL4KF9XWhfjwviJYA5P55Oy4wAHhdKzUIdBeE0zYXSOsN1rPcS7LqToIePCd1+hrCeP1+0f+59/zPswclb++fsauayr/o6JVhHg+Mu+jJc9OVohyEigyBviI/nGzuHpOLlbNm6gemzB/fDuAsG2bb2NSr+83emlT7NfGqoJpV3cz5C+vGXM/PY0ynwRr/IwpGKGzMTzy7H3s3vMH3R0kE7TjAQZOOqF6h98x5mVDzDsdRSTSrrRn+EUSd8mimLzmDcMChWcaTSkhPZ5RmDp2rwC4aU7dvJ9hfuJHfHo0wJ7mSi87AheTH7536D2addwjEp6YMew2Bqy53HmLrnqSkvJiNn8HqCg20tbP3PI7Su/gfTa15jJm3sYDzbg+OZ9+bNvFpdygeWfQPPMHx/t/qDlNY0UFGyj5qyPTRV7iNQvR/qDxDfVEpKazkZ/nJyXBU51JBnB38oDzqj0jKo9WTS5EujOjGf8vgMXEI6LikTb/IofMmj8KWMwpeSRULqKBJT00lKTic5NZ34hETSzEiL0vOXgTk72gH0kxIsEZEhkDNlEayG0u2rBy3B2l+0maIX/8a43Y8yLbiXic7HutQPsGvBMuacehEnJCQNynGH2tjZJ8GbULnldRiEBGvX5nfY9/LfmLj/Cea4EppdHBvTT2bfomXMOvlCjosf5Dl7Q6gyeRKjG7cOStsNNZVseuFuEjc+yKzmd8k1xxbfdN6c9nWmnXEl8/PyB+W40ZBaeCzsgD0b3yRj6cci2rYLBtn2zotUv3E308r+zQzqqHDpvJF1PonHfopFx5+Ov6mazbdfyslbfsJ7P3kSzwe/y5zjPxTuURl89c2tlB3YS3XJHurL99JWvZ9gbTG+xhISm8tIaysn21Uylmry7fDejGpPJrW+HJrSx1CaNJ8DqWPwpo8lftQ4UrILyMjLJ3nUWHK8ceQMyTMSGRglWCIiQ2DslIX4nYfA3tXA1RFrt6pkN9teuIv07Y8xo20T44CNcXN4e/Y1TP/gFRwzKjdixxouxhRMo4IMPPtXRazN8n072f7C38je+RhTA9vJd8aGpEUcmPUlZp7+KRalZ0XsWMNJ45gljN/+KuX7d5IzbuCFLpoaG1n/ykN43lvBnLrXOdba2GNjeaPgM+SfeiXTp82PQNTDT8HsEwk+azRuew0ikGC5YJDt771OxRvLmXDgKaa5MppdHO+lnkRw/jLmnXIhpya9/4VJfFw2c7/2JKsf/gWT3/s5mU99ks3PTKNi4ofJXfQRCmcsxHcEVSwDba3UlO+nqmwvdeX7aarcT6BmP576EhKaS0huqWBUoIJsqim0wGH7V1sGtb5smtJyKU+eQ0XaGOIyx5GcPZ6M0RNIzcnHUvPI9MaROZAXTGSYUYIlIjIEPImpbI2fQV75mwNuq6x4N9tfuZf0bf9kZst7HGeObZ5CXp/8RQpP/TSzJg7fimuRYB4PRSkLmFzzBsFAAI/3yKadF+/aTNGr95Fe9BSzWteTY44t3um8Mf1roWIVYydGOPLhZ/S8M2D7z9m18ilyzr/hiNpobqhl82uP4F/3CDNq/sNia6KSdN4ZfQFpx32KWTE+JLUvMrNHs8k3nVH7XjriNlwwyLb1Kyl9414K9j/JVLefic7LhqRj2D3zy8w87VKOy8zudn/zeDnmoq/SfM5nefNfv2f01nv5wI5fwo5f0up8bPfmU5+QR0v8KPxxqXi94WIHwQDeQBM+fwPetka8/gZS/VVkumoyqScLOPTrhWrSqPZm05CQQ3HSVPanjcGXMY6EUeNIH13AqLyJJGaOJdMXr8RJRiQlWCIiQ6Rh/Eks2HkH+/buZnz+hL7v6Bz7trzD/rceJH33s0xr3UyuOXZ58nm94FpGf+BSps46hqkxUHEtUtys88hZ+TKb3n6amSd8uG/7BIMUbVpFyVsPkrvn30wJbGcssNMzkbcmXMvYpZczfXrsFasYiCnzPsD+R3JJ2Hg/9CPBqizdx9b/PErc1ieYVf8mC6yVKtLYmHUGyYsuYsYJHx121/0abBXjT+fEXX+gfPcmcib07UuO1pYWtrz9NI3v/ZPxpS8xzZUwxRkbExfw1rTPMu20T7EgZ0y/4khMSef4Zd8AvsGBPdvYv+ZZmve9R2rNVpJby8lr2kEyjeEiBw5nRhOJNFkirZ4k2rwpVKVMpiQxh0BSDqSOJiFjDKk5Yxk1uoCsvAIyE5KVOIn0wFyXJb+jY/HixW7lypXRDkNEZFDs3/oO4+45jdcmXM9J1/xvj9vWV5Wy/e2naNryPPkVr5PvDgCwxTuVivFnMu6EjzNx1pIhm2Mx3NTXVdN661wOJE1h1tefxzxd92JVluxl98on8G99ngnVbzKaSgA2+WZRNfEsCk68mPypsVdJMZJe+/PNnLT3j+w8/2EKjzmjy22amxrZuuZl6tc/Te6BV5jctg2POcoYxfbs00icfyFzPnAucXEjt1T4nqLt5P31ODZkf4iFX1rR5TYuGGTvtrUcePcZPEUvM61+JenWSIuLY0PSMbRNPZtpSz/JqLx+fAEjIlFjZqucc4sPWz6QBMvMVgDtF5HJBKqdcwvNbBKwEdgcXveGc+763tpTgiUiR7u1PzuHafWrKPrQn5h10gVgRsDfRsmOtRzY/Catu1eTU7mayf4deMzR6BLYlryAhsKzKDj+QvInTo32Uxg2Xl3+v5y8+X94N/ODpJ74GeJTMqmrKKaheDPe4nfIrV1PgdsPQA0pbE89lkDhaUw44ePkjY/uhXWHk8qqSlp+eRyJtLJnwY2kTzqWltYmGoq301q8nlGV71LYuoV48+N3HrbEzaR63CnkHfMRJs8/qdvkdiR68fdf4LSSu1gz+mOkLroIT3wSdRXFNO3fSELZe4xvWN+R5JeQzZ5Rx+Od9RGmn3geKWmxUX5aRN43KAnWIQf4P6DGOfejcIL1L+dcv74WVIIlIke70v27afrTOUx0+2ggiVbiyHB1eMKVtRpdAjsTZlCVdyIZs89kxjGnEp8wsoZa9VUwEOSlO77BSfvuIP6QCfaljGJf8kxaxxxL+uwzmbbgZHxDeP2xWLN5/Tt4HriKaa7ooOWtzsf2uGlUZy8iZdoHKFx8LmmZquPWnZbWFt64/fOcVPEgPgsetG63jaU8bRb+CSeTt+AsJkyZg8VwmX8RGeQEy0KXdt4NnOGc26oES0Ske7W11ax98g7cgXV4nZ9gcg6+3KlkTT2eyTMXKBHop+LifezZ+Ba01JGUmUduwXTyxk/CRujwySMVCATZuH4NTQe2EJ+QQNqYKRRMnjmih/0dqf3797Bvyzt4gm0kjxpN/uQ5pGUcnZUoRUaywU6wTgF+3n6AcIK1HtgC1ALfdc690s2+1wHXAUyYMOHYXbt2DTgeERERERGRwdRdgtVrFUEzexboqoTNd5xzj4bvXwos77SuGJjgnKsws2OBR8xsjnOu9tBGnHN/BP4IoR6s3p+KiIiIiIjI8NRrguWcO7On9WbmAz4OHNtpnxagJXx/lZltB6YDGv8nIiIiIiJHrUjMrjwT2OSc29u+wMxyzcwbvj8ZmAbsiMCxREREREREhq1IXGj4Eg4eHghwCvAjM2sDgsD1zrnK3hpatWpVuZkNt0lYOUB5tIOQIaPzPXLoXI8cOtcji873yKFzPbIMx/M9sauFw+pCw8ORma3savKaHJ10vkcOneuRQ+d6ZNH5Hjl0rkeWWDrfugCDiIiIiIhIhCjBEhERERERiRAlWL37Y7QDkCGl8z1y6FyPHDrXI4vO98ihcz2yxMz51hwsERERERGRCFEPloiIiIiISIQowRIREREREYkQJVg9MLNzzGyzmW0zs29GOx6JHDMrMLMXzGyDma03sxvDy7PM7Bkz2xr+f1S0Y5XIMDOvmb1jZv8KPy40szfD7+8VZhYf7RglMsws08weMLNNZrbRzE7Ue/voZGY3hX+HrzOz5WaWqPf20cPM/mJmpWa2rtOyLt/LFvKr8Hlfa2bHRC9y6a9uzvXPwr/H15rZw2aW2Wndt8LnerOZnR2VoHugBKsbZuYFfgucC8wGLjWz2dGNSiLID3zVOTcbOAH4fPj8fhN4zjk3DXgu/FiODjcCGzs9/l/gNufcVKAK+ExUopLB8EvgKefcTGABofOu9/ZRxszGA18CFjvn5gJe4BL03j6a3Amcc8iy7t7L5wLTwrfrgN8PUYwSGXdy+Ll+BpjrnJsPbAG+BRD+vHYJMCe8z+/Cn9uHDSVY3VsCbHPO7fj/27vv+DirK+HjvzMzkka9W725N7ngSjEYQihLMQQCJHQ24SUJSSBtUwlhN1nSs0AWNgRCQggldEJJIFQDNnHvNi6yJVu9txlNue8fz0iWZVVrpJFG5/v5CM889YyeGfGcufeea4zpAJ4AVoU4JhUkxphyY8yGwONmrBuwHKxr/MfAZn8ELglJgCqoRCQXuAD4feC5AGcBTwc20WsdJkQkETgdeAjAGNNhjGlAP9vhygFEi4gDiAHK0c922DDGvAvU9Vjc12d5FfAnY1kDJIlI1qgEqoatt2ttjPmHMcYbeLoGyA08XgU8YYxxG2MOAHux7tvHDE2w+pYDlHZ7XhZYpsKMiBQCC4G1QIYxpjywqgLICFVcKqh+A3wL8AeepwIN3f5w6+c7fBQB1cAfAl1Cfy8isehnO+wYYw4DvwAOYSVWjcB69LMd7vr6LOt9W3i7CXg18HjMX2tNsNSEJiJxwDPAbcaYpu7rjDWHgc5jMM6JyIVAlTFmfahjUaPCAZwE3G+MWQi00qM7oH62w0Ng7M0qrKQ6G4jl+C5GKozpZ3liEJHvYQ3teCzUsQyWJlh9OwzkdXueG1imwoSIRGAlV48ZY54NLK7s7FIQ+LcqVPGpoDkVuFhESrC6+p6FNUYnKdCtCPTzHU7KgDJjzNrA86exEi79bIefs4EDxphqY4wHeBbr866f7fDW12dZ79vCkIjcAFwIXG2OTt475q+1Jlh9+xcwLVCNKBJrMN2LIY5JBUlgDM5DwE5jzK+6rXoRuD7w+HrghdGOTQWXMeY7xphcY0wh1uf4TWPM1cBbwOWBzfRahwljTAVQKiIzAos+AexAP9vh6BCwXERiAn/TO6+1frbDW1+f5ReB6wLVBJcDjd26EqpxSETOw+ref7Expq3bqheBq0QkSkSKsAqbfBSKGPsiR5NB1ZOI/BvW2A078LAx5sehjUgFi4icBrwHbOXouJzvYo3DegrIBw4CVxhjeg6wVeOUiKwEvmGMuVBEJmO1aKUAG4FrjDHuEIangkREFmAVNIkE9gM3Yn2hqJ/tMCMiPwKuxOo+tBH4HNZYDP1shwEReRxYCaQBlcAPgefp5bMcSLLvw+om2gbcaIxZF4Kw1Qno41p/B4gCagObrTHG3BLY/ntY47K8WMM8Xu15zFDSBEsppZRSSimlgkS7CCqllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCml1BgjIoUiYkTEEepY1MQgIttFZGWo41BKqXCgCZZSSqlxT0QeEJGWwE+HiHi6PX811PGNdcaYOcaYt4N5TBG5QkQ+EJE2EQnqsZVSaiwTY0yoY1BKqbAiIg5jjHcY+xcCB4CI4RxnohKRO4Gpxphrelk3rGszmsZTrL0RkbOBFGAmcJYxZmVoI1JKqdGhLVhKKRUEIlIiIv8hIluAVhFxiMjywDf4DSKyuXsXLBF5W0T+W0Q+EpEmEXlBRFL6OPaNIrJTRJpFZL+I/L8e61eJyKbAcfaJyHmB5Yki8pCIlIvIYRH5LxGxD/A6pojImyJSKyI1IvKYiCR1W1cnIicFnmeLSHXn6xKRiwNdzRoCr29Wj9/PN0Rki4g0isiTIuIc+m966Pq4NkZEpnbb5hER+a9uzy8M/E4bAtdw3iDPtVJEykTku4HfX4mIXN1t/QUisjFwrUoDyWDnus6uof8uIoeANwPL/yoiFYHf27siMqdH3P8rIq8GWuveF5FMEfmNiNSLyC4RWTjI39HZg3mNg2WMecMY8xRwJJjHVUqpsU4TLKWUCp7PABcASUAG8DLwX1jf4n8DeEZE0rttfx1wE5AFeIF7+jhuFXAhkADcCPy6W5KzFPgT8M3AeU8HSgL7PRI47lRgIXAO8LkBXoMA/w1kA7OAPOBOAGPMPuA/gD+LSAzwB+CPxpi3RWQ68DhwG5AOvAK8JCKR3Y59BXAeUATMA27oNQCR0wKJTV8/pw3wGnrTdW0GahUKJCQPA/8PSAX+D3hRRKIGea5MIA3IAa4HficiMwLrWrGue1Igni+IyCU99j8D63d/buD5q8A0YBKwAXisx/ZXAN8PnNMNfBjYLg14GvjVIOPulYh8u7/rMZxjK6VUONIESymlguceY0ypMaYduAZ4xRjzijHGb4x5HVgH/Fu37R81xmwzxrQCPwCu6K2FyRjzsjFmn7G8A/wDWBFY/e/Aw8aY1wPnOWyM2SUiGYFz3WaMaTXGVAG/Bq7q7wUYY/YGjuU2xlRj3Zyf0W39g8BeYC1WYvi9wKorgZcD+3qAXwDRwCk9fj9HjDF1wEvAgj5iWG2MSernZ3V/r6EP3a/NQG4G/s8Ys9YY4zPG/BErcVk+hPP9IPA7fAcr0b4CwBjztjFma+BabcFKSs/ose+dgWvWHtjnYWNMszHGjZXszheRxG7bP2eMWW+McQHPAS5jzJ+MMT7gSazk+oQZY+7u73oM59hKKRWONMFSSqngKe32uAD4dI9v+k/DSkp62/4gEIHV6nAMETlfRNYEuuc1YCVOndvlAft6iaUgcLzybuf/P6xWkD6JSIaIPBHoUtgE/LmXmB4E5gL3Bm76wWrxOti5gTHGH3h9Od32q+j2uA2I6y+WICsdeJMuBcDXe1y7PKzXOBj1gaS508HOfUVkmYi8Feha2QjcwvG/365YRcQuIneL1fWziaOtk933qez2uL2X56P5e1ZKqQlPEyyllAqe7lWDSrFaqLp/2x9rjLm72zZ53R7nAx6gpvsBA93SnsFqEcoItBi8gtWVr/M8U3qJpRSr1SWt2/kTjDFzetm2u58EXkexMSYBqyWu81yISBzwG+Ah4E45Om7sCFZi0rmdBF7f4QHOdxwRWSFHKwD29rNi4KMcp2dFpzYgptvzzG6PS4Ef97h2McaYxwd5rmQRie32PJ+j45D+ArwI5BljEoEH6Pb77SXWzwKrgLOBRKAwsLznPiMmMJ6sz+sxWnEopdR4oQmWUkqNjD8DF4nIuYFWCGegAEJut22uEZHZgfFMdwFPB7p1dRcJRAHVgFdEzscaS9XpIeBGEfmEiNhEJEdEZhpjyrG6Ev5SRBIC66aISM/uaD3FAy1Ao4jkYI3t6u5/gHXGmM9hdX17ILD8KeCCQBwRwNexErwPBvpF9WSMec8YE9fPz3tDPWYvNgGfDVyb8zi2m96DwC2B1iYRkVixilPEQ1dhiUcGOP6PRCQykAxeCPw1sDweqDPGuALj5z47wHHisX6PtVgJ4U+G8BqDwhjzk/6uR1/7db7vAQdgC3wGIkYvcqWUCg1NsJRSagQYY0qxWh6+i5UclWIlK93/7j6KVYiiAnACX+nlOM2B5U8B9Vg35C92W/8RgcIXQCPwDkdbkq7DStB2BPZ9mmO7KPbmR8BJgWO9DDzbuUJEVmEVqfhCYNHXgJNE5GpjzG6s1q57sVrhLgIuMsZ0DHC+UPkqVowNwNXA850rjDHrgM8D92H93vZybEGOPOD9fo5dEdjvCFZBiluMMbsC674I3CUizcAdWNe1P3/C6mJ4GOs6rhnohY0h12J1Ubwfa8xgO1byqpRSYU3nwVJKqRAQa+LVPxtjfh/qWNTgBaoibgbmBYp59Fy/Euu65vZcp5RSamJwhDoApZRSarwItMjNGnBDpZRSE5Z2EVRKqQlGRB7oo2DBAwPvrcYjEcnvp1BFfqjjU0qpcKJdBJVSSimllFIqSLQFSymllFJKKaWCZEyNwUpLSzOFhYWhDkMppZRSSiml+rV+/foaY0x6z+VjKsEqLCxk3bp1oQ5DKaWUUkoppfolIgd7W65dBJVSSimllFIqSDTBUkoppZRSSqkg0QRLKaX6YIzB59dKq0oppZQavDE1Bqs3Ho+HsrIyXC5XqENR44zT6SQ3N5eIiIhQh6LGqb89eCf7qpq4/vafkhwbGepwlFJKKTUOjPkEq6ysjPj4eAoLCxGRUIejxgljDLW1tZSVlVFUVBTqcNQ4ZIzhoiO/AeCtt5dx5gVXhTYgpZRSSo0LY76LoMvlIjU1VZMrNSQiQmpqqrZ8qhPW0NTS9di35/UQRqKUUkqp8WTMJ1iAJlfqhOj7Rg1H5aFdXY/zmjaEMBKllFJKjSfjIsFSSqnR5qneC8DO6JOY4i+hrluLllJKKaVUXzTBGgQR4etf/3rX81/84hfceeedoQuomzVr1rBs2TIWLFjArFmzuuJ6++23+eCDD074uAcPHuSkk05iwYIFzJkzhwceeCBIESs1TjSWAdCcdyYO8XNg9+YQB6SUUkqp8WDMF7kYC6Kionj22Wf5zne+Q1paWtCOa4zBGIPNduJ57vXXX89TTz3F/Pnz8fl87N69G7ASrLi4OE455ZQTOm5WVhYffvghUVFRtLS0MHfuXC6++GKys7NPOFalxhOvuw2AlGnLYQ80lW6HJaeGOCqllFJKjXXagjUIDoeDm2++mV//+tfHrauuruayyy5jyZIlLFmyhPfffx+AO++8k1/84hdd282dO5eSkhJKSkqYMWMG1113HXPnzqW0tJRvfvObzJ07l+LiYp588knASpBWrlzJ5ZdfzsyZM7n66qsx5vj5eKqqqsjKygLAbrcze/ZsSkpKeOCBB/j1r3/NggULeO+99/qN89prr+Xkk09m2rRpPPjggwBERkYSFRUFgNvtxu/39/q7ueeee5g9ezbz5s3jqqusKmt1dXVccsklzJs3j+XLl7Nly5auc11//fWsWLGCgoICnn32Wb71rW9RXFzMeeedh8fjAeCuu+5iyZIlzJ07l5tvvvm41+33+yksLKShoaFr2bRp06isrOzvMio1JP5AgjVp+mL8CP6qXQPsoZRSSik1zlqwfvTSdnYcaQrqMWdnJ/DDi+YMuN2XvvQl5s2bx7e+9a1jln/1q1/l9ttv57TTTuPQoUOce+657Ny5s99jffzxx/zxj39k+fLlPPPMM2zatInNmzdTU1PDkiVLOP300wHYuHEj27dvJzs7m1NPPZX333+f00477Zhj3X777cyYMYOVK1dy3nnncf3111NYWMgtt9xCXFwc3/jGNwD47Gc/22ecW7ZsYc2aNbS2trJw4UIuuOACsrOzKS0t5YILLmDv3r38/Oc/77X16u677+bAgQNERUV1JTw//OEPWbhwIc8//zxvvvkm1113HZs2bQJg3759vPXWW+zYsYOTTz6ZZ555hp/97GdceumlvPzyy1xyySXceuut3HHHHQBce+21/O1vf+Oiiy7qOqfNZmPVqlU899xz3Hjjjaxdu5aCggIyMjIGvI5KDZavow23cRAXn0yVLYPohr2hDkkppZRS44C2YA1SQkIC1113Hffcc88xy9944w1uvfVWFixYwMUXX0xTUxMtLf0Phi8oKGD58uUArF69ms985jPY7XYyMjI444wz+Ne//gXA0qVLyc3NxWazsWDBAkpKSo471h133MG6des455xz+Mtf/sJ5553X6zn7i3PVqlVER0eTlpbGmWeeyUcffQRAXl4eW7ZsYe/evfzxj3/stYVo3rx5XH311fz5z3/G4XB0vaZrr70WgLPOOova2lqamqzE+PzzzyciIoLi4mJ8Pl9XvMXFxV2v76233mLZsmUUFxfz5ptvsn379uPOe+WVV3a19j3xxBNceeWV/f7OlRoq43HhJhKbTaiLKSLdVRLqkJRSSik1DoyrFqzBtDSNpNtuu42TTjqJG2+8sWuZ3+9nzZo1OJ3OY7Z1OBzHdKvrPh9TbGzsoM7X2UUPrO5/Xq+31+2mTJnCF77wBT7/+c+Tnp5ObW3tcdv0FSccX8685/Ps7Gzmzp3Le++9x+WXX37Mupdffpl3332Xl156iR//+Mds3bp1UK/JZrMRERHRdS6bzYbX68XlcvHFL36RdevWkZeXx5133tnrXFYnn3wye/fupbq6mueff57vf//7/Z5XqaESbztusd6vHclTmdK8jqY2Fwkxx3+GlFJKKaU6aQvWEKSkpHDFFVfw0EMPdS0755xzuPfee7ued3aFKywsZMMGa+6cDRs2cODAgV6PuWLFCp588kl8Ph/V1dW8++67LF26dNAxvfzyy11jlD7++GPsdjtJSUnEx8fT3Nw8YJwAL7zwAi6Xi9raWt5++22WLFlCWVkZ7e3tANTX17N69WpmzJhxzLn9fj+lpaWceeaZ/PSnP6WxsZGWlhZWrFjBY489BlhjydLS0khISBjU6+lMptLS0mhpaeHpp5/udTsR4dJLL+VrX/sas2bNIjU1dVDHV2qw7D4XHURajzNmESUeyg/sDnFUSimllBrrhp1giUieiLwlIjtEZLuIfDWw/E4ROSwimwI//zb8cEPv61//OjU1NV3P77nnHtatW8e8efOYPXt2Vznzyy67jLq6OubMmcN9993H9OnTez3epZdeyrx585g/fz5nnXUWP/vZz8jMzBx0PI8++igzZsxgwYIFXHvttTz22GPY7XYuuuginnvuua4iF33FCVY3vzPPPJPly5fzgx/8gOzsbHbu3MmyZcuYP38+Z5xxBt/4xjcoLi4G4HOf+xzr1q3D5/NxzTXXUFxczMKFC/nKV75CUlISd955J+vXr2fevHl8+9vf5o9//OOgX09SUhKf//znmTt3Lueeey5LlizpWvfAAw8cE/eVV17Jn//8Z+0eqEaEw+fqasGKy7a+XGg4ogmWUkoppfonvVWmG9IBRLKALGPMBhGJB9YDlwBXAC3GmF/0t393ixcvNuvWrTtm2c6dO5k1a9awYlR9u/POO48phhFu9P2jTtS2n56No6OBmT9YR2tNKbH3zeXdad/h9Ku/HerQlFJKKTUGiMh6Y8zinsuHPQbLGFMOlAceN4vITiBnuMdVSqlQcvhdeAItWLEpObiJgPreu/oqpZRSSnUKapELESkEFgJrgVOBW0XkOmAd8HVjTH0v+9wM3AyQn58fzHDUINx5552hDkGpMSnC76bNFm89sdmosmfibC0NbVBKKaWUGvOCVuRCROKAZ4DbjDFNwP3AFGABVgvXL3vbzxjzO2PMYmPM4vT09GCFo5RSwxJh3HhsRysGNjlzSHIdCWFESimllBoPgpJgiUgEVnL1mDHmWQBjTKUxxmeM8QMPAoMvjaeUUiEW4Xfj7ZZgdcTnkeWvwOP1hTAqpZRSSo11wagiKMBDwE5jzK+6Lc/qttmlwLbhnksppUZLlHHjtR9NsCSliHhpp6KyPIRRKaWUUmqsC8YYrFOBa4GtIrIpsOy7wGdEZAFggBLg/wXhXEopNSoiTQd++9HJvqMnTYYdUFO6h7yc3BBGppRSSqmxbNgtWMaY1cYYMcbMM8YsCPy8Yoy51hhTHFh+caDa4Lj1/PPPIyLs2rWrz21KSkqYO3du0M65e/duVq5cyYIFC5g1axY333wzYE0S/Morr5zwcV0uF0uXLmX+/PnMmTOHH/7wh8EKWamwEYUbnz2663lKrjWXXUvF3lCFFHJHDh/ipV/ezIaPtdiHUkop1ZegFbkId48//jinnXYajz/+eK/rvV7vsM/h8x07tuMrX/kKt99+O5s2bWLnzp18+ctfBoafYEVFRfHmm2+yefNmNm3axGuvvcaaNWuGFbtSYcXvIwLvMS1YqTnTAPDWTNxS7Qf+8QAXNT9J/XPfDHUoIVPX1MKOvRP3PQDQ2OZhuHNojmdur48Orz/UYSilxjBNsAahpaWF1atX89BDD/HEE090LX/77bdZsWIFF198MbNnzwasROvqq69m1qxZXH755bS1tQHwz3/+k4ULF1JcXMxNN92E2+0GoLCwkP/4j//gpJNO4q9//esx5y0vLyc392hXpOLiYjo6Orjjjjt48sknWbBgAU8++SStra3cdNNNLF26lIULF/LCCy8A8Mgjj7Bq1SpWrlzJtGnT+NGPfgSAiBAXFweAx+PB4/FgDaU71l//+lfmzp3L/PnzOf300wGr9evGG2+kuLiYhQsX8tZbb3Wd65JLLuGTn/wkhYWF3HffffzqV79i4cKFLF++nLq6OgAefPBBlixZwvz587nsssu6fj/dLV++nO3bt3c9X7lyJT0noFZqRHldAJhuY7Bs0QnUSyKOpkOhiirkIqu3AjCndS3uCVrsY9v/3cTsPy9gy76J2Yq3fcu/WP3fF/LUy6+FOpSQMMbw4C++y4u//Dx+/8RNMpVS/QvqPFgj7tVvQ8XW4B4zsxjOv7vfTV544QXOO+88pk+fTmpqKuvXr2fRokUAbNiwgW3btlFUVERJSQm7d+/moYce4tRTT+Wmm27if//3f7n11lu54YYb+Oc//8n06dO57rrruP/++7ntttsASE1NZcOGDced9/bbb+ess87ilFNO4ZxzzuHGG28kKSmJu+66i3Xr1nHfffcB8N3vfpezzjqLhx9+mIaGBpYuXcrZZ58NwEcffcS2bduIiYlhyZIlXHDBBSxevBifz8eiRYvYu3cvX/rSl1i2bNlx57/rrrv4+9//Tk5ODg0NDQD89re/RUTYunUru3bt4pxzzmHPnj0AbNu2jY0bN+JyuZg6dSo//elP2bhxI7fffjt/+tOfuO222/jUpz7F5z//eQC+//3v89BDD3W1zHW68soreeqpp/jRj35EeXk55eXlLF583CTZSo0cX4f1ryPymMW1EVnEtZeFIKCxobDd+uIjU+rYU7Kf6VOnhTii0eX1eDi99e8AVL77B5hyR4gjGn0Na5/gAvsadqz7Llx4fqjDGXUHd3zEra4HANi0+z9YMGt6iCNSSo1F2oI1CI8//jhXXXUVAFddddUx3QSXLl1KUVFR1/O8vDxOPfVUAK655hpWr17N7t27KSoqYvp06w/x9ddfz7vvvtu1z5VXXtnreW+88UZ27tzJpz/9ad5++22WL1/e1fLV3T/+8Q/uvvtuFixYwMqVK3G5XBw6ZH3L/slPfpLU1FSio6P51Kc+xerVqwGw2+1s2rSJsrKyriSsp1NPPZUbbriBBx98sKv74urVq7nmmmsAmDlzJgUFBV0J1plnnkl8fDzp6ekkJiZy0UUXAVbLW0lJCWAlYStWrKC4uJjHHnvsmJaqTldccQVPP/00AE899RSXX355r78fpUaMN5Bg2Y9NsNpicknzjOvhpCfO7yPV1LE9agEANXvWhjaeECjft7nrcUL5ByGMJHQi66xxyFPNQSpr60Mczeir2bex63HD5r+FMBKl1Fg2vlqwBmhpGgl1dXW8+eabbN26FRHB5/MhIvz85z8HIDY29pjte3a1663rXU89j9FddnY2N910EzfddBNz587tNREyxvDMM88wY8aMY5avXbt2wHiSkpI488wzee21144r0PHAAw+wdu1aXn75ZRYtWsT69ev7fR1RUUfHq9hstq7nNputa4zaDTfcwPPPP8/8+fN55JFHePvtt487Tk5ODqmpqWzZsoUnn3ySBx54oN/zKhVsfq8bGyA9WrB8iQVk1b9JY0s7iXHRve8cplzNtTgxNGSeAgc34T4c5N4E40BTtdUtsFrSyHXvxRgzqL/x4STbvQ83EUSJh0NbV5Ox8qJQhzSqvHXWl5duIpAjx/c8UUop0BasAT399NNce+21HDx4kJKSEkpLSykqKuK9997rdftDhw7x4YcfAvCXv/yF0047jRkzZlBSUsLevVb1sUcffZQzzjhjwHO/9tpreDweACoqKqitrSUnJ4f4+Hiam5u7tjv33HO59957uwYdb9x49Bu2119/nbq6Otrb23n++ec59dRTqa6u7ury197ezuuvv87MmTOPO/++fftYtmwZd911F+np6ZSWlrJixQoee+wxAPbs2cOhQ4eOS+z609zcTFZWFh6Pp+s4vbnyyiv52c9+RmNjI/PmzRv08ZUKBk+H1VIsjqhjljvSinCIn4rSiVdJsLG2AgBJLqBOknE0HgxxRKPPXW+1XpamnkKOVHOkYoK1Zvo8ZPkr2Jh8HgDNhzYPsEP4sTcdoo4EDjlnkNK6L9ThKKXGKE2wBvD4449z6aWXHrPssssu67Oa4IwZM/jtb3/LrFmzqK+v5wtf+AJOp5M//OEPfPrTn6a4uBibzcYtt9wy4Ln/8Y9/dBWZOPfcc/n5z39OZmYmZ555Jjt27OgqcvGDH/wAj8fDvHnzmDNnDj/4wQ+6jrF06VIuu+wy5s2bx2WXXcbixYspLy/nzDPPZN68eSxZsoRPfvKTXHjhhQDccccdvPjiiwB885vfpLi4mLlz53LKKacwf/58vvjFL+L3+ykuLubKK6/kkUceOablaiD/+Z//ybJlyzj11FOPSepefPFF7rjj6HiGyy+/nCeeeIIrrrhi0MdWKlg8HVaRC1uPFqy4rKkANBz5eNRjCrXm2koAnAmTqI3KIaF94hV58DRaSWbE9E8AULF3Y3+bhx13czU2DK6U2bThxF6/P9QhjbrotiPU2DNoTphOvvcg3gla7EUp1T8ZS6VWFy9ebHpWi9u5cyezZs0KUUTj2yOPPHJMMYyJSN8/6kTU71tH8qOf4K0Fv+bMS27qWt5cuZ/4+xfyzozvc8ZnJlap8s2v/5n573+JXav+hvv9+8mo/pBJP9yPzTZxusitvf9m5lY8j/fz75D4++W8PetHrLzytlCHNWrKP95I1mMr+XDhz8na9gA1JLP4e/8MdVijquw/53I4ooCIKadz0vafcOiGDeQXTgl1WEqpEBGR9caY4yqxaQuWUkr14A10EbT16CIYn16ABzumfuJ1j/O11gAQk5SBP7mITKmjqm5iFTmIbK+hXpJJyJyMD4H6iTUfVlOd1YoZnZhGc2wB6R1lE24+rFh/M66IJOJzrK7xVQd3hjgipdRYpAlWGLvhhhsmdOuVUifK29lFMKJH91ebnWpbBs7mCTgXVmstAM7EdJyTrPLsE+3mMqajlgZ7MuKIoto2iaimiZVodzRb74HoxHT8yZPJoYrqxpYQRzW6Ykwr/sh4MgusnhHNFRNvPKZSamDjIsGaaN+QqeDQ9406UT6v1YJlj4g8bl2DM5tE95HRDinkbO31tJko4uMSSMq1vr1vPrInxFGNLqeviXZ7AgD1UbkkuSbWnGjeVmvC+KiEdCInTbMKvhyaQO8Br5soPPgj44nPKLJaMesmViumUmpwxnyC5XQ6qa2t1ZtlNSTGGGpra3E6naEORY1DXV0EI45//7jj8sjwlePzT6y/SdLRTAvROCNspOVbBWo81RPr23unr5UORxwArvh8Mifa+6DNSrBiEtNJCHSRay7bFcqIRpVxNQEgznhwRFqtmC0Tr9iLUmpgY34erNzcXMrKyqiurg51KGqccTqd5ObmhjoMNQ75PFYXQUcvLVgkF5JS1cKR6iqyMzJGObLQsXlaaJNoRISI2GQaSCCicWJ9e+80bfgirHkLTfJkkqtaKK+qICszK8SRjQ5pr6PD2ImNSyCiYA4AHdUTp6JmW0sDsQDORAAaorJJap9YrZhKqcEZ8wlWREQERUVFoQ5DKTWB+DwdANh7jsECnJOmwG6oKd0zoRIsu6cVlxydXLkmMpvYtsMhjGiUGUOMaccfGQ9AdIb1Pqg+tGvCJFh2Vz0NxJMe5UCi0mkmBscEKvTR3lRPLOCItrqJtsflk9/21oSccFop1b8x30VQKaVGW+cYLEfk8V0Ek7KtubCayyfON/cADm8rbltM1/OWmFxSPRNool2vmwi8mEiri2ByrtVNsnUCvQ9sHc20SKyVTIhQHZFNTNvEacFxtVhVM+0xSQD4kwpIlSZqamtDGJVSaizSBEsppXowHivBiuhlDFbn+CNvzcT55h4g0tdGh/1oC5YvIZ8sU01LuyuEUY0en6vZehBltV6k5U0HwFMzcSbbtXtbaZejSXZrdA6pHROn4IurpQGAyFiri2BkujX/VXXpxBmHppQanBFPsETkPBHZLSJ7ReTbI30+pZQaLn+gi6Aj8vgughGxyTQRh61xYpVqj/S34bXHdj2PSJtsVZEr3RfCqEZPW7PVemFzWi1Yjuh46kjE0TRx3gcR3pZjWjG9iQVWku3qCGFUo8fT3ghAdFwSAInZ1nQFLeUTq9iLUmpgI5pgiYgd+C1wPjAb+IyIzB7Jcyql1HD5fZ1dBI9PsABqIrKIbZtY1cOi/O14HUcTrNjMyQDUH54YZbrbA60X9ujErmV1kVkTahxapLeVjm7vAXtqEVHiobxsYrTm+tqsBMsZlwxAep7Vmt0xwVqzlVIDG+kWrKXAXmPMfmNMB/AEsGqEz6mUUsNiAmOwIvpIsFqic0ntmEDjj4Bo095VQQ8gPc8q091eNTG6yLlarJtrR7cEyxqHNnG6yEX62/B0S7DiM63xiHWlE2Mcmr/dKtMeE28lWNGJqTQTg61h4rRiKqUGZ6QTrByg+9e8ZYFlXUTkZhFZJyLrtBS7UmosMF6ry1NkVHSv6z2J+WSaKtonSNco/H5icHUVeACIn1SAFxvUlYQurlHU0dYAQGRMQtcyb0I+maaGNtfEGIcW7W/D5zj6Hugch9ZWNTG6iRpXE27jIC7uaJJZ5cgipnVitWYrpQYW8iIXxpjfGWMWG2MWp6enhzocpZTCeDvwGSEyspd5sOjsGuWl/PDE6BpkOgIFHrolWGKPoNo2icjmifHtfUer1YLVWeAAICK1EIf4KT80AVrxjCGGdvzdk+yMIvwIpm5ifA5wN9FMDHGRR2e4aXbmkDSBCn0opQZnpBOsw0Bet+e5gWVKKTVmGW8HHhxEOXr/ExmXYVUPqy+bGOOP3K1W1yii4o9Z3hCVTYJrYtxcegPdw6Ljk7qWxQa6yDVMhHFoXhcOfMe0YuKIotaWRkTzxGjBsXU000Y0NtvROa864vPI8lfh9XpDGJlSaqwZ6QTrX8A0ESkSkUjgKuDFET6nUkoNj6+DDhxE2nv/E5na2TWqcmJUD2sPjD+yO+OOWe6KyyPDV4Hfb0IR1qjyB8q0xwQKHACk5XZ2kQv/Fixfe99JdqJrYnxv6vA002aLPWaZLcUq9FF15GCIolJKjUUjmmAZY7zArcDfgZ3AU8aY7SN5TqWUGjafBw8Rx3xT3V1S5mR8RjATZPxRZwuW3XnszbXpnGi1ri4UYY0q42rCb4S4+KNjsBIzC/EaG6a+JHSBjZK21gYA7M6EY5a74nKZ5KvA6/OHIKrR5fC24uqRYEVnWNU0aw9PjEIfSqnBGfExWMaYV4wx040xU4wxPx7p8yml1HCJz40HR9/rHZFU29OJnCBdo1xtVoIVEX3szXVUunVzWVW6e9RjGnXuZlpwEhsV0bVI7BET5n3gam4AwB59bJJNciGZUk95bcOoxzTaonwtuO3HJljJ2YFWzIqJ0ZqtlBqckBe5UEqpMcfvwSt9J1gA9ZE5JEyQrlGdBR4iYo5NsJICE602Hwn/m0vpaKGNmONaNRsisyfE+8AVmAfMEZN4zHJnujUesepQ+LfgRPla8TqO7SabnjcVvxG8tSWhCUopNSZpgqWUUj3YfG480nsFwU7tcXmke8sxJvzHH3UWeIiKPTbBSsu3vr3vqAn/MUh2TwvtcnzZfldcLuneirB/H3R2E43okWAl5QSS7PLwT7Bi/K14Io9twYuIiqbaloKjaWJU01RKDY4mWEop1YPd56JjgATLJBWQLo1U14f/+CNvoMBDdNyxN9dR8em0Eo2tMfwH+Du8rbjsMcct9wfeBzX1DaMf1CjytFmtmM4eSXZKoNCHuybMS7UHytQfU0UxoD4ii7j2shAEpZQaqzTBUkqpHhx+Nx6J6neb6AyrRHflgV2jEVJI+XqpoAeACNWOTGJaw7+LXIS3FXePAgcAzsA4tOrS8C7V7m233gPOHu8Be3wGLiKxh3uS3dGKHT8mKuG4Va2xeaR5ykMQlFJqrNIESymlenD43Xhs/SdYKfmzAWg6vGM0Qgopv6sFgNj4+OPWNUfnkjwBJlqN9LXS4Tg+wUrItMYgNZWH9zg0v8tqwYqJP7YVExFqI7KIaQ3vFhxPu/X6e5apB/An5pNu6mluaR7lqJRSY5UmWEop1YPD78Y3QBfB9AIrwfJWhf/YEzpaaDFOYiIjjlvlic8jy1+JqyO8J1qN9rfh7SXBSsufCUBHdXiPQ/O7mvEZITb2+BacluhcUjqOhPU4tNamegBszsTj1kWkTcYmhvKDE+BvgVJqUDTBUkqpHhz+Drz2/luw7M44qiSNiIbwvrGGzgp60b3OC2ZPLSRaOqg4Et6D/J2mDV/E8eNvopMyaCcKaQjzLnLuZlqIJs55fJLtTcgjhyoaWjtCENjoOFqm/vgEMyHL6i7cOAGqaSqlBkcTLKWU6iHCuPHanANuVxuVR3J7mN9YAzZPC+224yvoAcQExqLVloXxGCRjiDHtvXYPQ4RqeybOMO8i15lk23tJsh1pk4mXdsrKw7erqKvFasGKiE06bl16oJqmq3rfaIaklBrDNMFSSqkeIk0HvgFasADaEwrJ9h7G5/OPQlSh4/C04pbjK+gBpATKdLdVhu/Npbe9CbsY6KXAAUBTdA5J7vAucmAl2b2/B+IC49DqysJ3wumOtgYAonpJsOJTc3ERgakP/y9blFKDowmWUkr1EGnc+O0Dt2CROo1EaaWiIryr6Dl8rbh7KVEOkJJjtWD568K3THdrk1WKX6KPH38D0BGfT7a/HI/XN5phjSqHpwV3HwlWau4MANrDOMn2BCbbdsYlHb/SZrNaMVtKRzcopdSYpQmWUkr1EEXHoBKsmCzrxrK6JLwrCUb52vD0kWBJZAw1kkJEGE+02h5IsOzRSb2uN6lTiRU3lYdLRi+oURbhbcVtP77IB4AzvQgAf13JKEY0uryBecDiEpJ7Xd/kzCHJFd5ftCilBk8TLKWU6s7nxYEPv2PgBCu9YA4AreU7RzqqkIr2tdAR0Xv3OID6yCwSwnii1bZmK8GK6DkPWEBMptVNsvZQ+L4PIn1teB3HF/kAICqORlsikc3h24Lja+9MsFJ6Xe+KLyTHfySsWzGVUoOnCZZSSnXndVn/DiLBSsmdisfY8VeHd/WwWNOCN7KXAg8BLXGFZHrKwrZMtztQ4CAytvcEq7Nkf1t5+I5BivG39FpFsVNdVC7JrvBNsIy7mRbjJCG2j78LaeHfiqmUGjxNsJRSqhvjaQfAFjFwgiX2CCrsWTibwnf8EX4f8bThi0zqcxNv8lTSpJG6uprRi2sUeVqtBMsZ33vrRWr2ZNwmAn9N+I5BiqMFb1TvCSZAe/xkcvyHcXnCswVH3E209lFFESA20F245mB4dxdWSg2OJlhKKdWNu70NAFtk72OOeqqPzifVFb7jj/ztTda/zr67CEYHbi4r9m8blZhGmy9QQS6mj+5hYndQ4cjC2Ryeibbf3UY0HfidSX1uY1KnkCn1HK6sGr3ARpG9o5k2W+9j0ADSC61WzNbyXaMVklJqDBtWgiUiPxeRXSKyRUSeE5GkwPJCEWkXkU2BnweCEq1SSo2w9vYWAOyRvc/71FNH4mRy/OV0dHhGMqyQaW8JVNBz9l5BDyA137q5bCoLz2/v/YECB7F9JFgAjdF5pIRpF7nWJqtlUvoo8gHgzJwJQN2h8HwPRHiacPWTYKVkFeEmAlMbvq2YSqnBG24L1uvAXGPMPGAP8J1u6/YZYxYEfm4Z5nmUUmpUuNtbgcEnWLZJ04gSD0cOfTySYYVMS4N1c+2I6bt72KSCWfiM4KsOz98B7ibaTSTxsX23anYkTibbX4G7o2MUAxsdrYH3gC227wQzJTAOrfVIeI5Di/Y20uZI6nO92OyU27OJbioZtZiUUmPXsBIsY8w/jDHewNM1QO7wQ1JKqdBxu6wughFRfX9b3V189iwAag5uH7GYQqm1sRYAZ3xqn9vYI51U2DOIatw/WmGNKnE30EwsDnvf/8t0pE+1Eu2D4VfwxBVowXL0k2Al5UzHbwRqwjPJjvM14e5nHCJAY0wBqe7w7S6slBq8YI7Bugl4tdvzIhHZKCLviMiKvnYSkZtFZJ2IrKuurg5iOEopNXRul9WCFeEcXAtW5mSrVHt7+Z4RiymU2gMlymMS+27BAqh35pPcHp43lw5XPS22vqsoAsTnWF3kasKwVLs78B6I7CfJlohoKu2TiA7HcWjGEG+a8PRT5APAE2jFbHe5RykwpdRYNWCCJSJviMi2Xn5Wddvme4AXeCywqBzIN8YsBL4G/EVEeh0hbYz5nTFmsTFmcXp6+vBfkVJKDYOvzSrq4Ijue8xRd/GpObQQg60uPL+57wjcXMcm9H1zDeBKmEy27wger7ff7cYjZ0cdLY7+b64nBYoctFeEXxe59kALVlxy//+Pro0KzyTbdLTipAOfs+8WPICISVOJFB9lJeH3HlBKDc2ACZYx5mxjzNxefl4AEJEbgAuBq01gEhRjjNsYUxt4vB7YB0wfsVehlFJB0lkxLiI2aXA7iFARkUtcS8lIhRRSvharZ0FCSma/29nSpxMjbo4cCr9B/rHeetoj+7+5jk/Low0nUhd+r7+j2eommpKa0e92bfFFZPsO4/f5RyOsUdNcb30GHPFp/W6XkGt1F64Pw1ZMpdTQDLeK4HnAt4CLjTFt3Zani4g98HgyMA0Iz875SqmwYlxWxbjIuP5bLLprji1kUkf4fXMPIK1VtJooEhKT+t0uLtvqIlcbhmPREv2NdET1n2AhQqUjh9jmklGJaTT5W6pwmwiSk/r/TJi0qcSJi+qKktEJbJQ01JQDEJXQfwteRpHVXdgVhq2YSqmhGe4YrPuAeOD1HuXYTwe2iMgm4GngFmNM3TDPpZRSI860WwlWdHzSoPfxpkwji1rq6+tHKKrQcbTXUCdJfU6w2ilj8lwA2srD6+bSeNqJow1/TP+tFwBNsQVM6gi/Uu2OtkpqJRmx9X/LEJtlJdnVB8IryW6uqwQgNqn/FryYpEyaicFWH36tmEqpoXEMZ2djzNQ+lj8DPDOcYyulVCgYVyMtxkli7OCKXAA4M2fAfig/sI3k5D5r+oxLTnctTbakAbdLnJRvdZGrDa8qeq31lcQBEjvwGGFv0hSyGt6isamFxIS4kQ9ulDhdNTQ5UskeYLu0QqsFp/XILuCiEY9rtLgaKgBISOu/mywiVIVxd2Gl1OAFs4qgUkqNf+4mWoghOsI+6F2SC6zWm8bS8JtkNdpTR2tE/wUuAGssmiOH2JbwqiJXX30EgMjE/lsvACIypmMXQ3lJeL0P4j01tEYO3II3KbuINhOFCbNS7b6GMgCSMgsH3LYlrpAMTymBIelKqQlKEyyllOrG7m6iVWIR6b9LXHeZhbPwG8FXFV7d4wDivfV4oge+uQZojCkkzR1eXeQaK62xdfFpA0/zmJxvteA0HAqvLnLJ/jo80QO34NnsdsodOWFXqt3WfIQGE0d8XK/FkI/hS5lKFrXUhmF3YaXU4GmCpZRS3Tg8zbTbBzfJcNc+UTFU2DKIagivsRd+TweJphliJw1qe2/yFLJNNU0tzSMc2ehx1VjJQnL2lAG37Sxy4KkKnznROtpbSaAVf9zALXgADdH5pLrCq+BLVHsF1ba0QX3pEpU5A4DyA+HViqmUGhpNsJRSqptIbzNue/+Tyvam1plPcvvBEYgodOrK92MTgyQN3HoDEJU5HZsYyveFz82lqS/FZSKYlDnw7yAyNokaSSYijIoc1FdYCaYtMWdQ23ckTSHLX0mH2zWSYY2qOHclTRGD+5IhNdCK2VQWPp8BpdTQaYKllFLdRPla8EQMvUBBe+JkcnyH8YbRRLsNR6yCFVHpA7feACTnWZPtNoTRzWVkSxmVtkk4HIMbk1cdlU9iW8nIBjWKGg9brXGRk3qtaXUcx6TAOLQwasFJ8lTjjhmgwEVAemDCaW9VeI1DU0oNjSZYSinVTZK/YeA5j3phS5tOtHRQHkYT7bZVWglWfNbgEqxJgS5yHZXh00Uu1nWE+ojB3VyDNdlulrcsbCbbbSm3rmV6waxBbd852W7dofBIsFxNtSTThDepcFDb26NiqZK0sOsurJQaGk2wlFIqwLibiaUdX+zgb6g7xedZN5Y1B7cFO6yQcVcfwGPs5BVMG9T2UbFJVEsKEeFyc2kMGZ7DtMXmDX6X1GkkSSuVlYdHMLDR46/dR4txkpU1uN9B5uRiANxhMtlu9YGtAERkzBz0PrXOApLCrLuwUmpoNMFSSqmAxmqrHLM9IWvI+2YUWjeW7Ud2BjWmUHI07KfClkG0M3LQ+1RH5pPYWjJyQY2i+ooS4mnDTBpc6w1AbLa1bdWB8Ei0nY0HqLBnDbqLZGJSCjUkYa8Lj/nQ6g9Z1zEpMLZqMNoTisjxHcbj9Y1UWEqpMU4TLKWUCugsyR2VMrgB/d0lTcqlmRgkTG4sASa1fUxV9OC6B3Zqiy8Mmy5y5R9vACAur3jQ+6QHJtttORweiXZW+15qYgfXgtmpMiKP+DBJst3lO3EbB0VTB59k29KnEy/tHC7TViylJipNsJRSKqC1xmrBik0dXNW8Y4hQ7sgjLkzmAPK0NZLjL6ctZfA3lgCkWV3kqqvGfxe51kObAcievnDQ+6TmTMVtIsJist2mqlJSqcczad6Q9muJLyLTEx7zocXXbaXEXogzKmrQ+8TlWN0Ja0rCaz40pdTgaYKllFIB7fVWUpCSVXBC+zfFFjKpIzzmACrd9S8AInOGdnMdk2XNA1R5YPzfXEaWr6OUTNLSB99lVOwOKhzZRDeN/0S7bPsHAMQXLRrSfr7kqSTRTFNd5UiENWqMz0ueazfViYNvwQSYVDgXgLby8GjFVEoNnSZYSikVYOoO0GRiyExLP6H9fSlTyaCOpqb6IEc2+up3vANA/vyVQ9ovPTAWreXIrmCHNKr8Pj/5rVsoT1wwqAlmu2uILiDNPf4T7bY9b+M2EUyZf9qQ9osOJNkV+7eORFijpmz3OmJx4chfMqT9EjKKcBEJNeHTXVgpNTSaYCmlVEBs0wGOOHKx2U/sT6Mzw5or6MiB8V9BLerwB+yTfLKyB19BDyAtdyodxoGpHt+l2vfvWEsyzdiLTh3yvu6kyWT7K3C5xvdku6lVa9gdOZv4+IQh7ZeSb80F1VQ2vltwqja8DEDOwvOGtqPNRqUjm5iW8d+KqZQ6MZpgKaVUQJr7EPXRJ9Y9ECAlxyoGUF82vpOL1qZ6prVtpjpt+ZD3FbuD8jDoIle//jn8RshfdsmQ942YNIMI8XH4wPhtxas4uIsi335acs8Y8r5ZhTPpMHZ843yy3fhDb/CxrYi8wqEVegFojCkk3R0e49CUUkOnCZZSSgEdbU2km1o6koZ+M9UpIzAZq6tqfM8Dtee9p4kSD/EnXXZC+zdEF5DqGsdd5Iwh49DL7IqYTXpW/pB375xst/7Q+B2HdvCdRwEoOP2aIe8bGRlJuS2LqMb9wQ5r1FQc3MX0jh1U5p5/Qvt7k6eQYyppbG4NcmRKqfFgWAmWiNwpIodFZFPg59+6rfuOiOwVkd0icu7wQ1VKqZFTutMq6hCbO7QB7d1FxqfSQgzSOL7LM0du+TPlpDFz6SdPaH93YhFZ/nLcHe4gRzY6dq99lXx/GQ0zrzyh/cf7ZLtej4f8A0+yPWIuOUUzTugYtc58kttLghvYKDr0j9/iM8LkT9x0QvtHZszAIX7KDuwIcmRKqfEgGC1YvzbGLAj8vAIgIrOBq4A5wHnA/4rI4GYpVEqpEKj/+EMAsuYMfcxNFxFqIrKIbR2/XYP2bH6fOe5NHCy6Crv9xP5sR0yaRqT4OHJwHHYRMwbbW/9FNUksOP/GEzpEbFIadSRgrx+fRQ42v/Z7skw17sW3nPAxXImTyfKV4/d6gxjZ6GiuK2fW4b+yIe4MsguGNgdYp6Q8qxWzoXR8j0NTSp2YkeoiuAp4whjjNsYcAPYCS0foXEopNWz28k1UkkJ2buGwjtMSk0uqpzw4QY02Y/C8+gOaiGXOqttP+DDxgXmAag+Nv5vL7W8/wTT3drZP+wIxsUMr7tBdVeT4nGy3ramO3PU/Z699MgvO/uwJH8eWNoVI8VJ1ePwlmXsf+zpO00HS+d8/4WNkBFoxPZXjsxVTKTU8wUiwbhWRLSLysIgkB5blAN2/wi0LLFNKqTHH+P3kNG3gUGzxkEty9+RLzCfHVNHYOv66x23522+Z41rP5qlfIj4p7YSPk1lofXvfVjG+WrCaqo+Q8c63KbHlsvyy24Z1rJa4IjI8ZRhjghPcKDDGsOPhL5Bq6nGf9ytsJ9iCCRCXbXUtrDk4vpLsHe89z8Lal/lw0pVMmzu08uzdRcQmUyeJRDSM33FoSqkTN2CCJSJviMi2Xn5WAfcDU4AFQDnwy6EGICI3i8g6EVlXXV091N2VUmrYDu/byiRTi69w6BXTenKkTiZKPBwuG19V9A7tWMvk9f/FVkcxy6/6j2EdKy41lzacSN34ubl0tbdS9vuriDOtuFb9HqfTOazjmZQppNFIXV1tkCIceeue/DGLG17jX7k3MGfJmcM6VkbhHABay8dPC07Zx5vJ/ecX2WcrYNF1dw/7eNWR+SS2lQw/MKXUuDNggmWMOdsYM7eXnxeMMZXGGJ8xxg88yNFugIeB7pOn5AaW9Xb83xljFhtjFqenn9jknkopNRzlHz0PQN6if+t/w0GIy7Tmwmo4PH5KtZfv20r0U1fRSjSp1z5ChMMxvAOKBOYBGh/FPpqbm9jxm0uY7d7M5oV3MXP+ycM+pjNzOgCVB8ZHJcF1T/2URTt/wbqY01h648+Hfby0zHzaTBSmZnxU1Ny3Yz1Rj63Ci53Ia54iNj5x2Mdsiysgw3NkXLViKqWCY7hVBLO6Pb0U2BZ4/CJwlYhEiUgRMA34aDjnUkqpkZJ28G/stk0hZ/Ks4R8r3+oa1VY5Tm4sN7xJ9KPnY8dD82WPk10wNSjHbY7JI9VdFpRjjaSawwco+83ZLHD9i43z7mDZJV8MynFTAkUOGg+P7bmwfF4PHz1wC4t3/IRNMcuZe+uT2IebYANis1HhyMbZXDL8IEfYtreeJP3JC7FhqP/0s+RNnhmcA6dMJl0aqKoZP62YSqngGO4YrJ+JyFYR2QKcCdwOYIzZDjwF7ABeA75kjPEN81xKKRV0TYd3UdSxh9LsE5vvpqfY9CJ82KCuJCjHGyl+n5/3H/sxuS9cQQuxNHzmFaYWD31i4b54EgvJNpW0to/dsWibX38Mx4MrKPCWsH3FfSz81NeDduyMgpn4jeCrHrvj0A5+vJV9d5/K0orH+SDtcube/hLOmLigHb8xOp/UMTzZrqutmQ8f+AJz37mZKkcmvpv+wZQ5Jz7uqqfOVsyKEi3VrtREM6yvqYwx1/az7sfAj4dzfKWUGmkl7zzKPCBvxdAnVO2VI5JaWxpRLWP3xrLi4C6q/vJFTnWvZ0vsMvJvfISk9OygniMifRqRpT5KDu5h+swTn1tsJBw5uIeKJ7/GSW3v8bF9ChGffpjimQuCeg6HM5ZKWxoRjWNvLF6Hq41NT/4nxft/j0ciWLf4F5xy4eeDfh5PYiGZzatxud04o6KCfvzh2PzuC6S99S1ONhX8K/Vi5tz0v8TExgf1HCl5VktY0+HdsOT0oB5bKTW2Db8fgFJKjWPJ+19ii302xdOD1C0IaHDmkNje67DTkGpvbWHjk3dx0sGHicfOujnfZdHl30RswZ+xIz57OmyA+tLdMEYSLFdbCxue/DELS35PMrBm8pdYeNUPiIqKHpHz1UTlkdh2aESOfSKM38+mN/7CpA//k6WmgvVxp1Nw9f+wOHvyiJwvYtJUIg77KC3ZzeQZ80bkHEN1cNcG6l74Dgvb11AmWWw861GWnH7xiJwrPd/6m+KrGX+l6pVSw6MJllJqwqret4E870H2Tv7WsMuzd+eOyyer9W3cXh9RjtDPse73etj8t/vJ3vQbTqGW9Qlnkn3lr1icOzI31gAZhbMBaK8KfRe5DreLzS/8D0U77ucU6tkYfzrZV/6K5XknNonsYLXHFzKt6u/4fX5s9pGadnIQjGH3+89je+e/WejZTYktj01n/JGTzlgV1Pd9T4k5M2GjNR9aqBOsmsMHOPjs91lQ8zIpOPloyq3M//R3yI0OXpfInmzOeGolhYiGsdeKqZQaWZpgKaUmrLJ3HyXFCJNXBql7YKfUyaRXvcCByiqKcrIG3n6E+H1+Nr/xKKlrf8ZCfxk77TOoO/s+Fp08/GqJA4lJzcVFZEhLtXs8HWx86X7ytt7LElPN9og5VJx5PwtPCc54uwGlTiGxupWKqiNkZuWOzjm7M4Y9H74Eb/83Mzp2UE4aH86+g8WX3Eph5Mh32csoskq1uypCV1GzuqKUj5/7CQsrnqYYHx+mf5pZV/yIpZOC2yW2L7VRuSS2j51WTKXU6NAESyk1MRlDZukrbIlcwML8gqAe2pk5A3ZCzaGdIUmwjN/PxrefI/b9u1no20OJLZePlt3LonOuwT5aLSmdpdqbR79Uu9frZd3LD5G96TcsNUf42DGNTaf9lPmnXzoi3SH7Eps5A3ZBVcn2UU+w9q59Bd+bP2aGexsVpLJ6xvdYfOmXyXKOTHfI3sSmZNOKE+pGv6Jmdfkh9j7/ExZUPMMyPGxK+iSZq+7itCBUCh2K9vgCcqrexec32G0j11qolBpbNMFSSk1IpdtWk+ev4OMZ/y/ox+4c3N5+ZDdwVtCP3xfj97Pl3eeJXP0zTvLupFLSWL/gv1hw4RcoDELp7aFqiikgrWn0xp94PR7Wv/oIkzb+D8tNKQfshWw5+X8pPuszo5pYdUoNdJNsPrIbOHdUzrl/3d/xvPFfzHBtoYpk3pv+bRZd8hVOi4kdlfMfQ4SqiFxiW0avBae64hB7n7MSq6V42JR0DpkXfZ9FU0PURTF1KmnVL1FWUU5u9ui0mimlQk8TLKXUhFT1wWNkGDuzzrw66MdOyZ2B3wj+2tFJLozfz/bVL+J4727mewKJ1dwfMP+iL5ExQgUcBsOTNJncxtU0t7YSHztyN/g+r5cNrz5M+ob/YZkp46Atny3LfkXxOTcgttCNgUvLmYbX2DDVI/8+2LfudTre+DGzXBupJol3p3yDkz51OytiR26M0WA0xRaQ0bAFY8yIjveqCSRW8wOJ1cakc8i88PssmhbasV/O7DmwC6oPbNEES6kJRBMspdSEY/w+8ir+wdboJSyalBH040tkDJW2dJwjXaLbGHa8/yK2d+5mrmcHlaTy0ezvs+DiW8kYxa5gfbFnzibikI/9+7YxY96yoB/f5/Wy6dXfk7bxXpb4yyix5bNp6a+Zf+71IU2sOtkiIjlizySqaeTGoe1Z90863vgxc13rqSWR9ybfzvxLv8bp8Qkjds6h8KTOIqfhn9TV1ZCSmh7043dPrJbgYUPSOWRd9AMWTx0blStTJ8+DN6GtbCtwXtCP7/N62PTK77Hveoncq39LWk5R0M+hlBo6TbCUUhPO3i0fMM3Usn9G8CaW7akuKpck1wh1jTKG3R/+DfP2fzO7YzuVpLB21ndZsOrLZDhjRuacJyBt8kL4CGr3b4IgJlh+r4fNrz1E2oZ7WOQ/zAFbARuW/YYF51xHoT30iVV3NbFTyWwOfpGHXevepOONnzDP9S/qSOD9yV9l3iVfY0VCUtDPNRxRufNgHxzes56Uk4OXYNRWHmLvsz8OJFZeNiSdS+ZF32fJGEmsOqVmT6UNJ/7K4E427O1ws/nV3zNp030sMkcAWPPab0n7918E9TxKqROjCVY/9m9bS9XWN8AYMH7rXwL/GgNY/woG07mT6frP0aWmay3GgHRf13M9WMfrvhqQ7guOnqiL0HP9yDAEu4vH8I7X66segW4owf/tjkSMwT1m8K/12BFfswmA6aesGrFztMYXMqPqteCW6DaGnR/8DXnnbmZ2bKOSFD6Y8W1OuuSrLIseO4lVp6zJxXiMHc+RLUE5ns/rYfMrDzJp070s9B9hn62Qdcv+h5POuZaiMZZYdfJMmkde87vU1FSTljb8Fpzda1+l482fUezeQD3xfDj5yxRf+g1OjU8afrAjIG/mEngHGg5shCAkWN0Tq0X4Ai1WYy+x6iQ2O4ejppDauD0ox/N0uNj80v1kb7ufRaaSvbbJrF92H1EbHiS/9AVc7XfhHIN/C0LKGFxtzbQ2NdDWUk97cyPu1gY62prwtjXiczVh3C3YOpoRbzvicyNeN3afC5vPjd3fgd3vxuHvwGE6iDAdOPBhM34EP7buP+boY3vgXwCDDWtr6XpsEIz0XNZtHTb8YsMg1tHEOrLp9q+1jT1wLPvRfcQO3dYjge27r+u2HLFjbNZzxAY2e9d6Ebu1jc1u9QwIbI/NDmK3xrcG1nW/a5Bj73Sx7pmPuzjHXKfuq3vu3+rMYvIpl1GYFoLxpCdAE6x+VG9/i+W7fxbqMAbNb0b2htgmo5PEKTUatjsXMSdj5Cq72dKmkVD9LAcPH6Igv3BYxzJ+P9veew776l8z27OVKlJ4f/q3WHjJVzklJrRjbPpji3RyIHIyqfWbh3UcT4ebjS//juwtv+UkU84+WxEfLb2HRedew5Qxmlh1ii9cBPugdPuHpJ1xghPaGsPuD1/C//bPmNWxlVoSWTPlqxRf8jVOHqOJVaekzCJqSSKqfN2wjlN56GNKXrqb+VUvdCVWmRd+n6XTxmZi1V1z6gLmHH6KlrY24mJOLPlxu1rZ/MK9FOz8HYupZbd9GuuX3cnCT1yFzW5jR0ws2W/eyJq//jfLr/vPIL+CscXlclFfVUZr7RHa64/gbqrB11KDv60Om6ueCFc9UZ4GYnyNxPubSDDNOMWHE0jt57geY6cNJx6JoEMi8UgkXonEa4vEZ4ukw5FIe+CxEUcgAbGD7WiS0pl0YAskN9i6vjjH+BHjB4z1r/EHllspFCawHD/i90HXPr7A9ta/R398VsoWeG4zXis98wcSP+NHuhLBQDTG15UAiumRHHZtczQ5tOHHPkbu/d72zWdb4dmaYIWD+RfdSuPZN1iZuQgiNmwiIBKoSGUt61mdSgQEW9dj61/pGuDb+V/rUJ1JUY/kqLdWmAFaZkI4jeXYcVxL31g85gSNcYyZYxvZP3+pUxbBTijf8cEJJ1jG52XbP/9MzEf3UOzdRxUprJnxHyy45KucGj0+/idTm7yQ4srnaW93ER3tHNK+rtYmtr50L3m7HmYpNeyzT2bD0vtYcPZnx3xi1Slv3hn43hDa97wJQ0yw/D4/W95+ipg1v2aGZ5fVYjntmyy45Kssj40foYiDTISDcfPJa950QoUuSndvoPLVnzK//nVSgI3J55J5wXfHRWLVKbJoGVFHHmP3lveZt/yTQ9q3vaWJLS/8hikfP8RSGtgZMZuKU37OvDOOnXJg1opL2bTmQYr3/R8H91xOwfT5wX4ZI87n81NXU07DkX20VZfgrj+Cv6kcW2sVUa4q4jtqSPLXkWSayerlpt9j7DRJPM22BNodiTTGFFATmYQ3KhnjTMIWHY89OoGI6CQiYxJwxiXhjEsiLj6J6IQkIiKjSRzBQizjljEYvw+fz4vP78P4uj32evH5fPj9Pmsb0/NWVZAe7VrHrJdj1xprkx7rrQVzbZHEJfWXIo8tmmD1wxkTh3MMfzusejESfxz1D646AblzT8X7kg1PyRrgs0Pa1+1uZ8vLvyNr2/9R7D/MIclmzdy7WHjRzSwPYVXAExE34wyiq55i/dq/s2jl4Lpk1tdUsOfFXzLj0OMsoZntEXOoOvknFK/8dEjKrQ9HbGIqeyJnklLx/qD36XC1sfmVB0nb9hAL/AcpJ533Z36fky7+EqecYAtISBWcRtb2d/h4x3qmzVk8qF12r3uT9rd+yYLW1aSaKNZN+hRFF3+bpXlTRzjY4MtfdD7e1Taat7wEg0ywaspL2Pe3XzHz8NMso5WtkQsoP/2bzD3l33r9DIgIOZ+9h47fnwWPf5bGL79FYsqkYL+UYTHGUFdXQ/Wh3TSW78NTW4I0HMLZWkay+wiT/FWki4vuHWk9xk69JNLoSKXJmUVt9Hz8cRnY4jNxJGbhTM4kNimDxNRMEhKTSbXZ+m2lUidABLE7cNgdmjQMgf6ulFJqBDicceyNnEpq9dpB71NXcZCPX7mXKYf+yhIa+Ng2mQ9P+iWLz7+e/IiIEYx25Ew9eRXt795Ox5ZnYIAE69C2D6n8573MrXudZdLBhuiTsa+4nXknnzOiJb5HWn3e2Szbfy+lezaRN31Bn9vVVJSy/9V7mXrwCZbQyD57ERtO+gnF532OrMio0Qs4yPJXXIVv20+o/uDP/SZYHncbW//xCHGb/8AM7x4aTSyrc/+dmRd/g5Mzxm+J84SUSexwFpNf/g98Xi/2fuak2795NXVv3sO8hjdYjJ+NcSuIOf2rFC87e8DzpOdOY9d5/8fkV6/h8H1n037DM2TmTwvmSxlQS3MjlYf20HhkL66aEqgvIaqljATXESb5KkmV1mMSoBaiqXZk0hKbx664kzFJBUSkFhIzqZDkjHxS0rOZZLcztlJFpQYmZiS6VJ2gxYsXm3XrhtdPWymlxop1j36Pxfvu4+C1ayiYMqvXbYzfx441f6djzYPMbXwHO362xCzDcfItzDlt1bhrsenNul9fwZyGt2i9eS1pOZOPWdfaWMuONx8jYcdfmOHZSZuJYlvqOWR88jYKZg2utWOsq6koJeH++WxJPIvFX3v6mHWeDje7Vz+Lb/2jzG5ZQ4T42OBchuOUWyk+7cKwuP4Am352PpPbNuH74r9IntRt7KMxHNq+hiPvP8qM8pdIpolDksOR6dcw94IvEJeQHLqgg2j9Kw+z6KPbWbfgv1h8yZePWddUV8nu1x8m9eOnmOzdT6txsmXSReSd/3VyJ/f+d6M/2997gYI3/h9GYOfMLzN/1VeJig5Obxx3ewvVZfuoP7yX9ur9+OoOEdl8iHjXEdK8FaTQdMz27SaSKnsGjVHZuONyIKkAZ3oRCdlTSc+bTkxCmvYSUeOaiKw3xhz3PytNsJRSaoRUl31M0oPL2JB8Hstu+8vRFcZwcPcGqt7/M7llfyPLVNFkYtky6SJyz7mVwnE0vmQwSvftIO1PZ1DpyKb9tG8T4Yyl+eBm7IfeZ2brv4gUL6WSTcnkzzDn/FtISQu/76vff/BrnHr4ITalnEfE1JW0N9djP/wvJjetJZFWakhkT8aF5H7iZvL7aeUar/btWEfOk+dRbc+grvgma0h9+WbSaz4iz38Yj7GzLXYZLP0881dcErzKm2OE3+tl190rmOz5mB1FN+BILcRde4i48g+Z5tqGQ/x8bJtC1bQrmHvu50hMSRvW+Y7s30HtE1+guGMTDcSxP/EUmHImqZMXkJw1hbjEFGyOQKu4MXg8HTTWVdJSV0lbQxXupio89YcxDaVEthwmzl1BqrfyuASqw9ipsk2iPjKL9thc/In5RKYVEp85hfS86SSmZYfNlwRK9UYTLKWUCoE1/3cry8sfZWvcqXQkT4fmI+Q0biTTVOEzwlbnSXhmf5q5n7ia6LixMTnsSNjw5jMUvHMbqXL0Bu0wGRxIO4OUZZ9h1qKVYX0j5vV4+OB3X2FZ1VNEiReAapLYn7iciLmrmL3iUzidQysCMt5sePt5Mt7+JjlUAdBsojngnE1T0fnMPPNq0sZxN8DBqK4o49AfbmKR2+o27DfCAXsB5ZPOYNLJVzJt3ilB7Qpr/H62fvAqHR/9gamNH5IkLcesbzeR2PFbJcf7qBTXZqKosqXTFJlJe0w2voQcHMn5xGZMJjV3GunZhdjHScEZpUbCiCRYIvIkMCPwNAloMMYsEJFCYCewO7BujTHmloGOpwmWUirceDwe1vzhm8w8/BwpNFIjyZRFz8RTdBaTT72CSTkFoQ5x1LS0NLNn8wcYr4fUgtkUFBSN67FVJ6KmvoGqIyUkJqaQnZ0b1kllbzxeLyX7P8Zhg6y8KTijIkMd0qg7XH6EloZaMrJySUoanS6QHk8HpR9voebAFnyN5Zj2BuhoseZOsjmwO6KwxaZgj0vDmTgJZ9Ikkiblk5qWMeHeo0oNxYi3YInIL4FGY8xdgQTrb8aYuUM5hiZYSqlw5fMbOjw+nJH2CZdUKKWUUuGorwQrKFUExbpbuAI4KxjHU0qpcGO3CdFRWrhVKaWUCnfBavddAVQaYz7utqxIRDaKyDsisqKvHUXkZhFZJyLrqqurgxSOUkoppZRSSo2+Ab9OFZE3gMxeVn3PGPNC4PFngMe7rSsH8o0xtSKyCHheROYYY5p6HsQY8zvgd2B1ERzqC1BKKaWUUkqpsWLABMsY0+/sdiLiAD4FLOq2jxtwBx6vF5F9wHRAB1gppZRSSimlwlYwBgScDewyxpR1LhCRdKDOGOMTkcnANGD/QAdav359jYgcDEJMwZQG1IQ6CDVq9HpPHHqtJw691hOLXu+JQ6/1xDIWr3evpYCDkWBdxbHdAwFOB+4SEQ/gB24xxtQNdCBjTHoQ4gkqEVnXW3UQFZ70ek8ceq0nDr3WE4te74lDr/XEMp6u97ATLGPMDb0sewZ4ZrjHVkoppZRSSqnxRGePU0oppZRSSqkg0QRrYL8LdQBqVOn1njj0Wk8ceq0nFr3eE4de64ll3FxvMUYroyullFJKKaVUMGgLllJKKaWUUkoFiSZYSimllFJKKRUkmmD1Q0TOE5HdIrJXRL4d6nhU8IhInoi8JSI7RGS7iHw1sDxFRF4XkY8D/yaHOlYVHCJiF5GNIvK3wPMiEVkb+Hw/KSKRoY5RBYeIJInI0yKyS0R2isjJ+tkOTyJye+Bv+DYReVxEnPrZDh8i8rCIVInItm7Lev0si+WewHXfIiInhS5yNVR9XOufB/6ObxGR50Qkqdu67wSu9W4ROTckQfdDE6w+iIgd+C1wPjAb+IyIzA5tVCqIvMDXjTGzgeXAlwLX99vAP40x04B/Bp6r8PBVYGe35z8Ffm2MmQrUA/8ekqjUSPgf4DVjzExgPtZ11892mBGRHOArwGJjzFzAjjU3p362w8cjwHk9lvX1WT4fmBb4uRm4f5RiVMHxCMdf69eBucaYecAe4DsAgfu1q4A5gX3+N3DfPmZogtW3pcBeY8x+Y0wH8ASwKsQxqSAxxpQbYzYEHjdj3YDlYF3jPwY2+yNwSUgCVEElIrnABcDvA88FOAt4OrCJXuswISKJWJPdPwRgjOkwxjSgn+1w5QCiRcQBxADl6Gc7bBhj3gXqeizu67O8CviTsawBkkQka1QCVcPW27U2xvzDGOMNPF0D5AYerwKeMMa4jTEHgL1Y9+1jhiZYfcsBSrs9LwssU2FGRAqBhcBaIMMYUx5YVQFkhCouFVS/Ab4F+APPU4GGbn+49fMdPoqAauAPgS6hvxeRWPSzHXaMMYeBXwCHsBKrRmA9+tkOd319lvW+LbzdBLwaeDzmr7UmWGpCE5E44BngNmNMU/d1xprDQOcxGOdE5EKgyhizPtSxqFHhAE4C7jfGLARa6dEdUD/b4SEw9mYVVlKdDcRyfBcjFcb0szwxiMj3sIZ2PBbqWAZLE6y+HQbyuj3PDSxTYUJEIrCSq8eMMc8GFld2dikI/FsVqvhU0JwKXCwiJVhdfc/CGqOTFOhWBPr5DidlQJkxZm3g+dNYCZd+tsPP2cABY0y1McYDPIv1edfPdnjr67Os921hSERuAC4ErjZHJ+8d89daE6y+/QuYFqhGFIk1mO7FEMekgiQwBuchYKcx5lfdVr0IXB94fD3wwmjHpoLLGPMdY0yuMaYQ63P8pjHmauAt4PLAZnqtw4QxpgIoFZEZgUWfAHagn+1wdAhYLiIxgb/pnddaP9vhra/P8ovAdYFqgsuBxm5dCdU4JCLnYXXvv9gY09Zt1YvAVSISJSJFWIVNPgpFjH2Ro8mg6klE/g1r7IYdeNgY8+PQRqSCRUROA94DtnJ0XM53scZhPQXkAweBK4wxPQfYqnFKRFYC3zDGXCgik7FatFKAjcA1xhh3CMNTQSIiC7AKmkQC+4Ebsb5Q1M92mBGRHwFXYnUf2gh8Dmsshn62w4CIPA6sBNKASuCHwPP08lkOJNn3YXUTbQNuNMasC0HY6gT0ca2/A0QBtYHN1hhjbgls/z2scVlerGEer/Y8ZihpgqWUUkoppZRSQaJdBJVSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYJEEyyllFJKKaWUChJNsJRSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYLk/wMFuojG0WLTHgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACmxklEQVR4nOzdeXyU1d3//9dnZrKTBUJYgwQVkC2CAmKBut6KdUGrFa27td7a2qp1qbWtpf7qffe2fmurtkVbrWsR6966tG6oWFEDIi6IAoZ9CQESsmdmzu+PuRImIRtkksnyfj6aZq7rnOucz8zFxPnMOde5zDmHiIiIiIiItJ8v3gGIiIiIiIj0FEqwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYh0MWaWZ2bOzALxjkV6BzP71MyOjnccIiI9gRIsERHp9sxsnpmVeT81ZlYbtf1SvOPr6pxz45xzC2PZppmdbWb/MbMKM4tp2yIiXZnpRsMiIrFlZgHnXLAdx+cBXwEJ7WmntzKzucDBzrnzmyhr17npTN0p1qaY2fFAP+AQ4Fjn3NHxjUhEpHNoBEtEJAbMrNDMfmxmy4FyMwuY2TTvG/xdZvZR9BQsM1toZv9rZu+bWamZPWdm/Zpp+xIzW2Fmu81sjZn9d6Py2Wa2zGtntZnN8vZnmtn9ZrbZzDaa2a/MzN/K8zjIzF43s2Iz225mj5lZVlTZDjM7zNseYmZFdc/LzE7zpprt8p7fmEavz/VmttzMSsxsgZkl7/srve+aOTfOzA6OqvOgmf0qavsU7zXd5Z3D/Db2dbSZbTCzm73Xr9DMzosqP9nMPvTO1XovGawrq5sa+h0zWwe87u3/u5lt8V63t8xsXKO4/2hmL3mjde+Y2SAz+52Z7TSzz81sUhtfo+Pb8hzbyjn3qnPuCWBTLNsVEenqlGCJiMTOucDJQBYwEHgB+BWRb/GvB54ys5yo+hcClwKDgSBwVzPtbgNOATKAS4A7o5KcqcDDwA1ev18HCr3jHvTaPRiYBJwAXNbKczDgf4EhwBhgGDAXwDm3Gvgx8KiZpQJ/BR5yzi00s1HAfOAaIAd4EfiHmSVGtX02MAsYAeQDFzcZgNkML7Fp7mdGK8+hKfXnprVRIS8heQD4byAbuBd43syS2tjXIKA/MBS4CLjPzEZ7ZeVEznuWF8+VZnZ6o+OPIvLan+htvwSMBAYAS4HHGtU/G/iZ12c18K5Xrz/wJPDbNsbdJDO7qaXz0Z62RUR6IiVYIiKxc5dzbr1zrhI4H3jROfeicy7snHsFKAC+EVX/EefcJ865cuDnwNlNjTA5515wzq12EW8C/wZmesXfAR5wzr3i9bPROfe5mQ30+rrGOVfunNsG3Amc09ITcM6t8tqqds4VEflwflRU+Z+BVcB7RBLDn3pFc4AXvGNrgTuAFOBrjV6fTc65HcA/gInNxLDIOZfVws+ilp5DM6LPTWsuB+51zr3nnAs55x4ikrhM24f+fu69hm8SSbTPBnDOLXTOfeydq+VEktKjGh071ztnld4xDzjndjvnqokku4eaWWZU/Wecc0ucc1XAM0CVc+5h51wIWEAkud5vzrlft3Q+2tO2iEhPpARLRCR21kc9Hg58q9E3/TOIJCVN1V8LJBAZdWjAzE4ys8Xe9LxdRBKnunrDgNVNxDLca29zVP/3EhkFaZaZDTSzx70phaXAo03E9GdgPHC396EfIiNea+sqOOfC3vMbGnXclqjHFUCflmKJsfWtV6k3HLiu0bkbRuQ5tsVOL2mus7buWDM7wsze8KZWlgBXsPfrWx+rmfnN7NcWmfpZyp7RyehjtkY9rmxiuzNfZxGRXk8JlohI7ESvGrSeyAhV9Lf9ac65X0fVGRb1+ACgFtge3aA3Le0pIiNCA70RgxeJTOWr6+egJmJZT2TUpX9U/xnOuXFN1I32P97zmOCcyyAyElfXF2bWB/gdcD8w1/ZcN7aJSGJSV8+857exlf72YmYzbc8KgE39zGy9lb00XtGpAkiN2h4U9Xg9cFujc5fqnJvfxr76mlla1PYB7LkO6W/A88Aw51wmMI+o17eJWL8NzAaOBzKBPG9/42M6jHc9WbPno7PiEBHpLpRgiYh0jEeBU83sRG8UItlbACE3qs75ZjbWu57pVuBJb1pXtEQgCSgCgmZ2EpFrqercD1xiZseZmc/MhprZIc65zUSmEv4/M8vwyg4ys8bT0RpLB8qAEjMbSuTarmi/Bwqcc5cRmfo2z9v/BHCyF0cCcB2RBO8/rb1QjTnn3nbO9Wnh5+19bbMJy4Bve+dmFg2n6f0ZuMIbbTIzS7PI4hTpUL+wxIOttP9LM0v0ksFTgL97+9OBHc65Ku/6uW+30k46kdexmEhC+D/78Bxjwjn3Py2dj+aOq/t3DwQAn/ceSOi8yEVE4kMJlohIB3DOrScy8nAzkeRoPZFkJfrv7iNEFqLYAiQDP2yind3e/ieAnUQ+kD8fVf4+3sIXQAnwJntGki4kkqB95h37JA2nKDbll8BhXlsvAE/XFZjZbCKLVFzp7foRcJiZneecW0lktOtuIqNwpwKnOudqWukvXq4mEuMu4Dzg2boC51wB8F3gHiKv2yoaLsgxDHinhba3eMdtIrIgxRXOuc+9su8Bt5rZbuAWIue1JQ8TmWK4kch5XNzaE+tCLiAyRfFPRK4ZrCSSvIqI9Gi6D5aISBxY5Marjzrn/hLvWKTtvFURPwLyvcU8GpcfTeS85jYuExGR3iEQ7wBERES6C29EbkyrFUVEpNfSFEERkV7GzOY1s2DBvNaPlu7IzA5oYaGKA+Idn4hIT6IpgiIiIiIiIjGiESwREREREZEY6VLXYPXv39/l5eXFOwwREREREZFmLVmyZLtzLqepsi6VYOXl5VFQUBDvMERERERERJplZmubK9MUQRERERERkRhRgiUiIiIiIhIjSrBERERERERipEtdg9WU2tpaNmzYQFVVVbxDkS4gOTmZ3NxcEhIS4h2K9GBrt+3i7YfnMv7UHzJx9IHxDkdERES6kS6fYG3YsIH09HTy8vIws3iHI3HknKO4uJgNGzYwYsSIeIcjPdiKVx/m/LK/8sY/t8PoR+MdjoiIiHQjXX6KYFVVFdnZ2UquBDMjOztbo5nS4QZueAmA/mUr4xyJiIiIdDddPsEClFxJPf1bkM7Qt3oDAGPCq9i1uyzO0YiIiEh30i0SLBGRztQnVEoNAQIWZt3qFfEOR0RERLoRJVhtYGZcd9119dt33HEHc+fOjV9AUY4++ugWb858+umnM23atAb75s6dy9ChQ5k4cSLjx4/n+eef7+gwRbqNcChMhtvN2tTxAOxcrwRLRERE2k4JVhskJSXx9NNPs3379pi265wjHA7HtM1ou3btYsmSJZSUlLBmzZoGZddeey3Lli3j73//O5deemmHxiHSnewu3UWihSjLmQSA274qzhGJiIhId6IEqw0CgQCXX345d955515lRUVFnHnmmUyZMoUpU6bwzjvvAJFRojvuuKO+3vjx4yksLKSwsJDRo0dz4YUXMn78eNavX88NN9zA+PHjmTBhAgsWLABg4cKFHH300Zx11lkccsghnHfeeTjnmozvkUceqR+Nev/99+v3P/3005x66qmcc845PP74400eO2bMGAKBQIPk8aabbmLs2LHk5+dz/fXXA1BYWMixxx5Lfn4+xx13HOvWrQPg4osv5sorr2TatGkceOCBLFy4kEsvvZQxY8Zw8cUX17d55ZVXMnnyZMaNG8cvfvGLveIoKSlh+PDh9YleeXk5w4YNo7a2tsm4RTpKVWkRALWZI9hFOgkla1o5QkRERGSPLr9Me7Rf/uNTPttUGtM2xw7J4Benjmu13ve//33y8/O58cYbG+y/+uqrufbaa5kxYwbr1q3jxBNPZMWKlqcUffnllzz00ENMmzaNp556imXLlvHRRx+xfft2pkyZwte//nUAPvzwQz799FOGDBnC9OnTeeedd5gxY8Ze7VVUVLBs2TLeeustLr30Uj755BMA5s+fzy233MLAgQM588wzufnmm/c69r333sPn85GTkwNAcXExzzzzDJ9//jlmxq5duwD4wQ9+wEUXXcRFF13EAw88wA9/+EOeffZZAHbu3Mm7777L888/z2mnncY777zDX/7yF6ZMmcKyZcuYOHEit912G/369SMUCnHcccexfPly8vPz6+PIzMxk4sSJvPnmmxxzzDH885//5MQTT9T9rqTT1ZQVA+BS+rEzMIDkii1xjkhERES6E41gtVFGRgYXXnghd911V4P9r776KldddRUTJ07ktNNOo7S0lLKyllcdGz58eP11UYsWLeLcc8/F7/czcOBAjjrqKD744AMApk6dSm5uLj6fj4kTJ1JYWNhke+eeey4AX//61yktLWXXrl1s3bqVL7/8khkzZjBq1CgSEhLqEy+AO++8k4kTJ3L99dezYMGC+tX5MjMzSU5O5jvf+Q5PP/00qampALz77rt8+9vfBuCCCy5g0aJF9W2deuqpmBkTJkxg4MCBTJgwAZ/Px7hx4+pjfuKJJzjssMOYNGkSn376KZ999tlez2POnDn1I3iPP/44c+bMafF1FOkIIS/BstR+lCcPIrN2W5wjEhERke6kW41gtWWkqSNdc801HHbYYVxyySX1+8LhMIsXLyY5OblB3UAg0OC6puh7N6WlpbWpv6SkpPrHfr+fYDDYZL3GS5ebGU888QQ7d+6svyFvaWkp8+fP57bbbgMi12DVTf9rHPf777/Pa6+9xpNPPsk999zD66+/3qY4fT5fg5h9Ph/BYJCvvvqKO+64gw8++IC+ffty8cUXN3kvq9NOO42bb76ZHTt2sGTJEo499tgW+xXpCOHyyHRZX1o2wT5DyNn9ITXBMIkBfR8lIiIirWv3JwYzG2Zmb5jZZ2b2qZld7e3vZ2avmNmX3u++7Q83vvr168fZZ5/N/fffX7/vhBNO4O67767fXrZsGQB5eXksXboUgKVLl/LVV1812ebMmTNZsGABoVCIoqIi3nrrLaZOnbpPcdWN+ixatIjMzEwyMzOZP38+L7/8cv11X0uWLGn2OqxoZWVllJSU8I1vfIM777yTjz76CICvfe1r9cc/9thjzJw5s83xlZaWkpaWRmZmJlu3buWll15qsl6fPn2YMmUKV199Naeccgp+v7/NfYjESqgyMg05ITULX+ZQMq2CrUXFcY5KREREuotYfCUbBK5zzo0FpgHfN7OxwE3Aa865kcBr3na3d9111zVYEOKuu+6ioKCA/Px8xo4dy7x58wA488wz2bFjB+PGjeOee+5h1KhRTbZ3xhlnkJ+fz6GHHsqxxx7L7bffzqBBg/YppuTkZCZNmsQVV1zB/fffT2FhIWvXrm2wPPuIESPIzMzkvffea7KNb3zjG2zatIndu3dzyimnkJ+fz4wZM/jtb38LwN13381f//pX8vPzeeSRR/j973/f5vgOPfRQJk2axCGHHMK3v/1tpk+fXl92yy23NFgmfs6cOTz66KOaHihxE6qpBCAhJY3E7GEAFG/WQhciIiLSNtbcynT73aDZc8A93s/RzrnNZjYYWOicG93SsZMnT3aN7+m0YsUKxowZE9MYpXvTvwnpSCsW/JwxK+5i9RVfkbRlKbnPnsk7R/6F6Sd+K96hiYiISBdhZkucc5ObKovpRQVmlgdMAt4DBjrnNntFW4CBzRxzuZkVmFlBUVFRLMMREdln4ZpKgs5HSlIy/QZHrmGs3rEuzlGJiIhIdxGzBMvM+gBPAdc45xqspe4iw2RNDpU55+5zzk12zk2uWypcRCReXG0VVSSSmhQgNTs3srNkY3yDEhERkW4jJgmWmSUQSa4ec8497e3e6k0NxPuttY5FpOsLVlBJIskJfggkscOySCjbFO+oREREpJuIxSqCBtwPrHDO/Taq6HngIu/xRcBz7e1LRKSjWW0V1SSS5C3LXpIwgNQq3WxYRERE2iYWI1jTgQuAY81smffzDeDXwH+Z2ZfA8d62iEiXZsFKqkmsv79cRcogsoK6PlRERETapt03GnbOLQKsmeLj2tu+iEhn8oWqqLE9Nw4PpQ0iZ1cBVbWhyLRBERERkRbEdBXBnuzZZ5/FzPj888+brVNYWMj48eNj1ufFF1/Mk08+2Wz5Nddcw9ChQwmHw/X7HnzwQXJycpg4cSJjx47lz3/+c8ziEekN/MEqaiyxftsyh5JhFWzRzYZFRESkDZRgtdH8+fOZMWMG8+fPb7I8GAy2u49QKNTmuuFwmGeeeYZhw4bx5ptvNiibM2cOy5YtY+HChdx8881s3bq13bGJ9Bb+cDW1vj0jWEn9Ijcb3rG5ME4RiYiISHeiBKsNysrKWLRoEffffz+PP/54/f6FCxcyc+ZMTjvtNMaOHQtEEq3zzjuPMWPGcNZZZ1FRUQHAa6+9xqRJk5gwYQKXXnop1dXVAOTl5fHjH/+Yww47jL///e979f3qq68yefJkRo0axT//+c8GfY8bN44rr7yy2aRvwIABHHTQQaxdu7Z+31133cXYsWPJz8/nnHPOAWDHjh2cfvrp5OfnM23aNJYvXw7A3Llzueiii5g5cybDhw/n6aef5sYbb2TChAnMmjWL2tpaAG699VamTJnC+PHjufzyy2l88+pwOExeXh67du2q3zdy5EglftIlBUJVBH1J9dvpOQcAUFake2GJiIhI69p9DVaneukm2PJxbNscNAFOann9jeeee45Zs2YxatQosrOzWbJkCYcffjgAS5cu5ZNPPmHEiBEUFhaycuVK7r//fqZPn86ll17KH//4R6666iouvvhiXnvtNUaNGsWFF17In/70J6655hoAsrOzWbp0aZN9FxYW8v7777N69WqOOeYYVq1aRXJyMvPnz+fcc89l9uzZ3HzzzdTW1pKQkNDg2DVr1rBmzRoOPvjg+n2//vWv+eqrr0hKSqpPeH7xi18wadIknn32WV5//XUuvPBCli1bBsDq1at54403+OyzzzjyyCN56qmnuP322znjjDN44YUXOP3007nqqqu45ZZbALjgggv45z//yamnnlrfp8/nY/bs2TzzzDNccsklvPfeewwfPpyBA5u897RIXAXC1YQS9oxg9RucB0D1jvVxikhERES6E41gtcH8+fPrR3vOOeecBiNGU6dOZcSIEfXbw4YNY/r06QCcf/75LFq0iJUrVzJixAhGjRoFwEUXXcRbb71Vf8ycOXOa7fvss8/G5/MxcuRIDjzwQD7//HNqamp48cUXOf3008nIyOCII47gX//6V/0xCxYsYOLEiZx77rnce++99OvXr74sPz+f8847j0cffZRAIJJfL1q0iAsuuACAY489luLiYkpLI/eKPumkk0hISGDChAmEQiFmzZoFwIQJEygsLATgjTfe4IgjjmDChAm8/vrrfPrpp3s9jzlz5rBgwQIAHn/88Rafs0g8JbhqQv7oKYKRmw2HS3UvLBEREWld9xrBamWkqSPs2LGD119/nY8//hgzIxQKYWb85je/ASAtLa1B/bqlnZvbbkrjNlpr71//+he7du1iwoQJAFRUVJCSksIpp5wCRJKZe+65p8n2XnjhBd566y3+8Y9/cNttt/Hxxy2PCCYlRaZK+Xw+EhIS6uPx+XwEg0Gqqqr43ve+R0FBAcOGDWPu3LlUVVXt1c6RRx7JqlWrKCoq4tlnn+VnP/tZi/2KxEuiq2qQYJGQQqmlk1C2OX5BiYiISLehEaxWPPnkk1xwwQWsXbuWwsJC1q9fz4gRI3j77bebrL9u3TreffddAP72t78xY8YMRo8eTWFhIatWrQLgkUce4aijjmpT/3//+98Jh8OsXr2aNWvWMHr0aObPn89f/vIXCgsLKSws5KuvvuKVV16pv96rOeFwmPXr13PMMcfwf//3f5SUlFBWVsbMmTN57LHHgMi1Xf379ycjI6NN8dUlU/3796esrKzZVQ/NjDPOOIMf/ehHjBkzhuzs7Da1L9LZEl0NLpDcYF9poD8pVdviFJGIiIh0J0qwWjF//nzOOOOMBvvOPPPMZheWGD16NH/4wx8YM2YMO3fu5MorryQ5OZm//vWvfOtb32LChAn4fD6uuOKKNvV/wAEHMHXqVE466STmzZtHOBzm5Zdf5uSTT66vk5aWxowZM/jHP/7RZBuXXXYZBQUFhEIhzj//fCZMmMCkSZP44Q9/SFZWFnPnzmXJkiXk5+dz00038dBDD7Xx1YGsrCy++93vMn78eE488USmTJlSXzZv3jzmzZtXvz1nzhweffRRTQ+Urss5UqjGBVIa7K5IHkhmUAmWiIiItM4ar/gWT5MnT3YFBQUN9q1YsYIxY8bEKSLpivRvQjpMbRXcNpBXh17B8d/9v/rdn917ETmb3iD15jWkJXWvmdUiIiISe2a2xDk3uakyjWCJiNSpjUyztUYjWJYxlBwrYfOO0nhEJSIiIt2IEiwREU9ttZdgJaQ22F+3kuCOLboXloiIiLSswxMsM5tlZivNbJWZ3bQ/bXSlaYwSX/q3IB2purIMAF9iwxGsPt7NhndvW7vXMSIiIiLROjTBMjM/8AfgJGAscK6Zjd2XNpKTkykuLtYHa8E5R3FxMcnJya1XFtkP1ZXlAFhiwxGsrEHDAajasaHTYxIREZHupaOv1p4KrHLOrQEws8eB2cBnbW0gNzeXDRs2UFRU1EEhSneSnJxMbm5uvMOQHqqmKpJg+RslWIl9I//mXMnGTo9JREREupeOTrCGAuujtjcAR+xLAwkJCYwYMSKmQYmINKW2KnINViC5YYJFchZVJOEr2xKHqERERKQ7ifsiF2Z2uZkVmFmBRqlEJJ7qE6ykRgmWGSUJ/Umt2hqHqERERKQ76egEayMwLGo719tXzzl3n3NusnNuck5OTgeHIyLSvGB1ZIpgQnLaXmUVSQPJqNWXQCIiItKyjk6wPgBGmtkIM0sEzgGe7+A+RUT2S8hbpj2xiQSrNm0QAyimtKq2s8MSERGRbqRDEyznXBC4CvgXsAJ4wjn3aUf2KSKyv+oTrJS9EyzLHMoAdrJ5Z0VnhyUiIiLdSEcvcoFz7kXgxY7uR0SkvUK1lQAkNZFgJfbNJdFCFG3dyOjBmZ0dmoiIiHQTcV/kQkSkq3A1kdGppJQ+e5XV3Wy4rGhdp8YkIiIi3YsSLBERj6utJOSMlCZuZp05MHKz4ertazs7LBEREelGlGCJiNSpraSKRJIT/HsVBfrlAeBK1u9VJiIiIlJHCZaISJ3aKqpIIuBv4k9jaj8qSSapbEPnxyUiIiLdhhIsERGPBSuotsRmCo2diYNIr9zUuUGJiIhIt6IES0TE4wtWUmUpzZaXpQyhX3ArzrlOjEpERES6EyVYIiKeQLCCatt7gYs6tenDGMo2Sip1s2ERERFpmhIsERFPIFRJja/5ESxf3+FkWgVbtm7txKhERESkO1GCJSLiSQxVUOtvPsFKyhkBQMnmVZ0VkoiIiHQzSrBERDyJ4Upq/anNlmcMOgiAyqLCTopIREREuhslWCIiniRXRSjQ/AhW3yEHAxDaUdhJEYmIiEh3owRLRMST7KoIBdKaLfen9aOCZBJKdS8sERERaVq7Eiwz+42ZfW5my83sGTPLiir7iZmtMrOVZnZiuyMVEelIzpFCJS6h+SmCmFEUGERK5cbOi0tERES6lfaOYL0CjHfO5QNfAD8BMLOxwDnAOGAW8Ecz87ezLxGRjhOsxo/DJTY/ggVQmjSYrJrNnRSUiIiIdDftSrCcc/92zgW9zcVArvd4NvC4c67aOfcVsAqY2p6+REQ6UrBqd+RBQssJVnXaUAaGtulmwyIiItKkWF6DdSnwkvd4KLA+qmyDt28vZna5mRWYWUFRUVEMwxERabvK8lIAfK2MYNH3ADKsgqIi3QtLRERE9tZqgmVmr5rZJ038zI6q81MgCDy2rwE45+5zzk12zk3OycnZ18NFRGKiwkuwAil9WqyXMiCyVPu2whUdHpOIiIh0P4HWKjjnjm+p3MwuBk4BjnN75sxsBIZFVcv19omIdEkVuyMJVmJqRov1+uWOAWD3ppXAMR0dloiIiHQz7V1FcBZwI3Cac64iquh54BwzSzKzEcBI4P329CUi0pGqynYCkJSW2WK9nOGjAQhuX93hMYmIiEj30+oIVivuAZKAV8wMYLFz7grn3Kdm9gTwGZGpg993zoXa2ZeISIepKdsBQHJ6dov1Asl92GbZJJR81RlhiYiISDfTrgTLOXdwC2W3Abe1p30Rkc4SKo+MYKVm9m+1bnHSMDIr1nV0SCIiItINxXIVQRGRbitcERnB6pPV8ggWQEWf4QwKbtJS7SIiIrIXJVgiIgCVu6hyCaT3SW+1qut3EH1tt5ZqFxERkb0owRIRAXzVJZTSB7/PWq2bMmgkANsKP+vosERERKSbUYIlIgIEakoo87V8D6w6fYdFlmov2/R5R4YkIiIi3ZASLBERILG2hApf69MDAQYcMJqwM4JFWqpdREREGlKCJSICJAd3UxVoW4IVSEplmy+HRC3VLiIiIo0owRIRAVJDJQST+ra5fnFSLpmVWqpdREREGlKCJSISDtM3vItg6oA2H1KZnseg4CbCoXAHBiYiIiLdjRIsEen1yndtJcFCkD6ozcdY/5FkWjmbN2/owMhERESku1GCJSK93q5t6wEIZLY9wUobEllJsKjwkw6JSURERLonJVgi0uvtLoqMQqX0HdrmYwYcOAGAso26F5aIiIjsEZMEy8yuMzNnZv29bTOzu8xslZktN7PDYtGPiEhHqNq5CYD0nNw2H9N38AgqSYTtX3RUWCIiItINtTvBMrNhwAlA9HJaJwEjvZ/LgT+1tx8RkY4S3BVJsPoOaHuCZT4/mwO5pJVqqXYRERHZIxYjWHcCNwIuat9s4GEXsRjIMrPBMehLRCTmrGQdxS6TrMzMfTquJHUEOdVrOygqERER6Y7alWCZ2Wxgo3Puo0ZFQ4H1UdsbvH1NtXG5mRWYWUFRUVF7whER2S8p5RsoCgzCzPbpuNp+BzPEbWN32e4OikxERES6m1YTLDN71cw+aeJnNnAzcEt7AnDO3eecm+ycm5yTk9OepkRE9ktW9WZKk4fs83GJAw/BZ47Naz7tgKhERESkO2o1wXLOHe+cG9/4B1gDjAA+MrNCIBdYamaDgI3AsKhmcr19IiJdigvVMiC8jdr0Ya1XbqTf8HEA7FynBEtEREQi9nuKoHPuY+fcAOdcnnMuj8g0wMOcc1uA54ELvdUEpwElzrnNsQlZRCR2dmxcTcDCWPaIfT520IhxhJ0R3LqyAyITERGR7ijQQe2+CHwDWAVUAJd0UD8iIu2ydfUysoE+uRP2+djElD5s9uWQsGtV7AMTERGRbilmCZY3ilX32AHfj1XbIiIdpWLDJwAMGTlpv47fnjycvhWFMYxIREREurOY3GhYRKS7ChR/zmayyc7O3q/jKzMOYmhwA6FQKMaRiYiISHekBEtEerXMstVsTjpwn5dor2M5I0m1arZuWBPjyERERKQ7UoIlIr2WCwUZUrueioyD97uN9NyxAGz76uNYhSUiIiLdmBIsEem1itZ/TpLVYgPH7HcbA0ZEFseo3PR5rMISERGRbkwJloj0WkWrlwGQccC+ryBYp2/OUEpJw4q/iFFUIiIi0p0pwRKRXqtyY2QFwaEjJ+53G+bzsTkwjD67v4pRVCIiItKdKcESkV4rULySDQygX99+7WqntM8IBtSsi1FUIiIi0p0pwRKRXqtv2Wq2Jo1odzvBfiMZwA5KS3bEICoRERHpzpRgiUiv5II1DAluoCJzZLvbSh40GoDNq7WSoIiISG+nBEtEeqWthZ+SYCF87VhBsE523ngAdq37pN1tiYiISPemBEtEeqXta5YDkJV3aLvbGjpiLLXOT+2Wle1uS0RERLo3JVgi0itVbfqEkDNyD25/guVPSGRLYDBJu76MQWQiIiLSnbU7wTKzH5jZ52b2qZndHrX/J2a2ysxWmtmJ7e1HRCSWEopXsskGkpmZEZP2dvQZxZCqVTjnYtKeiIiIdE+B9hxsZscAs4FDnXPVZjbA2z8WOAcYBwwBXjWzUc65UHsDFhGJhX4Vq9mWMoJhMWqvZsAEhpa8TtG2LeQMHByjVkVERKS7ae8I1pXAr51z1QDOuW3e/tnA4865aufcV8AqYGo7+xIRiYlwTRWDg5uozBwVszYzRkwGYO2n/4lZmyIiItL9tDfBGgXMNLP3zOxNM5vi7R8KrI+qt8Hbtxczu9zMCsysoKioqJ3hiIi0bkvhpwQsjH9Q+1cQrJN36ExCzqj48u2YtSkiIiLdT6tTBM3sVWBQE0U/9Y7vB0wDpgBPmNmB+xKAc+4+4D6AyZMn6+IFEelwRWs/ZwjQd1jsEqyktL6sThxJ36IPYtamiIiIdD+tJljOueObKzOzK4GnXeSq7vfNLAz0BzZCg0sbcr19IiJxV7ltNQCD8w6Jabs7Bk5j4vrH2FG0mX45ug5LRESkN2rvFMFngWMAzGwUkAhsB54HzjGzJDMbAYwE3m9nXyIiMWE7C9lNChl9B8S03QHTziXBQnz66sNNlu/YspYP5v03X3zwSkz7FRERka6jXasIAg8AD5jZJ0ANcJE3mvWpmT0BfAYEge93xxUEF//t/6P/6mcIm58w/shv8xO2AGHz47xtZwHCPu+3+XG+AM784AsQtgB42+bzYz4fBpgZPjMssgGAw+r7bjBX0nnlFl1uDSo5HObtcHt2NhJuuNnkctKuhbKmj3XRkTfbuWu2TQeYaxh79HOpf+waljUVS+O+o9tumtsrVosudY37a1y3hbZbnfDacoV2Ht768e1rvn1Hxzn2g3b+h23+waT7YnsrwOHjjuSrZw9kxBcPUFP1QxKTUwCorijho6fuYNzq+5hCFR+8VQRT/iumffcGLhSkfPcuyku2U7l7F5UVu6muLCNUVUG4pgxXU0m4pgJqK7FgJVZbjgWrIVxLOBTEwkEsXIvPBfGFQ/gI4gsH8bkgfhfECO/5e1L/d2PP37e697s1sc/baKYk6giLPDaoby1S1LBO3V+iujpW33Z0najjvDb2tEeDunV9NuzfwBo+3hOyr2EbRP83qJlXwJp7ZazRsc2/LtGin+9e//2Lfn2s4XEdTXdiiL8W/9srPdK6tHyOnP1dcvumxjuUNmlXguWcqwHOb6bsNuC29rQfb76ULMqSBmDhID4Xqv+PcIKrxudC+F0o8pug9zuMj8h+PyECRH776/ZZ7/qDEHaN/2NJo+2m/mPaBGu9bmttE8Pj9/t5xEHXiaTr+XLoybFv1IzS6T/j0Dcv5ZPfn0o4fw7B9R9y4KbnmcpulqUcgb9qBzkVq2LfdzdTUVHOrqJNlBZvpmrnZmpKthEq24aVF+Gr2klCTSmJwd0kh8pIC5eRRhnpVNIH6NPWPlwSNSQQtEDkr7MFIj/4vcd+wkT21VoiznxewtEwiXHRH+YbpFk0KDec96VO49p7krY9dfYcXX9s3Rc60cmdgz1fjjlwDXvee19Tfe5JR+rTGOeiprC4Rs8mqi3X+Fk39czrUqXY1NlTd+/4zJqvo794vUvv+kQlK4uq2Fl+Mbl94x1J21hXuinm5MmTXUFBQbzD6DhR34w6HKGwIxSO+g8nRP7D7vb8h6R+f9R5qv+yzjks6ps7q/8Gk6j9jf6Ds9c3fS2Vt3JsJ39rKNJdvP23XzN55f8jxWqodgE+SZ6M7+s/YtL0E1k07yqO2Pw33M2bSExKjneoseccJbuK2bZhNaVbC6nZsQ5XspGEsk2kVm0ho6aIzPAuMqyiycMrXBKllk6Fvw9V/nSqA+nUJmQQSkzHJWVCSha+lCwCKRkkpqaTmNKHpOQ0ElLSSEhKi+xLTiMpOZVAwN/JT15ERHoLM1vinJvcVFl7pwjKvrA934oaEPDpBIj0RDO/fRM7d17O2vWryMk9mMP79asv6zN8EglbHuGzj99l7ORj4hjl/quprmbb+i/ZuXElVVtX4XasIWn3OrKqNtI/tJVMqsiMqh9yxnbrx87AALaljmRTag6k5eBPH0hi5gCS+w6mT7/BZOUMIbVPJt1jAoiIiEjT9PleRKQD9O3bj759976/+oipJxNcfD07lz4DXTjBcuEwxVvXsW31R5Rt/AwrWkny7rX0q9nIwHARuRYm16tb6RLZ7B/M9qShbEybgmXmkpx9AOkDh5M1aAR9Bx7AwEACA+P6jERERDqHEiwRkU6UmT2IT1MmMWLTi9TW3kFCQmJc4wmFQmxe9yXb13xE5eYV+LevJLNsDYOD6+hPBf29eqUula0JQ9naZxzrM4fjyz6IPoMOpt+wQ8gZPJwD/bFdMERERKS7UoIlItLJgpMvY8iiK1n8j3lM++YPO6fP2ho2FX7O9q+WU7XpMwLFX5BV8RW5wfXkWnX9aFQxmWxJHM5n2SfickaTNnQcAw86lAGDhpER41UXRUREeiItciEi0slcOMSX/3Mk/YObCX33TXKGHhiztoM11Wz66jOKv1pO9ebPSNjxBX3L1zA0tJEkq62vt9WyKUrKozzzYHwDRpM+bDyDDzqUzOxBMYtFRESkp9IiFyIiXYj5/CSd+ScSHz+Z3X85kfVnPsiw8dPb3oBzlBRvYUvhCnZv/pLabV+SvPML+lWsYUhoEwdYiAO8qptsIEXJeXyYNZ3AgDFkDp/A0JH5DEzvp2uiREREOoBGsERE4mTFB6/T94XLGEQxn6UcTvnQGST3H44/rR8uFCRYW02wfCfB0i2wewsJlUVkVG1kYHAj6VTWtxNyxibfIIqSR1CVNZLAoDH0HT6eIQflk5ae2UIEIiIisj9aGsFSgiUiEkfbt23mk2f/Hwdu+icHsLnZeqUulV3+vuxMGExl+gG4vgeSMvBg+uaOZlDeaJKS0zoxahERkd5NCZaISBfnnGP79q3s2LKOmt07sEAiiQmJJGdkkz0wl7Q+6fEOUURERDy6BktEpIszM3JyBpGTo0UmREREujOtuSsiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjHSpRS7MrAhYG+84GukPbI93ENJpdL57D53r3kPnunfR+e49dK57j654roc753KaKuhSCVZXZGYFza0QIj2PznfvoXPde+hc9y46372HznXv0d3OtaYIioiIiIiIxIgSLBERERERkRhRgtW6++IdgHQqne/eQ+e699C57l10vnsPneveo1uda12DJSIiIiIiEiMawRIREREREYkRJVgiIiIiIiIxogSrBWY2y8xWmtkqM7sp3vFI7JjZMDN7w8w+M7NPzexqb38/M3vFzL70fveNd6wSG2bmN7MPzeyf3vYIM3vPe38vMLPEeMcosWFmWWb2pJl9bmYrzOxIvbd7JjO71vsb/omZzTezZL23ew4ze8DMtpnZJ1H7mnwvW8Rd3nlfbmaHxS9y2VfNnOvfeH/Hl5vZM2aWFVX2E+9crzSzE+MSdAuUYDXDzPzAH4CTgLHAuWY2Nr5RSQwFgeucc2OBacD3vfN7E/Cac24k8Jq3LT3D1cCKqO3/A+50zh0M7AS+E5eopCP8HnjZOXcIcCiR8673dg9jZkOBHwKTnXPjAT9wDnpv9yQPArMa7WvuvXwSMNL7uRz4UyfFKLHxIHuf61eA8c65fOAL4CcA3ue1c4Bx3jF/9D63dxlKsJo3FVjlnFvjnKsBHgdmxzkmiRHn3Gbn3FLv8W4iH8CGEjnHD3nVHgJOj0uAElNmlgucDPzF2zbgWOBJr4rOdQ9hZpnA14H7AZxzNc65Xei93VMFgBQzCwCpwGb03u4xnHNvATsa7W7uvTwbeNhFLAayzGxwpwQq7dbUuXbO/ds5F/Q2FwO53uPZwOPOuWrn3FfAKiKf27sMJVjNGwqsj9re4O2THsbM8oBJwHvAQOfcZq9oCzAwXnFJTP0OuBEIe9vZwK6oP9x6f/ccI4Ai4K/elNC/mFkaem/3OM65jcAdwDoiiVUJsAS9t3u65t7L+tzWs10KvOQ97vLnWgmW9Gpm1gd4CrjGOVcaXeYi9zDQfQy6OTM7BdjmnFsS71ikUwSAw4A/OecmAeU0mg6o93bP4F17M5tIUj0ESGPvKUbSg+m93DuY2U+JXNrxWLxjaSslWM3bCAyL2s719kkPYWYJRJKrx5xzT3u7t9ZNKfB+b4tXfBIz04HTzKyQyFTfY4lco5PlTSsCvb97kg3ABufce972k0QSLr23e57jga+cc0XOuVrgaSLvd723e7bm3sv63NYDmdnFwCnAeW7PzXu7/LlWgtW8D4CR3mpEiUQupns+zjFJjHjX4NwPrHDO/Taq6HngIu/xRcBznR2bxJZz7ifOuVznXB6R9/HrzrnzgDeAs7xqOtc9hHNuC7DezEZ7u44DPkPv7Z5oHTDNzFK9v+l151rv7Z6tuffy88CF3mqC04CSqKmE0g2Z2Swi0/tPc85VRBU9D5xjZklmNoLIwibvxyPG5tieZFAaM7NvELl2ww884Jy7Lb4RSayY2QzgbeBj9lyXczOR67CeAA4A1gJnO+caX2Ar3ZSZHQ1c75w7xcwOJDKi1Q/4EDjfOVcdx/AkRsxsIpEFTRKBNcAlRL5Q1Hu7hzGzXwJziEwf+hC4jMi1GHpv9wBmNh84GugPbAV+ATxLE+9lL8m+h8g00QrgEudcQRzClv3QzLn+CZAEFHvVFjvnrvDq/5TIdVlBIpd5vNS4zXhSgiUiIiIiIhIjmiIoIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiXYyZ5ZmZM7NAvGOR3sHMPjWzo+Mdh4hIT6AES0REuj0zm2dmZd5PjZnVRm2/FO/4ujrn3Djn3MJYtmlmZ5vZf8yswsxi2raISFdmzrl4xyAi0qOYWcA5F2zH8XnAV0BCe9rprcxsLnCwc+78JsradW46U3eKtSlmdjzQDzgEONY5d3R8IxIR6RwawRIRiQEzKzSzH5vZcqDczAJmNs37Bn+XmX0UPQXLzBaa2f+a2ftmVmpmz5lZv2bavsTMVpjZbjNbY2b/3ah8tpkt89pZbWazvP2ZZna/mW02s41m9isz87fyPA4ys9fNrNjMtpvZY2aWFVW2w8wO87aHmFlR3fMys9O8qWa7vOc3ptHrc72ZLTezEjNbYGbJ+/5K77tmzo0zs4Oj6jxoZr+K2j7Fe013eecwv419HW1mG8zsZu/1KzSz86LKTzazD71ztd5LBuvK6qaGfsfM1gGve/v/bmZbvNftLTMb1yjuP5rZS95o3TtmNsjMfmdmO83sczOb1MbX6Pi2PMe2cs696px7AtgUy3ZFRLo6JVgiIrFzLnAykAUMBF4AfkXkW/zrgafMLCeq/oXApcBgIAjc1Uy724BTgAzgEuDOqCRnKvAwcIPX79eBQu+4B712DwYmAScAl7XyHAz4X2AIMAYYBswFcM6tBn4MPGpmqcBfgYeccwvNbBQwH7gGyAFeBP5hZolRbZ8NzAJGAPnAxU0GYDbDS2ya+5nRynNoSv25aW1UyEtIHgD+G8gG7gWeN7OkNvY1COgPDAUuAu4zs9FeWTmR857lxXOlmZ3e6PijiLz2J3rbLwEjgQHAUuCxRvXPBn7m9VkNvOvV6w88Cfy2jXE3ycxuaul8tKdtEZGeSAmWiEjs3OWcW++cqwTOB150zr3onAs7514BCoBvRNV/xDn3iXOuHPg5cHZTI0zOuRecc6tdxJvAv4GZXvF3gAecc694/Wx0zn1uZgO9vq5xzpU757YBdwLntPQEnHOrvLaqnXNFRD6cHxVV/mdgFfAekcTwp17RHOAF79ha4A4gBfhao9dnk3NuB/APYGIzMSxyzmW18LOopefQjOhz05rLgXudc+8550LOuYeIJC7T9qG/n3uv4ZtEEu2zAZxzC51zH3vnajmRpPSoRsfO9c5ZpXfMA8653c65aiLJ7qFmlhlV/xnn3BLnXBXwDFDlnHvYORcCFhBJrvebc+7XLZ2P9rQtItITKcESEYmd9VGPhwPfavRN/wwiSUlT9dcCCURGHRows5PMbLE3PW8XkcSprt4wYHUTsQz32tsc1f+9REZBmmVmA83scW9KYSnwaBMx/RkYD9ztfeiHyIjX2roKzrmw9/yGRh23JepxBdCnpVhibH3rVeoNB65rdO6GEXmObbHTS5rrrK071syOMLM3vKmVJcAV7P361sdqZn4z+7VFpn6Wsmd0MvqYrVGPK5vY7szXWUSk11OCJSISO9GrBq0nMkIV/W1/mnPu11F1hkU9PgCoBbZHN+hNS3uKyIjQQG/E4EUiU/nq+jmoiVjWExl16R/Vf4ZzblwTdaP9j/c8JjjnMoiMxNX1hZn1AX4H3A/MtT3XjW0ikpjU1TPv+W1spb+9mNlM27MCYFM/M1tvZS+NV3SqAFKjtgdFPV4P3Nbo3KU65+a3sa++ZpYWtX0Ae65D+hvwPDDMOZcJzCPq9W0i1m8Ds4HjgUwgz9vf+JgO411P1uz56Kw4RES6CyVYIiId41HgVDM70RuFSPYWQMiNqnO+mY31rme6FXjSm9YVLRFIAoqAoJmdRORaqjr3A5eY2XFm5jOzoWZ2iHNuM5GphP/PzDK8soPMrPF0tMbSgTKgxMyGErm2K9rvgQLn3GVEpr7N8/Y/AZzsxZEAXEckwftPay9UY865t51zfVr4eXtf22zCMuDb3rmZRcNpen8GrvBGm8zM0iyyOEU61C8s8WAr7f/SzBK9ZPAU4O/e/nRgh3Ouyrt+7tuttJNO5HUsJpIQ/s8+PMeYcM79T0vno7nj6v7dAwHA570HEjovchGR+FCCJSLSAZxz64mMPNxMJDlaTyRZif67+wiRhSi2AMnAD5toZ7e3/wlgJ5EP5M9Hlb+Pt/AFUAK8yZ6RpAuJJGifecc+ScMpik35JXCY19YLwNN1BWY2m8giFVd6u34EHGZm5znnVhIZ7bqbyCjcqcCpzrmaVvqLl6uJxLgLOA94tq7AOVcAfBe4h8jrtoqGC3IMA95poe0t3nGbiCxIcYVz7nOv7HvArWa2G7iFyHltycNEphhuJHIeF7f2xLqQC4hMUfwTkWsGK4kkryIiPZrugyUiEgcWufHqo865v8Q7Fmk7b1XEj4B8bzGPxuVHEzmvuY3LRESkdwjEOwAREZHuwhuRG9NqRRER6bU0RVBEpJcxs3nNLFgwr/WjpTsyswNaWKjigHjHJyLSk2iKoIiIiIiISIxoBEtERERERCRGutQ1WP3793d5eXnxDkNERERERKRZS5Ys2e6cy2mqrEslWHl5eRQUFMQ7DBERERERkWaZ2drmyjRFUEREREREJEaUYImIiIiIiMSIEiwRkf3knOOfH61nbXF5vEMRERGRLqJLXYPVlNraWjZs2EBVVVW8Q5FuJjk5mdzcXBISEuIdivRQK5a+zaznZ/OnzGv4wY9+Ee9wREREpAvo8gnWhg0bSE9PJy8vDzOLdzjSTTjnKC4uZsOGDYwYMSLe4UgPVbzyHQIW5oqS31Mb+jkJfk0KEBER6e26/KeBqqoqsrOzlVzJPjEzsrOzNfIpHcq/cw0ACRZi1fqNcY5GREREuoJ2J1hmNszM3jCzz8zsUzO72tvfz8xeMbMvvd9929FHe8OUXkj/bqSjpZftWaG1eM1HcYxEREREuopYjGAFgeucc2OBacD3zWwscBPwmnNuJPCaty0i0mP0q1nPl4HRAAQ3fxrnaERERKQraHeC5Zzb7Jxb6j3eDawAhgKzgYe8ag8Bp7e3r3gxM6677rr67TvuuIO5c+fGL6Aoixcv5ogjjmDixImMGTOmPq6FCxfyn//8p11tz5o1i6ysLE455ZQYRCrS82SGdrElYzy1BAjvLIx3OCIiItIFxPQaLDPLAyYB7wEDnXObvaItwMBmjrnczArMrKCoqCiW4cRMUlISTz/9NNu3b49pu845wuFwu9q46KKLuO+++1i2bBmffPIJZ599NhCbBOuGG27gkUceaVcbIj1WOEwqlYQTM9jh709C2ebWjxEREZEeL2arCJpZH+Ap4BrnXGn09S/OOWdmrqnjnHP3AfcBTJ48uck6dX75j0/5bFNprEIGYOyQDH5x6rgW6wQCAS6//HLuvPNObrvttgZlRUVFXHHFFaxbtw6A3/3ud0yfPp25c+fSp08frr/+egDGjx/PP//5TwBOPPFEjjjiCJYsWcKLL77IPffcw0svvYSZ8bOf/Yw5c+awcOFC5s6dS//+/fnkk084/PDDefTRR/e6rmjbtm0MHjwYAL/fz9ixYyksLGTevHn4/X4effRR7r77bg455JBm41y9ejWrVq1i+/bt3HjjjXz3u98F4LjjjmPhwoUtvjZ///vf+eUvf4nf7yczM5O33nqLqqoqrrzySgoKCggEAvz2t7/lmGOO4cEHH+TZZ5+lvLycL7/8kuuvv56amhoeeeQRkpKSePHFF+nXrx9//vOfue+++6ipqeHggw/mkUceITU1tUG/06ZN4/7772fcuMi5O/roo7njjjuYPHlyi/GKxExNGT4c4cQ+7E4cQHr1tnhHJCIiIl1ATEawzCyBSHL1mHPuaW/3VjMb7JUPBrr1p4/vf//7PPbYY5SUlDTYf/XVV3PttdfywQcf8NRTT3HZZZe12taXX37J9773PT799FMKCgpYtmwZH330Ea+++io33HADmzdHvgn/8MMP+d3vfsdnn33GmjVreOedd/Zq69prr2X06NGcccYZ3HvvvVRVVZGXl8cVV1zBtddey7Jly5g5c2aLcS5fvpzXX3+dd999l1tvvZVNmza1+XW59dZb+de//sVHH33E888/D8Af/vAHzIyPP/6Y+fPnc9FFF9Wv5vfJJ5/w9NNP88EHH/DTn/6U1NRUPvzwQ4488kgefvhhAL75zW/ywQcf8NFHHzFmzBjuv//+vfqdM2cOTzzxBACbN29m8+bNSq6kU9WU7wLAJWVQlTKQfqEinGvxOyIRERHpBdo9gmWRIZX7gRXOud9GFT0PXAT82vv9XHv7am2kqSNlZGRw4YUXctddd5GSklK//9VXX+Wzzz6r3y4tLaWsrKzFtoYPH860adMAWLRoEeeeey5+v5+BAwdy1FFH8cEHH5CRkcHUqVPJzc0FYOLEiRQWFjJjxowGbd1yyy2cd955/Pvf/+Zvf/sb8+fPb3LUqaU4Z8+eTUpKCikpKRxzzDG8//77nH766W16XaZPn87FF1/M2WefzTe/+c365/SDH/wAgEMOOYThw4fzxRdfAHDMMceQnp5Oeno6mZmZnHrqqQBMmDCB5cuXA5Ek7Gc/+xm7du2irKyME088ca9+zz77bE444QR++ctf8sQTT3DWWWe1KV6RWKkuLyERIDmDUPpQBha/QUlFNVlpyfEOTUREROIoFlMEpwMXAB+b2TJv381EEqsnzOw7wFrg7Bj0FVfXXHMNhx12GJdcckn9vnA4zOLFi0lObvihKhAINLi+Kvp+TGlpaW3qLykpqf6x3+8nGAw2We+ggw7iyiuv5Lvf/S45OTkUFxfvVae5OGHv5cz3ZXnzefPm8d577/HCCy9w+OGHs2TJkhbrRz8nn89Xv+3z+eqf38UXX8yzzz7LoYceyoMPPthkwjh06FCys7NZvnw5CxYsYN68eW2OWSQWqst3kg5YciYB31CSLMjarZvIOvDAeIcmIiIicRSLVQQXOefMOZfvnJvo/bzonCt2zh3nnBvpnDveObcjFgHHU79+/Tj77LMbTFk74YQTuPvuu+u3ly1bBkBeXh5Lly4FYOnSpXz11VdNtjlz5kwWLFhAKBSiqKiIt956i6lTp7Y5phdeeKF+WtKXX36J3+8nKyuL9PR0du/e3WqcAM899xxVVVUUFxezcOFCpkyZ0ub+V69ezRFHHMGtt95KTk4O69evZ+bMmTz22GMAfPHFF6xbt47Ro0e3uc3du3czePBgamtr69tpypw5c7j99tspKSkhPz+/ze2LxEKtN0XQn5JBUvYBAJRsLYxfQCIiItIlxHQVwd7guuuua7Ca4F133UVBQQH5+fmMHTu2fiTlzDPPZMeOHYwbN4577rmHUaNGNdneGWecQX5+PoceeijHHnsst99+O4MGDWpzPI888gijR49m4sSJXHDBBTz22GP4/X5OPfVUnnnmGSZOnMjbb7/dbJwA+fn5HHPMMUybNo2f//znDBkyBIgkf9/61rd47bXXyM3N5V//+hcQmZZYd73VDTfcwIQJExg/fjxf+9rXOPTQQ/ne975HOBxmwoQJzJkzhwcffLDByFVr/r//7//jiCOOYPr06RxyyCH1+59//nluueWW+u2zzjqLxx9/vH7lRJHOVFseuR4zkJJFxsDhAFRuXxfPkERERKQLsK50UfbkyZNdQUFBg30rVqxgzJgxcYqo52u82mFPo38/0lHWvHwPBy7+KR988x0mDu9Pwp2jef3AGzj2wp/FOzQRERHpYGa2xDnX5AprGsESEdkP4arICFZCWiYJ6QOoJYCVboxzVCIiIhJvMbsPlnRPc+fOjXcIIt2Sq9pN2BkpqZng81Hsyya5Yku8wxIREZE40wiWiMh+cNXlVJBEalLke6rShBxSa4riHJWIiIjEmxIsEZH9UVtOJUmkJPoBqEoeQGZw71skiIiISO+iBEtEZH/UVlLpEkn1EqxQ2kD6ux3UBMOtHCgiIiI9mRIsEZH9YLWVVJJEciCSYFnGYPpYFdt3aBRLRESkN1OC1UbPPvssZsbnn3/ebJ3CwkLGjx8fsz5XrlzJ0UcfzcSJExkzZgyXX345ELlJ8Isvvtiuti+99FIGDBgQ03hFehMLVlJtSfh8BkBiVuT+cTu3ro1nWCIiIhJnSrDaaP78+cyYMYP58+c3WR4MBtvdRygUarD9wx/+kGuvvZZly5axYsUKfvCDHwCxSbAuvvhiXn755Xa1IdKb+UOV1PiS67dTs4cCUF60Pl4hiYiISBfQvZZpf+km2PJxbNscNAFO+nWLVcrKyli0aBFvvPEGp556Kr/85S8BWLhwIT//+c/p27cvn3/+Of/+978JBoOcd955LF26lHHjxvHwww+TmprKa6+9xvXXX08wGGTKlCn86U9/Iikpiby8PObMmcMrr7zCjTfeyDnnnFPf7+bNm8nNza3fnjBhAjU1Ndxyyy1UVlayaNEifvKTn3DKKafwgx/8gE8++YTa2lrmzp3L7NmzefDBB3nmmWcoKSlh48aNnH/++fziF78A4Otf/zqFhYUtPu8333yTq6++GgAz46233qJPnz7ceOONvPTSS5gZP/vZz5gzZw4LFy7kF7/4BVlZWXz88cecffbZTJgwgd///vdUVlby7LPPctBBB/GPf/yDX/3qV9TU1JCdnc1jjz3GwIEDG/R7zjnncMEFF3DyyScDkWTwlFNO4ayzzmrbORXpBIFQFbXWp347c8ABAFTt3ByvkERERKQL0AhWGzz33HPMmjWLUaNGkZ2dzZIlS+rLli5dyu9//3u++OILIDKt73vf+x4rVqwgIyODP/7xj1RVVXHxxRezYMECPv74Y4LBIH/605/q28jOzmbp0qUNkiuAa6+9lmOPPZaTTjqJO++8k127dpGYmMitt97KnDlzWLZsGXPmzOG2227j2GOP5f333+eNN97ghhtuoLy8HID333+fp556iuXLl/P3v/+dgoKCNj/vO+64gz/84Q8sW7aMt99+m5SUFJ5++mmWLVvGRx99xKuvvsoNN9zA5s2RD5QfffQR8+bNY8WKFTzyyCN88cUXvP/++1x22WXcfffdAMyYMYPFixfz4Ycfcs4553D77bfv1e+cOXN44oknAKipqeG1116rT7ZEugp/qJKgf88IVuaAYQCESjbFKyQRERHpArrXCFYrI00dZf78+fUjOeeccw7z58/n8MMPB2Dq1KmMGDGivu6wYcOYPn06AOeffz533XUX//Vf/8WIESMYNWoUABdddBF/+MMfuOaaa4BIQtGUSy65hBNPPJGXX36Z5557jnvvvZePPvpor3r//ve/ef7557njjjsAqKqqYt26dQD813/9F9nZ2QB885vfZNGiRUyePLlNz3v69On86Ec/4rzzzuOb3/wmubm5LFq0iHPPPRe/38/AgQM56qij+OCDD8jIyGDKlCkMHjwYgIMOOogTTjgBiIy8vfHGGwBs2LCBOXPmsHnzZmpqahq8dnVOOukkrr76aqqrq3n55Zf5+te/TkpKSptiFuksCeFqahP2/Lv0JWdQQTK+sq1xjEpERETircNHsMxslpmtNLNVZnZTR/cXazt27OD111/nsssuIy8vj9/85jc88cQTOOcASEtLa1DfzFrcbkrjNqINGTKESy+9lOeee45AIMAnn3yyVx3nHE899RTLli1j2bJlrFu3jjFjxux3PHVuuukm/vKXv1BZWcn06dNbXOADICkpqf6xz+er3/b5fPXXqP3gBz/gqquu4uOPP+bee++lqqpqr3aSk5M5+uij+de//sWCBQuaTUBF4ikxXEkoagQLM3b6+5FUqQRLRESkN+vQBMvM/MAfgJOAscC5Zja2I/uMtSeffJILLriAtWvXUlhYyPr16xkxYgRvv/12k/XXrVvHu+++C8Df/vY3ZsyYwejRoyksLGTVqlUAPPLIIxx11FGt9v3yyy9TW1sLwJYtWyguLmbo0KGkp6eze/fu+nonnngid999d33S9+GHH9aXvfLKK+zYsaP+Oqi60bW2WL16NRMmTODHP/4xU6ZM4fPPP2fmzJksWLCAUChEUVERb731FlOnTm1zmyUlJQwdGlkM4KGHHmq23pw5c/jrX//K22+/zaxZs9rcvkhnSXLVhAMNR1bLE/qTVlMUp4hERESkK+joEaypwCrn3BrnXA3wODC7g/uMqfnz53PGGWc02HfmmWc2u5rg6NGj+cMf/sCYMWPYuXMnV155JcnJyfz1r3/lW9/6FhMmTMDn83HFFVe02ve///1vxo8fz6GHHsqJJ57Ib37zGwYNGsQxxxzDZ599xsSJE1mwYAE///nPqa2tJT8/n3HjxvHzn/+8vo2pU6dy5plnkp+fz5lnnlk/PfDcc8/lyCOPZOXKleTm5nL//fcDMG/ePObNmwfA7373O8aPH09+fj4JCQmcdNJJnHHGGeTn53PooYdy7LHHcvvttzNo0KA2v55z587lW9/6Focffjj9+/ev319QUMBll11Wv33CCSfw5ptvcvzxx5OYmNjm9kU6hXMkU40LpDbYXZ08gMyQ7oMlIiLSm1ndqEeHNG52FjDLOXeZt30BcIRz7qqoOpcDlwMccMABh69d2/AeMitWrKif7ib75sEHH6SgoIB77rkn3qHEjf79SIeoqYD/GcxLg67gpCv+r373sr98j9Hr/479dDPJid3rElcRERFpOzNb4pxrcmGDuK8i6Jy7zzk32Tk3OScnJ97hiIi0rrYSAEtoOIJlGUNIsRq2bdc0QRERkd6qoxOsjcCwqO1cb590gosvvrhXj16JdBRXG7kNgiU2TLCS+g4BYNdW3WxYRESkt+roBOsDYKSZjTCzROAc4Pl9baQjpzFKz6V/N9JRaiqbTrDS+kduDF6+XQmWiIhIb9WhCZZzLghcBfwLWAE84Zz7dF/aSE5Opri4WB+WZZ845yguLiY5Obn1yiL7qKqiDAB/owQrK+cAAKp3aqBeRESkt+rwq7Cdcy8CL+7v8bm5uWzYsIGiIl3TIPsmOTmZ3NzceIchPVB1ZeQ2Cf6UPg3298mJ3IIgXLq502MSERGRrqHLL3OVkJDAiBEj4h2GiEi9uimCgaRGi1wkpVNOCv5y3WxYRESkt4r7KoIiIt1NbVVkimBictpeZbv82SRWbuvskERERKSLUIIlIrKPaqsiI1gJyel7lZUl5tCnZntnhyQiIiJdhBIsEZF9FKqOJFhJqX32KqtOGUBWqLizQxIREZEuQgmWiMg+ClVXAJCcuvcUwXDaQAawk7Kq2s4OS0RERLoAJVgiIvsoXD+CtfcUQX/mYJKslqKiLZ0dloiIiHQBSrBERPaRq62g1vlJS0nZqyypb2Sp9pKt6zo7LBEREekClGCJiOwjV1NJJYmkJPr3KuvTP3LvtfJi3WxYRESkN1KCJSKyj6y2nCqSSPTv/Sc0c+ABANTs3NTZYYmIiEgXoARLRGQfWW0lVZaEme1VltYvMkUwXLq5s8MSERGRLkAJlojIPrJgJTWW3HRhYiq7ScNfsbVzgxIREZEuQQmWiMg+8oWqqPUlNVteEsgmuXJbJ0YkIiIiXYUSLBGRfZQQqqDGt/cKgnXKE3NIry3qxIhERESkq1CCJSKyjxJDFdT4977JcJ2q1MH0DxXhnOvEqERERKQraFeCZWa/MbPPzWy5mT1jZllRZT8xs1VmttLMTmx3pCIiXURyuJzaQPMJVih9KDnsorSsohOjEhERka6gvSNYrwDjnXP5wBfATwDMbCxwDjAOmAX80cz2vmGMiEg3lBKuIJTQp9lyf99h+MxRvKWw84ISERGRLqFdCZZz7t/OuaC3uRjI9R7PBh53zlU7574CVgFT29OXiEiX4BypVBJuIcFK7j8cgNItX3VWVCIiItJFxPIarEuBl7zHQ4H1UWUbvH17MbPLzazAzAqKinRRuIh0ccFqEggRTkpvtkrW4AMBqCha21lRiYiISBfRaoJlZq+a2SdN/MyOqvNTIAg8tq8BOOfuc85Nds5NzsnJ2dfDRUQ6VW1lCQCW2PwIVv8hkQQrtFMJloiISG8TaK2Cc+74lsrN7GLgFOA4t2fJrI3AsKhqud4+EZFurXL3ThIAS85oto4/KZWdZBDYrT97IiIivU17VxGcBdwInOaci14u63ngHDNLMrMRwEjg/fb0JSLSFVSVlwLgS25+iiDAjoSBpFRs7oyQREREpAtpdQSrFfcAScArZgaw2Dl3hXPuUzN7AviMyNTB7zvnQu3sS0Qk7qrKdgHgT2l+BAugPHkQmWVa5EJERKS3aVeC5Zw7uIWy24Db2tO+iEhXU5dgpfTJarFebZ+hDCh9n2AwRCCgu1SIiIj0FrFcRVBEpMerLo8scpHaJ7PFepaZS5pVs2371s4IS0RERLoIJVgiIvsgWFYMQFpWy6ue1t0La8fGNR0ek4iIiHQdSrBERPaBq9hB2BnpfVtOsDIGjQBg91YlWCIiIr2JEiwRkX1glTsoJZX0lOQW6/UfGrlEtaZ4XWeEJSIiIl2EEiwRkX0QqNpBiWXg81mL9ZIzB1JNApRu6KTIREREpCtQgiUisg8Sanax29fyEu0A+HwU+3JILtfNhkVERHoTJVgiIvsguXYXlYGWVxCsU5I0mIwq3WxYRESkN1GCJSKyD9KCJdQm9W1T3aq0oeSEtuGc6+CoREREpKtQgiUi0lbO0ceVEk5uW4IVzhxGfythx65dHRuXiIiIdBlKsERE2qi2Yhcp1BBOG9im+gnZeQBs37CqA6MSERGRrkQJlohIG5VsKQTAlzW0TfX7DDoQgNItuheWiIhIb6EES0SkjUq2FgKQ2O+ANtXvnzsKgKqirzoqJBEREelilGCJiLRReVHkpsFZg/LaVD+jfy61+GGXbjYsIiLSW8QkwTKz68zMmVl/b9vM7C4zW2Vmy83ssFj0IyIST7U71xN2xsAhw9t2gM/HNt8Aksp0s2EREZHeot0JlpkNA04Aor+iPQkY6f1cDvypvf2IiMSbr3QDRZZFZp/UNh9TkjSEdN0LS0REpNeIxQjWncCNQPSNXmYDD7uIxUCWmQ2OQV8iInGTXlbIlkDuPh1TlZZLTmir7oUlIiLSS7QrwTKz2cBG59xHjYqGAuujtjd4+5pq43IzKzCzgqKiovaEIyLScZxjQM16yvrk7dthWZF7YRXrXlgiIiK9QqC1Cmb2KjCoiaKfAjcTmR6435xz9wH3AUyePFlf8YpIl1S2cwsZlOGyR+3TcYnZI2AVFG1YRf++UzooOhEREekqWk2wnHPHN7XfzCYAI4CPzAwgF1hqZlOBjcCwqOq53j4RkW5p45fLGA2kDRmzT8dlDPbuhbVpNUxQgiUiItLT7fcUQefcx865Ac65POdcHpFpgIc557YAzwMXeqsJTgNKnHO6yltEuq3yNR8AkDP6iH06rn/uSACqtxfGOiQRERHpglodwdpPLwLfAFYBFcAlHdSPiEinsM0fsokchg4d1nrlKGn9hlJDAHat7aDIREREpCuJWYLljWLVPXbA92PVtohIXDnH4N0fszFtDEMiU6LbzuejyDeApHLdC0tERKQ3iMmNhkVEerIta1cwyBVRPWzGfh1fmjyYTN0LS0REpFdQgiUi0oqNBS8AkJO/f4um6l5YIiIivYcSLBGRViSvepF1NoSDDzl0v453WQeQbaUU7dgR48hERESkq1GCJSLSgtKijYyuXMb6Qcdjvv37k5mUnQdA0YbVMYxMREREuiIlWCIiLfj8X/cRsDADpl+0321kDD4IgNLNq2IVloiIiHRRSrBERJoRqq1m+OpH+TRhHCPHT97vduruhVWje2GJiIj0eEqwRESasfyFexnotlM25ep2tZPSdwjVJEDJuhhFJiIiIl2VEiwRkSbUVlcy8KM/8IX/YKYc9632Nebzsd0/gOSyjbEJTkRERLosJVgiIk34cMGvGOK2UDb9Znz+9v+pLE0aTEa17oUlIiLS0ynBEhFpZOvazxm/+s8sSZ3BYceeGZM2q/rkMiC0lVBY98ISERHpyZRgiYhECdXWsPvRC6klwOA5v4tdw5l198Iqjl2bIiIi0uUE4h2AiEhXsuzhGzm8diX/Ofy3fG34yJi1m5QzAr6M3AtrUP/+MWu3u6mqrmFn0QbKizdTUVZKVXkJVlsG4TBh84P5SExMIpDWl6T0/qRm5pAzcBBJScnxDl1ERKRNlGCJiHi+WPwCk9Y9yH8yv8GRp14a07YzBh8IQOnm1TDxiJi23dXU1lSzcc2nFK35iOpNn5JSsoo+lZvIChaR7XYx2ML71F7IGVssm+2BgZQlDyGYOYxA9gjSBo8i54BDGDDogJhcJyciIhIL7U6wzOwHwPeBEPCCc+5Gb/9PgO94+3/onPtXe/sSEekou3dsoe+/rmK9bwjjvvMnzCym7fcf2jPvheXCYbauW8mGj98iuO59+u5czojaNeRZkDwg7Iytvhy2Jw5lffoRrEsfAulD8GcMJKVPJil9MvElpuELBPC5MC4cpLKqiprdOwiW76B2dzHB3VtJ2L2e1IqNjChfRv/dr+Lf6GB5JIZyl8RW/yB2JQ+jKn04vuwDSRs8kuxhhzAw9yD8gc75LtGFw1RWllFRtpvq8lKqKnZTU7mbmspygpW7CVaXEaouh5oyLFgFoRCEg4TDtVg4BKEguCAWDuInFGnUfDgs8tt8gA9ndduRET/Mh/kC4POB+cEfwHz+yGNfAPP7MZ8fMz/mD2C+SLl59cznx+cP4PMFIvv8AXx+P/66bZ8f5/Ph8OOcAxfCOQi7MLgwzjnMOZz32IXDgIP6x2HvuD11cGFwDqurt+dVZM+Gw0Vdsmg0rOcaXM4YteGav87RgOi3tllkHxiYRR6bNahrUcfuOdj2lHnH1TdrTZfvObyun6i+6/qKKjcA355g6/fV9Vdf5CM5vR8Zo2c2+7xFpHO16786ZnYMMBs41DlXbWYDvP1jgXOAccAQ4FUzG+WcC7U3YBGRWHPhMF89cCmjw6UUzX6Y4ZlZMe8jOWsw1SRgu7r/vbA2rlnBuoIXSVz3FiPKljKIUgYBFS6JwqTRLB0yh8DgCWTn5TPk4AkMTs1gcAz7D9VWs2X9lxRvWEnFli9xxV+RtLuQ7Kq1DCp/j6SttfBZpG6N87PZN4DyQCZVgUxqE7MIJfeFhFQIJGL+RCwhCedLwrlIwkMoiAuHwIWwUA1WU47VluMLVuAPVhAIVZIQqiQhXElSuJJkV02KqySZGlLNkbqPz6fW+QnhI2R+QtT9RBIrw+Ej3PC3izze8+MI7OOooPQ8nx7/MONmzI53GCJC+0ewrgR+7ZyrBnDObfP2zwYe9/Z/ZWargKnAu+3sT0Qk5j58+v9xWNk7LDr4R8w4rIO+Ba67F1b5ho5pvwNVVZTx5eJ/Uv3ZiwwpXsxQt5WhwDb68WXGkYRypzLgkOnkjTmcsQmJHR6PPyGJQQeOZ9CB4/cqC4dCbNtcyPZ1Kyjf/CWh4jUEdm8gqXonaTVFpFWuJmPXbpKpwW9tW9Gx3CVRZclUWTLVlkyNL4UafwoVCX0J+VMJJaTiElIjSVtiH3xJafiT0vAl9yGQ1IfE1DQSU9JJSskgOS2dhJQ+JCSnkZCQhN/vJ8GMhPa+KM4RDoUIhYOEgkFCwVqCoRAuFCQYrI2UhWoJh8KEgjWEQyHCXl0XChJ2IcLBIOFQkHAohAsHCYcj24SCGGF8Lgw+H4ZhPgN89cMuZr6o3z5vpMWH+XxERnMs8tgbfYuMwkT2OW+9rT0jQEbDAWRr8NgaDgdFFUWP9jScMuqiR7xc1L66zXCYhsWR+g5vQMzVHYG33+01aBbpwzu67ndUm3Xt7Gnf1TVL9Ihcfd3oGKLH7qLLvFHAcYuuIvn1W6g6/HiSU9IQkfhqb4I1CphpZrcBVcD1zrkPgKHA4qh6G7x9IiJdysYvPmTsx//HsuTJHPntn3VoX6XJQ8io7B73wirbsYWVb/8dW/kSh5QXMMGqKXMprEw9jLXDL2HY4Scx9KB8Bvi61rVPPr+fAbkHMSD3oBbrhcOOqtoaqisrqamtIlxbjd8fwB9IwOcPEAhEHgcCCaQFAnT5j6xmkWmWBOiEHFe6mE98/8P4Ny9n8QPXMO37f453OCK9XqsJlpm9Cgxqouin3vH9gGnAFOAJMztwXwIws8uBywEOOOCAfTlURKRdamuqqHriO1RYMoMufAC/39+h/dWkDSW37HOCoTCBLrgow+6SHax883GSVjzNmIolHG5htpLNJzknkzT+FEZP+waHJ6fEO8yY8PmM5KQkkpOS4h2KSLuNP2YO7614hWnbnuCDl49iyqzz4x2SSK/WaoLlnDu+uTIzuxJ42kXGwt83szDQH9gIDIuqmuvta6r9+4D7ACZPnqw7cIpIp1ny0I+ZFlxNwbR7mDx0eMd3mDWc7G272bi9mKEDczq+vzZwwWq+eOdZygvmM6b0HSZbDZvJYfHg88ie8i1GT5zJwC6YDIpIQ5MuvYvVd3zI2HevY9XgERx86PR4hyTSa7V3iuCzwDHAG2Y2CkgEtgPPA38zs98SWeRiJPB+O/sSEYmZVUteZcqGh3iv7zc4YtYFndJnUk4efAFFG1bFPcEq3byKNS//geHrnmK0K2EH6XyccwoZU7/NqMOPY7CSKpFuJTE5lczvPMXue48j85nzKEx7ibyDx8Q7LJFeqb0J1gPAA2b2CVADXOSNZn1qZk8QWccpCHxfKwiKSFdRW1uLvXA9W60/h1z8h07rN3PwwQDs3rIaOLLT+q3jQkFW/edpahffzyFl7zEBWJJ0BDUTL+TwY85kaopu5ivSnfUfnMe6c54g6/FTcY9+g7XnPMXwQw6Ld1givU67EiznXA3Q5ERf59xtwG3taT/ePvzXQ9R88Tr4AjjvJ3KvkQTwJ4AvELnfiD8hcl8Rf4J3D5EELJCI+QL4Agn4/AmYP2HPCkdme1Y4Mttzv52ox/V3zdhzYwzvtzVYT6nBOkXN3ROEPSsaNdrZoFbkfiV7VWrhXiNRdRq126iF+n11JdZwASYvvsYxNlqlqbm+m4nPNV4yKiq+vV+Oxq9h4+e0p7DpOBru2PM8m38t6jR9t6W97/+yd2SNz3GTDTURY5O7Wm5jH7kmetjXtpur31TbzcfRzP5NH3F0+CuWHXEnE7P67Vtg7ZCdG7kXVm1xYaf1CVBatJ5VL/+R3DVPMNJtZ5vry5uDLib3+CuYOvKQTo1FRDrWAYccTuFZz9DnybPJfPxUPjnuj4yfqeXbIfI5p6a6nKqKCiqrKglWVxKsqSJYU0WotoqQ9ztcW024topwsIZQsBbCwchnCu/2DZHf4T2/Xbh+v7mwd7+3uhUg60R/lots1933LPI/X1S1hvdla3wPtrrPg3XtWRNl1qgdx556zlvF09XfjC26PSIrfUbfAS76Jm91K4fWfzKJ9OXq+245xsjtJ8yLZ8+5seYfAFCZlsu4w6aTldo9VvHpnLsvdlNVmz5jdPHr+AkRcCEC3t1JdL8Rke7vs8R8Dj3x4k7tMzFzENUk4ttV2OF9uXCI1e+9SMW7f2ZMySIOsxAfJkziiwk/5bD/OpdjUnrGYhUisre88UewKfUlyh89m/GvXch7n36bCef/mtQ+mfEObb/VhsKUVFSze9d2KnZtpXrXVoK7iwiVFWHl26FqF1Zdhi9YTkKogoRgBYnhSpLDFSS5KlKoJNVVkWSOJKD7vhK906PB40gbPomJ3STBsiZHNuJk8uTJrqCgIN5htCocChEMBgkGq6mtrSVUW0M4WEswWEOoNvI7HAwS8r75CAdrcaEabxAkejQnvOdr+gajKuGofXvK67+7d67R/T72/D8Nvg1oNDbS4I7wTX0z0eiYZu5DYnv1TcNvKhrVqavnGn95Q+NjvG9AGu5t2FaT33ZYo7ibGhOyhkWNj4lqsPl2o9ppUKdxVxZ9QP1zajm8Jtpp8G1Qg14bve6ttE0T/xZaqb8vmu+z7fWbi28fd7dQf++CjKFjCCR2/gpyX952BFUkMOGnizqk/d07t7Ly5XsZ9OV8csOb2OnSWT7gVAYfcwWjxh7aIX2KSNdUUV7K8vt/wLQdz7KdLNaM/R75J19Bclr804vaUJji3VXsLC6ibMdmKku2UlOyjeDuSMLkryomsWYnqbU7SA+V0JdS+lHa7Jfc5S6ZCkuhylKo9qVQ40+l1p9CMJBGKJBKOJBGODENS0zDElLwJyTjS0iCQOS3PyEJX0Iy/sRkfAnJBBKSCSQmkZCQiN/vx/wBfOYDvx+fL/ITmb3kw+cP4PP58PkCex6bN05jtudznwt7v717qnn3X4tsO1zYRZVHtp13XKS+a/DZsG72j3PRP2FvApCrb8cafJ6sv6NbZF/0DdrqZxN5n0nrP69GtxH1WdRrw6LuAUddnF47FvW8qLv7XP3QniMyR6fRfeMazV4yjFBSX4blHUxKYseu9rsvzGyJc25yk2VKsEREOk/Bn77LmC3P4fvJBlKSY/RNnHOsXvo6pW/PY+zON0iyWj4JjGXX2As49IQLSO+THpt+RKRbWvH+K/DKLYyp/YwyUvg06xiSxn6DoZP+i5ycpu7Es39CoRA7irexa/smyndspWLXVoKl2wiXFWEVxSRWF5Ncs5O00C76uhL6srvZhKnM0ijzZ1GZ0JeapH7UJmcTTsnG0vrj65NDQsYAkrMGkNZ3MOn9BpKYpGtIpXO1lGBpiqCISCdKGTGFtK1PsHz5u+RPPapdbZWXFPP5v/5Mv5XzOShUSJlLoSD7FLKPuoJx+UfsNZIsIr3TmKn/hZt8HJ+8/ypV7/6FsTvfIP0/L8J/YDM5bE09mNrUQbg+A7A+A/AlpBBISCBsCYQcWLAKgpWEqisJVpdjlTvxV+8isWYXycESUoKlpIV3k+VKybEwTa2RuptUdvv7UpmQRU3acLak9Gdrn2wCfXJIzBxIStZA0rMHkdZ3EJbanz6BRPp0+islEhsawRIR6USlRRvpc8843jvguxz5nd/s8/EuHOaLJa9R9s5fGLfzNZKtlpX+gyke/W3GnXgpmZl9OyBqEelJqqqq+OrDNyhb/S7+rR+TVb6avqEd9LXdbTq+2iVQYumU+TKoCGRQHcgklJyFS+2PL60/iZkDSMkaSJ9+g8jqP4TUrIEQ6B7Xzoi0lUawRES6iIycoXyeOIbBG1/EhX+N+do2n3zHpjV8+fpDDFzzFKPD6ylzKXzY7xtkzriMMYfN1GiViLRZcnIyY448CY48qcH+yspKSoq3UFNdSXV1FX4XJGAOS0zFn5BCcmoa6ekZJCWlMsCMAXGKX6SrU4IlItLJSsdfyCEf3sRHrzzS4kqGO4o28+XCv5H+5bMcUv0xR5hjZWA074/7JWNPuJgj07M6LWYR6flSUlJIyR0R7zBEuj0lWCIineywky5l1Uf3Mvzdn7IqI5uDjzgZfD5qykvY8PkHFH/8Clmb3uTA6s85whzrbCj/OeBycmeez+hR+fEOX0RERFqga7BEROKg8IuPCfztLHLZQgXJVJNIX0oBCDtjpX8kO4Z8ncFTz2TE+GmYzxfniEVERKSOrsESEeli8kZNoOTa93nrXw/B5mX4CRJKG0RSbj55hx7NmMG58Q5RRERE9oMSLBGROMnMzOTrZ/8w3mGIiIhIDGnOiYiIiIiISIwowRIREREREYkRJVgiIiIiIiIx0qVWETSzImBtvONopD+wPd5BSKfR+e49dK57D53r3kXnu/fQue49uuK5Hu6cy2mqoEslWF2RmRU0twSj9Dw6372HznXvoXPdu+h89x46171HdzvXmiIoIiIiIiISI0qwREREREREYkQJVuvui3cA0ql0vnsPneveQ+e6d9H57j10rnuPbnWudQ2WiIiIiIhIjGgES0REREREJEaUYImIiIiIiMSIEqwWmNksM1tpZqvM7KZ4xyOxY2bDzOwNM/vMzD41s6u9/f3M7BUz+9L73TfesUpsmJnfzD40s3962yPM7D3v/b3AzBLjHaPEhpllmdmTZva5ma0wsyP13u6ZzOxa72/4J2Y238yS9d7uOczsATPbZmafRO1r8r1sEXd55325mR0Wv8hlXzVzrn/j/R1fbmbPmFlWVNlPvHO90sxOjEvQLVCC1Qwz8wN/AE4CxgLnmtnY+EYlMRQErnPOjQWmAd/3zu9NwGvOuZHAa9629AxXAyuitv8PuNM5dzCwE/hOXKKSjvB74GXn3CHAoUTOu97bPYyZDQV+CEx2zo0H/MA56L3dkzwIzGq0r7n38knASO/ncuBPnRSjxMaD7H2uXwHGO+fygS+AnwB4n9fOAcZ5x/zR+9zeZSjBat5UYJVzbo1zrgZ4HJgd55gkRpxzm51zS73Hu4l8ABtK5Bw/5FV7CDg9LgFKTJlZLnAy8Bdv24BjgSe9KjrXPYSZZQJfB+4HcM7VOOd2ofd2TxUAUswsAKQCm9F7u8dwzr0F7Gi0u7n38mzgYRexGMgys8GdEqi0W1Pn2jn3b+dc0NtcDOR6j2cDjzvnqp1zXwGriHxu7zKUYDVvKLA+anuDt096GDPLAyYB7wEDnXObvaItwMB4xSUx9TvgRiDsbWcDu6L+cOv93XOMAIqAv3pTQv9iZmnovd3jOOc2AncA64gkViXAEvTe7umaey/rc1vPdinwkve4y59rJVjSq5lZH+Ap4BrnXGl0mYvcw0D3MejmzOwUYJtzbkm8Y5FOEQAOA/7knJsElNNoOqDe2z2Dd+3NbCJJ9RAgjb2nGEkPpvdy72BmPyVyacdj8Y6lrZRgNW8jMCxqO9fbJz2EmSUQSa4ec8497e3eWjelwPu9LV7xScxMB04zs0IiU32PJXKNTpY3rQj0/u5JNgAbnHPvedtPEkm49N7ueY4HvnLOFTnnaoGnibzf9d7u2Zp7L+tzWw9kZhcDpwDnuT037+3y51oJVvM+AEZ6qxElErmY7vk4xyQx4l2Dcz+wwjn326ii54GLvMcXAc91dmwSW865nzjncp1zeUTex687584D3gDO8qrpXPcQzrktwHozG+3tOg74DL23e6J1wDQzS/X+pteda723e7bm3svPAxd6qwlOA0qiphJKN2Rms4hM7z/NOVcRVfQ8cI6ZJZnZCCILm7wfjxibY3uSQWnMzL5B5NoNP/CAc+62+EYksWJmM4C3gY/Zc13OzUSuw3oCOABYC5ztnGt8ga10U2Z2NHC9c+4UMzuQyIhWP+BD4HznXHUcw5MYMbOJRBY0SQTWAJcQ+UJR7+0exsx+CcwhMn3oQ+AyItdi6L3dA5jZfOBooD+wFfgF8CxNvJe9JPseItNEK4BLnHMFcQhb9kMz5/onQBJQ7FVb7Jy7wqv/UyLXZQWJXObxUuM240kJloiIiIiISIxoiqCIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYh0MWaWZ2bOzALxjkV6BzP71MyOjnccIiI9gRIsERHp9sxsnpmVeT81ZlYbtf1SvOPr6pxz45xzC2PZppmdbWb/MbMKM4tp2yIiXZk55+Idg4hIj2JmAedcsB3H5wFfAQntaae3MrO5wMHOufObKGvXuelM3SnWppjZ8UA/4BDgWOfc0fGNSESkc2gES0QkBsys0Mx+bGbLgXIzC5jZNO8b/F1m9lH0FCwzW2hm/2tm75tZqZk9Z2b9mmn7EjNbYWa7zWyNmf13o/LZZrbMa2e1mc3y9mea2f1mttnMNprZr8zM38rzOMjMXjezYjPbbmaPmVlWVNkOMzvM2x5iZkV1z8vMTvOmmu3ynt+YRq/P9Wa23MxKzGyBmSXv+yu975o5N87MDo6q86CZ/Spq+xTvNd3lncP8NvZ1tJltMLObvdev0MzOiyo/2cw+9M7Vei8ZrCurmxr6HTNbB7zu7f+7mW3xXre3zGxco7j/aGYveaN175jZIDP7nZntNLPPzWxSG1+j49vyHNvKOfeqc+4JYFMs2xUR6eqUYImIxM65wMlAFjAQeAH4FZFv8a8HnjKznKj6FwKXAoOBIHBXM+1uA04BMoBLgDujkpypwMPADV6/XwcKveMe9No9GJgEnABc1spzMOB/gSHAGGAYMBfAObca+DHwqJmlAn8FHnLOLTSzUcB84BogB3gR+IeZJUa1fTYwCxgB5AMXNxmA2QwvsWnuZ0Yrz6Ep9eemtVEhLyF5APhvIBu4F3jezJLa2NcgoD8wFLgIuM/MRntl5UTOe5YXz5Vmdnqj448i8tqf6G2/BIwEBgBLgcca1T8b+JnXZzXwrlevP/Ak8Ns2xt0kM7uppfPRnrZFRHoiJVgiIrFzl3NuvXOuEjgfeNE596JzLuycewUoAL4RVf8R59wnzrly4OfA2U2NMDnnXnDOrXYRbwL/BmZ6xd8BHnDOveL1s9E597mZDfT6usY5V+6c2wbcCZzT0hNwzq3y2qp2zhUR+XB+VFT5n4FVwHtEEsOfekVzgBe8Y2uBO4AU4GuNXp9NzrkdwD+Aic3EsMg5l9XCz6KWnkMzos9Nay4H7nXOveecCznnHiKSuEzbh/5+7r2GbxJJtM8GcM4tdM597J2r5USS0qMaHTvXO2eV3jEPOOd2O+eqiSS7h5pZZlT9Z5xzS5xzVcAzQJVz7mHnXAhYQCS53m/OuV+3dD7a07aISE+kBEtEJHbWRz0eDnyr0Tf9M4gkJU3VXwskEBl1aMDMTjKzxd70vF1EEqe6esOA1U3EMtxrb3NU//cSGQVplpkNNLPHvSmFpcCjTcT0Z2A8cLf3oR8iI15r6yo458Le8xsaddyWqMcVQJ+WYomx9a1XqTccuK7RuRtG5Dm2xU4vaa6ztu5YMzvCzN7wplaWAFew9+tbH6uZ+c3s1xaZ+lnKntHJ6GO2Rj2ubGK7M19nEZFeTwmWiEjsRK8atJ7ICFX0t/1pzrlfR9UZFvX4AKAW2B7doDct7SkiI0IDvRGDF4lM5avr56AmYllPZNSlf1T/Gc65cU3UjfY/3vOY4JzLIDISV9cXZtYH+B1wPzDX9lw3tolIYlJXz7znt7GV/vZiZjNtzwqATf3MbL2VvTRe0akCSI3aHhT1eD1wW6Nzl+qcm9/GvvqaWVrU9gHsuQ7pb8DzwDDnXCYwj6jXt4lYvw3MBo4HMoE8b3/jYzqMdz1Zs+ejs+IQEekulGCJiHSMR4FTzexEbxQi2VsAITeqzvlmNta7nulW4ElvWle0RCAJKAKCZnYSkWup6twPXGJmx5mZz8yGmtkhzrnNRKYS/j8zy/DKDjKzxtPRGksHyoASMxtK5NquaL8HCpxzlxGZ+jbP2/8EcLIXRwJwHZEE7z+tvVCNOefeds71aeHn7X1tswnLgG9752YWDafp/Rm4whttMjNLs8jiFOlQv7DEg620/0szS/SSwVOAv3v704Edzrkq7/q5b7fSTjqR17GYSEL4P/vwHGPCOfc/LZ2P5o6r+3cPBACf9x5I6LzIRUTiQwmWiEgHcM6tJzLycDOR5Gg9kWQl+u/uI0QWotgCJAM/bKKd3d7+J4CdRD6QPx9V/j7ewhdACfAme0aSLiSSoH3mHfskDacoNuWXwGFeWy8AT9cVmNlsIotUXOnt+hFwmJmd55xbSWS0624io3CnAqc652pa6S9eriYS4y7gPODZugLnXAHwXeAeIq/bKhouyDEMeKeFtrd4x20isiDFFc65z72y7wG3mtlu4BYi57UlDxOZYriRyHlc3NoT60IuIDJF8U9ErhmsJJK8ioj0aLoPlohIHFjkxquPOuf+Eu9YpO28VRE/AvK9xTwalx9N5LzmNi4TEZHeIRDvAERERLoLb0RuTKsVRUSk19IUQRGRXsbM5jWzYMG81o+W7sjMDmhhoYoD4h2fiEhPoimCIiIiIiIiMaIRLBERERERkRjpUtdg9e/f3+Xl5cU7DBERERERkWYtWbJku3Mup6myLpVg5eXlUVBQEO8wREREREREmmVma5sr0xRBERERERGRGFGCJSIiIiIiEiNKsEREWuGcIxgKxzsMERER6Qa61DVYTamtrWXDhg1UVVXFOxTpZpKTk8nNzSUhISHeoUg3d9fjz9NnzYuce/09pCbp35OIiIg0r8snWBs2bCA9PZ28vDzMLN7hSDfhnKO4uJgNGzYwYsSIeIcj3ZgL1XL1ygsBeKvgQr4+fXqcIxIREZGurMtPEayqqiI7O1vJlewTMyM7O1sjn9Ju2zcX1j8uX/1O/AIRERGRbqHLJ1iAkivZL/p3I7GwfcuG+sep25bEMRIRERHpDrpFgiUiEi/Vu7YAUEkSfSvXxTkaERER6eqUYLWBmXHdddfVb99xxx3MnTs3fgFFWbx4MUcccQQTJ05kzJgx9XEtXLiQ//znP/vd7tq1aznssMOYOHEi48aNY968eTGKWKR7CZZGEqy1KeMYGNxMOOziHJGIiIh0ZV1+kYuuICkpiaeffpqf/OQn9O/fP2btOudwzuHz7X+ee9FFF/HEE09w6KGHEgqFWLlyJRBJsPr06cPXvva1/Wp38ODBvPvuuyQlJVFWVsb48eM57bTTGDJkyH7HKtIdud3bACgfMIlD1i5l886dDM7uF+eoREREpKvSCFYbBAIBLr/8cu688869yoqKijjzzDOZMmUKU6ZM4Z13IhfBz507lzvuuKO+3vjx4yksLKSwsJDRo0dz4YUXMn78eNavX88NN9zA+PHjmTBhAgsWLAAiCdLRRx/NWWedxSGHHMJ5552Hc3t/c75t2zYGDx4MgN/vZ+zYsRQWFjJv3jzuvPNOJk6cyNtvv91inBdccAFHHnkkI0eO5M9//jMAiYmJJCUlAVBdXU043PQ9gO666y7Gjh1Lfn4+55xzDgA7duzg9NNPJz8/n2nTprF8+fL6vi666CJmzpzJ8OHDefrpp7nxxhuZMGECs2bNora2FoBbb72VKVOmMH78eC6//PK9nnc4HCYvL49du3bV7xs5ciRbt25t6TSK7BdfRRGlLpW0IWMB2Lb2yzhHJCIiIl1Zu0ewzGwY8DAwEHDAfc6535tZP2ABkAcUAmc753a2p69f/uNTPttU2r6AGxk7JINfnDqu1Xrf//73yc/P58Ybb2yw/+qrr+baa69lxowZrFu3jhNPPJEVK1a02NaXX37JQw89xLRp03jqqadYtmwZH330Edu3b2fKlCl8/etfB+DDDz/k008/ZciQIUyfPp133nmHGTNmNGjr2muvZfTo0Rx99NHMmjWLiy66iLy8PK644gr69OnD9ddfD8C3v/3tZuNcvnw5ixcvpry8nEmTJnHyySczZMgQ1q9fz8knn8yqVav4zW9+0+To1a9//Wu++uorkpKS6hOeX/ziF0yaNIlnn32W119/nQsvvJBly5YBsHr1at544w0+++wzjjzySJ566iluv/12zjjjDF544QVOP/10rrrqKm655RYALrjgAv75z39y6qmn1vfp8/mYPXs2zzzzDJdccgnvvfcew4cPZ+DAga2eR5F9lVBVzE7LpM+ggwCo2LYaOCK+QYmIiEiXFYsRrCBwnXNuLDAN+L6ZjQVuAl5zzo0EXvO2u62MjAwuvPBC7rrrrgb7X331Va666iomTpzIaaedRmlpKWVlZS22NXz4cKZNmwbAokWLOPfcc/H7/QwcOJCjjjqKDz74AICpU6eSm5uLz+dj4sSJFBYW7tXWLbfcQkFBASeccAJ/+9vfmDVrVpN9thTn7NmzSUlJoX///hxzzDG8//77AAwbNozly5ezatUqHnrooSZHiPLz8znvvPN49NFHCQQC9c/pggsuAODYY4+luLiY0tJIYnzSSSeRkJDAhAkTCIVC9fFOmDCh/vm98cYbHHHEEUyYMIHXX3+dTz/9dK9+58yZUz/a9/jjjzNnzpwWX3OR/ZVQu5sKXx/6Do7cT61m56Y4RyQiIiJdWbtHsJxzm4HN3uPdZrYCGArMBo72qj0ELAR+3J6+2jLS1JGuueYaDjvsMC655JL6feFwmMWLF5OcnNygbiAQaDCtLvp+TGlpaW3qr26KHkSm/wWDwSbrHXTQQVx55ZV897vfJScnh+Li4r3qNBcn7L2ceePtIUOGMH78eN5++23OOuusBmUvvPACb731Fv/4xz+47bbb+Pjjj9v0nHw+HwkJCfV9+Xw+gsEgVVVVfO9736OgoIBhw4Yxd+7cJu9ldeSRR7Jq1SqKiop49tln+dnPftZivyL7KxCupMKXTFr2UABcqRIsERERaV5Mr8EyszxgEvAeMNBLvgC2EJlC2NQxl5tZgZkVFBUVxTKcmOvXrx9nn302999/f/2+E044gbvvvrt+u24qXF5eHkuXLgVg6dKlfPXVV022OXPmTBYsWEAoFKKoqIi33nqLqVOntjmmF154of4apS+//BK/309WVhbp6ens3r271TgBnnvuOaqqqiguLmbhwoVMmTKFDRs2UFlZCcDOnTtZtGgRo0ePbtB3OBxm/fr1HHPMMfzf//0fJSUllJWVMXPmTB577DEgci1Z//79ycjIaNPzqUum+vfvT1lZGU8++WST9cyMM844gx/96EeMGTOG7OzsNrUvsq8SQlXU+pLBn8AOyyRQviXeIYmIiEgXFrMEy8z6AE8B1zjnGlwo5SIZQJNrGzvn7nPOTXbOTc7JyYlVOB3muuuuY/v27fXbd911FwUFBeTn5zN27Nj65czPPPNMduzYwbhx47jnnnsYNWpUk+2dccYZ5Ofnc+ihh3Lsscdy++23M2jQoDbH88gjjzB69GgmTpzIBRdcwGOPPYbf7+fUU0/lmWeeqV/kork4ITLN75hjjmHatGn8/Oc/Z8iQIaxYseL/b+/O4+ss6/z/vz5ny8meNEnbNOmS0p2mpdBNSoGyOzpWASmOKNBRfq6MfEcdcUFgdEZlvn6/jqiMCtYFC4gOdr4qgixqlRZLF1roQunepm2afT/b9fvjnJQkTZq2OcnJ8n4+Hnmcc1/3dV/X5+Tund6fc933dbNo0SLmzp3LZZddxqc//WnKy8sB+NCHPsSGDRuIRqPccsstlJeXM2/ePO68807y8vK49957eeWVV5gzZw6f+9zn+PGPf3zGnycvL48Pf/jDzJ49m2uvvZYFCxacXPfQQw91invFihX87Gc/0+WB0q/8sRbC3nQA6nxFBFuPpzgiERERGcysu5npzroRMz/w/4DfO+e+mSjbCVzunKsws2LgRefc9NO1M3/+fLdhw4ZOZdu3b2fmzJl9jlG6d++993aaDGO40b8f6asT901me+YCln76cV77j+vwNx1l2pc3pzosERERSSEze8U5N7+7dX0ewbL4TTQPA9vbk6uENcCtife3Ar/ua18iIgMt6FqJ+uIjWKGMMYyKVelhwyIiItKjZDxoeAnwAWCrmW1OlH0e+BrwhJn9I7AfuCkJfUmS3XvvvakOQWRQC9JK1JcRX8gaS+Hxek40NFKYm53awERERGRQSsYsgmsB62H1lX1tX0QkZSIhfERxiQTLnx+fSbD62EEKc2elMjIREREZpJI6i6CIyLASbgLABeIJVnBUKQD1xw+kLCQREREZ3JRgiYj0INYWT7DwxxOsnNETAGg5cShVIYmIiMggpwRLRKQHoZZGACwQfzh4/tiJAETq9LBhERER6Z4SrDP01FNPYWbs2LGjxzr79u1j9uzZSetz586dXH755VxwwQXMnDmTO+64A4g/JPi3v/3tObfb2trKwoULmTt3Lueffz5f/vKXkxWyyLDS1hJ/WLcncYmgP6uQED48jRWn20xERERGMCVYZ2j16tVccsklrF69utv1kUikz31Eo9FOy3feeSd33XUXmzdvZvv27Xzyk58E+p5gpaWl8fzzz7NlyxY2b97M008/zbp16/oUu8hw1D6C5UmLj2BhRo1nFP5mPWxYREREuqcE6ww0Njaydu1aHn74YR577LGT5S+++CJLly7lXe96F7NmxWcUi0QivP/972fmzJnceOONNDc3A/Dcc88xb948ysvLWblyJW1tbQBMmjSJf/mXf+HCCy/kF7/4Rad+KyoqKC0tPblcXl5OKBTinnvu4fHHH+eCCy7g8ccfp6mpiZUrV7Jw4ULmzZvHr38df+TYqlWrWL58OZdffjlTp07lvvvuA8DMyMrKAiAcDhMOh4k/zqyzX/ziF8yePZu5c+dy6aWXAvHRr9tvv53y8nLmzZvHCy+8cLKvd7/73Vx99dVMmjSJBx98kG9+85vMmzePxYsXU11dDcAPfvADFixYwNy5c7nhhhtO/n46Wrx4Ma+99trJ5csvv5yuD6AWGQjh9gQr+NaU7A3+QjJClakKSURERAa5ZDwHa+D87nNwdGty2xxbDm//2mmr/PrXv+a6665j2rRpFBQU8Morr3DRRRcBsHHjRrZt20ZZWRn79u1j586dPPzwwyxZsoSVK1fy3e9+l0984hPcdtttPPfcc0ybNo0PfvCDfO973+NTn/oUAAUFBWzcuPGUfu+66y6uuOIKLr74Yq655hpuv/128vLyuP/++9mwYQMPPvggAJ///Oe54ooreOSRR6itrWXhwoVcddVVALz88sts27aNjIwMFixYwDve8Q7mz59PNBrloosuYvfu3Xz84x9n0aJFp/R///338/vf/56SkhJqa2sB+M53voOZsXXrVnbs2ME111zDrl27ANi2bRubNm2itbWVKVOm8PWvf51NmzZx11138ZOf/IRPfepTXH/99Xz4wx8G4Itf/CIPP/zwyZG5ditWrOCJJ57gvvvuo6KigoqKCubP7/ZB2SL9KtIan+TC1z6CBbSkFZFT/2aqQhIREZFBTiNYZ2D16tXcfPPNANx8882dLhNcuHAhZWVlJ5fHjx/PkiVLALjllltYu3YtO3fupKysjGnTpgFw66238qc//enkNitWrOi239tvv53t27fz3ve+lxdffJHFixefHPnq6JlnnuFrX/saF1xwAZdffjmtra0cOBCfRvrqq6+moKCA9PR0rr/+etauXQuA1+tl8+bNHDp06GQS1tWSJUu47bbb+MEPfnDy8sW1a9dyyy23ADBjxgwmTpx4MsFatmwZ2dnZFBUVkZuby9///d8D8ZG3ffv2AfEkbOnSpZSXl/Poo492Gqlqd9NNN/Hkk08C8MQTT3DjjTd2+/sR6W/htvgIayCYcbIskjGGQldNJBpLVVgiIiIyiA2tEaxeRpr6Q3V1Nc8//zxbt27FzIhGo5gZDzzwAACZmZmd6ne91K67S++66tpGR+PGjWPlypWsXLmS2bNnd5sIOef45S9/yfTp0zuVr1+/vtd48vLyWLZsGU8//fQpE3Q89NBDrF+/nt/85jdcdNFFvPLKK6f9HGlpaSffezyek8sej+fkPWq33XYbTz31FHPnzmXVqlW8+OKLp7RTUlJCQUEBr776Ko8//jgPPfTQafsV6S/RRILl75BgkVNMztFmjtXWMKagIEWRiYiIyGClEaxePPnkk3zgAx9g//797Nu3j4MHD1JWVsaf//znbusfOHCAl156CYCf//znXHLJJUyfPp19+/axe/duAH76059y2WWX9dr3008/TTgcBuDo0aNUVVVRUlJCdnY2DQ0NJ+tde+21fPvb38Y5B8CmTZtOrnv22Weprq6mpaWFp556iiVLllBZWXnykr+WlhaeffZZZsyYcUr/b775JosWLeL++++nqKiIgwcPsnTpUh599FEAdu3axYEDB05J7E6noaGB4uJiwuHwyXa6s2LFCr7xjW9QV1fHnDlzzrh9kWSKhloACATf+hLEnzcOgJqjB1MSk4iIiAxuSrB6sXr1at7znvd0Krvhhht6nE1w+vTpfOc732HmzJnU1NTw0Y9+lGAwyI9+9CPe+973Ul5ejsfj4SMf+UivfT/zzDMnJ5m49tpreeCBBxg7dizLli3j9ddfPznJxZe+9CXC4TBz5szh/PPP50tf+tLJNhYuXMgNN9zAnDlzuOGGG5g/fz4VFRUsW7aMOXPmsGDBAq6++mre+c53AnDPPfewZs0aAD7zmc9QXl7O7Nmzufjii5k7dy4f+9jHiMVilJeXs2LFClatWtVp5Ko3//qv/8qiRYtYsmRJp6RuzZo13HPPPSeXb7zxRh577DFuuummM25bJNli4XiClZb+VoKVURCfeKZBDxsWERGRblj7qMdgMH/+fNd1trjt27czc+bMFEU0tK1atarTZBgjkf79SF9sffRuyt/4Lkf+6Qjj8uNJ1om9Wyj88aX8ee7XWfqe3r8oERERkeHHzF5xznU7C5tGsEREeuDCLbQ5H+kB/8myvNETAIjWHUlVWCIiIjKI9XuCZWbXmdlOM9ttZp/r7/7kLbfddtuIHr0S6bNwC20ESA94Txb5MvJoJYCn8VgKAxMREZHBql8TLDPzAt8B3g7MAt5nZrPOtp3BdBmjDB36dyN9FmmllQBpvg5/Ks2o9hQQaFaCJSIiIqfq7xGshcBu59we51wIeAxYfjYNBINBqqqqdLIsZ8U5R1VVFcFgMNWhyBBmkVbaCJzyeINGfyEZocoURSUiIiKDWX8/B6sE6DiX8SFgUccKZnYHcAfAhAkTTmmgtLSUQ4cOUVmpkxk5O8FgkNLS0lSHIUOYRVoJWeCU8pbgaPLqXk9BRCIiIjLYpfxBw8657wPfh/gsgl3X+/1+ysrKBjwuERFPtJWwnfoYgkjmGApr1xKORPH7vN1sKSIiIiNVf18ieBgY32G5NFEmIjLoeaNthD2nJliWXUymtXGiqioFUYmIiMhg1t8J1t+AqWZWZmYB4GZgTT/3KSKSFN5Ya7cJViB/HAC1xw8MdEgiIiIyyPVrguWciwCfAH4PbAeecM691p99iogkiy/aRrSbBCuzIH5vX+OJg6esExERkZGt3+/Bcs79Fvhtf/cjIpJsftdG1HvqTJQ5o+NXPrdV64pnERER6azfHzQsIjJU+WNtxLynjmDlJRKsaF3FQIckIiIig5wSLBGRHgRciFg3I1je9ByaSMfTeDQFUYmIiMhgpgRLRKQHQVqJ+TK6XVfjLSCt9fgARyQiIiKDnRIsEZHuxGIECeH86d2ubvQXkNmmB6CLiIhIZ0qwRES64cLN8Tf+7kewWoOjyY3qOVgiIiLSmRIsEZFuhFob428Cmd2uj2aOpcjV0BaODGBUIiIiMtgpwRIR6UZbUzzBskD3lwh6cktIszAnjh0ZyLBERERkkFOCJSLSjVBLPMHypHU/gpVWOBGA6oo9AxaTiIiIDH5KsEREutHW0gCAN5DV7fqcsWUANB3fN1AhiYiIyBCgBEtEpBvt92D5gt1PclFYcl68XvWBAYtJREREBj8lWCIi3Yi0NgHgS+t+BCuYU0QrAazu0ECGJSIiIoOcEiwRkW5E2kew0rtPsDDjhGc0aU2a5EJERETeogRLRKQb0cQIViDY/SQXAPVpY8huOzZQIYmIiMgQ0KcEy8weMLMdZvaqmf23meV1WHe3me02s51mdm2fIxURGUCxUDzBSsvI7rFOa+Y4CqPHcc4NVFgiIiIyyPV1BOtZYLZzbg6wC7gbwMxmATcD5wPXAd81M28f+xIRGTCxtmYAgpk9XCIIxHJKKbJa6huaBiosERERGeT6lGA5555xzkUSi+uA0sT75cBjzrk259xeYDewsC99iYgMJJcYwQr2dA8WEBg1AYDjR/QsLBEREYlL5j1YK4HfJd6XAAc7rDuUKDuFmd1hZhvMbENlZWUSwxEROXeurYlml0ZWMNBjnYyiSQDUH907QFGJiIjIYNdrgmVmfzCzbd38LO9Q5wtABHj0bANwzn3fOTffOTe/qKjobDcXEekXFqqnkQx83p7/TOaPmwxAy4n9AxWWiIiIDHK+3io456463Xozuw14J3Cle+tO78PA+A7VShNlIiJDgjfUQJN1/5DhdvljJgEQqz142noiIiIycvR1FsHrgM8C73LONXdYtQa42czSzKwMmAq83Je+REQGkj/SSIun5ynaATyBIFWWj69B3x+JiIhIXK8jWL14EEgDnjUzgHXOuY84514zsyeA14lfOvhx51y0j32JiAyYQKSBOm/PU7S3q/GNJqOlYgAiEhERkaGgTwmWc27KadZ9FfhqX9oXEUmVYLSRysDYXus1pReTV79rACISERGRoSCZswiKiAwb6bEmIv6ep2hvF8keT7GrpDUUHoCoREREZLBTgiUi0o0M10w00Pslgp5Rk0izMEcP7+v/oERERGTQU4IlItJVJESQELFAbq9VM8acB0DN4Tf6OyoREREZApRgiYh0EW6ujb8J5vRad1TJVACaju3px4hERERkqFCCJSLSRV3NCQACmXm91i0oiY9gxar39WNEIiIiMlQowRIR6aK+Kj7telru6F7regLpVFoB/voD/R2WiIiIDAFKsEREumiuOQZARn7v07QDVAeKyWrRw4ZFRERECZaIyCnCdUcByCoYd0b1mzNKKIzoYcMiIiKiBEtE5BTRhuMA5BUVn1H9WO5Exrhq6hqb+jMsERERGQKUYImIdGHNldS6TLIzMs6ovr+wDI85jh3QVO0iIiIjnRIsEZEufM0nqPXkYWZnVD9r7BQA6o4owRIRERnplGCJiHQRDFXR6M0/4/qFpdMAaK3c218hiYiIyBCRlATLzP7ZzJyZFSaWzcz+08x2m9mrZnZhMvoRERkIueFjNKaNOeP6OaPHE8IHNfv6LygREREZEvqcYJnZeOAaoONDYN4OTE383AF8r6/9iIgMBBcNUxg9QSi79Mw38nip9IwmrfFg/wUmIiIiQ0IyRrD+D/BZwHUoWw78xMWtA/LM7Mym4xIRSaGao/vxWQxP/sSz2q42bRw5rUf6KSoREREZKvqUYJnZcuCwc25Ll1UlQMevcg8lykREBrUTh+ITVWSMmXxW27VllTImeoxYzPVeWURERIYtX28VzOwPwNhuVn0B+DzxywPPmZndQfwyQiZMmNCXpkRE+qzp6G4ARo0776y2c/mTyK9s4HjVCUYXFfVHaCIiIjIE9JpgOeeu6q7czMqBMmBLYirjUmCjmS0EDgPjO1QvTZR11/73ge8DzJ8/X1/9ikhKxSp30uZ8jJkw/ay2SyuaDLug8uBOJVgiIiIj2DlfIuic2+qcG+2cm+Scm0T8MsALnXNHgTXABxOzCS4G6pxzFckJWUSk/6RV7+Kgp5T0YNpZbZdbHH8WVsPRN/sjLBERERkieh3BOke/Bf4O2A00A7f3Uz8iIklV2LKXA5mzz3q7ovHxZ2GFTuhZWCIiIiNZ0hKsxChW+3sHfDxZbYuIDITm+irGuuPsKZhx1tsGcwppJANP7f5+iExERESGiqQ8aFhEZDg4tO0vAAQmLjj7jc2o9I0lvelQkqMSERGRoUQJlohIQs2ul4g5o2zu0nPaviE4jlEh3W4qIiIykinBEhFJyDi6nv3e8RQUnNssgOHs8YyNHSMUjiY5MhERERkqlGCJiADhtmamtrxKRcHic27DRpWRbiGOHTmQxMhERERkKOmvWQRFRIaUvRufY5qF8U+98pzbyBgzGV6DqsO7GD+xLInRDT6VVVUc3PonGvdvwXtiBxltlQQjdUSch7A3g+r0CbjiCyi6aDlzp00m8bxEERGRYU8JlogIUL/t94Scl8nzrznnNvJLpgLQdGxPssIaNCLhMNv/9hw1255h1LGXmB7ZSZHFL4WstlyqfWNoC+YRMEdWuIEZDc+Q0fBrwju/wkuBBbRc/Gkuv+wqvB4lWiIiMrwpwRIRAUZV/Jldaecze9Soc26jsDSeYEWrhsezsEKhMK+t+x0tm3/F1OoXKKeWqDP2BaaydeIHyJy+jNKZixg1qphTfmuxGPX7NnJk7U+ZvfdJcv54Iy+uW8a4m7/FtLKJqfg4IiIiA0IJloiMeAfeeJXJsX2sn/TPfWrHm5ZJleXjqx+692C5WIxdG5+n9qWfMrXqeeZRT4sLsDNnMYdnLWfaxe/mvNzC3hvyeMiZPJ+cyfNxLfey81f/xpI3HqF21VKeveBfuerdHxwylw3GojGaQyGaW9vARfB5/Xj9QbKDfjwakRMRkS6UYInIiHfkL48xAZh06T/0ua1qfzFZLYf7HtQAO7J/N/teeITS/f/NdHeEFhdge84SDs1+D9MueQ8XZOacc9uWns/09z9A/d730br6Q1y95U5e2P8iCz/8IJmZmUn8FOcmFo1ybP92ju7ZStORnfhq95LRfJj0UDVZsVpGuXqyLExWh23Czks9QeotmyrvaJrSi4nmjMdbNIWs8XMpnTqHwtysHvsUEZHhSwmWiIx4RQd/x07fDKaXTulzW00ZJRTVbklCVP0v1NrMtud+hu/V1cxu3cQ4c2wPzOZvMz7CjCs/wIW55365ZHdyyi4k69N/5dUff4plh1ez+39vwr9iFROnX5DUfnpTU1PDm1v+TOPuv5B1fCNT2l6n2BopTqyvJYtK71hag4U0BadzOL0AApl4fQFiHi9EI3jDTbi2BrwtVeS0VjC+6W+MangGzxEHWyDkvLxhJRxLP4/W/On4x57PqLJyJp03k+yMYL9+vkgkSl1dNfXVx2isOU5L3QlCDZVEG6uguRpfWw3BSB2+SDOeWBiLhfHEIvgI4yWGw4iYjxheoubFmZeYJ42IL4OIL4OYLwMXyMQFsrBAFpaWiS+YjTeYiT+YjT89i2B6FmkZWaRnZpOemU1aWjrmOfuJi2PRKOFwG9FImHA4TCTUSiQSItIWIhptIxIOEQ2FiEZDRENtxCJhopEQsUiIWCSMi8bfu2gYYpF4o2aAB8zio6iJZWeGYeDx4PF44+s9Xsy84PFgHi8ejwfMi3m9mMXrmceDeXzxdR5vvMw8mDde3+P1xZcT6zxeL7gYOAcuhnPR+PtYDHA4F8NcLLEuhrl4GcQg5hLbRjEcLuaAGGnZoyiadu4zoIpIcinBEpER7dDubZwX3cO6qX27PLBdJHcCY2v+QGNzC1kZ6UlpM9mO7N3BgWe/w/QjT3Eh9VRQxIaJH2L8spXMLJvVr317AkHmfPghtv/xCopf+F8Efn4N6+fdw8LlH++3SwaPHniDg1teJLx/HYU1m5kc2cN8iwFw0DuBNwuXERm3gNyJ5ZROKScvr4i8c+gnFmrl2P7XqNmzibYj2whUbWd68zaKjrwAR4CN0Or87PKUUpM+EXLGYTnj8OSVEMwtIjsrF396Fp60TLwew0uUSCRMW1uIcGsT0eZq2hprCDXUEGmqIdZSi6e1Gn9bLWnhOjKidWTF6sl1jRRYlILuYsRoIJN6y6HNk07U4ydmfpw/nTbLJmpezMXwuCgeovhdBIuF8IYbSAu1Eoy1EKSVDNeC19wZ/26izmglQAwPzjxE8eAwHPH3AD4i+IjicxG8xPARwWuOtHPYFyPR/ptfYOKMC1MdhoigBEtERrhDf1lNKcm5PBDAX1CGd7/j6MHdTJlenpQ2k8HFomz7038TWfcD5rasZwywJXMJ+xf+I+VLl1Ps9Q5oPDMvu4njUxZw+McfYNHmL7D+zReY9A/fYkxxaZ/adZEQB7ev5/jrf8J76G+Ma3iVsVQxFmh2aewLzmRzye1kT72EiXMvY3xOAeOT85HwBIKMmXoRY6Ze1Kk81lxL5d6tVO17lVDF6wRq3mBCyw5GNf2FtKPhc+4v5HzUWTaNnhxafDnUpE+iMpiPSx+FZYzCl1VIMKeQ9NwisvNHkz1qLIGsfHI9XnL7+mGdIxpqprWpnpbGOtqa62ltbiDc0kS4tZFIWxPR1kaibc24UBOxUDPeaCsuFsNcNDEK89aP4XAeP3h8HV594PVjHj94vDhvAI/Pj3kDmM+Px+vH40uLv/cF8PoCJ1+9/gBefxpenx+fP4AvkIbH48clRojaR35cLIYjfu9h+6hSLBZNDChFcbEIsVgMF40mtosQi8aIuRi0r4tF4+3EovEf91YZHZZx8bJYLIZZPLnE4iNn7SNqzgyzeBJKIhm1RHnH+maexLIRba7j0lc+ScXG3yjBEhkklGCJyIhWdOB37PDNYMb4vl8eCJA55jwAag/vhkGQYLW1NLL1N//F2Nd/SHnsCFXk8fL4lZRd9zEuTMIlkX0xuqSMgs++yMs/+yIX7f0v2h66iJdK/4HzrvsYo8dP7b0B52itOsCBrWtp3Ps3Mo+/woTWHUwgxASggkIOZM1hb8kiCmctpez8Rczy+fv9c3XlychjzPlLGXP+0k7l0WiM6upj1FceoLGmkubGemKhZjzhZqIOInjweP34/QG8gXQsPY/07FFk5xeRm19AVmYWRR4PRQP+iQAzvGmZZKZlkjmquPf60q8Obfw30vb/KdVhiEhCnxMsM/sk8HEgCvzGOffZRPndwD8myu90zv2+r32JiCRTxZ7XOC/6Ji9N+V9Ja7Nw/DQAWipT+yys2hPH2P4/32Ta/tXMp45d3imsv/AB5l37QRan9e89QGfD6/Ox8LavUbH7fRx96ku87fAj8PAjvOGfQX3hBQTGzMCfXYDf5yHS0ki4sYpo1V4C9fsY2/wG+a6WacQnndjtnczLo5bjn7SY0jmXMX7iFIoH8UyFXq+HUUXFjCpSgiJ9c3Tclcw9tJpjFYf6PAosIn3XpwTLzJYBy4G5zrk2MxudKJ8F3AycD4wD/mBm05xz0b4GLCKSLAfWrqYYmLj0fUlrM3fMRMLOC9X7ktbm2ag5cZQ3fnk/s488ydusjc3BhRy55J+YffHfndMkAwOleMpcij+9hkN7trP/xVXkHv4js478ivSK0Cl16106RzzFbEtfQGj0XHKmLGLy+QuZmZ/HzBTELpJqYy9diX/1z3jz+R8x5v1fSnU4IiNeX0ewPgp8zTnXBuCcO54oXw48lijfa2a7gYXAS33sT0QkaUYdeJqdvmlMnzgtaW2a10+lt4hA48GktXkmqmtq2ParrzPvwCrm08qGnKsouu6zXHD+wgGNo69KJ8+kdPLXAWhta2PXgf201lfSFoW09Gwyc/IYN3YcM9J8zEhxrCKDRen0i9jtm8roN39JLPoFPN7B+2WKyEjQ1wRrGrDUzL4KtAKfds79DSgB1nWodyhRJiIyKBw7sIupkTf46+Q7k952bdo4clsOJb3dbvtqaOLlX32LeXv+i0utllezLibnHfezcNaCAem/PwXT0pg2dRrx/2pE5HSazn8fc7fcz6aXfs+8S96e6nBERrReEywz+wMwtptVX0hsPwpYDCwAnjCzyWcTgJndAdwBMGHChLPZVETknO1f+xhjgPFLbk562805U5hxdA3hSBS/r39m52sNhVn76x8y5bVvcQ0V7M4op+XaHzHngiv6pT8RGdxmXHcHtVu+ifvrt0EJlkhK9ZpgOeeu6mmdmX0U+JVzzgEvm1kMKAQOQ6eZb0sTZd21/33g+wDz588/84dqiIj0Qe6+p3nTU8Z5552f9La9o6eTdayVfft3M+m86UltOxZz/OXZJyla9+9c5d7kkH8SB694hCmLr088MFVERqK09Gy2jL+J+Qd+xM5tG5k+W1O2i6RKXy/SfQpYBmBm04AAcAJYA9xsZmlmVgZMBV7uY18iIklRe+wg00OvUVFydb+0nzshPj37ib1bktruxnUvsPnfLmfpSx9ilNXzxtu+QendGxn/thuUXIkIM9/9GVotQMNv70l1KCIjWl8TrEeAyWa2DXgMuNXFvQY8AbwOPA18XDMIishgsfvl3wIw+sJ39Uv7Y6fOA6D1UHISrF2vb2bd19/FhU+/m8mRN9k6+3MUfm4bU6/9/8AzsA8IFpHBK7tgHNsm3sr85j/z+st/SHU4IiNWnya5cM6FgFt6WPdV4Kt9aT/VNqx5CHvj9zjzEmt/knyHV+fxYR4fJJ46jzex7PVjXj+WWDZfIF5uhkH8KewQf2p7Ise1Dt8+x9/bW99IJ17NwDAcHb+pdp1enetmFeA6LbjuSrts3HnZObD2Pk6zTed+OsTVqVKscz907adLW137cJ23aS/sWGJdlju30/2VqK7r5++wTXtrdko4Xbc5tQ075fP2FFfP7fR67Wy3bZzF9mdQ6UzaSMo1vr3G0fde8vb+lnoyOK/8bX1uqzsZeaM5YmMJHt/cp3aOHNrL3ifvYWHNbyg1H5vK7mDWjZ+nPDM/OYGKyLAz+8bPU/m/nyTj6btoLV9HMD0z1SENOi4Wo7m5iabGOlob64i2NRJpaSQabiMabk38tBFr/4m04RI/RMLgIvFzGReL/x/vovHXWAxwmIt2WBc7ed7jAOcscaLTfp4XP68zaz8/bD/3S4yBWGI9p27X8fXkuWNimx7Xdyzrcq7pOq6PfxKsU3m8//Y4XXd9YbiTcXreOnvqsH1H1mG5pwsxzKA+s4x5S66lICvtDPZw6vX5QcPDWaTuCCWNO/ASxesi8VeieF0UH2/9eEy3jokMNZtyrmSer//+BB7Lmc34uo045zp9gXIm6mqq2PbEfcw78hgLifDq2Pcw9b33M69Qk7GKyOllZOez+7JvMOePH+IvD3+KJZ/4QapD6hexcBsN1ceorzlGU20lLXUnCDVUEW2qhpZqvG21BEJ1pEXq8UebSYu1EIw1E6SVDNdKpsXoS+oZdUYMDw4jiocY7cseYhZ/3/7jaE892rkOX5d3fN9xOVHm3MkvuNvTMRLrrEs7nCzrvG44nKf+LHIlB2ddqgRrOFj8gfuB+09bxzlHJBolEg4RiYSJhsNEIiGi4TDRaPtrmFgkjCMWH1lxb20bfxPrvIzrsM6dXBc/QB0uFuvhgaFvjXS1L3c6revuJM+sS7F13sq6frNgp7bcJZRTv43o5luLju2e0s9bf4asU6Uufdipn7dzpW4+v3Vpl86fv8sWJ79R6rpN54/SdV+c+ns+5QS7y3LXfuGtfntso9dez77OGaUBvVQ6k1yi1zjOoJHe2zj9+gvyinvtoy+i4xczpu4P7N2xmbKZ885om7bmerb86j+YtvthltDIxtyrGHf9V7hokh6fKyJnbs6y97Jh+9MsOf4E656YxuKbPpPqkM5cuIWWE/upqthPXeUhWquPEKk/iqfpGGmtJ8iJVJEXqyaPRnKB3G6aCDkfdZZNoyebFk82zb486nwlxHwZuEAmLpCFBbLwBLPwpGVhaVlYIBOvPw1fIB1vIIjPH8CfFsTnDxIIpuMPpJMWDOIPBPF6fXjNGKwXaLvEuWbMOWJAxMWv/nAxl1gXS7w6YonX+Pmmg1ji1TkcsZNXIznnsESdeFHifWLULl6/fdvE+vY6J6/kcV2uruoYc8fyUytdGchkVGF2En9L/UsJVh+ZGT6fD18/fhMuIkPPxLddD9u+wuH1T/aaYLW1NvHqU/+XyTu+z0Jq2RJcQPXf3c+Fcy4eoGhFZLiZ++HvseWbB1j8+ldY/2gLC9/3xR6+nB1AzuFaamg4uoeaij00H99HpOYA3vpDpLccIS90jHxXSzrx6adLE5uFnI8qTz4NvgJq0sdzNHgh0fTRkFWEP6uAYE4RGXmFZI8aTW7+aIIZ2RSZUZTCj5pKlvjy3HNmX5tKP7Bu7ztJkfnz57sNGzakOgwRkaTY9dVFZEZqGfP5bfj8/lPWtzbVsfV/HmTijh8ymmq2+ucQu/wLzF1yXQqiFZHhpq21iW3fXsFFTX9mS+YSSt73nxSWTunXPmMtdVQf3k3tkTdoOb4HV7OPQMNBslqOMCp8jAxaOtVvcQEqKKTaN4bG4FjC2SVY7njSC8eTW1RKYfEEigrH4PWmODkU6cLMXnHOze92nRIsEZH+semZnzLvr5/g5bKPsfDWf48XOseRHS9z8I+rmHX0KbJpZrt/FuFL76b8kr8/6/u1REROJxaJsG71V7ho94MYjm35V5J24QqmLXo7/rSMs2vMORrrq6mu2Efj8f20VO4hVr0/kUAdpiBcQR4NnTZpcOkcsdFU+4tpSh9HNKcUb/54MoomkVc8hbHFJeRnBvS3T4YcJVgiIingYjH+9s3rWdj4Am8GptPqz6egeQ9j3XEizsOm7MsIXvJJZi+6QicXItKvDu7dyaH/+XdmVT1DrjURcl72+ybRECwhmjUWl5aLebyYx0s0EsbCjXhDDViogWBbFTnhExTEqki3UKd225yPY1ZEVWAcjeklRHIm4CmYROboyeSVTKV4TDGZwVNH8EWGOiVYIiIp0trWxvqff5X8Q8+SHmumJlhKeOJlnHfZPzC2uLT3BkREkqiluZkdf11D0+615Ne+TlboGAXRKrKs86V7jS5Ik6XTapk0+fJpDhYRzhiDyyrGlz+O9FGl5JdMYfS4MgJ+3YcuI48SLBERERHplnOOcCRGOBIhEo2SHvATCGjUSeR0Tpdg6SsHERERkRHMzAj4vQT8g3XicZGhRVOyiIiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkg2qSCzOrBPanOo4uCoETqQ5CBoz298ihfT1yaF+PLNrfI4f29cgxGPf1ROdcUXcrBlWCNRiZ2YaeZgiR4Uf7e+TQvh45tK9HFu3vkUP7euQYavtalwiKiIiIiIgkiRIsERERERGRJFGC1bvvpzoAGVDa3yOH9vXIoX09smh/jxza1yPHkNrXugdLREREREQkSTSCJSIiIiIikiRKsERERERERJJECdZpmNl1ZrbTzHab2edSHY8kj5mNN7MXzOx1M3vNzP4pUT7KzJ41szcSr/mpjlWSw8y8ZrbJzP5fYrnMzNYnju/HzSyQ6hglOcwsz8yeNLMdZrbdzN6mY3t4MrO7En/Dt5nZajML6tgePszsETM7bmbbOpR1eyxb3H8m9vurZnZh6iKXs9XDvn4g8Xf8VTP7bzPL67Du7sS+3mlm16Yk6NNQgtUDM/MC3wHeDswC3mdms1IblSRRBPhn59wsYDHw8cT+/RzwnHNuKvBcYlmGh38CtndY/jrwf5xzU4Aa4B9TEpX0h28BTzvnZgBzie93HdvDjJmVAHcC851zswEvcDM6toeTVcB1Xcp6OpbfDkxN/NwBfG+AYpTkWMWp+/pZYLZzbg6wC7gbIHG+djNwfmKb7ybO2wcNJVg9Wwjsds7tcc6FgMeA5SmOSZLEOVfhnNuYeN9A/ASshPg+/nGi2o+Bd6ckQEkqMysF3gH8MLFswBXAk4kq2tfDhJnlApcCDwM450LOuVp0bA9XPiDdzHxABlCBju1hwzn3J6C6S3FPx/Jy4Ccubh2QZ2bFAxKo9Fl3+9o594xzLpJYXAeUJt4vBx5zzrU55/YCu4mftw8aSrB6VgIc7LB8KFEmw4yZTQLmAeuBMc65isSqo8CYVMUlSfV/gc8CscRyAVDb4Q+3ju/howyoBH6UuCT0h2aWiY7tYcc5dxj4D+AA8cSqDngFHdvDXU/Hss7bhreVwO8S7wf9vlaCJSOamWUBvwQ+5Zyr77jOxZ9hoOcYDHFm9k7guHPulVTHIgPCB1wIfM85Nw9oosvlgDq2h4fEvTfLiSfV44BMTr3ESIYxHcsjg5l9gfitHY+mOpYzpQSrZ4eB8R2WSxNlMkyYmZ94cvWoc+5XieJj7ZcUJF6Ppyo+SZolwLvMbB/xS32vIH6PTl7isiLQ8T2cHAIOOefWJ5afJJ5w6dgefq4C9jrnKp1zYeBXxI93HdvDW0/Hss7bhiEzuw14J/B+99bDewf9vlaC1bO/AVMTsxEFiN9MtybFMUmSJO7BeRjY7pz7ZodVa4BbE+9vBX490LFJcjnn7nbOlTrnJhE/jp93zr0feAG4MVFN+3qYcM4dBQ6a2fRE0ZXA6+jYHo4OAIvNLCPxN719X+vYHt56OpbXAB9MzCa4GKjrcCmhDEFmdh3xy/vf5Zxr7rBqDXCzmaWZWRnxiU1eTkWMPbG3kkHpysz+jvi9G17gEefcV1MbkSSLmV0C/BnYylv35Xye+H1YTwATgP3ATc65rjfYyhBlZpcDn3bOvdPMJhMf0RoFbAJucc61pTA8SRIzu4D4hCYBYA9wO/EvFHVsDzNmdh+wgvjlQ5uADxG/F0PH9jBgZquBy4FC4BjwZeApujmWE0n2g8QvE20GbnfObUhB2HIOetjXdwNpQFWi2jrn3EcS9b9A/L6sCPHbPH7Xtc1UUoIlIiIiIiKSJLpEUEREREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUmS/x+ZuYaOXaTuqAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3799,31 +3799,31 @@ " 33\n", " True\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " bAP.soma.v\n", - " 0.00158\n", - " 1.81e-05\n", + " 0.00151\n", + " 3.17e-07\n", " \n", " \n", " 34\n", " True\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step1.soma.v\n", - " 0.00261\n", - " 7.14e-05\n", + " 0.00166\n", + " 3.09e-05\n", " \n", " \n", " 35\n", " True\n", " 1\n", - " 0.121\n", - " 0.0319\n", + " 0.0592\n", + " 0.0295\n", " Step3.soma.v\n", - " 0.00472\n", - " 1.75e-05\n", + " 0.00257\n", + " 1.49e-05\n", " \n", " \n", "\n", @@ -3831,14 +3831,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "33 True 1 0.121 0.0319 bAP.soma.v \n", - "34 True 1 0.121 0.0319 Step1.soma.v \n", - "35 True 1 0.121 0.0319 Step3.soma.v \n", + "33 True 1 0.0592 0.0295 bAP.soma.v \n", + "34 True 1 0.0592 0.0295 Step1.soma.v \n", + "35 True 1 0.0592 0.0295 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "33 0.00158 1.81e-05 \n", - "34 0.00261 7.14e-05 \n", - "35 0.00472 1.75e-05 " + "33 0.00151 3.17e-07 \n", + "34 0.00166 3.09e-05 \n", + "35 0.00257 1.49e-05 " ] }, "metadata": {}, @@ -3846,7 +3846,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACft0lEQVR4nOzdeXxU1f3/8ddnJpOdsCQh7ARRkCUICogV3NqvS12QakXrhtb6VWur1qXWtkrt19/Xr9raurTUaqtVi1j3VqutCypWRUDEBReWsC9ZCCSQbWbO7497CUPIBplkkvB+Ph73wdxzzz33c+dmwnxyzj3XnHOIiIiIiIhI6wUSHYCIiIiIiEhXoQRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiEgHYWb5ZubMLCnRsXR1ZjbDzOYlOo6OxsymmNkXiY5DRKQzU4IlIiKdmpnNNLNaM6uIWW5IdFydkXPubefc8Hi2aWbDzOx5Mysys1Ize8XM4noMEZGORAmWiEicqOcpoeY45zJjljsSHVA8dfKfrR7AC8BwIA+YDzyfyIBERNqSEiwRkVYws0Iz+7GZLQG2m1mSmU0ys/+YWZmZfWRmx8TUn2tm/2tm881sm/+X/V6NtH2RmS01s3IzW2Fm/11v+1QzW+y3s9zMTvTLu5vZQ2a2wczWmdn/mFmwmfMYamavm1mJmRWb2eNm1iNmW6mZHeqv9/N7I47x108zs0/9851rZiPqvT/XmdkSM9tqZnPMLHXv3+m9Z2Y3+u9LuZl9ZmbTGqlnZna3mW3238uPzWy0vy3FzO4ys9VmtsnMZplZWguP/7Bf/99+DG+a2eCY7b81szX+MRea2ZSYbTPN7Ckze8zMtgEzzGyimb3rv88bzOw+M0uO2ceZ2RVm9pV/vF/61+4//jGejK3fSMzHmNnalpxfSznn5jvnHnLOlTrnaoG7geFmlh3P44iIdBRKsEREWu8c4GS8v9TnAS8C/wP0Aq4Dnjaz3Jj6FwAXA32BMHBPI+1uBk4BsoCLgLtjkpyJwF+A6/3jHgUU+vs97Ld7IDAOOB64pJlzMOB/gX7ACGAgMBPAObcc+DHwmJmlA38GHnHOzTWzYcBs4GogF3gJ+Hu9L/JnAScCQ4AxwIwGAzCb7CcPjS2TmzmH+pYDU4DuwC/8+Ps2UO94vPdvmF/3LKDE33a7Xz4W7/3sD9y8FzGcC/wSyAEWA4/HbPvAb7cX8Ffgb/WSz6nAU3jX93EgAlzjt3UE8HXginrHOwE4DJgE3AA8AJyHdz1H4/2s7jM/UW7s+vyuhc0cBWx0zpU0W1NEpDNyzmnRokWLln1c8JKai2PWfww8Wq/OK8CF/uu5wO0x20YCNUAQyAcckNTIsZ4DrvJf/wG4u4E6eUA1kBZTdg7wxl6e1+nAh/XKXgA+BpYAKX7Zz4EnY+oEgHXAMTHvz3kx2+8AZsX5Gsz038OymKVfA/UWA1P91zOAef7r44Av8ZKSQEx9A7YDQ2PKjgBWtjCuh4EnYtYz8ZKkgY3U3wIcEnNObzXT/tXAszHrDjgyZn0h8OOY9V8Bv2mmzWOAtfG8PvXaH+D/fJzTVsfQokWLlkQvnXlMt4hIR7Em5vVg4NtmdmpMWQh4o5H6q/ztOfUbNbOTgFvwelACQDpeggNej8RLDcQy2G9vg5ntLAvUO+YezCwP+C1ej083f58t9ar9ES/JutQ5V+2X9fPPAQDnXNTM1uD19Oy0Meb1Dn+feHvSOXdebIGZXQD8CC9xBS/B2eN9ds69bmb3AfcDg83sGbyex1S893xhzHtpeMlwS9W97865CjMrxTv/NWZ2HfBdf93h9VTmNLSvfz7DgF8D4/24kvCSqFibYl5XNrDeZy9ijyu/F/dfwO+cc7MTFYeISFvTEEERkdZzMa/X4PVg9YhZMpxzt8fUGRjzehBQCxTHNmhmKcDTwF1AnnOuB15CtfOb/hpgaAOxrMHrwcqJOX6Wc25UM+fw//zzKHDOZeENK9uVVZhlAr8BHgJm2q77xtbjJXU765l/fuuaOd4ezJsivKKJZUrzrdS1NRgvIbwSyPbfv09izymWc+4e59xheD2Kw/CGXhbjJSWjYt7L7s65zL04rbpr7b+HvYD1/rncgDccsacf39Z68cX+XAH8HvgcOMi/Rjc1dj5txb/XrrHrM6uJ/XriJVcvOOdua7+IRUTanxIsEZH4egw41cxOMLOgmaX6EwcMiKlznpmN9O9nuhV4yjkXqddOMpACFAFhvzfr+JjtDwEXmdnXzSxgZv3N7GDn3Aa8L7K/MrMsf9tQMzu6mbi7ARXAVjPrj5dgxPotsMA5dwnePWY7v0w/CZzsxxECrsVL8P7T3BtVn/OmCM9sYnl7L5rLwEtQisCbMATvHqQ9mNkEMzvcj387UAVEnXNRvCTtbjPr7dftb2YnxOzrLGYSkwZ807+3LBnvXqz3nHNr8N7vsB9fkpndjNeD1ZRuwDagwswOBi5vpn7cOedGNXF9LmtoHzPLwhsm+45z7sb2jVhEpP0pwRIRiSP/y/NUvN6FIrwepevZ/ffto3j352zEG4b2wwbaKffLn8QbqvcdvOF5O7fPx5/4Aq/n40129SRdgJegfebv+xTehBpN+QVwqN/Wi8AzOzeY2VS8SSp2fqH/EXComZ3rnPsCr7frXrwen1OBU51zNc0cr0055z7Du+foXbxhcgXAO41Uz8JLpLbgDXcsAe70t/0YWAa858/m9yredOOY2UCgnF3DNhvyV7xhnqV4k0/sHMb4CvAy3r1fq/CSuiaHceINW/yOf8w/AnOaqd9RTAMm4P1BILbHa1CiAxMRaQvmXP0RCCIi0lbMbC7wmHPuwUTHIq1jZufhDR/8SSPbH8abMOJn7RqYiIgklCa5EBER2QfOuccSHYOIiHQ8GiIoIrKfMO+ht3s1OYF0PWZ2UyM/B/9MdGwiIl2BhgiKiIiIiIjEiXqwRERERERE4qRD3YOVk5Pj8vPzEx2GiIiIiIhIkxYuXFjsnMutX96hEqz8/HwWLFiQ6DBERERERESaZGarGirXEEEREREREZE4UYIlIiIiIiISJ0qwRERERERE4qRD3YPVkNraWtauXUtVVVWiQ5EOIDU1lQEDBhAKhRIdinRBNz39IYN7hPjvr49OdCgiIiLSSXX4BGvt2rV069aN/Px8zCzR4UgCOecoKSlh7dq1DBkyJNHhSBdTXr6NK5d8ixRqqZ38FaGUtESHJCIiIp1Qhx8iWFVVRXZ2tpIrwczIzs5Wb6a0ieINq+hnpWRbOauWajZTERER2TcdPsEClFxJHf0sSFsJV1fWvS7+an4CIxEREZHOrFMkWCIibS1cvaPuddKmJQmMRERERDozJVgtYGZce+21det33XUXM2fOTFxAMY455pgmH858+umnM2nSpN3KZs6cSf/+/Rk7diyjR4/mhRdeaOswRTq8aM2uBCutvDBxgYiIiEinpgSrBVJSUnjmmWcoLi6Oa7vOOaLRaFzbjFVWVsbChQvZunUrK1as2G3bNddcw+LFi/nb3/7GxRdf3KZxiHQGOxOsdZZHr+p1CY5GREREOislWC2QlJTEpZdeyt13373HtqKiIs444wwmTJjAhAkTeOeddwCvl+iuu+6qqzd69GgKCwspLCxk+PDhXHDBBYwePZo1a9Zw/fXXM3r0aAoKCpgzZw4Ac+fO5ZhjjuHMM8/k4IMP5txzz8U512B8jz76aF1v1Pz5u+4deeaZZzj11FM5++yzeeKJJxrcd8SIESQlJe2WPN54442MHDmSMWPGcN111wFQWFjIcccdx5gxY/j617/O6tWrAZgxYwaXX345kyZN4oADDmDu3LlcfPHFjBgxghkzZtS1efnllzN+/HhGjRrFLbfcskccW7duZfDgwXWJ3vbt2xk4cCC1tbUNxi0Sb9Ea7x6szWlD6e2K2VG5o5k9RERERPbU4adpj/WLv3/KZ+u3xbXNkf2yuOXUUc3W+/73v8+YMWO44YYbdiu/6qqruOaaa5g8eTKrV6/mhBNOYOnSpU229dVXX/HII48wadIknn76aRYvXsxHH31EcXExEyZM4KijjgLgww8/5NNPP6Vfv34ceeSRvPPOO0yePHmP9nbs2MHixYt56623uPjii/nkk08AmD17NjfffDN5eXmcccYZ3HTTTXvs+/777xMIBMjNzQWgpKSEZ599ls8//xwzo6ysDIAf/OAHXHjhhVx44YX86U9/4oc//CHPPfccAFu2bOHdd9/lhRde4LTTTuOdd97hwQcfZMKECSxevJixY8dy22230atXLyKRCF//+tdZsmQJY8aMqYuje/fujB07ljfffJNjjz2Wf/zjH5xwwgl63pW0n1ovwarqOYzgjv+wcdVXHHDwIQkOSkRERDob9WC1UFZWFhdccAH33HPPbuWvvvoqV155JWPHjuW0005j27ZtVFRUNNnW4MGD6+6LmjdvHueccw7BYJC8vDyOPvpoPvjgAwAmTpzIgAEDCAQCjB07lsLCwgbbO+eccwA46qij2LZtG2VlZWzatImvvvqKyZMnM2zYMEKhUF3iBXD33XczduxYrrvuOubMmVM3O1/37t1JTU3lu9/9Ls888wzp6ekAvPvuu3znO98B4Pzzz2fevHl1bZ166qmYGQUFBeTl5VFQUEAgEGDUqFF1MT/55JMceuihjBs3jk8//ZTPPvtsj/OYPn16XQ/eE088wfTp05t8H0XiKeonWIG8kQBsXf9lIsMRERGRTqpT9WC1pKepLV199dUceuihXHTRRXVl0WiU9957j9TU1N3qJiUl7XZfU+yzmzIyMlp0vJSUlLrXwWCQcDjcYL36U5ebGU8++SRbtmypeyDvtm3bmD17Nrfddhvg3YO1c/hf/bjnz5/Pa6+9xlNPPcV9993H66+/3qI4A4HAbjEHAgHC4TArV67krrvu4oMPPqBnz57MmDGjwWdZnXbaadx0002UlpaycOFCjjvuuCaPKxJPzk+wMgeOgUVQvXlFM3uIiIiI7Ek9WHuhV69enHXWWTz00EN1Zccffzz33ntv3frixYsByM/PZ9GiRQAsWrSIlStXNtjmlClTmDNnDpFIhKKiIt566y0mTpy4V3Ht7PWZN28e3bt3p3v37syePZuXX3657r6vhQsXNnofVqyKigq2bt3KN7/5Te6++24++ugjAL72ta/V7f/4448zZcqUFse3bds2MjIy6N69O5s2beKf//xng/UyMzOZMGECV111FaeccgrBYLDFxxBpLfMTrJyBw6hyIays4c+siIiISFM6VQ9WR3Dttddy33331a3fc889dfdnhcNhjjrqKGbNmsUZZ5zBX/7yF0aNGsXhhx/OsGHDGmxv2rRpvPvuuxxyyCGYGXfccQd9+vTh888/b3FMqampjBs3jtraWv70pz9RWFjIqlWrdpuefciQIXTv3p3333+/wTa++c1v8uCDD2JmTJ06laqqKpxz/PrXvwbg3nvv5aKLLuLOO+8kNzeXP//5zy2O75BDDmHcuHEcfPDBDBw4kCOPPLJu280338z48eM57bTTAG+Y4Le//W3mzp3b4vZF4iLsJVjJqRlsDPYhpXx1ggMSERGRzsgam5muxQ2YDQT+AuQBDnjAOfdbM5sJfA8o8qve5Jx7qam2xo8f7+o/02np0qWMGDGiVTFK16KfCWkLi//0Q0as+iu1N23ky7tPplftRvJ//lGiwxIREZEOyswWOufG1y+PRw9WGLjWObfIzLoBC83s3/62u51zdzWxr4hIhxAIV1JFiLRggKqMAeSULEl0SCIiItIJtfoeLOfcBufcIv91ObAU6N/adkVE2pOFq6gkhVDQcN37k8kOdmwrTXRYIiIi0snEdZILM8sHxgE7b/S50syWmNmfzKxnI/tcamYLzGxBUVFRQ1VERNpcIFJFNcmYGcm9BgFQtHZ5gqMSERGRziZuCZaZZQJPA1c757YBvweGAmOBDcCvGtrPOfeAc268c278zofdioi0t6CfYAFk9M4HYNumwsQFJCIiIp1SXBIsMwvhJVePO+eeAXDObXLORZxzUeCPwN7NPS4i0o4CkSpqzHuOW89+BwBQVbwqkSGJiIhIJ9TqBMu8p9w+BCx1zv06prxvTLVpwCetPZaISFsJRGuptRAAuXkDqXVBImVrEhyViIiIdDbx6ME6EjgfOM7MFvvLN4E7zOxjM1sCHAtcE4djJcxzzz2HmTX5fKrCwkJGjx4dt2POmDGDp556qtHtV199Nf379ycajdaVPfzww+Tm5jJ27FhGjhzJH//4x7jFI9KVBaJhouZNrJoUClFsvUiqWJfgqERERKSziccsgvOcc+acG+OcG+svLznnznfOFfjlpznnNsQj4ESZPXs2kydPZvbs2Q1uD4fDrT5GJBJpcd1oNMqzzz7LwIEDefPNN3fbNn36dBYvXszcuXO56aab2LRpU6tjE+nqAtFaIrbryRVbQnlkVG5MYEQiIiLSGcV1FsGuqqKignnz5vHQQw/xxBNP1JXPnTuXKVOmcNpppzFy5EjAS7TOPfdcRowYwZlnnsmOHTsAeO211xg3bhwFBQVcfPHFVFdXA5Cfn8+Pf/xjDj30UP72t7/tcexXX32V8ePHM2zYMP7xj3/sduxRo0Zx+eWXN5r09e7dm6FDh7Jq1a77SO655x5GjhzJmDFjOPvsswEoLS3l9NNPZ8yYMUyaNIklS7zn/8ycOZMLL7yQKVOmMHjwYJ555hluuOEGCgoKOPHEE6mtrQXg1ltvZcKECYwePZpLL72U+g+vjkaj5OfnU1ZWVld20EEHKfGTDiXgwkT9IYIA21P70L12cwIjEhERkc4oHg8abj//vBE2fhzfNvsUwEm3N1nl+eef58QTT2TYsGFkZ2ezcOFCDjvsMAAWLVrEJ598wpAhQygsLOSLL77goYce4sgjj+Tiiy/md7/7HVdeeSUzZszgtddeY9iwYVxwwQX8/ve/5+qrrwYgOzubRYsWNXjswsJC5s+fz/Llyzn22GNZtmwZqampzJ49m3POOYepU6dy0003UVtbSygU2m3fFStWsGLFCg488MC6sttvv52VK1eSkpJSl/DccsstjBs3jueee47XX3+dCy64gMWLFwOwfPly3njjDT777DOOOOIInn76ae644w6mTZvGiy++yOmnn86VV17JzTffDMD555/PP/7xD0499dS6YwYCAaZOncqzzz7LRRddxPvvv8/gwYPJy8tr8WUSaWsBFyYa2PUrMZzZj5xtbxANhwkkda5flSIiIpI46sFqgdmzZ9f19px99tm79RhNnDiRIUOG1K0PHDiQI488EoDzzjuPefPm8cUXXzBkyBCGDRsGwIUXXshbb71Vt8/06dMbPfZZZ51FIBDgoIMO4oADDuDzzz+npqaGl156idNPP52srCwOP/xwXnnllbp95syZw9ixYznnnHP4wx/+QK9eveq2jRkzhnPPPZfHHnuMJP9L47x58zj//PMBOO644ygpKWHbtm0AnHTSSYRCIQoKCohEIpx44okAFBQUUFhYCMAbb7zB4YcfTkFBAa+//jqffvrpHucxffp05syZA8ATTzzR5DmLJEIgGsbFJFiBHgNJtgilRWsTGJWIiIh0Np3rz7LN9DS1hdLSUl5//XU+/vhjzIxIJIKZceeddwKQkZGxW31vUsXG1xtSv43m2nvllVcoKyujoKAAgB07dpCWlsYpp5wCeMnMfffd12B7L774Im+99RZ///vfue222/j446Z7BFNSvGmrA4EAoVCoLp5AIEA4HKaqqoorrriCBQsWMHDgQGbOnElVVdUe7RxxxBEsW7aMoqIinnvuOX72s581eVyR9hZ0tbsNEUzJ8R42XLp+BTl98xMUlYiIiHQ26sFqxlNPPcX555/PqlWrKCwsZM2aNQwZMoS33367wfqrV6/m3XffBeCvf/0rkydPZvjw4RQWFrJs2TIAHn30UY4++ugWHf9vf/sb0WiU5cuXs2LFCoYPH87s2bN58MEHKSwspLCwkJUrV/Lvf/+77n6vxkSjUdasWcOxxx7L//3f/7F161YqKiqYMmUKjz/+OODd25WTk0NWVlaL4tuZTOXk5FBRUdHorIdmxrRp0/jRj37EiBEjyM7OblH7Iu0lSBgX2JVgZeV5PdMVm/UsLBEREWk5JVjNmD17NtOmTdut7Iwzzmh0Yonhw4dz//33M2LECLZs2cLll19Oamoqf/7zn/n2t79NQUEBgUCAyy67rEXHHzRoEBMnTuSkk05i1qxZRKNRXn75ZU4++eS6OhkZGUyePJm///3vDbZxySWXsGDBAiKRCOeddx4FBQWMGzeOH/7wh/To0YOZM2eycOFCxowZw4033sgjjzzSwncHevTowfe+9z1Gjx7NCSecwIQJE+q2zZo1i1mzZtWtT58+nccee0zDA6VDCroI0ZgEK7v/UABqS5RgiYiISMtZ/RnfEmn8+PFuwYIFu5UtXbqUESNGJCgi6Yj0MyFtoXxmPxb2OJ5jrn4YABeNsv0X/fg07xQOv+LBxAYnIiIiHY6ZLXTOja9frh4sEREgSARierAsEKAomEvy9k79CD8RERFpZ0qwRESAJMK44O6POihPziOzSg8bFhERkZbrFAlWRxrGKImlnwVpE86RTHi3HiyAyvS+ZEf0sGERERFpuQ6fYKWmplJSUqIv1oJzjpKSElJTUxMdinQ10QgAVq8HK5rVn15so2pHRSKiEhERkU6owz8Ha8CAAaxdu5aioqJEhyIdQGpqKgMGDEh0GNLVRGq8f4PJuxUn9RwEhbB53QoGHTSm/eMSERGRTqfDJ1ihUIghQ4YkOgwR6cJcpAYDqNeDlZE7GICtG1eCEiwRERFpgQ4/RFBEpK3V1Ho9WIGk3ROsHn0PAKCyWM/CEhERkZZp8wTLzE40sy/MbJmZ3djWxxMR2Vu11VXAnvdg5fTNJ+qMyJY1iQhLREREOqE2TbDMLAjcD5wEjATOMbORbXlMEZG9Fa6tBcDq3YOVnJpGqXUnWL4uEWGJiIhIJ9TWPVgTgWXOuRXOuRrgCWBqGx9TRGSv1NYNEUzeY1tpUm/SduhhwyIiItIybZ1g9Qdix9as9ctERDqM2hp/iGC9e7AAKlL70r1mU3uHJCIiIp1Uwie5MLNLzWyBmS3QVOwikghhvwcr2EAPVm1mP3KixbhotL3DEhERkU6orROsdcDAmPUBflkd59wDzrnxzrnxubm5bRyOiMiemkqwyOpPulWzpUS9WCIiItK8tk6wPgAOMrMhZpYMnA280MbHFBHZK5HaaqDhe7CSs71nYZWsW9GuMYmIiEjn1KYJlnMuDFwJvAIsBZ50zn3alscUEdlbkbDfgxXaM8HqlpcPwLbNhe0YkYiIiHRWSW19AOfcS8BLbX0cEZF91dQQwex+3sOGa0pWt2tMIiIi0jklfJILEZFEa6oHq0dOX6pdCFemhw2LiIhI85Rgich+L+L3YCU1kGBZIEhRIIfk7evbOywRERHphJRgich+L+r3YIVCKQ1u35qcR0bVxvYMSURERDopJVgist9zTQwRBKhM60Ov8Ob2DElEREQ6KSVYIrLfc7WVAIRS0hvcHuk2gBxXSnVNdXuGJSIiIp2QEiwR2e9Fa6oASE7LaHB7sOcAguYoXlfYjlGJiIhIZ6QES0Qk7PVgJac23IOVljsEgLINy9stJBEREemclGCJiNR6PVgpqQ33YHXvdxAAOzYrwRIREZGmKcESEQlXUuOCJIVCDW7OHTCUiDOiJYXtG5eIiIh0OkqwRGS/Z+Eqamh4BkGAlJRUNlkuSdtWtWNUIiIi0hkpwRKR/Z5Fqqm2xhMsgJJQXzJ3rG2niERERKSzUoIlIvu9QDM9WADb0weQU7uhnSISERGRzkoJlojs94LRamospck64e6DyKaM2qqKdopKREREOiMlWCKy3wtGqqgNNN2DFcz2pmovWv1le4QkIiIinZQSLBHZ7wWj1YSbuQcrs483VXvZuq/aIyQRERHppFqVYJnZnWb2uZktMbNnzayHX55vZpVmtthfZsUlWhGRNhCMVlMbSG2yTvZAL8Gq1LOwREREpAmt7cH6NzDaOTcG+BL4Scy25c65sf5yWSuPIyLSZkLRGsKBpu/BysvrT4VLxW1Z2U5RiYiISGfUqgTLOfcv51zYX30PGND6kERE2lcoWk2kmQQrGAywMdCHlHJN1S4iIiKNi+c9WBcD/4xZH2JmH5rZm2Y2pbGdzOxSM1tgZguKioriGI6ISMuEXDXRpKYTLIAtKf3IqlrXDhGJiIhIZ5XUXAUzexXo08Cmnzrnnvfr/BQIA4/72zYAg5xzJWZ2GPCcmY1yzm2r34hz7gHgAYDx48e7fTsNEZF9l+xqIKnpe7AAqjIHkle8AJwDs3aITERERDqbZhMs59w3mtpuZjOAU4CvO+ecv081UO2/Xmhmy4FhwILWBiwiEm8hVwNJac3Wi/bIJ7W4hh1b1pPeq387RCYiIiKdTWtnETwRuAE4zTm3I6Y818yC/usDgIOAFa05lohIW4hEoqRRjSU3n2Al5+QDULxGz8ISERGRhrX2Hqz7gG7Av+tNx34UsMTMFgNPAZc550pbeSwRkbjbvn0rIYvgUns0WzernzdVe/l6PQtLREREGtbsEMGmOOcObKT8aeDp1rQtItIeKreVkgXQggSr98BhAFQXa6p2ERERaVg8ZxEUEel0qstLALD0Hs3WzemRxUbXi0DZqjaOSkRERDorJVgisl+rrigDIKkFCZaZsTmpD+nb17RtUCIiItJpKcESkf1a5TavBys1K6dF9belDqBn9fq2DElEREQ6MSVYIrJfq/GHCHbrnt2i+rXdBpIdLcHVVrVlWCIiItJJKcESkf1a7fYyALJ65raovvXKJ2CO8k2a6EJERET2pARLRPZr0cotAHTr3qtF9VN7DwWgRM/CEhERkQYowRKR/VtlGRWkY8GWPbWi5wDvWVjbNy1ry6hERESkk1KCJSL7teTqEsoCPVpcv2//fKpciEiJhgiKiIjInpRgich+LaOmiK1JLZvgAiArLZl11pukbXoWloiIiOxJCZaI7NeyakuoTGnZBBc7lYT6kbljXRtFJCIiIp2ZEiwR2W9FI1F6RUuJZOTt1X7b0weQXbsBnGujyERERKSzUoIlIvut0i0lpFs1way+e7VfuPtgMtlBdHtpG0UmIiIinZUSLBHZbxVv8O6jSunZf6/2S8oeAsCW9ZqqXURERHanBEtE9ls7Hxac2XvQXu2X0edAAMrWfRX3mERERKRza1WCZWYzzWydmS32l2/GbPuJmS0zsy/M7ITWhyoiEl9VxV4PVq9+Q/dqv+wBw7z9Ny+Pe0wiIiLSubXsyZpNu9s5d1dsgZmNBM4GRgH9gFfNbJhzLhKH44mIxIUrW03YBcjayx6s/r2zKXMZhMs0k6CIiIjsrq2GCE4FnnDOVTvnVgLLgIltdCwRkX2SXLGOkkA2Fgzt1X6poSDFlk2wYmMbRSYiIiKdVTwSrCvNbImZ/cnMevpl/YE1MXXW+mV7MLNLzWyBmS0oKiqKQzgiIi2TWbWBLcl99mnf8uQcUqs2xTkiERER6eyaTbDM7FUz+6SBZSrwe2AoMBbYAPxqbwNwzj3gnBvvnBufm7t3D/sUEWmN7PAmKtP2bor2narT8siqLYlzRCIiItLZNXsPlnPuGy1pyMz+CPzDX10HDIzZPMAvExHpEKqqq8l1paztNmCf9o9m9qFX2Rai4TCBpHjczioiIiJdQWtnEYz90+804BP/9QvA2WaWYmZDgIOA+a05lohIPG1aV0iSRQn22rsJLnYKZPUjyaKUFulvRyIiIrJLa//seoeZjQUcUAj8N4Bz7lMzexL4DAgD39cMgiLSkWzdsAKA1Jwh+7R/yH84cdmmVeT0HRy3uERERKRza1WC5Zw7v4lttwG3taZ9EZG2smOz95Dhnn33LcHKzPV6vrYXrWmmpoiIiOxP2mqadhGRDi28xUuMsvvv3UOGd+rpPzuraouGCIqIiMguSrBEZL+UVL6GUrJITsvcp/179e5H2AVw29bHOTIRERHpzJRgich+KW3HekqTeu/z/kmhEKXWQw8bFhERkd0owRKR/VKPmk2Up+7bM7B22pKUQ0rV5jhFJCIiIl2BEiwR2e+4aJTcaBG1Gf1b1c725N5k1RTFKSoRERHpCpRgich+p7R4I+lWDT327RlYO9Wk96ZXtCROUYmIiEhXoARLRPY7peuXA5Cc3boEy3XrSxbbqdxeHo+wREREpAtQgtWEsqINLH51Ni4aTXQoIhJH5Ru9Z2B167Nvz8DaKdjdG2JYsmFVq2MSERGRrkEJVhM+f+lexs67jOX/bwKLXnmM2tqaRIckInFQXeIlRDn9D2xVO2m9BgCwdfPqVsckIiIiXUNSogPoyMafcwvz/9GH/h/fx4Hvfp/id3/Ksr6n0OvQaRw47mgCSaFEh9ikaCRKbbiG2ppqwjXV1NZWE66tIVJbQ7immki4moi/7qK1EA0TjUbBOZyLej13Lorz14lGibpdZfh1nHMYTfXyWQNFDZQ1UM/59ayZenuUNVSl0Vga+jtDA7H4ZQ2G3oS9rL4PO+xF020cu7Vl8HGUuv49drgUsnru+zTtAFl5gwGoKlYPVltzzlEbjlBbXUm4ege11TsI11QRqd5BpKaScLiWSCRMuDZMJFJLOBwmGglDNALRCObC/r8R73ccDuf8tnH+Maj718Uc1+0Zzm4/6dbI77Pdim23LY38PrF6L2231Yb32fX7y+rvjvc7dI/fn/XjrV+nRb+fO8dnXTqGhj9FIi1Xk5LN4EOOoU/31ESH0iJKsJqQlJzCxG/9kPAp/81Hbz5FdNGjjF//V5I2PEb5i2msSB1NVa8R0HsE3focQM/eA0nP7k+3zCwCwaY7B6ORKNXVlVTvKKeqsoLaygpqKssJV22ntqqC2qodRKu3E6nZjqvegavdATXbsXAVgdrtBCJVBMOVJEUqSYpWEYpWkRKtItlVk0o1qa6aZAuTAqS0z9sl0ql8FTqIgwKt68TPGTicWhfEFX3R4n02rVtJWkYWWT2yW3Xszqaqqoqyko1UlGygsmwT1ds2E92xBVdVDtXbCNSUE6wpJxQuJxTeTkpkO6mR7YRcDclUk+JqSbFakhN9IiIi0u7mRg5hQY8xnDKmX6JDaRElWC2QlJzCIf91LvzXuWwt2cgX774IK94gp+xjRqxbRPL6yG71o87YQTLVlkINSQRwBIgSIEqQKEEXIZVq0syRthdxVLskqkmh0lKosVSqA6nUBlKoDaRRGepJJJhONCmVaFI6hFIhmAJJyVggBEkhLBjCgslez1swhUBSiGAoGQsmY8EQBIJYIIiZEbAABAJgRiAQxCyAmWGBAGYBAoEAWIBAwHAEsUDL/5rpog39JWvPMtv1N+SYas3v61VpoF6Df0BrqF7jx9hzk6Opv+Tu9V/t9qL63v49cG9jafBt6EJ6Dzio1W1kpKexMtCP5NKmEyznHJ8vnMuON+5mbMVbLM46lsOufbbVx+8ItpVvpWjdSrZtXk11yRqiW9cRrNhAcuUmUmtKyQyXkRXdRnfbTp9G2qhxQSpIZ4elUxnIoDqYwfakPGpTM3BJaVgoFQulQVIKLsn7l1AalpQKoVQCSf7vs2ASQf/fpFCIQDCp7vcaAe81gST/95n3ybWYniJv3erKLbYXKvZj3shnY9dnxu32eYv9nef9xtj5+2T38t3a2e0D6HbViP11GHuMmN97O8vNud2aif3V6GJ/v+52Pnv+PrU9TriL/3IQkQ6nX6gbefm5iQ6jxZRg7aXu2X2YeMp3ge8CUFtTzbrCpZRsWEll6VqsYhPR6u1Ea3YQjFST5GpxGFEL4CyIswCBQBLRUDqE0iE5nUByBpacTiAlg6TUTEKpGYRSM0lOzyQ1LZPU9CxSMzJIDiWTYkZWYt8CEYlRnD6Efju+bHBbVeV2lrzyZ3p8/DAjIl+xjXQ2kE3viqXtHOW+q6jYxsbCzylb9yXVm78iWFZI2vZ1dKvZTHakmO62fY/fSWVksiWQzY5QT4q6jWBjai+iadkEMnMJZfUmpXtv0nvkkd49h/RuPUlPz6BXIECvhJyhiIhIfCnBaqVQcgr9h42l/7CxiQ5FRBKgpvc4+q98i6JVS8kdPAIXjfLlR+9Q+p9HGF70MhMpZ3VgAO+PuInRJ32Pwjm38bW1DxGu2k5Sakaiwwdga2kxm1YtZeu6L6gtWk5w60oyt68ht3Y9vSkldiqQMjIpDuaxLbU/xemHQVY/Qr0GkJ4ziKzeg+nZZzA90rvRI1EnIyIikmBKsEREWmHAUecTWXEPG+dcxfKsA+m7+U2GR9dS45L4tNvXWH/4JYw68lQG+fd7JfUZQWCdY83yjxk8alK7xOiiUUqL1lG06nPK139JuHgFoW2FZO1YTW54Az0pp3tM/SJ6UpLcj9U9Dmdlj3ySex9IVv9h5A0eSY8eOUqeREREmtCqBMvM5gDD/dUeQJlzbqyZ5QNLgZ03JrznnLusNccSEemIBg85iDcHfo8pa/5IePsCvkoZxQfDLmb4Ny5gXI89x4sPGvU1WAibl/w7rglWuLaGzWuXs2XtF1RuWkakZAXJ21bTvWoteeENZFsVO6fViDhjUyCX0uT+fNX9OFzPA0jpPZQeA4bTZ/DB5GZk0XlGuouIiHQs5uJ0J7uZ/QrY6py71U+w/uGcG703bYwfP94tWLAgLvGIiLSnbVtLSQ4lk5qe2WzdL289lCRzDPnpAm8Chhaora6kdEMhWzaupGLzKmpK18DWdWTsWEN2zTryokWEbNeEO9UuxMZAHltS+1OVOQh6HUBa3kH0GjiMvEHDSU7pHFPdioiIdFRmttA5N75+eVyGCJr3EJCzgOPi0Z6ISGeT1b3lUzRsKbiYwz/6KYt+cybBMWeSlNqN2poqwhUluO3FRCqKsR0lhKpK6FaziexIEb3YRh6QF9POVjIpSurL5swRrM06kUD2AaTnHUivAcPp3T+fwUlJDI77mYqIiEhT4nUP1hRgk3Puq5iyIWb2IbAN+Jlz7u2GdjSzS4FLAQYNGhSncEREOq6JU6/gP8XLGL/2LyTPe32P7WEXYKtlsS3Yg4rk3nyVNopIZl+s+wDScgbRs08+eQMOoHtG1m73TomIiEjiNTtE0MxehQYfX/JT59zzfp3fA8ucc7/y11OATOdciZkdBjwHjHLObWvqWBoiKCL7k4qKbaz9fAG1NdUkJ4dI755LRs8+dO+ZQzDYsqGDIiIikhj7PETQOfeNZhpOAr4FHBazTzVQ7b9eaGbLgWGAsicREV9mZhYHj9fIahERka4kEIc2vgF87pxbu7PAzHLNLOi/PgA4CFgRh2OJiIiIiIh0WPG4B+tsYHa9sqOAW82sFogClznnSuNwLBERERERkQ6r1QmWc25GA2VPA0+3tm0REREREZHOJG7PwYoHMysCViU6jnpygOJEByHtRtd7/6Frvf/Qtd6/6HrvP3St9y8d8XoPds7l1i/sUAlWR2RmCxqaHUS6Jl3v/Yeu9f5D13r/ouu9/9C13r90pusdj0kuREREREREBCVYIiIiIiIicaMEq3kPJDoAaVe63vsPXev9h671/kXXe/+ha71/6TTXW/dgiYiIiIiIxIl6sEREREREROJECZaIiIiIiEicKMFqgpmdaGZfmNkyM7sx0fFI/JjZQDN7w8w+M7NPzewqv7yXmf3bzL7y/+2Z6FglPswsaGYfmtk//PUhZva+//meY2bJiY5R4sPMepjZU2b2uZktNbMj9NnumszsGv93+CdmNtvMUvXZ7jrM7E9mttnMPokpa/CzbJ57/Ou+xMwOTVzksrcaudZ3+r/Hl5jZs2bWI2bbT/xr/YWZnZCQoJugBKsRZhYE7gdOAkYC55jZyMRGJXEUBq51zo0EJgHf96/vjcBrzrmDgNf8dekargKWxqz/H3C3c+5AYAvw3YREJW3ht8DLzrmDgUPwrrs+212MmfUHfgiMd86NBoLA2eiz3ZU8DJxYr6yxz/JJwEH+cinw+3aKUeLjYfa81v8GRjvnxgBfAj8B8L+vnQ2M8vf5nf+9vcNQgtW4icAy59wK51wN8AQwNcExSZw45zY45xb5r8vxvoD1x7vGj/jVHgFOT0iAEldmNgA4GXjQXzfgOOApv4qudRdhZt2Bo4CHAJxzNc65MvTZ7qqSgDQzSwLSgQ3os91lOOfeAkrrFTf2WZ4K/MV53gN6mFnfdglUWq2ha+2c+5dzLuyvvgcM8F9PBZ5wzlU751YCy/C+t3cYSrAa1x9YE7O+1i+TLsbM8oFxwPtAnnNug79pI5CXqLgkrn4D3ABE/fVsoCzmF7c+313HEKAI+LM/JPRBM8tAn+0uxzm3DrgLWI2XWG0FFqLPdlfX2GdZ39u6touBf/qvO/y1VoIl+zUzywSeBq52zm2L3ea8ZxjoOQadnJmdAmx2zi1MdCzSLpKAQ4HfO+fGAdupNxxQn+2uwb/3ZipeUt0PyGDPIUbShemzvH8ws5/i3drxeKJjaSklWI1bBwyMWR/gl0kXYWYhvOTqcefcM37xpp1DCvx/NycqPombI4HTzKwQb6jvcXj36PTwhxWBPt9dyVpgrXPufX/9KbyES5/trucbwErnXJFzrhZ4Bu/zrs9219bYZ1nf27ogM5sBnAKc63Y9vLfDX2slWI37ADjIn40oGe9muhcSHJPEiX8PzkPAUufcr2M2vQBc6L++EHi+vWOT+HLO/cQ5N8A5l4/3OX7dOXcu8AZwpl9N17qLcM5tBNaY2XC/6OvAZ+iz3RWtBiaZWbr/O33ntdZnu2tr7LP8AnCBP5vgJGBrzFBC6YTM7ES84f2nOed2xGx6ATjbzFLMbAjexCbzExFjY2xXMij1mdk38e7dCAJ/cs7dltiIJF7MbDLwNvAxu+7LuQnvPqwngUHAKuAs51z9G2ylkzKzY4DrnHOnmNkBeD1avYAPgfOcc9UJDE/ixMzG4k1okgysAC7C+4OiPttdjJn9ApiON3zoQ+ASvHsx9NnuAsxsNnAMkANsAm4BnqOBz7KfZN+HN0x0B3CRc25BAsKWfdDItf4JkAKU+NXec85d5tf/Kd59WWG82zz+Wb/NRFKCJSIiIiIiEicaIigiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIdhJnlm5kzs6REx9LVmdkMM5uX6Dg6GjObYmZfJDoOEZHOTAmWiIh0amY208xqzawiZrkh0XF1Rs65t51zw+PZppkNM7PnzazIzErN7BUzi+sxREQ6EiVYIiJxop6nhJrjnMuMWe5IdEDx1Ml/tnoALwDDgTxgPvB8IgMSEWlLSrBERFrBzArN7MdmtgTYbmZJZjbJzP5jZmVm9pGZHRNTf66Z/a+ZzTezbf5f9ns10vZFZrbUzMrNbIWZ/Xe97VPNbLHfznIzO9Ev725mD5nZBjNbZ2b/Y2bBZs5jqJm9bmYlZlZsZo+bWY+YbaVmdqi/3s/vjTjGXz/NzD71z3eumY2o9/5cZ2ZLzGyrmc0xs9S9f6f3npnd6L8v5Wb2mZlNa6SemdndZrbZfy8/NrPR/rYUM7vLzFab2SYzm2VmaS08/sN+/X/7MbxpZoNjtv/WzNb4x1xoZlNits00s6fM7DEz2wbMMLOJZvau/z5vMLP7zCw5Zh9nZleY2Vf+8X7pX7v/+Md4MrZ+IzEfY2ZrW3J+LeWcm++ce8g5V+qcqwXuBoabWXY8jyMi0lEowRIRab1zgJPx/lKfB7wI/A/QC7gOeNrMcmPqXwBcDPQFwsA9jbS7GTgFyAIuAu6OSXImAn8BrvePexRQ6O/3sN/ugcA44HjgkmbOwYD/BfoBI4CBwEwA59xy4MfAY2aWDvwZeMQ5N9fMhgGzgauBXOAl4O/1vsifBZwIDAHGADMaDMBssp88NLZMbuYc6lsOTAG6A7/w4+/bQL3j8d6/YX7ds4ASf9vtfvlYvPezP3DzXsRwLvBLIAdYDDwes+0Dv91ewF+Bv9VLPqcCT+Fd38eBCHCN39YRwNeBK+od7wTgMGAScAPwAHAe3vUcjfezus/8RLmx6/O7FjZzFLDROVfSbE0Rkc7IOadFixYtWvZxwUtqLo5Z/zHwaL06rwAX+q/nArfHbBsJ1ABBIB9wQFIjx3oOuMp//Qfg7gbq5AHVQFpM2TnAG3t5XqcDH9YrewH4GFgCpPhlPweejKkTANYBx8S8P+fFbL8DmBXnazDTfw/LYpZ+DdRbDEz1X88A5vmvjwO+xEtKAjH1DdgODI0pOwJY2cK4HgaeiFnPxEuSBjZSfwtwSMw5vdVM+1cDz8asO+DImPWFwI9j1n8F/KaZNo8B1sbz+tRrf4D/83FOWx1DixYtWhK9dOYx3SIiHcWamNeDgW+b2akxZSHgjUbqr/K359Rv1MxOAm7B60EJAOl4CQ54PRIvNRDLYL+9DWa2syxQ75h7MLM84Ld4PT7d/H221Kv2R7wk61LnXLVf1s8/BwCcc1EzW4PX07PTxpjXO/x94u1J59x5sQVmdgHwI7zEFbwEZ4/32Tn3upndB9wPDDazZ/B6HlPx3vOFMe+l4SXDLVX3vjvnKsysFO/815jZdcB3/XWH11OZ09C+/vkMA34NjPfjSsJLomJtinld2cB6n72IPa78Xtx/Ab9zzs1OVBwiIm1NQwRFRFrPxbxeg9eD1SNmyXDO3R5TZ2DM60FALVAc26CZpQBPA3cBec65HngJ1c5v+muAoQ3EsgavBysn5vhZzrlRzZzD//PPo8A5l4U3rGxXVmGWCfwGeAiYabvuG1uPl9TtrGf++a1r5nh7MG+K8IomlinNt1LX1mC8hPBKINt//z6JPadYzrl7nHOH4fUoDsMbelmMl5SMinkvuzvnMvfitOqutf8e9gLW++dyA95wxJ5+fFvrxRf7cwXwe+Bz4CD/Gt3U2Pm0Ff9eu8auz6wm9uuJl1y94Jy7rf0iFhFpf0qwRETi6zHgVDM7wcyCZpbqTxwwIKbOeWY20r+f6VbgKedcpF47yUAKUASE/d6s42O2PwRcZGZfN7OAmfU3s4Odcxvwvsj+ysyy/G1DzezoZuLuBlQAW82sP16CEeu3wALn3CV495jt/DL9JHCyH0cIuBYvwftPc29Ufc6bIjyzieXtvWguAy9BKQJvwhC8e5D2YGYTzOxwP/7tQBUQdc5F8ZK0u82st1+3v5mdELOvs5hJTBrwTf/esmS8e7Hec86twXu/w358SWZ2M14PVlO6AduACjM7GLi8mfpx55wb1cT1uayhfcwsC2+Y7DvOuRvbN2IRkfanBEtEJI78L89T8XoXivB6lK5n99+3j+Ldn7MRbxjaDxtop9wvfxJvqN538Ibn7dw+H3/iC7yejzfZ1ZN0AV6C9pm/71N4E2o05RfAoX5bLwLP7NxgZlPxJqnY+YX+R8ChZnauc+4LvN6ue/F6fE4FTnXO1TRzvDblnPsM756jd/GGyRUA7zRSPQsvkdqCN9yxBLjT3/ZjYBnwnj+b36t4041jZgOBcnYN22zIX/GGeZbiTT6xcxjjK8DLePd+rcJL6pocxok3bPE7/jH/CMxppn5HMQ2YgPcHgdger0GJDkxEpC2Yc/VHIIiISFsxs7nAY865BxMdi7SOmZ2HN3zwJ41sfxhvwoiftWtgIiKSUJrkQkREZB845x5LdAwiItLxaIigiMh+wryH3u7V5ATS9ZjZTY38HPwz0bGJiHQFGiIoIiIiIiISJ+rBEhERERERiZMOdQ9WTk6Oy8/PT3QYIiIiIiIiTVq4cGGxcy63fnmHSrDy8/NZsGBBosMQERERERFpkpmtaqhcQwRFRERERETiRAmWiIiIiIhInCjBEhFpRri2lpdff4Pt1eFEhyIiIiIdXIe6B6shtbW1rF27lqqqqkSHIp1MamoqAwYMIBQKJToU6eQWvPwIJy68lpc2/pJvfueHiQ5HREREOrAOn2CtXbuWbt26kZ+fj5klOhzpJJxzlJSUsHbtWoYMGZLocKST21q8AYBDVjwAKMESERGRxnX4IYJVVVVkZ2cruZK9YmZkZ2er51PiIlJVAUDv8HpcNJrgaERERKQj6/AJFqDkSvaJfm4kbqq3AhAiQsmGBmdkFREREQE6SYIlIpJISTXb6l4Xr/wogZGIiIhIR6cEqwXMjGuvvbZu/a677mLmzJmJCyjGe++9x+GHH87YsWMZMWJEXVxz587lP//5T6vaPvHEE+nRowennHJKHCIV6bxSwuVUkAFA5YalCY5GREREOjIlWC2QkpLCM888Q3FxcVzbdc4RbeX9HBdeeCEPPPAAixcv5pNPPuGss84C4pNgXX/99Tz66KOtakOkK0iPVlCU3J9Kl0ykdHWiwxEREZEOrMPPIhjrF3//lM/Wb2u+4l4Y2S+LW04d1WSdpKQkLr30Uu6++25uu+223bYVFRVx2WWXsXq196XrN7/5DUceeSQzZ84kMzOT6667DoDRo0fzj3/8A4ATTjiBww8/nIULF/LSSy9x33338c9//hMz42c/+xnTp09n7ty5zJw5k5ycHD755BMOO+wwHnvssT3uK9q8eTN9+/YFIBgMMnLkSAoLC5k1axbBYJDHHnuMe++9l4MPPrjROJcvX86yZcsoLi7mhhtu4Hvf+x4AX//615k7d26T783f/vY3fvGLXxAMBunevTtvvfUWVVVVXH755SxYsICkpCR+/etfc+yxx/Lwww/z3HPPsX37dr766iuuu+46ampqePTRR0lJSeGll16iV69e/PGPf+SBBx6gpqaGAw88kEcffZT09PTdjjtp0iQeeughRo3yrt0xxxzDXXfdxfjx45uMV2RfZEQrqE7OYnNtb4LlaxMdjoiIiHRg6sFqoe9///s8/vjjbN26dbfyq666imuuuYYPPviAp59+mksuuaTZtr766iuuuOIKPv30UxYsWMDixYv56KOPePXVV7n++uvZsMGbEvrDDz/kN7/5DZ999hkrVqzgnXfe2aOta665huHDhzNt2jT+8Ic/UFVVRX5+PpdddhnXXHMNixcvZsqUKU3GuWTJEl5//XXeffddbr31VtavX9/i9+XWW2/llVde4aOPPuKFF14A4P7778fM+Pjjj5k9ezYXXnhh3Wx+n3zyCc888wwffPABP/3pT0lPT+fDDz/kiCOO4C9/+QsA3/rWt/jggw/46KOPGDFiBA899NAex50+fTpPPvkkABs2bGDDhg1KrqTNZLjtVCV1Y2tKHzKrNiQ6HBEREenAWt2DZWYDgb8AeYADHnDO/dbMZgLfA4r8qjc5515qzbGa62lqS1lZWVxwwQXcc889pKWl1ZW/+uqrfPbZZ3Xr27Zto6Kiosm2Bg8ezKRJkwCYN28e55xzDsFgkLy8PI4++mg++OADsrKymDhxIgMGDABg7NixFBYWMnny5N3auvnmmzn33HP517/+xV//+ldmz57dYK9TU3FOnTqVtLQ00tLSOPbYY5k/fz6nn356i96XI488khkzZnDWWWfxrW99q+6cfvCDHwBw8MEHM3jwYL788ksAjj32WLp160a3bt3o3r07p556KgAFBQUsWbIE8JKwn/3sZ5SVlVFRUcEJJ5ywx3HPOussjj/+eH7xi1/w5JNPcuaZZ7YoXpF9kem2szGpG5bUjQGlXyQ6HBEREenA4jFEMAxc65xbZGbdgIVm9m9/293OubvicIwO4eqrr+bQQw/loosuqiuLRqO89957pKam7lY3KSlpt/urYp/HlJGR0aLjpaSk1L0OBoOEw+EG6w0dOpTLL7+c733ve+Tm5lJSUrJHncbihD2nM9+b6c1nzZrF+++/z4svvshhhx3GwoULm6wfe06BQKBuPRAI1J3fjBkzeO655zjkkEN4+OGHG0wY+/fvT3Z2NkuWLGHOnDnMmjWrxTGL7K00KgkH0wlmZNOrtJzKim2kZWYlOiwRERHpgFo9RNA5t8E5t8h/XQ4sBfq3tt2OqFevXpx11lm7DVk7/vjjuffee+vWFy9eDEB+fj6LFi0CYNGiRaxcubLBNqdMmcKcOXOIRCIUFRXx1ltvMXHixBbH9OKLL+KcA7yhh8FgkB49etCtWzfKy8ubjRPg+eefp6qqipKSEubOncuECRNafPzly5dz+OGHc+utt5Kbm8uaNWuYMmUKjz/+OABffvklq1evZvjw4S1us7y8nL59+1JbW1vXTkOmT5/OHXfcwdatWxkzZkyL2xfZWyEXhmCIYK9BABSvW57giERERKSjius9WGaWD4wD3veLrjSzJWb2JzPrGc9jJcq1116722yC99xzDwsWLGDMmDGMHDmyrifljDPOoLS0lFGjRnHfffcxbNiwBtubNm0aY8aM4ZBDDuG4447jjjvuoE+fPi2O59FHH2X48OGMHTuW888/n8cff5xgMMipp57Ks88+y9ixY3n77bcbjRNgzJgxHHvssUyaNImf//zn9OvXD/CSv29/+9u89tprDBgwgFdeeQXwhiXuvN/q+uuvp6CggNGjR/O1r32NQw45hCuuuIJoNEpBQQHTp0/n4Ycf3q3nqjm//OUvOfzwwznyyCM5+OCD68pfeOEFbr755rr1M888kyeeeKJu5kSRNuEcIYtAMJnU3HwAyjetSGxMIiIi0mHZzt6PVjdklgm8CdzmnHvGzPKAYrz7sn4J9HXOXdzAfpcClwIMGjTosFWrVu22fenSpYwYMSIuMcqe6s922NXo50day4VrsP/JZd6gyxl83HcZ+PB4FhbcwmFn/CjRoYmIiEgCmdlC59wes6zFpQfLzELA08DjzrlnAJxzm5xzEedcFPgj0OC4N+fcA8658c658bm5ufEIR0QkbmprqgGwYIjcvoOpdUFcmZ6FJSIiIg2LxyyCBjwELHXO/TqmvK9zbud8xtOAT1p7LIm/mTNnJjoEkQ6ttqaaZMCSQqSmJLPWsknSs7BERESkEfGYRfBI4HzgYzNb7JfdBJxjZmPxhggWAv8dh2OJiLSr2hpvBlALJgOwJak3qZUbExmSiIiIdGCtTrCcc/OAhub1btUzr0REOoJwbQ2wK8HantKbwZWfJjIkERER6cDiOougiEhXU1vr34OV5CVYNRn9yI6WQMxz7kRERER2UoIlItKEiJ9gBfwEi6x+JBNmR5mGCYqIiMielGC10HPPPYeZ8fnnnzdap7CwkNGjR8ftmF988QXHHHMMY8eOZcSIEVx66aWA95Dgl15q3QjMiy++mN69e8c1XpGuKFyze4KV3GsgACUbChMVkoiIiHRgSrBaaPbs2UyePJnZs2c3uD0cDrf6GJFIZLf1H/7wh1xzzTUsXryYpUuX8oMf/ACIT4I1Y8YMXn755Va1IbI/CNfrwUrPGQRA+abCRIUkIiIiHVg8ZhFsP/+8ETZ+HN82+xTASbc3WaWiooJ58+bxxhtvcOqpp/KLX/wCgLlz5/Lzn/+cnj178vnnn/Ovf/2LcDjMueeey6JFixg1ahR/+ctfSE9P57XXXuO6664jHA4zYcIEfv/735OSkkJ+fj7Tp0/n3//+NzfccANnn3123XE3bNjAgAED6tYLCgqoqanh5ptvprKyknnz5vGTn/yEU045hR/84Ad88skn1NbWMnPmTKZOncrDDz/Ms88+y9atW1m3bh3nnXcet9xyCwBHHXUUhYWFTZ73m2++yVVXXQWAmfHWW2+RmZnJDTfcwD//+U/MjJ/97GdMnz6duXPncsstt9CjRw8+/vhjzjrrLAoKCvjtb39LZWUlzz33HEOHDuXvf/87//M//0NNTQ3Z2dk8/vjj5OXl7Xbcs88+m/PPP5+TTz4Z8JLBU045hTPPPLNl11QkjiJhb5KLQCgFgJ59hwBQVbImYTGJiIhIx6UerBZ4/vnnOfHEExk2bBjZ2dksXLiwbtuiRYv47W9/y5dffgl4w/quuOIKli5dSlZWFr/73e+oqqpixowZzJkzh48//phwOMzvf//7ujays7NZtGjRbskVwDXXXMNxxx3HSSedxN13301ZWRnJycnceuutTJ8+ncWLFzN9+nRuu+02jjvuOObPn88bb7zB9ddfz/bt2wGYP38+Tz/9NEuWLOFvf/sbCxYsaPF533XXXdx///0sXryYt99+m7S0NJ555hkWL17MRx99xKuvvsr111/Phg3e484++ugjZs2axdKlS3n00Uf58ssvmT9/Ppdccgn33nsvAJMnT+a9997jww8/5Oyzz+aOO+7Y47jTp0/nySefBKCmpobXXnutLtkSaW+RGi/BCvo9WLl5/ah2SbitehaWiIiI7Klz9WA109PUVmbPnl3Xk3P22Wcze/ZsDjvsMAAmTpzIkCFD6uoOHDiQI488EoDzzjuPe+65h//6r/9iyJAhDBs2DIALL7yQ+++/n6uvvhrwEoqGXHTRRZxwwgm8/PLLPP/88/zhD3/go48+2qPev/71L1544QXuuusuAKqqqli9ejUA//Vf/0V2djYA3/rWt5g3bx7jx49v0XkfeeSR/OhHP+Lcc8/lW9/6FgMGDGDevHmcc845BINB8vLyOProo/nggw/IyspiwoQJ9O3bF4ChQ4dy/PHHA17P2xtvvAHA2rVrmT59Ohs2bKCmpma3926nk046iauuuorq6mpefvlljjrqKNLS0loUs0i8RcLeEMFgyEuwUpNDrLVsghUbmtpNRERE9lPqwWpGaWkpr7/+Opdccgn5+fnceeedPPnkkzjnAMjIyNitvpk1ud6Q+m3E6tevHxdffDHPP/88SUlJfPLJJ3vUcc7x9NNPs3jxYhYvXszq1asZMWLEPsez04033siDDz5IZWUlRx55ZJMTfACkpKTUvQ4EAnXrgUCg7h61H/zgB1x55ZV8/PHH/OEPf6CqqmqPdlJTUznmmGN45ZVXmDNnTqMJqEh7iNYlWLt+vrck5ZKmhw2LiIhIA5RgNeOpp57i/PPPZ9WqVRQWFrJmzRqGDBnC22+/3WD91atX8+677wLw17/+lcmTJzN8+HAKCwtZtmwZAI8++ihHH310s8d++eWXqa2tBWDjxo2UlJTQv39/unXrRnl5eV29E044gXvvvbcu6fvwww/rtv373/+mtLS07j6onb1rLbF8+XIKCgr48Y9/zIQJE/j888+ZMmUKc+bMIRKJUFRUxFtvvcXEiRNb3ObWrVvp378/AI888kij9aZPn86f//xn3n77bU488cQWty8Sb5Fa748DwaRdCdb2lN5k1W5OVEgiIiLSgSnBasbs2bOZNm3abmVnnHFGo7MJDh8+nPvvv58RI0awZcsWLr/8clJTU/nzn//Mt7/9bQoKCggEAlx22WXNHvtf//oXo0eP5pBDDuGEE07gzjvvpE+fPhx77LF89tlnjB07ljlz5vDzn/+c2tpaxowZw6hRo/j5z39e18bEiRM544wzGDNmDGeccUbd8MBzzjmHI444gi+++IIBAwbw0EMPATBr1ixmzZoFwG9+8xtGjx7NmDFjCIVCnHTSSUybNo0xY8ZwyCGHcNxxx3HHHXfQp0+fFr+fM2fO5Nvf/jaHHXYYOTk5deULFizgkksuqVs//vjjefPNN/nGN75BcnJyi9sXibedPVhJMT+HNRl9yYkW62HDIiIisgfb2evREYwfP97Vn4Rh6dKldcPdZO88/PDDLFiwgPvuuy/RoSSMfn6kteY//3smfngj686fR/+hBQC89dhtHLXsDip/+DlpvfomOEIRERFJBDNb6JzbY3ID9WCJiDTB+dO0J8XcgxXqufNhwysSEpOIiIh0XEqwurAZM2bs171XIvHgIjuHCKbWlaXneglWxeZVCYlJREREOq5OkWB1pGGM0nno50biwfkzYIaSd/Vg9exzAACVetiwiIiI1NPhE6zU1FRKSkr0ZVn2inOOkpISUlNTm68s0gQX8YYIhmKGCPbu4z1sOFqmhw2LiIjI7jr8g4YHDBjA2rVrKSoqSnQo0smkpqYyYMCARIchnd3OBCtmFsHU5BBrLJukivWJikpEREQ6qDZPsMzsROC3QBB40Dl3+97sHwqFGDJkSJvEJiLSrMiek1wAlCXlklq5KRERiYiISAfWpkMEzSwI3A+cBIwEzjGzkW15TBGReHKRWsIuAIHgbuUVKXl018OGRUREpJ62vgdrIrDMObfCOVcDPAFMbeNjiojET6SW2gY6+2vS+5Cthw2LiIhIPW2dYPUHYqfZWuuX1TGzS81sgZkt0H1WItLRWKSGsDUwmjqrHyEiVJZpmKCIiIjskvBZBJ1zDzjnxjvnxufm5iY6HBGR3Vi0psEerFCvQQCUbljZ3iGJiIhIB9bWCdY6YGDM+gC/TESkUwhEaqi10B7lGTner7byzYXtHJGIiIh0ZG2dYH0AHGRmQ8wsGTgbeKGNjykiEjeBSDVh9kywuvfxZjet0sOGRUREJEabTtPunAub2ZXAK3jTtP/JOfdpWx5TRCSeAtFawg30YOX16e89bHirOuVFRERklzZ/DpZz7iXgpbY+johIWwhGawhb8h7laSnew4aD5UqwREREZJeET3IhItKRBaM1hAN7JlgAW4I5pOlhwyIiIhJDCZaISBOCrpZIYM8hggDbU/uQpYcNi4iISAwlWCIiTQi6GiINDBEEqM3oq4cNi4iIyG6UYImINCEpWkukkSGCge7ew4bLS9e3c1QiIiLSUSnBEhFpQpKrJdrIEMGUbO9hw8Xr9bBhERER8SjBEhFpQhK1RIMN92Bl5eUDsHVjYfsFJCIiIh2aEiwRkSaEXC2ukSGCOf0PAKC6ZFV7hiQiIiIdmBIsEZEmhKjFBVMa3NYrpy+VLhlXtqadoxIREZGOSgmWiEgTkl0trpEhghYIsDnYm+QKPWxYREREPEqwRESa4PVgNZxgAWxL7kO3qg3tGJGIiIh0ZEqwREQaEYlESLYINDJEEKAqox/ZkU3tGJWIiIh0ZEqwREQaUVtd6b1IarwHK5o1kF6UU76trH2CEhERkQ5NCZaISCOqq6u8F0mN92Al+8/CKlq3oj1CEhERkQ5OCZaISCN29mBZEwlWZp43VXvZBiVYIiIiogRLRKRRNX6CFQilNlqnV7+hAFQVrWyXmERERKRja1WCZWZ3mtnnZrbEzJ41sx5+eb6ZVZrZYn+ZFZdoRUTaUXWVl2AlJTeRYPUZRNgFiG7Rs7BERESk9T1Y/wZGO+fGAF8CP4nZttw5N9ZfLmvlcURE2l11lXcPVlMJlgVDFAdyCOlZWCIiIkIrEyzn3L+cc2F/9T1gQOtDEhHpGGoqywEIpmY0Wa8sOY/MqvXtEZKIiIh0cPG8B+ti4J8x60PM7EMze9PMpjS2k5ldamYLzGxBUVFRHMMREWmdSOU2AEJp3ZusV5nej15hPQtLREREWpBgmdmrZvZJA8vUmDo/BcLA437RBmCQc24c8CPgr2aW1VD7zrkHnHPjnXPjc3NzW39GIiJxEqnyEqzk9AZ/fe2qlzWQ3q6Uih2V7RGWiIiIdGBJzVVwzn2jqe1mNgM4Bfi6c875+1QD1f7rhWa2HBgGLGhtwCIi7SVSVQFAKK3pBCvUcyDBVY6N61Zy4EEj2yM0ERER6aBaO4vgicANwGnOuR0x5blmFvRfHwAcBOghMSLSuVR792ClZDSdYGXkDQGgbL1+zYmIiOzvmu3BasZ9QArwbzMDeM+fMfAo4FYzqwWiwGXOudJWHktEpF25aq8HK61bjybrZfc/EIAdm/UsLBERkf1dqxIs59yBjZQ/DTzdmrZFRBLNaiuodUFSU9KbrNejj9eDFd2yuj3CEhERkQ4snrMIioh0KVZdwQ5SCQSb/lVpyelsse4kla9tp8hERESko1KCJSLSCKupoNKa7r3aaUuoD+lVG9o4IhEREenolGCJiDQiWFtBVSCtRXV3pPWlV+3GNo5IREREOjolWCIijUgKb6cm2LIerHDWQPq4Ysora9o4KhEREenIlGCJiDQiFNlBOCmjRXWTeg4k1WrZsEH3YYmIiOzPlGCJiDQiK1JGVXLPFtVN7+3NJLhl/fK2DElEREQ6OCVYIiINcM7R05VRk5rbovo9+x0AwHY9C0tERGS/pgRLRKQB2yu2km7VkNm7RfV79BkKQKRUz8ISERHZnynBEhFpQOnGNQAkde/TovqW1oPtpBHYpnuwRERE9mdKsEREGlBevA6A1B79WraDGaWhPDKr1rdhVCIiItLRKcESEWnAji3eQ4Mzs/u2eJ/ylL70rN3UViGJiIhIJ6AES0SkAVUl3hDBnH6DW7xPdUY/ekeLiEZdW4UlIiIiHZwSLBGRBiRtWc42MsjskdfifaJZA+hh2yndUtqGkYmIiEhHpgRLRKQBmRWFbAwNALMW7xPs5fV26VlYIiIi+y8lWCIiDehds5qt6S0fHgiQluvV31G0oi1CEhERkU6gVQmWmc00s3Vmtthfvhmz7SdmtszMvjCzE1ofqohI+9hctJk8SrGcYXu1X5b/LKyaEj0LS0REZH+VFIc27nbO3RVbYGYjgbOBUUA/4FUzG+aci8TheCIibWrNkrfoDWQdePhe7ZedN5Bql4SVrWmbwERERKTDa6shglOBJ5xz1c65lcAyYGIbHUtEJK6qVr5H1BkDR0/Zq/2SQ0lsthxCFevaKDIRERHp6OKRYF1pZkvM7E9m1tMv6w/E/gl3rV+2BzO71MwWmNmCoqKiOIQjItI63Te9R2HSENK69Wy+cj1bk3qRUl3cBlGJiIhIZ9BsgmVmr5rZJw0sU4HfA0OBscAG4Fd7G4Bz7gHn3Hjn3Pjc3Ny93V1EJK6KNm/k4JpPKe139D7tX5mcTXqtpmkXERHZXzV7D5Zz7hstacjM/gj8w19dBwyM2TzALxMR6dCWv/U4kyxKzvhp+7R/bWo23Xd8GOeoREREpLNo7SyCfWNWpwGf+K9fAM42sxQzGwIcBMxvzbFERNqai0bJWfo4KwL5DC7Yu/uvdopm9KY7FURrq+McnYiIiHQGrb0H6w4z+9jMlgDHAtcAOOc+BZ4EPgNeBr6vGQRFpKNbunAuB0aWU3zweVhg3349WmZvALYWr49naCIiItJJtGqadufc+U1suw24rTXti4i0p+rX76ScNEafdMk+txHK6gPA1qJ19Ow7JF6hiYiISCfRVtO0i4h0Kkv+8zLjKv/D0iEXkb4PswfulN6rHwDbSzfEKzQRERHpRJRgich+LxKJkvTaLRTTkzFn/qRVbWVmewlWTZkSLBERkf2REiwR2e+99+KfGRn5nPXjriY1I6tVbfXM9R75Fy7fFI/QREREpJNRgiUi+7WK7dvJX3Q7q4KDKTjl+61uLyurG+UuDSo2xyE6ERER6WxaNcmFiEhnt+jJ/8dRbOarbzyKBUOtbs/M2BLoQaiyKA7RdQ7lW0spXbeM8o0rqC5ZTU15EW5HKaHqMlLDW0kJlxOI1pAUrSGJMCFXS5AIUQJECBKxIFELEiVINJBE2JKJBJKJBEJEAylEAyFcUioukAxJyRBMgaQULCkZS0olEEohkJRKIDmFQCgFF/TqumAy0WAyLhDCcIDDXBRzDlwUiEI0itu57qI4FwF/3UWj3mu8Os55+3uvqSv3VhzORcHhb4/6x4OoV7llzBourrfuYkoa3qPxtlpWr4Eya+Z4zUS052ECzWzfdZ71t+1RtV4Fq1/DGnzZIntz7Prb9qxbf7XpaKzRld1XA8lpHDjlbAJJ+lon0hHokygi+62iDas5tPAhPs78GgVHnBa3drcFe5FSXRK39jqCaCTCmpWfs3n5YmrWf0qo9At67VhBbngT3W073erVLyedbdaN7YEsqpK6EQ31xAV2JU7OggSJYi4C0TBEI1i0loC/BKM1JIUrCLpSklwtIVdDyNWSTJgQtSRTS7Lp6R8iO71ftI7Dz/pxosMQEZRgich+bOXfbmIcNfSa9n9xbbcyOZs+VSvi2mZ727h2BauXvEXNqvn0LF3CkJovGWzVDPa3b7IcNqfk80XPsUS7DyTYaxAZvQ+ge58DyO3dl24pKXskXfESiTpqwlG21NRSXV1JTVUlNdVV1NZUUltTRSBSjYVrsGgNFq7GorU4C+AwHAGwAM4MswCYYRaEwM71na+DmBlYgICZ10thRsACWMCAAAEDC3htBsywQADDMDO/jl9m5u3eRG+FY2dPWAPb9ihuQY+Y3+PW+PEabby5Zpto03m9g00dr64d1+h6/VfNnn/9tvY41u4xNrFrs29Hk+dfv636x6pff7d9mz5wc+9B8IXvM+SzWVRXXUlKakaTbYlI21OC1YRoJEJ1VSVpGZmJDkVE4mz18s84tORFFvT+FpMOHBPXtmtSs+m+Y2Fc22xLLhpl1fJP2bj4XySvfpv+5UvoQwl9gBoXpDB0IB/nnkKwXwE988fS76Cx5HXrSV6C4g0GjLTkIGnJQchMBfZ9Wn2RruDjshvp/doFvPf0XUw695ZEhyOy31OC1YQPX3mYQfN/yccjL2fc6VcRSk5NdEgiEidr//G/9CHAQdN+Hve2o+m9ySrdTrSmikAH/b2xpWgDK99/gciyuQwom08+xeQDRfRkVeY4CvsfRs7wIxk86nCGpaQnOlwRacLoI09lyTsTGPPl/WxadTZ5g4cnOiSR/ZoSrCZk9h5CcagfEz/7f2z67A+sGvQtBn3jv+kz6KBEhyYirbBh9TLGl77EktxTGd8vP+7tW7feAGwrWU+PvgfEvf19EY1E+fLTBWxe8By5619neO3nHGqOrWSwIuNQ1g4+in7jjqff0DHkBjTBrEhnYoEAOWffj/vzFIof+y69rn+NUHJKosMS2W8pwWrC8PHH4Q6dx0dvPoO9/zvGr3oQHnqQL0MHsaXvUaQPO4bBow8nq2fvNo8lUlvDju3bqN5eTtWOcmoqK6ipKqe2soJw1XYi1d7iarbjanZAzQ6IePceWDSMRWqwaJhAtIZANEzA+TeSuzABFybJ1RIggjkwonUzbgVczOudM3D5dzJ4dx5EAfw6u3MtmKupfp091xuy9/vsGUtLjtOYvZ2Dqg21cSgd6EzjKtVVEiDKwFNb91DhxoS69wFga/G6hCZYVVWVfPbey1R+8iKDi9/iYDZxMLA86UA+GHwJ3Q85hQMPmcw4zTwm0un1yx/OovG/4NCFN/L+rEuY8P1HCAQ7/h9LopEI5eVbKS8rorK8jJqKLUR2lBGu3Eqkejvh6kqiNTugthILVxGIVBH0l0CkmqRoNebCWDRCwIUxF8FchICLECRC0P/Xm7M0SsA19L3FNVG2S0Pfdepr/LvPvnxXadl3qb3dP/bY1mS9pvfds5VG9rcGyppRv9aHgVGknjmLr49I1OD0vaP/VZthgQCHHHsmHHsma1d8zrq3/kzW2rmMX/0QwTUPwmuwiV6UhvpQldqbypRcSOlGMCUdl5RGJJDsTwscxYhg0QiRcC3UbicQriRQu4NAuJJgpJKkSCWhSCWhaDXJ0UpSXBWpVJPqqki2CN2gxTeN17ggtYSotSTCJBG2EBGC3r+WRMT/NxoIUWspVFsSUQvW3QCO+SmVBQDv5u5drwOAd5P4buWx71szNyH7hfX2aWS7a6CsseO0oE7scZxr2S/MhltuA3txgLaOpf4N2l2NGziJiW00jCatZ18AdpRsaJP2m1K8eQPL33mG4LJXGF4xn0OtkioX4quMwyg66DKGHHEGQ/sMZmi7RyYibe3QUy/n3Q2fccT6vzD/3nMZ898PkZrWvkN8ayNRiktK2LJpDRUl66gqXQcVmwhu30RyVTFp1cVkhLeQFqkg3W0n0+2guzm6t6DtKheiylKoIZlqS6HGkr3HOliIqAWJWDIumISzIAS87zVRC+J2PgbCkuq+u3jfBbzvOwYx0+1bzMz7OxOEXd8cHNbEbCct/H+zbv+m6zf4/WSfjr1rW2MT0exZvfnvV9DEd6i9nEBn96PsuW8kZSi9MpL3uc32pgRrLww44GAGHODNNratrIhVi9+ifPViUku/IHnHRnpVfEV2+fukuyoC1vQPVtQZlaRQaanUWArVlkpNIJWaQBqVyVlEgulEktJwoTSiSekQSseSM7CUDIL+kpSaSSgtk1BqBslpmaSmZ5GS0Y30jG4kh5LpPD+GIl1LVk4/AKrK2j7BctEoK7/4kI3zn6PH2tcYXvMZh5ujmB58kfMNUkedzEGTTqYgPavNYxGRxJt0yW95/+EUDl/9RwrvnMjWyTdTcPSZre7Nqg2HKSneSNmmtVQUr6W6bD3RrRux7RsJVRaTXlNM93AJ2W4Lfa2avvX3d0FKAr3YGuzJlqTebE4/kGhyFqR2J5CaRTCjJ6H07gTTexLK6EFKRg9S0jPJSO9GanoGySlppAYCdMy7WkV2Z81NDdqexo8f7xYsWJDoMFrNRaNsr9xBpNrrzsaf+tcFglgwSFpKCqGU9JY/BFJEOpWt28rp/usBLDjgCsZf8L9xb7+muoov5r/C9iX/YGDxm/R3mwBYHhxKcb9jyTlsKgeMORILBON+bBHpHJbMfYrcN2+krytio+WyutfXiPQZS0bfYWT2yCWYkk4oGKSqajvVlTuo3b6VcPkmarZtJlpRhG0vJqW6mIyaYrpHSunlyhp89tx20igL9KQiOYfq1Fwi6b2xbn1I7tGXtF79yOo9gKycgYQys/W9R7ocM1vonBtfv1w9WG3AAgEyMzJB07uL7JeyumWyiV4ES5fHpT0XjbJm+Ses//BlQqveYljFAgqskmoX4ov0caw/4FLyv/YthvY/QEP/RASAMcecSc0Rp7DglT8T+PzvjC5+mfSS5+HT5veNOKPMulMe7EFFcg7rUg9kdXpvglle4pSR3Z/uuQPpkTeAjNRu6MlbIrtrVYJlZnOAnTcx9ADKnHNjzSwfWAp84W97zzl3WWuOJSLSWZgZ61KGkl3xRfOVG+CiUdav+or1H7+BW/EmA8vmM4hiBuE94PfzXseRPPJkhh1xKmMyNfRPRBqWnJLK+NMuh9Mux0VqKVq7nKI1X1BVUYar2UE0GvF6slLSSE7rTqh7b3rm9qd7r95kB4NkJ/oERDqpViVYzrnpO1+b2a+ArTGblzvnxramfRGRzmpb94Mp2LyISE0VwWaehVVctIl1n39A5cr3Sdm0kIHbP6U/ZfQHtpLB8szDWDPoKAYcdhL9DhhFnobZiMhesmCI3MEHkzv44ESHItLlxWWIoJkZcBZwXDzaExHp7NIOOILQ5kf5/M3ZHPxfF+GiUUo2rmHT6s+p2PAVbtNnpJV9QZ+qFeRRSo6/3xrrx8ruE1nRfzw5B09m8MjDOVTTqIuIiHQacZnkwsyOAn698yYvf4jgp8CXwDbgZ865t5trp6tMciEisqOqmk23H8pAt55iy6a720qa1dRtr3Yh1iYNZEvmQURzDyZz4Bj6jjySnrn1594SERGRjmifJ7kws1eBPg1s+qlz7nn/9TnA7JhtG4BBzrkSMzsMeM7MRjnntjXQ/qXApQCDBg1q/kxERDqB9NQUki58hvkv3klSbTmR1J4Eeg0hPW8o2QOG03vwcIaG9DAFERGRrqbVPVhmlgSsAw5zzq1tpM5c4DrnXJPdU+rBEhERERGRzqCxHqzWPXXO8w3g89jkysxyzSzovz4AOAhYEYdjiYiIiIiIdFjxuHP6bHYfHghwFHCrmdUCUeAy51xpHI4lIiIiIiLSYbU6wXLOzWig7Gng6da2LSIiIiIi0pnEZRbBeDGzImBVouOoJwcoTnQQ0m50vfcfutb7D13r/Yuu9/5D13r/0hGv92DnXG79wg6VYHVEZragoZvXpGvS9d5/6FrvP3St9y+63vsPXev9S2e63vGY5EJERERERERQgiUiIiIiIhI3SrCa90CiA5B2peu9/9C13n/oWu9fdL33H7rW+5dOc711D5aIiIiIiEicqAdLREREREQkTpRgiYiIiIiIxIkSrCaY2Ylm9oWZLTOzGxMdj8SPmQ00szfM7DMz+9TMrvLLe5nZv83sK//fnomOVeLDzIJm9qGZ/cNfH2Jm7/uf7zlmlpzoGCU+zKyHmT1lZp+b2VIzO0Kf7a7JzK7xf4d/YmazzSxVn+2uw8z+ZGabzeyTmLIGP8vmuce/7kvM7NDERS57q5Frfaf/e3yJmT1rZj1itv3Ev9ZfmNkJCQm6CUqwGmFmQeB+4CRgJHCOmY1MbFQSR2HgWufcSGAS8H3/+t4IvOacOwh4zV+XruEqYGnM+v8BdzvnDgS2AN9NSFTSFn4LvOycOxg4BO+667PdxZhZf+CHwHjn3GggCJyNPttdycPAifXKGvssnwQc5C+XAr9vpxglPh5mz2v9b2C0c24M8CXwEwD/+9rZwCh/n9/539s7DCVYjZsILHPOrXDO1QBPAFMTHJPEiXNug3Nukf+6HO8LWH+8a/yIX+0R4PSEBChxZWYDgJOBB/11A44DnvKr6Fp3EWbWHTgKeAjAOVfjnCtDn+2uKglIM7MkIB3YgD7bXYZz7i2gtF5xY5/lqcBfnOc9oIeZ9W2XQKXVGrrWzrl/OefC/up7wAD/9VTgCedctXNuJbAM73t7h6EEq3H9gTUx62v9MulizCwfGAe8D+Q55zb4mzYCeYmKS+LqN8ANQNRfzwbKYn5x6/PddQwBioA/+0NCHzSzDPTZ7nKcc+uAu4DVeInVVmAh+mx3dY19lvW9rWu7GPin/7rDX2slWLJfM7NM4GngaufctthtznuGgZ5j0MmZ2SnAZufcwkTHIu0iCTgU+L1zbhywnXrDAfXZ7hr8e2+m4iXV/YAM9hxiJF2YPsv7BzP7Kd6tHY8nOpaWUoLVuHXAwJj1AX6ZdBFmFsJLrh53zj3jF2/aOaTA/3dzouKTuDkSOM3MCvGG+h6Hd49OD39YEejz3ZWsBdY6597315/CS7j02e56vgGsdM4VOedqgWfwPu/6bHdtjX2W9b2tCzKzGcApwLlu18N7O/y1VoLVuA+Ag/zZiJLxbqZ7IcExSZz49+A8BCx1zv06ZtMLwIX+6wuB59s7Nokv59xPnHMDnHP5eJ/j151z5wJvAGf61XStuwjn3EZgjZkN94u+DnyGPttd0Wpgkpml+7/Td15rfba7tsY+yy8AF/izCU4CtsYMJZROyMxOxBvef5pzbkfMpheAs80sxcyG4E1sMj8RMTbGdiWDUp+ZfRPv3o0g8Cfn3G2JjUjixcwmA28DH7Prvpyb8O7DehIYBKwCznLO1b/BVjopMzsGuM45d4qZHYDXo9UL+BA4zzlXncDwJE7MbCzehCbJwArgIrw/KOqz3cWY2S+A6XjDhz4ELsG7F0Of7S7AzGYDxwA5wCbgFuA5Gvgs+0n2fXjDRHcAFznnFiQgbNkHjVzrnwApQIlf7T3n3GV+/Z/i3ZcVxrvN45/120wkJVgiIiIiIiJxoiGCIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUi0kGYWb6ZOTNLSnQsXZ2ZzTCzeYmOo6Mxsylm9kWi4xAR6cyUYImISKdmZjPNrNbMKmKWGxIdV2fknHvbOTc8nm2a2TAze97Misys1MxeMbO4HkNEpCNRgiUiEifqeUqoOc65zJjljkQHFE+d/GerB/ACMBzIA+YDzycyIBGRtqQES0SkFcys0Mx+bGZLgO1mlmRmk8zsP2ZWZmYfmdkxMfXnmtn/mtl8M9vm/2W/VyNtX2RmS82s3MxWmNl/19s+1cwW++0sN7MT/fLuZvaQmW0ws3Vm9j9mFmzmPIaa2etmVmJmxWb2uJn1iNlWamaH+uv9/N6IY/z108zsU/9855rZiHrvz3VmtsTMtprZHDNL3ft3eu+Z2Y3++1JuZp+Z2bRG6pmZ3W1mm/338mMzG+1vSzGzu8xstZltMrNZZpbWwuM/7Nf/tx/Dm2Y2OGb7b81sjX/MhWY2JWbbTDN7ysweM7NtwAwzm2hm7/rv8wYzu8/MkmP2cWZ2hZl95R/vl/61+49/jCdj6zcS8zFmtrYl59dSzrn5zrmHnHOlzrla4G5guJllx/M4IiIdhRIsEZHWOwc4Ge8v9XnAi8D/AL2A64CnzSw3pv4FwMVAXyAM3NNIu5uBU4As4CLg7pgkZyLwF+B6/7hHAYX+fg/77R4IjAOOBy5p5hwM+F+gHzACGAjMBHDOLQd+DDxmZunAn4FHnHNzzWwYMBu4GsgFXgL+Xu+L/FnAicAQYAwwo8EAzCb7yUNjy+RmzqG+5cAUoDvwCz/+vg3UOx7v/Rvm1z0LKPG33e6Xj8V7P/sDN+9FDOcCvwRygMXA4zHbPvDb7QX8FfhbveRzKvAU3vV9HIgA1/htHQF8Hbii3vFOAA4DJgE3AA8A5+Fdz9F4P6v7zE+UG7s+v2thM0cBG51zJc3WFBHpjJxzWrRo0aJlHxe8pObimPUfA4/Wq/MKcKH/ei5we8y2kUANEATyAQckNXKs54Cr/Nd/AO5uoE4eUA2kxZSdA7yxl+d1OvBhvbIXgI+BJUCKX/Zz4MmYOgFgHXBMzPtzXsz2O4BZcb4GM/33sCxm6ddAvcXAVP/1DGCe//o44Eu8pCQQU9+A7cDQmLIjgJUtjOth4ImY9Uy8JGlgI/W3AIfEnNNbzbR/NfBszLoDjoxZXwj8OGb9V8BvmmnzGGBtPK9PvfYH+D8f57TVMbRo0aIl0UtnHtMtItJRrIl5PRj4tpmdGlMWAt5opP4qf3tO/UbN7CTgFrwelACQjpfggNcj8VIDsQz229tgZjvLAvWOuQczywN+i9fj083fZ0u9an/ES7Iudc5V+2X9/HMAwDkXNbM1eD09O22Meb3D3yfennTOnRdbYGYXAD/CS1zBS3D2eJ+dc6+b2X3A/cBgM3sGr+cxFe89XxjzXhpeMtxSde+7c67CzErxzn+NmV0HfNdfd3g9lTkN7eufzzDg18B4P64kvCQq1qaY15UNrPfZi9jjyu/F/RfwO+fc7ETFISLS1jREUESk9VzM6zV4PVg9YpYM59ztMXUGxrweBNQCxbENmlkK8DRwF5DnnOuBl1Dt/Ka/BhjaQCxr8HqwcmKOn+WcG9XMOfw//zwKnHNZeMPKdmUVZpnAb4CHgJm2676x9XhJ3c565p/fumaOtwfzpgivaGKZ0nwrdW0NxksIrwSy/ffvk9hziuWcu8c5dxhej+IwvKGXxXhJyaiY97K7cy5zL06r7lr772EvYL1/LjfgDUfs6ce3tV58sT9XAL8HPgcO8q/RTY2dT1vx77Vr7PrMamK/nnjJ1QvOudvaL2IRkfanBEtEJL4eA041sxPMLGhmqf7EAQNi6pxnZiP9+5luBZ5yzkXqtZMMpABFQNjvzTo+ZvtDwEVm9nUzC5hZfzM72Dm3Ae+L7K/MLMvfNtTMjm4m7m5ABbDVzPrjJRixfgsscM5dgneP2c4v008CJ/txhIBr8RK8/zT3RtXnvCnCM5tY3t6L5jLwEpQi8CYMwbsHaQ9mNsHMDvfj3w5UAVHnXBQvSbvbzHr7dfub2Qkx+zqLmcSkAd/07y1LxrsX6z3n3Bq89zvsx5dkZjfj9WA1pRuwDagws4OBy5upH3fOuVFNXJ/LGtrHzLLwhsm+45y7sX0jFhFpf0qwRETiyP/yPBWvd6EIr0fpenb/ffso3v05G/GGof2wgXbK/fIn8YbqfQdveN7O7fPxJ77A6/l4k109SRfgJWif+fs+hTehRlN+ARzqt/Ui8MzODWY2FW+Sip1f6H8EHGpm5zrnvsDr7boXr8fnVOBU51xNM8drU865z/DuOXoXb5hcAfBOI9Wz8BKpLXjDHUuAO/1tPwaWAe/5s/m9ijfdOGY2EChn17DNhvwVb5hnKd7kEzuHMb4CvIx379cqvKSuyWGceMMWv+Mf84/AnGbqdxTTgAl4fxCI7fEalOjARETagjlXfwSCiIi0FTObCzzmnHsw0bFI65jZeXjDB3/SyPaH8SaM+Fm7BiYiIgmlSS5ERET2gXPusUTHICIiHY+GCIqI7CfMe+jtXk1OIF2Pmd3UyM/BPxMdm4hIV6AhgiIiIiIiInGiHiwREREREZE46VD3YOXk5Lj8/PxEhyEiIiIiItKkhQsXFjvncuuXd6gEKz8/nwULFiQ6DBERERERkSaZ2aqGyjVEUEREREREJE6UYImIiIiIiMSJEiwRkQZEo5phVURERPZeh7oHqyG1tbWsXbuWqqqqRIcinUxqaioDBgwgFAolOhTpZF565SXefvcdrr7mZ+R1T0t0OCIiItKJdPgEa+3atXTr1o38/HzMLNHhSCfhnKOkpIS1a9cyZMiQRIcjnUyfD+7gf/mQd17JJu+sHyU6HBEREelEOvwQwaqqKrKzs5VcyV4xM7Kzs9XzKfskYkEAkte9m+BIREREpLPp8AkWoORK9ol+bmRfJUUqAehV/mWCIxEREZHOplMkWCIi7Skl6iVYAyNriNRWJzgaERER6UyUYLWAmXHttdfWrd91113MnDkzcQHFeO+99zj88MMZO3YsI0aMqItr7ty5/Oc//9nndletWsWhhx7K2LFjGTVqFLNmzYpTxCIdm3OOFOcNLU22CJtXf5HgiERERKQzUYLVAikpKTzzzDMUFxfHtV3nHNFotFVtXHjhhTzwwAMsXryYTz75hLPOOgtofYLVt29f3n33XRYvXsz777/P7bffzvr161sVq0hnUB2OkkYVG5IGAFC8RsMERUREpOWUYLVAUlISl156KXffffce24qKijjjjDOYMGECEyZM4J133gFg5syZ3HXXXXX1Ro8eTWFhIYWFhQwfPpwLLriA0aNHs2bNGq6//npGjx5NQUEBc+bMAbwE6ZhjjuHMM8/k4IMP5txzz8W5PZ/Ls3nzZvr27QtAMBhk5MiRFBYWMmvWLO6++27Gjh3L22+/3WSc559/PkcccQQHHXQQf/zjHwFITk4mJSUFgOrq6kYTwXvuuYeRI0cyZswYzj77bABKS0s5/fTTGTNmDJMmTWLJkiV1x7rwwguZMmUKgwcP5plnnuGGG26goKCAE088kdraWgBuvfVWJkyYwOjRo7n00kv3OO9oNEp+fj5lZWV1ZQcddBCbNm1q6jKKtEhNJEoGVWztdiAAFRtXJDgiERER6Uw6/DTtsX7x90/5bP22uLY5sl8Wt5w6qtl63//+9xkzZgw33HDDbuVXXXUV11xzDZMnT2b16tWccMIJLF26tMm2vvrqKx555BEmTZrE008/zeLFi/noo48oLi5mwoQJHHXUUQB8+OGHfPrpp/Tr148jjzySd955h8mTJ+/W1jXXXMPw4cM55phjOPHEE7nwwgvJz8/nsssuIzMzk+uuuw6A73znO43GuWTJEt577z22b9/OuHHjOPnkk+nXrx9r1qzh5JNPZtmyZdx5553069dvj3O5/fbbWblyJSkpKXUJzy233MK4ceN47rnneP3117ngggtYvHgxAMuXL+eNN97gs88+44gjjuDpp5/mjjvuYNq0abz44oucfvrpXHnlldx8880AnH/++fzjH//g1FNPrTtmIBBg6tSpPPvss1x00UW8//77DB48mLy8vGavo0hzamojdKea2h4HUFP6Nq5sVaJDEhERkU5EPVgtlJWVxQUXXMA999yzW/mrr77KlVdeydixYznttNPYtm0bFRUVTbY1ePBgJk2aBMC8efM455xzCAaD5OXlcfTRR/PBBx8AMHHiRAYMGEAgEGDs2LEUFhbu0dbNN9/MggULOP744/nrX//KiSee2OAxm4pz6tSppKWlkZOTw7HHHsv8+fMBGDhwIEuWLGHZsmU88sgjDfYQjRkzhnPPPZfHHnuMpKSkunM6//zzATjuuOMoKSlh2zYvMT7ppJMIhUIUFBQQiUTq4i0oKKg7vzfeeIPDDz+cgoICXn/9dT799NM9jjt9+vS63r4nnniC6dOnN/mei7RUbU0VIYsQDXVjc7A3yeVrEx2SiIiIdCKdqgerJT1Nbenqq6/m0EMP5aKLLqori0ajvPfee6Smpu5WNykpabdhdbHPY8rIyGjR8XYO0QNv+F84HG6w3tChQ7n88sv53ve+R25uLiUlJXvUaSxO2HM68/rr/fr1Y/To0bz99tuceeaZu2178cUXeeutt/j73//Obbfdxscff9yicwoEAoRCobpjBQIBwuEwVVVVXHHFFSxYsICBAwcyc+bMBp9ldcQRR7Bs2TKKiop47rnn+NnPftbkcUVaKlzl/eHBJWdQltyXrCrdeygiIiIt1+oeLDMbaGZvmNlnZvapmV3ll880s3Vmtthfvtn6cBOrV69enHXWWTz00EN1Zccffzz33ntv3frOoXD5+fksWrQIgEWLFrFy5coG25wyZQpz5swhEolQVFTEW2+9xcSJE1sc04svvlh3j9JXX31FMBikR48edOvWjfLy8mbjBHj++eepqqqipKSEuXPnMmHCBNauXUtlpTdV9ZYtW5g3bx7Dhw/f7djRaJQ1a9Zw7LHH8n//939s3bqViooKpkyZwuOPPw5495Ll5OSQlZXVovPZmUzl5ORQUVHBU0891WA9M2PatGn86Ec/YsSIEWRnZ7eofZHmhCv9HuhQOjvS+5Mb2ZjYgERERKRTiccQwTBwrXNuJDAJ+L6ZjfS33e2cG+svL8XhWAl37bXX7jab4D333MOCBQsYM2YMI0eOrJvO/IwzzqC0tJRRo0Zx3333MWzYsAbbmzZtGmPGjOGQQw7huOOO44477qBPnz4tjufRRx9l+PDhjB07lvPPP5/HH3+cYDDIqaeeyrPPPls3yUVjcYI3zO/YY49l0qRJ/PznP6dfv34sXbqUww8/nEMOOYSjjz6a6667joKCAgAuueQSFixYQCQS4bzzzqOgoIBx48bxwx/+kB49ejBz5kwWLlzImDFjuPHGG3nkkUdafD49evTge9/7HqNHj+aEE05gwoQJddtmzZq1W9zTp0/nscce0/BAiatwlf+HiZQMIt0H0ZNt7KgoS2hMIiIi0nlYQzPTtapBs+eB+4AjgQrn3F3N7FJn/PjxbsGCBbuVLV26lBEjRsQ1Rtll5syZu02G0dXo50f21ucL3+Dgv5/OR0f/kZqKrUxYeB2rp7/KoBETmt9ZRERE9htmttA5N75+eVwnuTCzfGAc8L5fdKWZLTGzP5lZz3geS0SkLbjq7QAEkzPIyDsAgK0bliUyJBEREelE4jbJhZllAk8DVzvntpnZ74FfAs7/91fAxQ3sdylwKcCgQYPiFY600MyZMxMdgkiHEqn17gMMhlLp0c9LsKqK1yQyJBEREelE4tKDZWYhvOTqcefcMwDOuU3OuYhzLgr8EWhw5gbn3APOufHOufG5ubnxCEdEZJ9F/AdeB0PJ5OYNoNYFiW7VVO0iIiLSMvGYRdCAh4Clzrlfx5T3jak2DfiktccSEfn/7d17fFXlne/xz2/fcichIdwSLhG5Ey6CSEUtWG+1VluxSk9tK5yOddpOp86cTmsvtjqnr1dbO505M9r21NEy7bGotTPK6cVKvVQ5rRcQBJSLIBECCYSEQO77sp7zx96JgVwIZCebnXzfr9c2az1rref5JYsV1y/PWs8z0GLRMACBYIhAMMhRKyTQqKHaRUREpG+S8YjgUuCTwDYz25Io+xrwcTObT/wRwQrgs0loS0RkQHntCVYoPmfbseBosls0VLuIiIj0Tb8TLOfcBsC62TQkhmUXkeGlowcrEAKgKXMMJY1vpjIkERERSSNJHUVwKHvyyScxM3bu3NnjPhUVFcyZMydpbe7atYtly5Yxf/58Zs6cye233w7EJwn+3e/OPn9tbW1l8eLFzJs3j9mzZ/Otb30rWSGLpD2XSLCCGfEerEjOeEZ5R3FeLJVhiYiISJpQgtVHa9eu5ZJLLmHt2rXdbo9Go/1uIxY7+Qbui1/8InfeeSdbtmxhx44d/M3f/A3Q/wQrIyOD5557jjfeeIMtW7bw9NNP8/LLL/crdpGhwovGB7kIJnqwLL+UkMU4VnMwlWGJiIhImlCC1QeNjY1s2LCBhx56iEcffbSj/IUXXuDSSy/l+uuvZ9asWUA80frEJz7BzJkzuemmm2hubgbg2WefZcGCBZSXl7N69Wra2toAmDx5Ml/5yle44IIL+NWvfnVSu1VVVZSWlnasl5eXEw6Hufvuu3nssceYP38+jz32GE1NTaxevZrFixezYMECnnrqKQDWrFnDDTfcwLJly5g6dSr33HMPAGZGbm4uAJFIhEgkQnyskpP96le/Ys6cOcybN4/LLrsMiPd+rVq1ivLychYsWMDzzz/f0dZHPvIRrrzySiZPnsz999/PD3/4QxYsWMCSJUuoq6sD4MEHH+TCCy9k3rx5rFixouPn09mSJUt48833HslatmwZp05ALTJQXCyeYLW/g5VRNAGAY1UVqQpJRERE0kjS5sEaFL//KlRvS26dY8vhg9/tdZennnqKa665hmnTplFUVMSmTZtYuHAhAK+//jrbt2+nrKyMiooKdu3axUMPPcTSpUtZvXo1P/rRj/jCF77AbbfdxrPPPsu0adP41Kc+xY9//GO+9KUvAVBUVMTrr7/epd0777yTyy+/nIsvvpirrrqKVatWUVBQwL333svGjRu5//77Afja177G5ZdfzsMPP0x9fT2LFy/miiuuAODVV19l+/btZGdnc+GFF/KhD32IRYsWEYvFWLhwIXv27OHzn/88F110UZf27733Xv7whz9QUlJCfX09AA888ABmxrZt29i5cydXXXUVu3fvBmD79u1s3ryZ1tZWzj//fL73ve+xefNm7rzzTn7+85/zpS99iRtvvJG/+qu/AuAb3/gGDz30UEfPXLtbbrmFxx9/nHvuuYeqqiqqqqpYtKjLJNkiAyOWeEQwFO/Byhs9CYAThyuAy1IUlIiIiKQL9WD1wdq1a1m5ciUAK1euPOkxwcWLF1NWVtaxPmHCBJYuXQrArbfeyoYNG9i1axdlZWVMmzYNgE9/+tO8+OKLHcfccsst3ba7atUqduzYwcc+9jFeeOEFlixZ0tHz1dkzzzzDd7/7XebPn8+yZctobW1l//79AFx55ZUUFRWRlZXFjTfeyIYNGwDw+/1s2bKFysrKjiTsVEuXLuW2227jwQcf7Hh8ccOGDdx6660AzJgxg0mTJnUkWMuXLycvL4/i4mLy8/P58Ic/DMR73ioqKoB4EnbppZdSXl7OI488clJPVbubb76ZJ554AoDHH3+cm266qdufj8hAaO/BCgbjPVgjx8UnGw7X7U9ZTCIiIpI+0qsH6zQ9TQOhrq6O5557jm3btmFmxGIxzIz77rsPgJycnJP2P/VRu+4evTvVqXV0Nn78eFavXs3q1auZM2dOt4mQc45f//rXTJ8+/aTyV1555bTxFBQUsHz5cp5++ukuA3T85Cc/4ZVXXuG3v/0tCxcuZNOmTb1+HxmJQQEAfD5fx7rP5+t4R+22227jySefZN68eaxZs4YXXnihSz0lJSUUFRWxdetWHnvsMX7yk5/02q5IUnnxBMuXeAercNQ4Wl0QjusdLBERETk99WCdxhNPPMEnP/lJ3n33XSoqKjhw4ABlZWW89NJL3e6/f/9+/vKXvwDwy1/+kksuuYTp06dTUVHBnj17APjFL37B+9///tO2/fTTTxOJxG/2qqurqa2tpaSkhLy8PBoaGjr2u/rqq/m3f/s3nHMAbN68uWPb+vXrqauro6WlhSeffJKlS5dSU1PT8chfS0sL69evZ8aMGV3a37t3LxdddBH33nsvxcXFHDhwgEsvvZRHHnkEgN27d7N///4uiV1vGhoaGDduHJFIpKOe7txyyy18//vf5/jx48ydO7fP9Yv0l8UixJyBzw+Az+/jqG8UwaaqFEcmIiIi6UAJ1mmsXbuWj370oyeVrVixosfRBKdPn84DDzzAzJkzOXbsGH/9139NZmYmP/vZz/jYxz5GeXk5Pp+PO+6447RtP/PMMx2DTFx99dXcd999jB07luXLl/PWW291DHLxzW9+k0gkwty5c5k9ezbf/OY3O+pYvHgxK1asYO7cuaxYsYJFixZRVVXF8uXLmTt3LhdeeCFXXnkl1113HQB3330369atA+DLX/4y5eXlzJkzh4svvph58+bxuc99Ds/zKC8v55ZbbmHNmjUn9Vydzj/+4z9y0UUXsXTp0pOSunXr1nH33Xd3rN900008+uij3HzzzX2uWyQpYlGip3Tu1wdHk9OqyYZFRETk9Ky91+NcsGjRInfqaHE7duxg5syZKYoova1Zs+akwTCGI/37kTP1/x64nXk168j99nsJ1Wv/fDMTj29kzLffSWFkIiIici4xs03OuS4jsakHS0SkE/MixPCfVBbNHU+RO0YsMUeWiIiISE+UYA1ht91227DuvRI5K17XRwR9+aUEzONotUYSFBERkd6lRYJ1Lj3GKOlD/27kbPi8CFE7OcHKHNU+2fC+VIQkIiIiaeScT7AyMzOpra3VzbKcEecctbW1ZGZmpjoUSTPxRwRPTrDyRk8GoKnm3RREJCIiIunknJ8Hq7S0lMrKSmpqalIdiqSZzMxMSktLUx2GpBnzosTs5HewisZPASBSdyAVIYmIiEgaOecTrGAwSFlZWarDEJFhwudFiFnwpLIRBYU0uUxNNiwiIiKndc4/IigiMph8LkrslHewzOfjqL+YULMmGxYREZHeDXiCZWbXmNkuM9tjZl8d6PZERPqjuwQL4ESwmNy2wymISERERNLJgCZYZuYHHgA+CMwCPm5mswayTRGR/vB7EbxuEqzWrHEURo+kICIRERFJJwPdg7UY2OOce8c5FwYeBW4Y4DZFRM6az8XwfF0TrFjeeArdcdraWlIQlYiIiKSLgU6wSoDOw25VJso6mNntZrbRzDZqpEARSTW/6zrIBYC/oBSfOY4e1FDtIiIi0rOUD3LhnPupc26Rc25RcXFxqsMRkWHO76I4X9cEK6t4EgDHqjXZsIiIiPRsoBOsg8CETuuliTIRkXOS30Vx3byDNWLMZABajqoHS0RERHo20AnWa8BUMyszsxCwElg3wG2KiJy1AFG8bnqwikvOAyB6TJMNi4iISM8GdKJh51zUzL4A/AHwAw87594cyDZFRPoj/ohg11+NWbn5nCAHO6FOeBEREenZgCZYAM653wG/G+h2RESSoaceLIBafzEZzdWDHJGIiIikk5QPciEici4JuQieP7PbbQ2h0eSFNdmwiIiI9EwJlohIJyHCOH+o222t2eMojGk6CREREemZEiwRkU4yiOD5M7rd5kaUUEgDTY0NgxyViIiIpAslWCIiCbFohIB5uB4SrEBBfNaJo4feGcywREREJI0owRIRSYi0tQDgAt0nWNnFEwE4Xq25sERERKR7SrBERBKi4db4Qg89WAVjywBoqVWCJSIiIt1TgiUikhBpbQbAgt2PIlg0Pp5gRY9VDlpMIiIikl6UYImIJIQTPVi+HhKsUGY2dYzA36DJhkVERKR7SrBERBLCiR6snhIsgNrAGLKbqwYrJBEREUkzSrBERBKiiUEu/L0kWCcyxlEQUYIlIiIi3VOCJSKS0D6KoD/Uc4LVllvK6NgRnOcNVlgiIiKSRpRgiYgkRCPxd7ACoawe97GRk8i0CHVHNNCFiIiIdKUES0QkoeMRwYyeE6zM4vhIgkcrdw9KTCIiIpJelGCJiCTEEj1YwV4eEcwfNwWAxup9gxKTiIiIpBclWCIiCbFwvAcr2EsP1ugJUwGI1CrBEhERka76lWCZ2X1mttPMtprZf5lZQaJ8spm1mNmWxOcnSYlWRGQAeZE2oPcEKzcvn1ry8R3fP1hhiYiISBrpbw/WemCOc24usBu4q9O2vc65+YnPHf1sR0RkwHmReA9WKDO71/2OBsaQ1aTJhkVERKSrfiVYzrlnnHPRxOrLQGn/QxIRSQ2X6MEKZfbcgwXQmDmegnD1YIQkIiIiaSaZ72CtBn7fab3MzDab2Z/M7NKeDjKz281so5ltrKmpSWI4IiJnKBof5CLjNAlWOK+UMd4RvFhsMKISERGRNHLaBMvM/mhm27v53NBpn68DUeCRRFEVMNE5twD4O+CXZjaiu/qdcz91zi1yzi0qLi7u/3ckInKWXGIUwVAvowhCfC6skEWprdZ7WCIiInKywOl2cM5d0dt2M7sNuA74gHPOJY5pA9oSy5vMbC8wDdjY34BFRAaKr+0EDWSR5/P3ul9W8XkA1Fa+TXFJ2WCEJiIiImmiv6MIXgP8A3C9c665U3mxmfkTy+cBU4F3+tOWiMhA80Uaaab3AS4ACsYn5sI6vHegQxIREZE0c9oerNO4H8gA1psZwMuJEQMvA+41swjgAXc45+r62ZaIyIAKRhpo9uWcdr8xHXNhVQxwRCIiIpJu+pVgOefO76H818Cv+1O3iMhgC0Ybae1DgpWZnctRCvCfODAIUYmIiEg6SeYogiIiaS0j1kg4kNunfWsDY8lu1lxYIiIicjIlWCIiCVleU58TrMas8YwMVw1wRCIiIpJulGCJiCRke01Egnl92jecN4HR3lFi0ejpdxYREZFhQwmWiEhCjmuGUN8SLN/ISQQtRk1VxcAGJSIiImlFCZaICNDW2kyGRbCsbudE7yJ7THz+q9rKtwcyLBEREUkzSrBERIDj9bUABLIL+rR/wbj4IKpNhzXFn4iIiLxHCZaICNBQdxiAYG5Rn/YfPSGeYEU1F5aIiIh0ogRLRARorY0PuR4oKO3T/hmZ2RyhkEBD5UCGJSIiImlGCZaICNB2LJ5g5RWX9PmYuuBYspuVYImIiMh7lGCJiADhY4cAGDV2Up+PacoaT2GkeqBCEhERkTSkBEtEBKCxihNkk5OX3+dDIiPic2FFIuEBDExERETSiRIsEREg2HyYY76+DXDRzj9yEgHzOFy5b4CiEhERkXSjBEtEBBjReogToTFndExGcXwurIbqvQMRkoiIiKQhJVgiMux5MY/x0UqaRpx3RsfljI4nWK1HKwYgKhEREUlHSrBEZNg7fPAdcqwN36hpZ3TcyDETAIie0EAXIiIiEtevBMvMvm1mB81sS+Jzbadtd5nZHjPbZWZX9z9UEZGBcWTfNgDySmed0XEF+SNpchnQcGQgwhIREZE0FEhCHf/snPtB5wIzmwWsBGYD44E/mtk051wsCe2JiCRV0/6tAIw9f94ZHefzGcdsJP7mmoEIS0RERNLQQD0ieAPwqHOuzTm3D9gDLB6gtkRE+sVXvZnDNoqRo0vP+NgTgUIy25RgiYiISFwyEqwvmNlWM3vYzEYmykqAA532qUyUdWFmt5vZRjPbWFOjmxQRGVwxzzG2aSc1ebPP6vjmUBE5kbokRyUiIiLp6rQJlpn90cy2d/O5AfgxMAWYD1QB/3SmATjnfuqcW+ScW1RcXHymh4uI9MueffuYTBWuZOFZHR/JKqbAO5bkqERERCRdnfYdLOfcFX2pyMweBH6TWD0ITOi0uTRRJiJyTql6Yz3TgdFz+/Srrgsvdwz5tY1E2loIZmQlNzgRERFJO/0dRXBcp9WPAtsTy+uAlWaWYWZlwFTg1f60JSIyEHzvbqCZTMZMu+isjvfnjQWg7khlMsMSERGRNNXfUQS/b2bzAQdUAJ8FcM69aWaPA28BUeDzGkFQRM41zjlKj79ORc48ZvnP7tdhRkE8wTpxpJIxE6YmMzwRERFJQ/1KsJxzn+xl23eA7/SnfhGRgXRgfwXnUcnm0pvPuo6covj4PU11h5IVloiIiKSxZMyDJSKSliq3rGciMGrOB866jvzR8QQrXF+VpKhSz3ke1VUHOLT7dSJVb8HxAwSaqslqPcKI2DEyXCsZro0MwkQIELYQEYI0+EfSGBpFa9ZoXO5YAoWTyR5dRmHJFEaPLyMQDKb6WxMRERlwSrBEZNhyFS/RSBals87u/SuAwuISPGfEGg4nMbLBVXvkIHtff55oxV8oqNvKuPA+xtFA+0u2LS5Era+IhlAxR7JmEAvmQCALzx+EWBSf14Yv0kKorZb8cBWTW95kZN0J2P9eGxHn55CviLrgWJqzxhPNK8VfOIns4jJyR44imJFFMJRFIJRFLBYhGgkTCbcRi7QRa2si2nKCaMsJYi0n8FobcK0NWPgEFm7EH2nCH23CF23F77USiLUR8NoIufgn6MJYL9+/Zz5i+PDw4TA8/HiWWDcfHv7EVx/O4svxjx8PHyTKsPe2e4njPOLLLhGBz3nEn6p34MA6lh1G/NO+TPtRrn35ve3t6+1cx3/oVNbzd+163NLLMdb9tp7r6r2+vujT0db9ypm23L7/qd/n2dbT+8FnGKd1u9gh5s+k5NYfk1985nP5iUjyKcESkWGrpH4T+7LnUu4/+56VYCiDY5aHvyl9Eqzj9bXse/V3RHevZ0zdRiZ4BykCws7PvuAUdo9chm/MTPInzWPUefMYWVxCqe/MxkRqa22ipvId6g/tpaXmHWLH9hM4UUluy0EmHX+N4vo/4Kvs/db8dFpciCYyabJs2iyLiC+DsC+DmD+HWCgTL5CFC2RCIANfe/zupC/xZMXFwHngJb66GHgxLLFsie3mYpjnYcTXfYl9zEUxvMSyhw+PYDy1ak+x8OHFk7GTUifDWXuaZHjtZYkPtN/sv1fmdVPervONt8Wzt25Zj5t6S7u639Z7ctC/89uXel0/mujuUOslLe1rW93t1qdD+7CT62YnHx6z3F5eff4RFt/8lb60JCIDTAmWiAxL1YcOMNkdZOP4Ff2uq943kmDL0SRENTCc51Gx4zWqX32SEYf+xPTwDuabR4PL4u2seRwYv4LRMy9j0tylTM/ITkqbGZk5lJ5fTun55d1uj4Rbqa58h7pDe2htPI4XacFFWnHRVswfxOcPYv4g/mAIC+XgzxpBKDufjJx8QrkFZOfkk52VxaiAj1FJiVgkPTnPo+reqYT2bwCUYImcC5Rgiciw9O4bzzMWKJz5/n7X1RQsJCtc1/+gksh5Hru3vkzNK48xoXo9Ze4gZcDewPlsKv0UuXOu4fwLlnNBRmZK4guGMhl/3izGnzcrJe2LDBXm81Ex4kJmnXgJF4tiZzkiqogkj65CERmWIvv+TJsLMnHO0n7X1ZY5ipEntiYhqv6r2LebQ889yITK3zDdHeJ8Z+zKmserU1Zz3iU3M2XcRKakOkgRSSo3+TLyt/6eirdeYXJ5/3+niUj/KMESkWFpVO3r7MuYxoyMrH7XFc0axcj6epznYWf4rlIytLS0suXZxwht/QXz2zYy2RzbM+ZTPe0zTH//f2PWqHGnr0RE0ta0JR+CrXdxaNNvlWCJnAOUYPWiev/bVLz4S+bf+PdkZuemOhwRSZLGxhNMie5h89hbk1Kf5Y4h29qoP15PwcjCpNTZF3t2bqXq+f/NjMO/4X3UU2OFvDF5NROu+CxzJkwftDhEJLVGjZ/ErsAMxh/4v+C+Az2M+Cgig0MJVi8qXlrLkj0/pOb7P2PLtM8w69o7GFGg16lF0t2+LS9SbjEypyTnL72B/DEA1NdUDniC1dzcyBvPPELOm48wN/IGZc54K+991C5axfRLP0pxP0ZEFJH0dWTKCi7d9R0qtv9ZvVgiKaYEqxdLPnE3b/55Eb7n/ydLdt9H665/YWP+MnyzP8KMi68lO2/w/lJ9JqKRMM3NjYRbW4hG2ohFIkQjrfH5ZCJtRKNhYuEwXjSMF20jFo1gsTB40cT0KjGc83CeAzzwPJxz4Lx4uXOY83CeF9+emJOlq65/QWsfANdOWX/vkJ7GFe653u4G1bVT9+ntr3kd2/r2F78B/7vgGTRwxrGc4QGn/hyHikDFn/CcMWnB5UmpL7MwPvdM45F3YdrcpNR5qre3vcqRPz3I7Jrf8T5rpMpGs3HK5zn/ys9SPnbSgLQpIuljzlWraNv5far/9OCwSbCc59HW0khbSyMtLS20trYQDbfiRVqJRcO4SBtetC0xQmkYFw3jeVG8mEfMi+E8D+fFiM9FF8MS9zrtn/i8c/H7nPa7nPg9h8O59/7/2HEfctJcCSffW5x8/9N5uoVTDuzmfuW9+xzrcZ9Tmz+pPBn3FdZ1a8/79r3Bvu7ZnDWW8973ESYV5fS57lRSgnUasy++Fi6+lre3vETNi/9Oed0fyPvLeqJ/9rEreD4n8mcQKZpJ9ugyRoyeSFZRCbl5BeTm5mE+f7d1RqNRWpobaGtuJNwS/0RaGom0NhJtbSTa1kystREXbsILN0O4CSIt+KLN+KLN+KMtBGItBGKtBL1WMrwWMlwrmbSR6VoJWYwRg/xzEkk3u4IzmD6yOCl15Yw5D4C2oxVJqa9dY8Nxtj+zhvwdv2RmdCeTnJ838y8je8kqpi25jnE9/I4RkeFnZFExrxZ8gPk1v6H24DsUlZyX6pBOy3kejSfqqK89TEPdYVqO1xBtPIrXVIe11OFvPYYv3IA/2kQg2kQo1kyG10KWayHbtZBNK5nmyATyU/3NyIB6ITaPbROXK8EaaqbOv5Sp8y8lEm5l22vP0fjWHxhR8zrTap8lv3Yd7O56TJsLEiaA4fAnJpz0EyNgjjwgr49te85oIUSrZdJqmYQtg4gvk7Avi7ZQMfWBLDx/VnxSzWA2BHOwUBYWyMAXCGGBUGI5iC8QwpcoDwRD+IPxdfMHMX8AMx/m8+FLfDWfHzMwnx+fz4/PDDq2+/H5DMzfzV8ruvZomesyw+cph3Q/PeNJEyt22afrMfGet9736bKlzzNIntmslmc6B+aZVN/dhJOnOWAgd8cxCL17STS5aEzS6iocV4bnDOrf7XddzvPYtfFZGv7yM2bWPccSa2G/r5TXpv0d06+6nQUasEJEejD2+nvw/fyP7HviaxT97aOpC8Q5oo1HOVr1Lseq99N49ADh+kP4G6vIaD1CbvgoBdFaCtxx8izW7f1QzBnHLZdmy6HNl03Yn01bqJCmQA7RQDaxYA4umIsL5WKhbPzBDAKhTHzBDMwfwoIZ8fubQAa+YLzcFwwR8Afw+/0EAkH8fh9+nx98PjBf/B7I2u99fIlyw/CBgVn7FOGJj0HX2cuJP/WT+Dl03ui6KYv3nnXdv+v9iTt5tcvPvKfibu6Tety3h3LX29a+1t3NhjOIY5Y/xIjC5P1/e6ApwTpDwVAm5UuvhaXXAvGbofqaSg5X7qWxphIaqjp6ofyxVvwujMOHMx8efjAfvkAQgjkQysaXkY0vlIM/I/4JZuUSysolIyuPjOw8snJyycrKJcfvIz1ydpHhJzc7m8NWiB0/cNZ1HNq/l4rnHqL03f9ihjtEk8vgrZEfYMTFq5i26AompmB0QhFJLxOnzODP41ZycfX/4Y3f/ZR5194+YG1Fm+s5euBt6g/tobXmHdyxdwk1HCCv9RCjotVk08pYYGynY+rJ45i/iIbgKOpyzieaXYxljyKYV0RmfjHZ+aPJLigme+QYckcUUuj3c26+jCHSOyVY/WQ+HwVjJlIwZmKqQxGRFDEz6oLjyGo8swTraPV+3nlxLTl7fsOMtm2MN8dboXJenfk5Zn7gVi4cMXKAIhaRoWrhqh+w/QdvMPOVu9gcbmX+9V84q+kjom3NHK2MJ1Ath/cSq3uXYMMB8loOMipazQgaT0qgGlwW1b7RVIfGsy9vEV7+BEKFpeQVT6Bw7CRGj5tEQWYWBcn8ZkXOUUqwRESS4PiIacyr/S0u2oYFMrrdx3keFTtfp/r135K/fz0z2rYzyhwVvlI2TfoME5avYlbZ7EGOXESGkoyMLMbf/gQ7H7yZBVu+ye5tP6duykcpmHIhOcUTyM7JJRoJ09LSQuT4YZqOVdF6rBp3/BChxv3kNh+kKFLFKI6dlEC1uSBVNppjoXEcKphNbMREAkWTyB07hcKSqYwZM56pQb0XKgL9TLDM7DGgfbKVAqDeOTffzCYDO4BdiW0vO+fu6E9bIiLnstikS8mu/U8qtm1g8oIPAPGEqvrAHg5u+xNu7/NMPPYyZdRSBlT4JvLKxM8w9n0rmTxzIZM1b42IJElh8Vjyvvwsr637V4rf/BlLdn+/23fFO4s544gVURscx578JewcMRF/4SSyR8cTqNElE5kcDDJ5UL4DkfRm7gxf2u+xIrN/Ao475+5NJFi/cc7NOZM6Fi1a5DZu3JiUeEREBlNtTTU598/hYGgyNWMuI1T/NqWN2xlNHQAnXDZ7chcRLVvOpIs+zJgJU1McsYgMF4cPvE3V25vxTlQTaWvB/EECoQwsZxQ5heMZObqUwtEl+IOhVIcqklbMbJNzbtGp5Ul5RNDMDLgZSM6kMiIiaaaoeCwb5t3Lgje+TdmBh6n2jWZ/3gL2lVxI0YxLmDz7Ii7QzYuIpMCYCVP1Rx2RQZSUHiwzuwz4YXsGl+jBepN4h/QJ4BvOuZd6OPZ24HaAiRMnLnz33f4PcywikiqRcBuec2RkZKY6FBERERlAZ92DZWZ/5ORRNtt93Tn3VGL548DaTtuqgInOuVozWwg8aWaznXMnTq3EOfdT4KcQf0Tw9N+KiMi5KxjqfoALERERGR5Om2A5567obbuZBYAbgYWdjmkD2hLLm8xsLzAN0AtWIiIiIiIyZCVj5sorgJ3Oucr2AjMrNjN/Yvk8YCrwThLaEhEREREROWclY5CLlZz8eCDAZcC9ZhYBPOAO51xdEtoSERERERE5ZyVtmPZkMLMa4Fwb5WIUcDTVQcig0fkePnSuhw+d6+FF53v40LkeXs7F8z3JOVd8auE5lWCdi8xsY3ejg8jQpPM9fOhcDx8618OLzvfwoXM9vKTT+U7GO1giIiIiIiKCEiwREREREZGkUYJ1ej9NdQAyqHS+hw+d6+FD53p40fkePnSuh5e0Od96B0tERERERCRJ1IMlIiIiIiKSJEqwREREREREkkQJVi/M7Boz22Vme8zsq6mOR5LHzCaY2fNm9paZvWlmf5soLzSz9Wb2duLryFTHKslhZn4z22xmv0msl5nZK4nr+zEzC6U6RkkOMyswsyfMbKeZ7TCz9+naHprM7M7E7/DtZrbWzDJ1bQ8dZvawmR0xs+2dyrq9li3uXxPnfauZXZC6yOVM9XCu70v8Ht9qZv9lZgWdtt2VONe7zOzqlATdCyVYPTAzP/AA8EFgFvBxM5uV2qgkiaLA3zvnZgFLgM8nzu9XgWedc1OBZxPrMjT8LbCj0/r3gH92zp0PHAP+e0qikoHwv4CnnXMzgHnEz7uu7SHGzEqALwKLnHNzAD+wEl3bQ8ka4JpTynq6lj8ITE18bgd+PEgxSnKsoeu5Xg/Mcc7NBXYDdwEk7tdWArMTx/wocd9+zlCC1bPFwB7n3DvOuTDwKHBDimOSJHHOVTnnXk8sNxC/ASshfo7/I7HbfwAfSUmAklRmVgp8CPj3xLoBlwNPJHbRuR4izCwfuAx4CMA5F3bO1aNre6gKAFlmFgCygSp0bQ8ZzrkXgbpTinu6lm8Afu7iXgYKzGzcoAQq/dbduXbOPeOciyZWXwZKE8s3AI8659qcc/uAPcTv288ZSrB6VgIc6LRemSiTIcbMJgMLgFeAMc65qsSmamBMquKSpPoX4B8AL7FeBNR3+sWt63voKANqgJ8lHgn9dzPLQdf2kOOcOwj8ANhPPLE6DmxC1/ZQ19O1rPu2oW018PvE8jl/rpVgybBmZrnAr4EvOedOdN7m4nMYaB6DNGdm1wFHnHObUh2LDIoAcAHwY+fcAqCJUx4H1LU9NCTevbmBeFI9Hsih6yNGMoTpWh4ezOzrxF/teCTVsfSVEqyeHQQmdFovTZTJEGFmQeLJ1SPOuf9MFB9uf6Qg8fVIquKTpFkKXG9mFcQf9b2c+Ds6BYnHikDX91BSCVQ6515JrD9BPOHStT30XAHsc87VOOciwH8Sv951bQ9tPV3Lum8bgszsNuA64BPuvcl7z/lzrQSrZ68BUxOjEYWIv0y3LsUxSZIk3sF5CNjhnPthp03rgE8nlj8NPDXYsUlyOefucs6VOucmE7+On3POfQJ4HrgpsZvO9RDhnKsGDpjZ9ETRB4C30LU9FO0HlphZduJ3evu51rU9tPV0La8DPpUYTXAJcLzTo4SShszsGuKP91/vnGvutGkdsNLMMsysjPjAJq+mIsae2HvJoJzKzK4l/u6GH3jYOfed1EYkyWJmlwAvAdt4772crxF/D+txYCLwLnCzc+7UF2wlTZnZMuB/OOeuM7PziPdoFQKbgVudc20pDE+SxMzmEx/QJAS8A6wi/gdFXdtDjJndA9xC/PGhzcBniL+LoWt7CDCztcAyYBRwGPgW8CTdXMuJJPt+4o+JNgOrnHMbUxC2nIUezvVdQAZQm9jtZefcHYn9v078vawo8dc8fn9qnamkBEtERERERCRJ9IigiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSIiIiIikiT/H08YvdRWrVIdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACdMUlEQVR4nOzdeXxV1bn/8c9zzslERpIwh0mUmYAKiBWc2irWAa1WtE7otf60tVXrWNsq9V7v7bXeWodWamurVYs4a9VqnVCxKgIiKjiAhHkICWQg8znr98fexENISCAnORm+79drvzh77bXXfvbZOeE8WWuvbc45REREREREpPUC8Q5ARERERESkq1CCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0SkgzCzIWbmzCwU71i6OjObZWYL4h1HR2Nm08zs83jHISLSmSnBEhGRTs3MZptZrZmVRy3XxTuuzsg597ZzbkQs2zSz4Wb2rJkVmlmxmb1sZjE9hohIR6IES0QkRtTzFFfznHNpUctt8Q4oljr5z1YW8BwwAugDLASejWdAIiJtSQmWiEgrmFmBmV1vZsuAnWYWMrMpZvZvM9thZh+Z2dFR9eeb2f+Y2UIzK/X/sp/dRNsXmtkKMyszs6/M7P812D7DzJb67awys+l+eaaZ3W9mm8xsg5n9l5kFmzmPYWb2upkVmdk2M3vEzLKithWb2SH+en+/N+Jof/0UM/vUP9/5ZjaqwftzjZktM7MSM5tnZsn7/k7vOzO7wX9fysxsuZmd1kQ9M7M7zGyr/15+bGZj/W1JZna7ma01sy1mNsfMUlp4/Af8+q/4MbxpZoOjtt9pZuv8Yy42s2lR22ab2RNm9rCZlQKzzGyymb3rv8+bzOweM0uM2seZ2Q/N7Ev/eP/pX7t/+8d4LLp+EzEfbWbrW3J+LeWcW+icu985V+ycqwXuAEaYWU4sjyMi0lEowRIRab2zgRPx/lLfB3gB+C8gG7gGeNLMekXVPx+4COgH1AF3NdHuVuAkIAO4ELgjKsmZDPwNuNY/7pFAgb/fA367BwIHA8cBFzdzDgb8D9AfGAUMBGYDOOdWAdcDD5tZD+CvwIPOuflmNhyYC1wJ9AJeBP7R4Iv8mcB0YCiQD8xqNACzqX7y0NQytZlzaGgVMA3IBH7lx9+vkXrH4b1/w/26ZwJF/rZf++UT8N7PAcBN+xDDOcB/ArnAUuCRqG0f+O1mA38HHm+QfM4AnsC7vo8AYeAqv63DgW8CP2xwvOOBQ4EpwHXAfcC5eNdzLN7P6n7zE+Wmrs8fWtjMkcBm51xRszVFRDoj55wWLVq0aNnPBS+puShq/XrgoQZ1XgYu8F/PB34dtW00UAMEgSGAA0JNHOsZ4Ar/9R+BOxqp0weoBlKiys4G3tjH8zoV+LBB2XPAx8AyIMkv+yXwWFSdALABODrq/Tk3avttwJwYX4PZ/nu4I2rp30i9pcAM//UsYIH/+ljgC7ykJBBV34CdwLCossOB1S2M6wHg0aj1NLwkaWAT9bcD46PO6a1m2r8SeDpq3QFHRK0vBq6PWv8/4HfNtHk0sD6W16dB+3n+z8fZbXUMLVq0aIn30pnHdIuIdBTrol4PBr5nZidHlSUAbzRRf42/Pbdho2Z2AnAzXg9KAOiBl+CA1yPxYiOxDPbb22Rmu8oCDY65BzPrA9yJ1+OT7u+zvUG1P+ElWZc456r9sv7+OQDgnIuY2Tq8np5dNke9rvD3ibXHnHPnRheY2fnAT/ESV/ASnD3eZ+fc62Z2D/B7YLCZPYXX85iM954vjnovDS8Zbqn69905V25mxXjnv87MrgH+w193eD2VuY3t65/PcOC3wEQ/rhBeEhVtS9TrykbW++5D7DHl9+L+C/iDc25uvOIQEWlrGiIoItJ6Lur1OrwerKyoJdU59+uoOgOjXg8CaoFt0Q2aWRLwJHA70Mc5l4WXUO36pr8OGNZILOvwerByo46f4Zwb08w5/Ld/HuOccxl4w8q+zirM0oDfAfcDs+3r+8Y24iV1u+qZf34bmjneHsybIrx8L8u05lupb2swXkJ4OZDjv3+fRJ9TNOfcXc65Q/F6FIfjDb3chpeUjIl6LzOdc2n7cFr119p/D7OBjf65XIc3HLGnH19Jg/iif64A7gU+Aw7yr9GNTZ1PW/HvtWvq+szZy3498ZKr55xzt7ZfxCIi7U8JlohIbD0MnGxmx5tZ0MyS/YkD8qLqnGtmo/37mW4BnnDOhRu0kwgkAYVAnd+bdVzU9vuBC83sm2YWMLMBZjbSObcJ74vs/5lZhr9tmJkd1Uzc6UA5UGJmA/ASjGh3Aouccxfj3WO268v0Y8CJfhwJwNV4Cd6/m3ujGnLeFOFpe1ne3ofmUvESlELwJgzBuwdpD2Y2ycwO8+PfCVQBEedcBC9Ju8PMevt1B5jZ8VH7OouaxKQR3/HvLUvEuxfrPefcOrz3u86PL2RmN+H1YO1NOlAKlJvZSOCyZurHnHNuzF6uz6WN7WNmGXjDZN9xzt3QvhGLiLQ/JVgiIjHkf3megde7UIjXo3Qtu/++fQjv/pzNeMPQftJIO2V++WN4Q/W+jzc8b9f2hfgTX+D1fLzJ1z1J5+MlaMv9fZ/Am1Bjb34FHOK39QLw1K4NZjYDb5KKXV/ofwocYmbnOOc+x+vtuhuvx+dk4GTnXE0zx2tTzrnlePccvYs3TG4c8E4T1TPwEqnteMMdi4Df+NuuB1YC7/mz+b2KN904ZjYQKOPrYZuN+TveMM9ivMkndg1jfBl4Ce/erzV4Sd1eh3HiDVv8vn/MPwHzmqnfUZwGTML7g0B0j9egeAcmItIWzLmGIxBERKStmNl84GHn3J/jHYu0jpmdizd88GdNbH8Ab8KIX7RrYCIiElea5EJERGQ/OOcejncMIiLS8WiIoIhIN2HeQ2/3aXIC6XrM7MYmfg7+Ge/YRES6Ag0RFBERERERiRH1YImIiIiIiMRIh7oHKzc31w0ZMiTeYYiIiIiIiOzV4sWLtznnejUs71AJ1pAhQ1i0aFG8wxAREREREdkrM1vTWLmGCIqIiIiIiMSIEiwREREREZEYUYIlIiIiIiISIx3qHqzG1NbWsn79eqqqquIdinQAycnJ5OXlkZCQEO9QpAtaubWcG55cxq9PH8eBvdPjHY6IiIh0Qh0+wVq/fj3p6ekMGTIEM4t3OBJHzjmKiopYv349Q4cOjXc40gUVvPUI926+lTdf/CkHzroy3uGIiIhIJ9ThhwhWVVWRk5Oj5EowM3JyctSbKW0mZdvH9LISDtzyz3iHIiIiIp1Uh0+wACVXUk8/C9KW6irLAMiqWh/nSERERKSz6hQJlohIewjWVQDQN7IFFwnHORoRERHpjJRgtYCZcfXVV9ev33777cyePTt+AUU5+uij9/pw5lNPPZUpU6bsVjZ79mwGDBjAhAkTGDt2LM8991xbhynSKSRGvAQr2WrZvmVdnKMRERGRzkgJVgskJSXx1FNPsW3btpi265wjEonEtM1oO3bsYPHixZSUlPDVV1/ttu2qq65i6dKlPP7441x00UVtGodIZ5EYrqx/vX3Dl3GMRERERDorJVgtEAqFuOSSS7jjjjv22FZYWMjpp5/OpEmTmDRpEu+88w7g9RLdfvvt9fXGjh1LQUEBBQUFjBgxgvPPP5+xY8eybt06rr32WsaOHcu4ceOYN28eAPPnz+foo4/mjDPOYOTIkZxzzjk45xqN76GHHqrvjVq4cGF9+VNPPcXJJ5/MWWedxaOPPtrovqNGjSIUCu2WPN5www2MHj2a/Px8rrnmGgAKCgo49thjyc/P55vf/CZr164FYNasWVx22WVMmTKFAw44gPnz53PRRRcxatQoZs2aVd/mZZddxsSJExkzZgw333zzHnGUlJQwePDg+kRv586dDBw4kNra2kbjFmkLiZFKtpEFQNk29WCJiIjIvmv1NO1mNhD4G9AHcMB9zrk7zWw28AOg0K96o3PuxdYc61f/+JTlG0tb08QeRvfP4OaTxzRb70c/+hH5+flcd911u5VfccUVXHXVVUydOpW1a9dy/PHHs2LFir229eWXX/Lggw8yZcoUnnzySZYuXcpHH33Etm3bmDRpEkceeSQAH374IZ9++in9+/fniCOO4J133mHq1Kl7tFdRUcHSpUt56623uOiii/jkk08AmDt3LjfddBN9+vTh9NNP58Ybb9xj3/fff59AIECvXr0AKCoq4umnn+azzz7DzNixYwcAP/7xj7ngggu44IIL+Mtf/sJPfvITnnnmGQC2b9/Ou+++y3PPPccpp5zCO++8w5///GcmTZrE0qVLmTBhArfeeivZ2dmEw2G++c1vsmzZMvLz8+vjyMzMZMKECbz55pscc8wxPP/88xx//PF63pW0q+RIBYUJA8it3UH19o3xDkdEREQ6oVj0YNUBVzvnRgNTgB+Z2Wh/2x3OuQn+0qrkKt4yMjI4//zzueuuu3Yrf/XVV7n88suZMGECp5xyCqWlpZSXl++1rcGDB9ffF7VgwQLOPvtsgsEgffr04aijjuKDDz4AYPLkyeTl5REIBJgwYQIFBQWNtnf22WcDcOSRR1JaWsqOHTvYsmULX375JVOnTmX48OEkJCTUJ14Ad9xxBxMmTOCaa65h3rx59bPzZWZmkpyczH/8x3/w1FNP0aNHDwDeffddvv/97wNw3nnnsWDBgvq2Tj75ZMyMcePG0adPH8aNG0cgEGDMmDH1MT/22GMccsghHHzwwXz66acsX758j/OYOXNmfQ/eo48+ysyZM/f6PorEWpKrojy5HzUuRKR0U7zDERERkU6o1T1YzrlNwCb/dZmZrQAGtLbdxrSkp6ktXXnllRxyyCFceOGF9WWRSIT33nuP5OTk3eqGQqHd7muKfnZTampqi46XlJRU/zoYDFJXV9dovYZTl5sZjz32GNu3b69/IG9paSlz587l1ltvBbx7sHYN/2sY98KFC3nttdd44oknuOeee3j99ddbFGcgENgt5kAgQF1dHatXr+b222/ngw8+oGfPnsyaNavRZ1mdcsop3HjjjRQXF7N48WKOPfbYvR5XJNZSXCV1oR4UB3oS3Lk13uGIiIhIJxTTe7DMbAhwMPC+X3S5mS0zs7+YWc8m9rnEzBaZ2aLCwsLGqnQY2dnZnHnmmdx///31Zccddxx33313/frSpUsBGDJkCEuWLAFgyZIlrF69utE2p02bxrx58wiHwxQWFvLWW28xefLkfYprV6/PggULyMzMJDMzk7lz5/LSSy/V3/e1ePHiJu/DilZeXk5JSQnf+c53uOOOO/joo48A+MY3vlG//yOPPMK0adNaHF9paSmpqalkZmayZcsW/vnPxh/impaWxqRJk7jiiis46aSTCAaDLT6GSCykUEVdqAcloRxSqjv27yMRERHpmGKWYJlZGvAkcKVzrhS4FxgGTMDr4fq/xvZzzt3nnJvonJu46z6gjuzqq6/ebUKIu+66i0WLFpGfn8/o0aOZM2cOAKeffjrFxcWMGTOGe+65h+HDhzfa3mmnnUZ+fj7jx4/n2GOP5bbbbqNv3777FFNycjIHH3wwl156Kffffz8FBQWsWbNmt+nZhw4dSmZmJu+//36jbXznO99h48aNlJWVcdJJJ5Gfn8/UqVP57W9/C8Ddd9/NX//6V/Lz83nooYe48847Wxzf+PHjOfjggxk5ciTf//73OeKII+q33XTTTbtNEz9z5kwefvhhDQ+U9hcJk0I14VAPKhJzSastindEIiIi0glZUzPT7VMjZgnA88DLzrnfNrJ9CPC8c27s3tqZOHGia/hMpxUrVjBq1KhWxyhdh34mpE1Ul8H/5PH6oJ+QWrGeEdv+RdbsDfGOSkRERDooM1vsnJvYsLzVPVjm3QB0P7AiOrkys35R1U4DPmm4r4hIR+GqvclpXKgHkdTeZFFOdVVFnKMSERGRzqbVk1wARwDnAR+b2VK/7EbgbDObgDd1ewHw/2JwLBGRNlFTXUkS4BKSCaR6fx/asWUdfQaPiG9gIiIi0qnEYhbBBYA1sqlTT8suIt1LbU0VSUAglEhiVi4ApYXrlWCJiIjIPonpLIIiIp1VbY336IBAQhI9cvIAqCjWPVgiIiKyb5RgiYgAtdVeghUMJZHZa6BXtkMPGxYREZF9owRLRASoq60GIJCQTM/e/ahzASJlm+MclYiIiHQ2SrBa6JlnnsHM+Oyzz5qsU1BQwNixe52Jfp/MmjWLJ554osntV155JQMGDCASidSXPfDAA/Tq1YsJEyYwevRo/vSnP8UsHpGurM4fIhhKSCQpIYFiyySwc2ucoxIREZHORglWC82dO5epU6cyd+7cRrfX1dW1+hjhcLjFdSORCE8//TQDBw7kzTff3G3bzJkzWbp0KfPnz+fGG29ky5YtrY5NpKurq/F6sIKJSQCUBHqSWLVtb7uIiIiI7EEJVguUl5ezYMEC7r//fh599NH68vnz5zNt2jROOeUURo8eDXiJ1jnnnMOoUaM444wzqKjwnqPz2muvcfDBBzNu3Dguuugiqqu9L3NDhgzh+uuv55BDDuHxxx/f49ivvvoqEydOZPjw4Tz//PO7HXvMmDFcdtllTSZ9vXv3ZtiwYaxZs6a+7K677mL06NHk5+dz1llnAVBcXMypp55Kfn4+U6ZMYdmyZQDMnj2bCy64gGnTpjF48GCeeuoprrvuOsaNG8f06dOpra0F4JZbbmHSpEmMHTuWSy65hIYPr45EIgwZMoQdO3bUlx100EFK/KRDCdf692AlJAOwMyGHHjVF8QxJREREOqFYPAer/fzzBtj8cWzb7DsOTvj1Xqs8++yzTJ8+neHDh5OTk8PixYs59NBDAViyZAmffPIJQ4cOpaCggM8//5z777+fI444gosuuog//OEPXH755cyaNYvXXnuN4cOHc/7553Pvvfdy5ZVXApCTk8OSJUsaPXZBQQELFy5k1apVHHPMMaxcuZLk5GTmzp3L2WefzYwZM7jxxhupra0lISFht32/+uorvvrqKw488MD6sl//+tesXr2apKSk+oTn5ptv5uCDD+aZZ57h9ddf5/zzz2fp0qUArFq1ijfeeIPly5dz+OGH8+STT3Lbbbdx2mmn8cILL3Dqqady+eWXc9NNNwFw3nnn8fzzz3PyySfXHzMQCDBjxgyefvppLrzwQt5//30GDx5Mnz59WnyZRNpaXU0NAAl+D1ZVci79S7+KZ0giIiLSCakHqwXmzp1b39tz1lln7dZjNHnyZIYOHVq/PnDgQI444ggAzj33XBYsWMDnn3/O0KFDGT58OAAXXHABb731Vv0+M2fObPLYZ555JoFAgIMOOogDDjiAzz77jJqaGl588UVOPfVUMjIyOOyww3j55Zfr95k3bx4TJkzg7LPP5o9//CPZ2dn12/Lz8znnnHN4+OGHCYW8/HrBggWcd955ABx77LEUFRVRWloKwAknnEBCQgLjxo0jHA4zffp0AMaNG0dBQQEAb7zxBocddhjjxo3j9ddf59NPP93jPGbOnMm8efMAePTRR/d6ziLxEKnbvQcrnNKLnpEduEjLh+6KiIiIdK4erGZ6mtpCcXExr7/+Oh9//DFmRjgcxsz4zW9+A0Bqaupu9c1sr+uNadhGc+29/PLL7Nixg3HjxgFQUVFBSkoKJ510EuAlM/fcc0+j7b3wwgu89dZb/OMf/+DWW2/l44/33iOYlOT9NT8QCJCQkFAfTyAQoK6ujqqqKn74wx+yaNEiBg4cyOzZs6mqqtqjncMPP5yVK1dSWFjIM888wy9+8Yu9HlekvUVq/R4s/2ee9D4kbA5TXrKNtJ7qbRUREZGWUQ9WM5544gnOO+881qxZQ0FBAevWrWPo0KG8/fbbjdZfu3Yt7777LgB///vfmTp1KiNGjKCgoICVK1cC8NBDD3HUUUe16PiPP/44kUiEVatW8dVXXzFixAjmzp3Ln//8ZwoKCigoKGD16tW88sor9fd7NSUSibBu3TqOOeYY/vd//5eSkhLKy8uZNm0ajzzyCODd25Wbm0tGRkaL4tuVTOXm5lJeXt7krIdmxmmnncZPf/pTRo0aRU5OTovaF2kvkTrvvsjExBQAQhl9Adi+ZV3cYhIREZHORwlWM+bOnctpp522W9npp5/e5MQSI0aM4Pe//z2jRo1i+/btXHbZZSQnJ/PXv/6V733ve4wbN45AIMCll17aouMPGjSIyZMnc8IJJzBnzhwikQgvvfQSJ554Yn2d1NRUpk6dyj/+8Y9G27j44otZtGgR4XCYc889l3HjxnHwwQfzk5/8hKysLGbPns3ixYvJz8/nhhtu4MEHH2zhuwNZWVn84Ac/YOzYsRx//PFMmjSpftucOXOYM2dO/frMmTN5+OGHNTxQOqSI/xyskN+DlZI9AIDybRviFpOIiIh0PtZwxrd4mjhxolu0aNFuZStWrGDUqFFxikg6Iv1MSFtY/PfZHPrFHWz7yWpys7NZ/flHDJ17JEsO/V8OObllfxARERGR7sPMFjvnJjYsVw+WiAjgdg0RTPImucjqPRCA2tLNcYtJREREOh8lWCIigKurIeKMpMREALIys6hwSVCm57WJiIhIy3WKBKsjDWOU+NLPgrSZcA21hEgMBQGwQIDtgSxCFVvjHJiIiIh0Jh0+wUpOTqaoqEhfrAXnHEVFRSQnJ8c7FOmKwjXUENrt0QilwWySq7fFMSgRERHpbNr8OVhmNh24EwgCf3bO7dPDrPLy8li/fj2FhYVtEp90LsnJyeTl5cU7DOmKwjXU2u6/EisTc8mpKohPPCIiItIptWmCZWZB4PfAt4H1wAdm9pxzbnlL20hISGDo0KFtFaKICAAWrqGOhN3KanrkklnxYZwiEhERkc6orYcITgZWOue+cs7VAI8CM9r4mCIi+8zCNdTa7gmW69GHLMqpqaqMU1QiIiLS2bR1gjUAWBe1vt4vq2dml5jZIjNbpGGAIhIvFqkl3KBTP5jRB4DiQj1sWERERFom7pNcOOfuc85NdM5N7NWrV7zDEZFuKhCupq5BD1ZSVj8ASrauj0dIIiIi0gm1dYK1ARgYtZ7nl4mIdCiBSC3hwO4JVmqO1+FeUaxfWyIiItIybZ1gfQAcZGZDzSwROAt4ro2PKSKyzwKulnCDHqzMPoMAqNm+MR4hiYiISCfUprMIOufqzOxy4GW8adr/4pz7tC2PKSKyP0KRamoDuz9jrWevAdS5AK5UCZaIiIi0TJs/B8s59yLwYlsfR0SkNRIiNVSFMncrCyUksNl6krBTCZaIiIi0TNwnuRAR6QhCroZwIGmP8u3BXJIrt8YhIhEREemMlGCJiACJrppIcM8EqzypNxm1SrBERESkZZRgiYgACa6m0QSrpkdfcsLbwLk4RCUiIiKdjRIsEREgkRpcKHmP8khaf3pQRfXOHe0flIiIiHQ6SrBERIAkVwuNJFihnt6zsIo3FbRzRCIiItIZKcESkW4vEo6QZI0nWD1yvWell2xZ095hiYiISCekBEtEur2qqp3ei4Q9E6zMPoMBqCxa254hiYiISCelBEtEur3qqkoAAo0kWLn9hgBQt31De4YkIiIinZQSLBHp9qorvR6sxhKstNRUilwGVr6pvcMSERGRTkgJloh0e9VVFQAEElMa3V4czCVp5+b2DElEREQ6KSVYItLt1fr3YDWVYJUl9SatRg8bFhERkeYpwRKRbq+2ugqAUBMJVnVKX3qGt7VnSCIiItJJKcESkW6vrtobIhhsIsGKpPUjizJq/Hu1RERERJqiBEtEur1aP8FKSOrR6PZdDxsu2rS63WISERGRzkkJloh0e+Eab4hgQnLjPVgpud6zsHZsLmivkERERKSTalWCZWa/MbPPzGyZmT1tZll++RAzqzSzpf4yJybRioi0gXCN9xysxKTURrdn9h0KQEWherBERERk71rbg/UKMNY5lw98Afwsatsq59wEf7m0lccREWkzrsa7tyohufEhgr0HDAOgrnhdu8UkIiIinVOrEizn3L+cc3X+6ntAXutDEhFpZ1WlACSm9Wx0c0qPHhSSRbBsQ3tGJSIiIp1QLO/Bugj4Z9T6UDP70MzeNLNpMTyOiEhMBWrLAEhKzWyyTnGwN8kVG9srJBEREemkQs1VMLNXgb6NbPq5c+5Zv87PgTrgEX/bJmCQc67IzA4FnjGzMc650kbavwS4BGDQoEH7dxYiIq1g1WVUukSSE5OarFOW3Jc+lavaMSoRERHpjJpNsJxz39rbdjObBZwEfNM55/x9qoFq//ViM1sFDAcWNdL+fcB9ABMnTnT7GL+ISKtZTRnl1oMUsybr1KQOoFf5u+Ac7KWeiIiIdG+tnUVwOnAdcIpzriKqvJeZBf3XBwAHAV+15lgiIm0lWFtOpTU+wcUuLjOPZKulbPvmdopKREREOqPW3oN1D5AOvNJgOvYjgWVmthR4ArjUOVfcymOJiLSJhNoyqgKNT9G+S2KON4S5aIP+ViQiIiJNa3aI4N445w5sovxJ4MnWtC0i0l4S63ZSFdx7gpXa23sWVtmW1TDuiPYIS0RERDqhWM4iKCLSKSWFd1IXSttrnZz+3rOwqrcVtENEIiIi0lkpwRKRbi/F7aQ2Ye8JVm6vvlS4JNyO9e0UlYiIiHRGSrBEpNtLiVRAUsZe6wSDAbYGcknYqYcNi4iISNOUYIlIt1ZdXUWGVWDJTT9keJcdiX1Jq9IsgiIiItI0JVgi0q2VFm3xXqT1brZuZUo/smu3tHFEIiIi0pkpwRKRbq2saCMAoYw+zdatSx9ANiWEqyuarSsiIiLdkxIsEenWKv0HBydmNp9gBbIGAlC8qaAtQxIREZFOTAmWiHRrFds3AZCR27/Zuj16DQFg+yY9bFhEREQapwRLRLq1mhLvnqpefQY2Wzez7wEAVBQWtGVIIiIi0okpwRKRbi1ctpVqEkhJz2q2bq8BQ4g4I1y8pu0DExERkU5JCZaIdGsJFVvYHsgGs2brpqemUmhZBMr0LCwRERFpnBIsEenW0qs2UZLYt8X1i4J9SKrY1IYRiYiISGemBEtEurXsuq1U9ejX4vplSX3JrNbDhkVERKRxSrBEpNsqraikN8WE0we0eJ/q1P7kRgrBuTaMTERERDorJVgi0m0VblhDyCIEew5q+U6ZeSRRW//8LBEREZFoSrBEpNsq2bwKgB69B7d4n8Qcr27RxpVtEpOIiIh0bq1KsMxstpltMLOl/vKdqG0/M7OVZva5mR3f+lBFRGKrstCbbj2z37AW75PWy0uwSreubZOYREREpHMLxaCNO5xzt0cXmNlo4CxgDNAfeNXMhjvnwjE4nohITIR3eElSTr8DWrxPdl9vOGFl0fo2iUlEREQ6t7YaIjgDeNQ5V+2cWw2sBCa30bFERPZLqHQDO0gnmJzW4n169R1AnQtQV6Kp2kVERGRPsUiwLjezZWb2FzPr6ZcNANZF1Vnvl+3BzC4xs0VmtqiwsDAG4YiItExK5SaKQ332aZ+EUIgi60mwXJNciIiIyJ6aTbDM7FUz+6SRZQZwLzAMmABsAv5vXwNwzt3nnJvonJvYq1evfd1dRGS/ZdVspjx53xIsgB2hHJKqtrZBRCIiItLZNXsPlnPuWy1pyMz+BDzvr24ABkZtzvPLREQ6hEjE0SuyjaLUw/d534rEXmRV6R4sERER2VNrZxHsF7V6GvCJ//o54CwzSzKzocBBwMLWHEtEJJaKigpJs0rIzNvnfat79KZnpKgNohIREZHOrrWzCN5mZhMABxQA/w/AOfepmT0GLAfqgB9pBkER6UiKNn5FLyApe2CzdRtyaX3J2lZOVeVOklNSYx+ciIiIdFqtSrCcc+ftZdutwK2taV9EpK2UbSkAIHUfHjK8SzCzPwBFm9Yx4ICRsQxLREREOrm2mqZdRKRDqy72JjrN7t/yhwzvktLTmxS1tFAPGxYREZHdKcESke5pxzrqXIDMXvt+D1ZaL29Y4U49bFhEREQaUIIlIt1Sws6NFAWyseC+j5TO6esNK6zdvjHWYYmIiEgnpwRLRLqlHlVb2JGw78/AAkjv2YsaF8KVbYpxVCIiItLZKcESkW4pu3YLO/fjIcMAFghQFMgmVLElxlGJiIhIZ6cES0S6nXA4TK4roi6t/363URLKJaWqMIZRiYiISFegBEtEup2iLRtIsjrI3PdnYO1SkdybjNptMYxKREREugIlWCLS7Wzf9BUAyTn7n2DV9ehNTqQI51yswhIREZEuQAnWXhQs/4APfnsG2wt1I7tIV1JeuAaAtN5D97+R9H6kWSWlO7bHKCoRERHpCpRg7UXhF+8zvuR13O8ns+gffyQSDsc7JBGJgVr/IcM5/fc/wQpmeb1fxRtXxiQmERER6Rr2/QEw3cikUy/nq4MmU/fUD5m4+DpWf/h7CsdfxphvnkNqWka8w2uVcMRRV1dLpK6WutpqXF0d4XANkXCYSCRMOBLxXjtX/6+5CODARcBF/UsE56jfHj1kyuF2vfi6LPp11Ib6crNWnFkr9m2r4zbbbGuO276sE8W6N4Etn1DlEsjI3r9ZBAGS+40EYOfGFTBmcov2Wf7+q1S9+VtqBx/NYTOv2+9ji8dFItTW1lJbW01tbQ11NTWE62pw4VpcuBYiYZxzOOf9jvL+9X53eeXeEons+j3m//5yzvudR2cd/hm7z2mrfi3u25H2obQdNRlA3CPbN/t5Idvv+jd69I7xf06LQ+gAse6r+F7gfRJJSKXXoJFkpiTEO5QWUYLVjAPGTCYy4j0Wv/QXcpfcyeQPb2DnktksST+M8KAj6DnySAYeNI6klLTYHDASoa56J1UVpVRVlFFbsZPqylLqKsupqyqjrmonkZqdRKrLoWant9RWEKitIFBXQbCugoRwpbdEKglGagm4OkKujiB1hKgj5MKECJNknfXLg0jrDAMKgoMYEtj/Tvy+Q8cAULXxs2brrlj4CtWv/y8Tqj7w1r/YBnSfBKuutoaykmJ2lhRRWVpEVVkxNeXbCVdsJ1K5A6p2YNXlWF0lgXAVwXAloXAVCeEqEiJVJLpqklwVidQQIkzI1Xn/WoREIDHeJygiIm1qfng8n33vUU7K3//Zf9uTEqwWCIRCHHrSJbjv/AefLXyZsvcfYeD29+i7/E1Y/t9EnLHZctgRzKE2MYOqUAaRYBIBC0DAiDjDRcIEw9WEIt4SDFcRilSR4GpIilSS7KpIoYoUqgkBaf7SnGoXooJkKkmi0pKptmTKLYWaYBa1wX64xEQIhrBgQv0SCCZioQQIJBAJJEAwAQIhXCCEBYIQCBCwIGaGBQKYBcACmBnOAoCBGQ5vu8P8sgCOgPcyKkbb48XuK9F/QGnVX4zjNNlAczHvdasmSIib3GEHt2r/nOxsNtKLQNEXjW53kQjL3nySxHfvZFTNx+wgjYXDfgyFnzO89N+tOnZH4CIRSncUU7RxFWVbC6javplI+RasvJCEqm0kVxeRVldMZmQ7WZTTE+jZRFt1LkCFpVBFEtWWTG0giZpACnXBZKoSexIJJlMXTCYSSsIFEiEQ8n9vJWD+7zcCCVgoAQsk4PzfZ0T97sLM/10GWICAeb+3dtsG2G71zf/9Fi/78/shdr9T4v7rKc7Hb/rw7RRYzC7A/rUT17c/7j98+6izxQvE/QO2j5KTchgxuKn/RToeJVj7wAJBRk75Dkz5Di4SYX3B52xesYDaLStJLl1NQtU2Emt2kF21jgRXC3hDTAI4HEa1JVFridRYEnWBJKqCGZQHkwgHUwiHUokkpOASUnEJPbDEVEhKJZiYSiA5nVBSKqGUNBJS0klKSSOxRwbJqemkJCWRkRCkZ6DzdPOKdBUbe4xkSNliiETA7w2rqihn6csPkvvxnxgfWc0Wcvj3Qddy8IyfMDktgwUP/Yqs0n9Rvn0LaT33f4hiW3ORCMWb11K4djklm1dTV7yOYNl6Uio3kVmzhV7hQjKtiswG+5W7FHYEsigL9aQoZQibkw8l0qMX1qMnoR5ZJKT2JDE9m+S0bHpkZpOelUtKjwwyAgE698BrERERjxKs/WSBAHkHjCLvgFHxDkVE4qRq2Ankfvw2K956jITM/mx79xFGbX2eKZSzNpDH4gn/xbgTfsA3kpLr90npNxJWwfovP2Lk5OPiGD24SJjtW9ZSWLCC8k2fE962ioTSArIq19GnbhM5Vk1OVP1iMigO9WZ7ymA2px4OGXkkZA8ktdcgMnsPpGev/qT1SG9R77uIiEhXpQRLRGQ/jf/W2az/+E5Gzf9/AAxyQT5On0bSlIsZ840TGdTIPV6Dxx4OC6D087ehHRIsFwmzY8tatq5ZTvnGz4lsW0ViSQGZVV4SlW01ZPt1q12IzYG+FCfnsSn7MCznAFL6HkRO3nD6DDiA7JTU+roiIiLSuFYlWGY2Dxjhr2YBO5xzE8xsCLAC+Nzf9p5z7tLWHEtEpKNJz8ym/Af/4t03HiSU2Y8Dp5zEob32fgNubt9BfBkYSvq6N2IWh4tEKNqynsI1n1K+8XNckZ9EVa6lb91GelpN/f1P1S6BjX4StTH7cMgZRo++B5EzaBR9Bw5jcEICg2MWmYiISPfTqgTLOTdz12sz+z+gJGrzKufchNa0LyLS0fUbMIR+5968T/tsyzuew9fOYfXHCxg6bmqL9qksL6Vww0pKN61i59bVhIvXklC2jp5Va+lXt5FcqyLXr1vjgmwK9KU4aSAbs6dAzjBS+w4ne+BI+g4cxtDEBFrxiGURERHZC3MxmPnEzAxYCxzrnPvS78F63jk3dl/amThxolu0aFGr4xER6ci2F28jctchRAhSMOoSkvuNJGABqnaWEi7bgivfCjsLCVVsJaN6M7nhLfSkbLc2alyIwmAvipMGUpE+BLIPILnvcHIGjqLPoANJSNDk5SIiIm3JzBY75ybuUR6jBOtI4Le7DuAnWJ8CXwClwC+cc283se8lwCUAgwYNOnTNmjWtjkdEpKNbuexdgs9cwtDI2ka3l5DKjkA2pUl9qezRn3DGQELZg0jpfQC98g6kV99BBILBdo5aREREdtnvBMvMXgX6NrLp5865Z/069wIrnXP/568nAWnOuSIzOxR4BhjjnCvd27HUgyUi3YmLRFi/ZiU7t6wi7IweqWmkZvcnI7cfyckp8Q5PRERE9qKpBKvZe7Ccc99qpuEQ8F3g0Kh9qoFq//ViM1sFDAeUPYmI+CwQYODQ4TB0eLxDERERkRjZcw7hffct4DPn3PpdBWbWy8yC/usDgIOAr2JwLBERERERkQ4rFs/BOguY26DsSOAWM6sFIsClzrniGBxLRERERESkw2p1guWcm9VI2ZPAk61tW0REREREpDOJySyCsWJmhUBHm0YwF9gW7yCk3eh6dx+61t2HrnX3ouvdfehady8d8XoPds71aljYoRKsjsjMFjU2O4h0Tbre3Yeudfeha9296Hp3H7rW3Utnut6xmORCREREREREUIIlIiIiIiISM0qwmndfvAOQdqXr3X3oWncfutbdi65396Fr3b10muute7BERERERERiRD1YIiIiIiIiMaIES0REREREJEaUYO2FmU03s8/NbKWZ3RDveCR2zGygmb1hZsvN7FMzu8IvzzazV8zsS//fnvGOVWLDzIJm9qGZPe+vDzWz9/3P9zwzS4x3jBIbZpZlZk+Y2WdmtsLMDtdnu2sys6v83+GfmNlcM0vWZ7vrMLO/mNlWM/skqqzRz7J57vKv+zIzOyR+kcu+auJa/8b/Pb7MzJ42s6yobT/zr/XnZnZ8XILeCyVYTTCzIPB74ARgNHC2mY2Ob1QSQ3XA1c650cAU4Ef+9b0BeM05dxDwmr8uXcMVwIqo9f8F7nDOHQhsB/4jLlFJW7gTeMk5NxIYj3fd9dnuYsxsAPATYKJzbiwQBM5Cn+2u5AFgeoOypj7LJwAH+cslwL3tFKPExgPsea1fAcY65/KBL4CfAfjf184Cxvj7/MH/3t5hKMFq2mRgpXPuK+dcDfAoMCPOMUmMOOc2OeeW+K/L8L6ADcC7xg/61R4ETo1LgBJTZpYHnAj82V834FjgCb+KrnUXYWaZwJHA/QDOuRrn3A702e6qQkCKmYWAHsAm9NnuMpxzbwHFDYqb+izPAP7mPO8BWWbWr10ClVZr7Fo75/7lnKvzV98D8vzXM4BHnXPVzrnVwEq87+0dhhKspg0A1kWtr/fLpIsxsyHAwcD7QB/n3CZ/02agT7zikpj6HXAdEPHXc4AdUb+49fnuOoYChcBf/SGhfzazVPTZ7nKccxuA24G1eIlVCbAYfba7uqY+y/re1rVdBPzTf93hr7USLOnWzCwNeBK40jlXGr3Nec8w0HMMOjkzOwnY6pxbHO9YpF2EgEOAe51zBwM7aTAcUJ/trsG/92YGXlLdH0hlzyFG0oXps9w9mNnP8W7teCTesbSUEqymbQAGRq3n+WXSRZhZAl5y9Yhz7im/eMuuIQX+v1vjFZ/EzBHAKWZWgDfU91i8e3Sy/GFFoM93V7IeWO+ce99ffwIv4dJnu+v5FrDaOVfonKsFnsL7vOuz3bU19VnW97YuyMxmAScB57ivH97b4a+1EqymfQAc5M9GlIh3M91zcY5JYsS/B+d+YIVz7rdRm54DLvBfXwA8296xSWw5537mnMtzzg3B+xy/7pw7B3gDOMOvpmvdRTjnNgPrzGyEX/RNYDn6bHdFa4EpZtbD/52+61rrs921NfVZfg44359NcApQEjWUUDohM5uON7z/FOdcRdSm54CzzCzJzIbiTWyyMB4xNsW+TgalITP7Dt69G0HgL865W+MbkcSKmU0F3gY+5uv7cm7Euw/rMWAQsAY40znX8AZb6aTM7GjgGufcSWZ2AF6PVjbwIXCuc646juFJjJjZBLwJTRKBr4AL8f6gqM92F2NmvwJm4g0f+hC4GO9eDH22uwAzmwscDeQCW4CbgWdo5LPsJ9n34A0TrQAudM4tikPYsh+auNY/A5KAIr/ae865S/36P8e7L6sO7zaPfzZsM56UYImIiIiIiMSIhgiKiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJlohIB2FmQ8zMmVko3rF0dWY2y8wWxDuOjsbMppnZ5/GOQ0SkM1OCJSIinZqZzTazWjMrj1qui3dcnZFz7m3n3IhYtmlmw83sWTMrNLNiM3vZzGJ6DBGRjkQJlohIjKjnKa7mOefSopbb4h1QLHXyn60s4DlgBNAHWAg8G8+ARETakhIsEZFWMLMCM7vezJYBO80sZGZTzOzfZrbDzD4ys6Oj6s83s/8xs4VmVur/ZT+7ibYvNLMVZlZmZl+Z2f9rsH2GmS3121llZtP98kwzu9/MNpnZBjP7LzMLNnMew8zsdTMrMrNtZvaImWVFbSs2s0P89f5+b8TR/vopZvapf77zzWxUg/fnGjNbZmYlZjbPzJL3/Z3ed2Z2g/++lJnZcjM7rYl6ZmZ3mNlW/7382MzG+tuSzOx2M1trZlvMbI6ZpbTw+A/49V/xY3jTzAZHbb/TzNb5x1xsZtOits02syfM7GEzKwVmmdlkM3vXf583mdk9ZpYYtY8zsx+a2Zf+8f7Tv3b/9o/xWHT9JmI+2szWt+T8Wso5t9A5d79zrtg5VwvcAYwws5xYHkdEpKNQgiUi0npnAyfi/aW+D/AC8F9ANnAN8KSZ9Yqqfz5wEdAPqAPuaqLdrcBJQAZwIXBHVJIzGfgbcK1/3COBAn+/B/x2DwQOBo4DLm7mHAz4H6A/MAoYCMwGcM6tAq4HHjazHsBfgQedc/PNbDgwF7gS6AW8CPyjwRf5M4HpwFAgH5jVaABmU/3koallajPn0NAqYBqQCfzKj79fI/WOw3v/hvt1zwSK/G2/9ssn4L2fA4Cb9iGGc4D/BHKBpcAjUds+8NvNBv4OPN4g+ZwBPIF3fR8BwsBVfluHA98EftjgeMcDhwJTgOuA+4Bz8a7nWLyf1f3mJ8pNXZ8/tLCZI4HNzrmiZmuKiHRGzjktWrRo0bKfC15Sc1HU+vXAQw3qvAxc4L+eD/w6attooAYIAkMAB4SaONYzwBX+6z8CdzRSpw9QDaRElZ0NvLGP53Uq8GGDsueAj4FlQJJf9kvgsag6AWADcHTU+3Nu1PbbgDkxvgaz/fdwR9TSv5F6S4EZ/utZwAL/9bHAF3hJSSCqvgE7gWFRZYcDq1sY1wPAo1HraXhJ0sAm6m8Hxked01vNtH8l8HTUugOOiFpfDFwftf5/wO+aafNoYH0sr0+D9vP8n4+z2+oYWrRo0RLvpTOP6RYR6SjWRb0eDHzPzE6OKksA3mii/hp/e27DRs3sBOBmvB6UANADL8EBr0fixUZiGey3t8nMdpUFGhxzD2bWB7gTr8cn3d9ne4Nqf8JLsi5xzlX7Zf39cwDAORcxs3V4PT27bI56XeHvE2uPOefOjS4ws/OBn+IlruAlOHu8z865183sHuD3wGAzewqv5zEZ7z1fHPVeGl4y3FL177tzrtzMivHOf52ZXQP8h7/u8Hoqcxvb1z+f4cBvgYl+XCG8JCralqjXlY2s992H2GPK78X9F/AH59zceMUhItLWNERQRKT1XNTrdXg9WFlRS6pz7tdRdQZGvR4E1ALbohs0syTgSeB2oI9zLgsvodr1TX8dMKyRWNbh9WDlRh0/wzk3pplz+G//PMY55zLwhpV9nVWYpQG/A+4HZtvX941txEvqdtUz//w2NHO8PZg3RXj5XpZpzbdS39ZgvITwciDHf/8+iT6naM65u5xzh+L1KA7HG3q5DS8pGRP1XmY659L24bTqr7X/HmYDG/1zuQ5vOGJPP76SBvFF/1wB3At8BhzkX6MbmzqftuLfa9fU9Zmzl/164iVXzznnbm2/iEVE2p8SLBGR2HoYONnMjjezoJkl+xMH5EXVOdfMRvv3M90CPOGcCzdoJxFIAgqBOr8367io7fcDF5rZN80sYGYDzGykc24T3hfZ/zOzDH/bMDM7qpm404FyoMTMBuAlGNHuBBY55y7Gu8ds15fpx4AT/TgSgKvxErx/N/dGNeS8KcLT9rK8vQ/NpeIlKIXgTRiCdw/SHsxskpkd5se/E6gCIs65CF6SdoeZ9fbrDjCz46P2dRY1iUkjvuPfW5aIdy/We865dXjvd50fX8jMbsLrwdqbdKAUKDezkcBlzdSPOefcmL1cn0sb28fMMvCGyb7jnLuhfSMWEWl/SrBERGLI//I8A693oRCvR+ladv99+xDe/Tmb8Yah/aSRdsr88sfwhup9H2943q7tC/EnvsDr+XiTr3uSzsdL0Jb7+z6BN6HG3vwKOMRv6wXgqV0bzGwG3iQVu77Q/xQ4xMzOcc59jtfbdTdej8/JwMnOuZpmjtemnHPL8e45ehdvmNw44J0mqmfgJVLb8YY7FgG/8bddD6wE3vNn83sVb7pxzGwgUMbXwzYb83e8YZ7FeJNP7BrG+DLwEt69X2vwkrq9DuPEG7b4ff+YfwLmNVO/ozgNmIT3B4HoHq9B8Q5MRKQtmHMNRyCIiEhbMbP5wMPOuT/HOxZpHTM7F2/44M+a2P4A3oQRv2jXwEREJK40yYWIiMh+cM49HO8YRESk49EQQRGRbsK8h97u0+QE0vWY2Y1N/Bz8M96xiYh0BRoiKCIiIiIiEiPqwRIREREREYmRDnUPVm5urhsyZEi8wxAREREREdmrxYsXb3PO9WpY3qESrCFDhrBo0aJ4hyEiIiIiIrJXZramsXINERQREREREYkRJVgiIiIiIiIxogRLRGQffFVYzsufbo53GCIiItJBdah7sBpTW1vL+vXrqaqqinco0skkJyeTl5dHQkJCvEORLuS/H/oH393+FzZfej99BwyKdzgiIiLSwXT4BGv9+vWkp6czZMgQzCze4Ugn4ZyjqKiI9evXM3To0HiHI13Ib0quoWewnA8/+hd9B1wc73BERESkg+nwQwSrqqrIyclRciX7xMzIyclRz6fEXIgwANVbv4pzJCIiItIRdfgEC1ByJftFPzcSa7XhCIYDILBjdZyjERERkY6oUyRYIiIdQUlFNWnm9YqmV6yLczQiIiLSESnBagEz4+qrr65fv/3225k9e3b8Aory3nvvcdhhhzFhwgRGjRpVH9f8+fP597//3aq2p0+fTlZWFieddFIMIhXp/EpKSupf59RujGMkIiIi0lG1OsEys4Fm9oaZLTezT83sCr8828xeMbMv/X97tj7c+EhKSuKpp55i27ZtMW3XOUckEmlVGxdccAH33XcfS5cu5ZNPPuHMM88EYpNgXXvttTz00EOtakOkK6na6SVYpaTRM7IDWvn5FRERka4nFrMI1gFXO+eWmFk6sNjMXgFmAa85535tZjcANwDXt+ZAv/rHpyzfWNrqgKON7p/BzSeP2WudUCjEJZdcwh133MGtt96627bCwkIuvfRS1q5dC8Dvfvc7jjjiCGbPnk1aWhrXXHMNAGPHjuX5558H4Pjjj+ewww5j8eLFvPjii9xzzz3885//xMz4xS9+wcyZM5k/fz6zZ88mNzeXTz75hEMPPZSHH354j/uKtm7dSr9+/QAIBoOMHj2agoIC5syZQzAY5OGHH+buu+9m5MiRTca5atUqVq5cybZt27juuuv4wQ9+AMA3v/lN5s+fv9f35vHHH+dXv/oVwWCQzMxM3nrrLaqqqrjssstYtGgRoVCI3/72txxzzDE88MADPPPMM+zcuZMvv/ySa665hpqaGh566CGSkpJ48cUXyc7O5k9/+hP33XcfNTU1HHjggTz00EP06NFjt+NOmTKF+++/nzFjvGt39NFHc/vttzNx4sS9xivSGuHKMgAKEwcwrOZzykoKSe/ZJ85RiYiISEfS6h4s59wm59wS/3UZsAIYAMwAHvSrPQic2tpjxdOPfvQjHnnkkd2GCAFcccUVXHXVVXzwwQc8+eSTXHxx89M2f/nll/zwhz/k008/ZdGiRSxdupSPPvqIV199lWuvvZZNmzYB8OGHH/K73/2O5cuX89VXX/HOO+/s0dZVV13FiBEjOO200/jjH/9IVVUVQ4YM4dJLL+Wqq65i6dKlTJs2ba9xLlu2jNdff513332XW265hY0bWz706ZZbbuHll1/mo48+4rnnngPg97//PWbGxx9/zNy5c7ngggvqZ/P75JNPeOqpp/jggw/4+c9/To8ePfjwww85/PDD+dvf/gbAd7/7XT744AM++ugjRo0axf3337/HcWfOnMljjz0GwKZNm9i0aZOSK2lzddVeglWe6j3/avsW3YclIiIiu4vpc7DMbAhwMPA+0Mc5t8nftBlo9M+8ZnYJcAnAoEF7f2hncz1NbSkjI4Pzzz+fu+66i5SUlPryV199leXLl9evl5aWUl5evte2Bg8ezJQpUwBYsGABZ599NsFgkD59+nDUUUfxwQcfkJGRweTJk8nLywNgwoQJFBQUMHXq1N3auummmzjnnHP417/+xd///nfmzp3baK/T3uKcMWMGKSkppKSkcMwxx7Bw4UJOPfXUFr0vRxxxBLNmzeLMM8/ku9/9bv05/fjHPwZg5MiRDB48mC+++AKAY445hvT0dNLT08nMzOTkk08GYNy4cSxbtgzwkrBf/OIX7Nixg/Lyco4//vg9jnvmmWdy3HHH8atf/YrHHnuMM844o0XxirRGpNL7zISzDoDtUFK4AUYqsRcREZGvxSzBMrM04EngSudcafRQNuecMzPX2H7OufuA+wAmTpzYaJ2O4sorr+SQQw7hwgsvrC+LRCK89957JCcn71Y3FArtdn9V9POYUlNTW3S8pKSk+tfBYJC6urpG6w0bNozLLruMH/zgB/Tq1YuioqI96jQVJ+w5nfm+TG8+Z84c3n//fV544QUOPfRQFi9evNf60ecUCATq1wOBQP35zZo1i2eeeYbx48fzwAMPNJowDhgwgJycHJYtW8a8efOYM2dOi2MW2V+Ram+IcqjXgbAaqrZvamYPERER6W5iMougmSXgJVePOOee8ou3mFk/f3s/YGssjhVP2dnZnHnmmbsNWTvuuOO4++6769eXLl0KwJAhQ1iyZAkAS5YsYfXqxp+ZM23aNObNm0c4HKawsJC33nqLyZMntzimF154Aee8vPTLL78kGAySlZVFeno6ZWVlzcYJ8Oyzz1JVVUVRURHz589n0qRJLT7+qlWrOOyww7jlllvo1asX69atY9q0aTzyyCMAfPHFF6xdu5YRI0a0uM2ysjL69etHbW1tfTuNmTlzJrfddhslJSXk5+e3uH2R/RWp3glAWn/v57muZHM8wxEREZEOKBazCBpwP7DCOffbqE3PARf4ry8Anm3tsTqCq6++erfZBO+66y4WLVpEfn4+o0ePru9JOf300ykuLmbMmDHcc889DB8+vNH2TjvtNPLz8xk/fjzHHnsst912G3379m1xPA899BAjRoxgwoQJnHfeeTzyyCMEg0FOPvlknn76aSZMmMDbb7/dZJwA+fn5HHPMMUyZMoVf/vKX9O/fH/CSv+9973u89tpr5OXl8fLLLwPesMRd91tde+21jBs3jrFjx/KNb3yD8ePH88Mf/pBIJMK4ceOYOXMmDzzwwG49V835z//8Tw477DCOOOIIRo4cWV/+3HPPcdNNN9Wvn3HGGTz66KP1MyeKtLka748WabkDqXSJUL4lzgGJiIhIR2O7ej/2uwGzqcDbwMfArjFxN+Ldh/UYMAhYA5zpnCveW1sTJ050ixYt2q1sxYoVjBo1qlUxStMaznbY1ejnR2Lp/Udu4bAv/48dV6yi4q5vsCE9n0k/fSLeYYmIiEgcmNli59weN2O3+h4s59wCoKmbdr7Z2vZFRDqM2goAknuksyWUTXJVbJ+NJyIiIp1fTGcRlM5n9uzZ8Q5BpNNwddWEnZGYkEhFYg5ZlZqmXURERHYXk0kuRES6hXA1NSQQCBi1Kb3IjOx11LOIiIh0Q0qwRERayOqqqbEEACI9epNNGdXVVc3sJSIiIt2JEiwRkZYK11CLl2AFM71npxdvWR/PiERERKSDUYIlItJCFq6h1u/BSsr0HqdQsm1jPEMSERGRDkYJVgs988wzmBmfffZZk3UKCgoYO3ZszI75+eefc/TRRzNhwgRGjRrFJZdcAngPCX7xxRdb1fZFF11E7969YxqvSFcXCFdT5/dg9cj2nhdXUbwpniGJiIhIB6MEq4Xmzp3L1KlTmTt3bqPb6+rqWn2McDi82/pPfvITrrrqKpYuXcqKFSv48Y9/DMQmwZo1axYvvfRSq9oQ6W4CkRrqAokAZOZ6CVZ1yeZ4hiQiIiIdTOeapv2fN8Dmj2PbZt9xcMKv91qlvLycBQsW8MYbb3DyySfzq1/9CoD58+fzy1/+kp49e/LZZ5/xr3/9i7q6Os455xyWLFnCmDFj+Nvf/kaPHj147bXXuOaaa6irq2PSpEnce++9JCUlMWTIEGbOnMkrr7zCddddx1lnnVV/3E2bNpGXl1e/Pm7cOGpqarjpppuorKxkwYIF/OxnP+Okk07ixz/+MZ988gm1tbXMnj2bGTNm8MADD/D0009TUlLChg0bOPfcc7n55psBOPLIIykoKNjreb/55ptcccUVAJgZb731FmlpaVx33XX885//xMz4xS9+wcyZM5k/fz4333wzWVlZfPzxx5x55pmMGzeOO++8k8rKSp555hmGDRvGP/7xD/7rv/6LmpoacnJyeOSRR+jTp89uxz3rrLM477zzOPHEEwEvGTzppJM444wzWnZNRdpIIFJD2B8imNV7AADh0i3xDElEREQ6GPVgtcCzzz7L9OnTGT58ODk5OSxevLh+25IlS7jzzjv54osvAG9Y3w9/+ENWrFhBRkYGf/jDH6iqqmLWrFnMmzePjz/+mLq6Ou699976NnJycliyZMluyRXAVVddxbHHHssJJ5zAHXfcwY4dO0hMTOSWW25h5syZLF26lJkzZ3Lrrbdy7LHHsnDhQt544w2uvfZadu7cCcDChQt58sknWbZsGY8//jiLFi1q8Xnffvvt/P73v2fp0qW8/fbbpKSk8NRTT7F06VI++ugjXn31Va699lo2bfKGSH300UfMmTOHFStW8NBDD/HFF1+wcOFCLr74Yu6++24Apk6dynvvvceHH37IWWedxW233bbHcWfOnMljjz0GQE1NDa+99lp9siUST8GoHqyE5DR2kgw7C+MclYiIiHQknasHq5meprYyd+7c+p6cs846i7lz53LooYcCMHnyZIYOHVpfd+DAgRxxxBEAnHvuudx11118+9vfZujQoQwfPhyACy64gN///vdceeWVgJdQNObCCy/k+OOP56WXXuLZZ5/lj3/8Ix999NEe9f71r3/x3HPPcfvttwNQVVXF2rVrAfj2t79NTk4OAN/97ndZsGABEydObNF5H3HEEfz0pz/lnHPO4bvf/S55eXksWLCAs88+m2AwSJ8+fTjqqKP44IMPyMjIYNKkSfTr1w+AYcOGcdxxxwFez9sbb7wBwPr165k5cyabNm2ipqZmt/dulxNOOIErrriC6upqXnrpJY488khSUlJaFLNIWwpGagmHkurXSwI9SajcFseIREREpKNRD1YziouLef3117n44osZMmQIv/nNb3jsscdwzgGQmpq6W30z2+t6Yxq2Ea1///5cdNFFPPvss4RCIT755JM96jjnePLJJ1m6dClLly5l7dq1jBo1ar/j2eWGG27gz3/+M5WVlRxxxBF7neADICnp6y+egUCgfj0QCNTfo/bjH/+Yyy+/nI8//pg//vGPVFXt+Qyh5ORkjj76aF5++WXmzZvXZAIq0t5CroaI34MFUB7qSUpNURwjEhERkY5GCVYznnjiCc477zzWrFlDQUEB69atY+jQobz99tuN1l+7di3vvvsuAH//+9+ZOnUqI0aMoKCggJUrVwLw0EMPcdRRRzV77Jdeeona2loANm/eTFFREQMGDCA9PZ2ysrL6escffzx33313fdL34Ycf1m975ZVXKC4urr8PalfvWkusWrWKcePGcf311zNp0iQ+++wzpk2bxrx58wiHwxQWFvLWW28xefLkFrdZUlLCgAHevSsPPvhgk/VmzpzJX//6V95++22mT5/e4vZF2lIosnuCVZWUQ1pdcRwjEhERkY6mzRMsM5tuZp+b2Uozu6Gtjxdrc+fO5bTTTtut7PTTT29yNsERI0bw+9//nlGjRrF9+3Yuu+wykpOT+etf/8r3vvc9xo0bRyAQ4NJLL2322P/6178YO3Ys48eP5/jjj+c3v/kNffv25ZhjjmH58uVMmDCBefPm8ctf/pLa2lry8/MZM2YMv/zlL+vbmDx5Mqeffjr5+fmcfvrp9cMDzz77bA4//HA+//xz8vLyuP/++wGYM2cOc+bMAeB3v/sdY8eOJT8/n4SEBE444QROO+008vPzGT9+PMceeyy33XYbffv2bfH7OXv2bL73ve9x6KGHkpubW1++aNEiLr744vr14447jjfffJNvfetbJCYmNtaUSLsLUbtbglWXkktWZEf9HzdERERErC2/GJhZEPgC+DawHvgAONs5t7yx+hMnTnQNJ2FYsWJF/XA32TcPPPAAixYt4p577ol3KHGjnx+JpU2zh7EpezKH/MT7A8uSB69jwlf3UXbtJjLTdJ+giIhId2Jmi51ze0xu0NY9WJOBlc65r5xzNcCjwIw2PqaISJtIdLW44Nc9WMGMPgTMUVy4IY5RiYiISEfS1gnWAGBd1Pp6v6yemV1iZovMbFFhoaY7jqVZs2Z1694rkVhLYPcEKynLGx5buk0JloiIiHjiPsmFc+4+59xE59zEXr16NVWnnaOSrkA/NxJLkYgjkVoIfj1bZlp2fwAqijfFKywRERHpYNo6wdoADIxaz/PLWiw5OZmioiJ9WZZ94pyjqKiI5OTkeIciXURNXZhE6iDqOViZvbwO+ZqSzfEKS0RERDqYtn7Q8AfAQWY2FC+xOgv4/r40kJeXx/r169HwQdlXycnJ5OXlxTsM6SKqq2tINodF92DleA/WDpdtjVdYIiIi0sG0aYLlnKszs8uBl4Eg8Bfn3Kf70kZCQgJDhw5tk/hERFqqprrCe5HwdYJlSelUkkRgp/4AJCIiIp627sHCOfci8GJbH0dEpC3VVFcCEIgaIghQEuhJQtW2eIQkIiIiHVDcJ7kQEekMdiVYlrB7grUzoScpNcXxCElEREQ6ICVYIiItUOcPEQwk7P5A4eqkXNLrlGCJiIiIRwmWiEgL1O0aIpi4e4IV7pFLlttBbTgSj7BERESkg1GCJSLSAnU1XoIVTOixW7lL60MOZRSVVsQjLBEREelglGCJiLRA2B8iGEzavQcrlNmfgDm2b10fj7BERESkg1GCJSLSApHaKgCCDYYIJmd7z1orL1zb7jGJiIhIx6MES0SkBcI1Xg9WKGn3IYJpvbwEq6p4Q7vHJCIiIh2PEiwRkRaI+PdghRoMEczsPRCAcMmmdo9JREREOh4lWCIiLeEPEUxokGAlZfShjgBWvjkeUYmIiEgHowRLRKQFIrVeD1ZCcuruGwJBii2bhAolWCIiIqIES0SkZeq8HqzE5B57bCoN5dCjurC9IxIREZEOSAmWiEhL+D1YiQ17sICKpF5k1G5r74hERESkA2pVgmVmvzGzz8xsmZk9bWZZUdt+ZmYrzexzMzu+1ZGKiMSR1VURdkYolLDHtpqU3mRHinHOxSEyERER6Uha24P1CjDWOZcPfAH8DMDMRgNnAWOA6cAfzCzYymOJiMSNq6ummkQssOevTZfelywrZ2fFzjhEJiIiIh1JqxIs59y/nHN1/up7QJ7/egbwqHOu2jm3GlgJTG7NsURE4snqKqm2pEa3BTL6A1C8aU17hiQiIiIdUCzvwboI+Kf/egCwLmrber9sD2Z2iZktMrNFhYW6SVxEOiarq6LG9hweCJCU7f1tqaxwXaPbRUREpPsINVfBzF4F+jay6efOuWf9Oj8H6oBH9jUA59x9wH0AEydO1A0MItIhWV01tU30YKXmeglW1fYN7RmSiIiIdEDNJljOuW/tbbuZzQJOAr7pvr7DewMwMKpanl8mItIpBSNVTSZYPXsPAqBux8b2DElEREQ6oNbOIjgduA44xTlXEbXpOeAsM0sys6HAQcDC1hxLRCSeQuEq6gLJjW7L6NmLapcAZXrYsIiISHfXbA9WM+4BkoBXzAzgPefcpc65T83sMWA53tDBHznnwq08lohI3CSFK6hOTG90WyAYYJtlk1ChBEtERKS7a1WC5Zw7cC/bbgVubU37IiIdRXJkJ8Whfk1u3xHKJblKE/WIiIh0d7GcRVBEpMtKcRXUhVKb3F6R1IuMWiVYIiIi3Z0SLBGRFkh1lYQT0prcXtOjDzmRInCaDFVERKQ7U4IlItIMFwmTZpVEmrgHC8Cl9yOFaqrKt7djZCIiItLRKMESEWnGzvISAALJGU3WCWX2B6B4U0F7hCQiIiIdlBIsEZFmlJd4vVLBlKYTrJRc79F/pVvXtktMIiIi0jEpwRIRaUZFmZdghVIym6yT4T9suLJICZaIiEh3pgRLRKQZVf4QwcTUpnuwcvoNBqBux8Z2iUlEREQ6JiVYIiLNqN65A4Ck1Kwm66SnplHs0rGyTe0TlIiIiHRISrBERJpRu9MbIpiS3rPJOmZGcTCXpMot7RWWiIiIdEBKsEREmhEp8x4gnNqz717rlSX0IrV6a3uEJCIiIh2UEiwRkWa48q2EnZGZ3Wev9apSetOzrrCdohIREZGOSAmWiEgzAhWF7LAMAqHQXuvVpfajJ6VEaqraKTIRERHpaGKWYJnZ1WbmzCzXXzczu8vMVprZMjM7JFbHEhFpT4nVRZQGmr7/apdARj8AdhSua+uQREREpIOKSYJlZgOB44DoB8CcABzkL5cA98biWCIi7S2lppidCc0nWEnZeQDs2LymrUMSERGRDipWPVh3ANcBLqpsBvA353kPyDKzfjE6nohIu0kPb6cqKbfZeqm9vIcN79ymHiwREZHuqtUJlpnNADY45z5qsGkAEP0tY71fJiLSadTWhcmJFENa72br9vQfNlyzfUNbhyUiIiId1N7v2PaZ2atAY/MT/xy4EW944H4xs0vwhhAyaNCg/W1GRKRNbNlQQJ7VYtlDm62bm9OHKpeAK1GCJSIi0l21KMFyzn2rsXIzGwcMBT4yM4A8YImZTQY2AAOjquf5ZQ3bvg+4D2DixImu4XYRkXgqXvc5eUBKnwObrRsKBdlkOYQqNrd9YCIiItIhtWqIoHPuY+dcb+fcEOfcELxhgIc45zYDzwHn+7MJTgFKnHObWh+yiEj7qdjyJQA980a0qH5ZKJvEquK2DElEREQ6sBb1YO2nF4HvACuBCuDCNjyWiEibCBd9RZ0L0GvAsBbVr0rMJqdKswiKiIh0VzFNsPxerF2vHfCjWLYvItLeUoo/Y2Moj0GJSS2qX5OcQ0bFsjaOSkRERDqqmD1oWESkq3HOkVf1OdvSR7V4n0iPXmS6MiJ1tW0YmYiIiHRUSrBERJqwacMaerOdcN/8Fu9jab0ImKO0SBNdiIiIdEdKsEREmrDuw1cB6Dn8iBbvE8roA0Bp0cY2iUlEREQ6NiVYIiJNCK98nTJ6cED+1Bbvk5zlPTJwZ7EmTRUREemOlGCJiDQiHA5zYMm/WZ1+KIFQQov3S83uB0D1ji1tFZqIiIh0YEqwREQasfy9l+nNdupGztin/TJz+wNQV6Z7sERERLojJVgiIo2ofu9+yklh9NFn7tN+WT1zqXYhXPm2NopMREREOjIlWCIiDWxet4rxpW/wce9TSE7N3Kd9g8EA2y2TYEVhG0UnIiIiHZkSLBGRBr547jcEiDD0xKv3a//SYE8Sq4tiHJWIiIh0BkqwRESibPrqE6ZsfZxl2cfTd/CI/WpjZ6gnPWqKYxyZiIiIdAZKsEREdnGO4id/Sg0JDPjeb/a7meqkHNLD22MYmIiIiHQWSrBERHwr5j/KmJ3vs2jopfTuP2i/26lLySHTlYBzMYxOREREOgMlWCIiQE3lTrLeuomvbBBTzrqhdY316EUiddTs3BGT2ERERKTzaHWCZWY/NrPPzOxTM7stqvxnZrbSzD43s+NbexwRkbb00aOz6ee2UnLMf5OcnNyqtgLpuQCUFulZWCIiIt1NqDU7m9kxwAxgvHOu2sx6++WjgbOAMUB/4FUzG+6cC7c2YBGRWNu85jPyC/7KwvRjmHzkya1uLzGjDwClRRvJHTyq1e2JiIhI59HaHqzLgF8756oBnHNb/fIZwKPOuWrn3GpgJTC5lccSEWkTWx67ijoC5M38v5i016NnXwAqt2+JSXsiIiLSebQ2wRoOTDOz983sTTOb5JcPANZF1Vvvl+3BzC4xs0VmtqiwUA/mFJH29dHb/2D8zn+z7IAf0H/gsJi0mZrtJVg1pRoiKCIi0t00O0TQzF4F+jay6ef+/tnAFGAS8JiZHbAvATjn7gPuA5g4caKm3BKRduMiEZLn38JWy+GQM38Ws3azcvsDEC7bFrM2O5qqnaVs27iaksIN7CxaT13JZgIVhVjVDoI15QTrdpIQ3klypJKkSCUBwgRdmCBhAkQIEiZEBCOCI+C/MhwBwgRwUeve6wDOvDIwXP2/gDVY37W9vpzG1/l6vUuzXf80/19s+70bjR+p0dL9DKol59uydtpAC0+0pceuCySR9f0/0Xvg8NZEJSIx0myC5Zz7VlPbzOwy4CnnnAMWmlkEyAU2AAOjqub5ZSIiHcbSVx7i4PAXLBr/n0xMSYtZuxlpqZS5FKjo3L3yLhJh47rVbPtyIVWblmPFq0gtX0Pv2g30Yjt5eL/cd6lxIUotjSpLoTqYSk2wBztDvdgRSsEFErBAECxE2IJE/MX7Cukw56dTLux9MXaR+jLvtQOiyxxE/4vz6zhvtWGZX3dXerVrm+Fik2S1oIn9OUqTKcJ+5g77eq6NH6aJgzdS3F5/NW38OE2kWC0OquXR7/N5NtihtU90yK9axkfP3krvyx9sXUMiEhOtmuQCeAY4BnjDzIYDicA24Dng72b2W7xJLg4CFrbyWCIiMRMOR+j5/m8oCORx8MmXxbRtM2OHZRGqLIppu22taNsW1n34GlVrFpKy7RPyqr5gACX147uLyKQwYQBreh7OqsyhBHoOIjW7Hxm9B9Kzz0BSM3LIDejpHyLt7d3fncshhS+wfet6evbOa34HEWlTrU2w/gL8xcw+AWqAC/zerE/N7DFgOVAH/KgzziC45rMlbH3pNkbMuoeMrNx4hyMiMfThG08wMbKOJYf+L0NCCTFvvyyYRVJ1cczbjaWS4kJWffASNSvfpFfRIoaGC8gxR50LsDY4iNVZ3+Cr/hNIHzKRfgcdTE7PHHLiHbSI7KHf9GtImPs8nz3xXxz+wznxDkek22tVguWcqwHObWLbrcCtrWk/3raseIdDtr/MtjunsO5bdzLmiBPjHZKIxEjCwnspJJvx0y9sk/YrE7PIqdnUJm23xtqClaz59+Okr36JMTUfc4iFqXSJfJU8mkWDLiFj5NEMHnckB6SmsU831IpI3AwZOYGF2Scyacs81q64mEGjJsY7JJFurbU9WF3a5NN+zIqBY0h/4TLGvPJ9PnznG6RPv4kD8w+Pd2idmts12Ly1g86jmLXwvoKW1pMubeUn7zO+ZgkLD7icXglJbXKMmqQc0itXtEnb+8I5x8pPF7N54ZP02vAqI8NfMAhYHxjA0oHnkD7uJA6YcBRjklr3cGURia+hZ91G+b3zqX7yUmqvfYuEpB7xDqlTcs7hIg7nIl9/X2khM2vx9wxr5FXT7Ta10kQMEndKsJoxauKxVI36gPce/2/Grn6AtKem89lzIykZdgoDJp3CgAPGYO10z4GLRKiu2knVzjKqKkqpqSijurKc2spy6qq8JVxdjquuwNWUQ00FVluB1VUQrKsgVFdBKFxJKFKFRcIYEYIujBEm6CLe3F3+v0F/lq8AEX+bt8DXvwq+vn3YNVpuDcoDtvu6xEbEtc872n43q7f9+RyAo4IkRp54RZsdoy4ll8ztpRCJQDvflxQOh1mxaD47ljzFwK1vcJDbwEHAyoThLBryY/K+cQZ5wyagOzVEuo5efQaw6LD/YeL7P2bRH2ZxyE/mEggG4x1Wk2praygp3kb5jkJqdm6nrryY2soywtXlhKt3EqneiaupgNqdWG0lVut9hwlGqglE6gi4WgKROoKuloALE3Te6yBhQq6WELtmLXX+9xFHwJ/YZtcS2FVeX+Z9V+nO31P29TvFvn432PeJdrz6b7t8Ks+Yy4n5/fbxiPGhBKsFklMzmDLr15QUXcXCl/9I75WPM/Lz2+Dz29hOOhsTD6AkdSik9SaU0QdLzSYYSiSUkIgFE4iEI4TrqnC1VURqq6GuinBNFa5mZ30SFKjbSaCu0kuEwpUkhitJjFSR6CpJdtWkuEqSqSHZHC39O3OtC1JJElWWTJUlU23J1AZSqAqm4UJBnIVwFsBZEGdBsCAuEPx6Pfq1BXCB6F/URtTcv1Gvv06zzLwPhtH4dgAXi7+07NOnux3ShBj2zLXgYDGp0pJGXDu8d+35n1rK0MOYkNO7zdq31BxCFqGidBs9struOLtUVVWy4t0Xqfz4OQ4sfouxFFPrgnyRMp4lw2YxdOr3OLDf0DaPQ0TiZ+IJ5/Pupo85fO19LL7zTEb9v7/SIzWjXY4djji2FRVTvGUNZYXrqN2xEco2Edi5laTKLaRUF5NUV0qPSBlprpw0KsnFm3p6b6pcAlWWRBXJVAeSqbUkwhYi4i+1wRSchYgEEogEQrhAAm7XawviCGBmOPP/0GUB77uIBYDofw3ztzkLeN9e9uE7igN/1tKW1YWWPUogukZz7Tfcurf2G9vS0vj33krTXzsai2dvh4yuX508iGG9U/cluLiyfe3+bEsTJ050ixYtincYLbJu1adsWvIikY0fkV32BX3qNpBJ+T63E3ZGJcneLw9LptpSqA16iVBdMIW6UA8i/kJCD1xiDywplUBiKoHkNEJJqSQkpxNKSSMpJZ2kHmkk9UinR1omycnJ6ioWiZP3X7ifwz74KWu/9zKDxkxpk2OUlm7ns7efxj57nhGl75JhFVS4JL5IPwxGnsSBU08nTRP0iHQrLhLh3b/9km8U3MN668eWSdcz/tvnEkrY/8l8ykp3ULxlLSVb1lNZvJ7akk1QtomEiq30qN5KRm0ROa6YNKvaY98Kl8S2QDZlwWyqQ+nUJWYSScqElCyCPbIIpmYT6tGTQGpPklIySUxNI6VHBsmpafTokd6quEXampktds7tcdOjEqwYqqupYtvWjdSUFVFbW01tTQ0uXEswGCSYmEwoMYVQYjLBxBSSk1JITssgKSml3YYYikj7Wf7hO4x+9jt88o07GXvcrJi1u23zWlYteJLElS8xunIxSVbLDtJZ2XMaSeNOYcThp5CY0nn+yicibeOTBc+R+dr1DHQb2UEaK9MmUZU7lpQ+w0jokUVicgp1EQhX7aSuupxIxQ7CZVugvJBQ1TaSq4tIry2iZ6SYDKvYo/0qEigO5FAWyqUyuRfh1D5YRj8SswaQmptHWm4e6b3ySE7N0v3P0mU1lWBpiGAMhRKT6Zt3AGjuLZFuL3fQKABqt37RqnYi4QhffPI+RYufodfG1xle9wW5wCbrxdK+3yXz4FM5aOK3mdgGU82LSOc1duophKd8hw9ff5SaT55jWNlCcsvfgIK971fuUtgRyKI81JPi1APY3ONwSOtLQlZ/krMHkNl7ENl9B5OS3pP+SpxEGqUES0SkDfTK7slml4MrWrXP+xZtWkvBohepXfkmg0sWMpJtRJzxZcJw/j34MvpOOo2hoyfRT73fIrIXwVCIg487F47znqhTXlLM1nVfUFNRSk1VBUGDhJQ0EpPTSUzLomev/qSlppMW57hFOjslWCIibcDM2JI8lN4lH3t38Tbxl14XibBp9XI2fvo2tWsW0m/7BwyJrCMHKCGNgrRD2Hzgtxly+GmM6DOwfU9CRLqUtMxs0jLb5p5QEfmaEiwRkTZSPOg4xn/536z/9B3yxk6lqrKCjas+ZvuaZVRv/JS0oo8ZXLWC/uykP1BBEquSx/HugO/Sc8y3OSj/cMaH9GtaRESkM9EkFyIibaRwy0aCf5hMD6ootXSy3Q5C5j1Prs4FWBsaxLbMcbj+h5Iz8hsMHXkoQSVUIiIinYImuRARaWe9+vTnyzOf4cvX78bCNXyV1peEvqPJGpzPgAPHcUBKD02JIyIi0sUowRIRaUMHjZkIYx6MdxgiIiLSTlo9BZWZTTCz98xsqZktMrPJfrmZ2V1mttLMlpnZIa0PV0REREREpOOKxRy/twG/cs5NAG7y1wFOAA7yl0uAe2NwLBERERERkQ4rFgmWAzL815nARv/1DOBvzvMekGVm/WJwPBERERERkQ4pFvdgXQm8bGa34yVs3/DLBwDrouqt98s2Re9sZpfg9XABlJvZ5zGIKZZygW3xDkLaja5396Fr3X3oWncvut7dh65199IRr/fgxgpblGCZ2atA30Y2/Rz4JnCVc+5JMzsTuB/4Vkujcs7dB9zX0vrtzcwWNTb9onRNut7dh65196Fr3b3oencfutbdS2e63i1KsJxzTSZMZvY34Ap/9XHgz/7rDcDAqKp5fpmIiIiIiEiXFIt7sDYCR/mvjwW+9F8/B5zvzyY4BShxzm1qrAEREREREZGuIBb3YP0AuNPMQkAVX99P9SLwHWAlUAFcGINjxUOHHb4obULXu/vQte4+dK27F13v7kPXunvpNNfbnHPxjkFERERERKRLiMUQQREREREREUEJloiIiIiISMwowdoLM5tuZp+b2UozuyHe8UjsmNlAM3vDzJab2admdoVfnm1mr5jZl/6/PeMdq8SGmQXN7EMze95fH2pm7/uf73lmlhjvGCU2zCzLzJ4ws8/MbIWZHa7PdtdkZlf5v8M/MbO5Zpasz3bXYWZ/MbOtZvZJVFmjn2V/UrW7/Ou+zMwOiV/ksq+auNa/8X+PLzOzp80sK2rbz/xr/bmZHR+XoPdCCVYTzCwI/B44ARgNnG1mo+MblcRQHXC1c240MAX4kX99bwBec84dBLzmr0vXcAWwImr9f4E7nHMHAtuB/4hLVNIW7gRecs6NBMbjXXd9trsYMxsA/ASY6JwbCwSBs9Bnuyt5AJjeoKypz/IJwEH+cglwbzvFKLHxAHte61eAsc65fOAL4GcA/ve1s4Ax/j5/8L+3dxhKsJo2GVjpnPvKOVcDPArMiHNMEiPOuU3OuSX+6zK8L2AD8K7xg361B4FT4xKgxJSZ5QEn4j+nz8wM77EST/hVdK27CDPLBI7Ee+g9zrka59wO9NnuqkJAij+TcQ9gE/psdxnOubeA4gbFTX2WZwB/c573gCwz69cugUqrNXatnXP/cs7V+avv4T1TF7xr/ahzrto5txpvxvLJ7RZsCyjBatoAYF3U+nq/TLoYMxsCHAy8D/SJel7bZqBPvOKSmPodcB0Q8ddzgB1Rv7j1+e46hgKFwF/9IaF/NrNU9NnucpxzG4DbgbV4iVUJsBh9tru6pj7L+t7WtV0E/NN/3eGvtRIs6dbMLA14ErjSOVcavc15zzDQcww6OTM7CdjqnFsc71ikXYSAQ4B7nXMHAztpMBxQn+2uwb/3ZgZeUt0fSGXPIUbShemz3D2Y2c/xbu14JN6xtJQSrKZtAAZGref5ZdJFmFkCXnL1iHPuKb94y64hBf6/W+MVn8TMEcApZlaAN9T3WLx7dLL8YUWgz3dXsh5Y75x7319/Ai/h0me76/kWsNo5V+icqwWewvu867PdtTX1Wdb3ti7IzGYBJwHnuK8f3tvhr7USrKZ9ABzkz0aUiHcz3XNxjklixL8H535ghXPut1GbngMu8F9fADzb3rFJbDnnfuacy3PODcH7HL/unDsHeAM4w6+ma91FOOc2A+vMbIRf9E1gOfpsd0VrgSlm1sP/nb7rWuuz3bU19Vl+Djjfn01wClASNZRQOiEzm443vP8U51xF1KbngLPMLMnMhuJNbLIwHjE2xb5OBqUhM/sO3r0bQeAvzrlb4xuRxIqZTQXeBj7m6/tybsS7D+sxYBCwBjjTOdfwBlvppMzsaOAa59xJZnYAXo9WNvAhcK5zrjqO4UmMmNkEvAlNEoGvgAvx/qCoz3YXY2a/AmbiDR/6ELgY714Mfba7ADObCxwN5AJbgJuBZ2jks+wn2ffgDROtAC50zi2KQ9iyH5q41j8DkoAiv9p7zrlL/fo/x7svqw7vNo9/NmwznpRgiYiIiIiIxIiGCIqIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiEgHYWZDzMyZWSjesXR1ZjbLzBbEO46Oxsymmdnn8Y5DRKQzU4IlIiKdmpnNNrNaMyuPWq6Ld1ydkXPubefciFi2aWbDzexZMys0s2Ize9nMYnoMEZGORAmWiEiMqOcpruY559KiltviHVAsdfKfrSzgOWAE0AdYCDwbz4BERNqSEiwRkVYwswIzu97MlgE7zSxkZlPM7N9mtsPMPjKzo6Pqzzez/zGzhWZW6v9lP7uJti80sxVmVmZmX5nZ/2uwfYaZLfXbWWVm0/3yTDO738w2mdkGM/svMws2cx7DzOx1Mysys21m9oiZZUVtKzazQ/z1/n5vxNH++ilm9ql/vvPNbFSD9+caM1tmZiVmNs/Mkvf9nd53ZnaD/76UmdlyMzutiXpmZneY2Vb/vfzYzMb625LM7HYzW2tmW8xsjpmltPD4D/j1X/FjeNPMBkdtv9PM1vnHXGxm06K2zTazJ8zsYTMrBWaZ2WQze9d/nzeZ2T1mlhi1jzOzH5rZl/7x/tO/dv/2j/FYdP0mYj7azNa35Pxayjm30Dl3v3Ou2DlXC9wBjDCznFgeR0Sko1CCJSLSemcDJ+L9pb4P8ALwX0A2cA3wpJn1iqp/PnAR0A+oA+5qot2twElABnAhcEdUkjMZ+BtwrX/cI4ECf78H/HYPBA4GjgMubuYcDPgfoD8wChgIzAZwzq0CrgceNrMewF+BB51z881sODAXuBLoBbwI/KPBF/kzgenAUCAfmNVoAGZT/eShqWVqM+fQ0CpgGpAJ/MqPv18j9Y7De/+G+3XPBIr8bb/2yyfgvZ8DgJv2IYZzgP8EcoGlwCNR2z7w280G/g483iD5nAE8gXd9HwHCwFV+W4cD3wR+2OB4xwOHAlOA64D7gHPxrudYvJ/V/eYnyk1dnz+0sJkjgc3OuaJma4qIdEbOOS1atGjRsp8LXlJzUdT69cBDDeq8DFzgv54P/Dpq22igBggCQwAHhJo41jPAFf7rPwJ3NFKnD1ANpESVnQ28sY/ndSrwYYOy54CPgWVAkl/2S+CxqDoBYANwdNT7c27U9tuAOTG+BrP993BH1NK/kXpLgRn+61nAAv/1scAXeElJIKq+ATuBYVFlhwOrWxjXA8CjUetpeEnSwCbqbwfGR53TW820fyXwdNS6A46IWl8MXB+1/n/A75pp82hgfSyvT4P28/yfj7Pb6hhatGjREu+lM4/pFhHpKNZFvR4MfM/MTo4qSwDeaKL+Gn97bsNGzewE4Ga8HpQA0AMvwQGvR+LFRmIZ7Le3ycx2lQUaHHMPZtYHuBOvxyfd32d7g2p/wkuyLnHOVftl/f1zAMA5FzGzdXg9Pbtsjnpd4e8Ta485586NLjCz84Gf4iWu4CU4e7zPzrnXzewe4PfAYDN7Cq/nMRnvPV8c9V4aXjLcUvXvu3Ou3MyK8c5/nZldA/yHv+7weipzG9vXP5/hwG+BiX5cIbwkKtqWqNeVjaz33YfYY8rvxf0X8Afn3Nx4xSEi0tY0RFBEpPVc1Ot1eD1YWVFLqnPu11F1Bka9HgTUAtuiGzSzJOBJ4Hagj3MuCy+h2vVNfx0wrJFY1uH1YOVGHT/DOTemmXP4b/88xjnnMvCGlX2dVZilAb8D7gdm29f3jW3ES+p21TP//DY0c7w9mDdFePlelmnNt1Lf1mC8hPByIMd//z6JPqdozrm7nHOH4vUoDscberkNLykZE/VeZjrn0vbhtOqvtf8eZgMb/XO5Dm84Yk8/vpIG8UX/XAHcC3wGHORfoxubOp+24t9r19T1mbOX/XriJVfPOedubb+IRUTanxIsEZHYehg42cyON7OgmSX7EwfkRdU518xG+/cz3QI84ZwLN2gnEUgCCoE6vzfruKjt9wMXmtk3zSxgZgPMbKRzbhPeF9n/M7MMf9swMzuqmbjTgXKgxMwG4CUY0e4EFjnnLsa7x2zXl+nHgBP9OBKAq/ESvH8390Y15LwpwtP2sry9D82l4iUoheBNGIJ3D9IezGySmR3mx78TqAIizrkIXpJ2h5n19usOMLPjo/Z1FjWJSSO+499bloh3L9Z7zrl1eO93nR9fyMxuwuvB2pt0oBQoN7ORwGXN1I8559yYvVyfSxvbx8wy8IbJvuOcu6F9IxYRaX9KsEREYsj/8jwDr3ehEK9H6Vp2/337EN79OZvxhqH9pJF2yvzyx/CG6n0fb3jeru0L8Se+wOv5eJOve5LOx0vQlvv7PoE3ocbe/Ao4xG/rBeCpXRvMbAbeJBW7vtD/FDjEzM5xzn2O19t1N16Pz8nAyc65mmaO16acc8vx7jl6F2+Y3DjgnSaqZ+AlUtvxhjsWAb/xt10PrATe82fzexVvunHMbCBQxtfDNhvzd7xhnsV4k0/sGsb4MvAS3r1fa/CSur0O48Qbtvh9/5h/AuY1U7+jOA2YhPcHgeger0HxDkxEpC2Ycw1HIIiISFsxs/nAw865P8c7FmkdMzsXb/jgz5rY/gDehBG/aNfAREQkrjTJhYiIyH5wzj0c7xhERKTj0RBBEZFuwryH3u7T5ATS9ZjZjU38HPwz3rGJiHQFGiIoIiIiIiISI+rBEhERERERiZEOdQ9Wbm6uGzJkSLzDEBERERER2avFixdvc871aljeoRKsIUOGsGjRoniHISIiIiIisldmtqaxcg0RFBERERERiRElWCIiIiIiIjGiBEtEpAnhiGZZFRERkX3Toe7BakxtbS3r16+nqqoq3qFIJ5OcnExeXh4JCQnxDkU6oSWvPc7It37EposWMWzwoHiHIyIiIp1Eh0+w1q9fT3p6OkOGDMHM4h2OdBLOOYqKili/fj1Dhw6NdzjSCYUW/5keVs2a955m2OAr4h2OiIiIdBIdfohgVVUVOTk5Sq5kn5gZOTk56vmU/VaY0A+A1I3vxTkSERER6Uw6fIIFKLmS/aKfG2mNhJoSAHpWfBXnSERERKQz6RQJlohIe+tRuwOAnrVb4xuIiIiIdCpKsFrAzLj66qvr12+//XZmz54dv4CivPfeexx22GFMmDCBUaNG1cc1f/58/v3vf+93u2vWrOGQQw5hwoQJjBkzhjlz5sQoYpHOITXs9WDluO3U1mioqYiIiLRMh5/koiNISkriqaee4mc/+xm5ubkxa9c5h3OOQGD/89wLLriAxx57jPHjxxMOh/n8888BL8FKS0vjG9/4xn61269fP959912SkpIoLy9n7NixnHLKKfTv33+/YxXpTDIiJWAQMMfmDQX0Hzoy3iGJiIhIJ6AerBYIhUJccskl3HHHHXtsKyws5PTTT2fSpElMmjSJd955B4DZs2dz++2319cbO3YsBQUFFBQUMGLECM4//3zGjh3LunXruPbaaxk7dizjxo1j3rx5gJcgHX300ZxxxhmMHDmSc845B+f2fCbP1q1b6dfPuxk/GAwyevRoCgoKmDNnDnfccQcTJkzg7bff3muc5513HocffjgHHXQQf/rTnwBITEwkKSkJgOrqaiKRSKPvzV133cXo0aPJz8/nrLPOAqC4uJhTTz2V/Px8pkyZwrJly+qPdcEFFzBt2jQGDx7MU089xXXXXce4ceOYPn06tbW1ANxyyy1MmjSJsWPHcskll+xx3pFIhCFDhrBjx476soMOOogtW7bs7TKKtJhzjmxK+Sp4AAClW3QfloiIiLRMp+rB+tU/PmX5xtKYtjm6fwY3nzym2Xo/+tGPyM/P57rrrtut/IorruCqq65i6tSprF27luOPP54VK1bsta0vv/ySBx98kClTpvDkk0+ydOlSPvroI7Zt28akSZM48sgjAfjwww/59NNP6d+/P0cccQTvvPMOU6dO3a2tq666ihEjRnD00Uczffp0LrjgAoYMGcKll15KWloa11xzDQDf//73m4xz2bJlvPfee+zcuZODDz6YE088kf79+7Nu3TpOPPFEVq5cyW9+85tGe69+/etfs3r1apKSkuoTnptvvpmDDz6YZ555htdff53zzz+fpUuXArBq1SreeOMNli9fzuGHH86TTz7JbbfdxmmnncYLL7zAqaeeyuWXX85NN90EwHnnncfzzz/PySefXH/MQCDAjBkzePrpp7nwwgt5//33GTx4MH369Gn2Ooq0RE11JSlWw9bUAzmg9Cuqi9bHOyQRERHpJNSD1UIZGRmcf/753HXXXbuVv/rqq1x++eVMmDCBU045hdLSUsrLy/fa1uDBg5kyZQoACxYs4OyzzyYYDNKnTx+OOuooPvjgAwAmT55MXl4egUCACRMmUFBQsEdbN910E4sWLeK4447j73//O9OnT2/0mHuLc8aMGaSkpJCbm8sxxxzDwoULARg4cCDLli1j5cqVPPjgg432EOXn53POOefw8MMPEwqF6s/pvPPOA+DYY4+lqKiI0lIvMT7hhBNISEhg3LhxhMPh+njHjRtXf35vvPEGhx12GOPGjeP111/n008/3eO4M2fOrO/te/TRR5k5c+Ze33ORfVFTVQlAXfpAb71kczzDERERkU6k1T1YZjYQ+BvQB3DAfc65O80sG5gHDAEKgDOdc9tbc6yW9DS1pSuvvJJDDjmECy+8sL4sEonw3nvvkZycvFvdUCi027C66Ocxpaamtuh4u4bogTf8r66urtF6w4YN47LLLuMHP/gBvXr1oqioaI86TcUJe05n3nC9f//+jB07lrfffpszzjhjt20vvPACb731Fv/4xz+49dZb+fjjj1t0ToFAgISEhPpjBQIB6urqqKqq4oc//CGLFi1i4MCBzJ49u9FnWR1++OGsXLmSwsJCnnnmGX7xi1/s9bgi+6KmugKAYHovql0IV66ZBEVERKRlYtGDVQdc7ZwbDUwBfmRmo4EbgNeccwcBr/nrnVp2djZnnnkm999/f33Zcccdx913312/vmso3JAhQ1iyZAkAS5YsYfXq1Y22OW3aNObNm0c4HKawsJC33nqLyZMntzimF154of4epS+//JJgMEhWVhbp6emUlZU1GyfAs88+S1VVFUVFRcyfP59Jkyaxfv16Kiu9v+Jv376dBQsWMGLEiN2OHYlEWLduHccccwz/+7//S0lJCeXl5UybNo1HHnkE8O4ly83NJSMjo0XnsyuZys3Npby8nCeeeKLRembGaaedxk9/+lNGjRpFTk5Oi9oXaYm6au/nMJDQg+2WRaCiMM4RiYiISGfR6gTLObfJObfEf10GrAAGADOAB/1qDwKntvZYHcHVV1/Ntm3b6tfvuusuFi1aRH5+PqNHj66fzvz000+nuLiYMWPGcM899zB8+PBG2zvttNPIz89n/PjxHHvssdx222307du3xfE89NBDjBgxggkTJnDeeefxyCOPEAwGOfnkk3n66afrJ7loKk7whvkdc8wxTJkyhV/+8pf079+fFStWcNhhhzF+/HiOOuoorrnmGsaNGwfAxRdfzKJFiwiHw5x77rmMGzeOgw8+mJ/85CdkZWUxe/ZsFi9eTH5+PjfccAMPPvhgU+HvISsrix/84AeMHTuW448/nkmTJtVvmzNnzm5xz5w5k4cffljDAyXmdk3LHkhIojTYk6Sqbc3sISIiIuKxxmam2+/GzIYAbwFjgbXOuSy/3IDtu9Yb7HMJcAnAoEGDDl2zZs1u21esWMGoUaNiFqPsbvbs2btNhtHV6OdH9sfqTxcy9PFvs/iw3xFc9ijpNVsZ9ssP4x2WiIiIdCBmttg5N7FhecwmuTCzNOBJ4Ern3G5T/Tkvi2s0k3PO3eecm+icm9irV69YhSMist/C9T1YKdQk55ARbtXtoyIiItKNxGSadjNLwEuuHnHOPeUXbzGzfs65TWbWD9Bd4h3Q7Nmz4x2CSIdT5ydYwYQkqnr0pmdxCZFwmEAwGOfIREREpKNrdQ+WP/zvfmCFc+63UZueAy7wX18APNvaY4mItIe6Wj/BSkzG0noTsgg7ijRVu8j/b+/Ow6Sq73yPv7+190bvbN0grQKygzTIiCZg3DIxmrjPo4nITLwmZtEnk5mYxUycm3uTeJ/MnYkmPjoakrkGt8woM6OocUnCjBsCAgooCkJjA01v9F7b7/5RRdP0Ag1d3dXV/Xk9T9t1zvmd3/ni4RT1rd8mIiInloougkuBLwAXmNmm5M+fAz8GLjKz94ELk9siIsNeLJlg+fxBAgWJSWcaDu1LZ0giIiKSIQbcRdA5tw6wPg5/aqD1i4gMtVi4AwBvMIuswgkANB/6OJ0hiYiISIZIyRgsEZGRJB5NtGD5A1mEQtkAdDSoi6CIiIicWMpmERzpnnrqKcyM7du391lm9+7dzJ49O2XX3LFjB8uWLWP+/PnMmDGDW265BUgsEvzMM8+ccr3t7e0sXryYefPmMWvWLH7wgx+kKmSRESGebMHyB0IUjC0HINJ4IJ0hiYiISIZQgtVPq1ev5rzzzmP16tW9Ho9GowO+RiwWO2b761//OnfccQebNm1i27ZtfO1rXwMGnmAFg0Feeukl3n77bTZt2sTatWt57bXXBhS7yEjijrRgBUPk5BXS4fzQrARLRERETkwJVj80Nzezbt06HnroIR599NHO/a+88grnn38+l19+OTNnzgQSidYNN9zAjBkzuPrqq2ltbQXgxRdfZMGCBcyZM4eVK1fS0ZH4hnzKlCn87d/+LWeffTZPPPHEMdetrq6mvLy8c3vOnDmEw2HuuusuHnvsMebPn89jjz1GS0sLK1euZPHixSxYsICnn05M2Lhq1SquuOIKli1bxtSpU/nhD38IgJmRm5sLQCQSIRKJkJgM8lhPPPEEs2fPZt68eXziE58AEq1fN998M3PmzGHBggW8/PLLndf63Oc+x0UXXcSUKVO49957+dnPfsaCBQtYsmQJdXV1ADz44IMsWrSIefPmcdVVV3X+/+lqyZIlvPPOO53by5YtY/369f2+XyID5aKJ5zMQzMI8Huo9BfjaDqU5KhEREckEmTUG69lvw/4tqa1z/Bz49PEnOHz66ae59NJLmTZtGsXFxbz11lssXLgQgA0bNrB161YqKirYvXs3O3bs4KGHHmLp0qWsXLmSX/ziF3z1q19lxYoVvPjii0ybNo0vfvGL/PKXv+T2228HoLi4mA0bNvS47h133MEFF1zAueeey8UXX8zNN99MQUEBd999N+vXr+fee+8F4Dvf+Q4XXHABDz/8MA0NDSxevJgLL7wQgDfeeIOtW7eSnZ3NokWL+MxnPkNlZSWxWIyFCxeyc+dObrvtNs4555we17/77rt57rnnKCsro6GhAYD77rsPM2PLli1s376diy++mPfeew+ArVu3snHjRtrb2znzzDP5yU9+wsaNG7njjjv4zW9+w+23386VV17Jl770JQC+973v8dBDD3W2zB1x3XXX8fjjj/PDH/6Q6upqqqurqazssUi2yKA5kmD5gyEAmryFBDuUYImIiMiJqQWrH1avXs31118PwPXXX39MN8HFixdTUVHRuT1p0iSWLl0KwI033si6devYsWMHFRUVTJs2DYCbbrqJP/7xj53nXHfddb1e9+abb2bbtm1cc801vPLKKyxZsqSz5aur559/nh//+MfMnz+fZcuW0d7ezp49ewC46KKLKC4uJisriyuvvJJ169YB4PV62bRpE1VVVZ1JWHdLly5lxYoVPPjgg53dF9etW8eNN94IwFlnncVpp53WmWAtX76cvLw8SktLyc/P57Of/SyQaHnbvXs3kEjCzj//fObMmcMjjzxyTEvVEddeey1PPvkkAI8//jhXX311r/9/RAZNlxYsgNZAMbmRunRGJCIiIhkis1qwTtDSNBjq6up46aWX2LJlC2ZGLBbDzLjnnnsAyMnJOaZ89652vXW96657HV1NnDiRlStXsnLlSmbPnt1rIuSc43e/+x3Tp08/Zv/rr79+wngKCgpYvnw5a9eu7TFBx/3338/rr7/Of/7nf7Jw4ULeeuut4/45gsFg52uPx9O57fF4OseorVixgqeeeop58+axatUqXnnllR71lJWVUVxczObNm3nssce4//77j3tdkZSLdhB1Hnz+AACRUAljWrelOSgRERHJBGrBOoEnn3ySL3zhC3z00Ufs3r2bvXv3UlFRwZ/+9Kdey+/Zs4dXX30VgN/+9recd955TJ8+nd27d7Nz504A/uVf/oVPfvKTJ7z22rVriUQiAOzfv5/a2lrKysrIy8ujqamps9wll1zCz3/+c5xzAGzcuLHz2AsvvEBdXR1tbW089dRTLF26lJqams4uf21tbbzwwgucddZZPa7/wQcfcM4553D33XdTWlrK3r17Of/883nkkUcAeO+999izZ0+PxO54mpqamDBhApFIpLOe3lx33XX89Kc/pbGxkblz5/a7fpGUiHUQxn90M2csRa6x83kUERER6YsSrBNYvXo1n//854/Zd9VVV/U5m+D06dO57777mDFjBvX19Xz5y18mFArxq1/9imuuuYY5c+bg8Xi49dZbT3jt559/vnOSiUsuuYR77rmH8ePHs3z5ct59993OSS6+//3vE4lEmDt3LrNmzeL73/9+Zx2LFy/mqquuYu7cuVx11VVUVlZSXV3N8uXLmTt3LosWLeKiiy7isssuA+Cuu+5izZo1AHzrW99izpw5zJ49m3PPPZd58+bxla98hXg8zpw5c7juuutYtWrVMS1XJ/L3f//3nHPOOSxduvSYpG7NmjXcddddndtXX301jz76KNdee22/6xZJFYuFidjRBn5P3li85qg/pLWwRERE5PjsSKvHcFBZWem6zxa3bds2ZsyYkaaIMtuqVauOmQxjNNLfHzkVr//jjZxR/ydK/u4jAN5+bhXzXv0G73/+OabOW5Lm6ERERGQ4MLO3nHM9ZmJTC5aISDeeeJiwBTq3swonAtBSty9dIYmIiEiGyKxJLuSkrFixghUrVqQ7DJGMY/EwUTs6BiuvpAyAjobqdIUkIiIiGWLQW7DM7FIz22FmO83s26dSx3DqxiiZQ39v5FR5YscmWIXjEgt+xw5rDJaIiIgc36AmWGbmBe4DPg3MBP7CzGaeTB2hUIja2lp9WJaT4pyjtraWUCiU7lAkA3njYaJdugiGcvJpIYS1HExjVCIiIpIJBruL4GJgp3PuQwAzexS4Ani3vxWUl5dTVVVFTU3NIIUoI1UoFKK8vDzdYUgG8sbDRD2BY/bVWRH+NiVYIiIicnyDnWCVAXu7bFcB53QtYGa3ALcATJ48uUcFfr+fioqKQQxRRORYXhcm5jm29bPJX0R2x6E0RSQiIiKZIu2zCDrnHnDOVTrnKktLS9MdjogIvniEWLcWrLZACXmR2jRFJCIiIplisBOsfcCkLtvlyX0iIsOWz4WJeY9dQDuSNZZCV5+miERERCRTDHaC9SYw1cwqzCwAXA+sGeRriogMiN9FcN1asFzuWHJpo73lcJqiEhERkUwwqAmWcy4KfBV4DtgGPO6ce2cwrykiMlA+FyHeLcHyjJkAQN2BqnSEJCIiIhli0Bcads49Azwz2NcREUmVAGGc79gEK1SQSLCaa/fB6Se12oSIiIiMImmf5EJEZLhJdBE8dgxWdlEZAG11GkYqIiIifVOCJSLSTYAozndsgpU/NpFghRv3pyMkERERyRBKsEREuojH4gQtgnWbRbCwdAJR58EdVoIlIiIifVOCJSLSRTjcnnjRbQyW3+ejzvLxth5IQ1QiIiKSKZRgiYh00dF+JMEK9TjW4C0m0H5oiCMSERGRTKIES0Ski3C4FQDrNgYLoMVfRE5YCZaIiIj0TQmWiEgXkWQLlvkDPY51hMYyJlo31CGJiIhIBlGCJSLSRSTcBoDH37OLYDynlELXSCwaGeqwREREJEMowRIR6SKanOSitwTLk1+G1xx1B6qGOiwRERHJEEqwRES6OJJgef09x2AFiyYB0LB/91CGJCIiIhlECZaISBexIy1YvcwimDf2NACaaz4a0phEREQkcwwowTKze8xsu5ltNrN/M7OCLsfuNLOdZrbDzC4ZcKQiIkMgmhyD5Q30TLAKJ0wBIFKvLoIiIiLSu4G2YL0AzHbOzQXeA+4EMLOZwPXALOBS4Bdm5h3gtUREBl2sIzFNuz+U2+NYYdE42lwA17hvqMMSERGRDDGgBMs597xzLprcfA0oT76+AnjUOdfhnNsF7AQWD+RaIiJDIdreDIA/q2eC5fF6OOQpJtBSPdRhiYiISIZI5RislcCzyddlwN4ux6qS+0REhrV4RwsAoey8Xo83+MaS3X5gKEMSERGRDOI7UQEz+z0wvpdD33XOPZ0s810gCjxysgGY2S3ALQCTJ08+2dNFRFIq3pFowcrKye/1eGvWOEqbNg5lSCIiIpJBTphgOecuPN5xM1sBXAZ8yjnnkrv3AZO6FCtP7uut/geABwAqKytdb2VERIZMONmCldN7C1YkewIljb/HxaKY94RvoSIiIjLKDHQWwUuBvwEud861djm0BrjezIJmVgFMBd4YyLVERIZEuIWI8xII9pxFEMDyJ+KzOIcPfTzEgYmIiEgmGOgYrHuBPOAFM9tkZvcDOOfeAR4H3gXWArc552IDvJaIyKCzSCttFgSzXo/7k4sN1+/fNZRhiYiISIYYUP8W59yZxzn2I+BHA6lfRGSoeaIttBNiTB/Hc0u12LCIiIj0LZWzCIqIZDxvtJV26717IBxdbLijVosNi4iISE9KsEREuvBG2wh7svo8XlI6gXbn12LDIiIi0islWCIiXfhjrcdNsPw+LwetGH+LJrkQERGRnpRgiYh04Y+3E/H2nWABNPhLydJiwyIiItILJVgiIl0E4q3EfNnHLdMaHMeYcM0QRSQiIiKZRAmWiEgXoXg7zp9z3DLhnAkUu1qIa/UJEREROZYSLBGRJOccY1wTsVDB8QuOKcNPjJb66iGJS0RERDKHEiwRkaSWliayrQOyio5bLlBYDkDdx7uHICoRERHJJEqwRESSmusPAmA5xcctl31kseGDWmxYREREjqUES0QkqSWZYPlyS45b7shiw+11ewY7JBEREckwSrBERJLaDydmBgyMKT1uudKxE+lwfuJabFhERES6UYIlIpIUPnwIgNCY47dghQI+aqwQb/P+oQhLREREMkjKEiwz+6aZOTMrSW6bmf2Tme00s81mdnaqriUiMhg6ki1Y+cXjTli20VtCsP3gYIckIiIiGSYlCZaZTQIuBroOSPg0MDX5cwvwy1RcS0RksESbEy1YRf1IsFqCpVpsWERERHpIVQvWPwB/A7gu+64AfuMSXgMKzGxCiq4nIpJyvqaPqaUAjz94wrLh7PEUxWvBuROWFRERkdFjwAmWmV0B7HPOvd3tUBmwt8t2VXJf9/NvMbP1Zra+pkbfBotI+mS3V1PrG9u/wmMmkEUH7c31gxuUiIiIZBRffwqZ2e+B8b0c+i7wHRLdA0+Jc+4B4AGAyspKfRUsImlTEDlATdYZ/SrrK0h8X1RXvZuJecdfmFhERERGj34lWM65C3vbb2ZzgArgbTMDKAc2mNliYB8wqUvx8uQ+EZFhJx6LUxqrYV/uJ/pVPqck8fbWeHAPE6dpDh8RERFJGFAXQefcFufcWOfcFOfcFBLdAM92zu0H1gBfTM4muARodM5VDzxkEZHUO3igiiwL4yuc3K/yY8YmEqy22qrBDEtEREQyTL9asE7RM8CfAzuBVuDmQbyWiMiAHNz1DuOBnInT+1W+ZPxpAEQa1DAvIiIiR6U0wUq2Yh157YDbUlm/iMhgad23BYCSinn9Kp+Tm0cDuViTGuZFRETkqJQtNCwiktEObqfZZVFadnq/T6nzFBNsOzCIQYmIiEimUYIlIgLkNe7g48BpmKf/b4tNvmKyw7WDGJWIiIhkGiVYIjLqRTraODO8g7qiBSd1XkewmLyo1sESERGRo5RgicioV/XOfxG0CDbl3JM6L5JVQoGrB6cl/ERERCRBCZaIjHqN218BYMLs5Sd1nsspJUSEcOvhQYhKREREMpESLBEZ9QJVr7HTJjOpvPykzvPmjQOg4ZCmahcREZEEJVgiMqq5WITTWrdQnX82ZnZS5wbyEwlWU83HgxGaiIiIZCAlWCIyqu3b/gY5tOOZsvSkz80qnABAa4PWwhIREZEEJVgiMqod2PISAJPmf+qkzx1TUgZAuGF/SmMSERGRzKUES0RGNX/Vq+xlPJNO6/8Cw0cUlY4HwDUfTHVYIiIikqGUYInIqOXiMSY3v03VKYy/AsjOyqLe5WEtNYMQnYiIiGQiJVgiMmpVvbeRApph8smtf9VVg6cAX9uhFEYlIiIimWzACZaZfc3MtpvZO2b20y777zSznWa2w8wuGeh1RERSbX9y/NWEeReech1NvkJC4bpUhSQiIiIZzjeQk81sOXAFMM8512FmY5P7ZwLXA7OAicDvzWyacy420IBFRFLFu+e/2U8Jp50+/ZTraAsUU9y2PYVRDa2Ojjaqdu2goWoHsUMfEG86gLUcwtdRR06knqx4Mz4Xxu8iBFyYABF8xIjhwWHJ3x5idmTbSwwvcfMQx0vMvMTx4sxDPPk6bl6cJX7HzQtdX9O9q6brEbN12ecAcz3L9Kb7ed33JQ70ry6R4STmy2bKF+6jaGxZukMREQaYYAFfBn7snOsAcM4dGel9BfBocv8uM9sJLAZeHeD1RERSwjlHedPbfJQ7n/GeU2/Mj2aVkN/SkLrABlFbcyMfbvoDjR+ux39wM+Na36Ms9jFn2NGkIuo8NNgYmryFtPoKqA2WEvcGifuC4A0lXpsHc3HMxcHFMRfDcLh4DHMxiMcwF8Xi8cRvl9x2cTwuhsWjid8ugt+143ExPC6Kl3ivcSeiO/4YOdfLcXfCcXXWpf6e+0Uygbk4Z7Z9yJt/fJSiq7+Z7nBEhIEnWNOA883sR0A78NfOuTeBMuC1LuWqkvt6MLNbgFsAJk+ePMBwRET65+M9H1BGHbvLFw2onnhWCbm0EetoxRvMTlF0qdHR3srON9bS+O5LFB96gzMi7zPLEknMfiulOmsaVYUXExo3jfyJ08gvn0ZhaRklXi8laY5dRPrHxePU3F2Bd+9/A0qwRIaDEyZYZvZ7YHwvh76bPL8IWAIsAh43s5Oa69g59wDwAEBlZaX6ZojIkNjz9iuUAWNnnjegerxjxgLQULOP4vKpKYhsYOoPHWDHn57Ev3MtZzW/wSxrJ+y8fBiYzptlXyRr6vlUzD2P8cXje31jF5HMYh4Pu7LnUXF4Y6KL6ynMiCoiqXXCBMs51+fobzP7MvCvzjkHvGFmcaAE2AdM6lK0PLlPRGRYiO19g3bnZ/KMcwZUTyA/kaY0HkpfgtXU1Mi2l1cTfPdJZrW9xRKLc4hC3im5hMDMzzDtnEs5Kzc/LbGJyOBrK1tC6ft/4NDeHZRMPivd4YiMegPtIvgUsBx42cymAQHgELAG+K2Z/YzEJBdTgTcGeC0RkZQpqt/MR8FpTPcHB1RPTtEEAJprq1MRVr+5eJx3X1tLy2urmNX4BxZbO/sp5c2JNzB28TWcPu88SjzeIY1JRNJj0vwL4f2f8OH655VgiQwDA02wHgYeNrOtQBi4Kdma9Y6ZPQ68C0SB2zJxBsEPNr9K43P/i9O++AuKx0068QkikhHa29s4I7KTzROvGXBd+aWJ4aXhhv0Drqs/amtrePfZB5j0wW+Z5apoIottxReSd84NTK28hPFeJVUio03FjIXUUERw5zPA19MdjsioN6AEyzkXBm7s49iPgB8NpP50a/jobWY3v0rrL8/lrcV3c/alN2EDmG1MRIaHXVtfZYZFCEwZWPdAoHNa5GjTwROUPHXOObZv+i/q/3A/8+qf53zr4H3/dNbP+p/MuuhmKnNyB+3aIjL8mcfL9tJLWHLwcVrq95NTqBGWIuk00BasEW3hZ29l1xmLiP7uSyx843be2/ALWpZ8kzmfvBKfP5Du8FLOOUc87ojFosRjUaKxKLFoFBeLEY9FwMVwXdeIcV3XlHFHt13nfzqnP+56nnNdpmLupezwdvKDh4diuPGJp6NOjVO7zPAbcF2/5XkAymZ/csB1hbJyOEw21pz6Fqz2thY2Pfdr8rf+mhnR7bS5ANtKLqZ0+ZeZOntgk3OIyMhSfO4X8D+9ms0vrGLhtd9OdzjDTvfPOPF4LPk6jjvyOh4jHosll5zofdmIU5bCfwrtRJWl7DNBiupJQTzOG2RM0TiyApnRS0MJ1glUzFxIbNrrvLnmPiZt/jnT1v0PDq67k11jP0VoxsWcNucTFJQM3jdF0UiYtpYmOlqbaW9toqOtmUhbM9H2ZiLtzcQ6Woh3tBAPt0C4FSKJH0+0FW+0DW+0DV+sDV+8nUC8jWC8naBrx08Ej4uTWAr06G+vOTLjr67IqRsH7KeE8WUVKanvoGcc2a0fp6QugH0fvsPe5+9j2v41LKGJvZ4y3jzrW8y49FbOLtAE6iLS04z55/LBv1dQsv3/EY9+E4/Pn+6QTko8FqexsY7WhhraGw8Sbqkn3HqYaFsjsbYm4u3NuI4mLNKMN9KCL9qKN96BNx5O/LgIvngYn4vgdxH8RPATJuASi6P7LI4X9BknQ70Sm0fzNY9y2dyJ6Q6lX5Rg9YPX52fRlbcTuexWNr3yBLbpEeYdeIrQwSfgD1BDIdX+SXQEi4lnlxANFGC+AB6vD+fx4+JxiHVg0Q6IhfHE2iHWgTfSiifWji/Whj/Whj/eTjDeRsB1EKKdLNdBwKLkAXn9jDXqPLQRpN1CdFiIsAUJe7KIeEO0+QuJerNxvhDOGwCPDzxenHnBPIlt84LHi3kSv49sH3mdaCnp8k2E9dFl0jr/c/SblmO+wTj6+tgvNoZfa8cRdoptbIPeMueGc9vf8I2t8IzKlE1TXh+cyPiOjwZURzQSZvPLj+Pb8Cvmtq9nnPOwOXcp1X92CzPPvYxJ6p4sIsdhZtQu/AaL37ydTf9xH/M/d3u6Q8LF4zTUHaR2/0c0HdxDe90+3OGP8bUewN9eSzDcQHa0kdz4YfJdE4UWo/A49UWcl1bLoi35E7EgMY+fqAXo8OYQ8wSJewPEPQGcN4DzBsEbAK//6OcZ8xz9rGOe5D7r/Nxj5gWPB4cnZS1BQ/vPdKoulpp6LFV/+NA45pYVpKauIWBuGH04q6ysdOvXr093GP3S1trCBxte5PCuDQRqtzGmdQ/ZkQbGxBsYY619ntfh/ITxETE/7RYibCHCnhARTxZRb4ioN4uYLxvnyyLuzwF/FhbIxgI5eII5eIM5eEO5+EM5BLJy8YdyCWbnkZWTRyg7l0AgpHFiIkNs3X23sqjmSQJ3HUj8I30SDuz7kJ3P3c+Ze55kHLXUUMQHk6/mjEu+QmmKWthEZHSIxeLs+N/nMj66j/hfvUxJ+ZmDer1oJMLBj3dRu/c9Wg98QKxuF4GmveS0VZMfPURxvI6gRXqcV0cejZ5C2rxjaA8UEg0W4LKKsewiLKcYb04x/pxCQjn5hHLzyc7LJyevgGAwS59xZFgxs7ecc5Xd96sF6xRlZecw+7zL4bzLexxz8RjRSJhwuINoNELA68MfDOH1Bwl6PAxsUmgRGW6suIJgTYS6A3somnDipKi5qYF3X/wtWdseZ1b7JsaZY2vobPaf/XfMWnYdSwJ6lxCRk+f1eghdeS++xz5L7cOfh798ipKyMwZUZ2PdQQ7u2UHjx+8TrvkQb+Meslv2UhCuZlz8IBMtxpFOWzFnHPCUUu8bx77cOezJGYflTyRQWEZOySQKx06mYNwkioJZFA38jysybCnBGgTm8eIPZuEPZqU7FBEZAnmT5sJ2+Pjd/+4zwWptbmDHuqeIvvPvzDz8JxZbB9U2ltcn/yWnLVvJ7DNmDXHUIjISnT6zkncufpApz68k9uD5vFaxgsmfvIkJk6f2aP1xztF8uJ76g1UcPrA70QpV+yGBw3sY01bF2Fg1+bTQdZnyesZQ4xvPwdyz+DjvYjzFU8gedwZF5dMonXg6EwNBMmOUjMjgURdBEZEBam1rJf7j03lv7KWcfduqzv37du2gasOzhHY+y1mtbxG0CA3ksrNoOXnn3Mi0RReddJdCEZH++Oj9LRx+8uvM6dgAwGFyqPcUErEgXhch4DooiDeQYx3HnBd2Xg54xlEfnEhr7iQomEJw7JnkT5zKuMnTyBlzvFFSIqNLX10ElWCJiKTAm/dcwazmV9ky+QasaT9ljW9R5g4AiRkLd5cuJ3f+5zhr8cUjcpkHERme9r63iX0b1sKh7QTba7FYmLgnQNwbIJpVArnj8OWPJ1RUTlH5dMaWnY7Pn1kzEIqkixIsEZFBtHf3B0R/8zkq4nuoZwwfZc+mY9J5TJh/MZOmL9TAbBERkRFGk1yIiAyiSVPOwH3vbdraWinMyT3uVMMiIiIycukrVRGRFDGPh6yc3HSHISIiImmkBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFBlWswiaWQ3wUbrj6KYEOJTuIGTI6H6PHrrXo4fu9eii+z166F6PLsPxfp/mnCvtvnNYJVjDkZmt7236RRmZdL9HD93r0UP3enTR/R49dK9Hl0y63+oiKCIiIiIikiJKsERERERERFJECdaJPZDuAGRI6X6PHrrXo4fu9eii+z166F6PLhlzvzUGS0REREREJEXUgiUiIiIiIpIiSrBERERERERSRAnWcZjZpWa2w8x2mtm30x2PpI6ZTTKzl83sXTN7x8y+kdxfZGYvmNn7yd+F6Y5VUsPMvGa20cz+I7ldYWavJ5/vx8wskO4YJTXMrMDMnjSz7Wa2zcz+TM/2yGRmdyTfw7ea2WozC+nZHjnM7GEzO2hmW7vs6/VZtoR/St73zWZ2dvoil5PVx72+J/k+vtnM/s3MCrocuzN5r3eY2SVpCfo4lGD1wcy8wH3Ap4GZwF+Y2cz0RiUpFAW+6ZybCSwBbkve328DLzrnpgIvJrdlZPgGsK3L9k+Af3DOnQnUA3+ZlqhkMPwjsNY5dxYwj8R917M9wphZGfB1oNI5NxvwAtejZ3skWQVc2m1fX8/yp4GpyZ9bgF8OUYySGqvoea9fAGY75+YC7wF3AiQ/r10PzEqe84vk5/ZhQwlW3xYDO51zHzrnwsCjwBVpjklSxDlX7ZzbkHzdROIDWBmJe/zrZLFfA59LS4CSUmZWDnwG+OfktgEXAE8mi+hejxBmlg98AngIwDkXds41oGd7pPIBWWbmA7KBavRsjxjOuT8Cdd129/UsXwH8xiW8BhSY2YQhCVQGrLd77Zx73jkXTW6+BpQnX18BPOqc63DO7QJ2kvjcPmwowepbGbC3y3ZVcp+MMGY2BVgAvA6Mc85VJw/tB8alKy5Jqf8L/A0QT24XAw1d3rj1fI8cFUAN8Ktkl9B/NrMc9GyPOM65fcD/AfaQSKwagbfQsz3S9fUs63PbyLYSeDb5etjfayVYMqqZWS7wO+B259zhrsdcYg0DrWOQ4czsMuCgc+6tdMciQ8IHnA380jm3AGihW3dAPdsjQ3LszRUkkuqJQA49uxjJCKZneXQws++SGNrxSLpj6S8lWH3bB0zqsl2e3CcjhJn5SSRXjzjn/jW5+8CRLgXJ3wfTFZ+kzFLgcjPbTaKr7wUkxugUJLsVgZ7vkaQKqHLOvZ7cfpJEwqVne+S5ENjlnKtxzkWAfyXxvOvZHtn6epb1uW0EMrMVwGXADe7o4r3D/l4rwerbm8DU5GxEARKD6dakOSZJkeQYnIeAbc65n3U5tAa4Kfn6JuDpoY5NUss5d6dzrtw5N4XEc/ySc+4G4GXg6mQx3esRwjm3H9hrZtOTuz4FvIue7ZFoD7DEzLKT7+lH7rWe7ZGtr2d5DfDF5GyCS4DGLl0JJQOZ2aUkuvdf7pxr7XJoDXC9mQXNrILExCZvpCPGvtjRZFC6M7M/JzF2wws87Jz7UXojklQxs/OAPwFbODou5zskxmE9DkwGPgKudc51H2ArGcrMlgF/7Zy7zMxOJ9GiVQRsBG50znWkMTxJETObT2JCkwDwIXAziS8U9WyPMGb2Q+A6Et2HNgJ/RWIshp7tEcDMVgPLgBLgAPAD4Cl6eZaTSfa9JLqJtgI3O+fWpyFsOQV93Os7gSBQmyz2mnPu1mT575IYlxUlMczj2e51ppMSLBERERERkRRRF0EREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRf4/DyQu4zsDbD4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3891,31 +3891,31 @@ " 6\n", " False\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " bAP.soma.v\n", - " 0.000807\n", - " 0.0043\n", + " 0.000689\n", + " 0.00164\n", " \n", " \n", " 7\n", " False\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step1.soma.v\n", - " 0.00103\n", - " 4e-05\n", + " 0.000847\n", + " 0.000212\n", " \n", " \n", " 8\n", " False\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step3.soma.v\n", - " 0.000794\n", - " 0.00145\n", + " 0.000715\n", + " 0.00011\n", " \n", " \n", "\n", @@ -3923,14 +3923,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "6 False 2 0.12 0.0646 bAP.soma.v \n", - "7 False 2 0.12 0.0646 Step1.soma.v \n", - "8 False 2 0.12 0.0646 Step3.soma.v \n", + "6 False 2 0.0769 0.069 bAP.soma.v \n", + "7 False 2 0.0769 0.069 Step1.soma.v \n", + "8 False 2 0.0769 0.069 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "6 0.000807 0.0043 \n", - "7 0.00103 4e-05 \n", - "8 0.000794 0.00145 " + "6 0.000689 0.00164 \n", + "7 0.000847 0.000212 \n", + "8 0.000715 0.00011 " ] }, "metadata": {}, @@ -3938,7 +3938,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi8klEQVR4nOzdeXxU1f3/8ddnlqwkBELYwuoCsooKiBXc6lexLmi1orWuX+tXW1u1LrW2Veq39tev2tqqbVGrdS1i3de2bqhYUQEBRVBAw76EhCyQbZbz+2NuwhCyQSaZhLyfj8c8Mvfec8/53LnMMJ85555rzjlERERERESk9XzJDkBERERERGRfoQRLREREREQkQZRgiYiIiIiIJIgSLBERERERkQRRgiUiIiIiIpIgSrBEREREREQSRAmWiEgHY2ZDzMyZWSDZsUjXYGZLzeyYZMchIrIvUIIlIiKdnpnNNLPt3qPGzEJxy68lO76Ozjk3yjk3J5F1mtmdZrbCzMrNbLmZXZDI+kVEOiolWCIiCaaep/bnnLvcOdfNOdcN+A0wu3bZOXdSbbnOdG46U6yN2AGcCnQHLgT+aGbfSG5IIiJtTwmWiEgCmFmBmf3UzJYAO8wsYGaTzOw/ZlZiZovjh2CZ2Rwz+39m9pGZlZnZC2bWs5G6LzazZV5PwFdm9j/1tk8zs0VePavMbKq3vruZPWhmG81svZn92sz8zRzH/mb2lpkVmdlWM3vCzHLithWb2aHecn8zK6w9LjM7zRtqVuId34h6r891ZrbEzErNbLaZpe35K73nGjk3zswOiCvzsJn9Om75FO81LfHO4dgWtnWMma0zs5u816/AzM6L236ymX3inau1ZjYjblvt0ND/NrM1wFve+n+Y2SbvdXvXzEbVi/vPZvaa11v3vpn1NbM/mNk2r+fokBa+Rse35Bhbyjl3i3NuuXMu6pz7EHgPOCKRbYiIdERKsEREEudc4GQgB+gDvAL8GugJXAc8Y2Z5ceUvAC4B+gFh4O5G6t0CnAJkAxcDd8UlOROBR4HrvXaPAgq8/R726j0AOAQ4Abi0mWMw4P8B/YERwEBgBoBzbhXwU+BxM8sA/gY84pybY2bDgFnA1UAe8CrwkpmlxNV9NjAVGAqMBS5qMACzyV5i09hjcjPH0JC6c+OcCzf5AsQSkoeA/wFygfuAF80stYVt9QV6AfnEem7uN7Ph3rYdxM57jhfPFWZ2er39jyb22p/oLb8GHAj0BhYCT9QrfzbwC6/NauADr1wv4Gng9y2Mu0FmdmNT56OFdaQDE4ClrYlFRKQzUIIlIpI4dzvn1jrnKoHvAa865171fsF/HZgPfCuu/GPOuc+cczuAXwJnN9TD5Jx7xTm3ysW8A/wbmOJt/m/gIefc6147651zy82sj9fW1c65Hc65LcBdwDlNHYBzbqVXV7VzrpDYl/Oj47Y/AKwEPiSWGP7c2zQdeMXbNwTcCaQD8UPC7nbObXDOFQMvAeMaiWGucy6nicfcpo6hEfHnpjmXAfc55z50zkWcc48QS1wm7UF7v/Rew3eIJdpnAzjn5jjnPvXO1RJiSenR9fad4Z2zSm+fh5xz5c65amLJ7sFm1j2u/HPOuQXOuSrgOaDKOfeocy4CzCaWXO8159xvmzofLaxmJrAY+FdrYhER6QyUYImIJM7auOeDge/U+6V/MrGkpKHyq4EgsV6HXZjZSWY2zxueV0IscaotNxBY1UAsg736Nsa1fx+xXpBGmVkfM3vSG1JYBjzeQEwPAKOBe7wv/RDr8VpdW8A5F/WOLz9uv01xzyuAbk3FkmBrmy9SZzBwbb1zN5DYMbbENi9prrW6dl8zO9zM3vaGVpYCl7P761sXq5n5zey3Fhv6WcbO3sn4fTbHPa9sYLk9X+fdmNkdxP69nO2cc8mMRUSkPSjBEhFJnPgvj2uJ9VDF/9qf6Zz7bVyZgXHPBwEhYGt8hd6wtGeI9Qj18XoMXiU2lK+2nf0biGUtsV6XXnHtZzvnRjVQNt5vvOMY45zLJtYTV9sWZtYN+APwIDDDdl43toFYYlJbzrzjW99Me7sxsym2cwbAhh5Tmq9lN/W/2FcAGXHLfeOerwVuq3fuMpxzs1rYVg8zy4xbHkTs9QH4O/AiMNA5151Yz47V2z8+1u8C04DjiU0WMcRbX3+fNuNdT9bo+Whm318BJwEnOOfK2idiEZHkUoIlItI2HgdONbMTvV6ING8ChAFxZb5nZiO965luBZ72hnXFSwFSgUIgbGYnEbuWqtaDwMVm9k0z85lZvpkd5JzbSGwo4e/MLNvbtr+Z1R+OVl8WsB0oNbN8Ytd2xfsjMN85dymxoW8zvfVPASd7cQSBa4kleP9p7oWqzzn3XtwMgA093tvTOhuwCPiud26msuswvQeAy73eJjOzTItNTpEFdRNLPNxM/b8ysxQvGTwF+Ie3Pgsods5VedfPfbeZerKIvY5FxBLC3+zBMSaEc+43TZ2PxvYzs58RO77jnXNF7RexiEhyKcESEWkDzrm1xHoebiKWHK0llqzEf+4+Rmwiik1AGvDjBuop99Y/BWwj9oX1xbjtH+FNfAGUAu+wsyfpAmIJ2ufevk+z6xDFhvwKONSr6xXg2doNZjaN2CQVV3irfgIcambnOee+INbbdQ+xXrhTgVOdczXNtJcsVxGLsQQ4D3i+doNzbj7wfeBeYq/bSnadkGMg8H4TdW/y9ttAbEKKy51zy71tPwBuNbNy4GZi57UpjxIbYrie2Hmc19yBdSC/IdZ7tzKux+umZAclItLWTMOhRUTan5nNAR53zv012bFIy3mzIi4GxnqTedTffgyx8zqg/jYREekaOvtNDEVERNqN1yM3otmCIiLSZWmIoIhIF2NmMxuZsGBm83tLZ2Rmg5qYqGJQsuMTEdmXaIigiIiIiIhIgqgHS0REREREJEE61DVYvXr1ckOGDEl2GCIiIiIiIk1asGDBVudcXv31HSrBGjJkCPPnz092GCIiIiIiIk0ys9UNrdcQQRERERERkQRRgiUiIiIiIpIgSrBEREREREQSpENdg9WQUCjEunXrqKqqSnYo0gGkpaUxYMAAgsFgskORfdSOikoe+us9jDz2XL45ZmCywxEREZFOpsMnWOvWrSMrK4shQ4ZgZskOR5LIOUdRURHr1q1j6NChyQ5H9lFfzHuFHxXfxrtPvwJj3kl2OCIiItLJdPghglVVVeTm5iq5EsyM3Nxc9WZKm9q+dR0AR9kitlfVJDkaERER6Ww6fIIFKLmSOvq3IG0tVLq57vlXXy5NYiQiIiLSGXWKBEtEpL2kVhfVPS9f/UkSIxEREZHOSAlWC5gZ1157bd3ynXfeyYwZM5IXUJxjjjmmyZszn3766UyaNGmXdTNmzCA/P59x48YxevRoXnzxxbYOU6TTyAgVUUgPAKKblyU5GhEREelslGC1QGpqKs8++yxbt25NaL3OOaLRaELrjFdSUsKCBQsoLS3lq6++2mXbNddcw6JFi/jHP/7BJZdc0qZxiHQmmaFiNvt6s9V64Ctdm+xwREREpJNRgtUCgUCAyy67jLvuumu3bYWFhZx55plMmDCBCRMm8P777wOxXqI777yzrtzo0aMpKCigoKCA4cOHc8EFFzB69GjWrl3L9ddfz+jRoxkzZgyzZ88GYM6cORxzzDGcddZZHHTQQZx33nk45xqM77HHHqvrjfroo4/q1j/77LOceuqpnHPOOTz55JMN7jtixAgCgcAuyeONN97IyJEjGTt2LNdddx0ABQUFHHfccYwdO5ZvfvObrFmzBoCLLrqIK664gkmTJrHffvsxZ84cLrnkEkaMGMFFF11UV+cVV1zB+PHjGTVqFLfccstucZSWljJ48OC6RG/Hjh0MHDiQUCjUYNwibaVbeBulvh6UpPQjo2J9ssMRERGRTqbDT9Me71cvLeXzDWUJrXNk/2xuOXVUs+V++MMfMnbsWG644YZd1l911VVcc801TJ48mTVr1nDiiSeybFnTw4pWrFjBI488wqRJk3jmmWdYtGgRixcvZuvWrUyYMIGjjjoKgE8++YSlS5fSv39/jjzySN5//30mT568W30VFRUsWrSId999l0suuYTPPvsMgFmzZnHzzTfTp08fzjzzTG666abd9v3www/x+Xzk5eUBUFRUxHPPPcfy5csxM0pKSgD40Y9+xIUXXsiFF17IQw89xI9//GOef/55ALZt28YHH3zAiy++yGmnncb777/PX//6VyZMmMCiRYsYN24ct912Gz179iQSifDNb36TJUuWMHbs2Lo4unfvzrhx43jnnXc49thjefnllznxxBN1vytpd+mRcioCB1CZkUVu8RKcc5pcRURERFpMPVgtlJ2dzQUXXMDdd9+9y/o33niDK6+8knHjxnHaaadRVlbG9u3bm6xr8ODBdddFzZ07l3PPPRe/30+fPn04+uij+fjjjwGYOHEiAwYMwOfzMW7cOAoKChqs79xzzwXgqKOOoqysjJKSEjZv3syKFSuYPHkyw4YNIxgM1iVeAHfddRfjxo3juuuuY/bs2XVfILt3705aWhr//d//zbPPPktGRgYAH3zwAd/97ncBOP/885k7d25dXaeeeipmxpgxY+jTpw9jxozB5/MxatSoupifeuopDj30UA455BCWLl3K559/vttxTJ8+va4H78knn2T69OlNvo4ibSHgQkR9KUSyB9KPrZTtqE52SCIiItKJdKoerJb0NLWlq6++mkMPPZSLL764bl00GmXevHmkpaXtUjYQCOxyXVP8vZsyMzNb1F5qamrdc7/fTzgcbrBc/V/XzYynnnqKbdu21d2Qt6ysjFmzZnHbbbcBsWuwaof/1Y/7o48+4s033+Tpp5/m3nvv5a233mpRnD6fb5eYfT4f4XCYr7/+mjvvvJOPP/6YHj16cNFFFzV4L6vTTjuNm266ieLiYhYsWMBxxx3XZLsibSHgaoj6Uwj0HExwdYTNGwroPuygZIclIiIinUSre7DMbKCZvW1mn5vZUjO7yls/w8zWm9ki7/Gt1oebXD179uTss8/mwQcfrFt3wgkncM8999QtL1q0CIAhQ4awcOFCABYuXMjXX3/dYJ1Tpkxh9uzZRCIRCgsLeffdd5k4ceIexVXb6zN37ly6d+9O9+7dmTVrFv/85z/rrvtasGBBo9dhxdu+fTulpaV861vf4q677mLx4sUAfOMb36jb/4knnmDKlCktjq+srIzMzEy6d+/O5s2bee211xos161bNyZMmMBVV13FKaecgt/vb3EbIokSdCGcL4X03vsBULZxZZIjEhERkc4kET1YYeBa59xCM8sCFpjZ6962u5xzdzaxb6dz7bXXcu+999Yt33333XXXZ4XDYY466ihmzpzJmWeeyaOPPsqoUaM4/PDDGTZsWIP1nXHGGXzwwQccfPDBmBm33347ffv2Zfny5S2OKS0tjUMOOYRQKMRDDz1EQUEBq1ev3mV69qFDh9K9e3c+/PDDBuv41re+xV//+lfMjGnTplFVVYVzjt///vcA3HPPPVx88cXccccd5OXl8be//a3F8R188MEccsghHHTQQQwcOJAjjzyybtvNN9/M+PHjOe2004DYMMHvfOc7zJkzp8X1iySMcwQJ4/yp9Oh/AABVWxv+cURERESkIdbYzHR7XaHZC8C9wJHA9j1JsMaPH+/q39Np2bJljBgxIqExSuemfxPSZsLV8OvevNzrUr512a/x/aYv7w64jKMuvSPZkYmIiEgHY2YLnHPj669P6CQXZjYEOASo7Sa50syWmNlDZtajkX0uM7P5Zja/sLAwkeGIiOyZsDehRSAFX0o6W60HwfJ1yY1JREREOpWEJVhm1g14BrjaOVcG/AXYHxgHbAR+19B+zrn7nXPjnXPja6cKFxFJikhN7K8/NlnLtkBfMit1LywRERFpuYQkWGYWJJZcPeGcexbAObfZORdxzkWBB4A9m7lBRKS91fVgxRKsivS+dK9Rz7qIiIi0XCJmETTgQWCZc+73cev7xRU7A/is/r4iIh1KJJZgmZdghTP70tttJRyOJDMqERER6UQSMYvgkcD5wKdmtshbdxNwrpmNAxxQAPxPAtoSEWkzkVA1fnYmWJYzgPSNNWws3ES/fvnJDU5EREQ6hVYnWM65uYA1sOnV1tYtItKeQtVVuyRYKT0HArBt49dKsERERKRFEjqL4L7s+eefx8yavD9VQUEBo0ePTlibF110EU8//XSj26+++mry8/OJRqN16x5++GHy8vIYN24cI0eO5IEHHkhYPCL7unBNFQD+YCzByuo9BIDtW1YnKyQRERHpZJRgtdCsWbOYPHkys2bNanB7OBxudRuRSMuv84hGozz33HMMHDiQd955Z5dt06dPZ9GiRcyZM4ebbrqJzZs3tzo2ka4gVF0JgC8llmD17D8UgJritUmLSURERDoXJVgtsH37dubOncuDDz7Ik08+Wbd+zpw5TJkyhdNOO42RI0cCsUTrvPPOY8SIEZx11llUVFQA8Oabb3LIIYcwZswYLrnkEqqrYxfTDxkyhJ/+9Kcceuih/OMf/9it7TfeeIPx48czbNgwXn755V3aHjVqFFdccUWjSV/v3r3Zf//9Wb1656/vd999NyNHjmTs2LGcc845ABQXF3P66aczduxYJk2axJIlSwCYMWMGF154IVOmTGHw4ME8++yz3HDDDYwZM4apU6cSCoUAuPXWW5kwYQKjR4/msssuo/7Nq6PRKEOGDKGkpKRu3YEHHqjETzqcUCj2vvR5QwS79exPyPlxZZqqXURERFomEZNctJ/XboRNnya2zr5j4KTfNlnkhRdeYOrUqQwbNozc3FwWLFjAYYcdBsDChQv57LPPGDp0KAUFBXzxxRc8+OCDHHnkkVxyySX8+c9/5sorr+Siiy7izTffZNiwYVxwwQX85S9/4eqrrwYgNzeXhQsXNth2QUEBH330EatWreLYY49l5cqVpKWlMWvWLM4991ymTZvGTTfdRCgUIhgM7rLvV199xVdffcUBBxxQt+63v/0tX3/9NampqXUJzy233MIhhxzC888/z1tvvcUFF1zAokWLAFi1ahVvv/02n3/+OUcccQTPPPMMt99+O2eccQavvPIKp59+OldeeSU333wzAOeffz4vv/wyp556al2bPp+PadOm8dxzz3HxxRfz4YcfMnjwYPr06dPi0yTSHuqGCKakA2D+AMW+ngS3b0hmWCIiItKJqAerBWbNmlXX23POOefs0mM0ceJEhg4dWrc8cOBAjjzySAC+973vMXfuXL744guGDh3KsGHDALjwwgt599136/aZPn16o22fffbZ+Hw+DjzwQPbbbz+WL19OTU0Nr776KqeffjrZ2dkcfvjh/Otf/6rbZ/bs2YwbN45zzz2X++67j549e9ZtGzt2LOeddx6PP/44gUAsv547dy7nn38+AMcddxxFRUWUlZUBcNJJJxEMBhkzZgyRSISpU6cCMGbMGAoKCgB4++23OfzwwxkzZgxvvfUWS5cu3e04pk+fzuzZswF48sknmzxmkWSpTbAC3hBBgJJgbzKr1NsqIiIiLdO5erCa6WlqC8XFxbz11lt8+umnmBmRSAQz44477gAgMzNzl/Kx24I1vtyQ+nU0V9+//vUvSkpKGDNmDAAVFRWkp6dzyimnALFk5t57722wvldeeYV3332Xl156idtuu41PP226RzA1NfZF0+fzEQwG6+Lx+XyEw2Gqqqr4wQ9+wPz58xk4cCAzZsygqqpqt3qOOOIIVq5cSWFhIc8//zy/+MUvmmxXJBki3hBBfzCtbl1lel96leo2fiIiItIy6sFqxtNPP83555/P6tWrKSgoYO3atQwdOpT33nuvwfJr1qzhgw8+AODvf/87kydPZvjw4RQUFLBy5UoAHnvsMY4++ugWtf+Pf/yDaDTKqlWr+Oqrrxg+fDizZs3ir3/9KwUFBRQUFPD111/z+uuv113v1ZhoNMratWs59thj+b//+z9KS0vZvn07U6ZM4YknngBi13b16tWL7OzsFsVXm0z16tWL7du3NzrroZlxxhln8JOf/IQRI0aQm5vbovpF2lM0FPv3HIzrwQp360+eK6ImpJsNi4iISPOUYDVj1qxZnHHGGbusO/PMMxudWGL48OH86U9/YsSIEWzbto0rrriCtLQ0/va3v/Gd73yHMWPG4PP5uPzyy1vU/qBBg5g4cSInnXQSM2fOJBqN8s9//pOTTz65rkxmZiaTJ0/mpZdearCOSy+9lPnz5xOJRPje977HmDFjOOSQQ/jxj39MTk4OM2bMYMGCBYwdO5Ybb7yRRx55pIWvDuTk5PD973+f0aNHc+KJJzJhwoS6bTNnzmTmzJl1y9OnT+fxxx/X8EDpsGp7sALeNVgAvu75pFqYws2a6EJERESaZ/VnfEum8ePHu/nz5++ybtmyZYwYMSJJEUlHpH8T0laWP/9/HLToNyw7fwkj9h8MwNI3n2DUez9g6SkvMmp8y3qeRUREZN9nZgucc+Prr1cPloiIx4VjPVjB1J3XYGX1jiVa27cUJCMkERER6WSUYImIeKLeEMGU1J1DBHPz9wMgtG1dUmISERGRzqVTJFgdaRijJJf+LUhbcuFqIs5ISUmpW5eZ05caAlCqa7BERESkeR0+wUpLS6OoqEhfrAXnHEVFRaSlpTVfWGRvhKupIUhqIO6j0edjq68XwR0bkxeXiIiIdBod/j5YAwYMYN26dRQWFiY7FOkA0tLSGDBgQLLDkH2UC9dQQ4DU4K6/PZUGe9OtWjcbFhERkeZ1+AQrGAwydOjQZIchIl2ARWI9WJn+XROsqvQ+9ClZlJygREREpFNp8yGCZjbVzL4ws5VmdmNbtycistciNdQQJFAvwYp0yyfPFVNdU5OkwERERKSzaNMEy8z8wJ+Ak4CRwLlmNrIt2xQR2VsWqSFEcPf1OQMIWoTCTZroQkRERJrW1j1YE4GVzrmvnHM1wJPAtDZuU0Rkr1ikmpDtPnI6PXcQANs2fd3eIYmIiEgn09YJVj6wNm55nbeujpldZmbzzWy+JrIQkWTyRWsIW8pu67P6xG42XFFY0M4RiYiISGeT9GnanXP3O+fGO+fG5+XlJTscEenCfJEQYdt9iGBuf+9mw8W62bCIiIg0ra0TrPXAwLjlAd46EZEOJ9aDtXuCldE9jyqCWJk+vkRERKRpbZ1gfQwcaGZDzSwFOAd4sY3bFBHZK/5oDRHf7kMEMWOrL4+Uig3tH5SIiIh0Km16HyznXNjMrgT+BfiBh5xzS9uyTRGRveV3ISIN9GABlKX0oVv1lnaOSERERDqbNr/RsHPuVeDVtm5HRKS1/NEaosEGerCAyvS+5G/7qJ0jEhERkc4m6ZNciIh0FAEXItrQEEEgmtWfPFdMVXV1O0clIiIinYkSLBERT8CFiPobTrD8OQPwm2PLhtXtHJWIiIh0JkqwREQ8TfVgpeXGJkQt1c2GRUREpAlKsEREPEFCuEZ6sHL6DgWgvHBNe4YkIiIinYwSLBERTwohCKQ2uC1vwP4AhIsK2jEiERER6WyUYImIAESjBIhgjfRgBTN7UEo3/KXqwRIREZHGKcESEQGIeLMDBhpOsAC2BvuTUbG+nQISERGRzkgJlogIEAlVAeBrZIggwI70fHrWbGivkERERKQTUoIlIgJUVVUCYMHGE6xQ90H0c1uorKppr7BERESkk1GCJSICVHsJli+Y1mgZf+5QUizCpvWaql1EREQapgRLRASoqSwHwFIyGy2T2Sc2k2Dxui/bJSYRERHpfJRgiYgAocodQNMJVu7AYQBUbl7ZLjGJiIhI56MES0QECHs9WP60xhOsHn33I+KMaHFBO0UlIiIinY0SLBERIFy9HYBAalajZSyQQqEvj5Tta9srLBEREelklGCJiACR6tgQwUBatybLbUvtT3al7oUlIiIiDWtVgmVmd5jZcjNbYmbPmVmOt36ImVWa2SLvMTMh0YqItJFolZdgpTc+RBCgMnMgvcMbcc61R1giIiLSybS2B+t1YLRzbizwJfCzuG2rnHPjvMflrWxHRKRNuZrYEMFgenbT5XIG0ctKKS4paYeoREREpLNpVYLlnPu3cy7sLc4DBrQ+JBGR9lc7RDAto+khgil5sanaC9euaPOYREREpPNJ5DVYlwCvxS0PNbNPzOwdM5vS2E5mdpmZzTez+YWFhQkMR0Sk5Vz1DqLOyGwmwere/wAAStd/0R5hiYiISCcTaK6Amb0B9G1g08+dcy94ZX4OhIEnvG0bgUHOuSIzOwx43sxGOefK6lfinLsfuB9g/PjxuqhBRJLC1eygglQy04JNlssbeBAANVu/bo+wREREpJNpNsFyzh3f1HYzuwg4Bfim8676ds5VA9Xe8wVmtgoYBsxvbcAiIm0hlmCl0S3QdMd+ek5vdpCGlaxup8hERESkM2ntLIJTgRuA05xzFXHr88zM7z3fDzgQ+Ko1bYmItCVfuIJqS2u+oBlbAv3J2L6m7YMSERGRTqfZHqxm3AukAq+bGcA8b8bAo4BbzSwERIHLnXPFrWxLRKTN+EItTLCA8vR8emzXEEERERHZXasSLOfcAY2sfwZ4pjV1i4i0J3+4ghpfeovK1mQNol/ZPGpCYVKCrf2dSkRERPYliZxFUESk00oPl1ERaPoeWLX8uUNJsxCb1us6LBEREdmVEiwREaBbpJTqYE6Lymb0jXXeF6/TVO0iIiKyKyVYIiJAlisjnNajRWVzBwwHYMfmlW0ZkoiIiHRCSrBEpMtzNTtIo4Zoes8Wle/Zf3+izogWFbRtYCIiItLpKMESkS6vsnQrAL6M3BaV9wVTKfT1Ilima7BERERkV0qwRKTLKyvaBIC/W68W71Ocmk925bq2CklEREQ6KSVYItLlbd+2BYD07i1PsCozB9I7vBHnXFuFJSIiIp2QEiwR6fK2b4v1YGXn9m3xPtGcwfSyUraVlLRRVCIiItIZKcESkS4vtG0tAD37DW3xPql5+wOwZc2XbRKTiIiIdE5KsESky/OVrqPEZdKzR8tmEQTIzj8QgLINSrBERERkJyVYItLlpe7YQKEvDzNr8T69Bx4EQHXhqrYKS0RERDohJVgi0uV1q95EaUqfPdonvXsvtpOBr0RTtYuIiMhOSrBEpGtzjtzwZkLd8vdsPzO2BPqRsWNt28QlIiIinZISLBHp0soK15JFBZGeB+zxvtvT+tG9ZlMbRCUiIiKdlRIsEenStq5aCEBK/tg93jfUrT+9o4WEw5FEhyUiIiKdVKsSLDObYWbrzWyR9/hW3LafmdlKM/vCzE5sfagiIolXsXYxALn7jdvjfX05g+hmVWzZWpjgqERERKSzCiSgjrucc3fGrzCzkcA5wCigP/CGmQ1zzulnXhHpWDYvZaPryaD8PbwGC0jtNQiAretX0r9vy29SLCIiIvuuthoiOA140jlX7Zz7GlgJTGyjtkRE9lp22QrWpexH0L/nH4fZfWI3Jt6+uSDBUYmIiEhnlYgE60ozW2JmD5lZD29dPhA/tdY6b91uzOwyM5tvZvMLCzXMRkTaUbiGfqE1lGUP36vde+XvD0BN0ZpERiUiIiKdWLMJlpm9YWafNfCYBvwF2B8YB2wEfrenATjn7nfOjXfOjc/Ly9vT3UVE9lrxmqUECePrO2qv9k/L6UcNAVzpugRHJiIiIp1Vs9dgOeeOb0lFZvYA8LK3uB4YGLd5gLdORKTD2LxyIT2BHkPH7V0FPh9FvjxSd2xIZFgiIiLSibV2FsF+cYtnAJ95z18EzjGzVDMbChwIfNSatkREEq163RJqnJ/Bw8btdR1lqX3Jqta9sERERCSmtbMI3m5m4wAHFAD/A+CcW2pmTwGfA2Hgh5pBUEQ6mpSiZaz2DeDA7My9rqM6sx+9Kj4kGnX4fJbA6ERERKQzalWC5Zw7v4lttwG3taZ+EZG2lFexihUZB3NgayrJHkCfwtfYWraD3jndEhWaiIiIdFJtNU27iEiHVl2+lTy3lercEa2qJ5g7CL85Nq0vSExgIiIi0qkpwRKRLmnDFwsASBswtlX1dOsduxdW2aavWx2TiIiIdH5KsESkSyopWARA3wMPbVU9PfP3A6Bq6+rWhiQiIiL7ACVYItIluU1L2eayGDhwv1bVk9lrMACRbbrZsIiIiCjBEpEuKrvsC9amDCEQ8LeuopRMSi2b4Hbd6k9ERESUYIlIF+SiEfrXFFCWPTwh9ZUGe5NZpXthiYiIiBIsEemCtm74mgyq8PU+KCH1VaT3p0doM865hNQnIiIinZcSrCasXv4JH/ztRrZuKEh2KCKSQJu+XgpAdn5ierAi2fn0ZSvbKkIJqU9EREQ6LyVYTdj4yWscsfov5Nx3CEtvm8yHj89g1ecLiEaiyQ5NRFqhYuMKAPKGjExIff4eg8i2SjZs1jBBERGRri6Q7AA6sknn3sSaFaey8d2H6LX+bUatvAtW3sVWcliXOZrKvofRbdA4+h8wjp79hmC+TpqvOoeLhAiHqqipqiJUU0WoppJwdex5pKaKcE0V4XCIcDhCNBLGuQguGsW5CESjUG/Z1a5zUSwa+4uLEnUADQ2jsgaeecsGrrHt9QpbvefO4vfbrebGXxPbdZs1sS2ea6rOJttrfNNe19nEttrXpam9OzsHRJ2L/fsGoi62zjlHxldvUOWC5PUbmpC2MvJiMwmWrF8J+w1KSJ3SvEgkQsWOMqp2lFNdUU64egfhmmoi4WqioRoi4RqioSqioRqi4RpcuIZopBoXroFwDdFolKhzmIsCUXAOvM+q2MdUNLbNuZ3bcd570nCA4dv5OWNWtw1q32dW95e6/cwrEttmxO1nsXqJ38er3wFW9/mz893rMO9zsnZL7X67lqt9asR9rtjO/7dqq97l89bb7uI+QV1c2V0+u3f5vG3E7uHU+0htuI6GilhDlTXeHA2E3NTHecenEclJYXrhk6IyLY+hE77FgB4ZyQ6lRZRgNWPQgWMYdOBdAGxas4L1H79EdM0H9CtbwoBVc2EV8DZUuFTW+/PZkdqbUEZvIhl9cJm5BNOySMnIJpCehS81E18wnYDfh9/vx+czos6IANGoi/3nH66BSAgXCRENVRMJ135JqCEariYarsaFqiFcDd4XBYtUQ7gGX7Qai9Tgi9bgi9Tgj8ae+10NgWiIgKsh4EIEXIigCxEk9khxIfzmCALBZL7YIu3oy5SDGOZv5QyCnpyhsXtpRTd8AhyXkDq7gurK7ZQUbqS8ZCtVZVup2V5MaEcx0YptULkNf1UJgZpSgqEygpFKUqKVpLkqUl0V6a6KDKsmC8hq4zijzojWJUG1KVJsyWf6siUi0tbmRA5mUd9vKMHaF/UddCB9B/2kbrm0cD1rv/iE0nWfEyheQUZ5AVk1m8mpXEaPrWXt8h9vxBk1BKkhSMgCsZTJUghbkLD3N+RLoSqQSdSXQsSXQtSXQtSfgvOn4nwpEEgBfyoukIrVe/iCqfiCafiCqfgDKQT8foKBAOb34/P5wefDzI/P58N8fjA/Pn9snfm85z4/Pl8Anxn4bLdfDJucF8DtWiC+aP39HPXKNbJfbFPcMM/dN+4WQsuDbWzTXv5b2Mv2mvyFzavTNVgm9pt8Z+cc+Cz2b818hs/A5/3KH/tnaOzXa0DC2svqP5xSMknd9EmT5aKRCMvnvUqP/APpNyQxE2x0NM45Sou3Urx+BeVb11BZvIlo+SZ8FYUEKwtJry4mK1xEjttGFpX0Afo0UE/I+SmzbuywblT4swj706lMzaXYn0E0mEE0mAnBTCwlE1Iz8aV2w5eS4X1upeAPpOIP7nweSEklEEwlEEwhkJJKMJiK3+/HX/d5ZVjt55kZ5vNj5vP+/Vjz4+m93lJo/q9zcb1h0dpt3nuybn3UK1v7PnU7Pw6ci3v/eut3+ayIrav9HIj/PHRxowjiJ2Wp/Uzc5XMhurMNGmx7Z33xvV6usc9eF/9098+fxj7fd2+v3n6u6e3x65urq9Pp1F1wnZle9/a2fyCdHv16JzuMFlOC1Qrd8/LpnpcPnLLbtnBNNaUlW9lRXsqO7aXUVJThanbgQlVEolEikSjORfER+wXUZ2D+FPDHEh7zp+ALBPEHY18KgimpBIMpBFLTCKakEUxNIyUtg5RgCulmpLf70YtILfP5WJM+igElH+GikdiPDXHKt21h+at/Jn/lLEa6TXyaNp5+N76ZpGhbpzocYf3mrRStW8H2zauIFK8mULaGzIr15NRspE9kMzlWQU69/crIpMSXQ3mgJ1syh7E+PQ+XkYcvK4+UrF6kdOtJevdeZGbn0q1HHhmZ2eT6fOQm4yD3Rm323pKijTwXEZF9gxKsNhJISaVH73x69M5Pdigi0g4qhp/BmEU/47M5/2D0cedQU1XJiv88R9WipxlV+i4TLMTS4CjWVXfnoKplsZ/PO+Cvz9Goo7CklC1rV1C2cSVVhQVYyWrSd6wju3ojfaOb2c/K2S9un0pS2ervQ2l6f77IPAzXfRCB3CFk5g0iJ28APXrnk52WQXbSjkpERKT9WEe6b8v48ePd/Pnzkx2GiMgeq6rcwebbJ9Ivuon1wUH0C60lzUJsI4svc79JzlGXM/zgI3jvyTuZsvx/2XTB+/Tdb3RSYt1eUcmmNSvYtmEVVVtWEd22hpTytWRVb6B3eDO9bdsu5WsIsNXfh/K0/tRkDcR6DCK99/7k9D+AHv0PwNctr0MmiyIiIm3JzBY458bXX9+qHiwzmw3U3kgmByhxzo0zsyHAMuALb9s859zlrWlLRKQjS0vPJHDRS3z03AwyKjewPmcC6SOOZ9SRp3F4Wlpduf3G/xcs/1++eudx+u732zaJJRSqYfO6rylev4odm1cR2RYbxtetYj254U30dkUcEHeNaNj52OrPoySlHxt6HMmGnEGk9tqP7P4HkJt/AGk98unfWWdJFRERaWcJ68Eys98Bpc65W70E62Xn3B79PKseLBHpChb/3wnsX7GEwukvM3Tkbj98NclFo5SVllC0qYDyzV9Ts7WAaMlaguXryKjcQE7NZvJcEf64BCrqjK2+nmwL9mNHRj5RbwhfVt/9yRt4IFm9B2N+zSEqIiKyJ9qkByuucgPORvMTi4g0q8+5f6L6oePpM/tbLOx9Egw6grTueUTw48KVRCpKqdlRSqRiG/6KQlIqC8mo2Uq3UBE9otvobtV0j6sv7HxssVy2BfuwNvtQvs4eQKDnIDLzhtJzwIHk5e9P75Q0Os/8SyIiIp1XQnqwzOwo4Pe1GZzXg7UU+BIoA37hnHuvkX0vAy4DGDRo0GGrV69udTwiIh3dhtUrWP30zzmk7C3SLNRouTIy2GY9KQ/0pDKtF5GM3lhWX1Jy+pPeewjd+wwlt98QUlJS2jF6ERERaawHq9kEy8zeAPo2sOnnzrkXvDJ/AVY6537nLacC3ZxzRWZ2GPA8MMo5V9ZUWxoiKCJdzY4dOyhc+wXlJcUELIwF00nJyCE7pyfde+QSTO0cN1UUERHpavZ6iKBz7vhmKg4A3wYOi9unGqj2ni8ws1XAMEDZk4hInMzMTDIPOjTZYYiIiEiCJGJaqOOB5c65dbUrzCzPzPze8/2AA4GvEtCWiIiIiIhIh5WISS7OAWbVW3cUcKuZhYAocLlzrjgBbYmIiIiIiHRYrU6wnHMXNbDuGeCZ1tYtIiIiIiLSmSTsPliJYGaFQEebRrAXsDXZQUi70fnuOnSuuw6d665F57vr0LnuWjri+R7snMurv7JDJVgdkZnNb2h2ENk36Xx3HTrXXYfOddei89116Fx3LZ3pfCdikgsRERERERFBCZaIiIiIiEjCKMFq3v3JDkDalc5316Fz3XXoXHctOt9dh85119JpzreuwRIREREREUkQ9WCJiIiIiIgkiBIsERERERGRBFGC1QQzm2pmX5jZSjO7MdnxSOKY2UAze9vMPjezpWZ2lbe+p5m9bmYrvL89kh2rJIaZ+c3sEzN72VseamYfeu/v2WaWkuwYJTHMLMfMnjaz5Wa2zMyO0Ht732Rm13if4Z+Z2SwzS9N7e99hZg+Z2RYz+yxuXYPvZYu52zvvS8zs0ORFLnuqkXN9h/c5vsTMnjOznLhtP/PO9RdmdmJSgm6CEqxGmJkf+BNwEjASONfMRiY3KkmgMHCtc24kMAn4oXd+bwTedM4dCLzpLcu+4SpgWdzy/wF3OecOALYB/52UqKQt/BH4p3PuIOBgYudd7+19jJnlAz8GxjvnRgN+4Bz03t6XPAxMrbeusffyScCB3uMy4C/tFKMkxsPsfq5fB0Y758YCXwI/A/C+r50DjPL2+bP3vb3DUILVuInASufcV865GuBJYFqSY5IEcc5tdM4t9J6XE/sClk/sHD/iFXsEOD0pAUpCmdkA4GTgr96yAccBT3tFdK73EWbWHTgKeBDAOVfjnCtB7+19VQBIN7MAkAFsRO/tfYZz7l2guN7qxt7L04BHXcw8IMfM+rVLoNJqDZ1r59y/nXNhb3EeMMB7Pg140jlX7Zz7GlhJ7Ht7h6EEq3H5wNq45XXeOtnHmNkQ4BDgQ6CPc26jt2kT0CdZcUlC/QG4AYh6y7lASdwHt97f+46hQCHwN29I6F/NLBO9t/c5zrn1wJ3AGmKJVSmwAL2393WNvZf1vW3fdgnwmve8w59rJVjSpZlZN+AZ4GrnXFn8Nhe7h4HuY9DJmdkpwBbn3IJkxyLtIgAcCvzFOXcIsIN6wwH13t43eNfeTCOWVPcHMtl9iJHsw/Re7hrM7OfELu14ItmxtJQSrMatBwbGLQ/w1sk+wsyCxJKrJ5xzz3qrN9cOKfD+bklWfJIwRwKnmVkBsaG+xxG7RifHG1YEen/vS9YB65xzH3rLTxNLuPTe3vccD3ztnCt0zoWAZ4m93/Xe3rc19l7W97Z9kJldBJwCnOd23ry3w59rJViN+xg40JuNKIXYxXQvJjkmSRDvGpwHgWXOud/HbXoRuNB7fiHwQnvHJonlnPuZc26Ac24IsffxW86584C3gbO8YjrX+wjn3CZgrZkN91Z9E/gcvbf3RWuASWaW4X2m155rvbf3bY29l18ELvBmE5wElMYNJZROyMymEhvef5pzriJu04vAOWaWamZDiU1s8lEyYmyM7UwGpT4z+xaxazf8wEPOuduSG5EkiplNBt4DPmXndTk3EbsO6ylgELAaONs5V/8CW+mkzOwY4Drn3Clmth+xHq2ewCfA95xz1UkMTxLEzMYRm9AkBfgKuJjYD4p6b+9jzOxXwHRiw4c+AS4ldi2G3tv7ADObBRwD9AI2A7cAz9PAe9lLsu8lNky0ArjYOTc/CWHLXmjkXP8MSAWKvGLznHOXe+V/Tuy6rDCxyzxeq19nMinBEhERERERSRANERQREREREUkQJVgiIiIiIiIJogRLREREREQkQZRgiYiIiIiIJIgSLBERERERkQRRgiUiIiIiIpIgSrBEREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsEZEOxsyGmJkzs0CyY5GuwcyWmtkxyY5DRGRfoARLREQ6PTObaWbbvUeNmYXill9LdnwdnXNulHNuTiLrNLM7zWyFmZWb2XIzuyCR9YuIdFRKsEREEkw9T+3POXe5c66bc64b8Btgdu2yc+6k2nKd6dx0plgbsQM4FegOXAj80cy+kdyQRETanhIsEZEEMLMCM/upmS0BdphZwMwmmdl/zKzEzBbHD8Eyszlm9v/M7CMzKzOzF8ysZyN1X2xmy7yegK/M7H/qbZ9mZou8elaZ2VRvfXcze9DMNprZejP7tZn5mzmO/c3sLTMrMrOtZvaEmeXEbSs2s0O95f5mVlh7XGZ2mjfUrMQ7vhH1Xp/rzGyJmZWa2WwzS9vzV3rPNXJunJkdEFfmYTP7ddzyKd5rWuKdw7EtbOsYM1tnZjd5r1+BmZ0Xt/1kM/vEO1drzWxG3LbaoaH/bWZrgLe89f8ws03e6/aumY2qF/efzew1r7fufTPra2Z/MLNtXs/RIS18jY5vyTG2lHPuFufccudc1Dn3IfAecEQi2xAR6YiUYImIJM65wMlADtAHeAX4NdATuA54xszy4spfAFwC9APCwN2N1LsFOAXIBi4G7opLciYCjwLXe+0eBRR4+z3s1XsAcAhwAnBpM8dgwP8D+gMjgIHADADn3Crgp8DjZpYB/A14xDk3x8yGAbOAq4E84FXgJTNLiav7bGAqMBQYC1zUYABmk73EprHH5GaOoSF158Y5F27yBYglJA8B/wPkAvcBL5pZagvb6gv0AvKJ9dzcb2bDvW07iJ33HC+eK8zs9Hr7H03stT/RW34NOBDoDSwEnqhX/mzgF16b1cAHXrlewNPA71sYd4PM7MamzkcL60gHJgBLWxOLiEhnoARLRCRx7nbOrXXOVQLfA151zr3q/YL/OjAf+FZc+cecc58553YAvwTObqiHyTn3inNulYt5B/g3MMXb/N/AQ86517121jvnlptZH6+tq51zO5xzW4C7gHOaOgDn3EqvrmrnXCGxL+dHx21/AFgJfEgsMfy5t2k68Iq3bwi4E0gH4oeE3e2c2+CcKwZeAsY1EsNc51xOE4+5TR1DI+LPTXMuA+5zzn3onIs45x4hlrhM2oP2fum9hu8QS7TPBnDOzXHOfeqdqyXEktKj6+07wztnld4+Dznnyp1z1cSS3YPNrHtc+eeccwucc1XAc0CVc+5R51wEmE0sud5rzrnfNnU+WljNTGAx8K/WxCIi0hkowRIRSZy1cc8HA9+p90v/ZGJJSUPlVwNBYr0OuzCzk8xsnjc8r4RY4lRbbiCwqoFYBnv1bYxr/z5ivSCNMrM+ZvakN6SwDHi8gZgeAEYD93hf+iHW47W6toBzLuodX37cfpvinlcA3ZqKJcHWNl+kzmDg2nrnbiCxY2yJbV7SXGt17b5mdriZve0NrSwFLmf317cuVjPzm9lvLTb0s4ydvZPx+2yOe17ZwHJ7vs67MbM7iP17Ods555IZi4hIe1CCJSKSOPFfHtcS66GK/7U/0zn327gyA+OeDwJCwNb4Cr1hac8Q6xHq4/UYvEpsKF9tO/s3EMtaYr0uveLaz3bOjWqgbLzfeMcxxjmXTawnrrYtzKwb8AfgQWCG7bxubAOxxKS2nHnHt76Z9nZjZlNs5wyADT2mNF/Lbup/sa8AMuKW+8Y9XwvcVu/cZTjnZrWwrR5mlhm3PIjY6wPwd+BFYKBzrjuxnh2rt398rN8FpgHHE5ssYoi3vv4+bca7nqzR89HMvr8CTgJOcM6VtU/EIiLJpQRLRKRtPA6camYner0Qad4ECAPiynzPzEZ61zPdCjztDeuKlwKkAoVA2MxOInYtVa0HgYvN7Jtm5jOzfDM7yDm3kdhQwt+ZWba3bX8zqz8crb4sYDtQamb5xK7tivdHYL5z7lJiQ99meuufAk724ggC1xJL8P7T3AtVn3PuvbgZABt6vLendTZgEfBd79xMZddheg8Al3u9TWZmmRabnCIL6iaWeLiZ+n9lZileMngK8A9vfRZQ7Jyr8q6f+24z9WQRex2LiCWEv9mDY0wI59xvmjofje1nZj8jdnzHO+eK2i9iEZHkUoIlItIGnHNrifU83EQsOVpLLFmJ/9x9jNhEFJuANODHDdRT7q1/CthG7Avri3HbP8Kb+AIoBd5hZ0/SBcQStM+9fZ9m1yGKDfkVcKhX1yvAs7UbzGwasUkqrvBW/QQ41MzOc859Qay36x5ivXCnAqc652qaaS9ZriIWYwlwHvB87Qbn3Hzg+8C9xF63lew6IcdA4P0m6t7k7beB2IQUlzvnlnvbfgDcamblwM3EzmtTHiU2xHA9sfM4r7kD60B+Q6z3bmVcj9dNyQ5KRKStmYZDi4i0PzObAzzunPtrsmORlvNmRVwMjPUm86i//Rhi53VA/W0iItI1dPabGIqIiLQbr0duRLMFRUSky9IQQRGRLsbMZjYyYcHM5veWzsjMBjUxUcWgZMcnIrIv0RBBERERERGRBFEPloiIiIiISIJ0qGuwevXq5YYMGZLsMERERERERJq0YMGCrc65vPrrO1SCNWTIEObPn5/sMERERERERJpkZqsbWq8hgiIiIiIiIgmiBEtERERERCRBlGCJiOyF0u1VvP3++2gmVhEREYnXoa7BakgoFGLdunVUVVUlOxTpZNLS0hgwYADBYDDZocg+aOHfb+bYDffxVuRFjjvq6GSHIyIiIh1Eh0+w1q1bR1ZWFkOGDMHMkh2OdBLOOYqKili3bh1Dhw5NdjiyD+pV9BEAFZ//C5RgiYiIiKfDDxGsqqoiNzdXyZXsETMjNzdXPZ/SZtLDpQD0LZqX5EhERESkI+nwCRag5Er2iv7dSJuJRhkcWQNA35o1ug5LRERE6nSKBEtEpCOJ1OwgSJgKUunPVgpLypIdkoiIiHQQSrBawMy49tpr65bvvPNOZsyYkbyA4sybN4/DDz+ccePGMWLEiLq45syZw3/+859W1T116lRycnI45ZRTEhCpyL6jckcsoVqbcgA+c2xZvTzJEYmIiEhH0eoEy8wGmtnbZva5mS01s6u89TPMbL2ZLfIe32p9uMmRmprKs88+y9atWxNar3OOaDTaqjouvPBC7r//fhYtWsRnn33G2WefDSQmwbr++ut57LHHWlWHyL6opnIHAKXdDwKgfP0XyQxHREREOpBEzCIYBq51zi00syxggZm97m27yzl3ZwLaAOBXLy3l8w2JHYozsn82t5w6qskygUCAyy67jLvuuovbbrttl22FhYVcfvnlrFkTux7jD3/4A0ceeSQzZsygW7duXHfddQCMHj2al19+GYATTzyRww8/nAULFvDqq69y77338tprr2Fm/OIXv2D69OnMmTOHGTNm0KtXLz777DMOO+wwHn/88d2uK9qyZQv9+vUDwO/3M3LkSAoKCpg5cyZ+v5/HH3+ce+65h4MOOqjROFetWsXKlSvZunUrN9xwA9///vcB+OY3v8mcOXOafG3+8Y9/8Ktf/Qq/30/37t159913qaqq4oorrmD+/PkEAgF+//vfc+yxx/Lwww/z/PPPs2PHDlasWMF1111HTU0Njz32GKmpqbz66qv07NmTBx54gPvvv5+amhoOOOAAHnvsMTIyMnZpd9KkSTz44IOMGhU7d8cccwx33nkn48ePbzJekUQIVW0HwPU6CAqhqmh1kiMSERGRjqLVPVjOuY3OuYXe83JgGZDf2no7mh/+8Ic88cQTlJaW7rL+qquu4pprruHjjz/mmWee4dJLL222rhUrVvCDH/yApUuXMn/+fBYtWsTixYt54403uP7669m4cSMAn3zyCX/4wx/4/PPP+eqrr3j//fd3q+uaa65h+PDhnHHGGdx3331UVVUxZMgQLr/8cq655hoWLVrElClTmoxzyZIlvPXWW3zwwQfceuutbNiwocWvy6233sq//vUvFi9ezIsvvgjAn/70J8yMTz/9lFmzZnHhhRfWzeb32Wef8eyzz/Lxxx/z85//nIyMDD755BOOOOIIHn30UQC+/e1v8/HHH7N48WJGjBjBgw8+uFu706dP56mnngJg48aNbNy4UcmVtJtwVawHK5o9gGqCULo+yRGJiIhIR5HQ+2CZ2RDgEOBD4EjgSjO7AJhPrJdrWwP7XAZcBjBo0KAm62+up6ktZWdnc8EFF3D33XeTnp5et/6NN97g888/r1suKytj+/btTdY1ePBgJk2aBMDcuXM599xz8fv99OnTh6OPPpqPP/6Y7OxsJk6cyIABAwAYN24cBQUFTJ48eZe6br75Zs477zz+/e9/8/e//51Zs2Y12OvUVJzTpk0jPT2d9PR0jj32WD766CNOP/30Fr0uRx55JBdddBFnn3023/72t+uO6Uc/+hEABx10EIMHD+bLL78E4NhjjyUrK4usrCy6d+/OqaeeCsCYMWNYsmQJEEvCfvGLX1BSUsL27ds58cQTd2v37LPP5oQTTuBXv/oVTz31FGeddVaL4hVJhEh1LMGy1AyK/b1IrdiU5IhERESko0hYgmVm3YBngKudc2Vm9hfgfwHn/f0dcEn9/Zxz9wP3A4wfP75Dz3V89dVXc+ihh3LxxRfXrYtGo8ybN4+0tLRdygYCgV2ur4q/H1NmZmaL2ktNTa177vf7CYfDDZbbf//9ueKKK/j+979PXl4eRUVFu5VpLE7YfTrzPZnefObMmXz44Ye88sorHHbYYSxYsKDJ8vHH5PP56pZ9Pl/d8V100UU8//zzHHzwwTz88MMNJoz5+fnk5uayZMkSZs+ezcyZM1scs0hr1fZg+VMyKEvpQ1bN5iRHJCIiIh1FQmYRNLMgseTqCefcswDOuc3OuYhzLgo8AExMRFvJ1LNnT84+++xdhqydcMIJ3HPPPXXLixYtAmDIkCEsXLgQgIULF/L11183WOeUKVOYPXs2kUiEwsJC3n33XSZObPlL9corr9Tdg2fFihX4/X5ycnLIysqivLy82TgBXnjhBaqqqigqKmLOnDlMmDChxe2vWrWKww8/nFtvvZW8vDzWrl3LlClTeOKJJwD48ssvWbNmDcOHD29xneXl5fTr149QKFRXT0OmT5/O7bffTmlpKWPHjm1x/SKtFa3xEqzUblSl96FnuDDJEYmIiEhHkYhZBA14EFjmnPt93Pp+ccXOAD5rbVsdwbXXXrvLbIJ333038+fPZ+zYsYwcObKuJ+XMM8+kuLiYUaNGce+99zJs2LAG6zvjjDMYO3YsBx98MMcddxy33347ffv2bXE8jz32GMOHD2fcuHGcf/75PPHEE/j9fk499VSee+45xo0bx3vvvddonABjx47l2GOPZdKkSfzyl7+kf//+QCz5+853vsObb77JgAED+Ne//gXEhiXWXm91/fXXM2bMGEaPHs03vvENDj74YH7wgx8QjUYZM2YM06dP5+GHH96l56o5//u//8vhhx/OkUceyUEHHVS3/sUXX+Tmm2+uWz7rrLN48skn62ZOFGkvkeoKAPxpmUSz+tObYsorq5MclYiIiHQEVtv7sdcVmE0G3gM+BWrHxN0EnAuMIzZEsAD4H+fcxqbqGj9+vJs/f/4u65YtW8aIESNaFaM0rv5sh/sa/fuRtvDFi79j+MJbWfrdBUSWPs/Yxf/LVxcsYL/9Dkh2aCIiItJOzGyBc263WdZafQ2Wc24u0NBFO6+2tm4RkY4oWlMJQCA9k5TcgQCUbF4NSrBERES6vITOIiidz4wZM5IdgkjnE4pdg5WS1o303kMAqCzUvbBEREQkQZNciIh0KaFKqlyQ1GCAnv2GAhDeti7JQYmIiEhHoB4sEZE9ZKEKKkglNeAjJTOPKlKwct1sWERERNSDJSKyxyxUSRUppAR8YMY2X09SdLNhERERQQmWiMges0gV1S5IasAPQHkwj8xq3QtLRERElGC12PPPP4+ZsXz58kbLFBQUMHr06IS1+cUXX3DMMccwbtw4RowYwWWXXQbEbhL86qutm6TxkksuoXfv3gmNV6TLiISoIUjQH5tAtTK9NzmRrc3sJCIiIl2BEqwWmjVrFpMnT2bWrFkNbg+Hw61uIxKJ7LL84x//mGuuuYZFixaxbNkyfvSjHwGJSbAuuugi/vnPf7aqDpGuyhepIWxBYvdZh0hmf3q7YqpqWv85ICIiIp1b55rk4rUbYdOnia2z7xg46bdNFtm+fTtz587l7bff5tRTT+VXv/oVAHPmzOGXv/wlPXr0YPny5fz73/8mHA5z3nnnsXDhQkaNGsWjjz5KRkYGb775Jtdddx3hcJgJEybwl7/8hdTUVIYMGcL06dN5/fXXueGGGzjnnHPq2t24cSMDBgyoWx4zZgw1NTXcfPPNVFZWMnfuXH72s59xyimn8KMf/YjPPvuMUCjEjBkzmDZtGg8//DDPPfccpaWlrF+/nu9973vccsstABx11FEUFBQ0edzvvPMOV111FQBmxrvvvku3bt244YYbeO211zAzfvGLXzB9+nTmzJnDLbfcQk5ODp9++ilnn302Y8aM4Y9//COVlZU8//zz7L///rz00kv8+te/pqamhtzcXJ544gn69OmzS7vnnHMO559/PieffDIQSwZPOeUUzjrrrJadU5E2ZtEaQhasW/Z170/q+hBrt2xk4ICBSYxMREREkk09WC3wwgsvMHXqVIYNG0Zubi4LFiyo27Zw4UL++Mc/8uWXXwKxYX0/+MEPWLZsGdnZ2fz5z3+mqqqKiy66iNmzZ/Ppp58SDof5y1/+UldHbm4uCxcu3CW5Arjmmms47rjjOOmkk7jrrrsoKSkhJSWFW2+9lenTp7No0SKmT5/ObbfdxnHHHcdHH33E22+/zfXXX8+OHbH79Hz00Uc888wzLFmyhH/84x/Mnz+/xcd955138qc//YlFixbx3nvvkZ6ezrPPPsuiRYtYvHgxb7zxBtdffz0bN24EYPHixcycOZNly5bx2GOP8eWXX/LRRx9x6aWXcs899wAwefJk5s2bxyeffMI555zD7bffvlu706dP56mnngKgpqaGN998sy7ZEukILFpDJC7BSu2ZD8C2zboXloiISFfXuXqwmulpaiuzZs2q68k555xzmDVrFocddhgAEydOZOjQoXVlBw4cyJFHHgnA9773Pe6++27+67/+i6FDhzJs2DAALrzwQv70pz9x9dVXA7GEoiEXX3wxJ554Iv/85z954YUXuO+++1i8ePFu5f7973/z4osvcueddwJQVVXFmjVrAPiv//ovcnNzAfj2t7/N3LlzGT9+fIuO+8gjj+QnP/kJ5513Ht/+9rcZMGAAc+fO5dxzz8Xv99OnTx+OPvpoPv74Y7Kzs5kwYQL9+vUDYP/99+eEE04AYj1vb7/9NgDr1q1j+vTpbNy4kZqaml1eu1onnXQSV111FdXV1fzzn//kqKOOIj09vUUxi7QHfyRE2FLqlrvlDQJgx9a1yQpJREREOgj1YDWjuLiYt956i0svvZQhQ4Zwxx138NRTT+GcAyAzM3OX8rXXZDS23JD6dcTr378/l1xyCS+88AKBQIDPPvtstzLOOZ555hkWLVrEokWLWLNmDSNGjNjreGrdeOON/PWvf6WyspIjjzyyyQk+AFJTU+ue+3y+umWfz1d3jdqPfvQjrrzySj799FPuu+8+qqqqdqsnLS2NY445hn/961/Mnj270QRUJFl8btcerJy+gwGoKda9sERERLo6JVjNePrppzn//PNZvXo1BQUFrF27lqFDh/Lee+81WH7NmjV88MEHAPz9739n8uTJDB8+nIKCAlauXAnAY489xtFHH91s2//85z8JhUIAbNq0iaKiIvLz88nKyqK8vLyu3Iknnsg999xTl/R98sknddtef/11iouL666Dqu1da4lVq1YxZswYfvrTnzJhwgSWL1/OlClTmD17NpFIhMLCQt59910mTpzY4jpLS0vJz48Np3rkkUcaLTd9+nT+9re/8d577zF16tQW1y/SHnzREFHfzgSrW27s37Qr25CskERERKSDUILVjFmzZnHGGWfssu7MM89sdDbB4cOH86c//YkRI0awbds2rrjiCtLS0vjb3/7Gd77zHcaMGYPP5+Pyyy9vtu1///vfjB49moMPPpgTTzyRO+64g759+3Lsscfy+eefM27cOGbPns0vf/lLQqEQY8eOZdSoUfzyl7+sq2PixImceeaZjB07ljPPPLNueOC5557LEUccwRdffMGAAQN48MEHAZg5cyYzZ84E4A9/+AOjR49m7NixBINBTjrpJM444wzGjh3LwQcfzHHHHcftt99O3759W/x6zpgxg+985zscdthh9OrVq279/PnzufTSS+uWTzjhBN555x2OP/54UlJSGqpKJGkCLkTEt/PfpQVSKbbuBHboZsMiIiJdndX2enQE48ePd/UnYVi2bFndcDfZMw8//DDz58/n3nvvTXYoSaN/P9IWtt66P5+mHsqxP/1H3bqvbzuMYuvBYTe9kcTIREREpL2Y2QLn3G6TG6gHS0RkDwVcGOcP7rKuIjWP7FBhkiISERGRjkIJ1j7soosu6tK9VyJtJUCIqG/Xoas1GX3JjRYRjXacUQEiIiLS/to8wTKzqWb2hZmtNLMb96aOjjSMUToP/buRthJ0IZy/3rWB2f3oaeVsLS1LTlAiIiLSIbRpgmVmfuBPwEnASOBcMxu5J3WkpaVRVFSkL8uyR5xzFBUVkZaWluxQZF/jHEFCOH/qLquDObGZBIs3rUlGVCIiItJBtPWNhicCK51zXwGY2ZPANODzllYwYMAA1q1bR2Ghrm2QPZOWlsaAAQOSHYbsa6IRfDisXg9WRu5AAMq3rIERY5IRmYiIiHQAbZ1g5QNr45bXAYfHFzCzy4DLAAYNGrRbBcFgkKFDh7ZhiCIieyBSHftbL8HK7hP7/KosWlt/DxEREelCkj7JhXPufufceOfc+Ly8vGSHIyLStLCXYAV2HSLYo88QACKlutmwiIhIV9bWCdZ6YGDc8gBvnYhIp+QiNQBYYNdp2v0ZOVSRgpVvTEZYIiIi0kG0dYL1MXCgmQ01sxTgHODFNm5TRKTNhKqrAPAF6k2gYkaxvxeplZuTEJWIiIh0FG16DZZzLmxmVwL/AvzAQ865pW3ZpohIW6qpqSQFdhsiCFAe7E23Gk3IIyIi0pW19SQXOOdeBV5t63ZERNpDqDp2DZY/mLLbtur03vSoXNTOEYmIiEhHkvRJLkREOpNQjTdEMLh7D1Ykqx+92cb2qlB7hyUiIiIdhBIsEZE9EPYSLH9w95tY+7vnk2ohCjdpLh8REZGuSgmWiMgeqJvkooEerJTcwQCUbf6qXWMSERGRjkMJlojIHgjXVAAQSM3YbVtWn9hN0XcUrm7XmERERKTjUIIlIrIHItVegpWye4KVm78/AOHiNe0ak4iIiHQcSrBERPZApLoSaLgHKy0rlwrS8JWube+wREREpINQgiUisgciNbEEK5i2e4KFGVv9vUmt2NjOUYmIiEhHoQRLRGQPuFBsiGCDCRZQntqX7GolWCIiIl2VEiwRkT0QDcV6sFIbSbCqM/vRK1JINOraMywRERHpIJRgiYjsAReqBiA1PbPh7d0HkmtlbC3Z1p5hiYiISAehBEtEZE+EKql2AdJSgg1urr0X1tb1uheWiIhIV6QES0RkT4SrqCaFtEDDH59ZvWP3wirb9HV7RiUiIiIdhBIsEZE9YOFKqkgh4G/447Ondy+s6q262bCIiEhXpARLRGQPWLiaalIa3Z6dN5AIhtO9sERERLokJVgiInvAF6mixhpPsPAHKbJcguXr2y8oERER6TCUYImI7AFfpIqQpTZZpjSlD92qN7VTRCIiItKRtCrBMrM7zGy5mS0xs+fMLMdbP8TMKs1skfeYmZBoRUSSzB+ppsbXdIJVmdGf3NDmdopIREREOpLW9mC9Dox2zo0FvgR+FrdtlXNunPe4vJXtiIh0CP5oNeFmerAi2QPoQxGlO6raKSoRERHpKFqVYDnn/u2cC3uL84ABrQ9JRKTjCkSrCTfTgxXoMZigRdi8vqB9ghIREZEOI5HXYF0CvBa3PNTMPjGzd8xsSmM7mdllZjbfzOYXFhYmMBwRkcQLRKuJ+ptOsDL67AdA6cZV7RGSiIiIdCCB5gqY2RtA3wY2/dw594JX5udAGHjC27YRGOScKzKzw4DnzWyUc66sfiXOufuB+wHGjx/v9u4wRETaR1q0gkgws8kyPfofAEBloW42LCIi0tU0m2A5545varuZXQScAnzTOee8faqBau/5AjNbBQwD5rc2YBGRZMpwFYSD3Zos06PfUACi29a0R0giIiLSgbR2FsGpwA3Aac65irj1eWbm957vBxwIfNWatkREki4SIoMqoqndmyxmKRkUWw6Bct1sWEREpKtptgerGfcCqcDrZgYwz5sx8CjgVjMLAVHgcudccSvbEhFJKldVhgEuNbvZstuCfehWuaHtgxIREZEOpVUJlnPugEbWPwM805q6RUQ6msrybWQA1oIEa0d6Pj1Kl7V9UCIiItKhJHIWQRGRfVpleawj3pfR9BBBgHBWPn1dIZXVobYOS0RERDoQJVgiIi1UtX0bAP70nGbL+noOJtXCbNqgiS5ERES6EiVYIiItVJtgpXbLabZsRu/YvbC2bVjZliGJiIhIB6MES0SkharKYglWt+zcZsvm9IslWBVbNIGqiIhIV6IES0SkhWp2xBKs7JyezZbNzY/NARQp1hBBERGRrkQJlohIC0Uriok6o3vPXs2W9adlUUKW7oUlIiLSxSjBEhFpIf+OzWylO5lpqS0qXxTsS0aF7oUlIiLSlSjBEhFpodTKLWzz9cC7sXqztqf1p0doUxtHJSIiIh2JEiwRkRZKr95KWaD54YG1Qln59IkWUhOKtGFUIiIi0pEowRIRaaHs8Faq0nq3uLwvZzDpVsOWTevbMCoRERHpSJRgiYi0gAvXkBMtJdKtT4v3Sc8bAkDxhhVtFJWIiIh0NEqwRERaoLxwHT5z+LLzW7xP9/77A7Bjs+6FJSIi0lUowRIRaYHNBZ8CkNH/oBbv06t/7GbDNds0RFBERKSrUIIlItIC5WuXAtBnvzEt3ielW0+qCUL5xrYKS0RERDoYJVgiIi3gCr+kxGXSv//Alu9kxjZfT1IqtrRdYCIiItKhKMESEWmBrNIvWB8YjN+/Zx+bZcE8MmoK2ygqERER6WhalWCZ2QwzW29mi7zHt+K2/czMVprZF2Z2YutDFRFJjmhNFYNrVlDUY+we71uV1puccFEbRCUiIiIdUSABddzlnLszfoWZjQTOAUYB/YE3zGyYc0532xSRTmfdsnkMIkRg8OF7vG84ow+5Jf8hFIkS3MPeLxEREel82up/+2nAk865aufc18BKYGIbtSUi0qa2LHqNqDOGHHr8Hu9r2f3oZlUUFasXS0REpCtIRIJ1pZktMbOHzKyHty4fWBtXZp23TkSk08lZ+yZfBIbRP3/QHu8bzOkPQMmmNYkOS0RERDqgZhMsM3vDzD5r4DEN+AuwPzAO2Aj8bk8DMLPLzGy+mc0vLNSF4CLSsWxatZgDwisoGrR3l5Jm5A4AoHzr2mZKioiIyL6g2WuwnHMtGhNjZg8AL3uL64H4uYwHeOsaqv9+4H6A8ePHu5a0JSLSXta8/md6OR8HHH/pXu2f3Tv2UVi9bUMiwxIREZEOqrWzCPaLWzwD+Mx7/iJwjpmlmtlQ4EDgo9a0JSLS3koKNzJ603MszDqWvvmD96qOHC/BipYqwRIREekKWjuL4O1mNg5wQAHwPwDOuaVm9hTwORAGfqgZBEWks1k5+0bGuRB53/r5XtcRyOjODtLwbd+UwMhERESko2pVguWcO7+JbbcBt7WmfhGRZPl6yXscWvgC/8n7DpNHHtaqurb5ckmp3JKgyERERKQj001ZRETqqdpRSuD5/6HIchh5Tut/J9oezCWjZmsCIhMREZGOTgmWiEgcF42y9P5LyY9sYP2xf6Rnr96trrMqLY/ssO6DJSIi0hUowRIRifPR47/ksNJ/88Ggyxh39LSE1BnJ6E2u20YkqolSRURE9nVKsEREPJ/88xEO/+pePs46jiMu+m3iKs7uS6ZVU1ysXiwREZF9XWtnERQR2Ses/ORdDvrgOpYHRzDmB4/j8yfu96dg99gdLbZtXkter14Jq7ezikQibCveyvaSrVSXFxHaUUxNRTnhUDW+aAhfNIzPhQBwvgBRC+L8QfyBFFJSUgmkZ5GSkUVqRnfSunUnLTOb9MxszOdP8pGJiIgowRIRYcu6VXR/4QJKrDu5lz5FWnpmQutP75kPwPaidcAhCa27IwqFQmxavZxtqz+jcvMKoiXrCG7fQHb1ZnpGttDDldLLHIlMNaPOqCCVCkun0tKp9qUT8qUR9qcT8acR8acTDaTjghm4YDoRfwb4g5jfj1kAn98fe+7z4/DjzEcUg2gUXARzUXDR2F+iEI2Atw63c9m5aN0+u2yv97BGlmvrj/3dncO8Z7brstUus8v23cs1Uo/tXr52TV2ddWWat3PvFpRtedG4+hsYbmvxT3evtLlmmorDGliIteGaqNt2e9pQuWYPv4l9a+OIpmVz4Bm/JLN7z+ZqE5F2oARLRLq0yu2lbP/bmeS5Krac/RL79x2U8DayesUSrKrife9mw0WFG1m39D9UrV5Aytal5Oz4mvzIegZamIFemQqXSqG/N2UpvVmVNYxoZh8C3Xrgz+xJILMH/oyepGVmkZKaDv4g+FKI+vw4wCJhiIYgEiIUqqamuoqainIileWEq8px1WW46u1QvQMLbccX2kEgtB1/pJJApJLUcDkpNYWkuCpSXTVprpp0qvBb218PF3FGFB8OI0rseexhONu57LBd/9Ymd95X6p3JxK5f5vd4vXP1tu9avv7fxsq45lOCdtF8HK6BZy3eJYFxtEmzu+hJOR89UsSkHz/a6lhEpPWUYIlIlxUNh1n5l7MZEV7NkqMf4NBRE9qknR59YklbuGxjm9TfXkKhGr5a8j6ly98lsOkT+mz/nHy3mVxv+3r6UJg+lC05U/D1Pohu+SPpPXQUPXN7M9jXgS75dY5IqIpQTRXhcIRIOEQoHCYSCRMJh2Npjoti5jDzg89X9xfzYz4fZj58vgDm9+Pz+fD5/Pi9XjC/z4/PfPj9PjRoURLNeYmyi8vK5t9/BZM2zeLDlx7g8FO/n6TIRKSWEqwmVG4vo7x0G73zByc7FBFpA/MfvZGJO+Yxd/iNTD7urDZrJ7VbT6oJYts3t1kbbSFUU82qxe+x7fO3ydg4jwMqP2O4VQGxZGpTt4NY12c63YZOZMDISeT3zCM/yTG3iBn+lHT8KenJjkRkj5k3ljF+SOOhl/yB5XcuZuz8m/isZ39GH3lykqITEVCC1aQlr8zk0M9/y4KsKTD6LEYddTppGVnJDktEEuDzuS8wfvVf+bD7iRx5zk/btjEztlkPghVb2radBFi/+ivWfPQ8aV+/zvAdCzjIqgFY7RvI0rxvEdh/CgMOPp78/oM6RzIl0gUEUtLo9/2n2fKXE9nv3xezOPoQB085JdlhiXRZSrCaMHDiqcwv+ooRW14iZ94cqj64hk8yDqNywBT6jjmWwSMPxx/QSyjS2ZRuK6TvGz9ijX8Ao77/ANYOw9fKgr3IqC5s83b2VCgcZtn8d9m2+CX6bn6H4dFV5AObLI9Pe51E8IBjGHLofzG4zwDUly/ScXXPyyf0/VcpfOBbDH/jIj7eejMTzvhxssMS6ZLMuY5z48vx48e7+fPnJzuM3YRrqln+0b/YvvhFBm19l/4uNsxnu0tnbcpQdmQfQDh3OCl9DyKn7xD65A8lM7vn3k2NtBecc4QjEWqqKqmpriJUXRm7tqCmkprqasKhaiKhKiI1VURC1URqqomGq4iGqnDhaly4hmi4BsLVsUekBovE/voiNfiiNVg0hC9Sg9/V4I+GCLgQAVdDkBB+F/EugHaYczufe5ft+lyU2suAre7SbVfv0fCF1fUvHm7o0uuWlt39QuT65ePr2tN965Xf5dzvWVzJvIC8rVpu0aeM2/lkTz+VGizfRCXpVNGLUlZ++xWGHXzkHra2d5b8/jSyy1YwZMaydmmvKaXbivnig5eIfPFPDix9n16UEnHGqrSRlA88jt7jpzFg2GHtkniKSGKVF29k9X3nMLp6ER9mn8iw791Fj96dt7/ZRaNUVpRTsb2UyvISqneUUlNRSqiilHBlGZHKciI1lbhQFYQrsUg1Fq7GF6nCF6mOfXeJVuGP1hCI1mAujM9FvO8uUfwugp9dn/u9KWhizyPN/ifW4KyWzR3XbjN4NrCt/iygTZSJPd8Z0a5ldo12920Nfw9xWNzMo3jzZjYWU/z0OnsWd0ss8Y8k46y/cOxBvfdov7ZmZgucc+Prr1f3SwsEUlIZPfk0mHwaAJvWrmTNJ2/Cmnl0K/2SA7a+RU7Ri/Dlzn0qXQol1p0qXyY1/gxqApnU+NLBFwCfH6x2GmAfzjl8LoxFw/ic9/DuA2Mugq82oYnGkpqACxHEe7gwQcIELUIQSMTk0mHnI2ReCxYkTICwBWMPXwoRCxLxpVDjy6DCgkTND+YDDOf9xQyrWyaWbJrPSzq9dMqaTrGs3hft3T7A6v84sMtiw1McN7bvrnU39FHU0n3r79902ZbU3VFm7NpbtR/K8Wy3JzvnS6tbbuSw66+3+s8amNK4/hTL24HNQ49lTDslVwCh7kPoXzqXiqoqMtLS2q3dWuu/+pzV854jc/WbHFS1mIkWppwMVnWfxMbhU9n/G6czLKdPu8clIomV1bMfw697nY8f/SmHrnmEqj8fxn8Gfo8Rp/y4bsKdZHDRKJU7Sigt2kJFSexRU15IpHwr0YpifFXFBKq2kRoqISNcSnpkOxmukkwqyDBHRgvaiDqjihRqLEgNKdRYCmFLIWQphH2phH0pRC0T592OIerz42znIxr33PkCOPNjFpvZ0wCf4X2/if1fFP9f9s7EoYEfi3f7mrDrTJ+7VlRvm/fXsXMm0AYzvt1mCXVesd2/k5hz3v/NO6M1r4raH8njm6ktV3+G0t0PrJHZSOti2zWOnXU3/z0nkrof3TOCzZbrKNSDlQAuGqVk60a2rl5K2ZbVVBatx79jE8GqYvyh7fjDO0iN7CDNVeFzEXzE7qmyc4JeCJufCIG6vxELELUAUfMT9QWJWJCoL4WoP4WoLwXnT8H5U2NTGvtTwZ8CgVQskIIF0rBgKr5AKr5gCv5gGv5gKv6UNALBtNjflDSCKWkEU9MIpqQSTEknJTUNXzAtlgCKSEItevFexi38OSvPeY8DDhrb5u1FwiFWzH+DksUv02/zOwyOrgVgrS+fTX2Opvu4Uzng0OPxBVPaPBYRSY6vl31C2Us/4+CKDwg5P8vTD6Fy8HHkDv8GAw8aT8peXlceDYfZXlbE9uItVJQVUlm6lZqyrYR3bIUdRVjVNoLV20ipiSVLWdFSsl05KRZpsL6IM0oti3LLZkegO9XB7oSC3YmmdMOldMNSsyAtG39aFoH0bIIZ3UnJyCa1Ww7pmd1Jz+xGenoGgWBqu40eEgH1YLUp8/no0Tu/U3fBi0jbys4/CBZCydpl0EYJ1tZNayiY9wL+VW9wQPlHHEQFNc7PF2lj+XDwdAZNOoOB+42uuz+ViOzbho44BEb8k6+/WMzGt+4jf8scxnxxO3wB0ReMzdaTMn8PqlJ6Uh3IqrslQdT8EAnhj1QRiFQSiFYTiFaRESmnmysn2+0g2xzZDbQZdr5YsuTLosKfw7a0AWxJGUMkvSeW0RNfZi7BrDzSuueRmdOb7J59yO7Ri55+P7pNsuwrlGCJiLSDPvuNBqBi/WfA9ITUGa6p5stP3qVkyavkbXqXAyMr6QUU0oPPc47BP+wEhh05jTHd9bVFpCsbOvxghg7/MwDrC75kw/IPCa1fQkr5GgJVxWTUFJNTta5uhI2fCBELUm2phCyVkC+NykA25ekDWJeag0vrCek98HfLJdgtl7TsXDJyetO9Zx+ycnLJ9fvr7o8n0hUpwRIRaQeZPfqyzpdP9qZ5e11HKFTD10vep+Tzt8jY8AH7VS5hJNVEnLEiZQTzBv6QXoeewn6jJpHn1wQVIrK7/CHDyB8yLNlhiOzTWpVgmdlsYLi3mAOUOOfGmdkQYBnwhbdtnnPu8ta0JSLS2a3veThjCl+hvKyErOycJsu6aJTCDV+z8fP3qV49n4ytSxhatYxh3o1+v7JBLOp5MukHHsX+k07moB4da2YlERGRrqpVCZZzrm6ci5n9DiiN27zKOTeuNfWLiOxLekz6HhkvP8v8WT/lsO//GfP5wTnKijez8avPKFv7KW7LcjJKVtC3ahW9KaE3EHJ+CgJDWJr3Lfz7TWHQof/Ffn0Hsl+yD0hERER2k5AhgmZmwNnAcYmoT0RkXzRs/Df5YO6pHLHxSXbc+jwVlkFOtJRsi9RdLF7pUlgXGMjX3Q9nZd9D6H7ARAaPOpwDM7olNXYRERFpmURdgzUF2OycWxG3bqiZfQKUAb9wzr3X0I5mdhlwGcCgQcm7P4OISHuY+KNH+eCVBwkXfEAwUkEkrReW3YeMPgeSO3Qs/QYP48CALo8VERHprJq9D5aZvQH0bWDTz51zL3hl/gKsdM79zltOBbo554rM7DDgeWCUc66sqbY6632wRERERESka9nr+2A5545vpuIA8G3gsLh9qoFq7/kCM1sFDAOUPYmIiIiIyD4rEfP4Hg8sd86tq11hZnlm5vee7wccCHyVgLZEREREREQ6rEQM9D8HmFVv3VHArWYWAqLA5c654gS0JSIiIiIi0mE1ew1WezKzQmB1suOopxewNdlBSLvR+e46dK67Dp3rrkXnu+vQue5aOuL5Huycy6u/skMlWB2Rmc1v6OI12TfpfHcdOtddh85116Lz3XXoXHctnel8J+IaLBEREREREUEJloiIiIiISMIowWre/ckOQNqVznfXoXPddehcdy06312HznXX0mnOt67BEhERERERSRD1YImIiIiIiCSIEiwREREREZEEUYLVBDObamZfmNlKM7sx2fFI4pjZQDN728w+N7OlZnaVt76nmb1uZiu8vz2SHaskhpn5zewTM3vZWx5qZh967+/ZZpaS7BglMcwsx8yeNrPlZrbMzI7Qe3vfZGbXeJ/hn5nZLDNL03t732FmD5nZFjP7LG5dg+9li7nbO+9LzOzQ5EUue6qRc32H9zm+xMyeM7OcuG0/8871F2Z2YlKCboISrEaYmR/4E3ASMBI418xGJjcqSaAwcK1zbiQwCfihd35vBN50zh0IvOkty77hKmBZ3PL/AXc55w4AtgH/nZSopC38Efinc+4g4GBi513v7X2MmeUDPwbGO+dGA37gHPTe3pc8DEytt66x9/JJwIHe4zLgL+0UoyTGw+x+rl8HRjvnxgJfAj8D8L6vnQOM8vb5s/e9vcNQgtW4icBK59xXzrka4ElgWpJjkgRxzm10zi30npcT+wKWT+wcP+IVewQ4PSkBSkKZ2QDgZOCv3rIBxwFPe0V0rvcRZtYdOAp4EMA5V+OcK0Hv7X1VAEg3swCQAWxE7+19hnPuXaC43urG3svTgEddzDwgx8z6tUug0moNnWvn3L+dc2FvcR4wwHs+DXjSOVftnPsaWEnse3uHoQSrcfnA2rjldd462ceY2RDgEOBDoI9zbqO3aRPQJ1lxSUL9AbgBiHrLuUBJ3Ae33t/7jqFAIfA3b0joX80sE7239znOufXAncAaYolVKbAAvbf3dY29l/W9bd92CfCa97zDn2slWNKlmVk34BngaudcWfw2F7uHge5j0MmZ2SnAFufcgmTHIu0iABwK/MU5dwiwg3rDAfXe3jd4195MI5ZU9wcy2X2IkezD9F7uGszs58Qu7Xgi2bG0lBKsxq0HBsYtD/DWyT7CzILEkqsnnHPPeqs31w4p8P5uSVZ8kjBHAqeZWQGxob7HEbtGJ8cbVgR6f+9L1gHrnHMfestPE0u49N7e9xwPfO2cK3TOhYBnib3f9d7etzX2Xtb3tn2QmV0EnAKc53bevLfDn2slWI37GDjQm40ohdjFdC8mOSZJEO8anAeBZc6538dtehG40Ht+IfBCe8cmieWc+5lzboBzbgix9/FbzrnzgLeBs7xiOtf7COfcJmCtmQ33Vn0T+By9t/dFa4BJZpbhfabXnmu9t/dtjb2XXwQu8GYTnASUxg0llE7IzKYSG95/mnOuIm7Ti8A5ZpZqZkOJTWzyUTJibIztTAalPjP7FrFrN/zAQ86525IbkSSKmU0G3gM+Zed1OTcRuw7rKWAQsBo42zlX/wJb6aTM7BjgOufcKWa2H7EerZ7AJ8D3nHPVSQxPEsTMxhGb0CQF+Aq4mNgPinpv72PM7FfAdGLDhz4BLiV2LYbe2/sAM5sFHAP0AjYDtwDP08B72Uuy7yU2TLQCuNg5Nz8JYcteaORc/wxIBYq8YvOcc5d75X9O7LqsMLHLPF6rX2cyKcESERERERFJEA0RFBERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsERERERGRBFGCJSIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0REREREJEGUYImIiIiIiCSIEiwRkQ7GzIaYmTOzQLJjka7BzJaa2THJjkNEZF+gBEtERDo9M5tpZtu9R42ZheKWX0t2fB2dc26Uc25OIus0szvNbIWZlZvZcjO7IJH1i4h0VEqwREQSTD1P7c85d7lzrptzrhvwG2B27bJz7qTacp3p3HSmWBuxAzgV6A5cCPzRzL6R3JBERNqeEiwRkQQwswIz+6mZLQF2mFnAzCaZ2X/MrMTMFscPwTKzOWb2/8zsIzMrM7MXzKxnI3VfbGbLvJ6Ar8zsf+ptn2Zmi7x6VpnZVG99dzN70Mw2mtl6M/u1mfmbOY79zewtMysys61m9oSZ5cRtKzazQ73l/mZWWHtcZnaaN9SsxDu+EfVen+vMbImZlZrZbDNL2/NXes81cm6cmR0QV+ZhM/t13PIp3mta4p3DsS1s6xgzW2dmN3mvX4GZnRe3/WQz+8Q7V2vNbEbcttqhof9tZmuAt7z1/zCzTd7r9q6ZjaoX95/N7DWvt+59M+trZn8ws21ez9EhLXyNjm/JMbaUc+4W59xy51zUOfch8B5wRCLbEBHpiJRgiYgkzrnAyUAO0Ad4Bfg10BO4DnjGzPLiyl8AXAL0A8LA3Y3UuwU4BcgGLgbuiktyJgKPAtd77R4FFHj7PezVewBwCHACcGkzx2DA/wP6AyOAgcAMAOfcKuCnwONmlgH8DXjEOTfHzIYBs4CrgTzgVeAlM0uJq/tsYCowFBgLXNRgAGaTvcSmscfkZo6hIXXnxjkXbvIFiCUkDwH/A+QC9wEvmllqC9vqC/QC8on13NxvZsO9bTuInfccL54rzOz0evsfTey1P9Fbfg04EOgNLASeqFf+bOAXXpvVwAdeuV7A08DvWxh3g8zsxqbORwvrSAcmAEtbE4uISGegBEtEJHHuds6tdc5VAt8DXnXOver9gv86MB/4Vlz5x5xznznndgC/BM5uqIfJOfeKc26Vi3kH+Dcwxdv838BDzrnXvXbWO+eWm1kfr62rnXM7nHNbgLuAc5o6AOfcSq+uaudcIbEv50fHbX8AWAl8SCwx/Lm3aTrwirdvCLgTSAfih4Td7Zzb4JwrBl4CxjUSw1znXE4Tj7lNHUMj4s9Ncy4D7nPOfeicizjnHiGWuEzag/Z+6b2G7xBLtM8GcM7Ncc596p2rJcSS0qPr7TvDO2eV3j4POefKnXPVxJLdg82se1z555xzC5xzVcBzQJVz7lHnXASYTSy53mvOud82dT5aWM1MYDHwr9bEIiLSGSjBEhFJnLVxzwcD36n3S/9kYklJQ+VXA0FivQ67MLOTzGyeNzyvhFjiVFtuILCqgVgGe/VtjGv/PmK9II0ysz5m9qQ3pLAMeLyBmB4ARgP3eF/6Idbjtbq2gHMu6h1fftx+m+KeVwDdmoolwdY2X6TOYODaeuduILFjbIltXtJca3XtvmZ2uJm97Q2tLAUuZ/fXty5WM/Ob2W8tNvSzjJ29k/H7bI57XtnAcnu+zrsxszuI/Xs52znnkhmLiEh7UIIlIpI48V8e1xLroYr/tT/TOffbuDID454PAkLA1vgKvWFpzxDrEerj9Ri8SmwoX207+zcQy1pivS694trPds6NaqBsvN94xzHGOZdNrCeuti3MrBvwB+BBYIbtvG5sA7HEpLacece3vpn2dmNmU2znDIANPaY0X8tu6n+xrwAy4pb7xj1fC9xW79xlOOdmtbCtHmaWGbc8iNjrA/B34EVgoHOuO7GeHau3f3ys3wWmAccTmyxiiLe+/j5txruerNHz0cy+vwJOAk5wzpW1T8QiIsmlBEtEpG08DpxqZid6vRBp3gQIA+LKfM/MRnrXM90KPO0N64qXAqQChUDYzE4idi1VrQeBi83sm2bmM7N8MzvIObeR2FDC35lZtrdtfzOrPxytvixgO1BqZvnEru2K90dgvnPuUmJD32Z6658CTvbiCALXEkvw/tPcC1Wfc+69uBkAG3q8t6d1NmAR8F3v3Exl12F6DwCXe71NZmaZFpucIgvqJpZ4uJn6f2VmKV4yeArwD299FlDsnKvyrp/7bjP1ZBF7HYuIJYS/2YNjTAjn3G+aOh+N7WdmPyN2fMc754raL2IRkeRSgiUi0gacc2uJ9TzcRCw5WkssWYn/3H2M2EQUm4A04McN1FPurX8K2EbsC+uLcds/wpv4AigF3mFnT9IFxBK0z719n2bXIYoN+RVwqFfXK8CztRvMbBqxSSqu8Fb9BDjUzM5zzn1BrLfrHmK9cKcCpzrnapppL1muIhZjCXAe8HztBufcfOD7wL3EXreV7Dohx0Dg/Sbq3uTtt4HYhBSXO+eWe9t+ANxqZuXAzcTOa1MeJTbEcD2x8zivuQPrQH5DrPduZVyP103JDkpEpK2ZhkOLiLQ/M5sDPO6c+2uyY5GW82ZFXAyM9SbzqL/9GGLndUD9bSIi0jV09psYioiItBuvR25EswVFRKTL0hBBEZEuxsxmNjJhwczm95bOyMwGNTFRxaBkxycisi/REEEREREREZEEUQ+WiIiIiIhIgnSoa7B69erlhgwZkuwwREREREREmrRgwYKtzrm8+us7VII1ZMgQ5s+fn+wwREREREREmmRmqxtaryGCIiIiIiIiCaIES0REREREJEGUYImINME5RzSq2VZFRESkZTrUNVgNCYVCrFu3jqqqqmSHIp1MWloaAwYMIBgMJjsU6cTuePBxcoqXcOl1t+PzWbLDERERkQ6uwydY69atIysriyFDhmCmLzfSMs45ioqKWLduHUOHDk12ONJJRSMRblh3JQCfF/yIkfvpfqwiIiLStA4/RLCqqorc3FwlV7JHzIzc3Fz1fEqrbPlq8c7ny95PYiQiIiLSWXT4BAtQciV7Rf9upLVKiwt3Lqz9MHmBiIiISKfRKRIsEZFkqK4orXueWrIqiZGIiIhIZ6EEqwXMjGuvvbZu+c4772TGjBnJCyjOvHnzOPzwwxk3bhwjRoyoi2vOnDn85z//2et6V69ezaGHHsq4ceMYNWoUM2fOTFDEIp1HqKIMgC2+PHpWr0tyNCIiItIZdPhJLjqC1NRUnn32WX72s5/Rq1evhNXrnMM5h8+393nuhRdeyFNPPcXBBx9MJBLhiy++AGIJVrdu3fjGN76xV/X269ePDz74gNTUVLZv387o0aM57bTT6N+//17HKtLZhCpjCVZh5jAGlS0kFI4QDPiTHJWIiIh0ZOrBaoFAIMBll13GXXfdtdu2wsJCzjzzTCZMmMCECRN4//3YhfAzZszgzjvvrCs3evRoCgoKKCgoYPjw4VxwwQWMHj2atWvXcv311zN69GjGjBnD7NmzgViCdMwxx3DWWWdx0EEHcd555+Hc7vfi2bJlC/369QPA7/czcuRICgoKmDlzJnfddRfjxo3jvffeazLO888/nyOOOIIDDzyQBx54AICUlBRSU1MBqK6uJhqNNvja3H333YwcOZKxY8dyzjnnAFBcXMzpp5/O2LFjmTRpEkuWLKlr68ILL2TKlCkMHjyYZ599lhtuuIExY8YwdepUQqEQALfeeisTJkxg9OjRXHbZZbsddzQaZciQIZSUlNStO/DAA9m8eXNTp1Fkj0WrygGoyRtNllWyedOGJEckIiIiHV2n6sH61UtL+XxDWULrHNk/m1tOHdVsuR/+8IeMHTuWG264YZf1V111Fddccw2TJ09mzZo1nHjiiSxbtqzJulasWMEjjzzCpEmTeOaZZ1i0aBGLFy9m69atTJgwgaOOOgqATz75hKVLl9K/f3+OPPJI3n//fSZPnrxLXddccw3Dhw/nmGOOYerUqVx44YUMGTKEyy+/nG7dunHdddcB8N3vfrfROJcsWcK8efPYsWMHhxxyCCeffDL9+/dn7dq1nHzyyaxcuZI77rijwd6r3/72t3z99dekpqbWJTy33HILhxxyCM8//zxvvfUWF1xwAYsWLQJg1apVvP3223z++eccccQRPPPMM9x+++2cccYZvPLKK5x++ulceeWV3HzzzQCcf/75vPzyy5x66ql1bfp8PqZNm8Zzzz3HxRdfzIcffsjgwYPp06dPs+dRZE+46u0ApA84GL6ConVfMmDAwCRHJSIiIh1Zq3uwzGygmb1tZp+b2VIzu8pbP8PM1pvZIu/xrdaHmzzZ2dlccMEF3H333busf+ONN7jyyisZN24cp512GmVlZWzfvr3JugYPHsykSZMAmDt3Lueeey5+v58+ffpw9NFH8/HHHwMwceJEBgwYgM/nY9y4cRQUFOxW180338z8+fM54YQT+Pvf/87UqVMbbLOpOKdNm0Z6ejq9evXi2GOP5aOPPgJg4MCBLFmyhJUrV/LII4802EM0duxYzjvvPB5//HECgUDdMZ1//vkAHHfccRQVFVFWFkuMTzrpJILBIGPGjCESidTFO2bMmLrje/vttzn88MMZM2YMb731FkuXLt2t3enTp9f19j355JNMnz69yddcZG/4QzuockFy+h8AQNmW1UmOSERERDq6RPRghYFrnXMLzSwLWGBmr3vb7nLO3dnEvnukJT1Nbenqq6/m0EMP5eKLL65bF41GmTdvHmlpabuUDQQCuwyri78fU2ZmZovaqx2iB7Hhf+FwuMFy+++/P1dccQXf//73ycvLo6ioaLcyjcUJu09nXn+5f//+jB49mvfee4+zzjprl22vvPIK7777Li+99BK33XYbn376aYuOyefzEQwG69ry+XyEw2Gqqqr4wQ9+wPz58xk4cCAzZsxo8F5WRxxxBCtXrqSwsJDnn3+eX/ziF022K7I3AuEdVFg6vfL3AyBUvDbJEYmIiEhH1+oeLOfcRufcQu95ObAMyG9tvR1Rz549Ofvss3nwwQfr1p1wwgncc889dcu1Q+GGDBnCwoULAVi4cCFff/11g3VOmTKF2bNnE4lEKCws5N1332XixIktjumVV16pu0ZpxYoV+P1+cnJyyMrKory8vNk4AV544QWqqqooKipizpw5TJgwgXXr1lFZWQnAtm3bmDt3LsOHD9+l7Wg0ytq1azn22GP5v//7P0pLS9m+fTtTpkzhiSeeAGLXkvXq1Yvs7OwWHU9tMtWrVy+2b9/O008/3WA5M+OMM87gJz/5CSNGjCA3N7dF9YvsiUB4BxWkE+jWiypS8JevT3ZIIiIi0sEldJILMxsCHALU3pHzSjNbYmYPmVmPRva5zMzmm9n8wsLChop0KNdeey1bt26tW7777ruZP38+Y8eOZeTIkXXTmZ955pkUFxczatQo7r33XoYNG9ZgfWeccQZjx47l4IMP5rjjjuP222+nb9++LY7nscceY/jw4YwbN47zzz+fJ554Ar/f///bu+/ouqoz7+Pf51Z1q9qWJRcR924sl2CaCSUFQhL6giTGkzCkTliTTCqEkDfvSpnJZCYh4YUhIYUYCBAgCaGEksQT7MTGBgy2wQZX5IJkdenW/f5xr+Sr5oKudFV+n7W07jn77LPPIx0f6zza5+zNRRddxG9/+9vOQS76ihMSj/mtXLmS5cuXc+ONNzJhwgS2bt3KsmXLWLBgAWeddRaf//znmTdvHgAf+9jH2LBhA7FYjGuuuYZ58+axaNEiPvvZz1JYWMjNN9/Mxo0bmT9/Pl/60pf4+c9/fsLfT2FhIR//+MeZO3cuF1xwAUuWLOncdtttt3WJ+4orruBXv/qVHg+UAeOPttBm2WBGnbeUYOuBTIckIiIiQ5z1NjLd22rILA/4M/At59yDZjYOeAtwwDeBcufc6mO1UV1d7TZs2NClbOvWrcyaNSstMUpPN998c5fBMEYa/fuR/nj1O2fRHgoz/6bn2Pbts4hF2plz4/rj7ygiIiIjnpltdM5Vdy9PSw+WmfmBB4C7nXMPAjjnDjrnYs65OHAHcOLPvYmIDAGBeBshT+K9xVDOeIqjQ7+XXURERDKr34NcWGKUgjuBrc6576eUlzvnapKrHwS29PdYkn4333xzpkMQGbK88TBRKwYgmjeBstojtLSFyM0OHmdPERERGa3SMYrgCuDDwEtmtjlZ9hXgKjNbSOIRwV3AP6fhWCIig8brIsS8/sRyYSW+PXH2HdhDbtW0DEcmIiIiQ1W/Eyzn3FrAetn0aH/bFhHJJJ+LEPckEqxgSWKC4YYDu0AJloiIiPQhraMIioiMJIkEKwBAwbgpALS9tSeDEYmIiMhQpwRLRKQPXhfBJR8RLCmvAiBavy+TIYmIiMgQpwTrBD300EOYGdu2beuzzq5du5g7d27ajrl9+3bOPvtsFi5cyKxZs7juuuuAxCTBjz769p/AbG9vZ+nSpSxYsIA5c+bw9a9/PV0hi4wo/pQerKyCUtrxQ2PNcfYSERGR0UwJ1glas2YNp59+OmvWrOl1ezQa7fcxYrFYl/XPfvaz3HDDDWzevJmtW7fymc98Buh/ghUMBnn66ad54YUX2Lx5M4899hjr1q3rV+wiI5GPKHgTCRZm1HlK8WuyYRERETkGJVgnoLm5mbVr13LnnXdyzz33dJY/++yznHHGGbz//e9n9uzZQCLRuvrqq5k1axaXXnopra2tADz11FMsWrSIefPmsXr1akKhEABTpkzhi1/8Iqeeeiq/+c1vuhy3pqaGysrKzvV58+YRDoe56aabuPfee1m4cCH33nsvLS0trF69mqVLl7Jo0SIefvhhAO666y4uvvhizj77bKZNm8Y3vvENAMyMvLw8ACKRCJFIhMRo+1395je/Ye7cuSxYsIAzzzwTSPR+XXvttcybN49FixbxzDPPdB7rAx/4AOeddx5TpkzhRz/6Ed///vdZtGgRy5cvp66uDoA77riDJUuWsGDBAi655JLOn0+q5cuX8/LLL3eun3322XSfgFpkwDlHgCiuI8ECGv1l5IUOZTAoERERGerSMUz74Pnjl+DAS+ltc/w8eM+3j1nl4Ycf5t3vfjfTp0+npKSEjRs3snjxYgCef/55tmzZQlVVFbt27WL79u3ceeedrFixgtWrV/PjH/+YT3/606xatYqnnnqK6dOn85GPfISf/OQnfO5znwOgpKSE559/vsdxb7jhBs455xxOO+00zj//fK699loKCwu55ZZb2LBhAz/60Y8A+MpXvsI555zDT3/6U+rr61m6dCnnnnsuAH//+9/ZsmULOTk5LFmyhPe9731UV1cTi8VYvHgxO3bs4FOf+hTLli3rcfxbbrmFxx9/nIqKCurr6wG49dZbMTNeeukltm3bxvnnn8+rr74KwJYtW9i0aRPt7e1MnTqV73znO2zatIkbbriBX/ziF3zuc5/jQx/6EB//+McB+NrXvsadd97Z2TPX4YorruC+++7jG9/4BjU1NdTU1FBd3WOSbJGBFYskPlMSrPbscZTWv5ChgERERGQ4UA/WCVizZg1XXnklAFdeeWWXxwSXLl1KVVVV5/rEiRNZsWIFANdccw1r165l+/btVFVVMX36dAA++tGP8pe//KVznyuuuKLX41577bVs3bqVyy67jGeffZbly5d39nyleuKJJ/j2t7/NwoULOfvss2lvb2fPnsRIZ+eddx4lJSVkZ2fzoQ99iLVr1wLg9XrZvHkz+/bt60zCuluxYgWrVq3ijjvu6Hx8ce3atVxzzTUAzJw5k8mTJ3cmWCtXriQ/P5+ysjLGjBnDRRddBCR63nbt2gUkkrAzzjiDefPmcffdd3fpqepw+eWXc//99wNw3333cemll/b68xEZULFw4jMlwYrmjqfM1RGOxPrYSUREREa74dWDdZyepoFQV1fH008/zUsvvYSZEYvFMDO+973vAZCbm9ulfvdH7Xp79K677m2kmjBhAqtXr2b16tXMnTu310TIOccDDzzAjBkzupSvX7/+uPEUFhaycuVKHnvssR4DdNx2222sX7+eP/zhDyxevJiNGzce8/sIBoOdyx6Pp3Pd4/F0vqO2atUqHnroIRYsWMBdd93Fs88+26OdiooKSkpKePHFF7n33nu57bbbjnlckQHRS4LlGVNBcH+UNw/tZ0LFpAwFJiIiIkOZerCO4/777+fDH/4wu3fvZteuXezdu5eqqir++te/9lp/z549PPfccwD8+te/5vTTT2fGjBns2rWLHTt2APDLX/6Ss84667jHfuyxx4hEEo8pHThwgNraWioqKsjPz6epqamz3gUXXMAPf/hDnHMAbNq0qXPbk08+SV1dHW1tbTz00EOsWLGCw4cPdz7y19bWxpNPPsnMmTN7HH/nzp0sW7aMW265hbKyMvbu3csZZ5zB3XffDcCrr77Knj17eiR2x9LU1ER5eTmRSKSznd5cccUVfPe736WhoYH58+efcPsi6RKPJHqLzXc0wQoWJ96JPHJAc2GJiIhI75RgHceaNWv44Ac/2KXskksu6XM0wRkzZnDrrbcya9Ysjhw5wic+8QmysrL42c9+xmWXXca8efPweDxcf/31xz32E0880TnIxAUXXMD3vvc9xo8fz8qVK3nllVc6B7m48cYbiUQizJ8/nzlz5nDjjTd2trF06VIuueQS5s+fzyWXXEJ1dTU1NTWsXLmS+fPns2TJEs477zwuvPBCAG666SYeeeQRAL7whS8wb9485s6dy2mnncaCBQv45Cc/STweZ968eVxxxRXcddddXXqujueb3/wmy5YtY8WKFV2SukceeYSbbrqpc/3SSy/lnnvu4fLLLz/htkXSKRJuB8B8R/99549N9Fq1aLJhERER6YN19HoMBdXV1a77aHFbt25l1qxZGYpoeLvrrru6DIYxGunfj7xdTfu3kn/Hcp6Z8y1WXvZpABoP7qbgJ/NZO+OrnH7Vv2U4QhEREckkM9vonOsxEpt6sEREehEJJXqwPKk9WKUTiDkj3vhmpsISERGRIW54DXIhJ2XVqlWsWrUq02GIDEvR5DtYHv/Rd7DM6+eIpwh/S02mwhIREZEhblj0YA2lxxhl+NC/G+mPaPIdLI+/6zuGDb5Ssts12bCIiIj0bsgnWFlZWdTW1upmWU6Kc47a2lqysrIyHYoMU9FwogfL6+uaYLVkjaMgcjgTIYmIiMgwMOQfEaysrGTfvn0cPqwbGjk5WVlZVFZWZjoMGaZikcQ8WB5/1yQ9mjue0saNxOIOr+f489yJiIjI6DLgCZaZvRv4L8AL/I9z7qRmC/b7/VRVVQ1IbCIifYlF2gDwdntEkIIKCg60cuhIHWNLSjIQmYiIiAxlA/qIoJl5gVuB9wCzgavMbPZAHlNEJB2iyR4sX7cEy19UAUDdgd2DHpOIiIgMfQP9DtZSYIdz7nXnXBi4B7h4gI8pItJv8UhikAtvoGuClVc6EYCmQ0qwREREpKeBTrAqgL0p6/uSZZ3M7Doz22BmG/SelYgMFfFoogfL360Ha8z4KQC01+4b7JBERERkGMj4KILOududc9XOueqysrJMhyMiAkA8OQ+WL9h1kIvCsZMAiNXvH/SYREREZOgb6ARrPzAxZb0yWSYiMqR1JFjde7A8wVwaycPbciATYYmIiMgQN9AJ1j+AaWZWZWYB4ErgkQE+pohI/0UT72AFsnN6bKr3lRJsOzjYEYmIiMgwMKDDtDvnomb2aeBxEsO0/9Q59/JAHlNEJB1cNNmDFcjusa05UEZB+6HBDklERESGgQGfB8s59yjw6EAfR0QkraIhIs5LIBDosSmcM54JLa/hnMNMkw2LiIjIURkf5EJEZEiKthPGR9Dn7bEpVjCRsVZPQ1NTBgITERGRoUwJlohILywWIoQfv7dnD5WvODGS4Fv73xjssERERGSIU4IlItILi4UIE+j1EcDcsVUANBzYOdhhiYiIyBCnBEtEpBcWDRE2f6/bSireAUDb4V2DGJGIiIgMB0qwRER64YmHidBzgAuAwnGTiTnDHdkzyFGJiIjIUKcES0SkF55YiEgfPVjmC1DrKcbfrHnTRUREpCslWCIivfDGQ0Ss9x4sgPrAeHLbagYxIhERERkOlGCJiPTCGw8TPUaC1Zo9gaLowUGMSERERIYDJVgiIr3wxsNEPX0nWLH8Ssa5WlrbQ4MYlYiIiAx1SrBERHrhi4eJeYJ9bvcWT8JvMQ7u3zV4QYmIiMiQpwRLRKQXPhcm5ul9kAs4OhfWkZrXByskERERGQaUYImI9CKRYPXdg1VYnpgLq/XQG4MVkoiIiAwDSrBERHrhd2Gct+8Eq2TCKQBE6zQXloiIiBylBEtEpBcBF8b5+k6wPFl51FOAr2nfIEYlIiIiQ50SLBGRXviJgi/rmHXq/OPIaXtzkCISERGR4aBfCZaZfc/MtpnZi2b2WzMrTJZPMbM2M9uc/LotLdGKiAyGeAw/UewYPVgAzdkTKAxrLiwRERE5qr89WE8Cc51z84FXgS+nbNvpnFuY/Lq+n8cRERk08XArAB5/9jHrRfInUu4OEYpEByMsERERGQb6lWA5555wznXcWawDKvsfkohIZrW3NADggvnHrOctmkS2hTlQs38wwhIREZFhIJ3vYK0G/piyXmVmm8zsz2Z2RhqPIyIyoNqbEwmWHSfByk7OhVW3/7UBj0lERESGB9/xKpjZn4DxvWz6qnPu4WSdrwJR4O7kthpgknOu1swWAw+Z2RznXGMv7V8HXAcwadKkt/ddiIikUTjZg+XJOnaCVThhKgAtBzXZsIiIiCQcN8Fyzp17rO1mtgq4EHiXc84l9wkBoeTyRjPbCUwHNvTS/u3A7QDV1dXuJOMXEUm7cFsiwfJmHzvBKq1IJFjRut0DHpOIiIgMD/0dRfDdwL8B73fOtaaUl5mZN7l8CjAN0J94RWRYiLQmOtu92WOOWc+bXUA9+Xgb9w5GWCIiIjIMHLcH6zh+BASBJ80MYF1yxMAzgVvMLALEgeudc3X9PJaIyKCItSUSLP9xerAA6vzjyWnVIBciIiKS0K8Eyzk3tY/yB4AH+tO2iEimRJIJVnZe0XHrtmRPoKhx50CHJCIiIsNEOkcRFBEZEaLJBCt/TOFx63bMhdUe1lxYIiIiogRLRKSHeFsjUeehIL/guHW9xYm5sGre3DcIkYmIiMhQpwRLRKSbeKiZFrLJDR7/KeqcsacAUPem5sISERERJVgiIj1YqIlWyyY5eM8xFXXOhfXGQIclIiIiw4ASLBGRbgLhIzR7jj+CIEDxhHcAEK3bNYARiYiIyHChBEtEpJucSB2N3uITquvJLqCBfHyaC0tERERQgiUi0kNe9AhtgZITrl/rH09O65sDGJGIiIgMF0qwRERSOUdh/AjR7NIT3qUlp4LiyIEBDEpERESGCyVYIiIpYm31BIhCXtkJ7xPNr6TcHaKlPTKAkYmIiMhwoARLRCRF/aH9APjyx53wPt7iyWRbmAM1mgtLRERktFOCJSKSouFwIsEKFpaf8D6dc2Ht11xYIiIio50SLBGRFE01iSRpTMU7TnifomTdlkOaC0tERGS0U4IlIpIi8tZOIs7LhMkzTnif4vJEghWr3T1QYYmIiMgwoQRLRCSFv/4NaqyMvOysE97HshJzYfmbNReWiIjIaKcES0QkRX7rXmoDlSe931v+8eS1aS4sERGR0U4JlohIkotFKI/uoaXglJPetzlYrrmwREREpH8JlpndbGb7zWxz8uu9Kdu+bGY7zGy7mV3Q/1BFRAbWm6+9QDZhvBULT3rfcO54SuK1OOfSH5iIiIgMG740tPGfzrl/Ty0ws9nAlcAcYALwJzOb7pyLpeF4IiID4tCr66kASqcvO+l9XX45+QfbOFJ/hKKi4vQHJyIiIsPCQD0ieDFwj3Mu5Jx7A9gBLB2gY4mIpEV8z3qaXDZTpi846X39RYn3tupqdqU5KhERERlO0pFgfdrMXjSzn5pZUbKsAkgdTmtfsqwHM7vOzDaY2YbDhw+nIRwRkbdnfN3feS17AX6//6T3zS6ZCEDzYQ3VLiIiMpodN8Eysz+Z2ZZevi4GfgK8A1gI1AD/cbIBOOdud85VO+eqy8rKTnZ3EZG0OLT3VSriNYQqT3tb+xeMnQxAe92+dIYlIiIiw8xx38Fyzp17Ig2Z2R3A75Or+4GJKZsrk2UiIkPS3uceYCwwrvoDb2v/kgmJBCtWr//qRERERrP+jiJYnrL6QWBLcvkR4EozC5pZFTAN+Ht/jiUiMpCydjzKbqukasb8t7V/MCuXI+Tjba5Jc2QiIiIynPR3FMHvmtlCwAG7gH8GcM69bGb3Aa8AUeBTGkFQRIaqmt3bmRN+kecmX89ks7fdTp23lGDbwTRGJiIiIsNNvxIs59yHj7HtW8C3+tO+iMhg2P30TykHJq9c3a92mgNl5IUOpScoERERGZbSMQ+WiMiw5eJxJu55iC2BBcydMqNfbbVnj2di27Y0RTa0RdqbObJ/B/Vv1dB85BChxrfwRJrBxTEccTwQyCOYX0zOmFJyy6ZQNOEUcnPzMh26iIjIgFKCJSKj2vYNf2KmO8C+WZ/pd1vRvHKK6xqJhNrwB7PTEF3mtbe18PrL/6Dx9X/gOfAiuU1vUBrZzzjqGAuMPcn2DlNErb+cppyJRAur8JVNY0zFDMZNmcOYDE3QHIpEaWlpJtbWSDTcTiwWIxaLEI3GiMei4Bwe4ni8XjxeH+b14/H5MW8An8+Pzx/A5wvgCwTw+QP4vV48nrf/qKmIiAxvSrBEZFRrWvcLWlyQOede0++2vAWJ6f6OHNzN2Ekz+91eJjTWHWLHPx4ntOPPjK17nknRXcy2xCu0jeTypn8yewuXsiN/MhRPIbuonILicRSWjsefXQgewzweLB4j1FJPQ10tzUcOEq7dQ7x+N96GPeS07GNKwz8oa3gcdgMbEsd+izEc9FXSnDuJSGEV/rKpFBSNxZ9bSCB3DIGcArL9XgAicUc85oiGW4mFmmlvbiTU1ky4rYlIaxOx9ibi7Y0QbsZCTXgiLfijzfiiLQRirWTFW8h2beS4NnJpo9jiafsZRp2HMF6i+IjiJWqJ5Rg+YuYlZh3LiS9nXo6++ufwuHjnsjmX+ExZTl034lhHXeKYo7Ms8dlR71hfR79367bkevn+HL0ljz3Leu7be9LpsB6bOo5hXcqOHYv1UpZar7eju368c9nX99O5NQ059ok2EfEE8V19L+OmzOr/QUWk35Rgicio1d7axMy6P/Fy4UqW5hf2u71gSSUA9Qf2DJsEKxJu5/UNT9D80qMUH17P5MgbnGqONhdgZ9ZsNo6/huxJiymftYyyyunM9Jz44LP5Y4opnXBKn9vbWxo5sHsr9Xu3ET74Gp7618lr3s07GtZR2vDHRPLVT3FntFo2rZZNuyeHkCeXiD+HJt9Y6v25xAP5EMyDQB4ukAe+LMzjweP14fF4Ma8PzEMcIx6LQzwKsQjEIxCL4OJRXCyCi0WS5anboxCPYPEo1vHpEsueeBRPPILHRfG4GM6BM3B4iZsPrCNRMJx56LzVtmRa1FFmR+skEpXE+enY3qWeGQ5P5z6YJ5lgJNvo/sNzXZNOl6zpXGpJsqxrEXCi+zq6lnSp1Cvneu6bsrFrW53xOXps6CNl6+UH0TVp662pnq30WvmE9umjUvc2O9bNOc4OPcNzz/yccdd++xhHEJHBogRLREatV565h1NpI7u6/71XAHmlien/Wmv3pqW9gdJSf5htax/EbX2UGc3rmWFthJyf7YHZPDfpOormvItpp57F3EDWgMaRlVvAlNnLYPayHttCrQ0c3LWd+rpDRNsacG2NxEMthGOJG3evB7zmIe7LwgI5+LPyCObkE8zJIzt3DDn5heTkFxLIzifPDL35JSPZq/9nCcX7nsI5h6Wj60xE+kUJloiMWr6X7qWGUmaf9t60tFdUXgVA9Mi+tLSXTq1NR9j+53vxv/IAM1o2sthi1FLItpJ34Zn5XqYufR/zCwszHWanYM4YJs1eyqRMByIyDDSdciGLX/0+2154jpkLT8t0OCKjnhIsERmVamv2MKdtA+srV1Hu9aalzeKiEppdFjS+mZb2+isaauPlvzxI9IX7mN30NxZZmBpKWTfuKoqrL2HW4rNYkqbvXUQyZ/p7P0nr9ltpeOa/QQmWSMYpwRKRUWnn0z9jqTkmnLEqbW16vB5qPSX4WmrS1ubbsf+1zbz59P9jWs3vWEATRyjgxbILyau+kplLzk1bQikiQ0N+YRn/GPs+Fh76HXt37WTilHdkOiSRUU0J1jHs37mFveseZNZ7P8GYorJMhyMiaVT2+m/Z5p3BzJkL09puva+M3AxMNtze2szLf/olOVt+xazwFsY6Ly/krsBOvYb5Z36AZYHgoMckIoOn6qIvYnc+zP6HbmLi5+7OdDgio5oSrGPYu+5Blr/2H7T/4L/ZlLuE2LT3MPmdH6Rs/MRMhyYi/fDmzpepir3B/077Qtrbbg2Opbzl+bS325c3Xl7PoWdvZ9bhP7KYFvZaOf9b9RmmnXcd1RP0BpPIaFE6aSbrx13KkoP3Jd7FWvDOTIckMmopwTqG5VffxI4Xz6Xur3cy6fCzjH/hb8Q338RO7xRqixdhk9/J2OlLqDxlDl5/INPhpl087ghHY4RCYcLhNiKhNiLhENFwOy4axkVDWCycGKLYxYk7By5OPBbHOYdzKZ/xo8t0zOWSnJsF5zBzXYbmPToIUsdcKMk5WbqPjmRdPkgdyrjr/gmdc6v0aJ/e2+8+C0mX7V239Zh7pfvULsdpu+f+fY8ENWBjRA1UwylDFKcO0+xSRkR2qWMTp5Z3/aeBS6mZKHdd9nHuaL3Uw6e2Ed/+OBOAycs+0I9vqnfRvPEUN9XhYtHEEN8DoLW5npcfv4uCrb9mRnQ7Fc7HiwVnkbXsWma/831M9J74UOoiMnLMvuqbNPzXH/E98knCM/5GIGtkTHieDi4ep729nbbWZsKhNmKhNqLhVuLRduLRKNFomHgsSiwaTX5GiMdiuFg0Mf2Ci0G8Y1qFxH2M6/676ujResw20PVXuvWxzZNSYJglpziw1H1S6qTey3Ts07nes00jcZ/TZx1P13uuLvdS1nH/1HVbat3O+easI/Ze2jM7GmUf9xxd7rSSK7HAGCpmLKYkb3g8jaEE6zimzj8N5p9GPBZnx5bnOLL5d2S9uZ45hx8l960HYSOEnZc93gpqsyYTyR2Pd8wEvAXl+PLHkpWXGC44K28Mvqx8fD4/fr8Pv8+Px+sljpdoPEY8EiEWCxOPRolFw8SjEWLREJFIhGg4RCTcTjTcTiwcIhYNEYuEiEfaiUdCxCMhXDTUmfS4WAiiYSwWglgYi4XxxMN4Oj7jETzxCF4Xxtfx6aL4XAQ/EfwuQoAIfqIEiJJlx56TRGQ42uupYOLUuWlvN1BUie9AnEMH9jO2YnJa2379hbW89Zfbmf3WEyyxNnZ7JrJu2r8y8/yPU11WntZjicjwk180jk2nf5dFa69n3R3Xs/zTd6VnxuMMikWjNNUdpKX+EK31hwg11RJuqSfa2kCsrQEXasJCTfiizQSizQRiLQRjLQTjbcn7mRBBFyZIhGxzKOUcnp6NLWDPZfdw4fwJmQ7lhCjBOkEer4epC1bAghUARCJh3ti+gcM7NhM58Aq5jTsZ2/4GxS0byDvcdsLtepNf6RZzRhg/UfMRwU/E/EQt8Rnr+PIEiPryCXsCOI+fuCeA8x79whsAXwDzZoE/gMcbxPxBPL4AzhtM1gmC1wvmwWMezONJ/HXDrHPdY4kJLVOXOya5hMRfU1zKX0c6/upjPSaMdF2295hssfv2owtdP/vYv7fJJVN1mdSyx0SYPddTq9hx63ff3Ft9S1lOv4FKo53r9oe25F/lEkt0+VNVaj1L3cPo/S9eqeXdtnVpq9uBDCiuHJiJgAvGToatcGDvzrQkWK2NdWx94k4Kt63hHdGdlLsALxWeQ95p/8SsJecy+SQm/hWRkW/RuVexfudaltf8inV3fJZlH/sB5hlaA9u4aIimt/bTcHA3zYf3EDqyn1jjAWitxdtWRzB8hNxYAwWukQLXQqE5CvtoK+T8tFgOrZZDuyeHdm8uRwLlxLzZxL1Z4Avi/FmYLxvzZ+EJZGO+LJw/C3zZeHxBzOfH60384dvj9eP1+fB6fXh8frw+P+bxgMeX/PJilrjX6Zimu8vvNTv6+yf1d5LrdgvSuX50IeUz+ayGc12f1Oi4b4l31Om539H7j6P3IZZalmyXzjod907d4iBlvfN+LN6tbkeVeJf67hjtuI54Op5M6nav1/X25+hxCoNFzKkqYbhQgvU2+f0BquaeRtXcrsOhOueobzhC4+F9tNUfpL25gVBLA7H2JjyRFlw8muxyjuFcDK85PAbO/DivDzx+8HjB48d8fjzeQOIC9wfx+rPwBIL4/EF8/ix8wSx8/iz8wSx8gcRnMJhFIJiN1+vXX2lEMqB00gwAmva/DJzzttqIRsK88r+/I7TpHubU/5nFFmKHp4q/zfgScy74GEuLNeiOiPSt+mM/ZP2tjSx/8xds+vcdTPrwbZSUp7dHvVfO0d5US13NLpoO76Wtdi+x+v1Y8wH8rQfJDR2iMPoWxTRQABSk7Bp2XuqtgCbPGNr8RbyVU86BYBHxrGLIKcHySgnklxLMLyGnoJi8gmIKxhQRzMomCBQP/HcncsKUYKWZmVFYWExhoS51kdGotGo+TS4b35sbTmo/F4+zc/NfqH3uV0w9/ATzaaCRHLaUnE/uO/+J2YvPYqp6q0TkBHi9HpZ++uc8t+ZbLH71B0RvW8K6sRdR9s5rqJp/Oh6f/6TbDLU1U39wL42H99Jau4/wkf24xhp8rQfJaT9IfuQwJfFasojQ/SGuWldAnbeEen8pNbmziOWOxwrKCRRVklM6kcJxkygbW87YgI+x6fkRiGSUuR6PImVOdXW127Dh5G5KRESGmi3fXklOuJZTbnrxmPUioTZeXf8YzS/9nslv/Znx7jAh52dL3nJs/uXMPvMSsrJzBylqERmJdr22hdrff4N59U8RsBiN5PBmoIrm3EnEg0XEAnl4vH6IR4nHIlikFX+4EW+4gUC4kZxYPUXxOsbQ0qPtkPNz2Ipp8JfSEhxLJGc8Lr8cX2EF2cWVFIydRPH4SRTk5R4dHEFkBDGzjc656h7l/UmwzOxeYEZytRCod84tNLMpwFZge3LbOufc9cdrTwmWiIwE6+/5vyzb9h12XPQgUxe/q7PcxWPs3b6RAy8+jX/PWqa1bCCPNtpcgG05iwlPfQ8zzrmawqLSDEYvIiNR7eED7Fz/e+I7/0J+8w5KIzXkuRZyLdSlXqsL0mh5tHryaPcVEA4UEsoqI547HgrKySquJK+0ksLxkyguHotXo5bKKDYgCVa3A/wH0OCcuyWZYP3eOXdSQ3QpwRKRkaCh/gixH8wnan72VV5ILBImq2EHE9u2UUgTADWUsrvonQRmv4+Zp11ITm5+hqMWkdEoFo3QHo7g9fkJ+n3qaRI5CX0lWGl5B8sSV+PlvN03ukVERpAxhUW8ctHd+P/wL8zZczcOY5+3ku1jVsDkFVQsOp+KKTMo142MiGSY1+cn9228kyUifUvXIBdnAAedc6+llFWZ2SagEfiac+6vve1oZtcB1wFMmjQpTeGIiGTW7MVnwuJNtIajBDzGVJ+XqZkOSkRERAbccRMsM/sTML6XTV91zj2cXL4KWJOyrQaY5JyrNbPFwENmNsc519i9Eefc7cDtkHhE8GS/ARGRoSwnoMFaRURERpPj/uZ3zp17rO1m5gM+BCxO2ScEhJLLG81sJzAd0AtWIiIiIiIyYqVj6JdzgW3OuX0dBWZWZmbe5PIpwDTg9TQcS0REREREZMhKx7MrV9L18UCAM4FbzCwCxIHrnXN1aTiWiIiIiIjIkDWkJho2s8PA7kzH0U0p8Famg5BBo/M9euhcjx4616OLzvfooXM9ugzF8z3ZOVfWvXBIJVhDkZlt6G18exmZdL5HD53r0UPnenTR+R49dK5Hl+F0vjX9toiIiIiISJoowRIREREREUkTJVjHd3umA5BBpfM9euhcjx4616OLzvfooXM9ugyb8613sERERERERNJEPVgiIiIiIiJpogRLREREREQkTZRgHYOZvdvMtpvZDjP7UqbjkfQxs4lm9oyZvWJmL5vZvyTLi83sSTN7LflZlOlYJT3MzGtmm8zs98n1KjNbn7y+7zWzQKZjlPQws0Izu9/MtpnZVjN7p67tkcnMbkj+H77FzNaYWZau7ZHDzH5qZofMbEtKWa/XsiX8d/K8v2hmp2YucjlZfZzr7yX/H3/RzH5rZoUp276cPNfbzeyCjAR9DEqw+mBmXuBW4D3AbOAqM5ud2agkjaLAvzrnZgPLgU8lz++XgKecc9OAp5LrMjL8C7A1Zf07wH8656YCR4B/ykhUMhD+C3jMOTcTWEDivOvaHmHMrAL4LFDtnJsLeIEr0bU9ktwFvLtbWV/X8nuAacmv64CfDFKMkh530fNcPwnMdc7NB14FvgyQvF+7EpiT3OfHyfv2IUMJVt+WAjucc68758LAPcDFGY5J0sQ5V+Ocez653ETiBqyCxDn+ebLaz4EPZCRASSszqwTeB/xPct2Ac4D7k1V0rkcIMxsDnAncCeCcCzvn6tG1PVL5gGwz8wE5QA26tkcM59xfgLpuxX1dyxcDv3AJ64BCMysflECl33o71865J5xz0eTqOqAyuXwxcI9zLuScewPYQeK+fchQgtW3CmBvyvq+ZJmMMGY2BVgErAfGOedqkpsOAOMyFZek1Q+AfwPiyfUSoD7lP25d3yNHFXAY+FnykdD/MbNcdG2POM65/cC/A3tIJFYNwEZ0bY90fV3Lum8b2VYDf0wuD/lzrQRLRjUzywMeAD7nnGtM3eYScxhoHoNhzswuBA455zZmOhYZFD7gVOAnzrlFQAvdHgfUtT0yJN+9uZhEUj0ByKXnI0YygulaHh3M7KskXu24O9OxnCglWH3bD0xMWa9MlskIYWZ+EsnV3c65B5PFBzseKUh+HspUfJI2K4D3m9kuEo/6nkPiHZ3C5GNFoOt7JNkH7HPOrU+u308i4dK1PfKcC7zhnDvsnIsAD5K43nVtj2x9Xcu6bxuBzGwVcCFwtTs6ee+QP9dKsPr2D2BacjSiAImX6R7JcEySJsl3cO4Etjrnvp+y6RHgo8nljwIPD3Zskl7OuS875yqdc1NIXMdPO+euBp4BLk1W07keIZxzB4C9ZjYjWfQu4BV0bY9Ee4DlZpaT/D+941zr2h7Z+rqWHwE+khxNcDnQkPIooQxDZvZuEo/3v98515qy6RHgSjMLmlkViYFN/p6JGPtiR5NB6c7M3kvi3Q0v8FPn3LcyG5Gki5mdDvwVeImj7+V8hcR7WPcBk4DdwOXOue4v2MowZWZnA593zl1oZqeQ6NEqBjYB1zjnQhkMT9LEzBaSGNAkALwOXEviD4q6tkcYM/sGcAWJx4c2AR8j8S6Gru0RwMzWAGcDpcBB4OvAQ/RyLSeT7B+ReEy0FbjWObchA2HL29DHuf4yEARqk9XWOeeuT9b/Kon3sqIkXvP4Y/c2M0kJloiIiIiISJroEUEREREREZE0UYIlIiIiIiKSJkqwRERERERE0kQJloiIiIiISJoowRIREREREUkTJVgiIiIiIiJpogRLREREREQkTf4/DYYIkv/Ix2gAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAChOElEQVR4nOzdeXxU1f3/8ddnZrKTEEjYdxeQVVBArLjWr2Jd0NqK1rrW+tVual1qbavot/brV/3VVm2LtlrXIu5i1Vo3VKwbIKC4goZ9CYGwZp35/P6YSxxCEgKZZJLwfj4eQ+bee+45nzs3E+Yz59xzzd0RERERERGRpgulOgAREREREZH2QgmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsEZFWxsz6m5mbWSTVsciewcwWmNkRqY5DRKQ9UIIlIiJtnplNMbPNwaPSzKoSll9IdXytnbsPdfcZyazTzG41sy/MbJOZfWpmZyezfhGR1koJlohIkqnnqeW5+0Xu3sHdOwC/A6ZtW3b347aVa0vnpi3FWo8twIlAR+Ac4I9m9o3UhiQi0vyUYImIJIGZFZnZL8xsPrDFzCJmNs7M/mNmpWY2L3EIlpnNMLP/NbP3zGyjmT1jZp3rqfs8M/sk6An40sz+u9b2iWY2N6hnkZlNCNZ3NLN7zGylmS03s9+aWXgnx7G3mb1qZiVmttbMHjaz/IRt68zsgGC5p5kVbzsuMzspGGpWGhzf4FqvzxVmNt/MNpjZNDPL3PVXetfVc27czPZJKHOfmf02YfmE4DUtDc7hiEa2dYSZLTOza4LXr8jMzkzYfryZfRCcq6VmNjlh27ahoT8wsyXAq8H6x8xsVfC6vWFmQ2vF/WczeyHorXvLzLqb2R/MbH3QczSqka/R0Y05xsZy9+vc/VN3j7n7u8CbwMHJbENEpDVSgiUikjxnAMcD+UA34Dngt0Bn4ArgCTPrklD+bOB8oAdQDdxeT71rgBOAPOA84LaEJGcs8ABwZdDuYUBRsN99Qb37AKOAY4ALdnIMBvwv0BMYDPQBJgO4+yLgF8BDZpYN/B24391nmNlAYCpwKdAFeB541szSE+o+DZgADABGAOfWGYDZ+CCxqe8xfifHUJeac+Pu1Q2+APGE5F7gv4EC4C5gupllNLKt7kAh0It4z83dZjYo2LaF+HnPD+K52MxOrrX/4cRf+2OD5ReAfYGuwBzg4VrlTwN+HbRZAbwdlCsEHgd+38i462RmVzd0PhpZRxYwBljQlFhERNoCJVgiIslzu7svdfcy4PvA8+7+fPAN/kvALOBbCeUfdPeP3H0L8BvgtLp6mNz9OXdf5HGvA/8GDg02/wC4191fCtpZ7u6fmlm3oK1L3X2Lu68BbgNOb+gA3H1hUFeFuxcT/3B+eML2vwILgXeJJ4a/CjZNAp4L9q0CbgWygMQhYbe7+wp3Xwc8C4ysJ4aZ7p7fwGNmQ8dQj8RzszMXAne5+7vuHnX3+4knLuN2ob3fBK/h68QT7dMA3H2Gu38YnKv5xJPSw2vtOzk4Z2XBPve6+yZ3ryCe7O5vZh0Tyj/l7rPdvRx4Cih39wfcPQpMI55c7zZ3v6mh89HIaqYA84AXmxKLiEhboARLRCR5liY87wd8t9Y3/eOJJyV1lV8MpBHvddiOmR1nZu8Ew/NKiSdO28r1ARbVEUu/oL6VCe3fRbwXpF5m1s3MHgmGFG4EHqojpr8Cw4A7gg/9EO/xWrytgLvHguPrlbDfqoTnW4EODcWSZEt3XqRGP+DyWueuD/FjbIz1QdK8zeJt+5rZQWb2WjC0cgNwETu+vjWxmlnYzG6y+NDPjXzdO5m4z+qE52V1LLfk67wDM7uF+O/Lae7uqYxFRKQlKMESEUmexA+PS4n3UCV+25/j7jcllOmT8LwvUAWsTawwGJb2BPEeoW5Bj8HzxIfybWtn7zpiWUq816Uwof08dx9aR9lEvwuOY7i75xHvidvWFmbWAfgDcA8w2b6+bmwF8cRkWzkLjm/5TtrbgZkdal/PAFjX49Cd17KD2h/stwLZCcvdE54vBW6sde6y3X1qI9vqZGY5Cct9ib8+AP8ApgN93L0j8Z4dq7V/YqzfAyYCRxOfLKJ/sL72Ps0muJ6s3vOxk32vB44DjnH3jS0TsYhIainBEhFpHg8BJ5rZsUEvRGYwAULvhDLfN7MhwfVMNwCPB8O6EqUDGUAxUG1mxxG/lmqbe4DzzOybZhYys15mtp+7ryQ+lPD/mVlesG1vM6s9HK22XGAzsMHMehG/tivRH4FZ7n4B8aFvU4L1jwLHB3GkAZcTT/D+s7MXqjZ3fzNhBsC6Hm/uap11mAt8Lzg3E9h+mN5fgYuC3iYzsxyLT06RCzUTS9y3k/qvN7P0IBk8AXgsWJ8LrHP38uD6ue/tpJ5c4q9jCfGE8He7cIxJ4e6/a+h81Lefmf2S+PEd7e4lLRexiEhqKcESEWkG7r6UeM/DNcSTo6XEk5XEv7sPEp+IYhWQCfysjno2BesfBdYT/8A6PWH7ewQTXwAbgNf5uifpbOIJ2sfBvo+z/RDFulwPHBDU9Rzw5LYNZjaR+CQVFwerfg4cYGZnuvtnxHu77iDeC3cicKK7V+6kvVS5hHiMpcCZwNPbNrj7LOCHwJ3EX7eFbD8hRx/grQbqXhXst4L4hBQXufunwbYfATeY2SbgWuLntSEPEB9iuJz4eXxnZwfWivyOeO/dwoQer2tSHZSISHMzDYcWEWl5ZjYDeMjd/5bqWKTxglkR5wEjgsk8am8/gvh57V17m4iI7Bna+k0MRUREWkzQIzd4pwVFRGSPpSGCIiJ7GDObUs+EBVN2vre0RWbWt4GJKvqmOj4RkfZEQwRFRERERESSRD1YIiIiIiIiSdKqrsEqLCz0/v37pzoMERERERGRes2ePXutu3epa1urSrD69+/PrFmzUh2GiIiIiIhIvcxscX3bNERQREREREQkSZRgiYiIiIiIJIkSLBERERERkSRpVddg1aWqqoply5ZRXl6e6lCkFcjMzKR3796kpaWlOhRpx+YsWc/t09/ipu9/k+75WakOR0RERNqQVp9gLVu2jNzcXPr374+ZpTocSSF3p6SkhGXLljFgwIBUhyPt2IJ//pn71t7Mv1/5Pd1P/UGqwxEREZE2pNUPESwvL6egoEDJlWBmFBQUqDdTmt349U8AEFr+foojERERkbam1SdYgJIrqaHfBWkJkeoyAHI21zsDq4iIiEid2kSCJSLSknJ8MwDdK4tSG4iIiIi0OUqwGsHMuPzyy2uWb731ViZPnpy6gBIcccQRDd6c+eSTT2bcuHHbrZs8eTK9evVi5MiRDBs2jOnTpzd3mCJthzu5vgWAPr6KTVs1JFVEREQaTwlWI2RkZPDkk0+ydu3apNbr7sRisaTWmai0tJTZs2ezYcMGvvzyy+22XXbZZcydO5fHHnuM888/v1njEGlLvGoraRZltRUSsRhr16xMdUgiIiLShijBaoRIJMKFF17IbbfdtsO24uJiTj31VMaMGcOYMWN46623gHgv0a233lpTbtiwYRQVFVFUVMSgQYM4++yzGTZsGEuXLuXKK69k2LBhDB8+nGnTpgEwY8YMjjjiCL7zne+w3377ceaZZ+Ludcb34IMP1vRGvffeezXrn3zySU488UROP/10HnnkkTr3HTx4MJFIZLvk8eqrr2bIkCGMGDGCK664AoCioiKOOuooRowYwTe/+U2WLFkCwLnnnsvFF1/MuHHj2GuvvZgxYwbnn38+gwcP5txzz62p8+KLL2b06NEMHTqU6667boc4NmzYQL9+/WoSvS1bttCnTx+qqqrqjFukuVRtXg/A6vT+AGxYszSF0YiIiEhb0+qnaU90/bML+HjFxqTWOaRnHtedOHSn5X784x8zYsQIrrrqqu3WX3LJJVx22WWMHz+eJUuWcOyxx/LJJ580WNcXX3zB/fffz7hx43jiiSeYO3cu8+bNY+3atYwZM4bDDjsMgA8++IAFCxbQs2dPDjnkEN566y3Gjx+/Q31bt25l7ty5vPHGG5x//vl89NFHAEydOpVrr72Wbt26ceqpp3LNNdfssO+7775LKBSiS5cuAJSUlPDUU0/x6aefYmaUlpYC8NOf/pRzzjmHc845h3vvvZef/exnPP300wCsX7+et99+m+nTp3PSSSfx1ltv8be//Y0xY8Ywd+5cRo4cyY033kjnzp2JRqN885vfZP78+YwYMaImjo4dOzJy5Ehef/11jjzySP75z39y7LHH6n5X0uIqt6wnHdiUuxdUzGLrumWpDklERETakCb3YJlZHzN7zcw+NrMFZnZJsL6zmb1kZl8EPzs1PdzUycvL4+yzz+b222/fbv3LL7/MT37yE0aOHMlJJ53Exo0b2bx5c4N19evXr+a6qJkzZ3LGGWcQDofp1q0bhx9+OO+/H58aeuzYsfTu3ZtQKMTIkSMpKiqqs74zzjgDgMMOO4yNGzdSWlrK6tWr+eKLLxg/fjwDBw4kLS2tJvECuO222xg5ciRXXHEF06ZNq5mdr2PHjmRmZvKDH/yAJ598kuzsbADefvttvve97wFw1llnMXPmzJq6TjzxRMyM4cOH061bN4YPH04oFGLo0KE1MT/66KMccMABjBo1igULFvDxxx/vcByTJk2q6cF75JFHmDRpUoOvo0hz2NaDFS0YCEDleg0RFBERkcZLRg9WNXC5u88xs1xgtpm9BJwLvOLuN5nZ1cDVwC+a0lBjepqa06WXXsoBBxzAeeedV7MuFovxzjvvkJmZuV3ZSCSy3XVNifduysnJaVR7GRkZNc/D4TDV1dV1lqs9dbmZ8eijj7J+/fqaG/Ju3LiRqVOncuONNwLxa7C2Df+rHfd7773HK6+8wuOPP86dd97Jq6++2qg4Q6HQdjGHQiGqq6v56quvuPXWW3n//ffp1KkT5557bp33sjrppJO45pprWLduHbNnz+aoo45qsF2R5lC1pRT4OsHyTUqwREREpPGa3IPl7ivdfU7wfBPwCdALmAjcHxS7Hzi5qW2lWufOnTnttNO45557atYdc8wx3HHHHTXLc+fOBaB///7MmTMHgDlz5vDVV1/VWeehhx7KtGnTiEajFBcX88YbbzB27Nhdimtbr8/MmTPp2LEjHTt2ZOrUqfzrX/+que5r9uzZ9V6HlWjz5s1s2LCBb33rW9x2223MmzcPgG984xs1+z/88MMceuihjY5v48aN5OTk0LFjR1avXs0LL7xQZ7kOHTowZswYLrnkEk444QTC4XCj2xBJlmhZvAeLDl3YYLmEt6xObUAiIiLSpiT1Giwz6w+MAt4Furn7tq9+VwHd6tnnQuBCgL59+yYznGZx+eWXc+edd9Ys33777TXXZ1VXV3PYYYcxZcoUTj31VB544AGGDh3KQQcdxMCBA+us75RTTuHtt99m//33x8y4+eab6d69O59++mmjY8rMzGTUqFFUVVVx7733UlRUxOLFi7ebnn3AgAF07NiRd999t846vvWtb/G3v/0NM2PixImUl5fj7vz+978H4I477uC8887jlltuoUuXLvz9739vdHz7778/o0aNYr/99qNPnz4ccsghNduuvfZaRo8ezUknnQTEhwl+97vfZcaMGY2uXySZouXxIb6RzFw2hAvILC9OcUQiIiLSllh9M9PtckVmHYDXgRvd/UkzK3X3/ITt6929weuwRo8e7bXv6fTJJ58wePDgpMQo7YN+J6Q5FT13K/3f/x/eOe0D8p+7kNjWUoZcV/+95kRERGTPY2az3X10XduSMk27maUBTwAPu/uTwerVZtYj2N4DWJOMtkREmlOssgyA9IwsKrO6kB9bV+8tEkRERERqS8YsggbcA3zi7r9P2DQdOCd4fg7wTFPbEhFpbrGq+AQs6RlZRHO604VSNpdXpjgqERERaSuS0YN1CHAWcJSZzQ0e3wJuAv7LzL4Ajg6WRURaNa8qp8LTyMqIEM7rTppFKSleleqwREREpI1o8iQX7j4TsHo2f7Op9YuItCSvKqOcNDLTwlTl9wRg05ql0LdfiiMTERGRtiCpswiKiLR1Xl1OBelkRkJEC3oBsHX9ihRHJSIiIm2FEiwRkUTVFVR4Gp3TwkQK4wlWRamGCIqIiEjjJGUWwT3B008/jZk1eH+qoqIihg0blrQ2zz33XB5//PF6t1966aX06tWLWCxWs+6+++6jS5cujBw5kiFDhvDXv/41afGI7AmsuoJy0slMC5NbGB8iGNukmw2LiIhI4yjBaqSpU6cyfvx4pk6dWuf26urqJrcRjUYbXTYWi/HUU0/Rp08fXn/99e22TZo0iblz5zJjxgyuueYaVq/Wh0ORxrJoOZWWRjhkhDJz2UImoS26y4SIiIg0jhKsRti8eTMzZ87knnvu4ZFHHqlZP2PGDA499FBOOukkhgwZAsQTrTPPPJPBgwfzne98h61btwLwyiuvMGrUKIYPH875559PRUUFAP379+cXv/gFBxxwAI899tgObb/88suMHj2agQMH8s9//nO7tocOHcrFF19cb9LXtWtX9t57bxYvXlyz7vbbb2fIkCGMGDGC008/HYB169Zx8sknM2LECMaNG8f8+fMBmDx5Mueccw6HHnoo/fr148knn+Sqq65i+PDhTJgwgaqqKgBuuOEGxowZw7Bhw7jwwgt3uGdQLBajf//+lJaW1qzbd999lfhJqxSqLqfK0muWN4Q6k1ZWnMKIREREpC1pW9dgvXA1rPowuXV2Hw7HNTyD/DPPPMOECRMYOHAgBQUFzJ49mwMPPBCAOXPm8NFHHzFgwACKior47LPPuOeeezjkkEM4//zz+fOf/8xPfvITzj33XF555RUGDhzI2WefzV/+8hcuvfRSAAoKCpgzZ06dbRcVFfHee++xaNEijjzySBYuXEhmZiZTp07ljDPOYOLEiVxzzTVUVVWRlpa23b5ffvklX375Jfvss0/NuptuuomvvvqKjIyMmoTnuuuuY9SoUTz99NO8+uqrnH322cydOxeARYsW8dprr/Hxxx9z8MEH88QTT3DzzTdzyimn8Nxzz3HyySfzk5/8hGuvvRaAs846i3/+85+ceOKJNW2GQiEmTpzIU089xXnnnce7775Lv3796NatW6NPk0hLCcUqt0uwNqd1JruyJIURiYiISFuiHqxGmDp1ak1vz+mnn75dj9HYsWMZMGBAzXKfPn045JBDAPj+97/PzJkz+eyzzxgwYAADBw4E4JxzzuGNN96o2WfSpEn1tn3aaacRCoXYd9992Wuvvfj000+prKzk+eef5+STTyYvL4+DDjqIF198sWafadOmMXLkSM444wzuuusuOnfuXLNtxIgRnHnmmTz00ENEIvH8eubMmZx11lkAHHXUUZSUlLBx40YAjjvuONLS0hg+fDjRaJQJEyYAMHz4cIqKigB47bXXOOiggxg+fDivvvoqCxYs2OE4Jk2axLRp0wB45JFHGjxmkVQKRSuotoya5fKMQnKr16UwIhEREWlL2lYP1k56mprDunXrePXVV/nwww8xM6LRKGbGLbfcAkBOTs525c2sweW61K5jZ/W9+OKLlJaWMnz4cAC2bt1KVlYWJ5xwAhBPZu68884663vuued44403ePbZZ7nxxhv58MOGewQzMuIfNEOhEGlpaTXxhEIhqqurKS8v50c/+hGzZs2iT58+TJ48mfLy8h3qOfjgg1m4cCHFxcU8/fTT/PrXv26wXZFUicQqqA51qlmOZnWh84b3icaccGjn72cRERHZs6kHaycef/xxzjrrLBYvXkxRURFLly5lwIABvPnmm3WWX7JkCW+//TYA//jHPxg/fjyDBg2iqKiIhQsXAvDggw9y+OGHN6r9xx57jFgsxqJFi/jyyy8ZNGgQU6dO5W9/+xtFRUUUFRXx1Vdf8dJLL9Vc71WfWCzG0qVLOfLII/m///s/NmzYwObNmzn00EN5+OGHgfi1XYWFheTl5TUqvm3JVGFhIZs3b6531kMz45RTTuHnP/85gwcPpqCgoFH1i7S0SKyCaPjrHixyu5JvW1i/cVPqghIREZE2QwnWTkydOpVTTjllu3WnnnpqvRNLDBo0iD/96U8MHjyY9evXc/HFF5OZmcnf//53vvvd7zJ8+HBCoRAXXXRRo9rv27cvY8eO5bjjjmPKlCnEYjH+9a9/cfzxx9eUycnJYfz48Tz77LN11nHBBRcwa9YsotEo3//+9xk+fDijRo3iZz/7Gfn5+UyePJnZs2czYsQIrr76au6///5GvjqQn5/PD3/4Q4YNG8axxx7LmDFjarZNmTKFKVOm1CxPmjSJhx56SMMDpVWLxCqJhb6+Biuc1x2A9WuWpyokERERaUOs9oxvqTR69GifNWvWdus++eQTBg8enKKIpDXS74Q0p43X9+HdnCP4ryseBODzNx9j4CsX8MExTzDqG0enODoRERFpDcxstruPrmuberBERBKkeSWeMESwQ+deAJStX5GqkERERKQNafYEy8wmmNlnZrbQzK5u7vZERJoine0TrPyu8QSrauOqVIUkIiIibUizJlhmFgb+BBwHDAHOMLMhu1pPaxrGKKml3wVpVtFqwsTwSGbNquxOPQDwTboxtoiIiOxcc/dgjQUWuvuX7l4JPAJM3JUKMjMzKSkp0Qdrwd0pKSkhMzNz54VFdkd1WfxnQoJFJJ1ScglvLU5NTCIiItKmNPd9sHoBSxOWlwEHJRYwswuBCyE+Y15tvXv3ZtmyZRQX68ONxBPu3r17pzoMaa+qKwCwtO2T+I3hzqSXr01FRCIiItLGpPxGw+5+N3A3xGcRrL09LS2NAQMGtHhcIrLn8aoyjB0TrK3pBeRUlqQmKBEREWlTmnuI4HKgT8Jy72CdiEirU1kRHyJYO8GqyCykY3R9KkISERGRNqa5E6z3gX3NbICZpQOnA9ObuU0Rkd1SUbYFgFBa1nbro9ldKfBSKqqqUxGWiIiItCHNmmC5ezXwE+BF4BPgUXdf0JxtiojsrqqgBytcqwcrlNuVbKugZL16sURERKRhzX4Nlrs/Dzzf3O2IiDRVZXmQYGVs34OV1rE7AKVrltGza5cWj0tERETajma/0bCISFtRXRkfIhhJ3z7ByurUE4AtJbqEVERERBqmBEtEJFBVUQ5ApFYPVm6XXgCUr1/Z4jGJiIhI26IES0QkUB1cg1U7wepYGL/3WnTjqhaPSURERNoWJVgiIoFoZTzBSs/I3m59em4h1YRgy+pUhCUiIiJtiBIsEZFALEiw0jK3T7AIhSi1fCJbi1MQlYiIiLQlSrBERAKxqvg1WBm1EyxgY6SAnAolWCIiItIwJVgiIoFoVTBEMDNrh22bM7qRV6UES0RERBqmBEtEJOBBD1ZWHT1YFdnd6RJbi7u3dFgiIiLShijBEhEJeFU55Z5GVsaO92D33J7k2VY2lq5PQWQiIiLSVijBEhEJeFUZFaSTHt7xT2Na5z4ArF35VUuHJSIiIm2IEiwRkW2qK6iwdMxsh005XfoCsHHN4paOSkRERNqQJiVYZnaLmX1qZvPN7Ckzy0/Y9kszW2hmn5nZsU2OVESkmVl1GVWk1bmtU/cBAJStXdqSIYmIiEgb09QerJeAYe4+Avgc+CWAmQ0BTgeGAhOAP5tZuIltiYg0q0j1FspDO05wAdC5ez8AYqVKsERERKR+TUqw3P3f7l4dLL4D9A6eTwQecfcKd/8KWAiMbUpbIiLNLVK9lXKrO8EKp2dSQj7hzStbOCoRERFpS5J5Ddb5wAvB815A4te8y4J1OzCzC81slpnNKi7WPWZEJHXSo1upDNedYAGURrqQVbaqBSMSERGRtmanCZaZvWxmH9XxmJhQ5ldANfDwrgbg7ne7+2h3H92lS5dd3V1EJGkyYlupCu94k+FtNmd2I69yTQtGJCIiIm3Njjd7qcXdj25ou5mdC5wAfNO/vgPncqBPQrHewToRkVYrI1ZGVSSn3u1V2d0p2PQBsZgTCu0406CIiIhIU2cRnABcBZzk7lsTNk0HTjezDDMbAOwLvNeUtkREmluWlxGL1D9EkLxedLQtlKxf13JBiYiISJvS1Guw7gRygZfMbK6ZTQFw9wXAo8DHwL+AH7t7tIltiYg0H3eyKCeaVn8PVnpBvGN+nW42LCIiIvXY6RDBhrj7Pg1suxG4sSn1i4i0mOoKIkTx9A71FskpjE/VvnH1Yhg2uqUiExERkTYkmbMIioi0WbGKzQANJlidevQHoLxkSUuEJCIiIm2QEiwREWDzplIAwhkNJFjd+gLgGzRnj4iIiNRNCZaICLB10wYA0rLz6i1jaZmUWCfCm1a0VFgiIiLSxijBEhEBtmwuBSAjO7fBcusjXckpX9kCEYmIiEhbpARLRASo3FgCQHpuQYPlNmd2J79qdUuEJCIiIm2QEiwREaB6czEAWR27NlyuQy+6xtZSXa07T4iIiMiOlGCJiADRzfEerOz8hhMsy+9DtlVQXLyqJcISERGRNkYJlogI4GXrqPQweR07NVguoyA+k+C6FV+2RFgiIiLSxijBEhEB2FpCKXnkZDR8//W8bv0B2LzmqxYISkRERNoaJVgiIkCkbB0bQ3mYWYPlCnrtDUBlydKWCEtERETaGCVYIiJAemUpWyMdd1oup1N3KkjDNirBEhERkR0pwRIRAbKqS6lMz995QTOKQ13I2KKbDYuIiMiOkpJgmdnlZuZmVhgsm5ndbmYLzWy+mR2QjHZERJpL51gJFZkNzyC4zcb0bnQo1yyCIiIisqMmJ1hm1gc4BliSsPo4YN/gcSHwl6a2IyLSXKq3rKcDZVR36Nmo8mXZPSiIrmnmqERERKQtSkYP1m3AVYAnrJsIPOBx7wD5ZtYjCW2JiCTd2hXxGQEjnfo0qnw0tzeFXsrWsq3NGZaIiIi0QU1KsMxsIrDc3efV2tQLSLwCfFmwrq46LjSzWWY2q7i4uCnhiIjslvUr4/e06tC1X6PKRzr1IWTOmuVFzRiViIiItEUN3/AFMLOXge51bPoVcA3x4YG7zd3vBu4GGD16tO+kuIhI0m0pXgxAQc8BjSqf3aU/ABtWfgn7DGmusERERKQN2mmC5e5H17XezIYDA4B5wX1jegNzzGwssBxIHGvTO1gnItLqxNYtpsrDdOvVv1HlO3aPJ2Jlaxc3Y1QiIiLSFu32EEF3/9Ddu7p7f3fvT3wY4AHuvgqYDpwdzCY4Dtjg7iuTE7KISHJlbvyKFaHupKWlN6p8Ya+9AKher3thiYiIyPZ22oO1m54HvgUsBLYC5zVTOyIiTZa3dQlr0/vQuCuwIC0zh3XkEd60rFnjEhERkbYnaQlW0Iu17bkDP05W3SIizSUWjdK9ejkrCg7epf3WRbqStVUd8yIiIrK9pNxoWESkrVqx5AsyrYq0bvvu0n6bM3uQX7W6maISERGRtkoJlojs0dYsnANAx34jd2m/ypyeFEaL8VisGaISERGRtkoJlojs0cqXzQeg96ADdm3HvF50sHLWrVvbDFGJiIhIW6UES0T2aOkln7LSupKd22mX9ssoiN+JomRFUTNEJSIiIm2VEiwR2aMVbl3I6qx9dnm/DoV9Adi4pijJEYmIiEhbpgRLRPZY5WVb6R1dTnnnQbu8b36P+M2GK9dpqnYRERH5mhIsEdljLftiLhGLkd5z+C7v26lrH2JuxDYowRIREZGvKcESkT3W+i/nAlCw16hd3jeUls46yyeyWffCEhERka8pwRKRPVZ01UdUeBq99h62W/uvT+tKVvmqJEclIiIibZkSLBHZY2WXfsbSSF8iaem7tf+WjK50rFyT5KhERESkLVOCJSJ7rO7lX7K+w67PILhNZXYPCmMluHsSoxIREZG2rMkJlpn91Mw+NbMFZnZzwvpfmtlCM/vMzI5tajsiIslUunYVXVlHtMvg3a7DO/aig5VRun5dEiMTERGRtizSlJ3N7EhgIrC/u1eYWddg/RDgdGAo0BN42cwGunu0qQGLiCTDis9nkw9k99l/t+tI79QbgJKVX9Gpc0FyAhMREZE2rak9WBcDN7l7BYC7b7sYYSLwiLtXuPtXwEJgbBPbEhFJms1L5gHQfZ8Dd7uO7OBmw1vWLE5KTCIiItL2NTXBGggcambvmtnrZjYmWN8LWJpQblmwTkSkVQit+Zh15NKlR5/drqNTj/4AlJUsbbigiIiI7DF2OkTQzF4Gutex6VfB/p2BccAY4FEz22tXAjCzC4ELAfr27bsru4qI7La8TV+wPG0vOod2/3umzt366mbDIiIisp2dJljufnR928zsYuBJj0+h9Z6ZxYBCYDmQ+LVw72BdXfXfDdwNMHr0aE3FJSLNzmNReld9xdzCE5tUTyQ9k7XWkfCmFUmKTERERNq6pg4RfBo4EsDMBgLpwFpgOnC6mWWY2QBgX+C9JrYlIpIUJcu+IJsK6Dq0yXWtj3Qls0w3GxYREZG4Js0iCNwL3GtmHwGVwDlBb9YCM3sU+BioBn7cFmcQLN+6GcfIys5JdSgikkQriz6mEMjtvftTtG9TltWdjpsXNT0oERERaRea1IPl7pXu/n13H+buB7j7qwnbbnT3vd19kLu/0PRQW96cR/6HDTeP4L0n/0h52dZUhyMiSbJ15UIAuvXbr8l1VebvTa/YKraWlTW5LhEREWn7mnyj4fYsf7/D2BjuxNj511L+f/vy9p8v5JM5b+KxWKpDE5EmiK3/igpPo7B70yfWiXQbTJpFWfHlgiREJiIiIm1dU4cItmtDvnE8Pu44Frz1DOXv/p0DVz9O+vRprJ5ewFedx5O+1yH0GHYY3fsOwpowE1kquTvV1dVUV5RRXV1BtKqKaHU11dHK4HkVsWgVsWg10apKYtFqYtVVRIOfHmxzj+Lu4AAx8Bi44zXLjuMQi2F4vCwelIn/xGPBuqCaXWWWvBemHs5utGEGu7PfrjWyy3vs/rE07z67Fdcu6rT2A1aFu9EvHG5yXR37D4dZsL5oHgwdnYTopDG8uoKKsq1UVJRRUV5OZUUZlRVlVFWUU11ZjldXEKuuhOoKPFpJLBYlFovisRgejRLz4HksGvxdimEePLb9DduOBX+X4r+fiX+jvv6dte1+JG4zC223zbGvi1kd/39Y/B/brk6reepYrbfWjuW2rahdzhJjqNnNao7JateREF/dbX/NW+DvsLQDmtJMdtGWnL4MH3MEnXLSUx1KoyjB2gkLhRh66Clw6ClsWreKeW88RvjzfzG85EVy1j0T/2BFLqvS+7E5px/R/L2IdOxOZn53MvO7kZZbQGZWDplZHcjMyiI9PXPHZMydWDRKZXUVFWVlVJZvpqqiLHhsjSc/lWVEK8uJVpYRqyrDK8uIVZXjVWV4VTlUxx8WLceqKwhFKwhHKwjH4o9IrJK0WAURryTdK0inigyvJJ1K0i1KWmpeXpGUmZN7JP2SUE+fffan0iNULn4f+EG95TwW5cNX/kF41t+oHHUeoyacm4TW26aqynLWr13DxvVrqNi4lsrNJVRvXodvXQdl6wlVlBKq3Eyoagvh6q2kR7eSHisj08vIopxsLyfdqskEMlN9MCIi0uweqv4meXuPbTMJlsV7ElqH0aNH+6xZs1IdRqNUV1Xx5cfvs/6ztwit+ICcLUV0rVpOIaUN7hdzo5owhhMiRtiS8/rH3CgnnUpLpzL4WWXpVIcyqA7Ff8ZCGUTDGcTCGXgkEw9nQiT+PBbOgHA6FopAOA0LR7BQBItEsFAaoXAEC0cIhdPjPyMRQuE0QpE0wuFI/NtZM8wMLIxZ8A2nheLPMQiFAMNC8R4d27bNQkE5auqwXfwW1Hb593g3Xvfdeq94y3xR11LH3xLttMC5cXcK+wwkLSN719uqw4f/ewS5VSX0v/bDHbZVVZYz94W/UzBvCnvFigCYm3MII698PilttxYei7F+7SrWr1nKlpLlVKxfQXTjKmzzatLL1pBVUUxu9TryY+vJobzeeqo9xEZy2GrZVIayqAxnUxXOJhrJpjoS/xlN64BHsiAti1BaJqG0DMJpGYTTMgmnx3+GIulYWgYWySQcScdCYcLhMKFw8DMUJhKOYOEQoVAED/6GYeF4j03w9yl+cNt+vzy+zrfvv4LEv0EJ24J12/4K+LZescRe+sQy2+rwxL22ra5VLrGZmvo9oTzbxfl1HV/HuX1ziXUk7lfrveWJ+9Xub/66rLmrN0sapN8O2RWxjDx69B5AZlrTR54ki5nNdvc6h66oB2s3RdLSGLj/N2D/b2y3fsumUtatWcHGtSso37AaK1tPtLKMaGUZVJUTqyoj5NXx/8wJJfynHiIcDkMkC0vLIJSWhaVlEU7PJJz+9c9IejZpmVmkZ2aTlpFFRlYOmZnZRNIyyDYjOR8XRWRXbO13FMM//38smvsGe488DID1a5ax8MW/0H/RPxjDOhaH+vDeqP+DT5+lb9nnKY5410Vjzup16ylZtpDNKxdSVfIl4dIisrYspVPFCrpHV9HZKulca7/NnsW6UCc2RgpYkT2IxZldsOwCwh06k96hgLQOBWTkFZKVV0h2fhdy8zrRORLeoR4REZG2QglWkuXk5pOTmw97D0l1KCLSQgZO+DHrPv8r2c/8gA/ePZKM9Z8zqGwuY8yZlz6K5eP+jxGHn0q/cJg3S5bQfclMNqxbS8fOhakOfTtbyqtYtmwJ65Z9xpZVC/F1X5G+aQkdK1bQPbqSnraengnlt5LJ6nB3NmT2YXXuN6BjHzI69SSzc09yC3rTqVsfOuR2pEPKjkhERKTlKcESEWmiTp0LmDfh73R48TIGrniaVaHuvNXjHPocdjb7Dzlwu7Jdh46HJX/iszcfY+zEi1s81g2bNrFq8WesX/4FFWsWQelisjcvoVPFCnr6agZZxXblS0IFrM/oRXGHb7A6vz9phQPI67EvnXsPJLtTDwZoGJiIiMh2dA2WiEiSuDtVUSc9Uv+soh6Lsvx/hlIWymbA1e8SSUvuFDOxaIy1xctZu+RzNq38guqSr4hsKCJn6zIKq1bS1dcRSrj2s4wMiiM92JTVm6q8vqQVDiCn+z506bsfOV33gjRNIyEiIlKbrsESEWkBZkZ6pOEeHQuFWTP6cg54/wrevfcSxv7wDizU+It23Z2N64tZt+wLNq1eRPmar/DSJWRuXkpexUq6RlfT1SromrBPMZ0pSe/Bik5jWJbfj/Que9Ox50C69h1EVqce9FUvlIiISNIowRIRaWGjjvsB7yx6k3ErH+ar3/2H4n4nkNl9EJaeTdiMiq0bqdq6kdjWdYS2rCayZTUZ5cXkVq2lc2w9Ha2Mjgn1bfIs1oS7U5rVhzUdDibUqR+Z3fahU6+BdO2zL12yOtAlZUcrIiKyZ9EQQRGRFIhFY7zzzJ8o/OjvDIwtqrdcmacHs/AVsjWjC9GcrnheHyIF/cjuthfd+gykU0HXXb61gYiIiOy+hoYIKsESEUkhd6dkbTFrl31GrLKcWCxKRk4+OXmd6JBfQIfczoTC9V/TJSIiIi2v2a7BMrORwBQgE6gGfuTu71n8q9Q/At8CtgLnuvucprQlItIemRmFXbpS2KXrzguLiIhIq9fUr0VvBq5395HAtcEywHHAvsHjQuAvTWxHRERERESk1WtqguVAXvC8I7AieD4ReMDj3gHyzaxHE9sSERERERFp1Zo6i+ClwItmdivxZO0bwfpewNKEcsuCdStrV2BmFxLv5aJv375NDEdERERERCR1dppgmdnLQPc6Nv0K+CZwmbs/YWanAfcAR+9KAO5+N3B30FaxmS3elf1bQCGwNtVBSIvR+d5z6FzvOXSu9yw633sOnes9R2s81/3q29CkWQTNbAOQ7+4eTGyxwd3zzOwuYIa7Tw3KfQYc4e479GC1dmY2q74ZQqT90fnec+hc7zl0rvcsOt97Dp3rPUdbO9dNvQZrBXB48Pwo4Ivg+XTgbIsbRzzxanPJlYiIiIiIyK5o6jVYPwT+aGYRoJzgWirgeeJTtC8kPk37eU1sR0REREREpNVrUoLl7jOBA+tY78CPm1J3K3J3qgOQFqXzvefQud5z6FzvWXS+9xw613uONnWum3QNloiIiIiIiHytqddgiYiIiIiISEAJloiIiIiISJIowWqAmU0ws8/MbKGZXZ3qeCR5zKyPmb1mZh+b2QIzuyRY39nMXjKzL4KfnVIdqySHmYXN7AMz+2ewPMDM3g3e39PMLD3VMUpymFm+mT1uZp+a2SdmdrDe2+2TmV0W/A3/yMymmlmm3tvth5nda2ZrzOyjhHV1vpeDmatvD877fDM7IHWRy66q51zfEvwdn29mT5lZfsK2Xwbn+jMzOzYlQTdACVY9zCwM/Ak4DhgCnGFmQ1IblSRRNXC5uw8BxgE/Ds7v1cAr7r4v8EqwLO3DJcAnCcv/B9zm7vsA64EfpCQqaQ5/BP7l7vsB+xM/73pvtzNm1gv4GTDa3YcBYeB09N5uT+4DJtRaV997+Thg3+BxIfCXFopRkuM+djzXLwHD3H0E8DnwS4Dg89rpwNBgnz8Hn9tbDSVY9RsLLHT3L929EngEmJjimCRJ3H2lu88Jnm8i/gGsF/FzfH9Q7H7g5JQEKEllZr2B44G/BctG/N59jwdFdK7bCTPrCBwG3APg7pXuXore2+1VBMgKbheTDaxE7+12w93fANbVWl3fe3ki8IDHvQPkm1mPFglUmqyuc+3u/3b36mDxHaB38Hwi8Ii7V7j7V8RvCzW2xYJtBCVY9esFLE1YXhask3bGzPoDo4B3gW4JN8VeBXRLVVySVH8ArgJiwXIBUJrwh1vv7/ZjAFAM/D0YEvo3M8tB7+12x92XA7cCS4gnVhuA2ei93d7V917W57b27XzgheB5qz/XSrBkj2ZmHYAngEvdfWPituB+brqPQRtnZicAa9x9dqpjkRYRAQ4A/uLuo4At1BoOqPd2+xBcezOReFLdE8hhxyFG0o7pvbxnMLNfEb+04+FUx9JYSrDqtxzok7DcO1gn7YSZpRFPrh529yeD1au3DSkIfq5JVXySNIcAJ5lZEfGhvkcRv0YnPxhWBHp/tyfLgGXu/m6w/DjxhEvv7fbnaOArdy929yrgSeLvd72327f63sv63NYOmdm5wAnAmf71zXtb/blWglW/94F9g9mI0olfTDc9xTFJkgTX4NwDfOLuv0/YNB04J3h+DvBMS8cmyeXuv3T33u7en/j7+FV3PxN4DfhOUEznup1w91XAUjMbFKz6JvAxem+3R0uAcWaWHfxN33au9d5u3+p7L08Hzg5mExwHbEgYSihtkJlNID68/yR335qwaTpwupllmNkA4hObvJeKGOtjXyeDUpuZfYv4tRth4F53vzG1EUmymNl44E3gQ76+Luca4tdhPQr0BRYDp7l77QtspY0ysyOAK9z9BDPbi3iPVmfgA+D77l6RwvAkScxsJPEJTdKBL4HziH+hqPd2O2Nm1wOTiA8f+gC4gPi1GHpvtwNmNhU4AigEVgPXAU9Tx3s5SLLvJD5MdCtwnrvPSkHYshvqOde/BDKAkqDYO+5+UVD+V8Svy6omfpnHC7XrTCUlWCIiIiIiIkmiIYIiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkiRIsERERERGRJFGCJSLSyphZfzNzM4ukOhbZM5jZAjM7ItVxiIi0B0qwRESkzTOzKWa2OXhUmllVwvILqY6vtXP3oe4+I5l1mtmtZvaFmW0ys0/N7Oxk1i8i0lopwRIRSTL1PLU8d7/I3Tu4ewfgd8C0bcvufty2cm3p3LSlWOuxBTgR6AicA/zRzL6R2pBERJqfEiwRkSQwsyIz+4WZzQe2mFnEzMaZ2X/MrNTM5iUOwTKzGWb2v2b2npltNLNnzKxzPXWfZ2afBD0BX5rZf9faPtHM5gb1LDKzCcH6jmZ2j5mtNLPlZvZbMwvv5Dj2NrNXzazEzNaa2cNmlp+wbZ2ZHRAs9zSz4m3HZWYnBUPNSoPjG1zr9bnCzOab2QYzm2Zmmbv+Su+6es6Nm9k+CWXuM7PfJiyfELympcE5HNHIto4ws2Vmdk3w+hWZ2ZkJ2483sw+Cc7XUzCYnbNs2NPQHZrYEeDVY/5iZrQpetzfMbGituP9sZi8EvXVvmVl3M/uDma0Peo5GNfI1Oroxx9hY7n6du3/q7jF3fxd4Ezg4mW2IiLRGSrBERJLnDOB4IB/oBjwH/BboDFwBPGFmXRLKnw2cD/QAqoHb66l3DXACkAecB9yWkOSMBR4ArgzaPQwoCva7L6h3H2AUcAxwwU6OwYD/BXoCg4E+wGQAd18E/AJ4yMyygb8D97v7DDMbCEwFLgW6AM8Dz5pZekLdpwETgAHACODcOgMwGx8kNvU9xu/kGOpSc27cvbrBFyCekNwL/DdQANwFTDezjEa21R0oBHoR77m528wGBdu2ED/v+UE8F5vZybX2P5z4a39ssPwCsC/QFZgDPFyr/GnAr4M2K4C3g3KFwOPA7xsZd53M7OqGzkcj68gCxgALmhKLiEhboARLRCR5bnf3pe5eBnwfeN7dnw++wX8JmAV8K6H8g+7+kbtvAX4DnFZXD5O7P+fuizzudeDfwKHB5h8A97r7S0E7y939UzPrFrR1qbtvcfc1wG3A6Q0dgLsvDOqqcPdi4h/OD0/Y/ldgIfAu8cTwV8GmScBzwb5VwK1AFpA4JOx2d1/h7uuAZ4GR9cQw093zG3jMbOgY6pF4bnbmQuAud3/X3aPufj/xxGXcLrT3m+A1fJ14on0agLvPcPcPg3M1n3hSenitfScH56ws2Oded9/k7hXEk939zaxjQvmn3H22u5cDTwHl7v6Au0eBacST693m7jc1dD4aWc0UYB7wYlNiERFpC5RgiYgkz9KE5/2A79b6pn888aSkrvKLgTTivQ7bMbPjzOydYHheKfHEaVu5PsCiOmLpF9S3MqH9u4j3gtTLzLqZ2SPBkMKNwEN1xPRXYBhwR/ChH+I9Xou3FXD3WHB8vRL2W5XwfCvQoaFYkmzpzovU6AdcXuvc9SF+jI2xPkiat1m8bV8zO8jMXguGVm4ALmLH17cmVjMLm9lNFh/6uZGveycT91md8LysjuWWfJ13YGa3EP99Oc3dPZWxiIi0BCVYIiLJk/jhcSnxHqrEb/tz3P2mhDJ9Ep73BaqAtYkVBsPSniDeI9Qt6DF4nvhQvm3t7F1HLEuJ97oUJrSf5+5D6yib6HfBcQx39zziPXHb2sLMOgB/AO4BJtvX142tIJ6YbCtnwfEt30l7OzCzQ+3rGQDrehy681p2UPuD/VYgO2G5e8LzpcCNtc5dtrtPbWRbncwsJ2G5L/HXB+AfwHSgj7t3JN6zY7X2T4z1e8BE4Gjik0X0D9bX3qfZBNeT1Xs+drLv9cBxwDHuvrFlIhYRSS0lWCIizeMh4EQzOzbohcgMJkDonVDm+2Y2JLie6Qbg8WBYV6J0IAMoBqrN7Dji11Jtcw9wnpl908xCZtbLzPZz95XEhxL+PzPLC7btbWa1h6PVlgtsBjaYWS/i13Yl+iMwy90vID70bUqw/lHg+CCONOBy4gnef3b2QtXm7m8mzABY1+PNXa2zDnOB7wXnZgLbD9P7K3BR0NtkZpZj8ckpcqFmYon7dlL/9WaWHiSDJwCPBetzgXXuXh5cP/e9ndSTS/x1LCGeEP5uF44xKdz9dw2dj/r2M7NfEj++o929pOUiFhFJLSVYIiLNwN2XEu95uIZ4crSUeLKS+Hf3QeITUawCMoGf1VHPpmD9o8B64h9Ypydsf49g4gtgA/A6X/cknU08Qfs42Pdxth+iWJfrgQOCup4Dnty2wcwmEp+k4uJg1c+BA8zsTHf/jHhv1x3Ee+FOBE5098qdtJcqlxCPsRQ4E3h62wZ3nwX8ELiT+Ou2kO0n5OgDvNVA3auC/VYQn5DiInf/NNj2I+AGM9sEXEv8vDbkAeJDDJcTP4/v7OzAWpHfEe+9W5jQ43VNqoMSEWlupuHQIiItz8xmAA+5+99SHYs0XjAr4jxgRDCZR+3tRxA/r71rbxMRkT1DW7+JoYiISIsJeuQG77SgiIjssTREUERkD2NmU+qZsGDKzveWtsjM+jYwUUXfVMcnItKeaIigiIiIiIhIkqgHS0REREREJEla1TVYhYWF3r9//1SHISIiIiIiUq/Zs2evdfcudW1rVQlW//79mTVrVqrDEBERERERqZeZLa5vW5OHCJpZHzN7zcw+NrMFZnZJsL6zmb1kZl8EPzs1tS0REREREZHWLBnXYFUDl7v7EGAc8GMzGwJcDbzi7vsCrwTLIiIiIiIi7VaTEyx3X+nuc4Lnm4BPgF7AROD+oNj9wMlNbUtEpDX7z6K1fLhsQ6rDEBERkRRK6jVYZtYfGAW8C3Rz95XBplVAt92ps6qqimXLllFeXp6cIGWPkZmZSe/evUlLS0t1KLIHiEZjzLz3GjJC1Qy74R7MLNUhiYiISAokLcEysw7AE8Cl7r4x8cOFu7uZ1XnDLTO7ELgQoG/fHe91uGzZMnJzc+nfv78+sEijuTslJSUsW7aMAQMGpDoc2QOs+OQdrkqbBsDydbfRq6BjiiMSERGRVEjKfbDMLI14cvWwuz8ZrF5tZj2C7T2ANXXt6+53u/todx/dpcuOMx2Wl5dTUFCg5Ep2iZlRUFCgnk9pMetWL6l5vnThRymMRERERFIpGbMIGnAP8Im7/z5h03TgnOD5OcAzTWhj9wOUPZZ+b6QlVW0srnm+deVnKYxEREREUikZQwQPAc4CPjSzucG6a4CbgEfN7AfAYuC0JLQlItIqxbasrXluJV+kMBIRERFJpWTMIjjT3c3dR7j7yODxvLuXuPs33X1fdz/a3dclI+BUMDMuv/zymuVbb72VyZMnpy6gBO+88w4HHXQQI0eOZPDgwTVxzZgxg//85z9NqnvChAnk5+dzwgknJCFSkfbNtq6lwtMoJZfIpuWpDkdERERSJCnXYLV3GRkZPPnkk6xdu3bnhXeBuxOLxZpUxznnnMPdd9/N3Llz+eijjzjttHhHYTISrCuvvJIHH3ywSXWI7ClC5etZb3lsinQmvax45zuIiIhIu5TUadqb2/XPLuDjFRuTWueQnnlcd+LQBstEIhEuvPBCbrvtNm688cbtthUXF3PRRRexZEn8Avc//OEPHHLIIUyePJkOHTpwxRVXADBs2DD++c9/AnDsscdy0EEHMXv2bJ5//nnuvPNOXnjhBcyMX//610yaNIkZM2YwefJkCgsL+eijjzjwwAN56KGHdriuaM2aNfTo0QOAcDjMkCFDKCoqYsqUKYTDYR566CHuuOMO9ttvv3rjXLRoEQsXLmTt2rVcddVV/PCHPwTgm9/8JjNmzGjwtXnssce4/vrrCYfDdOzYkTfeeIPy8nIuvvhiZs2aRSQS4fe//z1HHnkk9913H08//TRbtmzhiy++4IorrqCyspIHH3yQjIwMnn/+eTp37sxf//pX7r77biorK9lnn3148MEHyc7O3q7dcePGcc899zB0aPzcHXHEEdx6662MHj26wXhFmkt6xTo2hfLw9M5kl5WkOhwRERFJEfVgNdKPf/xjHn74YTZs2P4mopdccgmXXXYZ77//Pk888QQXXHDBTuv64osv+NGPfsSCBQuYNWsWc+fOZd68ebz88stceeWVrFwZv33YBx98wB/+8Ac+/vhjvvzyS956660d6rrssssYNGgQp5xyCnfddRfl5eX079+fiy66iMsuu4y5c+dy6KGHNhjn/PnzefXVV3n77be54YYbWLFiRaNflxtuuIEXX3yRefPmMX36dAD+9Kc/YWZ8+OGHTJ06lXPOOadmNr+PPvqIJ598kvfff59f/epXZGdn88EHH3DwwQfzwAMPAPDtb3+b999/n3nz5jF48GDuueeeHdqdNGkSjz76KAArV65k5cqVSq4kpbKqStkczqcyq5D82Hrc67wzhYiIiLRzbaoHa2c9Tc0pLy+Ps88+m9tvv52srKya9S+//DIff/xxzfLGjRvZvHlzg3X169ePcePGATBz5kzOOOMMwuEw3bp14/DDD+f9998nLy+PsWPH0rt3bwBGjhxJUVER48eP366ua6+9ljPPPJN///vf/OMf/2Dq1Kl19jo1FOfEiRPJysoiKyuLI488kvfee4+TTz65Ua/LIYccwrnnnstpp53Gt7/97Zpj+ulPfwrAfvvtR79+/fj8888BOPLII8nNzSU3N5eOHTty4oknAjB8+HDmz58PxJOwX//615SWlrJ582aOPfbYHdo97bTTOOaYY7j++ut59NFH+c53vtOoeEWaS2ZsC2sjBYSzu1JIKZvKq8jLSk91WCIiItLC2lSClWqXXnopBxxwAOedd17NulgsxjvvvENmZuZ2ZSORyHbXVyXejyknJ6dR7WVkZNQ8D4fDVFdX11lu77335uKLL+aHP/whXbp0oaRkx+FJ9cUJO05nvivTm0+ZMoV3332X5557jgMPPJDZs2c3WD7xmEKhUM1yKBSqOb5zzz2Xp59+mv3335/77ruvzoSxV69eFBQUMH/+fKZNm8aUKVMaHbNIc0iLlVMdzsJyu5FllaxaV0Jerx6pDktERERamIYI7oLOnTtz2mmnbTdk7ZhjjuGOO+6oWZ47dy4A/fv3Z86cOQDMmTOHr776qs46Dz30UKZNm0Y0GqW4uJg33niDsWPHNjqm5557rmYo0hdffEE4HCY/P5/c3Fw2bdq00zgBnnnmGcrLyykpKWHGjBmMGTOm0e0vWrSIgw46iBtuuIEuXbqwdOlSDj30UB5++GEAPv/8c5YsWcKgQYMaXeemTZvo0aMHVVVVNfXUZdKkSdx8881s2LCBESNGNLp+keaQ7hXEIpmkdewOwKa1mklQRERkT6QEaxddfvnl280mePvttzNr1ixGjBjBkCFDanpSTj31VNatW8fQoUO58847GThwYJ31nXLKKYwYMYL999+fo446iptvvpnu3bs3Op4HH3yQQYMGMXLkSM466ywefvhhwuEwJ554Ik899RQjR47kzTffrDdOgBEjRnDkkUcybtw4fvOb39CzZ08gnvx997vf5ZVXXqF37968+OKLQHxY4rbrra688kqGDx/OsGHD+MY3vsH+++/Pj370I2KxGMOHD2fSpEncd9992/Vc7cz//M//cNBBB3HIIYew33771ayfPn061157bc3yd77zHR555JGamRNFUinDK4iFs8jqFH//bC1p/LWMIiIi0n5Ya7oQe/To0T5r1qzt1n3yyScMHjw4RRG1f7VnO2xv9PsjLcKd6PWdeaPrWYw47nwK7j+cN/a/mcNO+e9URyYiIiLNwMxmu3udM6ypB0tEpKmilYSJ4WlZdCyMT0wT3bg6xUGJiIhIKmiSiz3c5MmTUx2CSJvnlVsxwNKyiOR0pooItmVNqsMSERGRFFAPlohIE1WUb4k/ScuGUIhSyyetrDi1QYmIiEhKKMESEWmiyrL4PeVC6dkAbIx0JqtibUO7iIiISDulBEtEpIkqyuI9WKGMeIJVlt6ZDtXrUhmSiIiIpIgSLBGRJtrWgxUOerCqMgvJi5amMCIRERFJlWZPsMxsgpl9ZmYLzezq5m6vuTz99NOYGZ9++mm9ZYqKihg2bFjS2vzss8844ogjGDlyJIMHD+bCCy8E4jcJfv7555tU9/nnn0/Xrl2TGq/InqoquAYrkhlPsGLZhXRmA+WV1akMS0RERFKgWRMsMwsDfwKOA4YAZ5jZkOZss7lMnTqV8ePHM3Xq1Dq3V1c3/YNUNBrdbvlnP/sZl112GXPnzuWTTz7hpz/9KZCcBOvcc8/lX//6V5PqEJG4qoqtAEQycgAI5XYl3aKUlGiqdhERkT1Nc0/TPhZY6O5fApjZI8BE4OPdqu2Fq2HVh8mLDqD7cDjupgaLbN68mZkzZ/Laa69x4okncv311wMwY8YMfvOb39CpUyc+/fRT/v3vf1NdXc2ZZ57JnDlzGDp0KA888ADZ2dm88sorXHHFFVRXVzNmzBj+8pe/kJGRQf/+/Zk0aRIvvfQSV111FaeffnpNuytXrqR37941y8OHD6eyspJrr72WsrIyZs6cyS9/+UtOOOEEfvrTn/LRRx9RVVXF5MmTmThxIvfddx9PPfUUGzZsYPny5Xz/+9/nuuuuA+Cwww6jqKioweN+/fXXueSSSwAwM9544w06dOjAVVddxQsvvICZ8etf/5pJkyYxY8YMrrvuOvLz8/nwww857bTTGD58OH/84x8pKyvj6aefZu+99+bZZ5/lt7/9LZWVlRQUFPDwww/TrVu37do9/fTTOeusszj++OOBeDJ4wgkn8J3vfKdx51SkhVWXxxOstMx4gpWW1x2ATWtXQI9eKYtLREREWl5zDxHsBSxNWF4WrGtTnnnmGSZMmMDAgQMpKChg9uzZNdvmzJnDH//4Rz7//HMgPqzvRz/6EZ988gl5eXn8+c9/pry8nHPPPZdp06bx4YcfUl1dzV/+8peaOgoKCpgzZ852yRXAZZddxlFHHcVxxx3HbbfdRmlpKenp6dxwww1MmjSJuXPnMmnSJG688UaOOuoo3nvvPV577TWuvPJKtmyJD1l67733eOKJJ5g/fz6PPfYYs2bNavRx33rrrfzpT39i7ty5vPnmm2RlZfHkk08yd+5c5s2bx8svv8yVV17JypUrAZg3bx5Tpkzhk08+4cEHH+Tzzz/nvffe44ILLuCOO+4AYPz48bzzzjt88MEHnH766dx88807tDtp0iQeffRRACorK3nllVdqki2R1ihaGX+/pQcJVmaneIK1Zd2qlMUkIiIiqZHyGw2b2YXAhQB9+/ZtuPBOepqay9SpU2t6ck4//XSmTp3KgQceCMDYsWMZMGBATdk+ffpwyCGHAPD973+f22+/nf/6r/9iwIABDBw4EIBzzjmHP/3pT1x66aVAPKGoy3nnncexxx7Lv/71L5555hnuuusu5s2bt0O5f//730yfPp1bb70VgPLycpYsWQLAf/3Xf1FQUADAt7/9bWbOnMno0aMbddyHHHIIP//5zznzzDP59re/Te/evZk5cyZnnHEG4XCYbt26cfjhh/P++++Tl5fHmDFj6NGjBwB77703xxxzDBDveXvttdcAWLZsGZMmTWLlypVUVlZu99ptc9xxx3HJJZdQUVHBv/71Lw477DCysrIaFbNIKsSCIYLpWfEEq0Pn+PugolQJloiIyJ6muXuwlgN9EpZ7B+tquPvd7j7a3Ud36dKlmcPZdevWrePVV1/lggsuoH///txyyy08+uijuDsAOTk525U3swaX61K7jkQ9e/bk/PPP55lnniESifDRRx/tUMbdeeKJJ5g7dy5z585lyZIlDB48eLfj2ebqq6/mb3/7G2VlZRxyyCENTvABkJGRUfM8FArVLIdCoZpr1H7605/yk5/8hA8//JC77rqL8vLyHerJzMzkiCOO4MUXX2TatGn1JqAirUWsMp5gZWR1ACC/S7yjvnqTrsESERHZ0zR3gvU+sK+ZDTCzdOB0YHozt5lUjz/+OGeddRaLFy+mqKiIpUuXMmDAAN588806yy9ZsoS3334bgH/84x+MHz+eQYMGUVRUxMKFCwF48MEHOfzww3fa9r/+9S+qqqoAWLVqFSUlJfTq1Yvc3Fw2bdpUU+7YY4/ljjvuqEn6Pvjgg5ptL730EuvWrau5Dmpb71pjLFq0iOHDh/OLX/yCMWPG8Omnn3LooYcybdo0otEoxcXFvPHGG4wdO7bRdW7YsIFeveIfPu+///56y02aNIm///3vvPnmm0yYMKHR9YukgleVAZAZ9GBl5nUh6oZtLk5lWCIiIpICzZpguXs18BPgReAT4FF3X9CcbSbb1KlTOeWUU7Zbd+qpp9Y7m+CgQYP405/+xODBg1m/fj0XX3wxmZmZ/P3vf+e73/0uw4cPJxQKcdFFF+207X//+98MGzaM/fffn2OPPZZbbrmF7t27c+SRR/Lxxx8zcuRIpk2bxm9+8xuqqqoYMWIEQ4cO5Te/+U1NHWPHjuXUU09lxIgRnHrqqTXDA8844wwOPvhgPvvsM3r37s0999wDwJQpU5gyZQoAf/jDHxg2bBgjRowgLS2N4447jlNOOYURI0aw//77c9RRR3HzzTfTvXv3Rr+ekydP5rvf/S4HHngghYWFNetnzZrFBRdcULN8zDHH8Prrr3P00UeTnp7e6PpFUsErt1LpYbIyM+MrQiFKQx0Jla1NbWAiIiLS4mxbr0drMHr0aK89CcMnn3xSM9xNds19993HrFmzuPPOO1MdSsro90dawpy7/pt9Vkynw3UrCIXiw3CLfjuSkkg3Drz6xRRHJyIiIslmZrPdvc6JDZr9RsMiIu2dVZdRTnpNcgWwNa0z2VXrUxiViIiIpELKZxGU5nPuuedy7rnnpjoMkXYvVF1GhWVst64is5AuZUvr2UNERETaqzbRg9WahjFK26HfG2kpVl1OZa0EK5pZQGffQDSm30MREZE9SatPsDIzMykpKdGHZdkl7k5JSQmZ2yYdEGlG4eiOCZbldiXbKli3fl2KohIREZFUaPVDBHv37s2yZcsoLtZ0x7JrMjMz6d27d6rDkD1AJFpOZWj7BCuS1w2AjWuX0yW42beIiIi0f60+wUpLS2PAgAGpDkNEpF6RWDlbQnnbrcvoGL99weaSVcCIFEQlIiIiqdDqhwiKiLR2abFyqsPbD0fNKegBQHnpylSEJCIiIimiBEtEpInSYhVEw1nbretY0AuAqg2rUxGSiIiIpIgSLBGRJkr3CjyyfQ9WbkH8GizfsiYVIYmIiEiKKMESEWmiDCqI1UqwLJLBBjoQ2ro2RVGJiIhIKijBEhFpCncyvQKPZO2waWM4n/TykhQEJSIiIqmiBEtEpAk8WknEYpCWvcO2zZHOZFcqwRIREdmTKMESEWmCqvKtAFjajje1rsgooEN0fUuHJCIiIimkBEtEpAnKt2wEwNNzd9hWnVlAfmwD7t7SYYmIiEiKKMESEWmCiq3xBCuU0WHHjTld6Whb2LRlSwtHJSIiIqnSpATLzG4xs0/NbL6ZPWVm+QnbfmlmC83sMzM7tsmRioi0QpVbNwEQytwxwQrnxadqX7dmeYvGJCIiIqnT1B6sl4Bh7j4C+Bz4JYCZDQFOB4YCE4A/m1m4iW2JiLQ6VWXxHqxwHT1YmZ26A7BhrRIsERGRPUWTEix3/7e7VweL7wC9g+cTgUfcvcLdvwIWAmOb0paISGtUvS3BysrbYVtuQU8AtpasbNGYREREJHWSeQ3W+cALwfNewNKEbcuCdTswswvNbJaZzSouLk5iOCIiza+6fDMAaVk7TnKR37UPAFWlK1o0JhEREUmdyM4KmNnLQPc6Nv3K3Z8JyvwKqAYe3tUA3P1u4G6A0aNHa6otEWlTog0kWDlBD1Zs0+oWjUlERERSZ6cJlrsf3dB2MzsXOAH4pn89F/FyoE9Csd7BOhGRdiVaEZ/kIitnxwTLIhlsIJfQFiVYIiIie4qmziI4AbgKOMndtyZsmg6cbmYZZjYA2Bd4ryltiYi0RrGgByunQ8c6t2+IFJBZvrYlQxIREZEU2mkP1k7cCWQAL5kZwDvufpG7LzCzR4GPiQ8d/LG7R5vYlohIqxOr2EKFp5Gbk1Xn9i3phXRQgiUiIrLHaFKC5e77NLDtRuDGptQvItLqVWxmCxl0itQ9IKAyqwtdthTh7gRfRImIiEg7lsxZBEVE9jhWtZkyy643efKcrhRQyqbyqhaOTERERFJBCZaISBOEqzZTYZn1b8/rQYZVs7Z4VQtGJSIiIqmiBEtEpAkyqjaxJbzjTYa3Se/UA4CNa5bWW0ZERETaDyVYIiJNkBXdSFmk7hkEAToU9gZgc4nuVCEiIrInUIIlItIE2dGNVKTV34OV3zV+S8DK0pUtFZKIiIikkBIsEZEmyPXNVKXX34OV07kXALGNutmwiIjInkAJlojI7qoqI4NKyOxUf5mMDmwlk9AWJVgiIiJ7AiVYIiK7qWxjCQChnM4NlisNF5BRXtwSIYmIiEiKKcESEdlNG9atASC9Q0GD5bakF5JTubYlQhIREZEUU4IlIrKbNq+P90pl5Dbcg1WZWUh+tAR3b4mwREREJIWUYImI7KbyDfGbB2d36tZguVhONwopZVNFdUuEJSIiIimkBEtEZDdVrY/f2yq3sG+D5UJ53elg5RSXlLREWCIiIpJCSrBERHaTbVpJhaeRX9hwD1Z6fk8ASlcvbYmwREREJIWUYImI7CbbvIpi60SHzLQGy3UojN8La3PJ8pYIS0RERFIoKQmWmV1uZm5mhcGymdntZrbQzOab2QHJaEdEpDXJKFvNhnDDMwgCdOzaB4DK9SuaOyQRERFJsSYnWGbWBzgGWJKw+jhg3+BxIfCXprYjItLadKgsZmtm152Wy+4c78GKblzV3CGJiIhIiiWjB+s24Cogcf7hicADHvcOkG9mPZLQlohI6xCL0jW2hoqcXjsvm9WJKiKEt65p/rhEREQkpZqUYJnZRGC5u8+rtakXkHg197JgXV11XGhms8xsVnFxcVPCERFpMRtXLSKdaqKd99l5YTNKQ51IL9PfOBERkfYusrMCZvYy0L2OTb8CriE+PHC3ufvdwN0Ao0eP1l04RaRNWLHoQ/KAvN6DG1V+c1oBOZVrmzcoERERSbmdJljufnRd681sODAAmGdmAL2BOWY2FlgO9Eko3jtYJyLSLmxc/ikAvfYe3qjy5Rld6FhR1IwRiYiISGuw20ME3f1Dd+/q7v3dvT/xYYAHuPsqYDpwdjCb4Dhgg7uvTE7IIiKpF179EevIpUu3RlyDBVRld6XA11NRHW3myERERCSVmus+WM8DXwILgb8CP2qmdkREUqJw08csTh+EhRr5Z7RDNzrbZko2bG7ewERERCSldjpEsLGCXqxtzx34cbLqFhFpTSq2bqR31WIW9zyy0ftEOsYnUi1ds4yeBR2bKzQRERFJsebqwRIRabe+mvMqYXNy9vlGo/fJ6NQTgC0luhxVRESkPVOCJSKyizZ//G8qPMJeBzZ+EtUOhfFrtcrXKcESERFpz5RgiYjsCne6rprB5xnD6JSf3+jdOnbpDUB046pmCkxERERaAyVYIiK7YMmCd+gbW86WfU7cpf0y83sQw2CzEiwREZH2TAmWiMguKH7tT5R7Gvscceau7RiOUGp5RLYWN09gIiIi0ioowRIRaaSNxcsYvvYFZnc6jsKuPXZ9/3ABWRVrmyEyERERaS2UYImINNKnT91EhChdjrl8t/bfkl5IhyolWCIiIu2ZEiwRkUZY9eV8Ri7/B+93PIaBQ0buVh2VWV3Ij65LbmAiIiLSqijBEhHZiVh1NSWP/IRyMuhz2i27X092VzqzkfLKqiRGJyIiIq2JEiwRkZ2Y8/A1DK2cx6f7X03P3v12u55QbhfSLMq6tauTGJ2IiIi0JkqwREQaMOvVJzjgy7t5u8MxjDn5p02qK5LXHYANJSuTEZqIiIi0QkqwRETq8cm8dxj4+k9YEunLyIvuwUJN+5OZ1akbAFvX6V5YIiIi7ZUSLBGROiwr+pxOT32PilAmeT94iqwOeU2us0PnngBUlKoHS0REpL1SgiUiUsv6kmKqHjiVHLZSfto0OvfcOyn15neJJ1jVm3SzYRERkfaqyQmWmf3UzD41swVmdnPC+l+a2UIz+8zMjm1qOyIiLaG8bCvLp5xCr+hyVhz7N/oMHpu0ujPzuhB1g81rklaniIiItC6RpuxsZkcCE4H93b3CzLoG64cApwNDgZ7Ay2Y20N2jTQ1YRKS5xKJRPvzT9xhT9SFzx97CyINPSG4DoTAbLI9QWUly6xUREZFWo6k9WBcDN7l7BYC7b/tadiLwiLtXuPtXwEIgeV8Di4g0g/f+dgljNr/Ge3v/jJHHX9gsbWyKdCKjQgmWiIhIe9XUBGsgcKiZvWtmr5vZmGB9L2BpQrllwbodmNmFZjbLzGYVF+u6BBFJjblP3MK4lQ/yTsHJjDnz+mZrZ2taZ7Kr1jVb/SIiIpJaOx0iaGYvA93r2PSrYP/OwDhgDPCome21KwG4+93A3QCjR4/2XdlXRCQZPnv3RYbN/x2zMw/iwIv+2uTp2BtSmdGZzmUrmq3+1sRjUUpWLWHtsoVsKllB5YbV+OY1RMqKSasoJVxdRiS6lfRYOZleRoaXEyaKuWPEMJyQxzBzHCNKmCgRohaOP7f4cszCRC3+M1bzMwyEiIUiuIW/foTCYGHcIl8/D0Uwi5cF2/E42PX/msx3vpc1ou6d1bMt2obL+M4LNfIYd3h1rPbijq9f/WWb1tau1FW7REN177yuWrvuQqA7lm3sng2345kdGfLdyUTSMxpuQERaxE4TLHc/ur5tZnYx8KS7O/CemcWAQmA50CehaO9gnYhIq7J21RIKXriQlaHu7PXfU0lLS2/W9qJZheSv30B1NEYk3D4mco1WVbL8iw9Y+8X7VK74iIyNi8mvWE736EoKrZLCWuVLyWWT5VIRzqY6nEVFpBObwj2pCmXhoQhYCAuFMAuBhcCMWMyxWDXm1fGfsWpCXo3FovGfHix7lHCskojHCHsUI0bIo4SpxjxGmCghjxIiRphtyzEiQfqWTN6Ij+qNKdNS7bSXbzjby3E0lgG5VsY707sw7js/T3U4IkITJ7kAngaOBF4zs4FAOrAWmA78w8x+T3ySi32B95rYlohIUsWqqyj++5n0961s+u5jdOpc0PyNduhKrpVRvGEjXTrnN397SeaxGEsWfsjqD18jvOJ9Om34hN5Vi+lr1fQFyj2NVeEelGb2ZlXuN7BOA8jquhcdu/amY5dedOzcnfy0dPJTfSAiQPz74cTlWtsbKL/jttr7Nlx3U/ZNXPRYjM9/fygDP7qNVQd/m+69+tffkIi0iKYmWPcC95rZR0AlcE7Qm7XAzB4FPgaqgR+3xRkES4tXsGH9WvoNHJHqUESkGcx6+FrGVsznP/vfyDeGtsw8PJHcrgCUrl3RJhIsj8VYunA+q+Y8T2TZO/TdPI9+lNIPKPUOLM4YyPvdJhHpvT+F+4yh777D6Z+WluqwRRrFao2729kQvl0fQNgyNn53ClkPH8PS+8+j8xX/Jj1d70GRVGpSguXulcD369l2I3BjU+pPtc8e+SWj1v6Tt3t+j0Gn/JLOXXumOiQRSZLFH7/LyC/v4v3cIzn4lB+3WLvp+T0A2LJ2KQwc0mLt7oqtWzby2dvPU/Hpi/QteYu+vpq+wEq6UJQ3hq/6HUy3YUfRe5/92b+dDHMUact6DRzFB6N+zai51/KfKRdy8E/uadZrSUWkYU3twWrX9v7u/zD3H2UcvPIByv80lXcLjqPzYRexz4iD9YdLpA2LVldR/eSP2GQd2PvsP+/wLXZzyusenweorLioxdpsjHXFq1g481EyP/8ng7bOYZRVsdUz+DznAJb2v4Deo0+i54BB9GjB10pEGm/UyZcwa81nfGPFw7w5JZtD/vsOQvoCRCQllGA1oLB7Xwp//ihLPp3Fyhf/wP4lL5D59HSWPNOT5T2PpdPwYxkw8nAyMrNTHWryuROLVlNVXUl1VRXVVVVUVlUSra4mWl1FLBolFquCaDUeq8ajwSMWxWNVuDuxmOM47o7H4j9j7rjHcHesZhC5xx/uwfCM4DkOXs+AjHo+4xk0ZoxHzUxXnlC2vr1q1jf2g2VCudrj+2vb7QvP66nWa7X/dRx1lbY6ZzCru2qr/8Lx2tcGNHRInvi04WPfLmarZ/0OVVutdXUXrlg0k0OrF/Le6P/H2BbumS7sFU+wqtcv3UnJ5rd2zUq+eOMRsr54lqHlcxlrUVZYV+Z0+za5w77FvmP/i5GZOakOU0Qa6cAL7mD2X8o4dM1DvPvHYob/9z1k5+SmOqyUcHei0ShVFeVUVZVTXVFGtKqC6spyolWVVFdXUV1dRTQaIxatin9OiVXH/9/2aiwWi/8fEovisRjmUdxjEHw2iQX/GTkW/5yzrd06/2+z7X5u+2/aLXHezVrbti3XruPrDyW1/ruvPU3njsu2w/YdWq+/OqzOOhuKcYdjqFXea8dEHcN2g59VWV3Ya9BwOmS0jdTFdvYBsCWNHj3aZ82aleow6rWhZBWfvvYPcr54hsHl8wibU+bpFKXvw+aOg4h1HUqHngPJ79aPgh79yeyQn7S2q6ujlFeUU1G2mYqyLVSWb6GqvIyq8s1UlW+lunIr0YoyYpVb4j+ryvGqMqxqK1SXY8EjHC0jHK0gHKsgEisnLVZBuleQ7pVkUEmGV5BJJRlWlbTYRVqjheG92ftXs1LSG71xck8+6vRffOOS+1u87fVrV/H5jKlkffEsg8vnkmZRVlo3lvU4hk5jT2PvEePVQy/Shnksxvv3/4Kxi+9mcag3m7/5fww95IRUh7VT0ZizaWsZm9evpWzDaio2FlO1aS3RzSVUl28iVrEZr9hCqGoL4eotRKq3khbdSlq0jAwvIyNWRrpXkEYVaV5NOlVELJbqw5Ikeaj6mwz773sZ2Sc/1aHUMLPZ7j66zm1KsHbPhnVrWPj+v4l++To56xbQp/Ir8mzrdmW2eCabLYdyy6I8lEVVOJtYKC2498m2zD7+bzhWFUwtXEnEK0jzKtK8inSvJJ0qMqkkZLt3ripIo4J0Ki2dKsugMpRJtWVQHc4gGsqgOpxJNJRJNJxBLJxJNJKJhzMglIaFI1g4AqEIoXAaoVC4ZjnxYaH4/WUsFIFQmJAZZhafahkjZICFCIWMkAXfgsS7m4IoLXglEnuWgnV1fBlU16+t+479LHW9Yl/vmzgbVIPdItvVW1+dZnUHtss9cHWur69fqfF17PhtVP2/T9t9gdSIX7uvy29fuO746r5zz64de92lrbHvEXe67HMgHQpSc13lV78dxfpIFw64+t8t0t6GtSv54vVHyPh8OoPL5xKxGMutO8t7HkPXcafTb6iGPYu0NwvefIr8V35BL1YzL3MMjLuYIYecRFoLTUJTXR1lfWkJG9auZMv6NZRvWEPVpmKim0tg61oi5etJr1xPVlUpHWIbyPeN5NuWBuss9zTKLItyy6TcsqgMZVEZzqIqnEM0kkUsnAmRDAinQzgdD6dDOAMi235mYJE0LJIR/0wTDhMJxz/DxB8h3EKYhSEUCm4ZEY7fMiIUwi2MWfA5hm2fUuI9Sds+1iSMYYn/W+szR83nje2mgtxhTso696356V5rl+0/xRi1tte6n54Tv8fe9ms8sTg7/OfvtZ76jjFtX2z7YzBqba/ng1ziyKLENiuyu7PvsAPJy2w9E7gowWoBHouxZtki1iz9nK1rlxItXU5oyyoiVZsJV28NvmnZgsWqgR0/NFZbOtFQOrFQepDoZMSTnHA6RDLwSBaWloWlZUJ6NuH0LMLp2YTTs0nLzCaSmU16RjZpmTlkZHUgMzuHjMxsLC0LQuFUvCQiUo95t55A/pZF9Lvuk2ZrY33xCha+PpWshf9kv7J4UrXMerC0xzF0HTeJvYYpqRJp78q3bubDJ/6XAYsepJANrCOPLzseTLTnAXQccABd+g2hU2EPQuGGPyd4tJpNG0rYtH4Nm9cXU76xhIpNJUS3rIUt67DyEiLl68msWk929QZyYxvI902kWd0TSFcSYaPlsTmcT3laPlUZnYhmdiaWXYBlFxDqUEikQyEZHbuQnVdITm4nOuR1JBxpPR+uRZRgiYi0Iu/d9wtGf3UXm37+FR07dkpavWtXL2PR61PJWfTPmmHMS60nS3r8F10POp19ho9TUiWyB6qoKOOzGY9QueCf7L3xPTqxsWZbtYfYYLlUkk61pRG1MBGqSfNK0oORNDlWXm/dMTc2WC6bQnlsjXSkPK0T1ZmdiWV1JpRTQFpuFzLyupDdqRu5nbqRV9CdcGZu469rFmmlGkqw2saVYiIi7Uhm35GEipzln75Px4OOaVJdq778iCXvPk3OVy+yX8WHHBQkVe/1Ppcu4yax99CD6KOkSmSPlpGRxYhjz4Njz8NjMVatKGLFp+9RufYrYptWEy4rwaKVhGOVmFcTJUIskhEfVhfOIJqei2V3IpxTQEZuZzLzCsnpWEhep250yC+kUyRC8r4qEmn7lGCJiLSwXoO/AW/A+k/fgF1MsCoryln0/ots+uh5eq55g96xFXQHFof68H6f8+l28On0HzxaSZWI1MlCIbr33ovuvfdKdSgi7ZYSLBGRFlbQox+fRwbSY8k/8dgNDQ7bq64oo+jDmaxb8CrZK99hr7IFDLYKKjyNTzL3Z0m/s+h10Mn023sI/VrwGERERKRuSrBERFJg3cDTGPfxb5n31P9j/29fAWZUVZaz4stPWL/wPSqWziF33UfsVfkZ+wS3TVgU6s/8rieStu83GTjuW4zMy0/tQYiIiMgONMmFiEgKVFZW8fEt/8XIqg/YTDaVpJHvG2tux1Dm6SxJ24v1nUcQGnAoAw48mi4tfFNkERERqZsmuRARaWXS09MY9PN/8eazf8FWziPsVUQ79CCjy17kDTiQAfuNYlB6eqrDFBERkV2kBEtEJEWysjI59LTLUh2GiIiIJJGmmRIREREREUkSJVgiIiIiIiJJogRLREREREQkSVrVLIJmVgwsTnUctRQCa1MdhLQYne89h871nkPnes+i873n0Lnec7TGc93P3bvUtaFVJVitkZnNqm8KRml/dL73HDrXew6d6z2LzveeQ+d6z9HWzrWGCIqIiIiIiCSJEiwREREREZEkUYK1c3enOgBpUTrfew6d6z2HzvWeRed7z6FzvedoU+da12CJiIiIiIgkiXqwREREREREkkQJloiIiIiISJIowWqAmU0ws8/MbKGZXZ3qeCR5zKyPmb1mZh+b2QIzuyRY39nMXjKzL4KfnVIdqySHmYXN7AMz+2ewPMDM3g3e39PMLD3VMUpymFm+mT1uZp+a2SdmdrDe2+2TmV0W/A3/yMymmlmm3tvth5nda2ZrzOyjhHV1vpct7vbgvM83swNSF7nsqnrO9S3B3/H5ZvaUmeUnbPtlcK4/M7NjUxJ0A5Rg1cPMwsCfgOOAIcAZZjYktVFJElUDl7v7EGAc8OPg/F4NvOLu+wKvBMvSPlwCfJKw/H/Abe6+D7Ae+EFKopLm8EfgX+6+H7A/8fOu93Y7Y2a9gJ8Bo919GBAGTkfv7fbkPmBCrXX1vZePA/YNHhcCf2mhGCU57mPHc/0SMMzdRwCfA78ECD6vnQ4MDfb5c/C5vdVQglW/scBCd//S3SuBR4CJKY5JksTdV7r7nOD5JuIfwHoRP8f3B8XuB05OSYCSVGbWGzge+FuwbMBRwONBEZ3rdsLMOgKHAfcAuHulu5ei93Z7FQGyzCwCZAMr0Xu73XD3N4B1tVbX916eCDzgce8A+WbWo0UClSar61y7+7/dvTpYfAfoHTyfCDzi7hXu/hWwkPjn9lZDCVb9egFLE5aXBeuknTGz/sAo4F2gm7uvDDatArqlKi5Jqj8AVwGxYLkAKE34w633d/sxACgG/h4MCf2bmeWg93a74+7LgVuBJcQTqw3AbPTebu/qey/rc1v7dj7wQvC81Z9rJViyRzOzDsATwKXuvjFxm8fvYaD7GLRxZnYCsMbdZ6c6FmkREeAA4C/uPgrYQq3hgHpvtw/BtTcTiSfVPYEcdhxiJO2Y3st7BjP7FfFLOx5OdSyNpQSrfsuBPgnLvYN10k6YWRrx5Ophd38yWL1625CC4OeaVMUnSXMIcJKZFREf6nsU8Wt08oNhRaD3d3uyDFjm7u8Gy48TT7j03m5/jga+cvdid68CniT+ftd7u32r772sz23tkJmdC5wAnOlf37y31Z9rJVj1ex/YN5iNKJ34xXTTUxyTJElwDc49wCfu/vuETdOBc4Ln5wDPtHRsklzu/kt37+3u/Ym/j1919zOB14DvBMV0rtsJd18FLDWzQcGqbwIfo/d2e7QEGGdm2cHf9G3nWu/t9q2+9/J04OxgNsFxwIaEoYTSBpnZBOLD+09y960Jm6YDp5tZhpkNID6xyXupiLE+9nUyKLWZ2beIX7sRBu519xtTG5Eki5mNB94EPuTr63KuIX4d1qNAX2AxcJq7177AVtooMzsCuMLdTzCzvYj3aHUGPgC+7+4VKQxPksTMRhKf0CQd+BI4j/gXinpvtzNmdj0wifjwoQ+AC4hfi6H3djtgZlOBI4BCYDVwHfA0dbyXgyT7TuLDRLcC57n7rBSELbuhnnP9SyADKAmKvePuFwXlf0X8uqxq4pd5vFC7zlRSgiUiIiIiIpIkGiIoIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJIkSLBERERERkSRRgiUiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIirYyZ9TczN7NIqmORPYOZLTCzI1Idh4hIe6AES0RE2jwzm2Jmm4NHpZlVJSy/kOr4Wjt3H+ruM5JZp5ndamZfmNkmM/vUzM5OZv0iIq2VEiwRkSRTz1PLc/eL3L2Du3cAfgdM27bs7sdtK9eWzk1birUeW4ATgY7AOcAfzewbqQ1JRKT5KcESEUkCMysys1+Y2Xxgi5lFzGycmf3HzErNbF7iECwzm2Fm/2tm75nZRjN7xsw611P3eWb2SdAT8KWZ/Xet7RPNbG5QzyIzmxCs72hm95jZSjNbbma/NbPwTo5jbzN71cxKzGytmT1sZvkJ29aZ2QHBck8zK952XGZ2UjDUrDQ4vsG1Xp8rzGy+mW0ws2lmlrnrr/Suq+fcuJntk1DmPjP7bcLyCcFrWhqcwxGNbOsIM1tmZtcEr1+RmZ2ZsP14M/sgOFdLzWxywrZtQ0N/YGZLgFeD9Y+Z2argdXvDzIbWivvPZvZC0Fv3lpl1N7M/mNn6oOdoVCNfo6Mbc4yN5e7Xufun7h5z93eBN4GDk9mGiEhrpARLRCR5zgCOB/KBbsBzwG+BzsAVwBNm1iWh/NnA+UAPoBq4vZ561wAnAHnAecBtCUnOWOAB4Mqg3cOAomC/+4J69wFGAccAF+zkGAz4X6AnMBjoA0wGcPdFwC+Ah8wsG/g7cL+7zzCzgcBU4FKgC/A88KyZpSfUfRowARgAjADOrTMAs/FBYlPfY/xOjqEuNefG3asbfAHiCcm9wH8DBcBdwHQzy2hkW92BQqAX8Z6bu81sULBtC/Hznh/Ec7GZnVxr/8OJv/bHBssvAPsCXYE5wMO1yp8G/DposwJ4OyhXCDwO/L6RcdfJzK5u6Hw0so4sYAywoCmxiIi0BUqwRESS53Z3X+ruZcD3gefd/fngG/yXgFnAtxLKP+juH7n7FuA3wGl19TC5+3PuvsjjXgf+DRwabP4BcK+7vxS0s9zdPzWzbkFbl7r7FndfA9wGnN7QAbj7wqCuCncvJv7h/PCE7X8FFgLvEk8MfxVsmgQ8F+xbBdwKZAGJQ8Jud/cV7r4OeBYYWU8MM909v4HHzIaOoR6J52ZnLgTucvd33T3q7vcTT1zG7UJ7vwlew9eJJ9qnAbj7DHf/MDhX84knpYfX2ndycM7Kgn3udfdN7l5BPNnd38w6JpR/yt1nu3s58BRQ7u4PuHsUmEY8ud5t7n5TQ+ejkdVMAeYBLzYlFhGRtkAJlohI8ixNeN4P+G6tb/rHE09K6iq/GEgj3uuwHTM7zszeCYbnlRJPnLaV6wMsqiOWfkF9KxPav4t4L0i9zKybmT0SDCncCDxUR0x/BYYBdwQf+iHe47V4WwF3jwXH1ythv1UJz7cCHRqKJcmW7rxIjX7A5bXOXR/ix9gY64OkeZvF2/Y1s4PM7LVgaOUG4CJ2fH1rYjWzsJndZPGhnxv5uncycZ/VCc/L6lhuydd5B2Z2C/Hfl9Pc3VMZi4hIS1CCJSKSPIkfHpcS76FK/LY/x91vSijTJ+F5X6AKWJtYYTAs7QniPULdgh6D54kP5dvWzt51xLKUeK9LYUL7ee4+tI6yiX4XHMdwd88j3hO3rS3MrAPwB+AeYLJ9fd3YCuKJybZyFhzf8p20twMzO9S+ngGwrsehO69lB7U/2G8FshOWuyc8XwrcWOvcZbv71Ea21cnMchKW+xJ/fQD+AUwH+rh7R+I9O1Zr/8RYvwdMBI4mPllE/2B97X2aTXA9Wb3nYyf7Xg8cBxzj7htbJmIRkdRSgiUi0jweAk40s2ODXojMYAKE3gllvm9mQ4LrmW4AHg+GdSVKBzKAYqDazI4jfi3VNvcA55nZN80sZGa9zGw/d19JfCjh/zOzvGDb3mZWezhabbnAZmCDmfUifm1Xoj8Cs9z9AuJD36YE6x8Fjg/iSAMuJ57g/WdnL1Rt7v5mwgyAdT3e3NU66zAX+F5wbiaw/TC9vwIXBb1NZmY5Fp+cIhdqJpa4byf1X29m6UEyeALwWLA+F1jn7uXB9XPf20k9ucRfxxLiCeHvduEYk8Ldf9fQ+ahvPzP7JfHjO9rdS1ouYhGR1FKCJSLSDNx9KfGeh2uIJ0dLiScriX93HyQ+EcUqIBP4WR31bArWPwqsJ/6BdXrC9vcIJr4ANgCv83VP0tnEE7SPg30fZ/shinW5HjggqOs54MltG8xsIvFJKi4OVv0cOMDMznT3z4j3dt1BvBfuROBEd6/cSXupcgnxGEuBM4Gnt21w91nAD4E7ib9uC9l+Qo4+wFsN1L0q2G8F8QkpLnL3T4NtPwJuMLNNwLXEz2tDHiA+xHA58fP4zs4OrBX5HfHeu4UJPV7XpDooEZHmZhoOLSLS8sxsBvCQu/8t1bFI4wWzIs4DRgSTedTefgTx89q79jYREdkztPWbGIqIiLSYoEdu8E4LiojIHktDBEVE9jBmNqWeCQum7HxvaYvMrG8DE1X0TXV8IiLtiYYIioiIiIiIJIl6sERERERERJKkVV2DVVhY6P379091GCIiIiIiIvWaPXv2WnfvUte2VpVg9e/fn1mzZqU6DBERERERkXqZ2eL6tmmIoIiIiIiISJIowRIREREREUkSJVgiIo1QHY2lOgQRERFpA1rVNVh1qaqqYtmyZZSXl6c6FGljMjMz6d27N2lpaakORdq4BR/8h/efup19v/8HDhnYPdXhiIiISCvW6hOsZcuWkZubS//+/TGzVIcjbYS7U1JSwrJlyxgwYECqw5E2zt78f5wbepl/vDqCQwZek+pwREREpBVr9UMEy8vLKSgoUHIlu8TMKCgoUM+nJMXGaDoA+657LcWRiIiISGvX6hMsQMmV7Bb93kiyZJavAaBTxYoURyIiIiKtXZtIsEREUimvqhiAnhSzqawyxdGIiIhIa9bkBMvM+pjZa2b2sZktMLNLgvWdzewlM/si+Nmp6eGmhplx+eWX1yzfeuutTJ48OXUBJXjnnXc46KCDGDlyJIMHD66Ja8aMGfznP//Z7XoXL17MAQccwMiRIxk6dChTpkxJUsQibU/n2DoAsq2C4lXLUhyNiIiItGbJ6MGqBi539yHAOODHZjYEuBp4xd33BV4JltukjIwMnnzySdauXZvUet2dWKxpUz+fc8453H333cydO5ePPvqI0047DWh6gtWjRw/efvtt5s6dy7vvvstNN93EihUaHiV7oKpy8tnEp5H9ANiw4osUByQiIiKtWZMTLHdf6e5zguebgE+AXsBE4P6g2P3AyU1tK1UikQgXXnght9122w7biouLOfXUUxkzZgxjxozhrbfeAmDy5MnceuutNeWGDRtGUVERRUVFDBo0iLPPPpthw4axdOlSrrzySoYNG8bw4cOZNm0aEE+QjjjiCL7zne+w3377ceaZZ+LuO7S/Zs0aevToAUA4HGbIkCEUFRUxZcoUbrvtNkaOHMmbb77ZYJxnnXUWBx98MPvuuy9//etfAUhPTycjIwOAioqKehPB22+/nSFDhjBixAhOP/10ANatW8fJJ5/MiBEjGDduHPPnz69p65xzzuHQQw+lX79+PPnkk1x11VUMHz6cCRMmUFVVBcANN9zAmDFjGDZsGBdeeOEOxx2Lxejfvz+lpaU16/bdd19Wr17d0GkU2T0VGwFYmzMQgLKSpamMRkRERFq5pE7Tbmb9gVHAu0A3d18ZbFoFdKtnnwuBCwH69u3bYP3XP7uAj1dsTFa4AAzpmcd1Jw7dabkf//jHjBgxgquuumq79ZdccgmXXXYZ48ePZ8mSJRx77LF88sknDdb1xRdfcP/99zNu3DieeOIJ5s6dy7x581i7di1jxozhsMMOA+CDDz5gwYIF9OzZk0MOOYS33nqL8ePHb1fXZZddxqBBgzjiiCOYMGEC55xzDv379+eiiy6iQ4cOXHHFFQB873vfqzfO+fPn884777BlyxZGjRrF8ccfT8+ePVm6dCnHH388Cxcu5JZbbqFnz547HMtNN93EV199RUZGRk3Cc9111zFq1CiefvppXn31Vc4++2zmzp0LwKJFi3jttdf4+OOPOfjgg3niiSe4+eabOeWUU3juuec4+eST+clPfsK1114LwFlnncU///lPTjzxxJo2Q6EQEydO5KmnnuK8887j3XffpV+/fnTrVuevmEiTVJVvIQ2I5feDDVBRuirVIYmIiEgrlrRJLsysA/AEcKm7b5cFebwLYsful/i2u919tLuP7tKlS7LCSbq8vDzOPvtsbr/99u3Wv/zyy/zkJz9h5MiRnHTSSWzcuJHNmzc3WFe/fv0YN24cADNnzuSMM84gHA7TrVs3Dj/8cN5//30Axo4dS+/evQmFQowcOZKioqId6rr22muZNWsWxxxzDP/4xz+YMGFCnW02FOfEiRPJysqisLCQI488kvfeew+APn36MH/+fBYuXMj9999fZw/RiBEjOPPMM3nooYeIRCI1x3TWWWcBcNRRR1FSUsLGjfFfieOOO460tDSGDx9ONBqtiXf48OE1x/faa69x0EEHMXz4cF599VUWLFiwQ7uTJk2q6e175JFHmDRpUoOvucjuqiyLv0+qOvQkSgjfvCbFEYmIiEhrlpQeLDNLI55cPezuTwarV5tZD3dfaWY9gCZ/KmlMT1NzuvTSSznggAM477zzatbFYjHeeecdMjMztysbiUS2G1aXeD+mnJycRrW3bYgexIf/VVdX11lu77335uKLL+aHP/whXbp0oaSkZIcy9cUJO05nXnu5Z8+eDBs2jDfffJPvfOc722177rnneOONN3j22We58f+3d+fxdVX13sc/vzNnaqamc6FFOjdNC+mgpdJWJgdALFJUFKjKVVCvXL33ggoCvnw9Ks+jXkXlwQvWoRYQpXAviExysY9MbRlaOlGgdDBt00xtkjOf9fxxTtOkTTqQk5wM3/frlZ6z91577V+ys9Pz22vttb77XdavX39C35PH48Hv97cdy+PxkEgkiEQiXHvttaxZs4axY8dyyy23dDqX1Xvf+162bdtGbW0tq1at4lvf+tYxjyvybsUiLRQAFiyk0Yrxh2tzHZKIiIj0YdkYRdCAu4FNzrkfttv0MHBl5v2VwEPdPVaulZWVcdlll3H33Xe3rTvvvPP46U9/2rZ8qCvcuHHjWLduHQDr1q3j7bff7rTOBQsWcN9995FMJqmtreXZZ59lzpw5JxzTI4880vaM0htvvIHX66WkpISioiIOHjx43DgBHnroISKRCHV1dTzzzDPMnj2bXbt2EQ6HAWhoaGD16tVMmjSpw7FTqRQ7d+5k0aJFfP/736epqYnm5mYWLFjAihUrgPSzZEOHDmXIkCEn9P0cSqaGDh1Kc3MzDzzwQKflzIxLLrmEf/mXf2HKlCmUl5efUP0iJyueacGyQAHNvlJC0aNvYIiIiIgcko0ugvOBTwOLzeyVzNeHgO8B55rZG8A5meV+72tf+1qH0QR/8pOfsGbNGmbMmMHUqVPbhjNfsmQJ9fX1TJs2jTvuuIOJEyd2Wt8ll1zCjBkzqKqqYvHixfzgBz9gxIgRJxzPb3/7WyZNmsTMmTP59Kc/zYoVK/B6vVx44YU8+OCDbYNcdBUnpLv5LVq0iHnz5nHTTTcxatQoNm3axNy5c6mqquLss8/m61//OpWVlQB87nOfY82aNSSTSa644goqKyuZNWsWX/nKVygpKeGWW25h7dq1zJgxgxtuuIFf//rXXYV/lJKSEj7/+c8zffp0zj//fGbPnt227c477+wQ99KlS/nd736n7oHSoxLRFgB8wXxa/eUUJupzHJGIiIj0ZdbZyHS5Ul1d7dasWdNh3aZNm5gyZUqOIhr4brnllg6DYQw0+v2R7tqxeiWnPPkFnjvvv8hf83Mq6l5i1K1v5josERERySEzW+ucq+5sW9YGuRARGYjaWrBC+aQKKiinkXC08+chRURERLI6TLv0P7fcckuuQxDp05LRVgD8oUIoHE7QEuyqr2VMZv45ERERkfbUgiUicgypTIIVCOXjL07PtXagdlcuQxIREZE+TC1YIiLH4OKZBCuvACtNt1q11muyYREREemcEiwRkWNIxVpJOA/BQIhA+SgAoo01OY5KRERE+iolWCIix2DxMGGChAI+iirGAJA8uDfHUYmIiEhfpWewTtCqVaswMzZv3txlme3btzN9+vSsHXPLli0sXLiQmTNnMmXKFK655hogPUnwo48++q7rjUQizJkzh6qqKqZNm8a3v/3tbIUsMvDEw0QIkBfwEioaStx5seZ9uY5KRERE+iglWCdo5cqVnHXWWaxcubLT7YlE94dtTiaTHZa/8pWvcP311/PKK6+wadMmvvzlLwPdT7CCwSBPP/00r776Kq+88gqPPfYYzz//fLdiFxmoLBEm7AKEfB7weGjyDMEbrs11WCIiItJHKcE6Ac3NzaxevZq7776be++9t239M888w4IFC7jooouYOnUqkE60PvWpTzFlyhQuvfRSWlvTD8g/9dRTzJo1i8rKSpYtW0Y0GgVg3Lhx/Pu//ztnnHEGf/jDHzoct6amhjFjxrQtV1ZWEovFuPnmm7nvvvuYOXMm9913Hy0tLSxbtow5c+Ywa9YsHnroIQCWL1/OxRdfzMKFC5kwYQK33norAGZGYWEhAPF4nHg8jpkd9X3/4Q9/YPr06VRVVfH+978fSLd+XX311VRWVjJr1iz++te/th3rox/9KOeeey7jxo3jjjvu4Ic//CGzZs1i3rx51NfXA/DLX/6S2bNnU1VVxZIlS9p+Pu3NmzeP119/vW154cKFHDkBtUhvsUSYKAF83vSfy4PeUoLR+hxHJSIiIn1V/3oG6883wJ712a1zRCV88HvHLPLQQw9xwQUXMHHiRMrLy1m7di1nnnkmAOvWrWPDhg2MHz+e7du3s2XLFu6++27mz5/PsmXL+PnPf86XvvQlrrrqKp566ikmTpzIZz7zGX7xi1/w1a9+FYDy8nLWrVt31HGvv/56Fi9ezPve9z7OO+88rr76akpKSrjttttYs2YNd9xxBwDf+MY3WLx4Mffccw+NjY3MmTOHc845B4AXX3yRDRs2kJ+fz+zZs/nwhz9MdXU1yWSSM888k23btnHdddcxd+7co45/22238Ze//IXRo0fT2NgIwM9+9jPMjPXr17N582bOO+88tm7dCsCGDRt4+eWXiUQinH766Xz/+9/n5Zdf5vrrr+c3v/kNX/3qV/nYxz7G5z//eQC+9a1vcffdd7e1zB2ydOlS7r//fm699VZqamqoqamhurrTibJFepwnESVqobblVn8ZBUqwREREpAtqwToBK1eu5PLLLwfg8ssv79BNcM6cOYwfP75teezYscyfPx+AK664gtWrV7NlyxbGjx/PxIkTAbjyyit59tln2/ZZunRpp8e9+uqr2bRpEx//+Md55plnmDdvXlvLV3uPP/443/ve95g5cyYLFy4kEomwY8cOAM4991zKy8vJy8vjYx/7GKtXrwbA6/XyyiuvsGvXrrYk7Ejz58/nqquu4pe//GVb98XVq1dzxRVXADB58mROPfXUtgRr0aJFFBUVUVFRQXFxMRdeeCGQbnnbvn07kE7CFixYQGVlJStWrOjQUnXIZZddxgMPPADA/fffz6WXXtrpz0ekN3hSUeLmb1uOhcopTjXkMCIRERHpy/pXC9ZxWpp6Qn19PU8//TTr16/HzEgmk5gZt99+OwAFBQUdyh/Z1a6zrndHOrKO9kaNGsWyZctYtmwZ06dP7zQRcs7xxz/+kUmTJnVY/8ILLxw3npKSEhYtWsRjjz121AAdd955Jy+88AKPPPIIZ555JmvXrj3m9xEMBtveezyetmWPx9P2jNpVV13FqlWrqKqqYvny5TzzzDNH1TN69GjKy8t57bXXuO+++7jzzjuPeVyRnuRJRkl4Dv9uJ/MrKKtvIp5I4vd5cxiZiIiI9EVqwTqOBx54gE9/+tO88847bN++nZ07dzJ+/Hj+9re/dVp+x44dPPfccwD8/ve/56yzzmLSpEls376dbdu2AfDb3/6Ws88++7jHfuyxx4jH4wDs2bOHuro6Ro8eTVFREQcPHmwrd/755/PTn/4U5xwAL7/8ctu2J554gvr6esLhMKtWrWL+/PnU1ta2dfkLh8M88cQTTJ48+ajjv/nmm8ydO5fbbruNiooKdu7cyYIFC1ixYgUAW7duZceOHUcldsdy8OBBRo4cSTweb6unM0uXLuUHP/gBTU1NzJgx44TrF8k2bypKwhNoW7bCYQQt3vZcoYiIiEh7PZ5gmdkFZrbFzLaZ2Q09fbxsW7lyJZdcckmHdUuWLOlyNMFJkybxs5/9jClTptDQ0MAXv/hFQqEQv/rVr/j4xz9OZWUlHo+HL3zhC8c99uOPP942yMT555/P7bffzogRI1i0aBEbN25sG+TipptuIh6PM2PGDKZNm8ZNN93UVsecOXNYsmQJM2bMYMmSJVRXV1NTU8OiRYuYMWMGs2fP5txzz+UjH/kIADfffDMPP/wwAP/6r/9KZWUl06dP533vex9VVVVce+21pFIpKisrWbp0KcuXL+/QcnU83/nOd5g7dy7z58/vkNQ9/PDD3HzzzW3Ll156Kffeey+XXXbZCdct0hO8qRjJdgmWf8hwAJr2785VSCIiItKH2aFWjx6p3MwLbAXOBXYBLwGfcM5t7Kx8dXW1O3K0uE2bNjFlypQei3EgW758eYfBMAYj/f5Id+37ziQ2+ady9g0PAvDG31cx4fErWXfOSs4460M5jk5ERERywczWOuc6HYWtp1uw5gDbnHNvOediwL3AxT18TBGRrPG5GCnv4VbawrJRAIQb9uQqJBEREenDejrBGg3sbLe8K7OujZldY2ZrzGxNba0m78ymq666alC3Xolkg/+IBKt4WDrBShzYm6uQREREpA/L+SAXzrm7nHPVzrnqioqKrsr0clQyEOj3RrLB72K4dglWfvEIUs6gWTeERERE5Gg9nWDtBsa2Wx6TWXfCQqEQdXV1+rAsJ8U5R11dHaFQ6PiFRbriHAHiHRIsvD4OWBHeViVYIiIicrSengfrJWCCmY0nnVhdDnzyZCoYM2YMu3btQt0H5WSFQiHGjBmT6zCkP0vG8eAwX8dE/aC3hEC0LkdBiYiISF/WowmWcy5hZl8C/gJ4gXucc6+fTB1+v5/x48f3SHwiIseUiADg/B0TrBZ/GQVxJVgiIiJytJ5uwcI59yjwaE8fR0Qk21wigsFRLVixUDklkZO6VyQiIiKDRM4HuRAR6ati0TAAniNasJL5FZS6JuLJVC7CEhERkT5MCZaISBdikVYALHDEYCkFwyiyMHWNTTmISkRERPoyJVgiIl04lGB5j2jB8hcPA6Cp9qQGRRUREZFBQAmWiEgX4pF0F0GvP6/D+lDJSAAO1tf0ekwiIiLStynBEhHpQiyaacEKdEywCstGARBu2NPrMYmIiEjfpgRLRKQLicwgF74jJqwuHjY6vb1JLVgiIiLSkRIsEZEuHEqw/Ed0EcwrTbdg2cG9vR6TiIiI9G1KsEREuhCPNgPgyy/suMHrp55i/K1KsERERKQjJVgiIl1IRVsACOYVHrWt0VdOKLKvt0MSERGRPk4JlohIF1KZQS46S7BaAhUUxff3dkgiIiLSxynBEhHpQiqWacE6sosgEM0bTllKCZaIiIh0pARLRKQrsTBJZ+SF8o/alCocQZk7QDgcyUFgIiIi0lcpwRIR6Uq8hVZC5AV8R23yFY/EY47avTtzEJiIiIj0Vd1KsMzsdjPbbGavmdmDZlbSbtuNZrbNzLaY2fndjlREpLclwkQI4PMe/acyVDYGgCYlWCIiItJOd1uwngCmO+dmAFuBGwHMbCpwOTANuAD4uZl5u3ksEZFe5Y23ErFQp9uKKsYC0LpfCZaIiIgc1q0Eyzn3uHMukVl8HhiTeX8xcK9zLuqcexvYBszpzrFERHqbJcNELdjptrKRpwIQa9zdmyGJiIhIH5fNZ7CWAX/OvB8NtL+tuyuz7ihmdo2ZrTGzNbW1tVkMR0Ske3yJCLEuWrAKSkaQcB7cgZpejkpERET6suMmWGb2pJlt6OTr4nZlvgkkgBUnG4Bz7i7nXLVzrrqiouJkdxcR6THeZJi4p/MEC4+Hek8pvta9vRuUiIiI9GlHD411BOfcOcfabmZXAR8BPuCcc5nVu4Gx7YqNyawTEek3/KkIBzxlXW4/4BtKXlQt7yIiInJYd0cRvAD4N+Ai51xru00PA5ebWdDMxgMTgBe7cywRkd4WSIVJePO63B4OVVAcV4IlIiIihx23Bes47gCCwBNmBvC8c+4LzrnXzex+YCPproPXOeeS3TyWiEivCqSiJI+RYMXzR1B24GWSKYfXY70YmYiIiPRV3UqwnHOnH2Pbd4Hvdqd+EZFcCrowLpDfdYEhIynZ28K+hkaGlZf2XmAiIiLSZ2VzFEERkYEjlaLQtZIKDOmyiL9kFAD1mmxYREREMpRgiYh0IhFuwmMOQsVdlikoT0/9d2Dfjt4KS0RERPo4JVgiIp1oOVAPgOV13fWveNgpAETr1YIlIiIiaUqwREQ60dqUTrC8BSVdlikZcSoAiaZ/9EZIIiIi0g8owRIR6US4OZ1gBY6RYHnzSmglhOdgTS9FJSIiIn2dEiwRkU7EDtYBECjseqJhzGjwlhMK7+2lqERERKSvU4IlItKJeEsDAHlF5ccsd9BfQUFsX2+EJCIiIv2AEiwRkU4kWpsAyC8+RgsWEM0fTmmirjdCEhERkX5ACZaISCdcuBGAwiHHTrCShaMYRj0tkVgvRCUiIiJ9nRIsEZFOuJb9NLoChuQHj1nOUzwSvyXZv3d3L0UmIiIifZkSLBGRTvjD+2jwlGFmxywXKk1PNty4953eCEtERET6OCVYIiKdyIvu54Dv2ANcABRmJhturdNkwyIiIqIES0SkU0XxOsLBocctV5aZbDhWr8mGRUREJEsJlpl9zcycmQ3NLJuZ/cTMtpnZa2Z2RjaOIyLSK5yjzNUTzx9+3KL5ZaNJOA92UM9giYiISBYSLDMbC5wH7Gi3+oPAhMzXNcAvunscEZHeEjlYR4AErvD4CRYeLw2eUnwte3o+MBEREenzstGC9SPg3wDXbt3FwG9c2vNAiZmNzMKxRER6XEPNdgB8xaNOqHyTbyj5EU02LCIiIt1MsMzsYmC3c+7VIzaNBto/8b0rs66zOq4xszVmtqa2trY74YiIZEX9rs0AFI6aeELlW0PDGJLY35MhiYiISD/hO14BM3sSGNHJpm8C3yDdPfBdc87dBdwFUF1d7Y5TXESkx0X2vgHAyHFTTqh8vGAkFQfWkEo5PJ5jD+suIiIiA9txEyzn3DmdrTezSmA88GpmnpgxwDozmwPsBsa2Kz4ms05EpO+re4s6N4ShQytOrHzRSIr2hKltqKei/PhDu4uIiMjA9a67CDrn1jvnhjnnxjnnxpHuBniGc24P8DDwmcxogvOAJudcTXZCFhHpWQXN29nnH3XcSYYP8Zeme0A37NFkwyIiIoNdT82D9SjwFrAN+CVwbQ8dR0Qku5xjVPRNGgonnPAu+eXpBvuD+3Ycp6SIiIgMdMftIniiMq1Yh9474Lps1S0i0ltqd71BBS24EVUnvE/x8HEAROp39VBUIiIi0l/0VAuWiEi/tHvj8wCUnV59wvuUjjgFgFSTHjUVEREZ7JRgiYi0E9/+HFHnZ/y0OSe8jy9UyAEK8DTrUVMREZHBTgmWiEg7pbUv8YZ/EqG8gpPar8E7lGBYkw2LiIgMdkqwREQymhr2My7+JgeGn3jr1SEtgXIKYppsWEREZLBTgiUikvHm8w/jsxSlVR866X2joQpKknU9EJWIiIj0J0qwREQybPMjNFLIhFkLT3rfZMFwylwjsXgy63GJiIhI/6EES0QEiLUeYHLT39hQvAif33/S+3uKRhC0BHX79/RAdCIiItJfKMESEQG2PrOSPKLkVX/iXe3vLxkJQOM+zYUlIiIymCnBEhEBvBvuYxfDmPHeC97V/vllYwBortNcWCIiIoOZEiwRGfQO7NvBxJZ1vDniw/h93ndVR/GwdIIVa/hHNkMTERGRfkYJlogMem8+/Wu85hh21mfedR0lFaMBSB7QM1giIiKDmRIsERn0Srf9iU2eCUyeNutd1+HLL6aVEJ4WJVgiIiKDWbcTLDP7spltNrPXzewH7dbfaGbbzGyLmZ3f3eOIiPSEPW+sZVziLfaO/yhm1q26GjylBFprsxSZiIiI9Ee+7uxsZouAi4Eq51zUzIZl1k8FLgemAaOAJ81sonNOE8SISJ/yj/9ZTrnzMmHxld2uq9k/lLzYwJls2KWS1NfWsL/mHSL1u4k31ZBoaSQZOYjFW/AlWiAZJ+XADAzSSarHR9ITIOUN4bxBnC8I/jzMF8L8QTz+PLz+YPorEMJ36DUQxB/Iwx8IEgiEMH8AwzBr94XhPJY5nmWSYsM5h8Ol43bpV0tllkllvp+2Eukyrv1y+hWAtv061udcqsMyLlNP2/60W5/dc9HfdfPeRf93xA/g0OKhtdZhXceN1uG9te3ftq8Zgfwh5JcM64HAReTd6FaCBXwR+J5zLgrgnNuXWX8xcG9m/dtmtg2YAzzXzeOJiGSNSyYYu/sRXg1VUz16bLfrCweHUnpgSxYi6311NTvYvXE1Le+8jL9+G6Xh7YxK7KLcYpR3Uj7sArRaHgl8hz/pZZIKD0mCxAi6OEGL99a3IDJoxZ2XmmXPMfLUSbkORUTofoI1EVhgZt8FIsDXnXMvAaOB59uV25VZJyLSZ7y19i+8x9WxZeoNWakvkT+M8qbnSaUcHk/fvWXvUil2v7mBf7z8Z3w7VjOqeSMj2E85kHJGjWcY+4On8Er5bKx0HHnlYwiWjaagbAzF5RUUFQ4hz+sj70QOlkqRikeIRcPEwi3Eoq3Eo2HisQjxaIREPEoylnmNR0kmoqRiUVKJKJaMpePNtBKRaWXq0NrkUhjgSLdqubY7/O3bBmjXgnC4nLVvGiDdJOAOtREcsX9bfe3rabfszDrEcbhekUMtoEevPtRK2r7kkeXaGkzb/dt+mws3sOCtH7Hzxf9SgiXSRxw3wTKzJ4ERnWz6Zmb/MmAeMBu438xOO5kAzOwa4BqAU0455WR2FRHplsYX7qXZhahcdHlW6rOiERTuCbO/sYGhZWVZqTNb4tEwm597hPBrD3JK/fOMYT9jgBoq2FVUxdsjZlF8+jxOnTaX0YVDsndHzOPBE8wnFMwnNKSztjAR6Q6XSrH3tt/gfetp4Ou5DkdEOIEEyzl3TlfbzOyLwJ9c+vbii2aWAoYCu4H2/W3GZNZ1Vv9dwF0A1dXV6rUuIr0iHovynrq/snHIfOYMGZKVOn3F6XtRDXt39okEKxGLsHX1H4m+9iCnN66mkjDNLo+thdVsP/X9jDrjQ4w9bSojPRpQVqS/Mo+HnSM+QGXNn6jdu5uK4eowJJJr3e0iuApYBPzVzCYCAWA/8DDwezP7IelBLiYAL3bzWCIiWbP57/9NJQfxVX4sa3XmlY4CoKVuN1CVtXpPhnOOzVs2sufpO6nc9zBTaaTRFbKxZCGByo8yZf6FnJFXkJPYRKRnDFv4TwTvvZ83/nIXFZ+5NdfhiAx63U2w7gHuMbMNQAy4MtOa9bqZ3Q9sBBLAdf1xBMFUMpketUp3d0UGnOirD3DQ5TF1wSVZq7NoaLrhPlzfaYN9j2pqjfLikw9QtH45s2MvMQl4vXAe78y6imkLLmFuMNjrMYlI7zhlcjWbAtMZ+9a9xGLfIhDw5zokkUGtWwmWcy4GXNHFtu8C3+1O/bm25sH/IH/rKkIf/l+cXjU/1+GISJYk41EmNvwPG4ecxdwstuaUDE8nWImm3ptseNvb7/DGX37BtJo/ca7tpcFK2PiezzLu/OuoHH5Sj8SKSD+WnPMFxq7+Ei888n+Ze8mXch2OyKDW3RasAc0TCDE69halD36I9Y+eQeyMzzJ90ccJBnQnWKQ/2/rSk0yhBc+0i7Nab15xBTF8cLAmq/UeKZFIsmb1Y8Rf+CVzWv/G6ZbgrYIqds67ibHvW0qpL9CjxxeRvmfa4k/xxvM/5pRXf0zr+VeTn6+uwCK5ogTrGKovupamBZfxwkP/h3Hb72P4c9dR/9yNvFZ2Nr5pFzJpzrnkF+X+QfY+xzmcS2Um9XS4VAqHI5VKHZ7c81CZI8s6h7W9fxfHPunZLE9+KGX3rmbMPMl9em1Wzt6I613s08PnsX7D4ySdMXneh07yOMcLw9jrHUHo4DvZrTejvqGe9Y/exahtK5nnttNCHlvHLOGU877EaafO6JFjikj/YB4PycW3MPLxK3judzfy3mt+kuuQ+iWXSpFMxEkm4yQTMRKJBC6VIpFMHZ50nBS4zKQQqcxk45AZU//wROaZgfdp29Tm8P9Zzqzdf3nWbqJpO1yy/fv2M1B3+L/S2u3Wyb6ZSdmPXt++vHX8jNPuvXXrvafT9V3Vj7X7ORya+sI8+Hy+juX6MHN9aLr56upqt2bNmlyH0alEPMbmZx8g+sofmHzg7xRYhKQztvtOY39pFZ7h0ygcM5WKcdMoqxiNx9ezuWsymSISaSUabiEaaSUWaSEeaSUeaSERDZOItpKMhUnGWknFwqRiYUiEIR5JvyYiWCKKJxnBm4ziT0XxuSjeVAyPSx7+Iv3qdQk8JPG6JF7S632Z9z5S6VdL9ej3LJJNb/gmMOFb2f9789rtH6SwdRenfXt91up8Y/0L1D79c6rqH6PAImz3vYfmGVcy+dyr8eVlZwREERkYXvzxJziz4c+8fu4KZpz14VyHkzUulaS1uYmWAw20Hqgj0txArLmReGsTydYGUuEDpGItWLwVS0TxJsN4kxG8yQi+VARfKkogFcHvYnhdHI9L4iOJzyXwksJH+tVv/W7IgEHhd4kPMP2f7mHm2JJch9LGzNY656o726YWrBPk8weY/oFPwgc+STTSwusvPUHj5mcZUruW6bWPUrD/T/B6umzSGXVWTJO3hBZvMQlPHklviJQvhPOFjqg5PXmmuQSeZBRPMoYnFcWbjOJzMXypGD4Xw5/5ChIj6GIEiVNgjnfTASDhPEQtQIwAMQsSs/Rr3IIkzUfcQjivj5R5cebDeQ69+nDmxXl84PGBx4vz+NPvzYMzL+nJOjN3SQzAc+hWCWYe3KE7JeZJT8ppnsN3Kswyk3Qe3v/E71Oc3I0CO6kbCz17E6JnYznJn8vJ1n8SxU+67h4sb85RNrNnPnhEi09jUvNLxGLxbj1oHgm3sv7J31D42q+ZEt/IKc7P62WLKT/7WsZVnd2LrZwi0p9M/+zP+MePzmLck5/nrZIHOW363FyH1KlUMkVDXQ0Ne3bQUl9DtGkfieb9uJZ9eMP1BKL15MXqKUw2MsQdoMi1HvdzT9IZEQsS4dBnmxBxCxDzhIh6Cmj1lZHwBsEbyHyO8eG8fjj0GefQOo8P5/FjmWXzGB5Lf3Zx7VqK0u/bfe45tKHdOnd4y9F/tjv8/3942mlrayk7uky7DW1vrZP17cs7d7iM66JMV/t2FudJrW/3vsP/0q79TfnDW6xjobafypDCyYwYcuRn6L5LLVhZkEom2bPrLWq3byBcs5XUwRo8rfsJRfaTl2jC5w7fNQm6KHD4V8mRTipSeIibn7gFSFiAhCdI0hPIfAVJedNfLpOkOV8I8+dh/jw8/hCeQD4WyMMXyMMXzMcXzMcfzMcfyicQyieYV0AwL59AsADT8xkiPeblB3/ErFdv4a1P/I3TJp18t72aba+y88k7mbDnvyjlILttBLve8wmmXPAFhgztbM53EZGOdr29mcCvP0geYd4860fMPOcTvXr8WDxB7Z5dNO7dTmvtDuINu3AH/kGg5R/kR/ZSkqhlaKqeoMWP2jfhPDTZEA56imnxlxINlBILlpIKFkOoBG9eMd78Yvz5JQSLSskrKiO/qJTC4nJCoTyN/Cy95lgtWEqwRESyaPfmNYy+9wM8X3kb85b88wnt09rcxOtPraDo9RVMjm0g7rysL5xPYM7VTD3rYjxebw9HLSIDze63txD+3Sc4PfkmrxQuYMg5X+e0LLR+J+Ix9u/ZSeOe7TTX7iDWsBOa/oG/tYaCyD5KErVUuPqjutrFnJf9nqE0+StoDQ0nXjAShowmWDqK/NIRFJSNoHjoSAqLh2Ie/c2Tvk8JlohIL3GpJA23jePNojnM/tofuywXi4TZ+vdVxF55gMlNfyPfouyykbx96qVMOu8aho06pRejFpGBKBpp4aXff4eZ7yyn0MLstQq2F8/BRkwjVHEawaJy8gqLSTojmYjhEnES4SYiB+qIN+8n2VKPp3U/wfBeCiJ7KUnsp8w14O3Yj4uI81PnHcoB/zAiecNJFI7CUzyGYPkYCitOpWzkOIrKhitxkgFFCZaISC966T8+yfT6J4hcu47SzNxYAM2N+9n23EPENv2FyQdWM4QWGlwRW8oWUzL3cibNuUDdW0Qk6xrq69j85HL8259mQusrFNN8wvseIJ86z1AO+CuI5A0nVTgST/Fo8srHMGTYqZSPHk9RyTA9FyqDjhIsEZFetH3Lq4z6/WL2+Eaxf9QiXLiRIY0bGR9/E5+laKSQN4vn4626lMnvu4hQqP88uCsi/ZtLpdi7ZzdNNW8SPthAvLUJj4H5/Hi8fryhIeSXDGVI6TCKy4YTCGruT5HOKMESEellLz1xP0P/3y2McnsJE2RH8HSaK86gcPqHmFq9CJ//3Y8wKCIiIrmlYdpFRHrZ7HMvw53zccLxJMV+LzPUfUZERGRQUIIlItJDzIz8gP7MioiIDCZ6mlpERERERCRLlGCJiIiIiIhkiRIsERERERGRLOlTowiaWS3wTq7jOMJQYH+ug5Beo/M9eOhcDx4614OLzvfgoXM9ePTFc32qc66isw19KsHqi8xsTVdDMMrAo/M9eOhcDx4614OLzvfgoXM9ePS3c60ugiIiIiIiIlmiBEtERERERCRLlGAd3125DkB6lc734KFzPXjoXA8uOt+Dh8714NGvzrWewRIREREREckStWCJiIiIiIhkiRIsERERERGRLFGCdQxmdoGZbTGzbWZ2Q67jkewxs7Fm9lcz22hmr5vZP2fWl5nZE2b2Rua1NNexSnaYmdfMXjaz/84sjzezFzLX931mFsh1jJIdZlZiZg+Y2WYz22Rm79W1PTCZ2fWZv+EbzGylmYV0bQ8cZnaPme0zsw3t1nV6LVvaTzLn/TUzOyN3kcvJ6uJc3575O/6amT1oZiXttt2YOddbzOz8nAR9DEqwumBmXuBnwAeBqcAnzGxqbqOSLEoAX3POTQXmAddlzu8NwFPOuQnAU5llGRj+GdjUbvn7wI+cc6cDDcBncxKV9IT/AB5zzk0Gqkifd13bA4yZjQa+AlQ756YDXuBydG0PJMuBC45Y19W1/EFgQubrGuAXvRSjZMdyjj7XTwDTnXMzgK3AjQCZz2uXA9My+/w887m9z1CC1bU5wDbn3FvOuRhwL3BxjmOSLHHO1Tjn1mXeHyT9AWw06XP860yxXwMfzUmAklVmNgb4MPCfmWUDFgMPZIroXA8QZlYMvB+4G8A5F3PONaJre6DyAXlm5gPygRp0bQ8YzrlngfojVnd1LV8M/MalPQ+UmNnIXglUuq2zc+2ce9w5l8gsPg+Myby/GLjXORd1zr0NbCP9ub3PUILVtdHAznbLuzLrZIAxs3HALOAFYLhzriazaQ8wPFdxSVb9GPg3IJVZLgca2/3h1vU9cIwHaoFfZbqE/qeZFaBre8Bxzu0G/jewg3Ri1QSsRdf2QNfVtazPbQPbMuDPmfd9/lwrwZJBzcwKgT8CX3XOHWi/zaXnMNA8Bv2cmX0E2OecW5vrWKRX+IAzgF8452YBLRzRHVDX9sCQefbmYtJJ9SiggKO7GMkApmt5cDCzb5J+tGNFrmM5UUqwurYbGNtueUxmnQwQZuYnnVytcM79KbN676EuBZnXfbmKT7JmPnCRmW0n3dV3MelndEoy3YpA1/dAsgvY5Zx7IbP8AOmES9f2wHMO8LZzrtY5Fwf+RPp617U9sHV1Letz2wBkZlcBHwE+5Q5P3tvnz7USrK69BEzIjEYUIP0w3cM5jkmyJPMMzt3AJufcD9ttehi4MvP+SuCh3o5Nsss5d6Nzboxzbhzp6/hp59yngL8Cl2aK6VwPEM65PcBOM5uUWfUBYCO6tgeiHcA8M8vP/E0/dK51bQ9sXV3LDwOfyYwmOA9oateVUPohM7uAdPf+i5xzre02PQxcbmZBMxtPemCTF3MRY1fscDIoRzKzD5F+dsML3OOc+25uI5JsMbOzgL8B6zn8XM43SD+HdT9wCvAOcJlz7sgHbKWfMrOFwNedcx8xs9NIt2iVAS8DVzjnojkMT7LEzGaSHtAkALwFXE36hqKu7QHGzG4FlpLuPvQy8DnSz2Lo2h4AzGwlsBAYCuwFvg2sopNrOZNk30G6m2grcLVzbk0OwpZ3oYtzfSMQBOoyxZ53zn0hU/6bpJ/LSpB+zOPPR9aZS0qwREREREREskRdBEVERERERLJECZaIiIiIiEiWKMESERERERHJEiVYIiIiIiIiWaIES0REREREJEuUYImIiIiIiGSJEiwREREREZEs+f+sGRyjln68vQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3983,31 +3983,31 @@ " 36\n", " True\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " bAP.soma.v\n", - " 0.0018\n", - " 2.86e-06\n", + " 0.00178\n", + " 6.03e-05\n", " \n", " \n", " 37\n", " True\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step1.soma.v\n", - " 0.00194\n", - " 5.32e-05\n", + " 0.00159\n", + " 5.43e-06\n", " \n", " \n", " 38\n", " True\n", " 2\n", - " 0.12\n", - " 0.0646\n", + " 0.0769\n", + " 0.069\n", " Step3.soma.v\n", - " 0.00194\n", - " 4.6e-06\n", + " 0.00176\n", + " 1.68e-05\n", " \n", " \n", "\n", @@ -4015,14 +4015,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "36 True 2 0.12 0.0646 bAP.soma.v \n", - "37 True 2 0.12 0.0646 Step1.soma.v \n", - "38 True 2 0.12 0.0646 Step3.soma.v \n", + "36 True 2 0.0769 0.069 bAP.soma.v \n", + "37 True 2 0.0769 0.069 Step1.soma.v \n", + "38 True 2 0.0769 0.069 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "36 0.0018 2.86e-06 \n", - "37 0.00194 5.32e-05 \n", - "38 0.00194 4.6e-06 " + "36 0.00178 6.03e-05 \n", + "37 0.00159 5.43e-06 \n", + "38 0.00176 1.68e-05 " ] }, "metadata": {}, @@ -4030,7 +4030,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACeoUlEQVR4nOzdeXxU1f3/8ddnJvsOCYRVglaQLaICYgXXfhXrglQrWjf0a/2qtVXrUrVW0dbft19ra11aqa2t1gWh7nVfUbEiBkRUEEGJ7BASyEL2mfP7415iCNkgk0yW9/PxGJl77rnnfu7czDifOeeea845REREREREpO0C0Q5ARERERESku1CCJSIiIiIiEiFKsERERERERCJECZaIiIiIiEiEKMESERERERGJECVYIiIiIiIiEaIES0SkkzCzHDNzZhYT7Vi6OzObYWbzox1HZ2Nmk81sRbTjEBHpypRgiYhIl2ZmM82sxszK6j2ui3ZcXZFz7j3n3PBItmlmWWb2vpkVmtl2M/vAzA6P5D5ERDoT/UoqIhIhZhbjnKuNdhw91Bzn3DnRDqK9dPG/rTLgQmAl4ICpwL/NrG8XPiYRkSapB0tEpA3MLN/MfmFmS4EdZhZjZhPN7D/+r/WfmNlR9erPM7P/NbOFZlZiZs+ZWe8m2r7AzJabWamZfW1m/9Ng/VQzW+K385WZTfHL083sQTPbaGbrzew3ZhZs4Tj2M7O3/F6GrWb2mJll1FtXZGYH+8sDzKxg53GZ2Slm9rl/vPPMbESD1+caM1tqZsVmNsfMEvb8ld5zZna9/7qUmtkyM5vWRD0zs7vMbIv/Wn5qZqP9dfFmdqeZrTGzzWY2y8wSW7n/h/z6r/sxvGNmQ+qtv9vM1vr7XGRmk+utm2lmT5rZo2ZWAswwswl+7892/9zeZ2Zx9bZxZnaZma309/dr/9z9x9/H3Pr1m4j5KDNb15rjay3nXKVzboVzLgwYEAJ6AY3+3YuIdHVKsERE2u4s4EQgA8gGXgR+g/cF8hrgKTPrU6/+eXi/6PcHaoF7mmh3C3ASkAZcANxVL8mZAPwTuNbf7xFAvr/dQ3673wEOAo4DLmrhGAz4X2AAMAIYDMwEcM59BfwCeNTMkoB/AA875+aZ2TBgNnAl0Ad4Ca93ov4X+TOAKcBQIBeY0WgAZpP85KGpx6QWjqGhr4DJQDpwqx9//0bqHYf3+g3z654BFPrrfuuXj8V7PQcCN+9BDGcDvwaygCXAY/XWfeS32xt4HPhXg+RzKvAk3vl9DC8xucpv6zDgWOCyBvs7HjgEmAhcBzwAnIN3Pkfj/a3uNT9Rbur8/LmlbYFK4Hngb865LW2JRUSkszLnXLRjEBHpsswsH7jNOfd3f/kXwGjn3Ln16rwKPO6ce9jM5gELnHPX++tG4n3xTsT7ErwaiG1s6JSZPQu87Zy728z+ApQ7565qUCcbWANkOOcq/LKzgIudc0fvwXGdCtzinDuoXtnzeEmSA8Y756rM7FfAGOfcGX6dALAWONtPwPKBm5xzj/rr7wDSnHOXtDaWVsQ6E7gRKK9XPNI5t6FBvSX+MT1nZjOAi5xzk8zsGGAWXuK70O9pwcwMb3hbrp9kYmaH4Z3Loa2I6yEgwTl3pr+cAhQDOc65tY3U3wYc5Zz7xD+mY5xzRzTT/pXAkc65af6yAyY55973lxcBc51z/+cv/x4IOueubKbNo4BHnXODWjq+veEnkNOAOOfcw+2xDxGRaNM1WCIibVf/y/IQ4IdmdnK9sljg7Sbqf+Ovz2rYqJmdANyC14MSAJKAT/3Vg/F6ixoa4re30csPwN92ty/0DfaVDdyN1+OT6m+zrUG1v+L1PlzsnKvyywb4xwCAcy5sZmvxenp22lTvebm/TaTNbXgNlpmdB/wcyPGLUmjkdXbOvWVm9wF/AoaY2dN4PY8JeK/5onqvpQHNDrdsoO51d86VmVkR3vGvNbNrgP/2lx1eT2VWY9v6xzMM+AMwzo8rBljUYH+b6z2vaGS53x7EHnHOuUpgtnlDX5c45z6JZjwiIu1BQwRFRNqu/lCAtcAjzrmMeo9k59xv69UZXO/5PkANsLV+g2YWDzwF3AlkO+cy8BKqnd/01wL7NRLLWqAKyKq3/zTn3KgWjuH/+ccxxjmXhjes7Nuswut9+SPwIDDTvr1ubANeUreznvnHt76F/e3GvCnCy5p5TG65lbq2huAlhJcDmf7r91n9Y6rPOXePc+4QYCReQnst3jmpAEbVey3TnXMpe3BYdefafw17Axv8Y7kObzhiLz++4gbxNRxicj/wBbC/f45ubOp42ot519o1dX5m7UFTscC+7RWniEg0KcESEYmsR4GTzex4MwuaWYI/cUD9IVfnmNlI/3qm24AnnXOhBu3EAfFAAVDr92YdV2/9g8AFZnasmQXMbKCZHeCc2wi8BvzezNL8dfuZ2ZEtxJ2KNxyu2MwG4iUY9d0N5DnnLsK7xmznl+m5wIl+HLHA1XgJ3n9aeqEa8qcIT2nm8d4eNJeMl6AUgDdhCN41SLsxs/Fmdqgf/w6864TC/lDBv+Jd+9bXrzvQzI6vt62zepOYNOL7/rVlcXjXYi3whwem4l0nVwDEmNnNeD1YzUkFSoAyMzsAuLSF+hHnnBvVzPlpdNineZO+TDKzODNL9IfRZgMfdmz0IiIdQwmWiEgE+V+ep+L1LhTg9Shdy66ft4/gTUSxCW8Y2s8aaafUL5+LN1TvR3jD83auX4g/8QVez8c7fNuTdB5egrbM3/ZJvAk1mnMrcLDf1ovA0ztXmNlUvEkqdn6h/zlwsJmd7ZxbgdfbdS9ej8/JwMnOueoW9teunHPLgN8DH+ANkxsDvN9E9TS8RGob3nDHQuB3/rpfAKuABebN5vcGMBzAzAYDpXw7bLMxj+MN8yzCm3xi5zDGV4FXgC/9fVbSwjBOvGGLP/L3+VdgTgv1O4t4vOGXhXg9m98HTmx4jZyISHehSS5ERDqQP8nFo865v0U7FmkbMzsHb/jgDU2sfwhY55y7qUMDExGRqNIkFyIiInth58yIIiIi9WmIoIhID2HeTW/bOjmBdHFmdmMTfwcvRzs2EZHuQEMERUREREREIkQ9WCIiIiIiIhHSqa7BysrKcjk5OdEOQ0REREREpFmLFi3a6pzr07C8UyVYOTk55OXlRTsMERERERGRZpnZN42Va4igiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhHSqa7BakxNTQ3r1q2jsrIy2qFIJ5CQkMCgQYOIjY2NdijSDS394DU2zf8nEy77GxnJCdEOR0RERLqgTp9grVu3jtTUVHJycjCzaIcjUeSco7CwkHXr1jF06NBohyPdUNpbN5Bbs4p3P3yLI475frTDERERkS6o0w8RrKysJDMzU8mVYGZkZmaqN1PazYbgAABiVrwQ5UhERESkq+r0CRag5Erq6G9B2pMLhwFILfkyypGIiIhIV9UlEiwRkY6QFC4FIL1qQ5QjERERka5KCVYrmBlXX3113fKdd97JzJkzoxdQPUcddVSzN2c+9dRTmThx4i5lM2fOZODAgYwdO5bRo0fz/PPPt3eYIl1CcrgMgH6hzYRDoShHIyIiIl2REqxWiI+P5+mnn2br1q0Rbdc5R9gfktQetm/fzqJFiyguLubrr7/eZd1VV13FkiVL+Ne//sWFF17YrnGIdBUpzkuw4qyWrZvWRDkaERER6YqUYLVCTEwMF198MXfddddu6woKCjjttNMYP34848eP5/333we8XqI777yzrt7o0aPJz88nPz+f4cOHc9555zF69GjWrl3Ltddey+jRoxkzZgxz5swBYN68eRx11FGcfvrpHHDAAZx99tk45xqN75FHHqnrjVq4cGFd+dNPP83JJ5/MmWeeyRNPPNHotiNGjCAmJmaX5PH6669n5MiR5Obmcs011wCQn5/PMcccQ25uLsceeyxr1nhfPmfMmMGll17KxIkT2XfffZk3bx4XXnghI0aMYMaMGXVtXnrppYwbN45Ro0Zxyy237BZHcXExQ4YMqUv0duzYweDBg6mpqWk0bpH2kOLK+AZvoovt61dGORoRERHpijr9NO313frvz1m2oSSibY4ckMYtJ49qsd5PfvITcnNzue6663Ypv+KKK7jqqquYNGkSa9as4fjjj2f58uXNtrVy5UoefvhhJk6cyFNPPcWSJUv45JNP2Lp1K+PHj+eII44A4OOPP+bzzz9nwIABHH744bz//vtMmjRpt/bKy8tZsmQJ7777LhdeeCGfffYZALNnz+bmm28mOzub0047jRtvvHG3bT/88EMCgQB9+vQBoLCwkGeeeYYvvvgCM2P79u0A/PSnP+X888/n/PPP5+9//zs/+9nPePbZZwHYtm0bH3zwAc8//zynnHIK77//Pn/7298YP348S5YsYezYsdx+++307t2bUCjEsccey9KlS8nNza2LIz09nbFjx/LOO+9w9NFH88ILL3D88cfrflfSccJhUihnWfxYhlRtoLxwXbQjEhERkS6ozT1YZjbYzN42s2Vm9rmZXeGXzzSz9Wa2xH906ZvKpKWlcd5553HPPffsUv7GG29w+eWXM3bsWE455RRKSkooKytrtq0hQ4bUXRc1f/58zjrrLILBINnZ2Rx55JF89NFHAEyYMIFBgwYRCAQYO3Ys+fn5jbZ31llnAXDEEUdQUlLC9u3b2bx5MytXrmTSpEkMGzaM2NjYusQL4K677mLs2LFcc801zJkzp252vvT0dBISEvjv//5vnn76aZKSkgD44IMP+NGPfgTAueeey/z58+vaOvnkkzEzxowZQ3Z2NmPGjCEQCDBq1Ki6mOfOncvBBx/MQQcdxOeff86yZct2O47p06fX9eA98cQTTJ8+vdnXUSSiqooJ4ChJ/Q4A1dvWRzkgERER6Yoi0YNVC1ztnFtsZqnAIjN73V93l3Puzma23SOt6WlqT1deeSUHH3wwF1xwQV1ZOBxmwYIFJCQk7FI3JiZml+ua6t+7KTk5uVX7i4+Pr3seDAapra1ttF7DqcvNjLlz57Jt27a6G/KWlJQwe/Zsbr/9dsC7Bmvn8L+GcS9cuJA333yTJ598kvvuu4+33nqrVXEGAoFdYg4EAtTW1rJ69WruvPNOPvroI3r16sWMGTMavZfVKaecwo033khRURGLFi3imGOOaXa/IhFV5c0gGE4bRGVBLOHSTVEOSERERLqiNvdgOec2OucW+89LgeXAwLa22xn17t2bM844gwcffLCu7LjjjuPee++tW16yZAkAOTk5LF68GIDFixezevXqRtucPHkyc+bMIRQKUVBQwLvvvsuECRP2KK6dvT7z588nPT2d9PR0Zs+ezSuvvFJ33deiRYuavA6rvrKyMoqLi/n+97/PXXfdxSeffALAd7/73brtH3vsMSZPntzq+EpKSkhOTiY9PZ3Nmzfz8ssvN1ovJSWF8ePHc8UVV3DSSScRDAZbvQ+Rtqqt9pJ+i02gMNCb2B2boxyRiIiIdEURneTCzHKAg4AP/aLLzWypmf3dzHo1sc3FZpZnZnkFBQWRDKddXH311btMCHHPPfeQl5dHbm4uI0eOZNasWQCcdtppFBUVMWrUKO677z6GDRvWaHvTpk0jNzeXAw88kGOOOYY77riDfv367VFMCQkJHHTQQVxyySU8+OCD5Ofn88033+wyPfvQoUNJT0/nww8/bLSN73//+2zYsIHS0lJOOukkcnNzmTRpEn/4wx8AuPfee/nHP/5Bbm4ujzzyCHfffXer4zvwwAM56KCDOOCAA/jRj37E4YcfXrfu5ptv3mWa+OnTp/Poo49qeKB0uBo/wQrExFEck0VC5ZYoRyQiIiJdkTU1M90eN2SWArwD3O6ce9rMsoGtgAN+DfR3zl3YXBvjxo1zDe/ptHz5ckaMGBGRGKV70N+EtIeSrz4i7ZHv8caBf6TXV8/Sp3wl+9y8+7WCIiIiIgBmtsg5N65heUR6sMwsFngKeMw59zSAc26zcy7knAsDfwX2bNybiEgHqq3xerCCsQnUJGWTGSqMckQiIiLSFUViFkEDHgSWO+f+UK+8f71q04DPGm4rItJZ1FT5QwRj4yG1H8lWSWlxUZSjEhERka4mErMIHg6cC3xqZkv8shuBs8xsLN4QwXzgfyKwLxGRdhGqqQC8BCs2w7vZcNGmNaSm945mWCIiItLFtDnBcs7NB6yRVS+1tW0RkY5SW10FQExcPPHx3kSopQVrYfjYKEYlIiIiXU0kerBERLq82hovwQrGJpDWKwuAyiLdbFhERET2TESnaRcR6arCNd/2YPXK3geA2uIN0QxJREREuiAlWK307LPPYmZ88cUXTdbJz89n9OjREdvnjBkzePLJJ5tcf+WVVzJw4EDC4XBd2UMPPUSfPn0YO3YsI0eO5K9//WvE4hHpzsL+LIIxcQmkpPVih4uHMt1sWERERPaMEqxWmj17NpMmTWL27NmNrq+trW3zPkKhUKvrhsNhnnnmGQYPHsw777yzy7rp06ezZMkS5s2bx4033sjmzfqSKNKSkN+DFRubiJmxLdCb2HK9d0RERGTPKMFqhbKyMubPn8+DDz7IE088UVc+b948Jk+ezCmnnMLIkSMBL9E6++yzGTFiBKeffjrl5eUAvPnmmxx00EGMGTOGCy+8kKoq78tcTk4Ov/jFLzj44IP517/+tdu+33jjDcaNG8ewYcN44YUXdtn3qFGjuPTSS5tM+vr27ct+++3HN998U1d2zz33MHLkSHJzcznzzDMBKCoq4tRTTyU3N5eJEyeydOlSAGbOnMn555/P5MmTGTJkCE8//TTXXXcdY8aMYcqUKdTU1ABw2223MX78eEaPHs3FF19Mw5tXh8NhcnJy2L59e13Z/vvvr8RPOhW3M8FKiAegJCaLxKqt0QxJREREuqCuNcnFy9fDpk8j22a/MXDCb5ut8txzzzFlyhSGDRtGZmYmixYt4pBDDgFg8eLFfPbZZwwdOpT8/HxWrFjBgw8+yOGHH86FF17In//8Zy6//HJmzJjBm2++ybBhwzjvvPO4//77ufLKKwHIzMxk8eLFje47Pz+fhQsX8tVXX3H00UezatUqEhISmD17NmeddRZTp07lxhtvpKamhtjY2F22/frrr/n666/5zne+U1f229/+ltWrVxMfH1+X8Nxyyy0cdNBBPPvss7z11lucd955LFmyBICvvvqKt99+m2XLlnHYYYfx1FNPcccddzBt2jRefPFFTj31VC6//HJuvvlmAM4991xeeOEFTj755Lp9BgIBpk6dyjPPPMMFF1zAhx9+yJAhQ8jOzm71aRJpb+HanT1YCQBUJGSRXdb0kGARERGRxqgHqxVmz55d19tz5pln7tJjNGHCBIYOHVq3PHjwYA4//HAAzjnnHObPn8+KFSsYOnQow4YNA+D888/n3Xffrdtm+vTpTe77jDPOIBAIsP/++7PvvvvyxRdfUF1dzUsvvcSpp55KWloahx56KK+++mrdNnPmzGHs2LGcddZZ/OUvf6F372/v45Obm8vZZ5/No48+SkyMl1/Pnz+fc889F4BjjjmGwsJCSkpKADjhhBOIjY1lzJgxhEIhpkyZAsCYMWPIz88H4O233+bQQw9lzJgxvPXWW3z++ee7Hcf06dOZM2cOAE888USzxywSDW5nghWfCEBNYja9w0XQoEdWREREpDldqwerhZ6m9lBUVMRbb73Fp59+ipkRCoUwM373u98BkJycvEt9M2t2uTEN22ipvVdffZXt27czZswYAMrLy0lMTOSkk04CvGTmvvvua7S9F198kXfffZd///vf3H777Xz6afM9gvHx3nCpQCBAbGxsXTyBQIDa2loqKyu57LLLyMvLY/DgwcycOZPKysrd2jnssMNYtWoVBQUFPPvss9x0003N7leko7lQNbUuQHyc1xPsUrNJ2lJFWek2UtJ0s2ERERFpHfVgteDJJ5/k3HPP5ZtvviE/P5+1a9cydOhQ3nvvvUbrr1mzhg8++ACAxx9/nEmTJjF8+HDy8/NZtWoVAI888ghHHnlkq/b/r3/9i3A4zFdffcXXX3/N8OHDmT17Nn/729/Iz88nPz+f1atX8/rrr9dd79WUcDjM2rVrOfroo/m///s/iouLKSsrY/LkyTz22GOAd21XVlYWaWlprYpvZzKVlZVFWVlZk7MemhnTpk3j5z//OSNGjCAzM7NV7Yt0mJoqaoghLsb7WIxJHwDAtk1rohmViIiIdDFKsFowe/Zspk2btkvZaaed1uTEEsOHD+dPf/oTI0aMYNu2bVx66aUkJCTwj3/8gx/+8IeMGTOGQCDAJZdc0qr977PPPkyYMIETTjiBWbNmEQ6HeeWVVzjxxBPr6iQnJzNp0iT+/e9/N9rGRRddRF5eHqFQiHPOOYcxY8Zw0EEH8bOf/YyMjAxmzpzJokWLyM3N5frrr+fhhx9u5asDGRkZ/PjHP2b06NEcf/zxjB8/vm7drFmzmDVrVt3y9OnTefTRRzU8UDqnUDXV9RKsxN5eglVSoJsNi4iISOtZwxnfomncuHEuLy9vl7Lly5czYsSIKEUknZH+JqQ9LL1/Bv03vUXWzG8wM775YjFDnjiavEPuYNzJ/xPt8ERERKSTMbNFzrlxDcvVgyUiAhCqoppvrzPM6DcEgNrijdGMSkRERLoYJVgiIoCFqqnh21sdpKX1osLFQemmKEYlIiIiXU2XSLA60zBGiS79LUh7CYSrCdm3E6taIEBhoDcx5VuiGJWIiIh0NZ0+wUpISKCwsFBfrAXnHIWFhSQkJEQ7FOmGLFRDje16s+7SmEySqpRgiYiISOt1+vtgDRo0iHXr1lFQUBDtUKQTSEhIYNCgQdEOQ7qhQLia2gYJVnl8H/ru+DJKEYmIiEhX1O4JlplNAe4GgsDfnHN7dLfg2NhYhg4d2i6xiYjsFAxXU2Vxu5TVJPald+mCKEUkIiIiXVG7DhE0syDwJ+AEYCRwlpmNbM99iojsjUC4htrArj1YLrUfyVbJjtLt0QlKREREupz2vgZrArDKOfe1c64aeAKY2s77FBHZYzGumnCDIYIxaf0BKNq8NhohiYiISBfU3gnWQKD+N5N1flkdM7vYzPLMLE/XWYlItATCNYQDuw4RTOjtfVyVblGCJSIiIq0T9VkEnXMPOOfGOefG9enTJ9rhiEgPFeNqCAV3TbBS+3gTqpRvWx+NkERERKQLau8Eaz0wuN7yIL9MRKRTiXE1hBtcg9Ur2/v4qt2+IRohiYiISBfU3gnWR8D+ZjbUzOKAM4Hn23mfIiJ7LNbV4ILxu5SlZWRR6WKhdHOUohIREZGupl2naXfO1ZrZ5cCreNO0/90593l77lNEZG/EUoNr0INlgQBFgd7ElCvBEhERkdZp9/tgOedeAl5q7/2IiLRFDLW4BtdgAZTEZJJYqQl4REREpHWiPsmFiEjUOUc8NdBgiCDAjrgsUmoLoxCUiIiIdEVKsEREQjXevzG792DVJGWTGVaCJSIiIq2jBEtEejxXW+k9aaQHK5Q6gBQqKC8p6uCoREREpCtSgiUiPV51dRUAgUZ6sGJ7e1O1F274ukNjEhERka5JCZaI9HhVlRUAWMzuPVjJfXIAKN60uiNDEhERkS5KCZaI9HjVVX6CFZuw27pe/fcFoHLrNx0ak4iIiHRNSrBEpMerqfKuwQrG7t6D1af/PtS4IKHtazs6LBEREemClGCJSI9X7SdYMY0kWLGxsRRYJjGlGzo6LBEREemClGCJSI9X409yEYzbfYggwLbYPiRVbOzIkERERKSLUoIlIj1eTbV3DVZjQwQBdiT0J6Nmc0eGJCIiIl2UEiwR6fFqq70hgrFN9GDVpgwkK1xIuLa2I8MSERGRLkgJloj0eDsTrJj4xhMsyxhErIXYVrC+I8MSERGRLkgJloj0eCE/wYprogcrIWsIAEUbvuqwmERERKRrUoIlIj1ebY03yUVsEz1Yqdk5AJRtye+giERERKSrUoIlIlK9A4DYxJRGV2cN3M+rVrSmw0ISERGRrqlNCZaZ/c7MvjCzpWb2jJll+OU5ZlZhZkv8x6yIRCsi0h6qywCIT0xvdHV6RialLhErXteRUYmIiEgX1NYerNeB0c65XOBL4IZ6675yzo31H5e0cT8iIu3G/AQrLjmt8fVmbA32JW6HbjYsIiIizWtTguWce805t3Pe4gXAoLaHJCLSsay6jCoXS3x84/fBAiiOyya1clMHRiUiIiJdUSSvwboQeLne8lAz+9jM3jGzyU1tZGYXm1memeUVFBREMBwRkdax6jJ2WAJm1mSdyqT+ZIa2dGBUIiIi0hXFtFTBzN4A+jWy6pfOuef8Or8EaoHH/HUbgX2cc4VmdgjwrJmNcs6VNGzEOfcA8ADAuHHj3N4dhojI3gvU7KDCkpqt49IHk1FUSkVZCYkpjQ8lFBEREWkxwXLOfa+59WY2AzgJONY55/xtqoAq//kiM/sKGAbktTVgEZFIC9bsoMoSm60T03sIrIYt61Yx5ICDOygyERER6WraOovgFOA64BTnXHm98j5mFvSf7wvsD3zdln2JiLSX2NAOqoLN92ClZA8FoGSTPspERESkaS32YLXgPiAeeN2/dmGBP2PgEcBtZlYDhIFLnHNFbdyXiEi7iAuVUx6T0WydXgO8e2FVFOS3f0AiIiLSZbUpwXLOfaeJ8qeAp9rStohIR4kPl1MaM6DZOn36D6HaBQlv+6aDohIREZGuKJKzCIqIdEkJ4QpCMSnN1gkGgxQEsogtW99BUYmIiEhXpARLRHq8JFdBOC65xXrbYvuRXLGxAyISERGRrkoJloj0aFVVlaRYBSSkt1i3PLE/vWt0s2ERERFpmhIsEenRirduBsBS+rRYN5Q6iCy3jZrqyvYOS0RERLooJVgi0qOVFnk9UrFpfVusG+y9DwFzFKxf3d5hiYiISBelBEtEerTy7V6CFZ+W3WLdxD45AGzb8FV7hiQiIiJdmBIsEenRqoq9IYLJvVtOsDL6e/fCKte9sERERKQJSrBEpEcLlRYAkJbZ/H2wAPoO2heA2qI17RqTiIiIdF1KsESkRwvv2ErIGWm9W74GKz4hiQJ6ESxZ2wGRiYiISFekBEtEejQr28x2SycYDLaqflFMNkkVG9o5KhEREemqlGCJSI+WWLGRopiWe692KkvsT0b15naMSERERLoyJVgi0qNlVG9hR0K/VtevThlI33AB4VCoHaMSERGRrkoJloj0WOFQmD7hAmpSBrZ6m0DGPsRZLUWb17VjZCIiItJVKcESkR5r69aNJFkVZAxq9TYxvYcAULzp6/YKS0RERLowJVgi0mNtXeclSfFZQ1q9TVKffQAoL9RU7SIiIrK7NiVYZjbTzNab2RL/8f16624ws1VmtsLMjm97qCIikbVjy2oA0rL3bfU2GdleMlZTpCGCIiIisruYCLRxl3PuzvoFZjYSOBMYBQwA3jCzYc45XRUuIp1GdeE3AGQNbH2ClZnVj0oXiyvZ2F5hiYiISBfWXkMEpwJPOOeqnHOrgVXAhHbal4jI3ileRwVxpPRq/SyCcbFBCiyTmB1KsERERGR3kUiwLjezpWb2dzPr5ZcNBNbWq7POLxMR6TTid2xga6APmO3RdtuCmSRW6F5YIiIisrsWEywze8PMPmvkMRW4H9gPGAtsBH6/pwGY2cVmlmdmeQUFBXu6uYjIXkup2kRJXPYeb1cWn01qjT6vREREZHctXoPlnPteaxoys78CL/iL64HB9VYP8ssaa/8B4AGAcePGudbsS0QkEjJDW1iTMWyPt6tKzKZ3+Xvg3B73fomIiEj31tZZBPvXW5wGfOY/fx4408zizWwosD+wsC37EhGJpNKyMvqwnXBq6++BtVM4tR/x1BDaUdgOkYmIiEhX1tZZBO8ws7GAA/KB/wFwzn1uZnOBZUAt8BPNICginUnB+tWkAjG999njbQPpXlJWvPkbeqdkRTgyERER6cralGA5585tZt3twO1taV9EpL0Ub/LugZXcZ88TrITe3pw9JVu+ofd+h0Q0LhEREena2muadhGRTq1iaz4AGf1bfw+snZKzvKSsslA3GxYREZFdKcESkR4ptN1LjjL7D93jbXtnDyLkjNriRufuERERkR5MCZaI9EgxpespIp1gfNIeb9snI4WtpGMlG9ohMhEREenKlGCJSI+UWLGRopi+e7VtfEyQAssitnxThKMSERGRrk4Jloj0SBnVmylL6LfX25fEZpFUuSWCEYmIiEh3oARLRHocFw7TJ1xAdfKAvW6jMiGb9NqCCEYlIiIi3YESLBHpcYoKt5BsVZC+5zcZ3qkmuR+pbgdU74hgZCIiItLVKcESkR6naIN3D6zYvbjJ8E6BdK/3q6pIU7WLiIjIt5RgNWPtyk/48J5zKSspinYoIhJBpVu8BCulb85etxHX2+v92rb5m0iEJCIiIt2EEqxmbFr6FuMK/03pXRP47P1/RzscEYmQ6kIvKeo1YM9vMrxTSp8hAJQVrI1ITCIiItI9xEQ7gM5s/GlXsXzwGFJevpzRr5/DJ/MPJe7Y6zng4KOwQPfNTZ1zhMOOUKiWUG0NLlyDCzsczlsfrnuGc94zq1vvcI66cufC4Pw1fhk4Op7t/ZZ7vGnLG+x9NPUb2b0V2/NgW95Nvf9GrM2mmmuH+BtV+BXVLobefQbudRO9+nkJVlXhniVYlRXlBGNiiI2N2+t9Sys4hwuHCNXWUBuqJRyqJRQK1f3b1DZ1T3dd0UTV9v4s+/b90La3hjWztCfNNGhnr4Jq5HMrArE0UdSahvZmIxHpYC4QS2JqOvExwWiH0ipKsFowYsL3qBy1kAVP3cGIr/9O+gvTyH9pHzYMOoH0UcfxnbGHEx+fGPH9Oueoqg1TXlVDeVkp5TtKqCwvpbqijOryUqorSglVlhGq2oGr3oHVlBOorSBQU04wVEFMqIKY2nJiwxXEhSuJDVcQH64k1lUTcCEChAkSIkCIIGGCzlsO+uVBc3SNP2GRPTcRWBsYwODg3v+V98/KpMQlUbN9favqb920hpXP/R9jNjzJ0sz/YsLPHt3rfXdV4VCIspJCKrZvobykiMqy7VSXl1BTXkxtRQnhylKoLiNYXUqwtpxAqMp7hKsJhquICVcTdDXEhquJddXEUU0stXWfYwEX9j/bwgTNYXj/k9P/6EREurZ5oQMp++ETnJS797P/diT9f6cVEpLTmHjebygr+TkfvfYP0r6Yy8RvHiCw5i/UvBQkP9CfwoR9CCdlUhufSTghnZjYOAjEECII4RCBcBVWW0W4tgpXUwk1lQRqywnUlnvJUKiC2FAl8a6CeFdJoqskkSp6WzW99yDWWoJUEE+VJVBlCVQHEqgOJFITk8qOYDbhYDxYEBeIwVkQAkH/35hdn1sQgjFgMRAI4AiAge38tc//qdBh9X7FNP/HQL/Pw+rX3XW79vjVsKnfkq0tvzLv8aYd2TvX4Df2dtm16+AOx47bWcb+h7Zp+8S4IBsDWVDSfIKVv+ITNr56FwcVvsAEaikliaztS9u0786ksrKCok1rKC1YS2XhWmqKN+BKC6BiKzGV24iv3k5S7XbSXAnprpQ0c6Q1016NC7LDEqkggWqLp9biqA14j6qYFMKBeMLBeEKBOMLBeMIWi7MABILe51bAe5gFcfX/9R9Y0BuB0HQ3auvLzfsMbA+7fG616W0RqfdU2z9vGvss3rvPrfY5proidWqJdDqhhP6MGpAe7TBaTQnWHkhJ6834068GrqakcBOr815hx5olJG//kszKdaRUfE6GKyXGws22U+liqbFYKi2BakugKpBITTCR2th0yoL9KIlJwsUmQVwSFpeExacQE59CMCGF2MRk4hJTiU9MIT4pjcTkFOISUyEuGWKTiYmJIxVI7ZBXRKRn25q8H/vtWOJ9S6z3hT0cCvPZ/OcIf/BnxlYuZICLYWnm8WR//wbWvn4/4zbNwYVqsWDn/ggOh8Js3bqJovUr2bFpFTVb8wkWf0Nc+WaSqwvoFdpKJsU0/D2xxgXZbqmUBdIpj0lnW/J+FCT0JpTQC5eYiSX1Iia5F/HJGSSkZJCYkk5yWi9S0jKIjUskw4yMaBywiIhIBHTu/7t3YmmZ/Tjw+Bm7lbtwiMryUsorqyBc6w3HCwQhNoGYuAQS4hNJCAZIQEmQSFdXuc+RZC57m3VfLGTQiEPZvHYlX7/xIIPWPEuu20gh6Xy4z48ZduIVjMseDMDaJcOI21zLlnUr6TtkRJSPAGqrKti8ZgVF61dRvnkV4aJ84kvXkla5nuzQJvpaBX3r1d9GKkWBLHbE92Fb0ii+SumPpfUnrtdAkjIHk5o9mN6Z/ekTG6RP1I5KREQkepRgRZgFgiSkZJCQEu1IRKS9HTDpNMo//18Cc8/jy2Aa36lZSbY5Po/LZdHoKxj1X+dzaGLSLtv02mcMfAbrl3/YYQlWVeUONuV/yfZ1y6ncvIrAtq9ILFtDVtVa+oa3MtAcO6f7qHBxbAlmU5wwgC9Sx2EZQ4jrsy+p/b9D5qD96ZXem14dErWIiEjX1KYEy8zmAMP9xQxgu3NurJnlAMuBFf66Bc65S9qyLxGRzqbvgH1YeNgfyFp4BzUWx0c5FzPoyAsYtW/TidN+B06i+MVkwl++ClNmRCyW8vIyNuV/wbZ1K6jevBLbtpqUHflkVq0n221liDmG+HW3uxQ2xw5gTcqBfJWeQzBrP9L670/ffYaTmT2IId14llQREZH21qYEyzk3fedzM/s9UFxv9VfOubFtaV9EpLObMOUcmHJOq+vHxcezJO0wDih6h5LCTaRl9mvVdpUV5WxZt4rijaupLPia0LY1xJauI6l8Pb1qNtPXFbKvfXvR/nZS2BwzkPVpY8lPH0pMn/1IGTCcfjkjycjsS0ZHTYkvIiLSw0RkiKB508WdARwTifZERLqzXsddR+KTJ7D6/pNZOfbHxPfqj6upoqailNrSAsKlmwju2EJs5VaSq7aSEdpKH7axT702al2ALZbJtth+rEs/hG8yhhDbZ3/SBgynb84IMnr31UQRIiIiURCpa7AmA5udcyvrlQ01s4+BEuAm59x7jW1oZhcDFwPss88+jVUREelW9h9zKIvX/4GhC25iWN61u60PO6PI0ikO9GJHXBbb04bxdfpggr32IanvvmT035c+A4cyIDZutxn8REREJLrMtXATCjN7A2hsDMsvnXPP+XXuB1Y5537vL8cDKc65QjM7BHgWGOWcK2luX+PGjXN5eXl7fhQiIl1QTXUl36z8jMrtm4iJSyQ+KYWkjL707juQ2Ni4aIcnIiIizTCzRc65cQ3LW+zBcs59r4WGY4AfAIfU26YKqPKfLzKzr4BhgLInERFfbFwC3xm12+eyiIiIdGGRmCrqe8AXzrl1OwvMrI+ZBf3n+wL7A19HYF8iIiIiIiKdViSuwToTmN2g7AjgNjOrAcLAJc65ogjsS0REREREpNNqc4LlnJvRSNlTwFNtbVtERERERKQraXGSi45kZgXAN9GOo4EsYGu0g5AOo/Pdc+hc9xw61z2LznfPoXPds3TG8z3EOdenYWGnSrA6IzPLa2x2EOmedL57Dp3rnkPnumfR+e45dK57lq50viMxyYWIiIiIiIigBEtERERERCRilGC17IFoByAdSue759C57jl0rnsWne+eQ+e6Z+ky51vXYImIiIiIiESIerBEREREREQiRAmWiIiIiIhIhCjBaoaZTTGzFWa2ysyuj3Y8EjlmNtjM3jazZWb2uZld4Zf3NrPXzWyl/2+vaMcqkWFmQTP72Mxe8JeHmtmH/vt7jpnFRTtGiQwzyzCzJ83sCzNbbmaH6b3dPZnZVf5n+GdmNtvMEvTe7j7M7O9mtsXMPqtX1uh72Tz3+Od9qZkdHL3IZU81ca5/53+OLzWzZ8wso966G/xzvcLMjo9K0M1QgtUEMwsCfwJOAEYCZ5nZyOhGJRFUC1ztnBsJTAR+4p/f64E3nXP7A2/6y9I9XAEsr7f8f8BdzrnvANuA/45KVNIe7gZecc4dAById9713u5mzGwg8DNgnHNuNBAEzkTv7e7kIWBKg7Km3ssnAPv7j4uB+zsoRomMh9j9XL8OjHbO5QJfAjcA+N/XzgRG+dv82f/e3mkowWraBGCVc+5r51w18AQwNcoxSYQ45zY65xb7z0vxvoANxDvHD/vVHgZOjUqAElFmNgg4Efibv2zAMcCTfhWd627CzNKBI4AHAZxz1c657ei93V3FAIlmFgMkARvRe7vbcM69CxQ1KG7qvTwV+KfzLAAyzKx/hwQqbdbYuXbOveacq/UXFwCD/OdTgSecc1XOudXAKrzv7Z2GEqymDQTW1lte55dJN2NmOcBBwIdAtnNuo79qE5Adrbgkov4IXAeE/eVMYHu9D269v7uPoUAB8A9/SOjfzCwZvbe7HefceuBOYA1eYlUMLELv7e6uqfeyvrd1bxcCL/vPO/25VoIlPZqZpQBPAVc650rqr3PePQx0H4MuzsxOArY45xZFOxbpEDHAwcD9zrmDgB00GA6o93b34F97MxUvqR4AJLP7ECPpxvRe7hnM7Jd4l3Y8Fu1YWksJVtPWA4PrLQ/yy6SbMLNYvOTqMefc037x5p1DCvx/t0QrPomYw4FTzCwfb6jvMXjX6GT4w4pA7+/uZB2wzjn3ob/8JF7Cpfd29/M9YLVzrsA5VwM8jfd+13u7e2vqvazvbd2Qmc0ATgLOdt/evLfTn2slWE37CNjfn40oDu9iuuejHJNEiH8NzoPAcufcH+qteh44339+PvBcR8cmkeWcu8E5N8g5l4P3Pn7LOXc28DZwul9N57qbcM5tAtaa2XC/6FhgGXpvd0drgIlmluR/pu8813pvd29NvZefB87zZxOcCBTXG0ooXZCZTcEb3n+Kc6683qrngTPNLN7MhuJNbLIwGjE2xb5NBqUhM/s+3rUbQeDvzrnboxuRRIqZTQLeAz7l2+tybsS7DmsusA/wDXCGc67hBbbSRZnZUcA1zrmTzGxfvB6t3sDHwDnOuaoohicRYmZj8SY0iQO+Bi7A+0FR7+1uxsxuBabjDR/6GLgI71oMvbe7ATObDRwFZAGbgVuAZ2nkvewn2ffhDRMtBy5wzuVFIWzZC02c6xuAeKDQr7bAOXeJX/+XeNdl1eJd5vFywzajSQmWiIiIiIhIhGiIoIiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiHQSZpZjZs7MYqIdS3dnZjPMbH604+hszGyyma2IdhwiIl2ZEiwREenSzGymmdWYWVm9x3XRjqsrcs6955wbHsk2zSzLzN43s0Iz225mH5jZ4ZHch4hIZ6JfSUVEIsTMYpxztdGOo4ea45w7J9pBtJcu/rdVBlwIrAQcMBX4t5n17cLHJCLSJPVgiYi0gZnlm9kvzGwpsMPMYsxsopn9x/+1/hMzO6pe/Xlm9r9mttDMSszsOTPr3UTbF5jZcjMrNbOvzex/GqyfamZL/Ha+MrMpfnm6mT1oZhvNbL2Z/cbMgi0cx35m9pbfy7DVzB4zs4x664rM7GB/eYCZFew8LjM7xcw+9493npmNaPD6XGNmS82s2MzmmFnCnr/Se87Mrvdfl1IzW2Zm05qoZ2Z2l5lt8V/LT81stL8u3szuNLM1ZrbZzGaZWWIr9/+QX/91P4Z3zGxIvfV3m9laf5+LzGxyvXUzzexJM3vUzEqAGWY2we/92e6f2/vMLK7eNs7MLjOzlf7+fu2fu//4+5hbv34TMR9lZutac3yt5ZyrdM6tcM6FAQNCQC+g0b97EZGuTgmWiEjbnQWcCGQA2cCLwG/wvkBeAzxlZn3q1T8P7xf9/kAtcE8T7W4BTgLSgAuAu+olOROAfwLX+vs9Asj3t3vIb/c7wEHAccBFLRyDAf8LDABGAIOBmQDOua+AXwCPmlkS8A/gYefcPDMbBswGrgT6AC/h9U7U/yJ/BjAFGArkAjMaDcBskp88NPWY1MIxNPQVMBlIB2714+/fSL3j8F6/YX7dM4BCf91v/fKxeK/nQODmPYjhbODXQBawBHis3rqP/HZ7A48D/2qQfE4FnsQ7v4/hJSZX+W0dBhwLXNZgf8cDhwATgeuAB4Bz8M7naLy/1b3mJ8pNnZ8/t7QtUAk8D/zNObelLbGIiHRW5pyLdgwiIl2WmeUDtznn/u4v/wIY7Zw7t16dV4HHnXMPm9k8YIFz7np/3Ui8L96JeF+CVwOxjQ2dMrNngbedc3eb2V+AcufcVQ3qZANrgAznXIVfdhZwsXPu6D04rlOBW5xzB9Urex4vSXLAeOdclZn9ChjjnDvDrxMA1gJn+wlYPnCTc+5Rf/0dQJpz7pLWxtKKWGcCNwLl9YpHOuc2NKi3xD+m58xsBnCRc26SmR0DzMJLfBf6PS2YmeENb8v1k0zM7DC8czm0FXE9BCQ45870l1OAYiDHObe2kfrbgKOcc5/4x3SMc+6IZtq/EjjSOTfNX3bAJOfc+/7yImCuc+7//OXfA0Hn3JXNtHkU8KhzblBLx7c3/ARyGhDnnHu4PfYhIhJtugZLRKTt6n9ZHgL80MxOrlcWC7zdRP1v/PVZDRs1sxOAW/B6UAJAEvCpv3owXm9RQ0P89jZ6+QH42+72hb7BvrKBu/F6fFL9bbY1qPZXvN6Hi51zVX7ZAP8YAHDOhc1sLV5Pz06b6j0v97eJtLkNr8Eys/OAnwM5flEKjbzOzrm3zOw+4E/AEDN7Gq/nMQHvNV9U77U0oNnhlg3Uve7OuTIzK8I7/rVmdg3w3/6yw+upzGpsW/94hgF/AMb5ccUAixrsb3O95xWNLPfbg9gjzjlXCcw2b+jrEufcJ9GMR0SkPWiIoIhI29UfCrAWeMQ5l1Hvkeyc+229OoPrPd8HqAG21m/QzOKBp4A7gWznXAZeQrXzm/5aYL9GYlkLVAFZ9faf5pwb1cIx/D//OMY459LwhpV9m1V4vS9/BB4EZtq3141twEvqdtYz//jWt7C/3Zg3RXhZM4/JLbdS19YQvITwciDTf/0+q39M9Tnn7nHOHQKMxEtor8U7JxXAqHqvZbpzLmUPDqvuXPuvYW9gg38s1+ENR+zlx1fcIL6GQ0zuB74A9vfP0Y1NHU97Me9au6bOz6w9aCoW2Le94hQRiSYlWCIikfUocLKZHW9mQTNL8CcOqD/k6hwzG+lfz3Qb8KRzLtSgnTggHigAav3erOPqrX8QuMDMjjWzgJkNNLMDnHMbgdeA35tZmr9uPzM7soW4U/GGwxWb2UC8BKO+u4E859xFeNeY7fwyPRc40Y8jFrgaL8H7T0svVEP+FOEpzTze24PmkvESlALwJgzBuwZpN2Y23swO9ePfgXedUNgfKvhXvGvf+vp1B5rZ8fW2dVZvEpNGfN+/tiwO71qsBf7wwFS86+QKgBgzuxmvB6s5qUAJUGZmBwCXtlA/4pxzo5o5P40O+zRv0pdJZhZnZon+MNps4MOOjV5EpGMowRIRiSD/y/NUvN6FArwepWvZ9fP2EbyJKDbhDUP7WSPtlPrlc/GG6v0Ib3jezvUL8Se+wOv5eIdve5LOw0vQlvnbPok3oUZzbgUO9tt6EXh65wozm4o3ScXOL/Q/Bw42s7OdcyvwervuxevxORk42TlX3cL+2pVzbhnwe+ADvGFyY4D3m6iehpdIbcMb7lgI/M5f9wtgFbDAvNn83gCGA5jZYKCUb4dtNuZxvGGeRXiTT+wcxvgq8Arwpb/PSloYxok3bPFH/j7/CsxpoX5nEY83/LIQr2fz+8CJDa+RExHpLjTJhYhIB/InuXjUOfe3aMcibWNm5+ANH7yhifUPAeucczd1aGAiIhJVmuRCRERkL+ycGVFERKQ+DREUEekhzLvpbVsnJ5AuzsxubOLv4OVoxyYi0h1oiKCIiIiIiEiEqAdLREREREQkQjrVNVhZWVkuJycn2mGIiIiIiIg0a9GiRVudc30alneqBCsnJ4e8vLxohyEiIiIiItIsM/umsXINERQREREREYkQJVgiIiIiIiIRogRLRKSVQmHHk4vWUVEdinYoIiIi0kl1qmuwGlNTU8O6deuorKyMdijSxSQkJDBo0CBiY2OjHYp0E+9+sZ7VT9/Kv5YfznnnzIh2OCIiItIJdfoEa926daSmppKTk4OZRTsc6SKccxQWFrJu3TqGDh0a7XCkm3CLHuHa2Lms/mYxMCPa4YiIiEgn1OmHCFZWVpKZmankSvaImZGZmameT4momLINAMTWlkU5EhEREemsOn2CBSi5kr2ivxuJuOodAPQLb6GmuirKwYiIiEhn1CUSLBGRTqGmHIAYC1O47ssoByMiIiKdkRKsVjAzrr766rrlO++8k5kzZ0YvoHoWLFjAoYceytixYxkxYkRdXPPmzeM///lPm9qeMmUKGRkZnHTSSRGIVKTrC9TsqHtevGFVFCMRERGRzkoJVivEx8fz9NNPs3Xr1oi265wjHA63qY3zzz+fBx54gCVLlvDZZ59xxhlnAJFJsK699loeeeSRNrUh0p3EhsopIQWA8sJ1UY5GREREOqNOP4tgfbf++3OWbSiJaJsjB6Rxy8mjmq0TExPDxRdfzF133cXtt9++y7qCggIuueQS1qxZA8Af//hHDj/8cGbOnElKSgrXXHMNAKNHj+aFF14A4Pjjj+fQQw9l0aJFvPTSS9x33328/PLLmBk33XQT06dPZ968ecycOZOsrCw+++wzDjnkEB599NHdrivasmUL/fv3ByAYDDJy5Ejy8/OZNWsWwWCQRx99lHvvvZcDDjigyTi/+uorVq1axdatW7nuuuv48Y9/DMCxxx7LvHnzmn1t/vWvf3HrrbcSDAZJT0/n3XffpbKykksvvZS8vDxiYmL4wx/+wNFHH81DDz3Es88+y44dO1i5ciXXXHMN1dXVPPLII8THx/PSSy/Ru3dv/vrXv/LAAw9QXV3Nd77zHR555BGSkpJ22e/EiRN58MEHGTXKO3dHHXUUd955J+PGjWs2XpG2iA9XsjVuEGnVX1C9fWO0wxEREZFOqM09WGY22MzeNrNlZva5mV3hl/c2s9fNbKX/b6+2hxs9P/nJT3jssccoLi7epfyKK67gqquu4qOPPuKpp57ioosuarGtlStXctlll/H555+Tl5fHkiVL+OSTT3jjjTe49tpr2bjR++L28ccf88c//pFly5bx9ddf8/777+/W1lVXXcXw4cOZNm0af/nLX6isrCQnJ4dLLrmEq666iiVLljB58uRm41y6dClvvfUWH3zwAbfddhsbNmxo9ety22238eqrr/LJJ5/w/PPPA/CnP/0JM+PTTz9l9uzZnH/++XWz+X322Wc8/fTTfPTRR/zyl78kKSmJjz/+mMMOO4x//vOfAPzgBz/go48+4pNPPmHEiBE8+OCDu+13+vTpzJ07F4CNGzeyceNGJVfS7uJdJVVxGRSTDKVKsERERGR3kejBqgWuds4tNrNUYJGZvY53k5g3nXO/NbPrgeuBX7RlRy31NLWntLQ0zjvvPO655x4SExPryt944w2WLVtWt1xSUkJZWfNTOA8ZMoSJEycCMH/+fM466yyCwSDZ2dkceeSRfPTRR6SlpTFhwgQGDRoEwNixY8nPz2fSpEm7tHXzzTdz9tln89prr/H4448ze/bsRnudmotz6tSpJCYmkpiYyNFHH83ChQs59dRTW/W6HH744cyYMYMzzjiDH/zgB3XH9NOf/hSAAw44gCFDhvDll96EAEcffTSpqamkpqaSnp7OySefDMCYMWNYunQp4CVhN910E9u3b6esrIzjjz9+t/2eccYZHHfccdx6663MnTuX008/vVXxirRFgqugLJjItkBvYssLoh2OiIiIdEJtTrCccxuBjf7zUjNbDgwEpgJH+dUeBubRxgQr2q688koOPvhgLrjggrqycDjMggULSEhI2KVuTEzMLtdX1b8fU3Jycqv2Fx8fX/c8GAxSW1vbaL399tuPSy+9lB//+Mf06dOHwsLC3eo0FSfsPp35nkxvPmvWLD788ENefPFFDjnkEBYtWtRs/frHFAgE6pYDgUDd8c2YMYNnn32WAw88kIceeqjRhHHgwIFkZmaydOlS5syZw6xZs1ods8jeSqSS7TFJlMVmkVytBEtERER2F9FJLswsBzgI+BDI9pMvgE1AdiT3FQ29e/fmjDPO2GXI2nHHHce9995bt7xkyRIAcnJyWLx4MQCLFy9m9erVjbY5efJk5syZQygUoqCggHfffZcJEya0OqYXX3wR5xzgDT0MBoNkZGSQmppKaWlpi3ECPPfcc1RWVlJYWMi8efMYP358q/f/1Vdfceihh3LbbbfRp08f1q5dy+TJk3nssccA+PLLL1mzZg3Dhw9vdZulpaX079+fmpqaunYaM336dO644w6Ki4vJzc1tdfsieyvBVRKKSaYioQ9pod1/yBARERGJWIJlZinAU8CVzrldZqJwXgbgmtjuYjPLM7O8goLO/4vw1Vdfvctsgvfccw95eXnk5uYycuTIup6U0047jaKiIkaNGsV9993HsGHDGm1v2rRp5ObmcuCBB3LMMcdwxx130K9fv1bH88gjjzB8+HDGjh3Lueeey2OPPUYwGOTkk0/mmWeeYezYsbz33ntNxgmQm5vL0UcfzcSJE/nVr37FgAEDAC/5++EPf8ibb77JoEGDePXVVwFvWOLO662uvfZaxowZw+jRo/nud7/LgQceyGWXXUY4HGbMmDFMnz6dhx56aJeeq5b8+te/5tBDD+Xwww/ngAMOqCt//vnnufnmm+uWTz/9dJ544om6mRNF2pNzjiQqCcckUpPYl8zwNlwbZwEVERGR7sd29n60qRGzWOAF4FXn3B/8shXAUc65jWbWH5jnnGu2G2PcuHEuLy9vl7Lly5czYsSINscojWs422F3o78fiZTKygoSftuPD4deRigmke+u/D2lV3xJaq8u3zkvIiIie8HMFjnndptlLRKzCBrwILB8Z3Llex44339+PvBcW/clIhIt1eXekFsXm0xMutfLu33z2miGJCIiIp1QJGYRPBw4F/jUzJb4ZTcCvwXmmtl/A98AGsfVCc2cOTPaIYh0CdWVO7wnsYkk9BoIQNnWdYBuDyAiIiLfisQsgvOBpqadO7at7YuIdAbVVd5MoBYTT0qWl2BVbWv9PeNERESkZ4joLIIiIt1VbU0VAMHYODKy9/HKinWzYREREdmVEiwRkVao8XuwgrEJZKSlU+oSoWxzlKMSERGRzkYJlohIK9RWVwAQjI0nEDCKrBcx5VuiHJWIiIh0NkqwWunZZ5/FzPjiiy+arJOfn8/o0aMjts8VK1Zw1FFHMXbsWEaMGMHFF18MeDcJfumll9rU9oUXXkjfvn0jGq9Id1ZbvXOIoHdPt9KY3iRUbW1uExEREemBlGC10uzZs5k0aRKzZ89udH1tbW2b9xEKhXZZ/tnPfsZVV13FkiVLWL58OT/96U+ByCRYM2bM4JVXXmlTGyI9yc5rsGLiEgDYEZdFSk1RNEMSERGRTigS07R3nJevh02fRrbNfmPghN82W6WsrIz58+fz9ttvc/LJJ3PrrbcCMG/ePH71q1/Rq1cvvvjiC1577TVqa2s5++yzWbx4MaNGjeKf//wnSUlJvPnmm1xzzTXU1tYyfvx47r//fuLj48nJyWH69Om8/vrrXHfddZx55pl1+924cSODBg2qWx4zZgzV1dXcfPPNVFRUMH/+fG644QZOOukkfvrTn/LZZ59RU1PDzJkzmTp1Kg899BDPPPMMxcXFrF+/nnPOOYdbbrkFgCOOOIL8/Pxmj/udd97hiiuuAMDMePfdd0lJSeG6667j5Zdfxsy46aabmD59OvPmzeOWW24hIyODTz/9lDPOOIMxY8Zw9913U1FRwbPPPst+++3Hv//9b37zm99QXV1NZmYmjz32GNnZu96o9cwzz+Tcc8/lxBNPBLxk8KSTTuL0009v3TkVaQehau8arBi/B6smsQ8Z5R9GMyQRERHphNSD1QrPPfccU6ZMYdiwYWRmZrJo0aK6dYsXL+buu+/myy+/BLxhfZdddhnLly8nLS2NP//5z1RWVjJjxgzmzJnDp59+Sm1tLffff39dG5mZmSxevHiX5Argqquu4phjjuGEE07grrvuYvv27cTFxXHbbbcxffp0lixZwvTp07n99ts55phjWLhwIW+//TbXXnstO3Z49+xZuHAhTz31FEuXLuVf//oXeXl5rT7uO++8kz/96U8sWbKE9957j8TERJ5++mmWLFnCJ598whtvvMG1117Lxo3eTGqffPIJs2bNYvny5TzyyCN8+eWXLFy4kIsuuoh7770XgEmTJrFgwQI+/vhjzjzzTO64447d9jt9+nTmzp0LQHV1NW+++WZdsiUSLSG/ByvW78EKJ/clhQpClWXRDEtEREQ6ma7Vg9VCT1N7mT17dl1Pzplnnsns2bM55JBDAJgwYQJDhw6tqzt48GAOP/xwAM455xzuuece/uu//ouhQ4cybNgwAM4//3z+9Kc/ceWVVwJeQtGYCy64gOOPP55XXnmF5557jr/85S988sknu9V77bXXeP7557nzzjsBqKysZM2aNQD813/9F5mZmQD84Ac/YP78+Ywb17obox5++OH8/Oc/5+yzz+YHP/gBgwYNYv78+Zx11lkEg0Gys7M58sgj+eijj0hLS2P8+PH0798fgP3224/jjjsO8Hre3n77bQDWrVvH9OnT2bhxI9XV1bu8djudcMIJXHHFFVRVVfHKK69wxBFHkJiY2KqYRdrLzgQrJt5LsAKpXs/r9oL1ZA4eHrW4REREpHNRD1YLioqKeOutt7jooovIycnhd7/7HXPnzsU5B0BycvIu9c2s2eXGNGyjvgEDBnDhhRfy3HPPERMTw2effbZbHeccTz31FEuWLGHJkiWsWbOGESNG7HU8O11//fX87W9/o6KigsMPP7zZCT4A4uPj654HAoG65UAgUHeN2k9/+lMuv/xyPv30U/7yl79QWVm5WzsJCQkcddRRvPrqq8yZM6fJBFSkI4Vrq4Fve7DiMrwfE0oK1kUtJhEREel8lGC14Mknn+Tcc8/lm2++IT8/n7Vr1zJ06FDee++9RuuvWbOGDz74AIDHH3+cSZMmMXz4cPLz81m1ahUAjzzyCEceeWSL+37llVeoqakBYNOmTRQWFjJw4EBSU1MpLS2tq3f88cdz77331iV9H3/8cd26119/naKiorrroHb2rrXGV199xZgxY/jFL37B+PHj+eKLL5g8eTJz5swhFApRUFDAu+++y4QJE1rdZnFxMQMHDgTg4YcfbrLe9OnT+cc//sF7773HlClTWt2+SHtxNbteg5WUOQCAHUXroxaTiIiIdD5KsFowe/Zspk2btkvZaaed1uRsgsOHD+dPf/oTI0aMYNu2bVx66aUkJCTwj3/8gx/+8IeMGTOGQCDAJZdc0uK+X3vtNUaPHs2BBx7I8ccfz+9+9zv69evH0UcfzbJlyxg7dixz5szhV7/6FTU1NeTm5jJq1Ch+9atf1bUxYcIETjvtNHJzcznttNPqhgeeddZZHHbYYaxYsYJBgwbx4IMPAjBr1ixmzZoFwB//+EdGjx5Nbm4usbGxnHDCCUybNo3c3FwOPPBAjjnmGO644w769evX6tdz5syZ/PCHP+SQQw4hKyurrjwvL4+LLrqobvm4447jnXfe4Xvf+x5xcXGtbl+kvbiQfw2WP0QwvY83AU319k1Ri0lEREQ6H9vZ69EZjBs3zjWchGH58uV1w91kzzz00EPk5eVx3333RTuUqNHfj0TKe/+cyeSv76LqmtXEp/SmorKa2P/N5uMhFzD+wj9EOzwRERHpYGa2yDm32+QG7d6DZWZTzGyFma0ys+vbe38iIu0i5F2DFedfg5WYEEcR6QR3bIlmVCIiItLJtOssgmYWBP4E/BewDvjIzJ53zi1rz/2KZ8aMGcyYMSPaYYh0D/4kFxbz7WQuxcFexFYURCsiERER6YTauwdrArDKOfe1c64aeAKYuqeNdKZhjNJ16O9GIipUTa0LQCBYV1QWm0lSdWEUgxIREZHOpr0TrIHA2nrL6/yyOmZ2sZnlmVleQcHuvwQnJCRQWFioL8uyR5xzFBYWkpCQEO1QpJuwUBU1FrtLWWVCH9JCSrBERETkW1G/0bBz7gHgAfAmuWi4ftCgQaxbt47Gki+R5iQkJDBo0KBohyHdRaiGGmKof8vrUGIfem3fjguHsHo9WyIiItJztXeCtR4YXG95kF/WarGxsQwdOjSiQYmI7KlAuJoadu3BIjWbmE1hyooLSOnV+tsViIiISPfV3kMEPwL2N7OhZhYHnAk83877FBGJOAtVU9tgiGBMupdUbdu8trFNREREpAdq1wTLOVcLXA68CiwH5jrnPm/PfYqItIdAuJpa27XTP6mXd0lp2dY96pgXERGRbqzdr8Fyzr0EvNTe+xERaU+BcA21FrdLWWqfAQBUbNsQjZBERESkE2r3Gw2LiHQHgXA1oQY9WL36epOo1BZvikZIIiIi0gkpwRIRaYVguJpQIH6XsvT0XpS5BCjbHKWoREREpLNRgiUi0gqxrpraBgmWmbEt0IuY8i1RikpEREQ6GyVYIiKtEBuupjYQt1t5abA3CVW62bCIiIh4lGCJiLRCrKsiFIzfrbw8PovUmq1RiEhEREQ6IyVYIiKtEOuqCQd2T7CqE/uQES6KQkQiIiLSGSnBEhFphXiqCQUTdisPp/QjlQqqy0uiEJWIiIh0NkqwRERaIY5qwo0MEQykezcbLtqU38ERiYiISGekBEtEpBXiXTUuZvcEKzFrMAAlm7/p6JBERESkE1KCJSLSAhcOk2A1uGDibuvS+g4BoHzr2o4OS0RERDohJVgiIi2oran0njTSg5U1YKhXZ5sSLBEREVGCJSLSosqKHd6T2EZ6sFJSKHKpWOmGDo5KREREOqM2JVhm9jsz+8LMlprZM2aWUW/dDWa2ysxWmNnxbY5URCRKqsrLAQjG7T6LoJlRGOxD3I5NHR2WiIiIdEJt7cF6HRjtnMsFvgRuADCzkcCZwChgCvBnMwu2cV8iIlFRVen1YAUa6cECKInrS0r1lo4MSURERDqpNiVYzrnXnHO1/uICYJD/fCrwhHOuyjm3GlgFTGjLvkREoqWy0uvBiolvPMGqTOxHr9qCjgxJREREOqlIXoN1IfCy/3wgUP+K73V+2W7M7GIzyzOzvIICfUERkc6numLnEMGkRteHU/uTQSm1fk+XiIiI9FwtJlhm9oaZfdbIY2q9Or8EaoHH9jQA59wDzrlxzrlxffr02dPNRUTaXU2Vl2DFNtGDFczwfj/atnlNh8UkIiIinVNMSxWcc99rbr2ZzQBOAo51zjm/eD0wuF61QX6ZiEiXszPBiktovAcrMdP7uNu2aTV9hozosLhERESk82nrLIJTgOuAU5xz5fVWPQ+caWbxZjYU2B9Y2JZ9iYhES21VBQCx8Y0nWKl9cgDdbFhERERa0YPVgvuAeOB1MwNY4Jy7xDn3uZnNBZbhDR38iXMu1MZ9iYhERajKu7YqPrHxBCtzQA4ANUVKsERERHq6NiVYzrnvNLPuduD2trQvItIZhCtLAYhL7tXo+oz0dLa7FKxUI6FFRER6ukjOIigi0i1ZdQkACSkZja83ozCYpZsNi4iIiBIsEZGWBKrKAIhPTmuyTklsX5KrdLNhERGRnk4JlohICwLVJZS5RCwQbLJOZWK2bjYsIiIiSrBERFoSrCmjzBqf4GKn2pT+9KaYUHVlB0UlIiIinZESLBGRFgRryqgMNJ9g7bzZcNHmbzoiJBEREemklGCJiLQgtqaUykBKs3XiM/cBoHiTEiwREZGeTAmWiEgLYkM7qIlJbrZOap8hAOzYuqYjQhIREZFOSgmWiEgLEkM7qIlNbbZO7/45gG42LCIi0tMpwRIRaUGiKycc2/wQwd69elPmEqF0QwdFJSIiIp2REiwRkWa4cJhUV0Y4vul7YAEEAsbWQG9id2zuoMhERESkM1KCJSLSjOLiIhKsBpfct8W6JbF9SKzUzYZFRER6soglWGZ2tZk5M8vyl83M7jGzVWa21MwOjtS+REQ6SvGWdQDEpPdrsW55Ql/SdbNhERGRHi0iCZaZDQaOA+pPn3UCsL//uBi4PxL7EhHpSGVb1wOQkNG/xbqhpH70Dm/DhUPtHZaIiIh0UpHqwboLuA5w9cqmAv90ngVAhpm1/A1FRKQTqdjuTVqRnDWo5cppA4i1EKVbN7ZzVCIiItJZtTnBMrOpwHrn3CcNVg0E6s9XvM4va7j9xWaWZ2Z5BQUaWiMinUvN9k0AZPRpOcGK6+19xBVt1s2GRUREeqqY1lQyszeAxi5A+CVwI97wwL3inHsAeABg3LhxroXqIiIdKlSykRoXJL13nxbrJmcNBqB0yxrg8HaOTERERDqjViVYzrnvNVZuZmOAocAnZgYwCFhsZhOA9cDgetUH+WUiIl1GQulaNgezGRRoucM/I3sIAFXb1rV3WCIiItJJtWmIoHPuU+dcX+dcjnMuB28Y4MHOuU3A88B5/myCE4Fi55wuTBCRLqVX5VqKEga3XBHIyh5MyBmhYt1sWEREpKdqz/tgvQR8DawC/gpc1o77EhGJuHAoRP/QBspThraqflxcLIWWQUzZpnaOTERERDqrVg0RbC2/F2vncwf8JJLti4h0pHVrv2YfqyK27/6t3mZ7IJP4Sk3YIyIi0lO1Zw+WiEiXtmnFQgB65eS2epsdsb1IqNneThGJiIhIZ6cES0SkCbVrPqLWBRg08rBWb1Md35vU0LZ2jEpEREQ6MyVYIiJNSNn6CWtihhCXlNrqbWoTs8gIF4PTXSdERER6IiVYIiKNKC8vY//KzyjKPGTPNkzOIt5qqNyxvV3iEhERkc5NCZaISCNWLHiZRKsmYeQJe7RdTGpfALZt0VTtIiIiPZESLBGRRlR+8jQ7SGDYoXuWYMVnZANQWqjb/omIiPRESrBERBooKdnG6O1vs6L3McQlJu/Rtsm9+gFQvl33whIREemJlGCJiDSw7N/3kmoVpB5+8R5vm5o5AIDq4i2RDktERES6ACVYIiL1VFZWsO/Kf/B5XC77H3L0Hm/fq09/AEJlSrBERER6IiVYIiL1LHn69/SlCHf4VXu1fXxCEqUkYju2RjgyERER6QqUYImI+LZu/IbRK+7jk4TxjJp86l63U2wZxFYWRi4wERER6TKUYImI+L6Z/XPiqKH36Xdhgb3/eCyL6UV8VVEEIxMREZGuos0Jlpn91My+MLPPzeyOeuU3mNkqM1thZse3dT8iIu1p+QcvcUjJG+QNOo/B3xnTprYq43qRXLstQpGJiIhIVxLTlo3N7GhgKnCgc67KzPr65SOBM4FRwADgDTMb5pwLtTVgEZFIq62uIun169hgfRn7o9va3F5NfG/SdnwWgchERESkq2lrD9alwG+dc1UAzrmd02ZNBZ5wzlU551YDq4AJbdyXiEi7WDT3/zEkvJZN372VpOTUNrcXTsoi3ZUSCuk3JRERkZ6mrQnWMGCymX1oZu+Y2Xi/fCCwtl69dX7ZbszsYjPLM7O8goKCNoYjIrJntmxYw5iV9/Nx4kQO+t5ZEWkzkJxFjIXZXqTPNBERkZ6mxSGCZvYG0K+RVb/0t+8NTATGA3PNbN89CcA59wDwAMC4cePcnmwrItJWX829kXHU0vf032NmEWkzJrUvAMWFG8ns09jHZ/cTqqmitGgLpdsLKC8ppLJkK9WlRYSqK3C1lVBbDbVVWKgSQtWEw2EMwAyDutfezDAMrzDgPwyzAM7/FzPg23U765kZzgJY/ecYBPy6GJjhCHz7byMi9Gewa5utrddixT3932TrDyZyMe7aou1xzM211h6VI7bpHm0byb+zQGwi+x97PsGY2Mg1KiJ7rcUEyzn3vabWmdmlwNPOOQcsNLMwkAWsBwbXqzrILxMR6TTyly9iwrYXWNzvh4zfb3TE2k3I8BKssqLNEWsz2qpratm05kuK13xG1aYvYPsaYso2kFy5md6hAjIpJgPIaKGdWhegmljczoTKeV++Hbt+OQ3gJ2A4Ari65YDpdziRxny4fSuHTr8+2mGICG2c5AJ4FjgaeNvMhgFxwFbgeeBxM/sD3iQX+wML27gvEZGIKv73L+lNIvuf3vaJLepL7pUNQMX2rplglZeX8fWnCyhetYC4LZ/Qq2wVA2vXsY9V19Upc4kUBPtQGpfN1xkjWJHUH5KziEnpTVxKJglpmaSkZ5GYlEJsfCKxcQnEJSQSExPb6v/xOOdwDsLOEfL/dWFH2IUJh8M4F8aFwoSd9zwcDuGcg7C3PuzC4MKEQ2Gv3IX9hM4rx+2erLU2fWtk0zZzrWzUtbLro/Uxtv5gWtvmLtWaibf17bXytdmD89J83W9jbo99t6q9Pahr/5rBPl/8jdrqq4iJi49sICKyx9qaYP0d+LuZfQZUA+f7vVmfm9lcYBlQC/ykK84gWLB+Nate/TPjzvkNsfrAEulWViz9kAPLP+CDIZdwWJ/+EW07rbc3LLCmtGtcg1WwZQP5ea8R+uodem9fytDa1Yw27yO7gF5sStiPz/ocSqDvcJIGjqL3kNH06dufoYF2GEtXj5lhBoE2DdoS6f4+nnglB8z/Hz56YRbjf3BFtMMR6fHalGA556qBc5pYdztwe1vaj7av3nmcw9Y8wIrfvUf6OQ/Tb8jwaIckIhGy7Y3fU048o6f9POJtp2V6CVa4bGvE246EmopSVn74CsXL3iBr64fsF8qnjznKXTyrE0bwcb9zSBg6nsGjJtOnfw59oh2wiDTrwKPPYMWCP7Df0jspOfos0nr1jXZIIj1aW3uwurWJP/olH72QzQEf3UTg75P5YMgMDjzjlySlpEc7NBFpg41rVnFI8Rss6fcDxvvD+SIpEJdIKUkEd3SeIYIlm/JZ/Z8niVn1Gt8pX8xIaqhysXyVMIpFQy4lY9SxDM2dzCj11ot0OYFgADv5btKe/j6L/3EZ46+ciwXaOlG0iOwtJVgtGH/SRWwcPYlNT17LYWv+QvGdj7Kg74lkTDyH/Q+cRDAY7PCYqmpD7KgKUVZexY4dxVSXl1FTUUqoqoxwVRnhyjJc9Q5cdRlU7yBQXY7V7iBQU+7P4FWLuRAW9v91tQRcyH8eIlDvYS7kX1y+czS4q7soHXbODuXqnn97/bnbdRu+Le94HTe8qGOPrmOOy3Xo8KyO2VdiuAzDMfj717bbPgoDWSRWRjHBCofZsOx9Nuc9S691b5FT+zUHAmvox8LMaSSNPoERE/6LkRG475eIRN+wAw/jw8U/5tBv/sKHj9/GoefMjHZIrVJVWU5FWQmV5SVUlRVTXVFKdUUptRWlhCrLCFWWEa4uI1zjz0YaqsZCNVi4GgtVY+FqAuEaAuEaguFqcCEsHPK/k3jfX4wwARfG/O8zu5e7XWa7dLs9Yfd1TWnFNZKt+f9qS3U68v/Mrf9us2dR7Untz2JGkHb6vRw5rGuMqVCC1Qr9cw6g/zX/5ou8N9nxzn0cvPkp4p6fy9bn01mXNIryXsMJ9BlOWp+BJPTqR0JqFkkJCVgwlrAFcaFawrWVhKvLqayooKqinKrKHdRUln37AVJVRrhyB1R7yVGgZgfB2nKCtRXEhMqJC5cTH64kwVWSSCXJVNK73gXnLQk5o4IEqiyOEEFCFiTs/+sI1C2HLUjYYghbkFAglrAlAAHvzWU75/QyqHuA8+Za9vfkfUyZ1a9H3fZGx35hb+v0wHt0kXEHXgjdUa+ga4+z1ezxd0yKug1YPXAih7XjsN+SuL6kVHfsNVih6gq+XvgSZUufZ5+CdxjgtpHtjM9jRjJvyE/pe8hUDhh1CPsE9cu2SHc0/rz/ZdEflnPoqrtY8HA1h577mw7tyQqFQhRt3UDxlnWUb11H1bYN1JRtxSqKCFZuJ6a6mPiaYpJqS0gOl5Dqyki0avak37zaxVBNLDUWQw2x1FoMIWKosThC/vcXZ0Gcf2sHh/e9ppYAzgKE/Vs8OLxbOTi/vO7/rLbr/2N3vX1H8/+PMtfylCit+67QQp0O/TW3c8zcGo7LJjmu4zs19pa1dtaijjBu3DiXl5cX7TBatL1gI18veA636k0yS5YxOLyeYASnDi4ngUpLoMoSqA4kUhNMojYmiXBMIuHYZFxcMhaXQiAumUBCCsGEFALxKQTjkwkmpBKTmEJsQiqxCSnEJaURl5RKMC6xfW7uIiKNWnDXWXyn5AOybslv1/2UFReyav5TsOIl9i/5gGQqKXMJfJZ0KNX7Hcd+353GwAGN3uddRLqh6qpKltx3NhNK3+DzuAOJO+HX7H/QkW1qs6a2lsItG9i+eQ1lW9dTtW094ZJNBHdsJr5yCynVW8kIFdLbbSfWdp/TrNoFKbFUygJplMekUR2TRnVcBuGEXriEdIhLJZiQTCAhlZiEFGISUolLSiU+KZX45HQSk9JITEomNjZWQx+lUzGzRc65cbuVK8Fqu9rKHWxeu5LCzeuoLS0gXL6N6upqAi5E0NVCIEAomAAx8QTjkoiLTyQmPom4pBTiEtOIT04jKSWNpORUYuJTvJtiikiX9u5frmLShn9gv9qCxcRFtO0N36xi7YKnSFr9CgdUfEKshSggg5UZRxAceSIjvnsSaSkpEd2niHQdLhxi4ZN3MWLZH0hjB/mBwWzsPZGYAWOIyxpKYko6BOMwIFxdRuWOEqp2FBMu24qVbcZ2bCauYitJ1VtJCxWR2UTitJ1Utgd7UxabRVVCH2qT+2Gp2cRmDCCx9yDS+gyiV58BJCan6kde6ZaUYImIdKAP5v6ew5bdRsF/L6TP4LYNRayurGDlR69R8vkrZG95n33D3wCwxgayLvsY0g86leGHHEVMjEZ9i8i3SoqLWP7yX0jKf539K5aSYDUtbhN2RpGlUxzszY7YTKoTswgnZxNI6098rwEkZQ6iV/ZgMvoMIhCX2AFHIdJ5NZVg6f/GIiLtIGmfsbAMCld+tMcJVk1NNauWfkDhsnkkr3+f4RVLGGVVVLsYViaMZuHgU+k34QfsM2ws+7RP+CLSDaSl9+bQM28AbqCmuor1676mdPPXVJaXEghVe9NUxaWQkJxGcmo6SRnZpGX2Iys2jqxoBy/ShSnBEhFpBwMPGE/1y0HKVy+kidsF1inYvI51yz6k4usFpG35iH0rlzHCqgBYH+jP0j4nEX/AcQw7dAqjUjPaP3gR6XZi4+IZuO8I2HdEtEMR6faUYImItIOsjDSWx3yHrA1v40I1WDCWstLtbPjqM7avW05o4zKSt31Ov/KV9KWIPnhDc/KDQ/i0z4nE73s4Qw76HgP756ApKkRERLoOJVgiIu2kIPdiRnx8Ndt+vS8hAmSxnWH+upAz1gYHsSbtYFZn55K+7yEMHnkY+6Znsm9UoxYREZG2UIIlItJOJp98If8JVRGT/w7ExLEyfR8SsoeTOWQE/XJGkZOYTE60gxQREZGIUoIlItJOLBDguz/4CfCTaIciIiIiHaTNN1wys7FmtsDMlphZnplN8MvNzO4xs1VmttTMDm57uCIiIiIiIp1XJO5oewdwq3NuLHCzvwxwArC//7gYuD8C+xIREREREem0IpFgOSDNf54ObPCfTwX+6TwLgAwz6x+B/YmIiIiIiHRKkbgG60rgVTO7Ey9h+65fPhBYW6/eOr9sY/2NzexivB4ugDIzWxGBmCIpC9ga7SCkw+h89xw61z2HznXPovPdc+hc9yyd8XwPaaywVQmWmb0B9Gtk1S+BY4GrnHNPmdkZwIPA91oblXPuAeCB1tbvaGaW55wbF+04pGPofPccOtc9h851z6Lz3XPoXPcsXel8tyrBcs41mTCZ2T+BK/zFfwF/85+vBwbXqzrILxMREREREemWInEN1gbgSP/5McBK//nzwHn+bIITgWLn3MbGGhAREREREekOInEN1o+Bu80sBqjk2+upXgK+D6wCyoELIrCvaOi0wxelXeh89xw61z2HznXPovPdc+hc9yxd5nybcy7aMYiIiIiIiHQLkRgiKCIiIiIiIijBEhERERERiRglWM0wsylmtsLMVpnZ9dGORyLHzAab2dtmtszMPjezK/zy3mb2upmt9P/tFe1YJTLMLGhmH5vZC/7yUDP70H9/zzGzuGjHKJFhZhlm9qSZfWFmy83sML23uyczu8r/DP/MzGabWYLe292Hmf3dzLaY2Wf1yhp9L/uTqt3jn/elZnZw9CKXPdXEuf6d/zm+1MyeMbOMeutu8M/1CjM7PipBN0MJVhPMLAj8CTgBGAmcZWYjoxuVRFAtcLVzbiQwEfiJf36vB950zu0PvOkvS/dwBbC83vL/AXc5574DbAP+OypRSXu4G3jFOXcAcCDeedd7u5sxs4HAz4BxzrnRQBA4E723u5OHgCkNypp6L58A7O8/Lgbu76AYJTIeYvdz/Tow2jmXC3wJ3ADgf187Exjlb/Nn/3t7p6EEq2kTgFXOua+dc9XAE8DUKMckEeKc2+icW+w/L8X7AjYQ7xw/7Fd7GDg1KgFKRJnZIOBE/Pv0mZnh3VbiSb+KznU3YWbpwBF4N73HOVftnNuO3tvdVQyQ6M9knARsRO/tbsM59y5Q1KC4qffyVOCfzrMAyDCz/h0SqLRZY+faOfeac67WX1yAd09d8M71E865KufcarwZyyd0WLCtoASraQOBtfWW1/ll0s2YWQ5wEPAhkF3vfm2bgOxoxSUR9UfgOiDsL2cC2+t9cOv93X0MBQqAf/hDQv9mZsnovd3tOOfWA3cCa/ASq2JgEXpvd3dNvZf1va17uxB42X/e6c+1Eizp0cwsBXgKuNI5V1J/nfPuYaD7GHRxZnYSsMU5tyjasUiHiAEOBu53zh0E7KDBcEC9t7sH/9qbqXhJ9QAgmd2HGEk3pvdyz2Bmv8S7tOOxaMfSWkqwmrYeGFxveZBfJt2EmcXiJVePOeee9os37xxS4P+7JVrxScQcDpxiZvl4Q32PwbtGJ8MfVgR6f3cn64B1zrkP/eUn8RIuvbe7n+8Bq51zBc65GuBpvPe73tvdW1PvZX1v64bMbAZwEnC2+/bmvZ3+XCvBatpHwP7+bERxeBfTPR/lmCRC/GtwHgSWO+f+UG/V88D5/vPzgec6OjaJLOfcDc65Qc65HLz38VvOubOBt4HT/Wo6192Ec24TsNbMhvtFxwLL0Hu7O1oDTDSzJP8zfee51nu7e2vqvfw8cJ4/m+BEoLjeUELpgsxsCt7w/lOcc+X1Vj0PnGlm8WY2FG9ik4XRiLEp9m0yKA2Z2ffxrt0IAn93zt0e3YgkUsxsEvAe8CnfXpdzI951WHOBfYBvgDOccw0vsJUuysyOAq5xzp1kZvvi9Wj1Bj4GznHOVUUxPIkQMxuLN6FJHPA1cAHeD4p6b3czZnYrMB1v+NDHwEV412Lovd0NmNls4CggC9gM3AI8SyPvZT/Jvg9vmGg5cIFzLi8KYcteaOJc3wDEA4V+tQXOuUv8+r/Euy6rFu8yj5cbthlNSrBEREREREQiREMERUREREREIkQJloiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiIiIiIhGiBEtEpJMwsxwzc2YWE+1Yujszm2Fm86MdR2djZpPNbEW04xAR6cqUYImISJdmZjPNrMbMyuo9rot2XF2Rc+4959zwSLZpZllm9r6ZFZrZdjP7wMwOj+Q+REQ6E/1KKiISIWYW45yrjXYcPdQc59w50Q6ivXTxv60y4EJgJeCAqcC/zaxvFz4mEZEmqQdLRKQNzCzfzH5hZkuBHWYWY2YTzew//q/1n5jZUfXqzzOz/zWzhWZWYmbPmVnvJtq+wMyWm1mpmX1tZv/TYP1UM1vit/OVmU3xy9PN7EEz22hm683sN2YWbOE49jOzt/xehq1m9piZZdRbV2RmB/vLA8ysYOdxmdkpZva5f7zzzGxEg9fnGjNbambFZjbHzBL2/JXec2Z2vf+6lJrZMjOb1kQ9M7O7zGyL/1p+amaj/XXxZnanma0xs81mNsvMElu5/4f8+q/7MbxjZkPqrb/bzNb6+1xkZpPrrZtpZk+a2aNmVgLMMLMJfu/Pdv/c3mdmcfW2cWZ2mZmt9Pf3a//c/cffx9z69ZuI+SgzW9ea42st51ylc26Fcy4MGBACegGN/t2LiHR1SrBERNruLOBEIAPIBl4EfoP3BfIa4Ckz61Ov/nl4v+j3B2qBe5podwtwEpAGXADcVS/JmQD8E7jW3+8RQL6/3UN+u98BDgKOAy5q4RgM+F9gADACGAzMBHDOfQX8AnjUzJKAfwAPO+fmmdkwYDZwJdAHeAmvd6L+F/kzgCnAUCAXmNFoAGaT/OShqcekFo6hoa+AyUA6cKsff/9G6h2H9/oN8+ueART6637rl4/Fez0HAjfvQQxnA78GsoAlwGP11n3kt9sbeBz4V4PkcyrwJN75fQwvMbnKb+sw4Fjgsgb7Ox44BJgIXAc8AJyDdz5H4/2t7jU/UW7q/Py5pW2BSuB54G/OuS1tiUVEpLMy51y0YxAR6bLMLB+4zTn3d3/5F8Bo59y59eq8CjzunHvYzOYBC5xz1/vrRuJ98U7E+xK8GohtbOiUmT0LvO2cu9vM/gKUO+eualAnG1gDZDjnKvyys4CLnXNH78FxnQrc4pw7qF7Z83hJkgPGO+eqzOxXwBjn3Bl+nQCwFjjbT8DygZucc4/66+8A0pxzl7Q2llbEOhO4ESivVzzSObehQb0l/jE9Z2YzgIucc5PM7BhgFl7iu9DvacHMDG94W66fZGJmh+Gdy6GtiOshIME5d6a/nAIUAznOubWN1N8GHOWc+8Q/pmOcc0c00/6VwJHOuWn+sgMmOefe95cXAXOdc//nL/8eCDrnrmymzaOAR51zg1o6vr3hJ5DTgDjn3MPtsQ8RkWjTNVgiIm1X/8vyEOCHZnZyvbJY4O0m6n/jr89q2KiZnQDcgteDEgCSgE/91YPxeosaGuK3t9HLD8Dfdrcv9A32lQ3cjdfjk+pvs61Btb/i9T5c7Jyr8ssG+McAgHMubGZr8Xp6dtpU73m5v02kzW14DZaZnQf8HMjxi1Jo5HV2zr1lZvcBfwKGmNnTeD2PCXiv+aJ6r6UBzQ63bKDudXfOlZlZEd7xrzWza4D/9pcdXk9lVmPb+sczDPgDMM6PKwZY1GB/m+s9r2hkud8exB5xzrlKYLZ5Q1+XOOc+iWY8IiLtQUMERUTarv5QgLXAI865jHqPZOfcb+vVGVzv+T5ADbC1foNmFg88BdwJZDvnMvASqp3f9NcC+zUSy1qgCsiqt/8059yoFo7h//nHMcY5l4Y3rOzbrMLrffkj8CAw0769bmwDXlK3s575x7e+hf3txrwpwsuaeUxuuZW6tobgJYSXA5n+6/dZ/WOqzzl3j3PuEGAkXkJ7Ld45qQBG1Xst051zKXtwWHXn2n8NewMb/GO5Dm84Yi8/vuIG8TUcYnI/8AWwv3+ObmzqeNqLedfaNXV+Zu1BU7HAvu0Vp4hINCnBEhGJrEeBk83seDMLmlmCP3FA/SFX55jZSP96ptuAJ51zoQbtxAHxQAFQ6/dmHVdv/YPABWZ2rJkFzGygmR3gnNsIvAb83szS/HX7mdmRLcSdijccrtjMBuIlGPXdDeQ55y7Cu8Zs55fpucCJfhyxwNV4Cd5/WnqhGvKnCE9p5vHeHjSXjJegFIA3YQjeNUi7MbPxZnaoH/8OvOuEwv5Qwb/iXfvW16870MyOr7ets3qTmDTi+/61ZXF412It8IcHpuJdJ1cAxJjZzXg9WM1JBUqAMjM7ALi0hfoR55wb1cz5aXTYp3mTvkwyszgzS/SH0WYDH3Zs9CIiHUMJlohIBPlfnqfi9S4U4PUoXcuun7eP4E1EsQlvGNrPGmmn1C+fizdU70d4w/N2rl+IP/EFXs/HO3zbk3QeXoK2zN/2SbwJNZpzK3Cw39aLwNM7V5jZVLxJKnZ+of85cLCZne2cW4HX23UvXo/PycDJzrnqFvbXrpxzy4DfAx/gDZMbA7zfRPU0vERqG95wx0Lgd/66XwCrgAXmzeb3BjAcwMwGA6V8O2yzMY/jDfMswpt8YucwxleBV4Av/X1W0sIwTrxhiz/y9/lXYE4L9TuLeLzhl4V4PZvfB05seI2ciEh3oUkuREQ6kD/JxaPOub9FOxZpGzM7B2/44A1NrH8IWOecu6lDAxMRkajSJBciIiJ7YefMiCIiIvVpiKCISA9h3k1v2zo5gXRxZnZjE38HL0c7NhGR7kBDBEVERERERCJEPVgiIiIiIiIR0qmuwcrKynI5OTnRDkNERERERKRZixYt2uqc69OwvFMlWDk5OeTl5UU7DBERERERkWaZ2TeNlWuIoIiIiIiISIQowRIREREREYkQJVgiIk0IhzXLqoiIiOyZTnUNVmNqampYt24dlZWV0Q5FupiEhAQGDRpEbGxstEORLuieua8wcNVspl77N2L0NyQiIiKt1OkTrHXr1pGamkpOTg5mFu1wpItwzlFYWMi6desYOnRotMORLujEz65kv8BGVn95GUNHHRrtcERERKSL6PRDBCsrK8nMzFRyJXvEzMjMzFTPp+yVcCjMfoGNABSs/jTK0YiIiEhX0ukTLEDJlewV/d3I3qqqKKt7XrNpeRQjERERka6mSyRYIiIdqaayvO55cvGqKEYiIiIiXY0SrFYwM66++uq65TvvvJOZM2dGL6B6FixYwKGHHsrYsWMZMWJEXVzz5s3jP//5z163+80333DwwQczduxYRo0axaxZsyIUsUjnV121o+55UuWmKEYiIiIiXU2nn+SiM4iPj+fpp5/mhhtuICsrK2LtOudwzhEI7H2ee/755zN37lwOPPBAQqEQK1asALwEKyUlhe9+97t71W7//v354IMPiI+Pp6ysjNGjR3PKKacwYMCAvY5VpKvY2YNV7YKk1xREORoRERHpStSD1QoxMTFcfPHF3HXXXbutKygo4LTTTmP8+PGMHz+e999/H4CZM2dy55131tUbPXo0+fn55OfnM3z4cM477zxGjx7N2rVrufbaaxk9ejRjxoxhzpw5gJcgHXXUUZx++ukccMABnH322Ti3+z15tmzZQv/+/QEIBoOMHDmS/Px8Zs2axV133cXYsWN57733mo3z3HPP5bDDDmP//ffnr3/9KwBxcXHEx8cDUFVVRTgcbvS1ueeeexg5ciS5ubmceeaZABQVFXHqqaeSm5vLxIkTWbp0ad2+zj//fCZPnsyQIUN4+umnue666xgzZgxTpkyhpqYGgNtuu43x48czevRoLr744t2OOxwOk5OTw/bt2+vK9t9/fzZv3tzcaRRptZoqL8HaEOhHpttGbW1tlCMSERGRrqJL9WDd+u/PWbahJKJtjhyQxi0nj2qx3k9+8hNyc3O57rrrdim/4ooruOqqq5g0aRJr1qzh+OOPZ/ny5i+KX7lyJQ8//DATJ07kqaeeYsmSJXzyySds3bqV8ePHc8QRRwDw8ccf8/nnnzNgwAAOP/xw3n//fSZNmrRLW1dddRXDhw/nqKOOYsqUKZx//vnk5ORwySWXkJKSwjXXXAPAj370oybjXLp0KQsWLGDHjh0cdNBBnHjiiQwYMIC1a9dy4oknsmrVKn73u9812nv129/+ltWrVxMfH1+X8Nxyyy0cdNBBPPvss7z11lucd955LFmyBICvvvqKt99+m2XLlnHYYYfx1FNPcccddzBt2jRefPFFTj31VC6//HJuvvlmAM4991xeeOEFTj755Lp9BgIBpk6dyjPPPMMFF1zAhx9+yJAhQ8jOzm7xPIq0RqiqAoBt8YPJqVzPxs3r6T9wSJSjEhERka5APVitlJaWxnnnncc999yzS/kbb7zB5ZdfztixYznllFMoKSmhrKysiVY8Q4YMYeLEiQDMnz+fs846i2AwSHZ2NkceeSQfffQRABMmTGDQoEEEAgHGjh1Lfn7+bm3dfPPN5OXlcdxxx/H4448zZcqURvfZXJxTp04lMTGRrKwsjj76aBYuXAjA4MGDWbp0KatWreLhhx9utIcoNzeXs88+m0cffZSYmJi6Yzr33HMBOOaYYygsLKSkxEuMTzjhBGJjYxkzZgyhUKgu3jFjxtQd39tvv82hhx7KmDFjeOutt/j888932+/06dPrevueeOIJpk+f3uxrLrInQtVeD1ZFymAAijeviWY4IiIi0oV0qR6s1vQ0tacrr7ySgw8+mAsuuKCuLBwOs2DBAhISEnapGxMTs8uwuvr3Y0pOTm7V/nYO0QNv+F9Tw5T2228/Lr30Un784x/Tp08fCgsLd6vTVJyw+3TmDZcHDBjA6NGjee+99zj99NN3Wffiiy/y7rvv8u9//5vbb7+dTz9t/p5BO48pEAgQGxtbt69AIEBtbS2VlZVcdtll5OXlMXjwYGbOnNnovawOO+wwVq1aRUFBAc8++yw33XRTs/sV2RO1/hDBUK+hsBXKC9dGOSIRERHpKtSDtQd69+7NGWecwYMPPlhXdtxxx3HvvffWLe8cCpeTk8PixYsBWLx4MatXr260zcmTJzNnzhxCoRAFBQW8++67TJgwodUxvfjii3XXKK1cuZJgMEhGRgapqamUlpa2GCfAc889R2VlJYWFhcybN4/x48ezbt06Kir8YVLbtjF//nyGDx++y77D4TBr167l6KOP5v/+7/8oLi6mrKyMyZMn89hjjwHetWRZWVmkpaW16nh2JlNZWVmUlZXx5JNPNlrPzJg2bRo///nPGTFiBJmZma1qX6Q1wjXe335cn/0AqNm2IZrhiIiISBfS5gTLzAab2dtmtszMPjezK/zy3mb2upmt9P/t1fZwo+/qq69m69atdcv33HMPeXl55ObmMnLkyLrpzE877TSKiooYNWoU9913H8OGDWu0vWnTppGbm8uBBx7IMcccwx133EG/fv1aHc8jjzzC8OHDGTt2LOeeey6PPfYYwWCQk08+mWeeeaZukoum4gRvmN/RRx/NxIkT+dWvfsWAAQNYvnw5hx56KAceeCBHHnkk11xzDWPGjAHgoosuIi8vj1AoxDnnnMOYMWM46KCD+NnPfkZGRgYzZ85k0aJF5Obmcv311/Pwww+3+ngyMjL48Y9/zOjRozn++OMZP3583bpZs2btEvf06dN59NFHNTxQIi5c7SVYqf32I+QMV6IES0RERFrHGpuZbo8aMOsP9HfOLTazVGARcCowAyhyzv3WzK4HejnnftFcW+PGjXN5eXm7lC1fvpwRI0a0KUZp2sz/3969x0dV3vse//zmkpncIBcSLgmXbARECQEJyBataL212tKKF87RKnL25tXWXnRfumu7tdUeX6et52XP3tXqtltL7VbU2m5lV2u9v5RzKspNQRGKEiAhSEgC5J6ZWc/5Y4aYAOGWSYZJvu/Xa16Z9axnrfVLFmtYv3me9Tw//GGPwTAGG/37kZOxYcW/UL72DrZev4rh/3EZVfnnMPvbj6c6LBERETmFmNka51zloeV9bsFyztU659Ym3jcBm4ASYAFwsOni18STLhGRU97BFqxgKItGfyHh9j0pjkhERETSRVIHuTCzCcBMYBUw0jlXm1i1GzjiGNpmthRYCjBu3LhkhiPH4Yc//GGqQxA59UQTCVY4i/qMIvI7d6c4IBEREUkXSRvkwsxygN8BtzjnekxW5eL9EI/YF9E595BzrtI5V1lUVJSscERETl4kPthKRjib9nAx+bG9x9hAREREJC4pCZaZBYknV485536fKP4k8XzWwee01MdGRNJDtJ0OFyAjGCCWXUweTXiRjlRHJSIiImkgGaMIGvAwsMk5d2+3VSuAGxPvbwSe7euxREQGRLSdDjLI8Pvw5cZH9dxfV5PioERERCQdJKMFax7wFeBCM1ufeH0e+DFwsZn9BbgosSwicsqzaDvtZBAK+MjIGw3AvrrqFEclIiIi6SAZowiudM6Zc266c25G4vW8c67eOfdZ59wk59xFzrmGZAScKs888wxmxocffthrnaqqKqZNm5a0Y27evJn58+czY8YMpk6dytKlS4H4JMHPP//8Se+3vb2dOXPmUFFRwZlnnskPfvCDZIUsMij4Ei1YZkZWwRgAWuo1F5aIiIgcW9IGuRjsli9fzrnnnsvy5cuPuD4ajfb5GLFYrMfyt771LW699VbWr1/Ppk2b+OY3vwn0PcEKhUK8+uqrvPvuu6xfv54XXniBt956q0+xiwwm5nXSSRCAYUWlAHTsU4IlIiIix6YE6zg0NzezcuVKHn74YZ544omu8tdff53zzjuPL37xi5xxxhlAPNG67rrrmDp1KldddRWtra0AvPLKK8ycOZPy8nKWLFlCR0f8gfkJEybwT//0T5x11ln89re/7XHc2tpaSktLu5bLy8vp7Ozkjjvu4Mknn2TGjBk8+eSTtLS0sGTJEubMmcPMmTN59tn4427Lli1jwYIFzJ8/n0mTJnHnnXcCYGbk5OQAEIlEiEQixB+l6+m3v/0t06ZNo6Kigs985jNAvPXrpptuory8nJkzZ/Laa691HetLX/oSF198MRMmTOC+++7j3nvvZebMmcydO5eGhngD5i9/+Utmz55NRUUFCxcu7Pr7dDd37lzef//9ruX58+dz6ATUIv3JYhGiFk+wCopLAIgd0FDtIiIicmxJnQer3/3xu7B7Q3L3OaocPnf0x8OeffZZLrvsMiZPnkxhYSFr1qxh1qxZAKxdu5aNGzdSVlZGVVUVmzdv5uGHH2bevHksWbKEX/ziF3zjG99g8eLFvPLKK0yePJkbbriBBx54gFtuuQWAwsJC1q5de9hxb731Vi688ELOOeccLrnkEm666Sby8vK46667WL16Nffddx8A3/ve97jwwgt55JFH2LdvH3PmzOGiiy4C4O2332bjxo1kZWUxe/ZsLr/8ciorK4nFYsyaNYutW7dy8803c/bZZx92/Lvuuos//elPlJSUsG/fPgDuv/9+zIwNGzbw4Ycfcskll7BlyxYANm7cyLp162hvb+e0007jJz/5CevWrePWW2/l0Ucf5ZZbbuHKK6/kb//2bwH453/+Zx5++OGulrmDrr32Wp566inuvPNOamtrqa2tpbLysEmyRfqNeZ3ELP7xmJ2VRYPLxdesgVBFRETk2NSCdRyWL1/OokWLAFi0aFGPboJz5syhrKysa3ns2LHMmzcPgOuvv56VK1eyefNmysrKmDx5MgA33ngjb7zxRtc211577RGPe9NNN7Fp0yauvvpqXn/9debOndvV8tXdiy++yI9//GNmzJjB/PnzaW9vZ8eOHQBcfPHFFBYWkpmZyZVXXsnKlSsB8Pv9rF+/nurq6q4k7FDz5s1j8eLF/PKXv+zqvrhy5Uquv/56AE4//XTGjx/flWBdcMEF5ObmUlRUxPDhw/nCF74AxFveqqqqgHgSdt5551FeXs5jjz3Wo6XqoGuuuYann34agKeeeoqrrrrqiH8fkf7i8yLEEi1YAPv8BQTa6lIYkYiIiKSL9GrBOkZLU39oaGjg1VdfZcOGDZgZsVgMM+Oee+4BIDs7u0f9Q7vaHanr3aEO3Ud3Y8aMYcmSJSxZsoRp06YdMRFyzvG73/2OKVOm9ChftWrVMePJy8vjggsu4IUXXjhsgI4HH3yQVatW8dxzzzFr1izWrFlz1N8jFAp1vff5fF3LPp+v6xm1xYsX88wzz1BRUcGyZct4/fXXD9tPSUkJhYWFvPfeezz55JM8+OCDRz2uSLL5vM6uLoIAzYECsjo12bCIiIgcm1qwjuHpp5/mK1/5Ctu3b6eqqoqdO3dSVlbGm2++ecT6O3bs4M9//jMAjz/+OOeeey5TpkyhqqqKrVu3AvCb3/yG888//5jHfuGFF4hEIgDs3r2b+vp6SkpKyM3NpampqavepZdeys9//nOccwCsW7eua91LL71EQ0MDbW1tPPPMM8ybN4+6urquLn9tbW289NJLnH766Ycd/6OPPuLss8/mrrvuoqioiJ07d3Leeefx2GOPAbBlyxZ27NhxWGJ3NE1NTYwePZpIJNK1nyO59tpr+elPf8r+/fuZPn36ce9fJBl8XhTP92mC1RYawbBofQojEhERkXShBOsYli9fzpe//OUeZQsXLux1NMEpU6Zw//33M3XqVBobG/na175GOBzmV7/6FVdffTXl5eX4fD6++tWvHvPYL774YtcgE5deein33HMPo0aN4oILLuCDDz7oGuTi9ttvJxKJMH36dM4880xuv/32rn3MmTOHhQsXMn36dBYuXEhlZSW1tbVccMEFTJ8+ndmzZ3PxxRdzxRVXAHDHHXewYsUKAP7xH/+R8vJypk2bxjnnnENFRQVf//rX8TyP8vJyrr32WpYtW9aj5epYfvSjH3H22Wczb968HkndihUruOOOO7qWr7rqKp544gmuueaa4963SLL4XaRHghXNKibf2weJLzFEREREemPuFLphqKysdIeOFrdp0yamTp2aoojS27Jly3oMhjEU6d+PnIydP5rGruAEzv7uHwD4v7+5k3kf3UvLrR+TPbwwxdGJiIjIqcDM1jjnDhuJTS1YIiKHCLgoMX/Gp8vDRwHQ+MnOVIUkIiIiaUIJ1iC2ePHiId16JXKy/C6C69ZFMJw/GoCmvTWpCklERETSRFokWKdSN0ZJH/p3IycrQLRHgpU7Ij7ZcFujEiwRERE5un5PsMzsMjPbbGZbzey7J7p9OBymvr5eN8tyQpxz1NfXEw6HUx2KpKGAi+K6dRHMLx4HQGTf7lSFJCIiImmiX+fBMjM/cD9wMVANvGNmK5xzHxzvPkpLS6murqauTpN8yokJh8OUlpamOgxJQ0EiPRKs4XmFdLggNH+SwqhEREQkHfT3RMNzgK3OuY8BzOwJYAFw3AlWMBikrKysn8ITETlcwEUx/6ddBH1+H/WWj791TwqjEhERkXTQ310ES4Duw25VJ8q6mNlSM1ttZqvVSiUiKed5BC0G3VqwAA4ECgi36zNKREREji7lg1w45x5yzlU65yqLiopSHY6IDHEu1hl/E+iZYLVmFJIdaUhBRCIiIpJO+jvBqgHGdlsuTZSJiJySOjvbADB/qGd5ZhH5nhIsERERObr+TrDeASaZWZmZZQCLgBX9fEwRkZPW2dEBgO+QFiwvq5g8moh0tqciLBEREUkT/ZpgOeeiwDeAPwGbgKecc+/35zFFRPoi0hlPsOyQBMs/bBQADXuqBzwmERERSR/9PYogzrnngef7+zgiIskQ6Yi3UB3agpWRPwaAA3U1jCw9bcDjEhERkfSQ8kEuREROJZ2JFixfsOczWFkF8QSrpX7XgMckIiIi6UMJlohIN9HOgy1YPROs4UXxSas7GpVgiYiISO+UYImIdBONxFuw/Ie0YBUUlxJzBgdqUxGWiIiIpAklWCIi3UQTXQT9hz6DFQpRb3n4W9SCJSIiIr1TgiUi0k1XC1ZG+LB1Df4iwm27BzokERERSSNKsEREuvESz2D5M0KHrWsOFZPbWTfQIYmIiEgaUYIlItJNrLMVgEBG1mHrOrNGURDbO9AhiYiISBpRgiUi0o2XSLCCmdmHr8sdQy6ttDc3DnRYIiIikiaUYImIdON1tgGQET48wQrmx4dqr99VNZAhiYiISBpRgiUi0s3BBCt0hAQrc8R4APZ9UjWQIYmIiEgaUYIlItJdJN5FMJR5+DNYeSPjCVZ7/c4BDUlERETSR58SLDO7x8w+NLP3zOw/zSyv27rbzGyrmW02s0v7HKmIyABwkfgoguHMnMPWFY2ZAEC0sXogQxIREZE00tcWrJeAac656cAW4DYAMzsDWAScCVwG/MLM/H08lohI/4u20eGC+PyHf2RlZmayl+H4mjXZsIiIiBxZnxIs59yLzrloYvEtoDTxfgHwhHOuwzm3DdgKzOnLsUREBoJF2+mwjF7XN/iLCLV+MoARiYiISDpJ5jNYS4A/Jt6XAN0fUqhOlImInNJ80TY66D3Bas4oJrdzzwBGJCIiIukkcKwKZvYyMOoIq77vnHs2Uef7QBR47EQDMLOlwFKAcePGnejmIiJJ5Yu102GhXtd3Zo2ioO3dAYxIRERE0skxEyzn3EVHW29mi4ErgM8651yiuAYY261aaaLsSPt/CHgIoLKy0h2pjojIQPHFOogcJcHycscwvL6FtuYDZOYMG8DIREREJB30dRTBy4DvAF90zrV2W7UCWGRmITMrAyYBb/flWCIiAyEQayfi6z3BCiQmG95bWzVAEYmIiEg66eszWPcBucBLZrbezB4EcM69DzwFfAC8ANzsnIv18VgiIv3O7x09wcoqjDfOH9i9baBCEhERkTRyzC6CR+OcO+0o6+4G7u7L/kVEBlrQ66AtMLzX9cNHlwHQqsmGRURE5AiSOYqgiEjaC3qdxI7SgnVwsuFYoxIsEREROZwSLBGRboKuHRcI97o+nJlNA8PwNWmyYRERETmcEiwRkW7Crg0XzD5qnXp/EaG23QMUkYiIiKQTJVgiIgnOOXJdK7FQ789gATSHihnWocmGRURE5HBKsEREEtpbWwhZBHeMBKsjazSFXt0ARSUiIiLpRAmWiEhCy/56ACzz6AmWl1vCMFpobd43AFGJiIhIOlGCJSKS0NoUT7B8WflHrRc8ONnwrqr+DklERETSjBIsEZGEjqYGAAJZeUetlzliPAAHdlf1c0QiIiKSbpRgiYgkdDY3AhDMPnoLVv6oCQC01u/o75BEREQkzSjBEhFJaE90EczNH3HUeiPGxFuwvMbqfo9JRERE0osSLBGRhIMtWHnHSLBC4Sz2koevuWYgwhIREZE0ogRLRCQh2hJPsHKHFx6zboO/iHCrJhsWERGRnpKWYJnZ35uZM7MRiWUzs381s61m9p6ZnZWsY4mI9Ad/6x4OkI0vI3zMui2hYoZ1arJhERER6SkpCZaZjQUuAbo/8f05YFLitRR4IBnHEhHpL5ltn9DgO3brFUBHtiYbFhERkcMlqwXrZ8B3ANetbAHwqIt7C8gzs9FJOp6ISNLlROo4kFF0XHXdsBJyaaP5QEM/RyUiIiLppM8JlpktAGqcc+8esqoE2NltuTpRduj2S81stZmtrqvTt8Eikjp50XraQsXHVffgZMP1u7b1Z0giIiKSZgLHU8nMXgZGHWHV94HvEe8eeFKccw8BDwFUVla6Y1QXEekXnZ2dFLhGPso9vob2rO6TDZ8+qx8jExERkXRyXAmWc+6iI5WbWTlQBrxrZgClwFozmwPUAGO7VS9NlImInHJqa6oYb46MRMvUseQlJhtu12TDIiIi0k2fugg65zY454qdcxOccxOIdwM8yzm3G1gB3JAYTXAusN85V9v3kEVEkq9xxyYAskZPPq76I0ZPwHNGbJ8mGxYREZFPHVcL1kl6Hvg8sBVoBW7qx2OJiPRJx+4PASgcP+246meEQtRZHv4mfW8kIiIin0pqgpVoxTr43gE3J3P/IiL9xe39Cy0uzIjR4497mwZ/EZntmmxYREREPpW0iYZFRNJZ1v6t1AZLMd/xfyw2Z4wgJ1Lfj1GJiIhIulGCJSJDnvM8xnX8hX3Dpp7Qdu3hEQyPaR4sERER+ZQSLBEZ8nZVbSHPmomNnnFC23lZxeRzABft6J/AREREJO0owRKRIa/6/ZUAFE85+8Q2zIlPD9hUr+ewREREJE4JlogMed62N2khzPipJ5ZgBfLiCdaBup39EZaIiIikISVYIjLkjWlczceZ0/EFM05ou3D+GABa6jWHuoiIiMQpwRKRIW3vru2Md9W0jPnrE942d0QpAB37NBeWiIiIxCnBEpEhbce6FwHIP/OiE942r6gEAO+AnsESERGROCVYIjKkxT5+kyaXycTyE2/Bys/Npt7lQrMSLBEREYlTgiUiQ9roxnfYmllBIBg84W39PqPB8gm21fVDZCIiIpKOlGCJyJBVv6uKUm8XrSXnnPQ+DgQKyezYm8SoREREJJ31OcEys2+a2Ydm9r6Z/bRb+W1mttXMNpvZpX09johIsm1f8wIAI6Z99qT30ZpRSG6kPlkhiYiISJoL9GVjM7sAWABUOOc6zKw4UX4GsAg4ExgDvGxmk51zsb4GLCKSLN62N9jvsplYPvek99GZWUxeayM4B2ZJjG5gOc+jvq6Whl3baKrbQWdDNbR8Au37sc4WgtFmMmKt+FwUnAfOwwz8ODzzE7MAMQvi+YJdPz0L4vmDOF8Q5wuAL4D5/GB+zBd/4fPj8wUwvx9nPhx+XOLv6FxXdD2WDUfPNZ+uPLjcvQ6H1OFodQ4tO2TxuLYRGWC+jCxmfOlbhEKZqQ5FROhjggV8Dfixc64DwDm3J1G+AHgiUb7NzLYCc4A/9/F4IiJJM6pxLR9lVXBW4OQ/CmNZxQTro7jWBiy7MInR9Z8DTfvZseH/0fLxKqjbzPCWjymJbGeEtTGiWz3PGS0Wps2yaLdM2iyTmC8jnkiaDw8jBpjn4XethFyUgIviJ0Ig8T5AhCBRAkQJuBg+PPymhEQk2dbkFDLr8r9JdRgiQt8TrMnAeWZ2N9AO/INz7h2gBHirW73qRNlhzGwpsBRg3LhxfQxHROT47Nm9k1JXS/WYa/q0H1/uSABaG2rIPkUTrIa9e/j47eeJfvwGBY3vUhbdxjSLdyioJ4/dofF8kPc5KJxIqGAcucXjyR81nmEjxpAbzCA32QE5h/NixGJRotEokWiEaDSGeTFwsUTrWLwVy0i0CvoSy4nFrvJuhQfLuhoSj9iieEjZcdU5xvpe9yPS/6LRGL6fnYm3bSWgBEvkVHDMBMvMXgZGHWHV9xPbFwBzgdnAU2b2VycSgHPuIeAhgMrKSn2tKSIDYtu61ygGRkw9r0/7CeaNAeDA3hqyx05PQmR95zyPjzf+mdrVK8jf9SZTIpuoNI8WF6YqfDrrx9xAuGwuY6adR2FxCQOeFpph/gABf4BABoQH+vgig8y6cDmjGt9JdRgiknDMBMs51+vsm2b2NeD3zjkHvG1mHjACqAHGdqtamigTETklRKpW0en8TCif16f9ZBbEG+fbGlL8Eecc2z54h0/+/DilNS8w0dUyEdgamMTacTeRX/E5yirO58xgRmrjFJGkaxp1NjO3/5wDe6oZVlya6nBEhry+dhF8BrgAeM3MJgMZwF5gBfC4md1LfJCLScDbfTxWSjjPw3wazV5ksMlvWMf2jElMCmX1aT+5I+ItWJ2NqZlseNeOj6h6+SFKqp+jzNvJOGd8EJ5BzaSlTP7MNZymmy2RQa94+kWw/edsfvsFZl+hboIiqdbXBOsR4BEz2wh0AjcmWrPeN7OngA+AKHBzOo4g+OGqF/FevpP86x5m9ITTUx2OiCRJe3sbEzu3sGH0wj7vq7CgkBYXwmuqTUJkxycS6eS9136LrXuUitZVjDHH+xnlrJp4AxPn/3fKRyqpEhlKJlfMY99/5eDb/AdQgiWScn1KsJxzncD1vay7G7i7L/tPtfYDdUzs/AiWzeedGbcz6wtfw+dXa5ZIutu2cRVTLUJwwskPz35QQXYGO10evpY9x67cR7uqNlP10oNMrHmGWTSwlzzWjF3M+Iu/ypnj9SWQyFDlCwR5v+ASKuv/i7YDDWQOK0h1SCJDWl9bsAa1GRdfR81plRx4/EZmr/8ef9n4K1rO+Q7l5y/E7/enOrykcc7heR7RaCexaIRoNIqLRojGonjRKM6L4fDi0/w4h8PhDs454znAxdfhcM5LTDVzsI6LjxhGYgqag2X9Jvmje/XH4GB93mWvQSU/WOuHP0DvuxyYkdj2vfsHAErLz+/zvgJ+H42+AvLa6vq8ryOJdHaw4dUn8a//NeVtaxgFvJ81m91n3ci0+dcwR89UiQgwbO4NhJ7/PWtfXsZZV/5dqsM5dTiH86LEIh1EoxGiMY9YNEokGsNzHnhe4j4lhvPic/w5L/4yEu+dF7+dIX7P1HU7g0vc0Rzt/67e15nvZP7Ps6PemLgjHO9E/xs/qahO4l7hRLZw/jAFo8eTHUqP1MWcO3UG7qusrHSrV69OdRiH8aJR1j73b5Ssu5fR7KWWIraNuoysMy5h8lnnk5UzPPnH9BytnVFaWltpad5Pe0sTHS0HaG9rItLWRLStmWh7M15HC3Q244u24ou0EYi14I+2EYy1EfTayPDaCHlthLx2wq6NDCL4XQw/8ZcPjwAePs1LI0NMrRUx+gdbk7KvN+7+PJPYwejvb0zK/gBqPtrIjlf+jUm7VjCCfeyhgG1jF1J2yVKKx05O2nFEZHBwnse2/zkDA8Z/by2+PszvN9Cc53GguYmmxj207auno6mOzuZ6Yi37iLY34zpbINKCL9KCL9KKP9pKMNbada/j86IEXGdivr1oYu69CEEXJYOo7nEGgddjFTRf/QRXTB+T6lB6MLM1zrnKQ8vT5+pLIV8gQOWCm4lctoR1ry4nsP43zK59nODu3+C9Yuz0jWJvaBzRrCKi4QJcOB9/IAi+ADH84GL4Yx0Q68BF2vEi7Vi0HV+0FX+klUCsLf5B4bXHkyHXThbxV455xx1nFD9thOmwMO2+TDotTKc/k45AAc2BLKL+LJw/A+cLYj4/zhcAXwDMH//pC4DPj/n84A90lZn5cGafzjtjRs9vUOLvrft7i3+L0vWNRtc28Tr90U5x5I/PPn6ontDmA/gBPkBfjLiDX9kNlAH8wqdw4llJ21dnuJhhTev6vJ/2thY2vvIYmRv+gzM73mWk87Ex+2xqZi1m2vkLKQ4EkxCtiAxG5vNRP+vbzH7n71j/h/uY8aVbUhuQczTvr6d+9w6a6nbS2rCL6L5dWPNugu11ZHXUkxndT7bXxHDXxHCLcLSvqyPOT5uFaaPbPY4vk5ZAPp4/hPMF8XwZOF8Azx/C8wVxviD4gzhfBvjj730+P2Y+fD6L3wvhS8yz5wPzgRnO/In7Fh/4fHS/t+l+BxNfPlKb0fH9fY6ystdSO8HtTqF2lB7cCd5cBMLFVJTm9U8w/UAtWCepramRj975Ewe2rSFr34cMa60mJ7aPfLefoPU+nkfMGR1k0GlB2i3+AdHhyyTizyQWyCIWyMILZEFGNmRk4Qvl4A9l4w/lEszMIZiVSygzl3D2MDKzcwll5WIZ2ZCRAwF1FRJJhVd/+V0urHkA77Zd+ELZJ7St8zy2bnibvW/+O2fsfZ7htFBjI9k+biETL1nKyJKyfopaRAabWMzjw/91LmOiO4jc9CLF48/ot2NFolH27NpBQ80WWj7ZRrShisCBanLaqsnv3E2hV0/YIodt10qIBiugKVBAWzCfWGg4XjgfyyrAn11AMKeQQE4h4WEjyBpWQFbucLJzhuMPhvrtdxE5WWrBSrLM3HymXbgIWNRzhXN0tB2gpbUDvCg+F8Pn92PBMP6MTMIZIbL8Pvo2MLSInEoyC8ZADdTt3snI4xxsovqj96l+41FG7XyOSd5OxrsAG4d9htCcxUw95wpKBtFzniIyMPx+HznXPACPXU502ZepWbSckikn11rvPI999bup27mFA7V/IbJ3G779O8lsqSG/cxfFXh0lFqWk2zb15LE3MJJd2VOpyhqN5Y4imDearIIShhePpXDUOLJy83QPJIOeEqxkMyOUNZw+Tq0jImkkZ8xk2AB7t67pNcFynsdHG1dRt+ZZCqtfYXJsC6XAB8FprDr9K0z97I2cVThqYAMXkUFn/OQKPrjiUUY/dwPZj1/M6qIryKy4klFTKskrGIk/EMB5Hh3trTTsqeFAXXW8+17jTlzjdkJNOxjWsYuR0d3kWzv53fbdwDDqA6Ooz5nC7tzP4iuYQGZRGXljTqNo7GkUhnMoTNlvLnLqUBdBEZE+amppxX5axpaRl3PW1x/pKq//pJrt616mc8urlDWsZCT1AGwJTKZx/OeZcP71jBw3KVVhi8ggtnvXDrY/9R0qGl/u6qrnOSOKnwyLHnGbVhfiE/9I9odKaM8phfwJhIv+irySSRSPm0RWTt4A/gYip77euggqwRIRSYLVP72cqa2r2Tj2OqypllH732WcqwHiNy1bcmYTmXgJZed8mRGjxqU4WhEZKpr2N/Dxutfo2P0hsaa94EXAH4JgGH9uMaG8MWQXjmH4yLEUFpVqvk+RE6AES0SkH1V9tBn7jy8z3tXQyDB2ZE6lbfTZ5E09n4kV5xLMCKc6RBEREUkiDXIhItKPJkycgrt9I21treRn5/R4bkFERESGDrUDi4gkifl8ZGbnpDoMERERSSElWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkySk1iqCZ1QHbUx3HIUYAe1MdhAwYne+hQ+d66NC5Hlp0vocOneuh5VQ83+Odc0WHFp5SCdapyMxWH2n4RRmcdL6HDp3roUPnemjR+R46dK6HlnQ63+oiKCIiIiIikiRKsERERERERJJECdaxPZTqAGRA6XwPHTrXQ4fO9dCi8z106FwPLWlzvvUMloiIiIiISJKoBUtERERERCRJlGCJiIiIiIgkiRKsozCzy8xss5ltNbPvpjoeSR4zG2tmr5nZB2b2vpl9O1FeYGYvmdlfEj/zUx2rJIeZ+c1snZn9IbFcZmarEtf3k2aWkeoYJTnMLM/MnjazD81sk5n9ta7twcnMbk18hm80s+VmFta1PXiY2SNmtsfMNnYrO+K1bHH/mjjv75nZWamLXE5UL+f6nsTn+Htm9p9mltdt3W2Jc73ZzC5NSdBHoQSrF2bmB+4HPgecAfw3MzsjtVFJEkWBv3fOnQHMBW5OnN/vAq845yYBrySWZXD4NrCp2/JPgJ85504DGoH/kZKopD/8C/CCc+50oIL4ede1PciYWQnwLaDSOTcN8AOL0LU9mCwDLjukrLdr+XPApMRrKfDAAMUoybGMw8/1S8A059x0YAtwG0Difm0RcGZim18k7ttPGUqwejcH2Oqc+9g51wk8ASxIcUySJM65Wufc2sT7JuI3YCXEz/GvE9V+DXwpJQFKUplZKXA58O+JZQMuBJ5OVNG5HiTMbDjwGeBhAOdcp3NuH7q2B6sAkGlmASALqEXX9qDhnHsDaDikuLdreQHwqIt7C8gzs9EDEqj02ZHOtXPuRedcNLH4FlCaeL8AeMI51+Gc2wZsJX7ffspQgtW7EmBnt+XqRJkMMmY2AZgJrAJGOudqE6t2AyNTFZck1f8BvgN4ieVCYF+3D25d34NHGVAH/CrRJfTfzSwbXduDjnOuBvjfwA7iidV+YA26tge73q5l3bcNbkuAPyben/LnWgmWDGlmlgP8DrjFOXeg+zoXn8NA8xikOTO7AtjjnFuT6lhkQASAs4AHnHMzgRYO6Q6oa3twSDx7s4B4Uj0GyObwLkYyiOlaHhrM7PvEH+14LNWxHC8lWL2rAcZ2Wy5NlMkgYWZB4snVY8653yeKPznYpSDxc0+q4pOkmQd80cyqiHf1vZD4Mzp5iW5FoOt7MKkGqp1zqxLLTxNPuHRtDz4XAducc3XOuQjwe+LXu67twa23a1n3bYOQmS0GrgCuc59O3nvKn2slWL17B5iUGI0og/jDdCtSHJMkSeIZnIeBTc65e7utWgHcmHh/I/DsQMcmyeWcu805V+qcm0D8On7VOXcd8BpwVaKazvUg4ZzbDew0symJos8CH6BrezDaAcw1s6zEZ/rBc61re3Dr7VpeAdyQGE1wLrC/W1dCSUNmdhnx7v1fdM61dlu1AlhkZiEzKyM+sMnbqYixN/ZpMiiHMrPPE392ww884py7O7URSbKY2bnAm8AGPn0u53vEn8N6ChgHbAeucc4d+oCtpCkzmw/8g3PuCjP7K+ItWgXAOuB651xHCsOTJDGzGcQHNMkAPgZuIv6Foq7tQcbM7gSuJd59aB3wN8SfxdC1PQiY2XJgPjAC+AT4AfAMR7iWE0n2fcS7ibYCNznnVqcgbDkJvZzr24AQUJ+o9pZz7quJ+t8n/lxWlPhjHn88dJ+ppARLREREREQkSdRFUEREREREJEmUYImIiIiIiCSJEiwREREREZEkUYIlIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUmS/w/nMFPYyL2jJAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACfMElEQVR4nOzdeXxU5d3//9dnJvtOAoRVgijIKiogFnDtrVgXtC5o3dDb+tPWVq1L1VpF79vv3aqtdatUa6tVi1D3qtW6oWJFBAVUEAUJmywhYUnIOjPX749zCEPISiZMQt7Px2NkzjnXua7PmZMZ5zPXda5jzjlERERERESk9QLxDkBERERERGRfoQRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiEg7YWYFZubMLCHesezrzGyKmc2OdxztjZlNMLOl8Y5DRKQjU4IlIiIdmplNNbMaMyuLetwQ77g6IufcB865QbGs08y6mtmHZlZsZlvM7CMzGxfLNkRE2hP9SioiEiNmluCcC8U7jk5qhnPu/HgH0VY6+N9WGXAJ8A3ggEnAP82sewc+JhGRBqkHS0SkFcys0Mx+aWaLgO1mlmBmY83sP/6v9QvN7Oio8rPM7P/MbK6ZbTOzl8wst4G6LzazJWZWambfmtn/V2f7JDNb4Nez3Mwm+uuzzewxM1tnZmvN7H/NLNjEcQwws3f8XoZNZva0meVEbSsxs0P95V5mVrTjuMzsVDP70j/eWWY2uM7rc52ZLTKzrWY2w8xSWv5Kt5yZ3ei/LqVmttjMTm+gnJnZvWa20X8tPzezYf62ZDO7x8xWmdkGM5tmZqnNbP9xv/ybfgzvmVm/qO33mdlqv835ZjYhattUM3vWzJ4ys23AFDMb4/f+bPHP7YNmlhS1jzOzn5jZN357/+Ofu//4bcyMLt9AzEeb2ZrmHF9zOecqnXNLnXMRwIAw0AWo9+9eRKSjU4IlItJ65wInATlAPvAq8L94XyCvA54zs25R5S/E+0W/JxAC7m+g3o3AyUAWcDFwb1SSMwb4G3C93+6RQKG/3+N+vQcAhwDHA5c2cQwG/B/QCxgM9AWmAjjnlgO/BJ4yszTgr8ATzrlZZjYQmA5cDXQDXsPrnYj+In82MBHoD4wAptQbgNl4P3lo6DG+iWOoazkwAcgGbvfj71lPuePxXr+BftmzgWJ/22/89SPxXs/ewK0tiOE84H+ArsAC4OmobZ/49eYCfwf+USf5nAQ8i3d+n8ZLTK7x6zoCOA74SZ32TgAOA8YCNwCPAOfjnc9heH+re8xPlBs6P39sal+gEngZ+LNzbmNrYhERaa/MORfvGEREOiwzKwTucM79xV/+JTDMOXdBVJk3gL87554ws1nAHOfcjf62IXhfvFPxvgSvABLrGzplZi8C7zrn7jOzPwHlzrlr6pTJB1YBOc65Cn/ducBlzrljWnBcpwG3OecOiVr3Ml6S5IDRzrkqM/s1MNw5d7ZfJgCsBs7zE7BC4Bbn3FP+9ruALOfc5c2NpRmxTgVuBsqjVg9xzn1Xp9wC/5heMrMpwKXOufFmdiwwDS/xnev3tGBmhje8bYSfZGJmR+Cdy/7NiOtxIMU5d46/nAFsBQqcc6vrKb8ZONo5t9A/pmOdc0c2Uv/VwFHOudP9ZQeMd8596C/PB2Y6537rL/8OCDrnrm6kzqOBp5xzfZo6vj3hJ5CnA0nOuSfaog0RkXjTNVgiIq0X/WW5H3CWmZ0StS4ReLeB8iv97V3rVmpmJwK34fWgBIA04HN/c1+83qK6+vn1rfPyA/D33e0LfZ228oH78Hp8Mv19Ntcp9ihe78Nlzrkqf10v/xgAcM5FzGw1Xk/PDuujnpf7+8TazLrXYJnZhcAvgAJ/VQb1vM7OuXfM7EHgIaCfmT2P1/OYgveaz496LQ1odLhlHbWvu3OuzMxK8I5/tZldB/y3v+zweiq71revfzwDgd8Do/y4EoD5ddrbEPW8op7lHi2IPeacc5XAdPOGvi5wzi2MZzwiIm1BQwRFRFoveijAauBJ51xO1CPdOfebqDJ9o57vB9QAm6IrNLNk4DngHiDfOZeDl1Dt+Ka/GhhQTyyrgSqga1T7Wc65oU0cw//zj2O4cy4Lb1jZzqzC6335A/AYMNV2Xjf2HV5St6Oc+ce3ton2dmPeFOFljTwmNF1LbV398BLCK4E8//X7IvqYojnn7nfOHQYMwUtor8c7JxXA0KjXMts5l9GCw6o91/5rmAt85x/LDXjDEbv48W2tE1/dISYPA18BB/rn6OaGjqetmHetXUPnZ1oLqkoE9m+rOEVE4kkJlohIbD0FnGJmJ5hZ0MxS/IkDoodcnW9mQ/zrme4AnnXOhevUkwQkA0VAyO/NOj5q+2PAxWZ2nJkFzKy3mR3knFsH/Bv4nZll+dsGmNlRTcSdiTccbquZ9cZLMKLdB8xzzl2Kd43Zji/TM4GT/DgSgWvxErz/NPVC1eVPEZ7RyOODFlSXjpegFIE3YQjeNUi7MbPRZna4H/92vOuEIv5QwUfxrn3r7pftbWYnRO3rLGoSk3r8wL+2LAnvWqw5/vDATLzr5IqABDO7Fa8HqzGZwDagzMwOAq5oonzMOeeGNnJ+6h32ad6kL+PNLMnMUv1htPnAx3s3ehGRvUMJlohIDPlfnifh9S4U4fUoXc+un7dP4k1EsR5vGNrP66mn1F8/E2+o3o/whuft2D4Xf+ILvJ6P99jZk3QhXoK22N/3WbwJNRpzO3CoX9erwPM7NpjZJLxJKnZ8of8FcKiZneecW4rX2/UAXo/PKcApzrnqJtprU865xcDvgI/whskNBz5soHgWXiK1GW+4YzFwt7/tl8AyYI55s/m9BQwCMLO+QCk7h23W5+94wzxL8Caf2DGM8Q3gdeBrv81KmhjGiTds8Ud+m48CM5oo314k4w2/LMbr2fwBcFLda+RERPYVmuRCRGQv8ie5eMo59+d4xyKtY2bn4w0fvKmB7Y8Da5xzt+zVwEREJK40yYWIiMge2DEzooiISDQNERQR6STMu+ltaycnkA7OzG5u4O/gX/GOTURkX6AhgiIiIiIiIjGiHiwREREREZEYaVfXYHXt2tUVFBTEOwwREREREZFGzZ8/f5Nzrlvd9e0qwSooKGDevHnxDkNERERERKRRZrayvvUaIigiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjLSra7DqU1NTw5o1a6isrIx3KNIOpKSk0KdPHxITE+MdiuyDZv/7WZIXPsnIa54jMaHdfzyKiIhIO9Tuv0GsWbOGzMxMCgoKMLN4hyNx5JyjuLiYNWvW0L9//3iHI/uggf+5ju5sZuHCuRx82PfiHY6IiIh0QO1+iGBlZSV5eXlKrgQzIy8vT72Z0mY2kgtA6dL34hyJiIiIdFTtPsEClFxJLf0tSFsK+Z36aRs/i3MkIiIi0lF1iARLRKStOefIcyUApG9fFedoREREpKNSgtUMZsa1115bu3zPPfcwderU+AUU5eijj2705synnXYaY8eO3WXd1KlT6d27NyNHjmTYsGG8/PLLbR2mSLu3vSpEdzYD0LVmXZyjERERkY5KCVYzJCcn8/zzz7Np06aY1uucIxKJxLTOaFu2bGH+/Pls3bqVb7/9dpdt11xzDQsWLOAf//gHl1xySZvGIdIRbN9SRLKFKKYLeWyhvGxLvEMSERGRDkgJVjMkJCRw2WWXce+99+62raioiDPOOIPRo0czevRoPvzwQ8DrJbrnnntqyw0bNozCwkIKCwsZNGgQF154IcOGDWP16tVcf/31DBs2jOHDhzNjxgwAZs2axdFHH82ZZ57JQQcdxHnnnYdzrt74nnzyydreqLlz59auf/755znllFM455xzeOaZZ+rdd/DgwSQkJOySPN54440MGTKEESNGcN111wFQWFjIsccey4gRIzjuuONYtcobQjVlyhSuuOIKxo4dy/7778+sWbO45JJLGDx4MFOmTKmt84orrmDUqFEMHTqU2267bbc4tm7dSr9+/WoTve3bt9O3b19qamrqjVsk1kLlWwFYnXIgAMWrv45nOCIiItJBtftp2qPd/s8vWfzdtpjWOaRXFredMrTJcj/96U8ZMWIEN9xwwy7rr7rqKq655hrGjx/PqlWrOOGEE1iyZEmjdX3zzTc88cQTjB07lueee44FCxawcOFCNm3axOjRoznyyCMB+Oyzz/jyyy/p1asX48aN48MPP2T8+PG71VdeXs6CBQt4//33ueSSS/jiiy8AmD59Orfeeiv5+fmcccYZ3Hzzzbvt+/HHHxMIBOjWrRsAxcXFvPDCC3z11VeYGVu2bAHgZz/7GRdddBEXXXQRf/nLX/j5z3/Oiy++CMDmzZv56KOPePnllzn11FP58MMP+fOf/8zo0aNZsGABI0eO5M477yQ3N5dwOMxxxx3HokWLGDFiRG0c2dnZjBw5kvfee49jjjmGV155hRNOOEH3u5K9prram52yPLMAKueybX0hDB4T15hERESk41EPVjNlZWVx4YUXcv/99++y/q233uLKK69k5MiRnHrqqWzbto2ysrJG6+rXr1/tdVGzZ8/m3HPPJRgMkp+fz1FHHcUnn3wCwJgxY+jTpw+BQICRI0dSWFhYb33nnnsuAEceeSTbtm1jy5YtbNiwgW+++Ybx48czcOBAEhMTaxMvgHvvvZeRI0dy3XXXMWPGjNrZ+bKzs0lJSeG///u/ef7550lLSwPgo48+4kc/+hEAF1xwAbNnz66t65RTTsHMGD58OPn5+QwfPpxAIMDQoUNrY545cyaHHnoohxxyCF9++SWLFy/e7TgmT55c24P3zDPPMHny5EZfR5FYClVXAWBdvHusVZSsjmc4IiIi0kF1qB6s5vQ0taWrr76aQw89lIsvvrh2XSQSYc6cOaSkpOxSNiEhYZfrmqLv3ZSent6s9pKTk2ufB4NBQqFQveXqTl1uZsycOZPNmzfX3pB327ZtTJ8+nTvvvBPwrsHaMfyvbtxz587l7bff5tlnn+XBBx/knXfeaVacgUBgl5gDgQChUIgVK1Zwzz338Mknn9ClSxemTJlS772sTj31VG6++WZKSkqYP38+xx57bKPtisRSqLoCgLRu/QgvNcJb1sY5IhEREemIWt2DZWZ9zexdM1tsZl+a2VX++qlmttbMFviPH7Q+3PjKzc3l7LPP5rHHHqtdd/zxx/PAAw/ULi9YsACAgoICPv30UwA+/fRTVqxYUW+dEyZMYMaMGYTDYYqKinj//fcZM6Zlw5J29PrMnj2b7OxssrOzmT59Oq+//nrtdV/z589v8DqsaGVlZWzdupUf/OAH3HvvvSxcuBCA733ve7X7P/3000yYMKHZ8W3bto309HSys7PZsGED//rXv+otl5GRwejRo7nqqqs4+eSTCQaDzW5DpLVCNV4PVlJqOsXWhWCZZhIUERGRlotFD1YIuNY596mZZQLzzexNf9u9zrl7Gtm3w7n22mt58MEHa5fvv//+2uuzQqEQRx55JNOmTeOMM87gb3/7G0OHDuXwww9n4MCB9dZ3+umn89FHH3HwwQdjZtx111306NGDr776qtkxpaSkcMghh1BTU8Nf/vIXCgsLWbly5S7Ts/fv35/s7Gw+/vjjeuv4wQ9+wJ///GfMjEmTJlFZWYlzjt///vcAPPDAA1x88cXcfffddOvWjb/+9a/Nju/ggw/mkEMO4aCDDqJv376MGzeudtutt97KqFGjOPXUUwFvmOBZZ53FrFmzml2/SCzsGCIYTEphc0JXkis2xDkiERER6YisoZnp9rhCs5eAB4FxQFlLEqxRo0a5uvd0WrJkCYMHD45pjNKx6W9C2sL8t2Zw2OzL+HbSi2x96x66VKyk4NYvmt5RREREOiUzm++cG1V3fUwnuTCzAuAQYEc3yZVmtsjM/mJmXRrY5zIzm2dm84qKimIZjohIs4VrqgFISEqhOq0HueHiOEckIiIiHVHMEiwzywCeA652zm0DHgYGACOBdcDv6tvPOfeIc26Uc27UjqnCRUT2tkjIGyKYmJSCy+xFlpVTum1znKMSERGRjiYmCZaZJeIlV087554HcM5tcM6FnXMR4FFAN5QRkXYrUuPNbJmYlEJil14AlKxbGc+QREREpAOKxSyCBjwGLHHO/T5qfc+oYqcDuphBRNqtHUMEE5NTSM3bD4BtG5VgiYiISMvEYhbBccAFwOdmtsBfdzNwrpmNBBxQCPx/MWhLRKRthHcMEUwmq7uXYFUUr4lnRCIiItIBtTrBcs7NBqyeTa+1tm4Rkb3FhbwerKTkVLr2KgAgopsNi4iISAvFdBbBfdmLL76ImTV6f6rCwkKGDRsWszanTJnCs88+2+D2q6++mt69exOJRGrXPf7443Tr1o2RI0cyZMgQHn300ZjFI7JP8ye5SEhKISUtk22kg242LCIiIi2kBKuZpk+fzvjx45k+fXq920OhUKvbCIfDzS4biUR44YUX6Nu3L++9994u2yZPnsyCBQuYNWsWN998Mxs26IapIk0Kez1YBJMAKAnkkVS+MY4BiYiISEekBKsZysrKmD17No899hjPPPNM7fpZs2YxYcIETj31VIYMGQJ4idZ5553H4MGDOfPMMykvLwfg7bff5pBDDmH48OFccsklVFV5v5YXFBTwy1/+kkMPPZR//OMfu7X91ltvMWrUKAYOHMgrr7yyS9tDhw7liiuuaDDp6969OwMGDGDlyp0X6t9///0MGTKEESNGcM455wBQUlLCaaedxogRIxg7diyLFi0CYOrUqVx00UVMmDCBfv368fzzz3PDDTcwfPhwJk6cSE1NDQB33HEHo0ePZtiwYVx22WXUvXl1JBKhoKCALVu21K478MADlfhJu2LhGkIuAIEgAKVJXUmvVoIlIiIiLROLSS72nn/dCOs/j22dPYbDib9ptMhLL73ExIkTGThwIHl5ecyfP5/DDjsMgE8//ZQvvviC/v37U1hYyNKlS3nssccYN24cl1xyCX/84x+58sormTJlCm+//TYDBw7kwgsv5OGHH+bqq68GIC8vj08//bTetgsLC5k7dy7Lly/nmGOOYdmyZaSkpDB9+nTOPfdcJk2axM0330xNTQ2JiYm77Pvtt9/y7bffcsABB9Su+81vfsOKFStITk6uTXhuu+02DjnkEF588UXeeecdLrzwQhYsWADA8uXLeffdd1m8eDFHHHEEzz33HHfddRenn346r776KqeddhpXXnklt956KwAXXHABr7zyCqecckptm4FAgEmTJvHCCy9w8cUX8/HHH9OvXz/y8/ObfZpE2pqFq6ixhNoPxcqUfLpv0SyCIiIi0jLqwWqG6dOn1/b2nHPOObv0GI0ZM4b+/fvXLvft25dx48YBcP755zN79myWLl1K//79GThwIAAXXXQR77//fu0+kydPbrDts88+m0AgwIEHHsj+++/PV199RXV1Na+99hqnnXYaWVlZHH744bzxxhu1+8yYMYORI0dy7rnn8qc//Ync3NzabSNGjOC8887jqaeeIiHB+yo5e/ZsLrjgAgCOPfZYiouL2bZtGwAnnngiiYmJDB8+nHA4zMSJEwEYPnw4hYWFALz77rscfvjhDB8+nHfeeYcvv/xyt+OYPHkyM2bMAOCZZ55p9JhF4sEiNdSw80eKSHo+eW4zIb+nVkRERKQ5OlYPVhM9TW2hpKSEd955h88//xwzIxwOY2bcfffdAKSnp+9S3rstWMPL9albR1P1vfHGG2zZsoXhw4cDUF5eTmpqKieffDLgJTMPPvhgvfW9+uqrvP/++/zzn//kzjvv5PPPG+8RTE5OBrxeqMTExNp4AoEAoVCIyspKfvKTnzBv3jz69u3L1KlTqays3K2eI444gmXLllFUVMSLL77ILbfc0mi7InubRap3SbAsuxcJayNsKPqO/F794hiZiIiIdCTqwWrCs88+ywUXXMDKlSspLCxk9erV9O/fnw8++KDe8qtWreKjjz4C4O9//zvjx49n0KBBFBYWsmzZMgCefPJJjjrqqGa1/49//INIJMLy5cv59ttvGTRoENOnT+fPf/4zhYWFFBYWsmLFCt58883a670aEolEWL16Nccccwy//e1v2bp1K2VlZUyYMIGnn34a8K7t6tq1K1lZWc2Kb0cy1bVrV8rKyhqc9dDMOP300/nFL37B4MGDycvLa1b9IntLIFxNyHb+5pTcpTcAm9drmKCIiIg0nxKsJkyfPp3TTz99l3VnnHFGgxNLDBo0iIceeojBgwezefNmrrjiClJSUvjrX//KWWedxfDhwwkEAlx++eXNan+//fZjzJgxnHjiiUybNo1IJMLrr7/OSSedVFsmPT2d8ePH889//rPeOi699FLmzZtHOBzm/PPPZ/jw4RxyyCH8/Oc/Jycnh6lTpzJ//nxGjBjBjTfeyBNPPNHMVwdycnL48Y9/zLBhwzjhhBMYPXp07bZp06Yxbdq02uXJkyfz1FNPaXigtEuBSA0h29mDldG1LwDbN62OV0giIiLSAVndGd/iadSoUW7evHm7rFuyZAmDBw+OU0TSHulvQtrCvLtOplvVSvr92hs2W7KukNw/HcxHB/2KI865Ic7RiYiISHtjZvOdc6PqrlcPlogIEKzTg5XTrTdhZ0RKdbNhERERaT4lWCIiQMDVEI5KsAIJiWy2HIJl6+MYlYiIiHQ0HSLBak/DGCW+9LcgbSUhUr1LggWwJSGPlErdbFhERESar90nWCkpKRQXF+uLteCco7i4mJSUlHiHIvugoKshHNg1wdqe3J3MmqI4RSQiIiIdUbu/D1afPn1Ys2YNRUX6kiNewt2nT594hyH7oKCrobpOglWTmk9u2ec455p1TzsRERGRdp9gJSYm0r9//3iHISL7uARXQ9iSdlkXyexJl02lbNteRlZGZpwiExERkY6kzYcImtlEM1tqZsvM7Ma2bk9EZE8kuBCR4K4JVmJOTwCK162KR0giIiLSAbVpgmVmQeAh4ERgCHCumQ1pyzZFRPZEoqvG1RkimJLr3Wx420YlWCIiItI8bd2DNQZY5pz71jlXDTwDTGrjNkVEWiyBEJHArj1YWd28BKu8eE08QhIREZEOqK0TrN7A6qjlNf66WmZ2mZnNM7N5mshCROIlkRpcnSGCeb0KAAht+S4OEYmIiEhHFPdp2p1zjzjnRjnnRnXr1i3e4YhIJ5XoQrsPEczMo4pEKF0Xp6hERESko2nrBGst0DdquY+/TkSkXUkktFsPFmYUB/JILNfNhkVERKR52jrB+gQ40Mz6m1kScA7wchu3KSLSIi4SJtHCEEzebVtpYlfSq5RgiYiISPO0aYLlnAsBVwJvAEuAmc65L9uyTRGRlgrVVHlPEpJ221aR0p2s0Ka9HJGIiIh0VG1+o2Hn3GvAa23djojInqqpqiQRoO4QQSCU1oPuW2ZTEwqTmBDc67GJiIhIxxL3SS5EROItVFXpPamnB4ucPqRaNcVFmuhCREREmqYES0Q6vRp/iKDV04OVlLsfAJvXfbtXYxIREZGOSQmWiHR6oWqvB8sSdp/kIq17fwAqNhbuzZBERESkg1KCJSKd3s5JLnZPsLr0GgBATcnKvRmSiIiIdFBKsESk09vRgxWsL8HKzafcJWPb1uztsERERKQDUoIlIp1edVUFAAlJuydYgWCADYFuJJd9t7fDEhERkQ5ICZaIdHo11d4QwYSklHq3b03MJ6NSswiKiIhI05RgiUint2OIYH09WAAVab3IDW3YmyGJiIhIB6UES0Q6vR0JVmJSar3bw1l96cI2qivK9mZYIiIi0gEpwRKRTi/szyKYmFx/D1ZCbl8AitYs22sxiYiISMekBEtEOr1wbQ9W/ddgpfv3wtqybsVei0lEREQ6JiVYItLpRWq8WQQTU9Pr3Z7Xa38AyouUYImIiEjjlGCJSKdn1d61VclpWfVu7967PyEXILR59d4MS0RERDogJVgiItXbAUhOrT/BSkhMYpPlkVCqmw2LiIhI45RgiUinZzXlhFyAxAamaQfYnNidtHLdbFhEREQa16oEy8zuNrOvzGyRmb1gZjn++gIzqzCzBf5jWkyiFRFpA4GacspJwQINfyRuT+tNbo3uhSUiIiKNa20P1pvAMOfcCOBr4KaobcudcyP9x+WtbEdEpM0EQ+VUWP0zCO4QzupDd7eJqqrKvRSViIiIdEStSrCcc/92zoX8xTlAn9aHJCKydwVC5VQ1kWAFc/sTNEfRWs0kKCIiIg2L5TVYlwD/ilrub2afmdl7ZjahoZ3M7DIzm2dm84qKimIYjohI8wRD26my1EbLpOV7U7VvXvvN3ghJREREOqiEpgqY2VtAj3o2/co595Jf5ldACHja37YO2M85V2xmhwEvmtlQ59y2upU45x4BHgEYNWqU27PDEBHZcwmhCmqCjSdYXXodAED5xm/3RkgiIiLSQTWZYDnnvt/YdjObApwMHOecc/4+VUCV/3y+mS0HBgLzWhuwiEisJUYqKE/IabRMt977E3IBwiWFeyUmERER6ZhaO4vgROAG4FTnXHnU+m5mFvSf7w8cCOhnXxFpl5IiFYQT0hotk5CYRFEgj6RS3WxYREREGtZkD1YTHgSSgTfNDGCOP2PgkcAdZlYDRIDLnXMlrWxLRKRNpEQqiCQ2nmABlCT2JL1C98ISERGRhrUqwXLOHdDA+ueA51pTt4jI3pLiKnGJ6U2WK0/rTb8tH++FiERERKSjiuUsgiIiHU44HCGdClxSRpNlQ1n70Z0SqirLmywrIiIinZMSLBHp1Mq2lZBgESKpuU2WTcjtB8DG1cvaOiwRERHpoJRgiUinVr55AwCWntdk2XT/Xlhb1inBEhERkfopwRKRTq3UT7CSM7s1WbZLn4EAVOheWCIiItIAJVgi0qlVbNkIQGpO9ybLduuxH9UuSKRkZVuHJSIiIh2UEiwR6dSqthUBkNGlR5NlExIT2RDornthiYiISIOUYIlIpxYuKwYgu2t+s8pvSexBhu6FJSIiIg1QgiUinZorL6baBUnPyGlW+e3pfegaWt+2QYmIiEiHpQRLRDq1hPKNbLEcLNC8j8NwVl9y2UpV+bY2jkxEREQ6IiVYItKppVasZ3Ni0xNc7JCQVwBA0ZrlbRSRiIiIdGRKsESkU8up2cD2lKYnuNghvXt/ALZ8pwRLREREdqcES0Q6rXA4QvfIJkIZvZq9T27PAgAqijWToIiIiOxOCZaIdFrFRWtJthosp2+z98nrsR8RZ4S3aiZBERER2Z0SLBHptEq++xaAlLx+zd4nOTmFEssmULaurcISERGRDkwJloh0WqXrVwCQmV/Qov02B/NIrdjQBhGJiIhIR9eqBMvMpprZWjNb4D9+ELXtJjNbZmZLzeyE1ocqIhJb1SXedVRde+/fov3KkrqRUb2xLUISERGRDi4hBnXc65y7J3qFmQ0BzgGGAr2At8xsoHMuHIP2RERiwrauoYIkMrrkt2i/ytR8ulR82UZRiYiISEfWVkMEJwHPOOeqnHMrgGXAmDZqS0RkjyRt/47iQDcwa9F+kYye5FBKTVV5G0UmIiIiHVUsEqwrzWyRmf3FzLr463oD0XMYr/HX7cbMLjOzeWY2r6ioKAbhiIg0T2bVerYlNf8mwzsEs71p3UvWr4p1SCIiItLBNZlgmdlbZvZFPY9JwMPAAGAksA74XUsDcM494pwb5Zwb1a1bt5buLiKyx7qEi6hIq/e3n0Yl5/YBYOuGlbEOSURERDq4Jq/Bcs59vzkVmdmjwCv+4log+sYyffx1IiLtwvbt2+nOZlZmtTzByujqfbyV62bDIiIiUkdrZxHsGbV4OvCF//xl4BwzSzaz/sCBwNzWtCUiEksbv/OmaE/o0vybDO/QpUcBADWb9buRiIiI7Kq1swjeZWYjAQcUAv8fgHPuSzObCSwGQsBPNYOgiLQn29Z7NxlO61bQ4n1zc7tS7pJhm242LCIiIrtqVYLlnLugkW13Ane2pn4RkbZSUeRdP5Xda0CL9w0EA2wK5JKwfX2swxIREZEOrq2maRcRadfCm/2bDPcs2KP9tyZ0I61KNxsWERGRXSnBEpFOKVi6lmJySEhO26P9y5O7k1WjW0uIiIjIrpRgiUinlFqxjpKElt8Da4dQWj55kRJwLoZRiYiISEenBEtEOqWc6g2UpfTY8wqyepJkIcq2aJigiIiI7KQES0Q6HReJ0C1SRE16rz2uI7GLd/+szesLYxSViIiI7AuUYIlIp1NSvIE0q4LsPntcR2qed/+s0o2rYhWWiIiI7AOUYIlIp1O8djkASXn99riO7Pz9AKgsWROTmERERGTfoASrERvXruCjJ2+luqoy3qGISAyVbSwEICO/YI/r6NpjPyLOCG/5LjZBiYiIyD5BCVYjvp31JEcsv4/1vz2Uhe/+AxeJxDskEYmBqk3esL683gfscR1pqamUWBZWppsNi4iIyE4J8Q6gPRt73q0sfGcweR/cwsHvXcqy2f9HybCLGXzMj8jMyYt3eK0SCYcJh2sIh2oIhWqI1IQIhaqIhEL++hCRcA3hiMO5CDjnz0btcESw6GUHOIf527yyDtvRWG1Zb+/a1a0+Cmu6RNNFWlxnS0q6lgfQdL17UGcrW2y6ht2qiFWM1lADrRLc+DmVLpGcvFbMIghsDnYluXxdjKKSlnCRCDWhMOFQTe1nmQvVEI7U4HZ8foVD3vNIiEg4hHOOcMQRiUSI+J9TOyvc8dz7LAOwqHU4V++foTX0t267PWnQLvX6Cw3WG6Vln6EteA+1+P3WVnW3LA7XTuJoL2L+vwqROIokptNtv0FkpybGO5RmUYLVhIOPPYuq753EJ68+QvcvH2XMwluoWnA7n6eOYHuPMWQMOILcgmF061lAYkKwVW25SISqqgqqykupKC+jqryMmsoyqivKCFWWEa7aTqhyO656O5Hqclx1OVaz8xEMVxAMV5IQriAxXEFSpIokV0GKqyLJVREkQgJhgoQJmiMAdIw/U5HYGgAUBvejINC6Tvwtaf3pW7awWWWrqir47J8Pk//lX1jf6/sc8eM/tKrtjqa6upptJRvYvqWIitLNVJaVUFW2hXD5FqjaRrBqG8HqbSTUlBEIVxAMVxEMVxKMVJEYqSLRVZLkqkly1SS7KlKshqR4H5SIiOwVs8IH89VZz3DyiD2f/XdvUoLVDMkpaYw+42rc6T/nq0/fZfPcGXTfNIehK6YRKHwYgHKXzAbLoSIhi/JgFqFAChYIYBYgjOGcIzFSRTBSRUKkmkS3899kV0WqqySFKlLMkQJkNzO2apdAhSVTSQpVlkx1IJXqQApVCRlsD3QjnJBKJCEVl5ACgURcIAECCRAI+v8mYIEEXCARCyZAMIhZAgQTCASDBCzo/QpmAcD8H/K831adGWbm/2poO7db9LL/O2zUT2n1/Fi7B5r+7bZN7//a7LpbFkRTpa0VB+Uaqr2VL1TdvWP5o+nO0GJ/MrsNGNnqOqrzDqJH6Vts31pMenb9vdpbNm9i8SsPsv/yJxnLJkIuQHjdrFa33R64SITiTRvYsn4F5ZtWUb35O8KlG7DtmwhWbCKluoT00GayIlvIcWV0NUfXBuoKuQBlpFFmaVRbMtWWQiiQTGUwg1BCVyLBFO+RmAoJKZCQQiCYAIFECAZx5n2WEQyC/xm2418LBjELEjDDLEAgYP5z/M+2Hfy+K6v9T22vyM7Puajjb/IFiu6xb8bfsF8+1p9d1pL3T4sbb0n55pdtUcwtDaMt42g3OmrcIvVLSe7KoH5d4h1GsynBagELBDho1HEw6jgAtpZsZPUX/6Fyw9dYyXLvS0X1FlLDpSSESsA5AoQJ+B90NZZMTSCJkCVTFUwnHEzGBZMJJ6ThElJxiWmQlIYlphFITieQnE4wOZ2E5AwSU9NJTMkkOTWd5LRMktMzSU3LICkxiSSan5CJSOyk9BkBhbB26ScMHDNxl22F33zBd2/cy8FFr/A9q2Rx0gg2jbubbV/8i0M2voiLhLFA63q921p1dQ1Fa79ly9qvqdi4nPDm1QRL15JSsZ6s6g10jRTT1ap2S5q2uXS2BLLZntCFzakFFKXmEUnrBuldCabnkpyRS3JGDmlZeaRn5ZKa2YXk1AxyAgFy4nGgIiIiMaQEqxWyc7uTfeRp8Q5DROJkv+HjqfkgSOmCl2DMRMq3b+OLt54m/cvpDK1eSC8X5PMu3yf32KsYMmIcAP9Zv5zUomo2fbecrn0GxvkIoKqynPUrl7J59VIqNiyDzStILVtFl6q19IhsoLeF6O2XDTtjk3Vhc0J3NqUfyLqMowhk9yYxty8pefuR1W0/cvN7k5WSSlZcj0pERCR+lGCJiOyhbvm9+ThtHIesnckX/7eE/SsXM8aqWGv5fNTvcgad+BMO67Hrvbay9xsOS2DNknl7LcGqLC9lfeEStqxZStWGbwhs/pb07SvJrfqO7q6YfubYEWUZqWwM9mRz+gA2ZB1LIG8AKfkDyOk1kG69C8hPTiF/r0QtIiLSMbUqwTKzGcAgfzEH2OKcG2lmBcASYKm/bY5z7vLWtCUi0h71Ofc+vvz75WRXb+DzrieSNWoyBx1+Ar0bGP43YOQEtr+eQmjp6/BfP4pZHNvLtrG+cAlb1yylauM3BDavIGP7SrpWryWfYgqiypaQxcaE3qzOOpQV2QUkdtufzF4Hkt9vCNl5Pdi/lZN/iIiIdGatSrCcc5N3PDez3wFbozYvd86NbE39IiLtXe/99qf3jf8GYP9mlE9JTWdexlgO2PQ2ZVs2kZHT0LQPu6ooL6do7TK2rvuWyqIVhDevIqF0DWnl35FXs458ihkQVb6ELDYm9mZV9ii+zelPYrcDyOx9EPkFg8nt0pXclh+qiIiINENMhgiamQFnA8fGoj4RkX1Z5vevJ/PFk1n20MmUHfzfJHfpQaS6kprKMkKlRbht6wmUbySpchNpVZvoEt5ENzazX1QdYWdstDw2J/VgTc4oCnP6k9jtQLJ6DyS/YAi5OUqiRERE4sFcDOaDNbMjgd8750b5ywXAl8DXwDbgFufcBw3sexlwGcB+++132MqVK1sdj4hIezfv1Uc54JOp5FC227aIM0osmy2BXMqT8qhO6044sw/B3H6kdetPTq8BdOtVQGJSchwiFxEREQAzm78j/9llfVMJlpm9BfSoZ9OvnHMv+WUeBpY5537nLycDGc65YjM7DHgRGOqc29ZYW6NGjXLz5s1rzvGIiHR41ZUVrFr2OZVbNxJMTiUlNYP0nB506d6TxETdRldERKQ9ayjBanKIoHPu+01UnAD8EDgsap8qoMp/Pt/MlgMDAWVPIiK+pJRUDhg2Jt5hiIiISAzFYqqo7wNfOefW7FhhZt3MLOg/3x84EPg2Bm2JiIiIiIi0W7GY5OIcYHqddUcCd5hZDRABLnfOlcSgLRERERERkXar1QmWc25KPeueA55rbd0iIiIiIiIdSUxmEYwVMysC2ts0gl2BTfEOQvYane/OQ+e689C57lx0vjsPnevOpT2e737OuW51V7arBKs9MrN59c0OIvsmne/OQ+e689C57lx0vjsPnevOpSOd71hMciEiIiIiIiIowRIREREREYkZJVhNeyTeAchepfPdeehcdx46152LznfnoXPduXSY861rsERERERERGJEPVgiIiIiIiIxogRLREREREQkRpRgNcLMJprZUjNbZmY3xjseiR0z62tm75rZYjP70syu8tfnmtmbZvaN/2+XeMcqsWFmQTP7zMxe8Zf7m9nH/vt7hpklxTtGiQ0zyzGzZ83sKzNbYmZH6L29bzKza/zP8C/MbLqZpei9ve8ws7+Y2UYz+yJqXb3vZfPc75/3RWZ2aPwil5Zq4Fzf7X+OLzKzF8wsJ2rbTf65XmpmJ8Ql6EYowWqAmQWBh4ATgSHAuWY2JL5RSQyFgGudc0OAscBP/fN7I/C2c+5A4G1/WfYNVwFLopZ/C9zrnDsA2Az8d1yikrZwH/C6c+4g4GC886739j7GzHoDPwdGOeeGAUHgHPTe3pc8Dkyss66h9/KJwIH+4zLg4b0Uo8TG4+x+rt8EhjnnRgBfAzcB+N/XzgGG+vv80f/e3m4owWrYGGCZc+5b51w18AwwKc4xSYw459Y55z71n5fifQHrjXeOn/CLPQGcFpcAJabMrA9wEvBnf9mAY4Fn/SI61/sIM8sGjgQeA3DOVTvntqD39r4qAUg1swQgDViH3tv7DOfc+0BJndUNvZcnAX9znjlAjpn13CuBSqvVd66dc/92zoX8xTlAH//5JOAZ51yVc24FsAzve3u7oQSrYb2B1VHLa/x1so8xswLgEOBjIN85t87ftB7Ij1dcElN/AG4AIv5yHrAl6oNb7+99R3+gCPirPyT0z2aWjt7b+xzn3FrgHmAVXmK1FZiP3tv7uobey/retm+7BPiX/7zdn2slWNKpmVkG8BxwtXNuW/Q2593DQPcx6ODM7GRgo3Nufrxjkb0iATgUeNg5dwiwnTrDAfXe3jf4195MwkuqewHp7D7ESPZhei93Dmb2K7xLO56OdyzNpQSrYWuBvlHLffx1so8ws0S85Opp59zz/uoNO4YU+P9ujFd8EjPjgFPNrBBvqO+xeNfo5PjDikDv733JGmCNc+5jf/lZvIRL7+19z/eBFc65IudcDfA83vtd7+19W0PvZX1v2weZ2RTgZOA8t/Pmve3+XCvBatgnwIH+bERJeBfTvRznmCRG/GtwHgOWOOd+H7XpZeAi//lFwEt7OzaJLefcTc65Ps65Arz38TvOufOAd4Ez/WI61/sI59x6YLWZDfJXHQcsRu/tfdEqYKyZpfmf6TvOtd7b+7aG3ssvAxf6swmOBbZGDSWUDsjMJuIN7z/VOVcetell4BwzSzaz/ngTm8yNR4wNsZ3JoNRlZj/Au3YjCPzFOXdnfCOSWDGz8cAHwOfsvC7nZrzrsGYC+wErgbOdc3UvsJUOysyOBq5zzp1sZvvj9WjlAp8B5zvnquIYnsSImY3Em9AkCfgWuBjvB0W9t/cxZnY7MBlv+NBnwKV412Lovb0PMLPpwNFAV2ADcBvwIvW8l/0k+0G8YaLlwMXOuXlxCFv2QAPn+iYgGSj2i81xzl3ul/8V3nVZIbzLPP5Vt854UoIlIiIiIiISIxoiKCIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIu2EmRWYmTOzhHjHsq8zsylmNjvecbQ3ZjbBzJbGOw4RkY5MCZaIiHRoZjbVzGrMrCzqcUO84+qInHMfOOcGxbJOM+tqZh+aWbGZbTGzj8xsXCzbEBFpT/QrqYhIjJhZgnMuFO84OqkZzrnz4x1EW+ngf1tlwCXAN4ADJgH/NLPuHfiYREQapB4sEZFWMLNCM/ulmS0CtptZgpmNNbP/+L/WLzSzo6PKzzKz/zOzuWa2zcxeMrPcBuq+2MyWmFmpmX1rZv9fne2TzGyBX89yM5vor882s8fMbJ2ZrTWz/zWzYBPHMcDM3vF7GTaZ2dNmlhO1rcTMDvWXe5lZ0Y7jMrNTzexL/3hnmdngOq/PdWa2yMy2mtkMM0tp+SvdcmZ2o/+6lJrZYjM7vYFyZmb3mtlG/7X83MyG+duSzeweM1tlZhvMbJqZpTaz/cf98m/6MbxnZv2itt9nZqv9Nueb2YSobVPN7Fkze8rMtgFTzGyM3/uzxT+3D5pZUtQ+zsx+Ymbf+O39j3/u/uO3MTO6fAMxH21ma5pzfM3lnKt0zi11zkUAA8JAF6Dev3sRkY5OCZaISOudC5wE5AD5wKvA/+J9gbwOeM7MukWVvxDvF/2eQAi4v4F6NwInA1nAxcC9UUnOGOBvwPV+u0cChf5+j/v1HgAcAhwPXNrEMRjwf0AvYDDQF5gK4JxbDvwSeMrM0oC/Ak8452aZ2UBgOnA10A14Da93IvqL/NnARKA/MAKYUm8AZuP95KGhx/gmjqGu5cAEIBu43Y+/Zz3ljsd7/Qb6Zc8Giv1tv/HXj8R7PXsDt7YghvOA/wG6AguAp6O2feLXmwv8HfhHneRzEvAs3vl9Gi8xucav6wjgOOAnddo7ATgMGAvcADwCnI93Pofh/a3uMT9Rbuj8/LGpfYFK4GXgz865ja2JRUSkvTLnXLxjEBHpsMysELjDOfcXf/mXwDDn3AVRZd4A/u6ce8LMZgFznHM3+tuG4H3xTsX7ErwCSKxv6JSZvQi865y7z8z+BJQ7566pUyYfWAXkOOcq/HXnApc5545pwXGdBtzmnDskat3LeEmSA0Y756rM7NfAcOfc2X6ZALAaOM9PwAqBW5xzT/nb7wKynHOXNzeWZsQ6FbgZKI9aPcQ5912dcgv8Y3rJzKYAlzrnxpvZscA0vMR3rt/TgpkZ3vC2EX6SiZkdgXcu+zcjrseBFOfcOf5yBrAVKHDOra6n/GbgaOfcQv+YjnXOHdlI/VcDRznnTveXHTDeOfehvzwfmOmc+62//Dsg6Jy7upE6jwaecs71aer49oSfQJ4OJDnnnmiLNkRE4k3XYImItF70l+V+wFlmdkrUukTg3QbKr/S3d61bqZmdCNyG14MSANKAz/3NffF6i+rq59e3zssPwN93ty/0ddrKB+7D6/HJ9PfZXKfYo3i9D5c556r8db38YwDAORcxs9V4PT07rI96Xu7vE2sz616DZWYXAr8ACvxVGdTzOjvn3jGzB4GHgH5m9jxez2MK3ms+P+q1NKDR4ZZ11L7uzrkyMyvBO/7VZnYd8N/+ssPrqexa377+8QwEfg+M8uNKAObXaW9D1POKepZ7tCD2mHPOVQLTzRv6usA5tzCe8YiItAUNERQRab3ooQCrgSedczlRj3Tn3G+iyvSNer4fUANsiq7QzJKB54B7gHznXA5eQrXjm/5qYEA9sawGqoCuUe1nOeeGNnEM/88/juHOuSy8YWU7swqv9+UPwGPAVNt53dh3eEndjnLmH9/aJtrbjXlThJc18pjQdC21dfXDSwivBPL81++L6GOK5py73zl3GDAEL6G9Hu+cVABDo17LbOdcRgsOq/Zc+69hLvCdfyw34A1H7OLHt7VOfHWHmDwMfAUc6J+jmxs6nrZi3rV2DZ2faS2oKhHYv63iFBGJJyVYIiKx9RRwipmdYGZBM0vxJw6IHnJ1vpkN8a9nugN41jkXrlNPEpAMFAEhvzfr+KjtjwEXm9lxZhYws95mdpBzbh3wb+B3ZpblbxtgZkc1EXcm3nC4rWbWGy/BiHYfMM85dyneNWY7vkzPBE7y40gErsVL8P7T1AtVlz9FeEYjjw9aUF06XoJSBN6EIXjXIO3GzEab2eF+/NvxrhOK+EMFH8W79q27X7a3mZ0Qta+zqElM6vED/9qyJLxrseb4wwMz8a6TKwISzOxWvB6sxmQC24AyMzsIuKKJ8jHnnBvayPmpd9ineZO+jDezJDNL9YfR5gMf793oRUT2DiVYIiIx5H95noTXu1CE16N0Pbt+3j6JNxHFerxhaD+vp55Sf/1MvKF6P8Ibnrdj+1z8iS/wej7eY2dP0oV4Cdpif99n8SbUaMztwKF+Xa8Cz+/YYGaT8Cap2PGF/hfAoWZ2nnNuKV5v1wN4PT6nAKc456qbaK9NOecWA78DPsIbJjcc+LCB4ll4idRmvOGOxcDd/rZfAsuAOebN5vcWMAjAzPoCpewctlmfv+MN8yzBm3xixzDGN4DXga/9NitpYhgn3rDFH/ltPgrMaKJ8e5GMN/yyGK9n8wfASXWvkRMR2VdokgsRkb3In+TiKefcn+Mdi7SOmZ2PN3zwpga2Pw6scc7dslcDExGRuNIkFyIiIntgx8yIIiIi0TREUESkkzDvpretnZxAOjgzu7mBv4N/xTs2EZF9gYYIioiIiIiIxIh6sERERERERGKkXV2D1bVrV1dQUBDvMERERERERBo1f/78Tc65bnXXt6sEq6CggHnz5sU7DBERERERkUaZ2cr61muIoIiIiIiISIwowRIREREREYkRJVgiIs00+5tNLNtYGu8wREREpB1rV9dg1aempoY1a9ZQWVkZ71Ckg0lJSaFPnz4kJibGOxTZB5SXl5H95HE8n3wiN/zqN/EOR0RERNqpdp9grVmzhszMTAoKCjCzeIcjHYRzjuLiYtasWUP//v3jHY7sAwpXfMvwQCHDax6mquJXJKdmxjskERERaYfa/RDByspK8vLylFxJi5gZeXl56vmUmKnevqX2+YYVi+MXiIiIiLRr7T7BApRcyR7R343EUqRqW+3zLWuWxjESERERac86RIIlIhJvrmLn5BaVG76JYyQiIiLSninBagYz49prr61dvueee5g6dWr8AooyZ84cDj/8cEaOHMngwYNr45o1axb/+c9/WlX3xIkTycnJ4eSTT45BpCIdm4vqwQps/jaOkYiIiEh7pgSrGZKTk3n++efZtGlTTOt1zhGJRFpVx0UXXcQjjzzCggUL+OKLLzj77LOB2CRY119/PU8++WSr6hDZV5ifYK0jj5SKdXGORkRERNqrdj+LYLTb//kli7/b1nTBFhjSK4vbThnaaJmEhAQuu+wy7r33Xu68885dthUVFXH55ZezatUqAP7whz8wbtw4pk6dSkZGBtdddx0Aw4YN45VXXgHghBNO4PDDD2f+/Pm89tprPPjgg/zrX//CzLjllluYPHkys2bNYurUqXTt2pUvvviCww47jKeeemq364o2btxIz549AQgGgwwZMoTCwkKmTZtGMBjkqaee4oEHHuCggw5qMM7ly5ezbNkyNm3axA033MCPf/xjAI477jhmzZrV6Gvzj3/8g9tvv51gMEh2djbvv/8+lZWVXHHFFcybN4+EhAR+//vfc8wxx/D444/z4osvsn37dr755huuu+46qqurefLJJ0lOTua1114jNzeXRx99lEceeYTq6moOOOAAnnzySdLS0nZpd+zYsTz22GMMHeqdu6OPPpp77rmHUaNGNRqvyJ6y6jIA1iXuR251bH9sERERkX2HerCa6ac//SlPP/00W7du3WX9VVddxTXXXMMnn3zCc889x6WXXtpkXd988w0/+clP+PLLL5k3bx4LFixg4cKFvPXWW1x//fWsW+f9Ov7ZZ5/xhz/8gcWLF/Ptt9/y4Ycf7lbXNddcw6BBgzj99NP505/+RGVlJQUFBVx++eVcc801LFiwgAkTJjQa56JFi3jnnXf46KOPuOOOO/juu++a/brccccdvPHGGyxcuJCXX34ZgIceeggz4/PPP2f69OlcdNFFtbP5ffHFFzz//PN88skn/OpXvyItLY3PPvuMI444gr/97W8A/PCHP+STTz5h4cKFDB48mMcee2y3didPnszMmTMBWLduHevWrVNyJW0qUF1KyAUoTduPLuHieIcjIiIi7VSH6sFqqqepLWVlZXHhhRdy//33k5qaWrv+rbfeYvHinVM2b9u2jbKyskbr6tevH2PHjgVg9uzZnHvuuQSDQfLz8znqqKP45JNPyMrKYsyYMfTp0weAkSNHUlhYyPjx43ep69Zbb+W8887j3//+N3//+9+ZPn16vb1OjcU5adIkUlNTSU1N5ZhjjmHu3LmcdtppzXpdxo0bx5QpUzj77LP54Q9/WHtMP/vZzwA46KCD6NevH19//TUAxxxzDJmZmWRmZpKdnc0pp5wCwPDhw1m0aBHgJWG33HILW7ZsoaysjBNOOGG3ds8++2yOP/54br/9dmbOnMmZZ57ZrHhF9lSguowyUrGsXmRvLaO6YjtJqenxDktERETamQ6VYMXb1VdfzaGHHsrFF19cuy4SiTBnzhxSUlJ2KZuQkLDL9VXR92NKT2/el7Lk5OTa58FgkFAoVG+5AQMGcMUVV/DjH/+Ybt26UVy8+6/rDcUJu09n3pLpzadNm8bHH3/Mq6++ymGHHcb8+fMbLR99TIFAoHY5EAjUHt+UKVN48cUXOfjgg3n88cfrTRh79+5NXl4eixYtYsaMGUybNq3ZMYvsiWCNl2AldekNq6F4fSE9+8fvRx8RERFpn1o9RNDM+prZu2a22My+NLOr/PW5ZvammX3j/9ul9eHGV25uLmefffYuQ9aOP/54HnjggdrlBQsWAFBQUMCnn34KwKeffsqKFSvqrXPChAnMmDGDcDhMUVER77//PmPGjGl2TK+++irOOcAbehgMBsnJySEzM5PS0p3TSjcUJ8BLL71EZWUlxcXFzJo1i9GjRze7/eXLl3P44Ydzxx130K1bN1avXs2ECRN4+umnAfj6669ZtWoVgwYNanadpaWl9OzZk5qamtp66jN58mTuuusutm7dyogRI5pdv8ieSAiVsZ00UvO8XuWtG1bFOSIRERFpj2JxDVYIuNY5NwQYC/zUzIYANwJvO+cOBN72lzu8a6+9dpfZBO+//37mzZvHiBEjGDJkSG1PyhlnnEFJSQlDhw7lwQcfZODAgfXWd/rppzNixAgOPvhgjj32WO666y569OjR7HiefPJJBg0axMiRI7ngggt4+umnCQaDnHLKKbzwwguMHDmSDz74oME4AUaMGMExxxzD2LFj+fWvf02vXr0AL/k766yzePvtt+nTpw9vvPEG4A1L3HG91fXXX8/w4cMZNmwY3/ve9zj44IP5yU9+QiQSYfjw4UyePJnHH398l56rpvzP//wPhx9+OOPGjeOggw6qXf/yyy9z66231i6feeaZPPPMM7UzJ4q0pWCogkpLJqvbfgCUF6+Jc0QiIiLSHtmO3o+YVWj2EvCg/zjaObfOzHoCs5xzjXZjjBo1ys2bN2+XdUuWLGHw4MExjVF2qjvb4b5Gfz8SK9/efRSbt1dzwFWvkH3f/nx8wDUcfv7UeIclIiIicWJm851zu82yFtNZBM2sADgE+BjId87tuFnMeiC/gX0uM7N5ZjavqKgoluGIiMSMRWqIBBLJyu7CdpeMK9W9sERERGR3MZvkwswygOeAq51z26InSnDOOTOrt6vMOfcI8Ah4PVixikeaZ+rUqfEOQaRDCEaqCVkqFghQEsgjqXxDvEMSERGRdigmPVhmloiXXD3tnHveX73BHxqI/+/GWLQlIhIPgUiISCARgK2JXUmrVIIlIiIiu4vFLIIGPAYscc79PmrTy8BF/vOLgJda25aISLwkuGrCgSQAypO7kx3a1MQeIiIi0hnFYojgOOAC4HMzW+Cvuxn4DTDTzP4bWAloqjcR6bACrgbn92CF0rqTu20zOActuG+ciIiI7PtanWA552YDDX3DOK619YuItAcJLkTE78EiswfJG2oo21pMRk7X+AYmIiIi7UpMZxHcl7344ouYGV999VWDZQoLCxk2bFjM2ly6dClHH300I0eOZPDgwVx22WWAd5Pg1157rVV1X3LJJXTv3j2m8YrsyxJcDS7o9WAlZnv3iitZvzKeIYmIiEg7pASrmaZPn8748eOZPn16vdtDoVCr2wiHw7ss//znP+eaa65hwYIFLFmyhJ/97GdAbBKsKVOm8Prrr7eqDpHOJMHVgD9EMDXXS7BKN+lmwyIiIrKrmE3Tvlf860ZY/3ls6+wxHE78TaNFysrKmD17Nu+++y6nnHIKt99+OwCzZs3i17/+NV26dOGrr77i3//+N6FQiPPOO49PP/2UoUOH8re//Y20tDTefvttrrvuOkKhEKNHj+bhhx8mOTmZgoICJk+ezJtvvskNN9zAOeecU9vuunXr6NOnT+3y8OHDqa6u5tZbb6WiooLZs2dz0003cfLJJ/Ozn/2ML774gpqaGqZOncqkSZN4/PHHeeGFF9i6dStr167l/PPP57bbbgPgyCOPpLCwsNHjfu+997jqqqsAMDPef/99MjIyuOGGG/jXv/6FmXHLLbcwefJkZs2axW233UZOTg6ff/45Z599NsOHD+e+++6joqKCF198kQEDBvDPf/6T//3f/6W6upq8vDyefvpp8vN3vUXaOeecwwUXXMBJJ50EeMngySefzJlnntm8cyrSBhIJ4YLJAGR26wtAZcl38QxJRERE2iH1YDXDSy+9xMSJExk4cCB5eXnMnz+/dtunn37Kfffdx9dffw14w/p+8pOfsGTJErKysvjjH/9IZWUlU6ZMYcaMGXz++eeEQiEefvjh2jry8vL49NNPd0muAK655hqOPfZYTjzxRO699162bNlCUlISd9xxB5MnT2bBggVMnjyZO++8k2OPPZa5c+fy7rvvcv3117N9+3YA5s6dy3PPPceiRYv4xz/+wbx585p93Pfccw8PPfQQCxYs4IMPPiA1NZXnn3+eBQsWsHDhQt566y2uv/561q3zbri6cOFCpk2bxpIlS3jyySf5+uuvmTt3LpdeeikPPPAAAOPHj2fOnDl89tlnnHPOOdx11127tTt58mRmzpwJQHV1NW+//XZtsiUSF86RSAgSvGuwcnt4CVZoqxIsERER2VXH6sFqoqeprUyfPr22J+ecc85h+vTpHHbYYQCMGTOG/v3715bt27cv48aNA+D888/n/vvv57/+67/o378/AwcOBOCiiy7ioYce4uqrrwa8hKI+F198MSeccAKvv/46L730En/6059YuHDhbuX+/e9/8/LLL3PPPfcAUFlZyapVqwD4r//6L/Ly8gD44Q9/yOzZsxk1alSzjnvcuHH84he/4LzzzuOHP/whffr0Yfbs2Zx77rkEg0Hy8/M56qij+OSTT8jKymL06NH07NkTgAEDBnD88ccDXs/bu+++C8CaNWuYPHky69ato7q6epfXbocTTzyRq666iqqqKl5//XWOPPJIUlNTmxWzSJsIV3v/Br0EKyMzh+0uBUrXxzEoERERaY/Ug9WEkpIS3nnnHS699FIKCgq4++67mTlzJs45ANLT03cpb3WmbK67XJ+6dUTr1asXl1xyCS+99BIJCQl88cUXu5VxzvHcc8+xYMECFixYwKpVqxg8ePAex7PDjTfeyJ///GcqKioYN25coxN8ACQnJ9c+DwQCtcuBQKD2GrWf/exnXHnllXz++ef86U9/orKycrd6UlJSOProo3njjTeYMWNGgwmoyF6zI8Hye7DMjOJALokVRXEMSkRERNojJVhNePbZZ7ngggtYuXIlhYWFrF69mv79+/PBBx/UW37VqlV89NFHAPz9739n/PjxDBo0iMLCQpYtWwbAk08+yVFHHdVk26+//jo1NTUArF+/nuLiYnr37k1mZialpaW15U444QQeeOCB2qTvs88+q9325ptvUlJSUnsd1I7eteZYvnw5w4cP55e//CWjR4/mq6++YsKECcyYMYNwOExRURHvv/8+Y8aMaXadW7dupXfv3gA88cQTDZabPHkyf/3rX/nggw+YOHFis+sXaQsu5CVYFtz5I0JpYh6plRvjFZKIiIi0U0qwmjB9+nROP/30XdadccYZDc4mOGjQIB566CEGDx7M5s2bueKKK0hJSeGvf/0rZ511FsOHDycQCHD55Zc32fa///1vhg0bxsEHH8wJJ5zA3XffTY8ePTjmmGNYvHgxI0eOZMaMGfz617+mpqaGESNGMHToUH7961/X1jFmzBjOOOMMRowYwRlnnFE7PPDcc8/liCOOYOnSpfTp04fHHnsMgGnTpjFt2jQA/vCHPzBs2DBGjBhBYmIiJ554IqeffjojRozg4IMP5thjj+Wuu+6iR48ezX49p06dyllnncVhhx1G16477x80b948Lr300trl448/nvfee4/vf//7JCUlNbt+kbZQXV0BQCBh599iRXI3skLF8QpJRERE2inb0evRHowaNcrVnYRhyZIltcPdpGUef/xx5s2bx4MPPhjvUOJGfz8SC6Xrl5M57VDeG3w7R02+GoCPHr6cg9c/T+pt67GAfqsSERHpbMxsvnNut8kN9K1ARKQJNVXetYKBxJ09WJaZT5pVUbZtc7zCEhERkXZICdY+bMqUKZ2690okVqqrvQQrmLDzGqyELG/GzJINq+MSk4iIiLRPbZ5gmdlEM1tqZsvM7MY9qaM9DWOUjkN/NxIroeodPVg7E6yUPG+yltJNSrBERERkpzZNsMwsCDwEnAgMAc41syEtqSMlJYXi4mJ9WZYWcc5RXFxMSkpKvEORfUBNVRUACVEJVlY372bDlcVr4xKTiIiItE9tfaPhMcAy59y3AGb2DDAJWNzcCvr06cOaNWsoKtL9ZqRlUlJS6NOnT7zDkH1AqMYfIpi0M2Hv0t1LsGq2rotLTCIiItI+tXWC1RuIHj+zBjg8uoCZXQZcBrDffvvtVkFiYiL9+/dvwxBFRBoXqt7Rg7VzkouMrC6Uu2Qo2xCvsERERKQdivskF865R5xzo5xzo7p16xbvcEREdhOu8ROsqB4sCwTYHOhCYrkSLBEREdmprROstUDfqOU+/joRkQ4j7A8RjE6wALYl5JFaqeHLIiIislNbJ1ifAAeaWX8zSwLOAV5u4zZFRGJqRw9WYp0EqyKlO5mh4niEJCIiIu1UmyZYzrkQcCXwBrAEmOmc+7It2xQRiTXn92AlJqftsr4mtRt5kRLNcioiIiK12nqSC5xzrwGvtXU7IiJtJbIjwao77X9mD9I3VlJauoXMrC5xiExERETam7hPciEi0t7t6MFKqtODlZDdC4CS9brZsIiIiHiUYImINMGFvGuwklN2TbBScr0Eq7RICZaIiIh4lGCJiDQlVEXEGUlJybuszuzmTZJaUaLJUUVERMSjBEtEpCmhSqpJIBjc9SMzt2cBAOEta+IQlIiIiLRHSrBERJpg4SqqSNptfUZWLqUuFdv2XRyiEhERkfZICZaISBMsXEW1Jda7bVOwGynl6/ZyRCIiItJeKcESEWmChaqoqacHC2BrYjcyqjbs5YhERESkvVKCJSLShECkmlADPVjlKT3oEtq4lyMSERGR9koJlohIEwLhKmqs/h6sUEYvctlae68sERER6dyUYImINCEQqSIUqD/BsuzeAGzdsHJvhiQiIiLtlBIsEZEmBMPVhAPJ9W5Lzt0PgM3rV+zNkERERKSdalWCZWZ3m9lXZrbIzF4ws5yobTeZ2TIzW2pmJ7Q6UhGROAm6aiKB+q/BysjvB0B50aq9GZKIiIi0U63twXoTGOacGwF8DdwEYGZDgHOAocBE4I9mFmxlWyIicZEQqSYcrL8HK7fn/gBUl6zemyGJiIhIO9WqBMs592/nXMhfnAP08Z9PAp5xzlU551YAy4AxrWlLRCReEl01kQaGCHbL7cJml4FtW7uXoxIREZH2KJbXYF0C/Mt/3huI/jl3jb9uN2Z2mZnNM7N5RUVFMQxHRCQ2ElwNLqH+BCsYMDYF8kjcrpsNi4iISDMSLDN7y8y+qOcxKarMr4AQ8HRLA3DOPeKcG+WcG9WtW7eW7i4i0uaSXDWugSGCAFsTu5NRtX4vRiQiIiLtVUJTBZxz329su5lNAU4GjnPOOX/1WqBvVLE+/joRkQ4niRpooAcLoDy1Bzlbv9qLEYmIiEh71dpZBCcCNwCnOufKoza9DJxjZslm1h84EJjbmrZEROKhJhQmjUpcQlqDZULpvcimFFe9fS9GJiIiIu1Ra6/BehDIBN40swVmNg3AOfclMBNYDLwO/NQ5F25lWyIie11FZTmJFsYlZzRYxrK9+X3KNupmwyIiIp1dk0MEG+OcO6CRbXcCd7amfhGReKvavhUAl5TZYJnkPO9mw1vWF5LZZ8heiUtERETap1jOIigiss+p2b4NAGukBysjvwCA7UXqwRIREenslGCJiDSiqtzrwbLkrAbL5PboR8QZoZJVeyssERERaaeUYImINKKqbAsASekNJ1jdu2SziWzQzYZFREQ6PSVYIiKNqC73hggmpTWcYCUlBNgY6EbS9u/2VlgiIiLSTinBEhFpRHWFl2ClZuQ0Wm5rYncyKnWzYRERkc5OCZaISCPC5c1LsMpTe5Ab2gi191sXERGRzkgJlohIIyKVpQCkZ+Y0Wi6U0ZsUqqBi816ISkRERNorJVgiIo2p8hKstIyGr8ECCOT0BaBik6ZqFxER6cyUYImINMJVbaOcZCzY+H3Zd95seMXeCEtERETaKSVYIiKNSKgsYatlN1ku07/ZcLluNiwiItKpKcESEWlEanUxpQldmizXNb83VS5BNxsWERHp5GKWYJnZtWbmzKyrv2xmdr+ZLTOzRWZ2aKzaEhHZWzJqNlOemNdkufzsNNa5PEw3GxYREenUYpJgmVlf4Hgg+qfbE4ED/cdlwMOxaEtEZG/KimymKrnpBCslMUiRbjYsIiLS6cWqB+te4AYg+gYwk4C/Oc8cIMfMesaoPRGRNheqqSHHbSOS3q1Z5bcmdSezakMbRyUiIiLtWasTLDObBKx1zi2ss6k3sDpqeY2/ru7+l5nZPDObV1RU1NpwRERiZtPGdQTNkZiV36zyFak9yQlvgnCojSMTERGR9qrxeYd9ZvYW0KOeTb8CbsYbHrhHnHOPAI8AjBo1yjVRXERkrynZsIoeQEqX5nW+RzJ6EtwagfJNkFnfR6aIiIjs65qVYDnnvl/fejMbDvQHFpoZQB/gUzMbA6wF+kYV7+OvExHpEMo3LAMgvccBzSqfkN0D1kLV5u9IVoIlIiLSKbVqiKBz7nPnXHfnXIFzrgBvGOChzrn1wMvAhf5sgmOBrc65da0PWURk7wht9BKsrvsNblb51NxeAGwpWtNmMYmIiEj71qwerD30GvADYBlQDlzchm2JiMTe5m8pJoe87NxmFc/q2geAsk1rad5VWyIiIrKviWmC5fdi7XjugJ/Gsn4Rkb0po2wlm5L60PQk7Z7cfG8en6rNmqpdRESks4rZjYZFRPYlkXCYfjXL2ZY9sNn75OfmsNWlES7VVO0iIiKdlRIsEZF6rPxmEZlWAb0OafY+6ckJFFsXAts3tmFkIiIi0p4pwRIRqcf6L2cD0HPIuBbtty2YR3KF7uknIiLSWSnBEhGpR7BwFpvJoveBI1u0X0VyHuk1xW0TlIiIiLR7SrBEROqoqq7mgG0fU5hzOBYItmjfUGo3siOb2ygyERERae+UYImI1LHko9fItVIShpzc8p0z8kmjkurtW2MfmIiIiLR7SrBEROqonvcUZaRy4PgzW7xvYnYPAEo2rI51WCIiItIBKMESEYlStHY5h2x7hyX5p5CSltHi/ZNzewGwbdOaWIcmIiIiHYASLBGRKF+98FsMR6+J1+3R/mldegJQsVn3whIREemMlGCJiPi+/noxo4peYHHef9G7/6A9qiOrq9eDVbNNCZaIiEhnpARLRARwzlH8/C8xcxSc9X97XE+XvHwAwmW6F5aIiEhn1OoEy8x+ZmZfmdmXZnZX1PqbzGyZmS01sxNa246ISFv65N2XOKLyfZYOuJSsngP2uJ6UlBS2uAxs+6YYRiciIiIdRUJrdjazY4BJwMHOuSoz6+6vHwKcAwwFegFvmdlA51y4tQGLiMRaVXUVXT/4NeutO0PP+nWr69sayCGhUjcbFhER6Yxa24N1BfAb51wVgHNuo79+EvCMc67KObcCWAaMaWVbIiJt4pN/3MP+bhUl428jISW91fVtT8ghpbokBpGJiIhIR9PaBGsgMMHMPjaz98xstL++NxB9E5g1/rrdmNllZjbPzOYVFemaBRHZuzZtXMfwrx9iccqhDDn2vJjUWZGUS0Zoc0zqEhERkY6lySGCZvYW0KOeTb/y988FxgKjgZlmtn9LAnDOPQI8AjBq1CjXkn1FRFpr6YxbGEs5mafdA2YxqTOUkkvm9s9iUldHULZtMyUb11K+ZQPVWzcSKi0ivL2EmsrtuJoKAqEKguEKguFKiITAeR/1BhgOzHsOhrMAzgKA968FAmDRjyAEApi/XPtvIACBIOY/dxbAYWABnF9X7ToCODMcAfD/dRbENXL6/ZBp1l+Ia+7/ypouZ1FlGq42/v/rrPvWafJ1qrNDU+Xr3d5Em7vv0/gOu5VvaYwtfQ1227/xPRqr3xJTGXj8j0lISmlhqyLSFppMsJxz329om5ldATzvnHPAXDOLAF2BtUDfqKJ9/HUiIu3Gqm8WMWbTCyzodiqHHXRYzOqNpHWjS3EpNTXVJCYmxazeeNpUtJF138ynfM0XhItXkFS6iuyq78gPryeL7TR0S+Yql0ilJVFFMtWWTNi8/+3sSAkc5ic9YM4RIIIR8dY679+Avxxw3jYvTfL+Dfg1BInsLOfvE7T4Jx4ie8ucbVsY+6PWX0MqIq3XqkkugBeBY4B3zWwgkARsAl4G/m5mv8eb5OJAYG4r2xIRianil35FHon0P+t/Y1pvILMbAFs3radrz/1iWvfesHHdatZ8/h6VhXNJLfmKnpXL6cEmuvrbq10CG4L5bEnuxVfpBxPJ6kNidncSsvJJyepOWpceZHTpTlZmFskJCSS3UZzOOcIRRyjiiDhHdcQRDnvLUYXAhcFFah9GBHPOX47e5hrtxLQdfQbN6ulsZv9FC+tqsHSMel/3RN001tXpatt9e939d1vRqv2b6kDcLb4my7esvfqq222fJtpoOoZdVT59Hvt//ReqK68lKSWt8cpEpM21NsH6C/AXM/sCqAYu8nuzvjSzmcBiIAT8tCPOIFixvZRvF37A0O/9IN6hiEiMffPFJxxS9j4f9f1vjsiPbRKUlNUdgC2bvusQCda6lV+zdt4rRFbOoWfpIvq6dXQHalyQtcE+fJc1klXdhpDe92C6HjCSbj370zcY3GWYQjyYGQlBIyEY50BE4mzR+Ovp/s4FfPzCvRx+7q/iHY5Ip9eqBMs5Vw2c38C2O4E7W1N/vC149jccseJBPpk7kQPP+wM53XrGOyQRiZHif99DH5fE0NNviHndKTneZavbN2+Ied2xULytnCWfzqJm8Wv03fQBB0QK6QkUk82a9OGs6zmZ7IHj6DfsexSkZVAQ74BFpFHDx5/MFx+OZMjSByhedz55PfvFOySRTq21PVj7tEPOuomPnipl1NqnqHjwUOb0PZdBk66nixItkQ7tu5XfcNjWN1nQ4wxG59U3h0/rZOZ6nxFVW9bHvO494Zzj61XrWD7nZZK/fZODK+cy3rYRcgGWpw5jbt9r6HboqRQMGkleoNX3nxeRvcwCATLPfIDEp45l+RM/psv1/yIQVNeuSLwowWpESloGR1x2PysWX8DmV29n7JrHqH7wcRakH0540Cn0PfT7dO87cK/F45yjKhShvCpE+fZSqirKqCgvpbq8jOqKUmoqywlVlhGu2g7V5VionGConECokmDtLF4VJIYrCESqwYUxF4GI96+5MObCBIgQcBECeM/NRQgSJoBjl5Hfuw0a33XZmpjZqqntseCaeR1Ec69eiHXEzY2v+WJbX6zjay9TDqS5cgzHfidd3yb1Z/s/woRKNzZRsu1UhyIs/Hwhm+a/SN537zIy/AWDLEyZZbC2+zhKh/yAvqNPYVBGXtxiFJHY6XfgCD4ecj2HL/l/fPznqzj8sgfiem1ec9VUV1G6ZRPbtxZTtX0rNZVl1FSUEa4sI1S1nUjVdlz1dlx1OdR432mI1GCREIFINRYJYZEaApEQAVdDMFJDwIVIIETQhTEiXkP+JDpA7b87JtLZuc6bJAfnmv0dpTn/n2zZ/0sbL9ucqFyMrhNtVlvNOrbWv0aLgkNIO/NhjjmoezPaiz8lWM3Qf8ho+g95hZVL5rNu1qMM2PA63T77D3x2E+vpysaUAioyCwhn9MDS8khIzyU5LQMLJPpTDAchUkO4poJwdSWh6koi1VW4mnJcTQVUb4eacqipIBAqr02GEsOVJEYqSXKVJLtKUlwVqVSRa1XktvAYKkmkkmQqSaHSkglbIhGCOAsQsaA3lbEFiQSSCFkgalvAm5/Lgt5cXRbY+RawHf+xqM9w27maXZ4Arf/C3pIv6M1PmppXa4sSwmYUbekr0VSVe5KwNrZHzBPgZk9dvXcs7zuWw/drmx9IMrK7Uu2CULZ3hwiWllew6KO3KP/yVfqXfMBo1gCwLnE/lve7gB6jJ9Fl0JEMCuqjX2RfNOas65nz0GLGrnuSudOqOOzHfySYkLjX2g9HHCVbtrB142rKNq2last3hLZ8R2D7RhIrN5FYvZWkmm2khEtJC5eS6cpI87/TNOd7TYVLosqS8NKnBMLmPUKWQMQSvO82lkA4kEK1JfjfXXbejgEjatn8BNS7ncOO20QA/r/WZH66Y6LSxr5H7KgiNv+/dc34ftG8tKgpFsPbTTTZFq7Jrwjh5P5kp+29v+XWsrqz6cTTqFGj3Lx58+IdRpMi4TDLvpxH8Rdvk7huHjnlhfQMrSXdKve4zgqXRKWlUGUpVAeSqQ6kEAqkEA6mEU5IJZKQiktMg8RULCkNS8ogmJxGMCWdxOQMElPSSUrLJDk1neS0TBJTvHWWlA6JqRDQUAGRvWn17QexKfMgDvnFi23aTtHGDSz9z4vY128wZPvHdLEyQgQpTD+Y8IET6Tf2h6T0OLBNYxCR9iMcDvPxtMv5XtFMlgcHsG3CLYyYcBrB4J4P/3XOUbK5hJL1qyjdtIbKkrXUbFkHZetJqigitaqI7FAxeW4zWVa+2/7VLshmy2Z7IJOKYCbViVnUJGYTSc7GpeYQSM0hkNaFYOqO7y8ZJKdlkJSaRUp6BqnpmaSkZmrYo7Q7ZjbfOTdqt/VKsGLEOaoqSindXMT2LUWUby/DRcL+TTXDuEAiCclpJCWnkJiUSlJKGknJqaSke0mRKQES2ad8eucx5FDG/r/6JKb1ukiEVd8sYs3cF8lc9TaDq78k0cJsJZNVeeNJG34SBWNOIZiWE9N2RaRjmffaX+k393a6sZnvrDuruhxBoOcIkrvtT3pWHiSlAAbVFVSUl1JVtoVw6QbYvhHbXkRCxSaSq4rJDBWTFykh3ap2a6OSJLYEulCa2JXKlK6EUvNxmT1IyOpBcm4vMvL6kp3fl/TsrvqeI/skJVgiInvRB3+4kIO3vE3W1NbfY7102xa++fg1ar56g74lH9HLeUMPVwb7sanXMXQ/bBJ9hh+JaeifiESpqSpn8b//SnjxKwys+IwMKpq131aXzpZgF8oTulCZ0o1QWncsM5/EnN6k5fUmu1sfuuTvR2J6lw5xnZdIW2kowdL/jUVE2oDL6U/WljIqthaTmt2yiSQqK7bz7YL32frVLNLXzeGgqi841EKUu2S+Tj+U1QWX0n/sqfTb7yA0GbOINCQxOY2DT/kpnPJTXDjEd2tWULp+GeWlW7FwJTiHS0wjOTWDtMwc0nN7kpnXk+yUVLLjHbxIB6YES0SkDaTuNxIKYfWCtxh41OQGy7lIhA1rlrPuq48pL5xHTtEnHFC9lCFWA8CKYAELep1NxtCJHDDqeEampO6dAxCRfYoFE+jV70Dop2syRdqaEiwRkTYwcMzxlL6XSsXC58FPsLZsWs/6bz9n25olhIu+Jn3zYvpWfk0PSukBhFyAFYkDWNDzTJIHHEnBIcfRv2s+/eN7KCIiItICSrBERNpAdkY6H+T9gAklz7H+9gNIdeXksJ0cf3u1C7I6oR/LuhxJpMfBZA8YTb/BozkwPTOeYYuIiEgrKcESEWkjo378Rz58Jp/kkq8JJ2XicvuT2nMQXfsNo0e/QQxISGRAvIMUERGRmGp1gmVmI4FpQAoQAn7inJtrZgbcB/wAKAemOOc+bW17IiIdRWpqCuMu/r94hyEiIiJ70Z7fdW6nu4DbnXMjgVv9ZYATgQP9x2XAwzFoS0REREREpN2KRYLlgCz/eTbwnf98EvA355kD5JhZzxi0JyIiIiIi0i7F4hqsq4E3zOwevITte/763sDqqHJr/HXrYtCmiIiIiIhIu9OsBMvM3gJ61LPpV8BxwDXOuefM7GzgMeD7zQ3AzC7DG0IIUGZmS5u7717SFdgU7yBkr9H57jx0rjsPnevORee789C57lza4/nuV99Kc861qlYz2wrkOOecP7HFVudclpn9CZjlnJvul1sKHO2c61A9WGY2zzk3Kt5xyN6h89156Fx3HjrXnYvOd+ehc925dKTzHYtrsL4DjvKfHwt84z9/GbjQPGPxEq8OlVyJiIiIiIi0RCyuwfoxcJ+ZJQCV7Bzu9xreFO3L8KZpvzgGbYmIiIiIiLRbrU6wnHOzgcPqWe+An7a2/nbgkXgHIHuVznfnoXPdeehcdy46352HznXn0mHOd6uvwRIRERERERFPLK7BEhEREREREZRgiYiIiIiIxIwSrEaY2UQzW2pmy8zsxnjHI7FjZn3N7F0zW2xmX5rZVf76XDN708y+8f/tEu9YJTbMLGhmn5nZK/5yfzP72H9/zzCzpHjHKLFhZjlm9qyZfWVmS8zsCL23901mdo3/Gf6FmU03sxS9t/cdZvYXM9toZl9Erav3vezPWn2/f94Xmdmh8YtcWqqBc323/zm+yMxeMLOcqG03+ed6qZmdEJegG6EEqwFmFgQeAk4EhgDnmtmQ+EYlMRQCrnXODQHGAj/1z++NwNvOuQOBt/1l2TdcBSyJWv4tcK9z7gBgM/DfcYlK2sJ9wOvOuYOAg/HOu97b+xgz6w38HBjlnBsGBIFz0Ht7X/I4MLHOuobeyycCB/qPy4CH91KMEhuPs/u5fhMY5pwbAXwN3ATgf187Bxjq7/NH/3t7u6EEq2FjgGXOuW+dc9XAM8CkOMckMeKcW+ec+9R/Xor3Baw33jl+wi/2BHBaXAKUmDKzPsBJwJ/9ZcO7b9+zfhGd632EmWUDRwKPATjnqp1zW9B7e1+VAKT6t4pJA9ah9/Y+wzn3PlBSZ3VD7+VJwN+cZw6QY2Y990qg0mr1nWvn3L+dcyF/cQ7Qx38+CXjGOVflnFuBd0uoMXst2GZQgtWw3sDqqOU1/jrZx5hZAXAI8DGQH3VD7PVAfrzikpj6A3ADEPGX84AtUR/cen/vO/oDRcBf/SGhfzazdPTe3uc459YC9wCr8BKrrcB89N7e1zX0Xtb3tn3bJcC//Oft/lwrwZJOzcwygOeAq51z26K3+fdy030MOjgzOxnY6JybH+9YZK9IAA4FHnbOHQJsp85wQL239w3+tTeT8JLqXkA6uw8xkn2Y3sudg5n9Cu/SjqfjHUtzKcFq2Fqgb9RyH3+d7CPMLBEvuXraOfe8v3rDjiEF/r8b4xWfxMw44FQzK8Qb6nss3jU6Of6wItD7e1+yBljjnPvYX34WL+HSe3vf831ghXOuyDlXAzyP937Xe3vf1tB7Wd/b9kFmNgU4GTjP7bx5b7s/10qwGvYJcKA/G1ES3sV0L8c5JokR/xqcx4AlzrnfR216GbjIf34R8NLejk1iyzl3k3Ouj3OuAO99/I5z7jzgXeBMv5jO9T7CObceWG1mg/xVxwGL0Xt7X7QKGGtmaf5n+o5zrff2vq2h9/LLwIX+bIJjga1RQwmlAzKziXjD+091zpVHbXoZOMfMks2sP97EJnPjEWNDbGcyKHWZ2Q/wrt0IAn9xzt0Z34gkVsxsPPAB8Dk7r8u5Ge86rJnAfsBK4GznXN0LbKWDMrOjgeuccyeb2f54PVq5wGfA+c65qjiGJzFiZiPxJjRJAr4FLsb7QVHv7X2Mmd0OTMYbPvQZcCnetRh6b+8DzGw6cDTQFdgA3Aa8SD3vZT/JfhBvmGg5cLFzbl4cwpY90MC5vglIBor9YnOcc5f75X+Fd11WCO8yj3/VrTOelGCJiIiIiIjEiIYIioiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaISDthZgVm5swsId6x7OvMbIqZzY53HO2NmU0ws6XxjkNEpCNTgiUiIh2amU01sxozK4t63BDvuDoi59wHzrlBsazTzLqa2YdmVmxmW8zsIzMbF8s2RETaE/1KKiISI2aW4JwLxTuOTmqGc+78eAfRVjr431YZcAnwDeCAScA/zax7Bz4mEZEGqQdLRKQVzKzQzH5pZouA7WaWYGZjzew//q/1C83s6Kjys8zs/8xsrpltM7OXzCy3gbovNrMlZlZqZt+a2f9XZ/skM1vg17PczCb667PN7DEzW2dma83sf80s2MRxDDCzd/xehk1m9rSZ5URtKzGzQ/3lXmZWtOO4zOxUM/vSP95ZZja4zutznZktMrOtZjbDzFJa/kq3nJnd6L8upWa22MxOb6Ccmdm9ZrbRfy0/N7Nh/rZkM7vHzFaZ2QYzm2Zmqc1s/3G//Jt+DO+ZWb+o7feZ2Wq/zflmNiFq21Qze9bMnjKzbcAUMxvj9/5s8c/tg2aWFLWPM7OfmNk3fnv/45+7//htzIwu30DMR5vZmuYcX3M55yqdc0udcxHAgDDQBaj3715EpKNTgiUi0nrnAicBOUA+8Crwv3hfIK8DnjOzblHlL8T7Rb8nEALub6DejcDJQBZwMXBvVJIzBvgbcL3f7pFAob/f4369BwCHAMcDlzZxDAb8H9ALGAz0BaYCOOeWA78EnjKzNOCvwBPOuVlmNhCYDlwNdANew+udiP4ifzYwEegPjACm1BuA2Xg/eWjoMb6JY6hrOTAByAZu9+PvWU+54/Fev4F+2bOBYn/bb/z1I/Fez97ArS2I4Tzgf4CuwALg6ahtn/j15gJ/B/5RJ/mcBDyLd36fxktMrvHrOgI4DvhJnfZOAA4DxgI3AI8A5+Odz2F4f6t7zE+UGzo/f2xqX6ASeBn4s3NuY2tiERFpr8w5F+8YREQ6LDMrBO5wzv3FX/4lMMw5d0FUmTeAvzvnnjCzWcAc59yN/rYheF+8U/G+BK8AEusbOmVmLwLvOufuM7M/AeXOuWvqlMkHVgE5zrkKf925wGXOuWNacFynAbc55w6JWvcyXpLkgNHOuSoz+zUw3Dl3tl8mAKwGzvMTsELgFufcU/72u4As59zlzY2lGbFOBW4GyqNWD3HOfVen3AL/mF4ysynApc658WZ2LDANL/Gd6/e0YGaGN7xthJ9kYmZH4J3L/s2I63EgxTl3jr+cAWwFCpxzq+spvxk42jm30D+mY51zRzZS/9XAUc650/1lB4x3zn3oL88HZjrnfusv/w4IOueubqTOo4GnnHN9mjq+PeEnkKcDSc65J9qiDRGReNM1WCIirRf9ZbkfcJaZnRK1LhF4t4HyK/3tXetWamYnArfh9aAEgDTgc39zX7zeorr6+fWt8/ID8Pfd7Qt9nbbygfvwenwy/X021yn2KF7vw2XOuSp/XS//GABwzkXMbDVeT88O66Oel/v7xNrMutdgmdmFwC+AAn9VBvW8zs65d8zsQeAhoJ+ZPY/X85iC95rPj3otDWh0uGUdta+7c67MzErwjn+1mV0H/Le/7PB6KrvWt69/PAOB3wOj/LgSgPl12tsQ9byinuUeLYg95pxzlcB084a+LnDOLYxnPCIibUFDBEVEWi96KMBq4EnnXE7UI90595uoMn2jnu8H1ACbois0s2TgOeAeIN85l4OXUO34pr8aGFBPLKuBKqBrVPtZzrmhTRzD//OPY7hzLgtvWNnOrMLrffkD8Bgw1XZeN/YdXlK3o5z5x7e2ifZ2Y94U4WWNPCY0XUttXf3wEsIrgTz/9fsi+piiOefud84dBgzBS2ivxzsnFcDQqNcy2zmX0YLDqj3X/muYC3znH8sNeMMRu/jxba0TX90hJg8DXwEH+ufo5oaOp62Yd61dQ+dnWguqSgT2b6s4RUTiSQmWiEhsPQWcYmYnmFnQzFL8iQOih1ydb2ZD/OuZ7gCedc6F69STBCQDRUDI7806Pmr7Y8DFZnacmQXMrLeZHeScWwf8G/idmWX52waY2VFNxJ2JNxxuq5n1xkswot0HzHPOXYp3jdmOL9MzgZP8OBKBa/ESvP809ULV5U8RntHI44MWVJeOl6AUgTdhCN41SLsxs9Fmdrgf/3a864Qi/lDBR/Gufevul+1tZidE7essahKTevzAv7YsCe9arDn+8MBMvOvkioAEM7sVrwerMZnANqDMzA4CrmiifMw554Y2cn7qHfZp3qQv480sycxS/WG0+cDHezd6EZG9QwmWiEgM+V+eJ+H1LhTh9Shdz66ft0/iTUSxHm8Y2s/rqafUXz8Tb6jej/CG5+3YPhd/4gu8no/32NmTdCFegrbY3/dZvAk1GnM7cKhf16vA8zs2mNkkvEkqdnyh/wVwqJmd55xbitfb9QBej88pwCnOueom2mtTzrnFwO+Aj/CGyQ0HPmygeBZeIrUZb7hjMXC3v+2XwDJgjnmz+b0FDAIws75AKTuHbdbn73jDPEvwJp/YMYzxDeB14Gu/zUqaGMaJN2zxR36bjwIzmijfXiTjDb8sxuvZ/AFwUt1r5ERE9hWa5EJEZC/yJ7l4yjn353jHIq1jZufjDR+8qYHtjwNrnHO37NXAREQkrjTJhYiIyB7YMTOiiIhINA0RFBHpJMy76W1rJyeQDs7Mbm7g7+Bf8Y5NRGRfoCGCIiIiIiIiMaIeLBERERERkRhpV9dgde3a1RUUFMQ7DBERERERkUbNnz9/k3OuW9317SrBKigoYN68efEOQ0REREREpFFmtrK+9RoiKCIiIiIiEiNKsERERERERGJECZaISD3CEYdmWRUREZGWalfXYNWnpqaGNWvWUFlZGe9QpINJSUmhT58+JCYmxjsU6WBcJMIb/+8sviuYxKXnXxjvcERERKQDafcJ1po1a8jMzKSgoAAzi3c40kE45yguLmbNmjX0798/3uFIB7N6/QZ+EHoLlr1FJPQjAgnt/qNSRERE2ol2P0SwsrKSvLw8JVfSImZGXl6eej5lj2zZvKn2+frCxXGMRERERDqadp9gAUquZI/o70b21Patm2ufb1CCJSIiIi3QIRIsEZG9qaJsZ4JVtfGbOEYiIiIiHY0SrGYwM6699tra5XvuuYepU6fGL6Aoc+bM4fDDD2fkyJEMHjy4Nq5Zs2bxn//8Z4/rXblyJYceeigjR45k6NChTJs2LUYRi7R/ofIttc+Dm7+NXyAiIiLS4ejK7WZITk7m+eef56abbqJr164xq9c5bxroQGDP89yLLrqImTNncvDBBxMOh1m6dCngJVgZGRl873vf26N6e/bsyUcffURycjJlZWUMGzaMU089lV69eu1xrCIdRaCqFIByUkgtWx3naERERKQjUQ9WMyQkJHDZZZdx77337ratqKiIM844g9GjRzN69Gg+/PBDAKZOnco999xTW27YsGEUFhZSWFjIoEGDuPDCCxk2bBirV6/m+uuvZ9iwYQwfPpwZM2YAXoJ09NFHc+aZZ3LQQQdx3nnn1XtPno0bN9KzZ08AgsEgQ4YMobCwkGnTpnHvvfcycuRIPvjgg0bjvOCCCzjiiCM48MADefTRRwFISkoiOTkZgKqqKiKRSL2vzf3338+QIUMYMWIE55xzDgAlJSWcdtppjBgxgrFjx7Jo0aLati666CImTJhAv379eP7557nhhhsYPnw4EydOpKamBoA77riD0aNHM2zYMC677LLdjjsSiVBQUMCWLVtq1x144IFs2LChsdMo0mzBai/B+i6pgIzqjXGORkRERDqSVvdgmVlf4G9APuCAR5xz95nZVODHQJFf9Gbn3Gutaev2f37J4u+2taaK3QzplcVtpwxtstxPf/pTRowYwQ033LDL+quuuoprrrmG8ePHs2rVKk444QSWLFnSaF3ffPMNTzzxBGPHjuW5555jwYIFLFy4kE2bNjF69GiOPPJIAD777DO+/PJLevXqxbhx4/jwww8ZP378LnVdc801DBo0iKOPPpqJEydy0UUXUVBQwOWXX05GRgbXXXcdAD/60Y8ajHPRokXMmTOH7du3c8ghh3DSSSfRq1cvVq9ezUknncSyZcu4++676+29+s1vfsOKFStITk6uTXhuu+02DjnkEF588UXeeecdLrzwQhYsWADA8uXLeffdd1m8eDFHHHEEzz33HHfddRenn346r776KqeddhpXXnklt956KwAXXHABr7zyCqecckptm4FAgEmTJvHCCy9w8cUX8/HHH9OvXz/y8/ObPI8izRGs8RKsbRkDGFAyK77BiIiISIcSix6sEHCtc24IMBb4qZkN8bfd65wb6T9alVzFW1ZWFhdeeCH333//LuvfeustrrzySkaOHMmpp57Ktm3bKCsra7Sufv36MXbsWABmz57NueeeSzAYJD8/n6OOOopPPvkEgDFjxtCnTx8CgQAjR46ksLBwt7puvfVW5s2bx/HHH8/f//53Jk6cWG+bjcU5adIkUlNT6dq1K8cccwxz584FoG/fvixatIhly5bxxBNP1NtDNGLECM477zyeeuopEvx7Bc2ePZsLLrgAgGOPPZbi4mK2bfMS4xNPPJHExESGDx9OOByujXf48OG1x/fuu+9y+OGHM3z4cN555x2+/PLL3dqdPHlybW/fM888w+TJkxt9zUVaIqGmlBoXpCa7gGy2U769NN4hiYiISAfR6h4s59w6YJ3/vNTMlgC9W1tvfZrT09SWrr76ag499FAuvvji2nWRSIQ5c+aQkpKyS9mEhIRdhtVF348pPT29We3tGKIH3vC/UChUb7kBAwZwxRVX8OMf/5hu3bpRXFy8W5mG4oTdpzOvu9yrVy+GDRvGBx98wJlnnrnLtldffZX333+ff/7zn9x55518/vnnzTqmQCBAYmJibVuBQIBQKERlZSU/+clPmDdvHn379mXq1Kn13svqiCOOYNmyZRQVFfHiiy9yyy23NNquSEsk1pRSZmkEs71e25J1K0k7YFicoxIREZGOIKbXYJlZAXAI8LG/6kozW2RmfzGzLrFsKx5yc3M5++yzeeyxx2rXHX/88TzwwAO1yzuGwhUUFPDpp58C8Omnn7JixYp665wwYQIzZswgHA5TVFTE+++/z5gxY5od06uvvlp7jdI333xDMBgkJyeHzMxMSkt3/ureUJwAL730EpWVlRQXFzNr1ixGjx7NmjVrqKioAGDz5s3Mnj2bQYMG7dJ2JBJh9erVHHPMMfz2t79l69atlJWVMWHCBJ5++mnAu5asa9euZGVlNet4diRTXbt2paysjGeffbbecmbG6aefzi9+8QsGDx5MXl5es+oXaY6E0Ha2k0pKXl8Atm1cGeeIREREpKOIWYJlZhnAc8DVzrltwMPAAGAkXg/X7xrY7zIzm2dm84qKiuor0q5ce+21bNq0qXb5/vvvZ968eYwYMYIhQ4bUTmd+xhlnUFJSwtChQ3nwwQcZOHBgvfWdfvrpjBgxgoMPPphjjz2Wu+66ix49ejQ7nieffJJBgwYxcuRILrjgAp5++mn+//buPL6qu87/+Otz7829NyshC/uWWqBAAkTCYukCtS1Vq1W7gGO1lLG1jtppf6OjVVtr/fn4qR2dcWy104qiY6XUOl3GpYtdRplaWii0paVQoGENEBISQra7fX9/3EtIQgKE3ORyk/fz8bjkLN/zPR84HO758P2e79fr9fLhD3+YRx99tG2Qi+7ihHg3v4ULFzJv3jxuv/12Ro0axaZNm5g7dy4zZszgwgsv5Etf+hJlZWUAfOYzn2Ht2rVEo1GuvfZaysrKKC8v5+abbyY/P58777yTdevWMX36dL761a/yy1/+8pR/P/n5+dxwww2UlpayaNEiZs+e3bbvvvvu6xD34sWL+fWvf63ugZJ0nliIkAXIKR4HQHPt7hRHJCIiIunCuhqZrseVmGUAvweecs79sIv9E4DfO+dO2MemoqLCrV27tsO2TZs2MWXKlF7HKF278847OwyGMdDo74+cjjf+5YMEm/Yy7ObnGPJvJbx89j8y59q7Uh2WiIiInEHMbJ1zrqLz9l63YFn8JZrlwKb2yZWZjWxX7GPAxt6eS0SkP3hiYSJkkDdkKEdcJhyuSnVIIiIikiaSMdHwfOBTwBtmtiGx7WvAJ8xsJvGh2yuBzybhXJJkd955Z6pDEDnjeGJhoh4fZkaNpxB/075UhyQiIiJpIhmjCK4GrItdaT0su4gMXp5YmLBlAFCfUURWqyYbFhERkVOT1FEERUQGAo8LE/XEE6zm4DCGRA6e5AgRERGROCVYIiKdeF2YWKIFK5w1goLYIWg3r52IiIhId5RgiYh04ouFcYkWLHJHkGFRGuv2pzYoERERSQtKsE7RY489hpnx9ttvd1umsrKS0tITjkTfI5s3b2bBggXMnDmTKVOmcOONNwLxSYL/+MfTf8WtpaWFOXPmMGPGDKZNm8Y3v/nNZIUsMiB4CRNLJFj+/FEA1O7fmcqQREREJE0owTpFK1eu5LzzzmPlypVd7o9EIr0+RzQa7bB+8803c+utt7JhwwY2bdrEF7/4RaD3CVYgEOC5557jtddeY8OGDTz55JO89NJLvYpdZCDxuQgxjx+AYOFoABqqd6UyJBEREUkTSrBOwZEjR1i9ejXLly/noYceatv+wgsvcP755/ORj3yEqVOnAvFE65Of/CRTpkzhqquuoqmpCYBnn32W8vJyysrKWLZsGa2trQBMmDCBr3zlK7z3ve/lt7/9bYfzVlVVMWbMmLb1srIyQqEQd9xxB6tWrWLmzJmsWrWKxsZGli1bxpw5cygvL+fxxx8HYMWKFVxxxRUsWLCAiRMn8q1vfQsAMyMnJweAcDhMOBwmPp1ZR7/97W8pLS1lxowZXHDBBUC89ev666+nrKyM8vJynn/++bZzffSjH+WSSy5hwoQJ3HPPPfzwhz+kvLycefPmUVtbC8ADDzzA7NmzmTFjBldeeWXbn0978+bN480332xbX7BgAZ0noBbpSz4XwXnjLVhDiscC0FK7N5UhiYiISJpIxjxY/edPX4V9byS3zhFl8IHvnrDI448/zmWXXcakSZMoLCxk3bp1zJo1C4BXX32VjRs3UlJSQmVlJZs3b2b58uXMnz+fZcuW8ZOf/IQvfOELLF26lGeffZZJkybx6U9/mp/+9KfccsstABQWFvLqq68ed95bb72Viy66iHPPPZdLL72U66+/nvz8fO666y7Wrl3LPffcA8DXvvY1LrroIn7+859TV1fHnDlzuPjiiwF4+eWX2bhxI1lZWcyePZsPfehDVFRUEI1GmTVrFlu3buXzn/88c+fOPe78d911F0899RSjR4+mrq4OgHvvvRcz44033uDtt9/m0ksvZcuWLQBs3LiR9evX09LSwtlnn833vvc91q9fz6233sqvfvUrbrnlFj7+8Y9zww03APCNb3yD5cuXt7XMHbV48WIefvhhvvWtb1FVVUVVVRUVFcdNki3SZ3xEcIkWrMIR4wCI1GuyYRERETk5tWCdgpUrV7JkyRIAlixZ0qGb4Jw5cygpKWlbHzt2LPPnzwfg2muvZfXq1WzevJmSkhImTZoEwHXXXcdf/vKXtmMWL17c5Xmvv/56Nm3axNVXX80LL7zAvHnz2lq+2nv66af57ne/y8yZM1mwYAEtLS3s3Bl/X+SSSy6hsLCQzMxMPv7xj7N69WoAvF4vGzZsYPfu3W1JWGfz589n6dKlPPDAA23dF1evXs21114LwDnnnMP48ePbEqyFCxeSm5tLcXExQ4YM4cMf/jAQb3mrrKwE4knY+eefT1lZGQ8++GCHlqqjrrnmGh555BEAHn74Ya666qou/3xE+koGYUi0YOVkZ1PncrAjmmxYRERETi69WrBO0tLUF2pra3nuued44403MDOi0Shmxt133w1AdnZ2h/Kdu9p11fWus851tDdq1CiWLVvGsmXLKC0t7TIRcs7xu9/9jsmTJ3fYvmbNmpPGk5+fz8KFC3nyySePG6DjvvvuY82aNfzhD39g1qxZrFu37oS/j0Ag0Lbs8Xja1j0eT9s7akuXLuWxxx5jxowZrFixghdeeOG4ekaPHk1hYSGvv/46q1at4r777jvheUWSLd5F0N+2XustJKNJkw2LiIjIyakF6yQeeeQRPvWpT7Fjxw4qKyvZtWsXJSUl/PWvf+2y/M6dO/nb3/4GwG9+8xvOO+88Jk+eTGVlJVu3bgXgP//zP7nwwgtPeu4nn3yScDgMwL59+6ipqWH06NHk5ubS0NDQVm7RokX8+Mc/xjkHwPr169v2PfPMM9TW1tLc3Mxjjz3G/Pnzqa6ubuvy19zczDPPPMM555xz3Pm3bdvG3LlzueuuuyguLmbXrl2cf/75PPjggwBs2bKFnTt3HpfYnUhDQwMjR44kHA631dOVxYsX8/3vf5/6+nqmT59+yvWL9Jpz+C3a1oIFcCSjkOxQdQqDEhERkXShBOskVq5cycc+9rEO26688spuRxOcPHky9957L1OmTOHQoUN87nOfIxgM8otf/IKrr76asrIyPB4PN91000nP/fTTT7cNMrFo0SLuvvtuRowYwcKFC3nrrbfaBrm4/fbbCYfDTJ8+nWnTpnH77be31TFnzhyuvPJKpk+fzpVXXklFRQVVVVUsXLiQ6dOnM3v2bC655BIuv/xyAO644w6eeOIJAL785S9TVlZGaWkp5557LjNmzOAf/uEfiMVilJWVsXjxYlasWNGh5epkvv3tbzN37lzmz5/fIal74oknuOOOO9rWr7rqKh566CGuueaaU65bJBmikRAA1q4FqzlQTF6kJlUhiYiISBqxo60eZ4KKigrXebS4TZs2MWXKlBRFlN5WrFjRYTCMwUh/f6Snmo/Uk/kv43jxrFs499PxkTdf/I8vMnvvg/i+WY15vCmOUERERM4EZrbOOXfcSGxqwRIRaSccig8kY75jXQTJHUGGRWmo1XtYIiIicmJKsAawpUuXDurWK5HTEQq1AGC+Y11f/fmjAKjdvzMlMYmIiEj6SIsE60zqxijpQ39v5HREEi1YHt+xd7CyCuMTfh85uCslMYmIiEj6OOMTrGAwSE1NjR6WpUecc9TU1BAMBlMdiqSZSFsXwWMtWEOK4wlWS+3elMQkIiIi6aPP58Eys8uAHwFe4GfOuR5NZjVmzBh2795NdbWGSJaeCQaDjBkzJtVhSJqJhI9vwSoYMS6+r74qJTGJiIhI+ujTBMvMvMC9wCXAbuAVM3vCOffWqdaRkZFBSUlJX4UoItJBVwlWZlY2deTgObIvVWGJiIhImujrLoJzgK3Oue3OuRDwEHBFH59TROS0hRODXHgzOs7vdshTgL95fypCEhERkTTS1wnWaKD9W+G7E9vamNmNZrbWzNaqG6CIpFos0YLlbdeCBXAko4is1oOpCElERETSSMoHuXDO3e+cq3DOVRQXF6c6HBEZ5KLhEABef8cWrJZgMXmRmlSEJCIiImmkrxOsPcDYdutjEttERM5I0XCii6A/s8P2SPZwCtwhXCyairBEREQkTfR1gvUKMNHMSszMDywBnujjc4qInDZ3NMHK6DjEvyd3BH6LUlej97BERESke32aYDnnIsAXgKeATcDDzrk3+/KcIiK9EYvE38Hydeoi6M8fBcCh/ZpsWERERLrX5/NgOef+CPyxr88jIpIMscQoghmBjl0EMwvjc6odqd4FzO3vsERERCRNpHyQCxGRM8nRFqzOCdaQYfHXSVsP6TVSERER6Z4SLBGRdo6+g5URyOqwvWDEOACidUqwREREpHtKsERE2ovGW7ACgY6DXASCWRwkH9+RvamISkRERNKEEiwRkXZcYqJhf6cuggC13iKCzfv6OyQRERFJI0qwRETasWgrIefF4/Uet++wfzh5IQ3TLiIiIt1TgiUi0l40RJiMLne1Zo2kMHoAnOvnoERERCRdKMESEWnHoi2EzN/1zrzRZNNCy5FD/RuUiIiIpA0lWCIi7XiiIcLdTBHoK4iPJHhwz/b+DElERETSiBIsEZF2PNHWbluwsoeNB+Dw/nf7MyQRERFJI0qwRETasWiIiHX9DlbBiBIAmg7u7M+QREREJI0owRIRaccTCxPppgWraOR4Is5DtG53P0clIiIi6UIJlohIO75Ya7cJlt+fwUErwNuwp5+jEhERkXShBEtEpB1vLETU03UXQYBDGcVkabJhERER6YYSLBGRdnwuRNQT6HZ/Y3AkQzTZsIiIiHRDCZaISDveWJjYCVqwwtkjKYrV4GKxfoxKRERE0oUSLBGRdjJciKi3+xYsGzKGgIU5VL23H6MSERGRdNGrBMvM7jazt83sdTN71MzyE9snmFmzmW1IfO5LSrQiIn3M58I4b9eDXAAECuOTDddUaS4sEREROV5vW7CeAUqdc9OBLcBt7fZtc87NTHxu6uV5RET6RZBmnC+r2/25wycA0KDJhkVERKQLvUqwnHNPO+ciidWXgDG9D0lEJDWcc2S7FmL+nG7LFI16DwChGk02LCIiIsdL5jtYy4A/tVsvMbP1ZvY/ZnZ+dweZ2Y1mttbM1lZXVycxHBGRngmFWghYGOfP7bbMkMLhNDs/rl6TDYuIiMjxfCcrYGZ/BkZ0sevrzrnHE2W+DkSABxP7qoBxzrkaM5sFPGZm05xzhztX4py7H7gfoKKiwp3eb0NEpPeaG+oJABbovgXLPB4OeIfhP6LJhkVEROR4J02wnHMXn2i/mS0FLgfe75xziWNagdbE8joz2wZMAtb2NmARkb7S3FhPPmDB7luwAOr9w8lp1WTDIiIicrzejiJ4GfDPwEecc03tthebmTexfBYwEdjem3OJiPS11sZ6ALwnSbBaMkdSGDnQHyGJiIhImuntO1j3ALnAM52GY78AeN3MNgCPADc552p7eS4RkT4Vaoz3YvYF805YLpY3hiLqaGlu7I+wREREJI2ctIvgiTjnzu5m+++A3/WmbhGR/hZpTiRYmSduwfIOHQs74OCedxlzdml/hCYiIiJpIpmjCIqIpLVwcwMAGVlDTlguq3gCAHX71PNZREREOlKCJSKSEG6Kv4OVlXviBGtoYi6spuodfR6TiIiIpBclWCIiCeGmeBfBvCEFJyxXNHICMWdED2myYREREelICZaISEK0JZ5g5ZykBcsfzKTG8vEe1mTDIiIi0pESLBGRBE9zLUfIxJMROGnZWt8wMpur+iEqERERSSdKsEREEvytNdRZ/imVbQyOYEhof98GJCIiImlHCZaISEJmqIYG39BTKhvOGc2wWDUuFuvjqERERCSdKMESEUnICR+iKePEA1y0yR9L0MLUVKuboIiIiByjBEtEJCEvVkc4WHRKZYOF4wGo3bOtL0MSERGRNKMES0QEaA21MsQ1QHbxKZXPHV4CwJED7/ZlWCIiIpJmlGCJiAAH9+/FY46MvGGnVL5odHyy4dYazYUlIiIixyjBEhEBDldtBSCjaMIplc8dWkyTC+DRXFgiIiLSjhIsERGgsWoLAENGTTql8ubxUO0pJti4ty/DEhERkTSjBEtEBAhXbyfqjJHjJ5/yMXUZxWS2VvdhVCIiIpJulGCJiADe+kqqPUX4g5mnfExLoJDcSE0fRiUiIiLpRgmWiAiQ31TJwcDYHh0TyRzGUHcInOujqERERCTd9CrBMrM7zWyPmW1IfD7Ybt9tZrbVzDab2aLehyoi0jdaWloYH9lB49ApPTswZxhBwrQ01vVJXCIiIpJ+ktGC9a/OuZmJzx8BzGwqsASYBlwG/MTMvEk4l4hI0r298VUCFiZnfHmPjvPljQCgdp9GEhQREZG4vuoieAXwkHOu1Tn3LrAVmNNH5xIR6ZXqLS8BMG7qvB4dFywYBcDhg0qwREREJC4ZCdYXzOx1M/u5mQ1NbBsN7GpXZndi23HM7EYzW2tma6urNRqXiPS/wO6/cdhyyR0zrUfH5RTGE6ymQ1V9EZaIiIikoZMmWGb2ZzPb2MXnCuCnwHuAmUAV8IOeBuCcu985V+GcqyguLu7p4SIivRKJxihp3MDuvHLw9Oz/nIYOGwNAuE4JloiIiMT5TlbAOXfxqVRkZg8Av0+s7gHaD8c1JrFNROSMsmXzW0y1A2wc9/c9Pja/YBgh5yXWsL8PIhMREZF01NtRBEe2W/0YsDGx/ASwxMwCZlYCTARe7s25RET6woGNzwIwcuYlPT7W4/VyyPLxNql7s4iIiMSdtAXrJL5vZjMBB1QCnwVwzr1pZg8DbwER4PPOuWgvzyUiknS+XS9ymBwKS3o2guBRh30FBFqUYImIiEhcrxIs59ynTrDvO8B3elO/iEhfcs4xvmE9O3LLKevh+1dHNWUUkB06mOTIREREJF311TDtIiJnvB3btzCW/UTGvu+062gNFjEkWpvEqERERCSd9baLoIhI2tr72p+ZABSXvv+064hmDWNobT2xaBSPd+DOpx6JRImEmom0NhGLxojEYkSdw+fx4A9mEszMwevTV4qIiIi+DUVk0PLs+F/qyWH0ObNPv46cYnwWo7ZmPwXDRiUxuv4TCoWoevct6na8Qeu+zUTr9xBo2kde+AC50ToyY81k0UzQYieux/loIUCLBWi1AGHzE/YEiFiAiCdA1Bv/xLxBnDeI8wXA68fMwAwwzDxghgGY4QCci5/AOSBGYmNi3XXa7zrss6P7ujqu3THWvp62skd/uLb102ZtvySFS2Jdccmurw+lUaj9xfkymfZ3/4/cIQWpDkVEUIIlIoPY6MOvsiOrjOme0295yhgyAoC6g3vTIsGKRqPs3PI61Zv+gtu9lqK6NxgT3cV4izA+UeYw2dR6iqj3D6Mm6z0QyMUCucQycoj5guDx4jUwM2KxGC7SCuFmLNKMhZvwRFrwRpvxRlvwRFvxxVrJih7GFwmREWvF70L4CeF3ITKIYIkExwCPnTiTiTnjWEp0bPnoU3fnfXQq59rKGc6OHdO5HO3KJoP1OkPrm7ri9aWP5P7OBwYPMQo4zCvPTWP2x25OdTgighIsERmk9u3dyVhXxb5R1/Sqnsz84QA01py5kw3v3bGFna/8NxnvPs/Zja9SQiMlxBOpyuAUNhScj3fYZHLHljL8rDLyhxaSl4I4nXPEHMScwwGxWCye6pgd+wCeRHInIhCLRqn99ng8O1YDSrBEzgRKsERkUNr52v8wAig454Je1ZNTEJ8OsLl+XxKiSg4Xi7H1tdVUr1nFqP0vMMHtZhSwn0K2DF2AjXsfw6aex5izpzP9DHpvLJ5Egedom4pX4zCJnIzH62V7Vjnj6tfGu7nqPx9EUk4JlogMSuF3/0bIeRlXdm6v6hk6bDQAkfr9yQjr9DlH5ca/ceBvv2FM1dNMdPuZ4LxszpzBmrGLGTHrQ4ybVM7w0xyOXkTOXM1jzmXYlr9Qs2szhePOSXU4IoOeEiwRGZSG1q6n0j+RSYGsXtWTnV9MxHlwjamZbLj6YDVvPrWc0dtWMTG2ndHOy1uZ5eyZ9HkmX/gJSguHpSQuEek/o8sXwZbvsvXlPyrBEjkDKME6gV3vvM7ep/6Vcz55N0OGFqU6HBFJkpbmJt4TfocNI6/udV3m8VJnQ/A1HkhCZKcmFo3x+svP0vjicsoPP8cCa6XSdxZrJn+N9yy8jhnDRvRbLCKSeiWTZ7LXhpO19b+B/5PqcEQGPSVYJ1D12jNUVD9K3Y+e45Xyr1D+wRvwZWSkOiwR6aXtb7zIVAsTKDn9CYbbq/UVk9na910Eaw4e4K0nH2DUtlXMdDtoIsDm4kUMW/BZJkybzwS9eyEyKJnHw/aRl3Punp9Tt6+S/BETUh2SyKCmBOsE5lz1T7xz9lz471uYvf42dm/4d3ZPuo7JFy9laPHIVId3epwjFgkRjoQIh8NEQvHlSCRCNBwmGglBLIKLRiAWxRGDmCPmYokpYuLzwcRcDJzDuVjbPDXOubafzsU6nLOvtD1O9tGD5dFaXV/Vn+S5cTrU3cVS8k/Qlw/01mfVH177WwDGzlyQlPoa/MMpaqlMSl2duViMjS89TeNLy5lZ/zznW5htGRPZMO1Ozrn4espz8vvkvCKSXkZdeD2elcvZ/PTPmPvp/5vqcFLKxWKEQi2EWluIhFoJh1qJhFqIRsO4WBQXi4GLxaeZcLG2bfHlGM61W4/G4s81XU0S0OWzgXX62Q3r+lu66+cNO77GkzyXWE++QHtc9OQHJPuxKeLPY/TZMxia7U9uxX1ECdZJTJx5HrGyNaz/86/JefnHzNv8XcJv381bwVIahs8h6+zzGXn2DApHjMN6+fJ4LBqjuaWZpsbDtDY10NJ0hFBTA6GWI0SajxBpOUK0tZFYqBHX2gihRgg34Y004Yk044024Yu04I8143ctBF0LAddCJq0EXSteonjN4QECiY/IYLXLRjF2+Lik1NWSOZzCprVJqeuoQwf3s+mp/2DUtocpi+3iCJlsLL6c4Qtv5D3Tejcwh4gMPGdNLuNNfxkl239Da/NXCGTmpjqkUxYJhzhce4CGQwdoqq+mub6ayJEaYs110NoI4SNYqBFvuBFvpAlftImMaDOBWDMB10yGC+Mjgt+FySCM36J6zhlgXojOoPLqh7h8+pk/3yQowTolHq+X8kXXwaWfZvuba9j/v7+maP+LVOz4Gd6dD8Bz0OQC1HgKaPTm0erLI+rLBAxnXhweHOCNtuCNteCLtuJ18Qk3M1wrmYlkKJNWsi1Gdg9ia8FPC0FaLUjIEyTkzSSckUnIO4RGbyaRxCfmDYA3AzwZ4PVhHh/mzcC8Pjze+LLHmwEeH3h94PHh8MaHTfbEJ9w8OgeNmSfeuGAGeOI/LfG/JR7DzBNfNo5N1NkXLUDuuIW+0UctcK7tl77i+vQEziV/wtOO9fftdS2aUJq0umK5o8ipaaa18RCB7KGnX080yqYXf0/LyysoPfxXzrUwWzIms67sLqZdupSK7CFJi1lEBp7wBV9n2J+XsPbh71Bx3XdTGouLRWmoPUDtvp00HNxFc+0eInV78TTuI9B0gOzwQbKj9eS6BvJoogAo6KauFpdBk2XSYpm0Wiat3kxCvmyavMVEfZk4bwDnyYj/9GaAN4B5/eDzg9eP+QKYz594zvGAeeLPKollzIN5Es885gXPsf3xZx7DsE6PMl18RyW+tzp+fR1frv13Z8eiXX3vueMKnuy7tyffnj35qnXtpnBPXp2nJjdQwNQJ3f0NOfMoweoJM84qncdZpfMAqK+rYefrq2mqehtXsxV/y0H8oXqyI4fwhvbjcTGMGF7i3eVCFiDiSXy8ObR6i4h5g0R9mcR8WTh/FpaRhQWy8fiz8QWz8QZz8WfmkBHMJZCVQyArl8zsXIJZuXj82QQ9HoKp/DMRETKLxkElVO3YyoSps3t8/L5dW3n3mfsZv+tRprkD1JPNhuKPMHzBZ5lUOjf5AYvIgDTzvA+w9sXzmLZ9Oe++9kFKZvRunr8TiUajVFftoGbXFo7s30akZge+wzvJbt5LYbiKwlgNeRY9btLyQ+RS5ynkSEYB9ZnjiAbzccECLGsovpxCAnlFZA4pJjt/GFlDisjKySOY4dezjqQVJVi9MCS/kLILrgCuSHUoIpJCeeOmw1qor1wPp5hg1RzYyzv/s5Lsd55gWutrjDDHxkA5e8u+TOn7P8nczJ60ZYuIxI279qfU3n8xeY9ey8bmByidt+j0KnKOhroDHNixmYaqrbRWb8dTv4Ng4x7yW6sYHjvACIvQfszSgwzlYMZIduVMZ3v2SCxvJP780WQVjSF/2FgKR4xhaDCb02/nF0kPSrBERHpp1MQZNDs/0d3rT1iuatc2drz0GFlb/8DUlvXMsxi7bBQvj/t7xl10A6Ulmr9GRHpn2KhxvLvkYWzVNUz502LWvXgRvulXMXzyXIqGj8bnD+JiMZqbG6k/uJfGmioaDu6mpWYX1O0g0LCL/NY9FEf3kUsz7d/kqiWXg96RVGdPZE/u+/EUTCBr2ASGjp7IsLETKQpkoUltRHqZYJnZKmByYjUfqHPOzTSzCcAmYHNi30vOuZt6cy4RkTNVTmaQTRlnkXug40AXzY1H2Lb+eRrefJLh+//KWbEdjAT22nDWjr6WYe/7O0qmzWVsLwfIERFpr+ScmTTe+hKvPPg1pu57nLzVz8Lq+L6w85JhUbKAztOst7gM9nlHUBcYxf7sWbj88QSKzyJvVDyBKsgv6PY9KRE5plcJlnNu8dFlM/sBUN9u9zbn3Mze1C8iki6qx32IC7b/gFd/spSQ81Fw6DVKwtsotSgh5+WdYClrxnyMkRWXM3byLEYpqRKRPpSdV8C8z91HS/MPeHPDX2jc/SaRw/vxxkJEPRl4fEE8ucV480aQVzSKopHjyS8ewwT92yTSa5aMkbosPpzcTuAi59w7iRas3zvnejRMV0VFhVu7NrlDHYuI9IempkY2/+gKyltfockFqPRPpL74vWS/Zz5nzV5ETp7eOhARERlIzGydc66i8/ZkvYN1PrDfOfdOu20lZrYeOAx8wzn3124CuxG4EWDcuOTMSSMi0t+ysrIpv+3PNDc3EwwEmerpy0mYRURE5Ex10gTLzP4MHQaJOerrzrnHE8ufAFa221cFjHPO1ZjZLOAxM5vmnDvcuRLn3P3A/RBvwerpb0BE5EySmZmZ6hBEREQkhU6aYDnnLj7RfjPzAR8HZrU7phVoTSyvM7NtwCRA/f9ERERERGTASsabjBcDbzvndh/dYGbFZuZNLJ8FTAS2J+FcIiIiIiIiZ6xkvIO1hI7dAwEuAO4yszAQA25yztUm4VwiIiIiIiJnrKSMIpgsZlYN7Eh1HJ0UAQdTHYT0G13vwUPXevDQtR5cdL0HD13rweVMvN7jnXPFnTeeUQnWmcjM1nY1/KIMTLreg4eu9eChaz246HoPHrrWg0s6XW/NJiciIiIiIpIkSrBERERERESSRAnWyd2f6gCkX+l6Dx661oOHrvXgous9eOhaDy5pc731DpaIiIiIiEiSqAVLREREREQkSZRgiYiIiIiIJIkSrBMws8vMbLOZbTWzr6Y6HkkeMxtrZs+b2Vtm9qaZ/WNie4GZPWNm7yR+Dk11rJIcZuY1s/Vm9vvEeomZrUnc36vMzJ/qGCU5zCzfzB4xs7fNbJOZvU/39sBkZrcm/g3faGYrzSyoe3vgMLOfm9kBM9vYbluX97LF/Xviur9uZu9NXeTSU91c67sT/46/bmaPmll+u323Ja71ZjNblJKgT0AJVjfMzAvcC3wAmAp8wsympjYqSaII8E/OuanAPODziev7VeBZ59xE4NnEugwM/whsarf+PeBfnXNnA4eAv09JVNIXfgQ86Zw7B5hB/Lrr3h5gzGw0cDNQ4ZwrBbzAEnRvDyQrgMs6bevuXv4AMDHxuRH4aT/FKMmxguOv9TNAqXNuOrAFuA0g8by2BJiWOOYnief2M4YSrO7NAbY657Y750LAQ8AVKY5JksQ5V+WcezWx3ED8AWw08Wv8y0SxXwIfTUmAklRmNgb4EPCzxLoBFwGPJIroWg8QZjYEuABYDuCcCznn6tC9PVD5gEwz8wFZQBW6twcM59xfgNpOm7u7l68AfuXiXgLyzWxkvwQqvdbVtXbOPe2ciyRWXwLGJJavAB5yzrU6594FthJ/bj9jKMHq3mhgV7v13YltMsCY2QSgHFgDDHfOVSV27QOGpyouSap/A/4ZiCXWC4G6dv9w6/4eOEqAauAXiS6hPzOzbHRvDzjOuT3AvwA7iSdW9cA6dG8PdN3dy3puG9iWAX9KLJ/x11oJlgxqZpYD/A64xTl3uP0+F5/DQPMYpDkzuxw44Jxbl+pYpF/4gPcCP3XOlQONdOoOqHt7YEi8e3MF8aR6FJDN8V2MZADTvTw4mNnXib/a8WCqYzlVSrC6twcY2259TGKbDBBmlkE8uXrQOfdfic37j3YpSPw8kKr4JGnmAx8xs0riXX0vIv6OTn6iWxHo/h5IdgO7nXNrEuuPEE+4dG8PPBcD7zrnqp1zYeC/iN/vurcHtu7uZT23DUBmthS4HPikOzZ57xl/rZVgde8VYGJiNCI/8ZfpnkhxTJIkiXdwlgObnHM/bLfrCeC6xPJ1wOP9HZskl3PuNufcGOfcBOL38XPOuU8CzwNXJYrpWg8Qzrl9wC4zm5zY9H7gLXRvD0Q7gXlmlpX4N/3otda9PbB1dy8/AXw6MZrgPKC+XVdCSUNmdhnx7v0fcc41tdv1BLDEzAJmVkJ8YJOXUxFjd+xYMiidmdkHib+74QV+7pz7TmojkmQxs/OAvwJvcOy9nK8Rfw/rYWAcsAO4xjnX+QVbSVNmtgD4knPucjM7i3iLVgGwHrjWOdeawvAkScxsJvEBTfzAduB64v+hqHt7gDGzbwGLiXcfWg98hvi7GLq3BwAzWwksAIqA/cA3gcfo4l5OJNn3EO8m2gRc75xbm4Kw5TR0c61vAwJATaLYS865mxLlv078vawI8dc8/tS5zlRSgiUiIiIiIpIk6iIoIiIiIiKSJEqwREREREREkkQJloiIiIiISJIowRIREREREUkSJVgiIiIiIiJJogRLREREREQkSZRgiYiIiIiIJMn/Bwz6sRuF0a/ZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -4075,31 +4075,31 @@ " 9\n", " False\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " bAP.soma.v\n", - " 0.000759\n", - " 6.05e-05\n", + " 0.000701\n", + " 7.94e-05\n", " \n", " \n", " 10\n", " False\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step1.soma.v\n", - " 0.000969\n", - " 4.11e-05\n", + " 0.000948\n", + " 4.03e-05\n", " \n", " \n", " 11\n", " False\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step3.soma.v\n", - " 0.000704\n", - " 1.59e-05\n", + " 0.000783\n", + " 0.00152\n", " \n", " \n", "\n", @@ -4107,14 +4107,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "9 False 3 0.0885 0.0728 bAP.soma.v \n", - "10 False 3 0.0885 0.0728 Step1.soma.v \n", - "11 False 3 0.0885 0.0728 Step3.soma.v \n", + "9 False 3 0.095 0.0678 bAP.soma.v \n", + "10 False 3 0.095 0.0678 Step1.soma.v \n", + "11 False 3 0.095 0.0678 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "9 0.000759 6.05e-05 \n", - "10 0.000969 4.11e-05 \n", - "11 0.000704 1.59e-05 " + "9 0.000701 7.94e-05 \n", + "10 0.000948 4.03e-05 \n", + "11 0.000783 0.00152 " ] }, "metadata": {}, @@ -4122,7 +4122,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACis0lEQVR4nOzdeXxU1f3/8ddnJntCEgg7QUAEZYuIgFixrl/FuqDVivtWa7W2Vb8utba16Lf226/1V1u1LdpqXYu4S+vSuqFiRQQFFHABDBDWEEhCINvMnN8f9yYOISuZZLK8n4/HPDL33nPP+dy5mWQ+c84915xziIiIiIiISOsF4h2AiIiIiIhIV6EES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJlohIB2NmQ83MmVlCvGOR7sHMlpvZ0fGOQ0SkK1CCJSIinZ6ZzTKzMv9RZWbVUcuvxDu+js45N8Y5Ny+WdZrZnWa23sxKzWytmd0Sy/pFRDoq042GRURiy8wSnHOhVuw/FPgKSGxNPd2Vmc0EDnDOXVDPtladm/bUmWKtj5kdCBQ453aZ2SDg38AvnHPPxTk0EZE2pR4sEZEYMLN8M/uJmS0DdplZgplNMbP/mFmxmS2NHoJlZvPM7H/NbKH/Df+LZtargbovNbOVZrbTzNaY2ffrbJ9uZkv8elab2TR/fZaZPWhmm8xsg5n9ysyCTRzHcDN708yKzGybmT1hZtlR27ab2QR/eaCZFdYcl5md5g81K/aPb1Sd1+cGM1tmZiVmNsfMUlr+SrdcA+fGmdkBUWUeNrNfRS2f4r+mxf45zGtmW0ebWYGZ3eK/fvlmdn7U9pPN7GP/XK33k8GabTVDQ79rZuuAN/31T5vZZv91e8fMxtSJ+09m9orfW/eemfU3s9+b2Q4z+8zMDmnma3R8c46xuZxznzvndkWtigAHNFReRKSrUIIlIhI75wInA9lAP+Al4FdAL+AG4Fkz6xNV/iLgMmAAEALuaaDercApQCZwKXB3VJIzGXgUuNFv95tAvr/fw369BwCHACcAlzdxDAb8LzAQGAUMBmYCOOdWAz8BHjezNOBvwCPOuXlmNhKYDVwL9AFeBv5hZklRdZ8NTAOGAXnAJfUGYDbVT2waekxt4hjqU3tumuoV8hOSh4DvAznA/cBcM0tuZlv9gd7AIOBi4AG/NwdgF955z/bjucrMTq+z/1F4r/2J/vIrwAigL/AR8ESd8mcDP/fbrATe98v1Bp4BftfMuOtlZjc3dj6asW8ZUACkA39vTSwiIp2BEiwRkdi5xzm33jlXDlwAvOyce9k5F3HOvQYsAr4VVf4x59yn/rf8vwDOrq+HyTn3knNutfO8jTfU6kh/83eBh5xzr/ntbHDOfWZm/fy2rnXO7XLObQXuBs5p7ACcc6v8uiqdc4V4H86Pitr+F2AV8AFeYvgzf9MM4CV/32rgLiAV+Ead12ejc2478A9gfAMxzHfOZTfymN/YMTQg+tw05QrgfufcB865sHPuEbzEZUoL2vuF/xq+jZdonw3gnJvnnPvEP1fL8JLSo+rsO9M/Z+X+Pg8553Y65yrxkt2DzSwrqvzzzrnFzrkK4Hmgwjn3qHMuDMzBS673mXPuN42dj6b2BXoAE4DHgJLWxCIi0hkowRIRiZ31Uc+HAN+p803/VLykpL7ya4FEvF6HPZjZSWa2wB+eV4yXONWUGwysrieWIX59m6Lavx+vF6RBZtbPzJ70hxSWAo/XE9NfgLHAvf6HfvB6vNbWFHDORfzjGxS13+ao57uBjMZiibH1TRepNQS4vs65G4x3jM2xo87QuLU1+5rZYWb2lj+0sgS4kr1f39pYzSxoZr8xb+hnKV/3TkbvsyXqeXk9y+35Ou/F/2LgYz+W2+IZi4hIe1CCJSISO9GzBq3H66GK/rY/3f9Gv8bgqOf7AdXAtugK/WFpz+L1CPXzewxexhvKV9PO8HpiWY/X69I7qv1M59yYespG+7V/HOOcc5l4PXE1bWFmGcDvgQeBmfb1dWMb8RKTmnLmH9+GJtrbi5kdaV/PAFjf48ima9lL3RmddgNpUcv9o56vB+6oc+7SnHOzm9lWTzNLj1reD+/1AW+I3FxgsHMuC5hF1OtbT6znAdOB44EsYKi/vu4+bca/nqzB89GCqhKo/3dVRKRLUYIlItI2HgdONbMT/V6IFH8ChNyoMheY2Wj/eqbbgWf8YV3RkoBkoBAImdlJeNdS1XgQuNTMjjOzgJkNMrODnHOb8IYS/j8zy/S3DTezusPR6uoBlAEl5s38dmOd7X8AFjnnLscb+jbLX/8UcLIfRyJwPV6C95+mXqi6nHPvOucyGnm829I667EEOM8/N9PYc5jeX4Ar/d4mM7N08yan6AG1E0s83ET9t5lZkp8MngI87a/vAWx3zlX418+d10Q9PfBexyK8hPDXLTjGmHDO/bqx81HfPv7v2/fNrKf/Gk4GrgbeaN/oRUTanxIsEZE24Jxbj9fzcAtecrQeL1mJ/rv7GN5EFJuBFODH9dSz01//FLAD7wP53KjtC/EnvsC7vuVtvu5JuggvQVvh7/sMew5RrM9teNfLlOAlULVTapvZdLxJKq7yV/03MMHMznfOfY7X23UvXi/cqcCpzrmqJtqLl2vwYiwGzgdeqNngnFsEfA+4D+91W8WeE3IMBt5rpO7N/n4b8SakuNI595m/7QfA7Wa2E7gV77w25lG8IYYb8M7jgqYOrAM5A2/46k68Lxzu9R8iIl2a7oMlIhIHZjYPeNw599d4xyLN58+KuBTI8yfzqLv9aLzzmlt3m4iIdA8J8Q5ARESks/B75EY1WVBERLotDREUEelmzGxWAxMWzGp6b+mMzGy/Riaq2C/e8YmIdCUaIigiIiIiIhIj6sESERERERGJkQ51DVbv3r3d0KFD4x2GiIiIiIhIgxYvXrzNOdenvm0dKsEaOnQoixYtincYIiIiIiIiDTKztQ1t0xBBERERERGRGFGCJSIiIiIiEiNKsERERERERGKkQ12DVZ/q6moKCgqoqKiIdyjSAaSkpJCbm0tiYmK8Q5Eu7M1/v8jH60u49tILCQYs3uGIiIhIJ9LhE6yCggJ69OjB0KFDMdMHne7MOUdRUREFBQUMGzYs3uFIF3bsfy7iWOCjr45nwvCB8Q5HREREOpEOP0SwoqKCnJwcJVeCmZGTk6PeTGlT0TdfL10yN46RiIiISGfU4RMsQMmV1NLvgrS1svKvE/hQ4ZdxjEREREQ6o06RYImItJeSwo21z1N2NniLCxEREZF6KcFqBjPj+uuvr12+6667mDlzZvwCinL00Uc3enPm008/nSlTpuyxbubMmQwaNIjx48czduxY5s7VMCiRGjuLNtQ+zy5fH8dIREREpDNSgtUMycnJPPfcc2zbti2m9TrniEQiMa0zWnFxMYsXL6akpIQ1a9bsse26665jyZIlPP3001x22WVtGodIZxIq9hKsrxL2p3940x7XZImIiIg0RQlWMyQkJHDFFVdw991377WtsLCQM888k0mTJjFp0iTee+89wOsluuuuu2rLjR07lvz8fPLz8znwwAO56KKLGDt2LOvXr+fGG29k7NixjBs3jjlz5gAwb948jj76aM466ywOOuggzj///AY/6D322GO1vVELFy6sXf/cc89x6qmncs455/Dkk0/Wu++oUaNISEjYI3m8+eabGT16NHl5edxwww0A5Ofnc+yxx5KXl8dxxx3HunXrALjkkku46qqrmDJlCvvvvz/z5s3jsssuY9SoUVxyySW1dV511VVMnDiRMWPG8Mtf/nKvOEpKShgyZEhtordr1y4GDx5MdXV1vXGLtJld3ntha48x9LYSthXvjHNAIiIi0pl0+Gnao932j+Ws2Fga0zpHD8zkl6eOabLc1VdfTV5eHjfddNMe66+55hquu+46pk6dyrp16zjxxBNZuXJlo3V9+eWXPPLII0yZMoVnn32WJUuWsHTpUrZt28akSZP45je/CcDHH3/M8uXLGThwIEcccQTvvfceU6dO3au+3bt3s2TJEt555x0uu+wyPv30UwBmz57NrbfeSr9+/TjzzDO55ZZb9tr3gw8+IBAI0KdPHwCKiop4/vnn+eyzzzAziouLAfjRj37ExRdfzMUXX8xDDz3Ej3/8Y1544QUAduzYwfvvv8/cuXM57bTTeO+99/jrX//KpEmTWLJkCePHj+eOO+6gV69ehMNhjjvuOJYtW0ZeXl5tHFlZWYwfP563336bY445hn/+85+ceOKJut+VtLtIVTkA4eyhsAN2bF1Pn55N/40QERERAfVgNVtmZiYXXXQR99xzzx7rX3/9dX74wx8yfvx4TjvtNEpLSykrK2u0riFDhtReFzV//nzOPfdcgsEg/fr146ijjuLDDz8EYPLkyeTm5hIIBBg/fjz5+fn11nfuuecC8M1vfpPS0lKKi4vZsmULX375JVOnTmXkyJEkJibWJl4Ad999N+PHj+eGG25gzpw5tbPzZWVlkZKSwne/+12ee+450tLSAHj//fc577zzALjwwguZP39+bV2nnnoqZsa4cePo168f48aNIxAIMGbMmNqYn3rqKSZMmMAhhxzC8uXLWbFixV7HMWPGjNoevCeffJIZM2Y0+jqKtIVIdSUASX32B2DntoJ4hiMiIiKdTKfqwWpOT1Nbuvbaa5kwYQKXXnpp7bpIJMKCBQtISUnZo2xCQsIe1zVF37spPT29We0lJyfXPg8Gg4RCoXrL1Z263Mx46qmn2LFjR+0NeUtLS5k9ezZ33HEH4F2DVTP8r27cCxcu5I033uCZZ57hvvvu480332xWnIFAYI+YA4EAoVCIr776irvuuosPP/yQnj17cskll9R7L6vTTjuNW265he3bt7N48WKOPfbYRtsVaQuu2uvByhpwAAAVUZNeiIiIiDSl1T1YZjbYzN4ysxVmttzMrvHX9zKz18zsS/9nz9aHG1+9evXi7LPP5sEHH6xdd8IJJ3DvvffWLi9ZsgSAoUOH8tFHHwHw0Ucf8dVXX9Vb55FHHsmcOXMIh8MUFhbyzjvvMHny5BbFVdPrM3/+fLKyssjKymL27Nm8+uqrtdd9LV68uMHrsKKVlZVRUlLCt771Le6++26WLl0KwDe+8Y3a/Z944gmOPPLIZsdXWlpKeno6WVlZbNmyhVdeeaXechkZGUyaNIlrrrmGU045hWAw2Ow2RGIlEqok5AL0zR0OQKhkYxN7iIiIiHwtFkMEQ8D1zrnRwBTgajMbDdwMvOGcGwG84S93etdff/0eE0Lcc889LFq0iLy8PEaPHs2sWbMAOPPMM9m+fTtjxozhvvvuY+TIkfXWd8YZZ5CXl8fBBx/Msccey5133kn//v1bFFNKSgqHHHIIV155JQ8++CD5+fmsXbt2j+nZhw0bRlZWFh988EG9dXzrW99i48aN7Ny5k1NOOYW8vDymTp3K7373OwDuvfde/va3v5GXl8djjz3GH/7wh2bHd/DBB3PIIYdw0EEHcd5553HEEUfUbrv11lv3mCZ+xowZPP744xoeKPFTXUElifTo1Z9qglC2Jd4RiYiISCdisZ6C2MxeBO7zH0c75zaZ2QBgnnPuwMb2nThxoqt7T6eVK1cyatSomMYonZt+J6QtLfrTdxm+5V/0vK2ArbcNZ1XGoXzj+qfiHZaIiIh0IGa22Dk3sb5tMZ3kwsyGAocAHwD9nHOb/E2bgX4N7HOFmS0ys0WFhYWxDEdEpMUsXEmVebNX7kzoRUplbO9/JyIiIl1bzBIsM8sAngWudc7tMZe687rJ6u0qc8494Jyb6JybWDNVuIhI3IQqqSIJgN3JfcmsVoIlIiIizReTBMvMEvGSqyecc8/5q7f4QwPxf26NRVsiIm0pEK4kZF6CVZ3Wh16R7Q3e5FtERESkrljMImjAg8BK59zvojbNBS72n18MvNjatkRE2logUkko4A0RdBkD6GU7Kd65K85RiYiISGcRix6sI4ALgWPNbIn/+BbwG+C/zOxL4Hh/WUSkQwtG9WAlZHkzem7fopsNi4iISPO0+kbDzrn5gDWw+bjW1i8i0p6CkSrCAe+G2Sk9BwJQtm09jDgonmGJiIhIJxHTWQS7shdeeAEz47PPPmuwTH5+PmPHjo1Zm5dccgnPPPNMg9uvvfZaBg0aRCQSqV338MMP06dPH8aPH8/o0aP5y1/+ErN4RLqDhEgV4aDXg5XROxeA3dt1s2ERERFpHiVYzTR79mymTp3K7Nmz690eCoVa3UY4HG522UgkwvPPP8/gwYN5++2399g2Y8YMlixZwrx587jlllvYskU3ShVprgT3dQ9Wdl8vwaou2RzPkERERKQTUYLVDGVlZcyfP58HH3yQJ598snb9vHnzOPLIIznttNMYPXo04CVa559/PqNGjeKss85i9+7dALzxxhsccsghjBs3jssuu4zKykoAhg4dyk9+8hMmTJjA008/vVfbr7/+OhMnTmTkyJH885//3KPtMWPGcNVVVzWY9PXt25fhw4ezdu3a2nX33HMPo0ePJi8vj3POOQeA7du3c/rpp5OXl8eUKVNYtmwZADNnzuTiiy/myCOPZMiQITz33HPcdNNNjBs3jmnTplFdXQ3A7bffzqRJkxg7dixXXHHFXjOuRSIRhg4dSnFxce26ESNGKPGTDinRVRHxE6z0ngOIOMPt1O+qiIiINE+rr8FqV6/cDJs/iW2d/cfBSY3Pv/Hiiy8ybdo0Ro4cSU5ODosXL+bQQw8F4KOPPuLTTz9l2LBh5Ofn8/nnn/Pggw9yxBFHcNlll/GnP/2JH/7wh1xyySW88cYbjBw5kosuuog///nPXHvttQDk5OTw0Ucf1dt2fn4+CxcuZPXq1RxzzDGsWrWKlJQUZs+ezbnnnsv06dO55ZZbqK6uJjExcY9916xZw5o1azjggANq1/3mN7/hq6++Ijk5uTbh+eUvf8khhxzCCy+8wJtvvslFF13EkiVLAFi9ejVvvfUWK1as4PDDD+fZZ5/lzjvv5IwzzuCll17i9NNP54c//CG33norABdeeCH//Oc/OfXUU2vbDAQCTJ8+neeff55LL72UDz74gCFDhtCvX733nhaJq0RXRcQfIkgwgWLLJLhbd5kQERGR5lEPVjPMnj27trfnnHPO2aPHaPLkyQwbNqx2efDgwRxxxBEAXHDBBcyfP5/PP/+cYcOGMXLkSAAuvvhi3nnnndp9ZsyY0WDbZ599NoFAgBEjRrD//vvz2WefUVVVxcsvv8zpp59OZmYmhx12GP/6179q95kzZw7jx4/n3HPP5f7776dXr1612/Ly8jj//PN5/PHHSUjw8uv58+dz4YUXAnDsscdSVFREaal3r+iTTjqJxMRExo0bRzgcZtq0aQCMGzeO/Px8AN566y0OO+wwxo0bx5tvvsny5cv3Oo4ZM2YwZ84cAJ588slGj1kknpKoJhJMrl0uTehFckVhHCMSERGRzqRz9WA10dPUFrZv386bb77JJ598gpkRDocxM377298CkJ6evkd577ZgDS/Xp24dTdX3r3/9i+LiYsaNGwfA7t27SU1N5ZRTTgG8ZOa+++6rt76XXnqJd955h3/84x/ccccdfPJJ4z2CycneB81AIEBiYmJtPIFAgFAoREVFBT/4wQ9YtGgRgwcPZubMmVRUVOxVz+GHH86qVasoLCzkhRde4Oc//3mj7YrES5KrwgVTapd3J+WQUVEUx4hERESkM1EPVhOeeeYZLrzwQtauXUt+fj7r169n2LBhvPvuu/WWX7duHe+//z4Af//735k6dSoHHngg+fn5rFq1CoDHHnuMo446qlntP/3000QiEVavXs2aNWs48MADmT17Nn/961/Jz88nPz+fr776itdee632eq+GRCIR1q9fzzHHHMP//d//UVJSQllZGUceeSRPPPEE4F3b1bt3bzIzM5sVX00y1bt3b8rKyhqc9dDMOOOMM/jv//5vRo0aRU5OTrPqF2lvSVTjEr7uwapK6Ut2eHscIxIREZHORAlWE2bPns0ZZ5yxx7ozzzyzwYklDjzwQP74xz8yatQoduzYwVVXXUVKSgp/+9vf+M53vsO4ceMIBAJceeWVzWp/v/32Y/LkyZx00knMmjWLSCTCq6++ysknn1xbJj09nalTp/KPf/yj3jouv/xyFi1aRDgc5oILLmDcuHEccsgh/PjHPyY7O5uZM2eyePFi8vLyuPnmm3nkkUea+epAdnY23/ve9xg7diwnnngikyZNqt02a9YsZs2aVbs8Y8YMHn/8cQ0PlA4rEqom0cIQlWCF0/uQQzHlla2fKVRERES6Pqs741s8TZw40S1atGiPdStXrmTUqFFxikg6Iv1OSFup2FVKym8H85/9r+EbF90OwJKnfs34Ff9HweXLyc3NjXOEIiIi0hGY2WLn3MT6tqkHS0TEV1VZ7j2J6sFK6jkQgOLCgniEJCIiIp2MEiwREV91hZdgWcLXk1yk9RwAwK7tG+MSk4iIiHQubZ5gmdk0M/vczFaZ2c37UkdHGsYo8aXfBWlLVZXeRDGBxK8TrMy+g71tO5RgiYiISNPaNMEysyDwR+AkYDRwrpmNbkkdKSkpFBUV6YO14JyjqKiIlJSUpguL7IOQP0TQohKs7D6DAAjv3ByXmERERKRzaev7YE0GVjnn1gCY2ZPAdGBFcyvIzc2loKCAwkLd6FO8hFsTDUhbCVV7CVYwKsEKpGRSQRJWtjVeYYmIiEgn0tYJ1iBgfdRyAXBYdAEzuwK4ArwpyetKTExk2LBhbRiiiIinpgcrkJT69UozdgR6kViuL3lERESkaXGf5MI594BzbqJzbmKfPn3iHY6IdGPhKu/G2YGkPYehliXmkFa1LR4hiYiISCfT1gnWBmBw1HKuv05EpMOpSbASonuwgMrk3vQIbY9HSCIiItLJtHWC9SEwwsyGmVkScA4wt43bFBHZJ5Gaa7DqJFihtL7kuB2EwpF4hCUiIiKdSJsmWM65EPBD4F/ASuAp59zytmxTRGRf1fZgJe+ZYNGjH9m2i+0lpXGISkRERDqTtp7kAufcy8DLbd2OiEhruVDNEME9r8EKZg0EYMeW9fTtld3eYYmIiEgnEvdJLkREOopIVSUASXV6sFJyvEtJywrXtntMIiIi0rkowRIR8dX0YCWmpO2xvkcfL8Gq2l7Q7jGJiIhI56IES0TEV5NgJSXvmWBl9x8KQLhEk6CKiIhI45RgiYjUCFUQdkZyUtIeq1MyelJGKsGdm+IUmIiIiHQWSrBERHwWqqSSJJISgnttKwr0Jql8cxyiEhERkc5ECZaISI1wJZUkEgjYXpt2JvUhvXJrHIISERGRzkQJloiIz0KVVJFY77aK1P70DBW2c0QiIiLS2SjBEhHxBcPlVFlSvdsiGQPp7XZQUVnZzlGJiIhIZ6IES0TEFwyVU2kp9W/rOYigOQo3rWvnqERERKQzUYIlIuILhhtOsFL9mw3v2JzfjhGJiIhIZ6MES0TElxgupzpYf4KV2W8oALsK1YMlIiIiDWtVgmVmvzWzz8xsmZk9b2bZUdt+amarzOxzMzux1ZGKiLSxhHAFoUD9CVbvgcMAqN5R0J4hiYiISCfT2h6s14Cxzrk84AvgpwBmNho4BxgDTAP+ZGZ731hGRKQDSYqUEwqm1rstpUcO5SRB6cZ2jkpEREQ6k1YlWM65fzvnQv7iAiDXfz4deNI5V+mc+wpYBUxuTVsiIm0tyVUSCqbVv9GM7YHeJO/WzYZFRESkYbG8Busy4BX/+SBgfdS2An/dXszsCjNbZGaLCgt1jxkRiZ9kV0Ekof4eLIDSpL6kV25px4hERESks2kywTKz183s03oe06PK/AwIAU+0NADn3APOuYnOuYl9+vRp6e4iIjGTSiUuseEEqzK1Pz3D29oxIhEREelsEpoq4Jw7vrHtZnYJcApwnHPO+as3AIOjiuX660REOqZwNYmEcIkNDBEEwj0G0nf7a5SVV5KRmtyOwYmIiEhn0dpZBKcBNwGnOed2R22aC5xjZslmNgwYASxsTVsiIm0pUlnmPUlMb7BMsOdgEi3M1o1r2ykqERER6Wxaew3WfUAP4DUzW2JmswCcc8uBp4AVwKvA1c65cCvbEhFpM5XlXoJlyQ33YKX2HgpAyeav2iMkERER6YSaHCLYGOfcAY1suwO4ozX1i4i0l/LdZaQCgaSGE6ysAd69sHYXqgdLRERE6hfLWQRFRDqtqt07AQgkNTxEMMe/2XB4x7p2iUlEREQ6HyVYIiJA+S4vwUpKzWiwTGJaNjtJw0oL2issERER6WSUYImIAJVl2wFIzujVaLntCX1JLd/UHiGJiIhIJ6QES0QEqPYTrJTMnEbL7UzuT6ZuNiwiIiINUIIlIgKEd+0AIC2zd6PlqtIH0SdSSCTiGi0nIiIi3ZMSLBERwO32erAyshvvwSI7l55WRuGO7e0QlYiIiHQ2SrBERAAqiil1afRIS2m0WHKv/QDYtmFNe0QlIiIinYwSLBERIFBZTCkZBAPWaLmMfkMB2Lklv+2DEhERkU5HCZaICJBQWUJZoEeT5XoNHA5A5TbdbFhERET2pgRLRARIqi6hIqHpBKtH78GEMVzJ+naISkRERDobJVgiIkBqqITqpOymCwYTKLIcEss2tnlMIiIi0vnEJMEys+vNzJlZb3/ZzOweM1tlZsvMbEIs2hERaSs9I9upSu3TrLIlSf3IqNjcxhGJiIhIZ9TqBMvMBgMnAOuiVp8EjPAfVwB/bm07IiJtJVJeQjoVhNL6N6t8eeoAeoZ0s2ERERHZWyx6sO4GbgKi77o5HXjUeRYA2WY2IAZtiYjE3I7N3oQVgayBzSof7jGIfq6IsoqqtgxLREREOqFWJVhmNh3Y4JxbWmfTICD6CvACf52ISIdT5CdY6X0GN6t8sOdgki3E1k2a6EJERET2lNBUATN7Hahv3MzPgFvwhgfuMzO7Am8YIfvtt19rqhIR2Se7Cr1EqWf/Ic0qn9bHK7d90xr2Hza8zeISERGRzqfJBMs5d3x9681sHDAMWGpmALnAR2Y2GdgARH8VnOuvq6/+B4AHACZOnOjqKyMi0paqtnuXkPYdOKxZ5bMG7A/A7q35bRWSiIiIdFL7PETQOfeJc66vc26oc24o3jDACc65zcBc4CJ/NsEpQIlzblNsQhYRia2EkrVspSfpGU3fBwug1wCv1yq8Q0MERUREZE9N9mDto5eBbwGrgN3ApW3UjohIq/XYvZYtCYPo28zywbRsdpNCoLTejnkRERHpxmKWYPm9WDXPHXB1rOoWEWlLOZUb+DLrG83fwYyihL6k7NbNhkVERGRPMbnRsIhIZ1WyYzs5FGM5+7dov7Lk/mRV6V5YIiIisiclWCLSrRV88REAaYPGtGi/qvRB9IkUEo5obh4RERH5mhIsEenWStcuAaDfiAkt2zErlxwrZcv2HbEPSkRERDotJVgi0r1tWcEuUuiTO6JFuyXlePft27ZhTVtEJSIiIp2UEiwR6dYySz+nIHEYFgi2aL8efb2bDZdtXdsWYYmIiEgnpQRLRLotF4mQW/UVpZkjW7xv9kBvUoyqIiVYIiIi8jUlWCLSbW1av4Ys2wX9WjbBBUBG7/2IOIOSgjaITERERDorJVgi0m1tWeXNIJg55OCW75yQzPZAT5LKdLNhERER+ZoSLBHptsoLlgIw6KBJ+7R/SWIfUiu2xjIkERER6eSUYIlIt5W0bQWbrQ8ZWTn7tP/u5L5khQpjHJWIiIh0ZkqwRKTbytm1ii0pw/d5/1D6APpEthEKR2IYlYiIiHRmSrBEpFuqrNjN4HABu3uN2uc6LGsQPaycbduLYhiZiIiIdGatTrDM7Edm9pmZLTezO6PW/9TMVpnZ52Z2YmvbERGJpYIvlpBgERIHjtvnOhJ75QJQtCk/RlGJiIhIZ5fQmp3N7BhgOnCwc67SzPr660cD5wBjgIHA62Y20jkXbm3AIiKxUPyVN4Ng7+ET9rmOjD77AbBz6zpg3ybKEBERka6ltT1YVwG/cc5VAjjnaqbTmg486ZyrdM59BawCJreyLRGRmAlt+pQKl8ig4WP3uY6e/YcBUFm0PlZhiYiISCfX2gRrJHCkmX1gZm+bWc1XuIOA6E8cBf66vZjZFWa2yMwWFRZqNi4RaR8ZxZ+zLmEIiYmJ+1xHjz7eEEFXonthiYiIiKfJIYJm9jrQv55NP/P37wVMwRsf85SZ7d+SAJxzDwAPAEycONG1ZF8RkX01oGI1X2Qd0ao6LDGVHZZFcNemGEUlIiIinV2TCZZz7viGtpnZVcBzzjkHLDSzCNAb2AAMjiqa668TEYm7ndsK6EUJ1X1Gt7qu4oQ+pJZviUFUIiIi0hW0dojgC8AxAGY2EkgCtgFzgXPMLNnMhgEjgIWtbKvdhaoqCVVXxzsMEYmxDauWAZCRO6bVde1K7ktW9damC4qIiEi30NoE6yFgfzP7FHgSuNh5lgNPASuAV4GrO+MMgoue/g3r/3ciS+c9i4voRqIiXUXpxi8B6Lvfvt8Dq0ZFjyHkRjYSDne6P3EiIiLSBlqVYDnnqpxzFzjnxjrnJjjn3ozadodzbrhz7kDn3CutD7X9pfQdQZIr5+B5l/HVr8bzwVP/R3GRJuIQ6ezCRWsIuQD9Bg9vfWW9DyTVqti4dlXr6xIREZFOr1X3werqxv/XeVQdeQYfvXI/PT59lMNW/Jqq5f/HJ6njKRt6AoPG/xeDR47HAsF4h9omXCRCKBwiHKomVF1FOBQiHKoiEqomHKomHA4RCVURCVcTDocJRxw4BzhcxAERXMThcOAiOOdtdzVlnINIGAf++oi//76wFhStv2zDLbeg7kbqb4hzzS/f4leniVhaPatMC481+rVs+lS38HVsQSyp2z5lS6APgxKTWtRGfbL3GwOfwJY1Sxm8/4Gtrk/2jQuHqKysoLKqinB1JZFQNSH/71UkVEkkVEU4VE0kVI0LVROJVBOJOMLhCJFIhEgkXPu3Cby/VVb7HMBhNX/HWsKs9jfZon+n9/p1tXrfTjXromuhdl095f21zqL33Xv71yst+ukeJaPbb6hcbVT17NsU19z3eLPf2zEu1+K/b41r/t+oeB1HM89bzI+judXF53Vp9u9p3H6fu4dQSi+GDD+ItKTOkbp0jijjKCkllQlnXIub/mNWL5vP1gVPMnjLm4z77H/hs/+llDS+Sh5FRfYIrPcBJPUdQXbfwfTuN4j07D6tTr5cOERV5S4qy8upqthFVUU5VZW7CFWUE6rcTahyN+Gq3YSrKghX7cZVV+Cqy6G6HEIVWKgcC1VioQoCkUqC4QoSwpUEI5UkRipJdN4jyVWTQDVBFyGBEEEiJFqYRGDfJ7EW6biWph5W/70jWmjgAXkAlBd8ApzdZPltG9aQ0asfKanpMWi9cwtV7qZ4xzZ27iiifGcRVWXbCe0uJry7GMqLoaKEQFUpgepdBELlBMMVJIbLSXSVJEcqSHYVpFBJiqskyUKkAClxPiYREYm9x0PHUfn9hxg/ODveoTSLEqxmskCA4eO/yfDx3wTn2LBmOeuXvkWgYCG9Sz5h5ObnSN1SBcu/3ifkApRaOlUkEwokUWVJVJMEBgG8b0fN/1YUFyHoQiS5SpKoJtlVkUwViRYmGUjeh5irXJAqkqi0JKpIosqSqQ4kUW3JVAeSKU/MJBJMIhxMwQVTcMFECCZCIGGPhwskYMGa5UQskADBRCwYxIIJWCCRQCCAWcD7ttZqvjoN1D43M5wZAfNHpZphFqz9dteZYeaXb/G3Ns3/RtmaLFu37ZZ9W910/XWr/7p8877U2vf6G2P7VHfLije0Q4PH3eLezJb9Hux/0OEtrL9+aT37s94Gkrn5/QbLuEiE5e+/Smj+7xlf/gELB13M5O/dE5P2O5rq6iqKNn5FyeavKNu+iaqSLVBWSKC8kKSKIlKrtpMR2kG2KyaDcnrjTT1bnwqXSJmlUWGpVAVSCAVSqAqmUhnMpiSYSjiYQjghDZeQCokpWEIygWAilpDo/a2q+ZsWTMKCXy8HgolYMIFgIEAgECAQDBCwAIFAzd+fmr9h5n9bb1DztwuDQDP/RjlX+2sZ/dvp/CX39YqoX/e9f4+/3uRqn9fXkxZdh6uv4b3KRcVSbzlXp9Se9dXXhnPN/FvW7Pd3c/+GNbO+uLXbzGabXbCZ8cX4eJtdrkX/e9q/3Y7+eyV7OyBtIMNyOs8Xk0qw9oUZg4aPZdDwsbWrwuEwWzetZUfBZ5QVbaSieAuB3dsIVhbX9iQlRCpJdFU4jIgDR4AIXvJhgQCRQBKRYLKf8CQTSUiBYDIkpkJCMoHEVCwxhWBSGsHkVIJJqSQkp5HoP5JSa36mk5KaRlJiEklmZMTvlRLpFjb3PpwxW//Jrp0lpPfIql1fsauUFf9+iMxPH2VseDU7yGSryyZz2+I4RrvvnHNsLS1nU0E+pZu+pGrbWqxkLck7C8is3EhO9Wb6uW30t8geN0+MOKPEelAcyGZXQi82p49iXUoOLq03wfReJGX0JDG9J0kZPUnpkUN6Zi/Ss3JISU0jJcbDtERERNqaEqwYCQaD9M3dn765LbrPsoh0AT0mn0/aS8/y4eM3cNC3f8r6zxaze+kLjNz+JhPYzZrAED4c+wvGfetKPv3LD5mw4xVcJNwhr98srwyxceN6igq+ZNeWNYS3f0VCaQEZ5RvICW1iINvoZ6E99imyXmxP7M/WrIMp6DEY67kfSTn7kdV7EFl9BpKVM4CeCYn0jNMxiYiItCclWCIirXTQpON4/71TOHzLU/DnpxgNlLlUPss6guTDv8eYySewf9AbYpa83wTSdzzPqk8XckBebIYptkQk4igs3Erh+i8o3byaqm1fESxZS+quDfSs2kR/t5XhVkn0/IollsmOpAGUZ45iVdYQEnsPpUf/4WQPPIDUPsPISUwlp92PREREpGOyFs+I1IYmTpzoFi1aFO8wRERaLBKO8OEbT1NZtJaM/gdw0GEnkJa29wDdHYUbSbsvjyW9pnHYNY+3SSy7y0rYvO4LijesoqJwDexYR3LZejIrN9I3vJUs27VH+V2ksi2hP2WpgwhlDibQayjp/YaTkzuCzP77YymZbRKniIhIZ2Vmi51zE+vbph4sEZEYCAQDHHbCjCbL9ewzkIV9pzNp67Mse2M2eced26J2XCRCyfatbN+4mrKta6jcthZXvJ7Esg30qNhETmgrPSklerByhUtka7A/pSkDWJUxAXoOIaXPMHoOHEHvwSNJz+hFuq51EhERiQn1YImItLPyshIK7j6GEeHVfJJxBNXDjiO510BITMNVVxAq30nl7lJc2TYCu7eSWF5ISuU2Mqq30ytSRLpV7lmfS2JroC8lSf0pTxuAy9qPxN7DyOy/P30GjySrzyAs0Kr7youIiEgU9WCJiHQgqRlZ9Pvx67zz5K8Yu/Epen3yXoNlS1w6xYFsyhJ6sTXjQDal9SOSlUtir/1I6zuMXgOH06fPAIYElUCJiIh0BOrBEhGJo1AozIa1X7Jzxxao2k0gKYWk1Ewys3qSmaMbEouIiHREbdaDZWbjgVlAChACfuCcW2je3WL/AHwL2A1c4pz7qDVtiYh0RQkJQYYMPwg4KN6hiIiISAy0dkzJncBtzrnxwK3+MsBJwAj/cQXw51a2IyIiIiIi0uG1NsFyQM38vVnARv/5dOBR51kAZJvZgFa2JSIiIiIi0qG1dpKLa4F/mdldeMnaN/z1g4D1UeUK/HWb6lZgZlfg9XKx3377tTIcERERERGR+GkywTKz14H+9Wz6GXAccJ1z7lkzOxt4EDi+JQE45x4AHvDbKjSztS3Zvx30BrbFOwhpNzrf3YfOdfehc9296Hx3HzrX3UdHPNdDGtrQqlkEzawEyHbOOX9iixLnXKaZ3Q/Mc87N9st9DhztnNurB6ujM7NFDc0QIl2Pznf3oXPdfehcdy86392HznX30dnOdWuvwdoIHOU/Pxb40n8+F7jIPFPwEq9Ol1yJiIiIiIi0RGuvwfoe8AczSwAq8K+lAl7Gm6J9Fd407Ze2sh0REREREZEOr1UJlnNuPnBoPesdcHVr6u5AHoh3ANKudL67D53r7kPnunvR+e4+dK67j051rlt1DZaIiIiIiIh8rbXXYImIiIiIiIhPCZaIiIiIiEiMKMFqhJlNM7PPzWyVmd0c73gkdsxssJm9ZWYrzGy5mV3jr+9lZq+Z2Zf+z57xjlViw8yCZvaxmf3TXx5mZh/47+85ZpYU7xglNsws28yeMbPPzGylmR2u93bXZGbX+X/DPzWz2WaWovd212FmD5nZVjP7NGpdve9lf+bqe/zzvszMJsQvcmmpBs71b/2/48vM7Hkzy47a9lP/XH9uZifGJehGKMFqgJkFgT8CJwGjgXPNbHR8o5IYCgHXO+dGA1OAq/3zezPwhnNuBPCGvyxdwzXAyqjl/wPuds4dAOwAvhuXqKQt/AF41Tl3EHAw3nnXe7uLMbNBwI+Bic65sUAQOAe9t7uSh4FpddY19F4+CRjhP64A/txOMUpsPMze5/o1YKxzLg/4AvgpgP957RxgjL/Pn/zP7R2GEqyGTQZWOefWOOeqgCeB6XGOSWLEObfJOfeR/3wn3gewQXjn+BG/2CPA6XEJUGLKzHKBk4G/+suGd+++Z/wiOtddhJllAd8EHgRwzlU554rRe7urSgBS/dvFpAGb0Hu7y3DOvQNsr7O6offydOBR51kAZJvZgHYJVFqtvnPtnPu3cy7kLy4Acv3n04EnnXOVzrmv8G4LNbndgm0GJVgNGwSsj1ou8NdJF2NmQ4FDgA+AflE3xd4M9ItXXBJTvwduAiL+cg5QHPWHW+/vrmMYUAj8zR8S+lczS0fv7S7HObcBuAtYh5dYlQCL0Xu7q2vovazPbV3bZcAr/vMOf66VYEm3ZmYZwLPAtc650uht/v3cdB+DTs7MTgG2OucWxzsWaRcJwATgz865Q4Bd1BkOqPd21+BfezMdL6keCKSz9xAj6cL0Xu4ezOxneJd2PBHvWJpLCVbDNgCDo5Zz/XXSRZhZIl5y9YRz7jl/9ZaaIQX+z63xik9i5gjgNDPLxxvqeyzeNTrZ/rAi0Pu7KykACpxzH/jLz+AlXHpvdz3HA1855wqdc9XAc3jvd723u7aG3sv63NYFmdklwCnA+e7rm/d2+HOtBKthHwIj/NmIkvAuppsb55gkRvxrcB4EVjrnfhe1aS5wsf/8YuDF9o5NYss591PnXK5zbije+/hN59z5wFvAWX4xnesuwjm3GVhvZgf6q44DVqD3dle0DphiZmn+3/Sac633dtfW0Ht5LnCRP5vgFKAkaiihdEJmNg1veP9pzrndUZvmAueYWbKZDcOb2GRhPGJsiH2dDEpdZvYtvGs3gsBDzrk74huRxIqZTQXeBT7h6+tybsG7DuspYD9gLXC2c67uBbbSSZnZ0cANzrlTzGx/vB6tXsDHwAXOuco4hicxYmbj8SY0SQLWAJfifaGo93YXY2a3ATPwhg99DFyOdy2G3ttdgJnNBo4GegNbgF8CL1DPe9lPsu/DGya6G7jUObcoDmHLPmjgXP8USAaK/GILnHNX+uV/hnddVgjvMo9X6tYZT0qwREREREREYkRDBEVERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLRKSDMbOhZubMLCHesUj3YGbLzezoeMchItIVKMESEZFOz8xmmVmZ/6gys+qo5VfiHV9H55wb45ybF8s6zexOM1tvZqVmttbMboll/SIiHZU55+Idg4hIl2JmCc65UCv2Hwp8BSS2pp7uysxmAgc45y6oZ1urzk176kyx1sfMDgQKnHO7zGwQ8G/gF8655+IcmohIm1IPlohIDJhZvpn9xMyWAbvMLMHMppjZf8ys2MyWRg/BMrN5Zva/ZrbQ/4b/RTPr1UDdl5rZSjPbaWZrzOz7dbZPN7Mlfj2rzWyavz7LzB40s01mtsHMfmVmwSaOY7iZvWlmRWa2zcyeMLPsqG3bzWyCvzzQzAprjsvMTvOHmhX7xzeqzutzg5ktM7MSM5tjZiktf6VbroFz48zsgKgyD5vZr6KWT/Ff02L/HOY1s62jzazAzG7xX798Mzs/avvJZvaxf67W+8lgzbaaoaHfNbN1wJv++qfNbLP/ur1jZmPqxP0nM3vF7617z8z6m9nvzWyHmX1mZoc08zU6vjnH2FzOuc+dc7uiVkWAAxoqLyLSVSjBEhGJnXOBk4FsoB/wEvAroBdwA/CsmfWJKn8RcBkwAAgB9zRQ71bgFCATuBS4OyrJmQw8Ctzot/tNIN/f72G/3gOAQ4ATgMubOAYD/hcYCIwCBgMzAZxzq4GfAI+bWRrwN+AR59w8MxsJzAauBfoALwP/MLOkqLrPBqYBw4A84JJ6AzCb6ic2DT2mNnEM9ak9N031CvkJyUPA94Ec4H5grpklN7Ot/kBvYBBwMfCA35sDsAvvvGf78VxlZqfX2f8ovNf+RH/5FWAE0Bf4CHiiTvmzgZ/7bVYC7/vlegPPAL9rZtz1MrObGzsfzdi3DCgA0oG/tyYWEZHOQAmWiEjs3OOcW++cKwcuAF52zr3snIs4514DFgHfiir/mHPuU/9b/l8AZ9fXw+Sce8k5t9p53sYbanWkv/m7wEPOudf8djY45z4zs35+W9c653Y557YCdwPnNHYAzrlVfl2VzrlCvA/nR0Vt/wuwCvgALzH8mb9pBvCSv281cBeQCnyjzuuz0Tm3HfgHML6BGOY757Ibecxv7BgaEH1umnIFcL9z7gPnXNg59whe4jKlBe39wn8N38ZLtM8GcM7Nc8594p+rZXhJ6VF19p3pn7Nyf5+HnHM7nXOVeMnuwWaWFVX+eefcYudcBfA8UOGce9Q5Fwbm4CXX+8w595vGzkdT+wI9gAnAY0BJa2IREekMlGCJiMTO+qjnQ4Dv1PmmfypeUlJf+bVAIl6vwx7M7CQzW+APzyvGS5xqyg0GVtcTyxC/vk1R7d+P1wvSIDPrZ2ZP+kMKS4HH64npL8BY4F7/Qz94PV5rawo45yL+8Q2K2m9z1PPdQEZjscTY+qaL1BoCXF/n3A3GO8bm2FFnaNzamn3N7DAze8sfWlkCXMner29trGYWNLPfmDf0s5Sveyej99kS9by8nuX2fJ334n8x8LEfy23xjEVEpD0owRIRiZ3oWYPW4/VQRX/bn+5/o19jcNTz/YBqYFt0hf6wtGfxeoT6+T0GL+MN5atpZ3g9sazH63XpHdV+pnNuTD1lo/3aP45xzrlMvJ64mrYwswzg98CDwEz7+rqxjXiJSU05849vQxPt7cXMjrSvZwCs73Fk07Xspe6MTruBtKjl/lHP1wN31Dl3ac652c1sq6eZpUct74f3+oA3RG4uMNg5lwXMIur1rSfW84DpwPFAFjDUX193nzbjX0/W4PloQVUJ1P+7KiLSpSjBEhFpG48Dp5rZiX4vRIo/AUJuVJkLzGy0fz3T7cAz/rCuaElAMlAIhMzsJLxrqWo8CFxqZseZWcDMBpnZQc65TXhDCf+fmWX624abWd3haHX1AMqAEvNmfruxzvY/AIucc5fjDX2b5a9/CjjZjyMRuB4vwftPUy9UXc65d51zGY083m1pnfVYApznn5tp7DlM7y/AlX5vk5lZunmTU/SA2oklHm6i/tvMLMlPBk8BnvbX9wC2O+cq/Ovnzmuinh54r2MRXkL46xYcY0w4537d2Pmobx//9+37ZtbTfw0nA1cDb7Rv9CIi7U8JlohIG3DOrcfrebgFLzlaj5esRP/dfQxvIorNQArw43rq2emvfwrYgfeBfG7U9oX4E1/gXd/yNl/3JF2El6Ct8Pd9hj2HKNbnNrzrZUrwEqjaKbXNbDreJBVX+av+G5hgZuc75z7H6+26F68X7lTgVOdcVRPtxcs1eDEWA+cDL9RscM4tAr4H3If3uq1izwk5BgPvNVL3Zn+/jXgTUlzpnPvM3/YD4HYz2wncindeG/Mo3hDDDXjncUFTB9aBnIE3fHUn3hcO9/oPEZEuTffBEhGJAzObBzzunPtrvGOR5vNnRVwK5PmTedTdfjTeec2tu01ERLqHhHgHICIi0ln4PXKjmiwoIiLdloYIioh0M2Y2q4EJC2Y1vbd0Rma2XyMTVewX7/hERLoSDREUERERERGJEfVgiYiIiIiIxEiHugard+/ebujQofEOQ0REREREpEGLFy/e5pzrU9+2DpVgDR06lEWLFsU7DBERERERkQaZ2dqGtmmIoIiIiIiISIwowRIREREREYkRJVgiIjHw0rJNrC4si3cYIiIiEmcd6hqs+lRXV1NQUEBFRUW8Q5FOJiUlhdzcXBITE+MdinRx64vK6PPMdD5MGcPwW/4W73BEREQkjjp8glVQUECPHj0YOnQoZhbvcKSTcM5RVFREQUEBw4YNi3c40sUVfTSXyYHPmVz1OeHIQwQD+lslIiLSXbV6iKCZDTazt8xshZktN7Nr/PW9zOw1M/vS/9lzX+qvqKggJydHyZW0iJmRk5Ojnk9pF5GtK2qfryssjl8gIiIiEnexuAYrBFzvnBsNTAGuNrPRwM3AG865EcAb/vI+UXIl+0K/N9Jeqst21D7fvm5FIyVFRESkq2t1guWc2+Sc+8h/vhNYCQwCpgOP+MUeAU5vbVsiIh1RsKq09nn5xs/iGImIiIjEW0xnETSzocAhwAdAP+fcJn/TZqBfA/tcYWaLzGxRYWFhLMOJGTPj+uuvr12+6667mDlzZvwCirJgwQIOO+wwxo8fz6hRo2rjmjdvHv/5z39aVfe0adPIzs7mlFNOiUGkIl1XUnUpxWQAULljQ5yjERERkXiKWYJlZhnAs8C1zrnS6G3OOQe4+vZzzj3gnJvonJvYp0+fWIUTU8nJyTz33HNs27YtpvU654hEIq2q4+KLL+aBBx5gyZIlfPrpp5x99tlAbBKsG2+8kccee6xVdYh0B0mhnWwKDCBEELdzc7zDERERkTiKySyCZpaIl1w94Zx7zl+9xcwGOOc2mdkAYGtr27ntH8tZsbG06YItMHpgJr88dUyjZRISErjiiiu4++67ueOOO/bYVlhYyJVXXsm6desA+P3vf88RRxzBzJkzycjI4IYbbgBg7Nix/POf/wTgxBNP5LDDDmPx4sW8/PLL3HfffbzyyiuYGT//+c+ZMWMG8+bNY+bMmfTu3ZtPP/2UQw89lMcff3yv64q2bt3KgAEDAAgGg4wePZr8/HxmzZpFMBjk8ccf59577+Wggw5qMM7Vq1ezatUqtm3bxk033cT3vvc9AI477jjmzZvX6Gvz9NNPc9tttxEMBsnKyuKdd96hoqKCq666ikWLFpGQkMDvfvc7jjnmGB5++GFeeOEFdu3axZdffskNN9xAVVUVjz32GMnJybz88sv06tWLv/zlLzzwwANUVVVxwAEH8Nhjj5GWlrZHu1OmTOHBBx9kzBjv3B199NHcddddTJw4sdF4RdpCSriMwkAmxWSTVN4xe+JFRESkfcRiFkEDHgRWOud+F7VpLnCx//xi4MXWthVPV199NU888QQlJSV7rL/mmmu47rrr+PDDD3n22We5/PLLm6zryy+/5Ac/+AHLly9n0aJFLFmyhKVLl/L6669z4403smmTN7Ly448/5ve//z0rVqxgzZo1vPfee3vVdd1113HggQdyxhlncP/991NRUcHQoUO58sorue6661iyZAlHHnlko3EuW7aMN998k/fff5/bb7+djRs3Nvt1uf322/nXv/7F0qVLmTt3LgB//OMfMTM++eQTZs+ezcUXX1w7m9+nn37Kc889x4cffsjPfvYz0tLS+Pjjjzn88MN59NFHAfj2t7/Nhx9+yNKlSxk1ahQPPvjgXu3OmDGDp556CoBNmzaxadMmJVcSNynhnZQHM9iZ2Jv0KiVYIiIi3VkserCOAC4EPjGzJf66W4DfAE+Z2XeBtcDZrW2oqZ6mtpSZmclFF13EPffcQ2pqau36119/nRUrvp41rLS0lLKyskbrGjJkCFOmTAFg/vz5nHvuuQSDQfr168dRRx3Fhx9+SGZmJpMnTyY3NxeA8ePHk5+fz9SpU/eo69Zbb+X888/n3//+N3//+9+ZPXt2vb1OjcU5ffp0UlNTSU1N5ZhjjmHhwoWcfvrpzXpdjjjiCC655BLOPvtsvv3tb9ce049+9CMADjroIIYMGcIXX3wBwDHHHEOPHj3o0aMHWVlZnHrqqQCMGzeOZcuWAV4S9vOf/5zi4mLKyso48cQT92r37LPP5oQTTuC2227jqaee4qyzzmpWvCJtITVcRmVyDyqCYTJL18U7HBEREYmjVidYzrn5QEPzYR/X2vo7kmuvvZYJEyZw6aWX1q6LRCIsWLCAlJSUPcomJCTscX1V9P2Y0tPTm9VecnJy7fNgMEgoFKq33PDhw7nqqqv43ve+R58+fSgqKtqrTENxwt7TmbdkevNZs2bxwQcf8NJLL3HooYeyePHiRstHH1MgEKhdDgQCtcd3ySWX8MILL3DwwQfz8MMP15swDho0iJycHJYtW8acOXOYNWtWs2MWiSnnyHBlVCX0oDo1iX4lS6gOR0gMxnQOIREREekk9AmgBXr16sXZZ5+9x5C1E044gXvvvbd2ecmSJQAMHTqUjz76CICPPvqIr776qt46jzzySObMmUM4HKawsJB33nmHyZMnNzuml156CW8OEW/oYTAYJDs7mx49erBz584m4wR48cUXqaiooKioiHnz5jFp0qRmt7969WoOO+wwbr/9dvr06cP69es58sgjeeKJJwD44osvWLduHQceeGCz69y5cycDBgygurq6tp76zJgxgzvvvJOSkhLy8vKaXb9ITFXvJkiE6sQeuIz+9LIyikoa78UWERGRrksJVgtdf/31e8wmeM8997Bo0SLy8vIYPXp0bU/KmWeeyfbt2xkzZgz33XcfI0eOrLe+M844g7y8PA4++GCOPfZY7rzzTvr379/seB577DEOPPBAxo8fz4UXXsgTTzxBMBjk1FNP5fnnn2f8+PG8++67DcYJkJeXxzHHHMOUKVP4xS9+wcCBAwEv+fvOd77DG2+8QW5uLv/6178Ab1hizfVWN954I+PGjWPs2LF84xvf4OCDD+YHP/gBkUiEcePGMWPGDB5++OE9eq6a8j//8z8cdthhHHHEERx00EG16+fOncutt95au3zWWWfx5JNP1s6cKBIX1eUAuIRUErO8CWd2bF0fz4hEREQkjqym96MjmDhxolu0aNEe61auXMmoUaPiFFHXV3e2w65Gvz/S5orXw+/H8vzgmzn4oJHs/9plfHjcU0w6cu9rB0VERKRrMLPFzrl6Z1hTD5aISGuEvOsrLTGFjD7epDQVO5o/E6eIiIh0LTG5D5Z0XjNnzox3CCKdmqvejQGBxFSy+wwGIFSyKb5BiYiISNyoB0tEpBWqKnYDEEhKJSmrH2GMQNnmOEclIiIi8aIES0SkFaorvEkuAompEAhSbNkklOtmwyIiIt2VEiwRkVaoqvR6sBJS0gDYGexJcuW2xnYRERGRLkwJlohIK1T7QwQTkrwEqzwph/TqHfEMSUREROJICVYzvfDCC5gZn332WYNl8vPzGTt2bMza/Pzzzzn66KMZP348o0aN4oorrgC8mwS//PLLrar7sssuo2/fvjGNV6Q7CtX0YCWnAlCZ0pvs8PZ4hiQiIiJxpASrmWbPns3UqVOZPXt2vdtDoVCr2wiHw3ss//jHP+a6665jyZIlrFy5kh/96EdAbBKsSy65hFdffbVVdYjI1wlWYrLXg+XS+9CLEsorW/83QURERDqfzjVN+ys3w+ZPYltn/3Fw0m8aLVJWVsb8+fN56623OPXUU7ntttsAmDdvHr/4xS/o2bMnn332Gf/+978JhUKcf/75fPTRR4wZM4ZHH32UtLQ03njjDW644QZCoRCTJk3iz3/+M8nJyQwdOpQZM2bw2muvcdNNN3HOOefUtrtp0yZyc3Nrl8eNG0dVVRW33nor5eXlzJ8/n5/+9Keccsop/OhHP+LTTz+lurqamTNnMn36dB5++GGef/55SkpK2LBhAxdccAG//OUvAfjmN79Jfn5+o8f99ttvc8011wBgZrzzzjtkZGRw00038corr2Bm/PznP2fGjBnMmzePX/7yl2RnZ/PJJ59w9tlnM27cOP7whz9QXl7OCy+8wPDhw/nHP/7Br371K6qqqsjJyeGJJ56gX79+e7R7zjnncOGFF3LyyScDXjJ4yimncNZZZzXvnIq0o3CVN8lFkn8NlvXoR7KFKNheSO6AAfEMTUREROJAPVjN8OKLLzJt2jRGjhxJTk4Oixcvrt320Ucf8Yc//IEvvvgC8Ib1/eAHP2DlypVkZmbypz/9iYqKCi655BLmzJnDJ598QigU4s9//nNtHTk5OXz00Ud7JFcA1113HcceeywnnXQSd999N8XFxSQlJXH77bczY8YMlixZwowZM7jjjjs49thjWbhwIW+99RY33ngju3btAmDhwoU8++yzLFu2jKeffppFixY1+7jvuusu/vjHP7JkyRLeffddUlNTee6551iyZAlLly7l9ddf58Ybb2TTJu+eP0uXLmXWrFmsXLmSxx57jC+++IKFCxdy+eWXc++99wIwdepUFixYwMcff8w555zDnXfeuVe7M2bM4KmnngKgqqqKN954ozbZEuloahOs1HTvZ5b3hUHx1oK4xSQiIiLx0+Y9WGY2DfgDEAT+6pxrvLuoMU30NLWV2bNn1/bknHPOOcyePZtDDz0UgMmTJzNs2LDasoMHD+aII44A4IILLuCee+7hv/7rvxg2bBgjR44E4OKLL+aPf/wj1157LeAlFPW59NJLOfHEE3n11Vd58cUXuf/++1m6dOle5f79738zd+5c7rrrLgAqKipYt24dAP/1X/9FTk4OAN/+9reZP38+EydObNZxH3HEEfz3f/83559/Pt/+9rfJzc1l/vz5nHvuuQSDQfr168dRRx3Fhx9+SGZmJpMmTWKA/4398OHDOeGEEwCv5+2tt94CoKCggBkzZrBp0yaqqqr2eO1qnHTSSVxzzTVUVlby6quv8s1vfpPU1NRmxSzS3iLVXoKV4vdgpfb03gO7d+hmwyIiIt1Rm/ZgmVkQ+CNwEjAaONfMRrdlm7G2fft23nzzTS6//HKGDh3Kb3/7W5566imccwCkp6fvUd7MGl2uT906og0cOJDLLruMF198kYSEBD799NO9yjjnePbZZ1myZAlLlixh3bp1jBo1ap/jqXHzzTfz17/+lfLyco444ohGJ/gASE5Orn0eCARqlwOBQO01aj/60Y/44Q9/yCeffML9999PRUXFXvWkpKRw9NFH869//Ys5c+Y0mICKdASuqpwqFyQlOQmAHjmDAKjYoZsNi4iIdEdtPURwMrDKObfGOVcFPAlMb+M2Y+qZZ57hwgsvZO3ateTn57N+/XqGDRvGu+++W2/5devW8f777wPw97//nalTp3LggQeSn5/PqlWrAHjsscc46qijmmz71Vdfpbq6GoDNmzdTVFTEoEGD6NGjBzt37qwtd+KJJ3LvvffWJn0ff/xx7bbXXnuN7du3114HVdO71hyrV69m3Lhx/OQnP2HSpEl89tlnHHnkkcyZM4dwOExhYSHvvPMOkydPbnadJSUlDBrkfQB95JFHGiw3Y8YM/va3v/Huu+8ybdq0Ztcv0t5cqJwKkkhJDAKQ1cf7/Y7sVIIlIiLSHbV1gjUIWB+1XOCvq2VmV5jZIjNbVFhY2MbhtNzs2bM544wz9lh35plnNjib4IEHHsgf//hHRo0axY4dO7jqqqtISUnhb3/7G9/5zncYN24cgUCAK6+8ssm2//3vfzN27FgOPvhgTjzxRH7729/Sv39/jjnmGFasWMH48eOZM2cOv/jFL6iuriYvL48xY8bwi1/8oraOyZMnc+aZZ5KXl8eZZ55ZOzzw3HPP5fDDD+fzzz8nNzeXBx98EIBZs2Yxa9YsAH7/+98zduxY8vLySExM5KSTTuKMM84gLy+Pgw8+mGOPPZY777yT/v37N/v1nDlzJt/5znc49NBD6d27d+36RYsWcfnll9cun3DCCbz99tscf/zxJCUlNbt+kXZXXUklSaQmeQlWYkZvQgSgbGucAxMREZF4sJpejzap3OwsYJpz7nJ/+ULgMOfcD+srP3HiRFd3EoaVK1fWDneTlnn44YdZtGgR9913X7xDiRv9/khbW/mnc8nY/CEDfvkFCUHvO6ui24axMmMyU6+fE+foREREpC2Y2WLnXL0TG7R1D9YGYHDUcq6/TkSkS7BQBZWWVJtcAexM6ElKpW42LCIi0h219SyCHwIjzGwYXmJ1DnBeG7cpvksuuYRLLrkk3mGIdGmBcAVVtucw1t1JOaSXK8ESERHpjtq0B8s5FwJ+CPwLWAk85Zxbvg/1xDo06Qb0eyPtIRCuoLpOglWd0pvs8I44RSQiIiLx1Ob3wXLOvQy8vK/7p6SkUFRURE5OToumGJfuzTlHUVERKSkp8Q5FurhguJJqS95jXSS9L722lbCropr0lMQ4RSYiIiLx0OYJVmvl5uZSUFBAR5xhUDq2lJQUcnNz4x2GdHHBcCWhQM891gUy+pJsIbYWbSV90KAG9hQREZGuqMMnWImJiQwbNizeYYiI1CshUkkouGcPVmJWPwBKCjcwWAmWiIhIt9LWswiKiHRpCa6ScGDPoahpvQYCsHv7xniEJCIiInGkBEtEpBWSIlW4Oj1YPXK8BKuieHM8QhIREZE4UoIlItIKia6SSJ0EK6uPd+1feOeWeIQkIiIicaQES0SkFZKoxiWk7rEuIb0XIYJQpsl5REREuhslWCIi+yoSJpEQLqHO7QACAYoti8RyJVgiIiLdjRIsEZF9VV3u/Uzc+35rOxN6kVJV1M4BiYiISLwpwRIR2VehCu9n3R4soDwph4zq7e0ckIiIiMSbEiwRkX1UXbkLgEBi6t7bUnuTHdmBc669wxIREZE4UoIlIrKPKsp3A2BJeydYkbS+9KKEsoqq9g5LRERE4kgJlojIPqr0E6yE5LS9tgUy+5NkYYoKNVW7iIhId6IES0RkH1WUlwGQkLx3D1Zitnez4dLCde0ak4iIiMRXqxIsM/utmX1mZsvM7Hkzy47a9lMzW2Vmn5vZia2OVESkg6nye7CSktP32pbe27vZcHnRhnaNSUREROKrtT1YrwFjnXN5wBfATwHMbDRwDjAGmAb8ycyCrWxLRKRDqarwJrlITNm7Byur735emR0b2zUmERERia9WJVjOuX8750L+4gIg138+HXjSOVfpnPsKWAVMbk1bIiIdTaiiFICktKy9tmX1GQRAZOemdo1JRERE4iuW12BdBrziPx8ErI/aVuCv24uZXWFmi8xsUWFhYQzDERFpW+HynQCkpGfutc0SUykhg+AuTXIhIiLSnSQ0VcDMXgf617PpZ865F/0yPwNCwBMtDcA59wDwAMDEiRN1wxgR6TQi/n2wktL37sECKA7mkFK+tT1DEhERkThrMsFyzh3f2HYzuwQ4BTjOfX1HzQ3A4Khiuf46EZEuw1V6PVhp9fRgAZQl9SG9clt7hiQiIiJx1tpZBKcBNwGnOed2R22aC5xjZslmNgwYASxsTVsiIh1OZRmVLpG01L0nuQCoTO1Lz0hROwclIiIi8dRkD1YT7gOSgdfMDGCBc+5K59xyM3sKWIE3dPBq51y4lW2JiHQoVr2LXaTQK6H+76oi6f3IKSqmoqqalKTEdo5ORERE4qFVCZZz7oBGtt0B3NGa+kVEOrJAdRnlltLw9swBJFqYrVs3MSh3v3aMTEREROIllrMIioh0K8HqXZRbWoPbk3oOBKB4y7r2CklERETiTAmWiMg+SgztosLqv/4KID3Hm+tnd1FBe4UkIiIicaYES0RkHyWEy6kKNtyDldXPS7CqdmgSVRERke5CCZaIyD5KDu+mupEEK7tPLgCRnZvaKyQRERGJMyVYIiL7KDmym3BieoPbA4nJ7CCT4C7dbFhERKS7UIIlIrKP0l0ZkeTsRssUB3NILleCJSIi0l0owRIR2QeuajdpVBBJ7dVoubKk3mRUF7ZTVCIiIhJvSrBERPbBzh1e0mTpOY2Wq0rtS89wUXuEJCIiIh2AEiwRkX1QtmMzAAkZvRstF07vR44rprKqqj3CEhERkThTgiUisg927/Cuq0rO7NNouUDmAILmKNq6sT3CEhERkThTgiUisg8qdnpDBFOz+zZaLrnnIACKt6xv85hEREQk/pRgiYjsg+rSbQBk9OzXaLm0HO9eWOVFSrBERES6AyVYIiL7wO3yEqysnMZ7sLL7DgagslhDBEVERLqDmCRYZna9mTkz6+0vm5ndY2arzGyZmU2IRTsiIh2FlW2i0GXRIzWl0XI9+3o9WK50U3uEJSIiInHW6gTLzAYDJwDrolafBIzwH1cAf25tOyIiHUly2Qa2BftiZo2WCyQmsZ0sgru2tFNkIiIiEk+x6MG6G7gJcFHrpgOPOs8CINvMBsSgLRGRDiGzcgs7k/s3q2xxMIfkct1sWEREpDtoVYJlZtOBDc65pXU2DQKir+gu8NfVV8cVZrbIzBYVFuoDiIh0As6RE9lKVcbAZhUvS+pDRrX+vomIiHQHCU0VMLPXgfq+pv0ZcAve8MB95px7AHgAYOLEia6J4iIicVdWvIUMqiB7v2aVr0ztw4Dyz9s4KhEREekImkywnHPH17fezMYBw4Cl/jUIucBHZjYZ2AAMjiqe668TEen0tn31KRlAUu/9m1U+nN6PnKISqqqqSEpKatvgREREJK72eYigc+4T51xf59xQ59xQvGGAE5xzm4G5wEX+bIJTgBLnnKbQEpEuoWStNyo6e9ghzSofzBxIwBzbtxa0ZVgiIiLSAbTVfbBeBtYAq4C/AD9oo3ZERNpd9aYVlLlUhu0/slnlk3p612oVb9XNhkVERLq6JocINpffi1Xz3AFXx6puEZGOJKN4JesThzAqIdis8um9vXth7S5SD5aIiEhX11Y9WCIiXVKkqoJhVV+wLSuv2ftk9/EuSa3aoUtRRUREujolWCIiLbB62bskU03y8KnN3qdnv1wiznClm9swMhEREekIlGCJiLRA0dJXCTtj5KTm36EimJDIdssiuEsJloiISFenBEtEpAX6bnyTz5NGk91nQIv2Kw7mkFyhmw2LiIh0dUqwRESaaeMXi9k/vIbt+53Y4n3LkvqQUbWtDaISERGRjkQJlohIM218489UuSAjjv9ui/etSu1DdrioDaISERGRjkQJlohIM5QWbWb05rl8nHks/Qbktnj/cHp/ciihuqqyDaITERGRjkIJlohIM3w2+2aSqCZn2k/3af9ApnfN1nbdbFhERKRLU4IlItKEz5e8x6GFL7C477c5YMyh+1RHcs9BAJRuUYIlIiLSlSnBEhFpRGV5Gclzr6TYshh9/m/2uZ703l6CtauoIFahiYiISAekBEtEpCHO8clfvs/QyDryj/x/9Mjus89VZfXxrtuqLNa9sERERLoyJVgiIg1Y9PeZTNz+T94beAmHHndWq+rq1WcgAOGdW2MRmoiIiHRQSrBEROqx+OW/MfHL37Mw/WgOu+z/tbq+hKRkisnAdinBEhER6cpanWCZ2Y/M7DMzW25md0at/6mZrTKzz82s5XflFBGJk0/ff5UxH9zIysTR5P3w7yQkJMSk3tJATxIrdLNhERGRrqxVnxrM7BhgOnCwc67SzPr660cD5wBjgIHA62Y20jkXbm3AIiJtac3yhez36mUUBvsy8PvPkZKaHrO6dyXmkFa1PWb1iYiISMfT2h6sq4DfOOcqAZxzNWNfpgNPOucqnXNfAauAya1sS0SkTW3M/5yMp2dQYckkXfICWb0HxLT+ypQceoR2xLROERER6Vham2CNBI40sw/M7G0zm+SvHwRE3+ylwF+3FzO7wswWmdmiwsLCVoYjIrJvSrZtIvToGaRQwe6z59Bvv5ExbyOU2puerphIxMW8bhEREekYmhwiaGavA/3r2fQzf/9ewBRgEvCUme3fkgCccw8ADwBMnDhRnzpEpN1VV5az5f4zGBLeyuppjzF6dNt0uFtGXzKsnKKSEnJ6ZrdJG51BOBxmV3ERu0oLqdhZTEXFbip37yISqsCqy3HhKiKRCOGIw2EEzAgYWCBAIGCYBbFAEAsGCAQSvEcwSCCYQLD2ZwKBhCAJgUTvZzCBYEICgWACCQlemcSgt4wFIBAEC/o/6y7X/LR4v3QiItIJNJlgOeeOb2ibmV0FPOecc8BCM4sAvYENwOCoorn+OhGRDsVFIiyZ9V0mVa9kwaTfMeXwk9qsrYRM77uq4sINXTbBcpEw2wpWsyV/OWVbvsKVrCdx5wbSKjbTo3obGZFSMl0ZmebIjHewLRRxRpgAEQK1P+tjNPZdYf3bGkvdGqqv4fWNaVldjdXX0rjaVUxz4Y6fWBcFcghf9E8GDD0o3qGICK2c5AJ4ATgGeMvMRgJJwDZgLvB3M/sd3iQXI4CFrWxLRCTmPnzmt0ze8RL/GXQp3zjlu23aVkpPL8HaWbQRbw6gzq2sdDtrl73Lzq8WE9z2Odm7VjOoeh19rJKaWzKHnVFoOWxP6MuW1BFsSu2JS+2JS+2FpfYiIS2LpNQ0klPSCCalYQnJBJNSCASCJPj5S8Q5v0cLIpGw9whHcJEQkXCIcDhc52cIFw4TiYSIRP2sWef8Olw4hItEiETCmIsQcGEM77nhL7sIARfBXBgj4i0TxiLecs2Hb8eeH8Odv1R/p1f9H9hdncL11tecuqzhNvbYZ68ie66omybtlTa5vWOu3dTCHGuP4nV2bqqqxtpqMowWtFXf8beorYabraetxiuPXjQcRxTOYfnTN9H/+hewgO7AIxJvrU2wHgIeMrNPgSrgYr83a7mZPQWsAELA1Z1xBsFQVQWhcISU1LR4hyIibWD1R29wyPL/Y0naFKbE4F5XTcno5d1suHzHpjZvK9ZcJML6L5ey+ZM3sILF9C39hMHhAsaY91GvkJ5sSR7C0p6nQZ+D6DFoFH33G0GvfkPon5Rc7zhzEYmNDx/NZNKaP/KfZ3/PN77z3/EOR6Tba1WC5ZyrAi5oYNsdwB2tqT/ePpz9P+TmP8eOo3/NuG+ejmn8vUiXsXvnDlL+cRWFlsOQ7z1BIBhs8zaz+3pz/VSXbG7ztmJh+4ZVrF30Mm7NOwwuWcR+7GA/YAc9WJc6ig29TyJ9+BT2G3sEfXr3r+21EpH2deh5t7P8rvc59NNfs3TAgRw89eR4hyTSrcXm7pldVI/9J0P+s+S9dQmfvTuKsgnfJ+/4C0hKSox3aCLSSise/hETIltZOe1JBvbq3S5tpvlDBCM7tzZRMj6qqqpZ+eHrlH8yl8Fb32JQZBO9gCKyWJMxgdVDj2TQ+BPJ3X80PTUMSaTDCCQksN/3n2TLvcey/2vf5ZOExxk3pcFL6EWkjSnBasTYI6dTOel4Fr54LwM/+xsHLbyWbQtnsrrvCaQfchYHTTyGhMSkeIfZoTnniEQc4UiESCSCi0TwBu67Bn+atfQC6caudYguZQ0Wasl1Es2toOG9973exntRW15v8/ZoZr3WvPPQojr9Cp3zrjlwzvk/v75GoeZahq/L7Fm2toy/j3OwbukbTCz6B+8NuJAjDp/W/FhayRKSKaYHibs7Tg9WWdlOVr43l/CKfzKiZD4HU0qVC7IyZTxrcs+jb96JHDB2EpOCSqhEOrIePftRfumLlD50MsNfOY9FO+5k4kmXxDusTqHms0p1KORfm1kNLoyL1Fzv5ur8T6n5xwO4iL8u+v+So+6FdtH/v+3rlVH/M837nFLTRiCqfNR1ldG17FFn1L/VPctbPf+f63y2COxR69f71lyuuUc7gaiy1Fv3np9V6vy/3+tDwl6BN1K28zDX0itR29DEiRPdokWL4h1GvSKhEMvfforqxX9nzK4FJFs1O0llVerB7O47gcwheeTsP4G+uQeQkND2Q41qOOeorKykfPcuKsvLqCwvo6p8F9WVu6iu2E2ochfhyt2EKncTqdqNqyqH6nJc9W4sVEEwXE5CuIJgpJKEcAUJkUoCLkQgEsJcmIALESRMwH39SCBEgDBBwiQQJsGFCRIhQATD+Q8ItDhREmk/hfQk48ZPSE3v0a7trrpjEmWWwfhb3mrXdqNt27qJVfOfJXHVK4za9SFpVslO0liV9Q2Co07mgCNOJ61Hr7jFJyL7rqSwgC33f5uRoc9Z2PNkDrzwD2T16lwDeMPVlewq2UHZzh1UlBVTWVZMVXkJ1btLCe8uJVJZilWWQbgCC1VioQoC4QoC4SoCkUoSwpUEXSWJkSoSXCVJrpqA8z63BP05QIP+ZxfvESbBIvE+bGnE46HjGPv9hxg/ODveodQys8XOuYn1bVMPVjMFEhIYd9x5cNx57Crdzor3XqDyi3nklnxI7toFsBZ4BypdAoWBnpQm9GFXUm9CiRmQlAFJaYQT0nCBRP+7AVeb4UciYVyoCkIVBMKVWLiCQKiSQKSSYLiSYMR7JEYqSYxUkOiqSHaVpLhKkqkixcKk7MMxlZNMJUlUWjJVJFFpKVQHkghbItWWhAsEcYFEnAVxgQTvYQkQCNY+d4EgEUvAmX+vGPO/uTCr/dakZhkLAAHM/BmxrCYV82fhMsO56PV11ZewuYY3NWv/hla3aD6oFuze/HrrvgKN7dmiaZFb9KVKx6i35tu4mtek/i+5rDa5x6JL77lPzfuvz/iT2j25AihLzSWndEW7t1vw1Wes+88zZK79NwdVfsIUi1BIL5b3PZkeB09nxGEncUhicrvHJSKxldUnl9Qb3+X9R27ksA2PUnbPW/xn8AWMPOlqeg8c2q6xuEiY3aU7KN2+mbIdWykv3krlzm2Ey7bhdm8nUL6dxModJFcXkx4uoUdkJxluF8lWTSY0eSuHcpdElSVSRRJVlkS1JVFtyYQDSYQCKVQlZBEOJhMJJBEJJEIg4H+O8T63WCDoPQ8k+M+DtZ9tIICzmv8ke4+Asb27jPbs0YF6P8t8/a8y+v+gqzuVZp3ydXrD/NEYDZWv+UzgiHruovatP6A6ddX3+arhdpo6jvqWrZHPDXU/16RnjKJfZuf5H6UerBjYWbKd/JWLqSxYSnj7WgJlm0it2EpmaBspkXJSXAVpVDT57UiVS6DSEqkkmWq8JKcqkEzIkrw/FsEUwv7DJaTigimQmApJaVhiKpaYRjA5lWBSGgnJaSSkpJOQnE5yahpJqRkkp6aT7P+0hJRO3fUq0lkteug6Dl77CFU3byQ9dV++GmkeF4mw+tMFbP3wOfpufIMDwmsAyA/sx9aBx9F74rcZlneE96FCRLqk1Z98wM5Xb2P8rvcIO2NFUh67B32D1P0PZ9DwcfQaMKTZfwNcJEJ5+S5KdhSya/tmyosLqSrdSqRsK5Fd2wmUF5FYUURK9Q5Sq0voESkm05U1+Nmn2gUpsR6UBTLZnZBNZWIWVUk9CSdnQnImltyDQGomiamZJKZnkZyeRUpGNmk9vEdqWg/9/ZK4aqwHSwlWOwmHI0RClUTC1Tjn39cFwzlHUkKQpORU/aEQ6QaWzb2XvI9+zpfnzGfEQeNiWne4qoIvFr7KzqVz2a/wbfqzjYgzPk8aTenQE9jv8LMYsP/YmLYpIh3f2i+WsuXdR+mz8XWGhfNr11e4REoCmZQHMigPpOMIYuYN9ScSITmym1S3m1RXTporJ9Hqv+NO2BnF1oNSy2J3QhbliT2pTu5JJDUHS+tFMKM3yZm9ScnqS4+efemR058ePbJ1zy7p1DREsAMIBgMEg6lAarxDEZE4yhw6Hj6CHV++DzFIsLZv3ciaBS8S/PJVRuz8gFGUs9sl83n6oaw/4McMP+LbjOo3uPWBi0inNWTkwQwZ6d3rr3jbZjZ89gHFBZ8T3LEGqygmWFVKWqQMnCNcM3Q/GKA8OYfCYDqhxHRI7kEwpQfBtJ4Ee/QlOasvadl9Se/Zj6yefclJSiQnvocp0mEowRIRaUeDR09h93PJhL76D3BFi/ev2L2TNYtfY/fKN+i15T/sH15DL7xJOz7JPp6E0Scz+huncEhG+19fJiIdX3bv/mRPnR7vMES6NCVYIiLtKJiQyJrUcQzbPp9QdVWTt3oo3lpAwafvUrZ6AT22LmZE1UpGW4hKl8AXSaP5T+4P6DN+GsPzptKnHW6WLCIiIo1TgiUi0s6qxl/KgPevZtGc/2Hi+beDGeFwmC3rvqBozRJ2F3xCsHAFA3etYKDbQjbeBeH5ifvz0YAZpBx4HMMOPZ5xmVnxPhQRERGpQ5NciIi0s0g4zMd3ncyh5e+zmxTKSSHblRCMunfcJuvDpvTRVPSbQMbwKeyfdwQZGvYnIiLSIWiSCxGRDiQQDDLm2heZ/8+/ENnwMUmRcsJpfUjMGUp67jgGjTyEAT1zGBDvQEVERKTFlGCJiMRBSnIyU8/8YbzDEBERkRhr1Q0IzGy8mS0wsyVmtsjMJvvrzczuMbNVZrbMzCbEJlwREREREZGOq7V3eLsTuM05Nx641V8GOAkY4T+uAP7cynZEREREREQ6vNYmWA7I9J9nARv959OBR51nAZBtZrqcQEREREREurTWXoN1LfAvM7sLL1n7hr9+ELA+qlyBv25T3QrM7Aq+vttmmZl93sqYYq03sC3eQUi70fnuPnSuuw+d6+5F57v70LnuPjriuR7S0IYmEywzex3oX8+mnwHHAdc55541s7OBB4HjWxKZc+4B4IGW7NOezGxRQ1MwStej89196Fx3HzrX3YvOd/ehc919dLZz3WSC5ZxrMGEys0eBa/zFp4G/+s83AIOjiub660RERERERLqs1l6DtRE4yn9+LPCl/3wucJE/m+AUoMQ5t9fwQBERERERka6ktddgfQ/4g5klABV8fS3Vy8C3gFXAbuDSVrYTTx12+KK0CZ3v7kPnuvvQue5edL67D53r7qNTnWtzzsU7BhERERERkS6htUMERURERERExKcES0REREREJEaUYDXCzKaZ2edmtsrMbo53PBI7ZjbYzN4ysxVmttzMrvHX9zKz18zsS/9nz3jHKrFhZkEz+9jM/ukvDzOzD/z39xwzS4p3jBIbZpZtZs+Y2WdmttLMDtd7u2sys+v8v+GfmtlsM0vRe7vrMLOHzGyrmX0ata7e97I/sdo9/nlfZmYT4he5tFQD5/q3/t/xZWb2vJllR237qX+uPzezE+MSdCOUYDXAzILAH4GTgNHAuWY2Or5RSQyFgOudc6OBKcDV/vm9GXjDOTcCeMNflq7hGmBl1PL/AXc75w4AdgDfjUtU0hb+ALzqnDsIOBjvvOu93cWY2SDgx8BE59xYIAicg97bXcnDwLQ66xp6L58EjPAfVwB/bqcYJTYeZu9z/Row1jmXB3wB/BTA/7x2DjDG3+dP/uf2DkMJVsMmA6ucc2ucc1XAk8D0OMckMeKc2+Sc+8h/vhPvA9ggvHP8iF/sEeD0uAQoMWVmucDJ+PfqMzPDu7XEM34RnesuwsyygG/i3fge51yVc64Yvbe7qgQg1Z/NOA3YhN7bXYZz7h1ge53VDb2XpwOPOs8CINvMBrRLoNJq9Z1r59y/nXMhf3EB3n11wTvXTzrnKp1zX+HNWj653YJtBiVYDRsErI9aLvDXSRdjZkOBQ4APgH5R92zbDPSLV1wSU78HbgIi/nIOUBz1h1vv765jGFAI/M0fEvpXM0tH7+0uxzm3AbgLWIeXWJUAi9F7u6tr6L2sz21d22XAK/7zDn+ulWBJt2ZmGcCzwLXOudLobc67h4HuY9DJmdkpwFbn3OJ4xyLtIgGYAPzZOXcIsIs6wwH13u4a/GtvpuMl1QOBdPYeYiRdmN7L3YOZ/Qzv0o4n4h1LcynBatgGYHDUcq6/TroIM0vES66ecM4956/eUjOkwP+5NV7xScwcAZxmZvl4Q32PxbtGJ9sfVgR6f3clBUCBc+4Df/kZvIRL7+2u53jgK+dcoXOuGngO7/2u93bX1tB7WZ/buiAzuwQ4BTjffX3z3g5/rpVgNexDYIQ/G1ES3sV0c+Mck8SIfw3Og8BK59zvojbNBS72n18MvNjesUlsOed+6pzLdc4NxXsfv+mcOx94CzjLL6Zz3UU45zYD683sQH/VccAK9N7uitYBU8wszf+bXnOu9d7u2hp6L88FLvJnE5wClEQNJZROyMym4Q3vP805tztq01zgHDNLNrNheBObLIxHjA2xr5NBqcvMvoV37UYQeMg5d0d8I5JYMbOpwLvAJ3x9Xc4teNdhPQXsB6wFznbO1b3AVjopMzsauME5d4qZ7Y/Xo9UL+Bi4wDlXGcfwJEbMbDzehCZJwBrgUrwvFPXe7mLM7DZgBt7woY+By/GuxdB7uwsws9nA0UBvYAvwS+AF6nkv+0n2fXjDRHcDlzrnFsUhbNkHDZzrnwLJQJFfbIFz7kq//M/wrssK4V3m8UrdOuNJCZaIiIiIiEiMaIigiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIdDBmNtTMnJklxDsW6R7MbLmZHR3vOEREugIlWCIi0umZ2SwzK/MfVWZWHbX8Srzj6+icc2Occ/NiWaeZ3Wlm682s1MzWmtktsaxfRKSjMudcvGMQEelSzCzBORdqxf5Dga+AxNbU012Z2UzgAOfcBfVsa9W5aU+dKdb6mNmBQIFzbpeZDQL+DfzCOfdcnEMTEWlT6sESEYkBM8s3s5+Y2TJgl5klmNkUM/uPmRWb2dLoIVhmNs/M/tfMFvrf8L9oZr0aqPtSM1tpZjvNbI2Zfb/O9ulmtsSvZ7WZTfPXZ5nZg2a2ycw2mNmvzCzYxHEMN7M3zazIzLaZ2RNmlh21bbuZTfCXB5pZYc1xmdlp/lCzYv/4RtV5fW4ws2VmVmJmc8wspeWvdMs1cG6cmR0QVeZhM/tV1PIp/mta7J/DvGa2dbSZFZjZLf7rl29m50dtP9nMPvbP1Xo/GazZVjM09Ltmtg5401//tJlt9l+3d8xsTJ24/2Rmr/i9de+ZWX8z+72Z7TCzz8zskGa+Rsc35xibyzn3uXNuV9SqCHBAQ+VFRLoKJVgiIrFzLnAykA30A14CfgX0Am4AnjWzPlHlLwIuAwYAIeCeBurdCpwCZAKXAndHJTmTgUeBG/12vwnk+/s97Nd7AHAIcAJweRPHYMD/AgOBUcBgYCaAc2418BPgcTNLA/4GPOKcm2dmI4HZwLVAH+Bl4B9mlhRV99nANGAYkAdcUm8AZlP9xKahx9QmjqE+teemqV4hPyF5CPg+kAPcD8w1s+RmttUf6A0MAi4GHvB7cwB24Z33bD+eq8zs9Dr7H4X32p/oL78CjAD6Ah8BT9Qpfzbwc7/NSuB9v1xv4Bngd82Mu15mdnNj56MZ+5YBBUA68PfWxCIi0hkowRIRiZ17nHPrnXPlwAXAy865l51zEefca8Ai4FtR5R9zzn3qf8v/C+Ds+nqYnHMvOedWO8/beEOtjvQ3fxd4yDn3mt/OBufcZ2bWz2/rWufcLufcVuBu4JzGDsA5t8qvq9I5V4j34fyoqO1/AVYBH+Alhj/zN80AXvL3rQbuAlKBb9R5fTY657YD/wDGNxDDfOdcdiOP+Y0dQwOiz01TrgDud8594JwLO+cewUtcprSgvV/4r+HbeIn22QDOuXnOuU/8c7UMLyk9qs6+M/1zVu7v85BzbqdzrhIv2T3YzLKiyj/vnFvsnKsAngcqnHOPOufCwBy85HqfOed+09j5aGpfoAcwAXgMKGlNLCIinYESLBGR2Fkf9XwI8J063/RPxUtK6iu/FkjE63XYg5mdZGYL/OF5xXiJU025wcDqemIZ4te3Kar9+/F6QRpkZv3M7El/SGEp8Hg9Mf0FGAvc63/oB6/Ha21NAedcxD++QVH7bY56vhvIaCyWGFvfdJFaQ4Dr65y7wXjH2Bw76gyNW1uzr5kdZmZv+UMrS4Ar2fv1rY3VzIJm9hvzhn6W8nXvZPQ+W6Kel9ez3J6v8178LwY+9mO5LZ6xiIi0ByVYIiKxEz1r0Hq8Hqrob/vT/W/0awyOer4fUA1si67QH5b2LF6PUD+/x+BlvKF8Ne0MryeW9Xi9Lr2j2s90zo2pp2y0X/vHMc45l4nXE1fTFmaWAfweeBCYaV9fN7YRLzGpKWf+8W1oor29mNmR9vUMgPU9jmy6lr3UndFpN5AWtdw/6vl64I465y7NOTe7mW31NLP0qOX98F4f8IbIzQUGO+eygFlEvb71xHoeMB04HsgChvrr6+7TZvzryRo8Hy2oKoH6f1dFRLoUJVgiIm3jceBUMzvR74VI8SdAyI0qc4GZjfavZ7odeMYf1hUtCUgGCoGQmZ2Edy1VjQeBS83sODMLmNkgMzvIObcJbyjh/zOzTH/bcDOrOxytrh5AGVBi3sxvN9bZ/gdgkXPucryhb7P89U8BJ/txJALX4yV4/2nqharLOfeucy6jkce7La2zHkuA8/xzM409h+n9BbjS720yM0s3b3KKHlA7scTDTdR/m5kl+cngKcDT/voewHbnXIV//dx5TdTTA+91LMJLCH/dgmOMCefcrxs7H/Xt4/++fd/Mevqv4WTgauCN9o1eRKT9KcESEWkDzrn1eD0Pt+AlR+vxkpXov7uP4U1EsRlIAX5cTz07/fVPATvwPpDPjdq+EH/iC7zrW97m656ki/AStBX+vs+w5xDF+tyGd71MCV4CVTultplNx5uk4ip/1X8DE8zsfOfc53i9Xffi9cKdCpzqnKtqor14uQYvxmLgfOCFmg3OuUXA94D78F63Vew5Icdg4L1G6t7s77cRb0KKK51zn/nbfgDcbmY7gVvxzmtjHsUbYrgB7zwuaOrAOpAz8Iav7sT7wuFe/yEi0qXpPlgiInFgZvOAx51zf413LNJ8/qyIS4E8fzKPutuPxjuvuXW3iYhI95AQ7wBEREQ6C79HblSTBUVEpNvSEEERkW7GzGY1MGHBrKb3ls7IzPZrZKKK/eIdn4hIV6IhgiIiIiIiIjGiHiwREREREZEY6VDXYPXu3dsNHTo03mGIiIiIiIg0aPHixducc33q29ahEqyhQ4eyaNGieIchIiIiIiLSIDNb29A2DREUERERERGJESVYIiIiIiIiMaIES0SkCZGIIxzRjKsiIiLStA51DVZ9qqurKSgooKKiIt6hSCeTkpJCbm4uiYmJ8Q5FOrnfPv8epV/+h5k33kBiUN9LiYiISMM6fIJVUFBAjx49GDp0KGYW73Ckk3DOUVRUREFBAcOGDYt3ONKJuUiEa5dNJ9lCrFh9BqNHjoh3SCIiItKBdfivYisqKsjJyVFyJS1iZuTk5KjnU1pt946NJFsIgI2rPo5zNCIiItLRdfgEC1ByJftEvzcSC6U7imqfRzavjGMkIiIi0hl0igRLRCRedpVur32eWvxlHCMRERGRzkAJVjOYGddff33t8l133cXMmTPjF1CUBQsWcNhhhzF+/HhGjRpVG9e8efP4z3/+s8/1rl27lgkTJjB+/HjGjBnDrFmzYhSxSOdSvvPrBCutfEMcIxEREZHOoMNPctERJCcn89xzz/HTn/6U3r17x6xe5xzOOQKBfc9zL774Yp566ikOPvhgwuEwn3/+OeAlWBkZGXzjG9/Yp3oHDBjA+++/T3JyMmVlZYwdO5bTTjuNgQMH7nOsIp1RZdkOADYFB5JZvS3O0YiIiEhHpx6sZkhISOCKK67g7rvv3mtbYWEhZ555JpMmTWLSpEm89957AMycOZO77rqrttzYsWPJz88nPz+fAw88kIsuuoixY8eyfv16brzxRsaOHcu4ceOYM2cO4CVIRx99NGeddRYHHXQQ559/Ps7tfR+erVu3MmDAAACCwSCjR48mPz+fWbNmcffddzN+/HjefffdRuO88MILOfzwwxkxYgR/+ctfAEhKSiI5ORmAyspKIpFIva/NPffcw+jRo8nLy+Occ84BYPv27Zx++unk5eUxZcoUli1bVtvWxRdfzJFHHsmQIUN47rnnuOmmmxg3bhzTpk2juroagNtvv51JkyYxduxYrrjiir2OOxKJMHToUIqLi2vXjRgxgi1btjR2GkX2SWhXMQDF6cPIcdupDtf/XhARERGBGPRgmdlg4FGgH+CAB5xzfzCzXsAcYCiQD5ztnNvRmrZu+8dyVmwsbV3AdYwemMkvTx3TZLmrr76avLw8brrppj3WX3PNNVx33XVMnTqVdevWceKJJ7JyZeMXwn/55Zc88sgjTJkyhWeffZYlS5awdOlStm3bxqRJk/jmN78JwMcff8zy5csZOHAgRxxxBO+99x5Tp07do67rrruOAw88kKOPPppp06Zx8cUXM3ToUK688koyMjK44YYbADjvvPMajHPZsmUsWLCAXbt2ccghh3DyySczcOBA1q9fz8knn8yqVav47W9/W2/v1W9+8xu++uorkpOTaxOeX/7ylxxyyCG88MILvPnmm1x00UUsWbIEgNWrV/PWW2+xYsUKDj/8cJ599lnuvPNOzjjjDF566SVOP/10fvjDH3LrrbcCcOGFF/LPf/6TU089tbbNQCDA9OnTef7557n00kv54IMPGDJkCP369WvyPIq0lFWWAFCZPYJepe+xqbiUATnZ8Q1KREREOqxY9GCFgOudc6OBKcDVZjYauBl4wzk3AnjDX+60MjMzueiii7jnnnv2WP/666/zwx/+kPHjx3PaaadRWlpKWVlZo3UNGTKEKVOmADB//nzOPfdcgsEg/fr146ijjuLDDz8EYPLkyeTm5hIIBBg/fjz5+fl71XXrrbeyaNEiTjjhBP7+978zbdq0ettsLM7p06eTmppK7969OeaYY1i4cCEAgwcPZtmyZaxatYpHHnmk3h6ivLw8zj//fB5//HESEhJqj+nCCy8E4Nhjj6WoqIjSUi8xPumkk0hMTGTcuHGEw+HaeMeNG1d7fG+99RaHHXYY48aN480332T58uV7tTtjxoza3r4nn3ySGTNmNPqai+yrYNVOQi5AQp/hAGzfUhDniERERKQja3UPlnNuE7DJf77TzFYCg4DpwNF+sUeAecBPWtNWc3qa2tK1117LhAkTuPTSS2vXRSIRFixYQEpKyh5lExIS9hhWF30/pvT09Ga1VzNED7zhf6FQqN5yw4cP56qrruJ73/seffr0oaioaK8yDcUJe09nXnd54MCBjB07lnfffZezzjprj20vvfQS77zzDv/4xz+44447+OSTT5p1TIFAgMTExNq2AoEAoVCIiooKfvCDH7Bo0SIGDx7MzJkz672X1eGHH86qVasoLCzkhRde4Oc//3mj7Yrsq2DVTkpJI713LgA7t60HxsY3KBEREemwYnoNlpkNBQ4BPgD+f3t3Hl9XVe99/PM7Y8YmbZKOaWkVOied0lIplZbZK4NYpHhBgapcFfXCdUQFgfv4PCrP471XQXmBIKjIqAIvQWSSi/VCoQNDoRQKlLaQtpnnM6/nj3OSJm3SpOQkJ8P3/XrllbPXXnvtX7Kzk/PLWnutCankC2AvySGE3R1zqZltNLONVVVV6Qwn7caNG8d5553Hrbfe2lF26qmn8vOf/7xju30o3PTp09m8eTMAmzdv5p133um2zZUrV3LPPfcQj8epqqrimWeeYdmyZX2O6eGHH+54RunNN9/E6/VSWFhIfn4+TU1NvcYJ8OCDDxIKhaipqeHpp59m6dKl7Nmzh7a2NgDq6upYv349s2bN6nLuRCLB7t27Wb16NT/+8Y9paGigubmZlStXcueddwLJZ8mKi4sZM2ZMn76e9mSquLiY5uZm7r///m7rmRnnnHMO//Zv/8acOXMoKirqU/siR8ofbaSZXApKpgEQrtVMgiIiItKztCVYZpYH/AG43DnX5UEpl8wADp2hIbnvZudchXOuoqSkJF3hDJivf/3rVFcfmEnsZz/7GRs3bqS8vJy5c+d2TGe+Zs0aamtrmTdvHjfccAMzZ87str1zzjmH8vJyFixYwIknnshPfvITJk6c2Od4fvvb3zJr1iwWLlzIZz7zGe688068Xi9nnnkmf/rTnzomuegpTkgO81u9ejXLly/nqquuYvLkyWzbto1jjz2WBQsWcMIJJ/CNb3yDsrIyAD7/+c+zceNG4vE4F154IWVlZSxatIivfe1rFBYWcs0117Bp0ybKy8v5zne+wx133NHnr6ewsJAvfOELzJ8/n9NOO42lS5d27Lvpppu6xL127Vp+97vfaXigDChfrIU2y6JgQjLBijVU9nKEiIiIjGbW3cx0R9yImR/4M/BX59xPU2XbgVXOuUozmwQ87Zybdbh2Kioq3MaNG7uUbdu2jTlz5vQ7RuneNddc02UyjJFGPz/SX29cfxLh1kbKrtpA7Lpinin+NCd+5cZMhyUiIiIZZGabnHMV3e3rdw+WJR+iuRXY1p5cpTwEXJR6fRHwYH/PJSIy2DyJCDELgMdDnWcsgTYtByAiIiI9S8dCwyuAzwCvmNmLqbLvAj8C7jWzzwHvAuel4VySZtdcc02mQxAZ0ryJMDFPcmKaRl8xOREtNiwiIiI9S8csgusB62H3Sf1tX0Qkk3yJCHHPOADagsWMad6V4YhERERkKEvrLIIiIiNNMsEKABDNmUBRopZEov/ProqIiMjIpARLROQwfC5C3JNaky63hLHWTF3T4RcTFxERkdFLCZaIyGH4XYSEN5lg+QqSSyjUVb2fyZBERERkCFOC1UcPPPAAZsbrr7/eY52dO3cyf/78tJ1z+/btrFq1ioULFzJnzhwuvfRSILlI8COPPPKB2w2FQixbtowFCxYwb948fvCDH6QrZJERp3OClTV2EgBN1VpsWERERLqnBKuP7rrrLo4//njuuuuubvfHYrF+nyMej3fZ/trXvsYVV1zBiy++yLZt2/jqV78K9D/BCgaDPPXUU7z00ku8+OKLPProozz33HP9il1kpAoQxaUSrNxxUwBoq9NiwyIiItI9JVh90NzczPr167n11lu5++67O8qffvppVq5cyVlnncXcuXOBZKJ1wQUXMGfOHM4991xaW1sBePLJJ1m0aBFlZWWsW7eOcDgMwPTp0/n2t7/N4sWLue+++7qct7KyktLS0o7tsrIyIpEIV199Nffccw8LFy7knnvuoaWlhXXr1rFs2TIWLVrEgw8mlxy7/fbbOfvss1m1ahXHHHMM1157LQBmRl5eHgDRaJRoNEpyObOu7rvvPubPn8+CBQv46Ec/CiR7vy655BLKyspYtGgRf/vb3zrO9YlPfIJTTjmF6dOnc8MNN/DTn/6URYsWsXz5cmprawG45ZZbWLp0KQsWLGDNmjUd35/Oli9fzquvvtqxvWrVKg5egFpkUCTi+InhfMkEq3B88n6M1O/NZFQiIiIyhKVjHazB85fvwN5X0tvmxDL42I8OW+XBBx/k9NNPZ+bMmRQVFbFp0yaWLFkCwObNm9m6dSszZsxg586dbN++nVtvvZUVK1awbt06fvGLX/CVr3yFiy++mCeffJKZM2fy2c9+ll/+8pdcfvnlABQVFbF58+ZDznvFFVdw4oknctxxx3HqqadyySWXUFhYyHXXXcfGjRu54YYbAPjud7/LiSeeyG233UZ9fT3Lli3j5JNPBuD5559n69at5OTksHTpUj7+8Y9TUVFBPB5nyZIl7Nixg8suu4xjjz32kPNfd911/PWvf2XKlCnU19cDcOONN2JmvPLKK7z++uuceuqpvPHGGwBs3bqVLVu2EAqFOProo/nxj3/Mli1buOKKK/jNb37D5Zdfzic/+Um+8IUvAPD973+fW2+9taNnrt3atWu59957ufbaa6msrKSyspKKim4XyhYZWLHkP0JIJVg5qSGCrkmLDYuIiEj31IPVB3fddRfnn38+AOeff36XYYLLli1jxowZHdtTp05lxYoVAFx44YWsX7+e7du3M2PGDGbOnAnARRddxDPPPNNxzNq1a7s97yWXXMK2bdv41Kc+xdNPP83y5cs7er46e+yxx/jRj37EwoULWbVqFaFQiF27kmv1nHLKKRQVFZGdnc0nP/lJ1q9fD4DX6+XFF19kz549HUnYwVasWMHFF1/MLbfc0jF8cf369Vx44YUAzJ49m6OOOqojwVq9ejX5+fmUlJRQUFDAmWeeCSR73nbu3Akkk7CVK1dSVlbGnXfe2aWnqt15553H/fffD8C9997Lueee2+33R2TAxULJz76s5Gd/Fk3k4G3dn7mYREREZEgbXj1YvfQ0DYTa2lqeeuopXnnlFcyMeDyOmXH99dcDkJub26X+wUPtuht6d7CD2+hs8uTJrFu3jnXr1jF//vxuEyHnHH/4wx+YNWtWl/INGzb0Gk9hYSGrV6/m0UcfPWSCjptuuokNGzbw8MMPs2TJEjZt2nTYryMYDHa89ng8Hdsej6fjGbWLL76YBx54gAULFnD77bfz9NNPH9LOlClTKCoq4uWXX+aee+7hpptuOux5RQZKPBrCC1h7ggU0escRCFdnLigREREZ0tSD1Yv777+fz3zmM7z77rvs3LmT3bt3M2PGDP7+9793W3/Xrl08++yzAPz+97/n+OOPZ9asWezcuZMdO3YA8Nvf/pYTTjih13M/+uijRKNRAPbu3UtNTQ1TpkwhPz+fpqamjnqnnXYaP//5z3Euufjpli1bOvY9/vjj1NbW0tbWxgMPPMCKFSuoqqrqGPLX1tbG448/zuzZsw85/1tvvcWxxx7LddddR0lJCbt372blypXceeedALzxxhvs2rXrkMTucJqampg0aRLRaLSjne6sXbuWn/zkJzQ0NFBeXt7n9kXSKRpqA8D8BxKsFn8ROZGaTIUkIiIiQ5wSrF7cddddnHPOOV3K1qxZ0+NsgrNmzeLGG29kzpw51NXV8aUvfYmsrCx+/etf86lPfYqysjI8Hg9f/OIXez33Y4891jHJxGmnncb111/PxIkTWb16Na+99lrHJBdXXXUV0WiU8vJy5s2bx1VXXdXRxrJly1izZg3l5eWsWbOGiooKKisrWb16NeXl5SxdupRTTjmFM844A4Crr76ahx56CIBvfvOblJWVMX/+fI477jgWLFjAl7/8ZRKJBGVlZaxdu5bbb7+9S89Vb/793/+dY489lhUrVnRJ6h566CGuvvrqju1zzz2Xu+++m/POO6/PbYukWziUnISlc4IVziqiIF6XqZBERERkiLP2Xo+hoKKiwh08W9y2bduYM2dOhiIa3m6//fYuk2GMRvr5kf6ofuN5in9/Cv+9+GeccNZFALx487/wofceJHjVewR93gxHKCIiIplgZpucc93OwjbgPVhmdrqZbTezHWb2nYE+n4hIukTDyR4sb+BAD5blTWCMtVFbV5+hqERERGQoG9AEy8y8wI3Ax4C5wKfNbO5AnlMOuPjii0d175VIf8UiyVkEvYHsjjJ/wUQA6qvey0hMIiIiMrQNdA/WMmCHc+5t51wEuBs4+0gbGUrDGGX40M+N9FcskuzB8nXqwcoel0ywmqvfz0hMIiIiMrQNdII1BdjdaXtPqqyDmV1qZhvNbGNVVdUhDWRlZVFTU6M3y3JEnHPU1NSQlZXVe2WRHsTCyR4sT6cerLyi5K+wtvrKjMQkIiIiQ1vG18Fyzt0M3AzJSS4O3l9aWsqePXvoLvkSOZysrCxKS0szHYYMY/FIcpp2f/BAglVQkvyZijXuzUhMIiIiMrQNdIL1HjC103ZpqqzP/H4/M2bMSGtQIiJ9kUg9gxUI5nSUBcaMJ4FB0/5MhSUiIiJD2EAPEXwBOMbMZphZADgfeGiAzykikhaJaDLB6tyDhddPo+XjbVOCJSIiIoca0B4s51zMzL4C/BXwArc5514dyHOKiKRLIpoaIpiV3aW8yTuOrFBNJkISERGRIW7An8Fyzj0CPDLQ5xERSbdELAx0HSII0BooIlcJloiIiHRjwBcaFhEZtqIhEs4IBoJdiiPZJRTG6zS7qYiIiBxCCZaISE9iIcL4yQp07exP5JRQRAPNoWiGAhMREZGhSgmWiEgPXCxMGD8BX9dflZ4xE8i2CNW1GiYoIiIiXSnBEhHpgcWTPVhej3UpDxRMAqCxak8mwhIREZEhTAmWiEgPLBYmQuCQ8pxxkwFoqX1/sEMSERGRIU4JlohIDzzxMFE7NMEaUzwFgHBd5WCHJCIiIkOcEiwRkR70lGDlF5cCkGhUgiUiIiJdKcESEemBJxEhZv5Dy3PHESKAr1kJloiIiHSlBEtEpAfeRJioJ3joDjNqPUUE2/YNflAiIiIypCnBEhHpgTcRIe45dIggQKO/hLzI/kGOSERERIY6JVgiIj3wJcLEu3kGC6A1awJjY9WDHJGIiIgMdUqwRER64HMR4t5uhggC8dyJFLtaYrHYIEclIiIiQ1m/Eiwzu97MXjezl83sT2ZW2GnflWa2w8y2m9lp/Y5URGSQ+RMR4t09gwVYwRSCFqN6v9bCEhERkQP624P1ODDfOVcOvAFcCWBmc4HzgXnA6cAvzMzbz3OJiAyqgIvgvN0PEQwWTQWgdu+7gxmSiIiIDHH9SrCcc48559rHxzwHlKZenw3c7ZwLO+feAXYAy/pzLhGRwZZFCOfP6XZffkkywWqu2jWYIYmIiMgQl85nsNYBf0m9ngLs7rRvT6rsEGZ2qZltNLONVVVVaQxHRKQf4jGyiJAI5HW7e9ykGQBEavcMZlQiIiIyxPWaYJnZE2a2tZuPszvV+R4QA+480gCcczc75yqccxUlJSVHeriIyIBIhJuTLwK53e7PL5pMzHlINLw3iFGJiIjIUOfrrYJz7uTD7Tezi4EzgJOccy5V/B4wtVO10lSZiMiwEGptJAewYH63+83ro9YzFn/L3sENTERERIa0/s4ieDrwLeAs51xrp10PAeebWdDMZgDHAM/351wiIoOprbkBAE+w+yGCAA3+8WSH9g1WSCIiIjIM9NqD1YsbgCDwuJkBPOec+6Jz7lUzuxd4jeTQwcucc/F+nktEZNCEW5oA8GX3nGC1ZY2noHHHYIUkIiIiw0C/Eizn3NGH2fdD4If9aV9EJFPCrckeLG/WmB7rxHInUdKwgWg8gd+rddtFREQkvbMIioiMGNG2ZA9WILv7Z7AArGAyeRaiqrp6sMISERGRIU4JlohINzoSrNyee7CCY5NL/9VWvjMoMYmIiMjQpwRLRKQb8VAywcrK6TnByh9/FABN+7XYsIiIiCQpwRIR6UYilFwHKyuvsMc6hZOmAxCpVYIlIiIiSUqwRES6kQgne7Cyc3p+Biu/eBoJZ1psWERERDoowRIR6YYLNdLqguTnBHuu5AtQ5ynE31w5eIGJiIjIkKYES0SkG95QPfWWj6+X6dcbfCXkhvYOUlQiIiIy1CnBEhHphj9cS6OnoNd6LdkTKIjuH4SIREREZDhQgiUi0o2saD2t3t4TrFjuZEpcDZFYYhCiEhERkaFOCZaISDdyYvWE/GN7rWcFU8i3NvZXqRdLRERElGCJiHQrP9FIJFjYa73AuGkA1FXuHNiAREREZFhQgiUichAXC5NHKy67qNe6eSXJxYZbqt8d6LBERERkGEhLgmVmXzczZ2bFqW0zs5+Z2Q4ze9nMFqfjPCIig6GpZh8A/vziXusWTpwOQLR290CGJCIiIsNEvxMsM5sKnArs6lT8MeCY1MelwC/7ex4RkcFSsz+ZLGUVTuy1bn5JKQlnOC02LCIiIqSnB+s/gG8BrlPZ2cBvXNJzQKGZTUrDuUREBlzLvncAyB0/vde65gtQ6ynE3/L+AEclIiIiw0G/EiwzOxt4zzn30kG7pgCdx8vsSZV118alZrbRzDZWVVX1JxwRkbSI1CSfpyqY9KE+1a/zjScntG8gQxIREZFhwtdbBTN7AuhunMz3gO+SHB74gTnnbgZuBqioqHC9VBcRGXj1u2l1QYpLJvepekvWBAqb3xrgoERERGQ46DXBcs6d3F25mZUBM4CXzAygFNhsZsuA94CpnaqXpspERIY8X/Me9lkJM/zePtWP5kyipHEDLpHAPJqcVUREZDT7wO8EnHOvOOfGO+emO+emkxwGuNg5txd4CPhsajbB5UCDc64yPSGLiAys/NY91Gf1rfcKIDFmCrkWpr6uZgCjEhERkeFgoP7V+gjwNrADuAX48gCdR0QkrVw8ypTYblrHHNPnYwKFyWSsZu+uXmqKiIjISNfrEMG+SvVitb92wGXpaltEZLBUvbuN8RaDCXP6fExOUXIOn+aq3cCSAYpMREREhgM9LCAi0sn+t7YAMGZaeZ+PKRhfCkBbnR41FRERGe2UYImIdNL6zvOEnY8Pz+t7T9S4CdMAiNbvHaiwREREZJhQgiUi0smY6i287T+anJy8Ph8TyCmgjSDWrARLRERktFOCJSKSEg21MCP8BvXjFh7ZgWbUesbhb9s/IHGJiIjI8KEES0Qk5Z2NjxK0KN6Z3S7/d1jN/mJyItUDEJWIiIgMJ0qwRERSml7+My0uyJzlHzviY0NZJRTEtA6WiIjIaKcES0QEcIkEpVXPsC2ngvy8vj9/1S6eM54iV0csnhiA6ERERGS4UIIlIgLsfm0DE1w1kQ+f+sEayJ9InoWoratLb2AiIiIyrCjBEhEB9v/jDiLOyzErz/tAx/sLJgFQt293OsMSERGRYUYJloiMeolohA9XPsxLucdRMmHyB2oje9wUAJqr96QzNBERERlmlGCJyKi3ff0fGUsjifJPf+A28kpKAQjVvZ+usERERGQYUoIlIqNedPPvqKaABavWfOA2xk6YCkC8UQmWiIjIaNbvBMvMvmpmr5vZq2b2k07lV5rZDjPbbman9fc8IiIDobluL3Ma/4fXij9GVlbWB24nmFdEGD/WvC+N0YmIiMhw4+vPwWa2GjgbWOCcC5vZ+FT5XOB8YB4wGXjCzGY65+L9DVhEJJ3efOLXLLI4RSsu7l9DZtTZWPyt+9MS11AUi0aprdlHW/0+wk11hEKtuGgbnngYS0RxeEiYF2c+nMeL1+vD5w/gC2TjDQTxB7LxB7PwB7MJBLIJZGUTCGbh8WeBWaa/PBERkbToV4IFfAn4kXMuDOCca39ncTZwd6r8HTPbASwDnu3n+URE0qpw+31s93yYuQuX97utJn8R2eHqNESVOa0tjex67QUad71CvPotAo07KQztoTBeQ6FrZLy5ATlvxPmImJ8ofqKW/IhbgFj7Z4+fqAWImQ9zDsMBrsfX4PC4VDnt5ST3OTrVo9O+JHMOlyo32l/TUb+9zoAboKTTMYSS2U5fY09RHfqdtsNs9XSePobTt2p99kEvoR1hJGF/AdO+eD/Z+YUf7IQiklb9TbBmAivN7IdACPiGc+4FYArwXKd6e1JlIiJDRuX2jcyIvcUzR3+LWWl4M9sWLGFM8ztpiGxwuESC3W+9wt6XnsCz61mKm19nanwPs1NJVMR52eeZQF1WKdXZ83E5xXjzSrD8Evw54whk5eANZuO8QZzHj5HAEnHMxSERIx6LEouGiUfDxCIhErEwiUgIFw3hYmESsQjEQhCLQDwM8TAWj+CJR7B4BG8ijCcRwZuI4I1HyaIRHzEcno7UKIEHrD2NSo56dxjO2ss9XeqQOg7AmcFBZR3fG0u+xU0eY92UDS19TfcOTibT1/iRt9tzjtrXtrrW62vO+4FSY9fty8O2dtjz9CGIvsYZSIRYGHmBLf94kEWnX9THo0RkIPWaYJnZE8DEbnZ9L3X8OGA5sBS418w+dCQBmNmlwKUA06ZNO5JDRUT6Zc8zd1DsvMw8KT1vSqI54xnbuAnnHDZEh7zVVVXy9v/8EffWU0xr3Mw0apkGVFPIe9mz2Vt8GlnTFlHy4SVMnHY0U31+pmY6aBHpUTQSpvmHRxHZ/jgowRIZEnpNsJxzJ/e0z8y+BPzROeeA580sARQD70GXv8mlqbLu2r8ZuBmgoqJiEMZciIhAIh5n2vuPsDW7gkWTStPSpsudQKG1UN/YSGFBQVraTIfKndvYtf4e8t99nFmRV1lijmoK2ZW/mHenH8/E8lMo/fB8ij2aWFZkuPEHgrxasJxZtX+jtaWJnNz8TIckMur1d4jgA8Bq4G9mNhMIANXAQ8DvzeynJCe5OAZ4vp/nEhFJmzc2PsFsV82uud9MW5vegkkA1O7fk/EEq6a+ga1P/I6x2++mPPoyk4C3vdN5Ydo6xi0+h6PLV1DsVUIlMhIEj/0chY//jecfu51l53w10+GIjHr9TbBuA24zs61ABLgo1Zv1qpndC7wGxIDLhuMMgvFYDOccPr8/06GISJo1vXAXbS7AnNXnp63N7HGTk21X7YFj5qWt3b6KxRM8//w/aH32VioaHuMEa6HSM4ENM75M6crP8qEPzeGIxnCLyLAw+yMf590np1K49XYSZ12GR/88EcmofiVYzrkIcGEP+34I/LA/7WfaC/f9mKIdfyR+2o+YveyUTIcjImmSiEY4uvpJXs07joo0zrqVV5ScyydU1+2I6AGzr6qGl/96GxPfupfj3BtE8LGjaBVNx32OqYtPZ5KG/omMaObxUFe2joUvXcvmp+5h8SmfznRIIqNaf3uwRrTg2FLGxGuZ8Mi5vPpEGW2LPk/ZSZ8mGAhmOjQR6Yc3Nj3BbBpJzDsnre2OnXgUANH6yrS2251EPMGWDU/R8uxtLG58klMsxHu+abw+70qOPvlzzM0vGfAYRGTomP/xy9j98i2Me/aHRE5YQyAQyHRIIqOWEqzDWHT6RbQefzYbHvhPpu34HZM2/Cu1G67ipaLVBMo+wexlp5KVk5fpMDPOJRK4eIxEPErCORKJBC71ObkNCZfApbZJrU3T8Tn12trX13F9n0q4p5naepq/rWv1zuuv9GHGtyOaFa6XugfvTmfbh1S3I2r+iKag7qbhwx99pDPr9V7fkfxRSjiSP3edPiecI+Fccj8Hyqq2/IVjnDHrI2ccYTyHl1s4gajz4hoHLsGqrtrHa3/9FZPfupclbichArw5/hRKPnopU+afoAV7RUYpXyBI/XHfpewfX+HZu67hIxf970yHNLw4RyIWJRqPEo9FicbiJGIxYrEI8XgcEnEsEYPU2ngHDuv7cgGH23fgV3en9yYeO1Bi1uVdS/uGmafT8Qe9m7H24+2g9wKdWrKDztHeLp1GPrTHcfA57ECdru/HOr0+5G+Sdfvy8McAHh9Z2bl4PcPjb5wd/IORSRUVFW7jxo2ZDqNb8ViM1/77XiJb7mFO07PkWJiI87EjMIv6sWUEJ88nb1o5RaWzKCoejw3wkJx4PEGorYVwWzPhthYioRYibW1Ewi3Ewi3Ewm3Ew63EI60kIm24aCsuGoJoCGJtWCyEJ9aGLxHu+PCnPnuJ4UnE8RDH4+J4ieF1cTwk8BLH6+J4ieNLbfssMaBfq8hAeMM3k5nffyHt7e6+bh57g9NZ+u2H09amSyR49dlHaX3uNsobnybLorztP5rmeRcw++RLCOSNTdu5RGQYc45N/+8TlDf9nbfOuJfZS3ucCHpYicfjtNRX09xYS1tTPeGWeiItDUTbGoi1NeJCTbhQI95oC75Yc/I9Tjy5jp4vHsLnIvgSEXwuQsBF8BMlSBi/i+ElgZcEngFaRF3S43exk5j/L7excGphpkPpYGabnHMV3e1TD1YfeX0+yk76Zzjpnwm1NvHKhr/Q9PrTlNRuZPG+P5C1/254MVk37PzUesbS4C0i4ssl7ssm4csh5s0mYT4s9Y+H9hw84eIdC2t64uHkopqJcMcvA18iQsCF8bsIQcIEXYQsi5IL5H6AryVEgAgBwhYkYgEiFiRqAaIWpNU7hrjHjzMfzuOF9s8eH87jg9SHs/Yyb7Juajv5xRnW/oGBeVLFqa869bl9kc/Oi3+6Lv9dSS3u2cPX0bncOv2joG9rYh5Z/SNanPOI/2kxcL/UzbmD/tfWS/0jjeWIqh9Z232JxTkO3E/W/toOKrMDrzvtKyo79Yji6avanOmUtKRnseGafbt587FbmPL2fcx379NENlvHn8mE1ZfyobkfScs5RGQEMeOYz/+K/f+1gkkPf5YdwT9wdPnQ+12RiCeoq6+htnInrdW7iNZXEm+uxrXW4GmrwR+uIxhtIDfWQL5roMA1M8YcYw7TZtwZLZZNG9mELUjMAsQ8AWKeIBFvPm3eIAlPgIQ3SNwTJO4J4LwB8HgxT/t7GC/m9WIeX6rcl/rwgseLM09yEfODR1ccfrNLSXf9L65jn+v0FsJ1+uTo/Df04DouNfKny9/7VCXXfs6O7UPrtJ/DHVzezTm6CaJLm13/dnf9O249vj/q6fgDxubNZHJBVg/HDz3qwUqDWDTK7rdfo/Hdl4nU7CTWUIm3ZR+5kWr88VYCiTYCiTBZhPCSoOOHFev4yY8SIGJ+ohY48EvBgsQ8AeKeIM4bJOEL4nzZOF82+LLAn40nkIXHn4MnmIM3kI0vmIMvmIM/K4dAMIdAdi7B7DyC2bkEs3Iwf7aGEIkMoA2/upzFu39D/Mr3yco68j8GsUiI1565n8TmO5nXsgG/xdnmn0vLvAuYf8pnyco93FsMERF4/53X8d3xT+S6FrYuuY5lZ3xhwEfWtGsNhaiq3EXDvl201ewmWv8+NL6Pv3UvOaH9FMSqKUrUkGvhQ46NOC/1VkCzZwyt/kIi/gJiWeNIZI3DZY/Dk1OIL7uAQG4BwdwCsvMKyMkfR+6YQrJy8vX+RgbV4XqwlGCJiKTRS4/czILnv8mrZ/6ZeUtW9ukYl0jw5kv/oO7Z3zBz/6OMpZFqCnlz4seZvOpzHDV7yQBHLSIjTeXut2j8zQXMim5jW2A+0SWfZ/YJawlk5XywBp2jqaGa2spdNFTtpq1mN7H69/E0VRJo20deZD9j4zUUuXq8Bw23izovNZ4iGvwltAbHE8udCGMm4R9bSva4KeQUT2VM0STGjCkctERQpL+UYImIDJK6fbsZ+8v5PDv9y3zk4v/TYz2XSPD2S3+n5oV7Ka18nMluHxHn4+Xc42DRBZSf8EnNAiYi/RKPRXn+/v/gQ6/fxARqaHVBdmUdQ33+THxjJuHyxuP1B/CYl0g8AZFmLNyECzXgQo34QzXkRKooiNYwNlFLlkUPOUcDedR5i2gOjCeSPYF4/kR8BVPIGldK3vhpjJt4FLmFE0CJk4wwSrBERAbRG/9rKcFEK1Ov3ILHfyBJaq6v4s3n/kx0+xNMq3uOiVQTdV5ezV5MdOaZzDrh04wpGp/ByEVkJIpGo7y8/s9EXn2YsfUvMzm2hzG09FzfeWm2HJotP9nrFCgmmjMBy59IYNxk8oqmUDD+KIomHUUgW7Mpy+ikBEtEZBC98OhvWfrcV3gtezGtJQux5r0UNrzOjNg7eMzR6HJ4O28xkaM/xodXfoqi4gmZDllERhHnHA2NjbTW7yMSiZBIJAj6jEB2PoHcseTm5uHzeTMdpsiQplkERUQGUcWpF/Df+99h/lu3UPDuizRYPu8Fj2bDpBPJm386s5ecwEK/hv+JSGaYGYUFBRQWFGQ6FJERST1YIiIDJJFwhGJxcgL6X5aIiMhIcrgeLD1xKCIyQDweU3IlIiIyyijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNhtQkF2ZWBbyb6TgOUgxUZzoIGTS63qOHrvXooWs9uuh6jx661qPHULzWRznnSrrbMaQSrKHIzDb2NEOIjDy63qOHrvXooWs9uuh6jx661qPHcLvWGiIoIiIiIiKSJkqwRERERERE0kQJVu9uznQAMqh0vUcPXevRQ9d6dNH1Hj10rUePYXWt9QyWiIiIiIhImqgHS0REREREJE2UYImIiIiIiKSJEqzDMLPTzWy7me0ws+9kOh5JHzObamZ/M7PXzOxVM/vXVPk4M3vczN5MfR6b6VglPczMa2ZbzOzPqe0ZZrYhdX/fY2aBTMco6WFmhWZ2v5m9bmbbzOwjurdHJjO7IvU7fKuZ3WVmWbq3Rw4zu83M9pvZ1k5l3d7LlvSz1HV/2cwWZy5yOVI9XOvrU7/HXzazP5lZYad9V6au9XYzOy0jQR+GEqwemJkXuBH4GDAX+LSZzc1sVJJGMeDrzrm5wHLgstT1/Q7wpHPuGODJ1LaMDP8KbOu0/WPgP5xzRwN1wOcyEpUMhP8CHnXOzQYWkLzuurdHGDObAnwNqHDOzQe8wPno3h5JbgdOP6isp3v5Y8AxqY9LgV8OUoySHrdz6LV+HJjvnCsH3gCuBEi9XzsfmJc65hep9+1DhhKsni0Ddjjn3nbORYC7gbMzHJOkiXOu0jm3OfW6ieQbsCkkr/EdqWp3AJ/ISICSVmZWCnwc+FVq24ATgftTVXStRwgzKwA+CtwK4JyLOOfq0b09UvmAbDPzATlAJbq3Rwzn3DNA7UHFPd3LZwO/cUnPAYVmNmlQApV+6+5aO+cec87FUpvPAaWp12cDdzvnws65d4AdJN+3DxlKsHo2BdjdaXtPqkxGGDObDiwCNgATnHOVqV17gQmZikvS6j+BbwGJ1HYRUN/pF7fu75FjBlAF/Do1JPRXZpaL7u0Rxzn3HvB/gV0kE6sGYBO6t0e6nu5lvW8b2dYBf0m9HvLXWgmWjGpmlgf8AbjcOdfYeZ9LrmGgdQyGOTM7A9jvnNuU6VhkUPiAxcAvnXOLgBYOGg6oe3tkSD17czbJpHoykMuhQ4xkBNO9PDqY2fdIPtpxZ6Zj6SslWD17D5jaabs0VSYjhJn5SSZXdzrn/pgq3tc+pCD1eX+m4pO0WQGcZWY7SQ71PZHkMzqFqWFFoPt7JNkD7HHObUht308y4dK9PfKcDLzjnKtyzkWBP5K833Vvj2w93ct63zYCmdnFwBnABe7A4r1D/lorwerZC8AxqdmIAiQfpnsowzFJmqSewbkV2Oac+2mnXQ8BF6VeXwQ8ONixSXo55650zpU656aTvI+fcs5dAPwNODdVTdd6hHDO7QV2m9msVNFJwGvo3h6JdgHLzSwn9Tu9/Vrr3h7ZerqXHwI+m5pNcDnQ0GkooQxDZnY6yeH9ZznnWjvtegg438yCZjaD5MQmz2cixp7YgWRQDmZm/0Ty2Q0vcJtz7oeZjUjSxcyOB/4OvMKB53K+S/I5rHuBacC7wHnOuYMfsJVhysxWAd9wzp1hZh8i2aM1DtgCXOicC2cwPEkTM1tIckKTAPA2cAnJfyjq3h5hzOxaYC3J4UNbgM+TfBZD9/YIYGZ3AauAYmAf8APgAbq5l1NJ9g0kh4m2Apc45zZmIGz5AHq41lcCQaAmVe0559wXU/W/R/K5rBjJxzz+cnCbmaQES0REREREJE00RFBERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERERERERNJECZaIiIiIiEiaKMESERERERFJk/8PMHw2cIAFk2IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiAklEQVR4nOzdeXxU1f3/8ddnZrKTBZIQdoIKyBZRAbGCW61iXdBqReturdVual1qbWvRX+23X+u3ti4VbW21ahH3fakbKlZFQMQFF9AAYQ2BbJBtZs7vj7mEScgGmWSyvJ+Px8jcc8899zP3Zsb5zDn3XHPOISIiIiIiIu3ni3cAIiIiIiIiPYUSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiXYyZ5ZuZM7NAvGOR3sHMPjGzw+Mdh4hIT6AES0REuj0zm2Nmld6j1szqopZfiHd8XZ1zbpxzbn4s2zSzm8xsjZmVm9kqM7s2lu2LiHRVphsNi4jElpkFnHPBdmyfD3wNJLSnnd7KzGYD+zjnzmpiXbvOTWfqTrE2xcxGA0XOuW1mNhj4D/Ab59zjcQ5NRKRDqQdLRCQGzKzQzH5hZsuAbWYWMLOpZvZfMys1sw+jh2CZ2Xwz+x8zW+j9wv+UmfVrpu3zzWy5mVWY2Vdm9sNG62ea2VKvnZVmNsMrzzSze8xsvZmtNbPfmZm/ldext5m9ZmYlZrbZzB40s6yodVvM7ABveZCZFe94XWZ2ojfUrNR7fWMaHZ8rzWyZmZWZ2TwzS979I737mjk3zsz2iapzr5n9Lmr5eO+YlnrnsKCN+zrczIrM7Frv+BWa2ZlR648zsw+8c7XGSwZ3rNsxNPT7ZrYaeM0rf8TMNnjH7U0zG9co7r+a2Qteb93bZjbAzP5sZlvN7DMz27+Nx+iotrzGtnLOfe6c2xZVFAb2aa6+iEhPoQRLRCR2zgCOA7KAPOA54HdAP+BK4DEzy42qfw5wATAQCAK3NtPuJuB4IAM4H7glKsmZAvwLuMrb76FAobfdvV67+wD7A0cDF7byGgz4H2AQMAYYCswGcM6tBH4BPGBmqcA/gfucc/PNbBQwF7gMyAWeB54xs8Sotk8DZgAjgALgvCYDMJvmJTbNPaa18hqaUn9uWusV8hKSfwA/BLKBu4CnzSypjfsaAOQAg4Fzgbu93hyAbUTOe5YXzyVmdlKj7Q8jcuyP8ZZfAEYC/YElwION6p8G/NrbZw3wjlcvB3gU+FMb426SmV3T0vlow7aVQBGQBvy7PbGIiHQHSrBERGLnVufcGudcFXAW8Lxz7nnnXNg59zKwCPh2VP37nXMfe7/y/wY4rakeJufcc865lS7iDSJDraZ7q78P/MM597K3n7XOuc/MLM/b12XOuW3OuU3ALcDpLb0A59wKr60a51wxkS/nh0Wt/xuwAniPSGL4K2/VLOA5b9s64GYgBfhGo+Ozzjm3BXgGmNhMDAucc1ktPBa09BqaEX1uWnMRcJdz7j3nXMg5dx+RxGXqbuzvN94xfINIon0agHNuvnPuI+9cLSOSlB7WaNvZ3jmr8rb5h3OuwjlXQyTZ3c/MMqPqP+GcW+ycqwaeAKqdc/9yzoWAeUSS6z3mnPtDS+ejtW2BdOAA4H6grD2xiIh0B0qwRERiZ03U8+HAdxv90j+NSFLSVP1VQAKRXocGzOxYM3vXG55XSiRx2lFvKLCyiViGe+2tj9r/XUR6QZplZnlm9pA3pLAceKCJmP4GjAdu8770Q6THa9WOCs65sPf6BkdttyHq+XagT0uxxNia1qvUGw5c0ejcDSXyGttia6Ohcat2bGtmB5nZ697QyjLgYnY9vvWxmpnfzP5gkaGf5ezsnYzeZmPU86omljvzOO/C+2HgAy+W6+MZi4hIZ1CCJSISO9GzBq0h0kMV/Wt/mveL/g5Do54PA+qAzdENesPSHiPSI5Tn9Rg8T2Qo34797N1ELGuI9LrkRO0/wzk3rom60X7vvY4JzrkMIj1xO/aFmfUB/gzcA8y2ndeNrSOSmOyoZ97rW9vK/nZhZtNt5wyATT2mt97KLhrP6LQdSI1aHhD1fA1wY6Nzl+qcm9vGffU1s7So5WFEjg9Ehsg9DQx1zmUCc4g6vk3E+j1gJnAUkAnke+WNt+kw3vVkzZ6P3WgqQNN/qyIiPYoSLBGRjvEAcIKZHeP1QiR7EyAMiapzlpmN9a5nugF41BvWFS0RSAKKgaCZHUvkWqod7gHON7NvmpnPzAab2b7OufVEhhL+n5lleOv2NrPGw9EaSwcqgTKLzPx2VaP1fwEWOecuJDL0bY5X/jBwnBdHAnAFkQTvv60dqMacc2855/q08Hhrd9tswlLge965mUHDYXp/Ay72epvMzNIsMjlFOtRPLHFvK+1fb2aJXjJ4PPCIV54ObHHOVXvXz32vlXbSiRzHEiIJ4e934zXGhHPu9y2dj6a28f7efmhmfb1jOAX4MfBq50YvItL5lGCJiHQA59waIj0P1xJJjtYQSVaiP3fvJzIRxQYgGfhZE+1UeOUPA1uJfCF/Omr9QryJL4hc3/IGO3uSziGSoH3qbfsoDYcoNuV6ItfLlBFJoOqn1DazmUQmqbjEK/o5cICZnemc+5xIb9dtRHrhTgBOcM7VtrK/eLmUSIylwJnAkztWOOcWAT8Abidy3FbQcEKOocDbLbS9wdtuHZEJKS52zn3mrfsRcIOZVQDXETmvLfkXkSGGa4mcx3dbe2FdyMlEhq9WEPnB4TbvISLSo+k+WCIicWBm84EHnHN/j3cs0nberIgfAgXeZB6N1x9O5LwOabxORER6h0C8AxAREekuvB65Ma1WFBGRXktDBEVEehkzm9PMhAVzWt9auiMzG9bCRBXD4h2fiEhPoiGCIiIiIiIiMaIeLBERERERkRjpUtdg5eTkuPz8/HiHISIiIiIi0qLFixdvds7lNi7vUglWfn4+ixYtincYIiIiIiIiLTKzVU2Va4igiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjHSpa7BakpdXR1FRUVUV1fHOxTpApKTkxkyZAgJCQnxDkV6sBeeeZiSoi/53g+vxeezeIcjIiIi3UiXT7CKiopIT08nPz8fM33R6c2cc5SUlFBUVMSIESPiHY70YMcu/gEAn6y5kHHD8+IcjYiIiHQnXX6IYHV1NdnZ2UquBDMjOztbvZnSoWqCofrn65e9GsdIREREpDvq8gkWoORK6ulvQTpaecm6+ucJaxfGMRIRERHpjrpFgiUi0lmq131W/zxQ3uTtLURERESapQSrDcyMK664on755ptvZvbs2fELKMrhhx/e4s2ZTzrpJKZOndqgbPbs2QwePJiJEycyfvx4nn766Y4OU6TbqK4sBaCSFDKr18Y3GBEREel2lGC1QVJSEo8//jibN2+OabvOOcLhcEzbjFZaWsrixYspKyvjq6++arDu8ssvZ+nSpTzyyCNccMEFHRqHSHdStb0SgLUJIxgQ2oBzLs4RiYiISHfS7gTLzIaa2etm9qmZfWJml3rls81srZkt9R7fbn+48REIBLjooou45ZZbdllXXFzMKaecwuTJk5k8eTJvv/02EOkluvnmm+vrjR8/nsLCQgoLCxk9ejTnnHMO48ePZ82aNVx11VWMHz+eCRMmMG/ePADmz5/P4Ycfzqmnnsq+++7LmWee2ewXvfvvv7++N2rhwp3XjDz++OOccMIJnH766Tz00ENNbjtmzBgCgUCD5PGaa65h7NixFBQUcOWVVwJQWFjIkUceSUFBAd/85jdZvXo1AOeddx6XXHIJU6dOZa+99mL+/PlccMEFjBkzhvPOO6++zUsuuYRJkyYxbtw4fvvb3+4SR1lZGcOHD69P9LZt28bQoUOpq6trMm6RjlJbFUmwKjJHkWNllGzdEueIREREpDuJxTTtQeAK59wSM0sHFpvZy966W5xzN7ew7W65/plP+HRdeayaA2DsoAx+e8K4Vuv9+Mc/pqCggKuvvrpB+aWXXsrll1/OtGnTWL16NccccwzLly9vsa0vv/yS++67j6lTp/LYY4+xdOlSPvzwQzZv3szkyZM59NBDAfjggw/45JNPGDRoEIcccghvv/0206ZN26W97du3s3TpUt58800uuOACPv74YwDmzp3LddddR15eHqeccgrXXnvtLtu+9957+Hw+cnNzASgpKeGJJ57gs88+w8woLS0F4Kc//Snnnnsu5557Lv/4xz/42c9+xpNPPgnA1q1beeedd3j66ac58cQTefvtt/n73//O5MmTWbp0KRMnTuTGG2+kX79+hEIhvvnNb7Js2TIKCgrq48jMzGTixIm88cYbHHHEETz77LMcc8wxut+VdLpg9TYALHc0bIYt6wrJ6Zcd56hERESku2h3D5Zzbr1zbon3vAJYDgxub7tdTUZGBueccw633nprg/JXXnmFn/zkJ0ycOJETTzyR8vJyKisrW2xr+PDh9ddFLViwgDPOOAO/309eXh6HHXYY77//PgBTpkxhyJAh+Hw+Jk6cSGFhYZPtnXHGGQAceuihlJeXU1paysaNG/nyyy+ZNm0ao0aNIiEhoT7xArjllluYOHEiV155JfPmzaufnS8zM5Pk5GS+//3v8/jjj5OamgrAO++8w/e+9z0Azj77bBYsWFDf1gknnICZMWHCBPLy8pgwYQI+n49x48bVx/zwww9zwAEHsP/++/PJJ5/w6aef7vI6Zs2aVd+D99BDDzFr1qwWj6NIh6jbDkDawJEAlG1aHc9oREREpJuJ6Y2GzSwf2B94DzgE+ImZnQMsItLLtbU97belp6kjXXbZZRxwwAGcf/759WXhcJh3332X5OTkBnUDgUCD65qi792UlpbWpv0lJSXVP/f7/QSDwSbrNZ663Mx4+OGH2bp1a/0NecvLy5k7dy433ngjELkGa8fwv8ZxL1y4kFdffZVHH32U22+/nddee61Ncfp8vgYx+3w+gsEgX3/9NTfffDPvv/8+ffv25bzzzmvyXlYnnngi1157LVu2bGHx4sUceeSRLe5XpCNYXRUAOcPGAFBVUhTPcERERKSbidkkF2bWB3gMuMw5Vw7cCewNTATWA//XzHYXmdkiM1tUXFwcq3A6RL9+/TjttNO455576suOPvpobrvttvrlpUuXApCfn8+SJUsAWLJkCV9//XWTbU6fPp158+YRCoUoLi7mzTffZMqUKbsV145enwULFpCZmUlmZiZz587lxRdfrL/ua/Hixc1ehxWtsrKSsrIyvv3tb3PLLbfw4YcfAvCNb3yjfvsHH3yQ6dOntzm+8vJy0tLSyMzMZOPGjbzwwgtN1uvTpw+TJ0/m0ksv5fjjj8fv97d5HyKxYsEqql0C2QPzAQiWrWt5AxEREZEoMUmwzCyBSHL1oHPucQDn3EbnXMg5Fwb+BjSZNTjn7nbOTXLOTdpxHVBXdsUVVzSYEOLWW29l0aJFFBQUMHbsWObMmQPAKaecwpYtWxg3bhy33347o0aNarK9k08+mYKCAvbbbz+OPPJIbrrpJgYMGLBbMSUnJ7P//vtz8cUXc88991BYWMiqVasaTM8+YsQIMjMzee+995ps49vf/jbr1q2joqKC448/noKCAqZNm8af/vQnAG677Tb++c9/UlBQwP33389f/vKXNse33377sf/++7Pvvvvyve99j0MOOaR+3XXXXddgmvhZs2bxwAMPaHigxI0Fq6gmCUvqQwWp+Cs3xDskERER6UasvVMQW2R82n3AFufcZVHlA51z673nlwMHOedOb6mtSZMmucb3dFq+fDljxoxpV4zSs+hvQjrSklu/x8At7zJw9lcU/b8JFCUMY+o1z8U7LBEREelizGyxc25S4/JYXIN1CHA28JGZLfXKrgXOMLOJgAMKgR/GYF8iIh3KH6qihsi1hJVJuaRXd+2hyyIiItK1tDvBcs4tAKyJVc+3t20Rkc7mD1VTa5FJa2pT+pO9bRXOuV0mkxERERFpSswmuRAR6QkCoWpqfZEerHCfAfRnK+Xba+MclYiIiHQXSrBERKIEwjt7sPyZg0mwEMWbNJOgiIiItI0SLBGRKAnhaup8kQQrJTtyz/SyjaviGZKIiIh0I0qwRESiJIarqfNHEqz03GEAbC9ZE8+QREREpBtRgtVGTz75JGbGZ5991mydwsJCxo8fH7N9nnfeeTz66KPNrr/ssssYPHgw4XC4vuzee+8lNzeXiRMnMnbsWP72t7/FLB6R3iDB1RD2rsHKyhsKQN3W9fEMSURERLoRJVhtNHfuXKZNm8bcuXObXB8MBtu9j1Ao1Oa64XCYJ554gqFDh/LGG280WDdr1iyWLl3K/Pnzufbaa9m4cWO7YxPpLQKujrA/EYCkrEEAuAolWCIiItI2SrDaoLKykgULFnDPPffw0EMP1ZfPnz+f6dOnc+KJJzJ27FggkmideeaZjBkzhlNPPZXt27cD8Oqrr7L//vszYcIELrjgAmpqagDIz8/nF7/4BQcccACPPPLILvt+5ZVXmDRpEqNGjeLZZ59tsO9x48ZxySWXNJv09e/fn7333ptVq3ZeP3LrrbcyduxYCgoKOP30yH2ft2zZwkknnURBQQFTp05l2bJlAMyePZtzzz2X6dOnM3z4cB5//HGuvvpqJkyYwIwZM6irqwPghhtuYPLkyYwfP56LLrqIxjevDofD5OfnU1paWl82cuRIJX7SJSW4OpyXYOFPYKtlEdiuv1URERFpm1jcaLjzvHANbPgotm0OmADH/qHFKk899RQzZsxg1KhRZGdns3jxYg488EAAlixZwscff8yIESMoLCzk888/55577uGQQw7hggsu4K9//Ss/+clPOO+883j11VcZNWoU55xzDnfeeSeXXXYZANnZ2SxZsqTJfRcWFrJw4UJWrlzJEUccwYoVK0hOTmbu3LmcccYZzJw5k2uvvZa6ujoSEhIabPvVV1/x1Vdfsc8++9SX/eEPf+Drr78mKSmpPuH57W9/y/7778+TTz7Ja6+9xjnnnMPSpUsBWLlyJa+//jqffvopBx98MI899hg33XQTJ598Ms899xwnnXQSP/nJT7juuusAOPvss3n22Wc54YQT6vfp8/mYOXMmTzzxBOeffz7vvfcew4cPJy8vr82nSaSzJBCVYAHlgWxSdLNhERERaSP1YLXB3Llz63t7Tj/99AY9RlOmTGHEiBH1y0OHDuWQQw4B4KyzzmLBggV8/vnnjBgxglGjRgFw7rnn8uabb9ZvM2vWrGb3fdppp+Hz+Rg5ciR77bUXn332GbW1tTz//POcdNJJZGRkcNBBB/HSSy/VbzNv3jwmTpzIGWecwV133UW/fv3q1xUUFHDmmWfywAMPEAhE8usFCxZw9tlnA3DkkUdSUlJCeXk5AMceeywJCQlMmDCBUCjEjBkzAJgwYQKFhYUAvP766xx00EFMmDCB1157jU8++WSX1zFr1izmzZsHwEMPPdTiaxaJG+dIJAj+pPqiquRc0us2xzEoERER6U66Vw9WKz1NHWHLli289tprfPTRR5gZoVAIM+OPf/wjAGlpaQ3qm1mLy01p3EZr7b300kuUlpYyYcIEALZv305KSgrHH388EElmbr/99ibbe+6553jzzTd55plnuPHGG/noo5Z7BJOSIl80fT4fCQkJ9fH4fD6CwSDV1dX86Ec/YtGiRQwdOpTZs2dTXV29SzsHH3wwK1asoLi4mCeffJJf//rXLe5XJC5CkWGvRPVg1aXmkVf+GXWhMAl+/SYlIiIiLdO3hVY8+uijnH322axatYrCwkLWrFnDiBEjeOutt5qsv3r1at555x0A/v3vfzNt2jRGjx5NYWEhK1asAOD+++/nsMMOa9P+H3nkEcLhMCtXruSrr75i9OjRzJ07l7///e8UFhZSWFjI119/zcsvv1x/vVdzwuEwa9as4YgjjuB///d/KSsro7KykunTp/Pggw8CkWu7cnJyyMjIaFN8O5KpnJwcKisrm5310Mw4+eST+fnPf86YMWPIzs5uU/sinSoUuTaSwM4eLNIHkkMZxWXb4hOTiIiIdCtKsFoxd+5cTj755AZlp5xySrMTS4wePZo77riDMWPGsHXrVi655BKSk5P55z//yXe/+10mTJiAz+fj4osvbtP+hw0bxpQpUzj22GOZM2cO4XCYF198keOOO66+TlpaGtOmTeOZZ55pso0LL7yQRYsWEQqFOOuss5gwYQL7778/P/vZz8jKymL27NksXryYgoICrrnmGu677742Hh3IysriBz/4AePHj+eYY45h8uTJ9evmzJnDnDlz6pdnzZrFAw88oOGB0mWF6yIJlkUlWAlZg/CZo2RjUbzCEhERkW7EGs/4Fk+TJk1yixYtalC2fPlyxowZE6eIpCvS34R0lOqSNSTfNp75o37N4d+7CoBV7zzK8Je+z3+PfIRvHHp0nCMUERGRrsLMFjvnJjUuVw+WiIintiYy5DW6ByszdxgAVSXqwRIREZHWKcESEfHU1VQB4EvYOclFRu4QAIJlutmwiIiItK5bJFhdaRijxJf+FqQj1dVGerB8UT1Yvj79CeHDKjbEKywRERHpRjo8wTKzGWb2uZmtMLNrdnf75ORkSkpK9MVacM5RUlJCcnJyvEORHmpHguVPjPob8wco82WRULUxTlGJiIhId9Kh98EyMz9wB/AtoAh438yeds592tY2hgwZQlFREcXFxR0VpnQjycnJDBkyJN5hSA8VrO/BapjEVyTkkFqjmw2LiIhI6zr6RsNTgBXOua8AzOwhYCbQ5gQrISGBESNGdFB4IiI77UiwAklJDcqrk/uTWbomHiGJiIhIN9PRQwQHA9HfSoq8MhGRLidU5yVYCQ17sEJpeeSwlYrquniEJSIiIt1I3Ce5MLOLzGyRmS3SMEARiadQbeRGw4HEhj1YljGQHCtn49byeIQlIiIi3UhHJ1hrgaFRy0O8snrOubudc5Occ5Nyc3M7OBwRkeaF63YkWCkNyhP7Rjret25cu8s2IiIiItE6OsF6HxhpZiPMLBE4HXi6g/cpIrJHdgwRTGjUg5WWHZlYpXKzrsMSERGRlnXoJBfOuaCZ/QR4CfAD/3DOfdKR+xQR2VPhuloAEhIbXoOVlTcMgOot6sESERGRlnX0LII4554Hnu/o/YiItJcLRYYIJiQ1HCKY7A0RDJWv6/SYREREpHuJ+yQXIiJdRdgbIpiY1Ohm1qnZBPHjq9wQh6hERESkO1GCJSKyQzAyRDCxUQ8WPh+l/n4kVW2KQ1AiIiLSnSjBEhHZIVhNyBlJiYm7rNqWmEuf2s1xCEpERES6EyVYIiIeC1ZRRRKBgH+XdTUpeWSHiwmFXRwiExERke5CCZaIiMcXqqaGXXuvAELpgxlICZsrqjs5KhEREelOlGCJiHh8wSpqLKnpdVlDSbMaijdpogsRERFpnhIsERGPL1TTbA9WUs5wAMo3ft2ZIYmIiEg3owRLRMTjD1VT10wPVkbeCABqSlZ1ZkgiIiLSzSjBEhHxBELV1PqaTrAyB+4FQGjrms4MSURERLoZJVgiIh5/uKbZHix/n1xqSCRQXtTJUYmIiEh3ogRLRMQTCNdQ50tueqUZm/25pFSt79ygREREpFtRgiUi4kkMVxNsZoggQFliHhm1mkVQREREmqcES0TEE3C1uEAzPVhAVeogckKbOjEiERER6W6UYImIeBLDNYQCKc2uD6UPJpdStm/f1olRiYiISHeiBEtExJNEDbTQg+XvOxSATWt1LywRERFpmhIsEREA50hytZDQfA9Wam5kqvayDV91VlQiIiLSzbQrwTKzP5rZZ2a2zMyeMLMsrzzfzKrMbKn3mBOTaEVEOogLVuMzh7WQYGUNjNxsePumwk6KSkRERLqb9vZgvQyMd84VAF8Av4xat9I5N9F7XNzO/YiIdKiaqu0AWGJqs3VyB0USrNDW1Z0Sk4iIiHQ/7UqwnHP/cc4FvcV3gSHtD0lEpPNt314JgD+x+R6sQFIKm+lLoGJtZ4UlIiIi3Uwsr8G6AHghanmEmX1gZm+Y2fTmNjKzi8xskZktKi4ujmE4IiJtV1NZCoAvOb3FelsS8kitWtcJEYmIiEh3FGitgpm9AgxoYtWvnHNPeXV+BQSBB71164FhzrkSMzsQeNLMxjnnyhs34py7G7gbYNKkSW7PXoaISPvUbNsKgC8lq8V6lSmD6F/xaSdEJCIiIt1RqwmWc+6oltab2XnA8cA3nXPO26YGqPGeLzazlcAoYFF7AxYR6Qh120oB8KdmtVyvz1D6l71BsK6OQEJCxwcmIiIi3Up7ZxGcAVwNnOic2x5Vnmtmfu/5XsBIQPMai0iXFfISrIS0rBbrWb/hJFqI4vWFHR6TiIiIdD/tvQbrdiAdeLnRdOyHAsvMbCnwKHCxc25LO/clItJhQlWlACS2kmCl5EZmEty6dkUHRyQiIiLdUatDBFvinNunmfLHgMfa07aISGcKbi8DID0rp8V6mYP2BmDbpq87PCYRERHpfmI5i6CISLcVrtpKnfOTmZ7RYr3+QyK/K4W2rOqMsERERKSbUYIlIgJQXU4FqaQmtdyxn5ySRjF98Zev6aTAREREpDtRgiUiAlhNOdssDTNrtW5JII/U7brZsIiIiOxKCZaICBCoLafKl9amuuUpg+lbu76DIxIREZHuSAmWiAiQUreVbYGsNtWt6zOE3PBmXKiuY4MSERGRbkcJlogIkBEsoSqp5RkE62UNI8FCbNmwumODEhERkW5HCZaISDhMlislmNq/TdWTc/cCYIvuhSUiIiKNKMESkV6vuryYBEJYn7w21c8c6N0La+NXHRmWiIiIdENKsESk19u6MTLluj9zYJvq5w7Zm7AzglsKOzAqERER6Y6UYIlIr1e+OZJgpfQb3Kb6mel9IvfCKtM1WCIiItKQEiwR6fW2F0cSrKy8oW3eZnMgjxTdC0tEREQaUYIlIr1esOQr6pyfgcNGtnmb8uRBZOleWCIiItKIEiwR6fUCZavYYLkkJyW1eZvaPkPICW+GULADIxMREZHuRgmWiPR66dvXsCVx0O5tlDWMAGEqNus6LBEREdlJCZaI9G7OkRtcz7a0tl9/BZCcMwyAkrWaql1ERER2UoIlIr1aeXERmVQSym779VcA6XkjAKjYWNgBUYmIiEh31a4Ey8xmm9laM1vqPb4dte6XZrbCzD43s2PaH6qISOyt+2IxAH2GFuzWdrmD9wKgdouGCIqIiMhOgRi0cYtz7uboAjMbC5wOjAMGAa+Y2SjnXCgG+xMRiZny1csAGDz6wN3aLrtvP0pdGpQVdURYIiIi0k111BDBmcBDzrka59zXwApgSgftS0Rkj/mKP2UzmeTmte0mw/Xb+YwSfy4J2zRVu4iIiOwUiwTrJ2a2zMz+YWZ9vbLBwJqoOkVe2S7M7CIzW2Rmi4qLi2MQjohI22VVfMn6xL0ws93etjwxjz41GzogKhEREemuWk2wzOwVM/u4icdM4E5gb2AisB74v90NwDl3t3NuknNuUm5u7u5uLiKyx0LBIEPqVrEta/QebV+dOpB+wU0xjkpERES6s1avwXLOHdWWhszsb8Cz3uJaIHrO4yFemYhIl7H2608ZZnX4Bo7bo+1dxmCytlRSvb2C5NT0GEcnIiIi3VF7ZxEcGLV4MvCx9/xp4HQzSzKzEcBIYGF79iUiEmubV0RmEOyXP3GPtg/0jfyOVFy0MlYhiYiISDfX3lkEbzKziYADCoEfAjjnPjGzh4FPgSDwY80gKCJdTe3ajwg5Y8joA/Zo+7T++QCUbSxk6KiJsQtMREREuq12JVjOubNbWHcjcGN72hcR6UhJW5ZT5B/C8NQ+e7R9lnez4ariVbEMS0RERLqxjpqmXUSkyxtQ9SXFaSP3ePucwcMJOyO0dU3rlUVERKRXUIIlIr1SRelmBrpi6nLG7nEbSUkplFgW/op1MYxMREREujMlWCLSK639fBEAKUMK2tXO1kAuyVW62bCIiIhEKMESkV6pvHApAP1HTWpXO5VJA8is2xiDiERERKQnUIIlIr2Sb+PHbHXpDBw8ol3t1KYNIie0GRcOxygyERER6c6UYIlIr5RV8TlFSXthvnZ+DGYOJtVqqNhaHJvAREREpFtTgiUivY4LBRlcV0h5xuh2t5XYz7vZ8Nqv2t2WiIiIdH9KsESk1yleu5IUavH137fdbe242XDlpsJ2tyUiIiLdnxKsFnz23ot8+IejWP7eS7q+QqQH2bjqMwDSB49qd1vZA/cCoLpENxsWERERCMQ7gK5s+5b15Fd/Tr8XTqPwpaGsH34iA79xBvkjJ8Q7NBFph+0bvgQgd2j7e7D65Q2hzvmpK1nd7rZERESk+1OC1YIDjj2fbdNPYdGLfyP188c4+Os74Os7WGcDKOo3Fd9eh9J/1BQG7zUWv98f73BjIhx21IXDBEOOulCYumCIYF0VodoaQrXVhOpqCNVVE66tIRysxgXrIFSDC4fAOZxzOBcm7Jy3HMaFw165AyL/mvccHOYivYNGZJtoZk1F2URhG4rMDNeotKnmd+7TWqzYektN2xmDa7EegIs+AC1Ub/y6WrZr3eabbrpd1+QWzcewa+2W423wZ9D0H0GTe2jrcfCvWkCNSyB38F5tqt8Sn99PUWAIqWVftLst2X3BYIjamu0Eq7ZRW1NJsLaGUF0tdXW1BOtqCAVrCdXVRf4N1hIO1kE4iIWDEAoCochnk8P7jAoT+UiKfH5R/9nlrXcORxhr/Eft/ent+Bvc5fPBmqhcv2iNVu/66RL9t21N1NnxWbHz08WaaGqXT0UafsRYi/Uj6xrtNzous133Ybu25Mxo+Ip3PT4tht1o8I1Z68eHRsenycCaOh4NG2myzWi7fgbtzmeziDSnLqkvwyZMo39GcrxDaRMlWK1I65PBpFOvAK6gePUXfPXO4yQUzmfc5hdJK3kS3odKl8LqQD7b0wYTyhiKyxhCQuZAUjP6kZaVQ2KfviSlZpKUlEByYhI+fwL4/JH0woELhwiH6nChOmpra6mtraG2tpa62lpqa6sI1lQTrKsmWFNNqG5HklNDcEeiU7cj2anFBWsgWIOFanGhWixUiy9cg4Xq8IVr8XuPgKsj4IIEqCPB1ZFAHYnUkUiw/t8+1BEwDY2UnmllYG/2jtEPI8UZ48jf+jYuHG51VkIXDmHma2Pi2IM5R+32cspL1lOxdRPbyrdQVbGFYOVWXHUZVl2Gv7acQF05CXUVJAa3EQhXkxCuJtHVkOSqSXK1pFqN/kcmItLDzQ/tx8L0hzi+YFC8Q2kT/X9pN+QOG0XusGuAa6irreHLTxdS+tUibMMy0spWMKh8Gf3LXmtzUhJyPnw4/ObY8TUvMUaxBvFTRwJ1lkDQe4QskZAvgVAgkZAvEedLI+RLIOxLpNqXSJU/kbAvEedPwvkTwZ8A/iRcIBH8SVggCbznvoTIsgUScb5E8AXwGZjP5/2K6cN84DM/Zj7MF/mF0ud9sTTzEfllz3BmuPpfRq3+i6dropNk17IdPWGt1du1sMkqTdVtKo4mlpxz3mtvSaMeuharNtHv0+wGTfdBNf79tbl2m2+/9V62trS7a/tta9ewNrW7s/22180d0v7rr3YIDZhI9tbnWVP4JUP3anpmwtLidXz29J8YvfohVuQexeSf3Buz/XcldcEgxetXUb5uBduKC6kr3YDbVoy/qoTkms2k1G0lPVRKVriUZKsjB8hpop2g81FhaWwjje2+PtT4U9ke6EfIn0I4kIILpEBCCiSm4eqXk7FAEr6ERHz+BPyBRHyBRPyBBPwJifi95/gSsEAAfIn4fFb/mWSAzxf5jPJZpNzni3xW+XyR9eYzDJ/XidL4s6qZD60GxY36f13DZeca/v8j0najdqPeE87t/Axs8a3iXKP1jT87G653jT8vXeP6DeNyO34xbGL9rvttOa4GR6TJOBq15hrGYc3EWV9tR49kVD2jcRzscl4afp421S/f/HkSkfbJS0xnv72a+r9F16QEaw8lJCYxcuJ0mDi9QXmwrpbNm1ZTvnkDlWWbqa7YEvk1tqaCUCjoDU8J4SOMzwVx5gMLEPYFcObHF0jE5w/gC3hfDhKS8Sck4U9Ixp+YRCAxmUBCMoHEJBKTkklMSiExOYXEpBT8CUngTwJ/IgGfjwCQEp/DI9KrDD7gGFj+e9a/8xBD9/ptg3VffvAGZfPvoKD0VaZakDJSGVTyTpwibZ9Q2LGhrIpNG4qo2PAVtZu/gq2rSKxcS3rVWrLr1pPnihlkQaJ/Y6x1frZaFuX+LLYn9GVL6l6sTM7GpeXi65NDYnoOKen96JOZTXrfHFIz+pGUkk5fn4++cXu1IiIie0YJVowFEhLJGbwPOYP3iXcoItJJBo+cyGeBfRm+4j42rTiB2tpa1i15nuyvn2VkaCXbXDJLck4g76ifsfrthzms6E6qK7aQnN4v3qHvYltNkLUb1rN5zZds37iSupJVBMpX06dqLdnBDQymmMFW02CbUstgS2AApRn7sjH9W1jWMBJzR5AxYC/6DRhGekY/8nw+8uL0mkRERDqTEiwRkRgIzriJ9Ge+S+oDRwAwBPjMP4p3R1/D2G//kKmZkWSqfOPXUHQnny96nf2OOKXT43TOsWnLFopXf0HZ+pXUFH+Nr2wVydvW0rdmPQPdRkbZdqIHUG6zVLYmDGR7xt6syTycQPYIUvvvRebAvUnL24uspHSyOv2ViIiIdE3tSrDMbB6w44KDLKDUOTfRzPKB5cDn3rp3nXMXt2dfIiJd2fhJh1HY9y3WLHyaQGomQyccyr577ToN/Ogpx7B1fjrhhX+DDkqwqqu2sXHNCrau/ZKqjV8R2rqKpMo1pFetIze0kTwrb9CbVE0imwMDqEwfRGH6ZALZ+aT2H0H24FGkD9ybtOQs0nr7pBwiIiJt1K4Eyzk3a8dzM/s/oCxq9Urn3MT2tC8i0p3k7z2a/L2varFOcmofluafxdTCO3n/iVuZfPLPdmsfzjnKy7awde0KKjd+TfXmVYRLVxOoWEta9Xr61W0kl60MB4Z729Q5P5v8/SlLGsSqPmNZnTWcpNy9yBq0DzlDRpKcmccQJVAiIiIxYY1n5NmjRiJTp60GjnTOfen1YD3rnBu/O+1MmjTJLVq0qN3xiIh0ZcHaGj67+WjG1y7l05QDqNrrGJKyh2GJaYTraglVV1C7vZzQts34tm0ioaqYpOrN9KnbQr9wCelW1aC9Ghdgky+X0oQ8qlIHEc4YQkL2CPoM3JvcoaPo238o5teIcBERkVgys8XOuUm7lMcowToU+NOOHXgJ1ifAF0A58Gvn3FvNbHsRcBHAsGHDDly1alW74xER6eqqq7az8KHfM3rVg+Sxpdl6lS6Frb4sKgL9qE7KJpjSn3DmUAL9hpGaO5zMAXuTN3AIgYASKBERkc60xwmWmb0CDGhi1a+cc095de4EVjjn/s9bTgL6OOdKzOxA4ElgnHOuvKV9qQdLRHqbcCjM2jUrKS9Zj6vZhj8hiUBKOukZWWT2yyOlT0a8QxQREZEmNJdgtfqTp3PuqFYaDgDfAQ6M2qYGqPGeLzazlcAoQNmTiEgUn9/H0PyRkD8y3qGIiIhIDPhi0MZRwGfOuaIdBWaWa2Z+7/lewEjgqxjsS0REREREpMuKxaD904G5jcoOBW4wszogDFzsnGv+IgMREREREZEeoN0JlnPuvCbKHgMea2/bIiIiIiIi3UlMZhGMFTMrBrraNII5wOZ4ByGdRue799C57j10rnsXne/eQ+e6d+mK53u4cy63cWGXSrC6IjNb1NTsINIz6Xz3HjrXvYfOde+i89176Fz3Lt3pfMdikgsRERERERFBCZaIiIiIiEjMKMFq3d3xDkA6lc5376Fz3XvoXPcuOt+9h85179JtzreuwRIREREREYkR9WCJiIiIiIjEiBIsERERERGRGFGC1QIzm2Fmn5vZCjO7Jt7xSOyY2VAze93MPjWzT8zsUq+8n5m9bGZfev/2jXesEhtm5jezD8zsWW95hJm9572/55lZYrxjlNgwsywze9TMPjOz5WZ2sN7bPZOZXe59hn9sZnPNLFnv7Z7DzP5hZpvM7OOosibfyxZxq3fel5nZAfGLXHZXM+f6j97n+DIze8LMsqLW/dI715+b2TFxCboFSrCaYWZ+4A7gWGAscIaZjY1vVBJDQeAK59xYYCrwY+/8XgO86pwbCbzqLUvPcCmwPGr5f4FbnHP7AFuB78clKukIfwFedM7tC+xH5Lzrvd3DmNlg4GfAJOfceMAPnI7e2z3JvcCMRmXNvZePBUZ6j4uAOzspRomNe9n1XL8MjHfOFQBfAL8E8L6vnQ6M87b5q/e9vctQgtW8KcAK59xXzrla4CFgZpxjkhhxzq13zi3xnlcQ+QI2mMg5vs+rdh9wUlwClJgysyHAccDfvWUDjgQe9aroXPcQZpYJHArcA+Ccq3XOlaL3dk8VAFLMLACkAuvRe7vHcM69CWxpVNzce3km8C8X8S6QZWYDOyVQabemzrVz7j/OuaC3+C4wxHs+E3jIOVfjnPsaWEHke3uXoQSreYOBNVHLRV6Z9DBmlg/sD7wH5Dnn1nurNgB58YpLYurPwNVA2FvOBkqjPrj1/u45RgDFwD+9IaF/N7M09N7ucZxza4GbgdVEEqsyYDF6b/d0zb2X9b2tZ7sAeMF73uXPtRIs6dXMrA/wGHCZc648ep2L3MNA9zHo5szseGCTc25xvGORThEADgDudM7tD2yj0XBAvbd7Bu/am5lEkupBQBq7DjGSHkzv5d7BzH5F5NKOB+MdS1spwWreWmBo1PIQr0x6CDNLIJJcPeice9wr3rhjSIH376Z4xScxcwhwopkVEhnqeySRa3SyvGFFoPd3T1IEFDnn3vOWHyWScOm93fMcBXztnCt2ztUBjxN5v+u93bM1917W97YeyMzOA44HznQ7b97b5c+1EqzmvQ+M9GYjSiRyMd3TcY5JYsS7BuceYLlz7k9Rq54GzvWenws81dmxSWw5537pnBvinMsn8j5+zTl3JvA6cKpXTee6h3DObQDWmNlor+ibwKfovd0TrQammlmq95m+41zrvd2zNfdefho4x5tNcCpQFjWUULohM5tBZHj/ic657VGrngZON7MkMxtBZGKThfGIsTm2MxmUxszs20Su3fAD/3DO3RjfiCRWzGwa8BbwETuvy7mWyHVYDwPDgFXAac65xhfYSjdlZocDVzrnjjezvYj0aPUDPgDOcs7VxDE8iREzm0hkQpNE4CvgfCI/KOq93cOY2fXALCLDhz4ALiRyLYbe2z2Amc0FDgdygI3Ab4EnaeK97CXZtxMZJrodON85tygOYcseaOZc/xJIAkq8au865y726v+KyHVZQSKXebzQuM14UoIlIiIiIiISIxoiKCIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIl2MmeWbmTOzQLxjkd7BzD4xs8PjHYeISE+gBEtERLo9M5tjZpXeo9bM6qKWX4h3fF2dc26cc25+LNs0s5vMbI2ZlZvZKjO7Npbti4h0Veaci3cMIiI9ipkFnHPBdmyfD3wNJLSnnd7KzGYD+zjnzmpiXbvOTWfqTrE2xcxGA0XOuW1mNhj4D/Ab59zjcQ5NRKRDqQdLRCQGzKzQzH5hZsuAbWYWMLOpZvZfMys1sw+jh2CZ2Xwz+x8zW+j9wv+UmfVrpu3zzWy5mVWY2Vdm9sNG62ea2VKvnZVmNsMrzzSze8xsvZmtNbPfmZm/ldext5m9ZmYlZrbZzB40s6yodVvM7ABveZCZFe94XWZ2ojfUrNR7fWMaHZ8rzWyZmZWZ2TwzS979I737mjk3zsz2iapzr5n9Lmr5eO+YlnrnsKCN+zrczIrM7Frv+BWa2ZlR648zsw+8c7XGSwZ3rNsxNPT7ZrYaeM0rf8TMNnjH7U0zG9co7r+a2Qteb93bZjbAzP5sZlvN7DMz27+Nx+iotrzGtnLOfe6c2xZVFAb2aa6+iEhPoQRLRCR2zgCOA7KAPOA54HdAP+BK4DEzy42qfw5wATAQCAK3NtPuJuB4IAM4H7glKsmZAvwLuMrb76FAobfdvV67+wD7A0cDF7byGgz4H2AQMAYYCswGcM6tBH4BPGBmqcA/gfucc/PNbBQwF7gMyAWeB54xs8Sotk8DZgAjgALgvCYDMJvmJTbNPaa18hqaUn9uWusV8hKSfwA/BLKBu4CnzSypjfsaAOQAg4Fzgbu93hyAbUTOe5YXzyVmdlKj7Q8jcuyP8ZZfAEYC/YElwION6p8G/NrbZw3wjlcvB3gU+FMb426SmV3T0vlow7aVQBGQBvy7PbGIiHQHSrBERGLnVufcGudcFXAW8Lxz7nnnXNg59zKwCPh2VP37nXMfe7/y/wY4rakeJufcc865lS7iDSJDraZ7q78P/MM597K3n7XOuc/MLM/b12XOuW3OuU3ALcDpLb0A59wKr60a51wxkS/nh0Wt/xuwAniPSGL4K2/VLOA5b9s64GYgBfhGo+Ozzjm3BXgGmNhMDAucc1ktPBa09BqaEX1uWnMRcJdz7j3nXMg5dx+RxGXqbuzvN94xfINIon0agHNuvnPuI+9cLSOSlB7WaNvZ3jmr8rb5h3OuwjlXQyTZ3c/MMqPqP+GcW+ycqwaeAKqdc/9yzoWAeUSS6z3mnPtDS+ejtW2BdOAA4H6grD2xiIh0B0qwRERiZ03U8+HAdxv90j+NSFLSVP1VQAKRXocGzOxYM3vXG55XSiRx2lFvKLCyiViGe+2tj9r/XUR6QZplZnlm9pA3pLAceKCJmP4GjAdu8770Q6THa9WOCs65sPf6BkdttyHq+XagT0uxxNia1qvUGw5c0ejcDSXyGttia6Ohcat2bGtmB5nZ697QyjLgYnY9vvWxmpnfzP5gkaGf5ezsnYzeZmPU86omljvzOO/C+2HgAy+W6+MZi4hIZ1CCJSISO9GzBq0h0kMV/Wt/mveL/g5Do54PA+qAzdENesPSHiPSI5Tn9Rg8T2Qo34797N1ELGuI9LrkRO0/wzk3rom60X7vvY4JzrkMIj1xO/aFmfUB/gzcA8y2ndeNrSOSmOyoZ97rW9vK/nZhZtNt5wyATT2mt97KLhrP6LQdSI1aHhD1fA1wY6Nzl+qcm9vGffU1s7So5WFEjg9Ehsg9DQx1zmUCc4g6vk3E+j1gJnAUkAnke+WNt+kw3vVkzZ6P3WgqQNN/qyIiPYoSLBGRjvEAcIKZHeP1QiR7EyAMiapzlpmN9a5nugF41BvWFS0RSAKKgaCZHUvkWqod7gHON7NvmpnPzAab2b7OufVEhhL+n5lleOv2NrPGw9EaSwcqgTKLzPx2VaP1fwEWOecuJDL0bY5X/jBwnBdHAnAFkQTvv60dqMacc2855/q08Hhrd9tswlLge965mUHDYXp/Ay72epvMzNIsMjlFOtRPLHFvK+1fb2aJXjJ4PPCIV54ObHHOVXvXz32vlXbSiRzHEiIJ4e934zXGhHPu9y2dj6a28f7efmhmfb1jOAX4MfBq50YvItL5lGCJiHQA59waIj0P1xJJjtYQSVaiP3fvJzIRxQYgGfhZE+1UeOUPA1uJfCF/Omr9QryJL4hc3/IGO3uSziGSoH3qbfsoDYcoNuV6ItfLlBFJoOqn1DazmUQmqbjEK/o5cICZnemc+5xIb9dtRHrhTgBOcM7VtrK/eLmUSIylwJnAkztWOOcWAT8Abidy3FbQcEKOocDbLbS9wdtuHZEJKS52zn3mrfsRcIOZVQDXETmvLfkXkSGGa4mcx3dbe2FdyMlEhq9WEPnB4TbvISLSo+k+WCIicWBm84EHnHN/j3cs0nberIgfAgXeZB6N1x9O5LwOabxORER6h0C8AxAREekuvB65Ma1WFBGRXktDBEVEehkzm9PMhAVzWt9auiMzG9bCRBXD4h2fiEhPoiGCIiIiIiIiMaIeLBERERERkRjpUtdg5eTkuPz8/HiHISIiIiIi0qLFixdvds7lNi7vUglWfn4+ixYtincYIiIiIiIiLTKzVU2Va4igiIiIiIhIjCjBEhERERERiRElWCIi7RAKO57/aD2VNcF4hyIiIiJdQJe6BqspdXV1FBUVUV1dHe9QpJtJTk5myJAhJCQkxDsU6cEWLHyf4mdvYt6Yk/j+mWfFOxwRERGJsy6fYBUVFZGenk5+fj5mFu9wpJtwzlFSUkJRUREjRoyIdzjSg/VZ9k/ODbzMW6uqASVYIiIivV2XHyJYXV1Ndna2kivZLWZGdna2ej6lw4UriwHIq1mFbtwuIiIiXT7BApRcyR7R3410hoTaMgCGs46tlVVxjkZERETirVskWCIiXVVKMJJgJVmQjas+i3M0IiIiEm/tTrDMbKiZvW5mn5rZJ2Z2qVfez8xeNrMvvX/7tj/c+DAzrrjiivrlm2++mdmzZ8cvoCjvvvsuBx10EBMnTmTMmDH1cc2fP5///ve/7Wp7xowZZGVlcfzxx8cgUpGeKS1UTon1A2DrupVxjkZERETiLRY9WEHgCufcWGAq8GMzGwtcA7zqnBsJvOotd0tJSUk8/vjjbN68OabtOucIh8PtauPcc8/l7rvvZunSpXz88cecdtppQGwSrKuuuor777+/XW2I9HR9XAXFqXsDUL11XZyjERERkXhr9yyCzrn1wHrveYWZLQcGAzOBw71q9wHzgV+0Z1/XP/MJn64rb08Tuxg7KIPfnjCuxTqBQICLLrqIW265hRtvvLHBuuLiYi6++GJWr14NwJ///GcOOeQQZs+eTZ8+fbjyyisBGD9+PM8++ywAxxxzDAcddBCLFy/m+eef5/bbb+eFF17AzPj1r3/NrFmzmD9/PrNnzyYnJ4ePP/6YAw88kAceeGCX64o2bdrEwIEDAfD7/YwdO5bCwkLmzJmD3+/ngQce4LbbbmPfffdtNs6VK1eyYsUKNm/ezNVXX80PfvADAL75zW8yf/78Fo/NI488wvXXX4/f7yczM5M333yT6upqLrnkEhYtWkQgEOBPf/oTRxxxBPfeey9PPvkk27Zt48svv+TKK6+ktraW+++/n6SkJJ5//nn69evH3/72N+6++25qa2vZZ599uP/++0lNTW2w36lTp3LPPfcwblzk3B1++OHcfPPNTJo0qcV4RWLJhYJkuG18kTEStr2PK1OCJSIi0tvF9BosM8sH9gfeA/K85AtgA5AXy311th//+Mc8+OCDlJWVNSi/9NJLufzyy3n//fd57LHHuPDCC1tt68svv+RHP/oRn3zyCYsWLWLp0qV8+OGHvPLKK1x11VWsXx85bB988AF//vOf+fTTT/nqq694++23d2nr8ssvZ/To0Zx88sncddddVFdXk5+fz8UXX8zll1/O0qVLmT59eotxLlu2jNdee4133nmHG264gXXr2v4l8YYbbuCll17iww8/5OmnnwbgjjvuwMz46KOPmDt3Lueee279bH4ff/wxjz/+OO+//z6/+tWvSE1N5YMPPuDggw/mX//6FwDf+c53eP/99/nwww8ZM2YM99xzzy77nTVrFg8//DAA69evZ/369UqupNPVbCvFZ46a1IFUkIZ/+8Z4hyQiIiJxFrP7YJlZH+Ax4DLnXHl0T4tzzplZk/MXm9lFwEUAw4YNa3EfrfU0daSMjAzOOeccbr31VlJSUurLX3nlFT799NP65fLyciorK1tsa/jw4UydOhWABQsWcMYZZ+D3+8nLy+Owww7j/fffJyMjgylTpjBkyBAAJk6cSGFhIdOmTWvQ1nXXXceZZ57Jf/7zH/79738zd+7cJnudWopz5syZpKSkkJKSwhFHHMHChQs56aST2nRcDjnkEM477zxOO+00vvOd79S/pp/+9KcA7LvvvgwfPpwvvvgCgCOOOIL09HTS09PJzMzkhBNOAGDChAksW7YMiCRhv/71ryktLaWyspJjjjlml/2edtppHH300Vx//fU8/PDDnHrqqW2KVySW6ipKSAZCSZmUBrJJrtoU75BEREQkzmKSYJlZApHk6kHn3ONe8UYzG+icW29mA4Emv3k45+4G7gaYNGlSl76JzGWXXcYBBxzA+eefX18WDod59913SU5OblA3EAg0uL4q+n5MaWlpbdpfUlJS/XO/308wGGyy3t57780ll1zCD37wA3JzcykpKdmlTnNxwq7Tme/O9OZz5szhvffe47nnnuPAAw9k8eLFLdaPfk0+n69+2efz1b++8847jyeffJL99tuPe++9t8mEcfDgwWRnZ7Ns2TLmzZvHnDlz2hyzSKzUVUd+pLDEPmxLzCW9ujjOEYmIiEi8xWIWQQPuAZY75/4Utepp4Fzv+bnAU+3dV7z169eP0047rcGQtaOPPprbbrutfnnp0qUA5Ofns2TJEgCWLFnC119/3WSb06dPZ968eYRCIYqLi3nzzTeZMmVKm2N67rnn6m9u+uWXX+L3+8nKyiI9PZ2KiopW4wR46qmnqK6upqSkhPnz5zN58uQ273/lypUcdNBB3HDDDeTm5rJmzRqmT5/Ogw8+CMAXX3zB6tWrGT16dJvbrKioYODAgdTV1dW305RZs2Zx0003UVZWRkFBQZvbF4mV2urtAPgTU6lJyaNvqEQ3GxYREenlYnEN1iHA2cCRZrbUe3wb+APwLTP7EjjKW+72rrjiigazCd56660sWrSIgoICxo4dW9+Tcsopp7BlyxbGjRvH7bffzqhRo5ps7+STT6agoID99tuPI488kptuuokBAwa0OZ7777+f0aNHM3HiRM4++2wefPBB/H4/J5xwAk888QQTJ07krbfeajZOgIKCAo444gimTp3Kb37zGwYNGgREkr/vfve7vPrqqwwZMoSXXnoJiAxL3HG91VVXXcWECRMYP3483/jGN9hvv/340Y9+RDgcZsKECcyaNYt77723Qc9Va/7f//t/HHTQQRxyyCHsu+++9eVPP/001113Xf3yqaeeykMPPVQ/c6JIZ6ur8RKspGRcnwHkUkp5VW2coxIREZF4sq70a+ukSZPcokWLGpQtX76cMWPGxCminq/xbIc9jf5+pCN99c6T7PXSuSw8ch7JJR9R8OHv+OrcD9hrxF7xDk1EREQ6mJktds7tMstaTGcRFBHpTUK1VQAEklJI6jsYgPLiNfEMSUREROIsZrMISvc0e/bseIcg0m3tSLASklJJTxsKwPbNSrBERER6MyVYIiJ7KFSzswcrM6c/AHWla+MZkoiIiMSZhgiKiOyhcF0kwUpMTiWtX2RyGCp1LywREZHeTAmWiMgeCtdF7m+XmJQK/gRKycC3TQmWiIhIb6YES0RkD7kdPVgpqQCUBfqRrJsNi4iI9GpKsNroySefxMz47LPPmq1TWFjI+PHjY7bPzz//nMMPP5yJEycyZswYLrroIiByk+Dnn3++XW1fcMEF9O/fP6bxivQ2LlhD2BnJickAbE/MIa2uJM5RiYiISDwpwWqjuXPnMm3aNObOndvk+mAw2O59hEKhBss/+9nPuPzyy1m6dCnLly/npz/9KRCbBOu8887jxRdfbFcbIr1eXTU1JJCU6AegJjmXrNCWOAclIiIi8dS9ZhF84RrY8FFs2xwwAY79Q4tVKisrWbBgAa+//jonnHAC119/PQDz58/nN7/5DX379uWzzz7jP//5D8FgkDPPPJMlS5Ywbtw4/vWvf5Gamsqrr77KlVdeSTAYZPLkydx5550kJSWRn5/PrFmzePnll7n66qs5/fTT6/e7fv16hgwZUr88YcIEamtrue6666iqqmLBggX88pe/5Pjjj+enP/0pH3/8MXV1dcyePZuZM2dy77338sQTT1BWVsbatWs566yz+O1vfwvAoYceSmFhYYuv+4033uDSSy8FwMx488036dOnD1dffTUvvPACZsavf/1rZs2axfz58/ntb39LVlYWH330EaeddhoTJkzgL3/5C1VVVTz55JPsvffePPPMM/zud7+jtraW7OxsHnzwQfLy8hrs9/TTT+fss8/muOOOAyLJ4PHHH8+pp57atnMq0kksWE01iWQFIr9VhdP6k11SSlVNkJSk7vXxKiIiIrGhHqw2eOqpp5gxYwajRo0iOzubxYsX169bsmQJf/nLX/jiiy+AyLC+H/3oRyxfvpyMjAz++te/Ul1dzXnnnce8efP46KOPCAaD3HnnnfVtZGdns2TJkgbJFcDll1/OkUceybHHHsstt9xCaWkpiYmJ3HDDDcyaNYulS5cya9YsbrzxRo488kgWLlzI66+/zlVXXcW2bdsAWLhwIY899hjLli3jkUceYdGiRW1+3TfffDN33HEHS5cu5a233iIlJYXHH3+cpUuX8uGHH/LKK69w1VVXsX79egA+/PBD5syZw/Lly7n//vv54osvWLhwIRdeeCG33XYbANOmTePdd9/lgw8+4PTTT+emm27aZb+zZs3i4YcfBqC2tpZXX321PtkS6VJC1dSSgJkB4EvPI8mCbN6siS5ERER6q+71E2srPU0dZe7cufU9Oaeffjpz587lwAMPBGDKlCmMGDGivu7QoUM55JBDADjrrLO49dZb+da3vsWIESMYNWoUAOeeey533HEHl112GRBJKJpy/vnnc8wxx/Diiy/y1FNPcdddd/Hhhx/uUu8///kPTz/9NDfffDMA1dXVrF69GoBvfetbZGdnA/Cd73yHBQsWMGnSpDa97kMOOYSf//znnHnmmXznO99hyJAhLFiwgDPOOAO/309eXh6HHXYY77//PhkZGUyePJmBAwcCsPfee3P00UcDkZ63119/HYCioiJmzZrF+vXrqa2tbXDsdjj22GO59NJLqamp4cUXX+TQQw8lJSWlTTGLdCYL1lBrifXLiVmRqdrLitcwdPCgeIUlIiIicaQerFZs2bKF1157jQsvvJD8/Hz++Mc/8vDDD+OcAyAtLa1B/R2/ZDe33JTGbUQbNGgQF1xwAU899RSBQICPP/54lzrOOR577DGWLl3K0qVLWb16NWPGjNnjeHa45ppr+Pvf/05VVRWHHHJIixN8ACQlJdU/9/l89cs+n6/+GrWf/vSn/OQnP+Gjjz7irrvuorq6epd2kpOTOfzww3nppZeYN29eswmoSLz5Qg0TrFTvXljbStbFKyQRERGJMyVYrXj00Uc5++yzWbVqFYWFhaxZs4YRI0bw1ltvNVl/9erVvPPOOwD8+9//Ztq0aYwePZrCwkJWrFgBwP33389hhx3W6r5ffPFF6urqANiwYQMlJSUMHjyY9PR0Kioq6usdc8wx3HbbbfVJ3wcffFC/7uWXX2bLli3110Ht6F1ri5UrVzJhwgR+8YtfMHnyZD777DOmT5/OvHnzCIVCFBcX8+abbzJlypQ2t1lWVsbgwYMBuO+++5qtN2vWLP75z3/y1ltvMWPGjDa3L9KZfKEa6qISrMz+kWsma0qVYImIiPRWHZ5gmdkMM/vczFaY2TUdvb9Ymzt3LieffHKDslNOOaXZ2QRHjx7NHXfcwZgxY9i6dSuXXHIJycnJ/POf/+S73/0uEyZMwOfzcfHFF7e67//85z+MHz+e/fbbj2OOOYY//vGPDBgwgCOOOIJPP/2UiRMnMm/ePH7zm99QV1dHQUEB48aN4ze/+U19G1OmTOGUU06hoKCAU045pX544BlnnMHBBx/M559/zpAhQ7jnnnsAmDNnDnPmzAHgz3/+M+PHj6egoICEhASOPfZYTj75ZAoKCthvv/048sgjuemmmxgwYECbj+fs2bP57ne/y4EHHkhOTk59+aJFi7jwwgvrl48++mjeeOMNjjrqKBITE5tqSiTu/KFq6mxnz21mTuTHg1D5hniFJCIiInFmO3o9OqRxMz/wBfAtoAh4HzjDOfdpU/UnTZrkGk/CsHz58vrhbrJ77r33XhYtWsTtt98e71DiRn8/0pG+/J+D2RZOZOKv3ogUOEf19f15L/tkDvvp3fENTkRERDqUmS12zu0yuUFH92BNAVY4575yztUCDwEzO3ifIiKdIhCuJeiL6mE1o9TXl4TqzfELSkREROKqoxOswcCaqOUir6yemV1kZovMbFFxcXEHh9O7nHfeeb2690qkoyWEawj5khuUVSZkk1KjBEtERKS3ivskF865u51zk5xzk3Jzc5ur08lRSU+gvxvpaAFXS8jf8BrB6qRcMoIlcYpIRERE4q2jE6y1wNCo5SFeWZslJydTUlKiL8uyW5xzlJSUkJyc3HplkT2U4GoJ+5MalAVTc+nnSgmF9ZklIiLSG3X0jYbfB0aa2QgiidXpwPd2p4EhQ4ZQVFSEhg/K7kpOTmbIkCHxDkN6sERXQ9jfKIlPH0DfDZVsKi2nf7/M+AQmIiIicdOhCZZzLmhmPwFeAvzAP5xzn+xOGwkJCYwYMaJD4hMRaY9E6nCNerACGZHbFmwtXqsES0REpBfq6B4snHPPA8939H5ERDqVcyRRhws07MFK7jsQgMrNRTB6bDwiExERkTiK+yQXIiLdUrA68m+jBCvdu9nw9i3rOjsiERER6QKUYImI7IFwbSTBskDDIYKZuZHr/urKNnR6TCIiIhJ/SrBERPZATfW2yJOElAblyVkDCGNY5cY4RCUiIiLxpgRLRGQP1NVsB8CX0GgWQX8CZZaBf7tmPhUREemNlGCJiOyBmuoqAKxRDxZAub8fydVKsERERHojJVgiInsg6PVg+RN3vZl1VVIOfYIlnR2SiIiIdAFKsERE9kBdTaQHy9dED1Ztci5ZoS045zo7LBEREYkzJVgiIntgRw9WIHHXBCvUZyC5lFK+vaazwxIREZE4U4IlIrIHgrWRHix/Uuou63xZg0mwEFs2re3ssERERCTOlGCJiOyBkJdgBZJ2vQYrsW/kXlgVm1Z1akwiIiISf0qwRET2QMi70XBCYtou69JyhwFQXbKmU2MSERGR+FOCJSKyB8JeD1ZC8q49WP0GDAegdmtRp8YkIiIi8deuBMvM/mhmn5nZMjN7wsyyotb90sxWmNnnZnZMuyMVEelCXE0lAAkpGbus69N3ALUugJXrGiwREZHepr09WC8D451zBcAXwC8BzGwscDowDpgB/NXM/O3cl4hI11EXmUUwKaXPrut8Pjb7sknYvqGTgxIREZF4a1eC5Zz7j3Mu6C2+Cwzxns8EHnLO1TjnvgZWAFPasy8Rka7E1VRS4wKkpe46TTtAWUIuadUbOzkqERERibdYXoN1AfCC93wwEH11d5FXtgszu8jMFpnZouLi4hiGIyLSgWq3sZ1kUhKa7pyvSs4jK6jPNBERkd6m1QTLzF4xs4+beMyMqvMrIAg8uLsBOOfuds5Ncs5Nys3N3d3NRUTiwuq2UUUyPp81ub4ubSC54RLCoXAnRyYiIiLxFGitgnPuqJbWm9l5wPHAN51zziteCwyNqjbEKxMR6RF8we1U2a4zCNbLGETi+iCbN68nJ6/JDnwRERHpgdo7i+AM4GrgROfc9qhVTwOnm1mSmY0ARgIL27MvEZGuJBDcTq2v6euvABL7RX5jKt1Q2EkRiYiISFfQ3muwbgfSgZfNbKmZzQFwzn0CPAx8CrwI/Ng5F2rnvkREuoxAaDs1LSRYO242XFm8urNCEhERkS6g1SGCLXHO7dPCuhuBG9vTvohIV5UQqqLOl9Ps+qy8fABqtqxpto6IiIj0PLGcRVBEpNdICFcRDKQ2u75f/8EEnQ9XpstPRUREehMlWCIieyA5XN1ighVISGCz9SNQub4ToxIREZF4U4IlIrIHkl0V4RYSLIDSQA6p1Rs6KSIRERHpCpRgiYjsLudIphoSWk6wKpPySK/b3ElBiYiISFegBEtEZDeFq8vx4yA5q8V6takDyAkXQ/0tAkVERKSnU4IlIrKbKrduijxJ7ddivXDGYFKopaq8pBOiEhERka5ACZaIyG7aXloMQKBPdov1AllDAChZ/3WHxyQiIiJdgxIsEZHdVFUWSbAS0pu/DxZASk7kZsMVGws7OiQRERHpIpRgiYjsppqKSIKVnNFygpWRF0mwdLNhERGR3kMJlojIbqqrjFxTlZrVv8V6OQOGE3Q+QqVFnRGWiIiIdAFKsEREdlNdxWbCzsjJaTnBSk9Nppi++HWzYRERkV5DCZaIyG5y27ZQTiqZacmt1t3izyF5u242LCIi0lvELMEysyvMzJlZjrdsZnarma0ws2VmdkCs9iUiEk/+qmLKfFmYWat1K5L6k167sROiEhERka4gJgmWmQ0FjgZWRxUfC4z0HhcBd8ZiXyIi8danZiOlgdw21a1OGUC/0GbdbFhERKSXiFUP1i3A1UD0N4iZwL9cxLtAlpkNjNH+RETiJqtuE5XJbfs4C6UPJoUawtu3dnBUIiIi0hW0O8Eys5nAWufch41WDQai5yYu8spERLotF6yhn9tKbVrbEix/ZuRjr1T3whIREekVAm2pZGavAAOaWPUr4FoiwwP3iJldRGQIIcOGDdvTZkREOkXZxtVk4fD3bdvnVXL2UADKN66i3166FFVERKSna1OC5Zw7qqlyM5sAjAA+9C72HgIsMbMpwFpgaFT1IV5Z47bvBu4GmDRpki5SEJEubdPqz8kCMvLy21Q/3atXtXl1yxVFRESkR2jXEEHn3EfOuf7OuXznXD6RYYAHOOc2AE8D53izCU4FypxzuhmMiHRrlUWfAJCdX9Cm+tl5Qwk5I6ibDYuIiPQKberB2kPPA98GVgDbgfM7cF8iIp3CipdT5tIYOCS/TfVzMlLZRF+sfF3HBiYiIiJdQkwTLK8Xa8dzB/w4lu2LiMRbaukXrEkYzviAv031A34fW319CVQVd3BkIiIi0hXE7EbDIiI9XbiulqE1K6jIHLNb21UGskmpUYIlIiLSGyjBEhFpo6LP3iPVarDhB+/WdtXJuaQHt3RQVCIiItKVKMESEWmjTR+9BsCggiN2a7twWi5ZrgxCwY4IS0RERLoQJVgiIm3UZ9XLrPQNZ1j+Pru3YfoAfDiqyjZ2TGAiIiLSZSjBEhFpg62bihhZ/THr83av9wogKXMgAFs26F5YIiIiPZ0SLBGRNvjipbvwm2PwYeft9rap2YMBKN+8y73WRUREpIdRgiUi0opgzXZGfPUgnySMZ8S+++/29pm5QwCo3qJ7YYmIiPR0SrBERFrx4VO30t+VsG3qFXu0fc7AoQDUla2PZVgiIiLSBSnBEhFpQWXpZvI/vZNPEsYz+YiT9qiNPml9KHNpUKlJLkRERHo6JVgiIi34/L6fkunKsRl/wHx7/pFZ6u9LYLtuNiwiItLTKcESEWnGh8/dxYFbn+e9wecw9sDp7WqrMiGblFolWCIiIj2dEiwRkSYULv4PYxf+kmUJBRx4zh/a3V51Ui4ZdVtiEJmIiIh0ZUqwREQa2bJmOX2fOZ+1NoCBP3iE5OSUdrcZSutPP7eVcCgcgwhFRESkq2p3gmVmPzWzz8zsEzO7Kar8l2a2wsw+N7Nj2rsfEZHOUF1WTM293yHkjOrTHiK3/4CYtGt98kixWkpL1YslIiLSkwXas7GZHQHMBPZzztWYWX+vfCxwOjAOGAS8YmajnHOh9gYsItJRwrXVFN35HYYGi1l8+H18Y2xBzNpOyBwIwNZNa+iXnROzdkVERKRraW8P1iXAH5xzNQDOuU1e+UzgIedcjXPua2AFMKWd+xIR6TjO8cld57JP9TIWjL+BbxxxXEybT+43CICKzWtj2q6IiIh0Le3qwQJGAdPN7EagGrjSOfc+MBh4N6pekVe2CzO7CLgIYNiwYe0MR0Rkzyx54FoOKHmR1wb+gCNPvSTm7WfkRD4Cq7eui3nb3U11dTUVpZvYXrqZqm3lBGuqIFiNq6uCuirCoSDOQcg5Qg7MfPh9Pvx+P76EpMgjkIw/MQl/QhKBhGT8ickEEiNliYkp+BOTSUhKJsEfwOezeL9kERHpRVpNsMzsFaCpixB+5W3fD5gKTAYeNrO9dicA59zdwN0AkyZNcruzrYhILHzw0r84YOVfeafPtzjswpswi/0X8r55kR+QgmUbYt52VxIO1lG85nM2r/mcyg1fEdyyiqTKtaTXrCctuJWMcDkZtp3kToon6HzU4ie042G++udh8xMyP2FvOYgfos694eqf7XwOeM8t6vnOZcDtWO8a1G9Qh6g6rnGbzW3b8H+R1mg/kX+b+duNwZ90x6Sp1uJiB+5pNzbs+AS9+T20bd9VgXQCp/6dQSMnxigiEWmPVhMs59xRza0zs0uAx51zDlhoZmEgB1gLDI2qOsQrExHpUgo/fo/R/72SzxL2ZeKP7sPv75jJVVMysql1AajsOQlWyaZ1rPvkbSpXL8W/+TOyt61kaGgNeRYkz6tT6/wU+3LZmjCADX3Gsy6lHy61H6Rm40vtR1JKH/xJqfgSkiEhBV9CMr5AAgGf4fftGMfuCIbC1NUFCdVVE6qtJhysJVxXQyhYjaurwQVrcHU1hEM1EKyBYC0WqoVQLYSDuHAQwiEIB+sfFg6BC+IPB/ERwu+C9a9tZ3oTnRI18WXXgWvwBXxnioThpTxRqZrtrFPfnlnDbW3neov6d0d7kXqNExNrmPY1yMV2/e2yLb9mulYqNb8L13RxUy00U6HJYtfc+qYbaa2N1oodO5PYNjTRZAW3O7FFr9/Nn5snVb/DqkcuJe8Xr+H3+3dvYxGJufYOEXwSOAJ43cxGAYnAZuBp4N9m9icik1yMBBa2c18iIjFVvmUjyY+dSYWlkXPBw6SkpnXczszY6utLYHv3vNmwCwVZ9/n7bPzkTVzR++SVf8QQt4Fsb/1Gy2ZT8l4syvgG9N+X9IGj6D98FLl5wxgcCDQ9RlxEYmLxo3/kwI9/x1v3/ZrpF/xPvMMR6fXam2D9A/iHmX0M1ALner1Zn5jZw8CnQBD4cXecQXD15x+w7tU5jD71Ovr219cDkZ7EhcN8dc/5jA1vYcUJjzF20PAO32d5IJuUmu6RYLlwmFVfLGXj0pdIKnqbEZUfMJhKBgPF9KUobRxrB5xG2l4HMXTMVPL65dT3WolI5zrgO1fwwep3+MaqO1n47F5MOf4H8Q5JpFdrV4LlnKsFzmpm3Y3Aje1pP97WL3uVyRvnUXPHE7zX9ygyD7mAUQccia+DhhCJSOdZ/MSfmbTtbd7e5zIOmXREp+yzKimbPtuKOmVfeyJYvY0V7z5L1cdPM7TkbfLdVvKB9eSyPPNQQsOnM3i/bzJ8xEhyffocFOkqzOdjzMX38cWfZ3DA+1ezJCGZA445O95hifRa5nZ3oG8HmjRpklu0aFG8w2hg1RcfUvzi/zKm5BXSrIYiBlCUdzhp449j5IFHkpzaJ94h9ly7+7fZCRciS+zt+Azacbpd4/L65R3rG9Zv2FbTdRq3WbqhkJx/foMvk8cz7upXOu2ahUV3nMdem16h3/VdJ8mq3LqBlW89iu+LF9inciEp1FLhUlieNoXwXocz7MBjGTRiTLzDFJE22Fa+laJbZ7B33RcsHnU5U874NaYfQ/aMcxAO7fz/STj6/0ku6v9dO/9/E6nrdv7/qaXvMd53lp1fXWzH1ZZY1MynFnW9pZnt3C76vxb5T3TdBt+J9P2ow5jZYufcpF3KlWC1TUXZFr58/QECnz/D6O0fkGR11Dk/hQl7U9J3P6z/GFIGjqbfsLHkDRpGQqC9oy/bxoVD1FRvp7aqiprqbdRWb6Oupoq6mu0Eq7cTrKsiVFNFqHY74bpqwrVVUFeNq6uGYBUWrIZgNb5gDRauwR+qxh+qwVwInwthRP5t8CCEv/7fMDvn5ArhI4w5512C7RrNbrWjbMdyU/XAZ13jbzLs2vaB1NZom7xAvl31Wrajlc7e7+631/n7TSCEEab43P8yeK9929hy+y2692omFd5FxVXrSE/rwOu9WrGp8BPWvPMofQr/wz7Vn+A3x3qyWdn3UJLGH8/Yg79NWmpq3OITkT23vWIry+88mwO3v8WS1EMYfPqfyRs2Kt5h7bZwKEzltjK2l5dSVVFK9bat1Gwrp257GeHqCqipgNptuLoqXLAaC1ZjwRosFPlO4w/XEAjXkOBqSXC1BFxtg+8xPrdj/tBw/feZHd9jAoTwd5HvIh0t+rtOw7lSG/6/tOGEP9HaVq+l9hpranKhd5hA6Lv3M2N8UxObx09zCVbnZAE9QHpmPw446WfAz9hWUcrnC1+kYsXbZJYspWDT06QWPwKfROoGnY/NlkGZry/bAlmEAim4QApBfzJBXzKY4bOoeaAMwuEwFgpi4Vp84Rr8oRr84brIB4SrJRCuI+B9SCS6GhKpJcnVkWR1JMMeTXkcdkY1idRaArUkUmtJ1FkiQUskZAHC5k1j7EvAecvOK3O+AM78OAuAb+cy5sPMS6Ns50xXzvtlxUF9eXQdhzX4Fafx9rv++GKNlhp9EO7mDweNa0fPHNXcLFBNb9nKflqs7ppur4kia35VwzV7+AOKNXrS1Mel7XIOdj6xBvWa2oF3XnfEV7+ftrXZZJ36v5WWPvp37j555BGM7MTkCiAxexgUwobVX5I+ZmKn7deFQ3z94ZuULH6SvPWvMiy0hv7ACt8I/jv4AvoecBL7TjyEgQHNPibS3aWm92X/K57mvbk3UPDlHdg93+C/eacwYsbPGLjXuLjEVFO9jfKSTVRs3cj2rRupKS8mWLmZ8LYSfNtL8NeUklS7lZRgGX1CZaS5baRRTYY5MtrQfrVLoMYSqSWROkukzpII+iLPg75Eqiy9/rsMvsh3F+fzgwXA5wNfAOeLrDNvXdgC3uycUf9najRj6C7ljf/nCWCNexBdE/9vjp56sunnkRlJd/aW7fweEPmRurn/3ZsLN1m+Y5bMnd9xWvi+4BqmSjv/aeJ1uEb1dtm+4bpdv7/R5Lqa5OHk901pPsYuRj1YMRAOhShe+xVbVn9C1YYvqC1dB5XFJNeWkFJXSiBcTUK4mmRXQxK1O98g3n+cN51viAC1lhD5cCCRkC+BoCUS9CUR8iUS9icS9iURDiTj/Mm4QBIukIIlJEEgBUtMxh9IwZeUgi8hhUBSCoGkVAKJKSQkp5KQlEZScgoJyWkkpaSSlJikoQMinejrpfMZ8eRMFk69gykzmrx8NWZqq7fzxbvPUv3RM+SXvEUOWwk6H58mTaB8+NEMOegU8vfR0D+Rnmz96i9Z/9i1TCh9lQQL8UVgFCUDDyNtr4MYsu9k+uYN263vAc45qrZXUr5lI9u2FlNdvonaihLqKkpw2zfD9i0EqreSWLuVlGApaaEyMsIVpFl1s22Wk0a5ZbDdn0FVQha1iVmEkjIhsQ+WlIEvJR1/SiYJqZkkpmaS3CeTxLRMklIzSe6TQVJSaofdXkOkNRoiKCISZ1XlW0n5Uz5v5/+EQ86L/RxA5ZuKWPnfx/F9+SIjKxeRajVsc8ks73MQwZHHMnLad8jO0Vx/Ir3NuqKvWf3q38ha8wqj6r6oH4q/3SVR7sukwp9JtS8N80VGqoQwfOE6EsPVkYeL/JvuKkmx2mb3U+FSqPBlUOnPpCqQSW1SX0JJkXvf+dJySEjPJimjP2l9+9Onbx6Z/fqTkJjUWYdBJOY0RFBEJM5SMvpSTD8CJZ/HpL1QKMSKj96lZMnT5Kx7nVHBz9kf2EAOH2Z/m5Tx32bfg49nUoqupxLpzQYNGcGgc38P/J7KshK+/vg9Kld/CKWr8G3fTEpdKUmhSgiGwYXxEybkS6DOl0xVIIOgPwUSUgknZeK8m4QnpGeTmJ5LSmYOaV6ylJ6cQnq8X6xIF6AES0SkE63rM47hFUtw4fDuD9F1jk2rP2P1ohewr99gROViRlMBwBeBUSwY+kOyD5jJ6IKDGaAhMyLShD6Z2Uw45NtwyLfjHYpIj6UES0SkE9WMOIoBH73Fl8v+y8iJ01qsG6qrpfDT99j82dvY2sUMLf+AgRTTH9hEP77K/AaFex/GiINOZFTeULrfPGEiIiI9jxIsEZFOtO/hp1Ox7A/UvfArakc9Q2JqBjhH2dbNbPpqKVsLPyS84VOyypaTX/sle1sdewMlZLEmbQKFQ75P7n7HsPe+E+mvSWpERES6HCVYIiKdKCN7AAvG/YJpn86m9qYRFFsGaW4bmdSQ6dWpdCkUJY5gSf/vEBg+hSHjpzNw2EiylVCJiIh0eUqwREQ62bTTLueDt8dSufQJEmrLCCVm4M8cSMKAMQzYZ38GDt2HfXUNlYiISLekBEtEJA72P+QYOOSYeIchIiIiMdbun0jNbKKZvWtmS81skZlN8crNzG41sxVmtszMDmh/uCIiIiIiIl1XLMag3ARc75ybCFznLQMcC4z0HhcBd8ZgXyIiIiIiIl1WLBIsB2R4zzOBdd7zmcC/XMS7QJaZDYzB/kRERERERLqkWFyDdRnwkpndTCRh+4ZXPhhYE1WvyCtbH72xmV1EpIcLoNLMPo9BTLGUA2yOdxDSaXS+ew+d695D57p30fnuPXSue5eueL6HN1XYpgTLzF4BBjSx6lfAN4HLnXOPmdlpwD3AUW2Nyjl3N3B3W+t3NjNb5JybFO84pHPofPceOte9h85176Lz3XvoXPcu3el8tynBcs41mzCZ2b+AS73FR4C/e8/XAkOjqg7xykRERERERHqkWFyDtQ44zHt+JPCl9/xp4BxvNsGpQJlzbn1TDYiIiIiIiPQEsbgG6wfAX8wsAFSz83qq54FvAyuA7cD5MdhXPHTZ4YvSIXS+ew+d695D57p30fnuPXSue5duc77NORfvGERERERERHqEWAwRFBEREREREZRgiYiIiIiIxIwSrBaY2Qwz+9zMVpjZNfGOR2LHzIaa2etm9qmZfWJml3rl/czsZTP70vu3b7xjldgwM7+ZfWBmz3rLI8zsPe/9Pc/MEuMdo8SGmWWZ2aNm9pmZLTezg/Xe7pnM7HLvM/xjM5trZsl6b/ccZvYPM9tkZh9HlTX5XvYmVbvVO+/LzOyA+EUuu6uZc/1H73N8mZk9YWZZUet+6Z3rz83smLgE3QIlWM0wMz9wB3AsMBY4w8zGxjcqiaEgcIVzbiwwFfixd36vAV51zo0EXvWWpWe4FFgetfy/wC3OuX2ArcD34xKVdIS/AC865/YF9iNy3vXe7mHMbDDwM2CSc2484AdOR+/tnuReYEajsubey8cCI73HRcCdnRSjxMa97HquXwbGO+cKgC+AXwJ439dOB8Z52/zV+97eZSjBat4UYIVz7ivnXC3wEDAzzjFJjDjn1jvnlnjPK4h8ARtM5Bzf51W7DzgpLgFKTJnZEOA4vPv0mZkRua3Eo14VnesewswygUOJ3PQe51ytc64Uvbd7qgCQ4s1knAqsR+/tHsM59yawpVFxc+/lmcC/XMS7QJaZDeyUQKXdmjrXzrn/OOeC3uK7RO6pC5Fz/ZBzrsY59zWRGcundFqwbaAEq3mDgTVRy0VemfQwZpYP7A+8B+RF3a9tA5AXr7gkpv4MXA2EveVsoDTqg1vv755jBFAM/NMbEvp3M0tD7+0exzm3FrgZWE0ksSoDFqP3dk/X3HtZ39t6tguAF7znXf5cK8GSXs3M+gCPAZc558qj17nIPQx0H4NuzsyOBzY55xbHOxbpFAHgAOBO59z+wDYaDQfUe7tn8K69mUkkqR4EpLHrECPpwfRe7h3M7FdELu14MN6xtJUSrOatBYZGLQ/xyqSHMLMEIsnVg865x73ijTuGFHj/bopXfBIzhwAnmlkhkaG+RxK5RifLG1YEen/3JEVAkXPuPW/5USIJl97bPc9RwNfOuWLnXB3wOJH3u97bPVtz72V9b+uBzOw84HjgTLfz5r1d/lwrwWre+8BIbzaiRCIX0z0d55gkRrxrcO4Bljvn/hS16mngXO/5ucBTnR2bxJZz7pfOuSHOuXwi7+PXnHNnAq8Dp3rVdK57COfcBmCNmY32ir4JfIre2z3RamCqmaV6n+k7zrXe2z1bc+/lp4FzvNkEpwJlUUMJpRsysxlEhvef6JzbHrXqaeB0M0sysxFEJjZZGI8Ym2M7k0FpzMy+TeTaDT/wD+fcjfGNSGLFzKYBbwEfsfO6nGuJXIf1MDAMWAWc5pxrfIGtdFNmdjhwpXPueDPbi0iPVj/gA+As51xNHMOTGDGziUQmNEkEvgLOJ/KDot7bPYyZXQ/MIjJ86APgQiLXYui93QOY2VzgcCAH2Aj8FniSJt7LXpJ9O5FhotuB851zi+IQtuyBZs71L4EkoMSr9q5z7mKv/q+IXJcVJHKZxwuN24wnJVgiIiIiIiIxoiGCIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUi0sWYWb6ZOTMLxDsW6R3M7BMzOzzecYiI9ARKsEREpNszszlmVuk9as2sLmr5hXjH19U558Y55+bHsk0zu8nM1phZuZmtMrNrY9m+iEhXZc65eMcgItKjmFnAORdsx/b5wNdAQnva6a3MbDawj3PurCbWtevcdKbuFGtTzGw0UOSc22Zmg4H/AL9xzj0e59BERDqUerBERGLAzArN7BdmtgzYZmYBM5tqZv81s1Iz+zB6CJaZzTez/zGzhd4v/E+ZWb9m2j7fzJabWYWZfWVmP2y0fqaZLfXaWWlmM7zyTDO7x8zWm9laM/udmflbeR17m9lrZlZiZpvN7EEzy4pat8XMDvCWB5lZ8Y7XZWYnekPNSr3XN6bR8bnSzJaZWZmZzTOz5N0/0ruvmXPjzGyfqDr3mtnvopaP945pqXcOC9q4r8PNrMjMrvWOX6GZnRm1/jgz+8A7V2u8ZHDHuh1DQ79vZquB17zyR8xsg3fc3jSzcY3i/quZveD11r1tZgPM7M9mttXMPjOz/dt4jI5qy2tsK+fc5865bVFFYWCf5uqLiPQUSrBERGLnDOA4IAvIA54Dfgf0A64EHjOz3Kj65wAXAAOBIHBrM+1uAo4HMoDzgVuikpwpwL+Aq7z9HgoUetvd67W7D7A/cDRwYSuvwYD/AQYBY4ChwGwA59xK4BfAA2aWCvwTuM85N9/MRgFzgcuAXOB54BkzS4xq+zRgBjACKADOazIAs2leYtPcY1orr6Ep9eemtV4hLyH5B/BDIBu4C3jazJLauK8BQA4wGDgXuNvrzQHYRuS8Z3nxXGJmJzXa/jAix/4Yb/kFYCTQH1gCPNio/mnAr7191gDvePVygEeBP7Ux7iaZ2TUtnY82bFsJFAFpwL/bE4uISHegBEtEJHZudc6tcc5VAWcBzzvnnnfOhZ1zLwOLgG9H1b/fOfex9yv/b4DTmuphcs4955xb6SLeIDLUarq3+vvAP5xzL3v7Weuc+8zM8rx9Xeac2+ac2wTcApze0gtwzq3w2qpxzhUT+XJ+WNT6vwErgPeIJIa/8lbNAp7ztq0DbgZSgG80Oj7rnHNbgGeAic3EsMA5l9XCY0FLr6EZ0eemNRcBdznn3nPOhZxz9xFJXKbuxv5+4x3DN4gk2qcBOOfmO+c+8s7VMiJJ6WGNtp3tnbMqb5t/OOcqnHM1RJLd/cwsM6r+E865xc65auAJoNo59y/nXAiYRyS53mPOuT+0dD5a2xZIBw4A7gfK2hOLiEh3oARLRCR21kQ9Hw58t9Ev/dOIJCVN1V8FJBDpdWjAzI41s3e94XmlRBKnHfWGAiubiGW41976qP3fRaQXpFlmlmdmD3lDCsuBB5qI6W/AeOA270s/RHq8Vu2o4JwLe69vcNR2G6Kebwf6tBRLjK1pvUq94cAVjc7dUCKvsS22Nhoat2rHtmZ2kJm97g2tLAMuZtfjWx+rmfnN7A8WGfpZzs7eyehtNkY9r2piuTOP8y68HwY+8GK5Pp6xiIh0BiVYIiKxEz1r0BoiPVTRv/aneb/o7zA06vkwoA7YHN2gNyztMSI9Qnlej8HzRIby7djP3k3EsoZIr0tO1P4znHPjmqgb7ffe65jgnMsg0hO3Y1+YWR/gz8A9wGzbed3YOiKJyY565r2+ta3sbxdmNt12zgDY1GN6663sovGMTtuB1KjlAVHP1wA3Njp3qc65uW3cV18zS4taHkbk+EBkiNzTwFDnXCYwh6jj20Ss3wNmAkcBmUC+V954mw7jXU/W7PnYjaYCNP23KiLSoyjBEhHpGA8AJ5jZMV4vRLI3AcKQqDpnmdlY73qmG4BHvWFd0RKBJKAYCJrZsUSupdrhHuB8M/ummfnMbLCZ7eucW09kKOH/mVmGt25vM2s8HK2xdKASKLPIzG9XNVr/F2CRc+5CIkPf5njlDwPHeXEkAFcQSfD+29qBasw595Zzrk8Lj7d2t80mLAW+552bGTQcpvc34GKvt8nMLM0ik1OkQ/3EEve20v71ZpboJYPHA4945enAFudctXf93PdaaSedyHEsIZIQ/n43XmNMOOd+39L5aGob7+/th2bW1zuGU4AfA692bvQiIp1PCZaISAdwzq0h0vNwLZHkaA2RZCX6c/d+IhNRbACSgZ810U6FV/4wsJXIF/Kno9YvxJv4gsj1LW+wsyfpHCIJ2qfeto/ScIhiU64ncr1MGZEEqn5KbTObSWSSiku8op8DB5jZmc65z4n0dt1GpBfuBOAE51xtK/uLl0uJxFgKnAk8uWOFc24R8APgdiLHbQUNJ+QYCrzdQtsbvO3WEZmQ4mLn3Gfeuh8BN5hZBXAdkfPakn8RGWK4lsh5fLe1F9aFnExk+GoFkR8cbvMeIiI9mu6DJSISB2Y2H3jAOff3eMcibefNivghUOBN5tF4/eFEzuuQxutERKR3CMQ7ABERke7C65Eb02pFERHptTREUESklzGzOc1MWDCn9a2lOzKzYS1MVDEs3vGJiPQkGiIoIiIiIiISI+rBEhERERERiZEudQ1WTk6Oy8/Pj3cYIiIiIiIiLVq8ePFm51xu4/IulWDl5+ezaNGieIchIiIiIiLSIjNb1VS5hgiKiIiIiIjEiBIsERERERGRGFGCJSLSirpQGM24KiIiIm3Rpa7BakpdXR1FRUVUV1fHOxTpZpKTkxkyZAgJCQnxDkW6sVDYMf/3J7JhwJGc/YOfxzscERER6eK6fIJVVFREeno6+fn5mFm8w5FuwjlHSUkJRUVFjBgxIt7hSDe2YnUR3wq9BWvfIhi6jIBfHf8iIiLSvC7/TaG6uprs7GwlV7JbzIzs7Gz1fEq7VRZ9Wv/8q6KiOEYiIiIi3UGXT7AAJVeyR/R3I7EQ3Li8/vnWrz6MYyQiIiLSHXSLBEtEJF4CW1fWP68uXtlCTRERERElWG1iZlxxxRX1yzfffDOzZ8+OX0BR3n33XQ466CAmTpzImDFj6uOaP38+//3vf/e43VWrVnHAAQcwceJExo0bx5w5c2IUsUj34q8tp9SlEcYIb2nyfoIiIiIi9br8JBddQVJSEo8//ji//OUvycnJiVm7zjmcc/h8e57nnnvuuTz88MPst99+hEIhPv/8cyCSYPXp04dvfOMbe9TuwIEDeeedd0hKSqKyspLx48dz4oknMmjQoD2OVaQ78gWrqaAPtb5UEstXxzscERER6eLUg9UGgUCAiy66iFtuuWWXdcXFxZxyyilMnjyZyZMn8/bbbwMwe/Zsbr755vp648ePp7CwkMLCQkaPHs0555zD+PHjWbNmDVdddRXjx49nwoQJzJs3D4gkSIcffjinnnoq++67L2eeeWaT9+HZtGkTAwcOBMDv9zN27FgKCwuZM2cOt9xyCxMnTuStt95qMc6zzz6bgw8+mJEjR/K3v/0NgMTERJKSkgCoqakhHA43eWxuvfVWxo4dS0FBAaeffjoAW7Zs4aSTTqKgoICpU6eybNmy+n2de+65TJ8+neHDh/P4449z9dVXM2HCBGbMmEFdXR0AN9xwA5MnT2b8+PFcdNFFu7zucDhMfn4+paWl9WUjR45k48aNLZ1GkT3iD22nxpIoTRxIZs26eIcjIiIiXVy36sG6/plP+HRdeUzbHDsog9+eMK7Vej/+8Y8pKCjg6quvblB+6aWXcvnllzNt2jRWr17NMcccw/Lly5tpJeLLL7/kvvvuY+rUqTz22GMsXbqUDz/8kM2bNzN58mQOPfRQAD744AM++eQTBg0axCGHHMLbb7/NtGnTGrR1+eWXM3r0aA4//HBmzJjBueeeS35+PhdffDF9+vThyiuvBOB73/tes3EuW7aMd999l23btrH//vtz3HHHMWjQINasWcNxxx3HihUr+OMf/9hk79Uf/vAHvv76a5KSkuoTnt/+9rfsv//+PPnkk7z22mucc845LF26FICVK1fy+uuv8+mnn3LwwQfz2GOPcdNNN3HyySfz3HPPcdJJJ/GTn/yE6667DoCzzz6bZ599lhNOOKF+nz6fj5kzZ/LEE09w/vnn89577zF8+HDy8vJaPY8iu8sfqqbGkgimDCC7emm8wxEREZEuTj1YbZSRkcE555zDrbfe2qD8lVde4Sc/+QkTJ07kxBNPpLy8nMrKyhbbGj58OFOnTgVgwYIFnHHGGfj9fvLy8jjssMN4//33AZgyZQpDhgzB5/MxceJECgsLd2nruuuuY9GiRRx99NH8+9//ZsaMGU3us6U4Z86cSUpKCjk5ORxxxBEsXLgQgKFDh7Js2TJWrFjBfffd12QPUUFBAWeeeSYPPPAAgUCg/jWdffbZABx55JGUlJRQXh5JjI899lgSEhKYMGECoVCoPt4JEybUv77XX3+dgw46iAkTJvDaa6/xySef7LLfWbNm1ff2PfTQQ8yaNavFYy6ypwKhamp9yYTS8shxW6muDcY7JBEREenC2t2DZWZDgX8BeYAD7nbO/cXM+gHzgHygEDjNObe1PftqS09TR7rssss44IADOP/88+vLwuEw7777LsnJyQ3qBgKBBsPqou/HlJaW1qb97RiiB5Hhf8Fg01/s9t57by655BJ+8IMfkJubS0lJyS51mosTdp3OvPHyoEGDGD9+PG+99Rannnpqg3XPPfccb775Js888ww33ngjH330UZtek8/nIyEhoX5fPp+PYDBIdXU1P/rRj1i0aBFDhw5l9uzZTd7L6uCDD2bFihUUFxfz5JNP8utf/7rF/YrsqYRQFbW+LJIyBpJsdawp3sTQwboWUURERJoWix6sIHCFc24sMBX4sZmNBa4BXnXOjQRe9Za7tX79+nHaaadxzz331JcdffTR3HbbbfXLO4bC5efns2TJEgCWLFnC119/3WSb06dPZ968eYRCIYqLi3nzzTeZMmVKm2N67rnn6q9R+vLLL/H7/WRlZZGenk5FRUWrcQI89dRTVFdXU1JSwvz585k8eTJFRUVUVVUBsHXrVhYsWMDo0aMb7DscDrNmzRqOOOII/vd//5eysjIqKyuZPn06Dz74IBC5liwnJ4eMjIw2vZ4dyVROTg6VlZU8+uijTdYzM04++WR+/vOfM2bMGLKzs9vUvsjuSghXE/QlkZQVSapKi9fEOSIRERHpytqdYDnn1jvnlnjPK4DlwGBgJnCfV+2+/9/encdXVd77Hv/89pDszBNhSphUQIYwaBgUUaBObVXaokKPWpFWb1tbr95O2lar9vR123pOT2+rrVePltpah2qrnNM6VaUWr0NBVBBEUZBBhpCQkHGPz/1jb0ISEgJkJzvD9/165ZW1nvWsZ/1gZe2sX55nrQf4TFeP1Rt84xvfYN++fc3rv/jFL1i9ejVTpkxh4sSJza8zX7RoEVVVVUyaNIk777yTcePGtdveZz/7WaZMmcLUqVNZsGABP/3pTxk6dOhRx/O73/2O8ePHM23aNK644goefPBBvF4vF154IX/+85+bX3LRUZwQH+Y3f/58Zs+ezc0338zw4cPZuHEjs2bNYurUqZx11ll885vfpKysDIAvfelLrF69mmg0yuWXX05ZWRnTp0/nuuuuIz8/n1tvvZU1a9YwZcoUbrzxRn772992FP5h8vPzufrqq5k8eTLnnXceM2bMaN529913t4p78eLF/P73v9fwQOlWfhck7Mkga1AJAHVKsEREROQIrL030x13Y2ajgZeAycA251x+otyA/QfX2+xzDXANwMiRI0/96KPW88xs3LiRCRMmJC1Gae3WW29t9TKM/kY/P9JVB24bwetZZzFryffJ+c9ZrJz4Q+Zdel2qwxIREZEUM7M1zrnytuVJe8mFmWUDjwPXO+daverPxbO4djM559w9zrly51x5cXFxssIREUmKNNdE1JtBdnG8Byt2YFeKIxIREZHeLCmvaTczP/Hk6kHn3J8SxXvMbJhzbpeZDQP2JuNYkly33nprqkMQ6b1iMQKEiPkysPQc6snAU6f51kRERKRjXe7BSgz/uw/Y6Jz7WYtNK4ArE8tXAk929VgiIj0qEn/RS8yXAUC1t5D0Jv2tSERERDqWjB6sOcAVwDozezNR9l3gx8CjZvZF4CPg0iQcS0Sk54RbJ1j1acVkh/YdaQ8REREZ4LqcYDnnVgHWweZPdLV9EZGUCTfEv/szAQgGislveDuFAYmIiEhvl7SXXIiI9DuhgwlWfILuaNZgiqmiMdj+pN8iIiIiSrCO0hNPPIGZ8e6773ZYZ+vWrUyePDlpx9y0aRPz5s1j2rRpTJgwgWuuuQaITxL817/+9bjbbWpqYubMmUydOpVJkybxgx/8IFkhi/QrkVB8iKD540MELWcYAQtTUannsERERKR9SrCO0kMPPcQZZ5zBQw891O72SKTrf9GORqOt1q+77jpuuOEG3nzzTTZu3MjXv/51oOsJVnp6Oi+88AJvvfUWb775Jk8//TSvvvpql2IX6Y/CwSYAPP50ANIKhgNQs3dHymISERGR3k0J1lGoq6tj1apV3HfffTz88MPN5StXrmTu3LlcdNFFTJw4EYgnWpdddhkTJkzg4osvpqEhPsTo+eefZ/r06ZSVlbFs2TKCwSAAo0eP5jvf+Q6nnHIKf/zjH1sdd9euXZSWljavl5WVEQqFuOWWW3jkkUeYNm0ajzzyCPX19SxbtoyZM2cyffp0nnwy/sLG5cuXs3DhQubNm8fYsWO57bbbADAzsrOzAQiHw4TDYeIvg2ztj3/8I5MnT2bq1KmceeaZQLz366qrrqKsrIzp06fz4osvNh/rM5/5DOeccw6jR4/mzjvv5Gc/+xnTp09n9uzZVFVVAXDvvfcyY8YMpk6dyqJFi5r/f1qaPXs277zzTvP6vHnzWL169VGfL5FkCQXjP5/exBDBrKL4XFj1+3amLCYRERHp3ZIyD1aPeepG2L0uuW0OLYNP/viIVZ588knOP/98xo0bR1FREWvWrOHUU08F4I033mD9+vWMGTOGrVu3smnTJu677z7mzJnDsmXL+NWvfsXXvvY1li5dyvPPP8+4ceP4whe+wK9//Wuuv/56AIqKinjjjTcOO+4NN9zAggULOP300zn33HO56qqryM/P5/bbb2f16tXceeedAHz3u99lwYIF3H///VRXVzNz5kzOPvtsAF5//XXWr19PZmYmM2bM4NOf/jTl5eVEo1FOPfVUNm/ezLXXXsusWbMOO/7tt9/OM888Q0lJCdXV1QDcddddmBnr1q3j3Xff5dxzz+W9994DYP369axdu5ampiZOOukkfvKTn7B27VpuuOEGHnjgAa6//no+97nPcfXVVwPw/e9/n/vuu6+5Z+6gxYsX8+ijj3Lbbbexa9cudu3aRXn5YZNki3S7SCjeg3UwwcotHgFAsFoJloiIiLRPPVhH4aGHHmLJkiUALFmypNUwwZkzZzJmzJjm9REjRjBnzhwALr/8clatWsWmTZsYM2YM48aNA+DKK6/kpZdeat5n8eLF7R73qquuYuPGjVxyySWsXLmS2bNnN/d8tfTss8/y4x//mGnTpjFv3jyamprYtm0bAOeccw5FRUVkZGTwuc99jlWrVgHg9Xp588032bFjR3MS1tacOXNYunQp9957b/PwxVWrVnH55ZcDcPLJJzNq1KjmBGv+/Pnk5ORQXFxMXl4eF154IRDvedu6dSsQT8Lmzp1LWVkZDz74YKueqoMuvfRSHnvsMQAeffRRLr744nb/f0S628Ehgt60+DNYecXxHqzogd0pi0lERER6t77Vg9VJT1N3qKqq4oUXXmDdunWYGdFoFDPjjjvuACArK6tV/bZD7dobetdW2zZaGj58OMuWLWPZsmVMnjy53UTIOcfjjz/O+PHjW5W/9tprncaTn5/P/Pnzefrppw97Qcfdd9/Na6+9xl/+8hdOPfVU1qxZc8R/R3p6evOyx+NpXvd4PM3PqC1dupQnnniCqVOnsnz5clauXHlYOyUlJRQVFfH222/zyCOPcPfddx/xuCLdJRKOJ1i+tPjPsgXyaCINT92eVIYlIiIivZh6sDrx2GOPccUVV/DRRx+xdetWtm/fzpgxY/jHP/7Rbv1t27bxyiuvAPCHP/yBM844g/Hjx7N161Y2b94MwO9+9zvOOuusTo/99NNPEw6HAdi9ezeVlZWUlJSQk5NDbW1tc73zzjuPX/7ylzjnAFi7dm3ztueee46qqioaGxt54oknmDNnDhUVFc1D/hobG3nuuec4+eSTDzv+Bx98wKxZs7j99tspLi5m+/btzJ07lwcffBCA9957j23bth2W2B1JbW0tw4YNIxwON7fTnsWLF/PTn/6UmpoapkyZctTtiyRTNBTvMfYnerAwY7+nkLSmihRGJSIiIr2ZEqxOPPTQQ3z2s59tVbZo0aIO3yY4fvx47rrrLiZMmMD+/fv5yle+QiAQ4De/+Q2XXHIJZWVleDwevvzlL3d67Geffbb5JRPnnXced9xxB0OHDmX+/Pls2LCh+SUXN998M+FwmClTpjBp0iRuvvnm5jZmzpzJokWLmDJlCosWLaK8vJxdu3Yxf/58pkyZwowZMzjnnHO44IILALjllltYsWIFAN/61rcoKytj8uTJnH766UydOpWvfvWrxGIxysrKWLx4McuXL2/Vc9WZH/7wh8yaNYs5c+a0SupWrFjBLbfc0rx+8cUX8/DDD3PppZceddsiyda2Bwugzj+IrKASLBEREWmfHez16A3Ky8td27fFbdy4kQkTJqQoor5t+fLlrV6GMRDp50e64v3//hljV9/GW0tWM/XksQCs+4+F5NRsYvStHc+JJyIiIv2fma1xzh32Jjb1YImIdCAaTgwRTA8cKssaQpGrJhSJpSosERER6cWUYPVjS5cuHdC9VyJd5RJDBNNbJFiWPZQca2Tf/qpUhSUiIiK9WLcnWGZ2vpltMrPNZnbj8bTRm4YxSt+hnxvpqlgiwUpLz2wu8+cPA2D/nu0piUlERER6t25NsMzMC9wFfBKYCHzezCYeSxuBQIDKykrdLMsxcc5RWVlJIBDovLJIB1wkRND5SE/zNpdlFsbnwqqr0GTDIiIicrjungdrJrDZOfchgJk9DCwENhxtA6WlpezYsYOKCr21S45NIBCgtLQ01WFIH+YiQUL4CfgPJVg5xfGfqWC1EiwRERE5XHcnWCVAy3E0O4BZLSuY2TXANQAjR448rAG/38+YMWO6MUQRkQ5Eg4Twke071NmfPyT+ORWp2Z2qqERERKQXS/lLLpxz9zjnyp1z5cXFxakOR0SkmSV6sNK8hz4qvVlFhPFhdXtSGJmIiIj0Vt2dYO0ERrRYL02UiYj0ftFQPJkyO1Rmxn5PAWmNe1MXl4iIiPRa3Z1g/RMYa2ZjzCwNWAKs6OZjiogkhUWDhM1/WHmdr4iM4L4URCQiIiK9Xbc+g+Wci5jZ14BnAC9wv3Pune48pohIsniiISKWdlh5Y2AQuQe2pSAiERER6e26+yUXOOf+Cvy1u48jIpJsFg0RbifBimQMZljNm0SiMXzelD/KKiIiIr2I7gxERDrgiYWItjNE0OUMpdDqqDxQl4KoREREpDdTgiUi0gFvLETUc3gPlj9vGAD79+zo6ZBERESkl1OCJSLSAa9rP8EKFAwHoHafEiwRERFpTQmWiEgH/LEgEU/6YeU5xaUANFZp1gkRERFpTQmWiEgH0lyQqDdwWHn+4Pj0fpGa3T0dkoiIiPRySrBERDrQUYKVljuEKB6sdlcKohIREZHeTAmWiEgH0lwI106ChddHlRWS1qAES0RERFpTgiUi0h7nyCCI87eTYAHV/sFkB/f0cFAiIiLS2ynBEhFpTyQIgPNltLu5PjCEgvDenoxIRERE+gAlWCIi7XDhxviCv/0EK5I9nMFuH5FItAejEhERkd5OCZaISDtCwXoAPB0kWJZXSsDCVFToOSwRERE5pEsJlpndYWbvmtnbZvZnM8tvse0mM9tsZpvM7LwuRyoi0oNCjfEEiw6ewQoMGglA1cdbeiokERER6QO62oP1HDDZOTcFeA+4CcDMJgJLgEnA+cCvzMzbxWOJiPSYgwmWJy2z3e05g0cBULd3a0+FJCIiIn1AlxIs59yzzrlIYvVVoDSxvBB42DkXdM5tATYDM7tyLBGRnhRqagDA20GCVTT8hHi9ym09FpOIiIj0fsl8BmsZ8FRiuQTY3mLbjkSZiEifEG6K92D50ttPsLIKhhHGCwd29mRYIiIi0sv5OqtgZn8Dhraz6XvOuScTdb4HRIAHjzUAM7sGuAZg5MiRx7q7iEi3CAcTPVgdJFh4POzzDCKt/uMejEpERER6u04TLOfc2UfabmZLgQuATzjnXKJ4JzCiRbXSRFl77d8D3ANQXl7u2qsjItLTIokEq6MeLIAD/iFkabJhERERaaGrbxE8H/g2cJFzrqHFphXAEjNLN7MxwFjg9a4cS0SkJ0UTCZY/0HGC1ZQ5lMJIRU+FJCIiIn1AV5/BuhPIAZ4zszfN7G4A59w7wKPABuBp4FrnnGbjFJE+IxqKJ1hpgayO6+QMp9hVUd8Y7KmwREREpJfrdIjgkTjnTjrCth8BP+pK+yIiqRJtrAMgMzu3wzre/BH4t0XZsXsbY8aM7anQREREpBdL5lsERUT6jVhTDQDZOYUd1skojr+Yp3rX1p4ISURERPoAJVgiIu0JHqDOBcjOTO+wSt6Q0QDUV3zUQ0GJiIhIb6cES0SkHZ7gAerIxOuxDusUDj8RgMj+7R3WERERkYFFCZaISDt84TrqreMXXAD4swppIIBHkw2LiIhIghIsEZF2+MMHaPQcOcHCjEpvMYEGTTYsIiIicUqwRETakRato8mb3Wm92vSh5IY02bCIiIjEKcESEWlHIFpP2Nd5ghXMGs6gaAXOuR6ISkRERHo7JVgiIu0IxOoJ+3M6redySxlkNVRV1/RAVCIiItLbKcESEWlHlquH9M4TLF9hfC6sSs2FJSIiIijBEhE5TDRYTxoRLCO/07rZxaMBqNm9pXuDEhERkT5BCZaISBsHKnYAYNmDO62bP3wMAMF9W7szJBEREekjlGCJiLRRWxl/7bovf3indQuGjCLmDFezo7vDEhERkT4gaQmWmX3DzJyZDUqsm5n9wsw2m9nbZnZKso4lItKdGivjEwcH8od1Wtf8Aao8+fjqNBeWiIiIJCnBMrMRwLnAthbFnwTGJr6uAX6djGOJiHS3UM0uALIHlR5V/f2+IWQ27urOkERERKSPSFYP1n8A3wZaTgSzEHjAxb0K5JtZ538OFhFJsXD1LiLOw5ChnQ8RBKgPDKUgrMmGRUREJAkJlpktBHY6595qs6kE2N5ifUeirO3+15jZajNbXVFR0dVwRES6zNXuocryyMkMHFX9cPZwBscqiEZj3RyZiIiI9Ha+o6lkZn8Dhraz6XvAd4kPDzwuzrl7gHsAysvLXSfVRUS6XWbDDiq9g+n8HYIJeSMI7AqzZ+9Ohgwb0Z2hiYiISC93VAmWc+7s9srNrAwYA7xlZgClwBtmNhPYCbS80yhNlImI9GqDgjt4P3PaUddPHxT/qKv6eIsSLBERkQGuS0MEnXPrnHODnXOjnXOjiQ8DPMU5txtYAXwh8TbB2UCNc05PgYtIrxYN1lPs9hHOP+Go98kpHglA7b7tndQUERGR/u6oerCO01+BTwGbgQbgqm48lohIUny8ZQMjgPQhY496n6KhowEIVqmTXkREZKBLaoKV6MU6uOyAa5PZvohId6vc8hYjgMKRE496n5yiYcScET2gTnoREZGBLmkTDYuI9AfRHW8SdD5Kxx/93OjmS6Pak4e3Tq9qFxERGeiUYImItJBZuY4t3tFkZmQe0341vkFkBPd2U1QiIiLSVyjBEhFJiEXCjGjaRHX+pGPetyG9mJxwZTdEJSIiIn2JEiwRkYTt77xCNo0weu4x7xvOHExhrJJYTNP5iYiIDGRKsEREEnaufQaA0aeed+w7Zw+liANU1dYnOSoRERHpS5RgiYgAzjlytj/Ph74TGVoy8pj39+UPx2OOyj07uiE6ERER6SuUYImIAO9+8CETI+9SP/qc49o/o7AEgAMVmmxYRERkIFOCJSICbP/7b/GaY9SZlx3X/jnFIwBo1GTDIiIiA5oSLBEZ8KIxx6jtK9iaNo7ckVOOq42CIfFhhZFqJVgiIiIDmRIsERnw1q15mfFsoW7CJcfdhj93CFE8UKvJhkVERAYyJVgiMuDVvPoAYeflpAVLj78Rj5f9lo+/QQmWiIjIQKYES0QGtKZgkEn7nubd3NMJ5A3uUlu1/iICwYokRSYiIiJ9ka+rDZjZ14FrgSjwF+fctxPlNwFfTJRf55x7pqvHEhFJtvV//zPlVsPe6f/S5bYa0weTW9v/nsGKRsJUfLyVyp2baarcQaS+kljDfqyxGos0QCwKLoq5GB5zOG+AmDcA/gD4MsCfiaVn4Q3k4M/MIS0zj/TMXAJZuWRk55GZnU9aZi54u/wrSUREJOW69NvMzOYDC4GpzrmgmQ1OlE8ElgCTgOHA38xsnHMu2tWARUSS6q2HqCaH8XMXdbmpSOYQBh9YRzgaw+/tewMEXCzGzg/foeK91wjuXEegahPFTR8yJFbBUIsxtE39BpdOg2Xg8BAzDzE8xDDSXIg0FyJAiHQLH/Xxg/hpJIMmTwZBTwZNlkHQk0nMfGCGmYEZOIgBDsM5AAfOYcSIFzjMxdp8P1RuxJc9LgbQvJ+R+Eq01byOw3NwnzbL1uarw/9brJ3S9srosJX222i/vKM22m+hN+nlEfZQeMd6mKClk3b5w5ScMKlb4hGRY9PVPxd+Bfixcy4I4JzbmyhfCDycKN9iZpuBmcArXTyeiEjS1FTto6zuZd4avJCZ/vSuN5gzlEF7DvBxdS3Di/K63l43i0YifPj2Kqo2rCTt49cZ1bCOUg5QCkSchx3eEnZnTeCjvE/hLRhJ5uDR5AweTXbBYPIKBpGZFiCzk2OEw2EaG+sI1tfSUFtNU/0BgvUHCDfWEGqsJdpYSyxYB6E6CNbhCdfjCdfjjzYQiDUQiNbhIdqcOMUTIeIJjcW/Ozw4O1jaYtk8YNZ6nXiy5ji4zQMkErdEnViLsoPpVctlZ/H0ikQadrC9jpOa9ra4dhc70rYN10H5ERs8iuOkUo+FdxwH6qnY3HEcyZyj/MBzvLbqD5Sc8KNuiEpEjlVXE6xxwFwz+xHQBHzTOfdPoAR4tUW9HYmyw5jZNcA1ACNHjuxiOCIiR2/Ti79npoXJP+0LSWkvrWAYAJV7dvTaBKt63242v/IkvP8cJx54lbHUArDThvBB3mlsHjGLgrGnMWLcNEZnZDK6i8fz+/34/QWQWwDD9Bkv0h0++OF0sravTHUYIpLQaYJlZn+Dw0aGAHwvsX8hMBuYATxqZiccSwDOuXuAewDKy8t7+d/XRKQ/ydz0J7bbcMZOm5uU9gKFpQDUVWwnPkK6d9hfsYv3//4Hst5fwclNb1Fujv3k8kHubBh7DqNOPZ+S4aPa/yuYiPR6+0eeyykf/l8+en8do8aWpTockQGv0wTLOXd2R9vM7CvAn5xzDnjdzGLAIGAnMKJF1dJEmYhIr1CxcwsTg2/z2sirGeFJzvNSecXxHpqmqtR/3IUbD7Dx+d/j1v+JiY1vMNOibLfhvFa6lKJTFnLS1LmU+/RSCZH+YPS5XyV69718/NwvGTX2nlSHIzLgdfW36xPAfOBFMxsHpAH7gBXAH8zsZ8RfcjEWeL2LxxIRSZotKx+g2BzD516RtDbzBsd7sMI1u5LW5jFxjl0bXmbP3+9h7N5nmEITuyhmTcllFM9ewgmTT0taMikivcegYaNYmzePSXv+i6r9VRQWFKY6JJEBrasJ1v3A/Wa2HggBVyZ6s94xs0eBDUAEuLYvvkFw81ur2P/8zxl24c2Ujp2a6nBEJIkGbXmSTd6xjB83JWlterKLieDB6nYnrc2jEaqt4v2/3UfOhj8wMvwh+S6NN3LmE5i1lGmnn8+wPvhGQxE5NkXn/C9yH/80/+/xH3H6l/491eGIDGhdSrCccyHg8g62/Qjo06+z2b/lLSbVvET678/i7YxTCU1ewsnzlpCdnZPq0ESkC/Zse48TIh+w6oQbGJ/Mhj1eqj0FpDfsSWar7XOO3etXsm/l3ZxU+QKTCPGuncgLJ93IpHO/yJzBXZs0WUT6lpFlZ7DmmXlM2/47Pt7xNYaXjkl1SCIDlgbgH8GMz1xLxWkXse6/f87I7U8wbPU3afznd3k7czpNoxcwZNr5jDipDI/Xm+pQe5RzjnAkSiQSIhoJE4tGIRrGRSPEYlGcc7hYjBgQi8VwLpYoc8QcuMS8NM2vXY43Gn9LcnxSm07nlDnI2s4WYhZv50j7WHzP1mVH2sla7HeEY7dXqYXDX7/buq7r8B3Plti/cx220d72zv6jjqP9+Ouqj1zpUBvHMAeQtf2/OvIsP52FuWPVwwwBRsy4sJOax64mbSh5wY+T3u5BofoaNj13H3nvPMDI8BayXAav5J1P9mnLOGXWPE729PJ5hESk25Rc/L/x/uZMKh78MsO+9RSmIcFHFosRi4YJhUOEw2Gi4TDhSGI5EoZYFBcL46JRLBaO38s4cMQOzRyRWD44J198+8F7nYTme5uEFr/TWt5LWKvP74P3Hi3K2lm2xMQVbTfj6Wj7wXISU1gkSuxQvUOrLepiLWKxFvu0bLfFdmvZUNuwW7Rlrf/Nh4o9rcqcN43cwiEE/H3jnts6vlHpeeXl5W716tWpDqNdsWiU915/ipo3/szwfS8zwsWfsahzGWxJG0tN7nj8g8aQOfgEAoNPIH9wKQWFxfj8aUk7frCxnlBTPaFgA+HGhvj3pnoiwQYiwUaioQaioQZioSZikSCxUBMu0gSRJogEIRLEE23CoiG8sRDeWBBfLITPhfDFQvhdCJ8L43URPETxumj8OzG8iXUvUXzE8Fjv+bkROR57KaT4lg+SfgPyxi/+hRFVL1N860dJbXfnu/9kzwt3MX7vU2TRxCY7gZ0nfp5J532RIcVFST2WiPRdrzz4r5z2/h28MvZbnHbZ91MdTlJEI2Hqq/dRV1NFQ91+mmr3E6yrJtxQQ7SxBoIH8IRq8YVr8YQb8ESb8ESD+KJN+GJBfC7YPAF6OiHSCJHuQnh1L9NnrIxOpe6Sh7lgyvBUh9KKma1xzpW3LVcP1lHyeL2cfNoFcNoFOOfY+eF6dr71Iny8loKaDZxUuYKMyiBsar1fHRnUkUWjJ5OY+YiZj6j5EmmLBy9RPM2JTHzZXAS/C8c/CBIfBukWJgPIOI7YY84I4idkaYQPfrc0Ige/e/yEvLlEPOlEPX6cx48zH87jBY8v8XVo2Tw+zJtY9vridc2L83gTN6sezCzxBQcn7DRLlEP8LxbNE4O27HU4OGmna7WtPYf/beDwD8q2ddqdnPOwOocKDtbrqJ22BzvaTqFj6WM4mp68Yz9e6zaPGLc7cryt9z081s76qdrtCeygbmeO5f+q4MTybvnrbqTgRIqr/kJVVSWFhV1LfEJNDbzztwfIevu3jAttoMj5eSNnPumnXc202WczXs9WiUgbs5bcxJv//jKz3vs3/vlkETMWfiXVIR3GxWLU7K+kas9WGip30lS9h0htBa5+H57GSvxNVQTC+8mKVJPnash19eSaI/cIbQadnzrLpNEyCFs6YU86UU86YX8OTd5iot50op4AUV86MW8A503HefyY1495fHi88Xsa8/rweP3x+5zEvZDzeMF84PFgLXpvDvW2NJceuvex1r/f2rufadXJ0WL5UHl7ZYfKnWv5e88daiPxvdUeLerG73Nci6YSd13NRa5VPJbomWsdU+sYDt+eaMm1aIP4xNgtg2p5X+ZalLfdn8AQykp65/yS7VGCdRzMjJITyyg58dBcEy4Wo6LiY/Ztf59gxRbCB/YQrqvCNVWTFjqAL1qPRSNYLIzHRYinWBGi5iNMGjHzErWDF7AX500j5g3EPwR8AfAFwJ8B/gDmz8T8GXjTMvCmZ+BNy8QXyMCXlkVaIIP0jCzS0jNID2SSHsjE508jw+y4kjMROTbZJRPgA9i26U0KT/vEsTfgHB+89Q8qV/2G8fueYTr1bLNhrDrhesad92VOHzIs+UGLSL/h8Xo5+Wt/ZMPPP8WMtTfy8q53mLH0p6QFMnvk+NFIhP17d1C1eyv1+7YTqtpBrOZjfPW7yGjaS264gkGxSvItSH7bfZ1RbbnUevJo8BdQlX0Se9MLiWQUQUYh3ow8/Fn5pGfnE8guIDO3gKzcAjKzC0hPC5DeI/9Ckc5piKCISBJVf7yZ/HtO5eWx32LOMQzP2btzC1tfXM6QD//EqNg2mpyfdblnklZ+BZPPuAjvAHvWU0S6JtTUwLp7/wenVq7gYxvMzvFXMXbBF8hPTCdxPJrqa6ja9RG1FdtpqNxOeP9OqN2Fv343WcG95Ef2Uej247NYq/1Czkulp5AaXzH16YOJZA2FnGH4CksJFJSQXTiUvKJh5BYUD7jn2qVv62iIoBIsEZEk23HbePYFxjDtO08fsd7ebZv4aNXD5G55ivHhjQBs8E2gZtwlTDjnSvILBvVEuCLSj7390grSX/pXxkfizzBs8Y6mKnsc4dxR+LILiKXl4PH68LoI4XCIWFM9NFXjC1bjCVaTFqwiJ7yPwlglOTQe1n6ty6DSU0RtWjGNgSFEsofhzR1OWtEIsgeNoGDoKAqLhytxkn5Jz2CJiPSQnYPmMm3vE+zbsZlBpSc1l0eCDWxe8zzV659l0J5VnBT9kMHA+54TeGXUVyk54/NMHJu8eblERKaceRFu7oVsXvcqH6/+L/L2vMLwmjcYVvNsh/tEnXGAbOo82TR486jMGMOuzNnEsofhyRtOoKCE3CGjKBo2itzcfHKO4620Iv2ZerBERJJs+5ZNFC+fQ4V3CBWlZxNrqiW7+l1GB98jYGHCzsv76RM5MGIBQ2dfyuixk1MdsogMME1NTdTU7CfaeIBoNEIULxmBdDKzcsjKKVCPk8hR0BBBEZEe9M/nH6f4HzdT4nYTJI1t/tEcKCjDN3YB42afT25uQapDFBERkS7QEEERkR404xOLcAs+R2M4Spbfy0QNoRERERkQlGCJiHQTMyMzTR+zIiIiA4lmqRQREREREUkSJVgiIiIiIiJJogRLREREREQkSXrVWwTNrAL4KNVxtDEI2JfqIKTH6HwPHDrXA4fO9cCi8z1w6FwPLL3xfI9yzhW3LexVCVZvZGar23v9ovRPOt8Dh871wKFzPbDofA8cOtcDS1863xoiKCIiIiIikiRKsERERERERJJECVbn7kl1ANKjdL4HDp3rgUPnemDR+R44dK4Hlj5zvvUMloiIiIiISJKoB0tERERERCRJlGCJiIiIiIgkiRKsIzCz881sk5ltNrMbUx2PJI+ZjTCzF81sg5m9Y2b/M1FeaGbPmdn7ie8FqY5VksPMvGa21sz+O7E+xsxeS1zfj5hZWqpjlOQws3wze8zM3jWzjWZ2mq7t/snMbkh8hq83s4fMLKBru/8ws/vNbK+ZrW9R1u61bHG/SJz3t83slNRFLseqg3N9R+Jz/G0z+7OZ5bfYdlPiXG8ys/NSEvQRKMHqgJl5gbuATwITgc+b2cTURiVJFAG+4ZybCMwGrk2c3xuB551zY4HnE+vSP/xPYGOL9Z8A/+GcOwnYD3wxJVFJd/g/wNPOuZOBqcTPu67tfsbMSoDrgHLn3GTACyxB13Z/shw4v01ZR9fyJ4Gxia9rgF/3UIySHMs5/Fw/B0x2zk0B3gNuAkjcry0BJiX2+VXivr3XUILVsZnAZufch865EPAwsDDFMUmSOOd2OefeSCzXEr8BKyF+jn+bqPZb4DMpCVCSysxKgU8D/5lYN2AB8Fiiis51P2FmecCZwH0AzrmQc64aXdv9lQ/IMDMfkAnsQtd2v+GcewmoalPc0bW8EHjAxb0K5JvZsB4JVLqsvXPtnHvWORdJrL4KlCaWFwIPO+eCzrktwGbi9+29hhKsjpUA21us70iUST9jZqOB6cBrwBDn3K7Ept3AkFTFJUn1c+DbQCyxXgRUt/jg1vXdf4wBKoDfJIaE/qeZZaFru99xzu0E/g3YRjyxqgHWoGu7v+voWtZ9W/+2DHgqsdzrz7USLBnQzCwbeBy43jl3oOU2F5/DQPMY9HFmdgGw1zm3JtWxSI/wAacAv3bOTQfqaTMcUNd2/5B49mYh8aR6OJDF4UOMpB/TtTwwmNn3iD/a8WCqYzlaSrA6thMY0WK9NFEm/YSZ+YknVw865/6UKN5zcEhB4vveVMUnSTMHuMjMthIf6ruA+DM6+YlhRaDruz/ZAexwzr2WWH+MeMKla7v/ORvY4pyrcM6FgT8Rv951bfdvHV3Lum/rh8xsKXABcJk7NHlvrz/XSrA69k9gbOJtRGnEH6ZbkeKYJEkSz+DcB2x0zv2sxaYVwJWJ5SuBJ3s6Nkku59xNzrlS59xo4tfxC865y4AXgYsT1XSu+wnn3G5gu5mNTxR9AtiAru3+aBsw28wyE5/pB8+1ru3+raNreQXwhcTbBGcDNS2GEkofZGbnEx/ef5FzrqHFphXAEjNLN7MxxF9s8noqYuyIHUoGpS0z+xTxZze8wP3OuR+lNiJJFjM7A/gHsI5Dz+V8l/hzWI8CI4GPgEudc20fsJU+yszmAd90zl1gZicQ79EqBNYClzvngikMT5LEzKYRf6FJGvAhcBXxPyjq2u5nzOw2YDHx4UNrgS8RfxZD13Y/YGYPAfOAQcAe4AfAE7RzLSeS7DuJDxNtAK5yzq1OQdhyHDo41zcB6UBlotqrzrkvJ+p/j/hzWRHij3k81bbNVFKCJSIiIiIikiQaIigiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkyf8HSHQ1nwwli+gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -4167,31 +4167,31 @@ " 39\n", " True\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " bAP.soma.v\n", - " 0.0018\n", - " 1.57e-06\n", + " 0.00177\n", + " 0.000205\n", " \n", " \n", " 40\n", " True\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step1.soma.v\n", - " 0.00182\n", - " 1.96e-06\n", + " 0.00166\n", + " 6.4e-06\n", " \n", " \n", " 41\n", " True\n", " 3\n", - " 0.0885\n", - " 0.0728\n", + " 0.095\n", + " 0.0678\n", " Step3.soma.v\n", - " 0.00183\n", - " 3.83e-06\n", + " 0.00177\n", + " 3.01e-05\n", " \n", " \n", "\n", @@ -4199,14 +4199,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "39 True 3 0.0885 0.0728 bAP.soma.v \n", - "40 True 3 0.0885 0.0728 Step1.soma.v \n", - "41 True 3 0.0885 0.0728 Step3.soma.v \n", + "39 True 3 0.095 0.0678 bAP.soma.v \n", + "40 True 3 0.095 0.0678 Step1.soma.v \n", + "41 True 3 0.095 0.0678 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "39 0.0018 1.57e-06 \n", - "40 0.00182 1.96e-06 \n", - "41 0.00183 3.83e-06 " + "39 0.00177 0.000205 \n", + "40 0.00166 6.4e-06 \n", + "41 0.00177 3.01e-05 " ] }, "metadata": {}, @@ -4214,7 +4214,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADhn0lEQVR4nOzdeXxcdbn48c8zM9n3vdmapPuWLtCWAi1QUBZlEVEKshXkckFRQQERFav38ruKKIqgiKIoYCn7vu8UKKUt3fclbZKmzb5nMtv398eZpGmarc0kk2Se94vQmXO+53ueOTOTnOd8lyPGGJRSSimllFJK9Z8t2AEopZRSSiml1EihCZZSSimllFJKBYgmWEoppZRSSikVIJpgKaWUUkoppVSAaIKllFJKKaWUUgGiCZZSSimllFJKBYgmWEopNUSISL6IGBFxBDuWkU5EFovI8mDHMdSIyAIR2RbsOJRSajjTBEsppdSwJiJLRMQtIo0dfm4LdlzDkTHmI2PMxIGqX0Su9F9EuHag9qGUUsGmV0mVUipARMRhjPEEO44QtcwYc3mwgxgoI+GzJSJJwB3ApmDHopRSA0lbsJRSqh9EpEhEfiwi64EmEXGIyDwR+UREakVknYic1qH8+yLyfyKyUkTqReQFEUnupu6rRWSLiDSIyG4R+e9O6y8QkbX+enaJyNn+5Qki8rCIlIlIqYj8r4jYe3kdY0XkXRGpEpFKEXlcRBI7rKsWkeP8z7NEpKLtdYnI+SKyyf963xeRyZ2Ozy0isl5E6kRkmYhEHv2RPnoicrv/uDSIyGYRubCbciIi94pIuf9YbhCRaf51ESJyj4jsE5GDIvKgiET1cf+P+Mu/5Y/hAxHJ67D+jyJS7N/nahFZ0GHdEhF5WkQeE5F6YLGIzBWRT/3HuUxE7heR8A7bGBH5jojs8O/vf/zv3Sf+fTzZsXw3MZ8mIiV9eX3H4P+A+4DKAapfKaWGBE2wlFKq/y4FvgokAhnAK8D/AsnALcAzIpLWofyVwDVAJuDBOunsSjlwLhAPXA3c2yHJmQv8G7jVv99TgCL/do/46x0HzALOBHrrkiVYJ8BZwGQgF1gCYIzZBfwYeExEooF/Av8yxrwvIhOApcBNQBrwKvBSpxP5i4GzgQJgOrC4ywBE5vuTh+5+5vfyGjrbBSwAEoBf+uPP7KLcmVjHb4K/7MVAlX/dr/3LZ2Idz2zgzqOI4TLgf4BUYC3weId1n/vrTQb+AzzVKfm8AHga6/19HPACN/vrOhE4A/hOp/2dBRwPzANuAx4CLsd6P6dhfVaPmT9R7u79+XMP280FZgMP9mf/Sik1HGiCpZRS/XefMabYGNOCdTL7qjHmVWOMzxjzFrAK+EqH8o8aYzYaY5qAnwMXd9XCZIx5xRizy1g+AN7EShgAvg38wxjzln8/pcaYrSKS4d/XTcaYJmNMOXAvcElPL8AYs9NfV6sxpgL4PXBqh/V/A3YCn2Elhj/1r1oEvOLf1g3cA0QBJ3U6PvuNMdXAS1hJRVcxLDfGJPbw09OkFBd3OtnPMsY85d+vzxizDNgBzO1iWzcQB0wCxBizxRhTJiICXAfcbIypNsY0AP+vt2PZySvGmA+NMa1Yx+xEEcn1v97HjDFVxhiPMeZ3QATQcfzTp8aY5/3xtxhjVhtjVvjLFwF/pcN75He3MabeGLMJ2Ai8aYzZbYypA17DSriPmTFmeg/vT+dkDwD/Z/vPwI3GGF9/9q+UUsOBjsFSSqn+K+7wOA/4poic12FZGPBeN+X3+tendq5URM4BfoHVgmIDooEN/tW5WK1FneX56yuz8gPwb1vcRdmO+8oA/oiVwMX5t6npVOxvwIvAdf6EAawWr71tBYwxPhEpxmrpaXOgw+Nm/zaB9mTnMVgiciXwQyDfvyiWLo6zMeZdEbkfeADIE5FnsVoeI7GO+eoOx1KAHrtbdtJ+3I0xjSJSjfX6i0XkFqxEOQswWC2VqV1t6389E7AS39n+uBzA6k77O9jhcUsXz0cdReyB8h1gvTFmRRD2rZRSg05bsJRSqv9Mh8fFWC1UHa/sxxhjft2hTG6Hx6OxWlAOG5ciIhHAM1gtQhnGmESshKrtTL8YGNtFLMVAK5DaYf/xxpipvbyG/+d/HYXGmHislrhDWYVILPAH4GFgiRwaN7YfK6lrKyf+11fay/6OINYU4Y09/CzovZb2uvKwEsIbgRT/8dvY8TV1ZIy5zxhzPDAFK6G9Fes9aQGmdjiWCcaY2KN4We3vtf8YJgP7/a/lNqzuiEn++Oo6xdfxcwXwF2ArMN7/Ht3R3esZKGKNtevu/emu+98ZwIUickBEDmC1bv7On9QqpdSIowmWUkoF1mPAeSJylojYRSTSP3FATocyl4vIFP94pl8BTxtjvJ3qCcfqMlYBePytWWd2WP8wcLWInCEiNhHJFpFJxpgyrK6EvxOReP+6sSLSuStZZ3FAI1AnItlYCUZHfwRWGWOuxRpj1nYy/STwVX8cYcCPsBK8T3o7UJ35pwiP7eHno6OoLgYrQakAa8IQrDFIRxCROSJygj/+JsAJ+Pzd2f6GNfYt3V82W0TO6rCtkQ6TmHThK/6xZeFYY7FWGGOKsY63xx+fQ0TuxGrB6kkcUA80isgk4IZeygecMWZqD+/P9d1sthhrXN9M/88qrDFxP+2mvFJKDWuaYCmlVAD5T54vwGpdqMBqUbqVw3/fPoo1EcUBrG5o3++ingb/8iexuup9C6t7Xtv6lfgnvsBq+fiAQy1JV2IlaJv92z6NNW6qJ78EjvPX9QrwbNsKEbkAa5KKthP6HwLHichlxphtWK1df8Jq8TkPOM8Y4+plfwPKGLMZ+B3wKVY3uULg426Kx2MlUjVY3R2rgN/61/0Ya+zZCrFm83sb/zgp/1iqBg512+zKf7C6eVZjTT7R1o3xDeB1YLt/n0566caJ1W3xW/59/g1Y1kv5IcEYU2uMOdD2A7iAev+4MKWUGnHEmM49EJRSSg0UEXkfeMwY8/dgx6L6R0Qux+o++JNu1j8ClBhjfjaogSmllAoqneRCKaWUOgbGmMeCHYNSSqmhR7sIKqVUiBDrprdHMzmBGoFE5I5uPgevBTs2pZQaCbSLoFJKKaWUUkoFiLZgKaWUUkoppVSADKkxWKmpqSY/Pz/YYSillFJKKaVUj1avXl1pjEnrvHxIJVj5+fmsWrUq2GEopZRSSimlVI9EZG9Xy7WLoFJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIAMqTFYXXG73ZSUlOB0OoMdihoCIiMjycnJISwsLNihqBGo2eXhwz8sJnn8XOZe+P1gh6OUUkqpYWjIJ1glJSXExcWRn5+PiAQ7HBVExhiqqqooKSmhoKAg2OGoEWjdhvWc3fwSrHsJc8GNiE0b+ZVSSil1dIb82YPT6SQlJUWTK4WIkJKSoq2ZasD4trzS/rho6+ogRqKUUkqp4WrIJ1iAJleqnX4W1EAydaXtj6u2rwhiJEoppZQaroZFgqWUUoPB5qqjikSaTQS+so3BDkcppZRSw5AmWH0gIvzoRz9qf37PPfewZMmS4AXUwWmnndbjzZm/9rWvMW/evMOWLVmyhOzsbGbOnMm0adN48cUXBzpMpYYFh6ueJns8xY48Ymq3BjscpZRSSg1DmmD1QUREBM8++yyVlZUBrdcYg8/nC2idHdXW1rJ69Wrq6urYvXv3Yetuvvlm1q5dy1NPPcU111wzoHEoNVxEeBpwOuKojR3LqNaiYIejlFJKqWFIE6w+cDgcXHfdddx7771HrKuoqOCiiy5izpw5zJkzh48//hiwWonuueee9nLTpk2jqKiIoqIiJk6cyJVXXsm0adMoLi7m1ltvZdq0aRQWFrJs2TIA3n//fU477TS+8Y1vMGnSJC677DKMMV3G9+ijj7a3Rq1cubJ9+bPPPst5553HJZdcwhNPPNHltpMnT8bhcByWPN5+++1MmTKF6dOnc8sttwBQVFTE6aefzvTp0znjjDPYt28fAIsXL+aGG25g3rx5jBkzhvfff59rrrmGyZMns3jx4vY6b7jhBmbPns3UqVP5xS9+cUQcdXV15OXltSd6TU1N5Obm4na7u4xbqYEQ6W3A7YjDlzyGFGppaqgNdkhKKaWUGmaG/DTtHf3ypU1s3l8f0DqnZMXzi/Om9lruu9/9LtOnT+e22247bPkPfvADbr75ZubPn8++ffs466yz2LJlS4917dixg3/961/MmzePZ555hrVr17Ju3ToqKyuZM2cOp5xyCgBffPEFmzZtIisri5NPPpmPP/6Y+fPnH1Ffc3Mza9eu5cMPP+Saa65h40Zr7MjSpUu58847ycjI4KKLLuKOO+44YtvPPvsMm81GWloaAFVVVTz33HNs3boVEaG2thaA733ve1x11VVcddVV/OMf/+D73/8+zz//PAA1NTV8+umnvPjii5x//vl8/PHH/P3vf2fOnDmsXbuWmTNnctddd5GcnIzX6+WMM85g/fr1TJ8+vT2OhIQEZs6cyQcffMDChQt5+eWXOeuss/R+V2pQRfuaqA6PJzx9POyBA0VbGVs4r/cNlVJKKaX8tAWrj+Lj47nyyiu57777Dlv+9ttvc+ONNzJz5kzOP/986uvraWxs7LGuvLy89nFRy5cv59JLL8Vut5ORkcGpp57K559/DsDcuXPJycnBZrMxc+ZMioqKuqzv0ksvBeCUU06hvr6e2tpaDh48yI4dO5g/fz4TJkwgLCysPfECuPfee5k5cya33HILy5Yta5+dLyEhgcjISL797W/z7LPPEh0dDcCnn37Kt771LQCuuOIKli9f3l7Xeeedh4hQWFhIRkYGhYWF2Gw2pk6d2h7zk08+yXHHHcesWbPYtGkTmzdvPuJ1LFq0qL0F74knnmDRokU9HkelAskYQ5xpxBuRQEL2RADqS3UcllJKKaWOzrBqwepLS9NAuummmzjuuOO4+uqr25f5fD5WrFhBZGTkYWUdDsdh45o63rspJiamT/uLiIhof2y32/F4PF2W6zx1uYjw5JNPUlNT035D3vr6epYuXcpdd90FWGOw2rr/dY575cqVvPPOOzz99NPcf//9vPvuu32K02azHRazzWbD4/GwZ88e7rnnHj7//HOSkpJYvHhxl/eyOv/887njjjuorq5m9erVnH766T3uV6lAcnk8xNGMNzye9LxJALSW7wpyVEoppZQabrQF6ygkJydz8cUX8/DDD7cvO/PMM/nTn/7U/nzt2rUA5Ofns2bNGgDWrFnDnj17uqxzwYIFLFu2DK/XS0VFBR9++CFz5849qrjaWn2WL19OQkICCQkJLF26lNdff7193Nfq1au7HYfVUWNjI3V1dXzlK1/h3nvvZd26dQCcdNJJ7ds//vjjLFiwoM/x1dfXExMTQ0JCAgcPHuS1117rslxsbCxz5szhBz/4Aeeeey52u73P+1Cqv5xNDdjF4AuPJz4hmUoSsdV2/b1VSimllOpOvxMsEckVkfdEZLOIbBKRH/iXLxGRUhFZ6//5Sv/DDb4f/ehHh00Icd9997Fq1SqmT5/OlClTePDBBwG46KKLqK6uZurUqdx///1MmDChy/ouvPBCpk+fzowZMzj99NO5++67GTVq1FHFFBkZyaxZs7j++ut5+OGHKSoqYu/evYdNz15QUEBCQgKfffZZl3V85StfYf/+/TQ0NHDuuecyffp05s+fz+9//3sA/vSnP/HPf/6T6dOn8+ijj/LHP/6xz/HNmDGDWbNmMWnSJL71rW9x8sknt6+78847D5smftGiRTz22GPaPVANOndTDQC+iHgAyh1ZxDbtDWZISimllBqGpLuZ6fpcgUgmkGmMWSMiccBq4GvAxUCjMeaenrbvaPbs2abzPZ22bNnC5MmT+xWjGln0M6EGwv6dG8h6bD4rZv2GeRdcz8rfX0x+/SrSl+zufWOllFJKhRwRWW2Mmd15eb9bsIwxZcaYNf7HDcAWILu/9Sql1GBytTYDYA+PAsCdWEA6Vbhaep60RimllFKqo4COwRKRfGAW0NYP7UYRWS8i/xCRpG62uU5EVonIqoqKikCGo5RSfebplGCFpY4B4MC+7UGLSSmllFLDT8ASLBGJBZ4BbjLG1AN/AcYCM4Ey4HddbWeMecgYM9sYM7vtXkxKKTXYPK0tADgirAQrLnMcAHWlmmAppZRSqu8CkmCJSBhWcvW4MeZZAGPMQWOM1xjjA/4GHN3UeEopNYjaWrAc4da931JzrYlpWsp1DJZSSiml+i4QswgK8DCwxRjz+w7LMzsUuxDY2HlbpZQaKjwuqwUrLMKfYKVn02QiMDVFQYxKKaWUUsNNIG40fDJwBbBBRNb6l90BXCoiMwEDFAH/HYB9KaXUgPC1JViRVoIlNhvl9lFENBQHMyyllFJKDTOBmEVwuTFGjDHTjTEz/T+vGmOuMMYU+pefb4wpC0TAwfL8888jImzdurXbMkVFRUybNi1g+1y8eDFPP/10t+tvuukmsrOz8fl87cseeeQR0tLSmDlzJlOmTOFvf/tbwOJRaiTzuqwuguGRUe3LaiOySGjdH6yQlFJKKTUMBXQWwZFs6dKlzJ8/n6VLl3a53uPx9HsfXq+3z2V9Ph/PPfccubm5fPDBB4etW7RoEWvXruX999/njjvu4ODBg/2OTamRzuduBQ61YAE440aT4SnDdLiIoZRSSinVE02w+qCxsZHly5fz8MMP88QTT7Qvf//991mwYAHnn38+U6ZMAaxE67LLLmPy5Ml84xvfoLnZuir+zjvvMGvWLAoLC7nmmmtobbVO5vLz8/nxj3/Mcccdx1NPPXXEvt9++21mz57NhAkTePnllw/b99SpU7nhhhu6TfrS09MZO3Yse/fubV923333MWXKFKZPn84ll1wCQHV1NV/72teYPn068+bNY/369QAsWbKEq666igULFpCXl8ezzz7LbbfdRmFhIWeffTZutxuAX/3qV8yZM4dp06Zx3XXX0fnm1T6fj/z8fGpra9uXjR8/XhM/NbS4rS6CER0SLBLziJZW6iqHdQO8UkoppQZRIMZgDZ7XbocDGwJb56hCOOfXPRZ54YUXOPvss5kwYQIpKSmsXr2a448/HoA1a9awceNGCgoKKCoqYtu2bTz88MOcfPLJXHPNNfz5z3/mxhtvZPHixbzzzjtMmDCBK6+8kr/85S/cdNNNAKSkpLBmzZou911UVMTKlSvZtWsXCxcuZOfOnURGRrJ06VIuvfRSLrjgAu644w7cbjdhYWGHbbt79252797NuHHj2pf9+te/Zs+ePURERLQnPL/4xS+YNWsWzz//PO+++y5XXnkla9euBWDXrl289957bN68mRNPPJFnnnmGu+++mwsvvJBXXnmFr33ta9x4443ceeedAFxxxRW8/PLLnHfeee37tNlsXHDBBTz33HNcffXVfPbZZ+Tl5ZGRkdHnt0mpgWb8CVZkVGz7soi0MbAdKoq3k5iu909XSimlVO+0BasPli5d2t7ac8kllxzWYjR37lwKCgran+fm5nLyyScDcPnll7N8+XK2bdtGQUEBEyZY0z5fddVVfPjhh+3bLFq0qNt9X3zxxdhsNsaPH8+YMWPYunUrLpeLV199la997WvEx8dzwgkn8MYbb7Rvs2zZMmbOnMmll17KX//6V5KTk9vXTZ8+ncsuu4zHHnsMh8PKr5cvX84VV1wBwOmnn05VVRX19fUAnHPOOYSFhVFYWIjX6+Xss88GoLCwkKKiIgDee+89TjjhBAoLC3n33XfZtGnTEa9j0aJFLFu2DIAnnniix9esVFB4nLiN/bALFYnZ4wFoOLAzWFEppZRSapgZXi1YvbQ0DYTq6mreffddNmzYgIjg9XoREX77298CEBMTc1h5a9b67p93pXMdvdX3xhtvUFtbS2FhIQDNzc1ERUVx7rnnAlYyc//993dZ3yuvvMKHH37ISy+9xF133cWGDT23CEZERABWK1RYWFh7PDabDY/Hg9Pp5Dvf+Q6rVq0iNzeXJUuW4HQ6j6jnxBNPZOfOnVRUVPD888/zs5/9rMf9KjXYxOPERRhhHb5zGaOtiyKuyj3BCksppZRSw4y2YPXi6aef5oorrmDv3r0UFRVRXFxMQUEBH330UZfl9+3bx6effgrAf/7zH+bPn8/EiRMpKipi507rKvijjz7Kqaee2qf9P/XUU/h8Pnbt2sXu3buZOHEiS5cu5e9//ztFRUUUFRWxZ88e3nrrrfbxXt3x+XwUFxezcOFCfvOb31BXV0djYyMLFizg8ccfB6yxXampqcTHx/cpvrZkKjU1lcbGxm5nPRQRLrzwQn74wx8yefJkUlJS+lS/UoPG00qrhB+2KCY2nkoSsdcWBScmpZRSSg07mmD1YunSpVx44YWHLbvooou6nVhi4sSJPPDAA0yePJmamhpuuOEGIiMj+ec//8k3v/lNCgsLsdlsXH/99X3a/+jRo5k7dy7nnHMODz74ID6fj9dff52vfvWr7WViYmKYP38+L730Upd1XHvttaxatQqv18vll19OYWEhs2bN4vvf/z6JiYksWbKE1atXM336dG6//Xb+9a9/9fHoQGJiIv/1X//FtGnTOOuss5gzZ077ugcffJAHH3yw/fmiRYt47LHHtHugGpJsXicuwo9YXunIJLq5JAgRKaWUUmo4ks4zvgXT7NmzzapVqw5btmXLFiZPnhykiNRQpJ8JNRBW/+5C0hq3MvoXWw5b/vnvLiKncT2Zv9gRpMiUUkopNRSJyGpjzOzOy7UFSymlsFqwPHJkC5YnPo90XwUeV2sQolJKKaXUcKMJllJKAXZfK25bxJHLU/Kxi6G8ZFcQolJKKaXUcDMsEqyh1I1RBZd+FtRAcXhdeLpIsKJHjQWgplS7CCqllFKqd0M+wYqMjKSqqkpPrBXGGKqqqoiMjAx2KGoEcphWvF0kWCn+e2E1H9R7YSmllFKqd0P+Plg5OTmUlJRQUVER7FDUEBAZGUlOTk6ww1AjUJivlSb7kQlWevYYXMaOt7po8INSSiml1LAz5BOssLAwCgoKgh2GUmqECzMufF0kWHaHg/22DMLq9wUhKqWUUkoNN0O+i6BSSg2GcNOKz95199OaiEzinaWDHJFSSimlhqMBT7BE5GwR2SYiO0Xk9oHen1JKHYsw3BhH1wlWS0wuqZ4DgxyRUkoppYajAU2wRMQOPACcA0wBLhWRKQO5T6WUOhYRxoXpoosggC8xjyQaaKitGuSolFJKKTXcDHQL1lxgpzFmtzHGBTwBXDDA+1RKqaNifD4icXXbghWeao0DLd+3fTDDUkoppdQwNNAJVjZQ3OF5iX9ZOxG5TkRWicgqnSlQKRUMra5WbGKQsK4TrPhMa6r2+gM6VbtSSimlehb0SS6MMQ8ZY2YbY2anpaUFOxylVAhytjQBIGFRXa5PHz0RAFf5rkGLSSmllFLD00AnWKVAbofnOf5lSik1ZLhamoHuE6yE5DTqiYHavYMZllJKKaWGoYFOsD4HxotIgYiEA5cALw7wPpVS6qi4nFaCZeumiyBAuX0UkY3F3a5XSimllIIBvtGwMcYjIjcCbwB24B/GmE0DuU+llDparlari6AtvOsWLIC6qBwymnSSC6WUUkr1bEATLABjzKvAqwO9H6WUOlZuZwsA9vDuW7Cc8QWMavgIr7sVe1jX07krpZRSSgV9kgullAo2d6vVRdARHt1tGUfaBBzi42DRlsEKSymllFLDkCZYSqmQ52n1t2BFdN9FMC7Xukd61T7t5ayUUkqp7mmCpZQKeV6XlWCFRXTfgjWqoBAAZ9m2QYlJKaWUUsOTJlhKqZDndVldBMMiu0+wkpJTqCARW/WOwQpLKaWUUsOQJlhKqZDna2vBiozptoyIcDAsl9jGokGKSimllFLDkSZYSinlsqZpD4+K67FYQ0w+GS69F5ZSSimluqcJllJKuRoBiIjuOcHyJo8jkQaaag4ORlRKKaWUGoY0wVJKKX8LVmQvCVbEqIkAHNy9YcBDUkoppdTwpAmWUkq5mmgyEdjt9h6LpeVPBaC2ePNgRKWUUkqpYUgTLKVUyBN3Ey3S/T2w2mQXTMJlHLgObh+EqJRSSik1HGmCpZQKeXZ3M60S2Wu5sLBw9tuziKrVqdqVUkop1TVNsJRSIc/uaaLV1nsLFkBlzDjSnbsGOCKllFJKDVeaYCmlQp7D24KrjwmWK3kSmaaC5vrqAY5KKaWUUsORJlhKqZAX7mvGbY/uU9mI7EIA9m9fPZAhKaWUUmqY0gRLKRXyInwteBx9S7BSxx4HQP3e9QMZklJKKaWGqX4lWCLyWxHZKiLrReQ5EUn0L88XkRYRWev/eTAg0Sql1ACI8LXgC+tbgpWdN54GE4U5uGmAo1JKKaXUcNTfFqy3gGnGmOnAduAnHdbtMsbM9P9c38/9KKXUgIkyTnyOmD6VdTjs7HMUEFu7bYCjUkoppdRw1K8EyxjzpjHG43+6Asjpf0hKKTV4vF4f0bRAeN8SLIC6+AlkuXZjfL4BjEwppZRSw1Egx2BdA7zW4XmBiHwhIh+IyILuNhKR60RklYisqqioCGA4SinVu6amOsLFiy8yqc/b2EZNJY5mKkp3D2BkSimllBqOek2wRORtEdnYxc8FHcr8FPAAj/sXlQGjjTGzgB8C/xGR+K7qN8Y8ZIyZbYyZnZaW1v9XpJRSR6Glvsp6ENX3BCsxfyYApdtWDUBESimllBrOHL0VMMZ8qaf1IrIYOBc4wxhj/Nu0Aq3+x6tFZBcwAdCzEaXUkNJcWwmAIza5z9vkTpoNr0Fz8TrgkgGKTCmllFLDUX9nETwbuA043xjT3GF5mojY/Y/HAOMB7UujlBpymuusBCsiLqXP28QkJFMqo4is3DBQYSmllFJqmOq1BasX9wMRwFsiArDCP2PgKcCvRMQN+IDrjTHV/dyXUkoFnLPB6iIYk5B6VNsdjJ1MVsPGgQhJKaWUUsNYvxIsY8y4bpY/AzzTn7qVUmowuButBCs26ejGgLoyZpDZ8B41FftJSssaiNCUUkopNQwFchZBpZQadrxNVuN6/FEmWLH5cwAo3fRJwGNSSiml1PClCZZSKrS11OIyDiKi4o5qs9ypJ+EzQnORzt2jlFJKqUM0wVJKhTRHSxX1EgfWONI+S0hKZp8ti8iKdQMUmVJKKaWGI02wlFIhLbq1nGr7sd2D72DsZDKbtwY4IqWUUkoNZ5pgKaVCWry7gvrwY0uwvKNmkmaqqSrbG+ColFJKKTVcaYKllAppSd5KWqMyjmnb5HEnAFC88eNAhqSUUkqpYUwTLKVUyPK0NBBPE77YzGPaPr/wRNzGTsueTwMcmVJKKaWGK02wlFIhq+bgPgBsidnHtH1kdBy7w8aSUPlFIMNSSiml1DCmCZZSKmTVHbTGTkUm5xxzHdXJsxjTuhWPyxmosJRSSik1jGmCpZQKWc1VVgtWXHreMdfhyDuBSHGzb/NngQpLKaWUUsOYJlhKqZDlqSkFIHHU6GOuI6twIQDVWz8KSExKKaWUGt40wVJKha76/dSaGFITk465iqzcAvaThmP/qgAGppRSSqnhShMspVTICms+SJUtBZtNjrkOEaE4ppCchnVgTACjU0oppdRwpAmWUipkxTgPUuc4tpsMd+TKmkOqqaZq/64ARKWUUkqp4UwTLKVUyIr3VNIceWw3Ge4obcoCAPaufa/fdSmllFJqeNMESykVmrxukn01eGJG9buqsdNOoNlE4NrzSQACU0oppdRw1q8ES0SWiEipiKz1/3ylw7qfiMhOEdkmImf1P1SllAqchqpSbGKQhKx+1xUWFs7uyCmkVesNh5VSSqlQF4gWrHuNMTP9P68CiMgU4BJgKnA28GcRsQdgX0opFRA1ZUUARPTjJsMdNWaeyFjfHmoqygJSn1JKKaWGp4HqIngB8IQxptUYswfYCcwdoH0ppdRRa6jw32Q47djvgdVR4tQvAVC0+vWA1KeUUkqp4SkQCdaNIrJeRP4hIm03k8kGijuUKfEvO4KIXCciq0RkVUVFRQDCUUqp3rVWWb+ikkblBaS+MTMW0GCi8O7UiS6UUkqpUNZrgiUib4vIxi5+LgD+AowFZgJlwO+ONgBjzEPGmNnGmNlpaf2fLlkppfrCV7cfpwkjLT0zIPWFh4ezI3ommVWfBaQ+pZRSSg1Pjt4KGGO+1JeKRORvwMv+p6VAbofVOf5lSik1JNibDlAhKeQ6Ajc81J1/GtlbPmXfti8YPXFWwOpVSiml1PDR31kEO176vRDY6H/8InCJiESISAEwHljZn30ppVQgRTkPUBsW2Fbz0fMvwWeE8k//E9B6lVJKKTV89HcM1t0iskFE1gMLgZsBjDGbgCeBzcDrwHeNMd5+7ksppQIm3lVJS0R6QOvMzM5nQ1ghGftexfh8Aa1bKaWUUsNDvxIsY8wVxphCY8x0Y8z5xpiyDuvuMsaMNcZMNMa81v9QlVIqQIwhxVeFOwA3Ge6sZeLXyPWVsHXt8oDXrZRSSqmhb6CmaVdKqSGroeYgEeKG+P7fZLizaWcuptFE0fLuPUesK9+/j89//00+e+qo5wNSSiml1DChCZZSKuRUt91kOCkwNxnuKDYhhXW5l3Fc4wese+MRANyuVj59+g84/noSc+rfJGbLkwHfr1JKKaWGhl5nEVRKqZGmvty6yXBMWm4vJY/Ncd/6H7b9/kMKP7mJzav+Rrq7hBOpZVv4FEoknGxX0YDsVymllFLBpwlWEBifl4aaSuqqymisOYCzthx3fTnu5jpwNyPuZuyeZuyeFuzeFsTnxvh8GOPDBtjEIIDXFo7XFo7HFoHXHoHPFoEtLBIi4pCoROzRiYTFJBMel0xUfDLR8SkkJKURFRUV7EOgVFA5q6wEK3FU/oDUHxUdTdb33uCzJ35OUuUa9sXNonTGIqafvogV//4pKUVraWmsIyo2YUD2r5RSSqng0QRrADQ21FFetJn6A7twVu7F1BQT3lRKrLOMFG8FiaaeePER3832LSYcp0TiJIJWWyQeCQOxIQg+BAMYwG48hBkX4W0/uIgwLsLF02N8TSaSeomlyZ6A0xGHKywBT2QSJjIJW1QSjthkwuJSiU6wfuKTM4iKT0EcEYE+VEoFhbd2P14jpI4amBYsgLiEZE787weOWB6WNhaK4ODereRPPWHA9h/qfF4fbrcTr8eF2+3B63bh87jxeN143S48Hjc+jxuvx40xBgARwf8ARJC2ZQKCDRBrlc3m/3FgEzs2uyA2O3abHbHZsNls2Gx2bHYHNrsdm02s5zY7drsdm82GiB1sdmtfSimlRhRNsPqhsaGWfZtX0rBvPaZ8G9H1u0lrLSKTSmI7lGsx4VTa06gLH8Xu+Al4otOR6FQc8alExGcQnZRBXMooEhJTiIyKI8pmoz9tTO7WFhprK2mur6KlvgpXYzWuxho8TTV4m6uhpRa7s4YwVx0Rnjrim3YS29hAvGnEId1PLd1EJA0SR6MtnlZbNF57JD5HJD5HFD575GHPsUeCPaz9BMPu/xexY8SOsdkx4h8CaEDwgTH+fw89x/jA+PD5rMfGGIzxgs9abnze9jLG+BDjtabHNj7weQH/v/66xBwqLx22Ef+ytuXW/v2P27bDHHqO78jHGKuutnIY2l9g+6PDT6banks36w8re8SJWNd1dbteOi/p24md6b1IF47tpLGn19/jvo5yszGuUqokifSw8GPYX/8kZE+Ez6Fm32ZNsLrQ2tJIQ/VBmusqaa6vprWxGndjDd7mGkxLHdJai6213mrl9zoJ87YQ5nMSZpxE+JxE0EqkcREtrQyXS0JeI/iwYRB8IhhsWL9ZbO3LrXVtjw/9275MrLL4Hx+2Xjout2HkUB2+tmXt5Q+t6173vxV6/ir2sJ3p6TdNT/s7+lhML9vRQyw9bteLnrc9xn32sOpY9zei9fNlD/+j1r9XEMzXvzNsImlf/w0njU0NYhR9pwlWH7laWyna+Am1Oz5BytaS1rCF0d4Spoj1cWs2Eex35LA/YRb7ksbhyJhI3KhxpGaPISk1k1ybjYG7Vn64sIgokjJySco4uj16vT5q6qqpqy6nubaClroKWhur8DZV42uqxtFaayVl7jrCvY2Eu2txuFoJ9zkJx0WkaSUCF+EydG555jFHnqh4/ScYXg6dWLQ97ngC4/OX82H3n4jYDz+RaVsngk8c1slL+wmM1eJo/FfBwfpj1/GXU9sfv7a/5Va5rn99dfxDaUxXfzi7ed5et+mxdHc6p3ADqecTrJ4c/XYV4TnUZy8gsHfB6pvcicfhMTZaS9cFYe/B4fP6qKospbp0D82Ve3HXluFtrMDWVE5YSxVR7ipiPTUk+WqJlZYeE6N6E02TxOC0ReO2ReC2RdIcnuK/wBOFzxGFCYvGOKLAHoGxOxCbA7GHIXYH2Kx/xR6GzRFmtULZbO2tWMZYvwGsp9YFH/8a/38+8BkwXozxtXffxv9vxws8xlgXd6xlVvm2520Xe0zbxR6fz78/X/sFJMH/uOO/HS4Wib8+/Bd5Dl2k8iHGYMPrr8ccWu9/bjNefxpnjvhXMNiNr+fT8x5b3nq4UNTjup4Etk6h59fQc4J5rGmkVW/3id+xxtN9HF1uJ8deZ4fNQ9awf/1BfgHHuvvhdtw1werBvu1rKf30KWLKVjC2ZQMTpBWACpIojZrIgdSzico/nvRxx5ORM5ZxdnuQI+4fu91GUnIqScn9uzpgvG48rc24XFY3HLfHg9vjweN24/V6/ScGXn8LEyBWsiJi/WnHf7UVf8Ji93evae96I4LYHIe62tjt/u44/n/b1wkO7X6jhpjIqBj22HOJqtoU7FACxuf1UV5WROXezTQf2Im3phh7QynRLWUkuMtJ91WQJm7SOm1XSxx1tkQaw5KpiJtMWVQq3ug0iE7BEZNMeGwykXHW+NHYxFTi4pOIDwvrtnu1UkqpkWlKsAM4Sppg9aBs3ducuOd+imyj2ZR+Lo4xC8gsPI1R2fmk6Yl7t8QeRlh0AmHRwY5EqaGpMm4iY+pWWi0ZtuFzt4zaygOU7viCpv3b8FTuIqJ+D0ktxYzyljFKWmm7bbPPCJWSRHVYBuWxEymNXYgtIYfwlDxi0/NISMshMTWTxPAIEoP5gpRSSqkBoAlWDyZ/+WqqTr2U/PRs8oMdjFJqxPDlnkRK3Zvs3f4FeZOOD3Y4R2huqKF0+1pq967De2AzsXXbGdW6h1Rq2xMil7FzwD6KmogcKuJOQFLHEj1qIsm5E0nLHkN6eERQumAqpZRSwaYJVg/iE1OCHYJSagQaPecrsHEJZWteDXqCVXmwhJJNn9BctJqoyg2MatlBpilnvH99iwmnxJHHnsQT2Zk6iejsaaTmTyUjdxyjHWGMDmr0Siml1NCjCZZSSg2yzLyJ7LHlkbTnZeDng7bfmvISSjZ9SlPRKiIr1pPZvI0MqmgbdVkiWZTGTmVP8kVEZk8jfewsMvMnMX6Yjy9VSimlBpMmWEopFQQHx3ydeTvvZfeGTxlTeGLA66+vLKN408c07VlFRMU6Mpu2kU4VSf71xZJFSfxMitKnEz92LqOnzCMnIZmcgEeilFJKhRZNsJRSKggmnfNd6v/0EI2v/BQz9e1+TXZRV1NJyaZPaNrzOWEH15LZtIVRpoKpWBNOFNuy2Bs3k53pM4gfO5vRU08kNyF50G4doZRSSoUSTbCUUioIElPSWDHp+8zb+n98+tB3mfPtP+Lo7cbHxlB1YB8l21bRuG894eXrGdW0lVyznwR/kVLJoCR6KrsyZhA3Zg6jp55EXlIKeQP+ipRSSikFIOaYb+4JIrIMmOh/mgjUGmNmikg+sAXY5l+3whhzfW/1zZ4926xateqY41FKqeHE+Hx8/sBi5la9QJFtNAfyv0ZU9lQcETG4XK14Gw7irS3BV1tCXOMectx7SKSxfftySWF/9CScaTOIyp9NztSTSEnLDOIrUkoppUKHiKw2xszuvLxfLVjGmEUddvA7oK7D6l3GmJn9qV8ppUYysdmYe+O/WPn6v0lZ9Qfm7b4Pdh9ZroZ4ysOy2Z68EE/qZBLyZpA76XjSUzJ1KnSllFJqiAlIF0EREeBi4PRA1KeUUiFDhLnnXAXnXEXVwRIqSnbgaW0hIjyCyMR0EjPySIqLb5+cQimllFJDW6DGYC0ADhpjdnRYViAiXwD1wM+MMR91taGIXAdcBzB6tN5RRSkVulIyckjJ0Hn8lFJKqeGs1wRLRN4GRnWx6qfGmBf8jy8FlnZYVwaMNsZUicjxwPMiMtUYU9+5EmPMQ8BDYI3BOtoXoJRSSimllFJDRa8JljHmSz2tFxEH8HXg+A7btAKt/serRWQXMAHQGSyUUkoppZRSI9ax33jlkC8BW40xJW0LRCRNROz+x2OA8XQ5dFsppZRSSimlRo5AjMG6hMO7BwKcAvxKRNyAD7jeGFPdW0WrV6+uFJG9AYgpkFKBymAHoQaNvt+hQ9/r0KHvdWjR9zt06HsdWobi+93lbSb7dR+sUCAiq7qa316NTPp+hw59r0OHvtehRd/v0KHvdWgZTu93ILoIKqWUUkoppZRCEyyllFJKKaWUChhNsHr3ULADUINK3+/Qoe916ND3OrTo+x069L0OLcPm/dYxWEoppZRSSikVINqCpZRSSimllFIBogmWUkoppZRSSgWIJlg9EJGzRWSbiOwUkduDHY8KHBHJFZH3RGSziGwSkR/4lyeLyFsissP/b1KwY1WBISJ2EflCRF72Py8Qkc/83+9lIhIe7BhVYIhIoog8LSJbRWSLiJyo3+2RSURu9v8O3ygiS0UkUr/bI4eI/ENEykVkY4dlXX6XxXKf/31fLyLHBS9ydbS6ea9/6/89vl5EnhORxA7rfuJ/r7eJyFlBCboHmmB1Q0TswAPAOcAU4FIRmRLcqFQAeYAfGWOmAPOA7/rf39uBd4wx44F3/M/VyPADYEuH578B7jXGjANqgG8HJSo1EP4IvG6MmQTMwHrf9bs9wohINvB9YLYxZhpgBy5Bv9sjySPA2Z2WdfddPgcY7/+5DvjLIMWoAuMRjnyv3wKmGWOmA9uBnwD4z9cuAab6t/mz/7x9yNAEq3tzgZ3GmN3GGBfwBHBBkGNSAWKMKTPGrPE/bsA6AcvGeo//5S/2L+BrQQlQBZSI5ABfBf7ufy7A6cDT/iL6Xo8QIpIAnAI8DGCMcRljatHv9kjlAKJExAFEA2Xod3vEMMZ8CFR3Wtzdd/kC4N/GsgJIFJHMQQlU9VtX77Ux5k1jjMf/dAWQ4398AfCEMabVGLMH2Il13j5kaILVvWyguMPzEv8yNcKISD4wC/gMyDDGlPlXHQAyghWXCqg/ALcBPv/zFKC2wy9u/X6PHAVABfBPf5fQv4tIDPrdHnGMMaXAPcA+rMSqDliNfrdHuu6+y3reNrJdA7zmfzzk32tNsFRIE5FY4BngJmNMfcd1xrqHgd7HYJgTkXOBcmPM6mDHogaFAzgO+IsxZhbQRKfugPrdHhn8Y28uwEqqs4AYjuxipEYw/S6HBhH5KdbQjseDHUtfaYLVvVIgt8PzHP8yNUKISBhWcvW4MeZZ/+KDbV0K/P+WBys+FTAnA+eLSBFWV9/TscboJPq7FYF+v0eSEqDEGPOZ//nTWAmXfrdHni8Be4wxFcYYN/As1vddv9sjW3ffZT1vG4FEZDFwLnCZOXTz3iH/XmuC1b3PgfH+2YjCsQbTvRjkmFSA+MfgPAxsMcb8vsOqF4Gr/I+vAl4Y7NhUYBljfmKMyTHG5GN9j981xlwGvAd8w19M3+sRwhhzACgWkYn+RWcAm9Hv9ki0D5gnItH+3+lt77V+t0e27r7LLwJX+mcTnAfUdehKqIYhETkbq3v/+caY5g6rXgQuEZEIESnAmthkZTBi7I4cSgZVZyLyFayxG3bgH8aYu4IbkQoUEZkPfARs4NC4nDuwxmE9CYwG9gIXG2M6D7BVw5SInAbcYow5V0TGYLVoJQNfAJcbY1qDGJ4KEBGZiTWhSTiwG7ga64KifrdHGBH5JbAIq/vQF8C1WGMx9Ls9AojIUuA0IBU4CPwCeJ4uvsv+JPt+rG6izcDVxphVQQhbHYNu3uufABFAlb/YCmPM9f7yP8Ual+XBGubxWuc6g0kTLKWUUkoppZQKEO0iqJRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSQ4SI5IuIERFHsGMZ6URksYgsD3YcQ42ILBCRbcGOQymlhjNNsJRSSg1rIrJERNwi0tjh57ZgxzUcGWM+MsZMHKj6ReRK/0WEawdqH0opFWx6lVQppQJERBzGGE+w4whRy4wxlwc7iIEyEj5bIpIE3AFsCnYsSik1kLQFSyml+kFEikTkxyKyHmgSEYeIzBORT0SkVkTWichpHcq/LyL/JyIrRaReRF4QkeRu6r5aRLaISIOI7BaR/+60/gIRWeuvZ5eInO1fniAiD4tImYiUisj/ioi9l9cxVkTeFZEqEakUkcdFJLHDumoROc7/PEtEKtpel4icLyKb/K/3fRGZ3On43CIi60WkTkSWiUjk0R/poycit/uPS4OIbBaRC7spJyJyr4iU+4/lBhGZ5l8XISL3iMg+ETkoIg+KSFQf9/+Iv/xb/hg+EJG8Duv/KCLF/n2uFpEFHdYtEZGnReQxEakHFovIXBH51H+cy0TkfhEJ77CNEZHviMgO//7+x//efeLfx5Mdy3cT82kiUtKX13cM/g+4D6gcoPqVUmpI0ARLKaX671Lgq0AikAG8AvwvkAzcAjwjImkdyl8JXANkAh6sk86ulAPnAvHA1cC9HZKcucC/gVv9+z0FKPJv94i/3nHALOBMoLcuWYJ1ApwFTAZygSUAxphdwI+Bx0QkGvgn8C9jzPsiMgFYCtwEpAGvAi91OpG/GDgbKACmA4u7DEBkvj956O5nfi+vobNdwAIgAfilP/7MLsqdiXX8JvjLXgxU+df92r98JtbxzAbuPIoYLgP+B0gF1gKPd1j3ub/eZOA/wFOdks8LgKex3t/HAS9ws7+uE4EzgO902t9ZwPHAPOA24CHgcqz3cxrWZ/WY+RPl7t6fP/ew3VxgNvBgf/avlFLDgSZYSinVf/cZY4qNMS1YJ7OvGmNeNcb4jDFvAauAr3Qo/6gxZqMxpgn4OXBxVy1MxphXjDG7jOUD4E2shAHg28A/jDFv+fdTaozZKiIZ/n3dZIxpMsaUA/cCl/T0AowxO/11tRpjKoDfA6d2WP83YCfwGVZi+FP/qkXAK/5t3cA9QBRwUqfjs98YUw28hJVUdBXDcmNMYg8/PU1KcXGnk/0sY8xT/v36jDHLgB3A3C62dQNxwCRAjDFbjDFlIiLAdcDNxphqY0wD8P96O5advGKM+dAY04p1zE4UkVz/633MGFNljPEYY34HRAAdxz99aox53h9/izFmtTFmhb98EfBXOrxHfncbY+qNMZuAjcCbxpjdxpg64DWshPuYGWOm9/D+dE72APB/tv8M3GiM8fVn/0opNRzoGCyllOq/4g6P84Bvish5HZaFAe91U36vf31q50pF5BzgF1gtKDYgGtjgX52L1VrUWZ6/vjIrPwD/tsVdlO24rwzgj1gJXJx/m5pOxf4GvAhc508YwGrx2ttWwBjjE5FirJaeNgc6PG72bxNoT3YegyUiVwI/BPL9i2Lp4jgbY94VkfuBB4A8EXkWq+UxEuuYr+5wLAXosbtlJ+3H3RjTKCLVWK+/WERuwUqUswCD1VKZ2tW2/tczASvxne2PywGs7rS/gx0et3TxfNRRxB4o3wHWG2NWBGHfSik16LQFSyml+s90eFyM1ULV8cp+jDHm1x3K5HZ4PBqrBeWwcSkiEgE8g9UilGGMScRKqNrO9IuBsV3EUgy0Aqkd9h9vjJnay2v4f/7XUWiMicdqiTuUVYjEAn8AHgaWyKFxY/uxkrq2cuJ/faW97O8IYk0R3tjDz4Lea2mvKw8rIbwRSPEfv40dX1NHxpj7jDHHA1OwEtpbsd6TFmBqh2OZYIyJPYqX1f5e+49hMrDf/1puw+qOmOSPr65TfB0/VwB/AbYC4/3v0R3dvZ6BItZYu+7en+66/50BXCgiB0TkAFbr5u/8Sa1SSo04mmAppVRgPQacJyJniYhdRCL9EwfkdChzuYhM8Y9n+hXwtDHG26mecKwuYxWAx9+adWaH9Q8DV4vIGSJiE5FsEZlkjCnD6kr4OxGJ968bKyKdu5J1Fgc0AnUiko2VYHT0R2CVMeZarDFmbSfTTwJf9ccRBvwIK8H7pLcD1Zl/ivDYHn4+OorqYrASlAqwJgzBGoN0BBGZIyIn+ONvApyAz9+d7W9YY9/S/WWzReSsDtsa6TCJSRe+4h9bFo41FmuFMaYY63h7/PE5ROROrBasnsQB9UCjiEwCbuilfMAZY6b28P5c381mi7HG9c30/6zCGhP3027KK6XUsKYJllJKBZD/5PkCrNaFCqwWpVs5/Pfto1gTURzA6ob2/S7qafAvfxKrq963sLrnta1fiX/iC6yWjw841JJ0JVaCttm/7dNY46Z68kvgOH9drwDPtq0QkQuwJqloO6H/IXCciFxmjNmG1dr1J6wWn/OA84wxrl72N6CMMZuB3wGfYnWTKwQ+7qZ4PFYiVYPV3bEK+K1/3Y+xxp6tEGs2v7fxj5Pyj6Vq4FC3za78B6ubZzXW5BNt3RjfAF4Htvv36aSXbpxY3Ra/5d/n34BlvZQfEowxtcaYA20/gAuo948LU0qpEUeM6dwDQSml1EARkfeBx4wxfw92LKp/RORyrO6DP+lm/SNAiTHmZ4MamFJKqaDSSS6UUkqpY2CMeSzYMSillBp6tIugUkqFCLFuens0kxOoEUhE7ujmc/BasGNTSqmRQLsIKqWUUkoppVSAaAuWUkoppZRSSgXIkBqDlZqaavLz84MdhlJKKaWUUkr1aPXq1ZXGmLTOy4dUgpWfn8+qVauCHYZSSimllFJK9UhE9na1XLsIKqWUUkoppVSAaIKllFJKKaWUUgGiCZZSSvXBK+tKKa6oDXYYSimllBrihtQYrK643W5KSkpwOp3BDkUNM5GRkeTk5BAWFhbsUNQwt23ndk549gz2ho8j96fvBTscpZRSSg1hQz7BKikpIS4ujvz8fEQk2OGoYcIYQ1VVFSUlJRQUFAQ7HDXMlX/xKhOlnlT3Ghob6oiNSwh2SEoppZQaooZ8F0Gn00lKSoomV+qoiAgpKSna8qkCwlVT1v64eP0HQYxEKaWUUkPdkE+wAE2u1DHRz40KFHvzwfbHDXv0VhJKKaWU6t6Q7yKolFLBFtFSQak9hyhvPaZqd7DDUUoppdQQNixasIJNRPjRj37U/vyee+5hyZIlwQuogxUrVnDCCScwc+ZMJk+e3B7X+++/zyeffNKvus8++2wSExM599xzAxCpUsNXvKeKxrAUysOyiWnaF+xwlFJKKTWEaYLVBxERETz77LNUVlYGtF5jDD6fr191XHXVVTz00EOsXbuWjRs3cvHFFwOBSbBuvfVWHn300X7VodRIkOirpjE8lcbo0aS5SoIdjlJKKaWGsGHVRfCXL21i8/76gNY5JSueX5w3tccyDoeD6667jnvvvZe77rrrsHUVFRVcf/317NtnXdX+wx/+wMknn8ySJUuIjY3llltuAWDatGm8/PLLAJx11lmccMIJrF69mldffZX777+f1157DRHhZz/7GYsWLeL9999nyZIlpKamsnHjRo4//ngee+yxI8YVlZeXk5mZCYDdbmfKlCkUFRXx4IMPYrfbeeyxx/jTn/7EpEmTuo1z165d7Ny5k8rKSm677Tb+67/+C4AzzjiD999/v8dj89RTT/HLX/4Su91OQkICH374IU6nkxtuuIFVq1bhcDj4/e9/z8KFC3nkkUd4/vnnaWpqYseOHdxyyy24XC4effRRIiIiePXVV0lOTuZvf/sbDz30EC6Xi3HjxvHoo48SHR192H7nzZvHww8/zNSp1nt32mmncc899zB79uwe41XqWCSaOvaEp+CISSaj7g1amhqJiokNdlhKKaWUGoK0BauPvvvd7/L4449TV1d32PIf/OAH3HzzzXz++ec888wzXHvttb3WtWPHDr7zne+wadMmVq1axdq1a1m3bh1vv/02t956K2Vl1oxlX3zxBX/4wx/YvHkzu3fv5uOPPz6irptvvpmJEydy4YUX8te//hWn00l+fj7XX389N998M2vXrmXBggU9xrl+/XreffddPv30U371q1+xf//+Ph+XX/3qV7zxxhusW7eOF198EYAHHngAEWHDhg0sXbqUq666qn02v40bN/Lss8/y+eef89Of/pTo6Gi++OILTjzxRP79738D8PWvf53PP/+cdevWMXnyZB5++OEj9rto0SKefPJJAMrKyigrK9PkSg0MY4gyrfjCYghLGwdAWdHmIAellFJKqaFqWLVg9dbSNJDi4+O58sorue+++4iKimpf/vbbb7N586GTrfr6ehobG3usKy8vj3nz5gGwfPlyLr30Uux2OxkZGZx66ql8/vnnxMfHM3fuXHJycgCYOXMmRUVFzJ8//7C67rzzTi677DLefPNN/vOf/7B06dIuW516ivOCCy4gKiqKqKgoFi5cyMqVK/na177Wp+Ny8skns3jxYi6++GK+/vWvt7+m733vewBMmjSJvLw8tm/fDsDChQuJi4sjLi6OhIQEzjvvPAAKCwtZv349YCVhP/vZz6itraWxsZGzzjrriP1efPHFnHnmmfzyl7/kySef5Bvf+Eaf4lXqqLlbsInBhEWTmDMRVkFN8TaYOjfYkSmllFJqCBpWCVaw3XTTTRx33HFcffXV7ct8Ph8rVqwgMjLysLIOh+Ow8VUd78cUExPTp/1FRES0P7bb7Xg8ni7LjR07lhtuuIH/+q//Ii0tjaqqqiPKdBcnHDmd+dFMb/7ggw/y2Wef8corr3D88cezevXqHst3fE02m639uc1ma399ixcv5vnnn2fGjBk88sgjXSaM2dnZpKSksH79epYtW8aDDz7Y55iVOhqulkbCAcKiSR09GQB35a6gxqSUUkqpoavfXQRFJFdE3hORzSKySUR+4F+eLCJvicgO/79J/Q83uJKTk7n44osP67J25pln8qc//an9+dq1awHIz89nzZo1AKxZs4Y9e/Z0WeeCBQtYtmwZXq+XiooKPvzwQ+bO7fuV8VdeeQVjDGB1PbTb7SQmJhIXF0dDQ0OvcQK88MILOJ1OqqqqeP/995kzZ06f979r1y5OOOEEfvWrX5GWlkZxcTELFizg8ccfB2D79u3s27ePiRMn9rnOhoYGMjMzcbvd7fV0ZdGiRdx9993U1dUxffr0Ptev1NFwtljfI4mIIT4plRoTh6NWp2pXSimlVNcCMQbLA/zIGDMFmAd8V0SmALcD7xhjxgPv+J8Pez/60Y8Om03wvvvuY9WqVUyfPp0pU6a0t6RcdNFFVFdXM3XqVO6//34mTJjQZX0XXngh06dPZ8aMGZx++uncfffdjBo1qs/xPProo0ycOJGZM2dyxRVX8Pjjj2O32znvvPN47rnnmDlzJh999FG3cQJMnz6dhQsXMm/ePH7+85+TlZUFWMnfN7/5Td555x1ycnJ44403AKtbYtt4q1tvvZXCwkKmTZvGSSedxIwZM/jOd76Dz+ejsLCQRYsW8cgjjxzWctWb//mf/+GEE07g5JNPZtKkSe3LX3zxRe68887259/4xjd44okn2mdOVGoguJqtBMsWHoOIUO4YRVSjziSolFJKqa5JW+tHwCoUeQG43/9zmjGmTEQygfeNMT02Y8yePdusWrXqsGVbtmxh8uTJAY1RHdJ5tsORRj8/qr/2b1pO1lNf5ZMT/sxJ51zG53efR6ZzJzl3bgl2aEoppZQKIhFZbYw5Ypa1gM4iKCL5wCzgMyDDGFPmX3UAyOhmm+tEZJWIrKqoqAhkOEop1W+uFmsyGEeENXbSGZtDmq8C+nkPO6WUUkqNTAGb5EJEYoFngJuMMfUdJ0owxhgR6bKpzBjzEPAQWC1YgYpH9c2SJUuCHYJSQ5rH6U+wouIAMAmjiSh301hdSmxqbjBDU0oppdQQFJAWLBEJw0quHjfGPOtffNDfNRD/v+WB2JdSSg0mb1uCFWndWDg8NR+AqhKdSVAppZRSRwrELIICPAxsMcb8vsOqF4Gr/I+vAl7o776UUmqweZ1NAIT7E6y4jDEANB7UBEsppZRSRwpEF8GTgSuADSKy1r/sDuDXwJMi8m1gL6BTvSmlhh2vy59gRVsJVlrOOABclUXBCkkppZRSQ1i/EyxjzHKguzvTntHf+pVSKphMq9VFMCLGGoOVmpxMtYnD1BUHMyyllFJKDVEBnUVwJHv++ecREbZu3dptmaKiIqZNmxawfW7bto3TTjuNmTNnMnnyZK677jrAuknwq6++2q+6r7nmGtLT0wMar1IjkqsZnxGiIq1ZBG024aA9g0i9F5ZSSimluqAJVh8tXbqU+fPns3Tp0i7Xezyefu/D6/Ue9vz73/8+N998M2vXrmXLli1873vfAwKTYC1evJjXX3+9X3UoFQqMu5lmIogKP9TgXxeeSXxrWQ9bKaWUUipUBWya9kHx2u1wYENg6xxVCOf8uscijY2NLF++nPfee4/zzjuPX/7ylwC8//77/PznPycpKYmtW7fy5ptv4vF4uOyyy1izZg1Tp07l3//+N9HR0bzzzjvccssteDwe5syZw1/+8hciIiLIz89n0aJFvPXWW9x2221ccskl7fstKysjJyen/XlhYSEul4s777yTlpYWli9fzk9+8hPOPfdcvve977Fx40bcbjdLlizhggsu4JFHHuG5556jrq6O0tJSLr/8cn7xi18AcMopp1BUVNTj6/7ggw/4wQ9+AICI8OGHHxIbG8ttt93Ga6+9hojws5/9jEWLFvH+++/zi1/8gsTERDZs2MDFF19MYWEhf/zjH2lpaeH5559n7NixvPTSS/zv//4vLpeLlJQUHn/8cTIyDr9F2iWXXMIVV1zBV7/6VcBKBs8991y+8Y1v9O09VSqAxN2Ck3CSHYeuRzljskmt+gyMAemuh7RSSimlQpG2YPXBCy+8wNlnn82ECRNISUlh9erV7evWrFnDH//4R7Zv3w5Y3fq+853vsGXLFuLj4/nzn/+M0+lk8eLFLFu2jA0bNuDxePjLX/7SXkdKSgpr1qw5LLkCuPnmmzn99NM555xzuPfee6mtrSU8PJxf/epXLFq0iLVr17Jo0SLuuusuTj/9dFauXMl7773HrbfeSlOTNTB/5cqVPPPMM6xfv56nnnqKVatW9fl133PPPTzwwAOsXbuWjz76iKioKJ599lnWrl3LunXrePvtt7n11lspK7Ou5K9bt44HH3yQLVu28Oijj7J9+3ZWrlzJtddey5/+9CcA5s+fz4oVK/jiiy+45JJLuPvuu4/Y76JFi3jyyScBcLlcvPPOO+3JllKDzuPERTg226FEypeQSyQuXHUHghiYUkoppYai4dWC1UtL00BZunRpe0vOJZdcwtKlSzn++OMBmDt3LgUFBe1lc3NzOfnkkwG4/PLLue+++/jyl79MQUEBEyZMAOCqq67igQce4KabbgKshKIrV199NWeddRavv/46L7zwAn/9619Zt27dEeXefPNNXnzxRe655x4AnE4n+/btA+DLX/4yKSkpAHz9619n+fLlzJ49u0+v++STT+aHP/whl112GV//+tfJyclh+fLlXHrppdjtdjIyMjj11FP5/PPPiY+PZ86cOWRmZgIwduxYzjzzTMBqeXvvvfcAKCkpYdGiRZSVleFyuQ47dm3OOeccfvCDH9Da2srrr7/OKaecQlRUVJ9iVirQxOukVcIPWxaWkge7oap0B5mJmUGKbOgwxvDcux+TG+VmzkkLgx2OUkopFVTagtWL6upq3n33Xa699lry8/P57W9/y5NPPokxBoCYmJjDykun7kKdn3elcx0dZWVlcc011/DCCy/gcDjYuHHjEWWMMTzzzDOsXbuWtWvXsm/fPiZPnnzM8bS5/fbb+fvf/05LSwsnn3xyjxN8AERERLQ/ttls7c9tNlv7GLXvfe973HjjjWzYsIG//vWvOJ3OI+qJjIzktNNO44033mDZsmXdJqBKDQab14lbIg5bFuu/F1Z92e5ghDTkbN+5na9/9FXmvPk16msrgx2OUkopFVSaYPXi6aef5oorrmDv3r0UFRVRXFxMQUEBH330UZfl9+3bx6effgrAf/7zH+bPn8/EiRMpKipi586dADz66KOceuqpve779ddfx+12A3DgwAGqqqrIzs4mLi6OhoaG9nJnnXUWf/rTn9qTvi+++KJ93VtvvUV1dXX7OKi21rW+2LVrF4WFhfz4xz9mzpw5bN26lQULFrBs2TK8Xi8VFRV8+OGHzJ07t8911tXVkZ2dDcC//vWvbsstWrSIf/7zn3z00UecffbZfa5fqUCzeVtxd2rBSs6y7oXVqvfCAqBk3Xvtj4s+eTaIkQwt20sr2bppbbDDGFKcbi8ery/YYSil1IDSBKsXS5cu5cILLzxs2UUXXdTtbIITJ07kgQceYPLkydTU1HDDDTcQGRnJP//5T775zW9SWFiIzWbj+uuv73Xfb775JtOmTWPGjBmcddZZ/Pa3v2XUqFEsXLiQzZs3M3PmTJYtW8bPf/5z3G4306dPZ+rUqfz85z9vr2Pu3LlcdNFFTJ8+nYsuuqi9e+Cll17KiSeeyLZt28jJyeHhhx8G4MEHH+TBBx8E4A9/+APTpk1j+vTphIWFcc4553DhhRcyffp0ZsyYwemnn87dd9/NqFGj+nw8lyxZwje/+U2OP/54UlNT25evWrWKa6+9tv35mWeeyQcffMCXvvQlwsPDu6pKqUHh8Drx2CIPWzYqPZVqE4up3RekqIYWb+laPNipMzH4dr4b7HCGhLrmVsxfT2XSU6dSua/n1v9QUe908+L/Xc4Xvzkb09rQ+wYhoLzByRu//Aqf3P9t8GniqdRIIW2tHkPB7NmzTedJGLZs2dLe3U0dnUceeYRVq1Zx//33BzuUoNHPj+qv3XcdT60tieN+8vZhy7f88jiITmXyrW8GKbKhY81dC0mhjipJJNlXQ/7Pvuh9oxHuo0+Ws+BNa3KedQXXMuOq3wU5ouB7c8UXnPn6aQDsOuWPjD19cVDjGQqeeuN9vvnpBQDUXPgfkmbohE5KDScistoYc8TkBtqCpZRSPQjztR7RggVQGz6KeOf+IEQ09CS5D1AXPZq6+Elke/aBxxXskIKuqchKMuuJJqHs4yBHMzTUbv2g/bFv80tBjGToCNv5WvvjqvVvBDESpVQgaYI1gi1evDikW6+UCoQw04rPHnHEcmd0Nineg9a9sEJYs8tDmqnGxI6CUdMIw0NN8ZGT8YQae8UGXDhYnXAWmc5d4O3/zeiHu9iKtTiJ4IOw+STVrA92OENCeM0Oau0pfGamElX6abDDUUoFyIAnWCJytohsE5GdInL7sdQxlLoxquFDPzcqEMJ8bozjyBYsr/9eWJ6G8iBENXSUlVcQK07sCVkk5k4F4OCezUGOKvjiG3ZxMGw0vuzZROCiQZNOIlvKqAvPoDG5kFRvOTRXBzukoPJ4fSS79tMYnUN53BTSnbvB6w52WEqpABjQBEtE7MADwDnAFOBSEZlyNHVERkZSVVWlJ8vqqBhjqKqqIjLyyBNjpY5GOK347Ed+jsJS8gGoKt05yBENLY0VJQCEJ2WTVWD9em8u2x7MkIaEBE8FLVGjiBk9C4DKPWuDG1CQOd1e4jzVuKLSILMQgMa9oT1Wr7yhldFyEHd8Hu6UyYThwVcZ2r9PlBopBvpGw3OBncaY3QAi8gRwAdDny5s5OTmUlJRQUVExQCGqkSoyMpKcnJxgh6GGuQjjAseRN7puuxdWXdkuMib3/fYHI42z+lCClZaaSqVJQGr2BDmq4Gr1eEkz1ZRFH8eogsn4jNC8P7RnEiyvbyWVOkzMGBLyZsBaqN6zltjJZwQ7tKApq6xlFjXsS84nKmE67LWOSWqGTsyk1HA30AlWNlDc4XkJcELHAiJyHXAdwOjRo4+oICwsjIKCggEMUSmluuHzEi4eCDuyBSslx7oXlrMitJMJT10ZALGp2dhswgFHFlGNe4McVXBV1zWQKQ2UxmWSk5pIKWlQvSvYYQVVRaOTiVJHbWwGo3MLaDSROA/uCHZYQVVzYA82MUSl5ZORMw3fR0J98QZS510a7NCUUv0U9EkujDEPGWNmG2Nmp6WlBTscpZRq53I2AyBdJFiZ6WnUmFioCe17YfkarTFo8SnWDcTronJJaS0NZkhBV1duXVe0J2ThsNs4GJZNdENoJ51VNXXEipOwhAyyk6PZyyjsNbuDHVZQNVYfACA+NYf8jBT2k4KvKrQv2Cg1Ugx0glUK5HZ4nuNfppRSQ56zpQkACTuyi2CEw85BWzphjSWDHdaQYpqq8Bgb4TGJALTG55FmKjGu5uAGFkTNVVaCFZ5kdVFuiMkjzVUc0jNONlVbtzSISs7CbhOqwnOJaw7tixNtE+REJqaTFB1GCaOIqA/tRFypkWKgE6zPgfEiUiAi4cAlwIsDvE+llAqIVqeVYNnCj0ywwLoXVlyI3wvL3lpDvcSBzfpzYk8ZC0B1aehOdNFa4+82mWIlWN6kscTSjKf+YDDDCiqn/5jEJGcB0ByXR4rnYEjfM62t9Vdi0hERaiJzSHCG9gUbpUaKAU2wjDEe4EbgDWAL8KQxZtNA7lMppQKltcVqhbF3k2C1RGdbJ4kh3DIR3lpDoz2h/XlM5gQAavaF7qQObS0TCWmZAISnjwegcm/oTl/fllza49IBMMljsePDHcJd4uzNVdaDmFQAnHF5xPvqwFkXxKiUUoEw4GOwjDGvGmMmGGPGGmPuGuj9KaVUoBxKsKK7XO+NzyWKVryNlYMZ1pAS4a6lxZHY/jxl9CQAmkN4AgPj/zxEJVjJREKONStcXWnoJp3G31pDbAYAkRlWIl61L3STzvDWKpolBhzWjcwl2ZrQy10Z2mPTlBoJgj7JhVJKDVVuZwMA9siYLte33QurujR0k4kYbx2u8MT251mjRlFrYvBVh27LhK2linpiEUc4AJmjx+MydlwHQ7fbZFiL/1YrMdZkVkn+RLxh/7ZghRR0Ua5qmsKSDj0fZbV01paEbiKu1EihCZZSSnXD4x+DFRbRdYLVdi+s2rLQnILbGEO8rx5PZHL7sgiHnTJbJpENoTuBQVhrFQ0duk2mJURTSjq22qLgBRVkEa1VVldSexgAuVk51JloPBWheWNdYwyxnlqc4Ye+O8nZVqteo96oW6lhTxMspZTqRluC5YiK7XJ9crY1oYOzomiwQhpSmls9JNIIUUmHLa+NyCLeGboTxka5amju0G1SRKgIyyY2RGfNM8YQ666ipWMyERtBsWQSVlcUvMCCqMnlJYk6PJEp7ctGZ6ZTbhLxaBdBpYY9TbCUUqob3lYrwQqP7DrByszIoM5E46sJzamVa2oqCRMvEpt62HJn3GjSvQfB6wlSZMEV463FGZF82LLGmNGkuUpDckKUZpeXZOpojTj0ORERqsOziWsOzVnzqhtdpEg9vphD9/9Mj4ugmAzCQzTpVGok0QRLKaW64WtLsKK67iIYGWbngGQQHqL3wmqstmaGc8R2ukl8cgEOvDRVhl6LjTGGBF8d3g4tEwC+xHyicbbPMBhKqptcpFKHL/rwz0lL7GhSvAfB6w5SZMFT2dBMMg3Y/LMqwqGkM76lOIiRKaUCQRMspZTqhs9lJVhR0XHdlqkNH0VsS2jeC6u51kqwIhMOP3GOTLe6TlaG4FTt9U2tJNGAiTn8mIT7j0lVcegdk8rGVtKkFmLTD1+RVIADH66q0EvE66vLsYkhPP7wY9Icl0eStwpC+EbdSo0EmmAppVQ3fP6TnKjY7hMsZ2xOyN4Lq7XemhkuOjHjsOVJ2RMBaAjBwfrV1Qexi8HeqVUv3n9MaopDb9a8utoaYqQVR/yow5ZHjhoHQGXxlmCEFVTOWuvGy5GJhx8Tkqyp2r0hPAunUiOBJlhKKdUN42rCZ4TwiK7vgwVAwmiiceKsD717YbkbrNccm3x4gpWZOwaXseOuDL2TxIZK68S5c8vEqNET8RqhNQRnzWuqto5JRKdkIjnHSjrrS0MvEXf6W39jkzMPWx6R3jZVe+gl4kqNJJpgKaVUN8TdjFPCEVv3vyoj0/MBKC8OvZPEthvqxiUdnkwkxESyX9JxhOBg/ebaAwBEJR2eTGQkxVFGKraa0Es6W+usZCImJeuw5dm5BbSYcNyVoXebA59/LF5Ep0Q8yZ90NuwPvd8nSo0kmmAppVQ3xN2Ck8geyyRkWt2cavaH3kkiLVW4cCARR3ahrArLIjYEZ4hz+ZOJuJTDWyZEhPKwbGKaQm+8ka/BSjo7d4dLiomgVDJwhOL9wZr8k510GpeWk51FjYnFXRGCv0+UGkE0wVJKqW7YPC20SkSPZTJHW116nOWhd+8ah7OGOkkAkSPWNcXkkureH3Jj0zwN1ri0+E4JFkBDdA4prhC8P1hjWzJxeFdSEaEqPIu45tCbNc/RUoEbxxH3kMuMj2QfGTjqQq+lU6mRRBMspZTqhs3bgssW1WOZhOQ0GojG1IbevbDCXTU02RO6XOdNyCOOZtxN1YMcVZA1VeJDcHS6NxiAJ7GABNOAt6kmCIEFj73ZOiZEH3lMmmLySPWUhVwiHumsosGedMTFCZtNqAzLCcmkU6mRpF8Jloj8VkS2ish6EXlORBI7rPuJiOwUkW0icla/I1VKqUHm8LbgsvXcRRDggCOb6IbQS7CiPbW0hCV2uS4sNTSnare3VFIn8WCzH7EuvO2YhNiseZGtFTTa4sHuOGKdSconEhettaHVshfjrqI5PKXLdU2xo0nylIOndZCjUkoFSn9bsN4CphljpgPbgZ8AiMgU4BJgKnA28GcROfKvjVJKDWEOrxNPHxKsuug8Ul2hN94o1luPKzypy3VxWW2zoYXWYP2I1upuW/XisiYAUBNiE6JEu6tpCkvucl1khpV0VuwNnaTT6zMk+GpxRXadYPmSCrDjw9SE3kUbpUaKfiVYxpg3jTEe/9MVQI7/8QXAE8aYVmPMHmAnMLc/+1JKqcEW4WvB4+i5iyCAO6GAUb5yWp2hc3NQYwzxph5vZNcJVkaelUw4Q2ywfrS7huZukolR+dYMcc7yHYMZUlAZY4jz1uCM6DqZSMyeBEBdaegck+omF2lSizc6vcv1EenWxDl1pTpVu1LDVSDHYF0DvOZ/nA107EBc4l92BBG5TkRWiciqioqKAIajlFL9E+VrwuOI7bWcPW0cNjEc3Bs63eHqm50k0ATRXZ84pyenUG4SkRCbljzOV4Orm2TCOiZJIXVMmlxeUk0t7qi0LtdnjR6Px9hwhVAiXtnQQgr1SFxGl+sT/TelrgvB+4MpNVL0mmCJyNsisrGLnws6lPkp4AEeP9oAjDEPGWNmG2Nmp6V1/QtYKaWCIYZmPGFHTkHeWXzOZABqizcPdEhDRm1VOTYx2LqYzAGswfrljlFENYbOYP0Wl5ckU48vpvtjctCRSVRD6EzVXt3QSqrUY2K6bq1Jio+hTNKw14ZO0llXdQCH+AiL7zrBys7KpcFE4QrBm1IrNVIcOeK0E2PMl3paLyKLgXOBM4xpnwaoFMjtUCzHv0wppYYF4/MRa5rxhMf3WjYjfyoAzgOh082pvtq6t1F4fNcnzgD1kTmMb147SBEFX3ltPXnSRGls9xcL66JGM7lp5SBGFVwVNVWMltZukwmAyrBs4ptCJxFvqt4PQGTSkVP5A2QlRbHNZBAVQkmnUiNNf2cRPBu4DTjfGNNx8MGLwCUiEiEiBcB4IHT+oiilhr3WlkbCxIuJ6D3BSkxKoYoE7DWh082poaoMgNik7hOs1oQC0kwlprVxsMIKquoKf9KZ0H0y4UnMI8VU43OGxjGpO2i11kUm53RbpikmlzT3/sEKKeicNdbnJDa1y5ETOOw2KsKziQ3Bm1IrNVL0dwzW/UAc8JaIrBWRBwGMMZuAJ4HNwOvAd40x3n7uSymlBk1DnXX/JntU1zPCdSQiHHDkENNYNMBRDR2tNdYJcUL66G7L2NOsmQSrQmSq9oYKaybJ6OSuWyYAHP6p2itCZHbFlkqrZSq+h8+JN7GAeBpx1oXGOGxvvZVgRXfTggXQEJ1LsvsAeD3dllFKDV39nUVwnDEm1xgz0/9zfYd1dxljxhpjJhpjXuupHqWUGmoa/QlWWExin8rXx+SR1ho6U7X76q0EKz6t+5aJuJwpAFTt3TgoMQVba3VbMpHfbZm4TCvprNkXGtOSe/z3t4pJze22THiGNeNkRdGmQYkp2LwN5QBIbPctnb7EMTjwYmq1FUup4SiQswgqpdSI0VxvJVgRMV1PQ96ZN7GAFGpwNtYOYFRDh73xAM1EIpHdt/BlFlhj01rKQqMFy9RZCXZsWvetNWl51oQozQdDpDtpo9WVVOKzui2SMNr6nNQVh0aCJU3ltEoERHQ/gY4jw0rEG0pDIxFXaqTRBEsppbrgbLQSrMj4viVYEf6r8Af2hMZMghEtB6m1p4BIt2UyUpLYb1KxVYdGMmFr2I8LBxLT/SQXo9JHUWPikBA5JuFNB2mUWAiP7rZMdt5EWo0DT3lo3Pcp2nmAhrDUHr878TltSWdotP4qNdJogqWUUl1o9bdExcR3fdPYzhJzre5wNSEyVXusq5LG8K6nI28jIhwMzyW2qWhwggqysKYD1NhTwdb9n1abTSh1ZBPTsHsQIwuemNaDVjLRg4TYKIolk/DakZ90ujw+Uj0HaY7qvkUPYHRODpUmHveB0Gj9VWqk0QRLKaW64GmuBSAuoW8JVvbYKfiM4Do48q/CG2NI8lTgjOx+DEmbhph8MlzF0H4Xj5ErtvUgzX04JjVRBaS37h2EiILL6zOke8tojOl+/FWbivBcEpuLBj6oICurayFHKvHE93xMcpKi2U02YTV6LyylhiNNsJRSqitNlQBEJ3Y/DXlH0dGxlEl6SJwQ1TQ0M4oqfAndjzVq400eRwwttNSM7Gm461rcZJkDuOJ6PybOxHEkmjp8jVWDEFnw7K9pJpdyTEJer2Ub48aQ7ikDr3sQIguesooa0qUWR3LPx8RuEyojRpPUvCckLk4oNdJogqWUUl1wtFTSQDQSFtXnbSoi80hsGvk3B92/bycO8RGeNqbXslGZEwE4uHtkjyXZe6CSTKnGllLQa1lbxiQAqvdtGOiwgqp0fzEx0tqnz4kvZTwOvLSWj+wLFDUHrK6hUem9H5PmhHHE+hqgeWQn4kqNRJpgKaVUFyJaK6m19W2CizbNcWPI8pRgfCP7tn+1pdY9nBKyxvdaNjlvGgD1JSN7bFplsdU1NDZzQq9l2yYwqN03spPOmpK+f04i/Yl4ZdHIPiatB/3HJLv3Y2JPtz5LrQd0JkGlhhtNsJRSqgvRrmoa7EeXYJE+kUhxU1U6sgfrO8ut15c6emKvZXPzxtFiwvGUj+wb6zaV7QAgOXdSr2Wz8ifQYsJxj/Dp613+ZCIxp/fPSbJ/qvam/SM7mTAV1jEJz+j9cxKfax2TqhGedCo1EmmCpZRSXYhxV+OMSDmqbWKzrJkEy/esH4iQhgx79S5aCSciqfubDLeJigijxJZFZN3ITjql0jpxjkjvvWUiKzGaIrJw1OwY6LCCKrx6mzVtffLYXsuOzsrkoElsT0BGqqi6ndTZkyCq94s32XnjaTYRtOwf2a2/So1EmmAppVQnxhgSfLV4o3qeXrqz9LFWd7jm/SO7ZSKxcSf7w0aDzd6n8pVR+SS3FA1sUEEWX7+NCns6RCX2WlZEKA+B8XoJjTupiMgDu6P3slFh7JMcoupH7vT1Hq+PjNZ91Eb3Pk4PoCAtjt0mE3vVyE46lRqJNMFSSqlOausbSZAmbHG9T7ndUUZGNtUmrr01YyTy+gxZrj3UxfXeUtPGmTiedG85PmfjAEYWPD6fIdO5m6qYvh+TlvhxpHkPgqtpACMLnuomF6O9+2hJ7PsxqYrKI6WlaMTOmrfrYD0TZR/u1Cl9Kh/hsHMgfDRxjSM7EVdqJApYgiUiPxIRIyKp/uciIveJyE4RWS8ixwVqX0opNZAqS62ZzBzJvU+53ZGIUBaWS+wIvolscWkJGVKDpE/u8zaOjMnYxFCxd2SOJdm5v4J89kP61D5vY0u3xiU1lIzMMUfbd+0iRyqxZ8/q8zaupAnEmCZMQ9kARhY8e7Z+QbS0Ejtmbp+3aYwdQ4pn5CbiSo1UAUmwRCQXOBPY12HxOcB4/891wF8CsS+llBpoDQes8UJ9mUq5s7qYkX0T2bLNHwMQP7bvJ4mJeYUAVO0ZmdOS79v4MWHiJXHiSX3eJsE/qUPFCB2vV739EwBSJ/X9mIRnWkl77d6R+Tlp3LMSgPSJ8/q8jUm1ZhL0lI/s8XpKjTSBasG6F7gN6NiufwHwb2NZASSKSGaA9qeUUgPGVWl1yUnK7n3K7c48yeNJoh5nXUWgwxoSmnetwGuE3Kl9P3HOGTMVt7HTWjYyB+u7dlvJRMaUBX3eJmvMNDzGRvMIncDAu28lHuzE5c/u8zZJeTMAqCkamUln3IGVNNjisKX2vdtkTLbVnbBqhCadSo1U/U6wROQCoNQYs67TqmyguMPzEv8ypZQa0nzVRbSaMJJHHV0XQYCIUdb0ywd2j8yTxKSq1ZSGj8ERndD3beJjKJZMwqpH5lX4tKqV7A8bjcT0fVKU7JQEisnAXjXyjonL4yO/biUlMdMgPLrP2xXk5VFtYnEfGHlJZ0W9k6mutZQnzwVb30+9Mgqm4DVC4wi/j5xSI02fvuUi8raIbOzi5wLgDuDOYw1ARK4TkVUisqqiYmRe8VVKDS/hdXsot2dgt/dtlryO2m+sWzzyTogOVlYx1bOZ2sy+t161qYjMJ6l55I1N272/gumeTdRknXJU29lswsHwPOIbR94xWb99J1PZgzvv1KPaLi0+kj2SS+QInL7+iy9WkiOVRExYeFTbjRmVzF6TARXbBigypdRA6FOCZYz5kjFmWucfYDdQAKwTkSIgB1gjIqOAUiC3QzU5/mWd637IGDPbGDM7LS2tv69HKaX6LcO5m6qY3u/d05Wc/Ik4TRjugyPvhGjHileIEA9xU8866m1bEscxyrMf43YOQGTBs+3j54gQN6OOP/+ot22KH0uGpxS87gGILHhKP30KmxiyT7jwqLYTEaqiCkhp2TPiZhJsWvscAFlzv35U28VFhrHPPprY+pGXdCo1kvWri6AxZoMxJt0Yk2+MycfqBnicMeYA8CJwpX82wXlAnTFmZE4NpJQaMerra8j2HaA1pe+z5HUUFRlOsS2byNqRd0Ikm5+jnljyjz/zqLe1Z0zGLoaKvSOrZS9+x/PUSiIpU8846m1N2kQceGksGznT+nu8PnKKX+ZgWA7Ro/s+g2AbZ9JEYk3jiJpJsLaplWnVb1IcMw1b4tGPlKiLG0uqqwQ8rQMQnVJqIAzkfbBexWrh2gn8DfjOAO5LKaUConjLamxiiMwuPOY6qiLzSGoZWTMJlh8sY1bTx+xJPwNxRBz19gmjra6TlSNo1ryNmzcyt3UFpbnn9ulmup3F5k4HoHzXF4EOLWg+Xv4ux7OZusmXgshRbz8SZxL86L1XGC8l2I+/8pi296RMwo4PX8XIu2ij1EgV0ATL35JV6X9sjDHfNcaMNcYUGmNWBXJfSik1EGq2W9OQ5xX2fUa4zpwJY8nwHsC4WwIVVtBte/leoqWV1NO/f0zb54ybjtcIzv2bAhxZ8FS8dS8A+efeekzbZ40rxGuElpKRcX8wYwy+Tx6gmUjGnf3dY6ojOd8/k+DekZGIt3q8JKz5Mw0SR9bJlx1THTE51pT+1UWd5xJTSg1VA9mCpZRSw07E/pWUSQaJo/KOuQ57+gTsYqjaNzJuIltbV8vU4qVsiJ5L9qS+T7vdUXJCPKWSgWOEzJq3dfs25la/xNa0M4lJzz+mOrLTUthHBrbKrYENLkiWf/IR850fsC/vImzRScdUR/5o/0yCI2RK//dee4ZTfJ9TVfhtiIg9pjpGjSnEY2zU7xs5rXpKjXSaYCmllJ/X62VM83oOJM7sVz1x/ivOVUUjo2Viw39+RjL1xH/5x/2qpzwyn8Sm4T9rnsfro+6Zm7CLIf/rvzzmeuw2YX94AYkNOwMYXXA0OV3EvX0bzbYYxn3j2I9J20yCESNgJsGDNfWMXfUryu0Z5J177N+dcVmp1kyC5SPjgo1SoUATLKWU8tu+5gNSpB4z9kv9qmfUmGn4jNBSNvxPiNZ9/gEnHnic1clfJW9W/45Lc/w4Mr0lGI8rQNEFx9tP/IETWj9h55Qbicua2K+6GuPHkeYphWE8u6Ixhvf+/hNmmi1Un/QzHHHHPiNw20yCqcN8JkGP18cXf7+R8VKM76xfI0dxP7DOYiMc7HPkE1s//BNxpUKFJlhKKeVXufp5vEYYf/IF/aonIyWJ/aQO+5vIlu3fR9or36bGlsjkK//Q7/psGZMIw0tl8fCdwv7j915m4fa72BF9HNMu+mm/6zNpk3Hgo7ls+HYTfP3Jv/KViofZln4OBV+6rt/1OZOH90yCxhhefPguzm56ge0FVzLqKKdm70p93DhS3PuHdSKuVCjRBEsppQCf18u4A6+yJXo2cUkZ/apLRDgYPpq4xj0Bim7wVZYfoOHvF5Jsamm68FGiE9P7XWd8rjUzY8Xu4TlY/9N3X2TG+9+mypFBzn8/dUwzB3YWO9qaSbBiGM4kaIzhlSf+wpc238He6ClMuPYfxzRzYGdho6YAw3MmQa/P8NLD/8PX99/D7sSTmXD57wNSr0mzZhJ0lw/fixNKhRJNsJRSCtjy2RtkUkHzpG8EpL6G2DFkuIvB5wtIfYNpz46N1D14Jnnevew540Hyp88PSL1Z46xkoqV0eE1gYIzhvcd/w3EfXE2tI5W4618nKiE1IHVnjZmK29hpKR1esyu2tLp568838dWtt1MSPYXR33+tX93gOkrJtz4nNUXDaybBuoZm3r/3Ks4v+R07E0+m4LvPgD0sIHXH5lq3OajaszYg9SmlBlb/L78ppdQIUPPJv2giksIzvhWQ+rwp44mqacVZtY/ItPyA1DkYPn39P0z59BZEYO/Z/2TyiecFrO6UpCT2k4a9evhchT94sIwd/7qRhc1vsyV2DgX//QSR8YFJrgBGpyWym0zslcNnvN7O7ZuoX3YDZ3rXsTH9PKZc+zds4VEBqz8/zz+T4IHhk4ivWfkx0a99jzPMLjblX8nUK/8ANnvA6s8aMxX3u3aaiodfq55SoUgTLKVUyNu7by9zGt5h66hzmREbH5A6o7Mmw044uHs9ecMgwSo/WMbux3/AifVvsDcsn5grlzFh9KSA7kNEOBCRT1Lj0J9J0O3x8Mnzf2XKxrs5wTSwdtwNzPjW/yIB6BbYkcNuY394AVMbh/54vcamJlYsvYsTi/9Opgg7Tvhfpp19Y0C6BXaUFhfJaskldRjMJFhZXc0XS5dwavljNNli2X36X5h6SmAu0nQ0ZlQye8wo7OXDd6yeUqFEEyylVMjb/crvycVDzlduCVidKfmF8CE0lGyGE84PWL2B5nY2sebZ3zNu2984nkY+G30Nx11+F2ERgenu1VlT/FimVKzFeD0BT1YCwRjDF8tfJfq9X3Cqbwe7w8bj+vqTzJx8woDtszF+PGlVH4GrCcJjBmw/x6q51c0nL/2DyRvv4UuUszX+JDIvvZ/xWWMHZH8iQnVUAZNaPrRmEgxwAhcIzU4nnz17H9O2PcCXpZbNqWcx5sr7SUro/1jFrkSG2SkNz2faCJjSX6lQMPT+uiml1CCqra1h1oGn2Rx/MtPypgWs3tE5udSYWEzF0OwO52ppZOOLfyBvy985gRo2R87AeeE9nDBp7oDuV9ImEVnhpmr/TlJyA9tC1l/rP30T93u/5XjXSsolhY1zf8PUs/8LCWBXry6lT4YqcO7fRGT+wB7/o1Hf0sonL/2TvM0P8iX2sC+sgB2nP8qkEwf+goEzeSKxpa9iGsqQ+KwB319f1TU089lLDzFu+0MspJSdkVNp/eojTJm+cMD33RA3npSaT8DVDAEa76aUGhiaYCmlQtq6l//CqdJI3ek3B7TeyHAH2+05RNXtCmi9/dXaXM/GF/9A/taHOY5a1oXNYM/8+zn+lK8ig9BSEJ87DTbDwV3rhkSCZXw+1n70ImEf/57prnXUEscX47/H1K/fTnpU7KDEEJc7DbZA5Z715AyBBKumvokVL/6ViTv/ztmUcsCRTdG8u8k//dqAjivqSfioKVBqzSSYVBj8BKu8ppY1L9zPtD2PcKZUUBxWwM75f2HcKZcOWgubpE/GVmNoPbCFiNHHD8o+lVLHRhMspVTIanW5GLvzEXaET2b8zDMCXn9NVD65zSsCXu+xcDbVs+mFeynY/jDHU8e6sJnsPeU2Zs3/yqAkVm0yx8+AN6ClZAOwaND225nH42XV20+Q8PkfmeXdRgVJrJzwI6Zf8ANmxSQMaizZY6bQasJoDvIEBhU1dax+4X6m7fkn50gFJeFj2Df/fkbP/9agJVZtkvOnw2prJsGkwrMGdd8dlRwoZ8OL93J86X84W2rZEzWZfaf+htHzvj7oXRfjRhfCNqjcvY5sTbCUGtL6nWCJyPeA7wJe4BVjzG3+5T8Bvu1f/n1jzBv93ZdSSgXSmjce5UQOsmnuzwfkZKk1cRxJTa9jmmuQ6KSA198XzqY6Nj7/O8bs+CfHU8/a8FnsO/V2Zpx01qAmVm1SU9IoJoPwio2Dvm8Ap8vNylcfYdS6B5hn9nBA0llT+HMKz/0Ocwdo3Flv8tPi2UY2EUGaSfBgZRVrn/8DM4sf5WypoShqMqUL7yZn7oVBG//UPpNgWXCmr9+1dx87X/odJ1Q8xTnSxI642Xi/9GMKZnw5aMfESsQdNJUE57ujlOq7fiVYIrIQuACYYYxpFZF0//IpwCXAVCALeFtEJhhjvP0NWCmlAsEYQ8Lah9hvG8WUhZcOyD7CMiZCKVTt3Ujq5AUDso/utDRaidW4nf9kNvWsDT+OkoW3M2PemUFJrNqICCUR4yloHNzZ0BpbnHz24l8Zs+WvnEIppfYsNsz6f0w9678YFRY+qLF05rDbqIgsYFrj4LZglZQdYNMLv2NO2VLOkgZ2xszC+6W/kD/r7KBPLJEWF8kKGcvo6sFNJjZt30HJq7/l5JoXGCtOtiWdguec2xk/8eRBjaMr+ekJ7CSLiIrhM329UqGqvy1YNwC/Nsa0Ahhjyv3LLwCe8C/fIyI7gbnAp/3cn1JKBcSGFW8x3buVNVN+QtYAzWYXP3oqrIHqQUywmhtq2Pjc75iw+xHm0MDaiNkUL/wxM074clATq44akqcyqmw5vqYabDED27JXV9/I5y/ez8Sd/+AMDrIvrIBtJ/yRCQsvJ3sIzWLoTJ5Iatl7mJYaJGpgj0nRvn3sePG3nFDxNGdJM9viT8R99k8YN/XUAd3v0RARKhKmMbdu6YBP6mCMYc2GjVS9+VtOaXiVSeJhR9qZZJ57BxPzZw7Yfo9WmN3G3oiJzG9YMWRnV1RKWfr712UCsEBE7gKcwC3GmM+BbKDjwIMS/7IjiMh1wHUAo0eP7mc4Q5vX66Wucj/1lftprC6jtbYMT/1BpLEcaalGXI2Ee5uI8DYT4WsmyrRgN27s+LAZLzZ82PEhGDxix00Ybhx4JAwPDlolklZ7DC5HHJ7wOHzhcRCRgEQlYItOIiw2haj4VGIS04hPTiMuMQ1bWESwD4tSQeH66D7qiWHKV28YsH0UjLW69LTsH/grzk311Wx87h4m7vkXc2lkbeQcHAt/wswTAj+2rL8iRx8HZVC2fSXZswZmfE1VTQ1fPH8f04oe4UtSzZ6IiexZcBcFJ10ENtuA7LM/InNmQBmUb19FxowvD8g+du7ayb6Xf8O86hcYjYutSaeR/tWfMnH8nAHZX3/5so7DXvc4LftWEzUu8BcojDF8vmYVDW//lgXNb2MT2Jl1Ljnn3cGkrOBPwNKV2pRZxJa9hancgaRNCHY4Sqlu9JpgicjbwKguVv3Uv30yMA+YAzwpImOOJgBjzEPAQwCzZ882R7PtUORsaaZk1wYaizfRWrEbqdtHZFMJSa1lZPjKSRYPyZ22aTVh1Eo8TlsMrfYoXPZoGsPTcDuiMfZwbDY7NrsDsTvwGhs+QLwexOfC5nMjPg82n4swbzPhnkbiXCVEOZuINk3E0dJjvE1E0ihxNNvjaQ1LwBORiDciEYlOwh6TTERsChHxKcQmphEVn0pEfCoSnQwOTczU8FWyazOzmpazOucK5g7ghAbJcVHssmVhqxq4e9c01lez8dnfMqno35xAI19EnkDkGbczc87pA7bP/sqefCJ8BlU7Ap9gVVRUsP753zOz5DG+JPXsiJ6O6/Q/UTD7q0P6in/65JPhc6ja+lHAE6xtWzdS9upvOLHuNfLxsjXtLLLO/SlT8gsDup9AS5lwImyB8i2fkBfABMsYw2effUzre79lvvMDPOJg9+hvkH/BHUxKzQ/YfgZC1JgToQxqti0nWROsAePxeGhqaqC1uRG3qxWPuxWvuxWP243X04rP3YrX7cLnacV43RhjrFZFQGg7lTXWcqDjbx4jghE7RuwgdsTuQGx2bDbHocd2B2K3IzYHtrZ//Y9tDgdic2D3L7fb7dZymwO7w4Hd5kDsgl0Eu02wtf/LkOnFEAp6TbCMMV/qbp2I3AA8a6xP0EoR8QGpQCmQ26Fojn/ZiGF8Pg6U7qFs03JcpesJr95OSvNusn37GSe+9nI1xFHpGEVFzHj2x50OCdk44jOJTBpFbEoWCWnZJCQkkzFAV1R9Hg8NDbU01VbSVFdBS10FzvpKPI3VeJurkZYabK21hLvqiGytI7rlIHGmgUSaCJPuh8y1EEGjxNFkj6PFHo/THovXHo6xhWNsYfjs4WALx9jDwR4OjnD/LwjBIHT8dWPav/Bt68BmvAg+8HnB+MB4wedF/P9ifO2PpW298T/2WdvafB6rHD5/eetfm/EB1vZijPUv1nobh8q0LRMMNqyyNn9rorXMKmPzlwHo6gqB6bxQDr3a3kgPz7rSXY1tx7VzDaabOnurp2uBqav7fRxd/dDxs3W4GNOCDxtjvvrDHrYOjJrofDKaA59g1ddWsfm5u5m891Hm0cTaqHlEfuknzDr+tIDvK9DyR49mv0lF9n8RsDrLDuxn6/O/ZVbZMs6QJrbGzqXlyz9m/Mxu/4QNKRPzR7ObbKRkZcDq3Lh+NTVv/Jp5je9QIMLWUeeRd/4dTMseHifmk8aNo8Sk4tn3eUDq8/kMKz5+Gz78HSe5P6WZSLaNuYqx59/GpKQuO9kMOWMnz6JueTT1Oz4hef41wQ5nyGppbqKu6gBNtZW01FXQ2liFp7EaX3MVtNRgc9YS5qrD4WkmzNdMhLeFCNNCpHESaZzESCuDO5doYPmM4EPwYsOLDZd19tJ21oK3/bkNn3R47H9usFl/ceXQX17p+IQj//Z2+bfbdPN32LTVeSgZbXvc4eywwzLDBvtUYr5xPwsnDszNvAOtv10EnwcWAu+JyAQgHKgEXgT+IyK/x5rkYjwQuL8aQeBsaWb3F+/TsPNjIg6sIbt5C5nUkAl4jbDflklVdAEHkr5MeOYU4nKnkZ43iaSEZIIzd5jF5nCQkJRKQlIq0LcuDx6vj9pmFzW1NTTUVNBcV0FLXSWmudr/i6kGe2sd4a46Ijx1RHnqSXSX4DBuHLhxGA9huAnz/xveQ6J2tDzm0C+Gjr8gvJ1+URxaZ8eI9dyIYNo6Wfp/gXj9/xqx4cMBYsMndozNKgPWc/xXnPDXj1jbGLEjYtUtCCLWRXLBulLU9gvq0K+MDr+STM8JS/eJiemmUDdbHJHhWSWlm+LdJ349pjJ93nfP+zjGmLpc3d2+Lb7ceczNKjiqOI6FJ3kiWY0f0VRfQ0x8/38b1NVUsvm5u5m67zHm0cQXUScSc+ZPmTlrcCfR6A+7TSiKKWRS3ep+jyUpKd7Lzhd/w+zyZ1goTjbGL6DlnJ8waUrwJyU4GnabsC9uFnMa3gGvG+xhx1SPMYb1qz+m+Z27OaH5Q1oljE05ixj7tZ8wPW14dcNPi4vg/fDJTK9a06/Piddn+PS9l4n49Pec5FlDAzFsGn89E86/lSlxqQGOemBNykxgBRMYd2BVsEMJCmeri4Ole2g4sBtndTGe2jJM4wEcTeVEtVYS66kiyVtNgjQR1U0dLuOgTuJotsXitMfgtkVRH56M1xGN1xGNCYuBcOvHFh6NOCKwOcIRRzg2Rzg2Rxh2RwTiiMAeFo7NHg62Q2mI9c+hz6pIx3WmwwVfL3g9+HxejNeD8Xnweb0Ynwd8Xnw+a73xeTE+L/j8j/3b4X9sfG0Xo61y4vNiOlyYxnS6WG18iK/DRem2C9b+5+LzYjDtf76NocPzo/ub3vMlWWP9/7DvtfXYdDiObY99ETnERw6dcbO96W+k/wD+ISIbARdwlb81a5OIPAlsBjzAd4fjDIIlOzdS/OlTxJQuZ1zLBqZIKwD7JIu98bPZk3UcSeNPJHfyHHKjYw9rshvOHHYbqXGRpMZlQm5mv+szPh8edysutxuP14dIh29teyFz2JUM/MkMNjt2uwOb3YHNZsduE8K1mVsNI+EFJ2Iv/hvFGz5k0skXHHM9ddUVbH7uN0wtfpwTaeaL6JOIO+unzJoxP4DRDh533qkkb3mPAzvWMGrC0d/TZ8/u7RS//GvmVr1IJh42JZ1Bxrk/Zdq44wYg2sHhzl9IzIaXKd/8AemFR9fyZoxhzadv4/vgHua0rqCRKNbnX82Er93GzKT+/x4PlsbcU0ne/RFN+74gJu/o3lu3x8unbz9D/Od/ZL53IzWSwOYpNzPh3JuYGp04MAEPMMf/b+/O4+Mqy4aP/66Zyb42+9okbdM0bdJ9pRQKsspSEGSRHRVRUUFRQAXR5+EVEEURgQdEAUUWQVlkkbVAgZaudG+TtmnWZt/3mbnfP840pG3Spskkk0mv7+eTZuac+9znmjk503PNvRy7jeq4eRxf+ximsRSJSvN1SF7lcrmpriylbu8WWit34azdi72pmND2CsZ17SPB1JBx0Je2nSaAOts4mhyx1IdkUhU6HxOWgC0iHkdYHEGRvcefJxAcEk68XkP4HX/7ZB9SgmWM6QIu72fdXcBdQ6nf18rWvcGiXb9nry2dzQnnEDT5ZMbPOoXxcYn41/eAviU2GwFBIQQE9fd9klJjV9bMpbg+EBq2fwCDSLAaairZ+tK95JX8g0XSxvqw44k8/WfMmn7cMEQ7cjIXnIN76y+pWPn8USVYhds/Z98b9zC/4U3SgC1xZ5B27s+YnjFt+IIdITnHnU3nxlvZ9+lzA06w3C436z54Gcenv2dO9wYaCWf9pO+Qe+7NzIyMHeaIh1/ynHNw77qLsk+eY/IAE6yOrm5WvfE34jc8xAmmgBqJYev0nzLlrBsYFxQ2zBEPv5Dp58H7j1H6yXOkn/kjX4czKF0d7VTs2ULN3i10VOzAUV9IZGsRKc5SkqS1Z+C/2wi1Mo7agCQqo/Ipi0jHHpNBcHwW4fEZjEtKJyIyhmSbDf/9GkGNRWL66cLjC3PnzjVr1oyeZu/G+hq62luIT8n0dShKKT+2/X8XEkA3E3++dsDbVJcXsfuVe8ir+Bdh0sH6sCVEn/lzsvIWDmOkI2vD/y4hwV1N8s82I0eYMn37ug9pfvc+5rR8SDcOtiadS+a5P2Vc6qQRinZkfHz3ueR3rCX81u3YgiP6LdfZ1cWaN58ibsPD5LgLqZFxlORcy7RzbyQwNHIEIx5eTpeb1Xd9iRyKGPfT7chhJlhqbm1l3X8eJWPbo2RSzj5bEg2zvkPOGd9CAoJHMOrh1dzRzd5fzycuyEXSrRtG5ayYvdXsK6Z462e07N1AUO1W4tsKSXeVHjDOu1piqAkcT1tkFiZ2EkFJU4hOyyEhbSJBwb65AbhSAyEia40xcw9e7j+dGX0galwcjPOv/tlKqdGnNv00Fu/5A3sLNpGRffiZ2/YWbmbfa/cwq+515uJifeSXiDvzFmZNnT9C0Y6c9hlXk7L2h2x681Hyz/rOIeu7urpY/+5zBK37MzO7N9BMCGvTrybn3JuZlTC2ukbtZxZeT+TyS9n0/C/Jv/K+Q9ZXVlaw47+PkrH7GRZTQakthfUzf0X+mdcRNwZ7CTjsNlpmfZOYtd+m4OV7yb7g9kPKFO/dza7/PkRu2YucKHUUOSawY+EfmHzSZSQNcizbaBYRHMCOrCvJK7qT0uV/Ju3k63wdUo/mqr2Ubl5B+55VBNdsJqm9kDga2X8lVSWxVIZMYu24pTgSpxI9fhopE/OIjxhHvC8DV8rLtAVLKaWGWd2+vYQ/PIv1sWez4PtPHbLe7XKxZcXLOFf9memtn+DEwedxZ5F61q2kTsj1QcQjo6vbSeHdixnv2kvpyQ+Ss3gZnd1Odq3/gPoNr5Jd+TqJ1FEtMeyddCVTzv4B4VEH3+hibDHG8PFvLuS41nfZkH0DKYu+SltnF+VbPyVo91tMb11JkHRTEJiLc8F3mLL0a0ds/fN3Hd0u1t57Fgu6VrEl90ZiZ55Fc1sbtds/IXjP28zsWodD3OwInUPAku8zYeGyUT0lvzc0tnZSeN9J5JmdFM68lbRFFxGVOLKDFzpa6ine/AlNhSsJ3LeOlNatxJk6ALqMnT32DOrDczCJ0xg3YTbjc+cRGu0fM8ApNVD9tWBpgqWUUiNg5YPXMr/6X2yYezezzroOt9vNnq2fUb3m36SXvEqaqaCeSHamns+kc24mNunYGOlZurcA5xPLyDRldBu7dWN1MXQbO9tD58Dcq5l24kXYHGOvJaI/dQ0NFDzyNRZ0fHzA8mpiKEk8maSTryclZ3TeHHi47KuuofjRS5nffeCExOW2ZKrSTiPtS98mLmPsfhnRl4KiYlqeupRZ7s04jY0dpz7BtOMHP5HO4Ti7uyjevoa6HZ9A2VrimjYz3lmCzTNpVTFJlIdNozNxFpGTFpKVt5DoyP67uCo1VmiCpZRSPtTW2sTe+08j17mNTmMlC0HSjdsI24PyaMu/gvxTrzgmxxu0tTaz4b9PYavZjrEHE5w6jUkLzyEi2v8naRgst9uw/fNPaCragCMggNRJs0jOmTvmW2YOx+1ys+3zT2gu205wYCApObNJyJh2TL8nTqeLLZ+9S9ZbV1PhSGPSbZ9it9uHVKdxuynbu5N9Wz+mu3g10XUbyewqIES6AOv+nkXBubTGzSA4cz5peYtJTEzR2X3VMUkTLKWU8rHOznY2vvFXuis2Y7OBI2kaExaeS0ziWLnJg1LKF9a+/EfmrP85H2fcwOJrBj6BszGGisoKKrZ8TEfRZ4RVf874jm3E0ARYU6DvCZhEw7h87OPnkph7PGlZudjso3tiDaVGiiZYSimllFJjkHG72XD/V5jV/D6fRZ1B9Gm3MCl3FjbPDXCNMdTU1VFZvJPWks1079tCUN0Okjp2kU4lYE2JXmJPozoyD3fKHGImLyRj6jwCAsfODIxKeZsmWEoppZRSY5Szq4PVT93GvJIncIibBhNGs0Rgw0WkaSFC2r8oa2yUO1JpCJ+EM2E6YRMXkD5tEaERY3sSGaW8TRMspZRSSqkxrq6iiOJP/4l731aksxmx2XEGRkJkCiFx44kan0/ihHwCxuC0/kqNNL0PllJKKaXUGBeTnEnMV37s6zCUOqbpKEWllFJKKaWU8hJNsJRSSimllFLKSzTBUkoppZRSSikvGVWTXIhINbDX13EcJA6o8XUQasTo8T526LE+duixPrbo8T526LE+tozG451hjIk/eOGoSrBGIxFZ09fsIGps0uN97NBjfezQY31s0eN97NBjfWzxp+OtXQSVUkoppZRSyks0wVJKKaWUUkopL9EE68ge9XUAakTp8T526LE+duixPrbo8T526LE+tvjN8dYxWEoppZRSSinlJdqCpZRSSimllFJeogmWUkoppZRSSnmJJliHISJniMgOESkUkVt9HY/yHhFJF5H3RWSriGwRkR94lseIyNsiUuD5Pc7XsSrvEBG7iKwXkf94nmeJyCrP+f2ciAT6OkblHSISLSIviMh2EdkmIov03B6bROQmz2f4ZhF5RkSC9dweO0TkLyJSJSKbey3r81wWywOe475RRGb7LnJ1tPo51r/xfI5vFJF/i0h0r3W3eY71DhE53SdBH4YmWP0QETvwJ+BMYCpwqYhM9W1UyoucwI+MMVOBhcB3Pcf3VuBdY0w28K7nuRobfgBs6/X8HuB+Y8wkoB74uk+iUsPhD8CbxpgpwAys467n9hgjIqnA94G5xpg8wA5cgp7bY8kTwBkHLevvXD4TyPb8XAc8PEIxKu94gkOP9dtAnjFmOrATuA3Ac712CTDNs81Dnuv2UUMTrP7NBwqNMbuNMV3As8AyH8ekvMQYU2GMWed53Ix1AZaKdYyf9BR7EjjPJwEqrxKRNOAs4M+e5wKcDLzgKaLHeowQkSjgBOBxAGNMlzGmAT23xyoHECIiDiAUqEDP7THDGPMhUHfQ4v7O5WXAU8ayEogWkeQRCVQNWV/H2hjzljHG6Xm6EkjzPF4GPGuM6TTG7AEKsa7bRw1NsPqXCpT0el7qWabGGBHJBGYBq4BEY0yFZ9U+INFXcSmv+j3wE8DteR4LNPT64Nbze+zIAqqBv3q6hP5ZRMLQc3vMMcaUAfcBxViJVSOwFj23x7r+zmW9bhvbrgXe8Dwe9cdaEyx1TBORcOBF4EZjTFPvdca6h4Hex8DPicjZQJUxZq2vY1EjwgHMBh42xswCWjmoO6Ce22ODZ+zNMqykOgUI49AuRmoM03P52CAiP8Ma2vG0r2MZKE2w+lcGpPd6nuZZpsYIEQnASq6eNsb8y7O4cn+XAs/vKl/Fp7xmMXCuiBRhdfU9GWuMTrSnWxHo+T2WlAKlxphVnucvYCVcem6PPacAe4wx1caYbuBfWOe7nttjW3/nsl63jUEicjVwNnCZ+eLmvaP+WGuC1b/VQLZnNqJArMF0r/g4JuUlnjE4jwPbjDG/67XqFeAqz+OrgJdHOjblXcaY24wxacaYTKzz+D1jzGXA+8CFnmJ6rMcIY8w+oEREcjyLvgRsRc/tsagYWCgioZ7P9P3HWs/tsa2/c/kV4ErPbIILgcZeXQmVHxKRM7C6959rjGnrteoV4BIRCRKRLKyJTT7zRYz9kS+SQXUwEfky1tgNO/AXY8xdvo1IeYuIHA98BGzii3E5P8Uah/U8MB7YC1xkjDl4gK3yUyKyFLjZGHO2iEzAatGKAdYDlxtjOn0YnvISEZmJNaFJILAbuAbrC0U9t8cYEfklcDFW96H1wDewxmLouT0GiMgzwFIgDqgEfgG8RB/nsifJfhCrm2gbcI0xZo0PwlaD0M+xvg0IAmo9xVYaY673lP8Z1rgsJ9YwjzcOrtOXNMFSSimllFJKKS/RLoJKKaWUUkop5SWaYCmllFJKKaWUl2iCpZRSSimllFJeogmWUkoppZRSSnmJJlhKKaWUUkop5SWaYCmllFJKKaWUl2iCpZRSSimllFJeogmWUkoppZRSSnmJJlhKKaWUUkop5SWaYCmllFJKKaWUl2iCpZRSSimllFJeogmWUkoppZRSSnmJJlhKKTVKiEimiBgRcfg6lrFORK4WkRW+jmO0EZElIrLD13EopZQ/0wRLKaWUXxORO0WkW0Raev38xNdx+SNjzEfGmJzhql9ErvR8ifCN4dqHUkr5mn5LqpRSXiIiDmOM09dxHKOeM8Zc7usghstY+NsSkXHAT4Etvo5FKaWGk7ZgKaXUEIhIkYjcIiIbgVYRcYjIQhH5REQaRORzEVnaq/xyEfm1iHwmIk0i8rKIxPRT9zUisk1EmkVkt4h866D1y0Rkg6eeXSJyhmd5lIg8LiIVIlImIv8rIvYjvI6JIvKeiNSKSI2IPC0i0b3W1YnIbM/zFBGp3v+6RORcEdnieb3LRST3oPfnZhHZKCKNIvKciAQf/Tt99ETkVs/70iwiW0Xk/H7KiYjcLyJVnvdyk4jkedYFich9IlIsIpUi8oiIhAxw/094yr/tieEDEcnotf4PIlLi2edaEVnSa92dIvKCiPxdRJqAq0Vkvoh86nmfK0TkQREJ7LWNEZHviEiBZ3//4zl2n3j28Xzv8v3EvFRESgfy+gbh18ADQM0w1a+UUqOCJlhKKTV0lwJnAdFAIvAa8L9ADHAz8KKIxPcqfyVwLZAMOLEuOvtSBZwNRALXAPf3SnLmA08BP/bs9wSgyLPdE556JwGzgNOAI3XJEqwL4BQgF0gH7gQwxuwCbgH+LiKhwF+BJ40xy0VkMvAMcCMQD7wOvHrQhfxFwBlAFjAduLrPAESO9yQP/f0cf4TXcLBdwBIgCvilJ/7kPsqdhvX+TfaUvQio9ay727N8Jtb7mQrccRQxXAb8DxAHbACe7rVutafeGOAfwD8PSj6XAS9gHd+nARdwk6euRcCXgO8ctL/TgTnAQuAnwKPA5VjHMw/rb3XQPIlyf8fnocNsNx+YCzwylP0rpZQ/0ARLKaWG7gFjTIkxph3rYvZ1Y8zrxhi3MeZtYA3w5V7l/2aM2WyMaQVuBy7qq4XJGPOaMWaXsXwAvIWVMAB8HfiLMeZtz37KjDHbRSTRs68bjTGtxpgq4H7gksO9AGNMoaeuTmNMNfA74MRe6x8DCoFVWInhzzyrLgZe82zbDdwHhADHHfT+lBtj6oBXsZKKvmJYYYyJPszP4SaluOigi/0UY8w/Pft1G2OeAwqA+X1s2w1EAFMAMcZsM8ZUiIgA1wE3GWPqjDHNwP870nt5kNeMMR8aYzqx3rNFIpLueb1/N8bUGmOcxpjfAkFA7/FPnxpjXvLE326MWWuMWekpXwT8H72Okce9xpgmY8wWYDPwljFmtzGmEXgDK+EeNGPM9MMcn4OTPQA8f9sPATcYY9xD2b9SSvkDHYOllFJDV9LrcQbwVRE5p9eyAOD9fsrv9ayPO7hSETkT+AVWC4oNCAU2eVanY7UWHSzDU1+FlR+AZ9uSPsr23lci8AesBC7Cs039QcUeA14BrvMkDGC1eO3dX8AY4xaREqyWnv329Xrc5tnG254/eAyWiFwJ/BDI9CwKp4/32Rjznog8CPwJyBCRf2G1PAZjvedre72XAhy2u+VBet53Y0yLiNRhvf4SEbkZK1FOAQxWS2VcX9t6Xs9krMR3ricuB7D2oP1V9nrc3sfzpKOI3Vu+A2w0xqz0wb6VUmrEaQuWUkoNnen1uASrhar3N/thxpi7e5VJ7/V4PFYLygHjUkQkCHgRq0Uo0RgTjZVQ7b/SLwEm9hFLCdAJxPXaf6QxZtoRXsP/87yOfGNMJFZL3BdZhUg48HvgceBO+WLcWDlWUre/nHheX9kR9ncIsaYIbznMz5Ij19JTVwZWQngDEOt5/zb3fk29GWMeMMbMAaZiJbQ/xjom7cC0Xu9llDEm/CheVs+x9ryHMUC557X8BKs74jhPfI0Hxdf77wrgYWA7kO05Rj/t7/UMF7HG2vV3fPrr/vcl4HwR2Sci+7BaN3/rSWqVUmrM0QRLKaW86+/AOSJyuojYRSTYM3FAWq8yl4vIVM94pl8BLxhjXAfVE4jVZawacHpas07rtf5x4BoR+ZKI2EQkVUSmGGMqsLoS/lZEIj3rJorIwV3JDhYBtACNIpKKlWD09gdgjTHmG1hjzPZfTD8PnOWJIwD4EVaC98mR3qiDeaYIDz/Mz0dHUV0YVoJSDdaEIVhjkA4hIvNEZIEn/lagA3B7urM9hjX2LcFTNlVETu+1rZFek5j04cuesWWBWGOxVhpjSrDeb6cnPoeI3IHVgnU4EUAT0CIiU4BvH6G81xljph3m+Fzfz2ZXY43rm+n5WYM1Ju5n/ZRXSim/pgmWUkp5kefieRlW60I1VovSjznw8/ZvWBNR7MPqhvb9Pupp9ix/Hqur3tewuuftX/8ZnokvsFo+PuCLlqQrsRK0rZ5tX8AaN3U4vwRme+p6DfjX/hUisgxrkor9F/Q/BGaLyGXGmB1YrV1/xGrxOQc4xxjTdYT9DStjzFbgt8CnWN3k8oGP+ykeiZVI1WN1d6wFfuNZdwvW2LOVYs3m9w6ecVKesVTNfNFtsy//wOrmWYc1+cT+boz/Bd4Ednr22cERunFidVv8mmefjwHPHaH8qGCMaTDG7Nv/A3QBTZ5xYUopNeaIMQf3QFBKKTVcRGQ58HdjzJ99HYsaGhG5HKv74G39rH8CKDXG/HxEA1NKKeVTOsmFUkopNQjGmL/7OgallFKjj3YRVEqpY4RYN709mskJ1BgkIj/t5+/gDV/HppRSY4HXugh67nOxBigzxpwtIlnAs0As1jSyV/i6T75SSimllFJKDSdvtmD9ANjW6/k9wP3GmElYA4e/7sV9KaWUUkoppdSo45UWLM/0w08Cd2HNLnUO1uxZScYYp4gsAu40xpx+mGqIi4szmZmZQ45HKaWUUkoppYbT2rVra4wx8Qcv99YkF7/HumFihOd5LNBgjHF6npcCqUeqJDMzkzVr1ngpJKWUUkoppZQaHiKyt6/lQ+4iKCJnA1XGmLWD3P46EVkjImuqq6uHGo5SSimllFJK+Yw3xmAtBs4VkSKsSS1OBv4ARIvI/hayNKCsr42NMY8aY+YaY+bGxx/SwqaUUkoppZRSfmPICZYx5jZjTJoxJhO4BHjPGHMZ8D5woafYVcDLQ92XUkqNFGMMTpfb12EopZRSys8M542GbwGeFZH/BdYDjw+mku7ubkpLS+no6PBqcGrsCw4OJi0tjYCAAF+HovzQn5/4M3NKnmTKj14nNCzS1+EopZRSyk94NcEyxiwHlnse7wbmD7XO0tJSIiIiyMzMRESGWp06RhhjqK2tpbS0lKysLF+Ho/yM2+nkm3tvBuDz1W8zY+kFPo5IKaWUUv7Cm/fBGhYdHR3ExsZqcqWOiogQGxurLZ9qUKqry3set+9414eRKKWUUsrfjPoEC9DkSg2K/t2owaqqrOh5HF27wXeBKKWUUsrv+EWCpZRSI6mlrhKAClsSSV3FPo5GKaWUUv5EE6wBEBF+9KMf9Ty/7777uPPOO30XUC8rV65kwYIFzJw5k9zc3J64li9fzieffDLoevfu3cvs2bOZOXMm06ZN45FHHvFSxEr5gdYaACqiZxNNM001FUfYQCmllFLKMpyzCI4ZQUFB/Otf/+K2224jLi7Oa/UaYzDGYLMNPs+96qqreP7555kxYwYul4sdO3YAVoIVHh7OcccdN6h6k5OT+fTTTwkKCqKlpYW8vDzOPfdcUlJSBh2rUv5C2usA6E5dCHWvU7FrA5FxyT6OSimllFL+QFuwBsDhcHDddddx//33H7KuurqaCy64gHnz5jFv3jw+/vhjAO68807uu+++nnJ5eXkUFRVRVFRETk4OV155JXl5eZSUlPDjH/+YvLw88vPzee655wArQVq6dCkXXnghU6ZM4bLLLsMYc8j+q6qqSE62LvzsdjtTp06lqKiIRx55hPvvv5+ZM2fy0UcfHTbOK664gkWLFpGdnc1jjz0GQGBgIEFBQQB0dnbidvd9P6AHHniAqVOnMn36dC655BIA6urqOO+885g+fToLFy5k48aNPfu66qqrWLJkCRkZGfzrX//iJz/5Cfn5+Zxxxhl0d3cD8Ktf/Yp58+aRl5fHddddd8jrdrvdZGZm0tDQ0LMsOzubysrKwx1GpQbM0V4LwLgpSwBoKtvhy3CUUkop5Uf8qgXrl69uYWt5k1frnJoSyS/OmXbEct/97neZPn06P/nJTw5Y/oMf/ICbbrqJ448/nuLiYk4//XS2bdt22LoKCgp48sknWbhwIS+++CIbNmzg888/p6amhnnz5nHCCScAsH79erZs2UJKSgqLFy/m448/5vjjjz+grptuuomcnByWLl3KGWecwVVXXUVmZibXX3894eHh3HyzNdX01772tX7j3LhxIytXrqS1tZVZs2Zx1llnkZKSQklJCWeddRaFhYX85je/6bP16u6772bPnj0EBQX1JDy/+MUvmDVrFi+99BLvvfceV155JRs2bABg165dvP/++2zdupVFixbx4osvcu+993L++efz2muvcd5553HDDTdwxx13AHDFFVfwn//8h3POOadnnzabjWXLlvHvf/+ba665hlWrVpGRkUFiYuIRj6NSA+HorKfJhJA+cRpOY8NVt9fXISmllFLKT2gL1gBFRkZy5ZVX8sADDxyw/J133uGGG25g5syZnHvuuTQ1NdHS0nLYujIyMli4cCEAK1as4NJLL8Vut5OYmMiJJ57I6tWrAZg/fz5paWnYbDZmzpxJUVHRIXXdcccdrFmzhtNOO41//OMfnHHGGX3u83BxLlu2jJCQEOLi4jjppJP47LPPAEhPT2fjxo0UFhby5JNP9tlCNH36dC677DL+/ve/43A4el7TFVdcAcDJJ59MbW0tTU1WYnzmmWcSEBBAfn4+LperJ978/Pye1/f++++zYMEC8vPzee+999iyZcsh+7344ot7WvueffZZLr744sO+50odjYCuehqJICQ4iCqJI6BJJ7pQSiml1MD4VQvWQFqahtONN97I7Nmzueaaa3qWud1uVq5cSXBw8AFlHQ7HAd3qet+PKSwsbED7299FD6zuf06ns89yEydO5Nvf/jbf/OY3iY+Pp7a29pAy/cUJh05nfvDzlJQU8vLy+Oijj7jwwgsPWPfaa6/x4Ycf8uqrr3LXXXexadOmAb0mm81GQEBAz75sNhtOp5OOjg6+853vsGbNGtLT07nzzjv7vJfVokWLKCwspLq6mpdeeomf//znh92vUkfD5mynQ6y/1brAZMLby3wckVJKKaX8hbZgHYWYmBguuugiHn/88Z5lp512Gn/84x97nu/vCpeZmcm6desAWLduHXv27OmzziVLlvDcc8/hcrmorq7mww8/ZP78+QOO6bXXXusZo1RQUIDdbic6OpqIiAiam5uPGCfAyy+/TEdHB7W1tSxfvpx58+ZRWlpKe3s7APX19axYsYKcnJwD9u12uykpKeGkk07innvuobGxkZaWFpYsWcLTTz8NWGPJ4uLiiIyMHNDr2Z9MxcXF0dLSwgsvvNBnORHh/PPP54c//CG5ubnExsYOqH6lBsLm6qDLk2C1hqYS262zCCqllFJqYDTBOko/+tGPqKmp6Xn+wAMPsGbNGqZPn87UqVN7pjO/4IILqKurY9q0aTz44INMnjy5z/rOP/98pk+fzowZMzj55JO59957SUpKGnA8f/vb38jJyWHmzJlcccUVPP3009jtds455xz+/e9/90xy0V+cYHXzO+mkk1i4cCG33347KSkpbNu2jQULFjBjxgxOPPFEbr75ZvLz8wH4xje+wZo1a3C5XFx++eXk5+cza9Ysvv/97xMdHc2dd97J2rVrmT59OrfeeitPPvnkgF9PdHQ03/zmN8nLy+P0009n3rx5PeseeeSRA+K++OKL+fvf/67dA5XX2Z0ddHsSLGfkeOJooLP98F1/lVJKKaUApK+Z6Xxl7ty5Zs2aNQcs27ZtG7m5uT6KaOy78847D5gMY6zRvx81GHt+vYBaVyhzf/4+q15+hAXrb6H0ax+QNnmmr0NTSiml1CghImuNMXMPXj7kFiwRSReR90Vkq4hsEZEfeJbHiMjbIlLg+T1uqPtSSqmRYHd34rRZLVjhiRMAqC8r8GVISimllPIT3pjkwgn8yBizTkQigLUi8jZwNfCuMeZuEbkVuBW4xQv7U1505513+joEpUadAHcnrkArwYpNt7r3dlTv9mVISimllPITQ27BMsZUGGPWeR43A9uAVGAZsH/wzZPAeUPdl1JKjYQA04nLZs24GZ80ng4TgKkv8m1QSimllPILXp3kQkQygVnAKiDRGLN/6q19QJ93gRWR60RkjYisqa6u9mY4Sik1KIGmC7fDasGy221U2hIIaC71cVRKKaWU8gdeS7BEJBx4EbjRGNPUe52xZtLoczYNY8yjxpi5xpi58fHx3gpHKaUGLdB0YhwhPc8bApMI79Cp2pVSSil1ZF5JsEQkACu5etoY8y/P4koRSfasTwaqvLEvpZQaVsYQTBfG8cVNudtDU4lzVvowKKWUUkr5C2/MIijA48A2Y8zveq16BbjK8/gq4OWh7suXXnrpJUSE7du391umqKiIvLw8r+1zx44dLF26lJkzZ5Kbm8t1110HWDcJfv311wddb0dHB/Pnz2fGjBlMmzaNX/ziF94KWSn/5+qyfvdKsFyR6YyjiY7Wpn42UkoppZSyeKMFazFwBXCyiGzw/HwZuBs4VUQKgFM8z/3WM888w/HHH88zzzzT53qn0znkfbhcrgOef//73+emm25iw4YNbNu2je9973vA0BOsoKAg3nvvPT7//HM2bNjAm2++ycqVK4cUu1Jjhelusx4EfNFF0BGbAUBN2S5fhKSUUkopP+KNWQRXGGPEGDPdGDPT8/O6MabWGPMlY0y2MeYUY0ydNwL2hZaWFlasWMHjjz/Os88+27N8+fLlLFmyhHPPPZepU6cCVqJ12WWXkZuby4UXXkhbm3Wx9u677zJr1izy8/O59tpr6ezsBCAzM5NbbrmF2bNn889//vOA/VZUVJCWltbzPD8/n66uLu644w6ee+45Zs6cyXPPPUdrayvXXnst8+fPZ9asWbz8stVY+MQTT7Bs2TKWLl1KdnY2v/zlLwEQEcLDwwHo7u6mu7sbqyHyQP/85z/Jy8tjxowZnHDCCYDV+nXNNdeQn5/PrFmzeP/993v2dd5553HqqaeSmZnJgw8+yO9+9ztmzZrFwoULqauzDv9jjz3GvHnzmDFjBhdccEHP+9PbwoUL2bJlS8/zpUuXcvANqJUaLl0d1t+krVeCFZaQBUBjeaFPYlJKKaWU//DGfbBGzhu3wr5N3q0zKR/OPHzj2ssvv8wZZ5zB5MmTiY2NZe3atcyZMweAdevWsXnzZrKysigqKmLHjh08/vjjLF68mGuvvZaHHnqIG264gauvvpp3332XyZMnc+WVV/Lwww9z4403AhAbG8u6desO2e9NN93EySefzHHHHcdpp53GNddcQ3R0NL/61a9Ys2YNDz74IAA//elPOfnkk/nLX/5CQ0MD8+fP55RTTgHgs88+Y/PmzYSGhjJv3jzOOuss5s6di8vlYs6cORQWFvLd736XBQsWHLL/X/3qV/z3v/8lNTWVhoYGAP70pz8hImzatInt27dz2mmnsXPnTgA2b97M+vXr6ejoYNKkSdxzzz2sX7+em266iaeeeoobb7yRr3zlK3zzm98E4Oc//zmPP/54T8vcfhdffDHPP/88v/zlL6moqKCiooK5cw+5SbZSw6KzvY0gQHolWONSJgHQXl3km6CUUkop5Te8Ok37WPXMM89wySWXAHDJJZcc0E1w/vz5ZGVl9TxPT09n8eLFAFx++eWsWLGCHTt2kJWVxeTJ1g1Lr7rqKj788MOebS6++OI+93vNNdewbds2vvrVr7J8+XIWLlzY0/LV21tvvcXdd9/NzJkzWbp0KR0dHRQXFwNw6qmnEhsbS0hICF/5yldYsWIFAHa7nQ0bNlBaWtqThB1s8eLFXH311Tz22GM93RdXrFjB5ZdfDsCUKVPIyMjoSbBOOukkIiIiiI+PJyoqinPOOQewWt6KiooAKwlbsmQJ+fn5PP300we0VO130UUX8cILLwDw/PPPc+GFF/b5/ig1HLo6WgGwBX6RYCWkjKfTOHDX7/VVWEoppZTyE/7VgnWElqbhUFdXx3vvvcemTZsQEVwuFyLCb37zGwDCwsIOKH9wV7u+ut4d7OA6ektJSeHaa6/l2muvJS8vr89EyBjDiy++SE5OzgHLV61adcR4oqOjOemkk3jzzTcPmaDjkUceYdWqVbz22mvMmTOHtWvXHvZ1BAUF9Ty22Ww9z202W88YtauvvpqXXnqJGTNm8MQTT7B8+fJD6klNTSU2NpaNGzfy3HPP8cgjjxx2v0p5U1e71UXQEfRFghXgcFBiiyegpcxXYSmllFLKT2gL1hG88MILXHHFFezdu5eioiJKSkrIysrio48+6rN8cXExn376KQD/+Mc/OP7448nJyaGoqIjCQmv8xt/+9jdOPPHEI+77zTffpLu7G4B9+/ZRW1tLamoqERERNDc395Q7/fTT+eMf/4h1uzFYv359z7q3336buro62tvbeemll1i8eDHV1dU9Xf7a29t5++23mTJlyiH737VrFwsWLOBXv/oV8fHxlJSUsGTJEp5++mkAdu7cSXFx8SGJ3eE0NzeTnJxMd3d3Tz19ufjii7n33ntpbGxk+vTpA65fqaHq6rRasOyBoQcsrw9IJKy93BchKaWUUsqPaIJ1BM888wznn3/+AcsuuOCCfmcTzMnJ4U9/+hO5ubnU19fz7W9/m+DgYP7617/y1a9+lfz8fGw2G9dff/0R9/3WW2/1TDJx+umn85vf/IakpCROOukktm7d2jPJxe233053dzfTp09n2rRp3H777T11zJ8/nwsuuIDp06dzwQUXMHfuXCoqKjjppJOYPn068+bN49RTT+Xss88G4I477uCVV14B4Mc//jH5+fnk5eVx3HHHMWPGDL7zne/gdrvJz8/n4osv5oknnjig5epI/ud//ocFCxawePHiA5K6V155hTvuuKPn+YUXXsizzz7LRRddNOC6lfKG7k6rBcsedGCC1RaSSky33gtLKaWUUocn+1s9RoO5c+eag2eL27ZtG7m5uT6KyL898cQTB0yGcSzSvx91tLa9/wy5H1zPxrNeZfq8E3qWr3j8Jxxf8n84by3HEdx/t16llFJKHRtEZK0x5pCZ2LQFSymlenF1WS1YgcEHtmA5Yjz3wirXe2EppZRSqn+aYI1hV1999THdeqXUYDg72wEIDDmwlSrEcy+s+vLdIx6TUkoppfyHXyRYo6kbo/If+nejBsPdZSVYQQd1AxyXMhGA9ipNsJRSSinVv1GfYAUHB1NbW6sXy+qoGGOora0lODjY16EoP+Pu9iRYB7VgJaRk0m3suOqLfRGWUkoppfzEqL8PVlpaGqWlpVRXV/s6FOVngoODSUtL83UYyt94WrCCQw9MsIKDgiiTWBxNJb6ISimllFJ+YtgTLBE5A/gDYAf+bIw5qrsFBwQEkJWVNSyxKaXUwYyznW5jJzgw8JB1dQFJhLZX+CAqpZRSSvmLYe0iKCJ24E/AmcBU4FIRmTqc+1RKqSHp7qCTQBz2Qz8eW0OSiene54OglFJKKeUvhnsM1nyg0Biz2xjTBTwLLBvmfSql1OA5O+iUgD5XdUekEeuuw93dOcJBKaWUUspfDHeClQr0HrBQ6lmmlFKjks3ZTheHdg8EsI3LwCaGuoo9IxyVUkoppfyFz2cRFJHrRGSNiKzRiSyUUr4mrk66JKjPdaHx1njQurLCkQxJKaWUUn5kuBOsMiC91/M0z7IexphHjTFzjTFz4+PjhzkcpZQ6PLurg25b3wlWlOdeWK16LyyllFJK9WO4E6zVQLaIZIlIIHAJ8Mow71MppQbN7u7E2U8LVmLqBFxGcNbtHeGolFJKKeUvhnWadmOMU0RuAP6LNU37X4wxW4Zzn0opNRQOVwfOflqwwkJDqJAY7E2lIxyVUkoppfzFsN8HyxjzOvD6cO9HKaW8weHupCMwot/1dY5EQtvK+l3vb+rraln5n8eZMvdLZE2d4+twlFJKKb/n80kulFJqNAkwXbjtfbdgATQHpzCua+zcC+vzZ27nzN134fjn5bidTl+Ho5RSSvk9TbCUUqqXANOJyx7c73pnRBqx7lrczu4RjGp4dHV1k1f1HwDSTTmFn/7bxxEppZRS/k8TLKWU6iXIdOJ2hPa73hGTgUPc1JT7/0yCO3ZuJU4aWZd/O20miIZNb/o6JKWUUsrvaYKllFK9hJgOjCOk3/VhiRMAqC7x/3thlRVuBCBr2nx2BueTUrvSxxEppZRS/k8TLKWU8jBuN8F0YQL6b8GKTZ8CQNu+nSMV1rDp8LyGcelTaU6YR5qrlLamOh9H5T1dXf7fjVMppZT/0QRLKaU8OtrbsImBwP4TrIS0iXQZO65a/+8iGNCwm1YJg9BYIrJmA7B3y9hoxXrnP8/SeVc6nz70LV+HopRS6hijCZZSSnm0tzYBYDtMguUICGCfLYmgxj0jFdawMMYwrr2Y+pDxIELKlIUAtBSt9XFkQ9fR5SR7zS+IkHYWVT3L3s2f+DokrzDG8PqLT/Dp7y6mpmLs3Oza6XLzyfuvUbxtja9D8ap9dU18vuI13N2dvg5FKTXCNMFSSimPjrZmAGyBYYctVxuUTnRHyUiENGxqW7sYTzkdkVkAxCenU8047JWbfBzZ0K1b+R4Z7GNL/i20miAaPnrU1yF5xdpNmzhj440sanqT6qeu8XU4XvPaM3/iuA++RvKzp1G7e72vw/GKpo5udv/xHGa88zW2PXq1r8NRSo0wTbCUUsqjs70VAHtw+GHLdUSMJ8lVjnG7RyKsYVFcWUcKtdjiJgEgIpQGZRPbvN3HkQ1d29a3AJh8+rfYHDyHlOoVYIyPoxq66g8fB4HV8V8ht30ttbvW+TqkIWvr7GZywWM0i/Wlxr43f+PjiLxjxTuvcpzZAMC06tdpKd3s24CUUiNKEyyllPLobLdasBxB/XcRBDAxEwmhi4Yq/23Fqivdjk0MoclTepY1j5tKqrMEV2ebDyMbuuja9ZQ4MggIj6Ut4yTi3dXU7t3o67CGxBhDZs0H7AmdQeQZt+M2QsWqF3wd1pCtWbeaXNlL9bwfszzsdCZWvQ3d7b4Oa8jsO16hk0A2XfgRXcZOxfLHfR2SUmoEaYKllFIezvYWABxHaMEKScoGoGbv1mGPabi0V+wAIGZ8bs8ye+oMHOJmX6H/dtNyudxkd22jOnomAEnTTwGgfOOHPoxq6ErLy8kxRbSmHsfkCVlssWUTvvcdX4c1ZE1brNcwft65MOVsgumifMPbPo5qaDq6XWQ3raI4cg5Tp+azTqYRXvyer8NSSo0gTbCUUsqjq8PqIhgYEnHYcuM8U7W3VPjvVO1SuwuAwITsnmVxE2YB+PU4mNKiHURJKyZ5BgATcvJpNGE4S1b7OLKh2bf5A2xiCJ+8FBGhMm4RaZ0FuDqafR3akMRUr6LaloAjbgKTF5xBuwmkcfN/fR3WkKzbVsAEKcc24QTsNqEy4XiSu4pwN5T6OjSl1AgZUoIlIr8Rke0islFE/i0i0b3W3SYihSKyQ0ROH3KkSik1zJwdVgtWYMjhW7CS0rOtqdqr/fdmwyHNe6i3xUDQF8lkxqRptJtAusv9d7xIVaE1Lik6ayYAQQEB7A7MIabev7sIdpasw22E1GnWbI/BWYtw4KZ868c+jmzwXG5DWkcBVZHTQITxCTFss00ipNK/Z7Ks3GEl8ylTjwMgNOckAKq2fOCzmJRSI2uoLVhvA3nGmOnATuA2ABGZClwCTAPOAB4SEfsQ96WUUsPK3Wm1YAWHHj7BCg4KpMKWhKOxaASiGh6xHSXWFO29BAcFUmxPJ6TBf1vmOsqsWRBTJ8/uWdYUO4O07iK/bu0Jrt1CuT2FoNAoAFLylgDQsMN/E6yi0jLGS2VPa6OIUDtuBqkdBRg/Hodlyq0W4JD0mQBkTZtHuwmkqXBs3C5AKXVkQ0qwjDFvGWOcnqcrgTTP42XAs8aYTmPMHqAQmD+UfSml1HBzdVmTOwSHHr6LIEB9cDpR7cXDHdKwaOl0kmbKafdM0d5bXdgkEjv89ybKgbXb2ScJBIeP+2JZxnzsYijd4p8XuMYYktsLqA3P6VmWmZbKblJxlPvvvaPKtn8GQPSEOT3L7OMXEICT2oLPfBXWkEU3bqU6IAVCogGYkBDNFplIcKX/z/qolBoYb47BuhZ4w/M4Feg9vVapZ9khROQ6EVkjImuqq6u9GI5SSh2l/S1YYUdOsDoiMkhyluN2+d9U7SXlZcRJU88U7b11xU4h1tTT0Vjlg8iGLr6tkJrQiQcsS8k7HoCGgpW+CGnIKiorSaUaV2JezzKbTSgJyyOlZbPfTkHfXmwlHMk5C3qWxeVax6p2+wqfxDRU9a1dTHTuoil6Ws8ym03YF5FPcttOcOpNh5U6FhwxwRKRd0Rkcx8/y3qV+RngBJ4+2gCMMY8aY+YaY+bGx8cf7eZKKeU1psszyUXw4W80DGCPm0SIdFFZ5n+tPfXF1r2uQpNzDlkXmpYPQMVO//u2vam1lXR3OZ2xUw5Ynp6aTrmJQ/b55zisUk9LT2TW7AOWdybNIco00V7pn106Q2q2UGuLxR6Z2LNs8oQJ7DUJSKl/tmDtKCohw1aFLXXGActdKXMIwElHsf+dV0qpo3fEBMsYc4oxJq+Pn5cBRORq4GzgMmN6vkYrA9J7VZPmWaaUUqOWvbuZFkLAduQho+FpUwGoKvK/CSHa91lTtMdlTDtkXfwkaybBhr2fj2hM3rB3+wYCxEVwav4By202oTR4MjF+ehPl1iJrTE9a7oIDlkdNtHrel275dMRjGiq325DcvpOa8AOT/OAAO7uDcolt3OKjyIamxtO1MXbSgaMiYnIWA1C59aMRj0kpNfKGOovgGcBPgHONMb3vTPkKcImIBIlIFpAN+OfXUUqpY4ajq4kWjtx6BZA4cToA7aV+eCFYuwsXNsISD+0imJaWRb0Jh0r/e10NRRsASJw0+5B1bbHTSHGW4WxrHOGohs5RvZk6iSZ4XMoBy7OmzqXTBNC+1//GYRXtq2ECZbgSpx+yriUmn1hXNaZ5nw8iGxpn2QYAIrPmHLB86uTJlJsYukq0BUupY8FQx2A9CEQAb4vIBhF5BMAYswV4HtgKvAl81xjjGuK+lFJqWAV0N9FmG1iCNS4+jSbCkFr/654V2ryHKlsiOAIPWedw2CkJyCS8scAHkQ2Na98WurETmzH1kHWB6bOwiaF8p/8lIwmtBVSFTj50eXQEhbZMQmo2+SCqoSndvhq7mEO6PQIEjreSE3+c6CKyfiu19ngIiztgeWx4EIWObCLr/K/FWyl19IY6i+AkY0y6MWam5+f6XuvuMsZMNMbkGGPeOFw9Sik1GgR0N9NhP/IEFwBis1EeMJ7w5l3DHJX3xfQxRXtvTRHZpHTt8bvJE8Iad1LhSEccQYesS/JMpFBX4F83HK6qbyLLFNMVd2h3ToDK8FxS2naA278mW2kpslpyknIWHLIuNXcBbiPUF6wa6bCGpK3LSWZXAfVRhyb4AA3R00jsLoEO/2tFVUodHW/OIqiUUn4t2NVCl2NgCRZAU/gEkrr8a6r2rm4Xae4yOvqYon0/V3wuYbTTtM9/JvBwuw1pnbtpiDy0pQcgI3Mi1SYa9vnX2LKi7WsJFBdhGbP6XO9KmkkY7bR6xtX5i6CaTTRJBI6YjEPWZacnsYsUpGLDyAc2BNuLyphgq4CUvo+VLdVqrWvZ4983UlZKHZkmWEop5RHibqE7cOAJlit2MrE00lTrP1Oa7yvbQ5h0IrET+y0TPt6aAW1fof+MFyktLSZZanH3MaYHwG4TioOyGde4dYQjG5qmXVaLW1Luoj7XR02cB0DFVv+Z6MLtNqS2bqMyPBdEDlkf5LBTHJxDXNNWv2pFrdhutbjFZR/aKgcQP9laXr3Df46VUmpwNMFSSimPcNOKOzBywOVDknMBKN/lP60i1buspCl8fN+JCEBytvUNfGux/0xrXrnDuriNzJrbb5mWcVNJ7S7G3dnWb5nRJqByPU2EE5aU3ef6rNw5dPjZRBfFVbVMooSuhBn9lmmNnU60uw7TVD6CkQ1Nd4nVMhV90AyC+02ZkEWxOx5Xmf98caGUGhxNsJRSCnC7XISbNkxQ1IC3icuykpSWEv8ZuN5Rak2IkDJ5Tr9lkhMSKDdx2Gu2jVRYQ9a617poTcntu/UAwJE2C4e4KS/wjy5axhgSm7dSETalz5YegPioMHbaJvjVRBd7t6zEIW4iJ/adiAAEZ1h/nzU7/WccVmT9ZmociYdMcLFfVGgAuwKyia73vxk6lVJHRxMspZQCmpsasImBkIEnWEnjs2k3gbir/ef+SgG126iUWMKi+7+xu4hQHjSBqGb/mUkwuGYTFbZkgiNi+i2T4JlQwV9mp9uzr4aJpgRnUt9jevaricglpX0nuP1jst7m3Va3x5Spi/stkzplPk5jo77QPxKsxvZusroKaIjuezKSnnLj8ohzVkBb3QhFppTyBU2wlFIKaKm3xlE5QscNeBuHw0GpPY2QRv+ZSTC2pYDK4P7HX+3XEpVNirME4+wagaiGxulyk9q+k7rI3MOWy5yQQ70Jx13uH106d29eRYC4GNdPl7P9nEkzCaWD1nL/SPRDqz+n3haDPSql3zLZqQkUkoZ934aRC2wItu/eS5atEnvq4ZNhe5o10UXTbv+azVIpdXQ0wVJKKaC51hrrERiddFTbNYRlEddRNAwReV9XZwfprhLaxk05Yllb4lQCcFFXPPq7MxXuLSZdqpCU/sf0AAQ47OwNnERUg39MdNG+ayUASbn9t/QARHm62lVsG/2TJ7R1OZnUuYWaqPx+uz0CBDpslATnkNDsHxNd1G55D4C4aUsPWy4hZ6FVfufK4Q5JKeVDmmAppRTQVlcBQGhM/9+q96U7JodkU01bc/1whOVVRTs+J1BcBKT0P8HFfpGZMwGoKtwwvEF5QeXGdwGInbr0iGWboqeS1r0H4+wc5qiGLq56JfscqdiiUw9bbsKUWbSZIDqKR//Ysu1bNzNeqnBnnXDEsu3x04lwN+Gu3zsCkQ2NvXgFHQQRMWHhYcvlZqWxy52M0YkulBrTNMFSSimgu9FKsCLjDn8xe7Cg1DwAygo2eDskr6vcaY09Ssvtf6a9/TInz8BpbLSXjf6ZBO17P6KNYBKm9D2V+QFlU2cRiJOKUZ441je1kufcTE384S/YAeKjQimwZRFSM/qPVdXG/wKQOvvMI5YNybD+TqtH+UQXnU4XWc1rKY2YAY7Aw5aNDA5gT2A20Q2jv2VYKTV4mmAppRRgWqwxWOPij64FK2GiNeaioWj0j+uR0s9oIZSEzPwjlo2OjKDElkpAzege12OMIbVhNbtCpyOOoCOWj8u2utNV7xzdY2B2rv+ACGkncPLJAypfHTGVlPaCUT/RRUjpCupsMYSnTj1i2bQp8+gydpp2je5JSTZuL2CylOLOXDKg8k3j8olxVUNz5TBHppTyFU2wlFIKkNYq6oggIPDIF+m9pWTm0GaCcFeO/nE9yY0b2Buah9gdAypfHTqR+LbCYY5qaIqKdpFlSulOH9jFbebkabSYEJxl64c5sqFp3PI2biNkzD1jQOXdyTMJoZPWstH7d1jT1MbUzg1UxS047Pir/SalxLKT8ThG+UQXJav/A0D67IEdq4B0a6KLRp3oQqkxSxMspZQCAtqrabL1P8V3f+x2OyWO8YQ37ByGqLyntKSYiaaY9uTDz0jXW1d8HkmmitaG6mGMbGhKPnsFgNTZpw+ofFBAAHsCJhJZP3oTEZfbML7qffaGTCEoou97Kh0sauI8YHRPdLHpkzeIlyZCpp01oPIBdhtlIVNIaNk2aie6cLsNCcVvUGtP6OnSeCSJOfNxGaGuQCe6UGqs8lqCJSI/EhEjInGe5yIiD4hIoYhsFJHZ3tqXUkp5W3hnJS1BCYPatiE8m6TOPV6OyLsKP30ZgLQ5A7u4BQgdb93stXTr6L0QjCp8mXJbMomTB544NkTlktZViHE5hzGywdvy+WqmsIe2yecNeJuJU2bSYoLpLF4zfIENkWvjC7QRzPhFXxnwNp3x0wkzrbhrdw9jZIO3edde5rvXU5v5ZbAN7JIqNyOZQpMK5aO7FVUpNXheSbBEJB04DSjutfhMINvzcx3wsDf2pZRS3maMIdFZQXt42qC2d8VPIZYGmmoqvByZ9wTt/i8NEkXSlCNPmrBfylTrxrzNe0bnRXt5aRF5XZ9TnvblAXU5209SZhJCF1VFm4cxusGr/vRpXEbIPPHyAW8TFxlKgW0CoTWbhjGywSutaWBO64cUxy9FAsMGvF1IptUqVLVjdCb5e1Y8T6C4SDnuawPeJiI4gD2Bk4lp3DJqW+aUUkPjrRas+4GfAL0/KZYBTxnLSiBaRJK9tD+llPKahvpaoqQVE5UxqO1D06xJI8oLRuc30nW11cxqX0lR4mkD/pYdIDExhXLicVSNztnpdrz7FHYxpC654qi2i51kdafbt330zU7X3NZOTuVr7A6fTVjs0SX81ZFTSekohFHYMrf5nacZJy3ELrzsqLYbP2UunSaA5t2jb6KL1o5uJu59lsqAdMInDLwFFaAlNo8oVz00lQ9TdEopXxpygiUiy4AyY8zBU2ilAiW9npd6lh28/XUiskZE1lRXj95+/kqpsaumxBo/FRCXNajtE7OtHtBNxaMzESn84BmCpZuI+Ud3cSsilIVMJr559M0k2N3dzcQ9T7M7MIfk7FlHtW3WlJm0m0C6S0dfQrzujSdIk2ocC6876m1N0kyC6KKlbHS1zHV0OcnY8TjljjTiZw28iyrAxKRotpNBQOXom6Xzo/deJY9ddMz91lG1oAIEjrda5hp2jb4kXyk1dANKsETkHRHZ3MfPMuCnwB2DDcAY86gxZq4xZm58fPxgq1FKqUFrKi8AIDJ54qC2T0oeT4MJR6pG38QJxhhCtj5PmSQxYeaJR719e2weqe5yulobvB/cEKx+4ynGs4+2ed896m2Dg4IocmQRUTf6EpGkzf9HqT2NzMVfPertoydZrSj7RtlEFx+99SK5Zhftc64Hm/2otnXYbZSH5pLYuh3c7mGK8Oh1Od1Erv0TTRLJ+JOuPertkyfPo9vYaSjUBEupsWhACZYx5hRjTN7BP8BuIAv4XESKgDRgnYgkAWVAeq9q0jzLlFJqVOnYtw2AlInTB7W92GyUBWYS2VTgzbC8Yvva98h3bmJf9iXIUXQP3C8o3WodKt02ei4Eu7q6iV//AOW2FKadfHStcvtVR+UxvnMnxtXt5egG79NXHiPH7KF9/veQo0xEACZNmU6TCaGzeO0wRDc4Le2dpK/9NbW2WCac8o1B1dGVMIMQ00539eiZqfOd157jONcaqvO/eVRjyvabOj6BnSYNyjd4PzillM8NqYugMWaTMSbBGJNpjMnE6gY42xizD3gFuNIzm+BCoNEYM3pHgCuljlmBtTuokHhCwqMGXUdjxGRSuvdgRtG37MYY2t65lwbCmXL2jYOqY/+kGE27Rs9EFyv/eR/ZpoiGRbcM+J5eB3OnzCWETur2jI6uZ2WVVUzddA97AiaRfeo3B1VHbEQIhfaJhI2iiS4+fPY+ppg9NJ3wCyQgZFB1RO0fMzdKWuaqG5rJXn8XVfYkJpzz40HVERbkoCQ4h9gmnehCqbFoOO+D9TpWC1ch8BjwnWHcl1JKDVpM226qgycMqQ6TkEsE7dRVFHknKC9Y+8GrzOlYyZ5JVxEWOW5QdaSnZ1JpxsG+0ZGIFO3azoydf2R7yCymnnLVoOuJyVkMQOXWj7wV2qAZYyh48gbiaSD0vN8fdTe63uqippHcuQucXd4LcJA2blzHCUUPsCtsFlknXjnoeiZNnU2bCaJ5FNyY1xjD6r/8kGxKcJ7+60EnjQCdCdOJcDfjqivyXoBKqVHBqwmWpyWrxvPYGGO+a4yZaIzJN8aMnq8/lVLKo6uzg3RXKe3R2UOqJ2K81b1wX+E6b4Q1ZK2tLSR+cAtlkkTehT8bdD02m1AaPJmYpm1ejG5wGlvbaX76ahziIvaSh496YoHeJudMo8ZE4ir2/UX7u8/+gaVt/2XLxG+QOG3JkOqypc0liG5qfNziWF1bS+C/v45bHCRe9cSQjlVqTAQ7bVmEVvt+UpI3X/gzX256nh1pF5Iyf+D38+pLxATrNgj7tn3ijdCUUqPIcLZgKaXUqLd322oCxUlg+tDuhZ7imcmutWR0dM/a8Nh3SDflNH3pHgKCj36MSG9tsdNIdZbQ1dbspeiOnsvlZsPD15Dv3kblCXcTn5E7pPqCAx3sCsolpsG3LXMr3/4nJ2z/FQUhM8m77NdDri9hmjWRSdUW37XMtbW3U/LIhWS791B3+h8JT8gcUn0iQmXUdFLbd0J3h3eCHIT3336VkzbfRlFwLpOvfGDI9U2YNp92E0hzgSZYSo01mmAppY5ptTutyRuSpy0eUj2xcQlUEoOjxvctPZ/883csbniZNalXkHv8eUOuL2j8HOxifDbRhdvlZsX/fZ8TW95g88RvMOHka7xSb3PsTFKdpbha67xS39Fa9cHr5K/4LuUB40n/zr8Re8CQ65w8KZtSEwclvjlWrW3trP/DxczuXseOef9D5qKhtfLsZ9IWEoCTRh9Na/7Jh28zc8X1NATEk/ztlwc1scXBMhKi2CKTCKvUDj5KjTWaYCmljm3l62kgnMT0yUOqRkSoCMoiqqXQS4ENzto3/sqCzb9iS/AcZl1zv1fqTJu6CIDagpG/uHW53Kz40zc5sepvrE84j7zL7/Na3UFZVhetss0j39rz6RtPM/29q2h0xBJz3asER8R4pd5Ah409IXkkNI58y1xlbS3b7z+LxR0fsGXaj5h69ve8VnfCtBMAqPLBmLl3XnuO6e9eTpc9jIhvvEpQVKJX6rVa5maS0rETulq9UqdSanTQBEspdUyLa9pCaUjOoKYwP1hr1GTSuosxLqcXIjt6n73+JPkrf0RBYC4TbngJu2PoLSIAyekTqGIcjoqRHV/W1FTPut+eywl1L7Au5VJmXv/XIY3lOdj4vONxGaGxYORmp3O73Lz3118wb+UNlAdmEPmdd4lMSD/yhkehNX42ce4aumqLvVrv4ezc/jmND36JmV3r2Dr3f5n21UHfHrNPuRMnsMckISPYMtfV7eKNx+/kxM++TUNgEpHffY+wpEle3YcZvwA7bpr1hsNKjSmaYCmljllNzU1kuvbSHje4+18dTBKnEiTdVBVv90p9A2WM4aOn72Luqh9QFJhN2g3/ISQ80mv1iwjFIVNJbN7itTqPpKhgEzW/P5HZrStYk/MjZn/zYa8kwb2NT05gl4wnYN/IJI519XWs/e25nLz39+yIWkz6je8SHpvi9f2EZx8HQPnmD7xe98GMMSx/9SmSnjmDJFNN6ZlPeLXlar+QQDuFwZ6WuRGY1rykoppP7vsKZ5bcz+7oRSTeuJyQ2DSv7ydxqtUyV711+I+VUmrkaIKllDpmFW1eiUPchGbO80p9URkzAKgqHLnZztrbWvn491ewpOBeNocvIv3GdwiPivX+fuJnkuKuoK2h0ut192bcblb9+0/E/v1UYt217Dz1CeZeeodXW672ExEqwqeR0rIFhvn+ZRs/eZPWPyxidusK1k6+iak3vkJg2ODvu3Y4k/IW0maCaCn4eFjq36+hoY4P77+SpWu/R11gCl3feI+MhecN2/46EucQ6W6ks3J4bzi88v3/YB5ZzAmdH7Bz2o3k/OBVAsIGd5uDI5k2cTw73Wkj2jKnlBp+mmAppY5ZTYUrAUjLG9rU2PulZc/EbYSOss1eqe9Iindtp+S3J3J846usTb+K/B++SkhYxLDsK3SCdcPhkk3Dd9FeXVnBmt+ex4LPf0pZ0AS6v/6+VybpOBx36lwiaaG2eHha51paW1jx0LfJ++8lOMRNybnPM+drd3q9Na63pJgIdtizCa9aO2z7WLX8P7T8fiFLGl9lY/rljL/5I+LScoZtfwDxU60ZEos/f39Y6m9oauL9P36L+csvJ9AONV95gclf/SUM47EKDXSwOySPhMaN4HYN236UUiNLEyyl1DErsHIdVRJLVOJ4r9QXFRVFmSQRUDu8Mwkat5tP//Ug455aSrKrlM+Pf4g5X38AsTuGbZ9ZM6zxSk2F3p9S2hjDR288i/vhRcxsWcFnE75H9k8+JG6IE48MRGL+yQCUbnjb63WvX/k+1fct5Piqf7AufhnRP1xN5pzTvL6fvtTFzSG9qwBXa71X662ua+Cd33+Tee9fjs0m7DnneaZ//U/YgkK9up++5M2cR70Jp6PwQ6/Wa4xhxQdvUfu7RZxU+ywbk84j5kerSZh+ilf305/OlPmEmVY6y0fmixml1PDTBEspdcxKbdlKefg0r9ZZGZJFbOsur9bZW11VGevvO4dFG39GWfBEOq5ZzoxTLhu2/e0XMy6GXfYJROzzblemysoKPr7vqyxZ9S267eFUXvQf5l/5v9gdw5cs9jZ5ynTKTRz23cu9VmdjUxPvP/ht8t/4CuG0UXDqE8y94UlCIqK9to8jCcw5BTuGknVveKU+YwwfvvUi7Q8s4JSG59mScgHxP17NxLkjkzAChAcHsi1kNik1n3ptHFZlbS1v//4bLHrvIqKlnb1nPsXMbz8xbN03+xKfbyVy5WtfG7F9KqWGlyZYSqljUmVFKalU0p00tBsMH6w9ejLJrnKcnW1erRdg0zv/gIcWkte6ks+yf8jkH39AfMYUr++nP5Wx85nQsRWXF16bMYaPX/kL9ocXsLDlXT7P+jopt6wmbdpxXoh04BwOO7si5pLRtMYrXbTWLn+Zpt/N46Saf7A14WwiblpN9uLzvRDp0cmZfRJNJoS2bUNvmSvfV8GHv72EEz65lgC7UHbus+R/63ECQrw3kcpAtaYvJdbU0VS0YUj1GGN4/7Vn6f7jAk5rfIEdqecTdfNaMhYs806gR2HGtGlsd6dj2/XOiO9bKTU8NMFSSh2T9t/7KCp7kVfrDUrNt8baFHjvPkQtjXWs+cOl5K/4NnX2OMoufpP5l/0C2wi18uwXMGkpgeIc8hiYirJiVt97DovX3USzI46qS95gxlW/wxYY4qVIj073+BOIoJXqnYNvnautqeTT+y9lzvIrsduE3V9+hunf/RvBkd6fcGQgEsZFsClgBnGVKwbd2uN2ufngpccIfHgBi5vfYlPm1ST8ZC2ps8/0crQDlzj7LADK1v5n0HUUlxTz0b0XcNLqb2GzB1Jx/r+Yet1fcQzTRBZHEhbkYEfEQlKbNkBHk09iUEp515ATLBH5nohsF5EtInJvr+W3iUihiOwQkdOHuh+llPKmjqLPcBob473cYpKYPReA6oLVXqlvy8f/oeX385lZ9yYfp1xD2o8/IWuqd2Y9PFoT5pxCt7FTv2Vw37Qbt5tP//0nQh5dxMy2T1mX/T0ybllJSu5CL0d6dCYssC7aSz575ai3NW43n776F9wPzmdew5usSbuKuB+vZcL8L3s7zKPWmXEiCa4qaos2HvW2e/fsZN29Z3DihptpDoyn5tI3yb/6D9iDwoYh0oGbOnkyO814gvYc/d+g0+nivef/SPifj2NR23I2T7qOpFvWkjzjS8MQ6dGR7NNw4KJm01tHve3ekhLe+tu9tLR5v9VcKTU4Q/r6U0ROApYBM4wxnSKS4Fk+FbgEmAakAO+IyGRjjE6Ro5QaFcJrPqfYkcGEMO92c0qflE+zCYGyod1bqb21hc+fuImF1c9TLCkUnPMii+ee7KUoBychLo5tAZOJKPvoqLct31tA1TPfZlHHanYETSXyokeYPWnGMER59DIzMtnsmEps8RvA3QPernRvIRXPfI9FHZ+w2zGRjvOfYe4Id3E8nMzFF+EuvJeSj54mNmtg73VXt5NPn7uXOQUPkCAuNuTezIwLb0Xs3rlp9VA57DYKY5dyRt3f6KwrIShmYDdpLtixhaYXvsfJ3WvZFZyL+6KHyJvo3e7BQzFr8enUrw+n/rPniJt34YC26Xa6WP7Cn5i97V5Ok2Y+fTOURV+5YZgjVUoNxFBbsL4N3G2M6QQwxlR5li8DnjXGdBpj9gCFwPwh7ksppbzC7XKR2bGd2uh8r9dts9vZGzSZmIZNg65j25rlVN23gIXVz7Mq/kLib/6MXB8nV/vVjz+VbGcBFXt3DKi80+lkxTP3EPmXJUxu38ia3FuYfMtHJI+S5Gq/usyzyXAWUTWAboLdTicf/OMeov5yPPntq1mXcxOZt64ifRQlVwATJkxig2M6KUX/BpfziOU3rV9Jwd2LObHwHopDp9J67UfMvPj2UZNc7Rd/3BXYMOx557Ejlm1pa+etP99O6j9OYkr3FjbP+BkTfrKCuFGUXAGkx0exMuxkMqrfx91Se8Tyn3++js/v/hKnbr+dppA06kw4jj3vjUCkSqmBGGoH/snAEhG5C+gAbjbGrAZSgZW9ypV6lh1CRK4DrgMYP947UyWPZm6nk4baCppqymmtq6CjoQJXUxXu1hrcHS04nC0EOFsJdLUS5G7D5u7GZlyIcWMzTmwYbGJw4sApAbjki99dthC6HeG4AiNwB0UhwZHYQ6Kwh0YTEBZDUFQc4VHxRMYmEBEZM6xTOis1mpUUbiJDWiF17rDU3xQ3iyllT9HaVE9Y5MDHdXR2trP6qZ+xsPSv1Mo4tpzyFAuOH/lB94eTfvzXYPcDlC3/K8lXHb61p2DzGjpeupHjnZvYGjKL2EsfYe4ITspxNCZ+6RraCv5A5X9/T8LkZ/ott2X1+9jfvIUTXTvYHjqL2EseYfYofU0AddOuYvbGH7L7w6eZcNJVfZepqWLrMz9lYc2LtEooW+bfw7QzvzUsN3f2hjmz5/HZ6zPJ3v4UpvMnSFD4IWWMMax67yXiV9zOaaaE7ZHHkXzZn8hLmuCDiAcmaNE3CXz3FQr/cx+TLvl1n2Wq6+rY8I/bOaH6WZwSwPZZtzPlnJtY+/uLmdS0CrfLhc1uH+HIlVIHO+IVtoi8AyT1sepnnu1jgIXAPOB5ETmqTy9jzKPAowBz5871zryrPmSMoaaylNqiTbTs24Wztgh7UzHhbWXEdFcQZ+qJEUPMQdt1GzutEkK7hNIhobTbQmmxR+J2BILNjtjsYHPgxoYbELcTm7sbu7sbm7F+R7oaCO4uJaS1lXDTRqD0/42l2whNEkarLYJ2ewSdAVE4g6JxB49DQsfhCIslMCKW0Kg4QqPiiIiOxxEeC8HRoImZ8nOV2z4mA0icunhY6o/MPRlH+RNsXvM2M0++aEDbFG74CNsr3+V4917WjTudydc8TGKUbyZIOJz0CbmsD5xNZtGzdHfcTkDwoWNympsa2PTM7cwrf5o2CWHj7P8l/+zvDuvNdYcqNTmF92OWcWLNPynb8gmpB7VGlRXvpuiFn7Oo8XXqJYqN8+5m+pevH7VJyH6LzrycnRsfIPqj/6FjzlkER8b1rGttbWHVv//IjIKHOY4mNiScx5TL7mFadKIPIz4ym01omH8T41ZexfZnbmXK1Q8esH7j2k9ofesuFnWuYJ8tkV0n/x9Tjr941B+rExcv4f0PFnPc9j/TXHwZEePzetY1trSy+qWHyCt8mFOpZUv8mUz42m+ZEmN9d+2a+CXGrX+bgk2fkD3TOzdOP5YZY+jsdtLV1Ym7uwuX0/rtdnbidnbhcrlwuQ1ut8HldgMgYhDAJiCAYACx/uzEZl3HiR2xORC7zXpsD8Bmt2Oz2bHZHYjNjt3uQOzWb5vNjs0GNhHsYtUlo/zvWFnEDOFeEiLyJnCPMeZ9z/NdWMnWNwCMMb/2LP8vcKcx5tPD1Td37lyzZs2aQccz0tpam9i7eSVNe9djqrYR0VhIcncRMTT3lHEboUpiqQtMpi00FWd4MhKeiCMykaDoZCJik4mMTyMqKgab3bsXH10dbTQ31tDaWEdbUy2dTbV0NdXQ3VqHaauD9nrsnY0EdjcS4mwkzN1EpGkhkjZs0v/fRQthtNgiaLNH0OGIpDMgiq6ACIwtEGMPBHsg2IPAEQD2IGyOQMQR5PkQsWF97Hg+IMT6xxhAvlgunlY7MS6M2wXGZXVxMW7r+f5l+38bF7i/KC/GBcYNbqsePHVZv63nmF7rcCNuF2A8+7Z+g9sTh6eM8aS4xo2t1zL44v3qfUod7uySw67tq/yRmT5KCWCO8gO5r3oOt7y/6Pp7hf3Hc7T77af+w5Q3CDHOKsJMGyG3lw3LTHwdbS3IPZlsSFjGgu8+fviy7W1s+PttzC19ijqJZt8Jv2b6yZd4PSZvWvfhq8x+73LWpl/DnK//vmd5V2cnq196kAnbHiKZGtaM+zKTL/sdkXHJvgv2KOyrrICHF2MXqD3tQZInzaBk5+c0fvY08xreRDBsTLuUqZf8LyERvplxbjBWfvQWs965lIrADFoW/Rgndlp2riBn3yvEU09hcB5B5/xm1HVxPBy32/DOb6/gtNZX2Zh0AbYpZ1BfsZfQPW8yp2sNbQSzc9K15F34cxx9fAkwWm3avp2kZ07DZrNRMuNGTMg4GnetJqfydZKllj2BOQSefQ+p0086YLuGqjKiH5rKRylfZ8l1v/NR9L5l3G4aGupprq+kvamWzqYanK11uFprMW31mM5m6GqFrlbszjYCXG0EutsJdLcT7G4n2HQQSBcO4yQAJw5x+/olAeA0NlzYcGHHhQ3rysOGQXBZ/ZowCG7Zv9wqY7DhFmudwYYRW892RvZvY4dez63fNiuRO2JkA7uGEcyAJzL94rrI+i3mi//NCwJziD//Ho6bFNfntr4iImuNMYd0hxlqgnU9kGKMuUNEJgPvAuOBqcA/sMZdpXiWZx9pkovRnGAZt5uSwo1UbfkQd8lqYhs3k+Es6jkBmwmhPCCTpohJmPgpBCXnEpOWQ0L6RIKCfDP18GB0u9zUt7TTUF9DS301bY01dDTV0t1cg3Q0YO9swNHVQGBXI8HOJkJcTYS7mwg3rThwEmi6CcR52ARtuLiMeD589n8Y2TwtfraeDyE3toM+hPZ/yHgeS6/lIrixY0Qwnt9ubCC2L5aL9fzADyTpeSyeBLJv5giJQH9PDqxhv/1v+cFF+0rkTD/LrXr6TYv6Wd63/hPIfvbb74vsr3x/+o+z9z5aU49n4RW/6rfsUK2958uMb9/KuJ8V4AjoewzL5lXvEP7fG8l0l/BZ9JfJufKPRMWMrv88+vPJ7y7luKbXWR13Pu7Uubj2bWVC5X9JoobCgBw4/S4mzT3V12Eeta3rPyb25ctJpK5nWScBbIo/m/Fn30rCKO4OeDgfvfY0Uz+7lVixpgF3GhvbQ+cQeMKNTF541qhv3elLc2sbnz36XU5seKnn/+IqWzylGV9h6vk/OaC1zp+s+exjot74NtlmL2Adq4Kw2YSe+H0y5p/b77HacvdJxHYUE//zHSN2o+6R0NbSQH1lCc3VpbTXleNsrMA078PRVkVwRxXh3bWEuxqINC2HTYo6TQBtEkyHBNNpC7GGVdhC6LKH4rSH4nKE4LYHW18K2wMQRxDYAzxfGgdg7NZy7IGIzYZNbNhs0vP/vDGeLw8N7P/a1RjP/zvGgHEe9EWw2/PlsPPAL43d7gO+OMa4rC+AjRvcTmt7Y3p9WXzgl8jWF8X7v0Q2X6zH3esL5y++OMYYK2UzbvZ/qWz2/295pP/2vfi58cUX73Lgc08suwJziDv/bo6bOLrO6+FKsAKBvwAzgS6sMVjvedb9DLgWcAI3GmOOeDv50ZZg1ewrZvfKV5E9y8loXEOC5z/cJhNGUcgU2uJmEJI5n8Sc+SSmZo3q7i8jzeXsprurg66uDro7O3B2deDsduJ0u7+4yDWGnm8pDkg1DEaspnTEjs1uR+x2bDaH1YTuaU63mtEdnmZ0GzabDbtNsIlYTfR+eMGgxo7P//skMz79PmsX/IE5Z159wLrqimKKnruFeQ2vUymxVC/9DXknXuCbQAepo6OddY9+h3m1LxMgLpzGxtaQOdgWfJNpJ37Vrz8PW5ob2fzeM7hbawmNG0/2wrMIizy4Y7f/aW5uomjzJwQ6HKRMmk7EuARfh+QVFeUl1JfsICYxhaSMXL9MFg/W7XRRtH0dpruT8ZOmETyAFtP1bz7BrJU/YPWih5h3+mUjEKV3tDXXU1m8k7qyXXRU74GGYoJaS4nqrCDeVUk0LYds02kc1Ek0jfZYWgPj6AqOxYTE4AiLwR4WQ0BELAHhsQRHxBEaHU94dByhISF6XaC8blgSLG8bbQnWymfuYuGOe6knkj0Rc3BmnEBC/pcYPynf6935lFJji8vppOyu6ThwEnz9e8QkplFTvpfC137HtNLnCKKLtSmXMvNrdxESEe3rcAetubGO5ppyYlKyCA7xn65YSo01ru4u6v/fZMrsaUz/6Yej6ksOZ3cX5UXbqd6zhY5927HV7SKqdQ+J3aXE0nBA2Q4CqLIl0hiUTEdYKs6INOxRKQSPSyEsNpWohHTGxSZi1+swNQpogjUItZUlNFSVkTV1ns7Ko5Q6aptXvUP265fQhYM6eyzprjIAPo9YQsKy/yE1e6ZvA1RKjSnrXriX2Zvv4tM5v2PROV8f8f07nS5K9xZSWbCG7vJNhNRtI65tF8mucgLli1EiDUSwLyCdprBMnNETCIrPIjJ5Ionpk4mMSxkTrZDq2KAJllJK+cCeLauoeecPBHTW0xabx/gTryRtkvfvv6WUUi6nk+K75xHmrMd57bukjJ84bPtqbGqiePtamorWYyq3ENW4g/Tu3URLa0+ZckmkMmQiHVGTCEiYTFR6LskTpxM+RrqnKqUJllJKKaXUGFe+/TOinj2HCkki5NqXSU3PHFJ9bpebspJdVO5cS3vp5wTVbiWhrYB0dzl2z+xKbQRRFjCBpugcJCmP6KxZpEyeQ3C4/8y2qdRgaIKllFJKKXUM2LXyVVLevJY2E8LWvB8y5+xvERpy+BmNjTHU1dVStftzGvd+jtm3hYjGHaR37SaqV6tUhSRQHZZNZ2wuIekzSMqeS2x6jnWfJ6WOMZpgKaWUUkodIyoK1tP+/DeY0F1IkwmlIHg67ZEZmNB43NixuzuwddQT0F5DREcZCd3lxMgX9/FsNcGUBmbRFDkZSZxGdNYs0qbMG9CMhkodKzTBUkoppZQ6lhhDwSf/pnXdC8Q0bCLBVUEw3T2rWwihWSKpDUyhPXw8jMskOCmH2IlzSM7I1lYppY6gvwRr7NyJTimllFJKfUGE7MVfgcVfsZ673Rhnu3Xj2oAQwu0BhAPJPg1SqbFHEyyllFJKqWOBzYYE6v3qlBpuepc2pZRSSimllPISTbCUUkoppZRSyks0wVJKKaWUUkopLxlVswiKSDWw19dxHCQOqPF1EGrE6PE+duixPnbosT626PE+duixPraMxuOdYYyJP3jhqEqwRiMRWdPX9ItqbNLjfezQY33s0GN9bNHjfezQY31s8afjrV0ElVJKKaWUUspLNMFSSimllFJKKS/RBOvIHvV1AGpE6fE+duixPnbosT626PE+duixPrb4zfHWMVhKKaWUUkop5SXagqWUUkoppZRSXqIJllJKKaWUUkp5iSZYhyEiZ4jIDhEpFJFbfR2P8h4RSReR90Vkq4hsEZEfeJbHiMjbIlLg+T3O17Eq7xARu4isF5H/eJ5nicgqz/n9nIgE+jpG5R0iEi0iL4jIdhHZJiKL9Nwem0TkJs9n+GYReUZEgvXcHjtE5C8iUiUim3st6/NcFssDnuO+UURm+y5ydbT6Oda/8XyObxSRf4tIdK91t3mO9Q4ROd0nQR+GJlj9EBE78CfgTGAqcKmITPVtVMqLnMCPjDFTgYXAdz3H91bgXWNMNvCu57kaG34AbOv1/B7gfmPMJKAe+LpPolLD4Q/Am8aYKcAMrOOu5/YYIyKpwPeBucaYPMAOXIKe22PJE8AZBy3r71w+E8j2/FwHPDxCMSrveIJDj/XbQJ4xZjqwE7gNwHO9dgkwzbPNQ57r9lFDE6z+zQcKjTG7jTFdwLPAMh/HpLzEGFNhjFnnedyMdQGWinWMn/QUexI4zycBKq8SkTTgLODPnucCnAy84Cmix3qMEJEo4ATgcQBjTJcxpgE9t8cqBxAiIg4gFKhAz+0xwxjzIVB30OL+zuVlwFPGshKIFpHkEQlUDVlfx9oY85Yxxul5uhJI8zxeBjxrjOk0xuwBCrGu20cNTbD6lwqU9Hpe6lmmxhgRyQRmAauARGNMhWfVPiDRV3Epr/o98BPA7XkeCzT0+uDW83vsyAKqgb96uoT+WUTC0HN7zDHGlAH3AcVYiVUjsBY9t8e6/s5lvW4b264F3vA8HvXHWhMsdUwTkXDgReBGY0xT73XGuoeB3sfAz4nI2UCVMWatr2NRI8IBzAYeNsbMAlo5qDugnttjg2fszTKspDoFCOPQLkZqDNNz+dggIj/DGtrxtK9jGShNsPpXBqT3ep7mWabGCBEJwEqunjbG/MuzuHJ/lwLP7ypfxae8ZjFwrogUYXX1PRlrjE60p1sR6Pk9lpQCpcaYVZ7nL2AlXHpujz2nAHuMMdXGmG7gX1jnu57bY1t/57Jet41BInI1cDZwmfni5r2j/lhrgtW/1UC2ZzaiQKzBdK/4OCblJZ4xOI8D24wxv+u16hXgKs/jq4CXRzo25V3GmNuMMWnGmEys8/g9Y8xlwPvAhZ5ieqzHCGPMPqBERHI8i74EbEXP7bGoGFgoIqGez/T9x1rP7bGtv3P5FeBKz2yCC4HGXl0JlR8SkTOwuvefa4xp67XqFeASEQkSkSysiU0+80WM/ZEvkkF1MBH5MtbYDTvwF2PMXb6NSHmLiBwPfARs4otxOT/FGof1PDAe2AtcZIw5eICt8lMishS42RhztohMwGrRigHWA5cbYzp9GJ7yEhGZiTWhSSCwG7gG6wtFPbfHGBH5JXAxVveh9cA3sMZi6Lk9BojIM8BSIA6oBH4BvEQf57InyX4Qq5toG3CNMWaND8JWg9DPsb4NCAJqPcVWGmOu95T/Gda4LCfWMI83Dq7TlzTBUkoppZRSSikv0S6CSimllFJKKeUlmmAppZRSSimllJdogqWUUkoppZRSXqIJllJKKaWUUkp5iSZYSimllFJKKeUlmmAppZRSSimllJdogqWUUkoppZRSXvL/ARPXECgiUL/HAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADOQUlEQVR4nOzdd3hcxdn///e9u+rVKpZtuci9F8A2zaYmtACmG0InPAQICRBKEpIQQh6eX76EhIRAIAQSEiCmt4TeDJhmbOPei1xlW5Ysyera3fn9sWsh25IsWyutyud1Xbq8Z86cOffu0cp778yZMeccIiIiIiIi0nqeaAcgIiIiIiLSVSjBEhERERERiRAlWCIiIiIiIhGiBEtERERERCRClGCJiIiIiIhEiBIsERERERGRCFGCJSLSQZhZnpk5M/NFO5auzsyuMLNZ0Y6jozGzqWa2ItpxiIh0ZkqwRESkUzOzu8yszszKG/zcHu24OiPn3CfOueFt1b6ZXRb+EuHqtjqHiEi06VtSEZEIMTOfc84f7Ti6qWedc5dEO4i20hV+t8ysB3AHsCTasYiItCX1YImItIKZ5ZvZT8xsIVBhZj4zO8LMPjOzEjNbYGbHNag/08z+PzObbWZlZvaqmWU00faVZrbMzHaZ2Voz+/5e+6eZ2fxwO2vM7JRweZqZPW5mBWa22cz+18y8+3keg83sAzMrMrMdZva0maU32FdsZoeGt/uYWeHu52VmZ5rZkvDznWlmI/d6fW41s4VmVmpmz5pZ/IG/0gfOzH4afl12mdlSMzu7iXpmZveb2fbwa7nIzMaE98WZ2X1mtsHMtpnZI2aW0MLzPxGu/244ho/MbECD/X8ys43hc841s6kN9t1lZi+Y2VNmVgZcYWaTzezz8OtcYGYPmllsg2OcmV1vZqvC5/tN+Np9Fj7Hcw3rNxHzcWa2qSXP7yD8f8ADwI42al9EpENQgiUi0noXAd8B0oEc4HXgf4EM4FbgRTPLblD/MuAqoDfgJ/ShszHbgdOBVOBK4P4GSc5k4F/AbeHzHgPkh497ItzuEOAQ4CRgf0OyjNAH4D7ASKAfcBeAc24N8BPgKTNLBP4B/NM5N9PMhgEzgJuAbOAN4D97fZC/ADgFGAiMA65oNACzKeHkoamfKft5DntbA0wF0oBfh+Pv3Ui9kwi9fsPCdS8AisL7fhsun0Do9cwF7jyAGC4GfgNkAfOBpxvs+yrcbgbwb+D5vZLPacALhK7v00AAuDnc1pHAicD1e53vZOAw4AjgduBR4BJC13MMod/VgxZOlJu6Pn9p5rjJwETgkdacX0SkM1CCJSLSeg845zY656oIfZh9wzn3hnMu6Jx7F5gDnNag/pPOucXOuQrgl8AFjfUwOeded86tcSEfAe8QShgAvgf83Tn3bvg8m51zy80sJ3yum5xzFc657cD9wIXNPQHn3OpwWzXOuULgD8CxDfb/DVgNfEkoMfx5eNd04PXwsXXAfUACcNRer88W51wx8B9CSUVjMcxyzqU389PcpBQX7PVhv49z7vnweYPOuWeBVcDkRo6tA1KAEYA555Y55wrMzIBrgJudc8XOuV3A/+3vtdzL6865j51zNYResyPNrF/4+T7lnCtyzvmdc78H4oCG9z997px7JRx/lXNurnPui3D9fOCvNLhGYfc658qcc0uAxcA7zrm1zrlS4E1CCfdBc86Na+b67J3sARD+3f4LcINzLtia84uIdAa6B0tEpPU2Nng8ADjfzM5oUBYDfNhE/fXh/Vl7N2pmpwK/ItSD4gESgUXh3f0I9RbtbUC4vYJQfgDhYzc2UrfhuXKAPxFK4FLCx+zcq9rfgNeAa8IJA4R6vNbvruCcC5rZRkI9PbttbfC4MnxMpD239z1YZnYZ8GMgL1yUTCOvs3PuAzN7EHgIGGBmLxHqeYwn9JrPbfBaGtDscMu91L/uzrlyMysm9Pw3mtmthBLlPoAj1FOZ1dix4eczjFDiOzEclw+Yu9f5tjV4XNXIdq8DiD1SrgcWOue+iMK5RUTanXqwRERazzV4vJFQD1XDb/aTnHO/bVCnX4PH/Qn1oOxxX4qZxQEvEuoRynHOpRNKqHZ/0t8IDG4klo1ADZDV4PypzrnR+3kO/xd+HmOdc6mEeuK+ySrMkoE/Ao8Dd9k3941tIZTU7a5n4ee3eT/n24eFpggvb+Zn6v5bqW9rAKGE8AYgM/z6LW74nBpyzj3gnDsMGEUoob2N0DWpAkY3eC3TnHPJB/C06q91+DXMALaEn8vthIYj9gjHV7pXfA1/rwAeBpYDQ8PX6I6mnk9bsdC9dk1dn6aG/50InG1mW81sK6Hezd+Hk1oRkS5HCZaISGQ9BZxhZiebmdfM4sMTB/RtUOcSMxsVvp/pbuAF51xgr3ZiCQ0ZKwT84d6skxrsfxy40sxONDOPmeWa2QjnXAGhoYS/N7PU8L7BZrb3ULK9pQDlQKmZ5RJKMBr6EzDHOXc1oXvMdn+Yfg74TjiOGOAWQgneZ/t7ofYWniI8uZmfTw6guSRCCUohhCYMIXQP0j7MbJKZHR6OvwKoBoLh4Wx/I3TvW89w3VwzO7nBsc4aTGLSiNPC95bFEroX6wvn3EZCr7c/HJ/PzO4k1IPVnBSgDCg3sxHAdfupH3HOudHNXJ9rmzjsCkL39U0I/8whdE/cz5uoLyLSqSnBEhGJoPCH52mEehcKCfUo3caef2+fJDQRxVZCw9B+1Eg7u8LlzxEaqvddQsPzdu+fTXjiC0I9Hx/xTU/SZYQStKXhY18gdN9Uc34NHBpu63Xgpd07zGwaoUkqdn+g/zFwqJld7JxbQai368+EenzOAM5wztXu53xtyjm3FPg98DmhYXJjgU+bqJ5KKJHaSWi4YxHwu/C+nxC69+wLC83m9x7h+6TC91Lt4pthm435N6FhnsWEJp/YPYzxbeAtYGX4nNXsZxgnoWGL3w2f82/As/up3yE450qcc1t3/wC1QFn4vjARkS7HnNt7BIKIiLQVM5sJPOWceyzasUjrmNklhIYP/qyJ/U8Am5xzv2jXwEREJKo0yYWIiMhBcM49Fe0YRESk49EQQRGRbsJCi94eyOQE0gWZ2R1N/B68Ge3YRES6Ag0RFBERERERiRD1YImIiIiIiERIh7oHKysry+Xl5UU7DBERERERkWbNnTt3h3Mue+/yDpVg5eXlMWfOnGiHISIiIiIi0iwzW99YuYYIioiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhHeoerMbU1dWxadMmqqurox2KdADx8fH07duXmJiYaIciXVBpZR0vPva/HHro4UyYclq0wxEREZFOqMMnWJs2bSIlJYW8vDzMLNrhSBQ55ygqKmLTpk0MHDgw2uFIFzR79qdcVfxHat6LgSk7oh2OiIiIdEIdfohgdXU1mZmZSq4EMyMzM1O9mdJmElb/F4A46qitrY1yNCIiItIZdfgEC1ByJfX0uyBtqmpn/cOCVfOiGIiIiIh0Vp0iwRIRaQ+e2rL6xzvXL45iJCIiItJZKcFqATPjlltuqd++7777uOuuu6IXUAPHHXdcs4szn3XWWRxxxBF7lN11113k5uYyYcIExowZw2uvvdbWYYp0Cr7acgo8vQCo2rYmytGIiIhIZ6QEqwXi4uJ46aWX2LEjsje9O+cIBoMRbbOhkpIS5s6dS2lpKWvXrt1j380338z8+fN5/vnnueqqq9o0DpHOIi6wi/LYLIpIx0ryox2OiIiIdEJKsFrA5/NxzTXXcP/99++zr7CwkHPPPZdJkyYxadIkPv30UyDUS3TffffV1xszZgz5+fnk5+czfPhwLrvsMsaMGcPGjRu57bbbGDNmDGPHjuXZZ58FYObMmRx33HGcd955jBgxgosvvhjnXKPxPfnkk/W9UbNnz64vf+mllzjjjDO48MILeeaZZxo9duTIkfh8vj2Sx5/+9KeMGjWKcePGceuttwKQn5/PCSecwLhx4zjxxBPZsGEDAFdccQXXXXcdRxxxBIMGDWLmzJlcddVVjBw5kiuuuKK+zeuuu46JEycyevRofvWrX+0TR2lpKQMGDKhP9CoqKujXrx91dXWNxi3SFuID5dT5UimK7UNy5cZohyMiIiKdUIefpr2hX/9nCUu3lO2/4gEY1SeVX50xer/1fvCDHzBu3Dhuv/32PcpvvPFGbr75ZqZMmcKGDRs4+eSTWbZsWbNtrVq1in/+858cccQRvPjii8yfP58FCxawY8cOJk2axDHHHAPA119/zZIlS+jTpw9HH300n376KVOmTNmnvcrKSubPn8/HH3/MVVddxeLFoXtHZsyYwZ133klOTg7nnnsud9xxxz7Hfvnll3g8HrKzswEoKiri5ZdfZvny5ZgZJSUlAPzwhz/k8ssv5/LLL+fvf/87P/rRj3jllVcA2LlzJ59//jmvvfYaZ555Jp9++imPPfYYkyZNYv78+UyYMIF77rmHjIwMAoEAJ554IgsXLmTcuHH1caSlpTFhwgQ++ugjjj/+eP773/9y8skna70raVeJwUp2xiRT5Uuhb0nTQ29FREREmqIerBZKTU3lsssu44EHHtij/L333uOGG25gwoQJnHnmmZSVlVFeXt5sWwMGDKi/L2rWrFlcdNFFeL1ecnJyOPbYY/nqq68AmDx5Mn379sXj8TBhwgTy8/Mbbe+iiy4C4JhjjqGsrIySkhK2bdvGqlWrmDJlCsOGDSMmJqY+8QK4//77mTBhArfeeivPPvts/ex8aWlpxMfH873vfY+XXnqJxMREAD7//HO++93vAnDppZcya9as+rbOOOMMzIyxY8eSk5PD2LFj8Xg8jB49uj7m5557jkMPPZRDDjmEJUuWsHTp0n2ex/Tp0+t78J555hmmT5/e7OsoEmnJVFIXk4I/dQDZrpjqqopohyQiIiKdTKfqwWpJT1Nbuummmzj00EO58sor68uCwSBffPEF8fHxe9T1+Xx73NfUcO2mpKSkFp0vLi6u/rHX68Xv9zdab++py82M5557jp07d9YvyFtWVsaMGTO45557gNA9WLuH/+0d9+zZs3n//fd54YUXePDBB/nggw9aFKfH49kjZo/Hg9/vZ926ddx333189dVX9OjRgyuuuKLRtazOPPNM7rjjDoqLi5k7dy4nnHBCs+cViaRgIEgylQRiU/BmDcKzwbF9w0r6Dz8k2qGJiIhIJ9LqHiwz62dmH5rZUjNbYmY3hsvvMrPNZjY//HNa68ONroyMDC644AIef/zx+rKTTjqJP//5z/Xb8+fPByAvL49580Lr6MybN49169Y12ubUqVN59tlnCQQCFBYW8vHHHzN58uQDimt3r8+sWbNIS0sjLS2NGTNm8NZbb9Xf9zV37twm78NqqLy8nNLSUk477TTuv/9+FixYAMBRRx1Vf/zTTz/N1KlTWxxfWVkZSUlJpKWlsW3bNt58881G6yUnJzNp0iRuvPFGTj/9dLxeb4vPIdJaNVXlxFiAQGwqib2GAlC6ZVWUoxIREZHOJhI9WH7gFufcPDNLAeaa2bvhffc75+5r5thO55ZbbuHBBx+s337ggQfq78/y+/0cc8wxPPLII5x77rn861//YvTo0Rx++OEMGzas0fbOPvtsPv/8c8aPH4+Zce+999KrVy+WL1/e4pji4+M55JBDqKur4+9//zv5+fmsX79+j+nZBw4cSFpaGl9++WWjbZx22mk89thjmBnTpk2juroa5xx/+MMfAPjzn//MlVdeye9+9zuys7P5xz/+0eL4xo8fzyGHHMKIESPo168fRx99dP2+O++8k4kTJ3LmmWcCoWGC559/PjNnzmxx+yKRUFtZQgIQjE0hq99wAGq2r45uUCIiItLpWFMz0x10g2avAg8CRwPlB5JgTZw40e29ptOyZcsYOXJkRGOUzk2/E9IWdmxYTtbfD+ezcfdwxLTrqbk7h0W9z2XytY9EOzQRERHpgMxsrnNu4t7lEZ3kwszygEOA3d0kN5jZQjP7u5n1aOKYa8xsjpnNKSwsjGQ4IiItVltdCYAnJgGP18N2T09iyzdFOSoRERHpbCKWYJlZMvAicJNzrgx4GBgMTAAKgN83dpxz7lHn3ETn3MTdU4WLiLS3utoqADyxoQlrSmJzSK4uiGZIIiIi0glFJMEysxhCydXTzrmXAJxz25xzAedcEPgbcGAzN4iItCN/uAfLG5sAQFViHzL926MZkoiIiHRCkZhF0IDHgWXOuT80KO/doNrZwOK9jxUR6Sj84R4sXzjBCqT2owdl1FRGdnFzERER6doiMYvg0cClwCIzmx8uuwO4yMwmAA7IB74fgXOJiLQJf01obbbdCZavR39YDzs2ryV36IQoRiYiIiKdSasTLOfcLMAa2fVGa9sWEWkvwbo9e7ASc0KLdJcWrFGCJSIiIi0W0VkEu7JXXnkFM2t2far8/HzGjBkTsXNeccUVvPDCC03uv+mmm8jNzSUYDNaXPfHEE2RnZzNhwgRGjRrF3/72t4jFI9KVBepCPVgx8aEEq0fvQQBUFeZHKyQRERHphJRgtdCMGTOYMmUKM2bMaHS/3+9v9TkCgUCL6waDQV5++WX69evHRx99tMe+6dOnM3/+fGbOnMkdd9zBtm3bWh2bSFcXDN+DFRMXSrCy++Thdx4COzdGMywRERHpZJRgtUB5eTmzZs3i8ccf55lnnqkvnzlzJlOnTuXMM89k1KhRQCjRuvjiixk5ciTnnXcelZWhmcnef/99DjnkEMaOHctVV11FTU0NAHl5efzkJz/h0EMP5fnnn9/n3O+99x4TJ05k2LBh/Pe//93j3KNHj+a6665rMunr2bMngwcPZv369fVlDzzwAKNGjWLcuHFceOGFABQXF3PWWWcxbtw4jjjiCBYuXAjAXXfdxeWXX87UqVMZMGAAL730Erfffjtjx47llFNOoa6uDoC7776bSZMmMWbMGK655hr2Xrw6GAySl5dHSUlJfdnQoUOV+EmHEtyrBysuNpbtlolvl9bCEhERkZaLxCQX7efNn8LWRZFts9dYOPW3zVZ59dVXOeWUUxg2bBiZmZnMnTuXww47DIB58+axePFiBg4cSH5+PitWrODxxx/n6KOP5qqrruIvf/kLN9xwA1dccQXvv/8+w4YN47LLLuPhhx/mpptuAiAzM5N58+Y1eu78/Hxmz57NmjVrOP7441m9ejXx8fHMmDGDiy66iGnTpnHHHXdQV1dHTEzMHseuXbuWtWvXMmTIkPqy3/72t6xbt464uLj6hOdXv/oVhxxyCK+88goffPABl112GfPnzwdgzZo1fPjhhyxdupQjjzySF198kXvvvZezzz6b119/nbPOOosbbriBO++8E4BLL72U//73v5xxxhn15/R4PEybNo2XX36ZK6+8ki+//JIBAwaQk5PT4ssk0tZc+B6suLik+rKdMTkkVm2JVkgiIiLSCakHqwVmzJhR39tz4YUX7tFjNHnyZAYOHFi/3a9fP44++mgALrnkEmbNmsWKFSsYOHAgw4YNA+Dyyy/n448/rj9m+vTpTZ77ggsuwOPxMHToUAYNGsTy5cupra3ljTfe4KyzziI1NZXDDz+ct99+u/6YZ599lgkTJnDRRRfx17/+lYyMjPp948aN4+KLL+app57C5wvl17NmzeLSSy8F4IQTTqCoqIiystDU1KeeeioxMTGMHTuWQCDAKaecAsDYsWPJz88H4MMPP+Twww9n7NixfPDBByxZsmSf5zF9+nSeffZZAJ555plmn7NINDh/qFc5LiGhvqw8vjc96tTTKiIiIi3XuXqw9tPT1BaKi4v54IMPWLRoEWZGIBDAzPjd734HQFJS0h71Q8uCNb3dmL3b2F97b7/9NiUlJYwdOxaAyspKEhISOP3004FQMvPggw822t7rr7/Oxx9/zH/+8x/uueceFi1qvkcwLi4OCPVCxcTE1Mfj8Xjw+/1UV1dz/fXXM2fOHPr168ddd91FdXX1Pu0ceeSRrF69msLCQl555RV+8YtfNHtekXZXV02d8xIbE1tf5E/pS1bZewTravE0KBcRERFpinqw9uOFF17g0ksvZf369eTn57Nx40YGDhzIJ5980mj9DRs28PnnnwPw73//mylTpjB8+HDy8/NZvXo1AE8++STHHntsi87//PPPEwwGWbNmDWvXrmX48OHMmDGDxx57jPz8fPLz81m3bh3vvvtu/f1eTQkGg2zcuJHjjz+e//f//h+lpaWUl5czdepUnn76aSB0b1dWVhapqaktim93MpWVlUV5eXmTsx6aGWeffTY//vGPGTlyJJmZmS1qX6S9WKCGGmLweb/5s2jp/fGao3hbfvQCExERkU5FCdZ+zJgxg7PPPnuPsnPPPbfJiSWGDx/OQw89xMiRI9m5cyfXXXcd8fHx/OMf/+D8889n7NixeDwerr322hadv3///kyePJlTTz2VRx55hGAwyFtvvcV3vvOd+jpJSUlMmTKF//znP422cfXVVzNnzhwCgQCXXHIJY8eO5ZBDDuFHP/oR6enp3HXXXcydO5dx48bx05/+lH/+858tfHUgPT2d//mf/2HMmDGcfPLJTJo0qX7fI488wiOPPFK/PX36dJ566ikND5SOyV9NLXvexxiflQfAzi1roxCQiIiIdEa294xv0TRx4kQ3Z86cPcqWLVvGyJEjoxSRdET6nZC2MOeB79K3+At63fVNMrV66XyGPHcs8w/7LRPOuC6K0YmIiEhHY2ZznXMT9y5XD5aICOAJ1FBne95nld1vMAD+4vWNHSIiIiKyDyVYIiKAt5EEKzU5mR0uDSvTWlgiIiLSMp0iwepIwxgluvS7IG2lsR4sM2OHL4f4Sq2FJSIiIi3T4ROs+Ph4ioqK9MFacM5RVFREfHx8tEORLsgbrMXv2Xcq9l1xvUir2RqFiERERKQz6vDrYPXt25dNmzZRWFgY7VCkA4iPj6dv377RDkO6IG+whmpL2Ke8JqkPWZWfg3PQgnXtREREpHvr8AlWTEwMAwcOjHYYItLF+VwtAV/aPuUurT/xhXVU7CwgKaNPFCITERGRzqTNhwia2SlmtsLMVpvZT9v6fCIiB8MXrCXoidunPDazPwBFm1a3d0giIiLSCbVpgmVmXuAh4FRgFHCRmY1qy3OKiByMGFdL0LtvgpXSK9SDXrZtXXuHJCIiIp1QW/dgTQZWO+fWOudqgWeAaW18ThGRAxbrahpNsDL6DAGgZkd+O0ckIiIinVFbJ1i5wMYG25vCZfXM7Bozm2NmczSRhYhESyx1jSZY2dk57HIJULKxkaNERERE9hT1adqdc4865yY65yZmZ2dHOxwR6aZiXS00kmB5PcY2T09iKzZHISoRERHpbNo6wdoM9Guw3TdcJiLScThHvNVBTONrrJXG9iKlWmthiYiIyP61dYL1FTDUzAaaWSxwIfBaG59TROSA1NVWhx74Gk+wqhJ7k+Hf1o4RiYiISGfVpgmWc84P3AC8DSwDnnPOLWnLc4qIHKjqqkoArIkEK5jal1Qq8FeWtGNUIiIi0hm1+T1Yzrk3nHPDnHODnXP3tPX5REQOVE11KMHyNDFE0NtjAAA7Nq9pt5hERESkc4r6JBciItFWG06wLLbxBCuxZx4ApQVKsERERKR5SrBEpNvbnWB5YxIa3Z+ZG1oLq3J7fnuFJCIiIp2UEiwR6fbqaqoA8DbRg9WrT39qnA9/8fr2DEtEREQ6ISVYItLt7U6wfLGN92DFxvgo9GTj3aVVJkRERKR5SrBEpNvz14aGCPriEpusUxLbi6QqJVgiIiLSPCVYItLt+WtC62D54hrvwQKoTO5Pjn8Lzrn2CktEREQ6ISVYItLtBWpDQwRjmkmwXI9BpFNOaZEWHBYREZGmKcESkW5vd4IV20yCFddrOADb8rVWuoiIiDRNCZaIdHuuphyAmMSUJuv06DcCgPItK9slJhEREemclGCJiNRWABCbmNpklZwBIwg4w1+oBEtERESapgRLRLo9qw31YMU3k2DFxydQ4MkhpjS/naISERGRzkgJloh0e1ZXQbWLISYmptl6O2L7kla5oZ2iEhERkc5ICZaIdHtWV06lxWNmzdarSM6jl38TaKp2ERERaYISLBHp9jy1FVRb04sM7+YyBpFENWU7tOCwiIiINE4Jloh0e15/JTXW9BTtuyWEp2rfum5xW4ckIiIinVSrEiwz+52ZLTezhWb2spmlh8vzzKzKzOaHfx6JSLQiIm0gJlBBrXf/CVZ23igASjctb+uQREREpJNqbQ/Wu8AY59w4YCXwswb71jjnJoR/rm3leURE2kxMoIpa7/6HCPbpP5Ra58NfuKodohIREZHOqFUJlnPuHeecP7z5BdC39SGJiLSvuGAlft/+EyxfTAxbvL2JL13TDlGJiIhIZxTJe7CuAt5ssD3QzL42s4/MbGoEzyMiElFxwSqCvqQW1S1OHER2VX7bBiQiIiKdlm9/FczsPaBXI7t+7px7NVzn54AfeDq8rwDo75wrMrPDgFfMbLRzrqyR9q8BrgHo37//wT0LEZFWSHDVBGNalmDV9BhG710fU11ZTnxichtHJiIiIp3NfhMs59y3mttvZlcApwMnOhdaHMY5VwPUhB/PNbM1wDBgTiPtPwo8CjBx4kQtLiMi7SoQCJJEFS62ZcmSr/covBsdG9YuYuCYI9s4OhEREelsWjuL4CnA7cCZzrnKBuXZZuYNPx4EDAXWtuZcIiJtoWLXTmIsgEvIaFH9jP5jASjJX9iWYYmIiEgntd8erP14EIgD3jUzgC/CMwYeA9xtZnVAELjWOVfcynOJiERc+c5CUgFL7NGi+rlDxlDnvNRuXda2gYmIiEin1KoEyzk3pInyF4EXW9O2iEh7qCjZDkBsSnaL6sfHJ5Dv6U38zpVtGZaIiIh0UpGcRVBEpNOpLC0EID4tq8XHFCYMIqtKo55FRERkX0qwRKRbq90VSrCSe/Rs8THV6UPpFdiKv7qircISERGRTkoJloh0a3W7igBI7ZHT4mNieo/Ca44taxe1VVgiIiLSSSnBEpFuzVWG5t9JTm/5EMHMvHEAFK3TTIIiIiKyJyVYItKtWdVOykjC44tp8TH9ho4NzSRYsLQNIxMREZHOSAmWiHRr8dXbKfa0bA2s+mPiE9js7U1c8Yo2ikpEREQ6KyVYItKtJddspzSm5RNc7FacOIjMqvzIByQiIiKdmhIsEenWMvzbqUrodcDH1fYYTp9gAVUV5W0QlYiIiHRWSrBEpNsK1tWS4UoIJPc+4GPjckfjNcfGVfMjH5iIiIh0WkqwRKTbKt6+AY85PGm5B3xs1sAJAJTkz49sUCIiItKpKcESkW6rZGs+AHEZ/Q742D6Dx1DjYggULIlwVCIiItKZKcESkW6rvHADACk9BxzwsV5fDJt8/UgsXRnpsERERKQTU4IlIt1WXfEmADJ65x3U8TuTh9Krem0EIxIREZHOTgmWiHRbrmwLFS6OHj2yDur4QNZIciimpGh7hCMTERGRzkoJloh0WzEVBezwZOHxHtyfwsR+YwHYvHJuJMMSERGRTkwJloh0W0nVWymNyT7o43sNPRSAXesXRCokERER6eRalWCZ2V1mttnM5od/Tmuw72dmttrMVpjZya0PVUQkstL9hVTF5xz08Vm98ygjCStcGsGoREREpDPzRaCN+51z9zUsMLNRwIXAaKAP8J6ZDXPOBSJwPhGRVnOBOjKCO1mV3Oeg2zCPh02xA0ktWxXByERERKQza6shgtOAZ5xzNc65dcBqYHIbnUtE5ICVFG7BZ0FIPfBFhhvalTqM3Np8XDAYochERESkM4tEgnWDmS00s7+bWY9wWS6wsUGdTeGyfZjZNWY2x8zmFBYWRiAcEZH9Ky5YB0B8Zt/WNdRzJKlWybZNayIQlYiIiHR2+02wzOw9M1vcyM804GFgMDABKAB+f6ABOOcedc5NdM5NzM4++JvNRUQOREV4keHk7ANfZLihtAHjAdi2WjMJioiISAvuwXLOfaslDZnZ34D/hjc3A/0a7O4bLhMR6RBqikOd7Ae7yPBuvYcdBm9C1cbFEYhKREREOrvWziLYu8Hm2cDuTxivAReaWZyZDQSGArNbcy4RkUhypZupdjFkZvVqVTtpPbLYSha+omURikxEREQ6s9bOInivmU0AHJAPfB/AObfEzJ4DlgJ+4AeaQVBEOhJfRQGFniz6HeQiww1tjx9IRsXqCEQlIiIinV2rEizn3KXN7LsHuKc17YuItJXE8CLD/fZfdb8qegxnxJZ51NXWEBMbF4EWRUREpLNqq2naRUQ6tLS61i0y3FBM7zHEWoAtqxdEpD0RERHpvJRgiUi344IBsoLF1CX13n/lFsgcfhQAhcs/jUh7IiIi0nkpwRKRbmdn4WZiLICltW6R4d0GDBnLTlIIbtBcPiIiIt2dEiwR6XaKC/IBiM2IxB1Y4PF6WJ84ltzSueBck/Vqaqr47F93smDmixE5r4iIiHQ8SrBEpNspDy8ynNqzf8TarOh/PLluG5uauA9r/apFrL93Kket/RN8cn/EzisiIiIdixIsEel2aopCiwynt3KR4YaGTT0XgI0fPblHuQsG+fLFP5H11LfICWxhhRtAr8CWiJ1XREREOpbWroMlQE1tDeU7C6ku3UF1RSk1lWXUVpXjr96Fv2oXrqYC81dB0I8L+iFQB0F/+CeABQN4CODMA+bBYaF/67dD/+LxgHkxjxc8XvD4wOMLb4f+Ne/u7Rg83oZlPjxeL+b9ptzrjcG8u//14fX58Hh9eH0xeLxevN7Y0L++GLw+H97wPp8vBq/XV39+PMrTpXNxZVuodT4ys/pErM3s3MHMj5/M8E3PUVHyM5LSs9iwahElL/yIw2vmsSxuLJmX/ZOitx9h+MZHqakqJy4hOWLn766cc9T5g9TV1eCvrSFQV02grhZ/XTWB2hoCwSCBgJ9gMBg+IAg4zAVxzoELYrvLdw/vNA+Y1f8tDj0O/R02A8yLx2Phv8eGYeDxYuG65vHgsd37PYDh8Yb+NY8HwxM+PnSseQzb/djAzBNul3B9w+MJnztc31N/rOeb4/S3WESkQ1CC1Qx/XS07tm6geMtayreto654A77yLcRVbSO+dieJ/hLSgqWkWQUtXfkm4IwAXvx48ZuXIF4CeAlihP47d4RSqiAeguHtIOZC5V4C+CzYps/7YNQ5L0E8+Al9iNjTnvek7L03VLZ3nX3vY9n7uMbq7H2u/WkslubrH2j7bRuPxw6sfQk5AtjsySHX641ou3Hf/jnJr51DwQPHsTq2F2Oq5pBh8cweeQcTz7sVj9dLfvZg2Ahb169kwIhDI3r+zqTO72fXzh2Ul2ynumwHNWU78JfvIFBRTLCqFFezC2or8NSW4/VXEhuoJDZYRbyrJD5YTSy1+JyfGOqIMz+x0X5CHUzQhf76uPBfFXfAf406tgP9W9mRdZUr01WeB3St36+u8jlhZnA8Fec9y3fGRWb237amBKsZc577LUes+j29GpSVkkSxJ4sKXw8Kk4axNSETEjJwiZlYYga+xDRiE1OIS0wlPjGFhOQ04pPS8MUlEBMTi9frxQut/jAQDAQIBOoI+Ovw+/0E/H4C/lqCgQB+fx3BgD/0ra2/jkAgtN8F6ggEAriAn0CgDhf0Ewz4CYbLXMBPMBj61wX9uODu8rrQ43CPmwsEsGAdzgUh6MfjApgL9cJ5XKCJiPf8c+Va8OfLWeOp2H7bafS4xo7es40mj9pnx/5jbxhCwxhb9kf7AP+0N/N8pWlJQ44mMnMIfmPkYccxp+hBenx5Hz1qt/Bln0sZduatTO49oL5OWu4ImAfF6xd3yQTLX1vN9s35FG9bT1XRJvwlBVC+FV/lNhKqC0mp20FacCeproIMc2Q00U6Fi6PKEqi2BGq9CdR4EqmO7cEuby5+XwLOGw/eWMwXh/liwRv+qX8ch+3unfd4MLNwb7uFRgdguHAv0O7t3cwI92aFerq+6d0KQjDUA0aDHrDQD+AC4BwuXM+FywwXKt/dTrgXLdRhtvtYhwvXA8Jtu/C5XPijqwuVE44vvN/tsc03Mex+PrvbCT3rFv397Rza6HlE5eXRNel42uG5tNvL1fmvS2V8Xwb3TIp2GC2mBKsZvQ49jdlxySRkDSCt9yB69h1EWlIaadEODPB4vXi8XmJi46Mdiog0MPGk78JJ3wWgsSk0BoycSN1rXmo2zAUua9fYIsEFA2zfkk/h+hVUbF9LsGgdvl0bSaraTGZtAdmumD7maDj4stZ5KbIMSn1Z7EjIY2v8YZCYgSVm4knKICY5k9iULBLSsklM70lqeiaJMT6S9OWBiIh0QkqwmpE3ciJ5IydGOwwR6ULiE5NZ7RtAUtGiaIfSrMrKCjavWULJxsX4ty4jZucaelSuo49/EzlWS064XtAZhZZBUUxvNqRNZE1KP3wZ/UnM7EdKdl965AwgpUc2vT0eOsfADhERkdZRgiUi0s6K0sYwsvg96mpriIlt6R2cbcMFA+zYuIqtK2dTvXE+sUXLyKjMp0+wgKENxu4XWDbb4/KYnzkJT9YQknsNISN3KFl9h5ATl1CfcImIiHR3SrBERNpZzPCTSP38NZZ89S6jjz693c7rr6lk86qvKV49l8CWBaSULCe3dg3ZVJEN+J2HjZ5cticOYUvGacT2Gk76gDH0HjSW3okp6oESERFpASVYIiLtbPhRZ1L12Y+pmDsD2ijBKi/eyubls9mV/zXe7YvI2LWSXP9GBliQAUC5S2B9zCAWZJwKvcaSPugw+o84lIHJKQxsk4hERES6ByVYIiLtLCkljS8zT2FC0Zts3biaXv2GHHRbLhikcONKtq4IDfGLL1pCr6pV9HRFDA/X2UomW+KHsDHnBGJzx5M9dCL9Bo1ktE//BYiIiERaq/53NbNnof7/8HSgxDk3wczygGXAivC+L5xz17bmXCIiXUm/M35O4Im3KXryClJvfIPEpNT9HlNWUsTmlfMp2bAIti4mrXQZ/erW0JMqehIa4rfB24/85ENZlTWKxAGH0GfEZHJy+tBLM/KJiIi0i1YlWM656bsfm9nvgdIGu9c45ya0pn0Rka6qz8ARzJn4Gw6d8xO23jeRhQPOITZ3PHEJidTW1hLctRV/yRZc6WaSy9eTU7uebHayOw2rdHFsiB3MksxTcDljSR98GP2GH8ag5BQGRfWZiYiIdG8RGR9iZgZcAJwQifZERLqDiWd8nyXpveDj/8cR+Q9D/r51Sklmmy+XtWmHsypjKEm5o8gZNI6cASMY4dUQPxERkY4mUv87TwW2OedWNSgbaGZfA2XAL5xznzR2oJldA1wD0L9/Y8tyioh0XaOnToOp0yjevoXiTSupqq4iPjaG+B696ZHTn7TklA6xuLmIiIi0jDnnmq9g9h7Qq5FdP3fOvRqu8zCw2jn3+/B2HJDsnCsys8OAV4DRzrmy5s41ceJEN2fOnAN/FiIiIiIiIu3IzOY65ybuXb7fHizn3Lf207APOAc4rMExNUBN+PFcM1sDDAOUPYmIiIiISJfliUAb3wKWO+c27S4ws2wz84YfDwKGAmsjcC4REREREZEOKxL3YF0IzNir7BjgbjOrA4LAtc654gicS0REREREpMPa7z1Y7cnMCoH10Y5jL1nAjmgHIe1G17v70LXuPnStuxdd7+5D17p76YjXe4BzLnvvwg6VYHVEZjansZvXpGvS9e4+dK27D13r7kXXu/vQte5eOtP1jsQ9WCIiIiIiIoISLBERERERkYhRgrV/j0Y7AGlXut7dh65196Fr3b3oencfutbdS6e53roHS0REREREJELUgyUiIiIiIhIhSrBEREREREQiRAlWM8zsFDNbYWarzeyn0Y5HIsfM+pnZh2a21MyWmNmN4fIMM3vXzFaF/+0R7VglMszMa2Zfm9l/w9sDzezL8Pv7WTOLjXaMEhlmlm5mL5jZcjNbZmZH6r3dNZnZzeG/4YvNbIaZxeu93XWY2d/NbLuZLW5Q1uh72UIeCF/3hWZ2aPQilwPVxLX+Xfjv+EIze9nM0hvs+1n4Wq8ws5OjEnQzlGA1wcy8wEPAqcAo4CIzGxXdqCSC/MAtzrlRwBHAD8LX96fA+865ocD74W3pGm4EljXY/n/A/c65IcBO4HtRiUrawp+At5xzI4DxhK673ttdjJnlAj8CJjrnxgBe4EL03u5KngBO2ausqffyqcDQ8M81wMPtFKNExhPse63fBcY458YBK4GfAYQ/r10IjA4f85fw5/YOQwlW0yYDq51za51ztcAzwLQoxyQR4pwrcM7NCz/eRegDWC6ha/zPcLV/AmdFJUCJKDPrC3wHeCy8bcAJwAvhKrrWXYSZpQHHAI8DOOdqnXMl6L3dVfmABDPzAYlAAXpvdxnOuY+B4r2Km3ovTwP+5UK+ANLNrHe7BCqt1ti1ds6945zzhze/APqGH08DnnHO1Tjn1gGrCX1u7zCUYDUtF9jYYHtTuEy6GDPLAw4BvgRynHMF4V1bgZxoxSUR9UfgdiAY3s4EShr84db7u+sYCBQC/wgPCX3MzJLQe7vLcc5tBu4DNhBKrEqBuei93dU19V7W57au7SrgzfDjDn+tlWBJt2ZmycCLwE3OubKG+1xoDQOtY9DJmdnpwHbn3NxoxyLtwgccCjzsnDsEqGCv4YB6b3cN4XtvphFKqvsASew7xEi6ML2Xuwcz+zmhWzuejnYsLaUEq2mbgX4NtvuGy6SLMLMYQsnV0865l8LF23YPKQj/uz1a8UnEHA2caWb5hIb6nkDoHp308LAi0Pu7K9kEbHLOfRnefoFQwqX3dtfzLWCdc67QOVcHvETo/a73dtfW1HtZn9u6IDO7AjgduNh9s3hvh7/WSrCa9hUwNDwbUSyhm+lei3JMEiHhe3AeB5Y55/7QYNdrwOXhx5cDr7Z3bBJZzrmfOef6OufyCL2PP3DOXQx8CJwXrqZr3UU457YCG81seLjoRGApem93RRuAI8wsMfw3ffe11nu7a2vqvfwacFl4NsEjgNIGQwmlEzKzUwgN7z/TOVfZYNdrwIVmFmdmAwlNbDI7GjE2xb5JBmVvZnYaoXs3vMDfnXP3RDciiRQzmwJ8Aizim/ty7iB0H9ZzQH9gPXCBc27vG2ylkzKz44BbnXOnm9kgQj1aGcDXwCXOuZoohicRYmYTCE1oEgusBa4k9IWi3ttdjJn9GphOaPjQ18DVhO7F0Hu7CzCzGcBxQBawDfgV8AqNvJfDSfaDhIaJVgJXOufmRCFsOQhNXOufAXFAUbjaF865a8P1f07oviw/ods83ty7zWhSgiUiIiIiIhIhGiIoIiIiIiISIUqwREREREREIkQJloiIiIiISIQowRIREREREYkQJVgiIiIiIiIRogRLREREREQkQpRgiYiIiIiIRIgSLBERERERkQhRgiUiIiIiIhIhSrBEREREREQiRAmWiIiIiIhIhCjBEhERERERiRAlWCIiHYSZ5ZmZMzNftGPp6szsCjObFe04Ohozm2pmK6Idh4hIZ6YES0REOjUzu8vM6sysvMHP7dGOqzNyzn3inBveVu2b2WXhLxGubqtziIhEm74lFRGJEDPzOef80Y6jm3rWOXdJtINoK13hd8vMegB3AEuiHYuISFtSD5aISCuYWb6Z/cTMFgIVZuYzsyPM7DMzKzGzBWZ2XIP6M83s/zOz2WZWZmavmllGE21faWbLzGyXma01s+/vtX+amc0Pt7PGzE4Jl6eZ2eNmVmBmm83sf83Mu5/nMdjMPjCzIjPbYWZPm1l6g33FZnZoeLuPmRXufl5mdqaZLQk/35lmNnKv1+dWM1toZqVm9qyZxR/4K33gzOyn4ddll5ktNbOzm6hnZna/mW0Pv5aLzGxMeF+cmd1nZhvMbJuZPWJmCS08/xPh+u+GY/jIzAY02P8nM9sYPudcM5vaYN9dZvaCmT1lZmXAFWY22cw+D7/OBWb2oJnFNjjGmdn1ZrYqfL7fhK/dZ+FzPNewfhMxH2dmm1ry/A7C/wc8AOxoo/ZFRDoEJVgiIq13EfAdIB3IAV4H/hfIAG4FXjSz7Ab1LwOuAnoDfkIfOhuzHTgdSAWuBO5vkORMBv4F3BY+7zFAfvi4J8LtDgEOAU4C9jckywh9AO4DjAT6AXcBOOfWAD8BnjKzROAfwD+dczPNbBgwA7gJyAbeAP6z1wf5C4BTgIHAOOCKRgMwmxJOHpr6mbKf57C3NcBUIA34dTj+3o3UO4nQ6zcsXPcCoCi877fh8gmEXs9c4M4DiOFi4DdAFjAfeLrBvq/C7WYA/wae3yv5nAa8QOj6Pg0EgJvDbR0JnAhcv9f5TgYOA44AbgceBS4hdD3HEPpdPWjhRLmp6/OXZo6bDEwEHmnN+UVEOgMlWCIirfeAc26jc66K0IfZN5xzbzjngs65d4E5wGkN6j/pnFvsnKsAfglc0FgPk3PudefcGhfyEfAOoYQB4HvA351z74bPs9k5t9zMcsLnusk5V+Gc2w7cD1zY3BNwzq0Ot1XjnCsE/gAc22D/34DVwJeEEsOfh3dNB14PH1sH3AckAEft9fpscc4VA/8hlFQ0FsMs51x6Mz/NTUpxwV4f9vs4554PnzfonHsWWAVMbuTYOiAFGAGYc26Zc67AzAy4BrjZOVfsnNsF/N/+Xsu9vO6c+9g5V0PoNTvSzPqFn+9Tzrki55zfOfd7IA5oeP/T5865V8LxVznn5jrnvgjXzwf+SoNrFHavc67MObcEWAy845xb65wrBd4klHAfNOfcuGauz97JHgDh3+2/ADc454KtOb+ISGege7BERFpvY4PHA4DzzeyMBmUxwIdN1F8f3p+1d6NmdirwK0I9KB4gEVgU3t2PUG/R3gaE2ysI5QcQPnZjI3UbnisH+BOhBC4lfMzOvar9DXgNuCacMECox2v97grOuaCZbSTU07Pb1gaPK8PHRNpze9+DZWaXAT8G8sJFyTTyOjvnPjCzB4GHgAFm9hKhnsd4Qq/53AavpQHNDrfcS/3r7pwrN7NiQs9/o5ndSihR7gM4Qj2VWY0dG34+wwglvhPDcfmAuXudb1uDx1WNbPc6gNgj5XpgoXPuiyicW0Sk3akHS0Sk9VyDxxsJ9VA1/GY/yTn32wZ1+jV43J9QD8oe96WYWRzwIqEeoRznXDqhhGr3J/2NwOBGYtkI1ABZDc6f6pwbvZ/n8H/h5zHWOZdKqCfum6zCLBn4I/A4cJd9c9/YFkJJ3e56Fn5+m/dzvn1YaIrw8mZ+pu6/lfq2BhBKCG8AMsOv3+KGz6kh59wDzrnDgFGEEtrbCF2TKmB0g9cyzTmXfABPq/5ah1/DDGBL+LncTmg4Yo9wfKV7xdfw9wrgYWA5MDR8je5o6vm0FQvda9fU9Wlq+N+JwNlmttXMthLq3fx9OKkVEelylGCJiETWU8AZZnaymXnNLD48cUDfBnUuMbNR4fuZ7gZecM4F9monltCQsULAH+7NOqnB/seBK83sRDPzmFmumY1wzhUQGkr4ezNLDe8bbGZ7DyXbWwpQDpSaWS6hBKOhPwFznHNXE7rHbPeH6eeA74TjiAFuIZTgfba/F2pv4SnCk5v5+eQAmksilKAUQmjCEEL3IO3DzCaZ2eHh+CuAaiAYHs72N0L3vvUM1801s5MbHOuswSQmjTgtfG9ZLKF7sb5wzm0k9Hr7w/H5zOxOQj1YzUkByoByMxsBXLef+hHnnBvdzPW5tonDriB0X9+E8M8cQvfE/byJ+iIinZoSLBGRCAp/eJ5GqHehkFCP0m3s+ff2SUITUWwlNAztR420sytc/hyhoXrfJTQ8b/f+2YQnviDU8/ER3/QkXUYoQVsaPvYFQvdNNefXwKHhtl4HXtq9w8ymEZqkYvcH+h8Dh5rZxc65FYR6u/5MqMfnDOAM51ztfs7XppxzS4HfA58TGiY3Fvi0ieqphBKpnYSGOxYBvwvv+wmhe8++sNBsfu8Rvk8qfC/VLr4ZttmYfxMa5llMaPKJ3cMY3wbeAlaGz1nNfoZxEhq2+N3wOf8GPLuf+h2Cc67EObd19w9QC5SF7wsTEelyzLm9RyCIiEhbMbOZwFPOuceiHYu0jpldQmj44M+a2P8EsMk594t2DUxERKJKk1yIiIgcBOfcU9GOQUREOh4NERQR6SYstOjtgUxOIF2Qmd3RxO/Bm9GOTUSkK9AQQRERERERkQhRD5aIiIiIiEiEdKh7sLKyslxeXl60wxAREREREWnW3Llzdzjnsvcu71AJVl5eHnPmzIl2GCIiIiIiIs0ys/WNlWuIoIiIiIiISIQowRIREREREYkQJVgiIi2wes1q3v/iq2iHISIiIh1ch7oHqzF1dXVs2rSJ6urqaIcinUx8fDx9+/YlJiYm2qFIF+B9+hxODK5nbZ/FDOrfL9rhiIiISAfV4ROsTZs2kZKSQl5eHmYW7XCkk3DOUVRUxKZNmxg4cGC0w5FOzjnHwGDoPtYdnz/FoP4/i3JEIiIi0lF1+CGC1dXVZGZmKrmSA2JmZGZmqudTIqKsso5KFweA27Y0ytGIiIhIR9bhEyxAyZUcFP3eSKQU7dhKotUAkLprTZSjERERkY6sUyRYIiLRVL5tHQA7SaVP3XpwLsoRiYiISEelBKsFzIxbbrmlfvu+++7jrrvuil5ADXzxxRccfvjhTJgwgZEjR9bHNXPmTD777LNWtX3KKaeQnp7O6aefHoFIRTqvmuINAKxNnUQa5ewq2R7liERERKSjUoLVAnFxcbz00kvs2LEjou065wgGg61q4/LLL+fRRx9l/vz5LF68mAsuuACITIJ122238eSTT7aqDZGuIFhVBkBd1igAdmxeG81wREREpAPr8LMINvTr/yxh6ZayiLY5qk8qvzpjdLN1fD4f11xzDffffz/33HPPHvsKCwu59tpr2bAh9A33H//4R44++mjuuusukpOTufXWWwEYM2YM//3vfwE4+eSTOfzww5k7dy5vvPEGDz74IG+++SZmxi9+8QumT5/OzJkzueuuu8jKymLx4sUcdthhPPXUU/vcV7R9+3Z69+4NgNfrZdSoUeTn5/PII4/g9Xp56qmn+POf/8yIESOajHPNmjWsXr2aHTt2cPvtt/M///M/AJx44onMnDmz2dfm+eef59e//jVer5e0tDQ+/vhjqqurue6665gzZw4+n48//OEPHH/88TzxxBO88sorVFRUsGrVKm699VZqa2t58skniYuL44033iAjI4O//e1vPProo9TW1jJkyBCefPJJEhMT9zjvEUccweOPP87o0aFrd9xxx3HfffcxceLEZuMVORiurgKA+N6jYC3s2rYOxhwZ5ahERESkI1IPVgv94Ac/4Omnn6a0tHSP8htvvJGbb76Zr776ihdffJGrr756v22tWrWK66+/niVLljBnzhzmz5/PggULeO+997jtttsoKCgA4Ouvv+aPf/wjS5cuZe3atXz66af7tHXzzTczfPhwzj77bP76179SXV1NXl4e1157LTfffDPz589n6tSpzca5cOFCPvjgAz7//HPuvvtutmzZ0uLX5e677+btt99mwYIFvPbaawA89NBDmBmLFi1ixowZXH755fWz+S1evJiXXnqJr776ip///OckJiby9ddfc+SRR/Kvf/0LgHPOOYevvvqKBQsWMHLkSB5//PF9zjt9+nSee+45AAoKCigoKFByJW3G1VYCkJE3BoDqHRuiGY6IiIh0YJ2qB2t/PU1tKTU1lcsuu4wHHniAhISE+vL33nuPpUu/mba5rKyM8vLyZtsaMGAARxxxBACzZs3ioosuwuv1kpOTw7HHHstXX31FamoqkydPpm/fvgBMmDCB/Px8pkyZskdbd955JxdffDHvvPMO//73v5kxY0ajvU7NxTlt2jQSEhJISEjg+OOPZ/bs2Zx11lktel2OPvporrjiCi644ALOOeec+uf0wx/+EIARI0YwYMAAVq5cCcDxxx9PSkoKKSkppKWlccYZZwAwduxYFi5cCISSsF/84heUlJRQXl7OySefvM95L7jgAk466SR+/etf89xzz3Heeee1KF6RgxJOsHr1H06Ni8GVbIxyQCIiItJRtTrBMrN+wL+AHMABjzrn/mRmGcCzQB6QD1zgnNvZ2vNF00033cShhx7KlVdeWV8WDAb54osviI+P36Ouz+fb4/6qhusxJSUlteh8cXFx9Y+9Xi9+v7/ReoMHD+a6667jf/7nf8jOzqaoqGifOk3FCftOZ34g05s/8sgjfPnll7z++uscdthhzJ07t9n6DZ+Tx+Op3/Z4PPXP74orruCVV15h/PjxPPHEE40mjLm5uWRmZrJw4UKeffZZHnnkkRbHLHKgzF9FrfMRGxfHRk8WvvKW9/KKiIhI9xKJIYJ+4Bbn3CjgCOAHZjYK+CnwvnNuKPB+eLtTy8jI4IILLthjyNpJJ53En//85/rt+fPnA5CXl8e8efMAmDdvHuvWrWu0zalTp/Lss88SCAQoLCzk448/ZvLkyS2O6fXXX8eFp4xetWoVXq+X9PR0UlJS2LVr137jBHj11Veprq6mqKiImTNnMmnSpBaff82aNRx++OHcfffdZGdns3HjRqZOncrTTz8NwMqVK9mwYQPDhw9vcZu7du2id+/e1NXV1bfTmOnTp3PvvfdSWlrKuHHjWty+yIHy1FVSRejLgJKYHJKqt0Y5IhEREemoWp1gOecKnHPzwo93AcuAXGAa8M9wtX8CZ7X2XB3BLbfcssdsgg888ABz5sxh3LhxjBo1qr4n5dxzz6W4uJjRo0fz4IMPMmzYsEbbO/vssxk3bhzjx4/nhBNO4N5776VXr14tjufJJ59k+PDhTJgwgUsvvZSnn34ar9fLGWecwcsvv8yECRP45JNPmowTYNy4cRx//PEcccQR/PKXv6RPnz5AKPk7//zzef/99+nbty9vv/02EBqWuPt+q9tuu42xY8cyZswYjjrqKMaPH8/1119PMBhk7NixTJ8+nSeeeGKPnqv9+c1vfsPhhx/O0UcfzYgRI+rLX3vtNe6888767fPOO49nnnmmfuZEkbbi8VdSZaHe36qEXvSo2xbliERERKSjMhfBBTPNLA/4GBgDbHDOpYfLDdi5e3uvY64BrgHo37//YevXr99j/7Jlyxg5cmTEYpQ97T3bYVej3x+JhK9/fxaZ5Svo/6tlfPbYLRy+8XHcz7fhi235FwciIiLStZjZXOfcPrOsRWwWQTNLBl4EbnLO7TGXugtlcY1mcs65R51zE51zE7OzsyMVjohIxHgDVdSEe7A86f3wmmPH1vX7OUpERES6o4jMImhmMYSSq6edcy+Fi7eZWW/nXIGZ9Qa2R+JcEll33XVXtEMQ6fBiAtXUekIJVnxWfwBKC9bSq3/jQ39FRESk+2p1D1Z4+N/jwDLn3B8a7HoNuDz8+HLg1daeS0QkGmKCVdR5QsszpObkAVChtbBERESkEZHowToauBRYZGbzw2V3AL8FnjOz7wHrAc1EICKdUmywmrrYLAAye+UB4N+5KYoRiYiISEfV6gTLOTcLaGrhpBNb276ISLTFuGr8u3uw0ntQ5hKhTGthiYiIyL4iNsmFiEhXFeeqCfhCCZaZUeTNIrZCa2GJiIjIvpRgtdArr7yCmbF8+fIm6+Tn5zNmzJiInXPFihUcd9xxTJgwgZEjR3LNNdcAoUWC33jjjVa1fdVVV9GzZ8+IxivSVcW5GoLhBAugLCabpBqthSUiIiL7UoLVQjNmzGDKlCnMmDGj0f1+v7/V5wgEAnts/+hHP+Lmm29m/vz5LFu2jB/+8IdAZBKsK664grfeeqtVbYh0F7HU4Xzx9dvVCb1I9xdGMSIRERHpqCIyTXu7efOnsHVRZNvsNRZO/W2zVcrLy5k1axYffvghZ5xxBr/+9a8BmDlzJr/85S/p0aMHy5cv55133sHv93PxxRczb948Ro8ezb/+9S8SExN5//33ufXWW/H7/UyaNImHH36YuLg48vLymD59Ou+++y633347F154Yf15CwoK6Nu3b/322LFjqa2t5c4776SqqopZs2bxs5/9jNNPP50f/vCHLF68mLq6Ou666y6mTZvGE088wcsvv0xpaSmbN2/mkksu4Ve/+hUAxxxzDPn5+c0+748++ogbb7wRCA2L+vjjj0lOTub222/nzTffxMz4xS9+wfTp05k5cya/+tWvSE9PZ9GiRVxwwQWMHTuWP/3pT1RVVfHKK68wePBg/vOf//C///u/1NbWkpmZydNPP01OTs4e573wwgu59NJL+c53vgOEksHTTz+d8847r2XXVCSSAn5iCIDvm0WFA8m9ydxZgr+2RosNi4iIyB7Ug9UCr776KqeccgrDhg0jMzOTuXPn1u+bN28ef/rTn1i5ciUQGtZ3/fXXs2zZMlJTU/nLX/5CdXU1V1xxBc8++yyLFi3C7/fz8MMP17eRmZnJvHnz9kiuAG6++WZOOOEETj31VO6//35KSkqIjY3l7rvvZvr06cyfP5/p06dzzz33cMIJJzB79mw+/PBDbrvtNioqKgCYPXs2L774IgsXLuT5559nzpw5LX7e9913Hw899BDz58/nk08+ISEhgZdeeon58+ezYMEC3nvvPW677TYKCgoAWLBgAY888gjLli3jySefZOXKlcyePZurr76aP//5zwBMmTKFL774gq+//poLL7yQe++9d5/zTp8+neeeew6A2tpa3n///fpkS6S9OX9V6EGDHixPWi4ecxRv2xilqERERKSj6lw9WPvpaWorM2bMqO/JufDCC5kxYwaHHXYYAJMnT2bgwIH1dfv168fRRx8NwCWXXMIDDzzAt7/9bQYOHMiwYaFFSS+//HIeeughbrrpJiCUUDTmyiuv5OSTT+att97i1Vdf5a9//SsLFizYp94777zDa6+9xn333QdAdXU1GzaE1uj59re/TWZmJgDnnHMOs2bNYuLEiS163kcffTQ//vGPufjiiznnnHPo27cvs2bN4qKLLsLr9ZKTk8Oxxx7LV199RWpqKpMmTaJ3794ADB48mJNOOgkI9bx9+OGHAGzatInp06dTUFBAbW3tHq/dbqeeeio33ngjNTU1vPXWWxxzzDEkJCTsU0+kPdRUVxEPWMw3CVZcZj8Adm7Np2e/IVGKTERERDoi9WDtR3FxMR988AFXX301eXl5/O53v+O5557DOQdAUlLSHvVD6y43vd2YvdtoqE+fPlx11VW8+uqr+Hw+Fi9evE8d5xwvvvgi8+fPZ/78+WzYsIGRI0cedDy7/fSnP+Wxxx6jqqqKo48+utkJPgDi4r4ZKuXxeOq3PR5P/T1qP/zhD7nhhhtYtGgRf/3rX6murt6nnfj4eI477jjefvttnn322SYTUJH2UFsd6sHyNEiwUnsOALTYsIiIiOxLCdZ+vPDCC1x66aWsX7+e/Px8Nm7cyMCBA/nkk08arb9hwwY+//xzAP79738zZcoUhg8fTn5+PqtXrwbgySef5Nhjj93vud966y3q6uoA2Lp1K0VFReTm5pKSksKuXbvq65188sn8+c9/rk/6vv766/p97777LsXFxfX3Qe3uXWuJNWvWMHbsWH7yk58wadIkli9fztSpU3n22WcJBAIUFhby8ccfM3ny5Ba3WVpaSm5uLgD//Oc/m6w3ffp0/vGPf/DJJ59wyimntLh9kUirra4E9kywMnuHel7rirXYsIiIiOxJCdZ+zJgxg7PPPnuPsnPPPbfJ2QSHDx/OQw89xMiRI9m5cyfXXXcd8fHx/OMf/+D8889n7NixeDwerr322v2e+5133mHMmDGMHz+ek08+md/97nf06tWL448/nqVLlzJhwgSeffZZfvnLX1JXV8e4ceMYPXo0v/zlL+vbmDx5Mueeey7jxo3j3HPPrR8eeNFFF3HkkUeyYsUK+vbty+OPPw7AI488wiOPPALAH//4R8aMGcO4ceOIiYnh1FNP5eyzz2bcuHGMHz+eE044gXvvvZdevXq1+PW86667OP/88znssMPIysqqL58zZw5XX311/fZJJ53ERx99xLe+9S1iY2Nb3L5IpNXUJ1jfDFNN65FJhYuDss3RCktEREQ6KNvd69ERTJw40e09CcOyZcvqh7vJgXniiSeYM2cODz74YLRDiRr9/khr5S/8hLyXTuerIx9m0snfrS/f8OtR7EgawqG3vhbF6ERERCRazGyuc26fyQ3UgyUi0oy6mtA9WL64+D3KS2OySazZHo2QREREpANTgtWFXXHFFd2690okEvw1oSGCvtjEPcqrEnqRXqfFhkVERGRPbZ5gmdkpZrbCzFab2U8Ppo2ONIxROg/93kgk+Gt392DtuVSAP7k3Wa6YQHiGTBERERFo4wTLzLzAQ8CpwCjgIjMbdSBtxMfHU1RUpA/LckCccxQVFREfH7//yiLN8NeGlhKI2SvB8qT1wWdBdm7XTIKRUuMPUF0XiHYYIiIirdLWCw1PBlY759YCmNkzwDRgaUsb6Nu3L5s2baKwUENx5MDEx8fTt2/faIchnVwwnGDFxu85RDA+oz8AxVvzyeqT195hdTnBoON/7/8Tx1e9w+E3/IOkjN7RDklEROSgtHWClQtsbLC9CTi8YQUzuwa4BqB///77NBATE8PAgQPbMEQRkaYFwkME906wknuG/l5VFK5v95i6ooWbdvLr8rvxmGPJ+39j9Pl3RjskERGRgxL1SS6cc4865yY65yZmZ2dHOxwRkT0E60I9WHF7JVgZvfIAqNFiwxGxdOFcPBYaCp669vUoRyMiInLw2jrB2gz0a7DdN1wmItIpuLpQD1Zc/J73YPXI6kWNi4FS/UmLBNscWgNxbuIUeletAn9NlCMSERE5OG2dYH0FDDWzgWYWC1wIaFVOEek0XLgHK36vHizzeCj0ZOKr2BqNsLqchJKV1BLL5txT8BGgtmBJtEMSERE5KG2aYDnn/MANwNvAMuA555z+1xSRziNQQ53z4vHF7LOrNCabxOptUQiq60ms2kJpXA6JAw4DoGj1nChHJCIicnDaepILnHNvAG+09XlERNqC+auptRj2Ta+gKj6HPrsWtXtMXU1VbYCewUKqEvuQO2gUVS6Wis0tnmxWRESkQ4n6JBciIh2Z+aupJq7RfXVJfcgK7iAY0NpNrVG4q4Zc24E/uS+DeqawweVA0ZpohyUiInJQlGCJiDTD46+i1hpPsDxpfYi1AEWFmuiiNQp3lpJtpVh6P+J8XrbF5JJUoenvRUSkc1KCJSLSDG+g6QQrNiM0SWrJViUDrbGrcAPwzetZltifrNrNEFTPoIiIdD5KsEREmuEN1FDriW90X0p2aLHh8u1KsFqjsjjUA5iclQtAXVoeMfihTD2DIiLS+SjBEhFphi9Yjb+JBCu9zyAAaouUYLVGbUkBACmZoQTLlz0EgPItK6MWk4iIyMFSgiUi0oyYYDV+b+MJVkZWH6pcLFa6oZ2j6lrcrtBU957UXgAk9xkBQMmmZVGLqTvZUFTJuh0V0Q5DRKTLUIIlItKMmGBNkwmWx+thm6cnceUaytYanspCAnggMROAXrkDqHKx1GxfHeXIur4NRZV8+/6POOn+j1hWUBbtcEREugQlWCIizYhz1QSbSLAAdsb2JqV6SztG1PXEVReyy9sDPF4A+mcmk+9y8OxcG+XIur5X5m+mxh+kLuD452f50Q5HRKRLUIIlItKMWFdD0JfQ5P6qxFwy/dvaMaKuJ6m2iMqYjG+243xs9fYmoVxDL9va20u2cmj/dM4Y05MhSx7Avf8bcC7aYYmIdGpKsEREmhHvanDNJFjBtH6kUU71rp3tGFXXURcIkh4spiYhe4/ysoS+ZNRsgWAwSpF1feU1fpZsKePYYT25LOETrg4+j31yHyx6IdqhiYh0akqwRESaEAw64qnFxTSdYMVm5QGwfeOqdoqqaykqr6WnlRBIzNmjvC6lP7HUQrl6B9vKqm27ABjZO4Xx215mebAfpYkD4Ot/RTkyEZHOTQmWiEgTampqiLEA+BKbrJOSE5qqvaRgTXuF1aVsL60gi1I8qXsmWN6s0OtaU6jXta2sDCdYI1Jrid2+kPe8U/gq6ThY9wlUFEU3OBGRTqxVCZaZ/c7MlpvZQjN72czSG+z7mZmtNrMVZnZyqyMVEWln1VXlAFhs0z1Ymf2GAlBTqAkZDkZJYQFec8Sm99mjPDEntBZWyeYV0QirW1ixtZz4GA+5ZfMAKO55BK9XjQYcbPgsusGJiHRire3BehcY45wbB6wEfgZgZqOAC4HRwCnAX8zM28pziYi0q90Jlie26R6srOxcqlwswZ2akOFglBdtAiAxvMjwbtl9BxNwRuU29WC1lVXbdzG0ZwrejbPBF09y3iTeLO6N88XD+s+jHZ6ISKfVqgTLOfeOc84f3vwC6Bt+PA14xjlX45xbB6wGJrfmXCIi7a2mcv8JlsfrYZu3J7Hlm9orrC6lpqQAgNTsvnuU98vuwRaXRbBIPYNtZcXWXQzLSYGtC6HnKIb26UF10Etl1jjY9FW0wxMR6bQieQ/WVcCb4ce5wMYG+zaFy/ZhZteY2Rwzm1NYWBjBcEREWqeuugIAb1zTCRZAaWxvUqoL2iOkLidQthUAX2rvPcqzkmPZZDnElalnsC3srKhl+64ahuckwdZF0HtcKNkCtiYOg21LIBiIcpQiIp3TfhMsM3vPzBY38jOtQZ2fA37g6QMNwDn3qHNuonNuYnZ29v4PEBFpJzUVJQD4ElKbrVedlEt2YGs7RNT1eCvCswQm7znJhZmxMy6XtGr1DLaF3RNcjEnZBdUl0GsseVmJeD3GShsEdRVQrN5DEZGD4dtfBefct5rbb2ZXAKcDJzpXvzrhZqBfg2p9w2UiIp1GXTjBiktOb7aeS+tPWlEFZSVFpKZntn1gXUhMZSHlnhSSY+L32Ved3I+U4rehugzim09y5cCs3B4a/jrC5YcKeo0nzuclLzORr6pzORVCQwezhkYrRBGRTqu1swieAtwOnOmcq2yw6zXgQjOLM7OBwFBgdmvOJSLS3vyVJQDEJfVotl5s1kBAa2EdjKTaQspjmkhKM0JTtQeL17VjRN3Dyq27SInz0aNsOWCQMwqAYTkpfFKSCZ6Y0NBBERE5YK29B+tBIAV418zmm9kjAM65JcBzwFLgLeAHzjkN5haRTsVfVQZAYmpGs/VSeoemFC8rWN3mMXUlgaAjLVBMTXzjw8PjskMJVumWle0ZVrewYtsuhvVKwbYugswhEJsEwNCeyawpriWYPQIKFkY5ShGRzmm/QwSb45wb0sy+e4B7WtO+iEg0uXCClZSa3my97H7DAajVWlgHpLiilmxKqE0c1uj+9NzQ61q2ZTXN9yHKgXDOsWrbLk4Z0xvWL4R+30zyOzQnhaCDsrQRpG/+KIpRioh0XpGcRVBEpEtxNaX4nYf4xObv/0nLyGaXS8B25rdPYF3EttIqeloJltKr0f19e+dQ7JLx79BaWJFUWF7Dzso6xvbwQ+lG6D2+ft/QnGQANsXkQcV2qCyOUpQiIp2XEiwRkSZ4a3ZRYYlg1mw983jY5utNfMXGZuvJnrYVbCDO6ojPymt0f5/0BDa6HLyl69s3sC5uxdbQDILjfeEp8HuNq983MCsJr8dYHugTKihc0d7hiYh0ekqwRESa4Kkrp9KaXwNrt7K4XHrUbGnjiLqW0oJQz1R6n8GN7o/xeiiM6UNypRLXSFqyJTT0dZA/3DPYoAerfibBivC0+YXL2zs8EZFOTwmWiEgTYup2UeVJalHdmpR+5AS24bQ4a4vV7Aj1TCX2HNRknYqkvvSo2waBuvYKq8tbuqWM3PQEEoqWQGpfSNxzEpfB2cnM2ZkAMUnqwRIROQhKsEREmhDrL6fG27IEyzIGEmd1FBVsaOOoug4rCb9Waf2arBNIHYCXYOheIYmIpQVljOydGlrnqve4ffYP7pnM+uJqgllD1YMlInIQlGCJiDQhPrCLOl9Ki+om5ISGue3YpG/8WyqxciO7vGkQl9xkHV9W6HWt2Kop8COhqjbA2sJyDu0J7FgFfQ7Zp86grCT8QUdF6mD1YImIHAQlWCIiTUgNllAbn9Wiuj1yhwKwq0Az3rVEXSBITu0GShPzmq2X0if0upZs1lpYkbB8axlBB0f4VgEOBhy1T51B2aGEd2tsHuzaAtWl7RukiEgnpwRLRKQRfr+fHq6MQFLji+DuLaf/UILO8Beta+PIuoaCkmoG2RZq0xuf4GK3nNyB1LgYqrcrcY2EhZtCydLQ6gXgjYXcw/apMzg7NCx2LX1DBTtWtVt8IiJdgRIsEZFG7NyxFZ8FseSeLaofF5fAdsvEV6YpxVtiw+ZNZFsZ3p7Dm63XPyuZjS4b26nENRK+yi+md1o8yVtnQ+5EiEnYp056YiwZSbEsrAmvT6b7sEREDogSLBGRRpTtCE25HpOa0+JjimJ7k1y5qa1C6lK2r10AQFbe2GbrJcf5KPD2IqFciWtrOef4Kr+YKf3jsS3zGx0euNvg7CTmlKaCN04JlojIAVKCJSLSiMqdBQDEp/dq+TGJ/ciqK2irkLqUwOavAUjK23eI2t5KE/rRo2YzONfWYXVpq7aXs62shjNSVoILwMCpTdYdlJXM6h1VkDVUE12IiBwgJVgiIo2oLgklSkkZvVt8TCCtP9nspKpiV1uF1WWk7VxCiTcTUvafwNam5hHvaqB8WztE1nW9v2w7AJMqZkJCBgyY0mTdQdlJFFXUUttDU7WLiByoiCVYZnaLmTkzywpvm5k9YGarzWyhmR0aqXOJiLS12p2hIYLZvQe0+BhfVmjB3G0bNONdc0oqaxlSu4KdaaNaVN+XNQSAmm2aqr01Pli+jUN7x5Kw9l0YdSZ4fU3W3T2T4I7EgVCyAWor2itMEZFOLyIJlpn1A04CGq6weSowNPxzDfBwJM4lItIePKUbKCWZhNSMFh+T0juUCJRs1qxrzfl6yTIGeQrwDWq6B6Wh5D7DACjauKwtw+rSNu2sZM76nXwvZxXUVcDos5utPyg8k+B6Cy8CvUNfGoiItFSkerDuB24HGg6Qnwb8y4V8AaSbWcvH2oiIRFFixUYKfS2//wqgZ/8RAFRtX9sWIXUZxUveB6DX+JNaVL9nv6HUOS9VW/Uh/2A9P2cT4PhWyYuQ3r/Z4YEA/TMS8XmMpXW7ZxLUfVgiIi3V6gTLzKYBm51zC/balQtsbLC9KVy29/HXmNkcM5tTWFjY2nBERCKiR00BZfH7/MlqVnpWbypdHJTkt01QXYBzjvSN71PmSScmd3yLjsnrmcYml4UrVuJ6MKrrAjzz1Qa+17eAuK1z4KgfNTs8ECDG66F/ZiLzyjPAvOrBEhE5AC1KsMzsPTNb3MjPNOAO4M6DDcA596hzbqJzbmJ2dssW9BQRaUt1fj85we3UpfQ7oOPM42Gbrzfxuzbsv3I3tXTDdib751KYeyJ4vC06JjRVex8Sdmmq9oPx9Jcb2F5WxY/sGUjMggkXt+i4QVnJrNxRAz3ytNiwiMgBaP4rrDDn3LcaKzezscBAYIGZAfQF5pnZZGAz0PDTSd9wmYhIh7ZxzVIGWR2xOc0vgtuY0rg+pFfrT11TVnz4NKOtCo5s2Yf83UoT+tGj6t3QVO2h/2+kBUoqa/nLh6v5ea/ZpG6fA2c+CLGJLTp2cHYSH68sxI0eiinBEhFpsVYNEXTOLXLO9XTO5Tnn8ggNAzzUObcVeA24LDyb4BFAqXNOC8SISIe3Y/VcADIGH/jkp7Up/ckJbCUYCEY6rE6vrKqWYeueojAml5QRxx/QsbVpeSS6KqjY0UbRdT3OOX7+8mL6VK/myvLHIG8qHHJJi48flJ1EbSBIWVIeFK+BYKDtghUR6ULach2sN4C1wGrgb8D1bXguEZGIqduykIAz+gw95MAPzsgj0WrYsW1T5APr5D557QnG2Bqqj/wxeA7svx9v1mAAKjTRRYv97ZO1LFi8gH8n3483IR3O+dsB9f7tnqq9wNcfArVQoiGaIiItEdEEK9yTtSP82DnnfuCcG+ycG+ucmxPJc4mItJXkokVs8vYjJj7pgI9N6BlKBHZsVCLQ0KbtRYxYej9bY/rR79grDvj4lN6hqdp3aqr2Fnni03W8+uab/DfxNyRbDXz3GUg9sIl8B4cTrFXB8EyCO7QOmYhIS7RlD5aISKfjr6tjUNVitveYcFDH98gNJQK7CnTPym51gSBLn7iRwbaFmO/cu98Z7BrTs/8wAs6o3KrXtTlVtQF++dLXbHjj97wSfxdpiXHYlW9C75bN2NhQRlIs6YkxLKjuGSoo0msvItISB/6/nIhIF7Z2yZcMsyq8A1u2CO7esvuFFhsOFK+LZFidVjDoeOvvd3NG5X9YOegKhk047aDayevZg00uGzRVe5NmrSzkxZef4XsVjzEmJh835GTsrIchKfOg2xyUlcTinR5I6KGp2kVEWkgJlohIA0XzXiXojP4TTz2o4+MSktlOBr6yjfuv3MXV+QO89egdnLH9EVb2OJZhF9930G0lxHop8Pahj6Zq38f8DcW8/drTHLf9Ke73LKcmuRd855/YqGmtnnFxYFYys1YXQs4wDREUEWkhJVgiIg3kbHqHFbGjGNmr/0G3URTTm6TK7p1gbdm8gfX/uo4zamaxKuvbDP3+U+CNaVWbpQl9GVv1oaZqJzTs8sO5iyn8+O9MKXudn3i2U5GQQ93x9xJ32OUQEx+R8wzKTuLFeZuoGzGYmDXvRaTNrqbWH6S8xk+cz0NCjBePp3v/boqIEiwRkXrrVy1iUDCfL4bc2qp2yhNy6V82N0JRdS7V1dV89sKfmLDqzxxGFUtG/5jR598ZkYSoLi2PpMoKqNoJiRkRiLZzcc6xbPU61sx6jvQN73B8cD4xFmBLxkSqj/lfksadBb64iJ5zcHZoopcdcQPoXbEdqkogIT2i5+gsisprmLehhOUFZazdsp3ygpXEl28kLlBOAjU4jApPCpY5iOzBh3HOpIEM75US7bBFJAqUYImIhG365CkGAAOnXNiqdvyp/ckqfRd/bTW+2Mj0JHR01dVVzP7PYwxc+hAnuALWJIym7vyHGD34IKa6b4I3awgUQPmWFSQPOTJi7XZkzjnyVy9l0+fPk7b+bUb7lzHKHDt8OWwZdgV9T7yWPj2Htdn5B2aFZhLc4OlDb4Ci1dB3YpudryPZtLOSr/KLWbB6I+VrZ9OzbDGHeNZwnmcdva04VMnDvtOFlUD1nBg+nD2B13Kmcfb5lzEkJ62doxeRaFKCJSICVFVWMHzDDBYnTGRM/6Gtasub0R/vJseWzevoM3BkhCLsmNbnr2X9Ow8xcssLHEMJ+b6BLJvyN0Yee37Eh/Gl9BkGi6Bo47IunWAFAkGWL/iMorkv06fgfYYE1zEQWO/LY+nQ75N39AVk5R1KVjsMkxyQmYgZLKvtxeEAO1Z12QRrZ0Utn67ZwZyla6lZ8zHDq77mSM9Spnk248FBDFSlDiSm34mQMwIyBkHGwNAEILHJoYWYq4ph+zJYM4vjFr/EqTt+wfyHnuC1w3/FGaedgXXzoa0i3YUSLBERYP5/H+ZIStlxzI9b3VZiz0EA7Ny8qksmWNUVpSz9YAaexc8zpnoeAyzI4sTJFB15LSOOPvuAFxFuqZwBwwk6o6oLTtVeXVPLki/foXLBqwwsmslothN0xqr40czNu4UBR1/AgP4j2j2u+BgvuekJfF2RwhUeX5eaqr3WH+TrDTv5YvkGdi7/iN7FX3GkZwmnefLx4KiLjaemz2QYfCn0mwi5h5GQ0KP5RlNyoOdI4secA9/5LbvmzCDv3bsYN/sy3l93Ccd9/w/4YmLb5wmKSNQowRKRbs9fV0ffZY+x2jeU4Ycf3OyBDfXoE5qqvXJ715lS3F9bzbJPX6Xu62cYWTqLQ62WrZbNgv6XkfetaxgzYHSbx9AvuwdbyMR1kanaS8t2sfTTVwkue50RpbM4zMqodT5WJU+kaNgNDJpyHsMzc6MdJoOyk1lTVA09Bnb6qdo3Flfy4fJtrF0ym9SNMzmKr7neVhJjAfwxMVTlHIobfiEMOpaY3MOI8bUiGfLFknLE5QTHn83Sf/yAb21/kpW/X0D/7z9HfI8DW/RZRDoXJVgi0u3Nf/dpJroC5k/6ExaB3pfsvoPxOw+B4s49pXgwEGDlnHcpmz2DYUXvMZZydpLC1xmnkTTxQsYecRK9vN52iyc+JjRVe3Ynnqp92/btrPzkBWJXv8GYytkcaTWUk8iaHkexbfQZDD7qLEYnpUc7zD0Mykpibn4xbuQQrJNN1R4IOr7esJOPF61l17J3GVb2Jd/2LgjdQ+WBsvSRBEf8AIYej6/fEaTEJkY8Bk9CKmOuf5KPX3iQSYt+TcWDU+CyZ4gfMCni5xKRjkEJloh0ay4YJHXug2yy3ow78ZKItBkbG0uBZeLbtSki7bUn5xxrl8xm+6dPMrDgLUZQSKWLY0nK0XgmTGf0lGkcFZ8QtfhKE/oxvPLjqJ3/YKzfuIF1nzxHyro3GFs7n6kWoMh6sCrnNFIOOYuBh53C+A48Gcqg7CQqagNUpAwmefX7oXuNPO2XWB+o8ho/H68sZN6Cr0lc8yZH+ufwQ88KYixAbVwydXnHwuhTYci3SE1tv56kY867gfcyhjPyo2tJ+cdpVJ3xJxIO+267nV9E2o8SLBHp1hZ/9gZjA6v4aswv6euL3J/E4pheJFVujlh7ba1gw2rWffgEvde/xuDgegY4D0sSJ7Jx5K2MPP5CJqWkRztEAGpT80iteB0qizv0VO2r1qxiw6znyNjwFuP8ixhgjq2eHJb0+y7Zk86l79hjyWyje9UibVB4JsGtMX0ZEqiFkvWhCR46kJ0Vtby1uICF8z6n15Z3+bZ9xWmeUE9nWY9hBEb+gJiRpxDbbzKxrVyPrTW+dcK3eTflNdL+cxWT/3Md1VsXE3/qbzp0wioiB67VnybM7IfAD4AA8Lpz7vZw+c+A74XLf+Sce7u15xIRibTgrD9SRBpjT7s2ou1WJOYyoPSriLYZaWWlxSx//0kSl7/IqJqF9DbHipiRfDniDoYedwnje0b//p+9+bIHQwGUbVlF6pDDox3OHgq2FrDigyfJXPMKo/1LGWqOzd5+LB70PXofOZ1eQyfRqxPOIjcovBbW6mAfhkBoJsEOkGCVVdfxzpJtzJ/zKX03/ZdT7Esu8mzDeY3y7EMJjL8a76gzSM0YGO1Q9/DtSaN5P+FFnn72Zi7+6iEqCxaQeM6fO8RrKiKR0aoEy8yOB6YB451zNWbWM1w+CrgQGA30Ad4zs2HOuUBrAxYRiZTVi75gfPVXfDnweg5PTI5o2/6UvmSXvN3h1sKqq6tl6Scv4Z83g9G7PmWy1bHJejN7wDX0P+4Khg8aFe0Qm5XSezgsDE3V3hESrNKychbOfI64Jc8zvno2x5mfjd5+LBhyHXlTLyI3bxwdL009ML1S44mP8bCouienQCjBGnZyVGKprgvwztJtzJo7n+x1r3G6zeI8z0aCXi8VuUfjJvwUG/EdUlJyohJfS504pi+fxT/M3U//jls2PkHgz5Ph8GvwTvoeZA7efwP+GtzWRRSv+IzKdbPxlK4nZfqjpPbterOWinRGre3Bug74rXOuBsA5tz1cPg14Jly+zsxWA5OBz1t5PhGRiNn57n1UujhGnNn6qdn35s0YgGeTY+umtfTpAEnLpvwV5L/7V4ZufpnxFLOTFBZkn0H6EZcy7NDj6NtJhqv1HDAcIKpTtQeDjq+/+ICKLx5nfOlMploFxZbO0r4XkDP1cvoNP5x+nbCnqikejzEwK5mlJV5IzGz3mQSdcyzaXMpLs1dTu/Alzgx+wL2eZeCFiuxDcBN/hGfMOaQkZbVrXK111JAsBt30a2779zGcuOUvnPXFw/DFQ1RnjSE273A8u9fYCtRRV72L8qIt1GxbhXfnWtKrNhJDHZmA36WTRgWrX/w5Y258KdpPS0RofYI1DJhqZvcA1cCtzrmvgFzgiwb1NoXL9mFm1wDXAPTv37+V4YiItEzBpnVMKP2AeTnncXiP7Ii3X78W1pbVUUuw6upqWfjB83i+/ifjqmbTB1iSOJGCQ+5m1LEXcHhcXFTiao1+PTPZ4qIzVXtRcRGL33qMXque4TC3lmpiWZl5AimTLyFv0ilkRPHenrY2KDuJxZtLIXMoFLXPTIKlVXW8NG8TX37xCUfs/A83ez8lzSqoSssjeNgdeMadT1InH1bXKy2eh649jQ+WT+Tqd75g5PbXOWrbYiYU/ptkq6qvFwMkOh87XA759KI44RBqeh5C6pDDGTZkOIteuoMTdjxN4Zp5ZA8+NHpPSESAFiRYZvYe0KuRXT8PH58BHAFMAp4zswP6a+ecexR4FGDixInuQI4VETlYa9/4Iz0JMuA7ke+9AuiRG721sIoLC1j+3wcYvP4ZDqOYQnowp/9VDPr2tYztP6zd44mkWJ+HAm9verTTVO3OORbN+5Syjx9hQsm7HGvVrPflsWj0Lxj+7asZl7yfhWe7iEFZSby5qIDA0KF4V7XtLdXrdlTwr09WUP3185zPO1zpWU0gJobAyDNh0pUk5E2BLtRDaGacODKHE0dOY9POb/PZ6iI+3VHOrtJi4urKiIuPJz29B5k9ejCsVzpTc5KJj9lzUoy0c35G+aMvUfTCj8m+/cMu9fqIdEb7TbCcc99qap+ZXQe85JxzwGwzCwJZwGagX4OqfcNl3VrA76e2tobqmhr8tTUQrAtNdxuow5nhzADD4QHzgBlejwev14vX5yPG58XnjSEmJgbz+EKzDumPqMgBq6ooZ9SWF1mYfDSHDBjRJufomTsIv/MQbMe1sNavXEDB239g/I43OMpqWRx/KFsP+w1jjruA7JhWLJjawZQl9GNw5Wdteo6qmjo+f/sZeix4lEMCC6kiluVZ3yL72O8zYOyx3e5v75CeyQQd7IjrT07FdqjaGRq+FiHOOT5bU8RzH33NgHXPcL33XbI9pVSnD4HD/w/vuAvxJmVG7HwdVd8eiVww6cDX4srN7cuHQ3/E8at/y7I3H2bkade3QXQi0lKtHSL4CnA88KGZDQNigR3Aa8C/zewPhCa5GArMbuW5OoSa6gqKC9ZTtmMLFcVbqS3dSqC8EF/VDnw1O/HVlRPjryAmUEmcqyIx/BNPLV5zJACRXEHG7zwEzUMAL0FC/wYs9DiIl6Dt/jf82Hw48+LwEDQvzuMNbZsPZx6c+cAT+td5vGBeCCdzbnd9Gjy20E/Qdpf5cHga7Pft8UHE+GbTnAtvfNNxaW734706M13D7UYeuz3Ld58xlPs3LHf11W2PUzTYcPt2pDbetXpgHa6NNNt8/QOr3kz7LX0+3Ye3eA2T2cXWKTe02Tm+WQtrY5udA0LreC357A3qPn2QQ6o+p7fzsSDjZHJOupkxI7vmQqZ1aQNJr3gTV1WCJaRHtO3txcUs+O8jDFn7JCewhR2eTBaOuJmhp97AIWmd6x6fSBqbmwbAUjeAHIAtX8PgE1rdbnVdgNfmb+H9j2dy/M4XuNf3KXG+OmoGnghTfkj8oOO6XTJ7sI6afiuLfvsag2b/mq3DjqTXkEOiHVKbcsEgNdUVVFXsoqpiF7VVu6ip3EVd1S7qqisIVJcTrK3C+WtxgToI1BIM/2uButCX3IFaLOjHgnWYCwLum/9MG3x+sPry0L+h38i9/ifd4/f0m8fODNv96cOM0Kceq69ntud26KHt1cxe98hag+2G9euP++bfPc63x7aFq+11TDPbu49teJwLlzfc3vs1YK8Yvtl29bHsu2/PY8sSchl83KUM6ZlCZ9DaBOvvwN/NbDFQC1we7s1aYmbPAUsBP/CDzjiD4Mp5H1E050V8uzaSUrWFTP82stlJb2DvpQnLSKLUUqnxJFLrTaIqPptyXzLbfIn4fcm4mHjMG4vHF4PHGwPeGJzHR9DjAwtdBsNhLhj6FwcuiHNBgsEgwUAAFwzignW4YACCflwgAC4AAT/OBbCgP9QjtvuxC2DBAOYa/IS3PS6AEcDjD2CuDo+rxkOo3EMArwvi3Z22uQBeC+IlVOZjz8cegsRYp7u80s0tixnNiMPbdia0otg+pFS2TYJVW1PN/Lf+QcbCvzEmsIadpPJlv/9h6Ok3Mimn3/4b6Mx6joItUJr/Nekjj49Ik2vWriL/zT9x6PaX+baVkx83nDWT/8igYy8my9d1ev8O1sCsJNISYphZ3p/jMdj4VasSrO27qnnq8/Ws/eJVLqh7jb96F+GPjYfxF8NR1xOXPTyC0XcPcTExpF7yL6r+eSLBf19E2bXvkNqzc9zbXl1VyfatG6ko2kzNzq34d20jWLkTV7kTqy7BW1tKbG0p8YFdJAV2kezKSaaKeHPEAwfalxp0Rh0+/HipM1/404zxTepk9R/8Xf1n/fpPZw0eW/0W4SMbbu/+Cjn0+e6bfY6GKdHexzZVvu/+0JfF+zuOvY5vmL403XZj5Qda32N7JaGtMDMwnuUjzuoeCZZzrha4pIl99wD3tKb9aCtZN4+Jm59iuyeLktjerE89ijUp/bD0vsSn9yYpoxfp2X3okdWH1Nh4UqMdcBtxzhEIOvxB16As9L2DP1xUA7hgABf0f5P8hRNBXADnQm87F+61cuz+kij0J8Iafhuz+w9Ww+6uhuU0Xo5Zo990Nvxm5ZuG2fObm4blDb9N2behPYua+GK1qe9brYkDmq7fVPtNtHMAX/R29y+FR8TGY208c15ZylDGF/0XFwxgEVpItLRoG0v/+wCD1/2byRSz3tOPOWPvYsyp/xPxqeY7qsSBk2A+lK3+olUJlnOO+bM/oeLjB5hc/gEDCbIsfSqVJ9xM3rjj9SZpwMw4pH86n2+ugp4jYcPBTQq8ZEsp//p4BTGLn+MyzxsM82ymNrkn7shf4pt4VYdePLozGDBwKHO//TeGv3MZJY+cQt3lL5I5IIpTtztHsHInJQVrKC1YS+WOfAI7N2K7thJTVUhiXRFpgZ2kUU5jqWCt81JmKVR4kqnyplIZm0VZ7BD8cWkEY5MhNglPbBIWl4Q3LgVffBIx8cnEJiQTm5RKbHwivpg4YmJi8cXG4YuJJSYmHo/PRxzQ+ab5aT8unLiFPu812OabTr4gbo/RM/UDk5pudPeDBtuumX3fbB+BERMXyTFgbavVCw13ZRNOvw7PtB+S6/N1+nVMWsPM8HkN334/H/rQnyuRb1ivUSQVvcDWjavo1cp7vTauWsCWt//I2MLXOdJqWBR3KFuP/B1jjzmbARFK3jqLEYMHsj7YE//6gxt5XlNXx5x3nyVp3l85xL+QCuJZmns+eaf9mNF91XPSlEl5Gfzu7RWUHzWV5AX/gJpdELf/b5MDQccHy7fz0kdfMWrz8/zU+z49fLuoyR4DU+4kdvQ5oF7CiDns6JOZF3yCQe99D98/TmDBoT9n3OnXRexLnj0Eg1QWb6J482p2bVtH7Y71ULqB2IotpFQXkOHfTiLVZBCaEQ2g2sWwnQzKfBlsi81jc+IkLLknMWm9ie3Rm7i00BfYKRk9SUlOJcvjofsOzo0e2+PLaGj6q2BpjBKsZsTGdZzFQUWk80kfOAGWwNYVXx1UguWCQRZ/9gb+Tx9kfOUX5OBlQY9vk/XtHzN29OTIB9xJZCXHMS9hPEcXfQaBOmjh9OiFxTtZ+PojDFnzL45mC4WWxYIRtzD8OzcwIUU9J/tzyphe/O7tFXzERL4T+CusfBvGntdk/bLqOl6cu4nPPnmPUyte4QHvF/h8AfxDT4Wjf0DcgKPVS9hGDp16Kut6vUflM99j/Lyfs2n+X9g6dDq9Dr+A3LzhLe69r/P7Kdq2mZItqynfvpZAUT7e0o0kVGwivbaA7OB2EvHTcFqOYpfMdk9PNsf2ZXXKJAIp/fBm9CMxO4+0XoPp1SuXfokxTY7oEOkKzB3onfdtaOLEiW7OnDnRDkNEJCIqKsrx3pvHot7nMunav7b4uOrqKua/+Q+yFv+NIYG17CSVFf0uYMh3biSrV+e4p6KtvTLjr5y14nbKL3ie5FEnNVt35YolbHj3YQ4rfJkeVs662GHUTLqe4cdfjKnn5ICc+qdPIODnDe9NWGIWXP3ePknSsoIyZny2kuoFL3Mu73G4Zzl+XyKeQy/Dc8T3oZOvXdWZBAJBZr/+GKkL/s7owDIAtpPBttj+VCX0IhiTgPPGgwtidZV4/FXE1pWRFB66l+FK8FlwjzaLSWW7txdlcb2pTs7FpQ0gNiuP5JxBZOYOomdGBj5v51i4XKS1zGyuc27iPuVKsERE2s7C/zuOVH8ReXcu2m/d9asXs+X9hxle8BoZlLHe04/C0d9jzKn/Q3w3ub+qpZZu2EbO44dRnjmOAT96Y5/9ZZVVfP3esyQvfpJDauYCsDx9Kmkn3ETuuBPUc3KQ/rNgCz+c8TX/HL+MY1f8Bk68E6b8mO27anhzwXrWzX2XITs+4Ezv56RaJTUp/Yk76lo45BKIT4t2+N2Wc47Nqxewed7beDd/RXLVZtLrthNHDXGulqB5qCaOWoun0pNERWwWtfHZBJN64kntRVxWHqm9h5CZO5iU1PRoPx2RDkMJlohIFHz29N0cter3bLjgbfqPOmKf/VUVu1jw/jMkLn6acbVf43ceFiUdSdwRVzNyyrS2uW+ii3j+T7dw/s7HWDn2Fgaf+iN2lJazZv5HuGWvM6L0EzKtjCLLYMOAcxh88g9I7a2ek9ZyzvH9J+fy7tICZqQ/whHVsyiyDHYEEulv20mwWvyeOIIjziB20uUwYAq08WQyIiLRogRLRCQKindsJ/7PY1gbP4ohN71OfEISJYUFrJ37NsElrzGqbBaJVsNWy2ZD3nkM+vb3yeozMNphdwqFpRWsfPAcjq77Yo/ychJYk34UqYdNJ++oc7AW3qMlLVMXCPLwzDW8v2QLU6ve53BbSp+EWjL7DiN91Ikw8BiITYp2mCIibU4JlohIlHzxwv0csfguykikmnh6UgzATlJY0eME0iZdwIjDT8G8mnfoQFXX1vH1hy9SV7CE+Lg4sgcfwoAJJ+CJ7TzT+YqISOekBEtEJIoWffIqlV+/EFobrsdAUoYfy7BDj8MXq6UNREREOqOmEix9XSoi0g7GTp0GU6dFOwwRERFpY7rzVEREREREJEKUYImIiIiIiESIEiwREREREZEI6VCTXJhZIbA+2nHsJQvYEe0gpN3oencfutbdh65196Lr3X3oWncvHfF6D3DOZe9d2KESrI7IzOY0NjuIdE263t2HrnX3oWvdveh6dx+61t1LZ7reGiIoIiIiIiISIUqwREREREREIkQJ1v49Gu0ApF3pencfutbdh65196Lr3X3oWncvneZ66x4sERERERGRCFEPloiIiIiISIQowRIREREREYkQJVjNMLNTzGyFma02s59GOx6JHDPrZ2YfmtlSM1tiZjeGyzPM7F0zWxX+t0e0Y5XIMDOvmX1tZv8Nbw80sy/D7+9nzSw22jFKZJhZupm9YGbLzWyZmR2p93bXZGY3h/+GLzazGWYWr/d212Fmfzez7Wa2uEFZo+9lC3kgfN0Xmtmh0YtcDlQT1/p34b/jC83sZTNLb7DvZ+FrvcLMTo5K0M1QgtUEM/MCDwGnAqOAi8xsVHSjkgjyA7c450YBRwA/CF/fnwLvO+eGAu+Ht6VruBFY1mD7/wH3O+eGADuB70UlKmkLfwLecs6NAMYTuu56b3cxZpYL/AiY6JwbA3iBC9F7uyt5Ajhlr7Km3sunAkPDP9cAD7dTjBIZT7DvtX4XGOOcGwesBH4GEP68diEwOnzMX8Kf2zsMJVhNmwysds6tdc7VAs8A06Ick0SIc67AOTcv/HgXoQ9guYSu8T/D1f4JnBWVACWizKwv8B3gsfC2AScAL4Sr6Fp3EWaWBhwDPA7gnKt1zpWg93ZX5QMSzMwHJAIF6L3dZTjnPub/b+/Ow6Mqz8aPf++ZyUYWAtnIRhL2JQkBwqKAgiuuaLVi6+6v9a3Vt69Wa7WLUru5VVtr1dZqtWoVRUVbl7qioiyGRfadQAJJCNn3zPL8/jiTGEISlkwymXB/rmuuzJzlee6Zk5Oce57lQHm7xZ2dy/OAfxrLciBaRBJ7JVDVbR0da2PM+8YYl/flciDF+3we8LIxpskYsxvYgXXd3mdogtW5ZKCgzetC7zLVz4hIOjARWAEkGGOKvKuKgQR/xaV86o/AHYDH+zoGqGzzh1vP7/4jAygF/uHtEvp3EQlHz+1+xxizD3gI2IuVWFUBq9Bzu7/r7FzW67b+7XrgXe/zPn+sNcFSJzQRiQBeA24xxlS3XWesexjofQwCnIicDxwwxqzydyyqVziAScATxpiJQB3tugPqud0/eMfezMNKqpOAcA7vYqT6MT2XTwwi8nOsoR0v+juWo6UJVuf2AaltXqd4l6l+QkSCsJKrF40xr3sXl7R0KfD+POCv+JTPzAAuFJF8rK6+p2GN0Yn2disCPb/7k0Kg0Bizwvt6EVbCped2/3MGsNsYU2qMcQKvY53vem73b52dy3rd1g+JyLXA+cAV5pub9/b5Y60JVue+AkZ6ZyMKxhpM95afY1I+4h2D8zSw2RjzcJtVbwHXeJ9fA7zZ27Ep3zLG3GWMSTHGpGOdxx8bY64APgEu9W6mx7qfMMYUAwUiMtq76HRgE3pu90d7gekiMsD7N73lWOu53b91di6/BVztnU1wOlDVpiuhCkAiMhere/+Fxpj6NqveAi4XkRARycCa2GSlP2LsjHyTDKr2RORcrLEbduAZY8xv/RuR8hURmQl8Dqznm3E5P8Mah/UKMBTYA1xmjGk/wFYFKBGZDdxujDlfRIZhtWgNBtYAVxpjmvwYnvIREcnBmtAkGNgFXIf1haKe2/2MiPwKmI/VfWgN8D2ssRh6bvcDIvISMBuIBUqAe4DFdHAue5Psx7C6idYD1xlj8vwQtjoOnRzru4AQoMy72XJjzA+82/8ca1yWC2uYx7vty/QnTbCUUkoppZRSyke0i6BSSimllFJK+YgmWEoppZRSSinlI5pgKaWUUkoppZSPaIKllFJKKaWUUj6iCZZSSimllFJK+YgmWEoppZRSSinlI5pgKaWUUkoppZSPaIKllFJKKaWUUj6iCZZSSimllFJK+YgmWEoppZRSSinlI5pgKaWUUkoppZSPaIKllFJKKaWUUj6iCZZSSvURIpIuIkZEHP6Opb8TkWtFZKm/4+hrRGSWiGz1dxxKKRXINMFSSikV0ERkgYg4RaS2zeMOf8cViIwxnxtjRvdU+SJytfdLhO/1VB1KKeVv+i2pUkr5iIg4jDEuf8dxglpojLnS30H0lP7wuyUig4CfARv9HYtSSvUkbcFSSqluEJF8EfmpiKwD6kTEISLTReRLEakUka9FZHab7ZeIyO9FZKWIVIvImyIyuJOyrxORzSJSIyK7ROR/2q2fJyJrveXsFJG53uUDReRpESkSkX0i8hsRsR/hfQwXkY9FpExEDorIiyIS3WZduYhM8r5OEpHSlvclIheKyEbv+10iImPbfT63i8g6EakSkYUiEnrsn/SxE5E7vZ9LjYhsEpGLO9lOROQRETng/SzXi0imd12IiDwkIntFpEREnhSRsKOs/1nv9h94Y/hURNLarP+TiBR461wlIrParFsgIotE5AURqQauFZGpIrLM+zkXichjIhLcZh8jIj8Uke3e+n7tPXZfeut4pe32ncQ8W0QKj+b9HYffA48CB3uofKWU6hM0wVJKqe77DnAeEA0kAG8DvwEGA7cDr4lIXJvtrwauBxIBF9ZFZ0cOAOcDUcB1wCNtkpypwD+Bn3jrPQXI9+73rLfcEcBE4CzgSF2yBOsCOAkYC6QCCwCMMTuBnwIviMgA4B/Ac8aYJSIyCngJuAWIA94B/t3uQv4yYC6QAWQD13YYgMhMb/LQ2WPmEd5DezuBWcBA4Ffe+BM72O4srM9vlHfby4Ay77r7vMtzsD7PZODuY4jhCuDXQCywFnixzbqvvOUOBv4FvNou+ZwHLMI6vi8CbuBWb1knAacDP2xX39nAZGA6cAfwN+BKrOOZifW7ety8iXJnx+fxLvabCuQCT3anfqWUCgSaYCmlVPc9aowpMMY0YF3MvmOMeccY4zHGfADkAee22f55Y8wGY0wd8Evgso5amIwxbxtjdhrLp8D7WAkDwP8DnjHGfOCtZ58xZouIJHjrusUYU2eMOQA8Alze1RswxuzwltVkjCkFHgZObbP+KWAHsAIrMfy5d9V84G3vvk7gISAMOLnd57PfGFMO/BsrqegohqXGmOguHl1NSnFZu4v9JGPMq956PcaYhcB2YGoH+zqBSGAMIMaYzcaYIhER4AbgVmNMuTGmBvjdkT7Ldt42xnxmjGnC+sxOEpFU7/t9wRhTZoxxGWP+AIQAbcc/LTPGLPbG32CMWWWMWe7dPh/4K22OkdcDxphqY8xGYAPwvjFmlzGmCngXK+E+bsaY7C6OT/tkDwDv7/bjwM3GGE936ldKqUCgY7CUUqr7Cto8TwO+LSIXtFkWBHzSyfZ7vOtj2xcqIucA92C1oNiAAcB67+pUrNai9tK85RVZ+QF49y3oYNu2dSUAf8JK4CK9+1S02+wp4C3gBm/CAFaL156WDYwxHhEpwGrpaVHc5nm9dx9fe6X9GCwRuRr4MZDuXRRBB5+zMeZjEXkM+AuQJiKvY7U8hmJ95qvafJYCdNndsp3Wz90YUysi5Vjvv0BEbsdKlJMAg9VSGdvRvt73Mwor8c31xuUAVrWrr6TN84YOXg85hth95YfAOmPMcj/UrZRSvU5bsJRSqvtMm+cFWC1Ubb/ZDzfG3Ndmm9Q2z4ditaAcMi5FREKA17BahBKMMdFYCVXLlX4BMLyDWAqAJiC2Tf1RxpjxR3gPv/O+jyxjTBRWS9w3WYVIBPBH4GlggXwzbmw/VlLXsp1439++I9R3GLGmCK/t4jHryKW0lpWGlRDeDMR4P78Nbd9TW8aYR40xk4FxWAntT7COSQMwvs1nOdAYE3EMb6v1WHs/w8HAfu97uQOrO+Igb3xV7eJr+3sF8ASwBRjpPUY/6+z99BSxxtp1dnw66/53OnCxiBSLSDFW6+YfvEmtUkr1O5pgKaWUb70AXCAiZ4uIXURCvRMHpLTZ5koRGecdz3QvsMgY425XTjBWl7FSwOVtzTqrzfqngetE5HQRsYlIsoiMMcYUYXUl/IOIRHnXDReR9l3J2osEaoEqEUnGSjDa+hOQZ4z5HtYYs5aL6VeA87xxBAG3YSV4Xx7pg2rPO0V4RBePz4+huHCsBKUUrAlDsMYgHUZEpojING/8dUAj4PF2Z3sKa+xbvHfbZBE5u82+RtpMYtKBc71jy4KxxmItN8YUYH3eLm98DhG5G6sFqyuRQDVQKyJjgBuPsL3PGWPGd3F8ftDJbtdijevL8T7ysMbE/byT7ZVSKqBpgqWUUj7kvXieh9W6UIrVovQTDv17+zzWRBTFWN3QftRBOTXe5a9gddX7Llb3vJb1K/FOfIHV8vEp37QkXY2VoG3y7rsIa9xUV34FTPKW9TbwessKEZmHNUlFywX9j4FJInKFMWYrVmvXn7FafC4ALjDGNB+hvh5ljNkE/AFYhtVNLgv4opPNo7ASqQqs7o5lwIPedT/FGnu2XKzZ/D7EO07KO5aqhm+6bXbkX1jdPMuxJp9o6cb4X+A9YJu3zkaO0I0Tq9vid711PgUsPML2fYIxptIYU9zyAJqBau+4MKWU6nfEmPY9EJRSSvUUEVkCvGCM+bu/Y1HdIyJXYnUfvKuT9c8ChcaYX/RqYEoppfxKJ7lQSimljoMx5gV/x6CUUqrv8VkXQe9YgzUi8h/v6wwRWSEiO8S6sWSXNzdUSinVs8S66e2xTE6g+iER+Vknvwfv+js2pZTqD3zWRVBEfow1dWyUMeZ8EXkFeN0Y87L3n/fXxpgnfFKZUkoppZRSSvVBPmnB8s6OdR7wd+9rAU7DGlgN8BxwkS/qUkoppZRSSqm+yldjsP6IdT+PSO/rGKDSGOPyvi7k0JtOdig2Ntakp6f7KCSllFJKKaWU6hmrVq06aIyJa7+82wmWiJwPHDDGrDrCvUA62/8G4AaAoUOHkpeX192QlFJKKaWUUqpHiciejpb7oovgDOBCEckHXsbqGvgnIFpEWhK4FGBfRzsbY/5mjMk1xuTGxR2WACqllFJKKaVUwOh2gmWMucsYk2KMSQcuBz42xlwBfAJc6t3sGuDN7tallFJKKaWUUn2Zz6Zp78BPgR+LyA6sMVlP92BdSinlU8YYXG6Pv8NQSimlVIDx6Y2GjTFLgCXe57uAqd0t0+l0UlhYSGNjY3eLUieY0NBQUlJSCAoK8ncoKgA99cKLTNr9NzJvf4fQARH+DkcppZRSAcKnCVZPKCwsJDIykvT0dKzZ35U6MmMMZWVlFBYWkpGR4e9wVAC6YedNAKzJ+4SJp1zg52iUUkopFSh6sougTzQ2NhITE6PJlTomIkJMTIy2fKrj0lhf0/q8fucyP0ailFJKqUDT5xMsQJMrdVz090Ydr9IDB1qfhx9c679AlFJKKRVwAiLBUkqp3lRefrD1+cCGQj9GopRSSqlAownWURARbrvtttbXDz30EAsWLPBfQG0sX76cadOmkZOTw9ixY1vjWrJkCV9++eVxl7tnzx4mTZpETk4O48eP58knn/RRxEr1fc76CgD22VOIdxdjPDqboFJKKaWOTp+f5KIvCAkJ4fXXX+euu+4iNjbWZ+UaYzDGYLMdf557zTXX8MorrzBhwgTcbjdbt24FrAQrIiKCk08++bjKTUxMZNmyZYSEhFBbW0tmZiYXXnghSUlJxx2rUoHC01ANQFnkaJIrCykp2U9CYoqfo1JKKaVUINAWrKPgcDi44YYbeOSRRw5bV1payiWXXMKUKVOYMmUKX3zxBQALFizgoYceat0uMzOT/Px88vPzGT16NFdffTWZmZkUFBTwk5/8hMzMTLKysli4cCFgJUizZ8/m0ksvZcyYMVxxxRUYYw6r/8CBAyQmJgJgt9sZN24c+fn5PPnkkzzyyCPk5OTw+eefdxnnVVddxUknncTIkSN56qmnAAgODiYkJASApqYmPJ18g//oo48ybtw4srOzufzyywEoLy/noosuIjs7m+nTp7Nu3brWuq655hpmzZpFWloar7/+OnfccQdZWVnMnTsXp9MJwL333suUKVPIzMzkhhtuOOx9ezwe0tPTqaysbF02cuRISkpKujqMSh0101gFgCs+E4DSgm3+DEcppZRSASSgWrB+9e+NbNpf7dMyxyVFcc8F44+43U033UR2djZ33HHHIcv/7//+j1tvvZWZM2eyd+9ezj77bDZv3txlWdu3b+e5555j+vTpvPbaa6xdu5avv/6agwcPMmXKFE455RQA1qxZw8aNG0lKSmLGjBl88cUXzJw585Cybr31VkaPHs3s2bOZO3cu11xzDenp6fzgBz8gIiKC22+/HYDvfve7nca5bt06li9fTl1dHRMnTuS8884jKSmJgoICzjvvPHbs2MGDDz7YYevVfffdx+7duwkJCWlNeO655x4mTpzI4sWL+fjjj7n66qtZu3YtADt37uSTTz5h06ZNnHTSSbz22ms88MADXHzxxbz99ttcdNFF3Hzzzdx9990AXHXVVfznP//hggu+mSbbZrMxb9483njjDa677jpWrFhBWloaCQkJRzyOSh0N8SZYoSkTYBvUH9gFnObfoJRSSikVELQF6yhFRUVx9dVX8+ijjx6y/MMPP+Tmm28mJyeHCy+8kOrqampra7ssKy0tjenTpwOwdOlSvvOd72C320lISODUU0/lq6++AmDq1KmkpKRgs9nIyckhPz//sLLuvvtu8vLyOOuss/jXv/7F3LlzO6yzqzjnzZtHWFgYsbGxzJkzh5UrVwKQmprKunXr2LFjB88991yHLUTZ2dlcccUVvPDCCzgcjtb3dNVVVwFw2mmnUVZWRnW1lRifc845BAUFkZWVhdvtbo03Kyur9f198sknTJs2jaysLD7++GM2btx4WL3z589vbe17+eWXmT9/fpefuVLHQpqs39eY4ZMBcJXt8Wc4SimllAogAdWCdTQtTT3plltuYdKkSVx33XWtyzweD8uXLyc0NPSQbR0OxyHd6trejyk8PPyo6mvpogdW9z+Xy9XhdsOHD+fGG2/k+9//PnFxcZSVlR22TWdxwuHTmbd/nZSURGZmJp9//jmXXnrpIevefvttPvvsM/7973/z29/+lvXr1x/Ve7LZbAQFBbXWZbPZcLlcNDY28sMf/pC8vDxSU1NZsGBBh/eyOumkk9ixYwelpaUsXryYX/ziF13Wq9SxsDXX4DR2BsalUEkE9uq9/g5JKaWUUgFCW7COweDBg7nssst4+umnW5edddZZ/PnPf2593dIVLj09ndWrVwOwevVqdu/e3WGZs2bNYuHChbjdbkpLS/nss8+YOnXqUcf09ttvt45R2r59O3a7nejoaCIjI6mp+eZmqZ3FCfDmm2/S2NhIWVkZS5YsYcqUKRQWFtLQ0ABARUUFS5cuZfTo0YfU7fF4KCgoYM6cOdx///1UVVVRW1vLrFmzePHFFwFrLFlsbCxRUVFH9X5akqnY2Fhqa2tZtGhRh9uJCBdffDE//vGPGTt2LDExMUdVvlJHw95cTQ1hhATZKbUnMKBOp2pXSiml1NHRBOsY3XbbbRw8+M09ch599FHy8vLIzs5m3LhxrdOZX3LJJZSXlzN+/Hgee+wxRo0a1WF5F198MdnZ2UyYMIHTTjuNBx54gCFDhhx1PM8//zyjR48mJyeHq666ihdffBG73c4FF1zAG2+80TrJRWdxgtXNb86cOUyfPp1f/vKXJCUlsXnzZqZNm8aECRM49dRTuf3228nKygLge9/7Hnl5ebjdbq688kqysrKYOHEiP/rRj4iOjmbBggWsWrWK7Oxs7rzzTp577rmjfj/R0dF8//vfJzMzk7PPPpspU6a0rnvyyScPiXv+/Pm88MIL2j1Q+ZzDWUstAxARqkKSiG4u8ndISimllAoQ0tHMdMdUgEgq8E8gATDA34wxfxKRwcBCIB3IBy4zxlR0VVZubq7Jy8s7ZNnmzZsZO3Zst2JUnVuwYMEhk2H0N/r7o47Hpj/OI6hyJyMXbOCLx39A7oFFhNxTCu26zyqllFLqxCUiq4wxue2X+6IFywXcZowZB0wHbhKRccCdwEfGmJHAR97XSinV59ncjTglGAATlUwITuoqD/g5KqWUUkoFgm5PcmGMKQKKvM9rRGQzkAzMA2Z7N3sOWAL8tLv1Kd9asGCBv0NQqs+xuZtp9iZYwYOsGwyX7d9F+CC9FYBSSimluubTMVgikg5MBFYACd7kC6AYqwthR/vcICJ5IpJXWlrqy3CUUuq42D1NuGxWghURnwZAdYlO1a6UUkqpI/NZgiUiEcBrwC3GmEPuBmysgV4dDvYyxvzNGJNrjMmNi4vzVThKKXXc7J5mXGLdUiB6SDoAjWU6VbtSSimljswnCZaIBGElVy8aY173Li4RkUTv+kRABzAopQKC3dOE224lWHFDUnEaO+6qfX6OSimllFKBoNsJllh3in0a2GyMebjNqreAa7zPrwHe7G5dSinVG4I8zbhtVoIVFBTEQRmEo2a/n6NSSimlVCDwRQvWDOAq4DQRWet9nAvcB5wpItuBM7yvA9bixYsREbZs2dLpNvn5+WRmZvqszq1btzJ79mxycnIYO3YsN9xwA2DdJPidd9457nIbGxuZOnUqEyZMYPz48dxzzz2+ClmpfiHINOPxtmABVDjiCWss8WNESimllAoUvphFcCnQ2c1hTu9u+X3FSy+9xMyZM3nppZf41a9+ddh6l8vV7Trcbjd2u7319Y9+9CNuvfVW5s2bB8D69esBK8HKy8vj3HPPPa56QkJC+Pjjj4mIiMDpdDJz5kzOOeccpk+f3u33oFR/0D7Bqg9NILFusx8jUkoppVSg8Oksgv1VbW0tS5cu5emnn+bll19uXb5kyRJmzZrFhRdeyLhx4wAr0briiisYO3Ysl156KfX19QB89NFHTJw4kaysLK6//nqampoASE9P56c//SmTJk3i1VdfPaTeoqIiUlJSWl9nZWXR3NzM3XffzcKFC8nJyWHhwoXU1dVx/fXXM3XqVCZOnMibb1q9MZ999lnmzZvH7NmzGTlyZGtiKCJEREQA4HQ6cTqdSAc3UH311VfJzMxkwoQJnHLKKYDV+nXdddeRlZXFxIkT+eSTT1rruuiiizjzzDNJT0/nscce4+GHH2bixIlMnz6d8vJyAJ566immTJnChAkTuOSSS1o/n7amT5/Oxo0bW1/Pnj2b9jegVqonBdMMbRKs5vBEYj1lGI/Hj1EppZRSKhB0uwWrV717JxSv922ZQ7LgnK57L7755pvMnTuXUaNGERMTw6pVq5g8eTIAq1evZsOGDWRkZJCfn8/WrVt5+umnmTFjBtdffz2PP/44N998M9deey0fffQRo0aN4uqrr+aJJ57glltuASAmJobVq1cfVu+tt97Kaaedxsknn8xZZ53FddddR3R0NPfeey95eXk89thjAPzsZz/jtNNO45lnnqGyspKpU6dyxhlnALBy5Uo2bNjAgAEDmDJlCueddx65ubm43W4mT57Mjh07uOmmm5g2bdph9d97773897//JTk5mcrKSgD+8pe/ICKsX7+eLVu2cNZZZ7Ft2zYANmzYwJo1a2hsbGTEiBHcf//9rFmzhltvvZV//vOf3HLLLXzrW9/i+9//PgC/+MUvePrpp/nf//3fQ+qdP38+r7zyCr/61a8oKiqiqKiI3NzDbpKtVM8whmCcGEfoN8uikgkpcVJTWULk4ET/xaaUUkqpPk9bsI7CSy+9xOWXXw7A5ZdfzksvvdS6burUqWRkZLS+Tk1NZcaMGQBceeWVLF26lK1bt5KRkcGoUaMAuOaaa/jss89a95k/f36H9V533XVs3ryZb3/72yxZsoTp06e3tny19f7773PfffeRk5PD7NmzaWxsZO9ea0rpM888k5iYGMLCwvjWt77F0qVLAbDb7axdu5bCwsLWJKy9GTNmcO211/LUU0/hdrsBWLp0KVdeeSUAY8aMIS0trTXBmjNnDpGRkcTFxTFw4EAuuOACwGp5y8/PB6wkbNasWWRlZfHiiy8e0lLV4rLLLmPRokUAvPLKK1x66aUdfj5K9Qi3ExsGHN+0YAW13mw4309BKaWUUipQBFYL1hFamnpCeXk5H3/8MevXr0dEcLvdiAgPPvggAOHh4Yds376rXUdd79prX0ZbSUlJXH/99Vx//fVkZmZ2mAgZY3jttdcYPXr0IctXrFhxxHiio6OZM2cO77333mETdDz55JOsWLGCt99+m8mTJ7Nq1aou30dIyDcXpDabrfW1zWZrHaN27bXXsnjxYiZMmMCzzz7LkiVLDisnOTmZmJgY1q1bx8KFC3nyySe7rFcpXzLOemtQadA3LVgR8UMBqCnJh8yT/BKXUkoppQKDtmAdwaJFi7jqqqvYs2cP+fn5FBQUkJGRweeff97h9nv37mXZsmUA/Otf/2LmzJmMHj2a/Px8duzYAcDzzz/PqaeeesS633vvPZxOJwDFxcWUlZWRnJxMZGQkNTU1rdudffbZ/PnPf8a6nzOsWbOmdd0HH3xAeXk5DQ0NLF68mBkzZlBaWtra5a+hoYEPPviAMWPGHFb/zp07mTZtGvfeey9xcXEUFBQwa9YsXnzxRQC2bdvG3r17D0vsulJTU0NiYiJOp7O1nI7Mnz+fBx54gKqqKrKzs4+6fKW6q7mpAQBpk2ANShwGQGN5gV9iUkoppVTg0ATrCF566SUuvvjiQ5Zdcsklh3QTbGv06NH85S9/YezYsVRUVHDjjTcSGhrKP/7xD7797W+TlZWFzWbjBz/4wRHrfv/991snmTj77LN58MEHGTJkCHPmzGHTpk2tk1z88pe/xOl0kp2dzfjx4/nlL3/ZWsbUqVO55JJLyM7O5pJLLiE3N5eioiLmzJlDdnY2U6ZM4cwzz+T8888H4O677+att94C4Cc/+QlZWVlkZmZy8sknM2HCBH74wx/i8XjIyspi/vz5PPvss4e0XB3Jr3/9a6ZNm8aMGTMOSereeust7r777tbXl156KS+//DKXXXbZUZetlC80NXoTrDZjsGLjk3EaO6ay0F9hKaWUUipASEurR1+Qm5tr2s8Wt3nzZsaOHeuniALbs88+e8hkGCci/f1Rx6osfwMxz85gafZ9zPzWja3LixaMYP/AiUy+9dUu9lZKKaXUiUJEVhljDpuJTVuwlFKqDae3i6AteMAhyysccQxoKPZHSEoppZQKIJpg9WPXXnvtCd16pdTxcDbWAWAPDj1keV1oAlHOA/4ISSmllFIBJCASrL7UjVEFDv29UcfD2dQIgCM47NDlerNhpZRSSh2FPp9ghYaGUlZWphfL6pgYYygrKyM0NPTIGyvVhrPZ6iLoCDk0wZKByYSIk5qKEn+EpZRSSqkA0efvg5WSkkJhYSGlpaX+DkUFmNDQUFJSUvwdhgow7pYEq10LVuvNhot2ExWT2OtxKaWUUiow9HiCJSJzgT8BduDvxphjultwUFAQGRkZPRKbUkq15/ImWEGhh05yER6XDkBNyR7IPLm3w1JKKaVUgOjRLoIiYgf+ApwDjAO+IyLjerJOpZTqDnezNQYrOPTQFqxBiekANJXpzYaVUkop1bmeHoM1FdhhjNlljGkGXgbm9XCdSil13DzN9QAEhRzaghWbkEKzsWOq9GbDSimllOpcTydYyUDbr3sLvctaicgNIpInInk6zkop5W/G1QQc3oLlcDg4KDHYa4v8EZZSSimlAoTfZxE0xvzNGJNrjMmNi4vzdzhKqROccVpjsELajcECqAzSmw0rpZRSqms9nWDtA1LbvE7xLlNKqT7JOJvwGCG03TTtAHUherNhpZRSSnWtpxOsr4CRIpIhIsHA5cBbPVynUkodP1cjTQQR5Dj8z6PebFgppZRSR9KjCZYxxgXcDPwX2Ay8YozZ2JN1KqVUt7gaaSYIETl8XcvNhsv1ZsNKKaWU6liP3wfLGPMO8E5P16OUUr4g7kaaJbjDdcGDrB7PZft3ERWrNxtWSiml1OH8PsmFUkr1JeJqppmOE6yIhDQAakr39mZISimllAogmmAppVQbNncjTgnqcN2gIekANJVpgqWUUkqpjmmCpZRSbdg8zThtIR2ua7nZsKfqxJkMtayqhv/88Sa+ePURf4eilFJKBYQeH4OllFKBxO5uwmXruIug3W6nRGJw1Jw4CVbea3/g/MoXoBIOTjuH2KFj/B2SUkop1adpC5ZSSrXh8DTh7qQFC6A8eAjhDft7MSL/it/3AdVEAJD/6fN+jkYppZTq+zTBUkqpNuyeZjydtGAB1A1IIcZZ1IsR+U95ZRVZrk3sSL2E7bZhRBZ+6u+QlFJKqT5PEyyllGrDYZrx2DtvwXJHDSWOCpoaansxKv/YtvlrHOIhMn0S+wZPY1jTJoyz0d9hKaWUUn2aJlhKKdVGkGnGYw/tdL0jJgOAA3u391ZIflNVuAWAxOGZOFImEoSb4p3r/ByVUkop1bdpgqWUUm2EmEaMo/MWrIghwwGo3L+jt0LyG3eplURGJI4hYdQUAIq2rvRnSEoppVSfpwmWUkq1EWqa8ASFd7o+JmUkAA0HdvVWSH4TVr2LclsMhESQMTKLehOCc9/X/g5LKaWU6tM0wVJKKS+328MAGrtMsOKGDKXRBGEq8nsvMD8Z3LiXirChADiCgtjjSCeqaqufo+pddQ1NvP/6P9i9a5u/Q1FKKRUgNMFSSimvxsZ6HOKBLhIsm91GiS2BkJqCXoys91XUNZNq9tM8cFjrsvLI0SQ37QBj/BhZ7/r86Z9y1rpbGPTPOVSXl/g7HKWUUgGgWwmWiDwoIltEZJ2IvCEi0W3W3SUiO0Rkq4ic3e1IlVKqhzXUVgMgwZ0nWAAVIUlENvbvmw3vKSxgsNTiiBvRuswZl0kUddQd2O3HyHpP8cGDzCr9F+W2GCJNHTvfesDfISmllAoA3W3B+gDINMZkA9uAuwBEZBxwOTAemAs8LiL2btallFI9qrmhxnoSEtHldo3hKcS7i3shIv+pKLBmEIxMHtO6LCwlC4CSHWv8ElNv2/LpIsKlicYLn2Rd0ASGFLxzQrXeAew7WMlHT/+Cjcve83coSikVMLqVYBlj3jfGuLwvlwMp3ufzgJeNMU3GmN3ADmBqd+pSSqme1lRvtWDZj5BgeaLTiKSemsrS3gjLLxqLrbFWg9MyW5cNGT4BgJrCDX6JqbfJzg+pkkiSsk+nPO0cEt37Kd+z0d9h9RqX28OWv17D6QV/Zvx/57N/83J/h9Trdh+o4o2nfk3ex6/5OxSlVADx5Ris64F3vc+TgbYDFAq9yw4jIjeISJ6I5JWW9t+LFaVU3+f03jzYHtp1F8GQWOteWKV7++/EB7bynbiwEex9rwApSUmUmEFIaf+f6MLl9jCibi37Bk4Gm50hOWcAsG/dJ36OrPcs+2oFc5o/ZWvSRZSbSKre/bW/Q+pVbo9hzVM3cvG+h8j97Hryly/2d0hKqQBxxARLRD4UkQ0dPOa12ebngAt48VgDMMb8zRiTa4zJjYuLO9bdlVLKZ5zeLoL20Mgut4tMtO6FVV3Uf282HFG7m1JHItiDWpfZbcL+oKGEV+/0Y2S9Y+eOLSRLKa7UkwEYOWYi5SYSz55lfo6s91TkLcImhuGX/Z7Vg89jZPUy3DUnzhehy1at4cLmd8lPOo/dJpHgT+494bqIKqWOzxETLGPMGcaYzA4ebwKIyLXA+cAVxrT+5dkHpLYpJsW7TCml+ixXo5VgBYd1nWDFp44GoKm0/072ENtcSFVY2mHLqyOGk9ic3+8vNEs2fQ5A/PhTAAgOsrMjNJO4yhNj/JnHY0g8uIx9ISNwRCcRlHMpDtzsXfmmv0PrNSVfPIdDPCRf8jvWpXyXpKad1O5Z7e+wlFIBoLuzCM4F7gAuNMbUt1n1FnC5iISISAYwEljZnbqUUqqnOeutBCssIqrL7QYOjqWSCGwV/TPBqqxrZKgpwhmdcdg6T+woBtBI/cG9fois93gK8mgiiIQRk1qX1SbkkuTeT2PFfj9G1ju2FBQzwWyhLmUWADlTTqHCRFC75WM/R9Y7quqdjC//iILIHIJi0hl6ypW4jbB/+av+Dk0pFQC6OwbrMSAS+EBE1orIkwDGmI3AK8Am4D3gJmOMu5t1KaVUj3J6W7DCIwZ2uZ2IUOJIIqy2fyYZ+/fuIkyasceNPGxdWNJ4AEp2rO3lqHpXTOV6CkNGIo6Q1mURI61ko3DdEj9F1Xv2rP6AYHETl3MOAAMHhLA1dAIJZV/5ObLesWrDRsbYCmD0XACyRqSzQUYQvPdzP0emlAoE3Z1FcIQxJtUYk+N9/KDNut8aY4YbY0YbY97tqhyllOoL3I11AIRHdt2CBVAdlkpMc//s+VxZYM2UF5k89rB1ccNzAKgtXN+bIfWqsqpaRrp3UBeXc8jyoeOm4jI26k6AbmKyawnNBDFozCmty2oSTyLec4DGA7v8GFnvKF9nTUs/ZNJ5ADjsNooGTSWlfhOmscqfoSmlAoAvZxFUSqmAZpqsFqzQAUdOsFwDM4j3lNLc2NDTYfW6phJr8o649PGHrUtNTuGgicL045kEd2z4ilBxEpYx7ZDlCYOjyZdkgkv79zT1jU43w6pXUhCZA0Fhrcujxs4BYN+a/n1PLGMM0fs/p9IeQ1BiVuty+/BTceDh4MYl/gtOKRUQNMFSSikvW2MltQwA25Hvi26PHY5dDCV7+1+iEVS+jTpCCR2ccti6YIeNAsdQwqt2+CGy3lG1/UsAhmafcshyEaF4wCji6vrv9PwA67dsYZQU4MmYfcjyMZlTqTARNO5e4Ze4esvuA9VMdq+lLGEGiLQuT86eTaMJonrTh36MTikVCDTBUkopr6DmKqql6xkEW0QljwKgorD/JVjRNdvZH5xxyMVlW5Xhw0ho2tNvZxIMK8mjXAa13u+sraaYccR6ynBWH/BDZL2j9Ov/ApA8+dxDlg8MD2anYySR5f27BW/Tqk8ZJLUMzJp7yPJRyXGsZwTBRXl+ikwpFSg0wVJKKa9gZxX19qNLsOKGjgGgvrh/3QvL7faQ4synOmpUp9u4Bo8igjqcVf1vNj2X20Na/UaKB07oMMEMHToRgKKt/Xdi3LCCz6iSgQxIzTlsXUX0eJKad4Oz/3WNbeHc9hEehNjsQxMsh93GgchxJNRvB1ezn6JTSgUCTbCUUsorzFVFvaPrGQRbDI5LotaEIeX9a8B/YcEuoqUWSRjX6TYhSda6Azu/7q2wes2OXTsZKiV4kqd0uH7IKGt51a7+OdFFVV0z4xvXUBQzHWyHXyLYkifhwE15P33/zS4PQyuWURQ2CsJjDltvkiYRjJOGff13khelVPdpgqWUUl4D3DU0Bx1dgiU2G8WOJEL72VTtB7ZbF84D0yZ0uk1sejYA1Xv7X1ex4o2fARA37pQO16enprLPxCIl63ozrF6zfu2XxEslIaNP73B97Ghr4o/Srct7M6xes3b7Hiawnaa0OR2uHzRyOgDFm7/szbCUUgFGEyyllPKKNNU4g48uwQKoDkthcFP/mqq9fp+VNCWNyu10m7Sh6ZSbCDwHNvdWWL3G7FlOMw7iR03tcL3dJhSGjCC6uv+NvQOo2WCNv0rJPbfD9SNHjOagicJV2D9bsAq++g8O8TBk8nkdrh85ajzlJoLmPSfG/cCUUsdHEyyllALcbjdRpg4JG3zU+zQPzGCIpwSns/+Mxwgq28xBGURYdFyn24SHBrHHNpSwyv41/szjMaRWLGP3gGwkKLTT7Wqix5LoKsA01/VidD3P4zEkFn9CQfAIggaldrjNgJAgdgaNYmBF/2u9NMYwcM9/qbYNZMDwGR1uEz8wjK22kUSWaxdBpVTnNMFSSimgvOwANjHYw48+wbLHDCNI3BTv7R9TlhtjSKjZTMmAzie4aFE+IIO4xt39aibBbdu2MIICmjNO63I7R/IE7BgO7FjTS5H1jg3bd5Ll2UJdxlldblcVnUmicy/0swRz2/5yprryKE06rctbNRwcOJ6Epvx+9/6VUr6jCZZSSgGVB60Z8YIHxh/1PhFJViJSVtA/usoVFhUznAKcSR1P8NBW86CRRJpaPDX9Z7ryotX/BiBlyoVdbhczfDIAZTv7Vze5ghVvYBdD8rRLutxOkidix0PFzv41XfmWL/9DlDQQk9v1+zdJk7HjoX7Pql6KTCkVaDTBUkopoK60AKDDm+t2Jn7oWAAa+slU7XvWLgFg8JiZR9w2aIg1k2DZnv4z2cOAPZ9QaotlUFp2l9sNGzGGGhOGc3//ee/GGGL3vMtBexyRGZO73HbwCCsBP7ij/yRYHo8hbMtr1MsAosef2eW2g0dZE10c2LKsN0JTSgUgnyVYInKbiBgRifW+FhF5VER2iMg6EZnkq7qUUsrXmssLAYiKTzvqfQYPSaXBBGPKd/dUWL3K7PqEJoJIyex4Br22BqVnAVC5p3+MRSkqLmZC41cUJczp9AbLLcJDg8m3pzOgYksvRdfzNmzeRK5rNcXpFx3x/Q8fNoJyE4Frf/849gBfbd7Jqa4vKU67ELoYfwcwevhwis0gnPv6320KlFK+4ZMES0RSgbOAtvMVnwOM9D5uAJ7wRV1KKdUTPNVWF8HohKNPsMRmp8SRSGjNnp4Kq9d4PIaksi/ZGZaFLST8iNunpQ2j2gzAWdw/ukdu/+SfhIqT2JnXHdX25ZGjSGzc2W/GoO375GnsYsg48wdH3DY6PIRdtgwGVPSPYw+wd8k/CBEnyWf88IjbxkWGsNOWQXg/ev9KKd/yVQvWI8AdQNv/NPOAfxrLciBaRBJ9VJ9SSvmUVO+nkgjCwiOOab/K0FQGNRb2UFS9Z+vGPIabApzDuu4e1SImIoRdkkpoxbYejqznGWMYvH0RBfahJI07+aj2ccWOI4J66kvzeza4XlBRXUv2gcXsiJhM+JARR7VPWeQoEhp3gcfdw9H1vAOVNUw98CqF4eMJSen8/m9tVUSNIb5pDzgbezg6pVQg6naCJSLzgH3GmPZt5clAQZvXhd5lSinV5wTVF1Nhjz3m/Zqj0kjyFON0uXogqt5TsfxF3EbIOPXqo9peRDgYlkFMQ+B3j1y9/BMyPVupHDP/iN3jWkSk5QCwf2vg3w8pb/GfSZIyQk655aj3cceNI5Rmmg8EfoK97I3HSZMSgmbfcfQ7JYzHgZvGok09F5hSKmAdVYIlIh+KyIYOHvOAnwF3H28AInKDiOSJSF5paenxFqOUUt0S3bSfmtCkY97PFjucEHFSUrirB6LqHU6Xm/R9b7MpbDJR8Uc/yUdj9AgGeqqg7mAPRtezjDGw5D6qiGDUuTcf9X7JoybjMULdnrU9F1wvKCqrIHPnU+wKGUfqlAuOer+WBLN4W2DPpFdYcpDJ+X+jIGwsCbnzjnq/gcOsiUCKtwV+gq2U8r2jSrCMMWcYYzLbP4BdQAbwtYjkAynAahEZAuwD2t6pMMW7rH3ZfzPG5BpjcuPiOr+xpVJK9RS3202yez8NURnHvG9EojVV+8G9gTvhwZolr5PEAWwT5h/TfvYEaxbFmoLAvens8k/fY3LTCnaNuJaQ8Oij3i85IZYCScBWurHngusFa1/4BYlSRvg5vzrq1juA5FETcRkbdXvX9lxwPcwYw7oX7iRFDjLg/N8e0/sfNiqLOhNCQ8HangtQKRWwutVF0Biz3hgTb4xJN8akY3UDnGSMKQbeAq72ziY4HagyxhR1P2SllPKt0n07CREnDB5+zPvGDh0NQH2ATtXucXuIWP4HSiSWMacfXffAFgOHWjMJluUH5mxytfX1xH16B6USS9a3jqF7GFYXyeKQ4cTUBm4XueVffMwZ5S+xKf58EnK6vrlwe+nxg9lFEvYATjDfe+cNzq5exNbkbxEz/vRj2jdpUDg7JI2Qg9pFUCl1uJ68D9Y7WC1cO4CngCNPzaOUUn5Qkm9dJEUmjznmfWMSh+E0djxlgdlFcMVHixjn2sz+zBuxB3c9PXV7qWkjqDWhNAXgOBRjDCuf+QkjzF6qT78fx4CBx1xG3aAxDHEV4Wms7YEIe9aeggJS3r+BKns0w6/84zHvb7cJRaEjiKkJzATz642byF15C6VBSYy84pFj3l9EKA0fRXz99n4zk6RSynd8mmB5W7IOep8bY8xNxpjhxpgsY0z/uSOhUqpfqfN2cUsc3vUNZjsidgfF9kRCAnCq9qrKSoZ++Qv22RLJvuDoxx+1SB40gJ0kE1QeeBfZny1+mtMOvsC6+AsZPvPS4yojKDkbmxiKd6zxcXQ9q7SsjOp/fJt4qcD97ecJiTq+7vl1g8YQ4zmIqS/3cYQ9a/OOXUS8einh0kT41QuxDYg+rnKcceOJMHU0lwXeua+U6lk92YKllFIBwVG6kTIGMigh9cgbd6AyNCXgpmo3xrDumZtJpoT6cx495tYrAJtNKAnJYHBdYLXeLf/gVaavvZOdwWPI/N5Tx11O7PBJAJTvWu2r0HpccUkR+x+/gHHuLeyd/ScSxs447rKCkqwvJALp/W/etI6QF84nmVJqL/kXkd5urscjIm0ioBNdKKUOpwmWUuqEN6hmK/tDjn38VYumqDQS3ftxuQLnnkBLX7qfWdX/Zk3q1Yyccmzjb9qqHziCaE85BEgrxrK3niJn6Y0UByWTcOO/sR1HYtkiY8Q4akwYrv2BMQZt5ao8Gp44jXGuLew65Y+MmH1lt8qLHW7NpFe2MzASrM8+/DdxC88nliqqvvUS8VnHNu6qvdQxuXiMUL07MN6/Uqr3aIKllDqhNTQ0MNS1l8bB4467DFvMcMKlieL9BUfeuA9Y9sZfOHnrfawPn072Ncc+/qQtibfGrTUWbfZFaD3G6XSy5K+3cdLq29kTMorYm94nYlB8t8oMDXaQ70gnvLJvv3e328O7LzzC2LfOJ0ZqKLn4FUaefm23yx0+bBgHTRTuor6dYNY2NPLB47cy4/OrcDkG4L7+fRKyz+h2uUMTYsknEduBwJ1FUynVMzTBUkqd0HZtWE6IOAnNmHrcZQwYMhKA0r19+0LbeDx89uzdTFv7c7aGTmD0za9hdzi6VWZUaiYAZfnrfBFij9i6dROb75/N7KK/8/Xgsxl+20eED0rwSdkVEaNIbNzVZyc6KNy7i68evJBzdiygNHwkwTd+TkpO95MLgKiwYHbbMwiv6Ju3KDDGsPyzdyl6YBpnHniGzbFnE3PbcgYNHe+T8m02oShsJDE1W31SnlKq/+jef1allApwldu+ACAl65TjLiNuqHU/qLri7cA5vgjL56qqKtn89P9wSvV7fB01m7E/fJHgsIhul5ucPop6E0LDvr43k2BDYxNfvPgbTtr7VxBhXe7vmXDejcd0v6MjccdnElH1JjUlu4gccvzdTH2tpq6ONa/ex6TdTxGPk3Vj/4/sy+4Bm92n9VREjmRC1ZvgdoG971xS7Ni1i4JFdzGn/j1KJYYdsx8nc/YVPq+nIWYsCfs+xV1XgT18kM/LV0oFpr7z11AppfwgqGgVBySG+MRjv8lwi8HJw3EZG56DO30Yme+sXfYBg9//X6Z6ivkq/fvkXnM/4qML7fTYSLaaJCLL+863+MbjYc2S14la+mvO8OSzJWo6Sd/9C9mJI3xeV1TaBNgORVvz+kSC1dDk5PO3/sHIjY9wCvtZH3ESiZc9Qnba2B6pzx03nuCqRTSVbCUkyTctQ91RfmA/Gxf9hskli0gTFxvSr2XM/F8TFxbVI/WFpkyEfVC8bQXJE+f2SB1KqcCjCZZS6oSWXLuRfZGZdGc0jjiCOWCP73NTtddUlrL+xZ8z9cCrlNli2H3+y0yZ4tuLwGCHjaLgNJJr+8YNZ3es+ojm/97DpOb1FEs8W059nDGzv+vTVqu2Ukbn4vlAqNu7FpjfI3UcjSani6XvvEjKmkc4i93sd6SSf/qzZJ10cY/WG5U+EXZA0bY80v2YYJWXFrP5jd+Ts+9lZtDE+sFnkv6te8lM7ZnEskXCmKmwAip2rtIESynVShMspdQJq2T/XpIpYf+Q7ncdqgxJYWBD35jkwu1ysvaNRxi+8VGmm1rWxF3I+Gv+REJkz3RhqokaweDyJdBYBaHHfsNeX8jf9BVV/7mbCfVfcpBoVo65k4kX38KQkLAerTc+djAFkoC91D9dJF0uN0vff5W4r/7A6WYbxfZEdp38MMPmXOvz7oAdSR01keYP7NTvXQNc0+P1tVdeVsrG1+8jp/BFZkgDa6LmEHP+3UwYPalX6s8Ymk6xGYzZ/3Wv1NdecWkpG954iCFFHzHgu88xbKT/WxGVUppgKaVOYIXrPyMBiB59crfLaohMY2T9JlwuNw5Hz1/YdmbLF28S9vEvmOzey/qgbILPu4/JOcd/r6OjYeLGQDm4SrbgSJvWo3W1V7hzE0Vv3s3kqg+pI5Qv0m8k+5KfMjWqd8bDiAhFoSNIqe3dmy27PYZlH79FxJf3M9uzkQO2OLZP/T0jzvwe4gjutThSYgeyhaEEH+jdmQTLysvY8Pr95BS8wCyp4+vIUxh03t1MHDulV+Nw2G3sDRlJUnXvTnBTVHKAjW88yOSif3GG1ALwxZcvM2zkr3s1DqVUxzTBUkqdsJryl9Ns7KSN736CZYsZRtSBevaVFJGcnOKD6I5N8a51lL52B1l1yygkgZVTH2XK3KsQW89PFhuePB62Qnn+euJ7KcEq2b+HnYsWkFv2JrHYWJl0JWMu+SUzYn0zO+CxaBg8hsR9X+BurMUe2v2JQ7pijGHFZ+8R/Nnvmen+mjIZzOaJdzPm3JuIDzr+e3odL5tNKBowmil1X1ozKfZQV8wW5RUVrH39QSbu/SenSg0bIk+m6px7mDB+eo/W25XaQeNILFmJaa5DgsN7tK6ikhI2vPEAU4pe4gypY3PUyTSf8wsaF/0PEfu/7NG6lVJHTxMspdQJa+DBtewJGs7IsO5fFIUNGQWbranaezPBaqgqY9PCX5C9byERBPNZ+o/InX8nKQN69kKvrcS00TSaIOr29fw4rIryg2x69V4m7n+ZKbhYG3chGZcsYHpieo/X3Zmg5AnY9hsKtq8mtRuzUXbFGMPqZR/BJ79junMV5TKQjVk/Zez5txATMqBH6jxaDbGZRBW8h7uyAPugoT1SR01tLXmvPUzWrr9zmlSxKWIatXPvJjNrZo/UdyzsyTnYSwwl21eTMH5Wj9RxoLyMdYseIHff85wpdWwaOIumc3/O2DEnAbAyZirjD/yH5qZGgkN6P9FWSh1KEyyl1AnJ6XSS3ryNjfEX+KS8mFTrhrs1+7cDZ/qkzK4Yt5ONbz1KytePMNHU8mX0uQy/7D5OSe6ZC9yujBgykJ0mifDSnrsfUl1tDWtfe5Dxu55mhtSyOvoMEi+6lykZ/h9zEjdiEnwF5Tt7JsHavGYpde/dS27TCiqJZN2YHzNu3o8ZHBbp87qOR9jQSVAAB7auJHG6b3//GhoaWbn4z4za+gRzKGPrgBwa5i5g3IQ5Pq2nO+JHTYHVcHD7Sp8nWBVV1eS9/jAT85/hDKlic9TJNJ2/gHGjD20pDhpxKuGlr7FxzaeMn362T2NQSh27bidYIvK/wE2AG3jbGHOHd/ldwP/zLv+RMea/3a1LKaV8Zc/W1YyQJhxDfTNmIzZ1JB4juMt6fqr2PV+9g+2/d5Lp2sPXjixk7u+Zmdsz35wfjYgQB0XBaUzsgRuuNjc3k/fmYwzb+BgzKGP9gClUnfdrJmWe5PO6jlfasDHUmDDcRb4dh7R71zaKXv8ZJ9d+QDXhrBlxM+MvvoPscP9MJNKZ1LFTcC21UbnzKxKnX+qTMpudLpb/+yky1v2RUylmR/AYdp3+Z0ZPO88n5ftSxrDRlJsIXD6c6KK2oZFli/5E1o6/cqaUsS18Es5zFjA269QOtx8x9Rw8Xwrl694DTbCU8rtuJVgiMgeYB0wwxjSJSLx3+TjgcmA8kAR8KCKjjDHu7gaslFK+cHDLMkYAQ8b6ZgIICQqj1BZDcFW+T8rrSNX+nRQu/DHjq5ZQSDxLJj7CzPOu8eukGi3qB44kpuwzaKqFkO6PQzLGsOqjV4n94lecbArZFjSGqtMfI2v6uT6I1rdCghxsd2QQUembFrySsnLWLvwNs0peIBk3eanXMPbb9zBxYIxPyve1EUlx7CAFe/HqbpdljGHl5/8lcskvOcWzjXzHMLad+ndGzby0x8d3Ha/QYAebgkYSW9H9BNvjMXz+3kJSV/6aMylkV+g4Cs56nFGTu54CPnJQPFtDM0ku+hBjDNJHPyulThTdbcG6EbjPGNMEYIw54F0+D3jZu3y3iOwApgLLulmfUkr5hOzLo5pwEof5rotZeQ9N1e5ubmD9q79h9Pa/MczAR0nfZ/J37mZ2VM/cPPV4BA0ZB2VQU7iRyOHdm+hi15avqVz8E3IbV7DPlsj6mY+TOec7vTJhx/GqiBzFxMr3uzXRQ2Ozi8/eeJKsTQ9ztpSxadAcEi99gNyUUT6O1rdsNqEgMpvpNR+Bx33c08Nv376FA6/fyYyGTzgog9k0/QHGnvU9n90UuycdHJRDTumzmIYKJOz4ZrD8es1Kmt+5i1OdeRTZE9k1+68Mmzn/qH+faoefx+RN97Fry2qGjZ18XDEopXyju/+tRgGzRGSFiHwqIi19bZKBtlcZhd5lhxGRG0QkT0TySktLuxmOUkodndiqDewJHePTi/aGyDSGuItwe4xvCjSGLZ++Qsl9OeRsf4yvQ6dSeMVnnP4/DxHdh5IrgLhh2QAU71h73GVUVpSx9PEbSXlpDqMa15E38lYSfrqGrNOv6NPJFYAnIZMI6qned+ytWMYYln36X7bfdzJnbf45zSGDKfnW64y7ZTGD+nhy1cKZPJ1wGqjJP/ZWrIPl5Xz0xC2kvDCLyQ1LWTfs+0Tf8TXj5v5PQCRXAO6hM7BhqNz86THvW7hvHx8/ch3jFs9lrHMTG8b/hCF3rmXYrMuPKVlPn/kdAPZ/ufCYY1BK+dYRW7BE5ENgSAerfu7dfzAwHZgCvCIiw44lAGPM34C/AeTm5vroqkQppTpXX1tFmnsPebE+HigfM5yY0jcpLC4iJSmpW0WV7N7IwVdvZXz9CnZLCstn/oNpp1/cZ7v+DBuVSZNxUFt47N2k3G43K954jFEb/sBMqlgVcy7D5j9AbkJqD0TaM6LGzIGtv6Fw9buMSxl71Pvt3LGVotfvYmb9R5TJILZNv59RZ90AfTyhbG/IhLNg6y/Yl/dvxgw7unGNzU4XX7z+OOM2PczpUsH6wWcw9LIHyE4c3sPR+t7Q7FOoywuh7Ot3GDTpoqPap6aunuWvPMSU/Cc5lXo2JV7MiPm/J3NQR5dcRxaTlM7WkEyGFr6F2/177PbASE6V6o+OmGAZY87obJ2I3Ai8bowxwEoR8QCxwD6g7X/GFO8ypZTyu/wNyxgnHsIyfHvPptCkTNgC5bu/Pu4Eq7GuivUv3c2EghcIJ4glGbcybf6dZIT17amXB0cOYINjBFElXx3TfhtXfIjj/Ts52b2dbUFjqD7vBSbn9MxU5z0pM2si+96Mw2z/CPjxEbevqKxk7cv3Mr3oeVLEsG7Y9xh36d3EDOhbE1gcrawxo9jACCJ2vQ/c2+W2xhhWfvYOUZ/ewxzPdnaFjKbwvH+Q1YdmBjxW44bGs8Q+iYmFH4LH02WC7HZ7+OK9f5Hy1e85k0K2RUzGdfGDZI3ofre+xqyrGJ33U9YufYucUy/udnlKqePT3TFYi4E5wCciMgoIBg4CbwH/EpGHsSa5GAms7GZdfY7L2Ux5aTFVZcU0VRXjrDmIq74KV2MtnsYaaK7F7qrD4arD7m5EPC7E40Q8bmzGhd24sOPGbtwYwIhgsOFBAGn9idhABCN2jNgw4rB+2hwgdozNjhGH9QddHFb/d5vDeogN7A5ErGVityPedWKzI3YHNpsDvD/FbsfW8tzhwGYPwmazY3NYP61yW+q2yjA2B+KtB29M1nZ273Ob91t3Y70jAYxBEG/vhzYNl8a0eWo9F9O2YdNgWrY/pL3TtNm1Zb1pfSWd1uE5pIyW9eYY21KPp+m1szo6K8t0EVTn+xzjHidIG3LVurcBSMn07T10Bg+fCB9DQ+E64Jxj2td4PKx97x8kr/wtUyhjedRZDJ3/ILNT0n0aY08qjTuZU4r+QWN1GaFRXU/IULQvnz0Lf8L06vc5yCDW5j7AhHO/3+e7AnYmyGFn26BTmVGxmOaaMoIjO37/TpeLLxc/yegNDzOHMtYPOo2hlz1IdtKIXo7Yt+w2Ye+QMzm3+Amq964jamh2h9tt37KessV3Mb3xc0olhs3TH2LsWf8v4Frs2hMRytPPI3rXMsq//g+DJ17Y4XarVi6F93/OKa61FNmT2D3n74ya4bsJPMaecTUVeb/Ftfwp0ATrUB4PruYGmpoaaW5qoLmpAWdTI87mRlzeh7u5ETwujMdtXR94PNZP48EYg/G0PPd4n7u9/5sFRKxrITn0eesyrOciAjbr2k6813hiE4S2+9oRkdZtbYDx7isi1vWTraVMaa3f0PKr5K0XwbRuyzc9ILzraLkOaymjzbYtZbbVusZ7TdcRY8yh11wty7/ZoN32HZZy+BLHAGKShxEZGtRhvX1NdxOsZ4BnRGQD0Axc423N2igirwCbABdwUyDOIFhVXkrRzq+pKd6FsywfW9Vewhv2E9V8gChPFQNNDfFiiO9k/0aCaCCMBgmjSULwiKP1YWx23ITSLA482K1zCg/i/cVseWA8VjJiPIhxYjduxLixGTc2PNiMGzEeK1HDjc14sOHGTssyzyHPHeLpJFqlThxpQKEMISXBtzcEjhuSToWJxFZybN3k8jeuoP7N25nYvI7ttmGUnPkE008KvKmWo3POx178DJs/+xeZ5/9vh9s01NeTt/B3TMp/ikm4WJl6LVmX30tORGC23LQVMfVKgv+7iHVvP0b25fccss4Yw5olbxD5+a851bOLXUEj2XvuU2RNPN1P0fre8LN+QNNzf2ffv39L1E2HjgPaV7iXHYt/x/TSV0kRO2uH38j4S39OXB+5l5cvTD3naooeexj3+79j8ITzDpnsY/PmdZT853fMqn2POglnQ9ZdjJ93K+II8WkMwaEDWJ96CRP3Psv29SsZmTXVp+X7k6u5icryEqrLi6mvKKWhqhR37UGoL8fWVIGtqQabsxaHqw6Hq54Qj/UIMw0MMA2ESTMOrAvf3rsNu/KVJe4JbPj2y5yf3b3u971FuvpWvLfl5uaavLw8f4fRavlLv2X61gdaX5cTxUHHEGqCE3CGxcCAWGwR8QQPjCc4KoGQgXGERw0iPHIg4eEDsQUF+zF66x+622NweR9ut8HpduN2u3A6nXjcLpwuFx6XE5fLhcftxO1y4Xa7MG4nLrcb413mcVsPjBvxuLAZN3isZM9a5v3pXY83CbTWebzfrBiM+ebbEOP9LsRqkWr77aUc/vSQb1E6ed7RN4DS5psYDq/78OKkdX1n3ycezxiYzss6xnKO40vOzt+J7+oIRLHDJpI2ZpLPy/36vjOIbi4m7e4NR9y2qqyYrS/dxeTSN6iWCLaM/RFTvnUrjqDA+IauPafLTeFvsjBB4Qz72cpDfplcLhdfvfMMyWseZqgpYl34ycR/+w8MSR/nx4h9yxjDqt+exmjXFpqu+5DYtPE0NzvZ8OkibCufIMf5NUUSz8GpPyXz7OsCZgKHY/HuozdzTvnzbBh3G3HTv0NxwXZq8hYyufwdQnCyLvZchl12H1EJvX9D7N7w2rOPcEn+ArbFz8VMvp7y4j2w+S2mNHyBR2xsS72MkZf9mpDI2B6LoaaiBPOnHHaFZTPhjvf67LjNFh63h/KSPVQU51NbWkBzxT48Vfux15UQ1lhClKuMwZ4yIqnvtIwGE0ytDKBRBtBkC6PJHo7TEY7bEY47yPrpCRoAjlDEEYw4QrAFhWLz/rQHhWAPDsEeFIrYg6xz02Zr05JkQ2zfPGw2e+sy6z+88bZscViLlzHGu8x4W768PXE8La1fBjwePMZ8s1+bMoBvysIgBjzGY1Xp/TLeWBV7Pw3zTSuSAfB+sd5SV5vtrPXeL/PbbGNo6T1kDmtLaps2dHatJNLuOqujDdq+bHt91tLI1m6XptA40iafTXJ0WOfl+oGIrDLG5B62XBOszu3fvYXS3euIThpBQuoIQsP71qxdSqm+5/Nnf8Gs/D9TeeMGojuZpKG52Une6w8zbsujRJh6voq9mDHf+T2DYhN6OVrfW/LyH5i95V7WZd5B9iU/o662mvUfvkj8uicYZvayxz6Uhtm/Ysysb/k71B6xbcs6Yl86l1BpZk/QCBKcexlMDQdlEAWj/x/jL7qd4NC+dYHgS5U1tWz58yVMb17euqzZONgcezaJ599JfEbHXQf7iyani3cfv43zy//Z2mOkkkj2pl7EsAvvICKudxLLlc//kqk7HyXvpL+Qe/aVvVJnV+qaXBQUlVC+dyONxVuhbAcDqnczuHEvKZ79DJCmQ7Z3GjvltkFUOWKpC46jKSwOT1gs9ohYgiJjCYmKI2JQPOGD4omIjickLLzPJ5Kqf9IESymlesH2tUsZufg88jJ/Se6ltx+yzng8rP3gBQYtv590U8imkAmEXvAgwzJ9O9mGPzldLr5+8Fxym1ZQThRRphaHeNhrS6Fyyo/JOusaxN7d3ul9267tmzjw9m+IqttDXXgqIWPPZuyc7xIU7NvuYH2V0+Xm66X/wVO6nbBBSYyYdg5hkcd3b6hAtW3bVhr2rSc6LpGhY6ci9t5tlXY1NbD7gZkkuIuouupDUof3fEuxMYai8hoKd2+lqmATzgNbCaraxeD6vaSafcRLZeu2boQDtgTKw9Koj8zAM2gYwTFpRMalMmjIUAbFJmHTWRBVANAESymleoHxeNj1m4nY8ZB6Vx72oBA8LidrP15I5IpHGOnewR5bCtUn30nmaX3//k7Ho7GxkVVv/pngojU4w+MZlHkWY6ad3S+7xCnVV+3ftYnwf55BI6HUX/YKGeMOuwY8Li6Xm8J9BZTs3kDd/s1wcAfhtbuJayoglRKC5Jsh99USRXnYUBqihiExIwhLHMPgtPFEJo4EH48/U8ofNMFSSqlekvfe8+Quv5lNwVnUhSUztOorEiijWOLZm/0jJp3/Pzj8PEZTKdX/7dqwgqhFlxFp6liVchWjL/wxMUd5f7mGmgqK8jdTXrCFpuKtOCp2MrB+D0muQqLkm/FQTQRR6kiiOiID9+DhhA0ZTUzaeKJTxiLhXc8mqlSg0wRLKaV60bKX72fYlr9iw8P+AaNxZl3BxDMux66JlVKqFx0s2sOeF3/E5NoluIyNnUEjqY4cgSsiCZsj2LoFTFMtjqYK7I1lhDeWEO8qYhDVh5RTIrGUhaTSEDUMe9woIlPGkJCRSUR8xiEzJip1ItEESymllFLqBLVn61qKPn+OqJKVxDkLiaOydZ3bCJVEUmMfSG1QLHXhQ3ENHEpQ7HBiUseQPHy8TvSlVAc6S7D690hjpZRSSilF2ugc0kbntL72uJw0NDUjuAkLHUCM3YF26FPKNzTBUkoppZQ6wdgcQYQ7AvOee0r1df1v+iqllFJKKaWU8hNNsJRSSimllFLKRzTBUkoppZRSSikf6VOzCIpIKbDH33G0Ewsc9HcQqtfo8T5x6LE+ceixPrHo8T5x6LE+sfTF451mjIlrv7BPJVh9kYjkdTT9ouqf9HifOPRYnzj0WJ9Y9HifOPRYn1gC6XhrF0GllFJKKaWU8hFNsJRSSimllFLKRzTBOrK/+TsA1av0eJ849FifOPRYn1j0eJ849FifWALmeOsYLKWUUkoppZTyEW3BUkoppZRSSikf0QRLKaWUUkoppXxEE6wuiMhcEdkqIjtE5E5/x6N8R0RSReQTEdkkIhtF5P+8yweLyAcist37c5C/Y1W+ISJ2EVkjIv/xvs4QkRXe83uhiAT7O0blGyISLSKLRGSLiGwWkZP03O6fRORW79/wDSLykoiE6rndf4jIMyJyQEQ2tFnW4bkslke9x32diEzyX+TqWHVyrB/0/h1fJyJviEh0m3V3eY/1VhE52y9Bd0ETrE6IiB34C3AOMA74joiM829UyodcwG3GmHHAdOAm7/G9E/jIGDMS+Mj7WvUP/wdsbvP6fuARY8wIoAL4f36JSvWEPwHvGWPGABOwjrue2/2MiCQDPwJyjTGZgB24HD23+5NngbntlnV2Lp8DjPQ+bgCe6KUYlW88y+HH+gMg0xiTDWwD7gLwXq9dDoz37vO497q9z9AEq3NTgR3GmF3GmGbgZWCen2NSPmKMKTLGrPY+r8G6AEvGOsbPeTd7DrjILwEqnxKRFOA84O/e1wKcBizybqLHup8QkYHAKcDTAMaYZmNMJXpu91cOIExEHMAAoAg9t/sNY8xnQHm7xZ2dy/OAfxrLciBaRBJ7JVDVbR0da2PM+8YYl/flciDF+3we8LIxpskYsxvYgXXd3mdogtW5ZKCgzetC7zLVz4hIOjARWAEkGGOKvKuKgQR/xaV86o/AHYDH+zoGqGzzh1vP7/4jAygF/uHtEvp3EQlHz+1+xxizD3gI2IuVWFUBq9Bzu7/r7FzW67b+7XrgXe/zPn+sNcFSJzQRiQBeA24xxlS3XWesexjofQwCnIicDxwwxqzydyyqVziAScATxpiJQB3tugPqud0/eMfezMNKqpOAcA7vYqT6MT2XTwwi8nOsoR0v+juWo6UJVuf2AaltXqd4l6l+QkSCsJKrF40xr3sXl7R0KfD+POCv+JTPzAAuFJF8rK6+p2GN0Yn2disCPb/7k0Kg0Bizwvt6EVbCped2/3MGsNsYU2qMcQKvY53vem73b52dy3rd1g+JyLXA+cAV5pub9/b5Y60JVue+AkZ6ZyMKxhpM95afY1I+4h2D8zSw2RjzcJtVbwHXeJ9fA7zZ27Ep3zLG3GWMSTHGpGOdxx8bY64APgEu9W6mx7qfMMYUAwUiMtq76HRgE3pu90d7gekiMsD7N73lWOu53b91di6/BVztnU1wOlDVpiuhCkAiMhere/+Fxpj6NqveAi4XkRARycCa2GSlP2LsjHyTDKr2RORcrLEbduAZY8xv/RuR8hURmQl8Dqznm3E5P8Mah/UKMBTYA1xmjGk/wFYFKBGZDdxujDlfRIZhtWgNBtYAVxpjmvwYnvIREcnBmtAkGNgFXIf1haKe2/2MiPwKmI/VfWgN8D2ssRh6bvcDIvISMBuIBUqAe4DFdHAue5Psx7C6idYD1xlj8vwQtjoOnRzru4AQoMy72XJjzA+82/8ca1yWC2uYx7vty/QnTbCUUkoppZRSyke0i6BSSimllFJK+YgmWEoppZRSSinlI5pgKaWUUkoppZSPaIKllFJKKaWUUj6iCZZSSimllFJK+YgmWEoppZRSSinlI5pgKaWUUkoppZSP/H+y/GfbTtZXxAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -4259,31 +4259,31 @@ " 12\n", " False\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " bAP.soma.v\n", - " 0.000858\n", - " 1.51e-06\n", + " 0.00064\n", + " 6.72e-05\n", " \n", " \n", " 13\n", " False\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step1.soma.v\n", - " 0.00799\n", - " 3.79e-06\n", + " 0.0279\n", + " 4.75e-07\n", " \n", " \n", " 14\n", " False\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step3.soma.v\n", - " 0.00577\n", - " 7.01e-06\n", + " 0.00573\n", + " 1.71e-05\n", " \n", " \n", "\n", @@ -4291,14 +4291,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "12 False 4 0.0508 0.0136 bAP.soma.v \n", - "13 False 4 0.0508 0.0136 Step1.soma.v \n", - "14 False 4 0.0508 0.0136 Step3.soma.v \n", + "12 False 4 0.0553 0.0212 bAP.soma.v \n", + "13 False 4 0.0553 0.0212 Step1.soma.v \n", + "14 False 4 0.0553 0.0212 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "12 0.000858 1.51e-06 \n", - "13 0.00799 3.79e-06 \n", - "14 0.00577 7.01e-06 " + "12 0.00064 6.72e-05 \n", + "13 0.0279 4.75e-07 \n", + "14 0.00573 1.71e-05 " ] }, "metadata": {}, @@ -4306,7 +4306,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADZBElEQVR4nOzdd3hcxfXw8e/Zot6LJduSLbn3hhvYpocSeiiG0AnhBymU0BKSEIc3pAAJoQVDgFBjeu/VgAlgZOPei2zJlmT1Lm2b94+7kteymq2VVrLO53nW2p07d+bsXu9qj2buXDHGoJRSSimllFKq62yhDkAppZRSSimlDhWaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSvYyIZImIERFHqGNR/YOIrBWRo0Mdh1JKHQo0wVJKKdXnichCEanx31wi4g54/F6o4+vtjDHjjTGLu6NtEUkSkWIRWdId7SulVG8jeqFhpZQKLhFxGGM8Xdg/C9gOOLvSTn8lIguAEcaYi1rZ1qVj05P6UqztEZF/A6MBmzFmbqjjUUqp7qYjWEopFQQikisit4rIKqBWRBwiMltE/iciFSKyMnAKlogsFpG/iMhSEakSkTdEJKmNti8XkfUiUi0i20Tk/1psP0NEVvjb2SoiJ/nL40XkcREpEJFdIvInEbF38DyGi8inIlIqIiUi8pyIJARsKxORaf7Hg/wjE0f7H5/un2pW4X9+Y1u8PjeJyCoRqRSRF0Qk4sBf6QPXxrExIjIioM6TIvKngMen+l/TCv8xnNTJvo4WkXwRuc3/+uWKyIUB208Rke/9xyrPnww2bWuaGvoTEdkJfOovf0lECv2v2xciMr5F3P8Skff8o3VfiUi6iPxTRMpFZIOITO3ka3R8Z57jgRCRI4AJwH+C3bZSSvVWmmAppVTwXACcAiQAacA7wJ+AJOAm4BURSQ2ofwlwBTAQ8AD3t9HuHuBUIA64HLg3IMmZCTwN3Ozv90gg17/fk/52RwBTgROAKzt4DgL8BRgEjAUygQUAxpitwK3AsyIShfWl+SljzGIRGQUsAq4HUoF3gbdEJCyg7fOAk4BsYBJwWasBiMz1JzZt3Q5mFKT52HQ0KuRPSJ4A/g9IBh4B3hSR8E72lQ6kAIOBS4FHRWS0f1st1nFP8MdzjYic2WL/o7Be+xP9j98DRgIDgOXAcy3qnwf8zt9nI/C1v14K8DLwj07G3SoR+XV7x6Od/ezAg8AvAJ0uo5TqNzTBUkqp4LnfGJNnjKkHLgLeNca8a4zxGWM+AnKAHwbUf8YYs8YYUwv8HjivtREmY8w7xpitxvI58CEwz7/5J8ATxpiP/P3sMsZsEJE0f1/XG2NqjTF7gHuB89t7AsaYLf62Go0xxVhfzo8K2P5vYAvwLVZi+Fv/pvnAO/593cA9QCRwRIvXZ7cxpgx4C5jSRgxLjDEJ7dwO5lyewGPTkauAR4wx3xpjvMaYp7ASl9kH0N/v/a/h51iJ9nkAxpjFxpjV/mO1CispParFvgv8x6zev88TxphqY0wjVrI7WUTiA+q/ZoxZZoxpAF4DGowxTxtjvMALWMn1QTPG/LW949HOrtcC3xpjlnWlf6WU6mt0hSqllAqevID7Q4FzReS0gDIn8Fkb9Xf4t6e0bFRETgb+AIzC+sNYFLDavzkTa7SopaH+9gpEpKnM1qLP/fgTs/uwErhY/z7lLar9G3gTuMr/pR+sEa8dTRWMMT4RycMaxWlSGHC/zr9PT2n3ebcwFLhURH4ZUBZG5+Mt9yfNTXY07Ssis4C/Yk2bCwPCgZfaitWfcN8JnIs1Mujzb0oBKv33iwL2rW/lcUwn4w4aERmElWAd1tN9K6VUqOkIllJKBU/gNKg8rBGqwL/2Rxtj/hpQJzPg/hDADZQENuiflvYK1ohQmn/E4F2sqXxN/QxvJZY8rFGXlID+44wx41upG+jP/ucx0RgThzUS15yhiUgM8E/gcWCB7D1vbDdWYtJUT/zPb1cH/e1HRObJ3hUAW7vN67iV/bScolaHlag2SQ+4nwfc2eLYRRljFnWyr0QRiQ54PATr9QH4L1ZymmmMiQcWEvD6thLrj4EzgOOBeCDLX95yn27jP5+szePRxm4zsUY414lIIVbSPtN/Llm75wEqpVRfpwmWUkp1j2eB00TkRBGxi0iEfwGEjIA6F4nIOP/5THcAL/undQVqGuUoBjz+0awTArY/DlwuIseJiE1EBovIGGNMAdZUwr+LSJx/23ARaTkdraVYoAaoFJHBWOd2BboPyDHGXIk19W2hv/xF4BR/HE7gRqwE738dvVAtGWO+NMbEtHP78kDbbMUK4Mf+Y3MS+07T+zdwtYjMEku0f3GKWGheWOLJDtr/o4iE+ZPBU9k7ShULlBljGvznz/24g3ZisV7HUqyE8M8H8ByDwhjz5/aORxu7vYeVDE7x324HvgemtPJ/XCmlDimaYCmlVDcwxuRhjTzchpUc5WElK4Gfu89gLURRCERgTalq2U61v/xFrKl6P8YaAWnavhT/whdYU8Y+Z+9I0iVYCdo6/74vY40qtOePwDR/W+8ArzZtEJEzsBapuMZf9CtgmohcaIzZiDXa9QDWKNxpwGnGGFcH/YXKdVgxVgAXAq83bTDG5AA/xVqgoRzrnLPLAvbNBL5qp+1C/367sRakuNoYs8G/7WfAHSJSjZV0vNhBnE9jTTHchXUcv+noifUG/vPPCptuWP+f3P77Sil1SNPrYCmlVAiIyGLgWWPMY6GORXWef1XElcAk/2IeLbcfjXVcM1puU0op1T/oIhdKKaVUJ/lH5MZ2WFEppVS/pVMElVKqnxGRhW0sWLCw471VXyQiQ9pZqGJIqONTSqlDSdCmCPpXBcoBdhljThWRbOB5rIs0LgMu7sVz8ZVSSimllFKqy4I5gnUdsD7g8d+Ae40xI7BO9v1JEPtSSimllFJKqV4nKCNY/mWHn8K6GOKvsFZmKgbSjTEeETkc68r0J7bXTkpKisnKyupyPEoppZRSSinVXZYtW1ZijEltbVuwFrn4J3AL1vU6wJoWWGGM8fgf5wODW9tRRK4CrgIYMmQIOTk5QQpJKaWUUkoppYJPRHa0ta3LUwRF5FRgjzFm2cHsb4x51Bgz3RgzPTW11SRQKaWUUkoppfqEYIxgzQFOF5EfYl0oMw64D0gQEYd/FCsD6yKJSimllFJKKXXI6vIIljHmN8aYDGNMFnA+8Kkx5kLgM+Acf7VLgTe62pdSSimllFJK9WbdeaHhW4HnReRPwPfA4wfTiNvtJj8/n4aGhqAGp/qmiIgIMjIycDqdoQ5FHcJqGly8+u87CR9/CvOPnRnqcJRSSinVhwQ1wTLGLAYW++9vA7r8zSQ/P5/Y2FiysrIQka42p/owYwylpaXk5+eTnZ0d6nDUIWzZ529ySek/qfj83zTM3UlEWHf+LUoppZRSh5JgXgerWzQ0NJCcnKzJlUJESE5O1tFM1e3s2z8HIEFqWb1mZYijUUoppVRf0usTLECTK9VM/y+onpBSvpwaogCo2vh5iKNRSimlVF/SJxIspZTqSTGuUtbHzKKSWMIL9Np8SimllOo8TbA6QUS48cYbmx/fc889LFiwIHQBBTj66KPbvTjzmWeeyezZs/cpW7BgAYMHD2bKlClMmDCBN998s7vDVKpPiTcVeCJTKIocRkLNllCHo5RSSqk+RBOsTggPD+fVV1+lpKQkqO0aY/D5fEFtM1BFRQXLli2jsrKSbdu27bPthhtuYMWKFbz00ktcccUV3RqHUn2Jq6GOWOoxUanUJ4xkiHcnDS5PqMNSSimlVB+hCVYnOBwOrrrqKu699979thUXF3P22WczY8YMZsyYwVdffQVYo0T33HNPc70JEyaQm5tLbm4uo0eP5pJLLmHChAnk5eVx8803M2HCBCZOnMgLL7wAwOLFizn66KM555xzGDNmDBdeeCHGmFbje+aZZ5pHo5YuXdpc/uqrr3Laaadx/vnn8/zzz7e679ixY3E4HPskj7/+9a8ZN24ckyZN4qabbgIgNzeXY489lkmTJnHcccexc+dOAC677DKuueYaZs+ezbBhw1i8eDFXXHEFY8eO5bLLLmtu85prrmH69OmMHz+eP/zhD/vFUVlZydChQ5sTvdraWjIzM3G73a3GrVR3qSgpAMAWmwoDxhEn9ezauTXEUSmllFKqr+hTaw//8a21rNtdFdQ2xw2K4w+nje+w3s9//nMmTZrELbfcsk/5ddddxw033MDcuXPZuXMnJ554IuvXr2+3rc2bN/PUU08xe/ZsXnnlFVasWMHKlSspKSlhxowZHHnkkQB8//33rF27lkGDBjFnzhy++uor5s6du197dXV1rFixgi+++IIrrriCNWvWALBo0SJuv/120tLSOPvss7ntttv22/fbb7/FZrORmpoKQGlpKa+99hobNmxARKioqADgl7/8JZdeeimXXnopTzzxBNdeey2vv/46AOXl5Xz99de8+eabnH766Xz11Vc89thjzJgxgxUrVjBlyhTuvPNOkpKS8Hq9HHfccaxatYpJkyY1xxEfH8+UKVP4/PPPOeaYY3j77bc58cQT9XpXqsdVlexmAOCMSyMuMQlWQtmONQwfMTrUoSmllFKqD9ARrE6Ki4vjkksu4f7779+n/OOPP+YXv/gFU6ZM4fTTT6eqqoqampp22xo6dGjzeVFLlizhggsuwG63k5aWxlFHHcV3330HwMyZM8nIyMBmszFlyhRyc3Nbbe+CCy4A4Mgjj6SqqoqKigqKiorYvHkzc+fOZdSoUTidzubEC+Dee+9lypQp3HTTTbzwwgvNq/PFx8cTERHBT37yE1599VWioqyV1L7++mt+/OMfA3DxxRezZMmS5rZOO+00RISJEyeSlpbGxIkTsdlsjB8/vjnmF198kWnTpjF16lTWrl3LunXr9nse8+fPbx7Be/7555k/f367r6NS3cFTvQcAR+wABgwdC0BtkZ6HpZRSSqnO6VMjWJ0ZaepO119/PdOmTePyyy9vLvP5fHzzzTdERETsU9fhcOxzXlPgtZuio6M71V94eHjzfbvdjsfT+nkgLZcuFxFefPFFysvLmy/IW1VVxaJFi7jzzjsB6xyspul/LeNeunQpn3zyCS+//DIPPvggn376aafitNls+8Rss9nweDxs376de+65h++++47ExEQuu+yyVq9ldfrpp3PbbbdRVlbGsmXLOPbYY9vtV6nuYGqKAbDFpBKdkokLB6Z0e4ijUkoppVRfoSNYByApKYnzzjuPxx9/vLnshBNO4IEHHmh+vGLFCgCysrJYvnw5AMuXL2f79ta/oM2bN48XXngBr9dLcXExX3zxBTNnzjyguJpGfZYsWUJ8fDzx8fEsWrSI999/v/m8r2XLlrV5HlagmpoaKisr+eEPf8i9997LypXWRVaPOOKI5v2fe+455s2b1+n4qqqqiI6OJj4+nqKiIt57771W68XExDBjxgyuu+46Tj31VOx2e6f7UCpYfA3VAIRHx4PNTrE9najanSGOSimllFJ9RZ8aweoNbrzxRh588MHmx/fff3/z+Vkej4cjjzyShQsXcvbZZ/P0008zfvx4Zs2axahRo1pt76yzzuLrr79m8uTJiAh33XUX6enpbNiwodMxRUREMHXqVNxuN0888QS5ubns2LFjn+XZs7OziY+P59tvv221jR/+8Ic89thjiAhnnHEGDQ0NGGP4xz/+AcADDzzA5Zdfzt13301qair/+c9/Oh3f5MmTmTp1KmPGjCEzM5M5c+Y0b7v99tuZPn06p59+OmBNEzz33HNZvHhxp9tXKph8rloAIqJiAKiMyCCpblcoQ1JKKaVUHyJtrUzX6QZEMoGngTTAAI8aY+4TkSTgBSALyAXOM8aUt9fW9OnTTctrOq1fv56xY8d2KUZ1aNH/E6o7rXr6ZiZs/TclNxYwIC6S7x+5ipG73yD897txOnRUVSmllFIgIsuMMdNb2xaMKYIe4EZjzDhgNvBzERkH/Br4xBgzEvjE/1gppXo1466jnjCiwv0rWCZmESMNFBbkhzYwpZRSSvUJXU6wjDEFxpjl/vvVwHpgMHAG8JS/2lPAmV3tSymlupu46qgjnEinNVoVkTYCgLL8TaEMSymllFJ9RFAXuRCRLGAq8C2QZowp8G8qxJpC2No+V4lIjojkFBcXBzMcpZQ6YDZPLfVEYLdZq3MmZljXv6or3BzKsJRSSinVRwQtwRKRGOAV4HpjzD5XAzbWiV6tnuxljHnUGDPdGDO96WK3SikVKjZ3HY2y97ILKRkjAfCW5YYoIqWUUkr1JUFJsETEiZVcPWeMedVfXCQiA/3bBwJ7gtGXUkp1J7u3fp8EyxEeRbEk4ajSpdqVUkop1bEuJ1hiXeX2cWC9MeYfAZveBC71378UeKOrfSmlVHdzeOtx2SL3KSt1DiRal2pXSimlVCcEYwRrDnAxcKyIrPDffgj8FfiBiGwGjvc/7rNef/11RKTd61Pl5uYyYcKEoPV52WWX8fLLL7e5/frrr2fw4MH4fL7msieffJLU1FSmTJnCuHHj+Pe//x20eJTqDxzeetz2iH3KaiMHk+wuaGMPpZRSSqm9grGK4BJjjBhjJhljpvhv7xpjSo0xxxljRhpjjjfGlAUj4FBZtGgRc+fOZdGiRa1u93g8Xe7D6/V2uq7P5+O1114jMzOTzz//fJ9t8+fPZ8WKFSxevJjbbruNoqKiLsemVH8R5mvAY993BMsbN4Q0U0JDQ0OIolJKKaVUXxHUVQQPVTU1NSxZsoTHH3+c559/vrl88eLFzJs3j9NPP51x48YBVqJ14YUXMnbsWM455xzq6uoA+OSTT5g6dSoTJ07kiiuuoLGxEYCsrCxuvfVWpk2bxksvvbRf3x9//DHTp09n1KhRvP322/v0PX78eK655po2k74BAwYwfPhwduzY0Vx2//33M27cOCZNmsT5558PQFlZGWeeeSaTJk1i9uzZrFq1CoAFCxZw6aWXMm/ePIYOHcqrr77KLbfcwsSJEznppJNwu90A3HHHHcyYMYMJEyZw1VVX0fLi1T6fj6ysLCoqKprLRo4cqYmf6pVaS7DsyVnYxVCUvzVEUSmllFKqr3CEOoAD8t6voXB1cNtMnwgntz978Y033uCkk05i1KhRJCcns2zZMg477DAAli9fzpo1a8jOziY3N5eNGzfy+OOPM2fOHK644gr+9a9/8Ytf/ILLLruMTz75hFGjRnHJJZfw8MMPc/311wOQnJzM8uXLW+07NzeXpUuXsnXrVo455hi2bNlCREQEixYt4oILLuCMM87gtttuw+1243Q699l327ZtbNu2jREjRjSX/fWvf2X79u2Eh4c3Jzx/+MMfmDp1Kq+//jqffvopl1xyCStWrABg69atfPbZZ6xbt47DDz+cV155hbvuuouzzjqLd955hzPPPJNf/OIX3H777QBcfPHFvP3225x22mnNfdpsNs444wxee+01Lr/8cr799luGDh1KWlqrK/crFVLhpgGfI2qfspi04QCU79rM0BHjQxGWUkoppfoIHcHqhEWLFjWP9px//vn7jBjNnDmT7Ozs5seZmZnMmTMHgIsuuoglS5awceNGsrOzGTVqFACXXnopX3zxRfM+8+fPb7Pv8847D5vNxsiRIxk2bBgbNmzA5XLx7rvvcuaZZxIXF8esWbP44IMPmvd54YUXmDJlChdccAGPPPIISUlJzdsmTZrEhRdeyLPPPovDYeXXS5Ys4eKLLwbg2GOPpbS0lKoqa6X9k08+GafTycSJE/F6vZx00kkATJw4kdzcXAA+++wzZs2axcSJE/n0009Zu3btfs9j/vz5vPDCCwA8//zz7T5npULGGCJowOfcN8FKyrSWaq/foyNYSimllGpf3xrB6mCkqTuUlZXx6aefsnr1akQEr9eLiHD33XcDEB0dvU99a1HFth+3pmUbHbX3wQcfUFFRwcSJEwGoq6sjMjKSU089FbCSmQcffLDV9t555x2++OIL3nrrLe68805Wr25/RDA8PBywRqGcTmdzPDabDY/HQ0NDAz/72c/IyckhMzOTBQsWtHqeyuGHH86WLVsoLi7m9ddf53e/+127/SoVEl4XDnzQIsFKTs/GbeyY8h1t7KiUUkopZdERrA68/PLLXHzxxezYsYPc3Fzy8vLIzs7myy+/bLX+zp07+frrrwH473//y9y5cxk9ejS5ubls2bIFgGeeeYajjjqqU/2/9NJL+Hw+tm7dyrZt2xg9ejSLFi3iscceIzc3l9zcXLZv385HH33UfL5XW3w+H3l5eRxzzDH87W9/o7KykpqaGubNm8dzzz0HWOd2paSkEBcX16n4mpKplJQUampq2lz1UEQ466yz+NWvfsXYsWNJTk7uVPtK9ShXLQCmRYJlczgotqXi1GthKaWUUqoDmmB1YNGiRZx11ln7lJ199tltLiwxevRoHnroIcaOHUt5eTnXXHMNERER/Oc//+Hcc89l4sSJ2Gw2rr766k71P2TIEGbOnMnJJ5/MwoUL8fl8vP/++5xyyinNdaKjo5k7dy5vvfVWq21ceeWV5OTk4PV6ueiii5g4cSJTp07l2muvJSEhgQULFrBs2TImTZrEr3/9a5566qlOvjqQkJDAT3/6UyZMmMCJJ57IjBkzmrctXLiQhQsXNj+eP38+zz77rE4PVL2Wq74GAAnbf1S5PGwgsQ27ezokpZRSSvUx0nLFt1CaPn26ycnJ2ads/fr1jB07NkQRqd5I/0+o7lKdt47Yxw/n0/F/5thzf77Ptpz7LyK77AuSF+gollJKKdXficgyY8z01rbpCJZSSvk11FuLu9jDY/bbZhIySaaSysqKHo5KKaWUUn2JJlhKKeXXNEXQEbn/FMGwFGu10D07N/VoTEoppZTqW/pEgtWbpjGq0NL/C6o7uer8CVYrI1ixA63ryVUWbOnRmJRSSinVt/T6BCsiIoLS0lL9Yq0wxlBaWkpERESoQ1GHKE9DNQDOiNj9tqVmWtexayje3qMxKaWUUqpv6fbrYInIScB9gB14zBhzQBezysjIID8/n+Li4m6JT/UtERERZGRkhDoMdYjyNFjLtDujWhnBSh5MPWFIhV4LSymllFJt69YES0TswEPAD4B84DsRedMYs66zbTidTrKzs7srRKWUauZttBKs8Mj9EyxEKLanEV6T38NRKaWUUqov6e4pgjOBLcaYbcYYF/A8cEY396mUUgfF50+wIqL2nyIIUBUxiIRGvRaWUkoppdrW3QnWYCAv4HG+v6yZiFwlIjkikqPTAJVSoWRcVoIVGd16gtUYk0matxCv19eTYSmllFKqDwn5IhfGmEeNMdONMdNTU1NDHY5Sqj9z1VJnwokKd7a6WRKziJV69hQX9nBgSimllOorujvB2gVkBjzO8JcppVTv466jjnAinfZWN0emDgOgJE+vhaWUUkqp1nV3gvUdMFJEskUkDDgfeLOb+1RKqYMi7loaCMdmk1a3Jwy2roVVXbC1J8NSSimlVB/SrasIGmM8IvIL4AOsZdqfMMas7c4+lVLqYNk89TRI29dZS/FfC8tdqtfCUkoppVTruv06WMaYd4F3u7sfpZTqKoennsZ2EixndCKVxOCozO25oJRSSinVp4R8kQullOot7N56XLa2EyyAPc5M4mr1YsNKKaWUap0mWEop5ef01uO2R7Zbpyp6KAPcerFhpZRSSrVOEyyllPIL89XjsbWfYHkSh5NGGVVV5T0UlVJKKaX6Ek2wlFLKL8zXgNfRfoIVkW4tdFGwbV1PhKSUUkqpPkYTLKWU8gs3DfgcUe3WScwcC0BF3vqeCEkppZRSfYwmWEop5RdBI8bZfoKVnj0eAPcevdiwUkoppfanCZZSSgF43TjxQAcJVlhkDEWSgrNiWw8FppRSSqm+RBMspZQCfI011p2w6A7rloZnEle3s5sjUkoppVRfpAmWUkoB9XXVANjC2x/BAqiLzWaQJx+f19fdYSmllFKqj9EESymlgPpaK8Gyh8d0WFeSRxAvtRQW7erusJRSSinVx2iCpZRSQIM/wXJEdDxFMHrQaAD2bNel2pVSSim1ry4lWCJyt4hsEJFVIvKaiCQEbPuNiGwRkY0icmKXI1VKqW7UWNeUYMV2WDc1ewIAtbvWdmtMSimllOp7ujqC9REwwRgzCdgE/AZARMYB5wPjgZOAf4mIvYt9KaVUt3HXVQDgjI7vsG7SoBHUmzAo3tDNUSmllFKqr+lSgmWM+dAY4/E//AbI8N8/A3jeGNNojNkObAFmdqUvpZTqTp7aCgCc0Ykd1hW7g3znUGIr9VpYSimllNpXMM/BugJ4z39/MJAXsC3fX6aUUr2Sr6ESgIiYjhMsgMrYEQxybcMY051hKaWUUqqP6TDBEpGPRWRNK7czAur8FvAAzx1oACJylYjkiEhOcXHxge6ulFJB4auvACAqrnMJlkkdRwqVFOtKgkoppZQK4OiogjHm+Pa2i8hlwKnAcWbvn3J3AZkB1TL8Za21/yjwKMD06dP1T8FKqZDw1VfRaJzEx3a8yAVAzJBJsAkKNi9nQHpGxzsopZRSql/o6iqCJwG3AKcbY+oCNr0JnC8i4SKSDYwElnalL6WU6k7SUEkVUUQ4O7cez6BR0wCo2bmqO8NSSimlVB/T4QhWBx4EwoGPRATgG2PM1caYtSLyIrAOa+rgz40x3i72pZRS3cbmqqJOOr4GVpP41EwqicFWvL4bo1JKKaVUX9OlBMsYM6KdbXcCd3alfaWU6ikOVzX19pjO7yDC7vBhJFRv7r6glFJKKdXnBHMVQaWU6rOcnmoaDyTBAmrjR5Hp2YHH4+m4slJKKaX6BU2wlFIKiPDW4HYeWIJlTx9PjDSQt31jN0WllFJKqb5GEyyllAJifVW4wpIOaJ+EbGuhi+ItOd0RklJKKaX6IE2wlFLK6yHeVOOJTD6g3TLGzsBt7Lh3aoKllFJKKYsmWEqpfq+xuhibGEzUgSVYzoho8pxDiSld002RKaWUUqqv0QRLKdXvVZYUAGCPHXDA+5bFTyCrcSNery/YYSmllFKqD9IESynV71WV7gYgMiH9gPeVwVOJl1rytq0NdlhKKaWU6oM0wVJK9Xu1ZUUAxCUPPOB9U0cdDkDR+m+CGpNSSiml+iZNsJRS/Z6r0kqwElIHHfC+g0cfRqNx4s1fFuywlFJKKdUHaYKllFJVu2k0DpJS0g54V7szjB1hw4kr14UulFJKKaUJllJK4agtoFiSsdvtB7V/ZcJ4sl2bcbvdQY5MKaWUUn2NJlhKqX4vuqGQMseBryDYxDl0JtHSwNZ1Ok1QKaWU6u+CkmCJyI0iYkQkxf9YROR+EdkiIqtEZFow+lFKqe4Q7yqiNuLAVxBsMnjyMQCUrlscpIiUUkop1Vd1OcESkUzgBGBnQPHJwEj/7Srg4a72o5RS3cF4PST7SvHGDj7oNlIzRlEsSTh3fRvEyJRSSinVFwVjBOte4BbABJSdATxtLN8ACSJy4OsfK6VUNyst3I5DfNgSMw++ERHyYyczpGYlxqcXHFZKKaX6sy4lWCJyBrDLGLOyxabBQF7A43x/WWttXCUiOSKSU1xc3JVwlFLqgJXnWqv/RaSP7VI73ozZpFNKfu7mYISllFJKqT6qwwRLRD4WkTWt3M4AbgNu70oAxphHjTHTjTHTU1NTu9KUUkodsIaC9QAkDJ3QpXZSxx8NwO5Vn3Y1JKWUUkr1YY6OKhhjjm+tXEQmAtnAShEByACWi8hMYBcQON8mw1+mlFK9iineSKmJZdCgjC61kzl6OtVEYnZ8DVwTnOCUUkop1ecc9BRBY8xqY8wAY0yWMSYLaxrgNGNMIfAmcIl/NcHZQKUxpiA4ISulVPBEVW4hzz6ECOfBXQOric3hIDdyAmkVy4MUmVJKKaX6ou66Dta7wDZgC/Bv4Gfd1I9SSh08YxjQuIOK6OygNOfKOJxsk8euvNygtKeUUkqpvidoCZZ/JKvEf98YY35ujBlujJlojMkJVj9KKRUsnuo9xJlqPEkjg9LegMknAZCb815Q2lNKKaVU39NdI1hKKdXrFW2zFkAN7+IKgk0yxs6ikhhs2xYHpT2llFJK9T2aYCml+q2KHdYS7cnZk4LSntgd5MZNJ7v6O7xevR6WUkop1R9pgqWU6re8ezZQbSIZkjUiaG2a7KNIp5St65YFrU2llFJK9R2aYCml+q3w8s3k2QYTE+EMWpuZs84CoGTZ60FrUymllFJ9hyZYSql+K6U+l9LI4Kwg2CR5UDabHaNIyv8oqO0qpZRSqm/QBEsp1S/56ipINmW4EoOzgmCg8iE/YIxnI7t2bAt620oppZTq3TTBUkr1S0XbVwEQNnBM0NvOPPxcAHK/fC7obSullFKqd9MESynVL5XlWisIJg2dGPS2B46cyibHKAZvex7j09UElVJKqf5EEyylVL/UWLCeRuNkyPDgXAOrpeoJl5Dly2f1//Siw0oppVR/ogmWUqpfCi/fRJ5tELFRkd3S/vgTLqOSGLxL7sMY0y19KKWUUqr30QRLKdUvJdXnUhqZ1W3tR0TFsmnET5ja8C1LP/hvt/WjlFJKqd6lywmWiPxSRDaIyFoRuSug/DciskVENorIiV3tRymlgsXbWEeat4jGblhBMNC0825jmz2bsd/czOYcXbZdKaWU6g8cXdlZRI4BzgAmG2MaRWSAv3wccD4wHhgEfCwio4wx3q4GrJRSXVWwbQ0ZYnCmje7WfuxhEURc/ALVT53GyLfPIfe9ITjFR8XMGxl/whXd2rdSSimlQqOrI1jXAH81xjQCGGP2+MvPAJ43xjQaY7YDW4CZXexLKaWCojhvIwDJmd2zwEWgQVmjib72a74c+jPKwgYT6y7DtfqNbu9XKaWUUqHR1QRrFDBPRL4Vkc9FZIa/fDCQF1Av31+2HxG5SkRyRCSnuLi4i+EopVTHGvdsBSAtK/jXwGpNQmIy8y7/C9NufZ8tkZNIrNveI/0qpZRSqud1OEVQRD4G0lvZ9Fv//knAbGAG8KKIDDuQAIwxjwKPAkyfPr1fLbXlcrmoKt9DY00FjXXVuOqr8NRX466vxtdQg6+xBtNYg3HXYdyN+Dwu8HmwGQ82nxub8WA3HsTnwWa8GMCH0LRgmQ9BABEBEUQEI3Z84sBnc2JsTnw2B0ac+OxOsDnB7gR7GGJ3Io4wxB6GOMKwOcKwOcKxOcOwO8KxOcKwh0Vgc4bhcIbvvYVH4HCG4wyPIMwZTlh4BHZHl2aiKhV8FblUEU18YmqPd10fN5xBRTl4PR59b/RixufF63bh8Xpwud143B7cHg8+nwfj84LXC8ZrXefM5wZjXe/MIJjmn9YNALFhExs2u2ATG2KzYbfZsNkEm82G3WbHZrdjs9mx2+3YbLbm+2Kzg9gCbhK6F0YppVSHOvztbow5vq1tInIN8Kqx1iBeKiI+IAXYBWQGVM3wlx3SjM9HRWkRpYU7qC7Ow1W+G6oLkLpS7I3lOBsriPBUEu2tJNZXTZzUkdKJdr1GcOPALQ68OPBgx4MTj9itx+LAh82fTFm/zq2bP9My1q97A9iNFzseHMZDU2tO3DiMlzDxdMvr4jG25vg9+G/ixC1OvOLAK07/zYHXFobP5sQnTnziwDR9mRAbhoD7Ym++bz22fkrAfWufplcDIDB/NwE/rPvif40I2GPv6xe4/952xLTWZoufLfttsWS3YDDGitS0sl/gcTQB+7TaR6tt731u0vI5mJZ9BD6XlnG3vX9nNPW0TzcttlpNtv/l0dD69pZtthdZdt1qiuwDiWu3p+4RMWgsYXs8bN28muFjp4YggkOL1+2ipmIPtRXF1FVX0FBTgauuEldtJd6GakxjNTZXDXZ3DQ53LXZPHXZfA3ZvI3afC4dx4fTfwnATZlyE4yZMPDiwfklGhPpJtuAzgk+s5M2HzX8TDLa9Zf7PPxO4TaxtJmCbEcFg9/+0Bfy0Nf/EX9b0WbtvPcGH3Wpvn3Zb6UesevskiAFvVKs44B1uTItcMvCzt+Wr0spncXNd01y6/6dHQJstPzX2+zwNrN/aNpo/b9vTU39J7rCfTgXS9Wh74vnqlTAOfRujD2POOdeTlRId6lA6pat/Pn0dOAb4TERGAWFACfAm8F8R+QfWIhcjgaVd7CvkvB43e3ZtozRvI7VF2/CW5RJevZOY+t3EeUpI9pWTKB4SW+xXZaKotsVSa4uj3hlPVdQQ8sITITIJiU5CIuKxh8fgiIzBGRmHMzKWiOg4wqNjiYyOIyoymgi7rft/yRsDPg9ejwtXYyNudyPuxgY87kbr5rJ+el2NeD0ufO5GvO69942nEeN14fO4MB4XxutG/GXidYHPjfjvi89tjcL53IjPjcO4sPk8hHuqsRu3lQAaD/i/LggGm9n7dWLfrw0+xAR+tdj//t5fiXt/ve57v0n721vbv/VfwS1/Fcve7bJ/eWB9abW8ta8FrW/bvzwgFmmjvNXYW7Qre8ulle2d0dEe+3wxaaOytP4tqe12WuGzh1M14vQOoukeA8fPgxWwZ82nmmC1or6+gfI9edSU7qK+NB93ZSHemmJMXRn2+jLCXNYfqmJ8VcT5qoiVeuKB+HbadBkHtRJFvURSL5F4bOF4bWG4nHE02MPx2cPx+n/6bOEYezjGHuYfzXdg848uic26b/x/5DFiA5sdI47mpEHEIMb6idn7GAzG58UYgzE+jDH4fNYfVzA+fD4fGJ+1zedFmu/vLcfntUbK/Dfj8yEmsMxqS4wX648iPv9ja5sYL0LTfR9gbRNjfZY21bXhA59V1rTNZlz+95Uv4LPYtPp5bGuus395Uxq4bzrU+mfY3seBfyZr/TO6qV5b2/b9bN9Xe2221Jn+D/bzcR+9aJAyOKH0oiek+qS1DSnUu/vOWnldTbCeAJ4QkTWAC7jUP5q1VkReBNYBHuDnfXEFwbX/e5eq1e8SWbGZ1IZc0nx7GCg+Bvq3e4yNPbZUypzp5MVOJTc6DYkbSHjiIKJTMolLzSQ+NYO4qOiQ/KX8gImA3Ynd7iQyPJruufyqUr3DoBD1O3D4JIpJxLHjS+DGEEURGjU1VZTkb6G6cBuNJTvwVeRhqy0krL6YGFcxCb4ykqhu9bOn2kRSbYujzh5HQ1g8hc6h5Eck4g1PRKKSsEUnERadQFhUPFGxCUTFJhAdl0hUdDxhYRGEwX5//FJKKdU3XBrqAA5QlxIsY4wLuKiNbXcCd3al/VCrXvchh+3+L7vsGRREjSE3/iTsSdnEpA8jOXM0AwYPY5DDGbIvakqpvkdsNnYmHc6Y0s9oqK8jIjIq1CEFjcftYk/eFsrz1lFftAVv2Q6cNbuIqS8gxVtIElXEBNR3GzulkkCVPZnKiMGURk1lc3Qa9riBOBIGEpk0mNiUwSSmDCQ2MpLYkD0zpZRSqvP0DOt2TJi/AAn/G9lh4WSHOhil1CEjbNI5xC5+l5zFLzP95EtCHc4BMT4f5UU7Kdy+hupdG/CVbCG8ajvJDXkM9BUySLzNf3RqME722AZQGZ7O1oQxbI7LxJ40lOgB2cSnDyNl4FDSw5ytrqKklFJK9VWaYLUjJjYh1CEopQ5B4+aeTtHiZMK+fxx6aYJljKFoTyG7Ny6jLm8VjpL1JFRvJsOTSxL1JPnrNRgnBY7BlEUPpzDueCRlBFEDR5M8ZAwD0jMZYu/q1UCUUkqpvkUTLKWU6mF2h5Pc4Rcya+v9bPr6LUYdflpI46mtq2PnppWUb/8eb8Faois3MqhxG+mUNo8uVRLDrrBsVif/EJMyipjBYxiQNZ4Bg4eRbbeHNH6llFKqNxHTi9a2nD59usnJyQl1GEop1e1qaqqpuGc6xmYn/dZlOMO7f1kZn9dH/s4t7Nm8jPpdqwkr3UBq7WYyfbtwirUOkdvY2eUcQnnMSHwDxhGTOZmBow4jbsAQvf6SUkop5Sciy4wx01vbpiNYSikVAjExsWyc9/847MufsurB85hw3avYHM6gtV9ZXsKuTcupzF0Be9YRV7WJDFcuQ6SWIf46RZLCnsgRrEw6lrDBExgw4jAGZI0nyxlOVtAiUUoppfoXTbCUUipEDjvuPL7YtZ4jt/2DjXcfTdw5DzJw5IFdG6uyoozC7Wup2bkSb+E6Iis2MaB+G2mUNl8bqoZIdjmz2Zx6ApI2nvisKQwefRhpcUmkBf9pKaWUUv2aThFUSqkQMsbw1asPMnHVX4iXWjaGTaA6fRb25GzC4gZYF3g2BldNOe7qPfhqSgiv3UVMXR4p7gKSqGpuq9E42WnPpCJmOJ6UsURnTGDgiKmkZIxAbLrYhFJKKRUs7U0R1ARLKaV6gaKCnWx4518M3P0hw73bsEvrn81uY6dYkikJG0R9dCYmMZuItJEkZk8mPWss4WFhPRy5Ukop1f9ogqWUUn1ITW0te3bl0lC1p7ksMjaJhJSBxCekYNOlz5VSSqmQ0kUulFKqD4mJjiZm1HhgfKhDUUoppdQB0j+DKqWUUkoppVSQaIKllFJKKaWUUkGiCZZSSimllFJKBUmvWuRCRIqBHaGOo4UUoCTUQageo8e7/9Bj3X/ose5f9Hj3H3qs+4/eeKyHGmNSW9vQqxKs3khEctpaIUQdevR49x96rPsPPdb9ix7v/kOPdf/R1461ThFUSimllFJKqSDRBEsppZRSSimlgkQTrI49GuoAVI/S491/6LHuP/RY9y96vPsPPdb9R5861noOllJKKaWUUkoFiY5gKaWUUkoppVSQaIKllFJKKaWUUkGiCVY7ROQkEdkoIltE5NehjkcFj4hkishnIrJORNaKyHX+8iQR+UhENvt/JoY6VhUcImIXke9F5G3/42wR+db//n5BRMJCHaMKDhFJEJGXRWSDiKwXkcP1vX1oEpEb/J/ha0RkkYhE6Hv70CEiT4jIHhFZE1DW6ntZLPf7j/sqEZkWusjVgWrjWN/t/xxfJSKviUhCwLbf+I/1RhE5MSRBt0MTrDaIiB14CDgZGAdcICLjQhuVCiIPcKMxZhwwG/i5//j+GvjEGDMS+MT/WB0argPWBzz+G3CvMWYEUA78JCRRqe5wH/C+MWYMMBnruOt7+xAjIoOBa4HpxpgJgB04H31vH0qeBE5qUdbWe/lkYKT/dhXwcA/FqILjSfY/1h8BE4wxk4BNwG8A/N/XzgfG+/f5l/97e6+hCVbbZgJbjDHbjDEu4HngjBDHpILEGFNgjFnuv1+N9QVsMNYxfspf7SngzJAEqIJKRDKAU4DH/I8FOBZ42V9Fj/UhQkTigSOBxwGMMS5jTAX63j5UOYBIEXEAUUAB+t4+ZBhjvgDKWhS39V4+A3jaWL4BEkRkYI8EqrqstWNtjPnQGOPxP/wGyPDfPwN43hjTaIzZDmzB+t7ea2iC1bbBQF7A43x/mTrEiEgWMBX4FkgzxhT4NxUCaaGKSwXVP4FbAJ//cTJQEfDBre/vQ0c2UAz8xz8l9DERiUbf24ccY8wu4B5gJ1ZiVQksQ9/bh7q23sv6ve3QdgXwnv9+rz/WmmCpfk1EYoBXgOuNMVWB24x1DQO9jkEfJyKnAnuMMctCHYvqEQ5gGvCwMWYqUEuL6YD63j40+M+9OQMrqR4ERLP/FCN1CNP3cv8gIr/FOrXjuVDH0lmaYLVtF5AZ8DjDX6YOESLixEqunjPGvOovLmqaUuD/uSdU8amgmQOcLiK5WFN9j8U6RyfBP60I9P19KMkH8o0x3/ofv4yVcOl7+9BzPLDdGFNsjHEDr2K93/W9fWhr672s39sOQSJyGXAqcKHZe/HeXn+sNcFq23fASP9qRGFYJ9O9GeKYVJD4z8F5HFhvjPlHwKY3gUv99y8F3ujp2FRwGWN+Y4zJMMZkYb2PPzXGXAh8Bpzjr6bH+hBhjCkE8kRktL/oOGAd+t4+FO0EZotIlP8zvelY63v70NbWe/lN4BL/aoKzgcqAqYSqDxKRk7Cm959ujKkL2PQmcL6IhItINtbCJktDEWNbZG8yqFoSkR9inbthB54wxtwZ2ohUsIjIXOBLYDV7z8u5Des8rBeBIcAO4DxjTMsTbFUfJSJHAzcZY04VkWFYI1pJwPfARcaYxhCGp4JERKZgLWgSBmwDLsf6g6K+tw8xIvJHYD7W9KHvgSuxzsXQ9/YhQEQWAUcDKUAR8AfgdVp5L/uT7AexponWAZcbY3JCELY6CG0c698A4UCpv9o3xpir/fV/i3VelgfrNI/3WrYZSppgKaWUUkoppVSQ6BRBpZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZTqZUQkS0SMiDhCHYvqH0RkrYgcHeo4lFLqUKAJllJKqT5PRBaKSI3/5hIRd8Dj90IdX29njBlvjFncHW2LSJKIFIvIku5oXymlehsxxoQ6BqWUOqSIiMMY4+nC/lnAdsDZlXb6KxFZAIwwxlzUyrYuHZue1JdibY+I/BsYDdiMMXNDHY9SSnU3HcFSSqkgEJFcEblVRFYBtSLiEJHZIvI/EakQkZWBU7BEZLGI/EVElopIlYi8ISJJbbR9uYisF5FqEdkmIv/XYvsZIrLC385WETnJXx4vIo+LSIGI7BKRP4mIvYPnMVxEPhWRUhEpEZHnRCQhYFuZiEzzPx7kH5k42v/4dP9Uswr/8xvb4vW5SURWiUiliLwgIhEH/kofuDaOjRGREQF1nhSRPwU8PtX/mlb4j+GkTvZ1tIjki8ht/tcvV0QuDNh+ioh87z9Wef5ksGlb09TQn4jITuBTf/lLIlLof92+EJHxLeL+l4i85x+t+0pE0kXknyJSLiIbRGRqJ1+j4zvzHA+EiBwBTAD+E+y2lVKqt9IESymlgucC4BQgAUgD3gH+BCQBNwGviEhqQP1LgCuAgYAHuL+NdvcApwJxwOXAvQFJzkzgaeBmf79HArn+/Z70tzsCmAqcAFzZwXMQ4C/AIGAskAksADDGbAVuBZ4VkSisL81PGWMWi8goYBFwPZAKvAu8JSJhAW2fB5wEZAOTgMtaDUBkrj+xaet2MKMgzcemo1Ehf0LyBPB/QDLwCPCmiIR3sq90IAUYDFwKPCoio/3barGOe4I/nmtE5MwW+x+F9dqf6H/8HjASGAAsB55rUf884Hf+PhuBr/31UoCXgX90Mu5Wiciv2zse7exnBx4EfgHodBmlVL+hCZZSSgXP/caYPGNMPXAR8K4x5l1jjM8Y8xGQA/wwoP4zxpg1xpha4PfAea2NMBlj3jHGbDWWz4EPgXn+zT8BnjDGfOTvZ5cxZoOIpPn7ut4YU2uM2QPcC5zf3hMwxmzxt9VojCnG+nJ+VMD2fwNbgG+xEsPf+jfNB97x7+sG7gEigSNavD67jTFlwFvAlDZiWGKMSWjndjDn8gQem45cBTxijPnWGOM1xjyFlbjMPoD+fu9/DT/HSrTPAzDGLDbGrPYfq1VYSelRLfZd4D9m9f59njDGVBtjGrGS3ckiEh9Q/zVjzDJjTAPwGtBgjHnaGOMFXsBKrg+aMeav7R2Pdna9FvjWGLOsK/0rpVRfoytUKaVU8OQF3B8KnCsipwWUOYHP2qi/w789pWWjInIy8AdgFNYfxqKA1f7NmVijRS0N9bdXICJNZbYWfe7Hn5jdh5XAxfr3KW9R7d/Am8BV/i/9YI147WiqYIzxiUge1ihOk8KA+3X+fXpKu8+7haHApSLyy4CyMDofb7k/aW6yo2lfEZkF/BVr2lwYEA681Fas/oT7TuBcrJFBn39TClDpv18UsG99K49jOhl30IjIIKwE67Ce7lsppUJNR7CUUip4AqdB5WGNUAX+tT/aGPPXgDqZAfeHAG6gJLBB/7S0V7BGhNL8IwbvYk3la+pneCux5GGNuqQE9B9njBnfSt1Af/Y/j4nGmDiskbjmDE1EYoB/Ao8DC2TveWO7sRKTpnrif367OuhvPyIyT/auANjabV7Hreyn5RS1OqxEtUl6wP084M4Wxy7KGLOok30likh0wOMhWK8PwH+xktNMY0w8sJCA17eVWH8MnAEcD8QDWf7ylvt0G//5ZG0ejzZ2m4k1wrlORAqxkvaZ/nPJ2j0PUCml+jpNsJRSqns8C5wmIieKiF1EIvwLIGQE1LlIRMb5z2e6A3jZP60rUNMoRzHg8Y9mnRCw/XHgchE5TkRsIjJYRMYYYwqwphL+XUTi/NuGi0jL6WgtxQI1QKWIDMY6tyvQfUCOMeZKrKlvC/3lLwKn+ONwAjdiJXj/6+iFaskY86UxJqad25cH2mYrVgA/9h+bk9h3mt6/gatFZJZYov2LU8RC88IST3bQ/h9FJMyfDJ7K3lGqWKDMGNPgP3/uxx20E4v1OpZiJYR/PoDnGBTGmD+3dzza2O09rGRwiv92O/A9MKWV/+NKKXVI0QRLKaW6gTEmD2vk4Tas5CgPK1kJ/Nx9BmshikIgAmtKVct2qv3lL2JN1fsx1ghI0/al+Be+wJoy9jl7R5IuwUrQ1vn3fRlrVKE9fwSm+dt6B3i1aYOInIG1SMU1/qJfAdNE5EJjzEas0a4HsEbhTgNOM8a4OugvVK7DirECuBB4vWmDMSYH+CnWAg3lWOecXRawbybwVTttF/r32421IMXVxpgN/m0/A+4QkWqspOPFDuJ8GmuK4S6s4/hNR0+sN/Cff1bYdMP6/+T231dKqUOaXgdLKaVCQEQWA88aYx4LdSyq8/yrIq4EJvkX82i5/Wis45rRcptSSqn+QRe5UEoppTrJPyI3tsOKSiml+i2dIqiUUv2MiCxsY8GChR3vrfoiERnSzkIVQ0Idn1JKHUp0iqBSSimllFJKBYmOYCmllFJKKaVUkPSqc7BSUlJMVlZWqMNQSimllFJKqTYtW7asxBiT2tq2XpVgZWVlkZOTE+owlFJKKaWUUqpNIrKjrW06RVAppZRSSimlgkQTLKWUUkoppZQKEk2wlFLqIBSVVfDR/75DV2JVSimlVKBedQ5Wa9xuN/n5+TQ0NIQ6FNXHREREkJGRgdPpDHUo6hC06dHL+EHDZ3xk/5wfzJoS6nCUUkop1Uv0+gQrPz+f2NhYsrKyEJFQh6P6CGMMpaWl5Ofnk52dHepw1CHG01DDvIbPAPAufRxmPRDiiJRSSinVW/T6KYINDQ0kJydrcqUOiIiQnJysI5+qW5Tkrm2+P6BsWQgjUUoppVRv0+sTLECTK3VQ9P+N6i5lBbkAbHOOZIRvG9X1jaENSCmllFK9Rp9IsJRSqjepLckDoHLI8cRJPTs2r+1gD6WUUkr1F5pgdYKIcOONNzY/vueee1iwYEHoAgrwzTffMGvWLKZMmcLYsWOb41q8eDH/+9//utT2SSedREJCAqeeemoQIlXq0CHVu/EYG6mTTgCgdIcmWEoppZSydDnBEpFMEflMRNaJyFoRuc5fniQiH4nIZv/PxK6HGxrh4eG8+uqrlJSUBLVdYww+n69LbVx66aU8+uijrFixgjVr1nDeeecBwUmwbr75Zp555pkutaHUochZW0AxiQwaNgGAhj1bQhyRUkoppXqLYKwi6AFuNMYsF5FYYJmIfARcBnxijPmriPwa+DVwa1c6+uNba1m3u6rLAQcaNyiOP5w2vt06DoeDq666invvvZc777xzn23FxcVcffXV7Ny5E4B//vOfzJkzhwULFhATE8NNN90EwIQJE3j77bcBOPHEE5k1axbLli3j3Xff5cEHH+S9995DRPjd737H/PnzWbx4MQsWLCAlJYU1a9Zw2GGH8eyzz+53XtGePXsYOHAgAHa7nXHjxpGbm8vChQux2+08++yzPPDAA4wZM6bNOLdu3cqWLVsoKSnhlltu4ac//SkAxx13HIsXL273tXnppZf44x//iN1uJz4+ni+++IKGhgauueYacnJycDgc/OMf/+CYY47hySef5PXXX6e2tpbNmzdz00034XK5eOaZZwgPD+fdd98lKSmJf//73zz66KO4XC5GjBjBM888Q1RU1D79zp49m8cff5zx461jd/TRR3PPPfcwffr0duNVKhgiG/ZQaktiYEwq9UTgqNwR6pCUUkop1Ut0eQTLGFNgjFnuv18NrAcGA2cAT/mrPQWc2dW+QunnP/85zz33HJWVlfuUX3fdddxwww189913vPLKK1x55ZUdtrV582Z+9rOfsXbtWnJyclixYgUrV67k448/5uabb6agoACA77//nn/+85+sW7eObdu28dVXX+3X1g033MDo0aM566yzeOSRR2hoaCArK4urr76aG264gRUrVjBv3rx241y1ahWffvopX3/9NXfccQe7d+/u9Otyxx138MEHH7By5UrefPNNAB566CFEhNWrV7No0SIuvfTS5tX81qxZw6uvvsp3333Hb3/7W6Kiovj+++85/PDDefrppwH40Y9+xHfffcfKlSsZO3Ysjz/++H79zp8/nxdffBGAgoICCgoKNLlSPSbMXUWdPR5EKHEOIqY+P9QhKaWUUqqXCOp1sEQkC5gKfAukGWMK/JsKgbQ29rkKuApgyJAh7bbf0UhTd4qLi+OSSy7h/vvvJzIysrn8448/Zt26dc2Pq6qqqKmpabetoUOHMnv2bACWLFnCBRdcgN1uJy0tjaOOOorvvvuOuLg4Zs6cSUZGBgBTpkwhNzeXuXPn7tPW7bffzoUXXsiHH37If//7XxYtWtTqqFN7cZ5xxhlERkYSGRnJMcccw9KlSznzzDM79brMmTOHyy67jPPOO48f/ehHzc/pl7/8JQBjxoxh6NChbNq0CYBjjjmG2NhYYmNjiY+P57TTTgNg4sSJrFq1CrCSsN/97ndUVFRQU1PDiSeeuF+/5513HieccAJ//OMfefHFFznnnHM6Fa9SwRDurcETNgiAmqgMkiu2YYzRlSuVUkopFbwES0RigFeA640xVYFfNIwxRkRMa/sZYx4FHgWYPn16q3V6i+uvv55p06Zx+eWXN5f5fD6++eYbIiIi9qnrcDj2Ob8q8HpM0dHRneovPDy8+b7dbsfj8bRab/jw4VxzzTX89Kc/JTU1ldLS0v3qtBUn7L+c+YF8SVy4cCHffvst77zzDocddhjLlrV/TaDA52Sz2Zof22y25ud32WWX8frrrzN58mSefPLJVhPGwYMHk5yczKpVq3jhhRdYuHBhp2NWqqsifLV4nLEAeOKHkF3xNZV1LhKiwzvYUymllFKHuqCsIigiTqzk6jljzKv+4iIRGejfPhDYE4y+QikpKYnzzjtvnylrJ5xwAg888EDz4xUrVgCQlZXF8uXLAVi+fDnbt29vtc158+bxwgsv4PV6KS4u5osvvmDmzJmdjumdd97BGCsv3bx5M3a7nYSEBGJjY6muru4wToA33niDhoYGSktLWbx4MTNmzOh0/1u3bmXWrFnccccdpKamkpeXx7x583juuecA2LRpEzt37mT06NGdbrO6upqBAwfidrub22nN/Pnzueuuu6isrGTSpEmdbl+prooydZhwK8GyJw0jQtwU7NLzsJRSSikVnFUEBXgcWG+M+UfApjeBS/33LwXe6GpfvcGNN964z2qC999/Pzk5OUyaNIlx48Y1j6ScffbZlJWVMX78eB588EFGjRrVantnnXUWkyZNYvLkyRx77LHcddddpKendzqeZ555htGjRzNlyhQuvvhinnvuOex2O6eddhqvvfYaU6ZM4csvv2wzToBJkyZxzDHHMHv2bH7/+98zaJA19WnevHmce+65fPLJJ2RkZPDBBx8A1rTEpvOtbr75ZiZOnMiECRM44ogjmDx5Mj/72c/w+XxMnDiR+fPn8+STT+4zctWR//f//h+zZs1izpw5jBkzprn8zTff5Pbbb29+fM455/D88883r5yoVE8w7gbCcUN4PADRA0cAULFrcyjDUkoppVQvIU2jHwfdgMhc4EtgNdA0J+42rPOwXgSGADuA84wxZe21NX36dJOTk7NP2fr16xk7dmyXYlRta7na4aFG//+oYGusLCL83lF8MeIWjrzot9TsXk/Mo7P5dOwdHDv/ulCHp5RSSqkeICLLjDGtrrDW5XOwjDFLgLZO2jmuq+0rpVRv0lBdTjhAeBwAMQOGASDlOkVQKaWUUkFeRVD1PQsWLAh1CEr1KY21FQDYIq0pgjjCKZNEHDWdv7yBUkoppQ5dQVnkQiml+guXP8GyR8Y1l1U404hqKGhjD6WUUkr1J5pgKaXUAXDXWhcbt0fFN5fVRQ0iydPnF0pVSimlVBBogqWUUgfAU28lWM6ABMsbO5h0U0J1vStUYSmllFKql9AESymlDoC3oQaA8MjY5jJ7YiaR4qKoUKcJKqWUUv2dJlid9PrrryMibNiwoc06ubm5TJgwIWh9bty4kaOPPpopU6YwduxYrrrqKsC6SPC7777bpbavuOIKBgwYENR4leoPvI3+BCt67zlYkalDASgv2BKSmJRSSinVe2iC1UmLFi1i7ty5LFq0qNXtHo+ny314vd59Hl977bXccMMNrFixgvXr1/PLX/4SCE6Cddlll/H+++93qQ2l+iPTWAdAVHRMc1lCurVUe+2e3FCEpJRSSqlepG8t0/7er6FwdXDbTJ8IJ/+13So1NTUsWbKEzz77jNNOO40//vGPACxevJjf//73JCYmsmHDBj788EM8Hg8XXnghy5cvZ/z48Tz99NNERUXxySefcNNNN+HxeJgxYwYPP/ww4eHhZGVlMX/+fD766CNuueUWzj///OZ+CwoKyMjIaH48ceJEXC4Xt99+O/X19SxZsoTf/OY3nHrqqfzyl79kzZo1uN1uFixYwBlnnMGTTz7Ja6+9RmVlJbt27eKiiy7iD3/4AwBHHnkkubm57T7vzz//nOuusy6cKiJ88cUXxMTEcMstt/Dee+8hIvzud79j/vz5LF68mD/84Q8kJCSwevVqzjvvPCZOnMh9991HfX09r7/+OsOHD+ett97iT3/6Ey6Xi+TkZJ577jnS0tL26ff888/n4osv5pRTTgGsZPDUU0/lnHPO6dwxVaob+dy11JswosLCmssSB1oJlqc8L1RhKaWUUqqX0BGsTnjjjTc46aSTGDVqFMnJySxbtqx52/Lly7nvvvvYtGkTYE3r+9nPfsb69euJi4vjX//6Fw0NDVx22WW88MILrF69Go/Hw8MPP9zcRnJyMsuXL98nuQK44YYbOPbYYzn55JO59957qaioICwsjDvuuIP58+ezYsUK5s+fz5133smxxx7L0qVL+eyzz7j55pupra0FYOnSpbzyyiusWrWKl156iZycnE4/73vuuYeHHnqIFStW8OWXXxIZGcmrr77KihUrWLlyJR9//DE333wzBQXWeScrV65k4cKFrF+/nmeeeYZNmzaxdOlSrrzySh544AEA5s6dyzfffMP333/P+eefz1133bVfv/Pnz+fFF18EwOVy8cknnzQnW0qFnKuOOsKJDLM3F9mik2kgDFvVrhAGppRSSqneoG+NYHUw0tRdFi1a1DySc/7557No0SIOO+wwAGbOnEl2dnZz3czMTObMmQPARRddxP33388PfvADsrOzGTVqFACXXnopDz30ENdffz1gJRStufzyyznxxBN5//33eeONN3jkkUdYuXLlfvU+/PBD3nzzTe655x4AGhoa2LlzJwA/+MEPSE5OBuBHP/oRS5YsYfr06Z163nPmzOFXv/oVF154IT/60Y/IyMhgyZIlXHDBBdjtdtLS0jjqqKP47rvviIuLY8aMGQwcOBCA4cOHc8IJJwDWyNtnn30GQH5+PvPnz6egoACXy7XPa9fk5JNP5rrrrqOxsZH333+fI488ksjIyE7FrFR3E3cddUSQ7Aj4+5QIpY4BRNTpxYaVUkqp/k5HsDpQVlbGp59+ypVXXklWVhZ33303L774IsYYAKKjo/epLyLtPm5NyzYCDRo0iCuuuII33ngDh8PBmjVr9qtjjOGVV15hxYoVrFixgp07dzJ27NiDjqfJr3/9ax577DHq6+uZM2dOuwt8AISHhzfft9lszY9tNlvzOWq//OUv+cUvfsHq1at55JFHaGho2K+diIgIjj76aD744ANeeOGFNhNQpULB5qmjUSL2K68JTyfeVRSCiJRSSinVm2iC1YGXX36Ziy++mB07dpCbm0teXh7Z2dl8+eWXrdbfuXMnX3/9NQD//e9/mTt3LqNHjyY3N5ctW6wVxp555hmOOuqoDvt+//33cbvdABQWFlJaWsrgwYOJjY2lurq6ud6JJ57IAw880Jz0ff/9983bPvroI8rKyprPg2oaXeuMrVu3MnHiRG699VZmzJjBhg0bmDdvHi+88AJer5fi4mK++OILZs6c2ek2KysrGTx4MABPPfVUm/Xmz5/Pf/7zH7788ktOOumkTrevVHeze+pbTbBc0YNJ9RXj8vhCEJVSSimlegtNsDqwaNEizjrrrH3Kzj777DZXExw9ejQPPfQQY8eOpby8nGuuuYaIiAj+85//cO655zJx4kRsNhtXX311h31/+OGHTJgwgcmTJ3PiiSdy9913k56ezjHHHMO6deuYMmUKL7zwAr///e9xu91MmjSJ8ePH8/vf/765jZkzZ3L22WczadIkzj777ObpgRdccAGHH344GzduJCMjg8cffxyAhQsXsnDhQgD++c9/MmHCBCZNmoTT6eTkk0/mrLPOYtKkSUyePJljjz2Wu+66i/T09E6/ngsWLODcc8/lsMMOIyUlpbk8JyeHK6+8svnxCSecwOeff87xxx9PWMBiAkqFmsNTh8u2f4IlCZkMkAqKyipDEFXfs6eslLee/gdbCkpCHYpSSikVVNI06tFtHYicBNwH2IHHjDFtnkg1ffp003IRhvXr1zdPd1MH5sknnyQnJ4cHH3ww1KGEjP7/UcGW++fD2GOSmPnbj/Yp3/TBI4z6+haWn/kZ06ZMC1F0fcfi+6/k6LKX+CzsaI657Y1Qh6OUUkodEBFZZoxpdWGDbh3BEhE78BBwMjAOuEBExnVnn0op1Z3CvPV47PsvuhKbZi3YUlO0vadD6nN8Hjczy94EYE7jl2zbVRDiiJRSSqng6e4pgjOBLcaYbcYYF/A8cEY396n8Lrvssn49eqVUdwjzNeB17J9gJQ2yroXVWLqjp0Pqc3ZuWkEUjaxMO4sw8ZL33duhDqnP+N/n7/PFH47io9efDnUofcq6bTt45/E72FNaFupQlFL9QHcnWIOBwCtv5vvLmonIVSKSIyI5xcXFrTbS3dMY1aFJ/9+o7hBuWk+wwpMyATAVerHhjpRu/gaA+KN+Tj1hyM5vQxxR32CMIe6LBRwpKxix4s80NLpCHVKfYIzB++x8Tsn7O2ueuTHU4Sil+oGQL3JhjHnUGDPdGDM9NTV1v+0RERGUlpbql2V1QIwxlJaWEhGx/2IESnVFBI0YR9T+GxzhlNkSCavVa2F1RArXUGfCGThyCvnhI0iqXBvqkPqEol25TPCuZ7cjk2wK2LDss1CH1Cds3baFib71AMwuf4e6utoQR6SUOtR194WGdwGZAY8z/GWdlpGRQX5+Pm2NbinVloiICDIyMkIdhjqUeN048eBztn7tukpnGjENhT0cVN/jrNpJoS2NYU4n1UkTGbP7deoaGomKCO94535s95ovSQcqjvwDgz69kop1n8ERJ4Y6rF6vdNUHjACWj/gF07Y8yMqcj5h85JmhDkspdQjr7gTrO2CkiGRjJVbnAz8+kAacTifZ2dndEZtSSh0Q46pBAAlvZQQLaIgaSFLZRowxB3RR7/4mtmE3ZeGDAHAOmkRUwQts2LaRMeMmhTiy3q0ufxU+IwyffiK5nw8lqfi7UIfUJ/jyl1NDJGPOvBn33Q9Tu+FT0ARLKdWNunWKoDHGA/wC+ABYD7xojNG5IEqpPqmxrgYACWt9BMsbm8FASiitaezJsPoWY0j1FlIXbY0uJwwZD0D5zjWhjKpPiKzYRIEtjfCoOErixjGwcYtOn++E6OqtFDoziYpJYKdjKDFl+n9NKdW9uv0cLGPMu8aYUcaY4caYO7u7P6WU6i6NddUA2NpIsBxJmUSKi8JCPQ+rLd7aMqJpwB1rJVgDsicA0Fi4IZRh9QnJddvZE2HN6JAB40mlgt2780McVe+X7tpJeZT1uhXHjmNIw0bQxFQp1Y1CvsiFUkr1FQ11VQDYwltPsKJSswCoLNjWUyH1OZUFWwGQhCEAhMelUi7xOMq2hDKsXs/4fAzwFtEYOxSAhOwpAOzauCyEUfV+nrpKBlBGQ/xwALzpk0mghpLd+v9NKdV9NMFSSqlOcvmnCDoiYlrdnjjQuhZWXYleC6stVcXWiEtk0t4rdhSHDSG+NjdEEfUNpcUFREkjkmitGzVw5FQAGnbrdLf2lO32J/RJ1ghW/JCJAOzetDJkMSmlDn2aYCmlVCe5GqwEyxnZeoIVk2Z9ifOU7+yxmPqaujJrIdnYlL0rfNbGDWOQJw+vT6dttaXCP/LnTM4CICppMBXE4ixZH8Koer/KIuuPHZEp1ojpkFFTAKjZpaeDK6W6jyZYSinVSe56f4LVxgiWRCXTQBj2Kj0vpi3uygIAktICruCRPJJkqaJg9wFdxaNfqS3aDkD0AP+quiIUhGWTWKNT3dpTV2wlWInpWQDEpQykgljspZtDGJVS6lCnCZZSSnWS1z+CFR4V23oFEcodaUTVFfRgVH1MdSHlJoaUhL2vYfTgsQDs2b46VFH1eu6yXACSBg1vLquKG0mmOxfj84Uoqt7PU5GPzwipA4c0lxU4hxBbsz2EUSmlDnWaYCmlVCd5GmuBdhIsoCYinXh3UU+F1OfY64opk0Qc9r2/flKGWku11xZuDFVYvV9VAXUmnKTkAXvLUkcTLQ2UFug5f22R6gJKSCA2eu+166pihjHQrdN4lVLdRxMspZTqJJ8/wYqIimuzjjtmEGmmhDqXp6fC6lMiGoupdiTtU5Y4aDgeY8OUbA1RVL2fvbaQElsS9oDENGrQGAAKdeSvTeF1hZQ5UvYp8yaPJJEqqkoKQxSVUupQpwmWUkp1knFZCVZkdOvnYAFIQiYDpILdpRU9FFXfEusupS48dZ8ycYSxx55GeHVuaILqA6Ia9lDp2Pd1a7qGWO1uvYZYW2Jde6gJG7BPWfhAa0pq0fZVoQhJKdUPaIKllFKd5aql3oQRFR7WZpXwZOs6RSW79ByP/RhDoq8Md2TqfpvKI4aQWJ8XgqD6hjh3MfUR+yYKAwZlU2fCMSW6YENbkrwlNEYN3Kcseai1VHt1vq4kqJTqHppgKaVUZ7nrqCecMEfbH51x6dYqbzV7cnsoqL7DU1tGGB5MTPp+2xrjsxjs243L7Q1BZL2b8flI9pXhiUrbp1xsNgocg4mq0mS+NQ015cRQh4kbtE/5oKEjaTROvMW6AqNSqntogqWUUp1kd9dSJ5Ht1mm62LCrVE+ib6miyBqhcsTvn2DZkocTLY3s3pXbw1H1ftXlewgTD7RIFAAqooaS3Kj/11pTutta/MOZmLFPeZjTwS7bQMIrt4UiLKVUP6AJllJKdZLdXUOdRLVfJ8H/Za5Sr4XVUmWx9ZpEJA7eb1v0oNEAlO7QC+e2VFbYlCjs/7q54oeT7tuDq6G+p8Pq9SqKcgGIShmy37bSyKEk1mtiqpTqHppgKaVUJzk9tTTY2k+wcIRTbkskvHZ3zwTVh9SVWQlWbGrGfttSh44DdKn21lTvsRKB6JTM/bbZB4zELobC3HU9HVavV1dijZg2XWQ4UGNcNuneAnwedw9HpZTqDzTBUkqpTgrz1tBoi+6wXlVYOrGNerHhllwV1muSmLb/iEJ8ejZu7FCqS7W31OhPTBMG7J9gxWVYiWn5Tl2woSVvhfW6pQwcut82W8pInOKlJH9TT4ellOoHupRgicjdIrJBRFaJyGsikhCw7TciskVENorIiV2OVCmlQizcW0ejveMEqz56MAO8RXi8vh6Iqu+Q6gKqTSTJSUn7b7M7KbIPJKJaL5rbkrvSGg1NHrh/YpruX6q9UUf+9iPVuyklnojI/UedYwZb1xAr1ZE/pVQ36OoI1kfABGPMJGAT8BsAERkHnA+MB04C/iUi9i72pZRSIRXhq8XrbPsaWE28CdkMppiiytoeiKrvcNQWUiJJ2G3S6vaKiEySGnSp9pZs1QWUEk94+P4LrCQkJlFMIvZyHflrKaK+kHJ7SqvbUrPGA1BXoNcQU0oFX5cSLGPMh8YYj//hN0DTxPozgOeNMY3GmO3AFmBmV/pSSqlQizJ1+MI6TrAcKcP804/0S2+gyIY9VDlb/8IL0BiXxWBfAY1uPS8mUER9IRVtJAoAhc5MYmtyey6gPiKmcQ814WmtbktLG0SFiYEyXapdKRV8wTwH6wrgPf/9wUDgnyHz/WX7EZGrRCRHRHKKi4uDGI5SSgWR100ELgiP7bBq9MBRANQU6PkdgeLcJdSGD2hzuz11OJHiYneeLp8dKM5VRFXE/kvbN6mOySLNrSN/LaV4i3FFtf662WzCbkcGUdW5PRuUUqpf6DDBEpGPRWRNK7czAur8FvAAzx1oAMaYR40x040x01NTUw90d6WU6hHehmoApBMJVnKmlWB59EKme/l8JJn9L5YbKGagf6n2nTptq5kxDPDuoTFq/2tgNfEmDieeGuoqinowsN6turKMeKnFF7f/ipVNKqOGkqrXEFNKdQNHRxWMMce3t11ELgNOBY4zxhh/8S4gcLmjDH+ZUkr1SbVV5cQBEhHXYd3IxAzqCcNWkdvtcfUVDZVFRODFxA5ss86ALGtFvHod+WtWVVlKnDRg4ttOFMLTx8A2KNq2huxpbSew/Unprq3EAo7k/VcQbOJOGEZK9Qe466twRnb8vlZKqc7q6iqCJwG3AKcbY+oCNr0JnC8i4SKSDYwElnalL6WUCqW66goAHFHxHVe22dhjH0hUjf51vElZkbU6oCOh1dniAMSlZePCgSnTc9ealPnP43Mm7b+CYJPEIVZiWpWvF2luUllgvW4xacParOMcYI0079muS9wrpYKrq+dgPQjEAh+JyAoRWQhgjFkLvAisA94Hfm6M8XaxL6WUCpn66lIAwjqTYAEVERkkNurAfZOaPdY5QlHJ+1/LqZnNTpF9IJG6VHuzqj3W+WjRA7LarDM4axQuY8ezR5dqb9JQkgtASsaINuvEZYwFoDxPl2pXSgVXh1ME22OMafOTyxhzJ3BnV9pXSqneorHKn2DFtr2aWyB33FAG1SzF5fYQ5uzSR+0hod5/sdz4tHYSLKAicgjJtTry16SxxHotEgcOb7NOVEQE22UgYZW6OEgTU76TBuMkeUDbUysHZY/DZ4TGQp2SqpQKrmCuIqiUUocsb20JABHxnVuMx54ynAhxsytve3eG1Wd4KnbjNUJyWttT3QBc8VkM8hXS4NKl2gFMRR6NxkFKWttTKwFKIoaQUKcjf03CavIotqUitra/5iQmxFMoKXoNMaVU0GmCpZRSneCrtUawouLbXmY8UMygkYCuiNfEVO2mTOKJi45ot549ZYSVmO7QL70AzppdFEsKDkf7o6B1sdmke3eD19Nuvf4itr6AivC2F1RpsseZQWytJqZKqeDSBEsppTrB1JbRaJzExXZutbG0odb5HbWFm7szrD4jsnYXpY40RKTderGDrKXay/J0wQaAyPoCKsLavgZWs+SROPFSWaCXBgBI9hZRH9X+qB9Y1xBLd+dB8yLISinVdZpgKaVUZ9SXUU4McVHOTlWPSxuGGzumTM+LAUh07aY6su3zYZqkZo0HoF7PiwEgyV1EY3THCVbUoDEAFO/QFfFqqitJogoT3/75fgC+xOFEU099eUEPRKaU6i80wVJKqU6wNZRTbYvtcASmmd1BsT2NiKrcbo2rL/C4GhngK8Yd1/75VwBxqUNoIAzRpdqpqChnAGX4EtpearxJij8xrdulI3+7c63kPDwlq8O6Ef6LW+/Zvro7Q1JK9TOaYCmlVCeEuSqos3duifYm5ZFDSWnUFfH27NqGQ3zYk7I7rmyz+Zdqz+32uHq7Qv/1mcLSR3dYd/CgDMpNDL5SnSJYusNadj3FP023Pc3XENul50oqpYJHEyyllOqESE8ljc4DS7Aa40eQ6dtNfYOrm6LqG8ryrC+vMQNHdqp+ZdQQUhrzuzOkPqHKPxqVmNlxohDmsLHLPpioKl21srHQet3Sh03ssG7G0JE0GifuIj1XUikVPJpgKaVUJyR4S2kI79wS7U3saaMIFze7dvTvC8A2FFgjCslDJ3Sqvjs+m0GmkPqGxu4Mq9fzFFlT3dKzx3eqfnnkUJIbdMTUUb6FEknGEZXQYd2oiHB22dJxVuqUVKVU8GiCpZRSHTCNNcRSh7sTiw0Eih1sTT8q37muO8LqM2wlGyk3MQxI73iRCwDbgLGEiZfd2/r3gg3h5RvZJWmERcZ0qr4rYTjJpgxvfWU3R9a7JdVtpywyq9P1yyKHklCnialSKng0wVJKqQ5UF+cBYI8fdED7pfmnKDUW9u/zO6KqtrLbOQSbvXO/cuL8I11luau6M6xeL7V2M3uiOjetEiDcf65WUT9OTKvq6hnm20F90phO7+OKH0a6twCvu39P5VVKBY8mWEop1YHyIuuv2xFJnRuBaRKdmEYFsdhL+/H5HcYwsDGX6tjhnd5l8IjJALgK+u/IX01NFRm+AlzJHZ9/1STJv2BD6c7+m2DlbVpBhLhxZEzp9D72tDE4xUvB9v77uimlgksTLKWU6kBNsZVgxaR2fF2dlorChhBb038XHijZtYl4avCkTe70PhHR8RTIAMLK+++1sPLWfYtNDBGZUzq9T+bw8XiN0FDYf8/5q9y2DICk4TM6vU/CUOv/Zum277slJqVU/6MJllJKdcBVZq1olzIo64D3rY0dRro7D2NMkKPqGwrXfwNA3LDpB7RfcWQ2yXX99yLNFRu/AmDwxCM7vU9sTAwFMgB7Wf9dqt3kfUctEaQP69yCKgCDR07GawTXbh3BUkoFR1ASLBG5UUSMiKT4H4uI3C8iW0RklYhMC0Y/SikVEuXbKTVxpCanHPi+KSNIkUoKiwqDH1cfULd9KS5jZ8SEzo8oADQkjGSwdxeNrv65kqCzcBkFMoCU9I4vzhyoNGII8XU7uimq3i+tYgU7Iscjdmen94mJiWWXbSBhZf135E8pFVxdTrBEJBM4AQhcgudkYKT/dhXwcFf7UUqpUImszqXQMQi7TQ5436hB1nkxhdtWBzusPiGhOIctztFERXVuJbwmjvRxhIuHXdvWd1NkvZfX62V47ffsiptywPvWxw9nkCcfr8cT/MB6uYLC3Qzz7aBh4MwD3rcoYhgpdbpUu1IqOIIxgnUvcAsQOP/lDOBpY/kGSBCRgUHoSymlelxSYz5VkQc2ktBkgH8lwer8/rdgQ0NtJdmuzZSlHNj0QICEIdbrVrptRZCj6v22rP6GRKqRYccc8L72tHFEiouC3P6XmO747l1sYkiYeMIB79uQOIqB3gK8jXXdEJlSqr/pUoIlImcAu4wxK1tsGgzkBTzO95cppVSf4m6oZYApxZOQdVD7Jw4agRs7vpL+t5Lgpm/exSleYsYed8D7DhrZf1cSLP3+bQCyZ51ywPvGZk2x2uiHCzb4Nn5AFTFkT5p3wPva08djE8OebS2/ziil1IHrMMESkY9FZE0rtzOA24DbuxKAiFwlIjkiklNcXNyVppRSKuiKtq4AwJ4+7qD2F7uTQvsgoir734INrnXvUmMiGTPrxAPetz+vJJiS/yGbnGNISh96wPsOHjkFnxEad/WvKan19fWMr/6KbYlzD+j8qyYJWf6VBLdrgqWU6roOEyxjzPHGmAktb8A2IBtYKSK5QAawXETSgV1A4HrGGf6y1tp/1Bgz3RgzPTU1tavPRymlgqpsq7Xsc2L2YQfdRmV0NqmN/WvhAY+rkeGli1kfM4uIiMiDaqMkov+tJLh9XQ6jvFuozv7hQe0fGxtPvi2d8NL+dXHrVYtfIl5qCZ/8o4PaP3P4eBqNQ1cSVEoFxUFPETTGrDbGDDDGZBljsrCmAU4zxhQCbwKX+FcTnA1UGmMKghOyUkr1HFf+CmpMJMNHHdwIFoAncQQZppCyqtogRta7bVjyGolUYZt03kG3UZ/Y/1YSLP7sYVzGQdbxVx50G0URI0iu619LtUd+/wR7JJnRc846qP1jo6PYacsgvFxXElRKdV13XQfrXawRri3Av4GfdVM/SinVrRLLVpEbNoIwp+Og2wgbOAaneMnf1n/OJ7IvXUgRSYw/6uBGFAAcaWP71UqC1VXljNvzDivjjyF5wMGfttyQNJpB3gLcDTVBjK732rI2h0mu79medT42Z9hBt1MaNYxUXUlQKRUEQUuw/CNZJf77xhjzc2PMcGPMRGNMTrD6UUqpnuKuqyTLvYWy5IOfHgiQlDUJgIod/eO8mLx13zC24Xs2DLnwoKcHAiQMtV63/rKS4JpX/kaM1JN4dNf+Jhk+eCI2Meze1D8Wuih57y804mTsqb/sUjuu5LEMMCU01pQHKTKlVH/VXSNYSinV521Z9gl2MUSOOPBVyQINyLKWHPcW9Y8RrLJ37qDWRDDx9Gu71M7gUdaCDf3hvJiSwjwm5f6HFVFHMGLasV1qK2X4NKB/rCS45ttPmF3zMasyLiIuuWtXg4kcPAGA/E3LgxGaUqof0wRLKaXaULvmXepNGGNmHfh1dQLZImIotKURUXHoL9W+dvFLTK79iuVZV5KUMqBLbYVHxVFgTyei7BBPTI0h99lrCcNN0pl/6XJzmcPHUWfC8RQe2olpQ30d4R/cRAmJTJi/oMvtDRgxFYCKXF1JUCnVNZpgKaVUa4whY8/nrIuYSmxsXJebK43MJrV+exAC672qyvaQ9Plv2CmDmXHB74LSZnH0SNLqD+0FG759/SGm13zKsuz/Y8ioKV1uz+lwkOcYQnT5obuSoDGGnMevY6RvG0VH/pnI2IQut5mRNYoaE4mvYE3XA1RK9WuaYCmlVCtyv/+YdLOH+pGnBaW9hsRRZPp2UVvfEJT2ehufx0PuYxeR7Cuj9pQHu3TuVSBX8ngyTCGVFYfmeTGr//c+U1YsYH3YRGZc9P+C1m5F7EgGNh66S9x/+fzfmVvyIsvSzmX8sT8OSpt2u50dzmHEV/aPRVWUUt1HEyyllGpF5f+epMZEMu64i4LSnjPdWhEvf+uhN93N+Hwsf/gKJtV9S86YWxg7vWvnEAWKzLQWusjfeOitlbRh6ccM+eAKiu2pDLrqJeyOg1+psiVf6niSqKKsKC9obfYWX718H3M2/Im1UbOYeuW/gtp2RdwYMlzbMF5PUNtVSvUvmmAppVQLNVXljCz5iJXxx5CUmBiUNhP9KwmW71gVlPZ6C6/bxbIHLmR66Rt8NfASDj//1qC2nz5qOgBV2w+tBRu+//h5hr5zAVW2eMKveJP4lK4t0NBSzBDr/9vuQ2jBBp/Xx5f/uY05a25nY+RUhv/85S4ty94akz6RKBooyzt0p1cqpbqfJlhKKdXC2jfvI4pGUo66Kmhtpg+3vvC6Cw+d6UdVpXtY//eTmF7+Lv/LuJIjfnofIhLUPlIGj6CaKGTPoXFejMft5uvHfsXkL69mtyOTqKs/IjVjZND7GTTaSkxrdxwaiWnxniKW//005u14iO/jj2fkr94jIrrr50a2FDfMet2KNn0X9LaVUv1H8OYjKKXUIcBVX8uILf9hZdg0Jh92TNDadUbGUSADCC/fFLQ2Q2n1V+8y4ONfMMpXwdcTF3DEOTd0Sz9is5EfNoyEqo3d0n5P2rBqKebNX3K4ZwPfJf6QiT99pFuSBIDkAYMoIAVncd++9poxhq/efZbh3/2ByaaCnDG/4rD5v0Ns9m7pb+joabjestOYv6Jb2ldK9Q+aYCmlVIDVr/yZw6hg57wbg952SWQ2SXV9eyXBsuJCNj53E7PK32a3LZ2tZ7zO4dOO7NY+q+PHMH7P23i9Xuz27vli3Z2qqipY/tztHFH4LHUSxYoZdzPjlOCNjrZlV+Qo0qv77ohp3raNFLx0I3Prv2SnYyh7znyK6RO6dk26jsTHRrPRNpSIkkNjxFQpFRo6RVAppfyq8tczYcsjLI2cy5S5pwS9/fqEkWR683G53EFvu7v5PB6Wvno/PDSdGeXvsHzQBaTc+A1juzm5ArANnEC0NJC/vW8lCx63i6Uv/x3XPyZzdNFTrE8+Hse13zGlB5IrgPqUiWT4dtFQ07dWYCwrLuB/D19N2lNHMKnuG5aPvJaMW79jcDcnV01KY0eTXrcZjOmR/pRShx5NsJRSCsAYSp7/GY3GSeI5/wz6uUQAzvRxhIubnX1oJUHjdbP+g0fZ/edJzFz1e4qdGew6732m/9/DRMQk9EgMySP858Vs+LZH+usqj9tFzluPkP/nqcxccwfFzkFsOe0VJl/7IjFJwV3Moj1RQw8DYMfavvG6FRTu5rNHbsTx4DRmFz7PqqQTqLnqW6Zd+P+wOcN7LA5f2kQSqaS8aGeP9dkV9aX5bF68COPzhToUpZSfThFUSilg64cLGV6znLeH3sqpw4O/6ABASvYkWA7F21YwYuzkbukjWIzHxdZPniBm6T8Z6y1gi2Tx7Yx7mXHSpdh6eJpe5pgZNBonnp3fAT/p0b4PRGNDHSveXsjgtY8w3RSSaxvCiiMeYvJxP0ZsPf/3zIxxh8MSqNi6FGad1OP9d9aO3G1sf/suphe/xjHSwJq4OcT98A6mj50ekngShx0GmyFv3f9ITB8akhg6ozRvI/lv/4WxRW8xEg+f523lqIuDc4FvpVTXaIKllOr36ssKSP36T6y0jeO4C2/utn4GjrCSqsbda7utj64ynkY2ffhvEpY9wAhvIRvIZt3kfzD31EsZ4QzNrwxHWATbwoaTUN47l7ivra5k1Zv3M3zzE8yijE2OUSyf+XumHHcBWSE8Z2zAwEyKSMJZuCJkMbRn08a1FLz7N2ZXvEsGHtYlHseAH/6GCaNCk1g1yZpwOO737dRv+xaOvSCksbQmd/0ySt//K5MrPiYGG1/HnUR0XT5zt9zD5y8nctQ5Pw91iEr1e5pgKaX6vW3P/oIRpgHfqf8kMtzZbf04IuMosKUTWdb7pggadwMb3ltI8ooHGe0rZr0MZ+3U+zni5AsZExb6XxXliZOYVPQ6blcjzrCemy7WnoryEta9/nfG7HiGw6lmXdgk9sy7l/FzTg/JiFVLIsLO6IkMqV4Z6lD2sWbFd1R89Ddm1XxKNrAu7VQyT/0NE4eMDXVoAETHxrPBMZz44t5zcWtjDKu+/QTP53/nsPr/McCE8+2A88g85WaOyhqBu76aLfedwtzVv+UTj5tj51/XLdOclVKd0+XfmiLyS+DngBd4xxhzi7/8N1hzObzAtcaYD7ral1JKBdvWr15hfNnHfDTwSn4wbVa391cUO47MytUYY3rFFyCfq5717z7EgJUPM9aUsNY2inXT/8gRJ57PWGfvWbHPMWQmkXteZMv6HEZMnhPSWIoLdrL5zbuZuPsljpB6VkXOovjYmxk34wchjas1dekzSdv6OZW7txI/aHjI4jDG8P03n+JefA8zGr6mUZyszTiPYaf/mslpWSGLqy3FCVOYUfoaxt2AOCNCFofX62P5Z68Q/u19THavppIYlg75KaNOu5E5qXvP53NGxjLsunfY8sDpHLfhD3z8eDHHXvEnbLbQf8Yo1R91KcESkWOAM4DJxphGERngLx8HnA+MBwYBH4vIKGOMt6sBK6VUsDTWVhD78S1slUxmX3xHj/TpGjCFQZWfUly0i9T0jB7pszXexjrWvX0/g9Y8wnhTxmrbWNbP+guHH3824x29J7FqMnD8PMiB4g1fhSzB2r19A3lv/4UpJe8wCw8r444m8cRbmDThiJDE0xkp44+GrXez4/uPmBSCBMvn9ZHz2WuEfXsf09wrqSKaVcOuZNTpNzElMb3H4+ksM+RwIkpfZNeGbxg88ege79/lcpPz/lOkrPgXM3xbKZYkvh9zE+NOv5aZUfGt7uOMjGXk9e+x5l8XcHz+gyx+cA9HXPMwYSGa2qtUf9bVd901wF+NMY0Axpg9/vIzgOf95dtFZAswE/i6i/0ppVTQrH32Fqb4Ssk74QWGR0f3SJ9xw2dYJ9Cv+YrU9Pk90mcgd3016966j8z1/2aiqWClfQIbZt/D7GPPwm4P/bS2tgwcOopiknDuXALc0qN9565bSsn7dzGl8hNSsLEi+WQGn3Ir04ZP7NE4DsbICbOofCMa97avgKt7rF+3x0PO+8+QuPxBZvq2UCKJrBhzI+NOu5Yp0Qk9FsfBypp6LHwPhas/69EEq7a2luVvPczQDY9xBAXk2wazatqfGH/ST0kN63gkzRYWwfhrX2bFYz/j6N3P8/XfCxh11VMkJyX3QPRKqSZdTbBGAfNE5E6gAbjJGPMdMBj4JqBevr9sPyJyFXAVwJAhQ7oYjlJKdc6OlV8wZfeLfJV0JvPmnNhj/WZNOALfe0LNtqVAzyVYrroq1r55L1kbHmMyVaxwTGLzEfcz4+jT+8Q0IrHZyE08nNFln+F2u3A6w7q9z805H1P36d1MrvuGVBPBdwPPZ8TptzJzUFa39x0sYWFO1kZOYGD5d9Z1nbp5WmpDQz3L336EwWsf5XCzi922gayc8kcm/PD/SAmL7Na+gykzcyjbJZPonYt7pL+y8jJWv3EvY3OfYR7lbHOOZN2sBxh7zI/JsB/YVzWx2Zny04WsfWUIM1ffTe4DR1N23rOM7OUrlyp1KOnwXSsiHwOtjeP/1r9/EjAbmAG8KCLDDiQAY8yjwKMA06dP16v6AQ2NLuqqK2isrcDVUIeroZ7Ghjrcrnp87kbwNCDeRsTTiPF5Mcbg8/nA+PAZgzGmudwuAnYHYnNaP+1ObHYH4r8vdgd2e5j10xmG3RmOIywchzOcsPAInM4InOHhhIWFExYWgc0RBr3g5G2lusLr9dH41o2USCLjL/57j/YdEZNAnjOTqJKeWXigoaaCdW/8nezNTzKVKr53TmPL3JuYfuQPe8U5YAfCMeoHxH37DhuWf8qYblp23Ph8rF/yKrYl9zLGtYZyYvnfkP9j3Ok3cnhKWrf02d2qhhzH1E1/pmjzMtK6aYW+6qoKayXFLU9yBKVsdwxjzcx7GX/cJQw6wAShNxARclOPYV7Rs7iri3HGpnZLPwW789j85j1MLniJo6SW9RFTqTzqAUbOPrVrybAI48/5LVszJpP8/tXYnj+JLyf8mjk/+iW2XjxSrdShosNPPWPM8W1tE5FrgFeNMQZYKiI+IAXYBWQGVM3wl/UvxlBXU05J4S6qSgtoqCjCU1WEr6YYW30JzoZSnK5qwrw1RPhqifTVEm3qiJEGQndKbcfcxo5HHLhx4MGBRxx4xYlHnHjFgU+ceG1OfP6bESfG7sTYwjB2J9idYA8De5iV5DnCEHuY9dMRjs0RZiVy9rDmuuJoqh8GDqe/fnhzfbHbsYkNm038P8EmAb9ERDAGwPqFZfy/t5ozekPALzNh30zf7K1oNULgv1axwfh/Yoz1h2JMU3UMvr33m5JgfzRWuVXW1KrxNXfor79vO00RWt0F7Ofv379n834E9N/0dJri2PscfM3Pce/rEvBMA+5LQJ2m/UzgK9f0nJq7b4o38JUNLDP7Hovm+wFt79NnW+3sjbu59j51La6dyzjOs4llU/7EYSGYOlOWNJXRRR9S19BAVET3vNvrq8pZ+/pdjNz2NNOoYXnYdLYffStTD/9Bn0usmgybfTqeb35F5ar3gn5dJ5/Hw5pPniXmu/sY59lGEcn8b+RNTDr9Wo6Ibf2cl75i+LwL8G78C7u/WhT0BKu8pIj1b9zNuLxFzKGGDeETKZ97D2PmnNkrVlLsiohJZ+D4+Gk2LHmJMSf/LKht527dSN47f2N66VvMxc2auHkknnAzYyceGdR+hs8+lfLMzyh8+jLmrb2d5ZvfIOqs+xkzdkJQ+znUeT1u6upqaaivw91Yj8fVgNfVgNddj9fdgM/lv3ka8bkb8Hld+LwefB4vXp8X43Xj83oxPi9iPIjxgs+HGK9133j9v+Os39v+X6H+39WBX08EEESavs3Q/Hlu/RDE/93HiM1faLPqiEBTmdisujbrZ8tt0koZ2Kwf2PzlIGLfu09TH9jAZj222vG3YbM1PxabAHb/07FZMYtY+9hsze0ZsWETAbHjjUwma/hoonrBqrad0dUoXweOAT4TkVFAGFACvAn8V0T+gbXIxUhgaRf76nV8Hg8lu7dQmr+F6qJc3OV52Kt3EVlfQLyriFRfMdE00NrExyqiqZR46u0xuBwxlDsGUBIWiy8sDsLjkIhYCI/FFhaNIywCR3gkzrAI7GGR4GxKLMKtkSexYbPbsNlsVnJh9/8UwYvB5/Hg9bibbz6v21/m/wDwuvF53Pg8Lrxul/UB4XHhdTdiPC58HhfG68J4XOB1gde9z0/xuRGfG5vPjc3nwu5zY/O6sXvc2E09duPGYTzWTzw4A25h/ptNdPBS9aztjmFMO+2akPRtH3EcsXveYNX3nzPp8OBOT6ypKGH963cxOvdZplNLTvgswo79NVNnHtNnE6sm8YnJrIuYwMDdH+L1+oJyzpjH1cDq9/5N6sqHmeTbxQ4ZzP8m3MG0U6/iiIi+M6WtPRmZQ1gRNokB+e+BuSco0wT35G9j61t3ManwVY6QRlZGHU7JcTcx5rA2/ybb5xw26xgKPk7Bs+Z1CFKCtWn1d5R9eBeHVX3CYGBNykkMOuVWJg3rvul7iYNHknDrF3z/6j2MWfMP7M8fxZKUs8g89VaGZnfPRdV7A4/HS3V1FbUVe6ivLMZVXYK7pgRPbSXehmp8DdUYVw02dy12Tx0OTx1Obx3hvjrCfPVE+uqJpJ5I04BDfMQCsd0Vq7HhY9/3Zct3acs//bZWJnDIfp961nMcrv97gimZCaEOpVO6mmA9ATwhImsAF3CpfzRrrYi8CKwDPMDP+/IKgpWlhRRsWUFV/gY8xZuJqNpOUsNOBnkLGCAeBgTULSOeMkcqZRFDKYiejYkdRFh8GpGJ6UQlDSQ2aSDxyenEhUcSF7JnFFrGGFxeHy6Pj1qPj3KvD5fLjdvVgMvViNvViM9tJXOmKbnzuhCv20ryfC7wNFqPfS7E4wafG59/9MZnwGd8zSMhez+AmseMWpTvvb/3A82w78dbwJ+L/HeslvbWafrrERJQRwK3721DCBxds/6RvY20cb9Fm9K81/5lAbHujUECvlcF3G/uR1rcD4i7xfNtfq57n9C+z9PfhhFBWpQb9i8DrLqB8e0NIPBHQJ+ttBPwXPfG0/KxdT9j9OFIiKYuZc/8IZ6vrqdyxVsQpASrqqyIDa/9jbF5/2UG9eREziHy+F8z/bDg/kU81FwTzmfIstv4/n/vMnXeqQfdTmN9NavffJDMDY8x1ZSw2TaMb2f8g8NOuIShzu67FlqoVA8/nSkb/h9bln3EiOknHHQ7Ozd+z573/8aksg+ZgWFlwnGknHgLk8fNDGK0vUOY086WtB9yROEzVOzaTMLgg0tGjM/Hum8/pPHze5nW8A11hLNy0LkMP+1Wpg46oLMqDprY7Ew951aqjzyfDS/+jsOLX8Y8+Qo50XOwTb+ccUecQkQ3jaZ3lTGGugYXFWV7qCnfQ21FMY3VxbirS/HVlkF9GfaGcpyuCiLdlUT7qoj1VZFADYniJrGdtusIp45IGiSSBlsULlskdY4EqhyD8Tii8DqiMc4oxBmJzRmOLSwSmyMCmzMcnBHWH7qdEdidEdicEdjDrG1OZxgOhxOHw4HD6cTpcGB3OHE4nIjNZp2qYXNgszkQmw1HEEZ7jf/7j8cYfD5jzXjx+TD++z6f9dg6pcR/agkGn89r1TFe/8yWpn2s003w+cuMsU5F8fmsGSLN+/v8M3ea2vH5p9f4/Pvh/+lr3gefz/+dbW+7e/cze+sH1BkZNZDslJ5ZjCoYxLQyfSZUpk+fbnJyes+F/b757/8ja9OTpFPSXOYyDgrsAymPHEJ9XDaSNJyotBEkDcomLWMYzoi+c/CVUqGz9m/HkVCfx8Dfb+jSORGVxflsfP0uxu96gWgayIk6kpgTfsOYKb136fCucNVVU3fXWHZGjmXSrR8d8P6VpYVsePt+Rm5/hiSqWOsYT8Ph1zP16HMO6XNTqqsr8fx9PAWRoxh3yycHNIpljGHttx/h/uIfTK37mnoTxsrU0xhy6q0MyhrdjVGH3ratG8l4+nDWpp7C1F88c0D7er1eVn+6iIilDzLGvZ4KYtmc9WPGnP4rYpNCu0R9ad5Gtr//ACN2vUYCNVSbSDbGzsadcThJo48ga9x0wsO7YQTXGOprq6koL6a2fA91lcU0VhXjqbGSJakvw95YTlhTsuStItZUEUddmyMzHuxUSwy1tnjqnXE0OhNxhyfgDU/ERCVii0rGHpNMWEwy4fGpRMUlEx0bT0xMPDZ777skheo7RGSZMabVedeaYLXju9cfxLb1E9ypE4jInETq0ImkDxmB3dE35n8qpXqv799+mKk5v+b7o/7D1GN+dMD779mxnry3/8aEPW/jxMPy2KNJOOk2Rkw49EYSWvrqyf/f3n3HV1XeDxz/fO/I3oORRcIeSdgbFKwDJ1pn69bWWrWOalttq1V/HVatttaqrdWq1SpuqYp1ooICslcYAUISCJCE7HnH8/vjXmIICQnk3tyM7/v1uq/cc85znvNNHk643zzj/IqZeY+TM+efjJpzYYfOyd+yiv0fPkpm6f8IlUbWhkzGesLtZE6f1+OHTnbU4ufvZc6uR9k47REy513bbvnG+lo2fvQcYeueZ6RzC+VEkJN6CcPP/inx/VpdGLhX+uKvP2RWyWsUzF/AoAnt9zhXHtzP5kVPkZz7MqmmiD3Sn8KR1zD27BsJCfPXILPj01hXw/av36Fu47ukH1xKAuUAuIyw35JIqT2JutCBEBKNKzgaQqKw2EOx2ywYLLi9vRPirAdHHe7GWoyjFtNYj81RSZCjklBnJSGuKsLd1USaKoKk7QFNNYRQJVHUWKOot0XTGBSDO8STKFnD4rFFJhASlUBYdCKRcf2IiOmHJTTa76tjKtUaTbCUUqqbcTTUUfGHkRywJzPqriUdXhAgb8NXlH30MNkVn+LEyqqYeQw4/ecMHtl3lmCuq62l6OFpxLlLKb/wTdLHTG21XH11GVs/fQn7plcZ3bCOemNnXdw8Ek+5mcG9cEhbexoa6sl9cC6DXbns/c7jDJl95GMCjNvFrtWfULLiVYYfWEQM1eRLMgdGXkbmWTcREt73BrcXl5ZS+9dZxFBJ9fxnSR5/ZJLlrK8hZ+k7NKx7g6yKzwkWB1vso6kbfy1Zp1yBrQseK9BpxnCgYBt7Ni2lfs8G7JUFRNUVEO0oJsLUEC71HaqmwdhpkCCqJZxaSwS11igabVE4gqMxwTFIWAy2sFhsEQmERCcSHpNARGx/omL7YfNHr5lSfqIJllJKdUMrXn+EKRvvY8XIXzDlkl+2Wa6hrorNHz1P5IYXGOrYSrUJZe2A75Jx1s9ITs3owoi7j13b1hP+n/nEUMmmpAuJzj6DkMgEqksLqSrcREjhUobUrCVEHBQwgIL08xlxxk3E90sKdOgBVViQT92/zmGYexfbwiZSm3oChEbjqCoh6MAGUqrWEU85DcbOpsjpyOQfMHbW2b16+GRHbM1ZT8iCixhEEVsjp1E7YAoEheGs2Ed46QYG1W0inHoqCCcn/hTiT/wxw7KnBTpsn3I6GqmvOkhdXR11DicW3FgAq8WCBIViDw4nPCKSILuO8lF9gyZYSinVDbldLtY9fAZja5ezNu0Khn/3l0TEDgBjqD6Qx+61n+La/C5DKr4inHp2SQqFgy8h64zriYn3z3N5epI9BbvY9crPmV79EdYW8zPyJJk9cdMJn3QxWVNO9smKg73FwcpqVr38fwzf+zaDZF/T/gL6sy8yE9fQ0xh+woXExcYFMMruZ3/pQdb95zeMKvmAVDkAeFZ/22kZRGnsWOxjziZr1lkEB3fPxSKUUr6lCZZSSnVTtTVVrH3qWmZU/Q+AMqIJooFwPMNxSk00W2JmETHp+2TNOKPP9yS0prBoH3tzvsZVX0VQVH+ShoxhwIDkPjO36ng5XW72HdiPs7aSqLh+xMUebb01dYjD5aa8opyG2hoSEvsREhwc6JCUUgGgCZZSSnVjxhg2r/mKA2veJaiqALclCGfsMGKHTmbUxBMIDuoB8zeUUkqpPuRoCZYOlFVKqQATEcZMmMmYCTMDHYpSSimlOknHmiillFJKKaWUj2iCpZRSSimllFI+ogmWUkoppZRSSvlIt1rkQkSKgd2BjqOFBKAk0EGoLqPt3XdoW/cd2tZ9i7Z336Ft3Xd0x7YeZIxp9Zkp3SrB6o5EZGVbK4So3kfbu+/Qtu47tK37Fm3vvkPbuu/oaW2tQwSVUkoppZRSykc0wVJKKaWUUkopH9EEq33/CHQAqktpe/cd2tZ9h7Z136Lt3XdoW/cdPaqtdQ6WUkoppZRSSvmI9mAppZRSSimllI9ogqWUUkoppZRSPqIJ1lGIyDwR2SoiuSJyZ6DjUb4jIqki8pmIbBaRTSJyi3d/nIh8JCLbvV9jAx2r8g0RsYrIGhF517udISLLvff3AhEJCnSMyjdEJEZEXheRLSKSIyLT9d7unUTkNu/v8I0i8rKIhOi93XuIyLMickBENjbb1+q9LB6Pedt9vYhMCFzk6li10dYPeX+PrxeRt0Qkptmxu7xtvVVETgtI0EehCVYbRMQK/A04HRgNfE9ERgc2KuVDTuB2Y8xoYBpwo7d97wQ+McYMAz7xbqve4RYgp9n2H4FHjTFDgTLg2oBEpfzhL8AHxpiRwFg87a73di8jIsnAzcAkY0wmYAUuQe/t3uQ5YF6LfW3dy6cDw7yv64AnuyhG5RvPcWRbfwRkGmOygW3AXQDez2uXAGO85zzh/dzebWiC1bYpQK4xZqcxphF4BZgf4JiUjxhjiowxq73vq/B8AEvG08bPe4s9D5wbkACVT4lICnAm8E/vtgAnAa97i2hb9xIiEg2cADwDYIxpNMaUo/d2b2UDQkXEBoQBRei93WsYY74ADrbY3da9PB94wXgsA2JEZGCXBKo6rbW2NsZ8aIxxejeXASne9/OBV4wxDcaYXUAuns/t3YYmWG1LBgqabRd696leRkTSgfHAcqC/MabIe2gf0D9QcSmf+jPwc8Dt3Y4Hypv94tb7u/fIAIqBf3mHhP5TRMLRe7vXMcbsAR4G8vEkVhXAKvTe7u3aupf1c1vvdg2wyPu+27e1JliqTxORCOAN4FZjTGXzY8bzDAN9jkEPJyJnAQeMMasCHYvqEjZgAvCkMWY8UEOL4YB6b/cO3rk38/Ek1UlAOEcOMVK9mN7LfYOI/ArP1I6XAh1LR2mC1bY9QGqz7RTvPtVLiIgdT3L1kjHmTe/u/YeGFHi/HghUfMpnZgLniEgenqG+J+GZoxPjHVYEen/3JoVAoTFmuXf7dTwJl97bvc/JwC5jTLExxgG8ied+13u7d2vrXtbPbb2QiFwFnAVcar59eG+3b2tNsNr2DTDMuxpREJ7JdAsDHJPyEe8cnGeAHGPMI80OLQSu9L6/Eninq2NTvmWMucsYk2KMScdzH39qjLkU+Ay4wFtM27qXMMbsAwpEZIR313eAzei93RvlA9NEJMz7O/1QW+u93bu1dS8vBK7wriY4DahoNpRQ9UAiMg/P8P5zjDG1zQ4tBC4RkWARycCzsMmKQMTYFvk2GVQticgZeOZuWIFnjTG/C2xEyldEZBbwJbCBb+fl/BLPPKxXgTRgN3CRMablBFvVQ4nIHOAOY8xZIjIYT49WHLAGuMwY0xDA8JSPiMg4PAuaBAE7gavx/EFR7+1eRkTuAy7GM3xoDfADPHMx9N7uBUTkZWAOkADsB34DvE0r97I3yX4czzDRWuBqY8zKAIStjkMbbX0XEAyUeostM8Zc7y3/Kzzzspx4pnksallnIGmCpZRSSimllFI+okMElVJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFKqmxGRdBExImILdCyqbxCRTSIyJ9BxKKVUb6AJllJKqR5PRJ4SkWrvq1FEHM22FwU6vu7OGDPGGLPYH3WLSJyIFIvIEn/Ur5RS3Y0YYwIdg1JK9SoiYjPGODtxfjqwC7B3pp6+SkTuBYYaYy5r5Vin2qYr9aRYj0ZEngZGABZjzKxAx6OUUv6mPVhKKeUDIpInIr8QkfVAjYjYRGSaiHwlIuUisq75ECwRWSwifxCRFSJSKSLviEhcG3VfLSI5IlIlIjtF5Ectjs8XkbXeenaIyDzv/mgReUZEikRkj4j8VkSs7XwfQ0TkUxEpFZESEXlJRGKaHTsoIhO820nenok53u1zvEPNyr3f36gWP587RGS9iFSIyAIRCTn2n/Sxa6NtjIgMbVbmORH5bbPts7w/03JvG2Z38FpzRKRQRH7p/fnlicilzY6fKSJrvG1V4E0GDx07NDT0WhHJBz717n9NRPZ5f25fiMiYFnE/ISKLvL11S0VkgIj8WUTKRGSLiIzv4M/o5I58j8dCRGYAmcC/fF23Ukp1V5pgKaWU73wPOBOIAfoD7wG/BeKAO4A3RCSxWfkrgGuAgYATeKyNeg8AZwFRwNXAo82SnCnAC8DPvNc9Acjznvect96hwHjgVOAH7XwPAvwBSAJGAanAvQDGmB3AL4AXRSQMz4fm540xi0VkOPAycCuQCLwP/FdEgprVfREwD8gAsoGrWg1AZJY3sWnrdTy9IE1t016vkDcheRb4ERAP/B1YKCLBHbzWACABSAauBP4hIiO8x2rwtHuMN54fi8i5Lc4/Ec/P/jTv9iJgGNAPWA281KL8RcCvvddsAL72lksAXgce6WDcrRKRO4/WHkc5zwo8DtwE6HAZpVSfoQmWUkr5zmPGmAJjTB1wGfC+MeZ9Y4zbGPMRsBI4o1n5fxtjNhpjaoC7gYta62EyxrxnjNlhPD4HPgRmew9fCzxrjPnIe509xpgtItLfe61bjTE1xpgDwKPAJUf7Bowxud66GowxxXg+nJ/Y7PjTQC6wHE9i+CvvoYuB97znOoCHgVBgRoufz15jzEHgv8C4NmJYYoyJOcrreObyNG+b9lwH/N0Ys9wY4zLGPI8ncZl2DNe72/sz/BxPon0RgDFmsTFmg7et1uNJSk9sce693jar857zrDGmyhjTgCfZHSsi0c3Kv2WMWWWMqQfeAuqNMS8YY1zAAjzJ9XEzxjxwtPY4yqk3A8uNMas6c32llOppdIUqpZTynYJm7wcBF4rI2c322YHP2ii/23s8oWWlInI68BtgOJ4/jIUBG7yHU/H0FrU0yFtfkYgc2mdpcc0jeBOzv+BJ4CK955S1KPY0sBC4zvuhHzw9XrsPFTDGuEWkAE8vziH7mr2v9Z7TVY76fbcwCLhSRH7SbF8QHY+3zJs0H7L70LkiMhV4AM+wuSAgGHitrVi9CffvgAvx9Ay6vYcSgArv+/3Nzq1rZTuig3H7jIgk4UmwJnb1tZVSKtC0B0sppXyn+TCoAjw9VM3/2h9ujHmgWZnUZu/TAAdQ0rxC77C0N/D0CPX39hi8j2co36HrDGkllgI8vS4Jza4fZYwZ00rZ5n7v/T6yjDFReHrimjI0EYkA/gw8A9wr384b24snMTlUTrzf3552rncEEZkt364A2Nprdvu1HKHlELVaPInqIQOavS8Aftei7cKMMS938FqxIhLebDsNz88H4D94ktNUY0w08BTNfr6txPp9YD5wMhANpHv3tzzHb7zzydpsjzZOm4Knh3OziOzDk7RP8c4lO+o8QKWU6uk0wVJKKf94EThbRE4TEauIhHgXQEhpVuYyERntnc90P/C6d1hXc4d6OYoBp7c369Rmx58BrhaR74iIRUSSRWSkMaYIz1DCP4lIlPfYEBFpORytpUigGqgQkWQ8c7ua+wuw0hjzAzxD357y7n8VONMbhx24HU+C91V7P6iWjDFfGmMijvL68ljrbMVa4PvetpnH4cP0ngauF5Gp4hHuXZwiEpoWlniunfrvE5EgbzJ4Ft/2UkUCB40x9d75c99vp55IPD/HUjwJ4e+P4Xv0CWPM74/WHm2ctghPMjjO+7oHWAOMa+XfuFJK9SqaYCmllB8YYwrw9Dz8Ek9yVIAnWWn+e/ffeBai2AeE4BlS1bKeKu/+V/EM1fs+nh6QQ8dX4F34As+Qsc/5tifpCjwJ2mbvua/j6VU4mvuACd663gPePHRARObjWaTix95dPwUmiMilxpiteHq7/oqnF+5s4GxjTGM71wuUW/DEWA5cCrx96IAxZiXwQzwLNJThmXN2VbNzU4GlR6l7n/e8vXgWpLjeGLPFe+wG4H4RqcKTdLzaTpwv4BliuAdPOy5r7xvrDrzzz/YdeuH59+TwvldKqV5Nn4OllFIBICKLgReNMf8MdCyq47yrIq4Dsr2LebQ8PgdPu6a0PKaUUqpv0EUulFJKqQ7y9siNaregUkqpPkuHCCqlVB8jIk+1sWDBU+2frXoiEUk7ykIVaYGOTymlehMdIqiUUkoppZRSPqI9WEoppZRSSinlI91qDlZCQoJJT08PdBhKKaWUUkop1aZVq1aVGGMSWzvWrRKs9PR0Vq5cGegwlFJKKaWUUqpNIrK7rWM6RFAppZRSSimlfEQTLKWUUkoppZTyEU2wlFKqHbraqlJKKaU6qlvNwWqNw+GgsLCQ+vr6QIeiepiQkBBSUlKw2+2BDkX1YMbt5tlHf0UB/fj1rbdgs+rfpZRSSinVtm6fYBUWFhIZGUl6ejoiEuhwVA9hjKG0tJTCwkIyMjICHY7qwXZu38i1VU8AsGz9SUwbPzbAESmllFKqO+v2f4qtr68nPj5ekyt1TESE+Ph47flUnVaS++3KpiUbPgxgJEoppZTqCbp9DxagyZU6LvrvRvmCu2gjbiPUSSgx+74OdDhKKaWU6uZ6RIKllFKBElmZS4EMpDYijX7VuYEORymllFLdXLcfItgdiAi333570/bDDz/MvffeG7iAmlm2bBlTp05l3LhxjBo1qimuxYsX89VXXx13vbt372bChAmMGzeOMWPG8NRTT/koYqV6lqCGUiqscTjihzPI7KW4oibQISmllFKqG9MEqwOCg4N58803KSkp8Wm9xhjcbnen6rjyyiv5xz/+wdq1a9m4cSMXXXQR0PkEa+DAgXz99desXbuW5cuX88ADD7B3795OxapUTxTqrKAhKAb7gNEEi4N9eTmBDkkppZRS3ZgmWB1gs9m47rrrePTRR484VlxczPnnn8/kyZOZPHkyS5cuBeDee+/l4YcfbiqXmZlJXl4eeXl5jBgxgiuuuILMzEwKCgr42c9+RmZmJllZWSxYsADwJEhz5szhggsuYOTIkVx66aWtPovnwIEDDBw4EACr1cro0aPJy8vjqaee4tFHH2XcuHF8+eWXR43z8ssvZ/r06QwbNoynn34agKCgIIKDgwFoaGhoMxF87LHHGD16NNnZ2VxyySUAHDx4kHPPPZfs7GymTZvG+vXrm6515ZVXMnv2bAYNGsSbb77Jz3/+c7Kyspg3bx4OhwOA+++/n8mTJ5OZmcl11113xPftdrtJT0+nvLy8ad+wYcPYv3//0ZpRqeMS5qrCGRxDZGomAFWFmwMckVJKKaW6sx41B+u+/25i895Kn9Y5OimK35w9pt1yN954I9nZ2fz85z8/bP8tt9zCbbfdxqxZs8jPz+e0004jJ+fof+Hevn07zz//PNOmTeONN95g7dq1rFu3jpKSEiZPnswJJ5wAwJo1a9i0aRNJSUnMnDmTpUuXMmvWrMPquu222xgxYgRz5sxh3rx5XHnllaSnp3P99dcTERHBHXfcAcD3v//9NuNcv349y5Yto6amhvHjx3PmmWeSlJREQUEBZ555Jrm5uTz00EMkJSUd8b088MAD7Nq1i+Dg4KaE5ze/+Q3jx4/n7bff5tNPP+WKK65g7dq1AOzYsYPPPvuMzZs3M336dN544w0efPBBzjvvPN577z3OPfdcbrrpJu655x4ALr/8ct59913OPvvspmtaLBbmz5/PW2+9xdVXX83y5csZNGgQ/fv3b7cdlTomxhBlqnCHxJKYNgKAxpKdAQ5KKaWUUt2Z9mB1UFRUFFdccQWPPfbYYfs//vhjbrrpJsaNG8c555xDZWUl1dXVR61r0KBBTJs2DYAlS5bwve99D6vVSv/+/TnxxBP55ptvAJgyZQopKSlYLBbGjRtHXl7eEXXdc889rFy5klNPPZX//Oc/zJs3r9VrHi3O+fPnExoaSkJCAnPnzmXFihUApKamsn79enJzc3n++edb7SHKzs7m0ksv5cUXX8RmszV9T5dffjkAJ510EqWlpVRWehLj008/HbvdTlZWFi6XqynerKyspu/vs88+Y+rUqWRlZfHpp5+yadOmI6578cUXN/X2vfLKK1x88cVH/ZkrdTwcdRXYxYUJjSU4MpFaQrCU5wc6LKWUUkp1Y53uwRKRVOAFoD9ggH8YY/4iInHAAiAdyAMuMsaUdeZaHelp8qdbb72VCRMmcPXVVzftc7vdLFu2jJCQkMPK2my2w4bVNX8eU3h4eIeud2iIHniG/zmdzlbLDRkyhB//+Mf88Ic/JDExkdLS0iPKtBUnHLmcecvtpKQkMjMz+fLLL7ngggsOO/bee+/xxRdf8N///pff/e53bNiwoUPfk8ViwW63N13LYrHgdDqpr6/nhhtuYOXKlaSmpnLvvfe2+iyr6dOnk5ubS3FxMW+//Ta//vWvj3pdpY5HXUUJdsAdEgciFNsGEFpTGOiwlFJKKdWN+aIHywncbowZDUwDbhSR0cCdwCfGmGHAJ97tHi0uLo6LLrqIZ555pmnfqaeeyl//+tem7UND4dLT01m9ejUAq1evZteuXa3WOXv2bBYsWIDL5aK4uJgvvviCKVOmdDim9957r2mO0vbt27FarcTExBAZGUlVVVW7cQK888471NfXU1payuLFi5k8eTKFhYXU1dUBUFZWxpIlSxgxYsRh13a73RQUFDB37lz++Mc/UlFRQXV1NbNnz+all14CPHPJEhISiIqK6tD3cyiZSkhIoLq6mtdff73VciLCeeedx09/+lNGjRpFfHx8h+pX6lg0VHkXtgmLBaA6NIW4Rl3sRSmllFJt63SCZYwpMsas9r6vAnKAZGA+8Ly32PPAuZ29Vndw++23H7aa4GOPPcbKlSvJzs5m9OjRTcuZn3/++Rw8eJAxY8bw+OOPM3z48FbrO++888jOzmbs2LGcdNJJPPjggwwYMKDD8fz73/9mxIgRjBs3jssvv5yXXnoJq9XK2WefzVtvvdW0yEVbcYJnmN/cuXOZNm0ad999N0lJSeTk5DB16lTGjh3LiSeeyB133EFWVhYAP/jBD1i5ciUul4vLLruMrKwsxo8fz80330xMTAz33nsvq1atIjs7mzvvvJPnn3++rfCPEBMTww9/+EMyMzM57bTTmDx5ctOxp5566rC4L774Yl588UUdHqj8xlHl6Q2WsDjPdlQaA80BauodgQxLKaWUUt2YtLYy3XFXJpIOfAFkAvnGmBjvfgHKDm23OOc64DqAtLS0ibt37z7seE5ODqNGjfJZjOpw995772GLYfQ2+u9HdcbuL15i0Kc38PWp/2X6jBPY+OYfyVz/e7ZdsYbhgwcHOjyllFJKBYiIrDLGTGrtmM8WuRCRCOAN4FZjzGFL/RlPFtdqJmeM+YcxZpIxZlJiYqKvwlFKqU5z1nsWgrGHRQIQ2s+TVJXvyQ1YTEoppZTq3nyyTLuI2PEkVy8ZY9707t4vIgONMUUiMhA44ItrKd+69957Ax2CUt2Wq8GTYAWFRgAQkzwUgLoDOwIWk1JKKaW6t073YHmH/z0D5BhjHml2aCFwpff9lcA7nb2WUkp1JVd9DQAhYdEAxCUNA8BdtrvNc5RSSinVt/miB2smcDmwQUTWevf9EngAeFVErgV2Axf54FpKKdVlTGM1biOEhnkerSDBEZQTha2yIMCRKaWUUqq76nSCZYxZAkgbh7/T2fqVUipgGmuoJZjQ4G9/VR609ye8TpdqV0oppVTrfLbIhVJK9TqNNdQSQnjQtwlWbWgSsY79AQxKKaWUUt2ZJlgd9PbbbyMibNmypc0yeXl5ZGZm+uyaW7duZc6cOYwbN45Ro0Zx3XXXAZ6HBL///vvHXW99fT1Tpkxh7NixjBkzht/85je+ClmpXsXi8PRghdi//VXpjExmgCmmrsEZwMiUUkop1V1pgtVBL7/8MrNmzeLll19u9bjT2fkPWy6X67Dtm2++mdtuu421a9eSk5PDT37yE6DzCVZwcDCffvop69atY+3atXzwwQcsW7asU7Er1RuJs456QvCs5eNhiU0jVBop2qfDBJVSSil1JE2wOqC6upolS5bwzDPP8MorrzTtX7x4MbNnz+acc85h9OjRgCfRuvTSSxk1ahQXXHABtbW1AHzyySeMHz+erKwsrrnmGhoaGgBIT0/nF7/4BRMmTOC111477LpFRUWkpKQ0bWdlZdHY2Mg999zDggULGDduHAsWLKCmpoZrrrmGKVOmMH78eN55x7Ng43PPPcf8+fOZM2cOw4YN47777gNARIiI8Cw77XA4cDgch32APOS1114jMzOTsWPHcsIJJwCe3q+rr76arKwsxo8fz2effdZ0rXPPPZdTTjmF9PR0Hn/8cR555BHGjx/PtGnTOHjwIABPP/00kydPZuzYsZx//vlNP5/mpk2bxqZNm5q258yZw8qVKzvcXkr5itVZS72EHrYvNDEDgLIiXapdKaWUUkfyyXOwusyiO2HfBt/WOSALTn/gqEXeeecd5s2bx/Dhw4mPj2fVqlVMnDgRgNWrV7Nx40YyMjLIy8tj69atPPPMM8ycOZNrrrmGJ554gptuuomrrrqKTz75hOHDh3PFFVfw5JNPcuuttwIQHx/P6tWrj7jubbfdxkknncSMGTM49dRTufrqq4mJieH+++9n5cqVPP744wD88pe/5KSTTuLZZ5+lvLycKVOmcPLJJwOwYsUKNm7cSFhYGJMnT+bMM89k0qRJuFwuJk6cSG5uLjfeeCNTp0494vr3338///vf/0hOTqa8vByAv/3tb4gIGzZsYMuWLZx66qls27YNgI0bN7JmzRrq6+sZOnQof/zjH1mzZg233XYbL7zwArfeeivf/e53+eEPfwjAr3/9a5555pmmnrlDLr74Yl599VXuu+8+ioqKKCoqYtKkVh+UrZRf2Zy1NFpCDtsXPdDzsOGa/TuBuQGISimllFLdmfZgdcDLL7/MJZdcAsAll1xy2DDBKVOmkJGR0bSdmprKzJkzAbjssstYsmQJW7duJSMjg+HDhwNw5ZVX8sUXXzSdc/HFF7d63auvvpqcnBwuvPBCFi9ezLRp05p6vpr78MMPeeCBBxg3bhxz5syhvr6e/Px8AE455RTi4+MJDQ3lu9/9LkuWLAHAarWydu1aCgsLm5KwlmbOnMlVV13F008/3TR8ccmSJVx22WUAjBw5kkGDBjUlWHPnziUyMpLExESio6M5++yzAU/PW15eHuBJwmbPnk1WVhYvvfTSYT1Vh1x00UW8/vrrALz66qtccMEFrf58lPI3u6uORuvhPVjx3ocNOw/mByIkpZRSSnVzPasHq52eJn84ePAgn376KRs2bEBEcLlciAgPPfQQAOHh4YeVbznUrrWhdy21rKO5pKQkrrnmGq655hoyMzNbTYSMMbzxxhuMGDHisP3Lly9vN56YmBjmzp3LBx98cMQCHU899RTLly/nvffeY+LEiaxateqo30dwcHDTe4vF0rRtsVia5qhdddVVvP3224wdO5bnnnuOxYsXH1FPcnIy8fHxrF+/ngULFvDUU08d9bpK+UuQuw6n/fAEyxoWSy0hWPRZWEoppZRqhfZgteP111/n8ssvZ/fu3eTl5VFQUEBGRgZffvllq+Xz8/P5+uuvAfjPf/7DrFmzGDFiBHl5eeTm5gLw73//mxNPPLHda3/wwQc4HA4A9u3bR2lpKcnJyURGRlJVVdVU7rTTTuOvf/0rxhgA1qxZ03Tso48+4uDBg9TV1fH2228zc+ZMiouLm4b81dXV8dFHHzFy5Mgjrr9jxw6mTp3K/fffT2JiIgUFBcyePZuXXnoJgG3btpGfn39EYnc0VVVVDBw4EIfD0VRPay6++GIefPBBKioqyM7O7nD9SvlSkLsOpzXs8J0ilNr6E1qri1wopZRS6kiaYLXj5Zdf5rzzzjts3/nnn9/maoIjRozgb3/7G6NGjaKsrIwf//jHhISE8K9//YsLL7yQrKwsLBYL119/fbvX/vDDD5sWmTjttNN46KGHGDBgAHPnzmXz5s1Ni1zcfffdOBwOsrOzGTNmDHfffXdTHVOmTOH8888nOzub888/n0mTJlFUVMTcuXPJzs5m8uTJnHLKKZx11lkA3HPPPSxcuBCAn/3sZ2RlZZGZmcmMGTMYO3YsN9xwA263m6ysLC6++GKee+65w3qu2vN///d/TJ06lZkzZx6W1C1cuJB77rmnafuCCy7glVde4aKLLupw3Ur5WrCpx2ULO2J/dcgAYhr3BSAipZRSSnV3cqjXozuYNGmSablaXE5ODqNGjQpQRD3bc889d9hiGH2R/vtRx83thvtjWRR/Jaf/5LHDDq176hrSiv5H+N0FBNn071RKKaVUXyMiq4wxra7Cpp8MlFKqNQ7PIwSM/cg5khKTSqxUs6+4pKujUkoppVQ3pwlWL3bVVVf16d4rpTrFm2ARdOQQwZCEQQCU7sntyoiUUkop1QP4PcESkXkislVEckXkzuOpozsNY1Q9h/67UZ1hGmsAkFYSrKgBQwCo2r+rS2NSSimlVPfn1wRLRKzA34DTgdHA90Rk9LHUERISQmlpqX5YVsfEGENpaSkhISHtF1aqFQ211QBYgiKOOBaX5EmwGkt3d2lMSimllOr+/P0crClArjFmJ4CIvALMBzZ3tIKUlBQKCwspLi72U4iqtwoJCSElJSXQYageqqG2khDAGnxkD1ZQTBIObEhFYdcHppRSSqluzd8JVjLQ/GmchcDUY6nAbreTkZHh06CUUqo9DXWeHixrSCsPArdYKLUmEFyzp4ujUkoppVR3F/BFLkTkOhFZKSIrtZdKKdVdNHoTLHvIkUMEASqDBxKlz8JSSimlVAv+TrD2AKnNtlO8+5oYY/5hjJlkjJmUmJjo53CUUqpjnHVVQNsJVkN4Ev1cB3C63F0ZllJKKaW6OX8nWN8Aw0QkQ0SCgEuAhX6+plJKdZqz3rOKoD209QSL6DT6Ucb+8qoujEoppZRS3Z1fEyxjjBO4CfgfkAO8aozZ5M9rKqWULzgbPAlWSFhUq8ft8YOwiKFkjy7VrpRSSqlv+XuRC4wx7wPv+/s6SinlS+4Gzxys4LDWe7CiBngW36nYtwOyx3VVWEoppZTq5gK+yIVSSnVH7sZaXEYIDT1ymXaA+OShADSU6LOwlFJKKfUtTbCUUqo1jbXUEkJ4sL3Vw8FxabgRKC9o9bhSSiml+iZNsJRSqhXiqKWOYEKDrK0XsAVRZokjqFqfhaWUUkqpb2mCpZRSrfEmWEG2tn9NVgQNILKhqAuDUkoppVR3pwmWUkq1wuqspV5CjlqmPmwg8c79uN2mi6Lqeg6ni09efJD333oJY3rv96mUUkr5it9XEVRKqZ7I4qxrN8FyR6UwoHQxJVV19ItufTGMnu6bBb/nO7kPA/BZaAhz550f4IiUUkqp7k17sJRSqhU2Vy0Oy9ETLFvcIILFyb6iXrrQhdtNeu6L7LQNpVTiiFn5l0BHpJRSSnV7mmAppVQrbK56HNbQo5YJ7z8YgMq9uV0RUpfL3/QVSWYfRSOvYnf6hYx1rGd3fl6gw1JKKaW6NU2wlFKqFXZ3Ha52EqzYlOEANBzonQlW8YZPAMiYdhbJMy7CIoa8r94IcFRKKaVU96ZzsJRSqhXB7nqctqPPq4roPxQXgpTt6qKoulZY0TLyGMig5HSEdMqIxl74daDDUkoppbo17cFSSqlWBJt6jO3oPVjYgjhg6Udo1e6uCaqL9avZSkHoKEQERCiMzCa1en2vXjUR4MPXnmLx785iyafvBToUpZRSPZAmWEop1ZIxhNCAsbe/MmBZcAqx9b1vkQt3dSnx7lLq40Y17XOlTCWV/eTl7QhgZP614ZsvOHnjncxxfMmYz39EYUF+oEPyu4rqet577VmWLV8a6FC6zIGKGvL2lwU6DKVUL6UJllJKteRswIobCQpvt2hNRBoDXXt73TOi9ueuBiAoObtpX+LoEwEoXP9ZQGLqCo4v/kS1hLHv/LeJlSp2LvpzoEPyK2MMa5+4jDM33cbE989m5dIPAx2S323O2UT9I+NJfGIEXy58NtDhKKV6oU4lWCLykIhsEZH1IvKWiMQ0O3aXiOSKyFYROa3TkSqlVBdxNtR43nQgwTKxg4mWGkqK9/k5qq51cNcaAPoNGd+0L2nUVOoJQgqWByosv6quLGN05VI2JZzOgKy5bAidzIi9b+N0ugIdmt+sW7GYE2s/Irf/6ZRZYgn/5Fe97o8FzRljqHnrNvpJGTXWaLJX/5rKg/sDHZZSqpfpbA/WR0CmMSYb2AbcBSAio4FLgDHAPOAJEbF28lpKKdUlamuqALAGtTMHCwgb4FlJcP+uzX6Nqau5ijZy0ESQkTGkaZ/YgtkdNJz48g0BjMx/tix5mxBxEDP5Qs+OMefSn1I2rP4qsIH5Ue3Xz1JHECmXP0nhmB8xyr2NnJW9t4cyZ/M6JjcuZ8uQa6k89wWiqWHju38LdFhKqV6mUwmWMeZDY4zTu7kMSPG+nw+8YoxpMMbsAnKBKZ25llJKdZX6mgoArCGR7ZaNTxsJQOXerX6NqauFV2wl35ZBSNDhi81WxmUx2LmDhsaGAEXmP85dS6g1wQwbPxeAoTPOA6Bi/buBDMtv6hsaGFP2CVtiTiQkIpYRp/6ARmOlZMVrgQ7Nb0qXvoDbCINPvYGh2dPZbM8kJU8fPaCU8i1fzsG6BljkfZ8MNJ/1XejddwQRuU5EVorIyuLiYh+Go5RSx6ehyjP53RIW027Z/mkjcBvBWdyLFn5wuxnYkEd55PAjDtlTJxAiDnbnrA5AYP6VcHA1u0JGYQsKBiA0Lpmd9qEkFn0R4Mj8Y/uqT4mWGqyjzwEgPCqO3LBxDCr5vFcOEzTGMKDoE7aHjCGqfxoAlYPPIM1dyO7t6wMcnVKqN2k3wRKRj0VkYyuv+c3K/ApwAi8dawDGmH8YYyYZYyYlJiYe6+lKKeVzjTWeBMvWgQTLEhTKAUsi9ore8yysqn25hFGP6TfqiGP9RkwH4OD2FV0dll9VlB8kw7mL6n6TD9tfOnAOI505FPeyOXYAtZv/h8NYSZ96VtO+mvRTGGT2kL+99w0D3bUrl2Emj9r0U5r2Zcw4H4C9K94JVFhKqV6o3QTLGHOyMSazldc7ACJyFXAWcKn59k9ee4DUZtWkePcppVS35/AmWEERcR0qXx6SQnRd71mqvWjbKgAi08cdcWzg4NFUEQpFvasHK2/tZ1jFEDF89mH7Y8Z8B6sYdq/5NECR+U/0/uXk2ocRFf3tv/Pkqd8FYN83bwcoKv8pXPMRAAPHf7vuVv9BI8mzpBJd8HGgwlJK9UKdXUVwHvBz4BxjTG2zQwuBS0QkWEQygGFA7/pzp1Kq1zqUYIVHdyzBqo8axADXXhwutz/D6jI1+etwGyF1xIQjjonFSn7QcOIqeteiHrXbv8RpLGSMP/Gw/YOyT8BhrDTs7F0LXdRVVzKkcStliYdPj05KH8FuSSGk8MsAReY/kreEKsIYMPzw77kg4QSG1W2gsbYyQJEppXqbzs7BehyIBD4SkbUi8hSAMWYT8CqwGfgAuNEY03vXuVVK9SrOmnIAIqPjO1TeEj+EOKmmcG/v6Ki3lWxmj/SnX1zrCWZVXCbpjp04Guu7ODL/iSpeyS77EMIiYg7bHxQaQV7QUGJKe1eP3Y41n2IXF+Ej5hxx7EDcRAbXbsDpcHR9YH7idhsGVa0iP3IcWA5f1Dh0xEnYxcWO1b2vl1IpFRidXUVwqDEm1Rgzzvu6vtmx3xljhhhjRhhjFh2tHqWU6k5MfQX1xk5UZPurCAKEJY8GoGTXRn+G1WXiqrdTFDIEEWn1uC11IkHipHDLqi6OzD8a6msZ0rCF0viJrR4vi5/AkMZt1NfXdXFk/lO95TOcxsKQCScdccySPp1IqSMv55sAROYfubnbSGMfztRZRxwbNvEkXEao2PJ5ACJTSvVGvlxFUCmlegWpr6CScELsHXt8X7+MLABq927yZ1hdwlVfzUBXEbVxRy5wcUi/EdMAKN3eOx44vGv9UkLEQfDgma0eDxk8gxBxsHN97xkmGHNgBTvsw4iIij3iWPLY7wBQsmlxF0flP3vXeedfjTvliGPRMXHssA0l6sDKrg5LKdVLaYKllFItWBoqqJXwDpePGjCEOoKwlGzzY1RdY+/21VjEYE8e22aZlIxRlJsIZO+aLozMf8q3eJZhTxt3ZG8OQOpYz3Oxyrf2jnlJtdXlDGncysHEqa0eH5A2nCISCNqzrIsj8x/r7i+pJIJ+Qye1erwkbgJDGnJwNvSeXkqlVOBogqWUUi3YHZXUWSM6foLFyj5bChFVPf9ZWAd3eOYaJQ4Z32YZi9VCXvBwYit6fo8dQGjRCvItycT3T2n1eGz/VPbKAEKKeseQuR2r255/dUhB5DgGVa/DuHv+wi0utyG9eg0FUePB0vrHHtvgWQSLg90blnRxdEqp3kgTLKWUaiHYWUmdLeqYzikPH0z/ht1+iqjrOIs2UG1CGTSk7SGCAJWxmaQ68nA19uy/+LudTjLqNrAvuu2EEmBv1FgG1W7oFQlHzZbPcBgrQyZ+p80yrpRpxFPO/ryev1rktm2bSWU/7kFHzr865FDvZZnOw1JK+YAmWEop1UKUs4w6e8eWaD/EETecJIqpqCjzU1RdI7wsh3x7BsF221HL2VInYhcXe7f27F6dvJwVRFED6W1/+AYwKVOIp4LCXVu6KDL/iT2wnB1BIwiPjGmzTMIYz7DIovU9f2W9onWeZ1wltTL/6pABA1PYKamE7u0d8wqVUoGlCZZSSjVnDNGmHEdowjGdFpLk6fHZm7vOH1F1CbfTQVpDLhUxo9st22+kZ6GLsh6+0MWBDZ8AkDah7Q/fAIljPA8gLtrYs3s4KsoOMsSxnYr+rc+/OiRj5HjKTCQm/+suisx/QvI/p1yiiM9or5dyHOm1GzAuZxdFppTqrTTBUkqpZpw1ZQThhPDEYzovMSMbgLLdPXde0p6tKwmTBkid0m7Z9PRhlJhoTA9f6CKo8Gv2yAAGpA49arm04ROpJhR3fs9e+GH7yo+wiZuY0a0v6HGIzWZlR2gm/ct7dvs6nE5GVH/D7phpbc6/OsSkTSecOvZv7x2PH1BKBY4mWEop1Ux5iedhwbao/sd0Xv9Bo3EYK679Of4Iq0uUbvGsktdv9IntlrXZrJ6FLsp7bkLpdDgYXLOOopgJ7Za12GzkhYwioXx9F0TmP3XbPPOvBrfy/KuWagdMJtldRFVJYRdE5h9b1iwlXiph6Mntlu2f5RkWeaAXLU+vlAoMTbCUUqqZiuK9AITGDjim8yz2IPbZkgipyPVHWF2jYAX7TByDMoZ1qHhlbCbJzt2Yhmo/B+YfO9Z9QYxUYx06t0PlaxInkuHcRWXFQT9H5h/GGAaVfM620HHYQ9pfJTN6xAkA5K/9zN+h+U3xmvcAGDr9nHbLDhk6iiITjxT0/GGRSqnA0gRLKaWaqT5YBEBEXNIxn1sePph+9Xk+jqjr9K9YR0F4JjZbxx6wbE2ZgBXD/m098wGt5WsW4jQW0qed26Hy4UNnYBVD3rqe+Tys7ZtXk2b2Uj/ktA6VHzp2JvXGTv2Onrl0uTGGxKLF5AUNIzxuYLvlrRZhV3g2yRVrwRj/B6iU6rU0wVJKqWYc5Z4hgjH9U4/93PgRpJh9lJT1vJUEi/K3M9AcwJXS/vyrQ/oN9yyUcLAHLnRhjCGhaDHbgjOJje/XoXMGjT0BtxGqc5f6OTr/2LPsDQCGzLqoQ+XDw8LYbh9JTEnPnJO0bVsOWWYrVRmnd/ic+qSpxJkyqoq2+zEypVRvpwmWUko1I+UF1Jpg4hOObYggQFjqWKxi2LOt5y0MsHfF2wD0n3BWh88ZPGQo+0wsZu9qP0XlPztycxjizqMu4+irBzYXGZNAvjWV8AM97/s1xtB/z4fk2YcRMzCjw+eVJ0xkUOMOGmsr/Ridf+z76mUAUmZf2uFz4kZ65h8WrP3ELzEppfoGTbCUUqqZoJpC9klih4fJNddv6EQAKvN63lLtIbs+Ip8BpA8f2+Fzgm1WdgUNJ6YHLnRR9OW/AciY3bHenEOKY8aSUbcZl8vlj7D8ZtvGbxjt3k750PnHdF7o0JnYxE3eui/8FJl/GGPoX/A+O+zDiE0Z2eHzRmZPptyE49j1lR+jU0r1dj5JsETkdhExIpLg3RYReUxEckVkvYi0v0STUkp1A+G1eykPOvbeK4DY5GHUEYwc6FkJR31NJUOrV5MXNxtpZynrlqrjshjoLMRdV+Gn6HzPuN2kF7zNlqBM4o7hwzeApE0lSmrYvbVn9VKWLvkXDmMl46Srj+m8jPFzcRuhYmvPSrA2rFrCSHcu1cPOO6bzQoLsbA8eQ8LBnjksUinVPXQ6wRKRVOBUIL/Z7tOBYd7XdcCTnb2OUkp1hXjnfurDk4/rXLHaKLRnEF251cdR+dfWpW8TLA6ix519zOcGp03EgqFoS8+Zh7Vl5Sekmr2Ujzi23iuAAWM8K+sVb+45C13U1tYwYv97bIqYTnRiyjGdGx+fyE5rOuH7vvFTdP5R8+UT1BHMiHnXH/O5Vf0nk+zaQ31ZkR8iU0r1Bb7owXoU+DnQfMmd+cALxmMZECMi7S/ho5RSAVRbUUI01ZiYQcddR0XUcFIad2Hcbh9G5l+2tS+ynzhGT+/4YgCHpIyeDkBpD1roouaLJ6ghhOxTrzjmc5OHZFFOBBSu8ENk/rHuvb8TTwVhM394XOcfiBlPev0m3E6HjyPzjz17Chlf/hGbE+YREhV/zOdHDvMk0bvXfurr0JRSfUSnEiwRmQ/sMca0nHCQDBQ02y707mutjutEZKWIrCwuLu5MOEop1Sn7d3geImsfcGzDxpoz/ccQK1XsLczzUVT+VbpnB6NqVrBt4DnY7UHHfH76oHT2mgTY2zOGzBXt3MT4qs9YP/ACwiJjj/l8sVjYHZbJgIqe8cDhhsYGUjf/nVzbUIZNa/9ZUK2xpE8njAbyc3pGUrnznd8ThJO0M356XOcPGz+LemOndnvP6KXcuHkjbzz0Iw6Wlwc6FKWUV7sJloh8LCIbW3nNB34J3NOZAIwx/zDGTDLGTEpMTOxMVUop1SlVBRsBiE7LOu46ogaNA2D/9p4xh2PHB48DkPqdYx9KBWCxCIVhI0mo3OzLsPwmf+FvcWJjyNm/OO466vpPYpAp5OCBvT6MzD9WvfMEKWYfDdNvO+b5dYekjPU8iLlkU/d/4HB+3g4m7X+NdbGnkjh43HHVERMZwVbbCKKLu/897HYbGl79IefXvMLX/7ydvWW1gQ5JKUUHEixjzMnGmMyWL2AnkAGsE5E8IAVYLSIDgD1A84fIpHj3KaVUt9WwL4d6Y2fQ4OPvwUoZMQmA2oLuv5JgTXkxowpeZk34TNKHjjruehoSx5LkLqK2osSH0fnejvVLmFy2iLUDvku/pLTjridqhGcIWX43X8q7rLSYkZseYat9NKPnfv+460lOG8pe+mHb072HgRpj2Pvaz7DhIvX8+ztVV1nCBNIac3HWde/l6ZcuepGJeP64cWb16+Q9egpPvfYeJdUNAY5Mqb7tuIcIGmM2GGP6GWPSjTHpeIYBTjDG7AMWAld4VxOcBlQYY3S2qFKqWwsv20y+bRAhwcc+VK6pjpgE9ksC9pLu36Oz6Y3fE0kdoaf+ulP1hGd4ksrdG7rvA3hdTieOhXdQLpGMvPj3napr8NjZ1Bs7jTu698p6OS/+lBhTRfA5fzru3isAEaEwciypVevBmPZPCJAVHy5gWs0nrMu4loTU4/8jCUDQ4FnYxE3Bus99FJ3vFZeUMOSbeymwpuH+5X4OznmA8bY8frDxMt556FoWrt4d6BCV6rP89Rys9/H0cOUCTwM3+Ok6SinlG243afXbKIka0+mqDoQNJaFmuw+C8p+iXZvIzv83KyNOYvS46Z2qKz1rJgAVO7vvSnMrXvoNI5057JrwS6LjEjpVV0hoGNuDxxBfstJH0fneig9eZEbZQlYlX0p61oxO1+dMmUo85ezP656PICjI38WQr39OgTWVcd/rXO8VwJDxJ+EyQtmW7plguVxutj/7A/qbUizzH8MSFELcnB8Tevs6asdcwrXyX2Lf+j7//LR7tpdSvZ3PEixvT1aJ970xxtxojBlijMkyxnTf/4WUUgo4kL+ZCGpxDxzf6boa4keT5t5DZXW1DyLzPbfLRekrN+DARtLFf+p0fXEJ/SmUAdj3r+18cH6w8esPmLTzSVZFzGHCWT/ySZ3VA6aQ4dxFxcHutzhT7uY1jPz6Z+y0DWbclQ/7pM7E7FMA2Lvmfz6pz5fqamspe/5SwqnDfskL2IJDO11n/36JbLcOJbKoez5wePEL9zGj9jM2jfgJydlzvz0QnkDURU/iPOuvzLRuIvmzW/jv2oK2K1JK+YW/erCUUqpHKVy3GID+o2Z2uq7QlGzs4mL31rWdrssfVv7nXjIb1pKT9TOSUgf7pM4DkaNJqdnU7Zanz8/dRNL/fsB+S3+GXvvPTg2Vay565FwsYti56kOf1Ocr+/fkEfzq93CKjYgrXsHug2QDYMjwbIqIx7Kre/XoNDY62PT4RWS7NrFr+h8YMGyCz+renzCNjPocHLXlPqvTFz5/40nm5v2FjVEnkHXJva2WsU26Avcpv+V06zdse+sB9pTXdW2QSvVxmmAppRTgzltKGZEMHj2x03X1H+apo3zn6k7X5WsbP3+DCbmPszJ8DpO/e5vP6nWlzqA/BynY2X3mnhXt3krQS/OxYrBcuoDoWN+tVDtkwok0GDv127vPPKz9e/Op/+eZxJuDVM5/gX5pI3xWt8VqIS9qMulVqzAup8/q7QyHw8HKxy9nUu2XrB55B6NP+4FP6w8d+R1s4iZv1Uc+rbczlrz7AtPX/4rc0ExG3rgAsVjbLGubcSO1Q07nRhbwt9cWdWGUSilNsJRSyhhSyr9hV1g2VmvbH1g6Kj5tNHUEw77utZJg7urPGPzpj8mzpjPyR//yWW8OQL+s7wCwb93HPquzMwp3bMY8dxZhppYD575C0tBsn9YfHBLOjuBRxJd2jxHwe3bmUP/0PBLdxew+/XnSx89t/6RjZDJOJJpqCnMCv5pgbW016x49lxmVi1id/kMmXHK3z68xfNJ3qDNBVG/uHv+mFy/4M9O+uYWC4KGk3fAOtuCwo58gQti5f0bsIZyS/2eW5nbvVT6V6k00wVJK9XnFO1YzwBRTk3aST+oTq438oKHEVXSf3pxtqxeTuPBSSi1xRP7gHSKi4nxaf9rwcRwkCskP/EqC67/+iLB/n0a4qeHA/FcYNm62X65TNXA6Q507KCvZ55f6O2rT8o8JeeE0Ykw5e856kVHTTvfLdQZNOgOA/esCOw+rcPcO8v50MpNql7B61M+YcJVv5pm1FBMVRU5QJgnFgZ2H1djo4PO/3cCcnN+wPXwCqbd+TEhUfMdOjhyAZfZPmWtdx8KFr2O68SqQSvUmmmAppfq8vcvfwG2EgVO+67M6K2PHkOHYgcPh8Fmdx2vt4rdIfuciaiQCy+Vv0b8Tz4Bqi1gs7AofT1rl6oAt5W3cbr567RGGf/A96iSM6ss+YOj4E/x2vejM07CIIW/Fe367xtG4XW6+evE+hr1/EQ0SStWlixg2+VS/XS85NZ2dkkZowRK/XaM933z+LiH/mku6aycbZ/yFCRd37hED7SkfMINUZz61JYFZKGLv3kI2P3wKJxa/xJp+32X4be8TFBZ1THXYp19PXXAi55U/x5fbtRdLqa6gCZZSqs+LyvuQzdbhDMnI8FmdluQJhEkDBdvX+qzOY2XcblYu+ANjPruW/baBBF33EcmDj/+Bwu1pSJlBf1PCvvytfrtGW6ory1jzlwuZsek+doRmE/2TxST7eFhgS0PGnUCFCce1veuHkBUfKGLtQ6czI/cRNkdMI/zmJaQMG+v36xbFT2VI3Xoc9V27QmZDQz1Lnv4p4z+9nAZLOBWX/o/MU6/y+3VjMz0Ja9437/r9Wi0t/+hVbP+YxaiGjawd/1vG3/AvrPbgY68oKAz77JuZZslh0Yc6F0uprqAJllKqT6s6kEeGYzsHkk9GRHxWb8LwKQAUbwvMfJXq6kq++fPFTMp5gA1hU+h382ckDBzk12smjTsZgN0ru3YIWc7KTzn46AzGln/CkrTrGfmzj4iIG+j369rtdnIjJpFWtqxLV09c99FL8MR0Muu+YeWoOxl7+7s+XcDjaOwjTydEHOxc3nW9dts3rmT3gzOZtecZ1sedSvxtXzFwWOcfp9ARoyfM4ICJxbXlgy65HkBFeTlL/3IlU5f+kDprFAe/9z7j5v+kU3XaJl1JozWMKftfYeOeCh9FqpRqiyZYSqk+bdeS1wBInHSeT+tNHTqWWoJxFa7xab0dsX3jSooeOYFJFR+xbND1jL3jPSKifTvnqjWDRkygjCjI65qV9RrqqvnmHzcy/L/fJZgGcuf9h1nX/NEnC5V0lHvISfTjIDs2LvP7tUr272Hln85j7NIbqLJEs/eCd5l08V0+XaykPaNnnE6VCaV2/UK/X6uhoY4lz95F6mvz6Ofaz4aZf2XCLQsIiYz1+7UPCbbb2RIziyEVy3A3+nepc2MMKz5+nao/T2H6wXdYOfD7JP18GQNHTul85SHRmHGXc5ZlGW8s7r4PBFeqt9AESynVpwXlLiKPJEZnTfJpvRabjYKgYcSUbfJpvUdj3C5WvPI7Ul+bR4K7lO0nP8O0q7su4RCLhbzoqQyrWo7Tz3PPtiz/kAMPTmby3hdZEXsWYbd8w4jpZ/j1mq0ZMvMCXEYo/eY1v13DuN0sX/gPLE9OJbvyc5YNup6UXywnPWuG367ZloiwMDZHTCO99Au/Lte+4esP2PvHKczKf4ItUTOw3LCMrFOu8Nv1jsY6+izCqGfXN+/77RoH9hWw4k/nM2XJtWCxsfvsBUz60ZPY21sp8BgEz7oBqxgGbHmBA1X1PqtXKXUkTbCUUn1WQ/VBhtSsJS9xLlaL74YHHlIVn0mGcwd19Q0+r7ulg0W7yHnoZKZseZAtYRPhhq8ZMft8v1+3JTPyDOKoInf1p36pv6qyjK8e/wHD378Im3Gwbu5zTL/1RSJjOriqmo/F9U9hU3A2SXs+9MviHnt3bWHtg/OYuvpnlNqS2Pe9D5l29R8JCg7x+bU6yj38DGKpZNeaT3xed2nJfr7+82Vk/e9iQk0dG074O+NuX0hUvxSfX6ujMmecTZUJpXrNmz6v2+Vy8fVrjxD81FTGV33OyvTrGPCLVWRMOs3n1yI2nbrBp3GR5RNeWbrN9/UrpZpogqWU6rN2LH0Tu7iIHDvfL/WHpE0kVBrZkbPKL/Ufsua9p7H9fSaDajfxxYi7yb5jEbEB+kA6ZNp8Go2V8rW+H0K29qMXqX1kIjNKXmNVv/OI+uk3jD3Rt0M7j0dF+hmkugvJ3+K7dq6vq2HZsz8n7rlZDK9bxzcj7mDInV+RNtK3Pa3HY8SJF1FtQqn6+jmf1el2ufnq7acwj09mStm7rBz4fWLuWEXWSZf47BrHKzoynLWRJzKs5GOctb6bv7Rp7TJy/jCb6ZvuY2/QYIov+4RJVz2ELTjUZ9doKXz2DcRKNWXL/0O9w+W36yjV12mCpZTqs5yb36PERDNmim+ef9VSUtaJAFTkfO6X+ssO7GH1w+cw/ps72GtLpfjSjznhe3dgsQbuV3t0bDzbQseStO8T3C7fLPxQUrid9Q+dzrilN1JjiWTbmW8w+cZ/ER7VdXNxjmbUSZfiMFb2LP6nT+pb/9nrlDw4kWn5f2dT5Eyqr/uayd+7G4vN5pP6OysuJoa10d9heOkn1FeXdbq+XZuWk/PAbGas/QUV9n7sveh9Jv3oSULCo30QrW8ETbmKMOrZ9ukLna7rYMkBljx2DSPeOp1U527WTfg/Rt75OcnDxnU+0Pakz6YmZjgXuN5n4do9/r+eUn2UJlhKqT7J3VjP4Iqv2RI9i5Agu1+uEZcygr3Sj9BCHz83yBjWL3oGnphGZtVSlqXfyNBffEn6cP8uS95RjlHfJc0UsWl551YTdDY2sPylewl7eiZDq1exNONmUn6xguGTT/ZRpL6RMCCVtZEnkrn/Heprjr+HY19BLqsfOovsz6/FIGw46QUm3vEO/ZMH+zBa34iYfjWhNLD1w2eOu47y0gMse/wa0l49jSTHblZl/4bBdy4jdUzXzy1rz4QZp7KDVMLWv3DcQ0EPDQfk8QlML32T9f3PxXbLGsaeczNi6aKFWUQIm/ljxlh2s/zz9/TBw0r5SacTLBH5iYhsEZFNIvJgs/13iUiuiGwVET8MJlZKqeO345tFRFCHbfRZfr3OnpjJDK1Z47NFHw7uz2fdn84ie/lPOWAdQMFFHzDtqt9jswf5pH5fGHXylVSaMBzLj79HZ8s3H5P/wBSmbn+UrWHjKb3yS2Ze+X8EBR/Hc4C6QNDMG4iklpxFTx3zufW1VSx77i6i/jmDUdXLWZZxI/1+sYqsE/wzdNUXsqecxEbLSJI3/A1nfc0xnet0OPjq1T/h/usEJhe/ycrE85CbVjHxuz9FrN2jl64lu81K3tArSG/cxo4lC475/E3LP2bH76cyfdN9FAelseeiRUy44V+Ex/bzQ7RHJ2MvptEWxdyKt/l6Z2mXX1+pvqBTCZaIzAXmA2ONMWOAh737RwOXAGOAecATItJ16+YqpVQ7qta9Q40JZvSss/16HfvQOURJDdvXL+1UPcbtZvV/n8D65HRGVi3ny/SbyfjFUoaMmeyjSH0nJDyKDQlnkFn+GaVF+cd0bllRHqsevZCR751PuLuK1dMfZ9zPPyB18Ag/ResbWVNPZqNtDOkbH6e+4kCHznG7XKx6529UPjiWaXlPsCViChXXLGHalb8nOMR3q8f5g8VqoWb2r0gwB9n45gMdOse43az/5GUK/zCBGZvv50BQGgUX/o+pN/2LmIT+fo6486adfzO7SCZ08f0YR8dW4du9dQ2rHjyTMYvOJ9ZVwupJDzL8ziWkjZnu52iPIigcy8TLmWddwdufBeY5fUr1dp3twfox8IAxpgHAGHPof5X5wCvGmAZjzC4gF/DBgxyUUqrzjNtFWvFiNodNISoi0q/Xyph8OgCl647/QaXFe3ay4aF5TFh1F3tsaez53sfMvur/CArqPr1WLaWdfhsC7Hr9Vx0qX19bzYrn7yLk71PILP+MpUlXEnH7aiacdrlPHwDtLxaL4DjtISJMDdufu+Gow8iM28XGj//Nrt9PYuKaX1JmjWPDqa8w4WfvMmBQ904km5sy52yWB89gzNa/kb/6wzbLGbeLDYtfZ8sfZpL95fVYjZN10/7MiDuXkJ45tQsj7pzw0BDyJv2KJNcetj/7g6O28e4tq1nx5++R/J+TGFmzkhXpPyLyZ+uYcNaPuvS5ZW2xzbgBEQtZu58lr+TYeiCVUu3r7F0+HJgtIstF5HMROfSn1GSgoFm5Qu++I4jIdSKyUkRWFhcXdzIcpZRqX96mZSSYMpzD5vn9WtH9UtlmH8WAwkXHPN/BuF2sfOMRQp6ewbDaNXw17GeMuPNLBo8c559gfSh1aCbf9LuASaUL2fxF28+IaqyrYc2rv6f6wTFM2fUEG8OmsPeyz5l53WOER8Z0XcA+MH7yTL5Iuoasso/Y9PercNdXHXa8srSI1a8/SMFvs8lcchPB7lq+mfggw365nKwZpwco6uMnIqRe8xx7pD/xC69g2//+Dq5vh8KWFm5j5Su/pfC32WQtvpZ4xz5WjLmb/neuZey8q7tFonGs5pz5ff4bdxXDi/5Lzl/Pp65kd9OxqrIDrPrvk2z843cY9Mpcsso+ZmW/82m4YRVTrnqwWy3aQXQKjVnf52LLYt5cvCLQ0SjV60h7/+GLyMfAgFYO/Qr4HfAZcDMwGVgADAb+CiwzxrzoreMZYJEx5vWjXWvSpElm5cqVx/o99DgNjQ1Ulu6nqmwfteWlNNaU46ytwFVXiauhChqqsDRWYXfWYnPVYnE3YnE1YjUOLG4HNtOI1e3AZjwvC24McOhvvMKRbWoQnGLDhRUnNlxiwy3erxYbRmy4LXaMxYax2DEWu2fbGgxWO1iDml5iC0Zs33612oOw2IOx2oKx2EOw2oOx2YOxBgVjtwdjCw7Bbg/GHhyKPchzTGzB3vq653h71bste+k+pm1/hP0/XNMlCwisff2PjNv4ezaetZDMSSd26JyCnOXUv3ULwxpz2BSUTfTFT5EyZIyfI/WtqqoK9j96IsmuPeyc+CtGn3EDYgvCuF0UbFlJyVf/Jr1wIXFUsMGehcz9FZk9MNFozul08emTN3Nq6YuUSxSFkeNxWYMJr97NoMZc7OJiu2UwJeN+zMR5VxPkpwVWutL2bTnUv3I1We4cqginzN6PMGcFCeYgANusQykecy2TzryaYD8uQd5V6hudLH72Lk4qeoYgcXHAkogYQ6IpAeAAcWxLu4hRZ91CfL+kAEd7FGW7cT42kffc05h+++v0iwrcs9X6OqfTSWNjPc7GBoyzAbejEZfbhdvtwuVyY9xuz7bLhdvt9nw1bozbBcaNYLyf/cTzhwuxenr+LYJgRSwCWDxfxQJiQbwvRLBYPGUsFisWiwWxWLBYbZ5tsSBWC1bvtlgsWK1W7zF6xAgDfxGRVcaYVp+d0W6C1U7FHwB/NMZ85t3eAUwDfgBgjPmDd///gHuNMV8frb6enGAZY6goL6O0aCfVB3bTWFqAu2IPlpp92OpKCWosJ8JVTrS7ghipPmpdLiPUSig1hFEvITjFjtMShFvsuMSOyxKE22LHbQ3CWOxgaZGkGDByKC7PV8FgMQ6sxoXF7US8yZq4nViME4v3q9Vbxmoc2HBix4ndOLDjJAgHVvHtikMuLHiuZPN8FTsO7DjF5nkR5EkMLXbcWEHE+7IAlqb3RiwYwHg7ZT3bFgye8u5m+8X7Qzo8ITVN75v2N90b5rDyGM8vMtNUjzl0+rfJrTm8zm+ZI4aVHH4Ozc47xA3Gs20Oq+/b+o1pXr7FdU3LOFpc/4jrHh6vNB36dr80ffcdYA7VYlrubkHaOX5YK7R3yaPq79pHrYST+pucDtXXWbWVBzF/GsXmyGlMvuOdo5atqTjIppd/yYSiBVRIBFuyfsH0c28I6NLrnbFvTz7F/7qELOcmagih3BpPlKuMSGpxGCvrw6ZgmXET42ad2Wv+ozbGsPTzRViWPUVy/XYsuCi3JVLZbyJxUy5hRNa0HtuebalvaGTZohex7PiY4IZSXEFRMCCThAnzGTZqbK9p2+Y2bFjD/mWvElq+HRHBGZNB4tjTGDFhDhZrz5h2Xv7fu4lZ9RgPp/6VO669ItDhdG/GUF9TQWVZCXWVpdRXleCsKcNRW4mzvhp3QzXu+mpw1CCNNVhdddidtdjdtQS56ghy12MxDuzGgdU4seNo+nxll575TDKX8Xy+cvPtV4MFFxaMSNN282MGwS2efebQcWn53nO+56tne2XIdKZf9huG9ffvsP5j4c8E63ogyRhzj4gMBz4B0oDRwH/wzLtK8u4fZow56r+g7p5gOR2N7M3bSmn+Fur3b8dSvpPQqnyiGoqIdxUTKXWHlXcboUyiqLTEUGePoSEoFmdIHO7QeCQ8EVtUIsER8QRHxhIaEU1YZCzhkbEEhUZ4EoduxBiD021obHTQ2FCPo7EeR2MDjoY6HI4GnI4GXI0NOBsbcDnqcDkacTkbcDsacDsbMd6vOBswrkaMqxGcjYirEYtpxOLyJHyHeums7kZPQujdZzMOxLg4lKAIbs9Xcyit+vYvOOJNgA7d1kCzW9vd9CHdHJZyCDTt54gy0vT+yH7CpnPl8Dppo47DjknLpOLI9O9QTCKHH5fWygutHuco5do+3jxl89Z3WLxt/xttXkyMafPfc8uksD0ta2m91pYtcOQJgqFh1AWMO/uGDl3XF7555jYmFzzL+u/8m+zZ5xxxvKGumo1v/4mhW/9BpKlhedzZDL/0YeJ7wOT/9jQ6XCz7aAFs/5iQ+gM0BsViSZ1ExvTzGJicFujwlOq7Gqqp+tMEDtRb2HPhIk7Iygh0RF3GOBupKdtHefFeqkv3Ule+D2flfqguxlZfQlBDOUGOSkJdlYS5q4g0NR1KhGpMCHUSQr2E0iAhNFhCabSE4rCG4LYEYaxBGIt3VJDt8JFBh44Zqx2xWD29TN6vnp4lTw+SWCye3iT5NinBGM+ffo0B4/a+Dm27vH9rdYPb7f3DsKeM8ZY3xo1xe8oe2sbt+vZ8t7tpvxjPfuN2IU3X8rykqcyhfYfKGO9xF+D2fFYz3/bAHTpXjPvbz3i4vOXcrAqZyozL7mFov76RYAUBzwLjgEbgDmPMp95jvwKuAZzArcaYRe3V190SrC3ffEzZukWEHtxMQl0e/d37D7u5akww+6xJVIQk4QgfiEQnY49NJTQhjaj+6cQNSCMkpOcPh1BKdV59TSX7H55OjCmj8MRHGHPC+RixsD93LXu+fIGMgjeJo5LVQZMImXcvoyfMDnTISqk+oDH3c2wvzucDmU3WTa+QGh8e6JA6xxicNWUc3JdHxb5d1JYU4CovQCr3ElK3j4jGEiJdZcRQ1erpdSaIMommyhJFnS0Khz0KZ1A07uBoJCwOa1gs1vBYbGGxBEXGERIRS1h4FGGRUYSHR2LtIb2XqvP8lmD5WndLsL5++hamFD5PoTWFktAMGqMzsCUOIyp5OImDRhGbmNIjJ+kqpQKjKG8LDc+fT7oppJ4gBEMwDlxGWBUynZDZN5E184xeOZxKKdV9lb7/W+JXPMSrQedx2i3/IDq8+65QCuCqKaO0cAvlhdupP5CLKcsjuLqQiIb9xLlKCOPwZfRdRigmloO2RKrtCTSGJOAOS0Qi+xEU1Y+QmIFEJSYRk5hCdFRMrxvCq/xDE6zjVHGwmKDgEELDu093pFKqZ6uvq2XF/17CFKzAYrUhiSPJmHI2yYP8v9iGUkq1yhiKXr6Jgdte5AP7dxh17dMMGhAfuHhcTmpLdlOcv5Wqou04S3ZirdxNRE0hCY69RHL40vKlJor91v5UBfWnIWwA7shkbLEphCakETMgg8SkNKLCdESR8i1NsJRSSimlVNuMoeDNu0nd8Fd2kcTOCb/kxDO+j83mpyFvjnpq9udSkp9DddF23KU7CarcTXRdAQmuA9j4dkpGo7FSJP0osQ+kOiwVV/Qg7AmDiRg4jMTU4QxITMCmvU6qi2mCpZRSSiml2nVgzSJ49xb6ufaTa0mnOONckqacR9qw7GObFuFsxFmxl7J9eVTu301DyS5M6U6Cq/KJqS8gzl2KpdmiRJUmjD2WgZQFJ1MXkYbEpRPafyixScMZmDqE6AhdRl51L5pgKaWUUkqpDjHOBjb971lC1zzNEOcOAKoJoyhoEI0hCThDEzDW4KYFZ22ueqShAltjFcGOCiKdJcS4yw9LoACKTTRFlgGUhaTSGJmGxA8hbMBQ4lNHkZKURHhIz38unOo7NMFSSimllFLHbF/+NnYt/y/uveuJqNpJuLOcGFOOHSfgefpFHUFUEU6tJYI6ayQ1QQk4wgdCVBL22DTC+6USO2AwqQP6ERqkq+yp3uFoCZattZ1KKaWUUkoNSBvOgLTbD9vndhvcxuA2YDCEIPS36RwopQ7RBEsppZRSSnWYxSJYjvKweaX6Ov1zg1JKKaWUUkr5iCZYSimllFJKKeUjmmAppZRSSimllI90q1UERaQY2B3oOFpIAEoCHYTqMtrefYe2dd+hbd23aHv3HdrWfUd3bOtBxpjE1g50qwSrOxKRlW0twah6H23vvkPbuu/Qtu5btL37Dm3rvqOntbUOEVRKKaWUUkopH9EESymllFJKKaV8RBOs9v0j0AGoLqXt3XdoW/cd2tZ9i7Z336Ft3Xf0qLbWOVhKKaWUUkop5SPag6WUUkoppZRSPqIJllJKKaWUUkr5iCZYRyEi80Rkq4jkisidgY5H+Y6IpIrIZyKyWUQ2icgt3v1xIvKRiGz3fo0NdKzKN0TEKiJrRORd73aGiCz33t8LRCQo0DEq3xCRGBF5XUS2iEiOiEzXe7t3EpHbvL/DN4rIyyISovd27yEiz4rIARHZ2Gxfq/eyeDzmbff1IjIhcJGrY9VGWz/k/T2+XkTeEpGYZsfu8rb1VhE5LSBBH4UmWG0QESvwN+B0YDTwPREZHdiolA85gduNMaOBacCN3va9E/jEGDMM+MS7rXqHW4CcZtt/BB41xgwFyoBrAxKV8oe/AB8YY0YCY/G0u97bvYyIJAM3A5OMMZmAFbgEvbd7k+eAeS32tXUvnw4M876uA57sohiVbzzHkW39EZBpjMkGtgF3AXg/r10CjPGe84T3c3u3oQlW26YAucaYncaYRuAVYH6AY1I+YowpMsas9r6vwvMBLBlPGz/vLfY8cG5AAlQ+JSIpwJnAP73bApwEvO4tom3dS4hINHAC8AyAMabRGFOO3tu9lQ0IFREbEAYUofd2r2GM+QI42GJ3W/fyfOAF47EMiBGRgV0SqOq01traGPOhMcbp3VwGpHjfzwdeMcY0GGN2Abl4Prd3G5pgtS0ZKGi2Xejdp3oZEUkHxgPLgf7GmCLvoX1A/0DFpXzqz8DPAbd3Ox4ob/aLW+/v3iMDKAb+5R0S+k8RCUfv7V7HGLMHeBjIx5NYVQCr0Hu7t2vrXtbPbb3bNcAi7/tu39aaYKk+TUQigDeAW40xlc2PGc8zDPQ5Bj2ciJwFHDDGrAp0LKpL2IAJwJPGmPFADS2GA+q93Tt4597Mx5NUJwHhHDnESPViei/3DSLyKzxTO14KdCwdpQlW2/YAqc22U7z7VC8hInY8ydVLxpg3vbv3HxpS4P16IFDxKZ+ZCZwjInl4hvqehGeOTox3WBHo/d2bFAKFxpjl3u3X8SRcem/3PicDu4wxxcYYB/Amnvtd7+3era17WT+39UIichVwFnCp+fbhvd2+rTXBats3wDDvakRBeCbTLQxwTMpHvHNwngFyjDGPNDu0ELjS+/5K4J2ujk35ljHmLmNMijEmHc99/Kkx5lLgM+ACbzFt617CGLMPKBCREd5d3wE2o/d2b5QPTBORMO/v9ENtrfd279bWvbwQuMK7muA0oKLZUELVA4nIPDzD+88xxtQ2O7QQuEREgkUkA8/CJisCEWNb5NtkULUkImfgmbthBZ41xvwusBEpXxGRWcCXwAa+nZfzSzzzsF4F0oDdwEXGmJYTbFUPJSJzgDuMMWeJyGA8PVpxwBrgMmNMQwDDUz4iIuPwLGgSBOwErsbzB0W9t3sZEbkPuBjP8KE1wA/wzMXQe7sXEJGXgTlAArAf+A3wNq3cy94k+3E8w0RrgauNMSsDELY6Dm209V1AMFDqLbbMGHO9t/yv8MzLcuKZ5rGoZZ2BpAmWUkoppZRSSvmIDhFUSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTyEU2wlFJKKaWUUspHNMFSSimllFJKKR/RBEsppZRSSimlfEQTLKWUUkoppZTykf8HQqFwC7lITkkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADDiUlEQVR4nOzdd3xcxb3//9dn1Xuz3CTbknu3McaYmA6hJIAhJBhCJwmBNOBSQhqB3Mv95ib8QgIkISSEHtNbQgnVgAlg3HDvlqtsy5LV++78/tgjIctqRiutyvv5yD68Z2bOnM/uYTf70cyZY845REREREREpPN84Q5ARERERESkr1CCJSIiIiIiEiJKsEREREREREJECZaIiIiIiEiIKMESEREREREJESVYIiIiIiIiIaIES0SkhzGzHDNzZhYZ7likfzCz1WZ2YrjjEBHpC5RgiYhIr2dm95tZufeoNbO6JtuvhTu+ns45N8k5t6Ar+jazdDMrMLOFXdG/iEhPY7rRsIhIaJlZpHOuvhP75wBbgajO9NNfmdntwGjn3CUt1HXq3HSn3hRrW8zsr8A4wOecOzbc8YiIdDWNYImIhICZ5ZnZj81sBVBhZpFmNtvM/mNmxWb2WdMpWGa2wMz+n5ktMrNSM3vJzNJb6ftKM1trZmVmtsXMvtusfq6ZLff62WxmZ3jlKWb2oJnlm9kuM/sfM4to53WMMrN3zKzQzPab2RNmltqkrsjMZnjbQ72RiRO97XO8qWbF3uub0Oz9ucnMVphZiZk9ZWaxh/9OH75Wzo0zs9FN2jxsZv/TZPss7z0t9s7h1A4e60Qz22lmP/Xevzwzu7hJ/VfNbJl3rnZ4yWBDXcPU0G+Z2XbgHa/8GTPb471v75vZpGZx/8nMXvNG6z40s8Fm9nszO2Bm68zsiA6+R6d25DUeDjP7EjAZeCjUfYuI9FRKsEREQuci4KtAKjAIeAX4HyAduAl4zswym7S/DLgKGALUA/e00u8+4CwgGbgSuLtJkjMLeBS42Tvu8UCet9/DXr+jgSOA04Bvt/MaDPh/wFBgAjAMuB3AObcZ+DHwuJnFE/zR/IhzboGZjQXmA9cDmcCrwD/NLLpJ3xcAZwC5wFTgihYDMDvWS2xae3yRUZDGc9PeqJCXkPwd+C6QAfwFeNnMYjp4rMHAACALuBx4wMzGeXUVBM97qhfPtWZ2brP9TyD43p/ubb8GjAEGAkuBJ5q1vwD4uXfMGuAjr90A4Fngdx2Mu0Vmdmtb56ON/SKA+4AfAJouIyL9hhIsEZHQucc5t8M5VwVcArzqnHvVORdwzr0JLAa+0qT9Y865Vc65CuAXwAUtjTA5515xzm12Qe8BbwDHedXfAv7unHvTO84u59w6MxvkHet651yFc24fcDdwYVsvwDm3yeurxjlXQPDH+QlN6v8KbAI+IZgY/syrmge84u1bB9wFxAFfavb+7HbOFQH/BKa3EsNC51xqG48vci1P03PTnquBvzjnPnHO+Z1zjxBMXGYfxvF+4b2H7xFMtC8AcM4tcM6t9M7VCoJJ6QnN9r3dO2dV3j5/d86VOedqCCa708wspUn7F5xzS5xz1cALQLVz7lHnnB94imBy/YU5537d1vloY9cfAZ8455Z05vgiIr2NVqgSEQmdHU2ejwC+YWZnNymLAt5tpf02r35A807N7Ezgl8BYgn8YiwdWetXDCI4WNTfC6y/fzBrKfM2OeQgvMfsDwQQuydvnQLNmfwVeBq72fvRDcMRrW0MD51zAzHYQHMVpsKfJ80pvn+7S5utuZgRwuZn9sElZNB2P94CXNDfY1rCvmR0N/JrgtLloIAZ4prVYvYT7TuAbBEcGA17VAKDEe763yb5VLWwndjDukDGzoQQTrCO7+9giIuGmESwRkdBpOg1qB8ERqqZ/7U9wzv26SZthTZ4PB+qA/U079KalPUdwRGiQN2LwKsGpfA3HGdVCLDsIjroMaHL8ZOfcpBbaNvW/3uuY4pxLJjgS15ihmVki8HvgQeB2+/y6sd0EE5OGdua9vl3tHO8QZnacfb4CYEuP49rv5RDNp6hVEkxUGwxu8nwHcGezcxfvnJvfwWOlmVlCk+3hBN8fgH8QTE6HOedSgPtp8v62EOs3gbnAqUAKkOOVN9+ny3jXk7V6PlrZbRbBEc41ZraHYNI+y7uWrM3rAEVEejslWCIiXeNx4GwzO93MIsws1lsAIbtJm0vMbKJ3PdOvgGe9aV1NNYxyFAD13mjWaU3qHwSuNLNTzMxnZllmNt45l09wKuH/Z2bJXt0oM2s+Ha25JKAcKDGzLILXdjX1B2Cxc+7bBKe+3e+VPw181YsjCriRYIL3n/beqOaccx845xLbeHxwuH22YDnwTe/cnMHB0/T+ClxjZkdbUIK3OEUSNC4s8XA7/d9hZtFeMngWn49SJQFFzrlq7/q5b7bTTxLB97GQYEL4v4fxGkPCOfe/bZ2PVnZ7jWAyON173AYsA6a38N+4iEifogRLRKQLOOd2EBx5+CnB5GgHwWSl6ffuYwQXotgDxBKcUtW8nzKv/GmCU/W+SXAEpKF+Ed7CFwSnjL3H5yNJlxFM0NZ4+z5LcFShLXcAM7y+XgGeb6gws7kEF6m41iv6L2CGmV3snFtPcLTrXoKjcGcDZzvnats5XrhcRzDGYuBi4MWGCufcYuA7BBdoOEDwmrMrmuw7DPiwjb73ePvtJrggxTXOuXVe3feAX5lZGcGk4+l24nyU4BTDXQTP48ftvbCewLv+bE/Dg+B/T3XecxGRPk33wRIRCQMzWwA87pz7W7hjkY7zVkX8DJjqLebRvP5Eguc1u3mdiIj0D1rkQkREpIO8EbkJ7TYUEZF+S1MERUT6GTO7v5UFC+5vf2/pjcxseBsLVQwPd3wiIn2JpgiKiIiIiIiEiEawREREREREQqRHXYM1YMAAl5OTE+4wREREREREWrVkyZL9zrnMlup6VIKVk5PD4sWLwx2GiIiIiIhIq8xsW2t1miIoIiIiIiISIkqwREREREREQkQJloiIiIiISIj0qGuwWlJXV8fOnTuprq4OdyjSA8TGxpKdnU1UVFS4Q5E+bE9RKe8+eCvDvvwDjp0+MdzhiIiISC/S4xOsnTt3kpSURE5ODmYW7nAkjJxzFBYWsnPnTnJzc8MdjvRhK96ez0UVT/DhK5th+r/DHY6IiIj0Ij1+imB1dTUZGRlKrgQzIyMjQ6OZ0uVSt78JwOTalVTV1Ic5GhEREelNenyCBSi5kkb6b0G6w4DKzQCkWAWbNq0JczQiIiLSm/SKBEtEpDsl+ovZFTkMgMLNy8IcjYiIiPQmSrA6wMy48cYbG7fvuusubr/99vAF1MSJJ57Y5s2Zzz33XGbPnn1Q2e23305WVhbTp09n8uTJvPzyy10dpkjv4RyprpT81JnBzb2rwxyQiIiI9CZKsDogJiaG559/nv3794e0X+ccgUAgpH02VVxczJIlSygpKWHLli0H1d1www0sX76cZ555hquuuqpL4xDpTVxNKdFWT0XCMApsADElm8MdkoiIiPQiSrA6IDIykquvvpq77777kLqCggLOP/98jjrqKI466ig+/PBDIDhKdNdddzW2mzx5Mnl5eeTl5TFu3Dguu+wyJk+ezI4dO7j55puZPHkyU6ZM4amnngJgwYIFnHjiiXz9619n/PjxXHzxxTjnWozvscceaxyNWrRoUWP5888/z9lnn82FF17Ik08+2eK+EyZMIDIy8qDk8dZbb2XixIlMnTqVm266CYC8vDxOPvlkpk6dyimnnML27dsBuOKKK7j22muZPXs2I0eOZMGCBVx11VVMmDCBK664orHPa6+9lpkzZzJp0iR++ctfHhJHSUkJI0aMaEz0KioqGDZsGHV1dS3GLdJVakuDn4X6uHSKY4aQWLU7zBGJiIhIb9Ljl2lv6o5/rmbN7tKQ9jlxaDK/PHtSu+2+//3vM3XqVG655ZaDyq+77jpuuOEGjj32WLZv387pp5/O2rVr2+xr48aNPPLII8yePZvnnnuO5cuX89lnn7F//36OOuoojj/+eACWLVvG6tWrGTp0KHPmzOHDDz/k2GOPPaS/yspKli9fzvvvv89VV13FqlWrAJg/fz633XYbgwYN4vzzz+enP/3pIft+8skn+Hw+MjMzASgsLOSFF15g3bp1mBnFxcUA/PCHP+Tyyy/n8ssv5+9//zs/+tGPePHFFwE4cOAAH330ES+//DLnnHMOH374IX/729846qijWL58OdOnT+fOO+8kPT0dv9/PKaecwooVK5g6dWpjHCkpKUyfPp333nuPk046iX/961+cfvrput+VdLvqkr3EAC42nerEYWQWfEwg4PD5tMCKiIiItE8jWB2UnJzMZZddxj333HNQ+VtvvcUPfvADpk+fzjnnnENpaSnl5eVt9jVixIjG66IWLlzIRRddREREBIMGDeKEE07g008/BWDWrFlkZ2fj8/mYPn06eXl5LfZ30UUXAXD88cdTWlpKcXExe/fuZePGjRx77LGMHTuWqKioxsQL4O6772b69OncdNNNPPXUU42r86WkpBAbG8u3vvUtnn/+eeLj4wH46KOP+OY3vwnApZdeysKFCxv7OvvsszEzpkyZwqBBg5gyZQo+n49JkyY1xvz0008zY8YMjjjiCFavXs2aNYeuzDZv3rzGEbwnn3ySefPmtfk+inSF2tKC4JOETAIpwxjEAQpKysIblIiIiPQavWoEqyMjTV3p+uuvZ8aMGVx55ZWNZYFAgI8//pjY2NiD2kZGRh50XVPTezclJCR06HgxMTGNzyMiIqivb/l+PM2XLjcznn76aQ4cONB4Q97S0lLmz5/PnXfeCQSvwWqY/tc87kWLFvH222/z7LPPct999/HOO+90KE6fz3dQzD6fj/r6erZu3cpdd93Fp59+SlpaGldccUWL97I655xz+OlPf0pRURFLlizh5JNPbvO4Il3BX14IgCVkEJWRi2+zY/+uzQxKOyLMkYmIiEhvoBGsw5Cens4FF1zAgw8+2Fh22mmnce+99zZuL1++HICcnByWLl0KwNKlS9m6dWuLfR533HE89dRT+P1+CgoKeP/995k1a9ZhxdUw6rNw4UJSUlJISUlh/vz5vP76643XfS1ZsqTV67CaKi8vp6SkhK985SvcfffdfPbZZwB86Utfatz/iSee4LjjjutwfKWlpSQkJJCSksLevXt57bXXWmyXmJjIUUcdxXXXXcdZZ51FREREh48hEir11cHRquj4ZBIHjQSgNF8LXYiIiEjHdDrBMrNhZvauma0xs9Vmdp1Xnm5mb5rZRu/ftM6HG3433njjQQtC3HPPPSxevJipU6cyceJE7r//fgDOP/98ioqKmDRpEvfddx9jx45tsb/zzjuPqVOnMm3aNE4++WR+85vfMHjw4MOKKTY2liOOOIJrrrmGBx98kLy8PLZt23bQ8uy5ubmkpKTwySeftNjHV77yFXbv3k1ZWRlnnXUWU6dO5dhjj+V3v/sdAPfeey8PPfQQU6dO5bHHHuMPf/hDh+ObNm0aRxxxBOPHj+eb3/wmc+bMaay77bbbDlomft68eTz++OOaHihhU19TAUB0bCJp2WMAqN3f8h9IRERERJqz1lam63AHZkOAIc65pWaWBCwBzgWuAIqcc782s1uBNOfcj9vqa+bMma75PZ3Wrl3LhAkTOhWj9C36b0K60pZnfs7I1ffy2VVbmZaVTP1/Z/KfQZdw/LX3tr+ziIiI9AtmtsQ5N7Oluk6PYDnn8p1zS73nZcBaIAuYCzziNXuEYNIlItKjBWorqXZRxMdEQUQk+30DiCnfEe6wREREpJcI6TVYZpYDHAF8AgxyzuV7VXuAQa3sc7WZLTazxQUFBaEMR0TksLnaSqqIIS46eA3ggeihJFfrXlgiIiLSMSFLsMwsEXgOuN45d9DNqlxwHmKLcxGdcw8452Y652Y23ItJRCRcXF0VVUQTHx1cZLUqfijp/n1hjkpERER6i5AkWGYWRTC5esI597xXvNe7PqvhOi39QhGRnq+uiioXQ7w3ghVIyiLTFVNWURnmwERERKQ3CMUqggY8CKx1zv2uSdXLwOXe88uBlzp7LBGRruarr6KaaGIig1+PkenD8Jlj36688AYmIiIivUIoRrDmAJcCJ5vZcu/xFeDXwJfNbCNwqrctItKj+eqrqLXYxht4xw8YAUDJ3i3hDEtERER6iVCsIrjQOWfOuanOuene41XnXKFz7hTn3Bjn3KnOuaJQBBwuL774ImbGunXrWm2Tl5fH5MmTQ3bMK664gmeffbbV+uuvv56srCwCgUBj2cMPP0xmZibTp09n4sSJ/PWvfw1ZPCL9gc9fRa0vpnE7dUjwZsPVBdvDFZKIiIj0IiFdRbAvmz9/Psceeyzz589vsb6+vr7Tx/D7/R1uGwgEeOGFFxg2bBjvvffeQXXz5s1j+fLlLFiwgJ/+9Kfs3bu307GJ9BeR/mrqfLGN2+lDcgGoL9ZS7SIiItI+JVgdUF5ezsKFC3nwwQd58sknG8sXLFjAcccdxznnnMPEiROBYKJ18cUXM2HCBL7+9a9TWRm8MP7tt9/miCOOYMqUKVx11VXU1NQAkJOTw49//GNmzJjBM888c8ix33rrLWbOnMnYsWP517/+ddCxJ02axLXXXttq0jdw4EBGjRrFtm3bGsvuueceJk6cyNSpU7nwwgsBKCoq4txzz2Xq1KnMnj2bFStWAHD77bdz+eWXc9xxxzFixAief/55brnlFqZMmcIZZ5xBXV0dAL/61a846qijmDx5MldffTXNb14dCATIycmhuLi4sWzMmDFK/KRHigxUU98kwYqMS6KERCLKdoYxKhEREektIsMdwGF57VbYszK0fQ6eAme2fXnYSy+9xBlnnMHYsWPJyMhgyZIlHHnkkQAsXbqUVatWkZubS15eHuvXr+fBBx9kzpw5XHXVVfzpT3/iBz/4AVdccQVvv/02Y8eO5bLLLuPPf/4z119/PQAZGRksXbq0xWPn5eWxaNEiNm/ezEknncSmTZuIjY1l/vz5XHTRRcydO5ef/vSn1NXVERUVddC+W7ZsYcuWLYwePbqx7Ne//jVbt24lJiamMeH55S9/yRFHHMGLL77IO++8w2WXXcby5csB2Lx5M++++y5r1qzhmGOO4bnnnuM3v/kN5513Hq+88grnnnsuP/jBD7jtttsAuPTSS/nXv/7F2Wef3XhMn8/H3LlzeeGFF7jyyiv55JNPGDFiBIMGtXhrNJGwigpUUx8Ve1BZYeRA4ir3hCkiERER6U00gtUB8+fPbxztufDCCw8aMZo1axa5ubmN28OGDWPOnDkAXHLJJSxcuJD169eTm5vL2LFjAbj88st5//33G/eZN29eq8e+4IIL8Pl8jBkzhpEjR7Ju3Tpqa2t59dVXOffcc0lOTuboo4/m3//+d+M+Tz31FNOnT+eiiy7iL3/5C+np6Y11U6dO5eKLL+bxxx8nMjKYXy9cuJBLL70UgJNPPpnCwkJKS4O3MjvzzDOJiopiypQp+P1+zjjjDACmTJlCXl4eAO+++y5HH300U6ZM4Z133mH16tWHvI558+bx1FNPAfDkk0+2+ZpFwik6UIM/Mu6gsvLYIaTUasRVRERE2te7RrDaGWnqCkVFRbzzzjusXLkSM8Pv92Nm/Pa3vwUgISHhoPYNK4+1tt2S5n2019+///1viouLmTJlCgCVlZXExcVx1llnAcFk5r777muxv1deeYX333+ff/7zn9x5552sXNn2iGBMTPBif5/PR1RUVGM8Pp+P+vp6qqur+d73vsfixYsZNmwYt99+O9XV1Yf0c8wxx7Bp0yYKCgp48cUX+fnPf97mcUXCJdrVEIg4OMGqjR9CTtkyAgGHz9f+Z1pERET6L41gtePZZ5/l0ksvZdu2beTl5bFjxw5yc3P54IMPWmy/fft2PvroIwD+8Y9/cOyxxzJu3Djy8vLYtGkTAI899hgnnHBCh47/zDPPEAgE2Lx5M1u2bGHcuHHMnz+fv/3tb+Tl5ZGXl8fWrVt58803G6/3ak0gEGDHjh2cdNJJ/N///R8lJSWUl5dz3HHH8cQTTwDBa7sGDBhAcnJyh+JrSKYGDBhAeXl5q6semhnnnXce//Vf/8WECRPIyMjoUP8i3SoQIIZaiDo4wSIlm2SrpKioMDxxiYiISK+hBKsd8+fP57zzzjuo7Pzzz291YYlx48bxxz/+kQkTJnDgwAGuvfZaYmNjeeihh/jGN77BlClT8Pl8XHPNNR06/vDhw5k1axZnnnkm999/P4FAgNdff52vfvWrjW0SEhI49thj+ec//9liH9/+9rdZvHgxfr+fSy65hClTpnDEEUfwox/9iNTUVG6//XaWLFnC1KlTufXWW3nkkUc6+O5Aamoq3/nOd5g8eTKnn346Rx11VGPd/fffz/3339+4PW/ePB5//HFND5Seq74KANcswYpOHw7A/t26F5aIiIi0zZqv+BZOM2fOdIsXLz6obO3atUyYMCFMEUlPpP8mpMtU7IffjuLV4Tfxlat+0Vi8eenbjHr5ayye8wAzv6w/EIiIiPR3ZrbEOTezpTqNYImIeFxtBQC+6PiDytOHjgKgulA3GxYREZG2KcESEfHUVAUTLIs+eIpgamY29c4HJboXloiIiLStVyRYPWkao4SX/luQrlRdWQ5ARHSz1UEjIin0ZRBVviscYYmIiEgv0uUJlpmdYWbrzWyTmd16uPvHxsZSWFioH9aCc47CwkJiY2PbbyzyBdRUBROsyJhDb51QHDWIhGrdbFhERETa1qX3wTKzCOCPwJeBncCnZvayc25NR/vIzs5m586dFBQUdFWY0ovExsaSnZ0d7jCkj6qrDk4RjIyLP6SuMm4wA0tWdHdIIiIi0st09Y2GZwGbnHNbAMzsSWAu0OEEKyoqitzc3C4KT0Tkcw0JVlTsoSNY9YlDySx+l9q6eqKjetc92kVERKT7dPUUwSxgR5PtnV5ZIzO72swWm9lijVKJSDg1JFjRMYmH1PlShxFtfgr27DikTkRERKRB2Be5cM494Jyb6ZybmZmZGe5wRKQfq29IsOIOTbBiB4wA4IBuNiwiIiJt6OoEaxcwrMl2tlcmItLj+GsrAYiNP3SKYNKgHAAq92/rzpBERESkl+nqBOtTYIyZ5ZpZNHAh8HIXH1NE5AtxXoIVE3/oCNaArODNhmt1s2ERERFpQ5deqe2cqzezHwD/BiKAvzvnVnflMUVEvqhAbSX1zkd8bNwhdfHJGVQQi69UNxsWERGR1nX5UljOuVeBV7v6OCIinVZXSRUxxMe08NVoxn7fQGIqdnd/XCIiItJrhH2RCxGRHqOuimqiiYls+auxLGYQiTV7uzkoERER6U2UYImIeKyukhqiMbMW62sThpLp34tzrpsjExERkd5CCZaIiCeivopqO/T6q0ZpI0i3MvYXFnZfUCIiItKrKMESEfFE1FdS42s9wYoeOBqAfdvXdVdIIiIi0ssowRIR8UT6q6j1xbZan5I1FoCy3Ru7KyQRERHpZZRgiYh4ogOV1LUxgpU5bDwAdfu3dFdIIiIi0ssowRIR8UQFqqmLaD3Bik1Ko5gkIkryui8oERER6VWUYImIeGIC1QQi49tssz9qCIkVO7opIhEREeltlGCJiHhiXRWBqLYTrLK4YaTX6mbDIiIi0jIlWCIiAM4RSzWunQSrLmUEg10B1dXV3RSYiIiI9CZKsEREAFdXRQQOohPabBeZMZJIC7Bnx6ZuikxERER6EyVYIiJATVU5AL6YxDbbJQwJ3gureOf6Lo9JREREep9OJVhm9lszW2dmK8zsBTNLbVL3EzPbZGbrzez0TkcqItKFqspLAfBFtz1FcIC3VHvV3s1dHpOIiIj0Pp0dwXoTmOycmwpsAH4CYGYTgQuBScAZwJ/MLKKTxxIR6TLVFWUARMS2PYKVPng4NS6KQNHW7ghLREREeplOJVjOuTecc/Xe5sdAtvd8LvCkc67GObcV2ATM6syxRES6UlVlcAQrKjapzXbmi2Bv5GCiy7Z1R1giIiLSy4TyGqyrgNe851lA0xvF7PTKDmFmV5vZYjNbXFBQEMJwREQ6rq6yBICo+LYTLICSuOFkVG/v6pBERESkF2o3wTKzt8xsVQuPuU3a/AyoB5443ACccw8452Y652ZmZmYe7u4iIiFRV3EAgMiE9Hbb1qaOIiuQT1V1TVeHJSIiIr1MZHsNnHOntlVvZlcAZwGnOOecV7wLGNakWbZXJiLSI/kriwGITWo/wYocNJ6YnfVs3LqWMROmd21gIiIi0qt0dhXBM4BbgHOcc5VNql4GLjSzGDPLBcYAizpzLBGRruSqigGIS85ot23K8EkAHNi2uitDEhERkV6o3RGsdtwHxABvmhnAx865a5xzq83saWANwamD33fO+Tt5LBGRLuOqSqh3PhKTktttO3jkVABq9qzr6rBERESkl+lUguWcG91G3Z3AnZ3pX0Sku7jqYkqJJy02qt22sUnp7CeNqKKN3RCZiIiI9CahXEVQRKTX8tWUUG6JeKPx7SqIGU5Kpe6FJSIiIgdTgiUiAkTWllLla/smw02VJ49kaN0OXCDQhVGJiIhIb6MES0QEiK4rpSay/XtgNcoYS4pVsG/Pzq4LSkRERHodJVgiIkCsv5y6qI4nWAlZEwHYu+WzrgpJREREeiElWCIiQEqgmJqY9pdobzBkVHAlwdIda7oqJBEREemFlGCJSL/n6mtIoZz6uAEd3idtSC4VxOIK1ndhZCIiItLbKMESkX6v6sAeAFziwI7vZEZ+1AiSyzZ1UVQiIiLSGynBEpF+r7hgNwCRyYMPa7/S5LEMq91CwK+VBEVERCRICZaI9Hul+4MrASZmDD2s/WzQJNKtjF27tnVFWCIiItILKcESkX6vsigfgJQBWYe1X9KIaQDs3bQ05DGJiIhI76QES0T6vfqSYII1YHD2Ye03dNyRAFTvWBHymERERKR3CkmCZWY3mpkzswHetpnZPWa2ycxWmNmMUBxHRKQrRJTupNAlk5h4GDcaBuJTB1FIGpGFa7soMhEREeltOp1gmdkw4DRge5PiM4Ex3uNq4M+dPY6ISFeJrdxNQcSgL7Rvftwo0su1kqCIiIgEhWIE627gFsA1KZsLPOqCPgZSzWxICI4lIhJyKTX5lMR+sa+oqtRxjPBvp6a2JsRRiYiISG/UqQTLzOYCu5xznzWrygJ2NNne6ZW11MfVZrbYzBYXFBR0JhwRkcPmAgEGBPZRl3B4C1w0iBwymRirY8em1SGOTERERHqjdhMsM3vLzFa18JgL/BS4rTMBOOcecM7NdM7NzMzM7ExXIiKHraRgJ7HUYWkjvtD+6SOnA1C0ZVkIoxIREZHeKrK9Bs65U1sqN7MpQC7wmZkBZANLzWwWsAsY1qR5tlcmItKjFGxdQSoQO2TCF9p/6Jjp+J1Rt3tlSOMSERGR3ukLTxF0zq10zg10zuU453IITgOc4ZzbA7wMXOatJjgbKHHO5YcmZBGR0KnetQqA9NwpX2j/qJh4dkVkEXtgfSjDEhERkV6q3RGsL+hV4CvAJqASuLKLjiMi0imBfes44BIZmvXFpggCFCWOYVDpmhBGJSIiIr1VyBIsbxSr4bkDvh+qvkVEukp8yUZ2RA5natQX/zr0D5hIdum7FBTuJzNjQAijExERkd4mJDcaFhHplZxjUHUexQmjOtVN/IjpAOxc+2kIghIREZHeTAmWiPRb1cX5JFOOP2Nsp/rJGj8bgIq8xaEIS0RERHoxJVgi0m/t2RS8hV/s0Imd6id50HD2k0bUPq0kKCIi0t8pwRKRfqt0+woABo6a3um+dseNJbN8Xaf7ERERkd5NCZaI9FuBfesocQkMG5bb6b4qMyYxwr+dqoqyEEQmIiIivZUSLBHpt+KLgysIRkdFdLqv6GFHEmGO7WsXhSAyERER6a2UYIlI/+Qcg2ryKE4YGZLuhk44GoADm7TQhYiISH+mBEtE+qXq4j2kUEZ9xriQ9DcoexTFJOHyl4ekPxEREemdlGCJSL+Uv2k5APFZk0LSn/l87I4by4CytSHpT0RERHonJVgi0i+VbA8uqZ4ZghUEG1QNPIJc/zYKC/eHrE8RERHpXZRgiUi/FNi7llIXH5IVBBvEjz+FSAuwY9mbIetTREREepdOJ1hm9kMzW2dmq83sN03Kf2Jmm8xsvZmd3tnjiIiEUnzJJnZEjiAysvMrCDbInX4iVS6a2g3vhKxPERER6V0iO7OzmZ0EzAWmOedqzGygVz4RuBCYBAwF3jKzsc45f2cDFhEJhUE1eaxNOS6kfcbGxbMibgqZ+z8Oab8iIiLSe3R2BOta4NfOuRoA59w+r3wu8KRzrsY5txXYBMzq5LFEREKi4sAe0ijFnzE25H1XZx9HbmA7u7dtCnnfIiIi0vN1NsEaCxxnZp+Y2XtmdpRXngXsaNJup1d2CDO72swWm9nigoKCToYjItK+3ZuCC1zED50Q8r6zj/kGAFvefSjkfYuIiEjP126CZWZvmdmqFh5zCU4xTAdmAzcDT5uZHU4AzrkHnHMznXMzMzMzv9CLEBE5HMW7NgCQOWJ8yPseOmoy62KmMDLvKWqrq0Lev4iIiPRs7SZYzrlTnXOTW3i8RHBk6nkXtAgIAAOAXcCwJt1ke2UiImFXX7iVgDMGDwv9FEGAui/dwFAKWPLYTxvLAvV1LH/lL2z776ksffEPXXJcERERCb9OLXIBvAicBLxrZmOBaGA/8DLwDzP7HcFFLsYAizp5rN7DOQJ11VTXVFFTXU1NTTW11VXU1lRTX1uNq68hUF8L9TW4QB3+QAAXCBAI+HF+718XLHMugOEw5zACmAuAGWY+HAZmYD4ww5kPayjDwCK8+mB78/7FF3yO+TBfQ3lEY7nP2898hvkigvsSfI4ZPl/Dft6joQ9fBObz4TP7vN7nw+eLAAOf15fPfMG2ET6MYLnPF4H5zPvXex2hOh2HUdpuX4ezWwcaOy+Olpo2lDVv4w5q4w4qa+ynSaPW9m++b0vHpPn24cbV7HW5TsZFm8dspd+DYghuWNEW9lkGg2Pj6ApTjv8any57mmN2/Z2Vv1lDICaZocVLmO4KASja8DpwXZccWw7mAn5qqyuoramipqaGuppqamtrqKutpb6uBuevA38trr4W56/D+Wsh4McFHIGAn4Bzwe9j5wgEAoADR/B7mYZ/HWCYgTNf43dy8Du46XPve7fxezj43WgW/N7D+x4FH76IYDvnfWfiiwh+P/t8wWM1fA9j+Hyff5/7vOP5vO98Gr5XzfA1Ob7P+373mX3+3d/Y3+ff6z7vu5zG/2/p6Bt/6Oe4nR3a6qYDhS316A4rgsPpW0S6mfmIiooJft/1Ap1NsP4O/N3MVgG1wOUu+OtotZk9DawB6oHv98YVBHdsWsn+vFXUlhXiKoug6gBWW46vthxffQWR9ZVE+iuJ8VcS66qJdVXEUU2cq8FnjnggPtwvQkRatCZmGoO7qnMzpn/vURY++jNyd76Er8LP9rixbJn2TXwrnyGrekNXHbnPcAE/VeXFlBQVUF68n8rSQmpK9+OvPICrKsZXU0JETQkRdWX46quI9FcR5a8iOlBFTKCaWKqJdTXEWw0xQAyQFO4XJSIiX8jj9acw+bt/Z/qw1HCH0iGdSrCcc7XAJa3U3Qnc2Zn+w23XW39m9p4nGrf9zignnmqLpdoXR60vnrqIOCqiBlMSGU99RDyBqHj8UQkQGYsvMib4iIohIiqGiOgYIiJjsMgYLDIaImPwRURhERH4LAJfRHC0J6Lx3+BfHR0+nPeXR+eCfyvFBUe3gv8Gt43gqFfwL6wuOBLgtQuOhjkIBAi4gFffMFIWbOu8kTOc+7y98wfrXAC8EbXGfr1jNa2jse+G2IKxNPTDQeUBry7Q2CYYuh9z7vD+WtqdDiuujrdtqdvmRZ+3sVbbNBQcVN6sc2uhUWuRHryrHdS2hXDa6CdY45qOT7YUa8shH3LslvZvu5+DazOnntFKpKERFR3Dsd++C7gLgCFe+cLdqxi6430qykpISErp0hh6ouqKEop2b6Fk7zYqD+RTW7IXV7aPiKr9xNUWklBXRIq/iFRXSrwFWv0jVa2LoMwSqbR4anxx1PliqY1MpCpyIIGIOPxRCQQi4whExuOi4rGo4PduRES0950cTURkFEREQ0QUFhENkdHB7+SG0faI4IiQzxcc8WkYFXJmOGdgBL+TzZqMHvtb+E4Mbh/8vft5ucP7/g0EoOF7/KDv5MBB352N9Q3ft3z+/R7cdt7xvRGcJt/FwbLm38Mc/N0NwdkTXt+4hlkUzhu366BQfYe32E/XfA8DuB76fz0i/VlK4niGpMSGO4wO6+wIVp82/PQfsbH4QhJSM0lMyyQhKY2UiAj6308iEQmV9JFHwg7YuOw9ph9/TrjDCSkXCHBg3w4Ktq+jfO9Wagq3Q+ku4ivzSa7dy4BAAclUMJTg3PEGNS6KA75UyiLSKIsZxP7oidTHD8Di04mMTyc6KZ245HTiUwaQkDKA+OQMYuISyfD5yAjXixUREWmFEqw2DM0dD4R+lTER6b9yjzqD2gWRVK16BXphguX89ezbtYX8rWup3LsRCrcQW7aNtOqdDPLnk241pDdpX0wiRREDKY0dwr74GQSShuJLHUZcxjBSMrNJH5RNUnIag32+rpuyKSIi0o2UYImIdKO4xBRWJhxJ7r63qKurJSoqOtwhtcj56yncuZG9m5dRtWsVEfvXk1a+iSH1uxhkdQzy2tW4KPIjBlMcm82exKMhfSSxA0eTNnQUg7JHkZqYTGo4X4iIiEg3U4IlItLN/NMvZfB/fsCSt/7BkWdeEdZYXCBAUf4W9m5aRuXOlfj2ryelbBND67czgFoGeO12MZA9MTnsyPgSkZmjSc0aR+aICWQMySHHFxHW1yAiItKTmHM9Z0nSmTNnusWLF4c7DBGRLuWvr2PXndNwZgy5ZTHRXbRc/EGc48C+HezZuJSKHSuhYB3JZZsYWreNRD6/IfI+0tgdnUt58hhs0ASShk8la8x0MtJ1tZOIiEgDM1vinJvZUp1GsEREullEZBQHjvsl096/miV/+y5Hfu9h8LV73/eOcY7S/bvZvWkZZTtWwb51JJVuYEjtNtIoJ81rVuiS2R2dw4qMM3GZE0kaNoUhY6aTmTmIgT11BU8REZFeQAmWiEgYTDt5Hh+s/4Dj9j7G8nsuYPRl95KYPqT9HT0Bv5+9u/PYn7eKyp2r8O1fT1LZJobUbiOFcpK9diUugV1RI1ibdjKBzAkkDJvM4NHTGTh4GBlKpEREREJOUwRFRMLE7w/w4UO38qUdf6XWotiYMgf/4GlEDRhJZHQsAeejrqacQHkRtWUFWNlu4it2klabz0D/XqKtvrGvEpfAzqgcShNHEhgwjoTsyQwcNY0hWTlYqEbHREREBGh7iqASLBGRMFu/8lP2v/V7xpR8yEAOtNqulAT2RgymJCaLmqThRA3IIWHIOAaNnk7GwGwlUiIiIt1E12CJiPRg46YcxbgpTxAIOPL37aUkfzM1dTVE4oiOTSA2eQAZAweTHJ/YOPVPREREeiYlWCIiPYTPZwwZPJghg3XLXRERkd5K80lERERERERCRAmWiIiIiIhIiCjBEhERERERCZEetYqgmRUA28IdRzMDgP3hDkK6jc53/6Fz3X/oXPcvOt/9h851/9ETz/UI51xmSxU9KsHqicxscWtLMErfo/Pdf+hc9x861/2Lznf/oXPdf/S2c60pgiIiIiIiIiGiBEtERERERCRElGC174FwByDdSue7/9C57j90rvsXne/+Q+e6/+hV51rXYImIiIiIiISIRrBERERERERCRAmWiIiIiIhIiCjBaoOZnWFm681sk5ndGu54JHTMbJiZvWtma8xstZld55Wnm9mbZrbR+zct3LFKaJhZhJktM7N/edu5ZvaJ9/l+ysyiwx2jhIaZpZrZs2a2zszWmtkx+mz3TWZ2g/cdvsrM5ptZrD7bfYeZ/d3M9pnZqiZlLX6WLege77yvMLMZ4YtcDlcr5/q33vf4CjN7wcxSm9T9xDvX683s9LAE3QYlWK0wswjgj8CZwETgIjObGN6oJITqgRudcxOB2cD3vfN7K/C2c24M8La3LX3DdcDaJtv/B9ztnBsNHAC+FZaopCv8AXjdOTcemEbwvOuz3ceYWRbwI2Cmc24yEAFciD7bfcnDwBnNylr7LJ8JjPEeVwN/7qYYJTQe5tBz/SYw2Tk3FdgA/ATA+712ITDJ2+dP3u/2HkMJVutmAZucc1ucc7XAk8DcMMckIeKcy3fOLfWelxH8AZZF8Bw/4jV7BDg3LAFKSJlZNvBV4G/etgEnA896TXSu+wgzSwGOBx4EcM7VOueK0We7r4oE4swsEogH8tFnu89wzr0PFDUrbu2zPBd41AV9DKSa2ZBuCVQ6raVz7Zx7wzlX721+DGR7z+cCTzrnapxzW4FNBH+39xhKsFqXBexosr3TK5M+xsxygCOAT4BBzrl8r2oPMChccUlI/R64BQh42xlAcZMvbn2++45coAB4yJsS+jczS0Cf7T7HObcLuAvYTjCxKgGWoM92X9faZ1m/2/q2q4DXvOc9/lwrwZJ+zcwSgeeA651zpU3rXPAeBrqPQS9nZmcB+5xzS8Idi3SLSGAG8Gfn3BFABc2mA+qz3Td4197MJZhUDwUSOHSKkfRh+iz3D2b2M4KXdjwR7lg6SglW63YBw5psZ3tl0keYWRTB5OoJ59zzXvHehikF3r/7whWfhMwc4BwzyyM41fdkgtfopHrTikCf775kJ7DTOfeJt/0swYRLn+2+51Rgq3OuwDlXBzxP8POuz3bf1tpnWb/b+iAzuwI4C7jYfX7z3h5/rpVgte5TYIy3GlE0wYvpXg5zTBIi3jU4DwJrnXO/a1L1MnC59/xy4KXujk1Cyzn3E+dctnMuh+Dn+B3n3MXAu8DXvWY6132Ec24PsMPMxnlFpwBr0Ge7L9oOzDazeO87veFc67Pdt7X2WX4ZuMxbTXA2UNJkKqH0QmZ2BsHp/ec45yqbVL0MXGhmMWaWS3Bhk0XhiLE19nkyKM2Z2VcIXrsRAfzdOXdneCOSUDGzY4EPgJV8fl3OTwleh/U0MBzYBlzgnGt+ga30UmZ2InCTc+4sMxtJcEQrHVgGXOKcqwljeBIiZjad4IIm0cAW4EqCf1DUZ7uPMbM7gHkEpw8tA75N8FoMfbb7ADObD5wIDAD2Ar8EXqSFz7KXZN9HcJpoJXClc25xGMKWL6CVc/0TIAYo9Jp97Jy7xmv/M4LXZdUTvMzjteZ9hpMSLBERERERkRDRFEEREREREZEQUYIlIiIiIiISIkqwREREREREQkQJloiIiIiISIgowRIREREREQkRJVgiIiIiIiIhogRLREREREQkRJRgiYiIiIiIhIgSLBERERERkRBRgiUiIiIiIhIiSrBERERERERCRAmWiIiIiIhIiCjBEhHpYcwsx8ycmUWGOxbpH8xstZmdGO44RET6AiVYIiLS65nZ/WZW7j1qzayuyfZr4Y6vp3POTXLOLeiKvs0s3cwKzGxhV/QvItLTmHMu3DGIiPQpZhbpnKvvxP45wFYgqjP99Fdmdjsw2jl3SQt1nTo33ak3xdoWM/srMA7wOeeODXc8IiJdTSNYIiIhYGZ5ZvZjM1sBVJhZpJnNNrP/mFmxmX3WdAqWmS0ws/9nZovMrNTMXjKz9Fb6vtLM1ppZmZltMbPvNqufa2bLvX42m9kZXnmKmT1oZvlmtsvM/sfMItp5HaPM7B0zKzSz/Wb2hJmlNqkrMrMZ3vZQb2TiRG/7HG+qWbH3+iY0e39uMrMVZlZiZk+ZWezhv9OHr5Vz48xsdJM2D5vZ/zTZPst7T4u9czi1g8c60cx2mtlPvfcvz8wublL/VTNb5p2rHV4y2FDXMDX0W2a2HXjHK3/GzPZ479v7ZjapWdx/MrPXvNG6D81ssJn93swOmNk6Mzuig+/RqR15jYfDzL4ETAYeCnXfIiI9lRIsEZHQuQj4KpAKDAJeAf4HSAduAp4zs8wm7S8DrgKGAPXAPa30uw84C0gGrgTubpLkzAIeBW72jns8kOft97DX72jgCOA04NvtvAYD/h8wFJgADANuB3DObQZ+DDxuZvEEfzQ/4pxbYGZjgfnA9UAm8CrwTzOLbtL3BcAZQC4wFbiixQDMjvUSm9YeX2QUpPHctDcq5CUkfwe+C2QAfwFeNrOYDh5rMDAAyAIuBx4ws3FeXQXB857qxXOtmZ3bbP8TCL73p3vbrwFjgIHAUuCJZu0vAH7uHbMG+MhrNwB4FvhdB+NukZnd2tb5aGO/COA+4AeApsuISL+hBEtEJHTucc7tcM5VAZcArzrnXnXOBZxzbwKLga80af+Yc26Vc64C+AVwQUsjTM65V5xzm13Qe8AbwHFe9beAvzvn3vSOs8s5t87MBnnHut45V+Gc2wfcDVzY1gtwzm3y+qpxzhUQ/HF+QpP6vwKbgE8IJoY/86rmAa94+9YBdwFxwJeavT+7nXNFwD+B6a3EsNA5l9rG44tcy9P03LTnauAvzrlPnHN+59wjBBOX2YdxvF947+F7BBPtCwCccwuccyu9c7WCYFJ6QrN9b/fOWZW3z9+dc2XOuRqCye40M0tp0v4F59wS51w18AJQ7Zx71DnnB54imFx/Yc65X7d1PtrY9UfAJ865JZ05vohIb6MVqkREQmdHk+cjgG+Y2dlNyqKAd1tpv82rH9C8UzM7E/glMJbgH8bigZVe9TCCo0XNjfD6yzezhjJfs2MewkvM/kAwgUvy9jnQrNlfgZeBq70f/RAc8drW0MA5FzCzHQRHcRrsafK80tunu7T5upsZAVxuZj9sUhZNx+M94CXNDbY17GtmRwO/JjhtLhqIAZ5pLVYv4b4T+AbBkcGAVzUAKPGe722yb1UL24kdjDtkzGwowQTryO4+tohIuGkES0QkdJpOg9pBcISq6V/7E5xzv27SZliT58OBOmB/0w69aWnPERwRGuSNGLxKcCpfw3FGtRDLDoKjLgOaHD/ZOTephbZN/a/3OqY455IJjsQ1Zmhmlgj8HngQuN0+v25sN8HEpKGdea9vVzvHO4SZHWefrwDY0uO49ns5RPMpapUEE9UGg5s83wHc2ezcxTvn5nfwWGlmltBkezjB9wfgHwST02HOuRTgfpq8vy3E+k1gLnAqkALkeOXN9+ky3vVkrZ6PVnabRXCEc42Z7SGYtM/yriVr8zpAEZHeTgmWiEjXeBw428xON7MIM4v1FkDIbtLmEjOb6F3P9CvgWW9aV1MNoxwFQL03mnVak/oHgSvN7BQz85lZlpmNd87lE5xK+P+ZWbJXN8rMmk9Hay4JKAdKzCyL4LVdTf0BWOyc+zbBqW/3e+VPA1/14ogCbiSY4P2nvTeqOefcB865xDYeHxxuny1YDnzTOzdncPA0vb8C15jZ0RaU4C1OkQSNC0s83E7/d5hZtJcMnsXno1RJQJFzrtq7fu6b7fSTRPB9LCSYEP7vYbzGkHDO/W9b56OV3V4jmAxO9x63AcuA6S38Ny4i0qcowRIR6QLOuR0ERx5+SjA52kEwWWn6vfsYwYUo9gCxBKdUNe+nzCt/muBUvW8SHAFpqF+Et/AFwSlj7/H5SNJlBBO0Nd6+zxIcVWjLHcAMr69XgOcbKsxsLsFFKq71iv4LmGFmFzvn1hMc7bqX4Cjc2cDZzrnado4XLtcRjLEYuBh4saHCObcY+A7BBRoOELzm7Iom+w4DPmyj7z3efrsJLkhxjXNunVf3PeBXZlZGMOl4up04HyU4xXAXwfP4cXsvrCfwrj/b0/Ag+N9TnfdcRKRP032wRETCwMwWAI875/4W7lik47xVET8DpnqLeTSvP5Hgec1uXiciIv2DFrkQERHpIG9EbkK7DUVEpN/SFEERkX7GzO5vZcGC+9vfW3ojMxvexkIVw8Mdn4hIX6IpgiIiIiIiIiGiESwREREREZEQ6VHXYA0YMMDl5OSEOwwREREREZFWLVmyZL9zLrOluh6VYOXk5LB48eJwhyEiIiIiItIqM9vWWp2mCIqIiIiIiISIEiwREREREZEQUYIlIvIFLV29jqWbdoU7DBEREelBetQ1WC2pq6tj586dVFdXhzsU6WViY2PJzs4mKioq3KFIH1RTV8+MZ45mXWAYZT9dRlKs/jsTERGRXpBg7dy5k6SkJHJycjCzcIcjvYRzjsLCQnbu3Elubm64w5E+aNO65UwCxvt28MmKRRw9a064QxIREZEeoMdPEayuriYjI0PJlRwWMyMjI0Mjn9Jlajd/2Pj8wIaPwxiJiIiI9CQ9fgQLUHIlX4j+u5GuZPs3UOMiwYzI/WvDHY6IiIj0EJ0ewTKzYWb2rpmtMbPVZnadV55uZm+a2Ubv37TOhysi0jP4K4ooslTyo3NJK98Y7nBERESkhwjFFMF64Ebn3ERgNvB9M5sI3Aq87ZwbA7ztbfdKZsaNN97YuH3XXXdx++23hy+gJj7++GOOPvpopk+fzoQJExrjWrBgAf/5z3861fcZZ5xBamoqZ511VggiFelbomqKKPclU5I4kiF1O3DOhTskERER6QE6nWA55/Kdc0u952XAWiALmAs84jV7BDi3s8cKl5iYGJ5//nn2798f0n6dcwQCgU71cfnll/PAAw+wfPlyVq1axQUXXACEJsG6+eabeeyxxzrVh0hfFVtXQmVkCpY6jIEcYG9xRbhDEhERkR4gpNdgmVkOcATwCTDIOZfvVe0BBnW2/zv+uZo1u0s7281BJg5N5pdnT2qzTWRkJFdffTV33303d95550F1BQUFXHPNNWzfvh2A3//+98yZM4fbb7+dxMREbrrpJgAmT57Mv/71LwBOP/10jj76aJYsWcKrr77Kfffdx2uvvYaZ8fOf/5x58+axYMECbr/9dgYMGMCqVas48sgjefzxxw+5rmjfvn0MGTIEgIiICCZOnEheXh73338/ERERPP7449x7772MHz++1Tg3b97Mpk2b2L9/P7fccgvf+c53ADjllFNYsGBBm+/NM888wx133EFERAQpKSm8//77VFdXc+2117J48WIiIyP53e9+x0knncTDDz/Miy++SEVFBRs3buSmm26itraWxx57jJiYGF599VXS09P561//ygMPPEBtbS2jR4/mscceIz4+/qDjzp49mwcffJBJk4Ln7sQTT+Suu+5i5syZbcYrEioJ/hIOxA0mNWMEkVsC7Nu1lcFpU8IdloiIiIRZyFYRNLNE4DngeufcQVmQC86daXH+jJldbWaLzWxxQUFBqMIJue9///s88cQTlJSUHFR+3XXXccMNN/Dpp5/y3HPP8e1vf7vdvjZu3Mj3vvc9Vq9ezeLFi1m+fDmfffYZb731FjfffDP5+cG8dNmyZfz+979nzZo1bNmyhQ8//PCQvm644QbGjRvHeeedx1/+8heqq6vJycnhmmuu4YYbbmD58uUcd9xxbca5YsUK3nnnHT766CN+9atfsXv37g6/L7/61a/497//zWeffcbLL78MwB//+EfMjJUrVzJ//nwuv/zyxtX8Vq1axfPPP8+nn37Kz372M+Lj41m2bBnHHHMMjz76KABf+9rX+PTTT/nss8+YMGECDz744CHHnTdvHk8//TQA+fn55OfnK7mSbpUYKKUuOpWEgTkAlO7dGt6AREREpEcIyQiWmUURTK6ecM497xXvNbMhzrl8MxsC7GtpX+fcA8ADADNnzmzzIob2Rpq6UnJyMpdddhn33HMPcXFxjeVvvfUWa9asadwuLS2lvLy8zb5GjBjB7NmzAVi4cCEXXXQRERERDBo0iBNOOIFPP/2U5ORkZs2aRXZ2NgDTp08nLy+PY4899qC+brvtNi6++GLeeOMN/vGPfzB//vwWR53ainPu3LnExcURFxfHSSedxKJFizj33HM79L7MmTOHK664ggsuuICvfe1rja/phz/8IQDjx49nxIgRbNiwAYCTTjqJpKQkkpKSSElJ4eyzzwZgypQprFixAggmYT//+c8pLi6mvLyc008//ZDjXnDBBZx22mnccccdPP3003z961/vULwiIRHwk+Qq8MemkTp0FAA1+7eFOSgRERHpCTqdYFlwztqDwFrn3O+aVL0MXA782vv3pc4eK9yuv/56ZsyYwZVXXtlYFggE+Pjjj4mNjT2obWRk5EHXVzW9H1NCQkKHjhcTE9P4PCIigvr6+hbbjRo1imuvvZbvfOc7ZGZmUlhYeEib1uKEQ5czP5zlze+//34++eQTXnnlFY488kiWLFnSZvumr8nn8zVu+3y+xtd3xRVX8OKLLzJt2jQefvjhFhPGrKwsMjIyWLFiBU899RT3339/h2MW6az6iiIizRGISycxc0SwsGRHeIMSERGRHiEUUwTnAJcCJ5vZcu/xFYKJ1ZfNbCNwqrfdq6Wnp3PBBRccNGXttNNO4957723cXr58OQA5OTksXboUgKVLl7J1a8vTh4477jieeuop/H4/BQUFvP/++8yaNavDMb3yyiuNq5dt3LiRiIgIUlNTSUpKoqysrN04AV566SWqq6spLCxkwYIFHHXUUR0+/ubNmzn66KP51a9+RWZmJjt27OC4447jiSeeAGDDhg1s376dcePGdbjPsrIyhgwZQl1dXWM/LZk3bx6/+c1vKCkpYerUqR3uX6SzKkuCC95YXBpEJ1BsyUSW7wpzVCIiItIThGIVwYXOOXPOTXXOTfcerzrnCp1zpzjnxjjnTnXOFYUi4HC78cYbD1pN8J577mHx4sVMnTqViRMnNo6knH/++RQVFTFp0iTuu+8+xo4d22J/5513HlOnTmXatGmcfPLJ/OY3v2Hw4MEdjuexxx5j3LhxTJ8+nUsvvZQnnniCiIgIzj77bF544QWmT5/OBx980GqcAFOnTuWkk05i9uzZ/OIXv2Do0KFAMPn7xje+wdtvv012djb//ve/geC0xIbrrW6++WamTJnC5MmT+dKXvsS0adP43ve+RyAQYMqUKcybN4+HH374oJGr9vz3f/83Rx99NHPmzGH8+PGN5S+//DK33XZb4/bXv/51nnzyycaVE0W6S3VlcHptRExwNPpA5CASq/Lb2kVERET6CetJ926ZOXOmW7x48UFla9euZcKECWGKqO9rvtphX6P/fqQr7PzsXbJfOJf/fOmvfOm0C1j1u7OJK93CqNtXhzs0ERER6QZmtsQ51+IKayFbRVBEpL+oqwqOYEV6I1h1iUMZ7AqoqWv5OkkRERHpP0J6HyzpfW6//fZwhyDS69RVB69vjIpNAsBShpOwu4ZdBXvJGpoVztBEREQkzDSCJSJymOqrKwCIiksEICYjmFQV5uteWCIiIv2dEiwRkcPkrwkmWDHxwQQryVuqvbxAS7WLiIj0d0qwREQOU6BZgpU6OJhg1R7QUu0iIiL9nRIsEZHD5GqDCVZsfPAarMSM7GB56e6wxSQiIiI9gxKsDnrxxRcxM9atW9dqm7y8PCZPnhyyY65fv54TTzyR6dOnM2HCBK6++mogeJPgV199tVN9X3XVVQwcODCk8Yr0F662kloXQXxcXLAgMpoDlkJUhe6FJSIi0t8pweqg+fPnc+yxxzJ//vwW6+vrO788s9/vP2j7Rz/6ETfccAPLly9n7dq1/PCHPwRCk2BdccUVvP76653qQ6TfqqukihjioiIai4ojM4mr3hfGoERERKQn6F3LtL92K+xZGdo+B0+BM3/dZpPy8nIWLlzIu+++y9lnn80dd9wBwIIFC/jFL35BWloa69at44033qC+vp6LL76YpUuXMmnSJB599FHi4+N5++23uemmm6ivr+eoo47iz3/+MzExMeTk5DBv3jzefPNNbrnlFi688MLG4+bn55Odnd24PWXKFGpra7ntttuoqqpi4cKF/OQnP+Gss87ihz/8IatWraKuro7bb7+duXPn8vDDD/PCCy9QUlLCrl27uOSSS/jlL38JwPHHH09eXl6br/u9997juuuuA8DMeP/990lMTOSWW27htddew8z4+c9/zrx581iwYAG//OUvSU1NZeXKlVxwwQVMmTKFP/zhD1RVVfHiiy8yatQo/vnPf/I///M/1NbWkpGRwRNPPMGgQYMOOu6FF17IpZdeyle/+lUgmAyeddZZfP3rX+/YORXpYlZXSRWxpPissawiZiDJFboGS0REpL/TCFYHvPTSS5xxxhmMHTuWjIwMlixZ0li3dOlS/vCHP7BhwwYgOK3ve9/7HmvXriU5OZk//elPVFdXc8UVV/DUU0+xcuVK6uvr+fOf/9zYR0ZGBkuXLj0ouQK44YYbOPnkkznzzDO5++67KS4uJjo6ml/96lfMmzeP5cuXM2/ePO68805OPvlkFi1axLvvvsvNN99MRUXwGpFFixbx3HPPsWLFCp555hkWL17c4dd911138cc//pHly5fzwQcfEBcXx/PPP8/y5cv57LPPeOutt7j55pvJzw9Oi/rss8+4//77Wbt2LY899hgbNmxg0aJFfPvb3+bee+8F4Nhjj+Xjjz9m2bJlXHjhhfzmN7855Ljz5s3j6aefBqC2tpa33367MdkS6Ql89ZVUW8xBZfUJg8kIFOIPuDBFJSIiIj1B7xrBamekqavMnz+/cSTnwgsvZP78+Rx55JEAzJo1i9zc3Ma2w4YNY86cOQBccskl3HPPPXz5y18mNzeXsWPHAnD55Zfzxz/+keuvvx4IJhQtufLKKzn99NN5/fXXeemll/jLX/7CZ599dki7N954g5dffpm77roLgOrqarZv3w7Al7/8ZTIyMgD42te+xsKFC5k5c2aHXvecOXP4r//6Ly6++GK+9rWvkZ2dzcKFC7nooouIiIhg0KBBnHDCCXz66ackJydz1FFHMWTIEABGjRrFaaedBgRH3t59910Adu7cybx588jPz6e2tvag967BmWeeyXXXXUdNTQ2vv/46xx9/PHEN17qI9AC++ipq7OD/Jl3SUNL3lrPvQDEDM9LCFJmIiIiEm0aw2lFUVMQ777zDt7/9bXJycvjtb3/L008/jXPBv1InJCQc1N7M2txuSfM+mho6dChXXXUVL730EpGRkaxateqQNs45nnvuOZYvX87y5cvZvn07EyZM+MLxNLj11lv529/+RlVVFXPmzGlzgQ+AmJjP/6Lv8/kat30+X+M1aj/84Q/5wQ9+wMqVK/nLX/5CdXX1If3ExsZy4okn8u9//5unnnqq1QRUJFwi/VXU+mIPKotKC95suGjv9nCEJCIiIj2EEqx2PPvss1x66aVs27aNvLw8duzYQW5uLh988EGL7bdv385HH30EwD/+8Q+OPfZYxo0bR15eHps2bQLgscce44QTTmj32K+//jp1dXUA7Nmzh8LCQrKyskhKSqKsrKyx3emnn869997bmPQtW7asse7NN9+kqKio8TqohtG1jti8eTNTpkzhxz/+MUcddRTr1q3juOOO46mnnsLv91NQUMD777/PrFmzOtxnSUkJWVnBH6KPPPJIq+3mzZvHQw89xAcffMAZZ5zR4f5FukOkv4q6ZglWfMYwAEr3KcESERHpz7o8wTKzM8xsvZltMrNbu/p4oTZ//nzOO++8g8rOP//8VlcTHDduHH/84x+ZMGECBw4c4NprryU2NpaHHnqIb3zjG0yZMgWfz8c111zT7rHfeOMNJk+ezLRp0zj99NP57W9/y+DBgznppJNYs2YN06dP56mnnuIXv/gFdXV1TJ06lUmTJvGLX/yisY9Zs2Zx/vnnM3XqVM4///zG6YEXXXQRxxxzDOvXryc7O5sHH3wQgPvvv5/7778fgN///vdMnjyZqVOnEhUVxZlnnsl5553H1KlTmTZtGieffDK/+c1vGDx4cIffz9tvv51vfOMbHHnkkQwYMKCxfPHixXz7299u3D7ttNN47733OPXUU4mOju5w/yLdITpQTX2zBCvFu9lwddHOcIQkIiIiPYQ1jHp0SedmEcAG4MvATuBT4CLn3JqW2s+cOdM1X4Rh7dq1jdPd5PA8/PDDLF68mPvuuy/coYSN/vuRrrDnV2PZEjeZL938fGNZoKoE3/8NZ8HwH3DiVXeGMToRERHpama2xDnX4sIGXT2CNQvY5Jzb4pyrBZ4E5nbxMUVEulS0q8YfEX9QmS8uhQpi8ZXvCVNUIiIi0hN0dYKVBexosr3TK2tkZleb2WIzW1xQUNDF4fQvV1xxRb8evRLpKrGuhkDUoStbHogYQEzl3jBEJCIiIj1F2Be5cM494Jyb6ZybmZmZ2Vqbbo5K+gL9dyNdwjliqcFFxR9SVR49kMTafWEISkRERHqKrk6wdgHDmmxne2UdFhsbS2FhoX4sy2FxzlFYWEhsbGz7jUUOR301PlyLCVZ13CDS/fv1fSUiItKPdfWNhj8FxphZLsHE6kLgm4fTQXZ2Njt37kTTB+VwxcbGkp2dHe4wpI+pry4PfnFGHXr/Opc4mAGFxZRV15IcF3NIvYiIiPR9XZpgOefqzewHwL+BCODvzrnVh9NHVFQUubm5XRKfiMjhqqosIwnwRR86guVLzSZqu58de3aSnDuq+4MTERGRsOvqESycc68Cr3b1cUREukNNQ4IVc+gIVlx6cMS0ZO82UIIlIiLSL4V9kQsRkd6kprIcgMjYQxOspIHDAajcv+OQOhEREekflGCJiByG2qoyACJiEg+pSxuSA0DdgcNay0dERET6ECVYIiKHob4qOIIVFXtoghWbMpg6IqBsd3eHJSIiIj2EEiwRkcNQW1MBQFTcoQkWPh8HLI3oyj3dHJWIiIj0FEqwREQOQ6A6OIIVE5/UYn1pVCbxNbrZsIiISH+lBEtE5DD4a9pOsCpjB5FSt787QxIREZEeRAmWiMhhcN4UwdiElBbr/YmDyXSF1NYHujMsERER6SGUYImIHI6acupcBHFxcS1WW/JQEq2agv0F3RyYAOwtreZ3jzzNB5+tD3coIiLSTynBEhE5HLXlVBJDfExUi9VRacGbDRfvzevGoKTBPx69n//a+h2mPH8SRfu0mqOIiHQ/JVgiIofBV1dJJbFE+KzF+oSBuQCU793anWEJsKu4ijP2PQhAqlWQ98pvwxyRiIj0R0qwREQOg6++gipreXogQHrWaABqC7d1V0ji+XTpEib4tlM455csiZrBkJ2vg3PhDktERPoZJVgiIochor6SmjYSrOQB2dS5CDiwvRujEgC3+V0A0mfM5UD2yQzx76Z899owRyUiIv2NEiwRkcMQWV9Jja/1BAufj4KIgURX7Oq+oASAxMIVlPmSsfSRpE8+HYDdKxeENSYREel/OpVgmdlvzWydma0wsxfMLLVJ3U/MbJOZrTez0zsdqYhIDxDtr6K2rQQLKIkeTFJ1fjdFJAD1/gDZVevZmzgBzBg1YRqlLp7abYvDHZqIiPQznR3BehOY7JybCmwAfgJgZhOBC4FJwBnAn8wsopPHEhEJu6hAJfWR8W22qYofyoD6vThd/9Nt8vbsZzQ7qR80DYCU+Bg2RI4hqXBFmCMTEZH+plMJlnPuDedcvbf5MZDtPZ8LPOmcq3HObQU2AbM6cywRkZ4gJlCFv50EK5AyjIF2gNKyim6KSnatW0yU+UkaeVRjWVHqFLJqt0BdVRgjExGR/iaU12BdBbzmPc8CdjSp2+mVHcLMrjazxWa2uKBAN+YUkZ4t1lXjohLabBOVMQKAfbs2d0dIAlRvXwLAwHGzG8t8WTOIxE/RZk0TFBGR7tNugmVmb5nZqhYec5u0+RlQDzxxuAE45x5wzs10zs3MzMw83N1FRLpPIECcq4LothOsRO9eWCX5SrC6S0zBCoothai0YY1lqWOOAeDAxo/DFZaIiPRDke01cM6d2la9mV0BnAWc4j6/4GAXMKxJs2yvTESk1/JXlxJhDheb2ma7hnthVRXkdX1QgnOOgZWbKEgcQ6p9fgPo3NxR7HfJ1OevCmN0IiLS33R2FcEzgFuAc5xzlU2qXgYuNLMYM8sFxgCLOnMsEZFwqygtDD6JS22zXeqgEfid4Yp1L6zukH+gnFFuB7UDJh5UnpEYQ55vGLEHNoYpMhER6Y86ew3WfUAS8KaZLTez+wGcc6uBp4E1wOvA951z/k4eS0QkrKq8BCsyPrXNdhYZTaEvg+iynd0QleRtWEGM1RE/bOohdYXxo8is3gJa0VFERLpJu1ME2+KcG91G3Z3AnZ3pX0SkJ6kuLQIgMiGt3bYHogeToHthdYuSrcsAGDzmqEPq6tLHEV/xMoHiHfjShnd3aCIi0g+FchVBEZE+rbb8AADRCenttq2MzyKjfm9XhyQAe1dRTwRxQyccUhWTNRmAwq2fdXdUIiLSTynBEhHpoLry4AhWTFL7CVYgKZuBrpCySt2DqaullG5gb/QIiIw5pC5zZPDGwyXbdMNhERHpHkqwREQ6yF8VHMGKS24/wYocMJJIC5C/XQssdKWSyjpy/FupSB3XYv3I4dnscWn496zp5shERKS/UoIlItJB9ZXF+J2RltZ+gpU8JHiJaskuJVhdaUPedoZaEZFDp7RYnxwbxTbfCOJLNnRzZCIi0l8pwRIR6SBXeYAy4kmOO3QqWnMZw8cDUL1vU1eH1a/lb1gMQOboI1ttcyBxFJnV2yCgxWxFRKTrKcESEemgyOoiSiwFn8/abZucOYxaInFFeV0fWD9WsyO4gmDSiOmttqnLGEcsNfh1LkREpBsowRIR6aCYmkJKI9pfoh0AXwT7IgYTW66bDXcV5xxpRcspihwESYNbbRc7dBIARVuWd1NkIiLSnynBEhHpoMS6Qiqi2r/+qkFJTBapNbu7MKL+Lb+4ismBdRQPOKLNdgMaVhLcsao7whIRkX5OCZaISAcl+w9QHTugw+2rk4YzxJ9Pfb2u/ekK69evZrAdIDr3S222G5k1mF0ug8C+dd0UmYiI9GdKsEREOsDVVZFEBYH4gR3ex9JzSLIq9u7N78LI+q+SDQsBGDTpxDbbpcRFscM3jLgSLTgiIiJdTwmWiEgHlBcFk6TI5I4nWHGDRgGwf4eWCO8K0bsXUWlxRA2d3G7b4oRcBlZvg0CgGyITEZH+TAmWiEgHHNi7A4CY1CEd3ictK3jz2/I9uhdWqBWV1zC1ahF7Uo8EX0S77evSxxJDDa5Ei46IiEjXUoIlItIBFXu3ApAwKLfD+2QOGwtA/f6tXRJTf7Zi6Ydk234iJp7VofYx3kqChXkruzIsERGR0CRYZnajmTkzG+Btm5ndY2abzGyFmc0IxXFERMKlpmALAGlDx3R4n4jYRAotjajSvC6Kqv8qX/4SAYzso7/WofYDcqcAULJNCZaIiHStTidYZjYMOA1oOu/iTGCM97ga+HNnjyMiEk7uQB5FLokhmR1fRRCgMGoIiZU7uyiq/qmytp6RhQvYkTCZiORBHdonNzubfS6V+r1aSVBERLpWKEaw7gZuAVyTsrnAoy7oYyDVzDp+4YKISA8TU7aDfZFD8PnssParTBhOZr3uhRVK/3n/TSZaHkw6r8P7pCVEk+cbRmyxrocTEZGu1akEy8zmArucc581q8oCdjTZ3umViYj0Smk1OymLO/yvMX/KCAa5IkpKy7sgqv7HOYd9+jeqiGX4Sd86rH0PxOWQWb0VnGu/sYiIyBfUboJlZm+Z2aoWHnOBnwK3dSYAM7vazBab2eKCgoLOdCUi0iXqK0sY4vZRlTbusPeNyhyJzxz5Wqo9JJauWc+c6vfYnn02Fpd6WPvWpo8l3lXhSnd1TXAiIiJ0IMFyzp3qnJvc/AFsAXKBz8wsD8gGlprZYGAXMKxJN9leWUv9P+Ccm+mcm5mZmdnZ1yMiEnL5G5cBEDl40mHvm+wtilGySwlWZznnKHrlDiItQM5ZNx/2/jFDJgBwYNvqUIcmIiLS6AtPEXTOrXTODXTO5TjncghOA5zhnNsDvAxc5q0mOBsocc7lhyZkEZHutW/zUgCGjJ152PtmDg+OelXv2xLSmPqjBe+/y8kVr7Fp+DxiBh/+aGLaiKkAHNi2ItShiYiINIrson5fBb4CbAIqgSu76DgiIl3Odi7mgEti+Mjxh71vQnoW1UTjO6B7YXXG7v1FZL17HeW+ZEZ/41dfqI/cESMoconU7Vkb4uhEREQ+F7IEyxvFanjugO+Hqm8RkXAaWLKczbETmRnxBQb9zdgXMYS4ih3tt5UWVdfWs+5vV3My29l71uOkJH2x6eQZiTEss2GkHdBKgiIi0nVCcqNhEZG+qnjfTrL9u6gafNQX7qMkLpu0Gi2s8EXU1vlZcN81nFz9JhvGf59BR579hfsyMwrjcsms2qKVBEVEpMsowRIRacPWj18GYMD0M75wH7VJwxgS2EttnT9UYfULB0rKWPi7Czmj9BnWD5/H2Hl3drrP6rQxJLpyXPm+EEQoIiJyKCVYIiJt8G18nQJSGTt1zhfuw9JHEm815OdrmmBHrVqxhILfH8/JVW+wbuy1jLvyL2CHd5PnlkQPDl5HV7J9Vaf7EhERaYkSLBGRVlSV7GdC6YesSz+ViC9y/ZUnYfBoAIp2rA9VaH1WSWkpC/5yI6OfO52BroBNpz7I+G/+OiTJFXy+kmDRtpUh6U9ERKS5rlpFUESk19v4zkNMtXqSjrm8U/2kZ48FoGLPRuD0EETW91RXVfDp879nzMYHOZFCVqSdwqhL/sDoAcPa3/kwjMgZRamLozZ/TUj7FRERaaAES0SkJc6RuPpJNloOU488rlNdZWSNJuCMQKGWam9u166drP/3/UzZ/jjHcYANMZOp/vKfmDrzi1/z1paBybGssGyStJJgh9TWBzhQWcuBimoMH5GRPpJiI8lMjMFCNKooItLXKMESEWnBpo//yej6TXw4/ueM8XXuh6QvOo59vgyiSreFKLreze8PsPyjN6n+6K/MLF9AltWxLnY6+0/4ExNmnxmy6YAtMTMKYnMZUflplx2jN/IHHJu3bWfXmv9QvXMFUcVbSa3ezkD/PlKsgrFU4YBqoikhgUU2lL3xY6kefgJjZ53OtNzBSrhERDxKsEREmnGBAP53f80eMph29vdC0mdR9FCSq3aGpK/eKn/zCra//xiDtr/CkW4XFcSydvA5ZH35+4wffWS3xVGdOobUPW9AZRHEp3fbcXuSsqoa1iz7D2XrFhC/bxnZVesYa3sZ69WXWAoHYodRmTiTyrg09sWnYgSgrgoqCxlaspkjKv9J9LrnKV6bwIuxpxJ//Pf58jGz8HXyDxIiIr2dEiwRkWZWL3iaybWr+Wj8rRyTkBCSPqsSh5G1/z845/rVX/pL8zex+d3HSN3yMrn1WxjkjLUxk1kx6WrGn3ol0xNSuj2myEHjYQ+U7lhF8rjju/344VBVU8eazz7mwOq3Scz/mPE1KzjaKgDY58tkf9okVg+9mIyxsxk0dhYp8Wm0e2ZqK6nY8B4lCx/irD2v4N74F/96/0yGn3cH08eP7vLXJCLSUynBEhFpoqqygvQPfkmeZTPjvBtC1m8gNYeBha+wv7iYAWlpIeu3Jyrdt50t7z1O4saXGV27liOAtRFj+WDUjYw64WImDR8V1vhSh0+Gz2D/1pV9NsFyzpG3bRvbPv0X0VvfYnzFYo60MgD2RAxmx6CT2TfmRIbP+DIDM0Yw8IscJDqehMlnkjD5TALFu9j+4h18Je8ZSua/x4sj/4szLvoRsdF982dGIOA4UFFNcUkxtRWl1FaXUx9wYD4izIcvJo6E5HQSEpJIjY8iNioi3CGLSDfqm998IiJf0OJHb+U4t4dVpzxKTExsyPqNzhwFm2Hf9g0MSDs6ZP32FGVF+Wxa8A/i1r/I2OqVTDfHBsvlnezvkTXnm4wfP7nHjNwNGzmOShdDTR9bSbCiqobVn75DxarXGFzwIeMCm8k1xwFLYUfGHPaMPZmcGacxeGAug0N8bF9qFjlXPEDlzh9S8Y/vcu7WO/j0/14i7vz7mDxxSoiP1vUqK8vZvWUNxTvWUL1vK4HS3cRU7SWxtoC0+v0kuTIyrIqMdvqpdlGUkMAWS6coajBV8UOwtBxihkxgQO40RozIJT4mqltek4h0HyVYIiKeFR+/wZfyH2PJgLM48ri5Ie07ZegYAEp2rYdpfSPBKivez8b3niR63QuMr1zKERZgm2WxMOtbZB5zEeMnH8nYHpJUNTU0NZ7VZBFbtCHcoXTavoJ9rF/4PJEbX2NCxafMsgr8ztgaO5EVw7/P4CPPYvDYo0nzdc9tL+OzpzD8pg/Y/Oo9TFr8awJPncpbI3/E8d/8MdFRPe8nh7+mgl3rF1O4eQm1+WuJLdlMZs0OBrsCRptrbFdFDEW+DEqjM9mTMI3d8RlExiUTGZdMRGwyvpgEIg0CzmHOj7+2Cn9VCVQdwFUeIKpyDyOrd5JespjYklrIAz6CYpfAxojhFCeMIjBgHAnZkxk8ejrZ2Tn4OnHvPREJr573bSciEgZlpcWk/ftHFPgymXjFfSHvf1DuJABq9/bu5cGrK8tZ+/4z2MpnmFj+CTOsnt0M5JMhF5N+9EWMn3YMI7rpx/wXFVxJMIeplSvCHcoXkpe3mW3/eZakrf9mcu1yjjM/RZbCtswT2TvhdHJnnc3opDAu3uGLYNRZN1B21Fx2P/odTt36G1b836skXfBncsdODVtYtWWF7F73MSWbl8DeFaSVrierfgfDzTEcqHAx5EcNY2/yFHamjiRq0DhShk1kcM544pPSyTIjq7NBOEdd6R72bf6Mku0r8O9ZR0LJRnLL3yO57F+wFfggmHjtjhpBWfJo3IBxxAwcRfrgHAZmjyIuJbNLV9oUkc5TgiUiAqx8+DpmB/aw6SvzGZwU+mukYpIyOEAKkQc2h7zvrlZfW8O6j/5JzdKnGV/8HkdYNftJZcnA80iddRHjZpzE0F721/bKlNFk7HsHqkshNjnc4bTJOceGjevYvfAJBu58gwn+DeSYI983hNXDvsmAmV8je8rxpEf0rP9LTxo0knE3vcWqV/5I7uI7iXriZD4aOo/JF/ySpLQvdNVXxzhHdeF2dq/7hPKtS4goWEVm+XoGBgrI8Zrkuwx2xY5m68BTiM6azsCxsxgxchyjI7v4WikzolKGkDVjCFkzmtzrzTmqi/ewe+MyiretJLB3LfGlmxhb9C5pRS9Dk8HWaqIotjSqIxKoi0zAH5VEfdooxl/8WyJj4rs2fhHpkE5/G5vZD4HvA37gFefcLV75T4BveeU/cs79u7PHEhHpCsvefY4vFb3Ip0O/yVFHn9llx9kXM4yUyt5xs2EXCLBh6TuUfPwEo/e/xWRKKXXxrEo7hbgZFzLxmDM5Jqr3XjsSMWgC7IPynatJHH1MuMNpUd72bWx57wky8/7JFP8axgFbo0bz2cjvkTX76wwZdQRDevpIhhmTz/oBRUeexYYnb+bo3U9Q8YfnWTxsHqNO/x5p2WPb76Mt/jrKdq1l34ZFVG1fTsz+1Qyq2kiyK2MkEHBGng1lU9wkVg2YTNzw6QwZN4vh2cMZ0pOWkzcjNm0II2cNgVlfaSx2gQAH9uezb+cmSvdspapwO77S3URV78dXV05UXQVx1flMLvuIxc8PYuZFt4XxRYhIg04lWGZ2EjAXmOacqzGzgV75ROBCYBIwFHjLzMY65/ydDVhEJJSK9+8l672b2OYbxtTL7+rSY1UkjWREwQICAddj7xV0YN9ONrzxVwZveZZxgZ1UuyhWJc1h65RvMOn4r3F0XN/4C3lS7pGwEoo2ftSjEqwDxcWsfOtx4tc/z/TaZeRYgB2Rw/lszA8YccKl5GaPD3eIX0j6kBzSb3iGDSs+ofS1Ozhi+8NE/O0htkaPo2z4iWSM/RKZI6cTnTIYopotLlNbiavYx4F9OyjZuYHavRsIFG4iviyPwbXbSKKOJIILSmy2ESxJPB5/5iQSc44ge/wscgdmMLKnJ6KtMJ+PtIFZpA3MAk5osY1zjhW/Pplx6//Evh0XMnBYJ5NWEem0zo5gXQv82jlXA+Cc2+eVzwWe9Mq3mtkmYBbwUSePJyISUpseuYZproTycx8nJjY097xqjcsYTcb+l8nft4chg4d06bEOR6CulvULn6duyaNMLPuIoy3A2qgJLJp0B+NPvYyZKX3vZrzDc8aQ79IJbP803KEQ8AdYvmgBFR8/xPTiNzneqtjrG8jqnMvIOu4yho2awbBemiA0N3bq0TD1VbZuWc+WN//GoD0LmLzxAXyb/tLYppI46i0KHwEiXS2x1GJAuvfwO2MXmeyLymZT2tcIDJ5Mcs6RjBg7jYmpCUzqI+9VR5kZ6fP+hO+REyl87CrSb36HyKjocIcl0q91NsEaCxxnZncC1cBNzrlPgSzg4ybtdnplhzCzq4GrAYYPH97JcEREOm7pK39lZtk7fJx7LbOnzuny48UPGQ/rYd/WVT0iwSrYu4str9/HyLwnmeCK2E8KHw++iKwTv8OECUeEO7wulZ0Wx9s2hun7l4cthl35u1j/xt8ZlvcsM1we1USxPuNkkr90FbkzTmNQD18spDNyR44j97u/xTnHll357Fq3mMrda/GX7SOm5gDOX4szH77IaOpi0vHHZRCbNoTEIaNJzx7HiIGpDO/q66V6keyRE/jkiF9w9PKf8enffsBR1z4Q7pBE+rV2EywzewtavGXGz7z904HZwFHA02Y28nACcM49ADwAMHPmTNdOcxGRkDiQn8foT3/JusjxzLz4V91yzAE5kwEo37UW+HK3HLM55xyrln9Cybv3MLPkDY62OpbHHMnmaXcw/eQLODY2dPf+6snMjAPp0xlQ9AmUF0BiZrcc1znHisXvU/7en5hZ9jZZVsfWqDGsnHQbY0+9kmmJfW+0sC1mxqjsoYzKPgc4J9zh9GpHn/sD/rNzOV/a+xRLX5zIjHOvD3dIIv1WuwmWc+7U1urM7FrgeeecAxaZWQAYAOwChjVpmu2ViYj0CHlP/Ijxro7orz/QbdNpBmSPoc5F4N+3vluO11RdfT2L33qa2CUPcETdMqqIZs3Asxhw6o+YPm5Gt8fTE8TkHA1Ff6F444ekHnFulx6ruqaGJa8/SvKKh5jmX00VMawdfDZDT/keuWOP6tJjS/8x8+o/8dldm5m27HaWxyQy/cxvhzskkX6ps1MEXwROAt41s7FANLAfeBn4h5n9juAiF2OARZ08Vq/h/HXU1lRSU1lFdXUlNdWV1FZXUFtdRX1tFa6uGuprCATqcf56AgE/LuDH+f0EAn4I+BvLCPgxF8DwBvfMhzMAa3w4M++eGMFH8KkPzDBrKPN9XuZreO7zyg2ziMb2ziIwX7DMLLiv8wXbmtfWfBacvtHYZ7At5sN8vsY2PvMF2/kiwMDniwj242s4rlfnC/ZlPgNfRPC5+fD5fOD7/LkBPrNg+A3PLfgvQPMJNY7PB0WdC5a0et7c509cs3au2W4H99usbZMdmu/X/PCHxtdq04MaHNJtk4Lmsbe12dbrOrTf5sds+z1q9ZjtvrdtHOOQGNqobSP2vev+w5zy9/hoxHc5Zvy0loPuAhYZzc6oHJIOrOm2YxYXH+CzV/5MzsbHOIbd7Ld0lo35EeO/+iNmpHbPqE1PNWLKHGqWRFK4+t0uS7D25O9k/av3MW7H08yhkHzfIJZPuJnxZ17L9OSMLjmm9F/R0dGM+uELrLvnq0z5+CaW19cy/ezvhTusXikQcNT7A9TXVVNfV4O/thp/XTX+2hr89XX4/fX4/X78fj8Bfx3+QAB/fT0Bfz14N5zG+T9/jvP+Pyv4e+Xz33LgGn/TBcuc9zT4G86HGZj3ey+4W5N/G36HYd6PIJ/3e6zh919DnWEE235eh/db0D7/Def1bT7z4gr+NrPG35I0/jY089p4+wfLOKivhhhosk9jeyz4u++gvr1fsw1xeK8diyAmJqbHLhDVXGcTrL8DfzezVUAtcLk3mrXazJ4G1gD1wPd74wqCe7ZvZP/2tVSXFOAvLwjekb26DKstI6KunMi6cqLqK4gNVBDnKol3lSS4KqLMTwwQA/Tsu6uI9E+jgX1kMOPCn3f7sUvSJpGz7x1q6uqJieq6+xZt27Keba//nml7X+IEq2Bz1DhWz/wdE06+lAG6AB6AicMHsohJjN3+dkj7dc6xeumHlL13LzNK3uYEq2Nt3JEUz/414479GkN62P2qpG9JTEpl2A9fYfV95zB9yU9YvGsZR3zrPiKiYsIdWpeqqqqipKiAipL91JYXUldeRH1lCfXVZQSqywnUlENtOVZXga+ugsj6KqL9lUQHKokJVBHlaol0dURRR5SrI5p6YqwOfVv2DI/Xn8Lk7/6d6cNSwx1Kh3TqW945Vwtc0krdncCdnek/3La++juO2fOPg8oqXQyVFkeVxVMdkUBtRALlMVkURSbgj0zEH5UAUfFYVCwWGYsvJo6IqFgiouOIjA7+64uOwyJjiIiIxHyRRERG4IuIJCKi4d9IInwRRERGeiM/EcGRKwLBP9m7QPAv+87ROB7gPScQwOEIuAAuEGwTcA7nAriA9/D2dwG/tx3sM+D8wf2dwwUCweN4/bmAH+cCjfWf1/kJhuU/qD1N2joXaNwO/gUn0Nh/MG6vzn3ed8OjaV/BkaWggHMQ/B8NA1Ou4a9DbawgZdbwlyJvu3m992/jX4naYp+Pl7XftuVjuoa/ILW2WxsFh+5mrW81a9xWvG0dM7jZZhCtVnXqtbT5Bn+x1z3oyHOIie/+P4FEZM8greBl1m5YzYRJoR09c4EAKz95i+oP7mNGxQdkAatTTiDl5OsYNe3E9t7IficqwsfuwScyZ+8fqNu9kqihUzrVX01tDUv//QSJnz3IlPpVVBLD6kFnM+TLP2LCmL69aIj0LMnJqYy78Q0W/vWHHLvnafJ+vQj/Gb9l1FGnhTu0DnGBAGVlxRzYu5Oy/buoKt5DXXE+VOwjqrKAyNpiYupKiK0vIyFQRqIrJ8FqiGun3yoXTZXFUm3x1Pjigo/IRCp8mQQiYnARMRAZDRExEBl8BHzREBF9UJ1FROKLiMQXEYHP5z285xYR2ThryFlwhg4WgTMf5lxwlIbg77OG8avPf5k0/qoJ/rZq+F3j/R4K7u4+n93hGp4HvHbB31iGNxOnYd+mvxmd+7yPht+ODTN3vLLGNk3Kmu7fuB8H9/F5PC21CcbS8OPNec/N+xEXDL+h3eczTxr+TU0Yy5CU3nONsDWfghNOM2fOdIsXLw53GI22b1hO2f7dJKYNJCFtEImpmcT2kwvARaRr7N28nEGPncB/Jt7Gly64MSR91tRUs/zfj5Dy2d8Y799AKQmszzqfkV+5noysUSE5Rl/17tI1zHnpWPLHXsyIi+/9Qn3s2ZvPhlf/yJht8xnCfvJtILvHXcaEr3yPeE0DlDD75LXHGP7J7QxhP6vjZxF17PcZM/tszNf9qzDW1lRzoGAnpQW7qCjcTW1xPv6yvVjFXqKr9hNfu5+k+iLSAsXEW80h+9c7H8WWTJkvhaqIJGqikqmPTiEQmwqxqfgS0olMSCMqIY2oxAxiE9OIS0wlPimZ+PhkfJEaPZbQMbMlzrmZLdYpwRIR6T4uEKDgv0ezLW4SR93yz071daAgn7Wv3MuovPkMoogdviz2TbySSWd+l9gETVDuiHp/gHf+dy7H+z8h5qZVWOLADu3nnGP54g8p++B+Zpa8QbzVsDZ2Om7WNUw44RuYpgFKD1JaVsLyp/+XiTvmM4AS9lsa2wacSPTIOQydfBzpWWO+cMJVW11F8f7dlO7fRdWBvdSW7MFfuhcqCoisKiCmppDEukJSAgdIpbzFPopJpNiXRkVUBtUxA6iPz4TEQUQmDyY2bTBJGUNJzRxGUvpAfbakx1CCJSLSgyy57zImFLxO4Mb1JCanHfb+O1Z/xL637mFy0ZvEWB2rYmfA7O8x6fivheWv0r3dy28v4Iz3v8beIacw7LtPtzmVcn/BXja89RAZG59mXGAz1USxLvMMBp16PUPGtfj/syI9RkVFOcvffILo9f9kYuUiErxRohoXxT5fJqXRA/FHJ1EXkYA/Mo4IC07lCvj9mL+GqPoKYvzlxPgriPFXkOTKSKai5WO5GIp9qZRGpFMVPYDauAEEEgYSkTyY6NQhJKQPJTkzi/TMLKJj25vcJ9LzKMESEelBNnz6FmNfOZ+PJ/yM2fNu6dA+NdUVrHzrCZI+e4hxdWuocDGsyDiTIV/+ETkTjuziiPu2QMAx/+4bubjsQfKyzmb4N/4PX2pWsNI5duetZ8eSV4ne9BoTq5YRY3VsjRxJyfgLGf/lq4hN6d+rMUrvVFVdy6bVn1Ky6SN8RVuIqdhJQvVeovyVxLkqYqkm4Hw4Mxw+/BZJpS+Bal8CNREJ+KMSCcSmEYgfgC9pEFHJA4lPG0JCxlBSBgwhKSnFW0VOpG9SgiUi0pM4x7o7jyGjfg8x1y0iOa3laWkuEGDbyvcpXPgwYwreIJkKdtpgto68mIlnXkPGgI5NZ5P2lVTU8safr+f8sn8QMGNfxFDqLJK0+oLGv9Dn20DyB59MxpzLGTHpGC0aIiLSjynBEhHpYdYvfZ/cl84lL3oMyRf8mcGjjwAzqor3sWXFB1SveZ3Be98ny+2hykWzMvl44o+6lIlzzsYXoWmAXSEQcCz4ZBG1i58gpXwzERYgEJ9JYNAUhk45kRHjjwzew09ERPo9JVgiIj3QolcfYdInN5NgNZSRgMNI9i4Cr3ZRrImdTs2YrzL2pEvJyBgQ5mhFRESkQVsJlpZiEREJk1lfuZz8aSexaMF8ogpWgxn1KSNIzZnOqCNPYUZSSrhDFBERkcOkBEtEJIyGZA1nyMU/DncYIiIiEiKaTC4iIiIiIhIiSrBERERERERCRAmWiIiIiIhIiPSoVQTNrADYFu44mhkA7A93ENJtdL77D53r/kPnun/R+e4/dK77j554rkc451q803yPSrB6IjNb3NoSjNL36Hz3HzrX/YfOdf+i891/6Fz3H73tXGuKoIiIiIiISIgowRIREREREQkRJVjteyDcAUi30vnuP3Su+w+d6/5F57v/0LnuP3rVudY1WCIiIiIiIiGiESwREREREZEQUYIlIiIiIiISIkqw2mBmZ5jZejPbZGa3hjseCR0zG2Zm75rZGjNbbWbXeeXpZvammW30/k0Ld6wSGmYWYWbLzOxf3naumX3ifb6fMrPocMcooWFmqWb2rJmtM7O1ZnaMPtt9k5nd4H2HrzKz+WYWq89232FmfzezfWa2qklZi59lC7rHO+8rzGxG+CKXw9XKuf6t9z2+wsxeMLPUJnU/8c71ejM7PSxBt0EJVivMLAL4I3AmMBG4yMwmhjcqCaF64Ebn3ERgNvB97/zeCrztnBsDvO1tS99wHbC2yfb/AXc750YDB4BvhSUq6Qp/AF53zo0HphE87/ps9zFmlgX8CJjpnJsMRAAXos92X/IwcEazstY+y2cCY7zH1cCfuylGCY2HOfRcvwlMds5NBTYAPwHwfq9dCEzy9vmT97u9x1CC1bpZwCbn3BbnXC3wJDA3zDFJiDjn8p1zS73nZQR/gGURPMePeM0eAc4NS4ASUmaWDXwV+Ju3bcDJwLNeE53rPsLMUoDjgQcBnHO1zrli9NnuqyKBODOLBOKBfPTZ7jOcc+8DRc2KW/sszwUedUEfA6lmNqRbApVOa+lcO+fecM7Ve5sfA9ne87nAk865GufcVmATwd/tPYYSrNZlATuabO/0yqSPMbMc4AjgE2CQcy7fq9oDDApXXBJSvwduAQLedgZQ3OSLW5/vviMXKAAe8qaE/s3MEtBnu89xzu0C7gK2E0ysSoAl6LPd17X2Wdbvtr7tKuA173mPP9dKsKRfM7NE4DngeudcadM6F7yHge5j0MuZ2VnAPufcknDHIt0iEpgB/Nk5dwRQQbPpgPps9w3etTdzCSbVQ4EEDp1iJH2YPsv9g5n9jOClHU+EO5aOUoLVul3AsCbb2V6Z9BFmFkUwuXrCOfe8V7y3YUqB9+++cMUnITMHOMfM8ghO9T2Z4DU6qd60ItDnuy/ZCex0zn3ibT9LMOHSZ7vvORXY6pwrcM7VAc8T/Lzrs923tfZZ1u+2PsjMrgDOAi52n9+8t8efayVYrfsUGOOtRhRN8GK6l8Mck4SIdw3Og8Ba59zvmlS9DFzuPb8ceKm7Y5PQcs79xDmX7ZzLIfg5fsc5dzHwLvB1r5nOdR/hnNsD7DCzcV7RKcAa9Nnui7YDs80s3vtObzjX+mz3ba19ll8GLvNWE5wNlDSZSii9kJmdQXB6/znOucomVS8DF5pZjJnlElzYZFE4YmyNfZ4MSnNm9hWC125EAH93zt0Z3ogkVMzsWOADYCWfX5fzU4LXYT0NDAe2ARc455pfYCu9lJmdCNzknDvLzEYSHNFKB5YBlzjnasIYnoSImU0nuKBJNLAFuJLgHxT12e5jzOwOYB7B6UPLgG8TvBZDn+0+wMzmAycCA4C9wC+BF2nhs+wl2fcRnCZaCVzpnFschrDlC2jlXP8EiAEKvWYfO+eu8dr/jOB1WfUEL/N4rXmf4aQES0REREREJEQ0RVBERERERCRElGCJiIiIiIiEiBIsERERERGREFGCJSIiIiIiEiJKsEREREREREJECZaIiIiIiEiIKMESEREREREJESVYIiIiIiIiIaIES0REREREJESUYImIiIiIiISIEiwREREREZEQUYIlIiIiIiISIkqwRER6GDPLMTNnZpHhjkX6BzNbbWYnhjsOEZG+QAmWiIj0emZ2v5mVe49aM6trsv1auOPr6Zxzk5xzC7qibzNLN7MCM1vYFf2LiPQ05pwLdwwiIn2KmUU65+o7sX8OsBWI6kw//ZWZ3Q6Mds5d0kJdp85Nd+pNsbbFzP4KjAN8zrljwx2PiEhX0wiWiEgImFmemf3YzFYAFWYWaWazzew/ZlZsZp81nYJlZgvM7P+Z2SIzKzWzl8wsvZW+rzSztWZWZmZbzOy7zernmtlyr5/NZnaGV55iZg+aWb6Z7TKz/zGziHZexygze8fMCs1sv5k9YWapTeqKzGyGtz3UG5k40ds+x5tqVuy9vgnN3p+bzGyFmZWY2VNmFnv47/Tha+XcODMb3aTNw2b2P022z/Le02LvHE7t4LFONLOdZvZT7/3LM7OLm9R/1cyWeedqh5cMNtQ1TA39lpltB97xyp8xsz3e+/a+mU1qFvefzOw1b7TuQzMbbGa/N7MDZrbOzI7o4Ht0akde4+Ewsy8Bk4GHQt23iEhPpQRLRCR0LgK+CqQCg4BXgP8B0oGbgOfMLLNJ+8uAq4AhQD1wTyv97gPOApKBK4G7myQ5s4BHgZu94x4P5Hn7Pez1Oxo4AjgN+HY7r8GA/wcMBSYAw4DbAZxzm4EfA4+bWTzBH82POOcWmNlYYD5wPZAJvAr808yim/R9AXAGkAtMBa5oMQCzY73EprXHFxkFaTw37Y0KeQnJ34HvAhnAX4CXzSymg8caDAwAsoDLgQfMbJxXV0HwvKd68VxrZuc22/8Egu/96d72a8AYYCCwFHiiWfsLgJ97x6wBPvLaDeD/b+/Ow6OqzgeOf89M9h2SkB0StpCQDUggbAqogCsqKrbutqVutVpba2ulamt/Vltt1VqqdWu1Km6474qAshggrGEJZCche8g2WWbO74+ZhBASEsgkM0nez/Pkce69557zTm4G7zvn3HPgTeCxXsbdJaXUPSe7Hic5zwg8BdwGyHAZIcSwIQmWEELYzxNa6wKtdSNwNfCR1vojrbVFa/05kAGc16H8f7XWu7TW9cB9wBVd9TBprT/UWh/UVt8AnwFzbYd/BDyvtf7c1k6R1nqvUirE1tYdWut6rXUp8Dhw5cnegNY621ZXk9a6DOvN+Zkdjj8LZAObsCaG99oOLQM+tJ3bAvwF8ARmdfr9HNZaVwLvAyndxLBeax1wkp/TeZan47XpyXLgX1rrTVprs9b6JayJS/optHef7Xf4DdZE+woArfUarfVO27XagTUpPbPTuffbrlmj7Zzntda1WusmrMluslLKv0P5d7TWW7TWJuAdwKS1/o/W2gy8jjW5Pm1a64dPdj1OcurtwCat9Za+tC+EEIONzFAlhBD2U9Dh9RjgcqXUhR32uQJfd1M+z3Y8qHOlSqlzgd8DE7F+MeYF7LQdjsLaW9TZGFt9xUqptn2GTm2ewJaY/R1rAudrO6eqU7FngfeA5babfrD2eOW1FdBaW5RSBVh7cdqUdHjdYDtnoJz0fXcyBrhOKfWzDvvc6H28VbakuU1e27lKqRnAw1iHzbkB7sAb3cVqS7gfAi7H2jNosR0KAmpsr490OLexi22fXsZtN0qpcKwJ1rSBblsIIRxNerCEEMJ+Og6DKsDaQ9Xx235vrfXDHcpEdXg9GmgByjtWaBuW9hbWHqEQW4/BR1iH8rW1M66LWAqw9roEdWjfT2s9uYuyHf3J9j4StdZ+WHvi2jM0pZQP8DfgOeB+dey5scNYE5O2csr2/op6aO8ESqm56tgMgF39zO25lhN0HqLWgDVRbRPa4XUB8FCna+eltX61l22NUEp5d9gejfX3A/A/rMlplNbaH1hJh99vF7H+EFgCnA34A9G2/Z3P6Te258m6vR7dnDYdaw/nHqVUCdakfbrtWbKTPgcohBCDnSRYQgjRP14GLlRKLVJKGZVSHrYJECI7lLlaKRVve57pQeBN27Cujtp6OcqAVltv1sIOx58DblBKnaWUMiilIpRSk7TWxViHEv5VKeVnOzZOKdV5OFpnvkAdUKOUisD6bFdHfwcytNY/xjr0baVt/yrgfFscrsBdWBO873r6RXWmtV6ntfY5yc+6U62zC5nAD23XZjHHD9N7FrhJKTVDWXnbJqfwhfaJJV7sof4HlFJutmTwAo71UvkClVprk+35uR/2UI8v1t9jBdaE8E+n8B7tQmv9p5Ndj25O+xhrMphi+1kBbANSuvgbF0KIIUUSLCGE6Ada6wKsPQ+/xZocFWBNVjr+u/tfrBNRlAAeWIdUda6n1rZ/Fdahej/E2gPSdnwztokvsA4Z+4ZjPUnXYk3Q9tjOfRNrr8LJPABMtdX1IfB22wGl1BKsk1TcbNv1C2CqUuoqrfU+rL1dT2LthbsQuFBr3dxDe47yc6wxVgNXAavbDmitM4CfYJ2goQrrM2fXdzg3Cvj2JHWX2M47jHVCipu01nttx24BHlRK1WJNOlb1EOd/sA4xLMJ6HTf29Macge35s5K2H6x/Ty2210IIMaTJOlhCCOEASqk1wMta6387OhbRe7ZZEbcDSbbJPDofn4f1ukZ2PiaEEGJ4kEkuhBBCiF6y9cjF9VhQCCHEsCVDBIUQYphRSq3sZsKClT2fLQYjpdTok0xUMdrR8QkhxFAiQwSFEEIIIYQQwk6kB0sIIYQQQggh7MSpnsEKCgrS0dHRjg5DCCGEEEIIIbq1ZcuWcq11cFfHnCrBio6OJiMjw9FhCCGEEEIIIUS3lFJ53R2TIYJCCCGEEEIIYSeSYAkhhBBCCCGEnUiCJYQQPbBYNK1mi6PDEEIIIcQg4FTPYHWlpaWFwsJCTCaTo0MRg4yHhweRkZG4uro6OhQxyD3xzL+oqanknrt+jbuL0dHhCCGEEMKJOX2CVVhYiK+vL9HR0SilHB2OGCS01lRUVFBYWEhMTIyjwxGDWHXZYe4o+TUAG3eeR/qUFMcGJIQQQgin5vRDBE0mE4GBgZJciVOilCIwMFB6PkWfFefsaX9dtecbB0YihBBCiMHA6RMsQJIrcVrk70bYQ83hA+2vPUu+d2AkQgghhBgMBkWCJYQQDlOVC0COWywj6w86NhYhhBBCOD1JsHpBKcVdd93Vvv2Xv/yF+++/33EBdbBx40ZmzJhBSkoKcXFx7XGtWbOG77777rTrzcvLY+rUqaSkpDB58mRWrlxpp4iFGFw86goo0SM56h9LmLkIs0U7OiQhhBBCODFJsHrB3d2dt99+m/LycrvWq7XGYunb1M/XXXcdzzzzDJmZmezatYsrrrgC6HuCFRYWxoYNG8jMzGTTpk08/PDDHD58uE+xCjEYuZnKqTKORI8cR7CqofjIEUeHJIQQQggnJglWL7i4uLB8+XIef/zxE46VlZWxdOlS0tLSSEtL49tvvwXg/vvv5y9/+Ut7uYSEBHJzc8nNzSU2NpZrr72WhIQECgoK+NWvfkVCQgKJiYm8/vrrgDVBmjdvHpdddhmTJk3iqquuQusTvzkvLS0lLCwMAKPRSHx8PLm5uaxcuZLHH3+clJQU1q1bd9I4r7nmGmbOnMmECRN49tlnAXBzc8Pd3R2ApqambhPBJ554gvj4eJKSkrjyyisBqKys5OKLLyYpKYn09HR27NjR3tZ1113H3LlzGTNmDG+//TZ33303iYmJLF68mJaWFgAefPBB0tLSSEhIYPny5Se8b4vFQnR0NNXV1e37JkyYwBG58RX9wLWllmajNx6hEwCoyNvTwxlCCCGEGM76PE27UioK+A8QAmjgGa3135VSI4HXgWggF7hCa13Vl7YeeH83ew4f7VvAncSH+/H7Cyf3WO7WW28lKSmJu++++7j9P//5z7nzzjuZM2cO+fn5LFq0iKysrJPWdeDAAV566SXS09N56623yMzMZPv27ZSXl5OWlsYZZ5wBwLZt29i9ezfh4eHMnj2bb7/9ljlz5hxX15133klsbCzz5s1j8eLFXHfddURHR3PTTTfh4+PDL3/5SwB++MMfdhvnjh072LhxI/X19UyZMoXzzz+f8PBwCgoKOP/888nOzubRRx8lPDz8hPfy8MMPk5OTg7u7e3vC8/vf/54pU6awevVqvvrqK6699loyMzMBOHjwIF9//TV79uxh5syZvPXWWzzyyCNccsklfPjhh1x88cXcdtttrFixAoBrrrmGDz74gAsvvLC9TYPBwJIlS3jnnXe44YYb2LRpE2PGjCEkJKTH6yjEqXI119PsFkVo5CQAakuygQWODUoIIYQQTssePVitwF1a63ggHbhVKRUP3AN8qbWeAHxp2x60/Pz8uPbaa3niiSeO2//FF19w2223kZKSwkUXXcTRo0epq6s7aV1jxowhPT0dgPXr1/ODH/wAo9FISEgIZ555Jt9/b52pbPr06URGRmIwGEhJSSE3N/eEulasWEFGRgYLFy7kf//7H4sXL+6yzZPFuWTJEjw9PQkKCmL+/Pls3rwZgKioKHbs2EF2djYvvfRSlz1ESUlJXHXVVbz88su4uLi0v6drrrkGgAULFlBRUcHRo9bE+Nxzz8XV1ZXExETMZnN7vImJie3v7+uvv2bGjBkkJiby1VdfsXv37hPaXbZsWXtv32uvvcayZctO+jsX4nR5Wuoxu/oQFDEWgKaKfAdHJIQQQghn1uceLK11MVBse12rlMoCIoAlwDxbsZeANcCv+9JWb3qa+tMdd9zB1KlTueGGG9r3WSwWNm7ciIeHx3FlXVxcjhtW13E9Jm9v71611zZED6zD/1pbW7ssN27cOG6++WZ+8pOfEBwcTEVFxQlluosTTpzOvPN2eHg4CQkJrFu3jssuu+y4Yx9++CFr167l/fff56GHHmLnzp29ek8GgwFXV9f2tgwGA62trZhMJm655RYyMjKIiori/vvv73Itq5kzZ5KdnU1ZWRmrV6/md7/73UnbFeJ0eekGWly8MXoGUI8nhtoiR4ckhBBCCCdm12ewlFLRwBRgExBiS74ASrAOIRzURo4cyRVXXMFzzz3Xvm/hwoU8+eST7dttQ+Gio6PZunUrAFu3biUnJ6fLOufOncvrr7+O2WymrKyMtWvXMn369F7H9OGHH7Y/o3TgwAGMRiMBAQH4+vpSW1vbY5wA7777LiaTiYqKCtasWUNaWhqFhYU0NjYCUFVVxfr164mNjT2ubYvFQkFBAfPnz+fPf/4zNTU11NXVMXfuXF555RXA+ixZUFAQfn5+vXo/bclUUFAQdXV1vPnmm12WU0pxySWX8Itf/IK4uDgCAwN7Vb8Qp8RiwZtGzG6+oBSVLqPwaizu+TwhhBBCDFt2S7CUUj7AW8AdWuvjHpTS1gygy7mNlVLLlVIZSqmMsrIye4XTb+66667jZhN84oknyMjIICkpifj4+PbpzJcuXUplZSWTJ0/mqaeeYuLEiV3Wd8kll5CUlERycjILFizgkUceITQ0tNfx/Pe//yU2NpaUlBSuueYaXnnlFYxGIxdeeCHvvPNO+yQX3cUJ1mF+8+fPJz09nfvuu4/w8HCysrKYMWMGycnJnHnmmfzyl78kMTERgB//+MdkZGRgNpu5+uqrSUxMZMqUKdx+++0EBARw//33s2XLFpKSkrjnnnt46aWXev1+AgIC+MlPfkJCQgKLFi0iLS2t/djKlSuPi3vZsmW8/PLLMjxQ9J+WegxoLG6+ANS5h+LfLJOpCCGEEKJ7qquZ6U65EqVcgQ+AT7XWj9n27QPmaa2LlVJhwBqtdezJ6klNTdUZGRnH7cvKyiIuLq7PMYqu3X///cdNhjHUyN+P6IvWqgJc/p7Al+N/y1lX/5rMf17P6JIv8P99AUaD6rkCIYQQQgxJSqktWuvUro71uQdLWR+ieQ7IakuubN4DrrO9vg54t69tCSHEQGqqr7G+cLcOcdV+kYxUtZRXVTsuKCGEEEI4tT5PcgHMBq4BdiqlMm37fgs8DKxSSv0IyAOusENbws7uv/9+R4cghNNqqqvGG1Ae1iGCriNHA1BZnENI4AgHRiaEEEIIZ2WPWQTXA92NlTmrr/ULIYSjtDRYe7AMnv4AeAePAaC2JAcSpjosLiGEEEI4L7vOIiiEEENJS6N1Jk5XDx8ARoTJWlhCCCGEODlJsIQQohstpnoAXGwJln/IaCxaQU2BI8MSQgghhBOTBEsIIbphbrImWG6e1gRLubhTaQjAWCdrYQkhhBCia5Jg9dLq1atRSrF3795uy+Tm5pKQkGC3Nvft28e8efNISUkhLi6O5cuXA9ZFgj/66KPTrtdkMjF9+nSSk5OZPHkyv//97+0VshBDirmpAQB3L5/2fdUuwXiZShwVkhBCCCGcnCRYvfTqq68yZ84cXn311S6Pt7a29rkNs9l83Pbtt9/OnXfeSWZmJllZWfzsZz8D+p5gubu789VXX7F9+3YyMzP55JNP2LhxY59iF2IosjRbe7DcPY8lWA0eofi3OP+i6EIIIYRwDEmweqGuro7169fz3HPP8dprr7XvX7NmDXPnzuWiiy4iPj4esCZaV111FXFxcVx22WU0NFi/Af/yyy+ZMmUKiYmJ3HjjjTQ1NQEQHR3Nr3/9a6ZOncobb7xxXLvFxcVERka2bycmJtLc3MyKFSt4/fXXSUlJ4fXXX6e+vp4bb7yR6dOnM2XKFN5917rk2IsvvsiSJUuYN28eEyZM4IEHHgBAKYWPj/WGsaWlhZaWFqzLmR3vjTfeICEhgeTkZM444wzA2vt1ww03kJiYyJQpU/j666/b27r44os555xziI6O5qmnnuKxxx5jypQppKenU1lZCcCzzz5LWloaycnJLF26tP3301F6ejq7d+9u3543bx6dF6AWYiDo5gZatBFPD4/2fc3eoQRZyjFb+r5IuxBCCCGGHnusgzVwPr4HSnbat87QRDj34ZMWeffdd1m8eDETJ04kMDCQLVu2MG3aNAC2bt3Krl27iImJITc3l3379vHcc88xe/ZsbrzxRp5++mluu+02rr/+er788ksmTpzItddeyz//+U/uuOMOAAIDA9m6desJ7d55550sWLCAWbNmsXDhQm644QYCAgJ48MEHycjI4KmnngLgt7/9LQsWLOD555+nurqa6dOnc/bZZwOwefNmdu3ahZeXF2lpaZx//vmkpqZiNpuZNm0a2dnZ3HrrrcyYMeOE9h988EE+/fRTIiIiqK6uBuAf//gHSil27tzJ3r17WbhwIfv37wdg165dbNu2DZPJxPjx4/nzn//Mtm3buPPOO/nPf/7DHXfcwaWXXspPfvITAH73u9/x3HPPtffMtVm2bBmrVq3igQceoLi4mOLiYlJTu1woW4h+pZsbaMQNLzdj+z7lF4FvSSOlFeWMCg52YHRCCCGEcEbSg9ULr776KldeeSUAV1555XHDBKdPn05MTEz7dlRUFLNnzwbg6quvZv369ezbt4+YmBgmTpwIwHXXXcfatWvbz1m2bFmX7d5www1kZWVx+eWXs2bNGtLT09t7vjr67LPPePjhh0lJSWHevHmYTCby863TSJ9zzjkEBgbi6enJpZdeyvr16wEwGo1kZmZSWFjYnoR1Nnv2bK6//nqeffbZ9uGL69ev5+qrrwZg0qRJjBkzpj3Bmj9/Pr6+vgQHB+Pv78+FF14IWHvecnNzAWsSNnfuXBITE3nllVeO66lqc8UVV/Dmm28CsGrVKi677LIufz9C9LvWRky449khwXIbGQVARXGOo6ISQgghhBMbXD1YPfQ09YfKykq++uordu7ciVIKs9mMUopHH30UAG9v7+PKdx5q19XQu84619FReHg4N954IzfeeCMJCQldJkJaa9566y1iY2OP279p06Ye4wkICGD+/Pl88sknJ0zQsXLlSjZt2sSHH37ItGnT2LJly0nfh7u7e/trg8HQvm0wGNqfUbv++utZvXo1ycnJvPjii6xZs+aEeiIiIggMDGTHjh28/vrrrFy58qTtCtFfVEsjjbgRbDz2XZTPqNEA1B3JBaY7JjAhhBBCOC3pwerBm2++yTXXXENeXh65ubkUFBQQExPDunXruiyfn5/Phg0bAPjf//7HnDlziI2NJTc3l+zsbAD++9//cuaZZ/bY9ieffEJLSwsAJSUlVFRUEBERga+vL7W1te3lFi1axJNPPonW1mdCtm3b1n7s888/p7KyksbGRlavXs3s2bMpKytrH/LX2NjI559/zqRJk05o/+DBg8yYMYMHH3yQ4OBgCgoKmDt3Lq+88goA+/fvJz8//4TE7mRqa2sJCwujpaWlvZ6uLFu2jEceeYSamhqSkpJ6Xb8Q9qRaG2nC47gvJkaEWhcbNlUWOiosIYQQQjgxSbB68Oqrr3LJJZcct2/p0qXdziYYGxvLP/7xD+Li4qiqquLmm2/Gw8ODF154gcsvv5zExEQMBgM33XRTj21/9tln7ZNMLFq0iEcffZTQ0FDmz5/Pnj172ie5uO+++2hpaSEpKYnJkydz3333tdcxffp0li5dSlJSEkuXLiU1NZXi4mLmz59PUlISaWlpnHPOOVxwwQUArFixgvfeew+AX/3qVyQmJpKQkMCsWbNITk7mlltuwWKxkJiYyLJly3jxxReP67nqyR/+8AdmzJjB7Nmzj0vq3nvvPVasWNG+fdlll/Haa69xxRVX9LpuIezN2NpAk+H4v2//UZFYtEJXS4IlhBBCiBOptl4PZ5Camqo7zxaXlZVFXFycgyIa3F588cXjJsMYjuTvR/TFwT/PoaYJpq5Yf9z+igei2es7k9m/6PqLFiGEEEIMbUqpLVrrLmdh6/ceLKXUYqXUPqVUtlLqnv5uTwgh7MXFbKLFcGIPrSw2LIQQQoju9GuCpZQyAv8AzgXigR8opeL7s01xzPXXXz+se6+E6CsXi4lWo8cJ++s9QmSxYSGEEEJ0qb97sKYD2VrrQ1rrZuA1YMmpVuJMwxjF4CF/N6Kv3CxNmI2eJ+xv9Q4j2FJOq9nigKiEEEII4cz6O8GKAAo6bBfa9vWah4cHFRUVcrMsTonWmoqKCjw8Tux9EKK33LSJ1i4SLOUfia9qpKy83AFRCSGEEMKZOXwdLKXUcmA5wOjRo084HhkZSWFhIWVlMhxHnBoPDw8iIyMdHYYYxNy1CYvLiQmW20jr31VlSQ5hIaMGOiwhhBBCOLH+TrCKgKgO25G2fe201s8Az4B1FsHOFbi6uhITE9OfMQohxIksFjxohi4SLJ9RYwCoPZIHzBjgwIQQQgjhzPp7iOD3wASlVIxSyg24Enivn9sUQoi+azUBoF1PTLBGhFm/9GmqLDjhmBBCCCGGt37twdJatyqlbgM+BYzA81rr3f3ZphBC2EVLIwDKzeuEQ75BstiwEEIIIbrW789gaa0/Aj7q73aEEMKeWprqcAVUFz1YysWdSkMALvXFAx+YEEIIIZxavy80LIQQg5Gpvg4A5ebd5fEal2C8TEcGMiQhhBBCDAKSYAkhRBeaTdYEy+jedYLV4BmKf0vpQIYkhBBCiEFAEiwhhOhCU2M9AC7uJz6DBdDiHcYoXUFzqyw2LIQQQohjJMESQoguNDeevAerbbHh0jIZJiiEEEKIYyTBEkKILrSarD1Yrp5dJ1huQdap2qsKDwxYTEIIIYRwfpJgCSFEF9oSLPduEizf0LEANJTmDFhMQgghhHB+kmAJIUQXWpusQwTdvXy7PD4yYgIALZW5AxWSEEIIIQYBSbCEEKIL5qYGADw8u06wvAOCqcMTQ3X+QIYlhBBCCCcnCZYQQnTB0mxNsDy9fbouoBTlxhA86gsHMCohhBBCODtJsIQQoguWpgbMWuHt2fU07QBHPcLxbyoewKicj6mpmTWPLOP7B+ayb98eR4cjhBBCOJwkWEII0ZWWehrwwMPN2G2RZp9IQixHMJuH71pYW99+jHkNn5Cmd3D0rTscHY4QQgjhcJJgCSFEFwzNtdTjiVKq2zJqxBh8lInS0uHbizUqexXZLuPZEr2caU2bKcjZ7+iQhBBCCIeSBEsIIbpgbKmnQXU/PBDAI9g6VXv5MF0Lq7zoAOPNBzky+gIi592IQWny1r7s6LCEEEIIh+pTgqWUelQptVcptUMp9Y5SKqDDsd8opbKVUvuUUov6HKkQQgwg19Z6TIaTJ1gB4eMAqC05NBAhOZ0DW74GICxlISHRceQbR+NTtM7BUQkhhBCO1dcerM+BBK11ErAf+A2AUioeuBKYDCwGnlZKdf8ggxBCOBlXcz1NPSRYwVETAWipGJ6LDbfmfY8JV2Li0wA4EpTOpKadmBobHByZEEII4Th9SrC01p9prVttmxuBSNvrJcBrWusmrXUOkA1M70tbQggxkNzN9TQbvU9axs1nBEfxxlhTMEBROZeR1bvId5uAcnEDwGP8XDxUC/u3f+fgyIQQQgjHseczWDcCH9teRwAd7zgKbftOoJRarpTKUEpllJWV2TEcIYQ4fe6WBlpcTt6DBVDhEopnfdEARORcGhtNjGs9wNHA5PZ9Y5LnAVC1f4ODohJCCCEcr8cESyn1hVJqVxc/SzqUuRdoBV451QC01s9orVO11qnBwcGneroQQvQLT0sDra7dLDLcQa1nOCObDw9ARM4lJ+t7PFQLbqPT2vf5jRpNuRqJR+k2B0YmhBBCOJZLTwW01mef7LhS6nrgAuAsrbW27S4CojoUi7TtE0II56c1XjSg3Xx7LNrsF0340Y2YmlvwcHMdgOCcQ7Wtlyps8pzj9hd5Tya8ThYcBjja2MT2bRlMjJ1ESGCgo8MRQggxQPo6i+Bi4G7gIq11x6ea3wOuVEq5K6VigAnA5r60JYQQA0W3NGBEY/DoOcEyBI7FXbVQUnBwACJzHsbirVTh1z7RR5umkClEUUxZ6fDr1euourae3X85n7mfnQdPpJKbvdvRIQkhhBggfX0G6ynAF/hcKZWplFoJoLXeDawC9gCfALdqrc19bEsIIQZE/dEqAAwefj2W9YmIBaAiP6tfY3I2IbW7yPeMg04LMfuOnwlA0e5vHRGW09jwvz8y0/w9+8b8AC9lom7VzRwb5CGEEGIo6+ssguO11lFa6xTbz00djj2ktR6ntY7VWn98snqEEMKZ1NZYEyxXz557sEaNmQxAY8n+fo3JmdTWVDLaXEhjcMoJx0bHpwNQlzt8n8M6XFHDjMP/5YBvOrE3rGRP7G0kNG9n3/efOzo0IYQQA8CeswgKIcSQ0FBTDoCLT1CPZQNGjcaEK7py+AwRzNu5HoPSeI6dccIxb/+RFKsQ3MqH75C4LZ+/ykhVS8D82wBIuPBn1GlP6ja+5ODInEdBWQ2ffP4JOYXDeyipEGJokgRLCCE6aT5qXTLCza8XM5saDBwxhuNVm9fPUTmP2oObABiTMKfL46XeEwlpODCQITkNrTUj979BpSGQ4ORzAfD28WOP32wmVK6htbnJwRE63vc7s6h7ai6Lv11G0LNTyVz7vqNDEkIIu5IESwghOmmutSZYXgG9Wzqixms0I5sK+zMkp+JxZBsFKpyAoJAuj7cExxNlOUxlVdUAR+Z427P2kW7eQtnYS8B4bKJeY+JS/Kkj67vhnUzU1Jlwfft6olUJhTMfoMoYxOivbuFoRYmjQ3Man+4o5B8vvMjqTz7DbJHn9oQYjCTBEkKITiz1FQB4B3SdQHTW7BdDuKUEU1Nzf4blFLTWRDRkccR3crdlvEdPwaA0+Xu/H8DInEPx2hcwKk3Ugp8ct3/y3Is5qr1o2fmOgyJzDl+9+igpei8V8x4mctEdNF38b/x1Ldlv/9HRoTmFFz7dSOSb53Fr3s+5eOPlrH/yR2iLxdFhCSFOkSRYQgjRiW6opFkb8fMf0avyLsHjcFetFOUN/WFxJYWHGEUllvCp3ZYJnzQdgJqc4TXRham5lUkl73HIMxGv8EnHHfPw9GKf1zQiKjfCMJ1NMPdIJemFz5PvnUjkmTcAMCEpnU3e85hU9AatjUcdHKFjbTxQQsK3tzPeeATzRU+zPewyzqx6ix0fPOXo0IQQp0gSLCGE6MTQWEk1vni597gWOwB+tpvpyoKhP1V78Y6vABgRO7vbMv6hYzmKN4YjuwYqLKeQ8e2nxHAYc/JVXR5vGj2XEF1Oad7wnABk67tPEaYq8V1833HT+xtn/BgvTOz56n8OjM6xGppb2fPa70gz7ENf+ATGqVeR8ONn2GGczJitj2Buqnd0iEKIUyAJlhBCdGI0VVJr8EN1WuOpO6Ni4gFoLBn6PViWnHXUak/GTJ7ZfSGlOOwxnpG1+wYuMCdg3vJfGnFn7JldJ1hhUxcDUJAx/FYuKSirZkbRSxR4T2ZEwsLjjk2bfS6FhOC263UHRed4r366jqtaV1MxdgkeU5cBYDQaqZt9DwHUcvDzZx0coRDiVEiCJYQQnbg1VdLo4t/r8j5BUZhwg8pD/RiVcwit+J5szyTc3NxOWq5xZBwx5lzqG4fHrHlHyiuYWruG7OCzMXp2vUD12AmJHCYYl9xvBjY4J5Dx7lNEqHK8F957wuLULi5G9odewMSGbTSW5zsoQscprmkkMuNPYDASePHDxx1LnXs+uxiP//ZnQJ7FEmLQkARLCCE68Wspp8F9VO9PUIoSlwi863L7LSZnUFx4iEh9mKao7ocHtnGNSMFLNZFzYMcAROZ4Oz7/D76qkeC5P+q2jDIYyPVLJaZu27C6WS6uPEpawQsUeMUxMum8LssEpC3DoDSHvntrgKNzvLffep1FajOmGT8Dv/Djjrm5Gjk09mpCWoqoyvraQREKIU6VJFhCCNGRxUKgrqDZK/SUTqvxGkNw09D+9j3n+08ACE8+p8eyoyakAlBxcGu/xuQMLBZN2IFXOWyMIDRxwUnLmqPS8aOO0pztAxSd421e/TSRqhyPs0/svWqTmJxKPiGw/9MBjs6xduRXMD/3MWrcQvE/664uyyScfRUN2p0jG14d4OiEEKdLEiwhhOigoboEN1qx+EWc0nnNAeMI16XUNTT0U2SO5579CRUEEBU3vceywWOTaMGIuWjo92Dt+H4NCZZ9lMdd020C0SZk8jwAincOj2GCpZVVTM/7F/mecQRPuaDbcq4uRg6OmMO4ui3o5uExoYPWmg1v/Y14Qx5u5/4RXD27LDc2fBSbXKcTfvgzMLcOcJRCiNMhCZYQQnRQVZIHgOuIyFM6zy0kFhdl4fDBPf0RlsM1N9YRV7+R/SPnoYw9z66oXNw57Doav5qhP7Ni7dqnacCDiYt+2mPZsRMTKdf+6LwNAxCZ42Ws+jNhqhLXxX/sMflUExfjQTNFW4dHL9ZXW7O4ovp5joyYhmfKZSctWz32AvwsNdTvk2GCQgwGdkmwlFJ3KaW0UirItq2UUk8opbKVUjuUUt0vmCKEEE7kaGkuAF5BUad03ojR1pkEqwqG5hTcWWvfwosm3JMv7fU5NX5xRDUfosU8dJ83yt63i/S6LzkQvgQP35E9lndxMZLjmUBIzdBfI2z3wTxmF7/EAf9ZhCWf3WP5CWkLadDu1Oz+bACic6y6plaaP/oNPspE4LKnekw+x868GJN2pThj9cAEKITokz4nWEqpKGAh0PHhg3OBCbaf5cA/+9qOEEIMhIYjOQAERYw/pfNCxiYA0FwyNKcmt+x4g0r8SJx1bq/PUWGJhKgqcvJy+y8wB9JaU/jeH7AoA9FL7u31eQ1haYRZjlBbNnSf2dNaU/Dmb/FVjYQt/b9enRMRFMAelzj8S4Z+796rr/2Hc81rKE9ajktofI/lE8eEsNWQgE/B8BhaKsRgZ48erMeBu4GOS9MvAf6jrTYCAUqpMDu0JYQQ/av8AEe1F2FhpzZE0N17BBVqBC5VB/spMMcpL8wmse5b9oZciKvryadn72jkOOvghZL9Gf0VmkN9v3k9c+o+IzvqMvxDxvT6vIDYMwDIzxy6w73WfPE+ixs/IDv6KnxGp/T6vMpR6US25NJcc6T/gnOwNVuzuPDQg1R4jCbswhW9OsdgUBwZNYfQlgIsFTn9HKEQoq/6lGAppZYARVrrztMhRQAFHbYLbfu6qmO5UipDKZVRVlbWl3CEEKLPPGtzOOwSicF46v88lrqPxr8h1/5BOdihj/6GQjN68c9P6bzQidbJMJoKMvshKsdqbTXj+dnd1CtvJlz+x1M6d3zSLBq1G02Hvu2n6Bwr/3Ax49ffRalhFOOufLjnEzrwiz/LWscQfQ6rvLYRt/dvYqSqw++al7ud2KIrPpMXAVCy9cP+Ck8IYSc93kEopb5QSu3q4mcJ8Fugd1+/dENr/YzWOlVrnRocHNyXqoQQos+CmvKp9up9b0RHjb4xhLUWYrbongsPEjXlxUwqeotMnzlExsSe0rlG75GUGYLxqBh6E3+sfeUhEs17KEr9NW5+Qad0rreXJwdcYwkoH3pT2Dc2tVD44o2Eqgq47DmMHr6ndH7c1LnUak8a9g693j1Ti5l1/7yNWTqTyjMexDUi+ZTOT05OpcASTPO+of+MmhCDXY8Jltb6bK11Qucf4BAQA2xXSuUCkcBWpVQoUAR0fEI80rZPCCGcVlNdFaN0BS0B406vgqAJjFB1lBQX2jcwB9q/6j68aWTE+b8/rfPLfSYS1ngAyxBKOrdv/obZh/7OHp+ZxJ9/22nVUR2YQlTzIVpNdXaOznHMZgvfPv1TZjV/x8HkuxkVf8Yp1+Hv7UmWWyJB5Zv6IULHaTVb+GDlvVzS8CZ5Y39A6PybT7mOUf6eZHqkElqxCVqb+yFKIYS9nPYQQa31Tq31KK11tNY6GuswwKla6xLgPeBa22yC6UCN1rrYPiELIUT/yN9jvanzHH16E596h8cBUJqz024xOdLBnRtJOfI2mwMvYmx82mnVYR6VQAxFFJaW2zk6x8g7uJfwj66jxuBP9I9e7HH2t+64x8zEVZnJ3/WdfQN0ELNF8/mz93B2zVvsjvohky7+9WnXVRM2k3BzEaaKoTEJSIvZwup/3stlFf/k0KizGXP1P07776Yuah4e2kRzztD4uxFiqOqvdbA+wtrDlQ08C9zST+0IIYTdVB/8HoDI+Jmndf6oGOtMgnVFe+0Wk6PU1dVifOfH1ChfJv3gz6ddj0/0NIxKU7Bvix2jc4ySwwXoly/FnWZarnwDrxGhp13X6OQzAajat85e4TlMU0srXzx5E4tL/kVW4EIm33D6CQSAf9x8AAq2Dv6hcEcbm/j0bz/lsvKnyQk+i7HL/wcG42nXF5Z8Dq3aQOn2T+wYpRDC3uyWYNl6ssptr7XW+lat9TitdaLWemhOISWEGFKMxVs5wkhCwk9tDaw2AWHjaMIVXX7AzpENLG2xkPWv64m2FFB61t8YEXz6k8CGTkoHoCF3cCdYudl7aH72HEItpZSd/yIRsdP6VF9YWCR5Khy34sH9e6morGDLY0tZVPUaWRGXEXfra2Do263FpJRZVGtvmg4M7inJ9+fksfcvi7mgdhUHRl9BzM1vgIt7n+pMjR3Ddj0eQ85aO0UphOgP/dWDJYQQg4vWRNduJcd7Cuo0v31XRheOGMPxqj1k5+AGjrZY2PDMz0ir/YKN0bcQP/eSPtXnETiaGuWLW9ngHTaZ+e0neL98Lv66lsNLXmNc2kK71Fvsm0hk3U7Qg/P5tIzN66l9Yg4zGr5hV9wdxP34333qnWnj5+lOlnsSQRXf2yHKgWexaD5e/Qo+L84nxbyDgzP+wIQbnrHL78bH3YWDvqmE1GdBY5UdohVC9AdJsIQQAijP3cFIXY0pcnaf6qn2GkOQaXA+O2IxW/j+Xzcxq+RlMoIuZsa1D/W9UqUo8YolpG7wDZtsbm5h7Qu/I+GzH9Bi8KT+qg8YO/Vsu9VvDk9jBEcpzc+yW50DobGxkTXP3k3ihxfjqxopuuh1EpY90KdhgZ3VhaYTai7GVJ5ntzoHQn5hEd/89UrOzbwF5eZNw9UfMe7c2+36u7GMnY8RC/X71titTiGEfUmCJYQQQP4W67o7EVMW9amelhHjidBHOFrfYI+wBkxj3VG2PH4p04+8zobgy5l2ywuoPg71amMKSmCszqe0qsYu9Q2EQ1lbOPjIHM7Ie5LdfnMJuOM7widMsWsbwfFzATi8Y3AMhdNas+mbDyh5JJV5Rf9if8AcvH62gdHT+vaZ6Ur7c1jbBsdzWPWNJj578Y/4PjuDM+o+Zc/YGwi9ezMB42fYva2xyWdQpz2o3Dk01woTYiiQBEsIIQBD7jqKGMX42Ml9qsctJBZXZabo0ODplcjevYWSx+YytXYNm8fdTvrNz9gtuQLwGJOKmzKTt9f5132qrSrl25W3EfnaQsJaC9kx/RGSf/EuXn4j7d5WTNw0arUnrXnOPyV5duY6Mh9ZzIyvr8KTZvYu+DeJd67Gc+TpP593MnEp6VRpH6d/DsvU3MLX775AySOpLMx9lArv8dRc8wXx1/4NdQqLCJ+K5OhgMojDq3B9v9QvhOg7F0cHIIQQjmZuNjGu7nt2+y8goo9DeQJGx8P3UF2wGxL7NhFCf2ttaWHTq38g9eDTNCoPds1/junzltq9nfBJM2At1OZkwMz5dq/fHprrq8l652HGZb/ETN1I5ohziPnh4ySNiuy3Nl1dXdnjHsfIqsx+a6OvDmSuo/6zh0hp2MBRvMkYezPJl99LqOepLSB8qnw93dngnkhMhXPOkdVoambDh88TtfNp5pNHsTGMQ2euZPzcK+06HLAr7i5GCkfMYF71SqjOh4DR/dqeEOLUSYIlhBj2sje+RyyNEH9Rn+sKiUkEoKlkX5/r6k/7tqyBj+9mdus+Mn1mM+a6Z0jup2TCN2wCtXjhcmRHv9TfFy2mOnav/ivRe58lmVo2us8m4Pz7mZo0fUDarxs1lYSC52isrcbTN2BA2uyNA5nrqP/0IVIarYnVd6NvYvKld5MaEDhgMdSFphOavwFTWR4ewWMGrN2TqW80sem9fxGT9S8WUESRSyQHZvyF8QuuRxldBywO14lnweaVHN39OX6zfzRg7QohekcSLCHEsNeQ+TY12pvEuX1PsNx8RlCp/HGpcs6ZBIsK88hb9WvSaz6hSvmzZdrDTD3/p3YdEngCpTjsMZGgWucZNmluNrHz/b8TteufpOgqtrhOg7PuY8aMeac9i+Tp8B43C2Phv8nZsZb42X3/++urfdvW0fDZH5nSuJGjeLNhzE1MvuRuZg1gYtXGP34B5D9OwbZPmbBw+YC339HR+noyVj/NhAPPsoAj5LvGkD3rScafeZVdZgc8VfGJ0yndFEDzni8kwRLCCUmCJYQY1swtTYyrXMtuvznM9PKyS51l7mMIaMixS132UlNbz+Y3/kx63jOk0szWiKuIu/IPTOuHZ4u60hA4mfjCVdTWN+DrbZ/f8+mwtLaw48OVhGX+nRRdxk6XBA7N/QepZ5w3oIlVm+iUM7GsUdQe+BYcmGBlbV2L6fOH2hOrjdE3M/niXzHTAYlVm7jkGVR97ENT9lpwUIJVc7SWLav/Ttyh51lABTluEzk09w+MnX15n9f76ov4CH8+VonMK/kOLBaHxiKEOJEkWEKIYe3AhveZRD3GhIvtVmeDbwxjSr/CbNEYDQN/095Rc4uZdR+8yITtj3AOJez1nUHg0sdIjUkY0DjcoqbgXvQK+/dlkjh11oC2DaAtZrZ/+iJB3/+VFEsRe40TyJv5MKnzL8VgdNzNacCIIHKMo/E64pgFh7O2rKXxi4eYakusNkXfzORL7ibdf2AS75Npew5rrAPWw6qsqiJz9eMk5r7EAlVNtvtkcuY9Tkz6Rf3+jFVvGA2KslGz8Sldhz6yExWW7OiQhBAdSIIlhBjW6jPfplZ7kjB3id3qVEETGFn2LgXFRURF9N8kCSejtWbD+i/x+noFZ1l2U+gymryzX2LSjCUOuUEMmZQOG6H64GYYwARLWyzs/OpVfDc8Qoo5l4OGMWya8SSpC6/G6MDEqqPigKkkV36MpaUJg6v7gLS5J+MbTF/8iammtsTqFhIu+RUznCCx6qguLJ2QvA2YynLxCI7u9/bKKirY9c5fSC74LwtULfu8ptBw1j2Mn7bIKRKrjnzjFkDpw1Tv+pwRkmAJ4VQkwRJCDFvmlmbGV37DHr85zPDytlu93uGTIAuO5OxySIK1e28W5avv5UzTl1Qpf/alPsDEc28d0IfwOwuMiqMOL1wOD9CscFqzZ/27uHzzEEmt+ylQYWya+gjTzvsR41yc6399lrHz8a58h6Jd3xAxZWG/trVn23oaP/0j00zWySs2x9zC5IudL7Fq4x9/FuQ9TmHGh4w/99Z+a6e0spLtb/+VaQUvMV/VkuUznYaFvyU22TlnvQSYlpjAga8j8Nz7JSPO+aWjwxFCdOBc/5cRQogBtG/jB8RThzHhErvWO8o2k2BD4W5gsV3rPpnCkjJ2vfEgZ5a/xnil2T32RmKXrmCE94gBi6E7yujCAY8komr6fy2snMxvMH18H/FN2ykmiE2JDzL1opuJcnXr97ZPR+TURbR8b6Ryxyf9lmBl78mk4oPfM6NhDbV4kRFzM/GX3M30AXoG73TFJ6eT/9Eo2Ps+9EOCVV5Vzba3/0pK/kuco2rY55OG6dwVxCWcYfe27C0myJu3PFK5sOIjaKwGzwBHhySEsOlzgqWU+hlwK2AGPtRa323b/xvgR7b9t2utZclxIYRTadj2FnXak8lzL7Zrvf7hE6nHA5eyXXattzu1DSbWvvF30g49zWJVTVbQQkZf8Wcmh4wdkPZ7qz4snSk5G6k6ks+IEPuv3VNyaCcl79xLSu03VODP+gl3k3rpnYR5Om5Sjd4YExbCDmMs/kVr7V53/sG9FL33AGnVnxCuXNky+kbilt5Lqn+Q3dvqDz4erqz1n8c5NW+jG6pQXvb5sqCiuoYtb/+NlLwXOEdVsd97Gi3n3kdsovP2WHWlOW4pbtvf5eiWN/Cb8xNHhyOEsOlTgqWUmg8sAZK11k1KqVG2/fHAlcBkIBz4Qik1UWtt7mvAQghhD9bhgWvY4zeb6XYcHgiAwUC+23hG1vTvtORmi2btJ6uI2PwQ55NHjtdkype8QtykOf3a7ukamXA25PyN3IxPGHG+/WaFqz5SQPabK0gpXY0vrqyL/BFJl/2OOSOcu3emjVKKirC5JBf9i8ayXDzt8KxRSVEeB99+gNTydwkFtoddwYTLVjAtKKLPdQ80j6RLcF2/ipwNbxFz1o/7VFfN0To2vf03knKeY6GqJNsrmZZFzzIx5Rw7RTuw0mbN58C2CPwyXpEESwgn0tcnfG8GHtZaNwForUtt+5cAr2mtm7TWOUA2MDCrNgohRC/s2/ghAdRhSLi0X+o/GhDPmJaDtLa09Ev9mVs3seX/zmH+5uX4G0zkLfgHMXd/S5CTJlcAE5PSOaq9aD1on56axtpqvn/hl7g9PY3k0nfZHHgRtcszmPuTx/AfJMlVmxHTfwhA7pf/7lM9lWUlfLvyNvyeSWNG+TvsCjqX2uWbmXbTv/AbhMkVQOrssynQozBsffG066hraODLl/9Mw2NJLMx9lHqvcIouep3xd39DxCBNrgDGh/ix3ussQqq3QU2Ro8MRQtj0NcGaCMxVSm1SSn2jlEqz7Y8ACjqUK7TtO4FSarlSKkMplVFWVtbHcIQQoncatr3ZL8MD27hETsVTNVNwYLtd6y0szGfNY9eS8O5i4lt2s2fyLxn1m+2MOeNqp5vlrDMXV1cO+EwjpnIdFvPpD2hobTaxZdXDNP41kbS8Z9ntM4OCH3zNrNtfIjTC/kMPB0JyYjJbDAmMPPCmdV2jU3S0ppJvn7sb16dSmFn8MvsC5lJ+3Tqm/exlAiPG9UPEA8fP042MsB8wpn4nVVnfnNK5JpOJb157jJpHkjkr+080uo8i//yXGXf3eiKmLnb6z0xvjJi8AICy/ZsdHIkQok2PCZZS6gul1K4ufpZgHWI4EkgHfgWsUqe4UqPW+hmtdarWOjU4OPi03oQQQpyKjsMDPe09PNAmeKL1+yZ73fTU1tXy1XP34v/sdObUvM+e8KW43JFJ/OX3oVw97dLGQNDxSwiimj2bPjv1cy1mtn/yPEf+L5lpe/6Pw65j2H3eO6T96n3GThrc01QbDIqK8ZcTYi6mcMuHvT6vvraG7/6zgtbHk5hd8C8O+Uyl8MrPmXLnW4SOHdi1zvrTlCU/o0L7UvXxH0HrHss3mRrY+MZfqXw4kTP3PkCTawAHF77A2Hs2MDrtwiGRWLWJT5mJRSvKDg7QDJ1CiB71+AyW1vrs7o4ppW4G3tZaa2CzUsoCBAFFQFSHopG2fUII4XAHtnzBJOog/qJ+ayNifAqNuNFc0LcFZM1mC5s++Ddjtj3KAkrZ4zuTUUsfISkmyU6RDqz4My+ndvN9NG96Dmad2+vz9n33Li5fPUhyazaHDGPImPUM0866HGVwjrWs7CHt/B9xeN+TmD/7PXrKIpRL97MeNtbXkfnOX5mY/RyzqGGnxzSqFq0gecq8AYt3IEWHBfNO6A1ccuQJ8j97ktGLbu+yXE1VGTs/XMn47BdJp5wDrrHsm/sQsXMvH1JJVUdjw0eRTwjqyG5HhyKEsOnrLIKrgfnA10qpiYAbUA68B/xPKfUY1kkuJgDDp+/aYqGluRGTqZEmUyPNTY002/7b0mxCtzRBqwltbkGbW7BYLFgsZrTFgsXSavuvBSxm0BbQFgxoFNYhNQoDWilAoZUBa6ehbZ9SKGXdD7bXWMsog9FaVrVtG2yvOx43WOsw2Pa3ndO2rQwYDNayKAOGtvMMx+pUyojBVh6lMBitxw3KcKxepTAYjO3nGgwKg8GAwWC0xm0w2O1/ht1+2dmLb0H72HLPJXRbSd1pu+34sTp0p3Pow7ma4wt3e7zLGDud1MN76SqmE95LN+/hZPWe+H45QXfnVm77iAlaEZt+/okn2YnRxYVcj8mEVZ7+P327N32B4fN7mdW6l1yXGA6e/Qrx6RfYMcqB5+UTwHfBF5BW9jaHD+4mfNzkk5Y/sG0tzZ+sYHLTNg4TzIakh0i78KeMdXXcml79ZYS/L9uS72HBjl+y8/lbSPzxM9ApgSwtPEjOx08QW/QWM6llt3sK5WfdS+L0/l0/yxnMv/ZeNvz1W2ZsWMH+0kOMOe9O3EdEcbSymPxtX2Da9SEJ1V8xR7Wwz20y5XP+wuQ5S4ZUEt4VF6OBAo9Y4mt2WP+RG6KJpLPQFgtNpnqaGhtoamqiqclEa0sT5pZmdGsLFnMzurXJen/X2gzmFizmVrQ2Y7FotLZgtmjrfZ7WgMZ2R3fcj5UBDMr2X0P7f7Xt/g5ltF5v2/0ZtnswZVAoZb1Pw3bfRvs9mPU4yth+DwfY7sU63BN2uBc0tL8+9l+DwYhCgUFhUG3n2o53OM9gu59TtntUlAGFof219V71+N+xgva/42MD45T1/nOQ/H33NcF6HnheKbULaAaus/Vm7VZKrQL2AK3ArYNxBsGiQ1mU5+2i6Wg5lvpKVGMVNNVgaK7H0FqHS2s9Lq2NeFga8NANeOpGvHQjHqoFV8AV8HX0mxBCdOmA60QmjOjfqarro+YRd+BxCvMOEDlmQq/PO5y7j6I3f01a3deUE0DmlD+QfMEtKOPQWLpwwtIVNK98j5pVNxPyyy8wdlqfSlss7Nv4IeZ1f2NyYwaV+PLt+LuYculdhPfTkE5nMf+SH/NlwWbOOryK3Ed20ThpKWb3AEylB/Er+obxTVkEAju8Z+Jxxu1MTu99L+BgF+DtQdRPV/H1CzcxP/tFDE++gAWFH5oEoFZ7si3wPILP/CmxybMdHe6AaoiYTeChb6g7nIVPRLyjw3FK2mKhvq6amooyaqvLaDxaTnNdJZaGausSAE3VGJtqMLbUYWhpwMXciKu5ETdLI+7ahAdNeGgTnjTjoTQejn5Dw8zLrWeR8NPnSYkKcHQovaJ0v3+L33upqak6I8N5xhBvXHkL6SWvtG9btKIeDxqUJyaDF00GL1qMXrS6eNFq9KbFxRuzqzfa1Qvl4o7B1QODizsGV3eMbh64uHpgdHMHF+t+5eKGMrpiMBgxGI0YjdYeHKPR2L7PoAxogwEL1m8hNNgegNZo24PQ2mJBodHajLZoFBa0tj6vANraa6AtaK3be8q01miLBsxYLBZrXdqC1pZjx7UFLBZrvW316WPHrOfYjmkzWLRtWx+rS2uUxfq67Vy6eH3CNhqlNbbvMfrOrl94nEplvSirui6put049o1Ot+eoLva1N3T8WSfU0UXIqj3Grt9Pl+d0braX7R9fpJv3eZJfq+pUqLtzAxIWETQhjf5UfHAHYf+dy/qYO5hz3QM9lq+rLCFr1f0kF7+BGQM7Rl9L0rIVePr492ucjvDtm08we9d9ZHlOw/+cX+EdMp7KI/lU7PyMkLwPiLIUUo4/+6KvIemSu/D1H1yzAvZFS6uZL//3V2IPPkeMKmnfv98wjtKw+cScvZyImFgHRuhYrWYLm7dspmbnp7g3lePiE0jAhJlMnHImHh7D87Y3c/s2Ut6Zx97k3zDpknscHc6Aqq+vp7w4h9rSfBoqD9NcU4KuPYJrYznuTRX4tFTgZ65ihK7GTXX/XX+LNlKrvGlQXjQbPGkxeNLq4kmr0QuziydmoycWV28srl5oVy8MLh7W+ztXNwwuriij9Z4OoxvKxQ2D7bXBxRVlcMFoMGAwGmyjdRRGWy+P1qBto42grT/Lts+iAdv9lsWCxnaPZGm7d9Id7q+O3cthsWDRFtt9m+3ezKKt51va7s+s923WezqzdThIh3s3a93H7uusnW3m9v3t92zYytruHdu22+4Prdsde+va7u+O3a+eoIudpb5xTF/4A0L9neczrpTaorVO7fKYJFjdKzy4m7rKYnwCRuE7chTefoG4DMFhKUKI/rP/oXQ8W6sJ/c12XN3cuyzTWFvNzrcfIS7neby0iYyAc4m5/CFGRTrXQsH2tubVv5K69xF8lKl9n0UrdromYIq7nKRzf9xvk5AMBo1NrRzKyYbmWkIjxxI4MtDRIQkn1dxqIfcPybh4BTD21+scHY7daK2prqqgPH8vtUcO0VSej64pwK3uMD5NJQS2lhKsqk84r1UbqDIEcNQ4gnrXQJrcA2n1DAKvQFy8R+DuF4inbyBe/kF4+Abi7R+Ih7e/DK8Up0QSLCGEcJDMz/9Hyrc3s2Hsz5h57R+PO1Z9JJ/sDx5jYsEq/Khni+csfM57gNjE4bNs4OHScrI3fQyNFbj5BTMmcS5hg3SqdSEc6bN/3sXCI/+m4aYteIWOd3Q4p6S6qoLinN0cLdxHS9kBXKpz8G0oILS1iEB19LiyjdqNMuMoat1CaPIOx+wbgXFEFO4jI/ELjmRESCQ+/qNOeH5RCHuTBEsIIRxEWyxs/etFTKtfx5agJbhGpdJaV4ZnwTomNmaigC1ec/Ca/wsmT1/g6HCFEIPUjj17iH99NgfGXkPcdU84OpwTaK0pLSmi+MA26gp3Yijbh39dNqEtBQRSc1zZUhVIhXsUDd6jMY8Yi0vwePxCxzIqcjy+I4KH/MQlYnCQBEsIIRzI1FDHln/fRmrF+7irVgDyVAS5oQsZPe8GYmIH9xpOQgjH01qz5v8uZmbzd6jbt+A+0nE9wbVVRyjat5Wa/J1QmoX30WzCm3MZybHeqFq8OOwazVGfsVhGjsMjZAIjR08iZEwcbp4+DotdiN6SBEsIIZxAzdE6Sovz8B0RREjwqEEz3awQYnD4fmsGk989j1L/RKLv+Lzfh8k1mxopPJBJ1aFttJbswrtqL6GmQwRR1V6mTnty2G00NT7jIXgSPlGJhE2YSkDIaHnmSQxqkmAJIYQQQgwDb//7/7i08GGyx1zJ+OueBts6R31hMVs4nL+fsoPbMBVux61iL0H12USYi3BR1hmNm7UL+S6jqfSeQGvQJLwiEwgZl0Jo1HgZ0ieGJEmwhBBCCCGGAVNzK189+VPOq32TQ94p+F34J4JiZ/Wqt6ixoYGS3CyqC/fQVLIPQ8UB/OpziGjJx1c1tpc7rEZxxHMcphGTcA1PIHDsVCLGJeDm5naS2oUYWiTBEkIIIYQYJppazXz+8qPMynmSkaqOI4YQynwmYfIdjcXVCwsGjK0NmE21uDeW4dNcin9LGYG6CqM6dl9YxgjK3EdT7zceFRKPb3QKEROn4uM3fNalE6I7kmAJIYQQQgwzhcUl7PniP/gVriG0KYcwXYa7agGgWRsxKQ+qDCOodhlFk2cI+EVgDJmIX0Qco2IS8A+QREqI7kiCJYQQQggxzDW3WrCYW1FYMLq44WKUZ6OEOF0nS7BcBjoYIYQQQggx8NxcDOAiz0kJ0d/kqwshhBBCCCGEsBNJsIQQQgghhBDCTiTBEkIIIYQQQgg7capJLpRSZUCeo+PoJAgod3QQYsDI9R4+5FoPH3Kthxe53sOHXOvhwxmv9RitdXBXB5wqwXJGSqmM7mYIEUOPXO/hQ6718CHXeniR6z18yLUePgbbtZYhgkIIIYQQQghhJ5JgCSGEEEIIIYSdSILVs2ccHYAYUHK9hw+51sOHXOvhRa738CHXevgYVNdansESQgghhBBCCDuRHiwhhBBCCCGEsBNJsIQQQgghhBDCTiTBOgml1GKl1D6lVLZS6h5HxyPsRykVpZT6Wim1Rym1Wyn1c9v+kUqpz5VSB2z/HeHoWIV9KKWMSqltSqkPbNsxSqlNts/360opN0fHKOxDKRWglHpTKbVXKZWllJopn+2hSSl1p+3f8F1KqVeVUh7y2R46lFLPK6VKlVK7Ouzr8rOsrJ6wXfcdSqmpjotcnKpurvWjtn/Hdyil3lFKBXQ49hvbtd6nlFrkkKBPQhKsbiiljMA/gHOBeOAHSql4x0Yl7KgVuEtrHQ+kA7faru89wJda6wnAl7ZtMTT8HMjqsP1n4HGt9XigCviRQ6IS/eHvwCda60lAMtbrLp/tIUYpFQHcDqRqrRMAI3Al8tkeSl4EFnfa191n+Vxggu1nOfDPAYpR2MeLnHitPwcStNZJwH7gNwC2+7Urgcm2c5623bc7DUmwujcdyNZaH9JaNwOvAUscHJOwE611sdZ6q+11LdYbsAis1/glW7GXgIsdEqCwK6VUJHA+8G/btgIWAG/aisi1HiKUUv7AGcBzAFrrZq11NfLZHqpcAE+llAvgBRQjn+0hQ2u9FqjstLu7z/IS4D/aaiMQoJQKG5BARZ91da211p9prVttmxuBSNvrJcBrWusmrXUOkI31vt1pSILVvQigoMN2oW2fGGKUUtHAFGATEKK1LrYdKgFCHBWXsKu/AXcDFtt2IFDd4R9u+XwPHTFAGfCCbUjov5VS3shne8jRWhcBfwHysSZWNcAW5LM91HX3WZb7tqHtRuBj22unv9aSYIlhTSnlA7wF3KG1PtrxmLauYSDrGAxySqkLgFKt9RZHxyIGhAswFfin1noKUE+n4YDy2R4abM/eLMGaVIcD3pw4xEgMYfJZHh6UUvdifbTjFUfH0luSYHWvCIjqsB1p2yeGCKWUK9bk6hWt9du23UfahhTY/lvqqPiE3cwGLlJK5WId6rsA6zM6AbZhRSCf76GkECjUWm+ybb+JNeGSz/bQczaQo7Uu01q3AG9j/bzLZ3to6+6zLPdtQ5BS6nrgAuAqfWzxXqe/1pJgde97YIJtNiI3rA/TvefgmISd2J7BeQ7I0lo/1uHQe8B1ttfXAe8OdGzCvrTWv9FaR2qto7F+jr/SWl8FfA1cZism13qI0FqXAAVKqVjbrrOAPchneyjKB9KVUl62f9PbrrV8toe27j7L7wHX2mYTTAdqOgwlFIOQUmox1uH9F2mtGzoceg+4UinlrpSKwTqxyWZHxNgddSwZFJ0ppc7D+uyGEXhea/2QYyMS9qKUmgOsA3Zy7Lmc32J9DmsVMBrIA67QWnd+wFYMUkqpecAvtdYXKKXGYu3RGglsA67WWjc5MDxhJ0qpFKwTmrgBh4AbsH6hKJ/tIUYp9QCwDOvwoW3Aj7E+iyGf7SFAKfUqMA8IAo4AvwdW08Vn2ZZkP4V1mGgDcIPWOsMBYYvT0M21/g3gDlTYim3UWt9kK38v1ueyWrE+5vFx5zodSRIsIYQQQgghhLATGSIohBBCCCGEEHYiCZYQQgghhBBC2IkkWEIIIYQQQghhJ5JgCSGEEEIIIYSdSIIlhBBCCCGEEHYiCZYQQgghhBBC2IkkWEIIIYQQQghhJ/8PbGaO2gh7Z1QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -4351,31 +4351,31 @@ " 42\n", " True\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " bAP.soma.v\n", - " 0.00148\n", - " 1.14e-06\n", + " 0.00152\n", + " 0.000961\n", " \n", " \n", " 43\n", " True\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step1.soma.v\n", - " 0.00343\n", - " 7.49e-06\n", + " 0.00562\n", + " 1.23e-06\n", " \n", " \n", " 44\n", " True\n", " 4\n", - " 0.0508\n", - " 0.0136\n", + " 0.0553\n", + " 0.0212\n", " Step3.soma.v\n", - " 0.00467\n", - " 5.86e-06\n", + " 0.00433\n", + " 4.84e-06\n", " \n", " \n", "\n", @@ -4383,14 +4383,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "42 True 4 0.0508 0.0136 bAP.soma.v \n", - "43 True 4 0.0508 0.0136 Step1.soma.v \n", - "44 True 4 0.0508 0.0136 Step3.soma.v \n", + "42 True 4 0.0553 0.0212 bAP.soma.v \n", + "43 True 4 0.0553 0.0212 Step1.soma.v \n", + "44 True 4 0.0553 0.0212 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "42 0.00148 1.14e-06 \n", - "43 0.00343 7.49e-06 \n", - "44 0.00467 5.86e-06 " + "42 0.00152 0.000961 \n", + "43 0.00562 1.23e-06 \n", + "44 0.00433 4.84e-06 " ] }, "metadata": {}, @@ -4398,7 +4398,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACfb0lEQVR4nOzdd5xcdb3/8ddnZrakb7Kb3jaUhPQASQiS0PRSlCKCBKRzkQuKAlJUVIzcy/15EUURFQsKAoYgXZqAECBI20AIkFBSNr1sNmWzybaZ+fz+OCfLZLMt2dnMbvb9fDyGzJzzPd/v55yzM8xnvt/zPebuiIiIiIiISMtFMh2AiIiIiIjIvkIJloiIiIiISJoowRIREREREUkTJVgiIiIiIiJpogRLREREREQkTZRgiYiIiIiIpIkSLBGRNsLMCs3MzSyW6Vj2dWZ2oZnNyXQcbY2ZTTOzjzMdh4hIe6YES0RE2jUzm2FmNWZWnvK4PtNxtUfu/qq7j0h3veEPB9tSzs+f0t2GiEhboV9JRUTSxMxi7h7PdBwd1Cx3PzfTQbSWfeRva7y7L8p0ECIirU09WCIiLWBmxWb2XTObD2wzs5iZTTGzf5vZZjN7z8yOTik/28z+n5m9ZWZlZva4mfVqoO6LzGyhmW01syVm9l911p9qZvPCehab2Qnh8h5mdpeZrTGzVWb2P2YWbWI/9jezF82s1Mw2mNn9ZpaXsm6jmR0Svh5gZiU79svMTjGzD8P9nW1mI+scn2vNbL6ZbTGzWWaWu/tHeveZ2ffC47LVzBaY2WkNlDMzu83M1ofH8n0zGxOuyzGzW81suZmtM7M7zaxTM9u/Oyz/fBjDy2Y2NGX9r8xsRdjmXDOblrJuhpk9ZGb3mVkZcKGZTTaz18PjvMbM7jCz7JRt3My+YWafhu39d3ju/h228WBq+QZiPtrMVjZn/0REpH5KsEREWu5s4EtAHtAXeAr4H6AXcC3wsJn1Til/PnAx0B+IA7c3UO964CSgO3ARcFtKkjMZ+CtwXdjukUBxuN3dYb0HAAcDxwGXNLEPBvw/YAAwEhgMzABw98XAd4H7zKwz8BfgHnefbWbDgZnAVUBv4GngH3W+yJ8JnAAMA8YBF9YbgNnUMHlo6DG1iX2oazEwDegB/CSMv3895Y4jOH7Dw7JnAqXhup+GyycQHM+BwI27EcM5wH8DBcA84P6UdW+H9fYC/gb8vU7yeSrwEMH5vR9IAFeHdR0OfB74Rp32jgcOBaYA1wN/AM4lOJ9jCP5W91iYKDd0fn7bxOavmNlaM3vEzApbEoeISFumBEtEpOVud/cV7l5B8GX2aXd/2t2T7v48UAR8MaX8ve7+gbtvA34EnFlfD5O7P+Xuiz3wMvAcQcIA8J/An939+bCdVe7+kZn1Ddu6yt23uft64DbgrMZ2wN0XhXVVuXsJ8AvgqJT1fwQWAW8SJIY/CFdNB54Kt60BbgU6AZ+rc3xWu/tG4B8ESUV9Mcxx97xGHo1NSnFmnS/7A9z972G7SXefBXwKTK5n2xqgG3AQYO6+0N3XmJkBlwJXu/tGd98K/G9Tx7KOp9z9FXevIjhmh5vZ4HB/73P3UnePu/vPgRwg9fqn1939sTD+Cnef6+5vhOWLgd+Tco5Ct7h7mbt/CHwAPOfuS9x9C/AMQcK9x9x9XCPnp26yl+oooJDgGK8GnjRN5iIi+yh9uImItNyKlOdDga+a2ckpy7KAlxoovyxcX1C3UjM7EfgxQQ9KBOgMvB+uHkzQW1TX0LC+NUF+AOG2K+opm9pWX+BXBAlct3CbTXWK/RF4Arg0TBgg6PFatqOAuyfNbAVBT88Oa1Oebw+3SbcH616DZWbnA98h+GIP0JV6jrO7v2hmdwC/AYaa2SMEPY+5BMd8bsqxNKDR4ZZ11B53dy83s40E+7/CzK4lSJQHAE7QU1lQ37bh/gwnSHwnhnHFgLl12luX8ryintf9diP2tHH3V8Kn1WZ2JVBG0FP6fsNbiYi0T+rBEhFpOU95voKghyr1l/0u7v7TlDKDU54PIehB2ZBaoZnlAA8T9Aj1dfc8goRqxzf9FcD+9cSyAqgCClLa7+7uo5vYh/8N92Osu3cn6In7LKsw6wr8ErgLmGGfXTe2miCp21HOwv1b1UR7u7BgivDyRh7Tmq6ltq6hBAnhFUB+ePw+SN2nVO5+u7sfCowiSGivIzgnFcDolGPZw9277sZu1Z7r8Bj2AlaH+3I9wXDEnmF8W+rEl/p3BfA74CPgwPAc3dDQ/rQWC661a+j83LkbVTl7OXYRkb1FCZaISHrdB5xsZsebWdTMcsOJAwallDnXzEaF1zPdBDzk7ok69WQTDBkrAeJhb9ZxKevvAi4ys8+bWcTMBprZQe6+hmAo4c/NrHu4bn8zqzuUrK5uQDmwxcwGEiQYqX4FFLn7JQTXmO34Mv0g8KUwjizgGoIE799NHai6winCuzbyeHU3qutC8CW+BIIJQwiuQdqFmU0ys8PC+LcBlUDS3ZMESdptZtYnLDvQzI5P2dYtZRKTenwxvLYsm+BarDfcfQXB8Y6H8cXM7EaCHqzGdCPo+Sk3s4OAy5son3buPrqR83NZfduY2WgzmxC+H7oCPydIwBfu1eBFRPYSJVgiImkUfnk+laB3oYSgR+k6dv68vZdgIoq1BMPQvl1PPVvD5Q8SDNX7GsHwvB3r3yKc+IKg5+NlPutJOp8gQVsQbvsQwXVTjfkJcEhY11PAIztWmNmpBJNU7PhC/x3gEDM7x90/Jujt+jVBj8/JwMnuXt1Ee63K3RcQfJF/nWCY3FjgtQaKdydIpDYRDHcsBX4WrvsuwbVnb1gwm98LhNdJhddSbaXxYW5/IxjmuZFg8okdwxj/CTwLfBK2WUkTwzgJhi1+LWzzj8CsJsq3FX0JYi0DlhAM2TwpvGZPRGSfY+51RyCIiEhrMbPZwH3urhuttnNmdi7B8MHvN7D+bmClu/9wrwYmIiIZpUkuRERE9oC735fpGEREpO3REEERkQ7CgpvetnRyAmnnzOyGBv4Onsl0bCIi+wINERQREREREUkT9WCJiIiIiIikSZu6BqugoMALCwszHYaIiIiIiEij5s6du8Hde9dd3qYSrMLCQoqKijIdhoiIiIiISKPMbFl9yzVEUEREREREJE2UYImIiIiIiKSJEiwREREREZE0aVPXYNWnpqaGlStXUllZmelQpA3Izc1l0KBBZGVlZToU2Qf94om3KahcyvlnnpnpUERERKSdavMJ1sqVK+nWrRuFhYWYWabDkQxyd0pLS1m5ciXDhg3LdDiyj0kknS8WXcRBkRWUb/kCXXv0ynRIIiIi0g61+SGClZWV5OfnK7kSzIz8/Hz1Zkqr2Fi6noMiKwBY+v6/MxyNiIiItFdtPsEClFxJLf0tSGuJl2+ofb6t+O0MRiIiIiLtWbtIsEREWlu8qqL2eXbJhxmMRERERNozJVjNYGZcc801ta9vvfVWZsyYkbmAUhx99NGN3pz5y1/+MlOmTNlp2YwZMxg4cCATJkxgzJgxPPHEE60dpkibl6j+LMHqsn1lBiMRERGR9kwJVjPk5OTwyCOPsGHDhqYL7wZ3J5lMprXOVJs3b2bu3Lls2bKFJUuW7LTu6quvZt68efz973/n4osvbtU4RNqDRHVwbd8q+pBfsybD0YiIiEh7pQSrGWKxGJdeeim33XbbLutKSko4/fTTmTRpEpMmTeK1114Dgl6iW2+9tbbcmDFjKC4upri4mBEjRnD++eczZswYVqxYwXXXXceYMWMYO3Yss2bNAmD27NkcffTRnHHGGRx00EGcc845uHu98d177721vVFvvfVW7fJHHnmEk08+mbPOOosHHnig3m1HjhxJLBbbKXn83ve+x6hRoxg3bhzXXnstAMXFxRx77LGMGzeOz3/+8yxfvhyACy+8kMsvv5wpU6aw3377MXv2bC6++GJGjhzJhRdeWFvn5ZdfzsSJExk9ejQ//vGPd4ljy5YtDB06tDbR27ZtG4MHD6ampqbeuEXSLVET9GCV5BZSwGY2bdqU4YhERESkPWrz07Sn+sk/PmTB6rK01jlqQHd+fPLoJst985vfZNy4cVx//fU7Lb/yyiu5+uqrmTp1KsuXL+f4449n4cKFjdb16aefcs899zBlyhQefvhh5s2bx3vvvceGDRuYNGkSRx55JADvvvsuH374IQMGDOCII47gtddeY+rUqbvUt337dubNm8crr7zCxRdfzAcffADAzJkzufHGG+nbty+nn346N9xwwy7bvvnmm0QiEXr37g1AaWkpjz76KB999BFmxubNmwH41re+xQUXXMAFF1zAn//8Z7797W/z2GOPAbBp0yZef/11nnjiCU455RRee+01/vSnPzFp0iTmzZvHhAkTuPnmm+nVqxeJRILPf/7zzJ8/n3HjxtXG0aNHDyZMmMDLL7/MMcccw5NPPsnxxx+v+13JXpMIr8Ha3uNAqHyLkhWf0rPn5AxHJSIiIu2NerCaqXv37px//vncfvvtOy1/4YUXuOKKK5gwYQKnnHIKZWVllJeXN1rX0KFDa6+LmjNnDmeffTbRaJS+ffty1FFH8fbbwQxmkydPZtCgQUQiESZMmEBxcXG99Z199tkAHHnkkZSVlbF582bWrVvHp59+ytSpUxk+fDhZWVm1iRfAbbfdxoQJE7j22muZNWtW7ex8PXr0IDc3l//8z//kkUceoXPnzgC8/vrrfO1rXwPgvPPOY86cObV1nXzyyZgZY8eOpW/fvowdO5ZIJMLo0aNrY37wwQc55JBDOPjgg/nwww9ZsGDBLvsxffr02h68Bx54gOnTpzd6HEXSKVkTDBH03iMA2Lr200yGIyIiIu1Uu+rBak5PU2u66qqrOOSQQ7joootqlyWTSd544w1yc3N3KhuLxXa6rin13k1dunRpVns5OTm1z6PRKPF4vN5ydacuNzMefPBBNm3aVHtD3rKyMmbOnMnNN98MBNdg7Rj+Vzfut956i3/961889NBD3HHHHbz44ovNijMSiewUcyQSIR6Ps3TpUm699VbefvttevbsyYUXXljvvaxOOeUUbrjhBjZu3MjcuXM59thjG21XJJ2S4RDBLgPHwAdQXbKkiS1EREREdqUerN3Qq1cvzjzzTO66667aZccddxy//vWva1/PmzcPgMLCQt555x0A3nnnHZYuXVpvndOmTWPWrFkkEglKSkp45ZVXmDx594Yl7ej1mTNnDj169KBHjx7MnDmTZ599tva6r7lz5zZ4HVaq8vJytmzZwhe/+EVuu+023nvvPQA+97nP1W5///33M23atGbHV1ZWRpcuXejRowfr1q3jmWeeqbdc165dmTRpEldeeSUnnXQS0Wi02W2ItJSHPVjdeg9iq3cisrk4swGJiIhIu9TiBMvMBpvZS2a2wMw+NLMrw+UzzGyVmc0LH19sebiZd8011+w0IcTtt99OUVER48aNY9SoUdx5550AnH766WzcuJHRo0dzxx13MHz48HrrO+200xg3bhzjx4/n2GOP5ZZbbqFfv367FVNubi4HH3wwl112GXfddRfFxcUsW7Zsp+nZhw0bRo8ePXjzzTfrreOLX/wiq1evZuvWrZx00kmMGzeOqVOn8otf/AKAX//61/zlL39h3Lhx3HvvvfzqV79qdnzjx4/n4IMP5qCDDuJrX/saRxxxRO26G2+8cadp4qdPn859992n4YGy1+1IsGI5nVkX7U+nbSsyHJGIiIi0R9bQzHTNrsCsP9Df3d8xs27AXODLwJlAubvf2tj2qSZOnOh17+m0cOFCRo4c2aIYZd+ivwlpDe89MIPxH93G6m8uYfVfzqdP5TKG3PhB0xuKiIhIh2Rmc919Yt3lLe7Bcvc17v5O+HwrsBAY2NJ6RUT2ph09WFnZnajuMoCC5Hpo4Q9QIiIi0vGk9RosMysEDgZ2jEO7wszmm9mfzaxnOtsSEUmreBXVHiU7Owu6D6IzVZRtSe/NxUVERGTfl7YEy8y6Ag8DV7l7GfA7YH9gArAG+HkD211qZkVmVlRSUpKucEREdoslKqkim+xohKz8wQBsXKmZBEVERGT3pCXBMrMsguTqfnd/BMDd17l7wt2TwB+BeqfGc/c/uPtEd5+442a3IiJ7m8WrqCKL7FiErn2GAlC2vv7ZP0VEREQako5ZBA24C1jo7r9IWd4/pdhpgK4WF5E2a0cPVjRi9Oy3HwCVG5ZnOCoRERFpb9Jxo+EjgPOA981sXrjsBuBsM5sAOFAM/Fca2hIRaRWRRDXVZAFQ0HcQNR4luWVVhqMSERGR9iYdswjOcXdz93HuPiF8PO3u57n72HD5Ke6+Jh0BZ8pjjz2GmfHRRx81WKa4uJgxY8akrc0LL7yQhx56qMH1V111FQMHDiSZTNYuu/vuu+nduzcTJkxg1KhR/PGPf0xbPCL7skiikmrLBiCWlcUG60VWuRIsERER2T1pnUVwXzZz5kymTp3KzJkz610fj8db3EYikWh22WQyyaOPPsrgwYN5+eWXd1o3ffp05s2bx+zZs7nhhhtYt25di2MT2ddFE1XUhAkWwKasvnSqWJvBiERERKQ9UoLVDOXl5cyZM4e77rqLBx54oHb57NmzmTZtGqeccgqjRo0CgkTrnHPOYeTIkZxxxhls374dgH/9618cfPDBjB07losvvpiqqioACgsL+e53v8shhxzC3//+913afuGFF5g4cSLDhw/nySef3Knt0aNHc/nllzeY9PXp04f999+fZcuW1S67/fbbGTVqFOPGjeOss84CYOPGjXz5y19m3LhxTJkyhfnz5wMwY8YMLrjgAqZNm8bQoUN55JFHuP766xk7diwnnHACNTU1ANx0001MmjSJMWPGcOmll1L35tXJZJLCwkI2b95cu+zAAw9U4idtiiVriIdDBAG25fYjr2Z9BiMSERGR9igd12DtPc98D9a+n946+42FE3/aaJHHH3+cE044geHDh5Ofn8/cuXM59NBDAXjnnXf44IMPGDZsGMXFxXz88cfcddddHHHEEVx88cX89re/5YorruDCCy/kX//6F8OHD+f888/nd7/7HVdddRUA+fn5vPPOO/W2XVxczFtvvcXixYs55phjWLRoEbm5ucycOZOzzz6bU089lRtuuIGamhqysrJ22nbJkiUsWbKEAw44oHbZT3/6U5YuXUpOTk5twvPjH/+Ygw8+mMcee4wXX3yR888/n3nz5gGwePFiXnrpJRYsWMDhhx/Oww8/zC233MJpp53GU089xZe//GWuuOIKbrzxRgDOO+88nnzySU4++eTaNiORCKeeeiqPPvooF110EW+++SZDhw6lb9++zT5NIq0tkqwhGfnsIzHetT8FZS+RTCSIRKMZjExERETaE/VgNcPMmTNre3vOOuusnXqMJk+ezLBhw2pfDx48mCOOOAKAc889lzlz5vDxxx8zbNgwhg8fDsAFF1zAK6+8UrvN9OnTG2z7zDPPJBKJcOCBB7Lffvvx0UcfUV1dzdNPP82Xv/xlunfvzmGHHcY///nP2m1mzZrFhAkTOPvss/n9739Pr169ateNGzeOc845h/vuu49YLPgyOWfOHM477zwAjj32WEpLSykrKwPgxBNPJCsri7Fjx5JIJDjhhBMAGDt2LMXFxQC89NJLHHbYYYwdO5YXX3yRDz/8cJf9mD59OrNmzQLggQceaHSfRTIh4jUk7LMEy3oMJNsSbCzRdVgiIiLSfO2rB6uJnqbWsHHjRl588UXef/99zIxEIoGZ8bOf/QyALl267FQ+mLW+4df1qVtHU/X985//ZPPmzYwdOxaA7du306lTJ0466SQgSGbuuOOOeut76qmneOWVV/jHP/7BzTffzPvvN94jmJOTAwS9UFlZWbXxRCIR4vE4lZWVfOMb36CoqIjBgwczY8YMKisrd6nn8MMPZ9GiRZSUlPDYY4/xwx/+sNF2Rfa2SDJOwj7rBc7JHwLAptVLKOg3JFNhiYiISDujHqwmPPTQQ5x33nksW7aM4uJiVqxYwbBhw3j11VfrLb98+XJef/11AP72t78xdepURowYQXFxMYsWLQLg3nvv5aijjmpW+3//+99JJpMsXryYJUuWMGLECGbOnMmf/vQniouLKS4uZunSpTz//PO113s1JJlMsmLFCo455hj+7//+jy1btlBeXs60adO4//77geDaroKCArp3796s+HYkUwUFBZSXlzc466GZcdppp/Gd73yHkSNHkp+f36z6RfaWqNfgKUMEu/UNeqbL1xdnKCIRERFpj5RgNWHmzJmcdtppOy07/fTTG5xYYsSIEfzmN79h5MiRbNq0icsvv5zc3Fz+8pe/8NWvfpWxY8cSiUS47LLLmtX+kCFDmDx5MieeeCJ33nknyWSSZ599li996Uu1Zbp06cLUqVP5xz/+UW8dl1xyCUVFRSQSCc4991zGjh3LwQcfzLe//W3y8vKYMWMGc+fOZdy4cXzve9/jnnvuaebRgby8PL7+9a8zZswYjj/+eCZNmlS77s477+TOO++sfT19+nTuu+8+DQ+UNinqcZKRz3qw8gcENxuu2rgiUyGJiIhIO2R1Z3zLpIkTJ3pRUdFOyxYuXMjIkSMzFJG0RfqbkNaw7qYD+aTTeKZdF/TCejJJ5U/68l6/05ly+Z1NbC0iIiIdjZnNdfeJdZerB0tEBIh5HE+5BssiEUoiBWRvW53BqERERKS9UYIlIgJEiePRnW91sCW7L10qdbNhERERab52kWC1pWGMkln6W5DWEvM4RHZOsCo69adnvCRDEYmIiEh71OYTrNzcXEpLS/XFWnB3SktLyc3NzXQosg+K1dODleg2gALfRE11VYaiEhERkfamzd8Ha9CgQaxcuZKSEv2KLEHCPWjQoEyHIfugGHGIZu+0LJo3iMgKZ92aYvoPHZGhyERERKQ9afMJVlZWFsOGDct0GCKyL0smiZHcZYhgbsFQADatWaoES0RERJqlzQ8RFBFpdcma4N86QwR79C0EYHvJsr0ckIiIiLRXrZ5gmdkJZvaxmS0ys++1dnsiIrvL48E1VhbbOcEqGBjcbLhm08q9HpOIiIi0T62aYJlZFPgNcCIwCjjbzEa1ZpsiIrurOpzEIlLnGqwu3fIoowtWpgRLREREmqe1e7AmA4vcfYm7VwMPAKe2cpsiIrtlxyyBFsveZV1ppDe529fs7ZBERESknWrtBGsgsCLl9cpwWS0zu9TMisysSDMFikgm1CZYda7BAijL6Uu3qnV7OyQRERFppzI+yYW7/8HdJ7r7xN69e2c6HBHpgGpqdvRg5eyyrrJzf3ol9OOPiIiINE9rJ1irgMEprweFy0RE2ox4dTUAkXqGCHq3gfRkK9u3le3tsERERKQdau0E623gQDMbZmbZwFnAE63cpojIbomHPVjR2K5DBGO9ghtbl6xauldjEhERkfapVRMsd48DVwD/BBYCD7r7h63ZpojI7toxRDBSzxDBzgWFAJStVYIlIiIiTYu1dgPu/jTwdGu3IyKypxLhEMFY1q5DBPP6DwOgYsPyvRqTiIiItE8Zn+RCRCTTaocI1pNgFfQvDMpsWrHLOhEREZG6lGCJSIeXiIeTXGTtOkQwO7cTpeQRLV+9t8MSERGRdkgJloh0eMl40INV3xBBgI2x3nSq0M2GRUREpGlKsESkw4tX1wAQq6cHC6A8px/dq3WzYREREWmaEiwR6fASYQ9Wdnb9CVZ1l/70TmzAk8m9GZaIiIi0Q0qwRKTDS1RXApCdm1t/gR6D6GKVbNlUuhejEhERkfZICZaIdHjJ6goAsnO71rs+u9cQADasXrTXYhIREZH2SQmWiHR4XrMdgJxO9SdYnfvuB0D52iV7LSYRERFpn5RgiYjUBEMEc3I717s6f9BwAKpLlGCJiIhI45RgiUiHZ/HtJNzqvQ8WQH5BX8q9E2xetpcjExERkfZGCZaIdHhWU0mVZYNZ/esjEdZF+5JTvmIvRyYiIiLtjRIsEenwLFFBFfX3Xu2wJXcgPSpX76WIREREpL1SgiUiHV4kXkmVNZ5gVXYZRJ/EOt0LS0RERBqlBEtEOrxooooay268UM+hdLYqykrViyUiIiINU4IlIh1eNFFJtTVwk+FQTu/9AShZ8eneCElERETaqRYlWGb2MzP7yMzmm9mjZpYXLi80swozmxc+7kxLtCIirSCWrKQm0vgQwR4DggSrfI0SLBEREWlYS3uwngfGuPs44BPg+ynrFrv7hPBxWQvbERFpNVnJKuLRxnuw+gwJ74W1YeneCElERETaqRYlWO7+nLvHw5dvAINaHpKIyN4VS1aRaKIHq3u3HpSQR2TL8r0UlYiIiLRH6bwG62LgmZTXw8zsXTN72cymNbSRmV1qZkVmVlRSUpLGcEREmifbK0k00YMFsCHWj87bVu6FiERERKS9ijVVwMxeAPrVs+oH7v54WOYHQBy4P1y3Bhji7qVmdijwmJmNdveyupW4+x+APwBMnDjR92w3RET2XLZXNyvB2tppIIPL398LEYmIiEh71WSC5e5faGy9mV0InAR83t093KYKqAqfzzWzxcBwoKilAYuIpFsOVXis6QSrptsQepe9RLKmmkhWE9O6i4iISIfU0lkETwCuB05x9+0py3ubWTR8vh9wILCkJW2JiLSWHK9uVoJlvQqJWZKNa/RxJiIiIvVr6TVYdwDdgOfrTMd+JDDfzOYBDwGXufvGFrYlIpJ21VVVdLYqPKdHk2U79wmmat+wUlO1i4iISP2aHCLYGHc/oIHlDwMPt6RuEZG9oXxzCb0A65TXZNmeAw8EYPu6Ra0blIiIiLRb6ZxFUESk3dleVgqAde7ZZNm+g/ajxqMkSpe1dlgiIiLSTinBEpEOrbJsAwBZXXo1WTY3J5u11ptYme6FJSIiIvVTgiUiHVrV1uDy0Kyu+c0qvzG7P10rdC8sERERqZ8SLBHp0KrLNwHQqUfzEqztnQdSULOmNUMSERGRdkwJloh0aDXlwRDBHj37NKt8vPtQelJGTcUu900XERERUYIlIh1bfFvQg5XXq6BZ5WMFhQCULP+ktUISERGRdkwJloh0aF65mXI6EcvKblb5rn2Du1NsXq2p2kVERGRXSrBEpEPLrihhc6TpKdp3yB8c3AurYv2S1gpJRERE2jElWCLSoXWp2kBZrHkTXAD07TuQcs/FNy1txahERESkvVKCJSIdWo94Cdtyeje7fDQaYV2kLzlbNVW7iIiI7EoJloh0WJ5M0iu5kUSXfru13aacAXSvXNVKUYmIiEh7pgRLRDqs0tINdLJqot3779Z2lV0G0SexFtxbKTIRERFpr5RgiUiHtWFNMQC5vQbu1naeN5ROVLF989pWiEpERETaMyVYItJhla0rBqBrn6G7tV127/0A2LBC98ISERGRnbUowTKzGWa2yszmhY8vpqz7vpktMrOPzez4locqIpJe1RuCmQDzBx64W9t17x/cC6tM98ISERGROmJpqOM2d781dYGZjQLOAkYDA4AXzGy4uyfS0J6ISFr45hXUeJRuBbs3RLD3kOEAVG3QvbBERERkZ601RPBU4AF3r3L3pcAiYHIrtSUiskeyy1exIVKARXfvt6b8vDw2e1eSW1a3UmQiIiLSXqUjwbrCzOab2Z/NrGe4bCCwIqXMynDZLszsUjMrMrOikpKSNIQjItI83arWsDl796ZoBzAzNkbzydqmSS5ERERkZ00mWGb2gpl9UM/jVOB3wP7ABGAN8PPdDcDd/+DuE919Yu/ezb/Zp4hIS/WKr6ei84A92nZrdm+6Vq9Pc0QiIiLS3jU5Lsbdv9Cciszsj8CT4ctVwOCU1YPCZSIibcL2igp6+0ZWdB+0R9tX5vZl4GZNciEiIiI7a+ksgql35zwN+CB8/gRwlpnlmNkw4EDgrZa0JSKSTutXLSFqTqznkD3aPtm1P718C/HqqjRHJiIiIu1ZS2cRvMXMJgAOFAP/BeDuH5rZg8ACIA58UzMIikhbsnlNMEV75z6Fe7R9JG8gkZVOyfoV9B10QBojExERkfasRQmWu5/XyLqbgZtbUr+ISGupKCkGoEf//fdo+9xewdDCzWuLlWCJiIhIrdaapl1EpE1LbFoOQMGAYXu0fbc+wdDCbSUrmigpIiIiHYkSLBHpkGJbV1FKHrGcznu0fX6/oQBUb9L8PSIiIvIZJVgi0iF1qljDxlifPd6+e6++VHkWXqabDYuIiMhnlGCJSIeUV72W8tz+TRdsgEUilEZ6EdPNhkVERCSFEiwR6XCSiSR9kiXUdB3Yonq2ZPWmc6VuNiwiIiKfUYIlIh1O6YbVdLJqLG/PbjK8Q0VuH7rHN6QpKhEREdkXKMESkQ5n46olAGTnD21RPfEu/eid3EAykUxHWCIiIrIPUILViM0la5j3/N/wpL48iexLytcHNxnu1ne/FtVj3QeQazVsLNUwQREREQkowWrEwqd/zYTXLmfJzROZ+8xfqK6qzHRIIpIGNaXLACgY2LIbBGf3DK7h2rh2WYtjEhERkX1DLNMBtGWTzv4xbz3VnwHz7+DQN69i05s38m6fE+g24VQOPPRYsvbw/jl7hTskaiBZA4lqSMRJxKuoqqqiurqa6qoKqqurqamuCh411XgijpMMeuzcwYPn7o57EmofjruDJ8J/w2V4A8HYruHVs6xuUQtf1F+2oe3ra6vexbsRVwNtpYHVH9ie1ZW2mtJbWTrjStfhyln1Ots9h249C1pUT9eC4GbDW0uWAYelITJpSDKRpKKygsqKbVRXbSdRuZ1kzXbi1VUk4jUkEnHiNTUkE8Fzj9fgyQTmCUjGw0ci+LwCku64AzjJ8KPLgwVY3c8yb+izbWdm9XyG1PtH2/Syej+LGqorZXGDn63NravR1zvX/1kVrfcZWZ+WfA60aNu9vJ/p0JL/x7Rob1t0nFuwbfs7RdJM1TkFDD3k8/Tv0SnToTSLEqxGxLJzmHzat0icfBnvvfooNUX3cfC6R8h+7kEq/5nFJzkHUd7jIJK9D6JLn0J69B5Mt4KBdO6WR05uZyyyawehu5NMOvGaCqq2l1NdUU5N5TZqwn8TVeUkqraTqNpOsnobXr0dr9kO1RVYfDtWU0EkXkE0XkEkUUEsUUksWUlWooIsryI7WUmOV5FL1S5tR4HO4UOko/skazjD63mP7o4eAw8EIFHyabPKV1Zs471n/0KvYeM5cMK0FrXdniQSSTZv2kD5xjVUbF5Lddl64uWbqNm+Ga8ow6vKiFSVEavZSk68nNxkOTnJCrKTlWRTTY5Xk0s1XczpkumdERGRvW52Yjxz8w/hpHFKsPYZ0VgW4485E445k61bNjL/zWdJLHqRvI3zGbP+CbqU/B0W7LpdpWdRTRYRHCNJlCQRksRIkmNOzm7EkHBjO7lUkk0lOVRaDlWWyzbLoTrSnXikD/FILjXRTiRiuSSjuRDNwWJZRKLZwb+xHKKxLCKxbGJZwSOalVP7PBLNwiKR4Bcvi2A7HpHggVn42jCitWWDfyP1/1JW7y+/DfwanFJ2x7NdfkludPv6F3p9MTQ7rkZibeFPZc38Uby5taWvpjTGldZdJL2x9Ru4f4vr6NVnMBu8B1klHzZarrRkDQufvJ2Dlv2Nw9jM/IUTYMLLLW4/0+LxOCXrVrN57VK2lywnvnkFVraK6Lb15FSVkluzmW6JTfT0LeRbgvwG6in3TmyzzlREulAZ7Up5rBebYl1IRnPxWC7EciGrE5bViUh28O+OZZGsHCLRLKKxLCwaIxaLBZ9z0SyIRLFIDIvGIBIjEongFiNiwS/7O/4FIxIJfjlvsFemife7O/X8gTbvD3bXz6jmfWbZLp9vu/dZt/OmTcda7+dxvbE341jtoYZHSjRj2xa125Jt0/1J2Mx2W9RsOzzOGdpf2TsGZ3WhYHDvTIfRbEqwdlO3Hr2YeNzX4LivAeDJBBtWL2HdyqVs37iKxJa1eHU51FRCvIJIsgazCG47kpQoHomRjOVCVmcsqzNkdyGS3ZloTheiOV2I5XYhltuZrJyuZHfqQnanruTk5JKbHaNLNEIkoj5wkbYgEo2wMmd/emz5qN71xQveZv0Lv2Jc6bNMtRo+zD2UFVUVDKpuH9dsJRIJ1q0qpmT5R1SuW4RvXEJs6yo6Va4lr2Y9BclS+luc1Ns1V3mMUuvJ1lhPyrN7synnIIq7FBDpUkCkW29i3fqQ06MPXXr0pmuPfLp1z6NrVhZdM7aXIiIi6aUEq4UsEqVg0IEUDDow06GISAZsyx/L6NX3sWXdcnr0HUL5lo0seOEeui58kFHxBfTzLObnn0C//7iK0SMnMueeH9F76e1UbCmlU4+G+nT2nnh1FetXLGLDio+oWLeIZOlicrcup2fVSvol1jLAahiwo6xHKLF8Nmf1YW23MazsOoBoj4HkFAyhc8EQevQbRs+CAQyIav4kERHpuJRgiYi0QO+j/pPozL+y9q7pLI12Z8T2d5hs1SyLDOatA67kwOMvZ3Lvz/p4cvuPgqWw/JN3GDHpP/ZKjDXVlaxb9jGbViykYu0nsHEpncuL6Vm1mr7J9QywZG0SVeHZrIv2Y3OnIazvNo1IwX507nsgeQOH03vQ/vTPztmpx0pERER21qIEy8xmASPCl3nAZnefYGaFwELg43DdG+5+WUvaEhFpi4YfNJ45B1zNmMV/YKt15/0+p9DtsHM56JCjGFrPJBr7jZ9G4jVjy/xnIY0JVmVlJWvDJKpy3afYpiV0Ll9GQdVK+ibXM8icQWHZMu/MutgA1nQZybLuJxAr2J+u/Q+kz9CR5PcbQmELJ/8QERHpyKzeCQD2pCKznwNb3P2mMMF60t3H7E4dEydO9KKiorTEIyLSVs2/eRr58fX0/d48YjnNmxGpsrKC9SsXU7Z2CRUlxSQ3LSdatoJO21eTV72Ovl5CzD67KXoZnVkXHciWzoOp7l5ItGB/ug04iN6FIyno3b/eWU5FRESk+cxsrrtPrLs8LUMELZiG6Uzg2HTUJyKyL4tP+RYDX/067/3yVBITziOna08SVduoqdxKvKwEtq4lsr2EnMoNdK7eQI9EKfm+hSH22Q9iSTfWWy82ZfVlbfexrOwxlKzeB9B1wAj6DB1Jj/x+dFcSJSIistel6xqsacA6d0+9GcwwM3sXKAN+6O6v1rehmV0KXAowZMiQNIUjItJ2HfL5M3l97cdM+OR2Or3+5i7r4x5ho+WxJdKT8pwCNnc6iKVdBxDpOZTcPoX07L8/+QOG0S+3E/0yEL+IiIg0rMkhgmb2AtT7//AfuPvjYZnfAYvc/efh6xygq7uXmtmhwGPAaHcva6wtDREUkY5ke/lmVi16n6ptm4nldiW3cze69OpLz179iGVlZTo8ERERacQeDxF09y80UXEM+ApwaMo2VUBV+HyumS0GhgPKnkREQp275nHghGmZDkNERETSKB0D9L8AfOTuK3csMLPeZhYNn+8HHAgsSUNbIiIiIiIibVY6rsE6C5hZZ9mRwE1mVgMkgcvcfWMa2hIREREREWmzWpxgufuF9Sx7GHi4pXWLiIiIiIi0J2m7D1Y6mFkJsCzTcdRRAGzIdBCy1+h8dxw61x2HznXHovPdcehcdyxt8XwPdffedRe2qQSrLTKzovpmB5F9k853x6Fz3XHoXHcsOt8dh851x9KezrfuQikiIiIiIpImSrBERERERETSRAlW0/6Q6QBkr9L57jh0rjsOneuORee749C57ljazfnWNVgiIiIiIiJpoh4sERERERGRNFGCJSIiIiIikiZKsBphZieY2cdmtsjMvpfpeCR9zGywmb1kZgvM7EMzuzJc3svMnjezT8N/e2Y6VkkPM4ua2btm9mT4epiZvRm+v2eZWXamY5T0MLM8M3vIzD4ys4Vmdrje2/smM7s6/Az/wMxmmlmu3tv7DjP7s5mtN7MPUpbV+162wO3heZ9vZodkLnLZXQ2c65+Fn+PzzexRM8tLWff98Fx/bGbHZyToRijBaoCZRYHfACcCo4CzzWxUZqOSNIoD17j7KGAK8M3w/H4P+Je7Hwj8K3wt+4YrgYUpr/8PuM3dDwA2Af+ZkaikNfwKeNbdDwLGE5x3vbf3MWY2EPg2MNHdxwBR4Cz03t6X3A2cUGdZQ+/lE4EDw8elwO/2UoySHnez67l+Hhjj7uOAT4DvA4Tf184CRofb/Db83t5mKMFq2GRgkbsvcfdq4AHg1AzHJGni7mvc/Z3w+VaCL2ADCc7xPWGxe4AvZyRASSszGwR8CfhT+NqAY4GHwiI61/sIM+sBHAncBeDu1e6+Gb2391UxoJOZxYDOwBr03t5nuPsrwMY6ixt6L58K/NUDbwB5ZtZ/rwQqLVbfuXb359w9Hr58AxgUPj8VeMDdq9x9KbCI4Ht7m6EEq2EDgRUpr1eGy2QfY2aFwMHAm0Bfd18TrloL9M1UXJJWvwSuB5Lh63xgc8oHt97f+45hQAnwl3BI6J/MrAt6b+9z3H0VcCuwnCCx2gLMRe/tfV1D72V9b9u3XQw8Ez5v8+daCZZ0aGbWFXgYuMrdy1LXeXAPA93HoJ0zs5OA9e4+N9OxyF4RAw4BfufuBwPbqDMcUO/tfUN47c2pBEn1AKALuw4xkn2Y3ssdg5n9gODSjvszHUtzKcFq2CpgcMrrQeEy2UeYWRZBcnW/uz8SLl63Y0hB+O/6TMUnaXMEcIqZFRMM9T2W4BqdvHBYEej9vS9ZCax09zfD1w8RJFx6b+97vgAsdfcSd68BHiF4v+u9vW9r6L2s7237IDO7EDgJOMc/u3lvmz/XSrAa9jZwYDgbUTbBxXRPZDgmSZPwGpy7gIXu/ouUVU8AF4TPLwAe39uxSXq5+/fdfZC7FxK8j19093OAl4AzwmI61/sId18LrDCzEeGizwML0Ht7X7QcmGJmncPP9B3nWu/tfVtD7+UngPPD2QSnAFtShhJKO2RmJxAM7z/F3benrHoCOMvMcsxsGMHEJm9lIsaG2GfJoNRlZl8kuHYjCvzZ3W/ObESSLmY2FXgVeJ/Prsu5geA6rAeBIcAy4Ex3r3uBrbRTZnY0cK27n2Rm+xH0aPUC3gXOdfeqDIYnaWJmEwgmNMkGlgAXEfygqPf2PsbMfgJMJxg+9C5wCcG1GHpv7wPMbCZwNFAArAN+DDxGPe/lMMm+g2CY6HbgIncvykDYsgcaONffB3KA0rDYG+5+WVj+BwTXZcUJLvN4pm6dmaQES0REREREJE00RFBERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERERERERNJECZaIiIiIiEiaKMESERERERFJEyVYIiIiIiIiaaIES0REREREJE2UYImIiIiIiKSJEiwREREREZE0UYIlIiIiIiKSJkqwRETaCDMrNDM3s1imY9nXmdmFZjYn03G0NWY2zcw+znQcIiLtmRIsERFp18xshpnVmFl5yuP6TMfVHrn7q+4+It31hj8cbEs5P39KdxsiIm2FfiUVEUkTM4u5ezzTcXRQs9z93EwH0Vr2kb+t8e6+KNNBiIi0NvVgiYi0gJkVm9l3zWw+sM3MYmY2xcz+bWabzew9Mzs6pfxsM/t/ZvaWmZWZ2eNm1quBui8ys4VmttXMlpjZf9VZf6qZzQvrWWxmJ4TLe5jZXWa2xsxWmdn/mFm0if3Y38xeNLNSM9tgZvebWV7Kuo1mdkj4eoCZlezYLzM7xcw+DPd3tpmNrHN8rjWz+Wa2xcxmmVnu7h/p3Wdm3wuPy1YzW2BmpzVQzszsNjNbHx7L981sTLgux8xuNbPlZrbOzO40s07NbP/usPzzYQwvm9nQlPW/MrMVYZtzzWxayroZZvaQmd1nZmXAhWY22cxeD4/zGjO7w8yyU7ZxM/uGmX0atvff4bn7d9jGg6nlG4j5aDNb2Zz9ExGR+inBEhFpubOBLwF5QF/gKeB/gF7AtcDDZtY7pfz5wMVAfyAO3N5AveuBk4DuwEXAbSlJzmTgr8B1YbtHAsXhdneH9R4AHAwcB1zSxD4Y8P+AAcBIYDAwA8DdFwPfBe4zs87AX4B73H22mQ0HZgJXAb2Bp4F/1PkifyZwAjAMGAdcWG8AZlPD5KGhx9Qm9qGuxcA0oAfwkzD+/vWUO47g+A0Py54JlIbrfhoun0BwPAcCN+5GDOcA/w0UAPOA+1PWvR3W2wv4G/D3OsnnqcBDBOf3fiABXB3WdTjweeAbddo7HjgUmAJcD/wBOJfgfI4h+FvdY2Gi3ND5+W0Tm79iZmvN7BEzK2xJHCIibZkSLBGRlrvd3Ve4ewXBl9mn3f1pd0+6+/NAEfDFlPL3uvsH7r4N+BFwZn09TO7+lLsv9sDLwHMECQPAfwJ/dvfnw3ZWuftHZtY3bOsqd9/m7uuB24CzGtsBd18U1lXl7iXAL4CjUtb/EVgEvEmQGP4gXDUdeCrctga4FegEfK7O8Vnt7huBfxAkFfXFMMfd8xp5NDYpxZl1vuwPcPe/h+0m3X0W8CkwuZ5ta4BuwEGAuftCd19jZgZcClzt7hvdfSvwv00dyzqecvdX3L2K4JgdbmaDw/29z91L3T3u7j8HcoDU659ed/fHwvgr3H2uu78Rli8Gfk/KOQrd4u5l7v4h8AHwnLsvcfctwDMECfcec/dxjZyfusleqqOAQoJjvBp40jSZi4jso/ThJiLScitSng8FvmpmJ6csywJeaqD8snB9Qd1KzexE4McEPSgRoDPwfrh6MEFvUV1Dw/rWBPkBhNuuqKdsalt9gV8RJHDdwm021Sn2R+AJ4NIwYYCgx2vZjgLunjSzFQQ9PTusTXm+Pdwm3R6sew2WmZ0PfIfgiz1AV+o5zu7+opndAfwGGGpmjxD0POYSHPO5KcfSgEaHW9ZRe9zdvdzMNhLs/wozu5YgUR4AOEFPZUF924b7M5wg8Z0YxhUD5tZpb13K84p6XvfbjdjTxt1fCZ9Wm9mVQBlBT+n7DW8lItI+qQdLRKTlPOX5CoIeqtRf9ru4+09TygxOeT6EoAdlQ2qFZpYDPEzQI9TX3fMIEqod3/RXAPvXE8sKoAooSGm/u7uPbmIf/jfcj7Hu3p2gJ+6zrMKsK/BL4C5ghn123dhqgqRuRzkL929VE+3twoIpwssbeUxrupbauoYSJIRXAPnh8fsgdZ9Sufvt7n4oMIogob2O4JxUAKNTjmUPd++6G7tVe67DY9gLWB3uy/UEwxF7hvFtqRNf6t8VwO+Aj4ADw3N0Q0P701osuNauofNz525U5ezl2EVE9hYlWCIi6XUfcLKZHW9mUTPLDScOGJRS5lwzGxVez3QT8JC7J+rUk00wZKwEiIe9WcelrL8LuMjMPm9mETMbaGYHufsagqGEPzez7uG6/c2s7lCyuroB5cAWMxtIkGCk+hVQ5O6XEFxjtuPL9IPAl8I4soBrCBK8fzd1oOoKpwjv2sjj1d2orgvBl/gSCCYMIbgGaRdmNsnMDgvj3wZUAkl3TxIkabeZWZ+w7EAzOz5lW7eUSUzq8cXw2rJsgmux3nD3FQTHOx7GFzOzGwl6sBrTjaDnp9zMDgIub6J82rn76EbOz2X1bWNmo81sQvh+6Ar8nCABX7hXgxcR2UuUYImIpFH45flUgt6FEoIepevY+fP2XoKJKNYSDEP7dj31bA2XP0gwVO9rBMPzdqx/i3DiC4Kej5f5rCfpfIIEbUG47UME10015ifAIWFdTwGP7FhhZqcSTFKx4wv9d4BDzOwcd/+YoLfr1wQ9PicDJ7t7dRPttSp3X0DwRf51gmFyY4HXGijenSCR2kQw3LEU+Fm47rsE1569YcFsfi8QXicVXku1lcaHuf2NYJjnRoLJJ3YMY/wn8CzwSdhmJU0M4yQYtvi1sM0/ArOaKN9W9CWItQxYQjBk86Twmj0RkX2OudcdgSAiIq3FzGYD97m7brTazpnZuQTDB7/fwPq7gZXu/sO9GpiIiGSUJrkQERHZA+5+X6ZjEBGRtkdDBEVEOggLbnrb0skJpJ0zsxsa+Dt4JtOxiYjsCzREUEREREREJE3UgyUiIiIiIpImbeoarIKCAi8sLMx0GCIiIiIiIo2aO3fuBnfvXXd5m0qwCgsLKSoqynQYIiIiIiIijTKzZfUt1xBBERERERGRNFGCJSIiIiIikiZKsEREmuHFhWtZvbki02GIiIhIG9emrsGqT01NDStXrqSysjLToUg7k5uby6BBg8jKysp0KNLOrd1SSexvZ7AqO8qAH72c6XBERESkDWvzCdbKlSvp1q0bhYWFmFmmw5F2wt0pLS1l5cqVDBs2LNPhSDtXvORjjoy+DwmI19QQU9IuIiIiDWjzQwQrKyvJz89XciW7xczIz89Xz6ekRXT127XPVy3+IIORiIiISFvX5hMsQMmV7BH93Ui6VFdsq32+cdHbjZQUERGRjq5dJFgiIplUXbG99nlNyaIMRiIiIiJtnRKsZjAzrrnmmtrXt956KzNmzMhcQCneeOMNDjvsMCZMmMDIkSNr45o9ezb//ve/W1T3CSecQF5eHieddFIaIhVpv2qqggRrG7lEypZnOBoRERFpy5RgNUNOTg6PPPIIGzZsSGu97k4ymWxRHRdccAF/+MMfmDdvHh988AFnnnkmkJ4E67rrruPee+9tUR0i+wKLB9Ozr44NofP2VRmORkRERNqyNj+LYKqf/ONDFqwuS2udowZ058cnj260TCwW49JLL+W2227j5ptv3mldSUkJl112GcuXB79q//KXv+SII45gxowZdO3alWuvvRaAMWPG8OSTTwJw/PHHc9hhhzF37lyefvpp7rjjDp555hnMjB/+8IdMnz6d2bNnM2PGDAoKCvjggw849NBDue+++3a5rmj9+vX0798fgGg0yqhRoyguLubOO+8kGo1y33338etf/5qDDjqowTgXL17MokWL2LBhA9dffz1f//rXAfj85z/P7NmzGz02f//73/nJT35CNBqlR48evPLKK1RWVnL55ZdTVFRELBbjF7/4Bccccwx33303jz32GNu2bePTTz/l2muvpbq6mnvvvZecnByefvppevXqxR//+Ef+8Ic/UF1dzQEHHMC9995L586dd2p3ypQp3HXXXYweHZy7o48+mltvvZWJEyc2Gq/InogkqkgQYUunIQwofz/T4YiIiEgbph6sZvrmN7/J/fffz5YtW3ZafuWVV3L11Vfz9ttv8/DDD3PJJZc0Wdenn37KN77xDT788EOKioqYN28e7733Hi+88ALXXXcda9asAeDdd9/ll7/8JQsWLGDJkiW89tpru9R19dVXM2LECE477TR+//vfU1lZSWFhIZdddhlXX3018+bNY9q0aY3GOX/+fF588UVef/11brrpJlavXt3s43LTTTfxz3/+k/fee48nnngCgN/85jeYGe+//z4zZ87kggsuqJ3N74MPPuCRRx7h7bff5gc/+AGdO3fm3Xff5fDDD+evf/0rAF/5yld4++23ee+99xg5ciR33XXXLu1Onz6dBx98EIA1a9awZs0aJVfSaiKJSqrIJt59EL2TG4jXVGc6JBEREWmjWtyDZWaDgb8CfQEH/uDuvzKzGcDXgZKw6A3u/nRL2mqqp6k1de/enfPPP5/bb7+dTp061S5/4YUXWLBgQe3rsrIyysvLG61r6NChTJkyBYA5c+Zw9tlnE41G6du3L0cddRRvv/023bt3Z/LkyQwaNAiACRMmUFxczNSpU3eq68Ybb+Scc87hueee429/+xszZ86st9epsThPPfVUOnXqRKdOnTjmmGN46623+PKXv9ys43LEEUdw4YUXcuaZZ/KVr3yldp++9a1vAXDQQQcxdOhQPvnkEwCOOeYYunXrRrdu3ejRowcnn3wyAGPHjmX+/PlAkIT98Ic/ZPPmzZSXl3P88cfv0u6ZZ57Jcccdx09+8hMefPBBzjjjjGbFK7InoolKqi2baK+hZK1KsHp1MQOGDs90WCIiItIGpWOIYBy4xt3fMbNuwFwzez5cd5u735qGNtqEq666ikMOOYSLLrqodlkymeSNN94gNzd3p7KxWGyn66tS78fUpUuXZrWXk5NT+zwajRKPx+stt//++3P55Zfz9a9/nd69e1NaWrpLmYbihF2nM9+d6c3vvPNO3nzzTZ566ikOPfRQ5s6d22j51H2KRCK1ryORSO3+XXjhhTz22GOMHz+eu+++u96EceDAgeTn5zN//nxmzZrFnXfe2eyYRXZXNFFFNdl06r0fAJtWL1aCJSIiIvVq8RBBd1/j7u+Ez7cCC4GBLa23LerVqxdnnnnmTkPWjjvuOH7961/Xvp43bx4AhYWFvPPOOwC88847LF26tN46p02bxqxZs0gkEpSUlPDKK68wefLkZsf01FNP4e5AMPQwGo2Sl5dHt27d2Lp1a5NxAjz++ONUVlZSWlrK7NmzmTRpUrPbX7x4MYcddhg33XQTvXv3ZsWKFUybNo37778fgE8++YTly5czYsSIZte5detW+vfvT01NTW099Zk+fTq33HILW7ZsYdy4cc2uX2R3xZJVVEdy6NYvSLCqSup/P4uIiIik9RosMysEDgbeDBddYWbzzezPZtazgW0uNbMiMysqKSmpr0ibcs011+w0m+Dtt99OUVER48aNY9SoUbU9KaeffjobN25k9OjR3HHHHQwfXv+v3aeddhrjxo1j/PjxHHvssdxyyy3069ev2fHce++9jBgxggkTJnDeeedx//33E41GOfnkk3n00UeZMGECr776aoNxAowbN45jjjmGKVOm8KMf/YgBAwYAQfL31a9+lX/9618MGjSIf/7zn0AwLHHH9VbXXXcdY8eOZcyYMXzuc59j/PjxfOMb3yCZTDJ27FimT5/O3XffvVPPVVP++7//m8MOO4wjjjiCgw46qHb5E088wY033lj7+owzzuCBBx6onTlRpLXEkpXUWA75A/cHILFxWYYjEhERkbbKdvR+tLgis67Ay8DN7v6ImfUFNhBcl/XfQH93v7ixOiZOnOhFRUU7LVu4cCEjR45MS4yyq7qzHe5r9Pcj6fDe/x5NJ69k+A/eYP2PC1lV8DkO/tbfMh2WiIiIZJCZzXX3XWZZS0sPlpllAQ8D97v7IwDuvs7dE+6eBP4INH/cm4hIGxJLVhOPBL2wpbHe5Gxfm+GIREREpK1KxyyCBtwFLHT3X6Qs7+/ua8KXpwEftLQtSb8ZM2ZkOgSRNi/bq6iIdAVga3Yf+ldriKCIiIjULx2zCB4BnAe8b2bzwmU3AGeb2QSCIYLFwH+loS0Rkb0uy6vYGg16sKo69aVXReOzZYqIiEjH1eIEy93nAPXN692ie16JiLQV2V5NIhwimOw2gC4bK4hv30ysc15mAxMREZE2J62zCIqI7IuyvYpENLiHXDQvuAvFprUaJigiIiK7UoIlItKEHKpJhkMEO+UPBmDLOiVYIiIisislWM302GOPYWZ89NFHDZYpLi5mzJgxaWvz448/5uijj2bChAmMHDmSSy+9FAhuEvz00y0bgXnxxRfTp0+ftMYrsq+KEcfDIYLd+gwFYPuG5ZkMSURERNooJVjNNHPmTKZOncrMmTPrXR+Px1vcRiKR2On1t7/9ba6++mrmzZvHwoUL+da3vgWkJ8G68MILefbZZ1tUh0hHkeVxiGUBUNC/EICaTasyGJGIiIi0VemYRXDveeZ7sPb99NbZbyyc+NNGi5SXlzNnzhxeeuklTj75ZH7yk58AMHv2bH70ox/Rs2dPPvroI5577jni8TjnnHMO77zzDqNHj+avf/0rnTt35l//+hfXXnst8XicSZMm8bvf/Y6cnBwKCwuZPn06zz//PNdffz1nnXVWbbtr1qxh0KBBta/Hjh1LdXU1N954IxUVFcyZM4fvf//7nHTSSXzrW9/igw8+oKamhhkzZnDqqady99138+ijj7JlyxZWrVrFueeey49//GMAjjzySIqLixvd75dffpkrr7wSADPjlVdeoWvXrlx//fU888wzmBk//OEPmT59OrNnz+bHP/4xeXl5vP/++5x55pmMHTuWX/3qV1RUVPDYY4+x//77849//IP/+Z//obq6mvz8fO6//3769u27U7tnnXUW5513Hl/60peAIBk86aSTOOOMM5p3TkXSKZkgZkmIZAPQs3tXSr07ka2rMxyYiIiItEXqwWqGxx9/nBNOOIHhw4eTn5/P3LmfTdH8zjvv8Ktf/YpPPvkECIb1feMb32DhwoV0796d3/72t1RWVnLhhRcya9Ys3n//feLxOL/73e9q68jPz+edd97ZKbkCuPrqqzn22GM58cQTue2229i8eTPZ2dncdNNNTJ8+nXnz5jF9+nRuvvlmjj32WN566y1eeuklrrvuOrZt2wbAW2+9xcMPP8z8+fP5+9//TlFRUbP3+9Zbb+U3v/kN8+bN49VXX6VTp0488sgjzJs3j/fee48XXniB6667jjVrgtudvffee9x5550sXLiQe++9l08++YS33nqLSy65hF//+tcATJ06lTfeeIN3332Xs846i1tuuWWXdqdPn86DDz4IQHV1Nf/6179qky2RvS0Rrw6eRIMeLDOjNFJAlm42LCIiIvVoXz1YTfQ0tZaZM2fW9uScddZZzJw5k0MPPRSAyZMnM2zYsNqygwcP5ogjjgDg3HPP5fbbb+c//uM/GDZsGMOHDwfgggsu4De/+Q1XXXUVECQU9bnooos4/vjjefbZZ3n88cf5/e9/z3vvvbdLueeee44nnniCW2+9FYDKykqWLw+uD/mP//gP8vPzAfjKV77CnDlzmDhxYrP2+4gjjuA73/kO55xzDl/5ylcYNGgQc+bM4eyzzyYajdK3b1+OOuoo3n77bbp3786kSZPo378/APvvvz/HHXccEPS8vfTSSwCsXLmS6dOns2bNGqqrq3c6djuceOKJXHnllVRVVfHss89y5JFH0qlTp2bFLJJuNdWVRKF2iCBAWXZvCqrWZywmERERabvUg9WEjRs38uKLL3LJJZdQWFjIz372Mx588EHcHYAuXbrsVN7MGn1dn7p1pBowYAAXX3wxjz/+OLFYjA8++GCXMu7Oww8/zLx585g3bx7Lly9n5MiRexzPDt/73vf405/+REVFBUcccUSjE3wA5OTk1D6PRCK1ryORSO01at/61re44ooreP/99/n9739PZWXlLvXk5uZy9NFH889//pNZs2Y1mICK7A01NUEPlkWza5dVdupHXrwkUyGJiIhIG6YEqwkPPfQQ5513HsuWLaO4uJgVK1YwbNgwXn311XrLL1++nNdffx2Av/3tb0ydOpURI0ZQXFzMokWLALj33ns56qijmmz72WefpaamBoC1a9dSWlrKwIED6datG1u3bq0td/zxx/PrX/+6Nul79913a9c9//zzbNy4sfY6qB29a82xePFixo4dy3e/+10mTZrERx99xLRp05g1axaJRIKSkhJeeeUVJk+e3Ow6t2zZwsCBwX2E7rnnngbLTZ8+nb/85S+8+uqrnHDCCc2uXyTdaqqqALDYZwlWvGt/8tiKV2/PVFgiIiLSRinBasLMmTM57bTTdlp2+umnNzib4IgRI/jNb37DyJEj2bRpE5dffjm5ubn85S9/4atf/Spjx44lEolw2WWXNdn2c889x5gxYxg/fjzHH388P/vZz+jXrx/HHHMMCxYsYMKECcyaNYsf/ehH1NTUMG7cOEaPHs2PfvSj2jomT57M6aefzrhx4zj99NNrhweeffbZHH744Xz88ccMGjSIu+66C4A777yTO++8E4Bf/vKXjBkzhnHjxpGVlcWJJ57Iaaedxrhx4xg/fjzHHnsst9xyC/369Wv28ZwxYwZf/epXOfTQQykoKKhdXlRUxCWXXFL7+rjjjuPll1/mC1/4AtnZ2fVVJbJXxGuCXtZISg9WtMcAADbrXlgiIiJSh+3o9WgLJk6c6HUnYVi4cGHtcDfZPXfffTdFRUXccccdmQ4lY/T3Iy21evEHDLj3CN46+P+YfGrww8hb/3qEya9exNIvzWLYJPWwioiIdERmNtfdd5ncQD1YIiKNqO3BSpnkYsfNhrdtWJGRmERERKTtal+zCMpuufDCC7nwwgszHYZIuxavDia5iMQ+m8QlP7zZcPWmlZkISURERNqwdtGD1ZaGMUr7ob8bSYd4eB+saNZnPVj5vXqxxbtA2apMhSUiIiJtVJtPsHJzcyktLdWXZdkt7k5paSm5ubmZDkXauURNMItgJPbZ31I0YpRGepG1TTcbFhERkZ21+hBBMzsB+BUQBf7k7rt1t+BBgwaxcuVKSkp0zxnZPbm5uQwaNCjTYUg7tyPBimbtPJvl5qw+9Khcl4mQREREpA1r1QTLzKLAb4D/AFYCb5vZE+6+oLl1ZGVlMWzYsNYKUUSkUcmaXYcIAlTk9mXo1iWZCElERETasNYeIjgZWOTuS9y9GngAOLWV2xQRSZtEPOzBSpnkAiDepT89k5vx8BotEREREWj9BGsgkDqP8cpwWS0zu9TMisysSMMARaStSYYJVCx75wTLegwgYs7WUk10ISIiIp/J+CQX7v4Hd5/o7hN79+6d6XBERHZSm2Bl7Zxg5fQMru/btKZ4b4ckIiIibVhrJ1irgMEprweFy0RE2oVkvAbYtQera58hAJSXLNvrMYmIiEjb1doJ1tvAgWY2zMyygbOAJ1q5TRGRtEmG12DV7cHK61cIQPXGFXU3ERERkQ6sVWcRdPe4mV0B/JNgmvY/u/uHrdmmiEg67ZjEIrtOgtW7oC/bPQffsjoTYYmIiEgb1er3wXL3p4GnW7sdEZHWUJtg1blpdXZWlDWWT1Q3GxYREZEUGZ/kQkSkLfNEmGDVuQYLYHOsgM4VSrBERETkM0qwREQa4YlgkotIbNcEa3tuX7rX6PYSIiIi8hklWCIijUlUk3SDSHSXVTVd+tHLN0IykYHAREREpC1SgiUi0ph4DTUWA7NdVlmPgWSRYOtGTXQhIiIiASVYIiKNSVQTZ9feK4DcXsFt/jasWro3IxIREZE2TAmWiEgjIokqqsmud123PkMBKFunmw2LiIhIQAmWiEgjIskqqq3+BCt/4DAAKkuX782QREREpA1TgiUi0ohoopIa23UGQYCC3gOo8Gx884q9HJWIiIi0VUqwREQaEWukB8siEUoivcnetmovRyUiIiJtlRIsEZFGxJJVxCP192ABbMnuS9dK3WxYREREAkqwREQaEUtWUdNIglXRZQC94uv3YkQiIiLSlinBEhFpRFYTPVjJboMoYDMV27ftxahERESkrVKCJSLSiCyvIhHJbXh9r2Cq9vUrF+2tkERERKQNU4IlItKIbK8mEW24B6tLn0IANq9ZspciEhERkbZMCZaISCOyvYpEI0MEew3cD4CKkuK9FJGIiIi0ZUqwREQakUM1Hmt4iGB+/2Ek3Uhs0r2wREREpIUJlpn9zMw+MrP5ZvaomeWFywvNrMLM5oWPO9MSrYjIXpbj1ZDVcIIVzcphQ6QXsa0r92JUIiIi0la1tAfreWCMu48DPgG+n7JusbtPCB+XtbAdEZG9LhGPk21xLNap0XKbYn3pXKF7YYmIiEgLEyx3f87d4+HLN4BBLQ9JRKRt2L69HIBIduMJ1vZO/elZowRLRERE0nsN1sXAMymvh5nZu2b2splNa2gjM7vUzIrMrKikpCSN4YiItExlRXBvK8tqPMGKdxtIH99AdU280XIiIiKy72sywTKzF8zsg3oep6aU+QEQB+4PF60Bhrj7wcB3gL+ZWff66nf3P7j7RHef2Lt375bvkYhImlSGNw+O5jSeYEV6DiHbEqxfvWxvhCUiIiJtWKypAu7+hcbWm9mFwEnA593dw22qgKrw+VwzWwwMB4paGrCIyN5SVbEdgGh250bLde5dCMDG1UsYNHT/1g5LRERE2rCWziJ4AnA9cIq7b09Z3tvMouHz/YADAd2FU0TalerK4BqsWG6XRsvl9QvuhbWtZGmrxyQiIiJtW5M9WE24A8gBnjczgDfCGQOPBG4ysxogCVzm7htb2JaIyF4V374JgFjnvEbL5Q8Keq1qSnUvLBERkY6uRQmWux/QwPKHgYdbUreISKYltm8BINalZ6PlsrvksZXORMqUYImIiHR06ZxFUERknxLfFnS8d+qW32TZ0lhfcrevbu2QREREpI1TgiUi0oDE9s0AdMkraLJseU4/8qrXtXJEIiIi0tYpwRIRaYBXbCbpRrfujQ8RBKjqOpDeyRISSd8LkYmIiEhbpQRLRKQBVrmZcutMJBptumyPQfSwbZRs0A3TRUREOjIlWCIiDYhWl1FuXZtVNqegEIANqxa3YkQiIiLS1inBEhFpQFZNGdsjzUuwevQbBkD5Ot0LS0REpCNTgiUi0oDsmq1Uxbo1q2z+wOBeWJWly1ozJBEREWnjlGCJiDSge3wj1TlNT9EO0KnnQGqIwWbdC0tERKQjU4IlIlKPZCJJby+lpmv/5m0QibAhUkDONt0LS0REpCNTgiUiUo+NG9aQYzV494HN3qYsux/dKte0YlQiIiLS1inBEhGpx+a1wWQVWT0HNXubyi4DyE+sx133whIREemolGCJiNRj85piAHr0K2z2NoluA+nDJjZv3d46QYmIiEibpwRLRKQeFSVBD1a/wQc2e5tIzyFEzdm8TjMJioiIdFRKsERE6pG18WM2040uPfs1e5vsXkMAKF+ve2GJiIh0VEqwRETqkbd1EauzC8Gs2dt0DW82XF26vJWiEhERkbauRQmWmc0ws1VmNi98fDFl3ffNbJGZfWxmx7c8VBGRvaO6JsGgmmK2543Yre3ywgTLNynBEhER6ahiaajjNne/NXWBmY0CzgJGAwOAF8xsuLsn0tCeiEirWrJwLgdZBdmDD96t7bp17cYG70F068pWikxERETautYaIngq8IC7V7n7UmARMLmV2hIRSatNC14CoO/Yz+/WdmbGxkg+2RXrWyMsERERaQfSkWBdYWbzzezPZtYzXDYQWJFSZmW4bBdmdqmZFZlZUUlJSRrCERFpmeiyV1lv+fQZsntDBAG2ZvWiU3VpK0QlIiIi7UGTCZaZvWBmH9TzOBX4HbA/MAFYA/x8dwNw9z+4+0R3n9i7d+/d3VxEJK22lG1hzPa3WNn7KCyy+79BVeXk0zW+qRUiExERkfagyWuw3P0LzanIzP4IPBm+XAUMTlk9KFwmItKmfTz7ASZbFd0OOX2Pto936k3PrZvAfbdmIBQREZF9Q0tnEeyf8vI04IPw+RPAWWaWY2bDgAOBt1rSlojI3tBj/p9ZYQPYf9KJe7S9de1NFgmqyjVMUEREpCNq6SyCt5jZBMCBYuC/ANz9QzN7EFgAxIFvagZBEWnrPpo7m4PiH/HGiO8yOBrdozqi3YMbE28uWUXfbgXpDE9ERETagRYlWO5+XiPrbgZubkn9IiJ7i7uz7bn/ZSudGfOly/a4nty8IMEqK1lF3/3Gpys8ERERaSdaa5p2EZF25e2XHuPQqjf5dPildO3ea4/r6ZI/AICKTWvSFZqIiIi0I0qwRKTDq66JkzfnJtZZb8ad/t0W1dW9ILgjRc2WdekITURERNoZJVgi0uG98ehvGZ5cwobDvkcsp3OL6upV0Icaj5Is182GRUREOiIlWCLSoW3ZvJmDFvyCxVkjGHXcRS2uLycri03Wncg23ThdRESkI2rpLIIiIu3a/Ad/wjQ2se3EP2ORPZs5sK4tkZ5kV3aMBGtr2WbWLvuE8nVLqNm0kkR5CWwrJVq5kdz4Zjolyoklq8nyKrK8mmyvJkqCpBtuRpIITgQ3I0GMhEVJWBYJi5G0GMlIjKRlkYxkQSSGR7LwaBYeyYZoDItmQzSLSDQLoll4JCi7YzuPxILXFgueWxaYYXiwA+7gHrzy5I6luAMkU9Z5sGxHmfA/jmNhGQ82Cv91UgrW/mu+4zWfxbDLunrKhOssZV2raaXbt1lrVdxKWi3aVqg4ktWJ8ad8i9xOLeuBF5H0UIIlIh3WmuWfMnHVfczrcSwTDjk2bfWWZ+XTvXpj2urLNE8mKV23klUfF1G+4n2yNiwgb9tS8uNryWcL3eqU30ontloPtkZ7sC3alUQsl0Q0h2T4iERjRAD3JJ5M4MkkeAJLxrFknIjXEEnWBM+TNUSScaJeScTjxMJHlDgx4mSRIIs4MRJkh8uitheSEJE25o3qbUw576ZMhyEiKMESkQ5s9cM30Aun/xn/l9Z6q3Ly6bZ1SVrr3Ju2bN5I8XsvU77odbqUvMuQyo8ooIwdd/UqJY+12UNZ0nMqi/KGklMwjC5996db30J69u5Pt9zOuyRdrcHdqU4kqYonqaxJUpZIBr1HyQQkayARxxLVkIxjyergdbLmswrMcAczw8yCni0zzMCIYDt6GiJGBKstZxgYmEXCbSBiQf+MRQzCssG/Ybmgwdp2d35ed1342up0daSs81bqyfJ2lpu2Vrzt7fgu+c1XGLH4L1Ruu5bcLt1bpxERaTYlWI1IJhJUbC+nS7cemQ5FRNJs6cfvcfDm53mz/9c4fMjwtNYd71RAzy2bCb+9p7Xu1rBl4wYWvf0s1Z+8SL9NRQxNLGd82Au0LDKExXlT+bTvaLoNGc+gERPJL+hPfoZjhiAxyolFyYlFITfT0YhkTvTYG+j5zBn8e9bNfO7i9P5gJCK7TwlWI9555i6GFf0PHw7/OuNO+w65nbpkOiQRSZO1T/0/+hNj1Ok3pL/yrn3IsgQVZaV06lHQdPm9rLqqikVzX6Dsw+fote7f7F/zKYeas91zWNxpDG/3PYGu+x9O4fgjGdojn6GZDlhEGjXqsP/g3VeP5NBld7Fq0TkMPGBcpkMS6dCUYDWix8CDWD1/GJM/uZXS//sj7/Y/mSGf/y99cIm0c6uLP2bilud4r99XmNh7UNrrj3bvB8DmkpVtJsEqLS3hkzmPYp88y8jyNxhl26jxKIuyR/DWkP8kb/QXOOCQYxibra4gkfZo4Nl3UPWHKWybdQnV17xMdm6nTIck0mEpwWrEgQcfiU+YzQevPUXN679l0uq/EbvvPoojQ1jf+3NkHXAkAw86jN4D98MirTPjfTLpVFRVUbFtK1Xbt1JdsZXqim3EK8uJV5aTqNpGonobXrWdZPU2qN4ONduxeAXEq/DwmoNosgbz4GLxiMeJerAs6vHaR4QEhDNiGUlsp+cQ2bEsfER2ep7cKe6dh5nvOkSqvmHoXm+55m1bfxt73m5jy9v+gC9pSleqcGDIyd9vlfpz84IEa2vpavofMKFV2miO5YsXsvyNR+i27HlGVc3ncEuwie4syj+KyEFfYv/DvsjIHr0yFp+IpE+fgUMpOux/mfjWVbz12/OZeOUDRKLpmRm1tbg7VVVVbCvbSEXZRirLN1FVvpn49k3Et28hXrWNRNV2PF6J1VQQiVdiiUqi8QoiySpiiUqiySosmSDiCSIE/0ZTn6f8GyVR+33FdpqtszailGVeZ93Os4A2ul+pW1nq8maU30lD30/qL9Pc70eNtdncGK2B5btbT1PLd5gbGUPWGX/iC6P6NlqurVCC1QQzY8zUk2DqSaxbvYylL91Np2WzGb/2YXLWPQCvQZl3pjTah/Kc3lTm9CaR3RViuZDVmWQkO5jW1xNYMgGewJNxYvEKLF5BJF5BNF5BLFFBLFlJVqKSbK8kxyvJ9So6UUkXS7A7gxPjHqGSHGosnFvLosRrn6c+sqiJdAqnM47hFsUjkfCCbMPDfzGrnUZ5x3LfaflnF3DbTp8pBviul6DU8wG1SxEamI643m2b94FXt5x7Y2/n+ttp6gOgeTW1wlZ70EhbvpZ9b1y6ZEOmMGnQ/q1Sd9de/QGo2LimVepvSDKR4ON3X2HjO4/Tb+1L7J8sZgiwPDKYeYPOodehX2a/8UdxaFQf/SL7oolfvIi3Sj5m8tLfMfeXpzPqsnvp1GVvTDkTcHfKK2soKVnLlvUrqdy0mkTZGpJl64ltX0d2ZQmdqzbQJb6Jzslyuvh2OltVsy6hrPYoVZZNFTlUWw7Vlk2N5RCPZJO0LGoi2bhFSUaC7zNJi+K13212/BsFi6RMPJMSe+3/3y3lS4mF61I1/oN66neN1MlSPktI6pRvMGnbdXnd70apm+5YnrrVZ7d5aLruRpfv5uwsDX4va6Ce5nyPi+fux4BuObsVRyaZt6EpgyZOnOhFRUWZDqNZKrdvZekHb7Cl+F0iJR+RVb6aLtUbyEuU0skryKGabEvUu23cI1SQQ5XlUGm5VEdyqYnkUhPpRCKaSyLWiWSsMx7rhGd1huwuRLI7YdldiOR0IZrThVhOFyK5XcnO7Up2py5kd+pGTueu5HTqSk5Obqv1qIlI09avW02f342kaOT1TJz+g1Ztq2JbOR+9/iTVHz7J/ptepYDNxD3CJzljKC/8D4ZM+Qr99hvTqjGISNvy77/eyOeW/IpV1o/1U37AuC+cQ7SFvVmVVdVsWLeKzetXsK10JdWbVpPcuo7ItvXkVKynS00peYmNFLCZHKvZZfsKcthoPSmL5bM9uxeJ7B54TnfI7YHldifSOY9YpzxiXXqS2zWP3K496dylK527diMntwumH4akDTKzue4+cZflSrBaT3V1NcmaSqLRKNFojEg0BuG0viKy76qJx0n+dz/eHzidiZf+Ju31l6xdweLXHiF78T85aFsRna2Kcu/EJ90m48NP5MCpX6F7r/YxjEJEWsf7c54k71/XMdhXs4E8Fvc4HAYeQk6fA+jWs4BIdlfcIli8gurKbVSVbyG+tYSasvUky0uIbC8hu6qUrtUbyEtupJdvqfcec1voxpZYL7ZnF1DdqTfepS+R7v3IyRtA5/wBdM4fRPeCgcQ6a0Zm2fc0lGDp54BWlJ2dDdnZmQ5DRPayrFiMTyMD6bRlUVrqq6qq5JO5L7E1nPVveM3H9DZnLQV80Ockuow9mQMnn8AhuqhdREJjp55E/LDjmfvCfbDgcUZueYXuW56BBU1vW+0xNlkPymM92Zbbh7JOoykOE6fcngPpVjCAvD5D6FYwgB5ZuSh1EtlZixIsM5sFjAhf5gGb3X2CmRUCC4GPw3VvuPtlLWlLRKQ92dB5f/armL9H2ybiNSxd8DZr33+JziteYXjFe4y1ChJuLM4aTtHQS+g9+SsUjppCPw0HFpEGxLKyOPTEi+DEi/BkgjUrl1K25hPKt2wiEq/APEk8kktWbmdyunQnt0dfevQeSF5eL/pGIqgfXGTPtCjBcvfpO56b2c+BLSmrF7v7hJbULyLSXlX2GkHfFf+icutGcrs1PFOfJ5OUrF3J6o/eoHLJG3QteYdhlQs5wCo5AFgV6cfC3ieQPfxY9pt8IsPzeu+9nRCRfYZFovQfcgD9hxyQ6VBE9nlpGSJoZgacCRybjvpERNq7HgcdDSt+yyfP38W4r1yHJ5NsWLucdcUL2brmE2z9Arpu/pgBVYvpQxl9CCbAKY4N4/3eXyQ2dAqFE45h4ODhDMz0zoiIiEizpesarGnAOnf/NGXZMDN7FygDfujur6apLRGRNm/8lP9gwYsjGDf/f1j3/p10T5bR26rZ0f9U4dksjw1lUc9peJ/R9Cg8mMFjPscB3fLQ78siIiLtV5MJlpm9APSrZ9UP3P3x8PnZwMyUdWuAIe5eamaHAo+Z2Wh3L6un/kuBSwGGDBmyu/GLiLRJ0WiE/Ese4rXH/o9Y5QY8Jw/LH0aXfgdQMHQUfQYNZ0RM8wyJiIjsa1o8TbuZxYBVwKHuvrKBMrOBa9290TnY97Vp2kVEREREZN/U0DTt6Zh+6gvAR6nJlZn1NrNo+Hw/4EBgSRraEhERERERabPSMT7lLHYeHghwJHCTmdUASeAyd9+YhrZERERERETarBYnWO5+YT3LHgYebmndIiIiIiIi7UmLr8FKJzMrAZZlOo46CoANmQ5C9hqd745D57rj0LnuWHS+Ow6d646lLZ7voe6+yw0q21SC1RaZWVF9F6/Jvknnu+PQue44dK47Fp3vjkPnumNpT+c7HZNciIiIiIiICEqwRERERERE0kYJVtP+kOkAZK/S+e44dK47Dp3rjkXnu+PQue5Y2s351jVYIiIiIiIiaaIeLBERERERkTRRgiUiIiIiIpImSrAaYWYnmNnHZrbIzL6X6XgkfcxssJm9ZGYLzOxDM7syXN7LzJ43s0/Df3tmOlZJDzOLmtm7ZvZk+HqYmb0Zvr9nmVl2pmOU9DCzPDN7yMw+MrOFZna43tv7JjO7OvwM/8DMZppZrt7b+w4z+7OZrTezD1KW1ftetsDt4Xmfb2aHZC5y2V0NnOufhZ/j883sUTPLS1n3/fBcf2xmx2ck6EYowWqAmUWB3wAnAqOAs81sVGajkjSKA9e4+yhgCvDN8Px+D/iXux8I/Ct8LfuGK4GFKa//D7jN3Q8ANgH/mZGopDX8CnjW3Q8CxhOcd7239zFmNhD4NjDR3ccAUeAs9N7el9wNnFBnWUPv5ROBA8PHpcDv9lKMkh53s+u5fh4Y4+7jgE+A7wOE39fOAkaH2/w2/N7eZijBathkYJG7L3H3auAB4NQMxyRp4u5r3P2d8PlWgi9gAwnO8T1hsXuAL2ckQEkrMxsEfAn4U/jagGOBh8IiOtf7CDPrARwJ3AXg7tXuvhm9t/dVMaCTmcWAzsAa9N7eZ7j7K8DGOosbei+fCvzVA28AeWbWf68EKi1W37l29+fcPR6+fAMYFD4/FXjA3avcfSmwiOB7e5uhBKthA4EVKa9XhstkH2NmhcDBwJtAX3dfE65aC/TNVFySVr8ErgeS4et8YHPKB7fe3/uOYUAJ8JdwSOifzKwLem/vc9x9FXArsJwgsdoCzEXv7X1dQ+9lfW/bt10MPBM+b/PnWgmWdGhm1hV4GLjK3ctS13lwDwPdx6CdM7OTgPXuPjfTscheEQMOAX7n7gcD26gzHFDv7X1DeO3NqQRJ9QCgC7sOMZJ9mN7LHYOZ/YDg0o77Mx1LcynBatgqYHDK60HhMtlHmFkWQXJ1v7s/Ei5et2NIQfjv+kzFJ2lzBHCKmRUTDPU9luAanbxwWBHo/b0vWQmsdPc3w9cPESRcem/ve74ALHX3EnevAR4heL/rvb1va+i9rO9t+yAzuxA4CTjHP7t5b5s/10qwGvY2cGA4G1E2wcV0T2Q4JkmT8Bqcu4CF7v6LlFVPABeEzy8AHt/bsUl6ufv33X2QuxcSvI9fdPdzgJeAM8JiOtf7CHdfC6wwsxHhos8DC9B7e1+0HJhiZp3Dz/Qd51rv7X1bQ+/lJ4Dzw9kEpwBbUoYSSjtkZicQDO8/xd23p6x6AjjLzHLMbBjBxCZvZSLGhthnyaDUZWZfJLh2Iwr82d1vzmxEki5mNhV4FXifz67LuYHgOqwHgSHAMuBMd697ga20U2Z2NHCtu59kZvsR9Gj1At4FznX3qgyGJ2liZhMIJjTJBpYAFxH8oKj39j7GzH4CTCcYPvQucAnBtRh6b+8DzGwmcDRQAKwDfgw8Rj3v5TDJvoNgmOh24CJ3L8pA2LIHGjjX3wdygNKw2BvufllY/gcE12XFCS7zeKZunZmkBEtERERERCRNNERQREREREQkTZRgiYiIiIiIpIkSLBERERERkTRRgiUiIiIiIpImSrBERERERETSRAmWiIiIiIhImijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERE2ggzKzQzN7NYpmPZ15nZhWY2J9NxtDVmNs3MPs50HCIi7ZkSLBERadfMbIaZ1ZhZecrj+kzH1R65+6vuPiLd9YY/HGxLOT9/SncbIiJthX4lFRFJEzOLuXs803F0ULPc/dxMB9Fa9pG/rfHuvijTQYiItDb1YImItICZFZvZd81sPrDNzGJmNsXM/m1mm83sPTM7OqX8bDP7f2b2lpmVmdnjZtargbovMrOFZrbVzJaY2X/VWX+qmc0L61lsZieEy3uY2V1mtsbMVpnZ/5hZtIn92N/MXjSzUjPbYGb3m1leyrqNZnZI+HqAmZXs2C8zO8XMPgz3d7aZjaxzfK41s/lmtsXMZplZ7u4f6d1nZt8Lj8tWM1tgZqc1UM7M7DYzWx8ey/fNbEy4LsfMbjWz5Wa2zszuNLNOzWz/7rD882EML5vZ0JT1vzKzFWGbc81sWsq6GWb2kJndZ2ZlwIVmNtnMXg+P8xozu8PMslO2cTP7hpl9Grb33+G5+3fYxoOp5RuI+WgzW9mc/RMRkfopwRIRabmzgS8BeUBf4Cngf4BewLXAw2bWO6X8+cDFQH8gDtzeQL3rgZOA7sBFwG0pSc5k4K/AdWG7RwLF4XZ3h/UeABwMHAdc0sQ+GPD/gAHASGAwMAPA3RcD3wXuM7POwF+Ae9x9tpkNB2YCVwG9gaeBf9T5In8mcAIwDBgHXFhvAGZTw+ShocfUJvahrsXANKAH8JMw/v71lDuO4PgND8ueCZSG634aLp9AcDwHAjfuRgznAP8NFADzgPtT1r0d1tsL+Bvw9zrJ56nAQwTn934gAVwd1nU48HngG3XaOx44FJgCXA/8ATiX4HyOIfhb3WNhotzQ+fltE5u/YmZrzewRMytsSRwiIm2ZEiwRkZa73d1XuHsFwZfZp939aXdPuvvzQBHwxZTy97r7B+6+DfgRcGZ9PUzu/pS7L/bAy8BzBAkDwH8Cf3b358N2Vrn7R2bWN2zrKnff5u7rgduAsxrbAXdfFNZV5e4lwC+Ao1LW/xFYBLxJkBj+IFw1HXgq3LYGuBXoBHyuzvFZ7e4bgX8QJBX1xTDH3fMaeTQ2KcWZdb7sD3D3v4ftJt19FvApMLmebWuAbsBBgLn7QndfY2YGXApc7e4b3X0r8L9NHcs6nnL3V9y9iuCYHW5mg8P9vc/dS9097u4/B3KA1OufXnf3x8L4K9x9rru/EZYvBn5PyjkK3eLuZe7+IfAB8Jy7L3H3LcAzBAn3HnP3cY2cn7rJXqqjgEKCY7waeNI0mYuI7KP04SYi0nIrUp4PBb5qZienLMsCXmqg/LJwfUHdSs3sRODHBD0oEaAz8H64ejBBb1FdQ8P61gT5AYTbrqinbGpbfYFfESRw3cJtNtUp9kfgCeDSMGGAoMdr2Y4C7p40sxUEPT07rE15vj3cJt0erHsNlpmdD3yH4Is9QFfqOc7u/qKZ3QH8BhhqZo8Q9DzmEhzzuSnH0oBGh1vWUXvc3b3czDYS7P8KM7uWIFEeADhBT2VBfduG+zOcIPGdGMYVA+bWaW9dyvOKel73243Y08bdXwmfVpvZlUAZQU/p+w1vJSLSPqkHS0Sk5Tzl+QqCHqrUX/a7uPtPU8oMTnk+hKAHZUNqhWaWAzxM0CPU193zCBKqHd/0VwD71xPLCqAKKEhpv7u7j25iH/433I+x7t6doCfus6zCrCvwS+AuYIZ9dt3YaoKkbkc5C/dvVRPt7cKCKcLLG3lMa7qW2rqGEiSEVwD54fH7IHWfUrn77e5+KDCKIKG9juCcVACjU45lD3fvuhu7VXuuw2PYC1gd7sv1BMMRe4bxbakTX+rfFcDvgI+AA8NzdEND+9NaLLjWrqHzc+duVOXs5dhFRPYWJVgiIul1H3CymR1vZlEzyw0nDhiUUuZcMxsVXs90E/CQuyfq1JNNMGSsBIiHvVnHpay/C7jIzD5vZhEzG2hmB7n7GoKhhD83s+7huv3NrO5Qsrq6AeXAFjMbSJBgpPoVUOTulxBcY7bjy/SDwJfCOLKAawgSvH83daDqCqcI79rI49XdqK4LwZf4EggmDCG4BmkXZjbJzA4L498GVAJJd08SJGm3mVmfsOxAMzs+ZVu3lElM6vHF8NqybIJrsd5w9xUExzsexhczsxsJerAa042g56fczA4CLm+ifNq5++hGzs9l9W1jZqPNbEL4fugK/JwgAV+4V4MXEdlLlGCJiKRR+OX5VILehRKCHqXr2Pnz9l6CiSjWEgxD+3Y99WwNlz9IMFTvawTD83asf4tw4guCno+X+awn6XyCBG1BuO1DBNdNNeYnwCFhXU8Bj+xYYWanEkxSseML/XeAQ8zsHHf/mKC369cEPT4nAye7e3UT7bUqd19A8EX+dYJhcmOB1xoo3p0gkdpEMNyxFPhZuO67BNeevWHBbH4vEF4nFV5LtZXGh7n9jWCY50aCySd2DGP8J/As8EnYZiVNDOMkGLb4tbDNPwKzmijfVvQliLUMWEIwZPOk8Jo9EZF9jrnXHYEgIiKtxcxmA/e5u2602s6Z2bkEwwe/38D6u4GV7v7DvRqYiIhklCa5EBER2QPufl+mYxARkbZHQwRFRDoIC25629LJCaSdM7MbGvg7eCbTsYmI7As0RFBERERERCRN1IMlIiIiIiKSJm3qGqyCggIvLCzMdBgiIiIiIiKNmjt37gZ37113eZtKsAoLCykqKsp0GCIiIiIiIo0ys2X1LdcQQRERERERkTRRgiUiIiIiIpImSrBEROqhGVZFRERkT7Spa7DqU1NTw8qVK6msrMx0KNLO5ObmMmjQILKysjIdirQz//60hKfuvZVzzj6fUSNHZzocERERaUfafIK1cuVKunXrRmFhIWaW6XCknXB3SktLWblyJcOGDct0ONLOLH31b9wcuZMPn18CI/+e6XBERESkHWnzQwQrKyvJz89XciW7xczIz89Xz6fskeEbXwqelK/JbCAiIiLS7rT5BAtQciV7RH83sqci8QoABlUvBV2LJSIiIruhXSRYIiJ7UyQe9Hz2oJxNa4szG4yIiIi0K0qwmsHMuOaaa2pf33rrrcyYMSNzAaV44403OOyww5gwYQIjR46sjWv27Nn8+9//3uN6ly1bxiGHHMKECRMYPXo0d955Z5oiFmn7osmq2ueriz/OYCQiIiLS3rT5SS7agpycHB555BG+//3vU1BQkLZ63R13JxLZ8zz3ggsu4MEHH2T8+PEkEgk+/jj4Mjh79my6du3K5z73uT2qt3///rz++uvk5ORQXl7OmDFjOOWUUxgwYMAexyrSXmR7FWuiA+ifWM229UszHY6IiIi0I+rBaoZYLMall17Kbbfdtsu6kpISTj/9dCZNmsSkSZN47bXXAJgxYwa33nprbbkxY8ZQXFxMcXExI0aM4Pzzz2fMmDGsWLGC6667jjFjxjB27FhmzZoFBAnS0UcfzRlnnMFBBx3EOeecU+99edavX0///v0BiEajjBo1iuLiYu68805uu+02JkyYwKuvvtponOeddx6HH344Bx54IH/84x8ByM7OJicnB4CqqiqSyWS9x+b2229n1KhRjBs3jrPOOguAjRs38uUvf5lx48YxZcoU5s+fX9vWBRdcwLRp0xg6dCiPPPII119/PWPHjuWEE06gpqYGgJtuuolJkyYxZswYLr300l32O5lMUlhYyObNm2uXHXjggaxbt66x0yjSbNlezabOhQDES5VgiYiISPO1qx6sn/zjQxasLktrnaMGdOfHJzd9n5tvfvObjBs3juuvv36n5VdeeSVXX301U6dOZfny5Rx//PEsXLiw0bo+/fRT7rnnHqZMmcLDDz/MvHnzeO+999iwYQOTJk3iyCOPBODdd9/lww8/ZMCAARxxxBG89tprTJ06dae6rr76akaMGMHRRx/NCSecwAUXXEBhYSGXXXYZXbt25dprrwXga1/7WoNxzp8/nzfeeINt27Zx8MEH86UvfYkBAwawYsUKvvSlL7Fo0SJ+9rOf1dt79dOf/pSlS5eSk5NTm/D8+Mc/5uCDD+axxx7jxRdf5Pzzz2fevHkALF68mJdeeokFCxZw+OGH8/DDD3PLLbdw2mmn8dRTT/HlL3+ZK664ghtvvBGA8847jyeffJKTTz65ts1IJMKpp57Ko48+ykUXXcSbb77J0KFD6du3b5PnUaQ5sqlia1Z3SuhJtGxFpsMRERGRdkQ9WM3UvXt3zj//fG6//fadlr/wwgtcccUVTJgwgVNOOYWysjLKy8sbrWvo0KFMmTIFgDlz5nD22WcTjUbp27cvRx11FG+//TYAkydPZtCgQUQiESZMmEBxcfEudd14440UFRVx3HHH8be//Y0TTjih3jYbi/PUU0+lU6dOFBQUcMwxx/DWW28BMHjwYObPn8+iRYu455576u0hGjduHOeccw733XcfsVisdp/OO+88AI499lhKS0spKwsS4xNPPJGsrCzGjh1LIpGojXfs2LG1+/fSSy9x2GGHMXbsWF588UU+/PDDXdqdPn16bW/fAw88wPTp0xs95iK7I8erScZy2ZjVj87bV2c6HBEREWlH2lUPVnN6mlrTVVddxSGHHMJFF11UuyyZTPLGG2+Qm5u7U9lYLLbTsLrU+zF16dKlWe3tGKIHwfC/eDxeb7n999+fyy+/nK9//ev07t2b0tLSXco0FCfsOp153dcDBgxgzJgxvPrqq5xxxhk7rXvqqad45ZVX+Mc//sHNN9/M+++/36x9ikQiZGVl1bYViUSIx+NUVlbyjW98g6KiIgYPHsyMGTPqvZfV4YcfzqJFiygpKeGxxx7jhz/8YaPtiuyOXKpJRnMp7zSAfls/yHQ4IiIi0o60uAfLzAab2UtmtsDMPjSzK8PlM8xslZnNCx9fbHm4mdWrVy/OPPNM7rrrrtplxx13HL/+9a9rX+8YCldYWMg777wDwDvvvMPSpfVfxzFt2jRmzZpFIpGgpKSEV155hcmTJzc7pqeeeqr2GqVPP/2UaDRKXl4e3bp1Y+vWrU3GCfD4449TWVlJaWkps2fPZtKkSaxcuZKKiuBeQJs2bWLOnDmMGDFip7aTySQrVqzgmGOO4f/+7//YsmUL5eXlTJs2jfvvvx8IriUrKCige/fuzdqfHclUQUEB5eXlPPTQQ/WWMzNOO+00vvOd7zBy5Ejy8/ObVb9IUxJJJ4dqPJpLvNtg+iQ3UFNTnemwREREpJ1IxxDBOHCNu48CpgDfNLNR4brb3H1C+Hg6DW1l3DXXXMOGDRtqX99+++0UFRUxbtw4Ro0aVTud+emnn87GjRsZPXo0d9xxB8OHD6+3vtNOO41x48Yxfvx4jj32WG655Rb69evX7HjuvfdeRowYwYQJEzjvvPO4//77iUajnHzyyTz66KO1k1w0FCcEw/yOOeYYpkyZwo9+9CMGDBjAwoULOeywwxg/fjxHHXUU1157LWPHjgXgkksuoaioiEQiwbnnnsvYsWM5+OCD+fa3v01eXh4zZsxg7ty5jBs3ju9973vcc889zd6fvLw8vv71rzNmzBiOP/54Jk2aVLvuzjvv3Cnu6dOnc99992l4oKRVTU0N2ZYgGcvFeg4lyxKUrinOdFgiIiLSTlh9M9O1qEKzx4E7gCOAcne/tYlNak2cONGLiop2WrZw4UJGjhyZ1hjlMzNmzNhpMox9jf5+ZHdt2bKJHrcV8tYBV5E9aDwTZl/ExyfOZMRh7b4TXkRERNLIzOa6+8S6y9M6yYWZFQIHA2+Gi64ws/lm9mcz69nANpeaWZGZFZWUlKQzHBGR3Rav2h48ieXSre9+AFSsX5bBiERERKQ9SdskF2bWFXgYuMrdy8zsd8B/Ax7++3Pg4rrbufsfgD9A0IOVrnikeWbMmJHpEETalNoEK6sT+QMK+f/t3Xl4HNWZ7/Hv24u6tViSJUteJC8CvO/xGsxiM2xJSEiAgHNDEuNMGGaywTMz2UMC8+Q+SZgwd+5AwsBAnPAQAyEZ4GYhGAgJzoTFG9jGCzbItmzJliXLsrZez/2jW7JkS7ZstdRu6fd5HtFVp6pOvXJRrX77nDoHINJQlb6AREREJKOkpAXLzPwkkqvHnHO/BnDOHXTOxZxzceAhoPcjN4iIpMnxBCtIQX4BR1wenkYN1S4iIiK9k4pRBA14GNjmnLu3U/noTrt9DNBYxyJyzouFE6Nnmj8bM6POO4Ksluo0RyUiIiKZIhVdBJcAnwI2m9mmZNk3gE+Y2RwSXQQrgb9LwblERPpVLHQ8wQI46i+lKHTyJNsiIiIi3elzguWcWwtYN5sGxbDsIjK0tLdgebISCVZb9kiGN2xLZ0giIiKSQVI6iuBg9vTTT2NmbN++vcd9KisrmTFjRsrOuWPHDpYuXcqcOXOYOnUqt956K5CYJPh3vzv7/LWtrY2FCxcye/Zspk+fzne+851UhSyS8WLREABefxCAaN4YCjlGvP3ZLBEREZFTUILVS6tXr+aiiy5i9erV3W6PRqN9PkcsFuuy/qUvfYk77riDTZs2sW3bNr74xS8CfU+wAoEAL730Em+++SabNm3iueee49VXX+1T7CKDRTwSBsDj8ydeC8oAaNBQ7SIiItILSrB6oampibVr1/Lwww/z+OOPd5S//PLLXHzxxXzkIx9h2rRpQCLR+uQnP8nUqVO54YYbaGlJfOv94osvMnfuXGbOnMnKlSsJhRLfkk+YMIGvfvWrvO997+OXv/xll/NWV1dTXl7esT5z5kzC4TB33nknTzzxBHPmzOGJJ56gubmZlStXsnDhQubOncszzzwDwKpVq7j22mtZunQpEydO5K677gLAzMjLywMgEokQiURIjFXS1S9/+UtmzJjB7NmzueSSS4BE69ctt9zCzJkzmTt3Ln/84x87zvXRj36UK664ggkTJnDfffdx7733MnfuXBYvXkx9fT0ADz30EAsWLGD27Nlcf/31Hf8+nS1evJitW7d2rC9dupQTJ6AW6S/HW7ACAASKxwFwtKYyXSGJiIhIBknZPFgD4vdfg5rNqa1z1Ez4wPdPucszzzzD1VdfzaRJkyguLmb9+vXMmzcPgA0bNrBlyxYqKiqorKxkx44dPPzwwyxZsoSVK1fy4x//mC984QusWLGCF198kUmTJvHpT3+an/zkJ9x+++0AFBcXs2HDhpPOe8cdd3DZZZdx4YUXcuWVV3LLLbdQWFjI3Xffzbp167jvvvsA+MY3vsFll13GI488QkNDAwsXLuTyyy8H4PXXX2fLli3k5OSwYMECPvShDzF//nxisRjz5s1j165dfP7zn2fRokUnnf/uu+/mD3/4A2VlZTQ0NABw//33Y2Zs3ryZ7du3c+WVV7Jz504AtmzZwsaNG2lra+OCCy7gBz/4ARs3buSOO+7g5z//ObfffjvXXXcdn/vc5wD41re+xcMPP9zRMtfupptu4sknn+Suu+6iurqa6upq5s8/aZJskX4Rj0QA8CUTrGGl4wFort2btphEREQkc6gFqxdWr17N8uXLAVi+fHmXboILFy6koqKiY33s2LEsWbIEgJtvvpm1a9eyY8cOKioqmDRpEgCf+cxn+POf/9xxzE033dTteW+55Ra2bdvGxz/+cV5++WUWL17c0fLV2fPPP8/3v/995syZw9KlS2lra2Pv3sSHwSuuuILi4mKys7O57rrrWLt2LQBer5dNmzZRVVXVkYSdaMmSJaxYsYKHHnqoo/vi2rVrufnmmwGYMmUK48eP70iwli1bxrBhwygpKaGgoIAPf/jDQKLlrbKyEkgkYRdffDEzZ87kscce69JS1e7GG2/kqaeeAuDJJ5/khhtu6PbfR6Q/xKOJLoL+rCwAikZPACByZF+6QhIREZEMklktWKdpaeoP9fX1vPTSS2zevBkzIxaLYWbcc889AOTm5nbZ/8Sudt11vTvRiXV0NmbMGFauXMnKlSuZMWNGt4mQc45f/epXTJ48uUv5a6+9dtp4CgsLWbZsGc8999xJA3Q88MADvPbaa/z2t79l3rx5rF+//pS/RyAQ6Fj2eDwd6x6Pp+MZtRUrVvD0008ze/ZsVq1axcsvv3xSPWVlZRQXF/PWW2/xxBNP8MADD5zyvCKp5GKJFqz2LoIjhg/niMvDNNmwiIiI9IJasE7jqaee4lOf+hR79uyhsrKSffv2UVFRwSuvvNLt/nv37uWvf/0rAL/4xS+46KKLmDx5MpWVlezatQuARx99lEsvvfS0537uueeIJLsr1dTUUFdXR1lZGcOGDePYsWMd+1111VX8x3/8B845ADZu3Nixbc2aNdTX19Pa2srTTz/NkiVLqK2t7ejy19raypo1a5gyZcpJ59+9ezeLFi3i7rvvpqSkhH379nHxxRfz2GOPAbBz50727t17UmJ3KseOHWP06NFEIpGOerpz00038cMf/pCjR48ya9asXtcv0lfx5DNYPl+iBcvrMQ57ivE3a7JhEREROT0lWKexevVqPvaxj3Upu/7663scTXDy5Mncf//9TJ06lSNHjvD3f//3BINBfvrTn/Lxj3+cmTNn4vF4uO2220577ueff75jkImrrrqKe+65h1GjRrFs2TLefvvtjkEuvv3tbxOJRJg1axbTp0/n29/+dkcdCxcu5Prrr2fWrFlcf/31zJ8/n+rqapYtW8asWbNYsGABV1xxBddccw0Ad955J88++ywA//zP/8zMmTOZMWMGF154IbNnz+Yf/uEfiMfjzJw5k5tuuolVq1Z1abk6nX/5l39h0aJFLFmypEtS9+yzz3LnnXd2rN9www08/vjj3Hjjjb2uWyQV4tHElxr+rOP/Xzf4S8nVZMMiIiLSC9be6nEumD9/vjtxtLht27YxderUNEWU2VatWtVlMIyhSP//yJl647HvsuCdf6Ph9vcoLCwC4M/33sysY3+i8Dt6DktEREQSzGy9c+6kkdjUgiUi0omLtQ9yEewoi+aNotA14sKabFhEREROTQnWILZixYoh3XolcjbaB7nw+493EbSCxHx0TXVqwRIREZFTy4gE61zqxiiZQ//fyFmJRYg4L37f8bfHYNFYAI4cqExTUCIiIpIpzvkEKxgMUldXpw/Lckacc9TV1REMBk+/s0hnsQgRfF2mNMjrmGx4T7qiEhERkQxxzs+DVV5eTlVVFbW1tekORTJMMBikvLw83WFIpomFieLtUlQ8JjGZeLi+Kh0RiYiISAY55xMsv99PRUVFusMQkSHC4hGi1vWtsaQoMdmwa9yfpqhEREQkU/R7F0Ezu9rMdpjZLjP7Wn+fT0SkT+IRoid89+T3epKTDR9IU1AiIiKSKfo1wTIzL3A/8AFgGvAJM5vWn+cUEekLi53cggVw1F9KbtuhNEQkIiIimaS/W7AWArucc+8658LA48C1/XxOEZGzZvHoSS1YAC3BURRGlWCJiIjIqfV3glUGdJ44pipZ1sHMbjWzdWa2TgNZiEi6eeIR4t20YMXyRicmG460piEqERERyRRpH6bdOfegc26+c25+SUlJusMRkSEuMciF/+TygsR3Q021mmxYREREetbfCdZ+YGyn9fJkmYjIOSnRguU9qTxQnJxsuPq9gQ5JREREMkh/J1hvABPNrMLMsoDlwLP9fE4RkbPmcVFi3bRgDUtONtxUu3egQxIREZEM0q/zYDnnomb2BeAPgBd4xDm3tT/PKSLSFx4XwXlOfmssHj0BgEi9ugiKiIhIz/p9omHn3O+A3/X3eUREUsEbjxL1ZZ9UXlJURIPL1WTDIiIickppH+RCRORc4nFR4t10EfR5PdR6RuBvrk5DVCIiIpIplGCJiHTicxGc5+QEC9onGz44wBGJiIhIJlGCJSLSiZcY8R4SrNbgKAqimq9PREREeqYES0SkE6+LgLf7x1OjeaMZ7o5qsmERERHpkRIsEZFO/ESIe7K63eYbXg5Aw8E9AxmSiIiIZBAlWCIinQRcGOcLdrstZ8Q4AOoOVA5gRCIiIpJJlGCJiCQ55wgSJu7tPsEqHDUBgKZDasESERGR7inBEhFJisXiBC3SYwtWSVkFACFNNiwiIiI9UIIlIpIUDicGr+gpwcrPL+QouaDJhkVERKQHSrBERJIibS2JhR4SLIA6bymB5gMDFJGIiIhkGiVYIiJJkVAywfJn97hPY2AM+aHqAYpIREREMo0SLBGRpPYWLDtFC1Y4r4zS2CFcPD5QYYmIiEgGUYIlIpIUDSWewTJ/zwkWhWPJs1bq6w4NUFQiIiKSSZRgiYgkxcLtCVbPXQQDIxIjCR6uemdAYhIREZHMogRLRCSp/RksX6DnBCt/9HkAHKt5d0BiEhERkczSpwTLzO4xs+1m9paZ/beZFSbLJ5hZq5ltSv48kJJoRUT6UfszWKdKsEaUTwQgXFc5ECGJiIhIhulrC9YaYIZzbhawE/h6p227nXNzkj+39fE8IiL9LhpqBiArmNvjPsMKS2giGxr2DlRYIiIikkH6lGA55553zkWTq68C5X0PSUQkPaLhNuDUCRZm1HpHEmzWZMMiIiJyslQ+g7US+H2n9Qoz22hmfzKzi1N4HhGRfhFNPoMVyD5FggUcC4wiP1QzECGJiIhIhvGdbgczewEY1c2mbzrnnknu800gCjyW3FYNjHPO1ZnZPOBpM5vunGvspv5bgVsBxo0bd3a/hYhICrjkKIKB7J6fwQII5ZUzofktnHOY2UCEJiIiIhnitAmWc+7yU203sxXANcDfOOdc8pgQEEourzez3cAkYF039T8IPAgwf/58d4bxi4ikTPsw7cFg3ql3LBxH/qEWag8foqRk5ABEJiIiIpmir6MIXg18BfiIc66lU3mJmXmTy+cBEwGNaSwi5zQXTTyDlZ1z6i6C7XNh1WkuLBERETlBX5/Bug8YBqw5YTj2S4C3zGwT8BRwm3Ouvo/nEhHpVxZuIuK8eHxZp9wvf1RiLqzGmvcGIiwRERHJIKftIngqzrkLeij/FfCrvtQtIjLQvOFGjlkuRad5rqpkbPtcWEqwREREpKtUjiIoIpLRfOGjNNlpnr8CcgtLaSEIDfsGICoRERHJJEqwRESS/JFjtHlPn2BhxmFvqebCEhERkZMowRIRSQpGG2nz5fdq38bAaApC1f0ckYiIiGQaJVgiIknZsSYi/mG92jeUV05J7CDxuGaXEBERkeOUYImIJOW6JqJZvWvBonAchdZMXV1t/wYlIiIiGUUJlogI4OJx8lwz8ayCXu0fGDEBgNqqXf0YlYiIiGQaJVgiIkBbSxNZFoPswl7t3z4X1rGa3f0YlYiIiGQaJVgiIsCRukMA+HN614JVMnYSAKG6Pf0Wk4iIiGQeJVgiIsDRQ3sBCBSV9Wr/7MKRtJGFNeztz7BEREQkwyjBEhEBmg9XAZBXOr53B5hR6x1JQHNhiYiISCdKsEREgMiRRII1fOSEXh/TGBhNoebCEhERkU6UYImIABzbT9j5KCge1etDWnLKKIkd6segREREJNMowRIRAfzNNdR6ijFP798WY/ljGW7HaGo80o+RiYiISCZRgiUiAuS2VNGYNfKMjvEMHwvAkQMaql1EREQSlGCJyJDn4nHGRPbRlFdxRscFSxL7Nx18tz/CEhERkQykBEtEhrzDB6sosGZcyeQzOi4/OSBGW31VP0QlIiIimahPCZaZfdfM9pvZpuTPBztt+7qZ7TKzHWZ2Vd9DFRHpHwd3vwlAzpjpZ3TciFFjiTsj1nCgP8ISERGRDORLQR3/5pz7184FZjYNWA5MB8YAL5jZJOdcLAXnExFJqfp3NwAwbsq8MzouLztILQVYU01/hCUiIiIZqL+6CF4LPO6cCznn3gN2AQv76VwiIn3iq9lIrY0gv3TsGR97xFtMVquGahcREZGEVCRYXzCzt8zsETMbniwrA/Z12qcqWXYSM7vVzNaZ2bra2toUhCMi0nvRWJyy5m3U5k87q+ObskaQG9Z7l4iIiCScNsEysxfMbEs3P9cCPwHOB+YA1cCPzjQA59yDzrn5zrn5JSUlZ3q4iEif7Ny9m/FWA+ULzur4tmAphdG6FEclIiIimeq0z2A55y7vTUVm9hDwm+TqfqBzX5vyZJmIyDml5q0XmAaUzrrirI6P5Y6kqOEoLhrGfFmpDU5EREQyTl9HERzdafVjwJbk8rPAcjMLmFkFMBF4vS/nEhHpD969f6GZbEZccHYtWAxLvA0eO6yRBEVERKTvowj+0MzmAA6oBP4OwDm31cyeBN4GosDnNYKgiJxrnHOMb1zPnrw5TPOe3duhv3AMAEdr95A/akIKoxMREZFM1KcEyzn3qVNs+x7wvb7ULyLSnyor36WCA2wq/8RZ15FdnBi/p/mwJhsWERGR1MyDJSKSkQ5sWkMFMGJmrx417VZ+SeJx0/CRwdNFMBIJc2D3Vur2baft8B6scR/+php8kUb8sWYC8Vb88TBx8xIzLzHz0+bLJ5Q1nGigEE9uCd6C0eQUjyG/pJyikePILRwJnv6aGUREROTcoQRLRIYs27OWJnIom3L20/QVlZQRdR7ijdUpjGzgtIVCvLv5f2jc+Rfs4BaGH9vJ+NhexluE8cl9ws7HYU8xrd5hhD05NAdGEvNkYS6OuRi+eBu50SOUhvaQ39hIbm3bSeeJ4OWIDeeYv5i2wAiiOaVEc0YSyy3FG8jF58/CmY+YecE5iIWxWBhiIWKRMPFIGy4SgmgrRENYtBWLhfBE27BYCG88hDcWwudC+OJh/PEQfhchQOIVwJklXun6GseDw3BYYtk8ODzErb28fTnxCh6cGXG8YMe3x9uPJ7F8nOvy0mkh8bt2YnRd72nb2e/XeZsMFlFPkFGffoTSsgnpDkVEUIIlIkNY2dENvJczi5ln+fwVQH5OFgcpxNNUk8LI+k8kEuGdDX/iyJbnGXbwdc4Pvc00CwFQRyE1wfN5a/j7sdHTKSifRmn5+eSPGMMYj7fX52htPsbhmn0cPbSP5voqwkdqcMeq8bUcIthWy7CmKkY2bmaENZ7V7xByfkKWRRg/YQsQsSwilkXUEyDqCRL25RPzBol7A8S9AfAGgGRq4eKJSpzjeOITB+cwF+tYxsUwFwfiWDz56hI/uEQq1b5uxPE4h4cY/mSa5iXekcAlnJjOWKLITt7muix3c1z7tpMypE7bOpatmzpOVb9kHBdnVmg9r7/yC0qXfyPd0YgISrBEZIiqObCP8W4/b4y5oU/1mBn1niKyWs/dyYYb6w+y/ZX/hneeZ9Kx15hmTcSdscc3gbdLryHr/Isom7WMEWMqKE7B+bJzhzH2/GmMPb/nyZujsThHW9sINdTQ1tpEKBSCeAyvi2IeMG8A82Xh8QXJCgbJCmQTCGYTCOYQ8HoJpCBOkcHAOcf+uyaTte8v6Q5FRJKUYInIkLRn00uMAoqmXtrnuhr9IxgTPtj3oFLoaH0tO1/+BcGdzzK1dQMLLU49BbxbdBGeSVdy3qIPU1FUSkWa4vN5PRTk5UDeeWmKQGRwMDP2Fsxj+tE/4WJRrA8t8iKSGroLRWRIilb+lZDzM37GhX2uqzVYSsGxrSmIqm/aWpvZ/MKj+N/+NdNa1rHAYuy3kbw2+pOMWHADk+ZeTNEZdPUTkczgKi4lf9PvqNz6VybMujjd4YgMeUqwRGRIKq7fwHuBSUwJZPe5rmhOKQWNxyAaAt/Ad16r3L6B6pceYOqh37KAJmooYcPo5QxfeBOT5lxMmUbvExnUJi36IGz6KgfW/04Jlsg5QAnWKdTuf493//IUc6/9IlmBYLrDEZEUaW5q5LzILjaW35yS+lzeaAAiR6vxF09ISZ2n09bazOY1j5K7+VGmRbZQ5rxszr+YwKKVTLvwGkappUpkyBgxehzb/VMZU/UbcP8bTIOXiKSTEqxT2P3ST1m8+985sO1B9k67jRlXf5a8YYXpDktE+ui9N19hhsXIPn9JSurzFiQSrMZD+yju5wSrctt6qv/4n0w79BsW0Mx+G8Vr53+JiVfeyvtGju3Xc4vIuevweddx0Y7vsWfr/zB+Rmre20Tk7CjBOoVFn/wub/5pFtlrf8DirXfTsuUHvFF0OYGZH2HSog8QzC1Id4jdc45IuI3WtlZCbW1EIiHikTCxaPj4azRMPBoiHo3gomHisUjiJ+6Ix2LEk0MRJ4YrTgxRTLx92XUMYwwOS+7TeToXl/xvouzkb9Jcb79d63a/buo7ocza17s5vPthie2k053J8MVn+13hgH/J2Ifznf2hZ3dkf/7T2O6XAJgwe1lK6gsWlQHQdHhfSkbhO1FbSxNvrXmUYVseZWpkK2Ocl835lxBc9FmmXfhBytRaJTLkTb9yBaHtP6T65f8aUglWPBoh3NZMONRGONRKOBQiGmkjEmojlnyNR0PEIyGIhXHxGM7FcfH2nxguHk987onHcM7hktM0mHMkpmhwHX+w2z8bdJ1hodNfLDNO+gvW5Y+9dSmzznV22q/zVAsdZSn60HA2tZgNzOeinrQGR1Kx8IOMLcpJcc39QwnWKZjHw+xlN+AuvY4dG17iyNpHmFn/Irl//i2RP3nZ7p9IY8FkoiOmkltaQf7IcQwbUU7esEIC2blYNx96nHPEYnGi4RZam5tobW4k3NZMqKWJSGsTkbYmoqEWYm1NxMPNxMMtEG6GSAueaCueaCveaCu+WBv+eCu+eBuBeBsB10aWC5Ht2ggSwm8Ofxr+zUQyxTu+iUwsLk1JXcNKEi1HoSP7U1Jfu/feXsfBP/4nU2t/y0Ka2WdjePWCO5h05eeYV1qW0nOJSGYbXlzKusLLmFP7/6ivfo+i0ekaI/TMtLW20Fh/iKYjB2lpOESo8TCRpsO45jqstR5vuAlvtAlftAV/rJmsWCtB10K2ayXbtZFtYYKAHuQY3F6OzebNMRcqwRpMzONh8vzLYf7ltLW2sPH1NbRtf4GCwxuYcvgF8uuegR0nHxdyfsL48OAwHF7ieIjjtxg+Em8Gw3sZQwg/bQQIWYCQBQl7gkQ8QaK+PFq9JcS82cR92cR9OTh/Nviz8fgCmD+A1+sHXxZ4/Xi8WeDLwuP1J+aY8WZhPj8eXxZerw+v14vX68XjMTAvmCfxjYp5MPNgHgO8YJZc9oDHg3k8GIbZ8dYjM5Lf+pz427gTC+jS/HWqsl4c67pZ6lWd7nT7da/3e6b5uDP4nU4+9qwPPWfPVz6yPGV1FY0YRdh5iTYc6HNdTY1H2LZmFQXbVzMpsoMy50u0Vi3+LNPe/0HGasAKEenBiA9/F8+jL7L7yW9S9OVfpDWW1qZGaqsrOVZbRWt9FZGGA9ixavwtB8luqyU/epjh8QZyrY0g0N3XXS0uQJPl0ubJJuTJIezJ4ViwkAZfDjF/LvGsPOK+XPBnY74gHl8W5g/g8Qfw+oN4/YGOH48/iHmzMK8Xj8eDx+vDzIMnuW7mxetNrCc+73iTH2Q8uI5ZvTv653QsEz/+B8vaSzv9Eev8t9fReaLz9hfXpazzebot61xyFn8rz/7v6xl8LjqrczhO1e51gS/I8JGp+VJ0ICjBOkPB7BzmXnotXHotAC4e58jBvdTs301z7X5ijdXEQk0QacOiLXhiYcw8OI83kbB4vODxEfNl4/Hn4Ank4g3m4Avk4QvkkpWTRyA7l0BOPsHsXIK5w8gK5hLw+jWxpsg5alRBNjUMJ95YfVbHx2Nxtr6+hpbXVjHjyIsssBCVnrH89YJ/ZMpVf8u8kjEpjlhEBqMJF0zjf0bdyIUHf8GW51cx48oV/XauaLiN2qpd1Fe9Q8uh3cTr9+A/to9hrfsZEa1hOI2MO+GYFhegzlNMo7+YmrzpVGWX4HKK8OQW488rJpBfQk5hKcOGl5JfNJKcYDaZ0V4h0pUSrD4yj4fhoycwfPSEdIciImni83o46huBt7n3kw27eJzdW17l8KurGVf9HDPdIVpcgK1FVzDswpVMnreMCWqtEpEzNPczP2LrjzZxwV/+iU2RELM/eGuXZ3t6y8Vj1Nfs5fC+nTQf3E308Lt4G/eR01JFUaSakng9o80xOrl/2Hk55CnlSNZoduYvJV4wFv/wcoJF5QwrGUfRqHHkDStUK7wMCUqwRERSoDm7jPObNiT6RvTwYSYaCbNrw0sc2fRbympe4AJ3gAnOw9bs91Ez9ctM+5ubWZBXOLCBi8igkp2Tw+i/+xW7H7yBOW98ha2bfkbT5I9TMuX9FI8aRzB3GC4W5VhTMy1HamhtqKGp7gCh+iq8R/eQ3byfotB+SuO1FFukY+CeuDNqrYjD/lHsGTaf3flj8RZXkDvyPIrKJlI6ZgLlfj+p63wtkrn6lGCZ2RPA5ORqIdDgnJtjZhOAbRx/MulV59xtfTmXiMi5LDTuYorffpGanW8wavJCINFKVbV7Mwfeehnfey8xsekNptBMxHl5JziTNyb9LRdc8r+YXTL6NLWLiPReUekY8r7yMm/8+h7KdvyM6Vu+C1u67tPdoBBHyaPWO5JDORewL28ZNnwC2SPPo3DMREaOncjInBxGDsQvIJLhrC8PvnepyOxHwFHn3N3JBOs3zrkZZ1LH/Pnz3bp161ISj4jIQKraW8moh+eyKziNhpKFBOq3M75lC0U0AlDLcCoLL8Q75UrOX/RhCob3x4DuIiJduXicqnfepGb3RqIN1bhIK87jw58VxJM3Al/+SApLyigdM56cfL0viZwJM1vvnJt/YnlKughaonPvjcBlqahPRCTTlI+bwJ+nfJOF27+Pf99Wqj2j2F1wIe+MW8yo6ZcybtIcSvTsgYgMMPN4GDt5LmMnz013KCJDRkpasMzsEuDe9gwu2YK1FdgJNALfcs690sOxtwK3AowbN27enj17+hyPiEi6RMIh4s4RCGhWFhERkcHsrFuwzOwFYFQ3m77pnHsmufwJYHWnbdXAOOdcnZnNA542s+nOucYTK3HOPQg8CIkugqf/VUREzl3+LE2oICIiMpSdNsFyzl1+qu1m5gOuA+Z1OiYEhJLL681sNzAJ0ANWIiIiIiIyaKXigYDLge3Ouar2AjMrMTNvcvk8YCLwbgrOJSIiIiIics5KxSAXy+naPRDgEuBuM4sAceA251x9Cs4lIiIiIiJyzkrZMO2pYGa1wLk2ysUI4HC6g5ABo+s9dOhaDx261kOLrvfQoWs9tJyL13u8c67kxMJzKsE6F5nZuu5GB5HBSdd76NC1Hjp0rYcWXe+hQ9d6aMmk661JWURERERERFJECZaIiIiIiEiKKME6vQfTHYAMKF3voUPXeujQtR5adL2HDl3roSVjrreewRIREREREUkRtWCJiIiIiIikiBIsERERERGRFFGCdQpmdrWZ7TCzXWb2tXTHI6ljZmPN7I9m9raZbTWzLyfLi8xsjZm9k3wdnu5YJTXMzGtmG83sN8n1CjN7LXl/P2FmWemOUVLDzArN7Ckz225m28zs/bq3ByczuyP5Hr7FzFabWVD39uBhZo+Y2SEz29KprNt72RL+b/K6v2Vm70tf5HKmerjW9yTfx98ys/82s8JO276evNY7zOyqtAR9CkqwemBmXuB+4APANOATZjYtvVFJCkWBf3TOTQMWA59PXt+vAS865yYCLybXZXD4MrCt0/oPgH9zzl0AHAE+m5aopD/8O/Ccc24KMJvEdde9PciYWRnwJWC+c24G4AWWo3t7MFkFXH1CWU/38geAicmfW4GfDFCMkhqrOPlarwFmOOdmATuBrwMkP68tB6Ynj/lx8nP7OUMJVs8WArucc+8658LA48C1aY5JUsQ5V+2c25BcPkbiA1gZiWv8s+RuPwM+mpYAJaXMrBz4EPBfyXUDLgOeSu6iaz1ImFkBcAnwMIBzLuyca0D39mDlA7LNzAfkANXo3h40nHN/BupPKO7pXr4W+LlLeBUoNLPRAxKo9Fl319o597xzLppcfRUoTy5fCzzunAs5594DdpH43H7OUILVszJgX6f1qmSZDDJmNgGYC7wGjHTOVSc31QAj0xWXpNT/Ab4CxJPrxUBDpzdu3d+DRwVQC/w02SX0v8wsF93bg45zbj/wr8BeEonVUWA9urcHu57uZX1uG9xWAr9PLp/z11oJlgxpZpYH/Aq43TnX2HmbS8xhoHkMMpyZXQMccs6tT3csMiB8wPuAnzjn5gLNnNAdUPf24JB89uZaEkn1GCCXk7sYySCme3loMLNvkni047F0x9JbSrB6th8Y22m9PFkmg4SZ+UkkV485536dLD7Y3qUg+XooXfFJyiwBPmJmlSS6+l5G4hmdwmS3ItD9PZhUAVXOudeS60+RSLh0bw8+lwPvOedqnXMR4Nck7nfd24NbT/eyPrcNQma2ArgG+KQ7PnnvOX+tlWD17A1gYnI0oiwSD9M9m+aYJEWSz+A8DGxzzt3badOzwGeSy58Bnhno2CS1nHNfd86VO+cmkLiPX3LOfRL4I3BDcjdd60HCOVcD7DOzycmivwHeRvf2YLQXWGxmOcn39PZrrXt7cOvpXn4W+HRyNMHFwNFOXQklA5nZ1SS693/EOdfSadOzwHIzC5hZBYmBTV5PR4w9sePJoJzIzD5I4tkNL/CIc+576Y1IUsXMLgJeATZz/Lmcb5B4DutJYBywB7jROXfiA7aSocxsKfBPzrlrzOw8Ei1aRcBG4GbnXCiN4UmKmNkcEgOaZAHvAreQ+EJR9/YgY2Z3ATeR6D60EfhbEs9i6N4eBMxsNbAUGAEcBL4DPE0393Iyyb6PRDfRFuAW59y6NIQtZ6GHa/11IADUJXd71Tl3W3L/b5J4LitK4jGP359YZzopwRIREREREUkRdREUERERERFJESVYIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUuT/A29+p6eu/t88AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADqv0lEQVR4nOzdd5xcdbn48c8zdXvf7GZLsuk9hJAEkISqFKWIKAHpXOWCDVDAchWj9/q7XkARBKUqChhCE1B6hygtCekJqZtskk22953+/f1xZjeTzdbs7M7uzvN+OWbmnO/5nmfOzCznOd9yxBiDUkoppZRSSqn+s8U6AKWUUkoppZQaKTTBUkoppZRSSqko0QRLKaWUUkoppaJEEyyllFJKKaWUihJNsJRSSimllFIqSjTBUkoppZRSSqko0QRLKaWGCBEpEREjIo5YxzLSiciVIrI81nEMNSKySEQ+i3UcSik1nGmCpZRSalgTkSUi4heRpojHLbGOazgyxrxvjJkS7XrDFw6aIz6fh6K9D6WUGir0KqlSSkWJiDiMMYFYxxGnlhljLo11EANlhHy3jjLGbIt1EEopNdC0BUsppfpBREpF5IcishZoFhGHiBwnIv8WkToRWSMiJ0eUf0dE/ldEPhaRBhF5XkSyuqj7KhHZJCKNIrJDRP6zw/rzRGR1uJ7tInJmeHm6iDwsIuUisldE/kdE7D28jwki8paIVItIlYg8LiIZEetqRGRu+HWBiFS2vS8ROVdENoTf7zsiMq3D8blJRNaKSL2ILBORhL4f6b4TkR+Fj0ujiGwUkfO7KCcicqeIVISP5ToRmRle5xaRO0Rkt4gcEJH7RCSxl/t/JFz+9XAM74rI2Ij1d4lIWXifK0VkUcS6JSLytIg8JiINwJUiskBEPggf53IRuUdEXBHbGBH5lohsDe/vv8Of3b/D+3gysnwXMZ8sInt68/6UUkp1ThMspZTqv4uBLwEZQB7wIvA/QBZwE/CMiORGlL8cuBoYDQSAu7uotwI4G0gDrgLujEhyFgB/BW4O7/dEoDS83SPheicCRwOnA9/o4T0I8L9AATANKAaWABhjtgM/BB4TkSTgz8BfjDHviMhkYClwA5ALvAT8o8OJ/IXAmcA4YDZwZacBiCwMJw9dPRb28B462g4sAtKBX4TjH91JudOxjt/kcNkLgerwul+Hl8/BOp6FwK19iOES4L+BHGA18HjEuk/C9WYBfwOe6pB8ngc8jfX5Pg4EgRvDdR0PnAZ8q8P+zgCOAY4DbgEeAC7F+jxnYn1Xj1g4Ue7q8/lDD5u/JyL7ReRZESnpTxxKKTWUaYKllFL9d7cxpswY04p1MvuSMeYlY0zIGPM6sAL4YkT5R40x640xzcDPgAs7a2EyxrxojNluLO8Cr2ElDAD/AfzJGPN6eD97jTGbRSQvvK8bjDHNxpgK4E7gou7egDFmW7gurzGmEvgtcFLE+geBbcBHWInhf4VXLQZeDG/rB+4AEoHPdTg++4wxNcA/sJKKzmJYbozJ6ObR3aQUF3Y42S8wxjwV3m/IGLMM2Aos6GRbP5AKTAXEGLPJGFMuIgJcA9xojKkxxjQC/6+nY9nBi8aY94wxXqxjdryIFIff72PGmGpjTMAY8xvADUSOf/rAGPNcOP5WY8xKY8yH4fKlwP1EfEZhtxljGowxG4D1wGvGmB3GmHrgZayE+4gZY2Z38/l0TPYinQSUYB3jfcA/RSdzUUqNUPrHTSml+q8s4vlY4Gsick7EMifwdhfld4XX53SsVETOAn6O1YJiA5KAdeHVxVitRR2NDddXbuUHEN62rJOykfvKA+7CSuBSw9vUdij2IPACcE04YQCrxWtXWwFjTEhEyrBaetrsj3jeEt4m2p7sOAZLRC4Hvo91Yg+QQifH2RjzlojcA9wLjBWRZ7FaHhOwjvnKiGMpQLfdLTtoP+7GmCYRqcF6/2UichNWolwAGKyWypzOtg2/n8lYie+8cFwOYGWH/R2IeN7ayev8PsQeNcaY98JPfSJyPdCA1VK6ruutlFJqeNIWLKWU6j8T8bwMq4Uq8sp+sjHm1xFliiOej8FqQamKrFBE3MAzWC1CecaYDKyEqu1MvwyY0EksZYAXyInYf5oxZkYP7+H/hd/HLGNMGlZL3MGsQiQF+B3wMLBEDo4b24eV1LWVk/D729vD/g4j1hThTd08FvVcS3tdY7ESwu8A2eHjtz7yPUUyxtxtjDkGmI6V0N6M9Zm0AjMijmW6MSalD2+r/bMOH8MsYF/4vdyC1R0xMxxffYf4Ir9XAH8ENgOTwp/RT7p6PwNFrLF2XX0+9/WhKsMgx66UUoNFEyyllIqux4BzROQMEbGLSEJ44oCiiDKXisj08HimXwJPG2OCHepxYXUZqwQC4das0yPWPwxcJSKniYhNRApFZKoxphyrK+FvRCQtvG6CiHTsStZRKtAE1ItIIVaCEekuYIUx5htYY8zaTqafBL4UjsMJ/AArwft3Tweqo/AU4SndPN7vQ3XJWCfxlWBNGII1BukwIjJfRI4Nx98MeICQMSaElaTdKSKjwmULReSMiG2NRExi0okvhseWubDGYn1ojCnDOt6BcHwOEbkVqwWrO6lYLT9NIjIVuK6H8lFnjJnRzedzbWfbiMgMEZkT/j2kAL/BSsA3DWrwSik1SDTBUkqpKAqfPJ+H1bpQidWidDOH/r19FGsiiv1Y3dC+10k9jeHlT2J11fs6Vve8tvUfE574Aqvl410OtiRdjpWgbQxv+zTWuKnu/AKYG67rReDZthUich7WJBVtJ/TfB+aKyCXGmM+wWrt+j9Xicw5wjjHG18P+BpQxZiPWifwHWN3kZgH/6qJ4GlYiVYvV3bEauD287odYY88+FGs2vzcIj5MKj6VqpPtubn/D6uZZgzX5RFs3xleBV4At4X166KEbJ1a3xa+H9/kgsKyH8kNFHlasDcAOrC6bZ4fH7Cml1IgjxnTsgaCUUmqgiMg7wGPGGL3R6jAnIpdidR/8cRfrHwH2GGN+OqiBKaWUiimd5EIppZQ6AsaYx2Idg1JKqaFHuwgqpVScEOumt/2dnEANcyLyky6+By/HOjallBoJtIugUkoppZRSSkWJtmAppZRSSimlVJQMqTFYOTk5pqSkJNZhKKWUUkoppVS3Vq5cWWWMye24fEglWCUlJaxYsSLWYSillFJKKaVUt0RkV2fLtYugUkoppZRSSkWJJlhKKaWUUkopFSWaYCmllFJKKaVUlAypMVid8fv97NmzB4/HE+tQ1BCQkJBAUVERTqcz1qGoEejF55eRufVpFtywFIdjyP95VEoppdQQNOTPIPbs2UNqaiolJSWISKzDUTFkjKG6upo9e/Ywbty4WIejRqATVt1IhjSz6t+vMPfEs2MdjlJKKaWGoSHfRdDj8ZCdna3JlUJEyM7O1tZMNSCaW70kYX23Auv/HuNolFJKKTVcDfkEC9DkSrXT74IaKE2Vu3BJEICs6k9jHI1SSimlhqthkWAppdRAa26qB2CP5DM2UIrP0xLjiJRSSik1HGmC1Qsiwg9+8IP213fccQdLliyJXUARTj755G5vzvzlL3+Z44477pBlS5YsobCwkDlz5jBz5kxeeOGFgQ5TqSHP09wIwN6MeTglyN7Nn8Q4IqWUUkoNR5pg9YLb7ebZZ5+lqqoqqvUaYwiFQlGtM1JdXR0rV66kvr6eHTt2HLLuxhtvZPXq1Tz11FNcffXVAxqHUsNBW4LlGHssANU718QyHKWUUkoNU5pg9YLD4eCaa67hzjvvPGxdZWUlF1xwAfPnz2f+/Pn861//AqxWojvuuKO93MyZMyktLaW0tJQpU6Zw+eWXM3PmTMrKyrj55puZOXMms2bNYtmyZQC88847nHzyyXz1q19l6tSpXHLJJRhjOo3v0UcfbW+N+vjjj9uXP/vss5xzzjlcdNFFPPHEE51uO23aNBwOxyHJ449+9COmT5/O7NmzuemmmwAoLS3l1FNPZfbs2Zx22mns3r0bgCuvvJLrrruO4447jvHjx/POO+9w9dVXM23aNK688sr2Oq+77jrmzZvHjBkz+PnPf35YHPX19YwdO7Y90Wtubqa4uBi/399p3EpFm7fVSrBGTZiDxzjx798Y44iUUkopNRwN+WnaI/3iHxvYuK8hqnVOL0jj5+fM6LHct7/9bWbPns0tt9xyyPLrr7+eG2+8kYULF7J7927OOOMMNm3a1G1dW7du5S9/+QvHHXcczzzzDKtXr2bNmjVUVVUxf/58TjzxRAA+/fRTNmzYQEFBASeccAL/+te/WLhw4WH1tbS0sHr1at577z2uvvpq1q9fD8DSpUu59dZbycvL44ILLuAnP/nJYdt+9NFH2Gw2cnNzAaiurubvf/87mzdvRkSoq6sD4Lvf/S5XXHEFV1xxBX/605/43ve+x3PPPQdAbW0tH3zwAS+88ALnnnsu//rXv3jooYeYP38+q1evZs6cOfzqV78iKyuLYDDIaaedxtq1a5k9e3Z7HOnp6cyZM4d3332XU045hX/+85+cccYZer8rNWj8rU0ApKZmsM9RTFL9thhHpJRSSqnhSFuweiktLY3LL7+cu++++5Dlb7zxBt/5zneYM2cO5557Lg0NDTQ1NXVb19ixY9vHRS1fvpyLL74Yu91OXl4eJ510Ep98Yo39WLBgAUVFRdhsNubMmUNpaWmn9V188cUAnHjiiTQ0NFBXV8eBAwfYunUrCxcuZPLkyTidzvbEC+DOO+9kzpw53HTTTSxbtqx9dr709HQSEhL4j//4D5599lmSkpIA+OCDD/j6178OwGWXXcby5cvb6zrnnHMQEWbNmkVeXh6zZs3CZrMxY8aM9piffPJJ5s6dy9FHH82GDRvYuPHw1oHFixe3t+A98cQTLF68uNvjqFQ0BTzNACSmpFGTPJ5RntLYBqSUUkqpYWlYtWD1pqVpIN1www3MnTuXq666qn1ZKBTiww8/JCEh4ZCyDofjkHFNkfduSk5O7tX+3G53+3O73U4gEOi0XMepy0WEJ598ktra2vYb8jY0NLB06VJ+9atfAdYYrLbufx3j/vjjj3nzzTd5+umnueeee3jrrbd6FafNZjskZpvNRiAQYOfOndxxxx188sknZGZmcuWVV3Z6L6tzzz2Xn/zkJ9TU1LBy5UpOPfXUbverVFT5rVkDXYkp+DMnMrrhDVqbGkhMSYtxYEoppZQaTrQFqw+ysrK48MILefjhh9uXnX766fz+979vf7169WoASkpKWLVqFQCrVq1i586dnda5aNEili1bRjAYpLKykvfee48FCxb0Ka62Vp/ly5eTnp5Oeno6S5cu5ZVXXmkf97Vy5coux2FFampqor6+ni9+8YvceeedrFljDfT/3Oc+1779448/zqJFi3odX0NDA8nJyaSnp3PgwAFefvnlTsulpKQwf/58rr/+es4++2zsdnuv96FUf9kCVoIlrmSc+dMAKN++NpYhKaWUUmoY0gSrj37wgx8cMiHE3XffzYoVK5g9ezbTp0/nvvvuA+CCCy6gpqaGGTNmcM899zB58uRO6zv//POZPXs2Rx11FKeeeiq33XYb+fn5fYopISGBo48+mmuvvZaHH36Y0tJSdu3adcj07OPGjSM9PZ2PPvqo0zq++MUvsm/fPhobGzn77LOZPXs2Cxcu5Le//S0Av//97/nzn//M7NmzefTRR7nrrrt6Hd9RRx3F0UcfzdSpU/n617/OCSec0L7u1ltvPWSa+MWLF/PYY49p90A16Gz+FkJGwJFAxlhrfGD97nUxjkoppZRSw410NTNdLMybN890vKfTpk2bmDZtWowiUkORfifUQFh+zzUcXfU8yUsO0Nrqwfnr0awqvoIF3/hdrENTSiml1BAkIiuNMfM6Lu93C5aIFIvI2yKyUUQ2iMj14eVLRGSviKwOP77Y330ppdRAcQRb8GCNpUxMTGC/bRSO+tLYBqWUUkqpYScak1wEgB8YY1aJSCqwUkReD6+70xhzRzfbKqXUkOAItuKRg5O01LiLSG0pi2FESimllBqO+t2CZYwpN8asCj9vBDYBhf2tVymlBpMj2IpXDs4G6kkZQ15gHyZiNlCllFJKqZ5EdZILESkBjgbaZlL4joisFZE/iUhmF9tcIyIrRGRFZWVlNMNRSqlecwQ9+GwHEyyTNY40aaG66kAMo1JKKaXUcBO1BEtEUoBngBuMMQ3AH4EJwBygHPhNZ9sZYx4wxswzxszLzc2NVjhKKdUn9pCPgLjaXyfmTwKgYtfhN8VWSimllOpKVBIsEXFiJVePG2OeBTDGHDDGBI0xIeBBoG83d1JKqUFkN36CNmf76+wia6bKhr1bYhWSUkoppYahaMwiKMDDwCZjzG8jlo+OKHY+sL6/+4ql5557DhFh8+bNXZYpLS1l5syZUdvnlVdeydNPP93l+htuuIHCwkJCEWNEHnnkEXJzc5kzZw7Tp0/nwQcfjFo8So1kduMnFNGClTd2MiEjBKq2xzAqpZRSSg030WjBOgG4DDi1w5Tst4nIOhFZC5wC3BiFfcXM0qVLWbhwIUuXLu10fSAQ6Pc+gsFgr8uGQiH+/ve/U1xczLvvvnvIusWLF7N69WreeecdfvKTn3DggI4hUaonjpCfkP1gC5bDnUSlLRunTtWulFJKqT6IxiyCy40xYoyZbYyZE368ZIy5zBgzK7z8XGNMeTQCjoWmpiaWL1/Oww8/zBNPPNG+/J133mHRokWce+65TJ8+HbASrUsuuYRp06bx1a9+lZaWFgDefPNNjj76aGbNmsXVV1+N1+sFoKSkhB/+8IfMnTuXp5566rB9v/HGG8ybN4/Jkyfzz3/+85B9z5gxg+uuu67LpG/UqFFMmDCBXbt2tS+7++67mT59OrNnz+aiiy4CoKamhi9/+cvMnj2b4447jrVr1wKwZMkSrrjiChYtWsTYsWN59tlnueWWW5g1axZnnnkmfr8fgF/+8pfMnz+fmTNncs0119Dx5tWhUIiSkhLq6ural02aNEkTPzWk2I2fUEQXQYAal07VrpRSSqm+icZ9sAbPyz+C/euiW2f+LDjr190Wef755znzzDOZPHky2dnZrFy5kmOOOQaAVatWsX79esaNG0dpaSmfffYZDz/8MCeccAJXX301f/jDH/jOd77DlVdeyZtvvsnkyZO5/PLL+eMf/8gNN9wAQHZ2NqtWrep036WlpXz88cds376dU045hW3btpGQkMDSpUu5+OKLOe+88/jJT36C3+/H6Tz05HDHjh3s2LGDiRMnti/79a9/zc6dO3G73e0Jz89//nOOPvponnvuOd566y0uv/xyVq9eDcD27dt5++232bhxI8cffzzPPPMMt912G+effz4vvvgiX/7yl/nOd77DrbfeCsBll13GP//5T84555z2fdpsNs477zz+/ve/c9VVV/HRRx8xduxY8vLyev0xKTXQnPgxNtchy1pTixlT+R7GGKze0EoppZRS3YvqNO0j1dKlS9tbey666KJDWowWLFjAuHHj2l8XFxdzwgknAHDppZeyfPlyPvvsM8aNG8fkyZMBuOKKK3jvvffat1m8eHGX+77wwgux2WxMmjSJ8ePHs3nzZnw+Hy+99BJf/vKXSUtL49hjj+XVV19t32bZsmXMmTOHiy++mPvvv5+srKz2dbNnz+aSSy7hsccew+Gw8uvly5dz2WWXAXDqqadSXV1NQ0MDAGeddRZOp5NZs2YRDAY588wzAZg1axalpaUAvP322xx77LHMmjWLt956iw0bNhz2PhYvXsyyZcsAeOKJJ7p9z0rFgsMEMPZDEyyTOZ4cqaeyqipGUSmllFJquBleLVg9tDQNhJqaGt566y3WrVuHiBAMBhERbr/9dgCSk5MPKd/xKndvrnp3rKOn+l599VXq6uqYNWsWAC0tLSQmJnL22WcDVjJzzz33dFrfiy++yHvvvcc//vEPfvWrX7FuXfctgm63G7BaoZxOZ3s8NpuNQCCAx+PhW9/6FitWrKC4uJglS5bg8XgOq+f4449n27ZtVFZW8txzz/HTn/602/0qNdic+A9LsBLzJsFW2F+6iVF6GwmllFJK9YK2YPXg6aef5rLLLmPXrl2UlpZSVlbGuHHjeP/99zstv3v3bj744AMA/va3v7Fw4UKmTJlCaWkp27ZtA+DRRx/lpJNO6tX+n3rqKUKhENu3b2fHjh1MmTKFpUuX8tBDD1FaWkppaSk7d+7k9ddfbx/v1ZVQKERZWRmnnHIK//d//0d9fT1NTU0sWrSIxx9/HLDGduXk5JCWltar+NqSqZycHJqamrqc9VBEOP/88/n+97/PtGnTyM7O7lX9Sg0WhwlgOozByiqeCkDDPp2qXSmllFK9owlWD5YuXcr5559/yLILLrigy4klpkyZwr333su0adOora3luuuuIyEhgT//+c987WtfY9asWdhsNq699tpe7X/MmDEsWLCAs846i/vuu49QKMQrr7zCl770pfYyycnJLFy4kH/84x+d1vGNb3yDFStWEAwGufTSS5k1axZHH3003/ve98jIyGDJkiWsXLmS2bNn86Mf/Yi//OUvvTw6kJGRwTe/+U1mzpzJGWecwfz589vX3Xfffdx3333trxcvXsxjjz2m3QPVkOTCDw73Ictyx0wBwK9TtSullFKql6TjjG+xNG/ePLNixYpDlm3atIlp06bFKCI1FOl3QkVbMBDA/j/ZfDDmPzn+6tsOWVfzi7FsTDmehT94ooutlVJKKRWPRGSlMWZex+XagqWUins+r9XVVTqMwQKodhXqVO1KKaWU6jVNsJRSca8twcJxeILVmjKGvMA+QqGh09qvlFJKqaFrWCRYQ6kbo4ot/S6ogeDztwIgHcZggTVVe77UcKC6ZrDDUkoppdQwNOQTrISEBKqrq/XEWmGMobq6moSEhFiHokaYQLgFy9ZJC1ZC/iQADpRuHtSYlFJKKTU8Dfn7YBUVFbFnzx4qKytjHYoaAhISEigqKop1GGqE8fm8ANidh7dgZRZbE6o07NsMnDCYYSmllFJqGBryCZbT6WTcuHGxDkMpNYIFfOFJLjrpIpgzxkqwApXbBjUmpZRSSg1PQ76LoFJKDbRAuAXL1kkLli0xnRrJwFm/c7DDUkoppdQwpAmWUiruBf1WC1ZnXQQBqt1FpLfsHsyQlFJKKTVMaYKllIp7AZ8PAIer8wlUWlJKdKp2pZRSSvXKgCdYInKmiHwmIttE5EcDvT+llOqrYHia9q5asEzWBPKklvLKqsEMSymllFLD0IAmWCJiB+4FzgKmAxeLyPSB3KdSSvVVyN/1LIIAieGp2itKNw1aTEoppZQanga6BWsBsM0Ys8MY4wOeAM4b4H0qpVSfBP1tXQQ7T7CywjMJNpR/NmgxKaWUUmp4GugEqxAoi3i9J7ysnYhcIyIrRGSF3utKKRULbZNcOLsYg5VdNNUqV7l10GJSSiml1PAU80kujDEPGGPmGWPm5ebmxjocpVQcMuEugk53YqfrbQkpVEkW7jqdql0ppZRS3RvoBGsvUBzxuii8TCmlho6ANcmF053UZZEadzHprTpVu1JKKaW6N9AJ1ifAJBEZJyIu4CLghQHep1JK9Ylp6yKY0HWC1ZJawujgPgLB0GCFpZRSSqlhaEATLGNMAPgO8CqwCXjSGLNhIPeplFJ9JQErwXJ104Il2ePJlgbKD1QMVlhKKaWUGoYcA70DY8xLwEsDvR+llDpiAQ8hI13eaBggMX8ybIaKXRspLsgfxOCUUkopNZzEfJILpZSKNQl68OIEkS7LZIenam/ep1O1K6WUUqprmmAppeKeBLz4xNltmaziqQSNEKrcMkhRKaWUUmo40gRLKRX37EEPXjq/yXAbcSay355PUsO2QYpKKaWUUsORJlhKqbhnC/rw99CCBVCdOI7c1tKBD0gppZRSw5YmWEqpuGcLefBJ9y1YAC3pEykM7cXv8w5CVEoppZQajjTBUkrFPUfQi19cPZazjZqCS4Ic2LVpEKJSSiml1HCkCZZSKu7ZQz78vWjBSimaCUDtrvUDHZJSSimlhilNsJRScc8R8hC095xg5U+YDYB338aBDkkppZRSw5QmWEqpuGcP+Qjaek6wsjKzKCcHW7XeC0sppZRSndMESykV95whL6FetGABVLhLyGjaMcARKaWUUmq40gRLKRX3nMaH6WWC1ZI+iYJAGaFAYICjUkoppdRwpAmWUiruufBhHAm9KmvPm0qC+Cnfrd0ElVJKKXU4TbCUUnHPZXzg7F2ClT7WmkmwYtunAxmSUkoppYYpTbCUUnEtEAiSiBecSb0qXzT5GAC8e9cNZFhKKaWUGqb6lWCJyO0isllE1orI30UkI7y8RERaRWR1+HFfVKJVSqkoa2ltwiEhjCu1V+WT0zIpk9EkVG8Y4MiUUkopNRz1twXrdWCmMWY2sAX4ccS67caYOeHHtf3cj1JKDQhvYx0Axt27BAvgQOJEclu2DlBESimllBrO+pVgGWNeM8a0TaX1IVDU/5CUUmrweJvrAJCEtF5v05o1jcLQfnzN9QMUlVJKKaWGq2iOwboaeDni9TgR+VRE3hWRRV1tJCLXiMgKEVlRWVkZxXCUUqpn3nCSZO9DguUqnA3Avi0rByQmpZRSSg1fPSZYIvKGiKzv5HFeRJn/AgLA4+FF5cAYY8zRwPeBv4lIp2cvxpgHjDHzjDHzcnNz+/+OlFKqD/zhFixHUnqvtxk1aR4AtTtWDURISimllBrGHD0VMMZ8vrv1InIlcDZwmjHGhLfxAt7w85Uish2YDKzob8BKKRVNbV0EE1Mzer3NmHFTqDfJhPbrTIJKKaWUOlR/ZxE8E7gFONcY0xKxPFdE7OHn44FJwI7+7EsppQaCv8XqIpiUmtXrbex2G7td40mt2zxQYSmllFJqmOrvGKx7gFTg9Q7TsZ8IrBWR1cDTwLXGmJp+7ksppaIu2GolWMlpmX3arjF9CsX+nZhgoOfCSimllIobPXYR7I4xZmIXy58BnulP3UopNRhCrY0ApPYxwZL8WSRWPU156SZGT5g1EKEppZRSahiK5iyCSik17BhvA63GhcPl7tN2mePnAnBgqw4tVUoppdRBmmAppeKa3VtPsyT1ebuxU48hYGx49qwdgKiUUkopNVxpgqWUimsubzUN9r51DwRITEpmj72QxOoNAxCVUkoppYYrTbCUUnEtwVdLq7P3MwhGqkqZwujWrVGOSCmllFLDmSZYSqm4lhqsxZ+YfUTb+nJnM4oa6ir2RjkqpZRSSg1XmmAppeKWxx8kwzRAUu4RbZ9aYk10sWfTR9EMSymllFLDmCZYSqm4daCqhhTxYE89sgSraPpxALTsWhnNsJRSSik1jGmCpZSKW9WV5QAkpOcd0faZ2bnsJQ9n5fpohqWUUkqpYUwTLKVU3GqossZOJWfnH3Ed5UmTGdW0OVohKaWUUmqY0wRLKRW3vNVlAGTkjzviOjw5Myg0+2ltqI1WWEoppZQaxjTBUkrFLVO/B4CknLFHXEdCcdtEFx9GJSallFJKDW+aYCml4pa9cR8eXJDY9xsNtxk99VgA6nfqRBdKKaWU0gRLKRXHkjzl1DpGgcgR11FQNJYKMrEdWBvFyJRSSik1XGmCpZSKW2m+ChrdRzaDYBsRYY97ItkNOtGFUkoppfqZYInIEhHZKyKrw48vRqz7sYhsE5HPROSM/oeqlFLREwwZckOV+JJG97uu5qwZFAbKCHpbohCZUkoppYazaLRg3WmMmRN+vAQgItOBi4AZwJnAH0TEHoV9KaVUVFTVNzGKOkJphf2uy1E4B4eE2PvZiihEppRSSqnhbKC6CJ4HPGGM8RpjdgLbgAUDtC+llOqzqvJd2MTgyCzud12jJlt/3mq3f9LvupRSSik1vEUjwfqOiKwVkT+JSNtUXIVAWUSZPeFlSik1JDRWlAL9m6K9zZjxU6kzyYT26UQXSimlVLzrMcESkTdEZH0nj/OAPwITgDlAOfCbvgYgIteIyAoRWVFZWdnXzZVS6oh4q3YDkJ5f0u+6nA47u5wTSa/b2O+6lFJKKTW8OXoqYIz5fG8qEpEHgX+GX+4FIvvdFIWXdVb/A8ADAPPmzTO92ZdSSvVXqN76k5SeVxKV+uozpjG16hlMwIc4XFGpUymllFLDT39nEYycfut8YH34+QvARSLiFpFxwCTg4/7sSymlosnRtJdGkrAlpkWlPhl9FG78VO5cF5X6lFJKKTU89XcM1m0isk5E1gKnADcCGGM2AE8CG4FXgG8bY4L93JdSSkVNQut+ahyjolZf1sR5AFRu1WtJSimlVDzrsYtgd4wxl3Wz7lfAr/pTv1JKDZR0XwVNCf27yXCkkslH0WLceMtWR61OpZRSSg0/AzVNu1JKDVnGGLKDlXiT8qNWZ3Kim1LHOJJqNkStTqWUUkoNP5pgKaXiTkNDI9nSEJWbDEeqz5hOkWcboaD2iFZKKaXilSZYSqm4U12+EyAqNxmO5CieR4q0snvTiqjWq5RSSqnhQxMspVTcaThQCkBiFG4yHGn0nC8AULH2tajWq5RSSqnho1+TXKj+8fv9NNVV0dpUR2tTA76WenwtDQRaGwh4mgj4fWBCSCiACQURE4RQkJDYweFC7C7E6cZmd+FwJ+NKTsOdkklCahbJaVmkpGeR4HbH+m0qNeR4a6ybDKdF4SbDkYpKJlMmBSTsegv4Wadl6qorsDudpKZlRnXfSimllBoaNMEaAJ6WJg7s2U5d+Q5aK3dDwx6kpQqnpxq3r4aUQC2poXoyTBOZYhjI06xm46ZRUmm2peJxpOFzpRNyZ2ASM7ElZ+FMzsadlk1Sei6pmbmkZuRiS84GZ8IARqVUbAVr9wCQPXpc1OveW3A68/b8ldqKPWSOKmpfbkIhPn7mTmat/z82ZJzE/Bufivq+1UHBkMHv9+HzthDwtBLwewl4Wwn4PQSCAYL+EEETQkwIMGAMQghMCIwBsWFsDhAbYnNidzhwOOzYHa7wcyd2uwOHy4XT4cThdOFwuhCbA0Ri/faVUkrFkCZYR8AYQ01lOeU71tO4dzOmaiuJjTtJ9ZSTHaggkwbGApGdj2pJpcGWTrMjk+qk8RxIyMYk5mCSsrAlpOFITMGZmIYzKQ13cjoJyWkkuNzY7Q5sDgdic2B32BGbHUJBAn4vfq+XgK8Vv8+L19OCp7EWX3MtgZY6gi11hDwN4KnH7q3D4a3H5a8no3knKU2NpJtGXNL1QHwPLpptaVZS5rQSM787k5A7g1BCBiRmYk/Owp6chTMpHafTalGzO5zYHE4cTjc2hwu704XdYcchYBPrvCUYMoRMKHweEyIUChE0BhMKYoJ+TDBAKOCHUIBQ0G89Aj6CgQAmYL02IT+hgFW2bRsT9EPQjwmFl4WCEApYr0MhaH9ttQSaUMBaZg62DlqvQ4ix1knbc2OdeBljMAbAtB8riXhuvaabdYe+bv9OddgKwLSfpHU8WZP2RQZBOm4f3q59WZf1HL6vQ+qKqEci/rXKH7r9oSeUEdtJ77aPjN90GufBtZH/HLb8sMWdLx9dv4Ya0shKSOpmX0dm1MLLcSx7hG0v3M78b9wFwJ6tq6l5+vsc612JDztZ9Rujvt+RJBQM0VhfTUN1Oc21FXjrD+BrrMTfXE/I04D4GnH4GnEEmnAGmnEFm0kINZMYasGNF5fx48ZHghhicanIb+wEsBMQB0Hs1kPsBHEQFOthxE5QHITEQchm/WvEjrE5MDZn+F8HJrz+4L9OjC1cTpwYu7WdDRAJ/+Yi/kaZDj+ZDn++MBjC/ztYwkSUbt+g4/LISjpbHvHcmEMjiCgjJhxD+JdvrQpFBGQO/t1sqycyJkDC9Vn/H7L+gpgO24b3dVidXfztONIU2fQhuZYu9tLFX7Mj0Ld30Vno3f897v0eeqqnV/TCRVw74B7H2C9+n6OKM2IdSq9ogtUDT0sTuzavpG77Cti/lvSGLeT7d5NNE9nhMj5jZ78tnxp3IVVpMzBphTizxpAyqoTM0ePIzC8h050Q1Zaq/nb88/mDHGioo766gubaSloaKvE2VBNoriHUUoN4anF663D56kn0NZLStIMcmsikCbf4o/IeYiVkhAA2QtgIhv8NYCeEjZDYCLY9x0ZI7O3/GgQk8j+JXScF5pDnHdcd+lo6lO5YMxw8gWgrbyK262zPh56QdJX0db6vyDKHxGa6Whe5Xc8xdlp3J+u6+g9y2/KOa7s6Kemqnm1ZJ7Ogi236Y/y0Y/go9fMcU/ZXPrzfj7OpnNkN75KGm09m/IRATSlzy58iFAhgc8TXn2BPSxPV+3fRcGA3LdV78NftRRr24Wg5gNtXS3KgjtRQPemmkXQJkt5FPU0k0kISrbYkvLYkvPZkWtyjCDiSMc4kxOkGRwLGnmB1p3a4MY4ExOFCHAnY7XbsdjtiEwR7+KRYMGKD8O8cY8IXVwKYYOjgxZ5gMHxBJ4AJ+THB8MWa8MUdgtbFIQn5w8+DSMiPhAKIsf4lFMRm/NhCAWwmgC0QwGZasZsAdhPETqD9uYO2R4C2dM1BECdBbBK9U/FoCpm2CycHf38dL6IYObxMx78Ohy9vS40O/9t7WP2R20rvt+2Pri6gdaaLaz99qiNasXRdR/d6u4foxDI0v+tq8NTZaqhs9MY6jF4T09WvPAbmzZtnVqwYOrNvffTkbczb8P+wh/8j1kgiZa4JNKVOwGRNJLlgKtklM8grnozN4YxxtAPPHwzR4gvS0tKIp74KX2M1/qZq/K2NmIAv3JLkwwT8ELJalQj6MKEgIQMhAyI2RKwrrYhYs6zYbNaVPJsNbA4Qh3VV1uYEmwOb3YnYHUjEvza7C7E7sDlc2BwO7OF1tnD3HVu4Nc1qAbRbXXnauvTY7dhtgsMm2Gx6RUxFX31tDdsfuJi5rR9Sa1LZlncGJV9ZQm5+MR89fSfHrl9C+VUfM3rslFiHGlWN9TVU7N5C/b6t+Cp3IHWlJDTvIdVbQVaoigyaDtum2SRQbcuixZGBx5WJz51FKDEbkrJxpObiTBtFUsYokjNGkZ6VS1JKutWSH+eMMQQD4Vb+UJCQMeG/s1a6IBEXg0Ss1pLIBoC2Ze3PjUFs1rxXgoSTz3CyeUhLdRfPtXVBKRWHRGSlMWZex+Xxdfm0jzInHsvHDVeTUHwUeZOPZfTYyUy3xe/Ei067jfREG+mJWZCdFetwlBqy0jOzmPvDV/G3NpLmTGR+REtVcsFUWA+VO9cNywSrqbGOvdvWUbd7A8GKzbjrd5Lq2UduoJxMGkmNKNtAEhX20TQkFFCZNJdQSj729EISs4tIHTWGzPwS0tIzSdaT8z4TERxOJzhH/sU9pZQabjTB6sbkuSfB3JNiHYZSaphyJqYetmzMjGMJvSq07PgYTv5qDKLqWds40wNbV9K0dyOmcgvJDdvJ9e4mj2ra0sKAsbHfNooadyFb0qcRSh+LK3c8aaMnMmrMVNKzckmL6TtRSimlBp8mWEopNYjS0rPYYR9DcsXKWIcCQCAQYM/2DVRsW4l/7xqSajZR4NlKHjXt40ybTCL7HMXsTj+GnZmTcBdMI3vsTEaPm0aRK4GibveglFJKxRdNsJRSapBVZBzNrOpX8LQ2k5CYPGj7bW5qYPfmldTvXGVN2lP/GWP8OygRLyVYLVJ7HMXsSZ9Hae4MEsbMYdT4o8gbPZbJ9vjtHq2UUkr1hSZYSik1yJKO+jLJbz/Hp+8/y9GnXzYg+6jav5t9mz6muWw1zsoN5DZtoSi0l2kRk/bscU1kQ9652AtmkzXhGIomH02JO4mSAYlIKaWUig+aYCml1CCb/rkvUfF2Fgkr7sd8/pL22duOhN/nZc+2tVRvW0lg31qS6jZT4NlODnXkhMuUSy4HEiexP/ss3MVHkT9lPnnFk5kWx5P2KKWUUgOlXwmWiCyD9vHOGUCdMWaOiJQAm4DPwus+NMZc2599KaXUSOFwutg+9T85fvP/8u9l/8fnLv5xj9uYUIiKfTup2Lme5rK12Cs2kNm4hTGBXYyTAOMAn3Gw2zGWnRnHsz1vJqljj6Zw2gJGZ+YyeuDfllJKKaWI4n2wROQ3QL0x5pfhBOufxpiZfaljqN0HSymlBkooEGD9b7/I7JaPWJt0HP4p5+DKLEYEfM11eOv2EWoox924h4yWUgoCe0iSgzdZrCadfe4JNGdOw1Ewm+yJx1A0cTZOV39vQ66UUkqp3hjQ+2CJiAAXAqdGoz6llBrpbA4HU69/gX89divTypaS9emHh5UJGBsVthyq3GNYlz0XciaTUjCNvIlHkZM/pn2WP6WUUkoNHVFpwRKRE4HftmVw4RasDcAWoAH4qTHm/S62vQa4BmDMmDHH7Nq1q9/xKKXUcOL3+9i7fSMtdfvBGNzJaWTmjSEzZzRi16GySiml1FDUVQtWjwmWiLwB5Hey6r+MMc+Hy/wR2GaM+U34tRtIMcZUi8gxwHPADGNMQ3f70i6CSimllFJKqeHgiLsIGmM+30PFDuArwDER23gBb/j5ShHZDkwGNHtSSimllFJKjVjRmKP388BmY8yetgUikisi9vDz8cAkYEcU9qWUUkoppZRSQ1Y0OvdfBCztsOxE4Jci4gdCwLXGmJoo7EsppZRSSimlhqyoTdMeDSJSCQy1WS5ygKpYB6EGjX7e8UM/6/ihn3V80c87fuhnHV+G4uc91hiT23HhkEqwhiIRWdHZ4DU1MunnHT/0s44f+lnHF/2844d+1vFlOH3e0RiDpZRSSimllFIKTbCUUkoppZRSKmo0werZA7EOQA0q/bzjh37W8UM/6/iin3f80M86vgybz1vHYCmllFJKKaVUlGgLllJKKaWUUkpFiSZYSimllFJKKRUlmmB1Q0TOFJHPRGSbiPwo1vGo6BGRYhF5W0Q2isgGEbk+vDxLRF4Xka3hfzNjHauKDhGxi8inIvLP8OtxIvJR+Pe9TERcsY5RRYeIZIjI0yKyWUQ2icjx+tsemUTkxvDf8PUislREEvS3PXKIyJ9EpEJE1kcs6/S3LJa7w5/7WhGZG7vIVV918VnfHv47vlZE/i4iGRHrfhz+rD8TkTNiEnQ3NMHqgojYgXuBs4DpwMUiMj22UakoCgA/MMZMB44Dvh3+fH8EvGmMmQS8GX6tRobrgU0Rr/8PuNMYMxGoBf4jJlGpgXAX8IoxZipwFNbnrr/tEUZECoHvAfOMMTMBO3AR+tseSR4BzuywrKvf8lnApPDjGuCPgxSjio5HOPyzfh2YaYyZDWwBfgwQPl+7CJgR3uYP4fP2IUMTrK4tALYZY3YYY3zAE8B5MY5JRYkxptwYsyr8vBHrBKwQ6zP+S7jYX4AvxyRAFVUiUgR8CXgo/FqAU4Gnw0X0sx4hRCQdOBF4GMAY4zPG1KG/7ZHKASSKiANIAsrR3/aIYYx5D6jpsLir3/J5wF+N5UMgQ0RGD0qgqt86+6yNMa8ZYwLhlx8CReHn5wFPGGO8xpidwDas8/YhQxOsrhUCZRGv94SXqRFGREqAo4GPgDxjTHl41X4gL1Zxqaj6HXALEAq/zgbqIv5w6+975BgHVAJ/DncJfUhEktHf9ohjjNkL3AHsxkqs6oGV6G97pOvqt6znbSPb1cDL4edD/rPWBEvFNRFJAZ4BbjDGNESuM9Y9DPQ+BsOciJwNVBhjVsY6FjUoHMBc4I/GmKOBZjp0B9Tf9sgQHntzHlZSXQAkc3gXIzWC6W85PojIf2EN7Xg81rH0liZYXdsLFEe8LgovUyOEiDixkqvHjTHPhhcfaOtSEP63Ilbxqag5AThXREqxuvqeijVGJyPcrQj09z2S7AH2GGM+Cr9+Givh0t/2yPN5YKcxptIY4weexfq96297ZOvqt6znbSOQiFwJnA1cYg7evHfIf9aaYHXtE2BSeDYiF9ZguhdiHJOKkvAYnIeBTcaY30asegG4Ivz8CuD5wY5NRZcx5sfGmCJjTAnW7/gtY8wlwNvAV8PF9LMeIYwx+4EyEZkSXnQasBH9bY9Eu4HjRCQp/De97bPW3/bI1tVv+QXg8vBsgscB9RFdCdUwJCJnYnXvP9cY0xKx6gXgIhFxi8g4rIlNPo5FjF2Rg8mg6khEvog1dsMO/MkY86vYRqSiRUQWAu8D6zg4LucnWOOwngTGALuAC40xHQfYqmFKRE4GbjLGnC0i47FatLKAT4FLjTHeGIanokRE5mBNaOICdgBXYV1Q1N/2CCMivwAWY3Uf+hT4BtZYDP1tjwAishQ4GcgBDgA/B56jk99yOMm+B6ubaAtwlTFmRQzCVkegi8/6x4AbqA4X+9AYc224/H9hjcsKYA3zeLljnbGkCZZSSimllFJKRYl2EVRKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKqSFCREpExIiII9axjHQicqWILI91HEONiCwSkc9iHYdSSg1nmmAppZQa1kRkiYj4RaQp4nFLrOMajowx7xtjpkS73vCFg+aIz+ehaO9DKaWGCr1KqpRSUSIiDmNMINZxxKllxphLYx3EQBkh362jjDHbYh2EUkoNNG3BUkqpfhCRUhH5oYisBZpFxCEix4nIv0WkTkTWiMjJEeXfEZH/FZGPRaRBRJ4Xkawu6r5KRDaJSKOI7BCR/+yw/jwRWR2uZ7uInBleni4iD4tIuYjsFZH/ERF7D+9jgoi8JSLVIlIlIo+LSEbEuhoRmRt+XSAilW3vS0TOFZEN4ff7johM63B8bhKRtSJSLyLLRCSh70e670TkR+Hj0igiG0Xk/C7KiYjcKSIV4WO5TkRmhte5ReQOEdktIgdE5D4RSezl/h8Jl389HMO7IjI2Yv1dIlIW3udKEVkUsW6JiDwtIo+JSANwpYgsEJEPwse5XETuERFXxDZGRL4lIlvD+/vv8Gf37/A+nows30XMJ4vInt68P6WUUp3TBEsppfrvYuBLQAaQB7wI/A+QBdwEPCMiuRHlLweuBkYDAeDuLuqtAM4G0oCrgDsjkpwFwF+Bm8P7PREoDW/3SLjeicDRwOnAN3p4DwL8L1AATAOKgSUAxpjtwA+Bx0QkCfgz8BdjzDsiMhlYCtwA5AIvAf/ocCJ/IXAmMA6YDVzZaQAiC8PJQ1ePhT28h462A4uAdOAX4fhHd1LudKzjNzlc9kKgOrzu1+Hlc7COZyFwax9iuAT4byAHWA08HrHuk3C9WcDfgKc6JJ/nAU9jfb6PA0HgxnBdxwOnAd/qsL8zgGOA44BbgAeAS7E+z5lY39UjFk6Uu/p8/tDD5u+JyH4ReVZESvoTh1JKDWWaYCmlVP/dbYwpM8a0Yp3MvmSMeckYEzLGvA6sAL4YUf5RY8x6Y0wz8DPgws5amIwxLxpjthvLu8BrWAkDwH8AfzLGvB7ez15jzGYRyQvv6wZjTLMxpgK4E7iouzdgjNkWrstrjKkEfgucFLH+QWAb8BFWYvhf4VWLgRfD2/qBO4BE4HMdjs8+Y0wN8A+spKKzGJYbYzK6eXQ3KcWFHU72C4wxT4X3GzLGLAO2Ags62dYPpAJTATHGbDLGlIuIANcANxpjaowxjcD/6+lYdvCiMeY9Y4wX65gdLyLF4ff7mDGm2hgTMMb8BnADkeOfPjDGPBeOv9UYs9IY82G4fClwPxGfUdhtxpgGY8wGYD3wmjFmhzGmHngZK+E+YsaY2d18Ph2TvUgnASVYx3gf8E/RyVyUUiOU/nFTSqn+K4t4Phb4moicE7HMCbzdRfld4fU5HSsVkbOAn2O1oNiAJGBdeHUxVmtRR2PD9ZVb+QGEty3rpGzkvvKAu7ASuNTwNrUdij0IvABcE04YwGrx2tVWwBgTEpEyrJaeNvsjnreEt4m2JzuOwRKRy4HvY53YA6TQyXE2xrwlIvcA9wJjReRZrJbHBKxjvjLiWArQbXfLDtqPuzGmSURqsN5/mYjchJUoFwAGq6Uyp7Ntw+9nMlbiOy8clwNY2WF/ByKet3byOr8PsUeNMea98FOfiFwPNGC1lK7reiullBqetAVLKaX6z0Q8L8NqoYq8sp9sjPl1RJniiOdjsFpQqiIrFBE38AxWi1CeMSYDK6FqO9MvAyZ0EksZ4AVyIvafZoyZ0cN7+H/h9zHLGJOG1RJ3MKsQSQF+BzwMLJGD48b2YSV1beUk/P729rC/w4g1RXhTN49FPdfSXtdYrITwO0B2+Pitj3xPkYwxdxtjjgGmYyW0N2N9Jq3AjIhjmW6MSenD22r/rMPHMAvYF34vt2B1R8wMx1ffIb7I7xXAH4HNwKTwZ/STrt7PQBFrrF1Xn899fajKMMixK6XUYNEESymlousx4BwROUNE7CKSEJ44oCiizKUiMj08numXwNPGmGCHelxYXcYqgUC4Nev0iPUPA1eJyGkiYhORQhGZaowpx+pK+BsRSQuvmyAiHbuSdZQKNAH1IlKIlWBEugtYYYz5BtYYs7aT6SeBL4XjcAI/wErw/t3TgeooPEV4SjeP9/tQXTLWSXwlWBOGYI1BOoyIzBeRY8PxNwMeIGSMCWElaXeKyKhw2UIROSNiWyMRk5h04ovhsWUurLFYHxpjyrCOdyAcn0NEbsVqwepOKlbLT5OITAWu66F81BljZnTz+Vzb2TYiMkNE5oR/DynAb7AS8E2DGrxSSg0STbCUUiqKwifP52G1LlRitSjdzKF/bx/FmohiP1Y3tO91Uk9jePmTWF31vo7VPa9t/ceEJ77Aavl4l4MtSZdjJWgbw9s+jTVuqju/AOaG63oReLZthYichzVJRdsJ/feBuSJyiTHmM6zWrt9jtficA5xjjPH1sL8BZYzZiHUi/wFWN7lZwL+6KJ6GlUjVYnV3rAZuD6/7IdbYsw/Fms3vDcLjpMJjqRrpvpvb37C6edZgTT7R1o3xVeAVYEt4nx566MaJ1W3x6+F9Pggs66H8UJGHFWsDsAOry+bZ4TF7Sik14ogxHXsgKKWUGigi8g7wmDFGb7Q6zInIpVjdB3/cxfpHgD3GmJ8OamBKKaViSie5UEoppY6AMeaxWMeglFJq6NEugkopFSfEuultfycnUMOciPyki+/By7GOTSmlRgLtIqiUUkoppZRSUaItWEoppZRSSikVJUNqDFZOTo4pKSmJdRhKKaWUUkop1a2VK1dWGWNyOy4fUglWSUkJK1asiHUYSimllFJKKdUtEdnV2XLtIqiUUkoppZRSUaIJllJKKaWUUkpFiSZYSinVjWZvgGdX7cEbCMY6FKWUUkoNA0NqDFZn/H4/e/bswePxxDoUNcwkJCRQVFSE0+mMdShqGPvX0l/zxZ2/45MdP2fhV78b63CUUkopNcQN+QRrz549pKamUlJSgojEOhw1TBhjqK6uZs+ePYwbNy7W4ahhLLlyNQniJ33rM4AmWEoppZTq3pDvIujxeMjOztbkSvWJiJCdna0tn6rfHJ4aACZ4NhL0+2IcjVJKKaWGuiGfYAGaXKkjot8bFQ2pwVoAksTL3s/0NhJKKaWU6t6wSLCUUioWjDGkmwZ2uKcCcGD7mhhHpJRSSqmhThOsXhARfvCDH7S/vuOOO1iyZEnsAorw4YcfcuyxxzJnzhymTZvWHtc777zDv//9737VfeaZZ5KRkcHZZ58dhUiVGn68/iDZ1NOQfTR+YydwYFOsQ1JKKaXUEKcJVi+43W6effZZqqqqolqvMYZQKNSvOq644goeeOABVq9ezfr167nwwguB6CRYN998M48++mi/6lBqOGtsrCNB/IRS8thnLyChbmusQ1JKKaXUEDfkZxGM9It/bGDjvoao1jm9II2fnzOj2zIOh4NrrrmGO++8k1/96leHrKusrOTaa69l9+7dAPzud7/jhBNOYMmSJaSkpHDTTTcBMHPmTP75z38CcMYZZ3DssceycuVKXnrpJe655x5efvllRISf/vSnLF68mHfeeYclS5aQk5PD+vXrOeaYY3jssccOG1dUUVHB6NGjAbDb7UyfPp3S0lLuu+8+7HY7jz32GL///e+ZOnVql3Fu376dbdu2UVVVxS233MI3v/lNAE477TTeeeedbo/NU089xS9+8Qvsdjvp6em89957eDwerrvuOlasWIHD4eC3v/0tp5xyCo888gjPPfcczc3NbN26lZtuugmfz8ejjz6K2+3mpZdeIisriwcffJAHHngAn8/HxIkTefTRR0lKSjpkv8cddxwPP/wwM2ZYn93JJ5/MHXfcwbx587qNV6m+aK45QC5Aci7ViePIbdkW65CUUkopNcRpC1Yvffvb3+bxxx+nvr7+kOXXX389N954I5988gnPPPMM3/jGN3qsa+vWrXzrW99iw4YNrFixgtWrV7NmzRreeOMNbr75ZsrLywH49NNP+d3vfsfGjRvZsWMH//rXvw6r68Ybb2TKlCmcf/753H///Xg8HkpKSrj22mu58cYbWb16NYsWLeo2zrVr1/LWW2/xwQcf8Mtf/pJ9+/b1+rj88pe/5NVXX2XNmjW88MILANx7772ICOvWrWPp0qVcccUV7bP5rV+/nmeffZZPPvmE//qv/yIpKYlPP/2U448/nr/+9a8AfOUrX+GTTz5hzZo1TJs2jYcffviw/S5evJgnn3wSgPLycsrLyzW5UlHnabJmEHQmZ+DNnERBqByvpyXGUSmllFJqKBtWLVg9tTQNpLS0NC6//HLuvvtuEhMT25e/8cYbbNy4sf11Q0MDTU1N3dY1duxYjjvuOACWL1/OxRdfjN1uJy8vj5NOOolPPvmEtLQ0FixYQFFREQBz5syhtLSUhQsXHlLXrbfeyiWXXMJrr73G3/72N5YuXdppq1N3cZ533nkkJiaSmJjIKaecwscff8yXv/zlXh2XE044gSuvvJILL7yQr3zlK+3v6bvfte4XNHXqVMaOHcuWLVsAOOWUU0hNTSU1NZX09HTOOeccAGbNmsXatWsBKwn76U9/Sl1dHU1NTZxxxhmH7ffCCy/k9NNP5xe/+AVPPvkkX/3qV3sVr1J94fdaFwYcriSc+VOx7zHs3r6ecTMWxDgypZRSSg1V/U6wRKQY+CuQBxjgAWPMXSKyBPgmUBku+hNjzEv93V8s3XDDDcydO5errrqqfVkoFOLDDz8kISHhkLIOh+OQ8VWR92NKTk7u1f7cbnf7c7vdTiAQ6LTchAkTuO666/jmN79Jbm4u1dXVh5XpKk44fDrzvkxvft999/HRRx/x4osvcswxx7By5cpuy0e+J5vN1v7aZrO1v78rr7yS5557jqOOOopHHnmk04SxsLCQ7Oxs1q5dy7Jly7jvvvt6HbNSvRX0tQJgdyeQVjwTVkD97vWgCZZSSimluhCNLoIB4AfGmOnAccC3RWR6eN2dxpg54cewTq4AsrKyuPDCCw/psnb66afz+9//vv316tWrASgpKWHVqlUArFq1ip07d3Za56JFi1i2bBnBYJDKykree+89Fizo/cnbiy++iDEGsLoe2u12MjIySE1NpbGxscc4AZ5//nk8Hg/V1dW88847zJ8/v9f73759O8ceeyy//OUvyc3NpaysjEWLFvH4448DsGXLFnbv3s2UKVN6XWdjYyOjR4/G7/e319OZxYsXc9ttt1FfX8/s2bN7Xb9SvRX0t7VgJZBXMhMAf4VOdKGUUkqprvU7wTLGlBtjVoWfNwKbgML+1jtU/eAHPzhkNsG7776bFStWMHv2bKZPn97eknLBBRdQU1PDjBkzuOeee5g8eXKn9Z1//vnMnj2bo446ilNPPZXbbruN/Pz8Xsfz6KOPMmXKFObMmcNll13G448/jt1u55xzzuHvf/87c+bM4f333+8yToDZs2dzyimncNxxx/Gzn/2MgoICwEr+vva1r/Hmm29SVFTEq6++CljdEtvGW918883MmjWLmTNn8rnPfY6jjjqKb33rW4RCIWbNmsXixYt55JFHDmm56sl///d/c+yxx3LCCScwderU9uUvvPACt956a/vrr371qzzxxBPtMycqFW0hX1uClUh6ehoVZGKrK41tUEoppZQa0qSt9SMqlYmUAO8BM4HvA1cCDcAKrFau2u62nzdvnlmxYsUhyzZt2sS0adOiFqM6VMfZDkca/f6o/vjwhQc5btVNlF/6LqMnzmHD/3wOu93G1B8vj3VoSimllIoxEVlpjDlslrWozSIoIinAM8ANxpgG4I/ABGAOUA78povtrhGRFSKyorKysrMiSikVEyG/NQbL6bLGLjYlFZLl6/0sm/HAGMMrTz/ImjeWxjoUpZRSakiISoIlIk6s5OpxY8yzAMaYA8aYoDEmBDwIdDqwyBjzgDFmnjFmXm5ubjTCUX2wZMmSEdt6pVR/Gb8XAKfbug+bP20sOaEaAl6dqr3N9gMNnLn+Jo5afi2hLibiiUdrd1fx6l3/ScWONbEOZcgIhQyPPfE47368oufCceT9ddtZ/uCNhDzdz0CslBo++p1giTXl3MPAJmPMbyOWj44odj6wvr/7UkqpwWSCVoLlSrASLEf2eGxiqNitE1202b3mrfbnpatei2EkQ8unLz3IGbVP0PTczbEOZchYsb2cSzd/i5NeOg3TUhPrcIaMHU//jIV7/0TpG/fHOhSlVJREowXrBOAy4FQRWR1+fBG4TUTWicha4BTgxijsSymlBk94FkGX2+oimJw/EYCavZ/FLKQhZ//Ba2eN2z6MYSBDy+SqNwFIb9oGURzrPJzt3rah/fmB9e/ELpAhpL7Vz/FmNQBm2+uxDUYpFTX9vg+WMWY50NmNk4b9tOxKqTgXsBIsu9NKsHLHWLNath7YHrOQhppgUxUhhAqTiVRuinU4Q0aqvxoEskPV+Gt24cwuiXVIMefbv7n9ee3Wj8hf8JUYRjM07KpqYpJY48/z69dZyXgf7kWplBqaojbJhVJKjTgBHwFjA7t1LWpUfhHNxo2pKY1tXEOItNbQJCmUuSeQ0ahdJwGavQGyqWOvzeopv2/r6tgGNEQkN1n3g9xl8nBVrI5tMENEXV0dieLjgOSSbJowDTqJjlIjgSZYvfTcc88hImzevLnLMqWlpcycOTNq+/zss884+eSTmTNnDtOmTeOaa64BrJsEv/RS/xoIr776akaNGhXVeJUaaSToxSeu9tc2u40D9nzcjbtiGNXQkuCrpdmeTlPaREYHyiAUjHVIMVfV2Eo29RzItuZ2atqjQ5AB0jz7qJMMtjunkNasvyGApppyAPZlzgegcffaWIajlIoSTbB6aenSpSxcuJClSzufijgQhdmzgsFDT0y+973vceONN7J69Wo2bdrEd7/7XSA6CdaVV17JK6+80q86lBrpJOjBh/OQZXXuQtI9e2MU0dCTFKynxZGBZE3ASYCmSj1xrq2uwCVBEgtmUGnSkcquL8zFE0egmVZ7Mi2pY8gKHICAL9YhxZyvfj8AoZITAWgo02RcqZGg32OwBtXLP4L966JbZ/4sOOvX3RZpampi+fLlvP3225xzzjn84he/AOCdd97hZz/7GZmZmWzevJnXXnuNQCDAJZdcwqpVq5gxYwZ//etfSUpK4s033+Smm24iEAgwf/58/vjHP+J2uykpKWHx4sW8/vrr3HLLLVx00UXt+y0vL6eoqKj99axZs/D5fNx66620trayfPlyfvzjH3P22Wfz3e9+l/Xr1+P3+1myZAnnnXcejzzyCH//+9+pr69n7969XHrppfz85z8H4MQTT6S0tLTb9/3uu+9y/fXXAyAivPfee6SkpHDLLbfw8ssvIyL89Kc/ZfHixbzzzjv8/Oc/JyMjg3Xr1nHhhRcya9Ys7rrrLlpbW3nuueeYMGEC//jHP/if//kffD4f2dnZPP744+Tl5R2y34suuojLLruML33pS4CVDJ599tl89atf7d1nqlSUSNCHXw5NsDypY8hrWYEJhRCbXqNKCdbjSS4mMW8ibIGq3Z+Rkjc+1mHFVGO11SqRkl3AHlshadriCYAr2ILPngxZE7DXhgjUlOIYNTnWYcWUv9EafzVq/GzqVybhq9gW44iUUtGgZwe98Pzzz3PmmWcyefJksrOzWblyZfu6VatWcdddd7FlyxbA6tb3rW99i02bNpGWlsYf/vAHPB4PV155JcuWLWPdunUEAgH++Mc/tteRnZ3NqlWrDkmuAG688UZOPfVUzjrrLO68807q6upwuVz88pe/ZPHixaxevZrFixfzq1/9ilNPPZWPP/6Yt99+m5tvvpnm5mYAPv74Y5555hnWrl3LU089xYoVvb//yB133MG9997L6tWref/990lMTOTZZ59l9erVrFmzhjfeeIObb76Z8nLrZGLNmjXcd999bNq0iUcffZQtW7bw8ccf841vfIPf//73ACxcuJAPP/yQTz/9lIsuuojbbrvtsP0uXryYJ598EgCfz8ebb77ZnmwpNZhsQR/+iC6CAJJVQqL4qK3YE6OohpZ004DflUlG4SQAmvbrOKxgg9Uq4c4YTUNCARna4gmAO9iC355MUp41G2fVbm3ZM03hBGt0EWVmFFK/O8YRKaWiYXi1YPXQ0jRQli5d2t6Sc9FFF7F06VKOOeYYABYsWMC4cePayxYXF3PCCScAcOmll3L33XfzhS98gXHjxjF5snWl7oorruDee+/lhhtuAKyEojNXXXUVZ5xxBq+88grPP/88999/P2vWHH7Tytdee40XXniBO+64AwCPx8Pu3dYf6S984QtkZ2cD8JWvfIXly5czb968Xr3vE044ge9///tccsklfOUrX6GoqIjly5dz8cUXY7fbycvL46STTuKTTz4hLS2N+fPnM3q0Nah7woQJnH766YDV8vb2228DsGfPHhYvXkx5eTk+n++QY9fmrLPO4vrrr8fr9fLKK69w4oknkpiY2KuYlYome8hLoEOClThqAmy2Tg6z8sfEKLKhwR8IkkEjZQmZ5BdPxGfs+Kt2xDqsmDMttQC4U7PxpY0h88Cb1pT/4dko41WCaSbozCJ7zFT4NzTs+4z8WAcVY05PNQDutDwqHaPJbS6LcURKqWjQFqwe1NTU8NZbb/GNb3yDkpISbr/9dp588klM+L4mycnJh5SXDtOrdnzdmY51RCooKODqq6/m+eefx+FwsH794f2zjTE888wzrF69mtWrV7N7926mTZt2xPG0+dGPfsRDDz1Ea2srJ5xwQrcTfAC43e725zabrf21zWZrH6P23e9+l+985zusW7eO+++/H4/Hc1g9CQkJnHzyybz66qssW7asywRUqYFmC/kIdOgimFE4BYCm/dqVp6m5GbcEICGD9OQEymUUjvrSWIcVc0FvEwAJKenYs0qwYWg8EN+JpzGGRNNK0JlCQcEYGk0igUq93YHD14gPFzgTaE4qIstXDqFQrMNSSvWTJlg9ePrpp7nsssvYtWsXpaWllJWVMW7cON5///1Oy+/evZsPPvgAgL/97W8sXLiQKVOmUFpayrZt1gnZo48+ykknndTjvl955RX8fj8A+/fvp7q6msLCQlJTU2lsbGwvd8YZZ/D73/++Pen79NNP29e9/vrr1NTUtI+Damtd643t27cza9YsfvjDHzJ//nw2b97MokWLWLZsGcFgkMrKSt577z0WLFjQ6zrr6+spLCwE4C9/+UuX5RYvXsyf//xn3n//fc4888xe169UNNlDPgK2Q1uw8sdMImSEgLbU0NJUD4DdbV0kqnKOJqVZu06acILlSkw92B2uLL67Trb6gyTjwbhSyEl1U0YeTk3GcQSb8disHhrB9LE4CUDT/hhHpZTqL02werB06VLOP//8Q5ZdcMEFXc4mOGXKFO69916mTZtGbW0t1113HQkJCfz5z3/ma1/7GrNmzcJms3Httdf2uO/XXnuNmTNnctRRR3HGGWdw++23k5+fzymnnMLGjRuZM2cOy5Yt42c/+xl+v5/Zs2czY8YMfvazn7XXsWDBAi644AJmz57NBRdc0N498OKLL+b444/ns88+o6ioiIcffhiA++67j/vuuw+A3/3ud8ycOZPZs2fjdDo566yzOP/885k9ezZHHXUUp556Krfddhv5+b3v5LFkyRK+9rWvccwxx5CTk9O+fMWKFXzjG99of3366afz7rvv8vnPfx6Xy9VZVUoNOEfIR1DchyxLSEzigGRj15NDmsMJliMxBYCmpGJy/HofH8IJlrhTyC6yxqY1x3mLZ5MnQCqt4E5BRKhyFZLaouONHIEWfLYkAJw5JQA0lcf3d0WpkWB4jcGKgbaxQ5G+973vtT8/+eST25+XlJR02Y3utNNOO6RlqU13M/n99re/5be//e1hy7Oysvjkk08OWXb//fd3WkdRURHPPffcYcu7ShAjE7+2iSk6uv3227n99tsPWXbyyScfcizeeeedTtedd955nHfeeYfVOW/ePB566KH2106nk5qamk73r9RgcRgf/vDJT6RqVyEpLdpS42m2WtKdiWkABDNKSK1vJthcgz05K5ahxZT4mwlgw+FIYHRRCR7jJFC9M9ZhxVRTSyujxI8twfquNCePIafuQwgG2m/kHY9cwRb8LqsFKyV/EqyBun1bSJlyYowjU0r1h7ZgKaVUFxwhH0G7+7DlzUlF5GpLTXuC5UpMBcCRbU1aE++zw9n8zXhIBBFSElzskzwcDfHdWtMabu20ua3vSiijBAdBQvXxfaHCbVoJOKyLODlFEwgZobVCx6YpNdxpgjWCXXnlldxzzz2xDkOpYcuJj5Dt8AQrkF5CFvV4muoGP6ghxNfaAIA72WqVSB1tdYer2xff443sgRY8toMzBta4RpPSGt+JRNtvxRFOxt25VjJeszd+vyvGGNyhVgIOawxjUW4G5WRhavS+aUoNd8MiwWqbvEGpvtDvjeovp/Fj7IePAXTmWjfSrdi9ZbBDGlL8rdZYo8RwgpVbbN2KwlMZ3xOAOAPNeCO6lrYkFZHjL4c4/pvkbbFasJxJ1nclrcBKxuvjOMHyBkIk04pxWglWWoKTcsnD1RjfrZ1KjQRDPsFKSEigurpaT5ZVnxhjqK6uJiEhvu87o/rHZfyEOukieLCl5rPBDmlICXmsLoLuJKtVIj83h2qTCjWlMYwq9hzBFvz2gwlWMGMsKbTgb47fcaW+Fqu105WUAUB+0UQCxoYnjmfjbPIGSBIvxnXwVi117kLS9cbUSg17Q35kaVFREXv27KGysjLWoahhJiEhgaKioliHoYYxFz5wHJ5g5Y6ZCoA33u9t5GsGICHcguWw26iw5+Nqiu/ucK5QK37XwQTLlTMOSqGqbAujpx0fu8BiKBBOsBJSrO9KQVYK+8hBauO3O1yLN0gqHryulPZlnpQiMqtfB38rOBNjGJ1Sqj8GPMESkTOBuwA78JAx5td92d7pdDJu3LgBiU0ppboSChlcBDCdtGBl54yi3iRDXXzPDIfP6iJodx88Qax3FzDGG7/dvgASQi0EHJntr1NHW/fCqtsbvwlW0GMlWIkpGcDBZDy7uSyGUcVWkzdAPq3URvx+yCyBagjW7MKeNzVmsSml+mdAuwiKiB24FzgLmA5cLCLTB3KfSikVDb5AELf4O23BEhEOOEaT2BTnYyXCLVhEdHHypBSTG6yAUDBGQcVegvEQchw8JqPGTAGgtSJ+WzzbupO6wmOwABoTC8nwlscqpJhrbW3BJUFsEQmWOzy+s3ZPfHc/Vmq4G+gxWAuAbcaYHcYYH/AEcPhNkJRSaojxelutJ50kWAD1CUVkeuN7qnabvwUPLrDZDy7MHIuTAM1V8dky4Q9aExeEIpLOUdk51JhUpLY0doHFmtdKsCQ8TTuAP20Mmaau/cbM8aa12WrVsyccPCYZBdZEMQ1xfmNqpYa7gU6wCoHI/8ruCS9TSqkhzRdOsMTR+UQpvtQxjApWYIL+wQxrSLEFWvDIoeNEEsLTb1eVxecV+BZvkCQ8EDGuxmYT9ttHk9AUn0kn0N6dlIgEy55VAkDD/vi871PbxB/OxIPHJL+gmBbjxh/Hk38oNRLEfBZBEblGRFaIyAqdyEIpNVT4Pd0nWJI9DqcEqd4XvydC9kALXjn0+GQUhq/Al8fnFfhmr49k8SIRLVgADQmFZHjjd3Y4m68JLy6wO9uXJedbY9Oqy+Lzdge+VqtVz5l0MMEanZFImRmFvS7Oux8rNcwNdIK1FyiOeF0UXtbOGPOAMWaeMWZebm7uAIejlFK94/d5ALC5Ou8imJRnnRxWxenJIYAz2ILPdmgLVn7xRIJG8FfF5wQgLU1Wq4REdPsC8KaOITdYgQn4YhFWzNkDzYe1dmYXWcl404H4bMHytx4+Ls1ht1HhHE1SsyZYSg1nA51gfQJMEpFxIuICLgJeGOB9KqVUvwXCXQRtXbRgZRZZExe07I/fGfOcwRZ89kNPmtNTktgvOdjr4/ME8eC4mpRDlkv2OBwSouFAaQyiij1noBlvxL3BAAoLCmkyCYSq4zMZb5v4IyEiwQJoSiwi2xffN6ZWargb0ATLGBMAvgO8CmwCnjTGbBjIfSqlVDT4feEEy9V5gpVfNA6fsROM05NDsO73FHAcetIsIlQ78klqic/xRm3jahwdWrCSRlktnpVxOjbNSrAO7TaZ5HayT/JwNsRnMh70WOPSnB0SLH/aWNx4oakiFmEppaJgwMdgGWNeMsZMNsZMMMb8aqD3p5RS0RAMdxG0d3GzT7fLxX5bHs6G+L1RakKolWCHVgmwpt/O9MXn9Nve9okLDj1pzgx3h2uO09nhXKEWAh0SLIA6dwEpnvgcmxZqmz3RdWhrpz3bmqq9pSI+vytKjQQxn+RCKaWGokC4BcvexRgsgGpXIWmtewYrpCHHbbwEnYefNAfSxpBjagl5W2IQVWwdHFdzaAtWQfF4vMZBME5nh0sMtRDo5LvSmlxMbmB/fHaHa0+wDj0uyfkTAKjdE7/jO5Ua7jTBUkqpToTaWrBcnbdgAbQkFzEqEJ9jJUIhQyKtGMfhLVj2bGuq9pp98XcFPhhOsNzJhyZYiW4n5TIKRxy2eAZDhkTTSqiTBMtkjCERL566/TGILLbE13kLVnbRREJGaI3TyT+UGgk0wVJKqU4E/VaC5ehiDBaAyRxHCi0018XfLSZa/UGS8WJch580J+dZV+Br9sbfBCDBtokLktMPW1ftKiQ1Dls8m30BUsSDcaUeti5hlPVdqdwdf2PTbIFwC6/z0IsUxbmZlJNFqCZ+x3cqNdxpgqWUUp0I+q0ugo5uWrDcudbEBQd2bRqUmIaSZo+XpE7u9wQHp99ujsMbyLaNq0lMTjtsXUtyEbn++GvxbPYGSKEV3CmHrUsrmARAXRy2dtr9TXgkAWyHnoqlJ1qTf7gb43PyD6VGAk2wlFKqEybcRdDh7jrBygonEnV74+/qe2uzlUhIJyfNeQXFtBpXXF6BN96243J4a00wo4QUWvA2Vg12WDHV1BJOxjs5JvljrN+QrzL+xqY5Ai14bYd3sRURal0FpHnir7VTqZFCEyyllOpEKOAFwNVNgjV6/DRCRvAfiL/B6G2z5dk6SbDcTgfltjxccTj9tmkbV9PJeCNXjjU7XNXuzYMZUsw1N9cDYE88vFUvMz2NCpOJ1MXf2DRHsPWw+8i18aQUkxmsAV/8TRSj1EigCZZSSnUmPAbL6e56DFZSUgrlMgpnXfx1hWtLsOyJhydYANWuItI98XcvLJuvGR8OcLgOW9fWHa5+X3yNTfM21QHgSDy8BUtEqHLmk9gcf98Vd6iFQCe3OQBrfCdAqDb+Ek+lRgJNsJRSqjN+68qxq4sEok2Vu5j0lvg7CfK2hm+SmtD58WlOGUteYB+EQoMZVsw5/E20yuGtVwCjxkwBwBNn3eF8zeF7gyUd3oIF1n3Tsnz7BjOkISEh1HLYjbrbuHKt1s76vfHXOq7USKAJllJKdULCk1y4Ejo/WW7TnDqO0YE9mFBwMMIaMoLtN9Q9vFUCIJQ5Hjd+PDXx1U3QGWjE08kNdQFyszKpMBnYauNrbFpba6crKaPT9f60seSEqgj6vYMYVWx5A0GSaSXo7Pz3kxFu7Wwoj7/JP5QaCTTBUkqpzvibaTFuxGbvvlzOJJLwUrs/vlqxAq3WuBpXUman6935VmtNZenGQYtpKHAFm/F2kWCJCJWOfBKb4qs7XDD8XUnoZGZFAHv2eOxiqCyLn9aaZm+QVFoIdjJ1PUD+6CIaTSK+OL0xtVLDnSZYSinVCVugFY+4eyyXWDANgMrS9QMd0pBi2hKslIxO12ePsY5Lw574msI+IdiMz951t9L6xCIyvXsHMaLY87dY9wZL7OK7kjzaSsZrd8dPMt7sDZAqLRh350lnYWYSZWYU9rrSwQ1MKRUVmmAppVQnbIEW6x41PcgdOwOA5r3xNTNcW6tEUlrnLVjFY8bTYtz4K+Ori1NiqIWAs+sEy5c6lpxQNSbcBTUeBDxWF0FHJ7MIAmSXTAfAsz9+WrCaPH5SaUUSOj8mLoeNCsdokpvjq4utUiOFJlhKKdUJe6AVXy9asEYXjaPJJBCqip+TQwATPmlOSOk8wUpOcLLHNhpXffyMNzLGkExzl92+AMieiE0MdXvi595pxmO1YNHJfbAA8vMKqDGpUBM/yXhraxNOCSIJ6V2WqU8eS7ZvLwT9gxiZUioaNMFSSqlO2IOt+Gxd3wOrvZzdxl57EYkN8ZNIAOBtwI8DHF238tW4i8lojZ+xaS2+ICm0YrpIJACSCqYCUBNH3eHEY7V20kV3OLtN2GcvJLkxfn5DnsY6AOxJXSdYgcyJOAhiaksHJyilVNRogqWUUp1wBj34bT13EQSoSxpLtie+uvLYfA00SxKIdFnGk1ZCbvAABAODGFnsNHn8pNDaZSIBkD3W6g7n3R8/XUodvnqru20n9wZrU5s4huw4um9aS0Mt0HULMIA7zxqbFm/jGJUaCTTBUkqpTrhCrQTsPbdgAXjTxzMqVEnQ2zzAUQ0dDl8jrbbup7CX7Ik4CVIXJ1NNNzU14pBQl+NqAApH5VJusqA6Po4JgMvfQIut62MC4EkbT7apae96OtK1NtUAkJzadYKVGR7fWVcWP62dSo0U/UqwROR2EdksImtF5O8ikhFeXiIirSKyOvy4LyrRKqXUIHGFPL1OsByjpmATw4GdGwY4qqHDGWjC281seQApBZMBqCyNj+PS0midNNsTu+72leC0s9deSFJD/Ey/nRBswOPoZlwaILnh+z7tjY+xad6mOgASu0mwxhQUUGXS8FfE1/hOpUaC/rZgvQ7MNMbMBrYAP45Yt90YMyf8uLaf+1FKqUHlNh5CjqRelU0vtqYkr9kdH4kEgDvYjM/RfYLVNsNi0774OGlurq8GwN3FdORt6pNKyPbuBmMGIarYSwo24nN1nXRC5FTt8fEbCrRY49K6S8YLMhIpZTSu2u2DFZZSKkr6lWAZY14zxrR1rv8QKOp/SEopFXtuvBhn71qwCsbPBMCzPz4SCYDEUBNBZ/etEgUFRTSYJExVfHSHa62rACApPa/bcoHMCaSaZkJNlYMRVkz5gyFSTDOBHhKs3DFTCBmhNU6majctVmsniRldlrHbhErXGNJbSgclJqVU9ERzDNbVwMsRr8eJyKci8q6ILOpqIxG5RkRWiMiKysqR/x8bpdTwkGi8vW7ByszIoJwc7HEyzXQoZEg1TQTd3Z80Oxzh7nCN8dEdzt9o/TcsNTu/23Ku8OQFVbtG/s2p61v9ZEgToYSMbssVjcpmr8nBFie/IbvHau0kObfbcq1p40gP1UFr3YDHpJSKnh4TLBF5Q0TWd/I4L6LMfwEB4PHwonJgjDHmaOD7wN9EpNMRrsaYB4wx84wx83Jzu/9Do5RSg8Hj9eEWPzZ37xIsgApXMWlNpQMX1BDS5PWTRQPBxOwey9YmlcTNDIvBpioAEtO7/29Z5hir62RtHEzVXt/qJ51mpJuWGogYm9ZYOihxxZrLW0urJIGj+3vtSc5EAB2HpdQw02OCZYz5vDFmZieP5wFE5ErgbOASY6wO5cYYrzGmOvx8JbAdmDxg70IppaKooc66utzdTUA7akydQH6gLC7G1TTUVeOSIKaHq+8AvowJ5Jpqgq1xMDtcS/h7k5zTbbHikkl4jRPvgZHfpbSxqYlE8WFP7HoyhzZ1iWPIiZOxaYn+WpodGT2WSx4df+M7lRoJ+juL4JnALcC5xpiWiOW5ImIPPx8PTALio4+IUmrYa663uno5krN6vY3JnkQyHuorRv6NdVtqDwAgvUiwnKOsa2sVcTCToN1TQwuJPbZKZKUmslvyccbB5AUttfsBsKX1IhnPnECiacU07BvosGIuJViH19Vz0jlq7BQCxkbz3vi5b5pSI0F/x2DdA6QCr3eYjv1EYK2IrAaeBq41xtT0c19KKTUoWsMJljOl5y5wbZIKrRvIHti+dkBiGkoaq60T4KTM7idzAEgvto5Lza6Rn2C5vLU02Xtu9RQRqtxjSW8uHfigYqylei8ASZk9z4HlyLNaaxr2jOyukx5/kAzTgM/d8wWccflZ7DJ5UK1dBJUaThz92dgYM7GL5c8Az/SnbqWUihVvQ3i67bTuu3pFyi2ZBUDz3o3AuQMR1pDRHG7BSs8p6LFs4fgZBI3ERXe4RH8drb1olQBoSRvPqMp/Q8AHDtcARxY7vjorGU8b1XOClVE8HVZB3e4NpM/4wkCHFjO1LT6ypYHmpJ7/vqQnOlljL2Ryw85BiEwpFS3RnEVQKaVGBH+T1eCe2IcEq6BwDPUmGVM58q80+xqsBCszd3SPZTPT09gno+JihsWMYDUed+9aPW25k3EQoqF86wBHFVumoRyAhMyek/HiMeNpNIl494/s7nDVjR6yaOhxrF6buqQSsr1lEAoOcGRKqWjRBEsppToINlsJVkpG72c2dTjs7HUUkdQw8sfVmEbrfk/O1FG9Kl/pKh7x3eE8/iD5VOFN7jmRAEgpnApAxc51AxlWzEnzAYLYepyOHKAgM4mdFOCoHdnJeM2BPbgkiCuruFfl/ZkTcRKAupE/vlOpkUITLKWU6qi1FoDUzN63YAHUJo0j1zvyT4ISmvdSLVk9TubQpjl1PPmBPRAKDXBksbOvopJ0acGW0XNXOIC88VaX0pa9mwYyrJhztlTQYMsAm73HsnabUOEaQ8YIT8abK6zufil543pV3hm+b1rjCB+bptRIogmWUkp1IJ4aGkjC7nD2aTt/5kSyTS3+5toBimxoSPPso9bZ8wQX7XImkYCPugOlAxZTrFXvsybKTcwp6VX5wrw8DphMqB7ZXQRTvAdocveupROssWlZwUrwNg5gVLHlq7HuC5fWywQrc2z4vmllmmApNVxogqWUUh3YWmtpltQ+b+fKs7p9HdgxsmcSzApU0JzYu65wAMkFbd3hRu5xaTxgtUqkj+7dSbPdJpQ7i0luHLl3MPH4gxQEy2lJGdP7jXKsaf19I/jGuqauDABbZu+OS0lRMdUmFf8IH5um1EiiCZZSSnWQ7D1Ag7P346/aZIyxrjTX7Vof7ZCGjPpmL3mmEpPeu/EjALnjrO5wTXtGbnc4f1UpAJmjJ/R6m4bkEkaN4BvrllXWUSSVmMzeJZ0AKYXhG+uWjtzfkLNxDy2SBL28kXlBRiI7KcBZN/LHdyo1UmiCpZRSHWT4K2lO6EMXuLDC8dPwGgf+ipE7JXnZri24JEhC7vheb1NQOJZGk0ioauROXuCs2UIzidjTe9+yF8yaRCrNeMOzMo40ZTs2YxdDSsGUXm8zaux0AsZG0wgdm2aMIad1JzWJJb3exm4TKt1jR/zYNKVGEk2wlFIqQigYJNdU4e/lbHCR0pMT2SOjcdWO3HE1dTtXA5BeMrvX29jtNvaN8BkWM5p3UOEuAZFeb+POtxKPyhE6k2B9uMUyd+y0Xm8zLj/TurFu1cjsIljR6GU8ZbRkTO7Tdq1p40kL1UFLzcAEppSKKk2wlFIqQk3lXlwShPTCI9q+MmEsmS2l0Q1qCAmUbwAgd/ycPm1Xn1RCjnf3AEQUex5/kOLALprTJ/Zpu4xiq0tp/QidvMB2YC0hBHdB75PxZLeDvY6iETs2bdO2neRKA4mFM/q0neRMAsA3glvHlRpJNMFSSqkIlXusVpaknLFHtH1L2gTyguUYvyeaYQ0ZzupNVNhycSRn9mk7X+YERplqvC0NAxRZ7GzZuoVcqcc+elaftisaN4lW48J/YGS21mQ3bKLCWQzulD5tV580jpwRemPdyq0fA5A36Zg+bZdSOB2A2l0boh6TUir6NMFSSqkI9XutK8RZRX3rwtNGRk3BjmmvZyTxBUKMbdlAVVrfrr4DuML38tm/Y+SdIFZufBeAvBkn9mm7tEQ3u6UAd93IG5tW0dDKpMAWGjL7/l0JZFk31jW1I++eco69HxPEhmvsgj5tlz92Cl7joHmfziSo1HCgCZZSSkUIHdhEwNjIG9f3E0OA1PAsaJWlIy+R+GzLRmtWuLGf6/O2meEZFmt3j8DZ4XZ/iAcXWRPm9XnTqoSxZLaWRj+mGFu35hPypI6kySf1eVt3vjWtf33ZyPqu+IMhCho+ZX/iRHD37TYQ4/LSR/TYNKVGGk2wlFIqQmLdFvbaC3C4E49o+/wSK8Fq3j/yJrqoWvsaAKNnf77P2xaMn0HICL79I6tlz+cPMqn+3+xKnQv2vt2YGsCTNo7cYAWMsC6ljRteB2D03LP6vG1W2+0Odo+ssWmfbC7laLMZX/HCPm+b4naw115McuPOAYhMKRVtmmAppVSYMYaclh3UJff+XkYdjc7Lp9akEqoeeYP0U3a8wgHJJWv83D5vm5ycQrmMwjHC7uXz6cp/M0YOEJrU90QCgJzJ2AnRuG/ktEwEgiHG7H+dctdY7Fklfd5+TFEhlSaNQMXI6g6366PncUmQguO+ekTb16eUkO3bC0F/lCNTSkWbJlhKKRW2v7yMYvbjzz/6iOuw24QDjtG4G0fWjHl79+xmtncl5QVf6NNU5JGqEopH3L18mj76C37sTDjxoiPavm3ygsrSkTNV+4crVzGXTTRN+vIRbZ+flsBOinDVjpxk3B8MUbL779Q6cnGXHHdEdQQyJ+EgiKnRViylhrp+JVgiskRE9orI6vDjixHrfiwi20TkMxE5o/+hKqXUwNq71pqsIGNK37vwRGpMKiLTuzcaIQ0ZW1+5F7cEGH3qNUdcR0vaBPIDezEjZHa43eX7OabmJbZlnogrI/+I6sgNj/VrGSGTFxhjqHnrbgLYGXvakX1XbDahOmEMWa0jJ5F4Z/n7HGvWUjf1YrDZj6iOhHxr4p36PSNvfKdSI000WrDuNMbMCT9eAhCR6cBFwAzgTOAPInJkf1GUUmqQeLe9i8c4GTPzhH7VE0wvYVSoEq93ZIyrqa7Yx9yyv7I++VjyJhx5657kTCRJvFSVl0YvuBja9Oz/kSHNjDrrh0dcR3FeDvtMNlI9MroI/nvVGk5vfYmywi/hyio64npa0yaQEmocETfW9QVCON/7NV5xU3LW9UdcT9bYmQDUl22KVmhKqQEyUF0EzwOeMMZ4jTE7gW1A3+YkVUqpQWRCIcZUvc/W5Lm4EpL6VZcjZzwOCbF/98iY6GLj335MMq2knfO//aonabQ1O1zlzuE/O9zKFR9yYsVjbMo8hezJxx9xPU67jb2OYlJGwOQFrV4/rpeuBxGKvvLf/arLkWONg/RWDP/f0ItP/4mTg/9m/6xrkOScI65nbOFoDpgMAgdG1kQxSo1E0UiwviMia0XkTyLSdufJQqAsosye8LLDiMg1IrJCRFZUVlZGIRyllOq7bes+ppj9BCac3u+6UkZPAqBuz/Bvlfjo5b+yqO451hZcyJipfbs5akc5JdYV+JZ9w/sKfGVNDRkvfgOPLZGSS+/pd30NSWPJ8e4GY6IQXWwYY3jzzz9jfnA1exf8FGd2Sb/qSy2y7ptWtWt4f1c+/vRTTtl0K3sTJjHu3P/qV12j0xIopQDXCJsoRqmRqMcES0TeEJH1nTzOA/4ITADmAOXAb/oagDHmAWPMPGPMvNzc3L5urpRSUVHzr4fxGQclJ13a77pyxlgtNS0HhvfV93UfvsGMD29hm2MSM674Xb/ryy8oockkYqqG73Gpr69n7x/OoyS0h7oz7iUx+8i7wbXxZ0wgmVZCjQeiEOHgM8bw0mN3cvb+P7Il61QmnPW9fteZN2YKQSO0DONp/ddu3EDecxfhEMi6aik4E/pVn80mVLvHkN5a1nNhpVRMOXoqYIzp1Q1PRORB4J/hl3uB4ojVReFlSik15Hg9LUyueJl1qSdwTM6RTVYQKTtvDK3GBcN4tq+P33iK6e9/l3pbOtn/8VS/u00C2Ow29joKSWoYnseltHQHzX+9iNnBLWz53O1MPe6cqNTrzpsMZVBdtoncGf3//g0mnz/AWw//hC/tv59tKccw6bq/HfEsk5HGjspkr8nBVA/P1pr333uLCW9+k3RpxrP4KbLzJkWlXk9aCWlVr0BrLSRm9ryBUiom+juL4OiIl+cDbR3rXwAuEhG3iIwDJgEf92dfSik1UNa8/hiZNOKcd3lU6hObjQP2fBKG4VTtXm8r7z/wfY55/5tUOfNJvOZVMkePi1r9dYklVne4YcQYw/J//oWUR05mfKiU7afcy9Qzvhm1+tPC3eHqdg+v7nDbt21h/W1f4Mz997Mp+wtMuP5FxHlkN+juKNntYJ+9kISGXVGpb7A0tXp55cGfMv/NC3HZDZ6vP0f2tEVRq1+yJwLgr9gWtTqVUtHXYwtWD24TkTmAAUqB/wQwxmwQkSeBjUAA+LYxZmTMy6uUGlFCwRDZn/6B3bYiZi46P2r11iUUkeEZXg336z54laTXf8ii0E5WZZ7BjGsewp2UFtV9+DPGkdv4JgFvCw53/1vFBtrOreupePZHLGx9n52O8QQWP8SkSf0bi9ZR4dgp+Iwd7zCZvKCpuZmPlv0vC3Y9RIGE2HD0Emace0NUWq4iNSQWM6v1LWtsWpTrjrZgyPD2G/8g74NfcqbZymcZCxl31UO4Mkb3vHEfJI+eDJ9BTdkm8sbOj2rdSqno6VeCZYy5rJt1vwJ+1Z/6lVJqoK166ynmhXayau7/Y4w9eneT8KaOIa95JaFgCJt9aN/TfdfWdVQ+9xPmNb9HFZmsXXQfc0+7eED25cidiG2PYV/pZoqmzB2QfUTD3j272Pbs/3B89TPk4WD1pG8ze/HPsTndUd9XXkYS28nHXje0u056Wpv5+IUHGLfpPk5jP5tSj6Pgot8xo2jagOzPlzGO5JZma6r25OwB2Uc0rP7kfRpf+18+7/8XNbYsShf9limnXD0gSWHuWGtsWvMIuW+aUiNVf1uwlFJq2DLGkPjRXeyXXI46K3pdvgAkazxJB7wc2L+bvMKSqNYdLaWbVlD50v8yt+FNcnHxUcl/ctSFP2V2cnRbrSKlF06BT6GmbOOQTLC2fraRildv45jqfzKaAOtyv8iYr/4vc/LHDtg+RYRKVzHFzUOzO1xjTTmbX/gdE0qXciL17HKOZ9spf2Ha5748oPt15EyEfdC4bzOpk/p3b7poCwWDfPrmkzg/+SNz/GtoIYHPpn6Hyef/iCx36oDtd1xeFntNDqEq7SKo1FCmCZZSKm6t+dfLzAlsYOX0H5PvdEW17sTRk2ATVO7aNKQSLGMMn37wOqH3f8e81n8xyrhZUfB1Jn35RxybN2bA958/zpqqvXX/0JlJMBQyfPLvt/D+616Ob3mHscDa7LMoPufHHBWOd6A1p4xlVO1KCIXANjRaPCu2f8rel3/L9MqXmS9+VrkXsG/Rd5l5wjmD0mUvrXAKrIWa3ZuGTILlaW5g7Yv3M3rTnzjG7KNCslk56XpmnPM9pqQd+T2ueisjycUGWwFjG0sHfF9KqSOnCZZSKn69dwc1pDPrnO9Gveqs4hkAtJZvBs6Kev195fF4WPXKX8hc9xBzg1toIJmPx3yTyefexLFRmDmxtzKycqghFVtN7GeHa2718PErj5G97iGODW2imQQ2FV9IyTk/Zl7ewLVYdSaUNQFXrR9fzW5cOSWDuu9DGMP2D/+Bb/ndTGv+hFTj4pOMsxh1+g3MnRHdsWc9yRs7mYCx0Xog9veTq95XyvaX7mTKnqdZQBNbHZNYdfTtzP7CFYxyRb/baHfqE8eQ5XlzWIxNUypeaYKllIpLG1e8yxzfSlZM/B7zEpOjXn9e0Xi8xhnzrjyVFeVs/ufvmbx7KZ+jhr22Aj6d+V9M/+J/siApfdDjEREqHEUkNcWuO9ze8n1sfukPTCtbyilUsd+Wz4ZZP2TymdcxOzk2U18n5E2G7VC1eyMFMUiw/N4WNrzyMFlrH2RCcBeVJoO3Cv+TKV/6LgsLi3uuYAAU52Swlxyo3hGT/QNsW7Ocurfu4qi6N5lHiFXJJ5Cw6LvMOPZ0JEYtjd708SS1/gOaKiA1LyYxKKW6pwnWIAn4fVRVlFNXtQ9v3X78DRWEGiswrTXgaQBfE3Z/E65gC+5gC27Tis0EsJkQNhNECGInhJ0QQez4xUkAJwFxEBAnAZsLnyMVvzONoDMVk5CGSUjHlpiBMzmbhPRcUjNzScvKIz1r1IAM1FZqOGl563YaSWL6uTcOSP0Op5PdttEkxOieT9s2rKTijbs4uuZlFomPjQlzqTn+NqYu+gqFtuhN5nEkGpPHMLb+k0HdpzGGDetWUP3m75lf9wqniZetiUex/XO/YsIJXyM/xsckc8w0+Dc0lG2iYO4XB22/dRV72fLiXUzc9QRzqGerrYT3Zvw3R591NaempAxaHJ1xOWwccBSS31Q6qPsN+P2seWsZiSvuY7p/Hc0mgRWjvkLhGTcyb+KMQY2lM47cibAfWg9sIVETLKWGJE2wosAYQ331AQ7s3kL9/h0EanZhq9+Du2Ufqd79ZAcqyKSBfKBjR5yAsdEiibRKIh5bEl5bEl57Ek32HIzNATYHYrODzQFiI4gNQgEk5Mce8mML+bGHfNhDXtJ8lSR6dpJsmkkxzdjFdBlzMwk0ShqtjjQ8zgwC7gxMYiaSlI0jJZuEtGyS0keRnDmK5PRcJCkLEtJHfncEYyAUBBMkFPATCPgJBoMEgwGCIUMgFCIUMoRMKFy+fUMEsbYnYpkQscxw2NGT9v8LvxarHqR9cdshFyS8Pvyqfb3tkLraP6Lwk/b1bXW0rYrY18FtIjeVg+Vt0mH7yFjCrzvs69DvinSyvLNlhwXRyfq+Mebw38Guzz5lbvNyPhlzFcemZR1x3T2pTigmzzN493wKBUOsfvdZbB/9kTneFRQbJ+tzziDvCzcyfeq8QYujJ4HM8Yyqf5WWpjqSUjIGdF/+QJAVbz2Lc8V9zPOtwIeDzblnkH/6jUyaPHSmuS4uHkezceOvHJwWz50bV1D1+m+ZXfMaC8TPqoRjKT3uW8xZdC6ThtCsl3VJJcxufGlQxqbV19Wy7sU/ULLtrxxj9rNfcvlo4o1MPfu7HJ8xdGYxTCmYCuugZtdGCidG7x5b8c4Yg9cfoKWhFk9TLd6mWnzN9fg8Tfg9rQS8zQR8rRhfCxLwIAEPtqAHCfoxJgihYPjfUPg8IoSNEDaCCGCwYcSOEdvBB9ZrbHYQO9jsiM2BsTkQmwPsTus80O4AuwOxOcHuxBZ+bbM7kfBrcbiw2RyIw4nd4cBmd2GzO7E7ndjtDmwON3a7A7vThd3hxO5wYXc6cDrc2B1OHHYbNtsIP8cbRJpg9UEoGGTfzo1Ulq6ndd8m7DVbSW0qZXSgjEwayYgo22LcVNhHUe/Kpyp1GiYlH0fqKNzpebgz8kjMzCclazRpGTmkOexEe84uEwrhaWmgsa6K5rpKmmsraG2oxNdYTai5GlprsXtqcfnqSPTUk9ayh/SaRtJowdZFYhbARqOk0mRLo9WeSqsjHa8zHRxujM2FsTsxNifYnBi79RqbE5vNht06H8cY0/4Aa3C5sQJGQgEIBbCZABIKIG3/ti0PBcBY/4oJIiE/YoJWS18ogC38XEwQG8H21j8bQcQEsbctI4jdWC2CNkLYObjOIaH292sDojvtgYqFzv5zUQK04mLKuTcP6L49qSWMrvjQ+o/tALaQtDQ3sObFBxi9+RHmhsqoIoNPxl3HlC9dzzE50b0PTzQ482dAKezftobxc04akH3U1dWy5sUHGLPtrxxv9lAjGayecB2TvvQ9ZmcVDMg++yMj2c0mKcBVP3Bj06wE/O/YP7qXo7wryTcuPs3+IqNO/z5zp84ZsP32hydrKgmNf8fUliLZ4wdkH6XbP6Ps1d8x+8DzLJRmtjinsvqYHzLr85eR73AOyD77I3/MJLzGgWe/TtXeHZ/XS1XlPuoq9+GpPYCv4QCh5kporsLZWoXLW4PT30hCsJHEkHVhOlVaSejLPowdPw5CWAmTdYZhw2AjKOF/sS4M2NoTrlC4xMHXB89PQlZt3VwgHygBY8OPHX/4rCgg9vYzpAB2QmKdNYmAhK8uS/hcTjAI1vmctF9Mjixz8AKzte2hr4VQ+HJv278GMVadtnDd/2IWwa8+ylmzht5/0zqjCVY39u/eStmqVwnuXUNa3UbG+rZRJB6KwutrSOeAawzbsk8lmDWBhFETyRw9nqzCCaRm5FISw9YesdlISMkgISWD3KKJvdrGGwhyoLGVuppKGmsraamrwNtQRaC5GrunFoe3DpevjgR/HYmBBlI8+8lv3YrD+HGaAA6r0yJO6f89pf3G+kG3/bDbfuzB9ucO64cvDqvzpNjxiwMjLoLisP7QiT18tejgA5udkDhA7Bib9dqI1UpobI72K0hEtB62P0SwCdhstnBj0aF/LtpO5U3bYhPxJ0QO/ulpZ9r/71DhP0YRhayxzLS1xpgOZSMb0g7drmOL2sG6Dv4hPFjk0PWH7+PwZZ3tq/3/Tcf1B59LZ++byCN5cL100gLVVsZ08huLXNJ2/Dv7JSaOX8BRuQN7om2yJ+CsCFJXvp2MwslRr39f2XZ2vnwX0/c9y/E0st0xgU+P/jUzT7+S+e7EqO8vWtJL5sCH0LTrU4hygrVrx2fsesU6WT5JmtnpnMiGubcx7bQryHL15dRp8FUmjGNG85qo19vY1Mialx6kYNOfmWt2U0UGH477NlO/9D2OG8QJTo6Eq2AG7ILqHZ+SE8UEKxQyrPrwDfzL72F+83sUY1iXfjJpp1zP5KNPidp+BkJJbhrbTCHJlRtjHUrMNDc1sn/PDhoqduGtLiNUtwdb0z7cLQdI8x0gK1hFJg0UAB3/yvuNnVpJp9GWjseRSsP/b+++w+OqroUP/9bMSKPee5dtuUruFWMwkNBbAgESOl9C6iWQXmm5uTcJpJHGhZBAEnoJkJAQesAEA+69W5Zkq/c+bX9/nLEsy5IlWSONRl7v88iaOXXNHJ3xWbP3Xicyh8bwOIwzDpzW8AqJiMcWGY8jMo7wiGjCI2NwRkYRERVDRGQ0jogowsKjCXc4RuWLWJ/Xi9fjwutx43a7jvSo8bjxeg4/92A8brxe67nXaz33ed34PG6Mz4PP48J4PRivG+NzYzwejM8DXnfPb/xfYhufB/G6wXj9vw9/we1F/F9+4/NifQ3tT6N6euH07nlz+FrI30MG/NdAR3rMGH+PnMPzrRa93tuxHbUMIngiCyhIDvx46dGiCdZxHHjvWZZs/186jJPy8ElsTbsAyZhNXH4JmVNmk5SQyuh1Lhp7ToedzMQYMhNjgMIT3o7x+fB53XjcXXhcLqtrndeHF7CLYLfZQASb/8dut044mz0cmyMcm81OmM3G+PveUKnhicueAdvh0J5NAUuwjDFs/fBNOt7+NfNa3yIDH5tillNz2n8xdVHwBt4PR3bhNNpMBN6qrQHZnvH52Lj6VVyrfsP89nfIwbA1/nSaVv4XhfPOCpmuzV0pxSRXvIG7uZKw+JF/S1txYC97X/41xYee4VRpYZ9jEuvn/C/FZ9/I0nGcgPeWO3UBvv8IDXvXkrLoshFvr72jkzX/+hNJW/7IQu922ohiU86nKDj/NuZmD+3LyGCLDLdTETGVZS0fTNhKgj6vj9qaQ9SV7aCtcjfe+n04mg8Q21lOqvsQKTQxuc86TcRQb0+lLTyNusgSfDHpOGLTiUhIIzIhg+ikDGKSM4mJSybNZiMtKK9saGx2OzZ7JGHOyGG1qKnxQxOs4yhaeQ0H5pxNzpTZTHPoWzVUYrNhtzmxhzlxRgU7GqWCJ2/aPHgN2so2ApePaFtdXV2se+UvJGz8PcXe7bQRyfrMK8g771bm5k8PTMBjJMoZzuawycTVbRjRdjo7O9n4rz+SuPkPzPXupoVoNuRczaTzb2V2iFws9xZVuBAq4OC29yhY9vET2obx+djy/qt0rPod89veJgsf22KW0njaLUxZfF7IXYwX5Wawi1zCD42sKMrBijJ2/ePXzDz0NKfTQKUtg03F32b6eZ9nfvTYV9Mcqc6UYuIOvYppLkcSRv/+daOlq7ub8r1baSzdjKtqG2ENe0jq2Eemt5J06aR3CY9qSaY+LJv9icvZm5BPeFIu0Sn5xKXnk5RZQEJkzFFDNZQKJs0ajiMpPYek9JzBF1RKqX4kpWZSRiYR1etOeBu1B/ez+5+/pqjiWU6hkUO2DNbO+CYzz/88i2ODU1I8EBpTFjKj8s+42psJH+YFbtne7ZS9+ltmVL3AUpopt+WwruR7zDrvZhYGofR8oBQUL8f1tp32nW/BMBOslrZWNr/8B9K2PUKJby+tRLEx6woKzv0yxfkzRifgMRDusLE/soTTW98Y9lhGn8+w/oO36F71Wxa0vkG2eNgWtZDWU+5h8rJLybSH7iVQ5KRT4NDPqd38Gmkrbgp2OIPyeX1U7N9Oza4P6Tq4GWfjLpI7S8nxHaSo17CCKkmjNiKf7XELILGQyPQpJGZPIzVvKukRUWjNRBUqQvfTRSmlQkBlbDFTWj/E+HxD7r7n9frY9O7fMe8/yOy2VSzFsDVqEXVLPsP0FR8nK4QvDA+LmHI6jqpH2L3uXxStuGLQ5T1uNxv//Sy2NX9gTucHZAPbYpZRs/QzTF9+CblBLrMeCNlpyay1zyTz4L+HvM6uLWupfOtBSmr/znJppcyex9qS7zPr3M+wMARbZvrjK1hB1I6XaNrxbxJmnjno8rX19Wx55Y+k7n6SBb5ddBDB1oxLyDnny8ycNGcMIh59M+aeQu078TRv/te4S7BcLhdluzZQv+dDfIc2Ete4jVzXXvKkgzzAa4Qqewb1UYVsTDyDsIyZJOQVkzmlhIyo+GOqLSsVikL/f2mllBrPJq0keeOr7N/4NoXzVh530UOlOyl9/ffklb/IPKpoIoYPMz9J/tlfomTSzDEJd6xMW3ouDe/E0r3mUThOgrV3+3oq336YSZUvsYBa6klgbd6NFJ77RUpCsBvg8YgIddkfYWH5z2nc8yGJU/ovI1/fUM/21/5E0q4nmenZTqGxszPuFBpXfJ7Ji84nL8S6AQ6mcNmldGy/g5pVjwyYYLncXmsc3oePMLf5dc6QbioceWyZ9S2Kzvkc82NCt7W3P3kpMbwSuYzTat7EdDRYt1IJgo6ONg5s+5CmfWuRyk0ktmwn37OfKeJmCtBpwikPL2Rn6tlI5lwSpywgd+oCsiOjyQ5KxEqNDenvHjHBsnDhQrNmzZpgh6GUUgFTV1dL3K+msyn5PBbe8pdj51eVs/vtp4jf81dmujbjM8L2iDl4Sq5ixlnXER4ZOlWThuutX32WFXVPUnn5i+SUnAZYY4j27dhA5ZoXSD3wEtO8u/EaYWfUfFxzrqH4zE/hGOfVAEei9GAlyQ/MoypmFlO+8jJit8r91NZUs/c/zxG282/M6viACHFTbsuhevInmHrOZ4hLmbiXq8YYXr3nas7seJmWa14macpiADq7utmx9i3a1j/L5LrXyaKODpzsTPkoqSs+Tc7slSE35mw4/vnaq5y36nL25F/FlBvuH/XX2thQT/m292krXYO9ZgspbTvI95b33N6klSjKnUW0Js4kLHsuqUWLyJ4yG9s4LHWvVKCIyFpjzDE3mtQESymlRtl/fnUTS+qeY/3sO0grPp3W6gM0732fpEP/ZqprOzYxVNiyKMu9hEln/T8y8oqCHfKYqKmpxvvbZcTTxq6Yxfh8PjI6dpNFDQD7HJOon/wxppx5A4npoTuQf7j++acfc96+/6HClk2DM5u47kPkeQ9iE0MtSZSln0XKsqvJn7NyQicQvW3fs5eEP3+UBGlld8QcHN4O8l17iJZu3MbOrphFSPGlTDntU8Me0xeqvD7Dyz+9kQva/8reiFkk3fhEQM4T4/NRfegAlTvep6N8A87arWR07CKHqp5l6kjkUORUulJmEZE7j4zpi0nNmRoSVUyVCqRRSbBE5Elgmv9pAtBkjJkrIgXAdmCnf95qY8znBtueJlhKqYmopbmBil9dwEzP0fet2WufTHXWWWQtuZz8mYtOyouT0r07qXv+OyS37cQm0BhViDv/dAqXXUJKzsmRaPZljGHVi38gfuufifC20ulMoSt1Dmlzz6NgzmnIBBhvdiJ27txG3Uv/TXr7Djz2CFoTZhA15VQmLb2EyLiJdNOUoevodvHuo//DWQd+wbqk81j45ceHtX5rWyvluzfSULoZU7mZ2Kbt5Ln2kERLzzIHJYOa6Gl40mYRlb+A7OlLSEjPDfRLUSokjXoLloj8FGg2xtztT7D+bowpHs42NMFSSk1UXo+H7e+/TEfDIaIT08mesYyE5PF8JxalVKh473efZ1n1Y7xX8EVKPv51YuKOjDnr6uqk9uB+6ir20la9B6nbRXTLPlK7S8nyVWMT6zrQbeyUhxXQGDcdb3oJcYULyJuxkKjYkzN5VWooRjXBEhEByoAzjTG7NcFSSimllBobru4utt13GXPbV9FtHNRJEgYh0nSRSEtPEgXgMg4OObJpiCzAkzyNyMwZpE2aTdqkEsThDOKrUCr0DJRgBaqK4Aqg2hizu9e0QhFZD7QA3zPGvDNAYDcDNwPk5Z08feyVUkoppQIh3BnBnK/+jR0fvkbr5r9hb60EwIRFsTc6HVtCLrHpBaTmFpGYNYUCexgFwQ1ZqQlt0BYsEXkN+r0twXeNMS/4l/kdsMcY81P/cycQY4ypF5EFwPPALGNMSz/b6aEtWEoppZRSSqlQcMItWMaYjwyyYQfwcWBBr3W6gW7/47UisheYCmj2pJRSSimllJqwAlGy6iPADmNMxeEJIpIqInb/40lAEbAvAPtSSimllFJKqXErEGOwrgL61gU9DbhbRNyAD/icMaYhAPtSSimllFJKqXFrXN1oWERqgQPBjqOPFKAu2EGoMaPH++Shx/rkocf65KLH++Shx/rkMh6Pd74xJrXvxHGVYI1HIrKmv8FramLS433y0GN98tBjfXLR433y0GN9cgml4x2IMVhKKaWUUkoppdAESymllFJKKaUCRhOswT0Q7ADUmNLjffLQY33y0GN9ctHjffLQY31yCZnjrWOwlFJKKaWUUipAtAVLKaWUUkoppQJEEyyllFJKKaWUChBNsI5DRM4VkZ0iskdEvhXseFTgiEiuiLwpIttEZKuIfNk/PUlEXhWR3f7ficGOVQWGiNhFZL2I/N3/vFBE3vef30+KSHiwY1SBISIJIvKMiOwQke0iskzP7YlJRG7zf4ZvEZHHRSRCz+2JQ0T+ICI1IrKl17R+z2Wx3Oc/7ptEZH7wIlfDNcCxvsf/Ob5JRP4qIgm95n3bf6x3isg5QQn6ODTBGoCI2IHfAOcBM4FPisjM4EalAsgDfNUYMxNYCnzRf3y/BbxujCkCXvc/VxPDl4HtvZ7/GPi5MWYK0Aj8v6BEpUbDL4GXjTHTgTlYx13P7QlGRLKBW4CFxphiwA5chZ7bE8nDwLl9pg10Lp8HFPl/bgZ+N0YxqsB4mGOP9atAsTFmNrAL+DaA/3rtKmCWf53f+q/bxw1NsAa2GNhjjNlnjHEBTwCXBDkmFSDGmEpjzDr/41asC7BsrGP8iH+xR4BLgxKgCigRyQEuAH7vfy7AmcAz/kX0WE8QIhIPnAY8BGCMcRljmtBze6JyAJEi4gCigEr03J4wjDFvAw19Jg90Ll8C/MlYVgMJIpI5JoGqEevvWBtjXjHGePxPVwM5/seXAE8YY7qNMfuBPVjX7eOGJlgDywbKez2v8E9TE4yIFADzgPeBdGNMpX9WFZAerLhUQP0C+Abg8z9PBpp6fXDr+T1xFAK1wB/9XUJ/LyLR6Lk94RhjDgL3AmVYiVUzsBY9tye6gc5lvW6b2G4C/ul/PO6PtSZY6qQmIjHAs8CtxpiW3vOMdQ8DvY9BiBORC4EaY8zaYMeixoQDmA/8zhgzD2inT3dAPbcnBv/Ym0uwkuosIJpjuxipCUzP5ZODiHwXa2jHo8GOZag0wRrYQSC31/Mc/zQ1QYhIGFZy9agx5jn/5OrDXQr8v2uCFZ8KmOXAxSJSitXV90ysMToJ/m5FoOf3RFIBVBhj3vc/fwYr4dJze+L5CLDfGFNrjHEDz2Gd73puT2wDnct63TYBicgNwIXA1ebIzXvH/bHWBGtgHwJF/mpE4ViD6V4MckwqQPxjcB4CthtjftZr1ovA9f7H1wMvjHVsKrCMMd82xuQYYwqwzuM3jDFXA28Cl/sX02M9QRhjqoByEZnmn3QWsA09tyeiMmCpiET5P9MPH2s9tye2gc7lF4Hr/NUElwLNvboSqhAkIudide+/2BjT0WvWi8BVIuIUkUKswiYfBCPGgciRZFD1JSLnY43dsAN/MMb8MLgRqUARkVOBd4DNHBmX8x2scVhPAXnAAeAKY0zfAbYqRInISuBrxpgLRWQSVotWErAeuMYY0x3E8FSAiMhcrIIm4cA+4EasLxT13J5gROQu4Eqs7kPrgU9jjcXQc3sCEJHHgZVAClAN3AE8Tz/nsj/J/jVWN9EO4EZjzJoghK1OwADH+tuAE6j3L7baGPM5//LfxRqX5cEa5vHPvtsMJk2wlFJKKaWUUipAtIugUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkoppZRSSgWIJlhKKaWUUkopFSCaYCmllFJKKaVUgGiCpZRSSimllFIBogmWUkqNEyJSICJGRBzBjmWiE5EbRGRVsOMYb0RkhYjsDHYcSikVyjTBUkopFdJE5E4RcYtIW6+fbwQ7rlBkjHnHGDMt0Nv1f3HQ3uv4/D7Q+1BKqfFCvyVVSqkAERGHMcYT7DhOUk8aY64JdhCjZYL8bc0xxuwJdhBKKTXatAVLKaVGQERKReSbIrIJaBcRh4gsFZH/iEiTiGwUkZW9ln9LRP5XRD4QkRYReUFEkgbY9o0isl1EWkVkn4h8ts/8S0Rkg387e0XkXP/0eBF5SEQqReSgiPy3iNgHeR2TReQNEakXkToReVREEnrNaxCR+f7nWSJSe/h1icjFIrLV/3rfEpEZfd6fr4nIJhFpFpEnRSRi+O/08InIt/zvS6uIbBORjw2wnIjIz0Wkxv9ebhaRYv88p4jcKyJlIlItIveLSOQQ9/+wf/lX/TH8W0Tye83/pYiU+/e5VkRW9Jp3p4g8IyJ/EZEW4AYRWSwi7/nf50oR+bWIhPdax4jIF0Rkt39/P/Afu//49/FU7+UHiHmliFQM5fUppZTqnyZYSik1cp8ELgASgHTgJeC/gSTga8CzIpLaa/nrgJuATMAD3DfAdmuAC4E44Ebg572SnMXAn4Cv+/d7GlDqX+9h/3anAPOAs4FPD/IaBPhfIAuYAeQCdwIYY/YC3wT+IiJRwB+BR4wxb4nIVOBx4FYgFfgH8Lc+F/JXAOcChcBs4IZ+AxA51Z88DPRz6iCvoa+9wAogHrjLH39mP8udjfX+TfUvewVQ75/3I//0uVjvZzZw+zBiuBr4AZACbAAe7TXvQ/92k4DHgKf7JJ+XAM9gHd9HAS9wm39by4CzgC/02d85wAJgKfAN4AHgGqzjWYz1t3rC/InyQMfnt4Os/raIVInIcyJSMJI4lFJqPNMESymlRu4+Y0y5MaYT62L2H8aYfxhjfMaYV4E1wPm9lv+zMWaLMaYd+D5wRX8tTMaYl4wxe43l38ArWAkDwP8D/mCMedW/n4PGmB0iku7f163GmHZjTA3wc+Cq470AY8we/7a6jTG1wM+A03vNfxDYA7yPlRh+1z/rSuAl/7pu4F4gEjilz/tzyBjTAPwNK6noL4ZVxpiE4/wcryjFFX0u9rOMMU/79+szxjwJ7AYW97OuG4gFpgNijNlujKkUEQFuBm4zxjQYY1qB/xnsvezjJWPM28aYbqz3bJmI5Ppf71+MMfXGGI8x5qeAE+g9/uk9Y8zz/vg7jTFrjTGr/cuXAv9Hr2Pk9xNjTIsxZiuwBXjFGLPPGNMM/BMr4T5hxpjZxzk+fZO93k4HCrDe40PA30WLuSilJij9cFNKqZEr7/U4H/iEiFzUa1oY8OYAyx/wz0/pu1EROQ+4A6sFxQZEAZv9s3OxWov6yvdvr9LKD8C/bnk/y/beVzrwS6wELta/TmOfxR4EXgRu9icMYLV4HTi8gDHGJyLlWC09h1X1etzhXyfQnuo7BktErgO+gnVhDxBDP++zMeYNEfk18BsgX0Sew2p5jMB6z9f2ei8FOG53yz563ndjTJuINGC9/nIR+RpWopwFGKyWypT+1vW/nqlYie9Cf1wOYG2f/VX3etzZz/OMYcQeMMaYt/0PXSLyZaAFq6V088BrKaVUaNIWLKWUGjnT63E5VgtV72/2o40xP+q1TG6vx3lYLSh1vTcoIk7gWawWoXRjTAJWQnX4Sr8cmNxPLOVAN5DSa/9xxphZg7yG//G/jhJjTBxWS9yRrEIkBvgF8BBwpxwZN3YIK6k7vJz4X9/BQfZ3DLFKhLcd52fF4Fvp2VY+VkL4JSDZ//5t6f2aejPG3GeMWQDMxEpov451TDqBWb3ey3hjTMwwXlbPsfa/h0nAIf9r+QZWd8REf3zNfeLr/XcF8DtgB1DkP0bfGej1jBaxxtoNdHzuH8amDGMcu1JKjRVNsJRSKrD+AlwkIueIiF1EIvyFA3J6LXONiMz0j2e6G3jGGOPts51wrC5jtYDH35p1dq/5DwE3ishZImITkWwRmW6MqcTqSvhTEYnzz5ssIn27kvUVC7QBzSKSjZVg9PZLYI0x5tNYY8wOX0w/BVzgjyMM+CpWgvefwd6ovvwlwmOO8/POMDYXjXURXwtWwRCsMUjHEJFFIrLEH3870AX4jDE+rCTt5yKS5l82W0TO6bWukV5FTPpxvn9sWTjWWKzVxphyrPfb44/PISK3Y7VgHU8sVstPm4hMBz4/yPIBZ4yZdZzj87n+1hGRWSIy138+xAA/xUrAt49p8EopNUY0wVJKqQDyXzxfgtW6UIvVovR1jv68/TNWIYoqrG5ot/SznVb/9Kewuup9Cqt73uH5H+AvfIHV8vFvjrQkXYeVoG3zr/sM1rip47kLmO/f1kvAc4dniMglWEUqDl/QfwWYLyJXG2N2YrV2/Qqrxeci4CJjjGuQ/Y0qY8w2rAv597C6yZUA7w6weBxWItWI1d2xHrjHP++bWGPPVotVze81/OOk/GOpWjl+N7fHsLp5NmAVnzjcjfFfwMvALv8+uxikGydWt8VP+ff5IPDkIMuPF+lYsbYA+7C6bF7oH7OnlFITjhjTtweCUkqp0SIibwF/McbojVZDnIhcg9V98NsDzH8YqDDGfG9MA1NKKRVUWuRCKaWUOgHGmL8EOwallFLjj3YRVEqpk4RYN70daXECFeJE5DsD/B38M9ixKaXURKBdBJVSSimllFIqQLQFSymllFJKKaUCZFyNwUpJSTEFBQXBDkMppZRSSimljmvt2rV1xpjUvtPHVYJVUFDAmjVrgh2GUkoppZRSSh2XiBzob7p2EVRKKaWUUkqpANEESymllFJKKaUCRBMspZTqh1ZYVUoppdSJGFdjsPrjdrupqKigq6sr2KGoEBMREUFOTg5hYWHBDkWFmFWP/jfe3W8y45bnSEuKD3Y4SimllAoh4z7BqqioIDY2loKCAkQk2OGoEGGMob6+noqKCgoLC4MdjgoxRbsfIp0GVv/zF6RdfUeww1FKKaVUCBn3XQS7urpITk7W5EoNi4iQnJysLZ/qhDSbaAAiKv4T5EiUUkopFWrGfYIFaHKlToj+3agT0dbtIY0GAAo6t2B83iBHpJRSSqlQEhIJllJKjZW6xiYSpJ0qWzoJtNFQsTvYISmllFIqhGiCNQQiwle/+tWe5/feey933nln8ALqZfXq1SxZsoS5c+cyY8aMnrjeeust/vOfE+/edODAAebPn8/cuXOZNWsW999/f4AiVmp8czceBKAiaRkAh/ZsCGI0SimllAo1477IxXjgdDp57rnn+Pa3v01KSkrAtmuMwRiDzXbiee7111/PU089xZw5c/B6vezcuROwEqyYmBhOOeWUE9puZmYm7733Hk6nk7a2NoqLi7n44ovJyso64ViVCgWmtcr6XXga1D1PW8W2IEeklFJKqVCiLVhD4HA4uPnmm/n5z39+zLza2louu+wyFi1axKJFi3j33XcBuPPOO7n33nt7lisuLqa0tJTS0lKmTZvGddddR3FxMeXl5Xz961+nuLiYkpISnnzyScBKkFauXMnll1/O9OnTufrqq/u9L09NTQ2ZmZkA2O12Zs6cSWlpKffffz8///nPmTt3Lu+8885x47z22mtZtmwZRUVFPPjggwCEh4fjdDoB6O7uxufz9fve3HfffcycOZPZs2dz1VVXAdDQ0MCll17K7NmzWbp0KZs2berZ1/XXX8+KFSvIz8/nueee4xvf+AYlJSWce+65uN1uAO6++24WLVpEcXExN9988zGv2+fzUVBQQFNTU8+0oqIiqqurj3cYlRoSX3cbAM7kfOpIwFa/M8gRKaWUUiqUhFQL1l1/28q2Qy0B3ebMrDjuuGjWoMt98YtfZPbs2XzjG984avqXv/xlbrvtNk499VTKyso455xz2L59+3G3tXv3bh555BGWLl3Ks88+y4YNG9i4cSN1dXUsWrSI0047DYD169ezdetWsrKyWL58Oe+++y6nnnrqUdu67bbbmDZtGitXruTcc8/l+uuvp6CggM997nPExMTwta99DYBPfepTA8a5adMmVq9eTXt7O/PmzeOCCy4gKyuL8vJyLrjgAvbs2cM999zTb+vVj370I/bv34/T6exJeO644w7mzZvH888/zxtvvMF1113Hhg0bANi7dy9vvvkm27ZtY9myZTz77LP85Cc/4WMf+xgvvfQSl156KV/60pe4/fbbAbj22mv5+9//zkUXXdSzT5vNxiWXXMJf//pXbrzxRt5//33y8/NJT08f9DgqNRiPqxsAR3gE1c4CEtr3BzkipZRSSoUSbcEaori4OK677jruu+++o6a/9tprfOlLX2Lu3LlcfPHFtLS00NbWdtxt5efns3TpUgBWrVrFJz/5Sex2O+np6Zx++ul8+OGHACxevJicnBxsNhtz586ltLT0mG3dfvvtrFmzhrPPPpvHHnuMc889t999Hi/OSy65hMjISFJSUjjjjDP44IMPAMjNzWXTpk3s2bOHRx55pN8WotmzZ3P11Vfzl7/8BYfD0fOarr32WgDOPPNM6uvraWmxEuPzzjuPsLAwSkpK8Hq9PfGWlJT0vL4333yTJUuWUFJSwhtvvMHWrVuP2e+VV17Z09r3xBNPcOWVVx73PVdqqHzuTgAczkjaYieR7S7DDNCCq5RSSinVV0i1YA2lpWk03XrrrcyfP58bb7yxZ5rP52P16tVEREQctazD4TiqW13v+zFFR0cPaX+Hu+iB1f3P4/H0u9zkyZP5/Oc/z2c+8xlSU1Opr68/ZpmB4oRjy5n3fZ6VlUVxcTHvvPMOl19++VHzXnrpJd5++23+9re/8cMf/pDNmzcP6TXZbDbCwsJ69mWz2fB4PHR1dfGFL3yBNWvWkJuby5133tnvvayWLVvGnj17qK2t5fnnn+d73/vecfer1FD53FYLVlh4BL6UacTUPUd91QGSs/SG1UoppZQanLZgDUNSUhJXXHEFDz30UM+0s88+m1/96lc9zw93hSsoKGDdunUArFu3jv37++9mtGLFCp588km8Xi+1tbW8/fbbLF68eMgxvfTSSz1jlHbv3o3dbichIYHY2FhaW1sHjRPghRdeoKuri/r6et566y0WLVpERUUFnZ3WN/mNjY2sWrWKadOmHbVvn89HeXk5Z5xxBj/+8Y9pbm6mra2NFStW8OijjwLWWLKUlBTi4uKG9HoOJ1MpKSm0tbXxzDPP9LuciPCxj32Mr3zlK8yYMYPk5OQhbV+pwfhc1t9gmDOKyGzrS53a/ZuCGZJSSimlQsiIEywRyRWRN0Vkm4hsFZEv+6ffKSIHRWSD/+f8kYcbfF/96lepq6vreX7fffexZs0aZs+ezcyZM3vKmV922WU0NDQwa9Ysfv3rXzN16tR+t/exj32M2bNnM2fOHM4880x+8pOfkJGRMeR4/vznPzNt2jTmzp3Ltddey6OPPordbueiiy7ir3/9a0+Ri4HiBKub3xlnnMHSpUv5/ve/T1ZWFtu3b2fJkiXMmTOH008/na997WuUlJQA8OlPf5o1a9bg9Xq55pprKCkpYd68edxyyy0kJCRw5513snbtWmbPns23vvUtHnnkkSG/noSEBD7zmc9QXFzMOeecw6JFi3rm3X///UfFfeWVV/KXv/xFuweqgPJ5rBascGcEqflWgtV+SAtdKKWUUmpopL/KdMPagEgmkGmMWSciscBa4FLgCqDNGHPv8dbvbeHChWbNmjVHTdu+fTszZswYUYxqYHfeeedRxTAmGv37UcP14aO3s2j3L2m67QCxMbG4705nY+YnWPK53wU7NKWUUkqNIyKy1hizsO/0EY/BMsZUApX+x60ish3IHul2lVIqGIzHBYDTGYXdbqfCnkFYS1mQo1JKKaVUqAhokQsRKQDmAe8Dy4Evich1wBrgq8aYxkDuT43cnXfeGewQlBpXxNOF29gJDw8DoMmZTUJXRZCjUkoppVSoCFiRCxGJAZ4FbjXGtAC/AyYDc7FauH46wHo3i8gaEVlTW1sbqHCUUurEeLpx4cBusypcdsXmke6t0lLtSimllBqSgCRYIhKGlVw9aox5DsAYU22M8RpjfMCDQL+l8YwxDxhjFhpjFqampgYiHKWUOnGeblyE9zyVpAKipYvamoNBDEoppZRSoSIQVQQFeAjYboz5Wa/pmb0W+xiwZaT7Ukqp0SZeF24J63kemT4FgNqyXcEKSSmllFIhJBBjsJYD1wKbRWSDf9p3gE+KyFzAAKXAZwOwL6WUGlXi7cbFkQQrKdu6xUJr5W7grCBFpZRSSqlQMeIWLGPMKmOMGGNmG2Pm+n/+YYy51hhT4p9+sb/aYMh6/vnnERF27Ngx4DKlpaUUFxcHbJ87d+5k5cqVzJ07lxkzZnDzzTcD1k2C//GPf5zwdru6uli8eDFz5sxh1qxZ3HHHHYEKWamQZ/O58PRqwUrLsxIsT92+YIWklFJKqRASsCIXE93jjz/OqaeeyuOPP97vfI/HM+J9eL3eo57fcsst3HbbbWzYsIHt27fzX//1X8DIEyyn08kbb7zBxo0b2bBhAy+//DKrV68eUexKTRR2bzduOTIGKywimlpJwtF8IIhRKaWUUipUaII1BG1tbaxatYqHHnqIJ554omf6W2+9xYoVK7j44ouZOXMmYCVaV199NTNmzODyyy+no6MDgNdff5158+ZRUlLCTTfdRHd3NwAFBQV885vfZP78+Tz99NNH7beyspKcnJye5yUlJbhcLm6//XaefPJJ5s6dy5NPPkl7ezs33XQTixcvZt68ebzwwgsAPPzww1xyySWsXLmSoqIi7rrrLgBEhJiYGADcbjdutxtrKN3Rnn76aYqLi5kzZw6nnXYaYLV+3XjjjZSUlDBv3jzefPPNnn1deumlfPSjH6WgoIBf//rX/OxnP2PevHksXbqUhoYGAB588EEWLVrEnDlzuOyyy3ren96WLl3K1q1be56vXLmSvjegVmq02HwuvLbwo6Y1hGUR21EepIiUUkopFUoCeh+sUffPb0HV5sBuM6MEzvvRcRd54YUXOPfcc5k6dSrJycmsXbuWBQsWALBu3Tq2bNlCYWEhpaWl7Ny5k4ceeojly5dz00038dvf/pYvfelL3HDDDbz++utMnTqV6667jt/97nfceuutACQnJ7Nu3bpj9nvbbbdx5plncsopp3D22Wdz4403kpCQwN13382aNWv49a9/DcB3vvMdzjzzTP7whz/Q1NTE4sWL+chHPgLABx98wJYtW4iKimLRokVccMEFLFy4EK/Xy4IFC9izZw9f/OIXWbJkyTH7v/vuu/nXv/5FdnY2TU1NAPzmN79BRNi8eTM7duzg7LPPZtcua/D/li1bWL9+PV1dXUyZMoUf//jHrF+/nttuu40//elP3HrrrXz84x/nM5/5DADf+973eOihh3pa5g678soreeqpp7jrrruorKyksrKShQuPuUm2UqPC7nPhkaMTrPboXLIb3w9SREoppZQKJdqCNQSPP/44V111FQBXXXXVUd0EFy9eTGFhYc/z3Nxcli9fDsA111zDqlWr2LlzJ4WFhUydao3luP7663n77bd71rnyyiv73e+NN97I9u3b+cQnPsFbb73F0qVLe1q+envllVf40Y9+xNy5c1m5ciVdXV2UlZUB8NGPfpTk5GQiIyP5+Mc/zqpVqwCw2+1s2LCBioqKniSsr+XLl3PDDTfw4IMP9nRfXLVqFddccw0A06dPJz8/vyfBOuOMM4iNjSU1NZX4+HguuugiwGp5Ky0tBawkbMWKFZSUlPDoo48e1VJ12BVXXMEzzzwDwFNPPcXll1/e7/uj1GiwGxdeW9hR03wJ+aTTQHNLa5CiUkoppVSoCK0WrEFamkZDQ0MDb7zxBps3b0ZE8Hq9iAj33HMPANHR0Uct37erXX9d7/rqu43esrKyuOmmm7jpppsoLi7uNxEyxvDss88ybdq0o6a///77g8aTkJDAGWecwcsvv3xMgY7777+f999/n5deeokFCxawdu3a474Op9PZ89hms/U8t9lsPWPUbrjhBp5//nnmzJnDww8/zFtvvXXMdrKzs0lOTmbTpk08+eST3H///cfdr1KB5PC58DqcR00LT50M+6HqwA7iSxYFKTKllFJKhQJtwRrEM888w7XXXsuBAwcoLS2lvLycwsJC3nnnnX6XLysr47333gPgscce49RTT2XatGmUlpayZ88eAP785z9z+umnD7rvl19+GbfbDUBVVRX19fVkZ2cTGxtLa+uRb9LPOeccfvWrX2GMAWD9+vU981599VUaGhro7Ozk+eefZ/ny5dTW1vZ0+evs7OTVV19l+vTpx+x/7969LFmyhLvvvpvU1FTKy8tZsWIFjz76KAC7du2irKzsmMTueFpbW8nMzMTtdvdspz9XXnklP/nJT2hubmb27NlD3r5SI+Uwbnx9xmDFZRUB0HRodzBCUkoppVQI0QRrEI8//jgf+9jHjpp22WWXDVhNcNq0afzmN79hxowZNDY28vnPf56IiAj++Mc/8olPfIKSkhJsNhuf+9znBt33K6+80lNk4pxzzuGee+4hIyODM844g23btvUUufj+97+P2+1m9uzZzJo1i+9///s921i8eDGXXXYZs2fP5rLLLmPhwoVUVlZyxhlnMHv2bBYtWsRHP/pRLrzwQgBuv/12XnzxRQC+/vWvU1JSQnFxMaeccgpz5szhC1/4Aj6fj5KSEq688koefvjho1quBvODH/yAJUuWsHz58qOSuhdffJHbb7+95/nll1/OE088wRVXXDHkbSsVCGHGhc9+9N90Wp71JYKrZm8wQhpVXW4vT/z1OXZvWz/4wkoppZQalBxu9RgPFi5caPpWi9u+fTszZswIUkSh7eGHHz6qGMbJSP9+1HDV3lnAvsRTWfLlvxyZaAwdd2WwNulCVtzyUPCCGwVvvvwsZ6y+iWpJI/0ObaFTSimlhkpE1hpjjqnEpi1YSinVSzjuY1qwEKHWkUFU+8Qr1e7b8wYA6aaGuoMTr4VuPH2JqJRS6uSgCdYEdsMNN5zUrVdKnYgw4wZ7+DHTWyJzSeo+GISIRldky/6ex4c2vBLESALvg227efquy1n3av9dukPZug3r2bv29WCHEXCNrR2sf/dljM8X7FACyhjDmk2baOvsCnYoSqkxEBIJln4DqU6E/t2oE+HEhXEcO67QHZdPlqmmy+UOQlSjJ9VdztboJXSbMFwHA3yfwSBrfvUeruA1klaPfQXa0VTV1Mmsv36EyX/7OK2N1cEOJ6Be/eNdzHv1Sjb94/+CHUpAvbl2MwufW0Hdz1eA/t+k1IQ37hOsiIgI6uvr9WJZDYsxhvr6eiIiIoIdigohXo8buxjo20UQsKdMwiluDpXvC0Jko8Pt8ZDrq6QzbjKl9jyiGncEO6SAim+2Xk+Bt5SO2gNBjiZwdq59A6dYt74oe33ijAn0+gzT6l8DIHnzg0GOJrBq1v8DgALXLrortwU5GqXUaBv398HKycmhoqKC2traYIeiQkxERAQ5OTnBDkOFEFdXB5GAhB2bmMdkFMFGaCjfxaTJQ781wXhWW1NFlriRhFzq2hqY0bY62CEFjNvrI997gFJHPgXeA5RtepvpZ10b7LACoqXcukG71whS/l6QowmcXYfqKcYaB5jZvR/T1YJExAU5qsBIqTlyblVsfJ3JWbOCGI1SarSN+wQrLCyMwsLCYIehlDoJuLo7rQSrny6CKblWUtVRPXEq7dXXVZMFRMan0t4xhaTWl+lub8QZnRjs0EassvIQedLEmrxPkbPvfjrK1gMTI8GyN+3Hi40PIpdT1DpxWkMqy/cyQwybEs5idtPr1O1aTcrss4Md1ogZY0h2HWRPzDxi2/bj2f8f4JZgh6WUGkXjvougUkqNFVdXJ9B/C1Zc5iTc2DEN+4+ZF6o6muoAiIpPISLduply1f7twQwpYGoOWl054/JmcUCyiaifGK8LILq9nHpHOi0p80jx1eFrmRjjsLr83Thl5iUANOxZc7zFQ0Z9u4s06iEum332SUQ37wp2SEqpUTbqCZaInCsiO0Vkj4h8a7T3p5RSJ8rVbVX4svXTgiX2MGptaUS0TpyxPK62egAi4lJIzLZu/N1YPjHGYbU1WElHQkomVZGTSe6YOCXoU9yHaI7IISzD6mZWVzpBipM0lwFQWLKMWhOHu2ZnkAMKjIr6NtJpxJ6QS3N0Iand5TDBqiQqpY42qgmWiNiB3wDnATOBT4rIzNHcp1JKnShPdwfQfwsWQFNENgldFWMZ0qjytDcAEJ2QQkahlWB110yMLpDuVmvcbmxSOu74QlK8NRh36JfI9vkMyaaBrqgMEvKs/06bKiZG61x4awU+hJjUAipsOUQ2T4ykuK2uAof4cCTlYlKm4sSFu7Es2GEppUbRaLdgLQb2GGP2GWNcwBPAJaO8T6WUOiFul3UBbg87tgULoDs2nwxvFR7vxPj22XT4E6z4VGLjEqghCVvjxOgC6Wv3t87Fp+FIK8Iuhrry0G8Rael0kUgrJjKFnIIpdJkwXFWh/7oAnJ01NEk8OMJpjMonuWtitBZ3N1jJVERyHhGZMwCo278pmCEppUbZaCdY2UB5r+cV/mlKKTXueFzWGCx7eGT/CyQVEi/tVFVVjmFUo6izCQBbZAIAdeHZxLRPjG/WpcNKsCQyibgsq0BJ3YHQb+lpbGrEKR5sMcmkxkZSJpk4miZGS0+4q5E2ewIAXfGTiTctGH+iHMq8zdbnRXRKDon5VrfOtoOh/7eolBpY0ItciMjNIrJGRNZoKXalVDB5/C1YjvD+uwhG+QtB1E6QcUq2ribaiAK7VVC2PTqPVPfBIEcVGPbuRlolBuwO0gqtrnQdVaFfXKDVP7YsLDYVEaE2PI/49onR0hPpaaIrLAEAe5qVFLdOgETE608SI+PTyM3Opd7E4p0g48uUUv0b7QTrIJDb63mOf1oPY8wDxpiFxpiFqampoxyOUkoNzHu4i+AACVZS7lQA2g+F/oU6QJiriTZbbM9zX+IkUmiiuakhiFEFhrO7kTZ7PABpqZk0mRhoCP2Wno4mK8GKiLP+v+yIKyTVWwkeVzDDCogYbzOu8AQA4rKtrnQNZVuDGFFgiD/BkqhkkqLDKSWbiKY9QY5KKTWaRjvB+hAoEpFCEQkHrgJeHOV9KqXUCfG6D7dg9d9FMDnH+lbdU79vzGIaTU53M52OIzdyjUifAkBVaei3GkR4muh0JABgswlVjmyiJkAFyO4Wq6dHZGK6NSGlCAc+2mtC+4Ld6zPEmVa8kckAZORPo9s46KoM/dZie3cDHURCWAQiQl1EPkmdpcEOSyk1ikY1wTLGeIAvAf8CtgNPGWNC/+sopdSE5HUdP8GyOaOpkyTCmkP/Qh0g0ttKlyO+53lirlVJsOlg6F/U9m4NAWiJyiOpu3zgFUKEp9W6d1mcP8GKzrSOWd3+0P6vtam9i0RaISoJgJzkGA6YDOwNoZ04AoR3N9FmP/JFRmdcIXG+5p4xkEqpiWfUx2AZY/5hjJlqjJlsjPnhaO9PKaVOlM9jJVhhzgGKXAAN4dnEdU6MUu3RvhY84UcSrIwCa6ySqzq0L2qt1pAWPBFJPdNc8QWkmzrcXe1BjGzkfB2HqyNaXQST862udG2VoT2mp6mhFrsYbNEpAITZbdSEZRM9AcaXOd1HWlMBSJ4MgLs2tM8zpdTAgl7kQimlxgvj7gYgPKL/MVgAHTF5pHkOYYwZq7BGhc9niDVteJ0JPdPCo+Kol0TsTaFdqr25w0USrZjIIwlWWJpVoKT6QGi3zklHAx5sEGElxnlZ2TSYGExdaF+stzZaY8uccUfGYrdG55HiOhTyN+WN9jbTHZ7Y8zwqwxrL2VAe+l1xlVL90wRLKaX8ehIsZ9TAyyQWkC6N1DY0jlVYo6K1y0UCbZjIxKOm14VnE9cR2qXaG5ubiRA3tpiUnmlx2VZXuobybcEKKyAcXQ20ShyIABAZbuegLYuIltBOijubaoAjLXMA3sRJhOPG1xS6XTuPtKYeOc9ScqfhM0LHodBO9pVSA9MESyml/Iy/i2C4c+AWLGeq1b2npiy0u2S1NDViF4NEHZ1gdcTkk+4+GNItdG3+1hBHrwQro9C6/1BX1e6gxBQo4a4m2u3xR01rjMglsSt0kxA4Urwj+nDxDiDc3+rYeDB0z7XmTrc1tqzXFxkFGckcNCl460O/qqVSqn+aYCmllJ/xHG7BGngMVnyONealJYQv+gDam60LWkd00tEzkiaTKk3U1ofuDV7b+2kNSUxKoYE4pCG0K0BGepro9N8r6rCuuEKSffXg6ghOUAFwuHhHbK8EKyHHX3SlInRbehpa2oiTTiT6SLKfGBVGuS2TiJbS4AWmlBpVmmAppdRhnk5cxo7NETbgIqn+QhDemtC+F1Zns3VBGx6TfNT0CP/4kMr9oTs+xOVvDYlKSD9qenVYDtFtoV00IcbXgtt5dKujLcVqVW0N4fuzGf+9osJ7jcHKyi2k04Tjqg7dVse2RivZd8QeeV0iYrU6dpZBCLcUK6UGpgmWUkr52dwddInzuMuERydQRyJhTaHdvafb32IQEZdy1PRkf6n2lhAu1d5fawhAa1Qeqa7Q7Urn9vpIMC14I45udYzOtO7PVlcWuuPLpLOBbsIh7Mj4x6yEaA6Qgb0pdFsd25uOLd4B0B1XSLRph47QbSlWSg1MEyyllPKzebro5vgJFkCNM4+EjtBuCXG3NQAQnXB0gpWSZyVYntrQbTXwtfuTx/ijL2q9iZNJpZGO1tAsUNLY3u2/V9TRrY6p+Varakdl6LZghbkaabUdKd4B1g2i68KyiG0P3aIr3c2HW1PTjpouydZNvburQ7ursVKqf5pgKaWUn83TiWuQFiyA1pgCMj2h3b3H23E4wTo6CbFFxFIvSYQ3lwYhqsCQzga82CAi4ajp4elW98eqEO3+2NxYj0N8R1VHBMjJSKPWxGNCuGhCuKuJDkf8MdPbovNJdh8CnzcIUY2cu9VKsGL6tKbGZlt/i43lodtSrJQamCZYSinlZ/d24ZKBKwge5k2cTDzttDRUjUFUo6TDasWJiE0+Zla9M4e4ztBtNbBKmceC7ej/4hL8BUqaKkIzwWprsLqbhccenRRHhNk5ZM8iorU0CFEFRrSnia6wxGOm+xInEY4Hb2No/j362g/fGProFqy0vKm4jZ2OEL9BtFKqf5pgKaWUn8PXhcs2eAtWeLo15qVm/5bRDmnUSFcjHUSA49jX2xVbQKbnIB5vaN7gNdzVeEwpc4DMSVaC5aoOza50Hc2HqyOmHDOvKTKPpBAt1W6MIcZ39L2iDnOmW6Xa68tCMynuGWPV535zBWkJlJvUkG51VEoNTBMspZTyc3i78NgGb8FKzrfuqdQaoi0hAI7uZtokpv+ZyZNJkRYOVteMbVABEuluPqaUOUBUdBzVJIds0YRuf4LVt7sZgCuugCTTiOlqGeuwRqzd5SWRVkw/CVZCrpUUN4do0RV7VwNtEg32oyuTxkWEccieRWQItzoqpQamCZZSSvmF+brw2AdPsLILptNtHLhrQrd7T7i7mQ57XL/zojOt8SE1pVvHMqSAifE14w4/9mIdoNaZS1x7aBYo8bT1Xx0RwJZiFU1oPhh6rXMNLR3E035M8Q6AnNxC2o0Td82eIEQ2cv3dGPqw5sh8krrLQ3osp1Kqf5pgKaWUX7jpwjuEBCs83Pr22RmiLSEAkZ4Wuhz9J1gp/qp0rSF4M2W310e8acHTp5T5Ye0xBaR7Do5xVIFxeDyPI/bYLoKxWVZS3FAeeqXamxpqsIkhrM/YMoC0uAjKycARoudapLuJrn5aUwFc8YVEmG5orRzboJRSo04TLKWU8gv3deOxRw5p2caIfJI6S0c3oFEU5WvBFZ7Q77x4/8W6LwTHhzS1u0ikFYnqvwXLJE0igTaa6kKvQImtswEXDgg/tmvnkVLtoVdev9VfvKNvIQiwbspbG55DXEfoFbkwxhDtbcY1QGuqI80aX9ZeGZrdH5VSA9MESyml/Jx0YxyDt2ABdCdMIsNXjdvVPcpRjY5YXyvePmXMe4RHUWdLwdm8f0xjCoTmplrCxYvEHNsaAhCRYRUoqS4NvQIljq4G2mzxR90r6rCc9BSqTCI0hF5S3NFkjS2LTjw2wQLoiMknxVMFXs9YhjViHS4vCbTii+y/NTUu2/pb1FLtSk08mmAppZRfhOnG5xhaC1ZY+jTCxMuh/aHXJavL5SaRVryRx3Y1O6w+Mp/krtKxCypAWuus7lZhcRn9zk/OtW6k3FIRet0fI9yN/d4rCiDMbqPKnkVUCBZNcLVY94qKTTp2bBmAL2kSDry460Orm2B9m4skWiGq/wQrK28K3SaMzqrQGzenlDq+ESVYInKPiOwQkU0i8lcRSfBPLxCRThHZ4P+5PyDRKqXUKDE+HxG4wBE1pOUT8koAqN+/eTTDGhWN9dU4xIdED5xgdcUXke+roKPbNYaRjVx3k5VgORP6T7AyCqbjMTa8taF3URvraaAz/NhCEIc1RhWQ2n0g5IomeP3FO/re3+uw8Ayr+2OonWv1zU1ESTeOAVpT81JiKDXp2EKw1VEpdXwjbcF6FSg2xswGdgHf7jVvrzFmrv/ncyPcj1JKjSqXqxObGEzY0FqwsqZYCVZ3ZeiVam+qOQSAM6H/FgMAW9p0oqWbigOhdfHnarbG80QnZ/Y7Pyw8gkO2TCKaQut1eX2GJNOEK7L/bnQA3YlTiTVt+FpDq7y+tPvjHSDhTy60zrXWitCqatnWYL0uZ1z/r8vpsFMdlk1UW2hWtVRKDWxECZYx5hVjzOFO0auBnJGHpJRSY6+jrQ0Au3NoLVhRsYlUk4yjMRSLClitPNGJ/SchALE5VqtB44HQajXwtlgJVlxy9oDL1EYWktwZWuPLGtu7SaEJX/TACVZ4pnXPqLr9m8YqrIAI76qlxRbf702vASbnZHLIJOGrCa2xSl2NVrXKiOOcZ23RBaS4Dobc+DKl1PEFcgzWTcA/ez0vFJH1IvJvEVkx0EoicrOIrBGRNbW1tQEMRymlhq6jzbpBq90ZPeR1aiPySWwPrXEhAF1NVhISO0ArD0Da5DkAuCpDa4yZaa/Bi43wfkqZH9YRP4VM7yF8rq4xjGxk6murcYoH+wBjywCS862Wnsay0EqwYly1tDgG7voYGxFGuS2XqObQuheWu8lqKY5JzRtwGV9yEWF48NSFVouqUur4Bk2wROQ1EdnSz88lvZb5LuABHvVPqgTyjDHzgK8Aj4lIvzdcMcY8YIxZaIxZmJrafz9lpZQabZ1tDQA4ohOGvE573BSyPBX4vN5Rimp0ePxdyBJSsgZcJioxgyZicTSEVgudvaOWFokD28D/vUnqdBzioz6E7hlVX22VKY8+TstcQcEUWkwknqrQ6rYa76mj03n8//8boyeR0nUAfL4ximrkvE3+FqykgTv3ROZYSXHd/o1jEpNSamwMmmAZYz5ijCnu5+cFABG5AbgQuNoYa2StMabbGFPvf7wW2AtMHbVXoZRSI+RqtRKssAHun9QfSZtGlHRTVR5a36zTZrXyOGIGbjUAqAzPJ749tLrSRXdV0xQ2cDc6gJjcYgAaQqgrXWttOQDxabkDLhMfHc4BWy7OxtD5e2zv9pBsGvFEDzweEMCTNJVIuvA1lY9RZCMnbVV4sEPUwK2paZNmA9AaYq2OSqnjG2kVwXOBbwAXG2M6ek1PFRG7//EkoAgIvX40SqmThrvdSrDCY/svqdyfuJxZANSE0IU6gLOjkgZJApv9uMu1xkwiyx1aVemSPDW0Rwzc9REgfdIsvEboCqHuj27/eJ7jJVgA9ZGFpITQ+LKK+jZSacIef/xj5szyVxIsDZ1zzdlRTbM9+bitqZOy0ijzpUKIjS9TSh3fSMdg/RqIBV7tU479NGCTiGwAngE+Z4xpGOG+lFJq1HjbGwFwxh6/Vae3zCnWOKWOg6FzoQ4Q0z14Kw+AN3kqCbTRWHtoDKIaOZfbS5qpwxUzcNdHgIykRCpIx1EfOqXabc1l+BAk/vgJVndiEQmmCZ+/9Pl4V1t5AIf4iEg+/utKLTw8vix0bhAd666lY5Cuj9FOB2WOAqJbQqsrrlLq+EZaRXCKMSa3bzl2Y8yzxphZ/mnzjTF/C0y4Sik1OrwdVoIVNUBJ5f7Ep2TRRCy2+tC6OEpy19AWMXCxhMMi/a0GNftCY3zIoapKYqQLe8LxL9ZFhCpnAfFtoVNYIKL9IA32FHCEH3e58EzrmNWFSEtPa6V17sRlHn8UQWFuHrUmDm91aLT0tHa5yfRV0xUzeHHl5tjJpLnKwRNa95xTSg0skFUElVIqZHnbG/EZISFx6F0EAarC84lrDZ0LdZfbS6qpwztIKw9AcoHVatAWIvcfqvaPhYtJLxh02fa4KWR4DoLXPcpRBUaCq5IW5+DHLMl/zBpLQ6O8vqvO6s4Yn1V03OXio8I4YMslsik0vsyobGglW+rwJRYOuqw3eToOvHhqQ+O1KaUGpwmWUkoBdDXRJlE4HI5hrdYWN5ksdxkmRKqbHaqsIELcOJIGLh19WGbuZNpMJNSGSKtBpdXlLyV38JpKtjTroraxfPxX3Otye0n3VdMdPXAFwcPyC6fSbpy4QqSSoL25FC82ZJBWR4DGqEmkdJWGxJjA6vLdVtfHtMmDLhuZYxVd0UqCSk0cmmAppRRg626mTWKGv2LKVBKkjaqqisAHNQoayqwL76j0SYMu63DYKXPkE90UGmOVTK0VZ1z2jEGXjcu3Lmpr9m0YzZACoqqugWypx5c0eGtIQnQEB2w5OBtD45hFtVfQaE8Fe9igy3YnTSPGtONrGv/nWmPFTgBS8wf/W0wvLMFrhLby0Gh1VEoNThMspZQCwlwtdNpjh71eTLZVSbBqb2h8+9xZZbVGHb4p7WAaY6aQ0b0/JFoNIlr2UWdLQZyDJ8o5U+bgM0JnCHR/rPT/bUVmFw9p+ZrIyaR2jP9uqz6fIat7P43Rgyf7AM5s/z2jQiAp9lRbCVZU+uCtqZOzUig1GVATGq2OSqnBaYKllFJAjKeejrCh3wPrsIwpcwForwiNSoKmZhcu4yApe8qQlvemTCeBVtobxn8lweTOA9RH5A9p2dSkRMolA0f9+O/+2FpmtWwc/lsbTHfiNBJNE77W2lGMauTK65op5CCelOlDWj5t8lwAmkrXj2JUgRHdtJNmWwLEHv/+XmBVEqxw5BHTEjr3L1NKHZ8mWEopBSR66+mMGLx0eV8JGQW0E4HU7hyFqAIvonkPVY5sxD60sWaROVarQeWutaMZ1og1t3cyyXeAzsSh3dPeqiRYSGLb+L+oldrtuHEQlX78QhCHObMOd38c34lI+d4tOMVDVM7sIS0/OS+HCpOCqRrfrY5enyG7ey/1MUM7XgDNsUWkug+Cu2sUI1NKjRVNsJRSJz2Pq5sk04wn+vg3O+2XCFVhuUSHQCVBYww53XtojB36hV9G0XwAWsvGd9nvPVvXECFuIvMXD3mdjoSpZHgPYlwdoxjZyKU0b6HCOXlI45QAkifPA6BxnBdNaN23BoC0qQuGtHyM08EBez4xzeN7fNn+6gaKKMedMnPoK6VOx44Pd01ofFGjlDo+TbCUUie92qoybGJwJAxeBrs/rTGTyXSVYcb5OKWD5QfIoB53xrwhr5OdlUudiR/340Mad68GILt42ZDXsWXMwo6h7sD4vXltbXM7U717aE8d+jGbVDCJRhODZ5y39IQd+oB2iSIya2hjy8Bq6UlzlY3re0bt3/QfnOImfuryIa8Tk2e1FNfs3TBKUSmlxpImWEqpk15DVRkAkcmDl4rujy9lKunSQE1tXSDDCrjyLW8DkDJ16ZDXsdmEg+EFxLaM73v0RB56nyaJIyZj2pDXScifA0DdOL6o3b3pP0RLN1GThp44RkeEccA+vqs/ur0+cts2UxlTDDb7kNfzpc4kDA+ucdzS07n3XQDSZ60c8jpZk4txGTvt5eO7pVgpNTSaYCmlTnrttVaCFZ8++L2h+hOZbXUFOjTOKwl6971DN2HkzjplWOu1xE4hy30Axum9vrpcHqa0raEsbiHYhv7fWl5RCd3GgevQ+G3Batv6CgDZ888Z1noNMVNI79o3bqs/btq+g2lShjd/xbDWi/YnxTV71o1GWCNmjCGt9j2qwnKRIRS4OGxSehL7TRa22vHdUqyUGhpNsJRSJz1PnTV+KiVnaAUS+kovtC76WsvH74W6MYas+vfYEzkbuzNqeCunzSSKLpoqx+c4s41r3iFdGnFOO2tY6yXGRnFAcghvGJ+VBI0xpFe/TVn4FJwJwxsf6E2ZTjSddNWXjVJ0I1O15kUAchZfMqz1sibNxmXsdIzTlp7tpYeY59tCc+7w/hbDHTYOOieR0Dq+W4qVUkOjCZZS6qTnaNxLHQlExSWd0PqJOUW4cGDGcSXBvTs3McmU4yo4Y9jrxuRZVd6qx2mrQfv6Z/EYG4XLrxj2ujVRk0kZp/eM2rx1C3PMDloKzx/2ulG51jGr2j3+qj96vD5SD/ydGkcm0blDqyB42KSMBPaRha12fN4WYe+qp3CKh4zFHx/2um3xU0nx1kBX8yhEppQaS5pgKaVOejFtB6gNzznh9cUeRpUjm6jm8XmhDnBw1V8AyF9x9bDXzS6yCiy0l28OaEyB0N7Zxczaf7A7ZgHh8cMvs9+VOI1UXx2+jsZRiG5kKt/6PQCTzrh+2Otm+u+ZNR6rP65eu46Fvi20TL0MRIa1bpjdxqHwSSSOw5Yet9dH5r6nqXFkEj/ttGGvb8uwblqu47CUCn2aYCmlTmrGGNLd5XTEFo5oO83Rk0hzHRiXlQS7XS6mVjzH9oi5JGVNGvb6qSkpHCQVe934Gx+y5uU/k0E9YUs+fULrh2daF7XjrXpbbX09S2qfZmvcCqIyhnZT6N7ysrKoNEnjsvqj++2f4RE7+R/9/Amt35YwjWRvLXQ2BTawEfr3639nodlKc/F1w04cARIK5gJQt3d8379MKTU4TbCUUie1qvK9JEsLJm0Y96zphzupiBxTTX1zS4AiC5x1f3+ATOpg8c0ntP7hm/ImjLOb8nZ1d5O96VcctGczefnlJ7SNpElzgfF3z6gNz/2MBGkn4aNfP6H1HXYbFWGFxLWMr0qCG7duZXnry+zMupSwxBNrNbal+1t6KsZPi6rL4yNm9c9oljimnHfLCW2jYNJUWkwUXQfHz+tSSp2YESVYInKniBwUkQ3+n/N7zfu2iOwRkZ0iMrzyR0opNUbqd1ollaMmD70Mdn+cmTOwi6Fy7/gqdNHR3krhpp+zxzGF6SuvOuHttMcXkeUpx4yj+w99+MT/MMUcoG35txG744S2UTBpGi0mEvc4umfUnj07WFbxEDtjFpNdcvoJb6c1rohMdxl4PQGM7sR5PF46nv8qRmxMufS7J7ydhMK5ANTtHT9jAl9/4WGW+tZTN+dziDPmhLaRnRjFbvKIGKdFV5RSQxeIFqyfG2Pm+n/+ASAiM4GrgFnAucBvRWToN7pQSqkx4j7wAd0mjOzpi0e0neR860ahLeXj50IdYO2fv0sGdXjP+gEyjPsN9WVLn0UYXuoOjI/Xt3vbehbs+x2bo5Yy7YxrTng7MRFhlNryiWwcHwVKurpdND/xOeziI/2Tvx3ZxtJnEo6H1kPjoxXrlSfuY5n7PfYV30pk2vC7qh5WUFhEs4mie5y09Ozev49Fm+6kLHwKky782glvR0SoPVx0ZRx2NVZKDd1odRG8BHjCGNNtjNkP7AFGdvWilFKjIKZ2Pbsdk4mPiR7RdlILZuEzgrdm/Hz7vP6t51he+SfWJl3ItGXDr0TXW/zh+w+Ng7FKldXVhD11Nd3iJPfa+09ovEtvDdGTx8U9o3w+w3/+779Y4FlP6fzvkJBdNKLtxeWNn0qCb73+D87c/UP2R81mxse/PaJtZSdGsYd8nA3BT4rrGpvo/tOVxEgnMVf9HnE4R7S9rqTpRJt2THN5gCJUSgVDIBKsL4nIJhH5g4gk+qdlA70/HSr8044hIjeLyBoRWVNbWxuAcJRSamiMp5vc7l00JAyvVHR/7M4oquwZRDSNj3FKuzatZtKbX6LckcvMm3434u3lFM3GY2x0B/mmvM0NNTQ/cCHZpoqWi35PQubIipMAuJOnE2dacTdXBiDCE2OM4c0Hv8GZDU+wKfMTzLj41hFvM2fqXLxG6AhyS8+H773JnLdvptmRTPZnn4URtKSC1dJTEzWZ1I49QU2K6xub2Peby5jp203lmb8kadK8EW8zPMtqCW/cv2HE21JKBc+gCZaIvCYiW/r5uQT4HTAZmAtUAj8dbgDGmAeMMQuNMQtTU1OHu7pSSp2wgzvXEIEbe15gGtjrI/NJ7iwNyLZGYveGd0h+7gq6bRFE3vAskTFxI95mYnwc5ZJJWH3wWg0qykqp+fU5TPLsY88ZvyV/QWCG90bkFANQE6T7fLlcLt7+1Wc4q/IBNiefS8mnR54QA6QnJVAmmdjrgteq+s7LTzH15atx2yOIvOmFEyql35+upOlEmQ5MU3BupLzvwAHKf3U+C91r2bv0vyk87VMB2W7q5LkANGmCpVRIGzTBMsZ8xBhT3M/PC8aYamOM1xjjAx7kSDfAg0Bur83k+KcppdS4Ubt9FQAZM1cEZHud8VPI8R3E5QpeIYj1rz9F1l8vw0U43qv/Slru1IBtuzZyEsntwbnX15b3X8X5h5Xk+CrYe9YDzBhBwY6+UidbLQ/NB8b+/kPVleVsvfdcTm94mo1ZV1L8hUcRe1hAti0iVEdMIikI1R9dbg+v/P77nPLezTSHpxH12VeIy54esO07s62WnqbSsa/++P67b+D841nM8O2ibOUvKDrvSwHbdlFeNhUmBe84KrqilBq+kVYRzOz19GPA4b4jLwJXiYhTRAqBIuCDkexLKaUC7uBaakwihZMCk4TY06bhFA+HDox9K4/H7WL1g19mzts3U+3IIuyzr5E5ZU5A99GZOI0MbyXe7vaAbvd43G4X7zz0Dab+40pc4qT+ypeYcdplAd1HQW4eNSYBX/W2gG53MO+//Cj2/1vOrO6NbJp3F3NufuCEqyEOpDNhKhmeQxhXR0C3ezz79u5k20/O4uyK+9iVcBoZt71NTPqJF7XoT2pPef0NAd3u8XR1d/P6/32d+a9cTrjN0HjlixSccUNA95EQFU6pLZ+Y5uCPL1NKnbiRfpL/RETmAgYoBT4LYIzZKiJPAdsAD/BFY4x3hPtSSqmASmvexIGomaTZA1PvJy5nJmyA+tKtFBSVBGSbQ7F/12Y6n7qZpZ5tfJB0AbM/839ERMUGfD+OzFnYDhkO7tlI9qxTAr79vvZs/RDz18+zwrOb9fFnMfWmB4hOSAn4fiLC7Gxx5JPSPDbV9urra9nxyJdZ3vIS+x2FdF3+LLOnLxqVfdkzZ2GrMlTv30T6tKWjso/DXG4vbz51H8t2/YQM8bF5/t2UXHTLiIuQ9KcoL4sKk4KvamzGBG7e8CH2F7/AWb5dbEn6KEU33Y8zNvB/iwCNsUWktjwNHhc4wkdlH0qp0TWiBMsYc+1x5v0Q+OFItq+UUqOlvbGabF8le9NO7Aa1/cmYbCVVXVVjM+bF43bxweM/YP7e3+ERB+sX3sPiC0/sZsJDkVQ4F9ZCw/4No5pgtbS2sO7RO1hW+Wc6JYK1i3/BgvNvHLX9ATTFFFHc/CL4fGAbnQK7Pq+P1S/8lqmbfsIy08LavOuZc82PcTgjR2V/AEmFc2A91O1dP6oJ1o5NH9D9wlc4x7uZfVHFJF79ECU5gesS2FdCVDibbflMGeWkuKGxkY2PfY/lNY/TKZHsPPWXFH/khlHdpzd1Jo4WL56aHTiyRl6ARyk19gLbF0EppUJE2ca3mQHETgncRWdsYjpNxGJrGP0xL7s3vIP9b7dwincfG2KWk3fNb5mXWTCq+8yfMotuE4a7cnTGhxifjw/+9Sg579/NSmrYmPgRCq++jwWp/RahDShv6gwimp+hu24fzrQpAd/+7s3v43rxNk5xb2VP2DQ6Ln6MBSWnBnw/feVPKaHbhOE6NDrHrKmxgS2PfYclNU/RIZFsn38XMy78rxFXChyKhpippLY+NSotPV6vj3f//geK1v8PZ1DPppTzmXz1T5mWlBXQ/fQnOmc27IW6fevJ0ARLqZCkCZZS6qTUuvc9PMbGpNmBvcitDsslrm1/QLfZW3NTI5sf/RbLap6kUeJZs+SXLDzvhlHbX29REU522XKJGIWb8pbu3kzjM19hSfcHlNnz2HvOE8xZfF7A9zOQ6JwS2ANVu9eRH8AEq6W5ga2PfotF1U/TJtGsm3sX8y7+rxHd9Hk4YqMi2GnLxRngY+b1+lj9twcp2vC/nEoja1MuYurV9zIjKSOg+zkeX+oMHK2Bb+nZsXktnS9+ldPc6yl1TKL8wt8ze+6ZAdv+YDKnlOB6y05b2dgXXVFKBYYmWEqpk1J07Xr22wsoik8I6HZbYwooaHwXYwwSwLEnPq+PD/7+IJPW/4hTaWBN6iVMveZnLByFMUnHUxc9maL2wJUz72hvZd1jd7Co4k+kip21077G3Mu/iT1sbMee5E9fAG9ZVenyl18x4u35vD4+/Nv/MXnDj1himlmTcjHTr76H+UnpIw92mOqjJlHUsT5g29u28QPcf/sqyz2b2Osoov3CR1gw9/SAbX+oovPmwD6r+2MgWnoa/d0BT6l5nG5xsqnkO5Rc+pWAVXUcqikZiewzWYTXjG3RFaVU4GiCpZQ66fg8HvK7trM56RyKAr3t5CJSGv9BfX0tySmBuefP3q0f0vH8V1nq3sg+x2TaLniIhfPG7hv13lxJ00hte5Xu1nqcscknvB3j87HutcfJfO9OTjU1rEv4CAWf/BkLMvIDGO3Q5aQnU046VI+8K93Oje/j/vtXWOLewm7HVBov+DOL550WgChPTFfKLFIPvIarqYrwhBNvYaqrr2fLY99hed3TdEgkG+bcwZyLbwl45cOhyppcjOtNO+3lI2vp8Xp9vPu3h5i64X9ZST0bU85n8qfuZXby6HdN7U9EmJ3y8EksaNUES6lQpQnWGHK53DTWV9HWUEVnUxXu5ho8bXV4O5vxdrUh3a3YPe2Ee9sJ83ZgMx7w+RDjQYwPm/FiFx8+seORMLwSjlcceCQcY3fiCY/F54wHZxwSGY89MgFHdCIRcSnEJKaSkJRBbGLymHVNUWq8qtizkTw6seUGvnJbZOZ0q6vZvs0kp5w1om21Njew5dFvs7DauqBdW/w95l16GzZH8D66ndnFUAZVe9aRP++jJ7SN0l2baXruKyzo+oBSWx47zn6c+cvOD3CkwyMiVEZNJ7/1xKvS1dfXsvWx73JK3dO0SRRrZ9/JvEtuwWYP7mduWN4iOADV21eRu2z4RV08Hi/vPP8AMzf/mJXSyIa0i5nyqXuZmzj2rXG9TclIZI/JwVlz4knxpg0f4vn71zjNs4FSxyQOXPAgc+aN7LwNhPb4aSTV/xs6GyEyMdjhKKWGSROsAPF5vdRWHaC2Yi+dNaV4Gsuwt1QQ0XGQuO5qYr2NJJgW0sXQ339JbmOnQyLplEg6JYpuWyQ+cWDEjrGHW7/FjhcbYjzYfW7sxo3T14XD58bh6iaqvZ0Y045T3APG6TVCq8TQZouj0xGPKzwejzMRE5mIPTqZsJgUnPEpRMenEZeURkRcCkQlQdjoVbkKNcYYjDl2en+9wUSEnoX7W6nviqNQzlgdq3rbO+QBGbMCc4Ph3pIL58I7WN+qLz6xCzXj87HupQfIW/sjlpgm1iZfyNRP/YQFKaM/wH4w6VPmw3vQsHf4CVZzcxMbn7iTJYf+QqrY+XDqV5l3+TdxhDtHKdrh6cxYSPq+f9Nac4DYtKG3pLk9HlY/ex8zt/+CU00LG9MuYcqnfsKCICcgh+UXL8P9tp3m3f8ZdoK16YN/Y/vXNznDu5194UWUX/wn5pYErzWut4gwO9WRk5nbst76fB3G52dVTTVbH/8eKxqepVucbJnzPWZdfOuYdwccSGT+PKiH2u3vkjr/wmCHM6F1dXfT0dpEd3sTrs523N0duLs78fh/e11d4OkCdxd4uzE+Lz6fD5/XizFexBgEH4JBjMGGD0QwYgP/tZux2THYwWZDbHbE5vD/2BGHA7GFIfYwbHYH4rB+2+xh2BxhiP+x3RGGzRGOze7A7gjH5nDgCAvHbg/D7gjH7nDgcITjCAvDYbcFtIu6Gj5NsIapvaWRQ3s301i2DU/NDsIb95LUdYBs7yHSxX1U8tRMNLW2dBqdGVRHzoboFOwxadjj0gmPSyciMZ2YxDTiE5KJiIgiXoT4AMTo6e6grbmBjhbrp6ullu6WOlytdZiOeuhsJKy7kTBXM1Ht1SS27iaeVqKle8BtdhFOmy2OdruVmHU54nGFJ+BxJmALiwB7ONjDen6L/7HYw7DbbdjEuqu1MQYfYIwPY8D4DAaDMQZ8bvB6EZ8bfId/e6zpPi943YjP0zNNjBfxusF4sfk8YDyIz+tv8fNi83mtef4fwf+71zQbhx/7sOHFjvXYjhc71m8bPmzGhwEOf1wJps9v62ZwNhkgiRoBnznyIWl6fveeduz8w1Eeb75BQKzfMtD8Yx4fZ1t91qGf+QMt09/8wWMZmHD84zDLdNAs0eRODvy9qtLzp9NiopCqE+u2ZFWb+woL3FvY7Sii8fyHWTR/ZWCDHIGCgiIqScFe9u6Q1/F5fXzwt/sp3HAPp9HAhsSPkv/Jn7EoPW8UIx2+uKmnwr6fUrHhNWac/f+GtM7m/7yM8/XvssK7h13hM+m4+AnmFY/+PcKGIzctmc22KcQdGvoxO1hRRulT32JZ8z9olli2LPhvZp3/+aB1BxxIZ9YyEve/QeehrURmFw+6fFe3i/88+0vm7LyPM2hlW/pFTL7qJxQnZY5BtEM3ef5HcK21U7flNU2whsAYQ1tbK831lbQ21NDVVI2rpRZvey2012PrrCfM1US4p41wbzuR3nYiTQdRpoNo6SYi2C8gwDzGhgd7z49X7P4rHDseHPjEusLxiB2f2PFifaFvXRaI9V3FMV8K93k+hPk2DNb/2tY8Gz4w1v/RVlKKf74P6Zl+ePle6xvDetssnJ94gLNmjI8vrgYzvj4px5nmxlrKN79La+lawmo3k962k1xzqGfMhtcIVfYM6iLyWR+3HEkqJDqtkPiMQpKyJhMflxiQhGm4HM4oEtKiSEjLGfI6HS4P5U0ttDTU0tZUTUdTLa7WejxtddDZSHh3I053M5GeZqJcLSR21RBrWokzbTjEN4qv5mguY304eHo+KKwPDuu5A5/Yen77Dn+oiA03dnwShpEIfDZ7T4ug9c2SAyM2/3MH2I5MF5sdxAY2OyKCTUDEZn0oSO+kwgyQhPRNyfo6MlWM6UnieqYaX7/LHvlc8/XMGni9oyMw/g8x4592eFs983vFcvR+Ta9fvV6NOTrZ7LvdgV5j37iOftx72sDL9ptsyYBPjmIrWM7CAN1guDe73UZZ+BTiG4fX1ayu+iC7nvwei+ufp02i+LD4duZf+mXsQewO2B+b3UZp7AJmtryL8XoGveDevuZN5OVvsdSzgz2OItrO/z1z5we/C1Z/ps5ZTv0/43Bt/ycMkmCVle6m6plvsLjtDWokmU1LfkrJOTcho3QPrZEQEQ6lnEJx7cO4mmsIjx94bGBrezsfPvkjFh14kMW4WJf9KYo/+UOKY8dnN7Wk2efA/h9S8cGLFH1s4ATLGMMHb/2dxLe/z5lmP3sii3Ffei/F05eNYbRDNzk7lfW2aWRUvDXosqVlZexe9QzLP/Z5oiInXm8Tt9tFXeUBGqrKaK8tw910EFqrCGuvIqq7hjh3Lcm+BmKli/5ur+4xNpoljjZbLF32GFyOODois/CExWLCYzHOWCQiDnHGIs4YHOGROJyROMIjCHNGEeaMwB4eid0ZhT3Mid3usFqLbHbsdhtit2OwgdiOpATGYHxejM9j/fZ6wf/Y5/Pi9XrweDz4PG68Xv9vjwef14XP68bncePzeDA+Dz6PC+P14PO6MV4Pxv8bX5/fXjfmqC+nPT1fSkvPl9D+H+PB5v9C2ub/ctpmPP7Y/VcW0vPPwP+v9ttKduRLW6+I//9pwfR+jK1n+0Zs/i98j8y3Hh9exoYRweucTHLM+OjtMBTj63/ucWb7P/+PpbvuAaBSUqmKmsbBlItxZs0iKb+YrMIZZDsjCc4w2MCKCncQlZYEaUnAtGGt63K58bi7cLtd+NzdeN0uvO5ufB4XHnc3Pp/B4zP4DNhEsNmsFi3E37JlE2wiYA/raRLH7sBmD0fsVhO4wxHm/0CzESZo07ca11pTZrPg0ON0tTcTEX38r1lcXR2sf/rHzNzzfyymm41plzL1Uz9i0TjpXtYf35SPEr/+X+xZ8zJTlvT/7Xr5vp0c/Ov3WNr6CnUksG7eD5l30efH9RjQ6EgnG+NOoaTxbbxdrdgjjr1ca6irYcvTP2Bh1ZOk4+ODvE8z+6o7SIuOC0LEQ5cw9xJsr/6R0n8/wtSLv37MfI/Hw+q/P0Tuhp9zJpVsi1lKyuX3srAw8K28gTS/pIRtL0widsezwHf6XWbLhvdp/eddLOt+lxpJYcfyXzL9I9eP6y7ZIkJZxkeZX/lLOso3EpU755hl6hsaWPf0j1ly6BE+Kp38559OTvn4F4MQ7QgZQ2tTDTUHdtJ0aBeu2v1I0wGi2itIch0i3dSRKV56tzG6jIN6WxLNjhTqYqZRGZkGMWk4YlIIj08jIj6VmMQMYpMziI5LItlm58RL8ig1fGIGGhcSBAsXLjRr1qwJdhg9qsp2U3tgG3kzlxKfPH4vdpRS48vaN59jwb9vZMvKByle2X/Jb6/Xx9p//oGctT8my9SwMXIJiZf+iLxp88c42uFraW1B7p3KvvglzPnKC0fNqzlYyr6/3sX82hcAYUPO1cy68i6i48ZnC0hfq9/6B0vf+iTrZ3ydeVd+r2d6Q0M92174KSWlDxMv7WxKOIvsy39Mck6g61CODpfHx+4fLiLZ1k76t9Yj/nG1bo+H919+jIx1P2WKr5QyRwHes+6gcNnHgxzx0P39oR9wYfm9HLzwMbIXXtAzfdvmdTS//EOWtL1OpzjZV3QTMy77Lo6ImCBGO3Qbd+5m2mPLqMg4iymff7Jnem1DA5ue/yVzD/yRZGlmR9wppDVvZnfsYpZ87bkgRnx8XV2dlO/ZSmPZVjzVOwhr2kNi+34yPAeJoeOoZRuIoy4si7bIbNyxudgS84hMziUuPY+kjHyiE9LHZWuxOvmIyFpjzMJjpmuCpZRSgdXV2Y7vR4VsS1zJwlufOmqez+tj0xuPEbP6p0zx7mOfvYDW0+9izmmXBiXWE/Xv+7/M6VUPs3Hhjyg6/Ur2bVpN+wePMKfpdez42JByIZM+fifJ2ZOCHeqw+Lw+Nv34I0xzbWZ7ybfwRsTj3fMWJQ2vEC3dbIxaSuKFd5E3c2mwQx221196grM+/CzbY5fRPu0yug9tpfDQS2RRwyFbJnWLvkrJ2TeOu3FWg6lpbKbzl4uJlU5KS26ls7OD2NJXmO3eSCfhbM+5kumXf5+ohND7ovRvP/8CFzU/yobsT+FKnoH7wGrmNL1BjHSyM2o+0efcTs6cM1j3iyuY3LiKsG/uJioqOrhB+3zUl2+neteHdJVvwNGwi8SOUjK8VYSJt2exapKpdubTFlOASSwkMm0SCVlFZBRMIyomIXjxKzUMmmAppdQY+s99N7Kw/kVqrnmdnKK5dLQ1seXVP5O8+SEm+/ZTIZnUzruFOeffHNSy6yeqva2F0l+cwyzPkXv1tJsItqeeS9YF3yKrcEYQoxuZgxUHaP3j5Uz37gKg04SzNfEs0s76EnklpwY5uhNnjOGVP97N6Qd+RYS48RlhV+RsPPOuZ9ZZ1yKOsb25cyBtWP8hCS9cRwGHAKiypXGo8BNMP/8LRCUPfTzyeNPY2sH6393ImR0vA9CJk+2JZ5J55mfJLDmjZ7mdq/7KtNdu4D/z7+WUiz8zZvG5u9o4uHMtjfvW4qvcTFzTDrJd+4iiy5pv7JTbsmiMzMeVWERk5gwS82eRXlhMhCZRagLQBEsppcZQzcH9OB48DQceqhw55LgPECXdlNlyqJ7zReae/2nCwkL3ghasLj8bX/kT3oYyYrKnM3npRUTHJgQ7rIDweDzs27aWcPGSOXUeTufEKR7Q1FhHU+U+0vKmTqiWArfHw8E9W4hJSCIlPXdcj7EarppDZbg6WsjMn4q9n88N4/Vw6Iez6CCKwu98iGMUvrRpqjnIwR0f0F62HkfNVlLadpLtrcDur57baiIpDZtMU9w0yCghrnAB+dPmkRDXX+kJpSYGTbCUUmqMle5YR91L/02kq5622MnELLiCmUvO1rEDSqmA2/SPB5j9wdd5q+DLrLzh7hPejtfjoWLvFur2rMF1cBPRDdvI7NpDKo09y1SSQmVkER1JMwnPnkNK0ULyCqfjcIzfIjZKjQZNsJRSSimlJipj2PKzi5jZsopVeZ9l8TV3E+EcuKy18fmoqank0J5NdJRtwF67laTWneS6S4kUF+Dv4mfPpT52Gp7UWUTnzyN7+mKSUzPG6lUpNa6NSoIlIk9ypKZ3AtBkjJkrIgXAdmCnf95qY8znBtueJlhKKaWUUifG3dXGtt9ew5yWN6klgT1xS3HH5mELc2K8bhxd9dg66kjoqiDTc4g4ae9Zt4kYDoZPpjVhOvasEpImzSdn6jycEVFBfEVKjW8DJVgj6qRrjLmy1w5+CjT3mr3XGDN3JNtXSimllFJDExYRw5yvPM/Od56h+4NHmNqymuSWl3vmtxFJiy2epvAsdiSejSRPJjZ7OulTF5GYnk/CBBq3plQwBWQUpFh3fb0CODMQ21NKKaWUUidm2orLYcXl1hOPC4+7G7sjjJiwCGKArKBGp9TEF6iR1iuAamPM7l7TCkVkvYj8W0RWDLSiiNwsImtEZE1tbW2AwlFKKaWUUjjCcUTGImERwY5EqZPGoC1YIvIa0N9oxu8aY17wP/4k8HiveZVAnjGmXkQWAM+LyCxjTEvfjRhjHgAeAGsM1nBfgFJKKaWUUkqNF4MmWMaYjxxvvog4gI8DC3qt0w10+x+vFZG9wFRAK1gopZRSSimlJqxAdBH8CLDDGFNxeIKIpIqI3f94ElAE7AvAvpRSSimllFJq3ApEkYurOLp7IMBpwN0i4gZ8wOeMMQ2DbWjt2rV1InIgADEFUgpQF+wg1JjR433y0GN98tBjfXLR433y0GN9chmPxzu/v4nj6kbD45GIrOmvvr2amPR4nzz0WJ889FifXPR4nzz0WJ9cQul4B6qKoFJKKaWUUkqd9DTBUkoppZRSSqkA0QRrcA8EOwA1pvR4nzz0WJ889FifXPR4nzz0WJ9cQuZ46xgspZRSSimllAoQbcFSSimllFJKqQDRBEsppZRSSimlAkQTrOMQkXNFZKeI7BGRbwU7HhU4IpIrIm+KyDYR2SoiX/ZPTxKRV0Vkt/93YrBjVYEhInYRWS8if/c/LxSR9/3n95MiEh7sGFVgiEiCiDwjIjtEZLuILNNze2ISkdv8n+FbRORxEYnQc3viEJE/iEiNiGzpNa3fc1ks9/mP+yYRmR+8yNVwDXCs7/F/jm8Skb+KSEKved/2H+udInJOUII+Dk2wBiAiduA3wHnATOCTIjIzuFGpAPIAXzXGzASWAl/0H99vAa8bY4qA1/3P1cTwZWB7r+c/Bn5ujJkCNAL/LyhRqdHwS+BlY8x0YA7Wcddze4IRkWzgFmChMaYYsANXoef2RPIwcG6faQOdy+cBRf6fm4HfjVGMKjAe5thj/SpQbIyZDewCvg3gv167CpjlX+e3/uv2cUMTrIEtBvYYY/YZY1zAE8AlQY5JBYgxptIYs87/uBXrAiwb6xg/4l/sEeDSoASoAkpEcoALgN/7nwtwJvCMfxE91hOEiMQDpwEPARhjXMaYJvTcnqgcQKSIOIAooBI9tycMY8zbQEOfyQOdy5cAfzKW1UCCiGSOSaBqxPo71saYV4wxHv/T1UCO//ElwBPGmG5jzH5gD9Z1+7ihCdbAsoHyXs8r/NPUBCMiBcA84H0g3RhT6Z9VBaQHKy4VUL8AvgH4/M+TgaZeH9x6fk8chUAt8Ed/l9Dfi0g0em5POMaYg8C9QBlWYtUMrEXP7YluoHNZr9smtpuAf/ofj/tjrQmWOqmJSAzwLHCrMaal9zxj3cNA72MQ4kTkQqDGGLM22LGoMeEA5gO/M8bMA9rp0x1Qz+2JwT/25hKspDoLiObYLkZqAtNz+eQgIt/FGtrxaLBjGSpNsAZ2EMjt9TzHP01NECIShpVcPWqMec4/ufpwlwL/75pgxacCZjlwsYiUYnX1PRNrjE6Cv1sR6Pk9kVQAFcaY9/3Pn8FKuPTcnng+Auw3xtQaY9zAc1jnu57bE9tA57Jet01AInIDcCFwtTly895xf6w1wRrYh0CRvxpRONZguheDHJMKEP8YnIeA7caYn/Wa9SJwvf/x9cALYx2bCixjzLeNMTnGmAKs8/gNY8zVwJvA5f7F9FhPEMaYKqBcRKb5J50FbEPP7YmoDFgqIlH+z/TDx1rP7YltoHP5ReA6fzXBpUBzr66EKgSJyLlY3fsvNsZ09Jr1InCViDhFpBCrsMkHwYhxIHIkGVR9icj5WGM37MAfjDE/DG5EKlBE5FTgHWAzR8blfAdrHNZTQB5wALjCGNN3gK0KUSKyEviaMeZCEZmE1aKVBKwHrjHGdAcxPBUgIjIXq6BJOLAPuBHrC0U9tycYEbkLuBKr+9B64NNYYzH03J4ARORxYCWQAlQDdwDP08+57E+yf43VTbQDuNEYsyYIYasTMMCx/jbgBOr9i602xnzOv/x3scZlebCGefyz7zaDSRMspZRSSimllAoQ7SKolFJKKaWUUgGiCZZSSimllFJKBYgmWEoppZRSSikVIJpgKaWUUkoppVSAaIKllFJKKaWUUgGiCZZSSimllFJKBYgmWEoppZRSSikVIP8fxG2sjwumhnwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -4443,31 +4443,31 @@ " 15\n", " False\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " bAP.soma.v\n", - " 0.00073\n", - " 0.000737\n", + " 0.00084\n", + " 8.6e-06\n", " \n", " \n", " 16\n", " False\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step1.soma.v\n", - " 0.00107\n", - " 7.79e-05\n", + " 0.00924\n", + " 1.05e-05\n", " \n", " \n", " 17\n", " False\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step3.soma.v\n", - " 0.000801\n", - " 0.000127\n", + " 0.00782\n", + " 3e-05\n", " \n", " \n", "\n", @@ -4475,14 +4475,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "15 False 5 0.112 0.0634 bAP.soma.v \n", - "16 False 5 0.112 0.0634 Step1.soma.v \n", - "17 False 5 0.112 0.0634 Step3.soma.v \n", + "15 False 5 0.0799 0.0189 bAP.soma.v \n", + "16 False 5 0.0799 0.0189 Step1.soma.v \n", + "17 False 5 0.0799 0.0189 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "15 0.00073 0.000737 \n", - "16 0.00107 7.79e-05 \n", - "17 0.000801 0.000127 " + "15 0.00084 8.6e-06 \n", + "16 0.00924 1.05e-05 \n", + "17 0.00782 3e-05 " ] }, "metadata": {}, @@ -4490,7 +4490,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACi80lEQVR4nOzdeXxU1f3/8ddnZrIvLEkIS4AgCrKKCogVXPtVrAtaLWjdbetXu6l1+ba2tdRf/X77Vb+1VdtSt7oWse7WpXVDxYoKiLiAChI2WUIg+zbL+f0xN2EI2TCTTELez8djHpl777nnfGYud5jPnHPPNeccIiIiIiIi0nG+RAcgIiIiIiKyr1CCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0SkmzGzQjNzZhZIdCzSO5jZx2Z2dKLjEBHZFyjBEhGRHs/M5plZpfeoN7NgzPILiY6vu3POjXPOLYxnnWZ2n3csKmMe/ni2ISLSHZluNCwiEl9mFnDOhTqwfyGwFkjqSD29lZnNBfZ3zp3bzLYOHZuu1JNibY6Z3QdsdM79ItGxiIh0JfVgiYjEgZkVmdl/mdkKoMrMAmY2zcz+bWalZvZB7BAsM1toZv9jZu+aWbmZPW1m/Vuo+yIzW2lmFWb2hZn9Z5Pts8xsuVfPGjOb6a3vY2b3mNlmM9tkZr9pqwfBzEaa2atmVmJm283sYTPrG7Nth5kd4i0PNrPihtdlZqd6Q81Kvdc3psn7c7WZrTCzMjNbYGape/9O770Wjo0zs/1jytxnZr+JWT7Ze09LvWM4sZ1tHW1mG83sOu/9KzKzc2K2n2Rm73vHaoOXDDZsaxga+h0zWw+86q3/u5lt8d63N8xsXJO4/2RmL3g9RG+Z2UAz+72Z7TSzVWZ2cDvfo6+35zWKiEjrlGCJiMTP2cBJQF8gH3gO+A3QH7gaeNzM8mLKnw9cDAwCQsBtLdS7DTgZyAYuAm6NSXKmAg8A13jtHgkUefvd59W7P3AwcDzw3TZegwH/AwwGxgBDgbkAzrk1wH8BD5lZOvBX4H7n3EIzGwXMB64A8oDngWfNLDmm7tnATGAEMBG4sNkAzKZ7iU1Lj+ltvIbmNB6btnqFvITkXuA/gRzgL8AzZpbSzrYGArnAEOAC4E4zG+1tqyJ63Pt68VxmZqc12f8oou/9Cd7yC8ABwABgGfBwk/KzgV94bdYBb3vlcoHHgN+1M+5mmdlPWzsebez+fS8pX2pmZ3QkDhGRnkIJlohI/NzmnNvgnKsBzgWed84975yLOOdeApYA34gp/6Bz7iPnXBXwS2B2cz1MzrnnnHNrXNTrwL+AGd7m7wD3Oude8trZ5JxbZWb5XltXOOeqnHPbgFuBs1p7Ac651V5ddc65YqJfzo+K2X4XsBp4h2hi+HNv0xzgOW/fIHALkAZ8rcn786VzbgfwLDCphRgWOef6tvJY1NpraEHssWnLJcBfnHPvOOfCzrn7iSYu0/aivV967+HrRBPt2QDOuYXOuQ+9Y7WCaFJ6VJN953rHrMbb517nXIVzro5osnuQmfWJKf+kc26pc64WeBKodc494JwLAwuIJtdfmXPut60dj1Z2vY1dieEvgfvM7IiOxCIi0hMowRIRiZ8NMc+HA99q8kv/dKJJSXPl1wFJRHsddmNmJ5rZYq8noJRo4tRQbiiwpplYhnv1bY5p/y9Ev+y2yMzyzewRb0hhOfBQMzHdBYwHbve+9EO0x2tdQwHnXMR7fUNi9tsS87wayGwtljjb0HaRRsOBq5ocu6FEX2N77PSS5gbrGvY1s8PM7DVvaGUZcCl7vr+NsZqZ38x+a9Ghn+Xs6p2M3WdrzPOaZpa78n1u5Jxb5pwrcc6FnHPPE+15+2YiYhER6UpKsERE4id21qANRHuoYn/tz3DO/TamzNCY58OAILA9tkJvWNrjRHuE8r0eg+eJDuVraGdkM7FsINrrkhvTfrZzblwzZWP9t/c6Jjjnson2xDW0hZllAr8H7gHm2q7rxr4kmpg0lDPv9W1qo709mNkM233muaaPGW3XsoemMzpVA+kxywNjnm8Abmxy7NKdc/Pb2VY/M8uIWR5G9P0B+BvwDDDUOdcHmEfM+9tMrN8GZgFfB/oAhd76pvt0Gu96shaPx15U5ejCuEVEEkUJlohI53gIOMXMTvB6IVK9CRAKYsqca2ZjveuZbgAe84Z1xUoGUoBiIGRmJxK9lqrBPcBFZnacmfnMbIiZHeic20x0KOH/mVm2t22kmTUdjtZUFlAJlJnZEKLXdsX6A7DEOfddokPf5nnrHwVO8uJIAq4imuD9u603qinn3JvOucxWHm/ubZ3NWA582zs2M9l9mN5dwKVeb5OZWYZFJ6fIgsaJJe5ro/5fm1mylwyeDPzdW58F7HDO1XrXz327jXqyiL6PJUQTwv/ei9cYF865/27teLS0n5mdaWaZ3r+944km6890XeQiIomhBEtEpBM45zYQ7Xm4jmhytIFoshL7ufsg0YkotgCpwI+bqafCW/8osJPoF/JnYra/izfxBVAGvM6unqTziSZon3j7PsbuQxSb82vgEK+u54AnGjaY2Syik1Rc5q36CXCImZ3jnPuU6Bfo24n2wp0CnOKcq2+jvUS5nGiMpcA5wFMNG5xzS4DvAXcQfd9Ws/uEHEOBt1qpe4u335dEh8Vd6pxb5W37PnCDmVUA1xM9rq15gOgQw01Ej+Pitl5YN3I50bhLgZuB77k432tLRKQ70n2wREQSwMwWAg855+5OdCzSft6siB8AE73JPJpuP5rocS1ouk1ERHqHQKIDEBER6Sm8HrkxbRYUEZFeS0MERUR6GTOb18KEBfPa3lt6IjMb1spEFcMSHZ+IyL5EQwRFRERERETiRD1YIiIiIiIicdKtrsHKzc11hYWFiQ5DRERERESkVUuXLt3unMtrur5bJViFhYUsWbIk0WGIiIiIiIi0yszWNbdeQwRFRERERETiRAmWiIiIiIhInCjBEhERERERiZNudQ1Wc4LBIBs3bqS2tjbRoUg3kJqaSkFBAUlJSYkORfZR4Yjjxw+9zeQRA7hoxv6JDkdERER6mG6fYG3cuJGsrCwKCwsxs0SHIwnknKOkpISNGzcyYsSIRIcj+6g1Hy/hD2tO4qPVhUSOWIbPp88dERERab9uP0SwtraWnJwcJVeCmZGTk6PeTOlUFZs+IWARJvm+YMPW7YkOR0RERHqYbp9gAUqupJH+LUhnqyrblVRt+Vy3jRAREZG90yMSLBGRrmI1pY3Pa9e/n7hAREREpEdSgtUOZsZVV13VuHzLLbcwd+7cxAUU4+ijj2715synnXYa06ZN223d3LlzGTJkCJMmTWL8+PE888wznR2mSI+RVF9KvfNTTSrs+CLR4YiIiEgPowSrHVJSUnjiiSfYvj2+12M454hEInGtM1ZpaSlLly6lrKyML77Y/YvilVdeyfLly/n73//OxRdf3KlxiPQkScFyyslkeyCftKpNiQ5HREREehglWO0QCAS45JJLuPXWW/fYVlxczBlnnMGUKVOYMmUKb731FhDtJbrlllsay40fP56ioiKKiooYPXo0559/PuPHj2fDhg1cc801jB8/ngkTJrBgwQIAFi5cyNFHH82ZZ57JgQceyDnnnINzrtn4HnzwwcbeqHfffbdx/RNPPMEpp5zCWWedxSOPPNLsvmPGjCEQCOyWPP70pz9l7NixTJw4kauvvhqAoqIijj32WCZOnMhxxx3H+vXrAbjwwgu57LLLmDZtGvvttx8LFy7k4osvZsyYMVx44YWNdV522WVMnjyZcePG8atf/WqPOMrKyhg+fHhjoldVVcXQoUMJBoPNxi3SWZKDZVRYJpWpg+hTvznR4YiIiEgP0+2naY/162c/5pMvy+Na59jB2fzqlHFtlvvBD37AxIkTufbaa3dbf/nll3PllVcyffp01q9fzwknnMDKlStbrevzzz/n/vvvZ9q0aTz++OMsX76cDz74gO3btzNlyhSOPPJIAN5//30+/vhjBg8ezBFHHMFbb73F9OnT96ivurqa5cuX88Ybb3DxxRfz0UcfATB//nyuv/568vPzOeOMM7juuuv22Pedd97B5/ORl5cHQElJCU8++SSrVq3CzCgtLQXgRz/6ERdccAEXXHAB9957Lz/+8Y956qmnANi5cydvv/02zzzzDKeeeipvvfUWd999N1OmTGH58uVMmjSJG2+8kf79+xMOhznuuONYsWIFEydObIyjT58+TJo0iddff51jjjmGf/zjH5xwwgm635V0udRgORWWSSSzgMKKD6kPRUgO6LcoERERaR99a2in7Oxszj//fG677bbd1r/88sv88Ic/ZNKkSZx66qmUl5dTWVnZal3Dhw9vvC5q0aJFnH322fj9fvLz8znqqKN47733AJg6dSoFBQX4fD4mTZpEUVFRs/WdffbZABx55JGUl5dTWlrK1q1b+fzzz5k+fTqjRo0iKSmpMfECuPXWW5k0aRJXX301CxYsaJydr0+fPqSmpvKd73yHJ554gvT0dADefvttvv3tbwNw3nnnsWjRosa6TjnlFMyMCRMmkJ+fz4QJE/D5fIwbN64x5kcffZRDDjmEgw8+mI8//phPPvlkj9cxZ86cxh68Rx55hDlz5rT6Pop0htRQBZW+LKzvMPpaFVu3bUt0SCIiItKDdLgHy8yGAg8A+YAD7nTO/cHM5gLfA4q9otc5557vSFvt6WnqTFdccQWHHHIIF110UeO6SCTC4sWLSU1N3a1sIBDY7bqm2Hs3ZWRktKu9lJSUxud+v59QKNRsuaZTl5sZjz76KDt37my8IW95eTnz58/nxhtvBKLXYDUM/2sa97vvvssrr7zCY489xh133MGrr77arjh9Pt9uMft8PkKhEGvXruWWW27hvffeo1+/flx44YXN3svq1FNP5brrrmPHjh0sXbqUY489ttV2RTpDariCat9gcvNGwCoo2bSaoYMHJjosERER6SHi0YMVAq5yzo0FpgE/MLOx3rZbnXOTvEeHkqvuoH///syePZt77rmncd3xxx/P7bff3ri8fPlyAAoLC1m2bBkAy5YtY+3atc3WOWPGDBYsWEA4HKa4uJg33niDqVOn7lVcDb0+ixYtok+fPvTp04f58+fz4osvNl73tXTp0havw4pVWVlJWVkZ3/jGN7j11lv54IMPAPja177WuP/DDz/MjBkz2h1feXk5GRkZ9OnTh61bt/LCCy80Wy4zM5MpU6Zw+eWXc/LJJ+P3+9vdhki8JLk6Qr5U+gwaCUDFVs0kKCIiIu3X4R4s59xmYLP3vMLMVgJDOlpvd3XVVVdxxx13NC7fdtttjddnhUIhjjzySObNm8cZZ5zBAw88wLhx4zjssMMYNWpUs/WdfvrpvP322xx00EGYGTfddBMDBw5k1apV7Y4pNTWVgw8+mGAwyL333ktRURHr1q3bbXr2ESNG0KdPH955551m6/jGN77B3XffjZkxa9Ysamtrcc7xu9/9DoDbb7+diy66iJtvvpm8vDz++te/tju+gw46iIMPPpgDDzyQoUOHcsQRRzRuu/7665k8eTKnnnoqEB0m+K1vfYuFCxe2u36ReApE6on4kuk/JJpgBUvWJTgiERER6UmspZnpvlJlZoXAG8B44CfAhUA5sIRoL9fOZva5BLgEYNiwYYeuW7f7l5mVK1cyZsyYuMUoPZ/+TUhnqps7gJcyT+Hkq+6m9tcDeCfnNI760V2JDktERES6GTNb6pyb3HR93Ca5MLNM4HHgCudcOfBnYCQwiWgP1/81t59z7k7n3GTn3OSGmexERBIlQBDnTwYztvsHkFb9ZaJDEhERkR4kLgmWmSURTa4eds49AeCc2+qcCzvnIsBdwN5dWCQi0tXCIfxEcP7oZC0VKflk1W1NcFAiIiLSk3Q4wbLoFHb3ACudc7+LWT8optjpwEdN9xUR6VbCdQDRHiygLm0gOeHtLd7kW0RERKSpeNxo+AjgPOBDM1vurbsOONvMJhGdur0I+M84tCUi0nlC0QQLL8GKZA8hd3spZZXV9M1q3+0VREREpHeLxyyCiwBrZlOPn5ZdRHqZcD0AFogOEUzqV4DPHNs2r6dvliZWERERkbbFbZILEZEer6EHKxC9cXh6zlAAyrcWJSggERER6WmUYLXTU089hZm1en+qoqIixo8fH7c2L7zwQh577LEWt19xxRUMGTKESCTSuO6+++4jLy+PSZMmMXbsWO66S9NLi7RbQw9WUnSIYJ9BIwCo3r4+YSGJiIhIz6IEq53mz5/P9OnTmT9/frPbQ6FQh9sIh8PtLhuJRHjyyScZOnQor7/++m7b5syZw/Lly1m4cCHXXXcdW7dqFjSR9gjV1wDg83qw+g0sBCC8c2OiQhIREZEeRglWO1RWVrJo0SLuueceHnnkkcb1CxcuZMaMGZx66qmMHTsWiCZa55xzDmPGjOHMM8+kuroagFdeeYWDDz6YCRMmcPHFF1NXFx2KVFhYyH/9139xyCGH8Pe//32Ptl9++WUmT57MqFGj+Mc//rFb2+PGjeOyyy5rMekbMGAAI0eOJPbmzbfddhtjx45l4sSJnHXWWQDs2LGD0047jYkTJzJt2jRWrFgBwNy5c7nggguYMWMGw4cP54knnuDaa69lwoQJzJw5k2AwCMANN9zAlClTGD9+PJdccskeM65FIhEKCwspLS1tXHfAAQco8ZNuJ1RfC4DPuwbLn9aXalLxVW5OZFgiIiLSg8RjFsGu88JPYcuH8a1z4AQ48betFnn66aeZOXMmo0aNIicnh6VLl3LooYcCsGzZMj766CNGjBhBUVERn376Kffccw9HHHEEF198MX/605/44Q9/yIUXXsgrr7zCqFGjOP/88/nzn//MFVdcAUBOTg7Lli1rtu2ioiLeffdd1qxZwzHHHMPq1atJTU1l/vz5nH322cyaNYvrrruOYDBIUlLSbvt+8cUXfPHFF+y///6N637729+ydu1aUlJSGhOeX/3qVxx88ME89dRTvPrqq5x//vksX74cgDVr1vDaa6/xySefcPjhh/P4449z0003cfrpp/Pcc89x2mmn8cMf/pDrr78egPPOO49//OMfnHLKKY1t+nw+Zs2axZNPPslFF13EO++8w/Dhw8nPz2/3YRLpCsG6GlIBS4omWJixw59HSrUSLBEREWkf9WC1w/z58xt7e84666zdeoymTp3KiBEjGpeHDh3KEUccAcC5557LokWL+PTTTxkxYgSjRo0C4IILLuCNN95o3GfOnDkttj179mx8Ph8HHHAA++23H6tWraK+vp7nn3+e0047jezsbA477DD++c9/Nu6zYMECJk2axNlnn81f/vIX+vfv37ht4sSJnHPOOTz00EMEAtH8etGiRZx33nkAHHvssZSUlFBeXg7AiSeeSFJSEhMmTCAcDjNz5kwAJkyYQFFREQCvvfYahx12GBMmTODVV1/l448/3uN1zJkzhwULFgDwyCOPtPqaRRIlWBftwfInpTauq0wZQFb9tkSFJCIiIj1Mz+rBaqOnqTPs2LGDV199lQ8//BAzIxwOY2bcfPPNAGRk7H5vnOh9l1tebk7TOtqq75///CelpaVMmDABgOrqatLS0jj55JOBaDJzxx13NFvfc889xxtvvMGzzz7LjTfeyIcftt4jmJIS/SXf5/ORlJTUGI/P5yMUClFbW8v3v/99lixZwtChQ5k7dy61tbV71HP44YezevVqiouLeeqpp/jFL37RarsiidAwRNDf0IMF1KcPZEDVWiIRh8/X9vksIiIivZt6sNrw2GOPcd5557Fu3TqKiorYsGEDI0aM4M0332y2/Pr163n77bcB+Nvf/sb06dMZPXo0RUVFrF69GoAHH3yQo446ql3t//3vfycSibBmzRq++OILRo8ezfz587n77rspKiqiqKiItWvX8tJLLzVe79WSSCTChg0bOOaYY/jf//1fysrKqKysZMaMGTz88MNA9Nqu3NxcsrOz2xVfQzKVm5tLZWVli7Memhmnn346P/nJTxgzZgw5OTntql+kK4WCXoKVvKsHy2UPJo+dlFS0fn6JiIiIgBKsNs2fP5/TTz99t3VnnHFGixNLjB49mj/+8Y+MGTOGnTt3ctlll5Gamspf//pXvvWtbzFhwgR8Ph+XXnppu9ofNmwYU6dO5cQTT2TevHlEIhFefPFFTjrppMYyGRkZTJ8+nWeffbbZOr773e+yZMkSwuEw5557LhMmTODggw/mxz/+MX379mXu3LksXbqUiRMn8tOf/pT777+/ne8O9O3bl+9973uMHz+eE044gSlTpjRumzdvHvPmzWtcnjNnDg899JCGB0q3Fa6PTj4TiEmwAv2G4jfH9s3rWtpNREREpJE1nfEtkSZPnuyWLFmy27qVK1cyZsyYBEUk3ZH+TUhnKXr5TgoXXcO7p77G1EMOia57+0kK/3khi4+Zz7SjvpHgCEVERKS7MLOlzrnJTderB0tExBOu33OIYN+BwwGo3r4hITGJiIhIz6IES0TEEw5FhwgmxSRYffKjs4SGS3WzYREREWlbj0iwutMwRkks/VuQzhQJeglWSlrjOkvrSw0p+Cq+TFRYIiIi0oN0+wQrNTWVkpISfbEWnHOUlJSQmpradmGRr8B5PVjJqbsSLMzYGcgjtWZLgqISERGRnqTb3weroKCAjRs3UlxcnOhQpBtITU2loKAg0WHIPsoFawk7IyU5ebf1lSn5ZFfrM0hERETa1ukJlpnNBP4A+IG7nXN7dbfgpKQkRowY0SmxiYjEcqE66kkiJeDfbX19+kByKt8mFI4Q8Hf7jn8RERFJoE79pmBmfuCPwInAWOBsMxvbmW2KiHxloTrqCZAcaPLRmD2YAZSyrawqMXGJiIhIj9HZP8VOBVY7575wztUDjwCzOrlNEZGvJlzv9WDt/tGY1K+AgEXYvkVTtYuIiEjrOjvBGgLEfiPZ6K1rZGaXmNkSM1ui66xEJKHCddQ1k2Bl5BUCULZ1XQKCEhERkZ4k4RcTOOfudM5Nds5NzsvLS3Q4ItKLWbieIAHMbLf1DTcbri1Zn4iwREREpAfp7ARrEzA0ZrnAWyci0u1YuJ6QJe2xPjMvmmCFS/XxJSIiIq3r7ATrPeAAMxthZsnAWcAzndymiMhXEu3BSt5zQ1o/aknWzYZFRESkTZ06TbtzLmRmPwT+SXSa9nudcx93ZpsiIl+VL1JPfTM9WJhRGsgjtWZr1wclIiIiPUqn3wfLOfc88HxntyMi0lG+SD1hXzMJFlCVkk+fKiVYIiIi0rqET3IhItJd+CPNX4MFUJcxiBxXQl0o3MVRiYiISE+iBEtExOOP1BP2NXMNFkD2YPLZydad1V0blIiIiPQoSrBERDyBSD1hX0qz25L7DSXJwmzTzYZFRESkFUqwREQ8ARck0sI1WBl50TtOVGwr6sKIREREpKdRgiUi4gm4IBF/8z1Y/QbtB0BtycauDElERER6GCVYIiKegAviWrgGKzVnGACRUg0RFBERkZYpwRIR8SQRBH8Lk1yk9aOaNJIrlGCJiIhIy5RgiYh4kghCoIUEy4yS5EFk1WiIoIiIiLRMCZaICEAkTIAIFmj+GiyAytQh5Ia2dGFQIiIi0tMowRIRAVyoFqDVBKs+eyiD3Taq64JdFZaIiIj0MEqwRESA+jovwUpKbbGM9R1OutWxdfOmrgpLREREehglWCIiQF1tNQC+lq7BAlIGRKdqL9v8WZfEJCIiIj2PEiwREXYlWJaU3mKZ7EEHAFCzdW2XxCQiIiI9jxIsEREgWF0BgKVktlgmZ8j+AIR3FHVFSCIiItIDKcESEQGCNdEEy5facoKVnJ7FDvoQKF/fVWGJiIhID9OhBMvMbjazVWa2wsyeNLO+3vpCM6sxs+XeY15cohUR6SQhL8EKtJJgAWxPGkRGte6FJSIiIs3raA/WS8B459xE4DPgZzHb1jjnJnmPSzvYjohIpwrVRhMsf2pWq+Uq04bQv35zV4QkIiIiPVCHEizn3L+ccyFvcTFQ0PGQRES6XriuEgB/Wnar5YLZw8h3xdTV13VFWCIiItLDxPMarIuBF2KWR5jZ+2b2upnNiGM7IiJx57werOS01nuwAv0LCViErRvWdEVYIiIi0sO0mWCZ2ctm9lEzj1kxZX4OhICHvVWbgWHOuYOBnwB/M7NmfxY2s0vMbImZLSkuLu74KxIR+QrCtdEerIzM1nuw0gdGZxLcuWl1p8ckIiIiPU+grQLOua+3tt3MLgROBo5zzjlvnzqgznu+1MzWAKOAJc3UfydwJ8DkyZPdXsYvIhIX4bpKws7IaiPByi0YBUD1NvVgiYiIyJ46OovgTOBa4FTnXHXM+jwz83vP9wMOAL7oSFsiIp2qrpIqUslIbf13p5zBIwg5H5ES3WxYRERE9tRmD1Yb7gBSgJfMDGCxN2PgkcANZhYEIsClzrkdHWxLRKTz1FdRQyrZ/tZ/d/IFktjiG0Byhe6FJSIiInvqUILlnNu/hfWPA493pG4Rka7kC1ZSa2ntKrsjZTDZtZs6OSIRERHpieI5i6CISI/lC1VT52tfglWTUUBeSPfCEhERkT0pwRIRAVJCFdT6M9pVNtK3kP5UUFaqkc8iIiKyOyVYIiJARqiUmqR+7SqbnDsCgG3rP+vMkERERKQHUoIlIgJkhcuoT25fgpU1KHr5acXmzzszJBEREemBlGCJiISDZFNJOC23XcUHDDsQgLpi3X1CREREdqcES0R6vbqK7QBYRv92lc/ul0c56VhpUSdGJSIiIj2REiwR6fUqSrYA4MvMa98OZmzzDyKtamMnRiUiIiI9kRIsEen1yr0EKyV7QPv3SR1C37ovOyskERER6aGUYIlIr1exI3pPqz65g9q9T33WUAaGtxIJhzsrLBEREemBlGCJSK8X3LEBgP6DCtu9j/UvJMWClGxZ30lRiYiISE+kBEtEej0r20CFSyMnp/1DBFMHjARg+8ZPOyssERER6YGUYIlIr5dStYmtvnx8Pmv3Pv2GHABA1ZY1nRWWiIiI9EBKsESk18us+ZLS5Py92id/2AFEnBHavraTohIREZGeSAmWiPRuzpEb3kp9ZsFe7ZaSksY2yyFQrmuwREREZBclWCLSq5VtLSKTGiI5o/Z63x1Jg8io1r2wREREZBclWCLSq21f8z4AKUMm7PW+VemD6BfcGu+QREREpAfrUIJlZnPNbJOZLfce34jZ9jMzW21mn5rZCR0PVUQk/qo3fABAzn4H7/W+kewC8lwJdfV18Q5LREREeqh49GDd6pyb5D2eBzCzscBZwDhgJvAnM/PHoS0RkbiybR+zyeUybPDAvd430G8YfnNs3aCJLkRERCSqs4YIzgIecc7VOefWAquBqZ3UlojIV5Zd/jmbkvcj4N/7j8P0ASMAKN2iBEtERESi4pFg/dDMVpjZvWbWz1s3BNgQU2ajt24PZnaJmS0xsyXFxcVxCEdEpH1csJZBoQ1U9h39lfbvO2g/AKq3KcESERGRqDYTLDN72cw+auYxC/gzMBKYBGwG/m9vA3DO3emcm+ycm5yXl7e3u4uIfGUl6z4miTC+geO/0v45g6MJVmjnhjZKioiISG8RaKuAc+7r7anIzO4C/uEtbgKGxmwu8NaJiHQb2z5fSi7Qf8Skr7R/clomO8gmUKEES0RERKI6OovgoJjF04GPvOfPAGeZWYqZjQAOAN7tSFsiIvFWu+lD6lyA4aMP+sp17AgMIK36yzhGJSIiIj1Zmz1YbbjJzCYBDigC/hPAOfexmT0KfAKEgB8458IdbEtEJK5Sd6ykyDeM0RlpX7mOitRB9KvSNVgiIiIS1aEEyzl3XivbbgRu7Ej9IiKdaUDNaj7LmNyhOoIZQxhQ8S4uEsF8une7iIhIb6dvAyLSK9WWbSPX7SSYM7ZjFfUpIN3q2FGyNT6BiYiISI+mBEtEeqVNny4BIG3oxA7Vk5xbCMCOTas7GpKIiIjsA5RgiUivVF60HID8UR0bIpiVXwhAxdaijgUkIiIi+wQlWCLSK7mtH1PishlaMLxD9eQO2R+A+pJ18QhLREREejglWCLSK2WXf8bG5P3w+axj9fTPp8YlQ5nuhSUiIiJKsESkF3LhEEOCRVT0Gd3husznY5t/AMmVuheWiIiIKMESkV6oeNMa0qjHP6DjCRZAeXI+WXWb41KXiIiI9GxKsFqxbuVS3r7nGrZs0OxgIvuSrUUrAcgecmBc6qtJH0z/0La41CUiIiI9W4duNLyv27LiJQ5bfxfcfRerkkZTNvRY+k06mZHjp+H3+xMdnoh8RVVbPgcgb/iYuNQXziogZ0cZtdWVpKZnxqVOERER6ZmUYLXisDk/ZdMXp7Hx9Xvpt+k1Dlv7J1j7J8qfzGBd6hjKcw8mpeAg8vebwOARY/EnJSc65L0WDkeor6+nrq6aYF0t9XW1hIK1BOtqCdXXEgnWEgnWQbgeFw4ScREIh4lEwjgXwUXCuEjEe4Rxzlt2EYiEMRy4CObCmItgOFxM+841H5drZsHRgckIbM99Y9c4a3lbc21b0xLN1N9qhS0WaKZgW3W32YbtGW8Mh7XaRMemgIhtJ+a5231ts/8M3O7bmvu30vq2lnfIWvsval0SuYM6NoNgg9Tc4bAONhR9ygFjD41LndI6F4lQV1NJbVU5NVXl1NVUUldbSzhY1/i5FQnVEwnV4UK1uFAQF4p+lkUaPsMiEe/zKQJEwLnocxcBnPeZ5W130X9TDot50Hh+Rv9peYNCzNjtnPaWXcOJZru2ucay3sNosm/M503jap/Xpu1e3W7t73rqvM+A2HO98TPNq8tid/DWmEVfo8XGtNtr232X2LXWZBtNX4N8JdbSf5rSNVp4/3VUOl9NWj4jDpvFsJz0RIfSLkqw2jBkvwMZst9NAGzfvJ717z1LsGgxeaUfMG7D3fg2OlgMQefnS18+5Um51KXmUZ82gHBaDv6UTJLSMwmkZmPJGVhSKubz4/cbPp8fnxlhjEjYEQnXEwkFcd6XAsJBIuEghOuIhIJEQvW4UF30S0KoHkJ1WLgeInX4wvVYuB5fpB5fuB6/C+KL1BOIBPG7egIuSMAFSXJBkoj+TSZIMiHSzJGW4PdZpKt9mjKO0XHqic4beTAshZLP3lOC1U4uHKKqbDsVO4upKiumpmw79RUlhKpKcNU7sZod+OvKSA6WE4jUkByuISVSQ6qrIZ0a0lwdqeZIBfrGObaIM7zUCofP+9uQojgvFXI0fK1qWG7Y5jN93RIRiaeF4YNYUXCUEqx9Ue6gYeSe+gPgBwDUVpaycfUKSoo+JLTtU9Ir1pFau40B5R/Tv2wR6VbXqfHUOz9Bkqi3JIIkEbLdH2FfMqFAGnWWTcSfjPMlN/51/hQIeH/9KVggGQukYEkp+AIp+JNS8CWlRBPCQArmT/YePnzmx+f3Yz4/Pp8Pv9+H+QL4fL5o0uj3tlt0vTMD82E+Pw0/X+72S2fsr627rafZ9e3+BbSV7o0m/Wi7b2tavMmK5mrbVbS5L1aumWfNxdnyxmZ7Y2Jja/H7XIt77treSgHnIi32oO3ND6m7fuG2ZtY1U77JL/Mt/XtpsX5rbtvu++/fJ7+d0bdt8KjJVLo02LgYuLTFcts2fsHaf/2JjJGHM/6oM+LWfncSqq9lx+YvKNu2kartG6kv20y4fCv+qm2k1BaTESyhb2Qn/VwZmeZobkBlxBnllkGlZVHjy6TOn05l8gBKA+mEA+lEktIhKROXkoElZ+BLzSSQkkFScqr32ZWKLykZfyAFv7cukBR9HkhKIZCURJLfhz8QwMyP+Xze55U/2tfjMwLt7Tlui3PeyRLzt2E9u29zDX8dNJy7LhJh1xK4iGt2mT22R3arx5yLns/s+pxq/LyKqXPPfdyu1lzM34a3J+YjaI+e6SYfT7vabX/HvDSn/W9ec5+X0kF6TxPiQH8KfXLj9/92Z1OC1QGpmX3Zf9KR7D/pyD03Okd9bTWVFaVUVZZTU1mGq6/EBesIhyNEIhEikTCRSAS/gd/AkpLxBZLxBVLwBZKiXxD8yfiSUggkp5CclExSShrJKakkJ6eS7PeTDGR0+SsXkVi+QICi9LEUlLyNi4S9HxOiXCTCZ+++QNVbdzGh/A0GWJhVX74JPTTBqqyt58v1a9m56XNqitcQ2bGOlMoN9Kn9ktzQFga4EgaYY0DMPkHnZ4f1pTyQQ1XqQHakjieYlgfpufgzc0jJzCG1Tw7pffLI7jeA7H659PX7494zlRBm7f5C1spAYRER6UGUYHUWM5LTMuiflkH/AUMSHY2IdLLqMXMYv+xalj93Jwed9J9s+vx9vlz8OIOLnmS0+5Iyl8HS/DMJV2zj0JpFuFA9Fuh+122GwxG2bt3E9g2fU7llNcGSIvxl68mo3kT/4GYGumJGWaixfMQZJb4cdiQPYmPmoazNHIrrN5zU/gVk5RbQL38o/XMGkO/303N+exQREfnqrPkhTYkxefJkt2TJkkSHISKy14L1daz53xkcGP6UMIbfGxi1Mmks5WPPYdx/XEBmZhZvP/UXDl9+LV9883n2m3hEQmItKytl2/rPKPvyc2q3r8V2riO1agN96jYzMLyVTKvZrXwpWexIGkRl+hDC2cMI5Iwgc+D+5BTsT1b+CCwpNSGvQ0REJJHMbKlzbnLT9R3qwTKzBUDDnTr7AqXOuUlmVgisBD71ti12zrV8YYKISA+XlJzCoB+9yOtP34arLiE5dwTDps5izPCRu5UbPW0mwfd/xrY3/9ppCVawrobijWvYsWk1VVvXENlRRFLFBrJqN5EX2kJ/yukTU76GFLb6B1KRNoRVWVPx9SskbcB+9BtyALkFB9A3vc++MVxPRESkC3QowXLOzWl4bmb/B5TFbF7jnJvUkfpFRHqSPn37c9QFc1st03/gcJb0P4FDtj3BJ//+JmO/9o29a8Q5qipKKf5yLWWbv6Bu+1oiO9eTXLGRjNrN5AS3kMtOBgODvV2Czs82Xx47Uwazps9RrO4znOS8EWQP2p+8oaPI6j+IQl24LSIiEhdxuQbLotPUzAaOjUd9IiL7slHn/oEtdxzFAf88l/ffORY34kiS+gzEl5SCq68hWF1GqKaccHUpVrWNpOqtpNVtJztUQr/ITjKsbrfJbeqdn2JfLjuSBrGmzzQ+zRpKIGc4WfkjyCkYRe7gEQwJBNDVoCIiIp0vLtdgmdmRwO8axiB6QwQ/Bj4DyoFfOOfebGHfS4BLAIYNG3bounXrOhyPiEh3V1K8mZWP/JKDtv+DrCbXPMWqcGns9PWjIpBDTWoewbQ8XOZAUvoNJmPAfvQbMpLcgcPxBzRnkYiISFdq6RqsNhMsM3sZGNjMpp875572yvwZWO2c+z9vOQXIdM6VmNmhwFPAOOdceWttaZILEeltgsEgG9eupLZsO5FQHZaUSlpmP9Kz+5GZ3Y+MzOxEhygiIiLN+MqTXDjnvt5GxQHgm8ChMfvUAXXe86VmtgYYBSh7EhGJkZSUxIhRExMdhoiIiMSJLw51fB1Y5Zzb2LDCzPLMzO893w84APgiDm2JiIiIiIh0W/EYtH8WML/JuiOBG8wsCESAS51zO+LQloiIiIiISLfV4QTLOXdhM+seBx7vaN0iIiIiIiI9SVxmEYwXMysGuts0grnA9kQHIV1Gx7v30LHuPXSsexcd795Dx7p36Y7He7hzLq/pym6VYHVHZrakudlBZN+k49176Fj3HjrWvYuOd++hY9279KTjHY9JLkRERERERAQlWCIiIiIiInGjBKttdyY6AOlSOt69h45176Fj3bvoePceOta9S4853roGS0REREREJE7UgyUiIiIiIhInSrBERERERETiRAlWK8xsppl9amarzeyniY5H4sfMhprZa2b2iZl9bGaXe+v7m9lLZva597dfomOV+DAzv5m9b2b/8JZHmNk73vm9wMySEx2jxIeZ9TWzx8xslZmtNLPDdW7vm8zsSu8z/CMzm29mqTq39x1mdq+ZbTOzj2LWNXsuW9Rt3nFfYWaHJC5y2VstHOubvc/xFWb2pJn1jdn2M+9Yf2pmJyQk6FYowWqBmfmBPwInAmOBs81sbGKjkjgKAVc558YC04AfeMf3p8ArzrkDgFe8Zdk3XA6sjFn+X+BW59z+wE7gOwmJSjrDH4AXnXMHAgcRPe46t/cxZjYE+DEw2Tk3HvADZ6Fze19yHzCzybqWzuUTgQO8xyXAn7soRomP+9jzWL8EjHfOTQQ+A34G4H1fOwsY5+3zJ+97e7ehBKtlU4HVzrkvnHP1wCPArATHJHHinNvsnFvmPa8g+gVsCNFjfL9X7H7gtIQEKHFlZgXAScDd3rIBxwKPeUV0rPcRZtYHOBK4B8A5V++cK0Xn9r4qAKSZWQBIBzajc3uf4Zx7A9jRZHVL5/Is4AEXtRjoa2aDuiRQ6bDmjrVz7l/OuZC3uBgo8J7PAh5xztU559YCq4l+b+82lGC1bAiwIWZ5o7dO9jFmVggcDLwD5DvnNnubtgD5iYpL4ur3wLVAxFvOAUpjPrh1fu87RgDFwF+9IaF3m1kGOrf3Oc65TcAtwHqiiVUZsBSd2/u6ls5lfW/bt10MvOA97/bHWgmW9Gpmlgk8DlzhnCuP3eai9zDQfQx6ODM7GdjmnFua6FikSwSAQ4A/O+cOBqpoMhxQ5/a+wbv2ZhbRpHowkMGeQ4xkH6ZzuXcws58TvbTj4UTH0l5KsFq2CRgas1zgrZN9hJklEU2uHnbOPeGt3towpMD7uy1R8UncHAGcamZFRIf6Hkv0Gp2+3rAi0Pm9L9kIbHTOveMtP0Y04dK5ve/5OrDWOVfsnAsCTxA933Vu79taOpf1vW0fZGYXAicD57hdN+/t9sdaCVbL3gMO8GYjSiZ6Md0zCY5J4sS7BuceYKVz7ncxm54BLvCeXwA83dWxSXw5537mnCtwzhUSPY9fdc6dA7wGnOkV07HeRzjntgAbzGy0t+o44BN0bu+L1gPTzCzd+0xvONY6t/dtLZ3LzwDne7MJTgPKYoYSSg9kZjOJDu8/1TlXHbPpGeAsM0sxsxFEJzZ5NxExtsR2JYPSlJl9g+i1G37gXufcjYmNSOLFzKYDbwIfsuu6nOuIXof1KDAMWAfMds41vcBWeigzOxq42jl3spntR7RHqz/wPnCuc64ugeFJnJjZJKITmiQDXwAXEf1BUef2PsbMfg3MITp86H3gu0SvxdC5vQ8ws/nA0UAusBX4FfAUzZzLXpJ9B9FhotXARc65JQkIW76CFo71z4AUoMQrttg5d6lX/udEr8sKEb3M44WmdSaSEiwREREREZE40RBBERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0REREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIR6WbMrNDMnJkFEh2L9A5m9rGZHZ3oOERE9gVKsEREpMczs3lmVuk96s0sGLP8QqLj6+6cc+OccwvjWaeZ3ecdi8qYhz+ebYiIdEfmnEt0DCIi+xQzCzjnQh3YvxBYCyR1pJ7eyszmAvs7585tZluHjk1X6kmxNsfM7gM2Oud+kehYRES6knqwRETiwMyKzOy/zGwFUGVmATObZmb/NrNSM/sgdgiWmS00s/8xs3fNrNzMnjaz/i3UfZGZrTSzCjP7wsz+s8n2WWa23KtnjZnN9Nb3MbN7zGyzmW0ys9+01YNgZiPN7FUzKzGz7Wb2sJn1jdm2w8wO8ZYHm1lxw+sys1O9oWal3usb0+T9udrMVphZmZktMLPUvX+n914Lx8aZ2f4xZe4zs9/ELJ/svael3jGc2M62jjazjWZ2nff+FZnZOTHbTzKz971jtcFLBhu2NQwN/Y6ZrQde9db/3cy2eO/bG2Y2rkncfzKzF7weorfMbKCZ/d7MdprZKjM7uJ3v0dfb8xpFRKR1SrBEROLnbOAkoC+QDzwH/AboD1wNPG5meTHlzwcuBgYBIeC2FurdBpwMZAMXAbfGJDlTgQeAa7x2jwSKvP3u8+rdHzgYOB74bhuvwYD/AQYDY4ChwFwA59wa4L+Ah8wsHfgrcL9zbqGZjQLmA1cAecDzwLNmlhxT92xgJjACmAhc2GwAZtO9xKalx/Q2XkNzGo9NW71CXkJyL/CfQA7wF+AZM0tpZ1sDgVxgCHABcKeZjfa2VRE97n29eC4zs9Oa7H8U0ff+BG/5BeAAYACwDHi4SfnZwC+8NuuAt71yucBjwO/aGXezzOynrR2PNnb/vpeULzWzMzoSh4hIT6EES0Qkfm5zzm1wztUA5wLPO+eed85FnHMvAUuAb8SUf9A595Fzrgr4JTC7uR4m59xzzrk1Lup14F/ADG/zd4B7nXMvee1scs6tMrN8r60rnHNVzrltwK3AWa29AOfcaq+uOudcMdEv50fFbL8LWA28QzQx/Lm3aQ7wnLdvELgFSAO+1uT9+dI5twN4FpjUQgyLnHN9W3ksau01tCD22LTlEuAvzrl3nHNh59z9RBOXaXvR3i+99/B1oon2bADn3ELn3IfesVpBNCk9qsm+c71jVuPtc69zrsI5V0c02T3IzPrElH/SObfUOVcLPAnUOucecM6FgQVEk+uvzDn329aORyu73sauxPCXwH1mdkRHYhER6QmUYImIxM+GmOfDgW81+aV/OtGkpLny64Akor0OuzGzE81ssdcTUEo0cWooNxRY00wsw736Nse0/xeiX3ZbZGb5ZvaIN6SwHHiomZjuAsYDt3tf+iHa47WuoYBzLuK9viEx+22JeV4NZLYWS5xtaLtIo+HAVU2O3VCir7E9dnpJc4N1Dfua2WFm9po3tLIMuJQ939/GWM3Mb2a/tejQz3J29U7G7rM15nlNM8td+T43cs4tc86VOOdCzrnnifa8fTMRsYiIdCUlWCIi8RM7a9AGoj1Usb/2ZzjnfhtTZmjM82FAENgeW6E3LO1xoj1C+V6PwfNEh/I1tDOymVg2EO11yY1pP9s5N66ZsrH+23sdE5xz2UR74hrawswygd8D9wBzbdd1Y18STUwaypn3+ja10d4ezGyG7T7zXNPHjLZr2UPTGZ2qgfSY5YExzzcANzY5dunOufntbKufmWXELA8j+v4A/A14BhjqnOsDzCPm/W0m1m8Ds4CvA32AQm990306jXc9WYvHYy+qcnRh3CIiiaIES0SkczwEnGJmJ3i9EKneBAgFMWXONbOx3vVMNwCPecO6YiUDKUAxEDKzE4leS9XgHuAiMzvOzHxmNsTMDnTObSY6lPD/zCzb2zbSzJoOR2sqC6gEysxsCNFru2L9AVjinPsu0aFv87z1jwIneXEkAVcRTfD+3dYb1ZRz7k3nXGYrjzf3ts5mLAe+7R2bmew+TO8u4FKvt8nMLMOik1NkQePEEve1Uf+vzSzZSwZPBv7urc8Cdjjnar3r577dRj1ZRN/HEqIJ4X/vxWuMC+fcf7d2PFraz8zONLNM79/e8UST9We6LnIRkcRQgiUi0gmccxuI9jxcRzQ52kA0WYn93H2Q6EQUW4BU4MfN1FPhrX8U2En0C/kzMdvfxZv4AigDXmdXT9L5RBO0T7x9H2P3IYrN+TVwiFfXc8ATDRvMbBbRSSou81b9BDjEzM5xzn1K9Av07UR74U4BTnHO1bfRXqJcTjTGUuAc4KmGDc65JcD3gDuIvm+r2X1CjqHAW63UvcXb70uiw+Iudc6t8rZ9H7jBzCqA64ke19Y8QHSI4Saix3FxWy+sG7mcaNylwM3A91yc77UlItId6T5YIiIJYGYLgYecc3cnOhZpP29WxA+Aid5kHk23H030uBY03SYiIr1DINEBiIiI9BRej9yYNguKiEivpSGCIiK9jJnNa2HCgnlt7y09kZkNa2WiimGJjk9EZF+iIYIiIiIiIiJxoh4sERERERGROOlW12Dl5ua6wsLCRIchIiIiIiLSqqVLl253zuU1Xd+tEqzCwkKWLFmS6DBERERERERaZWbrmluvIYIiIiIiIiJxogRLREREREQkTpRgiYh8Ra99uo31JdWJDkNERES6kW51DVZzgsEgGzdupLa2NtGhSA+TmppKQUEBSUlJiQ5F9kEbSirZ+dBFvJY6iAt+fneiwxEREZFuotsnWBs3biQrK4vCwkLMLNHhSA/hnKOkpISNGzcyYsSIRIcj+6AdSx7nm/5FEIT60J0kBzQgQERERHrAEMHa2lpycnKUXMleMTNycnLU8ymdpmZ7UePzL9avT1wgIiIi0q10+wQLUHIlX4n+3UhncjVljc9LPn8ngZGIiIhId9IjEiwRke7G6nYlWPXb1iQwEhEREelOlGC1g5lx1VVXNS7fcsstzJ07N3EBxVi8eDGHHXYYkyZNYsyYMY1xLVy4kH//+98dqnvmzJn07duXk08+OQ6Riuxb/PXlbLE8ggRwZRsSHY6IiIh0E0qw2iElJYUnnniC7du3x7Ve5xyRSKRDdVxwwQXceeedLF++nI8++ojZs2cD8UmwrrnmGh588MEO1SGyrwoEK6jyZVHizyWl6stEhyMiIiLdRLefRTDWr5/9mE++LI9rnWMHZ/OrU8a1WiYQCHDJJZdw6623cuONN+62rbi4mEsvvZT13kXuv//97zniiCOYO3cumZmZXH311QCMHz+ef/zjHwCccMIJHHbYYSxdupTnn3+eO+64gxdeeAEz4xe/+AVz5sxh4cKFzJ07l9zcXD766CMOPfRQHnrooT2uK9q2bRuDBg0CwO/3M3bsWIqKipg3bx5+v5+HHnqI22+/nQMPPLDFONesWcPq1avZvn071157Ld/73vcAOO6441i4cGGr783f//53fv3rX+P3++nTpw9vvPEGtbW1XHbZZSxZsoRAIMDvfvc7jjnmGO677z6eeuopqqqq+Pzzz7n66qupr6/nwQcfJCUlheeff57+/ftz1113ceedd1JfX8/+++/Pgw8+SHp6+m7tTps2jXvuuYdx46LH7uijj+aWW25h8uTJrcYrEi8pwUrq/BlEAtlk1mxJdDgiIiLSTagHq51+8IMf8PDDD1NWVrbb+ssvv5wrr7yS9957j8cff5zvfve7bdb1+eef8/3vf5+PP/6YJUuWsHz5cj744ANefvllrrnmGjZv3gzA+++/z+9//3s++eQTvvjiC95666096rryyisZPXo0p59+On/5y1+ora2lsLCQSy+9lCuvvJLly5czY8aMVuNcsWIFr776Km+//TY33HADX37Z/l/jb7jhBv75z3/ywQcf8MwzzwDwxz/+ETPjww8/ZP78+VxwwQWNs/l99NFHPPHEE7z33nv8/Oc/Jz09nffff5/DDz+cBx54AIBvfvObvPfee3zwwQeMGTOGe+65Z49258yZw6OPPgrA5s2b2bx5s5Ir6VKpkQrqAlnUZwwmL1JMOOISHZKIiIh0Az2qB6utnqbOlJ2dzfnnn89tt91GWlpa4/qXX36ZTz75pHG5vLycysrKVusaPnw406ZNA2DRokWcffbZ+P1+8vPzOeqoo3jvvffIzs5m6tSpFBQUADBp0iSKioqYPn36bnVdf/31nHPOOfzrX//ib3/7G/Pnz2+216m1OGfNmkVaWhppaWkcc8wxvPvuu5x22mntel+OOOIILrzwQmbPns03v/nNxtf0ox/9CIADDzyQ4cOH89lnnwFwzDHHkJWVRVZWFn369OGUU04BYMKECaxYsQKIJmG/+MUvKC0tpbKykhNOOGGPdmfPns3xxx/Pr3/9ax599FHOPPPMdsUrEi8ZkSq2BbLwZxeQv+0FtpdVkt8vK9FhiYiISIJ1OMEys6HAA0A+4IA7nXN/MLP+wAKgECgCZjvndna0vUS64oorOOSQQ7jooosa10UiERYvXkxqaupuZQOBwG7XV8XejykjI6Nd7aWkpDQ+9/v9hEKhZsuNHDmSyy67jO9973vk5eVRUlKyR5mW4oQ9pzPfm+nN582bxzvvvMNzzz3HoYceytKlS1stH/uafD5f47LP52t8fRdeeCFPPfUUBx10EPfdd1+zCeOQIUPIyclhxYoVLFiwgHnz5rU7ZpF4SHdV1Acyye43DL85SjavI7/f+ESHJSIiIgkWjyGCIeAq59xYYBrwAzMbC/wUeMU5dwDwirfco/Xv35/Zs2fvNmTt+OOP5/bbb29cXr58OQCFhYUsW7YMgGXLlrF27dpm65wxYwYLFiwgHA5TXFzMG2+8wdSpU9sd03PPPYdz0aFJn3/+OX6/n759+5KVlUVFRUWbcQI8/fTT1NbWUlJSwsKFC5kyZUq721+zZg2HHXYYN9xwA3l5eWzYsIEZM2bw8MMPA/DZZ5+xfv16Ro8e3e46KyoqGDRoEMFgsLGe5syZM4ebbrqJsrIyJk6c2O76RTosEiGDGoKBLNJyCwGo2FaU0JBERESke+hwguWc2+ycW+Y9rwBWAkOAWcD9XrH7gdM62lZ3cNVVV+02m+Btt93GkiVLmDhxImPHjm3sSTnjjDPYsWMH48aN44477mDUqFHN1nf66aczceJEDjroII499lhuuukmBg4c2O54HnzwQUaPHs2kSZM477zzePjhh/H7/Zxyyik8+eSTTJo0iTfffLPFOAEmTpzIMcccw7Rp0/jlL3/J4MGDgWjy961vfYtXXnmFgoIC/vnPfwLRYYkN11tdc801TJgwgfHjx/O1r32Ngw46iO9///tEIhEmTJjAnDlzuO+++3bruWrL//t//4/DDjuMI444ggMPPLBx/TPPPMP111/fuHzmmWfyyCOPNM6cKNJlwnX4cLhAKtkDCwGoL1mX2JhERESkW7CG3o+4VGZWCLwBjAfWO+f6eusN2Nmw3GSfS4BLAIYNG3bounW7f0lZuXIlY8aMiVuMsrumsx3ua/TvRzpFzU7430JeHnYFx377Gny/HcLrQy/jqO/8NtGRiYiISBcxs6XOuT1mWYvbLIJmlgk8DlzhnNttLnUXzeKazeScc3c65yY75ybn5eXFKxwRkU7jQnXRJ4FkfKmZlJFJoHJTYoMSERGRbiEuswiaWRLR5Oph59wT3uqtZjbIObfZzAYB2+LRlsTX3LlzEx2CSI8TrKslGbCk6IyiO/25pNboI05ERETi0IPlDf+7B1jpnPtdzKZngAu85xcAT3e0LRGR7qC+rhoAC0SvLaxKGUBmfXEiQxIREZFuIh5DBI8AzgOONbPl3uMbwG+B/zCzz4Gve8siIj1esK4GAF9SNMGqS8unf3jP2yOIiIhI79PhIYLOuUVASzdOOq6j9YuIdDfBuuh97XxJ0fvKRTIHkrO9jKqaWjLS9rzXnIiIiPQecZvkQkSktwjX755g+fsOxmeO4i3rExmWiIiIdANKsNrpqaeewsxYtWpVi2WKiooYP3583Nr89NNPOfroo5k0aRJjxozhkksuAaI3CX7++ec7VPfFF1/MgAED4hqvSG8RrI9eg+X3JrlI7V8AQPnWDQmLSURERLoHJVjtNH/+fKZPn878+fOb3R4KhTrcRjgc3m35xz/+MVdeeSXLly9n5cqV/OhHPwLik2BdeOGFvPjiix2qQ6S3CtdHp2kPeDfQzsobCkB1iRIsERGR3i4u07R3mRd+Cls+jG+dAyfAia3Pv1FZWcmiRYt47bXXOOWUU/j1r38NwMKFC/nlL39Jv379WLVqFf/6178IhUKcc845LFu2jHHjxvHAAw+Qnp7OK6+8wtVXX00oFGLKlCn8+c9/JiUlhcLCQubMmcNLL73Etddey1lnndXY7ubNmykoKGhcnjBhAvX19Vx//fXU1NSwaNEifvazn3HyySfzox/9iI8++ohgMMjcuXOZNWsW9913H08++SRlZWVs2rSJc889l1/96lcAHHnkkRQVFbX6ul9//XUuv/xyAMyMN954g8zMTK699lpeeOEFzIxf/OIXzJkzh4ULF/KrX/2Kvn378uGHHzJ79mwmTJjAH/7wB2pqanjqqacYOXIkzz77LL/5zW+or68nJyeHhx9+mPz8/N3aPeusszjvvPM46aSTgGgyePLJJ3PmmWe275iKdLJQfXSSi4YerH4DhwNQv1P3whIREent1IPVDk8//TQzZ85k1KhR5OTksHTp0sZty5Yt4w9/+AOfffYZEB3W9/3vf5+VK1eSnZ3Nn/70J2pra7nwwgtZsGABH374IaFQiD//+c+NdeTk5LBs2bLdkiuAK6+8kmOPPZYTTzyRW2+9ldLSUpKTk7nhhhuYM2cOy5cvZ86cOdx4440ce+yxvPvuu7z22mtcc801VFVVAfDuu+/y+OOPs2LFCv7+97+zZMmSdr/uW265hT/+8Y8sX76cN998k7S0NJ544gmWL1/OBx98wMsvv8w111zD5s2bAfjggw+YN28eK1eu5MEHH+Szzz7j3Xff5bvf/S633347ANOnT2fx4sW8//77nHXWWdx00017tDtnzhweffRRAOrr63nllVcaky2R7iASbOjBiiZYGX0HEnR+rGJLIsMSERGRbqBn9WC10dPUWebPn9/Yk3PWWWcxf/58Dj30UACmTp3KiBEjGssOHTqUI444AoBzzz2X2267jf/4j/9gxIgRjBo1CoALLriAP/7xj1xxxRVANKFozkUXXcQJJ5zAiy++yNNPP81f/vIXPvjggz3K/etf/+KZZ57hlltuAaC2tpb166MX2//Hf/wHOTk5AHzzm99k0aJFTJ48uV2v+4gjjuAnP/kJ55xzDt/85jcpKChg0aJFnH322fj9fvLz8znqqKN47733yM7OZsqUKQwaNAiAkSNHcvzxxwPRnrfXXnsNgI0bNzJnzhw2b95MfX39bu9dgxNPPJHLL7+curo6XnzxRY488kjS0tLaFbNIV4h4PVhJyd6MgT4fO339CFQpwRIREent1IPVhh07dvDqq6/y3e9+l8LCQm6++WYeffRRnHMAZGRk7FY+et/llpeb07SOWIMHD+biiy/m6aefJhAI8NFHH+1RxjnH448/zvLly1m+fDnr169nzJgxXzmeBj/96U+5++67qamp4Ygjjmh1gg+AFO96FACfz9e47PP5Gq9R+9GPfsQPf/hDPvzwQ/7yl79QW1u7Rz2pqakcffTR/POf/2TBggUtJqAiiRIJRXuwklLSG9eVJeWRXrctUSGJiIhIN6EEqw2PPfYY5513HuvWraOoqIgNGzYwYsQI3nzzzWbLr1+/nrfffhuAv/3tb0yfPp3Ro0dTVFTE6tWrAXjwwQc56qij2mz7xRdfJBgMArBlyxZKSkoYMmQIWVlZVFRUNJY74YQTuP322xuTvvfff79x20svvcSOHTsar4Nq6F1rjzVr1jBhwgT+67/+iylTprBq1SpmzJjBggULCIfDFBcX88YbbzB16tR211lWVsaQIUMAuP/++1ssN2fOHP7617/y5ptvMnPmzHbXL9IVIsHoDwOBlF33vKpJySM7tD1RIYmIiEg3oQSrDfPnz+f000/fbd0ZZ5zR4myCo0eP5o9//CNjxoxh586dXHbZZaSmpvLXv/6Vb33rW0yYMAGfz8ell17aZtv/+te/GD9+PAcddBAnnHACN998MwMHDuSYY47hk08+YdKkSSxYsIBf/vKXBINBJk6cyLhx4/jlL3/ZWMfUqVM544wzmDhxImeccUbj8MCzzz6bww8/nE8//ZSCggLuueceAObNm8e8efMA+P3vf8/48eOZOHEiSUlJnHjiiZx++ulMnDiRgw46iGOPPZabbrqJgQMHtvv9nDt3Lt/61rc49NBDyc3NbVy/ZMkSvvvd7zYuH3/88bz++ut8/etfJzk5ud31i3QF5yVYySm7hq4GMwaSGykhEnGJCktERES6AWvo9egOJk+e7JpOwrBy5crG4W6yd+677z6WLFnCHXfckehQEkb/fqQzfPDANUxYcxc7r95CTla0F2vpw9dz6Od/oPhHX5DnXfcoIiIi+y4zW+qc22NyA/VgiYjsrVAd9QRISd41T1BSv8EA7NiyPlFRiYiISDfQ6QmWmc00s0/NbLWZ/bSz25NdLrzwwl7deyXSaUJ11JFEsn/XR2hGTvRmwxXFSrBERER6s05NsMzMD/wROBEYC5xtZmP3tp7uNIxReg79u5FOE66jniSS/Ltm5cweEL3ZcO0O3WxYRESkN+vsHqypwGrn3BfOuXrgEWDW3lSQmppKSUmJvizLXnHOUVJSQmpqatuFRfaSeQlW7G0P+uVHe7AiZUqwREREerPOvtHwEGBDzPJG4LC9qaCgoICNGzdSXFwc18Bk35eamkpBQUGiw5B9kC9cR73tPrtlIL0PVaRhFbrZsIiISG/W2QlWm8zsEuASgGHDhu2xPSkpiREjRnR1WCIiLbJwPUGS9li/w59DSs3WBEQkIiIi3UVnDxHcBAyNWS7w1jVyzt3pnJvsnJucl5fXyeGIiHScL1xHyPa8P1tlUh6Z9eptFxER6c06O8F6DzjAzEaYWTJwFvBMJ7cpItKp/JF6Qr49e7Dq0vLpEy5JQEQiIiLSXXRqguWcCwE/BP4JrAQedc593Jltioh0Nl+knpCl7LE+nDmQPLeD2vpgAqISERGR7qDTr8Fyzj0PPN/Z7YiIdJVApJ6wL3OP9b4+g0m2MOu3fMmwYcMTEJmIiIgkWqffaFhEZF/jd/WEfXteg5XSbwgApdt0s2EREZHeSgmWiMheSorUE/btOUQwMy86p0/19g17bBMREZHeQQmWiMheCrggEf+ePVj9BkaHBdbv1M2GRUREeislWCIieymJeiLN9WD1H0zEGa58cwKiEhERke5ACZaIyF5KckFcMz1YFkhmp68vgaotCYhKREREugMlWCIieymZIC6wZw8WQGkgl7TarV0ckYiIiHQXSrBERPZGJEyAMM6f2uzmqtRB9AuqB0tERKS3UoIlIrI3QnXRv4E9hwgCBDMHMyBSTDAU7sKgREREpLtQgiUishdcqBYACzTfg2V9h5FhdWzbpl4sERGR3kgJlojIXgjWNSRYzV+DlZobnaq9ZNOaLotJREREug8lWCIieyFYXxN90kKClT1wPwCqthV1UUQiIiLSnSjBEhHZC/W10QTLl9R8gpU7ZGS0XMm6LotJREREuo8OJVhmdrOZrTKzFWb2pJn1jdn2MzNbbWafmtkJHY5URKQbCNZFE6yWrsFK7TOAWpKx8o1dGZaIiIh0Ex3twXoJGO+cmwh8BvwMwMzGAmcB44CZwJ/MzN/BtkREEq6+rhqAQEpa8wXM2O4fQGrVpi6MSkRERLqLDiVYzrl/OedC3uJioMB7Pgt4xDlX55xbC6wGpnakLRGR7iDoDRFMSklvsUxFSj5ZdZpFUEREpDeK5zVYFwMveM+HABtitm301u3BzC4xsyVmtqS4uDiO4YiIxF99dTkASWmZLZapTR9CTrgY51xXhSUiIiLdRJsJlpm9bGYfNfOYFVPm50AIeHhvA3DO3emcm+ycm5yXl7e3u4uIdKlQbQUASenZLZZxfQoYYKXsKCvvqrBERESkmwi0VcA59/XWtpvZhcDJwHFu18+1m4ChMcUKvHUiIj1a2EuwUtJaTrCS+w+DNVC8aS05fSd1UWQiIiLSHXR0FsGZwLXAqc656phNzwBnmVmKmY0ADgDe7UhbIiLdQaSuEoCUjD4tlskYMAKA8i1fdElMIiIi0n202YPVhjuAFOAlMwNY7Jy71Dn3sZk9CnxCdOjgD5xz4Q62JSKSeF6ClZaR1WKRnCHRmw3XbNe9sERERHqbDiVYzrn9W9l2I3BjR+oXEeluXH0l1S6FjLTmbzQMkDVgOBFnuNL1XRiZiIiIdAfxnEVQRGSf56uvpJoUUgItf3xaIIUdvn4kVejSUxERkd5GCZaIyF6wYDXVpOENi27RzuSBZNZu7qKoREREpLtQgiUishcCoSpqLa3NctVpg+kf2toFEYmIiEh3ogRLRGQv+INV1PrS2ywXzi5goNtOdW1dF0QlIiIi3YUSLBGRvRAIVxP0t92D5e83jCQLs3VTUecHJSIiIt2GEiwRkb2QFK4mktR2D1ZaXvReWDs3615YIiIivYkSLBGRvZARriCY1PJNhhv0GzwSgJritZ0dkoiIiHQjSrBERNorEqEP5YRS+7dZtL+XYIV26F5YIiIivYkSLBGRdgrXlBIgQjg9p82y/tRMdpJNoGJjF0QmIiIi3YUSLBGRdqrasQUAS89tV/kdSflkVH/ZmSGJiIhIN6MES0SknSq8BCuQldeu8lWpg+gb3NKZIYmIiEg3E7cEy8yuMjNnZrnespnZbWa22sxWmNkh8WpLRCQRKnZsBiCr/8B2la/PHEJ+pJhgKNyZYYmIiEg3EpcEy8yGAscDsVdznwgc4D0uAf4cj7ZERBKlpnQrAH3yBrWrvPUbTprVU7x1U2eGJSIiIt1IvHqwbgWuBVzMulnAAy5qMdDXzNr3rUREpBsKlm0DIG/AkHaVT80dDsCOTas7LSYRERHpXjqcYJnZLGCTc+6DJpuGABtiljd665ruf4mZLTGzJcXFxR0NR0Sk0wTK17PN9SMjI6Nd5bMH7gdA5TbdC0tERKS3CLSnkJm9DDR30cHPgeuIDg/8SpxzdwJ3AkyePNm1UVxEJGEyqjeyLTCQAe0snzckei+s+h2aql1ERKS3aFeC5Zz7enPrzWwCMAL4wMwACoBlZjYV2AQMjSle4K0TEemR+tZ9yer0g9pdPjU7lzqScBWbOzEqERER6U46NETQOfehc26Ac67QOVdIdBjgIc65LcAzwPnebILTgDLnnL5liEiPFA7WkRfZTqTPsPbvZMZOX3+SqrZ2XmAiIiLSrbSrB+sreh74BrAaqAYu6sS2REQ61da1HzHYHEl5++/VfuVJeWTWb+ukqERERKS7iWuC5fViNTx3wA/iWb+ISKLsWL2EwUDWfpP3ar/a1AH0KVvZOUGJiIhItxO3Gw2LiOzLatcvo8YlM2L0pL3aL5QxkDy3g/qgbjYsIiLSGyjBEhFph+yS5axL2o/01JS92s+yB5NudWwv0W0oREREegMlWCIibair3Ml+9Z9RnDttr/dN7jcYgLKt6+MdloiIiHRDSrBERNrw6eJ/ELAImWOO2+t903Kid6uo3L6hjZIiIiKyL1CCJSLShsiKJ9jpshg7be/vqd4nPzqte/1O3WxYRESkN1CCJSLSivKSbYwuW8TKnONISUnd6/37DYgmWOEy3QZQRESkN1CCJSLSilXP3Uaa1TPgmMu+0v6+lHTKycRfqQRLRESkN1CCJSLSgoqd2zjwi3t5P2UK+0/Y+wkuGpT6+5Ncuz2OkYmIiEh3pQRLRKQFKxf8kgxXTcZJv+lQPZXJuWTUK8ESERHpDZRgiYg0Y/XSVzh08wLe638yoyZ+9d4rgPqUXLLDO+IUmYiIiHRnSrBERJqoKC0m7R/fZ5vlMub82zpcXzgjn1y3k/pgOA7RiYiISHfW4QTLzH5kZqvM7GMzuylm/c/MbLWZfWpmJ3S0HRGRrhAOBVk/bzZ5kWJKTriDPv36d7hOX1Y+qRZk+w4NExQREdnXBTqys5kdA8wCDnLO1ZnZAG/9WOAsYBwwGHjZzEY55/TzrYh0a0v/cilTa5fx9oS5HH74zLjUmdR3EACl2zYwOD8/LnWKiIhI99TRHqzLgN865+oAnHPbvPWzgEecc3XOubXAamBqB9sSEelU7z56E1OLH+Pf+Wdz+JlXxq3e9P6DAajcviludYqIiEj31KEeLGAUMMPMbgRqgaudc+8BQ4DFMeU2eutERLqlD994mkM+/h+Wpx/GYd+7I651Z+dFP/7qSnUvrHCwnh3bNlK2s5hgVSnBqlLCNeWEa8oJBeuIREL4XBhzEXwuQsQChH1JWCAFf1IK/uRUkpJSCKSkE0hLJyklg+TUDFLTMkhOzyQtLZNASjoEUsAs0S9XRER6oTYTLDN7GRjYzKafe/v3B6YBU4BHzWy/vQnAzC4BLgEYNmzY3uwqIhIXGz5bzvBXL2WDfygjL30Ef6Cjvz3trm/eUABCZVviWm935MIhtm1cw7aij6j6chVWspqU6i1k1m+jb2g7/V0ZeebI6+Q4Ihh1JFNHCvWWTL0vlZAvhZAvlbA/hZA/lZDPe/hTCftSwHyYRfMywzAD58Dhon8dQPSJcxFvY8Rb13Q5+jCiyxazzZzzIgRcBGvYH7DGMtHtRsSrZ/eHDxdTF9BsLtlagmlfbZ9mF/din8bV7dzHWljf2t5tFGt/2r2r5Feqs5V9Wt5kX6m+YFI2g2b/H/3y9T1KpDto81uEc+7rLW0zs8uAJ5xzDnjXzCJALrAJGBpTtMBb11z9dwJ3AkyePNm1P3QRkY4r374F3/w5BEki5fy/k9Wn45NaNBXI6EcdSVjl1rjXnUi1VWUUffwupWvew7flA3IrP2VIaCP5FqThSrMKl0axfwAVyXmUZI7ms8xB+LIHkZKdQyC9L0npfUjJ6EdKZh/SU9NISk4G8+F8ATAfRIK4UB2h+jpqa2uor62hrraG+roaQrVVBOuqCddVEa6vIVJfjauvwQWrIViLBWuwcC2+UA3+cC3+cC2BcC1JwWqS3U4yXB2p1JNC9C+uHf8FGXukORFvtP1uf61pSmQ4a5oe7Vkuuuxrstyw/679Gv+aAbvidrvC3LXkmm5tfrGZFS3v29jOnm03u801v751rtmnbaxss1SLe7XV3F6203KBPUt2tL3RbgkfPvBDDr3qKcynCaJFEq2jP9M+BRwDvGZmo4BkYDvwDPA3M/sd0UkuDgDe7WBbIiJxFaqv5cu7zmBEpITVJy1gXOHozmnIjFJfP5Jqijun/q7gHF+u+4z1y1/Bt/5t8suWMzS0gQMt+jVvB9lsTB3F0pxpWN4BZA0Zy8D9xpEzoIAsfeET6VTvPfAzpnzxJxY98r9M//bPEh2OSK/X0QTrXuBeM/sIqAcu8HqzPjazR4FPgBDwg544g2BV+U5Kt29hyH5jEh2KiHSCZfdeztS6j/j3ITfxtanHdWpblYH+pNX3rGnat3y5no3vPo3/i9cYXL6cwZQwGKggjTWp49kw6ATShx9CwdjDGTC4kP665kkkISaf+xs+/L/3OezTm1nyYgGTZ56X6JBEerUOJVjOuXrg3Ba23Qjc2JH6E+3D5/7M1FU38UH6FOpGn86BR55Jdv8BiQ5LROLgw1f+xtQtj/Dv3DP52qz/7PT2alLy6FNR1OntdEQoFGbl8n9T8v4zDNi8kAPDnzPQHNvox7rMSawtmMbA8ccw7MBDmRTn69RE5Kszn5+Rl/6NtbfNZOLbl7PU5+fQ47+d6LBEei39D9mKkUeexeKqEvbf+CQDlv+M0Ps/56OU8ZQPOoKcA49k+EEzSE3PSnSYIrKXSou/ZNib1/CZf38O+c7tXdJmXcYQCsvfIxyO4Pd3nyFz5RXlrPz3PwitfIGRpW8xgRIA1iSP5v3Cy+g36RQKx01jQDeKWUT2lJ7Vn0E/eIGiO2Zy0Fs/YHHxag47+xe6JqsLOedwEdfiNXUNffxmNM6cYur53yeZa89FvV1k8uTJbsmSJYkOYw8uEuaz99+gZOlTDNr6OsNDRfjMEXR+NvoL2JmxH3X9RpE8cDRZA4aTnTeU/vnDSE5N67yYnCMUcdQHQ9TV1VJfV0N9bS3B+l2PUF0tofpaQsE6wsFaIvV1hEN1RIJ1REJ1uFAdhOpwoXoI10O4Dl8kiC9cj88FCUTq8UWC+F09/kiQgIs+/N7fpIZlwrtmviI661X0754zX8Vcyh0t53Yv1+LrbWH6pOb2aKlsc1MwtdRic3XEI4aWLhNvfwzN62i8vU0q9WRQy/o5L7Hf2Mld0uZ7j9zIlFU3seXSjxk4sKBL2mzJpnWrKXr7SdKKXmJMzfukWT1VpLImayqMOoGRR3yTDO/eXSLSs1RX7GDln8/n0Oo3WZp2OEPOvo2Bw0YlOqyvzIXqqCrfSXlZKZXlO6irKiNcU06ktpxIbSWuvgJXX0MkWIuFaiFUC6E6fOFafOE6/JF6kiJ1BFw9AVePz4XxubD33SWM30XwEcZHBD9h/N42PxH8REiyrrvCJeJ2m57Ge267/d19uzVTrnP2jZ1Ox1nr+9Jiu7u+6VkL8bVkqY0n8K27+Y+x+W2W7UpmttQ5t8cXCfVgtYP5/Iw+9Bg49BgASku28cX7r1K/9m1SSlaRX/kJg8oX4lu/+z+vctKpJp1aXxq1vnTqfengC4DPh8NPxHyNs075XQi/C4ML4YuE8LnoI3ry70pmAoRIdkGSCJJMiAwLkxHH11pPEkECBC2JkCURwvvrPcK+ZEKWRp0vm2pLJuxLwpk/OtuXN/tVw68yznwQMwsW1vArmjXZ5vPOxehyw9O2WLM/DjScwk0r2LNsSwld8+vbl5ZEp13+6vW2PnFxy+nVHmXbM01W07p74K9oHYnYv/8xjO2i5AogM38krIJt6z7t8gQrHA7z2fuvs+P9Z8nf/Br7R9YyBNhs+Xw88DSyDzqZkZNPYGJyapfGJSLxl57Vn4OveoYlj/4/xq26A7vna/w7/0xGfONyBhUm8JrycIi6yu1U7NhGVelWakuLCVZuJ1S5HapK8NXuIFBXSkr9TtJDZaRFKklzNaQQJBPIbKP6iDNqSabekqgnmaAlE7QUgr7o3zpfGlXWh4gvAObHmX/XbKW+AM4XwHzR9fj8RMyPs8Cu7ynE/jfZ5FtGzP+f1mS5KUfs95fYqSubWdc4E2gzc2E2913DNbNvbErVnnZdk+1Nylmb8e0q15hMuejz3dOtprOcNiw0/bYTXQql7seQ7JQ94+qm1IMVJ7XVFXz5xSeUb1tH3c7NhMu+xFezHX+wikCoiqRQFcnhanBhLBL9paThARDGT8gCRCyAMz8RCxDxTnjnSyLiS8b5k3G+JJw/BfzJuEAKFkjG/Cn4AslYUgq+pFT8geTo3+RUAkkpBJJTCCSnkpScSlJK9JGcnEYgOQULpII/Cfwp0b898Eu2SE+wbfUyBjx0DIsm3cT00zr/mq+q8p189vYzBFe+yMjSt8ihjLAzPksZR8Ww4xhy2DcZsv9BOudF9mFfrvuMzU9cx0Glr+DD8VnKGEqHHEP2/oeTP2oy/XMHfqUhaqG6GipLi6nYuZXqsu3UlxdTX1FCuKoEq96Bv24nSXU7SQ2Wkh4qJStSQTaVLdZX7VIoJZNyXzZV/j7UJvUhnJRNJCUbX2oW/tRsktKzSU7vQ3J6NknpfUjK6ENyWjYpGdmkpmeSlpKKT0OZpYu11IOlBEtEpAtEaivgf4by5pDvcNQl/xf/Bpxj05oVbHrvWdLXvcKomg9ItjDlZPBZ1jRs9EwO+NppmqhHpBfavPELvvjXPPI2vcKo8OrG9TvJotzfj0p/X+oC2Zg/QHTAnB+fC5EUqSUQqSUQriEQriUjUkm2qyDd6lpsq8YlU2rZVPqyqfZnU5vcj2ByP8Jp/SGtH77MXJKy8kjNziWt7wCy+w2gb5++pCX7u+KtEIkrDREUEUkgX2oW6/wF9N25Im511lZX8Pk7L1LzyQsM2f4WQ9wWhgBFVsCSgXPIPuhURk85jslJyXFrU0R6nkEF+zHo4psAKN66kc2r3qNu43IiO4rw12wnI7iTfrUbopcleNcihSxAvaVQb6nU+9OpTe7PzqQsQin9iKT2g7T+BDL7k5yVS1qfPNL75JHdP5+srGwG+dQzLr2bEiwRkS6yrc9E9t/5xleeSbC+poq1yxdSuvI1sra+w8jalUywINUuhc/SD2b98IsZOnUWhfsdSGH8wxeRfUBefgF5+QXA6YkORWSfpQRLRKSL+EbMoN/O51j53j8ZM+3E1gs7x7aNa9j4ydvUrXuPvtuXMrJuFaMtRMQZXwT2Y1n+N0kbewIHHjaTSWnxnO5GREREviolWCIiXeTAY8+ldOlvsFf/H7XjDyc1sy8QnVZ585qP2LnuQ4JbPyVz50qG1KxiAOUMAELOx9qkkbyXP5vU/Y9k5KFfZ/+cPPZP6KsRERGR5ijBEhHpIhmZWfx70s/52gc/I3TzCIp9fUl31WRQy0ivTMP99T7vcwRu0EH02/8who+dygHpmRyQ0OhFRESkPZRgiYh0oa+d/n1WDB7NjmVPklqznUhKFpY5gOT8A8kdMYHBI8YwIjmFEYkOVERERL4SJVgiIl1s4mHHwWHHJToMERER6QQdviObmU0ys8VmttzMlpjZVG+9mdltZrbazFaY2SEdD1dERERERKT7isctr28Cfu2cmwRc7y0DnAgc4D0uAf4ch7ZERERERES6rXgkWA7I9p73Ab70ns8CHnBRi4G+ZjYoDu2JiIiIiIh0S/G4BusK4J9mdgvRhO1r3vohwIaYchu9dZtjdzazS4j2cAFUmtmncYgpnnKB7YkOQrqMjnfvoWPde+hY9y463r2HjnXv0h2P9/DmVrYrwTKzl4GBzWz6OXAccKVz7nEzmw3cA3y9vVE55+4E7mxv+a5mZkucc5MTHYd0DR3v3kPHuvfQse5ddLx7Dx3r3qUnHe92JVjOuRYTJjN7ALjcW/w7cLf3fBMwNKZogbdORERERERknxSPa7C+BI7ynh8LfO49fwY435tNcBpQ5pzb3FwFIiIiIiIi+4J4XIP1PeAPZhYAatl1PdXzwDeA1UA1cFEc2kqEbjt8UTqFjnfvoWPde+hY9y463r2HjnXv0mOOtznnEh2DiIiIiIjIPiEeQwRFREREREQEJVgiIiIiIiJxowSrFWY208w+NbPVZvbTRMcj8WNmQ83sNTP7xMw+NrPLvfX9zewlM/vc+9sv0bFKfJiZ38zeN7N/eMsjzOwd7/xeYGbJiY5R4sPM+prZY2a2ysxWmtnhOrf3TWZ2pfcZ/pGZzTezVJ3b+w4zu9fMtpnZRzHrmj2XvUnVbvOO+wozOyRxkcveauFY3+x9jq8wsyfNrG/Mtp95x/pTMzshIUG3QglWC8zMD/wROBEYC5xtZmMTG5XEUQi4yjk3FpgG/MA7vj8FXnHOHQC84i3LvuFyYGXM8v8Ctzrn9gd2At9JSFTSGf4AvOicOxA4iOhx17m9jzGzIcCPgcnOufGAHzgLndv7kvuAmU3WtXQunwgc4D0uAf7cRTFKfNzHnsf6JWC8c24i8BnwMwDv+9pZwDhvnz9539u7DSVYLZsKrHbOfeGcqwceAWYlOCaJE+fcZufcMu95BdEvYEOIHuP7vWL3A6clJECJKzMrAE7Cu0+fmRnR20o85hXRsd5HmFkf4EiiN73HOVfvnCtF5/a+KgCkeTMZpwOb0bm9z3DOvQHsaLK6pXN5FvCAi1oM9DWzQV0SqHRYc8faOfcv51zIW1xM9J66ED3Wjzjn6pxza4nOWD61y4JtByVYLRsCbIhZ3uitk32MmRUCBwPvAPkx92vbAuQnKi6Jq98D1wIRbzkHKI354Nb5ve8YARQDf/WGhN5tZhno3N7nOOc2AbcA64kmVmXAUnRu7+taOpf1vW3fdjHwgve82x9rJVjSq5lZJvA4cIVzrjx2m4vew0D3MejhzOxkYJtzbmmiY5EuEQAOAf7snDsYqKLJcECd2/sG79qbWUST6sFABnsOMZJ9mM7l3sHMfk700o6HEx1LeynBatkmYGjMcoG3TvYRZpZENLl62Dn3hLd6a8OQAu/vtkTFJ3FzBHCqmRURHep7LNFrdPp6w4pA5/e+ZCOw0Tn3jrf8GNGES+f2vufrwFrnXLFzLgg8QfR817m9b2vpXNb3tn2QmV0InAyc43bdvLfbH2slWC17DzjAm40omejFdM8kOCaJE+8anHuAlc6538Vsega4wHt+AfB0V8cm8eWc+5lzrsA5V0j0PH7VOXcO8BpwpldMx3of4ZzbAmwws9HequOAT9C5vS9aD0wzs3TvM73hWOvc3re1dC4/A5zvzSY4DSiLGUooPZCZzSQ6vP9U51x1zKZngLPMLMXMRhCd2OTdRMTYEtuVDEpTZvYNotdu+IF7nXM3JjYiiRczmw68CXzIrutyriN6HdajwDBgHTDbOdf0AlvpoczsaOBq59zJZrYf0R6t/sD7wLnOuboEhidxYmaTiE5okgx8AVxE9AdFndv7GDP7NTCH6PCh94HvEr0WQ+f2PsDM5gNHA7nAVuBXwFM0cy57SfYdRIeJVgMXOeeWJCBs+QpaONY/A1KAEq/YYufcpV75nxO9LitE9DKPF5rWmUhKsEREREREROJEQwRFRERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSIiIiIiEidKsEREREREROJECZaIiIiIiEicKMESERERERGJEyVYIiIiIiIicaIES0SkmzGzQjNzZhZIdCzSO5jZx2Z2dKLjEBHZFyjBEhGRHs/M5plZpfeoN7NgzPILiY6vu3POjXPOLYxnnWZ2n3csKmMe/ni2ISLSHZlzLtExiIjsU8ws4JwLdWD/QmAtkNSRenorM5sL7O+cO7eZbR06Nl2pJ8XaHDO7D9jonPtFomMREelK6sESEYkDMysys/8ysxVAlZkFzGyamf3bzErN7IPYIVhmttDM/sfM3jWzcjN72sz6t1D3RWa20swqzOwLM/vPJttnmdlyr541ZjbTW9/HzO4xs81mtsnMftNWD4KZjTSzV82sxMy2m9nDZtY3ZtsOMzvEWx5sZsUNr8vMTvWGmpV6r29Mk/fnajNbYWZlZrbAzFL3/p3eey0cG2dm+8eUuc/MfhOzfLL3npZ6x3BiO9s62sw2mtl13vtXZGbnxGw/ycze947VBi8ZbNjWMDT0O2a2HnjVW/93M9vivW9vmNm4JnH/ycxe8HqI3jKzgWb2ezPbaWarzOzgdr5HX2/PaxQRkdYpwRIRiZ+zgZOAvkA+8BzwG6A/cDXwuJnlxZQ/H7gYGASEgNtaqHcbcDKQDVwE3BqT5EwFHgCu8do9Eijy9rvPq3d/4GDgeOC7bbwGA/4HGAyMAYYCcwGcc2uA/wIeMrN04K/A/c65hWY2CpgPXAHkAc8Dz5pZckzds4GZwAhgInBhswGYTfcSm5Ye09t4Dc1pPDZt9Qp5Ccm9wH8COcBfgGfMLKWdbQ0EcoEhwAXAnWY22ttWRfS49/XiuczMTmuy/1FE3/sTvOUXgAOAAcAy4OEm5WcDv/DarAPe9srlAo8Bv2tn3M0ys5+2djza2P37XlK+1MzO6EgcIiI9hRIsEZH4uc05t8E5VwOcCzzvnHveORdxzr0ELAG+EVP+QefcR865KuCXwOzmepicc88559a4qNeBfwEzvM3fAe51zr3ktbPJObfKzPK9tq5wzlU557YBtwJntfYCnHOrvbrqnHPFRL+cHxWz/S5gNfAO0cTw596mOcBz3r5B4BYgDfhak/fnS+fcDuBZYFILMSxyzvVt5bGotdfQgthj05ZLgL84595xzoWdc/cTTVym7UV7v/Tew9eJJtqzAZxzC51zH3rHagXRpPSoJvvO9Y5ZjbfPvc65CudcHdFk9yAz6xNT/knn3FLnXC3wJFDrnHvAORcGFhBNrr8y59xvWzserex6G7sSw18C95nZER2JRUSkJ1CCJSISPxting8HvtXkl/7pRJOS5sqvA5KI9jrsxsxONLPFXk9AKdHEqaHcUGBNM7EM9+rbHNP+X4h+2W2RmeWb2SPekMJy4KFmYroLGA/c7n3ph2iP17qGAs65iPf6hsTstyXmeTWQ2Voscbah7SKNhgNXNTl2Q4m+xvbY6SXNDdY17Gtmh5nZa97QyjLgUvZ8fxtjNTO/mf3WokM/y9nVOxm7z9aY5zXNLHfl+9zIObfMOVfinAs5554n2vP2zUTEIiLSlZRgiYjET+ysQRuI9lDF/tqf4Zz7bUyZoTHPhwFBYHtshd6wtMeJ9gjlez0GzxMdytfQzshmYtlAtNclN6b9bOfcuGbKxvpv73VMcM5lE+2Ja2gLM8sEfg/cA8y1XdeNfUk0MWkoZ97r29RGe3swsxm2+8xzTR8z2q5lD01ndKoG0mOWB8Y83wDc2OTYpTvn5rezrX5mlhGzPIzo+wPwN+AZYKhzrg8wj5j3t5lYvw3MAr4O9AEKvfVN9+k03vVkLR6PvajK0YVxi4gkihIsEZHO8RBwipmd4PVCpHoTIBTElDnXzMZ61zPdADzmDeuKlQykAMVAyMxOJHotVYN7gIvM7Dgz85nZEDM70Dm3mehQwv8zs2xv20gzazocraksoBIoM7MhRK/tivUHYIlz7rtEh77N89Y/CpzkxZEEXEU0wft3W29UU865N51zma083tzbOpuxHPi2d2xmsvswvbuAS73eJjOzDItOTpEFjRNL3NdG/b82s2QvGTwZ+Lu3PgvY4Zyr9a6f+3Yb9WQRfR9LiCaE/70XrzEunHP/3drxaGk/MzvTzDK9f3vHE03Wn+m6yEVEEkMJlohIJ3DObSDa83Ad0eRoA9FkJfZz90GiE1FsAVKBHzdTT4W3/lFgJ9Ev5M/EbH8Xb+ILoAx4nV09SecTTdA+8fZ9jN2HKDbn18AhXl3PAU80bDCzWUQnqbjMW/UT4BAzO8c59ynRL9C3E+2FOwU4xTlX30Z7iXI50RhLgXOApxo2OOeWAN8D7iD6vq1m9wk5hgJvtVL3Fm+/L4kOi7vUObfK2/Z94AYzqwCuJ3pcW/MA0SGGm4gex8VtvbBu5HKicZcCNwPfc3G+15aISHek+2CJiCSAmS0EHnLO3Z3oWKT9vFkRPwAmepN5NN1+NNHjWtB0m4iI9A6BRAcgIiLSU3g9cmPaLCgiIr2WhgiKiPQyZjavhQkL5rW9t/REZjaslYkqhiU6PhGRfYmGCIqIiIiIiMSJerBERERERETipFtdg5Wbm+sKCwsTHYaIiIiIiEirli5dut05l9d0fbdKsAoLC1myZEmiwxAREREREWmVma1rbr2GCIqIiIiIiMSJEiwREREREZE4UYIlItIK5xyabVVERETaq1tdg9WcYDDIxo0bqa2tTXQo0sOkpqZSUFBAUlJSokORHuy5R/5M4LPnmPKTx8nJSk10OCIiItLNdfsEa+PGjWRlZVFYWIiZJToc6SGcc5SUlLBx40ZGjBiR6HCkBzv5058B8K8lb3P8McckOBoRERHp7rr9EMHa2lpycnKUXMleMTNycnLU8ykdVuWivVa+z55PcCQiIiLSE3T7BAtQciVfif7dSEfVVpWTRh0AGTtXJjgaERER6Ql6RIIlIpIIVVtX47PoBBc5dRsSHI2IiIj0BEqw2sHMuOqqqxqXb7nlFubOnZu4gGIsXryYww47jEmTJjFmzJjGuBYuXMi///3vr1zvunXrOOSQQ5g0aRLjxo1j3rx5cYpYpOeoqSwHYL2vgILIZmrqQgmOSERERLo7JVjtkJKSwhNPPMH27dvjWq9zjkgk0qE6LrjgAu68806WL1/ORx99xOzZs4GOJ1iDBg3i7bffZvny5bzzzjv89re/5csvv+xQrCI9TXV1FQDbM0eRbnV8uWFNgiMSERGR7k4JVjsEAgEuueQSbr311j22FRcXc8YZZzBlyhSmTJnCW2+9BcDcuXO55ZZbGsuNHz+eoqIiioqKGD16NOeffz7jx49nw4YNXHPNNYwfP54JEyawYMECIJogHX300Zx55pkceOCBnHPOOc3ei2fbtm0MGjQIAL/fz9ixYykqKmLevHnceuutTJo0iTfffLPVOM877zwOP/xwDjjgAO666y4AkpOTSUlJAaCurq7FRPC2225j7NixTJw4kbPOOguAHTt2cNpppzFx4kSmTZvGihUrGtu64IILmDFjBsOHD+eJJ57g2muvZcKECcycOZNgMAjADTfcwJQpUxg/fjyXXHLJHq87EolQWFhIaWlp47oDDjiArVu3tnYYRfZaXXUFAC5vDAA7Nq1OZDgiIiLSA3R4mnYzGwo8AOQDDrjTOfcHM5sLfA8o9ope55zr0DRcv372Yz75srwjVexh7OBsfnXKuDbL/eAHP2DixIlce+21u62//PLLufLKK5k+fTrr16/nhBNOYOXK1i+G//zzz7n//vuZNm0ajz/+OMuXL+eDDz5g+/btTJkyhSOPPBKA999/n48//pjBgwdzxBFH8NZbbzF9+vTd6rryyisZPXo0Rx99NDNnzuSCCy6gsLCQSy+9lMzMTK6++moAvv3tb7cY54oVK1i8eDFVVVUcfPDBnHTSSQwePJgNGzZw0kknsXr1am6++WYGDx68x2v57W9/y9q1a0lJSWlMeH71q19x8MEH89RTT/Hqq69y/vnns3z5cgDWrFnDa6+9xieffMLhhx/O448/zk033cTpp5/Oc889x2mnncYPf/hDrr/+egDOO+88/vGPf3DKKac0tunz+Zg1axZPPvkkF110Ee+88w7Dhw8nPz+/zeMosjeCtdUApA8aDWugpmR9giMSERGR7i4ePVgh4Crn3FhgGvADMxvrbbvVOTfJe/ToOY6zs7M5//zzue2223Zb//LLL/PDH/6QSZMmceqpp1JeXk5lZWWrdQ0fPpxp06YBsGjRIs4++2z8fj/5+fkcddRRvPfeewBMnTqVgoICfD4fkyZNoqioaI+6rr/+epYsWcLxxx/P3/72N2bOnNlsm63FOWvWLNLS0sjNzeWYY47h3XffBWDo0KGsWLGC1atXc//99zfbQzRx4kTOOeccHnroIQKBQONrOu+88wA49thjKSkpobw8mhifeOKJJCUlMWHCBMLhcGO8EyZMaHx9r732GocddhgTJkzg1Vdf5eOPP96j3Tlz5jT29j3yyCPMmTOn1fdc5KuI1EeHCGYOifZghUs3JjIcERER6QE63IPlnNsMbPaeV5jZSmBIR+ttTnt6mjrTFVdcwSGHHMJFF13UuC4SibB48WJSU1N3KxsIBHYbVhd7P6aMjIx2tdcwRA+iw/9CoeYvsB85ciSXXXYZ3/ve98jLy6OkpGSPMi3FCXtOZ950efDgwYwfP54333yTM888c7dtzz33HG+88QbPPvssN954Ix9++GG7XpPP5yMpKamxLZ/PRygUora2lu9///ssWbKEoUOHMnfu3GbvZXX44YezevVqiouLeeqpp/jFL37RarsiX0mwBoCk7IFUkYa/YnOCAxIREZHuLq7XYJlZIXAw8I636odmtsLM7jWzfi3sc4mZLTGzJcXFxc0V6Tb69+/P7NmzueeeexrXHX/88dx+++2Nyw1D4QoLC1m2bBkAy5YtY+3atc3WOWPGDBYsWEA4HKa4uJg33niDqVOntjum5557rvEapc8//xy/30/fvn3JysqioqKizTgBnn76aWpraykpKWHhwoVMmTKFjRs3UlMT/XK5c+dOFi1axOjRo3drOxKJsGHDBo455hj+93//l7KyMiorK5kxYwYPP/wwEL2WLDc39/+3d+fxVZZ33sc/v/ssOdkDIRBC2FRAlrBIWCpuoFan1Vq3YqfaIk/rOF0cnZk+3UZr7Wter2k709m0+rTV2qpFrX1UHjtjtVpnZFq1IC4ooIjsYc0ecvbr+eOchBASCOQkJ8v3/SKv3Nt13b+Tmzs5v3Nd93VRVFTUo9fTlkyNGjWK5uZmnnjiiS6PMzOuvPJK/vqv/5rp06dTWlrao/pFTkpbgpWbT62/jFCrEiwRERE5vowlWGZWAPwauNU51wjcC5wOzCXVwvVPXZVzzv3YOVftnKsuKyvLVDh95m/+5m+OGk3w3/7t31i7di2zZ89mxowZ7cOZX3311dTW1jJz5kzuvvtupk6d2mV9V155JbNnz2bOnDksW7aM73//+5SXl/c4noceeohp06Yxd+5cbrjhBh555BF8Ph+XX345Tz75ZPsgF93FCalufkuXLmXx4sXcfvvtVFRUsHHjRhYtWsScOXM4//zz+du//VuqqqoA+PznP8/atWtJJBJcf/31VFVVMW/ePG655RZKSkq48847WbduHbNnz+brX/86P//5z3v8ekpKSvjCF77ArFmzuOSSS1iwYEH7vvvuu++ouJcvX87DDz+s7oHSd+LpBCuUR3NwDIXRgf0hkIiIiGSfdTUy3UlXYhYAngF+65z7YRf7JwHPOOdmHa+e6upqt3bt2qO2bdy4kenTp/c6RunanXfeedRgGEON/v9Ib6y7/6+YteNhuH0/G//P56jY/zJld247phutiIiIDD9mts45V915e69bsCz1TuN+YGPH5MrMxnY47EpgQ2/PJSLSnyzeSpggQZ+HK6hgFA3UNbVkOywREREZwHo9yAWwBLgBeNvM3khv+ybwaTObS2ro9m3AX2TgXJJhd955Z7ZDEBmwvHiYMDkUm+EfMR7PHAdrtjGy6LiN8SIiIjKMZWIUwTVAV/1lBvWw7CIiXqKVCEEA8somANC4bztMU4IlIiIiXcvoKIIiIkOJLxEmYqmpBYrGTAKg9aAmGxYREZHuKcESEemGv0OCNXLsJACS9buzGJGIiIgMdEqwRES64UuEiaUTLF+oiMOEsOa9WY5KREREBjIlWD301FNPYWZs2rSp22O2bdvGrFmZezZj8+bNXHDBBcydO5fp06dz0003AalJgv/jP079EbdwOMzChQuZM2cOM2fO5Nvf/namQhYZUgLJMDEvlWBhRp2vlJzWfdkNSkRERAY0JVg9tGrVKs455xxWrVrV5f54PN7rcyQSiaPWb7nlFm677TbeeOMNNm7cyFe+8hWg9wlWTk4OL774Im+++SZvvPEGzz77LK+88kqvYhcZinzJKHEv2L7eFCijILo/ixGJiIjIQKcEqweam5tZs2YN999/P48++mj79pdeeolzzz2XT3ziE8yYMQNIJVqf+cxnmD59Otdccw2HDx8G4IUXXmDevHlUVVWxcuVKIpEIAJMmTeJrX/saZ511Fr/61a+OOm9NTQ2VlZXt61VVVUSjUe644w4ee+wx5s6dy2OPPUZLSwsrV65k4cKFzJs3j6effhqABx98kCuuuIILLriAKVOm8J3vfAcAM6OgoACAWCxGLBbrcuLUX/3qV8yaNYs5c+Zw3nnnAanWrxtvvJGqqirmzZvH73//+/ZzffKTn+Tiiy9m0qRJ3H333fzwhz9k3rx5LF68mNraWgB+8pOfsGDBAubMmcPVV1/d/vPpaPHixbzzzjvt6xdccAGdJ6AW6Q8+Fydpgfb1SO4YShKHshiRiIiIDHSZmAer//zn12Hv25mts7wK/uwfjnvI008/zaWXXsrUqVMpLS1l3bp1zJ8/H4DXX3+dDRs2MHnyZLZt28bmzZu5//77WbJkCStXruRHP/oRX/7yl1mxYgUvvPACU6dO5bOf/Sz33nsvt956KwClpaW8/vrrx5z3tttuY9myZZx99tl89KMf5cYbb6SkpIS77rqLtWvXcvfddwPwzW9+k2XLlvHAAw9QX1/PwoULueiiiwB47bXX2LBhA3l5eSxYsICPf/zjVFdXk0gkmD9/Plu2bOFLX/oSixYtOub8d911F7/97W8ZN24c9fX1ANxzzz2YGW+//TabNm3iox/9KO+99x4AGzZsYP369YTDYc444wy+973vsX79em677TZ+8YtfcOutt3LVVVfxhS98AYC/+7u/4/77729vmWuzfPlyHn/8cb7zne9QU1NDTU0N1dXHTJIt0ud8ySiJwJEWrERBOWW1tbSEY+SHAscpKSIiIsOVWrB6YNWqVVx33XUAXHfddUd1E1y4cCGTJ09uXx8/fjxLliwB4Prrr2fNmjVs3ryZyZMnM3XqVAA+97nP8d///d/tZZYvX97leW+88UY2btzItddey0svvcTixYvbW746eu655/iHf/gH5s6dywUXXEA4HGbHjtRQ0hdffDGlpaXk5uZy1VVXsWbNGgB8Ph9vvPEGu3btak/COluyZAkrVqzgJz/5SXv3xTVr1nD99dcDcOaZZzJx4sT2BGvp0qUUFhZSVlZGcXExl19+OZBqedu2bRuQSsLOPfdcqqqqeOSRR45qqWrzqU99iieeeAKAxx9/nGuuuabLn49IX/MTx3lHEilfcQVBS7B//54sRiUiIiID2eBqwTpBS1NfqK2t5cUXX+Ttt9/GzEgkEpgZP/jBDwDIz88/6vjOXe266nrXWec6OqqoqGDlypWsXLmSWbNmdZkIOef49a9/zbRp047a/uqrr54wnpKSEpYuXcqzzz57zAAd9913H6+++iq/+c1vmD9/PuvWrTvu68jJyWlf9jyvfd3zvPZn1FasWMFTTz3FnDlzePDBB3nppZeOqWfcuHGUlpby1ltv8dhjj3Hfffcd97wifcXvYiR9R1qwckamuuw27N0OEyZmKywREREZwNSCdQJPPPEEN9xwA9u3b2fbtm3s3LmTyZMn8/LLL3d5/I4dO/jjH/8IwC9/+UvOOeccpk2bxrZt29iyZQsADz30EOeff/4Jz/3ss88Si8UA2Lt3L4cOHWLcuHEUFhbS1NTUftwll1zCv//7v+OcA2D9+vXt+55//nlqa2tpbW3lqaeeYsmSJRw4cKC9y19rayvPP/88Z5555jHn/+CDD1i0aBF33XUXZWVl7Ny5k3PPPZdHHnkEgPfee48dO3Yck9gdT1NTE2PHjiUWi7XX05Xly5fz/e9/n4aGBmbPnt3j+kUyye9iR7VgFZaNB+DwoZ3ZCklEREQGOCVYJ7Bq1SquvPLKo7ZdffXV3Y4mOG3aNO655x6mT59OXV0df/mXf0koFOJnP/sZ1157LVVVVXiex80333zCcz/33HPtg0xccskl/OAHP6C8vJylS5fy7rvvtg9ycfvttxOLxZg9ezYzZ87k9ttvb69j4cKFXH311cyePZurr76a6upqampqWLp0KbNnz2bBggVcfPHFXHbZZQDccccdrF69GoCvfvWrVFVVMWvWLM4++2zmzJnDF7/4RZLJJFVVVSxfvpwHH3zwqJarE/nud7/LokWLWLJkyVFJ3erVq7njjjva16+55hoeffRRPvWpT/W4bpFMCxAH35H/3yPLU61WkTpNNiwiIiJds7ZWj4GgurradR4tbuPGjUyfPj1LEQ1uDz744FGDYQxH+v8jp8w5+E4Jvxt9Ixd98V9S2xIxkt8t47/Kb2Tpzf+c1fBEREQku8xsnXPumJHY1IIlItKVRDT13ddhtEBfgHorxt+yNzsxiYiIyIA3uAa5kJOyYsUKVqxYke0wRAaneHrETv/RXWAb/KPIDWuyYREREenaoGjBGkjdGGXw0P8b6ZVEaoAZ6zCKIEBrzmiK4gezEZGIiIgMAgM+wQqFQhw6dEhvluWkOOc4dOgQoVAo26HIIBWPtqYWOrVgxfLHUJo8RDyRzEJUIiIiMtD1eRdBM7sU+FfAB/zUOXdSk1lVVlaya9cuDhw40CfxydAVCoWorKzMdhgySMViEfyA5z+6BYvCCkr3NbG3vony0uKsxCYiIiIDV58mWGbmA+4BLgZ2AX8ys9XOuXd7WkcgEGDy5Ml9FaKISJei4TC5gHVqwQqMqACgdt92yks1R5uIiIgcra+7CC4EtjjntjrnosCjwBV9fE4RkV6Lx8IAeIGjW7DySlOTDTfu12TDIiIicqy+TrDGAR3fhexKb2tnZjeZ2VozW6tugCIyUMSjqVEEvU4tWMVjJgAQPqQES0RERI6V9UEunHM/ds5VO+eqy8rKsh2OiAgAsXSC5QsePVBK8eiJACQaavo9JhERERn4+jrB2g2M77Bemd4mIjKgtY0i2LkFy8sbQYQAXrMSLBERETlWXydYfwKmmNlkMwsC1wGr+/icIiK9loimnsHyB49OsDCjzldKsHVfFqISERGRga5PRxF0zsXN7MvAb0kN0/6Ac+6dvjyniEgmxGNRAPydWrAAmoOjKYjomVERERE5Vp/Pg+Wc+w/gP/r6PCIimZRIjyLozzl2supw7hhKDr+Fcw4z6+/QREREZADL+iAXIiIDUSKebsEKHJtgJQoqKKeWxtZof4clIiIiA5wSLBGRLiTTLViBLlqwrGQ8ORbj4L5d/R2WiIiIDHBKsEREuuBiqWHaA50HuQBCo1JDtTfWfNivMYmIiMjApwRLRKQL7S1Yobxj9hWNmQxA68Ht/RqTiIiIDHxKsEREuhJPJVjBUP4xu0ZUnAZAom5Hv4YkIiIiA58SLBGRrsRaSTgj2EUXwZyCkbQQwmvUM1giIiJyNCVYIiJdsHiYMEFyAr4udhoHfWMIHa7p/8BERERkQFOCJSLSBYu3EiaI3+t6nqumnDEURvb2c1QiIiIy0CnBEhHpgpcIEyHY7UTCkfwKyhL7cc71c2QiIiIykCnBEhHpghePELVg9wcUVzLCmqitq+u/oERERGTAU4IlItIFLxEmyrEDXLQJlk4C4MDurf0UkYiIiAwGSrBERLrgS4aP24JVOHoSAI37NNmwiIiIHKEES0SkC/5EhJjXfQvWyHGnAxA+sK2fIhIREZHBQAmWiEgXfMkI8eMkWEVl40lguPqd/RiViIiIDHRKsEREuuBPRkh4oe4P8AU4ZKPwN+/pv6BERERkwFOCJSLShUAyQsLXfQsWQENwDAVhTTYsIiIiR/QqwTKzH5jZJjN7y8yeNLOS9PZJZtZqZm+kv+7LSLQiIv0k4CI4/3FasIDWvApK4/s0F5aIiIi0620L1vPALOfcbOA94Bsd9n3gnJub/rq5l+cREelXQRcleYIEK1k8nnIO0dDS2k9RiYiIyEDXqwTLOfeccy6eXn0FqOx9SCIi2ZdDBPy5xz3GP3Iifkuyb5eGahcREZGUTD6DtRL4zw7rk81svZn9l5md210hM7vJzNaa2doDBw5kMBwRkVOUTBAggQWO34JVMOY0AOprNNmwiIiIpPhPdICZ/Q4o72LXt5xzT6eP+RYQBx5J76sBJjjnDpnZfOApM5vpnGvsXIlz7sfAjwGqq6v1IIOIZF0i3IQPcIGC4x43ouIMAMIH1IIlIiIiKSdMsJxzFx1vv5mtAC4DLnTpJ72dcxEgkl5eZ2YfAFOBtb0NWESkr7U21VEAECo67nFF5ZMASNbv6POYREREZHDo7SiClwL/G/iEc+5wh+1lZuZLL58GTAHUh0ZEBoVIc21q4QQJlgVyOWQjCDRpsmERERFJOWEL1gncDeQAz5sZwCvpEQPPA+4ysxiQBG52ztX28lwiIv0i0lwPgJdbcsJj64Ll5LdqLiwRERFJ6VWC5Zw7o5vtvwZ+3Zu6RUSyJdxcB0Awv+SEx7bmVlBav6GPIxIREZHBIpOjCIqIDAmRplSClVc08oTHxovGU+4O0tga6euwREREZBBQgiUi0knscCrByu9BguUfOZGgJdi3e1sfRyUiIiKDgRIsEZFOEocbACgoLj3hsfmjJwNQt+eDPo1JREREBgclWCIinbjWBlpdkOLC48+DBTByXOpR1Nb9mgtLRERElGCJiBwr0kgzeQT9J/4VWVyeasFK1m3v66hERERkEFCCJSLSSSBSS5NX2KNjLaeAOivG17S7j6MSERGRwUAJlohIJ7mRgzT6T/z8VZu6wBgKWpVgiYiIiBIsEZFjFMYOcjinrMfHt+RWMCK2rw8jEhERkcFCCZaISEfJJCNdHdG8MT0ukigaz1h3gOZwrA8DExERkcFACZaISAfRpoMEiENBeY/L+EZMJGQx9u7Z2YeRiYiIyGCgBEtEpIPavanRAP3FFT0uk5eeC6u+ZkufxCQiIiKDhxIsEZEOavdsBaBozIQelympOA2Aw/u29klMIiIiMngowRIR6aB17yYARk+e2eMyIytOByBet6NPYhIREZHBQwmWiEgHdmgLta6Q0WVje14mVEwDhfgb9QyWiIjIcKcES0Skg/ymD6nxV+J5dlLlav2jKQjX9FFUIiIiMlgowRIRaeMcYyLbaCw47aSLNoXGUhLVXFgiIiLDXa8SLDO708x2m9kb6a+Pddj3DTPbYmabzeyS3ocqItK3DuzYTAlNJCvmnXTZaF45o5IHcc71QWQiIiIyWPgzUMc/O+f+seMGM5sBXAfMBCqA35nZVOdcIgPnExHpE3ve/R/KgBFTPnLSZZOFFRTtP0xDQz3FJSMyH5yIiIgMCn3VRfAK4FHnXMQ59yGwBVjYR+cSEcmIxIdraHE5nDaj+qTLBkZUAnAoPY+WiIiIDE+ZSLC+bGZvmdkDZtb2se04oONwWrvS245hZjeZ2VozW3vgwIEMhCMicgqcY9yBNbybexahUOiki+eWjgegeb8SLBERkeHshAmWmf3OzDZ08XUFcC9wOjAXqAH+6WQDcM792DlX7ZyrLisrO9niIiIZceDDtxjj9nN44rJTKl80eiIA4UMaql1ERGQ4O+EzWM65i3pSkZn9BHgmvbobGN9hd2V6m4jIgLTrtacpA8Yt+MQplR85NpVgJRr0q05ERGQ46+0ogh1n4rwS2JBeXg1cZ2Y5ZjYZmAK81ptziYj0pdDW37LVm8jpp087tfJ5BdRRiNekubBERESGs96OIvh9M5sLOGAb8BcAzrl3zOxx4F0gDnxJIwiKyEC158ONTI9u4I+TvshpdnITDHdU55USat2bwchERERksOlVguWcu+E4+/4e+Pve1C8i0h92vHg/5c6YtGxlr+ppDI6mILI/Q1GJiIjIYJSJebBERAYtl0wwYddq3smZS9WEKb2qK5w7hgnhzRmKbGALtzRwYF8NjYf2EmvaT7S1mUQ8hueSOM8HwXxy8osI5ZdQMHIsoysmkBMMZjtsERGRPqcES0SGtc2v/ZYz3T52zvzrXteVyB/LyLoG4pFW/Dm5GYguu5xzHKzZQc3GP9K6cz126AOKW3cwJr6HEpqOGsnoRGLOR42NoN5fRkvuWKIFlXgjJpI7ejIjKk5n9PgphHLz++y1dMc5RzQaIdzSTLi1iUhrCy6ZSO9L7XeAOUdqCTzzMM/D8/nxPB+eZ3g+Hz7PB56Hz0stmz/13fM8fD5f+lgP83xgXvrr1LukiojIwKQES0SGteZXH6LZ5TLrwj/vdV1eyTjYBXX7dlA24dQGy8imeDTCh2//D7XvvEio5k+Ma91EGfWUAUln7PdGcTBYyaaiZSSLxhMsHkNuyWgChWWE8goJBIPg+XGJOIlwI63NTUQO1xOt20Oifje+5j3kttYwtvldRjf+F4GaROpJ3bQDjKA2UE5jaCzxnJFYqBgvrwRyirBgLj5fAJ/Ph/k8EklwsTAuHoZ4BBcLk4yFIRbGxQ5jsVa8eCteIowvfhh/Mow/ESaYjBB0reS4CDkuQogoOZYgByjOws886YwkhjMjiYej4/fUcuftKQ7rsGY4SCeA1u36ke0dy7Xtg1QiebKO1JY5J1NnT49tf2U9rtq6WBqYopbD4U8/ReXUudkORURQgiUiw1i4pZHptS/y9ogLWVxQ1Ov6ckam2nTqB1GCteeDDex65deEdr7M6a1vM8XCAGy3SrYVL+KD8tkUTl5A5YyFlBeNoDxD503G4+zfu51Du9+nee9W4oe24zXuIO/wHsY1v0tBUxMF7jCenfwb/sMuh7AFiZBDxEJEvRBxL0TEV0hLsIykP0TCn4fz5+ICuVggDwK5eDl5+AJ54POl31Bb+p+l32GntjqXxCUTuGQS55KQTJJ0SVwyCS61nbZ9besutd52PC6R/p5MN5W1HZ/+SiaAJOaS6SQoieccHskjCYUdSZPaYnUYZm1Jhx2J2dpe0ZHj6HyscVSZNsdvZOv59TmV5O2EdXZz/mO2djp3l6XSx3Te5zotHPeM3RzT+aX35CfhThBz224jyXl1T/Leyw8rwRIZIJRgiciw9c6LjzDfwuQv7Ha8npNSOHoCAC0Ht2ekvr6QiMd5//UXaFi/mop9v2d8cjcVwHavkg1lH8N32rlMPOtiJpaPZ2IfxuH5/YyuPJ3Rlad3e0w8Hqe+oY5oSz3xSAuxWJxYPIFLxvF7hi+Ym/4K4Q/mkpObT15uLnl+H3l9GLvIQLPp7zdSuvtFnHOYup2KZJ0SLBEZtoLv/Io9jGbmoo9mpL7SsZMAiNXuykh9meKSST5442UOvfIwZ+x/jjOpJ+p8bArNYeekG5iw+ComTp7WpwnVqfD7/YwsLYPSsmyHIjKgtZzxCeZv/B4b17/M9LPOy3Y4IsOeEiwRGZYO1mxnRuvrvFq5ggqfLyN1jhhRSrMLQdOejNTXWzUfvM3O//o5FTuf4QxXwwTnZ0P+R9g645NMPedKZpeUZjtEEcmAaZfeTMu7/0rTS3eDEiyRrFOCJSLD0tYXH2ShOcadf2PG6jTP46BXir8le5MNhw83s+F3D5H/9kNMj73DGGe8kzOHXVP/kunL/pyzRqo1SGSoKSgeyZ/GXMacfU+xe/sHjJvYfddbEel7SrCOY8+Hm9j5p/9H1Z99nrzCEdkOR0QyqGzrk2zyTePMqXMyWm9joIz88L6M1tkTOzavp+aFezlz/zNU08IuG8sfJt/CpGU3UjX+tH6PR0T61+TLv4b99Cl2PXk74279ZbbDERnWlGAdx47/WcXiLf9Cyzv/yNrCj+Cd+TFO+8gnKSkdne3QRKQX9mx9l8mJD1kz5asZr7s1NIbyprUZr7crkXALG373MLlvPcSM6NuUOx9vF55LcNH/YubZH6cyQ10fRWTgGzV+Kq+OvZbqmkd5780/MHXO2dkOSWTYUoJ1HIv+/NtsWncezX/8GZNqX2bU2t8T/9PXeN9/OnWjzsI38SNUnLmQMROm4fmH1o8ymXTEk45E0hFPJknEY8SiEZKxCIlYmGS8bTlCMh4jmUwCDpd0R4Yidqn5Vlz7EMQOXMf1ZHryTjoMUQzJk4726BGTjsx10t1ISl1vP/5cKieuy3UcRPekz9217mPq5jWfwmtw3cTao7llejnscm9K9+bUsY2/oQKYuPDyXkTQtXjBWEY21OEScczXN78Xdr3/JrtfuJepe59hPk3ssnL+MPkWplx6E/PHnMz0vyIylMxYfhcN//obfKu/SHjqHwjlajzNjhKJJLFYhGiklXi4hXjkMPFImHg8RiweJxGPkYhHicfjJBNxLJnAJWPgklgyDsl4egqGRPq9C+0zzjnn2v8uOdwxf6M6/6m1jn9j26ZROGrqhY6FUke3TcPQtr3t73Tncu3rHct3mMYhVZ8d837pSDnvqBhd+ywObeU61tPhfUTH6SA6nt/atliHcx1bvvPMcx1/ZslgIWNPq2JEfpDBYGhlBRlmnseZCy6EBReSSCTYuP4lmt78Dfn7XqNq75Pk7nsMXoOIC7DbN466vEnEC8ZCQTm+4rGESsoJ5BYSzCsmmFdEML+Q3JwcQsEA5vnB8+FI/ScmGcMl40QjUWLRCLF0QhONxYhHI8RjYRLRCPFomGQ8TDwaIRlPJzix1LKLR3CxKC4RhXgEEhEsEYNEFC8RwZIxvGQ0/RXDl4zhd1F8Lo7fxQi4GAFiBIgTIEYOcQLEySOG7xTmohEZyPZYOZWnV2W8Xisah39PkkP7d1M6NnPj8kXDrWx44WFCb/6CGdG3GON8vFlwDoFFK6lacrlaq0SEwhGjefOc7zNnzc288tMvsuhLD2Cel+2wesc5wocbaTxUQ3PtfsKNB2ltbiB6uJ5kayMWacSLNuOLNeGLNROMNxNMtBBIhgkkIwRdhICLkUOUHKKEzBHK9muSk/ZSYg5br32Uy2ZXZDuUHlGC1UM+n4/p1RdC9YUARCKtvP/uaxza+gZu/ybyGrcwpmUzpU1/INeip3yeQKYCBuJ4xPETI0DMAsQtQKLtywuSCARIekGSXj7OCxLzBYl4QZwXIOkL4nypZefLwfmCkF7GHwR/DvgC4AthPj+e55H6hMQwz8OlP+XADDMv/TGEl/7kxeu0PVXGzNo/PTmmUaXb/K7rHd1PaHni7Ud9qnS8c3RXVzfn7vb4HrY/nbj+4xY6bl3HNmL1X0Ldmxlbjr1WPVcyYUafvPEoKZ8Im2DX9i0ZSbDaWqum7X2Gs2hit43hD5O+zJRL/oLqsRMyELGIDCVzLvo0r2x5mcV7H+GVB0pYtPKHAy7JcskkzfX7qa3ZTtOBHYQP7SLRWEOy5RCBSC050Try4g0UJuopdk2ELEYI6O4BjRYXosXyaLU8wr48Wr0CmoKlJP054AtBIITzh8Cf/u7LgUAuzh/C/Dl4gSA+nx+fL4DP78fzBfD8fszz4Sz1gbj5AmAe5vnbf56p9y3gpVt02lt50stt72lcp0msO/4Zt3S/HZdsO8YdfZBr29bWKpZuNksf51zyqHO0/VVsqy/dnoa1lW/rOdTpPO0TW7cHlzxS3oG59jN2iMNxJI5O9dEWz5F4Xdv+juvdTNLdeaLtgtBIZkwayWChBOsU5eTkMmXe+UyZd/5R210ySUNjHfV7t9Nct494axPJcCPJcBPJaEu6+TmOuSRGEs8lAEian6T5MV8Azx/A8/lT3/1BfP4AXiCE5w/hCwRTk2oGQviDOfiDIYI5IQI5IYLpZc+fA/4c/J4PP+iTGpF+VDF5BrwE9dvfgsUXnlIdLY21bPr9I+S++zgzIqnWqrcKluBfcCOzzr2CcWqtEpHjWPiFf+e1u+tZvOtnvP7DrUy84R5K+6n7cDwapm7vDur3b6flwE5i9btxjXsItOwlN7yPothBSpO1FFqMwk5lG8mj0Ypp8RXTFBzNoZwzieeMgLxSLL+UQGEZOUWl5BeOoKC4lILiEeTmF5Pv85PfL69OpGeUYGWYeR7FJaUUa34ZkWGpZPxMGsknZ++6kyoXi4bZvOZJYusfY3rjGuZbLPVsVbq1ar5aq0SkhzyfjwVfeZg/PnIn1VvuJvyjBbxacTVjz/0sE6YvPM5zwt1zySQtDQeOtDrV7ibesAevqYac1r0URA5QkjjISBopAzpOCBF2AQ56pTT4R7E7fybb8stxhRUERowjb9R4ikdPYFT5BIpycynK2E9BJHuUYImIZJLnsS13JmPr1+OSyeN2zQm3NLD5f54m+s5vmNKwhlk0U0shr4+6nOJF1zN9/lIqfQOra4+IDA7meXzkhrvYvvkqDq6+g/l7fon/8Yc5RAk1uVNoyZ+Alz8Sl1MEvgCeSxCPx3HRFnyRBvzRBrxIA6FoPcWJg5Qm6yiwOAWdzlNLIXXeKBqCo9lfNJNEwVi84gpCIyopGD2BEWMmMrJ0NJU+j8qs/CRE+l+vEiwzewyYll4tAeqdc3PNbBKwEdic3veKc+7m3pxLRGSwCJ92CbPf+S6b//Qs0xZ9rH27SybYuWkde958nrwdL3Hm4deZY3EayOf9orPxZl/LjHOu4OyQOvaKSGZMnDaXiV9dzcE929n8h6cI7niZ4uatTGh9h6KDh7ss0+xyabJ8WnxFRPxF7Mqby4d5Y0gWjiVYUkHuyEpKxkyktLySkXn5DJ4nY0T6h3V+iOyUKzL7J6DBOXdXOsF6xjk362TqqK6udmvX9s/8MSIifaWluZHD/zgbA3ZUXkY8kSC3/n3Gt26ihCYAdls520edT+7sy5m56BKCwcEx9KyIDB2t4Sjhlnri8RiYj1BOkLy8AnwB/T4S6QkzW+ecq+68PSNdBC01TMqngGWZqE9EZDDLLyhixydXYau/wsydq3AYO32VbC45h+SEc5h41sWMmzSNcdkOVESGtdxQkNxQd2PzicipytQzWOcC+5xz73fYNtnM1gONwN85517uqqCZ3QTcBDBhgh7iFpGhYfrcj8DctRyOxsnxeUzRs1QiIiLDwgkTLDP7HVDexa5vOeeeTi9/GljVYV8NMME5d8jM5gNPmdlM51xj50qccz8GfgypLoIn+wJERAayvKDGEhIRERlOTviX3zl30fH2m5kfuAqY36FMBIikl9eZ2QfAVEAPWImIiIiIyJCViT4rFwGbnHO72jaYWZmZ+dLLpwFTgK0ZOJeIiIiIiMiAlYm+K9dxdPdAgPOAu8wsBiSBm51ztRk4l4iIiIiIyICVsWHaM8HMDgDbsx1HJ6OAg9kOQvqNrvfwoWs9fOhaDy+63sOHrvXwMhCv90TnXFnnjQMqwRqIzGxtV+Pby9Ck6z186FoPH7rWw4uu9/Chaz28DKbrrXGDRUREREREMkQJloiIiIiISIYowTqxH2c7AOlXut7Dh6718KFrPbzoeg8futbDy6C53noGS0REREREJEPUgiUiIiIiIpIhSrBEREREREQyRAnWcZjZpWa22cy2mNnXsx2PZI6ZjTez35vZu2b2jpn9VXr7SDN73szeT38fke1YJTPMzGdm683smfT6ZDN7NX1/P2ZmwWzHKJlhZiVm9oSZbTKzjWb2Ed3bQ5OZ3Zb+Hb7BzFaZWUj39tBhZg+Y2X4z29BhW5f3sqX8W/q6v2VmZ2UvcjlZ3VzrH6R/j79lZk+aWUmHfd9IX+vNZnZJVoI+DiVY3TAzH3AP8GfADODTZjYju1FJBsWBv3HOzQAWA19KX9+vAy8456YAL6TXZWj4K2Bjh/XvAf/snDsDqAP+V1aikr7wr8CzzrkzgTmkrrvu7SHGzMYBtwDVzrlZgA+4Dt3bQ8mDwKWdtnV3L/8ZMCX9dRNwbz/FKJnxIMde6+eBWc652cB7wDcA0u/XrgNmpsv8KP2+fcBQgtW9hcAW59xW51wUeBS4IssxSYY452qcc6+nl5tIvQEbR+oa/zx92M+BT2YlQMkoM6sEPg78NL1uwDLgifQhutZDhJkVA+cB9wM456LOuXp0bw9VfiDXzPxAHlCD7u0hwzn330Btp83d3ctXAL9wKa8AJWY2tl8ClV7r6lo7555zzsXTq68AlenlK4BHnXMR59yHwBZS79sHDCVY3RsH7Oywviu9TYYYM5sEzANeBcY452rSu/YCY7IVl2TUvwD/G0im10uB+g6/uHV/Dx2TgQPAz9JdQn9qZvno3h5ynHO7gX8EdpBKrBqAdejeHuq6u5f1vm1oWwn8Z3p5wF9rJVgyrJlZAfBr4FbnXGPHfS41h4HmMRjkzOwyYL9zbl22Y5F+4QfOAu51zs0DWujUHVD39tCQfvbmClJJdQWQz7FdjGQI0708PJjZt0g92vFItmPpKSVY3dsNjO+wXpneJkOEmQVIJVePOOf+b3rzvrYuBenv+7MVn2TMEuATZraNVFffZaSe0SlJdysC3d9DyS5gl3Pu1fT6E6QSLt3bQ89FwIfOuQPOuRjwf0nd77q3h7bu7mW9bxuCzGwFcBnwGXdk8t4Bf62VYHXvT8CU9GhEQVIP063OckySIelncO4HNjrnfthh12rgc+nlzwFP93dsklnOuW845yqdc5NI3ccvOuc+A/weuCZ9mK71EOGc2wvsNLNp6U0XAu+ie3so2gEsNrO89O/0tmute3to6+5eXg18Nj2a4GKgoUNXQhmEzOxSUt37P+GcO9xh12rgOjPLMbPJpAY2eS0bMXbHjiSD0pmZfYzUsxs+4AHn3N9nNyLJFDM7B3gZeJsjz+V8k9RzWI8DE4DtwKecc50fsJVByswuAP7WOXeZmZ1GqkVrJLAeuN45F8lieJIhZjaX1IAmQWArcCOpDxR1bw8xZvYdYDmp7kPrgc+TehZD9/YQYGargAuAUcA+4NvAU3RxL6eT7LtJdRM9DNzonFubhbDlFHRzrb8B5ACH0oe94py7OX38t0g9lxUn9ZjHf3auM5uUYImIiIiIiGSIugiKiIiIiIhkiBIsERERERGRDFGCJSIiIiIikiFKsERERERERDJECZaIiIiIiEiGKMESERERERHJECVYIiIiIiIiGfL/AU4Iwjy29WWRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADjd0lEQVR4nOzdd3hc1bXw4d+apt4tuUiy5W7ZllywDcQ2LfReEgwhlBDChUAChJAQkhDCveTmI9yQUBJDQoAAMaYFSKihmN5s417ARbZly7J619T9/XGO5JGsZjTSSNZ6n2eemdP2WTNHM5o1e591xBiDUkoppZRSSqnec0Q7AKWUUkoppZQ6VGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoNMCKSJyJGRFzRjkUNDSKyXkSOiXYcSil1KNAESyml1KAnIotFpN6++UTEHzb9SrTjG+iMMdOMMcsi2aaIPGIfi/qwmzOS+1BKqYFI9ELDSikVWSLiMsYEerF9HrAdcPemnaFKRG4DJhhjvt3Bsl4dm/40mGLtiIg8AhQbY34R7ViUUqo/aQ+WUkpFgIgUichPRWQN0CAiLhE5QkQ+FJFqEVkdPgRLRJaJyP+KyKciUisiL4hIeidtf0dENopInYhsE5H/arf8LBFZZbezVUROtueniMhDIlIiIrtF5H+660EQkfEi8paIVIhIuYg8ISKpYcsqRWS2PT1KRMpanpeInGkPNau2n19+u9fnxyKyRkRqRGSpiMQe/Ct98Do5NkZEJoSt84iI/E/Y9On2a1ptH8PCHu7rGBEpFpFb7NevSEQuClt+moh8bh+rXXYy2LKsZWjod0VkJ/CWPf9pEdlrv27visi0dnH/SUResXuIPhCRESLyBxGpEpFNIjKrh6/R8T15jkoppbqmCZZSSkXOhcBpQCowHHgJ+B8gHfgx8KyIZIatfwlwOTASCAD3dNLuPuB0IBn4DnB3WJIzD/g7cJO936OAInu7R+x2JwCzgBOBK7p5DgL8LzAKyAdygdsAjDFbgZ8Cj4tIPPAw8KgxZpmITAKWANcDmcDLwL9ExBPW9vnAycBYoBC4rMMARBbYiU1ntwXdPIeOtB6b7nqF7ITkb8B/ARnAA8CLIhLTw32NAIYB2cClwIMiMtle1oB13FPteK4WkbPbbX801mt/kj39CjARyAJWAk+0W/984Bf2Pr3AR/Z6w4BngN/3MO4OicjNXR2Pbjb/vp2UrxCR83oTh1JKDRaaYCmlVOTcY4zZZYxpAr4NvGyMedkYEzLG/AdYDpwatv5jxph1xpgG4JfA+R31MBljXjLGbDWWd4DXgYX24u8CfzPG/Mfez25jzCYRGW7v63pjTIMxZh9wN3BBV0/AGLPFbstrjCnD+nJ+dNjyvwBbgE+wEsOf24sWAS/Z2/qBu4A44GvtXp89xphK4F/AzE5ieN8Yk9rF7f2unkMnwo9Nd64EHjDGfGKMCRpjHsVKXI44iP390n4N38FKtM8HMMYsM8astY/VGqyk9Oh2295mH7Mme5u/GWPqjDFerGR3hoikhK3/T2PMCmNMM/BPoNkY83djTBBYipVcf2XGmN92dTy62PQe9ieGvwQeEZH5vYlFKaUGA02wlFIqcnaFPR4DfLPdL/0LsJKSjtbfAbixeh3aEJFTRORjuyegGitxalkvF9jaQSxj7PZKwvb/ANaX3U6JyHARedIeUlgLPN5BTH8BpgP32l/6werx2tGygjEmZD+/7LDt9oY9bgQSu4olwnZ1v0qrMcCN7Y5dLtZz7IkqO2lusaNlWxE5XETetodW1gBXceDr2xqriDhF5LdiDf2sZX/vZPg2pWGPmzqY7s/XuZUxZqUxpsIYEzDGvIzV83ZuNGJRSqn+pAmWUkpFTnjVoF1YPVThv/YnGGN+G7ZObtjj0YAfKA9v0B6W9ixWj9Bwu8fgZayhfC37Gd9BLLuwel2Ghe0/2RgzrYN1w/3Gfh4FxphkrJ64ln0hIonAH4CHgNtk/3lje7ASk5b1xH5+u7vZ3wFEZKG0rTzX/raw+1YO0L6iUyMQHzY9IuzxLuCOdscu3hizpIf7ShORhLDp0VivD8A/gBeBXGNMCrCYsNe3g1i/BZwFHA+kAHn2/Pbb9Bn7fLJOj8dBNGXox7iVUipaNMFSSqm+8ThwhoicZPdCxNoFEHLC1vm2iEy1z2e6HXjGHtYVzgPEAGVAQEROwTqXqsVDwHdE5Osi4hCRbBGZYowpwRpK+H8ikmwvGy8i7YejtZcE1AM1IpKNdW5XuD8Cy40xV2ANfVtsz38KOM2Oww3ciJXgfdjdC9WeMeY9Y0xiF7f3DrbNDqwCvmUfm5NpO0zvL8BVdm+TiEiCWMUpkqC1sMQj3bT/axHx2Mng6cDT9vwkoNIY02yfP/etbtpJwnodK7ASwt8cxHOMCGPMb7o6Hp1tJyLfEJFE+2/vRKxk/cX+i1wppaJDEyyllOoDxphdWD0Pt2AlR7uwkpXwz93HsApR7AVigR920E6dPf8poArrC/mLYcs/xS58AdQA77C/J+kSrARtg73tM7QdotiRXwOz7bZeAp5rWSAiZ2EVqbjanvUjYLaIXGSM2Yz1BfperF64M4AzjDG+bvYXLddhxVgNXAQ837LAGLMc+B5wH9brtoW2BTlygQ+6aHuvvd0erGFxVxljNtnLvg/cLiJ1wK1Yx7Urf8caYrgb6zh+3N0TG0Cuw4q7Gvgd8D0T4WttKaXUQKTXwVJKqSgQkWXA48aYv0Y7FtVzdlXE1UChXcyj/fJjsI5rTvtlSimlhgZXtANQSimlBgu7Ry6/2xWVUkoNWTpEUCmlhhgRWdxJwYLF3W+tBiMRGd1FoYrR0Y5PKaUOJTpEUCmllFJKKaUiRHuwlFJKKaWUUipCBtQ5WMOGDTN5eXnRDkMppZRSSimlurRixYpyY0xm+/kDKsHKy8tj+fLl0Q5DKaWUUkoppbokIjs6mq9DBJVSSimllFIqQjTBUkoppZRSSqkI0QRLKaWUUkoppSJkQJ2D1RG/309xcTHNzc3RDkUNALGxseTk5OB2u6MdijqEPbF0CdTs4sIrbsLhkGiHo5RSSqlBZMAnWMXFxSQlJZGXl4eIftEZyowxVFRUUFxczNixY6MdjjpE1TY0cNHGqwD4bMMZzJ2eH+WIlFJKKTWYDPghgs3NzWRkZGhypRARMjIytDdT9aldn7/Z+rjm48ejGIlSSimlBqMBn2ABmlypVvq3oPpaU+Xu1sdJZSuiGIlSSimlBqNBkWAppVR/CdTuA2BD4tcY27yRQCAY5YiUUkopNZhogtUDIsKNN97YOn3XXXdx2223RS+gMMccc0yXF2c+++yzOeKII9rMu+2228jOzmbmzJlMnz6dF198sa/DVGrQCNaX4TNO/HlHkyXV7CjaGu2QlFJKKTWIaILVAzExMTz33HOUl5dHtF1jDKFQKKJthquurmbFihXU1NSwbdu2NstuuOEGVq1axdNPP83ll1/ep3EoNZg4myqollRSxhQCUFa0NsoRKaWUUmow0QSrB1wuF1deeSV33333AcvKyso477zzmDt3LnPnzuWDDz4ArF6iu+66q3W96dOnU1RURFFREZMnT+aSSy5h+vTp7Nq1i5tuuonp06dTUFDA0qVLAVi2bBnHHHMM3/jGN5gyZQoXXXQRxpgO43vsscdae6M+/fTT1vnPPfccZ5xxBhdccAFPPvlkh9vm5+fjcrnaJI8333wzU6dOpbCwkB//+McAFBUVcdxxx1FYWMjXv/51du7cCcBll13G1VdfzRFHHMG4ceNYtmwZl19+Ofn5+Vx22WWtbV599dXMmTOHadOm8atf/eqAOGpqahgzZkxrotfQ0EBubi5+v7/DuJXqK/H+SmocKQwfPwOA5pKNUY5IKaWUUoPJgC/THu7X/1rPhj21EW1z6qhkfnXGtG7Xu+aaaygsLOQnP/lJm/nXXXcdN9xwAwsWLGDnzp2cdNJJbNzY9ReyL7/8kkcffZQjjjiCZ599llWrVrF69WrKy8uZO3cuRx11FACff/4569evZ9SoUcyfP58PPviABQsWHNBeY2Mjq1at4t133+Xyyy9n3bp1ACxZsoRbb72V4cOHc95553HLLbccsO0nn3yCw+EgMzMTgIqKCv75z3+yadMmRITq6moAfvCDH3DppZdy6aWX8re//Y0f/vCHPP/88wBUVVXx0Ucf8eKLL3LmmWfywQcf8Ne//pW5c+eyatUqZs6cyR133EF6ejrBYJCvf/3rrFmzhsLCwtY4UlJSmDlzJu+88w7HHnss//73vznppJP0eleq3yUEqqlxphKXNop64nFWfBntkJRSSik1iGgPVg8lJydzySWXcM8997SZ/8Ybb3Dttdcyc+ZMzjzzTGpra6mvr++yrTFjxrSeF/X+++9z4YUX4nQ6GT58OEcffTSfffYZAPPmzSMnJweHw8HMmTMpKirqsL0LL7wQgKOOOora2lqqq6spLS3lyy+/ZMGCBUyaNAm3292aeAHcfffdzJw5kx//+McsXbq0tTpfSkoKsbGxfPe73+W5554jPj4egI8++ohvfetbAFx88cW8//77rW2dccYZiAgFBQUMHz6cgoICHA4H06ZNa435qaeeYvbs2cyaNYv169ezYcOGA57HokWLWnvwnnzySRYtWtTl66hUX0gMVtPgTAER9npGk1y/rfuNlFJKKaVsg6oHqyc9TX3p+uuvZ/bs2XznO99pnRcKhfj444+JjY1ts67L5WpzXlP4tZsSEhJ6tL+YmJjWx06nk0Ag0OF67UuXiwhPPfUUVVVVrRfkra2tZcmSJdxxxx2AdQ5Wy/C/9nF/+umnvPnmmzzzzDPcd999vPXWWz2K0+FwtInZ4XAQCATYvn07d911F5999hlpaWlcdtllHV7L6swzz+SWW26hsrKSFStWcNxxx3W5X6X6QkyoGb/L+mGhIWkcI8s/IhQyOBx6iQCllFJKdU97sA5Ceno6559/Pg899FDrvBNPPJF77723dXrVqlUA5OXlsXLlSgBWrlzJ9u3bO2xz4cKFLF26lGAwSFlZGe+++y7z5s07qLhaen3ef/99UlJSSElJYcmSJbz66qut532tWLGi0/OwwtXX11NTU8Opp57K3XffzerVqwH42te+1rr9E088wcKFC3scX21tLQkJCaSkpFBaWsorr7zS4XqJiYnMnTuX6667jtNPPx2n09njfSgVKW7jJeSwfjAJZUwiS6oo2Vca5aiUUkopNVj0OsESkVwReVtENojIehG5zp5/m4jsFpFV9u3U3ocbfTfeeGObghD33HMPy5cvp7CwkKlTp7J48WIAzjvvPCorK5k2bRr33XcfkyZN6rC9c845h8LCQmbMmMFxxx3HnXfeyYgRIw4qptjYWGbNmsVVV13FQw89RFFRETt27GhTnn3s2LGkpKTwySefdNjGqaeeyp49e6irq+P000+nsLCQBQsW8Pvf/x6Ae++9l4cffpjCwkIee+wx/vjHP/Y4vhkzZjBr1iymTJnCt771LebPn9+67NZbb21TJn7RokU8/vjjOjxQRY0HPyGXlWDFZ08FoGy7VhJUSimlVM9IZ5XpetyAyEhgpDFmpYgkASuAs4HzgXpjzF1dbR9uzpw5pv01nTZu3Eh+fn6vYlSHFv2bUH0mFITb03k967uc+P3fs2/7WrIeXcCHBf/N1877YbSjU0oppdQAIiIrjDFz2s/v9TlYxpgSoMR+XCciG4Hs3rarlFL9zt9k3buscwmH5UwiaIRQRcdDfJVSSiml2ovoOVgikgfMAlrGoV0rImtE5G8iktbJNleKyHIRWV5WVhbJcJRS6uAEvNa9Ow4AhzuGUkcWntqi6MWklFJKqUElYgmWiCQCzwLXG2NqgT8D44GZWD1c/9fRdsaYB40xc4wxc1quxaSUUtEQ8jVaD+wEC6AyJoeUpl1RikgppZRSg01EEiwRcWMlV08YY54DMMaUGmOCxpgQ8Bfg4ErjKaVUP/M1WwmWuPdfbqApcTQjAnswYZddUEoppZTqTCSqCArwELDRGPP7sPkjw1Y7B1jXflullBpIfM0NADjc8a3zQunjSJEGKiu0VLtSSimluheJCw3PBy4G1orIKnveLcCFIjITMEAR8F8R2JdSSvUZn9cqcuH07B8iGDt8InwB+3ZsJCNzZGebKqWUUkoBEejBMsa8b4wRY0yhMWamfXvZGHOxMabAnn+mXW1w0Hr++ecRETZt2tTpOkVFRUyfPj1i+7zssst45plnOl1+/fXXk52dTShs6NIjjzxCZmYmM2fOZOrUqfzlL3+JWDxKHer89hBBpye2dV5q9mQAGvZ8EZWYlFJKKTW4RLSK4KFsyZIlLFiwgCVLlnS4PBAI9HofwWCwx+uGQiH++c9/kpubyzvvvNNm2aJFi1i1ahXLli3jlltuobRUhzYp1RMtCZbLs3+I4PAxkwkZIVC+NVphKaWUUmoQ0QSrB+rr63n//fd56KGHePLJJ1vnL1u2jIULF3LmmWcydepUwEq0LrroIvLz8/nGN75BY6P1he3NN99k1qxZFBQUcPnll+P1WuWg8/Ly+OlPf8rs2bN5+umnD9j3G2+8wZw5c5g0aRL//ve/2+x72rRpXH311Z0mfVlZWYwfP54dO3a0zrvnnnuYOnUqhYWFXHDBBQBUVlZy9tlnU1hYyBFHHMGaNWsAuO2227j00ktZuHAhY8aM4bnnnuMnP/kJBQUFnHzyyfj9fgBuv/125s6dy/Tp07nyyitpf/HqUChEXl4e1dXVrfMmTpyoiZ8acPx2FUFnzP4EKzYugVLJwFWj18JSSimlVPcicQ5W/3nlZti7NrJtjiiAU37b5SovvPACJ598MpMmTSIjI4MVK1Zw2GGHAbBy5UrWrVvH2LFjKSoqYvPmzTz00EPMnz+fyy+/nD/96U9ce+21XHbZZbz55ptMmjSJSy65hD//+c9cf/31AGRkZLBy5coO911UVMSnn37K1q1bOfbYY9myZQuxsbEsWbKECy+8kLPOOotbbrkFv9+P2+1us+22bdvYtm0bEyZMaJ3329/+lu3btxMTE9Oa8PzqV79i1qxZPP/887z11ltccsklrFq1CoCtW7fy9ttvs2HDBo488kieffZZ7rzzTs455xxeeuklzj77bK699lpuvfVWAC6++GL+/e9/c8YZZ7Tu0+FwcNZZZ/HPf/6T73znO3zyySeMGTOG4cOH9/gwKdUfgj7rHCxXTFyb+eWeHJIbd0YjJKWUUkoNMtqD1QNLlixp7e254IIL2vQYzZs3j7Fjx7ZO5+bmMn/+fAC+/e1v8/7777N582bGjh3LpEmTALj00kt59913W7dZtGhRp/s+//zzcTgcTJw4kXHjxrFp0yZ8Ph8vv/wyZ599NsnJyRx++OG89tprrdssXbqUmTNncuGFF/LAAw+Qnp7euqywsJCLLrqIxx9/HJfLyq/ff/99Lr74YgCOO+44KioqqK2tBeCUU07B7XZTUFBAMBjk5JNPBqCgoICioiIA3n77bQ4//HAKCgp46623WL9+/QHPY9GiRSxduhSAJ598ssvnrFS0hOwiF57Y+DbzGxJGk+XfE42QlFJKKTXIDK4erG56mvpCZWUlb731FmvXrkVECAaDiAi/+93vAEhISGizvlW1vvPpjrRvo7v2XnvtNaqrqykoKACgsbGRuLg4Tj/9dMBKZu67774O23vppZd49913+de//sUdd9zB2rVd9wjGxFjXA3I4HLjd7tZ4HA4HgUCA5uZmvv/977N8+XJyc3O57bbbaG5uPqCdI488ki1btlBWVsbzzz/PL37xiy73q1Q0BP0tCVbb92QwdSypVS/SVFNBXEpGNEJTSiml1CChPVjdeOaZZ7j44ovZsWMHRUVF7Nq1i7Fjx/Lee+91uP7OnTv56KOPAPjHP/7BggULmDx5MkVFRWzZsgWAxx57jKOPPrpH+3/66acJhUJs3bqVbdu2MXnyZJYsWcJf//pXioqKKCoqYvv27fznP/9pPd+rM6FQiF27dnHsscfy//7f/6Ompob6+noWLlzIE088AVjndg0bNozk5OQexdeSTA0bNoz6+vpOqx6KCOeccw4/+tGPyM/PJyNDv6SqgSfk67gHy51lDbMt3bGx32NSSiml1OCiCVY3lixZwjnnnNNm3nnnnddpYYnJkydz//33k5+fT1VVFVdffTWxsbE8/PDDfPOb36SgoACHw8FVV13Vo/2PHj2aefPmccopp7B48WJCoRCvvvoqp512Wus6CQkJLFiwgH/9618dtnHFFVewfPlygsEg3/72tykoKGDWrFn88Ic/JDU1ldtuu40VK1ZQWFjIzTffzKOPPtrDVwdSU1P53ve+x/Tp0znppJOYO3du67LFixezePHi1ulFixbx+OOP6/BANWAZuwcrJq5tgpUyyirVXrt7c7/HpJRSSqnBRdpXfIumOXPmmOXLl7eZt3HjRvLz86MUkRqI9G9C9ZXVj9zA1O2PUv+TvaQleFrn19TUkHL3aJaP+z5zLvnfKEaolFJKqYFCRFYYY+a0n689WEopZTMBL17cxHmcbeanpKSwlwycVduiFJlSSimlBgtNsJRSyiaBZprxEOM68KOxzD2KhAYt1a6UUkqprg2KBGsgDWNU0aV/C6ovSaAJL54Oq3/WxY9mmG93FKJSSiml1GAy4BOs2NhYKioq9Iu1whhDRUUFsbGx0Q5FHaIk4MUv7g6XBVPySKcGX0N1/wallFJKqUFlwF8HKycnh+LiYsrKyqIdihoAYmNjycnJiXYY6hDlCDbjk5gOl7kyJ8BOKNu5iez8I/o5MqWUUkoNFgM+wXK73YwdOzbaYSilhgBn0Iu/kwQrOXsSrICq4s2aYCmllFKqUwN+iKBSSvUXR8iL39FxgpWVNxUAb+mX/RmSUkoppQaZPk+wRORkEdksIltE5Oa+3p9SSn1VrpCXgMPT4bJhaWnsM2k4tFS7UkoppbrQpwmWiDiB+4FTgKnAhSIytS/3qZRSX5Ur5CXYSQ+WiFDqHkV8vZZqV0oppVTn+roHax6wxRizzRjjA54EzurjfSql1FfiDnkJOjqvUlkXl0uGr7gfI1JKKaXUYNPXCVY2sCtsutie10pErhSR5SKyXCsFKqWiyW18hJwdDxEE8KeMZZipIthc349RKaWUUmowiXqRC2PMg8aYOcaYOZmZmdEORyk1hHmMj5Cz8x4sV+Z4wCrVrpRSSinVkb5OsHYDuWHTOfY8pZQacDz4MK7OE6zEUZMAq1S7UkoppVRH+jrB+gyYKCJjRcQDXAC82Mf7VEqpg2cMsfigiwQra3Q+AM17v+ivqJRSSik1yPTphYaNMQERuRZ4DXACfzPGrO/LfSql1FcS8AJ02YM1PDOTcpMCWqpdKaWUUp3o0wQLwBjzMvByX+9HKaV6I+hrwgng7jzBcjiEUtdI4up29FtcSimllBpcol7kQimlBgKfXRnQ4Y7rcr2auFzSvVqqXSmllFId0wRLKaUAb1MjANJNghVMHUeWqcDf3NAfYSmllFJqkNEESymlAF+T1YMlnoQu1/NkTQCgpEhLtSullFLqQJpgKaUU4LUTLGdsfJfrpeVMAaB858Y+j0kppZRSg48mWEopBfjtBMsVm9TleiPHWaXam7RUu1JKKaU6oAmWUkoBfrvIhaebHqyk1EyqSUKqtvdHWEoppZQaZDTBUkopIGAXrXDHdd2DBVDuySahXku1K6WUUupAmmAppRQQ9FoJlieu6yIXAA0JY8jyFWOM6euwlFJKKTXIaIKllFLsT7Bie9CDFRw2mZFSwb6y8r4OSymllFKDjCZYSikFGJ+VYMXEd59gxWVPB2Dv1lV9GZJSSimlBiFNsJRSCgj5mggZIT6++yGCmeNnAtCwa20fR6WUUkqpwUYTLKWUAvA30ISHOI+r21UzsifQaGJg34Z+CEwppZRSg4kmWEopBYi/iWZicDik+3UdTna7x5BU+2U/RKaUUkqpwUQTLKWUAhyBRpoltsfr1yRNYISvSCsJKqWUUqoNTbCUUgpwBJrwSUzPN8iaQibV7Cvd03dBKaWUUmrQ6VWCJSK/E5FNIrJGRP4pIqn2/DwRaRKRVfZtcUSiVUqpPuIMNOFz9DzBSsotBGDPFyv7KiSllFJKDUK97cH6DzDdGFMIfAH8LGzZVmPMTPt2VS/3o5RSfSom2ECzI7HH64+cdBgAdVpJUCmllFJhepVgGWNeN8YE7MmPgZzeh6SUUv0vNliH19XzBCs5M5daEnDs29iHUSmllFJqsInkOViXA6+ETY8Vkc9F5B0RWdjZRiJypYgsF5HlZWVlEQxHKaV6Lj5Uj9+d0vMNRNgbM5a0+i/6LiillFJKDTrdJlgi8oaIrOvgdlbYOj8HAsAT9qwSYLQxZhbwI+AfIpLcUfvGmAeNMXOMMXMyMzN7/4yUUuorSDANBGMOIsEC6tOmkhfYTrPX10dRKaWUUmqw6faKmsaY47taLiKXAacDXzd2vWJjjBfw2o9XiMhWYBKwvLcBK6VUpBl/E7H4MLEHl2A5s2eSsPcpvtiyjknTZvdRdEoppZQaTHpbRfBk4CfAmcaYxrD5mSLitB+PAyYC23qzL6WU6itNtZUAOOJSD2q79AlzAaja+lmkQ1JKKaXUINVtD1Y37gNigP+ICMDHdsXAo4DbRcQPhICrjDGVvdyXUkr1ibqacuIBV3zqQW03asJMvMZNcPeqvghLKaWUUoNQrxIsY8yETuY/Czzbm7aVUqq/NNRUAOBOTD+o7ZxuD9vceSRVbeiLsJRSSik1CEWyiqBSSg1KzXVWghVzkAkWQFVyPqN9XxIKhiIdllJKKaUGIU2wlFJDnr/OGsEcnzLsoLd1jJpBCg3s3qHl2pVSSimlCZZSShGsLQUgIWPUQW/bUuiiZPMnEY1JKaWUUoOTJlhKqSHP1JXQZDxkpGcc9La5U+YQMA58O1f2QWRKKaWUGmw0wVJKDXnOxn1USBpul/Ogt3XHJlDsGk185fo+iEwppZRSg40mWEqpIS+muYwa18H3XrWoSp5CTvMWQiETwaiUUkopNRhpgqWUGvISfRU0eQ6+wEWrkTPIkip27tTrqSullFJDnSZYSqkhLy1UiS8u66tvP2EeAHs3fRypkJRSSik1SGmCpZQa0rx1FSTSSCDp4CsItsjJP5ygEXw7PotgZEoppZQajDTBUkoNaft2Wdev8gwb95XbcMUlsdOdR1Ll2kiFpZRSSqlBShMspdSQVrPbSrCSR03sVTuVKdMZ27yJUDAUibCUUkopNUhpgqWUGtKa9lmFKYaPmdyrdsyo2aRKPTu3bYhEWEoppZQapDTBUkoNaVK1nSqTRHp6L6oIAsMmfw2AfZs+jERYSimllBqkNMFSSg1pyXVb2O0ejYj0qp2cSbNoNm6Cu5ZHKDKllFJKDUaaYCmlhi5jGOndTnXihF435fLEUOSZSGqVFrpQSimlhrJeJVgicpuI7BaRVfbt1LBlPxORLSKyWURO6n2oSikVWXVlO0mikeCwKRFprzqtgDzfFvx+X0TaU0oppdTgE4kerLuNMTPt28sAIjIVuACYBpwM/ElEnBHYl1JKRUzplpUAxOcWRqQ9z+g5xImPHRtXRKQ9pZRSSg0+fTVE8CzgSWOM1xizHdgCzOujfSml1FdSv9Mazjdi/IyItDdy6nwAyjZ/FJH2lFJKKTX4RCLBulZE1ojI30QkzZ6XDewKW6fYnncAEblSRJaLyPKysrIIhKOUUj0jZRvZZ9LIHpUTkfZG5OVTQyLs1h4spZRSaqjqNsESkTdEZF0Ht7OAPwPjgZlACfB/BxuAMeZBY8wcY8yczMzMg91cKaW+sqTaLyl25+Fw9K6CYAtxONgVN4XM2vURaU8ppZRSg4+ruxWMMcf3pCER+Qvwb3tyN5AbtjjHnqeUUgNDKMQo/w52pZ8d0WabMmcwZcfD1NTUkJKSEtG2lVJKKTXw9baK4MiwyXOAdfbjF4ELRCRGRMYCE4FPe7MvpZSKpOo9XxKLD7LyI9pu4th5uCTE9rUfRLRdpZRSSg0OvT0H604RWSsia4BjgRsAjDHrgaeADcCrwDXGmGAv96WUUhFTYlcQTB4dmQqCLXJnHkfICA2bl0W0XaWUUkoNDt0OEeyKMebiLpbdAdzRm/aVUqqvNO6yKgjmTJ4V0XYT07LY4h5P6l7twVJKKaWGor4q066UUgOas3wTxWQxLD094m2XZx7JRN9GGupqIt62UkoppQY2TbCUUkNSav0WSmPGIhKZCoLhEvOPxyNBvvjs9Yi3rZRSSqmBTRMspdSQE/L7yA4U05Q6sU/anzT3BJpx07jupT5pXymllFIDlyZYSqkhp2TnZtwSxD1iSp+074lLYFPyAqZUvonX29wn+1BKKaXUwKQJllJqyCnfsQmAlFGT+2wf7tkXkUEtK19+qM/2oZRSSqmBp1dVBFXv+QMBGuvraGqopbmhFn9TPUFvPQFfE8GAn6DfR9DvJRjwEwr4kJAfCQVwhPxACAwYDAaxHwsGAwgGAMHhcIDLg8PpBqcHcboRpweH243D6UZcMThcbpwuDw6XB6fbg9sTg8sdg8sTg9sdi9sTiycmFrfbhdMhfXLeilL9pan0SwAy8yJ7DaxwU486l6L3/ocxa/5AzbEXkpIa+WIaKvKMMfgDIfy+JgK+ZkJ+L6FgkGAoSDAYIBgMEgoGCYWCBINBTCiEEMJJCAARQRxOcDjtxy5EHCAOe74Dh8OFw+nA6XTidLhwuJw4nW6cLjdOlwuX06mfsUopNYhpghUBPp+P6rISGqp201hdjq+uAn9DJcGGSmiqwumtxuWtIcZfQ1ywjljTZN+8xIuXFCAl2k+ih4JG8OLCb98C4iaAi4BYj4PiIihu6+ZwExI3IYd1M/Y9TjfG4cHYCR9OD7g8iMONEaf1RUQExAEOAbG/qIgDWuaLAxEH4tg/r2Xa+lpiWpNPjAETshJOA8aErDTUGGsGgAmbNvYN2swz9rzWdWi3Xrv2IGybduu3ttnFMjv61sdiwlLn1vbpZNu2j6VdXB0xbWa3JOrt1ml9dU34zNb5YbM6n24JZf+R6nQ/bfZlWuI6sLEu2zLt14bR1Z/RYGJJz8zuYIvIEIeT5hPvJPflRWy97yR2zP4ugbpy4rb/h8axJ3HYolv6bN9DSTAYpLa6grrKUry15fgaqvE1VuNvqiPUVEuouQ68dTj89Tj99bgCDXiCjbhCXlwhH25j3/DjMT5i8BMjfjxRfE4hIwRwEMRBEKd1L05CYdMhnITEum9ZFhInIXFiWh+7MOKw5zkxDich+95I2M3hBHFiHC4QB0ZcYCeJRlyIw17H4bI+j51h9w4nDgGHSJs32/7PrpYZZv9861nSduWW1cLmd7Rd+8+w8M+7jqbbhBFqPwMh/HO+fTDhD0zrpm1+xjTtPnUO2L9p105HsR64rPUTsH37feyrpvUmwj8IRLK19v+fohFDR3r6mkXjp5aO/uokKpHsVxWXy7jjr2DKiOSoxtFTmmB1wYRCVJTtobz4S5r2bcdfvQdTuxdn4z5ivOUk+CpICVWRZmrJko4/BL3GTY0k0eBIotmVRG3sKCpdCYTc8Rh3AngSEE8CjpgEHLGJOGMSEU88Tk88LrcHl8eD2x2Dy23di8tKUHC4kZZfSLHegCLGfgMYK+ew/wkE/FZPWCDgJ+T3EQx47d4xLyG7ZywU8BEK+jABH8GAHxPwEQp4MQEfJui3730Q8EHQByE/EvQhQb/dq+bDEfLjaL0PEBNqwmlqcZoATuPHZQK4jB+XlZLhNgE8+HF28tqpngsZCfv3LPaNlr+G1unw5a2kzR2dJWD7WzjwQ7Z92tPd/I5b6W6bSLYFX6QuYIqjb0dJTzn8JFZU/ZGxH/+c9E9/CoDfONnxRR2gCVZHTChETWUZlft2Ule+G29VCaZ2LzSW4WyuwuWtJtZfTVywluRQDUmmgTQJkdZFm17jpkHiaJZ4mhzxeB3xeF1JNDo8hJwxhJwxGPsmrhhwxWJc1rT1eevC4XDaP+I4cTid1o854rCSEBwYEUIt38NNEEwIQkEgZPVymZA1PxSyfvAxIQgFCIXseaGAtTwYwJggEgq2zpNQ0L63p+15Yj/GBHGETTtMECGE2/jt+VZq5jAhHCZoPw7iJIQQxGlCYWmbNd9prFROP5/7Rsgc+KPQ/h+K2i8b6L2ZA/dvZKC+cl39b4q2gRrbe2YGWwsvHDQJlph+/nWkK3PmzDHLly+PdhitPn7ido748v/azPMaF5WSSp0rnQbPMHxxmZj4LCRpOM6k4cQmDyMuZRgJqZmkpGUSl5AYpegHj2AggN/XTMDvwxhryI0JBQmFDCEThJCxpo19H7K+sBiz/z4UMmCCmFCQoLE/VEVABMGBOKw01PrBSMKmHa1Dcaz7lnXtoT4tbUi7dRGrdw3Zn+Q6HEhr2yA4MI6w5eKwQ2ppP6w9x/44W/fQ0p6wv/euNRsSe1oNBg0NDezcsp74lGHsfOlODt/3NO5b9yJOd7RD61cBv499e4qo3LONxn1FhKp34qzbg7tpH/G+cpIClaSHqokR/wHbNrf+WJVMkysFryeVQEwqJi4diU/HmZCBMzEDd0IasQmpxCWlkpCUQkJSKi5PbBSe7SHCGAgFMaEAwYCfQCBAyH4cCgYIBgKEDARCxv6IEvZ/irVM28I/P6H1LPDWue2WS+vHXfiK0rqf/c062m4X9hncuk7rw/brhP1vEGkbS3jsbdYJ//wN/7Gq3Txpd6+UOuSIyApjzJz287UHqwtZM07iE6eb2Mw8ErPGkTpiDGnpWYx0OhgZ7eAOIU6XC6dLE1F16EpISCB/xjwA9owqwFO2hB1frmHMlMOiHFlkBYNBSou3UbVrE02lWwhW7cRZV0x8Uwlpvr1kmgpGSYhRYdtUm0SqnOnUuzOoSR5DUXwWkjQCT8pI4jNGkTQsh+TMHBKT0xiuX1T7nwg4XYjThcsdq18alFKqB/Szsgvjph/OuOmHRzsMpdQhJK9gPqyG4lVvDsoEy4SCVOzdQVnRBur3bCZYvpWY2iJSm3cxMljCKPG3JlAB46BM0qlyj2B38kx2JGXjTB9NfOZYkoePJX3UOFKTUkiN5hNSSimlIkwTLKWU6kcjx89gl4wiadvLwE+iHU6ngsEgu7dvomzbKpr3bMBTuZn0hm2MCuximPgYZq/nMy5KnCOpjs2lLGUBkj6euBETSc2ZTFb2OEZ6PNrjr5RSakjRBEsppfqTCCW5pzJnx0Ps2rqe3PHTohpOKBiiZOeX7Nu2iqbd63GVbyK1YRs5gZ2MFi+j7fX2kUFpbB6rMuYgGROIHzmJYaPzGZ4znjEuF2Oi+iyUUkqpgUMTLKWU6mfjTv4hgQceYe+/bif3+qX9sk8TClG6exulW1bRuHsdzvLNpNRvIce/k2xppqVgfRlplMaOZd2ws3Fk5ZOaV8CoibPISs4gq18iVUoppQY3TbCUUqqfDRs1hg9HfYuvlfydNW88TuHx345Y2yYUomxPEaVbPqdh93oc5ZtIqdvKKP8ORkgTI+z1Kkhhb0we69NOR7LySR5dwMhJs8hMyyIzYtEopZRSQ0+vEiwRWQpMtidTgWpjzEwRyQM2ApvtZR8bY67qzb6UUupQMvvi/+WL//uI/Pd+yOq6UgrPvM66cGsP+Zob2btjM1XFm2ne+wWO8s0k129hlH8HWTS19jZVkkyJJ48NmadA5hSScq0eqYzMkWT0zVNTSimlhrSIXQdLRP4PqDHG3G4nWP82xkw/mDYG2nWwlFKqL1VVlLH9gUXM9q1gj2Mke4Yfg2v4FNwpoxCHEAoG8TfX4a8pJVRXiqOxnMSm3WT4dpMZqsARdhHYSpLZ48mjPmk8ZOaTOHo6IyfMJCMru4sIlFJKKfVV9el1sMS6OuD5wHGRaE8ppYaCtIxMkn7yOu+/9CjJ6x6lYM8zxJQceJFdAL9xUiUpVLqy2Jk0i60pY3EPG0fSqIlkjcknLXMU6XqdKKWUUirqItKDJSJHAb9vyeDsHqz1wBdALfALY8x7nWx7JXAlwOjRow/bsWNHr+NRSqnBqKmpmZLdRTRW7gFjcDoduOOSScvKJi09E4fTGe0QlVJKKWXrrAer2wRLRN6A1vOiw/3cGPOCvc6fgS3GmP+zp2OARGNMhYgcBjwPTDPG1Ha1Lx0iqJRSSimllBoMvvIQQWPM8d007ALOBQ4L28YLeO3HK0RkKzAJ0OxJKaWUUkopdchyRKCN44FNxpjilhkikikiTvvxOGAisC0C+1JKKaWUUkqpASsSRS4uAJa0m3cUcLuI+IEQcJUxpjIC+1JKKaWUUkqpAStiZdojQUTKgIFW5WIYUB7tIFS/0eM9dOixHjr0WA8teryHDj3WQ8tAPN5jjDGZ7WcOqARrIBKR5R2dvKYOTXq8hw491kOHHuuhRY/30KHHemgZTMc7EudgKaWUUkoppZRCEyyllFJKKaWUihhNsLr3YLQDUP1Kj/fQocd66NBjPbTo8R469FgPLYPmeOs5WEoppZRSSikVIdqDpZRSSimllFIRogmWUkoppZRSSkWIJlhdEJGTRWSziGwRkZujHY+KHBHJFZG3RWSDiKwXkevs+eki8h8R+dK+T4t2rCoyRMQpIp+LyL/t6bEi8on9/l4qIp5ox6giQ0RSReQZEdkkIhtF5Eh9bx+aROQG+zN8nYgsEZFYfW8fOkTkbyKyT0TWhc3r8L0slnvs475GRGZHL3J1sDo51r+zP8fXiMg/RSQ1bNnP7GO9WUROikrQXdAEqxMi4gTuB04BpgIXisjU6EalIigA3GiMmQocAVxjH9+bgTeNMROBN+1pdWi4DtgYNv3/gLuNMROAKuC7UYlK9YU/Aq8aY6YAM7COu763DzEikg38EJhjjJkOOIEL0Pf2oeQR4OR28zp7L58CTLRvVwJ/7qcYVWQ8woHH+j/AdGNMIfAF8DMA+/vaBcA0e5s/2d/bBwxNsDo3D9hijNlmjPEBTwJnRTkmFSHGmBJjzEr7cR3WF7BsrGP8qL3ao8DZUQlQRZSI5ACnAX+1pwU4DnjGXkWP9SFCRFKAo4CHAIwxPmNMNfrePlS5gDgRcQHxQAn63j5kGGPeBSrbze7svXwW8Hdj+RhIFZGR/RKo6rWOjrUx5nVjTMCe/BjIsR+fBTxpjPEaY7YDW7C+tw8YmmB1LhvYFTZdbM9ThxgRyQNmAZ8Aw40xJfaivcDwaMWlIuoPwE+AkD2dAVSHfXDr+/vQMRYoAx62h4T+VUQS0Pf2IccYsxu4C9iJlVjVACvQ9/ahrrP3sn5vO7RdDrxiPx7wx1oTLDWkiUgi8CxwvTGmNnyZsa5hoNcxGORE5HRgnzFmRbRjUf3CBcwG/myMmQU00G44oL63Dw32uTdnYSXVo4AEDhxipA5h+l4eGkTk51indjwR7Vh6ShOszu0GcsOmc+x56hAhIm6s5OoJY8xz9uzSliEF9v2+aMWnImY+cKaIFGEN9T0O6xydVHtYEej7+1BSDBQbYz6xp5/BSrj0vX3oOR7YbowpM8b4geew3u/63j60dfZe1u9thyARuQw4HbjI7L9474A/1ppgde4zYKJdjciDdTLdi1GOSUWIfQ7OQ8BGY8zvwxa9CFxqP74UeKG/Y1ORZYz5mTEmxxiTh/U+fssYcxHwNvANezU91ocIY8xeYJeITLZnfR3YgL63D0U7gSNEJN7+TG851vrePrR19l5+EbjEriZ4BFATNpRQDUIicjLW8P4zjTGNYYteBC4QkRgRGYtV2OTTaMTYGdmfDKr2RORUrHM3nMDfjDF3RDciFSkisgB4D1jL/vNybsE6D+spYDSwAzjfGNP+BFs1SInIMcCPjTGni8g4rB6tdOBz4NvGGG8Uw1MRIiIzsQqaeIBtwHewflDU9/YhRkR+DSzCGj70OXAF1rkY+t4+BIjIEuAYYBhQCvwKeJ4O3st2kn0f1jDRRuA7xpjlUQhbfQWdHOufATFAhb3ax8aYq+z1f451XlYA6zSPV9q3GU2aYCmllFJKKaVUhOgQQaWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUUkoppZSKEE2wlFJKKaWUUipCNMFSSimllFJKqQjRBEsppZRSSimlIkQTLKWUGmBEJE9EjIi4oh2LGhpEZL2IHBPtOJRS6lCgCZZSSqlBT0QWi0i9ffOJiD9s+pVoxzfQGWOmGWOWRbJNEXnEPhb1YTdnJPehlFIDkRhjoh2DUkodUkTEZYwJ9GL7PGA74O5NO0OViNwGTDDGfLuDZb06Nv1pMMXaERF5BCg2xvwi2rEopVR/0h4spZSKABEpEpGfisgaoEFEXCJyhIh8KCLVIrI6fAiWiCwTkf8VkU9FpFZEXhCR9E7a/o6IbBSROhHZJiL/1W75WSKyym5nq4icbM9PEZGHRKRERHaLyP9014MgIuNF5C0RqRCRchF5QkRSw5ZVishse3qUiJS1PC8ROdMealZtP7/8dq/Pj0VkjYjUiMhSEYk9+Ff64HVybIyITAhb5xER+Z+w6dPt17TaPoaFPdzXMSJSLCK32K9fkYhcFLb8NBH53D5Wu+xksGVZy9DQ74rITuAte/7TIrLXft3eFZFp7eL+k4i8YvcQfSAiI0TkDyJSJSKbRGRWD1+j43vyHJVSSnVNEyyllIqcC4HTgFRgOPAS8D9AOvBj4FkRyQxb/xLgcmAkEADu6aTdfcDpQDLwHeDusCRnHvB34CZ7v0cBRfZ2j9jtTgBmAScCV3TzHAT4X2AUkA/kArcBGGO2Aj8FHheReOBh4FFjzDIRmQQsAa4HMoGXgX+JiCes7fOBk4GxQCFwWYcBiCywE5vObgu6eQ4daT023fUK2QnJ34D/AjKAB4AXRSSmh/saAQwDsoFLgQdFZLK9rAHruKfa8VwtIme32/5orNf+JHv6FWAikAWsBJ5ot/75wC/sfXqBj+z1hgHPAL/vYdwdEpGbuzoe3Wz+fTspXyEi5/UmDqWUGiw0wVJKqci5xxizyxjTBHwbeNkY87IxJmSM+Q+wHDg1bP3HjDHrjDENwC+B8zvqYTLGvGSM2Wos7wCvAwvtxd8F/maM+Y+9n93GmE0iMtze1/XGmAZjzD7gbuCCrp6AMWaL3ZbXGFOG9eX86LDlfwG2AJ9gJYY/txctAl6yt/UDdwFxwNfavT57jDGVwL+AmZ3E8L4xJrWL2/tdPYdOhB+b7lwJPGCM+cQYEzTGPIqVuBxxEPv7pf0avoOVaJ8PYIxZZoxZax+rNVhJ6dHttr3NPmZN9jZ/M8bUGWO8WMnuDBFJCVv/n8aYFcaYZuCfQLMx5u/GmCCwFCu5/sqMMb/t6nh0sek97E8Mfwk8IiLzexOLUkoNBppgKaVU5OwKezwG+Ga7X/oXYCUlHa2/A3Bj9Tq0ISKniMjHdk9ANVbi1LJeLrC1g1jG2O2VhO3/Aawvu50SkeEi8qQ9pLAWeLyDmP4CTAfutb/0g9XjtaNlBWNMyH5+2WHb7Q173AgkdhVLhO3qfpVWY4Ab2x27XKzn2BNVdtLcYkfLtiJyuIi8bQ+trAGu4sDXtzVWEXGKyG/FGvpZy/7eyfBtSsMeN3Uw3Z+vcytjzEpjTIUxJmCMeRmr5+3caMSilFL9SRMspZSKnPCqQbuweqjCf+1PMMb8Nmyd3LDHowE/UB7eoD0s7VmsHqHhdo/By1hD+Vr2M76DWHZh9boMC9t/sjFmWgfrhvuN/TwKjDHJWD1xLftCRBKBPwAPAbfJ/vPG9mAlJi3rif38dnezvwOIyEJpW3mu/W1h960coH1Fp0YgPmx6RNjjXcAd7Y5dvDFmSQ/3lSYiCWHTo7FeH4B/AC8CucaYFGAxYa9vB7F+CzgLOB5IAfLs+e236TP2+WSdHo+DaMrQj3ErpVS0aIKllFJ943HgDBE5ye6FiLULIOSErfNtEZlqn890O/CMPawrnAeIAcqAgIicgnUuVYuHgO+IyNdFxCEi2SIyxRhTgjWU8P9EJNleNl5E2g9Hay8JqAdqRCQb69yucH8ElhtjrsAa+rbYnv8UcJodhxu4ESvB+7C7F6o9Y8x7xpjELm7vHWybHVgFfMs+NifTdpjeX4Cr7N4mEZEEsYpTJEFrYYlHumn/1yLisZPB04Gn7flJQKUxptk+f+5b3bSThPU6VmAlhL85iOcYEcaY33R1PDrbTkS+ISKJ9t/eiVjJ+ov9F7lSSkWHJlhKKdUHjDG7sHoebsFKjnZhJSvhn7uPYRWi2AvEAj/soJ06e/5TQBXWF/IXw5Z/il34AqgB3mF/T9IlWAnaBnvbZ2g7RLEjvwZm2229BDzXskBEzsIqUnG1PetHwGwRucgYsxnrC/S9WL1wZwBnGGN83ewvWq7DirEauAh4vmWBMWY58D3gPqzXbQttC3LkAh900fZee7s9WMPirjLGbLKXfR+4XUTqgFuxjmtX/o41xHA31nH8uLsnNoBchxV3NfA74HsmwtfaUkqpgUivg6WUUlEgIsuAx40xf412LKrn7KqIq4FCu5hH++XHYB3XnPbLlFJKDQ2uaAeglFJKDRZ2j1x+tysqpZQasiI2RNAex/65iPzbnh4rIp+IyBaxLijp6a4NpZRSfU9EFndSsGBx91urwUhERndRqGJ0tONTSqlDScSGCIrIj4A5QLIx5nQReQp4zhjzpP1Pe7Ux5s8R2ZlSSimllFJKDUAR6cGyq2KdBvzVnhbgOKwTqgEeBc6OxL6UUkoppZRSaqCK1DlYfwB+glVOFiADqDbGBOzpYtpebLKViFwJXAmQkJBw2JQpUyIUklJKKaWUUkr1jRUrVpQbYzLbz+91giUipwP7jDEr7OpJB8UY8yDwIMCcOXPM8uXLexuSUkoppZRSSvUpEdnR0fxI9GDNB84UkVOxruOSjHUhylQRcdm9WDlY18JQSimllFJKqUNWr8/BMsb8zBiTY4zJAy4A3jLGXAS8DXzDXu1S4IXe7ksppZRSSimlBrKIlWnvwE+BH4nIFqxzsh7qw30ppVS/aPYHeWnZB9R7A92vrJRSSqkhJ6IXGjbGLAOW2Y+3AfN626bf76e4uJjm5ubeNqWGmNjYWHJycnC73dEORR1C3njuIU7feBPPFf+Gc799TbTDUUoppdQAE9EEqy8UFxeTlJREXl4eVvV3pbpnjKGiooLi4mLGjh0b7XDUIWTM9iUA5G5bCmiCpZRSSqm2+nKIYEQ0NzeTkZGhyZU6KCJCRkaG9nyqiBvVvA2AguAGKmobohyNUkoppQaaAZ9gAZpcqa9E/25UpIWCQVJNDaXOEcSKn60bVkQ7JKWUUkoNMIMiwVJKqYGgvroMpxhKMhdY09v1un1KKaWUaksTrB4QEW688cbW6bvuuovbbrstegGF+fjjjzn88MOZOXMm+fn5rXEtW7aMDz/8sFdtn3zyyaSmpnL66adHIFKlBr+Gqr0AeEfOpRkPzvKNUY5IKaWUUgONJlg9EBMTw3PPPUd5eXlE2zXGEAqFetXGpZdeyoMPPsiqVatYt24d559/PhCZBOumm27iscce61UbSh1KmqpKAXAmj2CfaxTxdR1ewF0ppZRSQ9iAryIY7tf/Ws+GPbURbXPqqGR+dca0LtdxuVxceeWV3H333dxxxx1tlpWVlXHVVVexc+dOAP7whz8wf/58brvtNhITE/nxj38MwPTp0/n3v/8NwEknncThhx/OihUrePnll7nvvvt45ZVXEBF+8YtfsGjRIpYtW8Ztt93GsGHDWLduHYcddhiPP/74AecV7du3j5EjRwLgdDqZOnUqRUVFLF68GKfTyeOPP869997LlClTOo1z69atbNmyhfLycn7yk5/wve99D4Cvf/3rLFu2rMvX5umnn+bXv/41TqeTlJQU3n33XZqbm7n66qtZvnw5LpeL3//+9xx77LE88sgjPP/88zQ0NPDll1/y4x//GJ/Px2OPPUZMTAwvv/wy6enp/OUvf+HBBx/E5/MxYcIEHnvsMeLj49vs94gjjuChhx5i2jTr2B1zzDHcddddzJkzp8t4leoNb43VgxWbmkVdfC7ptduiHJFSSimlBhrtweqha665hieeeIKampo286+77jpuuOEGPvvsM5599lmuuOKKbtv68ssv+f73v8/69etZvnw5q1atYvXq1bzxxhvcdNNNlJSUAPD555/zhz/8gQ0bNrBt2zY++OCDA9q64YYbmDx5Mueccw4PPPAAzc3N5OXlcdVVV3HDDTewatUqFi5c2GWca9as4a233uKjjz7i9ttvZ8+ePT1+XW6//XZee+01Vq9ezYsvvgjA/fffj4iwdu1alixZwqWXXtpazW/dunU899xzfPbZZ/z85z8nPj6ezz//nCOPPJK///3vAJx77rl89tlnrF69mvz8fB566MBrVC9atIinnnoKgJKSEkpKSjS5Un3OX1cGQHzqCIKp48gxpVTWNUU5KqWUUkoNJIOqB6u7nqa+lJyczCWXXMI999xDXFxc6/w33niDDRs2tE7X1tZSX1/fZVtjxozhiCOOAOD999/nwgsvxOl0Mnz4cI4++mg+++wzkpOTmTdvHjk5OQDMnDmToqIiFixY0KatW2+9lYsuuojXX3+df/zjHyxZsqTDXqeu4jzrrLOIi4sjLi6OY489lk8//ZSzzz67R6/L/Pnzueyyyzj//PM599xzW5/TD37wAwCmTJnCmDFj+OKLLwA49thjSUpKIikpiZSUFM444wwACgoKWLNmDWAlYb/4xS+orq6mvr6ek0466YD9nn/++Zx44on8+te/5qmnnuIb3/hGj+JVqjdMQyUAiamZ+IZPJGZngE1FX5JeUBjlyJRSSik1UAyqBCvarr/+embPns13vvOd1nmhUIiPP/6Y2NjYNuu6XK4251eFX48pISGhR/uLiYlpfex0OgkEAh2uN378eK6++mq+973vkZmZSUVFxQHrdBYnHFjO/GDKmy9evJhPPvmEl156icMOO4wVK7ouWx3+nBwOR+u0w+FofX6XXXYZzz//PDNmzOCRRx7pMGHMzs4mIyODNWvWsHTpUhYvXtzjmJX6qkL+RrzGRXx8HIHsyfAZ1O7eBJpgKaWUUsqmQwQPQnp6Oueff36bIWsnnngi9957b+v0qlWrAMjLy2PlypUArFy5ku3bt3fY5sKFC1m6dCnBYJCysjLeffdd5s2b1+OYXnrpJYwxgDX00Ol0kpqaSlJSEnV1dd3GCfDCCy/Q3NxMRUUFy5YtY+7cuT3e/9atWzn88MO5/fbbyczMZNeuXSxcuJAnnngCgC+++IKdO3cyefLkHrdZV1fHyJEj8fv9re10ZNGiRdx5553U1NRQWKhfcFXfE38TzXiIdTnIGJ0PQKBsS5SjUkoppdRA0usES0RyReRtEdkgIutF5Dp7frqI/EdEvrTv03ofbvTdeOONbaoJ3nPPPSxfvpzCwkKmTp3a2pNy3nnnUVlZybRp07jvvvuYNGlSh+2dc845FBYWMmPGDI477jjuvPNORowY0eN4HnvsMSZPnszMmTO5+OKLeeKJJ3A6nZxxxhn885//ZObMmbz33nudxglQWFjIscceyxFHHMEvf/lLRo0aBVjJ3ze/+U3efPNNcnJyeO211wBrWGLL+VY33XQTBQUFTJ8+na997WvMmDGD73//+4RCIQoKCli0aBGPPPJIm56r7vz3f/83hx9+OPPnz2fKlCmt81988UVuvfXW1ulvfOMbPPnkk62VE5XqaxJoookYXE4HMWk5NBGDo7rjH0+UUkopNTRJS+/HV25AZCQw0hizUkSSgBXA2cBlQKUx5rcicjOQZoz5aVdtzZkzxyxf3vbCnRs3biQ/P79XMarOta92eKjRvx8VSWvv+SbJFWsY8+vNABT9z0wqnFkc9rPXoxyZUkoppfqbiKwwxhxQZa3XPVjGmBJjzEr7cR2wEcgGzgIetVd7FCvpUkqpQcsRaMIr+3tja2OzSff1vOqmUkoppQ59ES1yISJ5wCzgE2C4MabEXrQXGB7JfanIuO2226IdglKDhivYhNexv1CMPymX4XWf4Q8EcbucUYxs8NhZVkvusKSDKqajlFJKDSYRK3IhIonAs8D1xpg2VwM21jjEDsciisiVIrJcRJaXlZVFKhyllIo4Z7AZv+xPsCQtj3jxUlpSHMWoBo/33nyR7PtGs/TZp6IdyqBRUdtIcUVt9yuqVvvqmrtfSSml+lBEEiwRcWMlV08YY56zZ5fa52e1nKe1r6NtjTEPGmPmGGPmZGZmRiIcpZTqE+5QM37H/iGCccPHAVBR/EW0QhpUEj//K04xTF3/f/T2/N+hIBgyFP3hRErvOYGaBl+0wxkUXvrXs/jvmsp7n3wS7VCUUkNYJKoICvAQsNEY8/uwRS8Cl9qPLwVe6O2+lFIqmtyhZgJhQwRTR00EoKF0a7RCGlTy6lcBMDm0lb2VNdENZhAo2rKRw0JrOUw28fmyZ6MdzqAw/fNfkS0V+N67t/uVlVKqj0SiB2s+cDFwnIissm+nAr8FThCRL4Hj7WmllBq0PKFmAq641unMnAkABCqKohTR4GH8TaRRw3bXeGIkQNGGT6Md0oBXv/6V1seBbe9FMZLBodnrJTu4G4Bp9R8SCmkvqVIqOiJRRfB9Y4wYYwqNMTPt28vGmApjzNeNMRONMccbYyojEXC0PP/884gImzZt6nSdoqIipk+fHrF9bt68mWOOOYaZM2eSn5/PlVdeCVgXCX755Zd71fbll19OVlZWRONV6lDnMV6CYT1YrrgkKknBVbszilENDjWl1mtUlnMCAA3bPotmOINCc9kO/MZJkXsC6dVrox3OgFe2exsuCVHsGs0IKtixsyjaISmlhqiIFbk41C1ZsoQFCxawZMmSDpcHAoFe7yMYDLaZ/uEPf8gNN9zAqlWr2LhxIz/4wQ+AyCRYl112Ga+++mqv2lBqqIkxXoJhPVgAFe6RJDTujlJEg0fV3iIAJHcejcTiqvwyugENAs6GEsolneqMGUwMfEmzr/f/Zw5lNXusv6my3JMB2PuF9pIqpaJjcCVYr9wMD58W2dsrN3e72/r6et5//30eeughnnzyydb5y5YtY+HChZx55plMnToVsBKtiy66iPz8fL7xjW/Q2NgIwJtvvsmsWbMoKCjg8ssvx+v1ApCXl8dPf/pTZs+ezdNPP91mvyUlJeTk5LROFxQU4PP5uPXWW1m6dCkzZ85k6dKlNDQ0cPnllzNv3jxmzZrFCy9Yp7s98sgjnHXWWRxzzDFMnDiRX//6161tHXXUUaSnp3f5vN955x1mzpzJzJkzmTVrFnV1dRhjuOmmm5g+fToFBQUsXbq09bU4+uijOeussxg3bhw333wzTzzxBPPmzaOgoICtW61zVP71r39x+OGHM2vWLI4//nhKS0sP2O8FF1zASy+91Dp92WWX8cwzz3RzlJTqY6EQMfgItUuwGuKzyfCXdLKRatFQZvVgJWblUebJIaFBe/26E99cSpUrE0fmZJKkieLiHdEOaUBrLisCIPWwcwAI7lkTxWiUUkPZ4EqwouSFF17g5JNPZtKkSWRkZLBixYrWZStXruSPf/wjX3xhVRHbvHkz3//+99m4cSPJycn86U9/orm5mcsuu4ylS5eydu1aAoEAf/7zn1vbyMjIYOXKlVxwwQVt9nvDDTdw3HHHccopp3D33XdTXV2Nx+Ph9ttvZ9GiRaxatYpFixZxxx13cNxxx/Hpp5/y9ttvc9NNN9HQ0ADAp59+yrPPPsuaNWt4+umnWb58eY+f91133cX999/PqlWreO+994iLi+O5555j1apVrF69mjfeeIObbrqJkhLry+Xq1atZvHgxGzdu5LHHHuOLL77g008/5YorruDee60TjhcsWMDHH3/M559/zgUXXMCdd955wH4XLVrEU09ZZZx9Ph9vvvkmp512Wo/jVqpP+K0fS4y7bYLlTx7NcFNOs1ervHXFX2WVsk8bMYb6hDFk+XdrJcFupPj3UR+TRVJ2PgDlOzZEOaKBzVTtIGiEkRNmU0Uyjqrt0Q5JKTVERfRCw33ulOjUyViyZAnXXXcdYPWuLFmyhMMOOwyAefPmMXbs2NZ1c3NzmT9/PgDf/va3ueeeezjhhBMYO3YskyZNAuDSSy/l/vvv5/rrrweshKIj3/nOdzjppJN49dVXeeGFF3jggQdYvXr1Aeu9/vrrvPjii9x1110ANDc3s3On9evwCSecQEZGBgDnnnsu77//PnPmzOnR854/fz4/+tGPuOiiizj33HPJycnh/fff58ILL8TpdDJ8+HCOPvpoPvvsM5KTk5k7dy4jR44EYPz48Zx44omA1fP29ttvA1BcXMyiRYsoKSnB5/O1ee1anHLKKVx33XV4vV5effVVjjrqKOLi4g5YT6l+5W+y7l2xbWa70sfg3hVkd/E28sZPiUJgg4M0VtBkPKSmplGWNo7syrcprapnRHpStEMbmIwhI1TB1rgRDM+zRkg0lujlALrUVEkNiaTHxrLLk0Oi9pIqpaJEe7C6UVlZyVtvvcUVV1xBXl4ev/vd73jqqadaf3lNSEhos75Vtb7z6Y60byPcqFGjuPzyy3nhhRdwuVysW7fugHWMMTz77LOsWrWKVatWsXPnTvLz879yPC1uvvlm/vrXv9LU1MT8+fO7LPABEBOz//pADoejddrhcLSeo/aDH/yAa6+9lrVr1/LAAw/Q3HzgBSFjY2M55phjeO2111i6dGmnCahS/ckE7ATLHd9mfvzw8QBU7dZziroivlrqiCfG5SBm+ERcEmLPjq4/U4ayUHMdsfgwCZnEZ+bhx4Wp2BLtsAY0l6+WRrH+nzYkjiHTv0crCSqlokITrG4888wzXHzxxezYsYOioiJ27drF2LFjee+9jkvm7ty5k48++giAf/zjHyxYsIDJkydTVFTEli3WP8fHHnuMo48+utt9v/rqq/j9fgD27t1LRUUF2dnZJCUlUVdX17reSSedxL333tua9H3++eety/7zn/9QWVlJU1MTzz//fGvvWk9s3bqVgoICfvrTnzJ37lw2bdrEwoULWbp0KcFgkLKyMt59913mzZvX4zZramrIzs4G4NFHH+10vUWLFvHwww/z3nvvcfLJJ/e4faX6it9rDRF0uNv2YKVnWz3TTfu29XtMg4nDW0ujxCMipOVaPwDVFm+OclQDV0NdFQASmwpOF/tcI4ivL4pqTAOdy19HozPRmkgfy0ipYF9lVXSDUkoNSZpgdWPJkiWcc845beadd955nVYTnDx5Mvfffz/5+flUVVVx9dVXExsby8MPP8w3v/lNCgoKcDgcXHXVVd3u+/XXX2f69OnMmDGDk046id/97neMGDGCY489lg0bNrQWufjlL3+J3++nsLCQadOm8ctf/rK1jXnz5nHeeedRWFjIeeed1zo88MILL+TII49k8+bN5OTk8NBDDwGwePFiFi9eDMAf/vAHpk+fTmFhIW63m1NOOYVzzjmHwsJCZsyYwXHHHcedd97JiBEjevx63nbbbXzzm9/ksMMOY9iwYa3zly9fzhVXXNE6feKJJ/LOO+9w/PHH4/F4ety+Un3F22z1YLVPsDJGjSNohFBlURSiGjxc/nqaHFbvQnquNZQyUK49Mp1prK0AwBWfDEBN7GiGeYujGdKA5wnU43Vaf2OeLOsi4OW7NIlXSvU/GUgnGc+ZM8e0L8KwcePG1uFu6uA88sgjLF++nPvuuy/aoUSN/v2oSKnc/AHpS07lrcPu57gzvt1m2d5fT2Bn4kzm3ajVLjuz5TeHU2fimPXzZWAM9b8exYqUEzn6hs57soeyos/fJO+Fc/l0/l+Yd8L5rPzL98kvfhr5+R5iPe5ohzcg7fjvQspicpnzk5fYte4Dcp85lY/m3sORp10a7dCUUocoEVlhjDmguIH2YCmlVA/47R4sp+fAgitVnpEkNum1sLoSG2zA77KHb4lQ5skmsVGLEHTGW18NgCcxDQDJGE+c+Ni7S4eidiYuVE/AbRVNyRxt95KWaS+pUqr/aYJ1CLvsssuGdO+VUpHk91nnYDk9sQcsa4zPYVhgb3+HNKjEhhrwu/dXDGyIy9Hrh3XB32CdOxRjJ1jxI6whb1V7tJJgZxJMA0GPNaQyNjmDapJw12ipdqVU/xsUCdZAGsaoBg/9u1GRFPBaPVguT/wBy4IpuWRRSUNDfX+HNWjEm0ZCnv0JVjB1DCNNGTUN3ihGNXAFGmsAiE+yEqzWYiqlW6MW00Bmgn4SaMbEJLfO2+caRULDrihGpZQaqgZ8ghUbG0tFRYV+WVYHxRhDRUUFsbEH9jYo9VUE7CqC7pgDEyx3hnU9t9JdWqq9Q8EA8e2+/Loy8oiRAHuKdchbR0JN1QDEJ1vXMdxfTGVHFKMauJrrrYSU2JTWefVx2aRrL6lSKgr6/ELDInIy8EfACfzVGHNQVwvOycmhuLiYsrKyPolPHbpiY2PJycmJdhjqEBHwWddsc8cceA5Wgn0trJrdW2DKrH6NazDwNlYTA0js/gQraeQEwL5+2GQtRNOeaa7BZ5wkJVrnrTncHkocmXjq9Ly1jtTXVhAHOOL2J1i+5NFk1b6D3+/H7dbCIEqp/tOnCZaIOIH7gROAYuAzEXnRGLOhp2243W7Gjh3bVyEqpVSPhPzWEEF37IE9WMNy7eFbZdob05GGmkpiAGfc/gRrWE7L9cN0yFtHxFtLPfGke/b/m67yjCKpSUu1d6SpthIAV3xq6zxn+hjcu4Ps2b2NUXmToxSZUmoo6ushgvOALcaYbcYYH/AkcFYf71MppSIu5LMSrJgOEqy04bl4jRuqdPhWRxrtL7/OuNTWefGZYwkhGB3y1iGnr456SWgzrzFBi6l0pqnO+hvzJKS1zovPsnqWK4u1MIhSqn/1dYKVDYSfYVpsz2slIleKyHIRWa7DAJVSA5XxW0MEPbEHDhEUh5N9zixi6vWE+o402SXH3Qn7h2/h8lDhGEaMDnnrUPiFmVsEU0aTSTV1dTVRimrg8jdUA+BJTG2dl5ZtVV5s3Kc9y0qp/hX1IhfGmAeNMXOMMXMyMzOjHY5SSnUo5G8mZITYDhIsgGrPSJKa9/RzVIODv8FKCFpKjreoiRlFsldfs454/LU0OxPbzHMPGwfAvp3aI9NeS4IVn5zeOi8rZzxBIwQriqITlFJqyOrrBGs3kBs2nWPPU0qpwcXfhBc3sZ6OT11tSswhK6jDtzrib6wGDkywmhNzGR7ciy8QikJUA1tMsAGvq22ClTTCKgxSs0cvnttesKXqYtL+BMvliWGfDMOtvaRKqX7W1wnWZ8BEERkrIh7gAuDFPt6nUkpFnAl4rQTL1fHHpkkZQyr11FRV9HNkA1+wyerBimuXYEl6HiOkipLyqmiENaDFhhrwu5LazGsppuLVYioHMPbfWFJKepv5lZ6RJDbp77pKqf7VpwmWMSYAXAu8BmwEnjLGrO/LfSqlVF+QoJdmPLicHX9seoZZ1U7Ldm3uz7AGhZD95TchObXN/NhMa8ibXj/sQAmmnqC7bYKVOmwkjSYGqrUwyAGaa6k3ccTGeNrMbozPIcOvPctKqf7V5+dgGWNeNsZMMsaMN8bc0df7U0qpviD+Jvzi6XR50kirYlltiQ7fOoC3Fq9xkZDQdshbarbVI1O3V1+zNkJBEtpdmBlAHA5KnSOIrdchb+05fDXUSzwi0ma+VRikiqaG+ihFppQaiqJe5EIppQYDCXrx0/nFSrNyrevs+Mq291dIg4bDW0c98bjb9f6ljbLOKQqU62sWLtBoVwmMTT5gWU1sNqlaTOUALl8dje3K2gO47Z7l0l1aGEQp1X80wVJKqR5wBL34HV30YKVlUm/iEB2+dQCnr5YGOfD6YY7kEXjx6GvWTqN9TSeJSzlgWbNdTMWEtDBIOHeg7oCqiwCJdmGQ6t06DFUp1X80wVJKqR5wBpvxS2yny8XhYJ9rOLENxf0Y1eDgCjQccE0nAESocI8goVFfs3D7L8x8YIJFWh4J4qWyTHuxwsUE6jtMsFoKgzRpYRClVD/SBEsppXrAHWrG5+j4GlgtamJGkaLXdTpAZ70LAPVxOaT7SjDG9HNUA1djnVVV0Z2QdsCy2CzrXL8yHfLWRmyonkC7oiAA6Vk5NBs3VGkvqVKq/2iCpZRSPeAONRNwdt6DBeBNzCUruI9QUIdvhYsJNuDtJMEKJI8mm1Iq6739HNXA5a23EqyYxNQDlqXa563Va2GQNhJCDR0mWC2FQWLqdkUhKqXUUKUJllJK9YAn1ETA2XUPljM9j3jxUl6qQ97CxQXrCbg7TrBcGWNJliZ27y3p56gGLn9DNQBxiekHLBs+2iqmooVBwhhDgmkkFHNgURCwepaTtTCIUqofaYKllFI94DFeQt30YMUPt6/rtFOHb4WLN42dJliJdnn7qmJ9zVoEGqsBSEg5MMGKS0iinFQcNTrkrUWguR63BDGxHZyzRlhhEB2GqpTqJ5pgKaVUD8SaZoKuAyvhhcvI0es6HSAUIp4mjKfj3oX0HKtHprFUixC0aLkwc2JyRofLy10jSdBiKq0aaq0hlY5OEixSx5AsjVRW7OvHqJRSQ5kmWEop1R1jiMFHyNV1D1Zm7kQAfDp8q5Xx1uLAHHDR3BaxmdZ1ikKV+pq1aq6hyXhITOh4SGp9fDbpfh3y1qKxtgIAR3zHCVZsltWzXKY9y0qpfqIJllJKdSfgxUkI3N2cgxWbRJWk4KrZ2U+BDXzNDZ1fNBeAmCRqJRlPvRYhaCHeWupIwOmQDpf7k0aTFSon4NPCILD/umEdVV0ESBll/fBRW6LXwlJK9Q9NsJRSqhvG32jduzu4llM7lZ5RJDVpstCi5ZpOjo6u6WSrjhlFUpP2yLRw+utodHQ+HNWZkYdTDPuKt/ZjVANXs13WPi6x4wQrK9cahurXnmWlVD/RBEsppbrha64HQDxd92AB1CWOZaS/WE+otzXXVwPg6mT4FkBTYi7DgyU0+4P9FNXA5vLX0+zouCgIQMJwq1R7RbH2yAD4GuwEK/nAoiDW/DRqSMShPctKqX7SqwRLRH4nIptEZI2I/FNEUsOW/UxEtojIZhE5qdeRKqVUlPgaWhKs7nuwTPoEsqSKsvLyvg5rUGi5ppMnIbXzldLGkC3lFFfU909QA1xMoA6vs/O/tUy7VHtDqRZTAfDbSXxnRUEAylwjiW/QnmWlVP/obQ/Wf4DpxphC4AvgZwAiMhW4AJgGnAz8SUScvdyXUkpFhbe5AQCHp+sqggCeEdaX39Lt6/o0psHCa3/5je0iwYrNHItHguzbrUO4AGKD9fjcnZyzBmSOysNnnAQr9PUCMI3WMNSk9KxO16mNyyHDt7u/QlJKDXG9SrCMMa8bYwL25MdAjv34LOBJY4zXGLMd2ALM682+lFIqWnxNdQA4Y7pPsNJHTwOgYc/GPo1psPDVW19+E1IzO10nZZRV3r62RHtkABJC9QTcSZ0uF6eLMmcW7lod8gYgzVXUm1hiYzuv8ulLGcfIUCleb1M/RqaUGqoieQ7W5cAr9uNsILwvvtiedwARuVJElovI8rKysgiGo5RSkeFrsnqw3LGdnxfTInP0FEJGCJRpsgAQarBKaCelDet0nZYqb74yLdqAMSSbOgKxHRdsaFETM4rkZu2RAXB6q6iTREQ6rroI4B4+EacY9mzf1I+RKaWGqm4TLBF5Q0TWdXA7K2ydnwMB4ImDDcAY86AxZo4xZk5mZue/cCqlVLQ0N9YCEBPfea9CC1dMHHsdWcTUaLIAQFMldSaO1MTOzymSlFz8uHBX68WGg03VuCREKLbjgg0tvEljGBksIRDQwiAeXzUNjq7fmynZUwGo3LmhP0JSSg1xru5WMMYc39VyEbkMOB34utlfNms3kBu2Wo49TymlBh2/nWDFJXZeCS9cZexoUht39GVIg4ajuYoaSSTJ2cXveU4XZe5RJDcU9VtcA1VjVRlJAPFdJ1gMm0jKvufYVVJMbu6Y/ghtwIrx19Lo6vq9OXyclWB59+rFhpVSfa+3VQRPBn4CnGmMaQxb9CJwgYjEiMhYYCLwaW/2pZRS0RJstC6WG5/UeZWycM0p48gO7sEfCHS/8iHO7a2m3tF5wYYWtQl5DPfvGvLl7euqSgFwJXY+pBIgYdQUAMqKtJhKXKAWr6vrv7Gk1EwqScZZpT3LSqm+19tzsO4DkoD/iMgqEVkMYIxZDzwFbABeBa4xxug4BqXUoBRqqgYgPqWbXgWbM3MS8eJl9079Mhfjr6HR2X3Pnz91PKPZS1ltQz9ENXA1VO8DIK6LoiAAGWOsYiqNe/ScosRQLX5Parfr7XPnkFhf1OfxKKVUb6sITjDG5BpjZtq3q8KW3WGMGW+MmWyMeaWrdpRSaiATbw31Jpak+M6rlIVLyskHoLxofV+GNSjEB2rwdlFyvIVr+CQ8EqR0x9AewtVUYxV7SkrrvOQ4QPqo8XiNG6kY2hcbNqEQSaYe4rouCgJQnziGLH9xP0SllBrqIllFUCmlDkkObw11xOPu6jyiMMPHFQDQWKK9Cwmhuh71LiRlW0lp3e6hXd7eV2ddoDo1Y0SX64nTxV7XSOLqhva1sOqqynBJCEnsOiEFCKWNJ5Mqaqor+yEypdRQpgmWUkp1w+mro1E6r4LXXtKwXBqJhYohXqo96CeZ+m4r4gFk5llD3vz7hnYPVqi+DL9xkpbe9TlYAFVxeQxrHtrXwqoqtZ6/O3Vkt+vG2BcB37tde5aVUn1LEyyllOqG219Ho7P7a2C1EqHUnUNiXVGfxTQYNFTuAUBSevDlNzmLGhJxD/EiBK6GUsolDZer2yK/eFPHMzJUSnNzcz9ENjDVVVgFiuPSR3W7blqu1UtaUzy0e0mVUn1PEyyllOqGJ1BP88EkWEBdQh5Z/p1Duipe5V6rd8GT2uF15g9Q6sklaYgXIYht3ke1s2fFVNxZk3BLkD1FQzdhaK6ykvikYd3/jY3Is0q1B/YN7fPWlFJ9TxMspZTqRlywDp+r+4sMhwulj2eUKaesqrpvghoE6st3AZAwLKdH6zckjmXEEC/Vnugrp87ddQXBFqmjrYShYggXUwlUlwCQPmJ0t+t64hLYK5m4q4f40F2lVJ/TBEsppboRF6on5Om+El642JH5OMSwZ9vQ/fLbVGkN30rLyu1mTYsZNpFMqWbvvrK+DGtASw1W0BzbswRr1PhCAJr3bu7LkAa2hn00mhgSk1J7tHpZbB5pjUV9GpJSSmmCpZRSXQn6SaEeE9eziwy3SB8zHRja53sEa0oIGiFzRM96sBJGWhfPLdm2ti/DGrCC3kaSqYek7s9ZA4hNSqeSFJyVQ7dHxtO4l3JHz9+bTcnjyQnsIqgXAVdK9SFNsJRSqguNVdYQJJM0/KC2y7TP9wiWDt3eBWd9CRWSSmyMp0frZ461emTqdw3NXr/yPdsAcKf1LCEF2BczmpSGoVuqPaVpN5WeniWkADJ8CrHip2SIX29NKdW3NMFSSqku1JRZw9xcPaiEF048CZQ6soitGbq9C4kNuyh1dl/drUVaziT8ODFlQ/P6YVXFVjIeN2Jij7dpTB5PdmAnwWCor8Ia0DICJTQl9GwIKkByrtWzXLZ9TV+FpJRSmmAppVRX6u0y0LGpXV/4tSOVcWNIb9oR6ZAGjXTfbmriet4bIy4PJc4cEmqHZlLaXGo977ScyT3fKHMyqdLAnj1D73pYNVXlpFIPaXk93mbkhBkANO/Z0EdRKaWUJlhKKdUlrz1EMDGjZ6XG22ybMoHRod00NPsiHdaAF/Q2MMxUEkjNO6jtqhLGM9w7NJPSYPlW6k0sI0b2PClNzLEu0Lxv29DrkdlbZPV0xmWN7/E2yWlZlJOKs0KHCCql+k7EEiwRuVFEjIgMs6dFRO4RkS0iskZEZkdqX0op1V8CNVaClZrV8y+9LVzDJxMvXop3DL2L57Z8+fVk9vzLL0AgYxLZppSq6pq+CGtA89RuZ69zJDHu7i8y3GLE+FkANO4eeuet1e5aB0C6Xa6+p0pjxpDSsK0vQlJKKSBCCZaI5AInAuFjFE4BJtq3K4E/R2JfSinVn0I1e6gyiWSmHlyZdoDkHPs6RTvWRTqsAa9y+yoAUkdPO6jtYkZOxSGG3VuHXiXBEU1bKY8/uIQ0OSuXeuKQ8qHXI2P2rsNnnIwYV3BQ2zUkTyDbvxMTGprnrSml+l6kerDuBn4ChF8d8izg78byMZAqIgd3lrhSSkVZXP1O9jpH4XDIQW+bZX/x85YMvaIN/t1r8Bkn2RNmHdR2GXYlwdqdQ2vIW1NVKZmmAm/GwSWkiFDiHkNy3dDrJY2r2sxO52g8MTEHt+GwySRKE6V7ivokLqWU6nWCJSJnAbuNMavbLcoGdoVNF9vz2m9/pYgsF5HlZWVD9+KSSqmBKc1bTHXswQ8PBIhNHUkd8Tgrv4xwVANfTPl6ihyjSUlKOKjthudNJWAchEqHVlK6Y8PHACTmHVxCClCXNI4R/p0YY7pf+RBhQiFGNn1BTdKkg942Mdc+b21r+68tSikVGT1KsETkDRFZ18HtLOAW4NavGoAx5kFjzBxjzJzMzJ5dvV4ppfqDCXjJDO3DmzzmqzUgwj7PaJKH2HWKTChITtNGKpLzD3pbhzuGEuco4oZYefv6LR8QMkJewfyD3jaYMYksqigv39cHkQ1Mu7auYxjVhHLnHfS2I8ZblQQbdmslQaVU3+hRgmWMOd4YM739DdgGjAVWi0gRkAOsFJERwG4g/OIUOfY8pZQaFMp2fYETg2vYwZ0XE64uaRwj/bsIhYZO70LplytJoZ7g6K99pe0r48eR2Ty0ktKEko/Z4hxLxrCsg942fpTVI1MyhHpkStctAyBz2rEHvW16Vg41JOAoH7oXAVdK9a1eDRE0xqw1xmQZY/KMMXlYwwBnG2P2Ai8Cl9jVBI8AaowxJb0PWSml+sfeL5YDkD7u4IdttTAZExkuVewdQkOgiz9/DYDsGSd8pe29aRPJDpXQ0NAQybAGLG9jDeOaNlCeMfcrbZ85zjpvrWHX0Cmm4tj6JuWkMnrSzIPf2D5vLWkInremlOoffXkdrJexeri2AH8Bvt+H+1JKqYjz7VyJ17gYM+WrX2UibqQ1TK50+9Cpipe0/TW2yWjyxh/EBXPDeEbm4xTD7q1DI2H44v3niRE/cQVnfKXtM3Mm0GzchMqGRiXBhsZGJtV9QlHGUTiczq/URm3SeEb6h+b11pRSfS+iCZbdk1VuPzbGmGuMMeONMQXGmOWR3JdSSvW1+Mp1FDnHkBAf/5XbyBw7HYD64qFxvkd16U4mNK+leMTXETn4yosAaWOsHpnqIVJJMLDmaSpJZvqRJ32l7cXpYo8rl4TaoXHe2sZlT5EkTSTOPOcrtxHKmEQadVTu0zMXlFKR15c9WEopNWgF/V7ymtZTllLYq3bScybjN07MEOld2PL6AzjFkH30d75yGyPHTSdohMDejRGMbGCqKNnJ9LoP2ZB1Gm635yu3U50wlqzmodEj41nzd/aRzqQjz/zKbSRkt5y3NjSSeKVU/9IESymlOrDl83eIx4tn0sGfRB9OXB5KXSOJrd0WocgGruamBvK2Ps5qzyzGT5nxldvxxCVQ4hhBTNWhX95+y4u/xUGI0Sdc06t2/OmTGMU+amurIxPYALVl9fsUNq9gW96FOFyur9xOln3eWv0QOm9NKdV/NMFSSqkOVK95mYBxMGnuyb1uqyouj2FDoHdh3TP/yzCqcR51Y6/bKo8bS0bToV1JsGTrWmbueYoVKScwemJBr9qKsc/127Pl0D3Xz4SCBF/6CZUkkX/Wj3rVVlbOeBpMLKZMKwkqpSJPEyyllGrHhEJk73mddZ5CUocN73V7vtTx5IT20NjcHIHoBqa9RRuZvmUxn8YtYPqCr1asIVxz2kSyg3vw+7wRiG7gCQWDVD19LV7cjFn0u163l5Fn9cjUHsI9Msv/eQ+TfevZNO1GUtKG9aotcTjY4x46560ppfqXJlhKKdXOl8vfICe0m+ZJZ0WkPdeIKXgkSPHWQ/OcIm9TPfWPX0wAFzkX3hORNl3D83FLkD3b1kekvYFmxaM/YWrzKtZN/RHDs/N63d7IsVPxGyeB0kPzb+zLVe9RsOYO1nlmcMS5P4xIm9UJ4xjuPfR7lpVS/U8TLKWUaqfx/T9RYxKYfvJ3I9JeSq51Qn3VrkOvkmDA52Xj/Rcyzr+F9Uf8jlGjv/pFmcOljLaGzFUWHXpFCD5+6k7m7vwrH6ecypHf7P1wSgCXJ4Y9zlHEVh96PTI7Nq4g7flvUy0pjPzuP75yafb2gumTyKKS2uqKiLSnlFItNMFSSqkwlSXbmVbzLmuyziAxKSUibY4YZyULvkOsKl5TfQ1r7z6LmfXv8tGEH3H4KRdHrO3siYWEjOAtOXReMxMK8snDP+GIDXewOu5wZl39EOKI3L/hivixDDvEzlvb+NHLJC09GwDvBU+TMTwnYm3HjpoKQMmWVRFrUymlQBMspZRqo+jZWzHA6JOvj1ibsUnpVJCGq/LQ6V3Yuflzyn4/n8LGj/kk/2fMv/jWiLYfn5BMiSMLd+WhUd6+umwPa+86hcN3PMCnySeSf/2LxMR+9eurdcSXOoFRob14mxsj2m40BAMBPvz7rUx89SLqJYmmi/7Vqwt+d2TYWOu8tZpdh+YwVKVU9GiCpZRStp0bP2NG2b/4ZNi5jBmfH9G2S2PGkNIw+HsXvN5mPv77L8j6xwkkhmpYfewjHL7o5j7ZV1lMHmmNg7u8vQkF+fz5e+D+uUxpWM6Hk3/G3OuX4omJjfi+3COm4pIQxVsGd6GLTSvfY/tvD+dr2/7I2qT5pFz3PrkTe3c9uo6MzJuC17gJlW6KeNv9yd9YzeY3HsZ3CCTWSh0qvvpFJJRS6hBign68z11LvcQz9YL/jnj7jcnjmLDvNULBEA7n4Ptty4RCrHnzH6R8+L8cYYpZkbCA3IvuZ3YECjR0pjFlAlP3riAU8ONwuftsP31l3fsv4lp2B7MCm1jvmkbsuffwtalz+mx/w8YWwHIoL1rL+Onz+mw/fWX39s3s+OdtHF7zClWSwmdz/485p1we0WGU4ZwuFzuc2cTVDM7rrfmam1jz4j2M23A/k6lh+cpnmHjVElKSk6MdmlJDniZYSikFrF/6K6b7N/H+zN+xIHNkxNuXzEmklj3H7pJdZOeMiXj7fcWEQqz/8N943vkNM/wb2enIZt3CP3PYcd/q831L1hQ8pQFKdmxi5PjeXSeq3xjDpk9fI/TWb5juXU0pGXw643847MxrcPZxYj1qfAEhI/hKBlcxlaLtX1Dy0m85rOx5MhFWj1rE5At+w9yUjD7fd1XCWEbWD67Xq7KmjjX/uo/8LX9hDhWsc01nS9xc5tW9wRd3H8Xe8//O5PzI9/gppXpOEyyl1JBXsuEDpmz+M+/FHcv8M7/XJ/tIypkKG6B025pBkWCFfM1sfuNhYlc+yPTANvaRzgf5v2TeuT9ktNvTLzEk506HtVBetGbAJ1ihgJ91bzxG7PLFTAlsppwUPpp0E7POuYF5cQn9EoM7NoE9zuF4qgb+uX7GGD7/ZBned+9hTsM7ZAMrM05j3Hm3MTs7MpUoe8KXNokRtctobqwjNj6p3/b7VWzZtpWiV+9lRulzHCM1fOGZyt4Fd1O44AzE4eDL959jxBvXYp48mXfm3slRp12EiEQ7bKWGpF4nWCLyA+AaIAi8ZIz5iT3/Z8B37fk/NMa81tt9KaVUpAWa6wk9+z3KJY3xly3G4eibLyTDx1m/KDfs3gD0/kK8faWxqoQvX/ojo7f+g3xTwzbJ5aNpv2LWaVcyPz6xX2MZNXEmAM17Bm4PQ31NJRtfupfRXz5GoSljl4zkoyk/Y8bpV3NkYmSqUB6MyrixZDQO3HP9Gr0+PnntSdJWP8js4FoaiGVt9iLGnPojDs+Z2O/xeEbm49hp2L1lDeML5/f7/rsTChmWf/gGvg//xLyGd5ggQTYlfw3vMT9g0uxTICyBmrjgXKryplHz6IUcvfwaXi/6hIVX/B9xsf3zg4hSar9eJVgicixwFjDDGOMVkSx7/lTgAmAaMAp4Q0QmGWOCvQ1YKaUiad0j1zEzuJsPFzzM10aM6LP9pAzPo5FYKB+YVfH2fbmCva//nillrzKDAJ+55+CbcxVzjzuXce7IXHfoYKWlpbOXYTjLN0dl/10p3rKO4tf/SEHpi8yVZta6C9k++zYOO+ECcl3RGxziT5/IxPrPqKlvIiUxLmpxtLentJT1L/+ZSTue5FhKKHMMY+3UHzPp1GuZnZgWtbgy8grgE6gqWgsDKMFqaGxi+SuPkLH+YeaFNtNAHBtzvkneKdczJafzAjxpOZNJ/vH7rH/oe5y47++suGstwy59jDG5uf0YvVKqt/8FrgZ+a4zxAhhj9tnzzwKetOdvF5EtwDzgo17uTymlIubLD55j5t5nWJb+TY45/ty+3ZkIJe5cEusGTu+CCQXZ9uFzBD64n8lNn5NoYvgo9TTSj/sBcwrnDIjhRaWxeSTXD4xKgqFgkHXvPU/okwcobPyU4ThYlXIcScdcR8HshdEODwBPdiExu/7Ol1+sJGV2dBMGYwzrVy+n4u37OKz6VU6QZrbFTmXbvJ8y9qiLyHRFv2cle/x0/MaJt2RglGrfXbyTL1+5j/zdT3E0VexxjmJt4S1MOfm/mBGf2qM2nDHxTLv6cb545T4KPr2N8r8ew8fHL+aIhSf0bfBKqVa9TbAmAQtF5A6gGfixMeYzIBv4OGy9YnveAUTkSuBKgNGjR/cyHKWU6pm6qlLS/vMjtkkuh11+d//sM3EsWVWfY4yJavLia6xl4yt/JnP9I4wP7WEvGbyVew2TT72Go0d2+FEdNd7USUwueRqfz4/HE51KgvW1Vax/eTEjv3iMwtBuyknlk9FXMPGUHzB31MA6ny5jynz4GOq2fgxRSrB8/gAr3niSmJUPMdu/Eh8uNg87kawTfsC4KV+LSkydcXti2e4aQ0Jl9BIsYwzrV35A7bJ7Oaz2TbLFz8b4OdTNv4YJR57NqK9SRVGESaf+gNKxh+F6+hJmvXEBr2+/ka9fdHOfF1tRSvUgwRKRN4COxs383N4+HTgCmAs8JSLjDiYAY8yDwIMAc+bMMQez7aEmGPDTWF+Dt7mR5uYmvM3NhPxegn4vJuAjFLDuTaCZUDBI0BhCIQiG9o+8dAgIggjWFziHC+NwgcONON043R6cbg8utweXy4Pb48blisHl8eB2x+CKicXjicHjicXhjM6wIKX6w8ZHfshMU0vpGY+TlNg/J7eH0ieSXfU6ZRWVZA7r+wpp7ZXv/pKil//A5N3PMYNGNjgmsaXw/3HYyZdyXPzAGU4WzjMyn9i9fr7cuoGJ+TP6dd/FX65h9+t/ZNq+lzhcmtjsmszymf+PghMv4cgIXyQ4UoaPnkIVSbhLVvb7vivK97H+5T8xbts/OJJSyiWdVROvZdKp11KQFvnKnJFSmTqVseXvEAyG+jX58Pl8fP6fx0n4/K9MD6yniRjWjziTnJOuI39cZP7Wh+d/jebrPmTHX77Fidv+H8vvXMbwbz9Ibm5eRNpXSnWs2wTLGHN8Z8tE5GrgOWOMAT4VkRAwDNgNhA/4zbHnHdJMKEh9TTk15aXUV++jsboMX105oYZKHM0VOJurcPrqcPrrcQcb8QQbiQ01Ek8T8aaJWPGTBAyUOkZ+48SPi4C4rHtcBMRNQNwExUVQ3AQdbkL2vXG4CTncGIcH47SmjSvGTu484PQgLg/iirHvPYjTDfYyXDFgT4vTWuZwCOJwIOLA6RBEWh47cDitaYc4QASDgIAxYMRhT7fMMIB1b1ofh9rMx4AhZE2HrPnGWOuZljaMwdAyDaHWNkIQMpiWfYRC9vZgMIgxGGhtx4AdS8h6sdvMs9pp2Udr3K3rtcRqP4eWdjto327Afmzdi7Wldd8yu4Pj3zKvJ+u07qbl9W6/vd1bc8D6HTRmsNbvcL8GTFjHj+kgqPZxW8+07TJHwz5OqXmVT3Iu4/DDFnTwzPpG/JhZsBV2bfyEzIWn9s9OjWHLyjepX3Yv02vfZSawIuEo3AuuYeYRJ/RZUY9IyZx0OHwOZZs+7JcEKxQMsv69f8Iniylo+ows42R1ynEkH30Nkw87ts/331vicLAjdgoZ1Wv7bZ9b1i+n7I17KKx8laPEyxcx09gw5xamHPMthvVTxcnekFGzSa/4N9u3bWTsxGl9vr+Ksr1seulexhc9yeGUUyJZrJhyI/mnXsPs5Mj/8BKbksWkH73Oqmf+l4L1d9Pw1wW8PfXHLDzvWlxRPF9woAr5vTQ11NHcWE9zUz3epgZ8TfX4mhvwexsJNjcQ8jVCoAnxN0OgCYJ+CPoxQT+ErJsEA9Z9KIiYAM5QAAcBnCaAmP3fEQ74P21N0PLJLOwf8WAQ+/uNAyPOsMdhN5wYkdbltKzraHnsAIcTxJqPOFpv4rCWizggbJk4WtZxIg5B7GXi2N+WhK0nTiciztZ5Ig6MwwkI2HG0fC9oHc0hDvv5sn9Zy6sgQjAmlewpc8lMiumDox55vX1nPQ8cC7wtIpMAD1AOvAj8Q0R+j1XkYiLwaS/3FTUmFKKmvITKvUXUle2iqWo3oZoSpH4vcc1lJPjKSQ1WkG6qSRLTYYIUMA5qJIkGScTrjMfvjKfRM5I6VzxBdyJBdwIhdyLiSUA8cTjdsbjcMYg7BofTg7itJMThjsXh8uBwunA5rKTD4bD+BFu+ToeMWF/STQjT8gYPBggGfAQDPkIBv/3YT8ieDgV9mIAfE/RhAl7rwyLgg6APCfntex8S9OMI2Tfjxxny4Qj6cQcacRo/LhPAZfy48OM2AVwEcNs3j2iNEzVwlDhGMuNbkb+gcFdyp8+Ht6B266fQxwmW39vEutcfJmn1Q0wIbKHGJPDxiAvJPek6Dh83uU/3HUmjJh1GA7EEd3yMddpv36ivqWTDK39m5ObHKTB7KCOND3OvZNKpP2DuyME1fL05axaFO/5CTXUlKanpfbKPYCDA6reexL38LxT4VpFr3KzPOIHMr/+QSdOO7JN99pWM/IWwFsrWvd2nCda29Z/aiehrzBcfG2JmUn74fzP1qPMZ2deJjsPBzPN/Ttm206hd+l8cu/FXbP7N36mZdyOHnXABzkNkxIoxhvr6Wuqr9tFUXUZzbRn++gr8DdUEm2sxTTWIrw6Htw6nvw53oIGYYD1xoQbiTSMJppFY8ZMAHOzFFXzGSRAnAZwExdV6H8RFUJwEcBESa52QtLze0pJR7G8obPh4CGn9DRj7x1oHIetmQkj4fevj/euIse6dhM8P4sDgMCHr3l7XKQN7ENmy4AyKY57k9MJR0Q6lR3r7jv4b8DcRWQf4gEvt3qz1IvIUsAEIANcMxgqCK15+iPTlfyQruJdU8ZLabnklyVQ7M6h3D6MyaRJfxGfhSBiGK3EYsSmZxKdkkpiWRWLacOKTUslwOOj/QUHRZ4zBFwxR5w/g83rx+734vc0E/F4Cfh/G77UTOyuha/PY7iUyIesWakkcQ8Z6HAra57MYu3fG/rWHlmmDQRARjAhiL8VhrWn9ioL1WFrm2Y9bpu0eMms1+7F9a1lHHA7rXqw2paV9e8hm6zatj+1d4bDnW21bm0nrLzqt7dlDPgWxQ7bbYH9s4nC0/vLTurwlvvDn2DKvdV1LeD9G6w9KtFsY9gvbAeu0n2c6Xqfl17rwU5Da7yf8l7v9i1peEw7ouhJ7h9JuT+FttL6m9vwRaWOQmP4tO56QPop9kklsad8N36rcu5MtL9/DhJ1PMYsaiiSHD6f8nIJTr2RBcmqf7beviNPFzvjpjKpZ0Sfnru3+chW7X7+HafteYp40s9E1hc9mXE/hiZfwtZiBOWyyO8kTjsCx80G2r3qHmcecE9G2ayrL2PTy/eRufYLZZp91IeVx1zDl1B8we9jAHQbYldzJh1FFEhS9B1wb0baDgQBr334K1/IHmO5dxSjjZl3GyWSdcB1T8+dGdF89kTluJsN++iFrX/0rmZ/dxeSPv0/RJ3ewa/Q5jD/uUkaNmdTvMXXKGHxNddRU7KW+qrQ1YQrUlxNqqECaqnA1VxLjryY2UEtSsIZkU0eS+DodCRQ0QoPE00g8Tc4EvI54mj0Z1LvHEHAnEnAnYTxJ4EnA4YnHGROPKyYeV0wC7rgEPLH2LS4BV2wCrpgEPDHxeDwePIfCuW0t36tCQYKhIKFQkFAwRMieJhhqnW/s+dYthLHvQ8EAxljLWr67mVAAE7JH+5gQYoL2oKD2vXdm/zxM6yJjDBmeFArGDZ5v0b1KsIwxPuDbnSy7A7ijN+1HmzsumerYbEoTj4DUMXjSc0kYlkPaiDGkZ2WT7omlb34bPLSICDEuJzEuJ8QNjq5dpfrK7pRZTKz+hEAgENHhOdtWvUP12/cyvfot5hBiddw8dhxxFTMWnk3eIP/H35B7NPmb/48d2zYzZvyUXrdnQkHWv/MMfPIA05tXkGlcfJ7ydVKOuYYps44aENUTe2Ps7OPxvummcf3LEKEEa9uGTyl7414KK17lcPGxwT2d0tm3UHD8RQwfBMMAu+JwOilKOoxxNR8TCgRwROB9WV2xjw2v/JkxW59gpillL8P4eNwPyT/tGuZk9N3lIHpCHE4KTv0vgid8h9WvP0z86kdYuOM+ePg+vnSMo3zYXDxj5zNs3Ayyx+bj8kTm/3YwEKC26v+3d9/hcZVX4se/Z5p6782W3IvkhhuYHnonECBLqJuwpGwSQpJNg5Bk+aWQTbKksRAIkBBK6KGGGqoNbrj3IsnqvU5/f3/MSJZlyZatGY1mfD7Po8dz23vP6NUd3zNvuY10NNfR01aHs70Rb2cD/q4mpLcZW28LDncrCd42UnxtpPo7iBcPOUDOoLL8RmiXZDolhR5bOl1xebQ6ZuBPyICETCxJWViTs7Cn5BCfkkVSWhZJKRkkp6aTarWQGpJ3FINEEKsNsdqI7v81Ik/MUIMYImThwoVm5cqVkQ5DKaXC5pMX/sDcld9l3QUvMGfh6Kb29ridbHztYRLX3s80zxa6TAKf5FxA0VlfpXTanBBFHHkNezaQ++Ay3im7hZOvu+Ooy+loqmPLq/9H0Y6/UWTqaCCT7ROuYOp5XyE3P7aeE7T+F2eR1bOLvNu2HnX3L4/byfo3/kbcmj8z270Op7GzPvMsMk7/T6ZURFc3wMP56IX7WLzym2w+5zFmLj33qMvZseYdWv71RypaXydB3Gx2lOOc/3nKz7ga+zhORGt2b2bfe38lqfo9Jjk3Ei8eIDAWu86SR5ctA1dcJi57emBsdXCstBFBfH3DCLyI34PV24PN04XD10WCr4sEfxeJpodkeoc9f6dJoMOSSqc1nV5bOu64DLxxWZikLCxJ2ThSAj2DkjLySMnIJT0jG5s9MrOKKjWQiKwyxiw8aL0mWEopNXa6W2qI+9/ZfFjwOU66+bdHVUbNrk1Uvf5HptQ8RxbtVEkBlVOvpfzcm0nLiM129R13Lsbm7abkB+uPaKY34/ez/eNX6frgT5S3vY1DvGyyzaJz7o3MO+sa4uLiwxh15Kx66U8c99GtrD3pXuZ96sojOrZm92aqX/8DU/Y9Rybt1EoOlZM+y4zzvkxahFtfwqWnqw3fXTPYnnYCC77x9JEd293Bpn/+mfSNDzPFu4MeE8fG7LPIOe3LlJZHXyLq7O1m39ZVtOzZgKd+C/Gde3C4W0nytpHi78BOYLy1Ay8W/ARGXdvwSGDUtVsc9FiScVmTcFuT8dhT8MelIvFpSGImtpRs4lJzSUjPIzkzj7TMfBISx+esnEodjiZYSik1Tqz/+Vnk924j6dsbSEwc2Tgwt8vJ5rcexbb2YWY7V+M1FtYnLkUW3UDFKZfFzCD14ax54Y/MX/kdViz4BUsu+o/D7t+0bzu73nyY/N1PM8FfTYdJZEPOeeSc8h9MrVg8BhFHlsftpOWns+i0pFP23Y+wHqbbW29nKxvfeIS4TU9S4V6D11j4JHEploU3MOeUTx/2+Fjw/h++yNL6R6m+4hUmzl56yH2N38fWFa/QseKvzGx9ixTpZbdlAvXT/o1Z59xEanr0jBU5Wn33j9HepVap0dAESymlxoltH77AtFev5oOJX+SEG3427H5+r5ety1+ka/UTTG95i1S6qSWbXSWXMensmykoPqLHDkY1v9fLzp8tIddbS+sVz1A6a8mBOxhDQ+UW9q54jrSdzzPNFXhw7GbbDNpmXk3F2deTnHxsjbz4+IU/sWjlrazMvoQFN/8Ji+3ALlWdzTVs+/AFLFv+wazOD4kTDzWSR9WES5h45s3kH0N/XwAtjXWY3y+m15JE4r//g8yiKQds93lc7Pj4n7R98gJlDa+Ra5rpNvFsyjiN5OOvZ8ais4ITHimljhWaYCml1Diy+pcXMafzXdbO+hbzLvpPbAkpGL+Ppn07qV3/Ft7tb1La+iGZtNNt4tmYdjKO+Vcw+8RLsB+jYw/27dqM/eHzSDcdbE1bhjtrJnhdWNr3UNC5kXzTAMBOmcC+kvOZcPI1lE4J/3ONxrP3/vhlTqz/K3WWPGoyl+B3JGPvriOtayelvr0ANJHO1qwzSFv8b8xaeBqWKJ8UZTQ++eBVJr96HQ7xsC3leFwpJRhXF6mdOyh27SRRXLiNjU0JC3DNupyKT32WxKRjK3FXSu2nCZZSSo0jPV1tbPvd5cxzfozHWOmwpJJouknADUCrSWFHynGYmZdQfurlJCaNl0eQR1ZDTSXb/n4bU1reIV9a8BoLNZJLQ8JkektOYsLC85gwdY52WwoyxrDi5b9gW/sQk11bicNNs2TQHF9CR+5CsueczfR5Jx0TXQBHate2jVS9/D9Man2PLNNGr8RTayuiI30WtimnMfOEC0iJwkceKKVCTxMspZQaZ/w+P6veeZ7uLa9jd7bitydhyZlG+uRFTJ27DIddb3qHY4yho9uFw2YhIX78zs42nhhj8BuwWjT5HCmf3+jvSyk1rOESLP3fWymlIsRitbDotEvgtEsiHUrUERHSkmNzBsBwERGsmiscEU2ulFJH49jtaK2UUkoppZRSIaYJllJKKaWUUkqFiCZYSimllFJKKRUi42qSCxFpBPZGOo5BsoGmSAehxozW97FD6/rYoXV9bNH6PnZoXR9bxmN9TzTG5AxeOa4SrPFIRFYONTuIik1a38cOretjh9b1sUXr+9ihdX1siab61i6CSimllFJKKRUimmAppZRSSimlVIhognV490Y6ADWmtL6PHVrXxw6t62OL1vexQ+v62BI19a1jsJRSSimllFIqRLQFSymllFJKKaVCRBMspZRSSimllAoRTbAOQUTOEZGtIrJDRL4T6XhU6IhIiYi8JSKbRGSjiHwtuD5TRF4Tke3BfzMiHasKDRGxisgaEXkhuFwmIiuC1/fjIuKIdIwqNEQkXUSeFJEtIrJZRI7Xazs2icgtwc/wDSLyqIjE67UdO0TkARFpEJENA9YNeS1LwN3Bel8nIgsiF7k6UsPU9V3Bz/F1IvKMiKQP2PbdYF1vFZGzIxL0IWiCNQwRsQK/B84FZgGfFZFZkY1KhZAXuNUYMwtYCnw5WL/fAd4wxkwF3gguq9jwNWDzgOWfA782xkwBWoF/j0hUKhz+F3jFGDMDmEug3vXajjEiUgR8FVhojCkHrMBV6LUdSx4Ezhm0brhr+VxgavDnJuCPYxSjCo0HObiuXwPKjTFzgG3AdwGC92tXAbODx/wheN8+bmiCNbzFwA5jzC5jjBt4DLg4wjGpEDHG1BpjVgdfdxK4ASsiUMcPBXd7CLgkIgGqkBKRYuB84E/BZQFOB54M7qJ1HSNEJA04GbgfwBjjNsa0odd2rLIBCSJiAxKBWvTajhnGmHeAlkGrh7uWLwYeNgHLgXQRKRiTQNWoDVXXxph/GmO8wcXlQHHw9cXAY8YYlzFmN7CDwH37uKEJ1vCKgKoBy9XBdSrGiEgpMB9YAeQZY2qDm+qAvEjFpULqN8C3AX9wOQtoG/DBrdd37CgDGoE/B7uE/klEktBrO+YYY/YBvwQqCSRW7cAq9NqOdcNdy3rfFttuBF4Ovh73da0JljqmiUgy8BTwdWNMx8BtJvAMA32OQZQTkQuABmPMqkjHosaEDVgA/NEYMx/oZlB3QL22Y0Nw7M3FBJLqQiCJg7sYqRim1/KxQUS+T2BoxyORjmWkNMEa3j6gZMBycXCdihEiYieQXD1ijHk6uLq+r0tB8N+GSMWnQmYZcJGI7CHQ1fd0AmN00oPdikCv71hSDVQbY1YEl58kkHDptR17zgB2G2MajTEe4GkC17te27FtuGtZ79tikIhcD1wAXG32P7x33Ne1JljD+xiYGpyNyEFgMN3zEY5JhUhwDM79wGZjzK8GbHoeuC74+jrgubGOTYWWMea7xphiY0wpgev4TWPM1cBbwOXB3bSuY4Qxpg6oEpHpwVWfAjah13YsqgSWikhi8DO9r6712o5tw13LzwPXBmcTXAq0D+hKqKKQiJxDoHv/RcaYngGbngeuEpE4ESkjMLHJR5GIcTiyPxlUg4nIeQTGbliBB4wxd0Y2IhUqInIi8C6wnv3jcr5HYBzWE8AEYC9whTFm8ABbFaVE5FTgm8aYC0RkEoEWrUxgDfA5Y4wrguGpEBGReQQmNHEAu4AbCHyhqNd2jBGRHwFXEug+tAb4PIGxGHptxwAReRQ4FcgG6oEfAs8yxLUcTLJ/R6CbaA9wgzFmZQTCVkdhmLr+LhAHNAd3W26MuTm4//cJjMvyEhjm8fLgMiNJEyyllFJKKaWUChHtIqiUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUkoppZRSIaIJllJKKaWUUkqFiCZYSimllFJKKRUimmAppZRSSimlVIhogqWUUuOMiJSKiBERW6RjUccGEdkoIqdGOg6llIoFmmAppZSKeiJyj4h0BX/cIuIZsPxypOMb74wxs40xb4eyTBF5MFgXXQN+rKE8h1JKjUdijIl0DEopFVNExGaM8Y7i+FJgN2AfTTnHKhG5A5hijPncENtGVTdjKZpiHYqIPAhUG2N+EOlYlFJqLGkLllJKhYCI7BGR/xKRdUC3iNhEZKmIfCAibSLyycAuWCLytoj8VEQ+EpEOEXlORDKHKfsGEdksIp0isktE/mPQ9otFZG2wnJ0ick5wfZqI3C8itSKyT0T++3AtCCIyWUTeFJFmEWkSkUdEJH3AthYRWRBcLhSRxr73JSIXBbuatQXf38xBv59visg6EWkXkcdFJP7If9NHbpi6MSIyZcA+D4rIfw9YviD4O20L1uGcEZ7rVBGpFpHvBX9/e0Tk6gHbzxeRNcG6qgomg33b+rqG/ruIVAJvBtf/XUTqgr+3d0Rk9qC4/yAiLwdbiN4XkXwR+Y2ItIrIFhGZP8Lf0RkjeY9KKaUOTRMspZQKnc8C5wPpQB7wIvDfQCbwTeApEckZsP+1wI1AAeAF7h6m3AbgAiAVuAH49YAkZzHwMPCt4HlPBvYEj3swWO4UYD5wFvD5w7wHAX4KFAIzgRLgDgBjzE7gv4C/ikgi8GfgIWPM2yIyDXgU+DqQA7wE/ENEHAPKvgI4BygD5gDXDxmAyInBxGa4nxMP8x6G0l83h2sVCiYkDwD/AWQB/wc8LyJxIzxXPpANFAHXAfeKyPTgtm4C9Z4ejOeLInLJoONPIfC7Pzu4/DIwFcgFVgOPDNr/CuAHwXO6gA+D+2UDTwK/GmHcQxKR7xyqPg5z+JeCSfkqEblsNHEopVS00ARLKaVC525jTJUxphf4HPCSMeYlY4zfGPMasBI4b8D+fzHGbDDGdAO3AVcM1cJkjHnRGLPTBPwL+CdwUnDzvwMPGGNeC55nnzFmi4jkBc/1dWNMtzGmAfg1cNWh3oAxZkewLJcxppHAzfkpA7bfB+wAVhBIDL8f3HQl8GLwWA/wSyABOGHQ76fGGNMC/AOYN0wM7xlj0g/x896h3sMwBtbN4dwE/J8xZoUxxmeMeYhA4rL0CM53W/B3+C8CifYVAMaYt40x64N1tY5AUnrKoGPvCNZZb/CYB4wxncYYF4Fkd66IpA3Y/xljzCpjjBN4BnAaYx42xviAxwkk10fNGPOzQ9XHIQ69m/2J4W3AgyKybDSxKKVUNNAESymlQqdqwOuJwGcGfdN/IoGkZKj99wJ2Aq0OBxCRc0VkebAloI1A4tS3Xwmwc4hYJgbLqx1w/v8jcLM7LBHJE5HHgl0KO4C/DhHTfUA58NvgTT8EWrz29u1gjPEH31/RgOPqBrzuAZIPFUuIVR1+l34TgVsH1V0Jgfc4Eq3BpLnP3r5jRWSJiLwV7FrZDtzMwb/f/lhFxCoiP5NA188O9rdODjymfsDr3iGWx/L33M8Ys9oY02yM8RpjXiLQ8vbpSMSilFJjSRMspZQKnYGzBlURaKEa+G1/kjHmZwP2KRnwegLgAZoGFhjslvYUgRahvGCLwUsEuvL1nWfyELFUEWh1yR5w/lRjzOwh9h3o/wXfR4UxJpVAS1zfuRCRZOA3wP3AHbJ/3FgNgcSkbz8Jvr99hznfQUTkJDlw5rnBPycdvpSDDJ7RqQdIHLCcP+B1FXDnoLpLNMY8OsJzZYhI0oDlCQR+PwB/A54HSowxacA9DPj9DhHrvwEXA2cAaUBpcP3gY8ImOJ5s2Po4gqIMYxi3UkpFiiZYSikVHn8FLhSRs4OtEPHBCRCKB+zzORGZFRzP9GPgyWC3roEcQBzQCHhF5FwCY6n63A/cICKfEhGLiBSJyAxjTC2BroT/IyKpwW2TRWRwd7TBUoAuoF1EigiM7Rrof4GVxpjPE+j6dk9w/RPA+cE47MCtBBK8Dw73ixrMGPOuMSb5ED/vHmmZQ1gL/Fuwbs7hwG569wE3B1ubRESSJDA5RQr0Tyzx4GHK/5GIOILJ4AXA34PrU4AWY4wzOH7u3w5TTgqB32MzgYTw/x3BewwJY8z/O1R9DHeciFwuIsnBv72zCCTrz49d5EopFRmaYCmlVBgYY6oItDx8j0ByVEUgWRn4ufsXAhNR1AHxwFeHKKczuP4JoJXADfnzA7Z/RHDiC6Ad+Bf7W5KuJZCgbQoe+yQHdlEcyo+ABcGyXgSe7tsgIhcTmKTii8FV3wAWiMjVxpitBG6gf0ugFe5C4EJjjPsw54uUrxGIsQ24Gni2b4MxZiXwBeB3BH5vOzhwQo4S4P1DlF0XPK6GQLe4m40xW4LbvgT8WEQ6gdsJ1OuhPEygi+E+AvW4/HBvbBz5GoG424C7gC+YED9rSymlxiN9DpZSSkWAiLwN/NUY86dIx6JGLjgr4ifAnOBkHoO3n0qgXosHb1NKKXVssEU6AKWUUipaBFvkZh52R6WUUscs7SKolFLHGBG5Z5gJC+45/NEqGonIhENMVDEh0vEppVQs0S6CSimllFJKKRUi2oKllFJKKaWUUiEyrsZgZWdnm9LS0kiHoZRSSimllFKHtGrVqiZjTM7g9eMqwSotLWXlypWRDkMppZRSSimlDklE9g61XrsIKqWUUkoppVSIaIKllFJKKaWUUiGiCZZSSh2C32/w+3W2VaWUUkqNzLgagzUUj8dDdXU1Tqcz0qGoKBMfH09xcTF2uz3Soago5fV6+f0vb8OXlMstX/k6IhLpkJRSSik1zo37BKu6upqUlBRKS0v15kaNmDGG5uZmqqurKSsri3Q4Kkrt+ORdvub8Azhh897LmVlaEumQlFJKKTXOjfsugk6nk6ysLE2u1BEREbKysrTlU41K897N/a9rVr0SwUiUUkopFS3GfYIFaHKljor+3ahRa9kNgBsbtsp3IxyMUkoppaLBuO8iqJRSkRLXuZc6sumMLyCzc2ukw1FKKaVUFIiKFqxIExFuvfXW/uVf/vKX3HHHHZELaIDly5ezZMkS5s2bx8yZM/vjevvtt/nggw+Outy9e/eyYMEC5s2bx+zZs7nnnntCFLFS0SPNWU2DLZ/ujJlM8u2m1+WJdEhKKaWUGuc0wRqBuLg4nn76aZqamkJarjEGv98/qjKuu+467r33XtauXcuGDRu44oorgNEnWAUFBXz44YesXbuWFStW8LOf/YyamppRxapUtIn3ddFrTcVaMIckcVG5Y1OkQ1JKKaXUOKcJ1gjYbDZuuukmfv3rXx+0rbGxkcsuu4xFixaxaNEi3n//fQDuuOMOfvnLX/bvV15ezp49e9izZw/Tp0/n2muvpby8nKqqKr71rW9RXl5ORUUFjz/+OBBIkE499VQuv/xyZsyYwdVXX40xBz+Lp6GhgYKCAgCsViuzZs1iz5493HPPPfz6179m3rx5vPvuu4eM85prruH4449n6tSp3HfffQA4HA7i4uIAcLlcwyaCd999N7NmzWLOnDlcddVVALS0tHDJJZcwZ84cli5dyrp16/rPdd1113HSSScxceJEnn76ab797W9TUVHBOeecg8cTaB348Y9/zKJFiygvL+emm2466H37/X5KS0tpa2vrXzd16lTq6+sPVY1KHTG734XXGk9GaTkAjXs3RDgipZRSSo13UTUG60f/2Mimmo6QljmrMJUfXjj7sPt9+ctfZs6cOXz7298+YP3XvvY1brnlFk488UQqKys5++yz2bx58zClBGzfvp2HHnqIpUuX8tRTT7F27Vo++eQTmpqaWLRoESeffDIAa9asYePGjRQWFrJs2TLef/99TjzxxAPKuuWWW5g+fTqnnnoq55xzDtdddx2lpaXcfPPNJCcn881vfhOAf/u3fxs2znXr1rF8+XK6u7uZP38+559/PoWFhVRVVXH++eezY8cO7rrrLgoLCw96Lz/72c/YvXs3cXFx/QnPD3/4Q+bPn8+zzz7Lm2++ybXXXsvatWsB2LlzJ2+99RabNm3i+OOP56mnnuIXv/gFl156KS+++CKXXHIJX/nKV7j99tsBuOaaa3jhhRe48MIL+89psVi4+OKLeeaZZ7jhhhtYsWIFEydOJC8v77D1qNSRcBgXPmsC+aWBzwh3w/YIR6SUUkqp8W7ULVgiUiIib4nIJhHZKCJfC66/Q0T2icja4M95ow83clJTU7n22mu5++67D1j/+uuv85WvfIV58+Zx0UUX0dHRQVdX1yHLmjhxIkuXLgXgvffe47Of/SxWq5W8vDxOOeUUPv74YwAWL15McXExFouFefPmsWfPnoPKuv3221m5ciVnnXUWf/vb3zjnnHOGPOeh4rz44otJSEggOzub0047jY8++giAkpIS1q1bx44dO3jooYeGbCGaM2cOV199NX/961+x2Wz97+maa64B4PTTT6e5uZmOjkBifO6552K326moqMDn8/XHW1FR0f/+3nrrLZYsWUJFRQVvvvkmGzduPOi8V155ZX9r32OPPcaVV155yN+5UkfDYVz4bfHYUnLoJAlb685Ih6SUUkqpcS4ULVhe4FZjzGoRSQFWichrwW2/Nsb88hDHHpGRtDSF09e//nUWLFjADTfc0L/O7/ezfPly4uPjD9jXZrMd0K1u4POYkpKSRnS+vi56EOj+5/V6h9xv8uTJfPGLX+QLX/gCOTk5NDc3H7TPcHHCwdOZD14uLCykvLycd999l8svv/yAbS+++CLvvPMO//jHP7jzzjtZv379iN6TxWLBbrf3n8tiseD1enE6nXzpS19i5cqVlJSUcMcddwz5LKvjjz+eHTt20NjYyLPPPssPfvCDQ55XqaMRjwu/NQFEaHQUk9JTGemQlFJKKTXOjboFyxhTa4xZHXzdCWwGikZb7niUmZnJFVdcwf3339+/7qyzzuK3v/1t/3JfV7jS0lJWr14NwOrVq9m9e/eQZZ500kk8/vjj+Hw+Ghsbeeedd1i8ePGIY3rxxRf7xyht374dq9VKeno6KSkpdHZ2HjZOgOeeew6n00lzczNvv/02ixYtorq6mt7eXgBaW1t57733mD59+gHn9vv9VFVVcdppp/Hzn/+c9vZ2urq6OOmkk3jkkUeAwFiy7OxsUlNTR/R++pKp7Oxsurq6ePLJJ4fcT0S49NJL+cY3vsHMmTPJysoaUflKjZjPgw0f2BMA6EqaQJ6nesixkEoppZRSfUI6yYWIlALzgRXBVV8RkXUi8oCIZITyXJFy6623HjCb4N13383KlSuZM2cOs2bN6p/O/LLLLqOlpYXZs2fzu9/9jmnTpg1Z3qWXXsqcOXOYO3cup59+Or/4xS/Iz88fcTx/+ctfmD59OvPmzeOaa67hkUcewWq1cuGFF/LMM8/0T3IxXJwQ6OZ32mmnsXTpUm677TYKCwvZvHkzS5YsYe7cuZxyyil885vfpKKiAoDPf/7zrFy5Ep/Px+c+9zkqKiqYP38+X/3qV0lPT+eOO+5g1apVzJkzh+985zs89NBDI34/6enpfOELX6C8vJyzzz6bRYsW9W+75557Doj7yiuv5K9//at2D1Th4Ql8wWDsgVZfb8Zk8k0zre2hHQeqlFJKqdgiofo2VkSSgX8BdxpjnhaRPKAJMMBPgAJjzI1DHHcTcBPAhAkTjtu7d+8B2zdv3szMmTNDEqM62B133HHAZBixRv9+1NHyddRh/dV03pz8X5x+zffY8MqfKF9+K5sufZVZc5dGOjyllFJKRZiIrDLGLBy8PiQtWCJiB54CHjHGPA1gjKk3xviMMX7gPmDIfm/GmHuNMQuNMQtzcnJCEY5SSo2auzcwCYzYEwFIKw4k6h3VWyIWk1JKKaXGv1FPciGBWQruBzYbY341YH2BMaY2uHgpoA+QGYfuuOOOSIeg1Ljk6u0mAbDEBRKs3NJAguVp2BHBqJRSSik13oViFsFlwDXAehFZG1z3PeCzIjKPQBfBPcB/hOBcSik1Jly93QBYHIFJLuKSM2knGUv7nghGpZRSSqnxbtQJljHmPUCG2PTSaMtWSqlI8TgDXQStcfsfq9BkLySpuzpSISmllFIqCoR0FkGllIoVHmcPALYBCVZXYjFZntrhDlFKKaWU0gRLKaWG4nUdnGB50yaSbxrp6j344ddKKaWUUqAJ1og9++yziAhbtgw/g9iePXsoLy8P2Tm3bt3Kqaeeyrx585g5cyY33XQTEHhI8EsvHX0PTKfTyeLFi5k7dy6zZ8/mhz/8YahCVipm+FyBMViOhMT+dbbsSdjFR+1enehCKaWUUkPTBGuEHn30UU488UQeffTRIbd7vd5Rn8Pn8x2w/NWvfpVbbrmFtWvXsnnzZv7zP/8TGH2CFRcXx5tvvsknn3zC2rVreeWVV1i+fPmoYlcq1vjcgRYse/z+FqyU/KkAtO7bHpGYlFJKKTX+aYI1Al1dXbz33nvcf//9PPbYY/3r3377bU466SQuuugiZs2aBQQSrauvvpqZM2dy+eWX09MTuEl74403mD9/PhUVFdx44424XC4ASktL+a//+i8WLFjA3//+9wPOW1tbS3Fxcf9yRUUFbreb22+/nccff5x58+bx+OOP093dzY033sjixYuZP38+zz33HAAPPvggF198MaeeeipTp07lRz/6EQAiQnJyMgAejwePx0Ngtv0D/f3vf6e8vJy5c+dy8sknA4HWrxtuuIGKigrmz5/PW2+91X+uSy65hDPPPJPS0lJ+97vf8atf/Yr58+ezdOlSWlpaALjvvvtYtGgRc+fO5bLLLuv//Qy0dOlSNm7c2L986qmnsnLlyhHXl1Kh4A92EYwbkGBll0wHwKVTtSullFJqGKGYpn3svPwdqFsf2jLzK+Dcnx1yl+eee45zzjmHadOmkZWVxapVqzjuuOMAWL16NRs2bKCsrIw9e/awdetW7r//fpYtW8aNN97IH/7wB77yla9w/fXX88YbbzBt2jSuvfZa/vjHP/L1r38dgKysLFavXn3QeW+55RZOP/10TjjhBM466yxuuOEG0tPT+fGPf8zKlSv53e9+B8D3vvc9Tj/9dB544AHa2tpYvHgxZ5xxBgAfffQRGzZsIDExkUWLFnH++eezcOFCfD4fxx13HDt27ODLX/4yS5YsOej8P/7xj3n11VcpKiqira0NgN///veICOvXr2fLli2cddZZbNu2DYANGzawZs0anE4nU6ZM4ec//zlr1qzhlltu4eGHH+brX/86n/70p/nCF74AwA9+8APuv//+/pa5PldeeSVPPPEEP/rRj6itraW2tpaFCw96SLZSYWWCLVhxicn961LzJuLBimndE6GolFJKKTXeaQvWCDz66KNcddVVAFx11VUHdBNcvHgxZWVl/cslJSUsW7YMgM997nO89957bN26lbKyMqZNmwbAddddxzvvvNN/zJVXXjnkeW+44QY2b97MZz7zGd5++22WLl3a3/I10D//+U9+9rOfMW/ePE499VScTieVlZUAnHnmmWRlZZGQkMCnP/1p3nvvPQCsVitr166lurq6PwkbbNmyZVx//fXcd999/d0X33vvPT73uc8BMGPGDCZOnNifYJ122mmkpKSQk5NDWloaF154IRBoeduzZw8QSMJOOukkKioqeOSRRw5oqepzxRVX8OSTTwLwxBNPcPnllw/5+1EqnPyeXnxGiI9L2L/SYqXBkkdcV2XkAlNKKaXUuBZdLViHaWkKh5aWFt58803Wr1+PiODz+RAR7rrrLgCSkpIO2H9wV7uhut4NNriMgQoLC7nxxhu58cYbKS8vHzIRMsbw1FNPMX369APWr1ix4rDxpKenc9ppp/HKK68cNEHHPffcw4oVK3jxxRc57rjjWLVq1SHfR1xcXP9ri8XSv2yxWPrHqF1//fU8++yzzJ07lwcffJC33377oHKKiorIyspi3bp1PP7449xzzz2HPK9SYeHpwYmDhLgDPybb44vIcO6LUFBKKaWUGu+0BeswnnzySa655hr27t3Lnj17qKqqoqysjHfffXfI/SsrK/nwww8B+Nvf/saJJ57I9OnT2bNnDzt2BMZt/OUvf+GUU0457LlfeeUVPB4PAHV1dTQ3N1NUVERKSgqdnZ39+5199tn89re/xRgDwJo1a/q3vfbaa7S0tNDb28uzzz7LsmXLaGxs7O/y19vby2uvvcaMGTMOOv/OnTtZsmQJP/7xj8nJyaGqqoqTTjqJRx55BIBt27ZRWVl5UGJ3KJ2dnRQUFODxePrLGcqVV17JL37xC9rb25kzZ86Iy1cqVMTTSy9xxNkO/JjsTZ5Anq8On99EKDKllFJKjWeaYB3Go48+yqWXXnrAussuu2zY2QSnT5/O73//e2bOnElraytf/OIXiY+P589//jOf+cxnqKiowGKxcPPNNx/23P/85z/7J5k4++yzueuuu8jPz+e0005j06ZN/ZNc3HbbbXg8HubMmcPs2bO57bbb+stYvHgxl112GXPmzOGyyy5j4cKF1NbWctpppzFnzhwWLVrEmWeeyQUXXADA7bffzvPPPw/At771LSoqKigvL+eEE05g7ty5fOlLX8Lv91NRUcGVV17Jgw8+eEDL1eH85Cc/YcmSJSxbtuyApO7555/n9ttv71++/PLLeeyxx7jiiitGXLZSoSReJy7iDm4FziwjTbqpq6+JUGRKKaWUGs+kr9VjPFi4cKEZPFvc5s2bmTlzZoQiim4PPvjgAZNhHIv070cdrQ2/uZTEtm1MuuPAcYKb3/obM//1RT457xnmLj49QtGNDbfHxyt//jG2Kadx3umnRjocpZRSalwRkVXGmINmYtMWLKWUGoLF24tbDm6dzSgKTFbTXRv7U7WvfPNJLqr5Dee9czHtHV2RDkcppZSKCppgxbDrr7/+mG69Umo0rD4nbsvBCVZ2ceBhw97mXWMd0phL2vR4/+s1H7wcwUiUUkqp6BEVCdZ46saooof+3ajRsPl68QzRgmVLTKOFNKxtsT9Ve2rnDjbFzcWDFd+OtyMdTtit27CeFT86kedffC7SoYyJ5Ws38OLyTyIdxpjocXt547336XJ6Ih2KUuoYMO4TrPj4eJqbm/VmWR0RYwzNzc3Ex8dHOhQVpWx+F17r0H8/zY5CknurxziisWV8Hop81bRlVFAZN42c1oMfhh5r3K/ewRKznqUffw2n2xvpcMKqs7OdWc+cwdkvn8qatYd+BEcs+Nefb+NTr5/Hv/582+F3VkqpURr3z8EqLi6murqaxsbGSIeiokx8fDzFxcWRDkNFKbtx4RsmwepKLCGvbc2Q22JFS/U2ssSHP2sa3aaHCXWv0uvyHvRcsFhh/H4md64AIJdWVq5dwcLFyyIcVfhsee85FkkvAG0fPATzjotwROFjjGFe7RMAnFj3MD3OO0jUL9+UUmEU9v8pReQc4H8BK/AnY8wRPS3YbrdTVlYWltiUUmo4Dr8TrzVhyG3+tInktb5GR3c3qYd4UHg0a6neShaQmD8Nq91Dev3TbNqzk1lH8Ny7aNJQs5s8Olk74TrmVT5E58ZXIYYTLLPzTTpNArUJU5jQ+FakwwmruqqdFNDEzrhZTHZtYvWa91lw/KciHZZSKoaFtYugiFiB3wPnArOAz4rIrHCeUymlQiHOuDDDtGDZs8uwiqFub+zOJNjVXAtARl4xGaVzAWjcFbutdk3bA93krDPPo96SS3xDbI9NSurcxT57KZ35J1Dmr6K5pTnSIYVN/eb3AHAu/RoAnVvfjmA0Y8MYg18fhq5UxIR7DNZiYIcxZpcxxg08Blwc5nMqpdSoxeHCbxs6wUouCMwk2L5v61iGNKZ8HfUApOcUkTdlPgCufRsPdUhU663dDED+5Pk0J00ht3dHTI/9zXFV0ZE0kYTJx2MRQ9X6dyMdUtj0NuwGYOKCs6ixFJBYH7tfFPR56k8/ZfWPlrJhU+xes0qNZ+FOsIqAqgHL1cF1/UTkJhFZKSIrdZyVUmpc8Ptw4MXYhu4imDNxBgDOxhieqr27gR4TR1paBtbkbFokg8S22E0oaa+m0ySQnZOLJ3sWE00NDa0dkY4qLHq62silBX/GZErKTwCga08MT3TRWUuPiSM5NYPmxMnk9MbwdQs0NjZw+b6fs1C20PzynZEOR6ljUsRnETTG3GuMWWiMWZiTkxPpcJRSCjyBwf/GkTjk5pSsYpzYoXX3WEY1pmy9TbRKGhaLAFAfP4nsnp0Rjip84npqaLRkIyIklMzFJn4qt8VmS0dLVSBRluzJpGTk0SLpWJpiN3m29zTQbMkCEdzZMykxNbS2x2byDLBrxT8AqLUWMr/jLVxuV4QjUurYE+4Eax9QMmC5OLhOKaXGLZ+7BwCxD92ChcVCozWf+K6qobfHAIermQ5rRv9yT9pUJviq8Hhjc/ryJGc9rbZcAPKnBmbU69obm+OwuhoDf7fxmYH/nhviy8jojt1WnURXI532bAASisqxiqFy29rIBhVGlsoP6DLxNCy4hVTpYcfa9yMdklLHnHAnWB8DU0WkTEQcwFXA82E+p1JKjYq7twsAy3AJFtAeX0S6K3a/L0pyN9Ntz+xflpxpJIqLfZWx2YqV6W2gOz4fgNTC6biwY23cFOGowqO3NTCBSUpO4DEWPWlTKfFV4fb4IhlW2KR6m+iND/SQyZuyAID2PbGZPAMktO+gxj6BssXnA9C6ObZniVRqPAprgmWM8QJfAV4FNgNPGGN0xKVSalxz9XYDYBmmiyCAK2UCBb46vN4YvSn1teGKz+5fTi4OjDtr2RuDH+FeF+mmHXdSQWDZamOfbSJpHbHZbc7XHkiwMvMCCZbkziBZnOzbuz2SYYWF8fvJ8rfgScwDILNkBm5s0BCbyTNArquSzuRJpOYU0ShZOBpj8JpVapwL+xgsY8xLxphpxpjJxhgdbamUGvdcwRYscQz/jCvJLCNZnNTXxWArls9LmunAm7B/XGxeaQUAvbWxl3S42wIJh0nO71/XljyZPHdlpEIKK+mup80kkZaSAkDqhEDdNu+OvVadjrYWEsQNKYG6FZuDfbYJpHTEXjIJ0NvRSi4tuDOmAFCXMJXs7th8r0qNZxGf5EIppcYbjzPQgmWNG74FKyF3MgBN1dvGJKax5OxowCIGkvYnWGm5JXQTjzTH3rO/OpoDSbI9bX+C5c2cQj7NtLW2RCqssLH3NNBqyUQkMIFJ/uR5ALhqYq+lo7V+LwC29ML+dW1JkylwxeYENU3VWwCwZgcSLGfWTEr8++jq7o5kWEodczTBUkqpQTzOwCQXtrjhW7AyS6YD0F0be98OtzcGEg5bat7+lSLU2YpJ6oq9yRA6G2sASMgo6F8Xlx/oElm7a0NEYgqneFcTnbb94+uSMnJpJh1bS+x9WdDZWA1AYmZx/zpf1lTyaaKltTVSYYVNR10gcUzKLQMgrngudvFRuXV1JMNS6pijCZZSSg3icQUSLPshWrCyi6cB4G2OvW/Cu5oDXeYcA1p0ANqTSslxxd7Mif2TPmTvf0xjVrBLZEdV7LXqpHqa6I3LPmBdfdxEUrtj72/Z2RJIsFJz9k9oHF84E4CanesjElM4uZoCLXYZBYEEKzc4I2brrth85IBS45UmWEopNYjPFehOY08YPsGyxiXSKJnYO/aOVVhjxhUck5SUWXDAem/6ZPJNE11dnZEIK2y8HXUAZOTu70aWP3EGXmPB2xBjY86MId204knIPWB1d8okCj1VGL8/QoGFh7c90DqZWTChf112MHluj8Hk2de+D5exk5Mf+LIgb+Iseo0D6mMvmVRqPNMESymlBvH1tWDFJx9yvxZHESk9sTcRgqejHoDUAS06AI68aVjEULMrtmZgM131tJpkstNS+tfZ4hKos+YT3x5b09K7uluJx4NJzjtwQ/ZU0qSbxvrYmrTF0lVHh0kiMSm1f13uhJn4jOCr3xLByMLD1llDg2Rht9kAEKuNanspqe2x1/1TqfFMEyyllBrEuAMtWI6E4cdgAXSnlFHgqcbvN2MR1pjxdzXiMnYyMzMPWJ8+YTYAbTH2zb+1p4lWScduPfC/xOb4iWT0xlYLZWt94AsBa9qBrZNJwW5z9btiq6XD0VNPi/XAv2OLI546a0HMJc8ASc5a2uwHtk62J0+K2RkxlRqvNMFSSqlBfO5AC1ZcwqFbsMiaQpZ0UNdQOwZRjR1rTyPNpJEYZz9gfX5ZIMHy1MfWt+FxzibabZkHrXemTabYtw+PxxOBqMKjIziBSXzGgQlWzqRAt7mufbHVOpnobqTTnn3Q+tbEUrKce8Y+oDBL8zTQk3Dg2El/1jRyaaG1pSlCUSl17NEESymlBvG7e/EbISnx0C1YCcFv/Rti7Ft/u7OZNkv6Qevjk1KplyzsbbH1zX+yp4leR9ZB662503GIl9q9sTMOq7clkGAlZxcfsD67cFJgrE5TbCXPad5mnPG5B613Z0yl2F9LZ09vBKIKD+PzkO1vxptceMD6+MJZANTujL3nnCk1XmmCpZRSg7l7ceIgMc52yN1yS8sB6NoXW2M5EtwtdNszhtzW5JhAWs+esQ0onIwh3d+KOz7noE0pJYEb0+Y9sTNVuzc4gUlGbskB68VipdZWTGJH7EzDb/w+Mv0teBLzDtpmz5tOnHip2h07yXNrfRVWMUjagclzTtkcADoqY+fvWKnxThMspZQaxHh6cOI4aEzOYJnFU/EYK/4Y+9Y/yduKc4gWHdg/7ixWZpszrk4ScOEfPOkDUDApcGPaWxs7CbTprKPHxJGZeXC3ubakUrKdsTNWp6OlHof4kJSCg7ZlTgx8OdK6J3Zan1tqA8lxfNaEA9bnTZiOy9jxx9qMmEqNY5pgKaXUIOLtxSlxh9/PaqfOVkhie+x86x+YxrsdX8LQCZZkTyFVemisqx7jwMKjoynQZc6akn/QttTMXJpJw9ocOw+TtvXU0yQZWIf48sCTMYUC00BPd2xMw99aF3hmmz2j8KBtecHk2VUXO8lzV0NgQpaUvLID1ltsNmpsRSS074hEWEodkzTBUkqpQSzeXtwjSLAAWhMmkuWKnW/9fT1t2PFikg7uMgeQUDADgIYY6TbX3hBIFB3pBydYAPWOCaTE0AN4450NtNsObr0CcOTNwCKGfTtjY5bIzqZAgpWQVXLQNltSBs2SgaM1dpJnd3Pgcyi7aPJB21qTJpETg5N6KDVeaYKllFKD2L1d9MqhJ7jo406fQpG/lh6nM8xRjY39LToHd5kDyCkNzCTYtW/zmMUUTl3NgfebMuiZX/3bk8vI91RiTGxMxZ/iaaInbujkOWNCoNtcW1VsJM+u1kDdpuUWD7m9OX4i6bE0nrBjH50mgfSMg2fE9GZMpdA00NnZEYHAlDr2aIKllFKDOLzduKyJI9rXnjcNh/io3hUbXY06mmsAcKQdPPMaQE7RFFzGjmmKjW/+XcNM+tDHnzWVTDppbYyBqfiNIdPfgjth6LrNnzQbvxE8dbExVsfXHvhbzsqbMOT23rTJlPiqcLq9YxlW2Di6a2i05iIiB22LK5gZeEj4ztgZc6bUeKYJllJKDRLn78FlHVkLVlrw4butlbHRraqntR6AhIyDJwaA4HgOayHxHbHRbc7XUY/bWMnKGbrFLjE4FX/d7uhv1XF3t5GAC5M8dHfI+MRk6iy5ONpiY6yOpauOFlJJSEgYcrs1dzpp0kNlVWw8TDrZWUenY+jkObM08Jyz1r3R/3esVDTQBEsppQaJ93fjtY0swcovC9y4xMpgeXdbHQCpWQdPDNCnLXEiWTEy25ylu54WSSfeYR9ye3bwxrSzOvofwNvaEKgzW/rwddsUN4H0nthIOOw9DbRahp6sBSA1OA1/Y4zMJJjpa8CVOPQXIwVls/EaC7762Ojaq9R4N6oES0TuEpEtIrJORJ4RkfTg+lIR6RWRtcGfe0ISrVJKjYEEfw9eW/KI9o1PzaKFNGwtsdFlztfVgN8ImdlD36gBuNMmUeCvx+WK/nFn9t5G2q0Hj1npk18yBWeMTHHd0RCc9CFz6PFmAD1pkynyVuH3+cYqrLBJcjXQ5Rh6Qg/YP5NgbwyMJ+zsaCOTTkgberyZLS6BOmsBcTHSOqnUeDfaFqzXgHJjzBxgG/DdAdt2GmPmBX9uHuV5lFJqbBhDAr347CNLsADq4yeR0b0zjEGNHelupJUUUpOGn0XRmjsNu/io3R39rXZJ7ma6h3nmFwyY4joGHsDb0xSYMTElZ+gxSQCSPY0EcVNfHf034hm+JlxDPGS4T1zmBHqJx9IS/c+xa6wMfAFgzTl4BsE+TQllZPfGRtdepca7USVYxph/GmP6RocuB4b+6kQppaKFpxcbfvyOlBEf0pM+jRJvJS6PJ4yBjQ1bbxNtlvQhB8r3SS8JjDtr3hv9487Sfc2444eeVa9Pa0Ip2c7o7zbnaQtM+pCRN/x/1SnFwW5zUT7mzOXsJps2fCmHuC0Rod4xgdSu6E86OmoCSWJK/rRh93FnBGY87e2N/pZnpca7UI7BuhF4ecBymYisEZF/ichJwx0kIjeJyEoRWdnY2BjCcJRS6sh5etsBsMSPPMGy5s8iWZxU747+b8ITnA102obvMgdQNDkwLqmnNrpbsHyuHjJpx5syfJc5CNyYFvjrcPb2jFFk4WE6a+k0CWSkD1+/eZOCdVsT3d3mmvYFkiZrxtCzQ/bpTp1EgacKr88/FmGFjash0IKeM3HGsPs48mdiFx/VO6M7eVYqGhw2wRKR10VkwxA/Fw/Y5/uAF3gkuKoWmGCMmQ98A/ibiKQOVb4x5l5jzEJjzMKcnEN/i6iUUuHW1d4KgC1h5AlWeulcAJp2rQ1HSGMqw9tAd8LwkyAAJKRl0SppWFqiuxtZ875A/JI+fJc5AHvedKxiqNkd3S121q46WqxZWCzDt05m5hTSThLSHN1jCltrA106E7MnHnI/kzWNImmisr5pLMIKn5adtJFMRtbQswgCZPTNJFipCZZS4XbYBMsYc4YxpnyIn+cAROR64ALgahN8EqMxxmWMaQ6+XgXsBIZvt1ZKqXGiu7MNAHtS2oiPKZgyDwBXTXTfgBuPkyzTiu8wLToA9XFlZHRFd4LVFEywUvMnHXK/rNLAA3iborzbXKpzH+1xh06exWKh1j6RlI7orltnU6BLZ1rBoes2uTg4DX+UPx8qq2Mz1Y7hx18BFAQn9XDVRnfrpFLRYLSzCJ4DfBu4yBjTM2B9johYg68nAVOB6B8hrJSKeT2dgRas+MT0ER8Tl5xBvWTjaInuLnOt9YGbUkv64YfT9mRMZ6JvL0539I4766oPdCPLLjr0jWlRsNucqzZ6p2o3fj953hqcyYfuMgfQmTqVIvdujD96u835WvbiN0JOYdkh98sNJh1d+6K4bj29TPTuoiW9/JD7ORJTqJNcHK3R3TqpVDQY7Ris3wEpwGuDpmM/GVgnImuBJ4GbjTEtozyXUkqFnbszMBbUkXZkXZYbEyaR3RPdMwm21AS+B4vPOnS3KgBrQTlJ4qJyV/TemHpb9uIxVvKKDn0T7khMocZSQHwUJ9DNTQ2kSC9klB52X5M3mzTpprYqer8XtbXtos6SQ3xC4iH3S8ybhhcLNEZv3TbsWIMdHxQtOOy+TfETyeyJ/kk9lBrvRjuL4BRjTMng6diNMU8ZY2YH1y0wxvwjNOEqpVR4+YMJVmL68NM7D8WZMZ0SXzVOlyscYY2J7rpAgni4blUAmWXzAWjZuSasMYVTfPsu6qz5WGxDP2R4oMbEqeT1Ru83/w2VgQQiIW/KYfdNmxgYU1i/Y1VYYwqn1O5KmuNGMLGxzUGdvYS0juidoKZp9yfA/mvyUJzpUyj2VeP2eA+7r1Lq6IVyFkGllIp6pjsw2D05Y/jB4kOx5c8mTrxU7ojecTrexm24jZXC0umH3Td/6nz8RvDURO/YlczevTTHH3qCiz6u7FkU++tob28Lb1Bh0rkvkGBlFA8/y1yfwukLAXBWrwtrTOHi9/nJ8+7DmVI6ov1bk6dR7N6F32/CG1iYOGu34DZWSqfMOuy+1ryZJIib6j3R/+BspcYzTbCUUmoA09VIi0kmM+XQXYsGy5oU+Na/ZffaMEQ1Nuxtu6ix5JOUEH/4feOTqbEWEN8anTdqxuelwFdLb8qhuwf2SSiZi0UM1VujtFWnYTMeYyW39PA34Snp2dRJDvam6JwMoaGumlTpQbIP31oH4MudTZE0UVNXG+bIwsPasoMaSwHJiQmH3Tct+Ay7pt3R+8WIUtFAEyyllBrA6mymXdKwHmIq66EUTJ4baNGpjd6ZBNN79tIcN7IWHYCmpCnk9UbnbHON1duIEw/kjGyC27ypgfEtnXuis0tkQutWqi2FOOIOnzwD1MdPJqs7Sut2ZyAJTiyeM6L9E0rmBY6L0i6Rmb27aUkoHdG++2c8jd6xk0pFA02wlFJqAIerhS5bxhEfZ4tPotZaQHxLdI7lMF43+d4aelNH1qID4M6aSbG/js6OtvAFFia1Wz4CIL3s8BMDAOQUT6OTBKiPzi6gWb27aE06/Ni6Pr2ZMyj2VeNyRt/DlXurAmOScqcuHNH+ecH9+o6LJj2drRT7anBmHb5lEiAhLZtm0rFG6eeUUtFCEyyllBog0dOK037kCRZAc9JkcnqjcybBfdvX4BAvlsK5Iz4mrmhOoNvcttVhjCw8nFVr8BgrE2eO7CZcLBaq7ZNIjcLJEDqaGygy9bhyKkZ8jL2wHLv4qN4efeOwpH4DDWSSnVswov3T80poJg17Y/S1Pu/esAKLGJJKjxvxMQ3xpWR0R+8MkUpFA02wlFKqjzFk+JpxJRzZFO19vFkzKDG1NLe2hTauMVC3NdCikz9j6YiPyZ0SaP1p2xN93/wnNa2n0lpCYmLSiI/pTJtOiXtX1D0fqmrjuwAkli0Z8THZkwJ127Ir+pLngs4N7EuaeUTH7IubTGZX9CXP7bsC123J7ONHfExP6mSKvFV4vb5whaXUMU8TLKWUCnJ3tZJMD97Uwz+MdSgJxXOwiqF629rQBjYGvFWr6TFxlE4deStH/sTp9BCHqYuubnN+r4dS5ybq0+Yd0XEmr5wU6aV2b3TdiHds/xC/EUrnnDjiY4qmVOA2NrxRNktka0M1xaaW3rxFR3RcZ9oMij178Xmj68HZCTUfUSO5ZOYf/tl1fSRnOqnSQ031nvAFptQxThMspZQKaqwO3Dg7skc+Dmmg/GmBbjrte9eGKqQxk9e2mp3xs7BYrSM+RixWqu1lpLRHV8Kxe+OHJNOLbdKyIzouI9iqU7dtZTjCCpv0+g/ZaZtMWnrmiI+x2R1U2ktJbo2uyRB2rfwnAFmzTjqi4+xFc4gTD/t2RE+XSJ/Pz8TutexLHdk4wj4pJeUANOyKnveqVLTRBEsppYJa9wVmTUsrmHxUx2cUz8CJA+qjayxHV2sDZb49dOQuPvJj06ZT7N6Nzxc93eaaP3kVgIkLzjqi4ybMOA6/EZzV0dMlsqujlSmuzTTkjLwLWZ/W1JlMcG+Pqi6R/m2v00ESk+eefETHZU8JfDnSuP3jcIQVFts/eZ9MOrFOPrL3WjAlMLtij84kqFTYaIKllFJBvY27Acgtnnp0BVis1NhLSe2IrmdD7Vr+HAAps8444mMt+bPJkE4q90bPlN5pVW+wzTqFvKLSIzouPimVGmsBjubouTHd9t4z2MVHxpzzjvhYUzCPNLqp2bs9DJGFntfjoaztfXYkL8RmdxzRsSVT5+I2Ntz7oqdVp3X1s/iMULr0kiM6LjmrmA6SsDZF1+eUUtFEEyyllAqyNG+nzSSRnZN31GV0pE1jgntXVA0g929+kSbSmLno9CM+NmNy4Jv/+ijpNte0bydT3VtoKvrU0R2fNJW8nuhJJs3GZ2ginemLj6y1DgbU7dYVoQ4rLDZ9+DLZtGGZfckRH2t3xFFlm0hS65bQBxYGxu+ncN8rbIsrJzO36MgOFqHeMZGULp1JUKlw0QRLKaWCUju2U2UvQyxH/9EoeeVkSidV1XtDGFn49Ha2Mr39fbZmnILdZjvi4wunByYTcFVFxwN4d7z2JyxiKDr5uqM63ptbTgl1NDU1hTiy0Gusr6ai63125p6F9SjqtmTGIrzGgrMqOmYSdK18mC4SmHHKFUd1fGvqNApdOzDGhDiy0Nu08i0mmmq6Zlx+VMd3pUyi0FOJ3z/+36tS0UgTLKWUIvCNcIF7Nx2pR9k9MCi1bB4A9dtWhSCq8Nv8zwdIEDdpS68/quPtiWnUWApJaBn/3eY8bheT9jzOBsc8Jk6ZfVRlJAefN1S1+cNQhhYWu178DQ7xUXD6zUd1fHxiMlXWEpJaxv+Ywrp9e5jb/hYbc84nPjH5qMoweXPIpp3a6t0hji70uv71WzpJpPzM64/qeJMzg2xpp65uX2gDU0oBmmAppRQATdXbSaYXS+6sUZVTGJxJ0Llv/E+E4HW7KNhwD1us05i96LSjLqcpZTqFvdvG/Tf/656/m1ya8S750lGXUTQr8Jyw7j3ju1Wno7WBWZV/ZVXiiUyYMfKH0A7WnDKDwt7xPwar6pk7EAwl59561GWkTQ60xtZuXh6qsMJi98YVLOx6m61Fl5OQkn5UZSQXBz7n6nQmQaXCQhMspZQC6oIPY02deuSzrQ0Ul5pLk2TiaNocirDCas2L91JgGuheeuuoukV6cysopoG6+voQRhda3e0tTNpwN+ttFcw97TNHXU5KVhENkoWjYXzfmG56/IckGSep594+qnJ8eRXk0EpTzfjt8rp361rmNz7Hx9mXUDjp6L8gmTBrCT4juCvHb+uz8fvpeu7bdEoSUz5921GXkzdpLgBdVeO/5VmpaDSqBEtE7hCRfSKyNvhz3oBt3xWRHSKyVUTOHn2oSikVPs7dH9Jt4pg0+8inKh+sIXEKOeN8IoSO5nomffJLtlqnsuBTRzdmpU9KaeA5PPu2jN8prjc9/DUy6MB6zp2jSiYB6hKnk9s1fidD2LbyDRbVPsrKrPOZWrFkVGWlTloIwL4t47NVx+t24fz7TfRIAtOv+NGoyopPSqXKWkxC8/h9cPbHz/6eCvdadsz8CulZuUddTlr+JHqJQ3QmQaXCIhQtWL82xswL/rwEICKzgKuA2cA5wB9EZORPr1RKqTGW1byS3XEzSYiPG3VZrsyZTPRX0d7VE4LIQs/4/Wx98Iukmk648O5RJxyFMwM38d17x2e3uTUvP8Ci5uf5IP8aZi08ZdTlObMrmODfR3t72+iDC7HWxhqSXvgiDZLN9Gt+O+rySmYF6rZnnNbtigduZbp3K9sW/YSsvJJRl9eYMpOi3vGZdOzc+DHln/yEjY65LLjsW6MrzGKh1l5CcufO0ASnlDpAuLoIXgw8ZoxxGWN2AzuA0X8trJRSYdBSX8Uk3x46C5eFpLy44goc4qNy2/gch7Xy8f9mUecbrC77AtPnnTDq8pIyC2mWDOyN60MQXWht+/g1Zi7/NltsMznuhl+GpMzEiQuwiKFq0/iavry7s436ez9Nlmmh+6J7ScvIHHWZyamZVEsBcU3jb6KL5U/8gmV1f2Fl9iUsPP/fQ1KmN3cuObTSXDu+ukTWVm4n+e9X0isJ5N3wMJajmBVysI7kSeS59477sZNKRaNQJFhfEZF1IvKAiGQE1xUBVQP2qQ6uO4iI3CQiK0VkZWNjYwjCUUqpI7N3xT8AyJgTmt7MuVMCkwq07R5/U5evee63HLflV6xMPImF1/y/kJVblzCN3O5tISsvFLYuf4mCF66h0ZJD9heeIi4uPiTlFs4KjNPr2D1+nv3V0dbIvrvPZqp7C5uPv4spC478mWbDqU+aTn7P+GrV+ehvP2Hppjv5JGEJ8/7jvpCV29clsmbzByErc7Sqd6zH/Pl8Eumh4/JHyS4oDUm5/qxpFNJEY3NLSMpTSu132ARLRF4XkQ1D/FwM/BGYDMwDaoH/OdIAjDH3GmMWGmMW5uTkHOnhSik1ao6tz1FDDlPmnBiS8rImzsaDFV/d+BrL8fETv2D+mh+wPm4+5V95FKs1dD23ndmzmeivpr2jM2Rljsbqlx6g7OVraLZkYb/xH2TnHeHDWA8hM28CzaRjqx8fE11U7dxI091nUOrezuolv2H+OTeEtHxP7hwKTQPtzZGfxMTtdvPO77/I4m2/ZFXiScz42jPY7I6QlV8yewl+I/SOky6Rn3zwTxL/eh4Jpof6i5+grHz0Lc59EgsDE4LU7hyfLe1KRbPDJljGmDOMMeVD/DxnjKk3xviMMX7gPvZ3A9wHDOwMXRxcp5RS40pvWyPTuj5me86Z2GyhSTjEFkeNbQIp7ePjW3+vq5dVv7+eRZvuZE3CUqZ+/R/EJ6aE9BzxE+ZjFx97tkS2Vcfp7OXDP9zEgo9uYadjGmlffpP8kimhPYkI+xKmkd0Z+ZkiV736CKkPn0mWv5Gtn/ozi867PuTnSApOYlK1ObJdIhtqKtl216c4ufFvrM69jHnfeJa4+KSQniM1NYNKSxEJTZFNnv0+Px/85UfMevUqei2JdH3uZabMPzmk58iZNAeA9srx1/1TqWg32lkECwYsXgr0fV37PHCViMSJSBkwFfhoNOdSSqlw2P6vR7GLj/SFo5tJb7C21GkUuXbh90d2fMO+XVvY/ctTOK7xGd7NvZryb/yDxKN8EOuh5E8LPEOoY1fkprjeveFDqn5xAsc3PM6K3M9QduubZGTnheVcPVnlTPBV0dvdFZbyD6ejrZmV//tZjvvwSzTZ8+m94U0qTr44LOcqnhl49lfXnsjUrfH7Wf7MH3DcezyT3VtYs+CnLPjSA1hDMA5pKPXJMymIYJfImt1b2Pjz0zhh56/YmHwC6V/7gJIpFSE/T2bxdDxYMY3jd0ZMpaLVaD+dfiEi8wAD7AH+A8AYs1FEngA2AV7gy8YY3yjPpZRSIWff8iyV5FMegtnlDpA7i/yWV6ms2ceE4uLQlj0Cxu9j5d9/wexNvyYVCysW381J518XtvNlFU+ni0QsdWPf3cjp7GXtI9/nuMoHaZcUNpz4e5ac8bmwnjNuwgJs1Q+wffNHzFwYuvFOh2UMn7zxN/Leu535ppn3i65j0bU/xxGfELZTZuQUUEc29vqxr9uaqp3UP/JFljpXsM0+g6Qr/o/5U+eF9ZzevLlkd75GS91eMvMnhvVcB5zX4+Hjv/+cuVvvJhULK+fcznGX3jLqWT6HIzYHddYiEtt1JkGlQm1UCZYx5ppDbLsTuHM05SulVDh1t9QwrWc17+VfywRraG9iUibOgy1Qu33VmCdYVdvX0fP3L7LIvYG1CYvIv/oeloS6m9xgFgt742eQ1zG2Mwl+8vZTpP/rdpaaalaknsmUa39LeU7B4Q8cpZLZx8MH0LJtOYxRglW5YwOtT93C3N6P2GOZwK7z/8Sy404bk3NXJ1dQ0jl23eZczh7WPnEnFTvvIxM/K2d8kwWf+W5IZs87nMypi2EH7N3wwZglWFs++ifWV7/D8b6dfJKwiNx/+yMLJ0wN+3nbksrI7Rhfk9MoFQvC/0mllFLj1I63/8ZcMWQuuSrkZRdMWwivQk/lOgJPrgg/Z08na//2Q+ZXPYwTB+9X/DfHX/plLCFOHofTnXscM/b+ifbWlpBMEX4oDXs3U/vEN5jb/QHVUsDGU+9nyamXh/WcA2UXTqZBsnDsC/+4pK6uTtY++kMWVT9MFlaWT/sGCy7/Do640T+zbaQ8hYvJ2/YWjdU7yCkOX7Ju/H4+eeMxcj74EUtMHWuSTiD/M//DwrJZYTvnYGXlS/G+ZKFn1wrgs2E9V+O+XVQ98S0WtL9OA5l8sviXzDnn38PWajWYJ3Maxe3v0NzWTlZ62picU6ljgSZYSqljVvy259glxcyeuzTkZSdkFtFOCramTSEv+yDGsOG1h8j58CcsNU2sTDuD0qt+xbLCseveBJAy5QSslfex85N3WHDqJWE5R29XOxse+yFzq/5CEjben/SfLLzyexTHJ4blfMMSoTplPqUdqzB+f1huiP0+PytfuJcJa+7iRJpYk34GE676FUsLxrZeATJmngTbfs6+dW+FLcHau2U1Hc9+k3nOVey1lLD+1D8z/5RPh+VchxKflMY2+xSyGsOXPPf2dLPm8Z8wb88DzMbP+0U3MO+zP2JuytgmOXFF5Vj3GGq2f0LWotBOoqHUsUwTLKXUMamjvpKpvet5t+jfmRSOFh4R6hImk9W9PfRlD1C15WO6n72Vcucn7LCU0XDW71l4/DlhPedwSuedCm9C144PIMQJlt/nZ/VL9zFx1c9YRAsrUs+k+DO/YNmESSE9z5HwTjienA2vU7lzIxOmhnYSgh2r3sD38ndZ7N3KTttkdpz1O+YvPjek5zgSk2YvoevZeDy7PwC+ENKy21ub2Pzo9zmu/u9kSBzLp32T4y7/NhMdY9dCN1hj9hIW1/4Nd08njhDOuGn8fj5+5S8UfXQnJ1DP6uSTyLvsLpZNmhmycxyJ7MnHwfvQVbkWNMFSKmQ0wVJKHZN2vP0XFogh/4Srw3aO3oyZTNv3NN29LpISQnuz2NHawNZHv8uC+qfoJIl3pn+PpZd/A4fDHtLzHImE1EwqrRNJbgjtbHNbPn4dXv0BC72b2W6dQsNZ97JkyZkhPcfRyCs/HTb8hPr1b4Yswaqv3EbNk//F/I43aSSDj+f9N8dd8MUxGXt0KA6Hg63xs8hqDl3detwuVj31P0zf+gcWmy5WZl3AlCt/xtK8sZ8UZjDHlFOw1/2FbWteZ9qyS0NS5pbV/8L78vdZ7FnPHusENp3+FxYsuygkZR+t3Ikz6TUOqB9fz+xTKtppgqWUOial7PgH2y1lTJs9P2znsBdWkFjzKBu2b6R8zoKQlOnzeln5zP8yfeOvWWC6WJF1KdOu+ikn5+aHpPzRaso6jmn1L+Hs7SE+YXTd9mr3bKH2qe+woPMtGslg5dyfsOCiL2MJ4QOSR2PCtHm0kIrZ/S7wtVGV1dXRwobHf8T86kdIRXi/+EbmXHk7i1IzQhNsCPQWn0jFzrupq95FfvHRtxwav5+1r/+N7A/vZKmpYaNjLs3n/5TFc5eFMNrRmbbwTNzvWmnb9CaMMsGqq9pB1d+/w6KO12ghlVXlP2DeJV/HaovclyF9xGqj0l5KartO1a5UKGmCFWWM34/P68HrdePzevH6DF5jMIBFLAhgsVgQi/S/tlhsiNWGxWLBbhVEJMLvQqnIaqrdw1TPZt6b+CWmhvF6yJo8H1ZC666VEIIEa9P7/yDuzdtZ4tvFJnsFjgvv4oQ5x4cg0tCxzziL5IanWb38FRacdnTjZ7ram9n0+O3M2/cY6Vj4sOTzzLnyNhampIc22FESi4U9GScwveVdnE4n8fHxR1yG1+Nh1XO/ZcqG37CUdj5OO5Piy3/KsjGYQe5I5R53Eey8m8rlT5N/+TePqozta9/F/dJ3me9ez15LMWtP/D/mnnbFmE3qMFJp6elscMwit/btoy6jO5g0z61+hAxgefH1lF/xQ45LC+8EMEeqJXkas9reBmNA7w+UCglNsMLE6/XS1tpMZ2sDzo4m3J3NeLqa8fe04nd24Hf3YFxdWD09WH092Ly92P09xPl6cZhe7MaN1Xix48VqfNjxYsOLQ3zYOLqKcxsrvdjwYsWDDZ9Y8WLHK1Z8YseHDZ/Fhl9s+MSO32Lv/9dvcWAsNozVEfix2MHqAKsDsTrA5kD6fqxxWOwOLDYHVpsDiz0Oqy0Oiz0Omz0OmyMOmz0emyMOqz1wjNUWh1gdWGxWrFYrFkvgx2qxYLGM86TQmMAPJrjox/gNBoPx+zGACe5j8Ad3NRhjAvsGE2RM8FgM+E1gmUBZ0Ld/sNy+cwYP3L9tYPn+QDz+vrgM0Bdb33Jf1IPeEtL/auj1wxxjBq8zMOCYgZuNkSH2DRLBDPl83gFlDdhuRA4o/YBtQ8Tc9NHfOQUoWBje2f3yph5HD3FY974P3HTU5dTuXEfD0//F3O4PqCWHVYv/hwXn3DjubkoBpi+9gN53HDjXPQtHmGB53S7WPvsbpmz6LQtNFx+nn83Ez/yU40fRWhJu9vKLSXv3Fda8/xzzP3XlyA80hg1vPU7Se/+PJf69bLbPovnch1m04NSwxTpaE2ccR6UUkrz1GeDIEqy6qh1UPfldFrX/k1ZSWTHzeyy49OsRHWd1ON1TLqB880/Zvn4FUyuWjPg4t9vN6md+w7TNv2UJHXycegbFl/+UpROnhTHao+fLnU1a2wu01O4ms3D8XmuxxOXqpbu9ld6uVno723B1t+Pp6cDr6sbv6cW4nfg9veB1gseJeHsRnwvxOhG/G/xexPgRvw+L8SH4EePFYvyI8WMxXoTgPQCB/yeMSOC1CCDB/zcFxBJYRjBiwS82/GIN/GuxYcQWuP+z2MBiC9z/DVjGGlju+xGrHax2LMFtYrMjFhsWqx2x2rHYbMFlW+B+z2YPvg6us9mwWu2BZVtgvc1mx2KPIzE5FfsYzYo7WppgHQGv20lzQzVt9VV0Ndfgbq2BzjosvY3E9zaS6GkmwdtBsukk1XSTLYbs4coyFnolHqfE45QEXJYEPJZ4eu3pdNoK8FnjEasd05fYWOyBP2arI/ivHbFYERGsIggmeL/tD96o993Qgxgf4vcgfi/43OD3gM8TWOfzgN+Dxe9F/B4sxovF78Hq9+Dw9mI1XmzG0/9vINHzYDf7E76x4DOCHwsm8DHS/zrwgTFwXeAWXII329J/ex1cNuag7YP/HbgdDt5fAIsMefcf3IchbunVeNNIBpNmLw7rOcQWx67EeRS3rsAYc8RfFHQ017Ptie8zt+5pUnDwftlXOO7K71GQkBSmiEfPkZjCqrRTKG99ne6uDpKSUw97jPH7WPvKn8n++H9YaGpYb5+D/bz/x5L5J41BxKMz/cRP0/zud2DlAzDCBGvrilfgjR9R7t5ElRSyZslvmHf2deMyYR5ILBZqSj/N0t2/o3LLKibMOO6wxzTXV7LzqZ8wt/4ZMoAPi65l9hV3sCQ9K/wBj9LMT12Ha9MvaX37DzCCBMvv9bLm5T+Ru/p/WWpq2OQop/6sO1m08NTwBzsK2ZMXwjbYu/FDTbCOhDE4ezpob66ns6We3rYG3J2NeLua8Hc3Y+ltwe5qweFuJ87XRYK/h0TTTZLpJU48HMlXC05jxy0OXDjwiB0/1kAShAW/WPqXTfC1CSZIwUCD9z4mcD9o/IF7GkMwCQtsD6RifqzGhzX45b4VHzbjxUrwNV5swfXWQ9wHhcPbvrl0Xv4YF84tHNPzHi1NsA5h/TvP4f7oAZKdNWR768minTwgb9B+LaTSZsmg05ZFW1IRvvh0iM/AmpSJLTkTW3IWjpQs4lOySUzPIiU1k7i4BFIsFkI3N1Fk+H1+3G4nHrcTj9uF1+3G43bi9Tjxul14PS58Hjc+jwuf14XP48J4XPi8bozXjfG5EZ8Hi88VSPz8fjD+QOuL6Xtt9i/7/YC/f7++7RYx+z80kEALyAEtJzKg60NfyiQDMqHAssj+lGrg/oHGFsuA3hN924Mr5OBjBq6T4D77ywYZYh8zzHH0x9oXQyC5lP71weP61gEiA76hCr63/nJF9oc92KBeIkO3Pw3cfmDr0QFlmoPbj/Zv7zvmwD1k2POYIfY9sKyDzzW4rP17pJUdNyY3tO6yM5iw8U62r1vB1BFOB+/s6WTt0//DrB33Mt/0sDzzQqZccSfLCiaEOdrQSFn2BVJfeo0PnvsNJ1x9+7D7Gb+fjW89RvIHP2O+by+7LRNZfcIfmf+pq8Z9stHHERfPzolXsnjvvWxf8y+mzj9l6B2NYcfK1+l54+fMcX5MA5m8N/M2Fl/yn5SM4fOsRmvKOV+m+w/30fLCD5kw44Vh92ttqGbbMz9lTs0TLMDLyoxzmXjpDzl+4vQxjHZ0UrMLWJ5xFvObXqRm1yYKJw39LC6f18vafz5Izspfc5y/ml2WUtYv+yPlp0fH33FpxQm4X7Li3PUhEL5Jf6KGMXS2t9BSV0lnUxW9zfvwtNdg6azD3lNPgruJNG8TWf4W4sVDPAffF/qM0C4pdFrS6LGm0uPIpsOegteejHGkQFwKEp+CJT4NW2Ia9sRUHIlpxCckYotLwpGQiD0+ibi4BOLiE4i3WDnyDshh5vdjfG78Pm9g2IrHjdfrwe/14PO68fW/9uD3uvH7PPi8Xvw+L36fB7/Ph/F58fu9GJ8Xny/wr/H3rff1L+P34o3LZ3bh4b+wGy/EDN0PJyIWLlxoVq5cGekw+q38x/+Rt/o3tDny6U0sxJtcgDW1gPiMQpKyi8jILSE9pwir3RHpUJVS41RHUy2Jv53FR7mf4YQv33vIfT2uHjY8fzclG+8hm1bWxS8i6YKfMrl80RhFGzobfnoqE11b6LjmdYomlx+wzePsYuMrfyJ93QOU+vdSKYXUzPs6iy74PNZxMoHFkehob8H96/n0SiKpX3qNtJz9s+C5ezrZ/PajJKy5n2meLbSSwuZJNzL3098iKTk6v2L74MHvccKe37Nm1neYf8V3+9cbv4/dn/yLtn/dQ3nrG9jwsTLtTPIuvJ2JIZ7GfqzUVu8m5b7jqbMXU/CVl0lKz+nf1lJfya7X7qN456Pkm0b2WEqoX3ALi869ftxMxDJSW/57KYgw4/sfRjqUsDN+P62NNTTt20Fn3S7czXuQtkriu2tIc9eS56snUVwHHddFAi2WTDrt2TjjcnEn5GCScrAmZWFPzSYhLZekjFxSM/JJyciOys8ydeREZJUxZuFB6zXBUkqp8Fr9q08zo/09um76iNyi0oO2O7ta2fjSPRRvvo8808x6WwVy2vcoX3be2AcbIjW7N5Pw0Jn4sVI56z9IzJ9Kb2stsvtfTGr7gBR62G4po6Xi88w7/wvEjeOxOCOx6cOXKX3lOtzioDL7ZLyONBxtOynr+YQknOyTPPZMvYE5F36JlDF+mGyoudwuNvzqYo5zfsj2uFl0p0/H9LYxoXMtWaaVbhPPJ9kXUHjWVymdPjfS4Y7ailceYf6H/0m3JFGdsQSvxUFa+1YmeXcAsN4+B+9x/86cMz6HNcLT6R+t9+/5Cotr/4b31p0kjKOZK4+W3+enoXYPjXs20V2zBX/zDhI69pDpqibXV0+CuA/Yv50kmqz5dMQX4EoqwqQWYk8vJCGzmNTcErLyS0hMTo/Mm1HjmiZYSikVIbW7NpD20OlUO8rI+fzfycibgPG62bX6ddpWPsmMhhdJwslG22xcJ36b+SdfFBVdiw5nx4aP8D39Rab7d/SvazapbE9bhmPh55i37DwsUTJgeSS2rVtB60s/ZmrvJzjw0GjJoSZ9Pgnzr2DOCedii9Kb76G43C6WP/pTcvc8T56/nm5JoSZxOr4pZzHz1KvIyBz/Y6yOxLqP3qb3zbso6d2CBT9N9kKa809kwglXUDbr8GPRxrv1H75CxatXsnbJr5l37o2RDmfEurs6qd6+ls7KdXgbt+No20VabyX53hqSBrRCOY2dWmshrfEluFJKkPQJxOWUkV4wieziqaSMs5kdVfTQBEsppSJo5csPUbH8VuLEQ7NkkGI6ceDFZeysSTmVxJO+RMXi08b3jJlHwfj9bN+xFWdzFfFpeZROmRXRhyGPBa/Pj9+AwxY7yeOhHM0ELmp88Xo8dNw5icrkecz75j8iHc5B3C4X1TvX07x7LZ6ajcS3biOndydF/rr+Sae8xkKtJZ+W+GJ6U8qQ7CkkF0wnp3Q2OUVliEW77KnQGy7Bip2v05RSahxbeO517J68gL3/+guOzkq8cRnYJi5l5rILWZoRu9+eisXCtGkzgZmRDmXM2GKoVW4kNLmKfja7nY0557O04Qlaa/eQUVAakTj8Ph+1e7dSv3MNruoN2Fu2kNm9k2JfNZPExyQCE0jssxbRmDSNmswLcRSWk1k2l4LSmZTExVESkciVOpC2YCmllFJKHeP27txE4cMnsiH3AuZ/+eGwnsv4/TTVVVK3fTXd1euxNG4hvWsHxZ69B0wwUSs5NMRPwpkxHVvBbDLL5lE0ZQ6O+MSwxqfUSGkLllJKKaWUGtLEybN4J+vTnNz4d7a/8zhTTz6CB2cfQkdzPfu2raKjcj00bCalcztF7t3k0E3fnIzNpFMbV8b6zIux5M0irXQuRVPnUZCaSUFIolBqbI0qwRKRx4G+h1qkA23GmHkiUgpsBrYGty03xtw8mnMppZRSSqnwmXvd/7D1f1cz6Y0vsq5mE7Mv/S+scYdvLXK7nNTt3UJL1RacdduQlp0kde0h37WHbNroe3pRB0nss5eyJetMTM5MUidUUDB1Plk5hcTWtCjqWBeyLoIi8j9AuzHmx8EE6wVjTPlhDjuAdhFUSimllIqcuvpadj/weY53vUcniexJno8rZQImPh2/3494neDqxNHbQKK7kTRvM9n+ZqwDHuzeThL1tiJakybjy55JUkk5eVPmk1dYGhMzpCrVJ6xdBCUwwvUK4PRQlKeUUkoppcZefl4BOd/+B8vffg7f2sco7FxPWecqksUJgNtY6SWeFmsWnfZs2lJK2ZVajC17CilF08kvm016dj7R/bQ3pUYnVGOwTgLqjTHbB6wrE5E1QAfwA2PMu0MdKCI3ATcBTJgwIUThKKWUUkqpo2G1Wlj6qUvhU5cC4PcbOp1O7FYrDrudNItoAqXUIRw2wRKR14H8ITZ93xjzXPD1Z4FHB2yrBSYYY5pF5DjgWRGZbYzpGFyIMeZe4F4IdBE80jeglFJKKaXCx2IRUhITIh2GUlHjsAmWMeaMQ20XERvwaaD/UebGGBfgCr5eJSI7gWmADrBSSimllFJKxaxQjDQ8A9hijKnuWyEiOSJiDb6eBEwFdoXgXEoppZRSSik1boViDNZVHNg9EOBk4Mci4gH8wM3GmJYQnEsppZRSSimlxq2QTdMeCiLSCOyNdByDZANNkQ5CjRmt72OH1vWxQ+v62KL1fezQuj62jMf6nmiMyRm8clwlWOORiKwcan57FZu0vo8dWtfHDq3rY4vW97FD6/rYEk31rU97U0oppZRSSqkQ0QRLKaWUUkoppUJEE6zDuzfSAagxpfV97NC6PnZoXR9btL6PHVrXx5aoqW8dg6WUUkoppZRSIaItWEoppZRSSikVIppgKaWUUkoppVSIaIJ1CCJyjohsFZEdIvKdSMejQkdESkTkLRHZJCIbReRrwfWZIvKaiGwP/psR6VhVaIiIVUTWiMgLweUyEVkRvL4fFxFHpGNUoSEi6SLypIhsEZHNInK8XtuxSURuCX6GbxCRR0UkXq/t2CEiD4hIg4hsGLBuyGtZAu4O1vs6EVkQucjVkRqmru8Kfo6vE5FnRCR9wLbvBut6q4icHZGgD0ETrGGIiBX4PXAuMAv4rIjMimxUKoS8wK3GmFnAUuDLwfr9DvCGMWYq8EZwWcWGrwGbByz/HPi1MWYK0Ar8e0SiUuHwv8ArxpgZwFwC9a7XdowRkSLgq8BCY0w5YAWuQq/tWPIgcM6gdcNdy+cCU4M/NwF/HKMYVWg8yMF1/RpQboyZA2wDvgsQvF+7CpgdPOYPwfv2cUMTrOEtBnYYY3YZY9zAY8DFEY5JhYgxptYYszr4upPADVgRgTp+KLjbQ8AlEQlQhZSIFAPnA38KLgtwOvBkcBet6xghImnAycD9AMYYtzGmDb22Y5UNSBARG5AI1KLXdswwxrwDtAxaPdy1fDHwsAlYDqSLSMGYBKpGbai6Nsb80xjjDS4uB4qDry8GHjPGuIwxu4EdBO7bxw1NsIZXBFQNWK4OrlMxRkRKgfnACiDPGFMb3FQH5EUqLhVSvwG+DfiDy1lA24APbr2+Y0cZ0Aj8Odgl9E8ikoRe2zHHGLMP+CVQSSCxagdWodd2rBvuWtb7tth2I/By8PW4r2tNsNQxTUSSgaeArxtjOgZuM4FnGOhzDKKciFwANBhjVkU6FjUmbMAC4I/GmPlAN4O6A+q1HRuCY28uJpBUFwJJHNzFSMUwvZaPDSLyfQJDOx6JdCwjpQnW8PYBJQOWi4PrVIwQETuB5OoRY8zTwdX1fV0Kgv82RCo+FTLLgItEZA+Brr6nExijkx7sVgR6fceSaqDaGLMiuPwkgYRLr+3Ycwaw2xjTaIzxAE8TuN712o5tw13Let8Wg0TkeuAC4Gqz/+G9476uNcEa3sfA1OBsRA4Cg+mej3BMKkSCY3DuBzYbY341YNPzwHXB19cBz411bCq0jDHfNcYUG2NKCVzHbxpjrgbeAi4P7qZ1HSOMMXVAlYhMD676FLAJvbZjUSWwVEQSg5/pfXWt13ZsG+5afh64Njib4FKgfUBXQhWFROQcAt37LzLG9AzY9DxwlYjEiUgZgYlNPopEjMOR/cmgGkxEziMwdsMKPGCMuTOyEalQEZETgXeB9ewfl/M9AuOwngAmAHuBK4wxgwfYqiglIqcC3zTGXCAikwi0aGUCa4DPGWNcEQxPhYiIzCMwoYkD2AXcQOALRb22Y4yI/Ai4kkD3oTXA5wmMxdBrOwaIyKPAqUA2UA/8EHiWIa7lYJL9OwLdRHuAG4wxKyMQtjoKw9T1d4E4oDm423JjzM3B/b9PYFyWl8Awj5cHlxlJmmAppZRSSimlVIhoF0GllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ0QRLKaWUUkoppUJEEyyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQ+f8n6T/c6gtf9QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -4535,31 +4535,31 @@ " 45\n", " True\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " bAP.soma.v\n", - " 0.00177\n", - " 1.86e-06\n", + " 0.00174\n", + " 1.1e-06\n", " \n", " \n", " 46\n", " True\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step1.soma.v\n", - " 0.0017\n", - " 8.4e-06\n", + " 0.00427\n", + " 1.27e-05\n", " \n", " \n", " 47\n", " True\n", " 5\n", - " 0.112\n", - " 0.0634\n", + " 0.0799\n", + " 0.0189\n", " Step3.soma.v\n", - " 0.00201\n", - " 5.99e-05\n", + " 0.00258\n", + " 5.22e-05\n", " \n", " \n", "\n", @@ -4567,14 +4567,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "45 True 5 0.112 0.0634 bAP.soma.v \n", - "46 True 5 0.112 0.0634 Step1.soma.v \n", - "47 True 5 0.112 0.0634 Step3.soma.v \n", + "45 True 5 0.0799 0.0189 bAP.soma.v \n", + "46 True 5 0.0799 0.0189 Step1.soma.v \n", + "47 True 5 0.0799 0.0189 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "45 0.00177 1.86e-06 \n", - "46 0.0017 8.4e-06 \n", - "47 0.00201 5.99e-05 " + "45 0.00174 1.1e-06 \n", + "46 0.00427 1.27e-05 \n", + "47 0.00258 5.22e-05 " ] }, "metadata": {}, @@ -4582,7 +4582,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADqCElEQVR4nOzdd3wc1bnw8d+zVb03W5IluTcJG4wpNj2hJIAhEAyhGV7ChTTgBkgnDgn35iYkJJSEkJCQADEQegi9mA7GNu42rrIlW5bV+2rbef+YlVjZkixbK63K8/2w7O7MmTPPzu7K8+w5c44YY1BKKaWUUkop1X+2aAeglFJKKaWUUiOFJlhKKaWUUkopFSGaYCmllFJKKaVUhGiCpZRSSimllFIRogmWUkoppZRSSkWIJlhKKaWUUkopFSGaYCml1BAhIoUiYkTEEe1YRjoRWSQi70U7jqFGRE4Qkc+iHYdSSg1nmmAppZQa1kRksYj4RKQ57HZrtOMajowx7xpjpkS6XhGxi8gvRGSPiDSJyKcikhLp/Sil1FCgv5IqpVSEiIjDGOOPdhyj1OPGmMuiHcRAGQGfrZ8BxwPHAbuAGYAnqhEppdQA0RYspZTqBxEpFZHvicgaoEVEHCJyrIh8ICL1IrJaRE4OK79URP5XRJaJSKOIPCciaT3UfZWIbAz94r9dRP5rv/ULRGRVqJ5tInJmaHmyiDwoIhUisjvUcmA/yOuYICJvikiNiFSLyKMdLQyhdbUicmTo+VgRqep4XSJyroisD73epSIybb/jc7OIrBGRBhF5XERiDv1IHzoR+X7ouDSJyAYROb+HciIid4nIvtCxXCsiM0Pr3CJyp4jsEpFKEblfRGL7uP+HQuVfC8XwtogUhK3/vYiUhfa5QkROCFu3WESeFJFHRKQRWCQic0Xkw9BxrhCRe0XEFbaNEZFviMiW0P5+HnrvPgjt44nw8j3EfLKIlPfl9fWViKQCNwJfN8bsNJZ1xhhNsJRSI5ImWEop1X+XAF8GUoBs4D/AL4A04GbgKRHJDCt/BXA1MAbwA3f3UO8+4GwgCbgKuCssyZkL/AO4JbTfE4HS0HYPheqdCMwGTgeuOchrEOB/gbHANCAfWAxgjNkGfA94RETigL8BfzfGLBWRycASrBPoTOBF4N/7nchfBJwJFAElwKJuAxCZH0oeerrNP8hr2N824AQgGasF5RERGdNNudOxjt/kUNmLgJrQul+Gls/COp65wG2HEMOlwM+BDGAV8GjYuk9C9aYB/wT+tV/yuQB4Euv9fRQIADeF6joOOA34xn77OwM4CjgWuBV4ALgM6/2cifVZPWyhRLmn9+cPPWxWjPV5vFBE9orIZhH5Zn/iUEqpIc0Yoze96U1vejvMG1ZSc3XY8+8BD+9X5hXgytDjpcAvw9ZNB7yAHSgEDODoYV/PAjeEHv8JuKubMtlAOxAbtuwS4K1DfF3nAZ/ut+x5YC2wBnCHlv0EeCKsjA3YDZwcdnwuC1v/K+D+CL8Hi0PHsD7sNrabcquABaHHi4D3Qo9PBTZjJSW2sPICtAATwpYdB+zoY1wPAY+FPU/ASpLyeyhfBxwR9preOUj9NwLPhD03wLyw5yuA74U9/w3wu4PUeTJQHuH352uh2B4EYrGS7Crgi5Hcj970pje9DZWbtmAppVT/lYU9LgC+Gv7LPjAfq7Wqu/I7ASdWq0QXInKWiHwU6p5XD3wprFw+VgvN/gpC9VWE7f9PQFZvL0BEskXksVCXwkbgkW5i+jNWK8g9xpj20LKxodcAgDEmGHp9uWHb7Q173IqVaETaE8aYlLDbHhG5QqwulB3HYSbdHGdjzJvAvcB9wD4ReUBEkrBa5OKAFWF1vBxa3led77UxphmoxTpmhLpObgx1nazHaj3L6G7bUPnJIvJCqBWoEfifbl5PZdjjtm6eD8SxP5i20P3txpg2Y8wa4DGsz7NSSo04mmAppVT/mbDHZVgtWOEn+/HGmF+GlckPezwO8AHV4RWKiBt4CrgTyDbGpGB1v5Ow/UzoJpYyrBasjLD9JxljZhzkNfxP6HUUG2OSsLqVdewLEUkAfofVCrFYPr9ubA9WUtdRTkKvb/dB9ncAsYYIb+7ldsLBa+msqwArIfwWkB46fuvCX1M4Y8zdxpijsFoUJ2N1vazGSg5mhB3LZGPMoSQpne916BimAXtCr+VWrO6IqaH4GvaLL/xzBfBHYBMwKfQe/bCn1zNQxLrWrqf35/4eNlsTug9/Pfu/NqWUGjE0wVJKqch6BDhHRM4Qa2jqmNDAAXlhZS4Tkemh65luB540xgT2q8cFuLG6UvlF5Cysa4U6PAhcJSKniYhNRHJFZKoxpgJ4FfiNiCSF1k0QkZMOEnci0Aw0iEguVoIR7vfAcmPMNVjXmHWcTD8BfDkUhxP4LlaC98HBDtT+jDVEeEIvt3cPobp4rJP4KrAGDMFqwTqAiBwtIseE4m/BGt0uGGqN+zPWtW9ZobK5InJG2LZGwgYx6caXQteWubCuxfrIGFOGdbz9ofgcInIb1rV2vUkEGoFmEZkKXH+Q8hFnjJnRy/tzXQ/bbAPeBX4k1qAh04CLgRcGM3allBosmmAppVQEhU6eF2C1LlRhtSjdQte/tw9jXZ+zF4gBvtNNPU2h5U9gXZvzNaxroDrWLyM08AVWy8fbfN6SdAVWgrYhtO2TdO2i2J2fAUeG6voP8HTHChFZgDVIRccJ/X8DR4rIpcaYz7Bau+7BavE5BzjHGOM9yP4GlDFmA9Y1Rx9idZMrBt7voXgSViJVh9XdsQb4dWjd94CtwEehbnmvA1MARCQfaMK6Lq0n/wR+itU18CisYwXWdXkvY137tRMrqSvrroIwN2N9DppC8T5+kPJDySVYn88arM/XT4wxb0Q3JKWUGhhijLbSK6XUYBGRpcAjxpi/RDsW1T8ichlW98Ef9LD+IawBI348qIEppZSKKp1oWCmllDoMxphHoh2DUkqpoUe7CCql1Cgh1qS3hzI4gRqBROSHPXwOXop2bEopNRJoF0GllFJKKaWUihBtwVJKKaWUUkqpCBlS12BlZGSYwsLCaIehlFJKKaWUUr1asWJFtTHmgMnnh1SCVVhYyPLly6MdhlJKKaWUUkr1SkR2drdcuwgqpZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFyJC6Bqs7Pp+P8vJyPB5PtENRQ0BMTAx5eXk4nc5oh6JGoEaPj5fvvYmCmcdyzJmXRTscpZRSSg1DQz7BKi8vJzExkcLCQkQk2uGoKDLGUFNTQ3l5OUVFRdEOR41Ay5e+wEXND8NHD4MmWEoppZQ6DEO+i6DH4yE9PV2TK4WIkJ6erq2ZasC4d77Z+Xjvri1RjEQppZRSw9WQT7AATa5UJ/0sqIFkWmo6H+9d/24UI1FKKaXUcDUsEiyllBoMLm89u21j8Ro77eWroh2OUkoppYYhTbD6QET47ne/2/n8zjvvZPHixdELKMzJJ5/c6+TM5513Hscee2yXZYsXLyY3N5dZs2Yxc+ZMnn/++YEOU6lhwe1vpMWZzi5HAbE1G6IdjlJKKaWGIU2w+sDtdvP0009TXV0d0XqNMQSDwYjWGa6+vp4VK1bQ0NDA9u3bu6y76aabWLVqFf/617+4+uqrBzQOpYaL+EAj7a4UauMnMcazLdrhKKWUUmoY0gSrDxwOB9deey133XXXAeuqqqq44IILOProozn66KN5//33AauV6M477+wsN3PmTEpLSyktLWXKlClcccUVzJw5k7KyMm655RZmzpxJcXExjz/+OABLly7l5JNP5sILL2Tq1KlceumlGGO6je/hhx/ubI1atmxZ5/Knn36ac845h4svvpjHHnus222nTZuGw+Hokjx+//vfZ/r06ZSUlHDzzTcDUFpayqmnnkpJSQmnnXYau3btAmDRokVcf/31HHvssYwfP56lS5dy9dVXM23aNBYtWtRZ5/XXX8+cOXOYMWMGP/3pTw+Io6GhgYKCgs5Er6Wlhfz8fHw+X7dxKzUQEoON+Fwp+FMnkEktbc0N0Q5JKaWUUsPMkB+mPdzP/r2eDXsaI1rn9LFJ/PScGQct981vfpOSkhJuvfXWLstvuOEGbrrpJubPn8+uXbs444wz2LhxY691bdmyhb///e8ce+yxPPXUU6xatYrVq1dTXV3N0UcfzYknngjAp59+yvr16xk7dizz5s3j/fffZ/78+QfU19rayqpVq3jnnXe4+uqrWbduHQBLlizhtttuIzs7mwsuuIAf/vCHB2z78ccfY7PZyMzMBKCmpoZnnnmGTZs2ISLU19cD8O1vf5srr7ySK6+8kr/+9a985zvf4dlnnwWgrq6ODz/8kOeff55zzz2X999/n7/85S8cffTRrFq1ilmzZnHHHXeQlpZGIBDgtNNOY82aNZSUlHTGkZyczKxZs3j77bc55ZRTeOGFFzjjjDN0vis1aLy+ACk0Uxabiit7MuyEiu3rGV9yfLRDU0oppdQwoi1YfZSUlMQVV1zB3Xff3WX566+/zre+9S1mzZrFueeeS2NjI83Nzb3WVVBQ0Hld1Hvvvccll1yC3W4nOzubk046iU8++QSAuXPnkpeXh81mY9asWZSWlnZb3yWXXALAiSeeSGNjI/X19VRWVrJlyxbmz5/P5MmTcTqdnYkXwF133cWsWbO4+eabefzxxztH50tOTiYmJob/9//+H08//TRxcXEAfPjhh3zta18D4PLLL+e9997rrOucc85BRCguLiY7O5vi4mJsNhszZszojPmJJ57gyCOPZPbs2axfv54NGw68vmXhwoWdLXiPPfYYCxcu7PU4KhVJzc2NuMWHiU0lZdx0AOrK9TospZRSSh2aYdWC1ZeWpoF04403cuSRR3LVVVd1LgsGg3z00UfExMR0KetwOLpc1xQ+d1N8fHyf9ud2uzsf2+12/H5/t+X2H7pcRHjiiSeoq6vrnJC3sbGRJUuWcMcddwDWNVgd3f/2j3vZsmW88cYbPPnkk9x77728+eabB5TrLk6bzdYlZpvNht/vZ8eOHdx555188sknpKamsmjRom7nsjr33HP54Q9/SG1tLStWrODUU0/tdb9KRZK3uRYA405hbJGVYPkqdS4spZRSSh0abcE6BGlpaVx00UU8+OCDnctOP/107rnnns7nq1atAqCwsJCVK1cCsHLlSnbs2NFtnSeccAKPP/44gUCAqqoq3nnnHebOnXtIcXW0+rz33nskJyeTnJzMkiVLePnllzuv+1qxYkWP12GFa25upqGhgS996UvcddddrF69GoDjjz++c/tHH32UE044oc/xNTY2Eh8fT3JyMpWVlbz00kvdlktISODoo4/mhhtu4Oyzz8Zut/d5H0r1l9djtTzb3PHExSeylwwcdTrQhVJKKaUOTb8TLBHJF5G3RGSDiKwXkRtCyxeLyG4RWRW6fan/4Ubfd7/73S4DQtx9990sX76ckpISpk+fzv333w/ABRdcQG1tLTNmzODee+9l8uTJ3dZ3/vnnU1JSwhFHHMGpp57Kr371K3Jycg4pppiYGGbPns11113Hgw8+SGlpKTt37uwyPHtRURHJycl8/PHH3dbxpS99iT179tDU1MTZZ59NSUkJ8+fP57e//S0A99xzD3/7298oKSnh4Ycf5ve//32f4zviiCOYPXs2U6dO5Wtf+xrz5s3rXHfbbbd1GSZ+4cKFPPLII9o9UA06r6cNALsrFoAqdz5JrTujGZJSSimlhiHpaWS6PlcgMgYYY4xZKSKJwArgPOAioNkYc2dv24ebM2eO2X9Op40bNzJt2rR+xahGFv1MqIGwcfkbTHvhK6w9+UGKT76Qj+69iunVL5N4227Epo39SimllOpKRFYYY+bsv7zfZw3GmApjzMrQ4yZgI5Db33qVUmow+UMtWA6XdT2lSZtIEq3UVe2OZlhKKaWUGmYi+rOsiBQCs4GOfmjfEpE1IvJXEUmN5L6UUiqS/O1WguWMsUbOjMuZCMC+nZ9FLSallFJKDT8RS7BEJAF4CrjRGNMI/BGYAMwCKoDf9LDdtSKyXESWV1VVRSocpZQ6JAFvKwBOt5VgpeZNAaBpz+aoxaSUUkqp4SciCZaIOLGSq0eNMU8DGGMqjTEBY0wQ+DPQ7dB4xpgHjDFzjDFzOia7VUqpweb3WlMHuEItWDnjphAwgr9aRxJUSimlVN9FYhRBAR4ENhpjfhu2fExYsfOBdftvq5RSQ0XQ17WLoCsmln22DBwNpVGMSimllFLDTSQmGp4HXA6sFZFVoWU/BC4RkVmAAUqB/4rAvpRSakAYr5VgxYQSLIAaVx5JbWXRCkkppZRSw1AkRhF8zxgjxpgSY8ys0O1FY8zlxpji0PJzjTEVkQg4Wp599llEhE2bNvVYprS0lJkzZ0Zsn4sWLeLJJ5/scf2NN95Ibm4uwWCwc9lDDz1EZmYms2bNYvr06fz5z3+OWDxKjWRBn9VF0B0b37msLWEcmf499Hc6C6WUUkqNHjq5Sx8tWbKE+fPns2TJkm7X+/3+fu8jEAj0uWwwGOSZZ54hPz+ft99+u8u6hQsXsmrVKpYuXcoPf/hDKisr+x2bUiNeRxdB9+ctWCa1iDSaqK+riVZUSimllBpmNMHqg+bmZt577z0efPBBHnvssc7lS5cu5YQTTuDcc89l+vTpgJVoXXrppUybNo0LL7yQ1lZrZLI33niD2bNnU1xczNVXX017ezsAhYWFfO973+PII4/kX//61wH7fv3115kzZw6TJ0/mhRde6LLvGTNmcP311/eY9GVlZTFhwgR27tzZuezuu+9m+vTplJSUcPHFFwNQW1vLeeedR0lJCcceeyxr1qwBYPHixVx55ZWccMIJFBQU8PTTT3PrrbdSXFzMmWeeic/nA+D222/n6KOPZubMmVx77bUH/NofDAYpLCykvr6+c9mkSZM08VNDivF78Bsb2J2dy2KyraHaK3ZsjFZYSimllBpmInEN1uB56fuwd21k68wphrN+2WuR5557jjPPPJPJkyeTnp7OihUrOOqoowBYuXIl69ato6ioiNLSUj777DMefPBB5s2bx9VXX80f/vAHvvWtb7Fo0SLeeOMNJk+ezBVXXMEf//hHbrzxRgDS09NZuXJlt/suLS1l2bJlbNu2jVNOOYWtW7cSExPDkiVLuOSSS1iwYAE//OEP8fl8OJ3OLttu376d7du3M3HixM5lv/zlL9mxYwdut7sz4fnpT3/K7NmzefbZZ3nzzTe54oorWLVqFQDbtm3jrbfeYsOGDRx33HE89dRT/OpXv+L888/nP//5D+eddx7f+ta3uO222wC4/PLLeeGFFzjnnHM692mz2ViwYAHPPPMMV111FR9//DEFBQVkZ2f3+W1SaqCJ34NXXF3+KH4+VPtncNQJ0QlMKaWUUsOKtmD1wZIlSzpbey6++OIuLUZz586lqKio83l+fj7z5s0D4LLLLuO9997js88+o6ioiMmTJwNw5ZVX8s4773Rus3Dhwh73fdFFF2Gz2Zg0aRLjx49n06ZNeL1eXnzxRc477zySkpI45phjeOWVVzq3efzxx5k1axaXXHIJf/rTn0hLS+tcV1JSwqWXXsojjzyCw2GdSr733ntcfvnlAJx66qnU1NTQ2NgIwFlnnYXT6aS4uJhAIMCZZ54JQHFxMaWlpQC89dZbHHPMMRQXF/Pmm2+yfv36A17HwoULefzxxwF47LHHen3NSkWDBNppx9VlWXbBNAB8VVujEZJSSimlhqHh1YJ1kJamgVBbW8ubb77J2rVrERECgQAiwq9//WsA4uPju5S3Rq3v+Xl39q/jYPW98sor1NfXU1xcDEBrayuxsbGcffbZgJXM3Hvvvd3W95///Id33nmHf//739xxxx2sXdt7i6Db7QasViin09kZj81mw+/34/F4+MY3vsHy5cvJz89n8eLFeDyeA+o57rjj2Lp1K1VVVTz77LP8+Mc/7nW/Sg02e8CDT7omWK64RGpIxd6ws4etlFJKKaW60hasg3jyySe5/PLL2blzJ6WlpZSVlVFUVMS7777bbfldu3bx4YcfAvDPf/6T+fPnM2XKFEpLS9m61foV/OGHH+akk07q0/7/9a9/EQwG2bZtG9u3b2fKlCksWbKEv/zlL5SWllJaWsqOHTt47bXXOq/36kkwGKSsrIxTTjmF//u//6OhoYHm5mZOOOEEHn30UcC6tisjI4OkpKQ+xdeRTGVkZNDc3NzjqIciwvnnn89///d/M23aNNLT0/tUv1KDxRZoPyDBAqh25ZLYsisKESmllFJqONIE6yCWLFnC+eef32XZBRdc0OPAElOmTOG+++5j2rRp1NXVcf311xMTE8Pf/vY3vvrVr1JcXIzNZuO6667r0/7HjRvH3LlzOeuss7j//vsJBoO8/PLLfPnLX+4sEx8fz/z58/n3v//dbR3XXHMNy5cvJxAIcNlll1FcXMzs2bP5zne+Q0pKCosXL2bFihWUlJTw/e9/n7///e99PDqQkpLC17/+dWbOnMkZZ5zB0Ucf3bnu/vvv5/777+98vnDhQh555BHtHqiGJHugHZ/NfcDylvh8HapdKaWUUn0mQ+mkYc6cOWb58uVdlm3cuJFp06ZFKSI1FOlnQg2EVf9zKgmmmYk/WtZl+fJ//IA52/9A7Y27SEtJjlJ0SimllBpqRGSFMWbO/su1BUsppQB70Iu/mxasmCxrFM69O3ueZFwppZRSqoMmWEopBThNO4FuEqzkXGuo9obyzwY7JKWUUkoNQ8MiwRpK3RhVdOlnQQ0UZ7CdgP3ABCurcCoA7VXbBjskpZRSSg1DQz7BiomJoaamRk+sFcYYampqiImJiXYoagRyGi/BbhIsd2IGjSRgr98RhaiUUkopNdwM+Xmw8vLyKC8vp6qqKtqhqCEgJiaGvLy8aIehRiAXXoL27pP3audYElrKBjkipZRSSg1HQz7BcjqdFBUVRTsMpdQI5zJego4DW7AAmuPzyahfhzGmT5OHK6WUUmr0GvJdBJVSaqAZY3DjhR5asAIpRYwxVdQ39T6Zt1JKKaWUJlhKqVHPHzS48WEc3SdYrsyJOCTInl2bBzkypZRSSg03A55giciZIvKZiGwVke8P9P6UUupQtbe345Ag0kOClZw7GYD63TpUu1JKKaV6N6AJlojYgfuAs4DpwCUiMn0g96mUUoeqva3FeuDqPsHKLLCGavdUbh2skJRSSik1TA10C9ZcYKsxZrsxxgs8BiwY4H0qpdQh8bZb11b11ILlThlLG25sdaWDGJVSSimlhqOBTrBygfCxjctDyzqJyLUislxElutQ7EqpaPC1hRIsZ2z3BUSoco4lvmXnIEallFJKqeEo6oNcGGMeMMbMMcbMyczMjHY4SqlRyOdtA8DeQxdBgKa4fNK9ewYrJKWUUkoNUwOdYO0G8sOe54WWKaXUkOHzWNdg2VxxPZYJJBeSZyqpa/YMVlhKKaWUGoYGOsH6BJgkIkUi4gIuBp4f4H0qpdQh8Xe2YPXQRRBwZk7ELT52l20frLCUUkopNQwNaIJljPED3wJeATYCTxhj1g/kPpVS6lAF+pBgJY2dBEBd+aZBiUkppZRSw5NjoHdgjHkReHGg96OUUofL324lWA53z10EMwqmAeDZq0O1K6WUUqpnUR/kQimloi0YasFyuntuwXKnjcODC3vdlsEKSymllFLDkCZYSqlRL+i1hml39tKChc3OXuc4kpr1GiyllFJK9UwTLKWU6kiwYhN6LdaQUMQYr86FpZRSSqmeaYKllBr1jM8apt0Zl9RrOV/qZHKpor6+djDCUkoppdQwpAmWUkqFWrDi4hN7LebMsQa62Lt97YCHpJRSSqnhSRMspdSoZ7yteI0Dp9PVa7mUgmIAWsp0tgmllFJKdU8TLKXUqGfzNdMm7oOWyymahtfYCe7bOAhRKaWUUmo40gRLKTXq2fxteIg5aDm3y025LRd3vc6FpZRSSqnuaYKllBr1bP5WPLae58AKVxtXRFrrjgGOSCmllFLDlSZYSqlRz+5vw2c7eAsWgC9tMmOCe/G0Ng9wVEoppZQajjTBUkqNeq5AG74+tmDFjJ2OXQxlW9YMcFRKKaWUGo40wVJKjXrOYBt+e98SrMwJswGo3bFyIENSSiml1DClCZZSatRzBT19TrDGjC+mzbgI7tEWLKWUUkodSBMspdSo5zYego6+JVh2h4MyZyFJ9TpUu1JKKaUOpAmWUmrUizEeAs74PpevS5pGvncbJhgcwKiUUkopNRz1K8ESkV+LyCYRWSMiz4hISmh5oYi0iciq0O3+iESrlFIRZoJB4mgDZ1yftwlmF5NEC9W7dT4spZRSSnXV3xas14CZxpgSYDPwg7B124wxs0K36/q5H6WUGhCethZcEiDoTunzNomFRwJQufmTAYpKKaWUUsNVvxIsY8yrxhh/6OlHQF7/Q1JKqcHTXF8NgMSl9Hmb/KlzCBjBs+vTAYpKKaWUUsNVJK/Buhp4Kex5kYh8KiJvi8gJPW0kIteKyHIRWV5VVRXBcJRS6uBaGqwEyxGf2udtkpOTKbPl4qpeN1BhKaWUUmqYchysgIi8DuR0s+pHxpjnQmV+BPiBR0PrKoBxxpgaETkKeFZEZhhjGvevxBjzAPAAwJw5c8zhvQyllDo8nqYaAJzxaYe0XVXCFPKbVg9ESEoppZQaxg6aYBljvtDbehFZBJwNnGaMMaFt2oH20OMVIrINmAws72/ASikVSe1NtQDEJKYf0naB7BJymt6gZt8e0rPGDkRoSimllBqG+juK4JnArcC5xpjWsOWZImIPPR4PTAK292dfSik1EHwtdQDEJR9agpU0fi4A5evejXhMSimllBq++nsN1r1AIvDafsOxnwisEZFVwJPAdcaY2n7uSymlIi7QaiVY8ckZh7RdQfE8AkZo2/7xQISllFJKqWHqoF0Ee2OMmdjD8qeAp/pTt1JKDYZgaz0AicmHdg1WfGIyW+1FJFTrSIJKKaWU+lwkRxFUSqlhJ9haRxNxOJzOQ962KrmYAs8mTDAwAJEppZRSajjSBEspNao52/bRYDu01qsOJm8OibSyd9uaCEellFJKqeFKEyyl1KgW315FkyvzsLbNmDofgL0bdKALpZRSSlk0wVJKjWqpgWo8sVmHte2EqUfQYOLx71wW4aiUUkopNVxpgqWUGrU8Xh+ZppZA/JjD2t5ut1MaO530+rURjkwppZRSw5UmWEqpUatm3x6cEsCWknvYdXiyj6QwsJOG2qoIRqaUUkqp4UoTLKXUqFVfuRMAd2reYdeROOUkbGLY8ekbkQpLKaWUUsOYJlhKqVGrpaoMgISs/MOuY/ysk/AaB56t70QqLKWUUkoNY5pgKaVGLV+dlWClZhUcdh0xcQlsdU0hrXp5pMJSSiml1DCmCZZSatQyjRX4jY3EjLH9qqcucw5F3q14WhoiFJlSSimlhitNsJRSo5ajZS+1tlTE7uhXPXETT8QpAbZ/ujQygSmllFJq2NIESyk1asV69tHgOLxJhsONn30qfmOj6bOl/Q9KKaWUUsOaJlhKqVEr2bePVvfhTTLcpZ7UNLY7J5K09+MIRKWUUkqp4UwTLKXUqGSMIT1Ygzc+JyL11WYdy0TvJpobayNSn1JKKaWGJ02wlFKjUn19HYnShkkcE5H6EmacgVMCbPv4pYjUp5RSSqnhqV8JlogsFpHdIrIqdPtS2LofiMhWEflMRM7of6hKKRU5tXutSYadKYc/yXC4SXNOo8XE4P3stYjUp5RSSqnhqX9DZ1nuMsbcGb5ARKYDFwMzgLHA6yIy2RgTiMD+lFKq35r2WQlWXEZkEiy3O5b1cbPJq/kAjAGRiNSrlFJKqeFloLoILgAeM8a0G2N2AFuBuQO0L6WUOmTtteUAJGUf/iTD+2vJP5kxppKqnRsjVqdSSimlhpdIJFjfEpE1IvJXEUkNLcsFysLKlIeWHUBErhWR5SKyvKqqKgLhKKXUwfnr9wCQnlMYsTpz55wNwM5lz0esTqWUUkoNLwdNsETkdRFZ181tAfBHYAIwC6gAfnOoARhjHjDGzDHGzMnM7P98NEop1Re25goaSMAVGx+xOosmzaBMxhKz7eWI1amUUkqp4eWg12AZY77Ql4pE5M/AC6Gnu4H8sNV5oWVKKTUkuFv3UmdLJzmCdYoIu8aexbHlf6V+705SciLX/VAppZRSw0N/RxEMH9/4fGBd6PHzwMUi4haRImASsKw/+1JKqUhK8FbR5Ip8q3nmvCuwi2Hbm3+LeN1KKaWUGvr6ew3Wr0RkrYisAU4BbgIwxqwHngA2AC8D39QRBJVSQ0lqoBpPbGQmGQ43adoRbHRMJWPrk5ig/tlTSimlRpt+JVjGmMuNMcXGmBJjzLnGmIqwdXcYYyYYY6YYY3TmTaXUkNHe7iHd1BNMiMwkw+FEhMaZV1IQLGPVq/+IeP1KKaWUGtoGaph2pZQasmory7CJwZYc+QQL4KgvX8N2WwG5H91OdUUpACYYZMXLD1O1uIAP/3DtgOxXKaWUUtEXiYmG1SAxwSCtba00NNTR0tyEr60Jf1sTgfZmfD5/aG5TQ+f0ps44XHFJxMQnEZOQTFxSOmlJCdhtOgGqGt0aKncxBnCnRWaS4f05nC6C591P/FPn0/ank1iWdAzZzes5KmjNveWrWjog+1VKKaVU9GmCNQQEAgFq9pZRW7GN1n2leGvLCDTtw9ZWQ0x7LfH+WhIDDaSYBuLFS38Gla41CdTZ0mhypuOJycaTVACp40kYO4WcwumMyc7SBEyNeC3V1jR9CVkDN8rfxJLj2coztL74E8Y3LaPCVcjyqf9FoOwTptW+TugXkQHbv1JKKaWiQxOsQdLaXE/F9vU0lG3AW7kFadhJfFsFKb5KsoLVZImfrLDyXuOg3pZMkz2VVlcqTe4J7IpJh9hUnLGJOGITscUkYHcn4IhJwOl0YkMwWCdtJhgk6G3D29aIv60Zv6cRWmowzftwtFYS76kmt2kZmY0vW9NAr7X2W22S2evIpSG+EF/KeFzZU0gZN53coukkJ8RF49ApFXHeOmvWiLTsgR1GfWLJ8VDyBgAZoWUfPfIzkmqfp7G2iqT0rJ43VkoppdSwpAlWhDXU1VC2cRnNO1dhq95EfPMOMtvLyKKWCaEyQSNUSyq1zhwqE2dQnpCLpOQTkzGOxOzxpI8dT1JyGlk2GwN9+mXam6nfs4WaXRtpqdiMqdlGbFMp05reJ63xRdgFfAI+Y2enZFPlzqclaTySPom4sVPJLComd0wuDod9gCMdOowxBPx+AgFv6D5AMBAgGPATCPgxwUBoWcfjz++DgQAmEACCYTVal0KKsF+LhtDR31PCy4TuTeiJIFYJEWuF2LAJIDZrjU2wiQ2DhB4LEionItYm2BCbIPsvs4tVv82GDTrXI1adYgvt3Waz9v/5CznIPT0s6+54H8ab1O2GYc8bd9NunCSnZx9m5YfPlTUBtkLlro2aYPVTe7uHlqZGPC2NtLc14W1twtfWiN/TTMDTRNDTTNDbSsDXjgn4IOBDgj4k4LXug35sQS8S9GOAoLG+39bHMfTZ7vwOhv4nNoJiJygOguIAcWDsTrA5ELsDbE6wOxCbE7E7EbsDsTuxOZyd9zabA5vDid3hsp47nNg7by4cHcs7yjuc2O3h5VzYHU5sdrv1fVSA9d5Z959/2zuX8fmfBIPp8uehp+VDVVTf8l7+rgrSwx/s/ZZF4SDr1+TQDMnjJYLD4Ro2vaw0weqH2n272bX6bdp2rSCmZgPZbVsZa/Z1TlzaQDwVjnx2Jh/NttQJVmtQ/jTGFs0gKz5hwJOnvhB3AqlFs0ktmn3AOl9LHZXb11JftgHf3k046reR1bKTnKoVuKr8sMkq12xiqbWn0ezMoM2diS8+GxKyscel4YxLxpWQQkx8CrGJqbjiknA63ThcLpwuNw6nC7E5Dvw2GwMmCCbYmZy0ezz42tvw+Tz42z34vG34vB4C3nb8Xg8BXztBn4egr52gr42gvx3ja8f4vRi/FwLtEPCCvx0JtCMBb+jkyoct6MUeuncEfdiNF4fx4TA+nMaHAx9O48eFDxc+HGL0yzMAgkasEyG6fh6kyz/iXdnk0P+xPg4ot+WQZxv8cX7Sxk2HD6Bh1zqYfdKg73+o8rS1UFtZTmNVOa21e/A1VxNsqYW2OuyeOhzeBty+BmL9jSQEG0k0zcSKF/ch7sdn7Pix4xMHfhz4cBDEjhE54LPVwYQ9EII4COAggJ0ADvw4jPXYfhifxf4IGsGHDT8Ogtis707oRwvT+a2Rzu9Tx3fr8+fdlwsn+58cH/A8/DvZ8+sXTJfV4fUaDvxed7fvUB+NXmI7sJ7uy+xf7/4Gpt7IxXKwbbo/dgfb5nD+lio1WJYGjqD5q49xdsnYaIfSJ3qO2EcmGGTX5k+pXPsmUr6MMY1ryTMVpAEBI5Tbc6lImEFZ5kXE5c9izJQ5pOcUkByFE7hIccankld8InnFJ3ZdEQzQWLGVyh3radmzEX9tKdK0lzhvNTlNa0lveJsY8R3SvnzG3vlP/f4nKYL1QY3Eh9VrHHhx4hMHPpz4xYlPrPuAOAnYXPjtMbTbkgjaXATtLozNibG7MXZX6GY9xmZHxA620E3sSOixiO3zxzY7YnMgdqu8dR/6XIT9ukrYr6ddTiQ6f14NdpaVLttZZQxB69fa0M2ETmhM5/Ng6Ayroxyhvey/jQn96tvdcoBg15hCy003p24YE/YPu+mMu3N952sxXZZ1LP+8lW7/pKv7x10+ORK+/MDyCROPZ2CGuOhd3oRi2owL/541Udj74DPBINVVFVTv3kZL5XYCtbugaQ+O1ipi2qtI8NWSGqwliRbGAvv/0+k1DhokkRZbIq32JBpicql2TScYk4rEJCLuRMQdj92dgD0mEUeM1YXaFZeIOzaBmLgEYmPjcLvc2BwunDYbTiB2IF5sMEjA78Xns24Bnxe/z4ff78Xv8xLw+wj4vfj9PgI+H8GAdR8I+Aj6vZiAj4DfRzDgh4Afgj5M0A8BHwSt5xLwg7HWS8eyoB9MoPO7HjTWd63j54rQO/F5mmUO/P6Ff0/3P/02RvZbFN66Hrasy4JuEtb9f0gL+36H19l1P+FlwuoO28/+m4TVeMB+Ox6aLvF183q6+Qn/wAS0D2W6e02HWK8Jj6WHHMh02+SwXz19iH//Rd0l3Qerty+xDCZNGw/NUG3FbY/NY2pOYrTD6DNNsHpRX72XrR//m+CWNyms/4gCaikAakhmV9xMysdcRPLkeRTOPJ6C+EQG9mqOIcRmJyl3Ckm5U7pdbYJBGupraK6voa25Dk9THe0tdfhaGsDXjPH7MQEfJuANnTiETh6wuq2F30xnVzYb4nCDw4043NgcbmyuGGwON3anG4crBrszBrvLeux0x1r3ocdudwwuVwwuuw3X4B4tpbpwOJ1sdxaSWLch2qFETEtzI3u2b6ChfCP+qq3YGnYR07qHZO9eMgNVZEo7mWHl24yLWlsqjY50qmMLqYidi0nIwpE0BlfqWBLSx5CQlkNSajYxsfFk2mxdth+ybDbsrhjsrhhioh2LUkqpqNEEqxebXv0Lx27+NQ3Esy1hDqVFp5A7+3TGFk4jfRi3TA00sdlITsskOW1YnBIpNejqkqczveYVAn4fdocz2uH0STAQpGLXFmp2rKK14jOkdhtxTaVkesvJoZpJYWXrSKTGnkVdbCGVCfORlHzcmQUkZo8ndcwEktOyyLXZyI3aq1FKKaUGjiZYvZh46hVsnjqfCSXzOdKhh0opFRm2ohNIrHmWzavfY/JRp0Q7nAPUVVeye/NymneuQao2kNy4hTxfKbnS1pkUNRJPhSOPsuQjKU2dgCt7Mil508gqnEZqYgqpUX0FSimlVPRo1tCLjJxxZOSMi3YYSqkRZuIxX4Ll36VmzcsQ5QSrek8p5es/wLNzObHVaxjj2UYWtZ0JUgPx7HaNZ0PWl5Ds6STml5A9vpiU9GyStCVfKaWUOoAmWEopNchSM8ey0TmdMWX/wQT/FxmkRKVu327K1r9P647lxFSvIbd1E5nUkYE1WM8u+zh2Js9hR8Z04vKLGTPpKNLHDO/BepRSSqnBpgmWUkpFQdOUrzJt3c/Y8PErTD/urIjX31i7j7J179O84xPc+1aT07KJHKpJxRreu8yeS2ny0WzLnkXyxLkUzDiGovgkiiIeiVJKKTW6aIKllFJRMPOsr1O97vfY3/gpvjmn4XQe/viWTQ217Fr3Ac3bP8G5bzU5zRsYayqZEVpfLmMoTyxhR/YRJI4/hoIZx1CQnDZ6Rj5VSimlBpEmWEopFQVx8YlsmPMj5iy/hWV/WMTs6/6C0x130O3qqyrYs2UlDTs+xbH3U7KbNzLO7O5MpirIZE/8NHZmfZWE8XMZN+M48tKyojLnl1JKKTUa9SvBEpHHgY7JkFKAemPMLBEpBDYCn4XWfWSMua4/+1JKqZFmztnX8tHeDRxb/jfKfzmb8vwFuPNKcMQmQsBPW8M+gvW7kabdxDVuZ4y3lAzqSQltX0Uau+OmsifzHOIKjyZvxnGMycplTDRflFJKKTXK9SvBMsYs7HgsIr8BGsJWbzPGzOpP/UopNdIde83vWLX0JGLf/z/m7nwA2y5zQJlG4ql05LIj5Xi2Zk4lNncm+VPnkJlTMDwm4FVKKaVGkYh0ERQRAS4CTo1EfUopNZrMOvl8OPl8Guv2UVm6iUB7C0bsJKZlk5pTQFJiCknRDlIppZRSfRKpa7BOACqNMVvClhWJyKdAI/BjY8y73W0oItcC1wKMG6dzTimlRq+k1CySUrOiHYZSSiml+uGgCZaIvA7kdLPqR8aY50KPLwGWhK2rAMYZY2pE5CjgWRGZYYxp3L8SY8wDwAMAc+bMObBvjFJKKaWUUkoNEwdNsIwxX+htvYg4gK8AR4Vt0w60hx6vEJFtwGRgeb+iVUoppZRSSqkhzBaBOr4AbDLGlHcsEJFMEbGHHo8HJgHbI7AvpZRSSimllBqyInEN1sV07R4IcCJwu4j4gCBwnTGm9mAVrVixolpEdkYgpkjKAKqjHYQaNPp+jx76Xo8e+l6PLvp+jx76Xo8uQ/H9LuhuoRijlz31RkSWG2PmRDsONTj0/R499L0ePfS9Hl30/R499L0eXYbT+x2JLoJKKaWUUkoppdAESymllFJKKaUiRhOsg3sg2gGoQaXv9+ih7/Xooe/16KLv9+ih7/XoMmzeb70GSymllFJKKaUiRFuwlFJKKaWUUipCNMFSSimllFJKqQjRBKsXInKmiHwmIltF5PvRjkdFjojki8hbIrJBRNaLyA2h5Wki8pqIbAndp0Y7VhUZImIXkU9F5IXQ8yIR+Tj0/X5cRFzRjlFFhoikiMiTIrJJRDaKyHH63R6ZROSm0N/wdSKyRERi9Ls9cojIX0Vkn4isC1vW7XdZLHeH3vc1InJk9CJXh6qH9/rXob/ja0TkGRFJCVv3g9B7/ZmInBGVoHuhCVYPRMQO3AecBUwHLhGR6dGNSkWQH/iuMWY6cCzwzdD7+33gDWPMJOCN0HM1MtwAbAx7/n/AXcaYiUAd8P+iEpUaCL8HXjbGTAWOwHrf9bs9wohILvAdYI4xZiZgBy5Gv9sjyUPAmfst6+m7fBYwKXS7FvjjIMWoIuMhDnyvXwNmGmNKgM3ADwBC52sXAzNC2/whdN4+ZGiC1bO5wFZjzHZjjBd4DFgQ5ZhUhBhjKowxK0OPm7BOwHKx3uO/h4r9HTgvKgGqiBKRPODLwF9CzwU4FXgyVETf6xFCRJKBE4EHAYwxXmNMPfrdHqkcQKyIOIA4oAL9bo8Yxph3gNr9Fvf0XV4A/MNYPgJSRGTMoASq+q2799oY86oxxh96+hGQF3q8AHjMGNNujNkBbMU6bx8yNMHqWS5QFva8PLRMjTAiUgjMBj4Gso0xFaFVe4HsaMWlIup3wK1AMPQ8HagP+8Ot3++RowioAv4W6hL6FxGJR7/bI44xZjdwJ7ALK7FqAFag3+2Rrqfvsp63jWxXAy+FHg/591oTLDWqiUgC8BRwozGmMXydseYw0HkMhjkRORvYZ4xZEe1Y1KBwAEcCfzTGzAZa2K87oH63R4bQtTcLsJLqsUA8B3YxUiOYfpdHBxH5EdalHY9GO5a+0gSrZ7uB/LDneaFlaoQQESdWcvWoMebp0OLKji4Foft90YpPRcw84FwRKcXq6nsq1jU6KaFuRaDf75GkHCg3xnwcev4kVsKl3+2R5wvADmNMlTHGBzyN9X3X7/bI1tN3Wc/bRiARWQScDVxqPp+8d8i/15pg9ewTYFJoNCIX1sV0z0c5JhUhoWtwHgQ2GmN+G7bqeeDK0OMrgecGOzYVWcaYHxhj8owxhVjf4zeNMZcCbwEXhorpez1CGGP2AmUiMiW06DRgA/rdHol2AceKSFzob3rHe63f7ZGtp+/y88AVodEEjwUawroSqmFIRM7E6t5/rjGmNWzV88DFIuIWkSKsgU2WRSPGnsjnyaDan4h8CevaDTvwV2PMHdGNSEWKiMwH3gXW8vl1OT/Eug7rCWAcsBO4yBiz/wW2apgSkZOBm40xZ4vIeKwWrTTgU+AyY0x7FMNTESIis7AGNHEB24GrsH5Q1O/2CCMiPwMWYnUf+hS4ButaDP1ujwAisgQ4GcgAKoGfAs/SzXc5lGTfi9VNtBW4yhizPAphq8PQw3v9A8AN1ISKfWSMuS5U/kdY12X5sS7zeGn/OqNJEyyllFJKKaWUihDtIqiUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkoppZRSEaIJllJKKaWUUkpFiCZYSimllFJKKRUhmmAppZRSSimlVIRogqWUUkOEiBSKiBERR7RjGelEZJGIvBftOIYaETlBRD6LdhxKKTWcaYKllFJqWBORxSLiE5HmsNut0Y5rODLGvGuMmRLpekXELiK/EJE9ItIkIp+KSEqk96OUUkOB/kqqlFIRIiIOY4w/2nGMUo8bYy6LdhADZQR8tn4GHA8cB+wCZgCeqEaklFIDRFuwlFKqH0SkVES+JyJrgBYRcYjIsSLygYjUi8hqETk5rPxSEflfEVkmIo0i8pyIpPVQ91UisjH0i/92Efmv/dYvEJFVoXq2iciZoeXJIvKgiFSIyO5Qy4H9IK9jgoi8KSI1IlItIo92tDCE1tWKyJGh52NFpKrjdYnIuSKyPvR6l4rItP2Oz80iskZEGkTkcRGJOfQjfehE5Puh49IkIhtE5PweyomI3CUi+0LHcq2IzAytc4vInSKyS0QqReR+EYnt4/4fCpV/LRTD2yJSELb+9yJSFtrnChE5IWzdYhF5UkQeEZFGYJGIzBWRD0PHuUJE7hURV9g2RkS+ISJbQvv7eei9+yC0jyfCy/cQ88kiUt6X19dXIpIK3Ah83Riz01jWGWM0wVJKjUiaYCmlVP9dAnwZSAGygf8AvwDSgJuBp0QkM6z8FcDVwBjAD9zdQ737gLOBJOAq4K6wJGcu8A/gltB+TwRKQ9s9FKp3IjAbOB245iCvQYD/BcYC04B8YDGAMWYb8D3gERGJA/4G/N0Ys1REJgNLsE6gM4EXgX/vdyJ/EXAmUASUAIu6DUBkfih56Ok2/yCvYX/bgBOAZKwWlEdEZEw35U7HOn6TQ2UvAmpC634ZWj4L63jmArcdQgyXAj8HMoBVwKNh6z4J1ZsG/BP4137J5wLgSaz391EgANwUqus44DTgG/vt7wzgKOBY4FbgAeAyrPdzJtZn9bCFEuWe3p8/9LBZMdbn8UIR2Ssim0Xkm/2JQymlhjRjjN70pje96e0wb1hJzdVhz78HPLxfmVeAK0OPlwK/DFs3HfACdqAQMICjh309C9wQevwn4K5uymQD7UBs2LJLgLcO8XWdB3y637LngbXAGsAdWvYT4ImwMjZgN3By2PG5LGz9r4D7I/weLA4dw/qw29huyq0CFoQeLwLeCz0+FdiMlZTYwsoL0AJMCFt2HLCjj3E9BDwW9jwBK0nK76F8HXBE2Gt65yD13wg8E/bcAPPCnq8Avhf2/DfA7w5S58lAeYTfn6+FYnsQiMVKsquAL0ZyP3rTm970NlRu2oKllFL9Vxb2uAD4avgv+8B8rNaq7srvBJxYrRJdiMhZIvJRqHtePfClsHL5WC00+ysI1VcRtv8/AVm9vQARyRaRx0JdChuBR7qJ6c9YrSD3GGPaQ8vGhl4DAMaYYOj15YZttzfscStWohFpTxhjUsJue0TkCrG6UHYch5l0c5yNMW8C9wL3AftE5AERScJqkYsDVoTV8XJoeV91vtfGmGagFuuYEeo6uTHUdbIeq/Uso7ttQ+Uni8gLoVagRuB/unk9lWGP27p5PhDH/mDaQve3G2PajDFrgMewPs9KKTXiaIKllFL9Z8Iel2G1YIWf7McbY34ZViY/7PE4wAdUh1coIm7gKeBOINsYk4LV/U7C9jOhm1jKsFqwMsL2n2SMmXGQ1/A/oddRbIxJwupW1rEvRCQB+B1WK8Ri+fy6sT1YSV1HOQm9vt0H2d8BxBoivLmX2wkHr6WzrgKshPBbQHro+K0Lf03hjDF3G2OOwmpRnIzV9bIaKzmYEXYsk40xh5KkdL7XoWOYBuwJvZZbsbojpobia9gvvvDPFcAfgU3ApNB79MOeXs9AEetau57en/t72GxN6D789ez/2pRSasTQBEsppSLrEeAcETlDrKGpY0IDB+SFlblMRKaHrme6HXjSGBPYrx4X4MbqSuUXkbOwrhXq8CBwlYicJiI2EckVkanGmArgVeA3IpIUWjdBRE46SNyJQDPQICK5WAlGuN8Dy40x12BdY9ZxMv0E8OVQHE7gu1gJ3gcHO1D7M9YQ4Qm93N49hOrisU7iq8AaMASrBesAInK0iBwTir8Fa3S7YKg17s9Y175lhcrmisgZYdsaCRvEpBtfCl1b5sK6FusjY0wZ1vH2h+JziMhtWNfa9SYRaASaRWQqcP1BykecMWZGL+/PdT1ssw14F/iRWIOGTAMuBl4YzNiVUmqwaIKllFIRFDp5XoDVulCF1aJ0C13/3j6MdX3OXiAG+E439TSFlj+BdW3O17CugepYv4zQwBdYLR9v83lL0hVYCdqG0LZP0rWLYnd+BhwZqus/wNMdK0RkAdYgFR0n9P8NHCkilxpjPsNq7boHq8XnHOAcY4z3IPsbUMaYDVjXHH2I1U2uGHi/h+JJWIlUHVZ3xxrg16F13wO2Ah+FuuW9DkwBEJF8oAnrurSe/BP4KVbXwKOwjhVY1+W9jHXt106spK6suwrC3Iz1OWgKxfv4QcoPJZdgfT5rsD5fPzHGvBHdkJRSamCIMdpKr5RSg0VElgKPGGP+Eu1YVP+IyGVY3Qd/0MP6h7AGjPjxoAamlFIqqnSiYaWUUuowGGMeiXYMSimlhh7tIqiUUqOEWJPeHsrgBGoEEpEf9vA5eCnasSml1EigXQSVUkoppZRSKkK0BUsppZRSSimlImRIXYOVkZFhCgsLox2GUkoppZRSSvVqxYoV1caYAyafH1IJVmFhIcuXL492GEoppZRSSinVKxHZ2d1y7SKolFJKKaWUUhGiCZZSSimllFJKRYgmWEopdRANTU18+O8H8fv90Q5FKaWUUkPckLoGqzs+n4/y8nI8Hk+0Q1HDTExMDHl5eTidzmiHooa5jx9ZzOmVf+EDv5fjz78+2uEopZRSaggb8glWeXk5iYmJFBYWIiLRDkcNE8YYampqKC8vp6ioKNrhqGEusW49AHFbngc0wVJKKaVUz4Z8F0GPx0N6eromV+qQiAjp6ena8qkiYqJ3IwAFretAJ2dXSimlVC+GfIIFaHKlDot+blQkeLw+0k0DjcSTSiM1lWXRDkkppZRSQ9iwSLCUUipaGupqsYlhR/wsACq36Fx9SimllOqZJlh9ICJ897vf7Xx+5513snjx4ugFFOajjz7imGOOYdasWUybNq0zrqVLl/LBBx/0q+4zzzyTlJQUzj777AhEqtTw1NxQDYB37Fzredm6aIajlFJKqSFOE6w+cLvdPP3001RXV0e0XmMMwWCwX3VceeWVPPDAA6xatYp169Zx0UUXAZFJsG655RYefvjhftWh1HDX0lgLQMKYSTQSj6ndEeWIlFJKKTWUDflRBMP97N/r2bCnMaJ1Th+bxE/PmdFrGYfDwbXXXstdd93FHXfc0WVdVVUV1113Hbt27QLgd7/7HfPmzWPx4sUkJCRw8803AzBz5kxeeOEFAM444wyOOeYYVqxYwYsvvsi9997LSy+9hIjw4x//mIULF7J06VIWL15MRkYG69at46ijjuKRRx454Lqiffv2MWbMGADsdjvTp0+ntLSU+++/H7vdziOPPMI999zD1KlTe4xz27ZtbN26lerqam699Va+/vWvA3DaaaexdOnSXo/Nv/71L372s59ht9tJTk7mnXfewePxcP3117N8+XIcDge//e1vOeWUU3jooYd49tlnaWlpYcuWLdx88814vV4efvhh3G43L774Imlpafz5z3/mgQcewOv1MnHiRB5++GHi4uK67PfYY4/lwQcfZMYM6707+eSTufPOO5kzZ06v8Sp1qDyNNQDEJKWxz55DbPOuKEeklFJKqaFMW7D66Jvf/CaPPvooDQ0NXZbfcMMN3HTTTXzyySc89dRTXHPNNQeta8uWLXzjG99g/fr1LF++nFWrVrF69Wpef/11brnlFioqKgD49NNP+d3vfseGDRvYvn0777///gF13XTTTUyZMoXzzz+fP/3pT3g8HgoLC7nuuuu46aabWLVqFSeccEKvca5Zs4Y333yTDz/8kNtvv509e/b0+bjcfvvtvPLKK6xevZrnn38egPvuuw8RYe3atSxZsoQrr7yyczS/devW8fTTT/PJJ5/wox/9iLi4OD799FOOO+44/vGPfwDwla98hU8++YTVq1czbdo0HnzwwQP2u3DhQp544gkAKioqqKio0ORKDQhvSx0AcUnpNMTmkda+O8oRKaWUUmooG1YtWAdraRpISUlJXHHFFdx9993ExsZ2Ln/99dfZsGFD5/PGxkaam5t7raugoIBjjz0WgPfee49LLrkEu91OdnY2J510Ep988glJSUnMnTuXvLw8AGbNmkVpaSnz58/vUtdtt93GpZdeyquvvso///lPlixZ0m2rU29xLliwgNjYWGJjYznllFNYtmwZ5513Xp+Oy7x581i0aBEXXXQRX/nKVzpf07e//W0Apk6dSkFBAZs3bwbglFNOITExkcTERJKTkznnnHMAKC4uZs2aNYCVhP34xz+mvr6e5uZmzjjjjAP2e9FFF3H66afzs5/9jCeeeIILL7ywT/EqdaiCbfUAxCam400sILvpPQJ+P3bHsPrzqZRSSqlBomcIh+DGG2/kyCOP5KqrrupcFgwG+eijj4iJielS1uFwdLm+Knw+pvj4+D7tz+12dz622+34/f5uy02YMIHrr7+er3/962RmZlJTU3NAmZ7ihAOHMz+U4c3vv/9+Pv74Y/7zn/9w1FFHsWLFil7Lh78mm83W+dxms3W+vkWLFvHss89yxBFH8NBDD3WbMObm5pKens6aNWt4/PHHuf/++/scs1KHwtZudUt2JaRiSx+PsyJAxe5tjCmYEuXIlFJKKTUUaRfBQ5CWlsZFF13Upcva6aefzj333NP5fNWqVQAUFhaycuVKAFauXMmOHd1fGH/CCSfw+OOPEwgEqKqq4p133mHu3Ll9juk///kPJjTx6ZYtW7Db7aSkpJCYmEhTU9NB4wR47rnn8Hg81NTUsHTpUo4++ug+73/btm0cc8wx3H777WRmZlJWVsYJJ5zAo48+CsDmzZvZtWsXU6b0/WS0qamJMWPG4PP5OuvpzsKFC/nVr35FQ0MDJSUlfa5fqUNhb28gaAR3fDLxORMBqC3bFOWolFJKKTVU9TvBEpF8EXlLRDaIyHoRuSG0PE1EXhORLaH71P6HG33f/e53u4wmePfdd7N8+XJKSkqYPn16Z0vKBRdcQG1tLTNmzODee+9l8uTJ3dZ3/vnnU1JSwhFHHMGpp57Kr371K3Jycvocz8MPP8yUKVOYNWsWl19+OY8++ih2u51zzjmHZ555hlmzZvHuu+/2GCdASUkJp5xyCsceeyw/+clPGDt2LGAlf1/96ld54403yMvL45VXXgGsbokd11vdcsstFBcXM3PmTI4//niOOOIIvvGNbxAMBikuLmbhwoU89NBDXVquDubnP/85xxxzDPPmzWPq1Kmdy59//nluu+22zucXXnghjz32WOfIiUoNBJu3iVZiEJudtHzrh4LWvVujHJVSSimlhirpaP047ApExgBjjDErRSQRWAGcBywCao0xvxSR7wOpxpjv9VbXnDlzzPLlXSfx3LhxI9OmTetXjKpn+492ONLo50f11yf3XEZRzbtkLN6J3+cj+ItsVo79Gsf+173RDk0ppZRSUSQiK4wxB4yy1u8WLGNMhTFmZehxE7ARyAUWAH8PFfs7VtKllFLDivjb8YoLAIfTyV5bNu6mnVGOSimllFJDVUQHuRCRQmA28DGQbYypCK3aC2RHcl8qMhYvXhztEJQa0uwBT2eCBVDnGkOCp6KXLZRSSik1mkVskAsRSQCeAm40xnSZDdhY/RC77YsoIteKyHIRWV5VVRWpcJRSKiLsAQ9++fwawra4PDL8lVGMSCmllFJDWUQSLBFxYiVXjxpjng4trgxdn9Vxnda+7rY1xjxgjJljjJmTmZkZiXCUUipi7MF2fLbPE6xgcj6pNOJpaehlK6WUUkqNVpEYRVCAB4GNxpjfhq16Hrgy9PhK4Ln+7ksppQabI9COPyzBcqYXArCvbEuUIlJKKaXUUBaJFqx5wOXAqSKyKnT7EvBL4IsisgX4Qui5UkoNKw7TTsD++QTdCdnjAajfsy1aISmllFJqCIvEKILvGWPEGFNijJkVur1ojKkxxpxmjJlkjPmCMaY2EgFHy7PPPouIsGlTzxOMlpaWMnPmzIjt87PPPuPkk09m1qxZTJs2jWuvvRawJgl+8cUX+1X31VdfTVZWVkTjVWokcgXbCYS1YGXkTwKgrar7ycOVUkopNbpFbJCLkW7JkiXMnz+fJUuWdLve7/f3ex+BQKDL8+985zvcdNNNrFq1io0bN/Ltb38biEyCtWjRIl5++eV+1aHUaOA0Xozj8xas9Kw8PMaJqdsVxaiUUkopNVRFdJj2AffS92Hv2sjWmVMMZ/Xee7G5uZn33nuPt956i3POOYef/exnACxdupSf/OQnpKamsmnTJl599VX8fj+XXnopK1euZMaMGfzjH/8gLi6ON954g5tvvhm/38/RRx/NH//4R9xuN4WFhSxcuJDXXnuNW2+9lYsvvrhzvxUVFeTl5XU+Ly4uxuv1ctttt9HW1sZ7773HD37wA84++2y+/e1vs27dOnw+H4sXL2bBggU89NBDPPPMMzQ0NLB7924uu+wyfvrTnwJw4oknUlpa2uvrfvvtt7nhhhsAEBHeeecdEhISuPXWW3nppZcQEX784x+zcOFCli5dyk9/+lNSUlJYu3YtF110EcXFxfz+97+nra2NZ599lgkTJvDvf/+bX/ziF3i9XtLT03n00UfJzu46gv/FF1/M5Zdfzpe//GXASgbPPvtsLrzwwr69p0pFkAsvwbAugja7jX22LFzN5VGMamh4/r2VFCXbKC6eFe1QlFJKqSFDW7D64LnnnuPMM89k8uTJpKens2LFis51K1eu5Pe//z2bN28GrG593/jGN9i4cSNJSUn84Q9/wOPxsGjRIh5//HHWrl2L3+/nj3/8Y2cd6enprFy5sktyBXDTTTdx6qmnctZZZ3HXXXdRX1+Py+Xi9ttvZ+HChaxatYqFCxdyxx13cOqpp7Js2TLeeustbrnlFlpaWgBYtmwZTz31FGvWrOFf//oXy5cv7/PrvvPOO7nvvvtYtWoV7777LrGxsTz99NOsWrWK1atX8/rrr3PLLbdQUWHNCbR69Wruv/9+Nm7cyMMPP8zmzZtZtmwZ11xzDffccw8A8+fP56OPPuLTTz/l4osv5le/+tUB+124cCFPPPEEAF6vlzfeeKMz2VJqsLn3a8ECqHePIdGzJ0oRDQ1r163h3NdPYdyTX8Lr9UY7HKWUUmrIGF4tWAdpaRooS5Ys6WzJufjii1myZAlHHXUUAHPnzqWoqKizbH5+PvPmzQPgsssu4+677+aLX/wiRUVFTJ48GYArr7yS++67jxtvvBGwEoruXHXVVZxxxhm8/PLLPPfcc/zpT39i9erVB5R79dVXef7557nzzjsB8Hg87NpldV/64he/SHp6OgBf+cpXeO+995gzZ06fXve8efP47//+by699FK+8pWvkJeXx3vvvccll1yC3W4nOzubk046iU8++YSkpCSOPvpoxowZA8CECRM4/fTTAavl7a233gKgvLychQsXUlFRgdfr7XLsOpx11lnccMMNtLe38/LLL3PiiScSGxvbp5iViiRjDG68sF+C1RafS37N5ihFNTTsW/s6AMnSwmcrXmfKcV+KckTR89Zr/8ZTtpIvXvFjHA57tMOJmp17Ktm2q4xTjjkKa4Dh0amivpX123dx2qzJiE1/x1ZqNNJv/kHU1tby5ptvcs0111BYWMivf/1rnnjiCay5kyE+Pr5L+f3/UenLPzL71xFu7NixXH311Tz33HM4HA7WrVt3QBljDE899RSrVq1i1apV7Nq1i2nTph12PB2+//3v85e//IW2tjbmzZvX6wAfAG735wMB2Gy2zuc2m63zGrVvf/vbfOtb32Lt2rX86U9/wuPxHFBPTEwMJ598Mq+88gqPP/54jwmoUgOtvb0dhwTB2TXBDyZZc2G1NI3eubDsVRsBCBihZeOrUY4mevyBICXvXc9Zu37L+lcfjHY4UbXur9/g1JdPY9Nrf4t2KFH14Z9v5AvPH8Nnz/xvtENRSkWJJlgH8eSTT3L55Zezc+dOSktLKSsro6ioiHfffbfb8rt27eLDDz8E4J///Cfz589nypQplJaWsnXrVgAefvhhTjrppIPu++WXX8bn8wGwd+9eampqyM3NJTExkaamps5yZ5xxBvfcc09n0vfpp592rnvttdeora3tvA6qo3WtL7Zt20ZxcTHf+973OProo9m0aRMnnHACjz/+OIFAgKqqKt555x3mzp3b5zobGhrIzc0F4O9//3uP5RYuXMjf/vY33n33Xc4888w+169UJHnarK62sl+C5cooBGBf2dbBDmnISG7awg7nREpt43BWb4x2OFGzZesW0sX6e2z/7D9RjiZ6apo8zPUts56s7n4wqNGgud3PxCbrOMRueT7K0SilokUTrINYsmQJ559/fpdlF1xwQY+jCU6ZMoX77ruPadOmUVdXx/XXX09MTAx/+9vf+OpXv0pxcTE2m43rrrvuoPt+9dVXmTlzJkcccQRnnHEGv/71r8nJyeGUU05hw4YNzJo1i8cff5yf/OQn+Hw+SkpKmDFjBj/5yU8665g7dy4XXHABJSUlXHDBBZ3dAy+55BKOO+44PvvsM/Ly8njwQeuX1/vvv5/7778fgN/97nfMnDmTkpISnE4nZ511Fueffz4lJSUcccQRnHrqqfzqV78iJyenz8dz8eLFfPWrX+Woo44iIyOjc/ny5cu55pprOp+ffvrpvP3223zhC1/A5XL1uX6lIqm9I8FydU2wOufCqhi9CVaWbzf18eOpiptIdtvoPQ4Vn30MwB5bDmMaV0Poh67RZtPGtWRKI35sFLasBv/ovC5v3c59TBOri36BZxO01EQ5IqVUNIgZQv8YzJkzx+w/CMPGjRs7u7upQ/PQQw+xfPly7r333miHEjX6+VH9sWvbRsY9fCwrZ/2CI8/7dufymspdpP+xmA+n/oDjLv5+FCOMjmAgiPf2LNaOXUizI5lTyu7Df0spjvjUaIc26F752885Y+edfJT3/zi2/EE831pNTKiFczR55dl/cMaqb/Nh1kKO2/c4bVe/Sey4o6Id1qB77bWX+OL7F/Nxxlc4pvppGr/6L5JmnB7tsJRSA0REVhhjDhjcQFuwlFKqB15PKwB2V9dBLtIyR/dcWE2N9cSIj2B8Jq6cqQDs3bE+ylFFh62xDC8OgoUnArBv+5ooRxQd/jpr2gLHlDMAqNp64IBMo0FT9W4AYmZYg77UbPu0t+JKqRFKE6wRbNGiRaO69Uqp/upIsGzuuC7LxWZjn330zoXVVGOdREpCFul5UwCoKet9EJyRKq61ghp7FpnjZwLQUD46j4M07SGAjcwZJ9NuHLTsPnBAptHA01AJQO6kI9hnUvDvHZ3HQanRblgkWEOpG6MaPvRzo/or0G5dg+VwxR2wrsE1eufCaqvbC4AzOZsxhVYLlm/ftmiGFDXJ3gqaYsYwLr+QJhNLYN/oHL7f1bqXBnsa+Vlp7GAs9tE68Enomqv0zDHskHzcdVuiHJBSKhqGfIIVExNDTU2NniyrQ2KMoaamhpiYmIMXVqoHfq/VguVwH5hgeeJzyQxUDnZIQ4KnwUqw3Ck5JCcnU0kqtobS6AYVBcYY0oK1eGOzcDsd7Lbn4mrYHu2woiKxvZJGVzZ2m1DtyiehpSzaIUWF01uHV1yIK4H62HxSPLujHZJSKgoGfKJhETkT+D1gB/5ijDmk2YLz8vIoLy+nqqpqQOJTI1dMTAx5eXnRDkMNY4H2NgCcMQdOdB1MHkdaTSMNDfUkJ6cMcmTRFWi0Esu4VGti8SrHWOJH4Ql1c7ufFJqpiU0DoC5mHOM9o69LmDGG9GANnpjJALQm5JNR9zEEA2AbXRMvx/rqaLUn4xKhPbGApLYXoa0eYlOiHZpSahANaIIlInbgPuCLQDnwiYg8b4zZ0Nc6nE4nRUVFAxWiUkr1KOANJVjuAycDd2cUwnaoKt9CcvLRgxxZdAWbqwFISremaGiKzWNS87JohhQV9Y1N5Es7xFkJVltSEZktb2G8rUg33UpHqlZvgBSaqIxNByCQUoirzk+gYQ/21PwoRzd4jDHE+RvwJFijaUr6eNgH7VXbcI/CERWVGs0GuovgXGCrMWa7McYLPAYsGOB9KqVURAQ7EqyYA0+WE3ImANBQMfq6hJm2ehpNLMnxVsueN7mADFPXec3aaNFUZ/WscMSH5vRLn4hNDE0Vo+s6rLqWdlJohjgrsXBnWvPE1ZZ/Fs2wBl2bL0AqjfjcVsIdlzMRgLpROgCMUqPZQCdYuUB4v5Hy0LJOInKtiCwXkeXaDVApNZQEfR4AXDEHtmBl5FonT56qHYMa01Bga6+jSRKw2wQAe7qVbNaUja4T6tYG698sV5LVchM7xhrwo27X6BqyvrG+BocEsYcSzeSxVlfBht2ja4CH2hYvqTQRjLUSzbRca4TN5r2j6zgopYbAIBfGmAeMMXOMMXMyMzOjHY5SSnUyPqsFy91NgpWcmYvHOGEUzoXlaG+k1ZbQ+Tx+zCQA6kZZi4UnlGDFJFn/dqWPs06oWytH14iKLfX7AHAmWolmVt4EfMZOe9XoOg71rT7SpBHirERzXE4GlSaFYPXoa+VWarQb6ARrNxDeATsvtEwppYY+fyjBij2wi6DYbFTZs3CNwsEdXL5G2uyJnc8z8qwWi7Z9o+tE0tdsDckdn2IlWLnZ2dSYRII1pVGMavC1NVjX5HUkmmPTEtlDBlJfGsWoBl99UzNJ0oY90Uqw0uJdlDEGV9POKEemlBpsA51gfQJMEpEiEXEBFwPPD/A+lVIqMvwegkawObsf7r/BPZYkT8UgBxV9sYFG2p3Jnc9zcsbSZGIxtaOru2SgxUosElKzAIh3O6iQ7FF3Qu1tso5DbLKVWNhtwj57DnHNo+vHh+b6UJfRROvzICLUuXNJbhtdx0EpNcAJljHGD3wLeAXYCDxhjBldndOVUsOW+Dy0ixNEul3vic8lw1856ubpiws04XcmdT53OuxU2HJwNY2yE8nWOgAcCRmdi+rcuSS1ja6OGv5QS15Canbnssa4fFK9o2sibm+D1VUyJjmrc1lbQj6pgRoIzamnlBodBvwaLGPMi8aYycaYCcaYOwZ6f0opFSni9+DF1eN6kzKOdGmkvr5+8IIaAhJNM0F3Spdl9e6xJI+ySVVtnlo8uMD5+TxprQn5pAcqIeCPYmSDy7RaCZYrIb1zmS9pHMmmETwN0Qpr0HmbrBasuLBE06Ra08wE60ZXq6ZSo13UB7lQSqmhyhbw0C7uHte70gsB2Fc+ekYJ83lacIsPQiOldfAk5JMRqIRgMEqRDT5nez3NtqSuC1MKcRDEN4oGP7G11RHABjEpncvsaVZi0VQxer4bwebQsP1hLZruLGvI+vo9o2vofqVGO02wlFKqB7aAB5/03IKVFJoLq3EUzYXVWGddb2OLT+my3KQUEIOXtrrR04rl9tXTYu+aYLk65oAqGz0n1I72OlokAWyfn1J0jCxZUz56joO01loP4j5vyUsZax2Hxj2jJ9FUSmmCpZRSPbIH2ntNsDLyQ3NhVY+ewR06huR2xKd1We7OspLNql2j54Q61t9IuzOly7LkjhPqUdRy4/I1HJBopneMLFm5NRohRYXdE0qwYj//bowdk0+TicVbNXp+hFFKaYKllFI9sgc9+G09dxFMTM/FgxPqR093sI7Jdd2JXect/DyxGD0n1AnBRnyulC7LcvLG024c+EbRHFCxvgY8juQuy3JzOoasHz0/Prja62i2JYLd0blsTGosZSYLe4Neg6XUaKIJllJK9cARbO81wUKEKls27ubywQsqyjyN1oAGHUNyd8jJn0TQCN5RMqmqPxAkyTQRiOl6LVp2Sjy7ycQ2ik6o44ONePdLNBM6h6wfPT8+xPjqaXWkdFnmtNuocuYQ1zJ6/kYopTTBUkqpHjmD7fht3c+B1aHRPWZUzYXla+qYXLdrgpWSlMA+0rDVj47EoqG1nRSaMbEpXZbbbUKVYwxxo2QCan8gSKJpwh82wEWHWncuyW2jJ7FICNQf0GUUoDk2jzTvnlE1AIxSo50mWEop1QOXacdvj+21jCchl6zA3lEzF1YgdCF/YmrXLoIiQpVzDLGj5Jf6hroa7GKwx6cfsK6p44R6FHwmGtp8pNKEiUk7YF1bwjjSAvsg4ItCZIOr3R8g2TTi6+Y4+JILceOF5sooRKaUigZNsJRSqgcxwbaDJlgmpZA0aaKmpmaQooou01aH19hJSEg+YF1TbK6VWIwCnYN9JGQcsM6XVECCaYG2usEOa9DVNTUTL+3Y4g9MLExqEQ6CeGtGfqtmfauPVGkiGHvgcXCkW0PWt+4bPdflKTXaaYKllFI9iMFDwBnfaxlXaPS86l0bBiOkqLN56mmURMR24D8f/qRxZJoagt62KEQ2uFobrOHq3UkHJlj20Al18ygY8KOlrudE090xZH35Z4MaUzTUtbSTRiMSf+BxiM+xRhutHwXHQSll0QRLKaV6EGs8BB29t2Al5U4FoLlidJw8OdrrabEldrvOFkosaveM/MTC22iNphiblHnAurhsK+keDYlFR0teTDeJZnKuNVT7aBiyvrG+DpcEsHeTaGbmTiRghNZKbcFSarTQBEsppboR8PuIER+4EnotlznOSrACVSM/qQBw+xpps3efYMVnW7/U15aP/BNqf7PVJTQh7cAEK7NgCgAto6BLmCc0bH9syoHHYWxeER7jHBVD1rfWW9dXuRIPPA75mSlUkI6pLR3kqJRS0aIJllJKdaOluREAmyuu13LxCUnsJR1n/eiY7ycm0IjHeeD1VwDpedZcWC17R36yGWgJjaaYnHXAuvzsTKpM0qiYA8rbZHWVTEzNPmBdVlIsZWTjqC8d5KgGX1uD1ZIXl3LgcUiOc7JHsnE3jfxr0ZRSln4lWCLyaxHZJCJrROQZEUkJW/cDEdkqIp+JyBn9jlQppQaRp6UJAInpvQULYJ8zl8SW0THfT0KgEb+r+wQrZ2wBHuMkWDvyEwvaagkiyH7DtAPEuRzsteWMijmggqFEs7sugjabUO0YQ3zryB+y3hfqMpqQdmCCBVDvziXJs3swQ1JKRVF/W7BeA2YaY0qAzcAPAERkOnAxMAM4E/iDiNj7uS+llBo0bS0NANjdB0+wWuILyPSN/OHJjTEkmiaC3cx5BOBy2qmw5eBsGvkn1HZPHc2SALbu/2mrHy1zQLWGRkrsZvQ8gOa4fNK9FSN+yHp/s5VgObrpIgjWkPUpwTrwtgxmWEqpKOlXgmWMedUY4w89/QjICz1eADxmjGk3xuwAtgJz+7MvpZQaTO2tVguWow8tWMHU8aTQ1Dmy3EjV0tpKvLT3eDINUOsaS9IoSCyc3npa7Ek9rm9PHEd6sBr83kGMavDZPLV4cIOz+wm5fckFxOLBNO8b5MgGWWh+OOIOnBcNwKQWAhDQ67CUGhUieQ3W1cBLoce5QPhPmOWhZQcQkWtFZLmILK+qqopgOEopdfg6EixnbPcDOoRz51ijpe3dsX5AY4q2+hrrb7S9mzmPOrQkFJDj3w3B4GCFFRWxvno8jpQe10taIXaCtFaVDlpM0eD0NvSaaNozrKHaG/dsHqyQosLhqcGLs8dBcWJD0znUjYKRJZVSfUiwROR1EVnXzW1BWJkfAX7g0UMNwBjzgDFmjjFmTmZm903rSik12PxtVoLlij14C1ZqvjWSYH35pgGNKdqaQnMeuZO6/5UeIJg+kRi8NFeP7OuPkgL1eNw9H4e40IiKVbtG9mcixldPm6P7a/IAEnOsgU9qy0d2guVsr6PFngwi3a5PzbWOQ9OekT/CplIKHAcrYIz5Qm/rRWQRcDZwmjGdnax3A/lhxfJCy5RSaljweZoBcMf3/Ot8h9yiaQSN4Ns3sk+eWkJDcsckHjigQYe4nCmwGfbtWEdCVuEgRTa4vP4gqTRQEdvzcUjNs4Zqbx7hc0AlBepoS+j5x9HswskEjNC2d2QnWHG+etpiUkntYf24vHzqTAK+fdqCpdRo0N9RBM8EbgXONca0hq16HrhYRNwiUgRMApb1Z19KKTWYAqEEKybu4AlWTGw8lZKBfYQP1d7eaF1jlpDcc2KRUTAdgKbdI7flpq65lTSaMPE9JxZ544poNW4CVSM3wWr3B0ijHn9sz8dhXGYq5WQhNSN36P5A0JASrKU9pufvRXaSm1LG4qrfPoiRKaWipb/XYN0LJAKvicgqEbkfwBizHngC2AC8DHzTGBPo576UUmrQGI/VRTAm/uDXYAHUuPNIah3Z3eICTdZkqomZ3V5SC0DuuPG0jPDEor66EpsY7IkHzoHVISHGRZmMxd0wck+o65q9ZFJPIK7nBMtpt1HhyCOheeT++FDX6iVTej8OIkK1exwprToXllKjQX9HEZxojMk3xswK3a4LW3eHMWaCMWaKMeal3upRSqmhRtrrAYjrZn6f7rQkFjHGV4YZyYM7hEaCi0vN6bGI2+lgty2XmMaRm1i01FYA4Erufs6jDlXucaS2lQ5CRNFRU12JSwI4k3v+PAA0xheS6S0bsQOf1DZ7yKQBk9D7cWhLKiIlWAuexkGKTCkVLZEcRVAppUYM8TTQYmKwO119Km/SJ5MobdRWjtw5oByt+6gnEXG4ey1XGzuO1LaR25rXHEqwEtLG9lquLXkCGYF94GsbjLAGXV2VdWl13EGOQyDNGvjEXz8yvxv1NZU4JYA9qfeEmwxroIv2Sr0OS6mRThMspZTqhr29nibpW/dAgNhc69qjfdvXDFRIUedsq6LB3vMQ7R3ak4rIClRifJ5BiGrwtdda83yl5eT3Ws6WOQkbhsYROrpkS42VYCVl9J5gxeRYA35Ul64b8Jiiobm6b4lmwlhrtNHanSN7OgellCZYSinVLae3kVb7wYdo75BZOBOAlj0bByqkqIv3VtPqOniXSXvmJOxiqBmhc/4EG6wTanda7wlWYt40AKp2jszEwltnHYfEjLxey6WOs74bjeUbBjymaGgKJVgpWb1/HrILpxEwQsuekZlwK6U+pwmWUkp1w+VvxOPoewtWdm4RzSYWqkZmUmGMISVQi7eXEeM6JORaiUV16cj8pd7VsocGSQJnbK/lxhQVA4zYE2pbo9WSZ0vpPbEYN66QRhM7Yqcx8NVZXR9j0npPNAuy0ygzWVAzMo+DUupzmmAppVQ34gKNtPcyger+7HYbux15xI7QwR0aW9vJoO6gF/IDZBda3SXb9o7MZDPOU0mDs+cRBDuMzUpnt8lAqkfmCbWrZQ8NtmRwxfVaLi3BzS4Zi6t+2yBFNrgcjWUEsEFy7wlWgtvBbnsucY0jd0RFpZRFEyyllOpGfLCZgLvvCRZAQ3wRme0jcxjm6oqduCSALa3woGWzs7KpNslQPTLnPkr176M15iADGgB2m1DpzCd+hA5RntS+lwbnwY8DQE1MAakjdIjyuNY9NDgywO48aNn6uELS28tH7IiKSimLJlhKKbUfYwyJppngISZYvtRJZJka2prqByawKGrca7U+xGYVHrSszSZUOPNJaBp5rXnNHh85php/Qu8DGnRoTCgix7sLjBngyAaXMYY0/z5aY8f0qXxr0ngyglXgbRngyAaXMYYU316aY/p2HHyp43HTjgl1r1RKjUyaYCml1H6amxuJER/Eph7SdjFjrFHCdm8beSMJtu2zWmGScib2qXxDwgRyvKUjLrHYu3cPSdKKSZvQp/ImbSJxeGir3T3AkQ2uyoY2cqkimNz79VcdbBmTAWgeYdej1bZ4GUsV3oTeuwd2cGZbfyMaykbmgB9KKYsmWEoptZ/6faGL95P69qt0h/TQSIINu0be4A7e6lIAMnL7llgEM6aQSCvN1SNr7qOq0FDjiWOn9Kl8TGho7soRNnx/+a6txEk7rqy+HYeOERWrS9cOZFiDbk91HWOogbSiPpVPL7QGPqkbYcdBKdWVJlhKKbWfhkprktzY9L79Kt1hbNEMfMaOr3Jk/UoP4GjYQbWkYXf3PqBBh7jQvGB7t64awKgGX/Mea+CO7PEz+lQ+MzSSYGPZyBqqvTHUApM8bnqfymePn4nf2GgrH1nHYV/peuxiOj/vB1NUUEiNScS3d+T9CKOU+pwmWEoptZ+O7lyJmX3r/tTB5XZTYc8ZkaOlpbfuoDp2fJ/LZ02YDUDTCEssTPVW/NiIzezbscgfN54GE4epHFnzo7VXWolm+ri+JZoFmSnsJAdbzeaBDGvQtYTm9soMtUwdTFaim+2Sj7tuZI4sqZSyaIKllFL78ddbCVZqzrhD3rYmtpD0tpE1alxru5dxwTI8KZP6vE1u7jjqTMKImxcsufEz9jrH9WnEOAC308EuewFxDSPrhNpZ8xnNEo8t6eDD9gM47DYqXIUkN42wkSWrPyOI4Mya3KfiIkJN7Hgy2raPuOsTlVKfi1iCJSLfFREjIhmh5yIid4vIVhFZIyJHRmpfSik1kEzTXjzGSWJyxiFv602eyJhABd729gGILDrKdmwmXtpxhC7Q7wu73cZu5zjiG0dOYhEIGgp926hP6vtxAKiNH092e+mIOaE2xpDTsonKuMkg0uftmpMmkemvAJ9nAKMbXOmNG6l0jQNnTJ+3aU+dRLxpxTTuGcDIlFLRFJEES0TygdOBXWGLzwImhW7XAn+MxL6UUmqgOVsqqLWlH9LJYwdH9hRcEmD3jpHTJax2yzIAkooO7Xey+vgJ5LTvHDGJxebt28mWOsjpW3ewDt60ySSZJvyNewcossG1p7aJSWYXnsxDOw6SNRU7QVr2jIwR9KqbPEwObKEp7dCOg3uMdb1W/U4d6EKpkSpSLVh3AbcC4f+KLgD+YSwfASkicmhDcimlVBQkt5VR6849rG1TxlkjCdbsHDnXHvl2fYLXOMidOveQtgtmTCGJZlprR8Yv9WVr3gZgzPR5h7Sde4z1mdi3bVWkQ4qKrWs/xi0+EosO7fOQNK4EgH3bVw9EWINu42ebyJQG3AVzDmm7tKIjAKgtHRnHQSl1oH4nWCKyANhtjNn/L0UuED4+b3lo2f7bXysiy0VkeVVVVX/DUUqpfgkGgozx76Y1sfCwth87wTqJ9FSMnBas1NrVlLknYHf1vRsUQOxYawCEipEykmDp+3hxkj75uEPaLGO89Zlo2Dkyhmpv27wUgLFHnHpI2+VOmInP2EfMSIJ1G94AIHvGyYe0XVFBIdUmCf/ekfM3QinVVZ8SLBF5XUTWdXNbAPwQuO1wAzDGPGCMmWOMmZOZmXm41SilVERU7SsnUdqQ9L7N97S/2KRUqiQNZ+3IuPaorq6WKf5N1GUec8jbZk6wfqkfCUOUB4OG/MYVlMfPOKTrbQAKC4qoMwn4R8hIgimVH7LHkY8j5dBaefMyktnJGOzVI2Pgk7jy92i0JRGTd8QhbZeR4GKH5BNTN7JGVFRKfa5PCZYx5gvGmJn734DtQBGwWkRKgTxgpYjkALuB8DGO80LLlFJqyNq3w5qfJi6nb6OCdafKPY6kltIIRRRdmz56GZcESC4+45C3zcsrpMHEY/YN/8Ri8+ZNTGMHrQWH1moDEOd2sss+jrj64Z9079yzj9n+NdSPmX/I29pswl53ISnNw38ag4q6Zma1L6cy/ViwHVpnIBGhJm48GZ4dI+b6RKVUV/3qImiMWWuMyTLGFBpjCrG6AR5pjNkLPA9cERpN8FigwRhT0f+QlVJq4LTsXAVA1qSjDruOtqQJ5PrLCASCEYoqeszG52kmlglHnnbI2zocdsod44hvGP4n1GUfPg5A/rEXHtb2dfETyBoBJ9Sb3n0St/jInHt4x6EleRKZgQrwtkY4ssH16bsvkiGNJB15wWFt702bbI0k2FAe4ciUUkPBQM6D9SJWC9dW4M/ANwZwX0opFRGydzW1JJE5tujw68icQpK0sqe8NHKBRUFdQyPTG95ha+pJ2Fyxh1VHfcJ4stuHd2IRCBrydz1HqWsSyX2cWHd//vTJJNJCe/3w7cgRDBpSNj9JjS2dzBmnHFYdtuxp2DA0la+PcHSDxxiDc91jtBJL9lHnHFYdrjHW56huhFyXp5TqKqIJVqglqzr02BhjvmmMmWCMKTbGLI/kvpRSaiBkNG1kd+yUwxqivUNinjUMc+WO4T0M85rX/kGKtJB63BWHXYc/bQopNNFaP3yHKF/+9vNMNdtpnX7xYdcRm2udUFcO4wE/Vqz4iKP9K6maeCHY7IdVR9I4a0jz4TyS4OqNmzmh/R3K874MrvjDqiO90Br4pK50eP+NUEp1byBbsJRSalipq9lHUWAnrVmz+1VPzkTrovfW3cN3vh+fz8e49X+izJ5HwdFfOux64nJDyebW4XlCbYzB/cFvqCGFyWdef9j1ZE2YBUDDMJ37yBiD943/xSNuir783cOuJ3/CTLzGTtvu4duCVfni/+CQAPlnf++w6xhfMI4qk4R/7/D9G6GU6pkmWEopFbL1k1exiSF1xqFfbxQuMSOfFmKQmuE7Stiy5/9IkdlF/TG39Ks1r3OI8l3DsyvUB68/xSzfasqmfx1HzOG1VgAU5BdSaxIIDtMBPz7+YCnHtb3D9qKv4U7OPux6xqQlspOxOGuG50iCH69cyclNL7BlzAJi+zEQTnqCm1IZR8wIGPhEKXUgTbCUUirEt+UN2nAx/ogT+1eRCJXOcSQ07YhMYIOset9eJq69i62OScz8wuF3DwTIGzeRJhNLcN+mCEU3eGpqayh8/wfsto+leMF/96sul9NOmaOA+Ibhd0Ld0NRM+us3UGdLYcoFP+5XXSJCZUwRKS3Db+CTplYPMS98E784GX/hz/pdX038eDJHwMAnSqkDaYKllFJYEwwX1bzDZ3FzcLjj+l1fU+J4cry7MMPs5CkYCFL60DWkmgYcC36PHOIQ1PtzOuyUOcYR17A1QhEODr8/wOY/X80YU0Xg7PuwR+Az0ZAwgZz20mF1Qh0IBPnkT9cxyeyk4Qu/wZmQ3u86W5MnkR3Yi2lvjkCEgyMYNLzz51s4IriByvk/x51e0O86vWmTiTNtmIayCESolBpKNMFSSilg08qljKGa4OTDv94oXDB9EmOkhr1V1RGpb7C8/+DNzGl9lzWTv01h8byI1FkfP54sT2lE6hoMwUCQd+//Fse1LWXdtBsYN/vQ577qTiB9Kgm00lY7PE6ojTG88Zfv84Xmf7Oh6CrGzzu8Icn3Z8+xrsur3zU8rsMyxvDCQ7/ky3X/YHPOOYw/7ZqI1OsOjSRYs2N4dp9VSvVMEyyllAKaP/47bcbFlFMujUh9cWOnAbBn+7qI1DfQAoEgb/35Vk7Y8yAr0r7MUZf8NGJ1+9KmkEYDnoZ9EatzoLT7fLx/79WcUv1PVmefT8nCxRGrOz7POqGu2LIqYnUOFJ8/wNt/+CanV/yJDelfZPrlv41Y3SmhkQSrt6+KWJ0DJRA0vPznH3Lurl+yNekYJl3zYL+uSQyXERpJsF6HaldqxNEESyk16rW2NjO1+lXWJp1IfHJaROrMDg3u0LRr6CdYbW0e3v39lZyy+0+sST2dWdc/1O+ugeFixlotFhVDfIjymupKVt95LifUPcOK3Msp+a+/RuxkGiBrojU6ZeOuoT2SYHVNDZ/85iucXPUoq7PPZ9o3HoMIfh7yJ82g3Tjw7BnaLVh19Q28/dvLOGvPH9iY9gUmfPt5xOGOWP3WSILJBCqH58AnSqmeaYKllBr1Vr78D5JoJeX4KyNWZ0ruFPzYCFYP7ZEEy7atZ9dvTuTkxudZW3AlJd9+HLvTFdF9ZIyfBUDjEP6lfuU7/8Fz73xmez5mbfEPOOrr90Y0yQTIzxtHjUmCqqF7Qv3JOy/Tes/xHNP6Nmun3sAR1/0NsTsiuo/MpHh2ylictUP3u/HJR+9Q/fsTOLX5BdYXXcW0b/0LccZEdB+p8S5KbeOI1ZEElRpxIvtXUymlhplgIEjGugcpt+cx6ZgvR65ih4tK+1jiGobmaGnBQIAP//VbZm28k2Sxs+a431NyxqIB2Vd+wUQaTRzBvUOvxaKmeh+bH7mJ4+pfYK8ti/Jzn6F41kkDsi+7TSh3FpAwBAf8qNq3ly3/vJnj6//NPslkz4InKZ79hQHZl4hQFVPEpJahl2hWVlWzcckPmF/zJE22RHac8RAzjjt/wPZXGz+emS2vQjAY0VZCpVR0aYKllBrVVn3wEkcGt7L6iNvIs9kjWndDfBGZjTswxiAR7GrWX5tWLMX20i3M829mY8wRZFz+V0ryJg7Y/lxOO5sdhSQ0DJ25j1pbmlj51G+Yvv0vzDXNLBt7KSWX/ZKc+KQB3W9j4kQm1r1sjSQ4BD4TbW0elj17NzM33cNcmlk+9msUX/5L3HHJA7rf1tQpZFW8jfE0IDEDu6++qG1q451n7ueYbXdzstSyKvs8pl72G1KTMgZ0v+1p04htfo5gbSm2jPEDui+l1ODRBEspNaoFPriPBhKYduZ/Rbxuf+pEJjZ8QHVjK5nJhz9JbaSU7/iM3c/+lKPrX6ZWkll+5P9x1NnXRrwrXHfqEiczu/7VqCcWHk8bK569h0mb/sh8alkXcyTN5/wPc2ccNyj7D2ROJ77uGRr3biVpzKRB2Wd32r1elj3/J4rW3cNJVLIlZjqe837HnGnHDMr+bWNKoAJqt31K+oyTB2Wf3Wlsa+ftZ//KtE33cp6UUx47icpz/s6sGf2cC6+PXHmzYBfUbl9OhiZYSo0YmmAppUatHZvXclTrB6wct4g5sQkRr989dhqunQHKtm8gc/bREa+/r/bt2cXWp3/GnKpnyURYPvYSpl9yB3OSIjOgR18EM6eRUP8sjZU7SMoZ/BNJn8/H8ufvZ9zae5hHJZtcM6g77T5mHhOZYfn7Kq7gSNgMVZuXRSXB8vn9LHvhr+Su/h0nmN3scExg88n/y+R5XxnUxDdl/FGwEmq3r4hKgtXW7uetFx5m/NrfcQ6lVLgLqDjlfvKOWTioXfWyJhyB/30bjTs+JWPuRYO2X6XUwOp3giUi3wa+CQSA/xhjbg0t/wHw/0LLv2OMeaW/+1JKqUja8+rvycPG+C/fNCD1pxfMhA+hYdc6iEKCVVu1l41P/YLZFU8wFx+rMs6m8CuLmZs7YdBjSSiYBVtg7+blg5pgBQIBlr/0EDkrfstxppxtjomsP+F/mHHiBVFpSRsz6Uj8r9po2/UpEJkpAfoiEAjyySuPkLH8N8wLlrLTXsDG4//A1FMuGZQWzP0VFU6gyiQR3LN6UPfr9QV4++UnyFn5G75ktlDpGEvZ/N+Rf+IVEOEuwn0xJS+LbWYszr1DdwAYpdSh61eCJSKnAAuAI4wx7SKSFVo+HbgYmAGMBV4XkcnGmEB/Ax4tWltbqKooo2HfLlpqdmMaKwi21oKnEWlvxOlvxO1vwR1sxWb8iAlgNwHsBBEM7eLCK278thj89hjancl4XOmQkIUrJYf4jHEk504hJ6+QOHdkRwxTajior6vhiKoXWJtyKkfmFAzIPtILiwkaIbh3cIdqb2yoZe2Tv6Rk1z84Dg+rUk5jzILbmTN+xqDGES538pHwOjSXrQEG/pd6Ewyy8o3HSf7w/zgmuIOdtnGsOe4eir9wWVQSig65GalsIQ/XvsEZqj0YCLL8zSdJ/vD/ODa4ld22Maw/9jdM/+KiiI8OeCjSEtx8ZCsir3bDoOzPHwjy7uvPk/Lx//HF4AaqbFnsOO6XFJ12DdidgxJDd+LdDsrcEziycXCOg1JqcPT3r+v1wC+NMe0AxpiOWSQXAI+Flu8Qka3AXODDfu5vxGhraaJi5ybqyjfjqdyG1JcS11JOkreS1GANqTTR3SlfKzG0SDxttng89gS8riSwOcHmICh2jNgwgCPoxRFsx+n34AjUEu/bQUpzPe5aH+wKi8O42CI51LlzaUsqwpY5maT8mYydeAQZGZlD6sJ8pSJp/X/uY560kXrajQO2D4lJYo9jDIl1gzNaWltLM58+/Rumbvsz82hiVcI80s5ezJHT5g7K/nuTnZlJOVk4Kgf2l3pjDKve/Tcx79zBUf5N7JEcPp3zfxxx5jUUOKLfK95mE/bGT6G4efmA7scYw8p3XsD97v8w17+BSslkzVF3MPOs/yLXEb2EIlxd0jSOangS/F5wDMwPfcGg4YN3XsX97v9wSmAVtZLKljk/ZeIZ3yAzwsOuH67W1Omk7Xsb01KNxA/soBpKqcHR339tJgMniMgdgAe42RjzCZALfBRWrjy07AAici1wLcC4ceP6Gc7QYoyhqnI3FVs+pbl8PbbqTSQ1bSPbu4sM6gnvJNNMLPvsY2iMGUt13GxIyMGZMpbYtLEkZuaTmJlHYmoWcXYncYcfEIG2Bmory6mr2EZb5VZMzTZcjTsZ27KT7KplOKsCsAF4BfaRSqVrHM2JEyBjMgl5M8iZUEJGzrio/gKsVH/5fT4Ktz3CJtcMppbMH9B9VcVPIbdxYIcn97a3s+K5uxm/4Q8cHxq4oe6MxcyaPTDDjR8OEWFP/HQKmgbuWKz7+HWCb/yc2d5VVEo6K0p+yhFnf5OxrshNDhsJgaxi0kpfo7W2nLi0vIjWbYxhzUevY978BUf5VlEtqawq+THFZ3+bbNfQSCg62MYU42x4jKbytSQWHhXRuo0xfPLROwTfvIP5vo+plyQ2ldzKlLNvJM0V/QFnwrnyZsE+qNv6CWlHnBXtcJRSEXDQBEtEXgdyuln1o9D2acCxwNHAEyJySJ3rjTEPAA8AzJkzxxzKtkNJMBCgfPs69m36CF/5pyTVrWOMt5QsmsgKlWkijt2OAralHM+W5EJcWeNJyZ1CVsEUElOySBjo1iIR7HEpZBalkFk084DVJuCjZvcW9m1bQ8vuDdhqNpPYvJ2impdIqHkaPgPegEbi2OvMpzFhPMH0ycSNnU7WhBLScydjHwK/EB+2YBC/z4PX68Hr8eD1tuNr9+DzevB7O+7b8fvawd+OCXjB78UEvJhggGAwAMFg6N56boIBTDCImABigmCCCAEkGEQIdu7ahD75JuwzYJDO+47HIB3/ATbrEhKxHlurQwtErNZHsfH5BjZrvVj1iNgOWC6hxxJWj3Uftlywtg1bby237kUEg62z9VOko37BJoIRG9IlRqHrnOcmdNvv4HQsNb2s62G70Bvc+ai1bC3HmUo+PfJHDDRPxkxyG9+iobaK5LTMiNbt9/lY8Z8/k7f6dxxnKtnknE7dqfcx87jBHbihr3w5s8netpS6yjJSs/MjVu+mVR/Q9vJiZns+ppYkPpl6C0ec999kxxz2z1EDKmXCXCiFXavfZeopl0Ss3vUr3sXz6s85qv1j6khi5bRbKF5wExkxQyuh6JAyeR5sgn3r3ologrV65ce0vPJzjm9/lybiWT/1BqYuuJmU2IEdgv9wZU8/nsAKofazdzXBiqB2r5fmhhpa6qtob6zB01KPt7URX2sTfk8zxtOI+Fqw+1uw+1utW6AdW9CHBH3Ygj7sxro5jB8HfpzGhx3rahfBdP6LIxgwnf+8di4NYMMvDoLYCYi9y31QrMdGrB5IQXFgOu5t1mNjc3TesDkwNqd1rWCo5xJ2B2Jzhu4diN2JzR56Hnosdic2h/XYZndgc7jAbgexW/8OY/3bbP2bbOv8p11C/45//u+6hP3r/PljY8R6FDQYghhjQv/+GusxBhM0QBCMCa0yGBO0tjOfl+t8bIx1dMOWe10pjJtxHFlJQ+uHop4c9GzYGNPjTIMicj3wtLGOzDIRCQIZwG4g/F/PvNCyEaOxoZYdK96gdcs7JNaspqB9M+OkjXGAxzjZ6RzP1rSTIXMqCXkzGTNxFqk5BUwdwl3uxO4kfdx00sdN77LcBIPU7iujYusqmss3YKo/I6FxOwV1H5JZ9xJsBd4Br3FQJSk0OdJoc6XR7k7HF5OOxCThjE3EEZuEzZ2AxCRgc8bicDhw2B04nA7sdgdBbBhsBI3BBP0Q8IXuAwQDPvx+H36fD7+vnaDPQ9DXhvF5CPo84PMg/nbwe5CAdbP5vdgCHuzB9tDNiyPoxWnacQa9OPHiMl5cWH88nRLAgfWlGJqnZSqSdks2JV/42oDvx503C7bD3s3LSD42MhMZBwNBPn31YdI/+TXHBMvYZh/P2vl/ZuZJFw7p1uWUScfDtrsoX/0mqadf2e/6tm1Y+f/bu+/4uur68eOv9x3ZezTNapOudCXdA8qsTBkFQcAvG5WfigMUUVERUL8O+DoAFUUUFWTIFgTZo0BbuugeSZvV7D1vbu69n98f5zZN26TNuMm9ad/Px+O2957xOe+bc09y3vezaHj5Lha1v0ML0Xw8+avkf+Y2FkUHf16lI5k05yRcbzhxFb4HAUiwdm5eQ/N/7mZx5/u0EM26KV9n9mduZf4Iz2U1XDNnzKLyhSTce1cCwx9oZse2T6h76W5OaH8Tl4SzafL/Y/rF32NWTOLwgx1BMyZmsoOJRJVqL4ojMT4fjY311FeX0lpbjruxEl9LJbb2auyuepxdTUR4mon2thDjayWedpLFkHyEMr1G6JAIOonEJRG4JQKfzYFXnPjsTrptUbhtTnw2p7XM5sT4ExOwauYFOSizMoDPYH2h6vP4v2D1Ij4PNuNFjPW/red/L2G+Ln9fev8yrOd248OOBzteHFh97R14rdfi6+9tHZPe8c5hTfQTnF+QEexQBmS41Q3PA6cDb4vINCAMqANeBP4pIr/CGuRiKrBmmMcKqs72VnauehnXrrdJrlvLJE8Rc8TgNnaKnZPZlnoutoy5JE9byoS8eeQ5j52BI8RmI2n8RJLGT8TqXndAQ10NFUWbaCnbir2hEFt7NWGuOqJd1Yzv2EWiacYpoze2ics46SIMt4ThJoxuWxjd/v/dtnA6HTF4bWF47eH4bOEYezjGEW59G+QIRxxhYA/H5ghDnNb/dmc4dmc4NmcEDmcY9rAIbI5w6+EMQ+xO7HYHNrsDu8OO3WbHbndgdzis5w4HNpvN+rbIZrdugMXeU7PTU9Pj/6ZGhJ7alwO/rjnoGyFjrG/OjM9nJaQ93xBZ/xt8GB/4jPfAt0k9y/3bG2sbg8+/bn/Z1rdMVqLb+1slb8/rA+t8Pd84md7x+XwHve79DZXPZ9Xk0etbqkMn4pVe/1pPD/liQvpfJ732OzzZOLAuJWsK9lHoizJu2mJ4D1r3roNhJljG52PTe88R+f7PWODdTaktkw1Lf8Pcs65BgjAC2mBNmnMKba9E0F30LjD0BKukaDuVL9zJoub/ki5hrMn+PDMv/T6L4o90KxU6EuJi2eCYTlLNqqNvfASFO6yEYnHrm3RKOOtyvsjMz9zOglEcfn84YiPDWB85hzkNa8HnG/Lw6HsKd7Dvhbs4oeVVJoqDLROvIe+SH1AQP+7oO4eACKedsrgFLG99EdztEGJNGEdLR0cbVaVFNFYU0lm7F2kqJaytnBhXFXGeOpJ8jSSJm0M/3S7jpFESaLfH4XLGUxeVRU1EAr6IRExUEraoJBzRSYTFJBIZHUdkTDwxsfFExcRjD4siVoTYoLzj4fF5vXg8HjyeLrq7u/F2u/F6uvF0u/F5rC+lvR43Xo8Hr8eNz9uNz9ONz9sNXg/4vP5aIgAfPp+/HchBNUr+1/gQs79ma39dlkUwvVrMcKBFCzarVY74/y77W770bvFyoLrsQGuY/WVJT2sbwYiQGpbAnMljp4/icBOsvwB/EZEtgBu41l+btVVEnsLqzeMBbhqLIwjWVhSzZ+W/iNj7Onkd65kr3biMk6LwGXyc8Xli8k5l8rzTmRY9Fi/NwEhKGUdSyhmwpO+KTuPz0dnZQUtLI22tTXg62/C5WvG5O+n2evB5PHi8HozPi834sOFDbDaMWFXhYrODzYHYHTjCwnA6wnA6nTjCI3GGRxMWEUlYeCRhEdGEhUcQYbcxNiqP+zKw2s2eVoFqTMjIzKaKFGTf8AY12PbRK/DWT5jTvYVKSWXt3J8w7/wvMSFEBiwYiMjICNZFFJBRs9JqOjvIG+ry4p2UvvBTFja8xHhsrM/4HHmX3MHilPQRinjkNKSfwrzy39FcWUR8+uCGzS/cvY2qf/+Ypc2vkikONmRfTd4lP2BBYtoIRTty2id8ioRdb9NctIr4qScOat89ewope/EnLG38N1nA5ozLmHrJD5mTEth+baPBN+UMwjY8Q93m10hZcPGg9q2rqaTww+cpOOsaoqJCOzlrbmpk354tNJdtw1u7m/DmvcR2lpPsqSaVxoP6pnuMjVpbCg3ONKpiZ1MeNQ6JHU94QgaRSZnEpmYSPy6bqNgk0kO4ddBIsdnthNnthIWHVh9TZRlWgmWMcQNX9bPup8BPh1N+sO1573GW7Pg5+ySNjeMuIjr/00xbfDazQrQ9eygSm43I6Bgio2NISw9cnwulxgoRoSxhEVOb3sfr8Qy6n+LWNW/S/eb/MrdrLXUksHrG7cxb8XXSIyJHKOKR1TX1PNK3/Ii9Wz4gt+DkAe1TtncnZS9aidU4YFPqhUy65E4WpeeMaKwjKeuEy+Ffv2Pvu48y94ofDWifol2bqXzpf1nc/F8mIGzK+CxTLr6DBePGXkKxX87SFbh3/oh97z864ARrT9FOyv79M5Y2vkQ2PramXUDOxXcyLz13hKMdOTOXnkvT+mgaPnpswAlWaWkxe178BUtqn2apuHm/ajsnf+m+EY706IwxVFWWUb1rHZ37tiINu4luLWacu5Q0GtjfcNVnhGpbCg1hmRTHnsie+GzCkicSkzaZlKwpJKRNIN3uZOx9faIUiDmsI3jwLFy40KxdO7JD1w5GU10VzfVVTJhaENL9GpRSoW3tSw+xcO2t7DzvafIWnTmgfbavfg3PWz8jv2s9TcSya8oN5F/8bSLHeI15Q101UffPYlvKOcz/2qNH3LakaBv7XvoZCxteBmDTuBXkrPg+KVlTRiPUEWWMYfOPT2Qc9aR9fytyhLmYdm1dT8OrP2Nhyxt4sbM9/SJyL7qd+FGcsHmkGGN47+crmN/1MWG3biP8CP2lCnduoeo//8viplcRYPu485iw4gckZOWNXsAj6L/3XsvpbS8h3/gEZ2L/SfPuwp2Uv/wLljb8mzC62ZL4KRI7SxnvKqLwM68wc86SUYu5raOTkl2baNq7Hl/lZmKbdpDpLiKVpp5tWoimyplFW3QO3qTJRIyfTtKEWaTlzMChX1irMU5E1hljFh62XBMspZQaWc1NDTh/PZ3NiZ9iyc2P97ud8fnY8uF/kPfvZXbXBhqIo3DK9eRf9C0iY0J7wILBWPnb61jc8CK1n3uNzOkH/10yPh+bPnwFzwe/Y27Hh3ixWYnVRd8nJXPsJ1a9vf/yPzj546+yafotFFxx50Hruj0eNr37LKx5iHmuj+nCydaMS5h60e3Epx1bU5qsW/U28165mG1ZlzL7i38+aJ3H42Xjey/iW/MQ8zs/woeNreMvYtKK24nPGFzTylD30bp1zH/xLEpSTmXaV585qH+p1+tj44ev4v7oIRa0v4sNw7bUc8m84PskT5xFS10lvgcW00oUji++TnpmYD8jxhgqKiuo2PkxHaUbcdRuI7V9NxN9ZYRLNwDdxk65cyJNsdPwjZtN9MS5jJ8yj4TUzMP70Sp1jNAESymlgujj+69hTt1LVF/1DtlTCw5a5+psZ9MrD5O85S9M9u2lnngKp9xAwUXfJDImNIeWHo7qynLsfzwRrzipPfknxGfNoLmmnObtb5JV8RoTTTlNxLAr67NMOe9mksZwU8Aj8Xl9rLnnAhZ3fsCGzM/hnHwynW0t+EpXMan+XdJooJ4ESnIvY+r5txCbPDZGzxosYwxv/ObznNn8DJuSz4VpZ9Pa3onsW0tu/bukU0cTseydcAmTzvvWMZdg9vbS777N+bV/Ylv8yXinX0S724OnbD0T6t5lAlW0EkVh+oVMvvDbxKUf/IXD3o3vMP65z1IjKbRd+BCz5g9tjr+uLheluzZRt2cDnootRDXtILOriPHU92zTIPFUR06lM2kGYZkFpExZQFpuvjVQlFLHEU2wlFIqiKr2FRP10Ik0SzyNp9xFTHIWjeU78O78L9Ob3idO2tlrm0j9rOvJ//QXCI8c200Bj2bHhpXEvXA9GdT0LPMaYWdEAZ15n2H2uZ8/5n8GAK2tLWz64xdY2voadrH+HneaMHbFLkFmX8zM5VfiCLEJgkeCq8vNB3/6BifV/aunRsRlnOyKWYSZeRGzzrgaR/ixP4GGy+3h3b/czkmVjxAtXYA1Bcru6Pn4pl/A9DOvx3mE66J0wxtEvfAFEkwzq2OWI3MuZ9KcUxiXmobNdqAWyeX20NhQQ3NFIU37dtNVW0RE405S2ovI9pYRJh7AqpWqcGTRGJeHGTebuJx5ZOQtJDLp2Ez2lRosTbCUUirIdqx+jeRXbiSVxp5lrUSyM/4UIhZdxawTzz+u+nt2dnSwc80rdLfWERGbwoTZJxI/BkcEDISaqnIaKoqIiowmY9IsHOFjcxCT4WpsbKCmdCcJsVGkZuVhOw6Sy740N7dQXbqDqDAH4yfmDaqvUntjFTv/dRfTK54lChcADSaWdonGh40o00EMHUSK+6D9aiWZqohJdCROJzwjn5TJ80ifXID9OD0HSg2EJlhKKRUCXB2t7FjzBp7OZhLSJzFhxmLCwvUGRikVWN6uDkrWv0bj3o3Ym/Zi3B3YjBevMwqJiMfEjMeelENS1lTGT8zDGR3aEzIrFYo0wVJKKaWUUkqpAOkvwTp+2qIopZRSSiml1AjTBEsppZRSSimlAkQTLKWUUkoppZQKkJDqgyUitUBJsOM4RApQF+wg1KjR83380HN9/NBzfXzR83380HN9fAnF8z3RGJN66MKQSrBCkYis7avzmjo26fk+fui5Pn7ouT6+6Pk+fui5Pr6MpfOtTQSVUkoppZRSKkA0wVJKKaWUUkqpANEE6+j+FOwA1KjS83380HN9/NBzfXzR83380HN9fBkz51v7YCmllFJKKaVUgGgNllJKKaWUUkoFiCZYSimllFJKKRUgmmAdgYicIyI7RaRQRL4b7HhU4IhItoi8LSLbRGSriHzDvzxJRF4Xkd3+/xODHasKDBGxi8gGEXnJ/zpXRFb7r+8nRSQs2DGqwBCRBBF5WkR2iMh2ETlBr+1jk4jc4v8dvkVEHheRCL22jx0i8hcRqRGRLb2W9Xkti+U+/3nfJCLzgxe5Gqx+zvU9/t/jm0TkORFJ6LXue/5zvVNEzg5K0EegCVY/RMQO/A44F5gJfE5EZgY3KhVAHuBbxpiZwFLgJv/5/S7wpjFmKvCm/7U6NnwD2N7r9S+AXxtjpgCNwOeDEpUaCb8FXjXGTAfmYJ13vbaPMSKSCXwdWGiMmQ3YgSvQa/tY8ghwziHL+ruWzwWm+h83An8YpRhVYDzC4ef6dWC2MaYA2AV8D8B/v3YFMMu/z+/99+0hQxOs/i0GCo0xe4wxbuAJYEWQY1IBYoypNMas9z9vxboBy8Q6x3/zb/Y34KKgBKgCSkSygPOAP/tfC7AceNq/iZ7rY4SIxAOnAA8DGGPcxpgm9No+VjmASBFxAFFAJXptHzOMMe8BDYcs7u9aXgH83VhWAQkikj4qgaph6+tcG2NeM8Z4/C9XAVn+5yuAJ4wxXcaYvUAh1n17yNAEq3+ZQFmv1+X+ZeoYIyI5wDxgNZBmjKn0r6oC0oIVlwqo3wC3AT7/62Sgqdcvbr2+jx25QC3wV3+T0D+LSDR6bR9zjDH7gHuBUqzEqhlYh17bx7r+rmW9bzu23QC84n8e8udaEyx1XBORGOAZ4GZjTEvvdcaaw0DnMRjjROR8oMYYsy7YsahR4QDmA38wxswD2jmkOaBe28cGf9+bFVhJdQYQzeFNjNQxTK/l44OIfB+ra8djwY5loDTB6t8+ILvX6yz/MnWMEBEnVnL1mDHmWf/i6v1NCvz/1wQrPhUwy4ALRaQYq6nvcqw+Ogn+ZkWg1/expBwoN8as9r9+Givh0mv72HMGsNcYU2uM6Qaexbre9do+tvV3Let92zFIRK4DzgeuNAcm7w35c60JVv8+Bqb6RyMKw+pM92KQY1IB4u+D8zCw3Rjzq16rXgSu9T+/FnhhtGNTgWWM+Z4xJssYk4N1Hb9ljLkSeBu41L+ZnutjhDGmCigTkTz/ok8B29Br+1hUCiwVkSj/7/T951qv7WNbf9fyi8A1/tEElwLNvZoSqjFIRM7Bat5/oTGmo9eqF4ErRCRcRHKxBjZZE4wY+yMHkkF1KBH5NFbfDTvwF2PMT4MbkQoUETkJeB/YzIF+Obdj9cN6CpgAlACXGWMO7WCrxigROQ241RhzvohMwqrRSgI2AFcZY7qCGJ4KEBGZizWgSRiwB7ge6wtFvbaPMSJyF3A5VvOhDcAXsPpi6LV9DBCRx4HTgBSgGvgR8Dx9XMv+JPsBrGaiHcD1xpi1QQhbDUE/5/p7QDhQ799slTHmS/7tv4/VL8uD1c3jlUPLDCZNsJRSSimllFIqQLSJoFJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIBogqWUUkoppZRSAaIJllJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIBogqWUUkoppZRSAaIJllJKKaWUUkoFiCZYSimllFJKKRUgmmAppZRSSimlVIBogqWUUkoppZRSAaIJllJKhQgRyRERIyKOYMdyrBOR60RkZbDjCDUicrKI7Ax2HEopNZZpgqWUUmpME5E7RaRbRNp6PW4LdlxjkTHmfWNMXqDLFRG7iPxERCpEpFVENohIQqCPo5RSoUC/JVVKqQAREYcxxhPsOI5TTxpjrgp2ECPlGPhs3QWcCJwAlAKzAFdQI1JKqRGiNVhKKTUMIlIsIt8RkU1Au4g4RGSpiHwoIk0i8omInNZr+3dE5GciskZEWkTkBRFJ6qfs60Vku/8b/z0i8v8OWb9CRDb6yykSkXP8y+NF5GERqRSRff6aA/tR3sdkEXlLROpFpE5EHttfw+Bf1yAi8/2vM0Skdv/7EpELRWSr//2+IyIzDvn53Coim0SkWUSeFJGIwf+kB09Evuv/ubSKyDYRubif7UREfi0iNf6f5WYRme1fFy4i94pIqYhUi8iDIhI5wOM/4t/+dX8M74rIxF7rfysiZf5jrhORk3utu1NEnhaRR0WkBbhORBaLyEf+n3OliDwgImG99jEi8hUR2e0/3o/95+5D/zGe6r19PzGfJiLlA3l/AyUiicDNwBeNMSXGssUYowmWUuqYpAmWUkoN3+eA84AEIA14GfgJkATcCjwjIqm9tr8GuAFIBzzAff2UWwOcD8QB1wO/7pXkLAb+Dnzbf9xTgGL/fo/4y50CzAPOAr5wlPcgwM+ADGAGkA3cCWCMKQK+AzwqIlHAX4G/GWPeEZFpwONYN9CpwH+Afx9yI38ZcA6QCxQA1/UZgMhJ/uShv8dJR3kPhyoCTgbisWpQHhWR9D62Owvr5zfNv+1lQL1/3c/9y+di/TwzgTsGEcOVwI+BFGAj8FivdR/7y00C/gn865DkcwXwNNb5fQzwArf4yzoB+BTwlUOOdzawAFgK3Ab8CbgK63zOxvqsDpk/Ue7v/Py+n93ysT6Pl4pIlYjsEpGbhhOHUkqFNGOMPvShD33oY4gPrKTmhl6vvwP845Bt/gtc63/+DvDzXutmAm7ADuQABnD0c6zngW/4n/8R+HUf26QBXUBkr2WfA94e5Pu6CNhwyLIXgc3AJiDcv+yHwFO9trEB+4DTev18ruq1/pfAgwE+B3f6f4ZNvR4ZfWy3EVjhf34dsNL/fDmwCyspsfXaXoB2YHKvZScAewcY1yPAE71ex2AlSdn9bN8IzOn1nt47Svk3A8/1em2AZb1erwO+0+v1/wG/OUqZpwHlAT4//+OP7WEgEivJrgXODORx9KEPfegjVB5ag6WUUsNX1uv5ROCzvb/ZB07Cqq3qa/sSwIlVK3EQETlXRFb5m+c1AZ/utV02Vg3NoSb6y6vsdfw/AuOO9AZEJE1EnvA3KWwBHu0jpoewakHuN8Z0+Zdl+N8DAMYYn//9Zfbar6rX8w6sRCPQnjLGJPR6VIjINWI1odz/c5hNHz9nY8xbwAPA74AaEfmTiMRh1chFAet6lfGqf/lA9ZxrY0wb0ID1M8PfdHK7v+lkE1btWUpf+/q3nyYiL/lrgVqA/+3j/VT3et7Zx+uR+NkfTaf//7uNMZ3GmE3AE1ifZ6WUOuZogqWUUsNnej0vw6rB6n2zH22M+XmvbbJ7PZ8AdAN1vQsUkXDgGeBeIM0Yk4DV/E56HWdyH7GUYdVgpfQ6fpwxZtZR3sP/+t9HvjEmDqtZ2f5jISIxwG+waiHulAP9xiqwkrr924n//e07yvEOI9YQ4W1HeJx89FJ6ypqIlRB+FUj2//y29H5PvRlj7jPGLMCqUZyG1fSyDis5mNXrZxlvjBlMktJzrv0/wySgwv9ebsNqjpjoj6/5kPh6f64A/gDsAKb6z9Ht/b2fkSJWX7v+zs+D/ey2yf9/7/dz6HtTSqljhiZYSikVWI8CF4jI2WINTR3hHzggq9c2V4nITH9/pruBp40x3kPKCQPCsZpSeUTkXKy+Qvs9DFwvIp8SEZuIZIrIdGNMJfAa8H8iEudfN1lETj1K3LFAG9AsIplYCUZvvwXWGmO+gNXHbP/N9FPAef44nMC3sBK8D4/2gzqUsYYIjznC4/1BFBeNdRNfC9aAIVg1WIcRkUUissQffzvW6HY+f23cQ1h938b5t80UkbN77Wuk1yAmffi0v29ZGFZfrFXGmDKsn7fHH59DRO7A6mt3JLFAC9AmItOBLx9l+4Azxsw6wvn5Uj/7FAHvA98Xa9CQGcAVwEujGbtSSo0WTbCUUiqA/DfPK7BqF2qxapS+zcG/b/+B1T+nCogAvt5HOa3+5U9h9c35H6w+UPvXr8E/8AVWzce7HKhJugYrQdvm3/dpDm6i2Je7gPn+sl4Gnt2/QkRWYA1Ssf+G/pvAfBG50hizE6u2636sGp8LgAuMMe6jHG9EGWO2YfU5+girmVw+8EE/m8dhJVKNWM0d64F7/Ou+AxQCq/zN8t4A8gBEJBtoxeqX1p9/Aj/Cahq4AOtnBVa/vFex+n6VYCV1ZX0V0MutWJ+DVn+8Tx5l+1DyOazPZz3W5+uHxpg3gxuSUkqNDDFGa+mVUmq0iMg7wKPGmD8HOxY1PCJyFVbzwe/1s/4RrAEjfjCqgSmllAoqnWhYKaWUGgJjzKPBjkEppVTo0SaCSil1nBBr0tvBDE6gjkEicns/n4NXgh2bUkodC7SJoFJKKaWUUkoFSMBqsPyjZW0QkZf8r3NFZLWIFIrIk/4RlJRSSimllFLqmBWwGiwR+SawEIgzxpwvIk8BzxpjnvA3P/nEGPOHI5WRkpJicnJyAhKPUkoppZRSSo2UdevW1RljDpt8PiCDXPjndzkP+CnwTf9Ek8uxhpMF+BtwJ9Ykif3Kyclh7dq1gQhJKaWUUkoppUaMiJT0tTxQTQR/gzUjvc//OhloMsZ4/K/LgcwAHUsppZRSSimlQtKwEywROR+oMcasG+L+N4rIWhFZW1tbO9xwlFJKKaWUUipoAlGDtQy4UESKgSewmgb+FkgQkf1NELOAfX3tbIz5kzFmoTFmYWrqYU0YlVIqKLw+g46yqpRSSqnBGnYfLP8M9t8DEJHTgFuNMVeKyL+AS7GSrmuBF4ZSfnd3N+Xl5bhcruGGqo4zERERZGVl4XQ6gx2KGmOMz8cz936ZtvA0bvjG3cEORymllFJjSEAGuejHd4AnROQnwAbg4aEUUl5eTmxsLDk5OVhjZyh1dMYY6uvrKS8vJzc3N9jhqDGmoqKcyzqegA4o3XkxE/LmBTskpZRSSo0RAZsHC8AY844x5nz/8z3GmMXGmCnGmM8aY7qGUqbL5SI5OVmTKzUoIkJycrLWfKoh2Vey+8DzTW8HMRKllFJKjTUBTbBGiiZXaij0c6OGqr2utOd5WMXHQYxEKaWUUmPNmEiwlFJqNNlarDF59jomEde6+yhbK6WUUkodoAnWAIgI3/rWt3pe33vvvdx5553BC6iXVatWsWTJEubOncuMGTN64nrnnXf48MMPh1xuSUkJ8+fPZ+7cucyaNYsHH3wwQBErFfqc7ZW4jYPahLmM7y7H5/UdfSellFJKKTTBGpDw8HCeffZZ6urqAlquMQafb3g3btdeey1/+tOf2LhxI1u2bOGyyy4Dhp9gpaen89FHH7Fx40ZWr17Nz3/+cyoqKoYVq1JjRXhnDXWShKROI1Y6qa0uD3ZISimllBojNMEaAIfDwY033sivf/3rw9bV1tZyySWXsGjRIhYtWsQHH3wAwJ133sm9997bs93s2bMpLi6muLiYvLw8rrnmGmbPnk1ZWRnf/va3mT17Nvn5+Tz55JOAlSCddtppXHrppUyfPp0rr7yyzzl5ampqSE9PB8ButzNz5kyKi4t58MEH+fWvf83cuXN5//33jxjn1VdfzQknnMDUqVN56KGHAAgLCyM8PByArq6ufhPB++67j5kzZ1JQUMAVV1wBQENDAxdddBEFBQUsXbqUTZs29Rzr2muv5eSTT2bixIk8++yz3HbbbeTn53POOefQ3d0NwN13382iRYuYPXs2N95442Hv2+fzkZOTQ1NTU8+yqVOnUl1dfaTTqNSA2brb6bJFETk+D4Da4q1BjkgppZRSY8VIDtMecHf9eyvbKloCWubMjDh+dMGso2530003UVBQwG233XbQ8m984xvccsstnHTSSZSWlnL22Wezffv2I5a1e/du/va3v7F06VKeeeYZNm7cyCeffEJdXR2LFi3ilFNOAWDDhg1s3bqVjIwMli1bxgcffMBJJ510UFm33HILeXl5nHbaaZxzzjlce+215OTk8KUvfYmYmBhuvfVWAP7nf/6n3zg3bdrEqlWraG9vZ968eZx33nlkZGRQVlbGeeedR2FhIffccw8ZGRmHvZef//zn7N27l/Dw8J6E50c/+hHz5s3j+eef56233uKaa65h48aNABQVFfH222+zbds2TjjhBJ555hl++ctfcvHFF/Pyyy9z0UUX8dWvfpU77rgDgKuvvpqXXnqJCy64oOeYNpuNFStW8Nxzz3H99dezevVqJk6cSFpa2lHPo1IDIV4XHns4SRNmAtBRuQM4N7hBKaWUUmpM0BqsAYqLi+Oaa67hvvvuO2j5G2+8wVe/+lXmzp3LhRdeSEtLC21tbUcsa+LEiSxduhSAlStX8rnPfQ673U5aWhqnnnoqH39sjVq2ePFisrKysNlszJ07l+Li4sPKuuOOO1i7di1nnXUW//znPznnnHP6POaR4lyxYgWRkZGkpKRw+umns2bNGgCys7PZtGkThYWF/O1vf+uzhqigoIArr7ySRx99FIfD0fOerr76agCWL19OfX09LS1WYnzuuefidDrJz8/H6/X2xJufn9/z/t5++22WLFlCfn4+b731Flu3Hl57cPnll/fU9j3xxBNcfvnlR/yZKzUYNo8Lnz2CtOwpdBknvjod6EIppZRSAzOmarAGUtM0km6++Wbmz5/P9ddf37PM5/OxatUqIiIiDtrW4XAc1Kyu93xM0dHRAzre/iZ6YDX/83g8fW43efJkvvzlL/PFL36R1NRU6uvrD9umvzjh8OHMD32dkZHB7Nmzef/997n00ksPWvfyyy/z3nvv8e9//5uf/vSnbN68eUDvyWaz4XQ6e45ls9nweDy4XC6+8pWvsHbtWrKzs7nzzjv7nMvqhBNOoLCwkNraWp5//nl+8IMfHPG4Sg2G03ThtcdgdzgotacT0Vwc7JCUUkopNUZoDdYgJCUlcdlll/Hwww/3LDvrrLO4//77e17vbwqXk5PD+vXrAVi/fj179+7ts8yTTz6ZJ598Eq/XS21tLe+99x6LFy8ecEwvv/xyTx+l3bt3Y7fbSUhIIDY2ltbW1qPGCfDCCy/gcrmor6/nnXfeYdGiRZSXl9PZ2QlAY2MjK1euJC8v76Bj+3w+ysrKOP300/nFL35Bc3MzbW1tnHzyyTz22GOA1ZcsJSWFuLi4Ab2f/clUSkoKbW1tPP30031uJyJcfPHFfPOb32TGjBkkJycPqHylBiLM14XPbn0Z0RAxgURX6VH2UEoppZSyaII1SN/61rcOGk3wvvvuY+3atRQUFDBz5sye4cwvueQSGhoamDVrFg888ADTpk3rs7yLL76YgoIC5syZw/Lly/nlL3/J+PHjBxzPP/7xD/Ly8pg7dy5XX301jz32GHa7nQsuuIDnnnuuZ5CL/uIEq5nf6aefztKlS/nhD39IRkYG27dvZ8mSJcyZM4dTTz2VW2+9lfz8fAC+8IUvsHbtWrxeL1dddRX5+fnMmzePr3/96yQkJHDnnXeybt06CgoK+O53v8vf/va3Ab+fhIQEvvjFLzJ79mzOPvtsFi1a1LPuwQcfPCjuyy+/nEcffVSbB6qAC8ON12ElWK7YHNK9lRifN8hRKaWUUmoskL5GpguWhQsXmrVr1x60bPv27cyYMSNIER377rzzzoMGwzjW6OdHDUXNjyayb9ypzLvp76x66pcs3fZT6r64gZTMScEOTSmllFIhQkTWGWMWHrpca7CUUqoXn88QgRv8NVgRqZMBqC/fFcywlFJKKTVGDHuQCxHJBv4OpAEG+JMx5rcikgQ8CeQAxcBlxpjG4R5PBdadd94Z7BCUCilur49w3BhnFACJmVMBaKsqDGZYSimllBojAlGD5QG+ZYyZCSwFbhKRmcB3gTeNMVOBN/2vlVIqpLm63ISLp6cGK23CVHxG8NQXBzcwpZRSSo0Jw06wjDGVxpj1/uetwHYgE1gB7B/d4G/ARcM9llJKjbSuzg7rib8GKyIikhpJxt6sIwkqpZRS6ugC2gdLRHKAecBqIM0YU+lfVYXVhLCvfW4UkbUisra2tjaQ4Sil1KB1udoBsIUdmDOu3jme6I7yYIWklFJKqTEkYAmWiMQAzwA3G2Naeq8z1lCFfQ5XaIz5kzFmoTFmYWpqaqDCUUqpIenuSbCiepa1RWWR3F0VrJCUUkopNYYEJMESESdWcvWYMeZZ/+JqEUn3r08HagJxrGB5/vnnERF27NjR7zbFxcXMnj07YMfcuXMnp512GnPnzmXGjBnceOONgDVJ8H/+858hl+tyuVi8eDFz5sxh1qxZ/OhHPwpUyEqNeQcSrMieZd64CYyjHrerI1hhKaWUUmqMGHaCJSICPAxsN8b8qteqF4Fr/c+vBV4Y7rGC6fHHH+ekk07i8ccf73O9x+MZ9jG83oMnMv3617/OLbfcwsaNG9m+fTtf+9rXgOEnWOHh4bz11lt88sknbNy4kVdffZVVq1YNK3aljhX7Eyx7rxose3IuADVlu4MSk1JKKaXGjkDUYC0DrgaWi8hG/+PTwM+BM0VkN3CG//WY1NbWxsqVK3n44Yd54oknepa/8847nHzyyVx44YXMnDkTsBKtK6+8khkzZnDppZfS0WF94/3mm28yb9488vPzueGGG+jq6gIgJyeH73znO8yfP59//etfBx23srKSrKysntf5+fm43W7uuOMOnnzySebOncuTTz5Je3s7N9xwA4sXL2bevHm88IKVyz7yyCOsWLGC0047jalTp3LXXXcBICLExMQA0N3dTXd3N1aefLB//etfzJ49mzlz5nDKKacAVu3X9ddfT35+PvPmzePtt9/uOdZFF13EmWeeSU5ODg888AC/+tWvmDdvHkuXLqWhoQGAhx56iEWLFjFnzhwuueSSnp9Pb0uXLmXr1q09r0877TQOnYBaqZHicXcCYA8/UIMVM96aC6txnyZYSimllDqyYc+DZYxZCRx+d2751HDLP8gr34WqzQEtkvH5cO6Rc78XXniBc845h2nTppGcnMy6detYsGABAOvXr2fLli3k5uZSXFzMzp07efjhh1m2bBk33HADv//97/nqV7/Kddddx5tvvsm0adO45ppr+MMf/sDNN98MQHJyMuvXrz/suLfccgvLly/nxBNP5KyzzuL6668nISGBu+++m7Vr1/LAAw8AcPvtt7N8+XL+8pe/0NTUxOLFiznjjDMAWLNmDVu2bCEqKopFixZx3nnnsXDhQrxeLwsWLKCwsJCbbrqJJUuWHHb8u+++m//+979kZmbS1NQEwO9+9ztEhM2bN7Njxw7OOussdu2yJmDdsmULGzZswOVyMWXKFH7xi1+wYcMGbrnlFv7+979z880385nPfIYvfvGLAPzgBz/g4Ycf7qmZ2+/yyy/nqaee4q677qKyspLKykoWLjxskmylRoS3y0r6HeHRPcuSs6YB0FlTFJSYlFJKKTV2BHQUwWPV448/zhVXXAHAFVdccVAzwcWLF5Obm9vzOjs7m2XLlgFw1VVXsXLlSnbu3Elubi7Tplk3addeey3vvfdezz6XX355n8e9/vrr2b59O5/97Gd55513WLp0aU/NV2+vvfYaP//5z5k7dy6nnXYaLpeL0lJrSOkzzzyT5ORkIiMj+cxnPsPKlSsBsNvtbNy4kfLy8p4k7FDLli3juuuu46GHHuppvrhy5UquuuoqAKZPn87EiRN7EqzTTz+d2NhYUlNTiY+P54ILLgCsmrfi4mLASsJOPvlk8vPzeeyxxw6qqdrvsssu4+mnnwbgqaee4tJLL+3z56PUSPC6rQTL2SvBSk2fgMs48TWWBCsspZRSSo0Rw67BGlVHqWkaCQ0NDbz11lts3rwZEcHr9SIi3HPPPQBER0cftP2hTe36anp3qEPL6C0jI4MbbriBG264gdmzZ/eZCBljeOaZZ8jLyzto+erVq48aT0JCAqeffjqvvvrqYQN0PPjgg6xevZqXX36ZBQsWsG7duiO+j/Dw8J7nNput57XNZuvpo3bdddfx/PPPM2fOHB555BHeeeedw8rJzMwkOTmZTZs28eSTT/Lggw8e8bhKBZLPvb8G60ATQbvdTrktjfAWnQtLKaWUUkemNVhH8fTTT3P11VdTUlJCcXExZWVl5Obm8v777/e5fWlpKR999BEA//znPznppJPIy8ujuLiYwsJCAP7xj39w6qmnHvXYr776Kt3d3QBUVVVRX19PZmYmsbGxtLa29mx39tlnc//992ONhg8bNmzoWff666/T0NBAZ2cnzz//PMuWLaO2tranyV9nZyevv/4606dPP+z4RUVFLFmyhLvvvpvU1FTKyso4+eSTeeyxxwDYtWsXpaWlhyV2R9La2kp6ejrd3d095fTl8ssv55e//CXNzc0UFBQMuHylhsvn74MVFhlz0PLG8AziXBXBCEkppZRSY4gmWEfx+OOPc/HFFx+07JJLLul3NMG8vDx+97vfMWPGDBobG/nyl79MREQEf/3rX/nsZz9Lfn4+NpuNL33pS0c99muvvdYzyMTZZ5/NPffcw/jx4zn99NPZtm1bzyAXP/zhD+nu7qagoIBZs2bxwx/+sKeMxYsXc8kll1BQUMAll1zCwoULqays5PTTT6egoIBFixZx5plncv755wNwxx138OKLLwLw7W9/m/z8fGbPns2JJ57InDlz+MpXvoLP5yM/P5/LL7+cRx555KCaq6P58Y9/zJIlS1i2bNlBSd2LL77IHXfc0fP60ksv5YknnuCyyy4bcNlKBUS3lWCFR0YdtNgVncU4b2VfeyillFJK9ZD9tR6hYOHChebQ0eK2b9/OjBkzghTR2PbII48cNBjG8Ug/P2qwVv79R5y05zd031aKMyq+Z/mH/7iTE4t+TcvNhcQl6KToSiml1PFORNYZYw4biU1rsJRSqjd/DZYj/OAarLCUSQDUlvQ/2bhSSimllCZYx7DrrrvuuK69UmooxNNJt7EjdudBy+MzpgDQUqlDtSullFKqf2MiwQqlZoxq7NDPjRoK8bhwyeH9ClMnWNMsuOv2jnZISimllBpDQj7BioiIoL6+Xm+W1aAYY6ivryciIiLYoagxRjwu3IQdtjw+IZkmYpCm4tEPSimllFJjRsjPg5WVlUV5eTm1tbXBDkWNMREREWRlZQU7DDXG2L0u3HJ4giUi1NrHE9lWHoSolFJKKTVWhHyC5XQ6yc3NDXYYSqnjhJVg9T31QEtEJmkdu0c5IqWUUkqNJSHfRFAppUaT3eui29Z3gtUVm804Xw0+r3eUo1JKKaXUWDHiCZaInCMiO0WkUES+O9LHU0qp4XD4uvD0k2BJUg5h4qG+qmSUo1JKKaXUWDGiCZaI2IHfAecCM4HPicjMkTymUkoNh8PXRbet78FRIsdZc2HVl+0czZCUUkopNYaMdA3WYqDQGLPHGOMGngBWjPAxlVJqyMJ8Lrz91GAlZlpDtbdX61xYSimllOrbSCdYmUBZr9fl/mU9RORGEVkrImt1pEClVLA5jRuvI7LPdWnZU/AZwVNXPLpBKaWUUmrMCPogF8aYPxljFhpjFqampgY7HKXUcS7MdOHrp4lgREQkNZKMvaV0lKMKvPrGRl79vxv48NG7gh2KUkopdUwZ6WHa9wHZvV5n+ZcppVRICqcLn6PvJoIA9c50ojvG/lxY65+/n3Nan4FWKCv6LNmTtXusUkopFQgjXYP1MTBVRHJFJAy4AnhxhI+plFJDFm7cGGffTQQB2qMySemuHMWIRsb48ldokVi8Rqh69+Fgh6OUUkodM0Y0wTLGeICvAv8FtgNPGWO2juQxlVJqqHxeH5Hihn76YAF0x08klQbcro5RjCywXC4XeZ6d7My4iELHFOKqVgU7JKWUUuqYMeJ9sIwx/zHGTDPGTDbG/HSkj6eUUkPVtT9pOkKC5UzOBaCmbNdohDQiSnZvIky8hGXkU5O8mEld2/G42oIdllJKKXVMCPogF0opFSq6OtsBkLD+E6zoNGsurMZ9haMS00ho2LMBgJTJ8wjPXYJTvJTuWBfkqIanZF8Fn9y1lI/uvQSvpzvY4SillDqOaYKllFJ+Xf5aHDlCH6yU7DwAOsfwXFjdVdvxGmH8pALGTVkIQOOesZ1g7XruZ8wx2zmh7Q22vPbXYIczbB+8/yYbf3Iym17/e7BDCYjXX3yMt/7xM3zdXcEOZdjqWzt5428/YffGD4IdilIqRGmCpZRSfvtrsGxhUf1ukzp+Ai7jxDQWj1JUgedsLafOloI9LILsSdNpM5H4KjcHO6whM8aQU/cOuyPnUEEqzs1PBjukYenyeIl/89vM9Wxiygffpqu1LtghDcsn23dy6rqvsbzo52x5auxPC/DeP+7mjL33MPX5T+OqH/tTNiilAk8TLKWU8ut2dQJgD+8/wbLZbVTZ0ghrLet3m1AX46qkKSwNALvdTqkzl7jmnUGOauhKSoqYSiltE89kV/KnmNq5AV9Xe7DDGrKNG9YwmyI+STqbKFwUvft4sEMalvK3/kSYeCm1ZZJb+Dfwjt0mnE0dbuZUP0+tpOAzQvFrvw92SEqpEKQJllJK+XV3WU0E7UfogwXQFJ5BnGvsTumX7KmmIzKj53VT3HQy3XswPm8Qoxq60i0fAZA6Yxm2SafgxMu+Le8HOaqh69z5NgA5l/yUYjMex66XghzR8KTVraYsfAq7Zt1MrGmjZtu7wQ5pyDZ/8jGTpIKOxV9jnS2fuD3/CXZISqkQpAmWUkr5efyjCDrCo4+4nSs6i3HeSjBmNMIKqA6Xi3GmHm9cVs8ykzaLGDqpL98dxMiGzrtvIz4jZOYtJGf+p/AaoXHb28EOa8iiajZQRyLxGVMojp1PRstm8PmCHdaQlNc2ku/bQcv4pWQvPB+3sdP4ydhNSpp2rgQgfd7ZVI1bRkZ3Cb6msftli1JqZGiCpZRSfl63P8GK6L+JIIAvIYdYOmlpqh2NsAKqZl8xDvFhT5zQsywudz4A1bvXBiusYYlt2k6lPR2JiCN7fBolkolUbQp2WEOW0baV0sgZIIJkLyaGdupKxmYfuV3bNhIu3cRNXsrU7HR2Sg7OyrE7oIqzehMdEknYuDwipi0HoGrTG0GOSikVajTBUkopP0+XlWA5j9AHCyA81ZoLq7Z07PVbaqzcC0DUuJyeZZlT5wLQuW9szgOf7CqlPso6JyJCTcx0xneMvXMD4OnqJN1bQUfiDACSZ5wEQPXW94IZ1pB1+D9TaZMLsNmEmrjZpLfvgDHYHNUYQ2bnDqqi8sBmY/qcpXSaMJoKVwc7NKVUiNEESyml/Hxd1iAX4ZExR9wuPmMqAC2VY28urM4aK8FKTJ/UsywpMYkKUrHXjb2kxNXlJsNXhTsut2dZV2o+qaaejoaKIEY2NBV7t2EXg3O8NR3A5Lx5NJoYvKVrghzZ0EjdTnwIYeOmWQsyFxKJi+bSsVcjV9vSySRThivJSn6zU+LYaZtERO3YrS1VSo0MTbCUUsrP120lWGFHaSKY6p8Ly127Z8RjCjRPozWsdFKvBAugOjyXxPaxN7dXRWkh4dKNY9zUnmWRE60mjxU7xl7NQn2xlXgkTpgFQGS4g93O6SQ3bAxiVEMX01pEnSMd/HPLxU85AYCa7WNvDqmS4kKipYvw9Jk9y6pjZpLRuRO8niBGppQKNZpgKaWUn8/fB8sZeeRBLuITk6gjAVvD2EtIHK3lNBKHIzL2oOUd8VPJ8JTj84ytIbTrS7YBEJs5vWdZRt5iANqKx15fn87KHQBkTcnvWdacXEC6pwzjaglWWEPi8foY7y6lOeZA7eLkvAKaTDSe0o+DGNnQNJRsASBp4qyeZd7xc4nAjatyW7DCUkqFoGElWCJyj4jsEJFNIvKciCT0Wvc9ESkUkZ0icvawI1VKqRFm/DVYUVFHbiIIUO3MJrZt70iHFHBRHRU0ONMOW25Lm0GYeKguHls3ip3VuwBIyz1w05s5Po0SxuOsHntNtxwNu6mSVKJi4nuW2TPnYcNQUzi2EsbSuhZyqMSbnNezLDEmnB22qcQ2jL1z011lJb8JE2b3LIubbCXzVds/CkpMSqnQNNwarNeB2caYAmAX8D0AEZkJXAHMAs4Bfi8i9mEeSymlRpRxt+MxNpxhEUfdtjV2MundJWNuqPb47mraItIPXz7RqjGp2/vJaIc0LFJfSDsRxCQfGHZeRKgIn0JS264gRjY0CR3F1IVPOGjZuKmLAKgvHFujPFYW7yBcPERmzDhoeUPcDMZ3FYOnKziBDZGzqYg2iUFixvUsmzy9gBYThatkbJ0bpdTIGlaCZYx5zRizv+HxKmD/X7gVwBPGmC5jzF6gEFg8nGMppdRIE3cb7RIFIkfd1iRPJZ52GmrGzhw4Ho+XNF8t3TEZh63bP5Kga4yNJBjdVkKNI/Owc9aZNIN0byW+zuYgRTZ43R4vmZ4yXPGTD1o+edJU6kwcvoqxlfy2lFmfpeTcOQctN+PzceCls2JLMMIasqSOvdRH5hz0WRsfH8UuySGyfmxdN0qpkRXIPlg3AK/4n2cCZb3WlfuXHUZEbhSRtSKytrZ27M0po5Q6dtjdrXRI5IC2jcq0vpWv3jN2mjrV1lYSJV3YEiYcti4+PoF9jMNRP7ZGEkx1l9MSPfGw5c7MAgCqC9ePdkhDVl5qDaJgH5d30PLIcAd7nZOJaxxbzTd9NVaTuphDarDiJi0EoHrn2OmH1dDuZqLZd1jyKyLUxeSR1lk4JoeeV0qNjKMmWCLyhohs6eOxotc23wc8wGODDcAY8ydjzEJjzMLU1NTB7q6UUgHj9LTjsh15gIv9xuVaTepay8fOTW/9PmtQjvCUnD7X10TkktQxdgbuaGptI8NU402cdNi61CnWTXx90dhJsGr2WDU68dmzDlvXHD+TjO7iMdWsLqq5kHpbCkTEHbR80rTZtJpIXKVj59zsLa9gnDTh2D/cfC/d4/KJoAt3zdhrkqqUGhlHTbCMMWcYY2b38XgBQESuA84HrjSmpzPCPiC7VzFZ/mVKKRWynJ42umxHHqJ9v7SsybSbcHy1Y+emqrXKGlY+Pv3whASgI2Ea6Z59eLvdoxnWkO0r3oFdzIE5lnrJmTSNZhONt3LszLfUUbEdgPQpBYetk/QCHHhpLB4bNabGGFJdJTRG5x62LiMhit1jrFldvf/nHpc9+7B1sTnWtAA1u8bmXGVKqcAb7iiC5wC3ARcaYzp6rXoRuEJEwkUkF5gK6G8epVRIC/O243YcfQRBAJvdTqUji6iWsVPj466zEqxx2Xl9rrenzSBMvFTtHRs3vs2lVkKSmD3jsHURYQ72OiYR07R9tMMaMlv9blqJIjLx8D5ySZOtgS5qdo2Nub1qWjrJpZzuxKmHrRMRamLySOvYPWaa1bkqrc9Rcs7hyW/2tLl0GSftxWOnRk4pNbKG2wfrASAWeF1ENorIgwDGmK3AU8A24FXgJmPM2PgtqpQ6bkX4OvA4BtZEEKApOpdUV8kIRhRYjqa9NBFLWGxSn+sTJlo3j3V7No5iVEPX5W+SNS738CZ1AE1x08jo2jtmbuLj2vZQGz6hz0FWJuVZzerc5RtHP7AhKPVPyhs2/vDkF6A7dTYRdOGp3T3KkQ2Ns2EXbpzYkg7v75czLoHdZOOsHVuDdiilRs5wRxGcYozJNsbM9T++1GvdT40xk40xecaYV45UjlJKhYIo04HXObAaLIDuxCmkU0tH29gYqS6mvYxaZ5/jDQGQNW0OPiN0jZFJU52NhTQRhzMmuc/1vnGziaSL1orQb8bp9vjI9hTTFnd4jQ9AfFQ4RfZJRDeMldpFq2lmYk5+n+ujJs4DoHb32BjoIr5tLzXhE8B2+IwzdptQGTmV1LadY27aBqXUyAjkKIJKKTWmRZkOfGGxA94+PN36dr6iaGx8c53SXUFbdHa/62Ni4qiwpeEcIyMJJrUXURVxeB+f/eJyrJv4yl2hP0dRWVkJKdICaX3X+AA0xOaR7ioaEzVybn+TusQJh/dZAsieNp8u46C1OPQnT+50e8n2ltIeO7nfbVwps4k1rfiaykcxMqVUqNIESymlgO7ubqKlCzOIBCtponXzuP/b+lDW3t7OeFNLd3z/CQlAbUQuSR17RimqoXN3e5ngKaUjvu8aH4AJ0+fhMTY6SjeOXmBDVONvlhmbfXgfn/18aQVE0kVbxY5RimroIht30izxSEzfowNPSktgFxNw1IT+lxN7K2vIpA5Sp/e7TUT2XADqCsdGjZxSamRpgqWUUkBHaxMAEjHwBCt90mzcxo6nKvSb1FWV7sIuBmdq/9/CA3QmTCPDW4HH7RqlyIamrHg3MdKJffzMfrcZl5hAiWQSVhf656ez3Eo00qfO73ebuMnW0POVO1aNSkxDZYwhrXM3NdF9D6YC4LDbqIiYSmrrjpBvVlezdws2McRk9f9ZS5+2AJ8RmvaEfo2cUmrkaYKllFJAa3M9APbI+AHvEx4eQZk9m6jG0K9RaCq3mv3FZvR/0wtgHz8Tp3hDvtlj3Z4NAMRNnHPE7aqjppDSEfoDKdhqd9AisUT0MYLgfjl51mh1rhCvkatsaGGyKaMrte/BR/brTJ5FrGnFNJeNUmRD01LyCQDjJvf/WZuSNZ69pCNVY2MYfaXUyNIESymlgLaGKgDC4gY34Xl99BTGdYb+UO2uaivJGDeh/z4+AEn+Yajr934y4jENR1eFNdhD+pR5R9zOlTyTcb5aPG31oxHWkCW0F1IbOanPEQT3G5cQS5FtAuF1oZ38lu3eSLh4iPQ3m+tPuH99Y1Fo1/qE13xCJxE4x/X/5USE005Z2BQSW0L/yxal1MjTBEsppYDOpmoAohLTBrVfd/J00kwdHS2hfQPvqy+ijSjiko/8/rKmzqXb2PFUhHa/Mkf9DuokiYi4vkcQ3C88y0oYQ3mgi+rmDib5SnAnHbl2EaAmejrpHaE9Wl3rXqt2cdy0xUfcbvxUq1ldY1HonhtjDOPbt1MVPb3PEQR7a02cQYq3BjoaRik6pVSo0gRLKaUAd0sNANGJ4we1X4T/Bn7fztCeZDShZReV4blHrCEBiIyKosSWTVQIDwdujCGlbRd1UUfuTwYwbqrVb6nJf9MfivZs20CcdBKRc+SEBKz5o2Jpp6uueOQDGyJTuQkXYUdtjjotezxFJgNCuFldaW0T000xrnFHbooK4MiYC6D9sJRSmmAppRSAt7UWgISU9EHtN37qAgCai0P3Bt7l9jDRs5f2hKPXkADUxEwjvTN0547aV1XDZFNK1/gFR902Z+Ik6kw8vsrQvYlvK1wJwPjZpxx125gcaxCMih2rRzSmoTLGkNy6neqIyUet8YkOd1ASNpnE5u2jFN3gle5YT7h0E5O76KjbpviT+foQrpFTSo0OTbCUUgqgvY4u4yQyJmFQu6VnTaLZRGOqQ3ekupI9O4iTDhwZ/Q8B3lt3aj5Jpom2utAcfKBk07vYxZCQd/JRt3XabZSFTSK+KXT7xkRWr6NJ4olMm3bUbbNnLMJjbLSF6PxRFfWNzPLtoi3t6AkJQEvCTJK8tdAemk1sW4qsRHbc9BOOuu20SblUmiS8+zaOcFRKqVCnCZZSSgEOVz1NEnfUJnSHstltlIflENsSupPz1u+yhvVOmjKwm95Yfy3Jvu1rRiym4XDv+QCvEbLyj17jA9CSOIvM7mJ87s4RjmzwvD5DdtsmymPyB/TZy0xNolgycYbo/FG7175FuHiIm7F8QNuHZVpN71r2hmatT0TVWlps8YQfZXoDgPhIJ3vsk4htCt0aOaXU6NAESymlgLCuRtrsCUPatyVuGpnuvRifL7BBBYgp+xiXcTJ+2sASrKwZSwBCtpYksX49pWGTsUfGDWh7R/ZCnOKlcmfoJYzbC/cwkUpkwpIBbS8iVEROI7U9NBP6zl3v4MFG1tyBJVhp0633Xbs79CbobensYo7rYyqSlg74i5fG+OmMc5eBu2OEo1NKhTJNsJRSCoh119AWNrgh2nuMm0ksndRVhOZw7YkNGykJn4bNGT6g7VNTUihjPI6a0BvooqW9nandO2lKPvLw7L2Nm34icKAmL5RUrn8JgMy5Zw54n66UWST76ulurhqpsIbE6zOkN6xhX0QeEjGw+eRmTprIPpNC977QmxZgy9r3SJEWnHlnDXgfGT8HOz7ay0Lv/SilRk/AEiwR+ZaIGBFJ8b8WEblPRApFZJOI9D89vVJKBVmKt4au6P4neT2S2IlzAajaHXojCTY21DPNs4u2tKOPULefiFAZOTUka0m2r/w30dJFzKxzBrxPbu4Uakwi7Au98xO/91XqJImEyQOrwQKInGD9Oa3aGVoDXWwtKmaWKaQre9mA94kOd1DsnEJcCDara978KgATl1ww4H1S8qzzWLX9wxGJSSk1NgQkwRKRbOAsoLTX4nOBqf7HjcAfAnEspZQKtOamBuKlHROfPaT9s/Ks0ew6ykJvpLrda17FIT5iZg28hgTAlTKbDF8lrtbGEYpsaHzbXqCNKCYtOX/A+zgcdooj8khuDq1+SzX1DeS71lKethxsA/9znJ5nNfVsDrHhwKtXPYlTvKSdcMWg9mtPmsl4TznG1TJCkQ1et9dHZs17lIZPwxE38Lnxpk+bQZVJxFMSes1RlVKjJ1A1WL8GbgN6z3y4Avi7sawCEkRkcOMfK6XUKKgrt5r2OZMmDGn/hMRkKknFWRd6Iwl6tv+HdiKYMv9Tg9ovcoLVBK98e+jUkri6upje9D674k/EHhYxqH3bkvLJ9JbjaQ+dhHHTu88RKW5SF10yqP1ysjIpNeOwhdD8UT6fIWXvi1Q4sojPXTiofZ0TFmLDUL0zdJpwrl+7igJ24cq7aFD7xUeFscs5ncTG0Dk3SqnRN+wES0RWAPuMMYc2OM4Eeo/xW+5fduj+N4rIWhFZW1tbO9xwlFJq0Fqq9wAQk5Y75DKqIiaT1FYYqJACotPVRV7Te+yKWzbohCRjhjUsdXNR6CRY699+lkRpJWrOxYPeN2yiVetTuT00buKNMcRvf4wGSRxU/ysAu00oj5hGcmvoNKv7ZOsW5ni30TRlxaBH4hw/6yQAGnasHInQhqTlo7/SjZ2c5Z8f/L7JcxjnqcC06T2NUserASVYIvKGiGzp47ECuB24Y6gBGGP+ZIxZaIxZmJo6xA7mSik1DK5qqwYrOXvqkMvoTMoj07uPbrcrUGEN28Y3niBZWoief9mg983IzKaccTgqQ2cC5agND1FPItNO/uyg982YaQ100VT4UaDDGpING9eyqHsd5ZOvALtz0Pu3pcwlzVuFp6V6BKIbvLo3f4tPhNzlXxj0vlMmZFNkMnBUhMZQ7RV1jcxrfJU9iScRljB+0PuHTbT6O9bt1H5YSh2vBpRgGWPOMMbMPvQB7AFygU9EpBjIAtaLyHhgH9C7Q0OWf5lSSoWW+l20EE1SataQi3Ckz8YpXvYVhs7oYVGbHqFGkpl68uCaoIF/OPCoGaS1hsZIgts/WcPcrnXszf3cgEdD7C0nK4sSMx5biCSMDW/+lm4cTDvv60PaP2qyVcO4b/N7gQxrSPaWlXFi44vsSjmLyHGTBr2/026jJHIWaS2bwZij7zDCNjz3a1KkhaTTvzqk/TNnnojH2GjYpQmWUserYTURNMZsNsaMM8bkGGNysJoBzjfGVAEvAtf4RxNcCjQbYyqHH7JSSgVWTOseqpzZyCAGGjhU8iSrz1JDUWjcwBft2Mgc93r2TvwsMoQaEgDXuLmMNzW0NwT/V3fLf39KJ2FMv/AbQ9rfZhP2Rc0grSX4CeO2zes5tfU/7Eq/kIjEoY1cmVuwDLex07o7+M3qdj37v0RLF+nnfWfIZXSmzSfetNBdF9ypDsqr61hc/gh7oueRWjDw4dl7y8tOYycTcFSE1iAkSqnRM5LzYP0Hq4arEHgI+MoIHksppYbEGEOau5TWmMF/895b9pQC3MZBd8XmAEU2PA0v3UmHCWfGp7825DJi/EOHl24O7k38xg9eZUnHO2zLuZaYxME32drPnTaHFFNPe13Z0TceIR6vj6YXv4dbnEy89CdDLicjOYGdtslEVgf3Jn7jho85veFJto07j8Tcoc/GEj3ZasJZvTV4NXLGGDb/83ZSpZm48+4acjkOu419UbMY37YVQnTycaXUyApoguWvyarzPzfGmJuMMZONMfnGmNBoXK2UUr3UVZcxjkZ8KdOHVU5YeDgl9gnENAZ/4IFtH7/Fora32ZR9FXHjht7sMWf2iXiN0L43eANdtLa1EvvGt6mVZGZfNuTuvgDETVkKQNnm9wMR2pC8/+wfOLF7FaWzbiIm+bBxnwZMRKiJLyCrcyd43AGMcOA6XC7k31+nS8LJveL/hlXW5JkLaDWRtBcFr4/c++++zllNT7Ej/SJSZp46rLK6xs8n2nTgrg7+7wOl1OgbyRospZQKeTX+UeUicgc+EW9/6mPySHcFdyRBV2cH4a/cQj0JFFz+w2GVlZSYSLFtApE1welXZoxh41++zmRTStMZ9xIeFTes8iYXnESXcdBRFJy+MVs2rWPBlp9QGD6L6Z/53rDLM1mLCcdNQ9Hof3/p8xne/eM3mePbRvVJPyEyaXizsGQlx7DdNoWomuA0sS0pLyf37ZtotCcz+arfDLu8uKlWH7mqbcFvwqmUGn2aYCmljmsdxWvwGmHCzBOGXZZn3EySaKaltjwAkQ3Nur9+k8m+Yvad8guiYhOHXV513CyyOrYFZfCBD568l5MbnmV9+hVMXfaZYZcXHxfLbscU4mpHv1ldxb5SEp79HF5xMu7avw+5X1xvabOtWpbqbaPfrO61x/6PcxsfY0f6CqacMfihzA8lItQnziW9qwjc7QGIcOBqG5up+8sVpEkDvs/+HWf08K+bvJnzaDLRdBSFxrQASqnRpQmWUuq4FlH7CSX2CcQnJAy7rGj/5LwVOz4edllD8dHTv2FZzeOsTf0MBcuvCEiZvvHziKeNurKdASlvoFa/+hgnbP8pm6OWMPfzDwSs3LrEeUzs2olxdwSszKOprauh+eHPkEIDTRf9nbiMKQEpN2/KNPaZFEzp6DbhfP25v3JG4U/ZFbOIvM8/FLByHRMW4cBH7c7RaybY3NbO3t9fwgLfZipO+SXjZiwLSLnjE6LYYc8LSjKvlAo+TbCUUscvY8jq2EFN7MyAFJc13ZrMtq1k9Js5bXz7GRZuvpstEfOZ+8UHA1Zu4jSrZq9i2wcBK/No1rz8V+Z99DWKw6Yw5Sv/wuYYfm3PfraJJ+DES8X20bmJLy8vpfH3ZzPZu4fy5Q+QO/e0gJUd5rCxN3IW45o3BazMIzHG8J/HfstpG79FecRUcm96FnEMfsj8/mTlWzVytdtHp49cTX0923+zgsXdH7Nj4d1DmlT4SBpSFpLRXYJprwtouUqp0KcJllLquFVXvptEWvCmzwtIeSmpaVSSgr12dIcC3/DGE8x45/9R7sgm58vP4AgL3E3vpJmLcBkn7pKRr5UzxvDuP3/BgjW3UBw2jfE3vUpkTHxAj5GZfxoA9dtHvlnd7i1r8f75LCb4yig7689MOSUwtYq9daQtIMVXh6u+JOBl9+bxeHn9odv59O47KI0pIOvr/8UZObw+cYeamjOBIpOJo2zkm9XtLNxN3QNnsah7LbsX3c3084c2/P+RREw5CYCKzW8HvOzejDGU1DaP6DGUUoOjCZZS6ri1v1YmaeqSgJQnIlRGTCGpbVdAyjsaYwwfPPs7Zr//FcqcE0n+ymvExCcF9BiRkREUOaYSX78xoOUeqrOzk4/uv45Td/0vO6IXMfGW14hOSAn4cXInTGAPmTj3jWyzuo9e+Qfp/zqfONqpvehJJgegD1lfYqdaTdoqPhm5m/ja+nrW3ruCsyp+z7akTzHp5ldwBKCf0qEcdht7Y+aR1foJeLsDXv5+77z2Aon/OJNJppTSMx9i6nmBT64Apsw9hS7jpHn7uyNSPkB7Zxcv/eYrjH9gEhs+fGPEjqOUGhxNsJRSx62ukrV0GQc5MwOTYAF0Js0g01OOu3NkO+p3ud28+/ubWLbpdooiZpH21deIS04bkWPVp8wnp2sX3a62ESm/eO8uiu5dzokNz7Mm42pmfPOVYY8Y2B+bTaiILSCzdfOIzFHkcnXy/u9vYsmqr1HjzMTc+C7Zcz8V8OPslzfnRFpMFJ27RibB2rz+Q1rvP4VFnSvZNONbzPzaM4gzckSOBdCVvYwoOmnbG/i+S+5uD68+9AOWfXA9XkckHdf8l9yTPhvw4+yXnZrAVts0oqvXjEj523fuZOe9Z3BB8z8JFw/tG58dkeMopQZPEyyl1HErpn4TxY5JREYG7obRmTkHh/jYt3t9wMo8VE11BZvv/TSn1T7GxrSLmXbrG8QmJI/Y8SKnnIJTvOzdGPhv4te8/FcSHzmNSd49bDvx1yy+8QFsDkfAj3OQCScQRxtVhYE9R8U7NlB2zzJOrnmUjakXkn3reyRlDG8C66NJio1iS1gBKbWBbVbn7vbw1l9/xLQXLiBBWik//zEKLr8DRAJ6nENlzjkDgNIN/w1ouXuLdrLtF8s5Z9/97Ek6idRvfkjSpKFPjDwQIkJ10kKyXLsxHQ0BK9fnM7zxrz+Q/s/TmeHdSdGJv2Bb+FzS60avn6RS6sg0wVJKHZeM18OErl00JMwOaLlp0xYA0FA0MgnWztWvYv5wEnO61rN17g+Z+6W/YnMGrs9VXybNX47PCM3b3wlYmW2tzaz57ZUs/vhmap0ZtF33FjPPuiFg5R9J5oJzAaha/3JAyvN6fax8/BekPX4Wqd4aNp/0e+Z/9e84I6IDUv7RtGUsI81bRUdVYOZgKyrcxdZffIrlJb+hKG4xYV9dxcRF5wWk7KPJz5tKEVnYigMz0IXP6+O9px8g+e+nMc2zk60Lfkze118YkSaOfbFN/RR2fNRsfCUg5dXUVPPRvZ/hjK3fpSFiAt1feJfJZ32JtuxTmewrprJ8b0COo5QaHk2wlFLHpYqizUTjQjID+y121qRZtJsIvJWbA1qu1+Pho79+hyn/uYJucbLv0n8z66JbR7xGASA5OZUiey5RVYFp6rR5zVs0/GopCxteZlXGNeTctpJxObMCUvZA5OROZTcTiCodfrO6srJi1v/yXE7a+b8URRXg+X8ryT/jygBEOXBJ+WcBULr2P8Mqx+f18dbTfyDpH6cz3bOdrQvuZuY3/0NMckYgwhwQu00oTTyRSe0b8HW2DKusysp9rL33Qk7Z8n2qI3Lp/Py7zLrg66Nyzew3c+FyGk0MzZuHl2AZY3jvv0/j+/0JLGl/h0+mfIXc294nLmsGAOPnWwlw0YfPDzdkpVQAaIKllDouVe/4EIDU6cOfYLg3u91OqTOX2KYdASuzoqyI7b88nRNKHmRD/KeIu/kjcvIDM1/PQNUkL2SyayueztYhl+FydbLyj99gxsuXEEEXu899jKU33o8jLCKAkR6diFCatIzcjs14h3gTb3w+Vj77B2L/vIwC1zo+mfUdZn37NVLScwIb7ADMLlhIhUlGdr065DL2lRWz9p7zWb7luzRGZNF5wzvMuuAbo5qM7OeYdT5heChZ8+KQ9jfG8M5Lj+F48ETmdXzIhmnfYMpt75GcPT3AkR5ddkosn4TNZ1z1yiH3+auur+eNX93AKR99Hq89gurLXmLOVT87aLLqCTMWUy2pRBYGplZWKTU8w06wRORrIrJDRLaKyC97Lf+eiBSKyE4ROXu4x1FKqUDylK2jzUQyceqcgJfdFD+DCe7d+DzDHwnt4/88QuTDpzKpayfr5v2Ehbc8TVyARwocCMf0TxMh3RSuGtpN765PPmDfL5dyUuUjbEo+h+ibPyZv6eg0O+tL9KyzceJh96qXBr1v1b4S1t1zHidt+i514Vk0X/smcz57O2Kzj0CkRxcR5mBr4nImtazG01Y/qH19Xh/vPfN7ov+8jDmda/hk+jfJvW0lSRMCMzfcUOQvPYt6E4tr8+A/a/sqK3j/nss4be1X6HQmUP8/rzLvf+5G7CPcr+8IOicuJ8HXSEvR4EautGqtnsF9/wmc2fosW7MuZ/xtH5M5q48vV0Qoz/o0c7rWUbGvNECRK6WGali/cUTkdGAFMMcY0yUi4/zLZwJXALOADOANEZlmjPEON+DjVWeni6bGGlqbGuhoacDd3oRxNeN1teLtduP1esHnwYYXAby2MHBE4oiIwhkRjTMmGWf8eJLGZZKWnITDrpWX6viW2LiZ4vCpzHYGbhLb/WTiiUTXP0vJ9lVMzD95SGW0NtWz469fZlHzfyl0TCHq8r+wYASSwYHKX3YuTe/F4Nr0Apw+8CZw3e4uPn70hywq+TPNEsuWU/7I/OWBnw9qsOaceC6N78Xi/uRpOP1/BrSP8flY9cIfmfHJT8g3XayffgvzLvtBUG/e94te+Dmcb/yLne/+k7zzvjagfUqKi6h+/CZO6fqIwvAZxFz+R+ZMDt5nbL+EmEjejDyBpXXvY9wdSFjUUffx+Qzv//uvzFx/FyfSwpYpX2DWFT8Z0REPB2riiZfQtfunVKz8O3FTB1ZjXlNby9a/38zprS9RaU+n8sJnmTXnyKNRZpx0LY7H/0bhO4+RceX3AhG6UmqIhvtX4cvAz40xXQDGmBr/8hXAE/7le0WkEFgMfDTM4x2TmhobqC7dSXt1Ee76UnytVdjbqwnvrCG2u55EXwNJ0kokkB6A43WYcPbZkqkPy6Q1agKe+IlEpE0lZcIssifnERUxus11lBpt3W4XE7v3sC798hEpP3PuGbAe6re8NaQEa+tHr5D0368x39SxKvvzLLzmZwGdPHgooiIi+CTuJGY1vo+3uwv7AAbW2L15Deb5L3Oit5C18Wcw7drfM3uEhpIfrMjICD5O/BSLm16mvbGa6MQjx1VSXEj141/jhK4P2eWcTvRlf2T+1LmjE+wALFhyKnvfyMC+5Sk4SoLl8Xh5/+n7mLf9HtLEzSczv03BJd8NiURxP1NwOdFrXmPvu4+Se+aNR9y2rKyYff/8Kqd2vk9x2GR8lz7F7LzATb0wXDNys3kvbAnzS1/EdN2DhMf0u63PZ3jvlSfI+/j7nGoa2DzxKmZe+Uvs4UcfMCU9bwEljhzGFT2Nz/sdbPpFqlJBM9zfptOAk0Xkp4ALuNUY8zGQCfQeM7bcv+y41dTUQGXRZtrLt+Ct3Y2juYTYznJSPJUk0UpCr227jZ0GWwKtjmTao7NoipxHYXQatqhknNEJhMckEhGTgDM6kbDoOMLDIggPc2CzOzFixwCm24XH3UFneyud7W10tdbhaammq6kKT0s1zrYKEjvLmd64mahGFxQDq6HLONhjS6c+Moeu+Mk40qYTnz2LjCn5xMePzqhLSo20km1rmCIewiYsHJHys7JzKCaD8PIPB7Wfq7ODDX//NksqHqPSlsbu855m6aIzRiTGoXDkX0Tch6+y9Z0nmHXmtf1u5+psZ+2jd7Co/BHaJYoNS+9j4Tn9bx8sKad/hYjnnmfdi79iwbW/6HObbncXq5/4GXOL/sB48bJh+reYc+ntIz+U/CCFOx3syrqEs8vvp2rzW4zPX97ndls3fAgv38rpnq0URs4i8Yo/MScnsCNpBsKJn1pB4Zo7iV59Hyy/AfpI/jpdXXz45L0s2PM75tPFpryvkX/ZHYgjLAgR909E6Frw/4hddTWFr9zHlItu73O7Xbt2UPvMtzitayXl9glUXvRX8vNPHdSxmmddTcEnP2b9qteZv0x7ZygVLEf9CyEibwDj+1j1ff/+ScBSYBHwlIgMatIPEbkRuBFgwoQJg9k1JLm7XJTuWEtD4Vq81duJai5kXFcx6dT1JFHdxk61LZWmsHSK4k+nMCGH8HGTiU6bRFLGZBJTxpNmsxOI73n7/57Mzxi6W6qpLt5OY9lW3FU7CWsqIqOjiLT2D3BU+mCjtWk1ydSET6QjbhKSOo3YzJmMnzKHxHHZQekIHUp8Xi9enxevx4PHa/3v9XqsZV4PxucD48P4vIjPizEGfF6EA52ejREQwXDgZ2lE/Mv3LxHEJgg2RMDsfy02BOsPuYhVjogA+5/beq078FzEZq23CYIgNpv/f/8xbNLrmIL4QxER///4jzO2NOyyvv9JnzkyA0WICPsSFlDQ9CZejwf7AG7Gi7asgWdv5ATfXtYkX8is6+8nMzZhROIbqoLTLqHswzuJXH0fZvmVfdZ4bHz3BZLf+S4nmQo2JJzB5KvuZ17q6I1CNxgz5yxh9SvLKNj7V6qKr2V8zoF+R8bn4+M3nyb5o59wkq+EzdFLyLjiPuZNGP2BEgZq3sW3UH3fo3S/cAueKe/jiDwwWXN5yW6Knv0xy5r+TZtE88n8n1Bw/leC1m/saKLCnRTl38LZm7/Jjqd+yPTP/axnncfj4ePXHydlzb18yhSzK3oeSZ/9LQW5wW/e2J/TzzyfVR/PJ3/jfbQsuIi47AOftYqKcrY//0tOqH6CCWLYmncTMy/94ZCaN04/+0baPvk/3B/8ATTBGjBftxtXZytd7S24O9twd7bR3dmK191Od5eb7u4uPB43Hrcbn8eN+LrB6wFfNzZfN8b4MMZgDPgMGH+5+/9W7v+bbP3dtGFsdow4wGbH2J3gfy52B9ic2BwOxOZA7E7Ebn2BLnYnNrsT7A7sDmuZze7AZrdjszt7ljnsDmwO639xOHA4nNjtDhx2O3abYLcJtjH6t3ssEWPM0bfqb2eRV4FfGGPe9r8uwkq2vgBgjPmZf/l/gTuNMUdsIrhw4UKzdu3aIccz2rweD8XbPqZu54dQuZGk5m1M9BQTJh4AXMZJhSObpuhJeJKnEZExk4SJ+aRNnE54eOg3w/O6XVSXbKd272a6Krdjaygkvn0vGd1lRIurZ7tWoqhyZtMUOZHu6PHYY1MJjx+PMy6N8IQ0ouMSiYlLICYmHnGEByQZMz4fbncnXa5O3K4Ours68bg66HZ34unqxOvuxOt24XV34uvuxNftwux/eFzg6UI8LsTjAl834u1CvN2Iz43N243N58ZmurH7PNiNG7vx4Nz/P904jQcn1vMwOX66FvqMWDWkiP+BPyE88NyHHLZs/7b0s9/+BLL3J0M4+HfToetMH9sdaR96rYswbtolioQ7ShDbyDSjWf+fvzB/zS1sPfsJZp1wbr/bdbu7WPv4Xczf8yfaJIp9p/ySghDoo9Sflc/+npM2fY91U77Ogqt+DFid8bevX0nX6z9mnms1+2Q8jaf/nNmnXBzkaI+udO9O4h5ZTqctippldxGTnEnVztWk7H6KPO9uqmQc1Sf+iDlnXDkmvkh69+V/ctKar1ASNoXG/M/T3dWJFL/H3Lb3sWHYnn4RU674OVEJ44Id6lG5u7189H+f5VTXm2xKvRB3xiJcdSVkVrxKrimnypZGy8l3MO20sXFuNm/dTMZTn0Zswt6pn8dti8RX9jFz294lWrrYmrCc7MvvIS59yrCOs+Ghr5Bf/jh7LnuLabPmBSj60Odxu2iq3UdL7T7am2robKnH296A6WzE1tWMo6sJp7uFcE8zkd5WIn3thBsXkcZ1XPwd9xrBiw0vdjzY8WHree0T///+v8s9X+BCz5e+hsOvMSO91hkO/gu8/5o0B/7aH3onYHqe+0sxvY928PZrJR/HZ//MmTNDo5n5fiKyzhhzWHOY4SZYXwIyjDF3iMg04E1gAjAT+CdWv6sM//KpRxvkItQTLHeXiz2bVtK4/V2iKleT27mZODoAaCGa0vCptCXNwpk9n7RpS8jImRFyzUgCwfh8VFcUU71nE+3l26BuNzFte0hzl5FkmnAe4RdVt7HTKRG4ceLzX9QGGz6x4cN6ANjN/l8B1iVvM17/cy8O4yVchjc6m88ILsJw48AtYXhw4BEnHnHiFQdeCcNrc+ATJz5bGD67E2NzYuxhGFsYPnsYxubEZ3OCzWl98yQ2xGa3vhHueW7zr3NYtVNit2qlxO6vrbKx/5cZ5kA6Aof80vH/jzHsv2bN/u2NP9kwxvp15V+OOeT5Yct8/nKslMgqxGetPmQfwX/cvsrzx3Dgt6uVZvW9rXUMeh3D+iUrPe/JyMG/qK1fwPufH1ybd8Ahv/ilv3UHnodNXsb8c647/MMRIO2tzXDvVLYlncGib/yzz212bViJ7aWvMcW7hw0xp5B7zYMkjAvt1tQ+r4+P/+9ilnS8w6bIJbiixpPQuIVpviJaiGbX5OspuPR2wiJHZ5LdQNi0+i1SX/ki6dT1LCu3ZVE16wvMu/ArA+pvFkre+/cjzFj3I1JpAqCROPamnUX2+d8hNXtacIMbpObWDtY9/DVOanyOMPHiM0Jh+Ay65t3ArDOuxeYMreaAR7Nx/WrCXrqJmb7dgHXvsDflNDLOvZXUyYGZk6+1fh/2++exOXIJi297cczXVHjcXdRVldBUuYf22hK6G8qhrQZHZy2RXXXEeBpI8DUST1u/ZXSYcFoklnZbDJ32OFzOOLzOGIwzGuOMwjijICwawqKxhUUh4THYwmNwhEcRFhaBMyyMsLBwwsPDcYSFY3eE+WuUwrA5rRoimwg2Eew2sPl/5D4DPp8PX0/tlsHn8+LzejHebnyebozPY/3v9eDzdePr9uD1duPzuPF5Pfi8Hoz3wHOf16o9s5Z7MD4PxufFeD3g8+DzecFrlYvP639Y27B/mbGeS6/XYrz+ljbWvYTpdb9x6JeXBy3rvY3/sybm4L/gRnp9odrrS9jef8/3b7O/5U1PQudfXh05iYmf/hYFWQmD/xCNoJFKsMKAvwBzATdWH6y3/Ou+D9wAeICbjTFHnWUvFBOsuooS9nz0HI49bzCtbS0x0glAiS2LqoT52HNOJGP2qaTnTB+xb8LHEp/XR1NDDQ21FXQ1VeFuqaG7owVPZyuerjbs3W3YPR3YvF3+i91rNZszVnplx4cR8Sdfdnw2q1+ZT+zY7A6wOawqdEdEz0Oc4dgckdjCIrCFRWJzRmAPi8QRFoEjLBp7eCSO8AjCIyJxhkURFhlNeFgYDrttzP/hUaFt9f3XMq/uJequ/5CMnLye5fU1Fex+6gcsrH2OJomj7MSfMO+sq4MY6eC4XC4+fvSHTN73PBGmkxpnNh1TzmPq2V8iNiEl2OENSWdHB4VrX8fd2ca4nJlkT5s7JmpF+tPd7aZ01ydERMWRMWHSQXMmjUWNjQ20N9WSmJRKdBCmKQgkYwxVFSU4xZCcljUi52bj329j7p4/snLZI5x0ZmjXJHu91pe2jcWbaa/chbexBEfbPmJdlSR215BiGrDLwfeqHSacBlsirY4kOsKS6Y5IwRs9DltMGmHx44lKHEdsYiqxCSlEx6eM+lx76vgxIglWoIVagrXq8f9l6U6r43M1yRQnLcM57VNMnHcGyWlZQY5OKRXqqssLiXloGZWOTDyf/hU+dyfNG19gdtXzROFiXeoKpl91L3EJqcEOVSl1DPG62qj+5SLE58Z500ekpAa3SagxhvrWDkqLttFcugVP9U4imwtJ7iwmy1tOrP/LawC3sVNrS6HJmUZHZAae2ExsidlEJE8gbvwkUjJyiI3TQbdUaNAEawj2bFlN9boXSFuwgtyZi7SGSik1aJvfeZrct7/aU/vtMTY2xZ1Kyvl3MCEvME2ClFLqUHs3vkv2cxexNayAqbe8TFTUUYe9GjZjDLWNDVTu3kxT2VZ8NTuJbCkixVVCtqkk3N9HHaBekqiNmEh77CRMyjQi02eQNHEW4zJzsdtDc/AVpQ6lCZZSSgVJU20FhWv+Q0RkDJn5p5KYGogZ7ZRS6sg2/edBCtZ8h83OAlKve4zxmYEZrdkYQ231PqqKNtNatgVTt4uYliJS3aVkUtuznReh2p5BU3QunsQpRKTPIDk3n6QJM5FIrYVSY58mWEoppZRSx5lPXv4j09b8gC7C2JRzPZPP+n9kZmYPaN9ut4vK4h3Ul2yls2o3tvrdxLXvJb27lERae7brJIxKRzatMbl4k6cRlTGT1EmzScqagTi1/5M6dmmCpZRSSil1HNq3cz2Nz9/G7M6P6TZ2ih051MdMxxeTBuGxYHz4PG4c7mYcHbWEd9WT3F1Jmq/moAEmGomjOiyb1thJkJJHdOZM0iYVkJQxKWTnVFNqJGmCpZRSSil1HKvetZbSlf8kqmYD6a4iEkwLtl4J1P7R+docSbRHpuOKzcE5bioJWdNJnzST2MTQmoNIqWDrL8E69iZpUkoppZRSh0mbtpC0aQfuBY3PS2d7KzaHnTBnOFGOMKKCGJ9SxwpNsJRSSimljkNisxMZmxDsMJQ65ui440oppZRSSikVIJpgKaWUUkoppVSAaIKllFJKKaWUUgESUqMIikgtUBLsOA6RAtQFOwg1avR8Hz/0XB8/9FwfX/R8Hz/0XB9fQvF8TzTGpB66MKQSrFAkImv7Gn5RHZv0fB8/9FwfP/RcH1/0fB8/9FwfX8bS+dYmgkoppZRSSikVIJpgKaWUUkoppVSAaIJ1dH8KdgBqVOn5Pn7ouT5+6Lk+vuj5Pn7ouT6+jJnzrX2wlFJKKaWUUipAtAZLKaWUUkoppQJEEyyllFJKKaWUChBNsI5ARM4RkZ0iUigi3w12PCpwRCRbRN4WkW0islVEvuFfniQir4vIbv//icGOVQWGiNhFZIOIvOR/nSsiq/3X95MiEhbsGFVgiEiCiDwtIjtEZLuInKDX9rFJRG7x/w7fIiKPi0iEXtvHDhH5i4jUiMiWXsv6vJbFcp//vG8SkfnBi1wNVj/n+h7/7/FNIvKciCT0Wvc9/7neKSJnByXoI9AEqx8iYgd+B5wLzAQ+JyIzgxuVCiAP8C1jzExgKXCT//x+F3jTGDMVeNP/Wh0bvgFs7/X6F8CvjTFTgEbg80GJSo2E3wKvGmOmA3Owzrte28cYEckEvg4sNMbMBuzAFei1fSx5BDjnkGX9XcvnAlP9jxuBP4xSjCowHuHwc/06MNsYUwDsAr4H4L9fuwKY5d/n9/779pChCVb/FgOFxpg9xhg38ASwIsgxqQAxxlQaY9b7n7di3YBlYp3jv/k3+xtwUVACVAElIlnAecCf/a8FWA487d9Ez/UxQkTigVOAhwGMMW5jTBN6bR+rHECkiDiAKKASvbaPGcaY94CGQxb3dy2vAP5uLKuABBFJH5VA1bD1da6NMa8ZYzz+l6uALP/zFcATxpguY8xeoBDrvj1kaILVv0ygrNfrcv8ydYwRkRxgHrAaSDPGVPpXVQFpwYpLBdRvgNsAn/91MtDU6xe3Xt/HjlygFvirv0non0UkGr22jznGmH3AvUApVmLVDKxDr+1jXX/Xst63HdtuAF7xPw/5c60JljquiUgM8AxwszGmpfc6Y81hoPMYjHEicj5QY4xZF+xY1KhwAPOBPxhj5gHtHNIcUK/tY4O/780KrKQ6A4jm8CZG6him1/LxQUS+j9W147FgxzJQmmD1bx+Q3et1ln+ZOkaIiBMruXrMGPOsf3H1/iYF/v9rghWfCphlwIUiUozV1Hc5Vh+dBH+zItDr+1hSDpQbY1b7Xz+NlXDptX3sOQPYa4ypNcZ0A89iXe96bR/b+ruW9b7tGCQi1wHnA1eaA5P3hvy51gSrfx8DU/2jEYVhdaZ7McgxqQDx98F5GNhujPlVr1UvAtf6n18LvDDasanAMsZ8zxiTZYzJwbqO3zLGXAm8DVzq30zP9THCGFMFlIlInn/Rp4Bt6LV9LCoFlopIlP93+v5zrdf2sa2/a/lF4Br/aIJLgeZeTQnVGCQi52A177/QGNPRa9WLwBUiEi4iuVgDm6wJRoz9kQPJoDqUiHwaq++GHfiLMeanwY1IBYqInAS8D2zmQL+c27H6YT0FTABKgMuMMYd2sFVjlIicBtxqjDlfRCZh1WglARuAq4wxXUEMTwWIiMzFGtAkDNgDXI/1haJe28cYEbkLuByr+dAG4AtYfTH02j4GiMjjwGlAClAN/Ah4nj6uZX+S/QBWM9EO4HpjzNoghK2GoJ9z/T0gHKj3b7bKGPMl//bfx+qX5cHq5vHKoWUGkyZYSimllFJKKRUg2kRQKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQDTBUkoppZRSSqkA0QRLKaWUUkoppQJEEyyllFJKKaWUChBNsJRSSimllFIqQP4/WZx/F1FkhLUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADrw0lEQVR4nOzdd3hc1Zn48e87Vb3L6pbk3jFgjCmmhVASwCEkGJZm2IQN6WyAdHDYsJsfYUMCJCEkbEiAGNN7Cc200GwwLtjGTbZky+pdmn5+f9yRPLYlS7ZGGknzfp5nHs2999xz37mjke4759xzxBiDUkoppZRSSqnBs8U6AKWUUkoppZQaKzTBUkoppZRSSqko0QRLKaWUUkoppaJEEyyllFJKKaWUihJNsJRSSimllFIqSjTBUkoppZRSSqko0QRLKaVGCBEpExEjIo5YxzLWicgSEXk71nGMNCKyUEQ2xToOpZQazTTBUkopNaqJyFIR8YtIe8TjhljHNRoZY94yxkyNdr0iYheRX4rIbhFpE5GPRSQj2sdRSqmRQL8lVUqpKBERhzEmEOs44tRyY8ylsQ5iqIyB361fAMcDxwE7gZmAJ6YRKaXUENEWLKWUGgQRqRCRH4rIGqBDRBwiskBE/iUizSLyiYicElF+hYj8j4h8ICKtIvKUiGT1UfeVIrIh/I3/NhH5j/22LxKR1eF6torIWeH16SJyr4hUi8iucMuBvZ/XMVFEXhORBhGpF5EHu1sYwtsaReSo8HKhiNR1vy4ROU9E1odf7woRmb7f+blORNaISIuILBeRhEM/04dORH4UPi9tIvKpiJzfRzkRkdtFpDZ8LteKyKzwNreI3CYiO0WkRkTuFpHEAR7/vnD5l8MxvCEipRHbfycileFjrhKRhRHblorIoyLygIi0AktEZL6IvBs+z9UicpeIuCL2MSLyTRHZHD7ef4Xfu3+Fj/FwZPk+Yj5FRKoG8voGSkQyge8DXzfG7DCWdcYYTbCUUmOSJlhKKTV4FwNfBDKAPOA54JdAFnAd8JiI5EaUvxy4CigAAsAdfdRbC5wDpAFXArdHJDnzgb8D14ePexJQEd7vvnC9k4AjgTOAr/XzGgT4H6AQmA6UAEsBjDFbgR8CD4hIEvBX4G/GmBUiMgVYhnUBnQs8Dzyz34X8hcBZQDkwB1jSawAiJ4aTh74eJ/bzGva3FVgIpGO1oDwgIgW9lDsD6/xNCZe9EGgIb/tVeP1crPNZBNx4CDFcAvwXkAOsBh6M2PZhuN4s4B/AI/sln4uAR7He3weBIHBtuK7jgM8B39zveGcCRwMLgBuAe4BLsd7PWVi/q4ctnCj39f78oY/dZmP9Pn5FRPaIyGci8q3BxKGUUiOaMUYf+tCHPvRxmA+spOaqiOUfAvfvV+Yl4Irw8xXAryK2zQB8gB0oAwzg6ONYTwLfCz//E3B7L2XyAC+QGLHuYuD1Q3xdXwI+3m/d08BaYA3gDq/7OfBwRBkbsAs4JeL8XBqx/Vbg7ii/B0vD57A54lHYS7nVwKLw8yXA2+HnpwGfYSUltojyAnQAEyPWHQdsH2Bc9wEPRSynYCVJJX2UbwKOiHhNb/ZT//eBJyKWDXBCxPIq4IcRy/8L/LafOk8BqqL8/vxbOLZ7gUSsJLsO+Hw0j6MPfehDHyPloS1YSik1eJURz0uBr0Z+sw+ciNVa1Vv5HYATq1ViHyJytoi8F+6e1wx8IaJcCVYLzf5Kw/VVRxz/T8C4g70AEckTkYfCXQpbgQd6ienPWK0gdxpjvOF1heHXAIAxJhR+fUUR++2JeN6JlWhE28PGmIyIx24RuVysLpTd52EWvZxnY8xrwF3A74FaEblHRNKwWuSSgFURdbwYXj9QPe+1MaYdaMQ6Z4S7Tm4Id51sxmo9y+lt33D5KSLybLgVqBX4715eT03E865elofi3PenK/zzZmNMlzFmDfAQ1u+zUkqNOZpgKaXU4JmI55VYLViRF/vJxphfRZQpiXg+HvAD9ZEViogbeAy4DcgzxmRgdb+TiONM7CWWSqwWrJyI46cZY2b28xr+O/w6Zhtj0rC6lXUfCxFJAX6L1QqxVPbeN7YbK6nrLifh17ern+MdQKwhwtsP8ljYfy09dZViJYTfBrLD529d5GuKZIy5wxhzNFaL4hSsrpf1WMnBzIhzmW6MOZQkpee9Dp/DLGB3+LXcgNUdMTMcX8t+8UX+XgH8EdgITA6/Rz/p6/UMFbHutevr/bm7j93WhH9Gvp79X5tSSo0ZmmAppVR0PQCcKyJnijU0dUJ44IDiiDKXisiM8P1MNwOPGmOC+9XjAtxYXakCInI21r1C3e4FrhSRz4mITUSKRGSaMaYa+CfwvyKSFt42UURO7ifuVKAdaBGRIqwEI9LvgJXGmK9h3WPWfTH9MPDFcBxO4AdYCd6/+jtR+zPWEOEpB3m8dQjVJWNdxNeBNWAIVgvWAUTkGBE5Nhx/B9bodqFwa9yfse59GxcuWyQiZ0bsayRiEJNefCF8b5kL616s94wxlVjnOxCOzyEiN2Lda3cwqUAr0C4i04Br+ikfdcaYmQd5f77Rxz5bgbeAn4o1aMh04CLg2eGMXSmlhosmWEopFUXhi+dFWK0LdVgtStez79/b+7Huz9kDJADf7aWetvD6h7Huzfk3rHugurd/QHjgC6yWjzfY25J0OVaC9ml430fZt4tib34BHBWu6zng8e4NIrIIa5CK7gv6/wSOEpFLjDGbsFq77sRq8TkXONcY4+vneEPKGPMp1j1H72J1k5sNvNNH8TSsRKoJq7tjA/Dr8LYfAluA98Ld8l4BpgKISAnQhnVfWl/+AdyE1TXwaKxzBdZ9eS9i3fu1Ayupq+ytggjXYf0etIXjXd5P+ZHkYqzfzwas36+fG2NejW1ISik1NMQYbaVXSqnhIiIrgAeMMX+JdSxqcETkUqzugz/uY/t9WANG/GxYA1NKKRVTOtGwUkopdRiMMQ/EOgallFIjj3YRVEqpOCHWpLeHMjiBGoNE5Cd9/B68EOvYlFJqLNAugkoppZRSSikVJdqCpZRSSimllFJRMqLuwcrJyTFlZWWxDkMppZRSSimlDmrVqlX1xpgDJp8fUQlWWVkZK1eujHUYSimllFJKKXVQIrKjt/XaRVAppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKRtQ9WL3x+/1UVVXh8XhiHYoaARISEiguLsbpdMY6FDUG7W7q5LF7f8Vxx53EvBNOj3U4SimllBqFRnyCVVVVRWpqKmVlZYhIrMNRMWSMoaGhgaqqKsrLy2MdjhqDNr9yL99p/x27X30YTtgY63CUUkopNQqN+C6CHo+H7OxsTa4UIkJ2dra2ZqohY9vzCQDjgjW0NDfGOBqllFJKjUYjPsECNLlSPfR3QQ0lh8dKqhwSYtea12McjVJKKaVGo1GRYCml1HBw+5rYbSsAoGXn2hhHo5RSSqnRSBOsARARfvCDH/Qs33bbbSxdujR2AUU45ZRTDjo585e+9CUWLFiwz7qlS5dSVFTE3LlzmTVrFk8//fRQh6nUqJAUaKY5sZQGMpDaDbEORymllFKjkCZYA+B2u3n88cepr6+Par3GGEKhUFTrjNTc3MyqVatoaWlh27Zt+2y79tprWb16NY888ghXXXXVkMah1GiRFmohkJhFTUI5mR1bYx2OUkoppUYhTbAGwOFwcPXVV3P77bcfsK2uro4LLriAY445hmOOOYZ33nkHsFqJbrvttp5ys2bNoqKigoqKCqZOncrll1/OrFmzqKys5Prrr2fWrFnMnj2b5cuXA7BixQpOOeUUvvKVrzBt2jQuueQSjDG9xnf//ff3tEZ98MEHPesff/xxzj33XC666CIeeuihXvedPn06Dodjn+TxRz/6ETNmzGDOnDlcd911AFRUVHDaaacxZ84cPve5z7Fz504AlixZwjXXXMOCBQuYMGECK1as4KqrrmL69OksWbKkp85rrrmGefPmMXPmTG666aYD4mhpaaG0tLQn0evo6KCkpAS/399r3EpFWzAYIotW/O5s2tMmUxLYSSgYjHVYSimllBplRvww7ZF+8cx6Pt3dGtU6ZxSmcdO5M/st961vfYs5c+Zwww037LP+e9/7Htdeey0nnngiO3fu5Mwzz2TDhoN3Ldq8eTN/+9vfWLBgAY899hirV6/mk08+ob6+nmOOOYaTTjoJgI8//pj169dTWFjICSecwDvvvMOJJ554QH2dnZ2sXr2aN998k6uuuop169YBsGzZMm688Uby8vK44IIL+MlPfnLAvu+//z42m43c3FwAGhoaeOKJJ9i4cSMiQnNzMwDf+c53uOKKK7jiiiv4v//7P7773e/y5JNPAtDU1MS7777L008/zXnnncc777zDX/7yF4455hhWr17N3LlzueWWW8jKyiIYDPK5z32ONWvWMGfOnJ440tPTmTt3Lm+88Qannnoqzz77LGeeeabOd6WGjberjSTx43dnYsvMIKn2YXbv3Exh+bRYh6aUUkqpUURbsAYoLS2Nyy+/nDvuuGOf9a+88grf/va3mTt3Lueddx6tra20t7cftK7S0tKe+6LefvttLr74Yux2O3l5eZx88sl8+OGHAMyfP5/i4mJsNhtz586loqKi1/ouvvhiAE466SRaW1tpbm6mpqaGzZs3c+KJJzJlyhScTmdP4gVw++23M3fuXK677jqWL1/eMzpfeno6CQkJ/Pu//zuPP/44SUlJALz77rv827/9GwCXXXYZb7/9dk9d5557LiLC7NmzycvLY/bs2dhsNmbOnNkT88MPP8xRRx3FkUceyfr16/n0008PeB2LFy/uacF76KGHWLx48UHPo1LR5GuzRhAMujNIKbGS/4btq2MYkVJKKaVGo1HVgjWQlqah9P3vf5+jjjqKK6+8smddKBTivffeIyEhYZ+yDodjn/uaIuduSk5OHtDx3G53z3O73U4gEOi13P5Dl4sIDz/8ME1NTT0T8ra2trJs2TJuueUWwLoHq7v73/5xf/DBB7z66qs8+uij3HXXXbz22msDitNms+0Ts81mIxAIsH37dm677TY+/PBDMjMzWbJkSa9zWZ133nn85Cc/obGxkVWrVnHaaacd9LhKRZO3y/pixOZKIn/SXAA8uw/8IkAppZRS6mC0BesQZGVlceGFF3Lvvff2rDvjjDO48847e5ZXr14NQFlZGR999BEAH330Edu3b++1zoULF7J8+XKCwSB1dXW8+eabzJ8//5Di6m71efvtt0lPTyc9PZ1ly5bx4osv9tz3tWrVqj7vw4rU3t5OS0sLX/jCF7j99tv55BNr4tXjjz++Z/8HH3yQhQsXDji+1tZWkpOTSU9Pp6amhhdeeKHXcikpKRxzzDF873vf45xzzsFutw/4GEoNlt/bCVgJVmZWDo2kQeO2fvZSSimllNrXqGrBGgl+8IMfcNddd/Us33HHHT33ZwUCAU466STuvvtuLrjgAv7+978zc+ZMjj32WKZMmdJrfeeffz7vvvsuRxxxBCLCrbfeSn5+Phs3bhxwTAkJCRx55JH4/X7+7//+j4qKCnbs2LHP8Ozl5eWkp6fz/vvv91rHF77wBf7yl78gIixatAiPx4Mxht/85jcA3HnnnVx55ZX8+te/Jjc3l7/+9a8Dju+II47gyCOPZNq0aZSUlHDCCSf0bLvxxhuZN28e5513HmB1E/zqV7/KihUrBly/UtHg91qtqnZXAiJCnaOQxPadMY5KKaWUUqON9DUy3YArECkB/g7kAQa4xxjzOxFZCnwdqAsX/Ykx5vmD1TVv3jyz/5xOGzZsYPr06YOKUY0t+juhhsJn7z/PlBcu5uPTHuDIk85l5W++QlHrxxQs1eHalVJKKXUgEVlljJm3//potGAFgB8YYz4SkVRglYi8HN52uzHmtoPsq5RSI0Iw3ILlcCUCEEgvI6/lFTxdnSQkJsUyNKWUUkqNIoO+B8sYU22M+Sj8vA3YABQNtl6llBpOAZ91D5bTbSVYjtwJ2MRQs3NTLMNSSiml1CgT1UEuRKQMOBLovtHn2yKyRkT+T0Qy+9jnahFZKSIr6+rqeiuilFJDLuTrAsDhtlqrUvKt+yabqjTBUkoppdTARS3BEpEU4DHg+8aYVuCPwERgLlAN/G9v+xlj7jHGzDPGzOue7FYppYZbMJxgOROsBCu31Jpg2FOj92AppZRSauCikmCJiBMruXrQGPM4gDGmxhgTNMaEgD8Dhzb2uFJKDaOQ37oHy51gdRHMyi2kwyQgTTpUu1JKKaUGbtAJlliz3N4LbDDG/CZifUFEsfOBdYM9llJKDRUTbsFyJVgTgYvNxh5HAQk6VLtSSimlDkE0WrBOAC4DThOR1eHHF4BbRWStiKwBTgWujcKxYubJJ59ERA46P1VFRQWzZs2K2jGXLFnCo48+2uf273//+xQVFREKhXrW3XfffeTm5jJ37lxmzJjBn//856jFo9RYZgJWC1bkiIEtCSVkenfFKiSllFJKjULRGEXwbWOMGGPmGGPmhh/PG2MuM8bMDq8/zxhTHY2AY2XZsmWceOKJLFu2rNftgUBg0McIBoMDLhsKhXjiiScoKSnhjTfe2Gfb4sWLWb16NStWrOAnP/kJNTU1g45NqbHOBDwEjeB2uXvWedPGkx+sIRiFz7dSSiml4kNURxEcq9rb23n77be59957eeihh3rWr1ixgoULF3LeeecxY8YMwEq0LrnkEqZPn85XvvIVOjutoZ9fffVVjjzySGbPns1VV12F1+sFoKysjB/+8IccddRRPPLIIwcc+5VXXmHevHlMmTKFZ599dp9jz5w5k2uuuabPpG/cuHFMnDiRHTt29Ky74447mDFjBnPmzOGiiy4CoLGxkS996UvMmTOHBQsWsGbNGgCWLl3KFVdcwcKFCyktLeXxxx/nhhtuYPbs2Zx11ln4/X4Abr75Zo455hhmzZrF1Vdfzf6TV4dCIcrKymhubu5ZN3nyZE381IgiAQ8eXNjte/8s2rIm4JIA9bu3xzAypZRSSo0m0ZhoePi88CPYsza6debPhrN/ddAiTz31FGeddRZTpkwhOzubVatWcfTRRwPw0UcfsW7dOsrLy6moqGDTpk3ce++9nHDCCVx11VX84Q9/4Nvf/jZLlizh1VdfZcqUKVx++eX88Y9/5Pvf/z4A2dnZfPTRR70eu6Kigg8++ICtW7dy6qmnsmXLFhISEli2bBkXX3wxixYt4ic/+Ql+vx+n07nPvtu2bWPbtm1MmjSpZ92vfvUrtm/fjtvt7kl4brrpJo488kiefPJJXnvtNS6//HJWr14NwNatW3n99df59NNPOe6443jssce49dZbOf/883nuuef40pe+xLe//W1uvPFGAC677DKeffZZzj333J5j2mw2Fi1axBNPPMGVV17J+++/T2lpKXl5eQN+m5QaahLw4MNFcsS6pPxJsB7qd24kb/zkmMWmlFJKqdFDW7AGYNmyZT2tPRdddNE+LUbz58+nvLy8Z7mkpIQTTjgBgEsvvZS3336bTZs2UV5ezpQp1rw6V1xxBW+++WbPPosXL+7z2BdeeCE2m43JkyczYcIENm7ciM/n4/nnn+dLX/oSaWlpHHvssbz00ks9+yxfvpy5c+dy8cUX86c//YmsrKyebXPmzOGSSy7hgQcewOGw8uu3336byy67DIDTTjuNhoYGWltbATj77LNxOp3Mnj2bYDDIWWedBcDs2bOpqKgA4PXXX+fYY49l9uzZvPbaa6xfv/6A17F48WKWL18OwEMPPXTQ16xUTAS8eMW1z6qsYmuo9s6azbGISCmllFKj0OhqweqnpWkoNDY28tprr7F27VpEhGAwiIjw61//GoDk5OR9yluDKva93Jv96+ivvpdeeonm5mZmz54NQGdnJ4mJiZxzzjmAlczcddddvdb33HPP8eabb/LMM89wyy23sHbtwVsE3W7rfhSbzYbT6eyJx2azEQgE8Hg8fPOb32TlypWUlJSwdOlSPB7PAfUcd9xxbNmyhbq6Op588kl+9rOfHfS4Sg03e9CDf78EK694Aj5jJ9igXQSVUkopNTDagtWPRx99lMsuu4wdO3ZQUVFBZWUl5eXlvPXWW72W37lzJ++++y4A//jHPzjxxBOZOnUqFRUVbNmyBYD777+fk08+eUDHf+SRRwiFQmzdupVt27YxdepUli1bxl/+8hcqKiqoqKhg+/btvPzyyz33e/UlFApRWVnJqaeeyv/7f/+PlpYW2tvbWbhwIQ8++CBg3duVk5NDWlragOLrTqZycnJob2/vc9RDEeH888/nP//zP5k+fTrZ2dkDql+p4WILeg9IsBxOJ3tsebhad/Sxl1JKKaXUvjTB6seyZcs4//zz91l3wQUX9DmwxNSpU/n973/P9OnTaWpq4pprriEhIYG//vWvfPWrX2X27NnYbDa+8Y1vDOj448ePZ/78+Zx99tncfffdhEIhXnzxRb74xS/2lElOTubEE0/kmWee6bWOr33ta6xcuZJgMMill17K7NmzOfLII/nud79LRkYGS5cuZdWqVcyZM4cf/ehH/O1vfxvg2YGMjAy+/vWvM2vWLM4880yOOeaYnm133303d999d8/y4sWLeeCBB7R7oBqR7CEvgf0SLIAmdxHpXZUxiEgppZRSo5HsP+JbLM2bN8+sXLlyn3UbNmxg+vTpMYpIjUT6O6GGwvr/XggmxMyfvrPP+nfv+ndm1z9Hyk3VMIAuv0oppZSKDyKyyhgzb//12oKllFKA03gJ2twHrDeZ5aTQRUv97hhEpZRSSqnRRhMspZQCHCFfrwmWO88anr12x6fDHZJSSimlRqFRkWCNpG6MKrb0d0ENFWfIS9B+YIKVER6qvX23DtWulFJKqf6N+AQrISGBhoYGvbBWGGNoaGggISEh1qGoMchp/IR6SbAKS6cSMDYCdZpgKaWUUqp/I34erOLiYqqqqqirq4t1KGoESEhIoLi4ONZhqDHIhRfjODB5T0xMoFLG4WipGP6glFJKKTXqjPgEy+l0Ul5eHuswlFJjnMv4Mb20YAE0uItJ69w5zBEppZRSajQa8V0ElVJqOLjx9dqCBdCZUkZeYBdoV2WllFJK9UMTLKVU3Av4fTglCH0kWCbLGqq9tb56mCNTSiml1Ggz5AmWiJwlIptEZIuI/Gioj6eUUofK6+kEQJy9J1iJ4aHaa3asH7aYlFJKKTU6DWmCJSJ24PfA2cAM4GIRmTGUx1RKqUPl7Tp4gpU93hqqvXXXpmGLSSmllFKj01C3YM0HthhjthljfMBDwKIhPqZSSh0Sn9dKsGzOxF6354eHavfXbR3OsJRSSik1Cg11glUEVEYsV4XX9RCRq0VkpYis1KHYlVKx4At3EbS5em/BcrsT2GMbh7Nl+3CGpZRSSqlRKOaDXBhj7jHGzDPGzMvNzY11OEqpONSTYPXRggXWUO3pOlS7Ukoppfox1AnWLqAkYrk4vE4ppUYMv7cLALur7wSrK6WUvOBuTCg0XGEppZRSahQa6gTrQ2CyiJSLiAu4CHh6iI+plFKHJBC+B8vpTuq7UNZEUumisW73MEWllFJKqdFoSBMsY0wA+DbwErABeNgYo+McK6VGlEC4BcuZ0HcLVmL+FABqd2wYlpiUUkopNTo5hvoAxpjngeeH+jhKKXW4Aj4rwXK5k/ss0z1Ue9uujcDnhyMspZRSSo1CMR/kQimlYi3Y3UXwIC1Y+aVT8Rk7pu6z4QpLKaWUUqOQJlhKqbhnfB0AuBJT+izjcLqosheT2Lx5uMJSSiml1CikCZZSKu6FfFYLljsp9aDlGhLLye7SubCUUkop1TdNsJRSKpxgJRykBQvAlzmZglAN3q724YhKKaWUUqOQJlhKKeXvJGQEx8GGaQdcBdOxiWH31rXDFJhSSimlRhtNsJRScc8W6KRL3CBy0HJZpXMAaKxYNxxhKaWUUmoU0gRLKRX3bIEuPCT0W65o0iwCxoZvz6fDEJVSSimlRiNNsJRScc8e6MQr7n7LJSQkssteiLtJRxJUSimlVO80wVJKxT17oAuv9N+CBdCYWEZ2p44kqJRSSqneaYKllIp7jmAXPtvAEixv5mSKQrvxeLqGOCqllFJKjUaaYCml4p4z5MFvSxxQWVf+DBwSYtcWHUlQKaWUUgfSBEspFfecIQ9++8ASrKzyIwBoqlg9hBEppZRSarTSBEspFfdcIQ/BASZYhZPm4jMOQrs/GeKolFJKKTUaaYKllIp7buPBOAfYRdDtpsJeSnLjhiGOSimllFKjkSZYSqm4l2A84EwacPnG1KkUeDaDMUMYlVJKKaVGo0ElWCLyaxHZKCJrROQJEckIry8TkS4RWR1+3B2VaJVSKsr8gSBJeBB3yoD3CebNJotWGvfsGMLIlFJKKTUaDbYF62VgljFmDvAZ8OOIbVuNMXPDj28M8jhKKTUk2tpacEgIk5A+4H3Syo8CYNfGD4YqLKWUUkqNUoNKsIwx/zTGBMKL7wHFgw9JKaWGT0dzPQC2xMwB7zN+2nwAOnd8NCQxKaWUUmr0iuY9WFcBL0Qsl4vIxyLyhogs7GsnEblaRFaKyMq6uroohqOUUv3ztDYC4EjJGvA+6ZlZVEoBrvr1QxWWUkoppUYpR38FROQVIL+XTT81xjwVLvNTIAA8GN5WDYw3xjSIyNHAkyIy0xjTun8lxph7gHsA5s2bp3eMK6WGlbfdSrCcyRmHtF9t0hTyOzYOQURKKaWUGs36TbCMMacfbLuILAHOAT5njDWkljHGC3jDz1eJyFZgCrBysAErpVQ0+TqsBMudOvAWLABfzkyKdrxBa3MDaRnZQxGaUkoppUahwY4ieBZwA3CeMaYzYn2uiNjDzycAk4FtgzmWUkoNhUBHMwCJqYeWJCWWzQOgct070Q5JKaWUUqPYYO/BugtIBV7ebzj2k4A1IrIaeBT4hjGmcZDHUkqpqAt1NQGQnJ5zSPuVzjkJgPat70Y9JqWUUkqNXv12ETwYY8ykPtY/Bjw2mLqVUmo4mK4WAFLSBj6KIEBmdi4VUkxCzcdDEZZSSimlRqlojiKolFKjTqiziTaSsDsO/fummrRZlHSux4RCQxCZUkoppUYjTbCUUnHN2VVLs+3QBrjoFiqcRxat1FR+FuWolFJKKTVaaYKllIpryd462l25h7Vv9rTjAdi97q1ohqSUUkqpUUwTLKVUXMsK1tGVOO6w9i2bfgydxk1gxwdRjkoppZRSo5UmWEqpuOX1+8kxTQRTCg9rf5fLxXbXZDKaPolyZEoppZQarTTBUkrFrfqa3TgliD3t8BIsgJbsuZT5tuDtao9iZEoppZQarTTBUkrFrZaaHQC4sooPuw73pIW4JEjF6jejFZZSSimlRjFNsJRScau9vhKA1NySw65jwpGfI2SE5o0rohSVUkoppUYzTbCUUnHL32glWBl5pYddR2Z2LtvsZaTs0YEulFJKKaUJllIqjpnWagLGRlrO4d+DBVCbdTQTPOsJ+DxRikwppZRSo5UmWEqpuOXo2EOjLROxOwZVj3PCQhLFR8W6d6MUmVJKKaVGK02wlFJxK9FTS7Pj8CYZjjT+yNMBaFz/2qDrUkoppdTopgmWUipupftr6XQf3iTDkfIKiqmQYhJ3vx+FqJRSSik1mmmCpZSKS8YYskMN+JPzo1JfdcZRlHWtIRQIRKU+pZRSSo1OmmAppeJSS0sTqdKFSS2ISn1SdgKpdLFjo44mqJRSSsWzQSVYIrJURHaJyOrw4wsR234sIltEZJOInDn4UJVSKnoa91iTDDsziqJS3/ijPg9AzScvR6U+pZRSSo1Ogxs6y3K7Mea2yBUiMgO4CJgJFAKviMgUY0wwCsdTSqlBa62xEqyk7MOfZDhSYclEKmzFJFW+GZX6lFJKKTU6DVUXwUXAQ8YYrzFmO7AFmD9Ex1JKqUPmbawCIC1vfNTqrM45gSldn+DpbI9anUoppZQaXaKRYH1bRNaIyP+JSGZ4XRFQGVGmKrzuACJytYisFJGVdXV1UQhHKaX6F2jeDUB2QVnU6kyY9nkSxM/WlS9FrU6llFJKjS79Jlgi8oqIrOvlsQj4IzARmAtUA/97qAEYY+4xxswzxszLzR38fDRKKTUQtvZqWkjBlZgStTqnzD8Lj3HSse7FqNWplFJKqdGl33uwjDGnD6QiEfkz8Gx4cRcQeWNDcXidUkqNCO6uGpps2aRHsc7klFQ+Tjqa8tpXMMEAYo/Gba5KKaWUGk0GO4pg5PjG5wPrws+fBi4SEbeIlAOTAR27WCk1YqR4a2lzRb/V3DP9AnJpZNsq7SaolFJKxaPB3oN1q4isFZE1wKnAtQDGmPXAw8CnwIvAt3QEQaXUSJIZrMeTmBf1emecvJh2k0Dzew9GvW6llFJKjXyD6r9ijLnsINtuAW4ZTP1KKTUUfD4fWaaZrSnRmWQ4Unp6Oh9mnsqMhldpbaghLTv6SZxSSimlRq6hGqZdKaVGrIY9O7GLwZ5eOCT1Z53+A5LFw6cP/Wyf9R5PF/968BbWvf3MkBxXKaWUUrGnd2CPEsYY2js7aa6rxtPejKejFW9nC/7ONoKeNkzAQygUJBQCmxhsIojNTsiZhLhTSE7NICU1g9TcYjJzi0hwu2L9kpSKmZaaHRQA7qziIal/4qxj+GDF+cyvfYQPlk+g5PgL2bnyBQrW/J7jzW62bSuHE88dkmMrpZRSKrY0wRoBPJ4u9lRto3n3NrwNOzDNldg6anB0NZDgayQ50ER6qJkM6SA1CscLGqGGDJrs2TS5CuhKLUdyJpFSNJ3c8tmUFORjt0kUjqTUyNRRb03Tl5IbvUmG9zfryjtZe0cl8zf8Cjb8igJgp62YFpNCUlAnIlZKKaXGKk2whoExhsaGOqq3raNj9yZM/WZcrdtJ6qom019DrmmiTMw++zSTQostkw5HJg0pU6hNzIbkXOwpuTiSMnAmpeFOTiMh/NPpTsbptGO32QgZQ9BA0B8g5G3D09FGW2sTnW1N+Jr3QNtuHB01uLtqKPNuJbfuHRx1IdhgHbvWZFDtHE9b6iRM7lRSS2ZRMGku4/KLENHES41+viZr1ois/LIhO0ZSciqzb3iZNW8/RVfNZ2RNOJpJR53Ke/93A8dW3ovP04UrIXHIjq+UUkqp2NAEK8oaanexe+OHdOxcja1+EykdO8jzV5FNC9nhMkEj7LGNo8lZwI6MBVSkFeHMGk/yuHLS8svJLCgnIzGZjCjGlX+wjQEfrdWfUbt9HZ27N2LqPiOlbQuTmp4nuelx+Ax4FZpIpdpZSnvaRCR3GqklsyicNJe0cSUQR4mXMYZgMEgw6CcYCBAI+DHBYPhngEAwQCjgJxQMEgpZP4PhbaFQaNDH7z7VVrIr4WUbYotYFhsigiDhHQSxCULENhFEbBikJ3EWm+zdzyYIe8vSsx6rPgSx2cI/rbLGZh1fsOq2drOed8fQHaPsF0fk84gXOejz1au23XiNk/QhHoDCZrcx5+Tz91lnz5mIrcpQs3MTJVPmDunxx7pgIEB7ayPtLU10tTXi72jG52kn4O0k4O0i5OvE+D0Q8CCBLgh4kYAHCfowJgShIGKCiAkBISRkPRdCYAyIYGx2wAZiw4gNxI6x2ax1NjtG7NbnyGbH2JzWss0BdgdicyB2J2J3YLM7sHU/dzix2Z3WOocTu92B3eHC5nDgcDixO1zYHQ4cDpe17HTicDhxOl3Y7A6wO8HmCD/s4Z/d6+Ls1mpjrIe10Mtzs7dcb89jJgb/M2P2f7rv45r93gfTy9uy/yrTW6FDOOaQisk5jpfXKtbfzFHSw0oTrEHYU7mFXWvfwle5iqSmjRR6tpBLU08iVU8Gta4StmWdxNasiSQWTCVr/Axyx0+jyJ1AUUyjj+BwkVYyi7SSWfuuN4bmPRVUb1lNe9V6TN1GUtu2MrXhFdIbnoKNwMvQZhLZ7Sim3Z1HIGkcklqALa0AZ3o+iamZpKRnkZyWiTslA3dSGmKzH3aoJhQiEPDh83Ti93Th93Xh93QR8HUS8HkI+LoI+jwEfV0EfV2E/J7ww4vxezABDwR81gVX0IcEvUjQiy3oxRbyYQ95sYf8OMI/ncZnPfDjMn5c+HARwCFGPzzDKGQE65JIMBH/TCTiX+++zy026f0f8XHALlseRTG4GE0tnAKrobFygyZYEbxdbTTXVdPaUE1nUw3elhoCbXXQUYfD00iCrxFXoJ3EYBuJoQ6STSfJ4iEdBjxZtN/Y8eLCLw5C2AkhhMRGCBsh7NbvV3jZIOHfthC2cNJlM1ZJwWCVCmLDYDMh7ASxag3ikMF/kXK4QghB7ASxEcBBEFt42U5Q7OGIpeeTtPdzs+/y/p8twbD342QOKBf5U8Jl9l3uLtO9fm+93cv777N/bN3bbDFPjlS07H+pPDounVUsrAgeQftXH+KcOUMzOFW06TXiAAUDAbaueYfGDStwVa+kuH0d+TSSD/iMnUrHeCrS57N13ExSx8+lcNox5OQWkhPrwAdDhIyCcjIKyrHmkbaYUIg91VVUb11NZ9V6nI2fkdJeQbZnJ5mdH5Ne39FnlSEjeHEQEAdB7ARwEBDr0sQAey919l7MWBc0IRwmiBs/TjE4B/Gygkbw4sKHE7848YkLvzgJigu/uAjaXHgcaQRtLkI2FyG7GxN+4HBj7K7wt8XWN8dis4PNHv7p6Fkn9vA2uwObzWEtR7bOHA4TvgQxBmNC4edA+KLPhL/NNeF1GNNTvvsb3e4ye7/F7S5v9i1HRLnuegiFL7Ii6onYr7d6uo8RWUaIrHf/8lYd0v3cGAyhnufWRVd3Cxfs+y9ZIhal56mR/coAyZNOiMmXHMVTj4LnoWvnauDiGEQwzEIhOpr3UL+7gpaaHXgadhJs3oWjvZpETw3p/jqyTQNJeMkD9m9T9BgnzZJOmz0djz2VzoQyAq5UQq5UcKchCWnYkzJwJKXjSMrAkZiCOyEZd0IyrsREXAnJuBKScLmTcDqcg/rbMeCXHAzhD/jw+/0E/H78AR8Bv59gwE/Ab623WsCt7aGAtRzw+wkF/YSCAUJ+v9UCHrCWg8EABK2WcEKBcMub9dMWDPQ8FxNAQkFs3du614fX2UyQns+q7E1luhnZuxy5zfR81vZuM92r2L8ewcjeT+o+2+TA1K37b2Jk6tVzfJF9yx5wzMjX0b3e2s0cEFfk34LIunvX29YD1kWjjn6P0UuZQ/w3ss/fzYHG0dtx+z1O/zv0X0f/Ox28jtgk4D3/s4ZVrL5sGP7jehKKmZoXjZEIhocmWAexp3ILO959AueON5nYsYopWInDbhnHztQj2VY4j+xpJ1I6Yz4T3QlMjHG8w0VsNvKLxpNfNB4474DtrW2ttNZW0dG0m662ZjztzQQ6mxFvGzZfGwQ8hIJ+CPqxhQLWP32C2Izp+TbZ+hbZTkhs2MLJCjYHxpEIDivREYcbHAnYnNZDnInYXQk4XAnYXUk43Qk43QnWhZU7EZc7EXdiEi6niySbkDT8p04pUtOzqJIC3PXrYx1K1Hg629ldsZGmyk1467Zia9lBUnslGd5d5IVqSMZPckR5v7FTb8uixZFLbfIUqpLyMEm52FPH4UofR2JGHmnZBWTk5JOUkkG+yMG7OY8wNrsNtz0Btzsh1qEopZSKAU2wDmLHO49w7MZfsYccNmWcjG3yaZQdfSaF+eMZHQ2UsZGWmkZa6gxgRqxDUWpEqkmeSmHH6EqwQsEQ1bt3UL99LV271mNr+IyUtq3keivJpZEJEWXbTSJ7HAXUJpSxM3khJr0EV1YxaXmlZBWUk5NXTIHdTvSneVZKKaViTxOsg5jyuSVUHv0FiifOJj/ebhxWSg0ZX+F8Cj5bwe7tGyksnxbrcA7Q2NTIro0f0FGxCnvtelLbtlHg30mRdPR0q2w1Sex2jmdb+nw2p5fhHjeRjKIp5I6fRlpWHpPiaOAbpZRSKpImWAeRmVtAZq5+x6qUiq6ieV+Ez26l8sNnY55g1dU3ULH+PToqVuKqXUN+x0bKzC6ywiMaNJLGHlcpn+WegeROJbl4JrkT5pCdN55p+sWTUkopdQBNsJRSapiVTJpDleSTsvUZ4LphO25dQwM7179L+/ZVPclUqdlFbjiZapAs9qRM5eOcL+AefzT50xaQXVBKlrZGKaWUUgOmCZZSSg0zsdmoKlnEgp1/onLzJ5RMPiLqx2ho7E6mVuIMJ1PjQ7t7kql6yWJPyjRWjzuHlPJ5FM84juzs4p5pJpRSSil1eDTBUkqpGJj4hW/T8cf7aHjyxxT/4FlkEN3tmsLJVNt2q5tfXsdGSkK7yQ4nU3WSzZ7kaXyce66VTM08npzsotE9jYRSSik1QmmCpZRSMZCbP553J/4Hx227g3f/+kMWLPkfazqCgzDGUL+nkj2bPqBzx0c469aS27GZElNNZrhMnWRTnTyNuu5kasZx5OYUkzv0L0kppZRSgJhBTIwmIsuBqeHFDKDZGDNXRMqADcCm8Lb3jDHf6K++efPmmZUrVx52PEopNZqEgkE++t1i5rW+zBb7BOrLF5GcPxncaeDvoLO1gWDzLlwt20lu30Gev5IsWnv23yV51CZPxZ87i5SyoyieeTxpObGYPlkppZSKPyKyyhgz74D1g0mw9jvA/wItxpibwwnWs8aYWYdShyZYSql4Y0Ih3n/2L+SvvpOy0M5ey9SRSZ2ziI7UMkzudJJKj6Ro2rFkZmknP6WUUipW+kqwotJFUEQEuBA4LRr1KaVUvBCbjQXnXQ3nXU1DzU5qdu3A5m0l5EwiPTOX7LxiclMytIufUkopNUpE6x6shUCNMWZzxLpyEfkYaAV+Zox5q7cdReRq4GqA8ePHRykcpZQafbLzxpOdp38HlVJKqdGs3wRLRF4B8nvZ9FNjzFPh5xcDyyK2VQPjjTENInI08KSIzDTGtO5fiTHmHuAesLoIHuoLUEoppZRSSqmRot8Eyxhz+sG2i4gD+DJwdMQ+XsAbfr5KRLYCUwC9wUoppZRSSik1Zh3+xCt7nQ5sNMZUda8QkVwRsYefTwAmA9uicCyllFJKKaWUGrGicQ/WRezbPRDgJOBmEfEDIeAbxpjG/ipatWpVvYjsiEJM0ZQD1Mc6CDVs9P2OH/pexw99r+OLvt/xQ9/r+DIS3+/S3lZGbZj2sUpEVvY2/KIam/T9jh/6XscPfa/ji77f8UPf6/gymt7vaHQRVEoppZRSSimFJlhKKaWUUkopFTWaYPXvnlgHoIaVvt/xQ9/r+KHvdXzR9zt+6HsdX0bN+633YCmllFJKKaVUlGgLllJKKaWUUkpFiSZYSimllFJKKRUlmmAdhIicJSKbRGSLiPwo1vGo6BGREhF5XUQ+FZH1IvK98PosEXlZRDaHf2bGOlYVHSJiF5GPReTZ8HK5iLwf/nwvFxFXrGNU0SEiGSLyqIhsFJENInKcfrbHJhG5Nvw3fJ2ILBORBP1sjx0i8n8iUisi6yLW9fpZFssd4fd9jYgcFbvI1aHq473+dfjv+BoReUJEMiK2/Tj8Xm8SkTNjEvRBaILVBxGxA78HzgZmABeLyIzYRqWiKAD8wBgzA1gAfCv8/v4IeNUYMxl4NbysxobvARsilv8fcLsxZhLQBPx7TKJSQ+F3wIvGmGnAEVjvu362xxgRKQK+C8wzxswC7MBF6Gd7LLkPOGu/dX19ls8GJocfVwN/HKYYVXTcx4Hv9cvALGPMHOAz4McA4eu1i4CZ4X3+EL5uHzE0werbfGCLMWabMcYHPAQsinFMKkqMMdXGmI/Cz9uwLsCKsN7jv4WL/Q34UkwCVFElIsXAF4G/hJcFOA14NFxE3+sxQkTSgZOAewGMMT5jTDP62R6rHECiiDiAJKAa/WyPGcaYN4HG/Vb39VleBPzdWN4DMkSkYFgCVYPW23ttjPmnMSYQXnwPKA4/XwQ8ZIzxGmO2A1uwrttHDE2w+lYEVEYsV4XXqTFGRMqAI4H3gTxjTHV40x4gL1Zxqaj6LXADEAovZwPNEX+49fM9dpQDdcBfw11C/yIiyehne8wxxuwCbgN2YiVWLcAq9LM91vX1WdbrtrHtKuCF8PMR/15rgqXimoikAI8B3zfGtEZuM9YcBjqPwSgnIucAtcaYVbGORQ0LB3AU8EdjzJFAB/t1B9TP9tgQvvdmEVZSXQgkc2AXIzWG6Wc5PojIT7Fu7Xgw1rEMlCZYfdsFlEQsF4fXqTFCRJxYydWDxpjHw6trursUhH/Wxio+FTUnAOeJSAVWV9/TsO7RyQh3KwL9fI8lVUCVMeb98PKjWAmXfrbHntOB7caYOmOMH3gc6/Oun+2xra/Psl63jUEisgQ4B7jE7J28d8S/15pg9e1DYHJ4NCIX1s10T8c4JhUl4Xtw7gU2GGN+E7HpaeCK8PMrgKeGOzYVXcaYHxtjio0xZVif49eMMZcArwNfCRfT93qMMMbsASpFZGp41eeAT9HP9li0E1ggIknhv+nd77V+tse2vj7LTwOXh0cTXAC0RHQlVKOQiJyF1b3/PGNMZ8Smp4GLRMQtIuVYA5t8EIsY+yJ7k0G1PxH5Ata9G3bg/4wxt8Q2IhUtInIi8Bawlr335fwE6z6sh4HxwA7gQmPM/jfYqlFKRE4BrjPGnCMiE7BatLKAj4FLjTHeGIanokRE5mINaOICtgFXYn2hqJ/tMUZEfgEsxuo+9DHwNax7MfSzPQaIyDLgFCAHqAFuAp6kl89yOMm+C6ubaCdwpTFmZQzCVoehj/f6x4AbaAgXe88Y841w+Z9i3ZcVwLrN44X964wlTbCUUkoppZRSKkq0i6BSSimllFJKRYkmWEoppZRSSikVJZpgKaWUUkoppVSUaIKllFJKKaWUUlGiCZZSSimllFJKRYkmWEoppZRSSikVJZpgKaWUUkoppVSUaIKllFJKKaWUUlGiCZZSSimllFJKRYkmWEoppZRSSikVJZpgKaWUUkoppVSUaIKllFJKKaWUUlGiCZZSSo0QIlImIkZEHLGOZawTkSUi8nas4xhpRGShiGyKdRxKKTWaaYKllFJqVBORpSLiF5H2iMcNsY5rNDLGvGWMmRrtekXELiK/FJHdItImIh+LSEa0j6OUUiOBfkuqlFJRIiIOY0wg1nHEqeXGmEtjHcRQGQO/W78AjgeOA3YCMwFPTCNSSqkhoi1YSik1CCJSISI/FJE1QIeIOERkgYj8S0SaReQTETklovwKEfkfEflARFpF5CkRyeqj7itFZEP4G/9tIvIf+21fJCKrw/VsFZGzwuvTReReEakWkV3hlgN7P69jooi8JiINIlIvIg92tzCEtzWKyFHh5UIRqet+XSJynoisD7/eFSIyfb/zc52IrBGRFhFZLiIJh36mD52I/Ch8XtpE5FMROb+PciIit4tIbfhcrhWRWeFtbhG5TUR2ikiNiNwtIokDPP594fIvh2N4Q0RKI7b/TkQqw8dcJSILI7YtFZFHReQBEWkFlojIfBF5N3yeq0XkLhFxRexjROSbIrI5fLz/Cr93/wof4+HI8n3EfIqIVA3k9Q2UiGQC3we+bozZYSzrjDGaYCmlxiRNsJRSavAuBr4IZAB5wHPAL4Es4DrgMRHJjSh/OXAVUAAEgDv6qLcWOAdIA64Ebo9IcuYDfweuDx/3JKAivN994XonAUcCZwBf6+c1CPA/QCEwHSgBlgIYY7YCPwQeEJEk4K/A34wxK0RkCrAM6wI6F3geeGa/C/kLgbOAcmAOsKTXAERODCcPfT1O7Oc17G8rsBBIx2pBeUBECnopdwbW+ZsSLnsh0BDe9qvw+rlY57MIuPEQYrgE+C8gB1gNPBix7cNwvVnAP4BH9ks+FwGPYr2/DwJB4NpwXccBnwO+ud/xzgSOBhYANwD3AJdivZ+zsH5XD1s4Ue7r/flDH7vNxvp9/IqI7BGRz0TkW4OJQymlRjRjjD70oQ996OMwH1hJzVURyz8E7t+vzEvAFeHnK4BfRWybAfgAO1AGGMDRx7GeBL4Xfv4n4PZeyuQBXiAxYt3FwOuH+Lq+BHy837qngbXAGsAdXvdz4OGIMjZgF3BKxPm5NGL7rcDdUX4PlobPYXPEo7CXcquBReHnS4C3w89PAz7DSkpsEeUF6AAmRqw7Dtg+wLjuAx6KWE7BSpJK+ijfBBwR8Zre7Kf+7wNPRCwb4ISI5VXADyOW/xf4bT91ngJURfn9+bdwbPcCiVhJdh3w+WgeRx/60Ic+RspDW7CUUmrwKiOelwJfjfxmHzgRq7Wqt/I7ACdWq8Q+RORsEXkv3D2vGfhCRLkSrBaa/ZWG66uOOP6fgHEHewEikiciD4W7FLYCD/QS05+xWkHuNMZ4w+sKw68BAGNMKPz6iiL22xPxvBMr0Yi2h40xGRGP3SJyuVhdKLvPwyx6Oc/GmNeAu4DfA7Uico+IpGG1yCUBqyLqeDG8fqB63mtjTDvQiHXOCHed3BDuOtmM1XqW09u+4fJTROTZcCtQK/DfvbyemojnXb0sD8W5709X+OfNxpguY8wa4CGs32ellBpzNMFSSqnBMxHPK7FasCIv9pONMb+KKFMS8Xw84AfqIysUETfwGHAbkGeMycDqficRx5nYSyyVWC1YORHHTzPGzOznNfx3+HXMNsakYXUr6z4WIpIC/BarFWKp7L1vbDdWUtddTsKvb1c/xzuAWEOEtx/ksbD/WnrqKsVKCL8NZIfP37rI1xTJGHOHMeZorBbFKVhdL+uxkoOZEecy3RhzKElKz3sdPodZwO7wa7kBqztiZji+lv3ii/y9AvgjsBGYHH6PftLX6xkqYt1r19f7c3cfu60J/4x8Pfu/NqWUGjM0wVJKqeh6ADhXRM4Ua2jqhPDAAcURZS4VkRnh+5luBh41xgT3q8cFuLG6UgVE5Gyse4W63QtcKSKfExGbiBSJyDRjTDXwT+B/RSQtvG2iiJzcT9ypQDvQIiJFWAlGpN8BK40xX8O6x6z7Yvph4IvhOJzAD7ASvH/1d6L2Z6whwlMO8njrEKpLxrqIrwNrwBCsFqwDiMgxInJsOP4OrNHtQuHWuD9j3fs2Lly2SETOjNjXSMQgJr34QvjeMhfWvVjvGWMqsc53IByfQ0RuxLrX7mBSgVagXUSmAdf0Uz7qjDEzD/L+fKOPfbYCbwE/FWvQkOnARcCzwxm7UkoNF02wlFIqisIXz4uwWhfqsFqUrmffv7f3Y92fswdIAL7bSz1t4fUPY92b829Y90B1b/+A8MAXWC0fb7C3JelyrATt0/C+j7JvF8Xe/AI4KlzXc8Dj3RtEZBHWIBXdF/T/CRwlIpcYYzZhtXbdidXicy5wrjHG18/xhpQx5lOse47exeomNxt4p4/iaViJVBNWd8cG4NfhbT8EtgDvhbvlvQJMBRCREqAN6760vvwDuAmra+DRWOcKrPvyXsS692sHVlJX2VsFEa7D+j1oC8e7vJ/yI8nFWL+fDVi/Xz83xrwa25CUUmpoiDHaSq+UUsNFRFYADxhj/hLrWNTgiMilWN0Hf9zH9vuwBoz42bAGppRSKqZ0omGllFLqMBhjHoh1DEoppUaeqHURDN9r8LGIPBteLheR90Vki1gTSx50ckOllFJDS6xJbw9lcAI1BonIT/r4PXgh1rEppdRYELUugiLyn8A8IM0Yc46IPAw8box5KPzP+xNjzB+jcjCllFJKKaWUGoGi0oIVHh3ri8BfwsuCNXHjo+Eif8OatFIppZRSSimlxqxo3YP1W6z5PFLDy9lAszEmEF6uYt9JJ3uIyNXA1QDJyclHT5s2LUohKaWUUkoppdTQWLVqVb0x5oDJ5wedYInIOUCtMWZVP3OB9MoYcw9wD8C8efPMypUrBxuSUkoppZRSSg0pEdnR2/potGCdAJwnIl/Ams8lDWtCygwRcYRbsYqBXVE4llJKKaWUUkqNWIO+B8sY82NjTLExpgxrZvbXjDGXAK8DXwkXuwJ4arDHUkoppZRSSqmRLGrDtPfih8B/isgWrHuy7h3CYyml1JDZ3djGe68/g07MrpRSSqn+RHWiYWPMCmBF+Pk2YP5g6/T7/VRVVeHxeAZblYozCQkJFBcX43Q6Yx2KGuVW/flbnNv1FOsSHmbWcWfGOhyllFJKjWBRTbCGQlVVFampqZSVlWGN/q5U/4wxNDQ0UFVVRXl5eazDUaOYMYbPdz4PAm3rngdNsJRSSil1EEPZRTAqPB4P2dnZmlypQyIiZGdna8unGrSOri4SxA9Abu2/YhyNUkoppUa6EZ9gAZpcqcOivzcqGprqagDw4qTIV0EoGIxxREoppZQayUZFgqWUUrHS0rgHgC2JR5AoPuoqP4txREoppZQayTTBGgAR4Qc/+EHP8m233cbSpUtjF1CE9957j2OPPZa5c+cyffr0nrhWrFjBv/41uO5MZ511FhkZGZxzzjlRiFSp0amjqRaArsLjAKjfvjqG0SillFJqpNMEawDcbjePP/449fX1Ua3XGEMoFBpUHVdccQX33HMPq1evZt26dVx44YVAdBKs66+/nvvvv39QdSg12nla6wDInH4SAJ27N8QyHKWUUkqNcCN+FMFIv3hmPZ/ubo1qnTMK07jp3JkHLeNwOLj66qu5/fbbueWWW/bZVldXxze+8Q127twJwG9/+1tOOOEEli5dSkpKCtdddx0As2bN4tlnnwXgzDPP5Nhjj2XVqlU8//zz3HXXXbzwwguICD/72c9YvHgxK1asYOnSpeTk5LBu3TqOPvpoHnjggQPuK6qtraWgoAAAu93OjBkzqKio4O6778Zut/PAAw9w5513Mm3atD7j3Lp1K1u2bKG+vp4bbriBr3/96wB87nOfY8WKFQc9N4888gi/+MUvsNvtpKen8+abb+LxeLjmmmtYuXIlDoeD3/zmN5x66qncd999PPnkk3R0dLB582auu+46fD4f999/P263m+eff56srCz+/Oc/c8899+Dz+Zg0aRL3338/SUlJ+xx3wYIF3Hvvvcycab13p5xyCrfddhvz5s07aLxKHSp7VyMAueOn0UgqprEitgEppZRSakTTFqwB+ta3vsWDDz5IS0vLPuu/973vce211/Lhhx/y2GOP8bWvfa3fujZv3sw3v/lN1q9fz8qVK1m9ejWffPIJr7zyCtdffz3V1dUAfPzxx/z2t7/l008/Zdu2bbzzzjsH1HXttdcydepUzj//fP70pz/h8XgoKyvjG9/4Btdeey2rV69m4cKFB41zzZo1vPbaa7z77rvcfPPN7N69e8Dn5eabb+all17ik08+4emnnwbg97//PSLC2rVrWbZsGVdccUXPaH7r1q3j8ccf58MPP+SnP/0pSUlJfPzxxxx33HH8/e9/B+DLX/4yH374IZ988gnTp0/n3nsPnKN68eLFPPzwwwBUV1dTXV2tyZUaEnZvEwAJaTnUOwpIbN8Z44iUUkopNZKNqhas/lqahlJaWhqXX345d9xxB4mJiT3rX3nlFT799NOe5dbWVtrb2w9aV2lpKQsWLADg7bff5uKLL8Zut5OXl8fJJ5/Mhx9+SFpaGvPnz6e4uBiAuXPnUlFRwYknnrhPXTfeeCOXXHIJ//znP/nHP/7BsmXLem11OlicixYtIjExkcTERE499VQ++OADvvSlLw3ovJxwwgksWbKECy+8kC9/+cs9r+k73/kOANOmTaO0tJTPPrMGBjj11FNJTU0lNTWV9PR0zj33XABmz57NmjVrACsJ+9nPfkZzczPt7e2ceeaB8w5deOGFnHHGGfziF7/g4Ycf5itf+cqA4lXqUDm9zXQaN4nuRFoTSyhsXxfrkJRSSik1go2qBCvWvv/973PUUUdx5ZVX9qwLhUK89957JCQk7FPW4XDsc39V5HxMycnJAzqe2+3ueW632wkEAr2WmzhxItdccw1f//rXyc3NpaGh4YAyfcUJBw5nfijDm9999928//77PPfccxx99NGsWrXqoOUjX5PNZutZttlsPa9vyZIlPPnkkxxxxBHcd999vSaMRUVFZGdns2bNGpYvX87dd9894JiVOhQS6KQLN0ki+NLGM671dQI+Lw6Xu/+dlVJKKRV3tIvgIcjKyuLCCy/cp8vaGWecwZ133tmzvHr1agDKysr46KOPAPjoo4/Yvn17r3UuXLiQ5cuXEwwGqaur480332T+/PkDjum5557DGANYXQ/tdjsZGRmkpqbS1tbWb5wATz31FB6Ph4aGBlasWMExxxwz4ONv3bqVY489lptvvpnc3FwqKytZuHAhDz74IACfffYZO3fuZOrUqQOus62tjYKCAvx+f089vVm8eDG33norLS0tzJkzZ8D1K3UoJODBJy4AbFnlOCRE3a6tMY5KKaWUUiOVJliH6Ac/+ME+ownecccdrFy5kjlz5jBjxoyelpQLLriAxsZGZs6cyV133cWUKVN6re/8889nzpw5HHHEEZx22mnceuut5OfnDzie+++/n6lTpzJ37lwuu+wyHnzwQex2O+eeey5PPPEEc+fO5a233uozToA5c+Zw6qmnsmDBAn7+859TWFgIWMnfV7/6VV599VWKi4t56aWXAKtbYvf9Vtdffz2zZ89m1qxZHH/88RxxxBF885vfJBQKMXv2bBYvXsx99923T8tVf/7rv/6LY489lhNOOIFp06b1rH/66ae58cYbe5a/8pWv8NBDD/WMnKjUULAFvfjE+v1NypsMQFOVzoWllFJKqd5Jd+vHYVcgUgL8HcgDDHCPMeZ3IpIFLAfKgArgQmNM08Hqmjdvnlm5cuU+6zZs2MD06dMHFaPq2/6jHY41+vujBmvtr88ioWsPk29cTdWOzRT/dR6rZv+coy8Ym58ZpZRSSg2MiKwyxhwwylo0WrACwA+MMTOABcC3RGQG8CPgVWPMZODV8LJSSo0q9qAHf7gFa1xhOV7jxDT03uVXKaWUUmrQg1wYY6qB6vDzNhHZABQBi4BTwsX+BqwAfjjY46noWrp0aaxDUGpEs4d8eO1WguVyOqiwjcPZpkO1K6WUUqp3Ub0HS0TKgCOB94G8cPIFsAerC2Fv+1wtIitFZGVdXV00w1FKqUFzhLwEbXvvIWxyFZDaNfC54pRSSikVX6KWYIlICvAY8H1jTGvkNmPd6NXrzV7GmHuMMfOMMfNyc3OjFY5SSkWFM+QlaNs7vUFnUjHZgT0xjEgppZRSI1lUEiwRcWIlVw8aYx4Pr64RkYLw9gKgNhrHUkqp4eQ0XoL2vS1YofQS0mnH23HQMXuUUkopFacGnWCJNSvtvcAGY8xvIjY9DVwRfn4F8NRgj6WUUsPNZXyE7HtbsJzZZQDU7dwco4iUUkopNZJFowXrBOAy4DQRWR1+fAH4FfB5EdkMnB5eHrWefPJJRISNGzf2WaaiooJZs2ZF7ZibNm3ilFNOYe7cuUyfPp2rr74asCYJfv755wdV91VXXcW4ceOiGq9SY5ELH8axtwUrNX8iAM3VOtmwUkoppQ406ATLGPO2MUaMMXOMMXPDj+eNMQ3GmM8ZYyYbY043xjRGI+BYWbZsGSeeeCLLli3rdXsgEBj0MYLB4D7L3/3ud7n22mtZvXo1GzZs4Dvf+Q4QnQRryZIlvPjii4OqQ6l4kGC8GEdiz3J20SQAvHXxPVR7a2cXy+/+L1atWRfrUJRSSqkRZdDDtA+rF34Ee9ZGt8782XD2wRvX2tvbefvtt3n99dc599xz+cUvfgHAihUr+PnPf05mZiYbN27kn//8J4FAgEsuuYSPPvqImTNn8ve//52kpCReffVVrrvuOgKBAMcccwx//OMfcbvdlJWVsXjxYl5++WVuuOEGLrroop7jVldXU1xc3LM8e/ZsfD4fN954I11dXbz99tv8+Mc/5pxzzuE73/kO69atw+/3s3TpUhYtWsR9993HE088QUtLC7t27eLSSy/lpptuAuCkk06ioqLioK/7jTfe4Hvf+x4AIsKbb75JSkoKN9xwAy+88AIiws9+9jMWL17MihUruOmmm8jIyGDt2rVceOGFzJ49m9/97nd0dXXx5JNPMnHiRJ555hl++ctf4vP5yM7O5sEHHyQvb98BJi+66CIuu+wyvvjFLwJWMnjOOefwla98ZWDvqVJRYoIBnBIEx94ugrl5RXQaN6ZpRwwji72VLy9n8Z7baH/8DzB7N4jEOqSY8QdD2EWw2eL3HCillNorqsO0j1VPPfUUZ511FlOmTCE7O5tVq1b1bPvoo4/43e9+x2effQZY3fq++c1vsmHDBtLS0vjDH/6Ax+NhyZIlLF++nLVr1xIIBPjjH//YU0d2djYfffTRPskVwLXXXstpp53G2Wefze23305zczMul4ubb76ZxYsXs3r1ahYvXswtt9zCaaedxgcffMDrr7/O9ddfT0dHBwAffPABjz32GGvWrOGRRx5h5cqVA37dt912G7///e9ZvXo1b731FomJiTz++OOsXr2aTz75hFdeeYXrr7+e6mprNP5PPvmEu+++mw0bNnD//ffz2Wef8cEHH/C1r32NO++8E4ATTzyR9957j48//piLLrqIW2+99YDjLl68mIcffhgAn8/Hq6++2pNsKTWcfF7rc4Rzb4Jlt9vYY8vD2V4Vo6hGBn/F+wCk0Mnuir67To91gWCIJ2/9d7becgzBKPRkGM2euP9O3v7dEoLBUKxDiamnn36E5/9wPcGAP9ahKKViZHS1YPXT0jRUli1b1tOSc9FFF7Fs2TKOPvpoAObPn095eXlP2ZKSEk444QQALr30Uu644w4+//nPU15ezpQpUwC44oor+P3vf8/3v/99wEooenPllVdy5pln8uKLL/LUU0/xpz/9iU8++eSAcv/85z95+umnue222wDweDzs3GlNhPr5z3+e7OxsAL785S/z9ttvM2/evAG97hNOOIH//M//5JJLLuHLX/4yxcXFvP3221x88cXY7Xby8vI4+eST+fDDD0lLS+OYY46hoKAAgIkTJ3LGGWcAVsvb66+/DkBVVRWLFy+muroan8+3z7nrdvbZZ/O9730Pr9fLiy++yEknnURiYuIB5ZQaat6uLtyAOPf9/Wt25ZPpie+5sMa1rcODiwR8NKx7lcLy6bEOKSbWbNrMV73W4Lkb33qYaaf+W4wjio3aVg/nb/0ZAJtfPZ7JZ1wd44hiw+MPMnnlzUy37WTrM2lMPP/nsQ5JKRUD2oLVj8bGRl577TW+9rWvUVZWxq9//WsefvhhrKm9IDk5eZ/ysl83mf2Xe7N/HZEKCwu56qqreOqpp3A4HKxbd+D9DsYYHnvsMVavXs3q1avZuXMn06dPP+x4uv3oRz/iL3/5C11dXZxwwgkHHeADwO3eOxCAzWbrWbbZbD33qH3nO9/h29/+NmvXruVPf/oTHo/ngHoSEhI45ZRTeOmll1i+fHmfCahSQ83nsVqwbPslWF3JReTE8VxYxhgK/FWszzyNdpOAf9eBX/zEi6bP3u157t/4zxhGElufrl/d89y/IX7v7/1k+x4miNWrQ7a9HuNolFKxoglWPx599FEuu+wyduzYQUVFBZWVlZSXl/PWW2/1Wn7nzp28+671D/cf//gHJ554IlOnTqWiooItW7YAcP/993PyySf3e+wXX3wRv9/qYrBnzx4aGhooKioiNTWVtra2nnJnnnkmd955Z0/S9/HHH/dse/nll2lsbOy5D6q7dW0gtm7dyuzZs/nhD3/IMcccw8aNG1m4cCHLly8nGAxSV1fHm2++yfz58wdcZ0tLC0VFRQD87W9/67Pc4sWL+etf/8pbb73FWWedNeD6lYomX1cnAOJK2md9KL2UVDrxtI3qsXsOW3OHl2xasKcXsdtehLN5W6xDihl/vfXat9gnkNIY5XuER5H2KuvLv922fHJb4/c81H72IW7xs1vyKGpbBwFfrENSSsWAJlj9WLZsGeeff/4+6y644II+RxOcOnUqv//975k+fTpNTU1cc801JCQk8Ne//pWvfvWrzJ49G5vNxje+8Y1+j/3Pf/6TWbNmccQRR3DmmWfy61//mvz8fE499VQ+/fRT5s6dy/Lly/n5z3+O3+9nzpw5zJw5k5//fG+XhPnz53PBBRcwZ84cLrjggp7ugRdffDHHHXccmzZtori4mHvvvReAu+++m7vvvhuA3/72t8yaNYs5c+bgdDo5++yzOf/885kzZw5HHHEEp512Grfeeiv5+fkDPp9Lly7lq1/9KkcffTQ5OTk961euXMnXvva1nuUzzjiDN954g9NPPx2XyzXg+pWKJp/HSrDsroR91juzSwGor/xs2GMaCZoaanBKEHtaPi3JpeR4d8Y6pJixt+ykk0R2Zi6g2F8BAW+sQ4qJULN1T+Km7M+TG6zFtMVnC6+v0fosbMk7GzdeArXxe3+iUvFMuls9RoJ58+aZ/Qdh2LBhQ093N3Vo7rvvPlauXMldd90V61BiRn9/1GBsXvUak585n9UL72Hu5/Z2VV238k1mPXsu6xf+gZmfuySGEcbG+tXvMvPJs1h/4h00b1/DcVX3EvrJbhzupP53HmPe/a/TKbY3snHi1/j8hh/TftWbpIw/ItZhDbvnf/N1Tm99gjfn3cnpK79B3QWPkTv79FiHNewevfOHfKXhbt447q+c/O6VVJ95NwXHXRzrsJRSQ0REVhljDhjcQFuwlFKqDwGv1YK1f+KQXWzNheWJ07mwvE3WPSbu9AJsuZOwiaFux6YYRxUbucE9tCUWkVJkDWJUW/FpjCOKjaSuapoc48gePxOApsoNMY4oNpyde/CKm/RJVtf59l3x+blQKt5pgjWGLVmyJK5br5QaLH8fCda43HzaTSI0x+dcWMHWGgASMgtIKZwGQFNV/CUWoZAhw7TgT8gmv2wGAO3Vm2McVWxk+GvoSMinsHQSXuPEXxuf5yHJU0urM5eygnFUmyxM/ZZYh6SUioFRkWCNpG6MavTQ3xs1WEFvFwCOhH0TrO65sFxt8TkXlmm3EqzkrEJyw4mFZ0/83Y/W1uUnnQ5MYiYlBfk0mDRCcXhB7Q+GyAo14Usax7i0RHaQh6M5/lp3jTFkBevpdI8jI8lFpRSQ0Bq/A8AoFc9GfIKVkJBAQ0ODXiyrQ2KMoaGhgYSEhP4LK9WHkN9qwXIlHHhvUbM7n9R4nQursxGfsZOWnsm4nHHUmXTsjfHXYtHS2oRTgtiSsnDYbVTbC0hsj79WzZYuPxnSQSghCxGhzlVMakdFrMMadp2+IDk040scB0BjYimZXfE7AIxS8WzETzRcXFxMVVUVdXV1sQ5FjTIJCQkUFxfHOgw1ioV81jxtroQD56rzJBeR27AajIFDmF9uLLB5W2iTZLLt1nd01Y4ikuIwsWhvsv4vOZKzAGhOHM/Uro8PtsuY1NzexSTpRJIyAWhPLiWneSWEgmCzxzi64dPc5SdD2qlJtM6DJ62c1K7nobMRkrJiHJ1SajgNeYIlImcBvwPswF+MMb86lP2dTifl5eVDEptSSh1M0Gd1EXT1MjpeKL2U5AYPntZ6EtJzhzu0mLJ7W+iQFLLDy22JxRR0rIppTLHQ2WIlWK5U60x4UkvJ7XgZ/F2w3+TUY1l7Sz2wN9EMZkzA1Rwg2FyJPasshpENr+b2Loqkk7pwomnPmQw14N2zCfeE42IcnVJqOA1pF0ERsQO/B84GZgAXi8iMoTymUkpFjd9KsBKSDmzBcmaXAVBfFX9d45z+VjrtqT3LgbTx5JoGTPh8xQtvewMAienhOf2yJgDQVh1f92F1hhOs7kTTNW4yEH8jCXa0WL8PjhTrPCQVTgWgMc7Og1Jq6O/Bmg9sMcZsM8b4gIeARUN8TKWUigoTsLoIJiSmHLAtNX8iAK1xdjENkBBoxRuRYNnDyWbj7q0xiig2/G2NACSnWQlWYr6VWMTbBbW31UosEsLnIb3YGlmytSq+hijv2C/RzCmaRNAInTXx9zdCqXg31AlWEVAZsVwVXtdDRK4WkZUislLvs1JKjSj+LnzGgc1+4H0k2UXdc2FVDHNQsZcYbMPnTOtZTsqzzkVjVXyNJBjssBKslEyri2hmsdVi0RVnF9S+cEtecrirbEFxKR7jxFMfXyMJetusBCsx1Uo0x+dmUE02prEihlEppWIh5qMIGmPuMcbMM8bMy82Nr/sYlFIjmwQ8eMXZ67Zx4/JoMclxORdWsmkn4E7vWc4sslpuOmvia0hq09UE7L33qKigkBaTRLAhvs5DKJxoJoW7ShZkJFPFOOzNFTGMavh1t2gmZVjnISPJyS7ycLXpSIJKxZuhTrB2ASURy8XhdUopNeJJwIMPd6/b7DahxjYOd3t8zYVlQkFSTQcmIsEqKLJaLIIN8dViYfM048HVM6BFeqKTXZKHs7Wynz3HFtNpJZq27sEdbEKto4Dkzvg6D8FOK8Fyh1uwRITmhCLSPHrZo1S8GeoE60NgsoiUi4gLuAh4eoiPqZRSUWELevCJq8/tze7CuJsLq6u9BbsYJDGjZ12Cy8keGYezNb5a8xzeZtptqfusa3QVktoVX0m3eJoIIZCwN+luSywmy7fbmsYgXoQTTcLDtAN4kkvICDaCrzNGQSmlYmFIEyxjTAD4NvASsAF42BizfiiPqZRS0WIlWL23YEF4LqxgTVxdRLaF537qbq3o1uguJKUrvpJNl7+FTnv6Pus6kkrIDuyx5oCKE9aw/cn7zHnlTxtPkumy5oCKEzZvs/UkIaNnncksAyCk92EpFVeG/B4sY8zzxpgpxpiJxphbhvp4SikVLfagD/9BWrBC6eNJxIunpWYYo4qtjlbrgtmZvG+C1ZFUTG6gOq6SzcRACx5H2j7rQhlluAgQaomfZNNKNPc9D45sa/7K9j3xM+CHw9tMpySBfe8UownjrKH7m3fH33QOSsWzmA9yoZRSI5U95CVg67sFy5VTBkBDHM2F5WmzRoxzpWTtsz6UXkoKnT1zQ8WD5FAbfte+LViOHOuCuimOLqgTekk0k/OtkSWbdsXPyJLW/HD7nof0QmsAmNbq+Pl9UEppgqWUUn1yhjwE7Al9bu+eC6ulOn7mf/KGR0pLSMveZ70rnFjU74yPC+pQyJBq2gi6M/ZZn1ZoJRatu+PjPAAkBdvwOfdNNLOKpwDE1RxQCYFWvM59E6zCgiLaTCK+uvgaWVKpeKcJllJK9cEZ8hI8SAtW3njrItJTGz8XT4H28OS66fsmWKmFVrLZHCff1Ld1+cmgY58BDQByCycQMDY8tfGRdIdChtRQG0H3vglW8bhsak1G3Nx7ZIwhOdiKz5mxz/rCzCQqzTjsLfE1AIxS8U4TLKWU6oPLeAnYE/vcnpudTZNJJdQUP/PcBMNzP6Vk7DtvYW54kl1vnCSbLW0tuMWP7DfYR1FOGrvJRpri44K6zRMgXdoJJex7HrqHrHfHyRxQnb4g6bQTTNg30XTabdQ580nqiK+RJZWKd5pgKaVUH9zGQ8jRd4IlItQ58nDH0cWT6WomaISU1H0vJHNzcmg0qUhTRWwCG2btzfXA3kmGu7kddmpsBSS2x8ccUM2dHtLpQPZryQNodhWS2hUfc0A1d/lJlw5IOPA8tMfjkPVKxTlNsJRSqg8JxkPImXTQMm0JhaR742fEOPG20CbJSMSQ3AA2m1Brz8cdJ4lFR7M1XL0rNfuAba2JRWR44yOxaG1uxC4G+36JJkBXSglZwToI+GIQ2fBqaveSQTuSdOB5CKSV4sYH7fEz2qhS8U4TLKWU6oUxhkS8mIO0YAH400rIC9YSDMbHvEcObwsdktLrtpaEIjLiJNn0hkdTTEjLOWCbL62UdNMC3rbhDmvYdbZYiaYz9cDEIpRRhp0QwTjoQtve2oRDQge0aALYw0PWd8bJfXlKKU2wlFKqV16vF6cEwZV80HK27Im4xU9tVXxcPFlDUaf2us2bWkxuqDYuJtn1h4ejT04/MMGyZZUB0Fkz9n8nPK1WV0l36oHnwZ0bHrI+DoZq72ixzkNvLZop3UPWV47986CUsmiCpZRSvfB0WK0P4jp4F8GkAmskwYadG4Y8ppEgIdCG19F7gkVGOU6CtNaM/QEeAh3WaIr7D/YBe+eAqq/cNKwxxUJ3opnYS0teeqH12WiNgznBvOFEMzHtwAQrt2QSISN01sbPkPVKxTtNsJRSqhddXVaCZe8nwcoZPwOAjuqxfzENkNjLnEfdEsZZQ7U3VMXBN/Wd1miKjpQDL6i754Dq2DP2L6j94WH7UzMPTDTzi0rxGCe++rE/sqQ/nHAnph94HopzM6kmCxMnQ9YrpTTBUkqpXnnDLVg2d+/3G3UbV1hGp3FDw9jvDgaQYtoJutJ63ZZZZLXctMVBYmHzNuPDAb0MglJSWEiLSSLYuD0GkQ2vUHeimXxgolmQmUQl47A1x0GLZrglz91LF8H0RCfVkocrToasV0oNMsESkV+LyEYRWSMiT4hIRsS2H4vIFhHZJCJnDjpSpZQaRt6udgAcCf3cg2W3U20vILFt7F9MBwJBUkwHJGb0uj2/ZCIBY8NfP/bPhd3bTLukgsgB21ITnOyWfJytcXBBHU6wevudcNpt1NnzSeqIg5Elu5qtn70MVw/Q7C4izRMfI0sqpQbfgvUyMMsYMwf4DPgxgIjMAC4CZgJnAX8QEXuftSil1AjjDydY9oSDt2ABNCeWkOkZ+3NhNbe24JIgtj4SrNTkJGokG3vL2G+xcPma6epjsA+AJnd8zAFl9zbRKYlgd/a6vS2pmMw4mANKPOFEMyGj1+3WkPUN4O8avqCUUjEzqATLGPNPY0wgvPgeUBx+vgh4yBjjNcZsB7YA8wdzLKWUGk4Bj5VguQaQYHnSyskP7iEU8A91WDHV1mQNyd3bUNTd6p2FJHeO/WQzMdBMl6v31gqAruQScgN7xvyIik5/K5223ruMAvhTx5NsOqGraRijGn4ObzMecYMzofcCmWUABBvH/pcPSqno3oN1FfBC+HkRENknoCq8TimlRoWeBCux/wRLsifhlCB1VWN7tLS25vBQ1Cl9J1htSePJ9Y39BCst2ILf3fd5CGWW4SSAt2lsn4sEfzMeZ98JlmSF54CqGdv35Tl9LXTZ+z4PCeEh6xvjYQAYpVT/CZaIvCIi63p5LIoo81MgADx4qAGIyNUislJEVtbV1R3q7kopNSQC3k4A3En9J1gpBVMBaNj56ZDGFGtdreGR0tL6TiyCmRPJoA1Py9j9e+7xB8mglWBC3+ehe0TFsT5Ue2qwBY+r7/OQWhAfQ9YnBVvwOPpOsDKKJgPQVq0JllLxoN8EyxhzujFmVi+PpwBEZAlwDnCJMT2drHcBJRHVFIfX9Vb/PcaYecaYebm5Bw5vqpRSsRDyWi1Y7qS+77PplltuDdXeOcYvnrwHmVy3mzvfGqK8Zvv6YYkpFhrausigHell5LxuPRfUu8Zuq6Y3ECTTtBBI7Pv3Ydx468uHsfzZMMaQFmzBe5BEs6CwhFaTSKBu7P4+KKX2GuwogmcBNwDnGWM6IzY9DVwkIm4RKQcmAx8M5lhKKTWsvNYw7YkpGf0Wzcsrps0kEqof292gAm1Wq1RqVkGfZTJLZgLQUjl2E6yWxjrsYrCn9P2lYH7JZHzGjm8MX1A3d/rJllZCSX0nmqX5uewy2Zj6sXse2r0BsmjBf5BEsyAjie2mEFfz2J8TTCk1+Huw7gJSgZdFZLWI3A1gjFkPPAx8CrwIfMsYM7bv9FVKjSnibSVoBHdS391+utnsNvY4ikhsqxj6wGJI2q0EKyEjr88yReVT8Rs7/tqxe0Hd1lgNgCt9XJ9lctKSqCQfZ9PYnR+tqbmZJPFiS+77PCS67Oy2F5M0hqcxqGvzkiMtyEESbrtNqHEWk9ZRMXyBKaVixjGYnY0xkw6y7RbglsHUr5RSsSLeFtokmQzbwL6Hak0upbB1zRBHFVsOTz1tJJHa10hpQEpSIhWSh7N57CYWnuZaAJIOkmiKCLWuEko7xm5i0VK/GwB3et/nAaApsZQZna9YQ7X3Mm/YaFfX0MQE8eJMyz9oufbUcrKa3wBfB7gOPr+eUmp0i+YogkopNWbYva10yMAvgnyZkymgjs6O1iGMKrbcnnpabH0PTd6twT2e9M6xOxy1v7UGgJTsvrtKArSnTmBcYDcEx+bw/W3hBKu/8+DLmEiy6cS07RmOsIZda4N1i3lCxsETLJNt3ZcXHMPdRpVSFk2wlFKqF05/G122/kcQ7ObOnwbA7q3rhiqkmEv0NdLh6D/B6kwrJz+4GxMM9Ft2VGqzuggmZxcftJjJnoKDIJ7asXnfjafZSpjScw6eYDnzrIFPWqo2DHlMsdDRaCWaqf2ch+RC629E0xgfbVQppQmWUkr1yh1oxevofwTBbpnjrcEdmneO3cEdUgKNeBP6HtCgm+RMwo2f5uqxmVhIWzVenMhBBncASCqyRtCr3b52OMIadqEWq+XGlXnwRDOt2Bplc6wmFr5mq0UzMePgCda4shmEjNC6a2yeB6XUXppgKaVULxJD7fidA0+wCifOJGgE/56NQxhV7PgCITJNM6Gk/qfTSAp/U1+7Y2wmm67OGprt2f3eT5RTOguA9l1js+XG3l5NADscZJALgKLxk+g0bnx7xuZ5kFYr0ZT0gyeaEwpy2GVyCGkXQaXGPE2wlFKqF0mhDgKu9AGXdycks8eWh6t5bA7VXtfQQIZ0IOlF/ZYdF04sOnaNzWQzxVdLu6v/RLO0qIg6k46pH5tzQCV59tBkz4F+BoIpykqmggLsY3RERXfHbnw4IbnvYdoBMpJcVNqLSGgZmy27Sqm9NMFSSqn9GGNIMR2E3P0P0R6pPqGUjM6KoQkqxpqqrdHwnFnj+y1bUDSeNpOIGYPzggVDhsxgA76kgw9oANYQ5VX2IhJax+YFdaqvlnb3wVuvwBqivNZVMmaHKE/x1tDszBvQCInNiaVkeyutERWVUmOWJlhKKbWfjq4uksSLJAy8BQvAkz6RouAuAv6xN2pce20FACnjyvsta7fb2OUoJql17LVY1LV2UUADJrVwQOWbksrJ8ewc4qiGnz8YIidUjzfp4PcddetMnUBOYA/4PUMc2fAKhQyZgRo6Eg4+VH03f+ZEEk0XpnX3EEemlIolTbCUUmo/7Q3hi5/k/ruBRbKNm0KC+KneOfbusfA1WElCZuGEAZVvSppArrdiCCOKjbrd23GLH1vOxAGV92dMJN20EmqvH+LIhldVQzsFNPR731E3yZ2MDUNXzdj6bFS3esingVBq/11nAVx51sAnrVU60IVSY5kmWEoptZ+Wuu7R0QbWStEtrcS696i+YuyNGmdaKgkaISVnYBfU3szJ5JgmfG2NQxzZ8GrdbSUISfmTBlTeHb6grhtjvxPVOzfhlgDu/CkDKp8aHkmwbvvYmox7R3U9BdKIM3dgXzxklM4GoHHH2J3OQSmlCZZSSh2go6EKgJTsgX0r3a1g4hwAunaPvcEdElorqLWPQ+zOAZV3F1jD1u/ZunoIoxp+XXusBGvc+BkDKp9ZZl1QN+0YWwlWS9UmALJKpg+ofH75bEJG6KgaWyNLNoSHnk8rmTmg8uPHl9NikvBXj63zoJTalyZYSim1H1+TNZFs+riBtdZ0S8vKo4k0bI1jqxsUQJangobEsgGXzy63EovmMZZY0LgVPw4Scvof7AOgbMI0a4jy6rHVJSwYHmo8tWjagMqXFuRQyTikbmx9+eCptl5PevHAEs2C9ES2UIK7aWyOLKmUsmiCpZRS+wm27gEgM/fQEiyAPa7xpLWNrVHjvH4/JcFdeNIGdt8RwPgJ0+gyLgJjbO6j9LbNVDtLwGYfWPlkNxW24jF3Qe1q3kqHJCEpAxvcwWm3sctZSlrb2BpZ0ta4hRCCZA+sy6jNJtQmlJPVuU1HElRqDItagiUiPxARIyI54WURkTtEZIuIrBGRo6J1LKWUGkq2jlqaSMPudB3yvu2p5eQHdmLG0MXTti0bSBA/7oKBtVYAJLic7LQXk9AydlrzvIEgxb5ttKZNPaT96hMnkNO1fYiiGn7GGPI6NlGTOGlAQ5N3a02dxDh/FQR8Qxjd8Mpu/4wGZyE4Ewe8T1f6ZFJDbdBeO4SRKaViKSoJloiUAGcAkWPRng1MDj+uBv4YjWMppdRQS+yqtiZQPQwmewpZtFFfO3aGYa7d9CEA4ybNO6T9GhMnkNNVMQQRxcZnFZUUSCOOgtmHtJ83cwrZoUZCHU1DFNnwqmpoZ7LZgS931iHtF8qZhoMg3tqx0ZpX3+5lUnALLZkDu/+qmy3P+qKia7feh6XUWBWtFqzbgRuAyK9sFwF/N5b3gAwRGdiEGUopFUNZ3iqaE0sOa9+kQutejD1bx869R6GqVfixM27y0Ye0ny9rCuNMPf7O5qEJbJjVfPoOANmTjzmk/Zz53SPorY52SDGxdePHJImX5NJD+31ILrYSsrqtnwxFWMNuzWdbKZZ6EsYfWged9FJrMJyG7WPjPCilDjToBEtEFgG7jDH7/6UoAiojlqvC6/bf/2oRWSkiK+vq6gYbjlJKDYrf7yc/VIM/rfSw9h83wWrdaNs1dgY1yGheR5VzAuJMOKT9XAXhZHPz6iGIKgZ2vksAGznTjj+k3bLKrQvqpjEyRHnnZ28CkDfrlEPar2DibIJGaK8aG18+NG6wzkPu9BMPab/y0gk0m2S82oKl1Jg1oARLRF4RkXW9PBYBPwFuPNwAjDH3GGPmGWPm5eYe2qSeSikVbXsqt+KSIPYBTiS7v9yiSXiME1M3NrpBtbS1M82/gabsIw953+yyIwBo2jn65/wxxpDTsIpK12TEnXpI+5ZOmEa7ScC/Z2wk3UnV79Fgy8GVe2ifkdL8bCrJw1a3aYgiG14JVe/gxY27dP4h7VeSncwWinE2jo2/EUqpAw0owTLGnG6MmbX/A9gGlAOfiEgFUAx8JCL5wC4gso9NcXidUkqNWA07rG+VUwsHNoHq/sTuoNpRTGLL1miGFTNr33uZRPGRNvPzh7xvyYTpeI1zTCQW2yurmBXaSHvxwkPeNz3JRYVtbAzNXdvczhG+j6nLPfaQBrgAcDvsVDlLSW0b/Z+Nlk4/0ztXsjt9Ljjch7SvXUcSVGrMG1QXQWPMWmPMOGNMmTGmDKsb4FHGmD3A08Dl4dEEFwAtxpjqwYeslFJDp7PS6u1ccIj3G0VqSS4j17uz/4KjgG/9s/hwUD7vzEPeNzHBxU57EQlNo39o7m3vPYVDQuTNW3RY+zckTSC3a/QP37/mXy+RKe0kzzm889CaMpHcMTCS4Acf/ouJshvHjHMOa39vxmRSQm3QXhPlyJRSI8FQzoP1PFYL1xbgz8A3h/BYSikVFY7atdRIDmnZA5vfpzeBrMkUmhpa2tqiGNnw8/kDTG96nS2px2JPTD+sOhoSJ5A9BoYoT/vscepsuYybdmj323TzZk4m0zQTam+IcmTDS9Yup4sEiud98bD27x5J0Fc7ursJtn+4jCA2ihZ89bD2t4cHPmmv0vuwlBqLoppghVuy6sPPjTHmW8aYicaY2caYldE8llJKDYVx7ZuoTT60eY72586fhl0MVVtG971Hn7zxBAXSgJl1wWHX4cuaQr6pxd/VGsXIhtf6T9dxtP8j9pQtAtvh/dt0FVhDedeP4pEEt+ys5NjON6jIPwNxpxxWHckl1kiC9dtG74AfW3bXc3zbC1RmHY8t/fAGR84MjyTYWLE6ipEppUaKoWzBUkqpUaVuTxVl7MKTf/jdAwGyy6yLyObK0Z1g2T/8E02kMe3USw67Dld+eCTBLaP3grr2pdsIiY0JZ3/3sOvIKuu+oB6952HbU7eSIh6KzvzPw64jv3z0jyT46XN3kSfNZJ12+L8PZaXlNJkUfLtH//2JSqkDaYKllFJhOz9+BYDUqScPqp688lmEjBCoGb3doD5592WO8n7I1omXY3cd2vDskboTi6YdozOx2LRuFSc2P82GceeQnHt4Q/cDlJZPoc0k4q8enRfUn1Xs4Lj6R/g081TSyg99RMlu5QXZ7DD5SN3GKEY3fLZX13Fs1V/ZnnwEaTPPOOx6ijKT2EYxLh1JUKkxSRMspZQK821+jU7cTDri8O6z6WZ3J1Nrz8U9Sgd38Pt9pLx8PbVkM+v86wdVV8nEmfiMHd+eDVGKbvj4/EHanroer7iYsPh/BlVXepKLHbZiEptH3wV1KGSoXvZdEsVH8fk3D6quBGd4JMHW0ffZCIUMGx78IXnSTMY5Nx/yKIqRbDahLrGcbB1JUKkxSRMspZQCQsEQExrf5rPkY3AMosWmW2NiGZldO6IQ2fB7928/ZWJoO9XHLyUhJWNQdSUmuKm0FeFu2hyd4IbR2w/8gnn+Veycex0p2UWDrq8haQI5o3DAjxcfupOTvSv4bOo1pI2fM+j6WlMnkevfBQFvFKIbPs8/9Q++0P4Ym8ZfROb0UwZdX1fGFJJNu44kqNQYpAmWUkoB6z58lTwaMFMPb3S0/XnTJ1IS2kWX1x+V+obLhy/9gxMr/8wnmZ/niM9fFpU6R+NIgu88/wALK+5iXdrJzFj0g6jU6c2cSoZpIdRWF5X6hsNbrz7N5zbdzLbEOUz/6k1RqTOUMxU7IfyjaCTB5155hZNW/4DdrjKmXPqbqNTpCo8k2LZz9N6PppTqnSZYSikFdL7/dzqNm2mn/ltU6nOMm0qSeNlZMXpabla/8SSz//VdtjsnMu3qvw6qC1QkT+Zk8oM1BDztUalvqP3r+fuZ9/732emayJT/+HvUzoOrwLqgrtv2SVTqG2ornnuIo978Gg2OcRR+43HE4YpKvXtHEhwd5+G1V57nuLeuIOhIIuc/nkFcyVGpNyN8f2JDxeg4D0qpgdMESykV9zxdHcxofIVPM04mMTUjKnVmlFoXkQ0Vo+Pb6fefvIvpr32NakcRudc8izsxNWp1u/KnYxND9baRPapiKBji9b/exIL3v0OVq5yCbz2HKzkjavVnlR8BQNMIv6AOBUO88uCvOf6Db1LvKiLzWy+TkJ4btfoLJswiYGy0jfBRNkMhw/PL/8SCt5bgd6SSdPVLuLLHR63+8tIymkzKqB34RCnVN0esA1BKqVj75KW/c6x0kjjv0qjVmTfB+nbaUz2yR0vr6uxg5b3fY2HDI6xPOILx33iE1MzDn2S5N5lls2EVNG7/hJIZC6Jad7TU7N5J1d+v5lTPu6xNP5kp1zwY1SQToKx8Eq0mkUDNyB3wY09tDdvu+wand77GppSjKbvmMdwpmVE9xoT8bHYwskcSrG1oZN1fv8sX2p9hR+J0xl39BO6sw5vzqi8FGYl8RAk5TaNv4BOl1MFpgqWUimsmFCJz7V+otBUx44RzolavK20craRgbxy5XQTXvPcq6f/8LgtDVazKv5AjrroLh8sd9eOUTJqF39jxj8CRBEPBEO8/cw9TV/+SWcbDqunXcdSFP0Fs9qgfKy3RxRrbeJJH4EiC/kCQFU/8mSPW/YpjaeaTKd9hzkVLEXv0LxMSnHZ2OUuZ0jbyRhIMhQxvv/AQEz68kdOoZX3Z5cy49DbEEf3PhYhQl1TO1M43rZEEo9QVVSkVe5pgKaXi2rr3XmJ2cAurZv+ckmheVItQ6y4lvaMienVGSV3NbjYu+zHHNz1FvS2Ltaf9laNP+vKQHS8pMYnttgJcI+yb+g0rX4eXfsxx/g1sdUym68I/c/SUw5/jaSAakiZQ2vnOiLqgXvPBCnwvLeXzwY/Z4Z5M3fn/4Ijpxw/pMdvTJpHb+D74PeAc/Kidg2WM4Z333oFXf8lJgXfZZS9m97mPMHPu4c91NRDejCmkVD8PbXsgLbotZEqp2NEESykV13xv3UkzKcz6wn9Eve7OtAkU1r6FPxjCaY/9La8ej4ePH7+NGZv+wPF0srbgAqZdcht5qdHtAtab+sQJFHSOjBaLDRvX0/DMTZzY8TINpLPqiJs56rxvDUlrzf58WVNI73iBUFsttrTodsU8VBXr36f5+V8wt+MdWkhh09yfMvXc/4RhOA/kTsfeGKJrz0YSS+YO/fH6YIzhw1Ur6Xz5l5zkeQOPuNk4/btMOf+n2KIwXUN/nAUzoRpadq4hfZYmWEqNFZpgKaXiVsXmtRzZ+S9Wjr+S+VG+3wZAcqcwru4Ztu3ezYSS4qjXP1A+n4+Vz9xN6dq7OI4a1iUeRcb5tzF36tHDFoMnYzIFu94i4GnHkZAybMeNtHnLJqqevoXjW55josBHJUuYduFNHJ2aNWwxuAtmQKU1kmDeELeO9GXHxo+pf3YpR7evoM0k8m7p1cz96k+YOgyJdre08bNhE9RuXU1pjBKs1WvX0PT8f7Gw8xUC4uCziUuYdP5PmZYavQE9+pNdNgc+gsbta0ifdeawHVcpNbQGnWCJyHeAbwFB4DljzA3h9T8G/j28/rvGmJcGeyx1IGMMvmAIXyCEzx8kGAxgE4NDwO5043TYcdlt2GwjoyuKUiPJ7hd/SyE2Jn3x+0NSf2rRDPgUaratjUmCFQgEWPncvRSs/h3Hm11sc0zk05NuYdbCrwx79zRb0Vzsuw27Nq+iaPbJw3rs7RVb2f7kLZzQ9DRlhNhYsIjy82/kqLzyYY0DIHvCXPgAmncMf4JVuXU9e55eylHNL5OLi3eLr2TGBT/huKxxwxoHQPGk2fj/aacjBiMJfrpxA9XP/JKF7S9gxMbm0ouZ+OWfMy1j+FuQyktLaTCp+KtH9oiKSqlDM6gES0ROBRYBRxhjvCIyLrx+BnARMBMoBF4RkSnGmOBgA44HXk8HDdWVtNZV0tGwC19zNaG2Pdg7anF6G3EFOkgItZMY6iTZdJJMJ6ly4KkNGaETN2248UgiHfY02pw5dCWMw5+Uh6QXkVQ4nZzSmZQWFYyILkxKDZfmhjqOqH+GdZmnc1R+6ZAcI2/iHHgZOqvWAWcPyTF6EwqGWPXPB8j68DYWhHawwz6etcf9nlmn/Rtii83nPHviMfAhNG1ZOWwJVmXlDrY8cQsLGp6ghACf5p1D2ZduZHbh5GE5fm/KyybSbJLxVa8ftmPu2r6Jqqd+wdFNL5CDgw8L/o0pX/4px40rGrYY9leSm8EWinDVDd80Bpu3bWHnk7/kxJZnmSyGzcVfZsKXb2R6FIdeP1S5aQn8SyYwoXF0TOeglBqYwbZgXQP8yhjjBTDG1IbXLwIeCq/fLiJbgPnAu4M83pgQCgSor95G3c7NtO/ZQqBhG87WSlK7qhgX3EM2LRRiZabdgkZokgzaHJl47cl43fl0OFOpdadiXCmI3YXN7kBsNkLYCIYMtqAXe6AT/J0YbztObxN5vl1keNaQ1twOu4HwoF61JoNqZwltqZOQcdNIKz2C4ilHkZkT23sElBoq65+7kxPES9bp1w7ZMRLHTaKDRJx1w3MxbUIhPn7tEVLevZVjgluoshXyyfz/Zc6ZS4bl/qKDmTBxCo0mlcDuj4f8WNXVVWx6/L+ZX/sohfhYn3MWJV+6iTkl04f82P1JSXCyyjGZ3IY1Q36s3ZVb2fHkf3F0/dPkIqwadwETv/xzFhQMzRcKh8JuE3YmTGNB27tDPuDHjsqdbH78Fk5ofJxyCbAp/xzKvvwLZuRNGLJjDpSIUJ0ykwXtD4GvA6I0ibFSKrYG+x93CrBQRG4BPMB1xpgPgSLgvYhyVeF1BxCRq4GrAcaPj923SEPB6+2iass6GirW4q/egLNpM9ld2ykO7mKc+OnulBEwNupsOTS5C9mWfhKbUopwZBTiziwkNaeYzLwSMrLzybE7yIlWcP4u2mq207BjHe27NhKs20Ryy1YmNr1IStMTsAn4J9SSRV1COZ7MKbgKZzFu4pGMmzgHcUf/fhWlhovf72PCtgf51DWHGbOOG7oD2WxUuSeS0z608/0YY1jz9jO43vhvjgpsoFrG8dGRt3DEF/+DYodzSI89UC6nnR2uyWQ0Dd2kqrU11Wx4/H84es9yTsLLuqzTKVq0lDlls4bsmIejIXMuc+v/jvG0IglpUa+/pnonWx7/JfNqHyeXEKtzzqHsyzdxbNHEqB9rMDrGHUlq5T8J1m/Fnjsp6vXvqt7Nxsf/m2NrH6EELxtyz6TkS0uZWRz7RDuSKTgK++Z/4KtajWvCCbEORykVBf0mWCLyCpDfy6afhvfPAhYAxwAPi8ghfSVkjLkHuAdg3rx55lD2HUna25rZ+ekHtGz9EHvNGnLbNlASrGSihJiI1V1vj20c9QllfJR+PJI9ieS8SWSXTCGveCIFThfD2vvbmUhq8QxSi2fsu94YGqu3U/3ZR7RXrsVWv4H09q1M2P0YidXLYJVVrNaeR2PyJLxZU3HmzyCjdA7jJszG4U4azlcRPaEQIb8Hr9eD19OJ19uFz9OF39uF3+cl4O3E7/MQ8HkJBTxIwIMJ+CDox4QCEApiQkEIBcI/ux8BjIlYNkFsJoQQ2ufwhu5vb/d+i2v6/EZXrEfPLt3LNquenmUJl7b1PDdi22/7fj8l3H1MbHuPIQLYEAnH2bNNkJ79IuvYW0Z6PYa1PXJf2W+7RNQvmPDLND3np+f8GYMBxJjweexZ3bOf6Sm7t4Rv93qOo57aY27u6zciaprTZzCr5ilCgQA2R/Rbkda/9xLmtVs4wvcJtWSzatbPOeK8b1MwDCOgHar2rFnM2vMgAW8XDndi1OptqK9l/WP/w5G7l3GydLEm4zTyzruJORPnRu0Y0WQbPx97/X3UbX6f3Nmfj1q9dTW72fT4LRy15xEW4GN11tkUf+kmjimdFrVjRFPqpAVQCTUb3qYwiglWXV0dax/7H+ZVL+Nz0sn6rM9R+KVfMLN0dtSOEU1ZUxbAZqjd+C+KNcGKimAwSGtzA62NNXQ21+JrayTQ1ULQ00bQ047xtoGvA5u/HfF14Ax24gp24gh5sRt/+BHAYfw4jR8HARwmgJMADvbekiGYXp+D9f8ygJ0gdgIS/omDEHaCYiMo3c8dhMROEAchm52QOHoexmb9xBZ+bnOGn1s/sTkxdgdic4DdCXYn0v2wObE5nIjdgdhdiD28n90B4rT+x9qs/7/S/f9abOF/wzZsIuF/y7aen8ZY1ybhf7nhaxeDCRmMMUAIE7J+dv/P7V42xlpnTIjwE+t/ePintU93PdZPidjf686h7MjTKMyI3v+OodTvf3tjzOl9bRORa4DHjXU2PhCREJAD7AJKIooWh9eNCSYUomrbevaseQ12/ovc1nWMD+5ihli/cQ1ksCtxCiuzTsVZMIOsstkUTpxNYWLqPt3+RiQRsgonkFU4AfhKz2qP18enWz6lbutqvLvXkdD0GQWt25je8h6uiiC8Z3Vj3GUbR5sjG487G39iLsHEHEjKwpGQiispDff/b+++4+uu68WPv95n5WTvZjdJd9M0HXQxCi17g4KAV/ZVfjiugiKKA9F7uVdFRREVRRRQpmwFEQTK0pYO2tI9s0ezd3LW5/fH9zSkbdKmyUnOSft+Ph7nkXO+4/N9n3zPN/m+z2fFxOOIScDuisPudOJwOHDYHdgddhAbAQQTCIDfhwl4Cfi8eD0evN5efF4vPp8Hn9eDv7eLgLebgKcHvF3g7cb4ehBvD/i6EV8PNn8PNl83dn+v9Ucz0Isz0IMj4MFleq0HHlx4ceLHBkQHH6EUMIIPq+lmQGz4sPdLqA5IqfotMwOsDy43B24jmODDSjzkoGU2GbffW4yqclsOs5dfOfoHypxN7L6nqSndTNaUOSErdtu6d+h97QfM6VlNI0msnnE7JZfewgR35DYxipo4D2fdo+zd9gGFc0beD6uluZGPnv0RJRV/5lTpZGPCqaRfeBclYzg64nBkFJ1ijRy37b2QJFj7E8z51U9wEj1sSDqDzIu/xwmTS0IQ7eiZNHMBHW+66dj9bzj1+hGX19zczPpnf8y8ikc5XTrYnLiUCRffxawpC0Ye7CgqmjaFyr+l4SlbHe5QIlpvbzeNtRW01lfQ2VCNp6WaQHstrq46XL1NuL2txPhbiQ+0kWA6SBbD4cbF7DFOuiWabommxxZNry0aj7gJ2OMI2JyY4CNgd2FsLrA7MXYnRhwc8CUn0q+Fa7//2CYQ/HLViwR8EPAhAR9igj8DPsT4EePDFvBhM35sxoc94MFlurAZP3bjw2582LCeO/anacaPAz8OfLgG6IN/LFrhn8O61HnHToJ1BC8Ay4G3RGQa4AIagJeAx0XkZ1hdiaYCH4zwWGFVU7ad8lUv4Sx/l4kdG8ijhTygmXjKo2fxQdp5ROefQE7RiaRl5ZMaIRNIhoo7ykXRrLkwa27fMmMMTW2d1JZupq1sI6ZuC1HtZbh6GknsLCOpfT3J0j6mcXqNnV5c1kNceMSFV6LwiBuPzUW7IwG/LQq/3U3AHoVxRGHsbsQRBQ4X4nBjc0Zhc7qxOd3YnVHYXW4crmgcLjfOKDcOlxu7021t63DicDix2e3YHS7sDjsOuwOb3UoebXYHNhFcY/pbGETft0V+69smDCYQCP40mP3fPJkAJvgt0scP6xsna/1BZfT7Fsr6hspaTqBfOf1eH/CNVl8ZB35zxf7l1vdXGCPBb86wareA/v/U9v80+2u/9td09dXifVwjuH9Zcmb+qNQoHSyuYD5shMZda0KSYO3etIrWV77P/K73aSGOD6Z8hZJP3MbC2NA3NQu1zOLlsBpaNr8JI0iw2tqa2fjsPRSXPsJS6WBj/MkknXcnJbOWhDDa0TOjMI/dJodA+aoRldPU3MRHz/6YuRWPcqp0siHhNNIv+h7zpkV2grlfQXo8a22TmVC7dkTltLS2su65n1FS+keWSytb4xbTfcFdzCoa3cmSQyUrMZo3HdOZ27A2oiagHksmEKChoZaGil201+7G21iKtJYT01VNQm8tyYEmkmkbpH96Iq22ZLqdiTRETaE2KplAdDISk4IzLg1nfBqu+BTcscm44xKIjk8iNjYRt9OFGw6bhI0HAX8Ar9+Hz+vB5/Hg83nwe60vo30+D36fF7/PY31x7fcGW954+/3fpu//d9//cw68ByC4XsDKLY2xarqM6av56muN0q/VC4g1sNL+Vis2INiqRrBq0Pq2IdjyxWZ9fSwiwdozGyLCRFc8aRPHbgqFkRrp3cUfgD+IyCbAA1wXrM3aLCJPA1sAH/DF8TiC4N7Nq6h79xEy971LQaCcLKCWNPYmLGR33olkzF7OxKlzmXOcjr4nIqQmxpE6ZzHMWTzgNl5PLx0tDXS2t9LV0Up3Zxve7nbE00nA78Xv92MCPvx+q9mcjYB1oQarwI3NgcPhxO5w4XC5cDicOJxROKKicUTF4IyKxeWOxumOIyo6FpfLRZxNCM8sOxGur/mdDbGHO5jjx6SZC/C86KCzdA3WzBXDs2frOppe/gHz21fQKW5WFdzMrE9+g0UJYzeH00jlTSxgj+ThKn9nWPu3trWy4bmfUFz6R06hnY9iF9Ny7ncpKVka4khHl9NuozpxPvPbXifg6cbmOrpvZJubm9j4ws+YXfowp0k7m+JOpO2Cu5hTND4SzP1EhIb0E1mw7/f4WqpxJB1dG4+WtjbWPvcLivc+xOnSzPaYeXSf+z1mzlk+ShGPnracU0kpf5/eqo1E5R7dFzFer4cdG/7NjHlLsUfw/YgJBKirqWTf3k10Vm/FNOwkun0vSb3VTPDXkS699L997iCGevsEWt1Z1EfPwcRmYk/MDPZPzyMpI4+ktOzQ9k8fh2x2G1F2F1EuF0RuA4bjzogSLGOMB7h6kHV3A3ePpPxwq9/2b+bXPMl2dwkrJ36K7IUXkzelhMwwDXM8HjldUSRPyCE5jMMBKxVO0dFutkTNJK1+5ZE3HsDebeupe/luFra9TiYuVudex8zLvs3iMMxdNFIiQm3GaSyseYL2plriUwbq3nuo1tZmNjz/M4pKH+FUWtkcvYDms77D7Pnj70Z6Pym6kNiVf2Xv6pcpPPnyI+8A1DfUs/mFnzCn4jFOk3a2xC6g49w7KS4Z23nFQiluzsXw+u8p+9dfmHz+V4a0T2trK+ue/xmz9j7CGdLMrujZ9J71W6afMH4n6k2ffxGBsh9S9a+nmHTF0BKszq4u1v31N0za+ltmUcc7277OqVd/Z5QjPTK/P0Dl3q3s27UWT/VmnC17SOwsJctXSaZ09XXq7zVOqu3ZtLpz2Re3BEmaSFR6IUnZU0jPm0pcQqp+WarGLTEmcvpnLFiwwKxZsybcYfTp6mglEAgQlzDeK5CVUuH074e/xYmlv6Lp5o2kDHHOrfKtq6l/5X+Z1/YWvTjZlP0ppl32HRLTIr4n52Ft+fB9il48nw+Lvsm8K+447LbNDXVsffEnzKp4jEQ62Ro9n6gzv8WkE0I3MES4NLd1EPjpTOoTZzPjq68cdtua2mq2vfhT5lc/QaJ0sjl2CXFn30H+nGVjE+wo6u71Uf5/84l12cm9Y91hm8fVNzSw6aV7KSn7E6nSyvbouUSf+S0mzj973Der8/gCrL17OdNsVaR+a6s1YMEg6pua2fTXXzJz78Nk0shux1QKfLvpMS7qr3+XgsJpYxZ3W1sLFdvW0lr6IVK7icS27Uz07iVOuvu2qZM06qMm0h1fAKlTic2ZQXpBMWnZk8I+fYRSIyUia40xh3T01E/2YcTEJYY7BKXUMSBz8aeg9Fdsf+33nHjtfx922y1r3qb7zXs4oetdUo2bD3KuYfql32ThMVILPKPkRDb/rYicrQ/S2/UFomIO/TtbvnMj5f+4n3n1L3KS9LA+5iQSzrqdmfPGb43VwZIT4ngt43LO3vcHqje+SXbJ6QesN8awbeMqWt66n7nN/2C5eNiUcAod532HWUWjOLXAGIuOcrBn8tWct/tuSlc8QsHy6w/ZZsfmD9n35i+Z2/AKy6WbLbELaD/zDqbPH3QMrnHH5bDRMOt6Ttx0C6Wv3EvBRbcfss2unVspf/3XzKl7geXSxg73bNpP/RlTT7yEuvLtJPxxKT1/+g9a/us1kpJD23Q44A9QVb6TfTvW0FO5gajGrUzo3kluoJZZwYGU2ommyjWJrRPOx5Y1m+RJ88meOo+M2AR0Rk11vNEaLKWUGgNb/ncpaZ5KYr+6jtiDasU9vb1sevNx3OsepMi7mXZi2Jz7aaZd8nVS0sd0AocxseH9Vyl+7Sq2xC4i5+oHSMrIp6psF1VrXiJm198o8azHa+xsSjqd5HNup6BoUbhDHhX7Ghrx3L+EGOmleukPmTB1AY37amjY9Cap5a9S5N9Gj3GyKe1ccs+9lcyp42PwiqPV2tlD1U9OodCUs3vB90iavpT2tiYatrxDUtk/mO3bhMfY2ZpyBhPOuoWsomNzKPOuXi8bfnwuC/wfsrPkGyQWn0NrRzsN294nbu+rzPGsB2BH4kkknPE1cuacccD+21Y8xZS3bmaHfQruTz/CpKlFAxzlyFpamqna8SFtZesxdZtJaN1OnmcPidLZt02VZFIfOw1P2kyi8+aQOW0BaTlTg4MVKHX8GKwGSxMspZQaA5tXvc6sv1/OevciUj55D+6YBKp3fUjv5leYVP9P0mmhSjKomnYtxRd8gZhxNHjFcLz35D0s2fq/OCSA3wj24Lfg1bZMyid+gqnnfoHUzGNr8vmBbNq4moTnrmYitQcs3+2YTMuki5h+3heJSx5//e2O1q49u/H8+UqKAjsPWF5qz6el8AImnf1FEibkhim6sbO3sprGP36aBf71ByyvsmXTkH8e+Wd9kaTswSeM3rnicTJXfBW7CbA6+Xxi5n2KvFknkp6SjN32cTPK7l4fdTXltFbvpLtuF737dhPTsp3M7l3kmLq+6T26iKLSWUhb4gzILCapcB650xfgjksajbev1LijCZZSSoXZqqfvYf7m/8PZb96SHuNka/yJ2Of/B7NO/RT2MRg6PlKUbt9AxQcvYu9uwJWcR1rx6eRPn3fcfQve29PF5vf+Sm9LDbEJKWQXnUha7tRwhzXmer1eNq96HV9DKVExceTMXERaXmROkjyaPF4/m9aswLdvJ1FuN7kzFpI6sWjI/cyaK3dQ/vz3KGr4R9/fmn0miV5xY4A400k8XQf8HQoYocaeRUPsVDypM3HnlZA+eT4ZE6chNh12VqnBaIKllFIRoLp0O5Vr/w4BHzGZU5ky7zT9NlgpFXK9HU2Urv47PdVbkNZy/J4e7ATwOuPAnYQjKRtX+mQSs6aSkT8N+1FOF6CU0gRLKaWUUkoppUJmsATr+GqHoZRSSimllFKjSBMspZRSSimllAoRTbCUUkoppZRSKkQiqg+WiNQDZeGO4yBpQEO4g1BjRs/38UPP9fFDz/XxRc/38UPP9fElEs93vjEm/eCFEZVgRSIRWTNQ5zV1bNLzffzQc3380HN9fNHzffzQc318GU/nW5sIKqWUUkoppVSIaIKllFJKKaWUUiGiCdaR/S7cAagxpef7+KHn+vih5/r4ouf7+KHn+vgybs639sFSSimllFJKqRDRGiyllFJKKaWUChFNsJRSSimllFIqRDTBOgwROVdEtovILhH5ZrjjUaEjInki8paIbBGRzSLyleDyFBF5XUR2Bn8mhztWFRoiYheRD0Xkb8HXhSKyKnh9PyUirnDHqEJDRJJE5BkR2SYiW0XkRL22j00icmvwb/gmEXlCRNx6bR87ROQPIrJPRDb1WzbgtSyW+4LnfaOIzA9f5OpoDXKu7wn+Hd8oIs+LSFK/dXcEz/V2ETknLEEfhiZYgxARO/Ar4DygCPi0iBSFNyoVQj7ga8aYImAJ8MXg+f0m8IYxZirwRvC1OjZ8Bdja7/WPgHuNMVOAZuA/wxKVGg2/AF41xswA5mCdd722jzEikgN8GVhgjCkG7MBV6LV9LHkYOPegZYNdy+cBU4OPm4DfjFGMKjQe5tBz/TpQbIwpAXYAdwAE79euAmYF9/l18L49YmiCNbhFwC5jzB5jjAd4ErgkzDGpEDHG1Bhj1gWft2PdgOVgneNHgps9AlwalgBVSIlILnAB8PvgawFOB54JbqLn+hghIonAqcBDAMYYjzGmBb22j1UOIFpEHEAMUINe28cMY8w7QNNBiwe7li8BHjWWlUCSiGSNSaBqxAY618aY14wxvuDLlUBu8PklwJPGmF5jzF5gF9Z9e8TQBGtwOUBFv9eVwWXqGCMiBcA8YBWQYYypCa6qBTLCFZcKqZ8DtwOB4OtUoKXfH269vo8dhUA98Mdgk9Dfi0gsem0fc4wxVcBPgHKsxKoVWIte28e6wa5lvW87tt0I/D34POLPtSZY6rgmInHAs8Atxpi2/uuMNYeBzmMwzonIhcA+Y8zacMeixoQDmA/8xhgzD+jkoOaAem0fG4J9by7BSqqzgVgObWKkjmF6LR8fROTbWF07Hgt3LEOlCdbgqoC8fq9zg8vUMUJEnFjJ1WPGmOeCi+v2NykI/twXrvhUyJwMXCwipVhNfU/H6qOTFGxWBHp9H0sqgUpjzKrg62ewEi69to89ZwJ7jTH1xhgv8BzW9a7X9rFtsGtZ79uOQSJyPXAh8Bnz8eS9EX+uNcEa3GpganA0IhdWZ7qXwhyTCpFgH5yHgK3GmJ/1W/UScF3w+XXAi2MdmwotY8wdxphcY0wB1nX8pjHmM8BbwOXBzfRcHyOMMbVAhYhMDy46A9iCXtvHonJgiYjEBP+m7z/Xem0f2wa7ll8Crg2OJrgEaO3XlFCNQyJyLlbz/ouNMV39Vr0EXCUiUSJSiDWwyQfhiHEw8nEyqA4mIudj9d2wA38wxtwd3ohUqIjIKcC7wEd83C/nW1j9sJ4GJgJlwBXGmIM72KpxSkSWAbcZYy4UkUlYNVopwIfA1caY3jCGp0JEROZiDWjiAvYAN2B9oajX9jFGRL4PXInVfOhD4LNYfTH02j4GiMgTwDIgDagDvge8wADXcjDJvh+rmWgXcIMxZk0YwlbDMMi5vgOIAhqDm600xtwc3P7bWP2yfFjdPP5+cJnhpAmWUkoppZRSSoWINhFUSimllFJKqRDRBEsppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSimllFJKqRDRBEsppZRSSimlQkQTLKWUUkoppZQKEU2wlFJKKaWUUipENMFSSqkIISIFImJExBHuWI51InK9iLwX7jgijYgsFZHt4Y5DKaXGM02wlFJKjWsicpeIeEWko9/j9nDHNR4ZY941xkwPdbkiYheR/xGRahFpF5EPRSQp1MdRSqlIoN+SKqVUiIiIwxjjC3ccx6mnjDFXhzuI0XIMfLa+D5wEnAiUA7OAnrBGpJRSo0RrsJRSagREpFREviEiG4FOEXGIyBIR+ZeItIjIBhFZ1m/7FSLyfyLygYi0iciLIpIySNk3iMjW4Df+e0Tk/x20/hIRWR8sZ7eInBtcnigiD4lIjYhUBWsO7Ed4H5NF5E0RaRSRBhF5bH8NQ3Bdk4jMD77OFpH6/e9LRC4Wkc3B97tCRGYe9Pu5TUQ2ikiriDwlIu6j/00fPRH5ZvD30i4iW0TkE4NsJyJyr4jsC/4uPxKR4uC6KBH5iYiUi0idiDwgItFDPP7Dwe1fD8bwtojk91v/CxGpCB5zrYgs7bfuLhF5RkT+LCJtwPUiskhE/h38PdeIyP0i4uq3jxGRL4jIzuDx/jt47v4VPMbT/bcfJOZlIlI5lPc3VCKSDNwCfM4YU2Ysm4wxmmAppY5JmmAppdTIfRq4AEgCMoCXgf8BUoDbgGdFJL3f9tcCNwJZgA+4b5By9wEXAgnADcC9/ZKcRcCjwNeDxz0VKA3u93Cw3CnAPOBs4LNHeA8C/B+QDcwE8oC7AIwxu4FvAH8WkRjgj8AjxpgVIjINeALrBjodeAX460E38lcA5wKFQAlw/YABiJwSTB4Ge5xyhPdwsN3AUiARqwblzyKSNcB2Z2P9/qYFt70CaAyu+2Fw+Vys32cOcOdRxPAZ4L+BNGA98Fi/dauD5aYAjwN/OSj5vAR4Buv8Pgb4gVuDZZ0InAF84aDjnQOcACwBbgd+B1yNdT6LsT6rwxZMlAc7P78eZLfZWJ/Hy0WkVkR2iMgXRxKHUkpFNGOMPvShD33oY5gPrKTmxn6vvwH86aBt/gFcF3y+Avhhv3VFgAewAwWAARyDHOsF4CvB578F7h1gmwygF4jut+zTwFtH+b4uBT48aNlLwEfARiAquOy7wNP9trEBVcCyfr+fq/ut/zHwQIjPwV3B32FLv0f2ANutBy4JPr8eeC/4/HRgB1ZSYuu3vQCdwOR+y04E9g4xroeBJ/u9jsNKkvIG2b4ZmNPvPb1zhPJvAZ7v99oAJ/d7vRb4Rr/XPwV+foQylwGVIT4//xGM7SEgGivJrgfOCuVx9KEPfegjUh5ag6WUUiNX0e95PvCp/t/sA6dg1VYNtH0Z4MSqlTiAiJwnIiuDzfNagPP7bZeHVUNzsPxgeTX9jv9bYMLh3oCIZIjIk8EmhW3AnweI6UGsWpBfGmN6g8uyg+8BAGNMIPj+cvrtV9vveRdWohFqTxtjkvo9qkXkWrGaUO7/PRQzwO/ZGPMmcD/wK2CfiPxORBKwauRigLX9yng1uHyo+s61MaYDaML6nRFsOrk12HSyBav2LG2gfYPbTxORvwVrgdqA/x3g/dT1e949wOvR+N0fSXfw5w+MMd3GmI3Ak1ifZ6WUOuZogqWUUiNn+j2vwKrB6n+zH2uM+WG/bfL6PZ8IeIGG/gWKSBTwLPATIMMYk4TV/E76HWfyALFUYNVgpfU7foIxZtYR3sP/Bt/HbGNMAlazsv3HQkTigJ9j1ULcJR/3G6vGSur2byfB91d1hOMdQqwhwjsO81h65FL6ysrHSgi/BKQGf3+b+r+n/owx9xljTsCqUZyG1fSyASs5mNXvd5lojDmaJKXvXAd/hylAdfC93I7VHDE5GF/rQfH1/1wB/AbYBkwNnqNvDfZ+RotYfe0GOz8PDLLbxuDP/u/n4PemlFLHDE2wlFIqtP4MXCQi54g1NLU7OHBAbr9trhaRomB/ph8Azxhj/AeV4wKisJpS+UTkPKy+Qvs9BNwgImeIiE1EckRkhjGmBngN+KmIJATXTRaR044QdzzQAbSKSA5WgtHfL4A1xpjPYvUx238z/TRwQTAOJ/A1rATvX0f6RR3MWEOExx3m8e5RFBeLdRNfD9aAIVg1WIcQkYUisjgYfyfW6HaBYG3cg1h93yYEt80RkXP67Wuk3yAmAzg/2LfMhdUXa6UxpgLr9+0LxucQkTux+todTjzQBnSIyAzg80fYPuSMMbMOc35uHmSf3cC7wLfFGjRkJnAV8LexjF0ppcaKJlhKKRVCwZvnS7BqF+qxapS+zoF/b/+E1T+nFnADXx6gnPbg8qex+ub8B1YfqP3rPyA48AVWzcfbfFyTdC1WgrYluO8zHNhEcSDfB+YHy3oZeG7/ChG5BGuQiv039F8F5ovIZ4wx27Fqu36JVeNzEXCRMcZzhOONKmPMFqw+R//GaiY3G3h/kM0TsBKpZqzmjo3APcF13wB2ASuDzfL+CUwHEJE8oB2rX9pgHge+h9U08ASs3xVY/fJexer7VYaV1FUMVEA/t2F9DtqD8T51hO0jyaexPp+NWJ+v7xpj3ghvSEopNTrEGK2lV0qpsSIiK4A/G2N+H+5Y1MiIyNVYzQfvGGT9w1gDRnxnTANTSikVVjrRsFJKKTUMxpg/hzsGpZRSkUebCCql1HFCrElvj2ZwAnUMEpFvDfI5+Hu4Y1NKqWOBNhFUSimllFJKqRDRGiyllFJKKaWUCpGQ9cESETuwBqgyxlwoIoVYEwmmYs0mf82RRpVKS0szBQUFoQpJKaWUUkoppUbF2rVrG4wxh0w+H8pBLr4CbOXjeTx+BNxrjHky2L7/P7EmSRxUQUEBa9asCWFISimllFJKKRV6IlI20PKQNBEMTqB5AfD74GsBTseaewXgEeDSUBxLKaWUUkoppSJVqPpg/Ry4HQgEX6cCLcYYX/B1JZAz0I4icpOIrBGRNfX19SEKRymllFJKKaXG3ogTLBG5ENhnjFk7nP2NMb8zxiwwxixITz+kCaNSSoWFP2AIBHSUVaWUUkodnVD0wToZuFhEzgfcWH2wfgEkiYgjWIuVC1QNp3Cv10tlZSU9PT0hCFUdT9xuN7m5uTidznCHosYZj8fL1h+eytb087jq83eGOxyllFJKjSMjTrCMMXcAdwCIyDLgNmPMZ0TkL8DlWCMJXge8OJzyKysriY+Pp6CgAKtrl1JHZoyhsbGRyspKCgsLwx2OGme2bN3M3MAW5tRtobHuRlIzcsMdklJKKaXGidGcB+sbwFdFZBdWn6yHhlNIT08PqampmlypoyIipKamas2nGpaWqm19z0s3vB3GSJRSSik13oRymHaMMSuAFcHne4BFoShXkys1HPq5UcPla9jT99xbvhr4TPiCUUoppdS4EtIESymljgXu9nJ6cFJlyyaucXO4w1FKKaXUODKaTQSPGSLC1772tb7XP/nJT7jrrrvCF1A/K1euZPHixcydO5eZM2f2xbVixQr+9a9/DbvcsrIy5s+fz9y5c5k1axYPPPBAiCJWKvJF99TSIGk0xkwipac83OEopZRSahzRGqwhiIqK4rnnnuOOO+4gLS0tZOUaYzDGYLMNP8+97rrrePrpp5kzZw5+v5/t27cDVoIVFxfHSSedNKxys7Ky+Pe//01UVBQdHR0UFxdz8cUXk52dPexYlRovbL5uPDY3/qTJZLSvoLeniyh3TLjDUkoppdQ4oDVYQ+BwOLjpppu49957D1lXX1/PZZddxsKFC1m4cCHvv/8+AHfddRc/+clP+rYrLi6mtLSU0tJSpk+fzrXXXktxcTEVFRV8/etfp7i4mNmzZ/PUU08BVoK0bNkyLr/8cmbMmMFnPvMZjDl0Tp59+/aRlZUFgN1up6ioiNLSUh544AHuvfde5s6dy7vvvnvYOK+55hpOPPFEpk6dyoMPPgiAy+UiKioKgN7eXgKBwCHHBrjvvvsoKiqipKSEq666CoCmpiYuvfRSSkpKWLJkCRs3buw71nXXXcfSpUvJz8/nueee4/bbb2f27Nmce+65eL1eAH7wgx+wcOFCiouLuemmmw5534FAgIKCAlpaWvqWTZ06lbq6usOdRqWGTHw9+O1uXJnTsIuhcs/WcIeklFJKqXFiXNVgff+vm9lS3RbSMouyE/jeRbOOuN0Xv/hFSkpKuP322w9Y/pWvfIVbb72VU045hfLycs455xy2bj38zdjOnTt55JFHWLJkCc8++yzr169nw4YNNDQ0sHDhQk499VQAPvzwQzZv3kx2djYnn3wy77//PqeccsoBZd16661Mnz6dZcuWce6553LddddRUFDAzTffTFxcHLfddhsA//Ef/zFonBs3bmTlypV0dnYyb948LrjgArKzs6moqOCCCy5g165d3HPPPQPWXv3whz9k7969REVF9SU83/ve95g3bx4vvPACb775Jtdeey3r168HYPfu3bz11lts2bKFE088kWeffZYf//jHfOITn+Dll1/m0ksv5Utf+hJ33mnNPXTNNdfwt7/9jYsuuqjvmDabjUsuuYTnn3+eG264gVWrVpGfn09GRsYRz6NSQ2EP9BJwuUnKnQlroLliKxSdEO6wlFJKKTUOaA3WECUkJHDttddy3333HbD8n//8J1/60peYO3cuF198MW1tbXR0dBy2rPz8fJYsWQLAe++9x6c//WnsdjsZGRmcdtpprF69GoBFixaRm5uLzWZj7ty5lJaWHlLWnXfeyZo1azj77LN5/PHHOffccwc85uHivOSSS4iOjiYtLY3ly5fzwQcfAJCXl8fGjRvZtWsXjzzyyIA1RCUlJXzmM5/hz3/+Mw6Ho+89XXPNNQCcfvrpNDY20tZmJcbnnXceTqeT2bNn4/f7++KdPXt23/t76623WLx4MbNnz+bNN99k8+ZDBxm48sor+2r7nnzySa688srD/s6VOhoOfy/G4Sa9oAgA776dYY5IKaWUUuPFuKrBGkpN02i65ZZbmD9/PjfccEPfskAgwMqVK3G73Qds63A4DmhW138+ptjY2CEdb38TPbCa//l8vgG3mzx5Mp///Of53Oc+R3p6Oo2NjYdsM1iccOhw5ge/zs7Opri4mHfffZfLL7/8gHUvv/wy77zzDn/961+5++67+eijj4b0nmw2G06ns+9YNpsNn89HT08PX/jCF1izZg15eXncddddA85ldeKJJ7Jr1y7q6+t54YUX+M53vnPY4yp1NKJML912NwlJaTSRgL15d7hDUkoppdQ4oTVYRyElJYUrrriChx76eM7ks88+m1/+8pd9r/c3hSsoKGDdunUArFu3jr179w5Y5tKlS3nqqafw+/3U19fzzjvvsGjR0KcPe/nll/v6KO3cuRO73U5SUhLx8fG0t7cfMU6AF198kZ6eHhobG1mxYgULFy6ksrKS7u5uAJqbm3nvvfeYPn36AccOBAJUVFSwfPlyfvSjH9Ha2kpHRwdLly7lscceA6y+ZGlpaSQkJAzp/exPptLS0ujo6OCZZ54ZcDsR4ROf+ARf/epXmTlzJqmpqUMqX6mhcNFLwBENQK0jl/iOsjBHpJRSSqnxQhOso/S1r32NhoaGvtf33Xcfa9asoaSkhKKior7hzC+77DKampqYNWsW999/P9OmTRuwvE984hOUlJQwZ84cTj/9dH784x+TmZk55Hj+9Kc/MX36dObOncs111zDY489ht1u56KLLuL555/vG+RisDjBaua3fPlylixZwne/+12ys7PZunUrixcvZs6cOZx22mncdtttzJ49G4DPfvazrFmzBr/fz9VXX83s2bOZN28eX/7yl0lKSuKuu+5i7dq1lJSU8M1vfpNHHnlkyO8nKSmJz33ucxQXF3POOeewcOHCvnUPPPDAAXFfeeWV/PnPf9bmgSqkfP4AUXjAYdX2tsXkk+6tCHNUSimllBovZKCR6cJlwYIFZs2aNQcs27p1KzNnzgxTRMe+u+6664DBMI41+vlRR6uj1wf/m8OevE9S8tnf8O5D32BpxQN4v1mF0x0X7vCUUkopFSFEZK0xZsHBy7UGSyml+unx+nHjAafVRNCRNgmA+god6EIppZRSRzbiQS5EJA94FMgADPA7Y8wvRCQFeAooAEqBK4wxzSM9ngqtu+66K9whKBVRenp6cEgACSZY8ZlTAGiq3EH21HnhDE0ppZRS40AoarB8wNeMMUXAEuCLIlIEfBN4wxgzFXgj+FoppSJab08XQF+ClT5xKgDddTqSoFJKKaWObMQJljGmxhizLvi8HdgK5ACXAPtHN3gEuHSkx1JKqdHm7bbmhxNXMMGakEunicI060iCSimllDqykPbBEpECYB6wCsgwxtQEV9ViNSFUSqmI5u21arDsrhgAbHYbtfZMojrKwxmWUkoppcaJkCVYIhIHPAvcYoxp67/OWEMVDjhcoYjcJCJrRGRNfX19qMJRSqlh8fYcmGABtEZlk9hTFa6QlFJKKTWOhCTBEhEnVnL1mDHmueDiOhHJCq7PAvYNtK8x5nfGmAXGmAXp6emhCGdUvPDCC4gI27ZtG3Sb0tJSiouLQ3bM7du3s2zZMubOncvMmTO56aabAGuS4FdeeWXY5fb09LBo0SLmzJnDrFmz+N73vheqkJUa93y9nQDYoz5OsLrj8pjgr4UImtZCKaWUUpFpxAmWiAjwELDVGPOzfqteAq4LPr8OeHGkxwqnJ554glNOOYUnnnhiwPU+n2/Ex/D7/Qe8/vKXv8ytt97K+vXr2bp1K//1X/8FjDzBioqK4s0332TDhg2sX7+eV199lZUrV44odqWOFb7ebgAc7o8TLJNUQAy9tDfVDLabUkoppRQQmhqsk4FrgNNFZH3wcT7wQ+AsEdkJnBl8PS51dHTw3nvv8dBDD/Hkk0/2LV+xYgVLly7l4osvpqioCLASrc985jPMnDmTyy+/nK4uq7nRG2+8wbx585g9ezY33ngjvb29ABQUFPCNb3yD+fPn85e//OWA49bU1JCbm9v3evbs2Xg8Hu68806eeuop5s6dy1NPPUVnZyc33ngjixYtYt68ebz4opXLPvzww1xyySUsW7aMqVOn8v3vfx8AESEuzpow1ev14vV6sfLkA/3lL3+huLiYOXPmcOqppwJW7dcNN9zA7NmzmTdvHm+99VbfsS699FLOOussCgoKuP/++/nZz37GvHnzWLJkCU1NTQA8+OCDLFy4kDlz5nDZZZf1/X76W7JkCZs3b+57vWzZMg6egFqp0eIP9sFy9qvBcqcXAlBfvj0sMSmllFJq/BjxPFjGmPeAQ+/OLWeMtPwD/P2bUPtRSIskczacd/jc78UXX+Tcc89l2rRppKamsnbtWk444QQA1q1bx6ZNmygsLKS0tJTt27fz0EMPcfLJJ3PjjTfy61//mi996Utcf/31vPHGG0ybNo1rr72W3/zmN9xyyy0ApKamsm7dukOOe+utt3L66adz0kkncfbZZ3PDDTeQlJTED37wA9asWcP9998PwLe+9S1OP/10/vCHP9DS0sKiRYs488wzAfjggw/YtGkTMTExLFy4kAsuuIAFCxbg9/s54YQT2LVrF1/84hdZvHjxIcf/wQ9+wD/+8Q9ycnJoaWkB4Fe/+hUiwkcffcS2bds4++yz2bFjBwCbNm3iww8/pKenhylTpvCjH/2IDz/8kFtvvZVHH32UW265hU9+8pN87nOfA+A73/kODz30UF/N3H5XXnklTz/9NN///vepqamhpqaGBQsOmSRbqVER8Fo1WM6o2L5lCVnWUO3tNbtg3vKwxKWUUkqp8SGkowgeq5544gmuuuoqAK666qoDmgkuWrSIwsLCvtd5eXmcfPLJAFx99dW89957bN++ncLCQqZNmwbAddddxzvvvNO3z5VXXjngcW+44Qa2bt3Kpz71KVasWMGSJUv6ar76e+211/jhD3/I3LlzWbZsGT09PZSXWyOenXXWWaSmphIdHc0nP/lJ3nvvPQDsdjvr16+nsrKyLwk72Mknn8z111/Pgw8+2Nd88b333uPqq68GYMaMGeTn5/clWMuXLyc+Pp709HQSExO56KKLAKvmrbS0FLCSsKVLlzJ79mwee+yxA2qq9rviiit45plnAHj66ae5/PLLB/z9KDUaAh6rBssV/XGClTHRunY9DXvDEpNSSimlxo8R12CNqSPUNI2GpqYm3nzzTT766CNEBL/fj4hwzz33ABAbG3vA9gc3tRuo6d3BDi6jv+zsbG688UZuvPFGiouLB0yEjDE8++yzTJ8+/YDlq1atOmI8SUlJLF++nFdfffWQAToeeOABVq1axcsvv8wJJ5zA2rVrD/s+oqKi+p7bbLa+1zabra+P2vXXX88LL7zAnDlzePjhh1mxYsUh5eTk5JCamsrGjRt56qmneOCBBw57XKVCyXisGqz+CVZiYiL1JGFr0bmwlFJKKXV4WoN1BM888wzXXHMNZWVllJaWUlFRQWFhIe++++6A25eXl/Pvf/8bgMcff5xTTjmF6dOnU1payq5duwD405/+xGmnnXbEY7/66qt4vV4AamtraWxsJCcnh/j4eNrb2/u2O+ecc/jlL3+JCY5w9uGHH/ate/3112lqaqK7u5sXXniBk08+mfr6+r4mf93d3bz++uvMmDHjkOPv3r2bxYsX84Mf/ID09HQqKipYunQpjz32GAA7duygvLz8kMTucNrb28nKysLr9faVM5Arr7ySH//4x7S2tlJSUjLk8pUaKRNsIhjVb5ALgHp7FjGdleEISSmllFLjiCZYR/DEE0/wiU984oBll1122aCjCU6fPp1f/epXzJw5k+bmZj7/+c/jdrv54x//yKc+9Slmz56NzWbj5ptvPuKxX3vttb5BJs455xzuueceMjMzWb58OVu2bOkb5OK73/0uXq+XkpISZs2axXe/+92+MhYtWsRll11GSUkJl112GQsWLKCmpobly5dTUlLCwoULOeuss7jwwgsBuPPOO3nppZcA+PrXv87s2bMpLi7mpJNOYs6cOXzhC18gEAgwe/ZsrrzySh5++OEDaq6O5L//+79ZvHgxJ5988gFJ3UsvvcSdd97Z9/ryyy/nySef5Iorrhhy2UqFhM9KsMQZfcDitugckj3V4YhIKaWUUuOImAia12XBggXm4NHitm7dysyZM8MU0fj28MMPHzAYxvFIPz/qaL35wFc5vfYh+G4j2D9uRf3u727hpKqHsX23DnEM/UsFpZRSSh2bRGStMeaQkdi0Bksppfrz9eDFcUByBWBLKcQuhqaqPWEKTCmllFLjgSZYx7Drr7/+uK69Umo4bP4eenEdsjx6wmQAGqt2jHVISimllBpHxkWCFUnNGNX4oZ8bNRx2Xw+9cmgTwORcay6srrrdYx2SUkoppcaRiE+w3G43jY2NerOsjooxhsbGRtxud7hDUeOMPdCDVw6twcrKnUSvceBv1LmwlFJKKTW4iJ8HKzc3l8rKSurr68Mdihpn3G43ubm54Q5DjTN2fy9e26E1WG6XkzKZgKOtIgxRKaWUUmq8iPgEy+l0UlhYGO4wlFLHCUegB68MXPPZ6MomsVvnwlJKKaXU4CK+iaBSSo0lZ6AX3wA1WABdMTmke2vGOCKllFJKjSejnmCJyLkisl1EdonIN0f7eEopNRKOQC8++8AJlj8xnwQ68HY2j3FUSimllBovRjXBEhE78CvgPKAI+LSIFI3mMZVSaiRcxoPfNnATQUea1Vy5vmL7WIaklFJKqXFktGuwFgG7jDF7jDEe4EngklE+plJKDZvL9OB3DJxgxWVOAaC1atdYhjQq/P4A/3jjn5SX6cTJSimlVCiNdoKVA/QfcqsyuKyPiNwkImtEZI2OFKiUCrcoPATsAydYaXnTAOipH/9JyYpXHuecdy/D/ccz8Pu84Q5HKaWUOmaEfZALY8zvjDELjDEL0tPTwx2OUuo45zIezCA1WJkTMmg2cdBcOrZBjQLH5ucBmEATO957LszRKKWUUseO0U6wqoC8fq9zg8uUUiriGGNw4yHgiB5wvd0m1NkziGovH+PIQisQMMzqXs2HCafTbqLp3fqPcIeklFJKHTNGO8FaDUwVkUIRcQFXAS+N8jGVUmpYer1+osUDg9RgAbRG5ZDYWz2GUYVeTU0ladKKyZ7PLtdMkhvXhjskpZRS6pgxqgmWMcYHfAn4B7AVeNoYs3k0j6mUUsPV291lPXEOXIMF0B2XR7q/DgL+MYoq9Kp3bQAgYWIxbRNOIM9bNu6Hnq9pbGHF3Rfxzm9vCXcoSimljnOj3gfLGPOKMWaaMWayMebu0T6eUkoNl6en03oySBNBAJLyceGjq7FybIIaBR0VmwDImjIPV+58bGKo2bEuzFGNzEfP3cMy7zucWvNH9n7wt3CHM2Jvvfs2q/9nORvffCrcoYTEqy/8mRWP/4iA1xPuUEasob2bfzz0PXZvfD/coSilIlTYB7lQSqlI4Q0mWHKYGqyoCZMAaBjHc2HZmvfQg4vY9HzSJs8FoLl0fVhjGgljDGnVb1Flz6PdRNO+ZnwnJf6AIfHNO1joW8fEd75GoKcj3CGNyOotuznjwy+zbMf/svmFH4U7nBF789H/5ZyKnzP5ufPxttaEOxylVATSBEsppYK8vVaCZXMNnmAlZltDtbfV7B6TmEZDVFctjfY0ECG/cDrtJhp/7fhtvV21r5HiwDaa8s5gY8xi8urfBmPCHdawrd+yjbmBLWx3l5BEO3tXje+uyw3/fhSn+Gkljuxtj4zrc9Pt8VO07690Yv2N2PvmI2GOSCkViTTBUkqpIE9PNwA2V8yg22TkTsZvBG/D+J0LK663jnZXBgAup51yRwFxLTvCHNXwlW9fh0v8xE0+CU/uSSSbVtprxu/7adz8BjYxJF78I1pMLL2bx3eTx9iaVeyzZ/Je4ZdJ9dfTUbkp3CEN25ZduymWvVTNuonNphD3rvF9bpRSo0MTLKWUCvJ5rBose9TgCVZKQiy1pGFvLR2jqELLGEOKv57e6My+Zc1xU8js3TNuaxY6KjYCkDV1PonTlwJQtXFFGCMaGVO9AQ8OMqcvZLOrhJSmD8Md0rC1dnmY4d1KS+o8MuadB0DNulfCHNXw7dvyHgCZc85mb8JCsjq3gqcrzFEppSKNJlhKKRXk77FulOyHaSIoItQ7sojpHJ9T+rV29jCBZgIJOX3LAukzSaCT9oaKMEY2fPaGbfTgwj1hEtOKF1hze5WtDndYw5bavo0a92SwO+lMKyHTV41/nI7yWFGxlwnSQiB7PjOnF1Fh0gmUfxDusIatt8pK5hPy5yIFp+DER+tOHexCKXUgTbCUUirIH/wm2uGOPex27dHZJHvG51xY+6rLcUgAR1Ju37KY3BIA6naOz/mwEjv2UOuaCDY7cW4XpfYCYpq3hjusYen1+Snwl9KWMAOAuMKFAFRsfi+cYQ1bU7l1HuJzZhIb5aDMNZWk1i1hjmr4Ett3UO/Igqg4JhRZtaUNO1aGOSqlVKTRBEsppYL8HqsPluMwNVgA/qR8Uk0z/uCgGONJa91eAKLTJ/Yty5gyB4COivE30IUxhlRPNR0xH7+fpvhpZPWMzyaPldW1pEkbkjYFgNxZJwPQtnt81vr01O0EIK2gCIDO1GIyfNUEusZfjZzPHyDPW0pz/FQAphfmUWnSCFRvDHNkSqlIowmWUkoFBfbXYB2mDxaAK80aqn1f+fgbSKGr0WoGmJRR0LcsOzuPRpMA9dvCFNXwNbV3k009gcT8vmWBCbOIo4uOuvE30mNduXUO4rKsm/jcrCxKTRbO2vVhjGr4pGk3XhxEpRYA4MqbD0D9zjVhjGp4qps6yaMOf4qV/Ca4nex1TCahZfzWyCmlRocmWEopFeTvtWqwomPjD7tdYrZ18zse58LyN1sJVnLWpL5ldptQ5ZxIbPv4S0iqKvYSJT5c6YV9y+Ly5wFQs3383cR3VlufqdSJMwGw2YQy93Qy2sdf7SJAbEep1aTOZgcgdeoiAFrGYY1cdeVuosRH1ISpfctaE2eS7q2C3vE9V5lSKrQ0wVJKqaD9TQTdMYfvg5WZPx2Aztrxl5DY26vpJgp7TNIBy9viJpPZWzrumtW1VFm1iPFZH9/05k6fT8AIneXrwxTV8PmDw//3fz+dKbNICTRiOurDFdawGGNI662krV/zzcn5+VSZNKheH77Ahqm10kp+k3Om9S2T7DnYMHSUrQ9TVEqpSKQJllJKBe1vIhgTE3fY7VLSs2knGpp2jUVYIeXuqqHJng4iByz3p04jni66GivDFNnwdO+zkty0idP7lmWmpVIumTgbxl+tT1R7KY22VHB9nOQ7c6w+co17xtdw7fXt3UykFl/Sx7WlsVEO9jgmk9A6/pqjevZZ13tS7seftZQpCwDYt3NVWGJSSkWmESVYInKPiGwTkY0i8ryIJPVbd4eI7BKR7SJyzogjVUqpUSbeLvxGsDvdh9/OZqPGkUdc+/ibbDjeU0d7VMYhy6NzZgFQu3t8ddiX5jJ82IhK+biWRESocU8mpWNnGCMbnuSeClrcuQcsS59i9Vtq2jO+RnmsKtuNW7y4MqYesLw1YToTvJXg7Q5TZMNjb9mLByfSb4qDyZOm0mji8VWNr+tGKTW6RlqD9TpQbIwpAXYAdwCISBFwFTALOBf4tYjYR3gspZQaVeLpoEuiD6ndGUhL7CQm9JaPQVShY4wh1d9AT0z2IevSJ1m1JG0Vm8Y6rBGJ7iyn0T4B7M4DlnclzyDDV4vpbQ9TZEevo9dHTqCG3oSCA5ZPLiigziQRqP4oPIENU3OFVUuVlDvjgOUmYxZ2AvRUja/3E99VTqMrG2wf3zpNSIhml62A6KbxVyOnlBo9I0qwjDGvGWN8wZcrgf1fu10CPGmM6TXG7AV2AYtGciyllBptdl8HXRx+iPb9/ClTmEATnW1NoxxV6DS1dZBOCybh0AQrNzefFhOL2Te+bhSTeqtoc+ccstyRVYxNDPt2bwhDVMNTUVNHurRiS518wPJ4t5NSeyFxLePr3PTus2oQUycWHbA8ocCqkdu3a92YxzRcXn+ACd5qOmPzD1nXFDuVCT17IOAPQ2RKqUgUyj5YNwJ/Dz7PASr6rasMLlNKqYjl8HbSbTv8EO37uTKtUd5qd4+fb+EbqkuxicGRPPGQdU6HnUrHRGLaxk+/sm6Pn6xAHZ74Q99PSuFcYHz1W2oM1vjEZE49ZF1z/DQyPGXg84x1WMNmb95NLy7siQf++y+cUkSHcdNTMY6S38ZOJkodgeTCQ9b50ouIwoOvfvxcO0qp0XXEBEtE/ikimwZ4XNJvm28DPuCxow1ARG4SkTUisqa+fnyNkKSUOrY4/Z30DjHBSs6fDUDrOGpS115XCkBMesGA61tiJ5HRUzpm8YxUZd0+a1LelIJD1hVMKaLTROGtGT/np7PmwCHa+wtkFOPER2/d+JkaIL6znHpnzgFN6gByU2LZyURcjeNn/qjqyj1Eiwf3hMmHrIudaDWvrd89fmrklFKj64gJljHmTGNM8QCPFwFE5HrgQuAzxvSN71sF5PUrJje4bKDyf2eMWWCMWZCenj6iN6OUUiMR5e/CYx9agpVdOAOPseMbRze8PY2lACRlFQy43pcyjSTa6GmpG7ugRqCxwhqiPTpjyiHr4qOjKLXlE908fs6PCQ7RHps17ZB18flzAajbsXosQxo2f8AwwVtJZ9yhtYs2m7AvejJpnbvGzbQAbcEh2pMmzjpkXfaUufiMjbbS9WMclVIqUo10FMFzgduBi40xXf1WvQRcJSJRIlIITAXG36yCSqnjisvfhcd++CHa93NHRVFly8bdOn6aBflbrO+5kjMPbeYEEJ1j9ZWp3bV+rEIakY5a63fff16i/hpjJ5PRPX5u4t3tew8Zon2/vKlz6DUOusZJs7rqpg5y2Yc/edKA63tSi4gzHZjWigHXRxrvPivBis+efsi6SVlp7CUL277xNy2AUmp0jLQP1v1APPC6iKwXkQcAjDGbgaeBLcCrwBeNMdr7UykV0aJNFz7H0GqwABqiC0juKhvFiELL0V5JC/HYogaeSDm1sAQYP80e/Y17AUjMPrTPEoAnrYhE005vS/VYhjVsyT2VNLvzBlw3MS2B3eTirB8fN/E15TuJEh9RGQMnv1E51metee/46CPnatlDL1EHDNHet85ho8o1maT2HWGITCkViUY6iuAUY0yeMWZu8HFzv3V3G2MmG2OmG2P+frhylFIqEkSbLgKuodVgAXiSJpPlr8bn6RnFqEInuruWJseEQdfn5U+hw7jx142P0epcbXtpl1gkJnnA9e4cq59c7c7I7xvT4/WTHaimN/7QUerAalZX455CWuf4mNuruWIrACkD9CcDSJ9qjSTYMk4GIUnoKqM+KveQ/mT7dSZPJ91fBz2tYxyZUioShXIUQaWUGrdMIECs6QZX/JD3cWbMxCEBqvaMj876iZ46Ot1Zg66PcjqosOcRPU6aPaZ0lbLPNXBCApA57QQA2srWj1FEw1dZW0e6tEHqoYMo7NedMpPEQAumPfL7yHmCQ7Qn5cwYcP3UvCzKAhMI1Eb+KJw9Xj/Zviq64gduWgtgzwwOeqP9sJRSaIKllFIAdHZ14pAANvfQE6yUfKvDe2PpxtEKK2R6PD7SAw344w+dA6u/pphJpPfsHaOohi8QMOT4KmiPHzwhyc/NpdYkQ13kJ8D1ZVaMMQMMcLGfcxw1q3M176JLopH4zAHXJ7idlDoKiW+N/EFIyutbyZN9mJTBP2spk60auQYdSVAphSZYSikFQEdbMwD2o0iwcqbOJWCE3urI7xdTWVVFgnRhTx38W3gAb8pU0kwznvbInkC5urqKNGnFpB066MB+TruNSmch8W2R3zemvcpqljkhv2jQbdInWzVyTXvWjklMI5HWtZt97skgMug2rQnTSPNUgadr0G0iQV3ZNhwSIDpz8M/a5ElTaTGxeKoiv0ZOKTX6NMFSSimgs7URAGfswP15BhIdG0+VLYuopsjvs9RQbtWQDDQKWn9RWVatXN2eyB6trnr3egDi8w4dNru/toSpZHnKwO8bg6iGT+o24cVBbPbAfZYAJhdMpMakEKiO7Jv41k4PU0wpXcmH/6wFJhRjJ0BvTWR/QdFUZsU3oXDwz1pqvJvdtgKim7eOVVhKqQimCZZSSkHf3E+O+KObj68+ejLpXbtHI6SQ6gpOYptWMHgNCUBKgdWXpDnCmz12VFoJY9aUOYfdzkyYRRRe2qsjuylaUtt2ql354HANuk1itJO99kJiWyL7vZSV7iBRurBlFh92u8SCeQA07IrwGrm6jwgguLMP/34aY6eS0b0HAoExCkwpFak0wVJKKcDT3gBAVOLgo+wNpCdlOtn+anq7O0YjrJAxjbvxYSNugEl5+8ufPIN2E42/JrJrSWjYQQ8uYtMP3+QxId9KwOoi+Cbe4wuQ791DW8LAA0L01xw/jQxPGfh6xyCy4anfsx6A5EnzDrvdxCkz6TBuuiN8bq+Uti3sc+VB1OFHGPWmFxFND56GyO/DqJQaXZpgKaUU4G+vByAm6egSLGf2bOxiqN65fhSiCp24tl3U2bPA7jzsdm6XNfhAXHNkDwwR377buukdZNjs/XKmzsVnbHRVRG6NXHn5XiZICwRHojucwIRiHPjx1EZuU7SeYMI0YfLcw25XkBbPTvJwNkTuZ62tx8sU325akw7fFBUgbqKVzO/btWa0w1JKRThNsJRSCvB1WDVYSWkDj3o2mNTgt/QtETyymzGGrN49NMYOPCHvwZrjp5Pduztimzp5vH4KvbtoHUKNT1ZqIqWSjaMhchOSqm2rAUieNP+I28YVzAUi+ybe3bSNRvsEJPrw/RntNqEuZqo1t5cxYxTd0dm1Zw9Z0oQt5/C1cQDZU+fjN0L7OJgWQCk1ujTBUkopgK4GukwUMbFDH0UQIHdSEd3Ghb82cjvq1zU0kmvqCKQPPoBCfyZzNrH00FIdmaPv7d69jTRpgyHc9IoIddGTSeuI3H5LnWXW0N7Z0xcdcdu8ycX0GCddZZHZrK6tx0uhZwetiUdOfgF8aUXEmk78LRWjHNnw1O/4AIDUKQuPuG1hVhplZGGr2zTaYSmlIpwmWEopBdi6m2i1JR71fi6Xkwr7RGKaI/cGvmzramxiiA/WfhxJQoFVk1KzffUoRjV81Zv/BUBW0UlD2r47dTYTAvV4WveNZljDFtewkXpHJrYhjGBZOCGRXeRhr4/MZnVbdu5hkq0Wmbh4SNvHTpwLQN3OyKyR6ym3+u6lTF5wxG0ddhtlUdNIb4/Mc6OUGjuaYCmlFODqbaLTfvQJFkBT3BQyevaEOKLQ6dpjfQufXXTKkLbPn3kCPmOjuzwymz1KxUp6cJE2hJtegOgCq/aheuu/RzOsYWlo72GWbxNNaUeuIQGrWd2+mKmkde6IyGZ1jVvfASB91mlD2j53xgICRmjZHXkJViBgSGtaR21UIbgThrRPW0oxKf4GaK8d5eiUUpFMEyyllAISvfV0uI5ugIv9fGkzSaWF9qaaEEcVGtH71rFP0ohOzR3S9imJCZTZcolqiLxmj8YYclrXUhZTDI6oIe2TU7QEgLZgohlJtm38gFRpJ2ry0JJfAG/6LBJNG97W6lGMbHhc5e/Sg4u4gqEljJNyMtlDNvbayGvyuKOmkXlmG+3ZQ6spBbDnWpNBN+9aNVphKaXGgZAlWCLyNRExIpIWfC0icp+I7BKRjSJy5N67SikVJqmBenpis4a1b+zEEgCqtkfeUOBen5/8zo+oSyw5qv3qYqYxoWvnKEU1fLv27mZqoJTe3KHf9E7MzGCvycYRgTfxPZtfBiDrhAuGvE9s/lwAqrZG1k18l8fH5PbVVCScAE73kPax24TK6BlMaN8ccTVypWv/SYz0klx0xpD3yZ65GL8RmnasHMXIlFKRLiQJlojkAWcD5f0WnwdMDT5uAn4TimMppVSotbU0kkAXJmFoNTwHy55mNVVrj8CBB7ZvWkeWNCKFQ2uytZ8nfRbpprFvAuZIUf3vZ7CJIWfxZUPex2YTqmJmMKEjsvrGGGPIqnmDPa4ZRKXkDXm/iUUnWqPV7Y6sGrkNa1cySaqxTzvrqPbrTJ9LcqAZf0vlKEU2PI5tL9JNFGlzzhvyPkUTM9lpcpGayGxeq5QaG6GqwboXuB3o//XTJcCjxrISSBKR4X09rJRSo6ihajcAUan5w9p/QlYeTSTAvsi6gQdo3GDVkExceP5R7RedZ43QF2m1JImlr1Jly+4bHn+outNLSAs04mmOnGZ123fuYJbZScekc45qv7zMdHZLHq66yLqJ71j7JH4j5J7ymaPaL6bA+oKibuv7oxHWsDS1dzOv8z3KUpeCK2bI+7mddsqjZ5DWtiXiauSUUmNnxAmWiFwCVBljDv7qNgfoP+5qZXDZwfvfJCJrRGRNfX39SMNRSqmj1lq7F4C4jIJh7S8iVLkmkdgWecOaTyh/hb2OSSRkTzuq/SKx31JFVSWzPBupyzkLRI5q35h86ya+JoIGuih793EAJp74qaPaT0Soji0isyNybuK7er1Mr3+N3fELcCUd3VxyeTMX4TH2iPqsrVrxV1Kljbh5Q68p3a87bQ4JgVYCzWWjEJlSajwYUoIlIv8UkU0DPC4BvgXcOdwAjDG/M8YsMMYsSE9PH24xSik1bD11Vg1WWu6UYZfRmTiNXG8ZAb8/VGGN2N6dm5jp305D4UVHvW9OZiZlZOGoWx/6wIZp1z9/j1P85C09uhoSgNxg35j2PZEx9HyPx8uMiqfY655JUv7so96/d8JcEk0bvfW7RyG6o7dyxctMlDrsJZcf9b6FmalsJx9XhHzWjDHEbnyYDokld9ElR71/TKGVzO/bHjnJvFJqbA0pwTLGnGmMKT74AewBCoENIlIK5ALrRCQTqAL6NyrPDS5TSqnI0riDdmJImTD0fjAHs2XOIkZ6qS3dFsLARqbi7UcBKDjt2qPeV0SojplBZvvWUIc1LD29HqbtfYwdUbNInza0OZb6m5iVzh7JxVEXGf3kPnj9KfKpofeEm4a1f9xkq4axZvN7oQxrWIwxxK7+JS2SwKRl1xz1/nabVSOX0bEVAoFRiPDorFy3jpM9/6Jy0lXgij3q/fOLFtFrHLRGWB85pdTYGVETQWPMR8aYCcaYAmNMAVYzwPnGmFrgJeDa4GiCS4BWY0xkjmGslDquxbbvpcY58aibnfWXVDgXgLrd60IU1ch0d3UxvfIvbHfPIX2YNXM9E+aQbhrobgp/v6VVf3+EHPYRWPzFYe2/P2HMiIBmdT6fn6S199MoKUxffvS1cQCFRQvoNi66SsNfI/ev999msW8NldOuR4aRkAD0TJhLrOnCsy+8zWyNMbT982cYsTHpgq8Oq4zJmSnsIB9n7frQBqeUGjdGcx6sV7BquHYBDwJfGMVjKaXUsBhjyPCU0xFXMKJycqfNI2CE3sqNoQlshNb+9ddk0ETglOHdJALEFVpzGVVuDu/gA52dnUxa/xMq7HlMP+3KYZfjnTCHZNNCd2PFkTceRe+99AdKAlupm38LMsS5vA6WlRzHNplEzL7wDnTR6/UR89Z3aCeWGRcP/7OWOMWqlawN80AX773/Nmd0vcLuvMtwpQxvVFG7TaiJnUlG57aIqJFTSo29kCZYwZqshuBzY4z5ojFmsjFmtjEm8qZpV0od9xrqqsigCX/ajBGVExOXSJUti6jG8Depa2ltoXDrA+x2TWfGSRcPu5z8WdZw4B1h7re08vH/Jo9aes68G7E7hl1OwuRFAFRuCl+zurp99Uzd+CPKnYXMPH94tXFg1cjtSygmu3sH+L0hjPDovPn0/czzf0T1gttxxCYPu5xpRfPpMG46wzjQRVtXD/Fv3EGXLZbJV/zfiMryZO6vkYucJsNKqbEzmjVYSikV8fZttyYEdRcsGnFZ9TFTSO/aNeJyRuqjx79NDvU4zvlvxDb8P/MT0lIpteXi2he+fksfrX6HUyofZEviaUw98egHHOhv0uwT6TUOOneHZ/ABnz/Azof/HxmmEefFvxhRsghAzgm48NJWtj4k8R2tTZs2cPKOH1EWXcT08/9rRGVlp8Sx3TaF6PrwfNaMMbz7h28x12yh6ZQ7ccSnjai8xKnWRNh1m98NRXhKqXFGEyyl1HGtu/QDAkbInrlkxGX1phWRHailq6Nl5IEN07r3/8GS2idYl3IB+Scc3fxKA6mNLSKra2tY+i3V1dWQ8PJNtNkSyL/+wRGXl5aUwE77ZOLqw9NPbsUjd3FK1xtsm3YzWbOPbuLngWTMsG7iq8PQhLO+oRHHM9chIiRf8yew2UdcZkNiMdk9O8HbE4IIj87rLzzKOfV/ZHv6ORSc/rkRlzdl5jyaTRw9e3QkQaWOR5pgKaWOa1F1Gyiz5ZKakjristw5s7GJoWLb2hBEdvSqq8rJef1mGmxpFF3/y5CU6cucQ4pppb1+bOf0aW1rY9+Dl5Nl6um5+EFikzNCUm59Ygl5Pdsxvt6QlDdUbz37AGeW/4JNicso/vT/hKTM6TOKaTQJeMvHtlldS1s7ZQ9cxhRTRst5vyYhe/jTGxxg4hJc+GjeNbaTW7/9xl9Zuv42Kt1TmXrj70c02M1+mYnRbLJNJz5MybxSKrw0wVJKHb+MIadrK3VxRSEpLmOaNShEa+nYDzzQ2lRP10MXk0AH3k89ijth5AkjQPwkq+lk1aaxqyVpaWmm7JcXMsu7mV0n/Zi8eWeGrvC8RUThpWHX2HULfue5Bzh547fY6S5mxheeCEltD0B0lIPdrhmkNI1ds7r6pib23HcRC3wfsvfEu8lbfGnIyp5QdKp1jC1vh6zMI3n3ny8y752baHGkk/n5v2KLTghJuSJCQ/JcMj1l0NUUkjKVUuOHJlhKqeNWU/VuUmjFlzUvJOVl5k2l3URD7eaQlDdUTY0NVP7qIib6y9l7xm+ZWDTy5o77Fc5ajNfYx2w48JqaKip+eT6zPBvZtOiHFJ3znyEtf/9N/L4toz/QRSBgeOOR/+GUDd9kb/QsJn7pbziiYkJ6jLYJJ5Djr8Tbti+k5Q6koqKMuvvPZY53PdsW/5Cp54Z2cOCZkwvYZXKwVawMabkDMcbw6jMPsfDd/6TdkULSza/gTgpNLel+zgLrOmzZ+a+QlquUinyaYCmljltVW6xamaQpRz9x7UBsdhsVrkkktI7dyGG1VaU0/epMpvu2s/PU+yha+smQlp+cmMAeWz4x9etDWu5Atm9YReC3y5nu28Hu0+6j5IKbQ36MqVOmUW1SoWJ0m9W1dXTw7s/+gzP23sO2hJOYfMurRMUNf5S9wcRMWQpA5Ya3Ql52fx+ufAvnQ8uZEthD2Rm/ZsZ5nw/5MdxOO7ujZ5PZumFUhzfv6unln7/+Cudu+iq17smkfvktotMLQn6cvNlL8RkbDVtHd6CLLdu387f7v0p9Y+OoHkcpNXSaYCmljls9pWvwGDuFs0KTYAG0JUwj17sXMwbz32xZ9x6BB88k21/NzjMeYtYZV4/KcWoT5zCxeytmlIYDN8bw9vMPkvPcxUThoerSZ5l2+rWjciyXw8Ze9ywmtI5es7q9u7ZR8bPTOa3jFTZO+iwzb3kJh3t4E/AeSWHJyfQaJx27RqdGzu8P8MZj9zDz75/CJkLzlX9j0qn/MSrHAujOXEic6aC3ZnRqgXeVlrHlnnM4q/4RNk24iIlffQt34oRROVbRxAy2UoC9anSSeWMM//zbk6Q/fiYXNjzE9n/+cVSOo5Q6eppgKaWOW7ENG9nrmERsbAhvfjNnE0c3+yp2hK7MAXzw3C+Z9OKlOCVA46eeY+apoa256k8mLiGGHmp3hL7fUmd7K//++Wc4bcNt1EUV4Pz82xTOWxby4/TXkzmf9EA9nSEeuMMYw7vP/YbUPy2nIFDGjtN+Rcm1Px35cOyHkZWaxDbbFGLrQn9uqqsrWfPjCzhj5/9QHjubuC+/R1YIRts8nPQia3TFyo2hrZEzxrDi708T+8dllPg/Yufiuyn+/J+whbjJZn9Ou43KuBKy2jeDzxPSsptb23jz5//JmWv+Hx5XMvUkEV02urWYSqmh0wRLKXVcMgE/E3u305g4K6TlJubPBaBu5+iMJNjR0c6/fnENizZ+hz3uIqK+8B55xaeMyrH2yy5ZDkDdphUhLXfL2ndo/NkSlrS8wpq8Gyj8+rskZuSH9BgDSSm2Bs0oW/NKyMpsaKhn5U8uY+nGb1IXVUD3jW8zbfno1CgerC55PhN7tmN6WkNW5srX/4Ljd6cwv2cVH826jWm3vUFMclbIyh9Myew57DNJ9O4O3aAqLa0tvPOLG1m26nMYZwwdV7/C1PO+FJLRAo/Ek3cybnrp2B26flhrV71L470nc0brs3yUcxVZt62kNGUp0zrX4ukd29ExlVID0wRLKXVcqtn9EXF0IzknhLTcnBnzCRihuyL0TdC2rf8X+356Eic1v8TqnGuZdts/SUjPDvlxDjZp0jSqSA/Z4AMej5cVf/g2U166FLfpZds5j7HgP3+OzekKSflHMnPOEhpMIv6dofnGf/Xbf8Nz/4ks7HiLDyd9ninfeIe0iTNCUvZQ2KeegQM/NetfG3FZzS0tvPWLG1ny/mfptcfR8OlXmf2p78IIJqw+GvHRLna4S8hsWhWSflir33+NlntP5LSW51iffRUZX19NSoj6XA5F7vxz8Bo7tetGnsx3dvfy6u++TfErl5IibZSd+wizP/dbbFExuGeeTbx0s2nVP0MQtVJqpDTBUkodl2q3Wd8op08PbZOnhIRkqmyZRDVuDVmZfr+f9x+9k0nPX0SCaWf7mQ+z8HO/xDFGCYnNJpTHlpDbvn7EEw7v2baBnT9ayrLy+9mReDLRX/k3RSddEJpAh8jtcrIt5gRym0d2E9/c3Mw7v7iBhW99BmwOqj/5PPOu/SFid4Yw2iObvvBM2k00bR/9fUTlrHrrb7T/fDHLm59lY9anyPz6SrJmLApRlEPXNvEMUgLNdJQNf+TKts4uXv/VV5j32pXEioe95z/O3Jt+i30UmwQOZM7kPDbKNFxlIxt6ft26D9hzz1LOrb6fvUknEvOVD8hfcmnf+mknXoQXO20bXhphxEqpUBhxgiUi/yUi20Rks4j8uN/yO0Rkl4hsF5FzRnocpZQKJX/5GjqNm/zpoRmivb99MVNI7wxNH6zail1s/dFyTt7zC7bELcH1XyuZfsonQlL20eieeBoppoWGHcObBNbv9/P+n/+brCfOJM9fzkeL76H41peID9EEwkerJ+9Ukk0LzcOcs+yDt16k8xeLObX5OT7MupK021Yzcc6y0AY5RLlpiax3ziGt9p1hJcDNzc28/YsbWbjiapw2Q9mFT1Hy/36P0x03CtEeWfq8C/Eboe6DF4a1/7pVb1H7kxM5q/5htqWfS8LXVlO4aGyT+P0cdhs1aSeS27OdQEfDUe/f0d3Lq7+7g1kvnk9+oIrdS+9lxi1/PWRI+ai4ZHbELWJm42t4vL5Qha+UGqYR9bwVkeXAJcAcY0yviEwILi8CrgJmAdnAP0VkmjHGP9KAj0cBf4Dm5nqa6iroaKrD09mCr7sNf3crpqcN6W2HgI9AwI+YAEIAO+C3R+GzR2NcMbii43HGpeFKziEmNYeE9FzSkhJxObQSUx2fEps3Ueqayixn6GsbPBPmkLP3XVobakhMG36/lXV//wNTVn2HScbH6jnfZ8GlX0bGqKnWwfIWXYJ/y/eoW/0saUdZ61e6cxMdT/8/TvZu4qPYxeRc+yCzM0e/r9Xh5C68gMD271Px72dJnjT0ZqLNzU189MitnNryAtW2LPZe8BfmnXD2KEY6NJ15y0nbu5K20vUkFA79S4PVK14ia8VtnEYd67OvYNa1P8UZosl2h2vu9ElskOlM2PMa8H9D3q+1vZ21j3yTU+sfp9WWyJ7TH6D41E+PXqBDFDvrfGxv/4HylX9h4plDH95+3Zp/E/XylznX7GBb8qnkX/tbJqcM3iQ4UHwFGStvZe37L3PCsktCEbpSaphGOrTR54EfGmN6AYwx+2c6vAR4Mrh8r4jsAhYB/x7h8Y45JhCgob6G+oodtNXsJtBUiqO9Elf3PqJ7G0nwNZJiWkgVL6mDlOHDhg8HAWwYBH+wYtKFFzeDj1zUYBKotmfTHJ2PL3kK0VkzSJ80h4mTZxLlGpumR0qFg9fTQ4F3N2syrxiV8hOmngx776d0w9vMOeOqo96/pbmRHX+8mUVtr7HdMY2Yq/7AwimzRyHSoZtSkM9620zSyobex8Pv9/Ovp37M/O33kio2Ppz/v8y98PNhSxL7mz5lKhvtRaTu/SuYu4c04MEHbz5Pzju3c4qp58OcT1N87U/CVstzsPyTr8C758dUvPMws4aQYDU0NbLl0a9xasvz1Ngy2Xv+08xdEBmNTZx2GzWZZzC/9ld0VW0mJufIA9GsfPsVMt66jdOpYmP6BUy79pekJgz2X3NszVt0KntXZCLrn4IhJFjtXd28/+j3WF7zED0SzZ7T7mPGsmuP+BmdsewKOlZ+i+41j4EmWEqF1UgTrGnAUhG5G+gBbjPGrAZygP69oSuDy45Lxhga6+uo2b2erqqt0LCdqLZyEnuqmOCvJV16SO+3fSuxNNlS6XSmUhU7l/KYDGzxGbiSsohOzsAdl0x0XDKxCclExyfhcMbgGOwPr9+H8XbS2d5Ka2MdXY2V9DZX4W+tRdoqiGnbS17XKpI7/2GdpdXQY5zstOfREjcZf9oM4nKLyZ42j5TsqWPW0Vmp0VS2ZTVTxIczf+GolD+p5BS8/7DTvft9OMoE68N3/0rGG1/lBFPPyomf44Rr7sbpihqVOI+GiNCUewbzKn5Jc8VWkvNmHnb70p0f0fb0F1nq3cDmmAVkXv0g83ImjVG0RyYiNEz+BHN2/g+V618nd97gtVC1tZXsfvzrnNz2ClW2LMoufIZ5888cw2iPbMbkQla6FjKz9DmM538R18BTD5hAgPdffpTJa3/AqTTyYdaVzLrmp7hi4sc44sPLXXYDniceoOzV+5j5n78ddLv6+no++vPtLGt5ngZ7GqVn/4mSJRePYaRHlhQbxTvpF3Fxw4N0lm8gduKcAbczxvD+ildIf+fbnGv2sjVlOYXXPcCkpMwhHcfpjmNrxjksqH2ZqqoKcnLyQvk2lFJH4YgJloj8Exjo6v52cP8UYAmwEHhaRI7qP6iI3ATcBDBx4sSj2TUidXd2ULZtNS27VyN1m4lt30Omp4w0WkkLbtNjnNTYs2iNymZf/EIkuYDoCZNIzp5Cau5UEuOTSQxVQHYHYk8kzp1IXPpErNN0KF9nMzW7N9C49yO8tVtwN+9gYts6Mtpehz3AO9BNFLWufDoTp2LPKCI+r5i0yXNxp+aPyXC3EcsYAn4fPp8Pv9+Hz+cl4Pfj93nx+334/X4CwZ9+vw8JDKF9/AG/TzlosSAiCCA2AWyICEhwuc1mbWMTJLhORDACIvtf2/qeg0BwW4TgflY5B27f7xjycbl9sQjB8iJf0w6rMj2n6ORRKT86LoHNzhmk7Rt6pX1HeysbH76VkxqfpcqWSekFz7HkhNNHJb7hKlx2Ld5Hf03p339B8k0PDLhNV1cnax//Pgsr/kCaOFg/9/vMuTh8TRsPZ875n6Pp57+g87X/hblnHfJ3zOvz8a9nfs6crfeyiG7W5l1DydU/jJhaq/5EhN5FXyTp/WvY8sI9FF1x1yHb7Ni6gfYXbuOU3g8odxRQedHvmTcnsj5j+82ZMZU3ok/nlIpn6ay7ndiMyQes7/F4+ddzv6Jk689YRhubcy5nxtU/ZUJMyP57htTkc79Ex5/+RN3z32byl/96yGettKyU0qduZ1nXP6i3pbFn+W+YOYwJnbPOvgX3n15g199/Sc5nf3zkHRQ+n4+uzjZ62lvo6Wyht7uL3p4u/N4eAp4ejLeHgK8X4+sBby/G14vxe/EHAgQCfjABMAYhYHXTMAaCzw2CERsBbGCzI+JA7HYQO2Lr97Dbrf+5NgdidyA2J2J3YLM7gj+d2OwO7HYnNkfwucNabrc7sDsdOBwubHbrp8NprXM6XdgdDrAFH2LXL8rHiJgRjAglIq8CPzLGvBV8vRsr2fosgDHm/4LL/wHcZYw57N3GggULzJo1oZ8scbR4envYs/E9WnauxF63kbT2beT5K3CINSpVGzHUOPNpi5uESZtGTE4RaYUlpOdMsT7w40BrUz3l29fRUvYRpm4rce27yPGWkiEtfdt04qbGmU9r3GQ8yVNwJWYQnZxFXGoOsSlZxKVMICoqenQCNIaAz0Nvdxfenk48vZ14e7rw9nbh7enC7+nC19uNv7eLgLebgKcb493/6AFfD/h7EZ8HCXgQXy+2gMd6+D3YjRdHoNf6abw4jRcXnuBPHw582GVko6odC/xGrH8kCAYwVsrV99wc8lyC2xy6Hulfxv5S+j//+Cf0Tz+t0g5dbw7ZLsp46JJoku4sG7Ub//f/8A1OLPstzV/4iNSMw3+TvPnffyfxtVvINbWszriC2df+FHdsePvBDOZf91zG/M636fzP90jN+3gochMIsO71J0hdeTcFpor1CcuZ+Omfk5JVEL5gh+DtP9/Nabt+zMZZX6fkU98BwOPxsPbVR8n48BdMMuXsiJpNwuX3kTl1fpijPTx/wLDqh+dxgmcNtef/kfxFF2GMYdtHq2l+414WtbxKr7jYMeNLzLnsG2M2LP5wbdqymYlPnUFjVC4TPv83YpMzaW9v48PX/kTOpgeYbMrZHTUD90U/JWeU54ILhRd/9Q0uqX+AHcVfZdonv4sRYce2TVT/834WNzyPU3xsK7iGoqv+B7t7+DWKW358Bumdu3B+dQNJiUmhewORzBg625tpaailrbGWrtZ6fO31mM5G6G7E3tOEs7cFh7cDp78Tt7+LaNNFjOkmTrpDHs7+/4mCibh7BH+wp74fGz7s+LETwIYfO36xXvuD6wNi5+CvTfv/fwX6Xh283Fo52Hs32A66W5DgtjYCHHwXYcOwWmbj/NTvOasoPAMjDUZE1hpjFhyyfIQJ1s1AtjHmThGZBrwBTASKgMex+l1lB5dPPdIgF5GeYHW0NbNn3Rt07nyPxPo1TOrdhlu8ANSTTE30VLpSi3FPnE/WjMVMyJ0Skd/ajlSP18+eikoa927AU70FZ9N2kjp2k+0tJY2BJ7r0GDvdEk2PuOm1RdMrbgLiwIgNxIYRO9b3Pzbr0jc+bMYf/Gk9twWf242fKDxEmV6i8Az7j1fACL046cWJV5x4ceITJ15x4RcnfpsLv82J3xZFwObC2F0E7FEYexQBm5OA3YWxORGxg82B2OzWN1Q2O8ZmxxZ8bf3cv94BNjum37eXh4ZvBn5urD80+y9ZY0y/ZcE/VMaACfS9Png9/fYh+E2bwQQP039d/+0Dg6/riyvQt1wG3G7/MQJgQPpt3/cTPt43uPzjJKz/b2OAWjIZ7DoLbtvv972/TNekk5l/3g2D7DdyuzetZvIzZ7J6xu0svOrbA27T1tbM5j/dzuJ9f6HWNoG2c37OjCXnj1pMoVC6dwcpD59GqyOF3vN/gTMujZpNb5O05TFm+LdTZcuiY/ndTF96WbhDHRKfz8faey5mce/7bHMW0euII7drG6nSRoUtl9bFX6X47BvHTS19eUU53ofOZzIV7LUX4PZ3kEUDvcbJpqxPMO2y7xKfPn5ai7z91z+xZM0t+LHTaEslLdBAtHgot0+ka/FXmHHmjePmG/m27l7W33s5p3reYZ+kEjBCJg34jbAl9RxyLrmTlPyRT3xevu51Jr50OStyb2bZZ38UgsjDq6e9mcaaUlrqyulsrMDbXI2tsxZ3dx2xnnqSfA0kB1pwysC3mF5jp0Xi6bTF02OLw+uIxeeMw++MI+CMI+CKR6LiwJ2A3R2PIyoGZ1Q0jig3dqcbmzMauysap8uNwxWNwxWFw+XC5XDgdDiw2+3W/6C+x0F/K/b/Hw1YrVl8fh9+nx+f30vA78Pr81mtXvw+Aj5rfcDvI+Dz4vd78fuCr/1eAj6v9dPvw/g/Xm78fut1wFpOwGpJg98HAR8mYP3c/xDjRwJ+xPixGeunGCvlsvVbZjP+j//VB9+KAGb/v9a+/7H73+yB791qdDPAMsCIjf0pFbL/f7MtWHawdY1IXy1gnbuQ/PO/Rklu0tA/PGNgtBIsF/AHYC7gweqD9WZw3beBGwEfcIsx5ogTdERagmUCAUq3raVu7V+Jr1jB1N5NuMSPz9jY45xCY+oJRE06iYklp5GWFd4RsSJFZ3sLjXWVtNZX091cjenYh+lqItDbCZ5ObN5O7L4uXIFuJOAL3mgHghe2wYZVpe4XB34c+MWBCVZrG5sT7A6MzUnAHkXAEY1xuDEONziiEacbcUaD043dFRN8uHFGxeBwx+CMisHljsEZFUtUdAxudzQuhx2bbXzcOKnxxRjDrv9ZgDvQRc63N2JzfDxaoQkEWP3KH8hfczcZNLE67RPMuv7nxMQlhS/go7D27b9R+ObNpEh737JKWxb7Zv8/Si74Ao4I6DN2NLp7evngybvJrnwFAn464ifjnPNJZp12BWIfH60N+mtoamTzc/eQ3LgWjzMRyT2B6WdcS1zq+OwKvWXDB7S88xucvc3Y4jNILLmAKYsvHDeJVX89Hi8rX/odsaX/RBxO7JnFTDr1P0jMnhLS42z66QUUtK2l9tp3mDJ5WkjLDjVPVzs1ZdtprNxJb0Mp0lKGu6OChN5q0n21xNN1yD7txNBoS6XdmUZX1AT8MekQk4YzIQ13QjoxyZlEJ04gPiWDuITkY/LLbhUZRiXBCrVIS7BW/vl7LNn1cwD22gqozTiFuJlnM2neMmLjI7Odt1Iqcqx59c8sWPlFVuXeyKIbf4rf7+Ojt54m5oP7mO7bzm7HZDj/J0yeH5n9YA6nqbGe3f9+EXvAQ1LBHAqLT9SbGKUiRGvlVly/P5UdziJm3v4GLmeYvygwhs7mGmp3rae9YjOBfduIad1Fem8Zqab5gE27jYt99gm0uLLoisnFn5iHMzmX2LRckjMmkpaVT1RMZDahVscfTbCGoXzHemo/eov8xReTkTv5yDsopVQ/JhBg9S8+zaLWV6kljTjTSZx0Uy0TqCq+mRMu+Qq2cdIfUyk1vmx86T5K1n2Xt5I/xWlf+h02+xh8AWIMzTV7qdu9gY6qzUjDduLadpPpKSORjr7N2k00lY48mmMK8SdNwj1hEsk5U0jNmUpSeo5+WaPGDU2wlFIqDPx+P6tf/BWusrfxOONxTT2DktOvxBHhAwwopcY5Y9j4+5spqXqSdxMuYu5NvyE+LjTD8Qd8PuoqdtCwdwPd1VuxN24nsWMPWd5yYunp267ZxFMVHOzLnzoNd7Y12FfuxEk4HfaQxKJUOGmCpZRSSil1HDGBABsevoW55Y9QJjlUzP4Ss8+8msSEoTWxa29rpm7vZtoqt+Kr246jeTdJXXvJ9lX2DfIFsI8Ual35dMRPxqRPJzZ3FhmTSsjIzNV+zuqYpgmWUkoppdRxaOe/nifqje8x0V9Gp4mi1DWVlvipSGw6xhmD3XgJeHuR7ibcPfus0fm89Uygqa+MgBFqbBNoiJpIV+IUJH0m8ROLyZ5cQnJqehjfnVLhowmWUkoppdRxygT87Fz1Ch0bXiS2cRM53jLiDhqhr5U4mmwptDvT8MRk4E+ahCtjGol5RWQWFhETE3mTbCsVToMlWNq7WimllFLqGCc2O9NOvAhOvKhvmc/rwe/pxNhcuJxRJDoc6BjJSo2cJlhKKaWUUschh9OlA+4oNQp0HEyllFJKKaWUChFNsJRSSimllFIqRDTBUkoppZRSSqkQiahRBEWkHigLdxwHSQMawh2EGjN6vo8feq6PH3qujy96vo8feq6PL5F4vvONMYfMUxBRCVYkEpE1Aw2/qI5Ner6PH3qujx96ro8ver6PH3qujy/j6XxrE0GllFJKKaWUChFNsJRSSimllFIqRDTBOrLfhTsANab0fB8/9FwfP/RcH1/0fB8/9FwfX8bN+dY+WEoppZRSSikVIlqDpZRSSimllFIhogmWUkoppZRSSoWIJliHISLnish2EdklIt8MdzwqdEQkT0TeEpEtIrJZRL4SXJ4iIq+LyM7gz+Rwx6pCQ0TsIvKhiPwt+LpQRFYFr++nRMQV7hhVaIhIkog8IyLbRGSriJyo1/axSURuDf4N3yQiT4iIW6/tY4eI/EFE9onIpn7LBryWxXJf8LxvFJH54YtcHa1BzvU9wb/jG0XkeRFJ6rfujuC53i4i54Ql6MPQBGsQImIHfgWcBxQBnxaRovBGpULIB3zNGFMELAG+GDy/3wTeMMZMBd4IvlbHhq8AW/u9/hFwrzFmCtAM/GdYolKj4RfAq8aYGcAcrPOu1/YxRkRygC8DC4wxxYAduAq9to8lDwPnHrRssGv5PGBq8HET8JsxilGFxsMceq5fB4qNMSXADuAOgOD92lXArOA+vw7et0cMTbAGtwjYZYzZY4zxAE8Cl4Q5JhUixpgaY8y64PN2rBuwHKxz/Ehws0eAS8MSoAopEckFLgB+H3wtwOnAM8FN9FwfI0QkETgVeAjAGOMxxrSg1/axygFEi4gDiAFq0Gv7mGGMeQdoOmjxYNfyJcCjxrISSBKRrDEJVI3YQOfaGPOaMcYXfLkSyA0+vwR40hjTa4zZC+zCum+PGJpgDS4HqOj3ujK4TB1jRKQAmAesAjKMMTXBVbVARrjiUiH1c+B2IBB8nQq09PvDrdf3saMQqAf+GGwS+nsRiUWv7WOOMaYK+AlQjpVYtQJr0Wv7WDfYtaz3bce2G4G/B59H/LnWBEsd10QkDngWuMUY09Z/nbHmMNB5DMY5EbkQ2GeMWRvuWNSYcADzgd8YY+YBnRzUHFCv7WNDsO/NJVhJdTYQy6FNjNQxTK/l44OIfBura8dj4Y5lqDTBGlwVkNfvdW5wmTpGiIgTK7l6zBjzXHBx3f4mBcGf+8IVnwqZk4GLRaQUq6nv6Vh9dJKCzYpAr+9jSSVQaYxZFXz9DFbCpdf2sedMYK8xpt4Y4wWew7re9do+tg12Let92zFIRK4HLgQ+Yz6evDfiz7UmWINbDUwNjkbkwupM91KYY1IhEuyD8xCw1Rjzs36rXgKuCz6/DnhxrGNToWWMucMYk2uMKcC6jt80xnwGeAu4PLiZnutjhDGmFqgQkenBRWcAW9Br+1hUDiwRkZjg3/T951qv7WPbYNfyS8C1wdEElwCt/ZoSqnFIRM7Fat5/sTGmq9+ql4CrRCRKRAqxBjb5IBwxDkY+TgbVwUTkfKy+G3bgD8aYu8MbkQoVETkFeBf4iI/75XwLqx/W08BEoAy4whhzcAdbNU6JyDLgNmPMhSIyCatGKwX4ELjaGNMbxvBUiIjIXKwBTVzAHuAGrC8U9do+xojI94ErsZoPfQh8Fqsvhl7bxwAReQJYBqQBdcD3gBcY4FoOJtn3YzUT7QJuMMasCUPYahgGOdd3AFFAY3CzlcaYm4PbfxurX5YPq5vH3w8uM5w0wVJKKaWUUkqpENEmgkoppZRSSikVIppgKaWUUkoppVSIaIKllFJKKaWUUiGiCZZSSimllFJKhYgmWEoppZRSSikVIppgKaWUUkoppVSIaIKllFJKKaWUUiHy/wHLbATuLDJ08AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -4627,31 +4627,31 @@ " 18\n", " False\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " bAP.soma.v\n", - " 0.000947\n", - " 5.18e-06\n", + " 0.00102\n", + " 3.19e-05\n", " \n", " \n", " 19\n", " False\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step1.soma.v\n", - " 0.00839\n", - " 5.25e-06\n", + " 0.00923\n", + " 1.11e-05\n", " \n", " \n", " 20\n", " False\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step3.soma.v\n", - " 0.00639\n", - " 9.11e-06\n", + " 0.00765\n", + " 1.28e-05\n", " \n", " \n", "\n", @@ -4659,14 +4659,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "18 False 6 0.0537 0.0124 bAP.soma.v \n", - "19 False 6 0.0537 0.0124 Step1.soma.v \n", - "20 False 6 0.0537 0.0124 Step3.soma.v \n", + "18 False 6 0.0562 0.0128 bAP.soma.v \n", + "19 False 6 0.0562 0.0128 Step1.soma.v \n", + "20 False 6 0.0562 0.0128 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "18 0.000947 5.18e-06 \n", - "19 0.00839 5.25e-06 \n", - "20 0.00639 9.11e-06 " + "18 0.00102 3.19e-05 \n", + "19 0.00923 1.11e-05 \n", + "20 0.00765 1.28e-05 " ] }, "metadata": {}, @@ -4674,7 +4674,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADjI0lEQVR4nOzdd3hc1bXw4d+aIo16t2QVW3KvcsE2Bmx6KKEHgiEEMNyECwkJcCkhJCEON+TLJSQklMSQQCBATO+9GjAB3Bsu4CJLsmT1Lo00ZX9/zEiMZDVbI43Kep9nrDlt7zVzNPJZs8sRYwxKKaWUUkoppfrOEuoAlFJKKaWUUmq40ARLKaWUUkoppYJEEyyllFJKKaWUChJNsJRSSimllFIqSDTBUkoppZRSSqkg0QRLKaWUUkoppYJEEyyllBpkRCRbRIyI2EIdixoZRORLETk+1HEopdRwoAmWUkqpIU9ElotIvf/RIiKugOU3Qx3fYGeMmW6MWRnsckXkZBFZLyINIlIoIhcGuw6llBpsRG80rJRSwSUiNmOMuw/HZwN7AXtfyhmpRGQZMMEY8/1OtvXp3AykoRRrZ0RkGrASuBx4F4gD4o0xu0MZl1JK9TdtwVJKqSAQkTwR+ZmIbAYaRMQmIgtF5D8iUi0imwK7YInIShH5fyKyWkRqReRlEUnsouwrRGS7iNSJyB4R+e8O288RkY3+cnaLyGn+9XEi8rCIFIvIfhH5rYhYe3gd40XkAxGpEJFyEXlSROIDtlWKyFz/crqIlLW+LhE529/VrNr/+qZ2eH9uEpHNIlIjIk+LiOPQ3+lD18W5MSIyIWCfR0XktwHLZ/rf02r/OcztZV3H+1tqbvO/f3kicknA9jNEZIP/XBX4k8HWba1dQ/9LRPKBD/zrnxWRA/737WMRmd4h7r+KyJv+1rpPRSRNRP4sIlUiskNE5vTyPTq5N6/xEPwSeNAY86Yxxm2MqdDkSik1EmiCpZRSwXMxcAYQD6QCrwO/BRKBm4DnRSQlYP/LgCuB0YAbuLeLckuBM4FY4ArgnoAkZwHwL+Bmf73HAnn+4x71lzsBmAOcAvygh9cgwP8D0oGpQBawDMB/cfwz4AkRiQT+CTxmjFkpIpOAFcD1QArwBvCqiIQFlH0hcBqQA+QCSzsNQGSRP7Hp6rGoh9fQmbZz01OrkD8heQT4byAJeBB4RUTCe1lXGpAMZOBrvXlIRCb7tzXgO+/x/niuEZFzOxx/HL73/lT/8pvARGAUsB54ssP+F+JLZpKBZuAz/37JwHPAn3oZd6dE5Nbuzkc3hy70H7/Fn+Q/0dWXCEopNZxogqWUUsFzrzGmwBjTBHwfeMMY84YxxmuMeRdYC3w7YP/HjTFbjTENwK+ACztrYTLGvG6M2W18PgLeARb7N/8X8Igx5l1/PfuNMTtEJNVf1/XGmAZjTClwD3BRdy/AGLPLX1azMaYM38X5cQHb/w7sAr7Alxj+wr9pCfC6/1gXcDcQARzd4f0pMsZUAq8Cs7uIYZUxJr6bx6ruXkMXAs9NT67C1/LyhTHGY4x5DF/isvAQ6vuV/z38CF+ifSGAMWalMWaL/1xtxpeUHtfh2GX+c9bkP+YRY0ydMaYZX7I7S0TiAvZ/0RizzhjjBF4EnMaYfxljPMDT+JLrw2aM+X1356ObQzOBS4Hz8SWIEcB9fYlFKaWGAk2wlFIqeAoCno8Fvtvhm/5F+JKSzvbfB9jxtTq0IyKni8jn/u551fgSp9b9soDOul2N9ZdXHFD/g/haQbokIqki8pS/S2Et8EQnMf0dmAHc57/oB1+L177WHYwxXv/rywg47kDA80YgurtYgqyg513ajAVu7HDusvC9xt6o8ifNrfa1HisiR4rIh/6ulTXA1Rz8/rbFKiJWEfm9+Lp+1vJN62TgMSUBz5s6WR7I9zlQE/BPY8xXxph64He0/4JBKaWGJU2wlFIqeAJnDSrA10IV+G1/lDHm9wH7ZAU8HwO4gPLAAv3d0p7H1yKU6m8xeANfV77WesZ3EksBvlaX5ID6Y40x0zvZN9Dv/K9jpjEmFl9LXGtdiEg08GfgYWBZQJevInyJSet+4n99+3uo7yAisli+mQGws8finks5SMcZnRqByIDltIDnBcCdHc5dpDFmRS/rShCRqIDlMfjeH4B/A68AWcaYOGA5Ae9vJ7F+DzgHOBnfJBHZ/vUdj+k3/vFkXZ6Pbg7dTPvXorNqKaVGBE2wlFKqfzwBnCUip/pbIRz+CRAyA/b5vohM849nugN4zt+tK1AYEA6UAW4ROR3fWKpWDwNXiMhJImIRkQwRmWKMKcbXlfCPIhLr3zZeRDp2R+soBqgHakQkA9/YrkB/AdYaY36Ar+vbcv/6Z4Az/HHYgRvxJXj/6emN6sgY84kxJrqbxyeHWmYnNgLf85+b02jfTe/vwNX+1iYRkSjxTU4RA20TSzzaQ/m/EZEwfzJ4JvCsf30MUGmMcfrHz32vh3Ji8L2PFfgSwt8dwmsMCmPM77o7H90c+k98v5vj/L/jtwKvDUzUSikVOppgKaVUPzDGFOBrebgNX3JUgC9ZCfy7+zi+iSgOAA7gp52UU+df/wxQhe+C/JWA7avxT3wB1AAf8U1L0mX4ErRt/mOfo30Xxc78BpjrL+t14IXWDSJyDr5JKq7xr/ofYK6IXGKM2Ymvtes+fK1wZwFnGWNaeqgvVK7DF2M1cAnwUusGY8xa4IfA/fjet120n5AjC/i0m7IP+I8rwjchxdXGmB3+bT8C7hCROuB2fOe1O//C18VwP77z+HlPL2ywMMY8gi/+L/C9hmY6+R1XSqnhRu+DpZRSISAiK4EnjDH/CHUsqvf8syJuAnL9k3l03H48vvOa2XGbUkqpkcEW6gCUUkqpocLfIje1xx2VUkqNWNpFUCmlRhgRWd7FhAXLez5aDUUiMqabiSrGhDo+pZQaTrSLoFJKKaWUUkoFibZgKaWUUkoppVSQDKoxWMnJySY7OzvUYSillFJKKaVUt9atW1dujEnpuH5QJVjZ2dmsXbs21GEopZRSSimlVLdEZF9n67WLoFJKKaWUUkoFiSZYSimllFJKKRUkmmAppZRSSimlVJAMqjFYnXG5XBQWFuJ0OkMdihoEHA4HmZmZ2O32UIeihjFni5tX/3oLMvl0Ljj9W6EORymllFJDyKBPsAoLC4mJiSE7OxsRCXU4KoSMMVRUVFBYWEhOTk6ow1HD2OpP3+W71Q/DFw9Tc2wJcVGOUIeklFJKqSFi0HcRdDqdJCUlaXKlEBGSkpK0NVP1u/DtL7Q937b+kxBGopRSSqmhZtAnWIAmV6qN/i6ogRBZu5sySQKgbufHIY5GKaWUUkPJoO8iqJRSAy2qpZz9kVNwN+0mvmJdqMNRSiml1BAyJFqwQk1EuPHGG9uW7777bpYtWxa6gAIcf/zx3d6c+dxzz2XhwoXt1i1btoyMjAxmz57NjBkzeOWVV/o7TKWGlERvBc0RqZRHT2ZU016MMaEOSSmllFJDhCZYvRAeHs4LL7xAeXl5UMs1xuD1eoNaZqDq6mrWrVtHTU0Ne/bsabfthhtuYOPGjTz77LNceeWV/RqHUkOJp6WJeOpxRabiSZpEpjlAWXVtqMNSSiml1BChCVYv2Gw2rrrqKu65556DtpWVlXH++eczf/585s+fz6effgr4Wonuvvvutv1mzJhBXl4eeXl5TJ48mcsuu4wZM2ZQUFDAzTffzIwZM5g5cyZPP/00ACtXruT444/nggsuYMqUKVxyySVdfov++OOPt7VGrV69um39Cy+8wFlnncVFF13EU0891emxU6dOxWaztUseb731VqZNm0Zubi433XQTAHl5eZx44onk5uZy0kknkZ+fD8DSpUu55pprWLhwIePGjWPlypVceeWVTJ06laVLl7aVec011zBv3jymT5/Or3/964PiqKmpYezYsW2JXkNDA1lZWbhcrk7jVqq/1JUV+p5EpxKZMQ2beCnYtTW0QSmllFJqyBhSY7B+8+qXbCsK7jfJ09Jj+fVZ03vc78c//jG5ubnccsst7dZfd9113HDDDSxatIj8/HxOPfVUtm/f3m1ZX3/9NY899hgLFy7k+eefZ+PGjWzatIny8nLmz5/PscceC8CGDRv48ssvSU9P55hjjuHTTz9l0aJFB5XX2NjIxo0b+fjjj7nyyivZutV3MbhixQpuv/12UlNTOf/887ntttsOOvaLL77AYrGQkpICQEVFBS+++CI7duxARKiurgbgJz/5CZdffjmXX345jzzyCD/96U956aWXAKiqquKzzz7jlVde4eyzz+bTTz/lH//4B/Pnz2fjxo3Mnj2bO++8k8TERDweDyeddBKbN28mNze3LY64uDhmz57NRx99xAknnMBrr73Gqaeeqve7UgOuvryQeMAaN5pRORNgFVTnb4X5x4Q6NKWUUkoNAX1uwRKRLBH5UES2iciXInKdf/0yEdkvIhv9j2/3PdzQiY2N5bLLLuPee+9tt/69997j2muvZfbs2Zx99tnU1tZSX1/fbVljx45tGxe1atUqLr74YqxWK6mpqRx33HGsWbMGgAULFpCZmYnFYmH27Nnk5eV1Wt7FF18MwLHHHkttbS3V1dWUlJTw9ddfs2jRIiZNmoTdbm9LvADuueceZs+ezU033cTTTz/dNjtfXFwcDoeD//qv/+KFF14gMjISgM8++4zvfe97AFx66aWsWrWqrayzzjoLEWHmzJmkpqYyc+ZMLBYL06dPb4v5mWeeYe7cucyZM4cvv/ySbdu2HfQ6lixZ0taC99RTT7FkyZJu30el+kNjbQUAjthk4rKm4kWQsp0hjkoppZRSQ0UwWrDcwI3GmPUiEgOsE5F3/dvuMcbc3c2xh6Q3LU396frrr2fu3LlcccUVbeu8Xi+ff/45Dkf7G5HabLZ245oC790UFRXVq/rCw8PbnlutVtxud6f7dZy6XER45plnqKqqarshb21tLStWrODOO+8EfGOwWrv/dYx79erVvP/++zz33HPcf//9fPDBB72K02KxtIvZYrHgdrvZu3cvd999N2vWrCEhIYGlS5d2ei+rs88+m9tuu43KykrWrVvHiSee2G29SvWHxgZfK3l0dCwSFkWJZRSRtbtDHJVSSimlhoo+t2AZY4qNMev9z+uA7UBGX8sdjBITE7nwwgt5+OGH29adcsop3HfffW3LGzduBCA7O5v169cDsH79evbu3dtpmYsXL+bpp5/G4/FQVlbGxx9/zIIFCw4prtZWn1WrVhEXF0dcXBwrVqzgrbfeahv3tW7dui7HYQWqr6+npqaGb3/729xzzz1s2rQJgKOPPrrt+CeffJLFixf3Or7a2lqioqKIi4ujpKSEN998s9P9oqOjmT9/Ptdddx1nnnkmVqu113UoFSweZwMAEVGxAFQ4skl25oUwIqWUUkoNJUGd5EJEsoE5wBf+VdeKyGYReUREEro45ioRWSsia8vKyoIZTr+48cYb200Ice+997J27Vpyc3OZNm0ay5cvB+D888+nsrKS6dOnc//99zNp0qROyzvvvPPIzc1l1qxZnHjiidx1112kpaUdUkwOh4M5c+Zw9dVX8/DDD5OXl8e+ffvaTc+ek5NDXFwcX3zxRadlfPvb36aoqIi6ujrOPPNMcnNzWbRoEX/6058AuO+++/jnP/9Jbm4ujz/+OH/5y196Hd+sWbOYM2cOU6ZM4Xvf+x7HHPPNWJbbb7+93TTxS5Ys4YknntDugSpkvC2+BCssMhqAxrjxZHr24+qiBVkppZRSKpAE6/4uIhINfATcaYx5QURSgXLAAP8LjDbGXNldGfPmzTMd7+m0fft2pk6dGpQY1fCgvxOqP61+/Fcs2H0vtTfmExsTx7rn7+aILf9L4RVryRw7MdThKaWUUmqQEJF1xph5HdcHpQVLROzA88CTxpgXAIwxJcYYjzHGC/wdOLR+b0opFQKmpRGvESIjfC1YUWm+1ufy/B2hDEsppZRSQ0QwZhEU4GFguzHmTwHrRwfsdh6gN5JRSg164m6kiTBsNt8YwOQxUwBoOvB1KMNSSiml1BARjFkEjwEuBbaIyEb/utuAi0VkNr4ugnnAfwehLqWU6lcWVyNOcdA612dS+jhajBVvxZ6QxqWUUkqpoaHPCZYxZhUgnWx6o69lK6XUQBNXI06+ue2CWG2UWNMIr80LXVBKKaWUGjKCOougUkoNdVZPE82W9ve1q3JkEu8sDFFESimllBpKNMFSSqkANk8jLdI+wXLGZJPmKcbr8XZxlFJKKaWUjyZYvfTSSy8hIuzY0fVMYnl5ecyYMSNodS5dupTnnnuuy+3XX389GRkZeL3fXPQ9+uijpKSkMHv2bKZNm8bf//73oMWj1Ehg9zhxWdsnWCTmEC1Oyku0FUsppZRS3dMEq5dWrFjBokWLWLFiRafb3UG4CanH4+n1vl6vlxdffJGsrCw++uijdtuWLFnCxo0bWblyJbfddhslJSV9jk2pkSLM00SLJbLduohU3/2vyvK3hyIkpZRSSg0hmmD1Qn19PatWreLhhx/mqaeealu/cuVKFi9ezNlnn820adMAX6J1ySWXMHXqVC644AIaGxsBeP/995kzZw4zZ87kyiuvpLm5GYDs7Gx+9rOfMXfuXJ599tmD6n7vvfeYN28ekyZN4rXXXmtX9/Tp07nmmmu6TPpGjRrF+PHj2bdvX9u6e++9l2nTppGbm8tFF10EQGVlJeeeey65ubksXLiQzZs3A7Bs2TIuv/xyFi9ezNixY3nhhRe45ZZbmDlzJqeddhoulwuAO+64g/nz5zNjxgyuuuoqOt682uv1kp2dTXV1ddu6iRMnauKnBqUw04THFtFuXWLWZAAainWqdqWUUkp1LxjTtA+cN2+FA1uCW2baTDj9993u8vLLL3PaaacxadIkkpKSWLduHUcccQQA69evZ+vWreTk5JCXl8fOnTt5+OGHOeaYY7jyyiv561//yrXXXsvSpUt5//33mTRpEpdddhl/+9vfuP766wFISkpi/fr1ndadl5fH6tWr2b17NyeccAK7du3C4XCwYsUKLr74Ys455xxuu+02XC4Xdru93bF79uxhz549TJgwoW3d73//e/bu3Ut4eHhbwvPrX/+aOXPm8NJLL/HBBx9w2WWXsXHjRgB2797Nhx9+yLZt2zjqqKN4/vnnueuuuzjvvPN4/fXXOffcc7n22mu5/fbbAbj00kt57bXXOOuss9rqtFgsnHPOObz44otcccUVfPHFF4wdO5bU1NRenyalBkq4cR6UYI3KmojbWPBU7A5RVEoppZQaKrQFqxdWrFjR1tpz0UUXtWsxWrBgATk5OW3LWVlZHHPMMQB8//vfZ9WqVezcuZOcnBwmTZoEwOWXX87HH3/cdsySJUu6rPvCCy/EYrEwceJExo0bx44dO2hpaeGNN97g3HPPJTY2liOPPJK333677Zinn36a2bNnc/HFF/Pggw+SmJjYti03N5dLLrmEJ554ApvNl1+vWrWKSy+9FIATTzyRiooKamtrATj99NOx2+3MnDkTj8fDaaedBsDMmTPJy8sD4MMPP+TII49k5syZfPDBB3z55ZcHvY4lS5bw9NNPA/DUU091+5qVCiWHacZra99F0B7moMSSQlhNXmiCUkoppdSQMbRasHpoaeoPlZWVfPDBB2zZsgURwePxICL84Q9/ACAqKqrd/iLS7XJnOpbRU3lvv/021dXVzJw5E4DGxkYiIiI488wzAV8yc//993da3uuvv87HH3/Mq6++yp133smWLd23CIaHhwO+Vii73d4Wj8Viwe1243Q6+dGPfsTatWvJyspi2bJlOJ3Og8o56qij2LVrF2VlZbz00kv88pe/7LZepULCGBzGiemQYAFUhGUS21QQgqCUUkopNZRoC1YPnnvuOS699FL27dtHXl4eBQUF5OTk8Mknn3S6f35+Pp999hkA//73v1m0aBGTJ08mLy+PXbt2AfD4449z3HHH9ar+Z599Fq/Xy+7du9mzZw+TJ09mxYoV/OMf/yAvL4+8vDz27t3Lu+++2zbeqyter5eCggJOOOEE/u///o+amhrq6+tZvHgxTz75JOAb25WcnExsbGyv4mtNppKTk6mvr+9y1kMR4bzzzuN//ud/mDp1KklJSb0qX6mBZNzN2MSLCTs4wWqIHkOaez90GGOolFJKKRVIE6werFixgvPOO6/duvPPP7/LiSUmT57MAw88wNSpU6mqquKaa67B4XDwz3/+k+9+97vMnDkTi8XC1Vdf3av6x4wZw4IFCzj99NNZvnw5Xq+Xt956izPOOKNtn6ioKBYtWsSrr77aaRk/+MEPWLt2LR6Ph+9///vMnDmTOXPm8NOf/pT4+HiWLVvGunXryM3N5dZbb+Wxxx7r5bsD8fHx/PCHP2TGjBmceuqpzJ8/v23b8uXLWb58edvykiVLeOKJJ7R7oBq0mpvqAZBOEixvfA4xNFJfXTbQYSmllFJqCJGOM76F0rx588zatWvbrdu+fTtTp04NUURqMNLfCdVfqov3Ev/gbFZNvZ1FS25st23t208y77MfsffcV8iZ3bsWaKWUUkoNXyKyzhgzr+N6bcFSSim/5qY6AKzhB4+LjMvwTdVeW7RzQGNSSiml1NCiCZZSSvm1NPoSLIsj+qBtqdmT8RrBVbZroMNSSiml1BAyJBKswdSNUYWW/i6o/tTiH4Nl66QFKzY6hgOShLU6b4CjUkoppdRQMugTLIfDQUVFhV5YK4wxVFRU4HA4Qh2KGqZcTn+C1UkLFkCZPYPohvyBDEkppZRSQ8ygvw9WZmYmhYWFlJXpzF3Kl3BnZmaGOgw1TLn9CZY9ovMEqy4yi7E1H3e6TSmllFIKBiDBEpHTgL8AVuAfxphDuluw3W4nJyenX2JTSqlAnuYGAMIjO0+w3HHZxNe8hruhCltUwkCGppRSSqkhol+7CIqIFXgAOB2YBlwsItP6s06llDpcbQlWROc32ralTACgvGDHgMWklFJKqaGlv8dgLQB2GWP2GGNagKeAc/q5TqWUOiymhxasmNGTAKgu0KnalVJKKdW5/k6wMoCCgOVC/7o2InKViKwVkbU6zkopFVItvgQrIiqm080pY333wmou1analVJKKdW5kM8iaIx5yBgzzxgzLyUlJdThKKVGMONqpNGEExFm73R7alISJSYBqdozwJEppZRSaqjo7wRrP5AVsJzpX6eUUoOOxdVIE+FYLdLpdqtFOGBNJ7Jep2pXSimlVOf6O8FaA0wUkRwRCQMuAl7p5zqVUuqwWFyNOCW8231qIrJIaNbviZRSSinVuX5NsIwxbuBa4G1gO/CMMebL/qxTKaUOl8XdSLN0fyPr5tixJJlKTHP9AEWllFJKqaGk3++DZYx5A3ijv+tRSqm+snqaaJaIbvexpYyHYqjcv5OkcUcMUGRKKaWUGipCPsmFUkoNFjZPEy5r9y1YcRm+mQTL9+m9sJRSSil1ME2wlFLKz+5pwmXpvgVrdLbvXukNxV8NREhKKaWUGmI0wVJKKb8wrxOPrfsEKzUlhXITh6nUqdqVUkopdTBNsJRSyi/cOPHYIrvdx2IRSu3pRNTpVO1KKaWUOpgmWEop5RdunHh7aMECqI8cQ2Jz4QBEpJRSSqmhRhMspZTyizBOjL37FiwAb0IOaZTT2FA3AFEppZRSaijRBEsppQDjbsEuHuhFghWeOgGA/Xt1JkGllFJKtacJllJKAc1N/hsHh0X1uG9i5hQAKgs0wVJKKaVUe5pgKaUU0OTv7mcJ67kFK9U/Vbuz5Ot+jUkppZRSQ48mWEopBTjrqwAQR2yP+zpik6gkDnul3gtLKaWUUu1pgqWUUoCrsQYAa0R8r/Y/4BhHcoO2YCmllFKqPU2wlFIKaGnwJVi2iJ5bsADq4iaT5c7H7XL1Z1hKKaWUGmI0wVJKKcDjb8GyRfYuwbKkzSBCWti/d1t/hqWUUkqpIUYTLKWUAlxNvgQrLCqhV/sn5MwGoGz3hv4KSSmllFJDkCZYSinFNy1YUbG9S7CyJs/BY4SW/Zv7MyyllFJKDTGaYCmlFOBx1gIQExvfq/3DI6IpsqbjqNR7YSmllFLqG31KsETkDyKyQ0Q2i8iLIhLvX58tIk0istH/WB6UaJVSqp94nbXUGwcxkY5eH1MeOYFRTbv7MSqllFJKDTV9bcF6F5hhjMkFvgJ+HrBttzFmtv9xdR/rUUqpfmVprqNBIrBapNfHuJKnkWkOUFNT1Y+RKaWUUmoo6VOCZYx5xxjj9i9+DmT2PSSllBp4lpY6miTykI6JyJoJQMGO9f0RklJKKaWGoGCOwboSeDNgOUdENojIRyKyuKuDROQqEVkrImvLysqCGI5SSvWezVWH0xJ9SMeMnjQPgJq96/ojJKWUUkoNQbaedhCR94C0Tjb9whjzsn+fXwBu4En/tmJgjDGmQkSOAF4SkenGmNqOhRhjHgIeApg3b545vJehlFJ943DXUmfr3QyCrZIzJ1FNDNZinapdKaWUUj49JljGmJO72y4iS4EzgZOMMcZ/TDPQ7H++TkR2A5OAtX0NWCml+kOMp5ryiJxDO0iEgoipjKr7sn+CUkoppdSQ09dZBE8DbgHONsY0BqxPERGr//k4YCKwpy91KaVUf4o1tbSEJx7ycU0ps8j25FNbU9kPUSmllFJqqOnrGKz7gRjg3Q7TsR8LbBaRjcBzwNXGGL36UEoNSqalgQia8TgOPcGKyDkSixjyt37WD5EppZRSaqjpsYtgd4wxE7pY/zzwfF/KVkqpgVJfVUoMYI1OOuRjs2YcAx9B3Z7VcMwZwQ9OKaWUUkNKMGcRVEqpIam6/AAAYbGjDvnY+JR0iiSVsBKd6EIppZRSmmAppRR1lb4EKyr+0BMsgAPR0xhdvw3/PD9KKaWUGsE0wVJKjXhNVb4EKyZp9GEdb9Lnkk4ZhYX7ghmWUkoppYYgTbCUUiOep2Y/AAmpYw/r+JRpvnup52/8MGgxKaWUUmpo0gRLKTXiWeuKqDZRxMbFHdbxmdOOxokdb96nQY5MKaWUUkONJlhKqREvvPEA5ZZkROSwjrfYw9nrmE5a1bogR6aUUkqpoUYTLKXUiBfpLKHWfngTXLSqTzuS8Z69VJSXBikqpZRSSg1FmmAppUa8eHcZzZFpfSojdsrxWMSQt+H9IEWllFJKqaFIEyyl1IjW0lRPIjV4YjP7VE7OrONoMTaad30SpMiUUkopNRRpgqWUGtHKC3YCYE3K6VM5YRFR7AmfTFL5mmCEpZRSSqkhShMspdSIVrPfl2BFpU3sc1n1aQsZ795FeXl5n8tSSiml1NCkCZZSakRrOPA1AKOyp/S5rMSZp2ITL7u+eK3PZSmllFJqaNIESyk1opmKPdSYKFJHje5zWdmzT6CeCLxfvRuEyJRSSik1FGmCpZQa0aJrd1NkH3PY98AKZLGHsTt6HuNqPsfr8QYhOqWUUkoNNZpgKaVGLmMY3ZJHdfT4oBXpHncSaZSze9vaoJWplFJKqaFDEyyl1IhVV1lEPHV4kiYHrcyxC88BoHSDjsNSSimlRqI+JVgiskxE9ovIRv/j2wHbfi4iu0Rkp4ic2vdQlVIquA7s2giAI2N60MpMTh9HnmUssYUrg1amUkoppYaOYLRg3WOMme1/vAEgItOAi4DpwGnAX0XEGoS6lFIqaOrytwKQMm5WUMstSz+OKc1bKS0pCmq5SimllBr8+quL4DnAU8aYZmPMXmAXsKCf6lJKqcNTtp1aE0lGZt9uMtxR6sLvYRcPX6/8d1DLVUoppdTgF4wE61oR2Swij4hIgn9dBlAQsE+hf91BROQqEVkrImvLysqCEI5SSvVOVO1uCmxjsNmC28A+ZvpCCi3pxOx+NajlKqWUUmrw6zHBEpH3RGRrJ49zgL8B44HZQDHwx0MNwBjzkDFmnjFmXkpKyqEerpRSh8cYUp17qQriDIJtRCjKOJ3pzZvYn78n+OUrpZRSatDqMcEyxpxsjJnRyeNlY0yJMcZjjPECf+ebboD7gayAYjL965RSalBorComnjq8QZxBMNCYk36IAHvfurdfyldKKaXU4NTXWQRHByyeB2z1P38FuEhEwkUkB5gIrO5LXUopFUzF/hkEI4I4g2CgtOypbIk+mmlFz9FQX9cvdSillFJq8OnrGKy7RGSLiGwGTgBuADDGfAk8A2wD3gJ+bIzx9LEupZQKmpp9WwAYNX52v9XhWHwtidSx9aVD7j2tlFJKqSHK1peDjTGXdrPtTuDOvpSvlFL9pmw7NSaKzKxx/VbFpAWnsWHlkczc9VdK8y9i1Jgp/VaXUkoppQaH/pqmXSmlBrXIml3st43Bau2/P4NisZB44X0YI9Q+9j2qSgv7rS6llFJKDQ6aYCmlRh5jSGvOo7o/ZhDsYOy4yXx97L1kuvOx/XU+m/90Drv+81K/16uUUkqp0NAESyk14tRXlfhmEEyeNCD1zT5pCfuXvMW2mKPJrV2Ja6WOyVJKKaWGK02wlFIjTtHe7QBEpU0csDrHT5vHkTc+z+dx3yalpaDnA5RSSik1JPVpkgsVAsbgdjXT1NSIs6melqYmWpwNtDgb8XpciPHiNQaMF+P1gDEY4wGvF2PAWCx4sWGx2bDZ7FhsYdhsNmy2MGz2MKw2G7YwBzZHNHZHJHa7nTCrBREJ9StXKmhqi78GIDFzYFqwArkSxpNc8wbOukocMYkDXr9SSiml+pcmWCHgcbuoKiuipqyIhqpinNUleBqq8DqrkaYaLC212Fy1hLnriPDUE+ltINI0Ek4z4aYFmxhigJgBiNVlrNQThpMwWiSMFsJpsYThknBcFgduSzgeSzgeqwOvzYHXGo6xOTDWCLA7wBaBhEVgsTuwhEViCYvAEhaBLTwKW3gk9vAI7I4owiKiCAuPxOFw4LBbCLdZsVo0qVOHzxjj/+lfDljXXLYHgNSx/XOT4e5EZUyFPMjbsYEp808a8PrVN4zXQ7OzkabGBpqaGmhpaqTZ2Yi7pQlv68PdjHE1YdzNeNwevB43Xq8b43GD8SLGjXi9iPG0LWMMiPi+1EICHmDEAggWiyBiwSICFgsWsYDFilhsYPX9FKsNLDbEageLDYvV99xitbVtt9hsiMWO1b/eYrMjVhtWqx2rzYbV5ltvtfn2sdrtvi/XLFZsVgsW/TurlFJBpwlWMBlDTXU5ZYW7qDuwF2f5PqgtJLyhGEdzOVGuSmK9NcSZOpLFkNxJEY2EUy/RNFmicVqjaQpPptqag9sehbFFgD0CsYUjdl/iYrVHYg2PwBrmAGsYIhYQQSxWBMFYLIhYfS1QIliNF4wb43HhcbvweFx4XS68XjdetwvjdmHczYi7CXE7we1E3E1Y3E7E7cTi8T1sHicOrxObpwa7u5kwbzNhphl/CoYFc1hvodtYcBJGFWG4seHBikeseMWKV2z+xzfPPW3PrXjEhhEbXixYBBABfK+79bkEPDd8c2HR7gII8f1rAtYYLwCCF0zA3gH7+J57EePfL2Ad/nUdjxFjAmoPOLY1K/C/j9L6fpqOUdIuzm/2D9yXtv1pi/ubddLuOP9PE3hc4H7Q1Zn9JqLO1rd7Oe3XcdDmDsvS6T6dxWHMweV2tt9MqaNMEkiJHIivKdobO+1I+BQqv/ocNMHqE6ezieqKEuoqS2mqKcVVV46noQLTVI1x1kJzHZaWeqzuBuzuesI9DTi8jUSaRiJNE1HixAE4gIRQv5gQcBkrLix4Ebz+n0YseLD4P/kW33r55rlp3Vfa72OktQz/evGNQAj8RPo6QnTy2W9d1cUfl/Z/q7sQ8EWKdPGXhA7bjOls346hBWw3XZd70L50eO3dxNSXfTvuf9Cxpn/qUX3T1f+BqmubrdOIvOBvnDBlVKhD6RVNsA6Rx+2iJP9ryvZto7F4J5bK3UQ25BPbfIAUTylx0kxcwP4txkaZJYkaaxIVjrEUO5IwkSlITCphcaOISBhNdOJo4hJGERWXSKQ9jMiQvbogMQY8LeBqwtXcSLOzAZezkRZnAy5nE+6WRtzORjwtjd98S+xq8n1L7GoCly+ZMx4XxuMCrwu8bvC4wetGvC4sxoPVuLEb33ObcWPBg9V4OiQy0Jp4fJPMcNDPb75j9j33Bqz1+pM0b8Ae3g4/fRcUgd9UB2yXrtb5LkQQ/Bclrcu2tmPa3tLWBDHgeWt50PrDv76tO2dAghmwjwlc1/a8dV/fOyIIRlpr7FhnwOFtpZi2WLr9D1y+2d75f94dypDOUqzAcgPiaT3fncbWfkMxIOMWk8LAS8qYQLGk4Nj/WQhqH/yaGuooP5BPbWkBjZX7aakuRupLsDeWEt5cQYS7mihPLbHeWqKliTQgrZNyPEZokEgaJRKnJZJmaxSusHgabZmU2aNw26Mx9mgIi8Rid2ANiwh4OLDYfa3tbevsYdhsYdjtvu7VVqsVS2sLk8Xi+1LLYkesVhCL79NiDCKtP2lb9nq9eDxePF4vbo8Xr9fg8bjxeP0tZG4X3tYvwDytX4i5MV43Xo8L43H717vbtht/yxr+dbS2snl9xwUu4/X4/5a6/V3IPRjjBa8XjP+58SJer2+7MViMh9Yvm3xfBgX8NAYLnrYvlCzG/wUT4G09Ia0tym3Lvn/a/YWQzj7rdPKZ7rhsOknCOhYm7bcF7GtE2u1q6GRZvtk/cOvB3+l0/EJIutlGh+WA7Qd1y++u3O5To85eX1cx9FRPu+2aIxwWTVQPjzc8h7hIe6jD6DVNsLpRXryPfRs/oLlwE1FVO0l07iPVc4B08ZDu36feRHDANppyx1iKoo5C4jIJSxpDTGoOSRnjSEjJIMNiJSOkr2SAiYAtHGzh2CPiGTofB6UGxv74+Uys/IjmZifh4Y5QhzNgmp2NlBXuoap4N42leXiq8rHXFRLlLCbaVUGCt4IYmsjqcJzLWKmUeGqtCTTa46mJHEuBIxEiE7FEJWGPScYRm4IjNoWI+BSi45KJjIoh1mIhNiSvtHtW/0MppVTvHBHqAA6RJljd2LXy3yzc+Xs8RiiwZFASMY6CuJOwJk8gJmMyaTnTSUjJYIJFJ2NUSvWefdoZxH36Bpu+eItZx54b6nCCxni9lJftp2TvNhqLvsJU7MJel09UUxGJrhKSTDWZYsj07+81QrkkUGlLpSwih6LIhZjoVOxxo3EkZBCbkkFC2hii40eRarGSGtJXp5RSSvWOmIP6FIfOvHnzzNq1a0MdRpvyon1UlexjzJS5hEdEhzocpdQw4Wysx3PXeLbGHseR//NMqMM5ZM7GOkp2baQ6/0taSr/GWr2H2MZ8Ut37iaGpbT+3sVBiSaHSPpqmyHQ8sZnYEscQPSqHhIwJpKTnYLWHh/CVKKWUUodPRNYZY+Z1XK8tWN1ITh9LcvrYUIehlBpmHJHRrEk+nVllr1FZUkhiambPB4VAk7OFvF1bqdi9Hu+BL4ms3kmacw/p3gOMFcNYfGOdDsgoKsIz+TI+F0kaT2TaZJLGTCUlayIZYeEjq4u0UkqpEU8TLKWUCoFRp9yA9clX2PvsbSRe+6+QxmKMoWh/PsVfraOxcDP2sm0kNuxijKeAqdIC+BKpYms6ZVETyU84C9voGcSPmUF6zhQyoqI0iVJKKaX8NMFSSqkQGDtpFp+mfIeFZc+xd9PH5Mw6dkDqra+vpWDHeqrzNuIt+ZLYmp2kN+8lQ2rbkqQKiafEMY5tCUcSlj6T5PFzSB03i8zwSAZnW5tSSik1eOgYLKWUCpHK8hJa7j8aGx648i2Sx0wJWtlet4uivdso270B5/6thFfsYFTTLtK9B7D4p79vNOEUhY2lJmYSJnUasWNnkzH5CKISOpv4XCmllFKBuhqDpQmWUkqF0M4tq0l77lwQYd+CXzPz1CsRa+87F3jdLg7kf03p7o04i7Zir9hJQsNuMtyFhIsL8HXvK7KMpjxqAi2JUwjPzCV14lzSxk5BLDphuFJKKXU4+iXBEpGngcn+xXig2hgzW0Syge3ATv+2z40xV/dUniZYSqmRaNeOTbifuZIp3l2USDIFiUdjTZ2KLTELmy0cI4LL2YC7rgxPQyXU7ieyoYCE5iJGecuwi6etrGKSKXXk0BA3EUvqNBKzZ5E1eS4RUToTqlJKKRVM/d6CJSJ/BGqMMXf4E6zXjDEzDqUMTbCUUiOV2+VizdtPErb1KSY2bSJWGrvct4oYSq1p1EZk0hKdhT1lPLFjZjJ64hzi4hMHMGqllFJq5OrXadpFRIALgRODUZ5SSo00Nrudo85cCmcuxeX2sP/AfmpK8/G6XWC82COiiU4YRVxSKgmRkSSEOmCllFJKdSpYswguBkqMMV8HrMsRkQ1ALfBLY8wnQapLKaWGNbvNSkbmGDIyx4Q6FKWUUkodoh4TLBF5D+hsSqlfGGNe9j+/GFgRsK0YGGOMqRCRI4CXRGS6Maa2k/KvAq4CGDNGLyaUUkoppZRSQ1ePCZYx5uTutouIDfgOcETAMc1As//5OhHZDUwCDhpgZYx5CHgIfGOwDiV4pZRSSimllBpMLEEo42RghzGmsHWFiKSIiNX/fBwwEdgThLqUUkoppZRSatAKxhisi2jfPRDgWOAOEXEBXuBqY0xlTwWtW7euXET2BSGmYEoGykMdhBower5HDj3XI4ee65FFz/fIoed6ZBmM53tsZysH1Y2GByMRWdvZ9ItqeNLzPXLouR459FyPLHq+Rw491yPLUDrfwegiqJRSSimllFIKTbCUUkoppZRSKmg0werZQ6EOQA0oPd8jh57rkUPP9cii53vk0HM9sgyZ861jsJRSSimllFIqSLQFSymllFJKKaWCRBMspZRSSimllAoSTbC6ISKnichOEdklIreGOh4VPCKSJSIfisg2EflSRK7zr08UkXdF5Gv/z4RQx6qCQ0SsIrJBRF7zL+eIyBf+z/fTIhIW6hhVcIhIvIg8JyI7RGS7iByln+3hSURu8P8N3yoiK0TEoZ/t4UNEHhGRUhHZGrCu08+y+NzrP++bRWRu6CJXh6qLc/0H/9/xzSLyoojEB2z7uf9c7xSRU0MSdDc0weqCiFiBB4DTgWnAxSIyLbRRqSByAzcaY6YBC4Ef+8/vrcD7xpiJwPv+ZTU8XAdsD1j+P+AeY8wEoAr4r5BEpfrDX4C3jDFTgFn4zrt+tocZEckAfgrMM8bMAKzARehnezh5FDitw7quPsunAxP9j6uAvw1QjCo4HuXgc/0uMMMYkwt8BfwcwH+9dhEw3X/MX/3X7YOGJlhdWwDsMsbsMca0AE8B54Q4JhUkxphiY8x6//M6fBdgGfjO8WP+3R4Dzg1JgCqoRCQTOAP4h39ZgBOB5/y76LkeJkQkDjgWeBjAGNNijKlGP9vDlQ2IEBEbEAkUo5/tYcMY8zFQ2WF1V5/lc4B/GZ/PgXgRGT0ggao+6+xcG2PeMca4/YufA5n+5+cATxljmo0xe4Fd+K7bBw1NsLqWARQELBf616lhRkSygTnAF0CqMabYv+kAkBqquFRQ/Rm4BfD6l5OA6oA/3Pr5Hj5ygDLgn/4uof8QkSj0sz3sGGP2A3cD+fgSqxpgHfrZHu66+izrddvwdiXwpv/5oD/XmmCpEU1EooHngeuNMbWB24zvHgZ6H4MhTkTOBEqNMetCHYsaEDZgLvA3Y8wcoIEO3QH1sz08+MfenIMvqU4Hoji4i5EaxvSzPDKIyC/wDe14MtSx9JYmWF3bD2QFLGf616lhQkTs+JKrJ40xL/hXl7R2KfD/LA1VfCpojgHOFpE8fF19T8Q3Rife360I9PM9nBQChcaYL/zLz+FLuPSzPfycDOw1xpQZY1zAC/g+7/rZHt66+izrddswJCJLgTOBS8w3N+8d9OdaE6yurQEm+mcjCsM3mO6VEMekgsQ/BudhYLsx5k8Bm14BLvc/vxx4eaBjU8FljPm5MSbTGJON73P8gTHmEuBD4AL/bnquhwljzAGgQEQm+1edBGxDP9vDUT6wUEQi/X/TW8+1fraHt64+y68Al/lnE1wI1AR0JVRDkIichq97/9nGmMaATa8AF4lIuIjk4JvYZHUoYuyKfJMMqo5E5Nv4xm5YgUeMMXeGNiIVLCKyCPgE2MI343JuwzcO6xlgDLAPuNAY03GArRqiROR44CZjzJkiMg5fi1YisAH4vjGmOYThqSARkdn4JjQJA/YAV+D7QlE/28OMiPwGWIKv+9AG4Af4xmLoZ3sYEJEVwPFAMlAC/Bp4iU4+y/4k+3583UQbgSuMMWtDELY6DF2c658D4UCFf7fPjTFX+/f/Bb5xWW58wzze7FhmKGmCpZRSSimllFJBol0ElVJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJKKaWUUipINMFSSimllFJKqSDRBEsppZRSSimlgkQTLKWUUkoppZQKEk2wlFJqkBGRbBExImILdSxqZBCRL0Xk+FDHoZRSw4EmWEoppYY8EVkuIvX+R4uIuAKW3wx1fIOdMWa6MWZlsMsVkZNFZL2INIhIoYhcGOw6lFJqsBFjTKhjUEqpYUVEbMYYdx+Ozwb2Ava+lDNSicgyYIIx5vudbOvTuRlIQynWzojINGAlcDnwLhAHxBtjdocyLqWU6m/agqWUUkEgInki8jMR2Qw0iIhNRBaKyH9EpFpENgV2wRKRlSLy/0RktYjUisjLIpLYRdlXiMh2EakTkT0i8t8dtp8jIhv95ewWkdP86+NE5GERKRaR/SLyWxGx9vA6xovIByJSISLlIvKkiMQHbKsUkbn+5XQRKWt9XSJytr+rWbX/9U3t8P7cJCKbRaRGRJ4WEcehv9OHrotzY0RkQsA+j4rIbwOWz/S/p9X+c5jby7qO97fU3OZ///JE5JKA7WeIyAb/uSrwJ4Ot21q7hv6XiOQDH/jXPysiB/zv28ciMr1D3H8VkTf9rXWfikiaiPxZRKpEZIeIzOnle3Ryb17jIfgl8KAx5k1jjNsYU6HJlVJqJNAESymlgudi4AwgHkgFXgd+CyQCNwHPi0hKwP6XAVcCowE3cG8X5ZYCZwKxwBXAPQFJzgLgX8DN/nqPBfL8xz3qL3cCMAc4BfhBD69BgP8HpANTgSxgGYD/4vhnwBMiEgn8E3jMGLNSRCYBK4DrgRTgDeBVEQkLKPtC4DQgB8gFlnYagMgif2LT1WNRD6+hM23npqdWIX9C8gjw30AS8CDwioiE97KuNCAZyMDXevOQiEz2b2vAd97j/fFcIyLndjj+OHzv/an+5TeBicAoYD3wZIf9L8SXzCQDzcBn/v2SgeeAP/Uy7k6JyK3dnY9uDl3oP36LP8l/oqsvEZRSajjRBEsppYLnXmNMgTGmCfg+8IYx5g1jjNcY8y6wFvh2wP6PG2O2GmMagF8BF3bWwmSMed0Ys9v4fAS8Ayz2b/4v4BFjzLv+evYbY3aISKq/ruuNMQ3GmFLgHuCi7l6AMWaXv6xmY0wZvovz4wK2/x3YBXyBLzH8hX/TEuB1/7Eu4G4gAji6w/tTZIypBF4FZncRwypjTHw3j1XdvYYuBJ6bnlyFr+XlC2OMxxjzGL7EZeEh1Pcr/3v4Eb5E+0IAY8xKY8wW/7najC8pPa7Dscv856zJf8wjxpg6Y0wzvmR3lojEBez/ojFmnTHGCbwIOI0x/zLGeICn8SXXh80Y8/vuzkc3h2YClwLn40sQI4D7+hKLUkoNBZpgKaVU8BQEPB8LfLfDN/2L8CUlne2/D7Dja3VoR0ROF5HP/d3zqvElTq37ZQGddbsa6y+vOKD+B/G1gnRJRFJF5Cl/l8Ja4IlOYvo7MAO4z3/RD74Wr32tOxhjvP7XlxFw3IGA541AdHexBFlBz7u0GQvc2OHcZeF7jb1R5U+aW+1rPVZEjhSRD/1dK2uAqzn4/W2LVUSsIvJ78XX9rOWb1snAY0oCnjd1sjyQ73OgJuCfxpivjDH1wO9o/wWDUkoNS5pgKaVU8ATOGlSAr4Uq8Nv+KGPM7wP2yQp4PgZwAeWBBfq7pT2Pr0Uo1d9i8Aa+rnyt9YzvJJYCfK0uyQH1xxpjpneyb6Df+V/HTGNMLL6WuNa6EJFo4M/Aw8CygC5fRfgSk9b9xP/69vdQ30FEZLF8MwNgZ4/FPZdykI4zOjUCkQHLaQHPC4A7O5y7SGPMil7WlSAiUQHLY/C9PwD/Bl4BsowxccByAt7fTmL9HnAOcDK+SSKy/es7HtNv/OPJujwf3Ry6mfavRWfVUkqNCJpgKaVU/3gCOEtETvW3Qjj8EyBkBuzzfRGZ5h/PdAfwnL9bV6AwIBwoA9wicjq+sVStHgauEJGTRMQiIhkiMsUYU4yvK+EfRSTWv228iHTsjtZRDFAP1IhIBr6xXYH+Aqw1xvwAX9e35f71zwBn+OOwAzfiS/D+09Mb1ZEx5hNjTHQ3j08OtcxObAS+5z83p9G+m97fgav9rU0iIlHim5wiBtomlni0h/J/IyJh/mTwTOBZ//oYoNIY4/SPn/teD+XE4HsfK/AlhL87hNcYFMaY33V3Pro59J/4fjfH+X/HbwVeG5iolVIqdDTBUkqpfmCMKcDX8nAbvuSoAF+yEvh393F8E1EcABzATzspp86//hmgCt8F+SsB21fjn/gCqAE+4puWpMvwJWjb/Mc+R/suip35DTDXX9brwAutG0TkHHyTVFzjX/U/wFwRucQYsxNfa9d9+FrhzgLOMsa09FBfqFyHL8Zq4BLgpdYNxpi1wA+B+/G9b7toPyFHFvBpN2Uf8B9XhG9CiquNMTv8234E3CEidcDt+M5rd/6Fr4vhfnzn8fOeXthgYYx5BF/8X+B7Dc108juulFLDjd4HSymlQkBEVgJPGGP+EepYVO/5Z0XcBOT6J/PouP14fOc1s+M2pZRSI4Mt1AEopZRSQ4W/RW5qjzsqpZQasbSLoFJKjTAisryLCQuW93y0GopEZEw3E1WMCXV8Sik1nGgXQaWUUkoppZQKEm3BUkoppZRSSqkgGVRjsJKTk012dnaow1BKKaWUUkqpbq1bt67cGJPScf2gSrCys7NZu3ZtqMNQSimllFJKqW6JyL7O1msXQaWUUkoppZQKEk2wlFJKKaWUUipINMFSSqnD8Pna1ewqLg91GEoppZQaZAbVGKzOuFwuCgsLcTqdoQ5FDTEOh4PMzEzsdnuoQ1HDzNd797LwtW/xiXcWY3+9ErtVv6tSSimllM+gT7AKCwuJiYkhOzsbEQl1OGqIMMZQUVFBYWEhOTk5oQ5HDTNln/2bicBiyybWbd3CEbNmhTokpZRSSg0Sg/5rV6fTSVJSkiZX6pCICElJSdryqfpF5IE1bc/Lvvw4hJEopZRSarAZ9AkWoMmVOiz6e6P6S2TTAbbaZ9KIg7DiNT0foJRSSqkRY0gkWEopNZjEustpjBjN/ojJjKrfHupwlFJKKTWIaILVCyLCjTfe2LZ89913s2zZstAFFODzzz/nyCOPZPbs2UydOrUtrpUrV/Kf//ynT2WfdtppxMfHc+aZZwYhUqWGCa+XJG8lrshUnHHjSfcW0djiDnVUSimllBokNMHqhfDwcF544QXKy4M7JbMxBq/X26cyLr/8ch566CE2btzI1q1bufDCC4HgJFg333wzjz/+eJ/KUGq4cdWVYBcP7qg0rCkTSZR69hUUhjospZRSSg0SfZ5FUESygH8BqYABHjLG/EVEEoGngWwgD7jQGFPVl7p+8+qXbCuq7VvAHUxLj+XXZ03vdh+bzcZVV13FPffcw5133tluW1lZGVdffTX5+fkA/PnPf+aYY45h2bJlREdHc9NNNwEwY8YMXnvtNQBOPfVUjjzySNatW8cbb7zB/fffz5tvvomI8Mtf/pIlS5awcuVKli1bRnJyMlu3buWII47giSeeOGhcUWlpKaNHjwbAarUybdo08vLyWL58OVarlSeeeIL77ruPKVOmdBnn7t272bVrF+Xl5dxyyy388Ic/BOCkk05i5cqV3b43zz77LL/5zW+wWq3ExcXx8ccf43Q6ueaaa1i7di02m40//elPnHDCCTz66KO89NJLNDQ08PXXX3PTTTfR0tLC448/Tnh4OG+88QaJiYn8/e9/56GHHqKlpYUJEybw+OOPExkZ2a7ehQsX8vDDDzN9uu/cHX/88dx9993Mmzev23iV6itnRSF2wBU1mpj0BNgC5fu+hPHZoQ5NKaWUUoNAMFqw3MCNxphpwELgxyIyDbgVeN8YMxF43788ZP34xz/mySefpKampt366667jhtuuIE1a9bw/PPP84Mf/KDHsr7++mt+9KMf8eWXX7J27Vo2btzIpk2beO+997j55pspLi4GYMOGDfz5z39m27Zt7Nmzh08//fSgsm644QYmT57Meeedx4MPPojT6SQ7O5urr76aG264gY0bN7J48eJu49y8eTMffPABn332GXfccQdFRUW9fl/uuOMO3n77bTZt2sQrr7wCwAMPPICIsGXLFlasWMHll1/eNpvf1q1beeGFF1izZg2/+MUviIyMZMOGDRx11FH861//AuA73/kOa9asYdOmTUydOpWHH374oHqXLFnCM888A0BxcTHFxcWaXKkB0Vzna8mWqGRGZfsS/MbinaEMSSmllFKDSJ9bsIwxxUCx/3mdiGwHMoBzgOP9uz0GrAR+1pe6empp6k+xsbFcdtll3HvvvURERLStf++999i2bVvbcm1tLfX19d2WNXbsWBYuXAjAqlWruPjii7FaraSmpnLcccexZs0aYmNjWbBgAZmZmQDMnj2bvLw8Fi1a1K6s22+/nUsuuYR33nmHf//736xYsaLTVqfu4jznnHOIiIggIiKCE044gdWrV3Puuef26n055phjWLp0KRdeeCHf+c532l7TT37yEwCmTJnC2LFj+eqrrwA44YQTiImJISYmhri4OM466ywAZs6cyebNmwFfEvbLX/6S6upq6uvrOfXUUw+q98ILL+SUU07hN7/5Dc888wwXXHBBr+JVqq9aGqoBsEXGEZ4yDjdWpHJ3aINSSiml1KAR1BsNi0g2MAf4Akj1J18AB/B1IezsmKuAqwDGjBkTzHCC7vrrr2fu3LlcccUVbeu8Xi+ff/45Doej3b42m63d+KrA+zFFRUX1qr7w8PC251arFbe784H048eP55prruGHP/whKSkpVFRUHLRPV3HCwdOZH8r05suXL+eLL77g9ddf54gjjmDdunXd7h/4miwWS9uyxWJpe31Lly7lpZdeYtasWTz66KOdJowZGRkkJSWxefNmnn76aZYvX97rmJXqC5c/wbJHxYPVTqk1jZj6vFCGpJRSSqlBJGiTXIhINPA8cL0xpt1AKWOMwTc+6yDGmIeMMfOMMfNSUlKCFU6/SExM5MILL2zXZe2UU07hvvvua1veuHEjANnZ2axfvx6A9evXs3fv3k7LXLx4MU8//TQej4eysjI+/vhjFixY0OuYXn/9dXxvr6/rodVqJT4+npiYGOrq6nqME+Dll1/G6XRSUVHBypUrmT9/fq/r3717N0ceeSR33HEHKSkpFBQUsHjxYp588kkAvvrqK/Lz85k8eXKvy6yrq2P06NG4XK62cjqzZMkS7rrrLmpqasjNze11+Ur1hafJ1004PCoegOqIsSS3FIQwIqWUUkoNJkFJsETEji+5etIY84J/dYmIjPZvHw2UBqOuULvxxhvbzSZ47733snbtWnJzc5k2bVpbS8r5559PZWUl06dP5/7772fSpEmdlnfeeeeRm5vLrFmzOPHEE7nrrrtIS0vrdTyPP/44kydPZvbs2Vx66aU8+eSTWK1WzjrrLF588UVmz57NJ5980mWcALm5uZxwwgksXLiQX/3qV6SnpwO+5O+73/0u77//PpmZmbz99tuAr1ti63irm2++mZkzZzJjxgyOPvpoZs2axY9+9CO8Xi8zZ85kyZIlPProo+1arnryv//7vxx55JEcc8wxTJkypW39K6+8wu233962fMEFF/DUU0+1zZyo1EDwNvm+P3JExwHQFJtNpreYZpdO1a6UUkopkNbWj8MuwNef7DGg0hhzfcD6PwAVxpjfi8itQKIx5pbuypo3b55Zu3Ztu3Xbt29n6tSpfYpRda3jbIfDjf7+qGD7+rEfk7bneSp/upuxSVFseO4u5my9k31LNzA2e1yow1NKKaXUABGRdcaYg2ZZC0YL1jHApcCJIrLR//g28HvgWyLyNXCyf1kppYY0aamjjggiw3xDWCNG+ZKqqv1fhzIspZRSSg0SwZhFcBXQ1awIJ/W1fNW/li1bFuoQlBpSLM111JlIxoT7/nwmZk4EoKFEZxJUSimlVBAnuVBKqZHA4qqnnggcdt+fz6QMX4LlqcwLYVRKKaWUGiw0wVJKqUNgd9XRZIlqu52BNTyScknAXqczCSqllFJKEyyllDokdncDTktku3WV9tFENxaGKCKllFJKDSaaYCml1CEI8zTSYm2fYDVEZpDkKu7iCKWUUkqNJJpg9dJLL72EiLBjx44u98nLy2PGjBlBq3Pnzp0cf/zxzJ49m6lTp3LVVVcBvpsEv/HGG30q+8orr2TUqFFBjVepkcDubcLTIcFyx44h1ZTT1OQMUVRKKaWUGiw0weqlFStWsGjRIlasWNHpdre77zcZ9Xg87ZZ/+tOfcsMNN7Bx40a2b9/OT37yEyA4CdbSpUt56623+lSGUiNRuHHitrVPsKyJOVjFcKBwV4iiUkoppdRg0edp2gfUm7fCgS3BLTNtJpze/S266uvrWbVqFR9++CFnnXUWv/nNbwBYuXIlv/rVr0hISGDHjh288847uN1uLrnkEtavX8/06dP517/+RWRkJO+//z433XQTbreb+fPn87e//Y3w8HCys7NZsmQJ7777LrfccgsXXXRRW73FxcVkZma2Lc+cOZOWlhZuv/12mpqaWLVqFT//+c8588wz+clPfsLWrVtxuVwsW7aMc845h0cffZQXX3yRmpoa9u/fz/e//31+/etfA3DssceSl5fX7ev+6KOPuO666wAQET7++GOio6O55ZZbePPNNxERfvnLX7JkyRJWrlzJr3/9a+Lj49myZQsXXnghM2fO5C9/+QtNTU289NJLjB8/nldffZXf/va3tLS0kJSUxJNPPklqamq7ei+66CIuvfRSzjjjDMCXDJ555plccMEFvTunSvUXdws2PBh7+wQrKm08ADVFX8NEbRVWSimlRjJtweqFl19+mdNOO41JkyaRlJTEunXr2ratX7+ev/zlL3z11VeAr1vfj370I7Zv305sbCx//etfcTqdLF26lKeffpotW7bgdrv529/+1lZGUlIS69evb5dcAdxwww2ceOKJnH766dxzzz1UV1cTFhbGHXfcwZIlS9i4cSNLlizhzjvv5MQTT2T16tV8+OGH3HzzzTQ0NACwevVqnn/+eTZv3syzzz7L2rVre/267777bh544AE2btzIJ598QkREBC+88AIbN25k06ZNvPfee9x8880UF/vGnmzatInly5ezfft2Hn/8cb766itWr17ND37wA+677z4AFi1axOeff86GDRu46KKLuOuuuw6qd8mSJTzzzDMAtLS08P7777clW0qFVEu972eHBKv1XlhNpXsGOqIh5T/vv8QTzz6L2+MNdShKKaVUvxlaLVg9tDT1lxUrVrS15Fx00UWsWLGCI444AoAFCxaQk5PTtm9WVhbHHHMMAN///ve59957+da3vkVOTg6TJk0C4PLLL+eBBx7g+uuvB3wJRWeuuOIKTj31VN566y1efvllHnzwQTZt2nTQfu+88w6vvPIKd999NwBOp5P8/HwAvvWtb5GUlATAd77zHVatWsW8efN69bqPOeYY/ud//odLLrmE73znO2RmZrJq1SouvvhirFYrqampHHfccaxZs4bY2Fjmz5/P6NGjARg/fjynnHIK4Gt5+/DDDwEoLCxkyZIlFBcX09LS0u69a3X66adz3XXX0dzczFtvvcWxxx5LREREr2JWql+5Gn0/w6LarU5Ky8FlrJiqfSEIamgoKSnh6E8u52jgw4RITjhZvzRRSik1PGkLVg8qKyv54IMP+MEPfkB2djZ/+MMfeOaZZzDGABAV1f5Cq/XeOF0td6ZjGYHS09O58sorefnll7HZbGzduvWgfYwxPP/882zcuJGNGzeSn5/P1KlTDzueVrfeeiv/+Mc/aGpq4phjjul2gg+A8PDwtucWi6Vt2WKxtI1R+8lPfsK1117Lli1bePDBB3E6D54UwOFwcPzxx/P222/z9NNPd5mAKjXgWnwJliU8ut1qi81GqSWFML0XVpcKVj3R9txsfDKEkQx+Lo+XJ5/4B2+99lyoQxn0ahpbeP3jL6ipawx1KEop1UYTrB4899xzXHrppezbt4+8vDwKCgrIycnhk08+6XT//Px8PvvsMwD+/e9/s2jRIiZPnkxeXh67dvkGwD/++OMcd9xxPdb91ltv4XK5ADhw4AAVFRVkZGQQExNDXV1d236nnnoq9913X1vSt2HDhrZt7777LpWVlW3joFpb13pj9+7dzJw5k5/97GfMnz+fHTt2sHjxYp5++mk8Hg9lZWV8/PHHLFiwoNdl1tTUkJGRAcBjjz3W5X5Llizhn//8J5988gmnnXZar8tXqj+5m31dBC1hB38pUhU2mtgmvRdWlwpWU0Y8m+NOZHrdf/BoN8EurX33KS7ZdSOnrf0vdu7VVtHufPbILZzxwSl88cgNoQ5FKaXaaILVgxUrVnDeeee1W3f++ed3OZvg5MmTeeCBB5g6dSpVVVVcc801OBwO/vnPf/Ld736XmTNnYrFYuPrqq3us+5133mHGjBnMmjWLU089lT/84Q+kpaVxwgknsG3bNmbPns3TTz/Nr371K1wuF7m5uUyfPp1f/epXbWUsWLCA888/n9zcXM4///y27oEXX3wxRx11FDt37iQzM5OHH34YgOXLl7N8+XIA/vznPzNjxgxyc3Ox2+2cfvrpnHfeeeTm5jJr1ixOPPFE7rrrLtLS0nr9fi5btozvfve7HHHEESQnJ7etX7t2LT/4wQ/alk855RQ++ugjTj75ZMLCwnpdvlL9qbmxFgCr4+AEqzEqk2T3gYEOaciIr99NcVg2ZsxCUqWKvXu/CnVIg5Zlxyttzw989EgIIxnc3G43c8peAuDoypeoqqoMbUBKKeUnra0eg8G8efNMx0kYtm/f3tbdTR2aRx99lLVr13L//feHOpSQ0d8fFUyVG18l8aXv887RT3LKKWe22/bZY7dx1N4HaLxpH5HR8aEJcLDyemm8YzTrk85k/ElXMvqZb/Px7Ls59twfhjqyQalk2TgKonNJa9rFAWsq8257P9QhDUo71n/ClFfOZFPSt5lV8QZfHPUgR556Uc8HKqVUkIjIOmPMQZMb9HsLloicJiI7RWSXiNza3/UppVR/aW70dRG0R8QctM2WNA6AsvyvBzSmoaC+bB+ROHEnTSJt0jzcWDBFB0/Yo6C2ppJUKnCnzKA8aR5Tmr+kuaU51GENSrV5GwFIOOl6WowV956PQxuQUkr59WuCJSJW4AHgdGAacLGITOvPOtU3li5dOqJbr5QKNleTL8EKi4g+aFt0672wivVmwx2V+m/AHJWSg9jCOWDNIKJ2d4ijGpxK9vju9RiWNgXGLCRamti3c3OIoxqcvGU7aTE20ifOYW/YZBIqNvR8kFJKDYD+bsFaAOwyxuwxxrQATwHnHGohg6kboxo69PdGBZvb6ZtcJjzy4BasZP+9sJrL9F5YHdWV+m4bEZuWDUBV1DhSnXmhC2gQqyv4EoD4sTMYNX4OAGW7NXHoTETNbvZb07HZw6hPmEKmKw+32xPqsJRSqt8TrAwgcN7iQv+6NiJylYisFZG1ZWVlBxXgcDioqKjQi2V1SIwxVFRU4HA4Qh2KGkbcTl8LVkRU7EHbklLSaTDhoPfCOoin2vffQHxqNgDuxIlkmmIqa+q6OWpkcpXtxmOE9OwppI2fhdtYcBUffHsOBYnOfVQ6xvgWRk0jVhopzNcWZKVU6IX8RsPGmIeAh8A3yUXH7ZmZmRQWFtJZ8qVUdxwOB5mZmaEOQw0j3uZGvEaIjDy4i6DFauGANY3wer0XVkdSW0S9cZCY6LvpefjoqVjzDPt3byVx7lEhjm5wkfpiKiWeFP+XQ0W2DCKrdcbFjrxeQ6KngqLoRQDEjZ0FW6F89wayx00OcXSDm9druP2Rl5hU+hYn/9f/kp46KtQhKTXs9HeCtR/ICljO9K/rNbvdTk5OTlCDUkqpw+FtaaCRcKLCO//TWR2WTpLzkP7EjQhhjQcolSTG2awAJOfMgs+gOn8LaILVTrizjBprIin+5aroCaTVbAtpTINRVXUlSeLEEjcagNET5wLg3K+tfT35eEcxPy24nlFSzYZn6kj/yb9DHZJSw05/dxFcA0wUkRwRCQMuAl7p4RillBqcWupp6ibBckZnMspTAtqluZ0IZynV1m/ue5eSPR2vETwHtocwqsEpuqWchrBv3qvmpClkmlIqq6pCGNXgU13iG9dnj0sHICo+mRJJIqxiRyjDGhL2rXuLUVJNjTWBGRVv4WrQ3y2lgq1fEyxjjBu4Fngb2A48Y4z5sj/rVEqp/iKuRhoJJ8Ju7XS7N24MkThpqC4Z4MgGtyh3FU1hiW3LEhZJiTWVyFodL9NRnKcSp+ObLlth6dOxiKFkl050EaiuvBAAR9I3w7pLHeNIatDfqZ5E5X9As4Sz7ag/YcfD/tUvhzokpYadfr8PljHmDWPMJGPMeGPMnf1dn1JK9RdxNeLEgcUinW63J/vuhVVRoGNmAsV4qmlxJLdbVxmRTUJTfogiGpzcrhYSTQ3e6NS2dYnZswGoK9TvJgM5K31dcWOTvxln2xA/iSxPAS6XK1RhDXoNzW6ymr+mMnoyE488nWoTReNXH4Y6LKWGnX5PsJRSariwuJtotkR0uT1m9AQAaov1ZsNtWhqIxIk3sn2C1RybQ4a3mGaXO0SBDT5VpfuxiMESk9a2Lm3sZFqMFU+pJu2BPDXFACSmjW1bZ02ZRJi4Kd63M1RhDXpfHahhmuzDNWomyTER7LBNIb5cW0eVCjZNsJRSqpds7kZaLF1P/T/Kfy+slvK8AYpo8Gus9F0IW2Laz1RmTZlApDSzP1/vG9aqptQ3A2VY/Oi2dTZ7GMXW0YTX6PsUSOoP0EQYjuj4tnUxmdMBqNinrX1dKdy7gxhpImrsbADKEuaQ7toHTdUhjUup4UYTLKWU6iW7pwlXNy1YSYmJVJhYpFrvhdWqprwIgLDY1HbrYzKmAFC+T2fIa9VQ4ev2Fpmc1W59pWMMSU79nQpkbyylUhJBvumuO3rcDACainWii67U+VvXEzKnAmDNmAVA7b6NoQpJqWFJEyyllOolu7cJt7XrBMtiEUqsaTjqCwcwqsGtodKXYDkSRrdbPyrb19rQdEC7c7VqrvIlWHEp7e/f54wbx2hPER63ji1qFdFcRp09qd26uOTRVBONpWJ3iKIa/ExlHgCWJN/tb1LGHwFA6a51oQpJqWFJEyyllOqlMK8Tjy2y231qHOnEN+u9sFo1+WdUjElqn2BFp4zFSRhSobO+tfLWHsBrhMRR7RMsW8okwsTDAR1b1CbWXUFj+ME3yC2xZxFTr90puxJWV4AbG8T4Po8Tx0+g0kTTsn9LiCNTanjRBEsppXrJYZrw2rtPsJqjs0j2loHXM0BRDW7uWl+ClZCS3n6DxUKJLZ3IuryBD2qQsjSUUCWxhIWHt1sfnTkN0LFFrYwxJHkrcUemHLStLiqbVFdBCKIaGmKdhVSHjwaL71YT8VHh7LFkE1WtybtSwaQJllJK9YYxOGiGHhIs4sdix0N9mY6ZAaC+jFoTSWJc7EGbaqPGktyi3SlbhTnLqLYkHrQ+Nad1bJFeBAPU1lQRJU5M9OiDtrkTJ5JMNTVVlSGIbHCraXSR5i2lKar9GL/yqImkNu3WL4WUCiJNsJRSqjfcTiwYjD2q290iU8cDULpPp9UGsDaVUyVxWDu5d5g7fhwZpoSa+qYQRDb4RLeUUR+WfND6hOQ0qojBUqnT/wNU+2dbtMUdnGA5Rk8GoHjP5gGNaSgoqGpkjJRi4se0W9+cNBUHzXgr9oYoMqWGH02wlFKqFzzNDQBYwrtPsBL9U7XrvbB8wporqLMmdLrNPmoydvFQmKezvgHEuStpdhzc7U1EOGDLJEq7UwJQV+Zr9XQkZhy0LXGMb/KU2sLtAxrTUFBUUkKC1BOWMq7d+rCMXACq9q4PRVhKDUuaYCmlVC801FYBYHHEdLtfxpiJeIzQUq7fBgNEuSppCju42xtAfKZvqvbqAr0Y9rrdJJhq3FGpnW6vjcpmVEv+AEc1ODVV+iaRiekw2yLA6JypuI0Fd6l2p+yotsg3oUys/4borUaNy8VrhJqCraEIS6lhSRMspZTqhaZ6X4JljYzrdr+ICAelkoy1Vi+GAWI9VbQ4kjrd1jpVe0uJdqesqijCJl4sMZ0nWO6E8SRTTWOdji1y1/huXp2QOuagbfYwBwcsqYRX61TtHTWX+2ZXjBw1vt36caNTKDTJeEu0JVmpYNEESymlesFZ50uw7BHdJ1gAFWHpRDXqVO3G3Uwc9XgjD55OGyAsNoU6orBW6cVwTYmv21tYfHqn28PSfGOLDuzWVgbqinEaO9GxnbeMVjjGktCkk8x01HYD9ISx7dYnRIWxzzqGqBrt1qxUsPQpwRKRP4jIDhHZLCIvikh8wLafi8guEdkpIqf2OVKllAqh5sYaAMKi4nvctykqk2RXUT9HNPjVlvuSTIlN63wHEUrDsohu0Na+ugpfghWZdHC3N4CELB1b1MrWWEqFJQmxdH4J44wbR7qnCI9HZ8ULFNlQQKMlGiIOHhNZFTWO5OZ88LhDEJlSw09fW7DeBWYYY3KBr4CfA4jINOAiYDpwGvBXEbH2sS6llAoZV0M1AOHR8T3ua+LHkkw1tXW1/RvUIFdT4kuc7F20ygA0RGeT5irE6zUDFdag1FLpS7DiRnWeYKWP840tcunYIiKdpdTaOu92CmBJmYhDXBTna4tMK6/XkNBcTK2j88+iK3ESdtyYKh07qlQw9CnBMsa8Y4xp/brjc6D1f4ZzgKeMMc3GmL3ALmBBX+pSSqlQcjf6kqWI6M5nxAsUnpIDwIG8kT22qKHC14IVkdh50gBgEseTLuWUVFUNVFiDkremCK8REtPGdro9MiKSYksqdh1bRLy7lMaILlpFgeiMqQBU5Gl3ylZl9c1kUkJzzMHj1gDCR/tuZl2zb8tAhqXUsBXMMVhXAm/6n2cAgbdSL/SvO4iIXCUia0VkbVlZWRDDUUqp4PE2+boIRsXG97hvXLpvqvbKopH9DXpzlS/BihuV1eU+jrRJABzYM7K7vlnri6iQeMLDHV3uUxaWRXxD3sAFNQgZr5cUbwUtkV0nWGnjfNOONxbppA2tCirqyZRyJKHzBD45eyYA1fmaYCkVDD0mWCLynohs7eRxTsA+vwDcwJOHGoAx5iFjzDxjzLyUlIPv/6GUUoOBaa6jxViJjur+PlgAqWN8ExI0l47s1gZTW4zbWEgc1XUXwaQxvm/Oa/eP7AQroqmECmv3/wc2xuaQ5tmP8Y7csUU1FQcIEzfEdt0qmpCSTi1RiN6YuU1Z8T7CxYWjwwyCrcZlpFJokvGUjOzPoVLBYutpB2PMyd1tF5GlwJnAScaY1k70+4HArywz/euUUmpIkuZa6ogkMazHP5tEJIymEQcywsczWOpLKCeeVEdYl/skjfHdC8tdOrIvhmNaSikJ67z7VpukiTjKXFQf2Et8+oTu9x2mqg7sJR6wJ3TaKcZHb8x8kPoDvina4/2t6x2lxISzSrKYUD2yP4dKBUtfZxE8DbgFONsY0xiw6RXgIhEJF5EcYCKwui91KaVUKFla6miUSESk551FOGDPJKZ+ZCdYYc5SqqxJ3b5n4oilQhKx14zs9yrRU44zovN7YLWKSvclo2V5I7cbV32pb+KUyJTuk9HaqGxS9cbMbTwVvgQrLHlcp9tFhIrIcSQ598EIbiFVKlj6OgbrfiAGeFdENorIcgBjzJfAM8A24C3gx8YY/cQqpYYsm6uOJons9f41UTmktYzse/FENZdRZ0/ucb9KRxbxTSP3YtjTVEM0jXiju+5KCZDkHydTv3/kji1yVfqGd8el5nS7nztxAqOopK5Gb8wMYKstwItAfNfjIVsSJhKGC6ryBi4wpYapvs4iOMEYk2WMme1/XB2w7U5jzHhjzGRjzJvdlaOUUoNduKuWBmtsr/f3JE5kNOVUVo3cC7w4dwVOR89ja5tic0j37KfF7R2AqAaf8uI8AGwJXY8rAkhPz6LWRGLKR243Lm/NflqMlaTUbroIAuFpvta+4j1fDkRYg15M4z5qbClgC+9yn7A033jI+gKdfVGpvgrmLIJKKTVsRbircdrje79/uu9ipWj3yLxY8bY0EUcdJrrr2d5aSfIEkqWWwqKROVS3fL+v+1ZsauczvLWy2azst2YQUTtyu1NKXRFlkoQjzN7tfon+yVNqCjXBanF7yXAVUB3Vfatfos4kqFTQaIKllFK9EO2pxRXe8z2wWqXk+C5WavJHZoJVWeLrytXdTYZbRY32tTaU7huZM5i1jitKGt39BTBAdWS2b5zMCBXRdIAae8+tomk50/AYwV0yclv7Wu0rr2OcFOFJ6nyCi1Y5GWnsN0m4DozMz6FSwaQJllJK9cTjJoZ6PI7EXh+SMnYqbmPBUzoyx8tU+Lu9RSZ33+0NICV7OgCNRSPzwq6lypeMpmZk97ivO2E8o0wFzf4bX480sa5SmhzdTwYCEO6I5IBlFGHVuwYgqsGtMO9rIqWZCP/NhLuSER/BHjJxVI3sG6QrFQyaYCmlVA/cDZVYMBCZ1OtjxBZOiW00jpqReS+shhLfhW1c+qQe941Jm4ALG1K2s7/DGpSstYVUSjzWsK5vMtwqPM13j7WiPSOvZdTlcpHiLccT0/34q1bljrHEN47c1r5WtQW+bpJJ/lb1rlgsQllEDknOPJ1JUKk+0gRLKaV6UFtZAoA1uvcJFkBVZA7Jzrx+iGjw85TvwWuEUZm9uF+TLYxiWyaxdSOztSG2MZ+ysJ5b+uCb1r6KfSNvbFFpwW7CxY0kdX6z3I6aYseR7tmP1zOykwVPqe+LC0cPLVgAzfETCTMtUD1yZ/VUKhg0wVJKqR40VPkSLHtMz2M/ArUkTCTTW0xNQ1N/hDWo2WrzKZEkoqKierV/ZdR4UptH3uQNxhhSXftpiOp+gotW6eOm4zVCc/HIa+2rLNwGQOToyb3a35I8kQhp4UDhyGxFbhVRs4s6SyxE9XzLBJt/JkFn0chL4JUKJk2wlFKqB/X+BCsyvuexH4HC0yYTJh4Kdm/rj7AGtcj6AsrtPU9w0aolcTKZlFJbW9WPUQ0+VdVVpEg1nsTetcqER0T7xhZVjbzJG2oLfUnl6HEzerV/VIYvWSjfO3JnxXN5vKQ051EV2fMEKgAJY33vbdW+kfueKRUMmmAppVQPmisLAYhP610rQ6uksbnACLxYMYZUVz6N0b1/v+yjfV3fir7e2E9BDU6le31jqcJHdT/DW6DyiHGkNI28Vhlv+dc04CAxteub5QZKHT8bAOf+kTderdXOomomk493VM/dAwGyM9IpNom0FI+8L4WUCiZNsJRSqgfemv00Gxspo0Yf0nEp43yDyt0j7GKlorSAeOoxKVN6fUzq+DkA1ORt7q+wBqWGgk0AxI7J7fUxTYlTyfTsx9nU2F9hDUpxtV9RHJYDIr3aP2nUaEpJwFY+sj5/gfbu3EiMNBEzfmGv9h+bFMkuk0mYziSoVJ9ogqWUUj2w1RdRKklEhnd/c9OOrBGxHLCkElE9ssbLHPhqAwBRmd3PWhYobexkmkwY3pKRNfbDVbQVp7GTOX56r4+xp8/EJl4KR1Brn8vtIcu1l7q43o2/AhARisPHEV83cpOFxj2rAUic2LsEy261UOrIJrExD7zefoxMqeFNEyyllOpBRNMBqqw9DxDvTHnkeEaNsO5c9YW+LpGjJ87u9TEWm4399jFEVo+ssUWRVTsosGdjs/c+eU8c52vtq967ob/CGnQK9u0mQeqxpPVu/FWr+vgpZLry8bha+imywS2ubDX1lhgkuefbJbRqiptAuHFCTUE/RqbU8KYJllJK9SCmpZT68LTDOtaZOIUsbxH1jSOnO5e9ZDNlxJPUy7EyrWpiJjK6ZS/GmH6KbHDxejxkN39FTdzUQzouY/x0nMaO98DIGVtUvvMzAOLGzzuk46yjZxAmbop2j7BxkEBRdRPTmzdTljQPLL2/3LP7p3N3Fo+s1mSlgiloCZaI3CgiRkSS/csiIveKyC4R2Swic4NVl1JKDRTjcZHkKccd0/sZ8QLZR8/ALh4Kv94U5MgGr5TareQ7piKHcFHnO3Aqo6iipLS4fwIbZAp3bSZWGvFmzj+k4+z2MPJtY4ms2tFPkQ0+7vzVtBgb6VN619WtVVKO79KjfM/6/ghrUFu/YR1ZljIiJ51wSMclZfu69lbuHVnjIZUKpqAkWCKSBZwCBN6Z7nRgov9xFfC3YNSllFIDqaZ4F3bxQFIvbpjbieRxswGo2rsxeEENYtUVZWR59+NKnXXIx0b7J3oo3rku2GENSkVbPgIgddqxh3xsVfRERjv3BDukQSu2fD37wiYQ5og4pOOyJs/CZay07B95LVjOra8CMGreOYd03PgxWZSYeJpH2OQ8SgVTsFqw7gFuAQL7dZwD/Mv4fA7Ei8ihTcGllFIhVp7n6yYTkdb7GfECjR43kxZjxT1CutvsXfc2AHFTjz/kY9On+Lp/NeSPjLFF1ryPqCCeMRN7P4NgK++o6SRRTUVJYT9ENrhUVlUy2bWT2rRDa70CcDgiKLBmElE5clr7AGqdLiaUv0exYwKSkH1Ix45JjGQ3WYRVjtzJQZTqqz4nWCJyDrDfGNOx/0sGEDhCstC/Timlhozawu1A729u2pHFHkaRLYuoETKToGvXSppMGONmH3fIx8YkZ1FBPLbS4Z+MejwextevYW/ckYfelRKI9d9jbf8IaO3btfpN7OIhZvoph3V8edREUp27ghzV4Pbxfz5ltuzCm3vhIR9rtQgVETkkNe2FETIeUqlg69VfdRF5T0S2dvI4B7gNuP1wAxCRq0RkrYisLSsrO9xilFKqX5jSHVSYWNLTD//7oeqYiYxu3jPsJ28wXi+ZZZ+wM2IW4Y7IwyqjKGIiKfXDPxndufZ9EqmDiScf1vFZUxYAULdvYxCjGpy8216jjgjGzTnxsI53J08j1VRQW1Ua5MgGJ2MMYZ/fTwt20hcvPawyWhIn4tCZBJU6bL1KsIwxJxtjZnR8AHuAHGCTiOQBmcB6EUkD9gOBU0hl+td1LPshY8w8Y8y8lJSUvr4epZQKqsTabRSET8Ri6d3NTTvjSZ7KaMopKy8PYmSDT972NaSbAzjHn37YZTQmTGOMJ59m5/CedbF6zTM0GztTj73gsI6PTR5NGYnYy4b32KKGxkamVH/MrvhjsYUf2virVpFjfOMBi3asDmZog9ana9dzQvMH7Mv+LhKTelhlhKX7Wuxr9ulEF0odjj51ETTGbDHGjDLGZBtjsvF1A5xrjDkAvAJc5p9NcCFQY4wZGVNDKaWGBW9LE5mufdQm9P4msJ2JGuOblatwmHfnKlv1GC5jZcKxSw67DFvmLOzioWDn8B2H1exsZGr522yLOYqo2MTDLqcocjKj6of32KKtH64gXuqJmHvoXd1apflnHqzfszZYYQ1azW4PrrdvBxGyz/75YZczyn+vtao9w/tvllL9pT/vg/UGvhauXcDfgR/1Y11KKRV0eVs+xS4ewsYc0adyRk/0HV+XP3ynam9uqmd88WtsjTqS5NTMwy4nZaJvyvKq3cP3Ynjjm4+QQC22+Uv7VE5T0gyyPIU01tcEJ7BBxni9RG94mBJJZtLR5x52OalpGRSTjLVk+LfGvPbEXzjBvYqC3J9gTxxz2OVMGJNOvjcFb/HIudeaUsEU1ATL35JV7n9ujDE/NsaMN8bMNMYM3/8tlVLDUvnW9/EaYfy8wxtc3youbRwNRGAp2x6kyAafL197gCRqkKN+3KdyMsdNp8E48BQPz4thj9tF5pb72WUdx4zF5/WprPCxR2AVQ8H2NUGKbnD58j+vMd39JflTf4jFZjvsckSE/RGTSakfvp8/j9fw8lMPcebeO8mPymXcOb/sU3lJ0eHstuYQXT28W0iV6i/92YKllFJDWnTRp+y1ZpOSeng3GW4jQnF4DnG1XwcnsEGmxdlExrYH+dI2jVnHfLtPZVmsVgrCxhFbPTwvhte+8jcyvMXUzL/hsGYPDJQ25UgAavYMvwTL4/FgWfn/KCWRmWf9pM/lNSXNINNbhLOuKgjRDS7Fuzay539nc86OmymJnEj6NS+D9fAT0lZV0ZNIaimEluE9HlKp/qAJllJKdaKp6gCTnZvZP+rQbwLbmfq4SWS582hxeYJS3mCyacXtpJoKXIt/1uekAaA2fipjW3bj8Qyv96qsOJ9Jm+/iK/tk5p5ySZ/LS0vPppw4rAeGX9fTNc//kWnubeyffQOOiKg+l+cY6+umW7j9iz6XNZi4XC5qn7qKHG8+O6f8mKzr38UWffjj+gK5R03HihdPid5wWKlDpQmWUkp14uuVT2AVQ+y8i4JSniVtOglST37+7qCUN1js3vIFs/Ie5ovok5l93LlBKdOSPosocVK4Z/hc2Hk9Hgr+dRVRpgnHBcsRi7XPZYrFQmH4JJJqh1dr394dG5n55R/ZGj6H2WdfG5Qy06f6JroYbq19nz56G5PdO9my4P+YfNHvkPCYoJUdPWY2ABW7daILpQ6VJlhKKdWJ8B0vs0eyyJ17VFDKi8+eDUDpruEzO15tRQmOFy6jVmKYeNm9QSs3afw8AEq/Gj7Tan/28I3MbfqMTVNuYMzkuUErtz5xOpnufNzOhqCVGUplJcVYn76IZgkj7bJ/BKVFFCA9YwwlJA6r1r5Vrz7K8fsfYlPCKcz59g+DXn7WuKnUmQga8zcGvWylhjtNsJRSqoPi3VuY6NxCYca3+3T/q0CjJ/ouqp2Fw2Pyhsa6KoqWn0uKt5zSbz9C4qjDvxFzR5mT5+IyVloKh8fF8H/+dTvHFP2TdYlnMm/JbUEtOyxrLjbxUrBj6M8jVV56gOqHziDNW0blmY+QnDEhaGWLCIWOSSTVDY/Wvk/e+Dfz197I7rDJTPvvR0GC83cq0MS0WHaaLGzlw6clWamBogmWUkp1UPTGXbiwMeWMvg+ub2WPSaZUUoioGPoXKzXlReTfezoTWnbw5cK7mbbgpKCWbw+PoNA2hqjKL4Na7kBzu1x89rerOXrPX1gfcwKzf/Ro0FpkWrV2fSv/emiPLSrYtYXGv53IWPc+vj7hQSbM+1bQ62hMmkGGez8tDUN3WntjDJ889QcWfnEtRWHZZFz7BnZH38eodcZht1IYPp6kuq/BmH6pQ6nhShMspZQKUF2Sz8zyN1iXeDqjRmcFteySqMmMbtwZ1DIH2q6tX9D4wHFkt+xiy1H3MOf0K/qlnvK46Yxt3onX4+2X8vtb2YECttx9GkeVrOCLlAuYfd2zWG32oNeTMXYiVcRA0caglz1Q1r39JHGPn0qMqWXvt59g+vEX9Es9YVlzsYgZshNd1NfXsurPl7F4x2/ZGTmX0T99D0dscr/W2ZAwlQjTANX7+rUepYYbTbCUUirArmd/iWBIP/3moJfdnDydMaaI6urKoJfd37weD2tW3EHWs2dgMy72nvUcc05b2n8VZswlgToK9g6tLl3GGNa8+S8sy49hunMjG3J/zZE/fhhLPyRX0DrRxUQSh+BEFzWVZXx2z8Uc8dmPKLel4lz6HpOPPL3f6suY5htPWbl76E10seE/71Dxx4UsrnmFDZmXMv2mt3DEJPR7vdbRuQA4h0l3XaUGiiZYSinll799NXPKXmF1ynfInpQb9PIdY/zfoA+x8TL7dqxjx/8dx/ydf2RrxDws13zC1HnH92udo6YcA8CBbav6tZ5g2rdrK5vuOo35X/yEGmsSRUveYs53/qff621MzmWMex9NDXX9XlcweN1uVj9/D95757Kg+k3WZF5O1i3/YXT2lH6tNyMrhzISsOxf36/1BFPx/ny+uGcJc975LhE4+erUJ5jzg/uRINznqjdGjZ+N1wgVu4fOe6bUYDAwn1CllBrkvG43zS/8hDqimLrkt/1SR9rkBfAx1O9dBwtP6Zc6gqm89ABfPfMLFpS9QKNE8EXu/7Lg3GuDPo6oM1mT5tJkwnAXrAX+u9/r64uykkJ2PPdbFpQ+RzJWPp94A/MuvBVbmGNA6g/LWYh9/6Ps2foJk4/s242e+5Pxetn4yStEffxbFni+Zrt9OlVn3c383KMHpH4RYV/kDDLqBv9EM7W11ax79g/My3+YObTwRcZlzPre/zIqOn5A45iePZq9Jg1b0eB/z5QaTDTBUkopYOPTdzDXtYP/zPk/jk5J65c6kkZnU0ksUjK4L1aa6qrY8PwfmLb3MY6kgfUp5zL+wt9x5Kj0AYvBYg8jP3wiCVVbBqzOQ1VbXc625+5kZsG/OZpmNiedxtgL/4+FaWMHNI7M3ONgFdR+9SkM0gTry/+8gfnwd8xxbaFUklh7xF0cccYPByRZD+QcPZ/Ruz+huiSf+NQxA1p3b9TV1bLl5XuYvOthTqCGL2OOIvn8uzkyZ0ZI4hkVE85mazZzqnaEpH6lhipNsJRSI17xVxuY8dUDrI5cxFFnX9Vv9YjFQpFj4qC9MayztpwdL/2BcXse52ga2Bq1gPiz7mT+1AUhiacuaRYzi56lsbGeyMjokMTQmfLSA2x/5W5mFfybhdLAupjjST37N8yZNDsk8aSMSmefZOIoHlxji4zXy6b/vIX14/9jZstGykhgzdRbmX3udYwKjwxJTHGTF8PuP1Gw6QPiT1kakhg6U1FVxcaX7yM372GOppqt4XOoPvVXTJ8b3Bk6D5WIUBs3meTqz8BZC47YkMaj1FChCZZSakTzulpofPaHhBPBmEv/1u/fqDclz2BSwRPUNzQQHdU/0ysfqvqqA3z94u+ZmP8Us2lidfhRRH3rVmb08zirnoRNWEx48b/ZtvFjph0d+paZovzd7H31LmaXvshiaWZz9NFEnvorjhigLm7dORA3i6nVKzFeD2KxhjQWj8fDundXEL3mfmZ7tlNJHJ9NvIk5593A/BAnyuNnHkXT62E07/kPsDSksQAUHShix8t/YnbRU5wkdXzlmEXNiQ8xY8GpoQ6tjSVtJlRD8/4thI8/JtThKDUk9DnBEpGfAD8GPMDrxphb/Ot/DvyXf/1PjTFv97UupZQKtg1PLeMI19f854g/cXR6/3cZihgzh7DCx9i5bQ0z5x/f7/V1p7asgF0v/T+m7n+OWaaF1ZHHEnnyLSw4YlFI42o1Zva38Hws1O34AEKYYO3dsZGSN+9ibvVbjMKwJeEkUk77GblT5ocspo5k7FHEVr/Ovh3rGDstNC2Ozc1O1r/2d9K2PsgCU0CxjGL9jF8w44wfcVTE4GiBjIyIYEvYFBLK14U0jrzdO9n3xt3MK3+ZE6WZbTFH0/itm5k068SQxtWZxAnzYQeU7vycLE2wlOqVPiVYInICcA4wyxjTLCKj/OunARcB04F04D0RmWSM8fQ1YKWUCpb9O1Yzc9dyvog+gaPOunJA6kyfvgj+AzVffQohSrCqivaw9+U7mX7gZXLxsDrmJBJOvZWFM+eFJJ6uxCel8LVtPDHFn4Wk/h3rP6L+vT8wt2EVo7GxedQ5jD3rVuaMmRySeLqTPudU2PRLyja8MeAJVl1tNZtfuY/xux7lKMrJs2az6Yg/MOOUKxjdT9PT90Vt+jHM3Pc3qksLiR+VOaB179yyhop3/sD82vfIxPBl0imkfftnTJswd0DjOBQTJ0yi0CTj3vd5qENRasjoawvWNcDvjTHNAMaYUv/6c4Cn/Ov3isguYAEQmv8llVKqA4+rmebn/ptaiSbnsr8iIgNSb2LGRIplFBGFnw5IfYHK9u2g4NU7mVH2OjOB1XGnMerbt3L0lOBPSR8sVaOOZFbR09TV1RIT0//jP4zXy5ZVr8Kqe8ht2UAdkazNWsqks29i3gBfjB+KzOxJ7LLkEJ3/HrBsQOqsKC1i5yt/ZFrhUxxDPdvDZlJ5zO+Zuvj8AZ+84lAkzT4L9v2NvZ+/xJyzr+33+owxbPn8PVo++iPznJ/RRBhb0i8g58xbmJUxod/r76vRcQ7etkxhYcWGUIei1JDR1wRrErBYRO4EnMBNxpg1QAYQ+FVHoX/dQUTkKuAqgDFjBt+MPqHW4mzC2VBLU2MtzY31tDTW0dJUh9tZj8dZj7u5EberBY+7BbwexLgRrxsxbixeNxgvBsGLxfdTLBgsiMWCxWrFarEiVjvYHGALR+wOLHZH209LmIOw8Ejs4RGEOSIJc0TiiIjCERFFuN02YBelSgXbuhV3sMC9h88X3MfC1IGbHQ9gf8J8JlasxO12Y7P1/1DY4t2bKX7tTnIr3yEWK2sSzyLjzNs4Zvzga4npKGb6KYQXP8mXn73C3FO+32/1eDweNr77BDFr7ifX8xXlxLN6wnVMP/t6FsQm9lu9wVQ86liOKn6cxppyIuOS+62eoryd7Hv9D8wqfYWjpZlNUUdTdsKNTJ13cr/VGUwTc4/iwMtJWL9+G+i/BMvr8bLhw2cJ/+Jecl1bqSaaddk/ZPLZNzE3sX9mKu0PIkJl4hziK1ZBTSHEDd4vGpQaLHr8n11E3gM6+0vwC//xicBCYD7wjIiMO5QAjDEPAQ8BzJs3zxzKsUON8XqprS6nqiSfurJCmir34609gGmqwuKsxtZcTbi7hgh3LVHeOuJMHRHSQhhwuN/beo1gkf55W53GjpMwmiWcFsJpkTBaLA7clnDfw+rAaw3HY43A2Bz+RwTYIpAw38Nij8ASHoU1LAJbWCQ2R5QvoYuIIswRRXhEFOERkTjCw7FbB+83okOVMQZjwPifew0YfOsAvP4nrfu0HgOtx7SubP3xzbFtm7xeWo8wXoPB6y/Q9wgsx7TtKR3qk2/qEvHH0xqbfBNP+3D82755DYiv3IayAqbv/jvroxZx5OmXHvob10eWnGOJq3ydr7Z8zqQ5/TfeqWDHWsrfuJNZNR8Sj53PU75Lztm3csyYQ/ozHVLj559O5bsxyNbnoR8SrJZmJ5tef5DUrQ9yhHc/+yWNNTNuJ/fMq1ngGByTkPRW3KwzsR14jK2rXmD2GcGfDXPvtjWUv30Xs6vfJwXYlPAtRp3+M2ZNHrzd2zpjtVrYFXc0c2rexeVswB7k8+xytbDhjUdI2vQ3jvDmUSLJrJ16CzPOvJYjouKCWtdAiRx/FFTcR+WOT0g88uJQhzPieD1eGpoaaKivoane/0V7Uz3u5nq8zno8LQ14W5x4Xc143C14Xc3gdWHxuHw/vS1Y/D/F6/b/3298X8L7f7b+TyoYBPw//f9/irXtC/rW54jV97D4n1t8y2KxgMXqm2zHYkMsNt9Pqw0sdt+X+v5l38OOxWpvt2y12hGbHavNjsVqw2ILQ8JjSc4cT3T40Jifr8cojTFdfiUlItcALxjfFdBqEfECycB+ICtg10z/umHN2VhHSf7XVBfvwlm6B29lHuENRUQ2lxHrriDRW0mcuOj457XFWKmVGBosMTTa4qiLyKAqLI59jgS84XEQFu1LQsKjsIRHY3dEY4uIJiwiGkdENOEOB47wMKy2cMRqRaw2LNYwxP8LbgTfB8frAeMF48XjceNyu3G5PbhdzbhbnLibm3C3NOFpacLT4sTjcvqf+5a9LY14WpwYVxO4msDdhLiaELcTi8f3sHmc2L1OIj3V2N3N2L3NhJlmwmkh3DRjl8MbhtdirNQRhhsbHrFisODBgleseLHgwfeB93b8KVa8WEF8fy4EoPX94JsL8Y4LB6ekvgwj4LLf//yb9QdtM988F386IKb9sd+kBiDGEPjHrfW5aSufg7b7Xo7/uE7j+CZmCYilldD5H1PpcLxgsHRyTPt42m/rr8Q+WJqxk7nkjyFphR17xGmw7meUbHqnXxKsvZtXUfPO75ld/wmJxsF/Rn+fSef8jEWjs3o+eJAJCw9nZ9LJzK54nfraKqJjE4JSbmN9NZtfvpdxX/+T+VSy2zqOdQv+yOxTlpIxAK2K/WHavBMoejsFx+bHIYgJ1o7V7+Bc+SdmN35GqglnfeoFZJ91M/OyJgatjoHmmHMhUStfZdv7jzHtjB8FpczGhlo2v/oAY3Y+wgJTyj5LFuvn/o7c0/6L1AG66XR/mZh7JA1fhFO9/UNNsA6T12uoraulrqKY+soimmtKaamvwt1QibexCpw1WJtrCHPV4vDUEumpJ8pbR4RpIhInMWKIOYx63caCCxsubLjFhhvbN1cF4vufvf2VAAddLVjw+h7Gi7X1edvD41tnfH2lLHixiTcYb1k7Kz2z2Prdpzgzd2B7nByuvv4v8hJwAvChiEwCwoBy4BXg3yLyJ3yTXEwEVvexrkHB1eKkaM+XVOZtwVm8g7DqXcQ05pPkKiGJasYCrbeYbDZ2Si0p1NpTKIqZSX5kKsSkYo9PJzIxg9hRWfz/9u47vs3qauD470iy5L0dxyuxs4ft7EUCJJQRCjRQZsumhe4CpaWb0r7t+1KghRbaUiizpYyyKXsFCJC9d5zEsZ043tuWrHHfP6QYx7FjJ5Yt2znfz8dYesZ9jvzkETq6954nPiWTyOg4ki0W+m5AR4D189NtDQMr0O9v+V4PHlcTLmcTrpYmWp1NuFuacLua/cMdnc14WpvxuZrxuVswrS0YdzO4nYinGZ/Xg8/nRXwe8PmwGA+CD3xeLMaLGB8WPP7fgedheNq6SA51nBwifJ5sdeawz96B7KwtnRDLkW9I4k/iTFsWZ/k8ZZHP0xB/T0qHZW0HbL8u8NMWR2B5u+2kfVwi/jRS8A8FBX+CLe3So7ZtDj/m4W3Tbhv/Pp/H4d/ftO3vf41ytNfQ9nfxb9/psdsemcP/JP4Ms/2ido9NW9J85Hpz2JbtE0GA6PGnkj5yAqGQlJ5NoW0UicVvYcyvg5PkGcPO5a/h/vAPTHaupd5E8knm15hw/q0s6KMbJ/eXhLlfJeL1F1n57hPM/vKNvWqrqqyYXa/ew8SSp5lLE5vt+ZSedDf5p1wwoOcN9YQtLIydIy5lYdH9lO9aw7CxM467La/Hw8b3nyZ81V+Z6N5CDTF8NuIbTPzSD5iTPLj/PQFMWXAOBUtHELX+H/DFb3V4sz82FWXF7Hz1z4F/U/XsCJvIxrm/Jm/RpYwMccn8YJmYnsRSyWfa/g/8/xPV6QFtWt1eKsr2U1e2j5aqItw1+/E1lCHNFdhbKolwVxPtqSHB1BEvLcR30U4T4TRKNM3WGJzWGOrsmVSGxeG1RyP2KMQehTU8GosjGpsjCkt4DDZHFNYI/xfvYY5IHI5wHOH+H1uYA7HasVms2ICIfvyb+HwGr8+L1+PG4/EEprK48Xla8Xg9+NxuvJ5WvF4PPk8rPo8Hn9cd+Aks83owXjcm8DvMnsC0EcH5gq0/iDHH/y2ziNiBR4CpQCv+OVjvB9b9HLgO8AA3GWPe6K69mTNnmtWrVx93PMFWW1HK3g1Lce5bTWT1NhJbCknzlh6WmR8kmQp7Js2RGXhjswhLziF6+GhSMseRmJqJxTo03lyVUsG19t+3MX3nnyi47CPGTJhy3O0Yn5fN7z9F+Io/M9a9g0ri2J59FXlLfkBcwuCYO9Qd4/Ox97dTseIl/afrCAuzH3MbhVtXUvH2PUypeRu7eFgXMY+I037EhFmhvZFrsO0/sJ/Ev09lW8Iipt/07DHv39xQw+bX/krGjifIMAc5SAqF464l/0vfJTJ6cA5v68p7T97FF3b9lj2L/8Wouecd8/77tq6i7J17mFL9Ng5xsylyDvZTf8D42WcNyQTkib/9jqvK7sR7/VKsGdNCHU6/qW9qoqJ4Fw0HduKsLMRbW4Kt4QCRzjLi3eWkmCrCxX3EfjXEUm+Np9mWiCs8CW9ECr6oFCzRKYTFphIen0pUXBIxCSnExCUhtmN/X1OhJyJrjDFHlODtVYIVbAMtwVr+1O+Yu+NOvEYotmRQFZGDK2EMYcPGEz8yl4wxeURGx4c6TKXUIFR9cB/Rf5vGqqTzmf/9R455f4+rhY1vPkzyhr8xwlfCflLZN+HrTP3St4kM8c1c+8KGt59gyqffY8WYm5lzxe092sfncbP1o+eRFQ8w2bWOFmNnY/IXSTvrZkaMm9qn8YbSJ3/7NvPLnmTX4n8zdu45PdqneOd6Drz/dyYdfJEYWthmm0jz9BuYcsYV2I4joR0MGhobqLt7OmINI+UHn2HvwfwoT6uLjUv/g33tw+Q619Ji7GxK/iLpi28mc+zUvg86hN5etZkv/HcBB6Z8j6wv/0+owwmq+voaDu7dSm3JTlordmOpLSSqqZhk936Gm0qs7Ya8e4yFKksitWHDaAlPxROdjiU+k7DELCKTRxKXOoKElAysA/AWBSr4NME6DuX791JVspORk+cOuW/ulFKht+6+rzKp8i3Kr/qIrNGTe7RPTVkRBa/9iVFFz5FELbst2VRO/TbTFl+L3T40PwiDvxdr/V1fJLd5JbtO+ROTvtB1cZLSgg2ULH2EnJKXSaaGchLZnfNVJp7zfeKTU/sx6tCoq62h5k/zSTB1NCx5lMxpZ3a6XX1VKbs+fIaobc8wwb0Vj7GwNuZUok/9PhNnLjohqsSueO9FZn50LXsj88j4xgtExKccsY3xedm98VOqV/yb0aWvkUQd5SSya+RXmHTe90kYAkMme6K51cPW381nZHgzKT/e4C9uMIgYYygvP0hpwQYaijdDxXaiG/aQ1rqP4VQetm0tMVSGpdMYlYU3Lhtr8igiUseQlDGWxNQsLJo8qQBNsJRSaoCp3L8Xx4PzKLVlknXze0R08UWOz93Kjk9fxrXmSSbXfYQVH+vDZ2Fm38C0hRdiOUEqbNZVl3PgL+cy0buDDUlnEzXjMqKG5eBrbaa2eCste1eQVv4RGb5SvEbYEDEbT/7lTPnCJTgc/TkDIfR279yC5d8Xk2VK2ZF4Gt5Ri7DHpOBurMBVup2E8hXktO7CIoa9kkVpzpcZd8bXSU478W6X8vYzf+HUrb+iRcLZm3U+9oypYLXhqizEd3AzOXWrSKKWVmNlY9Q8LNOuIH/hhUO2Z+9onvj7XVxV+luaLnySqLxzQx1Ol6pqaijZsZbGfWuxlG8lun43ae5Ckqlr28aJnQO2EdRF5+BOGEtY6jgSMsYzPHsi4TGDZ66PCi1NsJRSagDa8O6TTP74uxy0Dqdx3o/JmPYFIiKiqTqwm9Kda/AVfEBOzSckUE+NiWFLyhfJOPN75IzLC3XoIVFTV8+mJ25hRuXLRInrsHUuE8bW8Kk0jTiNnJMvI2MQlaPvC2VlZWx++hfMqv4vsdLcttxlbOyxjaYy7VSSpp3HhKkLTpgkvSsbV35Iy7u/Y4Zr1WHzrCuJZ3fUdHxjTmfCgi+TkJIWwihDb3NxJQn/mI3EZZF+89KQzzUzxnBgfzEHdqykuWg99sotDG/ayQizv21YXwMRlIaNpCFmNCZ5PFGZkxk+Kp+E9DGDrhdODTyaYCml1AC1/sOXSPjgJ4yk9Ih1tSaaHdGzIO9i8k/9MhERJ1ZPTFeqqirZvWEZvoaD+KwO4jInMmJMLjHRQ2/+WW81O13s37uN5vpaImISyMiZQFSEI9RhDUjlNbVUFu3E5/OSkJZNeurwE2Ko5LH4159/zhXV91O7+H7i5/bffQQ9Hg9Fu7dSsWsV7pINRNZsJcNVQCo1bduUSzLlUeNoTcklImsqKeNmkpQ+dtBXCFUDlyZYSik1gLW0ONm08l3c+zfiaXVhjc8gceRkxuXOxham4/2VUgPD3vJ6qv9yOhMtxdi+8R724ZOCfozm5ib2bV9L7Z7VmNJNxNdtY6R7D1HiBPyFJkpsI6iOHY9JzSMuZzqZE2YTHnfkHDql+pImWEoppZRSqtfe+Hg5M9+9BIcVzEWPEjfp+G93UFFeSsmO1TQVriOsYhPJjTsZ4S0mTLyA//5QJfbRNMRPwJo+lcQxM8gYOw2bIzJYL0ep49ZVgjU4b1evlFJKKaVC4uyT5/K69ykmfXAd2c9+md0JC5D8S8nMOwV70sjD5mb5vF7qqg5SV15E1YG9tJTvxlq1k9jGPQx3F5NCHYf6naqIpzRiLOuTFuHImsKwcbNJHTmB8UPkhs3qxKE9WEoppZRS6pjtLCln63O/ZX7NS6SIv0KfizCaJAofgt20Em6c2AO9UYfUE0Vp2Ajqo0dhkscROyKP9AlziE3JDMXLUOq46RBBpZRSSikVdJX1Texc/wlNe1dhbyzB2lqPAFgdWMOjICYNa1w6ccOzSRs5lpjE9JBXIFQqGHSIoFJKKaWUCrrk2CiSTzkTTun8ptZKnWi0bqVSSimllFJKBYkmWEoppZRSSikVJJpgKaWUUkoppVSQDKgiFyJSAewLdRwdJAOVoQ5C9Rs93ycOPdcnDj3XJxY93ycOPdcnloF4vkcaY464w/WASrAGIhFZ3Vl1EDU06fk+cei5PnHouT6x6Pk+cei5PrEMpvOtQwSVUkoppZRSKkg0wVJKKaWUUkqpINEEq3sPhjoA1a/0fJ849FyfOPRcn1j0fJ849FyfWAbN+dY5WEoppZRSSikVJNqDpZRSSimllFJBogmWUkoppZRSSgWJJlhHISKLRWSHiBSIyE9CHY8KHhHJEpEPRGSriGwRkRsDyxNF5B0R2RX4nRDqWFVwiIhVRNaJyH8Dz3NEZEXg+n5GROyhjlEFh4jEi8hzIrJdRLaJyDy9tocmEbk58B6+WUSeEpFwvbaHDhF5RETKRWRzu2WdXsvi9+fAed8oItNDF7k6Vl2c67sC7+MbReRFEYlvt+6ngXO9Q0TOCknQR6EJVhdExAr8BTgbmAR8RUQmhTYqFUQe4BZjzCRgLvCdwPn9CfCeMWYs8F7guRoabgS2tXv+e+AeY8wYoAb4WkiiUn3hT8CbxpgJwBT8512v7SFGRDKA7wMzjTG5gBW4DL22h5LHgMUdlnV1LZ8NjA383AD8rZ9iVMHxGEee63eAXGNMPrAT+ClA4PPaZcDkwD5/DXxuHzA0werabKDAGLPHGNMKPA0sCXFMKkiMMaXGmLWBxw34P4Bl4D/Hjwc2exw4PyQBqqASkUzgHOAfgecCnAY8F9hEz/UQISJxwCnAwwDGmFZjTC16bQ9VNiBCRGxAJFCKXttDhjHmI6C6w+KuruUlwBPGbzkQLyJp/RKo6rXOzrUx5m1jjCfwdDmQGXi8BHjaGOMyxuwFCvB/bh8wNMHqWgZQ3O55SWCZGmJEJBuYBqwAUo0xpYFVB4HUUMWlgupe4FbAF3ieBNS2e+PW63voyAEqgEcDQ0L/ISJR6LU95Bhj9gN3A0X4E6s6YA16bQ91XV3L+rltaLsOeCPweMCfa02w1AlNRKKB54GbjDH17dcZ/z0M9D4Gg5yInAuUG2PWhDoW1S9swHTgb8aYaUATHYYD6rU9NATm3izBn1SnA1EcOcRIDWF6LZ8YROTn+Kd2PBnqWHpKE6yu7Qey2j3PDCxTQ4SIhOFPrp40xrwQWFx2aEhB4Hd5qOJTQTMf+JKIFOIf6nsa/jk68YFhRaDX91BSApQYY1YEnj+HP+HSa3voOR3Ya4ypMMa4gRfwX+96bQ9tXV3L+rltCBKRa4BzgcvN5zfvHfDnWhOsrq0CxgaqEdnxT6Z7JcQxqSAJzMF5GNhmjPlju1WvAFcHHl8NvNzfsangMsb81BiTaYzJxn8dv2+MuRz4ALgosJme6yHCGHMQKBaR8YFFXwC2otf2UFQEzBWRyMB7+qFzrdf20NbVtfwKcFWgmuBcoK7dUEI1CInIYvzD+79kjGlut+oV4DIRcYhIDv7CJitDEWNX5PNkUHUkIl/EP3fDCjxijPldaCNSwSIiC4CPgU18Pi/nZ/jnYT0LjAD2AZcYYzpOsFWDlIgsBH5ojDlXREbh79FKBNYBVxhjXCEMTwWJiEzFX9DEDuwBrsX/haJe20OMiPwauBT/8KF1wNfxz8XQa3sIEJGngIVAMlAG/Ap4iU6u5UCSfT/+YaLNwLXGmNUhCFsdhy7O9U8BB1AV2Gy5Meabge1/jn9elgf/NI83OrYZSppgKaWUUkoppVSQ6BBBpZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZRSSimllAoSTbCUUkoppZRSKkg0wVJKKaWUUkqpINEESymllFJKKaWCRBMspZQaYEQkW0SMiNhCHYs6MYjIFhFZGOo4lFJqKNAESyml1KAnIg+ISGPgp1VE3O2evxHq+AY6Y8xkY8zSYLcrIqeLyFoRaRKREhG5JNjHUEqpgUaMMaGOQSmlhhQRsRljPL3YPxvYC4T1pp0TlYjcDowxxlzRybpenZv+NJhi7YyITAKWAlcD7wBxQLwxZnco41JKqb6mPVhKKRUEIlIoIj8WkY1Ak4jYRGSuiHwqIrUisqH9ECwRWSoi/yciK0WkXkReFpHELtq+VkS2iUiDiOwRkW90WL9ERNYH2tktIosDy+NE5GERKRWR/SLyWxGxdvM6RovI+yJSJSKVIvKkiMS3W1ctItMDz9NFpOLQ6xKRLwWGmtUGXt/EDn+fH4rIRhGpE5FnRCT82P/Sx66Lc2NEZEy7bR4Tkd+2e35u4G9aGziH+T081sJAT83PAn+/QhG5vN36c0RkXeBcFQeSwUPrDg0N/ZqIFAHvB5b/R0QOBv5uH4nI5A5x/1VE3gj01n0iIsNF5F4RqRGR7SIyrYd/o9N78hqPwS+Avxtj3jDGeIwxVZpcKaVOBJpgKaVU8HwFOAeIB1KB14DfAonAD4HnRSSl3fZXAdcBaYAH+HMX7ZYD5wKxwLXAPe2SnNnAE8CPAsc9BSgM7PdYoN0xwDTgTODr3bwGAf4PSAcmAlnA7QCBD8c/Bv4lIpHAo8DjxpilIjIOeAq4CUgBXgdeFRF7u7YvARYDOUA+cE2nAYgsCCQ2Xf0s6OY1dKbt3HTXKxRISB4BvgEkAX8HXhERRw+PNRxIBjLw9948KCLjA+ua8J/3+EA83xKR8zvsfyr+v/1ZgedvAGOBYcBa4MkO21+CP5lJBlzAZ4HtkoHngD/2MO5OichPjnY+jrLr3MD+mwJJ/r+6+hJBKaWGEk2wlFIqeP5sjCk2xrQAVwCvG2NeN8b4jDHvAKuBL7bb/p/GmM3GmCbgl8AlnfUwGWNeM8bsNn4fAm8DJwdWfw14xBjzTuA4+40x20UkNXCsm4wxTcaYcuAe4LKjvQBjTEGgLZcxpgL/h/NT261/CCgAVuBPDH8eWHUp8FpgXzdwNxABnNTh73PAGFMNvApM7SKGZcaY+KP8LDvaa+hC+3PTnRvw97ysMMZ4jTGP409c5h7D8X4Z+Bt+iD/RvgTAGLPUGLMpcK424k9KT+2w7+2Bc9YS2OcRY0yDMcaFP9mdIiJx7bZ/0RizxhjjBF4EnMaYJ4wxXuAZ/Mn1cTPG3HG083GUXTOBK4EL8SeIEcB9vYlFKaUGA02wlFIqeIrbPR4JXNzhm/4F+JOSzrbfB4Th73U4jIicLSLLA8PzavEnToe2ywI6G3Y1MtBeabvj/x1/L0iXRCRVRJ4ODCmsB/7VSUwPAbnAfYEP/eDv8dp3aANjjC/w+jLa7Xew3eNmIPposQRZcfebtBkJ3NLh3GXhf409URNImg/Zd2hfEZkjIh8EhlbWAd/kyL9vW6wiYhWRO8Q/9LOez3sn2+9T1u5xSyfP+/Pv3F4L8KgxZqcxphH4Xw7/gkEppYYkTbCUUip42lcNKsbfQ9X+2/4oY8wd7bbJavd4BOAGKts3GBiW9jz+HqHUQI/B6/iH8h06zuhOYinG3+uS3O74scaYyZ1s297/Bl5HnjEmFn9P3KFjISLRwL3Aw8Dt7YZ8HcCfmBzaTgKvb383xzuCiJwsn1cA7Ozn5O5bOULHik7NQGS758PbPS4Gftfh3EUaY57q4bESRCSq3fMR+P8+AP8GXgGyjDFxwAO0+/t2EutXgSXA6fiLRGQHlnfcp88E5pN1eT6OsutGDn8tWlVLKXVC0ARLKaX6xr+A80TkrEAvRHigAEJmu22uEJFJgflMvwGeCwzras8OOIAKwCMiZ+OfS3XIw8C1IvIFEbGISIaITDDGlOIfSvgHEYkNrBstIh2Ho3UUAzQCdSKSgX9uV3t/AlYbY76Of+jbA4HlzwLnBOIIA27Bn+B92t0fqiNjzMfGmOij/Hx8rG12Yj3w1cC5Wczhw/QeAr4Z6G0SEYkSf3GKGGgrLPFYN+3/WkTsgWTwXOA/geUxQLUxxhmYP/fVbtqJwf93rMKfEP7vMbzGoDDG/O/RzsdRdn0U/7/NUYF/4z8B/ts/USulVOhogqWUUn3AGFOMv+fhZ/iTo2L8yUr7991/4i9EcRAIB77fSTsNgeXPAjX4P5C/0m79SgKFL4A64EM+70m6Cn+CtjWw73McPkSxM78Gpgfaeg144dAKEVmCv0jFtwKLfgBMF5HLjTE78Pd23Ye/F+484DxjTGs3xwuVG/HHWAtcDrx0aIUxZjVwPXA//r9bAYcX5MgCPjlK2wcD+x3AX5Dim8aY7YF13wZ+IyINwG34z+vRPIF/iOF+/OdxeXcvbKAwxjyCP/4V+F+Di07+jSul1FCj98FSSqkQEJGlwL+MMf8IdSyq5wJVETcA+YFiHh3XL8R/XjM7rlNKKXVisIU6AKWUUmqwCPTITex2Q6WUUicsHSKolFInGBF5oIuCBQ90v7cajERkxFEKVYwIdXxKKTWU6BBBpZRSSimllAoS7cFSSimllFJKqSAZUHOwkpOTTXZ2dqjDUEoppZRSSqmjWrNmTaUxJqXj8gGVYGVnZ7N69epQh6GUUkoppZRSRyUi+zpbrkMElVJKKaWUUipINMFSSimllFJKqSDRBEsppbrh8frw+bTiqlJKKaW6N6DmYHXG7XZTUlKC0+kMdShqkAkPDyczM5OwsLBQh6IGMWerh4/vvJCC2Nl883s/Q0RCHZJSSimlBrABn2CVlJQQExNDdna2frBRPWaMoaqqipKSEnJyckIdjhrENq9ayhmepZxRvZRte77KxNH670kppZRSXRvwQwSdTidJSUmaXKljIiIkJSVpz6fqNdn+atvjkrVvhTASpZRSSg0GAz7BAjS5UsdF/92oYJDafZSSghM7Urwi1OEopZRSaoAb8EMElVIqlCJd5VSHDafRlk5aw+ZQh6OUUkqpAW5Q9GCFmohwyy23tD2/++67uf3220MXUDvLly9nzpw5TJ06lYkTJ7bFtXTpUj799NPjbnffvn1Mnz6dqVOnMnnyZB544IEgRazU4BLrrqLZkUJL/DiyfMU0Od2hDkkppZRSA5gmWD3gcDh44YUXqKysDGq7xhh8Pl+v2rj66qt58MEHWb9+PZs3b+aSSy4Bep9gpaWl8dlnn7F+/XpWrFjBHXfcwYEDB3oVq1KDjjEkmSpckanYUscRKy3sK9ob6qiUUkopNYBpgtUDNpuNG264gXvuueeIdRUVFVx44YXMmjWLWbNm8cknnwBw++23c/fdd7dtl5ubS2FhIYWFhYwfP56rrrqK3NxciouL+dGPfkRubi55eXk888wzgD9BWrhwIRdddBETJkzg8ssvx5gj78NTXl5OWloaAFarlUmTJlFYWMgDDzzAPffcw9SpU/n444+PGueVV17JvHnzGDt2LA899BAAdrsdh8MBgMvl6jIR/POf/8ykSZPIz8/nsssuA6C6uprzzz+f/Px85s6dy8aNG9uOdfXVV3PyySczcuRIXnjhBW699Vby8vJYvHgxbre/Z+A3v/kNs2bNIjc3lxtuuOGI1+3z+cjOzqa2trZt2dixYykrKzvaaVTqmLkaq3Dgxhc9nPgRuQBU7NVhgkoppZTq2qCag/XrV7ew9UB9UNuclB7Lr86b3O123/nOd8jPz+fWW289bPmNN97IzTffzIIFCygqKuKss85i27ZtR21r165dPP7448ydO5fnn3+e9evXs2HDBiorK5k1axannHIKAOvWrWPLli2kp6czf/58PvnkExYsWHBYWzfffDPjx49n4cKFLF68mKuvvprs7Gy++c1vEh0dzQ9/+EMAvvrVr3YZ58aNG1m+fDlNTU1MmzaNc845h/T0dIqLiznnnHMoKCjgrrvuIj09/YjXcscdd7B3714cDkdbwvOrX/2KadOm8dJLL/H+++9z1VVXsX79egB2797NBx98wNatW5k3bx7PP/88d955JxdccAGvvfYa559/Pt/97ne57bbbALjyyiv573//y3nnndd2TIvFwpIlS3jxxRe59tprWbFiBSNHjiQ1NbXb86jUsWioKMEBSMxwhmX73ydcZdtDG5RSSimlBjTtweqh2NhYrrrqKv785z8ftvzdd9/lu9/9LlOnTuVLX/oS9fX1NDY2HrWtkSNHMnfuXACWLVvGV77yFaxWK6mpqZx66qmsWrUKgNmzZ5OZmYnFYmHq1KkUFhYe0dZtt93G6tWrOfPMM/n3v//N4sWLOz3m0eJcsmQJERERJCcns2jRIlauXAlAVlYWGzdupKCggMcff7zTHqL8/Hwuv/xy/vWvf2Gz2dpe05VXXgnAaaedRlVVFfX1/sT47LPPJiwsjLy8PLxeb1u8eXl5ba/vgw8+YM6cOeTl5fH++++zZcuWI4576aWXtvX2Pf3001x66aVH/ZsrdTxcTbUAWCPisMVn0YIDW/Xu0AallFJKqQFtUPVg9aSnqS/ddNNNTJ8+nWuvvbZtmc/nY/ny5YSHhx+2rc1mO2xYXfv7MUVFRfXoeIeG6IF/+J/H4+l0u9GjR/Otb32L66+/npSUFKqqqo7Ypqs44chy5h2fp6enk5uby8cff8xFF1102LrXXnuNjz76iFdffZXf/e53bNq0qUevyWKxEBYW1nYsi8WCx+PB6XTy7W9/m9WrV5OVlcXtt9/e6b2s5s2bR0FBARUVFbz00kv84he/OOpxlToerS3+LyGs4TFgsVAWlklsU2Fog1JKKaXUgNbrHiwRyRKRD0Rkq4hsEZEbA8sTReQdEdkV+J3Q+3BDKzExkUsuuYSHH364bdmZZ57Jfffd1/b80FC47Oxs1q5dC8DatWvZu7fzifEnn3wyzzzzDF6vl4qKCj766CNmz57d45hee+21tjlKu3btwmq1Eh8fT0xMDA0NDd3GCfDyyy/jdDqpqqpi6dKlzJo1i5KSElpaWgCoqalh2bJljB8//rBj+3w+iouLWbRoEb///e+pq6ujsbGRk08+mSeffBLwzyVLTk4mNja2R6/nUDKVnJxMY2Mjzz33XKfbiQgXXHABP/jBD5g4cSJJSUk9al+pY+EOJFhhEf4vReqjskl1F4cyJKWUUkoNcMEYIugBbjHGTALmAt8RkUnAT4D3jDFjgfcCzwe9W2655bBqgn/+859ZvXo1+fn5TJo0qa2c+YUXXkh1dTWTJ0/m/vvvZ9y4cZ22d8EFF5Cfn8+UKVM47bTTuPPOOxk+fHiP4/nnP//J+PHjmTp1KldeeSVPPvkkVquV8847jxdffLGtyEVXcYJ/mN+iRYuYO3cuv/zlL0lPT2fbtm3MmTOHKVOmcOqpp/LDH/6QvLw8AL7+9a+zevVqvF4vV1xxBXl5eUybNo3vf//7xMfHc/vtt7NmzRry8/P5yU9+wuOPP97j1xMfH8/1119Pbm4uZ511FrNmzWpb98ADDxwW96WXXsq//vUvHR6o+oy3xf8lhT3C/wWBO34UGaacunZfXiillFJKtSedVabrVYMiLwP3B34WGmNKRSQNWGqMGX+0fWfOnGlWr1592LJt27YxceLEoMaoPnf77bcfVgxjqNF/P6o3Nr18D3nrbmfXFasYO2YcG197gPxVP2bHRR8wPnd6qMNTSimlVAiJyBpjzMyOy4Na5EJEsoFpwAog1RhTGlh1EOi0xJuI3CAiq0VkdUVFRTDDUUqpXvG5mgAIj/T3YMWk+Xui6w7sCllMSimllBrYglbkQkSigeeBm4wx9e0LJRhjjIh02lVmjHkQeBD8PVjBikf1zO233x7qEJQasIzLPwcrIjoGgGEj/Z3wzgqtJKiUUkqpzgWlB0tEwvAnV08aY14ILC4LDA0k8Ls8GMdSSqn+YlqbcJkwIsP91S+jEtNxYkeqOy9ao5RSSikVjCqCAjwMbDPG/LHdqleAqwOPrwZe7u2xlFKqP4m7mSYchNusgQVCuTWNiCatJKiUUkqpzgVjiOB84Epgk4isDyz7GXAH8KyIfA3YB1wShGMppVS/EXcTTsKxWD4f8lwXkUlCU0kIo1JKKaXUQNbrBMsYswyQLlZ/obftK6VUqFg8LbTI4TfndsVkMaphNR6PF9uhni2llFJKqYCgVhEcyl566SVEhO3bt3e5TWFhIbm5uUE75o4dO1i4cCFTp05l4sSJ3HDDDYD/JsGvv/76cbfrdDqZPXs2U6ZMYfLkyfzqV78KVshKDSk2TxMuS8RhyyQhmyhxUXZQe7GUUkopdSRNsHroqaeeYsGCBTz11FOdrvd4PL0+htfrPez597//fW6++WbWr1/Ptm3b+N73vgf0PsFyOBy8//77bNiwgfXr1/Pmm2+yfPnyXsWu1FBk87bQ2iHBihg2BoCq4h2hCEkppZRSA5wmWD3Q2NjIsmXLePjhh3n66afbli9dupSTTz6ZL33pS0yaNAnwJ1qXX345EydO5KKLLqK5uRmA9957j2nTppGXl8d1112Hy+UCIDs7mx//+MdMnz6d//znP4cdt7S0lMzMzLbneXl5tLa2ctttt/HMM88wdepUnnnmGZqamrjuuuuYPXs206ZN4+WX/fVEHnvsMZYsWcLChQsZO3Ysv/71rwEQEaKjowFwu9243W7al9U/5D//+Q+5ublMmTKFU045BfD3fl177bXk5eUxbdo0Pvjgg7ZjnX/++ZxxxhlkZ2dz//3388c//pFp06Yxd+5cqqurAXjooYeYNWsWU6ZM4cILL2z7+7Q3d+5ctmzZ0vZ84cKFdLwBtVL9IczbgrtDghWfMRaA5rKCUISklFJKqQEuaPfB6hdv/AQObgpum8Pz4Ow7jrrJyy+/zOLFixk3bhxJSUmsWbOGGTNmALB27Vo2b95MTk4OhYWF7Nixg4cffpj58+dz3XXX8de//pXvfve7XHPNNbz33nuMGzeOq666ir/97W/cdNNNACQlJbF27dojjnvzzTdz2mmncdJJJ3HmmWdy7bXXEh8fz29+8xtWr17N/fffD8DPfvYzTjvtNB555BFqa2uZPXs2p59+OgArV65k8+bNREZGMmvWLM455xxmzpyJ1+tlxowZFBQU8J3vfIc5c+Yccfzf/OY3vPXWW2RkZFBbWwvAX/7yF0SETZs2sX37ds4880x27twJwObNm1m3bh1Op5MxY8bw+9//nnXr1nHzzTfzxBNPcNNNN/HlL3+Z66+/HoBf/OIXPPzww209c4dceumlPPvss/z617+mtLSU0tJSZs484ibZSvU5u68Fj+PwBCtlhP9mw56qwhBEpJRSSqmBTnuweuCpp57isssuA+Cyyy47bJjg7NmzycnJaXuelZXF/PnzAbjiiitYtmwZO3bsICcnh3Hj/B/Mrr76aj766KO2fS699NJOj3vttdeybds2Lr74YpYuXcrcuXPber7ae/vtt7njjjuYOnUqCxcuxOl0UlRUBMAZZ5xBUlISERERfPnLX2bZsmUAWK1W1q9fT0lJSVsS1tH8+fO55ppreOihh9qGLy5btowrrrgCgAkTJjBy5Mi2BGvRokXExMSQkpJCXFwc5513HuDveSssLAT8SdjJJ59MXl4eTz755GE9VYdccsklPPfccwA8++yzXHTRRZ3+fZTqaw6fE4818rBlYY5IykkirH5fiKJSSiml1EA2uHqwuulp6gvV1dW8//77bNq0CRHB6/UiItx1110AREVFHbZ9x6F2nQ2966hjG+2lp6dz3XXXcd1115Gbm9tpImSM4fnnn2f8+PGHLV+xYkW38cTHx7No0SLefPPNIwp0PPDAA6xYsYLXXnuNGTNmsGbNmqO+DofD0fbYYrG0PbdYLG1z1K655hpeeuklpkyZwmOPPcbSpUuPaCcjI4OkpCQ2btzIM888wwMPPHDU4yrVV8JNCz5b5BHLq+xpRDfrvbCUUkopdSTtwerGc889x5VXXsm+ffsoLCykuLiYnJwcPv744063Lyoq4rPPPgPg3//+NwsWLGD8+PEUFhZSUOCfs/HPf/6TU089tdtjv/nmm7jdbgAOHjxIVVUVGRkZxMTE0NDQ0LbdWWedxX333YcxBoB169a1rXvnnXeorq6mpaWFl156ifnz51NRUdE25K+lpYV33nmHCRMmHHH83bt3M2fOHH7zm9+QkpJCcXExJ598Mk8++SQAO3fupKio6IjE7mgaGhpIS0vD7Xa3tdOZSy+9lDvvvJO6ujry8/N73L5SQWMM4bjwhR2ZYDVFZpLsLg1BUEoppZQa6DTB6sZTTz3FBRdccNiyCy+8sMtqguPHj+cvf/kLEydOpKamhm9961uEh4fz6KOPcvHFF5OXl4fFYuGb3/xmt8d+++2324pMnHXWWdx1110MHz6cRYsWsXXr1rYiF7/85S9xu93k5+czefJkfvnLX7a1MXv2bC688ELy8/O58MILmTlzJqWlpSxatIj8/HxmzZrFGWecwbnnngvAbbfdxiuvvALAj370I/Ly8sjNzeWkk05iypQpfPvb38bn85GXl8ell17KY489dljPVXf+53/+hzlz5jB//vzDkrpXXnmF2267re35RRddxNNPP80ll+j9qVWIeJxY8YE9+shVcdmkUk1Lc1MIAlNKKaXUQCaHej0GgpkzZ5qO1eK2bdvGxIkTQxTR4PbYY48dVgzjRKT/ftTx8jZWYr17NB/k/JBFV//ysHVrXn2AGWt+TOFlS8meMC1EESqllFIqlERkjTHmiEps2oOllFKdcDbVAyCOI+dIRg333wur7oDeC0sppZRShxtcRS7UMbnmmmu45pprQh2GUoOSs7meKMDiOHKIYFKWvyKos3xPP0ellFJKqYGuz3uwRGSxiOwQkQIR+cnxtDGQhjGqwUP/3ajecDX5C8lYw49MsJKHZdJkHJjqwn6OSimllFIDXZ8mWCJiBf4CnA1MAr4iIpOOpY3w8HCqqqr0w7I6JsYYqqqqCA8PD3UoapBqbWkEwNZJgiUWC2XW4YQ3aql2pZRSSh2ur4cIzgYKjDF7AETkaWAJsLWnDWRmZlJSUkJFRUUfhaiGqvDwcDIzM0Mdhhqk3C3+OVhhETGdrq91ZJDoLOnPkJRSSik1CPR1gpUBtP+KtwSYcywNhIWFkZOTE9SglFKqOx6nvwS7PfLIHiwAZ3QWqc2rMT4fYtF6QUoppZTyC/mnAhG5QURWi8hq7aVSSg0UXqd/DpY9PLbzDRKyiZBW6iv392NUSimllBro+jrB2g9ktXueGVjWxhjzoDFmpjFmZkpKSh+Ho5RSPeN1+XuwwqM7HyJoTxkNQEWxlmpXSiml1Of6OsFaBYwVkRwRsQOXAa/08TGVUqrXTGsgwYrsPMGKyxgLQGPp7n6LSSmllFIDX5/OwTLGeETku8BbgBV4xBizpS+PqZRSwWBcTbiMjaiIiE7Xp44Yi88I7kpNsJRSSin1uT6/0bAx5nXg9b4+jlJKBZW7iRYcxIZZO10dGx3DQUnEWrevnwNTSiml1EAW8iIXSik1EFncTTQTjsUiXW5TaUsjqnlolmo3xvDmk/fy37/8iLpmV6jDUUoppQYNTbCUUqoTFnczTul8eOAh9ZGZJLUe6KeI+te2j19g8a5fcW7Fg6z8929CHY5SSik1aGiCpZRSnbB6mnFZwo+6jTtmBMmmGp+ruZ+i6j+tyx+mkngKwvPJLX6KphZnqENSSimlBgVNsJRSqhM2bwutlqP3YFmS/DdBr9q/sz9C6jfeVicTmleyI+l0fLOuJ02q2LT83VCHpZRSSg0KmmAppVQnwrzNuLvpwYpK9d8Lq6ZkV3+E1G8KN39KOG5so05m1Nzz8GChZYvWKlJKKaV6QhMspZTqRJjPidsaedRtErMmANBcNrRKtdfu+BiAzCmLsEUlsMcxibTqlSGOqu989NZzfPA/Z/PGy0+FOhSllFJDgCZYSinVCYevBa/t6EME09IyaDTh+Kr39FNU/SOsfDOlJon0jBEANA6bwSjvHqrr6kMcWfDVVh4k/9MbWeT9lIVrv8/ePUNruGd7Owp2svSOL/Pqw7/D5zOhDqfPuD1e3nz+Ed568TG8Q/h1Any47CPefvo+ml2toQ5FKdWOJlhKKdWJcOPEZ4s66jaOMBsHLcMJqy/qp6j6R3zjLkrsOYj4S9RHjzkJu3gp2PBJiCMLvi1vPkS8NLL91Aew42bf638MdUh9whhDy1PXsdD5HucV38nH/3081CH1mQ+e/iOLN93MWRtu5OOn7w51OH1m5cpPOOmd8zlz+y9Y+8D1oQ5HKdWOJlhKKdWJcJxgP/oQQYC68Axinfv7IaJ+4mkl3V1EXez4tkUj8k8BoH7Xp6GKqs8k7Xud3dYcJiz6Cltj5jOx8k1a3Z5QhxV0O9cuZap3Exsm3EKxNYu09X/CmKHXu9PibCVv19/Y5xjPbsdEJu+8n5bmoVflE8C8/784xcGOuAXMq36Z0r1bQh2SUipAEyyllOrI4yIML8Ye3e2mrTFZpHpKMT5fPwTW95pKd2DDi0mZ0LYsPCGdMksq0RXrQhhZ8DXUVjG2dRsHhy/yL5i8hFRq2Lr6/dAG1geqVj5Lq7GSs/g7lI2/gnG+PezZ9Fmowwq6TcteIU2qcM75Ls75PyaFWnZ8OPTm1pWVVzC1ZTm7M5YQfs7/YRVDybp3Qh2WUipAEyyllOrA1VQLgDhiut3WkjSKcHFTUVrcx1H1j/LCzQBEZ046bPnBmFyynVuHVK/HnrXvYhVD3ER/gjV63vn4jFC/ZeiVpE8v/5BdEVOJjU9i1MIr8RnhwKqXQh1W0Lm3v4XThDHqpAsZP+9cKonDbH051GEF3f5VL+MQD1HTLiJz9GSajQNTpj1YSg0UmmAppVQHzQ01AEh4bLfbRqeNAaBs37Y+jam/NO7fDkBqTu5hyz1p0xlOFQf2D535Zq49n+I2VnKmLgQgMn4Y+8JyiCtbEdrAgqyivJRss5+mjPkAJA7LYK99DAmlH4c4suDLqP6Mgoh8wsKjsIWFUZCwkHH1K2h1uUIdWnDt/Yh6E8nI/FOxWq0U20YSXTt0C7QoNdj0KsESkbtEZLuIbBSRF0Ukvt26n4pIgYjsEJGzeh2pUkr1k5bGWgCsEXHdbpuc5Z+rVF86NO6FZSp3ctAkMGL4sMOWx46aCUDptqEzrCyyahOF1hFERX+eSNekzGZc61YaGhtDGFlw7dvoT6Tix81tW1aduoAJ7u3U1VSHKqygKz14gGxfMS0Z89qWOcYvIkqc7Nk4tJLJ4TWr2Bmeh90eBkB1zFjSXbthCPUwKzWY9bYH6x0g1xiTD+wEfgogIpOAy4DJwGLgryJi7eWxlFKqX7gCCZYtovserJSMMfiM4Knc28dR9Y+ohj2U2rKwWQ//30PWpDkAuIrWhiKs4DOGjJZdVMVMPGxx5LhTiZBWdq3/KESBBV/z3pX4jDAy96S2ZVGTzsQmPvauHjo3kN67cRkAyePnty0bOd3//W7d1vdCElNfcNWXk+49QP2wmW3LTMpk4mmgpnxoDFVWarDrVYJljHnbGHOo3NJyIDPweAnwtDHGZYzZCxQAs3tzLKWU6i+tTXUA2KO678Gy2MMptw7DUTcEbjZsDMNcxTREZx+xKjw6gWJLBhGVm/o/rj5QeWAPCdTjHT7lsOUjpp+BzwgtOz8MUWTBF1Wxgf22LBxRCW3LRk1fRLNx0LrrgxBGFlyuwlX4jJA5+fMerMRh6ey25BBTOnQqYBZv9t8uITrn849VMdlTATiwY3UoQlJKdRDMOVjXAW8EHmcA7b9GKQksO4KI3CAiq0VkdUVFRRDDUUqp4+NpDiRY0QndbOlXGZFNsrOwDyPqH866MmJowpswptP1FdETyGjZ0c9R9Y0D25YDED9q5mHLI+NSKLJmEV0+ND6otrq9ZLu2U52Qd9jy8PAI9jgmkFC1PjSB9YGYqg3st2USFnX4dXswcRajWrbgcQ2Ncu11u5bjM0JO/oK2ZZnj/f+OG/dtCFVYSql2uk2wRORdEdncyc+Sdtv8HPAATx5rAMaYB40xM40xM1NSUo51d6WUCjpviz/BioiK79H2LXFjyfLux9U6uCfSl+3ZCEB42vhO17tTp5BKFRVlg38YUkvROrxGGDn5yMEVFfFTyHFuw+f1hiCy4CrYtYUkqceaNeuIdU3DppPj2UNdXW3/BxZkHo+XbOd2quLyjlhnG30K4eJm36ZlIYgs+OzlG9hnySAlObltWUJyKmUkYavYHMLIlFKHdJtgGWNON8bkdvLzMoCIXAOcC1xuPq/fux/IatdMZmCZUkoNeD5nPQARMfE92t6aOhGHuNm/Z3sfRtX3aou2ApCcfeSHVICYHP+35Ae2Dv4qe+GVm/w9VdGdzLPLnEUsTRTv2tj/gQVZ5Xb/0LhhE086Yl30mPn+eVgbB3/iUbh3B8lSB5nTj1iXPe00AKq2DYF5dcaQ3rSN8pjJR6w6EDGO5Mah0cOs1GDX2yqCi4FbgS8ZY9r3vb8CXCYiDhHJAcYCK3tzLKWU6i/G2YDL2IiO7v5GwwDxI/MBqNo7uIfneMu20WQcZOWM63R95iR/FbqWfWv6M6w+kd68k4roCZ2uGzbpZADKtw7+D+Rm/xqc2EkZNe2IdSOmnAJAQ8Hgn59Uvs3/GpLHH5lIpg7PoFAyiChd1d9hBV1ZSQFJ1OJLP/J8tiRNJtNbgrO5IQSRKaXa6+0crPuBGOAdEVkvIg8AGGO2AM8CW4E3ge8YYwb/WAul1InBVU8jEUSG9az4afoYf4LlKh3cN/qMqCugyJpFeKD0c0ex8UmUSBqOisHds1NVVkQK1XhT8ztdnzV2CnVEQcng/0CeWLuZYsdYxGY/Yl1MQirFlkyiygZ/wuwtXk2rsZE+bman60tjpzKyeRPGN7g/ipQEClwkjZt3xDp71jSsYijZPjTmDyo1mPW2iuAYY0yWMWZq4Oeb7db9zhgz2hgz3hjzxtHaUUqpgURc9bRIJBaL9Gj78Oh4yiSFsOrBfS+s5Ja9VEfkHHWbg1ETSGse3MOQSrb4C1wcGvLYkcVqpTB8Eim1g7tHsqnFyRhPAQ2JnSeSABXx+WS3bMHr9fVjZMGXULORIvtoLGGOTtd7s+YSS1PbPMPByrlvNa3GSnbgtgntpY7zz7Or3aMJllKhFswqgkopNSSEuWppsHRfor29iogckpr39FFEfc/TVEOKqaI1YexRt3MPy2e4qaC2orSfIgu+5kA57+zcuV1u05gynWxfEc31Vf0YWXDt3bqaCGnFkX1kgYtDJGs2idLAnp2Dt/x+i9PFaPcu6pKmdLnNsEmnAnBw0+AuSx9btYGisFHYwyOOWJcxYiy1JhpKB3cSqdRQoAmWUkp1EO6ppSXs2BIsZ/xYsrwlOF2tfRRV3yot8PfWhGdMOup20YFen5Ktn/V5TH0lomIDRdZMomO7LsMfOdqffBVtGLzzsGp3+uclDZ80v8tt0nL9icdgnm+2e/NKIqQVe3bXCfOocblUmjikaHk/RhZcrlYXo1p3UJvYeSJpsVoocowhvm5bP0emlOpIEyyllOog2lOLK6xn98A6JGz4JBzipmj34PxwU1no78FIyem6FwBgROAmrk2Fg3MYkvH5GNGyjfKY3KNuNzL/VHxGaNw9eAtAhJWuppo4kjI7L7sPkDp6Co1EQvHgrUNVs8t/jjJyF3S5jc1mZXdEHql16/spquDbs2UVUeIiLPvI4YGH1MdPJMtdiM89OL/oUWqo0ARLKaU6iDX1eMKPLcFKCJQ2ry4cnPN2PAe34jRhjBg18ajbxSWmUCLDsVcMziFlB4t3kUg9ppMqbO0lJiax1zKCiLK1/RRZ8GU0bKQoMhek67mEYrGyL2ISw+oG77Ay24E11BBLYkbn1S8PaU6dyXBfGS1VRf0UWXBVb/eX08/IO7XLbaxpU3CIm4N7Buf7kFJDhSZYSinVjmltIgIXvoikY9ovbcxUAFoPDM4bfcZUb2avbRT2LioItlcWNYHhTYPznl+lW/29HQljj6zC1lFZ3BRGtmwdlJXnKspKyDSlOIfP6HZbZ+oMRvn2UVFZ0Q+RBV9a42b2R00+aiIJEDPOX36/eP3Sfogq+Cz7V1Ml8SRndp1IJo7xD+Gt3DX4K2AqNZhpgqWUUu001JQDYIk6tgQrLDKOA5Y0Iqq39kVYfcvnZYRrJxWxR968tDOtw/JIM+XUV5X1cWDB17pvFa3GxsjJXRd+OMSXOYtomikfhL0Be9YtBSB50indbhszbgFWMRSu/7CPowq+gwdLyDb7cQ0/8gbDHY3Jn0ezcdCy55N+iCy4fD5DRuNGSqPzjppIjhw3hWbjwL1/8P2bVWoo0QRLKaXaaaw6CIAtOuWY9y2PGsvw5sFXqr1i7wYicWLSu/+QChCd7f+WvGgQFrpIqlzJLvt4HI4jq7B1lDLR3+NRtmXwFYBw7v4EN1Zy8roucHHIyCmn4DWCc8/gm2+2d6X/LjCJeWd2u218TBQ7bOOIqxh89/0q2L2TEZRhsrqefwUQ7rBTaMsmejB+0aPUEKIJllJKtdNU40+wHPHDjnlfT0ouWRykqnpwlfbevyVQbW7iST3aPmuSf3hd497BVeiirrqCUe4C6lO7Hx4IMGp8PjUmBl/R4CsAMbxqOXsdE7E6Irvd1hEVz76wUcRVDq7zCeDb/SGNRJLdg0QSoCpxOlmtBRhnfR9HFlxl6/2J5LBpZ3e7bXXMBDJcBeAb3Pc2U2ow0wRLKaXaaa7YB0BcavYx7xs10l84oWjb4Jr/4C5aTYOJYNSEo1cQPCQ+OZX9koq9fHAVRti96i2sYojLPaNH24fZrOxxTCS5dnC9zrIDRYz37aEuc2GP96lKms5o13ZcLmffBRZkPp9hRN1KCqOnIdbu5w4C2HJOwoqhdOuyPo4uuOyFH1JFPKljup9T5x2eTzTN1B4YfL3pSg0VmmAppVQ7ntoSfEZISR95zPtmTPAP32koHFyV55Jq1lPoGE+YzdbjfQ5Gjh90hS5cuz6g2TgYM21hj/dpSJlGpreY1obB0ytZtOq/ACRO6b6345Cw7JOIEhd7Nq/oq7CCbtfOLWRRhje7+3lmh2Tl+4dD1mwbPMM+XW43YxtXsS9hTreFPABis/1J2MEdg6/nVamhQhMspZRqx9JwgEriiY3qfmhVR7HDRlBLDJbywVNJsKlqP6O8e6kd3rPhgYd4U6eQbsqoKC/to8iCzBgyqj5ld0Qedkd4j3cLH+UfTli0cRAVgCh4lyriyJncs6GQAJlTFgFQu33wJB7lq14AIHPWeT3eJyc9jV0yEnvp4Oll3rL6IxKlAcf4nvW8jpgwA7ex0lK0ro8jU0p1RRMspZRqx958kGrbsRe4AECE0oixJDXsDG5QfahwxSsARE9efEz7xY+Z7d9/0+AojFC0bRUjzAEass86pv1GT/X3eNTtHByV55wtzYyrX05hwklYrNYe75ecnkOpDMN+YPD0eiTve4091hySRvas+iWAxSKUxEwhs3EzeD19GF3wNK55llZjZfRJF/Ro+6T4WAotmTgqB88XPUoNNUFLsETkFhExIpIceC4i8mcRKRCRjSLSs/JUSikVQrGtZTQ4Uo97/5bEieR4C2lsGRxzWTw73qHCxDN5+oJj2m9k/sn4jNAySCrPHfj0KbxGGLPwK8e0X0pSEnus2USUDY7Kc9s+fJY4acI+9ZJj3nd/zBRGNm3EDILiCHsKtjPRs52anHOOeV9vxmwicNIwCHp4nK5Wxle+xY6YeYTHJvd4v7LI8QxvHjxf9Cg11AQlwRKRLOBMoP3t0c8GxgZ+bgD+FoxjKaVUn/F5GeYtoyUq87ibCM+cQri42btj4N+Hxudxk123gl2xc7CH9by3A8ARnUBRWDaxg6DktfH5yNj/JlsdUxg2POuY969KmMJI5za8nkHQ47HxGSpIYNL8Lx3zrp7MOSRTS+m+HX0QWHAVffRPAHJOueKY902adCoApZuWBjGivrH249dIpYawaceWMLem5JJoanDWHOijyJRSRxOsHqx7gFsB027ZEuAJ47cciBeRtCAdTymlgq62dA8O3EjSmONuY9h4/9C5ml0Df6jVjmUvEEcjtkk9n8PSXlXCNMa4tuNqbQ1yZMG1fcVbZJkDtIzv2RCrjsJGziUKJ3u3Dewy5mUH9jG5aQV7hp+N9RgKlhySErgpcenG94MdWlC1trYyrugZtjvySBwx8Zj3z504if0mGW/hwL+Pm2XNozQQydgFFx/TfhEj/BVNtdCFUqHR6wRLRJYA+40xHb+uzQCK2z0vCSzruP8NIrJaRFZXVFT0NhyllDpuZXv9cxaiM479Q9shSSNzacGBlA784UeeNf+k0sSRt/DYPrwdYsuZR7S0sGfLwP4Q51p2PzXEkLf468e1f2a+v8djoN9weM9//4ANHyPO/M5x7Z89cSa1JhoKB3YJ81VvPUk6FXhnf/O49g8Ps7I3Mo9hNevAmO53CJGdOzYzq/kjdmVd3KP7mbWXPsH/RU/DnoH9pYBSQ1WPEiwReVdENnfyswT4GXDb8QZgjHnQGDPTGDMzJeU4J5YrpVQQNOzfCsDwUXnH3YZYwyhyjCWxbmuwwuoTdRX7mVD/KVtTziYioudV9drLyFsIMKBLXu/fs5X8xk/Ymv5lIqKij6uN1JETqZQE7CUDd75ZdU01k/f/h/Uxp5A2Kve42rBarRRETSWzdtWATTx8Xh+J6/9KmQxj0sJLj7sdd/ockkw19aUFQYwuuA68cTc+LIw574fHvG/W8FSKTCrW8k19EJlSqjs9SrCMMacbY3I7/gB7gBxgg4gUApnAWhEZDuwH2g92zwwsU0qpAclSvo0aE8PwtOOfgwVQn5DLKM9uXK2uIEUWfLteuQsrPjJO+8Zxt5GcOZYKEgkbwJXnSl/6Ja3YGHfuD46/ERH2xc5kVOPaAVsAYtt/fkOsNJN81q29aseVdTKppoLyooF5j7Plrz3KRO9OSqfd2OObC3dm2GT/cMjCde8FK7Sg2rl1PSfVvMKWYecSO2zEMe9vsQj7w8eS2DAwz6NSQ12vhggaYzYZY4YZY7KNMdn4hwFON8YcBF4BrgpUE5wL1BljBskNU5RSJ6L4uq3ss49BLL0bPW3LnEGEtLJv28C84XBDTRkTi59iddQpjJ7UiwKvIhTHTCGrcRNmAPZ47Fz7ITPr32VtxuWkpGf3qi3fyJNJoo6i7QOvqMe+gi3M3P8v1sSdwYi8Y6sG2VHqlDMBKF7zZjBCC6qGhjqy1t7JPutIppxzfMMDDxmbO5t6E0nrnoFXft/nM9S+9GPcEsaoS/73uNtpTprMcO9BvM21wQtOKdUjfXkfrNfx93AVAA8B3+7DYymlVK94Wp1kugtpTOz5PXW6kjbJf4PXyl0ret1WX9j+zK+IMC4Szv5Fr9vyZc5hOJUU7R1YJaHdrU6sr91IFfHkXvqrXreXNs1/n7Dyje/0uq1g8nq91D/7bbxiIfvSu3vd3qjxUyknESkceMM+1z92C1kcxH3mHYj12It4tGe3h1EQmU969cDrff3kxb8xu3U5BRO+TWzK8femOzL9hS5KtdCFUv0uqAlWoCerMvDYGGO+Y4wZbYzJM8boTEul1IBVvG0FdvFiHzGj122lZk+ikUjYP/B6sAo3fcr00qdZnngeY/Nm97q9tCmnA1Cy9q1etxVMqx67ldHevRSe9L/ExiX2ur2M7HGUkIq9+OMgRBc8y//5K/Ja17M1/6ck9bKXDsBitVAYM4Ps+tUDajjkyrefZX7lc6wdfjFj5nwxKG02ZZ5KujlIVdG2oLQXDLt3bGTKxv+hwDGJ/It/1qu20ibOAaCqQD9+KdXf+rIHSymlBo3qrf5v7NNyF/a6LbFYKQ4fR1Ldll63FUzO5gbMS9+iWuKYeMUfg9Jm+rjp1BCLbd+HQWkvGNa+9QQnHXicVQnnMuPMy4PSpoiwP2E2o5rW4XEPjLL069/5N3P33s/6mFOYcf6NQWvXl3MKidRTvGNgfDDfuWUt4z+5iX22HPKuuTdo7aZM9Sdq+1f/N2ht9kZl+UFsT1+GEQuJVz7WqzlmANkjcyg3CZjSjUGKUCnVU5pgKaUUYC35jBKGkzkiJyjtNSfnk+PdS31jY1Da6y3j87HloesZ6dlHycl3k5AUnKqtYrFSGDuTnIY1+Lyh7/HYvvItJnz6Q3baxpF3w4NBbds25lRiaKFgY+jn7Wxa+T7jl93InrAxjPvGv3o9b7C9rBn+xKN83RtBa/N4Fe/ZRtx/LsInVmKufZqw8OOrBNmZsROnUEwq1r2hv+9XXX0dpQ9eRJqvjIpzHyUxc3yv27RahGLHGBLqB04PnVInCk2wlFInPK+rmfFNqylKnIuIBKXNiOyZ2MXL3gFyj6i1j9/KjJo3+CzzOqZ94fjue9UVX/YpDKOGPTvWB7XdY7Vt9ftkvn41lZYkkq9/nvCIqKC2P3r2OfiMULvh9aC2e6w2ffom2a99lVpLAglff5HI6Ligtp8xcgy7JJuYoneD2u6x2rtrK5YnlhCOi/qLnyM5CElHe1aLsDduDtkNa/G5Q1fxs7q6ipL7zmayezO7TrqTMTPPDFrbTYmTyHAX4W1tCVqbSqnuaYKllDrhFa36LxG4YMK5QWszc7K/mltNQegLXSx/8jfM2PcQn8aezbzrel8IoaOsGf4CEGXrQzcPa/PSZxnx6leokzjCvvYaianHXtq6O/Ep6ewMG0/KgQ+C3nZPrXrrSca8dSW11kQc179J8vCs7nc6DgeGncrols046yv7pP3ubF29lNgnFxNDI9UXPMXIyXP65Dhh484gCid71oWmF2v/vgIq7j+Dca3b2Tzvj0w+62tBbT8sYyo28bF/x8CrfqnUUKYJllLqhNey8WVqTRTj5pwdtDZjh4+ijhhsB9cHrc1jZXw+Vj36I+bu+gProk5m1veewGIN/tv+sBETOCjDCC9ZFvS2u2OMYeUz/8fED27ggC0D+/VvkZY5qs+OV55+GqM9u6gvL+qzY3TG5/Xy2SM/YtZn3+ZA2AiivvE2iel99zpjppyLTXzs/uzlPjtGZ4wxLHvuPrJfvYRWcdB0xevkTDmlz443/qRzcRsrtRte67NjdGXtsjdwPHoamb79FJ7+d/IXXxf0Ywyf4C9kU1mwKuhtK6W6pgmWUurE5vWQWfEh6yPmkhwXvPkdiHAgaiLpDZtDco8ot6uZ1fddwax9D7I89mxyb3qBsDB73xxMhJKEWYxpWoe7HwtANNbXsOqeS5i97Q42RM5j+I3v9/p+V91JnrEEgN2fPNenx2mvqnw/6+8+h3lFD7I67gwyb/mQxNTe3Qy7O5NnLaLKxOLe1n/zsBob6lhxz2Us2PwLisLHE/HN90kbM7VPj5mYkMhmxxTSS9+DfrpOPW43Sx/9BbnvXI7LEkn1V95g7MnBHbZ7yIhRk6g3kfj2b+iT9pVSndMESyl1Qivb9B6xpgH32OCUfm6vJW02oyjhYFn/3mO9smQX++46hVk1r/FZxnXMvvHffZdcBdjGn0WcNLFjVf/cJ2r3ho+pvWceM+reYeWI65l6y6vExMb3+XEn5M5mP6lYd/XPjXg3vPc0/PUkcptXsWrCj5lx47M4IoL4RUAXHGFh7IidR07tZxivu8+Pt3X1h1TeM5/ZdW+xauTXGfej94lP7Zvhjx3VjVxMuu8AlXvW9fmxivdsZ+edC1m47z52xZ1E0s2fkjW+Fzf77obVamGffSzxtZv77BhKqSNpgqWUOqGVr3qeFmNn4oLzg952zLiTAdi/cWnQ2+7K5g9fwPaPRaS6S1g++z7mXX9PnwwL7GjcSV+i1dhoWP9qnx7H0+pi+WM/JeuFJYSZVnYsforZ192Nxda7G8/2lMVqoTjlFMY1raWpsb7PjlNXU83yey9nysffoM4ST/FFrzPrsp8FtVpgdyzjzyaORnat6LuiHs3NjSz723cY9+r5RPsa2X7G48y69g9YbL0rUX4schZcgs8I+z5+qs+O4fX6WPrMvSQ8vpAR7t2smfZbJt/8KuExvb9HW3dqE/MZ6d6D19Xc58dSSvlpgqWUOnEZQ1rpe6x3zCAzNTnozY/Im4/bWHHt/jTobXfkbG5gxV++Ru4H11JjSaDiK28x94tX9flxD4mMSWBbxDSyKj7osxvUFm3+lKLfz2Fu4V/ZFHMy9u9+xqR5wZs311Ox084nXNzs+PCZPml/w7v/puVPs5hd8xorM64i49bPGJ3XN0UejiZv0cXUm0gaVz3ZJ+1v+vRNKu6azYKyf7Eh+YuE37yGSQuW9MmxjmbkyBy22iczrOj1PhkmuHfHBjbfsYiF237F/oixtHztI2Ys+R4EqWJpd6wjZhMmXg5sD33BHaVOFJpgKaVOWBU7PiPZV0nzqMV90r4jIoZC+1jiqvq2gtee9R9Rcfcc5lQ8x/KUi0n74WeMmjClT4/ZGefoxWSagxRsDm5pemdzIysf+h7p/zmHGG8tq+fez4wfvkxCcmpQj9NT4+ecTSnJhG9+OqjtlpfsZv1dX2TKsm/RYoli75eeZ/b19+EIjwzqcXoqKiqazQlfYELNUlzNdUFrt7ayjM/+fDWT37oMB61sO/1xZnzvSaLjkoJ2jGNVN+5isnwl7FsfvNL0zpZmPn34R6T/+wuMcu9gw5TbGPejD0jJGhe0Y/RE6qT5AFTv6PsvepRSfppgKaVOWAeW/wePsTBmwUV9doyG1FmMde+kuqYm6G17Wl2seuxWRry4BLvPyYbTHmfud/5BeGTfz9HpzIRFl9NqrFQteyRobW76+BXK75rF7P1PsDr+bCzfXcnMxVcGrf3jYbVa2ZV2HhOa11B9YE+v2/O4W/nsyf8h6qGTGN+4ik+yv0vGj1cxesYXghBt74TPvJxIXOx475+9bsvn9bL8uXvx3T+D2VUvs2b4xcTdsqZPhuceqwlfuIoGE0H9soeD0t6aD1+h7M6ZnFT8IJtjF9D6zZVMueAWxNo/Q1nbyx45igMmGWuplmpXqr9ogqWUOmElFb/DprA8Rmb2XUW2mMln4RAPe1YGdx7Lns3L2fv7k5hV+HfWxJyG/XsrmHLK+UE9xrGKS05jU/QCJpS/jtvVuxubVh0oZO0fLiDvvSux4mPTaU8w9+Z/k5Q8LEjR9s6I064HYO8bf+pVOzuWv86+O2Yzb9fd7I7Io/rqj5h/ze+wOxzBCLPX8ueeyS7JJnHd3zBez3G3s3Pdx+z6v3nM3fwrysJGUHzxW8z61kNEBPkmyccrKTGRtXFnMLbqXZori4+7nQOFO1h953nM+OBKwvCw5bRHmHHLSyQND/592XrKahEKwycyrG5TyGJQ6kTT6wRLRL4nIttFZIuI3Nlu+U9FpEBEdojIWb09jlJKBVNl4SYyvcXUjezbt6ecGWfQZMLx7QhO1blWZwvL/3EzWf/5IoneCtbMuZfZtzxHQlJKUNrvLevMq4mngfVvP35c+3taXax56jeEPziHyfUf82nWDST9aA15p/T/3JyjyR47mZVRpzKx+Gmaaw4e8/6lhdtZd/d5jH/zK0R6G1g3917ybn2bjFET+yDa42ezWamY9j0yfSVsee/Y52JVHChk5Z8uZ8xL55HsOcia6Xcw4afLyM7t/zll3Uk+84dYjY+9z//qmPdtqK/hs4duIunR+UxuWs6q7G+SfOtaJp9yYR9Eeuyah01lmK8cZ03/VjRV6kTVqwRLRBYBS4ApxpjJwN2B5ZOAy4DJwGLgryJi7WWsSikVNEWfPAvAyPl9NzwQwGYPZ2f0LEZWL8Pj8faqrV2r3+XgnTOZW/II6+JOx/Ldlcw4+1qknybL90T+KedTaBlB+rp78R3jPbG2fPQCJXfMZMaOP7DTkU/pFUs56Wt3hWzIY3diFv8Ch3Gx/emf93ifxtoKVjz0fRIfXcD4hhV8MuIbxP1oPdMWX9uvFQKPxayzr2avZDFs+f/gburZUNeGumqW/+Mmov8+i6nVb7By+KWE3bSWGV/61oB9nZNzp/BR7LmMP/AilQU9G07ndrXw2TN30vLH6czb/ygbY0+l/vrlzLrm99j7oZx+T8WPnQdA4YaPQhyJUieG3r7LfQu4wxjjAjDGlAeWLwGeNsa4jDF7gQJgdi+PpZRSQRNb+CbbLWPJGTW+z49lm7iYVKrZtPrD49rf2VTHqr99ndGvXkSYz8n6Ux9m9g+eJSF5eJAj7T2L1crBOT8jw1fKuhf/0KN9irZ8xpbfn8bk96/FblysmfdXpv74LbLH5vZxtL0zOX8WnyR9mellz7Hrw6OX+G6sq2LVoz+Ee/OYs/9xNsWdSt3XP2P+dXcSGRXTTxEfn7CwMA4uvJtEbxW7/nEdHGWoYH11GSse+zGee6Ywt+RRtsSeTMXVnzL3W38nNj74lTqDbewlv6WaODxPXY6zrqLL7ZwtTaz4zx+oviOXedt+R03YcArOe4FZtzxPaubofoy4Z8ZOXYDbWGkoWBbqUJQ6IYjpRUlSEVkPvIy/l8oJ/NAYs0pE7geWG2P+FdjuYeANY8xznbRxA3ADwIgRI2bs27fvuOMZqozPh7vVibOpgZbmelqbG3G1NOBxNuJ2NtPa2orH7cb43IjPA8aDxecFnxuMD4MFH4IJ/PjEisVixWqxYLVZsVjDkLAILDY7FnsEVns4lrAIbPYIbPZwwhwROCKicIRHEO5wEGbTzkg1uFWVFZH0tzyWjfg2C677vz4/nrO+CvnDeNYknsNJNx7D0Dlj2PjOP0n97Nek+KpYnnwhuVfdRWxc3987pzd8Xh8b7zydCc6N7D//OUZPW9jpdvvWL6X2nbvIa/yEeqLYPPYbzLzwh4RHhKZq3vGoq2+k9N5TyfbtY9+cXzP+rG+CJfAe6fNSuGkZFR8/ysTKN4mmhVWRJxN71i8YP2VuaAM/Dm8/+FPOPPBXdsTOI+3Se4nNmACAp9XJjhVv0bLuWSZVvUOkuFgfPpuIM3/J+OmnhDjqY/fR+68x58OrqLGlYM75I2lTF4PFgvG0UrBuKZWrX2Bi2X+Jp4Httgk459/KlFMvGLA9c4ds/u1JRImTnJ+vDXUoSg0ZIrLGGDPziOXdJVgi8i7Q2dekPwd+B3wAfB+YBTwDjALuo4cJVnszZ840q1ev7v7VDGJudyvV5SXUlZXQVH0Ad91BvE3VmJYarM5abK212N31hHvqifI1EGMaicCFTfrmvjLHymsEJ3Zc2GkVB61y6LcDj8X/47WG47M68FnD8dnCMbZwsIVDWAQSFu5P5sIi/cmcIwKrPRKbI5IwRyRh4VHYwyOxR0ThCPcndY4w64AaAqU+d+j949DbiGm/rG0bMBy+3eH7mMP2P9Ru+/1pt+3nbXaIoUObhxZ2FkfBe49y8safsmvJq4yd1j8fANfcewkTaj6k9XsbetTzVLp7I9X/uYnJzjXstmTTcsad5M4bPNNZKw4W4XrgdJJNNdvG3sCYL1xDZGwy+/fuoGrz28TsfpUx7l3UmSi2ZF7CxC//fMDMIztW+0uKKHv0cqZ7N1JhSaYiYjTibSXduYs4GnGaMDbEnUbcohuZMG1+qMM9bl6f4e3Hfstp++7FIR7KLMPwYCPFV44dD00mnM3xi0g8/QeMzRvcg1Y+eu+/jP3o+6RJFQ1E0WSJIt5XQzhu3MbKhqiTiJh3PZPmnzfgE6tD3n/wVk478HdcN23HEZ8W6nBOOMYYnK0enM0NtLY04mppxN3SiNvVhMfZiNfVhLfViafVhdfj9n9J7nWD14OYwG9fK+L1gM+NGC++wP/XjM+0/T9QMG23WBP8t1sTJPDEghErRiwYsYFYQSz4LFYQK2KxgsUGFisS+G2xWkFsiNWKWG1I4LHFasNisYHVhsXify5WW2C5FbGGYbFasQZ+W2xhWK3+L/UtNitWSxhWWxhWmw2r1eZ/bLVhscig+sx33AlWN42+CfzeGPNB4PluYC7wdQBjzP8Flr8F3G6M+exo7Q32BMvrcVO+fw/VJQU0le/BW70PW0MJDmcF0e5K4rw1JJh6LHLk37zVWGmQGBotMbRYY3CFxeG2x+IJi8Nnj0LCIsEeidijsTqisIZHYXNEExYeid3hwGG3+3uirGEYi/8fOBYbYrFiERDjA3xYjA+MD6/Xh8frwe3x4HW78La68Lid+AI/5tDjVifG8/ky425BPE7wOLF4nFi8TqxeJ1avC6vPic3XSphxEeZzYTethOPCYVyEyfHNPfEZwUUYLuy4xE4r9sAbgxUfFnxiwYcVn1gwbb8teMX6+ZsIFnxibfdGA/7/fn4ejnjU4RR1XC+B60b8b2mB5+2WtV1XJvC83eO27emwzaH1XbXbcdvPn0u7CA/t41/e4bhtbdPWxufrDl/f/nfHx3LEcg5rv+M2n79VdvV+c/ibacetzBHrj759d/vYceMSB1G/KMJq65+yyUXbV5P51OmsHHYxc7/zUJfb1VXsZ+fz/8OU0mdxYWfDuO8x++IfYbfb+yXOYKooLWLPY99gjuvI++9st4yhfNQF5J/7HeLjE0IQXXA5XS4+/e+jRO18mYTWg7gtDuqiRuLNXkjuqReSkDQwqh8Gw46CAko/fBhH1XbAhzsqnajRJzHp5AuIiBo48456q6K6hg3vPIn9wErs3kbcESlYR85l8vzziEsY+MMdO/ps2bvMe/dCds7/A+PO+HqowxmUPG43NdUHaagqpbmmDGd9Fa2NNfha6hBXHeKqx9ZaT5i7HoenkQhvIxG+Jhw4iTBOwsUdlDhajf8z0OH/dxVE2j5u8Pkv//+pBYP/k5IXKz6snXwWHQi8RvBiwYcFL1a8gc90KyUPuehRzpw8sIbG91WC9U0g3Rhzm4iMA94DRgCTgH/jn3eVHlg+1hhz1E/ZgyHB8rS6KC3cRmXhZloO7iCsuoDo5mIS3AdJ8VUe9g/WZ4RKSaDOmkSTI5nW8GR8UalYYodjj08nKimd2OQMYhNTCY+MGTTfgh0XnxePqwmns5nWliZanU20OptxO5vxuprxuFrwtvof+1pb8LmbMW4ntEvoJJDQ+XxexHgR40OMD4vx+B/jQ4wXiwn8xofFeJFAYtmWqhz1M/6R35pIhyefv6EdnnaAYOTw5/7V7dIQOTz1OPyYgpFD+8lh+xmRtsTwsG3g8+dy+DE7tkFn2x163q5N/2uwBL4BO/x1td/fHNYOIJbDjm3atvWvO/Rn//ybKTksMfz8L/f5V29tiah8vr7dqfj8t9Au6fTH0N2+9lHzyTnlq/SnFfdfy6yKF9k49w9MPftrh62rLNlB4Rv3MWn/szhMK6vizyb7kt8zPCN05Z2DwRjDtk2rKdv0AbibiUzKJGXifHJGTxhU31IqNdg1OVtx/t9o9ifOJf/G/4Q6nAHD5/VRU1VKTWkhjRXFuKpL8DSUIU2V2F1VhLfWEO2tIdZXS7xp7PRLcvB/5muUSJokimZLNE5rNK22GNxhMWCPQsIiMIHf2KOw2COwOKKx2iOxOqKxhUdhD4/AbncQZndgsYVhsdqx2sKw2OxYw8Kw2BzYrDasVkuv3z+Nz4fxefF5Pfh8XnxeNz6vF6/XjdftX+YNLPN5Pfg8Hrxej/+x1+Nf7nNj2h57MIHtjc+DOfTb58V4PYHH/ucE1uHzgi/w2Hj98zuNF3weML7AtBcv4vNS5hhJ9tk3k5c5MG7tcEhfJVh24BFgKtCKfw7W+4F1PweuAzzATcaYN7prb6AlWFVlJexbv5TW4jWE1+wgsaWQNO/Bw3pjKomnIiydxogM3DGZWBOziRyWQ0L6GIZljsbuCA/hK1BKDSQtTY3svedMJnm2sDF6Pp7h0zGuBqLL1zDetQmvEVZHLyLlvNsYNWFaqMNVSg0xy/5wKdMalhLxkwIs4QO7uEqw1NVWU160k4bSXbgqC6F+P2FNB4l0lRPvqSDZV41djizcUks0DZY4mmwJOO0JuMOT8EWkIFFJ2GJTccQNIyouheiERKJjkwmPioOh/EW56lSfJFjBNtASrOVP/S9zd/wej7FQYs2gKjwbV/xobMPGET9iMmmjcokZBFWRlFIDR1NjA2v/9TPGHHydNCrxGmG3dRRlaYsY8YUbGNkPVQ2VUiemD999hVOXXUnBvDsYc9a3Qh1OUPi8Xsr376Fi31YaSwvw1ezD0VBEbEsJyd6DJNJw2PZOE0alJZn6sBSaw1PxRA1H4tKxJ2QSlTKC+NSRJKakY7MPjJt9q4FNE6zjUHGgkKoDu8meNJvwyBPjmx6lVP/w+gzVtTWER0QRE6H/I1dK9T1nq4fS/83DF57A6J8cOTdyIGtsrKd092Zqi7bgLt+BvXY3Cc2FpHn2Eymutu3cxkq5JYUaRzotUVn44kZgTxlFbNoYUjLHEZM4bGhPyVD9qqsEq39mdw9SKenZpKRnhzoMpdQQZLUIKYkDu9y6UmpoCbfb2D3iEk4vupfSdW+QNu3sUId0hFaXk5JdG6jasw5P6SaianaQ4txLGpWMDWzjM8JByzAqHSPYmDQLSRlHdPoEUkaMJzktmwxbGBkhfRXqRKc9WEoppZRSJ4jymlpc985C7JFk/mQNWEPzXbvx+Th4YB9lu1bTXLSRsKptJDbuIstbjD0w173VWCm2jaA2ajSexDHYh08gYcRk0nIm4YgYOhUr1eClPVhKKaWUUie4YQnxvJ33I87c/CO2//NGJlzzlz4/ZnNTA0U71lK7Zz2+g5uIrd9JRuse0mjg0B25ykiiLGI0axNOISw9n6TR08gYncdonQulBiFNsJRSSimlTiBf+PL1vLXvU84q/Bc7/h3N+Mv+LygV8IzPR2lxAQd3rsFZsgF71TZSmgrI9O1nQqC8ebNxUGLPpiBpIWZYLrEj80kfP5PUhGGk9joCpQYGHSKolFJKKXWCqW92sua+K1jU8g57wnOxnPYTsmd+ESzWbvf1ejwcLNpFddEWWkq3Q+UuousLyGzdS6w0tW13QFIpjxyDK3ESjsw8UsfOYHj2RKQHx1BqMNAqgkoppZRSqo3L7eGDp+9lesH9DJMa6ojhYOQ4mmJyMOFx+MSGxduK19WEzVlJpKuc2NZKkn2Vh907qs5EcdA+grrYcZCaS1zONDLHzyAqVgv5qKFNEyyllFJKKXWEuvp61r77FPY975PYtIs030GiacEmPlzGRith1FjiqbMl0+wYhi8mDWvyWKLSJzBsVC7JKela+lydkLTIhVJKKaWUOkJcbCyLvvwN4BsA+HwGp9uDR0AsFqKtFmJEQhukUoOIJlhKKaWUUqqNxSJEOsJCHYZSg5b25yqllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgXJgKoiKCIVwL5Qx9FBMlAZ6iBUv9HzfeLQc33i0HN9YtHzfeLQc31iGYjne6QxJqXjwgGVYA1EIrK6s/KLamjS833i0HN94tBzfWLR833i0HN9YhlM51uHCCqllFJKKaVUkGiCpZRSSimllFJBoglW9x4MdQCqX+n5PnHouT5x6Lk+sej5PnHouT6xDJrzrXOwlFJKKaWUUipItAdLKaWUUkoppYJEEyyllFJKKaWUChJNsI5CRBaLyA4RKRCRn4Q6HhU8IpIlIh+IyFYR2SIiNwaWJ4rIOyKyK/A7IdSxquAQEauIrBOR/wae54jIisD1/YyI2EMdowoOEYkXkedEZLuIbBOReXptD00icnPgPXyziDwlIuF6bQ8dIvKIiJSLyOZ2yzq9lsXvz4HzvlFEpocucnWsujjXdwXexzeKyIsiEt9u3U8D53qHiJwVkqCPQhOsLoiIFfgLcDYwCfiKiEwKbVQqiDzALcaYScBc4DuB8/sT4D1jzFjgvcBzNTTcCGxr9/z3wD3GmDFADfC1kESl+sKfgDeNMROAKfjPu17bQ4yIZADfB2YaY3IBK3AZem0PJY8Bizss6+paPhsYG/i5AfhbP8WoguMxjjzX7wC5xph8YCfwU4DA57XLgMmBff4a+Nw+YGiC1bXZQIExZo8xphV4GlgS4phUkBhjSo0xawOPG/B/AMvAf44fD2z2OHB+SAJUQSUimcA5wD8CzwU4DXgusIme6yFCROKAU4CHAYwxrcaYWvTaHqpsQISI2IBIoBS9tocMY8xHQHWHxV1dy0uAJ4zfciBeRNL6JVDVa52da2PM28YYT+DpciAz8HgJ8LQxxmWM2QsU4P/cPmBogtW1DKC43fOSwDI1xIhINjANWAGkGmNKA6sOAqmhiksF1b3ArYAv8DwJqG33xq3X99CRA1QAjwaGhP5DRKLQa3vIMcbsB+4GivAnVnXAGvTaHuq6upb1c9vQdh3wRuDxgD/XmmCpE5qIRAPPAzcZY+rbrzP+exjofQwGORE5Fyg3xqwJdSyqX9iA6cDfjDHTgCY6DAfUa3toCMy9WYI/qU4HojhyiJEawvRaPjGIyM/xT+14MtSx9JQmWF3bD2S1e54ZWKaGCBEJw59cPWmMeSGwuOzQkILA7/JQxaeCZj7wJREpxD/U9zT8c3TiA8OKQK/voaQEKDHGrAg8fw5/wqXX9tBzOrDXGFNhjHEDL+C/3vXaHtq6upb1c9sQJCLXAOcCl5vPb9474M+1JlhdWwWMDVQjsuOfTPdKiGNSQRKYg/MwsM0Y88d2q14Brg48vhp4ub9jU8FljPmpMSbTGJON/zp+3xhzOfABcFFgMz3XQ4Qx5iBQLCLjA4u+AGxFr+2hqAiYKyKRgff0Q+dar+2hratr+RXgqkA1wblAXbuhhGoQEpHF+If3f8kY09xu1SvAZSLiEJEc/IVNVoYixq7I58mg6khEvoh/7oYVeMQY87vQRqSCRUQWAB8Dm/h8Xs7P8M/DehYYAewDLjHGdJxgqwYpEVkI/NAYc66IjMLfo5UIrAOuMMa4QhieChIRmYq/oIkd2ANci/8LRb22hxgR+TVwKf7hQ+uAr+Ofi6HX9hAgIk8BC4FkoAz4FfASnVzLgST7fvzDRJuBa40xq0MQtjoOXZzrnwIOoCqw2XJjzDcD2/8c/7wsD/5pHm90bDOUNMFSSimllFJKqSDRIYJKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJBogmWUkoppZRSSgWJJlhKKaWUUkopFSSaYCmllFJKKaVUkGiCpZRSSimllFJB8v+pQtz6g29eWwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADkXElEQVR4nOzdd3xb1fn48c+j7b1jJ7ETO3vZGSQhlIRVyii7UAJlllIKXcCX0Za2NO23fH8tpaUFWgIthRZo2HvPAKEQyHAWGWQ4seMR7y1b4/z+kOzIiWM7sWx5PO/XSy/r3nvuOY90JVmPzrnnijEGpZRSSimllFK9Z4l0AEoppZRSSik1VGiCpZRSSimllFJhogmWUkoppZRSSoWJJlhKKaWUUkopFSaaYCmllFJKKaVUmGiCpZRSSimllFJhogmWUkoNMCKSLSJGRGyRjkUNDyKySUROiHQcSik1FGiCpZRSatATkaUi0hC8tYqIJ2T59UjHN9AZY6YbY5aHu14ROVlE1ohIo4gUiciF4W5DKaUGGtELDSulVHiJiM0Y4+3F/tnALsDem3qGKxFZAkwwxlzaybZeHZv+NJhi7YyITAOWA1cAbwMJQKIxZkck41JKqb6mPVhKKRUGIlIgIj8RkfVAo4jYRGSBiPxXRGpEZF3oECwRWS4i/09EPhOROhF5UUSSD1H3t0Vks4jUi8hOEfneAdvPEZH8YD07ROS04PoEEXlIREpEZK+I/FZErN08jvEi8p6IVIpIhYg8LiKJIduqRGROcHmUiJS3PS4ROTs41Kwm+PimHvD83Cwi60WkVkSeFBHX4T/Th+8Qx8aIyISQMo+IyG9Dls8MPqc1wWOY18O2Tgj21NwWfP4KROSSkO1niMja4LEqDCaDbdvahoZ+R0T2AO8F1z8tIqXB5+1DEZl+QNx/E5HXg711H4tIhoj8WUSqRWSLiMzu4XN0ck8e42H4BfCAMeZ1Y4zXGFOpyZVSajjQBEsppcLnYuAMIBFIB14FfgskAzcDz4pIWkj5y4GrgJGAF7jnEPXuA84E4oFvA3eHJDnzgX8DtwTbPQ4oCO73SLDeCcBs4BTg6m4egwD/DxgFTAWygCUAwS/HPwEeE5Fo4GHgX8aY5SIyCVgG3ACkAa8BL4uII6TuC4HTgBwgD7iy0wBEFgYTm0PdFnbzGDrTfmy66xUKJiT/BL4HpAAPAC+JiLOHbWUAqcBoAr03D4rI5OC2RgLHPTEYz3Uicu4B+x9P4Lk/Nbj8OjARGAGsAR4/oPyFBJKZVKAF+CRYLhV4BvhTD+PulIj8tKvj0cWuC4L7bwgm+Y8d6kcEpZQaSjTBUkqp8LnHGFNojGkGLgVeM8a8ZozxG2PeBlYBXw8p/6gxZqMxphH4JXBhZz1MxphXjTE7TMAHwFvAouDm7wD/NMa8HWxnrzFmi4ikB9u6wRjTaIzZB9wNXNTVAzDGbA/W1WKMKSfw5fz4kO1/B7YDKwkkhj8PbloMvBrc1wPcBUQBXzng+Sk2xlQBLwOzDhHDCmNMYhe3FV09hkMIPTbduYZAz8tKY4zPGPMvAonLgsNo75fB5/ADAon2hQDGmOXGmA3BY7WeQFJ6/AH7Lgkes+bgPv80xtQbY1oIJLszRSQhpPzzxpjVxhg38DzgNsb82xjjA54kkFwfMWPM77o6Hl3smglcBpxPIEGMAu7tTSxKKTUYaIKllFLhUxhyfyzwzQN+6V9IICnprPxuwE6g16EDETldRD4NDs+rIZA4tZXLAjobdjU2WF9JSPsPEOgFOSQRSReRJ4JDCuuAxzqJ6e/ADODe4Jd+CPR47W4rYIzxBx/f6JD9SkPuNwGxXcUSZoXdF2k3FrjpgGOXReAx9kR1MGlus7ttXxE5WkTeDw6trAWu5eDntz1WEbGKyO8kMPSzjv29k6H7lIXcb+5kuT+f51DNwMPGmG3GmAbg/+j4A4NSSg1JmmAppVT4hM4aVEighyr01/4YY8zvQspkhdwfA3iAitAKg8PSniXQI5Qe7DF4jcBQvrZ2xncSSyGBXpfUkPbjjTHTOykb6v+CjyPXGBNPoCeurS1EJBb4M/AQsCRkyFcxgcSkrZwEH9/ebto7iIgskv0zAHZ2W9R9LQc5cEanJiA6ZDkj5H4hcMcBxy7aGLOsh20liUhMyPIYAs8PwH+Al4AsY0wCsJSQ57eTWL8FnAOcTGCSiOzg+gP36TPB88kOeTy62HU9HR+LzqqllBoWNMFSSqm+8RhwloicGuyFcAUnQMgMKXOpiEwLns/0G+CZ4LCuUA7ACZQDXhE5ncC5VG0eAr4tIl8VEYuIjBaRKcaYEgJDCf8oIvHBbeNF5MDhaAeKAxqAWhEZTeDcrlB/AVYZY64mMPRtaXD9U8AZwTjswE0EErz/dvdEHcgY85ExJraL20eHW2cn8oFvBY/NaXQcpvd34Npgb5OISIwEJqeIg/aJJR7ppv5fi4gjmAyeCTwdXB8HVBlj3MHz577VTT1xBJ7HSgIJ4f8dxmMMC2PM/3V1PLrY9WECr81xwdf4T4FX+idqpZSKHE2wlFKqDxhjCgn0PNxGIDkqJJCshH7uPkpgIopSwAX8uJN66oPrnwKqCXwhfylk+2cEJ74AaoEP2N+TdDmBBO2L4L7P0HGIYmd+DcwJ1vUq8FzbBhE5h8AkFdcFV/0PMEdELjHGbCXQ23UvgV64s4CzjDGt3bQXKdcTiLEGuAR4oW2DMWYV8F3gPgLP23Y6TsiRBXzcRd2lwf2KCUxIca0xZktw2/eB34hIPXA7gePalX8TGGK4l8Bx/LS7BzZQGGP+SSD+lQQeQwudvMaVUmqo0etgKaVUBIjIcuAxY8w/Ih2L6rngrIjrgLzgZB4Hbj+BwHHNPHCbUkqp4cEW6QCUUkqpwSLYIze124JKKaWGLR0iqJRSw4yILD3EhAVLu99bDUYiMqaLiSrGRDo+pZQaSnSIoFJKKaWUUkqFifZgKaWUUkoppVSYDKhzsFJTU012dnakw1BKKaWUUkqpLq1evbrCGJN24PoBlWBlZ2ezatWqSIehlFJKKaWUUl0Skd2drdchgkoppZRSSikVJppgKaWUUkoppVSYaIKllFJKKaWUUmEyoM7B6ozH46GoqAi32x3pUNQA4HK5yMzMxG63RzoUNYRVN7Tw2gM/I23uuZxy/HGRDkcppZRSg8iAT7CKioqIi4sjOzsbEYl0OCqCjDFUVlZSVFRETk5OpMNRQ9iqt//DJfUPsfu9V/Au3ILNqp39SimllOqZAf+twe12k5KSosmVQkRISUnR3kzV51J2vgjAWCljy5aNEY5GKaWUUoPJgE+wAE2uVDt9Laj+ENNcTK3EA1C66cMIR6OUUkqpwWRQJFhKKdWfkrz72JH4FZpw4Sz+PNLhKKWUUmoQ0QSrB0SEm266qX35rrvuYsmSJZELKMQJJ5zQ5cWZzz33XBYsWNBh3ZIlSxg9ejSzZs1ixowZvPTSS30dplKDhs/TSqqpoSU2k0LnJFLqt0Q6JKWUUkoNIppg9YDT6eS5556joqIirPUaY/D7/WGtM1RNTQ2rV6+mtraWnTt3dth24403kp+fz9NPP81VV13Vp3EoNZjUlxdiEYM/dhTNieMZ5S2kxeONdFhKKaWUGiQ0weoBm83GNddcw913333QtvLycs4//3zmzZvHvHnz+Pjjj4FAL9Fdd93VXm7GjBkUFBRQUFDA5MmTufzyy5kxYwaFhYXccsstzJgxg9zcXJ588kkAli9fzgknnMAFF1zAlClTuOSSSzDGdBrfo48+2t4b9dlnn7Wvf+655zjrrLO46KKLeOKJJzrdd+rUqdhstg7J409/+lOmTZtGXl4eN998MwAFBQWcdNJJ5OXl8dWvfpU9e/YAcOWVV3LdddexYMECxo0bx/Lly7nqqquYOnUqV155ZXud1113HXPnzmX69On86le/OiiO2tpaxo4d257oNTY2kpWVhcfj6TRupfpKQ3ngtW1JHI1txGQSpZFde3ZHOCqllFJKDRYDfpr2UL9+eRNfFNeFtc5po+L51VnTuy33gx/8gLy8PG699dYO66+//npuvPFGFi5cyJ49ezj11FPZvHlzl3V9+eWX/Otf/2LBggU8++yz5Ofns27dOioqKpg3bx7HHRe47s7atWvZtGkTo0aN4thjj+Xjjz9m4cKFB9XX1NREfn4+H374IVdddRUbNwZmPVu2bBm333476enpnH/++dx2220H7bty5UosFgtpaWkAVFZW8vzzz7NlyxZEhJqaGgB+9KMfccUVV3DFFVfwz3/+kx//+Me88MILAFRXV/PJJ5/w0ksvcfbZZ/Pxxx/zj3/8g3nz5pGfn8+sWbO44447SE5Oxufz8dWvfpX169eTl5fXHkdCQgKzZs3igw8+4MQTT+SVV17h1FNP1etdqX7XVFcOgDN+BAnJ0bABqgo2wPjxEY5MKaWUUoNBr3uwRCRLRN4XkS9EZJOIXB9cv0RE9opIfvD29d6HGznx8fFcfvnl3HPPPR3Wv/POO/zwhz9k1qxZnH322dTV1dHQ0NBlXWPHjm0/L2rFihVcfPHFWK1W0tPTOf744/n888BJ9fPnzyczMxOLxcKsWbMoKCjotL6LL74YgOOOO466ujpqamooKyvjyy+/ZOHChUyaNAm73d6eeAHcfffdzJo1i5tvvpknn3yyfXa+hIQEXC4X3/nOd3juueeIjo4G4JNPPuFb3/oWAJdddhkrVqxor+uss85CRMjNzSU9PZ3c3FwsFgvTp09vj/mpp55izpw5zJ49m02bNvHFF18c9DgWL17c3oP3xBNPsHjx4i6fR6X6gru+BoDY+CTSsmcG1pXoeVhKKaWU6plw9GB5gZuMMWtEJA5YLSJvB7fdbYy5q4t9D0tPepr60g033MCcOXP49re/3b7O7/fz6aef4nK5OpS12WwdzmsKvXZTTExMj9pzOp3t961WK15v5+eBHDh1uYjw1FNPUV1d3X5B3rq6OpYtW8Ydd9wBBM7Bahv+d2Dcn332Ge+++y7PPPMM9913H++9916P4rRYLB1itlgseL1edu3axV133cXnn39OUlISV155ZafXsjr77LO57bbbqKqqYvXq1Zx00kldtqtUX/A0BXrJY+ITcaVk0YwTW9WXEY5KKaWUUoNFr3uwjDElxpg1wfv1wGZgdG/rHYiSk5O58MILeeihh9rXnXLKKdx7773ty/n5+QBkZ2ezZs0aANasWcOuXbs6rXPRokU8+eST+Hw+ysvL+fDDD5k/f/5hxdXW67NixQoSEhJISEhg2bJlvPHGG+3nfa1evfqQ52GFamhooLa2lq9//evcfffdrFu3DoCvfOUr7fs//vjjLFq0qMfx1dXVERMTQ0JCAmVlZbz++uudlouNjWXevHlcf/31nHnmmVit1h63oVS4+FsCCVZUbCJYLJTYsohr6Pz9q5RSSil1oLBOciEi2cBsYGVw1Q9FZL2I/FNEksLZVqTcdNNNHSaEuOeee1i1ahV5eXlMmzaNpUuXAnD++edTVVXF9OnTue+++5g0aVKn9Z133nnk5eUxc+ZMTjrpJO68804yMjIOKyaXy8Xs2bO59tpreeihhygoKGD37t0dpmfPyckhISGBlStXdlrH17/+dYqLi6mvr+fMM88kLy+PhQsX8qc//QmAe++9l4cffpi8vDweffRR/vKXv/Q4vpkzZzJ79mymTJnCt771LY499tj2bbfffnuHaeIXL17MY489psMDVcRIawM+I0THxAFQG5NDRqtOcqGUUkqpnpFDzUx32BWJxAIfAHcYY54TkXSgAjDA/wIjjTFXdbLfNcA1AGPGjDlq9+6OX2Q2b97M1KlTwxKjGhr0NaH60poHrmFC8cvELSlGRPjskZ8wv2Ap9TcVEhcXH+nwlFJKKTVAiMhqY8zcA9eHpQdLROzAs8DjxpjnAIwxZcYYnzHGD/wd6HTcmzHmQWPMXGPM3LaZ7JRSKlKsrQ00EtV+bqMjLTB7YOnurZEMSymllFKDRDhmERTgIWCzMeZPIetHhhQ7D9h44L5KKTXQWL2NNEp0+3LC6MkAVO/dFqmQlFJKKTWIhGMWwWOBy4ANIpIfXHcbcLGIzCIwRLAA+F4Y2lJKqT5l9zbglqj25fTswHDUljKdSVAppZRS3et1gmWMWQFIJ5te623dSinV3+zeJuqt+y+lEJ2QRj3RSHVB5IJSSiml1KAR1lkElVJqsHP4G2mx7B8iiAj7bKOJbdwTuaCUUkopNWhogqWUUiFcviY81ugO6+qis0hp3RuhiJRSSik1mGiC1UMvvPACIsKWLVsOWaagoIAZM2aErc0rr7ySZ5555pDbb7jhBkaPHo3f729f98gjj5CWlsasWbOYNm0af//738MWj1LDgd204LNFdVjnTRhLhinH7XZHKCqllFJKDRaaYPXQsmXLWLhwIcuWLet0u9fr7XUbPp+vx2X9fj/PP/88WVlZfPDBBx22LV68mPz8fJYvX85tt91GWVlZr2NTarhwGjf+AxIsW+p47OKjdI9OdKGUUkqprmmC1QMNDQ2sWLGChx56iCeeeKJ9/fLly1m0aBFnn30206ZNAwKJ1iWXXMLUqVO54IILaGpqAuDdd99l9uzZ5ObmctVVV9HS0gJAdnY2P/nJT5gzZw5PP/30QW2/8847zJ07l0mTJvHKK690aHv69Olcd911h0z6RowYwfjx4wm9ePM999zDtGnTyMvL46KLLgKgqqqKc889l7y8PBYsWMD69esBWLJkCVdccQWLFi1i7NixPPfcc9x6663k5uZy2mmn4fF4APjNb37DvHnzmDFjBtdccw0HXrza7/eTnZ1NTU1N+7qJEydq4qcGHr8fF634rR0TrOiRkwCoKtJrYSmllFKqa+GYpr3/vP5TKN0Q3jozcuH033VZ5MUXX+S0005j0qRJpKSksHr1ao466igA1qxZw8aNG8nJyaGgoICtW7fy0EMPceyxx3LVVVfxt7/9jR/+8IdceeWVvPvuu0yaNInLL7+c+++/nxtuuAGAlJQU1qxZ02nbBQUFfPbZZ+zYsYMTTzyR7du343K5WLZsGRdffDHnnHMOt912Gx6PB7vd3mHfnTt3snPnTiZMmNC+7ne/+x27du3C6XS2Jzy/+tWvmD17Ni+88ALvvfcel19+Ofn5+QDs2LGD999/ny+++IJjjjmGZ599ljvvvJPzzjuPV199lXPPPZcf/vCH3H777QBcdtllvPLKK5x11lntbVosFs455xyef/55vv3tb7Ny5UrGjh1Lenp6jw+TUv3CGxwCaO94DlbamCkAuMu293dESimllBpktAerB5YtW9be23PRRRd16DGaP38+OTk57ctZWVkce+yxAFx66aWsWLGCrVu3kpOTw6RJgV/Br7jiCj788MP2fRYvXnzIti+88EIsFgsTJ05k3LhxbNmyhdbWVl577TXOPfdc4uPjOfroo3nzzTfb93nyySeZNWsWF198MQ888ADJycnt2/Ly8rjkkkt47LHHsNkC+fWKFSu47LLLADjppJOorKykrq4OgNNPPx273U5ubi4+n4/TTjsNgNzcXAoKCgB4//33Ofroo8nNzeW9995j06ZNBz2OxYsX8+STTwLwxBNPdPmYlYoYTzMA4ujYg5U0Iotm40Cqd0YiKqWUUkoNIoOrB6ubnqa+UFVVxXvvvceGDRsQEXw+HyLCH/7wBwBiYmI6lBeRLpc7c2Ad3dX35ptvUlNTQ25uLgBNTU1ERUVx5plnAoFk5r777uu0vldffZUPP/yQl19+mTvuuIMNG7ruEXQ6nUCgF8put7fHY7FY8Hq9uN1uvv/977Nq1SqysrJYsmRJpxMBHHPMMWzfvp3y8nJeeOEFfvGLX3TZrlKR4G9tDPzqdEAPllgslFlH4qrXqdqVUkop1TXtwerGM888w2WXXcbu3bspKCigsLCQnJwcPvroo07L79mzh08++QSA//znPyxcuJDJkydTUFDA9u2B4UWPPvooxx9/fI/af/rpp/H7/ezYsYOdO3cyefJkli1bxj/+8Q8KCgooKChg165dvP322+3nex2K3++nsLCQE088kd///vfU1tbS0NDAokWLePzxx4HAuV2pqanEx8f3KL62ZCo1NZWGhoZDznooIpx33nn8z//8D1OnTiUlJaVH9SvVn9zNDQBYHNEHbauJyiSppai/Q1JKKaXUIKMJVjeWLVvGeeed12Hd+eeff8iJJSZPnsxf//pXpk6dSnV1Nddddx0ul4uHH36Yb37zm+Tm5mKxWLj22mt71P6YMWOYP38+p59+OkuXLsXv9/PGG29wxhlntJeJiYlh4cKFvPzyy53WcfXVV7Nq1Sp8Ph+XXnopubm5zJ49mx//+MckJiayZMkSVq9eTV5eHj/96U/517/+1cNnBxITE/nud7/LjBkzOPXUU5k3b177tqVLl7J06dL25cWLF/PYY4/p8EA1YLU0NQJgcR6cYLnjshnpK8V/GLN9KqWUUmr4kQNnfIukuXPnmlWrVnVYt3nzZqZOnRqhiNRApK8J1VfKNr5P+jPn8sHRf+f40y/ssO2zp//A/E2/pfQ7a8jIGh+hCJVSSik1UIjIamPM3APXaw+WUkoFtTYHerBsroPPi4xKD0xSU7nn0BcbV0oppZTSBEsppYK87kCCZXcdPEQwJThVe2OpXmxYKaWUUoc2KBKsgTSMUUWWvhZUX/K0tPVgxR60bcTocbQaK/7KHf0dllJKKaUGkQGfYLlcLiorK/WLtcIYQ2VlJS6XK9KhqCHKF0ywnFEHJ1g2u51SSzqOut39HZZSSimlBpEBfx2szMxMioqKKC8vj3QoagBwuVxkZmZGOgw1RPlaApc6cEZ1fm26audoEpp1qnallFJKHVqfJ1gichrwF8AK/MMYc1hXC7bb7eTk5PRJbEopFcrf2pZgHdyDBdAUO5bxFRvBGOjBRcSVUkopNfz06RBBEbECfwVOB6YBF4vItL5sUymljpRpbcJvhKiogye5APAn5RBLM3VVpf0cmVJKKaUGi74+B2s+sN0Ys9MY0wo8AZzTx20qpdQRMZ5mmnEQ5ei8c981YgIA5QWb+zMspZRSSg0ifZ1gjQYKQ5aLguvaicg1IrJKRFbpeVZKqUgSTxPNOImyWzvdnpg5GYC6kq39GZZSSimlBpGIzyJojHnQGDPXGDM3LS0t0uEopYYx8TbjxoHF0vn5VRljJuEzgrd8Zz9HppRSSqnBoq8TrL1AVshyZnCdUkoNOBavm1ZxHnJ7TEwMZZKKrXZXP0allFJKqcGkrxOsz4GJIpIjIg7gIuClPm5TKaWOiHibaZWur7NWbh9NTKNO1a6UUkqpzvVpgmWM8QI/BN4ENgNPGWM29WWbSil1pGy+Zloth+7BAmiMySLNox3xSimllOpcn18HyxjzGvBaX7ejlFK9ZfW58Vo6n6K9jS8xh6Sal3HXV+OKS+qnyJRSSik1WER8kgullBoo7H43XmvXQwSj0gNTtZfs+qI/QlJKKaXUIKMJllJKBdn9LfisUV2WSc6aAkBV0Zb+CEkppZRSg4wmWEopFeQwbny2rnuwRuVMBcBdtr0/QlJKKaXUIKMJllJKBTlNC6abHixXTDwVkoSlpqB/glJKKaXUoKIJllJKBbloAXvXk1wAVDpGE9u4px8iUkoppdRgowmWUkoB+DzY8WHsXfdgAbhjx5LuKcLvN/0QmFJKKaUGE02wlFIK8LQ0AiA9SLD8aVMYITWUlBb3dVhKKaWUGmQ0wVJKKaC5sQEAcXQ/RDB69AwA9u3I78uQlFJKKTUIaYKllFKAu6keAKsrttuyI8bPBKBp76Y+jUkppZRSg48mWEopBbQ01gJgccV1WzYxI4cGopByvRaWUkoppTrSBEsppQBPU1uCFd9tWbFY2GsfS3z9l30dllJKKaUGGU2wlFIK8AYTLFtUQo/K18aOZ1RrAcboTIJKKaWU2k8TLKWUArzNgQTLEdOzBIu0KSRTR3lZUR9GpZRSSqnBRhMspZQCfM2BSS6cMYk9Kh83Jg+AvdvW9lVISimllBqENMFSSin2DxGMjU/sUfnRk+YAUL9nQ1+FpJRSSqlBSBMspZQCTEsdXmMhPq77WQQB4tOyqCcGS/nmPo5MKaWUUoNJrxIsEfmDiGwRkfUi8ryIJAbXZ4tIs4jkB29LwxKtUkr1EX9LAw1EEeWw9WwHEUpc40iq39a3gSmllFJqUOltD9bbwAxjTB6wDfhZyLYdxphZwdu1vWxHKaX6lKWlniaJRkR6vE9D0nTG+XbR7G7tw8iUUkopNZj0KsEyxrxljPEGFz8FMnsfklJK9T+Lp4FmS/Rh7WPLnE2UtLJ7W37fBKWUUkqpQSec52BdBbwespwjImtF5AMRWXSonUTkGhFZJSKrysvLwxiOUkr1nN1TT4sl5rD2SZt4NADV2z/ri5CUUkopNQh1e7KBiLwDZHSy6efGmBeDZX4OeIHHg9tKgDHGmEoROQp4QUSmG2PqDqzEGPMg8CDA3Llz9YqdSqmIiPbWUuUYeVj7pI/Lpck4oSS/b4JSSiml1KDTbYJljDm5q+0iciVwJvBVY4wJ7tMCtATvrxaRHcAkYFVvA1ZKqb4Q56+lxD7lsPax2GzscYwnsWZTH0WllFJKqcGmt7MIngbcCpxtjGkKWZ8mItbg/XHARGBnb9pSSqk+Ywxxph6PM+mwd61NnM7Y1h14PZ4+CEwppZRSg01vz8G6D4gD3j5gOvbjgPUikg88A1xrjKnqZVtKKdUnTGsDTjz4o5IPe19H1hyipYVdW/PDH5hSSimlBp0eXvClc8aYCYdY/yzwbG/qVkqp/lJfVUY8YI1NPex9R05dAGugbOtKJs6YF/7glFJKKTWohHMWQaWUGpRqKkoBcMaPOOx908fl0owT/9414Q5LKaWUUoOQJlhKqWGvoboMgOjEw0+wxGpnj2sKI2rWhTsspZRSSg1CmmAppYY9d00gwYpPTj+i/RtGHMUE306qq/VUU6WUUmq40wRLKTXs+Wr3ApCYMfaI9o+esBCb+ClY/1E4w1JKKaXUIKQJllJq2LPUl1BjYoiPiz+i/cfMPAG/EZp2fBzmyJRSSik12GiCpZQa9pxNpVRYUhGRI9o/JiGF3dYxxO3Ta6krpZRSw50mWEqpYS+qZR/19rRe1VGePJtxzV/g0QsOK6WUUsOaJlhKqWEv0VNOS/SRTXDRxpnzFWKlmS83rgxTVEoppZQajDTBUkoNax53IynU4I8b3at6xs7+KgAVmz4IR1hKKaWUGqQ0wVJKDWsVhdsAsKSM61U9iSPHU2oZQVSRTnShlFJKDWeaYCmlhrWavVsBiM6Y2LuKRNibdDSTm9fS2qrnYSmllFLDlSZYSqlhrbF0OwBpY6f0ui7bxJOIlya2r9PrYSmllFLDlSZYSqlhzV+5k3oTRUb6qF7XlT33NABqN77d67qUUkopNThpgqWUGtZi67az1z4GsfT+4zAhdRQ7rOOIK9HzsJRSSqnhShMspdSwltFSQE3M+LDVVzniGCa1bKKuvjZsdSqllFJq8NAESyk1bDVWl5FMLd6UyWGrM2H613CIl62fvhm2OpVSSik1ePQqwRKRJSKyV0Tyg7evh2z7mYhsF5GtInJq70NVSqnwKt2+FgDXqGlhq3P8vFNpwoln86thq1MppZRSg4ctDHXcbYy5K3SFiEwDLgKmA6OAd0RkkjHGF4b2lFIqLOr3bAAgNWdm2Oq0OaPZGDOf8VUf4vf5sVh1oIBSSik1nPTVf/5zgCeMMS3GmF3AdmB+H7WllFJHxL9vC/UmitFjJ4S33kmnkU4VW9bqdO1KKaXUcBOOBOuHIrJeRP4pIknBdaOBwpAyRcF1BxGRa0RklYisKi8vD0M4SinVMzG1X1JoG4PdZg1rvZMWXYDPCBWfPxPWepVSSik18HWbYInIOyKysZPbOcD9wHhgFlAC/PFwAzDGPGiMmWuMmZuWlna4uyul1BEb0VJAdRhnEGwTm5zBlui5TCx7Db9PR0YrpZRSw0m3CZYx5mRjzIxObi8aY8qMMT5jjB/4O/uHAe4FskKqyQyuU0qpAcFdU0aSqcWbMqlP6m+esZiRVPDFJzrZhVJKKTWc9HYWwZEhi+cBG4P3XwIuEhGniOQAE4HPetOWUkqFU8mXgRkEo0ZN75P6Z5x4MfVE0/DJw31Sv1JKKaUGpt6eg3WniGwQkfXAicCNAMaYTcBTwBfAG8APdAZBpdRAUhucQTBt/Kw+qd8VHcu2Uecyr+F99ny5rk/aUEoppdTA06sEyxhzmTEm1xiTZ4w52xhTErLtDmPMeGPMZGPM670PVSmlwsdXtpl6E0XWmPCfg9Um+5zbaMFBxUtL+qwNpZRSSg0seoEWpdSwFJhBcCy2MM8gGColPYt1md9iTv17rH3rsT5rRymllFIDhyZYSqlhKb2lgJrYvuu9ajP70jvYbpvA1I9v4PMn7qChdAf4/X3erlJKKaUiQxMspdSw01C9jyTq8PfRDIKhXFExJF/zMtucM5i35U5il85hwwNX9Xm7SimllIoMTbCUUsNO8a4vAIgZObFf2kseMYrcn77Hxq8/jxsncRVr+qVdpZRSSvU/W6QDUD1njMHj8dDa0kyruwlPazMedzPeVjfe1ma8Lc14va14vX4MBjEGEUEwgEEwCAIWC8biwFhsYHVgcziw2Rw4nE4cdic2pxOnw4XdFY3TGYXVqnm4GlrqircBkJQ5ud/aFIuFGfNP4uNVFzCv7EmMz4tY9SNYKaWUGmr0v3sENDc2UF1RTG1FCU3VpXjr90FjBTTXIC11WFvrsXnqsfsacXobiDKNxJhGoo0bh/hw9GOsPiM04MSNkxZx0CIuWsVJqzjxWl14LC581ih8Vhd+WxR+mwts0WB3IfYoxO7C4ojC4ojG5ojC5ozC5ozG5ozB4YrG4YrGGRWN0xVDVFQ0TrsVEenHR6iGI0/5TgDSx/RfgtVGRkzGsc9Lye6tjBzXN9fgUj3j8/lobKynubGBlqYGPC2N+Fqa8LU24W9pwt/ajNfbgt/rxef14Pd68Ptawe8Fvw/xexG/F4wXi9+LMWAwwb9gDCBC4CMt8FeQ/evEghEbWKztfxErWG1gCS5bbIjFFkjGLTbEakcsVsRqQyxWLFZ7YJ3V2r5ssQbXW2xYrDYsNhtisWOzWrHY7IjNhtUSWG+1WLFZLFgsYLUIFhGsFsEqgsWin8VKKXUkNMEKI7/XQ2XZHir37qKhvIDWqiKkrghXUykxreXEeKtJ9NcSI26igFEH7O81FhokmiaJodkSQ4s1hnpXBtX2OPyOOIwjDuwusLrA7sRicyJ2F2J3YbVHYbE7sdoc2GwWRAL9VW3a+q+MAfw+8HsQvwd8HvzeVnzeVnyeVvzetlsLeFvA04zFG3LzubH53Dh8zcT4G7B7K7G3urGbVpzGjYtW7HiP7Pkzghs7bhy0igMvdvxixSdWfGLDT/Cv2PCLNfDXYsME75vgfUQQBBP4BgPBPrzgN5rA89K+LbDeBO4EbmKwmLZePz8Ygn/bn0Uw/uDfjtvAIMYf/NtW3h/8phUoKyakR9H429cHDlRbPcGoQ8qGrtt/dE17W4Ssk+A6s//Rh8S3f7mretu2hTId7svBKwN9p50e30Ov73y5Q3nT6d0jqh9guqmjXJJIi4k7RG19J31cHmyEwq2rNMHqBWMMzU311FeW0li9D3dtGa0N1bQ21eBrqsW4axF3HVZPPQ5PPU5fAy5/I1H+RqJMMy7TglM8xAPxkX4wEeQ3gg9L+60VK972ZSs+rPjb71vwiwU/VkAwwcSxLXk07Z+hB/6lw1/T4dNn/36df+p0xhz6gyC0TLdFuivTxXbTgzJBgunh4zp0lQc+M53VdyRlOiPdPC89Sbt7dCSlJ89d79vq7vH0tJ2eHuvettOjY3R4r6g+bSc8j6n7djZYpxF9wf2cOGVED1qMPE2wDlNTfTUluzZTs3crLWVfYq3ZRXxTISmeYlL8VaSJIS20PE7KLWnU2VKpjZ1BYVQKRKdhjU/DmZBBdFIGsckZRCelExubSKLVQmKkHly4+DwYTxMedzMt7kZamxsDQxrdTXhaAjdfaxO+4C/Efo8bv6cZPG7wNCNeN3jdEPylWPxexHixBH8lthgfVuPF4Xdj8fmwGC9W48NqAl8JQpMbODiR6Dz13J+AGCwYwN9e2hLc0rbe0mFPg2Ck47bAX8EfWrNYOu4TkgS2lWurl2B7yMHRB38O7/ClBOn4SDomjcF9QxPMtv3bywUfU2hSKvv35YB7EsgsD9rS3uoBn7gdapKO6w66L4HoAusPbKHjo+pYl+k81k7+idcAJntRh/dqfxk7fQHuF+34dn4EXBGBCAYuYwx1tTXUlO2moaKIlqoivLXF0FiOpakSe0sVUZ4aYn01JJo6oqWF6EPUFfjBKqb9Byu3NYYa5yjKbXH47DHgiAZ7NBZHNFZHFFZnNOKIRuyBHvfA+mhsDid2ux273YnNbsfucGK1BnqUAr1Fdix2OxaLDYvFgkXY3wsf8sXOGD/GgN/vx2/AbwzG78P4vfh9Xvx+L3i9+Hwe/N7Ast/nxe/1BMp4Pe3ljM+D8frwm7b7Xvx+HwT3MX4v+PavM8G/+L0Ynw+MF3w+jAn0whm/F/H7A+uDPXMYX+C+8SJ+HxgfYnxYgvdN8Ecdgj/kBLrtgp+hgV/yAtsCG0N+ZDrwRyOwBD9tA5/dtH/2dPnFrauRDu2//UjXdXTVSuiHVQ+/fndaZ6e79qC+wxzJ0fZITY92677QoX6wOrw6+ieWwP/X3ve2dv+Ye1amu8fUk+clHO1AT14PPYk1XM9L7+rwu3JIiLb3up3+oglWF4p3fkHhmjcwpRtJqNvGiNZCUqghdGLnChLZZx/Nrrij+DJ2NNbE0USljiE+PYe0zPHExiczdrgNebPaEWsCDldCvw5nVGowsDmj2OKaQXrlZ5EOpd+5m+qpKNpBbfGXuMsL8NUUYmkoxeUuI661ghR/JQnSTMIB+zUZJ7UST4MtkWZHEvXOcRS6kjFRqUhsKrbYNBzxqUTFpxKbkEx8YjJR0XEkWiL8g1XIZ7+INZBMWPvuumtKKTVUHRXpAA6TJlhdKFz1Ckd/cQeNuCi05bA94StsTRqHM30CSZlTGJkzjdTYBFIjHahSalBpzj6JGVv/yO4vNzB2Ym6kwwkbv89H+d6dVOz+gobS7XirduOo30O8u5gUbxmp1JAJZAbLe4yVCkmizpZKVcw49sV8BRObgTVxFM6kTGJTs0jMGENCQhLRw+2HKqWUUoOWmB6MTe0vc+fONatWrYp0GO1qKkpprKthVPZExKK/OiqlwqOsaDvp/ziKj8d8j2OvujPS4Rw2d0M1e7dvoHL3JjxlW3HW7iSpeQ+jfHuJktb2ch5jpdySRrUjg6bo0Xjjs7Cl5BA1YhxJoyYwYtQY7Db9nU8ppdTgJCKrjTFzD1yv/9m6kJiaQWJqRqTDUEoNMemZE9jkmsOEPc/Q2vK/OJzOSIfUKV9zHaXb11C9Mx9P6RdE12wl1b2bFFPNeGA8gZlGSy3pVLrGsj5+PpI6keiRk0kdM4URo3IYZbMfNKGPUkopNZRpgqWUUhHgm/890j/8Hqte+Rtzz78xorEYbytVezaxb/ta3Hs34qjaTGrjDtL9ZYwGRgMNxsUe6xi2xB6NP3kC0SOnkJYzndE50xjtcDE6oo9AKaWUGjh0iKBSSkWA8fvZ8v+OZaRnD77vfkjK6PHd79TrRg2NlUUUb11Fw+58rOWbSKj/klHeQuz4gMCwvj0yivKocTQnTcE+agYp42eRPW4qUc7BM4OTUkop1dd0iKBSSg0gYrFg+8ZSbE+cSvkjFxP1o9eJjk8JW/2tzY0Ub8+neucafCUbiKnZykj3DhKpZ2KwTIlJYa9zHLvSjsWSPo347FmMmTiT8Qlx9EO6p5RSSg1J2oOllFIRtPL1fzP70xsos47Ee/ofyZl32mHt726qp3TnJqr3bKS1dCu26i9Ja/yS0b69WIPXAGs2DnbbsqmKnYg3bTrRWTPJmDiHURkjsVh0dj6llFLqSByqB6tXCZaIPAlMDi4mAjXGmFkikg1sBrYGt31qjLm2u/o0wVJKDUerP3iFzPd/RDpVFFizqRyxAGv6FCyxIwIXwPW24mmux9NQia+2GGtDCS53Gamte8kw5e31+I1QYhlBmWs8zclTsI/KJWX8UWSNm4bDocP7lFJKqXDqkyGCxpjFIQ38EagN2bzDGDOrN/UrpdRwcNTxZ1I7+zg+evk+Ene9yrTi54gqae20rMdYqZQkamyp7ImdyY6kCTjSJ5E4Zgajx01jdEycTjihlFJKRVBYzsESEQEuBE4KR31KKTXcJMTHs+iS24DbcLd62LVnO631lXjcjYjNiSM6lpiEFNLSM8mw29ELSCillFIDU7gmuVgElBljvgxZlyMia4E64BfGmI8621FErgGuARgzZkyYwlFKqcHL5bCTM2FqpMNQSiml1BHoNsESkXeg0x9Lf26MeTF4/2JgWci2EmCMMaZSRI4CXhCR6caYugMrMcY8CDwIgXOwDvcBKKWUUkoppdRA0W2CZYw5uavtImIDvgEcFbJPC9ASvL9aRHYAkwCdwUIppZRSSik1ZFnCUMfJwBZjTFHbChFJExFr8P44YCKwMwxtKaWUUkoppdSAFY5zsC6i4/BAgOOA34iIB/AD1xpjqrqraPXq1RUisjsMMYVTKlAR6SBUv9HjPXzosR4+9FgPL3q8hw891sPLQDzeYztbOaAuNDwQiciqzua3V0OTHu/hQ4/18KHHenjR4z186LEeXgbT8Q7HEEGllFJKKaWUUmiCpZRSSimllFJhowlW9x6MdACqX+nxHj70WA8feqyHFz3ew4ce6+Fl0BxvPQdLKaWUUkoppcJEe7CUUkoppZRSKkw0wVJKKaWUUkqpMNEEqwsicpqIbBWR7SLy00jHo8JHRLJE5H0R+UJENonI9cH1ySLytoh8GfybFOlYVXiIiFVE1orIK8HlHBFZGXx/PykijkjHqMJDRBJF5BkR2SIim0XkGH1vD00icmPwM3yjiCwTEZe+t4cOEfmniOwTkY0h6zp9L0vAPcHjvl5E5kQucnW4DnGs/xD8HF8vIs+LSGLItp8Fj/VWETk1IkF3QROsQxARK/BX4HRgGnCxiEyLbFQqjLzATcaYacAC4AfB4/tT4F1jzETg3eCyGhquBzaHLP8euNsYMwGoBr4TkahUX/gL8IYxZgowk8Bx1/f2ECMio4EfA3ONMTMAK3AR+t4eSh4BTjtg3aHey6cDE4O3a4D7+ylGFR6PcPCxfhuYYYzJA7YBPwMIfl+7CJge3Odvwe/tA4YmWIc2H9hujNlpjGkFngDOiXBMKkyMMSXGmDXB+/UEvoCNJnCM/xUs9i/g3IgEqMJKRDKBM4B/BJcFOAl4JlhEj/UQISIJwHHAQwDGmFZjTA363h6qbECUiNiAaKAEfW8PGcaYD4GqA1Yf6r18DvBvE/ApkCgiI/slUNVrnR1rY8xbxhhvcPFTIDN4/xzgCWNMizFmF7CdwPf2AUMTrEMbDRSGLBcF16khRkSygdnASiDdGFMS3FQKpEcqLhVWfwZuBfzB5RSgJuSDW9/fQ0cOUA48HBwS+g8RiUHf20OOMWYvcBewh0BiVQusRt/bQ92h3sv6vW1ouwp4PXh/wB9rTbDUsCYiscCzwA3GmLrQbSZwDQO9jsEgJyJnAvuMMasjHYvqFzZgDnC/MWY20MgBwwH1vT00BM+9OYdAUj0KiOHgIUZqCNP38vAgIj8ncGrH45GOpac0wTq0vUBWyHJmcJ0aIkTETiC5etwY81xwdVnbkILg332Rik+FzbHA2SJSQGCo70kEztFJDA4rAn1/DyVFQJExZmVw+RkCCZe+t4eek4FdxphyY4wHeI7A+13f20Pbod7L+r1tCBKRK4EzgUvM/ov3DvhjrQnWoX0OTAzORuQgcDLdSxGOSYVJ8Bych4DNxpg/hWx6CbgieP8K4MX+jk2FlzHmZ8aYTGNMNoH38XvGmEuA94ELgsX0WA8RxphSoFBEJgdXfRX4An1vD0V7gAUiEh38TG871vreHtoO9V5+Cbg8OJvgAqA2ZCihGoRE5DQCw/vPNsY0hWx6CbhIRJwikkNgYpPPIhHjocj+ZFAdSES+TuDcDSvwT2PMHZGNSIWLiCwEPgI2sP+8nNsInIf1FDAG2A1caIw58ARbNUiJyAnAzcaYM0VkHIEerWRgLXCpMaYlguGpMBGRWQQmNHEAO4FvE/hBUd/bQ4yI/BpYTGD40FrgagLnYuh7ewgQkWXACUAqUAb8CniBTt7LwST7PgLDRJuAbxtjVkUgbHUEDnGsfwY4gcpgsU+NMdcGy/+cwHlZXgKnebx+YJ2RpAmWUkoppZRSSoWJDhFUSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSimllFJKqTDRBEsppZRSSimlwkQTLKWUUkoppZQKE02wlFJKKaWUUipMNMFSSqkBRkSyRcSIiC3SsajhQUQ2icgJkY5DKaWGAk2wlFJKDXoislREGoK3VhHxhCy/Hun4BjpjzHRjzPJw1ysiJ4vIGhFpFJEiEbkw3G0opdRAI8aYSMeglFJDiojYjDHeXuyfDewC7L2pZ7gSkSXABGPMpZ1s69Wx6U+DKdbOiMg0YDlwBfA2kAAkGmN2RDIupZTqa9qDpZRSYSAiBSLyExFZDzSKiE1EFojIf0WkRkTWhQ7BEpHlIvL/ROQzEakTkRdFJPkQdX9bRDaLSL2I7BSR7x2w/RwRyQ/Ws0NETguuTxCRh0SkRET2ishvRcTazeMYLyLviUiliFSIyOMikhiyrUpE5gSXR4lIedvjEpGzg0PNaoKPb+oBz8/NIrJeRGpF5EkRcR3+M334DnFsjIhMCCnziIj8NmT5zOBzWhM8hnk9bOuEYE/NbcHnr0BELgnZfoaIrA0eq8JgMti2rW1o6HdEZA/wXnD90yJSGnzePhSR6QfE/TcReT3YW/exiGSIyJ9FpFpEtojI7B4+Ryf35DEehl8ADxhjXjfGeI0xlZpcKaWGA02wlFIqfC4GzgASgXTgVeC3QDJwM/CsiKSFlL8cuAoYCXiBew5R7z7gTCAe+DZwd0iSMx/4N3BLsN3jgILgfo8E650AzAZOAa7u5jEI8P+AUcBUIAtYAhD8cvwT4DERiQYeBv5ljFkuIpOAZcANQBrwGvCyiDhC6r4QOA3IAfKAKzsNQGRhMLE51G1hN4+hM+3HprteoWBC8k/ge0AK8ADwkog4e9hWBpAKjCbQe/OgiEwObmskcNwTg/FcJyLnHrD/8QSe+1ODy68DE4ERwBrg8QPKX0ggmUkFWoBPguVSgWeAP/Uw7k6JyE+7Oh5d7LoguP+GYJL/2KF+RFBKqaFEEyyllAqfe4wxhcaYZuBS4DVjzGvGGL8x5m1gFfD1kPKPGmM2GmMagV8CF3bWw2SMedUYs8MEfAC8BSwKbv4O8E9jzNvBdvYaY7aISHqwrRuMMY3GmH3A3cBFXT0AY8z2YF0txphyAl/Ojw/Z/ndgO7CSQGL48+CmxcCrwX09wF1AFPCVA56fYmNMFfAyMOsQMawwxiR2cVvR1WM4hNBj051rCPS8rDTG+Iwx/yKQuCw4jPZ+GXwOPyCQaF8IYIxZbozZEDxW6wkkpccfsO+S4DFrDu7zT2NMvTGmhUCyO1NEEkLKP2+MWW2McQPPA25jzL+NMT7gSQLJ9REzxvyuq+PRxa6ZwGXA+QQSxCjg3t7EopRSg4EmWEopFT6FIffHAt884Jf+hQSSks7K7wbsBHodOhCR00Xk0+DwvBoCiVNbuSygs2FXY4P1lYS0/wCBXpBDEpF0EXkiOKSwDnisk5j+DswA7g1+6YdAj9futgLGGH/w8Y0O2a805H4TENtVLGFW2H2RdmOBmw44dlkEHmNPVAeT5ja72/YVkaNF5P3g0Mpa4FoOfn7bYxURq4j8TgJDP+vY3zsZuk9ZyP3mTpb783kO1Qw8bIzZZoxpAP6Pjj8wKKXUkKQJllJKhU/orEGFBHqoQn/tjzHG/C6kTFbI/TGAB6gIrTA4LO1ZAj1C6cEeg9cIDOVra2d8J7EUEuh1SQ1pP94YM72TsqH+L/g4co0x8QR64traQkRigT8DDwFLQoZ8FRNITNrKSfDx7e2mvYOIyCLZPwNgZ7dF3ddykANndGoCokOWM0LuFwJ3HHDsoo0xy3rYVpKIxIQsjyHw/AD8B3gJyDLGJABLCXl+O4n1W8A5wMkEJonIDq4/cJ8+Ezyf7JDHo4td19PxseisWkqpYUETLKWU6huPAWeJyKnBXghXcAKEzJAyl4rItOD5TL8BngkO6wrlAJxAOeAVkdMJnEvV5iHg2yLyVRGxiMhoEZlijCkhMJTwjyISH9w2XkQOHI52oDigAagVkdEEzu0K9RdglTHmagJD35YG1z8FnBGMww7cRCDB+293T9SBjDEfGWNiu7h9dLh1diIf+Fbw2JxGx2F6fweuDfY2iYjESGByijhon1jikW7q/7WIOILJ4JnA08H1cUCVMcYdPH/uW93UE0fgeawkkBD+32E8xrAwxvxfV8eji10fJvDaHBd8jf8UeKV/olZKqcjRBEsppfqAMaaQQM/DbQSSo0ICyUro5+6jBCaiKAVcwI87qac+uP4poJrAF/KXQrZ/RnDiC6AW+ID9PUmXE0jQvgju+wwdhyh25tfAnGBdrwLPtW0QkXMITFJxXXDV/wBzROQSY8xWAr1d9xLohTsLOMsY09pNe5FyPYEYa4BLgBfaNhhjVgHfBe4j8Lxtp+OEHFnAx13UXRrcr5jAhBTXGmO2BLd9H/iNiNQDtxM4rl35N4EhhnsJHMdPu3tgA4Ux5p8E4l9J4DG00MlrXCmlhhq9DpZSSkWAiCwHHjPG/CPSsaieC86KuA7IC07mceD2Ewgc18wDtymllBoebJEOQCmllBosgj1yU7stqJRSatjSIYJKKTXMiMjSQ0xYsLT7vdVgJCJjupioYkyk41NKqaFEhwgqpZRSSimlVJhoD5ZSSimllFJKhcmAOgcrNTXVZGdnRzoMpZRSSimllOrS6tWrK4wxaQeuH1AJVnZ2NqtWrYp0GEoppZRSSinVJRHZ3dl6HSKolFJKKaWUUmGiCZZSSimllFJKhYkmWEopdZh8fsNzn2ylvM4d6VCUUkopNcAMqHOwOuPxeCgqKsLt1i8y6vC4XC4yMzOx2+2RDkUNMR+8+yrf+PgSln1yFRf/z92RDkcppZRSA8iAT7CKioqIi4sjOzsbEYl0OGqQMMZQWVlJUVEROTk5kQ5HDTFJ6/8OwGm1T1HX/Dvio5wRjkgppZRSA8WAHyLodrtJSUnR5EodFhEhJSVFez5Vn4hv2gNAkjSwbYPOfKqUUkqp/QZ8ggVocqWOiL5uVJ8whgxfMZujjwKgdpcmWEoppZTab1AkWEopNVA0V5cSg5uKjONw48BSuj7SISmllFJqANEEqwdEhJtuuql9+a677mLJkiWRCyjEp59+ytFHH82sWbOYOnVqe1zLly/nv//9b6/qPu2000hMTOTMM88MQ6RKDQ1Ve7cCYE2byF7neBLrtkY4IqWUUkoNJJpg9YDT6eS5556joqIirPUaY/D7/b2q44orruDBBx8kPz+fjRs3cuGFFwLhSbBuueUWHn300V7VodRQ01yzDwBXYgZNcTlkePfi9fXufayUUkqpoWPAzyIY6tcvb+KL4rqw1jltVDy/Omt6l2VsNhvXXHMNd999N3fccUeHbeXl5Vx77bXs2RM46f3Pf/4zxx57LEuWLCE2Npabb74ZgBkzZvDKK68AcOqpp3L00UezevVqXnvtNe677z5ef/11RIRf/OIXLF68mOXLl7NkyRJSU1PZuHEjRx11FI899thB5xXt27ePkSNHAmC1Wpk2bRoFBQUsXboUq9XKY489xr333suUKVMOGeeOHTvYvn07FRUV3HrrrXz3u98F4Ktf/SrLly/v8rl5+umn+fWvf43VaiUhIYEPP/wQt9vNddddx6pVq7DZbPzpT3/ixBNP5JFHHuGFF16gsbGRL7/8kptvvpnW1lYeffRRnE4nr732GsnJyfz973/nwQcfpLW1lQkTJvDoo48SHR3dod0FCxbw0EMPMX164NidcMIJ3HXXXcydO7fLeJXqLW9jDQCO2CRM8jhGVrxGYUU1WekpkQ1MKaWUUgNCr3uwRCRLRN4XkS9EZJOIXB9cnywib4vIl8G/Sb0PN3J+8IMf8Pjjj1NbW9th/fXXX8+NN97I559/zrPPPsvVV1/dbV1ffvkl3//+99m0aROrVq0iPz+fdevW8c4773DLLbdQUlICwNq1a/nzn//MF198wc6dO/n4448PquvGG29k8uTJnHfeeTzwwAO43W6ys7O59tprufHGG8nPz2fRokVdxrl+/Xree+89PvnkE37zm99QXFzc4+flN7/5DW+++Sbr1q3jpZdeAuCvf/0rIsKGDRtYtmwZV1xxRftsfhs3buS5557j888/5+c//znR0dGsXbuWY445hn//+98AfOMb3+Dzzz9n3bp1TJ06lYceeuigdhcvXsxTTz0FQElJCSUlJZpcqX5hmqsBcMQk40qfCEDp7i2RDEkppZRSA0g4erC8wE3GmDUiEgesFpG3gSuBd40xvxORnwI/BX7Sm4a662nqS/Hx8Vx++eXcc889REVFta9/5513+OKLL9qX6+rqaGho6LKusWPHsmDBAgBWrFjBxRdfjNVqJT09neOPP57PP/+c+Ph45s+fT2ZmJgCzZs2ioKCAhQsXdqjr9ttv55JLLuGtt97iP//5D8uWLeu016mrOM855xyioqKIiorixBNP5LPPPuPcc8/t0fNy7LHHcuWVV3LhhRfyjW98o/0x/ehHPwJgypQpjB07lm3btgFw4oknEhcXR1xcHAkJCZx11lkA5Obmsn59YLKAjRs38otf/IKamhoaGho49dRTD2r3wgsv5JRTTuHXv/41Tz31FBdccEGP4lWqt/zNgR9ZXHHJxI6ZCkDD3i3AsRGMSimllFIDRa8TLGNMCVASvF8vIpuB0cA5wAnBYv8CltPLBCvSbrjhBubMmcO3v/3t9nV+v59PP/0Ul8vVoazNZutwflXo9ZhiYmJ61J7Tuf/ipVarFa/X22m58ePHc9111/Hd736XtLQ0KisrDypzqDjh4OnMD2d686VLl7Jy5UpeffVVjjrqKFavXt1l+dDHZLFY2pctFkv747vyyit54YUXmDlzJo888kinCePo0aNJSUlh/fr1PPnkkyxdurTHMSvVG9JSS72JIjrKSVLsZAC8FTsiHJVSSimlBoqwTnIhItnAbGAlkB5MvgBKgfRD7HONiKwSkVXl5eXhDCfskpOTufDCCzsMWTvllFO4995725fz8/MByM7OZs2aNQCsWbOGXbt2dVrnokWLePLJJ/H5fJSXl/Phhx8yf/78Hsf06quvYowBAkMPrVYriYmJxMXFUV9f322cAC+++CJut5vKykqWL1/OvHnzetz+jh07OProo/nNb35DWloahYWFLFq0iMcffxyAbdu2sWfPHiZPntzjOuvr6xk5ciQej6e9ns4sXryYO++8k9raWvLy8npcv1K9YXHXUkc0sU4bEpVIjSRgr+38/a2UUkqp4SdsCZaIxALPAjcYYzrMRGECGYDpbD9jzIPGmLnGmLlpaWnhCqfP3HTTTR1mE7znnntYtWoVeXl5TJs2rb0n5fzzz6eqqorp06dz3333MWnSpE7rO++888jLy2PmzJmcdNJJ3HnnnWRkZPQ4nkcffZTJkycza9YsLrvsMh5//HGsVitnnXUWzz//PLNmzeKjjz46ZJwAeXl5nHjiiSxYsIBf/vKXjBo1Cggkf9/85jd59913yczM5M033wQCwxLbzre65ZZbyM3NZcaMGXzlK19h5syZfP/738fv95Obm8vixYt55JFHOvRcded///d/Ofroozn22GOZMmVK+/qXXnqJ22+/vX35ggsu4IknnmifOVGp/mDz1FJnYnDaAh+fFY5MEpoLIxyVUkoppQYKaev96FUlInbgFeBNY8yfguu2AicYY0pEZCSw3BjTZTfG3LlzzapVqzqs27x5M1OnTu11jKpzB852ONTo60eFW8Fdx1Ne38q8X38CwLp7LmJE5WdkLNlxWMNrlVJKKTW4ichqY8xBs6yFYxZBAR4CNrclV0EvAVcE718BvNjbtpRSKtIc3nqaLPvPo/QlZjNSKqmqDe8lJJRSSik1OIVjFsFjgcuADSKSH1x3G/A74CkR+Q6wG9BxXAPQkiVLIh2CUoOK09uA2zqmfdmemg07oXzvDlIS50QuMKWUUkoNCOGYRXAFcKhxMV/tbf1KKTWQOPxufPb9l2qIzZgAQF3xdpiuCZZSSik13IV1FkGllBrqHH43Xtv+BCtldOBiwy0VOpOgUkoppTTBUkqpnvP7cdKCsUW3r4pPy6IVG1TvjmBgSimllBooNMFSSqme8jQBYBwhFwu3WCi3jMDZUBShoJRSSik1kGiC1UMvvPACIsKWLVsOWaagoIAZM2aErc2tW7dywgknMGvWLKZOnco111wDBC4S/Nprr/Wq7quuuooRI0aENV6lhrxggoU9usPqGudIElqKIxCQUkoppQYaTbB6aNmyZSxcuJBly5Z1ut3r9fa6DZ/P12H5xz/+MTfeeCP5+fls3ryZH/3oR0B4Eqwrr7ySN954o1d1KDXstDYG/jo6JljumEzSvKWE47qCSimllBrcwjFNe/95/adQuiG8dWbkwum/67JIQ0MDK1as4P333+ess87i17/+NQDLly/nl7/8JUlJSWzZsoW33noLr9fLJZdcwpo1a5g+fTr//ve/iY6O5t133+Xmm2/G6/Uyb9487r//fpxOJ9nZ2SxevJi3336bW2+9lYsuuqi93ZKSEjIzM9uXc3NzaW1t5fbbb6e5uZkVK1bws5/9jDPPPJMf/ehHbNy4EY/Hw5IlSzjnnHN45JFHeP7556mtrWXv3r1ceuml/OpXvwLguOOOo6CgoMvH/cEHH3D99dcDICJ8+OGHxMbGcuutt/L6668jIvziF79g8eLFLF++nF/96lckJiayYcMGLrzwQnJzc/nLX/5Cc3MzL7zwAuPHj+fll1/mt7/9La2traSkpPD444+Tnp7eod2LLrqIyy67jDPOOAMIJINnnnkmF1xwQc+OqVJ9xLQ2IoAldIgg4E8cS3JFPdU11SQlJUcmuAFub9k+Vj78E+wTTuCsC67ofgellFJqkNIerB548cUXOe2005g0aRIpKSmsXr26fduaNWv4y1/+wrZt24DAsL7vf//7bN68mfj4eP72t7/hdru58sorefLJJ9mwYQNer5f777+/vY6UlBTWrFnTIbkCuPHGGznppJM4/fTTufvuu6mpqcHhcPCb3/yGxYsXk5+fz+LFi7njjjs46aST+Oyzz3j//fe55ZZbaGwM/NL+2Wef8eyzz7J+/XqefvppVq1a1ePHfdddd/HXv/6V/Px8PvroI6KionjuuefIz89n3bp1vPPOO9xyyy2UlJQAsG7dOpYuXcrmzZt59NFH2bZtG5999hlXX3019957LwALFy7k008/Ze3atVx00UXceeedB7W7ePFinnrqKQBaW1t5991325MtpSKppbkBAKsrtsN6R2oOAOWF2/s9psFizwv/yzfcz3HMhl9QUdsQ6XAGNJ/fUNPUGukwlFJKHaHB1YPVTU9TX1m2bFl7T85FF13EsmXLOOqoowCYP38+OTk57WWzsrI49thjAbj00ku55557+NrXvkZOTg6TJk0C4IorruCvf/0rN9xwAxBIKDrz7W9/m1NPPZU33niDF198kQceeIB169YdVO6tt97ipZde4q677gLA7XazZ88eAL72ta+RkpICwDe+8Q1WrFjB3Llze/S4jz32WP7nf/6HSy65hG984xtkZmayYsUKLr74YqxWK+np6Rx//PF8/vnnxMfHM2/ePEaOHAnA+PHjOeWUU4BAz9v7778PQFFREYsXL6akpITW1tYOz12b008/neuvv56WlhbeeOMNjjvuOKKiog4qp1R/a2mqxwXYDkiw4jLGAVBf8iXkzY9AZANfcvmnAKRKHR98/ArHf/2ibvYYvl5c+kvGl77Gjm88xFGzZkc6nAGrYM8evnz8JpryLuOcM86OdDhKKdVOe7C6UVVVxXvvvcfVV19NdnY2f/jDH3jqqafaz7WIiek4VEhEulzuzIF1hBo1ahRXXXUVL774IjabjY0bNx5UxhjDs88+S35+Pvn5+ezZs4epU6cecTxtfvrTn/KPf/yD5uZmjj322C4n+ABwOp3t9y0WS/uyxWJpP0ftRz/6ET/84Q/ZsGEDDzzwAG63+6B6XC4XJ5xwAm+++SZPPvnkIRNQpfpbS1M9ADZnxwQrNTPw40lrpV4LqzM+dz3jPdv5PGMxXiz4dn0c6ZAGrMqqSr6x715mWnZQ996fIh3OgLbjlT/ytZa3OPmzq2loao50OEop1U4TrG4888wzXHbZZezevZuCggIKCwvJycnho48+6rT8nj17+OSTTwD4z3/+w8KFC5k8eTIFBQVs3x4YPvToo49y/PHHd9v2G2+8gcfjAaC0tJTKykpGjx5NXFwc9fX17eVOPfVU7r333vakb+3ate3b3n77baqqqtrPg2rrXeuJHTt2kJuby09+8hPmzZvHli1bWLRoEU8++SQ+n4/y8nI+/PBD5s/v+S/2tbW1jB49GoB//etfhyy3ePFiHn74YT766CNOO+20HtevVF9qDQ4RdER3TLDiU0bShBNq9kQirAGvfNcGbOKnZfQx7HZMJK16TaRDGrCK1rwJQIUkM6v2PZpadKjgoUwtfx2AGGlh/YpXIhyNUkrtpwlWN5YtW8Z5553XYd35559/yNkEJ0+ezF//+lemTp1KdXU11113HS6Xi4cffphvfvOb5ObmYrFYuPbaa7tt+6233mLGjBnMnDmTU089lT/84Q9kZGRw4okn8sUXXzBr1iyefPJJfvnLX+LxeMjLy2P69On88pe/bK9j/vz5nH/++eTl5XH++ee3Dw+8+OKLOeaYY9i6dSuZmZk89NBDACxdupSlS5cC8Oc//5kZM2aQl5eH3W7n9NNP57zzziMvL4+ZM2dy0kknceedd5KRkdHj53PJkiV885vf5KijjiI1NbV9/apVq7j66qvbl0855RQ++OADTj75ZBwOR4/rV6oved2dJ1iIUG5J12thHUJ1ceDHpfiRE6hLyiXbs4Pmlt7PvDoUte76hFZjZe/M60mSBr7ctLr7nYah6qpKRpkyPh9zNW5jx7ft7UiHpJRS7WQgTSs8d+5cc+AkDJs3b24f7qYOzyOPPMKqVau47777Ih1KxOjrR4XT9pf+wIQ1vyX/W+uYNSm7w7Z1vz+F2JZ9jL89PyKxDWSrly3hqK13U/b9L6n85FGmrf0NGxd/woyp0yId2oCz9g9nkNxcQPxVz5L0j6P5cNJtHPetn0Q6rAFn2+fvMOnV81m3cClRn91Diw9yf/lJpMNSSg0zIrLaGHPQ5AZ93oMlIqeJyFYR2S4iP+3r9pRSqq/4WgI9WK6Y2IO2uWOzGOErxfj9/R3WgGeqdlNjYkhLTSNxbB4A1QVhvuTGEJHoLqLKmUnS6MnUE4OE+9IkQ4SnJHA+siszl4aUPCZ4t+NuaYlwVAObz2948s0PyN+wPtKhKDXk9WmCJSJW4K/A6cA04GIR0Z8s+8mVV145rHuvlAo3f0sjHmMlJir64I0JWcRJM7XVFf0f2AAX1bSXMms6FouQNm4mAK2lX0Q4qgHI7yfDV0xz7FgQodSZTWLjjkhHNTBV7aLF2EgaNQ7L6NlESSuF2w6eZVft996bz7H4k7MZ8cy5VNfURDocpYa0vu7Bmg9sN8bsNMa0Ak8A5xxuJQNpGKMaPPR1o8LNtDbSjJMY58FXuHCmBaZqLy/c2t9hDXgxrRXU2dIAsMePoFoScFTp83SguooiomjFnxS4fEVDwkSyvLvxeH0RjmzgsdQXU0oyKbFRpOQEkvYK7RXtknX9EwCMkkp2vPtwhKNRamjr6wRrNFAYslwUXNdORK4RkVUisqq8vPygClwuF5WVlfplWR0WYwyVlZW4XK5Ih6KGktZGmnAS7bAetCl+1AQA6kq0x+FAsd5q3M7k9uV9zmySG3dGMKKBqaIkMAulKyULAEmbSqI0UlRYEMGoBiZXcykVljSsFmHkuBkAtJZujnBUA1erx0du00o2JZ1MqaQhO96JdEhKDWkRv9CwMeZB4EEITHJx4PbMzEyKioroLPlSqisul4vMzMxIh6GGEPE00YyTdNvBv02NGDMZgJZyvRZWB8aQaGrxuvbPGtqYMIGJpa/h8fqw2w5OVoerhsq9AMSkjAIgfkwubILyHfnk5IyPZGgDTlxLGQX2wBkHtqg4yiwjcFRvj3BUA1fRnh2Mk1qKMxewW6KZXvU2xudFrBH/GqjUkNTX76y9QFbIcmZwXY/Z7XZycnLCGpRSSh0Ji7cZt7g6vWB3bEIK9UQjtXotrFC+pmps+DAxae3rJG0KcWXPUlC4k+yciRGMbmBpqSkBICE1MNAjY+JseB2aizcB50cwsgHG7yPRV0FT7P5LhFS4ckh1648bh1Kxaz3jgPgxM3CLk9iqlyjcuYmsiTMjHZpSQ1JfDxH8HJgoIjki4gAuAl7q4zaVUqpPWLxNtMqhh52WWzOIatRrYYWqqygGwBq7P8GKywxcOqG8QCe6COWvLwMgaUSg5z06aSQ1xGGr1PPVOmiswIYPb8z+BKs5YTxZvr20tnoiGNjA1bx3EwAZE2aTPmk+AMVbPo9kSEoNaX2aYBljvMAPgTeBzcBTxphNfdmmUkr1FZuvmVbLoROsuqjRJLYU92NEA19DVaBXxpGQ3r5uxNjpADSXauIQShr2UWtiiIqOCa5om0lQz1cL5akrBcAStz/BsoyYjEs8FO/W11RnrFVfUkssUYnpZE2eTaux4i3WWReV6it9fh0sY8xrxphJxpjxxpg7+ro9pZTqKzZfM15r1CG3e2IzSffvw+fTa2G1aaoOfBmOStr/ZTg+PZsW7FCpiUMoe3M51ZakDusaY7PJ8OzViZ5C1FUEzjRwJu5P2mMzAxNd1OzeGJGYBrro5hIq7RkggtXupNA2hthqnRREqb7S5wmWUkoNFQ6/G6+1k2tgBUnyWKKklX2lOkywTUttIMGKTxm5f6XFQpl1FNENes5MqKjWChrsKR3WmeQJpEgtFRX7IhTVwNNYGXhNxSSPal+XPi4XAHfplojENNDFe8ppcu5PSCtjJzPKrZOCKNVXNMFSSqkecvjd+GyH7sGKSgvM9FZRuK2/QhrwfPX78BshMTWjw/qa6DGkthQeYq/hKc5TSbOjY4LlGhmYnbJsl46ub+OuCSRYCWn7E6yElHSqiUOq9DIJB/L5Dan+Cjwh56y1pk4njWrqKw9r3jGlVA9pgqWUUj3kMm78tkP3YCWPDlwLq6FMv+S1kcYKqoklMaZjYtqaMI5R/lKa3a0RimzgSTLVeKLSOqxLGROYirx+rw7nauOtK8Vt7KQmp3ZYX2bLJLahIDJBDWCV1VUkSiMmYf9lS6Kz8gAo2bY6UmEpNaRpgqWUUj1hDE5aMPZD92ClZgUSLG9lQT8FNfDZmiupkQQslo5T29vSJuAQH3t1UgIA3I21RNOCiR3RYf2IsVPwGgv+8i8jFNkA1FhOBQmkxjk7rK6LGUtaqw7PPVBVcQEAjqT9CVb6+FkA1BVqz6hSfUETLKWU6glPMxYM2GMOWcQeFU818Vj1WljtnK2V1NuSD1ofP3oKANV7tGcGoKY8MFTLFt9xKKXV7qTMmo6jVs9Xa2NrLqdWErFZO36F8SWNYwRVNDXURCawAapu324AYtLGtK8bOWoMtSYGynU4s1J9QRMspZTqAX9LIwDiPHSCBVBpH0lMk/6K3ibGU0WzPemg9enjArO+ucv0Cx5AfTDBciSOPGhblXMMSc27+zukAcvZWkVDJ68pR/okAEp36vXVQrVUBX7wScrIaV9nsVootmUSU6fDmZXqC5pgKaVUD7Q01wEgjq4TrMaoUSR7SvsjpEEhzldDqyvloPUxSSNpIAqLTkoAQFNV4PppMckHJ1jNCTmM8hXj8/n6O6wBKdZTTYvz4NdUYlbgfLXqIk2wQvlrAsl7QvqYDutrYsYxokUTd6X6giZYSinVA23DjsQV32U5b8IY0k25Tt4A4G0hjib8UakHbxOhzJZJjE5KAICnbTr7tMyDtllSJxItLZQV6XXD8PtJMDV4D5gMBGBkTiDB8mqvaAfWhhJqiEcOOH/UmzyRFGpw11VGKDKlhi5NsJRSqgfc9bVA4DyrrliTs3GIj5K9es5M23TaxB78ZRh0UoJQ/voyvMZC0gHT2QPEjAqcr1a+W3tmfE1V2PDDAZOBAETHxFFCKrYaTURDRbtLqbYd/B50ZAReV6U71vV3SEoNeZpgKaVUD7Q2BROs6K4TrJj0cQBUFemsb7UVwYkb4g7+MgzgTRzHSFNOfUNDf4Y1IFma9lEt8TgdjoO2pWVPB6CpWC+iW7MvkJDb4tM73V7hyCK+UYe9hYpvLafRdfDzlZIduDhzzZ6N/R2SUkOeJlhKKdUDrU2Bc7BcMV0nWKljAr8KN5VqgtVYWQKAs5OJGwAcIyZiEUNpgc4k6HSXU2s5eOIGgJSMsTQZJ1Tqa6q2IvCaikrsPMFqjMsmw1sExvRnWAOW329I8VfQGnPwezAzZwotxo5vnybuSoWbJlhKKdUDnuAkF67YhC7LJY4cjwerfhlm/xDBziZuAIjPDCSjNYWaYEW1VtFgP3jiBgCxWCixZRJdX9C/QQ1AbZOBxCaP6nS7SZ5AHE3UlBf3Z1gDVkVNNUnSAPEHP18up4NCy2hcNTrRjFLh1qsES0T+ICJbRGS9iDwvIokh234mIttFZKuInNrrSJVSKoJ8wR6sqNjOexnaiNVOqXUUUXV6DpantgyAxLTOvwxn5ASmam/Zp8lonLeq05nx2tREjyG1Ra+v5qkJJE6JGWM73e4aORmAsgK9gC5AVUkBAI6krE63V0Zlk9xc0H8BKTVM9LYH621ghjEmD9gG/AxARKYBFwHTgdOAv4mItZdtKaVUxPhb6gGIieu6BwugJmosKS2FfR3SgGca9tFgXKQmd56URsUnU0U8tuph/gu6MST7q/F0MjNeG0/CODL8+2hxN/VjYAOPv66YJuMkJbmTmSmBlDGBmQTr9+qwN4C6soMvMhzKnTiBdF8Z/pbh/bpSKtx6lWAZY94yxniDi58CbfPLngM8YYxpMcbsArYD83vTllJKRZJpaaDZOIiJcnZbtjUxh9H+kmE/VbulqYIqScBpO/Tva/scmcQN80kJmusqsYsPYjs/rwjAnj4JqxhKCoZ34mBrKqNCknDYO39NjRw7iVZjxVeuvaIALZXBiwyPzO50uzV9MhYx7NMeP6XCKpznYF0FvB68PxoI/fm2KLhOKaUGp9YGGonqMlloY0ubiFO87N09vK/H42ipoN7a9ZDKhphsRnj29lNEA1NNeWBmPOshZsYDiM+cCkD1nuE9VbvLXU6t9dBDKe12O8WWkThrdap2AF9N4LWVMKLzIZUJWYFhulW7N/RbTEoNB90mWCLyjohs7OR2TkiZnwNe4PHDDUBErhGRVSKyqry8/HB3V0qpfmFpbaBZorovyP4vw1XD/MtwdGsVTfbkLsv4k8aRRjW11VX9FNXAU18ZSDBdSZ1PBgKQ3na+WunWfolpoIptraDReeihlABVrjEkNev5agD2+iKqJBFxRHe6fdS46fiM4C7RiWaUCqduEyxjzMnGmBmd3F4EEJErgTOBS4xpnxd1LxB6RmVmcF1n9T9ojJlrjJmbltb1h6ZSSkWKzdOA29KzBCs9eN0id9nw7sGK91XT6jp0bwOAI30SAKXDeIiSuyow9fihZsYDiE9MoYJErFXD+Hw1Y0jyV9ES1fl11dq443MY6SvG7/V2WW44iG0upsp+8MWr2yQnxLNXRmCv0iGVSoVTb2cRPA24FTjbGBN6huRLwEUi4hSRHGAi8Flv2lJKqUhyeOtpssT1qGx08igaicJSub2Poxq4jM9DvKnHH931D2dJWYHevrq9w7dnprU2MJ19QlrXI+n32TOJbSzoh4gGJk9zLdG4IfbQCQOApE3EIV4qiofv+69NsqeUBtehE3cRYZ9jLAmNOuupUuHU23Ow7gPigLdFJF9ElgIYYzYBTwFfAG8APzDG+HrZllJKRUy0t45mW9cXGW4nQqk9i9iGgj6NaSBrqC7DIgbpYuIGgPTswKxvnn3Dt7fP1JfRaqwkpXTdM1Mfm80IT1E/RTXwVJUGhv3ZEw+dMADEjgpcX62iYHgP0W31eEk35XjiMrss1xA/PnBxZp/2+CkVLr2dRXCCMSbLGDMreLs2ZNsdxpjxxpjJxpjXu6pHKaUGumh/HS327qdob1MfM3ZYfxmuKQ+MCnckdJ1guaJjKSUVe83wnZRAGkqplGTs3Uyg4k8aTwq11NdU9FNkA0ttWSDBikrpOmEYERyi21gyfHtFASpKduMQH5akzie4aJc6CQde6kp0mKBS4RLOWQSVUmpoMoY404DPmdjjXXxJ48kwFVTX1PZdXANYY3lgIllXctdfhgEqnFnENw3fSQmim0uotnediAI4MoIX0d05PM9Xa6homxGv82s6tUlLz6TeRGGG8RBdgKrgEElnWk6X5WJGBxLSfbt0JkGlwkUTLKWU6oZpqceOF6K6nnI8lGtk4Poye3du7MPIBq6WysC1reIysrst2xibzUhvEcbv7+OoBqZETxnNUYeeQbBNcvAiurVFw3Pom6emGICUjKwuy1msFkpsmUTXDd9eUYCG0sDjTxo1vsty6ePzAGjaOzxfV0r1BU2wlFKqG+76SgAkpuspx0OlZge+tNTsXt8nMQ10nqpCWo2VjFHZ3RdOHkc8jVRVlPZ5XAONx+MhzV+JN777S0WOzJ6C11jwlg/T89XqimkwUcQndP9DR230WFJaCrstN5S1VBQAkDFmUpflRmdkUGaSoGJ4D6lUKpw0wVJKqW7UVe0DwB7T9ZTjoUbkzMBrLPjLhuf1ZSx1RZRLClFOe7dlY0YHJiUoHoZD3/YV78EuPmxJXffKALhcUZRY0rHXDM8Z36Ia91BmTUdEui3rSxpPur+Cxob6fohsYLLU7qFKErE6O78GVhurRSi2ZRFbP7x7/JQKJ02wlFKqG021gYugO+NTe7yP2F2U2EYTXTM8exuimkuosXc9K16bjOBFdGsLh98Qpcq9gYkFotK6mYigrbwzi4Smgj6MaOBKcBdT6+r+nD4A1+hpWMRQ9GV+3wY1gMU1FVLl6HrGxTa1sTmkt+yG9suZKqV6QxMspZTqhrsmkGBFxfe8BwugOmYcI9zDs7chpbWExqjuh70BpGROpAU7Zt/wS7DcpYFhWUmZ03pUvjVhHKO8e/EMs4vo+nw+0n2leOK7nuCiTeq4WQDU7F7Xh1ENXD6/IdO7h4b4rs+/ai+fPIkYmmmp2dvHkSk1PGiCpZRS3fDUBU6uj03t2a/n7fslTyLTlFFTO7xmEvS4GxhBJa0J2T0qL1Y7e21jiKsdftNE+yt34jFW0rIm9qi8LWMKUdJK0a7hdb5M2d4CXOLBmjquR+VH5kynxdjxlwy/YacApSVFpEotJnVyj8q7gtcO27dTZxJUKhw0wVJKqW74a0toMXbS0jIOaz/nqBmBmQS3D6+JLip2bwHAktqzpAGgNm4CI1t3YobZECVn3S5KLCOw2R09Kp+YPQuA8u1r+jCqgae8IJAoxWT07DVltdkpsmURPQyTdoCS7YGeu7Yp2LuTMjYXgLo9w3PWU6XCTRMspZTqhqWhjHKSiHF1P2FDqNRxMwGoHWYzCVYFz6WKGdWzX88BfKnTSKea8n3DaybBhKbdVDm7n+CizehJswFoLR5ePQ3NewNf/NPGz+rxPtUx48lwD8+JG+oK1gKQNXVuj8pnjRlHnYnCt2949Ywq1Vc0wVJKqW44mvdRYzu8868ARoydhsdY8Q2zmQSbigM9WJnje/brOUBMVuAX9JIvh0/PjKfVTaa3kOaknieizphEiiUDZ9Xw+iJsrdhCrYkhJb1n52ABeFKnkk4ltdXlfRjZwOTYt44qSSQquWfJe4zLzh5LJlG1w/vizEqFiyZYSinVjVhPBQ2Ons8g2MZid1JsyyRmmA1TclR8QRHppCT3PCnNmDgHgIbC4dMzU7x9PQ7xYRs147D2K48eT1rT8HpNxdZtp9gxFrH0/GtL1OjA8zqcknYAYwwZjVsoi5kCPZjSvk1VVA4pzQV9F5hSw4gmWEop1RVjSPZV0BqVfkS7D8eZBFMbtlLimnBY+yRlZFNPNJby4TOTYOWOwBf/5JyjDmu/luSpZPpLaGhs6IuwBhy/18vY1u3UJfZspsU2IyYEhlPWD7MhusWlxYwzRbRkzDms/VoSJ5BsqjHN1X0UmVLDhyZYSinVBXdNKdG48SdmH9H+nuTJjDL7qB0mMwm6G2sZ6SvBnXJ4X4YRYa8jh/i64TNEyVu4iibjJGvSzMPazzl6BjbxU7htbR9FNrAUfZlPtLTA6MNLGDIyJ1BvojBlwydpB9i56m0sYkicdtJh7WfLCMwkWFmgE10o1VthS7BE5CYRMSKSGlwWEblHRLaLyHoRObxPRqWUGgD27Q58OXOmH16PTJuozOlYxFA4TC54umfDCixiiMqZf9j71sdPIsuzC7/P3weRDTzJVWvZ6ZyCw9GzGQTbpI0P/Dut3ZXfB1ENPKVfrABg5LRjD2s/i9XCXkc2sXXDazild/v7uHEwNnfRYe2XkBU4Z7J6tyZYSvVWWBIsEckCTgH2hKw+HZgYvF0D3B+OtpRSqj/V790GQMJhzIgXKn18YJhSTcHwGKZUu+VD/EYYO/OEw97Xkj6deGmiqHBH+AMbYJoaasj27KQ+bfZh75uRMw23seMvHR7XeLLsXkElCWRNyDvsfeviJ5HZshPjHx5Ju8frY0rNR+yIm4/YXYe1b2bOVFqMnZaS4dXjp1RfCFcP1t3ArUDoBUzOAf5tAj4FEkVkZJjaU0qpfuEu24bXWBidPeWI9k8dM4VWbPiHyTClqOJPKbCOJS1txGHvm5QTGCpXtnVVuMMacLZ/9jo28RM9+auHva/FZmevfSwxtUN/JkHj9zOmbjW7Yo86rAku2khGHvHSSMme4dGLlb/yXUZKJWby6Ye9b1pCNLtlJLbq4TNMV6m+0usES0TOAfYaY9YdsGk0UBiyXBRcd+D+14jIKhFZVV4+/KZSVUoNbI7KLRRaRpEQF31E+4vVTrFtDDG128Ic2cDTUFfNpJYN7Es/vKFcbUZNmQeAuyg/jFENTM2b3qDJOJk87+Qj2r86biKjW3YM+Qsz79jwCSOowow74Yj2TxwXmECkdOvKMEY1cDV9+i/cOJh0wiWHva+IUO7MJrFxeE3Ko1Rf6FGCJSLviMjGTm7nALcBtx9pAMaYB40xc40xc9PS0o60GqWU6hMjmraxL+bIhge2qYmfTGbLDvz+If5l+NOXcYiP2BmH/+s5gCs2iWLLSFyVQ3vom8/rZXzlcrbGzsMVdWSJu3dELqnUUlGyp/vCg1j5Z8/iM8K4hRcc0f5ZU+fiM0JrYX54AxuAdu/Zzfy6t9iadgqO2KQjqqMlcTwjfKWY1qYwR6fU8NKjBMsYc7IxZsaBN2AnkAOsE5ECIBNYIyIZwF4g9Ap3mcF1Sik1KDTXlJNuKmhJ6fkFcztjRkwnXaopLi4KU2QDk3/DM1SSwKR5px5xHftiJpExxK/xtGHFy6RSg5n+jSOuIz44tXvxlk/DFdaA4/P5GFv8CltcM0kZcdAAmB5xRcdRaM0kaogn7QA7n70dBx4yz/jpEddhT5+MBUP57uF1cXSlwq1XQwSNMRuMMSOMMdnGmGwCwwDnGGNKgZeAy4OzCS4Aao0xJb0PWSml+sfu9csBiM4+vOsUHShubODcopIvV/c2pAGrrnwv0+r+y7bUrx32rHihvGkzyKKUysohPGT8sweoIp4ZJ118xFWMmXY0AE27h+5FdNe+/yyjTBmtuUf+PAFUxE5mZPPQHqK74qm7Ob7mRTaN/iYp2blHXE9ScN/ynQee9aGUOhx9eR2s1wj0cG0H/g58vw/bUkqpsKvf8gGtxsrEo07sVT0jJ88FoKlw6M4kuP3VP2HHS8pJP+pVPdFjA7PqFW3+LBxhDTjFOzaS1/gpm0d/E4fryIYHAsTGJ1Eoo3CWD80ptY0xRK38M/skhbxTruxVXZ4RuYygipry4vAEN8Bs/+A/LPxiCbtcU5h+xZ97VVfWxJl4jYXmvUPzdaVUfwlrghXsyaoI3jfGmB8YY8YbY3KNMUN/Wiil1JCSuG8l2+2TSYhP6FU9McmjqCIBe8XQHKbUXF/DuIInWB31FSZNm9WrukZNCfTMNOwemhfRLXrx13ixMunMG3pd177YyWQM0Z6ZTR+/ynTPJnZP+S5Wx+FNN36g2LGB64YVbRl6SbuntQXbB//HHhnFyBvex+qM6VV9CXFx7LGMxlm1JUwRKjU89WUPllJKDVr1FUVM9G6jcuRxYamvLGoCKQ1D89yiTct+TiINxHz15l7XlZg+hkoSse3bEIbIBpatn73F/Lq3WJN5KWkjx/S6Pk9aLqPMPqorysIQ3cDhaXUT895t7COF3LN61yMKkDk1kLQ3Fgy94ZSrnvgt2f5Cqr7yS6KjosJSZ3n0BNIah+ZnlVL9RRMspZTqxLYPngQg9ahzwlJfY9IUxvr20OxuCUt9A0XBxpXM2vsf/ptwBtPmnRSWOkuiJpBaP7Su8dRYV43r9RspJZXpi38dljpjgxNdFG4eWlOQr/rXbeT4d1N07B24omN7XV9SajolpGIvH1pJ+5cbP2fmjgfIj/4Ks772rbDV606eQobZR2tDddjqVGq40QRLKaU6Ebv1WQokkyl5C8JSn2N0Li7xsGf70PmSV1dTgf25K6iReCZf+sew1duUPJ0s3x7c7uaw1RlJfp+PLQ9eSaZ/L9Wn/IW4+MSw1JvV3jMzdCZPWf3mYxyz9yFWJZ7GnK/1bnKLUKVRk0hrGDpJe1VlOc5nL8ctLsZevjSsdTtH5wFQ/OXQ6/FTqr9ogqWUUgco2rqaya2bKBxzLmIJz8dk6rjAeSBVO4bGl5YWdyN77r+AEb59lJzyAClpI8NWtyNzFg7xsXvz4E8cjN/PZ0u/x1ENy1k14UdM/cqZYas7IXUkZZKKfd/QmDxl04oXmfrf/+FL2yRmXPNQWOtuTp3OaF8x7sbasNYbCbU1VZTdfxYj/WWUn/4ASRljw1p/2oRAz2jNrvyw1qvUcKIJllJKHWDfm3fRZJxMOeMHYaszY3xgdi5vyeDvwXI31LDtz2czo2Uta2b/htyvnBbW+tMnzQOgasfgnhuptcXN6nu/xYLyp/k0/SLmXxKeoYGhSqImk9Yw+Ce6WP3W40x4+zuUWjNIu+b5sAwNDBU1ZjYWMRRsGtwTXZQX76bs3q8x0bOVL479M5OPPrKLendlTPYE6kw0/lKdSVCpI6UJllJKhaguKWBG5ZusTTmDtBGjwlavxeFiry2LmJrBPUxpX9EOSu4+ganNa1iZ+2uOPveHYW8jI2cajbgwJYO3Z6aseDdb7/oac6tf57+ZV3P09+4PW29oqJa06WT591JfNzjPl/F5vXzy0M3M/vgH7LbnkPz9t0kckRn2drKmHQNA1fbBm2Bt+uxd/A+eSKa3kK0n3M/MUy7vk3bsNiu7bTnE1g7uzyqlIkkTLKWUCrHz6Z8DkHnGLWGvuzp2IiPdOzDGhL3u/rDujX/i/MciUr2lrD/+7xx9/g190o5YrBQ5JpBYM/imtTfGsPqNR3E8uJCJrZvJn/t7vnL1H/skuQKIGjMHixj2fPF5n9Tfl7ZvWccXvz+BYwr/zurEU8i68T0SU9P7pK3UUTmUk4StdPBN/9/U3MRHD/4Pk1+9ACMWSi94keknXtSnbdbET2J0y04YpJ9VSkWaJlhKKRVUsGklsytf5fMR32Ts+Glhr9+bNp2RVFBRvi/sdfelyrI9rPnTecz89EZKbaOpvvRN5px0QZ+2WZeSxzjvDtxud5+2E06lu7eS/4evc9SnP6TSmkbpxW8x68xr+7TNUcGembodg2cmQXdzIx889FOyln2VbM8O1s7+LXOvf4KomLi+a1SEvTHTGFk/uIa9rfvwJfbdOY9FxQ+xPulkYq5fybjcY/q8Xf+IacTQTF3pzj5vS6mhSBMspZQC/F4P3hd+SK3EMu2i/+2TNmLGzARg77bBcW6Ru7mJlY/ejvP++cyo/YAVWd8j59aPGTNxZp+3bR87D5d42DUIzpmprS7n4wd/TMI/FzK5cTUrx/+Y7J/8l+wpc/q87dSR2ZSSiqNk4L+m/D4fq19eSvWdMzm+8H62xR+D//srmX3Oj/qshy9Ua/psskwJVeWlfd5Wb+34YhWr7jyDme9dhgMP2076B3NueJq4xJR+aT82+FlVMkg+q5QaaDTBUkopYO2yXzHBs40v5vyKpJQRfdLGyElzAWjYnd8n9YeLz+tl5Qv3U/H72Ry94y9si5pJySXvs/A7d+JwOPolhlHTFwFQ8+V/+6W9I1FXV8Mn/7oN+ctMji3+F5sTFlJ39X85+rL/xeZw9Vsce+NyGd0wcHtmfD4fq17/Fzv/bx5Hrf4JjZZ4Np38b3JvepmEEb2/4HJPxY0PXHJh94YV/dbm4SrcvoHVf7qAnCdPZkrTaj7PvpaUW9cw6bhv9mscmcHPqqbCdf3arlJDhS3SASilVKQVbV5J7valrIw5ga+cdXWftZOYPoZaYrHsG5jnFvm9Xja89U+SV/2Zo/172WXNYdPxjzDnuPP6PZYRmROoJBFr8cCb1r6ifB8bX/wTuYX/4RipZa1rAXFfX8KcvL4futUZ76i5ZGx9n9KinWRkjotIDJ1paWlm7at/Z+SGB5hriiiWDFbN+R1zzrgGi9Xa7/GMzTsW/1tC866VQN8OcT1c2zatpeLN3zO/9k1SsbFy1CVMP/+XzEvNiEg8I1KT2UM61vLNEWlfqcFOEyyl1LDm87TgffZ71EksOVfcj4j0XWMiFEdNJq1+YCVYXo+Hta8/RHr+Pcz072WHJZvVR9/DnFMvRSz9/0UYABGKYqaRXr8RY0zfHpce2rtnJztf+QOzy57nBGnmi5h51Jz8M2bP+WpE40qdsgi2/oHC9R8MiASrob6W9S/dw7gvH2EBFey05pA/94/kfu0KRtnsEYsrOi6ZnbaxxO8bGBOCGGPY8Nl7tCz/E0c1fcxYbOSPvIDsc3/JMRn917PXGRGh1Dme0UPo4sxK9adeJ1gi8iPgB4APeNUYc2tw/c+A7wTX/9gY82Zv21JKqXDLf+w2jvLu4tOj/8qC9PBNy34ojSPmMLvgH1RXV5GUlNzn7XXF7W4m/5WljNr0IPNMMTst2Xw2/y/MOeVSxtsi//ubd/R8xm77L0WFBWSOyYlYHDu3rKPs9d8zp+ZNMvCxIfEk0k67lWlTF0QsplBjpx+N+wU7vl3/Bb4dsTiqykvY8tIfmVa4jK/QwGZHLhXH3sn0Ref1yzlWPVGcNJ+55c/jbWnC5oyOSAx+n5+17z+NY+V95HnWU0cMa8dexaRzbmJuyuiIxNSZhpRcRhf/F09DFfbYyH5WKTXY9Oo/qIicCJwDzDTGtIjIiOD6acBFwHRgFPCOiEwyxvh6G7BSSoXL7g0fMbPgn/w3/hSOOe2SfmkzevxXsO7+O3s2fETScef0S5sHaqyvZf2Lf2Hc9odZQBU7bONZN/9ecr96CeMiMHTrUNLyToNtf2bv6tfIHBO+iz731OZVy2l87y7mNK5gNDY2jDibsWf+hFljp/R7LF2xOVx84cplVOUnEWm/pHAHBS//nryyF/iKtLAu+iuUn3QTU+eeHJF4uuKaeAKuiqfYuuZ9Jh9zRr+27fG0sua1f5K67n6O8hewT1JYPflmpp/1I46KTezXWHrClXM0FD/A3k0fk330WZEOR6lBpbc/UV4H/M4Y0wJgjGmbe/gc4Ing+l0ish2YD0Tm018ppQ7gcTciL1xHhSQx+Yq/9tsQtKy84+A9aNz+MfRzglVbWcYXL/6RKXv+wzHU84Ujj4qFf2LawnMGTA9DqKxp86kiHkvBcgIDJfqe8fvZ8NGLyMd/Jrc1n3qiWZV1JZPOvpm5fXAB3HCpyzyBvB1/orzoS9IyJ/ZLmwVb1rLvjTuZVf0maRjyE7/GiNNvZeaUuf3S/pGYePTpeP9roXrT29BPCVZzYz3rXrqPsVsf4mjK2W3JYs3sO8g7/WpG9ONkKIcra8ZC/CuE2u2fgCZYSh2W3iZYk4BFInIH4AZuNsZ8DowGPg0pVxRcdxARuQa4BmDMmMiOOR5IjN9HY101jbUVNNbX0tRYR2tTPf6WJvytDdDaGLh5mvH7vPh9HvB5MX4vxudFjBeb8WHBhxELBkvHv2KB4F+x2jFWJ2JzgT0KsTux2KOw2F1YHFFYHVHYHC6szmhszmicUbE4XYG/UTGxOO22AXF+hFKHY81jv+BoXyGfL/wH81L7ZtbAzsQlprLbOhZXaf9N3lBRXMCOl37PjJLnOEbc5Ecfw76TbmbaAOxhCCUWKzvj5pJd+znG7+/TJNDn9bLurX8Tv/o+8nw7KCeJlRNuZMbZP2Z+/MAfHjVq7lmw408UfPIiad+8uU/b2rp6OY3v3sWsxhWkY2ftiPPIPusnzB0zqU/bDYeExGS2OiaRXPpxn7dVU1HK5pf+xJQ9y1hAHVvs0yhf8L/knnghYyN1buNhyMwYwU4ZjaNkdaRDUWrQ6TbBEpF3gM6msfl5cP9kYAEwD3hKRA7rDFtjzIPAgwBz584dspcM9/t8VJUXU7uvkIbKvbRWF+OtK0Ea9mFtqcHhqSPKW0u0r55YU0+8aSRWDLE9rN9nBB9WvGLFR+jNgmCw4MfS/tePYLDiR/BjN16scuRPfYux48ZBizhpEScecdBqceG1uPBanPisLvw2F35rFMYWhbG3JXJRWBzRWBzRWB3R7QmcIyoGuysGhysGZ1QsNmdwm8OFzWrFatFkLuyMCdwI/DVtf9tvfowxwaIhy8HtGDB0LA8HbA+uM37TXhbA+APtBraDCYYTuG8wRjDBGI0BRALhYvAbIRjt/n3M/jqM7H9o7WUMNFQWMrvw36xK+BrzTu7f6Y8BqpJnMXHfWzS53US7+u4X7JKdmyh69f8xs+J1jsJPfsJJpJx6K7OmH91nbYabjD+RtPz32LT2v0w/amHY6291N7H+lb8xctPfmWNK2SOj+Dx3CXlnfI+jXZE5R+dI5EyeRbGMwLHrHSD8CZbx+9m44iVYcTe5rfnUEcNnWd9m8jm3cHRa35+7GE4Vo07m2N33UVW0heTM8A/3LC7Yyp5X/0Devpc4RlrIj1pA6Qn/w9SjTw17W31JRCiOnUFe48eBD0/9IbXfeL0+GhvqcTdW4a6vpbW5npbmRrwtDXiaG/G1NOJraQJPM+IN3CzeZsTXAn4v+Dzg9yF+D2J8WI0XC8G/wR/fCf5fBDBI8H9/8D4ggBFBCLwWDBb8YsUvVozYMJa2+/uXjdgCyxYriBVjsUH7zYpY2+7bEYsNsdoD66x2LNa2ZTuW4LLFFli22uyYqCRGjs8jMbp/LhXSW90mWMaYQ/7EKSLXAc+ZwDelz0TED6QCe4GskKKZwXVDlruhhn2FX1JTvB13+S5MzR4c9UXEtpSQ4K0i2dSQKn5SD9ivjmjqJZ4maxzNtgTqojLxOhLxuxIhKglLdBKO6Dhc0XE4o+OwuWKxuWKwu+JwRMXiiIrB4XBis9mwAkf6sjPeVjwtzbS2NNHqbsbT0oTH3YSntRlvSzO+lma8rc34WpvwtzYFetI8TRiPG2ltAq+7/Q1u8bmx+dxY/S24vFXYW1twmMDNaVqJwn3ECZ3PCK2Bjwn8wb8+2b/sDyaYfiz4xIIfa/uHRaiD1kjni+bAdcYgBG6BdSEfT2b/Oun4sRVc3n/fmP3lpL1caKT7l9v2bYthf/2h2zmo/dBtoWVD27Ec4jjIAX+HoiZxMu5bf4xI247JXyOu/EXWfv4OsxedGfb6d238lOq3fs/M2vdJxsaa1DPJ/PpPmDt+Wtjb6muTj1+MZ+0SKj79D4QxwaqrqWTzS3czYeejzKWGrdaJrJ57G7O+dgljBsAEH4dLLBZ2p53IUWXPUlNRRmJqeljq9ba2sP7tf5GwZim5vh3sI5mVE25k+tnXsyA+KSxt9Lf0RZfhL/gre95/hOTLfhe2er/csJKat//A7Np3SUNYl3gyqafewqxp88LWRn/zjppLwrY3qNy9npTsvr/A+FDj9/mpq6uitqKEhqpSmmvK8NTtwzRWYGmuxNpSi7W1Hoe3HqevgWhfA9GmiTgaSRA/CT1sx2eEZly0ig0ftsD3ILHhFyteAomQT2zB70xWPPz/9u47vq66fvz4631HbvZOs9ukKx1JuicUCjKKTAUBZRYVUfghiII4EPnq1wFfUUBEERmCDJmVPUqlBdrSvUfaphnNavbOHZ/fH/cmTdM0TZub3CR9Px+PNPesz3mfnJz0vM9nHCsgvpzZd0/gS6Y6nmF3edgqxmDHjcW4sfqStM7f2+++Oh7xm0PTNvH0+We5zD2FvMte4MIpQ+OBTl//F3kdOAP4WETG472/PwgsAf4lIn/AO8jFOGB1H/cVcM7WZkr2baVy/1ZaSnZgq95DVOM+RrhKiKaekUB7I8dmE0S5dQS1QUnUhI9nb9gIJCIJe3QyobGpRCakE5uYRmRoOJGBPCgfsQURZAsiKKy3l3MfGIPT2UpTUyNtTQ20NjfS1tJAW0sjrpYmXK2NuFqbcLd6kznxJW/ibsN43IjHhfG4vU9pjBt8n8X3WTwuBI/3KU3HuCqHJxKmy6ye0j1vHYn3D09HmuL9a+R7oncoRWp/wmc6v8O7fR3plE6JIJ3StM5ltT8xMp23PWz+of0glo59t/+BNF3KO7TuoRRL2uPvVEbn/dN+vL44D5XVflCWLjF0WiYCWBDhsFg6x9dRphzaz2HrdfnD3zXhE+mUWIpvXd9Q3p3X7Qix/afUMS3ETjiFxKRRBMLoORfgXP59GjYuAT8mWDtWvUfbsgfIbV5NgglhVfJVjLnoTuamBOY4/SE8JpEt4bOYWPE2ba0tBDn6VuNXWriHfW//gewDrzBHmtnomEHxKbeRc+oFg7If2vFIOu0Ggl5+kbXv/Y15V/28T2U11lWz5c2HGbX7GaabCvZLGqtzfsmU828cUjV73Rk7dgLr7bkk7XsN4/l1n15FYDweNn/6Jp5PH2Zqy2qajIN1SZcz6oIfMjN9YPrC9aeUGRfArl9xYNUbmmB14nF7qDx4gOrS/TRUFNJaVYSn9gC2hhJCWssJc1YR7q4hxtQRLS6iuymjyTiokwiaLWG0WMNpCoqnLmg0nqAIjCMKgiMhOAoJjsIeHI4tOJSgkHAcIWE4QiMIDgnH4XvQbrUFET6YaxiNweN243K1+b6cuJ2+L1cbLpcLj6sVt9uF29mGx+3C7fJ+97jaMG4XYfZIJmYO/uba7fqaYP0D+IeIbAHagOt8tVlbReQlYBvgAm4eiiMI5m9fQ8mqVwiu2ERC0x6SPaWMFNORRJURR4UjnR0RZ+KJTscel0l40mjiU8cSNyKNUdah/Z91vxHBHhRMVFAwRMcFOhqlBlxIRAybI+aRdfB9WtvacASdeJMH43Gzadm/Cfr8ISY6t1JNBJ+N+i6TL76D+bEJfow6cNwzv8mI/36bL975O7MuueWEyti7cTnVH/2R3NqPScDDxsiFRHzph0yZ6v9mh4GSmT2XbW9kMzrvKVpbfoAjOOy4yzhYvI89b/4fE0teYQ5NbLXncGD2/zDlzMsZNYhGmOyrluyrSN5wJ1uX/ovJZ11z3Nu3tjSy9d1/EL357+S686kiktUZ32XCRT9gduzA9ensb+PGTWAXowjO/xC4J9DhDBin00l5cT5VxbtpLNuDu3If9vpCwpqLiXYeJN5UkSBOOv+F9RihSqKptsXTEDSC6uAJ5IfEIWEJ2CIScESNIDQmiYi4JKLikgkNDmNoP6o4DiJYbDaCbDaCTpKjlvZ+EIPBzJkzzZo1awIdRofVL/+B2Vt+SZEkUxY6jtbosdgTs4geOZmU0dmEDdHmEUqpwNvy4bNkr7iZVbP+wJzzv3nc2ztbGtnyzt+I2/x3RnqKKCWe/KxvknvRLYSGDYZ6cf/xuN3s+d9ZRHpqifjBGkIjeve319XWyuaPXyRk7V+Z0LaFBhPC5sSLGHXeD0jJHFxDrfvLxk/eYMrSa1k96jvMXvz7Xm1jPB52fP4mrSv/zuS6FVjwsCHidMLOuJ0JMxb2b8AB0trWxoHfTCMYJ7E/+gJHaO9ab5QU7Gbve48xofjfxFHLXssoKrO/Se6Xv3VCCe1Q8MHD3+OMyueRO/diDR0+9z1Op5MD+3dSme9tlWSp2kNIUxGxbQdI9JQTJIfqBTxGqLDEUWVPpik4CVdYEhKVTFBMGuEJI4lOGkXsiHQsAXyRtgoMEVlrjDli6FRNsHrQUFeN2+0mKqZrzymllOobj8vFgf/NwWlspN29BnuQo1fbHSzZz563/0RW4UtEU89uyxiqp97ItEWLe13GULR15ftMeOdytkSeRs6tL2OxH73W78DujRQv+ztjit8glloOMIK9Y64m54L/R1SAX+48EFY/8FVm1C9lx2l/ZvKXjv5+t/KCHeT/9zmS971CuqeYGsLZNuJCRi26ldTRQ6+/3vFa98mbTP3oarZHzCPr5hexhXT/YKK5oY4dy1/GvulfTGpag0UMG0PnInO/R/YpF2IZ5q1VPlv2FvOXfYOd8+4n69wbAx3OcWuor6Fw5wZqi7bhLt9JcO0eYpoLSHUfwCHOjvVqCKfClkJ9SCrOiHSssaMISRxLbOo4EtLGYBvEQ+qrwNEESymlBpmNHz7HlBXf4/Okq5h306NHXc/V1srOFa/gWfdPJtavxIJhfeg8ZN7NTD3ly8P+Bq/dJ8/cy2l7H2SvfTyeM35CxrSzsDnCqDt4gNJdq6nd8V+SSj4i3V2I01jZFDoXmXEtuad/FVsPCdlwU1tdRckji5jg3snmuPMIm3UV0aljaWtqoPpAHk17Pyeq5FPGuvIA2G6bSG32teSecy2hob0du3Z4WPrP/+X0vN9TYkuhOvdGRkycj9iDqSsvoGbvOkIKVzC2cR0OcVJKPHvTLmb02TeSNMheNt2fWp1Oyn49GWfICMbctSLQ4RyV8XgoL9lPyY7VNBdsIKhyKwmNu0nzlHQM6OQyFkqsyVQFj6IlajTWEVlEpk0iaUwOkbH+GRhGnVw0wVJKqUFo9SPXMfvg62yMOpOk83/CiDHTAENV0U6Ktn4Gu99nVPXnRNNABdHsTLyAkWd9h5HjcgMd+oAzxvDJG0+Qs+GXxFIHeJvudL552hKUQ/2ocxmz8CpS0jICGG1g1dTWsPaZuzn14L8Pe0oP0Gas5NnHUzPyHFLmX0nG2OFfW9WTzz98lREr7mEMhUcsKySJ/fGnET31IibMWYTNfnI2AXv/iXs4p/BPlF38IonTFgU6HJzONop2b+Jg3hpcBzYRXr2d1Na8jr8LAMWSSHnoeFrjJxOcmk1CZg6JoyZoTZTyK02wlFJqEHK5XHz+5J3MLPonIdKGxztEZUfSUGki2R05F3vOV5h8+qUEO4ZvM8Deqq2rZ9unS2g5sAWrqxlreDyO1FzG5J5CTKwOnNNZ6cGDFG1cRnPVASyOcMIS0smYNIvoqOhAhzaouFxutm9aRX3RdjxuJ8HRSaSMn05ySjoymEdnGyBlVTU4/zQDExxN+l2rYQBflFxfW0XRjjXU7luHpWwzMXU7SXflE+x7cNBq7BTYR1ETkYUnMYeozOmkTphFRNTwbw6sAk8TLKWUGsQKC/aRv+o/ULUHxIonOoMRY6cxJnsuQUEn51NzpdTg8e7zj7Bo50/ZPXYx467+o9/LNx4PZcX7KN35Bc2F63Ec3MaIpl2kmdKOdaqJoMgxlsaYSdhScogfO5O0sbnYhnH/UzW4aYKllFJKKaVOiNPl5qMHr2dR4xJ2jF5M1jd+j9hOrG9jY30txbvXU5e/Hk/pNsJqdpDatpdoGjrWKZQUKsLG0RY/mdCRU0nOmk188qgh/746NbxogqWUUkoppU5YXVMLqx75Jmc3vUmJNYWKideQPP18EkZOhM7JljG0NNZQUVpMXckeWsp346rII6g2n/iWfFI9pR3NoBuNg0J7JrWR4yFxMlGZM0ibMJNwfRWOGgI0wVJKKaWUUn3i9hg+XvIMyRsfYrLxjkTpMUKdRODB218tnEaCcB22XYuxU2pNpiY0g9bYCdhTc4kfM42UjAnYbLYBPw6l/EETLKWUUkop5Rduj2HPzk0c2LwMqvOxNVcieLCJ4LRHYMLiCY4aQUhCBlGpWSSlZWLXREoNM0dLsPQ3XSmllFJKHRerRRg/cQrjJ04JdChKDTraU1AppZRSSiml/EQTLKWUUkoppZTyE02wlFJKKaWUUspPBtUgFyJSAewPdBxdxAMHAx2EGjB6vk8eeq5PHnquTy56vk8eeq5PLoPxfI8yxiR0nTmoEqzBSETWdDc6iBqe9HyfPPRcnzz0XJ9c9HyfPPRcn1yG0vnWJoJKKaWUUkop5SeaYCmllFJKKaWUn2iCdWx/C3QAakDp+T556Lk+eei5Prno+T556Lk+uQyZ8619sJRSSimllFLKT7QGSymllFJKKaX8RBMspZRSSimllPITTbB6ICKLRGSniOSJyI8DHY/yHxFJF5GPRWSbiGwVke/75seKyAcistv3PSbQsSr/EBGriKwXkTd905kissp3fb8oIkGBjlH5h4hEi8jLIrJDRLaLyDy9tocnEbnd9zd8i4g8LyLBem0PHyLyDxEpF5EtneZ1ey2L10O+875JRKYHLnJ1vI5yru/3/R3fJCKviUh0p2V3+871ThE5NyBB90ATrKMQESvwZ+A8YBLwdRGZFNiolB+5gDuMMZOAucDNvvP7Y+AjY8w44CPftBoevg9s7zT9O+BBY8xYoBr4ZkCiUv3hT8C7xpgJwBS8512v7WFGRFKBW4GZxphswApciV7bw8lTwKIu8452LZ8HjPN93Qj8ZYBiVP7xFEee6w+AbGNMLrALuBvAd792JTDZt82jvvv2QUMTrKObDeQZY/YaY9qAF4CLAxyT8hNjTIkxZp3vcz3eG7BUvOf4ad9qTwOXBCRA5VcikgacD/zdNy3AmcDLvlX0XA8TIhIFnAY8AWCMaTPG1KDX9nBlA0JExAaEAiXotT1sGGM+Aaq6zD7atXwx8IzxWglEi0jygASq+qy7c22Med8Y4/JNrgTSfJ8vBl4wxrQaY/YBeXjv2wcNTbCOLhUo7DRd5JunhhkRyQCmAauARGNMiW9RKZAYqLiUX/0RuBPw+KbjgJpOf7j1+h4+MoEK4Elfk9C/i0gYem0PO8aYYuABoABvYlULrEWv7eHuaNey3rcNbzcA7/g+D/pzrQmWOqmJSDjwCnCbMaau8zLjfYeBvsdgiBORC4ByY8zaQMeiBoQNmA78xRgzDWikS3NAvbaHB1/fm4vxJtUpQBhHNjFSw5heyycHEfkp3q4dzwU6lt7SBOvoioH0TtNpvnlqmBARO97k6jljzKu+2WXtTQp838sDFZ/ym1OAi0QkH29T3zPx9tGJ9jUrAr2+h5MioMgYs8o3/TLehEuv7eHnLGCfMabCGOMEXsV7veu1Pbwd7VrW+7ZhSESuBy4ArjKHXt476M+1JlhH9wUwzjcaURDeznRLAhyT8hNfH5wngO3GmD90WrQEuM73+TrgjYGOTfmXMeZuY0yaMSYD73W81BhzFfAxcJlvNT3Xw4QxphQoFJEs36wvAdvQa3s4KgDmikio7296+7nWa3t4O9q1vAS41jea4FygtlNTQjUEicgivM37LzLGNHVatAS4UkQcIpKJd2CT1YGI8WjkUDKouhKRL+Ptu2EF/mGM+XVgI1L+IiKnAsuBzRzql/MTvP2wXgJGAvuBy40xXTvYqiFKRBYCPzTGXCAio/HWaMUC64GrjTGtAQxP+YmITMU7oEkQsBdYjPeBol7bw4yI/BK4Am/zofXAt/D2xdBrexgQkeeBhUA8UAb8Anidbq5lX5L9CN5mok3AYmPMmgCErU7AUc713YADqPStttIYc5Nv/Z/i7ZflwtvN452uZQaSJlhKKaWUUkop5SfaRFAppZRSSiml/EQTLKWUUkoppZTyE02wlFJKKaWUUspPNMFSSimllFJKKT/RBEsppZRSSiml/EQTLKWUUkoppZTyE02wlFJKKaWUUspPNMFSSimllFJKKT/RBEsppZRSSiml/EQTLKWUUkoppZTyE02wlFJKKaWUUspPNMFSSimllFJKKT/RBEsppQYZEckQESMitkDHok4OIrJVRBYGOg6llBoONMFSSik15InIYyLS4PtqExFnp+l3Ah3fYGeMmWyMWebvckXkLBFZJyKNIlIkIpf7ex9KKTXYiDEm0DEopdSwIiI2Y4yrD9tnAPsAe1/KOVmJyL3AWGPM1d0s69O5GUhDKdbuiMgkYBlwHfABEAVEG2P2BDIupZTqb1qDpZRSfiAi+SJyl4hsAhpFxCYic0XkMxGpEZGNnZtgicgyEfmNiKwWkToReUNEYo9S9mIR2S4i9SKyV0S+02X5xSKywVfOHhFZ5JsfJSJPiEiJiBSLyK9ExHqM4xgjIktFpFJEDorIcyIS3WlZlYhM902niEhF+3GJyEW+pmY1vuOb2OXn80MR2SQitSLyoogEH/9P+vgd5dwYERnbaZ2nRORXnaYv8P1Ma3znMLeX+1roq6n5ie/nly8iV3Vafr6IrPedq0JfMti+rL1p6DdFpABY6pv/bxEp9f3cPhGRyV3iflRE3vHV1n0qIkki8kcRqRaRHSIyrZc/o7N6c4zH4WfAX40x7xhjXMaYSk2ulFInA02wlFLKf74OnA9EA4nAW8CvgFjgh8ArIpLQaf1rgRuAZMAFPHSUcsuBC4BIYDHwYKckZzbwDPAj335PA/J92z3lK3csMA04B/jWMY5BgN8AKcBEIB24F8B3c3wX8KyIhAJPAk8bY5aJyHjgeeA2IAF4G/iPiAR1KvtyYBGQCeQC13cbgMipvsTmaF+nHuMYutNxbo5VK+RLSP4BfAeIA/4KLBERRy/3lQTEA6l4a2/+JiJZvmWNeM97tC+e74rIJV22Px3vz/5c3/Q7wDhgBLAOeK7L+pfjTWbigVbgc9968cDLwB96GXe3ROTHPZ2PHjad69t+sy/Jf/ZoDxGUUmo40QRLKaX85yFjTKExphm4GnjbGPO2McZjjPkAWAN8udP6/zTGbDHGNAI/By7vrobJGPOWMWaP8fov8D6wwLf4m8A/jDEf+PZTbIzZISKJvn3dZoxpNMaUAw8CV/Z0AMaYPF9ZrcaYCrw356d3Wv44kAeswpsY/tS36ArgLd+2TuABIASY3+Xnc8AYUwX8B5h6lBhWGGOie/ha0dMxHEXnc3MsN+KteVlljHEbY57Gm7jMPY79/dz3M/wv3kT7cgBjzDJjzGbfudqENyk9vcu29/rOWbNvm38YY+qNMa14k90pIhLVaf3XjDFrjTEtwGtAizHmGWOMG3gRb3J9wowxv+3pfPSwaRpwDXAp3gQxBHi4L7EopdRQoAmWUkr5T2Gnz6OAr3V50n8q3qSku/X3A3a8tQ6HEZHzRGSlr3leDd7EqX29dKC7ZlejfOWVdNr/X/HWghyViCSKyAu+JoV1wLPdxPQ4kA087LvpB2+N1/72FYwxHt/xpXbarrTT5yYgvKdY/Kzw2Kt0GAXc0eXcpeM9xt6o9iXN7fa3bysic0TkY1/TylrgJo78+XbEKiJWEfmteJt+1nGodrLzNmWdPjd3Mz2QP+fOmoEnjTG7jDENwP9y+AMGpZQaljTBUkop/+k8alAh3hqqzk/7w4wxv+20TnqnzyMBJ3Cwc4G+Zmmv4K0RSvTVGLyNtylf+37GdBNLId5al/hO+480xkzuZt3O/td3HDnGmEi8NXHt+0JEwoE/Ak8A93Zq8nUAb2LSvp74jq/4GPs7gogskEMjAHb3teDYpRyh64hOTUBop+mkTp8LgV93OXehxpjne7mvGBEJ6zQ9Eu/PB+BfwBIg3RgTBTxGp59vN7F+A7gYOAvvIBEZvvldt+k3vv5kRz0fPWy6icOPRUfVUkqdFDTBUkqp/vEscKGInOurhQj2DYCQ1mmdq0Vkkq8/033Ay75mXZ0FAQ6gAnCJyHl4+1K1ewJYLCJfEhGLiKSKyARjTAnepoT/JyKRvmVjRKRrc7SuIoAGoFZEUvH27ersT8AaY8y38DZ9e8w3/yXgfF8cduAOvAneZ8f6QXVljFlujAnv4Wv58ZbZjQ3AN3znZhGHN9N7HLjJV9skIhIm3sEpIqBjYImnjlH+L0UkyJcMXgD82zc/AqgyxrT4+s994xjlROD9OVbiTQj/9ziO0S+MMf/b0/noYdMn8f5ujvb9jv8YeHNgolZKqcDRBEsppfqBMaYQb83DT/AmR4V4k5XOf3f/iXcgilIgGLi1m3LqffNfAqrx3pAv6bR8Nb6BL4Ba4L8cqkm6Fm+Cts237csc3kSxO78EpvvKegt4tX2BiFyMd5CK7/pm/QCYLiJXGWN24q3tehhvLdyFwIXGmLZj7C9Qvo83xhrgKuD19gXGmDXAt4FH8P7c8jh8QI504NMeyi71bXcA74AUNxljdviWfQ+4T0TqgXvwnteePIO3iWEx3vO48lgHNlgYY/6BN/5VeI+hlW5+x5VSarjR92AppVQAiMgy4FljzN8DHYvqPd+oiBuBXN9gHl2XL8R7XtO6LlNKKXVysAU6AKWUUmqo8NXITTzmikoppU5a2kRQKaVOMiLy2FEGLHjs2FuroUhERvYwUMXIQMenlFLDiTYRVEoppZRSSik/0RospZRSSimllPKTQdUHKz4+3mRkZAQ6DKWUUkoppZTq0dq1aw8aYxK6zh9UCVZGRgZr1qwJdBhKKaWUUkop1SMR2d/dfG0iqJRSSimllFJ+ogmWUkoppZRSSvmJJlhKKXUMLrcn0CEopZRSaogYVH2wuuN0OikqKqKlpSXQoaghJjg4mLS0NOx2e6BDUUNYeU0jn/3xKpoyzuIb198S6HCUUkopNcgN+gSrqKiIiIgIMjIyEJFAh6OGCGMMlZWVFBUVkZmZGehw1BC264O/cwkfQ/7HVDV8i9jw4ECHpJRSSqlBbNA3EWxpaSEuLk6TK3VcRIS4uDit+VR9Flr8acfnnWs/DmAkSimllBoKBn2CBWhypU6I/t4of3A0FlNqSQKgLm9VgKNRSiml1GA36JsIKqVUIMW6yiiKmIq9wUl45cZAh6OUUkqpQW5I1GAFmohwxx13dEw/8MAD3HvvvYELqJOVK1cyZ84cpk6dysSJEzviWrZsGZ999tkJl7t//36mT5/O1KlTmTx5Mo899pifIlZq6DBuJwmeSlrDUigNyyK5aVegQ1JKKaXUIKc1WL3gcDh49dVXufvuu4mPj/dbucYYjDFYLCee51533XW89NJLTJkyBbfbzc6dOwFvghUeHs78+fNPqNzk5GQ+//xzHA4HDQ0NZGdnc9FFF5GSknLCsSo11DRVFhMmHlyR6bjtkFq3mqr6ZmIjQgIdmlJKKaUGKa3B6gWbzcaNN97Igw8+eMSyiooKLr30UmbNmsWsWbP49FNvh/h7772XBx54oGO97Oxs8vPzyc/PJysri2uvvZbs7GwKCwv50Y9+RHZ2Njk5Obz44ouAN0FauHAhl112GRMmTOCqq67CGHPE/svLy0lOTgbAarUyadIk8vPzeeyxx3jwwQeZOnUqy5cv7zHOa665hnnz5jFu3Dgef/xxAIKCgnA4HAC0trbi8XT/HqCHHnqISZMmkZuby5VXXglAVVUVl1xyCbm5ucydO5dNmzZ17Ou6665jwYIFjBo1ildffZU777yTnJwcFi1ahNPpBOC+++5j1qxZZGdnc+ONNx5x3B6Ph4yMDGpqajrmjRs3jrKysp5Oo1LHrbbiAAD2yCQcyVk4xEXB3h0BjkoppZRSg9mQqsH65X+2su1AnV/LnJQSyS8unHzM9W6++WZyc3O58847D5v//e9/n9tvv51TTz2VgoICzj33XLZv395jWbt37+bpp59m7ty5vPLKK2zYsIGNGzdy8OBBZs2axWmnnQbA+vXr2bp1KykpKZxyyil8+umnnHrqqYeVdfvtt5OVlcXChQtZtGgR1113HRkZGdx0002Eh4fzwx/+EIBvfOMbR41z06ZNrFy5ksbGRqZNm8b5559PSkoKhYWFnH/++eTl5XH//fd3W3v129/+ln379uFwODoSnl/84hdMmzaN119/naVLl3LttdeyYcMGAPbs2cPHH3/Mtm3bmDdvHq+88gq///3v+cpXvsJbb73FJZdcwi233MI999wDwDXXXMObb77JhRde2LFPi8XCxRdfzGuvvcbixYtZtWoVo0aNIjEx8ZjnUanj0VhfBUBwRAxR0akA1BXvgCnTAhmWUkoppQYxrcHqpcjISK699loeeuihw+Z/+OGH3HLLLUydOpWLLrqIuro6Ghoaeixr1KhRzJ07F4AVK1bw9a9/HavVSmJiIqeffjpffPEFALNnzyYtLQ2LxcLUqVPJz88/oqx77rmHNWvWcM455/Cvf/2LRYsWdbvPnuK8+OKLCQkJIT4+njPOOIPVq1cDkJ6ezqZNm8jLy+Ppp5/utoYoNzeXq666imeffRabzdZxTNdccw0AZ555JpWVldTVeRPj8847D7vdTk5ODm63uyPenJycjuP7+OOPmTNnDjk5OSxdupStW7cesd8rrriio7bvhRde4IorrujxZ67UiXA31QJgD40mftQkAJzl2g9LKaWUUkc3pGqwelPT1J9uu+02pk+fzuLFizvmeTweVq5cSXDw4S8ftdlshzWr6/w+prCwsF7tr72JHnib/7lcrm7XGzNmDN/97nf59re/TUJCApWVlUesc7Q44cjhzLtOp6SkkJ2dzfLly7nssssOW/bWW2/xySef8J///Idf//rXbN68uVfHZLFYsNvtHfuyWCy4XC5aWlr43ve+x5o1a0hPT+fee+/t9l1W8+bNIy8vj4qKCl5//XV+9rOf9bhfpU6Eu9mXYIVFY4tMpJ5Q7NV7AhyVUkoppQazPtdgiUi6iHwsIttEZKuIfN83P1ZEPhCR3b7vMX0PN7BiY2O5/PLLeeKJJzrmnXPOOTz88MMd0+1N4TIyMli3bh0A69atY9++fd2WuWDBAl588UXcbjcVFRV88sknzJ49u9cxvfXWWx19lHbv3o3VaiU6OpqIiAjq6+uPGSfAG2+8QUtLC5WVlSxbtoxZs2ZRVFREc3MzANXV1axYsYKsrKzD9u3xeCgsLOSMM87gd7/7HbW1tTQ0NLBgwQKee+45wNuXLD4+nsjIyF4dT3syFR8fT0NDAy+//HK364kIX/nKV/jBD37AxIkTiYuL61X5Sh0Pjy/BCgqLBhHKg9KJaNof2KCUUkopNaj5o4mgC7jDGDMJmAvcLCKTgB8DHxljxgEf+aaHvDvuuIODBw92TD/00EOsWbOG3NxcJk2a1DGc+aWXXkpVVRWTJ0/mkUceYfz48d2W95WvfIXc3FymTJnCmWeeye9//3uSkpJ6Hc8///lPsrKymDp1Ktdccw3PPfccVquVCy+8kNdee61jkIujxQneZn5nnHEGc+fO5ec//zkpKSls376dOXPmMGXKFE4//XR++MMfkpOTA8C3vvUt1qxZg9vt5uqrryYnJ4dp06Zx6623Eh0dzb333svatWvJzc3lxz/+MU8//XSvjyc6Oppvf/vbZGdnc+655zJr1qyOZY899thhcV9xxRU8++yz2jxQ9Z9Wb9PWkIgoABrCRpHoLOp2wBmllFJKKQDx942CiLwBPOL7WmiMKRGRZGCZMSarp21nzpxp1qxZc9i87du3M3HiRL/GqA659957DxsMY7jR3x/VF5v/cQuj97+E665iokLtrH36Lmbse4zq2wqIiY4KdHhKKaWUCiARWWuMmdl1vl8HuRCRDGAasApINMaU+BaVAt0O8SYiN4rIGhFZU1FR4c9wlFKqTyxtddQTSkiQFQDHiLEAlBToQBdKKaWU6p7fBrkQkXDgFeA2Y0xd54ESjDFGRLqtKjPG/A34G3hrsPwVj+qde++9N9AhKDVoWdvqaSCEJJv3WVRUyjgAaot3Q+6snjZVSiml1EnKLzVYImLHm1w9Z4x51Te7zNc0EN/3cn/sSymlBordWU+THBr1M2Gkt5Vza4WOJKiUUkqp7vljFEEBngC2G2P+0GnREuA63+frgDf6ui+llBpINlcjzRLaMR0cnUQzDiw1OpKgUkoppbrnjyaCpwDXAJtFZINv3k+A3wIvicg3gf3A5X7Yl1JKDRi7u4lWS/KhGSKU25IJbSwIXFBKKaWUGtT6nGAZY1YAcpTFX+pr+UopFSh2Twsu6+Ev564PTiVWEyyllFJKHYVfRxEczl5//XVEhB07dhx1nfz8fLKzs/22z507d7Jw4UKmTp3KxIkTufHGGwHvS4LffvvtEy63paWF2bNnM2XKFCZPnswvfvELf4Ws1LBi97Tg7pJgtUaOItlTRpvTHaColFJKKTWYaYLVS88//zynnnoqzz//fLfLXS5Xn/fhdh9+w3brrbdy++23s2HDBrZv387/+3//D+h7guVwOFi6dCkbN25kw4YNvPvuu6xcubJPsSs1HDlMK25b6GHzLLEZhEgbpQe0FksppZRSR9IEqxcaGhpYsWIFTzzxBC+88ELH/GXLlrFgwQIuuugiJk2aBHgTrauuuoqJEydy2WWX0dTUBMBHH33EtGnTyMnJ4YYbbqC1tRWAjIwM7rrrLqZPn86///3vw/ZbUlJCWlpax3ROTg5tbW3cc889vPjii0ydOpUXX3yRxsZGbrjhBmbPns20adN44w3veCJPPfUUF198MQsXLmTcuHH88pe/BEBECA8PB8DpdOJ0Ouk8rH67f//732RnZzNlyhROO+00wFv7tXjxYnJycpg2bRoff/xxx74uueQSzj77bDIyMnjkkUf4wx/+wLRp05g7dy5VVVUAPP7448yaNYspU6Zw6aWXdvx8Ops7dy5bt27tmF64cCFdX0CtVL8zBodpwdgOr8EKGTEGgMoifReWUkoppY7kt/dgDYh3fgylm/1bZlIOnPfbHld54403WLRoEePHjycuLo61a9cyY8YMANatW8eWLVvIzMwkPz+fnTt38sQTT3DKKadwww038Oijj3LLLbdw/fXX89FHHzF+/HiuvfZa/vKXv3DbbbcBEBcXx7p1647Y7+23386ZZ57J/PnzOeecc1i8eDHR0dHcd999rFmzhkceeQSAn/zkJ5x55pn84x//oKamhtmzZ3PWWWcBsHr1arZs2UJoaCizZs3i/PPPZ+bMmbjdbmbMmEFeXh4333wzc+bMOWL/9913H++99x6pqanU1NQA8Oc//xkRYfPmzezYsYNzzjmHXbu8N5pbtmxh/fr1tLS0MHbsWH73u9+xfv16br/9dp555hluu+02vvrVr/Ltb38bgJ/97Gc88cQTHTVz7a644gpeeuklfvnLX1JSUkJJSQkzZx7xkmyl+perFQsGjz3ssNmx6eMBaCrLA84NQGBKKaWUGsy0BqsXnn/+ea688koArrzyysOaCc6ePZvMzMyO6fT0dE455RQArr76alasWMHOnTvJzMxk/Hjvjdl1113HJ5980rHNFVdc0e1+Fy9ezPbt2/na177GsmXLmDt3bkfNV2fvv/8+v/3tb5k6dSoLFy6kpaWFggJv86Wzzz6buLg4QkJC+OpXv8qKFSsAsFqtbNiwgaKioo4krKtTTjmF66+/nscff7yj+eKKFSu4+uqrAZgwYQKjRo3qSLDOOOMMIiIiSEhIICoqigsvvBDw1rzl5+cD3iRswYIF5OTk8Nxzzx1WU9Xu8ssv5+WXXwbgpZde4rLLLuv256NUv3L6alftIYfNjk/1vmzYXblvoCNSSiml1BAwtGqwjlHT1B+qqqpYunQpmzdvRkRwu92ICPfffz8AYWGHP93u2tSuu6Z3XXUto7OUlBRuuOEGbrjhBrKzs7tNhIwxvPLKK2RlZR02f9WqVceMJzo6mjPOOIN33333iAE6HnvsMVatWsVbb73FjBkzWLt2bY/H4XA4Oj5bLJaOaYvF0tFH7frrr+f1119nypQpPPXUUyxbtuyIclJTU4mLi2PTpk28+OKLPPbYYz3uV6l+4UuwxN6lD1ZQCBUSh71O+2AppZRS6khag3UML7/8Mtdccw379+8nPz+fwsJCMjMzWb58ebfrFxQU8PnnnwPwr3/9i1NPPZWsrCzy8/PJy8sD4J///Cenn376Mff97rvv4nQ6ASgtLaWyspLU1FQiIiKor6/vWO/cc8/l4YcfxhgDwPr16zuWffDBB1RVVdHc3Mzrr7/OKaecQkVFRUeTv+bmZj744AMmTJhwxP737NnDnDlzuO+++0hISKCwsJAFCxbw3HPPAbBr1y4KCgqOSOx6Ul9fT3JyMk6ns6Oc7lxxxRX8/ve/p7a2ltzc3F6Xr5S/uFu9CZYl6MgHIFVBKUQ0Fw10SEoppZQaAjTBOobnn3+er3zlK4fNu/TSS486mmBWVhZ//vOfmThxItXV1Xz3u98lODiYJ598kq997Wvk5ORgsVi46aabjrnv999/v2OQiXPPPZf777+fpKQkzjjjDLZt29YxyMXPf/5znE4nubm5TJ48mZ///OcdZcyePZtLL72U3NxcLr30UmbOnElJSQlnnHEGubm5zJo1i7PPPpsLLrgAgHvuuYclS5YA8KMf/YicnByys7OZP38+U6ZM4Xvf+x4ej4ecnByuuOIKnnrqqcNqro7lf/7nf5gzZw6nnHLKYUndkiVLuOeeezqmL7vsMl544QUuv1zfT60Co6WpDgCLI/SIZY2haSS4SgY6JKWUUkoNAdJe6zEYzJw503QdLW779u1MnDgxQBENbU899dRhg2GcjPT3R52o6u3/JebFi/hw5l8564IrD1u25um7mLnvMWrvKCIqIiJAESqllFIqkERkrTHmiJHYtAZLKaW60drUAIA9+MgaLHv8aADKCnSodqWUUkodThOsYez6668/qWuvlOqLthZvgmULPrKGKjx5LAB1xbsHNCallFJKDX5DIsEaTM0Y1dChvzeqL1wtjQAEBR85yMWIkd6BXVoq9gxoTEoppZQa/Po9wRKRRSKyU0TyROTHx7t9cHAwlZWVerOsjosxhsrKSoKDgwMdihqiXK2+BCsk/IhlEXGpNBOE1Owf6LCUUkopNcj163uwRMQK/Bk4GygCvhCRJcaYbb0tIy0tjaKiIioqKvorTDVMBQcHk5aWFugw1BDl9iVYjtAjEyxEKLcmE9xQOMBRKaWUUmqw6+8XDc8G8owxewFE5AXgYqDXCZbdbiczM7OfwlNKqe55fAlWcGj3owTWBqcQ3Vw8kCEppZRSagjo7yaCqUDnR7xFvnkdRORGEVkjImu0lkopNVh42ppwGQuhR2lm2hoxkiR3KR63Z4AjU0oppdRgFvBBLowxfzPGzDTGzExISAh0OEop5dXWRDMOQoPt3S6WmAzCpJWK8qIBDkwppZRSg1l/J1jFQHqn6TTfPKWUGtyc3gQrxG7tdnHwCO9Q7Qf1XVhKKaWU6qS/E6wvgHEikikiQcCVwJJ+3qdSSvWZuJppIQirRbpdHpM6HoD60ryBDGtAbdydT36h1tAppZRSx6NfEyxjjAu4BXgP2A68ZIzZ2p/7VEopf7C4mmmVow/zn5A+DgB35b6BCmlAbV69lKxnZxL891PZW6CjJSqllFK91e99sIwxbxtjxhtjxhhjft3f+1NKKX+wuppp6yHBCgoJo4JYbLXD811Y7mX3EyxOkqSaff/5XaDDUUoppYaM/h6mXSmlhiSru5kmS88vqj5oTya8afg1oXO1NjGpcTWfjbiCuKY9jCt/H5fLjc3WfX80pZRSSh0S8FEElVJqMLK5W3AeI8FqDE0jzlkyQBENnKItKwgSF9bRC2gZdyEjpYy87esCHZZSSik1JGiCpZRS3QjyNOO29pxguaNGMcJU0tLcNEBRDYy6XSsASMo5g/RpZwNQsuWTQIbUb4wxvP3MA7z9f9+iqKQs0OEopZQaBjTBUkqpbthNK25bSI/r2OJHYxFDWeHuAYpqYJiyLRSRQHpKKrEjJ1ErEViKVgU6rH6xZtkbfHnv//Dl+n+T9+ytgQ6n3xhjePPJ3/L+764kb8/wHfkS4JOlb/Off/yaqpraQIfSrz779GPeevZP1NY3BDoUpVQXmmAppVQ3gjytuK09J1hhSd53YdUUDa93YUXV51EePBqLRUCEAxG5jGzYhMdjAh2a31nXPkENEWxOupQFDe9RtH94Jh9rPnmbC/b/hnOa36Hm+W9jPJ5Ah9Qvtm5Zz4z/Xs+FBb9n2+PfCnQ4/WbHju1Mev8qzs+7h63D+DiVGqo0wVJKqW4E04Kxh/a4Tny6911YzeV7BiKkAWFcraS6imiKHt8xrzV5FplSQvGB4TVce2tLE5PqP2d73NmMOOc2rGLY98nzgQ6rf3zxd+oIY9O4m5npWse29Z8GOqJ+Ub70UYLExY64L3Fq4/sU7N4U6JD6RdEHDxMhTeRFzmF+3TvD9jiVGqo0wVJKqa48bhw4kaCeE6y4xHRajB1TlT8wcQ2AyqJd2MUNCVkd8yLHnwpAydblgQqrX+xe91+CxUnoxLNIHJ1LgXUUkQUfBDosv2tsamJy/afsjDuLzC9/nzZjpW71c4EOy+/cbg/ZVe+zPWI+cZf+AbcRSj55KtBh+Z3b7WFS5XvsCp9NxBV/xW2E8uVPBjospVQnmmAppVQXnlZfn4ZjJFhisVBmTSaovmAAohoYB/O3AxCRMqFjXurEObiN0FYwvEYSbM1bjscIaVPPAuDgiLmMb9tOXWNjgCPzr/yNnxAqrTgmnk1ETCK7QqeRVL4cY4ZXk89dW1aTQA3useeSkJLBdkcOccVLAx2W3+Xt2EQKB2kds4jE1Ey2BE0hvvjDQIellOpEEyyllOqiuaEGAHFEHHPdupBUolqK+zmigdNY6u1PljBqYsc8R2gkRbZ0Qiu3BCqsfmE/uIVCSSIuPhGA0HGnEyJt7Fo3vEZMbNn9CR4jJOd4E8nW9AVkmiKKC4fXS7IrNnuTjMxZ5wHQnLaAsZ59lJcNn+sToGyT9zjTpp0DQH36GWS4C6gtGT5NlZUa6jTBUkqpLpobvKOPWYIjj7muK3IkyZ4SWtpc/R3WwKjcQ60JIykx5fDZERNIbdk1rGo94hp2UxYytmM6Y7o3AanfObwSrKCKjRRKMgmJyQDE5XiH3i9a/14gw/I7R9l6yiWO6BTvOY3J9h7n/jXvBjIsv7MUf0G1RBE/ajIAERPOAKB4y/BqwqvUUKYJllJKddHqq8GyhRw7wbKOGE+YtFJUMDyeHgfX76fUlozFevh/D+6kKSRSRekwGejC2VxPsruElthDTSGDoxMpsI4kpmJ1ACPzv4TGXZSGjuuYHjlxDnWEIfuGVyKZ0LCL0pBDx5mZeyoNhODZ898ARuV/Ixp3Uho6HkQAGDkuF4CmkuE1mqlSQ1mfEiwRuV9EdojIJhF5TUSiOy27W0TyRGSniJzb50iVUmqAtDbVAWDtRYIVke59ily5b3O/xjRQYlqLqA0ZecT8qNEzATiwY+VAh9QvDuxaj0UMjtScw+aXxkxnbMtW3K7hUSPZUl9Fkqec1vjJHfMsNht7QqeQVvtFACPzr7r6OkZ6ig47TqvNTl7IFFKrh89xVtU1kOEpoDXu0HHGxMRQShyW6uHxkEep4aCvNVgfANnGmFxgF3A3gIhMAq4EJgOLgEdFxNrHfSml1IBwNnmbCNpDj51gJY2eAkBLyfZ+jWkguJ2tJHrKaYvKOGJZ+sQ5ADTvXz/AUfWPqr3eATsSxs44bL6kzSZcmincvSEAUflf0XZvchGSPvWw+W0pc0g1ZVSUFgUgKv/bv30tNvEQMnLqYfMbE2eSZg5QX1UamMD8rGDHOoLETXD6tMPml9vTiGgYXn3qlBrK+pRgGWPeN8a0P+ZbCaT5Pl8MvGCMaTXG7APygNl92ZdSSg0UV7O3Bis4LPqY64bEJFNHGLaqod88p2z/TqxisMWPPWJZSEQMRZJCSOXwqKlzl2ymwYSQPnrCYfNHTDwFgIrtw+M9UTX71gKQMuHw/4Jjxs8FYP/m4XGctb7jTMo6/DgjxnqPs2DTigGPqT/U7PM+GEjqcj7rw0Yxwjk8mu8qNRz4sw/WDcA7vs+pQOcrvcg3TymlBj13Sz0AjvCoY68sQlnQKCIb9vVzVP2vsrB9iPbx3S4vC88iuWnnQIbUb8Jrd1Jgz8Busx02P31sDnUmFFO0JkCR+VnpZiqJIiV11GGzR2XPw22E5vxVAQrMz0o300Ao8amH/+6Oyj4FjxEa9w2PfnVSuplmHESnZh023x07higaaK6pCFBkSqnOjplgiciHIrKlm6+LO63zU8AFHPebC0XkRhFZIyJrKir0D4NSKvA8Ld4arNDw6F6tXx8xmmRnwZAfYa/FN0T7iIxJ3S5vS8ghxZRTV1k+kGH5nzGktO6lJuLIRNJitbI/eALxtcOjpi6mbidFjrGI5fD/7h2hURTaRhF2cFOAIvOvmLqdFDvGQJfjjIqOZb81nZDy4dG0NaZuu+84D+914Uj0/i6X7hter1JQaqg6ZoJljDnLGJPdzdcbACJyPXABcJU5dHdRDKR3KibNN6+78v9mjJlpjJmZkJDQp4NRSil/MK0NtBkrYWFhvVs/fjzxUktZeUk/R9a/pDKPGhNO/IiUbpeHZXj7KxVuH9oDXVQe2EskjZjEyd0ur4+fwihXPi2NdQMcmX8521pId+2nMWZit8uronPIbNmBy+Ue4Mj8q6W1jQzXXhqOcpzlkdmkN2/HeDwDHJl/tbS5yHTtpSH6yONsH7K9unDbQIellOpGX0cRXATcCVxkjGnqtGgJcKWIOEQkExgHDI/6eaXU8NdSRwMhhAX1bmye0BRvjU9Z3tCuDQitz6fElor4hn/uKmWCd6CLhvy1AxmW35Xs8jb/ixw1pdvlwRlzsIph/5bPBjIsvyvavZEgcWFP7f44rekziZF69uzeOsCR+Vd+3hbCpPWox+lJmU409ZQVDO3mrfl524iQZqzdHGdaZhZtxoqzdEcAIlNKddXXPliPABHAByKyQUQeAzDGbAVeArYB7wI3G2OG9iMypdTJo62BZgk9aqLRVUKmd6jvxuKh/fQ4oa2A2tCMoy6PH5HMARKwlw/tRLKpYAMA6RNmdbs8NXsBAHV5nw9USP3i4G5vIpkwbma3yxMnzgegfMfQTiQrfccZf5TjjBs/D4CSbUN7oIuKPN9xjj3yOB2OYIqsaQTXDP3BdpQaDmzHXuXojDFHDjV1aNmvgV/3pXyllAoEe2sNjZaIXq8flzqWFmPHUzF0nx47m+tIMFXsiB7d43oHQsaT1DC0awLsB7dRRCJpMXHdLk9MTqOYEQSVDu1+O64DG2k2QaSPze12eeKYqbQQhLtwaA/o4T6wAaexkjRmWrfLMybOovm1IJz71wDfHtjg/MhdvB4XFpLGdn+cB0PHMLJR+2ApNRj4cxRBpZQaFhzOWppsx34HVjux2ii1pxFau7cfo+pfZfu8zcRsI7ofQbBdc3w2aZ5iWhurByKsfpHQuIuy0HE9rlMUNpnkhqF9sxpRs4NCewZWW/fPUsUWRKFjPHE1Q/s4I6u3UmjPxGJ3dLs8yOEgP2gsUVUbBzgy/4qo2kqxbRQSFNrt8rbYLJJMOS0NQ/faVGq40ARLKaW6CHXX0mqPPq5tasPHkNS2b8iOJFjj6xwfmTahx/Uc6dMBKPa9wHaoaW2qI8VdQnNs9wMitGtLnMYIU0ldecEAReZfHreH9NY8aqN6Ps6mhFzGuvdQXdc4QJH5l9vtIaMtj5puBn7orCYmh4y2PFxtrQMUmX+5XG4y2nZTHdX9CJ8A9pRsAEp2D+1EUqnhQBMspZTqIsJTh9MRc1zbeEZMJoWDlJSV9VNU/au5ZCceI6SNzu5xvaQs70AXtXuHZrOyoh1rsYjBkdb9gAjtwsd4X1BbvGX5QITld4V7txIljZDS83GGZMwmRNrI2zo0x6EqzN9FtDRgkqf2uJ5t5Gwc4qRwx9B8MFCwP484qUN6OJ/xo73LavZrgqVUoGmCpZRSnbldRNKI5zgTrPBRUwEo2Tk0Ew/bwR2UWEYQFdVz08i09AzKTQxSOjQHumgfKCB1wuwe18vMmUebsdK8b2i+iLds26cAJGSd2uN6adne5bW7h+bQ++U7vecnZkz3A5a0S550CgAHdw7NAT3K2o9z7NF/b9MyJ9BoHHhKh/aokEoNB5pgKaVUJy31ld4PYbHHtV3yeO/IXo2FQ/PpcWLjTkpCs465nsUiFDjGEVu3fQCi8j9zYCP1hJI8suc+WNGRkey1ZhJWsWFgAvMzd9EamoyD9AnTe1wvNHEstRKJo3RoDr3fUrAWl7GQPqH7EQTbpWZkcZAorMVDswarrXA9biOkjD/6cTrsdgqsIwnVkQSVCjhNsJRSqpP6Km8TP0vo8SVY4fHp1BCBtXzoPT1uqj1IiimlJb7n5oHt6mMnk+rcj6d16PXbSazbRH7wJMRy7P/+yiOzSWvZCZ6h95aRmOrN7HeMw2qz97yiCAcickhr2oLHM/T6D0Yd3EChPRN7cM8vBReLhf0h2STVbR6gyPwr4uB6iu2jsIX0PLppVdhYEluH7mA7Sg0XmmAppVQnjTXlANgj4o9vQxFKg8cQ27C7H6LqX8U7vM2Pgkf2XNvRzpY6FasYyvOG1jDmtdUVZLgLaEzsubajnSdlBmG0ULl/aDWHbGlpJtO5h7q4nvtftXOlzCSTEvKLCvs5Mv9qaGpivHM71Qk9Nw9s1zhiOimeEhqrSvo5Mv+qbWgiq21br46zLW4CsaaWlprSAYhMKXU0mmAppVQnjVUHAAiLSzn+bWMmkOHOp6W1zd9h9au6fd7mYcm+ASyOJX6ctx9IZd7QGhihcOMyLGIIHXtKr9aPzfK+iLds66f9GZbf7dn0GQ5xEjSqd4lHrK+fVvHmT/ozLL/L27CcEGnDMXZBr9YP8w1cUjTEjnPn+hWESSuh40475rrBqd5a6NLd6/o7LKVUDzTBUkqpTlorvU/xY5Myjntbe0oOIdJGQd7QaiZoKd1MGbGkpKb3av3M0eOpNBG4i4dWDVZT3qe4jIVRuce+UQUYO2EKNSYMV+HQ6rdTvfk9AMbMWtSr9ZMnzseFBef+oTWgR/2O/wIwavrZvVo/I+dUnMZK057P+zMsv6vfsQyA9GlnHXPdpHHelxDX5A+tWlelhhtNsJRSqhNP7QFajZ34hOTj3jZ2zAwAKvcOrafHCXWbKQ7JQkR6tX5wkI18+1giq7f1c2T+FV62hn22MURFRfdq/VCHnTx7FtFVQ+tmNaZkBXtsY4mM693vsCU4nCL7aGKqNvRvYH4WXrqK/daRhMck9mr9uJho8qyZhFUMreszsnwVxbY0gmOOXauenpZBlYnAlA2thzxKDTeaYCmlVCe2xhLKJY4gu/W4t00eOxWXseA6MHRuyA8W7SLNU0Jzau+azbVriJ1Mats+PG0t/RSZfzXUVjKubRuVifOOa7uamFxSnfswrfX9FJl/VVUeZLxzB1XJvWs2164mbirjnLtoaB4aL+Ktrq5mQusmKhPmHtd2ZZG5pDfvwLid/RSZf9XW1TGpbTOV8b1rvmuzWSkKyiC8buj1BVVqONEESymlOgluKafWdpwDXPhYg0IotqUTWjV0hjAvWvsOAHG55x7XdkHp07GLm6JdQ6M2YM+nr2EXN6G5Fx7XdraRs7BiKN0xNJrP7V79NnZxE5NzfOfTkTGXcGkhb+vQaA6549PXCZE2oqZ/5bi2s4ycTQitlA2RPkrbV7xOmLQSnHtxr7epjxhHSts+zBAc/VKp4cJvCZaI3CEiRkTifdMiIg+JSJ6IbBKR3g1PpZRSARTdVkZjcO+aHHWnKnIC6S27hsyQ15a9yygzMYydNOO4tkue4H2iXrZraCQeru1vUkkUk2accVzbped4B4Co2DE0BrqwbF9CHWFkTjvzuLZLzfH2S6vZOUSOc8eb1BDB6Bm963/VLiXbe5ylW4fGQBeebUuoI5yxs87r/UaJ2d7RL4u0FkupQPFLgiUi6cA5QEGn2ecB43xfNwJ/8ce+lFKqvxhXKwmeClrCR554GclTGSHVFBXu82Nk/cPtcjGy9gv2Rs7GZju+JpEjR0+ijlDcxRv6Jzg/amluYnzdSvbGLsBmP8Z7obrIHDmKQhKxFA/+F/E21NcwufYTdsR+CavdcVzbRqaMp0YisZes6afo/KeuoYFJ9Z+yJ/Z0xHqc53PMRCqIxgyBgUvqGhuZXP8Z++JOw2IP6vV2UZne59mlO4fGww+lhiN/1WA9CNwJdH5kezHwjPFaCUSLyPH3GldKqQFSUbgTqxisI8adcBkxY7zvWCrZPvhHKtv5+ZtEU0/QpON4Ou5jsVoocowjpmbwD3SxfemzREgzIdO+dtzbWixCcdgkEuu39ENk/rXto2cJlVYi51xz/BuLUBSWQ1rDZowZ3LWvm957ighpJnb2lce9rdVqYX/IZJJqN/g/MD/b+P4/iZJGwqcf3+9t+sSZuIyFlsKN/RSZUupY+pxgicjFQLExpuuVnAp0fmthkW9e1+1vFJE1IrKmoqKir+EopdQJq8j3jrwVmZJ1wmWkTZqLxwithYO/j0fbuueoNWFMPP34Ew+AxrgcMlx7aWpq8HNk/uXY+DSFkszE+cfX/6qdK3kGCaaS6pJ8/wbmR8YYwrb8iwOSRNasYw/n3Z3W1LmMooQDg7j21RhD/LZnKLSkkTn7/BMqozllLsmmjJqSvX6Ozn+MMcRueZIDlmRGz+t9/yuAqIgI9lvSCK7UkQSVCpReJVgi8qGIbOnm62LgJ8A9JxqAMeZvxpiZxpiZCQkJJ1qMUkr1WdOBnQAkj558wmXYQyIptqUSWjm4azwa66rIql7G5ugvERoafkJlOMacikNc7N2w3M/R+U/ellVMattC8ZgrsVqPf2RIgLjx3hcO7980ePvt7Fj9HpNdWymacD1iObFnp9GTFgJQsulDP0bmXxtWfsQE907Ksq6GEz5Ob/+0ovUf+DM0v9qwahmT3Tson3AtYjn+39vy0PEkNmkfLKUCpVd/nYwxZxljsrt+AXuBTGCjiOQDacA6EUkCioHOb61M881TSqlByXZwG+XEEJ+Q1KdyKiMnkd48uAe62Pr2XwihjfgFi0+4jIyp3hvVul2DN8Gqf+d/aDAhTDrvuydcxujcebQaO637PvNjZP5jjKF16f1UEUn2BTefcDmjJs2l3oRA/uAc6MIYgyz9FbWEk3PBTSdczricOd4XSO8dnL+3xhg8H/0PdYQz4bwTO862+MkkmEpaasr8HJ1Sqjf61ETQGLPZGDPCGJNhjMnA2wxwujGmFFgCXOsbTXAuUGuMKel7yEop1T9i63ZQ5Bjb6xfuHo1JmkKiVFFYtN9PkflXW0sTo3c+zmZ7LhNmHt9oc51FxiWy35JOWOlqP0bnPzvXLmNa43I2j7yGyLgTHxnSERzKbsdE4g8OzuPctOxVprauYe/YxYSGRZ5wOTZ7ELuCc0iqGpwDXaxZ+gpTnevJm/BdHGExJ1xOcJCdXcG5JA7S41y99HVmONeyd8J3CI6IPaEygkdOA+DAzsE/mIdSw1F/vgfrbbw1XHnA48D3+nFfSinVJ20tTaS6CmmOndTnsqLHzgYG70AXG157kHhTjevUH/W5rPKYaYxu3oLLObhe3OpytiHv/IgqIsn52t19Lq82cR6Zzr3UVZX7ITr/aWxsIOaTn1JkSSHnsh/3vbzkuaR5iqgrLzz2ygOovq6GpOU/o8SSyJSv3NHn8hpT5pLsKaGuNL/vwflRXX0tSct/Qqklkeyv/PCEy0ke7x1sp27f4O8LqtRw5NcEy1eTddD32RhjbjbGjDHG5BhjBuejIqWUAgq3fY5NPASNPL73QXUnbaL3HVGtBYPv5uZgST6Tdj7MJsd0pi64oM/lWTLmEyHN5G8fXH/iv3j+Psa7drFv9r2ER55YLUBn0ZPOxCKGvWve80N0/rPpH7cy0pTQdNZvcASH9rm8uMneGs29awdP/yRjDBufvI10Smhc9CdsjpA+l5mQ7R0IZN/awXM+jTGs/8ftjOIAjYsexOY48fOZlppGiYnDUrbZjxEqpXqrP2uwlFJqyKje7h3AICXn+F5E2x17aBTF1lRCKwfXzY3xeCh85iZsxkXkZQ+f8GAInaXlem/IK7Yu63NZ/rL183eYuedR1oWfxvRFJ97HrLOx00+nyTho3b3ML+X5w8olf2Ne5SusTrqS8fMv8UuZ46acQoMJwZm3zC/l+cNnrz3KqdWvsT7l64ydffyvFOjO+Ny53n5YewbPwCXLX/0Lp1e/woaUKxlzgiMktrNYhCLHWGLqd/gpOqXU8dAESymlgKDizymQFFJS04+9ci8cjJhIesuuQfVOoS9e+BXTmj9nw/hbyRiX7ZcyE0eOp5w47EUr/VJeX+Xv3EjSe9+h1JLI2G895ZckEsDhCCEvJJsRlYOjH9aWFUuYvvZudgRNZvriP/qt3KCgIHaHTiG1ahUMgt/dDcteY+bGX7DdkUvu4of8Vm6Q3cbu0GmkV38+KI5z1UevMXvTPexy5PjtOOtjJpLiKsS0NfmlPKVU72mCpZQ66bma6xjfuI7C2Pl9HuCinSdpKklUUlg4OAa62PzRc8zY+QfWhZ7K7Ct/5r+CRSiKms7oxrW43W7/lXsCCvZsI+T5ryAY5BsvEBkd59fym1JOIdNTQEVJgV/LPV7bVn1Ixgc3csCaQvJNb/ilyVxnjekLSTGlHCzY7tdyj9eqj5eQ9fGNHLClkn7TK1jtQX4tv3nUGYwwlRzcG9gX8q795E1yPvkOZbYU0r/7Kha7wy/lWlOmYMVQvmeDX8pTSvWeJlhKqZNewer/ECxOLJNO7EW03YkaNxeA0m0r/Fbmidq64j9kfXIru23jmfC957BY/funX8aeSSz15G0K3KAe+7evxf7PCwmmlfrLXyZt3BS/7yM+52wA8te86/eye2vD0pfIfPvr1FiiCfvmG0TF+v/9kQnTvM3Tir9Y4veye2v5kifJXfZNDtoSibvpHcJjRvh9H4nTvX0QD6z9j9/L7q2Vbz/DpI8WU2lLIPqmtwmJ9t9xjhjnHeiiYreOJKjUQNMESyl10mvd/AaVJoKs2ef4rcy0SfNxGivO/MA2nduy9AVGf3ADxdYU4r+zhNDwaL/vY9Qs741q5abAJB4bP1lCzAsXYMdF5Vf/zahJc/plP5k586kiAkvewA8AYTwePnvuPrL/+x0O2NIJvelDElJH98u+xmXlsJ8UbHs/6pfye+J2e/jvUz/nlLW3U+wYTdwtHxCZkNIv+xo3Nos8RuLIX9ov5ffE7faw7MmfMXvVrRQHZRB78wdEJaT5dR+ZYydRb0JwFm/ya7lKqWPTBEspdXJztTHy4HI2hs4jNqLvo7C1CwoJI98+lujK9X4r87gYw6p/P8CE/36XQtsoIr/zDvEj+vYC5aOJTRpJvmUUEcUD++JWj9vNF0/fTfZH11JtjcN1wweMzp3fb/uz2mzsjpjD6NqVeFyufttPV3V11ax98KvM3/1/bAmfT8ptHxGb6N+b8c4sFqEw7hTGNK6nrbmx3/bTVUV5Kevu/zKn5z/E5qjTGXn7R4TGJPfb/rzHOZ/Mpk24muv6bT9dVZSXsuGBL7Nw/8NsizqN9B8sJSzW/0lkcJCNfbbRhNds83vZSqmeaYKllDqpHdjwHmE04c7q+5DlXdXET2V02y5aWlr8XnZPWpoaWPPQN5iz9X/YFjKDlNs+JK4fb8gBykbMJ6t1C82N9f26n3ZVZUVsu/8sZu17lLURZxJ323KSRo7v9/3KuHOIoY68jQMz+tyO1R9Q9+BcptUt4/PR/4/cH/yHkIgTf8lub4VOXkSwONm1emBqJTeteBPno6cypXk16yfdxZTbXycoJLzf9xs6aRFBuNiz+p1+3xfAFx+/gfPRU8lpWs3aCXcy+bbXcYRE9Nv+aqMmkNq6F+MeuAcCSilNsJRSJ7nqta/SYILJXnCR38sOyphLiLSxZ8vANRPM372Fov9bwMzqt1mR8k0m3fEO4RHR/b7fkAlnEyQu8r54v9/3tf6dJzF/mc/Y5s18PvkXzPrBy4RH9n/SAZB1yiW4jVC5rn/7J7U0N/HpY7cw7q2vYcHD7vP+xbxrf+X3/nNHM3HOIppNEE2b3+zX/TTU17Dy4cXkfngVRqyUXvo60y7/CfhpsJljmTzvXBpMCM2b+7cfVn1tFSsfvo5Z/70WLDbKLnuDGVf+1G+jXB5V8hRCaaGyQGuxlBpImmAppU5eHjcppUvZGDyL5Dj/36CPzF0IQPXOT/1e9hGMYc1rfyLh2S+R4C5n4+mPc+qNf8Bmt/f/voFxs86h1dip39p/NR6VZUWse+BCpq26jSprAgeueJt5X/tB/9+kdhIVl8h2xxTSS97rt+G9d6x+n9L7Z3NK6T9ZF3cBkbevZsLcL/fLvo4mJCycLeHzGHfwQ4zb2S/72Lh8CbV/mM3sg6+xasTlxP5wDSNzT+uXfR1NeGgoG8PmM+bgUoyzf2qav1j6Kg0Pzmb2wTdYnXQl8T9aQ3rOgn7ZV1cxY739Ect2BG4AGqVORppgKaVOWmVbPyHG1NAytn9uXmNSRlMucdgP9O8oXtVlhWx+4DxmbryHfMd42r61jClnXN6v++wqJCyCHeGzGF3xkd+HazceD2ve/BuWv8wlu/4zPs+8mcwff87oSbP9up/eqhlzEWmeAxRt+8yv5dZWlvHFn65iwttfI9jTwraFf2fWrc8OWO1cV60TvkoMdexd/bZfy60oLeCLP3yNKR9dAwi7z3+ROd97nJCw/msq1xOT/TUiaCTv8zf8Wm55SSGf/d/lzPpkMS5LEHkXvszsm/46IE0f22VOmEajceAsWDtg+1RKaYKllDqJla5+mVZjI+vUS/ttHyURuYxs3NxvLxxe/+5TyF/mMa5hDcvH3MGEu5aRkDauX/Z1LJ7JXyWJSrat8t8oe8V7NrPl92cxc82PKLelUHLl+8y77n+x+fmdSMcj64yraDNWipf/0y/lGY+HVa//GffDM5lW9TafJV5F+B1rmbTwa34p/0TlnnEZdSaU2tX/8kt5bpeLlS/8Dsdf5jCl9iNWpi0m7kdryJp9rl/KP1HTFl5CtYmgae0LfinP5XSy8oXfEPzYHGbWfci6kYtJuvMLxs88yy/lH4+wEAd5trFEVOlIgkoNJFugA1BKqYAwhsTiD9gUNJVZyYn9thtX+jySt37M3p2bGD3Bf+9mqikrJP+f32Nawyfsso7DdtnfWDBxut/KPxETTruc5lU/oWHtizB/UZ/Kam1pZMO/fsHU/U8RiY3Ps+5i9uV3YrUF/r+thBFJbAify/jSN2lpqic49MRrXvK3r6X+tR8wp20Du2xZ1FzyEPOz5/ox2hMXGR7OZ7FnMaPqHZqqDhDah5Hudq5dhuXtO5jrzmNL8DSiL/sTc/vhXWUnIiw0hLVx5zKv8jWaKvYTmjDqhMvavPJDQj74EXPde9kaPJXoy/7E9HFT/RfsCaiKmkxW1esYVxtiC9yDCaVOJn2uwRKR/yciO0Rkq4j8vtP8u0UkT0R2ikhgH08ppVQXZbu/IMlTRmPmef26n5FzvgJAyRev+6U84/Gw7vWHsPxlDhPrP+fTjFvIvOtTRgc4uQIICY9ia+QCJle+S3N99QmXs/m/r3Dwd9OZU/A4myMX0HzjKuZ94yeDIrlqZ5l3CzHUs+Odv5zQ9nXV5Xzxl2+R9sJZZLTtYk32zxj7488YPUiSq3YRC7+PHRe7ljxwQtsfPLCf1X/6BuOWXEK0u5J1s//A5LuW9suLoPsi9kvfRzDseuP+E9q+tDifT//wdXLevZQodw0b5jzIpLs+JjXAyRWALX0GwbRRkhegV0YodRLqU4IlImcAFwNTjDGTgQd88ycBVwKTgUXAoyJi7WOsSinlN0Wf/Ru3EcYu6N++Sgkjx5NvGUVkYd9fZnpg33a2/e5Mpm/4OQX2TIq+/iGnXP9r7EEOP0TqHyGn3UokTWz7zx+Pe9vSvVvY8MAF5Hx8A24sbDrzGWbe8RojUk+8RqG/ZM9bxDZLFklbHsfV2tTr7VzONla9+Fs8f5rG9NKX+SLuQlw3r2XmZT/CMogSyHY5U2ayJnQ+Y/Kfp7HqQK+3a26s5/Mn7yL0r7OYWvUuXyRfScgP1jH9y98c0EFJeit7ci5fhJ3OuKJ/01Ce3+vtGuprWPnED4n422xm177H2tSriPjheqaed8OgOc6Uyd4BNcq2/DfAkSh18ujr1f9d4LfGmFYAY0y5b/7FwAvGmFZjzD4gDwhMb2SllOpGXOH7bLNPJi19ZL/vqyxpIRNaN1NddfCEtne7nKx69l5injqNkS07+Gziz5j4408YM2GqfwP1g0kzT2eDfSoZu56iqZe1WHXV5Xzx2HeIffo0xtWv5rNR32PEnWvJPe3ifo72xFmsFhrm30WSKWf7cz865voel4tNbz1G6W9ymbP9NxQFjWHvpe8y79ZniEnw/0tm/Sn8vF8SZJzsf+rGY46c2NLcyKoXf0v9/bnM2/8YO8LnUHHdcubc9BjhkbEDFPGJibngPjCG0n9++9jH2dTAZ8//hpb/m8LcwsfZETGXg9ctZ8a3HyU4PHpgAu6lzLGTOEA8tsIBGM1UKQX0vQ/WeGCBiPwaaAF+aIz5AkgFOr/4pcg37wgiciNwI8DIkf1/ozOUuJ1tNNYcpKG+hsbGeloa63G3NuJpa8LT1ohpawZnEx5nK8btxON24XE78bjdWIwbC97vgsGIFSMWPGIBsXqnsWAsViwWK2JzIPZgxB6CxR6MJSgEqz0EqyMEW1AIVkcodkcwQY5QHKHhOELCCA4OIchmRQbofSVK+UtZ4W4y3PmsGH37gOxvxOyvYn/9aTZ/8DSnXXHHcW27b/0y3G/+gDnuPawPnUfSVY8yP210P0XadyKC4+x7iHnrUtY/dQszbnn2qO80aqw5yPY3HmDcvn8y3TSyOuZ8Rl/+v8xPGXw1Vt2Z9aWvsnTj6yzc/xw7380ha9FNR6zT0ljH9g+eIn7TY+R6ismzZLL+lEeZ+qWvD5oajmOZlDuLj764iS8VPsyWJ29h8vUPIZbDG6XUlBex672/krnnn8yhmu32SRw881Gmz+vfJrj+NGFSLm+P/H98ufABdj6+mPHffByxHv6ag+qyAna+8xfG5z/LfOrYETSZqnOfZMaMMwMU9bFZLMLesGlMrlvtTRz1/2yl+p0ca2QrEfkQSOpm0U+BXwMfA7cCs4AXgdHAw8BKY8yzvjKeAN4xxrzc075mzpxp1qxZc7zHMCQYj4f66oNUlxdSX1lMS3UJrrpSTH0Z1pZq7G21OFx1BLvrCXPXE0EDobSe8P5cxoIbK24sGMCKBwseLBhs4vHLMXmM0EIQLQTRJg5axYFTgmizBOOyBOOyOnBbg/FYg/FYQzC2YIw9BLGHgD0UCQrBYvcmbzZHKDZHGLbgUOyOMIJCwnAEh+MIDcfucGC1BWG32gbsJZuDjjFgPIe+0810+3reD4dve2iim3m9Xc9gjO+rfY7HgwHfPOObZzqVYA6F3+n7oaIFg+nYjWmf7rKcrsuN77M5cluP8e1HDoV/+P4NJSue4/S837Hv8g/JnDTryJ+FvxlDwa9yaTU2xv5sba9urGvKi9nzwo+YUfUW5cRSMOtnzDhv8ZC5Kf/0sf/HKaXPsC75CqZc+wDWkEjvAmMo2vY5pcufYmLpG4TRwrrgOYR/+X8YnzsnsEGfgNraWvY8fBHTXRvYFn0GlpyvEhQeS0PZXszeZYyu+YwImtljyeDgjNuZce7V2AZhU8Bjcbpc/Pehb3FW3WsU2EdTM/pCJDyBloMFRJatZHTzVuziZnPQVOS0HzJ5/vlD5ne1M6fLzXuP3MoFNc9ywJpK+agLsUSMoLW6mLDS1Uxo3YJFDBuDZ2JZ8ANy5n95SCQsS//1f5y56z5qF68galROoMM5aRi3i9bmehob6mlprKOpsYG25nramutxtXgfluNsgrYmxNmMcbdh3E6M2wVuJ3jaELcTPC7E48Rq3FiNE4txQ/v/uof+8f2fd+j/baHTr6dYfA/abb7PNkz7d4sFI1bvA3iLdz4WG0asiMWGsVi9D1UstkPfrd7PYrGB1YbFYgOLDYtvvsVmQyx2LFYrYvXOt1hsWGx2LFYbVqsNi82GxWrHarVitdo7llmsViw2O2Lxrufd3o7NZsdiGVzXm4isNcbMPGJ+X4YOFpF3gd8ZYz72Te8B5gLfAjDG/MY3/z3gXmNMj2+6G8oJVlN9FRWFedSW7KX5YD6mugB7QzHhLSVEuw4SY2oIkiPfDdNq7NRKBI2WSJptEbTaInDaI3E7ojDB0UhIDNaQSByhEQQFh2MNDvUlJOHYg8O8X44QHEFBBAUFYbV6L5xj/sH3eMC4wePG5XLS1tZCW0szzpYmnK3eL1drM662ZtxtzXjaWnC3NeFxNmPamvG0NWOcTYirBZzNiKsFi7sZq7sVm++73bQQ5GnFblpxmFYctBHSh6QRwGm8SaM3ebTils6frXg6ffcgtP8UjO+TEe88w5E/n4550vEPYLAYg+BBfLfwGONLW7v5bg6t1+2X8X634OnYrrv1Opdr4cSvUXV0lUQTe8++AbsJXPf6Q0zf8HNWz36I2V++7qjrOVsa2fjqA4zf9RghppVViVeS/fVfER0zuJtXdeVyufj80RtZUPUKdYRTHDoBA4xo3ku8qaLNWFkffhqRZ9/JxKnzAx1un9Q1NrH6yTuZVfEKUXKoP1aFiWZf9FxC5ixm8pxzhvwDIo/bw7JX/kz6tr8xjgLvPCPkWUdTkTCfpNNvYMykwA+20lduj2H5kicZsfHPTPDswSIGtxHyrRmUJp9JyoJryRyEzXN7smnzBnJfOZ0tU35O9ld+GOhwhpyWlmbqKktpqCyhuaaUtroyXPWVuJtqoKUWaa3F7qzD4aon2N1AmKeRMBqIoPm49+UxggsrLqw4xY4bKy6x+b7bceG9xzEitN+reO9rAOl83+P77nvAKMbje+zu8bVy8mBt/06n78ZD+12UFbffHsr31TL3FBq+9gIX5A6uJtX9lWDdBKQYY+4RkfHAR8BIYBLwL7z9rlJ888cZY3p8++RgT7CaG2op2buF6sJttJXtwl69h+jm/YxwlRBJ42Hrthkb5ZYEaoISaQpOwh2aAOGJ2KOTCIlOISIhlegRaURExg7Jp3wnzBhcbc20NDfS2tRIW0sDrc2NuFobcTY34mxtwt3WhLu1CU9bM562JiyuFoxxg9uN8TjB40aMCzwu8Lh9T3ZciHEjvmUW42qv+0CO+B0/snZHOtW3tH/GGO/THe8zoI7PnacBPHgTWoN4nwohHX/4DBaQQ6lU+/Ij1u/4jK/c9nUsh/blK+fQfN+6IrR3p/Tmhu2JYqckstMfXZBDzTo7Zlo6Eks5YhvptJ74iu0yD7yJ/aFZSMe67bOMd832XfuaqrQ/Yes4T9I+3Tm+w7eXo0wfKl46zmP7sbafufZ1IkfPJm3KGQwUt8tJ4W9mEuauwX3DhySNPPxdVW2NtWx681Eytv+VeKrZ6JhB5CX/R+bEaQMWo78ZY1i9/H2cq58goSkPDxZqQ0biTJ9P1hlXMSIxOdAh+lVldQ2FuzfhbKolIiGd0eNzCLIPv/Gd3B7DgdIymuoOkpCYSmxMYF6E3N+MMZRX1VBfU0nCiCSiIgbuBcH+5nK5OfCriTSHpZP1o48CHc6g4HF7qK6uoLp0P40VBbRWFeGpLcbSWIatuZLgtirC3dVEe2qJlKMPZFNPCI0STrMlnBZrOK22CNrskbiDIvAERYIjAmtwGNagMOwh4dhDwnEEhxMUGo7VEYYtJBy7Iwx7cChBjhCC7PbB1fXCGDxuN263E7fLicvtwu1y43a14XG5cLldeNwu3C5vVxW324nH5ZvndmE6uq9453mn3RiPd77xuL01dh4XHo/bV3PnBuNGPK6OyoA6RzKjz7iOcYmBeSH50fRXghUE/AOYCrTh7YO11Lfsp8ANgAu4zRjzzrHKG2wJVt7GT6lY9RJhVVtJatnLCCo7lnmMUGpJ4GBQOk3h6Xgi07HHZRCRmElc6ljiEtOwWIfff6xKqROXv201cS9eRIsEUzjhm0SNyqHu4AHY9wnjqz4mjBa22ifTuuAnTFtw/uD6T1YpNaS9//DNnFn5L/jBDmyR/ffuv8GipbWVsqI91Bbn0VyxB09VPrb6YkJayol0lhPvqSJUDm9V4zFCjURQa4mh2R5DqyOWNkccJjQOCR+BLWIEjugRhEYnERE7gqjoeIKC7EeJQJ0M+iXB8rfBlmCtfuWPTNt0HwW2kRwMG487ZgxBSVnEpk8kZfRkgkOH7tMspVRg7Nu6CuerNzPevbtjXo0JY3vkAkLmf5Mpc846uWq1lVIDYsWnyzj1g4vZOeNesi4cmAF++ltTYx0le7dRV7iV1oo9WGr2E9xYRFzbARLNwcOatzmNlYMSS609geaQJFxhSRCZgi06lZC4kUQlphObNBKHIySAR6SGGk2wTkBzYz1isRAcEhboUJRSw4jxeNidt5u60jwi45LIGJerT0GVUv2qzemm8Ne5WB1hZPx41ZAYnAMAY6ivLKJ49yZqC7fiLt9JaP0+RrQWkELFYatWEkWlPZnG0DRckSOxxmUQMmIsMaljiU/JxGYPCtBBqOHqaAnW0BvKaACFhA2udp5KqeFBLBbGj8+C8VmBDkUpdZIIslvZlXE15+X/lpK1b5I888JAh3QEZ2M1JbvXU7NvPe6SLYTX7iS5dR8RNDHBt04TDkps6ZRGTaEgeiz2xPFEpU0iKXMicRHRxAX0CJTy0hospZRSSqmTQEVNPW0PTsUVHMuou1aCJTB9xY3bSVXhDsp2r6WlaBNBldtJaMoj0VPesU6tCWO/LYPaiHGY+PFEpE0kacwUklIztRm1GjS0BksppZRS6iSWEB3BuxNuY9HOn7H7xbsZ9/Xf9/s+m2rKObDzC+r3b4CyrUTV7SLFmU8cTuLwvrezwJLCvpBJbI+9lKDUHOLHzGBU5lhy7XqbqoYm/c1VSimllDpJfOnym/ng/k84e+df2bskltEX3uWX/lhul5OSPZup3LOWtuJNhFTvILE5jwRTxVjfOgdNFEVBoymO/yokTiYyYxojx09ldFQko/scgVKDhzYRVEoppZQ6iVTW1LLtkStZ4PqMXZHziD3/58SPn9+rRKutpYmSvVuo2r+VltKdWKv3ENu4h3RXAQ5xetcxVgqt6RwMG0db3CRCRk4hcdwMUlNHYbEMkcE1lOoFHUVQKaWUUkoB0NDSxvKnf8GpB54kQpqpkHgqwrNoDk8HRyQeY8DVirQ1YGsqJ6y1nChXJfGmCoscuncsI46K4FHURU3AkpxDbOY00sdPJSREhztXw58mWEoppZRS6jCFB0rYvew5QoqWk9iUR4KpJIwWLGJoNXaacVBljaPBHk9LcAKuiDTsieOJTp9M6thsQsOjA30ISgWMJlhKKaWUUqpHbo+huc2J3WohyGZFhsr7spQKAB1FUCmllFJK9chqEcKD9YW8SvWFvkhAKaWUUkoppfxEEyyllFJKKaWU8hNNsJRSSimllFLKTwbVIBciUgHsD3QcXcQDBwMdhBower5PHnquTx56rk8uer5PHnquTy6D8XyPMsYkdJ05qBKswUhE1nQ3OoganvR8nzz0XJ889FyfXPR8nzz0XJ9chtL51iaCSimllFJKKeUnmmAppZRSSimllJ9ognVsfwt0AGpA6fk+eei5PnnouT656Pk+eei5PrkMmfOtfbCUUkoppZRSyk+0BksppZRSSiml/EQTLKWUUkoppZTyE02weiAii0Rkp4jkiciPAx2P8h8RSReRj0Vkm4hsFZHv++bHisgHIrLb9z0m0LEq/xARq4isF5E3fdOZIrLKd32/KCJBgY5R+YeIRIvIyyKyQ0S2i8g8vbaHJxG53fc3fIuIPC8iwXptDx8i8g8RKReRLZ3mdXsti9dDvvO+SUSmBy5ydbyOcq7v9/0d3yQir4lIdKdld/vO9U4ROTcgQfdAE6yjEBEr8GfgPGAS8HURmRTYqJQfuYA7jDGTgLnAzb7z+2PgI2PMOOAj37QaHr4PbO80/TvgQWPMWKAa+GZAolL94U/Au8aYCcAUvOddr+1hRkRSgVuBmcaYbMAKXIle28PJU8CiLvOOdi2fB4zzfd0I/GWAYlT+8RRHnusPgGxjTC6wC7gbwHe/diUw2bfNo7779kFDE6yjmw3kGWP2GmPagBeAiwMck/ITY0yJMWad73M93huwVLzn+Gnfak8DlwQkQOVXIpIGnA/83TctwJnAy75V9FwPEyISBZwGPAFgjGkzxtSg1/ZwZQNCRMQGhAIl6LU9bBhjPgGqusw+2rV8MfCM8VoJRItI8oAEqvqsu3NtjHnfGOPyTa4E0nyfLwZeMMa0GmP2AXl479sHDU2wji4VKOw0XeSbp4YZEckApgGrgERjTIlvUSmQGKi4lF/9EbgT8Pim44CaTn+49foePjKBCuBJX5PQv4tIGHptDzvGmGLgAaAAb2JVC6xFr+3h7mjXst63DW83AO/4Pg/6c60JljqpiUg48ApwmzGmrvMy432Hgb7HYIgTkQuAcmPM2kDHogaEDZgO/MUYMw1opEtzQL22hwdf35uL8SbVKUAYRzYxUsOYXssnBxH5Kd6uHc8FOpbe0gTr6IqB9E7Tab55apgQETve5Oo5Y8yrvtll7U0KfN/LAxWf8ptTgItEJB9vU98z8fbRifY1KwK9voeTIqDIGLPKN/0y3oRLr+3h5yxgnzGmwhjjBF7Fe73rtT28He1a1vu2YUhErgcuAK4yh17eO+jPtSZYR/cFMM43GlEQ3s50SwIck/ITXx+cJ4Dtxpg/dFq0BLjO9/k64I2Bjk35lzHmbmNMmjEmA+91vNQYcxXwMXCZbzU918OEMaYUKBSRLN+sLwHb0Gt7OCoA5opIqO9vevu51mt7eDvatbwEuNY3muBcoLZTU0I1BInIIrzN+y8yxjR1WrQEuFJEHCKSiXdgk9WBiPFo5FAyqLoSkS/j7bthBf5hjPl1YCNS/iIipwLLgc0c6pfzE7z9sF4CRgL7gcuNMV072KohSkQWAj80xlwgIqPx1mjFAuuBq40xrQEMT/mJiEzFO6BJELAXWIz3gaJe28OMiPwSuAJv86H1wLfw9sXQa3sYEJHngYVAPFAG/AJ4nW6uZV+S/QjeZqJNwGJjzJoAhK1OwFHO9d2AA6j0rbbSGHOTb/2f4u2X5cLbzeOdrmUGkiZYSimllFJKKeUn2kRQKaWUUkoppfxEEyyllFJKKaWU8hNNsJRSSimllFLKTzTBUkoppZRSSik/0QRLKaWUUkoppfxEEyyllFJKKaWU8hNNsJRSSimllFLKT/4/7ENPCQKQ8iwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -4719,31 +4719,31 @@ " 48\n", " True\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " bAP.soma.v\n", - " 0.00169\n", - " 3.36e-05\n", + " 0.00166\n", + " 1.37e-06\n", " \n", " \n", " 49\n", " True\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step1.soma.v\n", - " 0.00462\n", - " 1.32e-05\n", + " 0.00312\n", + " 2.16e-05\n", " \n", " \n", " 50\n", " True\n", " 6\n", - " 0.0537\n", - " 0.0124\n", + " 0.0562\n", + " 0.0128\n", " Step3.soma.v\n", - " 0.00284\n", - " 2.15e-05\n", + " 0.00289\n", + " 2.39e-05\n", " \n", " \n", "\n", @@ -4751,14 +4751,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "48 True 6 0.0537 0.0124 bAP.soma.v \n", - "49 True 6 0.0537 0.0124 Step1.soma.v \n", - "50 True 6 0.0537 0.0124 Step3.soma.v \n", + "48 True 6 0.0562 0.0128 bAP.soma.v \n", + "49 True 6 0.0562 0.0128 Step1.soma.v \n", + "50 True 6 0.0562 0.0128 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "48 0.00169 3.36e-05 \n", - "49 0.00462 1.32e-05 \n", - "50 0.00284 2.15e-05 " + "48 0.00166 1.37e-06 \n", + "49 0.00312 2.16e-05 \n", + "50 0.00289 2.39e-05 " ] }, "metadata": {}, @@ -4766,7 +4766,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACgL0lEQVR4nOzdeXwV9b3/8dfnnJMFshCyEHaCKMiSEBQQC7i116UuaLWidUOv9aq1VetSta1S7/V3e62trUtLbW21ahHrXte6oWJFBURUQAWJ7BBCSAhkPef7+2OGeAjZICecLO/n4zFmlu985zMzOfF8+H7nO+acQ0RERERERNouEO8AREREREREugolWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsEREOggzyzMzZ2aheMfS1ZnZDDObF+84Ohozm2pmn8U7DhGRzkwJloiIdGpmNtPMas2sImq6Pt5xdUbOubedcyNiWaeftFU0mJyZnR7L44iIdBT6V1IRkRgxs5Bzri7ecXRTc5xz58Y7iPbSmX+3nHNvA6m7ls3sKOCfwEtxCklEpF2pBUtEpA3MrMjMfmJmS4AdZhYys0lm9m8z22ZmH/lfKHeVn2tm/2tm75tZuZk9Y2aZTdR9oZktM7PtZvalmf1Xg+3TzGyxX89KMzveX9/LzO43sw1mts7M/sfMgi2cxzAze93MSsxsi5k9YmYZUdu2mtkh/nJ/MyvedV5mdoqZfeqf71wzG9ng+lxrZkvMrMzM5phZ8t5f6b1nZjf412W7mS01s9OaKGdmdqeZbfav5cdmNsbflmRmd5jZajPbZGazzKxHK4//gF/+FT+GN81sSNT235nZGv+YC81satS2mWb2uJk9bGblwAwzm2hm7/rXeYOZ3WNmiVH7ODO73My+8I/33/69+7d/jMeiyzcR81FmtrY159cGFwCPO+d2tPNxRETiQgmWiEjbnQ2cCGQAucDzwP8AmcC1wBNmlhNV/nzgIqAfUAfc1US9m4GTgHTgQuDOqCRnIvA34Dr/uEcARf5+D/j1HgiMA44FLm7hHAz4X6A/MBIYBMwEcM6tBH4CPGxmPYG/Ag865+aa2XBgNnAVkAO8APyzwRf5M4HjgaFAATCj0QDMpvjJQ1PTlBbOoaGVwFSgF/ALP/5+jZQ7Fu/6DffLngmU+Nt+6a8vxLueA4Cb9yKGc4D/BrKBxcAjUds+8OvNBP4O/KNB8jkNeBzv/j4ChIGr/boOB74JXN7geMcBhwKTgOuB+4Bz8e7nGLzf1X3mJ8pN3Z/ft2L/FOAM4MG2xCEi0qE55zRp0qRJ0z5OeEnNRVHLPwEealDmZeACf34u8MuobaOAGiAI5AEOCDVxrKeBK/35PwJ3NlImF6gGekStOxt4Yy/P61TgwwbrngU+BpYASf66nwOPRZUJAOuAo6Kuz7lR228HZsX4Hsz0r+G2qKl/I+UWA9P8+RnAPH/+GOBzvKQkEFXegB3AsKh1hwOrWhnXA8CjUcupeEnSoCbKlwJjo87prRbqvwp4KmrZAZOjlhcCP4la/jXw2xbqPApYG8v706D+84BVgLXXMTRp0qQp3pOewRIRabs1UfNDgO+a2clR6xKAN5oo/5W/PbthpWZ2AnALXgtKAOiJl+CA1yLxQiOxDPHr22Bmu9YFGhxzD2aWC/wOr8Unzd+ntEGxP+ElWZc456r9df39cwDAORcxszV4LT27bIya3+nvE2uPuQbPYJnZ+cCP8RJX8BKcPa6zc+51M7sHuBcYYmZP4rU8JuNd84VR19LwkuHWqr/uzrkKM9uKd/5rzOxa4D/9ZYfXUpnd2L7++QwHfgOM9+MK4SVR0TZFzVc2stx3L2JvDxcAf3POuTjHISLSbtRFUESk7aK/LK7Ba8HKiJpSnHO/jCozKGp+MFALbImu0MySgCeAO4Bc51wGXkK165v+GmBYI7GswWvByo46frpzbnQL5/D//PPId86l43Ur+zqrMEsFfgvcD8y0r58bW4+X1O0qZ/75rWvheHuwxkebi56mtlxLfV1D8BLCK4As//p9En1O0ZxzdznnDsVrURyO1/VyC15SMjrqWvZyzqU2VkcT6u+1fw0zgfX+uVyP1x2xtx9fWYP4GiYhfwCWAwf59+imps6nvfjP2jV1f2a1sO8gvBayv+2XYEVE4kQJlohIbD0MnGxmx5lZ0MyS/YEDBkaVOdfMRvnPM92K98B/uEE9iUASUAzU+a1Zx0Ztvx+40My+aWYBMxtgZgc75zYA/wJ+bWbp/rZhZnZkC3GnARVAmZkNwEswov0OWOCcuxjvGbNdX6YfA07040gArsFL8P7d0oVqyHlDhKc2M729F9Wl4CUoxeANGIL3DNIezGyCmR3mx78DqAIizrkIXpJ2p5n18csOMLPjovZ1FjWISSO+7T9bloj3LNZ859wavOtd58cXMrOb8VqwmpMGlAMVZnYwcFkL5WPOOTe6mftzaQu7nwf823nP9ImIdFlKsEREYsj/8jwNr3WhGK9F6Tp2/3v7EN7zORvxuqH9qJF6tvvrH8Prqvc9vO55u7a/jz/wBV7Lx5t83ZJ0Pl6CttTf93G8ATWa8wvgEL+u54End20ws2l4g1Ts+kL/Y+AQMzvHOfcZXmvX3XgtPicDJzvnalo4Xrtyzi3Fe+boXbxucvnAO00UT8dLpErxujuWAL/yt/0EWAHM90fzexUYAfUtMtv5uttmY/6O181zK97gE7u6Mb6MN0z55/4xq2ihGydet8Xv+cf8EzCnhfIdzflocAsR6QZM3aBFRPYfM5sLPOyc+3O8Y5G2MbNz8boP3tjE9gfwBoz42X4NTERE4kqDXIiIiOwD59zD8Y5BREQ6HnURFBHpJsx76e1eD04gXYuZ3dTE78GL8Y5NRKQrUBdBERERERGRGFELloiIiIiISIx0qGewsrOzXV5eXrzDEBERERERadbChQu3OOdyGq7vUAlWXl4eCxYsiHcYIiIiIiIizTKzrxpbry6CIiIiIiIiMaIES0REREREJEaUYImIiIiIiMRIh3oGqzG1tbWsXbuWqqqqeIciHUBycjIDBw4kISEh3qFIF/TBa08QWPQAY656kiT9jomIiMg+6PAJ1tq1a0lLSyMvLw8zi3c4EkfOOUpKSli7di1Dhw6NdzjSBQ18+zr6UcLCD97k0G98K97hiIiISCfU4bsIVlVVkZWVpeRKMDOysrLUmintZiPZAFQveznOkYiIiEhn1eETLEDJldTT74K0pyRXDUBKycdxjkREREQ6q06RYImItLdIxNGXLQBkVTX6WgsRERGRFinBagUz45prrqlfvuOOO5g5c2b8Aopy1FFHNfty5lNPPZVJkybttm7mzJkMGDCAwsJCxowZw7PPPtveYYp0eDsqysi0CsLO6BveSKS2Ot4hiYiISCekBKsVkpKSePLJJ9myZUtM63XOEYlEYlpntG3btrFw4ULKysr48ssvd9t29dVXs3jxYv7xj39w0UUXtWscIp1BZVkxAJ8mjCFkETavXh7niERERKQzUoLVCqFQiEsuuYQ777xzj23FxcWcfvrpTJgwgQkTJvDOO+8AXivRHXfcUV9uzJgxFBUVUVRUxIgRIzj//PMZM2YMa9as4brrrmPMmDHk5+czZ84cAObOnctRRx3FGWecwcEHH8w555yDc67R+B566KH61qj333+/fv2TTz7JySefzFlnncWjjz7a6L4jR44kFArtljzecMMNjBo1ioKCAq699loAioqKOOaYYygoKOCb3/wmq1evBmDGjBlcdtllTJo0iQMOOIC5c+dy0UUXMXLkSGbMmFFf52WXXcb48eMZPXo0t9xyyx5xlJWVMWTIkPpEb8eOHQwaNIja2tpG4xaJtcrKnQBU9DoIgC1rPotnOCIiItJJdfhh2qP94p+fsnR9eUzrHNU/nVtOHt1iuR/84AcUFBRw/fXX77b+yiuv5Oqrr2bKlCmsXr2a4447jmXLljVb1xdffMGDDz7IpEmTeOKJJ1i8eDEfffQRW7ZsYcKECRxxxBEAfPjhh3z66af079+fyZMn88477zBlypQ96tu5cyeLFy/mrbfe4qKLLuKTTz4BYPbs2dx8883k5uZy+umnc9NNN+2x73vvvUcgECAnJweAkpISnnrqKZYvX46ZsW3bNgB++MMfcsEFF3DBBRfwl7/8hR/96Ec8/fTTAJSWlvLuu+/y7LPPcsopp/DOO+/w5z//mQkTJrB48WIKCwu57bbbyMzMJBwO881vfpMlS5ZQUFBQH0evXr0oLCzkzTff5Oijj+a5557juOOO0/uuZL+prqoEIKHPcCiBHZuK4huQiIiIdEpqwWql9PR0zj//fO66667d1r/66qtcccUVFBYWcsopp1BeXk5FRUWzdQ0ZMqT+uah58+Zx9tlnEwwGyc3N5cgjj+SDDz4AYOLEiQwcOJBAIEBhYSFFRUWN1nf22WcDcMQRR1BeXs62bdvYtGkTX3zxBVOmTGH48OEkJCTUJ14Ad955J4WFhVx77bXMmTOnfnS+Xr16kZyczH/+53/y5JNP0rNnTwDeffddvve97wFw3nnnMW/evPq6Tj75ZMyM/Px8cnNzyc/PJxAIMHr06PqYH3vsMQ455BDGjRvHp59+ytKlS/c4j+nTp9e34D366KNMnz692esoEkuVVV4LVmqfodS4IJGyNXGOSERERDqjTtWC1ZqWpvZ01VVXccghh3DhhRfWr4tEIsyfP5/k5OTdyoZCod2ea4p+d1NKSkqrjpeUlFQ/HwwGqaura7Rcw6HLzYzHHnuM0tLS+hfylpeXM3v2bG677TbAewZrV/e/hnG///77vPbaazz++OPcc889vP76662KMxAI7BZzIBCgrq6OVatWcccdd/DBBx/Qu3dvZsyY0ei7rE455RRuuukmtm7dysKFCznmmGOaPa5ILNX6v5MJPVLYEsgmsWJdnCMSERGRzkgtWHshMzOTM888k/vvv79+3bHHHsvdd99dv7x48WIA8vLyWLRoEQCLFi1i1apVjdY5depU5syZQzgcpri4mLfeeouJEyfuVVy7Wn3mzZtHr1696NWrF7Nnz+all16qf+5r4cKFTT6HFa2iooKysjK+/e1vc+edd/LRRx8B8I1vfKN+/0ceeYSpU6e2Or7y8nJSUlLo1asXmzZt4sUXX2y0XGpqKhMmTODKK6/kpJNOIhgMtvoYIm0VqfNGDQwlJFGakEtK5YY4RyQiIiKdUZsTLDMbZGZvmNlSM/vUzK701880s3Vmttifvt32cOPvmmuu2W1AiLvuuosFCxZQUFDAqFGjmDVrFgCnn346W7duZfTo0dxzzz0MHz680fpOO+00CgoKGDt2LMcccwy33347ffv23auYkpOTGTduHJdeein3338/RUVFfPXVV7sNzz506FB69erFe++912gd3/72t1m/fj3bt2/npJNOoqCggClTpvCb3/wGgLvvvpu//vWvFBQU8NBDD/G73/2u1fGNHTuWcePGcfDBB/O9732PyZMn12+7+eabdxsmfvr06Tz88MPqHij7XbjWa8EKJiazs0c/etduinNEIiIi0hlZUyPTtboCs35AP+fcIjNLAxYCpwJnAhXOuTua2z/a+PHjXcN3Oi1btoyRI0e2KUbpWvQ7Ie3hneceYPKCK9l49iuseutRJq79C+6nmwglJrW8s4iIiHQ7ZrbQOTe+4fo2t2A55zY45xb589uBZcCAttYrIrI/uboaAIIJyVjvwQTNUbKhKL5BiYiISKcT02ewzCwPGAfs6od2hZktMbO/mFnvJva5xMwWmNmC4uLiWIYjItJqzu8imJCYRI/swQCUbviyuV1ERERE9hCzBMvMUoEngKucc+XAH4BhQCGwAfh1Y/s55+5zzo13zo3f9S4mEZH9bVcLVigxmV79hgGws/ireIYkIiIinVBMEiwzS8BLrh5xzj0J4Jzb5JwLO+ciwJ+AvRsaT0Rkfwp7owgmJCWTM+AAAGq3KsESERGRvROLUQQNuB9Y5pz7TdT6flHFTgM+abiviEhH4fxh2hMSk0lJTWMraQTK9S4sERER2TuxeNHwZOA84GMzW+yvuwk428wKAQcUAf8Vg2OJiLSPsNdFMJDgvTR8azCHxJ0b4xmRiIiIdEKxGEVwnnPOnHMFzrlCf3rBOXeecy7fX3+Kc65Tv7Xz6aefxsxYvnx5k2WKiooYM2ZMzI45Y8YMHn/88Sa3X3XVVQwYMIBIJFK/7oEHHiAnJ4fCwkJGjRrFn/70p5jFI9KVmd+CRTARgO2JfUir0buwREREZO/EdBTBrmz27NlMmTKF2bNnN7q9rq6uzccIh8OtLhuJRHjqqacYNGgQb7755m7bpk+fzuLFi5k7dy433XQTmzbpS6JISyxcQw0hMAOgumc/ssJbWthLREREZHdKsFqhoqKCefPmcf/99/Poo4/Wr587dy5Tp07llFNOYdSoUYCXaJ1zzjmMHDmSM844g507dwLw2muvMW7cOPLz87nooouorvb+tTwvL4+f/OQnHHLIIfzjH//Y49ivvvoq48ePZ/jw4Tz33HO7HXv06NFcdtllTSZ9ffr0YdiwYXz11dcP6t91112MGjWKgoICzjrrLAC2bt3KqaeeSkFBAZMmTWLJkiUAzJw5kwsuuICpU6cyZMgQnnzySa6//nry8/M5/vjjqa2tBeDWW29lwoQJjBkzhksuuYSGL6+ORCLk5eWxbdu2+nUHHXSQEj/pUCxcTQ0J9cuRtAH0ooKqHeVxjEpEREQ6m1g8g7X/vHgDbPw4tnX2zYcTftlskWeeeYbjjz+e4cOHk5WVxcKFCzn00EMBWLRoEZ988glDhw6lqKiIzz77jPvvv5/Jkydz0UUX8fvf/54rrriCGTNm8NprrzF8+HDOP/98/vCHP3DVVVcBkJWVxaJFixo9dlFREe+//z4rV67k6KOPZsWKFSQnJzN79mzOPvtspk2bxk033URtbS0JCQm77fvll1/y5ZdfcuCBB9av++Uvf8mqVatISkqqT3huueUWxo0bx9NPP83rr7/O+eefz+LFiwFYuXIlb7zxBkuXLuXwww/niSee4Pbbb+e0007j+eef59RTT+WKK67g5ptvBuC8887jueee4+STT64/ZiAQYNq0aTz11FNceOGFvPfeewwZMoTc3NxW3yaR9maRGmqjEqxQ74FQBFvWr2LgQWPjF5iIiIh0KmrBaoXZs2fXt/acddZZu7UYTZw4kaFDh9YvDxo0iMmTJwNw7rnnMm/ePD777DOGDh3K8OHDAbjgggt466236veZPn16k8c+88wzCQQCHHTQQRxwwAEsX76cmpoaXnjhBU499VTS09M57LDDePnll+v3mTNnDoWFhZx99tn88Y9/JDMzs35bQUEB55xzDg8//DChkJdfz5s3j/POOw+AY445hpKSEsrLvX+1P+GEE0hISCA/P59wOMzxxx8PQH5+PkVFRQC88cYbHHbYYeTn5/P666/z6aef7nEe06dPZ86cOQA8+uijzZ6zSDxYuIY6+zrB6pnjvWy4bGNRnCISERGRzqhztWC10NLUHrZu3crrr7/Oxx9/jJkRDocxM371q18BkJKSslt585/faGq5MQ3raKm+l19+mW3btpGfnw/Azp076dGjByeddBLgJTP33HNPo/U9//zzvPXWW/zzn//ktttu4+OPm28RTEpKArxWqISEhPp4AoEAdXV1VFVVcfnll7NgwQIGDRrEzJkzqaqq2qOeww8/nBUrVlBcXMzTTz/Nz372s2aPK7K/BSM11EYlWBm53j+c7NyyOl4hiYiISCekFqwWPP7445x33nl89dVXFBUVsWbNGoYOHcrbb7/daPnVq1fz7rvvAvD3v/+dKVOmMGLECIqKilixYgUADz30EEceeWSrjv+Pf/yDSCTCypUr+fLLLxkxYgSzZ8/mz3/+M0VFRRQVFbFq1SpeeeWV+ue9mhKJRFizZg1HH300//d//0dZWRkVFRVMnTqVRx55BPCe7crOziY9Pb1V8e1KprKzs6moqGhy1EMz47TTTuPHP/4xI0eOJCsrq1X1i+wvgcjuLVjZ/fMACG9bG6eIREREpDNSgtWC2bNnc9ppp+227vTTT29yYIkRI0Zw7733MnLkSEpLS7nssstITk7mr3/9K9/97nfJz88nEAhw6aWXtur4gwcPZuLEiZxwwgnMmjWLSCTCSy+9xIknnlhfJiUlhSlTpvDPf/6z0TouvvhiFixYQDgc5txzzyU/P59x48bxox/9iIyMDGbOnMnChQspKCjghhtu4MEHH2zl1YGMjAy+//3vM2bMGI477jgmTJhQv23WrFnMmjWrfnn69Ok8/PDD6h4oHVIgUrdbgpXcoycl9CKwXS8bFhERkdazhiO+xdP48ePdggULdlu3bNkyRo4cGaeIpCPS74S0h8X/7xhS3A4O+ul79eu++O9DqUzoTcENr8YxMhEREemIzGyhc258w/VqwRIRAYKulnBg95E4tyflklazOU4RiYiISGekBEtEBG+Qi4jtnmDV9OxLVqQ4ThGJiIhIZ9QpEqyO1I1R4ku/C9JeQq6WcCBxt3UufQDp7KSivDROUYmIiEhn0+ETrOTkZEpKSvTFWnDOUVJSQnJycrxDkS4o5GqJNEiwEjIHAVCyflU8QhIREZFOqMO/B2vgwIGsXbuW4mJ10xEv4R44cGC8w5AuKIFaIsHdE6ye2d7Lhss3FcHBh8QhKhEREelsOnyClZCQwNChQ+Mdhoh0cQmNtGBl9PX+9lTqZcMiIiLSSu3eRdDMjjezz8xshZnd0N7HExHZFwmuFtegBSunfx4RZ3rZsIiIiLRauyZYZhYE7gVOAEYBZ5vZqPY8pojIvkhgzwQrITGJEssgWLE+TlGJiIhIZ9PeLVgTgRXOuS+dczXAo8C0dj6miMhecc6RSC00SLAASkM5JFdujENUIiIi0hm1d4I1AFgTtbzWXyci0mHUhSMkUocLJu2xbUdSLr1qNsUhKhEREemM4j5Mu5ldYmYLzGyBRgoUkXioqakhYA5CeyZY1Sn9yArrVREiIiLSOu2dYK0DBkUtD/TX1XPO3eecG++cG5+Tk9PO4YiI7Km2phIAC+3ZRdDSB5BqlZRv27q/wxIREZFOqL0TrA+Ag8xsqJklAmcBz7bzMUVE9kptdRUA1kgL1tcvG165X2MSERGRzqldEyznXB1wBfAysAx4zDn3aXseU0Rkb9X4CVZjXQRTcoYA/suGRURERFrQ7i8ads69ALzQ3scREdlXdbVeghVoJMHq3TcPgKqSNXtsExEREWko7oNciIjEW7jGT7AS9kywsvoNIeyMiF42LCIiIq2gBEtEur26mqZbsIKhBIoti4QKJVgiIiLSMiVYItLt7WrBCjbSggVQktCXtMp1jW4TERERiaYES0S6vbraaqDxLoIAFT0GkFm7cX+GJCIiIp2UEiwR6fbCfoIVTExudHtt+mCyI1upq965P8MSERGRTkgJloh0e5FdCVZC4wlWKGsoAXMUr12xP8MSERGRTkgJloh0exF/mPZQEy1YKX2HAVC67ov9FpOIiIh0TkqwRKTbi9R5LVihJlqwsgYeBMDOTV/ut5hERESkc1KCJSJS4z1bFUru2ejm3P55VLsEIltX7c+oREREpBNSgiUi3V6kZgcAST3SGt0eDAbZFOhDwvY1+zMsERER6YSUYIlIt+f8FqzklMYTLIDSpH56F5aIiIi0SAmWiEjNTiLOSGqiiyBAZcog+oT1LiwRERFpnhIsEZHaHVSShAWa/pPoMoaQzg62b9uyHwMTERGRzkYJloh0e4G6SqosqdkySTlDAShe/fn+CElEREQ6KSVYItLtBWp3Um2ND9G+S3q/AwEoW693YYmIiEjT2pRgmdmvzGy5mS0xs6fMLMNfn2dmlWa22J9mxSRaEZF2EAxXUtNCgpUz+GAAaor1LiwRERFpWltbsF4BxjjnCoDPgRujtq10zhX606VtPI6ISLsJhauoCTafYPXqnU0padg2vQtLREREmtamBMs59y/nXJ2/OB8Y2PaQRET2r1C4ktpAjxbLbQ71I6Vi9X6ISERERDqrWD6DdRHwYtTyUDP70MzeNLOpMTyOiEhMJUYqCbfQggVQ3mMQmTV6F5aIiIg0LdRSATN7FejbyKafOuee8cv8FKgDHvG3bQAGO+dKzOxQ4GkzG+2cK2+k/kuASwAGDx68b2chItIGSa6K7aGm34G1S236EPqUv05dTRWhxJYTMhEREel+WkywnHPfam67mc0ATgK+6Zxz/j7VQLU/v9DMVgLDgQWN1H8fcB/A+PHj3V7GLyLSZkmumnCo5S6CwexhBNc51q/+gv4H5u+HyERERKSzaesogscD1wOnOOd2Rq3PMbOgP38AcBCgobdEpENKdlW4VrRgpfQ7CICta5e3d0giIiLSSbXYgtWCe4Ak4BUzA5jvjxh4BHCrmdUCEeBS59zWNh5LRCTmIuEIPakikpjSYtk+g0cCsHPTivYOS0RERDqpNiVYzrkDm1j/BPBEW+oWEdkfdlZsI9UiRJJ6t1g2O3cgO1wSlKhBXkRERBoXy1EERUQ6nYptmwEI9Gw5wQoEA2wM9iO54qv2DktEREQ6KSVYItKt7dy2BYBQanarym9LHkhGlYZqFxERkcYpwRKRbq2yvBiAxLSsVpWvThtC3/BGXLiu5cIiIiLS7SjBEpFurbrca8FK7d2nVeUt6wASrY6SDUXtGJWIiIh0VkqwRKRbq9nuDXCanpnTqvI9cr2xfbas0VDtIiIisiclWCLSrYV3lACQkZnbqvJZg7yh2ivWf9FuMYmIiEjnpQRLRLo1V1lKBT0IJiS2qnzfQQdQ44JESla2c2QiIiLSGSnBEpFuLblyM6WBzFaXT0hIYEOgL4nlGqpdRERE9qQES0S6tdSazZSFWvf81S6lSQNIr1zTThGJiIhIZ6YES0S6tYy6YnYkt24EwV12pg4mN7wBnGunqERERKSzUoIlIt2WC9eRHSmhLqXf3u3XeygpVFG+ZX07RSYiIiKdlRIsEem2SovXEbII1mvAXu2X1OcgADavXtYeYYmIiEgnpgRLRLqtreuLAEjOGrxX+2UOGg7A9vWfxzokERER6eSUYIlIt7W92BsJMD13yF7t13fwcCLOqNvyZXuEJSIiIp2YEiwR6bZqtq4GIKvf0L3ar2fPFIotEyvTSIIiIiKyuzYlWGY208zWmdlif/p21LYbzWyFmX1mZse1PVQRkdiKlK2j2iWQkZW71/uWhPrSc6cGuRAREZHdhWJQx53OuTuiV5jZKOAsYDTQH3jVzIY758IxOJ6ISEwkVGxkSyCLAYG9/7emih79GFTxUTtEJSIiIp1Ze3URnAY86pyrds6tAlYAE9vpWCIi+6Rn1SbKE/fuHVi71KYNIidSQqSuNsZRiYiISGcWiwTrCjNbYmZ/MbPe/roBQPTDCWv9dXsws0vMbIGZLSguLo5BOCIirZNRt5nK5L77tG+g92BCFmHLhqLYBiUiIiKdWosJlpm9amafNDJNA/4ADAMKgQ3Ar/c2AOfcfc658c658Tk5OXu7u4jIPqmuqaGPK6Eube/egbVLjz7ewBil67+IZVgiIiLSybX4DJZz7lutqcjM/gQ85y+uAwZFbR7orxMR6RC2bFjNAIsQyBjUcuFGZPQ9AIAdm1bFMiwRERHp5No6imC/qMXTgE/8+WeBs8wsycyGAgcB77flWCIisVS6wXuHVY+cvXsH1i59Bh0IQF3JVzGLSURERDq/to4ieLuZFQIOKAL+C8A596mZPQYsBeqAH2gEQRHpSHYWFwGQnrt378DapWfPFDaTSaBc78ISERGRr7UpwXLOndfMttuA29pSv4hIe6nb6iVGOQMP2Oc6SkK59Nyp3s8iIiLytfYapl1EpEOz8nWUk0Jyau+WCzdhe4/+ZNRsjGFUIiIi0tkpwRKRbil553pKgm0bubQ2dSA5kS24sN6FJSIiIh4lWCLSLaVVb6I8ad/egbWL9R5MgoUp2aiBLkRERMSjBEtEuqXsyGaqe/ZruWAzeuR4A2RsXbcyFiGJiIhIF6AES0S6ne3lpWRQgUsf2KZ60vsNA2DHpi9jEZaIiIh0AUqwRKTbKVnvvRw4lDm4TfX0GeglWLV6F5aIiIj4lGCJSLezbaOXYKX02beXDO+SlppGMRkEy1fHIiwRERHpApRgNaOqcgfV1ZXxDkNEYqx6i5cQ9e677+/A2mVLMJfknevbXI+IiIh0DW160XBXt+Sl+xm7+FaWJx5EWVYhgcETyM4by4Bho0lMSo53eCKyjyKlawg7I6tf21qwwHsX1oAdy1pV1kUifPLOc2T0O4BBB45p87FFRESk41GC1YzMvEI+3HgGGSWLGbfhMRI3/h3ehzoXYE2gL1sT+1Pdow+RlD5YWl8CPXuT2CONxJ5phHqkY0mphEIJBINBgsEgoaCBBQg7IxKOEK6rxoVridTVEgnX4OpqifjL4boaInU1ROpq/TI1uHAtrq4WF/bmCddAuA4XrsUiNRCpw8I1WPRPV0cgUotFagm4WgKRMAFXS9DVEXBhcBFwDiOCgffTOYzoac9tARxE/WyKw/b6uje1T9Pr9/bYTcfU9JlIV1LgKthimeQmJLa5rtr0PHK3v0nVzu0k90xrstzyD9+m7sWfkl/zER8mTWTQja+0+didXU1VJRXbitlRtoWq8hKqt5dQU1lObWUF4aoKqK2E2p0E6nYSqKskVLeTYLiKYLiq/u9bMFJLwNURJEzI1RGijqCrI0SYIHVf/41y+H/PvJ9EzVvUX4vobY1puKWxkrv9HbGmamtYz57rG/t7tGddLRy/iRj3db/W/E1vzX6xq6d1+zX3d19EOr4PA6NJ/O59fHNkbrxDaRUlWM04cNwRHDjuCACqq3ay6otFbC36hOqNy0natpJe1evpt+1LMku3EbJIXGOtdiFqd32lsF3zIeosRNi8+bA/XxsIURVIxlkILICZgflpkwX8ef+rhwX8n7u+igTq59ltG149UayZdKXpbU2sb2L13tZjzjVZqvm0q/X/c26fJK2TpH7tEGZ7nbkNnUos/kwnD51EaP1fWfnxPEYcdsIe29es+JjNz/ycQ7e/wTbSWBnpR25NUQyO3PGE62rZVryBsuK17ChZR1XpesLbN2EVm0ioLCa5Zis96spJiWwnzVXQw2rIBDKbqbPOBagkiWpLosqSqbZkagNJOAsRCYSoCfbABUJELIFIIETEQkQCCbhAyPsbF/D/xmH1Px3s/nfOXwbvy7lzXy/vxrXit3G3Mm63H7uv37Ou3atv5P8pLdXTaHiRRupuhItgu/2d23OH5v6mN19m93UN/w63tp491zVWprHDd5K/n11QYx8jkX1Rm3QA/VKT4h1GqynBaqWk5J4MzZ/C0Pwpe2yrq6tja8lGdpRvpWpHGZUV2wlXb8dqKoiE63CRCOFImEjEay0KEsECIQiGsGACBBOwYAIWSMBCCQSCiQQTEggEEwgmJBJMSCSUkEggmEQoKYlQKIFQQhKhhEQSEpMIBUMkBgMk6S+ZyH43eOyR8A6ULX8LohKstauWs+aZ/2FC6fNkksD8QRcx5rs/Z9M/bmPSmvuprdpBQnJKHCPfe9WV2yleu5LS9Sup3LyKcOlqEravI7VqHZm1m8hypWSZI6vBfuUuhdJAb3Yk9Kasx0C2JGQQTkrHJWdgPTMJ9MwgMTWLxLRMeqRmkJKaTs/UdJJ7pBJKTCbNjKbbBkVERDoWJVgxEAqFyMwdSGZu296pIyKdT06ffiwNjWJQ0eNU7biRoqUfUPH27ykse50+GItyT+eA79zCpL6DAAjkDCew1rGuaCmDDp4Q5+j3VFNTy/qvllNS9CmVG5YT3PoFvXYU0bd2DZmUMRDY9Zeu1gUpDmSzLTGX1RkTWZnaH0vrR2JGX3pm9ictexC9+/QnPSWN9HielIiIyH6kBEtEpI0qD7+aUW9/H341iIOBHS6ZD/pO56BTrmfigN1HKsw9sBA+hI3L349rglVWupUNqz6mbPWn1G3+jKRtK8msWs2A8DryrI48v1wp6WxKHMiKjMnU9RpCKHMIqbkHkDlgGDn98ugfCtE/bmchIiLS8SjBEhFpo0O/eSaLA0Gqlr+C9S9k9FHf5fBeDTvKeYYcPJ6tpBH86i3gB+0aVyQcZuPalRSv+pid65djJZ+Tsr2I3JrV9GErvfxydS7AhmA/SpMH81HGVEJ9RpA+cCR9hxXQu3cuvds1ShERka6lTQmWmc0BRviLGcA251yhmeUBy4DP/G3znXOXtuVYIiIdWeHRp8PRp7dYLhAM8mXqeIaWvktNVSWJyT3afOyqim2sX/kJ29YspWbTZyRs+5KMnUX0q1tHf6uub2EqpycbEwaxOmMiqzIPIrnfwWQPGUNu3sEMSkxmUJsjERERkTYlWM656bvmzezXQFnU5pXOucK21C8i0hWFxl9A1tw3+OCpXzPh7J+1ap+qHeVsXP0FJeu+oGbjZwS2riC1oog+NWvIoZRdHRHDztgU6MOWpMEsyZ5IIGc4aQNGkntAPr1zBpAe0PvlRURE2lNMugiaN/btmcAxsahPRKQrG3vEND6aP57C5b/hg98XkXDQUSQkp1JXW0vt9s3UVWwhUr6RpIq1pFdvIKtuE5mUkwdRz0alsTFhIF/2msRnGQeQ3HcEvQePYsABo+nfo6eeixIREYmTWD2DNRXY5Jz7ImrdUDP7ECgHfuace7uxHc3sEuASgMGDB8coHBGRjssCAYZd9g8+vP8Sxm56iqTN/9ijTLVLYFOwD9sS+/FF+kjC6YNIzM6jV99h5A4dQ+8sPRslIiLSEZlr4QV8ZvYq0LeRTT91zj3jl/kDsMI592t/OQlIdc6VmNmhwNPAaOdceXPHGj9+vFuwYMHen4WISCdVXl7KhhVLqK2uJCEhRM+MvqRn5pKekYWpO5+IiEiHZWYLnXPjG65vsQXLOfetFioOAd8BDo3apxqo9ucXmtlKYDig7ElEJEp6em/SDzky3mGIiIhIjMTin0e/BSx3zq3dtcLMcsws6M8fABwEfBmDY4mIiIiIiHRYsXgG6yxgdoN1RwC3mlktEAEudc5tjcGxREREREREOqw2J1jOuRmNrHsCeKKtdYuIiIiIiHQmLQ5ysT+ZWTHwVbzjaCAb2BLvIGS/0f3uPnSvuw/d6+5F97v70L3uXjri/R7inMtpuLJDJVgdkZktaGx0EOmadL+7D93r7kP3unvR/e4+dK+7l850vzUGsIiIiIiISIwowRIREREREYkRJVgtuy/eAch+pfvdfehedx+6192L7nf3oXvdvXSa+61nsERERERERGJELVgiIiIiIiIxogRLREREREQkRpRgNcPMjjezz8xshZndEO94JHbMbJCZvWFmS83sUzO70l+faWavmNkX/s/e8Y5VYsPMgmb2oZk95y8PNbP3/M/3HDNLjHeMEhtmlmFmj5vZcjNbZmaH67PdNZnZ1f7f8E/MbLaZJeuz3XWY2V/MbLOZfRK1rtHPsnnu8u/7EjM7JH6Ry95q4l7/yv87vsTMnjKzjKhtN/r3+jMzOy4uQTdDCVYTzCwI3AucAIwCzjazUfGNSmKoDrjGOTcKmAT8wL+/NwCvOecOAl7zl6VruBJYFrX8f8CdzrkDgVLgP+MSlbSH3wEvOecOBsbi3Xd9trsYMxsA/AgY75wbAwSBs9Bnuyt5ADi+wbqmPssnAAf50yXAH/ZTjBIbD7DnvX4FGOOcKwA+B24E8L+vnQWM9vf5vf+9vcNQgtW0icAK59yXzrka4FFgWpxjkhhxzm1wzi3y57fjfQEbgHePH/SLPQicGpcAJabMbCBwIvBnf9mAY4DH/SK6112EmfUCjgDuB3DO1TjntqHPdlcVAnqYWQjoCWxAn+0uwzn3FrC1weqmPsvTgL85z3wgw8z67ZdApc0au9fOuX855+r8xfnAQH9+GvCoc67aObcKWIH3vb3DUILVtAHAmqjltf466WLMLA8YB7wH5DrnNvibNgK58YpLYuq3wPVAxF/OArZF/eHW57vrGAoUA3/1u4T+2cxS0Ge7y3HOrQPuAFbjJVZlwEL02e7qmvos63tb13YR8KI/3+HvtRIs6dbMLBV4ArjKOVcevc157zDQeww6OTM7CdjsnFsY71hkvwgBhwB/cM6NA3bQoDugPttdg//szTS8pLo/kMKeXYykC9NnuXsws5/iPdrxSLxjaS0lWE1bBwyKWh7or5MuwswS8JKrR5xzT/qrN+3qUuD/3Byv+CRmJgOnmFkRXlffY/Ce0cnwuxWBPt9dyVpgrXPuPX/5cbyES5/trudbwCrnXLFzrhZ4Eu/zrs9219bUZ1nf27ogM5sBnASc475+eW+Hv9dKsJr2AXCQPxpRIt7DdM/GOSaJEf8ZnPuBZc6530Rteha4wJ+/AHhmf8cmseWcu9E5N9A5l4f3OX7dOXcO8AZwhl9M97qLcM5tBNaY2Qh/1TeBpeiz3RWtBiaZWU//b/que63PdtfW1Gf5WeB8fzTBSUBZVFdC6YTM7Hi87v2nOOd2Rm16FjjLzJLMbCjewCbvxyPGptjXyaA0ZGbfxnt2Iwj8xTl3W3wjklgxsynA28DHfP1czk14z2E9BgwGvgLOdM41fMBWOikzOwq41jl3kpkdgNeilQl8CJzrnKuOY3gSI2ZWiDegSSLwJXAh3j8o6rPdxZjZL4DpeN2HPgQuxnsWQ5/tLsDMZgNHAdnAJuAW4Gka+Sz7SfY9eN1EdwIXOucWxCFs2QdN3OsbgSSgxC823zl3qV/+p3jPZdXhPebxYsM640kJloiIiIiISIyoi6CIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYh0EGaWZ2bOzELxjqWrM7MZZjYv3nF0NGY21cw+i3ccIiKdmRIsERHp1MxsppnVmllF1HR9vOPqjJxzbzvnRsSyTj9pq2gwOTM7PZbHERHpKPSvpCIiMWJmIedcXbzj6KbmOOfOjXcQ7aUz/245594GUnctm9lRwD+Bl+IUkohIu1ILlohIG5hZkZn9xMyWADvMLGRmk8zs32a2zcw+8r9Q7io/18z+18zeN7NyM3vGzDKbqPtCM1tmZtvN7Esz+68G26eZ2WK/npVmdry/vpeZ3W9mG8xsnZn9j5kFWziPYWb2upmVmNkWM3vEzDKitm01s0P85f5mVrzrvMzsFDP71D/fuWY2ssH1udbMlphZmZnNMbPkvb/Se8/MbvCvy3YzW2pmpzVRzszsTjPb7F/Lj81sjL8tyczuMLPVZrbJzGaZWY9WHv8Bv/wrfgxvmtmQqO2/M7M1/jEXmtnUqG0zzexxM3vYzMqBGWY20cze9a/zBjO7x8wSo/ZxZna5mX3hH++//Xv3b/8Yj0WXbyLmo8xsbWvOrw0uAB53zu1o5+OIiMSFEiwRkbY7GzgRyABygeeB/wEygWuBJ8wsJ6r8+cBFQD+gDririXo3AycB6cCFwJ1RSc5E4G/Adf5xjwCK/P0e8Os9EBgHHAtc3MI5GPC/QH9gJDAImAngnFsJ/AR42Mx6An8FHnTOzTWz4cBs4CogB3gB+GeDL/JnAscDQ4ECYEajAZhN8ZOHpqYpLZxDQyuBqUAv4Bd+/P0aKXcs3vUb7pc9Eyjxt/3SX1+Idz0HADfvRQznAP8NZAOLgUeitn3g15sJ/B34R4PkcxrwON79fQQIA1f7dR0OfBO4vMHxjgMOBSYB1wP3Aefi3c8xeL+r+8xPlJu6P79vxf4pwBnAg22JQ0SkQ3POadKkSZOmfZzwkpqLopZ/AjzUoMzLwAX+/Fzgl1HbRgE1QBDIAxwQauJYTwNX+vN/BO5spEwuUA30iFp3NvDGXp7XqcCHDdY9C3wMLAGS/HU/Bx6LKhMA1gFHRV2fc6O23w7MivE9mOlfw21RU/9Gyi0GpvnzM4B5/vwxwOd4SUkgqrwBO4BhUesOB1a1Mq4HgEejllPxkqRBTZQvBcZGndNbLdR/FfBU1LIDJkctLwR+ErX8a+C3LdR5FLA2lvenQf3nAasAa69jaNKkSVO8Jz2DJSLSdmui5ocA3zWzk6PWJQBvNFH+K397dsNKzewE4Ba8FpQA0BMvwQGvReKFRmIZ4te3wcx2rQs0OOYezCwX+B1ei0+av09pg2J/wkuyLnHOVfvr+vvnAIBzLmJma/BaenbZGDW/098n1h5zDZ7BMrPzgR/jJa7gJTh7XGfn3Otmdg9wLzDEzJ7Ea3lMxrvmC6OupeElw61Vf92dcxVmthXv/NeY2bXAf/rLDq+lMruxff3zGQ78BhjvxxXCS6KibYqar2xkue9exN4eLgD+5pxzcY5DRKTdqIugiEjbRX9ZXIPXgpURNaU4534ZVWZQ1PxgoBbYEl2hmSUBTwB3ALnOuQy8hGrXN/01wLBGYlmD14KVHXX8dOfc6BbO4f/555HvnEvH61b2dVZhlgr8FrgfmGlfPze2Hi+p21XO/PNb18Lx9mCNjzYXPU1tuZb6uobgJYRXAFn+9fsk+pyiOefucs4diteiOByv6+UWvKRkdNS17OWcS22sjibU32v/GmYC6/1zuR6vO2JvP76yBvE1TEL+ACwHDvLv0U1NnU978Z+1a+r+zGph30F4LWR/2y/BiojEiRIsEZHYehg42cyOM7OgmSX7AwcMjCpzrpmN8p9nuhXvgf9wg3oSgSSgGKjzW7OOjdp+P3ChmX3TzAJmNsDMDnbObQD+BfzazNL9bcPM7MgW4k4DKoAyMxuAl2BE+x2wwDl3Md4zZru+TD8GnOjHkQBcg5fg/bulC9WQ84YIT21mensvqkvBS1CKwRswBO8ZpD2Y2QQzO8yPfwdQBUSccxG8JO1OM+vjlx1gZsdF7essahCTRnzbf7YsEe9ZrPnOuTV417vOjy9kZjfjtWA1Jw0oByrM7GDgshbKx5xzbnQz9+fSFnY/D/i3857pExHpspRgiYjEkP/leRpe60IxXovSdez+9/YhvOdzNuJ1Q/tRI/Vs99c/htdV73t43fN2bX8ff+ALvJaPN/m6Jel8vARtqb/v43gDajTnF8Ahfl3PA0/u2mBm0/AGqdj1hf7HwCFmdo5z7jO81q678Vp8TgZOds7VtHC8duWcW4r3zNG7eN3k8oF3miiejpdIleJ1dywBfuVv+wmwApjvj+b3KjAC6ltktvN1t83G/B2vm+dWvMEndnVjfBlvmPLP/WNW0UI3Trxui9/zj/knYE4L5Tua89HgFiLSDZi6QYuI7D9mNhd42Dn353jHIm1jZufidR+8sYntD+ANGPGz/RqYiIjElQa5EBER2QfOuYfjHYOIiHQ86iIoItJNmPfS270enEC6FjO7qYnfgxfjHZuISFegLoIiIiIiIiIxohYsERERERGRGOlQz2BlZ2e7vLy8eIchIiIiIiLSrIULF25xzuU0XN+hEqy8vDwWLFgQ7zBERERERESaZWZfNbZeXQRFRERERERiRAmWiIiIiIhIjCjBEhFphU8Xz2f5ojfjHYaIiIh0cB3qGazG1NbWsnbtWqqqquIdinQyycnJDBw4kISEhHiHIp2cc47RTx8HQHV+CUkJHf5Pp4iIiMRJh/+WsHbtWtLS0sjLy8PM4h2OdBLOOUpKSli7di1Dhw6NdzjSyW2vriPdny9a+gEjxh4e13hERESk4+rwXQSrqqrIyspSciV7xczIyspSy6fERGnF179HFZ/NjV8gIiIi0uF1+AQLUHIl+0S/NxIr24vX1s+Hi1fEMRIRERHp6DpFgiUiEk9VJUX18z0qGn3lhYiIiAigBKtVzIxrrrmmfvmOO+5g5syZ8Qsoyvz58znssMMoLCxk5MiR9XHNnTuXf//7322q+/jjjycjI4OTTjopBpGKdF7hsg0AfBUYSGb12hZKi4iISHemBKsVkpKSePLJJ9myZUtM63XOEYlE2lTHBRdcwH333cfixYv55JNPOPPMM4HYJFjXXXcdDz30UJvqEOkKIjWVABT3PIjc8CZcXU2cIxIREZGOqs2jCJrZIOBvQC7ggPucc78zs5nA94Fiv+hNzrkX2nKsX/zzU5auL29LFXsY1T+dW04e3WyZUCjEJZdcwp133sltt92227bi4mIuvfRSVq9eDcBvf/tbJk+ezMyZM0lNTeXaa68FYMyYMTz33HMAHHfccRx22GEsXLiQF154gXvuuYcXX3wRM+NnP/sZ06dPZ+7cucycOZPs7Gw++eQTDj30UB5++OE9nivavHkz/fr1AyAYDDJq1CiKioqYNWsWwWCQhx9+mLvvvpuDDz64yThXrlzJihUr2LJlC9dffz3f//73AfjmN7/J3Llzm702//jHP/jFL35BMBikV69evPXWW1RVVXHZZZexYMECQqEQv/nNbzj66KN54IEHePrpp9mxYwdffPEF1157LTU1NTz00EMkJSXxwgsvkJmZyZ/+9Cfuu+8+ampqOPDAA3nooYfo2bPnbsedNGkS999/P6NHe/fuqKOO4o477mD8+PHNxiuyLyK11QDUZhxAqOINtm5eS2b/A+IclYiIiHREsWjBqgOucc6NAiYBPzCzUf62O51zhf7UpuQq3n7wgx/wyCOPUFZWttv6K6+8kquvvpoPPviAJ554gosvvrjFur744gsuv/xyPv30UxYsWMDixYv56KOPePXVV7nuuuvYsMHrjvThhx/y29/+lqVLl/Lll1/yzjvv7FHX1VdfzYgRIzjttNP44x//SFVVFXl5eVx66aVcffXVLF68mKlTpzYb55IlS3j99dd59913ufXWW1m/fn2rr8utt97Kyy+/zEcffcSzzz4LwL333ouZ8fHHHzN79mwuuOCC+tH8PvnkE5588kk++OADfvrTn9KzZ08+/PBDDj/8cP72t78B8J3vfIcPPviAjz76iJEjR3L//ffvcdzp06fz2GOPAbBhwwY2bNig5EraT52XYCX1ORCALeu+jGc0IiIi0oG1uQXLObcB2ODPbzezZcCAttbbmJZamtpTeno6559/PnfddRc9evSoX//qq6+ydOnS+uXy8nIqKiqarWvIkCFMmjQJgHnz5nH22WcTDAbJzc3lyCOP5IMPPiA9PZ2JEycycOBAAAoLCykqKmLKlCm71XXzzTdzzjnn8K9//Yu///3vzJ49u9FWp+binDZtGj169KBHjx4cffTRvP/++5x66qmtui6TJ09mxowZnHnmmXznO9+pP6cf/vCHABx88MEMGTKEzz//HICjjz6atLQ00tLS6NWrFyeffDIA+fn5LFmyBPCSsJ/97Gds27aNiooKjjvuuD2Oe+aZZ3Lsscfyi1/8gscee4wzzjijVfGK7AvnJ1ip/YfDIthRrIEuREREpHExfdGwmeUB44D3gMnAFWZ2PrAAr5WrtJF9LgEuARg8eHAsw4m5q666ikMOOYQLL7ywfl0kEmH+/PkkJyfvVjYUCu32fFX0+5hSUlJadbykpKT6+WAwSF1dXaPlhg0bxmWXXcb3v/99cnJyKCkp2aNMU3HCnsOZ783w5rNmzeK9997j+eef59BDD2XhwoXNlo8+p0AgUL8cCATqz2/GjBk8/fTTjB07lgceeKDRhHHAgAFkZWWxZMkS5syZw6xZs1ods8heq/M+v9mDDgagtlQDXYiIiEjjYjbIhZmlAk8AVznnyoE/AMOAQrwWrl83tp9z7j7n3Hjn3PicnJxYhdMuMjMzOfPMM3frsnbsscdy99131y8vXrwYgLy8PBYtWgTAokWLWLVqVaN1Tp06lTlz5hAOhykuLuatt95i4sSJrY7p+eefxzkHeF0Pg8EgGRkZpKWlsX379hbjBHjmmWeoqqqipKSEuXPnMmHChFYff+XKlRx22GHceuut5OTksGbNGqZOncojjzwCwOeff87q1asZMWJEq+vcvn07/fr1o7a2tr6exkyfPp3bb7+dsrIyCgoKWl2/yF4Le4Na9M7pT4VLhvJ1cQ5IREREOqqYJFhmloCXXD3inHsSwDm3yTkXds5FgD8Brc8aOrBrrrlmt9EE77rrLhYsWEBBQQGjRo2qb0k5/fTT2bp1K6NHj+aee+5h+PDhjdZ32mmnUVBQwNixYznmmGO4/fbb6du3b6vjeeihhxgxYgSFhYWcd955PPLIIwSDQU4++WSeeuopCgsLefvtt5uME6CgoICjjz6aSZMm8fOf/5z+/fsDXvL33e9+l9dee42BAwfy8ssvA163xF3PW1133XXk5+czZswYvvGNbzB27Fguv/xyIpEI+fn5TJ8+nQceeGC3lquW/Pd//zeHHXYYkydP5uCDD65f/+yzz3LzzTfXL59xxhk8+uij9SMnirSbumqqScACAbYEsknYsSHeEYmIiEgHZbtaP/a5Aq8/2YPAVufcVVHr+/nPZ2FmVwOHOefOaq6u8ePHuwULFuy2btmyZYwcObJNMUrTGo522NXo90di4Z17LmbsludJnbmBj/7f0fR0Ozjop+/HOywRERGJIzNb6JzbY5S1WDyDNRk4D/jYzBb7624CzjazQryh24uA/4rBsURE9jsL11BDAgCVPfrSv2x+nCMSERGRjioWowjOAxobFaFTD8veXcycOTPeIYh0eIFwNbXmJVh1qf3I2lZKpLaGQEJinCMTERGRjiZmg1yIiHRVgUgNteYlU4FeAwmYo3TzmjhHJSIiIh2REiwRkRYEIjXU+S1YSVneu+nKNjY+MqiIiIh0b0qwRERaEAzXEPZbsFJzhgCwvXh1PEMSERGRDkoJlohIC4KuhrqAl2Bl9vUSrNpSvQtLRERE9qQEq5WefvppzIzly5c3WaaoqIgxY8bE7JifffYZRx11FIWFhYwcOZJLLrkE8F4S/MILbRtD5KKLLqJPnz4xjVekqwpFaggHvC6CmVl9qHSJuPL1cY5KREREOiIlWK00e/ZspkyZwuzZsxvdXldX1+ZjhMPh3ZZ/9KMfcfXVV7N48WKWLVvGD3/4QyA2CdaMGTN46aWX2lSHSHcRdDVE/BasYDDAlkAWoR0b4xyViIiIdESxeA/W/vPiDbDx49jW2TcfTvhls0UqKiqYN28eb7zxBieffDK/+MUvAJg7dy4///nP6d27N8uXL+df//oXdXV1nHPOOSxatIjRo0fzt7/9jZ49e/Laa69x7bXXUldXx4QJE/jDH/5AUlISeXl5TJ8+nVdeeYXrr7+es876+l3MGzZsYODAgfXL+fn51NTUcPPNN1NZWcm8efO48cYbOemkk/jhD3/IJ598Qm1tLTNnzmTatGk88MADPPXUU5SVlbFu3TrOPfdcbrnlFgCOOOIIioqKmj3vN998kyuvvBIAM+Ott94iNTWV66+/nhdffBEz42c/+xnTp09n7ty53HLLLWRkZPDxxx9z5plnkp+fz+9+9zsqKyt5+umnGTZsGP/85z/5n//5H2pqasjKyuKRRx4hNzd3t+OeddZZnHfeeZx44omAlwyedNJJnHHGGa27pyIxFnK1VAWS6pfLQtn0qNoUx4hERESko1ILVis888wzHH/88QwfPpysrCwWLlxYv23RokX87ne/4/PPPwe8bn2XX345y5YtIz09nd///vdUVVUxY8YM5syZw8cff0xdXR1/+MMf6uvIyspi0aJFuyVXAFdffTXHHHMMJ5xwAnfeeSfbtm0jMTGRW2+9lenTp7N48WKmT5/ObbfdxjHHHMP777/PG2+8wXXXXceOHTsAeP/993niiSdYsmQJ//jHP1iwYEGrz/uOO+7g3nvvZfHixbz99tv06NGDJ598ksWLF/PRRx/x6quvct1117FhwwYAPvroI2bNmsWyZct46KGH+Pzzz3n//fe5+OKLufvuuwGYMmUK8+fP58MPP+Sss87i9ttv3+O406dP57HHHgOgpqaG1157rT7ZEomHhKgWLICdSX1Ir90Sx4hERESko+pcLVgttDS1l9mzZ9e35Jx11lnMnj2bQw89FICJEycydOjQ+rKDBg1i8uTJAJx77rncdddd/Md//AdDhw5l+PDhAFxwwQXce++9XHXVVYCXUDTmwgsv5LjjjuOll17imWee4Y9//CMfffTRHuX+9a9/8eyzz3LHHXcAUFVVxerV3ghn//Ef/0FWVhYA3/nOd5g3bx7jx49v1XlPnjyZH//4x5xzzjl85zvfYeDAgcybN4+zzz6bYDBIbm4uRx55JB988AHp6elMmDCBfv36ATBs2DCOPfZYwGt5e+ONNwBYu3Yt06dPZ8OGDdTU1Ox27XY54YQTuPLKK6muruall17iiCOOoEePHq2KWaQ9JLhaIsGvW7BqU/qStf0tcA6ssfesi4iISHelFqwWbN26lddff52LL76YvLw8fvWrX/HYY4/hnAMgJSVlt/LW4MtWw+XGNKwjWv/+/bnooot45plnCIVCfPLJJ3uUcc7xxBNPsHjxYhYvXszq1asZOXLkPsezyw033MCf//xnKisrmTx5crMDfAAkJX39BTQQCNQvBwKB+mfUfvjDH3LFFVfw8ccf88c//pGqqqo96klOTuaoo47i5ZdfZs6cOU0moCL7S4KrxQW/bsEivT9JVktFqboJioiIyO6UYLXg8ccf57zzzuOrr76iqKiINWvWMHToUN5+++1Gy69evZp3330XgL///e9MmTKFESNGUFRUxIoVKwB46KGHOPLII1s89ksvvURtbS0AGzdupKSkhAEDBpCWlsb27dvryx133HHcfffd9Unfhx9+WL/tlVdeYevWrfXPQe1qXWuNlStXkp+fz09+8hMmTJjA8uXLmTp1KnPmzCEcDlNcXMxbb73FxIkTW11nWVkZAwYMAODBBx9sstz06dP561//yttvv83xxx/f6vpF2kMiuydYCRne73DJhq/iFZKIiIh0UEqwWjB79mxOO+203dadfvrpTY4mOGLECO69915GjhxJaWkpl112GcnJyfz1r3/lu9/9Lvn5+QQCAS699NIWj/2vf/2LMWPGMHbsWI477jh+9atf0bdvX44++miWLl1KYWEhc+bM4ec//zm1tbUUFBQwevRofv7zn9fXMXHiRE4//XQKCgo4/fTT67sHnn322Rx++OF89tlnDBw4kPvvvx+AWbNmMWvWLAB++9vfMmbMGAoKCkhISOCEE07gtNNOo6CggLFjx3LMMcdw++2307dv31Zfz5kzZ/Ld736XQw89lOzs7Pr1CxYs4OKLL65fPvbYY3nzzTf51re+RWJiYmNViewXzjkSqYVQcv26lOxBgF42LCIiInuyXa0eHcH48eNdw0EYli1bVt/dTfbOAw88wIIFC7jnnnviHUrc6PdH2qq6to6k27L4YPDFTLjo1wCsLfqcgQ9MYEH+LYw//cdxjlBERETiwcwWOuf2GNxALVgiIs2oqan2ZkJfP2OY3XcwEWdEyvSyYREREdld5xpFUPbKjBkzmDFjRrzDEOnUaqq9gVgs4esEKzk5mWLrRaBiQ7zCEhERkQ6qU7RgdaRujNJ56PdGYqG2aicAFjVMO0BpMJukSo0iKCIiIrtr9wTLzI43s8/MbIWZ3bC3+ycnJ1NSUqIvy7JXnHOUlJSQnJzccmGRZtTW7GrB2v13qSIxh9Sa4niEJCIiIh1Yu3YRNLMgcC/wH8Ba4AMze9Y5t7S1dQwcOJC1a9dSXKwvMrJ3kpOTGThwYLzDkE6utroSgECDBKumZy69Kz+OR0giIiLSgbX3M1gTgRXOuS8BzOxRYBrQ6gQrISGBoUOHtlN4IiLNq/NbsAIJu3cRDKf2I6OkgprKHST2aPpl4SIiItK9tHcXwQHAmqjltf66emZ2iZktMLMFaqUSkY7m6wRr9xasUK/+AGzRy4ZFREQkStwHuXDO3eecG++cG5+TkxPvcEREdhOu8boIBhskWMmZXvfT8s1F+zskERER6cDaO8FaBwyKWh7orxMR6RTqar33YAUTd+8imNZnMAA7S9bu95hERESk42rvBOsD4CAzG2pmicBZwLPtfEwRkZgJ+4NchBJ77LY+s5/3bGhtqf7NSERERL7WroNcOOfqzOwK4GUgCPzFOfdpex5TRCSWInVeC1Yocfcugr0yMtnhkqF8fTzCEhERkQ6qvUcRxDn3AvBCex9HRKQ9hGu9QS4SknZvwTIzSgJZJOzUy4ZFRETka3Ef5EJEpCNzuxKsxD1fWl2WkENq9cb9HZKIiIh0YEqwRESaEfEHuUhM7rnHth09+pNZu3l/hyQiIiIdmBIsEZFmuDqvBSuxQRdBgNrU/mRTSsR/V5aIiIiIEiwRkWa42hoAkpL37CJoGd5Q7aWbivZnSCIiItKBKcESEWmGC3utUxbaM8HqkT0EgK3rV+7XmERERKTjUoIlItIMq6smjEFgz0FXM/ofAECFWrBERETEpwRLRKQ5dTXUkgBme2zqM8BLsOq2rt7fUYmIiEgHpQRLRKQZFq6ihsRGt6WlplJMBoHytfs5KhEREemolGCJiDQjFK6kypKa3F4SzCV55/r9GJGIiIh0ZEqwRESaEQxXUWN7DnCxS0VyX3rV6GXDIiIi4lGCJSLSjFC4ippA0y1Y1SkDyAkX4yKR/RiViIiIdFRKsEREmpEQqaIm0HQLlmUMJMlqKS/ZsB+jEhERkY5KCZaISDMSIlXUNZNgJWXlAbBlnd6FJSIiIkqwRESaldhCgpXedygA2zet2l8hiYiISAemBEtEpBmJrpq6YI8mt2cPPBCA6i1f7a+QREREpANTgiUi0owkV9VsgpXRO5sdLhnK1uzHqERERKSjalOCZWa/MrPlZrbEzJ4yswx/fZ6ZVZrZYn+aFZNoRUT2sySqIaHpBMsCATYHc0mq0MuGRUREpO0tWK8AY5xzBcDnwI1R21Y65wr96dI2HkdEZL9zzpHsmk+wAMqS+pFerVEERUREpI0JlnPuX865On9xPjCw7SGJiHQM1dXVJFoYS+zZbLnKngPICW/aT1GJiIhIRxbLZ7AuAl6MWh5qZh+a2ZtmNrWpnczsEjNbYGYLiouLYxiOiEjb7NixHYBAYkqz5SIZg0hjJzvKSvZHWCIiItKBtZhgmdmrZvZJI9O0qDI/BeqAR/xVG4DBzrlxwI+Bv5tZemP1O+fuc86Nd86Nz8nJafsZiYjESKWfYAWTmk+wErO8odqL13zR7jGJiIhIxxZqqYBz7lvNbTezGcBJwDedc87fpxqo9ucXmtlKYDiwoK0Bi4jsL5U7KwAIJTffRTC17zAAyjeugDGT2j0uERER6bjaOorg8cD1wCnOuZ1R63PMLOjPHwAcBHzZlmOJiOxv1Tu9FqxQCy1Y2QP8d2EVF7V3SCIiItLBtdiC1YJ7gCTgFTMDmO+PGHgEcKuZ1QIR4FLn3NY2HktEZL+q3eH92QqlZDZbLis7lwrXA7at3h9hiYiISAfWpgTLOXdgE+ufAJ5oS90iIvEWrvASrMS0rGbLBYIBNgX7kFShlw2LiIh0d7EcRVBEpEtxldsASEprvgULoCyxH2lVeheWiIhId6cES0SkCZGdpQD07NXyCKdVKf67sLyxfkRERKSbUoIlItKEyM5S6lyA9PSMlsv2GkwqO6ks1+OmIiIi3ZkSLBGRJljVNsotFQu0/KcyISsPgOK1eheWiIhId6YES0SkCaGabVQE0lpVNq3vAQCUb1jRniGJiIhIB6cES0SkCQk15VQFW5dgZQ08CICqLUXtGJGIiIh0dEqwRESa0LNuG9WhXq0qm1P/Lqyv2jkqERER6ciUYImINCEzUkJ1z76tKhsIBtgU6ENixbp2jkpEREQ6MiVYIiKNqNixgyzKiKT3b/U+25L6kV61vh2jEhERkY5OCZaISCO2rPsSgFDGwFbvU5kygOw6vQtLRESkO1OCJSLSiG2bigDomTOk1fu49EGkspOqitJ2ikpEREQ6OiVYIiKNqNyyGoCMvnmt3icx02vtKl63qj1CEhERkU5ACZaISCMiW1YQdkbWgGGt3iclexAA5cWr2yssERER6eCUYImINCK59HPWB/uTkNSz1fuk53gJVlXJ2vYKS0RERDo4JVgiIo3IqfySkp6tb70CyOrnPa8VLtNIgiIiIt2VEiwRkQbKt5cxILKBmszhe7VfSkoqpS4N276hnSITERGRjq5NCZaZzTSzdWa22J++HbXtRjNbYWafmdlxbQ9VRGT/WLFoLkFzpB0waa/33RrMIrFyUztEJSIiIp1BKAZ13OmcuyN6hZmNAs4CRgP9gVfNbLhzLhyD44mItKvtn79NxBlDDzlmr/etSMgmpXpzO0QlIiIinUF7dRGcBjzqnKt2zq0CVgAT2+lYIiIxlbnpXVYnDCU5PWuv961MziWjrqQdohIREZHOIBYJ1hVmtsTM/mJmvf11A4A1UWXW+uv2YGaXmNkCM1tQXFwcg3BERPZd8aZ1jKr9lE39jt6n/etS+5LpthGpq41xZCIiItIZtJhgmdmrZvZJI9M04A/AMKAQ2AD8em8DcM7d55wb75wbn5OTs7e7i4jE1OevP0TQHP0nfXef9g+k9yNgjrJiDdUuIiLSHbX4DJZz7lutqcjM/gQ85y+uAwZFbR7orxMR6bBcJEL/FbNZGRzGsFF7P8AFQGJvr7G+dNNX9O43NJbhiYiISCfQ1lEE+0UtngZ84s8/C5xlZklmNhQ4CHi/LccSEWlvyxa8ztBwEcUjvgdm+1RHz6yBAOzYohYsERGR7qitowjebmaFgAOKgP8CcM59amaPAUuBOuAHGkFQRDq6qrl3sp0eFJzwn/tcR68+XuN9zTa9C0tERKQ7alOC5Zw7r5lttwG3taV+EZH9ZdmCuRyycx7zB/8Xk9J6t7xDE7L69CfijHC53oUlIiLSHbXXMO0iIp2Gc47qf/2CbaSRf8YNbaorOSmJrZZOYIcSLBERke5ICZaIdHsfvv08hTWLWDn8YlLSM9tcX1kgk4RKvXZCRESkO2rrM1giIp1aOByhx5u3UmyZFHzn2pjUWZGQSUrNlpjU1VlEwhHKt5VQvnUDO0o3U1W2idqd23F11RCuxtVV4yJhXCCBQEIygWAigYREAok9CKX0Jik1k6S0LHqmZ5KSlkHPpARsHwcaERERiSclWCLSrX3w0t+YFP6MxeNuJSc5NSZ1ViXn0Le8KCZ1dSSRcIR1q7+g9MsPqd64FEpXk1yxmozqDeRGNpNhdWTE4DhhZ5TRkwpLYaelUBlIoTqUSk0ojbqEVCKJ6UQS0wgkpZKQmERiYhKJSUkEQolEAok4C2AugrkI4P10kTAuEsG5CC5ShwvX4SJhLOL9JFIHu366MIS9n7ZrvavDIhH/Zxhz3vaAP28ujHPgMCIYEeeN/uQwHAEw8+fNH6HS/O2BqGXD+fPUz3uiU01rMGO7/dftfjFt930b1iVt0MT92f2+NL7dGrkL0f+eYE1saLLOhGQOPP0XpPRqewu8iLSdEiwR6bZqa2vot+B21gQGUnDi5TGrN9yzD5nbtnlf4APBmNW7P7lIhNWrlrPx47m4tQtIK/uMgTWrGGQ76l9yuM2lUhzqS3HKQaxPOwZLyyWYmkNieg49M/qQnNqLhMRkAok9SEhMJhgKEamtobammpqaKuqqK6mt2knNjlJqdmwlvKOUSGUZVG4jUF1GoKacUM12etZtJyO8ieTKL+m5Ywcp7CTQMJFoJ7UuSJiAPwWp839G/J9hC9YvG2DmMCBQn045P12K+F+IHQEiAF9vd9Flv97HS9F2/yLemrPeP1dG9tCKC99e96a3VTD/HwlMuvg37XQEEdkbSrBEpNta9Mw9HObWsWTy7xkUSohZvZaWS4KFKd9aTHp235jV257C4QirPn2P4iX/ImH9BwzZ+TFD2MYQYIdLZk3iAXyecyzWdzSpg8eSc0AhmVk5ZMSjG18kAjUV1FXvYGdlNTsqd7KzspJIXS0WqcEiYQgEcRYAC+BcAAIBAsEggUCQQCBAMJRAIBjCQgkEAiECwSDBYAKBUIhAKIFgIEQw6JVNCBhJhrosStw45/yfXydpzrn6+UW/OYVRa2ezfdtPScvIikuMIvI1JVgi0i1VVVWS98k9LA+NJP+Ys2Nad0Iv7x3spZvXdOgEa9vmtXzx7j+JrHiNYdvf50DKOBDYYH1Y02sCXw06jJxRRzBo+KEcHOpA/7sIBCA5nVByOum9ID3e8Yi0s13JvTXWFxFI+48bSH/6RN594n85/D/v2L/BicgeOtD/MUVE9p+Fz/2JyZRQPPVXWCC2A6r2yOwPwPaSdcCEmNbdVkVFX7Lu37PJXPU8I2s/ZQJQSjpFvSay+oCjGTT+2/QbcAD94h2oiLTaQYVTWPjqUYxb/QDrV11M/6EHxzskkW5NCVYzVi75N8WLnqPXwVM5YOxUknrE5gF4EYmvcDjMgE//yKrgAYyeelrM60/LHgBAVen6mNe9t5xzLP+yiKK3Z9N3zQsU1H1CnjmKAkN4Z9B/0efQkxmW/w3GBTvns2Ii4hl41m8I/+lwSuZcTr/rX+m0z3+KdAVKsJqxZembTCq6F4rupebFIJ+FhrEt7UDIHkHPAaNJHzCCnAF59EzpYB1UnCMcrqO2pprammrCtTXU1VZTW+vNh2urqautJVxXTaSuhnBtDZFIGJzz+nS7iN/R2wERr++3PznnLVvD9UTqO4e7Nj/G24rnHFos0tZnJdq4fyue1Wi2RBuf9XCNjlG1N9p6D+J8/VtQtWEZk91aFh8S+9YrgMxcbxiIum0bYl53axWtWcvnbz5K71X/ZFzdEkZahPWhgXxy4CX0/cb3yBtWSF7cohORWMsdOIz5o65l0rLbePehmzn8gtviHVK7cZEIdTWVVFdXUV21k9rqKmqqK6mrqfK+99RUEamrgroafwRRb4pEIhAJE4keWdQfXdQbeTTcYCTO3YeEdJjfXdO+/v/sHsN6Rv+0ZrZRX09D1rDOxlgT/59v5PuDNbNtV4nGN+0ZX6tiawc1SZkMKTyGvr2S9+tx95USrGYcdtaNbNtyIas+fJ3KL/9NxtYlHLjtHbK2vQArvi63nZ5sDWSxI5hOXSjFmxJSCAd6QCCABUIQCGIWwFnQS2Aidd7wvy5MIFLnLftDApvztgUitd7k6gi4OoKRWgLUEYrUEaSWoKsj5OoIESZELSEXJgFvOWiOINA5fg1F9r911pf84y5sl7pT03uz3fUgsH3/tmBt3LyZZW88SuqKZxlbs4g8C7Mp2I/Phl3EoKnn0D9vHP01UINIl3XYd69l4Z3/5rAv72XBs4MYf8ql8Q6pUeHaGsq2bmT71s1sLy2mumwzNRVbsJ2lBKq2YjUVBGorCNXuICG8g4RwJUmRnfRwlfRwVfSkigRzJADqW9Q9zA2PZUHvQk4q6B/vUFpFCVYLMrL7Mu4/vgd8r35dSfEGNq1cQtXmFVSXroftG0mu3ERiXTk9akpJqlpLD1dJMtUEiBBwEX8Q3wghi1Dn/OF9CVAXNczvriliQerMS5vCgQQiFiRsCdQEexIOJOAsRCSQgAuEvHe++PMumAiBEAQTIZAAoQQskADBRCyYgIUSCYS85YA/Hwgl+SNmBbGAgQWAgPcD87sY+P9iY4ZZwJ/3fwYMI9Bge/veE9dSA1mLBVo8Am0ZTHeP99A0doTmisQg/rbV0Maxhts8DrGLQStoyzL7DSUYw5EDG9oY7EvPnWvarf5dSktL+XTuHBKXP8PYqg842mrZHMhh+ZBz6D/5HHKHH0aukiqRbsECAcZc/jCf3nki4xbewLvb1jPp3Jnt0lLfmOraWoo3rGPbxlXsKFlDzda1UL6BxJ0bSKneTK+6LfSOlJLKTjKBxt7aVe0SqLCeVFoPqgM9qQ70ZGdiJttDgwgnpBBJSCESSsUl9MBCSQQSkup/BhOTCSYkEwh56yyUiAVDmD96qAVCBIMBAoGgty4Y9L//BLxrZAH/hQqG3yUn6v/JUT+d2/1/1S5Sv81bv6t3T9R+u8pE7ega+f/916t2O8BuZQzX6FeFRuvbs+I96mu8rkbK+csWfQ409jKJ2P8/p39iCrmDc2Jeb3uxxm5GvIwfP94tWLAg3mG0G+echvkV6Sbe/79v069mNYN+/knM695RsZ1P33wc+/RJxuyYTw+rYYtlsqbfcfQ5/CwGjD7CG2lPRLqlyopyls06l0Mq3mR5wijqjrqJ0Yef2KZEq6qqkuL1qynbVMTOkjXUlq7FyteTsHMTKdWb6F1XTLYrJcHCu+1X64JsDWRSGsphR2IO1T1yoEcmgZRMQmk59EjPoWfvHNIy+pCamUtSj1R9V5JOw8wWOufGN1yvFqz9SH8wRLqPmrTB5Gx6P2YvG95RsZ3l854i8unTjCp/h4lWxVZ6sTT3ZHpPPIuhh3yTbD3ULiJAj9R0xv34ad576m6Gffwbsl85l42v5PBVr0NxfQvp0WcowZTeXitPIEiwdifVO8up3llGpGIrbvsGAjs2kVhZTGrtFjLCJWS6cgaZq3/ROEAlSZQEstie0IcNqYeyLrUfgYwBJGcOIq3PYDL75ZHSux+5gQC5cbsaIvufEiwRkXYQyjqA5M21bF5fRJ+Bw/apjtLSrSx/+wlCnz3LqIr3ONSqKSWNpVn/Qdr46QyfeDyHtmM3RxHpvCwQ4LDTr6TqhP/k/X89SPDzFxlR9g4ZZS/BZ83vG3ZGqfViWzCLnUk5bEsezZdp/Qn26k9y9iDS+wwhq18ePdOzGKh/PBbZgxIsEZF20HPIIbAMSpbP26sEa/3KT1jz/jMkFr3ByKrFHG61lJDB0pxv07PwdEYcdhwTEhLbMXIR6UqSe6Yy8dQfAD8A59iycQ1b1n1BeGc5hKtxkTDhUE+SeqbTM60XPXtlk57Vn+zERLLjHbxIJ9WmBMvM5gAj/MUMYJtzrtDM8oBlfP1vJPOdcx1zKBsRkXaQl/8Ndr6YxM4v3oZvXdBkuS0bvuKrD1+nZuVbDNr6bwa6jfQH1gQG8Gm/75Bx6BkccMgxZAX172Ei0kZmZPcbTHa/wfGORKRLa9P/sZ1z03fNm9mvgbKozSudc4VtqV9EpLNKT+nJh8ljGbrpX1SWldCjVxYV27exdtkHlK1ahK1fxIDyDxngNpEN7HRJfJEyjnVDLqL/+JMZNGzUbs86iIiISOcQk38SNW/0hjOBY2JRn4hIVxA4+gZ6vXg6O+7Mp4JEstw2DjZv5NatpPNVSgFr+p9D74OPZFj+4YxNTIpzxCIiItJWsepzMhXY5Jz7ImrdUDP7ECgHfuace7uxHc3sEuASgMGD1WQtIl3H2EnfZHHtw9Qu+jsRByt6DaLHoEL6jphA7oADyNRQ6iIiIl1Oi+/BMrNXgb6NbPqpc+4Zv8wfgBXOuV/7y0lAqnOuxMwOBZ4GRjvnyps7Vld/D5aIiIiIiHQN+/weLOfct1qoOAR8Bzg0ap9qoNqfX2hmK4HhgLInERERERHpsmLRP+VbwHLn3NpdK8wsx8yC/vwBwEHAlzE4loiIiIiISIcVi2ewzgJmN1h3BHCrmdUCEeBS59zWGBxLRERERESkw2rxGaz9ycyKga/iHUcD2cCWeAch+43ud/ehe9196F53L7rf3YfudffSEe/3EOdcTsOVHSrB6ojMbEFjD69J16T73X3oXncfutfdi+5396F73b10pvutMYJFRERERERiRAmWiIiIiIhIjCjBatl98Q5A9ivd7+5D97r70L3uXnS/uw/d6+6l09xvPYMlIiIiIiISI2rBEhERERERiRElWCIiIiIiIjGiBKsZZna8mX1mZivM7IZ4xyOxY2aDzOwNM1tqZp+a2ZX++kwze8XMvvB/9o53rBIbZhY0sw/N7Dl/eaiZved/vueYWWK8Y5TYMLMMM3vczJab2TIzO1yf7a7JzK72/4Z/YmazzSxZn+2uw8z+YmabzeyTqHWNfpbNc5d/35eY2SHxi1z2VhP3+lf+3/ElZvaUmWVEbbvRv9efmdlxcQm6GUqwmmBmQeBe4ARgFHC2mY2Kb1QSQ3XANc65UcAk4Af+/b0BeM05dxDwmr8sXcOVwLKo5f8D7nTOHQiUAv8Zl6ikPfwOeMk5dzAwFu++67PdxZjZAOBHwHjn3BggCJyFPttdyQPA8Q3WNfVZPgE4yJ8uAf6wn2KU2HiAPe/1K8AY51wB8DlwI4D/fe0sYLS/z+/97+0dhhKspk0EVjjnvnTO1QCPAtPiHJPEiHNug3NukT+/He8L2AC8e/ygX+xB4NS4BCgxZWYDgROBP/vLBhwDPO4X0b3uIsysF3AEcD+Ac67GObcNfba7qhDQw8xCQE9gA/psdxnOubeArQ1WN/VZngb8zXnmAxlm1m+/BCpt1ti9ds79yzlX5y/OBwb689OAR51z1c65VcAKvO/tHYYSrKYNANZELa/110kXY2Z5wDjgPSDXObfB37QRyI1XXBJTvwWuByL+chawLeoPtz7fXcdQoBj4q98l9M9mloI+212Oc24dcAewGi+xKgMWos92V9fUZ1nf27q2i4AX/fkOf6+VYEm3ZmapwBPAVc658uhtznuHgd5j0MmZ2UnAZufcwnjHIvtFCDgE+INzbhywgwbdAfXZ7hr8Z2+m4SXV/YEU9uxiJF2YPsvdg5n9FO/RjkfiHUtrKcFq2jpgUNTyQH+ddBFmloCXXD3inHvSX71pV5cC/+fmeMUnMTMZOMXMivC6+h6D94xOht+tCPT57krWAmudc+/5y4/jJVz6bHc93wJWOeeKnXO1wJN4n3d9tru2pj7L+t7WBZnZDOAk4Bz39ct7O/y9VoLVtA+Ag/zRiBLxHqZ7Ns4xSYz4z+DcDyxzzv0matOzwAX+/AXAM/s7Nokt59yNzrmBzrk8vM/x6865c4A3gDP8YrrXXYRzbiOwxsxG+Ku+CSxFn+2uaDUwycx6+n/Td91rfba7tqY+y88C5/ujCU4CyqK6EkonZGbH43XvP8U5tzNq07PAWWaWZGZD8QY2eT8eMTbFvk4GpSEz+zbesxtB4C/OudviG5HEiplNAd4GPubr53JuwnsO6zFgMPAVcKZzruEDttJJmdlRwLXOuZPM7AC8Fq1M4EPgXOdcdRzDkxgxs0K8AU0SgS+BC/H+QVGf7S7GzH4BTMfrPvQhcDHesxj6bHcBZjYbOArIBjYBtwBP08hn2U+y78HrJroTuNA5tyAOYcs+aOJe3wgkASV+sfnOuUv98j/Fey6rDu8xjxcb1hlPSrBERERERERiRF0ERUREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtEpIMwszwzc2YWincsXZ2ZzTCzefGOo6Mxs6lm9lm84xAR6cyUYImISKdmZjPNrNbMKqKm6+MdV2fknHvbOTcilnX6SVtFg8mZ2emxPI6ISEehfyUVEYkRMws55+riHUc3Ncc5d268g2gvnfl3yzn3NpC6a9nMjgL+CbwUp5BERNqVWrBERNrAzIrM7CdmtgTYYWYhM5tkZv82s21m9pH/hXJX+blm9r9m9r6ZlZvZM2aW2UTdF5rZMjPbbmZfmtl/Ndg+zcwW+/WsNLPj/fW9zOx+M9tgZuvM7H/MLNjCeQwzs9fNrMTMtpjZI2aWEbVtq5kd4i/3N7PiXedlZqeY2af++c41s5ENrs+1ZrbEzMrMbI6ZJe/9ld57ZnaDf122m9lSMzutiXJmZnea2Wb/Wn5sZmP8bUlmdoeZrTazTWY2y8x6tPL4D/jlX/FjeNPMhkRt/52ZrfGPudDMpkZtm2lmj5vZw2ZWDswws4lm9q5/nTeY2T1mlhi1jzOzy83sC/94/+3fu3/7x3gsunwTMR9lZmtbc35tcAHwuHNuRzsfR0QkLpRgiYi03dnAiUAGkAs8D/wPkAlcCzxhZjlR5c8HLgL6AXXAXU3Uuxk4CUgHLgTujEpyJgJ/A67zj3sEUOTv94Bf74HAOOBY4OIWzsGA/wX6AyOBQcBMAOfcSuAnwMNm1hP4K/Cgc26umQ0HZgNXATnAC8A/G3yRPxM4HhgKFAAzGg3AbIqfPDQ1TWnhHBpaCUwFegG/8OPv10i5Y/Gu33C/7JlAib/tl/76QrzrOQC4eS9iOAf4byAbWAw8ErXtA7/eTODvwD8aJJ/TgMfx7u8jQBi42q/rcOCbwOUNjncccCgwCbgeuA84F+9+jsH7Xd1nfqLc1P35fSv2TwHOAB5sSxwiIh2ac06TJk2aNO3jhJfUXBS1/BPgoQZlXgYu8OfnAr+M2jYKqAGCQB7ggFATx3oauNKf/yNwZyNlcoFqoEfUurOBN/byvE4FPmyw7lngY2AJkOSv+znwWFSZALAOOCrq+pwbtf12YFaM78FM/xpui5r6N1JuMTDNn58BzPPnjwE+x0tKAlHlDdgBDItadziwqpVxPQA8GrWcipckDWqifCkwNuqc3mqh/quAp6KWHTA5ankh8JOo5V8Dv22hzqOAtbG8Pw3qPw9YBVh7HUOTJk2a4j3pGSwRkbZbEzU/BPiumZ0ctS4BeKOJ8l/527MbVmpmJwC34LWgBICeeAkOeC0SLzQSyxC/vg1mtmtdoMEx92BmucDv8Fp80vx9ShsU+xNeknWJc67aX9ffPwcAnHMRM1uD19Kzy8ao+Z3+PrH2mGvwDJaZnQ/8GC9xBS/B2eM6O+deN7N7gHuBIWb2JF7LYzLeNV8YdS0NLxlurfrr7pyrMLOteOe/xsyuBf7TX3Z4LZXZje3rn89w4DfAeD+uEF4SFW1T1HxlI8t99yL29nAB8DfnnItzHCIi7UZdBEVE2i76y+IavBasjKgpxTn3y6gyg6LmBwO1wJboCs0sCXgCuAPIdc5l4CVUu77prwGGNRLLGrwWrOyo46c750a3cA7/zz+PfOdcOl63sq+zCrNU4LfA/cBM+/q5sfV4Sd2ucuaf37oWjrcHa3y0uehpasu11Nc1BC8hvALI8q/fJ9HnFM05d5dz7lC8FsXheF0vt+AlJaOjrmUv51xqY3U0of5e+9cwE1jvn8v1eN0Re/vxlTWIr2ES8gdgOXCQf49uaup82ov/rF1T92dWC/sOwmsh+9t+CVZEJE6UYImIxNbDwMlmdpyZBc0s2R84YGBUmXPNbJT/PNOteA/8hxvUkwgkAcVAnd+adWzU9vuBC83sm2YWMLMBZnawc24D8C/g12aW7m8bZmZHthB3GlABlJnZALwEI9rvgAXOuYvxnjHb9WX6MeBEP44E4Bq8BO/fLV2ohpw3RHhqM9Pbe1FdCl6CUgzegCF4zyDtwcwmmNlhfvw7gCog4pyL4CVpd5pZH7/sADM7LmpfZ1GDmDTi2/6zZYl4z2LNd86twbvedX58ITO7Ga8FqzlpQDlQYWYHA5e1UD7mnHOjm7k/l7aw+3nAv533TJ+ISJelBEtEJIb8L8/T8FoXivFalK5j97+3D+E9n7MRrxvajxqpZ7u//jG8rnrfw+uet2v7+/gDX+C1fLzJ1y1J5+MlaEv9fR/HG1CjOb8ADvHreh54ctcGM5uGN0jFri/0PwYOMbNznHOf4bV23Y3X4nMycLJzrqaF47Ur59xSvGeO3sXrJpcPvNNE8XS8RKoUr7tjCfArf9tPgBXAfH80v1eBEVDfIrOdr7ttNubveN08t+INPrGrG+PLeMOUf+4fs4oWunHidVv8nn/MPwFzWijf0ZyPBrcQkW7A1A1aRGT/MbO5wMPOuT/HOxZpGzM7F6/74I1NbH8Ab8CIn+3XwEREJK40yIWIiMg+cM49HO8YRESk41EXQRGRbsK8l97u9eAE0rWY2U1N/B68GO/YRES6AnURFBERERERiRG1YImIiIiIiMRIh3oGKzs72+Xl5cU7DBERERERkWYtXLhwi3Mup+H6DpVg5eXlsWDBgniHISIiIiIi0iwz+6qx9eoiKCIiIiIiEiNKsERERERERGJECZaISCPCEY2wKiIiInuvQz2D1Zja2lrWrl1LVVVVvEORTiY5OZmBAweSkJAQ71Ckkykpq6D3nQN578ArOezcX8Q7HBEREelEOnyCtXbtWtLS0sjLy8PM4h2OdBLOOUpKSli7di1Dhw6NdzjSyXz+xeccjuOwFb8FlGCJiIhI63X4LoJVVVVkZWUpuZK9YmZkZWWp5VP2Sdnmovr5qh1l8QtEREREOp0On2ABSq5kn+j3RvZZ2br62Y1ffhLHQERERKSz6RQJlojI/tSjcmP9fOmapXGMRERERDobJVitYGZcc8019ct33HEHM2fOjF9AUebPn89hhx1GYWEhI0eOrI9r7ty5/Pvf/97ner/66isOOeQQCgsLGT16NLNmzYpRxCIdX0rVRqpdAhFnVG/8It7hiIiISCfS4Qe56AiSkpJ48sknufHGG8nOzo5Zvc45nHMEAvue515wwQU89thjjB07lnA4zGeffQZ4CVZqairf+MY39qnefv368e6775KUlERFRQVjxozhlFNOoX///vscq0hnkVSzjY2WTSK1JJZ9Ge9wREREpBNRC1YrhEIhLrnkEu688849thUXF3P66aczYcIEJkyYwDvvvAPAzJkzueOOO+rLjRkzhqKiIoqKihgxYgTnn38+Y8aMYc2aNVx33XWMGTOG/Px85syZA3gJ0lFHHcUZZ5zBwQcfzDnnnINze76XZ/PmzfTr1w+AYDDIqFGjKCoqYtasWdx5550UFhby9ttvNxvneeedx+GHH85BBx3En/70JwASExNJSkoCoLq6mkgk0ui1ueuuuxg1ahQFBQWcddZZAGzdupVTTz2VgoICJk2axJIlS+qPdcEFFzB16lSGDBnCk08+yfXXX09+fj7HH388tbW1ANx6661MmDCBMWPGcMkll+xx3pFIhLy8PLZt21a/7qCDDmLTpk3N3UaRVgtEqqkhgS0J/UmtXNfyDiIiIiK+TtWC9Yt/fsrS9eUxrXNU/3RuOXl0i+V+8IMfUFBQwPXXX7/b+iuvvJKrr76aKVOmsHr1ao477jiWLVvWbF1ffPEFDz74IJMmTeKJJ55g8eLFfPTRR2zZsoUJEyZwxBFHAPDhhx/y6aef0r9/fyZPnsw777zDlClTdqvr6quvZsSIERx11FEcf/zxXHDBBeTl5XHppZeSmprKtddeC8D3vve9JuNcsmQJ8+fPZ8eOHYwbN44TTzyR/v37s2bNGk488URWrFjBr371q0Zbr375y1+yatUqkpKS6hOeW265hXHjxvH000/z+uuvc/7557N48WIAVq5cyRtvvMHSpUs5/PDDeeKJJ7j99ts57bTTeP755zn11FO54ooruPnmmwE477zzeO655zj55JPrjxkIBJg2bRpPPfUUF154Ie+99x5DhgwhNze3xfso0hqBcA11gUR2JufSp+LDeIcjIiIinYhasFopPT2d888/n7vuumu39a+++ipXXHEFhYWFnHLKKZSXl1NRUdFsXUOGDGHSpEkAzJs3j7PPPptgMEhubi5HHnkkH3zwAQATJ05k4MCBBAIBCgsLKSoq2qOum2++mQULFnDsscfy97//neOPP77RYzYX57Rp0+jRowfZ2dkcffTRvP/++wAMGjSIJUuWsGLFCh588MFGW4gKCgo455xzePjhhwmFQvXndN555wFwzDHHUFJSQnm5lxifcMIJJCQkkJ+fTzgcro83Pz+//vzeeOMNDjvsMPLz83n99df59NNP9zju9OnT61v7Hn30UaZPn97sNRfZG4FIDXWWQF1af7IiW4nU1cU7JBEREekk2tyCZWaDgL8BuYAD7nPO/c7MZgLfB4r9ojc5515oy7Fa09LUnq666ioOOeQQLrzwwvp1kUiE+fPnk5ycvFvZUCi0W7e66PcxpaSktOp4u7rogdf9r66JL3nDhg3jsssu4/vf/z45OTmUlJTsUaapOGHP4cwbLvfv358xY8bw9ttvc8YZZ+y27fnnn+ett97in//8J7fddhsff/xxq84pEAiQkJBQf6xAIEBdXR1VVVVcfvnlLFiwgEGDBjFz5sxG32V1+OGHs2LFCoqLi3n66af52c9+1uxxRfZGIFJL2BIIZgwktD7Cls2rye5/QLzDEhERkU4gFi1YdcA1zrlRwCTgB2Y2yt92p3Ou0J/alFx1BJmZmZx55pncf//99euOPfZY7r777vrlXV3h8vLyWLRoEQCLFi1i1apVjdY5depU5syZQzgcpri4mLfeeouJEye2Oqbnn3++/hmlL774gmAwSEZGBmlpaWzfvr3FOAGeeeYZqqqqKCkpYe7cuUyYMIG1a9dSWVkJQGlpKfPmzWPEiBG7HTsSibBmzRqOPvpo/u///o+ysjIqKiqYOnUqjzzyCOA9S5adnU16enqrzmdXMpWdnU1FRQWPP/54o+XMjNNOO40f//jHjBw5kqysrFbVL9IaQVdDOJBIUuZgALaub/zzKyIiItJQmxMs59wG59wif347sAwY0NZ6O6prrrmGLVu21C/fddddLFiwgIKCAkaNGlU/nPnpp5/O1q1bGT16NPfccw/Dhw9vtL7TTjuNgoICxo4dyzHHHMPtt99O3759Wx3PQw89xIgRIygsLOS8887jkUceIRgMcvLJJ/PUU0/VD3LRVJzgdfM7+uijmTRpEj//+c/p378/y5Yt47DDDmPs2LEceeSRXHvtteTn5wNw8cUXs2DBAsLhMOeeey75+fmMGzeOH/3oR2RkZDBz5kwWLlxIQUEBN9xwAw8++GCrzycjI4Pvf//7jBkzhuOOO44JEybUb5s1a9ZucU+fPp2HH35Y3QMl5oKRGsKWSK++QwGoKP4qzhGJiIhIZ2GNjUy3z5WZ5QFvAWOAHwMzgHJgAV4rV2kj+1wCXAIwePDgQ7/6avcvMsuWLWPkyJExi1F2N3PmzN0Gw+hq9Psj+2Ldf49iTeKBjLzkL/T63TDmH3g1k86dGe+wREREpAMxs4XOufEN18dskAszSwWeAK5yzpUDfwCGAYXABuDXje3nnLvPOTfeOTc+JycnVuGIiOyzkKslEkykV0YWO1wylGmodhEREWmdmAzTbmYJeMnVI865JwGcc5uitv8JeC4Wx5LYmjlzZrxDEOlwQq6WSCARzNgSzCFx54Z4hyQiIiKdRJtbsMwbBu5+YJlz7jdR6/tFFTsN+KStxxIR2R8SXC0umAhAWWIfUqv1EmsRERFpnVi0YE0GzgM+NrPF/rqbgLPNrBBv6PYi4L9icCwRkXaXQC0u6L1SoKpHXwaUroxzRCIiItJZtDnBcs7NA6yRTZ1+WHYR6Z4SqAW/BSuc2p/eW8uorakiIXHP98iJiIiIRIvZIBciIl1CJEyISH0XwUDGAALm2LpxdZwDExERkc5ACVYrPf3005gZy5cvb7JMUVERY8aMidkxP/vsM4466igKCwsZOXIkl1xyCfD/27vz8Lqq897j33efQaM1Wp4kYwvbMsaWjfEYjAljIAkJCRBwmgl8k5QMTeHe2zZDIYU+7ZOENmkbCDQE4iQlzA1wMxgIQwgpmNiYwWA8YVseZFvWPJ5x3T/OsSzJkmVbR8ORfp/n0XPOXnvttd+jrS3tV2vvtRKTBP/2t6feQdjR0cHSpUtZsGABc+fO5dvf/naqQhZJf9EQAOZP3CKYWTQVgPoDmgtLRERE+qcE6wQ98MADnHvuuTzwwAO9ro9GowPeRywW67b8ta99jZtuuonXX3+dzZs381d/9VfAwBOsjIwMnnvuOd544w1ef/111q5dyyuvvDKg2EVGi2i4I/EmmWDlTUgkWG2H9wxXSCIiIpJGlGCdgJaWFl566SXuvfdeHnzwwc7yF154gZUrV/LRj36UM888E0gkWp/61KeYM2cOV199NW1tbQA8++yzLFy4kMrKSlavXk0olPgv+fTp0/m7v/s7zj77bB555JFu+62urqasrKxzubKyknA4zC233MJDDz3EWWedxUMPPURrayurV69m6dKlLFy4kCeeeAKANWvWcMUVV3D++ecza9Ysbr31VgDMjNzcXAAikQiRSITEYJDdPfLII8ybN48FCxZw3nnnAYner+uvv57KykoWLlzI888/37mvj33sY1xyySVMnz6dO+64g+9///ssXLiQ5cuXU1dXB8A999zDkiVLWLBgAVdddVXn96er5cuX8/bbb3cun3/++axfv/6Ej5fIQITD7cDRHqyiyacnyuuVYImIiEj/UjIP1pD53dfhwFupbXNSJXzwO8et8sQTT3DZZZdRUVFBcXExGzZsYNGiRQC89tprbNq0ifLycnbt2sWWLVu49957WbFiBatXr+ZHP/oRX/3qV7nuuut49tlnqaio4LOf/Sx33XUXN954IwDFxcW89tprx+z3pptu4sILL+Scc87hAx/4ANdffz0FBQXcdtttrF+/njvuuAOAb37zm1x44YXcd999NDQ0sHTpUi6++GIAXn31VTZt2kR2djZLlizhwx/+MIsXLyYWi7Fo0SK2b9/OV77yFZYtW3bM/m+77TaeeuopSktLaWhoAODOO+/EzHjrrbd49913+cAHPsDWrVsB2LRpExs3bqSjo4OZM2fy3e9+l40bN3LTTTfx85//nBtvvJErr7ySL3zhCwD8/d//Pffee29nz9wR1157LQ8//DC33nor1dXVVFdXs3jxMZNkiwyKSEeiB+tIgpVXUEyby4AmzYUlIiIi/VMP1gl44IEHWLVqFQCrVq3qdpvg0qVLKS8v71yeOnUqK1asAODTn/40L730Elu2bKG8vJyKigoAPve5z/Hiiy92bnPttdf2ut/rr7+ezZs384lPfIIXXniB5cuXd/Z8dfX000/zne98h7POOovzzz+fjo4OqqoSD+RfcsklFBcXk5WVxZVXXslLL70EgM/n4/XXX2fv3r2dSVhPK1as4LrrruOee+7pvH3xpZde4tOf/jQAZ5xxBtOmTetMsC644ALGjRtHSUkJ+fn5fOQjHwESPW+7du0CEknYypUrqays5P777+/WU3XENddcw6OPPgrAww8/zNVXX93r90dkMISTtwh6yQTLPI9ar5hAqxIsERER6V969WD109M0GOrq6njuued46623MDNisRhmxu233w5ATk5Ot/o9b7Xr7da7nnq20dWUKVNYvXo1q1evZt68eb0mQs45HnvsMWbPnt2tfN26df3GU1BQwAUXXMDatWuPGaDj7rvvZt26dfzmN79h0aJFbNiw4bifIyMjo/O953mdy57ndT6jdt111/H444+zYMEC1qxZwwsvvHBMO6WlpRQXF/Pmm2/y0EMPcffddx93vyKpFA0lE6zA0Z/npkAJOaFDwxWSiIiIpBH1YPXj0Ucf5TOf+Qy7d+9m165d7Nmzh/Lycv74xz/2Wr+qqoqXX34ZgF/+8pece+65zJ49m127drF9+3YAfvGLX/D+97+/332vXbuWSCQCwIEDB6itraW0tJRx48bR3NzcWe/SSy/lhz/8Ic45ADZu3Ni57plnnqGuro729nYef/xxVqxYQU1NTectf+3t7TzzzDOcccYZx+x/x44dLFu2jNtuu42SkhL27NnDypUruf/++wHYunUrVVVVxyR2x9Pc3MzkyZOJRCKd7fTm2muv5Xvf+x6NjY3Mnz//hNsXGahI8hksL3B0zqv2rAnkR2qGKyQRERFJI0qw+vHAAw/w8Y9/vFvZVVdd1edogrNnz+bOO+9kzpw51NfX86UvfYnMzEx++tOf8olPfILKyko8z+OGG27od99PP/105yATl156KbfffjuTJk3iggsu4J133ukc5OLmm28mEokwf/585s6dy80339zZxtKlS7nqqquYP38+V111FYsXL6a6upoLLriA+fPns2TJEi655BIuv/xyAG655RaefPJJAP7mb/6GyspK5s2bxznnnMOCBQv48pe/TDwep7KykmuvvZY1a9Z067nqzz/+4z+ybNkyVqxY0S2pe/LJJ7nllls6l6+++moefPBBrrnmmhNuWyQVjowi6OvSgxXNmcx4V3fMSJ8iIiIiPdmRXo+RYPHixa7naHGbN29mzpw5wxRReluzZk23wTDGIv38yMna+vJvqHjqL9h40X+xcGXiOcJ1D32XZZv/mZq/fIuSyacNc4QiIiIyEpjZBufcMSOxqQdLRKSLWCTRg+UPZHWWZRaVAlCnyYZFRESkH0qwRrHrrrtuTPdeiZyKIwmWL3j0FsGckkSvVWuNEiwRERE5vrRIsEbSbYySPvRzI6ciFklMhRAIHh3komjydABCdXuHIyQRERFJIyM+wcrMzKS2tlYXy3JSnHPU1taSmZnZf2WRLuLJHqyuCVZhSSkR58M17h+usERERCRNjPh5sMrKyti7dy81NRoiWU5OZmYmZWVlwx2GpJn4kR6sjKPPYJnno9Yrwtd6YLjCEhERkTQx6AmWmV0G/DvgA37inDup2YIDgQDl5eWDEpuISE8umkiw/MHuvZ+N/vFkdxwcjpBEREQkjQzqLYJm5gPuBD4InAl80szOHMx9iogMxJEerGCXHiyAtsyJ5EcODUdIIiIikkYG+xmspcB259x7zrkw8CBwxSDvU0Tk1CV7sDJ6PL8XyZlMcbyWeCw+HFGJiIhImhjsBKsU2NNleW+yTERkRHKxMADBHrcIWt5kcixEff3h4QhLRERE0sSwjyJoZl80s/Vmtl4DWYjIsIuGCDk/fr+vW3GwaCoAddW7hiEoERERSReDnWDtA6Z2WS5LlnVyzv3YObfYObe4pKRkkMMREelHLESEwDHFOeMTv8qaa6qGOiIRERFJI4OdYP0ZmGVm5WYWBFYBTw7yPkVETpnFwoTt2AFWCyZNAyBUqwRLRERE+jaow7Q756Jm9lXgKRLDtN/nnHt7MPcpIjIQFgv32oNVNDGRYEU12bCIiIgcx6DPg+Wc+y3w28Hej4hIKnixMFE7NsHyAhnUUoC/pXoYohIREZF0MeyDXIiIjCQW7z3BAmjwjyezXZMNi4iISN+UYImIdOHFw0Qt2Ou61owJjItotFMRERHpmxIsEZEuvOP0YEWyJ1EcO4xzboijEhERkXShBEtEpAtfPEzM670Hy+VNodBaaGhsHOKoREREJF0owRIR6cIXjxDrowfLX5QYSbB2346hDElERETSiBIsEZEu/C5CvI8erKwJpwPQcui9oQxJRERE0ogSLBGRLvwuTNzXe4JVMCWRYIUP7xrCiERERCSdKMESEenCH4/g+kiwiieeRtj5oKFqiKMSERGRdKEES0SkCz8RnC+j93V+PwdtAoHmvUMclYiIiKQLJVgiIl1kuQ5i/uw+19cFJpLbvn8IIxIREZF0ogRLRCTJOUcmYZw/q886rdlTKIocHMKoREREJJ0owRIRSYpEomRYBBfouwcrOm4qxdQTC7UNYWQiIiKSLpRgiYgkdbQ3A2CBvnuwfEfmwtqvubBERETkWEqwRESSQu0tiTfBvnuwsiaUA9Cwf/tQhCQiIiJpRgmWiEhSpL0VADtOglU4eQYAbTW7hiIkERERSTNKsEREkiLJHiwvmNNnnYml04k4H7Ha3UMVloiIiKSRASVYZna7mb1rZm+a2a/MrCBZPt3M2s3s9eTX3SmJVkRkEEU6Ej1Yvoy+e7CyMzM4YOPxNe8ZqrBEREQkjQy0B+sZYJ5zbj6wFfhGl3U7nHNnJb9uGOB+REQGXTR0JMHquwcLoM4/iZw2zYUlIiIixxpQguWce9o5F00uvgKUDTwkEZHhcSTB8mceP8FqyZpCYaR6KEISERGRNJPKZ7BWA7/rslxuZhvN7A9mtrKvjczsi2a23szW19TUpDAcEZGTE00+gxXMGnfcepFxZYx39biw5sISERGR7vpNsMzs92a2qZevK7rU+RYQBe5PFlUDpznnFgL/G/ilmeX11r5z7sfOucXOucUlJSUD/0QiIqcokuzByso+foJlRdMBaDiwc7BDEhERkTTj76+Cc+7i4603s+uAy4GLnHMuuU0ICCXfbzCzHUAFsH6gAYuIDJZYR6IHKzsn97j1skqmA1C/bxuFp80d7LBEREQkjQx0FMHLgL8FPuqca+tSXmJmvuT704FZwHsD2ZeIyGCLh9sByM49fg9WwZRZALQd1K81ERER6a7fHqx+3AFkAM+YGcAryREDzwNuM7MIEAducM7VDXBfIiKDKh5K9GBlZB6/B2ti6XRCzk+sTrcIioiISHcDSrCcczP7KH8MeGwgbYuIDDVfqJEmcsjzjt+5n5+dwS5K8DXtHaLIREREJF2kchRBEZG0Fgg30mzH7706ojYwiZw2JVgiIiLSnRIsEZGkjEgjrd7xn786ojmrlCLNhSUiIiI9KMESEUnKiDbS7s8/obqR3DLyXTOEmgc5KhEREUknSrBERJKyos1EAieWYFnRNACaNZKgiIiIdKEES0QkKdc1E804sQQra8IMAOr3bhvMkERERCTNKMESEQHisRh5rgWXWXhC9QsmJxKstkMaql1ERESOUoIlIgI0N9biM4dln1iCNXFyGW0uQ3NhiYiISDdKsEREgLpD+wEI5pWcUP3i3Az2UoK/ac9ghiUiIiJpRgmWiAjQdDDRE5UzftoJ1Tcz6vyaC0tERES6U4IlIgJ0HK4CIG/S9BPepjmrlMLIAXBukKISERGRdKMES0QEiDUkeqKKJ5ef8DbhcVPJcW3QXj9YYYmIiEiaUYIlIgL4W/ZTSz7BzKwT3sYrTNxO2F6jubBEREQkQQmWiAiQ2VZNvf/EBrg4ImtCorerYf/2wQhJRERE0pASLBERoCRURVP2iQ1wcURB8nmtlpqqQYhIRERE0pESLBEZ81qaG5lMDZGiWSe13aRJZYScn3D9vkGKTERERNKNEiwRGfOqd7wJQHDSnJPabkJeJocogqbqwQhLRERE0tCAEiwz+wcz22dmrye/PtRl3TfMbLuZbTGzSwceqojI4KjbmUiwiqdXntR2nmfU+YoJth0YjLBEREQkDflT0MYPnHP/0rXAzM4EVgFzgSnA782swjkXS8H+RERSKrz3NdrJoGzm/JPetjU4gZLwtkGISkRERNLRYN0ieAXwoHMu5JzbCWwHlg7SvkREBqSg4W32ZszE8wdOettIzkSKYoc12bCIiIgAqUmwvmpmb5rZfWZWmCwrBfZ0qbM3WXYMM/uima03s/U1NTUpCEdE5MTVNrYwM7qD9vEn33sFQN4UMgkTbtFkwyIiInICCZaZ/d7MNvXydQVwFzADOAuoBv71ZANwzv3YObfYObe4pOTk5qARERmo7W/8iSwLkz3r3FPaPliY+N/R4eqdqQxLRERE0lS/z2A55y4+kYbM7B7g18nFfcDULqvLkmUiIiNK67YXAShbcNEpbT+u5DQA6g/sZkrFopTFJSIiIulpoKMITu6y+HFgU/L9k8AqM8sws3JgFvDqQPYlIjIY8g6+yl5fGZmFk/uv3IvCidMBaDs8diYbjscdTs+ciYiI9Gqgowh+z8zOAhywC/hLAOfc22b2MPAOEAW+ohEERWSk6QiFqQhtYseEiyk7xTaKJyd6sOKN+1MX2DBy8ThVVTs5tG0DoX1v4qvfQVb7QfIih8iPNxEkTJAo7QRptWyafUXUZZ2GV1JB3qwVlJ91PlnZOcP9MURERIbNgBIs59xnjrPun4B/Gkj7IiKDafvbrzLP2vCXrzjlNjKzsqlnHF5Lek42HI1EeG/TOmrfeZ7MfS9zWtsmptHItOT6WgqoD0ygJXc6dRnF4M8EXwAv2o6Fm8lsP8Ss1tcoaXkGdt5J6KkAbwXPoGnyORTPv4xZZ52Hz5+KGUGOzzlHU0eUuoZGmg/vI9Kwj3jzIWLhNmLRKJ6L4MWjYEbMC4IXxJ+RSSCYSSArl2B2Hpk5eWTn5pE7roDM7DzwBwc9bhERGX0G/6+eiMgIVf/OHwAoW3BCj5r2qc4bT7DtYCpCGhKHD1Tx3v/8Cv/2p5nZ+hoV1gbAfpvIe/nL2T3lLArKz2by7MUU54+n+ATarK89RNXGZwnveJGimleZu/vHeFX/SdOvc9iRu4j46RcwbcnljJ9acdLxOudoam7icPVuGg5W0Vq7n3DDfmg+QKDtENnhGgpitUygnvLkZ0mFCH7ayCLkZRL2soj4son6s4kHcoj5s4n6son4soj6c3BeEI8o5uK4WDTxFY9CPAbxCMQiWDyCF49g8SMJXwTPRfHFI/hcFM9F8bsIPmL4XIQAUXwulnglTgwPhxHHiOMRN494siyxLlHmMBwezrzk69FlsER55zoPzDrb6ck4eiuo6yzrPDD9fg+7bn/UsWWG67W5YyPqe/tjq51gvT70rOt62971/j062X2dlF6ajXgZFH/2Z0yaOmNw9ikiJ0UJloiMWZnVr3DQSphYOnNA7TRnTGBceOROM+Gc473NG6hZ9whF+56jIrqV8cBBitlSfBG+01cydeHFTCmdwZRT3Edh8QQKL/4kXPxJABpqqtn+6m+IbXuWaQ3rmPTmi/DmrRymgIPBabSNm048uxiXWUAgEIR4nFgsioWb8drrsPY6gqE6xkVqKYzXkW9t5PfYZwQ/Db4iWjPGE8qcxd6ciezNnYg/fzL+gin48yaRmZ2LP5DosXI+P7g4FgsTi3QQ6mgn1N5OqL2FSHsTkfYWou1NRDtaiIdaINSCRVrxIq34om34o20Ew21kxGvJoZ1sOsghRLaFusflfMTwiOEjZh4x/ETxEzU/MUu8j3t+YhYgbn5ivgAxL4uIF6DdAjifH+cFcF4AfAHiFiBuHubiifg7X2OYc+BiQByLJ8qcS6RcOAc9t8Fh8RjgkmWJNnyJlK3XJKu3NMf1uaq3uifWZl+lvW3vrGeZHbu19RVPj2p2cnF2q2d91+u+r97Xn4het+zy+c3FqOzYwLo/PcSkVd885f2ISOoowRKRMcnF40xvfYs9+YuYOMC2QpkTOa19c0riSqUDVdt47/mfM2H3/2NmfCczgK3+Cl6edgMTFn2M0+ctY6I3OPPNF5RMZvGHPw98nngsztZ3N3L4jbUEDm1iXMt7zDj8HPm04LPul7txZzSSS5OXR7s/n7qc0zmUvRyXO4mMwinkjC+jcMJUCidOI5BTRIkZwznBh3OOaDRKPBYhbn4wj6DfR8A79QtqkZPhnKP61lkE97483KGISJISLBEZk3a/t4Xp1FNVtmzAbcVyJ1FU30Q01I4/IysF0Z265qYG3v39z8h992HmhDcxCdgaOIP1s/+O6Ss/RcWUaf22kWqez6Ni7iIq5nYfxj4ajdLY3EBbRwjP85MZDJCRnUNBMEjhMT0UI5OZ4Q8EIBAY7lBkjDIzqvLOpqLpZVw8hnm+4Q5JZMxTgiUiY1L1pheZDpScuXLAbXn5pbAH6g5WMeG02QNu71Ts2byOfb+/i7mH17LE2tltZfzPtC8x7f2fo+L0OcMSU3/8fj/5heOPufVPRE5O9LQVFG56ir3bXqdstubjExluSrBEZExye16hjQzKZi8ecFuZxaUANAxxguWiYba/8F94f/5PZoTeZYILsKnwQnJXfIGKRRcxbZBu/xORkWX62ZfCpluo2rBWCZbICKAES0TGpJL6N9iZMYe5/oHf2pUzPjEX1lBNNhxpa+Td397JxHfuY1a8hp1M4YXym6j80A0sKpk0JDGIyMhRWj6bPV4p+bueAr413OGIjHlKsERkzGluaqA8tpMNpdelpL2iSYnnmiL1+1LSXl+aD+9h+5P/yoyqh6mklTd8c3ln0bdZfukqyoN6BkhkzDJj9+QPcs7ee2k8VEX+hNOGOyKRMU0J1nFsf+NP1Lz2JHmzzmXGwveTmZM33CGJSArsevMlKi1O9unnpKS9wqIJdLgArnlwJhuu3raRA2v/hbmH1zKfGH/OOhffyq+x6H2X4Gm0OhEBJr7vk3iP/oStz/2CJavUiyUynJRgHUftu39k2a7/xNt9N9FnPLb7p1OfM5PY+NlkTZlD7pTZjJ9STl5eITZSnnVwjlg0QiQSIhIOEY2EiYVDRKKJ11g0TCwSJhoNE4+GiEcjxCIh4vE4OIdz8cTEHS6eeA/JOVXiEI8nVrlkXRzE48kJIh3gkm2k4oP0c9HY7zXlAC86BzqC2Qlsbv1U6n1OlpMIYYCfYaD7H/jm1stcN6nhtjwFwLQF709Je57Po8YbT6D1QEraA8A5tr26lo4X/43K1lcocEHWFV7OxEv/N8vnLEjdfkRkVJg1bzE7flVO8bZHcPFvjJzrkiHkYhHaW5tpb22mo72FSDhxzROPhpKvYeKxMPFICBeL4KJhXCxCPB4nFo9BPHktk7yeOTJfnMNh7sj1UOKa6MilTtdrnmP+blrPP4XW/dV6XAlY91rOrMe1Qs/2rfuaHn8zj70OsG5VusabqNvbXHJdrld6nX+u9/Z6C7f/+n23H8ocz7SzL2FKwfCO1HuilGAdx7Jrv05j3efZ+fpztO34H/Jq32Ra03omND0N7x2t1+YyqPcKafXlEfblEPVnE/HnEPOywPPA84PnA8+Hw0tM/BiP4sWjyUkeE+8tHoMj710UXzzS+eq5KH4XTb5G8BHrfA2QWOcnStBi+AAfkDlc3ziRNLDdN4OZRRNS1l6jfzxZHQcH3E4sGuGtZ35Bzoa7mBXdSh3jeLH0C1R85EZWTipLQaQiMlodOnM173vrZt558THOPP8Twx3OSWtraaTh8AFaGw7R3niYUHMt0ZZa4m31WHsdgXAjGZFG/LE2ArF2MuLtBF0Hma6dLBciwyJkA9nD/UEk5V6ILeC18YvTJsEyl5ruhpRYvHixW79+/XCH0a/G+lqqd7xB+8HthOv3E2+qJth+iGCkiUCslWCsjax4GxmE8YjjEcPn4njE8REnlighZh5R/MTwJWqZjxj+xKsFiJuPqAWIm5+4l3y1AHGfH2cBnOcn7gXB58d5AfAC4Esu+4J4vgD4EmWeL4j5A5g/Ue75g4mvQBCfP4h5Hp55if+mdL4m/pthZmA+zMA8DzvyHxXPS6z3jtTzkrcrDey/ZsbxfyZdP+sH3oU2wF64E9i4vxr9fQ/6D2GA34N+th/4J+x/9wP9HvSnaHI5uflFKWtv3Q9WMbPxZYr/Yfcpbd/WXM+mX/+IqVt/ymRXwx6bTNXs1Sy4/Evk5o5LWZwiMnp1dHRQ9515tASKmPn1l/F8I2NOrFgsTs2BKur3bqHt0E7CDdXQfJBA+0EyQ4fJi9RSGK9jnLX32UYbGTQxjlYvlw4vh4gvi6gvi5g/m3ggGxfIgUA2BHPxMrLxBbPwAhl4/iDmC2L+5PXOkesffxBf8hrI53n4/f7kNYwle5YMZ97RaxwS10Z0q9OV69Hb5Lpfr8SP/Zt25E+t6+wx6/LX07kuvWTu6Jpeus5cl+UjW7ke64/0wHWNrnscXfZBL9cRyTuUjnYyHbv+uI5Z3335mL/5PerHA9mML5tJXubIet7YzDY4544Zjlg9WKcgv7CY/MUXAhcOdygiMkJEis+guPF3tNRVk1s0+YS327drG7uf+nfmVT/GUtp4JzCX/Yu+zYKLVjFVk9eKyEnIzMxk7/yvsfTNm1n/8D+z+JM3D8l+nXPUNbexv2o79Xu3Ej60DV/jbnJaqigK72NK/ACTLETXMU7bXZA6r5Am/3gO58ykOnsC8ZyJ+MZNJDCumMy88WTnjye3sIT8ghKyM7LUMyVpQwmWiEgKZJVVwnuJASlmLTt+ghWPRnn7j78i9uq9VLa9wiTgjXHnkf3+v+bMJRcNTcAiMiot+dhXWb/td8x/9wdser6CeRdcm7K2G5ua2b/7XRr2biV0aBte/S5yWqsojuxnijtEpcU664YIcMg3icbsMt4Z9z5cUTkZJTPInzyD4snTyc0rpNSM0pRFJzJyKMESEUmBSbPOhhehYfursOxDvdap2vYWe/7wc07f+ysqqeEwBayf+jlO/8CXOXsIJygWkdHLPI+Kz/+MXT/6IGe8cAPrdrxCxZXforBofP8bO0dTfQ0Hdm+hYf82Iod24DXuJLd1D+Mj+5jo6phjR2/daiWLmkApLfmzeafgMjJKZpBXNpuSqWeQUVjGVM9j6iB+VpGRSs9giYikyPbbzsL5M5n1zVc6y/bv3squlx5m/M4nqIhuBeDtjIW0LfgsCy76C4IZGo5GRFKvqameLfd8niXNvyfkAmzLnEdr/iziuZMwfxCLhrBQI669gYz2Q+SHD1ASO0gu3Z+DqiOfw8EptGSfRrxwOhklMygonU3JtDlk5k8Y+Ki7Immsr2ewBpRgmdlDwJF/uxYADc65s8xsOrAZ2JJc94pz7ob+2lOCJSLp7MU1N3Perv9gw4SriMZhYt2fmR6vAhKjFtZM/wgzL/wsJaUzhjlSERkrdr71J2peWkPh4Q1Mie4lx0Kd60LOT4vl0OQrpCE4mbbsUqzwNLJKyikqq2DitDPIzC0YvuBFRrhBSbB67OBfgUbn3G3JBOvXzrl5J9OGEiwRSWdt7W28/cNrWNL2R1pdBjszz6R56gVMW/5xpsycP9zhicgYF4/FCXW0Eg61E8jMJjMzR5OViwzAoI4iaInxvK9Bw+qJyBiWnZXNkr/9NR3trWQFs5jnG3sTfYrIyOX5PLJyxpGVo6kfRAZTqv76rwQOOue2dSkrN7ONZvYHM1vZ14Zm9kUzW29m62tqalIUjojI8MnMysFTciUiIjIm9duDZWa/h25TFxzxLefcE8n3nwQe6LKuGjjNOVdrZouAx81srnOuqWcjzrkfAz+GxC2CJ/sBRERERERERop+Eyzn3MXHW29mfuBKYFGXbUJAKPl+g5ntACoAPWAlIiIiIiKjViruYbkYeNc5t/dIgZmVmJkv+f50YBbwXgr2JSIiIiIiMmKlYpCLVXS/PRDgPOA2M4sAceAG51xdfw1t2LDhsJntTkFMqTQeODzcQciQ0fEeO3Ssxw4d67FFx3vs0LEeW0bi8Z7WW+GImmh4JDKz9b0Nvyijk4732KFjPXboWI8tOt5jh4712JJOx1vDXImIiIiIiKSIEiwREREREZEUUYLVvx8PdwAypHS8xw4d67FDx3ps0fEeO3Ssx5a0Od56BktERERERCRF1IMlIiIiIiKSIkqwREREREREUkQJ1nGY2WVmtsXMtpvZ14c7HkkdM5tqZs+b2Ttm9raZ/XWyvMjMnjGzbcnXwuGOVVLDzHxmttHMfp1cLjezdcnz+yEzCw53jJIaZlZgZo+a2btmttnM3qdze3Qys5uSv8M3mdkDZpapc3v0MLP7zOyQmW3qUtbruWwJ/5E87m+a2dnDF7mcrD6O9e3J3+NvmtmvzKygy7pvJI/1FjO7dFiCPg4lWH0wMx9wJ/BB4Ezgk2Z25vBGJSkUBf6Pc+5MYDnwleTx/TrwrHNuFvBscllGh78GNndZ/i7wA+fcTKAe+F/DEpUMhn8H1jrnzgAWkDjuOrdHGTMrBb4GLHbOzQN8wCp0bo8ma4DLepT1dS5/EJiV/PoicNcQxSipsYZjj/UzwDzn3HxgK/ANgOT12ipgbnKbHyWv20cMJVh9Wwpsd86955wLAw8CVwxzTJIizrlq59xryffNJC7ASkkc458lq/0M+NiwBCgpZWZlwIeBnySXDbgQeDRZRcd6lDCzfOA84F4A51zYOdeAzu3Ryg9kmZkfyAaq0bk9ajjnXgTqehT3dS5fAfzcJbwCFJjZ5CEJVAast2PtnHvaORdNLr4ClCXfXwE86JwLOed2AttJXLePGEqw+lYK7OmyvDdZJqOMmU0HFgLrgInOuerkqgPAxOGKS1Lq34C/BeLJ5WKgocsvbp3fo0c5UAP8NHlL6E/MLAed26OOc24f8C9AFYnEqhHYgM7t0a6vc1nXbaPbauB3yfcj/lgrwZIxzcxygceAG51zTV3XucQcBprHIM2Z2eXAIefchuGORYaEHzgbuMs5txBopcftgDq3R4fkszdXkEiqpwA5HHuLkYxiOpfHBjP7FolHO+4f7lhOlBKsvu0DpnZZLkuWyShhZgESydX9zrn/ThYfPHJLQfL10HDFJymzAviome0icavvhSSe0SlI3lYEOr9Hk73AXufcuuTyoyQSLp3bo8/FwE7nXI1zLgL8N4nzXef26NbXuazrtlHIzK4DLgc+5Y5O3jvij7USrL79GZiVHI0oSOJhuieHOSZJkeQzOPcCm51z3++y6kngc8n3nwOeGOrYJLWcc99wzpU556aTOI+fc859CngeuDpZTcd6lHDOHQD2mNnsZNFFwDvo3B6NqoDlZpad/J1+5Fjr3B7d+jqXnwQ+mxxNcDnQ2OVWQklDZnYZidv7P+qca+uy6klglZllmFk5iYFNXh2OGPtiR5NB6cnMPkTi2Q0fcJ9z7p+GNyJJFTM7F/gj8BZHn8v5JonnsB4GTgN2A9c453o+YCtpyszOB/6vc+5yMzudRI9WEbAR+LRzLjSM4UmKmNlZJAY0CQLvAdeT+Ieizu1RxsxuBa4lcfvQRuDzJJ7F0Lk9CpjZA8D5wHjgIPBt4HF6OZeTSfYdJG4TbQOud86tH4aw5RT0cay/AWQAtclqrzjnbkjW/xaJ57KiJB7z+F3PNoeTEiwREREREZEU0S2CIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIr8f6U0C+B1b5eFAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACdjElEQVR4nOzdeXxU5d3//9dnJishC0nYQYIKyJIICogFXLBVrAtarWhdQGv9qV3Uuta2it6339vbetdWbUttbbUuCHW37hsq7qCIAiookR1CyEL2zMz1++Mc4gAJCWTCZHk/H495cJbrXNfnzMmE+eS6znXMOYeIiIiIiIi0XiDeAYiIiIiIiHQWSrBERERERERiRAmWiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiLQTZpZnZs7MEuIdS2dnZjPNbEG842hvzGyymX0R7zhERDoyJVgiItKhmdksM6s3s4qo1zXxjqsjcs695ZwbFss6/aStYqeXM7PTYtmOiEh7ob+SiojEiJklOOdC8Y6ji5rrnDsn3kG0lY78s+Wcewvovn3dzI4CngFeiFNIIiJtSj1YIiKtYGaFZnatmS0BKs0swcwmmNk7ZlZqZp/4Xyi3l59vZv9jZh+YWbmZPWVm2U3Ufb6ZLTezbWb2tZn9fzvtn2Zmi/16vjKzqf72TDO718w2mNk6M/tvMws2cx4HmNlrZlZsZlvM7CEzy4rat9XMDvHX+5lZ0fbzMrOTzWypf77zzWz4Tu/PVWa2xMzKzGyumaXs+Tu958zsOv992WZmy8zs1CbKmZndYWab/ffyUzMb5e9LNrPbzWy1mW0ys9lmltrC9u/zy7/sx/CGmQ2K2v9HM1vjt7nIzCZH7ZtlZo+a2YNmVg7MNLPxZvau/z5vMLO7zSwp6hhnZpea2Qq/vf/yr907fhvzoss3EfNRZra2JefXCjOAR51zlW3cjohIXCjBEhFpvbOAE4AsoDfwLPDfQDZwFfCYmfWMKn8ecAHQFwgBdzZR72bgRCADOB+4IyrJGQ/8C7jab/cIoNA/7j6/3gOBMcCxwIXNnIMB/wP0A4YDA4FZAM65r4BrgQfNrBvwT+B+59x8MxsKzAEuB3oCzwHP7PRF/gxgKjAYKABmNhqA2SQ/eWjqNamZc9jZV8BkIBO4yY+/byPljsV7/4b6Zc8Aiv19t/rbR+O9n/2BG/YghrOB/wJygcXAQ1H7PvTrzQYeBv69U/I5DXgU7/o+BISBK/y6DgeOAS7dqb3jgEOBCcA1wD3AOXjXcxTez+pe8xPlpq7Pn1twfBpwOnB/a+IQEWnXnHN66aWXXnrt5Qsvqbkgav1a4IGdyrwIzPCX5wO3Ru0bAdQBQSAPcEBCE209CVzmL/8VuKORMr2BWiA1attZwOt7eF6nAB/vtO1p4FNgCZDsb/stMC+qTABYBxwV9f6cE7X/NmB2jK/BLP89LI169Wuk3GJgmr88E1jgL08BvsRLSgJR5Q2oBA6I2nY4sKqFcd0HPBK13h0vSRrYRPkS4OCoc3qzmfovB56IWnfAxKj1RcC1Uev/B/yhmTqPAtbG8vrsVP+5wCrA2qoNvfTSS694v3QPlohI662JWh4E/NDMToralgi83kT5b/z9uTtXambHAzfi9aAEgG54CQ54PRLPNRLLIL++DWa2fVtgpzZ3YWa9gT/i9fik+8eU7FTsb3hJ1kXOuVp/Wz//HABwzkXMbA1eT892G6OWq/xjYm2e2+keLDM7D/glXuIKXoKzy/vsnHvNzO4G/gQMMrPH8XoeU/De80VR76XhJcMt1fC+O+cqzGwr3vmvMbOrgB/76w6vpzK3sWP98xkK/B4Y68eVgJdERdsUtVzdyHqfPYi9LcwA/uWcc3GOQ0SkzWiIoIhI60V/WVyD14OVFfVKc87dGlVmYNTyfkA9sCW6QjNLBh4Dbgd6O+ey8BKq7d/01wAHNBLLGrwerNyo9jOccyObOYf/559HvnMuA29Y2bdZhVl34A/AvcAs+/a+sfV4Sd32cuaf37pm2tuFNT7bXPRrcvO1NNQ1CC8h/BmQ479/n0WfUzTn3J3OuUPxehSH4g293IKXlIyMei8znXPdG6ujCQ3X2n8Ps4H1/rlcgzccsYcfX9lO8e2chPwF+BwY4l+j65s6n7bi32vX1PWZ3cyxA/F6yP61T4IVEYkTJVgiIrH1IHCSmR1nZkEzS/EnDhgQVeYcMxvh3890M94N/+Gd6kkCkoEiIOT3Zh0btf9e4HwzO8bMAmbW38wOcs5tAF4C/s/MMvx9B5jZkc3EnQ5UAGVm1h8vwYj2R2Chc+5CvHvMtn+Zngec4MeRCFyJl+C909wbtTPnTRHefTevt/agujS8BKUIvAlD8O5B2oWZjTOzw/z4K4EaIOKci+AlaXeYWS+/bH8zOy7qWGdRk5g04vv+vWVJePdiveecW4P3fof8+BLM7Aa8HqzdSQfKgQozOwi4pJnyMeecG7mb63NxM4efC7zjvHv6REQ6LSVYIiIx5H95nobXu1CE16N0NTv+vn0A7/6cjXjD0H7RSD3b/O3z8Ibq/QhveN72/R/gT3yB1/PxBt/2JJ2Hl6At8499FG9Cjd25CTjEr+tZ4PHtO8xsGt4kFdu/0P8SOMTMznbOfYHX23UXXo/PScBJzrm6ZtprU865ZXj3HL2LN0wuH3i7ieIZeIlUCd5wx2Lgd/6+a4GVwHv+bH6vAMOgoUdmG98O22zMw3jDPLfiTT6xfRjji3jTlH/pt1lDM8M48YYt/shv82/A3GbKtzfnocktRKQLMA2DFhHZd8xsPvCgc+7v8Y5FWsfMzsEbPvirJvbfhzdhxG/2aWAiIhJXmuRCRERkLzjnHox3DCIi0v5oiKCISBdh3kNv93hyAulczOz6Jn4Ono93bCIinYGGCIqIiIiIiMSIerBERERERERipF3dg5Wbm+vy8vLiHYaIiIiIiEiTFi1atMU517Oxfe0qwcrLy2PhwoXxDkNERERERKRJZvZNU/s0RFBERERERCRGlGCJiIiIiIjEiBIsERERERGRGGlX92A1pr6+nrVr11JTUxPvUKQdSElJYcCAASQmJsY7FOmEaupCfPyH00g45FzGfff0eIcjIiIiHVC7T7DWrl1Leno6eXl5mFm8w5E4cs5RXFzM2rVrGTx4cLzDkU5o6cpVHF41HxbMByVYIiIishfa/RDBmpoacnJylFwJZkZOTo56M6XNlGwsjHcIIiIi0sG1+wQLUHIlDfSzIG0pUrq6YbmmalscIxEREZGOqkMkWCIi+0KwfH3D8qbVK+MYiYiIiHRUSrBawMy48sorG9Zvv/12Zs2aFb+Aohx11FG7fTjzKaecwoQJE3bYNmvWLPr378/o0aMZNWoUTz/9dFuHKdIhJFV9m2BtK14bx0hERESko1KC1QLJyck8/vjjbNmyJab1OueIRCIxrTNaaWkpixYtoqysjK+//nqHfVdccQWLFy/m3//+NxdccEGbxiHSUSTXFDcs15RsiGMkIiIi0lEpwWqBhIQELrroIu64445d9hUVFXHaaacxbtw4xo0bx9tvvw14vUS33357Q7lRo0ZRWFhIYWEhw4YN47zzzmPUqFGsWbOGq6++mlGjRpGfn8/cuXMBmD9/PkcddRSnn346Bx10EGeffTbOuUbje+CBBxp6oz744IOG7Y8//jgnnXQSZ555Jo888kijxw4fPpyEhIQdksfrrruOESNGUFBQwFVXXQVAYWEhU6ZMoaCggGOOOYbVq717VWbOnMkll1zChAkT2H///Zk/fz4XXHABw4cPZ+bMmQ11XnLJJYwdO5aRI0dy44037hJHWVkZgwYNakj0KisrGThwIPX19Y3GLdIWApFatpIJQKhsY5yjERERkY6o3U/THu2mZ5aybH15TOsc0S+DG08a2Wy5n/70pxQUFHDNNdfssP2yyy7jiiuuYNKkSaxevZrjjjuO5cuX77auFStWcP/99zNhwgQee+wxFi9ezCeffMKWLVsYN24cRxxxBAAff/wxS5cupV+/fkycOJG3336bSZMm7VJfVVUVixcv5s033+SCCy7gs88+A2DOnDnccMMN9O7dm9NOO43rr79+l2Pff/99AoEAPXv2BKC4uJgnnniCzz//HDOjtLQUgJ///OfMmDGDGTNm8I9//INf/OIXPPnkkwCUlJTw7rvv8vTTT3PyySfz9ttv8/e//51x48axePFiRo8ezS233EJ2djbhcJhjjjmGJUuWUFBQ0BBHZmYmo0eP5o033uDoo4/mP//5D8cdd5yedyX7VDBcS2kwm+6hClzF5niHIyIiIh1Qq3uwzGygmb1uZsvMbKmZXeZvzzazl81shf9vj9aHGz8ZGRmcd9553HnnnTtsf+WVV/jZz37G6NGjOfnkkykvL6eiomK3dQ0aNKjhvqgFCxZw1llnEQwG6d27N0ceeSQffvghAOPHj2fAgAEEAgFGjx5NYWFho/WdddZZABxxxBGUl5dTWlrKpk2bWLFiBZMmTWLo0KEkJiY2JF4Ad9xxB6NHj+aqq65i7ty5DbPzZWZmkpKSwo9//GMef/xxunXrBsC7777Lj370IwDOPfdcFixY0FDXSSedhJmRn59P7969yc/PJxAIMHLkyIaY582bxyGHHMKYMWNYunQpy5Yt2+U8pk+f3tCD98gjjzB9+vTdvo8isRaI1BEKJFMS6EGwqije4YiIiEgHFIserBBwpXPuIzNLBxaZ2cvATOBV59ytZnYdcB1wbWsaaklPU1u6/PLLOeSQQzj//PMbtkUiEd577z1SUlJ2KJuQkLDDfU3Rz25KS0trUXvJyckNy8FgkFAo1Gi5nacuNzPmzZtHSUlJwwN5y8vLmTNnDrfccgvg3YO1ffjfznF/8MEHvPrqqzz66KPcfffdvPbaay2KMxAI7BBzIBAgFAqxatUqbr/9dj788EN69OjBzJkzG32W1cknn8z111/P1q1bWbRoEVOmTNltuyKxlhCpJRRIpjyYTUpNbO+5FBERka6h1T1YzrkNzrmP/OVtwHKgPzANuN8vdj9wSmvbirfs7GzOOOMM7r333oZtxx57LHfddVfD+uLFiwHIy8vjo48+AuCjjz5i1apVjdY5efJk5s6dSzgcpqioiDfffJPx48fvUVzbe30WLFhAZmYmmZmZzJkzhxdeeKHhvq9FixY1eR9WtIqKCsrKyvj+97/PHXfcwSeffALAd77znYbjH3roISZPntzi+MrLy0lLSyMzM5NNmzbx/PPPN1que/fujBs3jssuu4wTTzyRYDDY4jZEYiEhUkc4kER1UjZp9cXNHyAiIiKyk5hOcmFmecAY4H2gt3Nu+zRcG4HeTRxzkZktNLOFRUXtf0jOlVdeucOEEHfeeScLFy6koKCAESNGMHv2bABOO+00tm7dysiRI7n77rsZOnRoo/WdeuqpFBQUcPDBBzNlyhRuu+02+vTps0cxpaSkMGbMGC6++GLuvfdeCgsL+eabb3aYnn3w4MFkZmby/vvvN1rH97//fdavX8+2bds48cQTKSgoYNKkSfz+978H4K677uKf//wnBQUFPPDAA/zxj39scXwHH3wwY8aM4aCDDuJHP/oREydObNh3ww037DBN/PTp03nwwQc1PFDiIsHVEQ4kU5fSk8zI1niHIyIiIh2QNTUz3R5XZNYdeAO4xTn3uJmVOueyovaXOOd2ex/W2LFj3c7PdFq+fDnDhw+PSYzSOehnQtrK6psOojh9BHWZeYxd/Q8ivynSRCsiIiKyCzNb5Jwb29i+mPRgmVki8BjwkHPucX/zJjPr6+/vC2hKLhFp15JcPeFgMta9N0FzlG7Rs7BERERkz8RiFkED7gWWO+d+H7XraWCGvzwDeKq1bYmItKVEV4dLSCEx0xumW1a0Ls4RiYiISEcTi1kEJwLnAp+a2WJ/2/XArcA8M/sx8A1wRgzaEhFpM8nUQzCZ1B5eglW1dX2cIxIREZGOptUJlnNuAWBN7D6mtfWLiOwLoXCEJOogMYXuOf0BqC3VEEERERHZMzGdRVBEpKOqqasnycIQTCarVz8AwhXtf2ZTERERaV+UYImIALU1VQBYYgpp3bOodYk4JVgiIiKyh5RgtdCTTz6JmfH55583WaawsJBRo0bFrM2ZM2fy6KOPNrn/8ssvp3///kQikYZt9913Hz179mT06NGMGDGCv/3tbzGLR6Qzq62tBiCQmIIFApRYJsFqPWxYRERE9owSrBaaM2cOkyZNYs6cOY3uD4VCrW4jHA63uGwkEuGJJ55g4MCBvPHGGzvsmz59OosXL2b+/Plcf/31bNq0qdWxiXR2dX4PViApBYCKhCySa5VgiYiIyJ5RgtUCFRUVLFiwgHvvvZdHHnmkYfv8+fOZPHkyJ598MiNGjAC8ROvss89m+PDhnH766VRVeV/aXn31VcaMGUN+fj4XXHABtbW1AOTl5XHttddyyCGH8O9//3uXtl955RXGjh3L0KFD+c9//rND2yNHjuSSSy5pMunr1asXBxxwAN98803DtjvvvJMRI0ZQUFDAmWeeCcDWrVs55ZRTKCgoYMKECSxZsgSAWbNmMWPGDCZPnsygQYN4/PHHueaaa8jPz2fq1KnU19cDcPPNNzNu3DhGjRrFRRddxM4Pr45EIuTl5VFaWtqwbciQIUr8pF2pr/m2BwugKjGbbvUl8QxJREREOqBYTNO+7zx/HWz8NLZ19smH42/dbZGnnnqKqVOnMnToUHJycli0aBGHHnooAB999BGfffYZgwcPprCwkC+++IJ7772XiRMncsEFF/DnP/+Zn/3sZ8ycOZNXX32VoUOHct555/GXv/yFyy+/HICcnBw++uijRtsuLCzkgw8+4KuvvuLoo49m5cqVpKSkMGfOHM466yymTZvG9ddfT319PYmJiTsc+/XXX/P1119z4IEHNmy79dZbWbVqFcnJyQ0Jz4033siYMWN48sknee211zjvvPNYvHgxAF999RWvv/46y5Yt4/DDD+exxx7jtttu49RTT+XZZ5/llFNO4Wc/+xk33HADAOeeey7/+c9/OOmkkxraDAQCTJs2jSeeeILzzz+f999/n0GDBtG7d+8WXyaRtlZfu70HKxWA2uQcelV/Hc+QREREpANSD1YLzJkzp6G358wzz9yhx2j8+PEMHjy4YX3gwIFMnDgRgHPOOYcFCxbwxRdfMHjwYIYOHQrAjBkzePPNNxuOmT59epNtn3HGGQQCAYYMGcL+++/P559/Tl1dHc899xynnHIKGRkZHHbYYbz44osNx8ydO5fRo0dz1lln8de//pXs7OyGfQUFBZx99tk8+OCDJCR4+fWCBQs499xzAZgyZQrFxcWUl5cDcPzxx5OYmEh+fj7hcJipU6cCkJ+fT2FhIQCvv/46hx12GPn5+bz22mssXbp0l/OYPn06c+fOBeCRRx7Z7TmLxEPIvwcr6PdgRVJz6eHKiIQjuztMREREZAcdqwermZ6mtrB161Zee+01Pv30U8yMcDiMmfG73/0OgLS0tB3Km9lu1xuzcx3N1ffiiy9SWlpKfn4+AFVVVaSmpnLiiScCXjJz9913N1rfs88+y5tvvskzzzzDLbfcwqef7r5HMDk5GfB6oRITExviCQQChEIhampquPTSS1m4cCEDBw5k1qxZ1NTU7FLP4YcfzsqVKykqKuLJJ5/kN7/5zW7bFdnXQnV+guX3YFn3niRbPaXlJWT1yIlnaCIiItKBqAerGY8++ijnnnsu33zzDYWFhaxZs4bBgwfz1ltvNVp+9erVvPvuuwA8/PDDTJo0iWHDhlFYWMjKlSsBeOCBBzjyyCNb1P6///1vIpEIX331FV9//TXDhg1jzpw5/P3vf6ewsJDCwkJWrVrFyy+/3HC/V1MikQhr1qzh6KOP5n//938pKyujoqKCyZMn89BDDwHevV25ublkZGS0KL7tyVRubi4VFRVNznpoZpx66qn88pe/ZPjw4eTk6AurtC/hOu9nOcFPsILpvQAoK1obt5hERESk41GC1Yw5c+Zw6qmn7rDttNNOa3JiiWHDhvGnP/2J4cOHU1JSwiWXXEJKSgr//Oc/+eEPf0h+fj6BQICLL764Re3vt99+jB8/nuOPP57Zs2cTiUR44YUXOOGEExrKpKWlMWnSJJ555plG67jwwgtZuHAh4XCYc845h/z8fMaMGcMvfvELsrKymDVrFosWLaKgoIDrrruO+++/v4XvDmRlZfGTn/yEUaNGcdxxxzFu3LiGfbNnz2b27NkN69OnT+fBBx/U8EBpl8L1Xg9WYrKXYKVmefcIbtu6MW4xiYiISMdjO8/4Fk9jx451Cxcu3GHb8uXLGT58eJwikvZIPxPSFt595h8cvugKNv7oNfoMPZTCz94l79GpLDzsTsYePyPe4YmIiEg7YmaLnHNjG9unHiwRESBS7w8R9HuwMnP6AlBXvjluMYmIiEjH0+YJlplNNbMvzGylmV3X1u2JiOyN7QnW9iGCGbleguUqiuIWk4iIiHQ8bZpgmVkQ+BNwPDACOMvMRuxpPe1pGKPEl34WpM2EvAQrKbkbAMHEZMpJw6qUYImIiEjLtXUP1nhgpXPua+dcHfAIMG1PKkhJSaG4uFhfrAXnHMXFxaSkpMQ7FOmEXH0tAEkpqQ3bygNZJNZsjVdIIiIi0gG19XOw+gNrotbXAodFFzCzi4CLwJsxb2cDBgxg7dq1FBXpr8jiJdwDBgyIdxjSGYW9Hqztz8ECqEzoQUqdEiwRERFpubg/aNg5dw9wD3izCO68PzExkcGDB+/zuESkawmEagg7Ixj49tdidXI2mRWr4hiViIiIdDRtPURwHTAwan2Av01EpH0J1VJnSWD27aaUXDIjpfGLSURERDqctk6wPgSGmNlgM0sCzgSebuM2RUT2mIVrqCNxh22uWy5ZVFBVUxOnqERERKSjadMEyzkXAn4GvAgsB+Y555a2ZZsiInsjEPZ7sKK3pfciYI6SLZviFJWIiIh0NG1+D5Zz7jngubZuR0SkNQLhOurZMcFKzuwFQPmWdfQfMCgeYYmIiEgH0+YPGhYR6QiCkVrqAzsmWCk9+gFQtXVDPEISERGRDkgJlogIfoJlyTtsS+/pzdFTX6q5eURERKRllGCJiADBSB3hnXqwsnp7CZYrVw+WiIiItIwSLBERICFSR2inBCs5JY1SuhOs1CQXIiIi0jJKsEREgAS3aw8WwNZADknVm+MQkYiIiHRESrBERIAkV0skkLzL9vKEHNJqi+IQkYiIiHRESrBERIDESB3h4K4JVlVyTzJDW+IQkYiIiHRESrBERIAUaggHU3fZHurWmx6uBCKROEQlIiIiHY0SLBERINXVEEnotuuOjL4kEqaydOO+D0pEREQ6HCVYItLluUiEFOpwibsmWElZ3sOGt25cva/DEhERkQ5ICZaIdHm1NZUEzEHSrglWt5wBAFRsXrOvwxIREZEOqFUJlpn9zsw+N7MlZvaEmWVF7fuVma00sy/M7LhWRyoi0kaqK7cBYElpu+zL7OU9bLi6ZO0+jUlEREQ6ptb2YL0MjHLOFQBfAr8CMLMRwJnASGAq8GczC7ayLRGRNrE9wQom75pg9ey7HwChsg37NCYRERHpmFqVYDnnXnLOhfzV94AB/vI04BHnXK1zbhWwEhjfmrZERNpKXbWXYAVSdk2wuqWmUkwmgW2a5EJERESaF8t7sC4AnveX+wPRNyys9bftwswuMrOFZrawqEgP8xSRfa+2uhKAhOTuje4vCWSTVL1pX4YkIiIiHVSzCZaZvWJmnzXymhZV5tdACHhoTwNwzt3jnBvrnBvbs2fPPT1cRKTV6qu8HqyElMYTrIqknnSr08OGRUREpHkJzRVwzn13d/vNbCZwInCMc875m9cBA6OKDfC3iYi0O/U1FQAkpTaeYNWk9GJA6Zf7MiQRERHpoFo7i+BU4BrgZOdcVdSup4EzzSzZzAYDQ4APWtOWiEhbCdd6QwSTuzWeYEW69yHblRGqr9uXYYmIiEgH1Np7sO4G0oGXzWyxmc0GcM4tBeYBy4AXgJ8658KtbEtEpE2Em+nBCmb0JWCOrZs0VbuIiIjsXrNDBHfHOXfgbvbdAtzSmvpFRPaFSJ3XAZ/aLb3R/Uk53ojn0k2F9Bqw/z6LS0RERDqeWM4iKCLSIbk6rwcrJa3xBKt7z0EAVBZ9s89iEhERkY5JCZaISE059S5IUhOzCOb0zQOgbuuaRveLiIiIbKcES0S6vGBtKeXWHQs0/iuxR04vql0SlK/fx5GJiIhIR6MES0S6vIS6MioDjfdeAVggQFEgl8TKDfswKhEREemIlGCJSJeXVF9OdTBjt2XKEnuRVrNpH0UkIiIiHZUSLBHp8lJD5dQmND7BxXbVKb3JChXto4hERESko1KCJSJdXmqkgrqkzN2WCaX3IyeylUgotI+iEhERkY5ICZaIdHnpkQrCzSRYgcx+JFiErZs1k6CIiIg0TQmWiHRpofp6ulMFKT12Wy6ph/ew4ZKNhfsgKhEREemolGCJSJe2rWwrAXNY6u57sNJ7bX/Y8Op9EZaIiIh0UEqwRKRL27p5LQCJWX12Wy6732AAavWwYREREdkNJVgi0qWVF3kJU1pO/92W65HdmxqXCGXr9kVYIiIi0kHFJMEysyvNzJlZrr9uZnanma00syVmdkgs2hERibWqresB6NFr4G7LBYJ62LCIiIg0r9UJlpkNBI4Fom9MOB4Y4r8uAv7S2nZERNpCfelGALJ77z7BAihL7Ek3PWxYREREdiMWPVh3ANcALmrbNOBfzvMekGVmfWPQlohITLltG6khiWAzk1wAVKX00cOGRUREZLdalWCZ2TRgnXPuk5129Qei7wRf629rrI6LzGyhmS0sKtIXFxHZt5KqN1MWzAazZsuGuvfVw4ZFRERktxKaK2BmrwCNTa/1a+B6vOGBe805dw9wD8DYsWNdM8VFRGIqrbaIiqRceregrGX0I3F9mOIt68nps1+bxyYiIiIdT7MJlnPuu41tN7N8YDDwiXl/+R0AfGRm44F1QPQNDQP8bSIi7YZzjpzwZsq6jW5R+eQcL6kq3VioBEtEREQatddDBJ1znzrnejnn8pxzeXjDAA9xzm0EngbO82cTnACUOec09ZaItCulFTX0oZhwxoAWle/e00uqtm0qbMOoREREpCNrtgdrLz0HfB9YCVQB57dROyIie23zxtX0sDDBHi3rjerRNw+AuhI9bFhEREQaF7MEy+/F2r7sgJ/Gqm4RkbZQvmEVAKk9B7WofE5uP2pdIq5sfVuGJSIiIh1YTB40LCLSEdUUFwKQ2Wdwi8p7DxvOIUEPGxYREZEmKMESkS4r7A/169F3/xYfU5bQk27VG9sqJBEREenglGCJSJeVsG0t5aS16CHD21Wl9NbDhkVERKRJSrBEpMtKrdpAcUJLnoD1Le9hw8W4SLiNohIREZGOTAmWiHRZWXUbqUhu7Dnqu5HZnyQLU1KkR/uJiIjIrpRgiUiX5JyjZ6SIurR+e3RcUpb3zKySTavbIiwRERHp4JRgiUiXtLVkKxlWhcvov0fHpfX0EqyKorVtEZaIiIh0cEqwRKRLKt5QCEBi9oA9Oi6r10AAaks0RFBERER2pQRLRLqk8k3fAJCWu98eHZfT20uwwmWaql1ERER2pQRLRLqk2q3eM7Cy+ubt0XGJSckUk0mgUgmWiIiI7EoJloh0SeFS7x6q7N6D9vjY0mAOydWbYx2SiIiIdAJKsESkS0qo2EAJGQSSUvf42MqkXNLq9LBhERER2VWrEywz+7mZfW5mS83stqjtvzKzlWb2hZkd19p2RERiKbV6EyUJPffq2NrUXmSFt8Y4IhEREekMElpzsJkdDUwDDnbO1ZpZL3/7COBMYCTQD3jFzIY658KtDVhEJBYy6jdTkbpnz8DaLpLWh+ziUmrraklOSo5xZCIiItKRtbYH6xLgVudcLYBzbvtNCdOAR5xztc65VcBKYHwr2xIRiQnnHDnhLdR167NXxydk9iVoji0bNVW7iIiI7Ki1CdZQYLKZvW9mb5jZOH97f2BNVLm1/rZdmNlFZrbQzBYWFemeBhFpe+XbysmyCiLpe9eDldTD+3VWunl1LMMSERGRTqDZIYJm9grQ2J95f+0fnw1MAMYB88xs/z0JwDl3D3APwNixY92eHCsisje2bigkE0josWcPGd4uvad3XNWWtTGMSkRERDqDZhMs59x3m9pnZpcAjzvnHPCBmUWAXGAdMDCq6AB/m4hI3G3zHzKcmrNnDxnerkefPADqt6oHS0RERHbU2iGCTwJHA5jZUCAJ2AI8DZxpZslmNhgYAnzQyrb2ORcJU19fF+8wRCTGqv3EKKvPnj8DCyAjtz/VLolAmRIsERER2VFrE6x/APub2WfAI8AM51kKzAOWAS8AP+2IMwh+8O/fsep/J7L2y4/jHYqIxFCkxOtQz+67dwmWBQJsCPQhtXJN84V3sv6bFVRXVuxVuyIiItL+tSrBcs7VOefOcc6Ncs4d4px7LWrfLc65A5xzw5xzz7c+1H0vKbMPPUMb6PnQ93jnH9dQta0k3iGJSAxYxXpKSCc5NX2v6yhN7kdmdcvvwVrz9Rd88H+n0e+fY1n88K/3ul0RERFp31r1HKzObszUmWwumMLSh3/Gd1b/ldL/e5iP+/+QvGMupP/+I+MdXrNcOERtbQ119XXU1dYSqq8jEqojHKonEqojEq4nEqpv+NeF67x/IxEi218uAs6Bi+Bw/rLD8LYRtQ22l8Vbxt+8PR52nMPExXhKE4fFtsLmNNOctUE8+/wco1j8mo657LJlbA3m0qMVddRlDKLXpo+JhMMEgsEmyxVvXscX/76ZQzc/Rk+gnFRSty5vRctdSyQcobq6krqaKsK1VYTqa4iE6gmF6omEQoRCdUTCISLhesIh799IOEQkVA+REObCeLcJ+79w/N9XDvzfa/i/xrzfWYbzfzc577jtBYj+t/3Y4WPZXj+k7Swu8/4Ha3e8t6l9vVcQ3/93dqud/VxJ26pM24+C8VPokZYU71BaRAlWM3r1249eVz3N8oWvUv/a/3L42n8S+Nc/WBUYRFHOWAKDJpDefwS9B48gKyt7j+uvqw9RVbmN6qpt1FSWU1tVQV31NuqrKwjVbCNSU0m4rhJXW4mrq8TqK7H6agKhKoKhKhLC1SSGq0mKVJPsakhxNaS4WrpRQ7LVkwKkxP5tEenwFqVPaV0FffLptnkuG7/+hD5DDtlld1lpMcsfvYX8NQ9xGLUszj6eQaf/N4UPXUbvmq9b13YHEA5HKC8tZtvW9VSVbKS2vJjaihJCVaW46jICdeUE6ytIrN9GUmgbyeFKEsI1JLpaEl0dya6WZFdLitWTBqTF+4RERCRuHgwdQ+aBE5RgdTbDxx4DY49h89qv+fr1++i2bgGjNv+HbkWPwUKvTJVLptzSqQx0JxxIAjMiLoADjAhJrpakSB2JrpZkakl2daRaHUlAVgvjqCdINSnUWgp1gRRqA6mEgqnUJ2WzLSGVkmA3wgmphBO64RK6QUISgWAigYRELJgEwUQsmOj/m4AFE7FAIpbgbbdgIoFAgGAwSCAQIGABLBDw/9pnWCAAGFgAzDAznL/dCOD8bdi3/Tff/pHp2782fbvPdtqzt/bx3yOb6X5ri2ji+TdXF+vuxjhzwKj9hraqjuyDjoAlsH7J/B0SrLKSIpY++XtGfnM/E6hkYfej6HnyTRw6bDQAX6QPonflu7hwCAt2vF/BLhKhZMsGtqz7mvLN3xDaugYrX0ewajNJtcV0qy8hPVxCD1dGDws32UtY5ZKptG5UWhrVgTS2BdMIJeUQCabggim4hBRITMESU7HEVEhMwSWkQjAZS0gkEEzAAokEEhIIBBO833PBBAIJiQQTvHULJOAs6P9+Au93l/d7xyzQ0GPQ8G/A+73l8H6PWcM2i/orfnv6q7lrYjn+vv2V0c7igtgPn4iBHXpZ2xHbZexJO9EOr6G0rUlJGfTps/fD+ve1jve/e5z1GrA/vc69GYC62lpWf7WY0jWfU7N5BaFtRSTWlZFUXwbhOswfShcwhyNAdSCHUCDZ+5KQmAoJ3pcHktMIJnUnkJJGQnJ3ElK7k5iSTlK37iR3SyelWwapaekkpnQnMSGJxDi/ByICBw7Lp4geJK/4D/BL1hd+wTfP30HBxif4jtWwpNthpE29kbEFE3c4LpCzP0mbQmxY+xV9Bw2LT/C74ZyjuKycLau/oGLdckJFK0ks/YrUqnVk1G0mN1xEttUT3V9f54IUWw8qgj2oSsqhNGUY33TLhbSeBLr3JDGjFymZveie0YP0zFy6Z2bTLTGJbkDPeJ2oiIhIG1GC1QpJycnsN+Iw9htxWLxDEZF9LBAMsDzvXI4ovJN1Nw2jv9tILxdgceYUsr57FQUFhzd6XM6BY2EZbFy6IK4JVnVNHWu/WUHx6mXUbPyCwNav6F5RSK+6NfRjC7n27V+It5BJUbAPG1OHsqb7kQSyBpCSsx/pvfLI6ptHVm5/+u7mPjQREZGuRAmWiMhemnDWb3j7gWrSipewpvdpDJ4yk7HNDD3MG3U4FU+lElq1APhxm8bnIhE2bVzHplVLqdjwOZGilaSUf01OzWr6RzYyxOoZ4petJJVNiQPYmj2aoqz9Seg1lO79DyJn0AhyM7PJbdNIRUREOg8lWCIieykpOZmJF96+Z8ckJbG8WwH7Fb1BJFRPIKH1g34ry0vYsGoZJWuXU7dpBYklX5FZ9Q19QuvoY5X08cvVuyAbE/pSmjaIzzKPIqHngWQMHEHvwSNJ69GP/TUrl4iISKspwRIR2cfqDj6P3u/9lIVP383YH1zRomMqykvYVLicsnVfULd5BcGSVXSv/IZe9evIoZQDo8pusly2JA3ky+xjIWcIaX2H0TNvFLkDDmBgMJGBbXNaIiIighIsEZF97tDvncXSRbMp+OS/+aDoS5IOPJKElDTC1duoqyglsm0DVr6OpMr1pNduIie8mSwq6B5VRxE9KErsz8qs7/BF1v6k9j6QHgNH0Gf/EfTulk7vuJ2diIhI16YES0RkHwsEg/T//x5lyT8vYsz6uSRueHiXMuWkURzoSXlyb7Z0KyCSMYDkXgeS2X8YvQePoGd6lmbgExERaYeUYImIxEFWbh/GXv00pSVb2PTVJ4Rqq0lMzSAtswcZuf3JyMwmI95BioiIyB5rVYJlZqOB2UAKEAIudc59YN7TY/8IfB+oAmY65z5qZawiIp1OVo9cssYeE+8wREREJEYCrTz+NuAm59xo4AZ/HeB4YIj/ugj4SyvbERERERERafdam2A5aBjFkgms95enAf9ynveALDPr28q2RERERERE2rXW3oN1OfCimd2Ol6x9x9/eH1gTVW6tv23DzhWY2UV4vVzst99+rQxHREREREQkfppNsMzsFWh4TmW0XwPHAFc45x4zszOAe4Hv7kkAzrl7gHv8torM7Js9OX4fyAW2xDsI2Wd0vbsOXeuuQ9e6a9H17jp0rbuO9nitBzW1w5xze12rmZUBWc45509sUeacyzCzvwLznXNz/HJfAEc553bpwWrvzGyhc25svOOQfUPXu+vQte46dK27Fl3vrkPXuuvoaNe6tfdgrQeO9JenACv85aeB88wzAS/x6nDJlYiIiIiIyJ5o7T1YPwH+aGYJQA3+vVTAc3hTtK/Em6b9/Fa2IyIiIiIi0u61KsFyzi0ADm1kuwN+2pq625F74h2A7FO63l2HrnXXoWvdteh6dx261l1Hh7rWrboHS0RERERERL7V2nuwRERERERExKcES0REREREJEaUYO2GmU01sy/MbKWZXRfveCR2zGygmb1uZsvMbKmZXeZvzzazl81shf9vj3jHKrFhZkEz+9jM/uOvDzaz9/3P91wzS4p3jBIbZpZlZo+a2edmttzMDtdnu3Mysyv83+GfmdkcM0vRZ7vzMLN/mNlmM/ssalujn2V/5uo7/eu+xMwOiV/ksqeauNa/83+PLzGzJ8wsK2rfr/xr/YWZHReXoHdDCVYTzCwI/Ak4HhgBnGVmI+IblcRQCLjSOTcCmAD81L++1wGvOueGAK/669I5XAYsj1r/X+AO59yBQAnw47hEJW3hj8ALzrmDgIPxrrs+252MmfUHfgGMdc6NAoLAmeiz3ZncB0zdaVtTn+XjgSH+6yLgL/soRomN+9j1Wr8MjHLOFQBfAr8C8L+vnQmM9I/5s/+9vd1QgtW08cBK59zXzrk64BFgWpxjkhhxzm1wzn3kL2/D+wLWH+8a3+8Xux84JS4BSkyZ2QDgBODv/rrhPbvvUb+IrnUnYWaZwBHAvQDOuTrnXCn6bHdWCUCq/7iYbsAG9NnuNJxzbwJbd9rc1Gd5GvAv53kPyDKzvvskUGm1xq61c+4l51zIX30PGOAvTwMecc7VOudW4T0Wavw+C7YFlGA1rT+wJmp9rb9NOhkzywPGAO8DvaMeir0R6B2vuCSm/gBcA0T89RygNOoXtz7fncdgoAj4pz8k9O9mloY+252Oc24dcDuwGi+xKgMWoc92Z9fUZ1nf2zq3C4Dn/eV2f62VYEmXZmbdgceAy51z5dH7/Oe56TkGHZyZnQhsds4tincssk8kAIcAf3HOjQEq2Wk4oD7bnYN/7800vKS6H5DGrkOMpBPTZ7lrMLNf493a8VC8Y2kpJVhNWwcMjFof4G+TTsLMEvGSq4ecc4/7mzdtH1Lg/7s5XvFJzEwETjazQryhvlPw7tHJ8ocVgT7fnclaYK1z7n1//VG8hEuf7c7nu8Aq51yRc64eeBzv867PdufW1GdZ39s6ITObCZwInO2+fXhvu7/WSrCa9iEwxJ+NKAnvZrqn4xyTxIh/D869wHLn3O+jdj0NzPCXZwBP7evYJLacc79yzg1wzuXhfY5fc86dDbwOnO4X07XuJJxzG4E1ZjbM33QMsAx9tjuj1cAEM+vm/07ffq312e7cmvosPw2c588mOAEoixpKKB2QmU3FG95/snOuKmrX08CZZpZsZoPxJjb5IB4xNsW+TQZlZ2b2fbx7N4LAP5xzt8Q3IokVM5sEvAV8yrf35VyPdx/WPGA/4BvgDOfczjfYSgdlZkcBVznnTjSz/fF6tLKBj4FznHO1cQxPYsTMRuNNaJIEfA2cj/cHRX22OxkzuwmYjjd86GPgQrx7MfTZ7gTMbA5wFJALbAJuBJ6kkc+yn2TfjTdMtAo43zm3MA5hy15o4lr/CkgGiv1i7znnLvbL/xrvvqwQ3m0ez+9cZzwpwRIREREREYkRDREUERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBGRdsLM8szMmVlCvGPp7MxsppktiHcc7Y2ZTTazL+Idh4hIR6YES0REOjQzm2Vm9WZWEfW6Jt5xdUTOubecc8NiWaeftFXs9HJmdlos2xERaS/0V1IRkRgxswTnXCjecXRRc51z58Q7iLbSkX+2nHNvAd23r5vZUcAzwAtxCklEpE2pB0tEpBXMrNDMrjWzJUClmSWY2QQze8fMSs3sE/8L5fby883sf8zsAzMrN7OnzCy7ibrPN7PlZrbNzL42s/9vp/3TzGyxX89XZjbV355pZvea2QYzW2dm/21mwWbO4wAze83Mis1si5k9ZGZZUfu2mtkh/no/Myvafl5mdrKZLfXPd76ZDd/p/bnKzJaYWZmZzTWzlD1/p/ecmV3nvy/bzGyZmZ3aRDkzszvMbLP/Xn5qZqP8fclmdruZrTazTWY228xSW9j+fX75l/0Y3jCzQVH7/2hma/w2F5nZ5Kh9s8zsUTN70MzKgZlmNt7M3vXf5w1mdreZJUUd48zsUjNb4bf3X/61e8dvY150+SZiPsrM1rbk/FphBvCoc66yjdsREYkLJVgiIq13FnACkAX0Bp4F/hvIBq4CHjOznlHlzwMuAPoCIeDOJurdDJwIZADnA3dEJTnjgX8BV/vtHgEU+sfd59d7IDAGOBa4sJlzMOB/gH7AcGAgMAvAOfcVcC3woJl1A/4J3O+cm29mQ4E5wOVAT+A54JmdvsifAUwFBgMFwMxGAzCb5CcPTb0mNXMOO/sKmAxkAjf58fdtpNyxeO/fUL/sGUCxv+9Wf/tovPezP3DDHsRwNvBfQC6wGHgoat+Hfr3ZwMPAv3dKPqcBj+Jd34eAMHCFX9fhwDHApTu1dxxwKDABuAa4BzgH73qOwvtZ3Wt+otzU9flzC45PA04H7m9NHCIi7ZpzTi+99NJLr7184SU1F0StXws8sFOZF4EZ/vJ84NaofSOAOiAI5AEOSGiirSeBy/zlvwJ3NFKmN1ALpEZtOwt4fQ/P6xTg4522PQ18CiwBkv1tvwXmRZUJAOuAo6Len3Oi9t8GzI7xNZjlv4elUa9+jZRbDEzzl2cCC/zlKcCXeElJIKq8AZXAAVHbDgdWtTCu+4BHota74yVJA5soXwIcHHVObzZT/+XAE1HrDpgYtb4IuDZq/f+APzRT51HA2lhen53qPxdYBVhbtaGXXnrpFe+X7sESEWm9NVHLg4AfmtlJUdsSgdebKP+Nvz9350rN7HjgRrwelADQDS/BAa9H4rlGYhnk17fBzLZvC+zU5i7MrDfwR7wen3T/mJKdiv0NL8m6yDlX62/r558DAM65iJmtwevp2W5j1HKVf0yszXM73YNlZucBv8RLXMFLcHZ5n51zr5nZ3cCfgEFm9jhez2MK3nu+KOq9NLxkuKUa3nfnXIWZbcU7/zVmdhXwY3/d4fVU5jZ2rH8+Q4HfA2P9uBLwkqhom6KWqxtZ77MHsbeFGcC/nHMuznGIiLQZDREUEWm96C+La/B6sLKiXmnOuVujygyMWt4PqAe2RFdoZsnAY8DtQG/nXBZeQrX9m/4a4IBGYlmD14OVG9V+hnNuZDPn8P/888h3zmXgDSv7Nqsw6w78AbgXmGXf3je2Hi+p217O/PNb10x7u7DGZ5uLfk1uvpaGugbhJYQ/A3L89++z6HOK5py70zl3KF6P4lC8oZdb8JKSkVHvZaZzrntjdTSh4Vr772E2sN4/l2vwhiP28OMr2ym+nZOQvwCfA0P8a3R9U+fTVvx77Zq6PrObOXYgXg/Zv/ZJsCIicaIES0Qkth4ETjKz48wsaGYp/sQBA6LKnGNmI/z7mW7Gu+E/vFM9SUAyUASE/N6sY6P23wucb2bHmFnAzPqb2UHOuQ3AS8D/mVmGv+8AMzuymbjTgQqgzMz64yUY0f4ILHTOXYh3j9n2L9PzgBP8OBKBK/ESvHeae6N25rwpwrvv5vXWHlSXhpegFIE3YQjePUi7MLNxZnaYH38lUANEnHMRvCTtDjPr5Zftb2bHRR3rLGoSk0Z837+3LAnvXqz3nHNr8N7vkB9fgpndgNeDtTvpQDlQYWYHAZc0Uz7mnHMjd3N9Lm7m8HOBd5x3T5+ISKelBEtEJIb8L8/T8HoXivB6lK5mx9+3D+Ddn7MRbxjaLxqpZ5u/fR7eUL0f4Q3P277/A/yJL/B6Pt7g256k8/AStGX+sY/iTaixOzcBh/h1PQs8vn2HmU3Dm6Ri+xf6XwKHmNnZzrkv8Hq77sLr8TkJOMk5V9dMe23KObcM756jd/GGyeUDbzdRPAMvkSrBG+5YDPzO33ctsBJ4z5/N7xVgGDT0yGzj22GbjXkYb5jnVrzJJ7YPY3wRb5ryL/02a2hmGCfesMUf+W3+DZjbTPn25jw0uYWIdAGmYdAiIvuOmc0HHnTO/T3esUjrmNk5eMMHf9XE/vvwJoz4zT4NTERE4kqTXIiIiOwF59yD8Y5BRETaHw0RFBHpIsx76O0eT04gnYuZXd/Ez8Hz8Y5NRKQz0BBBERERERGRGFEPloiIiIiISIy0q3uwcnNzXV5eXrzDEBERERERadKiRYu2OOd6NravXSVYeXl5LFy4MN5hiIiIiIiINMnMvmlqX6uHCJrZQDN73cyW+U94v8zfnm1mL5vZCv/fHq1tS0REREREpD2LxT1YIeBK59wIYALwUzMbAVwHvOqcGwK86q+LiIiIiIh0Wq1OsJxzG5xzH/nL24DlQH9gGt8+sf1+4JTWtiUi0l4sWLGFFZu2xTsMERERaWdieg+WmeUBY4D3gd7OuQ3+ro1A7yaOuQi4CGC//fbbZX99fT1r166lpqYmlqFKF5CSksKAAQNITEyMdyjSydTWh3jtvlmEUnO5+Tez4h2OiIiItCMxS7DMrDvwGHC5c67czBr2OeecmTX6wC3n3D3APQBjx47dpczatWtJT08nLy+P6DpFdsc5R3FxMWvXrmXw4MHxDkc6mXVfLeWGxAcgBHU115CU0i3eIYmIiEg7EZPnYJlZIl5y9ZBz7nF/8yYz6+vv7wts3pu6a2pqyMnJUXIle8TMyMnJUc+ntInNm9Z/u7z2qzhGIiIiIu1NLGYRNOBeYLlz7vdRu54GZvjLM4CnWtHG3gcoXZZ+bqSt1FUUNyyXrFeCJSIiIt+KxRDBicC5wKdmttjfdj1wKzDPzH4MfAOcEYO2RETiLlRZ0rBcVVQYv0BERESk3YnFLIILnHPmnCtwzo32X88554qdc8c454Y4577rnNsai4Djwcy48sorG9Zvv/12Zs2aFb+Aorz33nscdthhjB49muHDhzfENX/+fN55551W1T116lSysrI48cQTYxCpSOfhqkoblq10TfwCERERkXYnJvdgdXbJyck8/vjjbNmyJab1OueIRCKtqmPGjBncc889LF68mM8++4wzzvA6CmORYF199dU88MADrapDpFOqKQWgmEwSK9fvvqyIiIh0KTGdpr2t3fTMUpatL49pnSP6ZXDjSSN3WyYhIYGLLrqIO+64g1tuuWWHfUVFRVx88cWsXr0agD/84Q9MnDiRWbNm0b17d6666ioARo0axX/+8x8AjjvuOA477DAWLVrEc889x913383zzz+PmfGb3/yG6dOnM3/+fGbNmkVubi6fffYZhx56KA8++OAu9xVt3ryZvn37AhAMBhkxYgSFhYXMnj2bYDDIgw8+yF133cVBBx3UZJxfffUVK1euZMuWLVxzzTX85Cc/AeCYY45h/vz5u31v/v3vf3PTTTcRDAbJzMzkzTffpKamhksuuYSFCxeSkJDA73//e44++mjuu+8+nnzySSorK1mxYgVXXXUVdXV1PPDAAyQnJ/Pcc8+RnZ3N3/72N+655x7q6uo48MADeeCBB+jWbcdZ2iZMmMC9997LyJHetTvqqKO4/fbbGTt27G7jFYmFQG0ZVaSwNZBDQk2H7ZwXERGRNqAerBb66U9/ykMPPURZWdkO2y+77DKuuOIKPvzwQx577DEuvPDCZutasWIFl156KUuXLmXhwoUsXryYTz75hFdeeYWrr76aDRu8x4d9/PHH/OEPf2DZsmV8/fXXvP3227vUdcUVVzBs2DBOPfVU/vrXv1JTU0NeXh4XX3wxV1xxBYsXL2by5Mm7jXPJkiW89tprvPvuu9x8882sX9/yv8jffPPNvPjii3zyySc8/fTTAPzpT3/CzPj000+ZM2cOM2bMaJjN77PPPuPxxx/nww8/5Ne//jXdunXj448/5vDDD+df//oXAD/4wQ/48MMP+eSTTxg+fDj33nvvLu1Onz6defPmAbBhwwY2bNig5Er2maT6ciqtO5UJWaTUlzR/gIiIiHQZHaoHq7mepraUkZHBeeedx5133klqamrD9ldeeYVly5Y1rJeXl1NRUbHbugYNGsSECRMAWLBgAWeddRbBYJDevXtz5JFH8uGHH5KRkcH48eMZMGAAAKNHj6awsJBJkybtUNcNN9zA2WefzUsvvcTDDz/MnDlzGu112l2c06ZNIzU1ldTUVI4++mg++OADTjnllBa9LxMnTmTmzJmcccYZ/OAHP2g4p5///OcAHHTQQQwaNIgvv/wSgKOPPpr09HTS09PJzMzkpJNOAiA/P58lS5YAXhL2m9/8htLSUioqKjjuuON2afeMM87g2GOP5aabbmLevHmcfvrpLYpXJBZSwuVUBrpTl5xD74q18Q5HRERE2pEOlWDF2+WXX84hhxzC+eef37AtEonw3nvvkZKSskPZhISEHe6vin4eU1paWovaS05OblgOBoOEQqFGyx1wwAFccskl/OQnP6Fnz54UFxfvUqapOGHX6cz3ZHrz2bNn8/777/Pss89y6KGHsmjRot2Wjz6nQCDQsB4IBBrOb+bMmTz55JMcfPDB3HfffY0mjP379ycnJ4clS5Ywd+5cZs+e3eKYRVorJVRBdbA74dRsMsvLmj9AREREugwNEdwD2dnZnHHGGTsMWTv22GO56667GtYXL14MQF5eHh999BEAH330EatWrWq0zsmTJzN37lzC4TBFRUW8+eabjB8/vsUxPfvsszjnAG/oYTAYJCsri/T0dLZt29ZsnABPPfUUNTU1FBcXM3/+fMaNG9fi9r/66isOO+wwbr75Znr27MmaNWuYPHkyDz30EABffvklq1evZtiwYS2uc9u2bfTt25f6+vqGehozffp0brvtNsrKyigoKGhx/SKtlRippT6QCt1y6Wa11FTtvtdaREREug4lWHvoyiuv3GE2wTvvvJOFCxdSUFDAiBEjGnpSTjvtNLZu3crIkSO5++67GTp0aKP1nXrqqRQUFHDwwQczZcoUbrvtNvr06dPieB544AGGDRvG6NGjOffcc3nooYcIBoOcdNJJPPHEE4wePZq33nqryTgBCgoKOProo5kwYQK//e1v6devH+Alfz/84Q959dVXGTBgAC+++CLgDUvcfr/V1VdfTX5+PqNGjeI73/kOBx98MJdeeimRSIT8/HymT5/Offfdt0PPVXP+67/+i8MOO4yJEydy0EEHNWx/+umnueGGGxrWTz/9dB555JGGmRNF9pVEV0s4mExCek8AthZpJkERERHx2Pbej/Zg7NixbuHChTtsW758OcOHD49TRJ3fzrMddjb6+ZG2sPamYWxKH0Uw/zRGv30JX578DEMPOSLeYYmIiMg+YmaLnHONzrCmHiwRkT2U5OoIJ6SS2qMXAFWlG+MckYiIiLQXmuSii5s1a1a8QxDpcJJdLS6YTHoP7xl0deWb4xyRiIiItBfqwRIR2UMp1OESUsns6SVYoW1bmjlCREREugolWCIieyAUCpFs9ZCQQrfuWdS5BKhSgiUiIiIeJVgiInugpqYKAEtKxQIBSi2TYLUSLBEREfEowRIR2QO11ZUAWGIqANuCmSTXlsQzJBEREWlH2jzBMrOpZvaFma00s+vaur228uSTT2JmfP75502WKSwsZNSoUTFr84svvuCoo45i9OjRDB8+nIsuugjwHhL83HPPtaruCy64gF69esU0XpGuoLZqxwSrKrEHKfVKsERERMTTpgmWmQWBPwHHAyOAs8xsRFu22VbmzJnDpEmTmDNnTqP7Q6FQq9sIh8M7rP/iF7/giiuuYPHixSxfvpyf//znQGwSrJkzZ/LCCy+0qg6Rrqi+1kuwAsndAKhLziY9XBrHiERERKQ9aetp2scDK51zXwOY2SPANGDZXtX2/HWw8dPYRQfQJx+Ov3W3RSoqKliwYAGvv/46J510EjfddBMA8+fP57e//S09evTg888/56WXXiIUCnH22Wfz0UcfMXLkSP71r3/RrVs3Xn31Va666ipCoRDjxo3jL3/5C8nJyeTl5TF9+nRefvllrrnmGs4888yGdjds2MCAAQMa1vPz86mrq+OGG26gurqaBQsW8Ktf/YoTTzyRn//853z22WfU19cza9Yspk2bxn333ccTTzxBWVkZ69at45xzzuHGG28E4IgjjqCwsHC35/3GG29w2WWXAWBmvPnmm3Tv3p1rrrmG559/HjPjN7/5DdOnT2f+/PnceOONZGVl8emnn3LGGWeQn5/PH//4R6qrq3nyySc54IADeOaZZ/jv//5v6urqyMnJ4aGHHqJ37947tHvmmWdy7rnncsIJJwBeMnjiiSdy+umnt+yairShev8erKDfgxVOySGrtAznHGYWz9BERESkHWjrIYL9gTVR62v9bQ3M7CIzW2hmC4uKito4nL3z1FNPMXXqVIYOHUpOTg6LFi1q2PfRRx/xxz/+kS+//BLwhvVdeumlLF++nIyMDP785z9TU1PDzJkzmTt3Lp9++imhUIi//OUvDXXk5OTw0Ucf7ZBcAVxxxRVMmTKF448/njvuuIPS0lKSkpK4+eabmT59OosXL2b69OnccsstTJkyhQ8++IDXX3+dq6++mspK76/sH3zwAY899hhLlizh3//+NwsXLmzxed9+++386U9/YvHixbz11lukpqby+OOPs3jxYj755BNeeeUVrr76ajZs2ADAJ598wuzZs1m+fDkPPPAAX375JR988AEXXnghd911FwCTJk3ivffe4+OPP+bMM8/ktttu26Xd6dOnM2/ePADq6up49dVXG5ItkXhrSLD8HizXLYc0q6HKHzooIiIiXVvcHzTsnLsHuAdg7NixbreFm+lpaitz5sxp6Mk588wzmTNnDoceeigA48ePZ/DgwQ1lBw4cyMSJEwE455xzuPPOO/ne977H4MGDGTp0KAAzZszgT3/6E5dffjngJRSNOf/88znuuON44YUXeOqpp/jrX//KJ598sku5l156iaeffprbb78dgJqaGlavXg3A9773PXJycgD4wQ9+wIIFCxg7dmyLznvixIn88pe/5Oyzz+YHP/gBAwYMYMGCBZx11lkEg0F69+7NkUceyYcffkhGRgbjxo2jb1/vuUAHHHAAxx57LOD1vL3++usArF27lunTp7Nhwwbq6up2eO+2O/7447nsssuora3lhRde4IgjjiA1NbVFMYu0te1DBBP8BCuY3hOA0qINpKUNiVtcIiIi0j60dQ/WOmBg1PoAf1uHsXXrVl577TUuvPBC8vLy+N3vfse8efNwzssF09LSdii/8xChlgwZ2rmOaP369eOCCy7gqaeeIiEhgc8++2yXMs45HnvsMRYvXszixYtZvXo1w4cP3+t4trvuuuv4+9//TnV1NRMnTtztBB8AycnJDcuBQKBhPRAINNyj9vOf/5yf/exnfPrpp/z1r3+lpqZml3pSUlI46qijePHFF5k7d26TCahIPITrqgFITPY+t8kZ3hDXbVs3xi0mERERaT/aOsH6EBhiZoPNLAk4E3i6jduMqUcffZRzzz2Xb775hsLCQtasWcPgwYN56623Gi2/evVq3n33XQAefvhhJk2axLBhwygsLGTlypUAPPDAAxx55JHNtv3CCy9QX18PwMaNGykuLqZ///6kp6ezbdu2hnLHHXccd911V0PS9/HHHzfse/nll9m6dWvDfVDbe9da4quvviI/P59rr72WcePG8fnnnzN58mTmzp1LOBymqKiIN998k/Hjx7e4zrKyMvr390aJ3n///U2Wmz59Ov/85z956623mDp1aovrF2lr4VpviGBiitermpLVC4DqEiVYIiIi0sYJlnMuBPwMeBFYDsxzzi1tyzZjbc6cOZx66qk7bDvttNOanE1w2LBh/OlPf2L48OGUlJRwySWXkJKSwj//+U9++MMfkp+fTyAQ4OKLL2627ZdeeolRo0Zx8MEHc9xxx/G73/2OPn36cPTRR7Ns2TJGjx7N3Llz+e1vf0t9fT0FBQWMHDmS3/72tw11jB8/ntNOO42CggJOO+20huGBZ511FocffjhffPEFAwYM4N577wVg9uzZzJ49G4A//OEPjBo1ioKCAhITEzn++OM59dRTKSgo4OCDD2bKlCncdttt9OnTp8Xv56xZs/jhD3/IoYceSm5ubsP2hQsXcuGFFzasH3vssbzxxht897vfJSkpqcX1i7S1cJ2XYCWleD1Y6dnez39d+ea4xSQiIiLth23v9WgPxo4d63aehGH58uUNw91kz9x3330sXLiQu+++O96hxI1+fiTW3pt3OxOW/RfF/98ScvoOorq8hNTf5/H2AZcz8dyb4h2eiIiI7ANmtsg51+jEBm3+oGERkc4kUu/dN5iU6k1ykZqeRZ1LgMrieIYlIiIi7UTcZxGUtjNz5kxmzpwZ7zBEOpd6b4hgSqo/OY0ZJYEsEqrb52MmREREZN/qED1Y7WkYo3Qc+rmRNlFfTcQZiUnfPjpgWzCL5NqtcQxKRERE2ot2n2ClpKRQXFysL8uyR5xzFBcXk5KSEu9QpLMJ1VBDEkQ98qAqMZu0eiVYIiIi0gGGCA4YMIC1a9dSVKThN7JnUlJSGDBgQLzDkE7GQjXUWRLdorbVJufQq/rruMUkIiIi7Ue7T7ASExMZPHhwvMMQEQG+TbCihVJzyC4pxUUiWKDdDwwQERGRNqRvAiIieyAYrqbOknfYZmm9SLIQ28pL4hSViIiItBdKsERE9kAgXEv9TglWML0XAOVF6+IRkoiIiLQjSrBERPZAMFxDfWDHBCsp00uwKko2xCMkERERaUeUYImI7IHESC3hwI6zU6Zl9wOgpmRjPEISERGRdkQJlojIHkiI1BIO7tiD1T2nLwD15ZvjEZKIiIi0I0qwRET2QJKrJRzcsQcrK9dLsFyFEiwREZGuTgmWiMgeSHS1RBJ2TLBSkpMpcelYlZ7XJyIi0tUpwRIR2QPJrg63Uw8WQFkgk6Tq4jhEJCIiIu1JqxIsM/udmX1uZkvM7Akzy4ra9yszW2lmX5jZca2OVEQkzpxzJFOHS0zdZd+2hGxS6rbGISoRERFpT1rbg/UyMMo5VwB8CfwKwMxGAGcCI4GpwJ/NLNjKtkRE4qo2FCGZOkjYtQerJimbtJAeNCwiItLVtSrBcs695JwL+avvAQP85WnAI865WufcKmAlML41bYmIxFtNTTXJFoKktF321aXkkBlRgiUiItLVxfIerAuA5/3l/sCaqH1r/W27MLOLzGyhmS0sKtIN4iLSftVUlXsLyem77Iuk5pJOFa6+Zh9HJSIiIu1JswmWmb1iZp818poWVebXQAh4aE8DcM7d45wb65wb27Nnzz09XERkn6mr8BIsa6QHy9J7AVBevGGfxiQiIiLtS0JzBZxz393dfjObCZwIHOOcc/7mdcDAqGID/G0iIh1WXbWfYKXs2oOVmOEnWFvWk9ln8D6NS0RERNqP1s4iOBW4BjjZOVcVtetp4EwzSzazwcAQ4IPWtCUiEm8hP8EKNjJEMLVHHwAqtqoHS0REpCtrtgerGXcDycDLZgbwnnPuYufcUjObByzDGzr4U+dcuJVtiYjEVW1lGQBJaRm77EvP8W4zrSlRgiUiItKVtSrBcs4duJt9twC3tKZ+EZH2pL56GwAp3TN32dejlzeJarh84z6NSURERNqXWM4iKCLSqW0fIpiatmuClZmRQbnrBpWb93VYIiIi0o4owRIRaaGw34OVlp61yz4zoyTQg8QqPW5CRESkK1OCJSLSQq7WS7C6dc9qdH95MJuU2i37MCIRERFpb5RgiYi0kKutoN4FCSSlNLq/KimH9HolWCIiIl2ZEiwRkRYK1FdQbalN7q9LzSUzUrIPIxIREZH2RgmWiEgLJdSVU2lpTe6PpPUmjRoiNdv2YVQiIiLSnijBEhFpoeT6MiqCu84guF0gvTcA5VvW76uQREREpJ1RgiUi0kJpoTKqE5pOsJKy+gJQvmXtvgpJRERE2hklWCIiLdQtUk5dUlaT+1N79AOgqlg9WCIiIl2VEiwRkRbKjJQTSe3R5P703P4A1JVt2FchiYiISDujBEtEpAWqqqvobtW41Nwmy2T37EvIBQiXb9qHkYmIiEh7ogRLRKQFSrZ4SVNC9+wmy2R0S6aYTKxSCZaIiEhXpQRLRKQFyos3ApCU0bPJMmZGaaAHSdVF+yosERERaWeUYImItEBNiXdfVUpWn92W25aQTWpt8b4ISURERNqhmCRYZnalmTkzy/XXzczuNLOVZrbEzA6JRTsiIvFSt3UNAGk9B+22XE1yDukhJVgiIiJdVasTLDMbCBwLrI7afDwwxH9dBPylte2IiMRTuNRLsHr2y9ttubrUXmS5UohE2j4oERERaXdi0YN1B3AN4KK2TQP+5TzvAVlm1jcGbYmIxEWgfD3FZJGYnLr7gt17kUCEcKV6sURERLqiViVYZjYNWOec+2SnXf2BNVHra/1tIiIdUmr1BkoSezVbLpDu3aNVvmVNMyVFRESkM0poroCZvQI0dlf3r4Hr8YYH7jUzuwhvGCH77bdfa6oSEWkzPeo3UpJ2YLPlknt4nfXbitbRY7BuPxUREelqmk2wnHPfbWy7meUDg4FPzAxgAPCRmY0H1gEDo4oP8Lc1Vv89wD0AY8eOdY2VERGJp5qaavpFNrIhs/m/J3XL7gdAtT/roIiIiHQtez1E0Dn3qXOul3MuzzmXhzcM8BDn3EbgaeA8fzbBCUCZc07fNkSkQ1r71WckWITEviOaLZvZ0/vbUl2pfuWJiIh0Rc32YO2l54DvAyuBKuD8NmpHRKTNbS38FIDsQfnNls3J7kGlS8ZVbGrrsERERKQdilmC5fdibV92wE9jVbeISDzVrf+UsDP6HVjQbNnuyQmsJotg5eZ9EJmIiIi0NzF50LCISGeWXrSYbxIGk5TavdmyZkZZsAdJNUX7IDIRERFpb5RgiYjsRigUYv/a5RT3OLjFx1QmZpNaV9KGUYmIiEh7pQRLRGQ3Pv/oLdKtmsTB32nxMbVJOXQPK8ESERHpipRgiYjsRvEnzxJxxoGHn9TiY8KpuWS4bRAJt2FkIiIi0h4pwRIRaYpz9N/wCl8lH0T37L4tPsy65xLAEarY0obBiYiISHukBEtEpAlff/oOB0ZWseWAH+zRcQnpPQEo27K+LcISERGRdkwJlohIEza/+XdqXCIjvrdnj/JLyewNwLZiPWxYRESkq1GCJSLSiLKtWxhR9AJLM48kM7vnHh3bzR9OWFWysS1CExERkXZMCZaISCOWPfE/ZFgVPY69eo+Pzcz1EqzaMj1sWEREpKtRgiUispOiTesYtfohPkqbzP6jJuzx8Vk5vQk7I1Khhw2LiIh0NUqwRER28tXDV5NCHb1Pvnmvju+ekkQJGQSqNYugiIhIV6MES0QkytL3XmRC2bMs7n8W/Ycdsld1mBmlgUwSq4tjHJ2IiIi0d0qwRER89XW1pL50DRvJZdSP/l+r6qoIZpFctzVGkYmIiEhHoQRLRMT30bz/Yf9IIesPv4nU7pmtqqsmsQfdQiUxikxEREQ6CiVYIiJA0bqvyV/xZxanTmDM937U6vpqU3LICJe2PjARERHpUFqdYJnZz83sczNbama3RW3/lZmtNLMvzOy41rYjItKWVj9yJQEi9PzhH7BA6//2FE7NIZ0qCNXFIDoRERHpKBJac7CZHQ1MAw52ztWaWS9/+wjgTGAk0A94xcyGOufCrQ1YRCTWPnvnOQ7d9hrv7vcTDt9/eEzqtDTv4cS15ZtIzh4YkzpFRESk/Wvtn2kvAW51ztUCOOe2P1VzGvCIc67WObcKWAmMb2VbIiIxFw6FSH3lejZaT8acdWPM6g2k9wKgvHhDzOoUERGR9q+1CdZQYLKZvW9mb5jZOH97f2BNVLm1/rZdmNlFZrbQzBYWFemhnCKyby167l4OiKxi/dhrSemWHrN6kzO8BKuyeGPM6hQREZH2r9khgmb2CtCnkV2/9o/PBiYA44B5Zrb/ngTgnLsHuAdg7Nixbk+OFRFpjbq6enp9/EcKg4MYPfWCmNad2sP7tVlTtimm9bYXLhJhy5ZNlG5eS9XWDdSXrqe+ophwzTaC9dsI1leSUF9JQrgKi9RDJIRFwpirJ+giBAkTIOLVhX37MgN/GSBCwFs3APPXvWX8bYB/3Lfr5tdrRkNdOx4XdexO/0rH19W+TNQnZZH/k7+RmtY93qGICC1IsJxz321qn5ldAjzunHPAB2YWAXKBdUD0TQcD/G0iIu3Gxy/8g8PcOj477E4CwWBM607P7gtAffnmZkq2X845ios2sumLD9i2dhmR4pV0q1hNTu1aekc209NC9GzkuDqXQKWlUkUqNZZKKJCIswScBXGBBEIEqLWEhmTJcJiLsD3FMSIYDtz2VCvSsD3gwt4+wJzD+f/6EUdH75dpYvv2+m3Hr+Lb6zKcEq6OrotcvoCLMLjqHRa+8DfGnnZFvMMREVo5yQXwJHA08LqZDQWSgC3A08DDZvZ7vEkuhgAftLItEZGYcZEIfRbfRWFgP0Z+95yY19+jRw61LoFIRccZ+lxVWU7h4jeoWPEWiZs/pW/Vl/RhC7nb95PMxmB/itKGsDZ9CsGMviRn9SUlqy+pOf3IzO5NemY2SYnJJAE94nkyIl2Ei0T46r8PIWfZ/bhTL4vJLKgi0jqtTbD+AfzDzD4D6oAZfm/WUjObBywDQsBPO+IMgpXlJWzZ8A2Dho2OdygiEmOfvPUMoyNr+HD0/yMvENveK4DMbklsIoNAVftNsEJ1Naxc9Aqln75IxuYPObD+S0ZYmIgz1gb6sT6jgNW9Ckjdbwx9DhxDbp+B7K8vbyLtigUCbB5+HocvvYnP3nmOUZNOjHdIIl1eqxIs51wd0Oiffp1ztwC3tKb+ePv0X1dQUPQcH4+7mTEnXhzvcEQkhurf/xtldOfgqee3Sf2BgFFmmSTUbG2T+vdW8abVrHrnKYJfvcSQig85iGrqXZBVSUNYPOBskg+YxH6jj2G/7Fz2i3ewItIiY074CUVL7yTxjf/Cfef76sUSibPW9mB1agf8YBar/rmCMQuv5YMvX+GAs35PTl995RDp6DauK2R05Tss7ncm41K6tVk72xKyyK2Lf4K1edM6Vrz2AD2+epoRoaXkAJvI5rMe3yXhoKkMPfwEhmZoQJ9IR5XSLZ2PR13O4Z/dyEfP38shJ/wk3iGJdGlKsHajZ788Mq9+nfcf+BVjVv+T0OyxvN3nDAYf/3P65Q2Ld3gt4pyjPhSmtraautoawvU1ROpridTXEaqvwdXXEg7VE4mECYfDRCIhIuEIkXCIcCRMJBz2bj53EXA7LuO235ju3TbecKu4+/Yft9NG53ad28lF34C+j6d+itc90LvObNYBWfPxWzs9x/DK1+hjYQZ879I2bac6MZu0us/atI2mlJWVsPz1R0he/jijahYx0cJ8E9yP9wZdTO6h09h/5AR6B/VXbpHOYty0n7Ji+QPs/+EsikZPoWf/A+IdUpuI1NdRW1NJbVUFdXXV1NbVE6qvx4XriIRDREIhXKQOFw4RCYdwoXpcJIQLh3CREBEHzkUIRxyRiD+hjj/pDRC17nbYZzQ2mc6e2vP/E/f6u8JeHdb6+KwF3w32pq3K7vuRP+5oeqQl7dFx8aIEqxlJSUkc9uP/45uV57P1qd8wYeOD2D8fZGnSSMoGTCH7oIn0HjKOHtk5rW4rUl9HZUUJNdtKqa4opbayjPrKUuqrygjXbCNcW0GkthJqK7F67xUMVZEQqiIhXE1ypJpkV02KqyGRehJciCRCJFmYjvHjKLLvLEkZR8H+o9q0jbrkHNKrS9u0jWg1NdV89sbjuE/nMWrbO0ywOjZaTxYPOJs+k85l0EHjGNTi//xEpCNJSEwk4Yx/kPjwsWz6x5l0u+xF0jKy4x1Wg1AoTMnWzVQUraZq60ZqKkoIVZUSqS6F6nKsroxgXTkJ9RUkh7aRGKkmKVJLkvNeydSR7OpItDCpQGq8T0j2qQdDx5BxwGEdJsGyxnoU4mXs2LFu4cKF8Q5jtzatWcHXL/2VXutf5YDw199uJ5ttCTlUJOZQm5hJICGJiCUQtiDmIgQidQQj9Vi4lkC41kuIwpWkRirp5qro5qpItboWxVDrEqmyFGpIoTaQSl0glbpgN0LBVEIJ3QgHUyCYhAsmYwnJkJCEBZP85WQIJnkvf18gmEQgEMCCQYKBIIFgAsFgAAt4/2IJYAEIBMACOAtiZjgLYBZs6MiwqGfSRD+R5tvH01jDP99+xduxfHS5thavn3zX8FexfdhmzCtsvsZ29KulUb0HHkhKt7Z9ZsxL91zHsev/Atevh6S0NmkjVF/Psveep2rRXIaXvE6mVVJCBit7fpesw37EgYdMwdpgEg8RaZ+WvDqH4W/+lFWJB5Bx3sP02W9Im7YXjjg2l5RSvHEN5ZtWU7N1DaHS9QQqNpJSs4mMuiJ6RIrp6baSYvWN1hFxRoV1o9K6URXoTm2wO/XBVEKBFCLBFCIJKUQSUnEJKbiEVCwxFRJTCSYmE0xIJJCQhAUSsGACBBP95UQCwQQIJhAIJmLBBAKBIMFAgEDAvJcF/B4X87977PCFBmz7M/ma2L8n9uo/xb38j3Q3bTW1Z+++l+x4TItPcS/ei0hyBn37DyIlsf38f2Zmi5xzYxvbpx6sPdR74BB6//h2ALZsWM365e9St3YxVvI1waotpNdtpk/NVwRdiARCJBImTIB6EqizJG9LIJHaQDdqknqwLWEAocR0wondccnpWHI6lpJJMDWDhNQMktKySErLpFv3TFK7Z5LWPYPkpCSS9VdokXYvMaMXrIdtWzeS3id2w3VcJMKXixdQ/N5DHLj5JQrYSpVLZnnWkaQcMp2DvnMy4xI7xl/5RCS2Co45i0XhCAe9/UvC9x7Be/v/mOEnX0Zmj8aeWrd74XCY4qL1bN3wDRVFa6jZupZI2XqClZu85Km+iJxIMX2tgr47HVtLEiXBHLYl96QkuYBN3Xrh0vsSyOxHSlZf0jJzSM3IJi0jh7T0TDICQTJi8xaIxJ16sERE2siHL81h3DsX8/W0J9l/zNGtqstFInzz+Ydsevth+q9/gQFuI3UuyLLuE2DUaRx05BmkdEuPUeQi0tGtX7Wc4nk/J7/6Q+pckJXJI9jWYwQucz8sNYvE1O5YuJ5QXTWRuioiFUUEKotIrNlCal0xmaFict1WkmzHp+xEnFESyKIsIYeq5F6E0vpARj+Se/SjW85AevQZRHpPr419NSJFJB7UgyUiEgcZ/Q8CoHLtUtiLBMs5x4plH1H07hz6r3+evMhaBjpjWcpoNg67mKFTzmF01p7/VVpEOr9+g4fT79pXWLH4bYrff5isog8p2PgEqZsavx0h4oxSS6cs0IOqxGw2pI1hTVofLLMfKdn96Z47kOw+eWT27E9OQhKtv/NcpPNSgiUi0kYGHjiSCpdCaN3iFh9TX1fLioWvsG3JM/Td9AZD3XoOdMbnyfm8f+AM9j/yLPJ7D2y7oEWkUxkyeiJDRk8EIBwKUVpaTFV5MbXV2yCYTHJKKkkp3cjM6U12YhLtZ1oMkY5LCZaISBvplpzEZwn7031r01O1u0iE1SuWsOGTV0hc/RZDKj5gBFXUuQQ+Tx1N0QEz2P+IHzGit57BJyKtE0xIICu3N1m5veMdikinpgRLRKQNFfeZxJHr7mHTikX0HnIo1RXlfLP0PUpWfkDixoXkbfuYQZQyCCgimy96HE3woO8z5PATKNDDf0VERDocTXIhItKG1q1bQ8Y94wgSocLSyHElBM37vbuZbFZnHEJkv4n0G/09+u8/Egvo4b8iIiLtnSa5EBGJk/79B7LyjGcofvUuLFzH1xn9SRk0lgEjD6dX3zx6xTtAERERiSklWCIibezAkeM4cOS/4h2GiIiI7AMaiyIiIiIiIhIjSrBERERERERiRAmWiIiIiIhIjLSrWQTNrAj4Jt5x7CQX2BLvIGSf0fXuOnStuw5d665F17vr0LXuOtrjtR7knOvZ2I52lWC1R2a2sKkpGKXz0fXuOnStuw5d665F17vr0LXuOjratdYQQRERERERkRhRgiUiIiIiIhIjSrCad0+8A5B9Ste769C17jp0rbsWXe+uQ9e66+hQ11r3YImIiIiIiMSIerBERERERERiRAmWiIiIiIhIjCjB2g0zm2pmX5jZSjO7Lt7xSOyY2UAze93MlpnZUjO7zN+ebWYvm9kK/98e8Y5VYsPMgmb2sZn9x18fbGbv+5/vuWaWFO8YJTbMLMvMHjWzz81suZkdrs9252RmV/i/wz8zszlmlqLPdudhZv8ws81m9lnUtkY/y+a507/uS8zskPhFLnuqiWv9O//3+BIze8LMsqL2/cq/1l+Y2XFxCXo3lGA1wcyCwJ+A44ERwFlmNiK+UUkMhYArnXMjgAnAT/3rex3wqnNuCPCqvy6dw2XA8qj1/wXucM4dCJQAP45LVNIW/gi84Jw7CDgY77rrs93JmFl/4BfAWOfcKCAInIk+253JfcDUnbY19Vk+Hhjivy4C/rKPYpTYuI9dr/XLwCjnXAHwJfArAP/72pnASP+YP/vf29sNJVhNGw+sdM597ZyrAx4BpsU5JokR59wG59xH/vI2vC9g/fGu8f1+sfuBU+ISoMSUmQ0ATgD+7q8bMAV41C+ia91JmFkmcARwL4Bzrs45V4o+251VApBqZglAN2AD+mx3Gs65N4GtO21u6rM8DfiX87wHZJlZ330SqLRaY9faOfeScy7kr74HDPCXpwGPOOdqnXOrgJV439vbDSVYTesPrIlaX+tvk07GzPKAMcD7QG/n3AZ/10agd7zikpj6A3ANEPHXc4DSqF/c+nx3HoOBIuCf/pDQv5tZGvpsdzrOuXXA7cBqvMSqDFiEPtudXVOfZX1v69wuAJ73l9v9tVaCJV2amXUHHgMud86VR+9z3jMM9ByDDs7MTgQ2O+cWxTsW2ScSgEOAvzjnxgCV7DQcUJ/tzsG/92YaXlLdD0hj1yFG0onps9w1mNmv8W7teCjesbSUEqymrQMGRq0P8LdJJ2FmiXjJ1UPOucf9zZu2Dynw/90cr/gkZiYCJ5tZId5Q3yl49+hk+cOKQJ/vzmQtsNY5976//ihewqXPdufzXWCVc67IOVcPPI73eddnu3Nr6rOs722dkJnNBE4EznbfPry33V9rJVhN+xAY4s9GlIR3M93TcY5JYsS/B+deYLlz7vdRu54GZvjLM4Cn9nVsElvOuV855wY45/LwPsevOefOBl4HTveL6Vp3Es65jcAaMxvmbzoGWIY+253RamCCmXXzf6dvv9b6bHduTX2WnwbO82cTnACURQ0llA7IzKbiDe8/2TlXFbXraeBMM0s2s8F4E5t8EI8Ym2LfJoOyMzP7Pt69G0HgH865W+IbkcSKmU0C3gI+5dv7cq7Huw9rHrAf8A1whnNu5xtspYMys6OAq5xzJ5rZ/ng9WtnAx8A5zrnaOIYnMWJmo/EmNEkCvgbOx/uDoj7bnYyZ3QRMxxs+9DFwId69GPpsdwJmNgc4CsgFNgE3Ak/SyGfZT7LvxhsmWgWc75xbGIewZS80ca1/BSQDxX6x95xzF/vlf413X1YI7zaP53euM56UYImIiIiIiMSIhgiKiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJlohIO2FmeWbmzCwh3rF0dmY208wWxDuO9sbMJpvZF/GOQ0SkI1OCJSIiHZqZzTKzejOriHpdE++4OiLn3FvOuWGxrNNP2ip2ejkzOy2W7YiItBf6K6mISIyYWYJzLhTvOLqouc65c+IdRFvpyD9bzrm3gO7b183sKOAZ4IU4hSQi0qbUgyUi0gpmVmhm15rZEqDSzBLMbIKZvWNmpWb2if+Fcnv5+Wb2P2b2gZmVm9lTZpbdRN3nm9lyM9tmZl+b2f+30/5pZrbYr+crM5vqb880s3vNbIOZrTOz/zazYDPncYCZvWZmxWa2xcweMrOsqH1bzewQf72fmRVtPy8zO9nMlvrnO9/Mhu/0/lxlZkvMrMzM5ppZyp6/03vOzK7z35dtZrbMzE5topyZ2R1mttl/Lz81s1H+vmQzu93MVpvZJjObbWapLWz/Pr/8y34Mb5jZoKj9fzSzNX6bi8xsctS+WWb2qJk9aGblwEwzG29m7/rv8wYzu9vMkqKOcWZ2qZmt8Nv7L//aveO3MS+6fBMxH2Vma1tyfq0wA3jUOVfZxu2IiMSFEiwRkdY7CzgByAJ6A88C/w1kA1cBj5lZz6jy5wEXAH2BEHBnE/VuBk4EMoDzgTuikpzxwL+Aq/12jwAK/ePu8+s9EBgDHAtc2Mw5GPA/QD9gODAQmAXgnPsKuBZ40My6Af8E7nfOzTezocAc4HKgJ/Ac8MxOX+TPAKYCg4ECYGajAZhN8pOHpl6TmjmHnX0FTAYygZv8+Ps2Uu5YvPdvqF/2DKDY33erv3003vvZH7hhD2I4G/gvIBdYDDwUte9Dv95s4GHg3zsln9OAR/Gu70NAGLjCr+tw4Bjg0p3aOw44FJgAXAPcA5yDdz1H4f2s7jU/UW7q+vy5BcenAacD97cmDhGRds05p5deeuml116+8JKaC6LWrwUe2KnMi8AMf3k+cGvUvhFAHRAE8gAHJDTR1pPAZf7yX4E7GinTG6gFUqO2nQW8vofndQrw8U7bngY+BZYAyf623wLzosoEgHXAUVHvzzlR+28DZsf4Gszy38PSqFe/RsotBqb5yzOBBf7yFOBLvKQkEFXegErggKhthwOrWhjXfcAjUevd8ZKkgU2ULwEOjjqnN5up/3Lgiah1B0yMWl8EXBu1/n/AH5qp8yhgbSyvz071nwusAqyt2tBLL730ivdL92CJiLTemqjlQcAPzeykqG2JwOtNlP/G35+7c6VmdjxwI14PSgDohpfggNcj8VwjsQzy69tgZtu3BXZqcxdm1hv4I16PT7p/TMlOxf6Gl2Rd5Jyr9bf1888BAOdcxMzW4PX0bLcxarnKPybW5rmd7sEys/OAX+IlruAlOLu8z86518zsbuBPwCAzexyv5zEF7z1fFPVeGl4y3FIN77tzrsLMtuKd/xozuwr4sb/u8Hoqcxs71j+focDvgbF+XAl4SVS0TVHL1Y2s99mD2NvCDOBfzjkX5zhERNqMhgiKiLRe9JfFNXg9WFlRrzTn3K1RZQZGLe8H1ANbois0s2TgMeB2oLdzLgsvodr+TX8NcEAjsazB68HKjWo/wzk3splz+H/+eeQ75zLwhpV9m1WYdQf+ANwLzLJv7xtbj5fUbS9n/vmta6a9XVjjs81FvyY3X0tDXYPwEsKfATn++/dZ9DlFc87d6Zw7FK9HcSje0MsteEnJyKj3MtM5172xOprQcK399zAbWO+fyzV4wxF7+PGV7RTfzknIX4DPgSH+Nbq+qfNpK/69dk1dn9nNHDsQr4fsX/skWBGROFGCJSISWw8CJ5nZcWYWNLMUf+KAAVFlzjGzEf79TDfj3fAf3qmeJCAZKAJCfm/WsVH77wXON7NjzCxgZv3N7CDn3AbgJeD/zCzD33eAmR3ZTNzpQAVQZmb98RKMaH8EFjrnLsS7x2z7l+l5wAl+HInAlXgJ3jvNvVE7c94U4d1383prD6pLw0tQisCbMATvHqRdmNk4MzvMj78SqAEizrkIXpJ2h5n18sv2N7Pjoo51FjWJSSO+799bloR3L9Z7zrk1eO93yI8vwcxuwOvB2p10oByoMLODgEuaKR9zzrmRu7k+Fzdz+LnAO867p09EpNNSgiUiEkP+l+dpeL0LRXg9Slez4+/bB/Duz9mINwztF43Us83fPg9vqN6P8Ibnbd//Af7EF3g9H2/wbU/SeXgJ2jL/2EfxJtTYnZuAQ/y6ngUe377DzKbhTVKx/Qv9L4FDzOxs59wXeL1dd+H1+JwEnOScq2umvTblnFuGd8/Ru3jD5PKBt5sonoGXSJXgDXcsBn7n77sWWAm858/m9wowDBp6ZLbx7bDNxjyMN8xzK97kE9uHMb6IN035l36bNTQzjBNv2OKP/Db/Bsxtpnx7cx6a3EJEugDTMGgRkX3HzOYDDzrn/h7vWKR1zOwcvOGDv2pi/314E0b8Zp8GJiIicaVJLkRERPaCc+7BeMcgIiLtj4YIioh0EeY99HaPJyeQzsXMrm/i5+D5eMcmItIZaIigiIiIiIhIjKgHS0REREREJEba1T1Yubm5Li8vL95hiIiIiIiINGnRokVbnHM9G9vXrhKsvLw8Fi5cGO8wREREREREmmRm3zS1T0MERUREREREYkQJloiIiIiISIwowRIRaUIk4ohENNOqiIiItFy7ugerMfX19axdu5aampp4hyIdTEpKCgMGDCAxMTHeoUgHtfDW49iYNYaTL/3feIciIiIiHUS7T7DWrl1Leno6eXl5mFm8w5EOwjlHcXExa9euZfDgwfEORzqg0spaxte9D5vfJxK5lUBAv39ERESkee1+iGBNTQ05OTlKrmSPmBk5OTnq+ZS9tn7TxobljWtWxDESERER6UjafYIFKLmSvaKfG2mN6pJNDctbv1kWx0hERESkI+kQCZaIyL5WW7a5Yblm69o4RiIiIiIdSasTLDMbaGavm9kyM1tqZpf527PN7GUzW+H/26P14caHmXHllVc2rN9+++3MmjUrfgFFee+99zjssMMYPXo0w4cPb4hr/vz5vPPOO3td7zfffMMhhxzC6NGjGTlyJLNnz45RxCIdQ2jbtz1Y4bL1cYxEREREOpJY9GCFgCudcyOACcBPzWwEcB3wqnNuCPCqv94hJScn8/jjj7Nly5aY1uucIxKJtKqOGTNmcM8997B48WI+++wzzjjjDKD1CVbfvn159913Wbx4Me+//z633nor69frS6Z0HZGKooZl27YhjpGIiIhIR9LqBMs5t8E595G/vA1YDvQHpgH3+8XuB05pbVvxkpCQwEUXXcQdd9yxy76ioiJOO+00xo0bx7hx43j77bcBmDVrFrfffntDuVGjRlFYWEhhYSHDhg3jvPPOY9SoUaxZs4arr76aUaNGkZ+fz9y5cwEvQTrqqKM4/fTTOeiggzj77LNxbtfn8WzevJm+ffsCEAwGGTFiBIWFhcyePZs77riD0aNH89Zbb+02znPPPZfDDz+cIUOG8Le//Q2ApKQkkpOTAaitrW0yEbzzzjsZMWIEBQUFnHnmmQBs3bqVU045hYKCAiZMmMCSJUsa2poxYwaTJ09m0KBBPP7441xzzTXk5+czdepU6uvrAbj55psZN24co0aN4qKLLtrlvCORCHl5eZSWljZsGzJkCJs2bUIkVhKqvT+orLF+JFVvbqa0iIiIiCem07SbWR4wBngf6O2c2/5n341A7yaOuQi4CGC//fbbbf03PbOUZevLYxUuACP6ZXDjSSObLffTn/6UgoICrrnmmh22X3bZZVxxxRVMmjSJ1atXc9xxx7F8+fLd1rVixQruv/9+JkyYwGOPPcbixYv55JNP2LJlC+PGjeOII44A4OOPP2bp0qX069ePiRMn8vbbbzNp0qQd6rriiisYNmwYRx11FFOnTmXGjBnk5eVx8cUX0717d6666ioAfvSjHzUZ55IlS3jvvfeorKxkzJgxnHDCCfTr1481a9ZwwgknsHLlSn73u9/Rr1+/Xc7l1ltvZdWqVSQnJzckPDfeeCNjxozhySef5LXXXuO8885j8eLFAHz11Ve8/vrrLFu2jMMPP5zHHnuM2267jVNPPZVnn32WU045hZ/97GfccMMNAJx77rn85z//4aSTTmpoMxAIMG3aNJ544gnOP/983n//fQYNGkTv3o3+iInslYT6bVS5ZLYm9yWtVgmWiIiItEzMJrkws+7AY8DlzrkdsiDndUHs2v3i7bvHOTfWOTe2Z8+esQon5jIyMjjvvPO48847d9j+yiuv8LOf/YzRo0dz8sknU15eTkVFxW7rGjRoEBMmTABgwYIFnHXWWQSDQXr37s2RRx7Jhx9+CMD48eMZMGAAgUCA0aNHU1hYuEtdN9xwAwsXLuTYY4/l4YcfZurUqY22ubs4p02bRmpqKrm5uRx99NF88MEHAAwcOJAlS5awcuVK7r///kZ7iAoKCjj77LN58MEHSUhIaDinc889F4ApU6ZQXFxMebn3I3H88ceTmJhIfn4+4XC4Id78/PyG83v99dc57LDDyM/P57XXXmPp0qW7tDt9+vSG3r5HHnmE6dOn7/Y9F9lTFqqh1pKpSc4lPVwS73BERESkg4hJD5aZJeIlVw855x73N28ys77OuQ1m1hdo9Z+AW9LT1JYuv/xyDjnkEM4///yGbZFIhPfee4+UlJQdyiYkJOwwrC76eUxpaWktam/7ED3whv+FQqFGyx1wwAFccskl/OQnP6Fnz54UFxfvUqapOGHX6cx3Xu/Xrx+jRo3irbfe4vTTT99h37PPPsubb77JM888wy233MKnn37aonMKBAIkJiY2tBUIBAiFQtTU1HDppZeycOFCBg4cyKxZsxp9ltXhhx/OypUrKSoq4sknn+Q3v/nNbtsV2VMWrqOOREKpuWSVlYJzoKn/RUREpBmxmEXQgHuB5c6530ftehqY4S/PAJ5qbVvxlp2dzRlnnMG9997bsO3YY4/lrrvualjfPhQuLy+Pjz76CICPPvqIVatWNVrn5MmTmTt3LuFwmKKiIt58803Gjx/f4pieffbZhnuUVqxYQTAYJCsri/T0dLZt29ZsnABPPfUUNTU1FBcXM3/+fMaNG8fatWuprq4GoKSkhAULFjBs2LAd2o5EIqxZs4ajjz6a//3f/6WsrIyKigomT57MQw89BHj3kuXm5pKRkdGi89meTOXm5lJRUcGjjz7aaDkz49RTT+WXv/wlw4cPJycnp0X1i7SUhWuotyRIyyXF6qmtKot3SCIiItIBxGKI4ETgXGCKmS32X98HbgW+Z2YrgO/66x3elVdeucNsgnfeeScLFy6koKCAESNGNExnftppp7F161ZGjhzJ3XffzdChQxut79RTT6WgoICDDz6YKVOmcNttt9GnT58Wx/PAAw8wbNgwRo8ezbnnnstDDz1EMBjkpJNO4oknnmiY5KKpOMEb5nf00UczYcIEfvvb39KvXz+WL1/OYYcdxsEHH8yRRx7JVVddRX5+PgAXXnghCxcuJBwOc84555Cfn8+YMWP4xS9+QVZWFrNmzWLRokUUFBRw3XXXcf/99zcV/i6ysrL4yU9+wqhRozjuuOMYN25cw77Zs2fvEPf06dN58MEHNTxQ2kQwXEt9IJlA914AlG3RTIIiIiLSPGtsZrp4GTt2rFu4cOEO25YvX87w4cPjFFHnN2vWrB0mw+hs9PMje+uT/zmGbuFyyg+/mkPf+glfnfwEBxwyJd5hiYiISDtgZoucc2Mb2xezSS5E5P9v787D46jOfI9/3+5Wd2uzJEvyvhK8L7KxMA6GYBO2BAIJq+fCJMaT4SYhyYRnJgtZSCAPz03CHXJnAgkDA2GSIQZCEnASQiAsQzyDDQaDMTY2BowtsGzLkqy193P/6LYsy63FVkvtln6f5+FR16lT57yoXFK9OqdOyVDiTUSIefzklyZHlNsba7MckYiIiOSCjC7TLrnne9/7XrZDEDkh+VyYmLeI4pHJBCt6UO9ZExERkd5pBEtEJA1fIkLcG6C0PPn+t3iz3oUlIiIivVOCJSKSRp6LkPAEGFFcSJMrwNrqej9IREREhj0lWCIiaeS5CM4XwMxotBJ87UqwREREpHdKsERE0vC7CAlv8sXczd5SAuH6LEckIiIiuUAJVh89+uijmBlvvvlmt3V27tzJ3LlzM9bntm3bWLZsGQsWLGDWrFlcd911QPIlwY8//vhxtxsKhVi8eDFVVVXMmTOH7373u5kKWWTICBABXwCAtryRFEQbshyRiIiI5AIlWH20evVqzjjjDFavXp12fywW63cf8Xj8iO0vf/nL3HDDDbz66qts3bqVL33pS0D/E6xAIMAzzzzDa6+9xquvvsoTTzzBunXr+hW7yFASTzj8RMGXHMEKB0ZSHG/MblAiIiKSE5Rg9UFLSwtr167l3nvv5cEHH+wof+655zjzzDO5+OKLmT17NpBMtK6++mpmzZrF5ZdfTltbGwBPP/00CxcuZN68eaxatYpwOAzAlClT+PrXv84pp5zCr3/96yP63bNnDxMmTOjYnjdvHpFIhJtuuomHHnqIBQsW8NBDD9Ha2sqqVatYvHgxCxcu5LHHHgPg/vvv55JLLmHZsmVMmzaNm2++GQAzo6ioCIBoNEo0GsXMjvr//vWvf83cuXOpqqriIx/5CJAc/br22muZN28eCxcu5Nlnn+3o65Of/CTnnnsuU6ZM4Y477uD2229n4cKFLFmyhPr65PSqe+65h1NPPZWqqiouu+yyju9PZ0uWLOGNN97o2F62bBldX0AtMpBCkSgBi3WMYMXyKymhCRLxXo4UERGR4S633oP1p29A7euZbXPMPPjYD3qs8thjj3HBBRcwffp0ysvLefnll1m0aBEAr7zyCps3b2bq1Kns3LmTbdu2ce+997J06VJWrVrFT3/6U774xS+ycuVKnn76aaZPn86nP/1pfvazn/GVr3wFgPLycl555ZWj+r3hhhs4++yzOf300znvvPO49tprKS0t5ZZbbmHDhg3ccccdAHzzm9/k7LPP5r777qOxsZHFixdzzjnnAPDiiy+yefNmCgoKOPXUU7nwwguprq4mHo+zaNEiduzYwfXXX89pp512VP+33HILf/7znxk/fjyNjY0A3HnnnZgZr7/+Om+++SbnnXce27dvB2Dz5s1s3LiRUCjEySefzA9/+EM2btzIDTfcwC9+8Qu+8pWvcOmll/L3f//3AHz729/m3nvv7RiZO+Sqq67i4Ycf5uabb2bPnj3s2bOH6uq0L8oWGRDhUBuFAL78ZEFhBR4ckeY6/CWjsxmaiIiInOA0gtUHq1evZsWKFQCsWLHiiGmCixcvZurUqR3bEydOZOnSpQBcc801rF27lm3btjF16lSmT58OwGc+8xmef/75jmOuuuqqtP1ee+21bN26lSuuuILnnnuOJUuWdIx8dfbkk0/ygx/8gAULFrBs2TJCoRC7du0C4Nxzz6W8vJz8/HwuvfRS1q5dC4DX6+XVV1+lpqamIwnraunSpaxcuZJ77rmnY/ri2rVrueaaawCYOXMmkydP7kiwli9fTnFxMZWVlZSUlPCJT3wCSI687dy5E0gmYWeeeSbz5s3jgQceOGKk6pArr7ySRx55BICHH36Yyy+/PO33R2SgRMLJkVVPXnKKoKd4FABNBz7IWkwiIiKSG3JrBKuXkaaBUF9fzzPPPMPrr7+OmRGPxzEzbrvtNgAKCwuPqN91ql26qXdddW2js3HjxrFq1SpWrVrF3Llz0yZCzjl+85vfMGPGjCPK169f32s8paWlLF++nCeeeOKoBTruuusu1q9fzx//+EcWLVrEyy+/3OP/RyAQ6Pjs8Xg6tj0eT8czaitXruTRRx+lqqqK+++/n+eee+6odsaPH095eTmbNm3ioYce4q677uqxX5FMi7a3A2D+ZIIVKEkmWC0Haqk4KWthiYiISA7QCFYvHnnkEf72b/+W9957j507d7J7926mTp3KX//617T1d+3axQsvvADAr371K8444wxmzJjBzp072bFjBwC//OUvOeuss3rt+4knniAajQJQW1vLgQMHGD9+PMXFxTQ3N3fUO//88/nJT36Ccw6AjRs3dux76qmnqK+vp729nUcffZSlS5eyf//+jil/7e3tPPXUU8ycOfOo/t9++21OO+00brnlFiorK9m9ezdnnnkmDzzwAADbt29n165dRyV2PWlubmbs2LFEo9GOdtK56qqr+NGPfsTBgweZP39+n9sXyYRoJJlgHRrByi8dC0CosTZrMYmIiEhuGPAEy8wuMLNtZrbDzL4x0P1l2urVq/nUpz51RNlll13W7WqCM2bM4M4772TWrFk0NDTw+c9/nmAwyM9//nOuuOIK5s2bh8fj4XOf+1yvfT/55JMdi0ycf/753HbbbYwZM4bly5ezZcuWjkUuvvOd7xCNRpk/fz5z5szhO9/5Tkcbixcv5rLLLmP+/PlcdtllVFdXs2fPHpYvX878+fM59dRTOffcc7nooosAuOmmm1izZg0AX/3qV5k3bx5z587l9NNPp6qqii984QskEgnmzZvHVVddxf3333/EyFVvvv/973PaaaexdOnSI5K6NWvWcNNNN3VsX3755Tz44INceeWVfW5bJFOiHVMEk89gFZWPSZY37c1aTCIiIpIb7NCox4A0buYFtgPnAjXAS8DfOOe2pKtfXV3tuq4Wt3XrVmbNmjVgMQ5l999//xGLYQxH+vcjx+ONDf/FnD9czJaz/o3Zy1fQ0BKi+LaxvDH1WqpW3p7t8ERERCTLzOxl51zaVdgGegRrMbDDOfeOcy4CPAhcMsB9ioj0Syx85BTBkoIA9YzA2uqyGZaIiIjkgIFOsMYDuztt16TKOpjZdWa2wcw27N+/f4DDGV5Wrlw5rEevRI5XPJpMsHyBAgA8HqPRSvCFDmQzLBEREckBWV/kwjl3t3Ou2jlXXVlZ2V2dQY5KhgL9u5HjlYgcSrCCHWUtvlKCYSVYIiIi0rOBTrDeByZ22p6QKuuzYDDIgQMHdLMsx8Q5x4EDBwgGg71XFumiYwTLX9BR1pY3koJYQ7ZCEhERkRwx0O/BegmYZmZTSSZWK4D/dSwNTJgwgZqaGjR9UI5VMBhkwoQJ2Q5DclAiEgIgL5DfURYJlDOivTFLEYmIiEiuGNAEyzkXM7MvAn8GvMB9zrk3jqWNvLw8pk6dOiDxiYik46LJBMsfPDyCFc+voKAxBJE26DSyJSIiItLZQI9g4Zx7HHh8oPsREcmYVIKV1ynBsqLkM6Lhpn0EKqZkIyoRERHJAVlf5EJE5ETjYskEKxA8PEXQP2I0AE11H2QlJhEREckNSrBERLqKhQHw+Q8nWMHSZILVfGBPVkISERGR3KAES0Skq1iIqPNi3ryOoqLysQCEGmuzFZWIiIjkACVYIiJdWCxExPKOKCutTCZY0aa92QhJREREcoQSLBGRLiweJoL/iLLysjJaXQDXoldGiIiISPeUYImIdOGJh4nYkQlWwOelwUqwtrosRSUiIiK5QAmWiEgXnniIaJcEC6DJU4o/XJ+FiERERCRXKMESEenCm4ikTbDa8srIjyjBEhERke4pwRIR6cIbDxNLk2BFAuUUxRuyEJGIiIjkCiVYIiJdeF2EmCdwVHk8v4KSRBMkElmISkRERHKBEiwRkS7yEiFinqNHsCiqJM/ihFo0TVBERETSU4IlItKFPxEi5i04qtxXPBqAhn01gx2SiIiI5Ih+JVhmdpuZvWlmm8zsd2ZW2mnfjWa2w8y2mdn5/Y5URGSQBBIh4r6jE6z80mSC1Xxgz2CHJCIiIjmivyNYTwFznXPzge3AjQBmNhtYAcwBLgB+ambefvYlIjIogrSTyDs6wSoYORaA9obawQ5JREREckS/Eizn3JPOuVhqcx0wIfX5EuBB51zYOfcusANY3J++REQGS74L49IkWKUVyQQr0rRvsEMSERGRHJHJZ7BWAX9KfR4P7O60ryZVJiJyQotEouRbBNIkWGWVY0g4I9GsBEtERETS8/VWwcz+AoxJs+tbzrnHUnW+BcSAB441ADO7DrgOYNKkScd6uIhIRrW3NuMHCBQdtS8vz88BG4Gnde+gxyUiIiK5odcEyzl3Tk/7zWwlcBHwUeecSxW/D0zsVG1Cqixd+3cDdwNUV1e7dHVERAZLe1szJYDHX5h2f6NnJP7Q/sENSkRERHJGf1cRvAD4GnCxc66t0641wAozC5jZVGAa8GJ/+hIRGQyhtmYAPGlGsABa/OUURuoGMyQRERHJIb2OYPXiDiAAPGVmAOucc59zzr1hZg8DW0hOHbzeORfvZ18iIgMu0tYEgC+YfgQrHBzFuMZ3BjMkERERySH9SrCccyf3sO9W4Nb+tC8iMtjCbS0A5OWnH8GKFYyirKGRRCyGx9ffv1GJiIjIUJPJVQRFRHJeLHwowSpOu99TPAafJWjUy4ZFREQkDSVYIiKdxNqTz2D5u0mw/GXJd2E17qsZtJhEREQkdyjBEhHpJB5KjmAFCtInWPkjk6/0az2QdmFUERERGeaUYImIdJIIJUewgoUlafePqEi+gSJUrwRLREREjqYES0SkEws1AJBfUp52f/nYZIIVb6odtJhEREQkdyjBEhHpxEKNtLoggUB+2v3B/EKaKMRalGCJiIjI0ZRgiYh04g030mTpl2g/pMEzkrz2/YMUkYiIiOQSJVgiIp3kRQ7S6h3RY53mvHIKwnWDFJGIiIjkEiVYIiKdBKMHCfWSYIUClYyIHxikiERERCSXKMESEekkP95MOK/nBCtWOIryRAMukRikqERERCRXKMESEemkMNFMLFDaYx0rGkPAojQ1apqgiIiIHEkJlohISiwWZ4RrxvJLe6znKxkLQH3t7kGISkRERHKJEiwRkZT6A/vwWxxPUWWP9QrKxwPQcqBmMMISERGRHJKRBMvM/tHMnJlVpLbNzP7VzHaY2SYzOyUT/YiIDKTGvbsA8JVO6LFecUVyf+jA+wMek4iIiOSWfidYZjYROA/Y1an4Y8C01H/XAT/rbz8iIgOtre49APIrJvZYb+SY5P5o054Bj0lERERySyZGsH4MfA1wncouAX7hktYBpWY2NgN9iYgMmEhDckRqxKhJPdYrKC6jzQWwlr2DEZaIiIjkkH4lWGZ2CfC+c+61LrvGA52f/q5JlYmInLASBz8AYOSYnhMsgHrPSPLa9g10SCIiIpJjfL1VMLO/AGPS7PoW8E2S0wOPm5ldR3IaIZMm9X5TIyIyYJo+oJ4SRgbye63anFdOfnj/IAQlIiIiuaTXBMs5d066cjObB0wFXjMzgAnAK2a2GHgf6PwQw4RUWbr27wbuBqiurnbp6oiIDIai1l3szxvHyD7UbQ9UUtmybcBjEhERkdxy3FMEnXOvO+dGOeemOOemkJwGeIpzrhZYA3w6tZrgEuCgc05Pg4vICW1UtIamwil9qhsrqGRkoh7n9HchEREROWyg3oP1OPAOsAO4B/jCAPUjIpIRrc2NjKKeWNlJfTugaAyFFqKpqXFA4xIREZHc0usUwb5KjWId+uyA6zPVtojIQNv91iZmAsHRM/pU31eSXBi1ce8uSkrKBjAyERERySUDNYIlIpJTDu5YB8DoGYv7VD9YNg6Apv162bCIiIgcpgRLRATwf/AS+yhj7OS+jWAVV04AoL1BCZaIiIgcpgRLRAQY1/Qa7wTnYp6+/VgsG518rUSsUev3iIiIyGFKsERk2Is21DA6sZemylP6fExRaSUR58M17x3AyERERCTXKMESkWFv92vPAlB08hl9P8iMek8ZvjYlWCIiInKYEiwRGfZa3vpv2lyA6QtOP6bjmnzl5IfrBigqERERyUVKsERk2BuxfwPbfNOpKCk6puPa/RUURw8MUFQiIiKSi5RgiciwFg81MyH8Ng3lfX/+6pBIwSjKEvUDEJWIiIjkKiVYIjKs7dr0PD5LEPzQ0mM+NlE4ilJrob2tbQAiExERkVykBEtEhrX6N/9KwhknLVx2zMd6RowBoGHf7swGJSIiIjlLCZaIDGv5e17kHc9kxowafczHBkrHAdBUV5PpsERERCRHKcESkWHLxWNMat/CvtIFx3V8/shkgtVer5cNi4iISJISLBEZtnZv20AR7djkJcd1/IiKZIIVOah3YYmIiEhSvxMsM/uSmb1pZm+Y2Y86ld9oZjvMbJuZnd/ffkREMm3/5ucAGDdv+XEdX1Y5HoBEy75MhSQiIiI5ztefg81sOXAJUOWcC5vZqFT5bGAFMAcYB/zFzKY75+L9DVhEJFM8NS+yl5FMmjr9uI73B4IcpBBP69BJsKLhNg421NHa3EikrZV4qJl4uJVYLEwiAeAwl8Bw4Bxm4DDMDDweDMPMg5lhHg+YB48Z2KFyD+bh8GczzHNonxczOrYxD5A8tvNXZwZ4upQfyfXz++D628Aw0Pnb3vUMWJpzcvQxlra8L/WPp90jjj7mOI7cYX34fEQffWj3iHa61O8tRm9+Cb6Ssek7EZFB168EC/g88APnXBjAOXfoLuMS4MFU+btmtgNYDLzQz/5ERDJmXPNr7Cqcz2jP8Q/mN3rKyAvVZTCqgRUJtfHe9k001Wwhtm8bvsZ38bftpThax0jXwAhaqQAqsh2oiPRZzHnY99n1jJp4fH8sEpHM6m+CNR0408xuBULAPznnXgLGA+s61atJlYmInBD2f/Aeo10d74yr7lc7Lb4y8sMHMhRV5n2wcxs1r/4FV7OB8sZNTI6+yzQ7PJmglgoa80bRUHgSe/NHES8YhbegDH9BMZ5AIZ5gEd5AEb48P16PB4fhODSSlGrEOdyh/xIJIJH67EgkEuASOAeOBC6R2ucSuITrVPdweef2PCTg0GhZ6isc/mwktwdCTyMmw53r4Xt+5OifS1ve3dHd1umuze5D7NJW+oa7jaObDed677truetuOLSbOPr2vTm8Ya11nLvrx+x+5SklWCIniF4TLDP7CzAmza5vpY4fCSwBTgUeNrOTjiUAM7sOuA5g0qRJx3KoiMhx27lpLZVAxYzjW+DikJC/nFGt2zMTVAa0t7Xy1rrf0771KcbV/Q8T3QeMA1pdkHcDM3hp3NUEJsynbNJcRk+ZzZjikrQ/4EUkN8TjcQ7ecjdu1zrg+myHIyL0IcFyzp3T3T4z+zzwW5f888yLZpYgObPkfWBip6oTUmXp2r8buBugurpas95FZFCE3nuRmPMwZe6H+9VONL+C0pb1GYrq+ERCbWz562+Jbvots5v+m/kWos0FeKugig8mXc3oqvOZOH0hc339nbQgIicar9fLO8HZjGp8NduhiEhKf3/bPgosB541s+mAH6gD1gC/MrPbSS5yMQ14sZ99iYhkTHH96+z2TWZqsKhf7biCSoppJxxqJRAszFB0fbNlyybqnrmTBXW/ZwGtNFDMlopzCVZdyrRTL6Aqv2BQ4xGR7GiqXMTCmrtobayjsFRPUIpkW38TrPuA+8xsMxABPpMazXrDzB4GtgAx4HqtICgiJ4pEPMGU0DberljG1H625RmRnGDXuO99Rk8a+OcforE4G559FO9Ld1MdXk8cD5tLzsJOuYY5p1/Eqf7AgMcgIieW8plnQM1dbN/wFxaesyLb4YgMe/1KsJxzEeCabvbdCtzan/az7bVnHyb82u+Y+3c/paC4LNvhiEiG7HpnK1OsBTfulH635S9JJlhNdR8MaILV0NDAa4/fzaQdv+TDbjcNlPD6SZ/l5Au/zMIKPb8qMpxNX3Q2rU8FiW35AyjBEsk6TcjvQfv7W1jc8Cf23L6Ed8//CXOWnJftkEQkA/Zve4EpwMjp/Xv+CqCgLJlgtTd80O+20nl7+xZqnvwXFuz/PcuslZ15J7PllB8w86MrqfLnD0ifIpJb/PmFvFK8lFn1z5KIhvHkaSRbJJuUYPVgyTXfY9PaxYz6y5eZ88QVvLL2LIrOvZHpVf2/KRs2Dq0r61xyWVnnUkWpRWZTSzGfqDpeAtndWyIHWTev7hzkKLr03lP3Wfi+9WVp7djuDYRcHpNmLOp3f8UV4wCINO7td1uHJOIJNj6/Brf+Lha2r2MyxpbSZZQu/xJTqpafMP8eReTEYXMvo2Td02z+7zXMXXZFtsMZWo5YI7/zqwcSnYqS5Uff2/T0UoO+Sv9C6p4P6e5l3z3+0j6GSHrvq+eqx/F7zKyX+E8cSrB6Mf+Mj9NedTr/89D3qdr9nxT+7gK2/X4G9VMuZPQpFzJ15kLM4x2w/p1zhGMJWkJR2traaG9tItzWRLi9hUhbC9H2ZmKhFuLhVlykDYu14Ym24Ym14Ym144u144u340u0kxdvJ+BC5LkIHhfHXAIPcTwugZd4sowEXpLlXnfocwIfcUi9/QZIvXum89ckj3X/Y8S6fBXJlg8D2/JmMiMDzyuNHD2RuDPcwZp+t9XcfJBNf7ybsdt+wSK3i0aKeXXytXzo4//A/DFT+t2+iAxdVcsu5eC6rxJ76eeQwwlWPBal9WADzU0NtDU3EGppINLaSLz9IIRbsHATRFogGoZYOxYPY/EwnlgITyKMNx7BlwjjcxF8Ltpxn+MhgcfF8ZC650nd73g7lXlJ4O3hPqYr3dcMnv+MfZS5//s+FkwszXYofaIEqw/yi0s5/bP/THPD11j/p39j1I5H+PCO22HH7bS4fHblTaGpYDKe4lHE8yuxglLy/AHMm0ccLy4Rx+IRLB7BRUPEIiHi0XaItEH0cELkjSeToLx4O34XIuBCBF2YfMKUEaLiGC56gHYChCxI2IJELEjYEyTiCdJiRTjz4syH83hw5gPz4DxeMC+kvjqPD8xLwrw48+DMk2o5/aiO4Ulbfvi45C6HYanU7PD2iefQd9sy8LenTEg30Jft71tPf5fLxvetr4OhBpQvvDAjfQaD+bxvlfga3z3uNmrefZP3nvhX5tY+ylJr5R3fSbw6/1bmnHctiwZ5ZUIRyU3BYD4vT7iapTV389bG/2LawrOyHVKHWCTMgdr3aKjdSWvdLiKN+3Ct+/C015MXqic/Wk9hrJGSxEFKrYURwIge2os7I4SfCH4ilkfEAsTMT8z8RD0Bot58Qt5S4uZL3eN4u73fcZ3ve8wLeHCWvC9xHP4968xI+1s3dc9jnX7rHX1vY/34hd2HN2P3dEwmpW32WPo6/riKi2YyZkTwuI8fbHYiTc+qrq52GzZsyHYYfbJ313Z2vfQ4idrXKWnaRlnkA8oSjfit74slxp3RnkqAwpZMfqLefGLefBLefOJ5BThfAfgLMH8h5i/EFyjAGyzCFyzCn1+EP7+YQEExwYLktvmLwF8AvnzweHoPQkT67dX/czbF8YN86Nsv9/mYeDzO5ucfJf7iv1PV9gIO4/URH6H4I1/k5OpzNA1QRI5Z88F6Yj+uYk/eJGZ8/Tm8vrxB6TfU1kztzjdpqNlGeN/b0FSDv7WWonAtpbE6KlzDUTNc4s44aMU0eUppyysj7C8jGiwnHhyJ5ZfizS8hr6AEf2EJwaIyAkUl+AvL8BeWkJ9fRJ7PkzPTxWRoMrOXnXPV6fZpBOs4jZ40/agVw+LxBM3NB2hvOkBbexgXj+JxMTxeL3gDePKC5PmD5BcUUFBQiDcvSJEZ/XsLj4hkW1vxVKbV/QGXSGC9/GGjsa6WrX/6GRPfeZAqV0s9I9gw4TOc9PEvs3D8hwYpYhEZiopLRvJi1ddZ/Nq3WP9vn2Px5+/p9WdSX7U11bN351YOvr+N8L4deBp3Uti6i8rI+1RSzxRgyqG6LsB+byVNeaPYWXQybxePw1M6geDIiYwYPZmyyvGMKBvFSJ+PkRmJTuTEogQrg7xeD8WllRSXVmY7FBEZRFYxg8K6R6jduZkxJ80/an8kHOKN539L/LWHmde8lg9blC3+ubxS9U/M/eg1nBbUaoAikhmLP/VFXqjdzIf3rmbjP9cy5srbGTt5Rq/HOedoatjP3p1baflgG9H9O/A17qS47T0qox9QRtMR7w2so5R9eeN5t2QxO0qnkFd5MiPGTWf05JmMKKtksmbRyDCmBEtEpJ/GnfoJePNWdq/7XUeCFQmHefOlJwlt/DXTDzzNQlpopJjXRl1M5bLPMXvO4ixHLSJD1WnX/ZQXVo9l0Vv/gve+09jin0tT6SwoGg0+P8SjuEgb3rZ9BEL7KAzvpzy+jzKaKenUTi0V1PnHs63sLBKlU/GP+hCl42cwaspMKkaUUZG1/0ORE5uewRIRyYDt319ERXw/b028Al/DW0xrfokR1kabC7BlxFLyFl7F7DM+RV4GVi4UEemL2t07ePeJO6jYu5ax0RqKrL1jX8IZ9VZCo2ckrYEKIgVjSZSdhH/UyZROmMnoyTMoKCzOYvQiJ7aensFSgiUikgFbXltH2e+uZix11FLB7rLT8M+6gBlLLyFYWNJ7AyIiA6ytpZF4LIYvL4A/kI/Xp4lMIsdLi1yIiAyw2VVLcPO2EwqHGJNfyJhsByQi0kVBUWm2QxAZFvQEoohIhpjHSzBf760SEREZzpRgiYiIiIiIZIgSLBERERERkQxRgiUiIiIiIpIhJ9Qqgma2H3gv23F0UQHUZTsIGTQ638OHzvXwoXM9vOh8Dx8618PHiXiuJzvnKtPtOKESrBORmW3obglGGXp0vocPnevhQ+d6eNH5Hj50roePXDvXmiIoIiIiIiKSIUqwREREREREMkQJVu/uznYAMqh0vocPnevhQ+d6eNH5Hj50roePnDrXegZLREREREQkQzSCJSIiIiIikiFKsERERERERDJECVYPzOwCM9tmZjvM7BvZjkcyx8wmmtmzZrbFzN4ws39IlY80s6fM7K3U17JsxyqZYWZeM9toZn9IbU81s/Wp6/shM/NnO0bJDDMrNbNHzOxNM9tqZh/WtT00mdkNqZ/hm81stZkFdW0PHWZ2n5ntM7PNncrSXsuW9K+p877JzE7JXuRyrLo517elfo5vMrPfmVlpp303ps71NjM7PytB90AJVjfMzAvcCXwMmA38jZnNzm5UkkEx4B+dc7OBJcD1qfP7DeBp59w04OnUtgwN/wBs7bT9Q+DHzrmTgQbg77ISlQyEfwGecM7NBKpInndd20OMmY0HvgxUO+fmAl5gBbq2h5L7gQu6lHV3LX8MmJb67zrgZ4MUo2TG/Rx9rp8C5jrn5gPbgRsBUvdrK4A5qWN+mrpvP2EowereYmCHc+4d51wEeBC4JMsxSYY45/Y4515JfW4meQM2nuQ5/o9Utf8APpmVACWjzGwCcCHw76ltA84GHklV0bkeIsysBPgIcC+Acy7inGtE1/ZQ5QPyzcwHFAB70LU9ZDjnngfquxR3dy1fAvzCJa0DSs1s7KAEKv2W7lw75550zsVSm+uACanPlwAPOufCzrl3gR0k79tPGEqwujce2N1puyZVJkOMmU0BFgLrgdHOuT2pXbXA6GzFJRn1/4CvAYnUdjnQ2OkHt67voWMqsB/4eWpK6L+bWSG6tocc59z7wP8FdpFMrA4CL6Nre6jr7lrWfdvQtgr4U+rzCX+ulWDJsGZmRcBvgK8455o673PJdxjoPQY5zswuAvY5517OdiwyKHzAKcDPnHMLgVa6TAfUtT00pJ69uYRkUj0OKOToKUYyhOlaHh7M7FskH+14INux9JUSrO69D0zstD0hVSZDhJnlkUyuHnDO/TZVvPfQlILU133Zik8yZilwsZntJDnV92ySz+iUpqYVga7voaQGqHHOrU9tP0Iy4dK1PfScA7zrnNvvnIsCvyV5vevaHtq6u5Z13zYEmdlK4CLganf45b0n/LlWgtW9l4BpqdWI/CQfpluT5ZgkQ1LP4NwLbHXO3d5p1xrgM6nPnwEeG+zYJLOcczc65yY456aQvI6fcc5dDTwLXJ6qpnM9RDjnaoHdZjYjVfRRYAu6toeiXcASMytI/Uw/dK51bQ9t3V3La4BPp1YTXAIc7DSVUHKQmV1Acnr/xc65tk671gArzCxgZlNJLmzyYjZi7I4dTgalKzP7OMlnN7zAfc65W7MbkWSKmZ0B/BV4ncPP5XyT5HNYDwOTgPeAK51zXR+wlRxlZsuAf3LOXWRmJ5Ec0RoJbASucc6FsxieZIiZLSC5oIkfeAe4luQfFHVtDzFmdjNwFcnpQxuBz5J8FkPX9hBgZquBZUAFsBf4LvAoaa7lVJJ9B8lpom3Atc65DVkIW45DN+f6RiAAHEhVW+ec+1yq/rdIPpcVI/mYx5+6tplNSrBEREREREQyRFMERUREREREMkQJloiIiIiISIYowRIREREREckQJVgiIiIiIiIZogRLREREREQkQ5RgiYiIiIiIZIgSLBERERERkQz5/2roF8JkxiiAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -4811,31 +4811,31 @@ " 21\n", " False\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " bAP.soma.v\n", - " 0.000667\n", - " 5.26e-06\n", + " 0.00073\n", + " 5.21e-06\n", " \n", " \n", " 22\n", " False\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step1.soma.v\n", - " 0.000979\n", - " 4.98e-05\n", + " 0.000964\n", + " 1.84e-05\n", " \n", " \n", " 23\n", " False\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step3.soma.v\n", - " 0.00103\n", - " 0.000144\n", + " 0.000679\n", + " 0.00121\n", " \n", " \n", "\n", @@ -4843,14 +4843,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "21 False 7 0.0847 0.0447 bAP.soma.v \n", - "22 False 7 0.0847 0.0447 Step1.soma.v \n", - "23 False 7 0.0847 0.0447 Step3.soma.v \n", + "21 False 7 0.0589 0.0664 bAP.soma.v \n", + "22 False 7 0.0589 0.0664 Step1.soma.v \n", + "23 False 7 0.0589 0.0664 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "21 0.000667 5.26e-06 \n", - "22 0.000979 4.98e-05 \n", - "23 0.00103 0.000144 " + "21 0.00073 5.21e-06 \n", + "22 0.000964 1.84e-05 \n", + "23 0.000679 0.00121 " ] }, "metadata": {}, @@ -4858,7 +4858,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACj30lEQVR4nOzdeXxU1f3/8ddnJitJSCBhDxBEQLaICogV3Noq1gWtVrTu1lrtptaldrPUX+23X+u3tmpbuti6FrHua60bKlbUgIgILoBhX0JCyL7MzPn9cW/iELJhJkyW9/PhmLnnnnvu587NhPnMOfdcc84hIiIiIiIiHReIdwAiIiIiIiI9hRIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiJdjJnlmZkzs4R4xyK9g5l9YGbHxDsOEZGeQAmWiIh0e2Y238wq/EedmdVHLT8X7/i6OufcROfcoli26SdtFVGPkJk9Fct9iIh0RaYbDYuIxJaZJTjnQh3YPg/4FEjsSDu9lZnNAw50zp3XzLoOnZv9qTvF2hYzM2Ad8HPn3L3xjkdEpDOpB0tEJAbMrNDMfmhmK4BKM0swsxlm9l8zKzWz96KHYJnZIjP7HzN728zKzOwJM+vfQtsXm9lqMys3s3Vm9q0m6+eY2XK/nbVmNtsvzzSzu8xsq5ltNrNfmlmwjeMYbWYvm1mxme00swfMLCtqXYmZHeovDzWzoobjMrNT/V6LUv/4xjd5fa41sxVmttvMFppZyr6/0vuuhXPjzOzAqDp3m9kvo5ZP9l/TUv8c5rdzX8eY2SYz+7H/+hWa2blR608ys3f9c7XRTwYb1jUMDf2GmW0AXvbL/2Vm2/zX7TUzm9gk7j+a2XN+L9EbZjbYzH5nZrvM7EMzO6Sdr9GX2nOMn9NRQA7wSCfuQ0SkS1CCJSISO+cAJwFZwCDgGeCXQH/gWuARMxsQVf8C4BJgCBACbm+h3R3AyUBf4GLgtqgkZzpwL3Cdv9+jgEJ/u7v9dg8EDgGOBy5t4xgM+B9gKDAeGA7MA3DOrQV+CNxvZn2AfwD3OOcWmdlYYAFwFTAAeBZ4ysySoto+C5gNjALygYuaDcBspp/YtPSY2cYxNKfx3LTVK+QnJH8HvgVkA38GnjSz5HbuazBeMjEMuBD4i5mN89dV4p33LD+eK8zstCbbH4332p/gLz8HjAEGAsuAB5rUPwv4qb/PWuBNv14O8DDw23bG3Swzu6G189HOZi4EHnHOVXYkFhGR7kAJlohI7NzunNvonKsGzgOedc4965yLOOdeAAqAr0TVv885t9L/0Pkz4Kzmepicc88459Y6z6vAf4BZ/upvAH93zr3g72ezc+5DMxvk7+sq51ylc24HcBtwdmsH4Jxb47dV65wrwvtwfnTU+r8Ca4C38BLDn/ir5gLP+NvWA7cCqcAXmrw+W5xzJcBTwJQWYljsnMtq5bG4tWNoQfS5actlwJ+dc28558LOuXvwEpcZ+7C/n/mv4at4ifZZAM65Rc659/1ztQIvKT26ybbz/HNW7W/zd+dcuXOuFi/ZPdjMMqPqP+acW+qcqwEeA2qcc/c658LAQrzk+nNzzv26tfPR1vZ+Mn4mXsIvItLjKcESEYmdjVHPRwJfa/JN/0y8pKS5+uuBRLxehz2Y2YlmtsQfnleKlzg11BsOrG0mlpF+e1uj9v9nvF6QFpnZIDN70B9SWAbc30xMfwUmAXf4H/rB6/Fa31DBORfxj29Y1Hbbop5XAemtxRJjG9uu0mgkcE2Tczcc7xjbY1eTnpr1Ddua2eFm9oo/tHI3cDl7v76NsZpZ0Mx+bd7QzzI+652M3mZ71PPqZpb35+vcnK8CJcCrcY5DRGS/UIIlIhI70bMGbcTroYr+tj/NOffrqDrDo56PAOqBndEN+sPSHsHrERrk9xg8izeUr2E/o5uJZSNer0tO1P77OucmNlM32q/845jsnOuL1xPXsC/MLB34HXAXMM8+u25sC15i0lDP/OPb3Mb+9mJms2zP2eeaPma13cpems7oVAX0iVoeHPV8I3Bzk3PXxzm3oJ376mdmaVHLI/BeH4B/Ak8Cw51zmcB8ol7fZmL9OjAH+BKQCeT55U236TT+9WQtno92NHEhcK/TrFoi0ksowRIR6Rz3A6eY2Ql+L0SKPwFCblSd88xsgj+E6ibgYX9YV7QkIBkoAkJmdiLetVQN7gIuNrMvmlnAzIaZ2UHOua14Qwn/z8z6+utGm1nT4WhNZQAVwG4zG4Z3bVe03wMFzrlL8Ya+zffLHwJO8uNIBK7BS/D+29YL1ZRz7nXnXHorj9f3tc1mLAe+7p+b2ew5TO+vwOV+b5OZWZp5k1NkQOPEEne30f4vzCzJTwZPBv7ll2cAJc65Gv/6ua+30U4G3utYjJcQ/mofjjEmnHO/au18tLat//t+LHDP/olWRCT+lGCJiHQC59xGvJ6HH+MlRxvxkpXov7v34V2Xsg1IAb7fTDvlfvlDwC68D+RPRq1/G3/iC2A33jCshp6kC/AStFX+tg+z5xDF5vwCONRv6xng0YYVZjYHb5KKK/yiHwCHmtm5zrmP8Hq77sDrhTsFOMU5V9fG/uLlSrwYS4FzgccbVjjnCoBvAnfivW5r2HNCjuHAG620vc3fbgvehBSXO+c+9Nd9G7jJzMqBG/HOa2vuxRtiuBnvPC5p68C6mPOBN/0JUkREegXdB0tEJA7MbBFwv3Pub/GORdrPnxXxPSDfn8yj6fpj8M5rbtN1IiLSOyTEOwAREZHuwu+RG99mRRER6bU0RFBEpJcxs/ktTFgwv+2tpTsysxGtTFQxIt7xiYj0JBoiKCIiIiIiEiPqwRIREREREYmRLnUNVk5OjsvLy4t3GCIiIiIiIq1aunTpTufcgKblXSrBysvLo6CgIN5hiIiIiIiItMrM1jdXriGCIiIiIiIiMaIES0REREREJEaUYImIiIiIiMRIl7oGqzn19fVs2rSJmpqaeIciXUBKSgq5ubkkJibGOxTpwV589l9s/vRDzr38JyQE9T2UiIiItF+XT7A2bdpERkYGeXl5mFm8w5E4cs5RXFzMpk2bGDVqVLzDkR7sS29fCsDbH53L9AkHxDkaERER6U66/FezNTU1ZGdnK7kSzIzs7Gz1ZkqnqqkLNT7fvfzx+AUiIiIi3VKXT7AAJVfSSL8L0tlKt3zS+Dxpx4o4RiIiIiLdUbdIsERE9peqbZ8lWH0rPo1jJCIiItIdKcFqBzPjmmuuaVy+9dZbmTdvXvwCinLMMce0enPm0047jRkzZuxRNm/ePIYNG8aUKVOYNGkSTz75ZGeHKdJtVFbsBmBd8AAG12/EORfniERERKQ7UYLVDsnJyTz66KPs3Lkzpu0654hEIjFtM1ppaSlLly5l9+7drFu3bo91V199NcuXL+df//oXl1xySafGIdKd1FaWAbC730SGWDE7dpbEOSIRERHpTpRgtUNCQgKXXXYZt912217rioqKOOOMM5g2bRrTpk3jjTfeALxeoltvvbWx3qRJkygsLKSwsJBx48ZxwQUXMGnSJDZu3Mh1113HpEmTmDx5MgsXLgRg0aJFHHPMMZx55pkcdNBBnHvuuS1+k37fffc19ka9/fbbjeWPPvoop5xyCmeffTYPPvhgs9uOHz+ehISEPZLHG264gQkTJpCfn8+1114LQGFhIccddxz5+fl88YtfZMOGDQBcdNFFXHHFFcyYMYMDDjiARYsWcckllzB+/HguuuiixjavuOIKpk6dysSJE/n5z3++Vxy7d+9m5MiRjYleZWUlw4cPp76+vtm4RTpLuLbCezJoIgA7N3/SSm0RERGRPXX5adqj/eKpD1i1pSymbU4Y2pefnzKxzXrf+c53yM/P5/rrr9+j/Morr+Tqq69m5syZbNiwgRNOOIHVq1e32tYnn3zCPffcw4wZM3jkkUdYvnw57733Hjt37mTatGkcddRRALz77rt88MEHDB06lCOPPJI33niDmTNn7tVeVVUVy5cv57XXXuOSSy5h5cqVACxYsIAbb7yRQYMGccYZZ/DjH/94r23feustAoEAAwYMAKC4uJjHHnuMDz/8EDOjtLQUgO9973tceOGFXHjhhfz973/n+9//Po8//jgAu3bt4s033+TJJ5/k1FNP5Y033uBvf/sb06ZNY/ny5UyZMoWbb76Z/v37Ew6H+eIXv8iKFSvIz89vjCMzM5MpU6bw6quvcuyxx/L0009zwgkn6H5Xst9ZXSUAfYZNhA+gfMd6YEbrG4mIiIj4OtyDZWbDzewVM1tlZh+Y2ZV++Twz22xmy/3HVzoebvz07duXCy64gNtvv32P8hdffJHvfve7TJkyhVNPPZWysjIqKipabWvkyJGN10UtXryYc845h2AwyKBBgzj66KN55513AJg+fTq5ubkEAgGmTJlCYWFhs+2dc845ABx11FGUlZVRWlrK9u3b+eSTT5g5cyZjx44lMTGxMfECuO2225gyZQrXXnstCxcubJydLzMzk5SUFL7xjW/w6KOP0qdPHwDefPNNvv71rwNw/vnns3jx4sa2TjnlFMyMyZMnM2jQICZPnkwgEGDixImNMT/00EMceuihHHLIIXzwwQesWrVqr+OYO3duYw/egw8+yNy5c1t9HUU6g9VVEnHGwDzvi5e64vVxjkhERES6k1j0YIWAa5xzy8wsA1hqZi/4625zzt3ayrb7pD09TZ3pqquu4tBDD+Xiiy9uLItEIixZsoSUlJQ96iYkJOxxXVP0vZvS0tLatb/k5OTG58FgkFAo1Gy9plOXmxkPPfQQu3btarwhb1lZGQsWLODmm28GvGuwGob/NY377bff5qWXXuLhhx/mzjvv5OWXX25XnIFAYI+YA4EAoVCITz/9lFtvvZV33nmHfv36cdFFFzV7L6tTTz2VH//4x5SUlLB06VKOO+64Vvcr0hkC9ZVUkkLWoBGECOBKN8U7JBEREelGOtyD5Zzb6pxb5j8vB1YDwzrablfUv39/zjrrLO66667GsuOPP5477rijcXn58uUA5OXlsWzZMgCWLVvGp582P93zrFmzWLhwIeFwmKKiIl577TWmT5++T3E19PosXryYzMxMMjMzWbBgAf/+978br/taunRpi9dhRauoqGD37t185Stf4bbbbuO9994D4Atf+ELj9g888ACzZs1qd3xlZWWkpaWRmZnJ9u3bee6555qtl56ezrRp07jyyis5+eSTCQaD7d6HSKwEQlVUk4IFEymx/iRWbol3SCIiItKNxHSSCzPLAw4B3vKLvmtmK8zs72bWr4VtLjOzAjMrKCoqimU4neKaa67ZY0KI22+/nYKCAvLz85kwYQLz588H4IwzzqCkpISJEydy5513Mnbs2GbbO/3008nPz+fggw/muOOO45ZbbmHw4MH7FFNKSgqHHHIIl19+OXfddReFhYWsX79+j+nZR40aRWZmJm+99VazbXzlK19hy5YtlJeXc/LJJ5Ofn8/MmTP57W9/C8Add9zBP/7xD/Lz87nvvvv4/e9/3+74Dj74YA455BAOOuggvv71r3PkkUc2rrvxxhv3mCZ+7ty53H///RoeKHETDFVRbV6P9O6kQaTXbItzRCIiItKdWKzu8WJm6cCrwM3OuUfNbBCwE3DA/wOGOOcuaa2NqVOnuqb3dFq9ejXjx4+PSYzSM+h3QjrTqv/7CoHyLRw0bzkrfvdVskpXMmLex/EOS0RERLoYM1vqnJvatDwmPVhmlgg8AjzgnHsUwDm33TkXds5FgL8C+zbuTUQkDhLCVdQGUgEIZeQyyBVTVVsX56hERESku4jFLIIG3AWsds79Nqp8SFS104GVTbcVEelqkqISrGBWLskWYvtWTXQhIiIi7ROLWQSPBM4H3jez5X7Zj4FzzGwK3hDBQuBbMdiXiEinSopUUxvw7guXkjMSgLJthZB3QByjEhERke6iwwmWc24xYM2serajbYuI7G+JkRpCid4kFxmDvASrqqgwjhGJiIhIdxLTWQRFRLq7RFdHOOjdz63/YO8+cvWlm+MZkoiIiHQjSrBERKIkuHpcwEuwUjIHUkcClOleWCIiItI+SrDa6fHHH8fM+PDDD1usU1hYyKRJk2K2z4suuoiHH364xfVXXXUVw4YNIxKJNJbdfffdDBgwgClTpjBhwgT++te/xiwekd4gydXhEpK8BTOKAzkkVW2Nb1AiIiLSbSjBaqcFCxYwc+ZMFixY0Oz6UCjU4X2Ew+F2141EIjz22GMMHz6cV199dY91c+fOZfny5SxatIgf//jHbN++vcOxifQKzpFEPc4fIghQnjiAtNqufxN0ERER6RqUYLVDRUUFixcv5q677uLBBx9sLF+0aBGzZs3i1FNPZcKECYCXaJ177rmMHz+eM888k6qqKgBeeuklDjnkECZPnswll1xCbW0tAHl5efzwhz/k0EMP5V//+tde+37xxReZOnUqY8eO5emnn95j3xMnTuSKK65oMekbOHAgo0ePZv369Y1lt99+OxMmTCA/P5+zzz4bgJKSEk477TTy8/OZMWMGK1asAGDevHlceOGFzJo1i5EjR/Loo49y/fXXM3nyZGbPnk19fT0AN910E9OmTWPSpElcdtllNL15dSQSIS8vj9LS0sayMWPGKPGTrifs/U67YFJjUXXqILJCSrBERESkfWIxTfv+89wNsO392LY5eDKc+OtWqzzxxBPMnj2bsWPHkp2dzdKlSznssMMAWLZsGStXrmTUqFEUFhby0Ucfcdddd3HkkUdyySWX8Mc//pHvfve7XHTRRbz00kuMHTuWCy64gD/96U9cddVVAGRnZ7Ns2bJm911YWMjbb7/N2rVrOfbYY1mzZg0pKSksWLCAc845hzlz5vDjH/+Y+vp6EhMT99h23bp1rFu3jgMPPLCx7Ne//jWffvopycnJjQnPz3/+cw455BAef/xxXn75ZS644AKWL18OwNq1a3nllVdYtWoVRxxxBI888gi33HILp59+Os888wynnXYa3/3ud7nxxhsBOP/883n66ac55ZRTGvcZCASYM2cOjz32GBdffDFvvfUWI0eOZNCgQe0+TSL7RagGAEv4rAcrnD6EgbtepaYuREpS9/qTKSIiIvuferDaYcGCBY29PWefffYePUbTp09n1KhRjcvDhw/nyCOPBOC8885j8eLFfPTRR4waNYqxY8cCcOGFF/Laa681bjN37twW933WWWcRCAQYM2YMBxxwAB9++CF1dXU8++yznHbaafTt25fDDz+c559/vnGbhQsXMmXKFM455xz+/Oc/079//8Z1+fn5nHvuudx///0kJHgfFhcvXsz5558PwHHHHUdxcTFlZWUAnHjiiSQmJjJ58mTC4TCzZ88GYPLkyRQWFgLwyiuvcPjhhzN58mRefvllPvjgg72OY+7cuSxcuBCABx98sNVjFombcJ33MyGlsSiQOYxkq6dohya6EBERkbZ1r69j2+hp6gwlJSW8/PLLvP/++5gZ4XAYM+M3v/kNAGlpaXvUN7NWl5vTtI222nv++ecpLS1l8uTJAFRVVZGamsrJJ58MeMnMnXfe2Wx7zzzzDK+99hpPPfUUN998M++/33qPYHKy901+IBAgMTGxMZ5AIEAoFKKmpoZvf/vbFBQUMHz4cObNm0dNTc1e7RxxxBGsWbOGoqIiHn/8cX7605+2ul+ReHChGgywhM+GCKZkDwegZOt6hueOiFNkIiIi0l2oB6sNDz/8MOeffz7r16+nsLCQjRs3MmrUKF5//fVm62/YsIE333wTgH/+85/MnDmTcePGUVhYyJo1awC47777OProo9u1/3/9619EIhHWrl3LunXrGDduHAsWLOBvf/sbhYWFFBYW8umnn/LCCy80Xu/VkkgkwsaNGzn22GP53//9X3bv3k1FRQWzZs3igQceALxru3Jycujbt2+74mtIpnJycqioqGhx1kMz4/TTT+cHP/gB48ePJzs7u13ti+xPdTXVAFjiZz1Y6QO8pKpy54a4xCQiIiLdixKsNixYsIDTTz99j7IzzjijxYklxo0bxx/+8AfGjx/Prl27uOKKK0hJSeEf//gHX/va15g8eTKBQIDLL7+8XfsfMWIE06dP58QTT2T+/PlEIhH+/e9/c9JJJzXWSUtLY+bMmTz11FPNtnHppZdSUFBAOBzmvPPOY/LkyRxyyCF8//vfJysri3nz5rF06VLy8/O54YYbuOeee9r56kBWVhbf/OY3mTRpEieccALTpk1rXDd//nzmz5/fuDx37lzuv/9+DQ+ULquu1vvCIBA1RLD/4JHeul2b4hKTiIiIdC/WdMa3eJo6daorKCjYo2z16tWMHz8+ThFJV6TfCeksJWveov/9x7Po0N9zzKkXeYXhEOH/l8Prgy7gmCtuj2t8IiIi0nWY2VLn3NSm5erBEhHx1TfTg0UwgRLrT0KlbisgIiIibVOCJSLiC9V512AFk1P2KC9LHEBarRIsERERaVu3SLC60jBGiS/9LkhnaujBSkjcM8GqThlE33rdbFhERETa1uUTrJSUFIqLi/XBWnDOUVxcTEpKStuVRT6HUJ2fYCXt+TtWnzaYAa6YulAkHmGJiIhIN9Lp98Eys9nA74Eg8Dfn3D7dzCo3N5dNmzZRVKRvj8VLuHNzc+MdhvRQ4YYhgkmpe5QHMofSd2s1m3buJHfwwHiEJiIiIt1EpyZYZhYE/gB8GdgEvGNmTzrnVrW3jcTEREaNGtVZIYqINArXez1YScl7JlhJ/b2bDe/atl4JloiIiLSqs4cITgfWOOfWOefqgAeBOZ28TxGRzyVSVwtAYnLyHuUNNxsuL1q/32MSERGR7qWzE6xhwMao5U1+WSMzu8zMCsysQMMARSSeIn4PVmKTHqws/2bDtSW62bCIiIi0Lu6TXDjn/uKcm+qcmzpgwIB4hyMivVgk5PVgJSf32aM8PccbIuh2b97vMYmIiEj30tkJ1mZgeNRyrl8mItLlOD/BSmpyHyxLTKXU+pJQsTUeYYmIiEg30tkJ1jvAGDMbZWZJwNnAk528TxGRz6e+mpALkNzMrQB2J+SQUrMjDkGJiIhId9Kpswg650Jm9l3gebxp2v/unPugM/cpIvK5hWqoIYmUhL2/e6pMHkRm5bY4BCUiIiLdSaffB8s59yzwbGfvR0Skw+prqCWJ9ODeCVZd+jDyylcQCkdIaGa9iIiICHSBSS5ERLoKC3sJVnMimcPJskp2Fmu2UxEREWmZEiwREV8gVEO9NZ9gJWbnAbBry9r9GJGIiIh0N0qwRER8gXANdS0kWGkDRwFQuf3T/RmSiIiIdDNKsEREfMFILfWB5GbX9R96IAB1xYX7MSIRERHpbpRgiYj4guFa6q35BCszZwjVLglKN+7nqERERKQ7UYIlIuJLiNQSDjafYFkgQFFwIEkVm/ZzVCIiItKdKMESEfElRGoJtTBEEKAseQh9a7fux4hERESku1GCJSLiS3S1hIMpLa6vSRtGTmg7zrn9GJWIiIh0J0qwRER8Sa6OSCsJFlkj6G/lFO/atf+CEhERkW5FCZaIiC/J1RJp4RosgOScPACKNq7ZTxGJiIhId6MES0TEl0wdJKS2uL7v4NEA7N6mmw2LiIhI85RgiYgARMIkEcIltjxEcECul2DVFulmwyIiItI8JVgiIoCrr/aetNKD1af/MOpIgN26F5aIiIg0TwmWiAhQW1MFgLXSg4V/L6wU3QtLREREWqAES0QEqKmqBMASW+7BAtidPIzM2s37IyQRERHphpRgiYgA9dW7vScpGa3Wq8kYwZDwNsIR3QtLRERE9tahBMvMfmNmH5rZCjN7zMyy/PI8M6s2s+X+Y35MohUR6SS1lV6CFUju23rFfqPItEq2bd+yH6ISERGR7qajPVgvAJOcc/nAx8CPotatdc5N8R+Xd3A/IiKdqrbCS7CS0jJbrZcy0JtJsHjDR50ek4iIiHQ/HUqwnHP/cc6F/MUlQG7HQxIR2f/qq0oBSOrTeoKVNWwsAJXbdbNhERER2Vssr8G6BHguanmUmb1rZq+a2ayWNjKzy8yswMwKioqKYhiOiEj71Vd5PVgpGVmt1hswYhwAoaJ1nR2SiIiIdEMJbVUwsxeBwc2s+olz7gm/zk+AEPCAv24rMMI5V2xmhwGPm9lE51xZ00acc38B/gIwdepUXTUuInERrvb+PKWm92+1XmJqBsVkkVC2fn+EJSIiIt1MmwmWc+5Lra03s4uAk4EvOuecv00tUOs/X2pma4GxQEFHAxYR6Qyuxkuw0jJaHyIIUJw0lPQq3QtLRERE9tbRWQRnA9cDpzrnqqLKB5hZ0H9+ADAG0HgaEem6asuocCmkpSa1WbUibTg59boXloiIiOyto9dg3QlkAC80mY79KGCFmS0HHgYud86VdHBfIiKdxurKqSSV5IRgm3UjmSMZ5Eooq6jYD5GJiIhId9LmEMHWOOcObKH8EeCRjrQtIrI/BWorqLI+7aqbNGA0gULHtvUf0XfiYZ0cmYiIiHQnsZxFUESk2wrWl1MbTGtX3fQhYwAo3fxJZ4YkIiIi3ZASLBERILW+lKqErHbVHZQ3HoDaHboXloiIiOxJCZaICJAR3kVNcutTtDdI6zeEKlKwXYWdG5SIiIh0O0qwREScI8vtpj45u331zdgRHExq5cbOjUtERES6HSVYItLrhatKSSREpM+Adm9TlppL/1pN1S4iIiJ7UoIlIr3eriIvUUrMHNTuber6jmBIZBt19aHOCktERES6ISVYItLr7drhJVh9+g1u9zbB7ANIsXq2bvq0s8ISERGRbkgJloj0ehUlWwDIyB7a7m3SBnu3ASze9HGnxCQiIiLdkxIsEen16ku8ySr6Dx3V7m2ycw8CoGqbpmoXERGRzyjBEpFeL7B7A+UulX792j/JRf9hBxB2RqR4XSdGJiIiIt2NEiwR6fVSKjaxPTCIQLD9fxItIZmiwACSyjVVu4iIiHxGCZaI9HrpNVvYnTxkn7crSckls0YJloiIiHxGCZaI9GouEmFAeDu16cP2eduatOEMCm3FOdcJkYmIiEh3pARLRHq13ds+JY0aItlj933jfnn0t3KKdu6MfWAiIiLSLSnBEpFebee6dwFIGTZ5n7dNHuRN1b5jw0cxjUlERES6LyVYItKrVW18H4Cc0Yfs87b9hnm9XmVbdC8sERER8XQowTKzeWa22cyW+4+vRK37kZmtMbOPzOyEjocqIhJ7VrSKLS6b4UMG7/O2OcPHARDauTbWYYmIiEg3lRCDNm5zzt0aXWBmE4CzgYnAUOBFMxvrnAvHYH8iIjHTt+wTtiQfwNCA7fO2Sen9KCWD4O71nRCZiIiIdEedNURwDvCgc67WOfcpsAaY3kn7EhH5XFyojqGhjZT3/RwTXPh2Jg4lrVJTtYuIiIgnFgnWd81shZn93cz6+WXDgOhPHJv8sr2Y2WVmVmBmBUVFRTEIR0SkfUo2riKREIHBEz53G5V9csmp3xLDqERERKQ7azPBMrMXzWxlM485wJ+A0cAUYCvwf/sagHPuL865qc65qQMGDNjXzUVEPrcda5YDkDVyyuduI5SVx2C3k/LKqtgEJSIiIt1am9dgOee+1J6GzOyvwNP+4mZgeNTqXL9MRKTLqN60gpALMGLswZ+7jcScA0hYH2Hrhk/IGP/52xEREZGeoaOzCA6JWjwdWOk/fxI428ySzWwUMAZ4uyP7EhGJtaTiD9loQ+mXmfG528gY6l2/VbpZU7WLiIhIx2cRvMXMpgAOKAS+BeCc+8DMHgJWASHgO5pBUES6muyqtWzoM45RHWhjgD9Ve80OTdUuIiIiHUywnHPnt7LuZuDmjrQvItJZ6qvLGBLZxsf9Tu1QO+k5w6klEUoKYxOYiIiIdGudNU27iEiXtvWTdwFIHjapYw0FAuwIDia1YkMMohIREZHuTgmWiPRKJZ++B0D2AYd0uK2ylGH0q9U8PiIiIqIES0R6qdDWlVS6ZEaMHt/htmr7jmRIZCt19brUVEREpLdTgiUivVJa6cdsCI4kOTGxw20F+h9AmtWydeumGEQmIiIi3ZkSLBHplQbVrKM048CYtJU6eAwAJRs+iEl7IiIi0n0pwRKRXqdi1w76s5tw9riYtJc9Kh+A6s1KsERERHo7JVgi0utsXuvdEz1taIwSrKGjqSSFyPbVMWlPREREui8lWK0o2lLIRwUvU11RFu9QRCSGyrd+AkD/3LExac8CAbYm5ZFR9nFM2hMREZHuq0M3Gu7p1r22gMM//DWRp4xNgUHsTB5BbfpwrH8eSQMOIG3gaLIGjyA7ZzCBYDDe4YpIO0QijrodawAYNCI2PVgAZf0mMnbbM9TW1ZKclByzdiU2nHOEQyHC4ToioTCRSJhwJIwLh4hEIoTDIVwkQiQSIhIOEwlHcJEQzkW8BiyAYVjAMAzMwP9pBmZ+ecAwAv4y+Cv9el6Zmb/eDLMAYLiANbZh0W366y1gjT8/q9NQFhWb+d+bmu3/F1lERAAlWK0afcy5vNt/ONWbVpBS8iF9qzcxuuh9MnZWQ9QX1SEXoMT6UhbMoiKhP/UJ6YQT03GJaVhyOi7Je05iMoFgIsGEBALBJAIJiVggSMSCOIJABJwDF/H+UXcOcxGvPOKVRSIRXCSMi4QgEsZFwhAJ+T+jnjtv2RrquBAWCYOLYJGQt95/bi4CLkzAeduZi2Au7D8iBFzI/xkhgFf+2XPvZ8NyAK9esOE5EYIuTLDhOZF4nc5O44jNBxkXk1Ya2opVTLH7kNbc8X2e1vc1pub2O416tls2g/qkf44ImmcjjyR9+yOsXvEG46ce12K9nVvWkdynLxlZOTHbd0/iIhHKdu+irGQ7tWU7qa0oIVRdRqi6jHB1OZHacqirwGorsPpKEuorSYhUkRCpIxipI8HVkeDqSXR1JLp6EqknydWTRD0JFul1/+hFnOHw3jfeo8Fnyw3r4LP3l7PP1vV01pG/vrH8w91Jev4Z7OA5lG7hv0wm/LX7mD1pSLxDaZfe9m/NPskZPIKcweftUeYiEXbu3EHJpo+p2rGWutIthMt2YFVFpNSVkFZfQlb1DpIrq0l11aRRTdDi+8avd156E25IgcxLdaJSIMJ+WSTqpyNAxBoSwADOAoQsGdewLpCAswA01LEg+D9dIND4nIBfHmhIJHuT9p772P2OmOuK/9A0E1Mnx9nwBX5jrwHe/8wvSxk9k0Ex3N/oqSfA21C87GloJsHatv5DNj1xE1NLnuHdjGM45JonYrj3rq26qoqd2zZQVrSR2l2bCe3ehpVvI1BdREJNKUn1pfQJ7SY9Uk5fV06mhclspb16F6TKUqimDzWBVGoDqdQHkgklZFAVSCISSCISTMIFk3CBZFxCMiQk44LJEEgAC0Ag6PX2+H+jrKEs8FlZIBDw6jov1XDOgQPnpyTOL/d+vR04h4v6aY6o586v5vC+TPN61RrSmIbnLqotcHs+b3jPuKbr+axN8L+Yo5ltP4vBWmzba8sa6pnrFUlWz09D4nx8+2H3PeH3tPsfQeepSxlJXv8+8Q6j3ZRg7SMLBMgZOJicgYOBo9qsHwqFqaipIlRVRqi+lrq6OkKhOsKhEPX19RCu93qPCANBLOB/k2gBCAT84R4BCBjBQJBAwAgmJGKBBALBIAnBRCwYJBhMIJCQSNB/HkxI9MqCQTp+lx8RaUvfgbmsSJnK2C2PUVM5j5S0vgBs/mQ5W5/7DQcXP0c/AmAwuvydOEcbO845du7cyfb1qynb8hEUryOxbD0p1dtIr9tJVqSEfpQzvMl29S5IqWVQHsikKtiXnSl5bEvOwqX2w/pkE0zPJpieQ2JaP1LSMklOyyQ1PZP0vlkkJ6eSGQi0moSJiIjEixKsTpaQECQ9PQPSM+Idioh0suDR15Lz73NY8/sTqMiZQkbRMsbUf0iOS+SdAadzwGk/5aMX/8HRhb+nYtc20vsNjnfI7eKcY2fRdrYXrqJ8yyeEdq4hafenZFRtZFBoCwOsjAFR9YvoR0nCAEpThrEj9VBcxmASM4eQ0m8YqdnDyBiQS1bOEAYkJOyxnYiISE+gBEtEJEYmHnEib2z+f4x5//8YsfkT1gdH8Pqoqzjo+G/whSEjACg+cBoUwscFr3Dol8+Jb8BRXCRCUdFWdhSuomLLx4R2riVpdyF9qzcyOLSFAVaxRzK03XIoScqlsN8xfNrvAFIHjyFr2DgGjDiIAX0ylDiJiEivZa4LXa8xdepUV1BQEO8wREQ6JBKOUBeOkJK093dYdTXVVP36QNamHcZh1z25X+NykQhF2zZRtH4VFVs/JrRzHUllhWT6SVRfq2qsG3bGjsAASpJzqU4fics+gNRBY+g//CAGDh9LQkrafo1dRESkqzGzpc65qU3LO9SDZWYLgYZ5jrOAUufcFDPLA1YDH/nrljjnLu/IvkREuotAMEBKsPnbDCalpPLukDlM3fJPPnnvv4w5+Asx3XckHKZo23p2rv+Qiq0fE965luSyQjJrNjEktIWBVsNAv27IBdgWGMSulFw+7D8Fsg+gT2MSNYYhyal0j/maREREuo4OJVjOubkNz83s/4DdUavXOuemdKR9EZGe6KCzfkHp75+mz+MXsy3rCQaPPGiftq+uLGf7ho8o3fwJNTvWYqWFpJRvJLN2M4PC2xlkdY0zJNa5INuCg9mVnMvK7KlY/wPoM2QM2cPHM3D4GHITk8iN/SGKiIj0WjG5Bsu8ux2eBbR88xcREQEgs98AVn3lHwx75nxS/34ky/p9EUbMIClrMIHEPoTqqnG1FdRUlhEp30awYhtJNUWk1xWRFdpJDqXkRbVX6VLYHhxMScoItmbMxLJHkzZ4DNkjxjModzQjEhIYEa+DFRER6WViNcnFLGC7c+6TqLJRZvYuUAb81Dn3enMbmtllwGUAI0boI4CI9A4Tpn+RjQNeYeUTNzNx14tklT7fYt0S+rIrkE1FUjYl6WP5JGskiTkHkDFkDDnDx9E/ZzAHBJofkigiIiL7V5uTXJjZi0Bzcwn/xDn3hF/nT8Aa59z/+cvJQLpzrtjMDgMeByY658pa25cmuRCR3igUCrNp/SdUle4gXFtJQkoaiSnppGdk0n/gMJKSU+IdooiIiDTxuSe5cM59qY2GE4CvAodFbVML1PrPl5rZWmAsoOxJRKSJhIQgeaMPAvbtWiwRERHpemIxpuRLwIfOuU0NBWY2wMyC/vMDgDHAuhjsS0REREREpMuKxTVYZwMLmpQdBdxkZvVABLjcOVcSg32JiIiIiIh0WR1OsJxzFzVT9gjwSEfbFhERERER6U7anORifzKzImB9vONoIgfYGe8gZL/R+e49dK57D53r3kXnu/fQue5duuL5HumcG9C0sEslWF2RmRU0NzuI9Ew6372HznXvoXPdu+h89x46171LdzrfunGKiIiIiIhIjCjBEhERERERiRElWG37S7wDkP1K57v30LnuPXSuexed795D57p36TbnW9dgiYiIiIiIxIh6sERERERERGJECZaIiIiIiEiMKMFqhZnNNrOPzGyNmd0Q73gkdsxsuJm9YmarzOwDM7vSL+9vZi+Y2Sf+z37xjlViw8yCZvaumT3tL48ys7f89/dCM0uKd4wSG2aWZWYPm9mHZrbazI7Qe7tnMrOr/b/hK81sgZml6L3dc5jZ381sh5mtjCpr9r1sntv9877CzA6NX+Syr1o417/x/46vMLPHzCwrat2P/HP9kZmdEJegW6EEqwVmFgT+AJwITADOMbMJ8Y1KYigEXOOcmwDMAL7jn98bgJecc2OAl/xl6RmuBFZHLf8vcJtz7kBgF/CNuEQlneH3wL+dcwcBB+Odd723exgzGwZ8H5jqnJsEBIGz0Xu7J7kbmN2krKX38onAGP9xGfCn/RSjxMbd7H2uXwAmOefygY+BHwH4n9fOBib62/zR/9zeZSjBatl0YI1zbp1zrg54EJgT55gkRpxzW51zy/zn5XgfwIbhneN7/Gr3AKfFJUCJKTPLBU4C/uYvG3Ac8LBfRee6hzCzTOAo4C4A51ydc64Uvbd7qgQg1cwSgD7AVvTe7jGcc68BJU2KW3ovzwHudZ4lQJaZDdkvgUqHNXeunXP/cc6F/MUlQK7/fA7woHOu1jn3KbAG73N7l6EEq2XDgI1Ry5v8MulhzCwPOAR4CxjknNvqr9oGDIpXXBJTvwOuByL+cjZQGvWHW+/vnmMUUAT8wx8S+jczS0Pv7R7HObcZuBXYgJdY7QaWovd2T9fSe1mf23q2S4Dn/Odd/lwrwZJezczSgUeAq5xzZdHrnHcPA93HoJszs5OBHc65pfGORfaLBOBQ4E/OuUOASpoMB9R7u2fwr72Zg5dUDwXS2HuIkfRgei/3Dmb2E7xLOx6IdyztpQSrZZuB4VHLuX6Z9BBmloiXXD3gnHvUL97eMKTA/7kjXvFJzBwJnGpmhXhDfY/Du0Ynyx9WBHp/9ySbgE3Oubf85YfxEi69t3ueLwGfOueKnHP1wKN473e9t3u2lt7L+tzWA5nZRcDJwLnus5v3dvlzrQSrZe8AY/zZiJLwLqZ7Ms4xSYz41+DcBax2zv02atWTwIX+8wuBJ/Z3bBJbzrkfOedynXN5eO/jl51z5wKvAGf61XSuewjn3DZgo5mN84u+CKxC7+2eaAMww8z6+H/TG8613ts9W0vv5SeBC/zZBGcAu6OGEko3ZGaz8Yb3n+qcq4pa9SRwtpklm9kovIlN3o5HjC2xz5JBacrMvoJ37UYQ+Ltz7ub4RiSxYmYzgdeB9/nsupwf412H9RAwAlgPnOWca3qBrXRTZnYMcK1z7mQzOwCvR6s/8C5wnnOuNo7hSYyY2RS8CU2SgHXAxXhfKOq93cOY2S+AuXjDh94FLsW7FkPv7R7AzBYAxwA5wHbg58DjNPNe9pPsO/GGiVYBFzvnCuIQtnwOLZzrHwHJQLFfbYlz7nK//k/wrssK4V3m8VzTNuNJCZaIiIiIiEiMaIigiIiIiIhIjCjBEhERERERiRElWCIiIiIiIjGiBEtERERERCRGlGCJiIiIiIjEiBIsERERERGRGFGCJSIiIiIiEiNKsERERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIdDFmlmdmzswS4h2L9A5m9oGZHRPvOEREegIlWCIi0u2Z2Xwzq/AfdWZWH7X8XLzj6+qccxOdc4ti2aaftFVEPUJm9lQs9yEi0hWZcy7eMYiI9ChmluCcC3Vg+zzgUyCxI+30VmY2DzjQOXdeM+s6dG72p+4Ua1vMzIB1wM+dc/fGOx4Rkc6kHiwRkRgws0Iz+6GZrQAqzSzBzGaY2X/NrNTM3osegmVmi8zsf8zsbTMrM7MnzKx/C21fbGarzazczNaZ2bearJ9jZsv9dtaa2Wy/PNPM7jKzrWa22cx+aWbBNo5jtJm9bGbFZrbTzB4ws6yodSVmdqi/PNTMihqOy8xO9XstSv3jG9/k9bnWzFaY2W4zW2hmKfv+Su+7Fs6NM7MDo+rcbWa/jFo+2X9NS/1zmN/OfR1jZpvM7Mf+61doZudGrT/JzN71z9VGPxlsWNcwNPQbZrYBeNkv/5eZbfNft9fMbGKTuP9oZs/5vURvmNlgM/udme0ysw/N7JB2vkZfas8xfk5HATnAI524DxGRLkEJlohI7JwDnARkAYOAZ4BfAv2Ba4FHzGxAVP0LgEuAIUAIuL2FdncAJwN9gYuB26KSnOnAvcB1/n6PAgr97e722z0QOAQ4Hri0jWMw4H+AocB4YDgwD8A5txb4IXC/mfUB/gHc45xbZGZjgQXAVcAA4FngKTNLimr7LGA2MArIBy5qNgCzmX5i09JjZhvH0JzGc9NWr5CfkPwd+BaQDfwZeNLMktu5r8F4ycQw4ELgL2Y2zl9XiXfes/x4rjCz05psfzTea3+Cv/wcMAYYCCwDHmhS/yzgp/4+a4E3/Xo5wMPAb9sZd7PM7IbWzkc7m7kQeMQ5V9mRWEREugMlWCIisXO7c26jc64aOA941jn3rHMu4px7ASgAvhJV/z7n3Er/Q+fPgLOa62Fyzj3jnFvrPK8C/wFm+au/AfzdOfeCv5/NzrkPzWyQv6+rnHOVzrkdwG3A2a0dgHNujd9WrXOuCO/D+dFR6/8KrAHewksMf+Kvmgs8429bD9wKpAJfaPL6bHHOlQBPAVNaiGGxcy6rlcfi1o6hBdHnpi2XAX92zr3lnAs75+7BS1xm7MP+fua/hq/iJdpnATjnFjnn3vfP1Qq8pPToJtvO889Ztb/N351z5c65Wrxk92Azy4yq/5hzbqlzrgZ4DKhxzt3rnAsDC/GS68/NOffr1s5HW9v7yfiZeAm/iEiPpwRLRCR2NkY9Hwl8rck3/TPxkpLm6q8HEvF6HfZgZiea2RJ/eF4pXuLUUG84sLaZWEb67W2N2v+f8XpBWmRmg8zsQX9IYRlwfzMx/RWYBNzhf+gHr8drfUMF51zEP75hUdtti3peBaS3FkuMbWy7SqORwDVNzt1wvGNsj11NemrWN2xrZoeb2Sv+0MrdwOXs/fo2xmpmQTP7tXlDP8v4rHcyepvtUc+rm1nen69zc74KlACvxjkOEZH9QgmWiEjsRM8atBGvhyr62/4059yvo+oMj3o+AqgHdkY36A9LewSvR2iQ32PwLN5Qvob9jG4mlo14vS45Ufvv65yb2EzdaL/yj2Oyc64vXk9cw74ws3Tgd8BdwDz77LqxLXiJSUM9849vcxv724uZzbI9Z59r+pjVdit7aTqjUxXQJ2p5cNTzjcDNTc5dH+fcgnbuq5+ZpUUtj8B7fQD+CTwJDHfOZQLziXp9m4n168Ac4EtAJpDnlzfdptP415O1eD7a0cSFwL1Os2qJSC+hBEtEpHPcD5xiZif4vRAp/gQIuVF1zjOzCf4QqpuAh/1hXdGSgGSgCAiZ2Yl411I1uAu42My+aGYBMxtmZgc557biDSX8PzPr668bbWZNh6M1lQFUALvNbBjetV3Rfg8UOOcuxRv6Nt8vfwg4yY8jEbgGL8H7b1svVFPOudedc+mtPF7f1zabsRz4un9uZrPnML2/Apf7vU1mZmnmTU6RAY0TS9zdRvu/MLMkPxk8GfiXX54BlDjnavzr577eRjsZeK9jMV5C+Kt9OMaYcM79qrXz0dq2/u/7scA9+ydaEZH4U4IlItIJnHMb8XoefoyXHG3ES1ai/+7eh3ddyjYgBfh+M+2U++UPAbvwPpA/GbX+bfyJL4DdeMOwGnqSLsBL0Fb52z7MnkMUm/ML4FC/rWeARxtWmNkcvEkqrvCLfgAcambnOuc+wuvtugOvF+4U4BTnXF0b+4uXK/FiLAXOBR5vWOGcKwC+CdyJ97qtYc8JOYYDb7TS9jZ/uy14E1Jc7pz70F/3beAmMysHbsQ7r625F2+I4Wa887ikrQPrYs4H3vQnSBER6RV0HywRkTgws0XA/c65v8U7Fmk/f1bE94B8fzKPpuuPwTuvuU3XiYhI75AQ7wBERES6C79HbnybFUVEpNfSEEERkV7GzOa3MGHB/La3lu7IzEa0MlHFiHjHJyLSk2iIoIiIiIiISIyoB0tERERERCRGutQ1WDk5OS4vLy/eYYiIiIiIiLRq6dKlO51zA5qWd6kEKy8vj4KCgniHISIiIiIi0iozW99cuYYIioiIiIiIxIgSLBERERERkRhRgiUi8jmt/mQN73zwSbzDEBERkS6kS12D1Zz6+no2bdpETU1NvEORbiYlJYXc3FwSExPjHYr0UKMeOIIU6ijJK6J/WlK8wxEREZEuoMsnWJs2bSIjI4O8vDzMLN7hSDfhnKO4uJhNmzYxatSoeIcjPVBVTS19qAPgw/cL+MKML8Q5IhEREekKuvwQwZqaGrKzs5VcyT4xM7Kzs9XzKZ1m58aPGp9Xf/xqHCMRERGRrqTLJ1iAkiv5XPR7I52pcuP7jc9t17o4RiIiIiJdSbdIsEREupraXVsA2EVf0iubvQ2GiIiI9EJKsNrBzLjmmmsal2+99VbmzZsXv4CiLFmyhMMPP5wpU6Ywfvz4xrgWLVrEf//73w61PXv2bLKysjj55JNjEKlIzxKuqwJgS8oYBtZtjHM0IiIi0lUowWqH5ORkHn30UXbu3BnTdp1zRCKRDrVx4YUX8pe//IXly5ezcuVKzjrrLCA2CdZ1113Hfffd16E2RHoqV18NQGW/cQx126moqYtzRCIiItIVdPlZBKP94qkPWLWlLKZtThjal5+fMrHVOgkJCVx22WXcdttt3HzzzXusKyoq4vLLL2fDhg0A/O53v+PII49k3rx5pKenc+211wIwadIknn76aQBOOOEEDj/8cJYuXcqzzz7LnXfeyXPPPYeZ8dOf/pS5c+eyaNEi5s2bR05ODitXruSwww7j/vvv3+u6oh07djBkyBAAgsEgEyZMoLCwkPnz5xMMBrn//vu54447OOigg1qMc+3ataxZs4adO3dy/fXX881vfhOAL37xiyxatKjV1+Zf//oXv/jFLwgGg2RmZvLaa69RU1PDFVdcQUFBAQkJCfz2t7/l2GOP5e677+bxxx+nsrKSTz75hGuvvZa6ujruu+8+kpOTefbZZ+nfvz9//etf+ctf/kJdXR0HHngg9913H3369NljvzNmzOCuu+5i4kTv3B1zzDHceuutTJ06tdV4RWLF6qupc0GSc/JI2hpm/ZaNjDlgdLzDEhERkTjrcA+WmQ03s1fMbJWZfWBmV/rl/c3sBTP7xP/Zr+Phxs93vvMdHnjgAXbv3r1H+ZVXXsnVV1/NO++8wyOPPMKll17aZluffPIJ3/72t/nggw8oKChg+fLlvPfee7z44otcd911bN26FYB3332X3/3ud6xatYp169bxxhtv7NXW1Vdfzbhx4zj99NP585//TE1NDXl5eVx++eVcffXVLF++nFmzZrUa54oVK3j55Zd58803uemmm9iyZUu7X5ebbrqJ559/nvfee48nn3wSgD/84Q+YGe+//z4LFizgwgsvbJzNb+XKlTz66KO88847/OQnP6FPnz68++67HHHEEdx7770AfPWrX+Wdd97hvffeY/z48dx111177Xfu3Lk89NBDAGzdupWtW7cquZL9q76KWpJIGzASgN3bdR2WiIiIxKYHKwRc45xbZmYZwFIzewG4CHjJOfdrM7sBuAH4YUd21FZPU2fq27cvF1xwAbfffjupqamN5S+++CKrVq1qXC4rK6OioqLVtkaOHMmMGTMAWLx4Meeccw7BYJBBgwZx9NFH884779C3b1+mT59Obm4uAFOmTKGwsJCZM2fu0daNN97Iueeey3/+8x/++c9/smDBgmZ7nVqLc86cOaSmppKamsqxxx7L22+/zWmnndau1+XII4/koosu4qyzzuKrX/1q4zF973vfA+Cggw5i5MiRfPzxxwAce+yxZGRkkJGRQWZmJqeccgoAkydPZsWKFYCXhP30pz+ltLSUiooKTjjhhL32e9ZZZ3H88cfzi1/8goceeogzzzyzXfGKxIqFaqkhmYyBIwCoLtZ1WCIiIhKDBMs5txXY6j8vN7PVwDBgDnCMX+0eYBEdTLDi7aqrruLQQw/l4osvbiyLRCIsWbKElJSUPeomJCTscX1V9P2Y0tLS2rW/5OTkxufBYJBQKNRsvdGjR3PFFVfwzW9+kwEDBlBcXLxXnZbihL2nM9+X6c3nz5/PW2+9xTPPPMNhhx3G0qVLW60ffUyBQKBxORAINB7fRRddxOOPP87BBx/M3Xff3WzCOGzYMLKzs1mxYgULFy5k/vz57Y5ZJBYsVE2tJTNwsHcj69CuzXGOSERERLqCmE5yYWZ5wCHAW8AgP/kC2AYMamGby8yswMwKioqKYhlOzPXv35+zzjprjyFrxx9/PHfccUfj8vLlywHIy8tj2bJlACxbtoxPP/202TZnzZrFwoULCYfDFBUV8dprrzF9+vR2x/TMM8/gnAO8oYfBYJCsrCwyMjIoLy9vM06AJ554gpqaGoqLi1m0aBHTpk1r9/7Xrl3L4Ycfzk033cSAAQPYuHEjs2bN4oEHHgDg448/ZsOGDYwbN67dbZaXlzNkyBDq6+sb22nO3LlzueWWW9i9ezf5+fntbl8kFoLhauosiaS+gwgRhLL2D60VERGRnitmCZaZpQOPAFc55/aYicJ5GYBrbjvn3F+cc1Odc1MHDBgQq3A6zTXXXLPHbIK33347BQUF5OfnM2HChMaelDPOOIOSkhImTpzInXfeydixY5tt7/TTTyc/P5+DDz6Y4447jltuuYXBgwe3O5777ruPcePGMWXKFM4//3weeOABgsEgp5xyCo899hhTpkzh9ddfbzFOgPz8fI499lhmzJjBz372M4YOHQp4yd/XvvY1XnrpJXJzc3n++ecBb1hiw/VW1113HZMnT2bSpEl84Qtf4OCDD+bb3/42kUiEyZMnM3fuXO6+++49eq7a8v/+3//j8MMP58gjj+Sggw5qLH/yySe58cYbG5fPPPNMHnzwwcaZE0X2p2C4ljpLgUCAkkB/kqu2tr2RiIiI9HjW0PvRoUbMEoGngeedc7/1yz4CjnHObTWzIcAi51yr3RhTp051BQUFe5StXr2a8ePHdzhGaV7T2Q57Gv3+SGf56H9mURuOkP/TN/jkf46gMpzAlJ++Hu+wREREZD8xs6XOub1mWYvFLIIG3AWsbkiufE8CF/rPLwSe6Oi+RES6ioRIDeGAd01jdcog+oVie588ERER6Z5iMYvgkcD5wPtmttwv+zHwa+AhM/sGsB7QOK4uaN68efEOQaRbSozUUp/kJVihtCEMKP0v9aEwiQnBOEcmIiIi8RSLWQQXAy1NO/fFjrYvItIVJbrPerDoO5Q+W2rZsrOIoftwDaWIiIj0PDGdRVBEpLdIdrWEE7wEK7m/d7+6XVubny1UREREeg8lWCIin0OSqyMS9BKsPjnDAajcqZsNi4iI9HZKsEREPodkanEJqQD0GzQSgFrdbFhERKTXU4LVTo8//jhmxocffthincLCQiZNmhSzfX700Uccc8wxTJkyhfHjx3PZZZcB3k2Cn3322Q61fckllzBw4MCYxivSa4TrSSSMS/QSrMyB3hDBSJnuhSUiItLbKcFqpwULFjBz5kwWLFjQ7PpQKNThfYTD4T2Wv//973P11VezfPlyVq9ezfe+9z0gNgnWRRddxL///e8OtSHSW7n6Ku+J34NliansJp1g5fY4RiUiIiJdQSymad9/nrsBtr0f2zYHT4YTf91qlYqKChYvXswrr7zCKaecwi9+8QsAFi1axM9+9jP69evHhx9+yH/+8x9CoRDnnnsuy5YtY+LEidx777306dOHl156iWuvvZZQKMS0adP405/+RHJyMnl5ecydO5cXXniB66+/nrPPPrtxv1u3biU3N7dxefLkydTV1XHjjTdSXV3N4sWL+dGPfsTJJ5/M9773PVauXEl9fT3z5s1jzpw53H333Tz22GPs3r2bzZs3c9555/Hzn/8cgKOOOorCwsJWj/vVV1/lyiuvBMDMeO2110hPT+f666/nueeew8z46U9/yty5c1m0aBE///nPycrK4v333+ess85i8uTJ/P73v6e6uprHH3+c0aNH89RTT/HLX/6Suro6srOzeeCBBxg0aNAe+z377LM5//zzOemkkwAvGTz55JM588wz23dORTpZbXUlKQBJqY1lpQk5JFfviFtMIiIi0jWoB6sdnnjiCWbPns3YsWPJzs5m6dKljeuWLVvG73//ez7++GPAG9b37W9/m9WrV9O3b1/++Mc/UlNTw0UXXcTChQt5//33CYVC/OlPf2psIzs7m2XLlu2RXAFcffXVHHfccZx44oncdtttlJaWkpSUxE033cTcuXNZvnw5c+fO5eabb+a4447j7bff5pVXXuG6666jsrISgLfffptHHnmEFStW8K9//YuCgoJ2H/ett97KH/7wB5YvX87rr79Oamoqjz76KMuXL+e9997jxRdf5LrrrmPrVm9Y1Hvvvcf8+fNZvXo19913Hx9//DFvv/02l156KXfccQcAM2fOZMmSJbz77rucffbZ3HLLLXvtd+7cuTz00EMA1NXV8dJLLzUmWyJdQV219/6yxD6NZZVJOWTUFcUrJBEREekiulcPVhs9TZ1lwYIFjT05Z599NgsWLOCwww4DYPr06YwaNaqx7vDhwznyyCMBOO+887j99tv58pe/zKhRoxg7diwAF154IX/4wx+46qqrAC+haM7FF1/MCSecwL///W+eeOIJ/vznP/Pee+/tVe8///kPTz75JLfeeisANTU1bNiwAYAvf/nLZGdnA/DVr36VxYsXM3Xq1HYd95FHHskPfvADzj33XL761a+Sm5vL4sWLOeeccwgGgwwaNIijjz6ad955h759+zJt2jSGDBkCwOjRozn++OMBr+ftlVdeAWDTpk3MnTuXrVu3UldXt8dr1+DEE0/kyiuvpLa2ln//+98cddRRpKam7lVPJF4aEqxgVA9WbeoghlSui1dIIiIi0kWoB6sNJSUlvPzyy1x66aXk5eXxm9/8hoceegjnHABpaWl71DezVpeb07SNaEOHDuWSSy7hiSeeICEhgZUrV+5VxznHI488wvLly1m+fDkbNmxg/PjxnzueBjfccAN/+9vfqK6u5sgjj2x1gg+A5OTkxueBQKBxORAINF6j9r3vfY/vfve7vP/++/z5z3+mpqZmr3ZSUlI45phjeP7551m4cGGLCahIvNTVeAlWIOmzHqxI+mByKKWiujZeYYmIiEgXoASrDQ8//DDnn38+69evp7CwkI0bNzJq1Chef/31Zutv2LCBN998E4B//vOfzJw5k3HjxlFYWMiaNWsAuO+++zj66KPb3Pe///1v6uvrAdi2bRvFxcUMGzaMjIwMysvLG+udcMIJ3HHHHY1J37vvvtu47oUXXqCkpKTxOqiG3rX2WLt2LZMnT+aHP/wh06ZN48MPP2TWrFksXLiQcDhMUVERr732GtOnT293m7t372bYsGEA3HPPPS3Wmzt3Lv/4xz94/fXXmT17drvbF9kfGhKsYPJnX44EM4eQYBGKt2uqdhERkd5MCVYbFixYwOmnn75H2RlnnNHibILjxo3jD3/4A+PHj2fXrl1cccUVpKSk8I9//IOvfe1rTJ48mUAgwOWXX97mvv/zn/8wadIkDj74YE444QR+85vfMHjwYI499lhWrVrFlClTWLhwIT/72c+or68nPz+fiRMn8rOf/ayxjenTp3PGGWeQn5/PGWec0Tg88JxzzuGII47go48+Ijc3l7vuuguA+fPnM3/+fAB+97vfMWnSJPLz80lMTOTEE0/k9NNPJz8/n4MPPpjjjjuOW265hcGDB7f79Zw3bx5f+9rXOOyww8jJyWksLygo4NJLL21cPv7443n11Vf50pe+RFJSUrvbF9kfQrVegpWQ/FkPVko/74uD0h0b4hKTiIiIdA3W0OvRFUydOtU1nYRh9erVjcPdZN/cfffdFBQUcOedd8Y7lLjR7490hg9feYCDXv02y096minTZgGwaeVich8+iSWH/4EZJ54X5whFRESks5nZUufcXpMbdHoPlpnNNrOPzGyNmd3Q2fsTEelskVrvPlhJKZ8NEew3eAQAdbs0RFBERKQ369RZBM0sCPwB+DKwCXjHzJ50zq3qzP2K56KLLuKiiy6KdxgiPU64zkuwEqMSrLR+Q4k4w5Vvi1dYIiIi0gV0dg/WdGCNc26dc64OeBCYs6+NdKVhjNJ96PdGOkvET7CSU6NmAA0msCuQRULl9jhFJSIiIl1BZydYw4CNUcub/LJGZnaZmRWYWUFR0d436UxJSaG4uFgflmWfOOcoLi4mJSUl3qFID+TqqgFISk3fo3x3Qg4pNTviEZKIiIh0EXG/0bBz7i/AX8Cb5KLp+tzcXDZt2kRzyZdIa1JSUsjNzY13GNIDufpqIs5ISdnzBthVyQPoW7klTlGJiIhIV9DZCdZmYHjUcq5f1m6JiYmMGjUqpkGJiHRIfRU1JJGStOef0Lo+gxhSvhLn3D7d1FtERER6js4eIvgOMMbMRplZEnA28GQn71NEpFNZqIZqkkhOaPInNH0w2VZGaXllfAITERGRuOvUBMs5FwK+CzwPrAYecs590Jn7FBHpbBaqppakvXqpErK8S0x3btvY3GYiIiLSC3T6NVjOuWeBZzt7PyIi+0sgVE2tJe9VnprtJVjlRRtgrG5wLSIi0ht1+o2GRUR6mkC4hrpmEqyMHO+S0+pi3WxYRESkt1KCJSKyj4LhGuqbSbD6DR4BQH2pEiwREZHeSgmWiMg+SgjXUhfY+x5ryRkDqCcBq9gWh6hERESkK1CCJSKyjxIiNYSaSbAIBCix/iRWbd//QYmIiEiXoARLRGQfJUZqCAf3HiIIsDtpAGk1SrBERER6KyVYIiL7KNHVEQo204MFVKUOoX9ox36OSERERLoKJVgiIvso2dUQCaY2uy6UPoyBbie19fX7OSoRERHpCpRgiYjso2RXSySh+R6sYFYuyRZix9ZN+zkqERER6QqUYImI7AvnSKEOl9B8D1ZKzkgAdm39dH9GJSIiIl2EEiwRkX0RqvF+JjafYPUdPAqAyh2F+ykgERER6UqUYImI7INwbRUAltin2fXZQ0cDUL9rw36LSURERLoOJVgiIvugproCgEBSC0MEM/pTRQqBMl2DJSIi0ht1KMEys9+Y2YdmtsLMHjOzrKh1PzKzNWb2kZmd0OFIRUS6gJqqhgSr+R4szNgZHEBy5db9GJWIiIh0FR3twXoBmOScywc+Bn4EYGYTgLOBicBs4I9mFuzgvkRE4q7W78FKSE5rsU550mAyanWzYRERkd6oQwmWc+4/zrmQv7gEyPWfzwEedM7VOuc+BdYA0zuyLxGRrqCu2rsGKyG5+SGCADVpQ8kJ78A5t7/CEhERkS4iltdgXQI85z8fBmyMWrfJL9uLmV1mZgVmVlBUVBTDcEREYq+uugyAhNT0Fuu4vsPIsd3sLi/fX2GJiIhIF9FmgmVmL5rZymYec6Lq/AQIAQ/sawDOub8456Y656YOGDBgXzcXEdmvQg0JVp+sFusk9h8OQNFm3QtLRESkt0loq4Jz7kutrTezi4CTgS+6z8bDbAaGR1XL9ctERLq1sJ9gJfXJbLFO2oA8AMq2F8L4g/dDVCIiItJVdHQWwdnA9cCpzrmqqFVPAmebWbKZjQLGAG93ZF8iIl2Bq/GG/SWltZxg9Rt6AADVRev3S0wiIiLSdbTZg9WGO4Fk4AUzA1jinLvcOfeBmT0ErMIbOvgd51y4g/sSEYm/Wq8HKyW9lQRrUB4AkVLdbFhERKS36VCC5Zw7sJV1NwM3d6R9EZEup7acapdEn5SUFqsEklIotn4klGtktIiISG8Ty1kERUR6PFdbTgWpZCS3/v1UScIg0qq37KeoREREpKtQgiUisg+stpwq60MgYK3Wq0wdSr/6bfspKhEREekqlGCJiOyDQH0F1YE+bdarz8hlkNtJbX39fohKREREugolWCIi+yAxVEltIK3NeoF+I0i2EEVbNNGFiIhIb6IES0RkHySFKgkltp1g9cnJA6Bk69pOjkhERES6EiVYIiL7IDVSQSghvc16fYeMBqBq+6edHZKIiIh0IUqwRETayzmyXCl1KdltVs0Z7iVYoV0aIigiItKbKMESEWknV1dBCnWEUnParJvcJ5NS0gmWbdwPkYmIiEhXoQRLRKSdqkt3eE/6tJ1gARQnDCK1SvfCEhER6U2UYImItFNpkZcsJWQMbFf98pShZNXpXlgiIiK9iRIsEZF2KiveCkB69pB21a9LG8bA8A4i4UhnhiUiIiJdiBIsEZF2qt7l9UZl5bQvwSJrOH2slpKd6sUSERHpLWKWYJnZNWbmzCzHXzYzu93M1pjZCjM7NFb7EhGJh/rdXg9W9qBh7aqflD0SgOItuheWiIhIbxGTBMvMhgPHA9HzEZ8IjPEflwF/isW+RETiJaF8IztdJhnpGe2q33ewN1V75XYlWCIiIr1FrHqwbgOuB1xU2RzgXudZAmSZWTvH1YiIdD19KjezIzgIM2tX/ZzcAwGo27m+M8MSERGRLqTDCZaZzQE2O+fea7JqGBB9A5hNflnT7S8zswIzKygqKupoOCIinSazdgulKe0bHgiQkZVDpUuB3boXloiISG+R0J5KZvYiMLiZVT8Bfow3PPBzcc79BfgLwNSpU10b1UVE4sKF6xkQ3sEnGe3/c2eBAEXBgSRXbu7EyERERKQraVeC5Zz7UnPlZjYZGAW85w+ZyQWWmdl0YDMwPKp6rl8mItLt7NjwMYMsQsKAA/dpu9LkIWTWbu2kqERERKSr6dAQQefc+865gc65POdcHt4wwEOdc9uAJ4EL/NkEZwC7nXP6lCEi3VLJuqUApI84eJ+2q0kbSk54R2eEJCIiIl1QZ94H61lgHbAG+Cvw7U7cl4hIp6rasJyQCzBs7CH7tJ3rO5y+VFJZtquTIhMREZGupF1DBNvL78VqeO6A78SyfRGReEna8T4bg7mMysrct+36eZNiFG0pJK1vv84ITURERLqQzuzBEhHpEVy4nrzqlWzLnLLP26YPHAFA6XZN1S4iItIbKMESEWnDxlVLyKAKN3LmPm/bb3AeAFU7N7ReUURERHoEJVgiIm3YXvAkEWeMPvzEfd4220+wQqWaRFVERKQ3UIIlItIa5xi46XlWJU5k0JAR+7x5MLkPpWQQLN/SCcGJiIhIV6MES0SkFeuWvcjI8HpKDzztc7dRmjCAlOrtsQtKREREuiwlWCIirah49Q/sdmlMPvGbn7uNyuSBZNTpXlgiIiK9gRIsEZEWbPl0NRN2v8rygXPIzMz63O3Upg0hO1KMd/cKERER6cmUYImItGDHo9dTRyLj5lzXsYYyhpBtZZTsLotNYCIiItJlKcESEWnG6jeeYkr5axQMv4jBuQd0qK1E/2bDxdt0LywREZGeTgmWiEgTVeUlZL14NRttCIed/bMOt5eaMxKA8u26F5aIiEhPpwRLRCSKi0RY9ddvMjCyk92z7yQtPaPDbWYN8hKs6mIlWCIiIj2dEiwRkShvLfw1U8te5O28bzHp8C/FpM1+/s2Gw7t1LywREZGeLqGjDZjZ94DvAGHgGefc9X75j4Bv+OXfd84939F9iYh0plVL/s1hH97Ku2lf4PALfhWzdoOpfakklYBuNryXSH0dVTVVVFfXQCSEuRBmAQKJKVhCMn36pJOUGIx3mCIiIu3WoQTLzI4F5gAHO+dqzWygXz4BOBuYCAwFXjSzsc65cEcDFhHpDEWbP2Xgv7/F1sAgRl92P4FgbD/UlwRzSO5FNxuOhMNsW/8RRetXU11ciCvdRGL5ZlJrtpFcX0ZapJy+roI0qyEdSG+lrVqXSJWlUm4ZVAYzqE7IpD4pi1ByP1xqfwJp/UlIzyap7wD6ZA4kLWsAmdmDSOvTBzPbX4csIiICdLwH6wrg1865WgDnXMOdNOcAD/rln5rZGmA68GYH9yciEnN1NdXsunsuw1wN5Wc9St+s7JjvozxpIBm1PfNmw+W7tlP43utUrF9GYvHHZFWuY1hoI0OtjqF+nZALUGT92Z04gMrUIZQmHsT6pEzCKZkEk1IJJiRBIIGwJYALEwjXEwjXEKmrJlxfTaCugsS63STXl5IVKiKtdi19y8pJpbbFuCpcCmWWQWWgL9WJmYQT+uASUogEvYdLSMElpEKw4Z9CAwzXmJMZ5sJYuB6LRD9CBBp+Ou9nMFKPuRAB/2GRMMGGZcIEXIigC3sPQt46wiT4ywH2vEeai3ri9ihvmjAazi9vWOcay5tb55dbQ1ufbdOwHL0drTwHcGaN+2tLe1Ndoz33i2vfPeXa01Ys42qrLWtxob0xNK86mEHgzL8xfNyh+96oiMRcRxOsscAsM7sZqAGudc69AwwDlkTV2+SX7cXMLgMuAxgxYkQHwxER2Xfv/fVbTKv/iIIZv2fqhMM6ZR+1fQYztGpdp7S9P0XCYTZ++A7FH7yCbV7KwPKVDItsZbK/fhs57EjJ472c6QQGHkTf4ePpP/RA+g8azpDEJIbEOJ5wXTVlJTsoL9lO9e4d1OwuIlRRTLiyGKpLCNbsIqm2lNRQKQnVO0lytSS5OpJcHSnUkWz17dpPrUsgRJAQCdSTQNiC3k8SCFnQ/5lAPUHClkDYEolYChHzlp152zhLJGJBXCCBiCU0/iQQJGBGwMDMu0C6cTlgGHjP/XgcgPPSHZyXEkWXWeNNrd1n9aLq7pG5uUhjXWtSF6JSLhfdVmMUjdvskX74zTdNCFy7exTbU699bTXG1Ur1vRPX5htxzaZZUcfuvB01l4q5JtnyXnX2WN3cs70LGp4eXPlfNjxyNUN/+DLBGPe+i8i+azPBMrMXgcHNrPqJv31/YAYwDXjIzPbphjHOub8AfwGYOnVq+76SEhGJkWWP/pZpxU/wxpALOfLEizptP5GMoeTsLKW8qpqMPqmdtp+Yc46ta99j49LnSVj/OgdUvctIKhgJbKc/G/tMoHDgGfQdPYORk7/A4KzsZv/B6CzBpFT6DR5Jv8EjP9f24XCYcDi8R7Li8Z67YAIJwUSSAkayhhtKF7X0kf/jsPdvYvG9P2Xmxf8T73BEer02EyznXIvTaJnZFcCjzjkHvG1mESAH2AwMj6qa65eJiHQZ695bzKT3fsnylKkcfsn/deq+glnDCJpj59YNZIwe16n76qjqynI+WfI09aueZWTJYoa4EoYAWxnAJ1lHE86bxaD8LzIybwyDAt076QgGg/rGX7q9Q0+/mnfXv8ERhX/i7efGM/3EC+Idkkiv1tEhgo8DxwKvmNlYIAnYCTwJ/NPMfos3ycUY4O0O7ktEJGaqK3aT9MQ32WVZ5H7jARISEzt1f6nZ3ndOu3eshy6YYFUVb+bj1xZiHz/PuKql5Fs9FS6V1WlT+XDkseQeOpuRo8czJKC7e4h0NRYIMP5bd7P2d1/m4CU/YGVmNpO+cFK8wxLptTqaYP0d+LuZrQTqgAv93qwPzOwhYBUQAr7THWcQXLXk35S//QA2OJ+MvEMZMuZgsvrlxDssEYmBVf/4NoeEt7Lyy/eRP7DzB7VlDvSGsFUVbez0fbVXTVkxnyx6gMTVjzGm6l2mmGMLA3lv4Bz6TD6ZMdNnMy2lGw1nFOnFUtL6MvjyJ9n2hy8y6vlLWFF7J/nHfi3eYYn0Sh1KsJxzdcB5Lay7Gbi5I+3HW8XWTzio5CUyS570UkVgF30pShxKWZ8R1GWMIJCVS5/+Q8nIGUZ6Ti4Z2UNISU6Ob+D7yjnvIudIGFx4j58uEiIcChEKh3CRMKFwiEgoRCQcJhz2fkb8n+GI99OFQ4SdIxJxRFyEcNj7GXHR1zd4Gi8Fjr7uoeFn1AXWe6xq5+xRLYvh1E2tcBi2rxu28xqP6Frtv2i8pRbaKv38Plds+7qN817riHON1+A7vOeNZTgijesgsms9s4qf5r9DzuMLM0/Z9xg/h35D8gCo37Vhv+yvJXVVZXz82kPw/sOMq3ibyRZmA4N5ffAFZB9+NhMPnsHQoHqpRLqjvtmDqL/sWbb+9TQmLLqM1zd/xMyv/xjr5T3PLhKhtraamsoK6mqrCNXXEQ7VEamvIxSqJxL6bNmF64mEvbJIqJ5IJESk4R8Q718Qfx6YyF4TyHjLEcybceaz6U9c1EQq5n0ycA2fEOyzGTkby70VfvTecmvln7XrzRBq/nrvv0Dj+uitG/+ttajfjWZi2CumqPKmsZs1+T1r2Kc1jaFh3w0VA34onx2bV/2z5VByFkPHHkp2evf4jG3OdfTDauxMnTrVFRQUxDuMPbhIhC3rP6Fk7VKqtn0EJevoU7GenLrNDHLFBGzv16/CpVJpqdQE0qgN9KE2mEZ9MBUXSCQSSMQFEiGQAMEkIoEEIgT8WZgi3q9U1BvWoi68Nhci4N+I0/sZJuDqCURCBFy4cXpgb2rgMAG8aYI/mxY47E8LHCJIGG/eqzBBInsdg0hPt8OySfvBu6RlZO6fHTrH7l/ksjLzWI68+v79s09fqLaKjxY/Rui9fzG27A1SqWMb2Xyc82Uyp81l4mFHk5Cg65BEeorK8lLWzT+byZVvsjL5ENLPvIO8MZPb3rALCdXXUV66k8rdxVSX76KmYhd1FaWEqkoJV5fiqssI1JeTUFdGYqiCYKiahEgNiZEaEiO1JLkakl0tKa6WFOqa/bwm3cei8MFUfO1BTs4f2nbl/cjMljrnpjYt7+gQwR7PAgGGjRrHsFF7XzMRqq1m546NFG/fROXOLYTLtmKVO6CmDKsrJ1BXTmKokqRwJRn1xQT8e580JDiJzpvkN0Ak6t4kzd9zxGGE8KYJjpg3VXDYvOQsbFFTBVsSEetDJOBNDRyxBJwFvUQuakpg5z93gSBYAgQCYEEIeA8LBBuXLarMe55AwC9r/BkMYoEELBAkEEggEDCCZgQCAQIBvJ9R3674r67/Y89vLKLvr9K0jKbb7rPP8Qf2c/1Ndvu8Wfvu/dK0E/DzHE/z27T2ZUt7Y2txl+2uuO/7aZy+umF6a//3KeB/42bRU183fPNm0C9vCqn7K7kCMGN78kj6VuyfqdrD9XV8vORpqpc9xNhdrzKRKopdX5b2/wp9DjmLSUecwFGJ+idApCdKy8hi0jXPsuTh/2PyqltJvv8oCvrPJuvY73Hg5CP2faRADNRUV7Fr51YqirdRVbqN2t1FhCuKcJU7CVYXk1hbQmr9LtJCpWRGdpNplfQD+rXSZgWpVJBGdaAPtZZKKJhCTUI24WAKkYRUIg33ukvsA4mpWFIfAgnJkJBEIJiIBRMJJCRiQW85kJiEBRMJJiQRSEgikJBIQkICgUDAG5MS8D+XWAAal6Oe+59bzLzPc2aBz+5AZ3gzk/q9W16x8//tdXv+87dHvaj1ruGzhbdd9O0ZPtvefVbPL2z49901fKEeaShv2CL61g3RsUXHwF4xNHQIuKh9WJN9frat/zMSaVLeEPeese0xognISspi4qjY36Oys6gHS0RkP1n+h/MZseMV+t64gYROGIbnwiE+KfgPZe88xOidL9GPMspdKh9kHk0w/2tMnnVK9xvCLCIdsmtrIR8++ksO2fE4KVbP+sBwtg84gpQDZpI9dgaDh48mmLDvX7ZUV5ZTunMLFSXbqdq1ndqyHYQrisBPmJL8hCk9XEpmpIx0q262nZALsNv6UhbIpCoxi9qk/oRS+hNJzYbU/gT7ZJKY1o/k9CxS0/vTJ7M/6Zn9SU3LxIL6kkjiq6UeLCVYIiL7yfKHfsWUVf/L+ouWMjLvwJi06SJh1i17mV3vPEje9pfIYRfVLomV6V/ATTqDiUd9lbS09JjsS0S6r7Libax66V7S1z7D6JpVpFodAPUuyI5ADlWBvtQmpBEKpvk9Md5lCuZCJIarSApXkRKpItVV0cdVk9LCTbrrXAKl1pfyYBZViVnU+QmT65NDMCOHxIyBpGQNIr3fIPrmDCEjM9sbHSPSDWmIoIhInGWMnQmr/pft77/coQQrEgrx0bJF7C54iAN2vMhoiqlxiaxMO5y1B53G+GO+xrS+WbELXES6vb7Zg5lx1vXA9VRXV7N65X+p2LCCup2fklyxicT6MpLDFfSp3+VPbACOABELUBfoQ1nSQEoS0ggnphNJTMf69COYPoCkvgNJyRpIRv/B9M0ZSnpGFgMDAQbG+XhF4kkJlojIfjJq0hGUP55KZO0i4LJ92rayvJS1S56kftVzjNq1mPGUUecS+KDPNNYddBrjjjqLqf36d0rcItKzpKamMn7aF2HaF+MdikiPpARLRGQ/CSQk8lHmTCbtepmK3SWkZ7acEIVD9axf+QZFK16kz+Y3GFezgnwLsdul8XHG4aw76ETGzfwqh2Tp3nwiIiJdiRIsEZH9KPPYK+nz2Ius+Ps3GH/5vSSnZoBzlGzfyLYP36Li03dI3vEuo6ve5wCr5gDg08BI3h3yNfpMOpmx077EtOSUeB+GiIiItEAJlojIfjRmyixeXXYFR2/4I3W/zqPYMkingv7U0x+IOGNjMJcPco7HRh3FyMOOZ9SQEYyKd+AiIiLSLkqwRET2s6Mu/hXL3zyG3e8+QVLdLsLJWQSycsnIO5Tc8Yczsl9/RsY7SBEREflclGCJiOxnZsaUL5wAXzgh3qGIiIhIjMX+TpciIiIiIiK9lBIsERERERGRGFGCJSIiIiIiEiPmnIt3DI3MrAhYH+84msgBdsY7CNlvdL57D53r3kPnunfR+e49dK57l654vkc65wY0LexSCVZXZGYFzrmp8Y5D9g+d795D57r30LnuXXS+ew+d696lO51vDREUERERERGJESVYIiIiIiIiMaIEq21/iXcAsl/pfPceOte9h85176Lz3XvoXPcu3eZ86xosERERERGRGFEPloiIiIiISIwowRIREREREYkRJVitMLPZZvaRma0xsxviHY/EjpkNN7NXzGyVmX1gZlf65f3N7AUz+8T/2S/esUpsmFnQzN41s6f95VFm9pb//l5oZknxjlFiw8yyzOxhM/vQzFab2RF6b/dMZna1/zd8pZktMLMUvbd7DjP7u5ntMLOVUWXNvpfNc7t/3leY2aHxi1z2VQvn+jf+3/EVZvaYmWVFrfuRf64/MrMT4hJ0K5RgtcDMgsAfgBOBCcA5ZjYhvlFJDIWAa5xzE4AZwHf883sD8JJzbgzwkr8sPcOVwOqo5f8FbnPOHQjsAr4Rl6ikM/we+Ldz7iDgYLzzrvd2D2Nmw4DvA1Odc5OAIHA2em/3JHcDs5uUtfRePhEY4z8uA/60n2KU2Libvc/1C8Ak51w+8DHwIwD/89rZwER/mz/6n9u7DCVYLZsOrHHOrXPO1QEPAnPiHJPEiHNuq3Numf+8HO8D2DC8c3yPX+0e4LS4BCgxZWa5wEnA3/xlA44DHvar6Fz3EGaWCRwF3AXgnKtzzpWi93ZPlQCkmlkC0AfYit7bPYZz7jWgpElxS+/lOcC9zrMEyDKzIfslUOmw5s61c+4/zrmQv7gEyPWfzwEedM7VOuc+BdbgfW7vMpRgtWwYsDFqeZNfJj2MmeUBhwBvAYOcc1v9VduAQfGKS2Lqd8D1QMRfzgZKo/5w6/3dc4wCioB/+ENC/2Zmaei93eM45zYDtwIb8BKr3cBS9N7u6Vp6L+tzW892CfCc/7zLn2slWNKrmVk68AhwlXOuLHqd8+5hoPsYdHNmdjKwwzm3NN6xyH6RABwK/Mk5dwhQSZPhgHpv9wz+tTdz8JLqoUAaew8xkh5M7+Xewcx+gndpxwPxjqW9lGC1bDMwPGo51y+THsLMEvGSqwecc4/6xdsbhhT4P3fEKz6JmSOBU82sEG+o73F41+hk+cOKQO/vnmQTsMk595a//DBewqX3ds/zJeBT51yRc64eeBTv/a73ds/W0ntZn9t6IDO7CDgZONd9dvPeLn+ulWC17B1gjD8bURLexXRPxjkmiRH/Gpy7gNXOud9GrXoSuNB/fiHwxP6OTWLLOfcj51yucy4P7338snPuXOAV4Ey/ms51D+Gc2wZsNLNxftEXgVXovd0TbQBmmFkf/296w7nWe7tna+m9/CRwgT+b4Axgd9RQQumGzGw23vD+U51zVVGrngTONrNkMxuFN7HJ2/GIsSX2WTIoTZnZV/Cu3QgCf3fO3RzfiCRWzGwm8DrwPp9dl/NjvOuwHgJGAOuBs5xzTS+wlW7KzI4BrnXOnWxmB+D1aPUH3gXOc87VxjE8iREzm4I3oUkSsA64GO8LRb23exgz+wUwF2/40LvApXjXYui93QOY2QLgGCAH2A78HHicZt7LfpJ9J94w0SrgYudcQRzCls+hhXP9IyAZKParLXHOXe7X/wnedVkhvMs8nmvaZjwpwRIREREREYkRDREUERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBGRLsbM8szMmVlCvGOR3sHMPjCzY+Idh4hIT6AES0REuj0zm29mFf6jzszqo5afi3d8XZ1zbqJzblEs2/STtoqoR8jMnorlPkREuiJzzsU7BhGRHsXMEpxzoQ5snwd8CiR2pJ3eyszmAQc6585rZl2Hzs3+1J1ibYuZGbAO+Llz7t54xyMi0pnUgyUiEgNmVmhmPzSzFUClmSWY2Qwz+6+ZlZrZe9FDsMxskZn9j5m9bWZlZvaEmfVvoe2LzWy1mZWb2Toz+1aT9XPMbLnfzlozm+2XZ5rZXWa21cw2m9kvzSzYxnGMNrOXzazYzHaa2QNmlhW1rsTMDvWXh5pZUcNxmdmpfq9FqX9845u8Ptea2Qoz221mC80sZd9f6X3XwrlxZnZgVJ27zeyXUcsn+69pqX8O89u5r2PMbJOZ/dh//QrN7Nyo9SeZ2bv+udroJ4MN6xqGhn7DzDYAL/vl/zKzbf7r9pqZTWwS9x/N7Dm/l+gNMxtsZr8zs11m9qGZHdLO1+hL7TnGz+koIAd4pBP3ISLSJSjBEhGJnXOAk4AsYBDwDPBLoD9wLfCImQ2Iqn8BcAkwBAgBt7fQ7g7gZKAvcDFwW1SSMx24F7jO3+9RQKG/3d1+uwcChwDHA5e2cQwG/A8wFBgPDAfmATjn1gI/BO43sz7AP4B7nHOLzGwssAC4ChgAPAs8ZWZJUW2fBcwGRgH5wEXNBmA2009sWnrMbOMYmtN4btrqFfITkr8D3wKygT8DT5pZcjv3NRgvmRgGXAj8xczG+esq8c57lh/PFWZ2WpPtj8Z77U/wl58DxgADgWXAA03qnwX81N9nLfCmXy8HeBj4bTvjbpaZ3dDa+WhnMxcCjzjnKjsSi4hId6AES0Qkdm53zm10zlUD5wHPOueedc5FnHMvAAXAV6Lq3+ecW+l/6PwZcFZzPUzOuWecc2ud51XgP8Asf/U3gL87517w97PZOfehmQ3y93WVc67SObcDuA04u7UDcM6t8duqdc4V4X04Pzpq/V+BNcBbeInhT/xVc4Fn/G3rgVuBVOALTV6fLc65EuApYEoLMSx2zmW18ljc2jG0IPrctOUy4M/Oubecc2Hn3D14icuMfdjfz/zX8FW8RPssAOfcIufc+/65WoGXlB7dZNt5/jmr9rf5u3Ou3DlXi5fsHmxmmVH1H3POLXXO1QCPATXOuXudc2FgIV5y/bk5537d2vloa3s/GT8TL+EXEenxlGCJiMTOxqjnI4GvNfmmfyZeUtJc/fVAIl6vwx7M7EQzW+IPzyvFS5wa6g0H1jYTy0i/va1R+/8zXi9Ii8xskJk96A8pLAPubyamvwKTgDv8D/3g9Xitb6jgnIv4xzcsarttUc+rgPTWYomxjW1XaTQSuKbJuRuOd4ztsatJT836hm3N7HAze8UfWrkbuJy9X9/GWM0saGa/Nm/oZxmf9U5Gb7M96nl1M8v783VuzleBEuDVOMchIrJfKMESEYmd6FmDNuL1UEV/25/mnPt1VJ3hUc9HAPXAzugG/WFpj+D1CA3yewyexRvK17Cf0c3EshGv1yUnav99nXMTm6kb7Vf+cUx2zvXF64lr2Bdmlg78DrgLmGefXTe2BS8xaahn/vFtbmN/ezGzWbbn7HNNH7PabmUvTWd0qgL6RC0Pjnq+Ebi5ybnr45xb0M599TOztKjlEXivD8A/gSeB4c65TGA+Ua9vM7F+HZgDfAnIBPL88qbbdBr/erIWz0c7mrgQuNdpVi0R6SWUYImIdI77gVPM7AS/FyLFnwAhN6rOeWY2wR9CdRPwsD+sK1oSkAwUASEzOxHvWqoGdwEXm9kXzSxgZsPM7CDn3Fa8oYT/Z2Z9/XWjzazpcLSmMoAKYLeZDcO7tiva74EC59yleEPf5vvlDwEn+XEkAtfgJXj/beuFaso597pzLr2Vx+v72mYzlgNf98/NbPYcpvdX4HK/t8nMLM28ySkyoHFiibvbaP8XZpbkJ4MnA//yyzOAEudcjX/93NfbaCcD73UsxksIf7UPxxgTzrlftXY+WtvW/30/Frhn/0QrIhJ/SrBERDqBc24jXs/Dj/GSo414yUr039378K5L2QakAN9vpp1yv/whYBfeB/Ino9a/jT/xBbAbbxhWQ0/SBXgJ2ip/24fZc4hic34BHOq39QzwaMMKM5uDN0nFFX7RD4BDzexc59xHeL1dd+D1wp0CnOKcq2tjf/FyJV6MpcC5wOMNK5xzBcA3gTvxXrc17Dkhx3DgjVba3uZvtwVvQorLnXMf+uu+DdxkZuXAjXjntTX34g0x3Ix3Hpe0dWBdzPnAm/4EKSIivYLugyUiEgdmtgi43zn3t3jHIu3nz4r4HpDvT+bRdP0xeOc1t+k6ERHpHRLiHYCIiEh34ffIjW+zooiI9FoaIigi0suY2fwWJiyY3/bW0h2Z2YhWJqoYEe/4RER6Eg0RFBERERERiRH1YImIiIiIiMRIl7oGKycnx+Xl5cU7DBERERERkVYtXbp0p3NuQNPyLpVg5eXlUVBQEO8wREREREREWmVm65sr1xBBERERERGRGFGCJSIiIiIiEiNKsERE2lAfjsQ7BBEREekmutQ1WM2pr69n06ZN1NTUxDsU6WZSUlLIzc0lMTEx3qFIN7ZmRwXz7/xfjjn2eE4+dla8wxEREZEurssnWJs2bSIjI4O8vDzMLN7hSDfhnKO4uJhNmzYxatSoeIcj3dimRXdxa+B2lrzxXzj2pXiHIyIiIl1clx8iWFNTQ3Z2tpIr2SdmRnZ2tno+pcMytr8NwID6LYQjujG7iIiItK7LJ1iAkiv5XPR7I7Fg1bsAGMVWtu4oinM0IiIi0tV1iwRLRCReUkJlAATMsX3t8vgGIyIiIl2eEqx2MDOuueaaxuVbb72VefPmxS+gKEuWLOHwww9nypQpjB8/vjGuRYsW8d///vdzt7t+/XoOPfRQpkyZwsSJE5k/f36MIhbpXtLCZWwODAWgbOvaOEcjIiIiXV2Xn+SiK0hOTubRRx/lRz/6ETk5OTFr1zmHc45A4PPnuRdeeCEPPfQQBx98MOFwmI8++gjwEqz09HS+8IUvfK52hwwZwptvvklycjIVFRVMmjSJU089laFDh37uWEW6o/RIOWv7HMywyi2w69N4hyMiIiJdnHqw2iEhIYHLLruM2267ba91RUVFnHHGGUybNo1p06bxxhtvADBv3jxuvfXWxnqTJk2isLCQwsJCxo0bxwUXXMCkSZPYuHEj1113HZMmTWLy5MksXLgQ8BKkY445hjPPPJODDjqIc889F+f2vsB+x44dDBkyBIBgMMiECRMoLCxk/vz53HbbbUyZMoXXX3+91TjPP/98jjjiCMaMGcNf//pXAJKSkkhOTgagtraWSKT5+wDdfvvtTJgwgfz8fM4++2wASkpKOO2008jPz2fGjBmsWLGicV8XXnghs2bNYuTIkTz66KNcf/31TJ48mdmzZ1NfXw/ATTfdxLRp05g0aRKXXXbZXscdiUTIy8ujtLS0sWzMmDFs3769tdMosu+cI8OVsTt5MCWWSVL5pnhHJCIiIl1ct+rB+sVTH7BqS1lM25wwtC8/P2Vim/W+853vkJ+fz/XXX79H+ZVXXsnVV1/NzJkz2bBhAyeccAKrV69uta1PPvmEe+65hxkzZvDII4+wfPly3nvvPXbu3Mm0adM46qijAHj33Xf54IMPGDp0KEceeSRvvPEGM2fO3KOtq6++mnHjxnHMMccwe/ZsLrzwQvLy8rj88stJT0/n2muvBeDrX/96i3GuWLGCJUuWUFlZySGHHMJJJ53E0KFD2bhxIyeddBJr1qzhN7/5TbO9V7/+9a/59NNPSU5Obkx4fv7zn3PIIYfw+OOP8/LLL3PBBRewfPlyANauXcsrr7zCqlWrOOKII3jkkUe45ZZbOP3003nmmWc47bTT+O53v8uNN94IwPnnn8/TTz/NKaec0rjPQCDAnDlzeOyxx7j44ot56623GDlyJIMGDWrzPIrsk7pKkghRl5hJSeIQ0qs3xzsiERER6eLUg9VOffv25YILLuD222/fo/zFF1/ku9/9LlOmTOHUU0+lrKyMioqKVtsaOXIkM2bMAGDx4sWcc845BINBBg0axNFHH80777wDwPTp08nNzSUQCDBlyhQKCwv3auvGG2+koKCA448/nn/+85/Mnj272X22FuecOXNITU0lJyeHY489lrff9qalHj58OCtWrGDNmjXcc889zfYQ5efnc+6553L//feTkJDQeEznn38+AMcddxzFxcWUlXmJ8YknnkhiYiKTJ08mHA43xjt58uTG43vllVc4/PDDmTx5Mi+//DIffPDBXvudO3duY2/fgw8+yNy5c1t9zUU+F38GwfqkTCpShpBVvyPOAYmIiEhX1616sNrT09SZrrrqKg499FAuvvjixrJIJMKSJUtISUnZo25CQsIew+qi78eUlpbWrv01DNEDb/hfKBRqtt7o0aO54oor+OY3v8mAAQMoLi7eq05LccLe05k3XR46dCiTJk3i9ddf58wzz9xj3TPPPMNrr73GU089xc0338z777/frmMKBAIkJiY27isQCBAKhaipqeHb3/42BQUFDB8+nHnz5jV7L6sjjjiCNWvWUFRUxOOPP85Pf/rTVvcr8rnUlAIQTs4kkjaYnN3/pa4+TFJiML5xiYiISJfV4R4sMxtuZq+Y2Soz+8DMrvTL+5vZC2b2if+zX8fDja/+/ftz1llncddddzWWHX/88dxxxx2Nyw1D4fLy8li2bBkAy5Yt49NPm784ftasWSxcuJBwOExRURGvvfYa06dPb3dMzzzzTOM1Sp988gnBYJCsrCwyMjIoLy9vM06AJ554gpqaGoqLi1m0aBHTpk1j06ZNVFdXA7Br1y4WL17MuHHj9th3JBJh48aNHHvssfzv//4vu3fvpqKiglmzZvHAAw8A3rVkOTk59O3bt13H05BM5eTkUFFRwcMPP9xsPTPj9NNP5wc/+AHjx48nOzu7Xe2L7AtX7/0+BhJTCWYOJc1q2bFzZ5yjEhERka4sFkMEQ8A1zrkJwAzgO2Y2AbgBeMk5NwZ4yV/u9q655hp2Rn3Auv322ykoKCA/P58JEyY0Tmd+xhlnUFJSwsSJE7nzzjsZO3Zss+2dfvrp5Ofnc/DBB3Pcccdxyy23MHjw4HbHc9999zFu3DimTJnC+eefzwMPPEAwGOSUU07hsccea5zkoqU4wRvmd+yxxzJjxgx+9rOfMXToUFavXs3hhx/OwQcfzNFHH821117L5MmTAbj00kspKCggHA5z3nnnMXnyZA455BC+//3vk5WVxbx581i6dCn5+fnccMMN3HPPPe0+nqysLL75zW8yadIkTjjhBKZNm9a4bv78+XvEPXfuXO6//34ND5ROU1frfclgiSkkZ+cCsHNrYRwjEhERka7OmpuZrkMNmj0B3Ok/jnHObTWzIcAi59y41radOnWqKygo2KNs9erVjB8/PqYxymfmzZu3x2QYPY1+f6QjKj94nrR/ncX/b+/Ow+Oo7nz/v79V3VJrtWRZ8iJ5EV7wbgzyEgzEENYJgUyAwNyQBJwZbjLMJPBklqxkYG5+v8xwb3LnZr0kEE/yEAwhGXAmCUsAJ3GGzdgG2xiDwfIqybIWa1dv5/7RbVnW4k0ttZbP63nk7jp1quorlUvqb51T5/yq4t9ZWppD2ZM38qf3/YhVV92U7tBEREQkzczsNedcRc/ylA5yYWYzgKXAy8BE51xVclU10OcQb2Z2h5ltMrNNtbW1qQxHRGRAIp1tAPgZIQonTQegs/FQOkMSERGRYS5lg1yYWS7wC+Au51xT94ESnHPOzPpsKnPOPQA8AIkWrFTFI6fnn/7pn9IdgsiwFUl2EQxkZJGT7CIYP6oES0RERPqXkhYsMwuSSK4eds79Mllck+waSPJV4xuLyIgSTSZYwVA2ZGTTTA5+S3WaoxIREZHhLBWjCBrwILDTOffNbqvWA59Mvv8k8ORAjyUiMpSi4WSClZmY3qAxMIFQh+4ViYiISP9S0UVwFfBxYJuZbU2WfQn4BvCYmX0K2At8NAXHEhEZMrFjCVZGNgCtmSXkt+lZUREREenfgBMs59xGwPpZ/YGB7l9EJF3iyXmwgqFEghXJLmFCy7vE4g7f6+/XnoiIiIxlKR1FcDR74oknMDPeeuutfutUVlaycOHClB1z165drF69mvPOO4958+Zxxx13AIlJgn/zm9+c9X47OjpYvnw5S5YsYcGCBXzta19LVcgio0o8nEiwMkOJLoIubwrFNFLX1JbOsERERGQYU4J1mh555BEuuugiHnnkkT7XR6PRAR8jFoudsPzZz36Wu+++m61bt7Jz507+9m//Fhh4gpWZmcnzzz/P66+/ztatW3nqqad46aWXBhS7yGjkoh10ugChjCAAgYIpBCzOkcMH0hyZiIiIDFdKsE5DS0sLGzdu5MEHH2TdunVd5Rs2bODiiy/muuuuY/78+UAi0frYxz7GvHnzuPHGG2lrS9zpfu6551i6dCmLFi1izZo1dHZ2AjBjxgz+8R//kfPPP5+f//znJxy3qqqKsrKyruVFixYRDoe55557ePTRRznvvPN49NFHaW1tZc2aNSxfvpylS5fy5JOJ8UTWrl3L9ddfz+rVq5k9ezb33nsvAGZGbm4uAJFIhEgkQvdh9Y/5+c9/zsKFC1myZAmXXHIJkGj9uv3221m0aBFLly7lhRde6DrWhz/8Ya644gpmzJjBd77zHb75zW+ydOlSVq5cSX19PQA//OEPWbZsGUuWLOGGG27o+vl0t3LlSnbs2NG1vHr1anpOQC0yFFykg06ChII+ANnJodqPHt6fzrBERERkGEvZPFhD4rdfgOptqd3npEVwzTdOWuXJJ5/k6quvZs6cORQVFfHaa69xwQUXALB582a2b99OeXk5lZWV7Nq1iwcffJBVq1axZs0avve97/E3f/M33HbbbTz33HPMmTOHT3ziE3z/+9/nrrvuAqCoqIjNmzf3Ou7dd9/NZZddxoUXXsiVV17J7bffTkFBAffddx+bNm3iO9/5DgBf+tKXuOyyy3jooYdobGxk+fLlXH755QC88sorbN++nezsbJYtW8YHP/hBKioqiMViXHDBBezevZs777yTFStW9Dr+fffdx9NPP01paSmNjY0AfPe738XM2LZtG2+99RZXXnklb7/9NgDbt29ny5YtdHR0MGvWLP7lX/6FLVu2cPfdd/OTn/yEu+66i4985CP81V/9FQBf+cpXePDBB7ta5o65+eabeeyxx7j33nupqqqiqqqKiopek2SLDDoX7aCTDEKBxL2o/OJpAHTUqQVLRERE+qYWrNPwyCOPcMsttwBwyy23nNBNcPny5ZSXl3ctT506lVWrVgFw6623snHjRnbt2kV5eTlz5swB4JOf/CR/+MMfura5+eab+zzu7bffzs6dO7npppvYsGEDK1eu7Gr56u6ZZ57hG9/4Bueddx6rV6+mo6ODffv2AXDFFVdQVFREVlYWH/nIR9i4cSMAvu+zdetWDhw40JWE9bRq1Spuu+02fvjDH3Z1X9y4cSO33norAHPnzmX69OldCdall15KXl4excXFjBs3jg996ENAouWtsrISSCRhF198MYsWLeLhhx8+oaXqmI9+9KM8/vjjADz22GPceOONff58RAZdtJNOgmRlJFqwxk2cDkCkUZMNi4iISN9GVgvWKVqaBkN9fT3PP/8827Ztw8yIxWKYGffffz8AOTk5J9Tv2dWur653PfXcR3dTpkxhzZo1rFmzhoULF/aZCDnn+MUvfsG55557QvnLL798yngKCgq49NJLeeqpp3oN0PGDH/yAl19+mV//+tdccMEFvPbaayf9PjIzM7vee57Xtex5XtczarfddhtPPPEES5YsYe3atWzYsKHXfkpLSykqKuKNN97g0Ucf5Qc/+MFJjysyaKIddLogoUAiwfLzSojiYc1VaQ5MREREhiu1YJ3C448/zsc//nH27t1LZWUl+/fvp7y8nD/+8Y991t+3bx8vvvgiAD/72c+46KKLOPfcc6msrGT37t0A/PSnP+X973//KY/91FNPEYlEAKiurqauro7S0lLy8vJobm7uqnfVVVfx7W9/G+ccAFu2bOla9+yzz1JfX097eztPPPEEq1atora2tqvLX3t7O88++yxz587tdfx3332XFStWcN9991FcXMz+/fu5+OKLefjhhwF4++232bdvX6/E7mSam5uZPHkykUikaz99ufnmm/nXf/1Xjh49yuLFi097/yKp5EU7CFsG3rEh2T2fRq+QjLaa9AYmIiIiw5YSrFN45JFH+PM///MTym644YZ+RxM899xz+e53v8u8efNoaGjgM5/5DKFQiB//+MfcdNNNLFq0CM/z+PSnP33KYz/zzDNdg0xcddVV3H///UyaNIlLL72UN998s2uQi69+9atEIhEWL17MggUL+OpXv9q1j+XLl3PDDTewePFibrjhBioqKqiqquLSSy9l8eLFLFu2jCuuuIJrr70WgHvuuYf169cD8Pd///csWrSIhQsXcuGFF7JkyRL++q//mng8zqJFi7j55ptZu3btCS1Xp/LP//zPrFixglWrVp2Q1K1fv5577rmna/nGG29k3bp1fPSjmp9a0sdinYQt44Sy5mAxOZ2H0xSRiIiIDHd2rNVjOKioqHA9R4vbuXMn8+bNS1NEI9vatWtPGAxjLNL/HxmI9+6/hIa2KBd87b+6ynZ+60MEGvcw+97e3XVFRERk7DCz15xzvUZiUwuWiEg//FiYaI8WrGjOJEqoo6Vz4HPfiYiIyOijBGsUu+2228Z065XIQPnxTqLeiQmWN24K46yNmiMNaYpKREREhrMRkWANp26MMnLo/40MlB8PE/NOfMYwo7AUgMaayjREJCIiIsPdoCdYZna1me0ys91m9oUz3T4UClFXV6cPy3JGnHPU1dURCoXSHYqMYAEXJuafmGDlTJgKQEvt/nSEJCIiIsPcoM6DZWY+8F3gCuAA8KqZrXfOvXm6+ygrK+PAgQPU1tYOVpgySoVCIcrKytIdhoxgwXiYeI8WrMJJicmGww0H0hGSiIiIDHODPdHwcmC3c+49ADNbB1wPnHaCFQwGKS8vH6TwRET6F3Rh4j1asLKKEi1YrkmTDYuIiEhvg91FsBTo3o/mQLKsi5ndYWabzGyTWqlEZDgJEsYFeszzlplHK1n4LUqwREREpLe0D3LhnHvAOVfhnKsoLi5OdzgiIgnxGBlEwe89kXZjYAJZHZpsWERERHob7ATrIDC123JZskxEZHiLdiZeA70HSmnLLCEvohZ3ERER6W2wE6xXgdlmVm5mGcAtwPpBPqaIyMBFOxKvPbsIAuHsiRTF64jG4kMclIiIiAx3g5pgOeeiwN8ATwM7gcecczsG85giIqngkgmWBXu3YLm8yRTTyJGm9qEOS0RERIa5wR5FEOfcb4DfDPZxRERSKdzRTiZ9J1iBcaUELcaRwweYVHju0AcnIiIiw1baB7kQERmOwh2J1ikvI6vXuqzkZMNNNfuGNCYREREZ/pRgiYj0IdzZBoDXRwtWfsk0ANrr9vdaJyIiImObEiwRkT5EkgmWH+zdgjUumWBFjx4a0phERERk+FOCJSLSh0hnYpCLQGbvBMvLm0gUH69ZCZaIiIicSAmWiEgfIh2tAAQyencRxPOp8yaQ1VY1xFGJiIjIcKcES0SkD9FwYpCLQGZ2n+ubMieS31k9lCGJiIjICKAES0SkD8cSrGBmHy1YQFvWFIpjNTjnhjIsERERGeaUYImI9CEWTjyDFeynBSuWV0oJ9TS3dwxlWCIiIjLMKcESEelDPJwYRTAz1HeC5RVOwzdH3aHKIYxKREREhjslWCIifYgnh2kP5eT3uT5UNB2Appo9QxaTiIiIDH9KsERE+uDCrcSdkZWd2+f6/EnnANB+WAmWiIiIHKcES0SkDxZpo50MsjMDfa4vnjoTgGjDvqEMS0RERIa5ASVYZna/mb1lZm+Y2X+YWUG3dV80s91mtsvMrhpwpCIiQynSRjuZBP2+f00GQ7k0kI/fdHCIAxMREZHhbKAtWM8CC51zi4G3gS8CmNl84BZgAXA18D0z8wd4LBGRIeNHWumwvodoP6Y+OJGstkNDFJGIiIiMBANKsJxzzzjnosnFl4Cy5PvrgXXOuU7n3B5gN7B8IMcSERlKXrSd9lMkWK2hSRRENNmwiIiIHJfKZ7DWAL9Nvi8F9ndbdyBZ1ouZ3WFmm8xsU21tbQrDERE5e36snbBlnbRONLeMkvgRwpHYEEUlIiIiw90pEywz+52Zbe/j6/pudb4MRIGHzzQA59wDzrkK51xFcXHxmW4uIjIogrF2wt7JW7C8wmlkWyfV1XoOS0RERBL6Hh6rG+fc5Sdbb2a3AdcCH3DOuWTxQWBqt2plyTIRkREhEG8n6pectE5WcWIurLpD7zFt6rShCEtERESGuYGOIng18A/Adc65tm6r1gO3mFmmmZUDs4FXBnIsEZGhlBHvIOKfvItgweTEXFgtmmxYREREkk7ZgnUK3wEygWfNDOAl59ynnXM7zOwx4E0SXQfvdM7pIQURGTFC8XaifvZJ6xSVzgYgUlc5BBGJiIjISDCgBMs5N+sk674OfH0g+xcRSZdM14ELnjzBCuQW0UYIv2n/SeuJiIjI2JHKUQRFREYH5wjRAadIsDDjSGASWW16xFREREQSlGCJiPTgIu34OCwz95R1W0JTKAxXDUFUIiIiMhIowRIR6aGtqS7xJqvglHXDeWVMjB+mIxw9ZV0REREZ/ZRgiYj00NqYmPTcyx5/yrpe4XTyrZ3qmurBDktERERGACVYIiI9dDQdASCYW3TKulkliaHa6w7uHtSYREREZGRQgiUi0kNnc6KLYDD31C1YBVNmAtBS896gxiQiIiIjgxIsEZEeIskEK5Q/4ZR1xyfnworW7x3UmERERGRkUIIlItJDpCWRYOUXlpyyrp9dSCtZ+EeVYImIiIgSLBGRXqKt9YSdz4TxhaeubEZdcBLZbYcGPzAREREZ9pRgiYj01N5AE7mEMgKnVb0lNFlzYYmIiAigBEtEpJdARx3N3rjTrt+ZO41JrlZzYYmIiEjqEiwz+7yZOTObkFw2M/s/ZrbbzN4ws/NTdSwRkcGU23mYxmDxadf3CqeRZ+3UHNZcWCIiImNdShIsM5sKXAns61Z8DTA7+XUH8P1UHEtEZLAVRGtpzZx42vVDJeUA1GsuLBERkTEvVS1Y3wL+AXDdyq4HfuISXgIKzGxyio4nIjIoXLSTwngjkZxJp73NuEmJubBaNReWiIjImDfgBMvMrgcOOude77GqFNjfbflAsqzn9neY2SYz21RbWzvQcEREBuTo4QN45ggUlp32NkVlx+bCqhykqERERGSkOK0hsszsd0Bft3O/DHyJRPfAs+KcewB4AKCiosKdorqIyKCqPfgeBUDuhKmnvU0wp5AWsvGP7j91ZRERERnVTivBcs5d3le5mS0CyoHXzQygDNhsZsuBg0D3TyhlyTIRkWGr+dAuAArKzj39jcw4EphIdpt+xYmIiIx1A+oi6Jzb5pwrcc7NcM7NINEN8HznXDWwHvhEcjTBlcBR55wmihGRYc3V7qLTBZg0fe4ZbdccKqVAc2GJiIiMeYM5D9ZvgPeA3cAPgb8exGOJiKRERuO7HPAmkxXKPKPtwrllTIwfJhqNDVJkIiIiMhKcVhfB05VsxTr23gF3pnL/IiKDrbBtD9VZM894OyucRm51BwdrqigtPf0BMkRERGR0GcwWLBGREaWjuYGy+CE6Jiw4421Dxcm5sA5pLiwREZGxTAmWiEjS/h1/AiBz+vIz3jZ/0jkAtFRrLiwREZGxTAmWiEhSw65EgjVj8aoz3nbC1DkAROr2pjQmERERGVmUYImIJOUd2sg73jkUF/c17d/JhXILaSWENR8YhMhERERkpFCCJSICdLQ0MKtjBzUlZ956BYAZ9X4xmW3VqQ1MRERERhQlWCIiQOWrvyVoMUJzrzrrfTRnTiS/syaFUYmIiMhIowRLRARo3vE0LS7EucsuO+t9dGZPZnyslsQsFSIiIjIWKcESkTEvGglTfmQDb+ctJy8n56z34/JLKbFGGptaUhidiIiIjCQpnWhYRGQkevO//pPFNLJ/0U0D2k+wcCoAhw/toXDc4lSENuyEw2Gq3ttB/cG3aT1ciTUfxDqOYpF2PBclYpkQzCKSPRG/aAbjSucyc+FycrOz0h26iIjIkFCCJSJjXufmdTSRzfz33zCg/WQXTweguWYvzBv5CVY8Fue9t7ZQ9+YL2KHNFDTtYnp0L9MtwvRknajzaLEcOi1EzAJkuE5CroPc+jY4ALwOHb8OsiMwi8MTVpK/+M9YULGaUGZGOr81ERGRQaMES0TGtPbWZuY3/p4d4z/A8tDZdw8EKJxUntjnkZE7F9bB93ZyaNN6/H1/YnrLVmZxlFlAA3kcDM3mjZKbYdIC8kvnMGnqbPInlFLg9/5TEm9vouHQbmrefZ2OylfIP7KZS6rX4tf8mPpn8ng9bznx2Vcx58LrKCqePKTfYzgcobbmAA1VlXTUHyTWXE2svYl4RzNepIVAtA0/1k48HsfF4wB4BmZG1A8R8ULEA1l4Gdl4GdkEMnPws/IJZueRkV1AZs44snLzyc4rJCdvHH5mHvTxMxpUzkEsAvEILhYmFokQjYaJRMLEolGisThRZ0RiEHOAge95+J6HeR6+52Me+J6P7/uY7xPwfDzPw/d9fM/H830wr9uXDe33KCIyTCnBEpExbeeGdZxvHWRf8N8GvK+CSTMAiDWOnLmwYtEo77z2HA1bf8Wkmt9THt9HKVBFMe+NW0nljFVMXnw5k8vnUeid/mO7XlY+RTPPp2jm+cDtAHQcrWXXS+sJv/U0cxpepHDLc8Q2/yNvBudyZNIljJ93CeWLVpGTX3jW30+0vZm66r001uyltXY/kcaD0HSIYFsNOZ2HKYgeocg1UGpxSntsG3dGm4VoJ0SnhXDmAYmkwSX/zXBhMl0nWXQQInzacXWQQbtl0WHZdHjZdPpZhL1sIn4WZh6eARju2LGS//gugh8P48WjXe99FyXgIgRcJPGeCAEXxSeGT4wAUQLEu45tJP7YB4DQ2f1YT1vMGXE8HEbcDIdHnOOv3d93Z7gey5x0Pb3qu27ve+q/bld9d7L1Jx+05sRj967bV9rZ9z5dv/VPtW2HZVJ703rKFyw/xdYiMhQGnGCZ2d8CdwIx4NfOuX9Iln8R+FSy/LPOuacHeiwRkVTzdzxODUXMe981A96XF8qliVz8lkMpiGzwxGMxdr3yDE2b1jGn7nnm0kTE+ewKLeaVGTczqeI6ps5axOQUt0iExhUz/6pPwVWfwsWivPvGRuq3/ieFhzZwyYH/Cwf+L/FnjL1eKY3Z0wjnlELeRCyYhWVk4wcysGgH8XAb8c5W4u0NBNpqyeo8Qk6knsJ4Pbm0MRGY2O24zS6Len8CzcEJ7M9dxt7cyfjjSgkVlZIzYSo5RWXkF44nM5RHrueRe9o/yDgd7S20tDTR1txIe8tROlubCLceJdzelGgV62zBdTZj4Ra8cCt+tIWMWBuZ8Xayo3VkuE7c8Yyqx4dnI2JBogSIWgadXoCY5RLzAsS8DOIWJO4lvpwXwCVf8QLgBcEP4vwg5gXAD2LHvjwf3zMCZvieS4525XAuTjzuwMWJO3Auhou7RCueiyeX4ziXXO4qj2MuDs5hLpZoPSOx7lg5dK8TxyPeOyXq9d+tR0Gv/48nW3/yui5Z91hpohHveB2H9ZvpWLftSW7n+lnXfzzJY/Qq673Qd71uZS7OhdU/pealR5VgiQwTA0qwzOxS4HpgiXOu08xKkuXzgVuABcAU4HdmNsc5FxtowCIiqdJUV8P81ld5ddItTPT9lOyzPlBCVltVSvaVapXbX+Twn37C9KqnmUcdbS6TN/NX4eZ9iHMvvJ6FBUVDFov5AWYuXc3MpasBaGmoYffWP9C+ZxNZR94gr/0gJS1byDvc3u8+WlyIeiukKTCeqtA57A2twOVOwi8oJauojHETpzNhynTy8wvJG4xvwvMI5eQTysmHiWWDcQSR07Lrf7xC4aHf45zD1FVTJO0G2oL1GeAbzrlOAOfc4WT59cC6ZPkeM9sNLAdeHODxRERSZtfzP2WZxSi+8NaU7bM1NJH81uGTYLU21bPj6YcY/9bPmBV7lynOZ0f2MvbN/wLzV3+UiryCdIcIQG7hRM679Ca49PhIjs45mlpb6GxrJdLRSmdnJ5aRTUZWDtnZOYzLySJXHyZFaDnnGi54+1u8s2MTsxcuS3c4ImPeQBOsOcDFZvZ1oAP4O+fcq0Ap8FK3egeSZb2Y2R3AHQDTpk0bYDgiIqcv550nqLQyZi1ambJ9RnKmMKV5G9FYnICfvqkG9277I0de+AHz6p5luXXynjeDF+d+gTkfuJ2lxZPSFteZMDPyc/Mgd1Dan0RGjdlX/nfCu77NkQ0/UIIlMgycMsEys98Bff01/nJy+/HASmAZ8JiZnXMmATjnHgAeAKioqDj5k6QiIilSe/A95nZu56XpdzDjDAZvOKVxZRTWtFBV38Dk4qHrcgcQjUbZ/LtHyX3te8yPbGeCy+T1wsspuOgvmXv+as5J5fcpIsNG/oTJbB63moW1v6ahoZ7CwvHpDklkTDtlguWcu7y/dWb2GeCXzjkHvGJmcWACcBCY2q1qWbJMRGRY2LPhpxSbo/Tij6d0v5njE7/6jhx6b8gSrLa2Frb85wOU7vwRy91Bqq2Y/5r1eeb+2Z28b/zQJnkikh5FH/gsef/xOzY++U0uuu1/pDsckTFtoLcznwAuBTCzOUAGcARYD9xiZplmVg7MBl4Z4LFERFJm/J5f8bY/i+mzF6V0v7kTZwDQUlOZ0v32pf5IDRsf+iJt/zqfVW/eS9wP8fqK/0XJl97kwlvvYbySK5ExY/qS97MtaxkLKtdy9GhDusMRGdMG+gzWQ8BDZrYdCAOfTLZm7TCzx4A3gShw50gcQXDvzteo2fF7xs+soHTO+WTlnPbgvSIyjB0+8C6zou/wp/LPMSfF+y4sOxeAaO07Kd7zcQf37GLvr+9nSe16LrJOtmcto+7iz3Hu+67VZK8iY1j2lV+h8Mnr+eO6f+Li//5v6Q5HZMwaUILlnAsDfQ6/5Zz7OvD1gew/3ape+xUrd38LticmTzzolVCfUUpH3nTiheUEis4hp2Qa40umUjSxFD+Yme6Qh55LzJmCi0M8Bi5GPBYlFo8TiztisThR53CxONF41xSayXlRunZy4qs7cdn6nBgkBY/rnfUH0ZNsd+oZIs/yKGcf61kN2dvPNqfe0+kdq+9pYs7ue3TOiDuXnLfHEQfiziUmbI07nCO5/nidgxt/TgkwpeKDZ3XMk8mdMJUWsvDqUp9gvbN1I0ef+1+c17SBEow3Ci+n+MrPs3D+ipQfS0RGnplLV7P591ex4tBPqdz5CWbMuyDdIY0oLh4j0tlBJNxBNJx8jUaIRqJEYzHi8RguFsOR+Mzj4sfmg4sl54mLQTye+GhEt9ntzLCuv8eW+HtnybnXkpOMc2xi8+SyGZglJu1OFB3bPtH5LLGr5P4APMO61iWPeewYGOYd+xvbfdm6HTOxnSXjOHbMY1/W8/PEsXiSz/Z2HScZl+F1/Vnv2qorHvpYd3wmuuPrusXmeWTl5BNM4+BRZ8JcKj6opkhFRYXbtGlTusPo4uIxDlXuovrtV4kd2kag4V1y2w8wMXKQcdbaq34juTRaAe1+HuFADtFALvGMPGLBXOKBLPAzsMCxyR4z8AJB8ILEzcdcDOcSk0w6XDJxSV6exyZtjEUSSUzy1eIRLB6FeARzUYhHsXgULx4Fl3g1F0u+RvG6l7kovoviuRiei2HEu70mJoE0F8Mj8f5Y2bEvnzgeMfxTzHAvMlzVUcD4e/ZggzDww7tfX0Yz2Zz35d8PeF8uHmfb73+J99K3Wdi5lRaXxY7Jf845H/o7iktnpiBaERlN6g4fxP/ecuq8Yko//4fEPG2jUCQSprG+lpbGI7Q31hJpPUKstZF4RzPxzmZcZyuEW/AirfiRVvxoG8FYG8F4GxnxDoIuTNBFCBIhw0UIEiVoI66z1ZixIbaElpvWce3iKekO5QRm9ppzrqJn+UC7CI5q5vmUnjOf0nPmn1DunONoQy11+3fRcmQ/bfVVRJtqCLbXktlxhGCkmexoExnharJa2shxbeRYx6DEGHE+MTyiBIjgE8MnZonXKD5RAsTteHnYAsQIELcM4pZF3ALEPR+HhzMfZ4lXjpV5PiTLzHyc54H5OC+5bH7iA6p54PmY50OyzMzD88BIvHrJOy3HZ7k/fieka1b67rc5updz4l2TxLqzN6BOVP3elDhVRGcZ8VluZrgBNPT1teFp7CylxzudzdzxG2xdd/wSZ9eDrrtlZuB13VVLnP/8mcspGqRR9Vrzz2HKkZeJxeL4Z3m3LdzRxrbf/pCibT9icXwfhxnPizM/x4IPfY4VQzghsIiMLEUlpbyx+t9Y+MJfsvV7/43Fn/sFgYyR0cMmFotTf6SK+qpKWg7vpbP+AK7pIMHWarI6awlFm8iONZEXbybf2igGivvZV9wZbYRotxDtlkWnl0XYy6Y1UERTIAvnZxL3M3BeEOdn4vwMnJ8JfgYEMrBABuZnYoEMfN/D8wJdn21IfjbCfOhWZuYlb9oZHi7xx6brhjmAS0wG7RI307vfWD9WlvhzePwme9c6R9d+HC75N75br56uY8S7ylyvdcdv3Pe57tiNfXrv93iMdNWzXvF038/xI3btvkdp3+uOH/r4akc0NIV5k0fOzQIlWGfBzBg3voRx40tOfyPniMeihMOdhMOdRJJfLhYGF09clCc0xXrJptpkUuIZgUAmXiCIHwgSCGbgeQECvkfQG1C6ICIpFp10PiV1T7G38m2mz5x7RtserT3IO7/+35xTuY4LaOJdr5xXz/s6S675S96XGRqkiEVkNFm8+kZernqLFbvu5/VvXcfMT/+M3HHpvTETi8WoP3yQuqo9tB7eR7jhAO7oQQKtVeR01DAuWktxvI5ii5yQNMWcccTGczRQRFuggKPZ0zmQWYDLGo+XXUggt4iM3CKCeUVk5o4nlFtIVk4+Obl55AZ89PS8pIMSrKFihhcIEgoECWXrchcZzQrmXgI7/j+qt71wegmWc7yzZQMNf3iAJQ3PUmERNodWsO99d7Lk4g8xU/NXicgZWvEXX+GlxzKo2PH/c+Rby3lr2Ze44JrbEj1NUiwWjXCkeh8N1ZW01e6js/4ANB0k2FZNTkcNBZFaJrh6ii12QvIUdj51XhFHg8UczpvPoZzJ2LhSMsZPJbd4GuMnzaCgpJSJfpCJKY9aZPDoGSwRkRRzsSiN/1zOnpzzOP/vf9Vvvaa6w7z9uweZ8PY6ZsQqaXOZbJtwDRMuv4uZ85YOYcQiMlrt3PQ8Wb+9ixmxvVRbMfumXEPO3MuYtvBC8gpKTjrAkIvHaTlaS2PNfpprD9DReIhoYxWuuZqMtmqyO2oojNZS5BrwTxyRig4X5Ig3gaPBYtqzJhLNmYyNKyNUVJZIniaXUzBh8qAkfCJDpb9nsJRgiYgMghe//2kqqh/j8MdfoHTWkq7y1qP17P7T47gdTzCv5RUyLcIubxZ1c/+ChVetIX/c+DRGLSKjUSwaZfNTawluX8fC9tcIWOI5nTaXSYNXSIefk3zm2fBdlFC8lSzXRo5r73Pgh1YXotafQHOwhPasScRyJuMVTEkmTzOYMGUG+YUlgzKIkMhwogRLRGQI1RzcQ+YDFxH2MjlQ+kHikQ7yG7Yzo3MXGRajhvFUlnyA8avWMGvx+85uOH0RkTPUUH+Evds20rp3C15LFcH2WrxIG5YcqCBuPtFgYgRkl5EHuRMIjptCqHAKeRNKKZg4lXHjCvU7SwQlWCIiQ27Hpt/j/fbvmBV9lwgB9gTOoan4fHKWfJh5yy4jGNBjsCIiIiOVhmkXERliCyreDxWv0toZJSPgsWCETJAoIiIiZ08JlojIIMvJ1K9aERGRsUK3U0VERERERFJECZaIiIiIiEiKKMESERERERFJkWE1iqCZ1QJ70x1HDxOAI+kOQoaMzvfYoXM9duhcjy0632OHzvXYMhzP93TnXHHPwmGVYA1HZrapr+EXZXTS+R47dK7HDp3rsUXne+zQuR5bRtL5VhdBERERERGRFFGCJSIiIiIikiJKsE7tgXQHIENK53vs0LkeO3Suxxad77FD53psGTHnW89giYiIiIiIpIhasERERERERFJECZaIiIiIiEiKKME6CTO72sx2mdluM/tCuuOR1DGzqWb2gpm9aWY7zOxzyfLxZvasmb2TfC1Md6ySGmbmm9kWM/vP5HK5mb2cvL4fNbOMdMcoqWFmBWb2uJm9ZWY7zex9urZHJzO7O/k7fLuZPWJmIV3bo4eZPWRmh81se7eyPq9lS/g/yfP+hpmdn77I5Uz1c67vT/4ef8PM/sPMCrqt+2LyXO8ys6vSEvRJKMHqh5n5wHeBa4D5wF+Y2fz0RiUpFAU+75ybD6wE7kye3y8AzznnZgPPJZdldPgcsLPb8r8A33LOzQIagE+lJSoZDP8GPOWcmwssIXHedW2PMmZWCnwWqHDOLQR84BZ0bY8ma4Gre5T1dy1fA8xOft0BfH+IYpTUWEvvc/0ssNA5txh4G/giQPLz2i3AguQ230t+bh82lGD1bzmw2zn3nnMuDKwDrk9zTJIizrkq59zm5PtmEh/ASkmc439PVvt34MNpCVBSyszKgA8CP0ouG3AZ8Hiyis71KGFm44BLgAcBnHNh51wjurZHqwCQZWYBIBuoQtf2qOGc+wNQ36O4v2v5euAnLuEloMDMJg9JoDJgfZ1r59wzzrlocvEloCz5/npgnXOu0zm3B9hN4nP7sKEEq3+lwP5uyweSZTLKmNkMYCnwMjDROVeVXFUNTExXXJJS/xv4ByCeXC4CGrv94tb1PXqUA7XAj5NdQn9kZjno2h51nHMHgf8J7CORWB0FXkPX9mjX37Wsz22j2xrgt8n3w/5cK8GSMc3McoFfAHc555q6r3OJOQw0j8EIZ2bXAoedc6+lOxYZEgHgfOD7zrmlQCs9ugPq2h4dks/eXE8iqZ4C5NC7i5GMYrqWxwYz+zKJRzseTncsp0sJVv8OAlO7LZcly2SUMLMgieTqYefcL5PFNce6FCRfD6crPkmZVcB1ZlZJoqvvZSSe0SlIdisCXd+jyQHggHPu5eTy4yQSLl3bo8/lwB7nXK1zLgL8ksT1rmt7dOvvWtbntlHIzG4DrgU+5o5P3jvsz7USrP69CsxOjkaUQeJhuvVpjklSJPkMzoPATufcN7utWg98Mvn+k8CTQx2bpJZz7ovOuTLn3AwS1/HzzrmPAS8ANyar6VyPEs65amC/mZ2bLPoA8Ca6tkejfcBKM8tO/k4/dq51bY9u/V3L64FPJEcTXAkc7daVUEYgM7uaRPf+65xzbd1WrQduMbNMMysnMbDJK+mIsT92PBmUnszsz0g8u+EDDznnvp7eiCRVzOwi4I/ANo4/l/MlEs9hPQZMA/YCH3XO9XzAVkYoM1sN/J1z7lozO4dEi9Z4YAtwq3OuM43hSYqY2XkkBjTJAN4DbidxQ1HX9ihjZvcCN5PoPrQF+EsSz2Lo2h4FzOwRYDUwAagBvgY8QR/XcjLJ/g6JbqJtwO3OuU1pCFvOQj/n+otAJlCXrPaSc+7TyfpfJvFcVpTEYx6/7bnPdFKCJSIiIiIikiLqIigiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikyP8D1VN/ufWHl8YAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAChFklEQVR4nOzdd5xU1f3/8ddnZrZ3dulLUwGpgqEZwZZEMRY0FjQW1BijaWos6Yp+4/dnjN+YqEmIUWMNYi+xxIqKERUQUQEVpNdl2cL2nZnz+2Mu6+yyDXZ2Z3d5Px+PeTD33nPP+dy5O8N85px7rjnnEBERERERkbbzxTsAERERERGR7kIJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBGRTsbMBpuZM7NAvGOR/YOZfWpmR8U7DhGR7kAJloiIdHlmNsfMyrxHjZnVRi2/GO/4Ojvn3Cjn3PxY1uklbWVRj6CZPRfLNkREOiPTjYZFRGLLzALOuWAb9h8MrAES2lLP/srMZgMHOefObWRbm85NR+pKsbbEzAz4ErjeOfdAvOMREWlP6sESEYkBM1trZj83s2VAuZkFzGyKmf3XzIrN7KPoIVhmNt/M/p+ZvW9mpWb2jJn1aKLuC81shZntMrMvzewHDbbPMLOlXj2rzWy6tz7LzO4xsy1mtsnMfmdm/haO40Aze93MCs1sh5k9bGbZUdt2mtmh3nI/MyvYfVxmdrLXa1HsHd+IBq/P1Wa2zMxKzGyemSXv/Su995o4N87MDooqc5+Z/S5q+UTvNS32zuHYVrZ1lJltNLNfea/fWjM7J2r7CWb2oXeuNnjJ4O5tu4eGfs/M1gOve+sfM7Ot3uv2lpmNahD3X83sRa+X6B0z62NmfzKzIjNbaWbjW/kafbM1x7iPjgDygCfasQ0RkU5BCZaISOycDZwAZAO9geeB3wE9gKuBJ8ysZ1T584GLgL5AELi9iXq3AycCmcCFwG1RSc4k4AHgGq/dI4C13n73efUeBIwHjgUubuEYDPh/QD9gBDAAmA3gnFsN/Bx4yMxSgX8C9zvn5pvZMGAucAXQE3gBeM7MEqPqPhOYDgwBxgIXNBqA2VQvsWnqMbWFY2hM3blpqVfIS0juBX4A5AJ/B541s6RWttWHSDLRH5gF3GVmw71t5UTOe7YXz2VmdkqD/Y8k8tof5y2/CAwFegFLgIcblD8T+I3XZjXwrlcuD3gc+GMr426Umf2iufPRympmAU8458rbEouISFegBEtEJHZud85tcM5VAucCLzjnXnDOhZ1zrwCLgG9HlX/QOfeJ96Xzt8CZjfUwOeeed86tdhFvAi8D07zN3wPudc694rWzyTm30sx6e21d4Zwrd85tB24DzmruAJxzq7y6qp1zBUS+nB8Ztf0fwCrgPSKJ4a+9TTOB5719a4FbgRTg6w1en83OuZ3Ac8C4JmJY4JzLbuaxoLljaEL0uWnJJcDfnXPvOedCzrn7iSQuU/aivd96r+GbRBLtMwGcc/Odcx9752oZkaT0yAb7zvbOWaW3z73OuV3OuWoiye4hZpYVVf4p59xi51wV8BRQ5Zx7wDkXAuYRSa73mXPu5ubOR0v7e8n46UQSfhGRbk8JlohI7GyIej4IOKPBL/1TiSQljZVfByQQ6XWox8yON7OF3vC8YiKJ0+5yA4DVjcQyyKtvS1T7fyfSC9IkM+ttZo94QwpLgYcaiekfwGjgDu9LP0R6vNbtLuCcC3vH1z9qv61RzyuA9OZiibENLRepMwi4qsG5G0DkGFujqEFPzbrd+5rZZDN7wxtaWQJcyp6vb12sZuY3s5stMvSzlK96J6P32Rb1vLKR5Y58nRvzHWAn8Gac4xAR6RBKsEREYid61qANRHqoon/tT3PO3RxVZkDU84FALbAjukJvWNoTRHqEens9Bi8QGcq3u50DG4llA5Fel7yo9jOdc6MaKRvtf73jGOOcyyTSE7e7LcwsHfgTcA8w2766bmwzkcRkdznzjm9TC+3twcymWf3Z5xo+prVcyx4azuhUAaRGLfeJer4BuKnBuUt1zs1tZVs5ZpYWtTyQyOsD8C/gWWCAcy4LmEPU69tIrN8FZgDfBLKAwd76hvu0G+96sibPRyuqmAU84DSrlojsJ5RgiYi0j4eAk8zsOK8XItmbACE/qsy5ZjbSG0J1I/C4N6wrWiKQBBQAQTM7nsi1VLvdA1xoZt8wM5+Z9Tezg51zW4gMJfw/M8v0th1oZg2HozWUAZQBJWbWn8i1XdH+DCxyzl1MZOjbHG/9o8AJXhwJwFVEErz/tvRCNeSce9s5l97M4+29rbMRS4HveudmOvWH6f0DuNTrbTIzS7PI5BQZUDexxH0t1H+DmSV6yeCJwGPe+gxgp3Ouyrt+7rst1JNB5HUsJJIQ/u9eHGNMOOf+t7nz0dy+3t/70cD9HROtiEj8KcESEWkHzrkNRHoefkUkOdpAJFmJ/tx9kMh1KVuBZOCnjdSzy1v/KFBE5Av5s1Hb38eb+AIoITIMa3dP0vlEErTl3r6PU3+IYmNuAA716noeeHL3BjObQWSSisu8VT8DDjWzc5xznxHp7bqDSC/cScBJzrmaFtqLl8uJxFgMnAM8vXuDc24R8H3gTiKv2yrqT8gxAHinmbq3evttJjIhxaXOuZXeth8CN5rZLuA6Iue1OQ8QGWK4ich5XNjSgXUy5wHvehOkiIjsF3QfLBGRODCz+cBDzrm74x2LtJ43K+JHwFhvMo+G248icl7zG24TEZH9QyDeAYiIiHQVXo/ciBYLiojIfktDBEVE9jNmNqeJCQvmtLy3dEVmNrCZiSoGxjs+EZHuREMERUREREREYkQ9WCIiIiIiIjHSqa7BysvLc4MHD453GCIiIiIiIk1avHjxDudcz8a2daoEa/DgwSxatCjeYYiIiIiIiDTJzNY1tU1DBEVERERERGJECZaIiIiIiEiMKMESERERERGJkU51DVZjamtr2bhxI1VVVfEORTqB5ORk8vPzSUhIiHco0o0557j5n4/R+6DxXHTE0HiHIyIiIl1Ip0+wNm7cSEZGBoMHD8bM4h2OxJFzjsLCQjZu3MiQIUPiHY50Y5vXrOSX67/PW2vG4Ka9rc8eERERabVOP0SwqqqK3NxcfcERzIzc3Fz1Zkq727b+MwCO8H9MQcmuOEcjIiIiXUmnT7AAJVdSR38L0hGqi7bUPd+yblUcIxEREZGups0JlpkNMLM3zGy5mX1qZpd763uY2Stm9oX3b07bwxURaX+ubHvd8+JNX8QxEhEREelqYtGDFQSucs6NBKYAPzKzkcAvgNecc0OB17zlLsnMuOqqq+qWb731VmbPnh2/gKIcddRRzd6c+ZRTTmHKlCn11s2ePZv+/fszbtw4Ro8ezbPPPtveYYp0Kf6KbXXPQzvXxDESERER6WranGA557Y455Z4z3cBK4D+wAzgfq/Y/cApbW0rXpKSknjyySfZsWNHTOt1zhEOh2NaZ7Ti4mIWL15MSUkJX375Zb1tV155JUuXLuWxxx7joosuatc4RLqaxMoCtpBHLX4CpevjHY6IiIh0ITG9BsvMBgPjgfeA3s653RcybAV6N7HPJWa2yMwWFRQUxDKcmAkEAlxyySXcdttte2wrKCjgtNNOY+LEiUycOJF33nkHiPQS3XrrrXXlRo8ezdq1a1m7di3Dhw/n/PPPZ/To0WzYsIFrrrmG0aNHM2bMGObNmwfA/PnzOeqoozj99NM5+OCDOeecc3DONRrfgw8+WNcb9f7779etf/LJJznppJM466yzeOSRRxrdd8SIEQQCgXrJ4y9+8QtGjhzJ2LFjufrqqwFYu3YtxxxzDGPHjuUb3/gG69dHvnRecMEFXHbZZUyZMoUDDjiA+fPnc9FFFzFixAguuOCCujovu+wyJkyYwKhRo7j++uv3iKOkpIRBgwbVJXrl5eUMGDCA2traRuMWaU/J1YUU+XMptFwSKra3vIOIiIiIJ2bTtJtZOvAEcIVzrjR6MgLnnDOzRrMD59xdwF0AEyZMaDyD8Nzw3Kcs31waq5ABGNkvk+tPGtViuR/96EeMHTuWa6+9tt76yy+/nCuvvJKpU6eyfv16jjvuOFasWNFsXV988QX3338/U6ZM4YknnmDp0qV89NFH7Nixg4kTJ3LEEUcA8OGHH/Lpp5/Sr18/Dj/8cN555x2mTp26R30VFRUsXbqUt956i4suuohPPvkEgLlz53LdddfRu3dvTjvtNH71q1/tse97772Hz+ejZ8+eABQWFvLUU0+xcuVKzIzi4mIAfvKTnzBr1ixmzZrFvffey09/+lOefvppAIqKinj33Xd59tlnOfnkk3nnnXe4++67mThxIkuXLmXcuHHcdNNN9OjRg1AoxDe+8Q2WLVvG2LFj6+LIyspi3LhxvPnmmxx99NH8+9//5rjjjtP9riQuEoO7KPFnUu6PJFsiIiIirRWTHiwzSyCSXD3snHvSW73NzPp62/sCXfpn4MzMTM4//3xuv/32eutfffVVfvzjHzNu3DhOPvlkSktLKSsra7auQYMG1V0XtWDBAs4++2z8fj+9e/fmyCOP5IMPPgBg0qRJ5Ofn4/P5GDduHGvXrm20vrPPPhuAI444gtLSUoqLi9m2bRtffPEFU6dOZdiwYSQkJNQlXgC33XYb48aN4+qrr2bevHl1s/NlZWWRnJzM9773PZ588klSU1MBePfdd/nud78LwHnnnceCBQvq6jrppJMwM8aMGUPv3r0ZM2YMPp+PUaNG1cX86KOPcuihhzJ+/Hg+/fRTli9fvsdxzJw5s64H75FHHmHmzJnNvo4i7SUQribkT6EqMZe04M54hyMiIiJdSJt7sCzyzfweYIVz7o9Rm54FZgE3e/8+09a2WtPT1J6uuOIKDj30UC688MK6deFwmIULF5KcnFyvbCAQqHddU/S9m9LS0lrVXlJSUt1zv99PMBhstFzDqcvNjEcffZSioqK6G/KWlpYyd+5cbrrpJiByDdbu4X8N437//fd57bXXePzxx7nzzjt5/fXXWxWnz+erF7PP5yMYDLJmzRpuvfVWPvjgA3JycrjgggsavZfVySefzK9+9St27tzJ4sWLOeaYY5ptV6S9JIarCPqTCaakkLdrOeGww+fTLQJERESkZbHowTocOA84xsyWeo9vE0msvmVmXwDf9Ja7tB49enDmmWdyzz331K079thjueOOO+qWly5dCsDgwYNZsmQJAEuWLGHNmsZnIps2bRrz5s0jFApRUFDAW2+9xaRJk/Yqrt29PgsWLCArK4usrCzmzp3LSy+9VHfd1+LFi5u8DitaWVkZJSUlfPvb3+a2227jo48+AuDrX/963f4PP/ww06ZNa3V8paWlpKWlkZWVxbZt23jxxRcbLZeens7EiRO5/PLLOfHEE/H7/a1uQySWEqnGBZIhrSe5lFJSUR3vkERERKSLaHMPlnNuAdDUT7vfaGv9nc1VV13FnXfeWbd8++23112fFQwGOeKII5gzZw6nnXYaDzzwAKNGjWLy5MkMGzas0fpOPfVU3n33XQ455BDMjFtuuYU+ffqwcuXKVseUnJzM+PHjqa2t5d5772Xt2rWsW7eu3vTsQ4YMISsri/fee6/ROr797W9z9913Y2bMmDGDqqoqnHP88Y+RTsk77riDCy+8kD/84Q/07NmTf/7zn62O75BDDmH8+PEcfPDBDBgwgMMPP7xu23XXXceECRM4+eSTgcgwwTPOOIP58+e3un6RWEtyNYQDyfgyehGwMDsLt5OTPjDeYYmIiEgXYE3NTBcPEyZMcA3v6bRixQpGjBgRp4ikM9LfhLS32tk9eLf3OfQeeijDF1zBhye9xPivHRbvsERERKSTMLPFzrkJjW2L6TTtIiJdXqiWBEKQkEJqTl8AKou2tbCTiIiISIQSLBGRKMHqcgAsIYXMvH4A1JRsjWdIIiIi0oUowRIRiVJdGUmwSEwlIzeSYAV3dem7TIiIiEgHUoIlIhKlujJyHztfQgq+1B4E8eErL4hzVCIiItJVKMESEYlSXVkBgC8xFXw+Si2LQKUSLBEREWkdJVgiIlFqq7werKRUAHYFckiqKYpnSCIiItKFKMFqpaeffhoza/b+VGvXrmX06NExa/OCCy7g8ccfb3L7FVdcQf/+/QmHw3Xr7rvvPnr27Mm4ceMYOXIk//jHP2IWj8j+IFgV6cEKJKUBUJXYg/TanfEMSURERLoQJVitNHfuXKZOncrcuXMb3R4MBtvcRigUanXZcDjMU089xYABA3jzzTfrbZs5cyZLly5l/vz5/OpXv2LbNk0xLdJatdW7E6xID1ZNch6Z4WI60z0DRUREpPNSgtUKZWVlLFiwgHvuuYdHHnmkbv38+fOZNm0aJ598MiNHjgQiidY555zDiBEjOP3006moiHxZe+211xg/fjxjxozhoosuorq6GoDBgwfz85//nEMPPZTHHntsj7ZfffVVJkyYwLBhw/j3v/9dr+1Ro0Zx2WWXNZn09erViwMPPJB169bVrbv99tsZOXIkY8eO5ayzzgJg586dnHLKKYwdO5YpU6awbNkyAGbPns2sWbOYNm0agwYN4sknn+Taa69lzJgxTJ8+ndraWgBuvPFGJk6cyOjRo7nkkkv2+CIaDocZPHgwxcXFdeuGDh2qxE86pd3TtCckRxKscGoePSihvKb1P4CIiIjI/isQ7wD2you/gK0fx7bOPmPg+JubLfLMM88wffp0hg0bRm5uLosXL+ZrX/saAEuWLOGTTz5hyJAhrF27ls8++4x77rmHww8/nIsuuoi//vWv/PjHP+aCCy7gtddeY9iwYZx//vn87W9/44orrgAgNzeXJUuWNNr22rVref/991m9ejVHH300q1atIjk5mblz53L22WczY8YMfvWrX1FbW0tCQkK9fb/88ku+/PJLDjrooLp1N998M2vWrCEpKaku4bn++usZP348Tz/9NK+//jrnn38+S5cuBWD16tW88cYbLF++nMMOO4wnnniCW265hVNPPZXnn3+eU045hR//+Mdcd911AJx33nn8+9//5qSTTqpr0+fzMWPGDJ566ikuvPBC3nvvPQYNGkTv3r1bfZpEOkqoLsFKB8CX3pM0q2bdziLS+/aMZ2giIiLSBagHqxXmzp1b19tz1lln1esxmjRpEkOGDKlbHjBgAIcffjgA5557LgsWLOCzzz5jyJAhDBs2DIBZs2bx1ltv1e0zc+bMJts+88wz8fl8DB06lAMOOICVK1dSU1PDCy+8wCmnnEJmZiaTJ0/mP//5T90+8+bNY9y4cZx99tn8/e9/p0ePHnXbxo4dyznnnMNDDz1EIBDJrxcsWMB5550HwDHHHENhYSGlpaUAHH/88SQkJDBmzBhCoRDTp08HYMyYMaxduxaAN954g8mTJzNmzBhef/11Pv300z2OY+bMmcybNw+ARx55pNljFomncE0lAIleD1ZCZuSHgNLCLXGLSURERLqOrtWD1UJPU3vYuXMnr7/+Oh9//DFmRigUwsz4wx/+AEBaWlq98mbW7HJjGtbRUn3/+c9/KC4uZsyYMQBUVFSQkpLCiSeeCESSmTvvvLPR+p5//nneeustnnvuOW666SY+/rj5HsGkpCQg0guVkJBQF4/P5yMYDFJVVcUPf/hDFi1axIABA5g9ezZVVVV71HPYYYexatUqCgoKePrpp/nNb37TbLsi8RL2rsFKTIn0YCVnRxKssp1bgbHxCktERES6iHbvwTKz6Wb2mZmtMrNftHd7sfb4449z3nnnsW7dOtauXcuGDRsYMmQIb7/9dqPl169fz7vvvgvAv/71L6ZOncrw4cNZu3Ytq1atAuDBBx/kyCOPbFX7jz32GOFwmNWrV/Pll18yfPhw5s6dy913383atWtZu3Yta9as4ZVXXqm73qsp4XCYDRs2cPTRR/P73/+ekpISysrKmDZtGg8//DAQubYrLy+PzMzMVsW3O5nKy8ujrKysyVkPzYxTTz2Vn/3sZ4wYMYLc3NxW1S/S0Vxt5H2U7CVYGbl9Aagq3hq3mERERKTraNcEy8z8wF+A44GRwNlmNrI924y1uXPncuqpp9Zbd9pppzU5scTw4cP5y1/+wogRIygqKuKyyy4jOTmZf/7zn5xxxhmMGTMGn8/HpZde2qr2Bw4cyKRJkzj++OOZM2cO4XCYl156iRNOOKGuTFpaGlOnTuW5555rtI6LL76YRYsWEQqFOPfccxkzZgzjx4/npz/9KdnZ2cyePZvFixczduxYfvGLX3D//fe38tWB7Oxsvv/97zN69GiOO+44Jk6cWLdtzpw5zJkzp2555syZPPTQQxoeKJ2aq60i7Izk5BQAMvP6ARAs1aQsIiIi0jJrz6mHzewwYLZz7jhv+ZcAzrn/11j5CRMmuEWLFtVbt2LFCkaMGNFuMUrXo78JaU+L7vohIzY9Tsr12/D5DGor4aY+vNL3B3zrB7fEOzwRERHpBMxssXNuQmPb2nuIYH9gQ9TyRm9dHTO7xMwWmdmigoKCdg5HRKR5FqykiqRIcgWQkEI5KfgqdsQ3MBEREekS4j6LoHPuLufcBOfchJ49NQWyiMSXBauotsR663b5s0msLoxTRCIiItKVtHeCtQkYELWc763bK+05jFG6Fv0tSHvzBSupsaR66yoSepBSWxSniERERKQrae8E6wNgqJkNMbNE4Czg2b2pIDk5mcLCQn2xFpxzFBYWkpycHO9QpBvzh6qosfp/YzVJPcgIFccnIBEREelS2vU+WM65oJn9GPgP4Afudc7teRfaZuTn57Nx40Z0fZZAJOHOz8+PdxjSjflD1dQ26MEKpeTRs/hjqmpDJCf44xSZiIiIdAXtfqNh59wLwAv7un9CQgJDhgyJYUQiIk0LhKuo8NVPsEjLowelbCuron9O0zcGFxEREYn7JBciIp1JQriKoL/+EEF/Zm8CFqa4UPfCEhERkeYpwRIRiZIQribUIMFKyuoNwK7CLfEISURERLoQJVgiIlESXRXhQEq9dWk5fQGoLNoaj5BERESkC1GCJSISJclVE27Qg5WZF0mwako1RFBERESapwRLRCRKIjXQoAcrObsPAOFdms1UREREmqcES0Rkt3CYFGpwCfUTLFJyCOHDKnbEJy4RERHpMpRgiYh4gtVlkSeJqfU3+Pzs8mWSUKkES0RERJqnBEtExFNVsSvyJGHPe12VBXJIrSns4IhERESkq1GCJSLi2Z1gWdKeCVZFUk8ygkqwREREpHlKsEREPDVeguVL3DPBqknpTa7bSTAU7uiwREREpAtRgiUi4qmpjFyD5U9O32NbOL0PPSmmqKyqo8MSERGRLkQJloiIJ+glWIGUPRMsX2Y/AhamuGBTR4clIiIiXUibEiwz+4OZrTSzZWb2lJllR237pZmtMrPPzOy4NkcqItLOglWRIYKBpD0TrMScfgCU7djYoTGJiIhI19LWHqxXgNHOubHA58AvAcxsJHAWMAqYDvzVzPxtbEtEpF0Fq8oBSEzN2GNbWm4+AFVFSrBERESkaW1KsJxzLzvngt7iQiDfez4DeMQ5V+2cWwOsAia1pS0RkfYW9u6DldjIEMGMXgMBCBVv6dCYREREpGuJ5TVYFwEves/7Axuitm301u3BzC4xs0VmtqigoCCG4YiI7J1wjdeDlZK5x7aM3L6EnEHZ1o4OS0RERLqQQEsFzOxVoE8jm37tnHvGK/NrIAg8vLcBOOfuAu4CmDBhgtvb/UVEYsVVRxKslLQ9hwiaP4Gdlk1CuRIsERERaVqLCZZz7pvNbTezC4ATgW8453YnSJuAAVHF8r11IiKdVri6jGqXQEZqcqPbi/25JFdt7+CoREREpCtp6yyC04FrgZOdcxVRm54FzjKzJDMbAgwF3m9LWyIi7a6mggqSSQw0/tFYntST9JodHRyUiIiIdCUt9mC14E4gCXjFzAAWOucudc59amaPAsuJDB38kXMu1Ma2RETaV205VZbU5OaalN7kVHzagQGJiIhIV9OmBMs5d1Az224CbmpL/SIiHSmhpoRy357XX+3mMvrQo7CUyspKUlJSOjAyERER6SpiOYugiEiXlhTcRaVvzynadwtkRW42XLB5XUeFJCIiIl2MEiwREU9yaBdVgaZ7sFK9mw0Xb1/fUSGJiIhIF6MES0TEkxoqoyZhz3tg7Zbp3Wy4fMfGjgpJREREuhglWCIinjRXRiix6QQrt+8gAGqLddcJERERaZwSLBERgFAtqVQRSspqskhyZk9qCEDp5g4MTERERLoSJVgiIkBNWREAvpTspguZUejLI7Fia8cEJSIiIl2OEiwREaCkqACAhLScZsuVJvQirXpbR4QkIiIiXZASLBERoNRLsJIyc5stV5nShx7B7R0RkoiIiHRBSrBERICK4kivVGp2r2bLhTL60dPtpKqmtiPCEhERkS5GCZaICFBbvAWA9Nz+zZbzZeeTaCG2b9FU7SIiIrInJVgiIkC4NDJxRXbP5hOs5NzIvbCKt65p95hERESk61GCJSICWPl2ilw66WlpzZbL6BW5F1ZFwbqOCEtERES6GCVYIiJAQmUBRb4czKzZcrn9DgCgtmhDR4QlIiIiXUxMEiwzu8rMnJnlectmZreb2SozW2Zmh8aiHRGR9pJcvYNdgR4tlkvJ6kkVCVjppg6ISkRERLqaNidYZjYAOBZYH7X6eGCo97gE+Ftb2xERaU+ZtTuoTu7ZckEzdvh66mbDIiIi0qhY9GDdBlwLuKh1M4AHXMRCINvM+sagLRGRmAsHa8kL76A2I79V5UsTe5Gumw2LiIhII9qUYJnZDGCTc+6jBpv6A9EXKGz01jVWxyVmtsjMFhUUFLQlHBGRfbJzyxoCFsZyBrWqfFVKH3KC+rwSERGRPQVaKmBmrwJ9Gtn0a+BXRIYH7jPn3F3AXQATJkxwLRQXEYm5nZu/IA9I7jmkVeVD6f3ouXMnVdU1JCcltm9wIiIi0qW0mGA5577Z2HozGwMMAT7yZt3KB5aY2SRgEzAgqni+t05EpNMp3/olAFn9DmpVeV92PoENYbZuXUf+oKHtGZqIiIh0Mfs8RNA597FzrpdzbrBzbjCRYYCHOue2As8C53uzCU4BSpxzW2ITsohIbNUUrCbofPQf2LpkaffNhou2rG3HqERERKQrarEHax+9AHwbWAVUABe2UzsiIm2WULSazb6+DExOblX5zD6DAajYsb75giIiIrLfiVmC5fVi7X7ugB/Fqm4RkfaUU7mWnSmDGNjK8rl9I9dq1e7UzYZFRESkvpjcaFhEpKuqqq6mX2gztdkHtnqf1MxcKkjCt0uXloqIiEh9SrBEZL+2cfUKkixIQp+DW7/T7psNl+vSUhEREalPCZaI7Nd2rvkQgOzB4/Zqv9LEXmToZsMiIiLSgBIsEdmv1W75lLAz+g0dt1f7VaX2JSe0o32CEhERkS5LCZaI7NeSdq5ks78viSnpe7VfOL0fea6IqqqqdopMREREuiIlWCKyX+tVuZodKa2f4GI3X3Y+PnMUbF7XDlGJiIhIV6UES0T2W5XlZfQPb6G6x15McOFJzYtM6l68bU2swxIREZEuTAmWiOy3Nn6xFL85EvuN2ut9M3oPBqCiQD1YIiIi8hUlWCKy3ype+xEAPQ4Yv9f75vWL3Gw4VLQxpjGJiIhI16YES0T2W6Ftn1LjAvQ/YORe75uSkcMuUmDX5naITERERLoqJVgist9KKf6Cjf58AgmJ+7R/oa8nyRW62bCIiIh8RQmWiOy3elWuYWfa3s8guNuupN6k62bDIiIiEkUJlojsl8pKi+hLAcHc4ftcR1VKH3JDBTGMSkRERLq6NidYZvYTM1tpZp+a2S1R639pZqvM7DMzO66t7YiIxNLmL5YCkLQPMwjuFs7oRy4lVFZUxCgqERER6eoCbdnZzI4GZgCHOOeqzayXt34kcBYwCugHvGpmw5xzobYGLCISCyXrlgGQd8C4fa4jkDMA1kHB5jUMPGjfEzURERHpPtrag3UZcLNzrhrAObfdWz8DeMQ5V+2cWwOsAia1sS0RkZgJb19BlUug76B9HyKY7N1suHTb2hhFJSIiIl1dWxOsYcA0M3vPzN40s4ne+v7AhqhyG711ezCzS8xskZktKijQtQwi0jFSi79gY2AAgYSEfa4ja/fNhnesj1FUIiIi0tW1OETQzF4F+jSy6dfe/j2AKcBE4FEzO2BvAnDO3QXcBTBhwgS3N/uKiOyr3tVrWJt+aJvq+OpmwxtaKCkiIiL7ixYTLOfcN5vaZmaXAU865xzwvpmFgTxgEzAgqmi+t05EJO6qdu2klyvk8x7D2lRPclomJaRju/TxJiIiIhFtHSL4NHA0gJkNAxKBHcCzwFlmlmRmQ4ChwPttbEtEJCY2r/4YgKS+I9pcV6E/j6SKrW2uR0RERLqHNs0iCNwL3GtmnwA1wCyvN+tTM3sUWA4EgR91xRkEN63+hJ2bv2TMtJPjHYqIxFDR5lUA5Oa3rQcLoCypN5lVSrBEREQkok0JlnOuBji3iW03ATe1pf542/j875m881k+emcCdtiPGTPtZMznj3dYItJGtTvWAtBr4NA211WTM4zhGxdTUVlBakpqm+sTERGRrq3NNxruzg75/hzePfAKBlZ9ztg3LmDT/4zk3XuuYdXHC3HhcLzDE5F9ZCXrKSad9Mweba4rMX88SRZk3colrSpfsauIYG1Nm9sVERGRzqmtQwS7teSUNA477waqq37OB688SNrHDzF5/T/wbbiLLU/0ZHPWeFz+JLKGfp2Bww8hKSU93iE3yjlHTW0t1VXlVFdWUFtVQW11JTVVFQRrKglVVxCqrcLVVuFCtYTDQVwwiAsHcSHvEQ5CuBa8dYSDEA7hwkEsHMRcCHMhcFETQbpwg38d4DBc3XNwmHORp3y1rl49+3rcWJvr2Kd2ra3t7vv+cTvmNrXbhuPdx9d6UPF77PD3JnufW/5K74Mnw3tQvOp9GD+1yXJFBVv47LHrOXTb4ywefDGTL7wlBq13c84RrK2mvGwX5btKqKwsI1RZRm1VGeGaCkLV5YRrKiKPYA2h2lpcqAZCkc8qC9dCuBZfqBZzkc8qwkHMhXEuDM7hdn8uubD3l+gwwpHPKfDW735e/3OppU+p6L/O6L/V1v/VWrM7NFnPXr4vjK/ew9ZwQyML9Y+r5TKxsu+frXu/X0d+lu5zW/vweuz7ce1LW/uqA49rn17DfdW5zxc0fD+3c1t7ud/a9EM4bMZlDOjRNUaKKMFqhaTkVCae9AM46Qfs2LqBNe88jv/L1xhU8h55JS/Dp5FyW8hje0I+lSm9cKl5+NJ7Q2oPfEmpBBJTCSSnEUiK/GE457xeMO8/eOcgXEu4ppJQTRWh2irCtVWEa6pwwUjyQ6gaglVYsApfqBpfsApfuIZAqAq/qyEQriYhXEOCqybB1ZBEDYmuliRqSLIQSe3w2gSdjxB+QvgI49udMnlbDWe7U6qvvro0ttzo8zYkKtaGj8DI/m3Zty1tt+Gjuw3NtiXmtr7W8WjXcGzKPyUmcfQaNILt9CB57WvAz/bYXlFayLLHf8+odQ8wkSoqSSJt26KYtN2VVFaUU1ywkbLCLVQWb6G2eBuhip2EKoqwyhICNSUkBneRHNpFamgX6a6MNFdBgoXIArL2oc2QM2oJECRA0PwECdR9VoGBffV5FPm8iaRWeOu+er77c832/FLQ1IeFiy7S+N9qc3/BLf19N7W1YRIYj7Zaqmdf3rv7/jVzX9rquM+0fW2rs7+G+/p/2b7E2BVew315Pfb9uPZNZ3+vrNgJJZW19aYo78yUYO2lvD4DyDvtSuBKwqEwG9d9xvaV/6Vyy0qSS74ku3I9vXd9SE5JMUlWG9O2Q86oJpEaS6TG+zdoidT6kgj6EgkG0qn2JRHyJxH2J+ECyTh/Mi6QDIEkSEjBEpKxhGT8CSn4ElPwJSQTSErF7z33BxLwBRLw+QP4/Yn4EwIE/An4AgH8CYkE/JF/ExIS8fn8BHw+/RFJlzQpRvWYz8/qvGMYX/AMRds3ktMrH4DSHVtZ/uz/MWr9Q0yhgg/TDqfHyf/D5ud/z9CyD2LUevyFQiEKt26kaMtqKnaso3bnBqxkI4HyrSRVF5Ie3ElOuIgMqySlkf1rnZ9dlka5L4NKXzpVgUxKU/IJJmYSSsjAktLxJaURSErDn5Qe+cEqKQ1/UhqBlHQCSWkkJqeSkJREUmIyiUlJJCQk4Qsk4Pf50VWzIiJd36x4B7CX9N24DXx+H/kHjCD/gD2nenbhMCUlxVSVbqeqsoLaqjJqqioIVZV7P5z6wAzzfjU1M5wvAX9SColJKQQSU0hMTiUpOZWklBSSktPwBxJIBbpG56jI/qPvN3+CzX2aHXefzrohx8HmJYwqfYcpFmJx6lRSvvlLxh8aGT648b3h5O36D8U7tpGd1zvOkbeCc1SVbGPb2hWUbPqM2u2rsJL1JFVsIbtmGz3dDnpZiF5Ru5S7JHb48ihL6MGO9OFsTcnDpfXEl96LQFYfkrP7kN6jH5m5vcnMyKSHz0fbr4YTERHpHJRgtRPz+cjK6UFWjr42iHR3gw8ex4JxNzF26Q1kfvYntpPDwrzT6HfMJXxt1MR6ZfMOPgzW3M4X7/2biSd8L04RNxAOU1W0iYL1Kyjd9Bk1BasJFK8ho3wDPYObSaOSQV7RkDO2Wy5FCb3ZmjmGjRn9saz+JOYOIr3XYHL7HUB2Th6DfJpDSURE9k/mYjCZQKxMmDDBLVq0/12bICLdQ1llFcXFxfTp1YuAv/EEIxQMsvN3B7EpeRjjfvFyh8ZXXVpAwdpPKd64gtptX5BQvJrMinX0qt1EMl/NbFjj/Gy2XuxIzKcibSDhnCEk9T6InPyD6TtoGFnpaR0at4iISGdjZoudcxMa26YeLBGRGElPSSY9pU+zZfyBAF8OOoPJ6+5i+XuvMHLyt2IaQ01lOVvXLqd4/XKqt3+Of+dq0svX0btmPVmUkQ/kE7n2aZP1YmviQL7sMYFwzgEk9x5KTv5w+g0cyuD0FAbHNDIREZH9g3qwREQ6WMWuIkr/bwJmEPruE/QbOq71OztHSeFWtm/4nNItq6jZsQZf8TpSyzfQs2YjfVxBveLb6MG2hHx2pQ0imH0gib2HkzVgBP0GDSM7Qz1RIiIi+0I9WCIinUhqRg4bZ9xPz2fOIv2hY/gw+xjcoK+TmN0HS0gl5N2frmbXDtyuLfjKt5NYtYPMmm30Dm0li6p605YXkUlBoA8bMsaxOvsAEnoNJaP/wfQZPIreOT3oAlNpiIiIdBtKsERE4mDY+KlsynubT5+8gVE7XyWn5JVGy4WcsdOyKfX3oDSxL9vSJkLOIJJ6HUB234PoPXAYOZk55HRw/CIiItI4JVgiInHSf8AQ+l9+H8FgkHXrVlFetI1wTQWB5FQSk1LI6NGHHj370TMQoGe8gxUREZFWUYIlIhJngUCAQQceDBwc71BERESkjdp0oxIzG2dmC81sqZktMrNJ3nozs9vNbJWZLTOzQ2MTroiIiIiISOfV1jtB3gLc4JwbB1znLQMcDwz1HpcAf2tjOyIiIiIiIp1eWxMsB2R6z7OAzd7zGcADLmIhkG1mfdvYloiIiIiISKfW1muwrgD+Y2a3EknWvu6t7w9siCq30Vu3pWEFZnYJkV4ugDIz+6yNMcVaHrAj3kFIh9H53n/oXO8/dK73Lzrf+w+d6/1HZzzXg5ra0GKCZWavAn0a2fRr4BvAlc65J8zsTOAe4Jt7E5lz7i7grr3ZpyOZ2aKmbiIm3Y/O9/5D53r/oXO9f9H53n/oXO8/utq5bjHBcs41mTCZ2QPA5d7iY8Dd3vNNwICoovneOhERERERkW6rrddgbQaO9J4fA3zhPX8WON+bTXAKUOKc22N4oIiIiIiISHfS1muwvg/82cwCQBVfXUv1AvBtYBVQAVzYxnbiqdMOX5R2ofO9/9C53n/oXO9fdL73HzrX+48uda7NORfvGERERERERLqFtg4RFBEREREREY8SLBERERERkRhRgtUMM5tuZp+Z2Soz+0W845HYMbMBZvaGmS03s0/N7HJvfQ8ze8XMvvD+zYl3rBIbZuY3sw/N7N/e8hAze897f88zs8R4xyixYWbZZva4ma00sxVmdpje292TmV3pfYZ/YmZzzSxZ7+3uw8zuNbPtZvZJ1LpG38vexGq3e+d9mZkdGr/IZW81ca7/4H2OLzOzp8wsO2rbL71z/ZmZHReXoJuhBKsJZuYH/gIcD4wEzjazkfGNSmIoCFzlnBsJTAF+5J3fXwCvOeeGAq95y9I9XA6siFr+PXCbc+4goAj4XlyikvbwZ+Al59zBwCFEzrve292MmfUHfgpMcM6NBvzAWei93Z3cB0xvsK6p9/LxwFDvcQnwtw6KUWLjPvY8168Ao51zY4HPgV8CeN/XzgJGefv81fve3mkowWraJGCVc+5L51wN8AgwI84xSYw457Y455Z4z3cR+QLWn8g5vt8rdj9wSlwClJgys3zgBLx79ZmZEbm1xONeEZ3rbsLMsoAjiNz4HudcjXOuGL23u6sAkOLNZpwKbEHv7W7DOfcWsLPB6qbeyzOAB1zEQiDbzPp2SKDSZo2da+fcy865oLe4kMh9dSFyrh9xzlU759YQmbV8UocF2wpKsJrWH9gQtbzRWyfdjJkNBsYD7wG9o+7ZthXoHa+4JKb+BFwLhL3lXKA46oNb7+/uYwhQAPzTGxJ6t5mlofd2t+Oc2wTcCqwnkliVAIvRe7u7a+q9rO9t3dtFwIve805/rpVgyX7NzNKBJ4ArnHOl0dtc5B4Guo9BF2dmJwLbnXOL4x2LdIgAcCjwN+fceKCcBsMB9d7uHrxrb2YQSar7AWnsOcRIujG9l/cPZvZrIpd2PBzvWFpLCVbTNgEDopbzvXXSTZhZApHk6mHn3JPe6m27hxR4/26PV3wSM4cDJ5vZWiJDfY8hco1OtjesCPT+7k42Ahudc+95y48TSbj03u5+vgmscc4VOOdqgSeJvN/13u7emnov63tbN2RmFwAnAue4r27e2+nPtRKspn0ADPVmI0okcjHds3GOSWLEuwbnHmCFc+6PUZueBWZ5z2cBz3R0bBJbzrlfOufynXODibyPX3fOnQO8AZzuFdO57iacc1uBDWY23Fv1DWA5em93R+uBKWaW6n2m7z7Xem93b029l58FzvdmE5wClEQNJZQuyMymExnef7JzriJq07PAWWaWZGZDiExs8n48YmyKfZUMSkNm9m0i1274gXudczfFNyKJFTObCrwNfMxX1+X8ish1WI8CA4F1wJnOuYYX2EoXZWZHAVc75040swOI9Gj1AD4EznXOVccxPIkRMxtHZEKTROBL4EIiPyjqvd3NmNkNwEwiw4c+BC4mci2G3tvdgJnNBY4C8oBtwPXA0zTyXvaS7DuJDBOtAC50zi2KQ9iyD5o4178EkoBCr9hC59ylXvlfE7kuK0jkMo8XG9YZT0qwREREREREYkRDBEVERERERGJECZaIiIiIiEiMKMESERERERGJESVYIiIiIiIiMaIES0REREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLRKSTMbPBZubMLBDvWGT/YGafmtlR8Y5DRKQ7UIIlIiJdnpnNMbMy71FjZrVRyy/GO77Ozjk3yjk3P5Z1eklbWdQjaGbPxbINEZHOyJxz8Y5BRKRbMbOAcy7Yhv0HA2uAhLbUs78ys9nAQc65cxvZ1qZz05G6UqwtMTMDvgSud849EO94RETak3qwRERiwMzWmtnPzWwZUG5mATObYmb/NbNiM/soegiWmc03s/9nZu+bWamZPWNmPZqo+0IzW2Fmu8zsSzP7QYPtM8xsqVfPajOb7q3PMrN7zGyLmW0ys9+Zmb+F4zjQzF43s0Iz22FmD5tZdtS2nWZ2qLfcz8wKdh+XmZ3s9VoUe8c3osHrc7WZLTOzEjObZ2bJe/9K770mzo0zs4OiytxnZr+LWj7Re02LvXM4tpVtHWVmG83sV97rt9bMzonafoKZfeidqw1eMrh72+6hod8zs/XA6976x8xsq/e6vWVmoxrE/Vcze9HrJXrHzPqY2Z/MrMjMVprZ+Fa+Rt9szTHuoyOAPOCJdmxDRKRTUIIlIhI7ZwMnANlAb+B54HdAD+Bq4Akz6xlV/nzgIqAvEARub6Le7cCJQCZwIXBbVJIzCXgAuMZr9whgrbfffV69BwHjgWOBi1s4BgP+H9APGAEMAGYDOOdWAz8HHjKzVOCfwP3OuflmNgyYC1wB9AReAJ4zs8Sous8EpgNDgLHABY0GYDbVS2yaekxt4RgaU3duWuoV8hKSe4EfALnA34FnzSyplW31IZJM9AdmAXeZ2XBvWzmR857txXOZmZ3SYP8jibz2x3nLLwJDgV7AEuDhBuXPBH7jtVkNvOuVywMeB/7YyrgbZWa/aO58tLKaWcATzrnytsQiItIVKMESEYmd251zG5xzlcC5wAvOuRecc2Hn3CvAIuDbUeUfdM594n3p/C1wZmM9TM65551zq13Em8DLwDRv8/eAe51zr3jtbHLOrTSz3l5bVzjnyp1z24HbgLOaOwDn3CqvrmrnXAGRL+dHRm3/B7AKeI9IYvhrb9NM4Hlv31rgViAF+HqD12ezc24n8BwwrokYFjjnspt5LGjuGJoQfW5acgnwd+fce865kHPufiKJy5S9aO+33mv4JpFE+0wA59x859zH3rlaRiQpPbLBvrO9c1bp7XOvc26Xc66aSLJ7iJllRZV/yjm32DlXBTwFVDnnHnDOhYB5RJLrfeacu7m589HS/l4yfjqRhF9EpNtTgiUiEjsbop4PAs5o8Ev/VCJJSWPl1wEJRHod6jGz481soTc8r5hI4rS73ABgdSOxDPLq2xLV/t+J9II0ycx6m9kj3pDCUuChRmL6BzAauMP70g+RHq91uws458Le8fWP2m9r1PMKIL25WGJsQ8tF6gwCrmpw7gYQOcbWKGrQU7Nu975mNtnM3vCGVpYAl7Ln61sXq5n5zexmiwz9LOWr3snofbZFPa9sZLkjX+fGfAfYCbwZ5zhERDqEEiwRkdiJnjVoA5Eequhf+9OcczdHlRkQ9XwgUAvsiK7QG5b2BJEeod5ej8ELRIby7W7nwEZi2UCk1yUvqv1M59yoRspG+1/vOMY45zKJ9MTtbgszSwf+BNwDzLavrhvbTCQx2V3OvOPb1EJ7ezCzaVZ/9rmGj2kt17KHhjM6VQCpUct9op5vAG5qcO5SnXNzW9lWjpmlRS0PJPL6APwLeBYY4JzLAuYQ9fo2Eut3gRnAN4EsYLC3vuE+7ca7nqzJ89GKKmYBDzjNqiUi+wklWCIi7eMh4CQzO87rhUj2JkDIjypzrpmN9IZQ3Qg87g3ripYIJAEFQNDMjidyLdVu9wAXmtk3zMxnZv3N7GDn3BYiQwn/z8wyvW0HmlnD4WgNZQBlQImZ9SdybVe0PwOLnHMXExn6Nsdb/yhwghdHAnAVkQTvvy29UA055952zqU383h7b+tsxFLgu965mU79YXr/AC71epvMzNIsMjlFBtRNLHFfC/XfYGaJXjJ4IvCYtz4D2Omcq/Kun/tuC/VkEHkdC4kkhP+7F8cYE865/23ufDS3r/f3fjRwf8dEKyISf0qwRETagXNuA5Geh18RSY42EElWoj93HyRyXcpWIBn4aSP17PLWPwoUEflC/mzU9vfxJr4ASogMw9rdk3Q+kQRtubfv49QfotiYG4BDvbqeB57cvcHMZhCZpOIyb9XPgEPN7Bzn3GdEervuINILdxJwknOupoX24uVyIjEWA+cAT+/e4JxbBHwfuJPI67aK+hNyDADeaaburd5+m4lMSHGpc26lt+2HwI1mtgu4jsh5bc4DRIYYbiJyHhe2dGCdzHnAu94EKSIi+wXdB0tEJA7MbD7wkHPu7njHIq3nzYr4ETDWm8yj4fajiJzX/IbbRERk/xCIdwAiIiJdhdcjN6LFgiIist/SEEERkf2Mmc1pYsKCOS3vLV2RmQ1sZqKKgfGOT0SkO9EQQRERERERkRhRD5aIiIiIiEiMdKprsPLy8tzgwYPjHYaIiIiIiEiTFi9evMM517OxbZ0qwRo8eDCLFi2KdxgiIiIiIiJNMrN1TW3TEEEREREREZEYUYIlIiIiIiISI0qwRETayYcfvM2yFSviHYaIiIh0oE51DVZjamtr2bhxI1VVVfEORbqY5ORk8vPzSUhIiHcosh+qDYYY//yJVLgkwtdvw+ezeIckIiIiHaDTJ1gbN24kIyODwYMHY6YvKNI6zjkKCwvZuHEjQ4YMiXc4sh9a9dmnjABSrZo1W7YxpH+feIckIiIiHaDTDxGsqqoiNzdXyZXsFTMjNzdXPZ8SNxXr3q97vn35gjhGIiIiIh2p0ydYgJIr2Sf6u5F48u/4rO55VeHa+AUiIiIiHapLJFgiIl2NK9/JLpdCyBkUb4x3OCIiItJBlGC1gplx1VVX1S3feuutzJ49O34BRVm4cCGTJ09m3LhxjBgxoi6u+fPn89///rdNdU+fPp3s7GxOPPHEGEQqsn+xqiJ2WjaFvlwSypRgiYiI7C+UYLVCUlISTz75JDt27Ihpvc45wuFwm+qYNWsWd911F0uXLuWTTz7hzDPPBGKTYF1zzTU8+OCDbapDZH+VUF1MpT+TksTepFdtiXc4IiIi0kHafRZBM5sO/BnwA3c7527e17pueO5Tlm8ujVlsACP7ZXL9SaOaLRMIBLjkkku47bbbuOmmm+ptKygo4NJLL2X9+vUA/OlPf+Lwww9n9uzZpKenc/XVVwMwevRo/v3vfwNw3HHHMXnyZBYvXswLL7zAnXfeyYsvvoiZ8Zvf/IaZM2cyf/58Zs+eTV5eHp988glf+9rXeOihh/a4rmj79u307dsXAL/fz8iRI1m7di1z5szB7/fz0EMPcccdd3DwwQc3Gefq1atZtWoVO3bs4Nprr+X73/8+AN/4xjeYP39+s6/NY489xg033IDf7ycrK4u33nqLqqoqLrvsMhYtWkQgEOCPf/wjRx99NPfddx9PP/005eXlfPHFF1x99dXU1NTw4IMPkpSUxAsvvECPHj34xz/+wV133UVNTQ0HHXQQDz74IKmpqfXanTJlCvfccw+jRkXO3VFHHcWtt97KhAkTmo1XpKMkBUsoS+gByZnkFX8c73BERESkg7RrD5aZ+YG/AMcDI4GzzWxke7bZXn70ox/x8MMPU1JSUm/95ZdfzpVXXskHH3zAE088wcUXX9xiXV988QU//OEP+fTTT1m0aBFLly7lo48+4tVXX+Waa65hy5bIr90ffvghf/rTn1i+fDlffvkl77zzzh51XXnllQwfPpxTTz2Vv//971RVVTF48GAuvfRSrrzySpYuXcq0adOajXPZsmW8/vrrvPvuu9x4441s3ry51a/LjTfeyH/+8x8++ugjnn32WQD+8pe/YGZ8/PHHzJ07l1mzZtXN5vfJJ5/w5JNP8sEHH/DrX/+a1NRUPvzwQw477DAeeOABAL7zne/wwQcf8NFHHzFixAjuueeePdqdOXMmjz76KABbtmxhy5YtSq6kU0kN7aImMYtQSh7ZroRQ2MU7JBEREekA7d2DNQlY5Zz7EsDMHgFmAMv3pbKWepraU2ZmJueffz633347KSkpdetfffVVli//6nBKS0spKytrtq5BgwYxZcoUABYsWMDZZ5+N3++nd+/eHHnkkXzwwQdkZmYyadIk8vPzARg3bhxr165l6tSp9eq67rrrOOecc3j55Zf517/+xdy5cxvtdWouzhkzZpCSkkJKSgpHH30077//PqecckqrXpfDDz+cCy64gDPPPJPvfOc7dcf0k5/8BICDDz6YQYMG8fnnnwNw9NFHk5GRQUZGBllZWZx00kkAjBkzhmXLlgGRJOw3v/kNxcXFlJWVcdxxx+3R7plnnsmxxx7LDTfcwKOPPsrpp5/eqnhFOkqm20VtQhb+tF6kWxUFxSX07JEd77BERESknbV3gtUf2BC1vBGYHF3AzC4BLgEYOHBgO4fTNldccQWHHnooF154Yd26cDjMwoULSU5Orlc2EAjUu74q+n5MaWlprWovKSmp7rnf7ycYDDZa7sADD+Syyy7j+9//Pj179qSwsHCPMk3FCXtOZ74305vPmTOH9957j+eff56vfe1rLF68uNny0cfk8/nqln0+X93xXXDBBTz99NMccsgh3HfffY0mjP379yc3N5dly5Yxb9485syZ0+qYRdpdqJZ0KggmZZOQ2QuAksItSrBERET2A3Gf5MI5d5dzboJzbkLPnj3jHU6zevTowZlnnllvyNqxxx7LHXfcUbe8dOlSAAYPHsySJUsAWLJkCWvWrGm0zmnTpjFv3jxCoRAFBQW89dZbTJo0qdUxPf/88zgXGXr0xRdf4Pf7yc7OJiMjg127drUYJ8AzzzxDVVUVhYWFzJ8/n4kTJ7a6/dWrVzN58mRuvPFGevbsyYYNG5g2bRoPP/wwAJ9//jnr169n+PDhra5z165d9O3bl9ra2rp6GjNz5kxuueUWSkpKGDt2bKvrF2lvoYpiAMLJOSRl9QagrFATXYiIiOwP2jvB2gQMiFrO99Z1WVdddVW92QRvv/12Fi1axNixYxk5cmRdT8ppp53Gzp07GTVqFHfeeSfDhg1rtL5TTz2VsWPHcsghh3DMMcdwyy230KdPn1bH8+CDDzJ8+HDGjRvHeeedx8MPP4zf7+ekk07iqaeeYty4cbz99ttNxgkwduxYjj76aKZMmcJvf/tb+vXrB0SSvzPOOIPXXnuN/Px8/vOf/wCRYYm7r7e65pprGDNmDKNHj+brX/86hxxyCD/84Q8Jh8OMGTOGmTNnct9999XruWrJ//zP/zB58mQOP/xwDj744Lr1zz77LNddd13d8umnn84jjzxSN3OiSGdRsWsnAJacSWpOJMGqLN4az5BERESkg9ju3o92qdwsAHwOfINIYvUB8F3n3KeNlZ8wYYJbtGhRvXUrVqxgxIgR7Rbj/q7hbIfdjf5+JB62f/4+vf71Ld4+9E8cMmEqmXdN4M0RN3DkzCviHZqIiIjEgJktds41OsNau16D5ZwLmtmPgf8Qmab93qaSKxGR7qK6PDLbaCAlk4zcSI90uKwgniGJiIhIB2n3+2A5514AXmjvdmTfzJ49O94hiHQ71RWR+/UlpGViielUkYhVKMESERHZH8R9kgsRke6mtiIywUxSahaYUeLLJrFqz9k9RUREpPtRgiUiEmPBykgPVnJaJgBlgRySaoriGZKIiIh0ECVYIiIxFqqK9GClpGcBUJWQQ3pQCZaIiMj+QAmWiEiMhb0EK9VLsGqTc8kMl8QzJBEREekgSrBa6emnn8bMWLlyZZNl1q5dy+jRo2PW5meffcZRRx3FuHHjGDFiBJdccgkQuUnwCy+0bd6Qiy66iF69esU0XhHx1JRR6RJJS4nc/y2cmkcPSqiqCcY5MBEREWlvSrBaae7cuUydOpW5c+c2uj0YbPsXp1AoVG/5pz/9KVdeeSVLly5lxYoV/OQnPwFik2BdcMEFvPTSS22qQ0SaUFNGBckkBfwAWFpPkizIzp07WthRREREurp2n6Y9pl78BWz9OLZ19hkDx9/cbJGysjIWLFjAG2+8wUknncQNN9wAwPz58/ntb39LTk4OK1eu5OWXXyYYDHLOOeewZMkSRo0axQMPPEBqaiqvvfYaV199NcFgkIkTJ/K3v/2NpKQkBg8ezMyZM3nllVe49tprOeuss+ra3bJlC/n5+XXLY8aMoaamhuuuu47KykoWLFjAL3/5S0488UR+8pOf8Mknn1BbW8vs2bOZMWMG9913H0899RQlJSVs2rSJc889l+uvvx6AI444grVr1zZ73G+++SaXX345AGbGW2+9RXp6Otdeey0vvvgiZsZvfvMbZs6cyfz587n++uvJzs7m448/5swzz2TMmDH8+c9/prKykqeffpoDDzyQ5557jt/97nfU1NSQm5vLww8/TO/eveu1e9ZZZ3HeeedxwgknAJFk8MQTT+T0009v3TkViTNfbTkVlkKutxzI6AnArsKt0KdP/AITERGRdqcerFZ45plnmD59OsOGDSM3N5fFixfXbVuyZAl//vOf+fzzz4HIsL4f/vCHrFixgszMTP76179SVVXFBRdcwLx58/j4448JBoP87W9/q6sjNzeXJUuW1EuuAK688kqOOeYYjj/+eG677TaKi4tJTEzkxhtvZObMmSxdupSZM2dy0003ccwxx/D+++/zxhtvcM0111BeXg7A+++/zxNPPMGyZct47LHHWLRoUauP+9Zbb+Uvf/kLS5cu5e233yYlJYUnn3ySpUuX8tFHH/Hqq69yzTXXsGXLFgA++ugj5syZw4oVK3jwwQf5/PPPef/997n44ou54447AJg6dSoLFy7kww8/5KyzzuKWW27Zo92ZM2fy6KOPAlBTU8Nrr71Wl2yJdAX+2nKqLKVuOTm7FwBlRVvjFZKIiIh0kK7Vg9VCT1N7mTt3bl1PzllnncXcuXP52te+BsCkSZMYMmRIXdkBAwZw+OGHA3Duuedy++23861vfYshQ4YwbNgwAGbNmsVf/vIXrrjiCiCSUDTmwgsv5LjjjuOll17imWee4e9//zsfffTRHuVefvllnn32WW699VYAqqqqWL9+PQDf+ta3yM2N/I7+ne98hwULFjBhwoRWHffhhx/Oz372M8455xy+853vkJ+fz4IFCzj77LPx+/307t2bI488kg8++IDMzEwmTpxI3759ATjwwAM59thjgUjP2xtvvAHAxo0bmTlzJlu2bKGmpqbea7fb8ccfz+WXX051dTUvvfQSRxxxBCkpKXuUE+msAsFyqn2pdctp2ZFeq+qS7fEKSURERDqIerBasHPnTl5//XUuvvhiBg8ezB/+8AceffRRnHMApKWl1StvZs0uN6ZhHdH69evHRRddxDPPPEMgEOCTTz7Zo4xzjieeeIKlS5eydOlS1q9fz4gRI/Y5nt1+8YtfcPfdd1NZWcnhhx/e7AQfAElJSXXPfT5f3bLP56u7Ru0nP/kJP/7xj/n444/5+9//TlVV1R71JCcnc9RRR/Gf//yHefPmNZmAinRWCaEKav1fJVgZeZEfHoK7lGCJiIh0d0qwWvD4449z3nnnsW7dOtauXcuGDRsYMmQIb7/9dqPl169fz7vvvgvAv/71L6ZOncrw4cNZu3Ytq1atAuDBBx/kyCOPbLHtl156idraWgC2bt1KYWEh/fv3JyMjg127dtWVO+6447jjjjvqkr4PP/ywbtsrr7zCzp07666D2t271hqrV69mzJgx/PznP2fixImsXLmSadOmMW/ePEKhEAUFBbz11ltMmjSp1XWWlJTQv39/AO6///4my82cOZN//vOfvP3220yfPr3V9Yt0BknhCmoDXyVY6TmR6wzDZZrkQkREpLtTgtWCuXPncuqpp9Zbd9pppzU5m+Dw4cP5y1/+wogRIygqKuKyyy4jOTmZf/7zn5xxxhmMGTMGn8/HpZde2mLbL7/8MqNHj+aQQw7huOOO4w9/+AN9+vTh6KOPZvny5YwbN4558+bx29/+ltraWsaOHcuoUaP47W9/W1fHpEmTOO200xg7diynnXZa3fDAs88+m8MOO4zPPvuM/Px87rnnHgDmzJnDnDlzAPjTn/7E6NGjGTt2LAkJCRx//PGceuqpjB07lkMOOYRjjjmGW265hT57cdH+7NmzOeOMM/ja175GXl5e3fpFixZx8cUX1y0fe+yxvPnmm3zzm98kMTGx1fWLdAbJ4UqCga96pi0xlQqS8VUWxjEqERER6Qi2u9ejM5gwYYJrOAnDihUr6oa7yd657777WLRoEXfeeWe8Q4kb/f1IPJTN7svS3BOY+pO769ZtvXEYa1JGc9g1T8YxMhEREYkFM1vsnGt0YgP1YImIxJJzpLhKSKx/bWV5IJvkmqI4BSUiIiIdpWvNIih75YILLuCCCy6Idxgi+5VQTQV+c7jE9HrrqxJySKvQJBciIiLdXZfowepMwxil69DfjcRDRVkxAJaUUW99bXIuGeGSOEQkIiIiHanTJ1jJyckUFhbqy7LsFecchYWFJCcnxzsU2c9UlkWSKH9K/QQrnJJLD0qpqgnGIywRERHpIJ1+iGB+fj4bN26koKAg3qFIF5OcnEx+fn68w5D9TGVZKQD+5PpDBC09jySrZUvRTvr27hWP0ERERKQDtCnBMrM/ACcBNcBq4ELnXLG37ZfA94AQ8FPn3H/2pY2EhASGDBnSljBFRDpMdXmkBysxJbPe+oSMngCUFm5RgiUiItKNtXWI4CvAaOfcWOBz4JcAZjYSOAsYBUwH/mpm/ja2JSLS6dVWRHqwElLrJ1hJWZGbDZcXbe3wmERERKTjtCnBcs697JzbfUHBQmD3eKwZwCPOuWrn3BpgFTCpLW2JiHQFtZWRBCspLave+tScyA25q0o0k6CIiEh3FstJLi4CXvSe9wc2RG3b6K3bg5ldYmaLzGyRrrMSka4u5CVYKenZ9dZn5kYSrNpSfc6JiIh0Zy1eg2VmrwJ9Gtn0a+fcM16ZXwNB4OG9DcA5dxdwF8CECRM0VaCIdGnhymIAUjJ71FufnhMZIujKlWCJiIh0Zy0mWM65bza33cwuAE4EvuG+mkt9EzAgqli+t05EpFuz6l0EnY+09PrXYFlSOlUk4qvYEafIREREpCO0aYigmU0HrgVOds5VRG16FjjLzJLMbAgwFHi/LW2JiHQFVl1KGSkkJez5+1WpL4tA9c44RCUiIiIdpa33wboTSAJeMTOAhc65S51zn5rZo8ByIkMHf+ScC7WxLRGRTs9fU0qZpZHdyLYyfw5J1UUdHZKIiIh0oDYlWM65g5rZdhNwU1vqFxHpagK1u6iwtEa3VSXmkFapIYIiIiLdWSxnERQR2e8l1O6iyt94glWb1IOsUHHHBiQiIiIdSgmWiEgMJYbKqAlkNLotnJpLDqVU1QQb3S4iIiJdnxIsEZEYSgmVE0psPMGytDySrZai4uKODUpEREQ6jBIsEZEYSnNlhBMzG93mz+gFQGnhlo4MSURERDqQEiwRkRgJBWvJoAKSsxvdnpIdSbDKi7Z1YFQiIiLSkZRgiYjEyK6d2yNP0vIa3Z6a3QeAqhIlWCIiIt2VEiwRkRjZ5fVM+TMaT7DScyMJVm3p9g6LSURERDqWEiwRkRipLI4kWIkZPRvdnpHTG4Bwue6FJSIi0l0pwRIRiZHq0gIAkrN6NbrdkjKoIhFfhRIsERGR7koJlohIjNSWRhKn9JzGEyzMKPFlEaja2YFRiYiISEdSgiUiEiPh8kgPVkaPPk2WKfdnk1yjBEtERKS7UoIlIhIrFTsoc8lkpKU1WaQqsQdpwaIODEpEREQ6khIsEZEYCVQUUOjrgc9nTZapSc4lK1TccUGJiIhIh1KCJSISI2lV2ygOND6D4G7hlDx6UEp1bbCDohIREZGOpARLRCRGsmq3U57UxAQXHkvvSZLVUlSk67BERES6IyVYIiIx4EJBcsJFBNOanuACIJARScBKC7d0RFgiIiLSwZRgiYjEQPGOzSRYiEB2frPlkrx7ZJXv3NoRYYmIiEgHU4IlIhIDBZu+BCAlb0Cz5dJ69AWgumRbu8ckIiIiHS8mCZaZXWVmzszyvGUzs9vNbJWZLTOzQ2PRjohIZ1W2+TMAsvoPb7ZcRm4kwaot3d7uMYmIiEjHa3OCZWYDgGOB9VGrjweGeo9LgL+1tR0Rkc4sWLCKsDN6Dzq42XIZPXoD4LybEouIiEj3EoserNuAawEXtW4G8ICLWAhkm1nfGLQlItIpJRSvYavlkZaW3mw5S0ihjFT8FTs6KDIRERHpSG1KsMxsBrDJOfdRg039gQ1Ryxu9dY3VcYmZLTKzRQUF+kVXRLqmjPI1FCY2P8HFbiW+LAJVmqZdRESkOwq0VMDMXgUam3f418CviAwP3GfOubuAuwAmTJjgWiguItLp1NbWkF+7jqV9Tm9V+fJANim1SrBERES6oxYTLOfcNxtbb2ZjgCHAR2YGkA8sMbNJwCYgeiqtfG+diEi3s+GLpRxgtSTkH9Kq8pUJPUiv3NjOUYmIiEg87PMQQefcx865Xs65wc65wUSGAR7qnNsKPAuc780mOAUocc7prpoi0i3t+HwRAD2HTmxV+drkXLLCxe0YkYiIiMRLiz1Y++gF4NvAKqACuLCd2hERiTvb+D5lLoX+B7WuByuUmkfOjlJqg0ESAu31MSwiIiLxELP/2b1erN3PHfCjWNUtItKZ9dq5iFXJoxkXSGhVeV9aHn5zFBVuJ693v3aOTkRERDpSTG40LCKyv9q5dR2Dwhuo7D+l1fv4MyL3wtq1c2t7hSUiIiJxogRLRKQNvnznCQDyxp/c6n2SsnoCUF6kS1NFRES6GyVYIiJtkPTFv9lsvTlo1IRW75OaE7nvenXx9vYKS0REROJECZaIyD7asXktIyuXsKbvtzFf6z9O03MjtxYM7trWXqGJiIhInCjBEhHZR1+++GcMGHD09/Zqv+wekWuwXNmOdohKRERE4kkJlojIPqjYVcTBG+axJO1wBg4ds1f7JiQmUUIaVlnYTtGJiIhIvCjBEhHZBx8/9X9kUk7aMVft0/4llkWgameMoxIREZF4U4IlIrKXCjevZczqu1iaMoURE47ZpzoqAtkk1RbHNjARERGJOyVYIiJ7wznW/eun+AnT47Q/7nM1lQnZpCnBEhER6XaUYImI7IUPn7mDQ8veZMmQSxh40Kh9rqc2qQcZ4eLYBSYiIiKdghIsEZFWWrdiMQd/+D98lDieiefe2Ka6Qik9yHK7cOFwjKITERGRzkAJlohIK5Ts2Ezg0e9SYSn0veABAoFAm+qz1DwSLERpiSa6EBER6U6UYImItKCqYhfb/n4queFCth5/L736DWxznf70ngDsKtzS5rpERESk81CCJSLSjHAwyMq/nMVBNZ/x8ZT/Y9Tkb8ak3sSsSIJVVrQtJvWJiIhI56AES0SkKc6x6K5LGVe+gHeHXcPE42fFrOqUrN4AVBVvj1mdIiIiEn9KsEREmvDev/6HSdsf47+9zuLr3/1VTOvOyI0kWDW7CmJar4iIiMSXEiwRkUYseel+Jn7+RxanHcHkH/wVM4tp/dm5fQEIlSnBEhER6U7anGCZ2U/MbKWZfWpmt0St/6WZrTKzz8zsuLa2IyLSUVYuns+Id6/mi4ThjPrRXPx+f8zbSEnPpNIlQvmOmNctIiIi8dOmeYbN7GhgBnCIc67azHp560cCZwGjgH7Aq2Y2zDkXamvAIiLtafuGL+j53CyKfDn0uuRJklPT262tUl8m/kpN0y4iItKdtLUH6zLgZudcNYBzbvfV2jOAR5xz1c65NcAqYFIb2xIRaVdV5aVU3HcaAVdL9ZmPkNOrf7u2V+bPJrGmqF3bEBERkY7V1gRrGDDNzN4zszfNbKK3vj+wIarcRm+diEin5MJhPr7rewwMrufzI+9kyIhD273NyoRsUmqVYImIiHQnLQ4RNLNXgT6NbPq1t38PYAowEXjUzA7YmwDM7BLgEoCBA9t+804RkX2x6Ok7mFjyMu8OuoTDjvlOh7RZk5hDTuX6DmlLREREOkaLCZZzrsm7aprZZcCTzjkHvG9mYSAP2AQMiCqa761rrP67gLsAJkyY4FofuohIbGxYuYgxH/0PHyeNY9L5/6/D2g2l5JJVXIpzLuazFHY2oVCIHds2snPzl1QVbaGmrJDasp1YZREJNSUEQhUQqsEXqsYXrsUXrsEfriXyn0LktXFm3nPDmeEwnPnBfIS9fyPL/khZ84PPX1cGn79uXfSy+fx7PI/sYzj8hL163e76m+Oa/2/MNfJsr+2x6z7WFYN6mtrD2nJ8e9Tz1Xuj+beJNbkU2c81UqqZGqzhNm+Fc/W27VFfVJDNt+WaLNfkcVrjx+hP68HB3/oe5tPk0CKdQZsmuQCeBo4G3jCzYUAisAN4FviXmf2RyCQXQ4H329iWiEjMBWuqqXnsEsotlV4XPIg/0NaPxb2Qlke6VVGyq4yszIyOa7cdlezczvrPllC24WOsYCVpJavIqd1Kr/AOeluQ3g3Kh5xRaulUkkzQErxHIiFfAmFLAPO+iLrdX0jDmHPgHOYcPkKYC2OE8bkQPsJRy2F8fPXwN1z2Hruf+0y/8UnXtSwhk7HHzIx3GCJC2xOse4F7zewToAaY5fVmfWpmjwLLgSDwI80gKCKd0YfzbmRiaDUfTPozE/t17DDlQHoeAMWFW7pkghUK1rLm0/fZvvxtErYsou+uj8l3Wxnjba9wSWxMGMT29BFsSu+PL2cgSbkDScvtT1pOL7JyepGSnk2Oz0dOHOIPhx0h5wiFHdVhRygUJhQKEgzWgoskargQhEPgIokc4RCYfdWb0YjWd0bue6/lnm3sW13N9b7seyyN1txq0Z2ALqoB16B3MHqp/j4NEuXdi2ZN7rPHfo0/jYpjd0x7xt9STPX22SOmpvs467cVVS4cJvO+o/H/98+EjzwDn1+9WCLx1qYEyzlXA5zbxLabgJvaUr+ISHvasuojDlk1hw/SjmDC8bM6vP3EzF4AlO3cBkOGdXj7+2LTlytZ98FzJK17k6EVizmICg4CdpDNhrTRbOh9BhkDxtL7wHHk5R/IMF/s7yEWKz6f4cNIqBdiYrzCEdlnHx7yE8Z/dAPvPvNXDvvOj+Mdjsh+rwPHwnQ9G7/4iC0r32XiiT/Yp1/1RKRzK3jiatJIpP9374zLNVApOZEBc5VFWzq87dZy4TArl7xF8eLHyd/2OgPCm+gPbLM8VuYcg++AIxh0yNH0HDCUPH1OisTFuBmX8/nyeRy87GY2T/w2/Qbs1XxjIhJjSrCasek/f2Lyjif5cOVz5H3nFgYcOCreIYlIjHwy/3HGVr7Pfw+6kq/nD4pLDBm9Iu0GizbGpf0mOceGZW+ybeEj5G99lRGugFrnZ2XyIWwadA4DJp1I/wPH0lsJlUinYD4/GTP/TtKDx7L5gfPIu+YNEhPVGysSL0qwmvG1H9zFf/+Vz6Ff/o3AA1P5IOc4ek6/lsEHt//9cUSk/YSCtWS8NZsN1pdDz/h53OLI7jWQsDNcSaOTrHa4rZvXs+a1e+i/5nEGhjfSywVYnjKBjQdfzrAjZzImp1e8QxSRJvQ9aBwfTriB8Yt/wcK/XMDkyx/SrIIicaIEqxmBhAS+Put/KNzyfT5/6neM3/YkyY+8yMqEERQPO4PhR5xJTu8BLVe0HwqHHaFwmFAoFLlo14VxLhT5N7x7OfIvOJwL19s/cjGvNbjQ2EUuCN7jouL6v6K76ClyrfEyu5frT8nbyK/xDdc1nCK3hR/wW/p9v6VhaS3v31L7LdTf5ObW90y0FEO9C7295w4X9fyrC7tddPm9KOu8Webq1tP8vhsWzOOw8Aben/gnBiSntPpYYy0hMYkCy8ZXtjluMVRVV7P4tcdJ+Oghxle9Rx8LsSJhBAsOns3Bx5zH+Ly8uMUmIntn/EmX8cH2z5my4V7++9fvM/myu/D7O+91kJ2B876rhMIhXDgMLkzYe+6cwzlvfThc9zyyzdvu/T/jMO+5959ive8iu5973z2sfuJr9tV3l7r/t6P/c43a37AGdUcVa3irgkbraLiqQbtfVdZI2a+e1L8NgtVbs8c3Ll/D2wtEHU9j3yEaOz7zk5CQhM/X+u8n8WQNZ+WJpwkTJrhFixbFO4wmFW3fxMr/3FX36y7AqsBBFOROJGXwBHoOm0KfwSM6/sPMOQjVQE05tVW7qK4sp6aynJrKMmqqyqmtriBUVUGoppxwdQXhmkrCtRVQWwm1lViwEqutxBeqwkK1EK7FwkEsXIvPBfGFa/ETwu+C+AmR4CLLAUIECOJ3Ie/ONGF83keMX9MdSye3yXrT59fLO3Za9kZ8cdMkKiyNQ371Roe2u+qzj9n0+j84eNtz9GYnRZbFmn4n0eeo79Nv6LgOjUVEYseFwyy664dM3DqXJalTOfD795OV0zV/KHHhMLvKSikr2kF1WSE1pYXUVJRQW7WLUNUuQlXluOpyXE0ZVluBv7Ycf6iChFAl/nA1/nAQn6slUPcIkkAtAYIkuCAJBEmy2ngfprTCQ8FvMPoH9zJuQHa8Q6ljZoudcxMa3aYEa++5cJjVnyxk66LnyNsynyE1X9S9QatdAtv9vShM6ENlUk9ccja+1BwsJRvnT8bnD+APBPD5Ewibj3AwiAtV40K1EKzBhWogWBNJmGor8NWW4wtWEgiWEwhVkuA9El0lSeEqkl0lKVQTYO9nwa92CVSSSBWJVJNErSUS9CUQtgDOAoR9CThfAs4XwPkSCJuf8O7tvgTCvki5r27e6Yv8tuLzgfkiv9CYYT6/d0NQH3i/vHz1PJKSeTe7qRN9c8mvVrs9O5T2+Pvdc4rbPX7raPRvvpF1zdQdCy2/9Vq4YWkbw2nd7rGJIboncc+bfzbeXxb9y1tj+9Rb35qyFt26I2f0sQwYfXgrom9fH/3fyWSVrWLw9cvbva2KijKWvfwQqZ/+i7G1HxFyxmfpk/BPmMWwaadjgaR2j0FEOoBzvDf3fzj0sz9RZFlsnvBzxh7/fXzx7s1yDldVzK4dm9m1YyPlhVuoKdlKeNc2rHwb/qrIjceTgqWkhnaR6cpItGCL1Va7BCotiSpLodqSqfalEPQlRb6z+BIIWyJhX4CwL5GwPxF8CYT9iThfIuZPwPkTMPN9dYNyM8Dn/cex+8blvgaPyHcXM6v7zmK2+xtNI0M3oodZfLXRu291gzLev/W2Naynkde2fs1fMVyjtzmo+x+xpZuON/OfvaP+d7E9b5PQ/L57rGmi/I704Uz61pn0zkxusr6OpgSrnVVXV7Fm+SJ2ffkBtdu/IKlsA9nVW8gI7SQ9XEaqVe9TvTUuQIUlU0UyVd4HRo33CPpTCAZSCflTCCWk4hJScQnpkJCCJabhT0rFn5iKPymNQFIqgeQ0ElPSSEpOIyklnaSUFJKTEklJ8JOge2aIxM37//gp4zY+hP16CwmJ7ZPgrFr2XwrevJuRO14iy8rZYr3YPOQMDjruErJ6D26XNkUk/j5fMh+ev4phoVWssQFsH3YWBx51Pnl9Y3vPv3B1BSU7NlFasImKnZuoKdlKqHQrVr6dhModpFTvID24k+xwEUns2WNU4/wUkkWpZVEZyKAmIYtQUhak5OBPzcGX2gNfajaBtFwS07NISs0iJS2DlPQs0tMz8SdoQg/peEqw4qyqqpKKkh0Ea2sI1tYSDNYQDNbicyH8gUT8CUkEEpIIJCTiT0wmMTGJhMTIsoh0b+89M4fJH/6c9We9zsCDvxazekt2bmflK/+kx+ePMjS0ihoX4NOsI0k77EKGTv421onvTyUisRMMBln20j1kLL2bocHPAVjjG8TOrBGEegwjsdeBJGfkkpzRg0ByGj4coVCQmpogwZpyguXF1JQVUVNeRKiiGF9FIYlV20muLiS9tpCc8E4yqNij3bAzdpJBkS+HXYFcKhNzqUnOI5zeG19GbxKz+pDaox8Zef3okdub7NTELnN9jQgowRIR6bTWfLKQIY8fxwcT/o+JJ17cprpCwSDLFzxDzeIHGV26gCSr5Uv/YAqGzmTEsReT2UOzAIrsz1Z/8h4FS/5N6qZ36Fv9JT0p2us6yl0yO305lPp7UJGYS01yT0JpvbCM3iRm9SW5Rz8y8/qR07MfWWkpcbnHoEhHaC7B0iyCIiJxNGDoIdQ4P8ENi4B9S7A2frGMTfPvYfCm5xhDIcWks7TXDHKnXshBYw/nAH3BERHgwNGTOXD05Lrl4qIdFKxfRWVZEdVlO6GmnJAzfH4/gUAAf2IK/tQcUrNyycjKJTMnl7TkNNLieAwiXYESLBGROAokpbAsaSz9Cxbs1X5bvvyUdW//i57rX+DA0Jf0dcbHKRPZOPa3jD5mJpOTU9spYhHpLrJz8sjuojMMinRmSrBEROKsfPC3GPv5Laz75B0GNTGzoQuHWP3xQgo+fI5eG1/mwOBq+gIrAwezcOhVDDnqPMb1H9KxgYuIiMgelGCJiMTZ0GMvofizvxJ85goq+j9Hak4fXCjIxi8+ZOvy/2Lr32FI8XscRDEHAZ8FhvPfA3/G4CPO5uBBw+IdvoiIiERRgiUiEmd5eT15Z8LvmLzoZwT+PJwiskhz5QywIAOAIjJYlT6R1Qd9kwOmnMzwPgPiHbKIiIg0QQmWiEgncPhJF/JJ/gi2v/8YSRXbICUbX+8R9B1xOAOHjmFivG8QKiIiIq2iBEtEpJMYPX4KjJ8S7zBERESkDXzxDkBERERERKS7UIIlIiIiIiISI0qwREREREREYsScc/GOoY6ZFQDr4h1HA3nAjngHIR1G53v/oXO9/9C53r/ofO8/dK73H53xXA9yzvVsbEOnSrA6IzNb5JybEO84pGPofO8/dK73HzrX+xed7/2HzvX+o6udaw0RFBERERERiRElWCIiIiIiIjGiBKtld8U7AOlQOt/7D53r/YfO9f5F53v/oXO9/+hS51rXYImIiIiIiMSIerBERERERERiRAmWiIiIiIhIjCjBaoaZTTezz8xslZn9It7xSOyY2QAze8PMlpvZp2Z2ube+h5m9YmZfeP/mxDtWiQ0z85vZh2b2b295iJm9572/55lZYrxjlNgws2wze9zMVprZCjM7TO/t7snMrvQ+wz8xs7lmlqz3dvdhZvea2XYz+yRqXaPvZYu43Tvvy8zs0PhFLnuriXP9B+9zfJmZPWVm2VHbfumd68/M7Li4BN0MJVhNMDM/8BfgeGAkcLaZjYxvVBJDQeAq59xIYArwI+/8/gJ4zTk3FHjNW5bu4XJgRdTy74HbnHMHAUXA9+ISlbSHPwMvOecOBg4hct713u5mzKw/8FNggnNuNOAHzkLv7e7kPmB6g3VNvZePB4Z6j0uAv3VQjBIb97HnuX4FGO2cGwt8DvwSwPu+dhYwytvnr9739k5DCVbTJgGrnHNfOudqgEeAGXGOSWLEObfFObfEe76LyBew/kTO8f1esfuBU+ISoMSUmeUDJwB3e8sGHAM87hXRue4mzCwLOAK4B8A5V+OcK0bv7e4qAKSYWQBIBbag93a34Zx7C9jZYHVT7+UZwAMuYiGQbWZ9OyRQabPGzrVz7mXnXNBbXAjke89nAI8456qdc2uAVUS+t3caSrCa1h/YELW80Vsn3YyZDQbGA+8BvZ1zW7xNW4He8YpLYupPwLVA2FvOBYqjPrj1/u4+hgAFwD+9IaF3m1kaem93O865TcCtwHoiiVUJsBi9t7u7pt7L+t7WvV0EvOg97/TnWgmW7NfMLB14ArjCOVcavc1F7mGg+xh0cWZ2IrDdObc43rFIhwgAhwJ/c86NB8ppMBxQ7+3uwbv2ZgaRpLofkMaeQ4ykG9N7ef9gZr8mcmnHw/GOpbWUYDVtEzAgajnfWyfdhJklEEmuHnbOPemt3rZ7SIH37/Z4xScxczhwspmtJTLU9xgi1+hke8OKQO/v7mQjsNE59563/DiRhEvv7e7nm8Aa51yBc64WeJLI+13v7e6tqfeyvrd1Q2Z2AXAicI776ua9nf5cK8Fq2gfAUG82okQiF9M9G+eYJEa8a3DuAVY45/4YtelZYJb3fBbwTEfHJrHlnPulcy7fOTeYyPv4defcOcAbwOleMZ3rbsI5txXYYGbDvVXfAJaj93Z3tB6YYmap3mf67nOt93b31tR7+VngfG82wSlASdRQQumCzGw6keH9JzvnKqI2PQucZWZJZjaEyMQm78cjxqbYV8mgNGRm3yZy7YYfuNc5d1N8I5JYMbOpwNvAx3x1Xc6viFyH9SgwEFgHnOmca3iBrXRRZnYUcLVz7kQzO4BIj1YP4EPgXOdcdRzDkxgxs3FEJjRJBL4ELiTyg6Le292Mmd0AzCQyfOhD4GIi12Lovd0NmNlc4CggD9gGXA88TSPvZS/JvpPIMNEK4ELn3KI4hC37oIlz/UsgCSj0ii10zl3qlf81keuygkQu83ixYZ3xpARLREREREQkRjREUEREREREJEaUYImIiIiIiMSIEiwREREREZEYUYIlIiIiIiISI0qwREREREREYkQJloiIiIiISIwowRIREREREYkRJVgiIiIiIiIxogRLREREREQkRpRgiYiIiIiIxIgSLBERERERkRhRgiUiIiIiIhIjSrBERDoZMxtsZs7MAvGORfYPZvapmR0V7zhERLoDJVgiItLlmdkcMyvzHjVmVhu1/GK84+vsnHOjnHPzY1mnl7SVRT2CZvZcLNsQEemMzDkX7xhERLoVMws454Jt2H8wsAZIaEs9+yszmw0c5Jw7t5FtbTo3HakrxdoSMzPgS+B659wD8Y5HRKQ9qQdLRCQGzGytmf3czJYB5WYWMLMpZvZfMys2s4+ih2CZ2Xwz+39m9r6ZlZrZM2bWo4m6LzSzFWa2y8y+NLMfNNg+w8yWevWsNrPp3vosM7vHzLaY2SYz+52Z+Vs4jgPN7HUzKzSzHWb2sJllR23baWaHesv9zKxg93GZ2cler0Wxd3wjGrw+V5vZMjMrMbN5Zpa896/03mvi3DgzOyiqzH1m9ruo5RO917TYO4djW9nWUWa20cx+5b1+a83snKjtJ5jZh9652uAlg7u37R4a+j0zWw+87q1/zMy2eq/bW2Y2qkHcfzWzF71eonfMrI+Z/cnMisxspZmNb+Vr9M3WHOM+OgLIA55oxzZERDoFJVgiIrFzNnACkA30Bp4Hfgf0AK4GnjCznlHlzwcuAvoCQeD2JurdDpwIZAIXArdFJTmTgAeAa7x2jwDWevvd59V7EDAeOBa4uIVjMOD/Af2AEcAAYDaAc2418HPgITNLBf4J3O+cm29mw4C5wBVAT+AF4DkzS4yq+0xgOjAEGAtc0GgAZlO9xKapx9QWjqExdeempV4hLyG5F/gBkAv8HXjWzJJa2VYfIslEf2AWcJeZDfe2lRM579lePJeZ2SkN9j+SyGt/nLf8IjAU6AUsAR5uUP5M4Ddem9XAu165POBx4I+tjLtRZvaL5s5HK6uZBTzhnCtvSywiIl2BEiwRkdi53Tm3wTlXCZwLvOCce8E5F3bOvQIsAr4dVf5B59wn3pfO3wJnNtbD5Jx73jm32kW8CbwMTPM2fw+41zn3itfOJufcSjPr7bV1hXOu3Dm3HbgNOKu5A3DOrfLqqnbOFRD5cn5k1PZ/AKuA94gkhr/2Ns0Envf2rQVuBVKArzd4fTY753YCzwHjmohhgXMuu5nHguaOoQnR56YllwB/d86955wLOefuJ5K4TNmL9n7rvYZvEkm0zwRwzs13zn3snatlRJLSIxvsO9s7Z5XePvc653Y556qJJLuHmFlWVPmnnHOLnXNVwFNAlXPuAedcCJhHJLneZ865m5s7Hy3t7yXjpxNJ+EVEuj0lWCIisbMh6vkg4IwGv/RPJZKUNFZ+HZBApNehHjM73swWesPziokkTrvLDQBWNxLLIK++LVHt/51IL0iTzKy3mT3iDSksBR5qJKZ/AKOBO7wv/RDp8Vq3u4BzLuwdX/+o/bZGPa8A0puLJcY2tFykziDgqgbnbgCRY2yNogY9Net272tmk83sDW9oZQlwKXu+vnWxmpnfzG62yNDPUr7qnYzeZ1vU88pGljvydW7Md4CdwJtxjkNEpEMowRIRiZ3oWYM2EOmhiv61P805d3NUmQFRzwcCtcCO6Aq9YWlPEOkR6u31GLxAZCjf7nYObCSWDUR6XfKi2s90zo1qpGy0//WOY4xzLpNIT9zutjCzdOBPwD3AbPvqurHNRBKT3eXMO75NLbS3BzObZvVnn2v4mNZyLXtoOKNTBZAatdwn6vkG4KYG5y7VOTe3lW3lmFla1PJAIq8PwL+AZ4EBzrksYA5Rr28jsX4XmAF8E8gCBnvrG+7TbrzryZo8H62oYhbwgNOsWiKyn1CCJSLSPh4CTjKz47xeiGRvAoT8qDLnmtlIbwjVjcDj3rCuaIlAElAABM3seCLXUu12D3ChmX3DzHxm1t/MDnbObSEylPD/zCzT23agmTUcjtZQBlAGlJhZfyLXdkX7M7DIOXcxkaFvc7z1jwIneHEkAFcRSfD+29IL1ZBz7m3nXHozj7f3ts5GLAW+652b6dQfpvcP4FKvt8nMLM0ik1NkQN3EEve1UP8NZpboJYMnAo956zOAnc65Ku/6ue+2UE8GkdexkEhC+L97cYwx4Zz73+bOR3P7en/vRwP3d0y0IiLxpwRLRKQdOOc2EOl5+BWR5GgDkWQl+nP3QSLXpWwFkoGfNlLPLm/9o0ARkS/kz0Ztfx9v4gughMgwrN09SecTSdCWe/s+Tv0hio25ATjUq+t54MndG8xsBpFJKi7zVv0MONTMznHOfUakt+sOIr1wJwEnOedqWmgvXi4nEmMxcA7w9O4NzrlFwPeBO4m8bquoPyHHAOCdZure6u23mciEFJc651Z6234I3Ghmu4DriJzX5jxAZIjhJiLncWFLB9bJnAe8602QIiKyX9B9sERE4sDM5gMPOefujncs0nrerIgfAWO9yTwabj+KyHnNb7hNRET2D4F4ByAiItJVeD1yI1osKCIi+y0NERQR2c+Y2ZwmJiyY0/Le0hWZ2cBmJqoYGO/4RES6Ew0RFBERERERiRH1YImIiIiIiMRIp7oGKy8vzw0ePDjeYYiIiIiIiDRp8eLFO5xzPRvb1qkSrMGDB7No0aJ4hyEiIiIiItIkM1vX1DYNERQREREREYmRNidYZjbAzN4ws+Vm9qmZXe6t72Fmr5jZF96/OW0PV0REREREpPOKRQ9WELjKOTcSmAL8yMxGAr8AXnPODQVe85ZFRLqsUFizroqIiEjz2nwNlnNuC7DFe77LzFYA/YEZwFFesfuB+cDP97b+2tpaNm7cSFVVVVtDlf1McnIy+fn5JCQkxDsU6QbeXvYZux7/KfnfvZ2xBw+PdzgiIiLSScV0kgszGwyMB94DenvJF8BWoHcT+1wCXAIwcOCe9zrcuHEjGRkZDB48GDOLZbjSjTnnKCwsZOPGjQwZMiTe4Ug3EHr7z3zbt5A33rwLDv6/eIcjIiIinVTMJrkws3TgCeAK51xp9DYXuZtxo2NrnHN3OecmOOcm9Oy550yHVVVV5ObmKrmSvWJm5ObmqudTYiavdDkAwV3b4xyJiIiIdGYxSbDMLIFIcvWwc+5Jb/U2M+vrbe8L7PO3EiVXsi/0dyOx1LN2EwC9yj+PcyQiIiLSmcViFkED7gFWOOf+GLXpWWCW93wW8Exb2xIRiZfUcBkAA8MbNdmFiIiINCkWPViHA+cBx5jZUu/xbeBm4Ftm9gXwTW+5SzIzrrrqqrrlW2+9ldmzZ8cvoCgLFy5k8uTJjBs3jhEjRtTFNX/+fP773//uc73r1q3j0EMPZdy4cYwaNYo5c+bEKGKRrseFQ6S5SkIYOVZGYXFJvEMSERGRTioWswguAJoai/WNttbfGSQlJfHkk0/yy1/+kry8vJjV65zDOYfPt+957qxZs3j00Uc55JBDCIVCfPbZZ0AkwUpPT+frX//6PtXbt29f3n33XZKSkigrK2P06NGcfPLJ9OvXb59jFemqSkt2kmWO9YHBDAyupWjbBnr1yI53WCIiItIJxWySi+4sEAhwySWXcNttt+2xraCggNNOO42JEycyceJE3nnnHQBmz57NrbfeWldu9OjRrF27lrVr1zJ8+HDOP/98Ro8ezYYNG7jmmmsYPXo0Y8aMYd68eUAkQTrqqKM4/fTTOfjggznnnHOIzBVS3/bt2+nbty8Afr+fkSNHsnbtWubMmcNtt93GuHHjePvtt5uN87zzzuOwww5j6NCh/OMf/wAgMTGRpKQkAKqrqwmHw42+NrfffjsjR45k7NixnHXWWQDs3LmTU045hbFjxzJlyhSWLVtW19asWbOYNm0agwYN4sknn+Taa69lzJgxTJ8+ndraWgBuvPFGJk6cyOjRo7nkkkv2OO5wOMzgwYMpLi6uWzd06FC2bdvW3GkU2WeVpYUAFKUdCMCugg3xDEdEREQ6sZhO097ebnjuU5ZvLm254F4Y2S+T608a1WK5H/3oR4wdO5Zrr7223vrLL7+cK6+8kqlTp7J+/XqOO+44VqxY0WxdX3zxBffffz9TpkzhiSeeYOnSpXz00Ufs2LGDiRMncsQRRwDw4Ycf8umnn9KvXz8OP/xw3nnnHaZOnVqvriuvvJLhw4dz1FFHMX36dGbNmsXgwYO59NJLSU9P5+qrrwbgu9/9bpNxLlu2jIULF1JeXs748eM54YQT6NevHxs2bOCEE05g1apV/OEPf2i09+rmm29mzZo1JCUl1SU8119/PePHj+fpp5/m9ddf5/zzz2fp0qUArF69mjfeeIPly5dz2GGH8cQTT3DLLbdw6qmn8vzzz3PKKafw4x//mOuuuw6A8847j3//+9+cdNJJdW36fD5mzJjBU089xYUXXsh7773HoEGD6N270TsBiLRZTVlx5N+coVDyGlVFm+MbkIiIiHRa6sFqpczMTM4//3xuv/32eutfffVVfvzjHzNu3DhOPvlkSktLKSsra7auQYMGMWXKFAAWLFjA2Wefjd/vp3fv3hx55JF88MEHAEyaNIn8/Hx8Ph/jxo1j7dq1e9R13XXXsWjRIo499lj+9a9/MX369EbbbC7OGTNmkJKSQl5eHkcffTTvv/8+AAMGDGDZsmWsWrWK+++/v9EeorFjx3LOOefw0EMPEQgE6o7pvPPOA+CYY46hsLCQ0tJIYnz88ceTkJDAmDFjCIVCdfGOGTOm7vjeeOMNJk+ezJgxY3j99df59NNP92h35syZdb19jzzyCDNnzmz2NRdpi2D5TgD8vQ+OLJdsaa64iIiI7Me6VA9Wa3qa2tMVV1zBoYceyoUXXli3LhwOs3DhQpKTk+uVDQQC9YbVRd+PKS0trVXt7R6iB5Hhf8FgsNFyBx54IJdddhnf//736dmzJ4WFhXuUaSpO2HM684bL/fr1Y/To0bz99tucfvrp9bY9//zzvPXWWzz33HPcdNNNfPzxx606Jp/PR0JCQl1bPp+PYDBIVVUVP/zhD1m0aBEDBgxg9uzZjd7L6rDDDmPVqlUUFBTw9NNP85vf/KbZdkXaIlRRDIAv90BqCWC7lGCJiIhI49SDtRd69OjBmWeeyT333FO37thjj+WOO+6oW949FG7w4MEsWbIEgCVLlrBmzZpG65w2bRrz5s0jFApRUFDAW2+9xaRJk1od0/PPP193jdIXX3yB3+8nOzubjIwMdu3a1WKcAM888wxVVVUUFhYyf/58Jk6cyMaNG6msrASgqKiIBQsWMHz48Hpth8NhNmzYwNFHH83vf/97SkpKKCsrY9q0aTz88MNA5FqyvLw8MjMzW3U8u5OpvLw8ysrKePzxxxstZ2aceuqp/OxnP2PEiBHk5ua2qn6RfRGqKALAn5ZDiWXir9rzRwwRERERUIK116666ip27NhRt3z77bezaNEixo4dy8iRI+umMz/ttNP4/+3deZxcVZ338c+v9l5T3Z09HUiQJGTpdAKdRQKSIOuALLIEFSVEZUTceI3joA6I+Pi8VOZRZwaUBweMCwYQFTKiyP4IIwESEiAQEgOELGTp9JZeqrq28/xRlU530p1O0tVdle7v+/Uquu655577K27fyv31Offc+vp6pk+fzh133MHkyZO7be/SSy9l5syZVFdXc+aZZ/KDH/yA0aNHH3Y8v/rVr5gyZQqzZs3ik5/8JPfddx9er5ePfOQj/OEPf+iY5KKnOCE9zG/RokXMnz+fm2++mbFjx7J+/XrmzZtHdXU1Z5xxBl/96lepqqoC4DOf+QyrVq0imUxy9dVXU1VVxezZs/nSl75EOBzm1ltvZfXq1cycOZObbrqJX/ziF4f9ecLhMJ/97GeZMWMG5557LnPmzOlYd9ddd3WJe/Hixfz617/W8EDpf9H0tOyBojAt3jJC7fU5DkhERETylXU3M12u1NTUuFWrVnUpW79+PVOnTs1RRIPfrbfe2mUyjMFGvz+SDW8u/ybTNtzB5uvfI/KLy3DRJqbdsqr3DUVERGRQMrPVzrma7tapB0tEpBcuHiHmvBQWhIgHyylNNuY6JBEREclTx9QkF5J9t956a65DEMl7LtZGlCChgJdU4XDK6vcSjScJ+b25Dk1ERETyjHqwRER6YYkIEQIU+L1QPIIia6ehsSHXYYmIiEgeUoIlItILi0eIEsTv9eArGQlA4x5N1S4iIiIHU4IlItILS0Rot/Qz3ELh9CyfrfU7cxmSiIiI5CklWCIivfAmI8QyCVZxWTrBijTuymVIIiIikqeUYB2mhx9+GDPjrbfe6rHO5s2bmTFjRtb2uWHDBhYuXMisWbOYOnUq1113HZB+SPCf/vSno243Go0yd+5cqqurmT59Ot/61reyFbLIoORNRolZCIDS4WMASDTvzmVIIiIikqf6PcEys/PMbIOZbTKzm/p7f/1l+fLlnHbaaSxfvrzb9YlEos/7SCaTXZa/9KUvceONN7J27VrWr1/PF7/4RaDvCVYwGOTpp5/m1VdfZe3atTz22GOsXLmyT7GLDGa+ZJS4N51gFYRHAZBqrs1lSCIiIpKn+jXBMjMvcCdwPjAN+JiZTevPffaHlpYWnn/+ee655x7uv//+jvJnn32W008/nYsuuohp09IfK5FI8IlPfIKpU6dy+eWX09bWBsBTTz3F7NmzqaqqYunSpbS3twMwYcIE/uVf/oWTTz6Z3/72t132u2PHDiorKzuWq6qqiMVi3HLLLTzwwAPMmjWLBx54gNbWVpYuXcrcuXOZPXs2jzzyCADLli3j4osvZuHChUyaNIlvf/vbAJgZxcXFAMTjceLxOGZ20Of+7W9/y4wZM6iuruZDH/oQkO79uvbaa6mqqmL27Nk888wzHfu65JJLOPvss5kwYQJ33HEHP/zhD5k9ezbz58+nvr4egJ/97GfMmTOH6upqLrvsso7/P53Nnz+fN954o2N54cKFHPgAapGB5Eu1k/CkhwhasJgIQTyRPTmOSkRERPJRfz8Hay6wyTn3DoCZ3Q9cDLx5VK39+SbY+Xr2ogMYXQXnf++QVR555BHOO+88Jk+eTEVFBatXr+aUU04B4JVXXmHdunVMnDiRzZs3s2HDBu655x4WLFjA0qVL+clPfsIXvvAFlixZwlNPPcXkyZP51Kc+xU9/+lO+8pWvAFBRUcErr7xy0H5vvPFGzjzzTE499VTOOeccrr32WsLhMLfddhurVq3ijjvuAOAb3/gGZ555Jvfeey+NjY3MnTuXs846C4CXXnqJdevWUVhYyJw5c7jggguoqakhmUxyyimnsGnTJm644QbmzZt30P5vu+02/vKXvzBu3DgaGxsBuPPOOzEzXn/9dd566y3OOeccNm7cCMC6detYs2YN0WiUE088ke9///usWbOGG2+8kV/+8pd85Stf4aMf/Sif/exnAfjXf/1X7rnnno6euX0WL17Mgw8+yLe//W127NjBjh07qKnp9kHZIgPCn4qSDBR0LO/1hPFH63MYkYiIiOSr/h4iOA7Y2ml5W6asg5ldZ2arzGxVbW1+DrlZvnw5V111FQBXXXVVl2GCc+fOZeLEiR3L48ePZ8GCBQBcffXVPP/882zYsIGJEycyefJkAK655hr++te/dmyzePHibvd77bXXsn79eq644gqeffZZ5s+f39Hz1dnjjz/O9773PWbNmsXChQuJRqNs2bIFgLPPPpuKigoKCgr46Ec/yvPPPw+A1+tl7dq1bNu2rSMJO9CCBQtYsmQJP/vZzzqGLz7//PNcffXVAJx00kkcf/zxHQnWokWLKCkpYcSIEQwbNoyPfOQjQLrnbfPmzUA6CTv99NOpqqrivvvu69JTtc+VV17JQw89BMCDDz7I5Zdf3u3/H5GBEnDtJL37E6xWX5hQTAmWiIiIHKy/e7B65Zy7G7gboKamxh2yci89Tf2hvr6ep59+mtdffx0zI5lMYmbcfvvtABQVFXWpf+BQu+6G3h3owDY6Gzt2LEuXLmXp0qXMmDGj20TIOcfvfvc7pkyZ0qX8xRdf7DWecDjMokWLeOyxxw6aoOOuu+7ixRdf5NFHH+WUU05h9erVh/wcwWCw473H4+lY9ng8HfeoLVmyhIcffpjq6mqWLVvGs88+e1A748aNo6Kigtdee40HHniAu+6665D7FelvQddOyhfqWG4PllPcrGnaRURE5GD93YO1HRjfabkyU3bMeOihh/jkJz/Je++9x+bNm9m6dSsTJ07kueee67b+li1beOGFFwD4zW9+w2mnncaUKVPYvHkzmzZtAuBXv/oVZ5xxRq/7fuyxx4jH4wDs3LmTuro6xo0bR0lJCc3NzR31zj33XP7zP/8T59L56Zo1azrWPfHEE9TX1xOJRHj44YdZsGABtbW1HUP+IpEITzzxBCeddNJB+3/77beZN28et912GyNGjGDr1q2cfvrp3HfffQBs3LiRLVu2HJTYHUpzczNjxowhHo93tNOdxYsX84Mf/ICmpiZmzpx52O2LZJ1zBGnH+fb3YMVDFYRdE6nUof8mJCIiIkNPfydYLwOTzGyimQWAq4AV/bzPrFq+fDmXXnppl7LLLrusx9kEp0yZwp133snUqVNpaGjg+uuvJxQK8fOf/5wrrriCqqoqPB4Pn/vc53rd9+OPP94xycS5557L7bffzujRo1m0aBFvvvlmxyQXN998M/F4nJkzZzJ9+nRuvvnmjjbmzp3LZZddxsyZM7nsssuoqalhx44dLFq0iJkzZzJnzhzOPvtsLrzwQgBuueUWVqxIH6J//ud/pqqqihkzZnDqqadSXV3N5z//eVKpFFVVVSxevJhly5Z16bnqzXe+8x3mzZvHggULuiR1K1as4JZbbulYvvzyy7n//vu58sorD7ttkX6RaMeDA//+BMsVjqCcJvZGYjkMTERERPKR7ev16LcdmP0D8GPAC9zrnPtuT3VramrcgbPFrV+/nqlTp/ZrjIPVsmXLukyGMRTp90f6rK0efjCRJ4+/kbOuvRWAdb/9X8x443be+fR6Thg/NrfxiYiIyIAzs9XOuW5nYev3e7Ccc38Cjv6hTSIiOZRob8UHmL+woywwLP0srL1174MSLBEREekk55NcSP9ZsmQJS5YsyXUYIse0aKSFYsAC+xOsgrJ0gtXWsCtHUYmIiEi+6u97sLKiv4cxyuCk3xvJhlhbKwDe4P4Eq7gs3WvV3qSZBEVERKSrvE+wQqEQdXV1uliWI+Kco66ujlAo1HtlkUOIRVsA8HbqwSqpGA1Aojk/n90nIiIiuZP3QwQrKyvZtm0b+foQYslfoVCIysrKXIchx7j2SLoHyxfa/7w6X8mI9JtWfS+JiIhIV3mfYPn9fiZOnJjrMERkiEq0Z4YIdkqw8AVpoQhvpC5HUYmIiEi+yvshgiIiuZSIphOsQLCoS3mzN0wwqgRLREREulKCJSJyCMloGwCBgq4JVpu/jIJEYw4iEhERkXymBEtE5BCSsXSCFSwo7lIeC1ZQkmzIRUgiIiKSx5RgiYgcQmpfglXYNcFKFpQTdk1E48lchCUiIiJ5SgmWiMghuFj6HqzQAUMEKR5BOc3UN0dyEJWIiIjkKyVYIiKH4OIRos5PUSjQpdxbPBKvORrrducoMhEREclHSrBERA4lFiFCkKCv69dlKDwKgOaGHbmISkRERPKUEiwRkUNJtNFOEDPrUlwYHg1ApH5nLqISERGRPKUES0TkEDyJCO0WPKi8ZPgYAOLNGiIoIiIi+ynBEhE5BE8iQsxzcIJVkBkimFKCJSIiIp30KcEys9vN7C0ze83M/mBm4U7rvm5mm8xsg5md2+dIRURywJ9opd1TeFC5FVaQwqCtLgdRiYiISL7qaw/WE8AM59xMYCPwdQAzmwZcBUwHzgN+YmbePu5LRGTABVJtxLwHJ1h4vOy1UnwRJVgiIiKyX58SLOfc4865RGZxJVCZeX8xcL9zrt059y6wCZjbl32JiORCMNlG3FvU7bpWX5hQrH6AIxIREZF8ls17sJYCf868Hwds7bRuW6bsIGZ2nZmtMrNVtbW1WQxHRKTvQi5Cwtd9ghUNlFOUaBjgiERERCSf9ZpgmdmTZraum9fFnep8E0gA9x1pAM65u51zNc65mhEjRhzp5iIi/arARUj6u0+w4sEKSlJNOOcGOCoRERHJV77eKjjnzjrUejNbAlwIfNjtv8rYDozvVK0yUyYicuxIpSgkSspf3O3qZOFwRtc1sTeSYFihf4CDExERkXzU11kEzwO+BlzknGvrtGoFcJWZBc1sIjAJeKkv+xIRGWgu1pz+Gei+B8tTPIKwtVLb1DyQYYmIiEge67UHqxd3AEHgCTMDWOmc+5xz7g0zexB4k/TQwRucc8k+7ktEZEDF2vYSBAh034PlLxkJwN66nTCmfOACExERkbzVpwTLOXfiIdZ9F/huX9oXEcml1r2NBAFfQWm360Nl6YcNtzbsBKYNXGAiIiKSt7I5i6CIyKDS2twIgL9oWLfri8rHAhBr2DFQIYmIiEieU4IlItKDSEsjAMGi7nuwSoanH/2X2KsES0RERNKUYImI9CDa2ghAQVG42/W+YWMA8LTsHKCIREREJN8pwRIR6UGiuQ6AovDI7iv4Q+y1YvxtuwcwKhEREclnSrBERHqQbKsHoLis54eg7/WWE2rfM1AhiYiISJ5TgiUi0pO2Btqdj9LScI9VWgLDKYkrwRIREZE0JVgiIj3wRhtoshK83p6/KttDIwmn6gcwKhEREclnSrBERHrga2+g2UoOWSdROJLhroH2eGKAohIREZF8pgRLRKQHwXgTbd7up2jfx0pGE7QE9Xt2DVBUIiIiks+UYImI9KAg0UTE3/1DhvfxhdMPG967e9tAhCQiIiJ5TgmWiEgPipJ7iQfKDlmnsGIcAC112wciJBEREclzSrBERLrhknHCrolU0ahD1isdUQlArEEJloiIiCjBEhHpVmPtdrzm8JSOOWS9spHjAUju3TEQYYmIiEieU4IlItKNxh2bAQiUVx6ynr+ghBYK8bRqkgsRERHJUoJlZv9kZs7MhmeWzcz+w8w2mdlrZnZyNvYjIjJQWvZsAaB4xPhe6zZ4ygi07e7vkEREROQY0OcEy8zGA+cAWzoVnw9MyryuA37a1/2IiAyk9vr0PVVlo47vtW6zfziFsT39HZKIiIgcA7LRg/Uj4GuA61R2MfBLl7YSCJvZoW9kEBHJI27vdtqdj4qRY3utGwmOYFiibgCiEhERkXzXpwTLzC4GtjvnXj1g1Thga6flbZmy7tq4zsxWmdmq2travoQjIpI1waZ3ed8zGr/P22vdROFIKlw9LpUagMhEREQkn/l6q2BmTwKju1n1TeAbpIcHHjXn3N3A3QA1NTWul+oiIgMiHNlCbWg8Ew+ncskYQjvjNDbUEa4Y0d+hiYiISB7rNcFyzp3VXbmZVQETgVfNDKASeMXM5gLbgc53hldmykRE8p5LJhiV2MHWitMOq75vWHoEdMOuLUqwREREhrijHiLonHvdOTfSOTfBOTeB9DDAk51zO4EVwKcyswnOB5qcc3pIjIgcE2q3byJocbwjTjys+gXl6fu0Wuq29WdYIiIicgzotQfrKP0J+AdgE9AGXNtP+xERybraTa8wEigcX3VY9UsyU7lH69/vx6hERETkWJC1BCvTi7XvvQNuyFbbIiIDqfW9NSSdMX7KnMOqXzYqnWAlm5RgiYiIDHVZedCwiMhg4q9dx1bPOMrKyg6rfnFpGW0uCC27+jkyERERyXdKsEREOnGpFMe3raO2dPoRbVfnqcAf2d1PUYmIiMixQgmWiEgn77/zOuXsJTl+/hFt1+wrp7Bdz/ITEREZ6pRgiYh0snPt4wCMmL7oiLZrC46gJF7XHyGJiIjIMUQJlohIJ0VvP8q7jOOEKdVHtF28cCTlqXpwel66iIjIUKYES0QkI9a4k0lta3ln5NmY58i+Hl3xaAqtnUhLY/8EJyIiIscEJVgiIhnb/ud+vOYomH3FEW/rLR0NQP2uLdkOS0RERI4hSrBERDI86x/m766SWacc2QQXAMGycQA0127LdlgiIiJyDFGCJSICJJt2cFzLWtaXf5jCwJE/g714eCUA0frt2Q5NREREjiFKsEREgM3PL8eDI1xz5MMDAcIjxwMQb9yRzbBERETkGKMES0QEsDf+wEY3nrlzTz2q7cvLhxNxAWjZmeXIRERE5FiiBEtEhrxo3VYmtL7OOyPPIeT3HlUbHq+HOivD17Y7y9GJiIjIsUQJlogMee/89Td4zDF83pV9aqfJV0EoWpulqERERORYpARLRIa8wIYVbOR4Zp88r0/ttAWGUxLfk6WoRERE5FikBEtEhrTm3e9xYnQd28aei9djfWorVjCScKo+S5GJiIjIsejI5yI+gJl9EbgBSAKPOue+lin/OvDpTPmXnHN/6eu+RESy7Z1nf001MOqDV/W5rVTRKIrrIiSjzXhDJX0PLs8k4zHaWhppb22iPdJKezxBKpXCY2A4zMA8PvAG8PgCeP1BfP4gXn8AXyCE3x/A5/Xi9xpmfUtmRURE8lWfEiwzWwRcDFQ759rNbGSmfBpwFTAdGAs8aWaTnXPJvgYsIpJNRZv+m402kWkzTu5zW57SMQA07tpKxfHT+tzeQEomEmzbvIE9m18nvnM9NGwm0LaLklgt4WQdJa6FkMUpAfqSOsacl1b8JPCSwEcKDynzkMSbee/FmSfz3ofLlNGRkDkgndCl3+5b3r/WOtcBcK5j//vTuv1lh6u3Lfo7ZTzs9vs5kMNvPnuBdNtS3nzOo2/w8PbRe62ofxjjP/d7CkrCRxiUiPSHvvZgXQ98zznXDuCc2zd91sXA/Znyd81sEzAXeKGP+xMRyZqmHW9zYmw9z1Zez+Qs9KgEytIJVlPttrxPsPbs3MKWtU8TffdFyurXMiG2ieMtxvGZ9Y0U0+AdQUtgOJtDU0iGykj5iyFYggWL8QQKCPh8mBnODIfhHLhUEkvFIBmHRAyXjEEiBskYpGJYMg7JGJ5kHOcSkEqmXy6JpRLgUpBKYC6JpZLpny6ZSZzSXMc7A+uc+HROn6xrmXWXWvV2xWs91Tos3Sdk7nAq9aH9w9iuD/vsbq+5ieMw2j/swqOudlg1Oz7nUXzew9kklGpjdmw1a1f+iVlnf/zIdyIiWdfXBGsycLqZfReIAl91zr0MjANWdqq3LVN2EDO7DrgO4LjjjutjOCIih++d5+5nNjAmC8MDAQorKgGI1G/PSnvZFI+1s+HlJ9i77jFG7XqOD6Q2MxyIOR+bAyfy6qhL8I2eRvj4KkacUE24bAThXActIr2KRlpp/97xRDb9FZRgieSFXhMsM3sSGN3Nqm9mti8H5gNzgAfN7IQjCcA5dzdwN0BNTU0//z1LRGS/0NuP8Y4dx+Rp1VlpLzxyPACxhvxIsJKJBG/87VGiax5kSsMzzKCVuPPy99B0Xhz3RcLTFnFC1alMDhbkOlQROUqhgiLWh6YzevdzuFQK82j+MpFc6zXBcs6d1dM6M7se+L1zzgEvmVkKGA5sB8Z3qlqZKRMRyQsNtTuYHH2dFyuXcEKWJlyoGD6KdufHNe/MSntHa+c7r7PtybuY+P4fmUkjrS7E+mGn4Zl+CZM/eAHTSstzGp+IZFfblEuY+tqtvLXmr5x0ysJchyMy5PV1iODDwCLgGTObDASAPcAK4Ddm9kPSk1xMAl7q475ERLLm7f95iBpzjJhzWdbaDAV8bLcwntbdvVfOsnh7hDef+jWBV3/F1PZXqXBeXi2cz3vVVzLtQ5dTU1g84DGJyMCYdOaniL76XRr/9nNQgiWSc31NsO4F7jWzdUAMuCbTm/WGmT0IvAkkgBuOxRkEE/EYKQeBQCDXoYhIlvn//md2UcGJMxdktd1GTzmh6MAlWE31taxf8SMmbb6PahrZxiieO/4GPnD2ddRUThiwOEQkd0rDFawJL2TqnidoaqhnWJl6qUVyqU8JlnMuBlzdw7rvAt/tS/u5turB7zHq7d/Retb3mHHq+bkOR0SyJBZpYXLLy6wZfiGjsny/QktgOGNjW7LaZnd2bvk7m/94OzN3Pcx8a+e1UA1b511P1YcupdLr7ff9i0h+CS/6IsMefoIX/vtHfPBT38l1OCJDWp8fNDyYFYyaROjvrUx8/CrefGYG7ad8lhkf/jh+v3q0RI5lG1c9yQyLEZp+QdbbjheMJBxdk/V293l33UrqH/83qpueogJjbfjDVJz9VWbOmNdv+xSR/Ddx1hm89lgNU95ZRlPTPzFsWDjXIYkMWUqwDqH6rI8RPfVCXn7kx4zb+EvGrvwye1Z+i03Dz6R41mWcNPcsfIFQrsMUkSPUvOE5ks6YUvPhrLftLR1DSUMbkdYWCoqyc9+TS6V4829/JPX8j6mKrmakC/HyqMVM/MhXmTP+xKzsQ0SOfUXnfJPyFZfywm9u4oPX35XrcIYEl0oBDpdygAPncJmf4HCZB6F1fSQ6XZ7NZ53KzaxjXZf/Gp3Krcv2ZGmiJskeJVi9CBWWMOdjN5OI38Srzz5AYu0DVNf+kYInf0/bE0HWF0ynZfhsCiurKD9hNqMnTMUfCA58oM6RiEVoj7TRHm0lFm0jHm0lHm0jEWsj0R4hGUu/XKyNVCyCS0RwsSgkIlgiCokonkQUTzKKJ9mOJxWHVAJcEk/HK4WRxOuSGCm8pMs8mZ9eknhI4SX9hWOdHve5bxlHp0eAZso6LXf9eXBZuqUjdXRfPu4otjuaZw0c3X4G7gu1x30dIoR+/3/nOr89sn2dQjubfRP5QGnZEW13OEIVlfAevL/tbT4wpW/TvycTcV57/BeUrv4J05Nvs4cwf5vwBaZf9GU+WD4ySxGLyGDxgZPP5MXnL2LuzvtZ9+IVzJiX/T8i5YNoNEJzQy2tTfVE9tYRa20gGWki2d6Gi7XiYm0QT7888TYsEcGbiOBNRvGm0tc35hJ4971I4nUJfC6JlwQ+kviI43NJPB3XKa7jmsRweK1rypSPKU7KdfeAdQ66MuuuTvcPbu+5ne6WDyq3w23r4DqPsIjZn/kJVZXDut1HvlGCdZh8fj/VZ18NZ19NW0sjr/zPCqJ//3+MqX+ZaVvvxbvNwcr0L/MeG0aDdzjN/uEkAqVYoIhUoJikrxC8fjzmweNJn6KplCPlHCTjWDKKJxXDknE8yXYs2Y4lY3hS7fiS7XhT7fhS7fhT7QRcOwEXw0+MoIsRJI7PHD6g6Ag/W8J5iBIghp+YBWm3AHELkjA/zrzg8eI8PhIWJIUXZx6ceUmZL/Peh/N4SJkX8OI8XjAPmCf9lxjo+OvKvq+nTOH+skxRl/VdtqFLWeftu1860NGlPUe+ydGkfu6oNj2ahNOO6jMd8YrDXN83nZP0jjJLl1jnCl3fYhhmjuKZF/VLXKXjp8Mr0Pjuq3CUCVZbcwNvPHonlRuWMdvVssXGsXLGrcy64B85taAwyxGLyGAy45p/Z/ePX2DUnz/NzrFPMjrPe7ldKkVTUwNNtdtoqXufaONO4k27cC278bTVEojuIRRvJJRsoSjVQrFrpdDaCQEjemm7zQWJWoAoIWIWJOYJkfQEMtc0IdrNh/P4SJmPlMefuZ7JlHn84PGBx4vtu56x/SkWmV4k16U3yZP+F8kMzNNx/XLw1UznvxB2/be88zWBdZS7Hso7/Rt40EWE67SbTK9aJpZ9xebc/ve4Hsu7tNld3K5T3Adu4zq/6f66wDp6+Q5Ms/bXLyiaSVmRv9vt85G5o7gg7C81NTVu1apVuQ7jiEVaW9i8YQ2tW9YS27MZb8sOCqO7KInvIZRqJeCiFLooIYsfsp2UM2L4MomOnzh+4hYgYQHingBJC5LwBkl4gqS8QZLeEM4bIuULgS8E/gLwhzBfAZ5AAeYP4Q0U4A0W4g0U4AsW4Q8W4g8VEggVEQgVEiwoIhQM4vPqwYQi2RBta8H3/fG8VHkNp372x0e07e7t7/LuH/8PU3f8jlLaWOebQfuczzPrrKvwauIKETlMm9a9xKjfXsRezzCSH3+Q4yZl52HqRyPa2sSe7e/QtPMdIrXvkWzcim/vNgojOwjHd1GWauj2+ijljAYrZa+njDb/MGK+UhKBUlLBYbhQGE9BGG9RGYHicgLFYQKFZQQKigkUFhEqLCFUUITfp34E6T9mtto5V9PtOiVYA8cl4yTiMeLJJPFECjPwewyf1/D6gnh8AY2jFRkE3v1ONXt9FVR//ele67pUirdXP0Xjc3dR3fQMHlKsKT6DwoVfZmrNov29wCIiR+Ctl59i5KNLCLg466ffyOxLvpz1+8ZdKknD7m3Uv/8OLbveJVb3HuzdRrD1fUqiOylP7iZMS5dtEs7DbqugwT+SttBokkWjseKR+EpHEQqPpqh8LKUjxjKsYgxeJUiSxw6VYOk3dwCZ14/f6+fY6eAUkaOxa/h8Tt75EHsbaykNdz+IpalhD2/95WeM2vgbTkxtodkV8Mqoj1J53lepOeGkAY5YRAabk+Z8mF0jn2Tbff/InDf/N7vf/L9sGXseJTMv4PjpHyRUcuhnZblknL31u6nbtY2W3ZuJ1m3FNW7F1/I+hZEdDIvvZnhqD+WWpHNLza6AWu9ImgKj2TVsJqnSSnzlx1E0YgJlY05g+NjjGBsIMrZ/P75ITqkHS0Qky9565f9x0oqLeHnSl5nzids6yqNtzWx47ne4db/jpL0vELI4G72TqDvp40w/dymlpeHcBS0ig5JLpVjzzEN4Xr6baZFXCFgSgDqG0eopJeItxmH4SEIqQSjVRqnbSymtB7UVd15qrZwG30haC0YTLxqLJ1xJYPgESkdNZPi4DxAuq1DPuwwJGiIoIjKAXCrFKz84n6rIy7w5+iIS3kIK699gQmQ9hdbOHoaxqeLDVJy+lEmzTs91uCIyRNTV17F59eNEt68jsPc9iDYSTLRgOJJ4weMj6S8iFigjWVCOFVZQEB5F4YjjCY+ZSMWo8fj9GocjAkqwREQG3J7aXWz8+T8yq/VveEixxXsce8pnUzTzYqZ98HxdpIiIiBzDdA+WiMgAGz5iFMO/9jDReBKPGZN9HibnOigRERHpd0qwRET6Uciv6dVFRESGEj38SEREREREJEuUYImIiIiIiGSJEiwREREREZEsyatZBM2sFngv13EcYDiwJ9dByIDR8R46dKyHDh3roUXHe+jQsR468vFYH++cG9HdirxKsPKRma3qaQpGGXx0vIcOHeuhQ8d6aNHxHjp0rIeOY+1Ya4igiIiIiIhIlijBEhERERERyRIlWL27O9cByIDS8R46dKyHDh3roUXHe+jQsR46jqljrXuwREREREREskQ9WCIiIiIiIlmiBEtERERERCRLlGAdgpmdZ2YbzGyTmd2U63gke8xsvJk9Y2ZvmtkbZvblTHm5mT1hZn/P/CzLdaySHWbmNbM1ZvbHzPJEM3sxc34/YGaBXMco2WFmYTN7yMzeMrP1ZvZBnduDk5ndmPkOX2dmy80spHN78DCze81st5mt61TW7blsaf+ROe6vmdnJuYtcjlQPx/r2zPf4a2b2BzMLd1r39cyx3mBm5+Yk6ENQgtUDM/MCdwLnA9OAj5nZtNxGJVmUAP7JOTcNmA/ckDm+NwFPOecmAU9llmVw+DKwvtPy94EfOedOBBqAT+ckKukP/w485pw7Cagmfdx1bg8yZjYO+BJQ45ybAXiBq9C5PZgsA847oKync/l8YFLmdR3w0wGKUbJjGQcf6yeAGc65mcBG4OsAmeu1q4DpmW1+krluzxtKsHo2F9jknHvHORcD7gcuznFMkiXOuR3OuVcy75tJX4CNI32Mf5Gp9gvgkpwEKFllZpXABcB/ZZYNOBN4KFNFx3qQMLNhwIeAewCcczHnXCM6twcrH1BgZj6gENiBzu1Bwzn3V6D+gOKezuWLgV+6tJVA2MzGDEig0mfdHWvn3OPOuURmcSVQmXl/MXC/c67dOfcusIn0dXveUILVs3HA1k7L2zJlMsiY2QRgNvAiMMo5tyOzaicwKldxSVb9GPgakMosVwCNnb64dX4PHhOBWuDnmSGh/2VmRejcHnScc9uBfwO2kE6smoDV6Nwe7Ho6l3XdNrgtBf6ceZ/3x1oJlgxpZlYM/A74inNub+d1Lv0MAz3H4BhnZhcCu51zq3MdiwwIH3Ay8FPn3GyglQOGA+rcHhwy995cTDqpHgsUcfAQIxnEdC4PDWb2TdK3dtyX61gOlxKsnm0HxndarsyUySBhZn7SydV9zrnfZ4p37RtSkPm5O1fxSdYsAC4ys82kh/qeSfoenXBmWBHo/B5MtgHbnHMvZpYfIp1w6dwefM4C3nXO1Trn4sDvSZ/vOrcHt57OZV23DUJmtgS4EPiE2//w3rw/1kqwevYyMCkzG1GA9M10K3Ick2RJ5h6ce4D1zrkfdlq1Argm8/4a4JGBjk2yyzn3dedcpXNuAunz+Gnn3CeAZ4DLM9V0rAcJ59xOYKuZTckUfRh4E53bg9EWYL6ZFWa+0/cda53bg1tP5/IK4FOZ2QTnA02dhhLKMcjMziM9vP8i51xbp1UrgKvMLGhmE0lPbPJSLmLsie1PBuVAZvYPpO/d8AL3Oue+m9uIJFvM7DTgOeB19t+X8w3S92E9CBwHvAdc6Zw78AZbOUaZ2ULgq865C83sBNI9WuXAGuBq51x7DsOTLDGzWaQnNAkA7wDXkv6Dos7tQcbMvg0sJj18aA3wGdL3YujcHgTMbDmwEBgO7AK+BTxMN+dyJsm+g/Qw0TbgWufcqhyELUehh2P9dSAI1GWqrXTOfS5T/5uk78tKkL7N488HtplLSrBERERERESyREMERUREREREskQJloiIiIiISJYowRIREREREckSJVgiIiIiIiJZogRLREREREQkS5RgiYiIiIiIZIkSLBERERERkSz5/0dkDcpYe3JuAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -4903,31 +4903,31 @@ " 51\n", " True\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " bAP.soma.v\n", " 0.00168\n", - " 0.000482\n", + " 0.00105\n", " \n", " \n", " 52\n", " True\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step1.soma.v\n", - " 0.00176\n", - " 9.33e-06\n", + " 0.00105\n", + " 0.000202\n", " \n", " \n", " 53\n", " True\n", " 7\n", - " 0.0847\n", - " 0.0447\n", + " 0.0589\n", + " 0.0664\n", " Step3.soma.v\n", - " 0.0022\n", - " 5.53e-05\n", + " 0.00163\n", + " 0.000394\n", " \n", " \n", "\n", @@ -4935,14 +4935,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "51 True 7 0.0847 0.0447 bAP.soma.v \n", - "52 True 7 0.0847 0.0447 Step1.soma.v \n", - "53 True 7 0.0847 0.0447 Step3.soma.v \n", + "51 True 7 0.0589 0.0664 bAP.soma.v \n", + "52 True 7 0.0589 0.0664 Step1.soma.v \n", + "53 True 7 0.0589 0.0664 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "51 0.00168 0.000482 \n", - "52 0.00176 9.33e-06 \n", - "53 0.0022 5.53e-05 " + "51 0.00168 0.00105 \n", + "52 0.00105 0.000202 \n", + "53 0.00163 0.000394 " ] }, "metadata": {}, @@ -4950,7 +4950,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcdb34/9d7+vbN9prdTSWVACGAEJpKUQERpVxEylV+2EVFvepV9H691wtc8VIUC1cUMHQBRUGKoUlLSAgJIX2T3WSz2d6nf35/nLObSbIt2dmdndn38/EYmDnlc97TNvM+n8/nfcQYg1JKKaWUUkqpsXMkOgCllFJKKaWUShWaYCmllFJKKaVUnGiCpZRSSimllFJxogmWUkoppZRSSsWJJlhKKaWUUkopFSeaYCmllFJKKaVUnGiCpZRSk4SIVIuIERFXomNJdSJylYi8kug4JhsRWS4imxIdh1JKJTNNsJRSSiU1EblRREIi0h1z+1ai40pGxpiXjTFz492uiJwpIm+LSKeIbBeRa+N9DKWUmiw0wVJKqTjRnqeEetAYkxlzuynRAcVTMn+2RMQN/An4FZADXAL8TESOTmhgSik1TjTBUkqpMRCRWhH5toisA3pExCUiJ4rIP0WkXUTeEZHTY7ZfKSL/JSJv2mfznxCRvCHavlpENopIl33W//87aP0FIrLWbmebiJxjL88RkbtFpEFEdovI/xMR5wjPY6aIvCAiLSLSLCL3i0huzLpWETnWflwmIk39z0tEzheRDfbzXSki8w56fb4pIutEpENEHhQR3+G/0odPRL5jvy5dIvKeiFw4xHYiIreKyD77tXxXRBba67wicouI7BKRRhG5S0TSRnn8e+ztn7VjeFFEqmLW/6+I1NnHXC0iy2PW3Sgij4jIfSLSCVwlIstE5DX7dW4QkTtExBOzjxGRL4jIFvt4/2G/d/+0j/FQ7PZDxHy6iNSP5vkdhjwgG7jXWN4CNgLz43wcpZSaFDTBUkqpsbsM+CiQCxQDTwH/D+uH5TeBR0WkMGb7zwDXAKVAGLhtiHb3AR/D+nF6NXBrTJKzDPgDcIN93FOBWnu/e+x2ZwHHAGcBnx3hOQjwX0AZMA+oBG4EMMZsA74N3Cci6cDvgN8bY1aKyBxgBfA1oBD4K/Dng37IXwycA9QAi4GrBg1A5BQ7eRjqdsoIz+Fg24DlWL0mP7LjLx1ku7OwXr859rYXAy32up/ay5dgvZ7lwA8OI4bLgf8ACoC1wP0x696y280D/gg8fFDyeQHwCNb7ez8QAa632zoJ+CDwhYOOdzZwHHAi8C3g18Cnsd7PhVif1SNmJ8pDvT+/GGwfY0wj1mfkahFxishJQBWgc+CUUqnJGKM3velNb3o7whtWUnNNzONvY52pj93mGeBK+/5K4Kcx6+YDQcAJVAMGcA1xrMeBr9r3fwXcOsg2xUAASItZdhnwj8N8Xh8H1hy07EngXWAd4LWX/TvwUMw2DmA3cHrM6/PpmPU3AXfF+T240X4N22NuZYNstxa4wL5/FfCKff9MYDNWUuKI2V6AHmBmzLKTgB2jjOse4IGYx5lYSVLlENu3AUfHPKeXRmj/a8CfYh4b4OSYx6uBb8c8/h/g5yO0eTpQH8/3x273PKARK/EPA5+L9zH0pje96W2y3LQHSymlxq4u5n4V8KnYM/vAKVi9VYNtvxNwY/VKHEBEzhWR1+3hee3AR2K2q8TqoTlYld1eQ8zxfwUUDfcERKRYRB6whxR2AvcNEtNvsHpBbjfGBOxlZfZzAMAYE7WfX3nMfntj7vdiJRrx9pAxJjfmtkdEPiPWEMr+12Ehg7zOxpgXgDuAO4F9IvJrEcnG6pFLB1bHtPG0vXy0Bt5rY0w30Ir1mmEPndxoD51sx+o9KxhsX3v7OSLyFxHZa79H/znI82mMud83yOPxeO2HJSJHAQ9g9dx6gAXAt0TkoxMdi1JKTQRNsJRSauxMzP06rB6s2B/7GcaYn8ZsUxlzfzoQAppjGxQRL/AocAtQbIzJxRp+JzHHmTlILHVYPVgFMcfPNsYsGOE5/Kf9PBYZY7KxhpX1HwsRyQR+DtwN3Cj7543twUrq+rcT+/ntHuF4hxCrRHj3MLflI7cy0FYVVkL4JSDffv3Wxz6nWMaY24wxx2H1KM7BGnrZjJWULIh5LXOMMYeTpAy81/ZrmAfssZ/Lt7CGI06z4+s4KL7YzxXAL4H3gdn2e/TdoZ7PeBFrrt1Q789dQ+y2ENhsjHnGGBM1xmzCGkZ77sRFrpRSE0cTLKWUiq/7gPNE5Gx7vonPLhxQEbPNp0Vkvj2f6cfAI8aYyEHteAAv0ASEReRcrLlC/e7GmtPyQRFxiEi5iBxljGkA/g78j4hk2+tmishpI8SdBXQDHSJSjpVgxPpfYJUx5rNYP477f0w/BHzUjsMNfAMrwfvnSC/UwYxVIjxzmNvLh9FcBlaC0gRWwRCsH/qHEJHjReQEO/4ewA9E7d6432DNfSuyty0XkbNj9jUSU8RkEB+x55Z5sOZivW6MqcN6vcN2fC4R+QHWXLvhZAGdQLfdK/T5EbaPO2PMgmHen+uG2G0NMFusUu0iIjOx5haum7jIlVJq4miCpZRScWT/eL4Aq3ehCatH6QYO/Ht7L9b8nL2AD/jKIO102csfwpqb8y9Yc6D617+JXfgCq+fjRfb3JPUPxXrP3vcRDhyiOJgfAcfabT0FPNa/QkQuwCpS0f+D/uvAsSJyud0b8Wngdqwen/OA84wxwRGON66MMe9hzTl6DWuY3CLg1SE2z8ZKpNqwhju2ADfb674NbAVet4flPQfMBRCRSqALa17aUP4I/BBraOBxWK8VWPPynsaa+7UTK6mrG6yBGN/E+hx02fE+OML2k4KxiqRcg1XMpRPrs/oo8NtExqWUUuNFjDl4BIJSSqnxIiIrgfuMMfrjMsmJyKexhg/+2xDr78EqGPH9CQ1MKaVUQiXthQuVUkqpRDLG3JfoGJRSSk0+OkRQKaWmCLEuens4xQlUChKR7w7xOfhbomNTSqlUoEMElVJKKaWUUipOtAdLKaWUUkoppeJkUs3BKigoMNXV1YkOQymllFJKKaWGtXr16mZjzCEXn59UCVZ1dTWrVq1KdBhKKaWUUkopNSwR2TnYch0iqJRSSimllFJxogmWUkoppZRSSsWJJlhKKaWUUkopFSeTag7WYEKhEPX19fj9/kSHoiYBn89HRUUFbrc70aGoFPTOq3+l9eW7mfuvv6asMD/R4SillFIqCU36BKu+vp6srCyqq6sRkUSHoxLIGENLSwv19fXU1NQkOhyVgvyv3sUZ/hf55yP/Ttnnf5HocJRSSimVhCb9EEG/309+fr4mVwoRIT8/X3sz1bhx+NsBqNj3j8QGopRSSqmkNekTLECTKzVAPwtqvBhjKIvsAWC62UPL7m0JjkgppZRSySgpEiw1NL/fTzDQl+gwlEp63T3dlNLM2vQPAFC37sUER6SUUkqpZKQJ1iiICN/4xjcGHt9yyy3ceOONiQvIFo5EOfuM5ax74TGi0cig23z84x/nxBNPPGDZjTfeSHl5OUuWLGHhwoU8+eSTExGuUpNa+77dOMQQqvkgIeOkZ9faRIeklFJKqSSkCdYoeL1eHnvsMZqbm+ParjGGaDR6xPv7Q2FEDADBrpZD1re3t7N69Wo6OjrYvn37Aeuuv/561q5dy8MPP8w111wzpjiUSgWB3k4A3Jl51Lumk9m6IcERKaWUUioZaYI1Ci6Xi2uvvZZbb731kHVNTU1cdNFFHH/88Rx//PG8+uqrgNVLdMsttwxst3DhQmpra6mtrWXu3Ll85jOfYeHChdTV1XHDDTewcOFCFi1axIMPPgjAypUrOf300/nkJz/JUUcdxeWXX44x5oBjRwPdANz76FMsO/l0Fi5cyJtvvjmw/rHHHuO8887j0ksv5YEHHhj0uc2bNw+Xy3VA8vid73yH+fPns3jxYr75zW8CUFtby5lnnsnixYv54Ac/yK5duwC46qqr+PznP8+JJ57IjBkzWLlyJddccw3z5s3jqquuGmjz85//PEuXLmXBggX88Ic/PCSOjo4OqqqqBhK9np4eKisrCYVCQ7wrSsVXONALgMObQUvWXMoDWxMckVJKKaWS0aQv0x7rR3/ewHt7OuPa5vyybH543oIRt/viF7/I4sWL+da3vnXA8q9+9atcf/31nHLKKezatYuzzz6bjRs3DtvWli1b+P3vf8+JJ57Io48+ytq1a3nnnXdobm7m+OOP59RTTwVgzZo1bNiwgbKyMk4++WReffVVTjnllIF2ouEgAF19Qd7++4P8c0sr11xzDevXrwdgxYoV/OAHP6C4uJiLLrqI7373u4fE8sYbb+BwOCgsLASgpaWFP/3pT7z//vuICO3t7QB8+ctf5sorr+TKK6/k//7v//jKV77C448/DkBbWxuvvfYaTz75JOeffz6vvvoqv/3tbzn++ONZu3YtS5Ys4Sc/+Ql5eXlEIhE++MEPsm7dOhYvXjwQR05ODkuWLOHFF1/kjDPO4C9/+Qtnn322Xu9KTZiIvwcAhzedcNEiCtqfpnnvLgpKpic4MqWUUkolE+3BGqXs7Gw+85nPcNtttx2w/LnnnuNLX/oSS5Ys4fzzz6ezs5Pu7u5h26qqqhqYF/XKK69w2WWX4XQ6KS4u5rTTTuOtt94CYNmyZVRUVOBwOFiyZAm1tbUHNmT39nziExfhIszyk0+is7OT9vZ2Ghsb2bJlC6eccgpz5szB7XYPJF4At956K0uWLOGb3/wmDz744EB1vpycHHw+H//6r//KY489Rnp6OgCvvfYa//Iv/wLAFVdcwSuvvDLQ1nnnnYeIsGjRIoqLi1m0aBEOh4MFCxYMxPzQQw9x7LHHcswxx7Bhwwbee++9Q16XSy65ZKAH74EHHuCSSy4Z9nVUKp7CQSvBcvkyyaw6FoDG998cbhellFJKqUMkVQ/WaHqaxtPXvvY1jj32WK6++uqBZdFolNdffx2fz3fAti6X64B5TbHXbsrIyBjV8bxe78B9p9NJOBw+cAO7sIV4rCQoZA9xEhEeeugh2traBi7I29nZyYoVK/jJT34CWHOw+of/HRz3m2++yfPPP88jjzzCHXfcwQsvvDCqOB0OxwExOxwOwuEwO3bs4JZbbuGtt95i2rRpXHXVVYNey+r888/nu9/9Lq2traxevZozzzxz2OMqFU/RgJ1geTMoql4Ez0Jv3Rrgk4kNTCmllFJJRXuwDkNeXh4XX3wxd99998Cys846i9tvv33g8dq1awGorq7m7bffBuDtt99mx44dg7a5fPlyHnzwQSKRCE1NTbz00kssW7ZsdAEZK8F6/Mm/APDyiyvJyckhJyeHFStW8PTTTw/M+1q9evWQ87BidXd309HRwUc+8hFuvfVW3nnnHQA+8IEPDOx///33s3z58tHFiJXcZWRkkJOTQ2NjI3/7298G3S4zM5Pjjz+er371q3zsYx/D6XSO+hhKjZUJWicoXN4M8vILaCQfmrckOCqllFJKJZuk6sGaDL7xjW9wxx13DDy+7bbbBuZnhcNhTj31VO666y4uuugi/vCHP7BgwQJOOOEE5syZM2h7F154Ia+99hpHH300IsJNN91ESUkJ77///oixiIliENLT01ly1mWEwlF+94f7qK2tZefOnQeUZ6+pqSEnJ4c33nhj0LY+8pGP8Nvf/hYR4YILLsDv92OM4Wc/+xkAt99+O1dffTU333wzhYWF/O53vxv1a3b00UdzzDHHcNRRR1FZWcnJJ588sO4HP/gBS5cu5fzzzwesYYKf+tSnWLly5ajbVyoe+hMsT1omAE3e6WT3DH5iRCmllFJqKHJwZbpEWrp0qVm1atUByzZu3Mi8efMSFNHk1rlnC2kSwF26kJ49m3BJBG/p/ESHNe70M6HGw+o//ojjNv+M5i9vpyA/nzfu/FcW7HuKjB/uQRza2a+UUkqpA4nIamPM0oOXj/lXg4hUisg/ROQ9EdkgIl+1l98oIrtFZK19+8hYj6UOJEQx9lsYdvpwmyAYvZ6VUkck1N+DZc+RLJhNpvTR1LArgUEppZRSKtnE47RsGPiGMWY+cCLwRRHp70a51RizxL79NQ7HUjEcJooRe56Sy4cDQzR0aPEIpdQohHoJGDc+jweAjDKrl3TfjnWJjEoppZRSSWbMCZYxpsEY87Z9vwvYCJSPtV01MgdRjFhvocOTBkA40JfIkJRKWo5wH314cDutSxYUzlgEQM/u4a9rp5RSSikVK64TC0SkGjgG6K+k8CURWSci/yci0+J5rKnOGIOT/T1Ybq+VYEW0B0upI2IlWN6Ba8IVlVbTbdKgeXOCI1NKKaVUMolbgiUimcCjwNeMMZ3AL4GZwBKgAfifIfa7VkRWiciqpqameIWT8qLG6sHC7sHyuF0EjRPCmmApdSQc4T4Csv86buJwsMdVQUbX9gRGpZRSSqlkE5cES0TcWMnV/caYxwCMMY3GmIgxJgr8Bhj04k7GmF8bY5YaY5YWFhbGI5wpIWoMDsxAguUQISQeHJFggiNTKjk5I3345cALhrdn1FDo35mgiJRSSimVjOJRRVCAu4GNxpifxSwvjdnsQmD9WI+VSI8//jgiMuz1qWpra1m4cGHcjnnVVVfxyCOPDLrOGMPXf3gTMxctIxq1KgdGHB7uf+BhCgsLWbJkCfPnz+c3v/lN3OJRKpU5I35CMT1YAOFpsyimBX93e2KCUkoppVTSiUcP1snAFcCZB5Vkv0lE3hWRdcAZwPVxOFbCrFixglNOOYUVK1YMuj4cDo/5GJFIZNTbhsNh/vT0P6goL+PFF18EwDi9ODBcfPGnWLt2LStXruS73/0ujY2NY45NqVTnjAYJi+eAZZ6SuQA0bE/q80NKKaWUmkDxqCL4ijFGjDGLY0uyG2OuMMYsspefb4xpiEfAidDd3c0rr7zC3XffzQMPPDCwfOXKlSxfvpzzzz+f+fOtyvThcJjLL7+cefPm8clPfpLeXuvaOs8//zzHHHMMixYt4pprriEQCABQXV3Nt7/9bY499lgefvjhQ4793HPPsXTpUubMmcNf/vKXgeUvrvwHC+bO5HPXXDmQ9InbGt5kIlayV1RUxMyZM9m5c/8Qp9tuu4358+ezePFiLr30UgBaW1v5+Mc/zuLFiznxxBNZt84qS33jjTdy5ZVXsnz5cqqqqnjsscf41re+xaJFizjnnHMIhUIA/PjHP+b4449n4cKFXHvttRx88epoNEp1dTXt7e0Dy2bPnq2Jn5pUnNEgEceBCVbudKtHun2XJlhKKaWUGh1XogM4LH/7Dux9N75tliyCc3867CZPPPEE55xzDnPmzCE/P5/Vq1dz3HHHAfD222+zfv16ampqqK2tZdOmTdx9992cfPLJXHPNNfziF7/gS1/6EldddRXPP/88c+bM4TOf+Qy//OUv+drXvgZAfn4+b7/99qDHrq2t5c0332Tbtm2cccYZbN26FZ/Px0MPPshlF5zN2R/7KDf+5CZCoRBOO8GKRq2esO3bt7N9+3ZmzZo10N5Pf/pTduzYgdfrHUh4fvjDH3LMMcfw+OOP88ILL/CZz3yGtWvXArBt2zb+8Y9/8N5773HSSSfx6KOPctNNN3HhhRfy1FNP8fGPf5wvfelL/OAHPwDgiiuu4C9/+QvnnXfewDEdDgcXXHABf/rTn7j66qt54403qKqqori4+PDeK6XGkTMaIup0H7CsvGY+ESOEGrWSoFJKKaVGJ65l2lPVihUrBnp7Lr300gOGCS5btoyampqBx5WVlZx88skAfPrTn+aVV15h06ZN1NTUMGfOHACuvPJKXnrppYF9LrnkkiGPffHFF+NwOJg9ezYzZszg/fffJxgM8swzz/Dxc84gOzeHE044gWeeeQa310cUePSxx1myZAmXXXYZv/rVr8jLyxtob/HixVx++eXcd999uFxWfv3KK69wxRVXAHDmmWfS0tJCZ2cnAOeeey5ut5tFixYRiUQ455xzAFi0aBG1tbUA/OMf/+CEE05g0aJFvPDCC2zYsOGQ53HJJZfw4IMPAvDAAw8M+5yVSgSnObQHKy09nQZHMe72bQmKSimllFLJJrl6sEboaRoPra2tvPDCC7z77ruICJFIBBHh5ptvBiAjI+OA7fuvoTPU48Ec3MZI7T3zzDN0dHSw6IMXYxwu+vr8pKWl8dGPfpQITi46/1zu+r/7Bm3vqaee4qWXXuLPf/4zP/nJT3j33eF7BL1ea9K/w+HA7XYPxONwOAiHw/j9fr7whS+watUqKisrufHGG/H7Dy0Vf9JJJ7F161aampp4/PHH+f73vz/scZWaaG4TJHpQggXQ7J1Obq9WElRKKaXU6GgP1ggeeeQRrrjiCnbu3EltbS11dXXU1NTw8ssvD7r9rl27eO211wD44x//yCmnnMLcuXOpra1l69atANx7772cdtppozr+ww8/TDQaZdu2bWzfvp25c+eyYsUKbr/9NmrfeIotG95hx44dPPvss/T19RHBhZjooG1Fo1Hq6uo444wz+O///m86Ojro7u5m+fLl3H///YA1r6ygoIDs7OxRxdefTBUUFNDd3T1k1UMR4cILL+TrX/868+bNIz8/f1TtKzVRXCaEcXoPWd6XXUNJeDcmOvoiNEoppZSaujTBGsGKFSu48MILD1h20UUXDVlNcO7cudx5553MmzePtrY2Pv/5z+Pz+fjd737Hpz71KRYtWoTD4eC6664b1fGnT5/OsmXLOPfcc7nrrruIRqM8/fTTnPXhDwPWxVAzMjI45ZRT+POf/0zU4bIuQBxTaOKzn/0sq1atIhKJ8OlPf5pFixZxzDHH8JWvfIXc3FxuvPFGVq9ezeLFi/nOd77D73//+1G/Prm5uXzuc59j4cKFnH322Rx//PED6+666y7uuuuugceXXHIJ9913nw4PVJOS24QwzkN7sKRgDmkSpGm3XnBYKaWUUiOTgyu+JdLSpUvNqlWrDli2ceNG5s2bl6CIJq/O9laye3cSnjYLV1rWwPKO5r3kBBuIFs7H4T70bHwq0M+EGg/+Gwt5s+ATnPqlXx2wfP2rT7Hw2X9hw5n3sODUC4fYWymllFJTjYisNsYsPXi59mAlKWMPAxTHgW+h2ElVJNg34TEplbSMwU0IXIeelCiqWQRA7573JjoqpZRSSiUhTbCSVX+CJQe+hS5PGgCR0KGFJpRSQ4iGcWIGTbAKSyroMmmY5q0JCEwppZRSySYpEqzJNIxx0hiiB8vj8RAxDkyKJlj6WVDjwYTt74vTd8g6cThocFeS3rVjgqNSSimlVDKa9AmWz+ejpaVFf1gfzH49Di7j7nQIQXEjkUAiohpXxhhaWlrw+Q79EazUWATsapjiPrTIBUBHehWFgV0TGZJSSimlktSkvw5WRUUF9fX1NDU1JTqUSaWvq520SCe0e+CgYYL+jibcJoSzbfBy7cnM5/NRUVGR6DBUign6+/AB4ho8eQ9Pm0Vx57P0dXeSljm6SxgopZRSamqa9AmW2+2mpqYm0WFMOn/75bc4t/FX8L294E47YN1f7/wNH2m6G767BzxDX8RYKWUJ2kVhHIPMwQLwlMyFnbBn+7vMXHzyRIamlFJKqSQz6YcIqsE5IvackUHOuEvBbAD69m6eyJCUSlpBv51geQbvwcqbPh+A9l1aSVAppZRSw9MEK1mFAwRxw0FzsAAyy44CoKl2/URHpVRSCgWtExbOIa4dV1qzgKgRQo2bJjIspZRSSiUhTbCSlDPiJyiDT8gvqrbOtvc2vD+RISmVtMIDCdbgPVi+9Ez2Ogpxt2+byLCUUkoplYTGPcESkXNEZJOIbBWR74z38aYKRzRAaIgEq6qkgN2mAJq3THBUSiWnUMAaIugaYoggQLO3ipzenRMVklJKKaWS1LgmWCLiBO4EzgXmA5eJyPzxPOZU4YwECMngw5l8bie7neWkd+p1e5QajcgIQwQBerNrKA3XE42kXnVOpZRSSsXPePdgLQO2GmO2G2OCwAPABeN8zCnBGQ0QdgzegwXQnl5NQbBu4HpZSqmhhe0Lc7u96UNuIwWzyZAA+/boiQullFJKDW28E6xyoC7mcb29bICIXCsiq0RklV7ravRc0QBhx9Bn28O5M0k3fZiuvRMYlVLJqb8Hy+0d+juVWTYP0OIxSimllBpewotcGGN+bYxZaoxZWlhYmOhwkoYrGhw2wXIVzwGgrU7LSis1kqjdg+XypA25TfGMRQD07tbvlFJKKaWGNt4J1m6gMuZxhb1MjZHbBIgMk2DlVlpT3dp2bZiokJRKWlH7QsOetKEvzJ1fMp1Ok440a6l2pZRSSg1tvBOst4DZIlIjIh7gUuDJcT7mlOAxQaLOoROs8qpZ9BkPwUa92LBSIzEhO8HyDZ1gicNBvbuarE6tzqmUUkqpoY1rgmWMCQNfAp4BNgIPGWO0SyUO3CZI1Dl0SenSnHRqKcXVptftUWpEAwnW0EUuADqyZlEWrNXiMUoppZQa0rjPwTLG/NUYM8cYM9MY85PxPt5UYIzBS5Coa+geLIdDaPJUkN1TO3GBKZWs7DlYvmGGCAKYwqPIoZvWxrpht1NKKaXU1JXwIhfq8IUiBi8hcA3dgwXQkzWDgvBeCAcmKDKlkpMJ9+E3bpxO57DbZVZahS4atrw9EWEppZRSKglpgpWE/OEIPoKYYYYIApj8WTiJEmzePkGRKZWcHOE+AjL0deX6lc45FoDuXevGOySllFJKJSlNsJJQIBS1e7CGHiIIkFYyF4AWvW6PUsOSkJ8Aw3+fAAqKymklG2l+fwKiUkoppVQy0gQrCQVCIbwSQtxDX7MHIL96IQCd9RsnIiylkpZE/ARl5ARLRGjw1JDTtXUColJKKaVUMtIEKwkF/FbFM3EPP0RwRkUp+0wukSYt1a7UcJwRP6FRJFgA3TmzqQjtJBqJjnNUSimllEpGmmAloWBfL8CIPViZXhf1jnJ8nTsmIiylkpYz6ifkGHkOFoCjeB4Z4qdhl14PSymllFKH0gQrCQUCVoLl8g6fYAG0Z9RQ6N+h1+1RahiuSICQY/ge4X7ZVUsA2Ld19ThGpJRSSqlkpQlWEvL3dgPg8g5/UVSAQN5cskwPkc6G8Q5LqaTligaIjFCVs1/5UUuJGiFQt3Z8g1JKKaVUUtIEKwkF/VYPlmcUPVi+sgUANG1bM64xKZXMPMZPxDG6OViZWbnUOcpIa9HqnEoppZQ6lCZYSSjst3qwPOnZI26bX3M0AB073x3XmJRKZm4TJOIa+YRFv8aMuRT3avEYpZRSSh1KE6wkFOnrBEaXYFVXVdFksok0vjfeYSmVtLwmgHGOrgcLIFS4kBLTRFdb4zhGpZRSSqlkpAlWEor4uwDwZuSOuG22z81Ox3Qy2rXimVJD8ZoA5jB6sDKqjwOgbsPr4xWSUkoppZKUJljJKNCfYI3cgwXQmjGTwoBWElRqMCYaxUcQM8JlD2JVzj8RgO5arSSolFJKqQNpgpWMAtYcLPFmjWrzYN5c0k0f0fa68YxKqaTk7+vBLRGintF9nwDyC0tooBBX47pxjEwppZRSyWhMCZaI3Cwi74vIOhH5k4jk2surRaRPRNbat7viEq0CQEJWDxaezFFt77UrCbbseGe8QlIqafV0tALgSMs5rP0a0udS2L1pPEJSSimlVBIbaw/Ws8BCY8xiYDPwbzHrthljlti368Z4HBXDEewhhAtco5uUXzjDqiTYXqtn25U6WE9XGwDOw0ywAgULqTR76O5sHY+wlFJKKZWkxpRgGWP+bowJ2w9fByrGHpIaiTPUTZ+kgciotp8xvYK9ZppWElRqEP4uK0FyZxxegpVWsxSAundfjXtMSimllEpe8ZyDdQ3wt5jHNSKyRkReFJHlQ+0kIteKyCoRWdXU1BTHcFKXK9yDX0Y/IX+gkmCHVhJU6mCBng4APKOoyhmravFpAHRu/We8Q1JKKaVUEhsxwRKR50Rk/SC3C2K2+R4QBu63FzUA040xxwBfB/4oIoOWvDPG/NoYs9QYs7SwsHDsz2gKcIV7CDrTD2uf9syZFPprIRodn6CUSlKh3nYAfJnTDmu/aflF1EoFvr1aSVAppZRS+7lG2sAY86Hh1ovIVcDHgA8aY9UBN8YEgIB9f7WIbAPmAKvGGrACT6SXkDfjsPYJFxyFr+sxwq21uApmjFNkSiWfSK/Vg5WWdXgJFkBjzmLmtL+MiUYRhxZlVUoppdTYqwieA3wLON8Y0xuzvFBEnPb9GcBsYPtYjqX280Z6iLhHV0GwX1r5QgCatq8dh4iUSl7RPivBSs/OO/ydK5cxjS7qt62Pc1RKKaWUSlZjPeV6B5AFPHtQOfZTgXUishZ4BLjOGKOltuIgHImSYzoJew/vx2CxXUmwc6dWElQqlvF3ApCZmXvY+xbPt6aX7t3wUjxDUkoppVQSG3GI4HCMMbOGWP4o8OhY2laD6/SHyZdOutPyD2u/GRWl1JsCzD6tJKjUAYJd9BgfGa7D/3M4fc4xdJJOdNeb4xCYUkoppZKRThpIMh2dHWRIADIOL8FK8zipc1WTqZUElTqAo6+VLkfWke3rdLLTN4/Cdr2It1JKKaUsmmAlma7WRgAcWUWHvW975iyKgrsgEop3WEolLW+glW7X4Re46NdTdBzVkZ10tOllJpRSSimlCVbS6W5pACAtp/iw940WzsNDmGCT9mIp1S891EbAcwQFLmwZc0/HIYZdbz8bx6iUUkoplaw0wUoyfe1WD1ZWQclh75tRuQiAfVvXxjMkpZKWMYasaDvhw5zTGGvmMafjN276trwYv8CUUkoplbQ0wUoygc59AOTklx32vmUzFxMxQnedVhJUCqCtJ0genUjGkV/kPD09gy3eBRQ0vRHHyJRSSimVrDTBSjLSuQcAZ/bh92BVl+RTSynStDHeYSmVlPY1N+GVMK7sw5/TGKuz5ERmRHbQ2dIYp8iUUkoplaw0wUoyaT11tEkueDIOe1+Py8EedzU5XVvjH5hSSai9yTphkZZ7+HMaY+XOPxOAbaueGXNMSimllEpummAlmay+3bR7D394YL/O7NkUhvZAqC+OUSmVnLpbdgOQeQRDbmPNPuY0eo2X4Fadh6WUUkpNdZpgJZFAOEJRZC+BzMojbkOK5uEkSl+DDhNUKthaB0BOSc2Y2vF4fWzzLaCo5a14hKWUUkqpJKYJVhKpa2qnlBZkWtURt5E1fTEATVpJUCmk0+rB8kw78pMW/XrKPkBNdCfNjbvH3JZSSimlkpcmWEmkafs6XBLFW77wiNuomLmAgHHRu/vdOEamVHJy9+yhWzLAmznmtgoWfRCAHaueHnNbSimllEpemmAlkc4dqwEomrPsiNuYXpjDDspwNr8fr7CUSloZfY20ucZWQbBfzeLldJJOdOs/4tKeUkoppZKTJlhJxNm4jl7SSC+Ze+RtOIS93hqmdWslQaVyw/vo9Y2tgmA/p8vNlvTjqG5/DYyJS5tKKaWUSj6aYCWJUCTK9K417M6YD46xvW09uXMoiOwDf2ecolMq+fhDEQpNC8GM0vi1WXU6xaaZPTrHUSmllJqyxvRLXURuFJHdIrLWvn0kZt2/ichWEdkkImePPdSp7d2Nm5jDLqIzzhhzW47i+QB0160fc1tKJaumtg4KpBOyK+LW5vRl5wGwe9Wf49amUkoppZJLPHqwbjXGLLFvfwUQkfnApcAC4BzgFyLijMOxpqx9bz0CQMXx5425rdwqu5LgjjVjbkupZNW2txYAd97YKwj2q6yZyw6pJG2nzsNSSimlpqrxGiJ4AfCAMSZgjNkBbAWOvDLDFBcIR6jY+Tj17hoyKo8ec3vTZxyF37jp26OFLtTU1b1vJwAZhUd+2YPBNBSezJy+dfh7dAiuUkopNRXFI8H6koisE5H/E5Fp9rJyoC5mm3p7mToCr73wFxayFf/iK0BkzO2VTctgJ6U427bFITqlklOwdRcAucXVcW03Y/7ZeCTM5jeeimu7SimllEoOIyZYIvKciKwf5HYB8EtgJrAEaAD+53ADEJFrRWSViKxqamo63N1TXl8gRP5rP6FNcplx1nVxaVNEaPJOJ6dnR1zaUyoZmXbrgsCZRfEbIggw98Rz6TQZBN/5U1zbVUoppVRycI20gTHmQ6NpSER+A/zFfrgbiP3VUmEvG6z9XwO/Bli6dKnWNj7Iy3d/i7PMJradfAvTvBlxa7cnawaFLf+EcABc3ri1q1SycPU00EEWOZ74fa8AfL401uWeyryOlQT8vXh96XFtXymllFKT21irCMbWN74Q6C9L9yRwqYh4RaQGmA28OZZjTUXPPXgHH2r8HRsKP8LMD302vo0XzMZJFH+jXg9LTU3p/r20xukiwwfzLrmILPp475UnxqV9pZRSSk1eY52DdZOIvCsi64AzgOsBjDEbgIeA94CngS8aYyJjPNaUEQyFee43/8aZ732fbemLOeqzv43L3KtY6WXzANhX+25c21UqWeQE99Edp4sMH2z+yefRRhasuX9c2ldKKaXU5DXiEMHhGGOuGGbdT4CfjKX9qejdN/8Bz3yPD0U2sGHamcz7/P04vPEfYlQ0YyH8A3p2b4x720pNdsYYCqJNbEs/blzad3t8vF9yPsc3rGDvzk2UVM0dl+MopZRSavIZrzLt6jBEIlHWrPwTq356Lov++nHKI3VsOP6/WPDVx8YluQKoKimiweRhmraMS/tKTWZt7e3kSg8mq2zcjlH9sW8SwcnuR783bsdQSiml1OQzph4sdeSikShb3n2NlrceoXzPMxxjdtNOFm9Xf475n/weCzKnjdzIGPjcTnY7Kyjo0lLtauppbdhBHuCK40WGD1ZaMYN/VlzBB3b/H2889N8s++QNdLY1seHvv2PazOOYt+zD43ZspZRSSiWOJlgTqL15Lzvefpa+zS8yvfkl5tJIxAibfYt4Z9GXmfehKzl2AiuOdaRXcVTPC2BM3Od4qfjwB8N0dXfS29FCX1cbwe5Wgr2dBPq6Cfl7MaE+JNwHIT8S9uOI9EEkRDRqiJooTgHB4BABcRBxeog6fEScPsSThtubjis9F3dWAb6cAjJyCsnILSInJxuvy5nopz9u+i8ynFYwfVyPc/yV/8U7P3uXE977T5p//AtyTScfkCibts8DTbAmnXAkSldPH709HYR6Own2dhLq6yIU6CUcDBAOBQkFAxANIdEwjmgIMRGi4iCKkygOxOHE6fbgdntw+TJx+bJxpmfhTc/Gk5FLdnYOOeleRP/mKqVUytIEaxw1761j59vPEd7+EkWtq6mJ7uQYoM942JaxhMbZX2TW8k8xr2D8hikNJzRtNpndfyba1YgjuyQhMUwVxhi6+gK0t+yju7WBvvZGgh2NRLqboKcZZ18zrkA77lAnvnA3adFuskw3WfRSKKOvD+PHTQQXBsFKrcDY/3cQxUMIL6ER2+kxXhoknw5XAT2+YsIZpUhOOd68SjKLppNfNoOCwlKczuQcZexvsS4ynFNSM67HcXt8LPzm33jzyV/CrtcIpxdRsfc5ssPN43rcqS4Y8NPR0khHayO97fvo62gm1N2M6W3D0deGK9CGJ9SOL9SBN9KDN9pHmuklAz/TJMR4jh+IGqGNTNodOXQ58+j15BHy5hPNKISMIry5pWTkl5NTVEFhSQXpPr2MhlJKJRtNsOJo3+5adq35O5Htr1DSvpqqaD0FQK/xsjVtIa+XfIyceaczY8lyFnrTEh0u3pK5UAfNtespWqwJ1pEw0SjtbS20Ne6ku7kef+tuoh27ke5GXH1NeANtZITbyI52MI0usuXQS71FjdAhWXQ7svA7swn6ptHuqaLFk4PxZkNaDo60XJzp03Bn5OLLyCUtPYO0jEy8aRm4vRk4PWng8uFzjCLhiUYh7Cca7KO7p4ue9hZ6O/YR6Gom1NVCtKcFeptxdu8l3b+Xkp615Hc9j6sxekAzfcZDsyOfdncxfWklhDNLceZW4CuYTk5xNQXlM8nMzpuUvaPR9noA8kuqxv1YTpebZZ/4CvAVAF777Tc4oe5ugv4+PL7E/x1IFsGAn5Z9u2nfV09Pyx4C7Q1Euxpx9u7D628mPdhCVriVXNNOJn0UAoWDtOPHTSfZdDuz6HNm0+krI+LOxHgywZOJeLNw+DLBm4XDl4XTl4Xbm4bb48Xr8eL2eHG43IjTg3G6EHEhRBATQUwUEwkTCAYJBgMEe7sI+zuJ9HUR9XdiAt2EezuQ3hZc/mbSAy0U+jeT3dtOZlvvIbFGjNBEDu3OPHo8+QR8hUQyinFkFeOdVkZ6Xjm5RRXklUzHPU7zdSeCiYQJBPoI+vsIBnoJ+v2EAr2EAn2Eg9YtEgwQCfYRDfmJBv1Ew32YUBAT9kPYD+EAEvZDJIgjGsAZDSEmipgImCiY6MBjB/3LDQ4TQYjiMBHA+vvcf4IqigME7HEAIELUXofI/hNZ4sCIA3AQFSeIAyNOa5l9H4f9/wOWOaF/maN/nbVcHLH37f/b24nDiYi1jThc1mOHA3G6rP+LE3E6cYgLnE4cDgcOp7Wdw97f4bTu9y+PYj2HKA5wOIhGDcZEMdGo/X8D0SgGa1nURK1/S0wUYwwmGrH+b7/WRO3lRDFR67XGbg8TJWqs9sDabv97ZLUhGGs5But//fftf0Nj12HAGIz9//71xj69GLu/tTzmMf2nIof5fLL/3zCx75uD/l0b8l85GW7tQW3I4JGIHBjD/j0HaXeoNgbddqjYZIi2h2pi8DgGd+Tb9vmKmLnsI1TmJcffOk2wxqBx93Z2rv47ZsfLlLevpsI0UAR0mTS2py+iofQTTJt/BjMWn8xiz+Q7Czlt+gJ4C9rr3qNo8aiuJz2lmGiU1qZ6Wuu30d24nUBrHdHOBlw9jWQE95ETbiE/2so0CR5yxrvTpNPunEaPaxodGTW0puVTm1GAM7MQd3YR3pxiMvNKyMovJT2ngGlO97ieNT+AwwGedByedLIz88kurh55n2iErpbdtOzZQfe+nfS11GE66nF3N5Du30tRx1sUtLfi3H3gn/Zuk0aHI4deZw5+dw5hby4Rby4R3zTwZeP0ZOD2peP2ZeD0ZiCeNJxuH06H4HQ6cTqsHwf9P0qiQDgcIhIKEgnbt1CIaDhENGLfj4SsH1whPybsx4T8EOqzf4RZQykr2tfQTC4FCTjR4SychaPe0LhrE5Vzlkz48Sejzq4O9tVtp2tfrfU9a6/H1b0HX+9esoP7yI22kksXpUDpwfuSQbtjGl2uPBozj6LeV4BJz8eZkYcnqwBfdiEZ04rIzismc1oRPm8GPmB8roB25Eywl562vbQ11tHTXE9fWwORzr1I9148fU1kBZupaN/KtLZ2nIOcqOkkgzbHNLqdOYScmYTdGTGJYxbiywSXD4fTPZAgisuN0+XC6fRgHK6BH7nWj+b+H9ARiEaJRCPW9yzkx4QDmHAAwgFMOIhEAvYtaN2iQRyRIM5oAEfU+r8zGsIdDeIyQdwE8ZgQHoK4TQiPRPABvjG8fkHjIihu7NaJiNMatikOTEzysP//TjuBcmDERVi87P9BZxCzv/9///3IwLqBZcbYCVoUwUriHDGPHTHLnOxf5iCK004knOxf7xjkvVVKwcrI0bxT9gFNsFJR8946alf9jej2lyhtW02l2UMx1j9s29OPZnf5v5C/4AxqFp7E0a7J/9JWVs+i13gJ7n0/0aEkRDgcprmhltbdW+ndt51wy04cXfWk9ewhN7iXomgT+RIiP2afPuOh1ZlPp6uAfVnz2Z1eAlmluHNLScurIKtoOnkllWRnZJOdsGc2DhxOsgqnk1U49JylSDhE496dtO3ZQXfTLoKtdTg6d+PyN+MOduALtjKtr5Yc00WW9E1g8Ba/cRPAQ1A8BPGwpehsCiY8CsgqnwtroGXnhimTYHV1tNJUt5nOPVsINm1H2mvx9uwhI9BIfqSJXLoP+b60kEObs4BWbzl704/BZBThzC7BN62MzPxScgsryC0sJ9uTlhLfNfGkk1k8g8ziGcNuFw2HaW1poK2xju7m3fjb9hDubEC695EWaMIXaicz3II3UEea6SXd9JEugXGLO2qEIC6CuAnZCU5I3IRxE3Z4CIuHoMNDxJVFxOHBOD1EnV6iTi/G6cW4vIjTC24f4vIhbh8OlxeHx4fD7cPlScPpScPl8eLypOP2peH2puHxpuHxpeH1puP2+vA4nHjG7VlODGMMkaghEokQjYYJh8NEImGikQjRaISofT8SCVuPw9Z2/etNNGLtGwljovaySMS+H8ZEIkSjUUw0bPVMRa3tTDSKQyI4jEFMBCdRu/dM7LmCDrtHzYGIIOLEOMTqUbPXOcTqybN60KwbIuBwDswB7u9dQ8Bh99iJyMA+/SfSAOt4YLcldieHdR/7sYhYPTMSs521k/0Y6F+P2O3Ycdv77+89ObC3xAws3Z/w9neO7b9z0MYH9R0d0KN2yK4HbztIuwNtHHq4wfqp9vfUHbx99JBlmIH/jC6OQZYxyPMbetvBjmadyB5840O3nuPykVsy2U6NDW3yZwEJFI1E2PrOK7Ss+TMFDSuZHd5CAdBJup1QXUrhog9RM/8EliRBQnWwvEwf70sZnvatiQ5l3ITCYRrqd9CycyO9DZswrdtI66plmr+esuheSiRE7ODIFnJocRWzL2M29RmnI7nT8RZUkVU6k8KymWTn5lHucFCesGc0eTldboorZlFcMWvEbQMBP73dnfT1dNHb042/r5twoAcT7MOE/ESjUSLRqPUjIhoFY+xBOgaHy43T6cLh8uB0eazHLg9Ot/XY5Xbh8qTh8KTh8qThScvA50vD63LiixmKkKj3cPrc44j8WfDvehu4PEFRxJeJRmlv2cu+7evo3LOZUPN23B07yerbTVGkgTw6yYrZvsNk0OwsostbTHP6Esgpx5NXSUbhdLKLa8grqSLfl37AyQ1lcbhc5BVXklc8+gqYwWCQ3q4OQsG+gR7gcChIOBQgEg4RCQcx0aj9g9MamiYO677DHt7mcjpxeTy4PWm4vT7cnjQ8Ph8etxefyzmm3idlERGcTrHntroTHY5SagySLyuYQG/+8UecuO1/iRphi3sur1VdR8GSjzJj0QeSMqE6mIjQ5Ktifs/6RIcyZv5AgF1b19Neu45gwwa8bVvI69tBWaSB6RKkv98laFzsdZXSnjGdd7OWY/Jm4iusIad0JkUVs8jPyNQfdRPA6/Xh9fqYlp88Z6PiJSMrh1pnBWnN7yY6lMMWDYdp2LWZxu3r6N2zEVfLFrJ7dlAW3sU0ugeGuYaNg32OQtq85WzLPYPNOVW4C2aQVTqLgso5TMsvImcSzs1LVR6PB0/+YDPSlFJKjYfkzxLGUcVJF/NWdgkzT7qAuUWp2WfRk7+Ygt0rCbfvwZWbmGqGhyMaibJ75yb2bV5F7+71eFo3UdC7nYrobuZIeGC7BimmKa2G9dkfwFEwk8yyuRRWzWdaSTXTnS7Gtzi3UsNryprPjI7XMdGINYF9kjHGsK+llfr336Jv52o8+96loPt9ysL1lEtooPevjWwaPdPZkn8mkfw5pJXOI3/6fEoqZ1Lm8TL5/6IopZRS8acJ1jAqZi2kYtbCRIcxrrJmngC7oX7Dq1Sf/KlEh3MAfzDMti3v0bL1TczuNeS0baA6uIVK6aZ/cMxeKaI5vYZ3c0/FVTKfvOrFlMw8mtL0rEMmwys1WZjq5eS/8wzb1r/BzMUfSGwsxtDY1ETde6/TU7saT9O7lPRsotrsptiecN9KNvW+OawpOBFX0VxyqxZSNvNopk0rmrjiLEoppVSS0ARripu5+CQCL7ro2vQSJDDBCoYi7Nj2Po2bXidS/zbZbRuoCW1hgXQDEMJJnauabQVnQOkScmcupXz2Ekoyc9EC8yrZzDjpAnjn+zStfmJCEyxjDI37Gqjb8AZ9O1fhbVpPSe8mqmgY+B41Sx6NWUexrvBjpFcdS8lRJ5JXNJ08HdKnlFJKjYomWFNcaUE+q5zzKW14acKOGYlEqd2+mb3vv0a4/m2yWjdQHdzMXOliLlYytdtdTX3xmTSUH0PBnBMpmnUMM9x6zSCVGgpKprPBvYjKXX8iEvlPnM74DxM0xtDYUMfuja/Tu/NtfM3rKevdRDn7BpKpRiliX9Zc1hR/gsyapVTMO5GCvLKEVFdUSimlUoUmWIqm0tNYuvt2une/R2b5/Li2HYlE2VW7hb3vv06objVZrRuYHtjMTOlkJtZk+N3uKuoKT2d3+RIK55xE8ZxjqdZkSqU4/zFXU/7m11n9119z3HmfH1Nbxhga6nfQsPENAnWrrWSqbzMltAwkU3scpezLXsDe4svIqllK5fyTKM4tpHjsT0UppZRSMWSoevWJsHTpUrNq1apEhzHlrN+8lTn3L2Nr5UXM/+xvjridSCRK3fb3aNz8BsG6tWS1bqAysIV86QT6k6nptOYsQMqWkD/nRMrnLMXhTY6LxikVT5FIhG3/eQJFkQY6LnuKqrlLRrdfOEz9tvU0bXmL4O53yGh9j/LAVgroAKzrEtU7y2nOOopI8dFkz1jK9PknkpadN47PRimllJp6RGS1MWbpIcvHkmCJyIPAXPthLtBujFkiItXARmCTve51Y8x1I7WnCVZiGGN44ZZ/4bSep2m66DFKF50x4j4dbS3Ub1lLx653MY0bye7YyPTAVnKkB4CQcVLnrqI9Zz5Supj82SdQftTxOL0Z4/10lEoau7dvIO0P5+A1Qd6tvIxpS85jWnElDncafV2tdLbsxd+yi1DjFlzt28ju2UlleCdpEgQgaJzUu6pozZ6LKV5EzozjqZx/AmmZOQl+ZkoppVTqG5cE66AD/A/QYYz5sZ1g/cUYc1gl+DTBSpyd9fXw2w9RbJrZWHYhUr0cV0Yu4aCfUHcrodZdSEc96T11lAZrKaJ1YN+AcbPLXUN7zjykbAkFs5dRMfdYXNozpdSI9ux4nz0P38DS3qHnQUaNsE8KaPFW0JUzB0fpYgpmL6VyzhLcHr3Eq1JKKZUI45pgiYgAu4AzjTFbNMFKTnU7d1D34Nc5tudlfBI6ZH07WbS4SmjNqCGSP5f08gUUzzyaoso5iFOn8yk1Fvt272T3hpcJdrVA2I8jLYe0nCIyCsoprp5PekZWokNUSimlVIzxTrBOBX7WfwA7wdoAbAY6ge8bY14eYt9rgWsBpk+fftzOnTvHHI8am7a2Vpp2vkewpx2vLx1fVh4FZTNIy8xOdGhKKaWUUkpNCkecYInIczDopYa+Z4x5wt7ml8BWY8z/2I+9QKYxpkVEjgMeBxYYYzqHO5b2YCmllFJKKaWSwVAJ1ojjuowxHxqhYRfwCeC4mH0CQMC+v1pEtgFzAM2elFJKKaWUUinLEYc2PgS8b4yp718gIoUi4rTvzwBmA9vjcCyllFJKKaWUmrTiUZngUmDFQctOBX4sIiEgClxnjGk9ZE+llFJKKaWUSiGT6kLDItIETLYqFwVAc6KDUBNG3++pQ9/rqUPf66lF3++pQ9/rqWUyvt9VxpjCgxdOqgRrMhKRVYNNXlOpSd/vqUPf66lD3+upRd/vqUPf66klmd7veMzBUkoppZRSSimFJlhKKaWUUkopFTeaYI3s14kOQE0ofb+nDn2vpw59r6cWfb+nDn2vp5akeb91DpZSSimllFJKxYn2YCmllFJKKaVUnGiCpZRSSimllFJxognWMETkHBHZJCJbReQ7iY5HxY+IVIrIP0TkPRHZICJftZfnicizIrLF/v+0RMeq4kNEnCKyRkT+Yj+uEZE37O/3gyLiSXSMKj5EJFdEHhGR90Vko4icpN/t1CQi19t/w9eLyAoR8el3O3WIyP+JyD4RWR+zbNDvslhus9/3dSJybOIiV4driPf6Zvvv+DoR+ZOI5Mas+zf7vd4kImcnJOhhaII1BBFxAncC5wLzgctEZH5io1JxFAa+YYyZD5wIfNF+f78DPG+MmQ08bz9WqeGrwMaYx/8N3GqMmQW0Af+akKjUePhf4GljzFHA0Vjvu363U4yIlANfAZYaYxYCTuBS9LudSu4Bzjlo2VDf5XOB2fbtWuCXExSjio97OPS9fhZYaIxZDGwG/g3A/r12KbDA3ucX9u/2SUMTrKEtA7YaY7YbY4LAA8AFCY5JxYkxpsEY87Z9vwvrB1g51nv8e3uz3wMfT0iAKq5EpAL4KPBb+7EAZwKP2Jvoe50iRCQHOBW4G8AYEzTGtKPf7VTlAtJExAWkAw3odztlGGNeAloPWjzUd/kC4A/G8jqQKyKlExKoGrPB3mtjzN+NMWH74etAhX3/AuABY0zAGLMD2Ir1u33S0ARraOVAXczjenuZSjEiUg0cA7wBFBtjGuxVe4HiRMWl4urnwLeAqP04H2iP+cOt3+/UUQM0Ab+zh4T+VkQy0O92yjHG7AZuAXZhJVYdwGr0u53qhvou6++21HYN8Df7/qR/rzXBUlOaiGQCjwJfM8Z0xq4z1jUM9DoGSU5EPgbsM8asTnQsakK4gGOBXxpjjgF6OGg4oH63U4M99+YCrKS6DMjg0CFGKoXpd3lqEJHvYU3tuD/RsYyWJlhD2w1UxjyusJepFCEibqzk6n5jzGP24sb+IQX2//clKj4VNycD54tILdZQ3zOx5ujk2sOKQL/fqaQeqDfGvGE/fgQr4dLvdur5ELDDGNNkjAkBj2F93/W7ndqG+i7r77YUJCJXAR8DLjf7L9476d9rTbCG9hYw265G5MGaTPdkgmNScWLPwbkb2GiM+VnMqieBK+37VwJPTHRsKr6MMf9mjKkwxlRjfY9fMMZcDvwD+KS9mb7XKcIYsxeoE5G59qIPAu+h3+1UtAs4UUTS7b/p/e+1frdT21Df5SeBz9jVBE8EOmKGEqokJCLnYA3vP98Y0xuz6kngUhHxikgNVmGTNxMR41BkfzKoDiYiH8Gau+EE/s8Y85PERqTiRUROAV4G3mX/vJzvYs3DegiYDuwELjbGHDzBViUpETkd+KYx5mMiMgOrRysPWAN82hgTSGB4Kk5EZAlWQRMPsB24GuuEon63U4yI/Ai4BGv40Brgs1hzMfS7nQJEZAVwOlAANAI/BB5nkO+ynWTfgTVMtBe42hizKgFhqyMwxHv9b4AXaLE3e90Yc529/few5mWFsaZ5/O3gNhNJEyyllFJKKaWUihMdIqiUUkoppZRScaIJllJKKaWUUkrFiSZYSimllFJKKRUnmmAppZRSSimlVJxogqWUUkoppZRScaIJllJKKaWUUkrFiSZYSimllFJKKRUnmmAppZRSSimlVJxogqWUUkoppZRScaIJllJKKaWUUkrFiSZYSimllFJKKRUnmmAppZRSSimlVJxogqWUUpOEiFSLiBERV6JjSXUicpWIvJLoOCYbEVkuIpsSHYdSSiUzTbCUUkolNRG5UURCItIdc/tWouNKRsaYl40xc+PdroicKSJvi0iniGwXkWvjfQyllJosNMFSSqk40Z6nhHrQGJMZc7sp0QHFUzJ/tkTEDfwJ+BWQA1wC/ExEjk5oYEopNU40wVJKqTEQkVoR+baIrAN6RMQlIieKyD9FpF1E3hGR02O2Xyki/yUib9pn858Qkbwh2r5aRDaKSJd91v//O2j9BSKy1m5nm4icYy/PEZG7RaRBRHaLyP8TEecIz2OmiLwgIi0i0iwi94tIbsy6VhE51n5cJiJN/c9LRM4XkQ32810pIvMOen2+KSLrRKRDRB4UEd/hv9KHT0S+Y78uXSLynohcOMR2IiK3isg++7V8V0QW2uu8InKLiOwSkUYRuUtE0kZ5/Hvs7Z+1Y3hRRKpi1v+viNTZx1wtIstj1t0oIo+IyH0i0glcJSLLROQ1+3VuEJE7RMQTs48RkS+IyBb7eP9hv3f/tI/xUOz2Q8R8uojUj+b5HYY8IBu411jeAjYC8+N8HKWUmhQ0wVJKqbG7DPgokAsUA08B/w/rh+U3gUdFpDBm+88A1wClQBi4bYh29wEfw/pxejVwa0ySswz4A3CDfdxTgVp7v3vsdmcBxwBnAZ8d4TkI8F9AGTAPqARuBDDGbAO+DdwnIunA74DfG2NWisgcYAXwNaAQ+Cvw54N+yF8MnAPUAIuBqwYNQOQUO3kY6nbKCM/hYNuA5Vi9Jj+y4y8dZLuzsF6/Ofa2FwMt9rqf2suXYL2e5cAPDiOGy4H/AAqAtcD9MevestvNA/4IPHxQ8nkB8AjW+3s/EAGut9s6Cfgg8IWDjnc2cBxwIvAt4NfAp7Hez4VYn9UjZifKQ70/vxhsH2NMI9Zn5GoRcYrISUAVoHPglFKpyRijN73pTW96O8IbVlJzTczjb2OdqY/d5hngSvv+SuCnMevmA0HACVQDBnANcazHga/a938F3DrINsVAAEiLWXYZ8I/DfF4fB9YctOxJ4F1gHeC1l/078FDMNg5gN3B6zOvz6Zj1NwF3xfk9uNF+DdtjbmWDbLcWuMC+fxXwin3/TGAzVlLiiNlegB5gZsyyk4Ado4zrHuCBmMeZWElS5RDbtwFHxzynl0Zo/2vAn2IeG+DkmMergW/HPP4f4OcjtHk6UB/P98du9zygESvxDwOfi/cx9KY3veltsty0B0sppcauLuZ+FfCp2DP7wClYvVWDbb8TcGP1ShxARM4Vkdft4XntwEditqvE6qE5WJXdXkPM8X8FFA33BESkWEQesIcUdgL3DRLTb7B6QW43xgTsZWX2cwDAGBO1n195zH57Y+73YiUa8faQMSY35rZHRD4j1hDK/tdhIYO8zsaYF4A7gDuBfSLyaxHJxuqRSwdWx7TxtL18tAbea2NMN9CK9ZphD53caA+dbMfqPSsYbF97+zki8hcR2Wu/R/85yPNpjLnfN8jj8XjthyUiRwEPYPXceoAFwLdE5KMTHYtSSk0ETbCUUmrsTMz9OqwerNgf+xnGmJ/GbFMZc386EAKaYxsUES/wKHALUGyMycUaficxx5k5SCx1WD1YBTHHzzbGLBjhOfyn/TwWGWOysYaV9R8LEckEfg7cDdwo++eN7cFK6vq3E/v57R7heIcQq0R49zC35SO3MtBWFVZC+CUg33791sc+p1jGmNuMMcdh9SjOwRp62YyVlCyIeS1zjDGHk6QMvNf2a5gH7LGfy7ewhiNOs+PrOCi+2M8VwC+B94HZ9nv03aGez3gRa67dUO/PXUPsthDYbIx5xhgTNcZswhpGe+7ERa6UUhNHEyyllIqv+4DzRORse76Jzy4cUBGzzadFZL49n+nHwCPGmMhB7XgAL9AEhEXkXKy5Qv3uxprT8kERcYhIuYgcZYxpAP4O/I+IZNvrZorIaSPEnQV0Ax0iUo6VYMT6X2CVMeazWD+O+39MPwR81I7DDXwDK8H750gv1MGMVSI8c5jby4fRXAZWgtIEVsEQrB/6hxCR40XkBDv+HsAPRO3euN9gzX0rsrctF5GzY/Y1ElPEZBAfseeWebDmYr1ujKnDer3DdnwuEfkB1ly74WQBnUC33Sv0+RG2jztjzIJh3p/rhthtDTBbrFLtIiIzseYWrpu4yJVSauJogqWUUnFk/3i+AKt3oQmrR+kGDvx7ey/W/Jy9gA/4yiDtdNnLH8Kam/MvWHOg+te/iV34Aqvn40X29yT1D8V6z973EQ4cojiYHwHH2m09BTzWv0JELsAqUtH/g/7rwLEicrndG/Fp4HasHp/zgPOMMcERjjeujDHvYc05eg1rmNwi4NUhNs/GSqTasIY7tgA32+u+DWwFXreH5T0HzAUQkUqgC2te2lD+CPwQa2jgcVivFVjz8p7Gmvu1EyupqxusgRjfxPocdNnxPjjC9pOCsYqkXINVzKUT67P6KPDbRMallFLjRYw5eASCUkqp8SIiK4H7jDH64zLJicinsYYP/tsQ6+/BKhjx/QkNTCmlVEIl7YULlVJKqUQyxtyX6BiUUkpNPjpEUCmlpgixLnp7OMUJVAoSke8O8Tn4W6JjU0qpVKBDBJVSSimllFIqTrQHSymllFJKKaXiZFLNwSooKDDV1dWJDkMppZRSSimlhrV69epmY8whF5+fVAlWdXU1q1atSnQYSimllFJKKTUsEdk52HIdIqiUUkoppZRScaIJllJKKaWUUkrFiSZYSik1DH8owp9W1dIbCCU6FKWUUkolgUk1B2swoVCI+vp6/H5/okOZlHq72nESxZuVl+hQJh2fz0dFRQVutzvRoagk9upjd3D+ez/kjXX/Hx+45r8THY5SSimlJrlJn2DV19eTlZVFdXU1IpLocCYVfyiCr2kdAKG86bh9GQmOaPIwxtDS0kJ9fT01NTWJDkclMd+ul3GKoaT+b4AmWEoppZQa3qQfIuj3+8nPz9fkahCh4P5evXBPWwIjmXxEhPz8fO35VGPmCzQBMCO6k9aGHQmORimllFKT3aRPsABNroYQDfYO3JdQTwIjmZz0c6PiITvcQqtMA6Buwz8THI1SSimlJrukSLDU4EwkDECPZOCJ9oExCY5IqdRijCHftFGfdwJRI/TsXJvokJRSSik1yWmCNQoiwje+8Y2Bx7fccgs33nhj4gKymWiU11ev47SPXcqxH76EefPmDcS1cuVK/vnPsZ1tP+ecc8jNzeVjH/tYHKJVKvkEAn7ypJu+zCr2OEvxtGxMdEhKKaWUmuQ0wRoFr9fLY489RnNzc1zbNcYQjUaPeH8xEa782g+5/fbbWPvsA6x+/SUuvvhiID4J1g033MC99947pjaUSmbB9r0AhNKLaEqfRXHf1gRHpJRSSqnJbtJXEYz1oz9v4L09nXFtc35ZNj88b8Gw27hcLq699lpuvfVWfvKTnxywrqmpieuuu45du3YB8POf/5yTTz6ZG2+8kczMTL75zW8CsHDhQv7yl78AcPbZZ3PCCSewevVq/vrXv3LHHXfwt7/9DRHh+9//PpdccgkrV67kxhtvpKCggPXr13Pcccdx3333HTivyETZ19JKZdUMjGlEIkHmz59PbW0td911F06nk/vuu4/bb7+do446asg4t23bxtatW2lubuZb3/oWn/vc5wD44Ac/yMqVK4d9bR5++GF+9KMf4XQ6ycnJ4aWXXsLv9/P5z3+eVatW4XK5+NnPfsYZZ5zBPffcw+OPP05PTw9btmzhm9/8JsFgkHvvvRev18tf//pX8vLy+M1vfsOvf/1rgsEgs2bN4t577yU9Pf2A45544oncfffdLFhgvXenn346t9xyC0uXLh02XqUOR7DLOqkS9eUTyJtHedfL9HZ3kJ6Zk+DIlFJKKTVZaQ/WKH3xi1/k/vvvp6Oj44DlX/3qV7n++ut56623ePTRR/nsZz87YltbtmzhC1/4Ahs2bGDVqlWsXbuWd955h+eee44bbriBhoYGANasWcPPf/5z3nvvPbZv386rr756QDtiInz1c1ewaOECPv6v3+S3//c7/H4/1dXVXHfddVx//fWsXbuW5cuXDxvnunXreOGFF3jttdf48Y9/zJ49e0b9uvz4xz/mmWee4Z133uHJJ58E4M4770REePfdd1mxYgVXXnnlQDW/9evX89hjj/HWW2/xve99j/T0dNasWcNJJ53EH/7wBwA+8YlP8NZbb/HOO+8wb9487r777kOOe8kll/DQQw8B0NDQQENDgyZXKu5C/m4AHN503OWLcYhhz+Y1CY5KKaWUUpNZUvVgjdTTNJ6ys7P5zGc+w2233UZaWtrA8ueee4733ntv4HFnZyfd3d3DtlVVVcWJJ54IwCuvvMJll12G0+mkuLiY0047jbfeeovs7GyWLVtGRUUFAEuWLKG2tpZTTjlloB0xUb739S9wxXVf588P38vDjz3Jo089P2iv03BxXnDBBaSlpZGWlsYZZ5zBm2++ycc//vFRvS4nn3wyV111FRdffDGf+MQnBp7Tl7/8ZQCOOuooqqqq2Lx5MwBnnHEGWVlZZGVlkZOTw3nnnQfAokWLWLfOuqbX+vXr+f73v097ezvd3d2cffbZhxz34osv5qyzzuJHP/oRDz30EJ/85CdHFa9ShyPkt6pzOr3p5FfOhNegc+caOPb0xAamlFJKqUlrzAmWiFQCfwCKAQP82hjzvyJyI/A5oMne9LvGmL+O9XiJ9LWvfY1jjz2Wq6++emBZNBrl9ddfx+fzHbCty+U6YH5V7PWYMjJGd0Fgr9c7cN/pdBIOhw9Y7yCCwcHMmTO5+upr+OK/fJSio8+ipaXlkLaGihMOLWd+OOXN77rrLt544w2eeuopjjvuOFavXj3q5+RwOAYeOxyOged31VVX8fjjj3P00Udzzz33DJowlpeXk5+fz7p163jwwQe56667Rh2zUqMVDvQB4PKmU149h4BxE9q3JcFRKaWUUmoyi8cQwTDwDWPMfOBE4IsiMt9ed6sxZol9S+rkCiAvL4+LL774gCFrZ511FrfffvvA47Vr1wJQXV3N22+/DcDbb7/Njh2DX6B0+fLlPPjgg0QiEZqamnjppZdYtmzZqOJxGMNfn38JYwy4fWzdsQun00Fubi5ZWVl0dXWNGCfAE088gd/vp6WlhZUrV3L88ceP6vgA27Zt44QTTuDHP/4xhYWF1NXVsXz5cu6//34ANm/ezK5du5g7d+6o2+zq6qK0tJRQKDTQzmAuueQSbrrpJjo6Oli8ePGo21dqtCIBqwfL5cvA7XLR4CzF07E9wVEppZRSajIbc4JljGkwxrxt3+8CNgLlY213svrGN75xQDXB2267jVWrVrF48WLmz58/0JNy0UUX0drayoIFC7jjjjuYM2fOoO1deOGFLF68mKOPPpozzzyTm266iZKSklHF4iDK/Y/8mblz57L89A9xxVf+nXt+80ucTifnnXcef/rTn1iyZAkvv/zykHECLF68mDPOOIMTTzyRf//3f6esrAywkr9PfepTPP/881RUVPDMM88A8IMf/GBgvtUNN9zAokWLWLhwIR/4wAc4+uij+cIXvkA0GmXRokVccskl3HPPPQf0XI3kP/7jPzjhhBM4+eSTOeqoowaWP/nkk/zgBz8YePzJT36SBx54YKByolLxFrYv5u32WkVW2tKmM81fl8iQlFJKKTXJiYnjxWlFpBp4CVgIfB24CugEVmH1crUNss+1wLUA06dPP27nzp0HrN+4cSPz5s2LW4ypwhhDaM96Iu4M0opm4A+G8DWvp89bRFr+6PPbg6sdphr9/KixeO/xW5i/9j/YdMUa5s6cweu/+hLH7lmB4/t7cbndiQ5PKaWUUgkkIquNMYdUWYtbFUERyQQeBb5mjOkEfgnMBJYADcD/DLafMebXxpilxpilhYWF8Qon5UWN1YOFWG+hx+0iaJwQ8Y+wp1JqtKJ2D5bHZ82bdBTMwiNh9tVvS2RYSimllJrE4lJFUETcWMnV/caYxwCMMY0x638D/CUex1IWYwwOzECC5RAhJB5ckeBhtXPjjTeOQ3RKpQYTsopceNOsBCuzbC68Cy07N1BWc9Rwu6akJ19ZQ3Tvei74xOWIQ6/yoZRSSg1mzP9CilVy7m5gozHmZzHLS2M2uxBYP9Zjqf2ixuCQ/QkWQMThwWVCCYxKqdRiQn0EjIs0rweAomrrUhG9ezcnMqyECIYinP3sh/n4+i+xdfVziQ5nwjW1d/Obu+9i8/vvJDqUCWeM4fnH7ubtf/490aEkxFvv1/LqQz/DRMIjb6yUUsRniODJwBXAmSKy1r59BLhJRN4VkXXAGcD1cTiWspn+EvAxCZZxenAS0X8ElIqXUB9+PPjcTgDyiyvoMT5o2ZrgwCbepu078Ip1Aqf1nacSHM3EW/PnO/lc3bdxP/aviQ5lwm3a08oH132dY//+KUJdTSPvkEKiUYP//ss5+b0fsf21PyU6HKVUkohHFcFXjDFijFkcW5LdGHOFMWaRvfx8Y0xDPAJWlqjpT7D2X7NKXNY1riIhnYelVDxI2EqwvC7rT6U4HOxxlZPevXOEPVNPW/37A/cL9r2ewEgSpHEDADXBLfg7m0fYOLVsXvPSwP3a1x5PXCAJsGVvB8ud1gCc4JqHEhyNUipZ6CD6JGWiVvVHienBcrjtBCuoCZZS8eAI9+HHi8Ox/0RGR9p08qdgqfZAozUs8t2MkygPbodoJMERTaycntqB+7vXPpu4QBLAs+fNgfv+2qmVXO/dvf8alkVtbycwEqVUMtEEa5Qef/xxRIT3339/yG1qa2tZuHBh3I65adMmTj/9dJYsWcK8efO49tprAesiwU//zb5uc0yC5fZ4MQaio+jBuuaaaygqKoprvEqlGkc4QEAOvIZbMKeG4mgj4Sl2IsPbWUsYBx3TP4SPIC11Q/8tTDXRqKEyWs87macSNULPrjWJDmlCObv20Esaq52LyWlem+hwJlRPo5VgvZd2HPnRZkz31BoiqZQ6MppgjdKKFSs45ZRTWLFixaDrw+Gxz3uKRA48I/yVr3yF66+/nrVr17Jx40a+/OUvA1aC1X/RX4k5s+52uwjhgkhgxGNdddVVPP3002OOWalU5oj0ETwowXIWzMIphsadUyfBAHAF2ugki6yaYwHYt3V1giOaOO1d3ZRJC5GiBeyiBFfTxkSHNKHc/ha6XHm0ZM6lJLhzSvVehlut4cDt0z9s/b9We7GUUiNLrgTrb9+B3300vre/fWfEw3Z3d/PKK69w991388ADDwwsX7lyJcuXL+f8889n/vz5gJVoXX755cybN49PfvKT9PZa19F5/vnnOeaYY1i0aBHXXHMNgYCVBFVXV/Ptb3+bY489locffviA4zY0NFBRUTHweNGiRQSDQX7wgx/w6KOPsuTDl/LIY0/Q09PDNddcw4knnMDxZ1/CU0/9DYB77rmHCy64gNNPP53Zs2fzox/9aKCtU089lby8vGGf94svvsiSJUtYsmQJxxxzDF1dXRhjuOGGG1i4cCGLFi3iwQcfHHgtTjvtNC644AJmzJjBd77zHe6//36WLVvGokWL2LbNum7Qn//8Z0444QSOOeYYPvShD9HY2HjIcS+99FKeemr/JPqrrrqKRx55ZIR3San4c0b8hA5KsDLLrfLsrXVT60e2K9hFryODkhlHA+Bv2JTgiCZOa7P1d8qdXcxe3wymdU+tIieZ4Vb6PHlE82bhIUSodVeiQ5ow0mkNB3bP+ygA7TumXhVJpdThS64EK0GeeOIJzjnnHObMmUN+fj6rV+8/c/v222/zv//7v2zebM1P2LRpE1/4whfYuHEj2dnZ/OIXv8Dv93PVVVfx4IMP8u677xIOh/nlL3850EZ+fj5vv/02l1566QHHvf766znzzDM599xzufXWW2lvb8fj8fDjH/+YT3ziQtY++wAXf/IifvKTn3DmmWfy5ptv8udH/8h3/+Nmerq7AXjzzTd59NFHWbduHQ8//DCrVq0a9fO+5ZZbuPPOO1m7di0vv/wyaWlpPPbYY6xdu5Z33nmH5557jhtuuIGGBqt+yTvvvMNdd93Fxo0buffee9m8eTNvvvkmn/3sZ7n99tsBOOWUU3j99ddZs2YNl156KTfddNMhx73kkkt46CFrMnEwGOT555/nox/96KjjVipeXNEAIceBCVZR9TwA/Hu3JCKkhHGHewg4MijKz6PRTEPatic6pAnT2boPgLScfHpzZ1McaYDwyCMFUkVutB2/Nx9fqfXZb6qdOldd8fmb6JJMptfMpt1kENw3tb73SqkjE5cLDU+Yc3+akMOuWLGCr371q4DVu7JixQqOO+44AJYtW0ZNTc3AtpWVlZx88skAfPrTn+a2227jwx/+MDU1NcyZMweAK6+8kjvvvJOvfe1rgJVQDObqq6/m7LPP5umnn+aJJ57gV7/6Fe+803/2zC5y4XDw97//nSeffJJbbrmFSDiEPxBkZ6314+fDH/4w+fn5AHziE5/glVdeYenSpaN63ieffDJf//rXufzyy/nEJz5BRUUFr7zyCpdddhlOp5Pi4mJOO+003nrrLbKzszn++OMpLbUufzZz5kzOOusswOp5+8c//gFAfX09l1xyCQ0NDQSDwQNeu37nnnsuX/3qVwkEAjz99NOceuqppKWljSpmpeLJGQ0QcRzY01tQWEqHyYDWqZNgAHgi3QRcmYgI+9xTq5Jid7uVYGXkFiJ5M3E0GjobtpFdOT/BkY2/QDhCPh3UpxVQWL0A/gkd9e9RtvS8RIc2IVyhLvocmRRl+3hXSsmYQicWlFJHTnuwRtDa2soLL7zAZz/7Waqrq7n55pt56KGHMMZKcDIyMg7YXmLKpg/2eDAHtxGrrKyMa665hieeeAKXy8X69faZQ/v4iANjDI8++ihr167l1ZdfZNdbf2XOrJojjqffd77zHX7729/S19fHySefPGyBDwCvd/+ZfofDMfDY4XAMzFH78pe/zJe+9CXeffddfvWrX+H3H1oowOfzcfrpp/PMM8/w4IMPDpmAKjXeXNEgkYN6sESEva4y0qZQggHgi/QQdll/q7rSKykI7k5wRBMn0NUCQGZuERml1omy5l1TY4hoV08f06SbaFoBVdOr6DDpRPZNnQtte8PdBJ0ZiAit3kqy+6bO8Eil1JHTBGsEjzzyCFdccQU7d+6ktraWuro6ampqePnllwfdfteuXbz22msA/PGPf+SUU05h7ty51NbWsnWrNW7/3nvv5bTTThvx2E8//TShkHVhz71799LS0kJ5eTlZWVl0dVlDAB0OB2effTa33347xhgcHh9r1r8/UKr92WefpbW1lb6+Ph5//PGB3rXR2LZtG4sWLeLb3/42xx9/PO+//z7Lly/nwQcfJBKJ0NTUxEsvvcSyZctG3WZHRwfl5eUA/P73vx9yu0suuYTf/e53vPzyy5xzzjmjbl+peHKbIFGn95DlnenTKQhMrVLt6aaHsDsLgEjuDPJMO8GejgRHNUF6WwFIzymgoMqag9fdMDWGivXavXcmo4BMn5s6Rzme9qnTi+OL9hB0ZQIQyK6hMLIPQn0JjkopNdlpgjWCFStWcOGFFx6w7KKLLhqymuDcuXO58847mTdvHm1tbXz+85/H5/Pxu9/9jk996lMsWrQIh8PBddddN+Kx//73v7Nw4UKOPvpozj77bG6++WZKSko444wz2LRpE0s+fCkPPfwo//7v/04oFGLx4sUsO/4E/v2mXxANWfMDli1bxkUXXcTixYu56KKLBoYHXnbZZZx00kls2rSJiooK7r77bgDuuusu7rrrLgB+/vOfs3DhQhYvXozb7ebcc8/lwgsvZPHixRx99NGceeaZ3HTTTZSUlIz69bzxxhv51Kc+xXHHHUdBQcHA8lWrVvHZz3524PFZZ53Fiy++yIc+9CE8Hs+o21cqnlwmNGiCFcypoSjaTCgwdX5opZs+oh4rwXIXzQSgcefU6MURfxsAzox8ykor6DRpRFq2JTiqidHXafXeOdOmAdDqqyLPP3V6b9Oi+08sUDALgJ4pNv9SKXX4kmsOVgL0zx2K9ZWvfGXg/umnnz5wv7q6eshhdB/84AdZs+bQa6fU1tYOeeyf/exn/OxnPztkeV5eHv949mlygg1QtABcHn71q18BEDWG0J71RO0J2BUVFTz++OOHtDFUghib+PUXpjjYzTffzM0333zAstNPP/2A12LlypWDrrvgggu44IILDmlz6dKl/Pa3vx147Ha7aW1tHfT4Sk0UtwmC89AE3104C0e9Yc/OTVTMWTLxgU2wQChMJr0Yr/VDM6d8LqyCtrpNVM4/McHRjT+nv50QLtyeDHwi1DpK8XbWJjqsCeG3eyk9GTkA9OXMoGDvcxDoBm9mIkMbd+FIlAzTS499YiGjdA5shJad75FRuTjB0SmlJjPtwUpaUet/B82pcogQEg+O6NSpcKXUePEQwgzSg5VVbs3DmSql2ru6OnCKweHLBqC42iruEGiaGuXK3cF2OiVr4O9tu6+S3L76BEc1MYLdVu+dJ9PqwXLYvThdDak/D6s7ECZL+jBe63NfWGV97run0CUKlFJHRhOsZGX6E6xD38KIw4PLhLjqyiu54447JjgwpVJENIqbMLh8h6wqrloAQN8UGSrU22n9yHakWT80p+VOo5kcHFOkkqIr1E2fY38xIn/2dAqjjZhwMIFRTYxQbycAaZm5AANFPqbCyYWuvhBZ9CI+qwdremkJTSYH0zw1TiwopY5cUiRY/RX7VIyBKoKDVAV0enESxUTDExvTJKOfGzUmEbsX2H1oD9a0gmI6yEBap8g8nC4rwXKlWcPERIRGVwUZPVNjLo4n0k3AuT/BkryZuInQuXdHAqOaGJE+a4hgepZ1uYLC6VaRj569qZ9kdHd34ZIoDp/1uU/zONntKMPXNTU+90qpIzfpEyyfz0dLS4v+WD6YifZfCeuQVWL/IIwEp84E/IMZY2hpacHnO7T3QanRiNqVOMV1aIJllWqfOteCCnS3A+DOyB1Y1pVeSf4UKdXujfQQikmwMkpmA9BcN/ylK1KB8dsJVrY1RLCypIgmk020JfV7LwdOLKTnDixr91WQ658aw0OVUkdu0he5qKiooL6+nqampkSHMqn0dbbgi/YiHYf+Ax8IBvH27iO8N4QrLSsB0U0OPp+PioqKRIehklQg0EsaIK7BL3LdlTad8u53Bl2XagIHFToACOVUU9j5NKG+Ltwp/nfGG+2lz1048Di/ah4APVNgHhL+LgBc9vBQn9vJZkcp6VOgyIffnn/mjvncB7KryW98FoI94Bn6GpZKqalt0idYbrebmpqaRIcx6Tz3P1ewrPsfZP/w0DNpdc1dFN1+JttnXsG8z/x84oNTKgUE+6wEy+E5tAcLIJRbQ3Hn8wT8PXh9qf1DK9zbDuwfJgZWJUXqYN/OTZQftTRBkU2M9Ggv3e79SWRpWRU9xkukOfWHiEqwkx58ZDicA8vafZWU+dcmLqgJEuxpB8Cdvj/BcubPgEbo2ruVrOlHJygypdRkN+5DBEXkHBHZJCJbReQ74328qcIRCRKSwX/4leVlUkcxjrbUH8Kh1HgJ2Ne4crgH78FyFc7CIYa9talfUSzitwod+OxCBwDZ5XMBaK1P7WIHkaghnT6MZ3+C5fO42OMoxTMFenGcoW565cATCIHsagqizSl/wd3+Ews+u4IiQEaZVeSjeYpcA04pdWTGNcESESdwJ3AuMB+4TETmj+cxpwpXxE/YMfgFeJ0OodFdTuYUmR+i1HgI+nsBcLkHn8eXbf/QapsK83DsQgcZ2ft/aBbZJasDjaldSbEnECKTPvAeOAyy1VtBTl9dgqKaOK5QF35H+gHLJH8GAN0pXugi3GedWEjP3t9z21/ko3fvFBgeqpQ6YuPdg7UM2GqM2W6MCQIPAIdeZVYdNmc0SFgGT7AAujKqKQzthmh0AqNSKnWEAlaRC6dn8ASrpMYq1e5vTP0fWiZgzcNx2/NwAPLz82k2OUiKl2rvGagkd+BFdfuyqiiO7IVIaldr9YQPrKAIMUU+dqX2yYWonWDFzj2sKC2lxWRNiSIfSqkjN94JVjkQe4qv3l42QESuFZFVIrJKC1mMnssEh+zBAojm1uAhRLQ99c+wKjUeQnYVTqd38CGCOfnFtJOJtKV+qW5HsJNu0iBmHo6IsM9VRnr3rgRGNv56utoBBkp1D8ibiZswXU21Ex7TRPJGegi6DkwuC+xenO6G1O69JGD13Ip3/4kFn9tJg6MUb6eOEFFKDS3hZdqNMb82xiw1xiwtLCwceQcFgCsaIOIYfA4WgLvYvhhkfWqfYVRqvITtBMvlGTzBAtjnKiOju3aCIkocR7CbPkk/ZHlH+nQKgqldsnqgklxM7x1Amt2L05Lic3HSoj2E3QcOj6woK6fdZBBtSe0iHw675/bg4aHtaZXk+vXkpVJqaOOdYO0GKmMeV9jL1Bi5TZCIc+gEa1qldYaxvS61//FXaryE7SIX7iGGCAJ0pVdREEjtBAPAFeqmz3FopcRQTjWFpoWwvzsBUU2Mvh5rmFhsqW6AfLsXp2tPap/ESjd9RDwHJhhpHid7HKV4U7zIhyPURa8c2HMLEMiuoiDajEnxIh9KqSM33gnWW8BsEakREQ9wKfDkOB9zSnCbINFherDKK2fQa7yE9qX4EA6lxknEvtCwxzd0D1Y4t5oi04K/r2eiwkqIwebhgFVJEaB5V+pWUgzZ1wDzHpRglVXU0Gu8RJpTdy5OKBIlk17wHHqds7YpcMFdd6ibPjn0c+/In4UDQ8ee1C7yoZQ6cuOaYBljwsCXgGeAjcBDxpgN43nMqcJtgkSH6cEqzk5jJyW42lP3H3+lxlMkZCdY3kOHxvVzFc3GIYaGHandizHYPByAzDK7VHsK95SHeq0Ey5eRe8DydK+b3Y4SPB2pOwevq9dPugTAm33IukBWFQWRfRAOJiCyieEOd+F3DvK5L+0v8pG6n3ul1NiM+xwsY8xfjTFzjDEzjTE/Ge/jTQXGGDwEMa6hEyyHQ2jyVJDVoxNxlToSo+nByimzhom1pfi1oNKiPYQHSbCK7VLtfSlcqj1ql6hPy8o9ZF2Lt5LcvtQt8tHT2QqAI+3QBIu8GTiJ0r0vdU/iWScWDu3BKqiaB0BvQ+pXEFVKHZmEF7lQhy8UMXgJYZxDzw0B6MmspjDcAJHQBEWmVOron1/h9Q3dg1U8wyrVHtibukPkANJN7yHzcAAKCwpoNjk4UrhUe8SeX5Y+SILVm1lFYaQxZUu193ZaBT4caTmHrEu3i3w07Uzd3ltftIew69DPfXlpf5GP1P3cK6XGRhOsJBQIR/CN0IMFEM2biZMo4ZbaiQlMqRRiQtaFhr3ph/7A6peVW0AzubhaU3cuRiRqyKAX4zm0B8vhEBpdZaSl8kXNA1aRCxlkmBx5M3ATpq+5dmJjmiB93e0AuA8aHgn7i3x0p2gvjjGGjOjgJxY8LgcNzjK8XSn8uVdKjYkmWEkoEI7iJQSu4XuwfMV2GeFd701EWEqlFAn1ETGC1zv892yvezrZPak7D6e7z0/GEPNwADrSKslP5UqKgW5CuGCQE1ppJdblMJpStFR7sKcdOLTAB0BFeRXdxkekOTVLtfcGI2RJL1Hv4CdY2n0VTNNS7UqpIWiClYQCoQg+CSEj9GDlTbfmR3TuTt0hHEqNFwn14seLOIb/M9mZNYPS0C4wZoIim1jdwwwTg/2l2qOB1Kyk6Ax10SdpIHLIumkVVpGP7j2pOUR0oMBH5rRD1qV5XexxlOBJ0VLtXf4wWfQOeWIhkF1FYWQfJhyY4MiUUslAE6wkFLCvz4N76Mn3AFUVlXSYdC3VrtQRkHAffhn+JAaAyZ9NNj10NKfmJf78XVaC5Rys0AHgtEu1N9WlZpLhCg1+kWWA8soaeoyXcHNqDhGN9LYDkJZ1aIIF0OatIKcvNXsvu3t7rBOZvsE/9478mTjF0LY7NXvwlFJjowlWEgr5rbkhDvfwQ5fyMr3skjLcWqpdqcMm4T4Co0iwMsqsimIN29aNd0gJ0T8Px5U+eA9WVqnVi9OWoiWrXZHeQa8BBpCV5qFeSvF01E5sUBMk0tcFQEb24AlWX1YVRZG9EI1MZFgToqerHQDnEJ/7zFJreGhzCl+iQCl15DTBSkL+PivBcnqGT7AAWn1VTOvTibhKHS5n2E9ARv6OFc1YBEBXXWrOdQx0Wz1YnozBf2QXVqd2qXZvpIfQIKW6+7V6y8nuTdG5OHaBD/cQw0P7i3x070u9OYi9dol6T3ruoOsL7VLtPXtSs8iHUmpsNMFKQkG/NUTQ5Rm6fHS/vtxZFESbwd853mEplVKckT5CjpETrJKKmfQYL9Gm1BwiF+q1/nYMVugAoKSwkGaTA62pOVTKSrAOraDYrzezmqJIQ2qWag90EsY55HD0NLtUe3Nt6p1cCNg9t95BKigClJZW0G3SiKTwJQqUUkdOE6wkFPBbk8ndw1yfp5+jyBq+01G3YVxjUirVuKJ+Qo6Rhwg6nE4aXBWkdabmD62QXUkuIztv0PUOh7DXVUZ6V+3EBTWB0k0vUffQPViSPwMXEXqaaicuqAniCHbRI+mDFvgAmFZl9d727Em9f1+CPXaBj0GufwbgcjlpcJaS1pl6vXdKqbHTBCsJhfoTLO/ICVbOdOsfwJbad8c1JqVSjTsSIDKKHiyA9owaCv2pORQ30mf90MwcYh4OQEfGDIpS8PmHIlEy6SHiGbzQAUBmmXU9qMYd6ycqrAnjDHXhdwydXFaUV9JmMjH7Uq/3NmwX+EjPGvzEAkBLWhUFOgRfKTUITbCSUP/EY0/60P/o9yuvOYqAcePfk3pDOJQaTx7TR9g1fKXOfuG82ZTSRHdXxzhHNfFMnz0HK3PoH5qhvDlMowN/x76JCmtCdPeFyKUH48sdcpvimYsB6ErBUQLuUPeQBT4A0r1udjkqSO9MveGh/ScWvJm5Q27TlzObYrMPE+iaoKiUUslCE6wkFLH/mHsyR06wyqZlsYNSXK2pd4ZRqfHkiQaIOEeXYPlKrV6MPVtTr5KgI9CBHw8MU7XUa1dS3LvtnYkKa0J0d3XilgikDd17V15WQYvJxjSl3vUGPZHuYeefATT7qsnvq52YgCaS3z5Z4h2iwAcg9hD8lp16AlMpdSBNsJKQ8VsJlm+I8rGxHA6h0VtNbndqzg9Rarx4CWBG2YOVV7MEgPadqZdgOQPtdMvwP7Lzq61enM5dqTVMrq+rCQBH+tAJlsvpYLdrOhkp2Ivji/QSdmcNu40/dxY5phPT0zxBUU0Mh7+dKAJpuUNuk1mxAIC2nToEXyl1IE2wkpAJdgPg8g3/D1+/nuyZFEQaIdg7nmEplVJ8JoAZ4WLe/cpq5hMwbqKNqTdMzBPspNc5fG/59OrZdBsf4cbUuiZQb0cLAO5hhkcCtGfOoCRQC8ZMQFQTIxSJkmF6iHqG/3fGXWL13nbsSq3PvjvQTo9kgMM55DbFVfMJGSehBu3BUkodSBOsJCQBK8HCO/xZ5QEFc3Fg6NubekNYlBoPkUgUH4Ehy1MfzOX2UOesJLM99Ybi+sKd+J3D/8j2eVzUOytIa986QVFNDH+n1SuTlp0/7HaR/Llk0UNf256JCGtCdPaFyJQ+8A7/3ufZlQSba1Or99Ybbh/xxEJZfja1lOJqTc1rwCmljtyYEiwRuVlE3heRdSLyJxHJtZdXi0ifiKy1b3fFJVoFgCNkJ1ie0SVYmZULAWjekVr/ACo1Xvr8vTjFgHvkSp39WjJmUuxPvaG4adEugu6R53u2pNVQ6E+tktX+Lutis5m5hcNul15uDRXbu3XteIc0YTp6A+TQgyN9+N676TPm0Gu8BBpSq/cyLdxBn2v4YfhOh9Dgnk5OT+oND1VKjc1Ye7CeBRYaYxYDm4F/i1m3zRizxL5dN8bjqBiOUC99eIcduhCrtMYaxtBbn1pDOJQaL/5O64c1vpHnOfYL5s+j0LTS29E0TlElRma0m7A3d8TtgnmzKTCthHvaxj+oCRLp6U+wCobdrnCGPQetLnXmoHW1N+EUg2QOn1wWZqWxU8pwp1gvTkakk6B75O9/Z9YMCkINEA5MQFRKqWQxpgTLGPN3Y0z/5etfByrGHpIaiTPcQ0BGN3QJoKpoGjspQZpTb/iSUuOhx06wnOm5o94nrcIaKrVn0+rxCCkhQpEo2XQTHaaSWj93yXwAGrenTk95tHfkEvUAFRXVtJsMTArNQfO37QXAnT18giUiNPuqmdZbOwFRTYxQJEp2tIuIb+jiJv2kcB5OogQaN09AZEqpZBHPOVjXAH+LeVwjImtE5EURWT7UTiJyrYisEpFVTU2pdeZ3vLjDPfgdo0+wPC4HDe7pZHfrMAalRqOvyy5ukDH8D+tYRbOOAaBzZ+qUKu/s7iFDAsOWKe+XV20lmK0pdFFzZ18LATwjDsf2uJ3UuapI70ydOWjBTuvfY2920Yjb+nNnURhNnetBtXQHyZVuZIThkQDZ060h+I0pNDxUKTV2IyZYIvKciKwf5HZBzDbfA8LA/faiBmC6MeYY4OvAH0Vk0EH8xphfG2OWGmOWFhYOf6ZMWVzhHoLDXPxxMF3ZMykM7dFhDEqNQrDL6rnwZo6cWPQrr5xJh8kg2pg6FcU6mq2iDY6skX9kV8+cR8C4CTakzlBkb6CZNsc0EBlx2/aMGRT7a1OmkmCgoxGAzPzSEbd1llhJRtuO1Di50NLRRZb04RzFCZaKmQuJGKGrPnWGhyqlxm7EBMsY8yFjzMJBbk8AiMhVwMeAy42x/mUxxgSMMS32/dXANmDOuD2LKcYd6SPsGv3kewBTcJQOY1BqlIL20DBf1uh7sJxOB/XuarI7U+c71tm0GwDftLIRt033ednprMTXljrPPy3QQrd7dJ+BcN4ccujC3753nKOaGOGufQBk5ZWMuG2OfR24lu1rxjOkCdN/YsGTO3JyOb04n12U4EjBC00rpY7cWKsIngN8CzjfGNMbs7xQRJz2/RnAbCD1ymsliC/aQ8Q9yhLttv4LIjZtT40zjEqNp6hdqCEjZ/jy3AfryJpNWbA2ZXoxelusBCuroHxU27dkzKbEnzpDkbPCLQS8wxe46Oct7x8q9vZ4hjRhot1WiXpJH/k7UDXjKDpNGqE9qTE8tK+lHoC0vJGnlTsdwh7vDPK6UufEglJq7MY6B+sOIAt49qBy7KcC60RkLfAIcJ0xpnWMx1JAMBwlhy4i3tEPXQIonWENY+jWYQxKjSja1wFA5mEmWKZ4AZn00rInNZKMYIfVGzOtaHT1i0KF88k3bfS0NoxnWBMiEI4wzbQTSR95eCRA4axjAejauXYco5o4rr4muiQLnO4Rty3I8rFNqkhrTY0iH6F2qwcrq7ByVNt35R5FcWQPpMgcNKXU2I21iuAsY0zlweXYjTGPGmMW2MuONcb8OT7hqo6+EPl0EhnFWcVYVSX51FGslQSVGg1/BwHjxpd2eENxs6Zb5br3bk6NXgzTbc3DSZ828jAxgPSKowHYs2nVuMU0Ufa1dZNHF46s4lFtX1VZRaPJxexNjZNYWYFG2j2je+4AzRmzKerbmhK9t6bLOkGQlj+6EwuOEqvAS3sKFbhRSo1NPKsIqgnQ2dlOmgRHNWwjltflpN5dRVZnapxZV2o8ib+DbslARlHcIFb5HKsXo7c+NX5oOXr20UEWuLyj2r50znFAavTiNDfuxiFmVPNwwKrWuss9k+yO5D+JZYxhWngffb7RJdYAoYJ5ZJhewq07xzGyiSFde4nggPTRDQ+dNtP63LekyPBQpdTYaYKVZHrbrTPKjhEu/jiYrsyZFIXqIRyMd1hKpRRnoI0ex+HNcwTILyhiLwW4mlNjwnuGfy8drtGfzCkrr6TJ5CL7kr+SYE+jdTIqvah61Pt05cyhNLQTIqFximpidAXClNJMKHN0ySVAmt17uW9b8icZrt5GOpx54BjdT6SaGXPoMOkEd6fGiRWl1NhpgpVkulqsBCstd3TzAmJFC4/CRYRg05Z4h6VUSskINtPlHt3Z64M1+GYwrTs1vmN5wT20+0ZX4AKsi87We2eSkwKVFEPNOwDIKZs96n2kZBEewrTtSu4Es7GpmRzphZzRzUECKLF7Lzt2JH8lwZzAHjp9I1fO7FeQ5WOrVKfMHDSl1NhpgpVk+tpHXzr3YBnl8wFo2r4urjEplWpywi34fUd2Xb7e3LmUh+uJhJL7mnOBUJiS6D5CWdMPa7/u3LlUhHdikr2nvH0nUSNkFtWMepdcu1z5vi2rxymoidFYZ10wObOoatT7zCwvZqcpRhqTO7ls7w1SaRoIZlcf1n7NmbMp6tsO0ej4BKaUSiqaYCWZYKeVYOWM4uKPByuZsZioEbrrUmMStlLjwUSj5Js2QmmH30sM4ChdhFsiNGxN7uFCu+t3kS4BXAWjTzAAHCUL8RCmsTa5f2i7OnbS6sxD3L5R7zN99tEEjAt/fXKfxOrebfXEFFTNH/U+HpeDes+MpO+9rGtspkTakPwZh7VfMH8+6fQRaa0dn8CUUklFE6xk022VTXZmj766U7/q0gJ2UQR6QUSlhtTZ0YJXQpB1+L3EAHkzjgGS/6KrTbusvxNZJbMOa79pdi9OU5JP+M/p20WHb3RV5Prl52RSK5V4Wt4bp6gmhmmyCnVklI0+wQLoyjmKovBuCPaOvPEk1VJnJYjpJaMfGgqQVmlVEN23JfkraCqlxk4TrCTj7a6nQ7LBm3XY+/rcTna7ppPZpZUElRpK216rCpor5/B7iQGmz1pMwLiS/qKrgT1WT3dBzeLD2m/63GMIGifB3cnbi9PZF6QmuoveaUcd9r5NGbMo6t06DlFNnLSObTQ7C8F7eIVenKULcRKlY1fyfvb79lg9r3nTDy+5LJtzHBEjdO5M7hMrSqn40AQryWT27aHdc2Rn1gE6M2dSFKxL+ipXSo2XlgYrwcopOry5R/3S0nzUOSvxtSZ3uW7HvvfoJo3skpmHtV9mejq7HJV4W5J3wv+u7e+TJX24ShYc9r6B/Pnkm1aCHfvGIbLxF40aigM7aEs7vKGhANNqrN7bfVuTdw6aNLxDCBdpZQsPa79ZZYXUUpr0c9CUUvGhCVYSiUQN+eG99KWPvqrXwaKFc3ETJtikvVhKDca/1xoiVFg174jbaM6YRbE/uXsxcjo30eCdMepS1bGaM2ZZF51NUi3brAShP2E4HGkV1kVnGzYn51Cx7XuamG12ESo5+rD3rZk9n27jI5ik14EzxpDb+T6N3hpweQ5rX2sO2kxyO5P7xIpSKj40wUoie9p6KacJco/szDpAerl1Vq5l+9o4RaVUanG0bqMHHzmFhzf/JlYwfx6FppXe9uTsxeju7WNGeBs9eYffgwMQKphPkWmht6MpzpFNjNCO1wnionju8Ye9b8kca5/2JC1XvuPdf+KSKHlzTz7sffOz0tjuqMKXpOXK93b0clR0K735h9d71a9n2lEURfZi/B1xjkwplWw0wUoie3dtxich3EVzjriNohrr7GpXvQ5jUGow6d072OssR46g56ZfWoU1b2nP5uQcKrVt3atkSADXjFOOaP90e8J//ftvxTOsCWGMobhtNfVpRyHutMPef3rldPaZXGhMzmqtwe2vAFA87/ATLICmjDkU924FY+IZ1oTYuu51cqUHz6xTj2h/d5n172v7jrVxjEoplYw0wUoinbVWVa5pM4494jZmlBWxyxRi9mklQaUGUxCooyP9yHuJAYpnWxdd7apdG4eIJl7r+ucBqDnuw0e0f6nd89ORhD80d9TVc5TZTl/ZSUe0v8vpoM4zg+wkLFdujKGs5Z/s8sxCMo/sMgWhgvlk0kOwZWecoxt/reufBaD8mLOOaP+Cmdb3fl+SV9BUSo2dJlhJJLx7HREc5NllkI9EmsdJvauKzM7knR+h1HhpbW6k3DQSLjyyoXH9yiuqaTVZmH3JWa67uOEFtrtnkZFXdkT7l5ZNp5Vs2Jd8PeW73ngC9//P3n3Ht1Wdjx//HG15ynvv2I4d23F2yICEllX2KNAWKPBrKd2lg45vB7RfOqAtHZTS8qUtFAplj1IoFAg7IXsvJ957L1nznt8fkoOT2PGSLSk579dLEF3de+4jS7L13HPOc4SXhIWXTLmN/thiMtw1YbfY8oGaOsq8++jPnFoPDkBEdiUALQfCq/fS5dHIanudJnMBxripDQ8umFNEj4zE0xS+FTQVRQkMlWCFEVv3DlqMWWCKmFY7vVEFJLnqwOsJUGSKcnKo2/0+AJF5k597M5J+uBejN/wmvB+q2s9cz366s86ZchtCp6MxTBedjTzwLB0intSSFVNuQ/gXW+6qC68Eu/btRzAKL+krPznlNjKKF6FJQX+YlSvfsnMnC9nP0JwLptxGjNXEYX0+Ed3hOQdNUZTAUQlWmGjo6KHcs5uelOXTbsubUIwJD57OwwGITFFOHvbqDwDIKpv6l+thfTFFZLhrQNOm3dZsanj9z+iEJO/M66fVzqBtLlnuGrye8LmQs3//Hha6NtGQc+mUqicOs/mrD7aG0aKzLreXrMNP0GjMIS5/8ZTbyUlNopYUdGFWrrz77fvREGSuuWFa7XRFF5PmOASaN0CRKYoSjqaVYAkhbhNCNAohtvlvHxvx2HeFEFVCiP1CiKlfClUA2PfBa0QIJ/FlH512W5EZvgUU2w+HZyldRZkpUU3vUa3LISZuavNPRpLJ87DipKshfHqxenv7KGt8gj0RS4jPnHoxHQB9ehlW4aLxcPgUe+j89x140ZN/3pen1U5ukW+xZUdD+Cy4+96rT1DCYQYqPwNCTLkdg15Hk7mAuP7wed83NDayovMpqmyrMCdNfv2vkWRKGRZcDLaEz/NXFCXwAtGDdbeUstJ/+zeAEKIUuBqYB5wL3CuE0AfgXKcssftphjCTuuBj4+88juQ8X4WvvobwGr6iKDOpt6+PIucuOlOm33sFEJvjW0eopSp8hkptf/IOEkQvER+5ddptJeSH14T/A3u2s7Tn3+xIu4yYlOl9yY6NjqBWl4WlKzx+xw4MOcja+L+06FIoOvuz02/PVkKqtxnp6AtAdDNv35O3E80QCRf+eNptxeT6ei9bwrCCpqIogTNTQwQvBh6TUjqllNVAFbB0hs510qtrbmXxwOvUJa1BmKOm3V5eZgqt0oa3/WAAolOUk0PVu89gEW5iys8LSHuZRZUA2BvCY8L7of3bWVr3ANuizyB30dSqqI2UWVSJR+pwNYb+83e53Dif/gJOYaLo8h8FpM22iEKS7eFRTOi9h39MgaxncO2Pp1Sa/lj6dN9FvO6a0B8lseGd1zi960n2pVxAQsHUK/QOy5m7EJfUY6/fNv3gFEUJW4FIsL4khNghhPiLECLOvy0DqB+xT4N/23GEEDcJITYJITa1t4fnopQzbffzvyFW2En8yFcD0l6EyUCjLgNLX01A2lOUk4F+z1N0Ekv+ksAkWAnx8TSQgqEj9JdEGBzox/P4/8MtjORcc09A2jRZImjUZ2LpCu3nL6Xk3b/cSrlnF4eW3E7MNBaYHsmdWEqi7MLRG9qLTb//xguc2fBH9saeQcGqqwLS5nCi0l4V2nPQ6hsbSfvv5+nVxTHnmt8EpM2UuGgOiyxM7eE1B01RlMAaN8ESQvxXCLFrlNvFwB+BAqASaAZ+NdkApJR/llIullIuTkpKmuzhJ70Dh6pY0fQgB6OXkTB3ags/jqYnIpsER/itU6IoM6Gvt4u5fe9xIOGjGIymgLXbYsknfvBQwNqbCQ6nkz33fpJCTxV1p/+KuJTprQE2UldUISlDofv8pZT856GfsbblL2xP+BgVH/tcwNo+stj0/tBNMrZ98BYl6z5HmyGV/M8+OK25VyPlFxT7ypWHcO9lW0cnfQ9cSiqdaJf9H6aYxIC0K4SgLaKIpMHwq6CpKErgjJtgSSk/KqUsG+X2nJSyVUrplVJqwP18OAywEcga0Uymf5syCYN2O/3/uBGzcJN4xa8D2rYzNp9Y2Ye0dwW0XUUJR3te/RsW4SbxtKmXpx7NUFwx6Z4GvC5HQNsNFPtgP9t/czlL7G+xteTrzDszsM/fmzyPDNpo7wi9Xhypaay7/1bOrf4F+6JPo/zmwCUYAClFvkp8fdWhOQfvg9efIffFq3HprETc+DzmqLjxD5qg2AgTh/V5IVuuvKa2mq57z6bYe5D6M+8hpXxtQNt3JZYSL7tx9zYHtF1FUcLHdKsIpo24eykwXC7qeeBqIYRZCJEHFAIfTOdcp5oB+xBbfv9JFnm3U7/iJ8TllAW0fUOSr0JYX2NoD99RlJkmNY20PX/lkC6POQvPDGjbhtRSDEKj+VDoXcmvq95P46/XsGzobbaXfotFV/8w4OeIyvYV+mjYtzngbU9Hb3cXG359BWub/sz2+HMp/upz6ALYcwmQlZVDu4xFtoVWFUWX28vLD9zGwjdvpM+QgPkzL2HLKAz4eTqjikh1HA65cuXvvfYs1r+sJUerp/asP1Nw+icCfg5LViUAzftVoQtFOVVNdw7WnUKInUKIHcBa4BYAKeVu4HFgD/Ay8EUpZWj9lg1hdbXVVN19DquH3mB3ydcoPPvmgJ8jOnMuAJ21apy4cmrb9fYz5Gh1dFR8FjGNtY9Gk5DvqyjWcXhbQNudDqlpfPDsPcT+bS2p3kZ2rL6P+Vd+f0bOlV7sW7A5lBad3fzmCwz8dhlL+l9nc/4XqfjSowiDOeDn0esEDaYCbH2hU677cNU+dt/5Ec6tv5tDthWkfP0tYjOmV45/LFqSb5kCZ1toFPro6Ori9d/fzLK3rsdjiKD3E/+iYNXHZ+Rc6cW+3sve6vCooKkoSuAZpnOwlPLaEzx2B3DHdNo/1diH7Gx86m7mH7yXFOFkz9KfM+9jn5+Rc6XlFOOROhwtapy4cmqT7/2BduKoPO/GgLedXViOS+pxNYfGhYzaqt10PfFVljo3ss9Uiu2T/0dF3rwZO19Mcja9RKFvC/7zb2mspe6xb7C0/1WaRQrVFz7JokXTX1fwRPpji5nX8QTS40IYAttDNhm9ff1sfvR2ljc9RKqA3QtvZ96FXw3okMhjReVUwiFfL05uavGMnWc8Hq/GWy88yNxt/8uZdLAz5SLmXn8PxojYGTtnTmYmjTIRWkKr91JRlNkzrQRLCYz21ib2vfwn8qv/wRm0sd86n/ir/kBpXvmMnTMz0UY9yYiu0J2Arigz7eDODVQ4N7M+70ssN0+/PPWxLBYrh0Ogkl53Zzv7Hv8Bi1qeIFno2VTyHRZe/i10hhn+EyAEjdYikvqDNxenr6+bnU/8jIq6h6jExYbsG6n85I9Js0bP+LlFWgWmjkdpq95JcuGiGT/fsbxeL+//66/kbv0FZ9LGLtsasq76FfPS58z4uTOLFuB+Tc9g3Tbgmhk/32h2fLAO9yu3caZnK/WGXBou/DPl8z8y4+fV6wQN5jlkhNFiy4qiBJZKsIKkt6eHvW8/hW7f88wfeJfVws1+0zwOrLmL4tMuntEri+D7A9BizCRjoGZGz6Mooaz71V9il2ZKLwzMEgij6YzIJ3MwOD04A4ODbHrq18w/9CeWMcCmuPPIv/KnLE6f3kK6k2GPL6Oi4RHsQ3YirBGzdt4hu53Nz/ya0oN/YiV9bItaRcplP2NZQcWsxWCbsxR2QseB9bOaYHm9GpteeYT4jb9ilVZNnSGHmnP+QdmS82cthqzkeKpIxxCEcuW7tm1k8OXbWeZ4mx6i2VPxHUou+sas9iIOxJWQ1roB6RpEmCJn7byKooQGlWDNEs3rpWbvRtp2vIqp/h1K7FtYLlx0EcOO5ItI+8gXKJ67eFZj6o/MIal3B2gaBHjuiTI9Lo9G/8AAA31dOPo6cPZ34ervwmPvwTPUh8dpR3PZER47Oq8TvWcIvdeBQXMgNDdSk0gkAtAJEABCh1tnxiPMuHVmMFrQGa1gtaGLiMcQnYQpJglLbDJR8SkkJyZjMZ28vyKaaw+woPc1tqRcwbL45Bk7jyuhhLSBN7D3dxMRHbhKbSfidNjZ/Ozvyd/3J9bQyb6IBfRd8HOWzls+K+cfyZi1AFPjQxzet5m5C1bP+PlcLhcbn/8jebt+zyra2WOupPuc26hcGNhKcRORV1xBn7TibZiduTiaV+OD/z5O3Ia7WKZV0aRLY8eSX1B+7mcQ+tn9LOt0gmbLHOYN7Jy1c+7as5POF3/CqoFXcAgzW/JuouSy71E6S5+7kQzpFehbJa1V20gpDdwSK4qihIeT99tTkElNo27/Vlp2vIqx7l3yBreSTz/5QINIY0/KRcQsupyCRWezZKaH6YzBG1eApdeFt7cRfVzW+AcoU+Zwueloa6Gvs5mh7hacva14+9sQ9nb09g5Mzi4s7h6s3j4itQFiGCRBuEgYp10vOhyYcQoTLmHGJSxowuDvAfX1gmoSpBQIvJikC5N0fvh/XBjQRm17UJqpFon0GJMZsqbiiUpHb8vEkphLbGouSRn5xMbaAvpzmk21L/6KJCS5F3xrRs9jySiDWmg8sI3CRTP7Jd/tcrDj+XvI2PVHVtDBAVMpA2f+jrnLzp/xXvGxJBcvg/XQc2gTzGCC5XQ62PLCfWTvvpeVspVDhkL2n/krSk+7KGjPPcpiYot+DvFdM5tkaF6ND954huj372S5dx8tIpkdi+6g7LzPkW4wzui5T8QeX0Ji8xtIexciIn7GzrN39w7aXrqDFf2vogkdu7M/yZzLfsjCuNQZO+d4Eucshq3QcWjTjCZY9oEedj57N3E1/0a78HfMnX/ajJ3rZOQYGqS/q43B3jaGejtxDPTgtPehDfWBawDp7EfnGkDnHsTgGcDgsWP0DqHT3OilC4P0YJRuDHgw4sYgPejxAgIJSMSHN+H7vwsTLv/fbI/OjFtnwav33TyGSDRzDNJiQ1htGCLjMEbFY46OJyImkYjYBGJsiZjNlmD/6JRxqAQrQKSmUX9oF83bXkVf9w65/VvIoYccoIUkDsaugrzVZC86h8ysOWQGO2DAklIMNdBRu4cUlWBNidvtprO1gd7WWgY76nF1NyL7mjAMtmB1tBHh7iJG68Em+8kUxycyXinoFTH06W3YDTb6rXn0mmNoNNt8PUtWG/qIOIxRcZijE7DGxBMRZSMyKhq9KRK93kikEEx5AIqUeIb66O9qZbC3naGeNlz97Xh6W9F6GzEMNBHjaCGrfz3xvT3omuRRh3fLaDoNSfSbUnFGpSNjMjElZBOdkkdCegHxKZkInX6q0c2Y3q52KlqfYVvsR1icHfgS1SOlFCyA96CnZhvMUILldjnY/vw9ZO6+j0Wynb2GuXSc/ivKVs/8cOPxpObMpR8rNG+fkfYdjiG2Pn8vOXvu4zTaOGSYw64VtzFvzdUBrwo5FZ22Msq6nkB6nAGvVqh5NTaue46I9+5iuXc3bSKR7ZW3U37+50k1Br4y4mSZMiuhGVr3vU/qwsAPT9y/exvtL/2U5f2vki/07M38OHMu+R4VSTkBP9dk5c8ppV9acc/QYsu9PV3sefaXzK15iGX045IGap/7Iq6S9ZhMwSuoEkxS0+jr6aCnrZ6BjiacPc24+1rxDnYihroxOHuOXMiM8vYRI/uJEE4sQNIYbWpSYBcWhrAypLPi0EXi1lnwmGJw6YxoR24mpM6Ipjf7f+8IhNSQ0pdmISVIDYGG8LrQeR2+kSeaE6PXQYSrH5N0YNXsRMpBrMJ1wuc6KC30iSjsumiGDDG4jDF4TDFow98dIuIxRMZjio7HEp1ApC2RKFsSkdFx6PSh9zcZfCO9XC4HbqcDt8uBx+XE7XLicTvxuBy4hJnUvHnERYbH+1slWNPQUn+Iuk0vIWreIrt3E9l0kg20E0dNzGIO56wmY8E5pOcWkxoCf+iPZcsuhQ3Q07CHlMpzgh1OyJGaRld7Ix31BxloPYyrsxZ6GzHZW4hytWPzdpAge0gVGiOvk7qlnk4RR68hgT5LBl3WCohMRh+dhCkmBYsthcj4NGIS04mITSJep2fmru2OQwgMEbHERcQSl3nics3S46SrpZaupsMMtNfi7qxD9DVgHmwiztlA0tAWItsdMKJuikvq6RGxDOpjGTLG4jLF4TXH4bHEgzkavSUSgzkSozUSgykCTBHojRb0egN6nUCvN6DT6Y78wfJK8HrceDwuvG43Xo8Lr9uF1+NC87rRPG40jwvpdoDHgfA4kO4hcDvAM4Twb4scrGOucBJ31sz2XgGk5xYzKM1oM1BRzOV0sO2Fe8nafS+LZTv7DHNpWvELFqy5NCSSCwCh01NnKiSxN7C9OI4hO5ufu4f8fX/iNDqoMhaxe+VPKT398pB57gCmrIWYuh6ltWozKXNXBKRNzauxZd1TWN/7Ncu8e+gQceyo+D7zLvgyyabQubKdO/90vB8IOve+FdAE68DuzXS+9FOW9r9GjjCwK/NqCi/7HyoSQuHSpY/VbGC7oYDYAPdednW0sfvZu6iof4TTxCDbrUtpPfM7uLvrKX/vq6z767dZ87m7A3rOYNO8XrraG+lprmGgvRZHdzPevhZ09jbMjg4i3Z3EeLpIkD3ECg/H1of0SkG/iKJfF4NdH8OgOZkeUxFeSxzSEo+IjMcQlYApKgFrtI3IaBsRUTas0TZMliiidDqiZvk5e5x2+ns6GeztxN7XgbO/G9dAJ97BbrShHoSjG72zF4OrF7O7j/ihGiIHB4iRA5iFe8x2NSkYxIRTmHFiwi3MuHQWPDqTrydNZ0Hq9EihQ6IDnR7QIYUOhA4p9GgIhPT6EkbpRRzz/yOJpPSikxp66UavudFLN4YjN3+PH26M0oMRD0bhxQKM9RtsnXc+hz7+GBdUpM/EjzzgVII1Cb1d7Rza8C/cVetI6/qAbNlEKtBNDNVRC6jJXkV65dlkzqkgKYT+wI8lMzsfuzTjaT01S7VLTaO7o4XO+v30tx7G1VGD6K3DOthIrKuZFG8rCcJ91DC9PiLp1iXQb0qiPmYONVGp6GLSMcdnEJGQRVxaDnGJGaTq9QRvcMrMEAYz8ZlFxI+ViElJX28nHQ2H6GupxtFRi+ytRz/UicHZjcXdg81xgFjZRwwD6IUcvZ0Z4JZ6nJhwCtORPyrvJ36c08qXzfi5dXo9NaZC4roD90XL5XSy5YU/kL37jyyVbRwwFNG68mfMPyO0kothHQmLWdX0V1wD3ZiipjcfZsg+yJZnf0fBgftZSScHjHPpXn0nJatCJ6kcKXXe6bAd2na+Me0Ey+vV2Pzqo8Rs/A2LvQdoEwlsL/8eZRd8mUTz7BUQmaj8jFT2iVxMjRsC0t7ubRvof+WnLB18k0xhYlvmNRRd+h0qE0MnsRqp2baQss6HkUM9CKttWm21tjaz79k7WdD0GKuFnR1RK4g467vMrzzdt4OUbNv3Mmua/8I7z81j1cWfmf4TmAVS0+jvaqOt8RC9rTU4OuoQfY0YB5uIdLRi87SRqHWSKLwkjjhOk4JuEUuvPo5BYwINUfnUWJMhKhljbCpmWxpRCRnEJqZhi0/CptdjC9aTnAKDOYK4lAjiUiY/ushhH6Cvu4MB/7BHZ38nnoFuvPYudM4ehNt+5GKjzutE53Vg8Dowak6snj500osOL0JKdGjH/Nt38/1Xjyb8W/z/l/5tEoEmfImaRxhx6SPw6kzH9PaZQGdE6k1IvQkMZtAbEQYzQm/y/d9gQhjN6A0moiJTKc0N2uXoSVMJ1jgaD++m/v2niK59lWLnLhYKjUFpoSqigqbMq0mefw65JUtYGKJdrieSEGVmn0jD0HM42KHMqO7uLpqrd9PbsBdPWxXGnsPEDtWR7mkgXgwe1XvUTTQd+hQ6rfk0Ra1G2HKwJOURk55PUsYcYmLjiQnaMwlxQhBjSyTGlghlJ05cPB4PvQN92AcHGBrsZ8jej8cxiHTZkW4HXk3Dq3nRNA1N0xBSwvCvb4MRncHk///wv00YDCb0JiMGgwmDyYrBHIHeHIHFGonFbCZKJ466Cjmbg4h6kxaxpPFhHPZ+LBFTLw/udAyy9fk/krXnzyynlQOGIrav/CkVIZpYDYsoOgN98184sOkVStZcNaU2Bgf62fbsbyiqeoCVdLPPNI+u0++mdGXw5lhNxJw5xVSTjrH2TeB/ptSG2+Nh00sPkbj1dyzVqmkWyWyd/yPKP/Z5kmdgeYFAEULQELuYM3qfQTr7EebJv/ellOzY/C5Dr/2cpfZ3GBJmtmZ/mqJLv8Oi+LQZiDpwDAWno+98iMbtr5Gx/PIptVFXX0fV83eytO1JzhBD7Ig5Hdu5/0PFsQVrhKD0pr9w8O6PsGzLrbwjvay65HMBeBbT1z9op7W+it7GAzjaDyO6q7H01xHrbCTV00yMcBz1d9Ul9XToEuk1JtEcXUFdVDoiNgNTfBZRSTnEpWYTn5hGgsE47jzlU5ElIgpLRBTJGbnBDuWUphKsE1j/j5+w/MAvyQCqdblsyrwOW8X5FCw4g/mm4I9vny4hBO3mHErswVujJpA6OztoPLCF/rod0LaX6P6DpLrqSKabkdfMW0UiXeYsDsafjTcuH1NyIbFpBSRmziEuNp7Zrzd16jEYDMTa4om1hc/VqOmInLMSY9ODHNz8GqWrL5n08YP9Pex8/rcUHPwry+nmgKGInSv/l7IzrgjpxGrYvGVnMbDOytCuf8EkE6yujjZ2P/8bSuoeZiW97DVX0LXmD8xd/rGQTqyG6XWC+rjTWNr9PG57D8YI24SPdbpcbHrxL6TtuIfTZD0NunS2LfoZ5ed+hjRjmMxDKDkP0/onqP7gRfJWXz3h46SUbHvvFTxv/ZolzvUMYGV73v+j+JJvs8g2c1U/A6li+dn0bbDSu/WZSSdYVVX7qH/xLpZ2vUAmLnbHrSXpY9+nomjscv8mSwRZX/o31fdcwKptt7KufiuLb/wlUZEzO8BNSklnZydtdfvoazqAq/0w+t4aIgfrSXQ3kSo7mDNiDrJTGmnRp9JjTmdn/GKkLQdLYjYxKXkkpucRk5hOuk5PeAwEU5TRqQTrBNIWfoz1Qkf28svJy5vL7K0cM3sG4kpJankTbaADXVTi+AeEAKfLRd2B7XQe/ABPyx4ieg6Q5jxMGh1HrmbZMdNgzKM+bjm18QWYU4qJzy4hNbeEFEsUKUF9BsqpJn/JuQy9aWJw179gEglWd2cbe5+9i9L6f7CcAXaZKmlZ/VvKVl4YFonVsIiISN6PPI2SjjfwOIcwTKDXpan+ENUv/JL5rc+wWgyx27qY7jXfpGTZebMQcWBZFnwcy+tPsffNRyk57/Pj7t/b083Of/2BvKqHWEkrdfpsdi75NWVnfZrMWS63Pl0LV51Hx/sxODc/AhNIsNweD5tfeZToLfeywLOHXqLYXnAzxRffyoKY8OqvSI6PZZ1lOYvaXp/welh7tm+g59W7WNL/OjnAvsSzSb/gu5TnzZ/QOS3RceTf8grb/vpl1rQ+StNd/2Vb4Q2UnPNZEhKnnph6PR5aGw7R1XCA/pZDaF3VGPvqiBlqJNnTRKLoP2oIXzcxdBrT6LBV0BKbizEhj8jUQhKyi7ElZ5Gj08/qKAJFmW3CV+EkNCxevFhu2rQp2GGcUta9/CRr1v8/Gs5/mMwlFwY7nOMMONwcOriH7gPvQ9NW4nt3ke+uIko4AN/cmgZDNj1Rc/AkziUys5zkwkoS0ueEZPU65dS19c7zyLLvIfq7+zCPk2A0Hd5D3Ut3U9b2AlFiiO0Rp2E+81vMXfyRWYo28Da9/gyL37qerfNvZ8GlXxt1Hykleze/Sd/b97Gw5xX0aOyIPZOEc75F9rzwLT/tcHlo/mkFOoOR7O9tGfN3U0PtQWr+/RvKW54hVgxywFSKe9kXKV37ibD+ffaf33yOj/Q8ztBn3iU6s3TUfXq6u9jx0v1kHXyIPNlAi0imseRGyi/4EqZpDKsNttf/8yxnvv9p9lX+D3MvuXXUfVwuN5tffwLDlr+wxLWRIczsS7+M/ItuJTY1f8rnPrjhRXT/vZ0C934c0sh+Uynd8ZWYU4sx2DKIjI5FZ4xASA9e55BvqHZ/B9pAG7K/FTHYRqSjhXh3MylaO0bhPdK2R+po0yXRbc5gKCobGZeDNXkOsRlFJGcXY57mXEtFCRdCiM1SyuMWslUJ1imutrGJrD+Xsrvo85R/6mdBjcXt1Th0+BDNe9/DU7+Z2K6dFHgOkiD6AXBhoN40h564MvSZi0gsWk56fhm6MBkqo5zadr35FGVv3MgH5bez9PKvHfe41+Nh97svINffR7l9Ax507LSdSeI53yKndOaLccw0zaux76fLSfc24brxNZKzi4881t7aQNWbj5Gw/1GKvFXYpZndyeeTc8G3Sc6ZG8SoA+etZ/7E6dtvZVvuZ6j89C+PDG/s7e5i37vPYN75KOUO39+/XTFnEHPmLeQtWBO8gANo/6HDpD+0gjZLLplfeRlzpA0Ap8vJng2vYt/0KJU9rxIpnNQYChhc/AVKPnLdSfG73ePxsuNnayj2HmTgmn+TMmch4LuYcHDPFpree4yixmdIp50uYaM2/xMUXfB1IuMCNwyyZue7dL73EPEdG8lxHUY3gQJDbqmnW2ej15BIvzUDR1Q2hoRcIlIKSMwqJikjH30Q11hTlFChEixlVFJKdt++mEirlbxvvzOr521obqF+97sMVW8ksnMHOY59pIkuwLeAbpMxh974cgyZi0gsPo2E/MqAryOjKLNFal72/XQlGZ46ms77C8VLzsbttHN4+1t0bv0Xc1pfIoUuuohhf+bHKTjvqyRnnFyDaA7t2UziPy9ECNgfuxJNGLANHGKO+wB6IanR59BR/ClKzvkskbEn1/w8j8fLB7/9BCv6/0ONPocuaw4RjjYK3AcxCi9tIoHazIvJO+tzJGafHEnlSG88fT+nb/8W3SKWxogShGeIHOdBYsUgQ5jZG38WcaffRN7808Nibt1k7N27k/jHLsTGAAcjKnFLHcmOajJoA2CPZSFy0fWUrLka3QyvX+Z1DdHRUMVgRwODg/3gtiN1enTGSKwRUVhjE4mITyc2Pimse00VZbaoBEsZ00u/+yJndf0DvnEAQ/RYy+1NT2d3NzW7N9B/aAPm1m2k2/eSQ/ORx5v16XTGzkNkLCSx+DSSC5cgzLO98oSizKym6n3w0EWky1aGpAkTbvRC4pZ69kQuxVN2BWVnfgKzZcpLR4e86n3b6Hz+B2Tbd6FDo92USV/KaSQvu4zc0uVhNbdsslxuDxuf+jXRh18k1tPBoCGegaRKYsvPo3Dx2egM4TW/arK2vPMy8r3fE+toROpN9EYXYi45m8LTLsJykg8pq66uoumF/yW5Zwd6IemLyMKbvYqC1VdiS80NdniKokyRSrCUMb373pusfOUiDlR+h6JLvjvt9gYGB6ne/QHdVR+gb9lOcv9u8rQ6DP4qQu0igdaoUjxplcQWLCNz3kqMUSfX1WpFGUt/bxd7Xv4/tK7DCGMEhuzFFC09ixjbzFzcUBRFURRlZsxIgiWE+CcwPJDeBvRIKSuFELnAXmC//7H1Usqbx2tPJVjB4fJo7LljJdk0EfWNbZNaCLR/oJ/6fZvpO7wRmreT0LubHG8tJv9k2F6iaIwowZE8n8i8pWSWrSQyITQXhVQURVEURVGUiRorwZrWeAQp5ZEFTYQQvwJ6Rzx8SEpZOZ32ldlhMugYXPtjol+7itrff4yYy39LcuGSI+PgpabR0d5EW30V/U0HkK17MXcfIGnoEOlaC6X+CbO9RNFgKWJ74mqsOYvIKF1BXPocYk+y8fSKoiiKoiiKMpaADPgWQgjgSuDMQLSnzL6Vp5/FGx2/YMn27xP1j7PoIYoBEY1RuoiR/SQJF8MDmDxSR5M+jc7IQlriz8eSWU5S8XJSsoqYdxLPn1AURVEURVGU8QRqRu1qoFVKeXDEtjwhxFagD/i+lPLt0Q4UQtwE3ASQnZ0doHCUqVh72WdpXHYuW956FFP7bgzuPjBY8JpiELZsrMm5xGUUkZxbRrbFinq1FEVRFEVRFOVo487BEkL8F0gd5aH/kVI+59/nj0CVlPJX/vtmIEpK2SmEWAQ8C8yTUvad6FxqDpaiKIqiKIqiKOFgynOwpJQfHadhA3AZsGjEMU7A6f/3ZiHEIaAIUNmToiiKoiiKoignrUBMmPkosE9K2TC8QQiRJITQ+/+dDxQChwNwLkVRFEVRFEVRlJAViDlYVwOPHrPtdODHQgg3oAE3Sym7AnAuRVEURVEURVGUkBVSCw0LIdqB2mDHcYxEoCPYQSizRr3epw71Wp861Gt9alGv96lDvdanllB8vXOklEnHbgypBCsUCSE2jTZ5TTk5qdf71KFe61OHeq1PLer1PnWo1/rUEk6vt1q0SFEURVEURVEUJUBUgqUoiqIoiqIoihIgKsEa35+DHYAyq9TrfepQr/WpQ73Wpxb1ep861Gt9agmb11vNwVIURVEURVEURQkQ1YOlKIqiKIqiKIoSICrBUhRFURRFURRFCRCVYJ2AEOJcIcR+IUSVEOI7wY5HCRwhRJYQ4g0hxB4hxG4hxFf92+OFEK8KIQ76/x8X7FiVwBBC6IUQW4UQ//LfzxNCbPB/vv8phDAFO0YlMIQQNiHEk0KIfUKIvUKI09Rn++QkhLjF/zt8lxDiUSGERX22Tx5CiL8IIdqEELtGbBv1syx8fud/3XcIIRYGL3JlssZ4re/y/x7fIYR4RghhG/HYd/2v9X4hxDlBCfoEVII1BiGEHvgDcB5QCnxCCFEa3KiUAPIA35BSlgLLgS/6X9/vAK9JKQuB1/z3lZPDV4G9I+7/ArhbSjkH6Ab+X1CiUmbCb4GXpZRzgfn4Xnf12T7JCCEygK8Ai6WUZYAeuBr12T6Z/A0495htY32WzwMK/bebgD/OUoxKYPyN41/rV4EyKWUFcAD4LoD/+9rVwDz/Mff6v7eHDJVgjW0pUCWlPCyldAGPARcHOSYlQKSUzVLKLf5/9+P7ApaB7zV+0L/bg8AlQQlQCSghRCZwPvB//vsCOBN40r+Leq1PEkKIWOB04AEAKaVLStmD+myfrAyAVQhhACKAZtRn+6QhpXwL6Dpm81if5YuBh6TPesAmhEiblUCVaRvttZZSviKl9Pjvrgcy/f++GHhMSumUUlYDVfi+t4cMlWCNLQOoH3G/wb9NOckIIXKBBcAGIEVK2ex/qAVICVZcSkD9BrgV0Pz3E4CeEb+41ef75JEHtAN/9Q8J/T8hRCTqs33SkVI2Ar8E6vAlVr3AZtRn+2Q31mdZfW87ud0IvOT/d8i/1irBUk5pQogo4Cnga1LKvpGPSd8aBmodgzAnhLgAaJNSbg52LMqsMAALgT9KKRcAgxwzHFB9tk8O/rk3F+NLqtOBSI4fYqScxNRn+dQghPgffFM7Hgl2LBOlEqyxNQJZI+5n+rcpJwkhhBFfcvWIlPJp/+bW4SEF/v+3BSs+JWBWAhcJIWrwDfU9E98cHZt/WBGoz/fJpAFokFJu8N9/El/CpT7bJ5+PAtVSynYppRt4Gt/nXX22T25jfZbV97aTkBDieuAC4FPyw8V7Q/61VgnW2DYChf5qRCZ8k+meD3JMSoD45+A8AOyVUv56xEPPA5/2//vTwHOzHZsSWFLK70opM6WUufg+x69LKT8FvAFc4d9NvdYnCSllC1AvhCj2b/oIsAf12T4Z1QHLhRAR/t/pw6+1+myf3Mb6LD8PXOevJrgc6B0xlFAJQ0KIc/EN779ISmkf8dDzwNVCCLMQIg9fYZMPghHjWMSHyaByLCHEx/DN3dADf5FS3hHciJRAEUKsAt4GdvLhvJzv4ZuH9TiQDdQCV0opj51gq4QpIcQa4JtSyguEEPn4erTiga3ANVJKZxDDUwJECFGJr6CJCTgM3IDvgqL6bJ9khBC3A1fhGz60FfgMvrkY6rN9EhBCPAqsARKBVuBHwLOM8ln2J9n34BsmagdukFJuCkLYyhSM8Vp/FzADnf7d1kspb/bv/z/45mV58E3zeOnYNoNJJViKoiiKoiiKoigBooYIKoqiKIqiKIqiBIhKsBRFURRFURRFUQJEJViKoiiKoiiKoigBohIsRVEURVEURVGUAFEJlqIoiqIoiqIoSoCoBEtRFEVRFEVRFCVAVIKlKIqiKIqiKIoSICrBUhRFURRFURRFCRCVYCmKoiiKoiiKogSISrAURVEURVEURVECRCVYiqIoiqIoiqIoAaISLEVRFEVRFEVRlABRCZaiKEqIEELkCiGkEMIQ7FhOdkKI64UQ7wQ7jlAjhFgthNgf7DgURVHCmUqwFEVRlLAmhLhNCOEWQgyMuN0a7LjCkZTybSllcaDbFUKcKYTYIoToE0IcFkLcFOhzKIqihAqVYCmKogSI6nkKqn9KKaNG3O4MdkCBFM7vLSGEEXgG+BMQC1wF/FoIMT+ogSmKoswQlWApiqJMgxCiRgjxbSHEDmBQCGEQQiwXQrwnhOgRQmwXQqwZsf86IcTPhBAf+K/mPyeEiB+j7RuEEHuFEP3+q/6fO+bxi4UQ2/ztHBJCnOvfHiuEeEAI0SyEaBRC/K8QQj/O8ygQQrwuhOgUQnQIIR4RQthGPNYlhFjov58uhGgffl5CiIuEELv9z3edEKLkmJ/PN4UQO4QQvUKIfwohLJP/SU+eEOI7/p9LvxBijxDi0jH2E0KIu4UQbf6f5U4hRJn/MbMQ4pdCiDohRKsQ4j4hhHWC5/+bf/9X/TG8KYTIGfH4b4UQ9f5zbhZCrB7x2G1CiCeFEA8LIfqA64UQS4UQ7/t/zs1CiHuEEKYRx0ghxBeEEAf95/uJ/7V7z3+Ox0fuP0bMa4QQDRN5fpMQD8QAf5c+G4G9QGmAz6MoihISVIKlKIoyfZ8AzgdsQArwIvC/+L5YfhN4SgiRNGL/64AbgTTAA/xujHbbgAvwfTm9Abh7RJKzFHgI+Jb/vKcDNf7j/uZvdw6wADgb+Mw4z0EAPwPSgRIgC7gNQEp5CPg28LAQIgL4K/CglHKdEKIIeBT4GpAE/Bt44Zgv8lcC5wJ5QAVw/agBCLHKnzyMdVs1znM41iFgNb5ek9v98aeNst/Z+H5+Rf59rwQ6/Y/93L+9Et/PMwP44SRi+BTwEyAR2AY8MuKxjf5244F/AE8ck3xeDDyJ7/V9BPACt/jbOg34CPCFY853DrAIWA7cCvwZuAbf61mG7706Zf5EeazX597RjpFStuJ7j9wghNALIU4DcgA1B05RlJOTlFLd1E3d1E3dpnjDl9TcOOL+t/FdqR+5z3+AT/v/vQ74+YjHSgEXoAdyAQkYxjjXs8BX/f/+E3D3KPukAE7AOmLbJ4A3Jvm8LgG2HrPteWAnsAMw+7f9AHh8xD46oBFYM+Lnc82Ix+8E7gvwa3Cb/2fYM+KWPsp+24CL/f++HnjH/+8zgQP4khLdiP0FMAgUjNh2GlA9wbj+Bjw24n4UviQpa4z9u4H5I57TW+O0/zXgmRH3JbByxP3NwLdH3P8V8Jtx2lwDNATy9fG3eyHQii/x9wCfDfQ51E3d1E3dQuWmerAURVGmr37Ev3OAj4+8sg+swtdbNdr+tYARX6/EUYQQ5wkh1vuH5/UAHxuxXxa+Hppj5fjbax5x/j8BySd6AkKIFCHEY/4hhX3Aw6PEdD++XpDfSymd/m3p/ucAgJRS8z+/jBHHtYz4tx1fohFoj0spbSNuTUKI64RvCOXwz6GMUX7OUsrXgXuAPwBtQog/CyFi8PXIRQCbR7Txsn/7RB15raWUA0AXvp8Z/qGTe/1DJ3vw9Z4ljnasf/8iIcS/hBAt/tfop6M8n9YR/x4a5f5M/OxPSAgxF3gMX8+tCZgH3CqEOH+2Y1EURZkNKsFSFEWZPjni3/X4erBGftmPlFL+fMQ+WSP+nQ24gY6RDQohzMBTwC+BFCmlDd/wOzHiPAWjxFKPrwcrccT5Y6SU88Z5Dj/1P49yKWUMvmFlw+dCCBEF/AZ4ALhNfDhvrAlfUje8n/A/v8Zxzncc4SsRPnCC2+rxWznSVg6+hPBLQIL/57dr5HMaSUr5OynlInw9ikX4hl524EtK5o34WcZKKSeTpBx5rf0/w3igyf9cbsU3HDHOH1/vMfGNfF8B/BHYBxT6X6PvjfV8ZorwzbUb6/W5b4zDyoADUsr/SCk1KeV+fMNoz5u9yBVFUWaPSrAURVEC62HgQiHEOf75JhZ/4YDMEftcI4Qo9c9n+jHwpJTSe0w7JsAMtAMeIcR5+OYKDXsA35yWjwghdEKIDCHEXCllM/AK8CshRIz/sQIhxBnjxB0NDAC9QogMfAnGSL8FNkkpP4Pvy/Hwl+nHgfP9cRiBb+BL8N4b7wd1LOkrER51gtvbk2guEl+C0g6+giH4vugfRwixRAixzB//IOAANH9v3P345r4l+/fNEEKcM+JYKUYUMRnFx/xzy0z45mKtl1LW4/t5e/zxGYQQP8Q31+5EooE+YMDfK/T5cfYPOCnlvBO8PjePcdhWoFD4SrULIUQBvrmFO2YvckVRlNmjEixFUZQA8n95vhhf70I7vh6lb3H079u/45uf0wJYgK+M0k6/f/vj+ObmfBLfHKjhxz/AX/gCX8/Hm3zYkzQ8FGuP/9gnOXqI4mhuBxb623oReHr4ASHExfiKVAx/of86sFAI8Sl/b8Q1wO/x9fhcCFwopXSNc74ZJaXcg2/O0fv4hsmVA++OsXsMvkSqG99wx07gLv9j3waqgPX+YXn/BYoBhBBZQD++eWlj+QfwI3xDAxfh+1mBb17ey/jmftXiS+rqR2tghG/iex/0++P95zj7hwTpK5JyI75iLn343qtPAf8XzLgURVFmipDy2BEIiqIoykwRQqwDHpZSqi+XYU4IcQ2+4YPfHePxv+ErGPH9WQ1MURRFCaqwXbhQURRFUYJJSvlwsGNQFEVRQo8aIqgoinKKEL5FbydTnEA5CQkhvjfG++ClYMemKIpyMlBDBBVFURRFURRFUQJE9WApiqIoiqIoiqIESEjNwUpMTJS5ubnBDkNRFEVRFEVRFOWENm/e3CGlPG7x+ZBKsHJzc9m0aVOww1AURVEURVEURTkhIUTtaNvVEEFFURRFURRFUZQAUQmWoiiKoiiKoihKgKgES1EUZRQujxbsEBRFURRFCUMhNQdrNG63m4aGBhwOR7BDUcKMxWIhMzMTo9EY7FCUMPPq+5vwvPQ9Ms79OhUrzg12OIqiKIqihJGQT7AaGhqIjo4mNzcXIUSww1HChJSSzs5OGhoayMvLC3Y4SpiJfu9Olus2sO3tX4NKsBRFURRFmYSQHyLocDhISEhQydUopJR0tzUy0F4X7FBCjhCChIQE1fOpTInZ3gxAsX0rrqHBIEejKIqiKEo4CfkEC1DJ1RicHo04TxtR7k7cDvUl8FjqfaNMVZS3BwCrcHFo94bgBqMoiqIoSlgJiwRLGZ3b+WHvjGewK4iRKMrJw6tJ4mQP+yOXANBzSK3NpyiKoijKxKkEawKEEHzjG984cv+Xv/wlt912W/AC8tNcdtZv3sGyC65j+RlnU1JSciSudevW8d5770257draWhYuXEhlZSXz5s3jvvvuC1DUihLa+uxO4uhnKGk+vURBy85gh6QoiqIoShgJ+SIXocBsNvP000/z3e9+l8TExIC1K6VESolON7U8V2oePv21H/Hgn3/H0pJsZPI89h84CPgSrKioKFasWDGlttPS0nj//fcxm80MDAxQVlbGRRddRHp6+pTaU5Rw0dPVRpyQ6KKTaTTPIa5vX7BDUhRFURQljKgerAkwGAzcdNNN3H333cc91t7ezuWXX86SJUtYsmQJ7777LgC33XYbv/zlL4/sV1ZWRk1NDTU1NRQXF3PddddRVlZGfX093/rWtygrK6O8vJx//vOfgC9BWrNmDVdccQVz587lU5/6FFLKo0+uabR1dpGUnosOCZqH0tJSampquO+++7j77ruprKzk7bffPmGc1157LaeddhqFhYXcf//9AJhMJsxmMwBOpxNNG31NoN/97neUlpZSUVHB1VdfDUBXVxeXXHIJFRUVLF++nB07dhw516c//WlWr15NTk4OTz/9NLfeeivl5eWce+65uN1uAH784x+zZMkSysrKuOmmm4573pqmkZubS09Pz5FthYWFtLa2jv9iKso4XL0tAIioJAbiS8n1VON2u4IclaIoiqIo4SKserBuf2E3e5r6AtpmaXoMP7pw3rj7ffGLX6SiooJbb731qO1f/epXueWWW1i1ahV1dXWcc8457N2794RtHTx4kAcffJDly5fz1FNPsW3bNrZv305HRwdLlizh9NNPB2Dr1q3s3r2b9PR0Vq5cybvvvsuqVas+bEh6ueWzn2LxitNZs3whHznnfD5z8xfJzc3l5ptvJioqim9+85sAfPKTnxwzzh07drB+/XoGBwdZsGAB559/Punp6dTX13P++edTVVXFXXfdNWrv1c9//nOqq6sxm81HEp4f/ehHLFiwgGeffZbXX3+d6667jm3btgFw6NAh3njjDfbs2cNpp53GU089xZ133smll17Kiy++yCWXXMKXvvQlfvjDHwJw7bXX8q9//YsLL7zwyDl1Oh0XX3wxzzzzDDfccAMbNmwgJyeHlJSUcV9HRRmPHOzw/SMiAVIrsDT/g7pDO8meuyi4gSmKoiiKEhZUD9YExcTEcN111/G73/3uqO3//e9/+dKXvkRlZSUXXXQRfX19DAwMnLCtnJwcli9fDsA777zDJz7xCfR6PSkpKZxxxhls3LgRgKVLl5KZmYlOp6OyspKampqjG5Jevn/Lzbz3/gbOOn05/3z8Cc49d/Q1e04U58UXX4zVaiUxMZG1a9fywQcfAJCVlcWOHTuoqqriwQcfHLWHqKKigk996lM8/PDDGAyGI8/p2muvBeDMM8+ks7OTvj5fYnzeeedhNBopLy/H6/Ueibe8vPzI83vjjTdYtmwZ5eXlvP766+zevfu481511VVHevsee+wxrrrqqhP+zBVlojz+ipx6SzSxuQsB6D68JZghKYqiKIoSRsKqB2siPU0z6Wtf+xoLFy7khhtuOLJN0zTWr1+PxWI5al+DwXDUsLqR6zFFRkZO6HzDQ/QA9Ho9Ho/nqMeF1NDQMbe4iLzrPsm1111LdtkKOjs7j2trrDjh+HLmx95PT0+nrKyMt99+myuuuOKox1588UXeeustXnjhBe644w527jxxQYDh56TT6TAajUfOpdPp8Hg8OBwOvvCFL7Bp0yaysrK47bbbRl3L6rTTTqOqqor29naeffZZvv/975/wvIoyUV7XEABGUwRpc8rwSoGzZX+Qo1IURVEUJVyoHqxJiI+P58orr+SBBx44su3ss8/m97///ZH7w0PhcnNz2bLFd9V7y5YtVFdXj9rm6tWr+ec//4nX66W9vZ233nqLpUuXTigeIb28+NrbALh1ZqqrDqLX67HZbERHR9Pf3z9unADPPfccDoeDzs5O1q1bx5IlS2hoaGBoyPdFs7u7m3feeYfi4uKjzq9pGvX19axdu5Zf/OIX9Pb2MjAwwOrVq3nkkUcA31yyxMREYmJiJvSchpOpxMREBgYGePLJJ0d/7kJw6aWX8vWvf52SkhISEhIm1L6ijEdz+96DBouVqMhIWkQyhu6qIEelKIqiKEq4mHaCJYTIEkK8IYTYI4TYLYT4qn/7bUKIRiHENv/tY9MPN/i+8Y1v0NHRceT+7373OzZt2kRFRQWlpaVHyplffvnldHV1MW/ePO655x6KiopGbe/SSy+loqKC+fPnc+aZZ3LnnXeSmpo6oVh0aDzy1L8oLi5mxVmXcONXvsMjf38IvV7PhRdeyDPPPHOkyMVYcYJvmN/atWtZvnw5P/jBD0hPT2fv3r0sW7aM+fPnc8YZZ/DNb36T8vJyAD7zmc+wadMmvF4v11xzDeXl5SxYsICvfOUr2Gw2brvtNjZv3kxFRQXf+c53ePDBByf887XZbHz2s5+lrKyMc845hyVLlhx57L777jsq7quuuoqHH35YDQ9UAsrr8iVYJrMVgA5LNrH22mCGpCiKoihKGBHHVaabbANCpAFpUsotQohoYDNwCXAlMCCl/OWJjh9p8eLFctOmoxf13Lt3LyUlJdOK8WRlb9yDXm/AnFpEb1c7sY4GvPGF6C1RE27jtttuO6oYxslGvX+Uydr4+J0s2XMHbTfvJjk1k/X3fpaK1uew/LAZnV4f7PAURVEURQkRQojNUsrFx26fdg+WlLJZSrnF/+9+YC+QMd12lfHp0JDC9xLq/VfbPf75I4qiTI10+z5DZnMEALrEIiKEk5aGw8EMS1EURVGUMBHQIhdCiFxgAbABWAl8SQhxHbAJ+IaUsnuUY24CbgLIzs4OZDgnNU1KdGh4/QmW0WRByg/nj0zUbbfdNgPRKUr4kh7fZ8hs9SVY0ZklsAfaanaRnlMYzNAURVEURQkDAStyIYSIAp4Cvial7AP+CBQAlUAz8KvRjpNS/llKuVhKuTgpKSlQ4Zz0pJTokSB8Q5ZMBj0ujOBxBjkyRQlv0u3AKwUmowmAlLwyAOxNqpKgoiiKoijjC0iCJYQw4kuuHpFSPg0gpWyVUnqllBpwPzCx0njKhGgSBBr4e7CEELiFEZ3mCnJkihLehNeJExM6ve+zFZeSzSAW6DwY5MgURVEURQkHgagiKIAHgL1Syl+P2J42YrdLgV3TPZfyIalJdAIYsWaVpjNhlC6YZuESRTmVCY8TpzB9eF+no8WQSWT/6EstKIqiKIqijBSIOVgrgWuBnUKIbf5t3wM+IYSoBCRQA3wuAOdS/DTpX8RYfJgjS4MZnUsivW6EwTTGkYqinIjwOHzDbUfojcghte/Ei2griqIoiqJAYKoIviOlFFLKCillpf/2bynltVLKcv/2i6SUzYEIOFieffZZhBDs27dvzH1qamooKysL2Dn379/PmjVrqKyspKSkhJtuugnwLRL80r//7dtpRIIlDBYAPK4TF7pwOBwsXbqU+fPnM2/ePH70ox8FLGZFCXc6zYlbHH2BwhM3h1TZzuBA/xhHKYqiKIqi+ASsyMXJ7tFHH2XVqlU8+uijoz7u8XimfQ6v13vU/a985SvccsstbNu2jb179/LlL38Z8CVY/3n5JQCE7sMhgnqTL8HyjlNJ0Gw28/rrr7N9+3a2bdvGyy+/zPr166cdv6KcDHTe4xMsU0oROiFpqt4TpKgURVEURQkXKsGagIGBAd555x0eeOABHnvssSPb161bx+rVq7nooosoLS0FfInWpz71KUpKSrjiiiuw2+0AvPbaayxYsIDy8nJuvPFGnE5ftb/c3Fy+/e1vs3DhQp544omjztvc3ExmZuaR++Xl5bhcLn74wx/y5JNPUnnW1Tzx9PMMDg5y4403suaMM1hw9id4/vnnAfjb3/7GxRdfzJo1aygsLOT2228HfAUxoqJ8ixG73W7cbjdixFyuYU888QRlZWXMnz+f008/HfD1ft1www2Ul5ezYMEC3njjjSPnuuSSSzjrrLPIzc3lnnvu4de//jULFixg+fLldHV1AXD//fezZMkS5s+fz+WXX37k5zPS8uXL2b1795H7a9as4dgFqBVlpui8TjzHJFixWb7FqrvrVIKlKIqiKMqJBXQdrBn30negJcDzIFLL4byfn3CX5557jnPPPZeioiISEhLYvHkzixYtAmDLli3s2rWLvLw8ampq2L9/Pw888AArV67kxhtv5N577+VLX/oS119/Pa+99hpFRUVcd911/PGPf+RrX/saAAkJCWzZsuW4895yyy2ceeaZrFixgrPPPpsbbrgBm83Gj3/8Y95//z3+9KPP44zO5vY77uDMM8/kgQceoHXv+6y+8FOcf9knAPjggw/YtWsXERERLFmyhPPPP5/Fixfj9XpZtGgRVVVVfPGLX2TZsmXHnf/HP/4x//nPf8jIyKCnpweAP/zhDwgh2LlzJ/v27ePss8/mwIEDAOzatYutW7ficDiYM2cOv/jFL9i6dSu33HILDz30EF/72te47LLL+OxnPwvA97//fR544IEjPXPDrrrqKh5//HFuv/12mpubaW5uZvHi4xbJVpQZoddcuHXmo7al5c0DwNV2IBghKYqiKIoSRlQP1gQ8+uijXH311QBcffXVRw0TXLp0KXl5eUfuZ2VlsXLlSgCuueYa3nnnHfbv309eXh5FRUUAfPrTn+att946csxVV1016nlvuOEG9u7dy8c//nHWrVvH8uXLj/R8DRcKFELHK6+8ws9//nMWLFjA2R//fzgdDurq6gA466yzSEhIwGq1ctlll/HOO+8AoNfr2bZtGw0NDUeSsGOtXLmS66+/nvvvv//I8MV33nmHa665BoC5c+eSk5NzJMFau3Yt0dHRJCUlERsby4UXXgj4et5qamoAXxK2evVqysvLeeSRR47qqRp25ZVX8uSTTwLw+OOPc8UVV4z681GUmWDQnHh1R/dgWaJsdBCHoftwkKJSFEVRFCVchFcP1jg9TTOhq6uL119/nZ07dyKEwOv1IoTgrrvuAiAyMvKo/Y8dajfa0LtjHdvGSOnp6dx4443ceOONlJWVjUiEfBmW0OmQUvLUU09RXFxMb2st0d5udGlz2bBhw7jx2Gw21q5dy8svv3xcgY777ruPDRs28OKLL7Jo0SI2b958wudhNn941V+n0x25r9PpjsxRu/7663n22WeZP38+f/vb31i3bt1x7WRkZJCQkMCOHTv45z//yX333XfC8ypKIBk0Jw5DzHHb281ZRNvrghCRoiiKoijhRPVgjePJJ5/k2muvpba2lpqaGurr68nLy+Ptt98edf+6ujref/99AP7xj3+watUqiouLqampoaqqCoC///3vnHHGGeOe++WXX8btdgPQ0tJCZ2cnGRkZREdHM9Dvq2YmhI5zzjmH3//+90gpQW9m+669SI9vweFXX32Vrq4uhoaGePbZZ1m5ciXt7e1HhvwNDQ3x6quvMnfu3OPOf+jQIZYtW8aPf/xjkpKSqK+vZ/Xq1TzyyCMAHDhwgLq6OoqLiyf88+zv7yctLQ23232kndFcddVV3HnnnfT29lJRUTHh9hVlugzSdVwPFoA9KpdUd4Pvc6YoiqIoijIGlWCN49FHH+XSSy89atvll18+ZjXB4uJi/vCHP1BSUkJ3dzef//znsVgs/PWvf+XjH/845eXl6HQ6br755nHP/corrxwpMnHOOedw1113kZqaytq1a9m3f7+vyMWTT/ODH/wAt9tNRUUFy1ev4Qd33ovHNQT4hjBefvnlVFRUcPnll7N48WKam5tZu3YtFRUVLFmyhLPOOosLLrgAgB/+8IdHimR861vfory8nLKyMlasWMH8+fP5whe+gKZplJeXc9VVV/G3v/3tqJ6r8fzkJz9h2bJlrFy58qik7vnnn+eHP/zhkftXXHEFjz32GFdeeeWE21aUQDBKF5p+lPd0whwSRB9tba2zH5SiKIqiKGFDhNLV2MWLF8tjq8Xt3buXkpKSIEUUunq72oh1NKIlzkVnsh7Zbh9yENG9F0dEGo89+zKbNm3innvuCWKkwaXeP8pktd2WR3XcSpZ99eGjtu994zFK3vwcO859morlHwlSdIqiKIqihAohxGYp5XGV2FQPVriSGuCbgzWS0WTCKwXS7QxGVIoS9ky4kIbje7ASc3yJel/T2IuNK4qiKIqiqAQrXPl7Ho8tWmHQCVwYEV4n119//Snde6UoU2GWLuQoQwQTMovxSoG3/WAQogqcmvo6dty2hJcfujPYoSiKoijKSSksEqxQGsYYMvw9WMe+hEIIPDoTes01+zGFGPW+USZLahpm3GCwHPeYzmShTZ+Cubc6CJEFzv7XHqSCA5x7+A76utuCHY6iKIqinHRCPsGyWCx0dnaqL8vH+nAhrOMe0nRmDLhHJGGnHiklnZ2dWCzHf1FWlLG43S50QiJGSbAAuizZxA2Fd6n21KbXj/y76r3nghiJoiiKopycQn4drMzMTBoaGmhvbw92KCFlqL8Lq3cAevYfl2QNDfZhdfcgu3Yh9MYgRRh8FouFzMzMYIehhBGHw44JwDh6guWMzSNncAcOlweLKeR/fR5HSkmys5btcR8lp/t9RPWbwGeDHdaUOFxunv/Nl8m0ODntSw8cNx81nOzZv4/c3HwizMcvDxAuPF6N7p4ukhISgx3KtNhdHgQCq0kf7FAURQljIf8NwWg0kpeXF+wwQs4rv72ZNd1PYLqt87jH3nzjZRa+eRVN5z5A+vIrghCdooQnl8MOgBgjwTIkFRLV7KCqvoY5BXNmM7SA6OjpI4UuWhMKqbN3Et0TvgU7Nq57nivtj4IdqrZ8kjmLzwp2SFPy1rr/cPq6K9lrnk/Jd94cdVRCOHjiL7/iyoY72LL8bhaed0Oww5mSQaeH7b84i2Stg+TPv0BMSm6wQ1IUJUyF7yW/U5zwOnGL0a92JmT7qp31q2pnijIprqFBYOwEKzrdt3ZbZ93uWYspkNrrD6ATEkNiAfa4uWS6a/D4FzMPN66qt478u3/DwyfYM7Q5N/4dgBLndlqqtgY5mqlxuL2sabgXvZBkbPzZh0PYw8wHmzexQtvCHOqoeeXeYIejKEoYm/EESwhxrhBivxCiSgjxnZk+36lC53XiZvQEKzsjnXYZg9ZeNctRKUp4czt9C3TrxkiwkvPLALA375+1mAJpoOkAANHphejTyrAIN83V4ZksJnRtodpUyBbTEhK7Ngc7nCmRUlI4sImDphI0KWjd8ESwQ5qSnfsPkCa6aNSlk6K1MhCmn4+hXS8C0CDSSKp9McjRKIoSzmY0wRJC6IE/AOcBpcAnhBClM3nOU4XB68StO76UNECMxUiDSMfce3iWo1KU8DacYOlHLN49UmRiDk6M0HloNsMKGFd3AwBxafnE5lQC0Hk4PHtNEjyt9EXm0p+ymCxvPY7e8Jun29bdRyat2DNXc0hkY2raGOyQpqT/sC/u5vLPA9C05eVghjNl1p59dOvi2JFyMWmeBrT+8HtPKYoSGma6B2spUCWlPCyldAGPARfP8DlPCXrNiWeMIYIA3dZs4h3hXe1MUWab2+VPsIyjJ1jodLQZ0onsr5m9oAJIG/B9YYyOTyGjaAEeqcPduCPIUU2e0+0hSXbhiUzFmrcMgKa964Mc1eQ1Hd6DQWhY0kpoiS4j074HtDCs/tqyC4C5H72OThmDs3ZTkAOaGpu9jh5LFpa80wBo2ft2kCNSFCVczXSClQHUj7jf4N92hBDiJiHEJiHEJlUpcOL0mmvMHiwAR0weNq0bHL2zGJWihDevP8EymMdIsIC+yBwSXPVhuXSEfqiDPqIQBjORkZHU6TKwdIffXM2O9lYswo0uJp2UwkUA9NVtD3JUk9fbsAeAhJwynKkLiGYQe8uBIEc1efq+OrqFjahoG7XGfKJ6w+891Wt3kymbfZVCy1filYKeg+GXtA9zerx0D6r1MBUlWIJe5EJK+Wcp5WIp5eKkpKRghxM2DJoDr27sHixdYiEAg2E6Fl5RgsF7ZIjg2OuneWz5ZMkWuvqHZiusgDE5OunV2Y7cb7MWkGQPv+GO3a2+3nlTXDqZGVl0yFho3RPkqCbP0+H72SdkFxOdswCA5oNbghnSlETYm+g1pQLQG1NMuqsGvJ7gBjVJrR1tJIleZPwc8lITqSUNXfveYIc1JW6vxm9/9RMG7pzH4R3vBjscRTklzXSC1Qhkjbif6d+mTJNBuvGeoAcrMsNXSbCzNjz/QChKMBzpwTJFjLmPKaUIk/DSWBt+PQ0WVzeDxrgj951xhSR72/A6B4MY1eQNdvjmkkUlZqLXCRpMucT0HQxyVJOnH2xlCAvCEktmUSWaFAzU7wx2WJMipSTB28ZQRLrvfso8zLjpbwyvXqzelhoATAk56HSCZnMetv7we08BbDrUzNfsvyNLtKF/6VvBDkdRTkkznWBtBAqFEHlCCBNwNfD8DJ/zlGCULrz6sROs1Ny5aFJgbw6vP3KKEkwef4Jlsow9RDAuy3fxoqcu/C5eRHm7cZrij9w3ppSgE5LWw+H1pd7Z7btOZ0vOBqAvuoh0dw1o3iBGNXnmoXa69QkApCcl0CCSw67XpNfuIp0OPNG+Rd2j/cVTWg+GV8EOuz9pj07yPY/B2CKSvS3gCq+LDwCHNv0Xk/BSZSknZ2g3nu768Q9SFCWgZjTBklJ6gC8B/wH2Ao9LKcOzJnCIMUkn8gQJVlZSHA0kQlf4Df9RlGDR3A4AzNaxe7CScn2l2p1t4Tf81qb14rEkHLkfl+N7Lh014ZVgyb4mAGKS/QMkUkqx4KK7Mbx6FSNd7QyafK+HEIJWcz62gfBaXqOzrQmLcCNsvsQku3gBbqlnqD685sS5enzvqdgUX9KuS52HDklPbXh9NgAimt7Dg56m5T8AoGXzv4IckaKcemZ8DpaU8t9SyiIpZYGU8o6ZPt+pwoQb7QQJlsWop1mfSUR/9SxGpSjhTXP5EiyTeewESx+VxACR6LvDaxkEu8NBnOhHRiYe2ZYxpwyP1OFqCa9eE91AK71EIfzVHmOy5wPQGmbzl2zeLhyW5CP3B22FpHkbkf5EPxz0tft6fsxxviGCybZoqkUGps7wmhMn+5sBMNt8zyM2x/ee6ji8LVghTVmsvY4uUxpFlafTJaMYPBy+xToUJVwFvciFMnker4YZF9Iw9kR8gN6IbBKd9RCG1c4UJRik2zdE0GyJHHsnIWg3ZxIzWDtLUQVGd3sLACLqwy/0MZGRNIpUjF3h1WticbTRY/gwUUwvrgTA3rgrSBFN3qDDTRLdaJEpR7bpU0oxoNFRGz4DPexdvgQrMtHXgyWEoM1SQPxgeF2A0A22MYgVTL7Pfs6ceTikEUdjePVgOdxekj1N2COzSLVZOaAvJLIzvJ6DopwMVIIVhlz+BAvD2D1YAC5bPhFyCDnQOkuRKUp40zz+IYInmIMFMBiVR5qnAY83fNYs6uv0XaE3xRxdrbXdkkOcPbx6uqNc7QyaPkywkuLiaSQJfWf4DNts7+okQjjRxaQd2RaTUwGEV6+Js9v3vrIlfVjPaiiukCStHRlGy4RYHW30jkjak2IjOCwyMXeFz3sKoKFrkBzRhteWC0BnTClpzmpwh1/VU0UJZyrBCkNOt4YZN1J/4h4sY7KvVHtvgyp0oSgTIdwONCnQGU988UImFpIhOmho7ZilyKbP3u3rwbLaUo/aPhRbQJqnEel1ByOsKYnzduK0ftgTJ4SgxZRL7ED49Jr0DJea9w9JA8iaU4FH6nA2hU8Pluz3va8iEj5c4tKQWgpAZxjN7YtydzJk/jDBEkLQbsknwR4+7ymAxuYmYoQdU2IBAFrqfPRoOBrCa06cooQ7lWCFIafbiwUXGE+cYMX6S7V31YXXWHhFCRad245DmECIE+5nzfAVh2g7HD5fWly9vp7sqISjEyxd0lyMwkt7XXhciBkYcpJID1pU2lHbB2PmkOZpCJtEcbDTVwkxIvHDxCQ+Npp6kYahM3yKdejtbQwQCcYPe31t/p64zurw+Hx4vBo2rQuX9ejeXbutkHitEznUHaTIJq/XX+glNsN3gTV2zjIA2vZvCFpMinIqUglWGHK6nOiFRIyTYGXkFOKURpyt4fPHWlGCSXiHcHDizxVAUp5vAry9MXx6GrwDbQDEjuhpAIjO8vU2dFSHR29DR2sjBqFhiE0/artILsaMm+6m8JhP5vKXmo9Nyjpqe5slj7gwWvzZMtROjz7+qG05BaU4pBFXmPTEdQ44SaYHGXX0xQdjqu8iZXdt+Mztc7X73jvRab4Eq6CgiHYZg7tuUzDDUpRTjkqwwpDL6RtLLcYpcpERH0UtKYjO8PljrSjBpPcM4RDjJ1ixGUU4MaJrD49eHwAGOvBIHdaYhKM2pxX4ehvsTeHR093b5htaN1y1blh0lr9X8VB49Jpofb6hdcPrLg0bshWR6mlGc4XHnJlId8dR8+EA4qOt1IhMTN3hcXGvvaMNq3BhiD26VzQ22/fZ6KreEYywpkTXXQOAiMsDIN1mpUrkYukKr0qhihLuVIIVhpxDvoUP9eYTT8TX6QQdpixiBsNrAruiBIvBM4RLnHj+FQA6PU2GLKL6w6O3BEA/1EGviAXd0b/2ExMSaSUefZgMS7N3+hZNjTqm5ydtzgIAhsKkV1E/2MIQZoQ55qjthtQS9ELSVh0evSY2b9dR8+GGdVjzSAiT4inHlpofllMwlyFpwtkcHu8pgIjBOnr0CWDyLTUhhKAzcg5JjhrweoIbnKKcQlSCFYYcDjsABuOJEyyAgZgCkj2N4HHOdFiKEvb0mgOXbvweLICeyHxSnTUzG1AAmZxd9Oltx20XQtBszCYmTApEuLp9C8LGpeYctT05MYFmEhAd4VH1zTQ8tO6Y+X62nHIgPOYvDTjcJNONjDw+wXLYCknUOpBDPbMf2CQNz4eLPiZpT4qx+tb06gqPiw9eTRLvaqbfenSvqDthrm/tTDWaRVFmjUqwwpBryJdgGccpJQ0gk+ZiQMPeEh5/IBQlmIzaEC7d+J8rAFd8Eem0098XHhPgI9xdDBnjRn1sILqANHc9aGFQdr6/BU0KIo/pbRiuJBgzEB5fIqNcbfQbk47bnlVYgVvqcYTB/KWO9lbMwo04ZmgdgCHNN7evPQyG13l6fEl7TOLRiclwJcH4MOmJa+lzkCVaccUeffHBkjk81HFbEKJSlFOTSrDCkMvhGyJoNEeMu29Upm9eQvuhbTMZkqKcFEzeITwT7MEyps4DoLkq9L9AAkR7e3BZEkZ9TCYWEYGD3raa2Q1qCgyDrXTrbKA3HPfYQHQB6e66sEgUbd5OHNaU47bHRkXSINLCotekt903XNNsSz/usfhcXyGYsJi/1O9by8tgyzjuIbutkAStIywqCda3dpImujAk5B+1PaVgPl4p6KsN/V5RRTlZqAQrDHmH+gAwRcSOu29qfjleKcKq2pmiBItJOvHoJ9aDFZ/rG8rVXx/6XyC9msQme/FaR0+wIjJ8vQ2tYVAgwuJoo9cw+vMgqRgLLnqaQ7sXa8jpIVl24Y08PsECaLfmEh8G6y8NdvjmLkUmHJ+Y5BSUMiRNuMJg/pJhsIVBEQHmqOMfS/FVEuytD/3n0dVwEIAofwXBYYUZSdTIVGRbeBSyUZSTgUqwwpDX0Q+AOXL8BCs7JZ46UtB1hFG1M0UJErN04DVMLMFKzyvFKY14WkK/OldXTy9RwoGIOn5IGkByvm8I0UBD6H8Bi3G3YzeN/jyisnxJb2uI99i3t7dgEW50Mcf3/AA4bEWkepvxhnglQYd/PpwtJfu4x2IjzdSITMxhUEkwwtFGryFx1MeG58R1hMGad/Y2X9Gd2Iyio7ZHW4zUGXKJ7g3910JRThYqwQpD2pEEK2acPcGo19FkzCG6P7Sv6CpKKDBLB9oEEyyTyUiDPhNrGHyB7OnwD4GKPr4YAUB6ejY9MhJCvECElJJ4rQtXZOqoj6f6S84PhniPfXerv9R8fOaojxtSS9ELScvh0F6bTOvzva+iEkZ/Hh0R+SQOhf78pVh3O4Pm0XsTswtK/D1xoX/xgU7fz9qQUHDcQ30xhSS6m8A1ONtRKcopSSVY4cg1AIDROn6CBdAXPYdkdyN4XDMZlaKEPYt0Io3jz20c1hVdSKoj9C9e9Hf6ehossaN/idTrdTQasonsC+1haT39gySIPogaI8FKSaVNxiHaQztRHOwYLjU/emISl+tLFEO9kqBuoJVBrKMOrQNwxhWSoHWi2UN3/pLHq5EgO3FGjP7ZSPZXEjSGwZw480AtdhEBEfHHPaYll6JD4g6DHndFORmoBCscOX0J1lh/1I6lJRZjwIurPfT/QChKsHjcbizCjTBFTvyYpHkk00VPe9MMRjZ9zm5fGerIxKwx9+mLyifFWQNSzlJUk9fR4ktMDLGjD60TQtBsyiEmxNcnc3f75i7FpuSM+nhWYTluqccV4pUEzSeaD8eHhWBCefHnjr4hkuiB6OMrIYLvPdVmySd+MLQvPkgpsQ010mPJPK70P0C0f9HkjsNbZjs0RTklTSvBEkLcJYTYJ4TYIYR4Rghh82/PFUIMCSG2+W/3BSRaBQCd259gmaIntH9Ehu+PXPvh0J+MryjBMjjgG3qrm0B1zmGR2b7FbRv3b5yRmALF0+sbyhWbPHqPCYCWPA8b/XS31c9WWJPW3+4bWmcdpajCsL7oOaS7a0HzzlZYk6b1tQBjD62LioigQZeGsfvgbIY1aZGuTuym0ecuAcTn+SoJdteEboLV2dqAQWjoY8d+Tw3FzvFXEuyZvcAmqb3fSbpswRUzetKeme8rOmKvD+1hp4pysphuD9arQJmUsgI4AHx3xGOHpJSV/tvN0zyPMoLOPYgT06hlikeT4q8kOFC/a4YjU5TwZbf7LlzozRPvwUovXgLAYO22mQgpcPqbfWtHxY9+lR4gKteXLDbv2zBbUU2avb0WgNjUvDH30VLKseKkuyF0C/sYBlvoJRphHHtJgA5rHon20B1+qmmSeK0Tl3X0eX0AOQXF2KUZd0vozl/q97+nrGMkuwCmdN9Fyq4QHrJZ1dpLpmhHf0yJ9mH5ybFUyQz07WqIoKLMhmklWFLKV6SUHv/d9cDYv6GUgNG7BxkSE5uID5Cflki9TIYQn5egKME01O+bJ2KwTGxuI0BiSjqtxKNvC+2LFwZ7G13ChtAbx9wnc64/WazbNktRTZ67y9eDlZA++pdIgNi8hQC0hHCvotXRSs8YVeuG2eNLydCa8dh7ZieoSeoYcJBMN3KM+XAAMVYzNbpMLCHcEzfU6RuuGZM8es8PQMIc32ejs+qDWYlpKtpq92IWHqIzS0d93GTQ0WzOJ24gdF8LRTmZBHIO1o3ASyPu5wkhtgoh3hRCrB7rICHETUKITUKITe3t7QEM5+Rl8Azi0E18GJPFqKfRmEN0v/rFqihjcQ50AKCPjJvUcU2WQuIHQnt+o2Wo/YRzZQASEpJoJBlDe+jO+9H1NTKIFX2Ebcx9cksW4pJ6HPVbZy+wSYpydTBoHrvnB8CQXglAy4HNsxDR5HW2NPjmLMblnnC/jog5JA9VhezcPleXb0hsXOrYCVZB/hw6ZAyextDtwXL6K2fG5swfc58BWzGxWg8MqO9aijLTxk2whBD/FULsGuV28Yh9/gfwAI/4NzUD2VLKBcDXgX8IIUa9LCyl/LOUcrGUcnFS0uhrmyhHM3oGcesnnmAB9EUXkOxqAK97hqJSlPDmHvD1YBkjj6/AdSL2uLlkeurxOEN3zaIoVxtD5vF/vzZbC0kK4WTRYm+my3DixMQWHUWNLhtLR2gmii6PRoLWgXeMUvPD4v29Jn2HN81GWJPW3eQrJBKRMvZwTYChxHJsshd3d2jO7dP6mnFjQESO/fmItpo4ZCgguid0h9dpbXvQEIik4jH30fuLjtgb1HxsRZlp4yZYUsqPSinLRrk9ByCEuB64APiUlL5LVFJKp5Sy0//vzcAhoGiMUyiTZPTacRsmPk8EQEuc66sk2Ba6X54UJZi8g74Eyxw9uQTLmDEfo/BSfzA0e0y8miRZa8cVNfYk/mFD8aWke5tw2ftmIbLJi3W3MmA5cWIC0BZZTOrQgZDsNWlq6yBJ9EL8iROT3Nx82qQNrTk0e036W31V9ZKzTvynPSLHP2Rz3/oZj2kqLINNvuGauhN/HeqOnkuasxo8zlmKbOKcHi9p/bvptmSDaeyLr3G5lQB0Ht42O4EpyilsulUEzwVuBS6SUtpHbE8SQuj9/84HCoHQrnEaRizaINokE6zIzOFKgqH5x1pRgs3rX6vHEnPiuTHHSilaDEDHwdDsaWhrayVWDIJt7CFQw0xZleiEpHF/6A1Lc7o9pGktuKPGLjU/zJ00jzjZi91fnj6UdNT75sJaU45fDHYkq0lPjXEOsT2hWSDC21kDQERS7gn3y5y7FK8U9FWH3ntKSkmiq4Fea/b4+6ZWYMCLvTH05lsebulmidhDX9qKE+6Xl5tHp4zG2aQqCSrKTJvuHKx7gGjg1WPKsZ8O7BBCbAOeBG6WUnZN81wK4PZqxNKPxzK5eSKp+RVoqpKgooxpOMGyxU9uqHJW/jzs0oy3KTSH3XQ2+oZyWZJO3GMCkFLoSxa7Q3CtnJaWJmKFHZlw4sQEINLfa9K0N/SKEgw0+0YRxGWOPZRrWJ+thDR3LdIdesNPTX219Ohs467HmJOayCEyMbaG3sW97kEX2TTjjs0dd9+YPN9no+1A6L2n2vevJ1I4MRatPeF+mfERVJGNpUsVvFKUmTbdKoJzpJRZx5Zjl1I+JaWc59+2UEr5QmDCVXqH3CTQh9d64gnrx8pLT6SeZFAlWhVldEPd2KUZq3XiFToBdAYDdaYCYntCc87PQIsvwYpJGz8xycwppEdGIltCL1nsrvP97jKnFI67b4a/ImJ/Teglip4O32COuIzxR80bMioxoNFxKPSGnyY6aum05I67n04naLIWkTQQemXzG5t9Sbt+Akl7fvE8+qWVodrQe08N+XvVkucsPeF+QgjaIwpIHDoMmjYboSnKKSuQVQSVWdDb24tVuBCRkxvGZDboaTDmEN1XNUORKUp4E45eBsTkht4O640rI8d1CI879IrIuDuqAUgcZ64MgMGg9yeLoTcsrbfR9wU9JXfeuPumpyRTRwr61tAbCmXuqaJHxKKLGH8UQmKR7wtz28HQKjnf73CTLRtwxI6fmICv0EWc1o23t2mGI5uc7jrfRZGo9PF7E1NjI6jS5WLpDL0LKaLjAA5MmBLGHwbsjJ+LRTqQ3TUzH5iinMJUghVm7D0tAOiiJl9xsS+qgGR3I3hcgQ5LUcKewdWLXRc9pWP1GZVECCf1B0Ov58fQdYAuYic8t6wvvpxs1+GQq4qote3DjYG4jPF7sIQQNEfMJbk/9BLF+MFDtFonlpjMKSylV0bibgitHqz6hgbixQC65InVrhoudNG8N7QKXdjrfZ/XpDkLxt1XCEFndAmpQ1WgeWc6tEmJGThMuzl73EIdAOaMcgB6Q31xdEUJcyrBCjP9na0AWG0nLlU8Gi2pBANenKqSoKIcx+LuYcgQO6Vjk4uXAdB+YEMgQwoI2+BhWsy5E97flL0Ek/BQF2Lzl2J699NozIYTLJY80lDyQlJlG4OdoVPootfuJFerwxk3fo8JgMVk4LCxAFtXaM2d7TzkK1gRk1U2of1z5p2GJgXdh0KrJ87YuY9BrBjjx+/5AZDpC7DipK8udC6k9A65yfLWMRQ7Z0L7J+VXAtBdHXpz4hTlZKISrDAz1ONLsKITxi9VfKzITN8fQ1VJUFGOF+vpYNA8uaG3wzLmVGKXZrTG0Opp8Ho1Mt212GMm1mMCkDZvFQBdB96fqbAmTdMkWa7D9ERPLDEBiJ6zHIC6nW/NVFiTVnNwN5HCiSljYokJQFfcfDLdh5CuwRmMbHKG6nzv89S5yye0f05aEtUiHUNLaH0+4gcO+noThZjY/sUrAWjZ885MhjUpBw8fJkN0ossYvxcOoDArlVotGa019IY6KsrJRCVYYcbV1wZAbEL6pI9NKyjHKwUD9aE3L0FRgklqGolaF66IyV+4ANCHaKGL+poDRIshRErphI/JzC6gjTh0jaFTVruuvoZk0Y1MGX/+1bD8stNwST1Dh0NnWFr3QV/Smlh02oSP0Wcvw4BGSwgNr4vo2Em7Lhl91MQuSAghaIosI21gd8isTdbc3U+xdghn4sST3aK55XTKaDw1odNT3XnQ19OcUHjiAhfD4iNNVOtziOpRlQQVZSapBCvc9DcDoI9OmfShuakJ1JGCrl39YlWUkXq72jELN7qYtKm3YSsl21WF1+MJYGTT07r3XQASJvGFXuh01FtLSe4PnWFpjTvWAZA0d9WEj4mzxXJYn0dkW+j0msj6jQxhJjFv/oSPySxbDUDHvtDoNXF7NXIde+iImXjSDuBKW4xN9jHQHBp/f6p2fkCEcBI558RrR40UbTVxwDgXW3fojAJx1W5EQxCXv3jCx/RGzyHR1QBuxwxGpiinNpVghRnrQAM9InbctUdGYzboaTTmEN2vKgkqykgdLTUAmOMzp9yGLmMBkcJJfVXozM/w1G3EJQ1kzp34ly+AoeT5ZGpNDPS0z1Bkk+OpeR8nRjJKJ54oArTFlJPl2I/0Bj/plVKS1ruNRutc0BsmfFx+Tg61MhVdU2gsZL137y4yRTsyZ+KJCYDNP7yuKUSGbA4c9CWsaWVnTOq4nvhK0t11SP+6ecHk1SSp3RtpshSCJWbixyWWokfD2xZ6pfMV5WShEqwwEzXUSI9p6lfZ+6PnkOxuAI8zgFEpSnjra6sHICopa8ptJBX5C13sD53hQ3Edm6k1F2EwWSZ1XGT+8Pyl0Og1Se3eSI2lBGGc3PMgczEROEJi3mlNfR1zqWYwc/WkjtPpBPWR80jr2xkSw+tatr8GQOaCsyZ1XGHZYvqkFWdNaAx1tDW/Q5s+dcIFLoYZcnxD8Tr2vTsTYU3KnrpWKuRBHJmTS3YjsioA6DgcOr27inKyUQlWGHF7NRK9rTiipn6VXUsqQY+Gs1VVElSUYc6OGgDi0nKn3EZWUSVD0oQ3RApdNLW0UOw9SH/6ykkfm1O+Ck0KBg4FP1msrjlMsXaYwaw1kz42scQ3pLB1z9sBjmryDq9/AYC0hedN+lhn6iLiZTeD7TUBjmryour+S6eIJya7clLHxVjNHDQUE9uxbUbimoz6tm7K3TvoSF094QIXwzJKV+KVgq4D781QdBNXt+nfmIWbxPnnTuq49IJ5OKVBzcdWlBmkEqww0tA5QDrtYJvcFbeRovxlddsObQtQVIoS/kT3YZzSSHxq/pTb0BuM1JoKiOkOjUIX1RteQC8kSZP88gUQH59ArS4TSwjMX6p970kAspZdMuljC4rK6JbReOuDP7wu6tCLdIp4kosn19sAYCvyHdPgn4sWLM0dnVQ4NtGccsaE1lw6Vld8JRnuaqSjbwaim7j97z5LlHAQv/DiSR9bmJ3GQbLQh8CQTUvVvxkkAlvJRyZ1XGFqPIdkBrq20FsnTlFOFirBCiNttbsxCS/m1LlTbiO9oByP1GFvCJ0J7IoSbObeapr1qej0+mm102ubR46rCq83+AuRmg68QBexZFasmdLxbTHzyLTvCeqwNCkl8Yefo16fSVLBwkkfbzYaOGSeS0JPcIcINjQ0MN+xkYa0s6aUmMwpX86QNGE/HNwexQP/fYgo4SDutGumdLwxdxl6NNr2BW8JACklxj1P0SeiSa2c/MUHo15HQ+Q8Uvt3gabNQIQTU9vUwvKht6hP/SgYTJM61mrS02DKw9Z/cIaiUxRFJVhhpM8/XjqhcHIT1kfKSY6nllREu5rcqijDbEP19Fqzp92OSK8kUjhoqAru0JuOtmbKBt6nJvkjiEkUVBjJk7aIePporw/ecOK9uzZT4dlFZ/4lkx7KNWwgsZIsTx3Oga7ABjcJh1+5B4twk/aRz0/p+NhIKwcNhcR0BK9HUdMkyQceoV6fRUbF5HpMhqWX+YZsdgaxIuLuvXtY6XqXhpxLJ7xo9bE8aYuJkoPYm/cGOLqJ2/ef+4kUThLXTu091R9TSJy3A4aCX6xDUU5GKsEKI1rzdtwYiMmc+LodxzIZdDQZc4gZUJUEFQXA4RgiXWvGZZv4YrxjSSryTYBv3x/cifxVL/0Bq3CRsOYLU24jvthXsa9pV/CqvnX/925c0sCcc7845TYiC3zPo27Hm4EKa1IG7EMU1/2TPdaFJBdMbDHY0XTFV5LtOojmGgpgdBP3wbuvUqIdpLvkmiknuwVZWb6haUEcXtfy6u8AyD7vlim3ET/XN6+xMUgVEXsHHBTUPEaduYjEKQw5BRD+NeWcTWo0i6LMBJVghQkpJSm922myzJn0cIBj9cfMIcndpNbAUBSgaf8mzMKDyJj6l99hWUULGJImPEEsdOFwDJFX/Qg7zQvIKV0y5XbySpcyIC14aoIznKtm3zaW9fybnamXEjWFhdWH5S9Yg1cK+vYHp9dk01O/JoUuzKu/PK12DDnLMOKlae/sF1fwejWsb/6YHmIoPe9zU25HrxM0RJWR1h+cioj7DuxnedezHEw8k6iUqc+3nFu2kB4ZibM6OJ+N9c/ewxzRgG7lV6bcRmxOJQCdh4I/z1JRTkYqwQoTB+ubmacdYDBj4gttjkUmzvVXEgyNBR8VJZj6q3xfkmyFk1tjaTQGo4k6Y35QC11sfeIXpNCFftXUv3wBWMxmqkxzSeia/S9gUtPoePa7uISR/Mtvm1ZbCfEJVOnziWrdGJjgJqGpqZ7Kqj+wz7qAgtMunVZb6eVrAOjcM/s9cW//62/M9+ykbv5XMETGTastT/oSYmU//Q2zO7xO0yQdz3wbo/CSefnPptVWjNXMPmMpCZ2bAxTdxNU2tVJ58B6qLSVkrp7aXDiAnLwCemUEjkZVSVBRZsK0EiwhxG1CiEYhxDb/7WMjHvuuEKJKCLFfCHHO9EM9tVV/8C+MwjulSbnHisoqB1QlQUUBoHETbdJGbl5RQJrrsZWS7axCC0Khi+aGaiqq/sh26zJKV1827fb6EheR5a7GNdgz/eAmYf1zf2Sx4z32Fd5MXPLUl6UY1mpbSI5jD3IWe+29Xo36hz5HJA5iL7t7ysPqhuVmZXOYDExNHwQowomprjlE+ZYfUWfMp/zCr067vfiSNQA07Hht2m1NxhvP/YVVQ29wcM6NRKdP/7Pem7SENE8Dnr7WAEQ3MR6vRs3fP08iPcRc+qtpvadyEqM4ILMxdQZvHpminMwC0YN1t5Sy0n/7N4AQohS4GpgHnAvcK4SYXnmuU5iUksj9T9MtbMSXrp12exkF8/BKwUCT+sWqKEm9O6mxlGAwBOZXlMhYQJQYouHQ7F4Z9rjddD70aXRoJH38NwFp01KwAr2Q1O6Yvbkm+3Z8QNm2n7DPNI/Kq34YkDb1uSuw4KZxz+wN6Vr34O0sc7zLntKvkVY4/eGnOp2gLmo+mf07Zq163YDdTu/D1xMpHER+8m+IaQ5PB5g7bwEdMgZP9ewNddy2bRNLtn2falMR8676cUDatM7xz8OaxdL5//n7Lzhj6DX2z/0CCcWTX99uJKNeR4u1gPjBQyGxgLWinGxmaojgxcBjUkqnlLIaqAKWztC5Tno79uxmmesDWnMvgilWBBspJyWeRpKgQ5VoVU5trv5O0r1NDCRVBqzNxMJlwOwXulh//1coc21n94Ifkp5fGpA28+afgVcK+g/MzvylxrrDRD/9KVzCTPL1f0dnmP7vO4CM+WcC0DFLw+vefObPrK39LbtjVlPx8e8HrF1v5nKiGaS7dubLzrtcbrbecy2Vnh3ULL+DhLz5AWnXajZwwFJOctfsDK+rObSP5GevQtMZSLjhUYTREpB2C+avwiGNDByYnYsP/3n6b5xTfScHo5dRetVPAtLmkK2ICGmH3vqAtKcoyocCkWB9SQixQwjxFyHE8ODsDGDkJ7bBv+04QoibhBCbhBCb2tvbAxDOyUVKSfu/f4oQkuzzvh6QNo16Hc2GLKL6awLSnqKEq4ZdbwMQkbcsYG1mFS/AIY14GmZv7tI7D93GqrZ/sDnpMhZfMr1iCiMlJSVxWJeDtWXmq77VHNqH/Mt52OjDfvnDxKdPv6rjsJzsHGpIx9Q48+tIvfnkH1ix7TscspRS/IXHEFNY92osqeW+EQyN214PWJujGRpysPk3V7La/l92FX+FuefeFND2B1OWkqK14uisDWi7xzp4cB/i75cQjZ2hq54kJm1OwNrOSLSxV1dIZOvMfzZef/p+1m7/Ok2WAvK/8CToAtPbbkzzVSQerN8RkPYURfnQuL/5hRD/FULsGuV2MfBHoACoBJqBX002ACnln6WUi6WUi5OSkiZ7+Env7TdeYu3AvzmQdRURyXkBa7cvMockV31QF0pUlGDrq1qPJgXZ5dMvHjPMaDRRa8wnehYKXUhN472/3Mqqw3ezNfoMKj93f8DP0WqrJHtoN9LrCXjbw/Zv34Dp7xdgo4/Wix8lq3x1QNsXQlAfPZ/MgZkbXqd5Nf7zl9tYvfN/OGwtI+vLL2KwRAX0HEXF82iVcWi1MzfUsb2jnd13X8hp9tfZVvRVyj4RmN6SkaKLzwCgYevMzcPavH4dsY+cSwK99F72D9LmBu4iyrC2uIVkOg8gnQMBbxt88/he/ttPOWP7t6izziX1y6+it8YErP2EfF+vZHd1cBfiVpST0bgJlpTyo1LKslFuz0kpW6WUXimlBtzPh8MAG4GsEc1k+rcpk1B1cC9Fb36RTn0ShVdPr+rRsbxxBVhw4u1rCmi7ihJOzC2bOSyySEtKDGi73bNQ6MLhcPDWb29gRd2f2BR7DuVffgJ9gIbUjSSzlhGJg9aqLQFvG2DTSw+R9fSFmPDQd+XT5C84c0bO48lcTgwDdNUG/mr94EA/H/zmas6pu5v9tlXMueVlLFHTq7Y3GqNBT3XkfFJ7t87IvJldOzYycM8ZVDo3sbPyR1R+MjDzlY5VXLGcPmnFcSjwQ0+llLz2xL3MfelKEHoGPvkvMiumP3d5NPrcFRjQaN8b+OfR1dvPW7/+JOfW/IKqmGXkfe0VTAF+T+VnZdAoE3A3q7WwFCXQpltFMG3E3UuB4U/p88DVQgizECIPKARmt/RRmNu3exvGRy4lUjjQffIxjNMsjXssU0oxAJ21wSsnrShBJSXpg3tpjp6HmGaFt2Pp0n2FLpoOz8wXl/bmOqp++RHO6H2WbVnXsuirj2IwmWfkXKnz1gDQsmtdQNt1OR28e9+XWbzhyzQYc5CffYP00umXyh9L8jz/8Lrtge01ObRvO42/PoPl/f9hc+5NzP3qc+jNEQE9x0iujNNIlh10NewLWJtSSt56+o/kPHUhNgZovPgxyi8JzJD00cRFW9lrnEdce2BL5/f2DfD2b67jI7u/S7O1kKgvriO1aFFAzzFS7oIzcUs9HTteCWi7e3Zvo+U3a1g7+BK7Cj5L0ddeRB/g3lCADJuVQ2Rj7VZLtihKoE13cPidQoidQogdwFrgFgAp5W7gcWAP8DLwRSnl7NcsDkOaV+PNJ/9A6uMfw0Y/A5c/SuKcwP+BiMv2reLeU78n4G0rSjjobthHLP1o6YH/fMUX+jrzW/cHfs7Prnf/hfanMyhwH2Dnsl9R+f/uQQRoTsZo8ufMpZV4ZG3ginbU7NtG7Z0rWdnyEJsSLiT3m2+SlBG4IdCjKZ5bRitxaNWB6W3QvBrvPXYnaY+eRarWwt6197Po+rtm9LUASJjvW6qjadO/AtJee3sLG355Kafv+A6tljz0n3+TnIUzv7JKX/JSMjx1ODoDU2Bh+wdv0n73Ck7vfZ6tWdeS/403iEjMGv/AaSjITGWnrpjoxsAUuvB6Ndb9405yHz+bLNlM7Uf+RNm1v0QEoLjVaIQQdETOIdFRC173jJxDUU5V0/rUSimvPcFjdwB3TKf9U4mUkq1vv4jxrZ9yhmc3h8xzib32QdKy5s7I+bJy8hmUZtxqsWHlFNWw623igPhpljseTU7xQoakCW/9RiAwBQLcziG2PvgtFjc+TKMujZYr/kF52cz1+AzT63XURC+iqG8D0uuZ1pc9zavx/hO/ZOHeu3AKE9tO+z2Lz7kugNGOzWDQcyh6CWW97yG9boTeOOW2GuuraXv4s6xwbmSXdRFp1/2FkvTcwAV7AkUlFdTJFAzVrwPfmlZb6//7DLnvfINFsofNBV9kwSdvR2eY+s9lMmIqL4Cme6nd8CzFH5t6YRany8n6B/+HFQ1/oU8XQ83Zf2XBiumvATcRQghaElewsP3/0Prb0EUnT7mturpaWh/+LGtcG9gXsZC06/9KTkpu4IIdgzuhBIP9CWTHAUTKvBk/n6KcKmaqTLsyQd1dnbz72F0c/MkiFr7+KdK8TWyv+AH5336XxBlKrgASoszUiXSMPYdm7ByKEspcNR8wIC0Uzlsc8LaNJjOHTHNJ6AzMvKXDezZRd+cKljb9nQ3xF5LwjfXkzUJyNcyTfxZx9NG4Z+prFzXVH2L7Xeeyct8dHLKW4/3ce1TOUnI1zF1wDjEM0LRz3ZSOl5rGe8/9mYj/W02JYxtb5n2Pebe+SsIsJVfgqwJbFbOMnL7NaK6pLZzc09PFut/cyPJ3rsert9ByxfMsuu6ns5ZcAcyvXEaDTETuf3nKbezZsZHqn6/kjMb72RO3loivbiR3lpKrYZaSswCo3/TilI7XvBrrnrmfiAdWU+Haws6y71D8rf8SOwvJFYA1qxyAnhpV6EJRAmlm+p2VE2ptbqDq3SexHnyReY4trBQeqvV5bCn/PuXnf4FES+SMxyCEoN2czVx74MbxK8Hh1SQutxeX04HL7cTp8uD2evB4vOgFGIRELyQ6owm90YLeZMWgN2A16TEZTt1rLLFd26g2FVJunv7iqaPpSV5CScNfcAx0T7nggcfj4b3Hfs7Sg7/BLqxsXnEvp539qQBHOr6cpRfg3fZt2re+QGb56ZM6VvNqrH/qbsp330UcXjaXfpuFH//2jA+lG03hiotxbv02bZueJaPyrEkd21R3iJZHv8iKofc5ZCoi4qr/Y+GcwKwNNVnWkrOwfvA8Bzb9h6IVF0/q2I3/fYKMd77LGtrZkfZxSq+7G4M1eoYiHZvFZGBv9ApW9f4H6R5CGK0TPtY+NMR7D/+E1Q1/ZkhY2LXyd8w/69MzGO3YFi1bS+ebMQzu/BesvWFSx1ZXH6TtsS+zxvk+1aY5yKvvp7xg4QxFOrq0/Arc7+rpq9lO3LJPzuq5FeVkphKsWdDd3kzNlldwVb1FcudG8rRaUoAWkczO9I8Tv+xq8uefQV6AJ9qPZyg6j8SOt8A9BJP446YEltPloqerg77uNgZ7Ohnqa8c92I20d4OjG52zF6OzF5O7D4NnEIPmwKQ5MGsOLDiw4CICB1Yx8apiLqnHiYlezAzoohnUR+MwxOIyxeIx2fBEpqC3ZRCZkEVsai4pGbnERM7cxP3Z5nbayXYd5oPUT8zYOSLmrELf+AAHt77B3NWTv6pee3An/Y9/ntPdO9kZuZyMT/8fi1Jmdk7JWDIzMthlmEtM3RuTOq7m4E76H/8iK9zb2WOpJO7qP7IoLzCLIE9FenIS28wVJDW9htS0Ca1R5fV6ef/xXzF/36+Jw8vGoltYdNX/zGpvz7Hmrb6EgQ23Mrj5cZhggtXW2kzVw19hRf8r1OsyOXz+k1QsmlySGWim0vOxfvA8Ve89x5wzrp7QMTvWv471P7fwUVnDHttqsq+9j7LEzBmOdGyxkWZejz6d07peRToHEObxi1G43F7e/uevWHLwbtKEmx0l36D8iu9Oa9jqVBVnJnBYpmFqVQWvgsnh8tDf181gfzeO/h6c9j5cg7247b14HX1oQ/3gGsDg7gevC53XhdDcCK8LneZCp7l9N7xo6JFCINEd+T86PVJnwmOIQDNE4DVGgDECgyUavTUWY0wi5ugkrLYUYuJTiLPZMBhm/yLYyUQlWDOgp6OFw5tfxVX1JimdG8nTaogD7NJMlbWM99MuJHPx+WSVnkbqLCdVI4mkQnQdEnvLQSKyKoIWx8loaLCfrtYGejqaGOxqxtnTgjbQhs7egdnRgdXdTbSnC5vWg00MkAKkjNUWZvpFFHZdNC59BB5TFA5DMnajFWmw4vX/wsRoRRhM6HV69Ho9QqdDQ6BJgVeC8LrB60TndSK8TjTXENI1iMHZg8ndS6KnhQjnQWJkH5YOF4xYA1STgnZi6TIkMmBOxRmRhozNwBSfRXRyHnHpeSSmZM9ImfCZULvrfeYIL+bcpePvPEV5lWtxr9PTv/8tmESCpXk8fPDPnzL/wO+JEwa2LvgJlRd+KaAL1k5Fb9ZHKav5Pa3Vu0jJKzvhvm63m/X/+F8WH76XBKFnc8VtLLzkq0F/DgBDxZeQufOHHN76GvnjJBhVe7Yw9PRXWOXZyV5rJXFX38eS3JJZinRsMdExvBt9OpWd/8U92H3CKrNer8b7z91Hyfafs5R+tuTeSPkn78A4g5UOJ2rx2kto3/BtnBsfhHESrPbOTvY88m1WdT5Jly6O/Wv+SOma0Ohx0VVcifW9f3Hw9QcpPO+LJ9x39/aNuJ//Oh/x7uBARCUJn7iPiuzgvadiLEY2GHJZ2HcgaDGcbDRN0t3bQ29bg+/vf187rv4OvIOdCHsnOkc3RlcPVncPkd4+orU+YhkgSXgZbzVYlzTgFCbcGPAI45Gb13+T6BBoCKkhpMSXXnkRUkMvXVj8F2at0onuBBdlndJIp4imT2dj0BiH0xSPx5qIjExCH5WMOTYZS1w6MYmpxCWmExEREfBqvOEuPL4NhbjerjYObXoF18E3SercSJ63hoVCMiRNVFnKeD/tY8SVnkn+/NOpMM9MKeWpiEqfC3uhvWY3OSrBmhCny0V7SyO9bbUMddTj7m5A9jdjHGzB6mglxt1OvNZFFENkABnHHN9PBH06GwOGeHqi8mm3JCCtiegi4zFFxWOOTiAyNpEI/80SnYDVYGJW+xelRBvqobu1hu7mGuztvucp+psw25tJctSSYN9EZIcDRkzhc0s9bbp4egzJ2K1peKPT0cVmYojLxGpLJtqWTGxCMhExCQjDzAzLG/epeVw4HYN07n6dOTDp4W6TERcXxwHjHGJa3p3wMTX7tuB86vMsd+9jW8RpZF57HwtmcX7PieSc+f/wPPAHav/ze1Ju/tOY++18999EvPY9VmvV7IhaQcan/siiEHkOACUf/TS9O37B4Ou/hjESrO6uDvY++j2WtD2JQ5jZtuAnzA+BJHck04qbiXzlP+x44TdUXH37qPvs3vw2vHQrqzx7OGQqwnnZEywsCfyCu1MVabXwfsqlfLTtr3Qe2kxCwfEVPd0eD+8980fm7vo1q+lmW+pllF7zK5KiA7/O2FQtX3M+B97PJXLTvXD2TTBKT1RrWxt7H/seKzufZkhY2Lv4J5Sc/2UIgS+l/bFFJHS/A44+sARuIeOTjebV6O5sobutnoGOBpzdzXh6mxGDbRjtbVhdHUR7ukjQukkQQySM0oZb6ukTMfTrY3AYYumz5tNttqFFJIA1Dr0lBoM1BmNkLObIGCyRcURExWKNjsMUEYPJYCIgfz2lRLrt2Af66O/pZLCnDWdfO+6+djwDHcjBDnRDnRgdXUS5u0gdqMfW3/3/27vz6LarK4Hj3yvZlrzv+xI7cRI7C2QhIYGWJVCgDBCmywDtnELboYc2c+hQmGmZdkoHzkyHtrTQdWBKgXYKKUMpMD2lUwqUpTQhK9njbHa8yfsiL5It6c4fEsEkMSGgRLJ8P+fo+Lc8yVd5efLv6vcW3Bx/tskBTWfAkY3XmYsvJZcxdwGh1AIko5CkrGJSc0vIyM4jIyMbV1oG7rRMkt3pp2yGzHiQuO/sFBry9nNg4x8Z2fsCBV3rmRU4wBJRfJrMfvcC1lfdRG79KmYuOo+FLnesw51UYXV4xqDhtt0xjiR++EaG6GzZz0DbfkY7D6F9jaQMtZDm85Az3kW+9lEhISZ2SBlXJz2SR39SAV2ps2hNOwcyiknKKiE1p5iM/DJyi8rJyi8hMzmV0z/a4SSJ4EjLJb8ml/yaxccvo8rwYC/drfsZ8DTi6zlMsK+ZpKE20kY9lAxup3DgRVJaj786wxCpeCWDMXETcLgJOF0EHS4CDhcBpxvEiYgj/I1Y5KGAqhBSRULjOEKB8E+NdI3QAI5QAIcGSNJxknWMFPWTomOkMIZLx0iSEG7gbKCdAkrKq0/RP2JYb9UlrDj4AzyHGyipmjNpOd/oMJse/VeWHX6QYUll/ZJvsfyKG+Pqgr6iqob12R/izPZf03n4SxRVzX3b+ZZDe2j79e0sH3qBDingjZX3ceYl18fFBeREOdk5vFL1KT7Y/BN2v7iW+gvfunPiHexn2//+kPp997NCvWwuuILZ197NosKjvyqJvbNWXsjrf1rO/D3/Sdehj1M44a7igd1b6PzdNzl78A8MSCZbFt3JoivXxOXFzNzV/0j/A48z8Pgacm99EUdK+OukYDDIxufWkv369zg/tI+DrjkErnyIJQsviG3Ax+FOSaL5jC9y0Ru3sPt/vkH9tW9NoNzV08POZ+5jYeNDnIeX7cWrqb3ubupzS2IY8dtJ8XzoA3/7Dlw158Q6nJhQVQYHvXS2HmCwyr6r3QAAET9JREFU4xC+7iZCfc04h9pIG20nN9BJcaiLfBk/JnEaxk2/Ixdvcj59mXPoSi2CzGKcWaW4sotJzSkiI6+Y7LxiUtKyyRc5bvJ1WokgKemk56WTnld64vIAqvhHBhjobsfb085In4exAQ9Bbxcy3EWSrweXv4cC32GyRraRrd53vEsG4NNkfOImQBIhcRDCSQjHW9sS7okjwK6keWR+9PucN+dE9/nig+gpWA3+vTrrrLN048aNsQ7jGKFgiAPb/0z3pmfI9bzKrLG9JEuQMU1iv6uewZJzyJ6/illnnk+Ke+qMZfIHgvTdNYueonOYv+bRWIdzWgSDITxtTXQ17sDnaSDUd5gU72EyR9vID3gooP9t5cc0iQ5HIf3JxfhTiwllluHMLseVX056YRU5RTPIKSyLyYD9eDceCNDT0cpQZxNDA134BnsYH+qBkV6c/n6SxwZwBEZxBHw4Qz6SQpFkSP04NAiEuzcASGRbIntBnJFuEU6CkkRQkglJEkFJIuRIRh1JBMRFwOki5HSjSW5485GSiiSlkl93LnMXf/CU/hu0HNhFxS9W8pfKG1n52e8cc15V2fbi4xS88nXK1cOWrFXM+OQPyCuO3ZiSd9J8cC+5j5xPR1Iprut+QV5JJQe2vcbwuodYOvBHQjjYVn0DC6+5A3da/H6VMDQ8RNs951EVPMz26hvQzDKCbW9Q1/s8uXjZ41pI6pV3M2NB9Kfwj6b9+3aR+9+X4hBomHEdQYUMz3oW+N/ATzK7yj9G/TV3kZZdEOtQ39HzT9zPhdu/TGPKLLorLmHM20NV98tU0U6HFNK57DYWXHZjXH/OjgeCvPadj3G+7wW25lyML7cOuhuYN/gqWTLCntTF5Kz+D0rqVsQ61GO8sH4Lq569gJYV36DisltiHc4pEwyG8LQ20tO8F2/7PkI9B0gZbCJ7tIXCYAf5Mvi28iEVeh059CcXM+QuZSy9FM0qJyWnnLS8UrIKK8ktrsCdnh2jdxTfNDjOYI+Hge52hnvbGPH24R/xouOjMDYMYyPI+AgSGEFCAQgFEQ0/iPx0agghhCIcTplN2eo7WF6TF+u39jYisklVj5mO2BKsd9Cw+SX6X/0vqnv/TBG9hFTYnzyb3uKVZNRdRO3SVXF9EfFubL7zA+SljFP9legviBpLfX29tB7YjrdlN4GuBlL6D5E7epiyYCsZMnqkXLhbWwF9KaWMppYTyK4kKa+a9JJZ5JXXUlg6A6czfv+om/j3xrc/zIyhbeia9eQWvZU47d/6CkO/v5NFvtdpkgoGL/x3Fp53cjPCxcLmF56g7qUvkCb+I8dGNYUdpX9NzZVfpqB8Vgyje/c87S20PfIZlvjCn30j6qIh82wyzr+Z2mWxnfzhZOzZvpHA0zezIBCepKDFUU575eXMveJLZBWWxTi6d0dVefnpB5m19W4q6GRMnRxMOwP/wk+w8EM34EiOTZfikzU4PMLGh27l7K4nSRcf/WTSmHsuhavWUH4KuyO/Xx2DPkL31DNcspzaz/8q1uG8L6qKp7OTzoPbGG7dCV17SfU2ku1rpTTYTqqMHSkbUAddzkL6XBWMplegWRUk51WRXlRNbtlMcotn4EiOn2EdJj5ZgvUebHjqR9RvuYuGzGUEay+l9tyPkDtF/mC9W8/dcz0f9D6L+1/aIA67j5zIgHeIln1bGWh8g1DHTjIGGij1HaSYniNlQip0OArpcc/Al1WNFMwmvayO/Mp68stqYjobmEl8jbs3Ubr2UpqTquhfsobQUDdpB3/HAv9WBkhnb+2NLPr47aTEcXfio3laDtH48i8JjftIL5lN7cqrSM+KnzExJ6Oro5WAf5SC4nKSXVOnB8LRBvp7cbtduE7DMh+nioZCjI4O43KlTpkJc45nfHyccf8IqelZU2bg/0t3XcZ8OUjB16bGZBeqiqfDg2ffRoabd0J3A5neA5SMNVEsfUfK+TUZj7OEfncl/qwqHHkzSSudQ2FVHflls6ZM8m7ilyVY74FvdBiHwzmlLnxO1u8fvY/LGr6O9zOvkFkVvxNdqCoeTyttu17Dd3gzKd27KRjZT2WojSQJAeG7US1JVfRm1BLMn0tqWR2FM+ZTOKMeZ8rUvXAyU9+259dS9cpt5OAFoE2KaK7+OPVX30ZWdnx1dzDGTD9P3X8HV7ffS+jvt+AomBnrcN5mLBDiYHMLnXtfZ6x5E+k926nwNVBJx5Eyw7hpT67CmzkLLZhLWtl88msWUlAxOy7HHprEMVmCZf/r3oE7dep+E/huFc1dAQ3QuvNV6uIkwVJVWjydNO98jdHGDaT3bKNydA/ldPHmUMw2KaE7fRZb8y7FVb6AgpmLKa6eT01yCjUxjd6YY51x0bX4z7mCg/u24c4uorRyJmVxNIGFMWZ6S627BNrvpX3zbym/5OaYxTEWCLGvqZm2PesYO7yZzN6dVI/tpU46qYuU8ThK6Mqup6voGtKqllBSu4ickmpqp8jdQjM92B2saW7YN4bvmzPxFH2A+WvWxiSG7r4+Gneuw3tgA67OrZQO76aGtiPnPY5iOjPnM15yJhk1y6mcv4K0TPvW3xhjjImG3iE/fd9eRHJWMVW3/um0/M5gSDnU0krLrnX4m8J3pir9DcyQt+5MdTlL6MmqJ1S6mOxZyyiZezbOjJjPwWfMEXYHyxxXujuFja4lnNGzDkIhOMXfqg+NjHBwxwb696/D6dlKkXcXNaHDnBXp5tcteXRkzuONko+QPetsyuevpCSzkPiZ0NYYY4xJLHkZLl7MvYSP9j+M37MHV0ndiZ90ElSVlnYPzbv+wmjjRlK7t1Mxupda6aA2UqbTWUxv3jz2lH2CvNrlFM45m8L0/BMuvmtMPLIEy+CfdQm5u1+ic/tzFJ15adRe1+f3c3D3Znr3rYe2reQP7GRm8BBnSHihugEyaE2rZ1vRxWTULKNywbkU5FcS3xMKG2OMMYmn8qLPM/rEo3ie/Bo1X3jiPb+OqtLe0UHLrnWMNG7A3b2DspE9VOGhMlKmw1FEd04920uvI692GSV1KyjKKKAoOm/FmJizLoKGlq5e0n+4kK7sBcz50v+9p9cYGxujae8WuhvWo21byOnfRU3g4JEpUYdIpcU9h6H8hbirl1Ex71xyymrjbhFSY4wxZjpSVZ783s18dPDnHFp2BzWX33LCv9GhYIj2lkY8+15ntGkzru6dlI42UEHnkTIdUkhnZj2B4jPJmbWc8nkrScmy+1ImMZySWQRF5FfA3MhuDtCvqotEpBrYDeyNnFunqjed6PUswYqd391/O5e3/5jdi79O/epbJy2noRBd7U2079vMcMsOHF17yR7aT3Xg0JFkahg3za5ahvIWkFK5lJL6FRTOmB/Xi0QaY4wx012fd4Q9913FysAG9qUtYWTu1bgKaiA5Ff/wAKMDnQT7W0nqO0DGcBOl483kiffI81sdpXRn1BEsXkhmzVIq563EnVMcw3dkzKl1yqdpF5F7gAFVvTOSYP1WVReczGtYghU73uERdt97FcvHN3AgpY7uwhWoO5vQuA/x9eMaaiXD76E40E62DB95Xi9ZdLhq8ObUk1y5mOK5KyiducCmRTXGGGOmoP6hEV597Fssb3mYoglrSk3UTS5drkpGM2ugqJ706qVU1S8jNXNqrodnzHt1ShMsCa+kdxhYpar7LMGamnx+P39ZezflTb9hZrDxyPpSI+qi01mE11WCP6OSYMFcMisXUj5nMdkFibXwsjHGGGPANxagef92Rvs8MDaMOyOHrPwicooqcWdYImUMnPoE6zzgu2/+gkiCtRNoAAaBr6nqK5M893PA5wCqqqqWNjU1ve94zPsXDAQYGR4kLT0TZ1JyrMMxxhhjjDEmrrznadpF5I9w3Fmyv6qqT0e2rwMem3CuHahS1R4RWQo8JSLzVXXw6BdR1QeAByB8B+vEb8WcDs6kJDKzba0pY4wxxhhjTsYJEyxVvfidzotIEvARYOmE5/gBf2R7k4gcAOYA1v/PGGOMMcYYk7CisarsxcAeVW1584CIFIqIM7I9E5gNHIzC7zLGGGOMMcaYuBWNqd6u5e3dAwHOA+4UkXEgBNykqr1R+F3GGGOMMcYYE7fiaqFhEekC4m2WiwKgO9ZBmNPG6nv6sLqePqyupxer7+nD6np6icf6nqGqx6ycHVcJVjwSkY3Hmx3EJCar7+nD6nr6sLqeXqy+pw+r6+llKtV3NMZgGWOMMcYYY4zBEixjjDHGGGOMiRpLsE7sgVgHYE4rq+/pw+p6+rC6nl6svqcPq+vpZcrUt43BMsYYY4wxxpgosTtYxhhjjDHGGBMllmAZY4wxxhhjTJRYgvUOROQyEdkrIvtF5CuxjsdEj4hUisiLIrJLRHaKyBcjx/NE5DkR2Rf5mRvrWE10iIhTRLaIyG8j+zUisj7Svn8lIimxjtFEh4jkiMgTIrJHRHaLyEpr24lJRG6JfIbvEJHHRMRtbTtxiMjPRKRTRHZMOHbctixh34/U+zYRWRK7yM3JmqSuvx35HN8mIr8RkZwJ526P1PVeEbk0JkG/A0uwJiEiTuBHwIeBecB1IjIvtlGZKAoAt6rqPGAFsCZSv18BnlfV2cDzkX2TGL4I7J6wfzfwPVWtBfqAz8YkKnMq3Af8XlXrgDMJ17u17QQjIuXAzcBZqroAcALXYm07kTwMXHbUscna8oeB2ZHH54CfnKYYTXQ8zLF1/RywQFXPABqA2wEi12vXAvMjz/lx5Lo9bliCNbnlwH5VPaiqY8BaYHWMYzJRoqrtqro5su0lfAFWTriOH4kUewS4OiYBmqgSkQrgr4CfRvYFWAU8ESlidZ0gRCQbOA94EEBVx1S1H2vbiSoJSBWRJCANaMfadsJQ1ZeB3qMOT9aWVwM/17B1QI6IlJ6WQM37dry6VtU/qGogsrsOqIhsrwbWqqpfVQ8B+wlft8cNS7AmVw40T9hviRwzCUZEqoHFwHqgWFXbI6c8QHGs4jJRdS/wT0Aosp8P9E/44Lb2nThqgC7goUiX0J+KSDrWthOOqrYC3wEOE06sBoBNWNtOdJO1ZbtuS2yfAZ6NbMd9XVuCZaY1EckAfg38g6oOTjyn4TUMbB2DKU5ErgA6VXVTrGMxp0USsAT4iaouBoY5qjugte3EEBl7s5pwUl0GpHNsFyOTwKwtTw8i8lXCQzt+GetY3i1LsCbXClRO2K+IHDMJQkSSCSdXv1TVJyOHO97sUhD52Rmr+EzUnAtcJSKNhLv6riI8Ricn0q0IrH0nkhagRVXXR/afIJxwWdtOPBcDh1S1S1XHgScJt3dr24ltsrZs120JSERuAK4APqlvLd4b93VtCdbkNgCzI7MRpRAeTPdMjGMyURIZg/MgsFtVvzvh1DPA9ZHt64GnT3dsJrpU9XZVrVDVasLt+AVV/STwIvCxSDGr6wShqh6gWUTmRg5dBOzC2nYiOgysEJG0yGf6m3VtbTuxTdaWnwE+FZlNcAUwMKEroZmCROQywt37r1LVkQmnngGuFRGXiNQQntjk9VjEOBl5Kxk0RxORywmP3XACP1PVf4ttRCZaROQDwCvAdt4al/PPhMdhPQ5UAU3A36jq0QNszRQlIhcAt6nqFSIyk/AdrTxgC/C3quqPYXgmSkRkEeEJTVKAg8CnCX+haG07wYjIvwLXEO4+tAX4O8JjMaxtJwAReQy4ACgAOoA7gKc4TluOJNk/JNxNdAT4tKpujEHY5j2YpK5vB1xAT6TYOlW9KVL+q4THZQUID/N49ujXjCVLsIwxxhhjjDEmSqyLoDHGGGOMMcZEiSVYxhhjjDHGGBMllmAZY4wxxhhjTJRYgmWMMcYYY4wxUWIJljHGGGOMMcZEiSVYxhhjjDHGGBMllmAZY4wxxhhjTJT8P15Ul1dlzVKaAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADTW0lEQVR4nOzdeXxcZd3//9dnJvverG2TNGlL9xVoC0jZlUVBQJSCrHIrN7iCCu6K3jffnzeiuKAiiqKApewgsi8Fimzd99ItXdM0+77NzPX7YyYhbZMmaSaZJH0/H4+BOedc5zqfmTOZns9cyzHnHCIiIiIiItJ3nkgHICIiIiIiMlwowRIREREREQkTJVgiIiIiIiJhogRLREREREQkTJRgiYiIiIiIhIkSLBERERERkTBRgiUiMkiYWaGZOTOLinQsw52ZXWtmSyIdx2BjZqeY2aZIxyEiMpQpwRIRkSHNzG4zs1Yzq+vwuDXScQ1Fzrm3nHOTwl2vmZ1pZsvNrMbMtpnZ9eE+hojIYKEES0QkTNTyFFGLnHNJHR53RDqgcBrKny0ziwaeBP4EpAILgF+Z2ayIBiYi0k+UYImI9IGZFZnZd8xsNVBvZlFmdqKZ/cfMqsxslZmd3qH8YjP7/8zs/dCv+U+bWXoXdX/BzDaYWW3oV///Pmj7hWa2MlTPVjM7N7Q+1czuM7NiM9tjZv9rZt5uXsd4M3vNzMrNrMzMHjKztA7bKszsuNDyaDMrbXtdZvZpM1sXer2LzWzKQe/Pt81stZlVm9kiM4vr/Tvde2b23dD7Umtm683s4i7KmZndZWb7Q+/lGjObHtoWa2Z3mtlOMysxs3vMLL6Hx78/VP7lUAxvmFlBh+2/MbNdoWMuM7NTOmy7zcweM7MHzawGuNbM5pnZO6H3udjM7jazmA77ODP7spltDh3vf0Ln7j+hYzzSsXwXMZ9uZrt78vp6IR1IAR5wQR8AG4CpYT6OiMigoARLRKTvLgc+BaQBOcC/gf8leGH5beBxM8vqUP5q4DpgFOADfttFvfuB8wlenH4BuKtDkjMP+AdwS+i4pwJFof3uD9V7DHAscDbwxW5egwH/HzAamALkA7cBOOe2At8BHjSzBOBvwN+dc4vNbCKwELgJyAKeA/510IX8pcC5wFhgJnBtpwGYzQ8lD1095nfzGg62FTiFYKvJT0Pxj+qk3NkE37+JobKXAuWhbT8PrZ9N8P3MBX7cixiuAP4HyARWAg912PZBqN504J/AowclnxcCjxE8vw8BfuDmUF0nAWcBXz7oeOcAxwMnArcC9wJXEjyf0wl+Vo9YKFHu6vz8obN9nHMlBD8jXzAzr5mdBBQAGgMnIsOTc04PPfTQQ48jfBBMaq7rsPwdgr/UdyzzInBN6Pli4Ocdtk0FWgAvUAg4IKqLYz0FfCP0/E/AXZ2UyQGagfgO6y4HXu/l67oIWHHQumeANcBqIDa07kfAIx3KeIA9wOkd3p8rO2y/A7gnzOfgttB7WNXhMbqTciuBC0PPrwWWhJ6fCXxIMCnxdChvQD0wvsO6k4DtPYzrfuDhDstJBJOk/C7KVwKzOrymN7up/ybgyQ7LDji5w/Iy4Dsdln8J/LqbOk8Hdofz/ITqvQAoIZj4+4AvhfsYeuihhx6D5aEWLBGRvtvV4XkB8LmOv+wD8wm2VnVWfgcQTbBV4gBmdp6ZvRvqnlcFfLJDuXyCLTQHKwjVV9zh+H8Csg/3Aswsx8weDnUprAEe7CSmPxNsBfmdc645tG506DUA4JwLhF5fbof99nV43kAw0Qi3R5xzaR0ee83sagt2oWx7H6bTyfvsnHsNuBv4PbDfzO41sxSCLXIJwLIOdbwQWt9T7efaOVcHVBB8zwh1ndwQ6jpZRbD1LLOzfUPlJ5rZs2a2L3SO/l8nr6ekw/PGTpb7470/LDObDDxMsOU2BpgG3GpmnxroWEREBoISLBGRvnMdnu8i2ILV8WI/0Tn38w5l8js8HwO0AmUdKzSzWOBx4E4gxzmXRrD7nXU4zvhOYtlFsAUrs8PxU5xz07p5Df8v9DpmOOdSCHYrazsWZpYE/Bq4D7jNPho3tpdgUtdWzkKvb083xzuEBacIrzvM45Tua2mvq4BgQvhVICP0/q3t+Jo6cs791jl3PMEWxYkEu16WEUxKpnV4L1Odc71JUtrPdeg9TAf2hl7LrQS7I44IxVd9UHwdP1cAfwQ2AhNC5+j7Xb2e/mLBsXZdnZ97uthtOvChc+5F51zAObeJYDfa8wYuchGRgaMES0QkvB4ELjCzc0LjTeJCEwfkdShzpZlNDY1n+hnwmHPOf1A9MUAsUAr4zOw8gmOF2txHcEzLWWbmMbNcM5vsnCsGXgJ+aWYpoW3jzey0buJOBuqAajPLJZhgdPQbYKlz7osEL47bLqYfAT4ViiMa+BbBBO8/3b1RB3PBKcKTDvN4qxfVJRJMUEohOGEIwQv9Q5jZXDM7IRR/PdAEBEKtcX8mOPYtO1Q218zO6bCvsw6TmHTik6GxZTEEx2K965zbRfD99oXiizKzHxMca3c4yUANUBdqFbqxm/Jh55ybdpjzc0MXu60AJlhwqnYzs/EExxauHrjIRUQGjhIsEZEwCl08X0iwdaGUYIvSLRz4ffsAwfE5+4A44Oud1FMbWv8IwbE5nyc4Bqpt+/uEJr4g2PLxBh+1JLV1xVof2vcxDuyi2JmfAseF6vo38ETbBjO7kOAkFW0X9N8EjjOzK0KtEVcCvyPY4nMBcIFzrqWb4/Ur59x6gmOO3iHYTW4G8HYXxVMIJlKVBLs7lgO/CG37DrAFeDfULe8VYBKAmeUDtQTHpXXln8BPCHYNPJ7gewXBcXkvEBz7tYNgUrerswo6+DbBz0FtKN5F3ZQfFFxwkpTrCE7mUkPws/o48JdIxiUi0l/MuYN7IIiISH8xs8XAg845XVwOcWZ2JcHug9/rYvv9BCeM+OGABiYiIhE1ZG9cKCIiEknOuQcjHYOIiAw+6iIoInKUsOBNb3szOYEMQ2b2/S4+B89HOjYRkeFAXQRFRERERETCRC1YIiIiIiIiYTKoxmBlZma6wsLCSIchIiIiIiJyWMuWLStzzh1y8/lBlWAVFhaydOnSSIchIiIiIiJyWGa2o7P16iIoIiIiIiISJkqwREREREREwkQJloiIiIiISJgMqjFYnWltbWX37t00NTVFOhQZBOLi4sjLyyM6OjrSocgwtOadF9m/5O/MuP7PZKcmRjocERERGYIGfYK1e/dukpOTKSwsxMwiHY5EkHOO8vJydu/ezdixYyMdjgxDnjf+j7OalvHGy38j+7NfjXQ4IiIiMgQN+i6CTU1NZGRkKLkSzIyMjAy1Zkq/qXDBVqsR2/8d4UhERERkqBr0CRag5Era6bMg/SmptRyAzIYtEY5EREREhqohkWCJiAyENH8FAKPdfuqrKyIcjYiIiAxFSrB6wMz41re+1b585513ctttt0UuoA5OP/30w96c+aKLLuLEE088YN1tt91Gbm4us2fPZvr06TzzzDP9HabIoNfiC5BFJXs8owHYt3VFhCMSERGRoUgJVg/ExsbyxBNPUFZWFtZ6nXMEAoGw1tlRVVUVy5Yto7q6mm3bth2w7eabb2blypU8+uijXHfddf0ah8hQUFNdSZI1UZx2PABVuzZFOCIREREZipRg9UBUVBTXX389d9111yHbSktLueSSS5g7dy5z587l7bffBoKtRHfeeWd7uenTp1NUVERRURGTJk3i6quvZvr06ezatYtbbrmF6dOnM2PGDBYtWgTA4sWLOf300/nsZz/L5MmTueKKK3DOdRrfAw880N4a9f7777evf+KJJ7jgggu47LLLePjhhzvdd8qUKURFRR2QPH73u99l6tSpzJw5k29/+9sAFBUVceaZZzJz5kzOOussdu7cCcC1117LjTfeyIknnsi4ceNYvHgx1113HVOmTOHaa69tr/PGG29kzpw5TJs2jZ/85CeHxFFdXU1BQUF7oldfX09+fj6tra2dxi0Sbq11wb8B/8hZBJzRUro1whGJiIjIUDTop2nv6Kf/Wsf6vTVhrXPq6BR+csG0bst95StfYebMmdx6660HrP/GN77BzTffzPz589m5cyfnnHMOGzZsOGxdmzdv5u9//zsnnngijz/+OCtXrmTVqlWUlZUxd+5cTj31VABWrFjBunXrGD16NCeffDJvv/028+fPP6S+hoYGVq5cyZtvvsl1113H2rVrAVi4cCE//vGPycnJ4ZJLLuH73//+Ifu+9957eDwesrKyACgvL+fJJ59k48aNmBlVVVUAfO1rX+Oaa67hmmuu4a9//Stf//rXeeqppwCorKzknXfe4ZlnnuHTn/40b7/9Nn/5y1+YO3cuK1euZPbs2dx+++2kp6fj9/s566yzWL16NTNnzmyPIzU1ldmzZ/PGG29wxhln8Oyzz3LOOefoflcyYHzNjQB4E1LZ78kkqmZHhCMSERGRoUgtWD2UkpLC1VdfzW9/+9sD1r/yyit89atfZfbs2Xz605+mpqaGurq6w9ZVUFDQPi5qyZIlXH755Xi9XnJycjjttNP44IMPAJg3bx55eXl4PB5mz55NUVFRp/VdfvnlAJx66qnU1NRQVVVFSUkJmzdvZv78+UycOJHo6Oj2xAvgrrvuYvbs2Xz7299m0aJF7bPzpaamEhcXx3/913/xxBNPkJCQAMA777zD5z//eQCuuuoqlixZ0l7XBRdcgJkxY8YMcnJymDFjBh6Ph2nTprXH/Mgjj3Dcccdx7LHHsm7dOtavX3/I61iwYEF7C97DDz/MggULDvs+ioRTa0tw+n9vdCzl0aNJbtgd4YhERERkKBpSLVg9aWnqTzfddBPHHXccX/jCF9rXBQIB3n33XeLi4g4oGxUVdcC4po73bkpMTOzR8WJjY9ufe71efD5fp+UOnrrczHjkkUeorKxsvyFvTU0NCxcu5PbbbweCY7Dauv8dHPf777/Pq6++ymOPPcbdd9/Na6+91qM4PR7PATF7PB58Ph/bt2/nzjvv5IMPPmDEiBFce+21nd7L6tOf/jTf//73qaioYNmyZZx55pmHPa5IOPlCCZYnOo76xHzGVS7pZg8RERGRQ6kFqxfS09O59NJLue+++9rXnX322fzud79rX165ciUAhYWFLF++HIDly5ezffv2Tus85ZRTWLRoEX6/n9LSUt58803mzZvXq7jaWn2WLFlCamoqqampLFy4kBdeeKF93NeyZcu6HIfVUV1dHdXV1Xzyk5/krrvuYtWqVQB87GMfa9//oYce4pRTTulxfDU1NSQmJpKamkpJSQnPP/98p+WSkpKYO3cu3/jGNzj//PPxer09PoZIX/nbughGx+FPLSCTKhrrqiMclYiIiAw1fU6wzCzfzF43s/Vmts7MvhFaf5uZ7TGzlaHHJ/sebuR961vfOmBCiN/+9rcsXbqUmTNnMnXqVO655x4ALrnkEioqKpg2bRp33303EydO7LS+iy++mJkzZzJr1izOPPNM7rjjDkaOHNmrmOLi4jj22GO54YYbuO+++ygqKmLHjh0HTM8+duxYUlNTee+99zqt45Of/CR79+6ltraW888/n5kzZzJ//nx+9atfAfC73/2Ov/3tb8ycOZMHHniA3/zmNz2Ob9asWRx77LFMnjyZz3/+85x88snt23784x8fME38ggULePDBB9U9UAacv7UZAG9MPFFZ4wDYv3NjJEMSERGRIci6mpmuxxWYjQJGOeeWm1kysAy4CLgUqHPO3Xm4/TuaM2eOO/ieThs2bGDKlCl9ilGGF30mpD+semUhs5bcwOYL/4Uv4Jjyr0+zev7vmfnxKyMdmoiIiAxCZrbMOTfn4PV9HoPlnCsGikPPa81sA5Db13pFRAZSoDU0yUVsHGlZYwBo3q+p2kVERKR3wjoGy8wKgWOBtn5oXzWz1Wb2VzMb0cU+15vZUjNbWlpaGs5wRER6zB9KsKJj4snMzKHWxUPVzghHJSIiIkNN2BIsM0sCHgducs7VAH8ExgOzCbZw/bKz/Zxz9zrn5jjn5rTdi0lEZKC50Bis6Nh4zIz93hxi6zRVu4iIiPROWBIsM4smmFw95Jx7AsA5V+Kc8zvnAsCfgd5NjSciMoACvrYWrOAtF6pjR5HcvC+SIYmIiMgQFI5ZBA24D9jgnPtVh/WjOhS7GFh78L4iIoOF84VasOKCN9duSswly18CfZwISERERI4u4bjR8MnAVcAaM1sZWvd94HIzmw04oAj47zAcS0Skf4S6CMbGBluwXGo+SWWN1FeXkZim7ssiIiLSM31uwXLOLXHOmXNupnNudujxnHPuKufcjND6T4dmGxyynnrqKcyMjRu7vi9OUVER06dPD9sxr732Wh577LEut990003k5uYSCATa191///1kZWUxe/Zspk6dyp///OewxSMyrPmDCVZMqItgTEYhAGW7t0QqIhERERmCwjqL4HC2cOFC5s+fz8KFCzvd7vP5+nwMv9/f47KBQIAnn3yS/Px83njjjQO2LViwgJUrV7J48WK+//3vU1JS0ufYRIY9XzPNLhrzBL8WE3PGA1C9TwmWiIiI9JwSrB6oq6tjyZIl3HfffTz88MPt6xcvXswpp5zCpz/9aaZOnQoEE60rrriCKVOm8NnPfpaGhgYAXn31VY499lhmzJjBddddR3Nz8NfywsJCvvOd73Dcccfx6KOPHnLsV155hTlz5jBx4kSeffbZA449bdo0brzxxi6TvuzsbMaPH8+OHTva1/32t79l6tSpzJw5k8suuwyAiooKLrroImbOnMmJJ57I6tWrAbjtttu45pprOOWUUygoKOCJJ57g1ltvZcaMGZx77rm0trYC8LOf/Yy5c+cyffp0rr/+eg6+eXUgEKCwsJCqqqr2dRMmTFDiJ4OLv5lmi25fzMoLJlgtpUURCkhERESGonCMwRo4z38X9q0Jb50jZ8B5Pz9skaeffppzzz2XiRMnkpGRwbJlyzj++OMBWL58OWvXrmXs2LEUFRWxadMm7rvvPk4++WSuu+46/vCHP/DVr36Va6+9lldffZWJEydy9dVX88c//pGbbroJgIyMDJYvX97psYuKinj//ffZunUrZ5xxBlu2bCEuLo6FCxdy+eWXc+GFF/L973+f1tZWoqOjD9h327ZtbNu2jWOOOaZ93c9//nO2b99ObGxse8Lzk5/8hGOPPZannnqK1157jauvvpqVK1cCsHXrVl5//XXWr1/PSSedxOOPP84dd9zBxRdfzL///W8uuugivvrVr/LjH/8YgKuuuopnn32WCy64oP2YHo+HCy+8kCeffJIvfOELvPfeexQUFJCTk9Pj0yTS3zz+Zlr56G8oI3MkdS4OV70rglGJiIjIUKMWrB5YuHBhe2vPZZdddkCL0bx58xg7dmz7cn5+PieffDIAV155JUuWLGHTpk2MHTuWiRMnAnDNNdfw5ptvtu+zYMGCLo996aWX4vF4mDBhAuPGjWPjxo20tLTw3HPPcdFFF5GSksIJJ5zAiy++2L7PokWLmD17Npdffjl/+tOfSE9Pb982c+ZMrrjiCh588EGiooL59ZIlS7jqqqsAOPPMMykvL6empgaA8847j+joaGbMmIHf7+fcc88FYMaMGRQVFQHw+uuvc8IJJzBjxgxee+011q1bd8jrWLBgAYsWLQLg4YcfPuxrFokE87fQSkz7ssfrYb8nm5ha3QtLREREem5otWB109LUHyoqKnjttddYs2YNZobf78fM+MUvfgFAYmLiAeWDs9Z3vdyZg+vorr4XX3yRqqoqZsyYAUBDQwPx8fGcf/75QDCZufvuuzut79///jdvvvkm//rXv7j99ttZs+bwLYKxsbFAsBUqOjq6PR6Px4PP56OpqYkvf/nLLF26lPz8fG677TaampoOqeekk05iy5YtlJaW8tRTT/HDH/7wsMcVGWgefzOtdmArcHXsKNKahvT8PCIiIjLA1ILVjccee4yrrrqKHTt2UFRUxK5duxg7dixvvfVWp+V37tzJO++8A8A///lP5s+fz6RJkygqKmLLluBg+QceeIDTTjutR8d/9NFHCQQCbN26lW3btjFp0iQWLlzIX/7yF4qKiigqKmL79u28/PLL7eO9uhIIBNi1axdnnHEG//d//0d1dTV1dXWccsopPPTQQ0BwbFdmZiYpKSk9iq8tmcrMzKSurq7LWQ/NjIsvvphvfvObTJkyhYyMjB7VLzJQPIEWfAclWI0JuWT4NVZQREREek4JVjcWLlzIxRdffMC6Sy65pMuJJSZNmsTvf/97pkyZQmVlJTfeeCNxcXH87W9/43Of+xwzZszA4/Fwww039Oj4Y8aMYd68eZx33nncc889BAIBXnjhBT71qU+1l0lMTGT+/Pn861//6rSOL37xiyxduhS/38+VV17JjBkzOPbYY/n6179OWloat912G8uWLWPmzJl897vf5e9//3sP3x1IS0vjS1/6EtOnT+ecc85h7ty57dvuuece7rnnnvblBQsW8OCDD6p7oAxKXn8zPk/MAesCqfmkUE9TbUWEohIREZGhxg6e8S2S5syZ45YuXXrAug0bNjBlypQIRSSDkT4T0h/W/n+nERVoYfIP3mlf996z93HC0m+ye8FL5E05IYLRiYiIyGBjZsucc3MOXq8WLBERICrQckgLVmJ2cAKb6uKtkQhJREREhiAlWCIigDfQgv+gBCsjbwIATWU7OttFRERE5BBDIsEaTN0YJbL0WZD+Eu1a8HtiD1iXlT2aRheDq1SCJSIiIj0z6BOsuLg4ysvLdWEtOOcoLy8nLi4u0qHIMBTlWnHeA1uwoqK87PNkE617YYmIiEgPDfr7YOXl5bF7925KS0sjHYoMAnFxceTl5UU6DBmGol0LgYNasACqYkaRqnthiYiISA8N+gQrOjqasWPHRjoMERnmomklcFALFkBDwijGVW6IQEQiIiIyFA36LoIiIgMhxrXivIe2YAVSxpBKHa0N1RGISkRERIaafk+wzOxcM9tkZlvM7Lv9fTwRkSMRQytEHZpgRaUXAFC+R1O1i4iISPf6NcEyMy/we+A8YCpwuZlN7c9jioj0VsDvJ8Z80EkLVkLoXliVe7cMdFgiIiIyBPV3C9Y8YItzbptzrgV4GLiwn48pItIrLS1NwSdRh47BSs89BoDG/dsHMiQREREZovo7wcoFdnVY3h1a187MrjezpWa2VDMFikgkNDe3JViH3gIgZ9QYmlw0gaqdAxyViIiIDEURn+TCOXevc26Oc25OVlZWpMMRkaNQa1MDABZ9aBfBmGgvJZale2GJiIhIj/R3grUHyO+wnBdaJyIyaLQ2NwLg6aQFC6AyZiRJjXsHMiQREREZovo7wfoAmGBmY80sBrgMeKafjyki0iutLaEEq5MWLID6+FzSW0sGMiQREREZovo1wXLO+YCvAi8CG4BHnHPr+vOYIiK91RIag+WJju90uz8ljxFU42+qG8iwREREZAjq9zFYzrnnnHMTnXPjnXO39/fxRER6q7Up2IIVFdN5C5Y3fQwAFZqqXURERLoR8UkuREQizReapt0b03kLVkL2eACq9upmwyIiInJ4SrBE5KjnawnOIhgd23mCNSI3mGDVleheWCIiInJ4SrBE5Kjna2kGIDq281kER+cW0uyi8FXsGMiwREREZAhSgiUiRz1/aBbB6C66CMZER7Hfk4W3Zlen20VERETaKMESkaNeIDQGKyYuocsy1TEjSWrUbfxERETk8JRgichRz7XWAxATn9RlmYakAkb69uACgYEKS0RERIYgJVgiIqFJLmIPk2AF0seTQj3V5brhsIiIiHRNCZaISGtwDFZsQtcJVmzORABKduhe6SIiItI1JVgictQzXwOtzotFdX6jYYD0MVMAqNuzcaDCEhERkSFICZaIHPU8rQ00Wcxhy4wsmITPefCVbhmgqERERGQoUoIlIkc9j6+RJjq/B1ab2Ng4ij05xFTrZsMiIiLSNSVYInLU8/obabbDJ1gAZbFjSG3YOQARiYiIyFClBEtEjnpRvkZarOvxV20akgoY5d8Dzg1AVCIiIjIUKcESkaOeN9BEi6f7FiwyxhNPM5UlasUSERGRzinBEpGjXoy/kRZPfLflEkdNBqBk+9r+DklERESGqD4lWGb2CzPbaGarzexJM0sLrS80s0YzWxl63BOWaEVE+kF0oAm/t/sWrKzCaQDU7tnQ3yGJiIjIENXXFqyXgenOuZnAh8D3Omzb6pybHXrc0MfjiIj0m+hAE/6ohG7LjcwfR5OL1lTtIiIi0qU+JVjOuZecc77Q4rtAXt9DEhEZWLGuiUB09wmW1+tlb1Qu8TXbBiAqERERGYrCOQbrOuD5DstjzWyFmb1hZqd0tZOZXW9mS81saWlpaRjDERHpmTjXhEV3PwYLoCphLJlNO/o5IhERERmquk2wzOwVM1vbyePCDmV+APiAh0KrioExzrljgW8C/zSzlM7qd87d65yb45ybk5WV1fdXJCLSCz6fjwSacDFJPSrfmnYMowIlNDbU93NkIiIiMhRFdVfAOffxw203s2uB84GznAveHMY51ww0h54vM7OtwERgaV8DFhEJp/qaKlLN4eJG9Kh89MhJeHc59mxbyzHTT+jn6ERERGSo6essgucCtwKfds41dFifZWbe0PNxwARAgxZEZNBpqCkDwOLTelR+RMF0ACp3aKp2EREROVS3LVjduBuIBV42M4B3QzMGngr8zMxagQBwg3Ouoo/HEhEJu6aacgA8iek9Kj96/HQCzmjdt7E/wxIREZEhqk8JlnPumC7WPw483pe6RUQGQlsLVlxyRo/Kx8YnU+zJIrpSU7WLiIjIocI5i6CIyJDTVBNsXE9I61mCBVAWV8iIhu39FZKIiIgMYUqwROSo1lofTLBSUns+i2ljyjhy/Xvw+XzdFxYREZGjihIsETmqBdoSrPTsHu/jyZ5MvLVQvFPdBEVERORASrBE5KjmGitpdtHExCf2eJ/k/KkAlG5f019hiYiIyBClBEtEjmpRTeVUezq9D3qXRo2fBUDj3vX9EZKIiIgMYUqwROSolti8nwpvz8dfAaRkjKSSFDzlm/spKhERERmqlGCJyFEtpWU/tTG9S7AASmLySanX/dNFRETkQEqwROTo5RyZgTKaE0b3etfa5PGMbNmFc64fAhMREZGhSgmWiBy1muoqSaAJlzyq9ztnTCDDaijdXxz+wERERGTIUoIlIketyr3BmwV7R+T1et+E3OBMgvu2rg5rTCIiIjK0KcESkaNW9f4iABIyx/R63+xxMwCo262ZBEVEROQjSrBE5KjVVL4LgLScwl7vm5l7DE0umkDph2GOSkRERIYyJVgictTyVe7G74zM0QW93tc8Xoqj8kms2doPkYmIiMhQpQRLRI5a3rq9lDGCpPi4I9q/KnEsWc07whyViIiIDGVKsETkqBXbUExFVOYR7+9LP4bRbj/VNTVhjEpERESGsj4lWGZ2m5ntMbOVoccnO2z7npltMbNNZnZO30MVEQmv5Jb91MZkH/H+saOm4DHHnq1rwxiViIiIDGXhaMG6yzk3O/R4DsDMpgKXAdOAc4E/mJk3DMcSEQkP58jwl9GccAT3wArJKJgOQPVOJVgiIiIS1F9dBC8EHnbONTvntgNbgHn9dCwRkV5rqa8igSYCyaOPuI6R46YTcEbr/k1hjExERESGsnAkWF81s9Vm9lczGxFalwvs6lBmd2jdIczsejNbamZLS0tLwxCOiEj3KoqDNxmOPoKbDLfxxsSzz5tDbOWWcIUlIiIiQ1y3CZaZvWJmazt5XAj8ERgPzAaKgV/2NgDn3L3OuTnOuTlZWVm93V1E5IhUlwRn/0vI7P0U7R2VxxeS3lQUhohERERkOIjqroBz7uM9qcjM/gw8G1rcA+R32JwXWiciMig0lAYTrLSRfUuwmlPHM6FuGU3NLcTFxoQjNBERERnC+jqLYMfR4RcDbSO9nwEuM7NYMxsLTADe78uxRETCyVcVvMlw1qi+JVhROZOJs1Z2F30YpshERERkKOvrGKw7zGyNma0GzgBuBnDOrQMeAdYDLwBfcc75+3gsEZGw8dTupdzSSEyI71M9aWOmAVBetCYcYYmIiMgQ120XwcNxzl11mG23A7f3pX4Rkf4S17CPCm8WR34XrKCR42YC0FS8se9BiYiIyJDXX9O0i4gMaskt+6mLzelzPXGpWVSSSlTF5jBEJSIiIkOdEiwROfo4R0aglJaEkWGpbn9sAan128NSl4iIiAxtSrBE5KjTWFtFIk24lCO/yXBHDSnjyPXtwh9wYalPREREhi4lWCJy1CnbuxWA6PT8bkr2UNYkRlgte/bs6r6siIiIDGtKsETkqFNdUgRAQuaYsNSXmDcdgLItS8NSn4iIiAxdSrBE5KjTWBZsaUofWRiW+nKmnkzAGa073jtsuabGev5z/w9Y9fpjYTmuiIiIDD59mqZdRGQo8lftJuCMzFGFYakvNS2Dbd4xJOzrugVr/XsvkfTCTXzM7WH7zkI447NhObaIiIgMLkqwDmPHhmXsW/MarqUe19IArfVYayMeXyNeXwNR/ka8gWa8gVY8zofX+fA6Px6Cz6OcHy8+ovDjxY8LjX83PhoIf+DzzjnAYcHSFnzuQqU7Pm+rrb1s23OzULm2MgeWb9t+yP720br28qF1HFLuo2WsY/0G1jGmg+MIvqYD6uuw/aNYB5e2KAfTlAYW5mjCUZu5wfQOfWRs8w7KLY2s2Niw1VmSMY/j9j9FU20lcckj2tfX1lSy9h/f4oTSJyjxZFLKCBIDNWE77nDR1FhPTUUZtdWltNRV0lpXgb+hCn9TLb7mBgItDdDSgGttwOtvIsrXSFSgkSh/E95AK+Z8eJwPj/OHvo/9ePAT5Xx4Q9/BXgJAF5/tbj6qB36fHvo9TCfrDv6+6/S5dbbPQd+x0KHcod/lrpN6Dt7+0bE6xvDRduviq7Z9dScFOtulq3o+2sc6LhxSR7i/x/pm8MQyuP4lHETvyyD9N0bCb1vMJHIuvp0Tx2VEOpQeUYJ1GPvWvMoJ6z+6V3Kzi6bRYmkmlmZPHC0WR6snFr9F0+qNI2BROIvCeaIIeKLbnztPFHiiwLrqkfnRV6czO+iL1NGembmP/lnHOVxo+YByLrjduY9SJVzggP0PfO5CX1Chh+PQdYcc+6PjWYf9jAPjaa/DOcyBWdvxwAgckmh6Ok8Pj+irfCD+MRqMyV9/xBSOGgfbe1UZlU3l6FPJCmOdyXMuI/b5R1n6wl+Y87lbCPj9LHvuL+Qtu4MTXDkf5HyO6Vf9gtWP/R8n7fgDjXXVxCelhjGCwSXga6WyrJiq/buoLdtDU2Ux/pp9eBpKiW0qI6GljHhfNYn+WpJcHXHWShwc9sbPPuehyeJoIpZmCz5aPHH4LZqAxeC8CQd87zpP8Ds5YN7Q97OHtqv69p+BOmQExkcJwoHXbaG0pKvvzfYiH30/d/xp7MDvygO/R+2Q+jigDuvs2B2+cw/cv+N3Z9uxgLbv247/Lhy0T2ffsz1NRDt5qw5Y28mqwxpM3xeD6/J9ML0vikUGlvkah9RMvUqwDmPauV+i7NTLiI1PIj4hidjoGML3e7eIDCfT5p7JupenMWndL3mv9EOyy95jbmAH27xj2XzuPZww9xMAROVMgB2wr2g9Y6efFOGoj1xzUz2luzZTuXcbDaVF+Ct3ElW7m8TGvWS07ifTlZNhAQ7+rbGWeCptBLVRIyiNHcO+mFQCsSlY/Ai8CSOIShpBdOIIohLTiU1KJy4plYTEZBITk4iKiSMJSIrECxYRkYiZHOkAekkJ1mEkpYwgKWVE9wVF5KhnHg9pn/8Lex+6mjklj7I5ejLLZv+cYz91PR6vt71cRuF0eB/Kt60Y9AmW3+dj384PKduxnobijVC+lcS6IrKad5HjysgzR16orM95KPNkUBmdw+6U2WxLzsOSRxE7YhSJGaNJy8ojPSeP5LgkkiP6qkRERPqXEiwRkTDJHTcVfrSUgN/P5A5JVUcFE4+j1sUT2Pke8OWBDbALvtZW9mzfQNnWFTTvXUNsxUYyG4sY5S8m13zkhsrVEs++qHz2ps6mKGUs3sxxJGYXkpE7nsxRhYyMjmFkRF+JiIhI5CnBEhEJM08XyRWANyqK7XFTyapYMYARBTnnKCvZzd4Pl1O/axXe0vWMqN1Cvm8HBdZCARBwxl7PSErjx7E39XSisiaQnDuZ7MJpjMgazQSP7u4hIiJyOEqwREQGWEP+qczcche7Nq8mf8LMfjlGfV0Nuzctp6poFYGSdSRVbWJ0y3ayqG6f3KOcVIpjx7E682K8I6czYuxscifMJi8xpb3rn4iIiPSOEiwRkQE29oxr8G/+NXtf/SP5E/7Yp7r8Ph97izZQumUZzXvWEluxkayGreQGiplkwRmXGl0Mu6ML2TZiPluzppA4Zha5E48nIzv3kEkoREREpG/6lGCZ2SJgUmgxDahyzs02s0JgA7AptO1d59wNfTmWiMhwkZM7lvdTP8Hs4kfZtOLzTDr2lG738bW2ULxzMxU71tJYvAlv6QbS6jaT17qDfGshn2D3vj2eUZQmHsOe9POJy51B9jHHMbJgMhOi9HuaiIjIQDAXppu0mdkvgWrn3M9CCdazzrnpvaljzpw5bunSpWGJR0RkMKso2UnLPWeSHKhl/aiLiB43n6iENJyvhcaaUnxVxVhdMXF1u0hv2skofzEx5m/fP9i9byx1qZPxjJrGiMLZ5E08lvhEzdEnIiIyEMxsmXNuzsHrw/KTpgXv1HgpcGY46hMRGe7Sc8aw77oX2fDwzcwsfozYfQ8fUqbBxbLfm01FfCHFqWfiDU04MXLsdDKyRqt7n4iIyCAUrj4jpwAlzrnNHdaNNbMVQA3wQ+fcW53taGbXA9cDjBkzJkzhiIgMfiPzxzPylmeoqa6gaNs6Ak214I0mOS2TETkFJKaMoNCMwkgHKiIiIj3WbRdBM3sFOr21yQ+cc0+HyvwR2OKc+2VoORZIcs6Vm9nxwFPANOdczeGOpS6CIiIiIiIyFBxxF0Hn3Me7qTgK+AxwfId9moHm0PNlZrYVmAgoexIRERERkWErHHeM/Diw0Tm3u22FmWWZmTf0fBwwAdgWhmOJiIiIiIgMWuEYg3UZsPCgdacCPzOzViAA3OCcqwjDsURERERERAatsE3THg5mVgrsiHQcB8kEyiIdhAwYne+jh8710UPn+uii83300Lk+ugzG813gnMs6eOWgSrAGIzNb2tngNRmedL6PHjrXRw+d66OLzvfRQ+f66DKUznc4xmCJiIiIiIgISrBERERERETCRglW9+6NdAAyoHS+jx4610cPneuji8730UPn+ugyZM63xmCJiIiIiIiEiVqwREREREREwkQJloiIiIiISJgowToMMzvXzDaZ2RYz+26k45HwMbN8M3vdzNab2Toz+0ZofbqZvWxmm0P/HxHpWCU8zMxrZivM7NnQ8lgzey/0973IzGIiHaOEh5mlmdljZrbRzDaY2Un62x6ezOzm0Hf4WjNbaGZx+tsePszsr2a238zWdljX6d+yBf02dN5Xm9lxkYtcequLc/2L0Pf4ajN70szSOmz7XuhcbzKzcyIS9GEoweqCmXmB3wPnAVOBy81samSjkjDyAd9yzk0FTgS+Ejq/3wVedc5NAF4NLcvw8A1gQ4fl/wPucs4dA1QC/xWRqKQ//AZ4wTk3GZhF8Lzrb3uYMbNc4OvAHOfcdMALXIb+toeT+4FzD1rX1d/yecCE0ON64I8DFKOEx/0ceq5fBqY752YCHwLfAwhdr10GTAvt84fQdfugoQSra/OALc65bc65FuBh4MIIxyRh4pwrds4tDz2vJXgBlkvwHP89VOzvwEURCVDCyszygE8BfwktG3Am8FioiM71MGFmqcCpwH0AzrkW51wV+tserqKAeDOLAhKAYvS3PWw4594EKg5a3dXf8oXAP1zQu0CamY0akEClzzo71865l5xzvtDiu0Be6PmFwMPOuWbn3HZgC8Hr9kFDCVbXcoFdHZZ3h9bJMGNmhcCxwHtAjnOuOLRpH5ATqbgkrH4N3AoEQssZQFWHL279fQ8fY4FS4G+hLqF/MbNE9Lc97Djn9gB3AjsJJlbVwDL0tz3cdfW3rOu24e064PnQ80F/rpVgyVHNzJKAx4GbnHM1Hbe54D0MdB+DIc7Mzgf2O+eWRToWGRBRwHHAH51zxwL1HNQdUH/bw0No7M2FBJPq0UAih3YxkmFMf8tHBzP7AcGhHQ9FOpaeUoLVtT1AfoflvNA6GSbMLJpgcvWQc+6J0OqSti4Fof/vj1R8EjYnA582syKCXX3PJDhGJy3UrQj09z2c7AZ2O+feCy0/RjDh0t/28PNxYLtzrtQ51wo8QfDvXX/bw1tXf8u6bhuGzOxa4HzgCvfRzXsH/blWgtW1D4AJodmIYggOpnsmwjFJmITG4NwHbHDO/arDpmeAa0LPrwGeHujYJLycc99zzuU55woJ/h2/5py7Angd+GyomM71MOGc2wfsMrNJoVVnAevR3/ZwtBM40cwSQt/pbedaf9vDW1d/y88AV4dmEzwRqO7QlVCGIDM7l2D3/k875xo6bHoGuMzMYs1sLMGJTd6PRIxdsY+SQTmYmX2S4NgNL/BX59ztkY1IwsXM5gNvAWv4aFzO9wmOw3oEGAPsAC51zh08wFaGKDM7Hfi2c+58MxtHsEUrHVgBXOmca45geBImZjab4IQmMcA24AsEf1DU3/YwY2Y/BRYQ7D60AvgiwbEY+tseBsxsIXA6kAmUAD8BnqKTv+VQkn03wW6iDcAXnHNLIxC2HIEuzvX3gFigPFTsXefcDaHyPyA4LstHcJjH8wfXGUlKsERERERERMJEXQRFRERERETCRAmWiIiIiIhImCjBEhERERERCRMlWCIiIiIiImGiBEtERERERCRMlGCJiIiIiIiEiRIsERERERGRMFGCJSIiIiIiEiZKsERERERERMJECZaIiIiIiEiYKMESEREREREJEyVYIiIiIiIiYaIES0RkkDCzQjNzZhYV6ViGOzO71syWRDqOwcbMTjGzTZGOQ0RkKFOCJSIiQ5qZ3WZmrWZW1+Fxa6TjGoqcc2855yaFu14zO9PMlptZjZltM7Prw30MEZHBQgmWiEiYqOUpohY555I6PO6IdEDhNJQ/W2YWDTwJ/AlIBRYAvzKzWRENTESknyjBEhHpAzMrMrPvmNlqoN7MoszsRDP7j5lVmdkqMzu9Q/nFZvb/mdn7oV/znzaz9C7q/oKZbTCz2tCv/v990PYLzWxlqJ6tZnZuaH2qmd1nZsVmtsfM/tfMvN28jvFm9pqZlZtZmZk9ZGZpHbZVmNlxoeXRZlba9rrM7NNmti70eheb2ZSD3p9vm9lqM6s2s0VmFtf7d7r3zOy7ofel1szWm9nFXZQzM7vLzPaH3ss1ZjY9tC3WzO40s51mVmJm95hZfA+Pf3+o/MuhGN4ws4IO239jZrtCx1xmZqd02HabmT1mZg+aWQ1wrZnNM7N3Qu9zsZndbWYxHfZxZvZlM9scOt7/hM7df0LHeKRj+S5iPt3Mdvfk9fVCOpACPOCCPgA2AFPDfBwRkUFBCZaISN9dDnwKSANygH8D/0vwwvLbwONmltWh/NXAdcAowAf8tot69wPnE7w4/QJwV4ckZx7wD+CW0HFPBYpC+90fqvcY4FjgbOCL3bwGA/4/YDQwBcgHbgNwzm0FvgM8aGYJwN+AvzvnFpvZRGAhcBOQBTwH/OugC/lLgXOBscBM4NpOAzCbH0oeunrM7+Y1HGwrcArBVpOfhuIf1Um5swm+fxNDZS8FykPbfh5aP5vg+5kL/LgXMVwB/A+QCawEHuqw7YNQvenAP4FHD0o+LwQeI3h+HwL8wM2huk4CzgK+fNDxzgGOB04EbgXuBa4keD6nE/ysHrFQotzV+flDZ/s450oIfka+YGZeMzsJKAA0Bk5EhifnnB566KGHHkf4IJjUXNdh+TsEf6nvWOZF4JrQ88XAzztsmwq0AF6gEHBAVBfHegr4Ruj5n4C7OimTAzQD8R3WXQ683svXdRGw4qB1zwBrgNVAbGjdj4BHOpTxAHuA0zu8P1d22H4HcE+Yz8FtofewqsNjdCflVgIXhp5fCywJPT8T+JBgUuLpUN6AemB8h3UnAdt7GNf9wMMdlpMIJkn5XZSvBGZ1eE1vdlP/TcCTHZYdcHKH5WXAdzos/xL4dTd1ng7sDuf5CdV7AVBCMPH3AV8K9zH00EMPPQbLQy1YIiJ9t6vD8wLgcx1/2QfmE2yt6qz8DiCaYKvEAczsPDN7N9Q9rwr4ZIdy+QRbaA5WEKqvuMPx/wRkH+4FmFmOmT0c6lJYAzzYSUx/JtgK8jvnXHNo3ejQawDAORcIvb7cDvvt6/C8gWCiEW6POOfSOjz2mtnVFuxC2fY+TKeT99k59xpwN/B7YL+Z3WtmKQRb5BKAZR3qeCG0vqfaz7Vzrg6oIPieEeo6uSHUdbKKYOtZZmf7hspPNLNnzWxf6Bz9v05eT0mH542dLPfHe39YZjYZeJhgy20MMA241cw+NdCxiIgMBCVYIiJ95zo830WwBavjxX6ic+7nHcrkd3g+BmgFyjpWaGaxwOPAnUCOcy6NYPc763Cc8Z3EsotgC1Zmh+OnOOemdfMa/l/odcxwzqUQ7FbWdizMLAn4NXAfcJt9NG5sL8Gkrq2chV7fnm6OdwgLThFed5jHKd3X0l5XAcGE8KtARuj9W9vxNXXknPutc+54gi2KEwl2vSwjmJRM6/BepjrnepOktJ/r0HuYDuwNvZZbCXZHHBGKr/qg+Dp+rgD+CGwEJoTO0fe7ej39xYJj7bo6P/d0sdt04EPn3IvOuYBzbhPBbrTnDVzkIiIDRwmWiEh4PQhcYGbnhMabxIUmDsjrUOZKM5saGs/0M+Ax55z/oHpigFigFPCZ2XkExwq1uY/gmJazzMxjZrlmNtk5Vwy8BPzSzFJC28ab2WndxJ0M1AHVZpZLMMHo6DfAUufcFwleHLddTD8CfCoURzTwLYIJ3n+6e6MO5oJThCcd5vFWL6pLJJiglEJwwhCCF/qHMLO5ZnZCKP56oAkIhFrj/kxw7Ft2qGyumZ3TYV9nHSYx6cQnQ2PLYgiOxXrXObeL4PvtC8UXZWY/JjjW7nCSgRqgLtQqdGM35cPOOTftMOfnhi52WwFMsOBU7WZm4wmOLVw9cJGLiAwcJVgiImEUuni+kGDrQinBFqVbOPD79gGC43P2AXHA1zuppza0/hGCY3M+T3AMVNv29wlNfEGw5eMNPmpJauuKtT6072Mc2EWxMz8FjgvV9W/gibYNZnYhwUkq2i7ovwkcZ2ZXhFojrgR+R7DF5wLgAudcSzfH61fOufUExxy9Q7Cb3Azg7S6KpxBMpCoJdncsB34R2vYdYAvwbqhb3ivAJAAzywdqCY5L68o/gZ8Q7Bp4PMH3CoLj8l4gOPZrB8GkbldnFXTwbYKfg9pQvIu6KT8ouOAkKdcRnMylhuBn9XHgL5GMS0Skv5hzB/dAEBGR/mJmi4EHnXO6uBzizOxKgt0Hv9fF9vsJThjxwwENTEREImrI3rhQREQkkpxzD0Y6BhERGXzURVBE5ChhwZve9mZyAhmGzOz7XXwOno90bCIiw4G6CIqIiIiIiISJWrBERERERETCZFCNwcrMzHSFhYWRDkNEREREROSwli1bVuacO+Tm84MqwSosLGTp0qWRDkNEREREROSwzGxHZ+vVRVBERERERCRMlGCJiIiIiIiEiRIsEZFu+P1+Xnr7fWqaWiMdioiIiAxyg2oMVmdaW1vZvXs3TU1NkQ5Fhpi4uDjy8vKIjo6OdCgyxC19+WHOfvfLPLXxVi76rx9EOhwREREZxAZ9grV7926Sk5MpLCzEzCIdjgwRzjnKy8vZvXs3Y8eOjXQ4MsQ1FH8IwKm7/wwowRIREZGuDfougk1NTWRkZCi5kl4xMzIyMtTyKWERqC8HICVQTXNzY4SjERERkcFs0CdYgJIrOSL63Ei4RDXuD/7fAuzbuibC0YiIiMhgNiQSLBGRSIpvLseHF4DqHasiHI2IiIgMZkqwesDM+Na3vtW+fOedd3LbbbdFLqAO3n33XU444QRmz57NlClT2uNavHgx//nPf/pU97nnnktaWhrnn39+GCIVGbrSAhV8GDcTgOb9WyMcjYiIiAxmSrB6IDY2lieeeIKysrKw1uucIxAI9KmOa665hnvvvZeVK1eydu1aLr30UiA8CdYtt9zCAw880Kc6RIaDEYFK6uJHU8oIqNoZ6XBERERkEBv0swh29NN/rWP93pqw1jl1dAo/uWDaYctERUVx/fXXc9ddd3H77bcfsK20tJQbbriBnTuDF12//vWvOfnkk7nttttISkri29/+NgDTp0/n2WefBeCcc87hhBNOYNmyZTz33HPcfffdPP/885gZP/zhD1mwYAGLFy/mtttuIzMzk7Vr13L88cfz4IMPHjKuaP/+/YwaNQoAr9fL1KlTKSoq4p577sHr9fLggw/yu9/9jsmTJ3cZ59atW9myZQtlZWXceuutfOlLXwLgrLPOYvHixYd9bx599FF++tOf4vV6SU1N5c0336SpqYkbb7yRpUuXEhUVxa9+9SvOOOMM7r//fp566inq6+vZvHkz3/72t2lpaeGBBx4gNjaW5557jvT0dP785z9z77330tLSwjHHHMMDDzxAQkLCAcc98cQTue+++5g2LXjuTj/9dO68807mzJlz2HhFjkQS9bRGp1AePZL4+t2RDkdEREQGsT63YJlZvpm9bmbrzWydmX0jtP42M9tjZitDj0/2PdzI+cpXvsJDDz1EdXX1Aeu/8Y1vcPPNN/PBBx/w+OOP88UvfrHbujZv3syXv/xl1q1bx9KlS1m5ciWrVq3ilVde4ZZbbqG4uBiAFStW8Otf/5r169ezbds23n777UPquvnmm5k0aRIXX3wxf/rTn2hqaqKwsJAbbriBm2++mZUrV3LKKaccNs7Vq1fz2muv8c477/Czn/2MvXv39vh9+dnPfsaLL77IqlWreOaZZwD4/e9/j5mxZs0aFi5cyDXXXNM+m9/atWt54okn+OCDD/jBD35AQkICK1as4KSTTuIf//gHAJ/5zGf44IMPWLVqFVOmTOG+++475LgLFizgkUceAaC4uJji4mIlV9I/nCPWteK8sdTH55Leui/SEYmIiMggFo4WLB/wLefccjNLBpaZ2cuhbXc55+4MwzEAum1p6k8pKSlcffXV/Pa3vyU+Pr59/SuvvML69evbl2tqaqirqztsXQUFBZx44okALFmyhMsvvxyv10tOTg6nnXYaH3zwASkpKcybN4+8vDwAZs+eTVFREfPnzz+grh//+MdcccUVvPTSS/zzn/9k4cKFnbY6HS7OCy+8kPj4eOLj4znjjDN4//33ueiii3r0vpx88slce+21XHrppXzmM59pf01f+9rXAJg8eTIFBQV8+GHwPkJnnHEGycnJJCcnk5qaygUXXADAjBkzWL16NRBMwn74wx9SVVVFXV0d55xzziHHvfTSSzn77LP56U9/yiOPPMJnP/vZHsUr0lvO34LHHETH0ZKcR1b16/h9rXijdANrEREROVSfEyznXDFQHHpea2YbgNy+1jsY3XTTTRx33HF84QtfaF8XCAR49913iYuLO6BsVFTUAeOrOt6PKTExsUfHi42NbX/u9Xrx+Xydlhs/fjw33ngjX/rSl8jKyqK8vPyQMl3FCYdOZ96b6c3vuece3nvvPf79739z/PHHs2zZssOW7/iaPB5P+7LH42l/fddeey1PPfUUs2bN4v777+80YczNzSUjI4PVq1ezaNEi7rnnnh7HLNIbvpZGogGi4vCk5BC9x09JcRE5+RMiHZqIiIgMQmGd5MLMCoFjgfdCq75qZqvN7K9mNqKLfa43s6VmtrS0tDSc4YRdeno6l1566QFd1s4++2x+97vftS+vXLkSgMLCQpYvXw7A8uXL2b59e6d1nnLKKSxatAi/309paSlvvvkm8+bN63FM//73v3HOAcGuh16vl7S0NJKTk6mtre02ToCnn36apqYmysvLWbx4MXPnzu3x8bdu3coJJ5zAz372M7Kysti1axennHIKDz30EAAffvghO3fuZNKkST2us7a2llGjRtHa2tpeT2cWLFjAHXfcQXV1NTNnzuxx/SK90dzYAIBFxRGXNRaAyj2bIxmSiIiIDGJhS7DMLAl4HLjJOVcD/BEYD8wm2ML1y872c87d65yb45ybk5WVFa5w+s23vvWtA2YT/O1vf8vSpUuZOXMmU6dObW9JueSSS6ioqGDatGncfffdTJw4sdP6Lr74YmbOnMmsWbM488wzueOOOxg5cmSP43nggQeYNGkSs2fP5qqrruKhhx7C6/VywQUX8OSTTzJ79mzeeuutLuMEmDlzJmeccQYnnngiP/rRjxg9ejQQTP4+97nP8eqrr5KXl8eLL74IBLslto23uuWWW5gxYwbTp0/nYx/7GLNmzeLLX/4ygUCAGTNmsGDBAu6///4DWq668z//8z+ccMIJnHzyyUyePLl9/TPPPMOPf/zj9uXPfvazPPzww+0zJ4r0h5bmYOuzJzqW1FHjAWjY3/kPJiIiIiLW1vrRp0rMooFngRedc7/qZHsh8Kxzbvrh6pkzZ45bunTpAes2bNjAlClT+hyjdO7g2Q6HG31+pK/2bV/HyL9/jHdn/5wZn7ia+DtyWTb2euZee0ekQxMREZEIMrNlzrlDZlkLxyyCBtwHbOiYXJnZqA7FLgbW9vVYIiIDrbU52EXQEx1HYmIipTYCb7XuhSUiIiKdC8csgicDVwFrzGxlaN33gcvNbDbggCLgv8NwLAmz2267LdIhiAxqrU2NAHhjgrOHlkflENeoqdpFRESkc+GYRXAJ0Nm0c8/1tW4RkUjztbQlWMEZOOtic8ht3BTJkERERGQQC+ssgiIiw42v+cAEqzUxl0x/GYRh/KqIiIgMP0qwREQOw98aTLCiYhKCK9LyiLVWasqLIxiViIiIDFZKsEREDsPfEpymPTo22IIVk54PQMXerRGLSURERAYvJVg99NRTT2FmbNy4scsyRUVFTJ9+2Jnoe2XTpk2cfvrpzJ49mylTpnD99dcDwZsEP/dc34a4XXfddWRnZ4c1XpHhKNDalmAFJ7lIyikEoLakKEIRiYiIyGCmBKuHFi5cyPz581m4cGGn230+X5+P4ff7D1j++te/zs0338zKlSvZsGEDX/va14DwJFjXXnstL7zwQp/qEDkaBNpasEKzCKaPGgdAU7mmahcREZFDhWOa9oHz/Hdh35rw1jlyBpz388MWqaurY8mSJbz++utccMEF/PSnPwVg8eLF/OhHP2LEiBFs3LiRl156CZ/PxxVXXMHy5cuZNm0a//jHP0hISODVV1/l29/+Nj6fj7lz5/LHP/6R2NhYCgsLWbBgAS+//DK33norl112Wftxi4uLycvLa1+eMWMGLS0t/PjHP6axsZElS5bwve99j/PPP5+vfe1rrF27ltbWVm677TYuvPBC7r//fp588kmqq6vZs2cPV155JT/5yU8AOPXUUykqKjrs637jjTf4xje+AYCZ8eabb5KUlMStt97K888/j5nxwx/+kAULFrB48WJ+8pOfkJaWxpo1a7j00kuZMWMGv/nNb2hsbOSpp55i/Pjx/Otf/+J///d/aWlpISMjg4ceeoicnJwDjnvZZZdx1VVX8alPfQoIJoPnn38+n/3sZ3t2TkXCKOALJlgxccExWJlZo2h0MVC9O5JhiYiIyCClFqweePrppzn33HOZOHEiGRkZLFu2rH3b8uXL+c1vfsOHH34IBLv1ffnLX2bDhg2kpKTwhz/8gaamJq699loWLVrEmjVr8Pl8/PGPf2yvIyMjg+XLlx+QXAHcfPPNnHnmmZx33nncddddVFVVERMTw89+9jMWLFjAypUrWbBgAbfffjtnnnkm77//Pq+//jq33HIL9fX1ALz//vs8/vjjrF69mkcffZSlS5f2+HXfeeed/P73v2flypW89dZbxMfH88QTT7By5UpWrVrFK6+8wi233EJxcXCw/6pVq7jnnnvYsGEDDzzwAB9++CHvv/8+X/ziF/nd734HwPz583n33XdZsWIFl112GXfcccchx12wYAGPPPIIAC0tLbz66qvtyZbIQHOhLoIx8cEWLK/Xw35PFtF1eyIZloiIiAxSQ6sFq5uWpv6ycOHC9pacyy67jIULF3L88ccDMG/ePMaOHdteNj8/n5NPPhmAK6+8kt/+9rd84hOfYOzYsUycOBGAa665ht///vfcdNNNQDCh6MwXvvAFzjnnHF544QWefvpp/vSnP7Fq1apDyr300ks888wz3HnnnQA0NTWxc2ew+9InPvEJMjIyAPjMZz7DkiVLmDNnTo9e98knn8w3v/lNrrjiCj7zmc+Ql5fHkiVLuPzyy/F6veTk5HDaaafxwQcfkJKSwty5cxk1ahQA48eP5+yzzwaCLW+vv/46ALt372bBggUUFxfT0tJywHvX5rzzzuMb3/gGzc3NvPDCC5x66qnEhy5uRQZcqAUrNtSCBVAdnU1CU0mkIhIREZFBTC1Y3aioqOC1117ji1/8IoWFhfziF7/gkUcewYXugZOYmHhAeTM77HJnDq6jo9GjR3Pdddfx9NNPExUVxdq1aw8p45zj8ccfZ+XKlaxcuZKdO3cyZcqUI46nzXe/+13+8pe/0NjYyMknn3zYCT4AYmNj2597PJ72ZY/H0z5G7Wtf+xpf/epXWbNmDX/6059oamo6pJ64uDhOP/10XnzxRRYtWtRlAioyIFqb8DkPMdEx7asa4keR3qoEqz88ct8veOlX/4XfH4h0KCIiIkdECVY3HnvsMa666ip27NhBUVERu3btYuzYsbz11ludlt+5cyfvvPMOAP/85z+ZP38+kyZNoqioiC1btgDwwAMPcNppp3V77BdeeIHW1lYA9u3bR3l5Obm5uSQnJ1NbW9te7pxzzuF3v/tde9K3YsWK9m0vv/wyFRUV7eOg2lrXemLr1q3MmDGD73znO8ydO5eNGzdyyimnsGjRIvx+P6Wlpbz55pvMmzevx3VWV1eTm5sLwN///vcuyy1YsIC//e1vvPXWW5x77rk9rl8k7PzNNBN9wI8TvuRc0l0V/tbmCAY2/NQ0tXLprv/l7JrH2PbOk5EOR0RE5IgowerGwoULufjiiw9Yd8kll3Q5m+CkSZP4/e9/z5QpU6isrOTGG28kLi6Ov/3tb3zuc59jxowZeDwebrjhhm6P/dJLLzF9+nRmzZrFOeecwy9+8QtGjhzJGWecwfr165k9ezaLFi3iRz/6Ea2trcycOZNp06bxox/9qL2OefPmcckllzBz5kwuueSS9u6Bl19+OSeddBKbNm0iLy+P++67D4B77rmHe+65B4Bf//rXTJ8+nZkzZxIdHc15553HxRdfzMyZM5k1axZnnnkmd9xxByNHjuzx+3nbbbfxuc99juOPP57MzMz29UuXLuWLX/xi+/LZZ5/NG2+8wcc//nFiYmI6q0pkQJivmRY78DPoScvDY46KfUWRCWqY2rj9o4lDGtf1baZUERGRSLG2Vo/BYM6cOe7gSRg2bNjQ3t1Neuf+++9n6dKl3H333ZEOJWL0+ZG++uA3n2dM5Tvk3La9fd2KxU9w7OIvsPm8h5lwwnkRjG54eenZRZy9NHi/v22xUxn3vXciHJGIiEjXzGyZc+6QyQ3UgiUichgefzOtB7VgpeQEJ2epL90RiZCGrZbK4MyMq+JPYFTzVgj4u9lDRERk8FGCNYxde+21R3XrlUg4dJZgZeYGbzbcWrErEiENW652PwCl2R8jnmZaK5TA9id/wPGDJ9fw9JJVMIh6s4iIDHVDIsEaTN0YZejQ50bCwRNoxndwC1ZyChUuGavRzYbDyduwnyZiicmdCcD+HYefuVT65t1t5aQsvZsLXzmVpuWdjysWEZHeG/QJVlxcHOXl5bpYll5xzlFeXk5cXFykQ5Ehzhtowec5MMEyM8q9WcQ27I1QVMNTXHMZNVHpjMibBEBt8eYIRzS8vbe9gs963wCgbtkjEY7m6LG5pJanVuzRdY3IMNbvNxo2s3OB3wBe4C/OuV7dLTgvL4/du3dTWlraL/HJ8BUXF0deXl6kw5AhLqqTBAugJnYkGc17IhDR8JXsq6QhLp2c3EKaXRS+8u3d7yRHbGdJBQWe4P3cUvf9B/yt4I2OcFTD35X3vUdJTTP57OP4wgwYURjpkEQkzPo1wTIzL/B74BPAbuADM3vGObe+p3VER0czduzY/gpRROSwogLNNEclH7K+OWEkmY0rBz6gYSwtUEFT7HgKUhIoIgtPlcZg9aeWkk1EEeA/3jl8zL8UyrdC9uRIhzWsFVc3UlLTzDTbzvFPfx5S8+GmNdDhPnsiMvT1dxfBecAW59w251wL8DBwYT8fU0QkbLyuFb839pD1gZQ8kmigqbYyAlENPy2+AGnU4ItLx8wojRpFYoPGuPWn5NptAGxM/3hwxf4e//YpR2jVrioAPhm7OriiehfsWxO5gESkX/R3gpULdJxma3doXTszu97MlprZUnUDFJHBJtq1EPAcmmBFjxgDQPnebQMd0rBU3dBCCg0QnwZATXwu6S0a49ZfWnwBElrLAWgdMx+/M3z71kU4quFve1kDAKenlVDr4oMrty2OXEAi0i8iPsmFc+5e59wc59ycrKysSIcjInKAaNeC8x46BishK5hgVe9TghUONbW1xJoPTyjBakkeQ7Krg0a1EPaH8vpm0q2WgHnJzi1gh8uhqXhDpMMa9nZXNpCWEE1h6zbeDMygNXEklKyNdFgiEmb9nWDtAfI7LOeF1omIDAkxtBLopIvgiNHBe2E1lu0c6JCGpfrqMgC8iSMA8GSEbuZcsiViMQ1nZbUtZFBNa8wIxmQksdPlEKgoinRYw96eqkYK0qJJqN/FFpdLWeIkdREUGYb6O8H6AJhgZmPNLAa4DHimn48pIhI2Ma4Fog6d7j9rVAE+5yFQpZsNh0NjbQUAMYnpAMRnjwegao+mau8PpXVNZFgtgYRMxqQnstNlE1urHwv6296qRiYlNWE4St0IdsSMg9JN4GuJdGgiEkb9mmA553zAV4EXgQ3AI845dfIWkSHBOUcsrbioQ1uwYmNiKLV0vLVqlA+H5trgeKC45GCCNSL3GADqSzRVe38oq20hw2qwxEwyk2LY58kh1lerLpn9rLyuhYLYOgD8idls9o0E5wfNmCkyrPT7GCzn3HPOuYnOufHOudv7+3giIuHS0tpClAU6bcECqIjKIb5x3wBHNTy11gVbsOJTMgDIzcmhyiXiV7e1flFa10w6NUSnZGFmNCUFxxRSWRTRuIYznz9ARUMLo6NqAIhNG8WqhuDnnQqN5RQZTiI+yYWIyGDV3BSc8cu6SLDq43JIaykZyJCGLX9DFQCJaZkApCfGsJcsomo0VXt/KK1tJtNq8CZlA+DabnZboRbD/lLZ0IpzkOOpBiApM4/3a9KCG8u3Ri4wEQk7JVgiIl1obgwlWNGdJ1itiblkBspwAf9AhjUsBRqrAIhOCE5yYWZURI8ksVEJVn+oqqsnxRogMZjQJuQEJ23RRBf9p7y+GYCMQLAbZsbIfHY2xROITYEKJVgiw4kSLBGRLrQ2NQLgiT50DBYAaXlEm5/aMt2vqa+sqSr4JC61fV19Qi7prSXgXGSCGsb8taH7ToYSrJFZWZS5FJpKdaHfX8rrghNZpAUqIC6NMVlpgNGYXKgugiLDjBIsEZEuNDcHW7C8MfGdbo9ND96FomyvLkr7ytNcQz3x4I1qX+dLySeOZqgvi2Bkw5OrC72nCcEEa0xGIrtcNq1l6iLYX8rqgi1YiS3lkDySwsxEAMpj89RFUGSYUYIlItKFllALVlRM510EU0YG79VUo5sN91l0azWNnqQD1kWlFwJQV6L3N9w8jaEEK9SCVZCewA6XTVRVUeSCGubKQi1Ycc1lkJRN/ogEPAZ7bRRU79JU7SLDiBIsEZEutDbVA+CNSex0e/aYiQC0lOpX/76Kaa2lMSr5gHUJ2cEEtmLPh5EIadhyzhHdHJy1kcQsAEanxbPLZRPfWAz+1ghGN3yV1zUT5TG8DSWQNJKYKA+jUuPZ7M8BF9AMjiLDiBIsEZEu+JqC96vxxnWeYKWmZVBJMh7dw6bP4v21tESlHLAuI3cCAI37lcCGU0OLn9RAcCY7EoLThMdEeaiJy8NDINiaImFXXtdCRmI0VrcfQrM3FmQksLYxNFV7pT7nIsOFEiwRkS74Q2OwortIsMyM/d5RxNfrgrSvEgJ1+GIOTLByc7KpcEn4K5XAhlNFfQsZVk3AoiAurX29P7Ug+EQtKf2ivL6Z/EQ/+JogeSQQTLCWtk3VrinyRYYNJVgiIl3wNwdbsKLjkrosUxOfy4jmPQMV0rDU7POTRD2B2NQD1qcmRFNs2UTrXlhhVdnQQjq1tMaOAM9HlwFRGcEumbrQ7x+ldS2Mi6sNLiTlADAmPZGtDXG4mETNJCgyjCjBEhHpgmsJtmDFJnTeggXQkjyG7EApgVYNUD9S1Y2tpFKP69Ca0qYyeiRJjUpgw6mivoVMq8Efn3HA+tSRBTS7KFrLlWD1h/K6Zgpj2hKsj7oIgtGUXKgugiLDiBIsEZEuBFqCk1zExCV3WcYyxhFlAcr36tfnI1VV20CSNeFJSD1kW0NCLuk+3QsrnCobWki3Giw0g2CbMRlJ7HZZNJVsiVBkw5dzjrK6ZkZF1QRXJAW7CI5JTwCgOi5XLYciw4gSLBGRrrQEp2mPS+y6i2BCzngAKvZsGpCQhqO66uCMdtGJ6Yds86eOIZYWXF3JQIc1bFXUt5JBDd6krAPWj0lPYIfLUUtKP6hr9tHUGmCkJzS5SHKoi2BGMMEq9o6Cqh0Q8EcqRBEJIyVYIiJdaQ11EYzvOsFKzwtO1V5frBuFHqmG6lIAYpIOTbCi0oMTL1Tr/Q2byvoWMqyG6JTsA9a3JVixtTvVYhhmbffAyqQSvLHtk4ukxEUzIiGa7f5s8LdAjbrDigwHSrBERLpgrQ00uWjM4+2yzMjccTS7KPzq3nPEmmuCCVZcavYh25JCLYRVezYPaEzDWXVdHcnWiCUe2IKVlhBNiXcUMf4GaCiPUHTDU2ltMwCpvsrgBBdm7dvGZCSysTk0Hk7fIyLDghIsEZEumK+RRos7bJmYmGhKPNlE12gq8SPlqy0DIGHEoQlWRt4xADSUFg1kSMOarzaY0HLQGCwzoykpP7igC/2wakuwElvL2rsHtilIT2BZ7YjggrpnigwLSrBERLrg8TXSTGy35SpiRpPSqKnEj1SgPpRgddKClZudSZlLweleWGETqOs8wQKwtqnadaEfVqW1TQDENpW2T9HepiAjgVU1iThPtBJbkWGiTwmWmf3CzDaa2Woze9LM0kLrC82s0cxWhh73hCVaEZEB5PU30txNCxZAfWI+2b5ijVs5Uo3BSS4sIeOQTYmxUeyzbGJqdTPncPHW7w8+OehCHyAhexwAgXLNihlOpXXNRHkMb8P+9psMtxmTnoDPeWhNyVdiKzJM9LUF62VgunNuJvAh8L0O27Y652aHHjf08TgiIgPO62ug1dN9C1YgtYAkGmiq1biVIxHVVEEL0RDT+f3GqmJGkdS0d4CjGr6iG7tOsEZlplPs0mkuVYIVTqW1zYxK9GCNle1TtLcpyAh+7mvj83WzYZFhok8JlnPuJeecL7T4LpDX95BERAYHr6+JVm98t+VisoK/+u/fsaG/QxqWopsqqfWkHDDwv6OGxHwyfSWawjoMGlv8JLeGfgjoJMEak57ATpeNr0yzNoZTaW0zxyQG76vXdpPhNm33wiqNHgUVRWoJFxkGwjkG6zrg+Q7LY81shZm9YWandLWTmV1vZkvNbGlpaWkYwxER6ZvoQCOBHiRYyaODU7VX79VMd0cipqWShqi0LrcH0gqIxoe/WlNY99X+2iayrIqW6BSIPrT765j0BHYGsomq1pi3cCqra2FcXF1w4aAugtnJscRGedjpcqClVjM4igwD3SZYZvaKma3t5HFhhzI/AHzAQ6FVxcAY59yxwDeBf5pZSmf1O+fudc7Ncc7NycrK6qyIiEhExAXqaY3u+h5YbXLGBBOs5v3q3nMkkvyVNMceeg+sNrGhFsKK3R8OVEjDVklNM9lWRWvCoa1XAKPT4tlJDvHNpdDSMMDRDV+ltc2MiakNLhzUcujxGGPSE9jUEroG0kQXIkNetwmWc+7jzrnpnTyeBjCza4HzgSucC7ZrO+eanXPloefLgK3AxH57FSIi/SA5UIsvJrXbcukj0il3qXiqivo/qGGmqdVPlqugNWFkl2VSRk8A1EIYDiU1TWRbFdZJ90CAmChPcCwQQJVascKhxRegpLaJ3Kia4IpO3vuCjARW1Yd+ZNA4LJEhr6+zCJ4L3Ap82jnX0GF9lpl5Q8/HARMAfWOIyJAR8AdIoZ5AbPcJlplREjWK+PqdAxDZ8LK/qoEsqnDJXSdY2Xnj8TkPzfs1LqivSmqaGGXlRI3oesi0P60g+EQtKWGxt6oR5yDPysAbc8gYLIAx6Yl8UJ2MwzSToMgw0NcxWHcDycDLB03Hfiqw2sxWAo8BNzjnKvp4LBGRAVNXV0WUBXBxI3pUvjY+j/RmzXTXWxWle4myAFFpuV2WGTUiib1kYmpR6bPSqlpGUkl0RkGXZaIzg10ydaEfHrsqg78/Z/mKITUfPN5DyhRkJFDd6iWQNEqJrcgwENWXnZ1zx3Sx/nHg8b7ULSISSQ3V5aQAlpDWo/KtKQVk1b5KoKUJT0z3986SoLqy4P2t4tO7TrCivB72e0eSUa97YfVVfekOPOYgresEKyNrFDXr44kv20r0AMY2XO2qaAQguWkPjCjstMyYjOBMgvWJ+aQosRUZ8sI5i6CIyLDRWBOcycub0LMWLMsYi8ccZXs0Tqg3Gst3A5CcNeaw5WrjcxmhFsI+85WHWgHTun6/x2QkstPlqEtmmOysaCDaa0TX7Ow6wQpN1V4em6cWLJFhQAmWiEgn2hKsmKSuZ7frKGlkcCIGzXTXOy3lRQCkjiw8bLnm5DGkuWporu3/oIYp5xzRtaFxgodJsAoyEtjhsrHKooEJbJjbVdnApFR/8CbDXSRYeSPiMYPdlgP1+/U5FxnilGCJiHSioboMgOQRPbt9REb+5OB++7b0W0zDUVR1EQ3EdzmrXRtvxlgA6krUqnKkSmubyQvswe+JgZSuu2SOSU9gl8shrn63bu4cBttL6zkxaX9wIWtyp2Vio7yMTo1na2vo+0bJrciQpgRLRKQTTbXBFqy09J4lWDmj82lwsQQ0xXKvJDfsojw2F8wOWy4hZzwAFbvVBfNIFZU3MNF205gyHrxdD8FOS4ihJGoUXueDGt3cuS9a/QG27K9jTnxxcEXO1C7LjklPYE1j21Tt6iYoMpQpwRIR6USgNviLc0rGqB6Vj47yss+TQ2yNpmrvqVZ/gJG+PTQkHn78FUB67iQA6tVCeMQ2ldQywbMHT07nrSgdtaQUBp/oQr9PtpbW0eIPMMmzG2JTDttyWJCRwNLqtOCCJroQGdKUYImIdCKqrphqkvDEJvZ4n8q4XFKbdvdjVMPLnrJq8thPIH1ct2VzR4+ixiXg1wX/Edu8Yy95Vkb86GndlvWEumTqQr9vNhQHby48sn4DjJxx2JbaMRkJ7GiIDt4aQp9zkSFNCZaISCfimkqo9Gb0ap/GpDFk+4shEOinqIaXPR8uJ8b8xOXN6rZsSnwMeywnOBObHBHf7qUAWO5x3ZZNyS6gxXkJlKvLa1+s21NDcpSPuLJ1kDf3sGUL0oM/5jQlF4C6GosMaUqwREQ6kdxSSm1Mdq/2cSPGEkcrNWVqxeqJym3LAMidckKPylfEjCa5Qe/tkWhq9ZNZtTq4kHt8t+XHZCazy2XTpKna++S97RVcnLMfC7RC/rzDlm2bqr0yLlcthyJDnBIsEZFOjPCX0RjXuwQrPjs4EUPZzo39EdKwE7VvFY0WT0zWhB6Vb0jMI9O3Ty2ER2DZjkrmsIG6lGMgPq3b8mPSE9npstWC1QfVja2s21vNJ+PXg3mh4GOHLd92s+Fizyio3g2+loEIU0T6gRIsEZGD1NbXk+6qsZTRvdovNTQRQ22xZrrrTosvwPiGlexNngmenv1TFEgrJIZW/DXF/Rzd8POfjbs4wbOR2Emf6FH54L2wcoit2QHO9XN0w9MbH5YScDCj4T3IPwHiD3/T8tT4aNISotkeyAYXgOpdAxSpiISbEiwRkYMUb1uPxxwx2T1rWWkzqmAiPuehtUzdqrqzcesWJthuWsfM7/E+MZnByTAq9uhmzr3hnKNu3UvEWivRk8/u0T45KXHssZFE++uhobyfIxyenl9TzJykUhIr1sHkT/Von4L0BDY0h8Z+aqILkSFLCZaIyEGqdq0DIHXM9F7tl5QQzz7LJKp6R3+ENawUv/cEAKOO+2SP90kZfQwAVUqwemXtnhpOrHuZxph0KDy1R/t4PUZDUn5wQRf6vVZc3cjL60v4Vsa7we6BMy/t0X5jMhJZXhNq6dI4LJEhSwmWiMhBWvcFx1CNHNe7BAugMnok8Q3qwnY4zjkydjzHPu8oUsd2P+FCm+y8Y/A7o7lU44J6499L3ufjnuV4Zl122BsMH8yN0FTtR+rv/9lBsqvlhIp/wbSLIaln4zkL0hNYXROHi4pXYisyhCnBEhE5SEzFJkosk7jE1F7v2xg/itSW/f0Q1fCxfMVS5vhXUTH+M4e9L9DBRqWnsI8MrLKo/4IbZnZXNpC/7h48BrEn39irfROyxxNwhtOU4b2yt6qRB94p4tfZz+HxNcAp3+zxvmPSE/AHoDVVU7WLDGVKsEREDjKqbj3FiVOOaF9/8mgyXTm+Vs0A1pXaV35BC1GMO++rvdovyuthv3ckcfWaqr0nnHPc9/AjXOZ5lcZZV0PamF7tPzpzBPsYQbOmau+xQMDxw6fWcqpbxmnVT8G86yGn+xs7t2mbSbAmPk8thyJDmBIsEZEOSop3kcc+Wkb2vOtaR94R+URZgNJijcPqzHtLXuWU+pfYlL+AuBG9m6URoCY+lxHNe/shsuFn0Rur+K99/0NDwiiSzv1Jr/cvyEhgp8vBV6aWlJ5wzvGLlzZRvuk//Dr2DzByJnz8p72qoyCUYO2PGg2VRbolgcgQ1acEy8xuM7M9ZrYy9Phkh23fM7MtZrbJzM7pe6giIv1v18rXAEibePh71nQlPrMAgIq9+vX5YCUl+xj5yleo8oxg0oLbj6iO5uQxpAcqoKUhzNENL/9+dzUzXruaHKsm8fMPdDtFeGcKMhLYEcjBq0lbutXqD/Cjp9ey9c2HWRT/c2KSM+GyhyA6rlf15CTHERPlYafLBl8T1O3rp4hFpD+FowXrLufc7NDjOQAzmwpcBkwDzgX+YGbeMBxLRKRftWx6mTriGTf79CPaP3VkcGKA+tKi8AU1DFRWVrDvz59ltNtP40V/ISap9xf8AJ700Pu7X60qnWn1B/jHokXMev5iJniKcZcvxJM/54jqyhuRwE6XTXxzqRLaw1izu5r//v2/OHbZd7k35i5icyZiX3i+110yATweY0x6Ah+2ZAZXaLyhyJDU8+mEeudC4GHnXDOw3cy2APOAd/rpeCIifdba2sr4qrfZnjyHGTGxR1RHdl7wXk2t5TvDGdqQ9uGGVQQe/QLT/NvZcvKdTJ511hHXFZ8zHtZD+a4PSczr/SyPw9k7K9dQ8++fcHXrq1TEjoIrnyNmzNwjri8u2ktN3GjwA1U7IXty+IIdBrbsr+Xxl95g5Ka/8wfvYqKjgZO/jZ12K0Qd2fcHBCe6WF3RNlX7Dig4stZ0EYmccCRYXzWzq4GlwLecc5VALvBuhzK7Q+sOYWbXA9cDjBnT+197RETCZeM7zzKDCkqmX3LEdcQljaCGRKx2TxgjG5qampp4/9FfMGfL7/Cbl6JP/JnJ8z/bpzrTcycCUL9vSzhCHPJa/QH+s+Q13Du/52ONb4AZ2yd9ibEX/xjiUvpcvy+1ACoItqQowaK+2cdrq7aw593HmFr6At/xrsEfFYV/2iV4z/o+jCjs8zHGpCfw9PYknBlWpe6ZIkNRtwmWmb0CjOxk0w+APwL/A7jQ/38JXNebAJxz9wL3AsyZM8f1Zl8RkXBq+uABql0iE0/t2U1Bu1LuzSa2/ui9F1ZTUxPLn/0TBet+z6muhHUJcxh99V84ZtTYPtc9enQedS4OX/nRO8bNOceHm9az560HyN/zb05jJw3EsbXgUsZdcAtjs8aH7VhRGeM+SrCOUnXNPpatXsO+Zc+SXvwGn2AlcdZKTcIoGo/7NvEfux5vck7YjpefnkBls+EyR2KVSrBEhqJuEyzn3Md7UpGZ/Rl4NrS4B8jvsDkvtE5EZFAq2rWb6TVvsWHkBRwXn9inuupic0hpOvoGp2/dtJri1+9l8r5/8TGq2BJ1DOtPvZ1pp3y2V/e7OpzUhBg2WQ7RNUfXhWdTi4+1y5dQverf5JQsZnrgQyYBW2KnsXHqj5j4if9iSsKRjWs7nPSsUdR/GEtsxbZ+G1Mw2Djn+HBvGZvffxm2vMKkunc5zYKXMFUx2VSPu4yYj11Fyph5Yftcd5Q/Ih6AxsQ8EtWCJTIk9en70sxGOefafqa9GFgbev4M8E8z+xUwGpgAvN+XY4mI9KfNz/yCQmuh8Jze3ZupMy2Jo8mrX4tzDuuHC7DBpHTXJoreWkTitueZ6ltPoTPWJp1E6QlfZPL8izFP+O8GUhE9mvzG4f+b3b6yMjb951nY/CKTat5ljlUAsD1mIqsKvsbYM67hmNET+jWG/IxEdrpsxuwf3glWbVMrK1Yuo3LV82SWvMWx/rVMsmZaiGJP6nEUTbiG0XMuIG3klH5JqjrKTw9O1V4ZO4rEymX9eiwR6R99/b68w8xmE+wiWAT8N4Bzbp2ZPQKsB3zAV5xz/j4eS0SkX+wtKeGE/Y+wIe1Upow7ru8VpuYxorSO0spKstLT+17fILNr03L2vvMombtfZLxvK1nAVu9Ylo//CmM/8d/MGlnQr8dvSMwjs2oZONfvF7sDyR9wrF+7gpJl/yJtz2JmtK7mNPNRTzxFaSdQOekcxp50EWOP4P5hR2pMegK7XDZjhlkXQeccm3aVsPWDF/BufZUp9e9xqpUAsD86l935nyFz9idJn3YWY2P61qLdW20JVrGNJK9mL/ia+zRphogMvD4lWM65qw6z7XbgyG50IiIygDY+9QvOtAaaPvXDsNQXkzEGtkDZnm3DIsFygQBbVr9N2QePkVv8CmMCu8kHNkRN5u2x3yD3pM8xfuKMAYvHl1pAXFULgZp9eFJHDdhx+0NVdTUb3n2Olo0vMbbyP8xgHzOAPd48No65jPTZF5A36wymRegCe0x6AqtdNmfWrhvyCW1tYwsrlr9PzZrnyC55i1mB9Uw2H03EsnvEXLZPvJG8uReQnXUM2RGMMyk2ivTEGIoCWczFQfVuyAjfuDoR6X/DucVfRKRb5RXlHLf3n6xL+RjTJp4QljqTswsBqNm3HWYc2T2IIs3X2sqGD16hbuWTjN3/KhMoY6zzsCF2Ju+Mu4rC+QuYktf3SSuOREzWWNgBFXs3kzkEE6zdW9ay8/2nid/xOlOaVnKStdJEDFuTjmfN+C9ScMJF5I6e0PnUuwMsOzmWvZZDVKAJ6vZDGCdz6G/OObbuKWHre8/h2fpKqJWqDIC9MQUU5V5B9nGfYsSU0zlmkLUQ5Y+IZ1NT21TtRUqwRIYYJVgiclRb++QvOM3qqTvnB2GrMz03eDHUNMTuhdXS3Mz6d/5N06qnOKbyDWZQRbOLZkPiHHZOuImJp3yOGZmdTSo7sJJGBscdVe3ZTOaUUyMcTff8fj+bl71G1YqnyCt5jbzAXvKA3Z7RrBt1CSkzz2PcnHOYFhMf6VAP4fEYjUn50EjwQn+QJ1iNLX5Wrl5B1fKnyNr3BjP86znGfDQSx670eWyfdA558y5gdHr/dmPtq/z0BFbtSg0uaKILkSFHCZaIHLWqqyuZufNB1iWewLTp88NWb0pWPn5nuKrBn2A1NTawfsnTtK59iknVS5hNHQ0ulk0pJ7FryqeZdMpnmJ0c/tnp+iI77xgCzmgu3RrpULpU39DAhv/8m9Z1z3BM5ZtMpooW52Vj3Gx2F17NmBMuJG/cVPIiHWgPuLTCjxKsMeFp5Q2n2sYWPvjgP9SteJIJFa9zkgUTkj3RBWwt+DzZx15A5tTTmDjIWqkOJz89gZfXJeBiozVVu8gQpARLRI5aa5/6FSdbLZWf+G54K/ZGU+HJILpucN4Ly9fawtq3/0XL8oeZWv0Wx1kjNSSwOXU+UdMvZNLJF3FsQlKkw+zSqMwR7GPEoLs3U31DI2veegrWPMq02v8wxxppIJZNySeya9L5HDP/M8xMy4x0mL0WnzUWihlU73dNYwvv/ucN/KseZUr1G5xp+whg7EqawdaJ3yXvpEvJzR4/KLpZHon8EQk0+w1/Sh5Rg+h9F5GeUYIlIkelxoZ6Jm3/B+vijmPasWeGvf6qmBwSmwZPguUCATatfJvKdx9gwv4XmU0VNSSwIf1MEmZ9hokfO5/jY+IiHWaPxER5KPGMJKV2V6RDwefzs+a9V6j74J9Mq3yVE62WGhLZknkmcTMu5JgTz+fYuIGdhS7cRmWmUezSySjbRkwE42jxBXh/xUrK332IqWUvcLbtxoeXHalzKJr2Ncac9FkKUiLfhTUc8tOD3UXr4vNIUxdBkSFHCZaIHJVWPnsPJ1FF6anf6pf6GxNGk165ul/q7o39e3ey+aU/kbvjKSa73bQ4L+uTPsaeWZcy5dTPMjcuIdIhHpHquFzGNC+P2PE3b1xL8eI/M27fcxzLfpqI5sO0Uyg7dgHHfOwijh0iyWpPjElPYKfLJiUCCZZzjtVbdrDjzQfJ2/Uv5rMRgB1Js9g56wbyT/484xMzBjiq/jcmNFV7efRI0kpfjXA0ItJbSrBE5Kjj9/nI3fAXtkQdw+QTP9kvxwgk55JT8To1jc2kxA/s2A+/38+at57B9/5fmVX/Niebn40x01g66b+YeOaVzB4RyUmow6M5aQwZjS9DayNED8zkEA2Njax4eSHxax5kdstyxgEbE46nYto3mXTGZcxMHFxj1cIlb0QCG102s6o3Ddgxq+qbeev154lZ9XdObVnCLGuhOKaALZNupuD0aynIKBywWCJhdFo8HoM9NpLxjRXQWAnxw/PzJTIcKcHqhgsEaGqsp7G+hqaGOpobamhpqKW1qY7WpnoCzfU4fwvO14rztxDwtUKgFef3gb8F87fi/K0Q8OEAw3WovO1JoH1VZ3cYcQDmCRUwDMOZAZ7gLUmC//no/xhmntDTjttC5duWra1sh+eetvKe0OE8oWOGYgiVtVAd1kk9dtC+bdtch/iwtnei7XnHOAku9/B+K851Xya8wnfAcMZuncbVf29Oz2If8JPTI1FFbzHT7WX58XdhHk//HGPEGGJ3+ti5Zwcpx0zsl2McbP++XWx+4U8U7HiU2W4fVSSxYvQC8s66kcnHzByQGAZMeiGUQnPZdmJHTe3XQ239cB27X72Hqfue4WSrotQyWDXuesadcyPTRkZmqvqBNCYjgZcC2cQ1vgmtTRDdP61zzjlWbS5i22t/ZVrxk1xgu2i0ePYUXMjIM/+bUQVzhvR9uHoj2ushPz2Bta2jOBWg9MNBOcHIUOAPOOqbW2lqaqSlvpaWplpaG2vxNdbhb6rD19KIr7UFX2szAV8LFgheu5m/FQu0QMCHJ9ACgQDOuY8eOJwLBP8xdA6PATja/kUxo/3aydpWYAdchx3wPFQWa7t889C+ELqOCpZvK9Phus8+OqgRvKZq+1NxfHRd1la27ToydFTMaL9Gs9A1WceY2/Z1B/z9dbiOC/3PdVr2ozpc6LU4133dwfIfrWuOy6bg2DMZlTr4ZlvtjBKsw3jvkTuYu+7/EW+OvpzOFufFj7fDB+8jrpMPUcdLUgPMuQ4fY8dH6Yhrr6Hjeo8NzotakcFkl41m1ie6vFd6n8WPnACroHr3JujHBCvgD7B6yb9off+vzKp7K9RaNZ0VM7/FtI9fybwh2gWwO3HZx8AmKN+1idH9kGA1Njax4tWHiVv9D2Y3L6cQ2JB0IpUnXMeEky8myxsd9mMOVilx0VTEjA7+41S1E7LC+3muaWzh7defI2rF3zml5S1mWyu7E6awZ+7/kXvylRwTO3gnXOlPE3OSebskky8DlG5UggXUNfsoLSununQX9eV7aK4uIdBQgTVU4mmuIrqlitiWauJ8NSQGakgM1BNPEwk0kWKB7g/QAwHX9kMw7VdeB16hfXRtd2AK0rEUB+2Brt+68bp/FsvSj+X8mUqwhry0cXN4r+YLWHQiFht8RMUm4Y1LIiouidj4JKLjEvFGx+KNjiYqOo6o6Bi80THExMQQFR2L1xtFTD/9Qt6V4K8rEAgEcLjg/0O/sARcABdwB64PhNYDBAIE3Ee/yrQ9d87hAoHQDzUdt3/0iw4df9kJHSfgAhgOFwAzF2r2CH39tD1vbwoJPm/7esK5QfNr5cFRuDDGZZ0k3n2p7ZA1/fgW9v/p6b8DpI8eizeq/y6S0/KnANCy/8N+qb+0ZA8fvvgnxmx/hNmumGqSWDnqc+SeeQOTJx7bL8ccTLLGToe3oLpoNaPnXRy2erdvXs+uV+9h8r5n+BiVlFoGK8ddz7izb2D6qHFhO85QE5U1HvYDZZvCkmA551i3dSdbX/0LU/c+wXm2mwaLZ1fBxeSddSN5Bcf1PeghbvLIZP64MRGXEI+Vbox0OP3KOUdFfQt7Skqo2LOFxpKtWPUuouv2ENtUSmJLGWn+CjKpYqw1dlpHEzHUWjIN3mSaolOpiy6kOiYFYpJCj0SIScBikvDEJeGJTSIqLpGomESiY2OJiQk+LCoGi4rBGxWLRUXjjY7B443B443C6zE8RrDHTi9fX8B99P8Arq3hi0DbtRbgAgSvz1ywB1XAgSN03eYg4AKhazeAj1rS2ioLrm5b/9HztusuAqH1HfZ1gWDC50LHInQN2X4d5kLXb20//3fsvuI+ShoP3N7Jehwf5Y8HPj94XwsFZB3W50cnkjUmq1fveyQpwTqMSXPOhDnhn12sv7U1I3s83kiHInLUSh89jiYXjadiS9jqDPgDrH3n3zS/+1dm1b7JyeZjY8w0Vsz4BlM/fhXz4o+eX/qPGZPHLpeF27eqz3U1NTWx8tWHiV31ALOal1EArE86gYq51zHplM8cVa1VXUkunE1riRfbtYyoKRcccT11Ta28vfh5vMvv5+Tmt5huLexKmMKuOf9H/vwrmXCUtlZ1ZtLIZHwBozF9Cgl7IjehS7i0+gPsLK9n394d1O3ZgL9kE1HV20lo2EN6SzGjKWWm1R+wTyOxVHkzqI/NpCFuKtsTs/EkjyQ6LZeEjFxSMkeTmJZFVGI6cdHxDNapZcwMb1t3QDkqKMESEekH5vGyxzuahJq+3wy3vGQ3H754L7nbH2Wm20stCazKuZiRZ97A5MlzwhDt0BMT5WFX7DGMrTnyX/a3friGva/ey+SSZziRKkotnRVjv8i4s29k+ujxYYx26Jucl8Omd/MpKPqA5F7u65xj9dadbH/tfqbseYxzbCcNxLMr/9OM/viXyS88vl9iHupm5aUBsC1+OtN3LwJfMwyBmyW3+gMU7a9m79Z11OxeR6D0QxJqtpLdvJOxtpfxHVqgmoihInokdam5FKfMY3/6WJJGjmVE7gTis8YRHz+C+EHSk0WkN5RgiYj0k/KkSRxT894RdXf1+Xyse/tf+D64nxm1b3GS+dkYPZXlM77G1I9fxdyE3l7mDj/V6bMZte8dWip2E5Oe16N96uvrWfnKQySufYjZrSspdMb6pJMom3stk+Z/hqx+7DY6lM3KT+XVwAQm7XurxzM3VtY18Z/Xn8Wz+mFOa3mTWdbMnvgJ7Dju/zHm1KuYGJcyAJEPXfnpCRRkJLC4cTzT/c2w+wMonB/psNo559hV0ciHO3ZSuW0F7FtDcvVG8pq3McF2M8Fa28tWeDOpSRtLafo8KnMmkZI3lbQx04hLyWW0EigZhpRgiYj0k9bR80iveYnSnRvJKpjSbXkXCLBlzbuU/ucBxpe8wCwqqCaR5TmfZdSZ/83kyfqlv6MRsz4F+/7ItneeYPKnvt5luZZWH6vffp7mFQ8zrep1TrZ69lk2y8Z9mfFn/zczRhYOXNBDVN6IBDalnUp03cuw9TWY/KlOyzW1+nnvg3epf/8hZla+yKesjEbi2Jv/KUaedQO5hfMGzdjaoeCUCZn8bVkhX4lLwNY81mmC1ezzs6uikfFZib0eG9RTzT4/m/fVsHPLWup2rMRbupaM2g+ZwA4+buXt5Wo8aVSMmMjOzNOIz5tJ1rhZxI6cRHpsMun9EpnI4KQES0Skn2RPPwM2/i873numywTLBQIUbVrFvncfYdSufzEhsItC52VD4lz2zbiUyWdcxolxiQMc+dBw7JyT2P7iaBJX3Q/nfRU6TCjU3NLMxvdfoXrlM0wse5k5lNNALJvSTydp7uUcc8IFjPTqn8DeKDz+bEoW/5LEV39B0sRzITTOt66plZVL36Zm1TMU7H+d02wbfjxsT53DnuN/RO5Jn2N8jD7DR+Lz8wp48N2drM05gxmrHoaPfQ0yxlPd2MrijSWsX/E2yUUvMcltY/1Zt/Pp0z/W52NW1Lfw4c5i9m9dTvPu1SRUrCe3aQsTbRfTrRkAPx7K48fQMGIee3NnkTH+OGLzZpGSlEOKEmgRzA38TYS6NGfOHLd06dJIhyEiEhYuEGDz/84hjhZGf3cpUTHBIdhNDbVsWf46tWueI3//YvJcMQAbo6dSM+EzTD7zKlIyR0Yy9CHjpYd/x9kbf8jaEWfROu7jNJTvJXr/aibVLyXV6ml1Xj5MmgszL2XCKZcSo66VR6yxxc+dv7iNH7X+lh2JM9mbMAlvzR7ymzYyyioA2Bk/Bf+Uixhz2tV4U0dHOOLh4ZuPrOQ/y1fzWvx3cZ4oVnqn45pqmGbbGWF1BDACeHjPTSP1i08zPb9nbUUtvgBb99dSVLSF2qIVWMkaRtRsYpx/O4VW0j5leL0nifKkifizppFUMJuMccfjyZnSb/dDExlKzGyZc+6QwdB9SrDMbBEwKbSYBlQ552abWSGwAWi77fu7zrkbuqtPCZaIDDcfvPAP5r77NbZ4x1OVOJbkhl2Mbd1CjPlpcVFsjD+WpnHnMO7kz5CZq4kVesvn87P4T9/k1P0PEGN+AEosiz1pc4ie+kmOOfEC4pNHRDjK4WNneQOvPvhzzqhYRCbVVEelU506hdhJZzHmhIuITlNSFW4tvgB3vfIh61e9x3XNDzLes4+o2Hi8ubPJmHwKnonnUr3iSVJfvYWX3Vy2TLuJabPmkZ0aR7TXQ22Tj5rqSir37aBx34d4KjaTVLud7OadjLc9jLC69mOVRY+mNm0ynlEzGTHuOFIKj4XUfHXrFOlCvyRYBx3gl0C1c+5noQTrWefc9N7UoQRLRIajd5+4m+x1fyEu0EBVdDZVGceSNGE+4+acTVKKLv7DoaKygqr9u8nMHknKiOxIhyMy4Gpfu4u4t24n2rVS6ZKodol4CJButSRZ0wFla7xpVCWMI5AxnoT8WaSPO46oUTNAE4+I9Eq/JlgWHFW5EzjTObdZCZaIiIjIAKsvp3HFo1TvWIm/qY6AAxLSsZRRJGXkkTJ6Ip6sCZCgKSdEwqGrBCtcI3xPAUqcc5s7rBtrZiuAGuCHzrm3ugjseuB6gDFjxoQpHBEREZGjTGIG8fNvIH7wzOYuclTqNsEys1eAzkZb/8A593To+eXAwg7bioExzrlyMzseeMrMpjnnag6uxDl3L3AvBFuwevsCREREREREBotuEyzn3McPt93MooDPAO03aHHONQPNoefLzGwrMBFQ/z8RERERERm2PN0X6dbHgY3Oud1tK8wsy8y8oefjgAnAtjAcS0REREREZNAKxxisyziweyDAqcDPzKwVCAA3OOcquqto2bJlZWa2IwwxhVMmUBbpIGTA6HwfPXSujx4610cXne+jh8710WUwnu+CzlYOqhsND0ZmtrSz2UFkeNL5PnroXB89dK6PLjrfRw+d66PLUDrf4egiKCIiIiIiIijBEhERERERCRslWN27N9IByIDS+T566FwfPXSujy4630cPneujy5A53xqDJSIiIiIiEiZqwRIREREREQkTJVgiIiIiIiJhogTrMMzsXDPbZGZbzOy7kY5HwsfM8s3sdTNbb2brzOwbofXpZvaymW0O/X9EpGOV8DAzr5mtMLNnQ8tjzey90N/3IjOLiXSMEh5mlmZmj5nZRjPbYGYn6W97eDKzm0Pf4WvNbKGZxelve/gws7+a2X4zW9thXad/yxb029B5X21mx0UucumtLs71L0Lf46vN7EkzS+uw7Xuhc73JzM6JSNCHoQSrC2bmBX4PnAdMBS43s6mRjUrCyAd8yzk3FTgR+Ero/H4XeNU5NwF4NbQsw8M3gA0dlv//9u47vK3ybPz495bkveO97exhZ5FJCATKCDNQKNCXzdvya0vfFgqlpWy6oPQtLaPlLaWFlr0JpawCKTOB7L3jOI733rYsPb8/juw4ie14yJYt35/r0mXpjOfc0vGxz61n3Q88aIwZD1QB/+2TqNRg+APwjjFmMjAD67zrte1nRCQV+AEwxxiTA9iBS9Fr2588CSw9Yll31/KZwATP4zrgT0MUo/KOJzn6XL8P5BhjpgM7gVsBPPdrlwLTPPv80XPfPmxogtW9ecBuY8xeY0wr8DywzMcxKS8xxhQZY9Z6ntdh3YClYp3jpzybPQWc75MAlVeJSBpwNvAXz2sBTgFe9myi59pPiEgUcCLwBIAxptUYU41e2/7KAYSIiAMIBYrQa9tvGGM+BiqPWNzdtbwM+LuxrASiRSR5SAJVA9bVuTbGvGeMafO8XAmkeZ4vA543xrQYY/YBu7Hu24cNTbC6lwoc6PS6wLNM+RkRyQJmAauARGNMkWdVMZDoq7iUV/0euAVwe17HAtWd/nDr9e0/soEy4G+eJqF/EZEw9Nr2O8aYg8BvgXysxKoGWINe2/6uu2tZ79v827XA257nw/5ca4KlRjURCQdeAW4wxtR2XmesOQx0HoMRTkTOAUqNMWt8HYsaEg5gNvAnY8wsoIEjmgPqte0fPH1vlmEl1SlAGEc3MVJ+TK/l0UFEbsPq2vGMr2PpLU2wuncQSO/0Os2zTPkJEQnASq6eMca86llc0t6kwPOz1FfxKa9ZBJwnInlYTX1PweqjE+1pVgR6ffuTAqDAGLPK8/plrIRLr23/cyqwzxhTZoxxAq9iXe96bfu37q5lvW/zQyJyNXAOcJk5NHnvsD/XmmB17ytggmc0okCsznTLfRyT8hJPH5wngG3GmN91WrUcuMrz/CrgjaGOTXmXMeZWY0yaMSYL6zr+0BhzGfARcJFnMz3XfsIYUwwcEJFJnkVfA7ai17Y/ygcWiEio5296+7nWa9u/dXctLweu9IwmuACo6dSUUI1AIrIUq3n/ecaYxk6rlgOXikiQiGRjDWzypS9i7I4cSgbVkUTkLKy+G3bgr8aYX/o2IuUtInIC8AmwiUP9cn6G1Q/rRSAD2A9cbIw5soOtGqFEZAlwszHmHBEZi1WjNQZYB1xujGnxYXjKS0RkJtaAJoHAXuAarC8U9dr2MyJyD3AJVvOhdcC3sPpi6LXtB0TkOWAJEAeUAHcBr9PFtexJsh/BaibaCFxjjFntg7BVP3Rzrm8FgoAKz2YrjTHf8Wx/G1a/rDasbh5vH1mmL2mCpZRSSimllFJeok0ElVJKKaWUUspLNMFSSimllFJKKS/RBEsppZRSSimlvEQTLKWUUkoppZTyEk2wlFJKKaWUUspLNMFSSimllFJKKS/RBEsppZRSSimlvEQTLKWUUkoppZTyEk2wlFJKKaWUUspLNMFSSimllFJKKS/RBEsppZRSSimlvEQTLKWUUkoppZTyEk2wlFJqmBCRLBExIuLwdSz+TkSuFpFPfR3HcCMii0Vkh6/jUEqpkUwTLKWUUiOaiNwtIk4Rqe/0uMXXcY1ExphPjDGTvF2uiJwiImtFpFZE9orIdd4+hlJKDReaYCmllJdozZNPvWCMCe/0+I2vA/Kmkfy7JSIBwGvA/wFRwCXA70Rkhk8DU0qpQaIJllJKDYCI5InIT0RkI9AgIg4RWSAin4tItYhsEJElnbZfISK/FpEvPd/mvyEiY7op+xoR2SYidZ5v/f/fEeuXich6Tzl7RGSpZ3mUiDwhIkUiclBEfiEi9mO8j3Ei8qGIVIhIuYg8IyLRndZVishsz+sUESlrf18icp6IbPG83xUiMuWIz+dmEdkoIjUi8oKIBPf9k+47Efmp53OpE5GtInJBN9uJiDwoIqWez3KTiOR41gWJyG9FJF9ESkTkMREJ6eXxn/Rs/74nhv+ISGan9X8QkQOeY64RkcWd1t0tIi+LyNMiUgtcLSLzROQLz+dcJCKPiEhgp32MiHxPRHZ5jvdzz7n73HOMFztv303MS0SkoDfvrw/GAJHAP4zlK2AbMNXLx1FKqWFBEyyllBq4bwJnA9FAIvAW8AusG8ubgVdEJL7T9lcC1wLJQBvwUDfllgLnYN2cXgM82CnJmQf8Hfix57gnAnme/Z70lDsemAWcDnzrGO9BgF8DKcAUIB24G8AYswf4CfC0iIQCfwOeMsasEJGJwHPADUA88C/gzSNu5C8GlgLZwHTg6i4DEDnBkzx09zjhGO/hSHuAxVi1Jvd44k/uYrvTsT6/iZ5tLwYqPOvu8yyfifV5pgJ39iGGy4CfA3HAeuCZTuu+8pQ7BngWeOmI5HMZ8DLW+X0GcAE3espaCHwN+N4RxzsDOA5YANwC/Bm4HOt85mD9rvabJ1Hu7vz8sat9jDElWL8j14iIXUQWApmA9oFTSvknY4w+9KEPfeijnw+spObaTq9/gvVNfedt3gWu8jxfAdzXad1UoBWwA1mAARzdHOt14Iee5/8HPNjFNolACxDSadk3gY/6+L7OB9YdsWw5sAnYCAR5lt0BvNhpGxtwEFjS6fO5vNP63wCPefkc3O35DKs7PVK62G49sMzz/GrgU8/zU4CdWEmJrdP2AjQA4zotWwjs62VcTwLPd3odjpUkpXezfRUwo9N7+vgY5d8AvNbptQEWdXq9BvhJp9f/C/z+GGUuAQq8eX485Z4LlGAl/m3At719DH3oQx/6GC4PrcFSSqmBO9DpeSbwjc7f7AMnYNVWdbX9fiAAq1biMCJypois9DTPqwbO6rRdOlYNzZEyPeUVdTr+/wEJPb0BEUkUkec9TQprgae7iOlxrFqQh40xLZ5lKZ73AIAxxu15f6md9ivu9LwRK9HwtheNMdGdHoUicqVYTSjbP4ccuvicjTEfAo8AjwKlIvJnEYnEqpELBdZ0KuMdz/Le6jjXxph6oBLrM8PTdHKbp+lkNVbtWVxX+3q2nygi/xSRYs85+lUX76ek0/OmLl4PxmffIxGZDDyPVXMbCEwDbhGRs4c6FqWUGgqaYCml1MCZTs8PYNVgdb7ZDzPG3Ndpm/ROzzMAJ1DeuUARCQJeAX4LJBpjorGa30mn44zrIpYDWDVYcZ2OH2mMmXaM9/Arz/vINcZEYjUraz8WIhIO/B54ArhbDvUbK8RK6tq3E8/7O3iM4x1FrCHC63t4LD52KR1lZWIlhN8HYj2f3+bO76kzY8xDxpjjsGoUJ2I1vSzHSkqmdfoso4wxfUlSOs615zMcAxR63sstWM0RYzzx1RwRX+ffK4A/AduBCZ5z9LPu3s9gEauvXXfn57FudssBdhpj3jXGuI0xO7Ca0Z45dJErpdTQ0QRLKaW862ngXBE5w9PfJNgzcEBap20uF5Gpnv5M9wIvG2NcR5QTCAQBZUCbiJyJ1Veo3RNYfVq+JiI2EUkVkcnGmCLgPeB/RSTSs26ciJx0jLgjgHqgRkRSsRKMzv4ArDbGfAvr5rj9ZvpF4GxPHAHATVgJ3ufH+qCOZKwhwsN7eHzSh+LCsBKUMrAGDMG60T+KiMwVkfme+BuAZsDtqY17HKvvW4Jn21QROaPTvkY6DWLShbM8fcsCsfpirTTGHMD6vNs88TlE5E6svnY9iQBqgXpPrdB3j7G91xljpvVwfr7TzW7rgAliDdUuIjIOq2/hxqGLXCmlho4mWEop5UWem+dlWLULZVg1Sj/m8L+3/8Dqn1MMBAM/6KKcOs/yF7H65vwXVh+o9vVf4hn4Aqvm4z8cqklqb4q11bPvyxzeRLEr9wCzPWW9BbzavkJElmENUtF+Q/8jYLaIXOapjbgceBirxudc4FxjTOsxjjeojDFbsfocfYHVTC4X+KybzSOxEqkqrOaOFcADnnU/AXYDKz3N8v4NTAIQkXSgDqtfWneeBe7Cahp4HNZnBVa/vHew+n7tx0rqDnRVQCc3Y/0e1HnifeEY2w8Lxhok5VqswVxqsX5XXwH+4su4lFJqsIgxR7ZAUEopNVhEZAXwtDFGby5HOBG5HKv54K3drH8Sa8CI24c0MKWUUj41YicuVEoppXzJGPO0r2NQSik1/GgTQaWUGiXEmvS2L4MTKD8kIj/r5vfgbV/HppRS/kCbCCqllFJKKaWUl2gNllJKKaWUUkp5idf6YImIHVgNHDTGnCMi2VgTC8ZizSZ/xbFGlYqLizNZWVneCkkppZRSSimlBsWaNWvKjTFHTT7vzUEufghs49A8HvcDDxpjnve07/9vrEkSu5WVlcXq1au9GJJSSimllFJKeZ+I7O9quVeaCHom0Dwbz5wWIiLAKVhzrwA8BZzvjWMppZRSSiml1HDlrT5YvwduAdye17FAtTGmzfO6AEjtakcRuU5EVovI6rKyMi+Fo5RSSimllFJDb8AJloicA5QaY9b0Z39jzJ+NMXOMMXPi449qwqiUUj7R1ubydQhKKaWUGoG80QdrEXCeiJwFBGP1wfoDEC0iDk8tVhpwsD+FO51OCgoKaG5u9kKoajQJDg4mLS2NgIAAX4eiRpjK2noif5fOZ9nXs+iqX/g6HKWUUkqNIANOsIwxtwK3AojIEuBmY8xlIvIScBHWSIJXAW/0p/yCggIiIiLIysrC6tql1LEZY6ioqKCgoIDs7Gxfh6NGmC1bNrAYN4v2PQxogqWUUkqp3hvMebB+AvxIRHZj9cl6oj+FNDc3Exsbq8mV6hMRITY2Vms+Vb80lezueF5bWuDDSJRSSik10nhzmHaMMSuAFZ7ne4F53ihXkyvVH/p7o/rLUZ3X8bxw9zoiE9J8F4xSSimlRpTBrMFSSqkRKaTu0LQWtQe2+DASpZRSSo00mmD1gohw0003dbz+7W9/y9133+27gDpZuXIl8+fPZ+bMmUyZMqUjrhUrVvD555/3u9z9+/cze/ZsZs6cybRp03jssce8FLFSw19QSzn5kkqtCcWU7fB1OEoppZQaQbzaRNBfBQUF8eqrr3LrrbcSFxfntXKNMRhjsNn6n+deddVVvPjii8yYMQOXy8WOHdbN4IoVKwgPD+f444/vV7nJycl88cUXBAUFUV9fT05ODueddx4pKSn9jlWpEaOtmTZ7MEW2NMLr9/k6GqWUUkqNIFqD1QsOh4PrrruOBx988Kh1ZWVlXHjhhcydO5e5c+fy2WefAXD33Xfz29/+tmO7nJwc8vLyyMvLY9KkSVx55ZXk5ORw4MABfvzjH5OTk0Nubi4vvPACYCVIS5Ys4aKLLmLy5MlcdtllGGOOOn5paSnJyckA2O12pk6dSl5eHo899hgPPvggM2fO5JNPPukxziuuuIKFCxcyYcIEHn/8cQACAwMJCgoCoKWlBbfbfdSxAR566CGmTp3K9OnTufTSSwGorKzk/PPPZ/r06SxYsICNGzd2HOuqq65i8eLFZGZm8uqrr3LLLbeQm5vL0qVLcTqdANx7773MnTuXnJwcrrvuuqPet9vtJisri+rq6o5lEyZMoKSkpKfTqFSvOVzNtNmCqA1JIaql2NfhKKWUUmoEGVE1WPe8uYWthbVeLXNqSiR3nTvtmNtdf/31TJ8+nVtuueWw5T/84Q+58cYbOeGEE8jPz+eMM85g27ZtPZa1a9cunnrqKRYsWMArr7zC+vXr2bBhA+Xl5cydO5cTTzwRgHXr1rFlyxZSUlJYtGgRn332GSeccMJhZd14441MmjSJJUuWsHTpUq666iqysrL4zne+Q3h4ODfffDMA//Vf/9VtnBs3bmTlypU0NDQwa9Yszj77bFJSUjhw4ABnn302u3fv5oEHHuiy9uq+++5j3759BAUFdSQ8d911F7NmzeL111/nww8/5Morr2T9+vUA7Nmzh48++oitW7eycOFCXnnlFX7zm99wwQUX8NZbb3H++efz/e9/nzvvvBOAK664gn/+85+ce+65Hce02WwsW7aM1157jWuuuYZVq1aRmZlJYmLiMc+jUr3hcLfQFhCCMzydhLpPMG4XYrP7OiyllFJKjQBag9VLkZGRXHnllTz00EOHLf/3v//N97//fWbOnMl5551HbW0t9fX1PZaVmZnJggULAPj000/55je/id1uJzExkZNOOomvvvoKgHnz5pGWlobNZmPmzJnk5eUdVdadd97J6tWrOf3003n22WdZunRpl8fsKc5ly5YREhJCXFwcJ598Ml9++SUA6enpbNy4kd27d/PUU091WUM0ffp0LrvsMp5++mkcDkfHe7riiisAOOWUU6ioqKC21kqMzzzzTAICAsjNzcXlcnXEm5ub2/H+PvroI+bPn09ubi4ffvghW7YcPcjAJZdc0lHb9/zzz3PJJZf0+Jkr1ReBpoU2ezC2MRkEiouKonxfh6SUUkqpEWJE1WD1pqZpMN1www3Mnj2ba665pmOZ2+1m5cqVBAcHH7atw+E4rFld5/mYwsLCenW89iZ6YDX/a2tr63K7cePG8d3vfpdvf/vbxMfHU1FRcdQ23cUJRw9nfuTrlJQUcnJy+OSTT7jooosOW/fWW2/x8ccf8+abb/LLX/6STZs29eo92Ww2AgICOo5ls9loa2ujubmZ733ve6xevZr09HTuvvvuLueyWrhwIbt376asrIzXX3+d22+/vcfjKtUXAaYVly2YkDhrkuryg7uIS9UJq5VSSil1bFqD1Qdjxozh4osv5oknDs2ZfPrpp/Pwww93vG5vCpeVlcXatWsBWLt2Lfv2dd1RfvHixbzwwgu4XC7Kysr4+OOPmTev99OHvfXWWx19lHbt2oXdbic6OpqIiAjq6uqOGSfAG2+8QXNzMxUVFaxYsYK5c+dSUFBAU1MTAFVVVXz66adMmjTpsGO73W4OHDjAySefzP33309NTQ319fUsXryYZ555BrD6ksXFxREZGdmr99OeTMXFxVFfX8/LL7/c5XYiwgUXXMCPfvQjpkyZQmxsbK/KV6o3Ak0LLnsQ0SnjAKgv3uvjiJRSSik1UmiC1Uc33XQT5eXlHa8feughVq9ezfTp05k6dWrHcOYXXnghlZWVTJs2jUceeYSJEyd2Wd4FF1zA9OnTmTFjBqeccgq/+c1vSEpK6nU8//jHP5g0aRIzZ87kiiuu4JlnnsFut3Puuefy2muvdQxy0V2cYDXzO/nkk1mwYAF33HEHKSkpbNu2jfnz5zNjxgxOOukkbr75ZnJzcwH41re+xerVq3G5XFx++eXk5uYya9YsfvCDHxAdHc3dd9/NmjVrmD59Oj/96U956qmnev1+oqOj+fa3v01OTg5nnHEGc+fO7Vj32GOPHRb3JZdcwtNPP63NA5XXBdGK2xFMYsYEAJwV+4+xh1JKKaWURboamc5X5syZY1avXn3Ysm3btjFlyhQfReT/7r777sMGw/A3+vuj+qPxrgQ2Jn2dBd99jMq709kVcxLzf/i0r8NSSiml1DAiImuMMXOOXK41WEop1ZkxBNGKcVj9FcsdSYQ2HvRxUEoppZQaKQY8yIWIpAN/BxIBA/zZGPMHERkDvABkAXnAxcaYqoEeT3nX3Xff7esQlBpW2pwtOMR0JFh1wckkNOzycVRKKaWUGim8UYPVBtxkjJkKLACuF5GpwE+BD4wxE4APPK+VUmpYa21utJ44QqzX4akkuksxbpcPo1JKKaXUSDHgBMsYU2SMWet5XgdsA1KBZUD76AZPAecP9FhKKTXYWpsarCcBVoIlUekEShtVZYU+jEoppZRSI4VX+2CJSBYwC1gFJBpjijyrirGaEHa1z3UislpEVpeVlXkzHKWU6jNnq6cGK8BqIhgUmwFAZWHXUy0opZRSSnXmtQRLRMKBV4AbjDG1ndcZa6jCLocrNMb82RgzxxgzJz4+3lvhKKVUv7Q1WQmWLTAUgIjELADqSvN8FJFSSimlRhKvJFgiEoCVXD1jjHnVs7hERJI965OBUm8cy1def/11RITt27d3u01eXh45OTleO+aOHTtYsmQJM2fOZMqUKVx33XWANUnwv/71r36X29zczLx585gxYwbTpk3jrrvu8lbISo14ba1WE0HxNBGM80w23FKR77OYlFJKKTVyDDjBEhEBngC2GWN+12nVcuAqz/OrgDcGeixfeu655zjhhBN47rnnulzf1tY24GO4XId3ov/BD37AjTfeyPr169m2bRv/8z//Aww8wQoKCuLDDz9kw4YNrF+/nnfeeYeVK1cOKHal/IWz+fAarKjYRJpNAKamwJdhKaWUUmqE8EYN1iLgCuAUEVnveZwF3AecJiK7gFM9r0ek+vp6Pv30U5544gmef/75juUrVqxg8eLFnHfeeUydOhWwEq3LLruMKVOmcNFFF9HYaN2sffDBB8yaNYvc3FyuvfZaWlpaAMjKyuInP/kJs2fP5qWXXjrsuEVFRaSlpXW8zs3NpbW1lTvvvJMXXniBmTNn8sILL9DQ0MC1117LvHnzmDVrFm+8YeWyTz75JMuWLWPJkiVMmDCBe+65BwARITw8HACn04nT6cTKkw/30ksvkZOTw4wZMzjxxBMBq/brmmuuITc3l1mzZvHRRx91HOv888/ntNNOIysri0ceeYTf/e53zJo1iwULFlBZWQnA448/zty5c5kxYwYXXnhhx+fT2YIFC9iyZUvH6yVLlnDkBNRKDRaXsxkAe6DVB0tsNsps8QQ26CAXSimllDq2Ac+DZYz5FDj67tzytYGWf5i3fwrFm7xaJEm5cGbPud8bb7zB0qVLmThxIrGxsaxZs4bjjjsOgLVr17J582ays7PJy8tjx44dPPHEEyxatIhrr72WP/7xj3z/+9/n6quv5oMPPmDixIlceeWV/OlPf+KGG24AIDY2lrVr1x513BtvvJFTTjmF448/ntNPP51rrrmG6Oho7r33XlavXs0jjzwCwM9+9jNOOeUU/vrXv1JdXc28efM49dRTAfjyyy/ZvHkzoaGhzJ07l7PPPps5c+bgcrk47rjj2L17N9dffz3z588/6vj33nsv7777LqmpqVRXVwPw6KOPIiJs2rSJ7du3c/rpp7Nz504ANm/ezLp162hubmb8+PHcf//9rFu3jhtvvJG///3v3HDDDXz961/n29/+NgC33347TzzxREfNXLtLLrmEF198kXvuuYeioiKKioqYM+eoSbKVGhRtre0JVlDHstrARMKbi30VklJKKaVGEK+OIuivnnvuOS699FIALr300sOaCc6bN4/s7OyO1+np6SxatAiAyy+/nE8//ZQdO3aQnZ3NxIkTAbjqqqv4+OOPO/a55JJLujzuNddcw7Zt2/jGN77BihUrWLBgQUfNV2fvvfce9913HzNnzmTJkiU0NzeTn2/1FznttNOIjY0lJCSEr3/963z66acA2O121q9fT0FBQUcSdqRFixZx9dVX8/jjj3c0X/z000+5/PLLAZg8eTKZmZkdCdbJJ59MREQE8fHxREVFce655wJWzVteXh5gJWGLFy8mNzeXZ5555rCaqnYXX3wxL7/8MgAvvvgiF110UZefj1KDwe20rjGHZxRBgKbQZGLadJRTpZRSSh3bgGuwhtQxapoGQ2VlJR9++CGbNm1CRHC5XIgIDzzwAABhYWGHbX9kU7uumt4d6cgyOktJSeHaa6/l2muvJScnp8tEyBjDK6+8wqRJkw5bvmrVqmPGEx0dzcknn8w777xz1AAdjz32GKtWreKtt97iuOOOY82aNT2+j6CgQ9/422y2jtc2m62jj9rVV1/N66+/zowZM3jyySdZsWLFUeWkpqYSGxvLxo0beeGFF3jsscd6PK5S3tTeRDAgMKRjmTsilbjKKpqbmwgODuluV6WUUkoprcE6lpdffpkrrriC/fv3k5eXx4EDB8jOzuaTTz7pcvv8/Hy++OILAJ599llOOOEEJk2aRF5eHrt37wbgH//4ByeddNIxj/3OO+/gdDoBKC4upqKigtTUVCIiIqirq+vY7owzzuDhhx/GGg0f1q1b17Hu/fffp7KykqamJl5//XUWLVpEWVlZR5O/pqYm3n//fSZPnnzU8ffs2cP8+fO59957iY+P58CBAyxevJhnnnkGgJ07d5Kfn39UYteTuro6kpOTcTqdHeV05ZJLLuE3v/kNNTU1TJ8+vdflKzVQ7rZWABydmgjaY9KxiaGscL+vwlJKKaXUCKEJ1jE899xzXHDBBYctu/DCC7sdTXDSpEk8+uijTJkyhaqqKr773e8SHBzM3/72N77xjW+Qm5uLzWbjO9/5zjGP/d5773UMMnHGGWfwwAMPkJSUxMknn8zWrVs7Brm44447cDqdTJ8+nWnTpnHHHXd0lDFv3jwuvPBCpk+fzoUXXsicOXMoKiri5JNPZvr06cydO5fTTjuNc845B4A777yT5cuXA/DjH/+Y3NxccnJyOP7445kxYwbf+973cLvd5Obmcskll/Dkk08eVnN1LD//+c+ZP38+ixYtOiypW758OXfeeWfH64suuojnn3+eiy++uNdlK+UN7lariWBg0KEmgqHxmQBUFe71SUxKKaWUGjmkvdZjOJgzZ445crS4bdu2MWXKFB9FNLI9+eSThw2GMRrp74/qqzUv/prjtt5H8Xe3kZSYAkDR7g0kP30iK2f8mgUXfM/HESqllFJqOBCRNcaYo0Zi0xospZTqxO3pgxXYqQ9WbMpYANqqD/gkJqWUUkqNHCNrkAvVJ1dffTVXX321r8NQamTx9MEK7DSYRWBoBDWEY6s96KuolFJKKTVCjIgarOHUjFGNHPp7o/rDtLXiNkJQQMBhyyscCQQ3FvkoKqWUUkqNFMM+wQoODqaiokJvllWfGGOoqKggODj42Bsr1ZmrhVYcOOyH/3msD0oiqrXER0EppZRSaqQY9k0E09LSKCgooKxMJ/lUfRMcHExaWpqvw1AjjauVVgIIPmLOOGd4CnH1G3C7DTbbsee3U0oppdToNOwTrICAALKzs30dhlJqlBBXK04JOHpFVBpRJQ2UVVUQHxs39IEppZRSakQY9CaCIrJURHaIyG4R+elgH08ppQZCXC04OTrBChyTAUD5QZ0LSymllFLdG9QES0TswKPAmcBU4JsiMnUwj6mUUgMhbidtcnTlfnhCFgB1JXlDG9AwUFZZyb/vu5j333ja16EopZRSw95g12DNA3YbY/YaY1qB54Flg3xMpZTqN3G10tZFE8HYVGsurJby/UMdks+t/fBlTm1+l9PWXU9zY72vw1FKKaWGtcFOsFKBzjNzFniWKaXUsGRzt9ImgUctj4hLw2UEd02BD6LyrcD8Tzqe71//kQ8jUUoppYY/nw/TLiLXichqEVmtIwUqpXzN7u66BkvsAVTYYgmoH32TDafVb2a7YzJtxkbTzhW+DkcppZQa1gY7wToIpHd6neZZ1sEY82djzBxjzJz4+PhBDkcppXpmc7fisnUxiiBQE5hAWPPomgvL6XIT5yqlMXYa+bZUbOXbfB2SUkopNawNdoL1FTBBRLJFJBC4FFg+yMdUSql+c7iduLsaph1oDEkmpm10JVglZRXESD326DSqQrKIbszzdUg+8fa/XmPDz49n59YNvg5FKaXUMDeoCZYxpg34PvAusA140RizZTCPqZRSA2EzTty2o/tgAbjCU0k0lTS2tA5xVL5TU7IPAMeYTFqix5HsKqattcXHUQ0tYwyJX/2GGa4tuN+6ydfh+ER1Qwt/eeRXrHrtUV+H4jMbd+1j1XvP+zoMpdQIMOh9sIwx/zLGTDTGjDPG/HKwj6eUUgPhME5c9q4TLHtMOkHipKRo9PTDai6zEqzg2ExsCZMIEBcl+0dXM8E9BUXMNlsByG5Yj7ul0ccRDb3/vPsK3yq/n/kbfkZjxej5/W9X1+yk4R//xfzP/x87//1XX4ejlBrmfD7IhVJKDScO48R0U4MVGp8JQGXRvqEMyafaqqxRE8OTsohMs6YxrNy/2ZchDbkDO9YBsDbh6wThpHjLCt8G5AO2vYdGjyz4+CkfRuIbm7ZuZaHNSrID12qCpZTqmSZYSinVSYBxYrqpwYpKygagsSxvCCPyLXed1ecsJj6NxLG5ALQUb/dlSEOupdBq2R55/DUAVO5e7ctwhpzLbcisW8u+0BnkmWRceV/4OqQhV7JjJQBbg6aT1rgVWup8HJFSajjTBEsppToJNC0YR3CX68YkW5MNt1XmD2VIPmVrLKOGMAKDghkTM4YSxmCv3OXrsIaUvWInLQSSnXM8JSaGtuKtvg5pSJXUNDGeAzQn5JIXMpWkuk1gjK/DGlKmaCNuhIJJ1+DARfXOz3wdklJqGNMESymlOgmmtdsEyxEeSzOBSO3o6YMS0FROtS0GABGhOCCdyPrR00QSILzxAGUBKdgdDgoDs4is2+3rkIZUWdF+QqUFe9x46mJnEOOuwl09uibcTmjYRWlAGjGTFgNQsXedjyNSSg1nmmAppZSHy+X2JFihXW8gQoU9gZDG0ZNgBbdW0uCI6XhdH5ZJXOvoef8AUc5SGoITAaiNGE+yMx/cbh9HNXTqCncAEJY0kdB0q5lo+b6NvgxpSBljiG0rpi4sg/FZmZSaaNqKRlctplKqbzTBUkopj+bmJmxiIKDrGiyAmuBUYlqKhjAq3wpvq6Q5cEzHa1d0NlHU01JX7sOohk5Lm4t4U4EzNBmAtthJhNBCU9leH0c2dJylVpPQMRmTSRo3A4CK/Zt8GdKQKq9vJYUy2sJTiQkLZJ8tg5DqHb4OSyk1jGmCpZRSHi1NDQBIN00EAZrCM0h2F+FyjY4ajGh3Nc6Q+I7XgQnjASjNGx0DXZRW1REvNRCZAkBIao61fM/oaSIm1ftpw0ZIXBbZmZlUmAjcpaPj/AMUlZYSJY3Yx1ijiFaFjyehOW9U1WIqpfpGEyyllPJobfYkWIHdNBEETEwWEdJEeXnJUIXlM81NjURKIybsUIIVmToJgJqDo+Mb/Ipia0CTgDHpAMSNnQ5AQ8HoGao+oKGISlss2OyEBjrIt6UTUj16+qFVF1m1laFxVoLliptMMC24KvN8GJVSajjTBEsppTzaEyxbDwlWUJw1kmBlwc4hicmXKkutgQzsEQkdy5IyJwPQUjo6brDrSvMACI/PACAjOYlCMwbK/P/8twtvLqY2ILHjdWVIFnHNeaNmJMFGz+9AdMo4AAKSpwFQuW+9jyJSSg13mmAppZSHs7kRAFtg900Ew5OtJnINxf6fYNSVFwIQFJ3UsSwmKpJiYrFVj44+SC0VVpIZnZwFQHCAnSJ7KiF1eb4LaggZY4hpK6Mp9NDvQHPMeCJNHaahzIeRDZ22KqsWM8wz0XhMpjXQR/2B0dMPTSnVN5pgKaWUh7PFqsGy91CDFZc+AYC2Cv8fqryxqhiAkJjkjmUiQqkjhbD60TEXmLvGGjExLDajY1lNaCaxLQd8FdKQqm1sJZEKTERqxzJ7glWLWXNgi6/CGlK22oM4cSAR1nWQlWLVYrpGUS2mUqpvNMFSSimPthZPDVZQ9wlWRGQMFUThqNk/VGH5TGuNNVpiZFzqYcvrQjNGzVDt9vpCGgiB4MiOZW3RY4k0dbjr/X8kxaKiAwRJG46YtI5lUenWQB9V+0dHP7TQxkKqHXFgs26Z4sIDySeV4JrRUYurlOq7ASVYIvKAiGwXkY0i8pqIRHdad6uI7BaRHSJyxoAjVUqpQeZqaQLA0UOCBVBqTyK0wf9rMFy11kAe0QmHJ1ht0VmMoQZnY7UPohpaIU0lVDviD1vmSLQG+qjI9/+5kKqLrJrakPisjmWpGeNoMoG0loyOGpwoZzF1wYfX4laGpBPTlD9q+qEppfpmoDVY7wM5xpjpwE7gVgARmQpcCkwDlgJ/FBH7AI+llFKDytVq1WAFBIX1uF1tSBoxLYVDEZJP2RrLqCOEoODDPw9HvNUPrSzf/4fqjnCW0hCUcNiy6DSriVz1Af9PsBrLrJra6OTsjmWpY8LIIxl75R5fhTVk6lvaSDRlOMMO/5KhOXIsYaYeGvy/FlMp1XcDSrCMMe8ZY9o8L1cC7W0IlgHPG2NajDH7gN3AvIEcSymlBpvb00QwMDikx+2cEenEu8twO1uHIiyfCWgqp0ZijloemTIRgKoC/x6qvbXNTby7nNaw5MOWJ2VOwmnstIyCGpy2KqumNjrpUIJltwmlgWmEN+T5KKqhU1hRSyJVEJ122HJbvHUNtJT49zWglOofb/bBuhZ42/M8FejcfqbAs+woInKdiKwWkdVlZaNjRCKl1PDkdnqaCAaH97idLTYbh7ipLPLvPhjBLRXUBYw5anlS5hQAWkr8eyTF0upaEqjGRKUftjwpOpwDJGKv8u/zD2CrO0gzgUho7GHLG8KyiG8rApfTR5ENjYrCfdjFEBSXfdjy8FTrGqjMHx0DfSil+uaYCZaI/FtENnfxWNZpm9uANuCZvgZgjPmzMWaOMWZOfHz8sXdQSqlB4m61EqzgkJ6bCIYmWk3kKvx8LqyItkqaAmOPWh4XO4YyE41U+neCUVmUh00MAWMyDltuswmlAWmE1+f5JrAhFNJYRKUjAUQOW+6OHY8dt9+PpllXYv2ORyaNPWx5Uvp4WkwATYX+30xWKdV3jmNtYIw5taf1InI1cA7wNWM6enseBDp/5ZfmWaaUUsOW29MHKzSs5wRrTJrVPKjej+fCMsYQ5a6mNDTuqHUiQokjhVA/H6q9rti6uQ5LyD56XXgmCdXrwe3uGF3OH0W2ltAQlnTU8pCkibAHKvZvITFhog8iGxrOivY+aOMPW56dEEmeSSSw0n//Biil+m+gowguBW4BzjPGNHZatRy4VESCRCQbmAB8OZBjKaXUYGtPsIKOMchFUtpYWkwA7gr/rcGprWsgShogPKHr9aHpxLYWDHFUQ6u1wkogY1KOTrBcMeMIopW2av8dTbLZ6SLBlNEannLUutjMqQDUHtw21GENKVtNPm4E2xF9sMKCHBTa0wgdJRNOK6X6ZqBfuz0CRADvi8h6EXkMwBizBXgR2Aq8A1xvjHEN8FhKKTWobC211BN6zBqJwAAHhbZEAv14LqyyUit5Cow6uvYCwBmVRZypxOWZnNkv1VjJU3hc5lGrghKtWpvy/f47kmBBeTWJUo0tOv2odRmpaVSYCNpK/bsGJ7DhIFW2WHAEHrWuJiyT2NaDft8PTSnVdwMdRXC8MSbdGDPT8/hOp3W/NMaMM8ZMMsa83VM5Sik1HNiddTRIz3NgtasMTCWq2X9rL2pKrVbdITHJXa63x1lNpsoP+O8oagH1B6mQGAgIPmpdTIanBqfAf2twygqt/lXBcRlHrYsJDSBfUgjy88l2o1qKqAvu5kuGmPE4cEGV/37RopTqH/9tOK6UUn0U4Kyj0dbzCILtmsIzSGwr9NuJRhsrrOQxMv7o2guAiOQJAFQd8N9O/uHNRVQHJHa5Li09m3oTTFup/w50Ulvi6X+UdHQTSRGhMjidmCb/TS7qW9pIcJXSGp7W5fpATy1mnZ83k1RK9Z0mWEop5RHYVk+zref+V+1cMWMJoYXGSv8cv8flmf8oJmVcl+vjMq3Jdhv9eKCPaGcJjaFd1+DFhgeRTzIB1f47ip6zzKqdikrq+negKXIsMe5KaKkbyrCGTH5ZHclSiUQfXYMHEJNuDdVec0CHaldKHU4TLKWU8gh21dPq6F0NVrBnqPbS/f5Zg2OrLaCZQAIjux7kIikhiUoTAX46VHt1QwtJphwT2XXthYhQFpROZKP/1uA4qvfhwoZtzNF90ABsnmaiTcX+WYtXWriPAHER0sUoknCoH1pr6a4hjkwpNdxpgqWUUh4h7nqcARG92jYqdRIAdUX+eXMZ0lhIme3o+Y/a2W1CsT2FkHr/TDAOHswnWJwEdpNcADRGZBPnKoG2liGMbOiE1u+nzJEM9oAu14clW7WY/jrQR12hdW1Hp3Y9DH1aTAj7TAqOqj1DGZZSagTQBEsppTzCTCNtgb1LsJIzJuI0dtpK/fPmKqK5iNqgrjv3t6sJSWNMs38O1V6VbyUN4Z5EuitmzDjsuGkt97/fgTaXm/jWA9SHdZ9gJmZNxm2ExiL/rMV1l1oDuISnTu1yvcNuozQonajGvCGMSik1EmiCpZRSAMYQbhpwB0b2avOo8BAKJR5Hjf/1wXG63CS4inBGdN08rl1rZBbx7jKMs3mIIhs6LcVW0hCXPb3bbUKTreSrPM//anDyyuvJpBgzpuv+VwCZiXEcNHGYcv/shxdQtYtGCYWIrvvhATSGZxPlqoLmmiGMTCk13GmCpZRSQGNDLQ5xYwuO6vU+5QEphDfmD2JUvnHwYAFjpB7iJvS4nS1uLDYxVB70wz4o5TtpIojgMV0PcAAQm2ENclBf6H81OAV7txIqLYSkd59ghgTaKbSnElrnf18yuNyGmMZ9VIVkdttMFsB4rhFXmR9eA0qpftMESymlgOrKcgAcYdG93qc+NIP4Vv8bqr0sbzMAYSldN41qF5Zk3VyW5/vfMNWRdbspC0zvcdLpjJQUykykX95c1+1fD0D8uNk9blcdmkFsywG/uwbyyuuZyH5aYif3uF2Ypxaz+oD/1WIqpfpPEyyllAJqKwoBCIzqetS8rrRFZxFOA66GisEKyycaC62EKXFsTo/bxWdaNThNRf6VYDS2OBnbtoe66Ck9bhcVGkCBpBBc6381OLaSLbiwEZTcc5LtjB5LmGnE1JcMUWRDY9+eHcRKHcEZx/W4XXzGZNqMTefCUkodRhMspZQCmiutBCskJrXX+zg8w1RX+Nlku/aybTQTSGQ38x+1S05KpdaE4vKzodr3eG6ubamzjrltZXAGMU3+10w0rnYzxQEZEBja43YBCdYIezUF/nUN1O5bA0D8hHk9bpedFMMBE4/bD2sxlVL9pwmWUkoBzppiAMJie59gRaZYN5fVBTsGJSZfia7ZSn7gOLDZe9zO4bBTaE8hpC5vaAIbIqXbvgAgbuKCY27bFDmWaLd/DXJQWtvIlLbt1Mb33DwQIDLNquWr8rMmckFFX+HEQUBq933QAGLDAsm3pRJS619fMiilBsZrCZaI3CQiRkTiPK9FRB4Skd0islFEjv2XWimlfMRdZyVY0Qm9T7Di0ifiNkJLqf+MotbQ3EqWcw8NY3puHtiuOjiNGD8bqt3s/4xmAomfMPeY29ri/W+y3W0bviJSGgkbt/CY26ZkjKfFBNBS7D9fMrS2uUmvXUth2FQICOlxWxGhOiSTMS0F4HYPUYRKqeHOKwmWiKQDpwOd20mcCUzwPK4D/uSNYyml1KCoL6XGhBEaGt7rXZJjoygkFqnyn2+vd236inBpJijr2MkFQEtUNgmuEoyfTLbrchvSa9dyIGw6OAKPuX37ZLsV+f5Tg9Ow7T0Akmedccxt02Ij2E8i9kr/mQts4+79TGUfbRnH92r71uixBJkWqD04yJEppUYKb9VgPQjcAnQeRmgZ8HdjWQlEi0j3k0kopZQP2RtKqLaP6dM+DruNEnsyofX+0wendvuHAKTNOK1X29tix2EXQ+VB/6jF27lrO5PYT2vGCb3aPiHTM9luoX/U4BhjiCv6mMKATALGdD/JcDu7TSgJSCO8Yf8QRDc0Dn71Bg5xk3jcsl5t7/D0Q2sq9q9+aEqp/htwgiUiy4CDxpgNR6xKBQ50el3gWXbk/teJyGoRWV1WVjbQcJRSql/CW0qoD4zv8341IenEtvhPE7nQgk8otCURmTy2V9uHJ1s3l2X7/WMUtYKVrwCQuvAbvdo+MzGGAhMHFf6RYG7dvZfZ7s3UZJza633qwrOJcxaCq20QIxsaxhii8t6h2hZD+Nhj98EDiEr19EPb7z+1mEqpgelVgiUi/xaRzV08lgE/A+7sbwDGmD8bY+YYY+bEx/f95kYppbwh0VVEY1h6n/drjcoiytT6xSAHJWUV5DSvpTTppF7v0z5Ue6Mf9EFyuQ1J+9/koCOD6PRpvdonNNDBQXsqIX4y2W7ef/6OQ9ykLb6y1/u4Y8YRQBuuqpFfi7V+x14Wtn1FaeY5Pc6B1llaRjZ1JoRmrcFSSnn06q+HMeZUY0zOkQ9gL5ANbBCRPCANWCsiScBBoPPdSppnmVJKDSs1VeXEUIcrpne1Np3ZYq196gpH/jDN2/7zAsHiJG5u72pvAJKSUqkzIZiKkd8PbdXKj8l1b6d28iUg0uv9qkMziPODyXbrmlqYXPAS+4MnE5E1s9f7hSRZtZiVftAPrfDfjxAkbaR/7bpe75MZF8Y+k4ytyn/6oSmlBmZATQSNMZuMMQnGmCxjTBZWM8DZxphiYDlwpWc0wQVAjTGmaOAhK6WUd7U3bwuM63uCFeq5uawa4fMAGWOI3fEsRbZE0mZ8rdf7tQ/VHuwHQ7XbPv4NDYQwYel3+7SfM2ocIaYJRvhku18sf5xxHEQW9O39x2RYkxHXjPCh2vcXFrOo7AV2Rp1ASFrPw7N3FuSwUxKQRkR93uAFp5QaUQZzHqx/YdVw7QYeB743iMdSSql+qzxgJVhxmZP7vG9s2iQAGotHdg3W1lXvkevcROH4/+p106h21cHpI36o9jWrPmZB86fsyLoMR3hsn/a1e4Zqrzs4cvuhFVVUM3Xr78kPHEfGib1vHgiQnppOjQnFOcIn29384r1ESwNx5/a910NdeBYxbaXgbBqEyJRSI41XEyxPTVa557kxxlxvjBlnjMk1xqz25rGUUspbnEVbcBo7yWNz+7xvelIcJSYaUzly++AYtxv54F7KiWbqspv6vH9LZJZnqPbWQYhu8DU2NRH+7g1UE8G0C2/t8/4RqVZiXnVgZCZYxhg2/f3HpEkZwWf9ss8JdlxEEHmkElQ9cpuJrvjwXc6oeo4diWczZvz8Pu/vHjMBGwZ3uX8MdqKUGpjBrMFSSqkRIbRqBwX2NAKCep5UtCvhQQ6KJYGA+gPH3niY+uL1PzHVuZm8adcTEhbR5/1tceNwiJuKEThUuzGGlU/8iEnuPRSfeB9BEXF9LiMlc4I12W7JyBzo4+2Xn+D0mhfZkvINEmae2ef9RYTK4HSimkbmIBe79+5l7H/+hxp7DOOueKRfZYQkWzXZVSO8maRSyjs0wVJKjWrGGJKadlERPqHfZVQHpRDZVOjFqIbOvh0bmLHhXrYH5TD7gh/1q4z2odrLR9gw1cYYPnr615xS/iwbEi9g8imX96uc9Nhw8kwSUjHyBjn45L1XOGXzT8kPnsTUax7udzmNEVnEusqhtcGL0Q2+/Qfycf7jIhKkCvc3/oEjvG9z4bWLzbBG06wrGJm1mEop79IESyk1qhUXHSCZckjqfaf2I7WEpzHGVTbi5gEqOZhH4PPfwCkO4q54CpvD0a9y4jOtQQ5GUj80t8vNisd/wil77mdr+EJyv/14v8sKctgpCkglvCHPewEOMmMMH73wEPM+u46ygGQSv/dPJKDvNbjtJNb6gqKldOTUYq5fvwZ54jSyzQHKz3yc+CmL+l1WdkoCB00srrKRWYuplPIuTbCUUqPagQ3/ASBmYv9vrojOwIGL1qqRM9BD3q7NtPxlKTHuasrPe5a4tPH9LisxKZV6E4J7hAzVXlVVycoHv8HJhf/HxpjTmfyD17E5AgZUZl1oJrGtI2Oy3fKqat7/3TWcvO0O8kKmEf8/HxIUmTCgMkM9/dDK8zZ7I8RB5XS5eeuZhxj72jlE0UDFhS+RNv/8AZWZEBFEPskE1YzcvphKKe/RBEspNaq15q2k1djJyD2+32UExWUDjJg+SGv//QJRzywl0tRRvOw5xs/u/cTCXekYqr02zzsBDqLVK96g8Q8LmF/3AevGfofc/3kBW2DwgMtt80y2a6qHbz8kYwyrV7xJ/R8Wcnrda2zP+CYTb36f4Kj4AZcd72ki11C4Y8BlDabdO7ew+v6zOXvXHVSGZhPwnRWk5i4ZcLkiQmVIJjFN+0f8fGhKqYHrX3sQpZTyEzGV68gLnMDEoNB+lxGdYjWPqinaTfKMU70VmtfV1VSy+R+3sLD8JfbZswj65tOMHd/3kRO7Uh2cRmrz8G0etWPbJurevJU5jZ9QaEsi76yXmTXHe+cqMHEC5ENNwTaiY8d5rVxv2bNzMxWv/ZR5TZ9QLAnkn/0ck+ec5bXys5LjKTRjcFcMzy8ZisvL2fbSvRxf/CypYmPbtBuZ8vXbwe6926CWyLGElb4FDWUQPrAaQaXUyKYJllJq1GpubmZc6042JV84oHIS08fhNkJL2fBsHuR2uVn59t8Zu/peFlLBlwkXMePahwgKDvPaMVqiskls+AS3sxVbQKDXyh2oHXv2sW/5rzm5+lXcYmNV1veYfentBHjxvQNEp02Br6CmYDvRM87xatkDsWPbJkr+9WsW1L5DMg7WjPse0y/2/vsPC3Kw1ZZKQu3wugYKikvZ9MbvmFv4LCdLDRvGnE7WpQ8wJTHL68eyJUyEUmgp3kHQeE2wlBrNNMFSSo1aezd/wVRxEpi1YEDlJERHUMwYZBg2D9u9+n1a3r2L451byLNnsevMx5k352teP44tdhyOIjelB3eRkDXN6+X31c69e8l749ecUP0GE6SVHQlLSb3ofuYnZg7K8dLaJ9sdJkO1b9m8jsp3fs3CuvfJFhtbk79O9gV3cNwgvX+AqpBMpjStsJrIiQzacXoj/2Ah2994gHklL3CmNLAzch7uM+9gxtQTB+2YEalTYDNU7N9CyvjFg3YcpdTwpwmWUmrUqtrxGQBp05cMqBybTSh3JBLccNALUXnH/i0rqX3rTnIbV1FONOtybmPGshsGrXYpPHkibIby/K0+TbB2791L3vJfcXzVcsbRys6EM0hbdhdT0qYO6nFTY0LZYpKJ8vFkuxvXf0Xte/exsOEDnOJgc9oljDv/Z8yMzxj0Y7dGjyW88Z/QWAFhfZ9PzBv27s9nz/L7WVD+CqdLE9ujT6DtrJ8xcdIABrHppeT08bSYAJqKh3c/NKXU4NMESyk1agUWraZEYklMyR5wWXXBqSQ1rvNCVANzYNdGypbfyey6j6gxYXyS9X1mXvhjZkVGD+px47OsBKapyDdDte/du5t9y3/N8VXLycbJ9oSlpJ93J1PSBzexauew2ygJTCe9cejnAjPGsGHN5zR8cD8LGz+mRQLZnHE5E86/lZmxqUMWhyN+PBRCbcE2IicNbQ3O7j272f/P+1lY+QZZtLJ9zMkknXMbk8fNGbIYshMi2WeSCKwYOdMVKKUGhyZYSqlRyRhDav1mCiNySfRCec6IdGLr/41pa0EcQV4osW+KD+wm/9W7mF35L2IJ4LPUa5h24W0sjh34CHG9kZSURp0JwQzxZLv79u5g//L7WFj1Jhm42J5wJunL7mBa2pQhjQOgITyLMdUroLURAvs/aEpvGWNYu2oFzo9+w4KWz2kgmM1ZVzHh/FuZEZM06Mc/UmTqFNgAlQe2DlmCtWPndg6+dR+Lqv9JNm1siz+DtHNuY2pW/+e166+QQDtFjjSm1ucN2TGraupY/cbDxOS/T8LlfyYjq/8TpiulvGfACZaI/A9wPeAC3jLG3OJZfivw357lPzDGvDvQYymllLcUF+4nhTIOpnjnG26JycRebKgpziMqbZJXyuyNsuICdr3yc44rfYUxGNYkXsjYr9/JoqTBbxLWmc1uo8ieSkhd3pAcb//eHRxY/kvmVr1FGoatCWeTuex2cobwsz9K7Hiohrby3ThSBu8G3xjDus/fw/2fB5jT+hV1hLJh3P9j0nk/ZroXhlzvr6TMibQaO81D0ERu186tHHzzVyysfZuxYtiReBbp591OTtrkQT92T2rDsoit+xJcTrAPbG61ntTX17H61QeZvOdvnCaVAHz+yTNkZN09aMdUSvXegBIsETkZWAbMMMa0iEiCZ/lU4FJgGpAC/FtEJhpjXAMNWCmlvOHgxo9JBmIm9n/+q85CErJhG1Qc3DUkCVZNVSUbX/oFsw8+w3xaWDfmTNIvuIf5GRMH/djdqQpJJ2OQm8gd2LuDguX3clzV2yQDmxPPI3vZbcxI9f0392Epk2EPlO/fQtIgJFjGGNZ99g72/9zHbOd6qolg/cQfMPW8HzEjPMbrx+ur9LhI9pOIrXLwajEL925l/xs/Z071u2QJbE9eRub5t5OTNDyGxnfFjMNR58JU7kPivX8tNjc1sP613zF+519YQjU7Q6bTdtqjuN66hfCDn3j9eEqp/hloDdZ3gfuMMS0AxphSz/JlwPOe5ftEZDcwD/higMdTSimvaN2/ilbjIGOadxKsGM9cWPXFgzvIQXNTA+te+S2Tdz/OYurYEHkScefdy5wJMwf1uL3RGpVFQv0K3M4WbAHebSZZXlLIzpfvYk7pqyQCGxMvYOz5tzE7ZaxXjzMQydlT4ROoLdiOtxvorf/qE9rev4c5rV9RQTRrJ99Mznk/ZGZopJeP1H8BdhsljjSyB6GJXHnRfva+ciezyt4kFhsbk77OhAtuJzcpy+vHGojg5EmQD9UF24jxYoLV5mxl3ZuPkrHxYRZQweagmVR97VYmzlsKwBcrX2VW6eu0NjcSGDz4zVOVUj0baII1EVgsIr8EmoGbjTFfAanAyk7bFXiWHUVErgOuA8jIGNomLUqp0SuqYj15geOYGBzilfKS0rNpMzaclXleKe9IrjYn65c/StrGh1hIBZuDZ1N91r3MmD58hoO2x43HXmgozt9O0rgZXimzvq6G9S/9mhn7n2Q+zayLPZusC3/OnNThk1i1G5uaSJEZg6vMe4Mc7Nq2gfI372J+wwrqJZR1E3/ItPN/zOzQCK8dw5vqwjKJq10HbhfY7AMur7a6nK0v/ZwZBc8yCxdr4pYx7sK7OS5l8IabH4iY9GmwCmoObCVm1rIBl2fcLta/8yTxX/2WuaaQHY5JlC35PTknnHfYdiGTTyW47CXWr3qPmSedP+DjKqUG5pgJloj8G7r8Mu42z/5jgAXAXOBFEenTfz1jzJ+BPwPMmTPH9GVfpZTqD6ezlbGtO9mYeL7XyowIDaFA4rDX5HutTADjdrNlxfNEffpLjnMXsN0xibIlfyDnhHO9ehxvCEudBhuhMm/jgBOs1pYW1rz2ByZsf5QTqGZ9+AnEnvcL5kya5aVovS8syMF2ewpjvDDZ7sH8veS9ehfzqt4iTRxsyLqGKRfezqzIWC9EOnhcY8YTWOukrWKfNapgPzU31rPhlfuZvOcJFtDAV5GnknT+vSwY5/s51nqSmZZCuYnEWTrA+dCMYct/Xibkk18yy7WPfbZM1iz8I7NP/SZisx21+eQFZ9L6sYOGjW+CJlhK+dwxEyxjzKndrROR7wKvGmMM8KWIuIE44CCQ3mnTNM8ypZTyubwtXzJBWgnInOfVciscSYQ2eu9P3Z51K3C+fRs5rZvJk1RWzXuIuWdcgc1+9A3WcJA2cRaufwlN+RuAK/pVhtvlZs07fyNp9W9ZaArZHjiNytOfYOacbv8VDSt1oVlMbFjR78l2qyrL2fziPcwpep54XGxKuoDxF93DrPg07wc7CMKyZkMeFG9fRVo/Eqw2Zytr33iErM0PM59K1gfPI/yse5g73TtNeQdbUmQwa0khfgDzoe1Y+x/a3rmdaa0bKZAkVs66n7lnf4tsR/e3bMFhUayNPIGpFe/S0tJEUJB3auaVUv0z0CaCrwMnAx+JyEQgECgHlgPPisjvsAa5mAB8OcBjDTtul4uW5kaczhbaWltwOVtxOltxOVtwtbXicrbiamvF7WylzeXEGKx/uh6C9dyYzhV3R1biCSCICNgEaX8u1k8RAWyIDURsCNY625HbiGCzNjpsmSDYbIJgAwGxCSI2QLDZbIdvK2DzHENsAnJovU08y7Bhbe7ZH0Fsh+LisJ+d3uNR6474CYc/78FQVoMefu56vVf/j9fvPftxrO4O1q/33IvjDeG7q9z6IQApuSd5tdyG0FRS61Yee8NjKNy7leLXfsbsuo8oJ4rPJt/OnK//gKzAoR/+vS9iY6LJs6XgKO/fQBcbP1lO0Ip7mevaRZ4tg02L/4+cJRd3+Y39cNUaP42I+n/SXLqH4MTeJxiNjQ2sfuV/yd39ZxZLHetiTiPtgl8wO9O3o+L1VdaUubR85KBu75ew+LJe72fcbta8/yzxq37NPHcB2x1TKD3lj8w8/sxBjNb7bDahPDiTyQ2fgdsNffjdzdu5ibLltzO3fgWVRPLFpJ8y++s3khYU3Kv9HcddQcyKFXz57+eZd/Y1/X0Lfs/tcuF0tuBste7d2lpbcDqbafPcv7ldLowBg9v6f2fc1v96Yzz/8w3G7cb6j2w8/xIF47kn6rg3QsBms+6v2n8P5PBlIhx67rlfAut+j/Z7Opu9475LsCG2Q8cSsVn3bEJHuYfu2/DcM3ruJEU8Pz2heO7Dulrfvl+79vfTedvuHOu+qKe11q7dbSHYAwKx2/r+xZUvDDTB+ivwVxHZDLQCV3lqs7aIyIvAVqANuH4kjiC44aOXMF89gcPVRICriUB3M0GmiWDTTLBpIVRaCAH0eyKlRpb5QDnRJKb1vwlTl6IziKt9m6aGOkLC+t5HprqsiB0v3cmskleIxsFnad8i9+LbWBQ1xrtxDqKysElkN6zrUw3Ozg2f0fyvO5nespoSiWPNrF8x6+z/h62Hb+yHq6hJJ8C++zmw4UMmnH7s36+2tjZWvfkEWRt+y4mUsjV0NvXn/IpZ0xYOQbTel5kQzSbJJqJkTa/32fD5uwR8eDdz2raSb0tl3fGPMvPU/xpRiXVnzclzCc97l9biLQSm5B5z+8KD+ex55W7mV7xOAg5WZXyLad+4jYWRfbvuc044n7L/3ELw+r+BnyVYbpeLuppK6qpKaagpp7mmDGd9BW31FZjGKmipweZsxN7WgL2tiQBXI4GuJgJNI8HuZkJoIsC0EUAbAeIiCBjeX1epI61wzaD+G89zzvQUX4fSKwP672WMaQUu72bdL4FfDqR8X2trqiW6pRinLYQWRziN9nhc9hBcAWEYRwgEhmECQhF7ANgDEXsA4gjAZg+0fjoCsbX/tAVg6/wNxpEO/6rA+mkM0v7tiHHjNmCMGzEGtwE83664Pd+sWN+uuK3c3/NNS8e3Lhxaf+hbmPZvaPBs6+4op32fw/f3lEt7GYdiOLS9VeqheDzPMR01duJ5De21eFbZ7c87fnb6JuPQdv1rdjPY+h7RAN7DEL996eKAZvidgj6LGLeAOC/fwAWl5EI+HNyxmvGzT+71fg31dax/+T6m73uCOTTz1ZhzyL7oFyxKzfJqfEOhMWUBcTs/pLJgO2PSe57sd/+erZS8fgfz6v5NNeF8OeFHzLjwZhKDw4YoWu+bPH0+tW+H0rL7Yzj9um63M8awesXrRH7ycxa597DPMZadpzzA1OPPH7pgB4GIcCB6HmdUP4e7oQpbWPfDx2/btIb6t+5gbvNnlBPDmul3MfO8/yHDMXjzRw2F2GmnQN4vKFz3Llk9JFjlVVVseOnXzD/4dxbSwsaEc8m+6BfMT+zfgF82h4N9E65m3s7/ZePHy5l+4nnH3snHWltaqCjOo6bkAI2VBTirC3HXFuNoLCGouYyI1nKi3ZVEmnqixBDVTTkNJphGCaFZQmixheC0BdMcEEW9IxmXIxQTEIrbHmTNTWYLBHsgOKyf4rAeHfdu7bVIYrMe4KklOtSaB2wdrWraa32se6ija70O3RNZ9QzGGMS4PIvdnbZp38d96J6nvaas/d4NrAFkADHuTmV3eo77sIYmHbdlnWqG2tebThu13+cZjlzXfr94+PqeHOsWQTCYbu7lPJ/oUctbQlKZlDg8B/fpysj7enAIHXfWf8NZ/+3rMJRSI0TcxHmwEmr2roZeJFitLc2sef0hxm77E4uoZH3YQqLO+SULph43BNEOjtSZZ8DOX7Hni+XdJlglhfnseuVe5pW/SgJ2VqVfzdSL7mBedNwQR+t9UaFBfBwyn5mlH2HaWhFH4GHrjTGs//xdZMV9zHWuo0Ti2TTvfnKWfhvxwqh7w0FE7lk4PnmGfV+8TPap3z5q/fatGyj7169YWPceLRLImrHXk3PRTzluGA05PxAzcqez45/phGx5Fc6++aj1FVXVrHvtQWbsf5KvSTVbok4g4fxfMXvswEfenPH1myi9/0mC/nMPzoVLCQgIPPZOg8jtclFeuI+Kg7toKN5DW+V+7DX5hDYdJLa1iHhTQbIYkjvt4zR2KiWaGkcs1cGplIXMxB0yBkLGYA8bQ0BEHMERcYRGxxEenUBkTBxhAYGM3K9llD/SBEsppbwkLXMClURgClb3uF1LSzPr//kYGZsfYaEpY0fAVGpOfZSZ888aokgHz7jJ09lryyR210tgbjmsxvlg3i7y/3kfs8reYCFtrI87l+yLfs785CzfBTwIXNMuInLNR+z64K9MOOM71jKXm/Ufv4Hj898zy7meKiJZO/lmpl9wE4lB/jVv0azjT2PPxykEfvlHzJKrEEcgxhg2r/2c2g8fZH79B2SJnS1pFzP+wrs5bkzysQsdQSKDA/go6TyWlTxK1dYVxExdAkBhYQHb3v4T0/Of5lSpZmfYbFrPuINpM07x2rGDgsMomncbM1b9iM//ehPH/7+HvVZ2Txobaincs5nq/C20Fm8nsHoPMY15pLgOkiCtJHi2cxuhXGKoCEimIHIWeZHp2GIyCIpJIyw+jeiEdMbEJZNot5M4JJErNTikf530B8ecOXPM6tU935gopdRwtvq3yxhbv46YO/Yi9sO/w2psqGPdm38iY/sTpFPMTsdEmk/4KbknXjBi+5t05T/P3MdJu37N+mk/ZeySK9m76TOca59lRt3HCLB+zFLSzv0ZyWNzfB3qoGhubWP3fceT5c5n29hrcDbUkFb6IRmmiEqiyJv8bXLOu4HAYTqXlTe899L/cfqWW9gRMovq8HHEVKxjonsPTQSyPfUbTLjgVsLj0o9d0Ai152ApgX9eRIStmR0JZ+Ko3k9O8xqCxMnO0NmEnn4baTMHb2TMrx6+grkVy/k4+wYWX3GXV/6+GLebitICivdspP7gNijbSWjdXuKb95NMWcd2biMU2RKpCM6gKWocZsx4QhLGEpM6noS08QSH+NcXCmp0E5E1xpg5Ry3XBEsppbxn5Zt/YcGam9h84v+Rc8qlABTu30Xe+48xpeBFYqhlT8AEmo+/maknjawR8nqruaWVbf+7lFmthwY6qCGMXYlnkXnuT4hPm+DD6IbG3j07aXr2Cqa5ttNqHOwJnkpr7mVMPfUKAkZwH7PecrkNH/79F8za9zghNFMYmE3dhPOZfPq1hEaPjrqJNWu/IuCtHzKpbSdl9gTKEo4n5dTvkTh+9qAf29XazKaHL2Zm3X/4Kvh4Is66h0m5c3sc/a1dY2M9RXu3UH1gK60lO3BU7SGqIY+ktgIiaTy0nQmi0JFGdVg2bTHjCUqaTEzmNJLHTiNoFPyOKwWaYCml1JBobW6i6P7jiDB17In7GmG1u5ncshmbGNaHLiT4xB8yef7SYTlYize1OVtZ/94/aK0uJDxlMpMXnkNg8Ogac9UYQ1V5CZFR0TgCezfUtlLe4na5WP/CvUze8SdCpYU8SaMsYgot4enYgiMwxo3N2YS01BLQWExYSykxbWXEm0pscujesIRYSgPTaYzIwsRNIix1CvHZuSSmZvtNv0Gl+ksTLKWUGiL7tq6m5dXvke7cT5EjlbKUr5H9tWtJyup5VD2llPK2uopCdrz/VwL3f0xy0y7iqTxsfT0hVNhiqQ2Ipyk4EROVQUDiRKLSp5KUPY2wiGjfBK7UCKAJllJKKaXUKGfcLloa67DZHQQEhWgtlFID0F2CpaMIKqWUUkqNEmKzExwe7eswlPJr/te7WimllFJKKaV8RBMspZRSSimllPISTbCUUkoppZRSykuG1SAXIlIG7Pd1HEeIA8p9HYQaMnq+Rw8916OHnuvRRc/36KHnenQZjuc70xgTf+TCYZVgDUcisrqr0UGUf9LzPXrouR499FyPLnq+Rw8916PLSDrf2kRQKaWUUkoppbxEEyyllFJKKaWU8hJNsI7tz74OQA0pPd+jh57r0UPP9eii53v00HM9uoyY8619sJRSSimllFLKS7QGSymllFJKKaW8RBMspZRSSimllPISTbB6ICJLRWSHiOwWkZ/6Oh7lPSKSLiIfichWEdkiIj/0LB8jIu+LyC7Pzxhfx6q8Q0TsIrJORP7peZ0tIqs81/cLIhLo6xiVd4hItIi8LCLbRWSbiCzUa9s/iciNnr/hm0XkOREJ1mvbf4jIX0WkVEQ2d1rW5bUsloc8532jiMz2XeSqr7o51w94/o5vFJHXRCS607pbPed6h4ic4ZOge6AJVjdExA48CpwJTAW+KSJTfRuV8qI24CZjzFRgAXC95/z+FPjAGDMB+MDzWvmHHwLbOr2+H3jQGDMeqAL+2ydRqcHwB+AdY8xkYAbWeddr28+ISCrwA2COMSYHsAOXote2P3kSWHrEsu6u5TOBCZ7HdcCfhihG5R1PcvS5fh/IMcZMB3YCtwJ47tcuBaZ59vmj57592NAEq3vzgN3GmL3GmFbgeWCZj2NSXmKMKTLGrPU8r8O6AUvFOsdPeTZ7CjjfJwEqrxKRNOBs4C+e1wKcArzs2UTPtZ8QkSjgROAJAGNMqzGmGr22/ZUDCBERBxAKFKHXtt8wxnwMVB6xuLtreRnwd2NZCUSLSPKQBKoGrKtzbYx5zxjT5nm5EkjzPF8GPG+MaTHG7AN2Y923DxuaYHUvFTjQ6XWBZ5nyMyKSBcwCVgGJxpgiz6piINFXcSmv+j1wC+D2vI4Fqjv94dbr239kA2XA3zxNQv8iImHote13jDEHgd8C+ViJVQ2wBr22/V1317Let/m3a4G3Pc+H/bnWBEuNaiISDrwC3GCMqe28zlhzGOg8BiOciJwDlBpj1vg6FjUkHMBs4E/GmFlAA0c0B9Rr2z94+t4sw0qqU4Awjm5ipPyYXsujg4jchtW14xlfx9JbmmB17yCQ3ul1mmeZ8hMiEoCVXD1jjHnVs7ikvUmB52epr+JTXrMIOE9E8rCa+p6C1Ucn2tOsCPT69icFQIExZpXn9ctYCZde2/7nVGCfMabMGOMEXsW63vXa9m/dXct63+aHRORq4BzgMnNo8t5hf641wereV8AEz2hEgVid6Zb7OCblJZ4+OE8A24wxv+u0ajlwlef5VcAbQx2b8i5jzK3GmDRjTBbWdfyhMeYy4CPgIs9meq79hDGmGDggIpM8i74GbEWvbX+UDywQkVDP3/T2c63Xtn/r7lpeDlzpGU1wAVDTqSmhGoFEZClW8/7zjDGNnVYtBy4VkSARycYa2ORLX8TYHTmUDKojichZWH037MBfjTG/9G1EyltE5ATgE2ATh/rl/AyrH9aLQAawH7jYGHNkB1s1QonIEuBmY8w5IjIWq0ZrDLAOuNwY0+LD8JSXiMhMrAFNAoG9wDVYXyjqte1nROQe4BKs5kPrgG9h9cXQa9sPiMhzwBIgDigB7gJep4tr2ZNkP4LVTLQRuMYYs9oHYat+6OZc3woEARWezVYaY77j2f42rH5ZbVjdPN4+skxf0gRLKaWUUkoppbxEmwgqpZRSSimllJdogqWUUkoppZRSXqIJllJKKaWUUkp5iSZYSimllFJKKeUlmmAppZRSSimllJdogqWUUkoppZRSXqIJllJKKaWUUkp5yf8HqcK9JDtbsOUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -4995,31 +4995,31 @@ " 24\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " bAP.soma.v\n", - " 0.00414\n", - " 5.44e-06\n", + " 0.000726\n", + " 2.44e-05\n", " \n", " \n", " 25\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step1.soma.v\n", - " 0.00821\n", - " 1.45e-05\n", + " 0.0319\n", + " 1.12e-06\n", " \n", " \n", " 26\n", " False\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step3.soma.v\n", - " 0.00802\n", - " 3.6e-05\n", + " 0.00768\n", + " 2.59e-05\n", " \n", " \n", "\n", @@ -5027,14 +5027,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "24 False 8 0.07 0.0122 bAP.soma.v \n", - "25 False 8 0.07 0.0122 Step1.soma.v \n", - "26 False 8 0.07 0.0122 Step3.soma.v \n", + "24 False 8 0.0708 0.0267 bAP.soma.v \n", + "25 False 8 0.0708 0.0267 Step1.soma.v \n", + "26 False 8 0.0708 0.0267 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "24 0.00414 5.44e-06 \n", - "25 0.00821 1.45e-05 \n", - "26 0.00802 3.6e-05 " + "24 0.000726 2.44e-05 \n", + "25 0.0319 1.12e-06 \n", + "26 0.00768 2.59e-05 " ] }, "metadata": {}, @@ -5042,7 +5042,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADzpUlEQVR4nOzdeXicZbn48e89e/a9SZqkTbpv6QJtKbIjCig7SkGU7SAH3JCjKHqUA5yDP4/icgAVVBRFLGUTUDbZChTZutGW7kvapE3S7Pvsz++Pd5KmbbY2k8wkuT/XNVfn3Z7nnvedSeeeZ3nFGINSSimllFJKqcGzxToApZRSSimllBotNMFSSimllFJKqSjRBEsppZRSSimlokQTLKWUUkoppZSKEk2wlFJKKaWUUipKNMFSSimllFJKqSjRBEsppeKMiBSLiBERR6xjUWODiHwsIqfHOg6llBoNNMFSSik14onIAyLSGnn4RSTQbfnFWMcX74wxs40xK6JZpohkishyEakTkVoReVREUqNZh1JKxSNNsJRSKsq05Wn4GWNuNMYkG2OSgR8ByzuXjTHndu43kq7NSIq1F/8DZAAlwGQgF7gjlgEppdRw0ARLKaWiQETKROS7IrIeaBMRh4gsEZF/iUijiHzUvQuWiKwQkf8nIh+ISLOIPCsimb2Ufa2IbBaRFhHZJSL/ftj2C0VkXaScnSJyTmR9mog8JCKVIrJPRP5HROz9vI7JIvL6Ya0O6d221YvIcZHl8SJS0/m6ROSCSFezxsjrm3nY+fm2iKwXkaZIy4bn6M/00evl2hgRmdJtn4dF5H+6LZ8XOaeNkWs4d4B1nS4iFSLy/cj5KxORK7tt/6yIrI1cq3IRuaPbts6uof8mInuB1yPrnxCRqsh5e0tEZh8W969F5MVIa907IpInIr8UkQYR2SIiCwZ4js4ayGs8CiXAM8aYZmNME/A3YHY/xyil1IinCZZSSkXPFcBngXSsX+ufx/oVPxP4NvCUiOR02/8q4DogHwgC9/ZS7gHgPCAVuBb4RbckZzHwZ+DWSL2nAmWR4x6OlDsFWAB8Gri+n9cgwP8DxgMzgSIirQ7GmJ3Ad4G/iEgi8EfgT8aYFSIyDVgGfBPIAV4A/i4irm5lXwacg/XFey5wTY8BiJwcSWx6e5zcz2voSde1McYE+zwBVkLyB+DfgSzgQeA5EXEPsK48IBsoAK4Gfisi0yPb2rCue3oknptE5KLDjj8N69yfHVl+EZgKjAPWAI8etv9lwA8idfqAdyP7ZQNPAj8fYNw9EpHb+roefRz6K+A8EckQkQzg0shrUUqpUU0TLKWUip57jTHlxpgO4IvAC8aYF4wxYWPMK8Aq4DPd9n/EGLPRGNMG/BC4rKcWJmPM88aYncbyJvBP4JTI5n8D/mCMeSVSzz5jzBYRyY3U9U1jTJsx5gDwC+Dyvl6AMWZHpCyfMaYG68v5ad22/w7YAbyPlRj+Z2TTUuD5yLEB4B4gAfjEYednvzGmHvg7ML+XGFYaY9L7eKzs6zX0ovu16c8NwIPGmPeNMSFjzJ+wEpclR1HfDyPn8E2sRPsyAGPMCmPMhsi1Wo+VlJ522LF3RK5ZR+SYPxhjWowxPqxkd56IpHXb/2/GmNXGGC9WK5HXGPNnY0wIWI6VXB8zY8yP+7oefRy6BnABdZFHCPj1YGJRSqmRQBMspZSKnvJuzycCnz/sl/6TsZKSnvbfAzixWh0OISLnish7ke55jViJU+d+RcDOHmKZGCmvslv9D2K1gvRKRHJF5LFIl8Jm4C89xPQ7YA5wX+RLP1gtXns6dzDGhCOvr6DbcVXdnrcDyX3FEmXl/e/SZSLwrcOuXRHWaxyIhkjS3GlP57EicoKIvBHpWtkE3MiR57crVhGxi8iPxer62czB1snux1R3e97Rw/JwnufuHge2ASlYra87sd5PSik1qmmCpZRS0WO6PS/HaqHq/mt/kjHmx932Ker2fAIQAGq7FxjplvYUVotQbqTF4AWsrnyd9UzuIZZyrFaX7G71pxpj+hsD86PI6yg1xqRitcR11oWIJAO/BB4C7pCD48b2YyUmnftJ5PXt66e+I4jIKXJwBsCeHqf0X8oRzGHL7UBit+W8bs/LgbsPu3aJxphlA6wrQ0SSui1PwDo/AH8FngOKjDFpwAN0O789xPoF4ELgLCANKI6sP/yYIRMZT9br9ejj0PlYLYFtxphWrNf6mT72V0qpUUETLKWUGhp/Ac4XkbMjrRCeyAQIhd32+aKIzIqMZ7oLeDLSras7F+AGaoCgiJyLNZaq00PAtSLySRGxiUiBiMwwxlRidSX8mYikRrZNFpHDu6MdLgVoBZpEpABrbFd3/wesMsZcj9X17YHI+seBz0bicALfwkrw/tXfiTqcMebtbjMA9vR4+2jL7ME64AuRa3MOh3bT+x1wY6S1SUQkSazJKVKga2KJh/sp/04RcUWSwfOAJyLrU4B6Y4w3Mn7uC/2Uk4J1HuuwEsIfHcVrjApjzI/6uh59HPohcL2IJIhIAlbXy/XDE7VSSsWOJlhKKTUEjDHlWC0P38dKjsqxkpXuf3cfwZqIogrwAN/ooZyWyPrHgQasL+TPddv+AZGJL4Am4E0OtiRdhZWgbYoc+ySHdlHsyZ3AcZGyngee7twgIhdiTVJxU2TVfwDHiciVxpitWK1d92G1wp0PnG+M8fdTX6zcjBVjI3Al8EznBmPMKuDLwP1Y520Hh07IUQS800fZVZHj9mNNSHGjMWZLZNtXgLtEpAW4Heu69uXPWF0M92Fdx/f6e2Fx5DqsFrcKrPgnYU36oZRSo5oYc3ivCaWUUkNNRFYAfzHG/D7WsaiBi8yK+BEwNzKZx+HbT8e6roWHb1NKKTU2jPSbGCqllFLDJtIiN7PfHZVSSo1Z2kVQKaXGGBF5oJcJCx7o/2g1EonIhD4mqpgQ6/iUUmo00S6CSimllFJKKRUl2oKllFJKKaWUUlESV2OwsrOzTXFxcazDUEoppZRSSqk+rV69utYYk3P4+rhKsIqLi1m1alWsw1BKKaWUUkqpPonInp7WaxdBpZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKImrMVg9CQQCVFRU4PV6Yx2KigMej4fCwkKcTmesQ1Gj2OuvvsDmDav4/HW3Mi4tIdbhKKWUUmoEifsEq6KigpSUFIqLixGRWIejYsgYQ11dHRUVFZSUlMQ6HDWKTV95M2dygOef8fDZq78T63CUUkopNYLEfRdBr9dLVlaWJlcKESErK0tbM9WQaqirIc/UAJBX/nyMo1FKKaXUSBP3CRagyZXqou8FNdQObH0Xuxh2OSYzJ7CR2vr6WIeklFJKqRFkRCRYSik1XFpq9wPQPO0S3BJk50f/inFESimllBpJNMEaABHhW9/6VtfyPffcwx133BG7gLo5/fTT+7w580UXXcSSJUsOWXfHHXdQUFDA/PnzmTNnDs8999xQh6nUiBFstboHjl94PgAde/Tm50oppZQaOE2wBsDtdvP0009TW1sb1XKNMYTD4aiW2V1jYyOrV6+mqamJXbt2HbLtlltuYd26dTzxxBNcd911QxqHUiNKWy1BYyN74hwOSBYJNR/FOiKllFJKjSCaYA2Aw+Hghhtu4Be/+MUR22pqarj00ktZtGgRixYt4p133gGsVqJ77rmna785c+ZQVlZGWVkZ06dP56qrrmLOnDmUl5dz6623MmfOHEpLS1m+fDkAK1as4PTTT+dzn/scM2bM4Morr8QY02N8jzzySFdr1AcffNC1/umnn+b888/n8ssv57HHHuvx2JkzZ+JwOA5JHm+77TZmzZrF3Llz+fa3vw1AWVkZZ555JnPnzuWTn/wke/fuBeCaa67hpptuYsmSJUyaNIkVK1Zw3XXXMXPmTK655pquMm+66SYWLlzI7Nmz+a//+q8j4mhqamLixIldiV5bWxtFRUUEAoEe41ZqqEhHPY2Sis1u50DiVLLad8Y6JKWUUkqNIHE/TXt3d/79Yzbtb45qmbPGp/Jf58/ud7+vfvWrzJ07l+9859Apm2+++WZuueUWTj75ZPbu3cvZZ5/N5s2b+yxr+/bt/OlPf2LJkiU89dRTrFu3jo8++oja2loWLVrEqaeeCsDatWv5+OOPGT9+PCeddBLvvPMOJ5988hHltbe3s27dOt566y2uu+46Nm7cCMCyZcu4/fbbyc3N5dJLL+X73//+Ece+//772Gw2cnJyAKirq+Nvf/sbW7ZsQURobGwE4Otf/zpXX301V199NX/4wx/4xje+wTPPPANAQ0MD7777Ls899xwXXHAB77zzDr///e9ZtGgR69atY/78+dx9991kZmYSCoX45Cc/yfr165k7d25XHGlpacyfP58333yTM844g3/84x+cffbZer8rNexcvnpabGlkA/6MaUxtXUVTWwdpSXo/LKWUUkr1T1uwBig1NZWrrrqKe++995D1r776Kl/72teYP38+F1xwAc3NzbS2tvZZ1sSJE7vGRa1cuZIrrrgCu91Obm4up512Gh9++CEAixcvprCwEJvNxvz58ykrK+uxvCuuuAKAU089lebmZhobG6murmb79u2cfPLJTJs2DafT2ZV4AfziF79g/vz5fPvb32b58uVds/OlpaXh8Xj4t3/7N55++mkSExMBePfdd/nCF74AwJe+9CVWrlzZVdb555+PiFBaWkpubi6lpaXYbDZmz57dFfPjjz/Occcdx4IFC/j444/ZtGnTEa9j6dKlXS14jz32GEuXLu3zPCo1FBIDjbTa0wBw5c/CLUH27Try/aqUUkop1ZMR1YI1kJamofTNb36T4447jmuvvbZrXTgc5r333sPj8Ryyr8PhOGRcU/d7NyUlJQ2oPrfb3fXcbrcTDAZ73O/wqctFhMcff5yGhoauG/I2NzezbNky7r77bsAag9XZ/e/wuD/44ANee+01nnzySe6//35ef/31AcVps9kOidlmsxEMBtm9ezf33HMPH374IRkZGVxzzTU93svqggsu4Pvf/z719fWsXr2aM888s896lRoKyaFGyl3W5yZ94hz4EJr2bITS42McmVJKKaVGgkG3YIlIkYi8ISKbRORjEbk5sv4OEdknIusij88MPtzYyszM5LLLLuOhhx7qWvfpT3+a++67r2t53bp1ABQXF7NmzRoA1qxZw+7du3ss85RTTmH58uWEQiFqamp46623WLx48VHF1dnqs3LlStLS0khLS2PZsmW89NJLXeO+Vq9e3es4rO5aW1tpamriM5/5DL/4xS/46CNrgP8nPvGJruMfffRRTjnllAHH19zcTFJSEmlpaVRXV/Piiy/2uF9ycjKLFi3i5ptv5rzzzsNutw+4DqWixRNux29PBiB3ktWNNVDdd7dfpZRSSqlO0WjBCgLfMsasEZEUYLWIvBLZ9gtjzD19HDvifOtb3+L+++/vWr733nu7xmcFg0FOPfVUHnjgAS699FL+/Oc/M3v2bE444QSmTZvWY3kXX3wx7777LvPmzUNE+MlPfkJeXh5btmwZcEwej4cFCxYQCAT4wx/+QFlZGXv27DlkevaSkhLS0tJ4//33eyzjM5/5DL///e8RES688EK8Xi/GGH7+858DcN9993Httdfy05/+lJycHP74xz8OOL558+axYMECZsyYQVFRESeddFLXtttvv52FCxdywQUXAFY3wc9//vOsWLFiwOUrFU1u4yPksMZbORPTqJZs3A3bYxyVUkoppUYK6W1mumMuUORZ4H7gJKD1aBKshQsXmsPv6bR582ZmzpwZ1RjVyKbvCTWU/HdksTJ7KWd+7dcAbPzfs3D76ph6+9oYR6aUUkqpeCIiq40xCw9fH9VJLkSkGFgAdDaTfE1E1ovIH0QkI5p1KaVU1IWCuAhinAdnDGxPm0xRqJxQKBTDwJRSSik1UkQtwRKRZOAp4JvGmGbgN8BkYD5QCfysl+NuEJFVIrKqpqYmWuEopdTRC3ZY/zoOJli27Gl4JEBl+Y4YBaWUUkqpkSQqCZaIOLGSq0eNMU8DGGOqjTEhY0wY+B3Q48wNxpjfGmMWGmMWdt6LSSmlYiHsjyRY3VqwUgpmAFBT9nEsQlJKKaXUCBONWQQFeAjYbIz5ebf1+d12uxjYePixSikVT/wdbQDYXIld63InlQLQvn9rTGJSSiml1MgSjVkETwK+BGwQkXWRdd8HrhCR+YAByoB/j0JdSik1ZHwdrXgAm+tgC1b6uCLa8ECddhFUSimlVP8GnWAZY1YC0sOmFwZbtlJKDSe/t7MFq9vNwEWochSS1NrzveyUUkoppbqL6iyCo9kzzzyDiPR5f6qysjLmzJkTtTqvueYannzyyV63f/Ob36SgoIBwONy17uGHHyYnJ4f58+cza9Ysfve730UtHqVGu84Ey+7yHLK+OXEiOb7yWISklFJKqRFGE6wBWrZsGSeffDLLli3rcXswGBx0HUczDXQ4HOZvf/sbRUVFvPnmm4dsW7p0KevWrWPFihV8//vfp7q6etCxKTUWBLztANjdSYesD2ZMIt/U0NbWGouwlFJKKTWCaII1AK2traxcuZKHHnqIxx57rGv9ihUrOOWUU7jggguYNWsWYCVaV155JTNnzuRzn/sc7e3WF7bXXnuNBQsWUFpaynXXXYfP5wOguLiY7373uxx33HE88cQTR9T96quvsnDhQqZNm8Y//vGPQ+qePXs2N910U69J37hx45g8eTJ79uzpWnfvvfcya9Ys5s6dy+WXXw5AfX09F110EXPnzmXJkiWsX78egDvuuIOrr76aU045hYkTJ/L000/zne98h9LSUs455xwCgQAAd911F4sWLWLOnDnccMMNHH7z6nA4THFxMY2NjV3rpk6dqomfijvBSAuW03NoguUcNw2bGPbv2hSLsJRSSik1gkRjkovh8+JtULUhumXmlcK5P+5zl2effZZzzjmHadOmkZWVxerVqzn++OMBWLNmDRs3bqSkpISysjK2bt3KQw89xEknncR1113Hr3/9a772ta9xzTXX8NprrzFt2jSuuuoqfvOb3/DNb34TgKysLNasWdNj3WVlZXzwwQfs3LmTM844gx07duDxeFi2bBlXXHEFF154Id///vcJBAI4nc5Djt21axe7du1iypQpXet+/OMfs3v3btxud1fC81//9V8sWLCAZ555htdff52rrrqKdevWAbBz507eeOMNNm3axIknnshTTz3FT37yEy6++GKef/55LrroIr72ta9x++23A/ClL32Jf/zjH5x//vldddpsNi688EL+9re/ce211/L+++8zceJEcnNzB3yZlBoOQV9ngpV4yPq0opnwITSWb4LSHu84oZRSSikFaAvWgCxbtqyrtefyyy8/pMVo8eLFlJSUdC0XFRVx0kknAfDFL36RlStXsnXrVkpKSpg2bRoAV199NW+99VbXMUuXLu217ssuuwybzcbUqVOZNGkSW7Zswe/388ILL3DRRReRmprKCSecwMsvv9x1zPLly5k/fz5XXHEFDz74IJmZmV3b5s6dy5VXXslf/vIXHA4rv165ciVf+tKXADjzzDOpq6ujubkZgHPPPRen00lpaSmhUIhzzjkHgNLSUsrKygB44403OOGEEygtLeX111/n44+PvF/Q0qVLWb58OQCPPfZYn69ZqVgJ+a0WZ5cn+ZD1eSXW2Er/ge3DHpNSSimlRpaR1YLVT0vTUKivr+f1119nw4YNiAihUAgR4ac//SkASUmHdiWybgvW+3JPDi+jv/JefvllGhsbKS2N3J+nvZ2EhATOO+88wEpm7r///h7Le/7553nrrbf4+9//zt13382GDX23CLrdbsBqhXI6nV3x2Gw2gsEgXq+Xr3zlK6xatYqioiLuuOMOvF7vEeWceOKJ7Nixg5qaGp555hl+8IMf9FmvUrEQ8kUSrIRDP5MJKRnUko6jYWcswlJKKaXUCKItWP148skn+dKXvsSePXsoKyujvLyckpIS3n777R7337t3L++++y4Af/3rXzn55JOZPn06ZWVl7Nhh3UfnkUce4bTTThtQ/U888QThcJidO3eya9cupk+fzrJly/j9739PWVkZZWVl7N69m1deeaVrvFdvwuEw5eXlnHHGGfzv//4vTU1NtLa2csopp/Doo48C1tiu7OxsUlNTBxRfZzKVnZ1Na2trr7MeiggXX3wx//Ef/8HMmTPJysoaUPlKDScTsD5DnoQjf/Q44JpAalvZMEeklFJKqZFGE6x+LFu2jIsvvviQdZdeemmvE0tMnz6dX/3qV8ycOZOGhgZuuukmPB4Pf/zjH/n85z9PaWkpNpuNG2+8cUD1T5gwgcWLF3PuuefywAMPEA6Heemll/jsZz/btU9SUhInn3wyf//733ss4/rrr2fVqlWEQiG++MUvUlpayoIFC/jGN75Beno6d9xxB6tXr2bu3Lncdttt/OlPfxrg2YH09HS+/OUvM2fOHM4++2wWLVrUte2BBx7ggQce6FpeunQpf/nLX7R7oIpbxt8B9JxgtaVMJDdYccQkLkoppZRS3Uk8fVlYuHChWbVq1SHrNm/ezMyZM2MUkYpH+p5QQ2XtQ19n5t5l8INqPE77Idvef/ROTtj+c+q/upXMnLwYRaiUUkqpeCEiq40xCw9fry1YSikVIYEOOnDjdhz5pzEhz5qkpnr3kZO4KKWUUkp10gRLKaUiJOjFh6vHyWkyJ1j3umvet3m4w1JKKaXUCDIiEqx46saoYkvfC2ooSbADn7h73JY3cQZBYyNUo1O1K6WUUqp3cZ9geTwe6urq9Iu1whhDXV0dHo8n1qGoUcoW8uLvJcFyuNxU2vJwN+0a5qiUUkopNZLE/X2wCgsLqaiooKamJtahqDjg8XgoLCyMdRhqlLL3kWAB1HsmkNmxdxgjUkoppdRIE/cJltPppKSkJNZhKKXGAEeogzZb7wlWR2oJ06tWEw6FsNntve6nlFJKqbEr7rsIKqXUcHGEfQRtvXdBleypeCTAgX07hzEqpZRSSo0kQ55gicg5IrJVRHaIyG1DXZ9SSh0rZ9hHyN57gpU0fjoAtWWbhiskpZRSSo0wQ5pgiYgd+BVwLjALuEJEZg1lnUopdaycxttngjWuuBSA9v06VbtSSimlejbULViLgR3GmF3GGD/wGHDhENeplFLHxGX8hPtIsHLyi2gzHkzdjmGMSimllFIjyVAnWAVAebflisi6LiJyg4isEpFVOlOgUiqW3MZH2JHQ63ax2djvKCCxpWz4glJKKaXUiBLzSS6MMb81xiw0xizMycmJdThKqbHKGNz4MM7eEyyAxsSJZPt0qnallFJK9WyoE6x9QFG35cLIOqWUii8hP3YM9NGCBRBIm0RuuAa/t32YAlNKKaXUSDLUCdaHwFQRKRERF3A58NwQ16mUUkct7IskTP20YDnGTcMmhqrdOpOgUkoppY40pAmWMSYIfA14GdgMPG6M+Xgo61RKqWPh87YCYHP1PskFQGrhTADq92qCpZRSSqkjOYa6AmPMC8ALQ12PUkoNhre9lQRAXEl97jd+8hwAOqq2DENUSimllBppYj7JhVJKxQN/RwvQf4KVmpZJDRnY6ncOR1hKKaWUGmE0wVJKKSDQYXURtLv7TrAAat0TSG7dM9QhKaWUUmoE0gRLKaUAfyTBcnj6T7A6UksoDO4lFAoPdVhKKaWUGmE0wVJKKQ62YDkTUvrfOXc2adJGxd4dQxyVUkoppUYaTbCUUgoI+qwEy5WQ3O++qRPmAVCzY+2QxqSUUkqpkUcTLKWUAoKRGwd7EvtPsPKnHQ+Ab9/6IY1JKaWUUiOPJlhKKQUYXxsA7sTUfvdNSs+mWrJw1ulU7UoppZQ6lCZYSikFhP1WgpWY1H8LFkC1ZzLZbToGSymllFKH0gRLKaUA428jYOwkJCQMaP+29BkUhsoJ+H1DHJlSSimlRhJNsJRSCiDQTgduXPaB/Vl0jZ+NS0KUb/9oiANTSiml1EiiCZZSSgG2QDsd4kZEBrR/zuTjAKjZsWYow1JKKaXUCKMJllJKAbZgOz48A96/YOo8AsZOoHLjEEallFJKqZFGEyyllAJsQS8+28ATLLvTzX5HIYkNOpOgUkoppQ7SBEsppQBHqB2/bWATXHSqT53JRO82wqHwEEWllFJKqZFGEyyllAI8wRa89pSjOiaUv4AsaWJ/uU7XrpRSSinLoBIsEfmpiGwRkfUi8jcRSY+sLxaRDhFZF3k8EJVolVJqiHjCrfgdR5dgpU05AYDqLe8ORUhKKaWUGoEG24L1CjDHGDMX2AZ8r9u2ncaY+ZHHjYOsRymlhlRSuI2QK/Wojimaudia6GLvqiGKSimllFIjzaASLGPMP40xwcjie0Dh4ENSSqlhFg6TZNoIu48uwfIkJLHHUUxS3YYhCkwppZRSI000x2BdB7zYbblERNaKyJsickpvB4nIDSKySkRW1dTURDEcpZQamKC3GbsY8KQf9bH1abN1ogullFJKdek3wRKRV0VkYw+PC7vt859AEHg0sqoSmGCMWQD8B/BXEenxp2FjzG+NMQuNMQtzcnIG/4qUUuootTbVA2BLTDvqY22Fx5Mqbezdoa1YSimllAJHfzsYY87qa7uIXAOcB3zSGGMix/gAX+T5ahHZCUwDdKCCUirutDXVkQ44EtOP+tjcGUtgPVRufo/i6fOiHZpSSimlRpjBziJ4DvAd4AJjTHu39TkiYo88nwRMBXYNpi6llBoqHc1WC5YrOeOojy2YehxenIQqPox2WEoppZQagfptwerH/YAbeEVEAN6LzBh4KnCXiASAMHCjMaZ+kHUppdSQ8LZaf57cyZlHfazN6WK3eybjGtZGOyyllFJKjUCDSrCMMVN6Wf8U8NRgylZKqeESbK0DICEt+5iObx63kIV7/0hrcwPJqUffCqaUUkqp0SOaswgqpdSIFG6pBiA5K/+Yjk+ceip2Mexa+0Y0w1JKKaXUCKQJllJqzDMtB2g1HrLSj631acpxZxI0Nlq2vhnlyJRSSik10miCpZQa8+wdNdRLOnabHNPxCclplLmmkHZAJ0pVSimlxjpNsJRSY57LW0eL4+gnuOiuMWcRUwNbaW5tiVJUSimllBqJNMFSSo15yYE6OlyDS7CSp52KWwJsX6PdBJVSSqmxTBMspdSYlxpuwO/JGVQZxQs+SdgILVt0ogullFJqLNMESyk1pgW9raTTSjg5d1DleNJy2O2aSvaBf0UpMqWUUkqNRJpgKaXGtMo92wFwZJUMuqz6vJOYEdhCY0PdoMtSSiml1MikCZZSakyrqbASrIzxkwddVsrsT+OQMLs+eHHQZSmllFJqZNIESyk1prVW7wYgf+L0QZc1acGZtBs3gW2vDLospZRSSo1MmmAppca0YH0ZARykZhcOuiyX28P2pAUU1L2HMSYK0SmllFJqpNEESyk1piU27+aAIx9s0flzGCo+nUKq2LVtQ1TKU0oppdTIogmWUmrMMsaQ6y+jIWnw4686TTzhIgAqP3wmamUqpZRSauTQBEspNWbVNDYxwVQRzJwWtTKzJs5kj30C6Xt0HJZSSik1FmmCpZQas/bv3IhdDJ7xs6JabmX+Wcz0b6Cxtiqq5SqllFIq/mmCpZQas1r2WuOksibNi2q5mcdfgl0MO1Y+EdVylVJKKRX/BpVgicgdIrJPRNZFHp/ptu17IrJDRLaKyNmDD1UppaIrfGALQWMje0J0W7CmzjuJKrKxb3shquUqpZRSKv5FowXrF8aY+ZHHCwAiMgu4HJgNnAP8WkTsUahLKaWiJrFpO1WO8YjTE9VyxWajfNwZzGz7kKamxqiWrZRSSqn4NlRdBC8EHjPG+Iwxu4EdwOIhqksppY7JOG8Z9YklQ1J2+qLL8EiALW88OiTlK6WUUio+RSPB+pqIrBeRP4hIRmRdAVDebZ+KyLojiMgNIrJKRFbV1NREIRyllOpfW1sbBeFKfBnRm0GwuynHn8U+ySVp0/IhKV8ppZRS8anfBEtEXhWRjT08LgR+A0wG5gOVwM+ONgBjzG+NMQuNMQtzcnKO9nCllDom+3ZuxCFhXHkzh6R8sdnYN/ES5vg/omzHx0NSh1JKKaXiT78JljHmLGPMnB4ezxpjqo0xIWNMGPgdB7sB7gOKuhVTGFmnlFJxoXHvegAyiucOWR1TPn0DQWOj6uVfDlkdSimllIovg51FML/b4sXAxsjz54DLRcQtIiXAVOCDwdSllFLRFKrcTMgIeZNKh6yOzPGTWJ1+NvMP/I3qfWVDVo9SSiml4sdgx2D9REQ2iMh64AzgFgBjzMfA48Am4CXgq8aY0CDrUkqpqHE3bme/LR+XJ3FI6ym68HYchNj55O1DWo9SSiml4sOgEixjzJeMMaXGmLnGmAuMMZXdtt1tjJlsjJlujHlx8KEqpVT0ZHfsojZhaGYQ7G78pFmsyfs8n2h4lnWv6IyCSiml1GjniHUAKrba/UEamltpbayjo7Ueb0sDvtYGAm2NhDuaMN5mTMALIR8S8iORf21hP8EwBIxgsGHETljsBMWJ15ZMwJmMcadgPBmEknJxZhSQmZNPYWYyhRkJ5CS7sdkk1i9fjVFBv5fxof1UpJ81LPXNvfpnbPvZWmat/DqrKjcw7+Jv40zJHpa6lVJKKTW8NMEaZQLBEI31NTTVVtHWUIW3sRp/ywFMaw22jloc3noS/A0kBRtJDTeRRisFEhhQ2X6cBMRJQFyExIEAdsLYCCMmhM2EcJoATnouz2ccVJsMtplc/kkBtQkT8adPJqVwFhMmTmbm+DSKs5Kwa+Klhljlnq0USRjHuKGZov1wnsQUcr/6Aht+dzULd/2Gjb/fzJxbnh2WupVSSik1vDTBGiFCoTD1dVU0VJXTWluOr2Efoab92FqrcXccIMlfQ3qojkzTSI6E6GnC+1YSabal0ebIoCOpgBZPKfsSMrAnpGNPTMOZlIE7KR1PaiaJqZkkpWRg86SCMwHsLlwiuAYSbNAH3mbwNoG3EVoq8dWX01Zbjqu+nJmNu1nUuhKP/2U4AByAhtXJfByeyAqZRGP6TOzj51EwaQ6zCzOZmpuM0z5U98RWY1F9+RaKgNTxw5NgAaRl5nDcd55nw/9+kvSW7cNWr1JKKaWGlyZYcSAcClFfs4+6fTtpPVCGv24P0lSBs72aRF8NacE6skw9ORI8InFqJJlGexZtzmz2pU6mPDEHSR6HM3UcnrRxJGbmk5aVT0pmLslOD8nD8YIcbkjOsR4R7sijizHQWg212whUb8aUrWVW5XqWNL+Eo/nv0Axtm91sNhNZTjGNqTNwji8lZ9I8ZhXnMyUnGYcmXeoYtVftBGDcxBnDWq+I0JQ+hxmV6wgH/NicA/rJQg03Y/B722lrrsPb1kJHewu+9hZ8Ha0EOloJelsJ+9oh0I4E2pFgBxL0YkJBTDgAoQASDmIzQWwmhM0EsZsgYoKIMYQBg2AQQEAExNb13IiNkLgI2ZyEbS5wuDF2F+Jwg8ONzeFGHG5sTjc2VyI2VxI2dxJ2TxIOTzJOTwruhGQ8SSl4klJI9Hi0Z4BSSg0jTbCGgd/vp6ZiO437d9Bes4dQ/V5sLftI7NhPur+anHAt2RKg+4iMVhKos2XT4symMmk+FUm5SGo+zvTxJGUXkj5uAhm5RaS7E0mP1QsbDBFIyYOUPJwlp5K5JLI+FICarYT3ryNYtoaSfWspbViJu/WfsA3CW4U9Zhyvy0QakqZA7mwyJsyisGQGRXk5pHicMX1Z8SQUDOLtaMPb0Yavow2/t52Ar4Ogvx3j7yDs7yAcaMcEvJFHByYUwIQChEPByPMQJuSHcAgTDkIoCOFAV5dQmwlaz8PWF0kIW8kzAAaMwUBknSGygAHEWF8xEbH+BUAwEhnXhw0jNowI4e7LWF9Gw2KDQ/azQee/CEbsGBFrH7HGCWKzY8RGbt37tBs3GTkFw3tRAEfudJxVIcp3b6Jo2vxhr38s8fl9NNdV09JQhbfxAP6mAwRaawm3N2A6mhBfM3Z/M85AC55QC4nhVhJNOymmDZcEB9ZiD4SM4MNFUByEsBMSOyEchI5Ytkfe70TSK4N0fja6PbeZEI5Id2ur23UQJwHcvXS/7vc8GActuPGKB1/kEbC5CdgSCNgTCDmsh3EkYpxJ4EzA5vRgd3mwuxJwuBJwuBOwuzyR9QnWw+nB6Y5sd3lwupw4HU5cThc2uwNssf0RzITDmHCYcDhIOBQiHA5hwiFCIevvWTgUJBwOE44sm1CIkAlHEuVQ1zFEjguHQoRNqFu5ITBhjDGEQ9bzcDiMMWFMOBT513pgwoSNtY3Iuq7nJowxIYwxB5fDYcREUnET7v1FSs+Js5W8Hy3p8WnXjwCR1V1ld1tn7XPov51FmMPWGZFuxdsOrS+yzSDdXtqh9R0ap+3QNXJ4bNJtXU/lyWHxH1xzMIaD+4scem6l2/k/IoZupOv/RSJlmyP2ods+PWztqsP0trFLH++XrsJ7L6Tb/8Y9bz9kdb/BDOh1DeBF4fVkU3L8pylIT+i/zjigCVaUBHztVJVtpaFiC+3VO5D6XSS07iXTV0FuuIYCCdH5VS5shFrJoMExjurkGVQkjUcyJuDJmkhq/iSyCiaTmp49PK1N8cbuhLw52PLmkHbcF6114TA0lhGu2kjD7o9wVXzE8fVbyGj/ENtuA7uBN6HGpLJL8mj0FBBILsSZmos7PQ9Peh5Jmfmk5RSQmZmNwznMSZgxEPJD0EpkfL4OAh3t+H3t+L1tBH0dBLxtBP0dhHwdhPzthPwdhDuTnoD16zgBLxLyYgv6sIW82MM+7CEfDuPDGfbhMj6cJoALH27jxyUhkoCkQYbvN3ZC2AmK9W+Yg8udz0OR52Hp/ELV/T+iXp53+4+q8yumGBATRjDYTBih83ko8oU0jBhjjfsjjM1Y62yd+x2+PbLOZkUXeW79Id+UsoRZMfgCmDd5HnwE+7au0gTrGLS3tdBQXUFL7V466vcTbNxPuOUA0lGHw1uPx99AcqiRtHATadJGDvTYZdprnLRKEu22ZLz2ZHyudNqcRQScqYRdqRhPKrjTsHuScXqScHqScSamkJCYjCfRaiFyJSbj8iTjcHlI7OWLblQZQyjox+dtx+f14vO2E/C24u9oJ+RrJehtI+RrJexrI+RtI+xvA38bBNoh0IYt0IEt2I492IEj1EFyuAWXvwaX14vbePHgJQF/1MINGyGEjVDkk3fwb4gt8u/BL+jdf2SxfngB6x9zxBc+w8EE1W4Ofr4F0/U5txPGJtZfGO3roNTItyI0j7U5i0ZMgiVmAFnjcFm4cKFZtWpVrMPoU3NjDfu3raOpfCPh6s0kNe9knG8P48K12OTguWw2iVQ7xtOcUEggrRh71iQSxk0iY/xksgtKcLtHxhskrvnbCB3YyoE9m2mp3E6odjeulr2keivIDNVi7+VXnA5cdJCA15aI15ZAwJZIyO5CbA7E5sDY7Fbrh81htY4Y65dEMdYvlGJCkcfByT3sJoAj7McR9uEwfhzGj9P4cZkA7kF+YfEZBz6c+HHhEzd+cREQN0Gbi6DNTcjmJmT3ELa7MXYPxmE9cCZY3YhcCYgrAbsrEZvTg82VgM0ZWXZ5sLsScbgTI79Su3E6nDhdLlwuN06HY/R1LTIGwiGw2Xv99XcohQJ+fP9TyPrsz7Dk6w8Pe/3xyoTDNNdVUhvpKu2tKyfUXIW9rZoE7wFSg7VkhOpJk7Yjjg0aG42SSostjQ5nBj5XBkFPBiYhC5JycKTk4ErNxpOeS3JGLmkZOSQkDvanh1EqHCYc8NLR0Y438vD52vB52wn6vIQDHZiAl7DfSzjoxQR8mMiPP+FQiHAoYLXsRFqBrG6RYSRs/d20EULCwa6/n51JFubg7+5dP7gA1o8ykWdycNl63q11uqsV246xdS5b/yK2SOt1ZNlm7YfYkc7nNjtis3ftK2JH7Af3sbYdfC42OyI2bDaJbBNstsj2yH42mw1b5za7DZtYx9lsnft2369zuw273da1TaTz71RPf6t6+f7W5/e6/o85pHXFmMimSA8E05nkhg8e1tlTgW779nC8ifRqOLjJHPKvmMg+XeUcLMmEwz28tsjx4UNjOhhjJOyuVuKDdXUL/pC4u7aagwV0j0nMwX2MOfiONebQ63Pw/dvNgP6/6d461tc+fZcl/fy/Lf3Ec0jrY0/bD2/h7HXpyAN6q/ZgXb20yjoTySqYHHc9lURktTFm4eHrtQWrD7X7yyhb8wrB8tWkNG5mnG8POTSQGtneYVzscxSxN3keO9Mn4cieTGrBVHInziIjK5fUGHePGPVcSdgLjyO/8DjyD98WDtPRVENDTQWtdfvpaKgi0FxNoK2JoLcFW6AVe6AdZ6gNV6gd8XdYSVM4hJ0gNmO1zTgIWb+Hiq2r/SMsVrtIKNJiE8aOX1wEJYWQzUXI7iZkd2NsLivZsVvjJnC4EacHm8Nj/etKwBbpauNwJeLyWImOy5OEOyEBT0ISHk8SbreTFIftkK4IahBEwB67P312p4sdCXPJr/8QY8yYua7hYJDayl0cKN9J24FdhOr34mipwNNRSbq/ipxQDWniJ63bMX5jp86WSYsji8bEEg4knEA4ORdbaj7ujPEkZReRNq6QjMxcsh12dOL7KLDZsLkTSXInkpQe62CUUmpk0gSrDzveXMaSrT/GZ5yUOYrZlXYCO7Kmk1Awi3GT5pM3YSpT7PZYh6l6YrORkJFLQkYucHyso1HqEL7iM5i45Sfs2b6eidPmxTqcqAkFAxyo2EH93s20V23H1O3C07KbDG8FuaEqxkmIcd32ryONOkcuNQmT2Zd8KqRNwJU1keTcYrLyS8jMziPfbjvyBxSllFIqjmmC1YcpZ1zJjlmnMnHmQqa73P0foJRSAzDh5KWw5SfsW/noiEywOtrbqNi2joaytYSqNpHUtJ0M3z5yQ1XkS6grIWo3birt+VR7JlGeeia2rBKScyeRnj+JnMLJZCUkkxXTV6KUUkpFnyZYfcjOm0B23oRYh6GUGmVyC6ewyTOfSXufIhD4H5xxOl17KBhk3+6Pqdm5Dv++jbjqt5DTvpOC8H6mRsac+o2DffZCahImU576SezZk0nKn0b2hJmMy5/IZL2dglJKqTFGEyyllIqBwMIbyFv5FVY9/1sWXvS1mMZiwmFqq/ZSuW01bRUbsNdsJqN1B4XBvUwQPxOwZoSrtOVSkziZ/Rnn4C6YQ/akBYyfNJsSp4uSmL4CpZRSKn7oLIJKKRUD4VCYHT9aTHaoGvtX3iFt3PC0lrc01rFv22qa93yEqd5ESvN2xvt3k05r1z61pFPpnkR7+jRsebPJKJ5P4bT5eJJS+yhZKaWUGlt0FkGllIojNruN8IW/xvPUeex96At4bn4ed2Ja/wcOkN/bTsWO9TTsXktg/8ckNG4lt2MXedQyI7JPq0mgwlnM1swzYdxMkovmUTDtOLJz8nVGPqWUUuoYaYKllFIxMmPuYt7deSeL132PvT8/HceF91FUevJRldHR3sa+HR/RuGcDwapNeBq3k92xm/xQJZO6xknZqbAXUZEyn93ZM0goLGXc5AXkT5jKDL2dhFJKKRVVg+oiKCLLgemRxXSg0RgzX0SKgc3A1si294wxN/ZXnnYRVEqNRe+//BhT//VtMqWFHc5pNOYuwTluGvakLOwOJ8FQiGB7A6G2BgLNB3C1VpDUsY8sfxU51HeVEzQ29tnGU5tYgi99Kq78WWRNWkDB5FJcbp0JVSmllIqm3roIRm0Mloj8DGgyxtwVSbD+YYyZczRlaIKllBqr6urr+Pi5XzKu/CVKgrtwS7DH/UJGOCDZ1DnzaU0Yj0mfiDtvBpnFpeRPnoPbnTDMkSullFJj05COwRIRAS4DzoxGeUopNdZkZWZx6jX/Dfw37V4vO8q24W9vIuj343TY8KRkkpCWTXbWOPKdTr35rlJKKRWnojUG6xSg2hizvdu6EhFZCzQDPzDGvN3TgSJyA3ADwIQJes8ppZRK9HiYMmNurMNQSiml1DHoN8ESkVeBvB42/acx5tnI8yuAZd22VQITjDF1InI88IyIzDbGNB9eiDHmt8BvweoieLQvQCmllFJKKaXiRb8JljHmrL62i4gDuAQ4vtsxPsAXeb5aRHYC0wAdYKWUUkoppZQataIxP+9ZwBZjTEXnChHJERF75PkkYCqwKwp1KaWUUkoppVTcisYYrMs5tHsgwKnAXSISAMLAjcaY+iOOPMzq1atrRWRPFGKKpmygNtZBqGGj13vs0Gs9dui1Hlv0eo8deq3Hlni83hN7Whm1adpHKxFZ1dP0i2p00us9dui1Hjv0Wo8ter3HDr3WY8tIut7R6CKolFJKKaWUUgpNsJRSSimllFIqajTB6t9vYx2AGlZ6vccOvdZjh17rsUWv99ih13psGTHXW8dgKaWUUkoppVSUaAuWUkoppZRSSkWJJlhKKaWUUkopFSWaYPVBRM4Rka0iskNEbot1PCp6RKRIRN4QkU0i8rGI3BxZnykir4jI9si/GbGOVUWHiNhFZK2I/COyXCIi70c+38tFxBXrGFV0iEi6iDwpIltEZLOInKif7dFJRG6J/A3fKCLLRMSjn+3RQ0T+ICIHRGRjt3U9fpbFcm/kuq8XkeNiF7k6Wr1c659G/o6vF5G/iUh6t23fi1zrrSJydkyC7oMmWL0QETvwK+BcYBZwhYjMim1UKoqCwLeMMbOAJcBXI9f3NuA1Y8xU4LXIshodbgY2d1v+X+AXxpgpQAPwbzGJSg2F/wNeMsbMAOZhXXf9bI8yIlIAfANYaIyZA9iBy9HP9mjyMHDOYet6+yyfC0yNPG4AfjNMMaroeJgjr/UrwBxjzFxgG/A9gMj3tcuB2ZFjfh353h43NMHq3WJghzFmlzHGDzwGXBjjmFSUGGMqjTFrIs9bsL6AFWBd4z9FdvsTcFFMAlRRJSKFwGeB30eWBTgTeDKyi17rUUJE0oBTgYcAjDF+Y0wj+tkerRxAgog4gESgEv1sjxrGmLeA+sNW9/ZZvhD4s7G8B6SLSP6wBKoGradrbYz5pzEmGFl8DyiMPL8QeMwY4zPG7AZ2YH1vjxuaYPWuACjvtlwRWadGGREpBhYA7wO5xpjKyKYqIDdWcamo+iXwHSAcWc4CGrv94dbP9+hRAtQAf4x0Cf29iCShn+1RxxizD7gH2IuVWDUBq9HP9mjX22dZv7eNbtcBL0aex/211gRLjWkikgw8BXzTGNPcfZux7mGg9zEY4UTkPOCAMWZ1rGNRw8IBHAf8xhizAGjjsO6A+tkeHSJjby7ESqrHA0kc2cVIjWL6WR4bROQ/sYZ2PBrrWAZKE6ze7QOKui0XRtapUUJEnFjJ1aPGmKcjq6s7uxRE/j0Qq/hU1JwEXCAiZVhdfc/EGqOTHulWBPr5Hk0qgApjzPuR5SexEi79bI8+ZwG7jTE1xpgA8DTW510/26Nbb59l/d42ConINcB5wJXm4M174/5aa4LVuw+BqZHZiFxYg+mei3FMKkoiY3AeAjYbY37ebdNzwNWR51cDzw53bCq6jDHfM8YUGmOKsT7HrxtjrgTeAD4X2U2v9ShhjKkCykVkemTVJ4FN6Gd7NNoLLBGRxMjf9M5rrZ/t0a23z/JzwFWR2QSXAE3duhKqEUhEzsHq3n+BMaa926bngMtFxC0iJVgTm3wQixh7IweTQXU4EfkM1tgNO/AHY8zdsY1IRYuInAy8DWzg4Lic72ONw3ocmADsAS4zxhw+wFaNUCJyOvBtY8x5IjIJq0UrE1gLfNEY44theCpKRGQ+1oQmLmAXcC3WD4r62R5lROROYClW96G1wPVYYzH0sz0KiMgy4HQgG6gG/gt4hh4+y5Ek+36sbqLtwLXGmFUxCFsdg16u9fcAN1AX2e09Y8yNkf3/E2tcVhBrmMeLh5cZS5pgKaWUUkoppVSUaBdBpZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZRSSimllIoSTbCUUkoppZRSKko0wVJKKaWUUkqpKNEESymllFJKKaWiRBMspZSKMyJSLCJGRByxjkWNDSLysYicHus4lFJqNNAESyml1IgnIg+ISGvk4ReRQLflF2MdX7wzxsw2xqyIZpkikikiy0WkTkRqReRREUmNZh1KKRWPNMFSSqko05an4WeMudEYk2yMSQZ+BCzvXDbGnNu530i6NiMp1l78D5ABlACTgVzgjlgGpJRSw0ETLKWUigIRKROR74rIeqBNRBwiskRE/iUijSLyUfcuWCKyQkT+n4h8ICLNIvKsiGT2Uva1IrJZRFpEZJeI/Pth2y8UkXWRcnaKyDmR9Wki8pCIVIrIPhH5HxGx9/M6JovI64e1OqR321YvIsdFlseLSE3n6xKRCyJdzRojr2/mYefn2yKyXkSaIi0bnqM/00evl2tjRGRKt30eFpH/6bZ8XuScNkau4dwB1nW6iFSIyPcj569MRK7stv2zIrI2cq3KReSObts6u4b+m4jsBV6PrH9CRKoi5+0tEZl9WNy/FpEXI61174hInoj8UkQaRGSLiCwY4Dk6ayCv8SiUAM8YY5qNMU3A34DZ/RyjlFIjniZYSikVPVcAnwXSsX6tfx7rV/xM4NvAUyKS023/q4DrgHwgCNzbS7kHgPOAVOBa4BfdkpzFwJ+BWyP1ngqURY57OFLuFGAB8Gng+n5egwD/DxgPzASKiLQ6GGN2At8F/iIiicAfgT8ZY1aIyDRgGfBNIAd4Afi7iLi6lX0ZcA7WF++5wDU9BiByciSx6e1xcj+voSdd18YYE+zzBFgJyR+AfweygAeB50TEPcC68oBsoAC4GvitiEyPbGvDuu7pkXhuEpGLDjv+NKxzf3Zk+UVgKjAOWAM8etj+lwE/iNTpA96N7JcNPAn8fIBx90hEbuvrevRx6K+A80QkQ0QygEsjr0UppUY1TbCUUip67jXGlBtjOoAvAi8YY14wxoSNMa8Aq4DPdNv/EWPMRmNMG/BD4LKeWpiMMc8bY3Yay5vAP4FTIpv/DfiDMeaVSD37jDFbRCQ3Utc3jTFtxpgDwC+Ay/t6AcaYHZGyfMaYGqwv56d12/47YAfwPlZi+J+RTUuB5yPHBoB7gATgE4edn/3GmHrg78D8XmJYaYxJ7+Oxsq/X0Ivu16Y/NwAPGmPeN8aEjDF/wkpclhxFfT+MnMM3sRLtywCMMSuMMRsi12o9VlJ62mHH3hG5Zh2RY/5gjGkxxviwkt15IpLWbf+/GWNWG2O8WK1EXmPMn40xIWA5VnJ9zIwxP+7revRx6BrABdRFHiHg14OJRSmlRgJNsJRSKnrKuz2fCHz+sF/6T8ZKSnrafw/gxGp1OISInCsi70W65zViJU6d+xUBO3uIZWKkvMpu9T+I1QrSKxHJFZHHIl0Km4G/9BDT74A5wH2RL/1gtXjt6dzBGBOOvL6CbsdVdXveDiT3FUuUlfe/S5eJwLcOu3ZFWK9xIBoiSXOnPZ3HisgJIvJGpGtlE3AjR57frlhFxC4iPxar62czB1snux9T3e15Rw/Lw3meu3sc2AakYLW+7sR6Pyml1KimCZZSSkWP6fa8HKuFqvuv/UnGmB9326eo2/MJQACo7V5gpFvaU1gtQrmRFoMXsLryddYzuYdYyrFaXbK71Z9qjOlvDMyPIq+j1BiTitUS11kXIpIM/BJ4CLhDDo4b24+VmHTuJ5HXt6+f+o4gIqfIwRkAe3qc0n8pRzCHLbcDid2W87o9LwfuPuzaJRpjlg2wrgwRSeq2PAHr/AD8FXgOKDLGpAEP0O389hDrF4ALgbOANKA4sv7wY4ZMZDxZr9ejj0PnY7UEthljWrFe62f62F8ppUYFTbCUUmpo/AU4X0TOjrRCeCITIBR22+eLIjIrMp7pLuDJSLeu7lyAG6gBgiJyLtZYqk4PAdeKyCdFxCYiBSIywxhTidWV8GcikhrZNllEDu+OdrgUoBVoEpECrLFd3f0fsMoYcz1W17cHIusfBz4bicMJfAsrwftXfyfqcMaYt7vNANjT4+2jLbMH64AvRK7NORzaTe93wI2R1iYRkSSxJqdIga6JJR7up/w7RcQVSQbPA56IrE8B6o0x3sj4uS/0U04K1nmsw0oIf3QUrzEqjDE/6ut69HHoh8D1IpIgIglYXS/XD0/USikVO5pgKaXUEDDGlGO1PHwfKzkqx0pWuv/dfQRrIooqwAN8o4dyWiLrHwcasL6QP9dt+wdEJr4AmoA3OdiSdBVWgrYpcuyTHNpFsSd3AsdFynoeeLpzg4hciDVJxU2RVf8BHCciVxpjtmK1dt2H1Qp3PnC+McbfT32xcjNWjI3AlcAznRuMMauALwP3Y523HRw6IUcR8E4fZVdFjtuPNSHFjcaYLZFtXwHuEpEW4Has69qXP2N1MdyHdR3f6++FxZHrsFrcKrDin4Q16YdSSo1qYszhvSaUUkoNNRFZAfzFGPP7WMeiBi4yK+JHwNzIZB6Hbz8d67oWHr5NKaXU2DDSb2KolFJKDZtIi9zMfndUSik1ZmkXQaWUGmNE5IFeJix4oP+j1UgkIhP6mKhiQqzjU0qp0US7CCqllFJKKaVUlGgLllJKKaWUUkpFSVyNwcrOzjbFxcWxDkMppZRSSiml+rR69epaY0zO4evjKsEqLi5m1apVsQ5DKaWUUkoppfokInt6Wq9dBJVSSimllFIqSjTBUkoppZRSSqko0QRLKaWOwp7aVl7asB+dgVUppZRSPYmrMVg9CQQCVFRU4PV6Yx2KGmE8Hg+FhYU4nc5Yh6JGkdpfn8O80D5WBf/GogXzYx2OUkoppeJM3CdYFRUVpKSkUFxcjIjEOhw1QhhjqKuro6KigpKSkliHo0aJmro6jg9vAIF1//oTaIKllFJKqcPEfRdBr9dLVlaWJlfqqIgIWVlZ2vKpoqp2x8FZTovr3ophJEoppZSKV3GfYAGaXKljou8bFW3e8nUArMr4DFNDu6ipb4xpPEoppZSKPyMiwVJKqXgQatyH39hJnnseDgmz++MPYh2SUkoppeKMJlgDICJ861vf6lq+5557uOOOO2IXUDfvvfceJ5xwAvPnz2fmzJldca1YsYJ//etfgyr7nHPOIT09nfPOOy8KkSo18klHA02SQsGsEwHo2Ls6xhEppZRSKt5ogjUAbrebp59+mtra2qiWa4whHA4Pqoyrr76a3/72t6xbt46NGzdy2WWXAdFJsG699VYeeeSRQZWh1Gji9DfSIimkjCuhhURstVtjHZJSSiml4kzczyLY3Z1//5hN+5ujWuas8an81/mz+9zH4XBwww038Itf/IK77777kG01NTXceOON7N27F4Bf/vKXnHTSSdxxxx0kJyfz7W9/G4A5c+bwj3/8A4Czzz6bE044gdWrV/PCCy9w//338+KLLyIi/OAHP2Dp0qWsWLGCO+64g+zsbDZu3Mjxxx/PX/7ylyPGFR04cID8/HwA7HY7s2bNoqysjAceeAC73c5f/vIX7rvvPmbMmNFrnDt37mTHjh3U1tbyne98hy9/+csAfPKTn2TFihV9npsnnniCO++8E7vdTlpaGm+99RZer5ebbrqJVatW4XA4+PnPf84ZZ5zBww8/zDPPPENbWxvbt2/n29/+Nn6/n0ceeQS3280LL7xAZmYmv/vd7/jtb3+L3+9nypQpPPLIIyQmJh5S75IlS3jooYeYPdu6dqeffjr33HMPCxcu7DNepQbD5W+k3Z4KIhxwTSCldVesQ1JKKaVUnNEWrAH66le/yqOPPkpTU9Mh62+++WZuueUWPvzwQ5566imuv/76fsvavn07X/nKV/j4449ZtWoV69at46OPPuLVV1/l1ltvpbKyEoC1a9fyy1/+kk2bNrFr1y7eeeedI8q65ZZbmD59OhdffDEPPvggXq+X4uJibrzxRm655RbWrVvHKaec0mec69ev5/XXX+fdd9/lrrvuYv/+/QM+L3fddRcvv/wyH330Ec899xwAv/rVrxARNmzYwLJly7j66qu7ZvPbuHEjTz/9NB9++CH/+Z//SWJiImvXruXEE0/kz3/+MwCXXHIJH374IR999BEzZ87koYceOqLepUuX8vjjjwNQWVlJZWWlJldqyCWEmulwpAHQmlJCnr+ccFhvOKyUUkqpg0ZUC1Z/LU1DKTU1lauuuop7772XhISErvWvvvoqmzZt6lpubm6mtbW1z7ImTpzIkiVLAFi5ciVXXHEFdrud3NxcTjvtND788ENSU1NZvHgxhYWFAMyfP5+ysjJOPvnkQ8q6/fbbufLKK/nnP//JX//6V5YtW9Zjq1NfcV544YUkJCSQkJDAGWecwQcffMBFF100oPNy0kkncc0113DZZZdxySWXdL2mr3/96wDMmDGDiRMnsm3bNgDOOOMMUlJSSElJIS0tjfPPPx+A0tJS1q9fD1hJ2A9+8AMaGxtpbW3l7LPPPqLeyy67jE9/+tPceeedPP7443zuc58bULxKDUZSqBl/4iwAJHsqeXUvUnGghsK8cTGOTCmllFLxYkQlWLH2zW9+k+OOO45rr722a104HOa9997D4/Ecsq/D4ThkfFX3+zElJSUNqD6329313G63EwwGe9xv8uTJ3HTTTXz5y18mJyeHurq6I/bpLU44cjrzo5ne/IEHHuD999/n+eef5/jjj2f16r4H/Xd/TTabrWvZZrN1vb5rrrmGZ555hnnz5vHwww/3mDAWFBSQlZXF+vXrWb58OQ888MCAY1bqmBhDimkh6LZasDx5M2Ar1JR9rAmWUkoppboMuougiBSJyBsisklEPhaRmyPrM0XkFRHZHvk3Y/DhxlZmZiaXXXbZIV3WPv3pT3Pfffd1La9btw6A4uJi1qxZA8CaNWvYvXt3j2WecsopLF++nFAoRE1NDW+99RaLFy8ecEzPP/88xlhdlLZv347dbic9PZ2UlBRaWlr6jRPg2Wefxev1UldXx4oVK1i0aNGA69+5cycnnHACd911Fzk5OZSXl3PKKafw6KOPArBt2zb27t3L9OnTB1xmS0sL+fn5BAKBrnJ6snTpUn7yk5/Q1NTE3LlzB1y+UsfCBNpxEyDssf6UZU60WtRb92+OZVhKKaWUijPRGIMVBL5ljJkFLAG+KiKzgNuA14wxU4HXIssj3re+9a1DZhO89957WbVqFXPnzmXWrFldLSmXXnop9fX1zJ49m/vvv59p06b1WN7FF1/M3LlzmTdvHmeeeSY/+clPyMvLG3A8jzzyCNOnT2f+/Pl86Utf4tFHH8Vut3P++efzt7/9jfnz5/P222/3GifA3LlzOeOMM1iyZAk//OEPGT9+PGAlf5///Od57bXXKCws5OWXXwasbomd461uvfVWSktLmTNnDp/4xCeYN28eX/nKVwiHw5SWlrJ06VIefvjhQ1qu+vPf//3fnHDCCZx00knMmDGja/1zzz3H7bff3rX8uc99jscee6xr5kSlhpK3pQEASUgHIKtoBiEjULMthlEppZRSKt5IZ+tH1AoUeRa4P/I43RhTKSL5wApjTJ/NGAsXLjSrVq06ZN3mzZuZOXNmVGNUBx0+2+Foo+8fFS0N5ZvJeGgJb5X+iFMv/SoA+++awb6EaSy69bkYR6eUUkqp4SYiq40xR8yyFtVZBEWkGFgAvA/kGmMqI5uqgNxo1qWUUsPJ125NCmN3HbxlQJ2niIyOvbEKSSmllFJxKGqTXIhIMvAU8E1jTHP3iRKMMUZEemwqE5EbgBsAJkyYEK1w1ADdcccdsQ5BqREh4G0DwO4+OEmNN6WYkrb1hEJh7Ha960UnYwwf729mck4yCS57rMNRSimlhlVUvhGIiBMruXrUGPN0ZHV1pGsgkX8P9HSsMea3xpiFxpiFOTk50QhHKaWiLuC1WrAc7oMtWJI5iWTxcqCqIlZhxaUP3niOhAdP4IVfj86ux4NhjGHjvib8wXD/O48xxhhqWnyxDiMueQMhmr2BWIehlBqgaMwiKMBDwGZjzM+7bXoOuDry/Grg2cHWpZRSsdLZguXwHGzBSsybCkDtnk09HjNWBdctZ7KtkjMbHudAQ3Osw4krbz3/KJ4Hl/CPP/xPrEOJOy/9+cfs+enJvPneB7EOJa4YY3ju5zey6cens69OP09KjQTRaME6CfgScKaIrIs8PgP8GPiUiGwHzoosK6XUiBT0WQmWMyG5a13mROumw62VOpNgd4WtHwGQIa3s+PClGEcTXxI/XsYU234W7/sTHT5tkehkwmGO2/1bFtq2YXvzR7EOJ67s2LKeyzoeZwkb2fLCr2MdjlJqAAadYBljVhpjxBgz1xgzP/J4wRhTZ4z5pDFmqjHmLGNMfTQCVkqpWAj72gFweQ4mWOMKphA0NsJ1O2MVVtzxtjQwMVzBe+OvImwE3+73Yx1S3AiHwkzu+IgwQqHUsm3t27EOKW5U7dpALtbXhDntH+L1+WMcUfyo33LwfZJW8XoMI1FKDZSOyh6gZ555BhFhy5Ytve5TVlbGnDlzolbn1q1bOf3005k/fz4zZ87khhtuAKybBL/wwguDKvu6665j3LhxUY1XqdEs5LdasNwJB7sI2pwuqm3jcDWVxSiq+FO7fxcAkjeXfc4iUuo+inFE8aOmYhuZtLC2+MsA1G1dGeOI4sf+HesBWDP+SjKkla3r3olxRPEjdGArAWNnXdZnmebdoMmnUiOAJlgDtGzZMk4++WSWLVvW4/ZgMDjoOkKh0CHL3/jGN7jllltYt24dmzdv5utf/zoQnQTrmmuu4aWXtOuOUgPV2YLlSUw+ZH29u5B0b3ksQopLrQf2AODJKqIubQ4TfNsJh6N7v8WRqrHSSj7tJSdRK5kkHNDks5Ov1jo3Bad8EYCmXatjGU5c8TTuoNI+Hik5hVRpZ+82fd8oFe9GVoL14m3wx89G9/Hibf1W29raysqVK3nooYd47LHHutavWLGCU045hQsuuIBZs6yxGMFgkCuvvJKZM2fyuc99jvZ260vZa6+9xoIFCygtLeW6667D57NmSiouLua73/0uxx13HE888cQh9VZWVlJYWNi1XFpait/v5/bbb2f58uXMnz+f5cuX09bWxnXXXcfixYtZsGABzz5rzSfy8MMPc+GFF3L66aczdepU7rzzzq6yTj31VDIzM/t83W+++Sbz589n/vz5LFiwgJaWFowx3HrrrcyZM4fS0lKWL1/edS5OO+00LrzwQiZNmsRtt93Go48+yuLFiyktLWXnTqsL1d///ndOOOEEFixYwFlnnUV1dfUR9V5++eU8//zzXcvXXHMNTz75ZD9XSakhFuhMsJIOWd2RUkxecD8mrLPCAXjrrRkVk3MmQM4Mxkkj+6sq+zlqbGivte6ZlpJbzP6kmeS3b45xRPHD3rSXFpNA7owTaSERx4H1sQ4pbuT49lDrmUjmpPkA1O7Wc6NUvBtZCVaMPPvss5xzzjlMmzaNrKwsVq8++MvamjVr+L//+z+2bbMGuW/dupWvfOUrbN68mdTUVH7961/j9Xq55pprWL58ORs2bCAYDPKb3/ymq4ysrCzWrFnD5Zdffki9t9xyC2eeeSbnnnsuv/jFL2hsbMTlcnHXXXexdOlS1q1bx9KlS7n77rs588wz+eCDD3jjjTe49dZbaWuzujN98MEHPPXUU6xfv54nnniCVatWDfh133PPPfzqV79i3bp1vP322yQkJPD000+zbt06PvroI1599VVuvfVWKiutL08fffQRDzzwAJs3b+aRRx5h27ZtfPDBB1x//fXcd999AJx88sm89957rF27lssvv5yf/OQnR9S7dOlSHn/8cQD8fj+vvfYan/3sZwcct1JDwt9Bu3GT4HIeuj5zEinSQW3N/tjEFWdCTdZ5yMybQFLBTACqd22IZUhxI1BvtXRmjy/BnzmdgnAVzW3tMY4qPiS0VXDAngcilLunktnSe3f8sSYzXE+bJ5fxk+cSNkKgSmctVSreRe1Gw8Pi3NhMRLhs2TJuvvlmwGpdWbZsGccffzwAixcvpqSkpGvfoqIiTjrpJAC++MUvcu+99/KpT32KkpISpk2bBsDVV1/Nr371K775zW8CVkLRk2uvvZazzz6bl156iWeffZYHH3yQjz46smvAP//5T5577jnuueceALxeL3v3Wr+UfupTnyIrKwuASy65hJUrV7Jw4cIBve6TTjqJ//iP/+DKK6/kkksuobCwkJUrV3LFFVdgt9vJzc3ltNNO48MPPyQ1NZVFixaRn58PwOTJk/n0pz8NWC1vb7zxBgAVFRUsXbqUyspK/H7/Ieeu07nnnsvNN9+Mz+fjpZde4tRTTyUhIWFAMSs1ZILteHGReNgNhT25U2Ar1OzZQk5uYS8Hjx221kpqTRpZKUnYS0oBaNm3CTg7toHFAWnZT6NJJi0llYT8mTj3hti6/WPmzF8U69BiLtVXRZ3L+v+jPW0yU6tfJhgM4XCM8RtVBzpIooNQYg52dxL77Xl4GnTWUqXinbZg9aO+vp7XX3+d66+/nuLiYn7605/y+OOPY4w1piAp6dDuQtZtwXpf7snhZXQ3fvx4rrvuOp599lkcDgcbN248Yh9jDE899RTr1q1j3bp17N27l5kzZx5zPJ1uu+02fv/739PR0cFJJ53U5wQfAG63u+u5zWbrWrbZbF1j1L7+9a/zta99jQ0bNvDggw/i9XqPKMfj8XD66afz8ssvs3z58l4TUKWGkwQ68Ir7iPUZRTMAaN2/dbhDikvO9gM02DIQEVLzp+LHganRL4QA7rZK6uzZiAhZxdYEQ43lR/5NH4uSQ40EErIBcORMJ03aqNi3N8ZRxZ6vsQqAcGIOAPWJk8jp2BXLkJRSA6AJVj+efPJJvvSlL7Fnzx7KysooLy+npKSEt9/ueXrdvXv38u677wLw17/+lZNPPpnp06dTVlbGjh07AHjkkUc47bTT+q37pZdeIhCw7pNSVVVFXV0dBQUFpKSk0NLS0rXf2WefzX333deV9K1du7Zr2yuvvEJ9fT0dHR0888wzXa1rA7Fz505KS0v57ne/y6JFi9iyZQunnHIKy5cvJxQKUVNTw1tvvcXixYsHXGZTUxMFBQUA/OlPf+p1v6VLl/LHP/6Rt99+m3POOWfA5Ss1VOyhDnwcmWDlTphOyAihWp2qHcDpb6bDkWot2B1UOwpIbNYvhAAJgQZaHNbY15xI616wWhNzjCHNtBD2WOcmqcD60aKu7ONYRhUXWuusLre2lFwAfJnTKDKVtLZr11Kl4pkmWP1YtmwZF1988SHrLr300l5nE5w+fTq/+tWvmDlzJg0NDdx00014PB7++Mc/8vnPf57S0lJsNhs33nhjv3X/85//ZM6cOcybN4+zzz6bn/70p+Tl5XHGGWewadOmrkkufvjDHxIIBJg7dy6zZ8/mhz/8YVcZixcv5tJLL2Xu3LlceumlXd0Dr7jiCk488US2bt1KYWEhDz30EAAPPPAADzzwAAC//OUvmTNnDnPnzsXpdHLuuedy8cUXM3fuXObNm8eZZ57JT37yE/Ly8gZ8Pu+44w4+//nPc/zxx5Odnd21ftWqVVx//fVdy5/+9Kd58803Oeuss3C5XAMuX6mhYgt24LcdmWC53B6qbeNw6lTtAHhCzfidqV3LjUkljPNrSwRAQqil69zYPSkckGzcjTtiHFXseVsbcEqIcKLVnX1csZV8tlfqOKz2BmuMszPNSrDsubNwSojKndryqVQ8k85Wj3iwcOFCc/gkDJs3b+7q7qaOzsMPP8yqVau4//77Yx1KzOj7R0XLlh+fRjDgZ84P3z1i24b/dwbuUCvTfvBhDCKLLzV3lrAjdQkn3mL9CLX2j99iTtkfaft2OekpvXeHHgsa7ihic8aZfOJmq/V+0/+egc3fwowfDnzyodGods8msv94Iv+aezefuORrmHAI7115rM65hJO/+mCsw4upHS/dz5T3/pNVl7zNwrlz2bn+XSY/fQ6rF/+S4z9zbazDU2rME5HVxpgjJjfQFiyllBoAR9iL397zZCttyRPJC+6DOPrBKlaSTSthd1rXsjNvOk4JsX/3GJ/5zBhSTCvGc/DctKVOpjBYQSg0tqf4b2uwbtfhSB4HgNjsVNkLSGrZHcuw4kK4pQaA5ExrApD8SdYtYQIHdFyjUvFME6xR7JprrhnTrVdKRZMz7CVo8/S4LZxRQiptNNcfGOao4kvY7yUBP2FPete6tEJrPE1jxdju7uVta8QhYUxCxsGV2dNIlg6q9pXFLK544GuyPjeu1IPdxhsSi8n2adfSUFs9bcZNWop1g/PE5DSqycTeqOMalYpnIyLBiqdujGrk0PeNiiZX2EvY3nOC5R43FYDqPWO7laatuRYAW0J617rc4tkA+A9sj0VIcaO1MXJuEg8mWMn51q076vaO7fdNoMVKsBLSc7vW+dMmMT5chc/XEauw4oO3kSaSyEg8OBa5xlVIatueGAallOrPkCdYInKOiGwVkR0ictvRHu/xeKirq9Mvy+qoGGOoq6vD4+n5C7FSR8tlfIQcPb+f0iOtNC37x3a3na4kolsrjSsliyZSsDeM7e5ebZFz40zK7FqXPdHq7tVaObbfN8G2egCS0sd1rXOMm4JdDFVlY3uWRZuviRaS8TgP3g+sLamYcYF9MYxKKdWfIb3RsIjYgV8BnwIqgA9F5DljzIB/rissLKSiooKampqhClONUh6Ph8JCvfGrig638RHuZQxWfvF0wkYI1oztGeE6Wqwvys7kjEPW17oKSBnjv7i3N9cB4E7plmCNn4TfODC1Y/t9Y9obCRg7qWkHx6eljJ8Oa6ChfAsTp8+PXXAx5vA10mRLOWRdKGMSGQ3P0dJYQ0p6TowiU0r1ZUgTLGAxsMMYswtARB4DLgQGnGA5nU5KSkqGKDyllBoYNz6MM7HHbYmJSeyXbByNY7uVxttiJRGu5MxD1rclT2Bc3RqMMUd1s/PRxB85N57Ug1+Ixe6gyp6Pp7ksRlHFCW8jzSSS6XF2rcortlr3OqrHdtdSd7CZDkfuoetyp8EuOLB7EykL+r+nplJq+A11F8ECoLzbckVkXRcRuUFEVonIKm2lUkrFpaAfJyGMs+cWLLBaaZLby3vdPhYEWhsASEjNOmR9OGMyedRxoKEpFmHFhUCr1bqXnHbouWlIKCLTN7bfN3ZfE62SfEjynZaVRzNJSP3YvoG3J9iC35F6yLr0IqtLctO+sT1xjFLxLOaTXBhjfmuMWWiMWZiTo03dSqn4E/K3WU96acECaE2aSG6gYpgiik+hNivBSjosifDkTsUmhsrdm2MRVlwIt3eOM8o+ZL0vtZj8UCXBYDAWYcUFu7+ZdlvyoStFqHIUkNQ6truWJoVbCHa77QFAfvEMQkYIjvGJY5SKZ0OdYO0DirotF0bWKaXUiOFtbwXA5uq9BSuUXkIarXgjM+mNReEOK8FKPiyJyCiybvbdtG/sTlhgOhrxGQcpyYe2RtiypuCRAFUVY7elxh1spsOeesT6lsQisvxj+EeLoJ8EfITd6YesTkxMokpyxnyXZKXi2VAnWB8CU0WkRERcwOXAc0Ncp1JKRVVngiWupF73cY2bDED1nrHbSkNHI23GTXLCoYlozkQrwRrLk4DYfA20SBI2+6H/7SaNnw5A3d6x293LE2zB70w5Yn0grYTccA3ejvYYRBV7JvKDhXS77UGnWlchqe1ju3VPqXg2pAmWMSYIfA14GdgMPG6M+Xgo61RKqWjzd1hdBG3u3hOs1ILIuIiKsdtKY/M10SLJ2GyHTmRhS8ygUVJxjOGbo9p9zbTKkUlEZ/LZXjl23zeJ4TaCriNbsBw5kana94zNc9MeaQ23J2Ycsa0tpZi84D7QW9goFZeGfAyWMeYFY8w0Y8xkY8zdQ12fUkpFm6+jBQBHHwlW3sQZhI0QGMPjIpz+Jtokucdtda5CUtv3DnNE8cMVaKbDfmSClZVfjNc4MXVjtIugMSTTSviwcUYAqQVW615D+dhsFe68r5wjOeuIbeHMySTTTkv9/uEOSyk1ADGf5EIppeJdwGu1YDncvU9ykZ6aQrVkYm8sG6ao4o8z0EJ7D0kEQEfKRPKC+wiGwsMcVXxICDbjdRyZRIjNTpV9PAktZcMfVBwI+1pxEgLPkecmr3g2AL4xOlV7R5OVYHW/d1onz7ipgDVVu1Iq/miCpZRS/QhGEiynp/cWLBHhgKOApLax20rjCbXgc/ScYJE5mXypZ39N3fAGFScSwy0EeugGB9CYMIFM79iczKGzlYbEI5OI1KxcmkiChrHZtdQXuXdaYlr2EdsyJlhdS5t1qnal4pImWEop1Y+g15rkwpXQe4IF0JI0gWz/2J0oNTHUgt/ZcxKRkDcNgOo9Y/MLYbJpIdRDNzgAb1oJ+eFKgoHAMEcVe22N1v0vHUlHdoMDqB7DU7X7I/dOS+ohwRo/cToBYyc0hieOUSqeaYKllFL9CPsiCVZiz1+QOwXTismgiUDkflBjTZJpJdxLK01m5Bf3ljE4VXs4GCCFDownvcft9uzJuCRE1d6x1xWuvdlKsFw9jDMCaEmcQLZvbLbuhdutvyOp6UcmWAkeN/tteTibdKp2peKRJlhKKdWPsM/qIuhK7HkCh06uyLiI6rIxOCg/FCAJL+Fekoj0QmvCgmDt2PvFvbXR6urV03TbAMmdU7WPwckc/JFucJ60nhOsQFoJuaYWb2Qmz7HEdDTQbBJJT/b0uL3WVUiaTtWuVFzSBEsppfphIi1YnsSeW2c6ZRR2flEee93gvC1WdyZJOHJKaQDxpNEo6bjG4C/urZHJCmw9jDMCyJk4C4COym3DFlO88EfeN4mpR7bSADjHTcE2RqdqF28jTSTjtPf8Va0jZSK5of0QHpsTxygVzzTBUkqp/gTa8Rs7iQm9zyIIUDDZ+qLsHYOznrV0TimdlN7rPvWeQtI6xt4kIG1NVjc4Z3LPCVZWbhFtxgP1Y2+q9lCb1YKVkjGux+2pkda9+jHYuufwN9Nu673VPJw5hQT8NNeMvc+UUvFOEyyllOqH+Ftpx4Pb0fefzNSUNKrJxFY/9mY9a2vqTLB6TiIAvCkTyQ9V4g2EhiusuNA5G5wnpedWGrHZqHKMzanaTUcDXuMkLbXn1uHczqnaq8bejxbuQBMdvc3KycGJY2rKPh6ukJRSA6QJllJK9cMWbKcdDzab9LtvnatwTE7V3tFsdfXy9HDPnk6SNZk8aaC8una4wooLnbPBJaT2PM4IoCmhiKwxOJmDLdINztXLjxepWeNoJBnbGJyq3R1swdfDvdM6ZUW6lrbuH3tdkpWKd5pgKaVUP2yBdnzS80Dzw7UnT2RccB/GmCGOKr74IkmEp48kIjHf6u51YIxNAhJstWaDS8rouQULwJdWQl64moDfN1xhxQWHr5FWW++tNAAHHONJHINTtSeFmwm4ek+wxhdNwmucBHWqdqXijiZYSinVD0ewHa8kDGznzElk00Rt3di6oW6wzUqwknuYUrpTVmSq9tb9Y2vCAtNhnZvU9Jxe97FnT8EhYar2jq2JLlz+JtrsfU8e05I4kWz/GGvdM4YU00q4l3unAXhcTvbZ8nE3lw1fXEqpARlUgiUiPxWRLSKyXkT+JiLp3bZ9T0R2iMhWETl70JEqpVSM2EPt+O0DS7CS8q1xEft3j61xEeG23u/Z0yk5cm7CdWPrF3fpaKTVePB4em8FTRmjkzl4Qs19doMDCKSXkGvq6GgfO1O1h32tOAlBL1P7d6pzF5E+BieOUSreDbYF6xVgjjFmLrAN+B6AiMwCLgdmA+cAvxYR+yDrUkqpmHCGOgjYBpZgZRdb4yKayzcNZUhxx3gb8RoniYlJve/kTqHBloFnjP3ibvc10iJ930MtJ/K+8VaOrda9pFAz/j66wQG4cqdjE0PFzo3DFFXsNTf0PbV/J29qMbmhSkwoMBxhKaUGaFAJljHmn8aYYGTxPaAw8vxC4DFjjM8YsxvYASweTF1KKRUrrlA7IUffU7R3yp4wi6CxYQ6MrZYIh7eBRklDpO+JQBo8RaR3lA9TVPHB7a+nxZbe5z5ZOeNpMQkwxmagTDathNzpfe6TWVIKQOOeDcMQUXxoqj8AgDul9zGNALbsqTgJUb9v7E3xr1Q8i+YYrOuAFyPPC4Du/4NWRNYdQURuEJFVIrKqpqYmiuEopVR0uIyXsHNgCZY4PVQ6xpPYNLamlXb56mmx9T2WBsCXOokJpoIW79j5xd0TaKDNkd7nPmKzUe0sGFNTtRt/Ox78mH66wY2fVErICIGqsfOjRWvkvnIJqX23YKUWzACgWqdqVyqu9JtgicirIrKxh8eF3fb5TyAIPHq0ARhjfmuMWWiMWZiT0/sAYKWUipUE00HY2UfXt8PUJ05mnHf3EEYUfxKCjf0mEQDkziRLWigvHzvjRpKCTfj7aaUBaEqaxDjf2JktrzVy7zRbQt9JhMuTyH5bPu6GsTMBSEez9YNzSh8TowDkllhdS9t0qnal4kq/CZYx5ixjzJweHs8CiMg1wHnAlebgvMT7gKJuxRRG1iml1MgSDpFMB2F3/60znfyZ0ygIV9Ha2jKEgcWXpGAjXmd6v/ulFFndvRrKPhriiOJHmmki5Om7qxdAKGs6edTRWDc2enM01Vnd4Fz9tNIA1CUUk9Uxdn608EcSrNSs/D73G5dXRKtJIFw7tiaOUSreDXYWwXOA7wAXGGPau216DrhcRNwiUgJMBT4YTF1KKRULnfd3Mp70AR/jyJ+NXQz7d4ydJCIl3EzAndHvftmT5gHgrxwbXZp8Ha0k4oOk3mdX7OQpnAPA/h3rhjiq+NDSYCVYian9917xZkyjILQfv8871GHFh9ZqAFKzx/e5m9hsVDoLSWwZO8mnUiPBYMdg3Q+kAK+IyDoReQDAGPMx8DiwCXgJ+KoxJjTIupRSati1R7oxSUL/yUOnrBIriWgoWz8kMcWbsN9LMu2QOIAkIqOAZpJw1Y+N2fIa66oAsCf3n0TkTJoPQMvesfG+6Wiwzk1yZl6/+zrzZuCUEPt3jY3E3NZeQyPJ2J2ufvdtSJpMnq9s6INSSg3YYGcRnGKMKTLGzI88buy27W5jzGRjzHRjzIt9laOUUvGqo9lqwbInpg/4mIJJc/AbO8GqsTFVe2O99Wu7I6X/BAsRKl3FpLeOjdnymmutJMI1gFaa3KKptBv3mJmBMtC0H4D0cUX97AlpE+YCUDdGfrRwddTRZBvYjzrBzGnk0EBL49joWqrUSBDNWQSVUmrU8Ue6CDqSBt6CZXe6qHQU4mkcGzMJNh6whti603IHtH9zyhQKg2WYcHgow4oLHXUVACRk9t3VC8Bmt1PhnEhK89h439BSjd/YScvs/31TMGUuYSP4K8dG8pkQqKPV2f/YNAB3wWwAqsZI11KlRgJNsJRSqg+dY7Bcyf1PUtBdY9Ikcr27ODj3z+jVVmvNCJiQXdjPnpZQ9gzSaKO2avTfD8vfaLXSpORMGND+jclTxkx3L3t7NfWSgc3e/1eRhKQUKm3jcI2RmQRTgvV4XQP7m5NdbI3dayrXmQSViheaYCmlVB98LVaClZIxgO5v3QSzZ1LIAWoa6ocirLjia7CSiLQBJhGpE6yZBPdvXzNkMcUL07yfsBEycgeWfAazppNFY1fXwtHM462hyTGwVhqAGk8JGW1jYDIHY8gINxJIGNjfnPETp+E3dgI1YyP5VGok0ARLKaX6EGyzEqTUfu5Hc7ikIutX5X1b1kY9pngTbrKSiMzc/sfSABROOw6A1vKNQxlWXLC1VlJHGokez4D2T4pMY1++bfQnn8mBOtqcA//hwpcxjcJQOT5fxxBGFXvNTbUkiZdwysCScqfTRaU9H1fjGEg+lRohNMFSSqk+hNsb8Rkn6WkDvw8WQP60xQC07Bn9X5TtbZXUSRqeASYRqdnjaSQFW83oH0/jbD9Ag2PgSUTB1AUANO8d/VP8Z4Tq8CUObNwegKtgLi4JsXfr6D43NeU7AfBkD6xFGKDRM4EM79i5ebdS8U4TLKWU6oO9o5YGScU5gHEi3aWNn0IridirR38rjavjAI22oxijJkKlZxIZraN/ModkXzXt7nED3j8rv5gWEqF6dCef7c31pNGKSRt4EpEzdREA9TtXD1VYcaGpypphMyW3ZMDH+NMmWfcJ8weGKiyl1FHQBEsppfrg9tbQYBv4OJEuIlS4J5PRMvrv95Tmq6LJPfCWCIDW9FkUB3fj9/uHKKrYM+EweaEqvMkD6+oF1o1j97knk9EyuicsqCm3xgs5sooHfMz4SbPxGiehytE9Vbu3dg8AOQWTB3yMPXcqbgmwb8/o/9FCqZFAEyyllOpDkr+WVufRzSDYqTV9JhODu0f1r8omHGJcqBJv8sSjOs5eMA+PBCjfNnq7ezXW7idRfJj0gbdEALSkz2JCoIxAYPS+b5qrrG5wKXkDTyJsDiflzhJSGkd38mkay/EbB2k5/U/t3ymtYBYAtXvGxo2YlYp3mmAppVQfUoP1+DxHN8FFJ/v4uSSJj/Jdo/dLT9OBcjwEIPPokojsKQsBqN+5aijCigu1e61EwJM78CQCwDZ+Honio2LHhqEIKy60V1sJVnbR1KM6rjFtBkW+HYRDo/ceaoktu6m05yM2+4CPyZ9s3Quro3J0J59KjRSaYCmlVC/CAT8ZNGGSBj6GpruMyVYSUbdj9CYRNXussUIJuUf3RXn8lHlWd6/9o7cFq3m/1V0rrWDaUR2XFRlrVLv9g6jHFC+kbgfNJJGdnXd0B+aVki6tVEYmghiNsr17qPMcXYtwYsZ4WkhE6nYMUVRKqaOhCZZSSvWioWYfAI60/GM6vmDqfALGTnDf6B0z0lJpjTHLLJp+VMc5nC72OktIbtg0FGHFBX/VZgLGTmHJzKM6rnDKPHyjPPlMbdlBhaMYsR3d15D0EmuWxaptHw5FWDHn9XrJC1Xhz5hydAeKsN9VMiYmjlFqJNAESymletFQac3m5c4c+CQF3TndCZQ7JpA4ipOIcOVGWo2HwpKjS7AAmtJmMGEUd/dKbNhChb0Il3tg09d3crjc7HGUkDJK3zcmHCbfv4emlKPrOglQNMNq3fOWr4tyVPFh7/aNOCVEYv7Rf55aUqdSFCgbtZ8npUaSqCVYIvItETEikh1ZFhG5V0R2iMh6ETkuWnUppdRwaKuyutskjz+6Ll7dNaRMp8C7A2NMtMKKK0mNW9nrKMbpcBz9wXnzSJU29u/ZFv3A4kBexw7qko+yJSKiPnU6Rb7tmPDo+7JcW7mHNFqRcUfXsgfgSU5nny0fd93oTD7rdlgtc51jFI+GGTeLNGmjurIsylEppY5WVBIsESkCPg10v8vducDUyOMG4DfRqEsppYZLqHYnYSNkFx57ghXOLSWHBqr2l0cxsvhgwmHG+3bRmHps5ycz8iWycuv70QwrLjTVVpJLHcHsWcd0vMmbSypt1FSMvi5f+z9eCUDqpMXHdHxN0jTy20dnUh7evxavcZI3ef5RH5tYWApA7Y61UY5KKXW0otWC9QvgO0D3n2gvBP5sLO8B6SJybAMZlFIqBqRhF1WSTUZq8jGXkTbJarzft2X0TVhQtWsDabTC+AXHdHzRjIWEjOAbhd29dq99A4DkKZ84puMzplhd4fZtHn3JZ/vu9/AbOyWlJx7T8b5x8yigmoba6ihHFnuZjRvY65qMzek66mPzplqfw459o//m5krFu0EnWCJyIbDPGHP4aNwCoPtPthWRdYcff4OIrBKRVTU1NYMNRymloiapdQ91rgJE5JjLKJpxAgDte0ffr8r711tJRO6cM47peFdCMvscRSTWj75p7Nt2rMRvHEw97tRjOr545iKCxoZ3FL5vUmvWsMc1lYTEpGM6PrHYavnct+ndaIYVc+2tTUz2b6U++/hjOj4zO48DZGCv3RzlyJRSR2tACZaIvCoiG3t4XAh8H7j9WAMwxvzWGLPQGLMwJ+fY7jWjlFLRZkJBigJltKQde/dAgIS0LKpkHK7a0ZdEyJ6V1JNKybR5x1xGXcoMCrzbR90YtXG177HLPQO359iSCE9iMhX2QhLqRtf7prGhlumBLTTkHlvrFcCE2daxrbtHV6vw9lWv4pIQyTPOPKbjRYRKVwlpLaOvW6lSI82AEixjzFnGmDmHP4BdQAnwkYiUAYXAGhHJA/YBRd2KKYysU0qpuHegbCMJ4sfkzh10WTVJ0xjXNrq+9ISDQSY1vcv2lBOw2Y+9M4TJm0su9eyrGD1j1Gr37WZqaCf1BcfWstepLnUmBd5toyr53Pne33FImJQ5Zx9zGWmZ46iQfNwHRtftDzo+fgGvcTL5+E8fcxlt6dMoDOwhHAxGMTKl1NEaVBdBY8wGY8w4Y0yxMaYYqxvgccaYKuA54KrIbIJLgCZjTOXgQ1ZKqaG3b9N7AORMWzTosgI5s5lo9nGgvn7QZcWLbav+STqtyPRzB1VO2iSru9f+ze9FI6y4sP3NRwEoOOGSQZVj8uaSQwP7K/ZEI6y4ENrwNHWkMfX4Tw6qnKrkmeS3bYlSVLEXCoUoqXmdLcmLSUhOPeZy7Lmz8EiAqj2j59woNRIN5X2wXsBq4doB/A74yhDWpZRSURUs+xetJoFJMwd/h4nkiQuwi6F88+i5OWrL+3+hzXiYddrnBlVO4ewlhI3g2zt6zk32zr+x0z6ZiTMG995Jn2LNsle56Z1ohBVz1dWVzG17lz25n8JxDJM4dBfInUceNdRVV0Qputja8PYz5FKPmX3poMpJL7a66x7YOfrG7ik1kkQ1wYq0ZNVGnhtjzFeNMZONMaXGmFXRrEsppYZSfsMqdiTMHfQXQYDxM62JLlp2rxl0WfGguWY/c+pfYUPGJ0lOSRtUWe6kDPbZC0is3RCl6GJr0wevMjW0g9qpnx90WUWzllizLO4dHf997nz5N3gkQO4Z/z7osjqneK/4eHRMdGHee5AGUpl95hcGVU7htAWEjeCtGB2fJ6VGqqFswVJKqRGpZu82isL7aB1/bFNsHy55XAlNpOCoHh1jRrY/+2PcBMg5+9aolFeTMosi75aRP9bIGMKv/4gmkpl73uA7bbgTU9nrmEhy7ch/37Q11TNr1x/Y4F5AwYxju/9VdxPnWC2f7WUjP/lc/+4rLPC+z47JV+HyJAyqrKSUNCptuTjrtYugUrGkCZZSSh1m9zuPA1B44uC6v3URYX/idHJaR/6XnrrKvcwoX86qpNOYPPPY7n91uFD+AsbRQGXFrqiUFysbVjzJHO9qNk7+dxKSB9ey16kubTYTfFsx4XBUyouVDU/cRTotOM6+KyrlJadmUm4vwFN7+B1iRhYTDiOv30k9aZRe8t2olFmTOJnstp1RKUspdWw0wVJKqcNk7HyOnbZiiqfOiVqZHVlzKAnvobGlNWplDjtj2PfojdgJkXdxdL4oA6RFxhpVbR653b0aG2rJfOs/KZfxLLwsOi17ACb/ODJoYX/Z1qiVOdx2fvQ2x5X/mVWpZzHzGO8L1pOa5JkUtG8d0S2fHzzxU0oDG9hVejOepGOf3KI7b8Z0CsL76Whvi0p5SqmjpwmWUkp1s3Pj+0wNbqV68uAGmx8uYeICXBKibPPqqJY7nD548mfMbX2H1ZO+woSpx37vq8NNmHUCQWPDt2dkdvcKh0Ls+N215IZr6Pjsfbjdg+vm1V3mNGv8XuXmf0WtzOHUWFuN65kbaJQ0Jl/166iWHcqfzzjqqdm/N6rlDpdta99m7qZ7WO9ZyPEX3xK1cj0Fc3BImPLtI7t1T6mRTBMspZTqpunVn9Fu3Mw+54aolps/Y4lV/q6ROVvehhVPcdzGu1nvWcQJX/hhVMv2JKaw1z6BpLqRNzDfhMO8/+BNLGx/i7XTbmbawrOiWv6EmYvwGwfB8pGXmLe3NrH/gYvIDR+g/tzfkJGdG9Xy0yZbyWfFppGXfJZtW0/ms1+k0ZZG4bV/RGzR+zqWM9mavbJ+17qolamUOjqaYCmlVETVnq3MbXiFNTkXkZaVF9Wy08dPo5VEbFUjb8KCj15/nGlv/Dt77RMovulxHE5n1OuoTZvNBO+WETXWyOf38cH913DigeW8N+4yFl5xe9TrcLo87HZOJrV+ZL1vGg/so+KXZzE9sJlNn/gZM044J+p1FM8+gZARvCOs5XP7R++R/NfzcRAicPkTZOZOiGr5+SWz8Rs7oaqNUS1XKTVwmmAppVTE3qdvJ4yNyRfdFv3CbTb2eaaS1bw5+mUPkXAozDt/vp05b95AuWMCmV95mdS0zCGpS8YfRzqtlO8eGROBVFVW8PFPz+WE+md5d/zVnHDjA1FtheiuIX0Oxb5thIPBISk/2nas/xetvzmTokAZH510P/PPvmZI6vEkpbLXPoGEETLFvzGGD557kIKnL8Bgo+ny55gwPToTxXRnc7qocEwkqXHkjttTaqTTBEsppYAda1awuOklVo+/gvzCSUNSR1vmHCaFdtPa4R2S8qOpvrqctT+7gJN2/R/rU04l/5uvk54d3Va97sbNPBGAfR/H/01117/5NPYHT6bUv46Nx/83J95wL2KzD1l9UngcieKjYkd8j6kJBgKsfOROJjx1Pi7jZ8/5j3Hcp784pHXWpc1iondT3Ld81hyo4p2fXc7iNd9hj2sKtn9/c9A3ou5LQ8o0Cnw7R/QEIEqNZJpgKaXGPL/PC8/fQg0ZzFoavdnxDucqWoBHApRtWTtkdQxWOBTm3b/9BvnNicxpe48Pp97C/P94hqSU9CGtt2j6Qvw4COyN37FGdVV7WfXzS5n7xrW025KpXPoCc87/xpDXmzvDuh9bVRyPNdq8+k3K/ncJJ+/8OZuTF+P4yjvMWPjJIa83WLCITFrYvys+u8OZcJj3//EQ/PoElrT8k7UTr2Pad1aQlR/dboGHC42bTQ4N1FZXDGk9SqmeOWIdgFJKxdpHf7mNRaFdrDvpV8xPH5oucAB5M06A96F+x4ew4MQhq+dY7Vq3At/z3+PEwCa2OWfgvvQ3LBrCX9m7sznd7HFNI6th3bDUdzRaW5tZ9+T/Mm/3Q8wlwLsTrmfBFXfiSUwelvonTptHC4mEyj8YlvqOxv492yh76naWNL1EnaSzetHPOP4z/wYiw1L/uFmnwUao3PAmBVPmDkudA/XxB68jr/yAEwIfs8sxGe8ly1kwa8mw1J00YQFsg8qtq8jJKxqWOpVSB2mCpXoVCIVp94Vo8wdp93ppb2vD19GKt6OdQMBPGCFshDBY/9pciDsZuyuRZI+T1AQHqR4nqQlO0hKc2G3D8x+uUkdj95rXOG7vw7yb/hlO/NTQdmfKmjCLDtxQuW5I6zlae3ZupuaZ77Ow5XVqSWNV6R0cf9HXEfvw/hfRNG4Rc8v/QnNLE6kp0blR72D4fB2sfvr/mLr1N5xMIxuSlpB28U85cerwfpEXm52yxFLGN64Z1nr70lCzn+1P3sn8qifJQlhbcAUzL7+b41OH7geKnhRPX0ATSZi97wJfH9a6e7N78xpq/n4ni9tXUE8aH865neMu+gZ2R/Qnh+lNwYxF8Cq07V0HXDxs9SqlLIP+31NEvg58FQgBzxtjvhNZ/z3g3yLrv2GMeXmwdalj5wsEqa2vp6V2P+0Nlfibqgm01hNub8B0NGDzNWH3N+EOtJAQaiYp3EoS7XgIkIMfp4QGXFfICG14aCaJWpPGNpNOLRl0eHLwpkyEzEm4cqcxLmcck3OSmZqbjNsxdOMXlOqNt7UR99+/QpXkMP2aXw15fWJ3sNc9jXFN8TEov7JsC3uf/W+Oq3+Rcdh5t/A6Zn3+hywcwla8vnimnIKr4k9sXvcm8065ICYxAAT8Pta98DvGf3QvnzDVbHbNoelTv6d00adiFlPH+BMp3fFLqvfvIXf8xJjFUVu9n63P/oT5+5ZxPD5WZXyGks/9N8cXTo5JPDa7nbKEUnIb18Wk/u7KNn1I/Yt3M795BbniYtWEf2P2529n0RB3r+1JenYe1WThrPl42OtWSg0ywRKRM4ALgXnGGJ+IjIusnwVcDswGxgOvisg0Y8zAv6WrAWlta6O+ag8tB/bS3rCfQGMVpvUAtvYaXN5aEgP1pIYayDRNFIi/xzKC2GiTJNptKXgdKQQ8GbS7iml1pYAzEZsrAZsrAbs7EYcrAac7CbvDiU0MgsGG9S8hH8bXStjbStjXiq29gfz2A0zoqMHj3UlioBHqsR47oMaksj1cyKMUU586A1v+PMaVzGFWURaz8lPxODXpUkPr4z9+jQXhatZ/ahnzM4YnqWjIWcjC8j/R0lRPyhDNyNefyl0fs/8f/8O8upfIwsbacRcx5ZIfcmJ+SUzi6TRx/pmE3xDat70NMUiwvO2trP/7/UzY8nsWmRp22Cez8ZQfMfvUS4ZshsCBypz9SdjxS/aueYXc8dcPe/01+3ay89kfM7f6WU4SH+tSTyP9s3dywozoz4J3tLz5i5iw6z1qqvaSkze0Y5t6sn39ezS/fDfHt71FjvHw3virmHXJ91iYkz/ssXRXmTCVnNaRMSunUqPNYFuwbgJ+bIzxARhjDkTWXwg8Flm/W0R2AIuBdwdZ39hhDM1N9dTtL6PpQBneugqCjfuwtVbi6agm2V9DVqiWLGnm8FEAISM0SSrN9gzaXZnUeoo5kJiDLWUcjtRcXGl5JGbkkZKRS3J6Fg5PKmkiDHmHnIAXGsqgbgf+A9twVW5hVvUmFjW+hrPtBdgB3u1OtpginjYl1KXOxF4wn7wpxzO3eByTspOwaTdDFSXrX1/O8XV/Z2X+lzj55HOHrd6UaafhqPgju9a8wbwzLh22egH2bPuIA8/fzYLGV8jAzvs5lzL5ou+zeIhmTTxaKelZ7HBMIqX6/WGtt7Wpno+f/RlTd/2ZxTSz2TmLqiV3M++Mz8c8sepUPGcJrc8kEN79NjB8CVbVrg3s+8ePKa17keOBdRmfIv8z3/v/7d13eFxnlfjx75k+6r3LktwtW7bsuKUXIIV0EpJASEICZIFQAoHQlhDYZTcEltDJDwgkgZBCOgQCqaTacY17kW3Jqlbv0+f9/TFjR7YlW7ZGGkk+n+eZRzO3vPeMru7onnkblTMrxyyGo0mrOA92/5y6d/5G9iWfHbPjbl35Lzyv/phFnrfpwc2KopuYfdnXOSXGEyofr/7sSir3rqC7s5WUtKx4h6NGgTGGYNgQCAQIeD0Egz6CwSAmHMZE1xtj4MDP6GibYsVqt2NzOLHZHNjsDmw2OzarYLMIMkZ9KCezkSZYM4HTReT7gBf4ijFmFVAIrBiwXV102WFE5GbgZoApU8b+m6d4CYfCtDbX01K7k559uwm2VWPrqcXdV0+av4msUAsp4iXlkP06SKHDlkWfK4fqhAp2JRdgTS3AmV5EUnYh6dmFpGTkkWG1EZ/vxo/A7oKc2ZAzG8cccOxfHgpC205M47sEatZSXLue2e3v4Op7CXZAYLuVHaaIpy1T6Umbi6O4kvxZS5hfVkBGouNIR1SjzRiMCRMOhwmFwoTDocjDGEKhECYcWRd5hAibMOFQOPLhb0AsFkQifUwQwSJWxCKRm1qxICJYLFaEyLL9D0t0nQhYov8ILNHXMvD5EP8kujo7yXrtW9RYill8w91j+AuDqYvOIfiShd4d/4YxSrCqNrxFx7/uZlHPq+RgZ1Xe1Uy79JucWjD+PnPbc5ZT2fAIXR2tpKaP7k1hZ3MdO565mzn1j7EMD++6ltBwxm3MPfn8cXeDYbM7qEpYQHH725hweNQTvz0b3qTrhR8wv/s10rCxOutSSi76OkvKZo3qcY/H9Pmn0vxMOpadzwOjm2CZcIiNr/4F+9s/Y05gM50k8U7JfzD78q+yPC17VI99rJKmnwJ772Xvu68x78wPxTscBQQCAbo72+jrbMHT3Yq3px1/fxeB/h5Cnm6MvxeLvxdLoA9bMPKwh/pxhPqxhX3YTACbCeAwfuwEcBDEQYAEGfk0BWEjBLDRh5UgVoLY8IsDn7gIWJz4LS6CFjdBq4ugzU3Y6sbY3Bh7Atjd4EjA6kjA4kzE6kzC5krA7krC4UrGkZCIKyEZV0Iy7sRkHI7Jf+921ARLRF4EBpv85FvR/TOA5cAS4DEROaavQo0xvwF+A7B48eJJNWFDX18v+2q20l23DX/zTqSzBmdvPan+RnJCzeSIn5wB23eSTKs1h1ZXKQ1Jp0ByPvaMIpKyiknLKyUrbwrpzgTS4/aORonVBjlzkJw5JC+4JrLMGOioJtTwLt27VpFRt45z29eR1PkKdEJog7DLFLDaVkZfUimSOZ3EglnklJYztbiQZNfYdSYec6EgBD2E/B58nj68/X34vb34vf0Eoo+gv5+Qv5+Qz0M44MH4PZiAB4IeLEEvlpAXa8iHhANIOIAlHERMAGs4iJgg1uhzC0FsJojVBLERfZggdkLYCEWbiYI1+hjzX4URDEIIy4FHGAvBAc/3/xz43ImfImll9wf/gsudMKYxu5NS2eGYSXrLqtE9kDFsXfEPAv/+MfO9q+jFzdrCa5l26Tc4ObdodI89AkkLr8DR+BBb3nycyos+PSrHaK7dQc2zd1HR/CyLCbI26UxS3v9VFiw8bVSOFyve6R+kYOMdVG96g9L5Z8S8fBMOs3nFPwm/9iPme1fTY9y8XXAd0y/+KqeMw2R8P6vVQlXaaSzofIFQwIfV7oz5MQJ+H+/+43dkvXsv88N7aSSLt2d+lQWXfJ6lSfEfkGUwJfNPJ/SS0LfrLdAEK+ZCoTBdHa10tTbQ196Ir7OJYHcTpq8V4+nA6uvE7u/CHewmMdRNsukhhX4yxZB5hHL9xka/uPGIG68lAZ8lAZ8tiX5rFsbqBKsDrE6M1YGxOsDqwFidGJsTsToQizXyBZGAYMFEvywSsRBdCCaMCQUwoQCE/BAKQDiIhPwQDkZeh/xIyIcl2I815MUW8uIKdWIP+nB4vLiMFyc+XMaPRY7t9t1vrHjFhRcnPnHht7gIWFwErC5CFjchm5tw9GHskUSuN6mUqWddx7TssRm9daSOmmAZY94/1DoR+QzwpInMZPeOiISBLKAeGDguaFF02aQTCgZoqt5KW80W+pt2IO27SOipJstfR65pY+qAP7oOk0yrLZc291Qak8/Akl6CO6eMtPxpZBdNJy0pjbT4vZXxRQQyyrBmlJE577LIMmOguwFf7VpadryDs34di7p3kd79FtbuMOwB3oQuk0CVZNJtz6LfmUswMRdbcg7ulExcyRk4kzNwp2SRmJpJclISVrsLbE44nolCw+Hoh5P/wAdSKOjD5/Xi8/UT8PQR8PYR9PYR9PUR8vUT8nsI+/sx/n4I9EM08ZGgF0vAgyXkOfBhZg97sYV9OEzk4cSPjUhXRiuQEH0MK1QjeHHgw4FPIj9DYiMk9gM//WIlbEkgLHaMxU7YYsdYbBiLHWO1gyWyPPKwglgjNU0WC4hEPsDFMuDnwbVRkeWRWqoD59SEow8DRGrEDlqOeW+9Gfh84LoQluhP2f86HEKIvBYTguhPMWECJsSW0jMoX3zusZ/zGOjMXc7C2j/S2txEVk5sJ+814RCbXnkMx4qfMiewlTZSWVF2C+WXfpklE6CZ0MxFZ9L090xk6zMQ4wRr16aVtL/wf1R2vkgasDbtfHI/+DUWz1oQ0+OMlulnfAT/hu/StuLhmCZYoWCQ9S8+TMLqXzIvuJV2Uni77BbKL7mNU9OPdCs4ftjnfJDEt//Kpreei2ltTW9PJxuf/TllO+9nMa3ssZTwzsK7qDz/JvKdsU/kYik1LYNd1hISm8fv3HLjkQmH6GhpoKOpmr6Wvfja6wh3N2Dpa8HubSXB30ZKqJN000WGBA5rLRQ2Qrck0ivJeGwp+ByptDim0ORMI+xKR9zpWBIzsCdl4EzKICE5jYTkNJKS03AmpuCwOXHAxLkfNIaw34PX04u3vwdffy9eTw8BT+979z/ePsK+vui9Tx8E+pFA/3v3PEEP1pAHe7CfhHA7TuPFaby4jA83PmwS5uVQJdtnXzZhEiwZySzfIvJpoMAYc4eIzAReAqYA5cCfifS7Kogun3G0QS4WL15sVq9efdzxjCYTDtFcW8W+qnX01W/G1rqV9L5dFAdrcUrgwHZdJLLPVkhPYinBtDLsOTNILphFdmk5qWmZ467ZyaQQ9BFq20NrzWa66rbiba3B2tuI29tMSqCFdNOBlaP/nQexEql0t0e+4WH/uRqwrwELIez7a3MYWbW8z9jw4og+nPjEiV+cBMRJwOIiaHURsjoJW12ErS6MzQ12F8buRmwurA43FkdkIBKbMwG7MyHy05WIw52A05WE052Ay52I2+XGpqM1jgs1G1+n5ImLeH3u9zj9w1+MSZn7v2HPfvdeSsJ7qSeXvbM/QeXFt+BOnBj/kPZb8ctPsbD5Kbxf3EpqxsiaXZlwmE2vPwVv/YIK31r6jZMNuZcx5cLbKSiZHqOIx86a/z2PIt9Osv5zB1bbyFr5e/t72Pi3X5O/9fcUmUYaJZu6OZ+k4qJbcCUkxyjiseH19OH9wUx2Jy9h0W1Pj7i81qZadv71HsrrHyGVPrY45hFY/gUqzvwwFuv46Jc3HG//7Hrmtf+LxP+swzLCv5fJoruzlZa92+lurMLTWgvd9Tj6mkj07SM12EJWuA3HISMnB42FDkml25qOx5GBz5VN2J2FSYr0bXem5pGQkU9yVgFpGbnY7JO4FU0cBAN+/IEANocbh218XX8issYYs/jQ5SO92n4P/F5ENgF+4IZobdZmEXkM2AIEgVsm4giCO9e/TtvbD5HSvpGSQBW5eNnfdbWJLJpdZazLPhnJmU1y0VzyyspJz8ojVZOosWVzYs2dTW7ubHKXDrI+FKS3u422liZ6O9vw9bYT6G0n2N9FwO8h5PciQS8S9iNBH5awn1DYEI7mVSJggQN9foxYCVnsB2p5QhY7xuLAWOyI3YHV5sRqd2CxuyNtkaPJj82ViM2VhNOZgN2diNOdiMvpxGW3kGG3Yp9A/7TVyJTMO43Gp3JJ2/E4MLIEq7urnU1/+wVTdz7AYlrZZSnl7cq7OemDN1I4Qdu5Z51xE84nHmPt337Gydf/13GVEfB52PCP35Gx4bdUhGtoIZ23y25h7kW3sjwz5+gFjFOWRR8l9+0vsP6FB6m84KbjKqOlcS+7nruH2XWPsYRetttmsvak21nwgevIH8O5mmLJ5U5kTfZFLG3+Cy17t5M95fj6iu3e+BYdL/2Uio4XOVmCrE84Ffc5X6Z88ZCNecY1S+mpJLc/w66NbzBt4VnxDmdM+L0emmt30Nmwk/59uwh31ODsqSXZU09OqIkU+g7q3+41dlotWXTZs6lPXkB1Yj6SWoAjvZiE7Cmk55aSmVtAts3G+Opld+Kw2SMDcUwkI6rBirXxVoO16smfsuDd77HHPp321LlI3lxSS+ZTMHMRqWkTo9mEUmp8Wvngt1i2+xdsv/x5Zi04+Zj331e9hZq/30P5vr+SJB62OubhX34rFWdeMaG+YR/KxrveR7F3G5bPryUlc/ijsrXUVbHrn79ieu0TZNHJbksJLRU3U/nBT+B0ukcx4rERDASo/59KrBIm5/a1OFzDe08mHGbHqn/R9cZvqex+FRsh1ieegv20LzBv+bnjZrTEkWjYu4vM+5axOfV0Fn35qWHvF/D72PDSw7jX/pbywCb6jJMNWR+k6LxbKR5HoyUej7aWRtJ+MYc1Uz7B0k/8X7zDiZlwKExzYzXNezbR37AN07qDhO49ZPlryQ83H9QnyGfsNFly6XTm40kswqSV4MieSkreNHKKppGSkTsp/v5VfAxVg6UJ1hF4+3uxWG04nK54h6KUmmR6OprhpwvY7ZzD/K+9OKx/8OFgkM1vPUt4xW+o6FtBEAvvpp5D+tlfYPrC2A96EE87N66k9PEL2JK4lIov/xXLEWpW/F4P2954Aln7IHP73gFgg3sJZtlnWHDGZZMi4Rxo/StPUPnvm1ibeTELb3nwiH87rY3V7Hrlj+RXPcqUcC09uNmacyGF591K4bSKMYx6bLx531c5tfY3rK/8LpWX3XrEbfdsWUXL679neuNzZNBFg+RQM+1jlH/wsyNumjqebP7vU0gK9zDlP9+dcImECYdprttF447VeGrXY2/fSVp/NfnBehLFe2C7fuOk0VZEV0IJvrRpWDLLSMqbTmbRTLLzp2C1avN4NTo0wVJKqXFm5cPfZ9n2u3m77BZOvuF/Bt/IGGp3vkvT6w9QUvcMOaaNdlLYUnAlUz/4BQqK4js58Gh688//y6k77mK7awFpl/+Q3JlLI212jaGtsZq69S8R2v5PZnS9TjIeWkhnR8FllHzgMxSNw+HEY+m1e7/IGU33sy1xCekXfpfc2cvBYiXk6aZ621raNr9Myt6XmOnbjEUM26yzaJ9zLQvO+ziJyeNz1LtYCPh9bP7RBVT617Ah7woKLriNrCnlIEJ/ewPVm1fSv/UFcpv+TXG4joCx8m7CcmwnXUfFWR8ecb+28WjFY3ezfMv32XnZ35hReXq8wxmSz9tH7fZ1dOxeS6hxIymdWyn07yaVvgPbNEo2rc4p9CdPxZI9g4SCOeSWzSMzv3TCJY9qctAESymlxplwKMS6n1zJST0vsynxZGxLbiS1cCae/l766rfgrVlNQcvrFIYbCRnhXddiQvM/wvz3XYPTlRjv8MfEvx+9h4Vb7iZF+ukkGY8lgbRwJ258AHSZRLalnYFzwYcoP/VSHON8ZLdYCYfCvPrQ/7Bk1y9IFg9+YyMgdhLxHNhmt6WEpsLzKDz1I5TMXhTHaMdWX38/K3/zec7qeAKLGLzRWRdd+IHI4EJbnRV4y85l+jk3kJU76DSdk0Z3ZwvWe+ayPf0sFt36WLzDAaBtXy0N21fRV7MeW8sWMnt3UByqxRadz6nfOKm1l9KVMguTV0Fq6UKKZi8mKWXSTVSjJjhNsJRSahzy+wOsfOgO5lU/SLr0HrTOa+xscVXiLX0/U0+/mrxJXFt1JA31e9n+70dwNW9AAn34XFlYM0rJnH0aUyuW43ScGEnVYBoa6tjx5tPYWrdgAj7CSXm4c6dTuvB95IzjuavGQlXVdpreeRLTUYNBkOQ8EooXMGPRGaSkHjq49uT2xi8+xfKWx2m45gWmzDnsXnDUBAN+6ndtpGXnaoING0no2EqBt4osOg9ss49MmtzT6c+Yg6NwPjkzFlNQNndS1iaqyUcTLKWUGsd6errYsf5NfO21OJ0JuPJmMG12JS6X9gFVSo1MW3MD1l8toduWRd6XXsORGPtmot2drdRvXUV3zTosTZtI691OcaAGV3QqG7+xUmubQlvSLMI5c0kqqaRo9lLSsmI7F6BSY0kTLKWUUkqpE9Qbzz/GyW/fzM6ESqbc/AgJ6ceX2AT9Php2b6R11zoCDZtwdWwj17OLPNNyYJsOkql3TqMnbQ62/PlkTj+JohkLdNAwNemM1jxYSimllFJqnDvt/Kt4tbuRkzf/F/0/XcL2qdeSt/QK8qZVIPaDE5+gp4eOlgZa63fT27iDUNtuHN3VpPVXUxSsY4oEmQIEjJVaaxG1SRXsyZpDQvFC8mctITt/Cuk66IQ6gWkNllJKKaXUCWLD6jfw//M7LA68d7/VQQohsSLG4MZDQnQQmf0CxkqjJZd2ZxGe9JnY8itIK62keOYCXMOci02pyUhrsJRSSimlTnDzF5+GOelF9uzeQf27LxJu24Otbx9CGBDC9gRMYjaWpBySsovJKJ5DbvE0ptgdnNjDpig1fJpgKaWUUkqdQESEsmmzKJs2ueeLUypetIGsUkoppZRSSsWIJlhKKaWUUkopFSOaYCmllFJKKaVUjIyrUQRFpAWoiXcch8gCWuMdhBozer5PHHquTxx6rk8ser5PHHquTyzj8XyXGGOyD104rhKs8UhEVg82/KKanPR8nzj0XJ849FyfWPR8nzj0XJ9YJtL51iaCSimllFJKKRUjmmAppZRSSimlVIxognV0v4l3AGpM6fk+cei5PnHouT6x6Pk+cei5PrFMmPOtfbCUUkoppZRSKka0BksppZRSSimlYkQTLKWUUkoppZSKEU2wjkBEzheR7SJSJSJfj3c8KnZEpFhEXhGRLSKyWUS+GF2eISIviMjO6M/0eMeqYkNErCKyTkT+Fn1dJiIro9f3oyLiiHeMKjZEJE1EHheRbSKyVURO1mt7chKRL0U/wzeJyMMi4tJre/IQkd+LSLOIbBqwbNBrWSJ+Fj3vG0RkUfwiV8dqiHP9w+jn+AYReUpE0gas+0b0XG8XkfPiEvQRaII1BBGxAr8ELgDKgY+ISHl8o1IxFARuM8aUA8uBW6Ln9+vAS8aYGcBL0ddqcvgisHXA6x8A9xhjpgMdwCfiEpUaDT8FnjfGzAYWEDnvem1PMiJSCHwBWGyMmQdYgWvQa3syuR84/5BlQ13LFwAzoo+bgV+PUYwqNu7n8HP9AjDPGDMf2AF8AyB6v3YNMDe6z6+i9+3jhiZYQ1sKVBljdhtj/MAjwKVxjknFiDGm0RizNvq8h8gNWCGRc/xAdLMHgMviEqCKKREpAi4Efhd9LcA5wOPRTfRcTxIikgqcAdwHYIzxG2M60Wt7srIBbhGxAQlAI3ptTxrGmNeA9kMWD3UtXwo8aCJWAGkikj8mgaoRG+xcG2P+ZYwJRl+uAIqizy8FHjHG+Iwxe4AqIvft44YmWEMrBGoHvK6LLlOTjIiUAguBlUCuMaYxuqoJyI1XXCqmfgLcDoSjrzOBzgEf3Hp9Tx5lQAvwh2iT0N+JSCJ6bU86xph64EfAXiKJVRewBr22J7uhrmW9b5vcbgL+EX0+7s+1JljqhCYiScATwK3GmO6B60xkDgOdx2CCE5GLgGZjzJp4x6LGhA1YBPzaGLMQ6OOQ5oB6bU8O0b43lxJJqguARA5vYqQmMb2WTwwi8i0iXTseincsw6UJ1tDqgeIBr4uiy9QkISJ2IsnVQ8aYJ6OL9+1vUhD92Ryv+FTMnApcIiLVRJr6nkOkj05atFkR6PU9mdQBdcaYldHXjxNJuPTannzeD+wxxrQYYwLAk0Sud722J7ehrmW9b5uEROTjwEXAtea9yXvH/bnWBGtoq4AZ0dGIHEQ60z0b55hUjET74NwHbDXG/HjAqmeBG6LPbwCeGevYVGwZY75hjCkyxpQSuY5fNsZcC7wCXBndTM/1JGGMaQJqRWRWdNH7gC3otT0Z7QWWi0hC9DN9/7nWa3tyG+pafha4Pjqa4HKga0BTQjUBicj5RJr3X2KM6R+w6lngGhFxikgZkYFN3olHjEOR95JBdSgR+SCRvhtW4PfGmO/HNyIVKyJyGvA6sJH3+uV8k0g/rMeAKUANcJUx5tAOtmqCEpGzgK8YYy4SkalEarQygHXAx4wxvjiGp2JERCqJDGjiAHYDNxL5QlGv7UlGRL4LXE2k+dA64JNE+mLotT0JiMjDwFlAFrAP+A7wNINcy9Ek+xdEmon2AzcaY1bHIWx1HIY4198AnEBbdLMVxphPR7f/FpF+WUEi3Tz+cWiZ8aQJllJKKaWUUkrFiDYRVEoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkoppZRSSqkY0QRLKaWUUkoppWJEEyyllFJKKaWUihFNsJRSSimllFIqRjTBUkqpcUZESkXEiIgt3rGoE4OIbBaRs+Idh1JKTQaaYCmllJrwROReEemNPvwiEhjw+h/xjm+8M8bMNca8GssyRSRDRB4VkTYRaRWRh0QkJZbHUEqp8UgTLKWUijGteRp7xphPG2OSjDFJwP8Aj+5/bYy5YP92E+ncTKRYh/DfQDpQBkwDcoE74xmQUkqNBU2wlFIqBkSkWkS+JiIbgD4RsYnIchF5S0Q6ReTdgU2wRORVEflfEXlHRLpF5BkRyRii7BtFZKuI9IjIbhH5j0PWXyoi66Pl7BKR86PLU0XkPhFpFJF6EflvEbEe5X1ME5GXD6l1SBuwrl1EFkVfF4hIy/73JSKXRJuadUbf35xDfj9fEZENItIVrdlwHftv+tgNcW6MiEwfsM39IvLfA15fFP2ddkbP4fxhHussEakTkW9Gf3/VInLtgPUXisi66LmqFZE7B6zb3zT0EyKyF3g5uvwvItIU/b29JiJzD4n7VyLyj2ht3ZsikiciPxGRDhHZJiILh/k7ev9w3uMxKAOeNsZ0G2O6gKeAuUfZRymlJjxNsJRSKnY+AlwIpBH5tv45It/iZwBfAZ4QkewB218P3ATkA0HgZ0OU2wxcBKQANwL3DEhylgIPAl+NHvcMoDq63/3RcqcDC4FzgU8e5T0I8L9AATAHKCZa62CM2QV8DfiTiCQAfwAeMMa8KiIzgYeBW4Fs4O/AX0XEMaDsq4Dzidx4zwc+PmgAIqdFE5uhHqcd5T0M5sC5McYEj/gLiCQkvwf+A8gE/h/wrIg4h3msPCALKARuAH4jIrOi6/qInPe0aDyfEZHLDtn/TCK/+/Oir/8BzABygLXAQ4dsfxXwn9Fj+oC3o9tlAY8DPx5m3IMSka8f6XwcYddfAheJSLqIpANXRN+LUkpNappgKaVU7PzMGFNrjPEAHwP+boz5uzEmbIx5AVgNfHDA9n80xmwyxvQB3wauGqyGyRjznDFml4n4N/Av4PTo6k8AvzfGvBA9Tr0xZpuI5EaPdasxps8Y0wzcA1xzpDdgjKmKluUzxrQQuTk/c8D63wJVwEoiieG3oquuBp6L7hsAfgS4gVMO+f00GGPagb8ClUPE8IYxJu0IjzeO9B6GMPDcHM3NwP8zxqw0xoSMMQ8QSVyWH8Pxvh39Hf6bSKJ9FYAx5lVjzMboudpAJCk985B974yeM090n98bY3qMMT4iye4CEUkdsP1Txpg1xhgvkVoirzHmQWNMCHiUSHJ93Iwxdx3pfBxh17WAA2iLPkLAr0YSi1JKTQSaYCmlVOzUDnheAnz4kG/6TyOSlAy2fQ1gJ1LrcBARuUBEVkSb53USSZz2b1cM7BoklpJoeY0Djv//iNSCDElEckXkkWiTwm7gT4PE9FtgHvDz6E0/RGq8avZvYIwJR99f4YD9mgY87weSjhRLjNUefZMDSoDbDjl3xUTe43B0RJPm/Wr27ysiy0TklWjTyi7g0xz++z0Qq4hYReQuiTT97Oa92smB++wb8NwzyOux/D0P9BiwA0gmUvu6i8jfk1JKTWqaYCmlVOyYAc9ridRQDfy2P9EYc9eAbYoHPJ8CBIDWgQVGm6U9QaRGKDdaY/B3Ik359h9n2iCx1BKpdckacPwUY8zR+sD8T/R9VBhjUojUxO0/FiKSBPwEuA+4U97rN9ZAJDHZv51E31/9UY53GBE5Xd4bAXCwx+lHL+Uw5pDX/UDCgNd5A57XAt8/5NwlGGMeHuax0kUkccDrKUR+PwB/Bp4Fio0xqcC9DPj9DhLrR4FLgfcDqUBpdPmh+4yaaH+yIc/HEXatJFIT2GeM6SXyXj94hO2VUmpS0ARLKaVGx5+Ai0XkvGgthCs6AELRgG0+JiLl0f5M3wMejzbrGsgBOIEWICgiFxDpS7XffcCNIvI+EbGISKGIzDbGNBJpSvh/IpISXTdNRA5tjnaoZKAX6BKRQiJ9uwb6KbDaGPNJIk3f7o0ufwy4MBqHHbiNSIL31tF+UYcyxrw+YATAwR6vH2uZg1gPfDR6bs7n4GZ6vwU+Ha1tEhFJlMjgFMlwYGCJ+49S/ndFxBFNBi8C/hJdngy0G2O80f5zHz1KOclEfo9tRBLC/zmG9xgTxpj/OdL5OMKuq4BPiohbRNxEml5uGJuolVIqfjTBUkqpUWCMqSVS8/BNIslRLZFkZeDn7h+JDETRBLiALwxSTk90+WNAB5Eb8mcHrH+H6MAXQBfwb96rSbqeSIK2Jbrv4xzcRHEw3wUWRct6Dnhy/woRuZTIIBWfiS76MrBIRK41xmwnUtv1cyK1cBcDFxtj/Ec5Xrx8kUiMncC1wNP7VxhjVgOfAn5B5PdWxcEDchQDbx6h7Kbofg1EBqT4tDFmW3TdZ4HviUgPcAeR83okDxJpYlhP5DyuONobG0duIlLjVkck/qlEBv1QSqlJTYw5tNWEUkqp0SYirwJ/Msb8Lt6xqOGLjor4LjA/OpjHoevPInJeiw5dp5RS6sQw0ScxVEoppcZMtEZuzlE3VEopdcLSJoJKKXWCEZF7hxiw4N6j760mIhGZcoSBKqbEOz6llJpMtImgUkoppZRSSsVIzGqwoiMxrRORv0Vfl4nIShGpEpFHo+3WlVJKKaWUUmrSilkNloh8GVgMpBhjLhKRx4AnjTGPRJudvGuM+fWRysjKyjKlpaUxiUcppZRSSimlRsuaNWtajTHZhy6PySAX0XldLgS+D3w5OsHkObw3v8cDwJ3AEROs0tJSVq9eHYuQlFJKKaWUUmrUiEjNYMtj1UTwJ8DtQDj6OhPoNMYEo6/rgMIhArtZRFaLyOqWlpYYhaOUUkoppZRSY2/ECZaIXAQ0G2PWHM/+xpjfGGMWG2MWZ2cfVsOmlFJKKaWUUhNGLJoIngpcIiIfBFxACvBTIE1EbNFarCIis7grpdSEEgobjDHYrDqrhVJKKaWObsQJljHmG8A34MAM9l8xxlwrIn8BrgQeAW4Anjme8gOBAHV1dXi93pGGqk4wLpeLoqIi7HZ7vENRE1Q4bPjVPXeSGmjmqtt+gctujXdISimllBrnYjLIxRC+BjwiIv8NrAPuO55C6urqSE5OprS0lMjYGUodnTGGtrY26urqKCsri3c4aoLatXkVn+/5CQCvvfMRzjj1jPgGpJRSSqlxL6ZtXowxrxpjLoo+322MWWqMmW6M+bAxxnc8ZXq9XjIzMzW5UsdERMjMzNSaTzUibbvXHXgeWv9oHCNRSiml1EQxIToVaHKljof+3aiRMm1VANTYp5LZvu4oWyullFJKTZAESyml4sHRtYdGsujIWcb0YBVdfZ54h6SUUkqpcU4TrGEQEW677bYDr3/0ox9x5513xi+gAVasWMGyZcuorKxkzpw5B+J69dVXeeutt4673JqaGhYtWkRlZSVz587l3nvvjVHESk0cKZ46mu1FOEqWkiA+arYd12wUSimllDqBaII1DE6nkyeffJLW1taYlmuMIRwOH33DI7jhhhv4zW9+w/r169m0aRNXXXUVMPIEKz8/n7fffpv169ezcuVK7rrrLhoaGkYUq1ITTUKwC68jnexplQB01WyMb0BKKaWUGvc0wRoGm83GzTffzD333HPYupaWFq644gqWLFnCkiVLePPNNwG48847+dGPfnRgu3nz5lFdXU11dTWzZs3i+uuvZ968edTW1vLVr36VefPmUVFRwaOPRjrSv/rqq5x11llceeWVzJ49m2uvvRZjzGHHb25uJj8/HwCr1Up5eTnV1dXce++93HPPPVRWVvL6668fMc7rrruOk08+mRkzZvDb3/4WAIfDgdPpBMDn8w2ZCP7sZz+jvLyc+fPnc8011wDQ3t7OZZddxvz581m+fDkbNmw4cKwbbriB008/nZKSEp588kluv/12KioqOP/88wkEAgB873vfY8mSJcybN4+bb775sPcdDocpLS2ls7PzwLIZM2awb9++I51GpY6ZO9xHyJ5M1pRyQkYI7tsW75CUUkopNc6N5jDtMffdv25mS0N3TMssL0jhOxfPPep2t9xyC/Pnz+f2228/aPkXv/hFvvSlL3Haaaexd+9ezjvvPLZu3XrEsnbu3MkDDzzA8uXLeeKJJ1i/fj3vvvsura2tLFmyhDPOiAwFvW7dOjZv3kxBQQGnnnoqb775JqeddtpBZX3pS19i1qxZnHXWWZx//vnccMMNlJaW8ulPf5qkpCS+8pWvAPDRj350yDg3bNjAihUr6OvrY+HChVx44YUUFBRQW1vLhRdeSFVVFT/84Q8pKCg47L3cdddd7NmzB6fTeSDh+c53vsPChQt5+umnefnll7n++utZv349ALt27eKVV15hy5YtnHzyyTzxxBPcfffdXH755Tz33HNcdtllfO5zn+OOO+4A4LrrruNvf/sbF1988YFjWiwWLr30Up566iluvPFGVq5cSUlJCbm5uUc9j0odiyT6CDtTELuLJlsB7q6qeIeklFJKqXFOa7CGKSUlheuvv56f/exnBy1/8cUX+dznPkdlZSWXXHIJ3d3d9Pb2HrGskpISli9fDsAbb7zBRz7yEaxWK7m5uZx55pmsWrUKgKVLl1JUVITFYqGyspLq6urDyrrjjjtYvXo15557Ln/+8585//zzBz3mkeK89NJLcbvdZGVlcfbZZ/POO+8AUFxczIYNG6iqquKBBx4YtIZo/vz5XHvttfzpT3/CZrMdeE/XXXcdAOeccw5tbW10d0cS4wsuuAC73U5FRQWhUOhAvBUVFQfe3yuvvMKyZcuoqKjg5ZdfZvPmzYcd9+qrrz5Q2/fII49w9dVXH/F3rtSxCvk9OAhiXCkAdCZOJdu7Z9CaZKWUUkqp/SZUDdZwappG06233sqiRYu48cYbDywLh8OsWLECl8t10LY2m+2gZnUD52NKTEwc1vH2N9GDSPO/YDA46HbTpk3jM5/5DJ/61KfIzs6mra3tsG2GihMOH8780NcFBQXMmzeP119/nSuvvPKgdc899xyvvfYaf/3rX/n+97/Pxo1H7qOy/z1ZLBbsdvuBY1ksFoLBIF6vl89+9rOsXr2a4uJi7rzzzkHnsjr55JOpqqqipaWFp59+mv/8z/884nGVOla9na2kAlZXKgCBjJnM7HqL9u4+MlOT4hucUkoppcYtrcE6BhkZGVx11VXcd999B5ade+65/PznPz/wen9TuNLSUtauXQvA2rVr2bNnz6Blnn766Tz66KOEQiFaWlp47bXXWLp06bBjeu655w58o75z506sVitpaWkkJyfT09Nz1DgBnnnmGbxeL21tbbz66qssWbKEuro6PJ7IkNQdHR288cYbzJo166Bjh8NhamtrOfvss/nBD35AV1cXvb29nH766Tz00ENApC9ZVlYWKSkpw3o/+5OprKwsent7efzxxwfdTkS4/PLL+fKXv8ycOXPIzMwcVvlKDVdvdzsA1oQ0AGy5c7BLiKbqIzcBVkoppdSJTROsY3TbbbcdNJrgz372M1avXs38+fMpLy8/MJz5FVdcQXt7O3PnzuUXv/gFM2fOHLS8yy+/nPnz57NgwQLOOecc7r77bvLy8oYdzx//+EdmzZpFZWUl1113HQ899BBWq5WLL76Yp5566sAgF0PFCZFmfmeffTbLly/n29/+NgUFBWzdupVly5axYMECzjzzTL7yla9QUVEBwCc/+UlWr15NKBTiYx/7GBUVFSxcuJAvfOELpKWlceedd7JmzRrmz5/P17/+dR544IFhv5+0tDQ+9alPMW/ePM477zyWLFlyYN299957UNxXX301f/rTn7R5oBoVgb5OACzuSA1Waknk779n74Z4haSUUkqpCUDGU3+CxYsXm9WrVx+0bOvWrcyZMydOEU1+d95550GDYUw2+vejjlfV288w/Z/Xs/Z9D7Po9A/i9/Ti+EEhb0z5NKfd9IN4h6eUUkqpOBORNcaYxYcuH3ENlogUi8grIrJFRDaLyBejyzNE5AUR2Rn9mT7SYyml1FgJeboAsLjTAHC4k2iWTGydgzf3VUoppZSC2AxyEQRuM8asFZFkYI2IvAB8HHjJGHOXiHwd+DrwtRgcT8XQnXfeGe8QlBqXjKcTAHti2oFlrY5iUvtr4hOQUkoppSaEEddgGWMajTFro897gK1AIXApsL/zzQPAZSM9llJKjZWQrx8AR0LygWX9SSXkBup1qHallFJKDSmmg1yISCmwEFgJ5BpjGqOrmoBBZ4EVkZtFZLWIrG5paYllOEopddyMP5JgOd3vDckezphGhvTQ1tocr7CUUkopNc7FLMESkSTgCeBWY0z3wHUm8nXvoF/5GmN+Y4xZbIxZnJ2dHatwlFJqRMIBD2EjB80d58qLjAbaXH345NdKKaWUUhCjBEtE7ESSq4eMMU9GF+8Tkfzo+nxAv/JVSk0c/n48OHA73uuqmjklMiJld/22eEWllFJKqXEuFqMICnAfsNUY8+MBq54Fbog+vwF4ZqTHiqenn34aEWHbtqFvrKqrq5k3b17Mjrl9+3bOOussKisrmTNnDjfffDMQmST473//+3GX6/V6Wbp0KQsWLGDu3Ll85zvfiVXISk0eQS9eHLjs1gOLcktmEzJCqKUqjoEppZRSajyLRQ3WqcB1wDkisj76+CBwF/ABEdkJvD/6esJ6+OGHOe2003j44YcHXR8MBkd8jFAodNDrL3zhC3zpS19i/fr1bN26lc9//vPAyBMsp9PJyy+/zLvvvsv69et5/vnnWbFixYhiV2qykYAHL07s1vc+Jm0OF02WXJzdOlS7UkoppQYXi1EE3zDGiDFmvjGmMvr4uzGmzRjzPmPMDGPM+40x7bEIOB56e3t54403uO+++3jkkUcOLH/11Vc5/fTTueSSSygvLwciida1117LnDlzuPLKK+nvj3SUf+mll1i4cCEVFRXcdNNN+Hw+AEpLS/na177GokWL+Mtf/nLQcRsbGykqKjrwuqKiAr/fzx133MGjjz5KZWUljz76KH19fdx0000sXbqUhQsX8swzkcrC+++/n0svvZSzzjqLGTNm8N3vfhcAESEpKdJxPxAIEAgEiFREHuwvf/kL8+bNY8GCBZxxxhlApPbrxhtvpKKigoULF/LKK68cONZll13GBz7wAUpLS/nFL37Bj3/8YxYuXMjy5ctpb4+c/t/+9rcsWbKEBQsWcMUVVxz4/Qy0fPlyNm9+r4/LWWedxaETUCs12ixBDz5xHra83VlEav/eOESklFJKqYkgFvNgjZ1/fB2aNsa2zLwKuODIlWvPPPMM559/PjNnziQzM5M1a9Zw0kknAbB27Vo2bdpEWVkZ1dXVbN++nfvuu49TTz2Vm266iV/96ld87nOf4+Mf/zgvvfQSM2fO5Prrr+fXv/41t956KwCZmZmsXbv2sON+6Utf4pxzzuGUU07h3HPP5cYbbyQtLY3vfe97rF69ml/84hcAfPOb3+Scc87h97//PZ2dnSxdupT3v//9ALzzzjts2rSJhIQElixZwoUXXsjixYsJhUKcdNJJVFVVccstt7Bs2bLDjv+9732Pf/7znxQWFtLZ2QnAL3/5S0SEjRs3sm3bNs4991x27NgBwKZNm1i3bh1er5fp06fzgx/8gHXr1vGlL32JBx98kFtvvZUPfehDfOpTnwLgP//zP7nvvvsO1Mztd/XVV/PYY4/x3e9+l8bGRhobG1m8+LBJspUaVZaQFz+Ow5b3J5dS1vwcJhxGLDEdiFUppZRSk4DeHQzDww8/zDXXXAPANddcc1AzwaVLl1JWVnbgdXFxMaeeeioAH/vYx3jjjTfYvn07ZWVlzJwZGYHshhtu4LXXXjuwz9VXXz3ocW+88Ua2bt3Khz/8YV599VWWL19+oOZroH/961/cddddVFZWctZZZ+H1etm7N/IN+wc+8AEyMzNxu9186EMf4o033gDAarWyfv166urqDiRhhzr11FP5+Mc/zm9/+9sDzRffeOMNPvaxjwEwe/ZsSkpKDiRYZ599NsnJyWRnZ5OamsrFF18MRGreqqurgUgSdvrpp1NRUcFDDz10UE3VfldddRWPP/44AI899hhXXnnloL8fpUaTNeTFb3EdttxkTCNJPLS31MchKqWUUkqNdxOrBusoNU2job29nZdffpmNGzciIoRCIUSEH/7whwAkJiYetP2hTe0Ga3p3qEPLGKigoICbbrqJm266iXnz5g2aCBljeOKJJ5g1a9ZBy1euXHnUeNLS0jj77LN5/vnnDxug495772XlypU899xznHTSSaxZs+aI78PpfK85lcViOfDaYrEc6KP28Y9/nKeffpoFCxZw//338+qrrx5WTmFhIZmZmWzYsIFHH32Ue++994jHVWo0WENeApbDmwi682bBdmit3kxmbnEcIlNKKaXUeKY1WEfx+OOPc91111FTU0N1dTW1tbWUlZXx+uuvD7r93r17efvttwH485//zGmnncasWbOorq6mqioy8tgf//hHzjzzzKMe+/nnnycQCADQ1NREW1sbhYWFJCcn09PTc2C78847j5///OdEphuDdevWHVj3wgsv0N7ejsfj4emnn+bUU0+lpaXlQJM/j8fDCy+8wOzZsw87/q5du1i2bBnf+973yM7Opra2ltNPP52HHnoIgB07drB3797DErsj6enpIT8/n0AgcKCcwVx99dXcfffddHV1MX/+/GGXr1Ss2MJegoPUYKUXR66VnoYdYx2SUkoppSYATbCO4uGHH+byyy8/aNkVV1wx5GiCs2bN4pe//CVz5syho6ODz3zmM7hcLv7whz/w4Q9/mIqKCiwWC5/+9KePeux//etfBwaZOO+88/jhD39IXl4eZ599Nlu2bDkwyMW3v/1tAoEA8+fPZ+7cuXz7298+UMbSpUu54oormD9/PldccQWLFy+msbGRs88+m/nz57NkyRI+8IEPcNFFFwFwxx138OyzzwLw1a9+lYqKCubNm8cpp5zCggUL+OxnP0s4HKaiooKrr76a+++//6Caq6P5r//6L5YtW8app556UFL37LPPcscddxx4feWVV/LII49w1VVXDbtspWLJHvYRsh6eYOVNmYnfWAm37oxDVEoppZQa72R/rcd4sHjxYnPoaHFbt25lzpw5cYpoYrv//vsPGgzjRKR/P+p4tXxvGtsSTuL0rzx22Lrq75bTmTiNyq/8NQ6RKaWUUmo8EJE1xpjDRmLTGiyllBqE0/gIW92DrmtzTiHNUzPGESmllFJqItAEaxL7+Mc/fkLXXik1Eg7jI2wbPMHyJJeQF2qAcHiMo1JKKaXUeDchEqzx1IxRTRz6d6OOmzG48GNsh/fBAjCZ03ERoKu5emzjGmXGGP5+///y+E++TLfHH+9wlFJKqQlp3CdYLpeLtrY2vVlWx8QYQ1tbGy7X4DfISh1R0Bv5aR+8BishLzKnXXP1lrGKaEzs3bKSD1bfxZWd9/HmU7+OdzhKKaXUhDTu58EqKiqirq6OlpaWeIeiJhiXy0VRUVG8w1ATkPH3I4AMkWBlTIkMnNLXsB24aOwCG2Utq56k2Ah9kkD27qeBL8Y7JKWUUmrCGfUES0TOB34KWIHfGWOOabZgu91OWVnZqMSmlFKD8Xl7ccGQNVj5RVPpN07CrVVjGtdoczWtotpaQnfRmVTW/JHG5lbyc7LiHVbMhMKGp554CLvNwiWXfWRYE8FPNN5ACJfdGu8wlFLqhDaqTQRFxAr8ErgAKAc+IiLlo3lMpZQaKb+nHwBxJAy63uWwUW/Jx9m9ZyzDGl3GUOrdRkPKfNLmvh+bhNn97qvxjiqmVr30OFduvoVL3/0M76xdffQdJpjnH/8dO/7rJP72xIPxDiXmuvv6eOoHH+dvP7iOPm8g3uHE3D//8TT//O4Hee3Vf8Y7FKVUDIx2H6ylQJUxZrcxxg88Alw6ysdUSqkR8Xl6AbAOkWABtDuLSfPsHauQRp2no4kk+glmzKRw3umEjRDc83a8w4op24aHDjz3vPbLOEYSez6/n8qN/8N8yx4WbvgeHo833iHF1Orn/sDlnqe4yPMsK/52X7zDialAMMjslV/jPPMm2a9+nWAwGO+QlFIjNNoJViFQO+B1XXTZASJys4isFpHV2s9KKTUe+L19AFidQydY/cml5ISaIDQ5boYaowN2JOTNwJ6YTp1tCkltG+IcVQwZw7SeNaxMvYCtKacxvfMNAsFQvKOKmeq1L5InbWxKex+F0sLaN/4e75BiKrPqCZosuTRZcknb/mi8w4mp7atepIQmqhIqmcNuNqx6Ld4hKaVGKO6jCBpjfmOMWWyMWZydnR3vcJRSisD+BMuROPRGmdOwE6Jn364ximp09TTsACC9aBYAnSmzKPDuIhSeHCO4du6rIZ1ugrkLCE57P0XSwo6t6+IdVsx07ngLgLyrfoQPO6GtkyfBCodCTPNtpSbjVBryP0CF/126OtrjHVbMdGx/E4CMq35J2Aj9m56Lc0RKqZEa7QSrHige8LooukwppcatoC/SB8vmGroGyx0dqr2tZnIM1R5q203ICFlFMwCQvHnkSxvVtbVH2XNiaN6+EgD3lIUUzT8bgKYtb8YzpJiyNW+kQXLJKpjKHtdcsjsnT/JYt3szSeLBUlCJa865OCTEnvWvxDusmHG3bqRRcsgonUeVfSYZzZOraa5SJ6LRTrBWATNEpExEHMA1wLOjfEyllBqR/TVYDvfQNViZJZHxenobto9JTKPN1lNPM+mkJUfec3LJQgCaqybHjXp//UYA8mYuJr2kgn5cWBsmx3sDyO/fTr0rkvT78hYxLbSHprbO+AYVIy073gEgY/oSyuafQdgIPbtWxjmq2Mnv30a9O1Jz3JW5gFJ/FR6vL85RKaVGYlQTLGNMEPgc8E9gK/CYMWbzaB5TKaVGan8NluMIfbAKC4roNgmTZqh2u6eZdmvWgaHL82aeBIC37t14hhUz4bY9tJg08rMzwWKl3jWD7J7JUftI0E9uuImelGkAJJYtxSEh9m6ZHElIcN82wkYonLEAd0o69bYi3C3r4x1WTAT8XvJCTfjSIzXHCWVLSRAfOzatinNkSqmRGPU+WMaYvxtjZhpjphljvj/ax1NKqZEK+z0AOBOShtwmwWmn1lIwaYZqT/S10Gt/b84rV3oBHaTiaJ0cSYirt5ZWe/6BBLIvaz7TQrvp6u2Pc2Qj19e8GysG0iNzRhbOOxWA/j2TI8Gyd9WwTzJxRWuU29PmUeLdRnASDFJSv2c7VjE4cyMJVn75aQB0V62IZ1hKqRGK+yAXSik13oSjNViuIyRYAB3OYtInyVDtacFWvK6c9xaI0OieRlbfjvgFFUOZ/nq63UUHXjunLMElAaq3TPyago66SDNVZ3akBsudOYVWycC1b30co4qdZE8tLfb3BiAO5y8iW7qoq9kZx6hio6NuGwDJBZHmnRnFs+kmEVvT+jhGpZQaKU2wlFLqEPtrsNzuIydYvtQyssItmIBnLMIaNcbfTwq9hJJyD1renzaLKaFafIGJPbGrCXjJDrfhS5pyYFl++ckAdO2a+AlWX1Mk0UgpnHlgWUNiOQV9k6P2MdtfT3fCe+NlpU5fDkDr9ok/GESgJdLEOKNodmSBCDWuWeT0aG8KpSYyTbCUUuoQJtCP31hxuRxH3M6aPR0Lho66iV3L09seGdzVkpJ/0HJrXjlu8VO3e2s8woqZ7n01WMRA+nsJVlrBTPpwIc2b4hhZbATbqvEYB3kFJQeW+XMqmEIjbe1tcYxs5MKebtLoJpDy3rkrnL2YgLESqFsfv8BipWMvfcZJZnbBgUU9GRVMCdbg907sL26UOpFpgqWUUocK9OPDgcN65I/IlMI5ADRXT+yagq59kWaOjvSD5oEnrWQBAG27J/ZAF+2NkX5yrsz3btKxWGhwTiWte2InxwCW7joaySIr2XlgWWJxJQC121bHKarY6GjcDYBtQHLsdCVQZy0ioWNiX3cAjr56mi05WAZ81tgL5mOXEHU7J88ol0qdaDTBUkqpQ0jQixfngQERhpI/dS4AfY3bxiKsUdPbUgdAYmbRQcsLZkQSLH/jxK7l6WupASAlr/Sg5T1pcygJ7sEfmNiDJbj6G2m35Rz091owawkAPdUT+ya9oymSHLtzSg9a3pY0g3zPxB/BM9HbRJfj4Ka5OTMiI3i271oTj5CUUjGgCZZSSh1Cgh78cuTmgQB5OTm0mlRo2zUGUY0eX0ekiWB67pSDljsT02iUHOxtE7uWx98emSw5M7/soOXW/HmkSD81uyf2XGYp/mb6XHkHLUvNn0o3iVibJ3Zfnr7mSHKcnjf1oOWB7Lnk0E5XW1M8woqZzGAznoSDm+YWTp2HxzgINWyMU1RKqZHSBEsppQ5hDfbjFfdRtxMRmu2FJPZWj35QoyjU1YjP2MnOzjtsXYt7KlmeiZ1A0l1Hh0kmMy3toMWZUxcB0FI1gZvRBX1kmnYCSQUHLxehwTmV9J6JnTwGO/YSNBZyC0sOWp44JTIRdv22iTtIid/bTwZdhJMPbpprs9uptZeS1DWxa8aVOpFpgqWUUoewh/rxWoaeZHignsQSMn11oxzR6LL2NdIi6bidtsPWedNnUhSqx+v1xiGy2HD0NdJqzcJiObjJZ96MSILlr98Qj7Bior81UjtnSSs+bF1f+hymBKsn9CiQlu46miWDJLfroOX5sxYD0FMzcZtAttZHmj/a0g8/dx3Jsyj07cKEw2MdllIqBjTBUkqpQzhC/fitR6/BAghnTCWbDnq7O0Y5qtHj8jTTac0cdJ0jfx5OCVJbNXH7YSX59tFtzz1suc2dQqMlH3fHxK0paIsOAuHKmnLYOmv+fBLFx96qidtM0NXfRLst57DlWblFtJA2oZtA7h/AIyG79LB14dy5pNFLW+PkmMhcqRONJlhKKXUIR6ifgHV4NViu3FkANOyauDd6SYEW+hzZg67LKIuOJLhn4o4kmBFswZNwePNHgNakmeR5qjDGjHFUsdETHQQiNa/ssHWZ0yKDJbRWTdzBElID++hzHn7uRIQG5zQyJnATyP7WagDS8qceti65NFK72rhjAjdfVeoEpgmWUkodwhn2ELAmDmvbzCmRCUI76iboXFHGkBFqw+MePAEpmFZByAiBxomZQAY9PaTQe1g/lwPrs8opNk00t7WPcWSx4Y0O4JFdePhNesHMhQSNhWDDxGwCacIhskMth/cvi+pNm0NRcC+hgG+MI4uN0P5zV1B62Lqi6CiQnr3rxzAipVSsjCjBEpEfisg2EdkgIk+JSNqAdd8QkSoR2S4i5404UqWUGiNu4yFoG14N1v6h2v37do5mSKMm1N+JGx/h5MFvYm2uRBqt+bg6JuZIgvvnwLKlDZ5gJZZUYhFD3fYJWsvTWUe7SSY7Pe2wVVaHmwZbEQkTtAlkV0s9dgkN2r8MwFIwH4eEaNw1MRNIS08draThch/+WZOWnkEduThaJ/5cX0qdiEZag/UCMM8YMx/YAXwDQETKgWuAucD5wK9ExDrCYyml1Jhw4yVsH14Nlt2VxD7JxtExMROszn2RBMQ6RAIC0JYwjWzv7rEKKaY698+jlH14HyV4b7CE7ur1YxVSTDn66mm15gw5Z1t70kwKvBOzCWRbQ+TcOTNLBl2/fxTItgnaBNIdnb9sKPvc08nqm5hfbCh1ohtRgmWM+ZcxJhh9uQLYP0vlpcAjxhifMWYPUAUsHcmxlFJqTAR92AlihplgAexzTyO7f2JOetrVFJlnyJ05eC0BQCBzNkXhRrp6escqrJjpb6kGIDV/+qDrk3On0Ycba/PEHMQjxddE9yB9lPYL5cwln1aam/eNYVSx0dMUmR4gZZA+SgBTZs7HZ+wEJmgTyHR/Iz2uwWuOATyZ5RSEGvH394xhVEqpWIhlH6ybgH9EnxcCtQPW1UWXHUZEbhaR1SKyuqWlJYbhKKXUsQt6Ijcz4koe9j7ejDkUh+vp7+8brbBGTX/rXgBScwevJQBwFZZjkzB1OyfeQBfh9mqCxjJoPxcgOl/UNNJ7J2ANpDHkhJrwJBUNuUlSSXS+qO0Tb76oQFukBiuraMag611OJ9XWKSR0TLz+j6FgkJxwM4GUwWtWARyFC7CIoX7HxKyhU+pEdtQES0ReFJFNgzwuHbDNt4Ag8NCxBmCM+Y0xZrExZnF29uCjWCml1Fjp7+0EwOpKGvY+jsL52CXE3h0TLwEJdNYTNkJW3tA3ellTIzfpHdUT7/1ZumppkiySE4Yedr8vfTalwT14/cEhtxmP+jsacOHHpA6dHBfMjjSB7KtZP0ZRxY6ls4Z2k0xaWvqQ27QlzaTAUwUTrAlkS2M1Dgkh6UOfu+zpkVEgO/esHauwlFIxctQEyxjzfmPMvEEezwCIyMeBi4BrzXuNvOuBge1NiqLLlFJqXOvv6QLA5koZ9j7Z0yN9QTr3TLxJT6WngRbSyEgZuklkbmk5AWMlvG/idbhP7K+nzTZ0EzoAW0EFyeJhT9XEen9ttZH+Ofasw4do3y85s4gOUrC1TLwmkO6+Wppt+UP2LwMIZM0ljW762ibWZN8ddZEa04ScwZs/AhSXzaLbJGAaN45VWEqpGBnpKILnA7cDlxhj+geseha4RkScIlIGzADeGcmxlFJqLPT3RRIsR8LwE6z8srn4jJ1Q48S7iXX0NdFuzTriTazYnDTainB3TrxmdOmBRnrdQw/gAQPmi9o1sWoKuhsj/f5S8gdvQgeACI3u6WROwCaQab5Guo/QRwkgIdoEsmGCNYHs2xc5d6kFQ587m81KjX0qyZ0TcxRIpU5kI+2D9QsgGXhBRNaLyL0AxpjNwGPAFuB54BZjTGiEx1JKqVHn7Y0kWM7E4SdYFpudOnsJSV0T70YoyddMzxCTDA/UkTSNPN+eCTUanfH3k2U6CKYMPYAHQO60hYSNEKifWIMleJsjfZTyphwhwQL608spCe3F450480WFg0GyQs0Eko987vJnRpLj3gnWBDLUVkPYCLlTBh98Zb/OlFkU+ndDODxGkSmlYmGkowhON8YUG2Mqo49PD1j3fWPMNGPMLGPMP45UjlJKjRfB3lYAnCnH1ie0I3kGBb7dEyoBAUgPteBz5x51u2B2OcXso7V14gxG1N4QGVrekjF0PxcAiyuJJlsBiRNtvqjOappJJyMt9Yib2Qvn45QANROoj2BrtI+SNXPo5o8AhXl51JtsrM0TayJsa/demiUTp3PovoEAJncuCXhpr98+RpEppWIhlqMIKqXUhBfuawfAnZp1bPtll5NNJy1NE6cvSKC/i2T6MUNMMjyQe0qkn1n9tpWjHVbMtNdHmsUlHqGfy4Ftk2aQ59s1oRJkd18dbba8IzbvhPcGS2jfNXFGo2vZG0koEnOnHXE7EaHBNY30nomVgCR56mizH7lvIEBqaaQJZPPOiXPulFKaYCml1EFMfyTBSjzGBCsleiNUt311zGMaLfuqI8NbO7KPfBMLUDTnZAB690ycG72epkgNVsYQw3wPFMqZS7HZR/2+1tEOK2bSfQ30JRy5fxlA3tT5+I2N0AQaLKG3KdJHKbNo5lG37c8opyBYR9A7caZJyPA30pcw9PD6+xXNXETICJ69E28AHaVOZJpgKaXUAOLpoNskkJzgOqb9iucsAaC3euIMlNBeFxmFLqXw6DexKdkFNEsmjuaJ00/J37ILn7FTVHzkZmYASSWV0TmHJkaC7PX0k2NaCR5hiPb9LHYHdfYpE2qwhGDbboLGQm7x0ZN/V9ECrGKo3T4xkv/u7k5yaMeklx5128z0NGqkEHvrxBrhUqkTnSZYSik1gHjb6ZJk7NZj+3hMTM9jn2TjbJk4tQTefZEmdPml5cPavjFhNrl9E+cm3d1VRb21EJvNdtRtC2ZFE+SaidFPqWnPZqxisOXOHtb2ncmzKJxATSATuqposOZjtTuPum3erMhcX61VEyPBqq+KfEa4CuYOa/uWxJlk9028USCVOpFpgqWUUgPYfF30WZKPa9+mxDkUTKAERDr20E4K6RmZw9renzOf4nADbe1toxxZbGR7q+lIPHrtFYA7q5ReErG1TIzBEjr3Rm7SU4rnDWt7kzuPbOmkob52NMOKmUzPHlpdwzt3xWVz6DOuCdMEsqsmUgucVTZ/WNuHcsrJNS10dUycAWaUOtFpgqWUUgM4A5147UcelW0o/tz5FNNIa8u+GEc1OpJ7d9NkO3o/kP2SSk/CIoaazW+PYlSx0d/XTV64mUD60Zs/AiBCg3s6Ob1bRzewGPE1bCFkhILpw7tJTy6LDFLStG38nzuvp5+CUCO+YZ47i9VKrWMqqZ0ToxldcN82AsY67JrjlNLIICV7N60YzbCUUjGkCZZSSg3gDnYTcBxfgpVUFmlmVrdl/N/EYgwF/mo6k448D89AxXMnzkAX9TvWYxGDs2B4N7EAPZmVTAvtpqe3ZxQjiw1761YaLPkkJSYNa/uiuacQMoK/+p1Rjmzk6naswybhYzp3nRkLmBqoIuD3jmJksZHUuY16WxEWu2NY20+pOA2A3t0T4HNFKQVogqWUUu8xhoxwOwF3znHtXjj3FAD6q1fFMqpR0d1SSwp9BLOG14cHICmriFbJwL5v/A900bMnMlhF+vSlw97HVroMh4So2zL+awoK+rfRnDT8c5eQlEa1rYyklvE/CEvnrkgSmDlj2bD3sZYsxykB9m4e3+fOGEORdwfNSXOGvU9KRg41liLc+8b/uVNKRWiCpZRSUd6edtziJ5yUf1z7p6TnUC95OJvH/0AJddsiSWBqyfCamO3XlDibgr7x3xTLNKyn0yRSVDpr2PsUzjsDgK4db45WWDHR3txAHq0Echcc036tafMp9W4lFAqNUmSxEaxbTw9uiqcNbxAIgILouWvf9sZohRUT+xpqyKITk3eM111yBSX9mzHh8ChFppSKJU2wlFIqqrOpGgBL6tEn3h1KU9LEGOiib88qwkaYEm32N1yevMWU0EDLvvpRiiw20jo3sdc5A5vNOux9svKKaZBcHI3juwlk3abXAUiONkkdLuuUpSSLh5pt4/v9ZXZuYK9zFhbr8M9dQXEZjWRhbRjfw+zXb/w3ABkzlh/TfuHCJaTTTXPNxOgjqNSJThMspZSK6m3dC4AjffgDPxwqkFtJPi20jvMExNW8nhpLIekZxzih8oxIM8i97742GmHFhLeng9LAbrqyTzrmfRuTKyjs2zSuhzP3VL2B31gpWXD6Me1XMO9MAJq3vD4aYcVEZ0crU0N76Ms9tuRRRKhPqqCgZ3yPJBjY/SYe42BKxSnHtF/GrEg/rKbN4/e6U0q9J2YJlojcJiJGRLKir0VEfiYiVSKyQUQWxepYSik1GnqaIwlWev7whoceTNq0SJ+fvZveiklMo8GEQxT1bWZf0vCbYO1XOv80AsaKd8/4fX9Va17CKobkmWcc876hwsXk0k7j3qpRiCw2UpvfYbdjFklJKce0X35ZOR2kIPXjt49gzbrIuUuceeYx7xsqXEwerTTV7R6FyGIjs201e1yzcTrdx7RfWflJ9Bg3geqVoxSZUiqWYpJgiUgxcC6wd8DiC4AZ0cfNwK9jcSyllBot/vZawkYoKCo97jJK5kWa3PWN44Eu6revIZ1uTOlpx7yv051MtX0aqa3rRiGy2Ojf+gI+Y2fmSWcf876Zs08FoH7Tv2MdVkx0tzUzI7Cdztxja2IGIBYLexPKyesav7U8/VtfwGvsTFt0HOduVqRGr3bD+Dx3LU17mRHaRXf+sV93DruNPa5y0jvWxz4wpVTMxaoG6x7gdmBgm4pLgQdNxAogTUSOr+e4UkqNAXvnHpokG7f72L5dHsidnE6tpQh3y/gdaa/p3X8BULjovOPavzNrIdP82/F6x+eQ2Pktr7PVNZ+EpGMfbr9kzjI8xkGwenyORle14hmsYkidf9Fx7e/LPYkSU0dbS1OMIxs5Ew5T3PI6OxMW4UoY3vDzA5XOW4bX2AnsGZ/Dme944ykA8hdfclz79+csojRYTVdneyzDUkqNghEnWCJyKVBvjDl02KxCYOCU8XXRZYfuf7OIrBaR1S0tOku5Uip+UvtraHYcf/+r/dpSy5ni2UYoND5H/Erc8wJ7pIji0mFOwnsIZ9nJuMVP1YbxdyO7e+PbFIfr8U09vuTR5nCy21VOdtv4HAjCuvkJWkhn5qJjb0IHkDI7sl/NuhdjGVZM7N7wBkU04ZtxwXHtb3O42O2aQ3b7+BzoInnHUzRJDiXlwx9+/qD9Z52BVQx71r0U48iUUrE2rARLRF4UkU2DPC4FvgnccbwBGGN+Y4xZbIxZnJ2dfbzFKKXUyBhDbrCO3qTSkRdVuJgc6aCmeufI44qx7rYmZng30JD3PkTkuMqYsiDSfKtj+/gbLKH1jfvxGxsz33fDcZfRm7eMqaE9tLfui2FkI9fdUs/cvpXsyL0Qq812XGWULTgdj3Hgrxp/gyW0v/mHSPPAs6477jI6c5YzLbibns7WGEY2cs11u5nnW09N0aVgOb7vtqctOhu/seLZMT6bQCql3jOsq9wY835jzLxDH8BuoAx4V0SqgSJgrYjkAfVA8YBiiqLLlFJq3OlsriUJD2ROH3FZWbP3j/g1/hKQnS/9AZuEyVx2zXGXkZZXSrNk4Wp8J4aRjVwo4Gf6vr+zIfFk0rPyjructPJzsIhhz5rxVcuz7YX7sEmYrNOOP3l0uhLY5Sonu2189RH0evqZ2fJPNqacecwjWw6UNOtMLGKoWTu+zl3Vi/dhEUP+mR8/7jJcCcnscswms0UHulBqvBtRE0FjzEZjTI4xptQYU0qkGeAiY0wT8CxwfXQ0weVAlzGmceQhK6VU7NVvjdy0pJQsHHFZhbMW48VOeO/4SkBMOETW9j9TZZ3KrAXHNv/VoepSFzGt/13C46gZ5Prnf08G3VgWXjuicqZWnoHP2PGNo1qeUMBP0c4/sd02m1kVS0dUVk/ecsqCe+hqGz81dBv+9itS6SNh2fUjKmfawrPwGTv9O8dPLY/P28f06j+zxVnJlOnzRlRWR85Spgaq6OvWflhKjWejOQ/W34nUcFUBvwU+O4rHUkqpEemrWQtA8XH2jxjIYndS45hJRsehXVPja9u/H6MktJemuZ867uaB+4VLTiODbvZsXxuj6EYmFAyQs/an7LaUUnnOVSMqy+4cf7U86//6KwrMPnqX3TristKjNXS71rww8sBiwOftp2Tzr9hmm0P5KRePqKzExCR2OueQ0Tx+annWP/1TcmgndNpXRlxW0qyzsUmYPWtfjkFkSqnREtMEK1qT1Rp9bowxtxhjphljKowx47PXqVJKAc6WDeyVfNIzMmNSXk9WJdOCu+jv74tJeSNlwmGsb/6YenJZfOEnRlxe4cJzAdj37vhoirX22V9SbBpoX/oVLFbriMvry1vG1NBu2triP/hSb08nhRt+znbbLBaec/WIy5u64Aw8xjFuauhWP/YDcmnDf/rXkOPsnzRQT+5ypgZ309Ue/35YXR0tTNv2/9jqqGDeqReOuLyp0X5Y/TteHXlwSqlRM5o1WEopNSGYcIjS3vU0JC+IWZnOsuU4JcDuTePjm/R3n7uXmcEd1Fd8FpfTOeLy8ktms0+ycNTFf8Lh1qa9zNxwN1vtc1n0gZE1D9wvtfzsyIht46CWZ8sfv0KOaUPO+z4W68j/bTtcbna55pLTGv8mrNU7N7No16/YkLCc+WdcFpMy08rPxiKGqtX/ikl5I7H9wS+SZrqxX3hXTJLHpKQUdtpnk94c/3OnlBqaJlhKqRNe3bZVpNKLKTsjZmUWzYuU1bXjzZiVebza99VRuuZ/2GKdw6JLPxebQkWoSz2Jsr51cR2OPhwKUf/Ap3AZPwlX/iomCQhAWeVZkTmVdsa3Kda7rzzO4n2PszL7CmYu+UDMyu3NP4Vp4T2076uLWZnHyuv14H30EwTFSsHH7oURNlvdb9rCsyIjJcb53K15/kGWdjzH6oJrmb7g2CcXHkpn7nKmBnbQ0xn/2lWl1OA0wVJKnfD2RSfeLT7OiXcHk55fSrNk4miK73xKoWCQpj98DLfx4r7i59iOc3jvwVjKTiOTbnZtid97fOf+21ngWcG6ObdRMqsyZuXanQnscFdS2Ba/Grq9OzdQ9u8vUG0tYeGN98S07PQFkbmm9rzz15iWO1wmHGbdvZ9kdnArVcv+l6yCspiV7XAlsCOhkqLW+H25sWPDO8x++6vssM1k0Q0/jGnZqfMvwCqGXSvic+6UUkenCZZS6oTnqn2DGimkcMq0mJZbnzSPwt7NMS3zmBjDmt/eQrl3HWvmfZOy8iUxLb442g+reWN8mtGtfuwultf+jndSL2DZVV+Lefl9xWcxJVxPU832mJd9NM17t+N46HJCWHF87BFciSkxLX/6/FNoIxV2jv2ktSYc5p3ffo6TO//GquIbWXjBjTE/Rl/RWRSbBlpqtsW87KOp3bGejCc/TL8kkH7jozhc7piWP3PhmXSZREI74t98VSk1OE2wlFInNJ+3j6l966lPXzLikfUOFcxfTAHNNNRVx7Tc4TDG8OYfvs7SfY/wdtaVnPLhL8f8GFnFs2iQXBJqx36whFV/+RGLt/wva92nUPnZB2LSv+VQBYsjgxLUjHEtT+2uLQT/cBFu46H18scomjon5sewWq3sTl3G1O6VhEOhmJc/lHAozNu//QLLGh9iReblLL7xx6NynJxFFwFQu3psz92uLatx/PlyBIP3o0+RXTg15sdwOBzsSFpMScfbYEzMy1dKjZwmWEqpE9qON58hQXwkVFwS87Kz50T6XdS8O7Zz8kRqCL7AqXvvZU3quSz9zG9G50Ai1GWewqz+tXi9ntE5xiHCoRArf3crSzb/F+vdy5jz+SdwxGDQjsFMmbGARrJx7Bm7vjzbV79I0h/PI8H003LZI8wY4XxlRyLT30863ex8d2ya0vX19bHqnis5pfGPrMq8lKWfvW9UEmOAqTMrqCMX++6xq6Fb9+9nyH7sYmyE6b3qcYpnVo7asXyl7yPLdNCwffxMJaCUeo8mWEqpE1pww5N0mGRmnzzyIZQPNWXuyXixE9z9RszLHorX08fqn17DsoYHWZFxKQs//zDWGAxbPpSE8vNIFB9bV45+c6WezjbW/t+lLKv7AyvSLqL81r/iTkgYteOJxUJtxsnM6FuL3+cbteMAYAyrnvg/Sv96Db2SSNdH/8H0hbEbdGUw05dfTNgIbeufG9XjADRUb2fvj89mWe9LrJ72eRbfcn9MhtMfisVqoS7zFKb1rsXr6R+140CkVu61B77DvJdvpN2She/j/6KkfGSTQR/NlKWR+cIaVv9tVI+jlDo+mmAppU5YIb+HGV1vsDXtDFwuV8zLtzjcVLvKyesYm2kA99VVUfd/Z7Kk65+snHIzyz53P5YYDmoxmOlLL8BvrPRufn5Uj7N7w1t0//QUKvveZNWML7HsC38ctZqrgRyzzyVJPOxYNXpDfnd1trP6x1eyZOP32O5eQMotr1Ayc/6oHW+/tOwCdtlnkNnwyqgeZ80/HyLp/rMpCu1l8+m/ZPF1/z1qNVcDJcw9nwTxsW3FP0btGB1tzaz/0YWcsecnbE05hdxb/01B6axRO95+U0qmUmUpI3Hv2PehU0odnSZYSqkT1s63niEJD9Z5l4/aMXrzlzMttIeWln2jdgyAtS/8GfvvziYvUMfqk3/Jspt+OCY3sa6kNHa55zOl5VVMOPbDtYeDAd7547cpeuJibMbP1vMfZsm1d47JewOYecol9BsnvWsfH5XyN7/1d3p/spyF3S/xdulnKP/KP0nNyh+VYw2mpehcZgW301K7I+Zl93a1s/InH+Wktz/LPms+HR97kbnv+1jMjzOUWSdfRK9xE9jwxKiUv+aFRwj8fBnz+lfyzuzbqfjSs7hTMkblWIPZV/B+Zvk209FUM2bHVEoNjyZYSqkTlnf9E3SaJCpOu2jUjpE2JzLp6Z61L45K+d6+bt75+fUsevMzdFoz6fjoP1h83tjdxAL0TruIElNP9dbY9gep27meXT84jaW7fsbGxJNx3PImFSefH9NjHE1CUirbU05hZvvL+P3+mJXr6e1m1a8/ydx/fQQjFvZc9BdO/vhdMR1GfziKTo9MzLz71T/FtNyNrz1J308Ws7jj76wsuIHS299gyvR5MT3G0TjdSWxOOY1ZHa8S8ntjVm5nWwsrfnw1J735H/RZU6i/4q8sveZbY5b075d98rVYxFD97z+O6XGVUkenCZY6JuGwoc8XpKPPT1uvj5YeH83dXpq6Io+2Xh893gChsI5spMa3oK+f6Z2vszn1DBLcsR1GeaCSBWfiM3YCVbEf6GLX+tdo/b9lLG59lrfzrqXoq29TPGthzI9zNKVnXEPQWNj31p9jUl4wEOCtB79D9p/eT3agjrcq72bRV54lPbsgJuUfK9v8K8igm01vxGZEuo2vPUPb/y1hyb6/8GbWh0m/7R2mx3AS4WMxZVo5222zyKyOTV+ejtYmVtzzUSpevhEvbrZf9CTLbv4ZdufoXWNHIhVXkkIfW15/auSFGcO6f/0R38+XsrjrX7xTfBNFt6+gbP6pIy/7OMwor2SHZRrJVc/E5fhKqaGN+KsyEfk8cAsQAp4zxtweXf4N4BPR5V8wxvxzpMdSseHxBensaKGnfR/93e14utvw97UT7O0g7OkEbxdWfxfOYA+2kAdryI817MdmfNhMACcBnBIAIGwshLAQRghhpQ8nvcZNLwl4LQn021LpsWcTSMzFllaIO6uEtLxSijISKUpPIDvJicUS26GxlRqO7W8+zVw8OOePXvNAiExYu9G9gJLWf2PC4Zh8y+319LP2T99kSd2DtEkaG9//ICefHvtREIcrO7eIja5Kihv+QTj04xENXrBr/WuYv97KKaFdrEs6laKP3csp+VNiGO2xm336h+h+82vI2vvhnCuOu5yOfXupfuhWFna/RJ3ks/nchzn1lA/GLtDj1Dn9MpZt+wF71v+bssozj6sMEw6x7tlfUrb+bhabPlYVfoyK6+7G5U6McbTHpvLMy2l763ZY83t430eOu5yGPdtoeewLLPSsZI+1lL6LH2Bp5egOQnI0IkLr1Es5perH1G5+m+K5ozfipFLq2IwowRKRs4FLgQXGGJ+I5ESXlwPXAHOBAuBFEZlpjBm7yTZOMH6/n/bmerpaG+hrb8TbuY9gdxP0tWLztOL0tZEY7CAt3EkGXeRLiKFa+Qex0itJeCxJ+K1uwk4nYYsbY03D2JyEbC76bQ4EEMJYMFhNGJsJ4g70kxfsxRZoxx7YS0KwA7vXD16gDdgFHuNgt8lnpSmg1lKEN30GtsJKCkrnMLcwjRm5SditWrmqRpfv3SfpNEnMO230ExPf9Aso2vRfVG1ZxfR5y0ZU1rZ3XsD9/K2cEq5jddp5zLjhFyzIyIlRpMfPN+8aCtfczsZ/P0bFOcd+I9vT2cKOh25nYfNTtEka65b+mIUX3AQxnpvseNhdiazM+xCnNP6J5pqt5JQc27xUwYCfNY//kLnbf065CfJm8ac46drvUhTn5GO/med9mq6tv6DrpR/BcSRYezavxPfMl1jk38xWezmdl/2UJXNHdxS94XI4nWwqvJoz639D08415M046Zj293r6WfvI91hU/TvSsPD2jC+z+KqvY3eM/gArwzHz/M/S8/Nf0/3ij2Du6PQ1U0odOzEjmKRORB4DfmOMefGQ5d8AMMb8b/T1P4E7jTFvH6m8xYsXm9Wrx2a0rYnChMN0dbXT1lhNd/NePK11hLrqsfQ24vI0kxxoIT3USqbpwiKHn0sfdjoljT5bOl5nBgFXFiF3FiRlY0vOwpWUSUJqBompWSSnZmJLzAC7O3Y3NcaApwN6mqCnAX9rDf2NWwk178DRuYtETz0WInF3mwQ2h0vZShntqeXYixZSNH0eC6ZkMjUrUWu6VMz4vR78d5WxKfUcln8pNs3ajqS1aS8Zv57PypJPcfJNPzyuMvp7Otj04G0sbn6SZsmi+awfMP+s469NiTW/30/r/5TT48hh1jffGvZ+4WCQNX/7NVPX/5A0081bWVcy/2N3k5o+doMFDEd97R6yfreYjVkfZPHnh9nnxRi2vP4krle/x9RwNRuci0m+4h7KxmCEwGP11m++wPL6B6n7yEtMmT28JKRzXy07H/sWi1qfpVuS2Drvqyy7/HOjOi3A8WhsaiD115VsTz2NhV9+clj7mHCYDf+6n6yVd1Fo9rE26UwKr7mH3KJpoxztsXvhp//BOR2P4v/sGtw54y8+pSYzEVljjFl86PKRNhGcCZwuIt8nUkfxFWPMKqAQWDFgu7rossECuxm4GWDKlPg2A4kHj8dDU20VXY278LXWYDpqsPXU4fY2keJvISPcRpr4SDtkvy6S6LBm0evIpsY9m92J+VhS8nCk5pKYkUdKVgHpOYU43ankxvMbYBFIyIg8cstxTAfHwPUBD7RsI9ywAVO9mln161nc+SL23udgG/RvdbLVTOExSxm9aeU4iispnHkSFaU55CTHflhtdWLYsfpF5uHBOS/2c18NJitvCtscc8ire55w6AdYjqGG1oTDvPvCn8hf8V0Wh9tYmXMlFdf/iLzktNEL+Dg4HA6qZ97IKTvuZsOrjzP/rCuPus+ON5/C/vJ3WRLawzbbbFovepjTK+PTn+VoCovLeDP7ck5t/Qt7Vv+DssUXHHH73e++gff5b1PuWUu95LL+5J+x4APXjflACMM1+7Kv0fnLJwk++WnM7W8iNseQ2/Z0trL5yR8wf+8DVJogq3KuZM41/80pmXljGPHw5ecV8HrhtZze8Ht2/vsRZpx5zdAbG8OWt/6G9ZX/YkFwO7stJWw6+34WnTG6TYlHIvfMT2F9+hG2vfU3Fl72xXiHowYIBoN0dXfR392Jr78bf38XAU83QU8PYU83YV8P+HoI+z2YoBcT8EHIiyUUwBr2Yw37sIYDWMORLhpiQogJYzCICR/UkgjMgS+sQ1gJYiUskYcRW/S5DSNWjMVG2GIjZHERtLowNhfYXGBPALsbi92N1ZmAxeHG5kzA5kzA4UrE5krE6U7C6U7EmZCE252Ew+kaFy0Nxpuj1mCJyIvAYJ+a3wK+D7wCfAFYAjwKTAV+DqwwxvwpWsZ9wD+MMUcc53Yy1mAFAwGa63bRUbeN/uZdhNr3YuuuI9FbT0ZgH9mm46Cap5ARWiSTDns2/c4cAgl5SEoBjvRCErOLSc8tJSNvClbn6E2uGXehALTuIFy/jq49awnUv0tK51Zc4T4AgsZClSmk2jaV3tQZWLOnk1Iwk7yyuUzNz8btGF/fno4lfyCEx9uPz9OHr78Pn68fv7efgLePgM9D0NePCXgwAS8m6IWAFwl6IOhDgl4k6MUS8mEJebGGvFhCfsQEIRwa8DPa4y7602LCCGGsJtIbz7L/JyEif9qG/X/hBon+PJQcWCYDtgMwEiktjGCwEBILhv3LLISP8Nrsf76/DLFiEHL8dcwI78Z32y4Sx2hY5fXP/JTKdXew9pw/seiMi4e1T/3O9XQ88SXmedeyx1KC57wfU77s/aMc6fHzeftp+sES3KYf63+8SmZ+yeEbGUPV20/j//c9lPvepZ4c6hbdzpILP3FMiWc8dHR20vOT5bjEj7n+WXLLDh4Vz4RDbH3rb/DmTyn3rKGTJDZOvZklV92OyxWfQR6OxatP/Y6z3r2NddmXUHnzbxH7wV9itdTuoOb5nzK7/gmS8LA68QwyLvk+U2eNvxq5Q3X39dH0f6eTE95H94f+zJT5BzeFDPm9bHrlERJX/5LpgR00k8Geils56ZLPYrPb4xT18IRCYfq+V8iO7HNZ/LkH4h3OpBQKBuhsbaS7vZnezhY8XS0E+9qhvx3T347V14nd34kz0E1CqIvEUA9Jpo9EGf7olX5jwy92AtgJyP6Hg2D0ERI7xmIFsUQfEk2pJPKQ9z4/I/+HQ1ii/7st5r2fluhPqwniMD6cxocTP07jH7Ql1FF/N0bw4cArTnzixC8u/BYnQXEStEYSuJDVjbE6CdvcGHsC2NxgdyGOBCzRh9WRgMXmwGJ3YLE5sNocWO0OrHYnNpsdizuV9NxiEhxjO9Lq0QxVgzXSJoLPAz8wxrwSfb0LWA58Ek6cJoLhYJDm+l201mylr3E74bZduLpryPDVkh9uwiHvdT0LGCstliw67Ll4EgsJpxRjyyghMbeMtPxpZOaXYRsnbbvHlXAYOmvw1a2nrWoVwfoNpHRuJS3UetBmjSaDfdb8aHKaDUl52FPzcWcWkpqZR0paJkmpmbgSU8AyiomYMRD0QciHCXgJ+L34ff34Pf0EvP34ff0Eff0EfR6Cfg8hfz9hv4eQ3xtNgDwQ8MKBpMeLhHxYQ15sYR/WsB972Ifd+LCbwIEPSFd08JHj5TEO/NjxiRMfDgLiIBT99suIJfLNV/RnJFmJJDHhA+uj67CCJZLMiEjkWzbhoJ/RX1QksYp+DhlATGSZMfvTrug3ddHELfI8fCDR25/giYmmYSYUScXM/iQvmpoN3J8w+7JPoeLT94/o93UsAt5eeu4qp9E+hTlff+2IyUR3axPbnvguCxsexYOTTbM+x5IPfxW7fehahfGiasPb5D9xKV2WNHrOvJOZp14OYmXfnk00rHqajF1PUxqqYR8Z7JpxEwsvvw13wsT5wmjbujfJe/oqXOJje8GHsBYvJuj3Emp4lynNr5Bt2mghjW0lH2P+5V8mNS0z3iEPmzGGf9/7ec7a90fqLQU0l1yEJSmHYGcdKU0rmBHYRsgIq5LOIuPcrzJzwfisbRzKnp2bcD10KbmmjS0Z5xDKP4lw0I/Zt4kZXW+RTD+1kk/1zJtYctktcR+g41hs+J8zSQj1MP3ba+MdyoQRDgZpb22gs7mO7tYG/J2NhHuakb5mbJ5W3P5WkgLtpIY7STU9QyYfAWOlW5LptSTjsSbjsacSsKcSdqaCMwmrKxmrKwWrOxmrKxm7OxVbQjLOhFRciam4klNxJyTHv2mtMZigF5+nH6+nD5+nF5+nj8D+L2m9fQR9/YT8/YR8/YT9/eDvxwQ9SPTLWmvIgyXoidS4hbzYw17sYR8OE3m48OEyPhwSPObw/h2aT/eVj3LxgviMJjuU0UqwPg0UGGPuEJGZwEvAFKAc+DOwlMggFy8BM442yMV4T7DCwSBNNdvZt2sd3obN2Nu2kdG3m8JQ/YFR9SByk9pkK6DLPQVfSimSOZWEvJlkFM0kp6B03H8bNqF4uwi07qKtZivd9dsJtVbh6K4h0d9KWrgdF0PPW9OLG6+4CYiDsNgIiT3y02LD7P+mCAPGIMYAYThwY28QE8JmAthMALvxY4/+tBHAwbF/eAwUMFZ82PHhwC+RRCcgTgIWJ0GLk5DFQcjqImx1YazOSPW+PVLFL3YXYndjdSRgdbiwOhOwORKwOyNV/VZnAjanC6vDjcOZiM2VgMPpxmp3jdvmS5PF6sd/xOJN/8VbM27nlGu/ddj6nrYGtj79I+bWPoTb+Hgn7YNM+8gPyM4rjkO0x2/zOy+T9vdPU0hkcuWwkQM3J9usM2krv54FF3yCpAmUWA20Z/cOGv/yVU7qfwNn9Eah3zjZ4l5IuPxyKt5/He6EiXNzPpAxhjeff5TMVT9iZqgKqxgCxspu21QaC85l2tk3UDx1VrzDPG7NzfvY/PA3md/+LzKlG4B9pFOdugxrxRVUnnn5hPwf/fZ9X2HZ3t/RecsWMnLG1w1oPISCQfY11tDRWE1/616CHXXQXY+jr5FEXzNpgRYyTTt2Ofy2tN846bCk0WPLwOPIwO/KJuzOQpJysKdk4k7JJjEtm8S0LJLScnAlpmoTuWMUDATwevvw9vfi9/ThjyZw4aCPkN9PKBggHPIRDvgJBwOYkJ8+ewZTl15Iccb4+r8xWgmWA/g9UAn4ifTBejm67lvATUAQuNUY84+jlTfeEqyG6u3Urvob0rCGzJ5tFAb2HlRD0CTZNLvK6EuZjmRPJzl/Njml5WTlT0FGs3ZEDY8xBPs7aW+upbO5lt72Znx9nYQ9XYS93YivB4u/B0J+JBzAGg4g4WC0+jyAxYSiTdXkQFMzE62SRyLPg2InFE2AQhY7YasTrE6M1Qk2J2JzYrG7EJsDiyPartnhxuqMJEB2VwJ2pwu7MxGnOxGXOwGXOxGX04nTZkH0Q3tSMeEQG350IRV9K3gn7xoKT/0IdmcCjVXrkO1/p7zrNRwSYlXiWaR/8A6mzz22Ec/Gk36Ph7WvPE2wbg02wpBeSv7C85g6beak+btu7uikra4Ku8NFUelMXM7xX8M4XMYYWtvb6evtIT0zm9SkiZkwDsXrD7JvXyN2h5O87OwJP4hS1brXmP7Mxbyz8C6WXvqZeIcz6kw4TGtzHW21O+ht2kWwdTfWrr0k9NeRGWgkK9yGTcIH7eM1dlos2XTbs+l35xFIzMeSko8zvYCkzHxSsgpJzS6MJExKDdOoJFixNt4SrJWP3s2yrd+nkyT2OmfSlzoDa245KSUVFM1cSNIY9d1QSk0eXk8fG37zKRa3//2gJicdJpkt2eeTc9anmTHvsM9qpZQaUjgUouW/ptOUMJMFt0+OaUdNOEzbvlqa92yit34rpmUHjp69pPnqyQ3tI0F8B23fQjqt9nx63YUEk4uwpRXhzppCUk4JmQWlJKVmaysNFXOaYB2HzpZG+nraKSidoxelUiqmGmqq2LXpbSwhH5nFs5g2bzn2Cdg0SSk1Prz9/z7HkoaHaP/UGnKKpsY7nGHzevpp3L2Rjr1b8O3bjr29ipT+GvIDtSSL58B2HuOgyVpAl6sQX3IxpJfizplKSsEMcotn4k5MiuO7UCcqTbCUUkoppSapuj3byL3/FDblf4iFn/5dvMM5jAmHaNq7k3071+Kp34CjdStZ/VUUhhoOas7XRBYtzmL6kssgcyYJBbPJLp1LbtE0LPEeCEKpQ4zWPFhKKaWUUirOispm83rqBSxrfIrm2tvJKZ4Zt1j6Oluo276a7pp3Yd8WUru3U+ivJl+85Ee3aZBcmt3TaMz4ALa8ctKK55I/dR55yamDzg2k1ESiCZZSSiml1CQw7YrvEPz9C3T96Uayv/rKESeMjoVwwE/j7o207lqDv34j7vat5Hh3k2Pa2D/WZKdJot5RxobsC7HkziW1dAFFs06iICUdHe9QTVaaYCmllFJKTQIFJTN5ed6dnLP5G2z45UeZ+5k/YnXEZpLrzpYGGravom/vu1hbNpPWs4OiwF4KJUgh4DM2aq3F7ElaxI6sOSQUzSdvxiLyi8pI037s6gSjCZZSSiml1CRx9pWf4ZWuWs6u+xXVd59M4Kz/ZPrJlyLWow+iEw6FaGnYTVv1ZvobtxFu2Ym7exf5vj1k0UladLtm0ml0TmVV5slY8ytIn7qIKTMWMN3tYvqovjulJgYd5EIppZRSapJ587kHKV31PQppoYMUGhJm40kpI+xMJWyxYw15Cfv7sXlaSfA2kxRoJSvUglv8B8roNW4a7UV0JU4lmD0X95RK8macRE5e4aSZz06pkdBRBJVSSimlTiB9/f2se+HPWHb+k6z+KgpCDSSJF4CwETw46JQ0umyZ9DlzCCflYTKnk1Awm8ySeeQXlGCxavM+pYaiowgqpZRSSp1AEhMSOO3STwKfBCAUNviCAUwoCFYHCXYriSIUxjdMpSYdTbCUUkoppU4AVotgdTiA0R1dUKkTndb7KqWUUkoppVSMaIKllFJKKaWUUjGiCZZSSimllFJKxci4GkVQRFqAmnjHcYgsoDXeQagxo+f7xKHn+sSh5/rEouf7xKHn+sQyHs93iTEm+9CF4yrBGo9EZPVgwy+qyUnP94lDz/WJQ8/1iUXP94lDz/WJZSKdb20iqJRSSimllFIxogmWUkoppZRSSsWIJlhH95t4B6DGlJ7vE4ee6xOHnusTi57vE4ee6xPLhDnf2gdLKaWUUkoppWJEa7CUUkoppZRSKkY0wVJKKaWUUkqpGNEE6whE5HwR2S4iVSLy9XjHo2JHRIpF5BUR2SIim0Xki9HlGSLygojsjP5Mj3esKjZExCoi60Tkb9HXZSKyMnp9PyoijnjHqGJDRNJE5HER2SYiW0XkZL22JycR+VL0M3yTiDwsIi69ticPEfm9iDSLyKYBywa9liXiZ9HzvkFEFsUvcnWshjjXP4x+jm8QkadEJG3Aum9Ez/V2ETkvLkEfgSZYQxARK/BL4AKgHPiIiJTHNyoVQ0HgNmNMObAcuCV6fr8OvGSMmQG8FH2tJocvAlsHvP4BcI8xZjrQAXwiLlGp0fBT4HljzGxgAZHzrtf2JCMihcAXgMXGmHmAFbgGvbYnk/uB8w9ZNtS1fAEwI/q4Gfj1GMWoYuN+Dj/XLwDzjDHzgR3ANwCi92vXAHOj+/wqet8+bmiCNbSlQJUxZrcxxg88Alwa55hUjBhjGo0xa6PPe4jcgBUSOccPRDd7ALgsLgGqmBKRIuBC4HfR1wKcAzwe3UTP9SQhIqnAGcB9AMYYvzGmE722Jysb4BYRG5AANKLX9qRhjHkNaD9k8VDX8qXAgyZiBZAmIvljEqgascHOtTHmX8aYYPTlCqAo+vxS4BFjjM8YsweoInLfPm5ogjW0QqB2wOu66DI1yYhIKbAQWAnkGmMao6uagNx4xaVi6ifA7UA4+joT6Bzwwa3X9+RRBrQAf4g2Cf2diCSi1/akY4ypB34E7CWSWHUBa9Bre7Ib6lrW+7bJ7SbgH9Hn4/5ca4KlTmgikgQ8AdxqjOkeuM5E5jDQeQwmOBG5CGg2xqyJdyxqTNiARcCvjTELgT4OaQ6o1/bkEO17cymRpLoASOTwJkZqEtNr+cQgIt8i0rXjoXjHMlyaYA2tHige8LooukxNEiJiJ5JcPWSMeTK6eN/+JgXRn83xik/FzKnAJSJSTaSp7zlE+uikRZsVgV7fk0kdUGeMWRl9/TiRhEuv7cnn/cAeY0yLMSYAPEnketdre3Ib6lrW+7ZJSEQ+DlwEXGvem7x33J9rTbCGtgqYER2NyEGkM92zcY5JxUi0D859wFZjzI8HrHoWuCH6/AbgmbGOTcWWMeYbxpgiY0wpkev4ZWPMtcArwJXRzfRcTxLGmCagVkRmRRe9D9iCXtuT0V5guYgkRD/T959rvbYnt6Gu5WeB66OjCS4HugY0JVQTkIicT6R5/yXGmP4Bq54FrhERp4iUERnY5J14xDgUeS8ZVIcSkQ8S6bthBX5vjPl+fCNSsSIipwGvAxt5r1/ON4n0w3oMmALUAFcZYw7tYKsmKBE5C/iKMeYiEZlKpEYrA1gHfMwY44tjeCpGRKSSyIAmDmA3cCORLxT12p5kROS7wNVEmg+tAz5JpC+GXtuTgIg8DJwFZAH7gO8ATzPItRxNsn9BpJloP3CjMWZ1HMJWx2GIc/0NwAm0RTdbYYz5dHT7bxHplxUk0s3jH4eWGU+aYCmllFJKKaVUjGgTQaWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRjRBEsppZRSSimlYkQTLKWUUkoppZSKEU2wlFJKKaWUUipGNMFSSimllFJKqRj5/yhCOpqzsHpwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADFeUlEQVR4nOzdeXxcVf3/8ddnJnuzNUvTNmmb7nso0Jat7MqirKIURFYRwQ1QUETF6lf8+lV+oiwKCAgCliK7sm8FikBpS/eNtqT7kq3ZmnXm/P6Ym5Cm2UommSzv5+Mxzdx7zz3nc+d2kvnMOfdcc84hIiIiIiIineeLdAAiIiIiIiJ9hRIsERERERGRMFGCJSIiIiIiEiZKsERERERERMJECZaIiIiIiEiYKMESEREREREJEyVYIiI9jJnlmpkzs6hIxyL9g5mtMrMTIh2HiEhfoARLRER6PTO7x8wqvEetmdU1WX4p0vH1dM65yc65+eGs08zSzGyemRWZWaGZPWZmyeFsQ0SkJ1KCJSISZup56n7Ouaudc4nOuUTgt8C8hmXn3OkN5XrTuelNsbbiN8BAYCQwGsgC5kQyIBGR7qAES0QkDMws38x+YmbLgUozizKzI83sv2a218yWNR2CZWbzzex/zWyhmZWZ2XNmltZK3Zeb2RozKzezTWb27WbbzzazpV49G83sNG99ipk9YGY7zWy7mf3GzPztHMdoM3uzWa9DapNtxWZ2mLc81MwKGo7LzM7yhprt9Y5vYrPX5wYzW25mpV7PRtzBv9IHr5Vz48xsTJMyD5nZb5osn+G9pnu9c5jXwbZOMLNtZnaz9/rlm9lFTbZ/2cw+9s7VVjOb02Rbw9DQb5rZFuBNb/2/zGyX97q9Y2aTm8X9FzN7yeute8/MBpvZn8ysxMzWmtmhHXyNvtCRYzwII4FnnXNlzrlS4Blgcjv7iIj0ekqwRETC50Lgy0AqoW/rXyD0LX4acAPwlJllNil/CXAFMASoB+5opd49wBlAMnA5cHuTJGcm8A/gRq/d44B8b7+HvHrHAIcCpwBXtnMMBvwvMBSYCAzD63Vwzm0EfgI8amYJwN+Bh51z881sHDAXuA7IBF4E/m1mMU3qPh84jdAH7zzgshYDMJvlJTatPWa1cwwtaTw3zrn6Nl+AUELyIPBtIB24F3jezGI72NZgIAPIBi4F7jOz8d62SkLnPdWL5xozO6fZ/scTeu1P9ZZfAsYCg4AlwGPNyp8P/NxrswZ43yuXATwJ/LGDcbfIzG5q63y0sevdwBlmNtDMBgLnecciItKnKcESEQmfO5xzW51zVcA3gBedcy8654LOudeARcCXmpR/xDm30jlXCfwCOL+lHibn3AvOuY0u5G3gVeBYb/M3gQedc6957Wx3zq01syyvreucc5XOuT3A7cAFbR2Ac26DV1eNc66A0Ifz45ts/xuwAfiQUGL4M2/TbOAFb9864DYgHji62euzwzlXDPwbmNZKDAucc6ltPBa0dQytaHpu2nMVcK9z7kPnXMA59zChxOXIg2jvF95r+DahRPt8AOfcfOfcCu9cLSeUlB7fbN853jmr8vZ50DlX7pyrIZTsHmJmKU3KP+OcW+ycqybUS1TtnPuHcy4AzCOUXH9uzrnftXU+2th1CRADFHmPAPCXzsQiItIbKMESEQmfrU2ejwC+1uyb/lmEkpKWym8Gogn1OuzHzE43sw+84Xl7CSVODeWGARtbiGWEV9/OJu3fS6gXpFVmlmVmj3tDCsuAR1uI6W/AFOBO70M/hHq8NjcUcM4FvePLbrLfribP9wGJbcUSZlvbL9JoBPCjZuduGKFj7IgSL2lusLlhXzM7wsze8oZWlgJXc+Dr2xirmfnN7HcWGvpZxme9k0332d3keVULy935Ojf1BLAeSCLU+7qR0P8nEZE+TQmWiEj4uCbPtxLqoWr6bf8A59zvmpQZ1uT5cKAOKGxaoTcs7SlCPUJZXo/Bi4SG8jW0M7qFWLYS6nXJaNJ+snOuvWtgfusdx1TnXDKhnriGtjCzROBPwAPAHPvsurEdhBKThnLmHd/2dto7gJkda5/NANjS49j2azmAa7a8D0hosjy4yfOtwK3Nzl2Cc25uB9saaGYDmiwPJ/T6APwTeB4Y5pxLAe6hyevbQqxfB84GvgCkALne+ub7dBnverJWz0cbu04j1BNY6ZyrIHSsX2qjvIhIn6AES0SkazwKnGlmp3q9EHHeBAg5Tcp8w8wmedcz/Rp40hvW1VQMEAsUAPVmdjqha6kaPABcbmYnm5nPzLLNbIJzbiehoYT/z8ySvW2jzaz5cLTmkoAKoNTMsgld29XUn4FFzrkrCQ19u8db/wTwZS+OaOBHhBK8/7b3QjXnnHu3yQyALT3ePdg6W7AU+Lp3bk5j/2F6fwOu9nqbzMwGWGhyiiRonFjioXbq/5WZxXjJ4BnAv7z1SUCxc67au37u6+3Uk0TodSwilBD+9iCOMSycc79t63y0setHwJVmFm9m8YSGXi7vnqhFRCJHCZaISBdwzm0l1PNwM6HkaCuhZKXp791HCE1EsQuIA37QQj3l3vongBJCH8ifb7J9Id7EF0Ap8Daf9SRdQihBW+3t+yT7D1Fsya+Aw7y6XgCebthgZmcTmqTiGm/VD4HDzOwi59w6Qr1ddxLqhTsTONM5V9tOe5FyLaEY9wIXAc82bHDOLQK+BdxF6HXbwP4TcgwD3muj7l3efjsITUhxtXNurbftO8CvzawcuIXQeW3LPwgNMdxO6Dx+0N6B9SBXEOpx20Yo/lGEJv0QEenTzLnmoyZERKSrmdl84FHn3P2RjkU6zpsVcRmQ503m0Xz7CYTOa07zbSIi0j/09psYioiIdBuvR25iuwVFRKTf0hBBEZF+xszuaWXCgnva31t6IzMb3sZEFcMjHZ+ISF+iIYIiIiIiIiJhoh4sERERERGRMOlR12BlZGS43NzcSIchIiIiIiLSpsWLFxc65zKbr+9RCVZubi6LFi2KdBgiIiIiIiJtMrPNLa3XEEEREREREZEwUYIlIiIiIiISJkqwREREREREwqRHXYPVkrq6OrZt20Z1dXWkQ5EeIC4ujpycHKKjoyMdivRh7/33Hd756GO+ecW3GZQUF+lwREREpBfp8QnWtm3bSEpKIjc3FzOLdDgSQc45ioqK2LZtGyNHjox0ONKHDXrzh/y0/hP+/UoqZ3710kiHIyIiIr1Ijx8iWF1dTXp6upIrwcxIT09Xb6Z0uQH1pQAkffpihCMRERGR3qbHJ1iAkitppP8L0tWqq6vJdEUADK1cE+FoREREpLfpFQmWiEh3Kdy6nmgLsMcyGe22UFRSEumQREREpBdRgtUBZsaPfvSjxuXbbruNOXPmRC6gJk444YQ2b858zjnncOSRR+63bs6cOWRnZzNt2jSmTJnC888/39VhivQadSVbANiUfix+c2zftCrCEYmIiEhvogSrA2JjY3n66acpLCwMa73OOYLBYFjrbGrv3r0sXryY0tJSNm3atN+266+/nqVLl/Kvf/2LK664okvjEOlN6qsrAYgaMhWAkm3rIxmOiIiI9DJKsDogKiqKq666ittvv/2AbQUFBZx33nnMmDGDGTNm8N577wGhXqLbbrutsdyUKVPIz88nPz+f8ePHc8kllzBlyhS2bt3KjTfeyJQpU5g6dSrz5s0DYP78+Zxwwgl89atfZcKECVx00UU451qM75FHHmnsjVq4cGHj+qeffpozzzyTCy64gMcff7zFfSdOnEhUVNR+yeNNN93EpEmTyMvL44YbbgAgPz+fk046iby8PE4++WS2bAl9y3/ZZZdxzTXXcOSRRzJq1Cjmz5/PFVdcwcSJE7nssssa67zmmmuYPn06kydP5pe//OUBcZSWljJixIjGRK+yspJhw4ZRV1fXYtwiXSVQsw+AhGF5ANQVbmqruIiIiMh+evw07U396t+rWL2jLKx1ThqazC/PnNxuue9+97vk5eXx4x//eL/11157Lddffz2zZs1iy5YtnHrqqaxZ0/aF8Z988gkPP/wwRx55JE899RRLly5l2bJlFBYWMmPGDI477jgAPv74Y1atWsXQoUM55phjeO+995g1a9YB9e3bt4+lS5fyzjvvcMUVV7By5UoA5s6dyy233EJWVhbnnXceN9988wH7fvjhh/h8PjIzMwEoKirimWeeYe3atZgZe/fuBeD73/8+l156KZdeeikPPvggP/jBD3j22WcBKCkp4f333+f555/nrLPO4r333uP+++9nxowZLF26lGnTpnHrrbeSlpZGIBDg5JNPZvny5eTl5TXGkZKSwrRp03j77bc58cQT+c9//sOpp56q+11Jt6uvCfVg+VOGUkYiMWWbIxyRiIiI9Cad7sEys2Fm9paZrTazVWZ2rbd+jpltN7Ol3uNLnQ83cpKTk7nkkku444479lv/+uuv873vfY9p06Zx1llnUVZWRkVFRZt1jRgxovG6qAULFnDhhRfi9/vJysri+OOP56OPPgJg5syZ5OTk4PP5mDZtGvn5+S3Wd+GFFwJw3HHHUVZWxt69e9m9ezeffPIJs2bNYty4cURHRzcmXgC3334706ZN44YbbmDevHmNs/OlpKQQFxfHN7/5TZ5++mkSEhIAeP/99/n6178OwMUXX8yCBQsa6zrzzDMxM6ZOnUpWVhZTp07F5/MxefLkxpifeOIJDjvsMA499FBWrVrF6tWrDziO2bNnN/bgPf7448yePbvN11GkKwRrQz1Y0XEDKIoZQuK+bRGOSERERHqTcPRg1QM/cs4tMbMkYLGZveZtu905d1sb+x6UjvQ0daXrrruOww47jMsvv7xxXTAY5IMPPiAuLm6/slFRUftd19T03k0DBgzoUHuxsbGNz/1+P/X19S2Waz51uZnxxBNPUFJS0nhD3rKyMubOncutt94KhK7Bahj+1zzuhQsX8sYbb/Dkk09y11138eabb3YoTp/Pt1/MPp+P+vp6Pv30U2677TY++ugjBg4cyGWXXdbivazOOussbr75ZoqLi1m8eDEnnXRSm+2KdAVXWwVAXMIACuOHkVF64JcBIiIiIq3pdA+Wc26nc26J97wcWANkd7benigtLY3zzz+fBx54oHHdKaecwp133tm4vHTpUgByc3NZsmQJAEuWLOHTTz9tsc5jjz2WefPmEQgEKCgo4J133mHmzJkHFVdDr8+CBQtISUkhJSWFuXPn8vLLLzde97V48eJWr8NqqqKigtLSUr70pS9x++23s2zZMgCOPvroxv0fe+wxjj322A7HV1ZWxoABA0hJSWH37t289NJLLZZLTExkxowZXHvttZxxxhn4/f4OtyESLq7OS7DiE6lLGcEQV0BllW5uLSIiIh0T1kkuzCwXOBT40Fv1PTNbbmYPmtnAVva5yswWmdmigoKCcIbTJX70ox/tNyHEHXfcwaJFi8jLy2PSpEncc889AJx33nkUFxczefJk7rrrLsaNG9difeeeey55eXkccsghnHTSSfz+979n8ODBBxVTXFwchx56KFdffTUPPPAA+fn5bN68eb/p2UeOHElKSgoffvhhi3V86UtfYseOHZSXl3PGGWeQl5fHrFmz+OMf/wjAnXfeyd///nfy8vJ45JFH+POf/9zh+A455BAOPfRQJkyYwNe//nWOOeaYxm233HLLftPEz549m0cffVTDAyViXN0+ql008THRRKWPJNoC7N66MdJhiYiISC9hrc1Md9AVmSUCbwO3OueeNrMsoBBwwP8AQ5xzV7RVx/Tp013zezqtWbOGiRMnhiVG6Rv0f0K60sf3fouRO14g+Zfb2fjRi4x96essOf7vHHbiVyIdmoiIiPQgZrbYOTe9+fqw9GCZWTTwFPCYc+5pAOfcbudcwDkXBP4GHNy4NxGRCLD6KqqJxecz0rJDPc9VBfmRDUpERER6jXDMImjAA8Aa59wfm6wf0qTYucDK5vuKiPQ0vvpqaiw0WUva4BEEnBEs2RLhqERERKS3CMcsgscAFwMrzGypt+5m4EIzm0ZoiGA+8O0wtCUi0qV89VWNCZZFxVDkSyOqYkeEoxIREZHeotMJlnNuAWAtbHqxs3WLiHQ3f6CGOvvsdgN7YwYzoFoJloiIiHRMWGcRFBHp7fyBKup8nyVY++KHkFa3J4IRiYiISG+iBEtEpInoYDV1vs9uHB5IymGQK6S6ti6CUYmIiEhvoQSrg5599lnMjLVr17ZaJj8/nylTpoStzcsuu4wnn3yy1e3XXXcd2dnZBIPBxnUPPfQQmZmZTJs2jUmTJvG3v/0tbPGI9AfRwRoC/s8SLF/qMGIswK7t+ZELSkRERHoNJVgdNHfuXGbNmsXcuXNb3F5fX9/pNgKBQIfLBoNBnnnmGYYNG8bbb7+937bZs2ezdOlS5s+fz80338zu3bs7HZtIfxHt9k+w4jNzAdi7c1OEIhIREZHeRAlWB1RUVLBgwQIeeOABHn/88cb18+fP59hjj+Wss85i0qRJQCjRuuiii5g4cSJf/epX2bdvHwBvvPEGhx56KFOnTuWKK66gpqYGgNzcXH7yk59w2GGH8a9//euAtl9//XWmT5/OuHHj+M9//rNf25MnT+aaa65pNekbNGgQo0ePZvPmzY3r7rjjDiZNmkReXh4XXHABAMXFxZxzzjnk5eVx5JFHsnz5cgDmzJnDpZdeyrHHHsuIESN4+umn+fGPf8zUqVM57bTTqKsLDZn69a9/zYwZM5gyZQpXXXUVzW9eHQwGyc3NZe/evY3rxo4dq8RPeqSYZglW6pBRAOzbkx+hiERERKQ3Ccc07d3npZtg14rw1jl4Kpz+uzaLPPfcc5x22mmMGzeO9PR0Fi9ezOGHHw7AkiVLWLlyJSNHjiQ/P59169bxwAMPcMwxx3DFFVfwl7/8he9973tcdtllvPHGG4wbN45LLrmEv/71r1x33XUApKens2TJkhbbzs/PZ+HChWzcuJETTzyRDRs2EBcXx9y5c7nwwgs5++yzufnmm6mrqyM6Onq/fTdt2sSmTZsYM2ZM47rf/e53fPrpp8TGxjYmPL/85S859NBDefbZZ3nzzTe55JJLWLp0KQAbN27krbfeYvXq1Rx11FE89dRT/P73v+fcc8/lhRde4JxzzuF73/set9xyCwAXX3wx//nPfzjzzDMb2/T5fJx99tk888wzXH755Xz44YeMGDGCrKysDp8mke4S62oIRsU3LqdnhxKset0LS0RERDpAPVgdMHfu3MbengsuuGC/HqOZM2cycuTIxuVhw4ZxzDHHAPCNb3yDBQsWsG7dOkaOHMm4ceMAuPTSS3nnnXca95k9e3arbZ9//vn4fD7Gjh3LqFGjWLt2LbW1tbz44oucc845JCcnc8QRR/DKK6807jNv3jymTZvGhRdeyL333ktaWlrjtry8PC666CIeffRRoqJC+fWCBQu4+OKLATjppJMoKiqirKwMgNNPP53o6GimTp1KIBDgtNNOA2Dq1Knk5+cD8NZbb3HEEUcwdepU3nzzTVatWnXAccyePZt58+YB8Pjjj7d5zCIR4xxx1OCaJFjRCamUMQBf2bYIBiYiIiK9Re/qwWqnp6krFBcX8+abb7JixQrMjEAggJnxhz/8AYABAwbsV97M2lxuSfM62qvvlVdeYe/evUydOhWAffv2ER8fzxlnnAGEkpm77rqrxfpeeOEF3nnnHf79739z6623smJF2z2CsbGh6ap9Ph/R0dGN8fh8Purr66muruY73/kOixYtYtiwYcyZM4fq6uoD6jnqqKPYsGEDBQUFPPvss/z85z9vs12RiAjU4sNBdPx+q4uisojftzNCQYmIiEhvoh6sdjz55JNcfPHFbN68mfz8fLZu3crIkSN59913Wyy/ZcsW3n//fQD++c9/MmvWLMaPH09+fj4bNmwA4JFHHuH444/vUPv/+te/CAaDbNy4kU2bNjF+/Hjmzp3L/fffT35+Pvn5+Xz66ae89tprjdd7tSYYDLJ161ZOPPFE/u///o/S0lIqKio49thjeeyxx4DQtV0ZGRkkJyd3KL6GZCojI4OKiopWZz00M84991x++MMfMnHiRNLT0ztUv0h3crXee6hZglURN5jU2l0RiEhERER6GyVY7Zg7dy7nnnvufuvOO++8VieWGD9+PHfffTcTJ06kpKSEa665hri4OP7+97/zta99jalTp+Lz+bj66qs71P7w4cOZOXMmp59+Ovfccw/BYJCXX36ZL3/5y41lBgwYwKxZs/j3v//dYh1XXnklixYtIhAI8I1vfIOpU6dy6KGH8oMf/IDU1FTmzJnD4sWLycvL46abbuLhhx/u4KsDqampfOtb32LKlCmceuqpzJgxo3HbPffcwz333NO4PHv2bB599FEND5Qeq6aqIvSkWYJVOyCbzGABgaBrYS8RERGRz1jzGd8iafr06W7RokX7rVuzZg0TJ06MUETSE+n/hHSV0m1rSLn/SN6ecivHf/V7jeuXzJ3DYetuZ/d3PiFr0KAIRigiIiI9hZktds5Nb75ePVgiIp7a6tAQQX9Mwn7rYzJyASjcvqG7QxIREZFeRgmWiIin1hsi6I/dP8FKHpQLQPnuT7s7JBEREellekWC1ZOGMUpk6f+CdKW66koAfDH7z+yZnhO6l1xtke6FJSIiIm3r8QlWXFwcRUVF+mAtOOcoKioiLi4u0qFIH1VfE0qwouP278EaMHAotURBqRIsERERaVuPvw9WTk4O27Zto6CgINKhSA8QFxdHTk5OpMOQPqquugqA6Nhm96bz+Sj0ZRJbqXthiYiISNu6PMEys9OAPwN+4H7n3EHdLTg6OpqRI0d2SWwiIk0Fa70erPgDb/5dFpNFUrUSLBEREWlblw4RNDM/cDdwOjAJuNDMJnVlmyIin1egJjSLYGwLCVZVwlDS6/d0d0giIiLSy3T1NVgzgQ3OuU3OuVrgceDsLm5TRORzCda1MkQQCCbnkEkJpRWV3R2WiIiI9CJdnWBlA1ubLG/z1jUys6vMbJGZLdJ1ViISSa421IMVl3BgghWVNgKfOfZs01TtIiIi0rqIzyLonLvPOTfdOTc9MzMz0uGISH9Wu49a5ye+hZkqB3j3wirbtambgxIREZHepKsTrO3AsCbLOd46EZGep76aamKJi/YfsGng0FEA7Cvc3N1RiYiISC/S1QnWR8BYMxtpZjHABcDzXdymiMjnU19FNTH4fXbApoGDQ7OZuhLdC0tERERa16XTtDvn6s3se8ArhKZpf9A5t6or2xQR+bx89VXUWGzL22LiKbZU/OXqhBcREZHWdfl9sJxzLwIvdnU7IiKd5auvbjXBAiiJGsSAqh3dGJGIiIj0NhGf5EJEpKfwB6qobSPBqowfSmrd7m6MSERERHobJVgiIh5/oIb6NhKsusShDHYF1NTVd2NUIiIi0psowRIR8UQFq6nzHzhFewMbmEuc1bFn59ZWy4iIiEj/pgRLRMQTHaym3td6ghWXNQaAkm3ruiskERER6WWUYImIeGKC1QTa6MFKHz4RgMqd67srJBEREelllGCJiHiiXS3BqNYTrMzsMdQ7H8Gijd0YlYiIiPQmSrBERDyxroagP77V7b7oGPb4BhFdtrkboxIREZHeRAmWiIgnlhqIbj3BAiiOyyG1SpNciIiISMuUYImIAATqiCaAi05os1hV4nAG1+/ABYPdFJiIiIj0JkqwRESAuppKAHzRrV+DBWBpI0m2fRQU7OqOsERERKSXUYIlIgJUVVYAYDFt92DFZY0FYM/mtV0ek4iIiPQ+SrBERICafeUA+GIHtFkubdgEACp2aKp2EREROZASLBERoKZyLwC+uOQ2yw0aPp6gM+oLN3RDVCIiItLbKMESEQFq95UB7SdYUbEJFPjSiS7N74aoREREpLdRgiUiAtRXlQIQlZDSbtnimGyS9mmqdhERETlQpxIsM/uDma01s+Vm9oyZpXrrc82sysyWeo97whKtiEgXCXg9WNEJbfdgAVQl5TKkfjvBoOvqsERERKSX6WwP1mvAFOdcHrAe+GmTbRudc9O8x9WdbEdEpEs19GDFJbbfg0XGWAZaObt2beviqERERKS36VSC5Zx71TlX7y1+AOR0PiQRke5X7/VgJSYPbLfsgOzJAOzeuLxLYxIREZHeJ5zXYF0BvNRkeaSZfWxmb5vZsWFsR0Qk7ILV5dQ7HylJ7Q8RzBqdB0DF9tVdHZaIiIj0MlHtFTCz14HBLWz6mXPuOa/Mz4B64DFv205guHOuyMwOB541s8nOubIW6r8KuApg+PDhn+8oREQ6ydWUU0E8KTHt/lokdfAoqojFCnUvLBEREdlfu58knHNfaGu7mV0GnAGc7Jxz3j41QI33fLGZbQTGAYtaqP8+4D6A6dOn64pxEYkIqy1nnyWQatZ+YZ+PnVE5JJZt7PrAREREpFfp7CyCpwE/Bs5yzu1rsj7TzPze81HAWGBTZ9oSEelK/roKqn0JHS5fljiKrNrNXRiRiIiI9EadvQbrLiAJeK3ZdOzHAcvNbCnwJHC1c664k22JiHSZ6Lpyag4iwapPG8sQCiku0a82ERER+Uz7Fxu0wTk3ppX1TwFPdaZuEZHuNKB+L0UxQztcPm7oRNgEOzeuIG368V0YmYiIiPQm4ZxFUESk10oKllIT0/4U7Q3SR0wFoGzryq4KSURERHohJVgiIs6R7Mqoi03r8C5ZuZOodz4CezSToIiIiHxGCZaI9Hv1lSVEEyCYkN7hfXzRsez0DyWudEMXRiYiIiK9jRIsEen39hbtBCA6edBB7VeckEt6VX4XRCQiIiK9lRIsEen3SgtCCVZcysElWLWpY8kJ7qSqqrorwhIREZFeSAmWiPR7FSW7AEhKG3xQ+0UPnkC0Bdi6aVVXhCUiIiK9kBIsEen3aku2A5AyaNhB7TdwxBQASvI1k6CIiIiEKMESESndRo2LIj0r56B2GzL6EABqdq3uiqhERESkF1KCJSL9XnTlDvZYBtFRB3fv9ZiEJHbaIGKL13VRZCIiItLbKMESkX4vft9OiqMOboKLBoXxo0jf92mYIxIREZHeSgmWiPR7qXW7qUoY8rn2rRk4jmHBbVRV14Q5KhEREemNlGCJSL9WX11JRrCIQNLBTXDRIGbIRGKtni0bNJOgiIiIKMESkX6uIH8lfnOQNeFz7T8wNzTRRXH+8nCGJSIiIr2UEiwR6ddKt4QSowHZUz/X/kNG5wFQu0s9WCIiIqIES0T6udodq6l1foaOnvy59o+KT2KXbxBxJZ+EOTIRERHpjZRgiUi/FlW0ji02lMyUxM9dR2gmwU1hjEpERER6q04lWGY2x8y2m9lS7/GlJtt+amYbzGydmZ3a+VBFRMIvrXIje+JGYmafu47QTILbqayqDmNkIiIi0huFowfrdufcNO/xIoCZTQIuACYDpwF/MTN/GNoSEQkbV1PB4OAuqgaO61Q90YMnaSZBERERAbpuiODZwOPOuRrn3KfABmBmF7UlIvK5FOavACAqa1Kn6kkf2TCT4LJOxyQiIiK9WzgSrO+Z2XIze9DMBnrrsoGtTcps89YdwMyuMrNFZraooKAgDOGIiHRM4aZQQjQwN69T9Qz2ZhKs37W60zGJiIhI79ZugmVmr5vZyhYeZwN/BUYD04CdwP872ACcc/c556Y756ZnZmYe7O4iIp9bzY5V1Lgoho/5fDMINvDHJbLTl0WsZhIUERHp96LaK+Cc+0JHKjKzvwH/8Ra3A8OabM7x1omI9BgxJevZ4stmbGJCp+sqjh9Jxr5PwxCViIiI9GadnUVwSJPFc4GV3vPngQvMLNbMRgJjgYWdaUtEJNzS922iIH5UWOqqSRvPsOB2yvdVhaU+ERER6Z06ew3W781shZktB04Ergdwzq0CngBWAy8D33XOBTrZlohI2ASqy8kK7qEmtXMzCDaIGdIwk+DK9guLiIhIn9XuEMG2OOcubmPbrcCtnalfRKSr7Nq4jGwgemjnrr9qkJ6bBwuhJH8F5M0IS50iIiLS+3TVNO0iIj1a8adLAcjwpljvrKzRhxBwRmDnirDUJyIiIr2TEiwR6Zdqd6yi2kUzYnTn7oHVwBc7gO1Rw0gq0c2GRURE+jMlWCLSL8Xt/YQt/mHEx8WErc6ipAlkV68nGHRhq1NERER6FyVYItIvZVZtojghPDMINhp6KFmUsDlf98MSERHpr5RgiUi/U12xl0GuiLr08Mwg2CBj8gkA7F7xVljrFRERkd5DCZaI9DvbN60GIGFweBOs7PEzKSce9+m7Ya1XREREeg8lWCLS75RuXwfAwOzxYa3XFxXFpqSZjN67gPr6+rDWLSIiIr1Dp+6DJSLSG9UUbARgUO6E8Fc+8UwGLXybZf99kUOOO+uAzYG6GgzDFx2+yTUkPJxzBAMBgoFaAvV1BJ0j6CAQdASDDgdY04fP+2ngMzAMs9Cy4cN8hs98mJn38Hk7eTU0/WkWwSMXEZFwUoLVhjXvv0TZ4icgWA/BenyuHgsG8Ll6fC4AzgFBzIUe4ELPCXrbGpab/CSIOe8nYATx4bzyTTT7Y+v2e978D3HzstbkOa1uO3C/FrTwR79pHdbCurZi268da6/c/usOti3XYrH22+lOzU97B/cKe+k2zlLH6grjpHndMf/eyPodFJNMWnJa2Osef8IFFC/8Nb4F/w836wzMFxooUFddycdP/5Hx6/7CJ+knM/0Hj4a97b4qGAhSXlHGvvJiqstKqKkopq5yL/X7SghUlRKsKiVYuw9q90F9FVZXhT9QTVSwhqhgNdHBamKCNUS7GnwugN/V4yeA3wWIoh4/QaKoJ4ogfnP4gehIHasznIV+LzV/AO0+d9awrtk2a1gHNNkeasv32TY7sL2GbQ3Pg9a0/v23uRbqOaCctXEMXZBo2uf7RdsBXVOvdVG9B6WDIXyeWDv2N6kHvAbSo2yMGU/Gub/j6NEZkQ6lQ5RgtaFi53rGFb5GIPSnmID5CRBFwHw4/KHUyAyHL/RoeN7wx8d8jY+g+bw/LKGyGF5q1bB/06Rl/18s+y8339aca7KtjXqa53Mt/jJrYV0Lf6gM1+LeTet0jetar6eteFzz9a6lrfvvb822WotlHeY44IU05xr/0Hdp+mX7/Tjo/cKxU/PXqTPsYAML44t7MFWVRWVTkXMc4U+vIC4hiWUTv8sRa/6XRXddwoC8M9i36UNGbXmKmZRSRQxZJYu6oOVexDnKSwsp3rWVyuJdVJfupq5sD1QUYFWFRFcXEVdbTGJ9CYnBchJdJSkWIKWdave5WGos9Kj1HnW+OGp9CVRGpRHwx+J80eCLAl8U5o8CfzTOonC+qMaf+EI/G3ue8HqozHAOL1EIHUdDQtGwnoYvzJwL/Wb0vmxrWDbnwPtCDue8zUHvdQmtd27//XBBr71gk/UNbQW9X6eucdlcqA6jSR37/QQavwgMBR/60s9Lvxr3bZoy7Z8mNXwxeGC5lvexJvE0fiEJjX8FcZ/t1xVferVZZ6ea65q/EB39fXwwrXfVl4kHW681/tOhkiJAaIRBb2I9KeDp06e7RYv6+QcPEen1XDDI+3+9hiP3zMNnjoAzlsUejjvmevZ9Mp9jtt5P/U+2EJOQHOlQu0TF3kKKd2ykbPdmqou2Eijdhr98B/FVu0mu20N6oJAEqzlgv6Az9loiZb5UKvypVMekUR+bCvGp+OJT8cUl40sYSFRCKtGJA4kbMJC45DQSklIZkJBIVJS/+w9WRET6LTNb7Jyb3ny9erBERMLMfD6O/u69bNvyEwq3byJ7TB6HZQ4CYEnNXnzbHBtXfsjEmV+McKSfjwvUU7gzn8It66jYtZ5A4Saiy7aQXLWNrMBOkqkksUn5gDMKLY3iqEx2x49h24BZuORsYlKHEJsymAFpg0lKG0xqxmDSomO6pGdRRESkuyjBEhHpIjnDR5EzfP+bGY857CQC7xkly16AHp5g7S0qYMeGZZRtXQWF60go20Ba9TYGBXaTafVkeuXqnJ/dvkGUxGazZmAegZQRRKUNZ0DmCAYOziVj8DCyYmLIiujRiIiIdA8lWCIi3Sg5Yyir4g5h+PaXCNTfhj8qsr+GXTBI0Z5t7Nq4jMptq3AF60gs20RW7WYyKSHVK1fjotnuH8quuFFsST4RX9pIEgaPJT1nPFnDRpETHUNOJA9ERESkh1CCJSLSzeqmXUrOh9fz0csPMeOMK7ulTRcMULhjE7s3LGPf9lVY4XqSKzYypG4LGVTSMC9TBfHsiBrG5tQj+TRjHPFDJ5IxMo+sYeMZFRXFqDZbEREREU1yISLSzYL19Wz+38MZECgj6pp3ScsKX99PoL6eXZvXUpS/nKrtq4kqXk9KxUaG1m8lgc8mligihV3Rw6lIHo3LGMeA7CkMHp1HxpARjVPLi4iISOu6ZJILM5sHjPcWU4G9zrlpZpYLrAHWeds+cM5d3Zm2RET6Cl9UFIGz/kLS0+ew597Tqb3wYQaPPazD+7tgkPLi3RRsWcve7euo2bOR6JINpO37lJzANrKtjmyv7G7S2B2by9LUs7BBE0gcNoWhYw4hLWMw6bq5rYiISNh1KsFyzs1ueG5m/w8obbJ5o3NuWmfqFxHpq8YccgzLSh8g543vkfroSaxIPJKanKOISRuOxSbjtyA11VXUV5ZAxS5c+W78lXtIqdlOVv1Okq2KppO877JM9sSN5OOUo/ENmkDS8MkMGX0IWQMzNLmEiIhINwrLNVhmZsD5wEnhqE9EpD845Liz2Dl6Gu8993+M2fMKQ9e932rZUjeAUv9ASmOHsCbtUAKpI4nJHEXasIkMyR3P4PgBDO7G2EVERKRl4Zrk4lhgt3PukybrRprZx0AZ8HPn3Lst7WhmVwFXAQwfPjxM4YiI9A5Dsocz5Dt345xjz54dFO/eDtV7qXd+4uITSEgaSGLGUJITk0jRkD4REZEer91JLszsdWjxi9GfOeee88r8FdjgnPt/3nIskOicKzKzw4FngcnOubK22tIkFyIiIiIi0ht87kkunHNfaKfiKOArwOFN9qmB0HRVzrnFZrYRGAcoexIRERERkT4rHHPxfgFY65zb1rDCzDLNzO89HwWMBTaFoS0REREREZEeKxzXYF0AzG227jjg12ZWBwSBq51zxWFoS0REREREpMfqUTcaNrMCYHOk42gmAyiMdBDSbXS++w+d6/5D57p/0fnuP3Su+5eeeL5HOOcym6/sUQlWT2Rmi1q6eE36Jp3v/kPnuv/Que5fdL77D53r/qU3ne9wXIMlIiIiIiIiKMESEREREREJGyVY7bsv0gFIt9L57j90rvsPnev+Ree7/9C57l96zfnWNVgiIiIiIiJhoh4sERERERGRMFGCJSIiIiIiEiZKsNpgZqeZ2Toz22BmN0U6HgkfMxtmZm+Z2WozW2Vm13rr08zsNTP7xPs5MNKxSniYmd/MPjaz/3jLI83sQ+/9Pc/MYiIdo4SHmaWa2ZNmttbM1pjZUXpv901mdr33O3ylmc01szi9t/sOM3vQzPaY2com61p8L1vIHd55X25mh0UucjlYrZzrP3i/x5eb2TNmltpk20+9c73OzE6NSNBtUILVCjPzA3cDpwOTgAvNbFJko5Iwqgd+5JybBBwJfNc7vzcBbzjnxgJveMvSN1wLrGmy/H/A7c65MUAJ8M2IRCVd4c/Ay865CcAhhM673tt9jJllAz8ApjvnpgB+4AL03u5LHgJOa7autffy6cBY73EV8NduilHC4yEOPNevAVOcc3nAeuCnAN7ntQuAyd4+f/E+t/cYSrBaNxPY4Jzb5JyrBR4Hzo5wTBImzrmdzrkl3vNyQh/Asgmd44e9Yg8D50QkQAkrM8sBvgzc7y0bcBLwpFdE57qPMLMU4DjgAQDnXK1zbi96b/dVUUC8mUUBCcBO9N7uM5xz7wDFzVa39l4+G/iHC/kASDWzId0SqHRaS+faOfeqc67eW/wAyPGenw087pyrcc59Cmwg9Lm9x1CC1bpsYGuT5W3eOuljzCwXOBT4EMhyzu30Nu0CsiIVl4TVn4AfA0FvOR3Y2+QXt97ffcdIoAD4uzck9H4zG4De232Oc247cBuwhVBiVQosRu/tvq6197I+t/VtVwAvec97/LlWgiX9mpklAk8B1znnyppuc6F7GOg+Br2cmZ0B7HHOLY50LNItooDDgL865w4FKmk2HFDv7b7Bu/bmbEJJ9VBgAAcOMZI+TO/l/sHMfkbo0o7HIh1LRynBat12YFiT5RxvnfQRZhZNKLl6zDn3tLd6d8OQAu/nnkjFJ2FzDHCWmeUTGup7EqFrdFK9YUWg93dfsg3Y5pz70Ft+klDCpfd23/MF4FPnXIFzrg54mtD7Xe/tvq2197I+t/VBZnYZcAZwkfvs5r09/lwrwWrdR8BYbzaiGEIX0z0f4ZgkTLxrcB4A1jjn/thk0/PApd7zS4Hnujs2CS/n3E+dcznOuVxC7+M3nXMXAW8BX/WK6Vz3Ec65XcBWMxvvrToZWI3e233RFuBIM0vwfqc3nGu9t/u21t7LzwOXeLMJHgmUNhlKKL2QmZ1GaHj/Wc65fU02PQ9cYGaxZjaS0MQmCyMRY2vss2RQmjOzLxG6dsMPPOicuzWyEUm4mNks4F1gBZ9dl3MzoeuwngCGA5uB851zzS+wlV7KzE4AbnDOnWFmowj1aKUBHwPfcM7VRDA8CRMzm0ZoQpMYYBNwOaEvFPXe7mPM7FfAbELDhz4GriR0LYbe232Amc0FTgAygN3AL4FnaeG97CXZdxEaJroPuNw5tygCYcvn0Mq5/ikQCxR5xT5wzl3tlf8Zoeuy6gld5vFS8zojSQmWiIiIiIhImGiIoIiIiIiISJgowRIREREREQkTJVgiIiIiIiJhogRLREREREQkTJRgiYiIiIiIhIkSLBERERERkTBRgiUiIiIiIhImSrBERERERETCRAmWiIiIiIhImCjBEhERERERCRMlWCIiIiIiImGiBEtERERERCRMlGCJiPQwZpZrZs7MoiIdi/QPZrbKzE6IdBwiIn2BEiwREen1zOweM6vwHrVmVtdk+aVIx9fTOecmO+fmh7NOM0szs3lmVmRmhWb2mJklh7MNEZGeSAmWiEiYqeep+znnrnbOJTrnEoHfAvMalp1zpzeU603npjfF2orfAAOBkcBoIAuYE8mARES6gxIsEZEwMLN8M/uJmS0HKs0sysyONLP/mtleM1vWdAiWmc03s/81s4VmVmZmz5lZWit1X25ma8ys3Mw2mdm3m20/28yWevVsNLPTvPUpZvaAme00s+1m9hsz87dzHKPN7M1mvQ6pTbYVm9lh3vJQMytoOC4zO8sbarbXO76JzV6fG8xsuZmVej0bcQf/Sh+8Vs6NM7MxTco8ZGa/abJ8hvea7vXOYV4H2zrBzLaZ2c3e65dvZhc12f5lM/vYO1dbzWxOk20NQ0O/aWZbgDe99f8ys13e6/aOmU1uFvdfzOwlr7fuPTMbbGZ/MrMSM1trZod28DX6QkeO8SCMBJ51zpU550qBZ4DJ7ewjItLrKcESEQmfC4EvA6mEvq1/gdC3+GnADcBTZpbZpPwlwBXAEKAeuKOVevcAZwDJwOXA7U2SnJnAP4AbvXaPA/K9/R7y6h0DHAqcAlzZzjEY8L/AUGAiMAyv18E5txH4CfComSUAfwceds7NN7NxwFzgOiATeBH4t5nFNKn7fOA0Qh+884DLWgzAbJaX2LT2mNXOMbSk8dw45+rbfAFCCcmDwLeBdOBe4Hkzi+1gW4OBDCAbuBS4z8zGe9sqCZ33VC+ea8zsnGb7H0/otT/VW34JGAsMApYAjzUrfz7wc6/NGuB9r1wG8CTwxw7G3SIzu6mt89HGrncDZ5jZQDMbCJznHYuISJ+mBEtEJHzucM5tdc5VAd8AXnTOveicCzrnXgMWAV9qUv4R59xK51wl8Avg/JZ6mJxzLzjnNrqQt4FXgWO9zd8EHnTOvea1s905t9bMsry2rnPOVTrn9gC3Axe0dQDOuQ1eXTXOuQJCH86Pb7L9b8AG4ENCieHPvE2zgRe8feuA24B44Ohmr88O51wx8G9gWisxLHDOpbbxWNDWMbSi6blpz1XAvc65D51zAefcw4QSlyMPor1feK/h24QS7fMBnHPznXMrvHO1nFBSenyzfed456zK2+dB51y5c66GULJ7iJmlNCn/jHNusXOumlAvUbVz7h/OuQAwj1By/bk5537X1vloY9clQAxQ5D0CwF86E4uISG+gBEtEJHy2Nnk+Avhas2/6ZxFKSloqvxmIJtTrsB8zO93MPvCG5+0llDg1lBsGbGwhlhFefTubtH8voV6QVplZlpk97g0pLAMebSGmvwFTgDu9D/0Q6vHa3FDAORf0ji+7yX67mjzfByS2FUuYbW2/SKMRwI+anbthhI6xI0q8pLnB5oZ9zewIM3vLG1pZClzNga9vY6xm5jez31lo6GcZn/VONt1nd5PnVS0sd+fr3NQTwHogiVDv60ZC/59ERPo0JVgiIuHjmjzfSqiHqum3/QOcc79rUmZYk+fDgTqgsGmF3rC0pwj1CGV5PQYvEhrK19DO6BZi2Uqo1yWjSfvJzrn2roH5rXccU51zyYR64hrawswSgT8BDwBz7LPrxnYQSkwaypl3fNvbae8AZnasfTYDYEuPY9uv5QCu2fI+IKHJ8uAmz7cCtzY7dwnOubkdbGugmQ1osjyc0OsD8E/geWCYcy4FuIcmr28LsX4dOBv4ApAC5Hrrm+/TZbzryVo9H23sOo1QT2Clc66C0LF+qY3yIiJ9ghIsEZGu8Shwppmd6vVCxHkTIOQ0KfMNM5vkXc/0a+BJb1hXUzFALFAA1JvZ6YSupWrwAHC5mZ1sZj4zyzazCc65nYSGEv4/M0v2to02s+bD0ZpLAiqAUjPLJnRtV1N/BhY5564kNPTtHm/9E8CXvTiigR8RSvD+294L1Zxz7t0mMwC29Hj3YOtswVLg6965OY39h+n9Dbja620yMxtgockpkqBxYomH2qn/V2YW4yWDZwD/8tYnAcXOuWrv+rmvt1NPEqHXsYhQQvjbgzjGsHDO/bat89HGrh8BV5pZvJnFExp6ubx7ohYRiRwlWCIiXcA5t5VQz8PNhJKjrYSSlaa/dx8hNBHFLiAO+EEL9ZR7658ASgh9IH++yfaFeBNfAKXA23zWk3QJoQRttbfvk+w/RLElvwIO8+p6AXi6YYOZnU1okoprvFU/BA4zs4ucc+sI9XbdSagX7kzgTOdcbTvtRcq1hGLcC1wEPNuwwTm3CPgWcBeh120D+0/IMQx4r426d3n77SA0IcXVzrm13rbvAL82s3LgFkLntS3/IDTEcDuh8/hBewfWg1xBqMdtG6H4RxGa9ENEpE8z55qPmhARka5mZvOBR51z90c6Fuk4b1bEZUCeN5lH8+0nEDqvOc23iYhI/9Dbb2IoIiLSbbweuYntFhQRkX5LQwRFRPoZM7unlQkL7ml/b+mNzGx4GxNVDI90fCIifYmGCIqIiIiIiISJerBERERERETCpEddg5WRkeFyc3MjHYaIiIiIiEibFi9eXOicy2y+vkclWLm5uSxatCjSYYiIiIiIiLTJzDa3tF5DBEVERERERMJECZaIiIiIiEiYKMESEfkcthbv48Wlm9FMrCIiItJUj7oGqyV1dXVs27aN6urqSIcivUxcXBw5OTlER0dHOhTpg+b//RdcWPYgS6Lf5/DJEyIdjoiIiPQQPT7B2rZtG0lJSeTm5mJmkQ5HegnnHEVFRWzbto2RI0dGOhzpY1ygnovL7weDHUteUoIlIiIijXr8EMHq6mrS09OVXMlBMTPS09PV8yldorhwR+PzlJ3/jWAkIiIi0tP0+AQLUHIln4v+30hXKS34LMHKqvokgpGIiIhIT9MrEiwRkZ6kqmQXAJtixjEsuIOyqpoIRyQiIiI9hRKsDjAzfvSjHzUu33bbbcyZMydyATXxwQcfcMQRRzBt2jQmTpzYGNf8+fP57387N3TptNNOIzU1lTPOOCMMkYr0HXVluwEozZxOgtWwbfOmCEckIiIiPYUSrA6IjY3l6aefprCwMKz1OucIBoOdquPSSy/lvvvuY+nSpaxcuZLzzz8fCE+CdeONN/LII490qg6RvihQHkqwokbOAqBs29pIhiMiIiI9SI+fRbCpX/17Fat3lIW1zklDk/nlmZPbLBMVFcVVV13F7bffzq233rrftoKCAq6++mq2bNkCwJ/+9CeOOeYY5syZQ2JiIjfccAMAU6ZM4T//+Q8Ap556KkcccQSLFy/mxRdf5K677uKll17CzPj5z3/O7NmzmT9/PnPmzCEjI4OVK1dy+OGH8+ijjx5wXdGePXsYMmQIAH6/n0mTJpGfn88999yD3+/n0Ucf5c4772TChAmtxrlx40Y2bNhAYWEhP/7xj/nWt74FwMknn8z8+fPbfG3+9a9/8atf/Qq/309KSgrvvPMO1dXVXHPNNSxatIioqCj++Mc/cuKJJ/LQQw/x7LPPUllZySeffMINN9xAbW0tjzzyCLGxsbz44oukpaXxt7/9jfvuu4/a2lrGjBnDI488QkJCwn7tHnnkkTzwwANMnhw6dyeccAK33XYb06dPbzNekXCwigJqXDRDJh4BC6C2YEOkQxIREZEeotM9WGY2zMzeMrPVZrbKzK711qeZ2Wtm9on3c2Dnw42c7373uzz22GOUlpbut/7aa6/l+uuv56OPPuKpp57iyiuvbLeuTz75hO985zusWrWKRYsWsXTpUpYtW8brr7/OjTfeyM6dOwH4+OOP+dOf/sTq1avZtGkT77333gF1XX/99YwfP55zzz2Xe++9l+rqanJzc7n66qu5/vrrWbp0Kccee2ybcS5fvpw333yT999/n1//+tfs2LHjgHZa8+tf/5pXXnmFZcuW8fzzzwNw9913Y2asWLGCuXPncumllzbO5rdy5UqefvppPvroI372s5+RkJDAxx9/zFFHHcU//vEPAL7yla/w0UcfsWzZMiZOnMgDDzxwQLuzZ8/miSeeAGDnzp3s3LlTyZV0G39VEcUkkTE4lwBGsHRbpEMSERGRHiIcPVj1wI+cc0vMLAlYbGavAZcBbzjnfmdmNwE3AT/pTEPt9TR1peTkZC655BLuuOMO4uPjG9e//vrrrF69unG5rKyMioqKNusaMWIERx55JAALFizgwgsvxO/3k5WVxfHHH89HH31EcnIyM2fOJCcnB4Bp06aRn5/PrFmz9qvrlltu4aKLLuLVV1/ln//8J3Pnzm2x16mtOM8++2zi4+OJj4/nxBNPZOHChZxzzjkdel2OOeYYLrvsMs4//3y+8pWvNB7T97//fQAmTJjAiBEjWL9+PQAnnngiSUlJJCUlkZKSwplnngnA1KlTWb58ORBKwn7+85+zd+9eKioqOPXUUw9o9/zzz+eUU07hV7/6FU888QRf/epXOxSvSDhYXSVVlgD+KIotneiKjn8pISIiIn1bpxMs59xOYKf3vNzM1gDZwNnACV6xh4H5dDLBirTrrruOww47jMsvv7xxXTAY5IMPPiAuLm6/slFRUftdX9X0fkwDBgzoUHuxsbGNz/1+P/X19S2WGz16NNdccw3f+ta3yMzMpKio6IAyrcUJB05nfjDTm99zzz18+OGHvPDCCxx++OEsXry4zfJNj8nn8zUu+3y+xuO77LLLePbZZznkkEN46KGHWkwYs7OzSU9PZ/ny5cybN4977rmnwzGLdFZUoIpaX+i9VBqTxYDqXRGOSERERHqKsE5yYWa5wKHAh0CWl3wB7AKywtlWJKSlpXH++efvN2TtlFNO4c4772xcXrp0KQC5ubksWbIEgCVLlvDpp5+2WOexxx7LvHnzCAQCFBQU8M477zBz5swOx/TCCy/gnANCQw/9fj+pqakkJSVRXl7ebpwAzz33HNXV1RQVFTF//nxmzJjR4fY3btzIEUccwa9//WsyMzPZunUrxx57LI899hgA69evZ8uWLYwfP77DdZaXlzNkyBDq6uoa62nJ7Nmz+f3vf09paSl5eXkdrl+ks/yBKmotlGBVJQxhYN2eCEckIiIiPUXYEiwzSwSeAq5zzu03E4ULZQCulf2uMrNFZraooKAgXOF0mR/96Ef7zSZ4xx13sGjRIvLy8pg0aVJjT8p5551HcXExkydP5q677mLcuHEt1nfuueeSl5fHIYccwkknncTvf/97Bg8e3OF4HnnkEcaPH8+0adO4+OKLeeyxx/D7/Zx55pk888wzTJs2jXfffbfVOAHy8vI48cQTOfLII/nFL37B0KFDgVDy97WvfY033niDnJwcXnnlFSA0LLHheqsbb7yRqVOnMmXKFI4++mgOOeQQvvOd7xAMBpk6dSqzZ8/moYce2q/nqj3/8z//wxFHHMExxxzDhAkTGtc///zz3HLLLY3LX/3qV3n88ccbZ04U6S7RgSpq/aGhwsGkbAZTRGml7oUlIiIiYA29H52qxCwa+A/winPuj966dcAJzrmdZjYEmO+ca7MbY/r06W7RokX7rVuzZg0TJ07sdIzSsuazHfY1+v8jXWHr/0xhe0wuR/7kP6x85g9MWfYb1l+8hHGjR0c6NBEREekmZrbYOXfALGvhmEXQgAeANQ3Jled54FLv+aXAc51tS0SkJ4h11dT7Q7cOiM8cAUDpLt1sWERERMIzi+AxwMXACjNb6q27Gfgd8ISZfRPYDGgcVw80Z86cSIcg0uvEBqsJ+kPXYKVkjQSgqnBLJEMSERGRHiIcswguAFqbdu7kztYvItLTxFFDMCrUgzVwyCgA6ku2RjIkERER6SHCOougiEifFwwQSy3B6FCC5R+QRhWx+Mp0s2ERERFRgiUicnDq9gHgYkIJFmYU+zOI26d7YYmIiIgSLBGRgxKoCSVY5vVgAZTHZpFUq3thiYiIiBKsDnv22WcxM9auXdtqmfz8fKZMmRK2NtetW8cJJ5zAtGnTmDhxIldddRUQuknwiy++2Km6r7jiCgYNGhTWeEX6g5p93g28YwY0rqtNGExaoIBw3PZCREREejclWB00d+5cZs2axdy5c1vcXl9f3+k2AoHAfss/+MEPuP7661m6dClr1qzh+9//PhCeBOuyyy7j5Zdf7lQdIv1RTVUowfLFfNaDFUzKZhAllFRURSosERER6SHCMU1793npJti1Irx1Dp4Kp/+uzSIVFRUsWLCAt956izPPPJNf/epXAMyfP59f/OIXDBw4kLVr1/Lqq69SX1/PRRddxJIlS5g8eTL/+Mc/SEhI4I033uCGG26gvr6eGTNm8Ne//pXY2Fhyc3OZPXs2r732Gj/+8Y+54IILGtvduXMnOTk5jctTp06ltraWW265haqqKhYsWMBPf/pTzjjjDL7//e+zcuVK6urqmDNnDmeffTYPPfQQzzzzDKWlpWzfvp1vfOMb/PKXvwTguOOOIz8/v83jfvvtt7n22msBMDPeeecdEhMT+fGPf8xLL72EmfHzn/+c2bNnM3/+fH75y1+SmprKihUrOP/885k6dSp//vOfqaqq4tlnn2X06NH8+9//5je/+Q21tbWkp6fz2GOPkZWVtV+7F1xwARdffDFf/vKXgVAyeMYZZ/DVr361Y+dUpAvV7qsAwB/7WQ9W9MBs/ObYs2MLaeMnRCo0ERER6QHUg9UBzz33HKeddhrjxo0jPT2dxYsXN25bsmQJf/7zn1m/fj0QGtb3ne98hzVr1pCcnMxf/vIXqqurueyyy5g3bx4rVqygvr6ev/71r411pKens2TJkv2SK4Drr7+ek046idNPP53bb7+dvXv3EhMTw69//Wtmz57N0qVLmT17NrfeeisnnXQSCxcu5K233uLGG2+ksrISgIULF/LUU0+xfPly/vWvf7Fo0aIOH/dtt93G3XffzdKlS3n33XeJj4/n6aefZunSpSxbtozXX3+dG2+8kZ07dwKwbNky7rnnHtasWcMjjzzC+vXrWbhwIVdeeSV33nknALNmzeKDDz7g448/5oILLuD3v//9Ae3Onj2bJ554AoDa2lreeOONxmRLJNJqq0PvLX/sZz1Y8enDASjbszkiMYmIiEjP0bt6sNrpaeoqc+fObezJueCCC5g7dy6HH344ADNnzmTkyJGNZYcNG8YxxxwDwDe+8Q3uuOMOvvjFLzJy5EjGjRsHwKWXXsrdd9/NddddB4QSipZcfvnlnHrqqbz88ss899xz3HvvvSxbtuyAcq+++irPP/88t912GwDV1dVs2RK66ekXv/hF0tPTAfjKV77CggULmD59eoeO+5hjjuGHP/whF110EV/5ylfIyclhwYIFXHjhhfj9frKysjj++OP56KOPSE5OZsaMGQwZMgSA0aNHc8oppwChnre33noLgG3btjF79mx27txJbW3tfq9dg9NPP51rr72WmpoaXn75ZY477jji4+M7FLNIV6vzEqzoJglWypBcAKoKlWCJiIj0d+rBakdxcTFvvvkmV155Jbm5ufzhD3/giSeeaLyYfcCAAfuVN7M2l1vSvI6mhg4dyhVXXMFzzz1HVFQUK1euPKCMc46nnnqKpUuXsnTpUrZs2cLEiRM/dzwNbrrpJu6//36qqqo45phj2pzgAyA2Nrbxuc/na1z2+XyN16h9//vf53vf+x4rVqzg3nvvpbq6+oB64uLiOOGEE3jllVeYN29eqwmoSCTU14aus4qO++x9OzAr9EVBfcn2iMQkIiIiPYcSrHY8+eSTXHzxxWzevJn8/Hy2bt3KyJEjeffdd1ssv2XLFt5//30A/vnPfzJr1izGjx9Pfn4+GzZsAOCRRx7h+OOPb7ftl19+mbq6OgB27dpFUVER2dnZJCUlUV5e3lju1FNP5c4772xM+j7++OPGba+99hrFxcWN10E19K51xMaNG5k6dSo/+clPmDFjBmvXruXYY49l3rx5BAIBCgoKeOedd5g5c2aH6ywtLSU7OxuAhx9+uNVys2fP5u9//zvvvvsup512WofrF+lq9TUNCdZnPVi+hIFUE4OvfEekwhIREZEeQglWO+bOncu5556737rzzjuv1dkEx48fz913383EiRMpKSnhmmuuIS4ujr///e987WtfY+rUqfh8Pq6++up223711VeZMmUKhxxyCKeeeip/+MMfGDx4MCeeeCKrV69m2rRpzJs3j1/84hfU1dWRl5fH5MmT+cUvftFYx8yZMznvvPPIy8vjvPPOaxweeOGFF3LUUUexbt06cnJyeOCBBwC45557uOeeewD405/+xJQpU8jLyyM6OprTTz+dc889l7y8PA455BBOOukkfv/73zN48OAOv55z5szha1/7GocffjgZGRmN6xctWsSVV17ZuHzKKafw9ttv84UvfIGYmJgO1y/S1QK1oftgxTRJsEI3G84krmpnhKISERGRnsJ60n1bpk+f7ppPwrBmzZrG4W5ycB566CEWLVrEXXfdFelQIkb/fyTclj35Ow5Z+b9svnIVI5rM8rn+9ydSU13J1FsWRjA6ERER6S5mttg5d8DkBurBEhE5CK4uNEQwJm7/iVdqEoaQHigkGOw5X1qJiIhI9+vyBMvMTjOzdWa2wcxu6ur25DOXXXZZv+69EukKzpvkIj5+/8lpXPJQBlFCYfm+SIQlIiIiPUSXJlhm5gfuBk4HJgEXmtmkg62nJw1jlN5D/2+kK7j6ampcNHEx0futj0rNJsqCFO7aGqHIpLY+yKtLN7Gvtj7SoYiISD/W1T1YM4ENzrlNzrla4HHg7IOpIC4ujqKiIn1YloPinKOoqIi4uLhIhyJ9TX011UQTG7X/r8+EzBEAlO7Kj0BQAvD8f57hpGcO5537NVhCREQip6tvNJwNNP06dxtwRNMCZnYVcBXA8OHDD6ggJyeHbdu2UVBQ0IVhSl8UFxdHTpNJCETCweqrqSH2gHvKpWaFEqyqoi2RCEuAtJUPEmVBTtvzN+pqfr3fzaBFRES6S1cnWO1yzt0H3AehWQSbb4+OjmbkyJHdHpeISEusvppaiz5gfcrg0O+pwF7dbDgSSvfVcUjdMkp8AxnoSti0+HXGH31WpMMSEZF+qKuHCG4HhjVZzvHWiYj0Sr5ANbUWe8B6i2+42bB+xUXCpi35pFs528ddTJ3zU7V+fqRDEhGRfqqrE6yPgLFmNtLMYoALgOe7uE0RkS7jC9RQZy3c/NqMEn8mcft2d39QQuGm5QAMnnQ0+ZZNbOGqCEckIiL9VZcmWM65euB7wCvAGuAJ55z+6olIr+UP1FDXQg8WQHlsFkm1e7o5IgFwe9YCkDZ8CnsSxpC575MIRyQiIv1Vl98Hyzn3onNunHNutHPu1q5uT0SkK0UFa6j3tZxg1Q4YTEawgIBuNtztosq3UUcUvpRsqtMmkhEsor68MNJhiYhIP9TlCZaISF8SFayh3t9yguWSshlECQWlutlwd4up2kOJbyD4fMQMCd1ucU/+yghHJSIi/ZESLBGRgxDtagi00oMVnZZDlAUp2K2bDXe3hJoCyqMzAUjNmQBA6ba1kQxJRET6KSVYIiIHISZYTcDf8g2sE9JD9/Ir253fjREJQEqgkOr4QQAMHjGBeuejdo+uwxIRke6nBEtE5CDEuBoCUS3fwDZ1SC4AVYW62XB3qq4LkOmKCQzIAiAjZQA7yMRfsinCkYmISH+kBEtE5CDEUUMwKr7FbUmZIwAI7N3WnSH1ewWFxSRbFZY0BAAzY09MDomVSnRFRKT7KcESEemoYIA4altNsCwhjRpi8Jfv6ObA+reSglAiFTMwu3Fd+YARDKrbBk4zOoqISPdSgiUi0lF1odkBXXTLQwQxozgqk7iqXd0YlFQUhCYVScgY1rguOHAUCVRTu3dnpMISEZF+SgmWiEgHBWq86dejB7Rapix2CANrlWB1p5qSUI9h6qDhjetiBo0FoHDL6ojEJCIi/ZcSLBGRDqqtKg89iWmlBwuoScwhK7ib+kCwm6KSYGkowUrM+GyIYIo3VXvZ9nURiUlERPovJVgiIh1Usy+UYPlaGyIIuJQRZFgZe4qLuyusfs9fsYt9xGFxKY3rBg8fQ53zU1uwMYKRiYhIf6QES0Skg2r2VQDgj2t9iGB0emgmweJtG7olJoGYqj2U+tPArHFdZrI3Vfve/MgFJiIi/ZISLBGRDqqpDiVY0XGJrZZJHDwagIo9ugdTd0msK6A8JnO/dWbGnuihDNBU7SIi0s06lWCZ2R/MbK2ZLTezZ8wstcm2n5rZBjNbZ2andjpSEZEIq/WGCEYnJLVaZmD2GAACRZ92S0wCA+uLqIkbdMD6ioRhZNTu0FTtIiLSrTrbg/UaMMU5lwesB34KYGaTgAuAycBpwF/MzN/JtkREIqq2qhKAuPjWhwgmpWdTRQyUqOekO1RU15FJMcHEwQdsq08dSSKVBCuLIhCZiIj0V51KsJxzrzrn6r3FD4Ac7/nZwOPOuRrn3KfABmBmZ9oSEYm0em+IYGwbPViYUeDLIrZyWzdF1b8VFuwizurwpQw9YFtUxigAirZqJkEREek+4bwG6wrgJe95NrC1ybZt3roDmNlVZrbIzBYVFBSEMRwRkfCqrwn1YMW3lWABZXFDSKne0R0h9Xt7d4d6CmMGHvgnJnno+FCZbWu7NSYREenf2k2wzOx1M1vZwuPsJmV+BtQDjx1sAM65+5xz051z0zMzM9vfQUQkQoJegpUwoO0EqyZxGJmB3QSDuvanq1UUhr7LS8ocdsC2QcPHEXRGdYFmdBQRke4T1V4B59wX2tpuZpcBZwAnO9d4JfF2oOlfuxxvnYhIr2U1ZdQ6PwkDWr8GC8AGDid1TyW7CvcweFBWN0XXP9WUhHoK04fkHrBtSHoqu0jDijXhiIiIdJ/OziJ4GvBj4Czn3L4mm54HLjCzWDMbCYwFFnamLRGRSPPVlFHOAGKj2/5uKn5Q6NqfPVvWd0dY/VqwNJRgxaa2cA2W38fuqCHEV2jCERER6T6dvQbrLiAJeM3MlprZPQDOuVXAE8Bq4GXgu865QCfbEhGJKH9dORXWdu8VQOqQ0FTtZbs2dnVI/V5U5S5KLRmi41rcXhaXQ1qNBlCIiEj3aXeIYFucc2Pa2HYrcGtn6hcR6Umi68rY14EEK2PYOADqCjU0ravFVRdQFpVOSivba5NzGVj5Mq66DItL7tbYRESkfwrnLIIiIn1aTF05Vf7EdstFJ6ZTSTz+vZu7Iar+LbmugKq41idI8qWHhmuW7dREFyIi0j2UYImIdFBsoIKaDiRYmFEYPYT4fboXVleqrguQ7oqpT2h9IpHEIaHexKKtmqpdRES6hxIsEZEOigtUUB/TsWFm5fE5pNfu7OKI+rddRXsZxF5c6vBWy2QMD90Lq2q3erBERKR7KMESEemgAa6SYEzb98BqUJ88nKFuNxXVtV0cVf9VtG0DPnNEZ4xqtUz24CwKXTKuaFM3RiYiIv2ZEiwRkY6oryWeGohrbTqF/UWljyLO6tixNb9r4+rH9u4ITYOfMWx8q2Xiov3s9A0mpkzXw4mISPdQgiUi0gHVFSUAWHzHEqwBg0OTrBZv172wukrNntCwv4HZ49osVxKXw8BqXQ8nIiLdQwmWiEgHVBSHrqfyJQ7qUPmGXpXq3boXVlfx781nn8Vj7ZyTmsThpAcLoL6mmyITEZH+TAmWiEgHVBbtACA6ufUZ65pKGjyKIEawOL8Lo+rf0io3URA7AszaLpg+Ch+OfXt0HZaIiHQ9JVgiIh1QWbwdgIT0oR3bISqGQl8GMeVbujCq/mtfbT0jgluoTBnbbtn4rNBwzaItmqpdRES6nhIsEZEOqN27C4CBg3I6vM/e2GxSdO1Pl9i8dTuDbC82aEK7ZdNyQmUqdn7S1WGJiIgowRIR6Yhg+R5qXDQZ6Zkd3qcqcRhZgV0Egq4LI+ufdq//AICU3EPbLZudPYxyF099oa6HExGRrqcES0SkA3yVeyi0VOJiojq+U2oug2wve4qKuy6wfqpm8yIABk84ut2yKQkxbLcsojVVu4iIdIOwJVhm9iMzc2aW4S2bmd1hZhvMbLmZHRautkREults1W5K/WkHt8+g0A1w92zVVO3hlly0jJ1ROfgGDOxQ+aKYHFKqtnZxVCIiImFKsMxsGHAK0PRq7tOBsd7jKuCv4WhLRCQSBtbuoCwu+6D2SRkamoChbOeGrgip3yopr2Ji7UqK09ofHthgX+IwMup3QTDQhZGJiIiErwfrduDHQNMLDc4G/uFCPgBSzWxImNoTEek2rr6GzMAeapJGHNR+DffCqivQ9ODhtGrxu6RaJfETv9DhfdzAkURTT22RZnUUEZGu1ekEy8zOBrY755Y125QNNB2Psc1b13z/q8xskZktKigo6Gw4IiJhV7ZrE35zkJZ7UPtFJ2Wyjzj8pbr2J5wqV/6HIMbww0/v8D6xWaFkt2jL6q4KS0REBOhggmVmr5vZyhYeZwM3A7d83gCcc/c556Y756ZnZnZ8di4Rke6yKz90/6SkoeMObkczCqKGkFCpa3/CpaaunjGFr7MpYRpRHbzpM0DqsIkAlG1f01WhiYiIANCh6bCccy2OwzCzqcBIYJmZAeQAS8xsJrAdGNakeI63TkSkVynfshyA7DGHHPy+8TmklX8a7pD6rYULXuVYtrN+8tUHtd/wYblUuDjq9+heWCIi0rU6NUTQObfCOTfIOZfrnMslNAzwMOfcLuB54BJvNsEjgVLn3M7Ohywi0r2i9qxgF+kMyhp60PvWpYwg2+1mX01dF0TWvzjncB/eyz7iGHPSZQe178DEWLbYEKJLleyKiEjX6sr7YL0IbAI2AH8DvtOFbYmIdJm08nVsix2D11N/UPzpI4mzOnZu13VYnbXoo/9yTNXbbMq9AF988kHvXxQ7jJR9muRCRES6VlgTLK8nq9B77pxz33XOjXbOTXXOLQpnWyIi3aGytIic+q1UZUz9XPsPGDwGgOJtuhdWZ1TX1hH/8g+psETGnnvz56qjKimXjMBuqK8Nc3QiIiKf6coeLBGRXu/Txa/hM0fyhBM/1/7pOaHZ66p26V5YnfHOQ7cwJbiWnUfeQmxKxye3aMqlj8FPkOo9G8McnYiIyGeUYImItKFq/ZvUuGjGHn7C59o/ZfBIgs4Ilujan8/rrafv5Qvb/8qagScx4dRvfe56EgaHZoEs3LIqXKGJiIgcQAmWiEgrXDBIzu63WBU3jYSExM9Vh0XHUehLJ6Zc1/4crGAgyKv/+B3HLfsJm+InMfbbj8LnuA6uQcbwSQCUb18XrhBFREQO0KFp2kVE+qNPly9glNvD5jHXdKqekthskqt0l4qDsWv3DjY/fA2n7JvPuqSZjPzOU0TFDehUncNysilySQQLNVxTRES6jhIsEZFWlL17D5UulvEnX9KpeqoG5DC08L845z7XTIT9SXnlPhY/fTtTN9zDYVSyZOz3OPTCOZg/utN1J8ZGsck3lARN1f65VdcF2LC7nE3bd1FeuI19leWUVdVRHZUCiVmkpSRx+IiBHDIshdgof6TDFRGJCCVYIiItKCvezYTCV1k08HRmpWV0qi43MJdBRS+wp6SEQWlpYYqwb9lbUsTK5+9g9KePcAJFrIvPo+acP3DYhCPD2k5x3DCyqz8Oa519VSDo+GTLDrateIfyLcuIL1lHdu0mRtlOpljNgeWdsdKN5L/Byfwm6kSOmnk0lx2Ty5CU+AhELyISOUqwRERasPb525lpdQw++budrismYxRsgIItnzAo7YgwRNc3BAIBlv/3Rao/epSppfOZZdWsi8uj+vg/Mv7Iszt1vVVrapJHkr77daithJjODTnsa6pr61m9ZhUFq98mavtCcsqXM44tTDAHwF5/GnsHjmVPxnEkDRpBcmY2MfFJofO0rwh/yWYm5f+Xqdte5hr3b158fyaXfHAxl3zpeC6aORyfT723ItI/KMESEWlm757tTM7/Ox/FH8OMqZ3vQUkZGroXVtnODTCtfydYwUCQDcvepXDR0+TueJFD2UMF8XyS8QVSj7+G8XmzurR9yxgDu6Fi53oSRxzapW31dHX1AdavWkzB8teI3f4+o6pWcpiVALCPeLYnTWZd9pdJn3AsmeNmkjogg9R26owGqCyEhX/jtPf+zBfqf8j//PsirlxzEXd+/TAGxOpjh4j0ffpNJyLSzPonbuYwV0v62beGpb6MYaF7YdUWbApLfb1NTU0Va99/keoVzzOy6B3GUcxoZ6yJP4yCqTcy8aSvc2j855ul8WAlDp0Aq6Bo8+p+l2AFA0E+Wb+S3cteJXrLe4ypXMJk2wvAHl8me9Knszf3KIZOPYGkEdMY6/uc11ANyIATf4rv8EuJ/ve1/M8nD/HCprVccu8N/PWyYxmUHBe+gxIR6YGUYImINLF24avMLHyW9wd9jaMmhOcDeFzqYKqIxUr7z1TtpXuLWb/gaWzdC4wve59DrIp9LpZ1iTPYPPZLjJ11HlMyBnd7XJkjJgKwb+fabm+7uznnyP90A9s/fgVf/rvkli9mPAWMB4psINvSZrBr5PEMP/xUBg0dy6BwD8lMHopdOA/++2e+9PqvGFJ0M1fc8wvuveqLZKf2/uuy6iqK2LN5HUW7NlNdspNA+W6oLIDqMlxdNVHBGvyuljrnp4Zoaogh4I+nMiaD6rhM6hOHEjN4PGnZYxg1KIXRmYn4NYxSpE9QgiUi4ikr20vCS9ey0zKZfPEfwlexGYX+LOIqt4Wvzh5o57ZN5C/4FwmfvsLE6qXMsADFJLM27SRippzJ+KPO5NDPeT+xcBmWlcFOl4Yr2hjROLpKyd69rP/wZWrXvcqw4vcZyQ5GAqUksjn5cPbkHkv2oaeRmTuF9O6Y0dLng1nXY2mjmPbklfx53018/69V/OmqMxmentD17XdWMEBdwQZ2f7KY8s3LCBZtJKFiM+m1O0imgmwgu0nxchKotEQC/ljqfbHU+6KJIkg0tUQHa4mprySpthRfhYNCIB+qXTQb3VD+Y8MpTJ6KyzmcQWMP59DcLHIGxmvmUZFeSAmWiAihb/tX3X81RwR3suFLjzEkeWBY6y+Lz2Zg5Y6w1hlpLhhkw6pF7PnoaTK2v874wCcMAbb5hvDx0AtIPexcxh56IjOies6fmrhoPzv8Q0krz490KGERCARZv/Ij9ix9kZRtbzOxdiVHWB1VxLAp4VAWD7+IIdNOYci4w8n7vEP+wmHS2fguSSf3nxfy15qb+NFfy/n1ty9gVGZkE+791JRTvWUxu9d9RM32FcSXrGVQ9afEUksOoVkSt5NJQXQ2W1NOIpA6ktjM0QzMGhZ6DBpKUtwAktprJ1APlXugdBtVO9dQsW0V6btWM7x4NUnl78IaqFkdzSo3gveixlOdeQiJo2YwduI0JmWnEu33dcOLISKd0em/emb2feC7QAB4wTn3Y2/9T4Fveut/4Jx7pbNtiYh0lQ+fv4+jyl7io+FXMOOIL4e9/trEHIaXL6WuPkB0L74/UH1dHWs+ep3ypc8yvGA+Y90uxgKfRI1n4cjvMuSI8xg2/jByevC37qXxwxm7b0Gkw/jcyivKWfPev6lf/QKjSt9nIkVMBLb4h7My+2ukTD2dkYd/kckxPWwYXu4s/N98mbR/nMe9lT/j5r8W8b1vf4exWe2mJOEXqMftWU3JJ+9TvvFD4nZ/TEZ1PnEEGQEUuBQ2+kawIuksApmTSBqex7Bx0xiRlc7wziY4/ihIHgrJQ4kfNpP4md5656B0G/VbP6J8/ftkb/2IKaWvE7P7BdgN5f+NZym57E6cgD9zPAOGjCUrdzIjRo4hLqbz94kTkfDpVIJlZicCZwOHOOdqzGyQt34ScAEwGRgKvG5m45xzgc4GLCISbls2rGLykl+yLmYSh136+y5pw9JySdpVxdZdOxiWM6xL2ugqdbXVrH3vOWqWP8vokgVMpYxaF8W6hEPZPfpbjJz1NcYOHhHpMDusNmUUyZUv4vYVYwm9475kBbt38sl7TxO94SUmVS5kptVQQTwbk2aya8zJ5M48i+FDRjI80oG2J2sy0d9+i8A/vsofC3/Hnfds5YTLfsW0Eeld16ZzULad2s0LKV7/X9zWRaSVrSHWVZMG4BJZyRjeTb4IsqczaPxMJowZxZFJ3TwZhxmkDiMqdRgZU78SWheoh4K1lG76iJINCxmyexl5lS8QW/kM5APvQ63zsyUqG2Y/wvBx07o3ZhFpUWd7sK4BfuecqwFwzu3x1p8NPO6t/9TMNgAzgfc72Z6ISFjV1tRQ9fhlDDRj4CUP44/qmm+C4weNgtVQtO2TXpFg1dbUsOq9f1O3/Ckm7H2bqVRS5hJYl3w0/klfZsKsc5ia1DuSk+b8mWNgB5RuX0vq2KMjHU6rtm/bzMa3HyM1/2Um1a7gaAtSYGmsHfQlEqedzZgZp3NITC+ckS95CHHfeoXKJ67iuo2PsPCBj3jqmP/lK6ecGJ7rjarLYMcSyjd+SOWmDxlQuJSkuiJigIEuitUul/divsC+zGkkjTmSseOncvSQZKJ64tA7fxQMnkLK4CmkHH15aF0wQP3ebezOX0PR1rVU7d7IpB3/YuPTNzLsx69gvh54HCL9TGcTrHHAsWZ2K1AN3OCc+4jQNZ8fNCm3jf2vA21kZlcBVwEMH97jv3sTkT5m8UM/5Kj69Sw96s9MGzauy9oZOHQsAOW7NgIndVk7neGCAdYvfJnSj+YxtuhNDqWcCuJZk3IsUVPPY+Kss5kR18OGnX0OyTkTYBkUb1nT4xKs4sI9rH3rMQZ88hxTapaSbY4t/mEsHX4pmdO/wvCpx5AZyWupwiU2kQHfeIx9C//B1Jdv4vD/foW3lpxE5glXM+WIk7GOHmN1GRSspW77cko3vI9/5xJSKj/FhyMJKAgO5kMmUpgyFf+w6QydMJNpIwdxaHf3ToWTz09U2giy00aQfdhpACyam8H0dX/kg6fv5MivXhvhAEWk3QTLzF4HWppL92fe/mnAkcAM4AkzG3UwATjn7gPuA5g+fbo7mH1FRDpj1TvPcNTOR1mYdhYzT72sS9tK95K3QFHPuxfW1vwNbHnzb4za+jTj3R72uVjWJB9D9CHnMWHWV5gR1wtmezsIWcMnEHBG1a71kQ4FgIrKSla99TjRq55k8r6FHG317PAN5uMRV5Bz7DcYPvawnj/07/MwI+GIS3GTv8T6p/+HozfNJe6VNyh8NY2StEOIGjyFlEHZxMQnE2MBCNRQXbKT+pJtBPZuI7Z0A8k1u4HQDY7NJbEkOIZNsRdQO/hQUkYfweTRIzh9aAoxUX27V+ewr/2MVX94g6krbmXDuJmMyTsq0iGJ9GvtJljOuS+0ts3MrgGeds45YKGZBYEMYDvQdAxMjrdORKRHKCvYzuA3r+NT33CmfvMvXd6ePz6FQhtI7N6eMT14ZVU1i19/grgVj3J4zUKGmWNl7DQ2T7qBySddwOFJKZEOscvkZKSwnUx8xRsiFoNzjhXLFlH8zn3kFb3EEVZOAWksH/I1Mo+6kNy84xjagycKCSdLzGT8JXdQXfEr/vvqP2H9ywwtXE1u0Vuwav+yUc4oJIVdbiCb3Bh2x51Cbdo4oodMYdSYiUwbMZCTe3Pv1Ofki4pi8GWPUHnvCSQ9fRFFmW+RPqT3XBcp0td0dojgs8CJwFtmNg6IIXRnh+eBf5rZHwlNcjEWWNjJtkREwmbdP35Anquk8JwniB/QPbOYFcTmklL5abe01Zp1a1ey4837mLT7eY6zEootlWUjLiPn5KuYMmJSRGPrLlF+HzuihjGsrPsTrJK9pSx79SHS1z1OXmA1dc7PutRjKZx5GWOOOJPMHjSlfXeLSxzI0V/5LvBdyqvr+Gh7MTt3bKeuupx9AR9BiyYhdRCpSQMYkhLHaYMSiYvuA8MlwyR9yAg2fOUxhjx1DrvvP4eY775EUlr338xbRDqfYD0IPGhmK4Fa4FKvN2uVmT0BrAbqge/2xhkEy/YWsbdgO8H6Ourr63CBOoL1tbhgPa6+HucCuGCQYDAAzuGCAYLBIC4YwLkgLhj87GcwgHMOvG24IDiHEcRcEID9x0daC+s+45qU+WwXa1bGmpdoLGNNyuy/q7VQvHktduCqJivM7LN6Wy7SWO7AjbbfYbiOxGPNj3P/+OyzHfcr09qXw67Zi37AOThg+/4rmu/fzu4diqH5Xu3FeODurp3t7ezfTv2djbe9Fg/Y/yBf4wOWy3byxfLX+XD4lRyRd0TblYVRTepoRu18keraeuJiuu+DdOW+fXz82j8ZsPIxDqn9mLHAuqSZVMy8nFFHn0daVEy3xdJTlA6cyszCh3HVZVhccpe25ZxjxZL32Pvu/UwreYUTbB87/ENZNuGHjD3lW0xJG9ql7fdGSXHRzBidBaOzIh1KrzIm72g+LvwLE9++moK7T6bmiufJyB4d6bB6FBcMUlNTRU1lGTVV5dTsq6C2upK62hrqamsI1FYTrK8lWF+Dq6/DBWpwgTqor8XV10CgLvQ5MBgEXOiznAsCoc91uCCG99M1lAltczR8rjFo+KxkPu8zSmgdFhrOanjrGx74Qh9oGsuEfjZ8xjFvv1B9hD4B+pqU89qw/eoMLTd8bmvtJw2fvRrb5bN4W/pJ0zYIxc6BH8UaPge28hF0P3WxaQzPO46s5N7RQ92pv/DOuVrgG61suxW4tTP1R9qaV/7GEWv+N9JhiEgX2OEbwrSvz+nWNqOyJpG860nWffoJ48dP7PL21q/6mF3z72Pynv8wy8rYYxksH30Vo065homDR3Z5+z1Z1PAZ+AofouCThWRObXUkfKcUFRex8tW/M2j94+QFP6GGaNalnUjqrCsZftgp/WYIoHSvQ0/6Kov8cYx/80pq/3YSm079M6OOOifSYYWFCwaoKi+mrKSQir2FVJUVUV1RTH1FCa5qL1a9F19tGVG1pcTUlRMd2Ed0oIoYV02cqybeVRNPNXHmCPfH9KAzgqGvzXH4vJ+hR8Pzhq+ffRYER2MJ336pV2jZZ5qWoKn5gUP4KPlxzsjrHV9I9d+xCB0w5NDTWBSfgkVF4/PHYL4oLCo69NMXhfn94PPj8/kxnw+f+fD5/Zj5MJ8fn8+H3+8Da3juBwutM5/f+yagyTcXjf82e1MZLXxl36x/qoXt+/WsuM/qdc33cS3v45rv7q107XYnuAP393rpPltu6ReHa7ZPS70grrEshH4RHRBnkxX7L7dybA7MHPv3wu0fWRsddi1vb3FdS71xbbVxQL9cO/u3XX+78R10e21vb6/B9uJtoc+xze0daaPpYlbWaPxx3XuD05QxM2AZFH3yAXRRglVZWcHyV/9B4qp/MrV+BaOcjzXJx1B8xOWMOepsBvn1ax9gyKRjCS42ila+EdYEKxgIsuKj+VS8fz+H7H2D462aLf4RLJt8E+O+eCV5qZlha0ukNdOPP4MN6c9jT32T0a9cytLFZzB29m8ZkNnzrssKBoKUlBRQsmc7FUXbqS7eQX35blz5HqKqCoirKSKpvoiUQAkDXSkJFqS1aXfqnJ9yG0CFJVLlT6TWl0B1XCrBqHgC0QkEoxJw0QkQnQAxiVjMAHyxA/DFxBMdE0d0TCxRMbH4omLxx8Tij4rFHx1LVHQs/ugYoqLjiI6NISoqBr/Ph8/X8HnO8D7RhZ9zOBf0RkgFCXrLoVFS3jbnvG009qJ9ts6FRlw5B8HQ57yGbThHsKF3zbkmnxVdYw+dc877rOW8D0/eT++5228dOLxeu2DT7Z+N9mnlI+Nnn+5cy58nBsckMnhkRjhf2S5lLX/QjYzp06e7RYsWRToMEZEuUV+zD/fbHD4c8nVmXX1XWOvesHIhe+bfy+SCl0ixSnb4BrNz1NcYe8q3SR7U8++71d0CQceqX88gOS6K3Js+aH+HdhQW7GH1q/czZOM8xgbzqSKWtelfIOO4qxiWd3wHvoEQCb/SsnKWPXIjR+z5F5ixPvM0Mo69giFTTvCGj3Wd6spSSnZvo7RwB1XF26kt3UWwfA++yj3EVBcyoLaIpEAxaW4vsVZ/wP51zs9eXypl/jQqotOojs2gPj4DEjKIShxIdGIacUnpJKakMSAlk8TUdGLjk/Rek25lZoudc9Obr9dXmSIi3SQqNoENMaNJKwjPF0n7yktY+erDJK+Zy4T6tQx3UaxKOY4BR13B2CO+xNC+cL+kLuL3Gdszj2NKwYPUFeUTnZ570HXU19ezbMEL1C16mGnl73Cc1bEpagxLp9zChC9ewaFJA8MfuMhBSElO4rjv3sPq1d+j4KXfcvie10h8+t/sfTqZrSmHw5A84oZOJj1nHKnpg/ENSIfm12Q6B3VV1FaVU1m+l30VpdSUFlC1dxe1pbsJVBRilQVEVRcRV1tMUn0Jqa6EBGoYAgxpUlXQGSWWQqk/lcrodMqSRrIlYRC+xEFEpwwmPm0oSelDSR2UQ0JyBpk+H+rzld5IPVgiIt1o4YM3cPjm+9n73dWkDzr4seQuGOSTRa9R8cFDTCh6gwSrYYsvh11jZjPhlKtIztCsYR313yUfc+RzJ/LJuG8x/qI/dHi/TzetY8sb9zN6+3PksJtyElg36DSyjr+KYZN1/yHpuXbuKeSTdx4nKn8+ueUfM9QKDyhTSxRBb7Cbw4ihDj/BA8o1qHc+9loSpb5UKqMGUhObRn18Jm5AFv7kLOIGDmFA+lBSM7MZmDEEf1R0lx2fSHdrrQdLCZaISDf6dMUCRj71Zd6f8FOOuuCmDu+3O381n85/hJzNz5DjdlLh4lkx8GRSjr6CidNPxLp4uE9fFAw6Fvz2S8yoX4x95wPiBo1qtezO7Zv59O3HSN30HybVh27OtDZuGrV5FzHxpIuIjhvQXWGLhEV9IMj23Xso+nQZZbu3EKgoxFddBLWVgMOPwwzqLRYXMwBfbCJRcUlExScRlZhBQtpgUtKHkJ6ZRVyMkibpn5RgiYj0BM6x/taZJAZKSbtxMXEJrU+0sTN/LVvffYz0zS8yuj50z6ZVMVOpmHgBE0/+BsnJqd0UdN+1eOlSxjxzOlXRA/GfezeZE44FfxTlJbvZsmYxZavfYOCu9xhbtxa/OfJ9wykc8WVGnnQZ6cMmRDp8ERGJICVYIiI9xIp3n2fqGxezPPEYRl12L4kZw8A5ygq3sXnFAqrXvcHggvcZFtwGwDr/OAqGf4mRx19Edu64CEff97z28nNMe//7ZFopNURTj58BVAMQcMbG6LGUZR/PkKO/Tvb4wyIcrYiI9BRKsEREepB3H/0NR39yG35zlJBMNHUkUgVAlYthXdxUKnOOZ8Qxs8kZpZ6SrrZjTyGr3ppHdMEK/C6AL2UoA7InMerwk0jW1OoiItICJVgiIj3M+lWL2fbB08SX5xP0xeLSR5M0/BDGHX4i8Qm6pkdERKQn0zTtIiI9zLjJhzNu8uGRDkNERETCSNNOiYiIiIiIhIkSLBERERERkTBRgiUiIiIiIhImPWqSCzMrADZHOo5mMoADb3UufZXOd/+hc91/6Fz3Lzrf/YfOdf/SE8/3COfcAVPN9qgEqycys0UtzQ4ifZPOd/+hc91/6Fz3Lzrf/YfOdf/Sm863hgiKiIiIiIiEiRIsERERERGRMFGC1b77Ih2AdCud7/5D57r/0LnuX3S++w+d6/6l15xvXYMlIiIiIiISJurBEhERERERCRMlWCIiIiIiImGiBKsNZnaama0zsw1mdlOk45HwMbNhZvaWma02s1Vmdq23Ps3MXjOzT7yfAyMdq4SHmfnN7GMz+4+3PNLMPvTe3/PMLCbSMUp4mFmqmT1pZmvNbI2ZHaX3dt9kZtd7v8NXmtlcM4vTe7vvMLMHzWyPma1ssq7F97KF3OGd9+VmdljkIpeD1cq5/oP3e3y5mT1jZqlNtv3UO9frzOzUiATdBiVYrTAzP3A3cDowCbjQzCZFNioJo3rgR865ScCRwHe983sT8IZzbizwhrcsfcO1wJomy/8H3O6cGwOUAN+MSFTSFf4MvOycmwAcQui8673dx5hZNvADYLpzbgrgBy5A7+2+5CHgtGbrWnsvnw6M9R5XAX/tphglPB7iwHP9GjDFOZcHrAd+CuB9XrsAmOzt8xfvc3uPoQSrdTOBDc65Tc65WuBx4OwIxyRh4pzb6Zxb4j0vJ/QBLJvQOX7YK/YwcE5EApSwMrMc4MvA/d6yAScBT3pFdK77CDNLAY4DHgBwztU65/ai93ZfFQXEm1kUkADsRO/tPsM59w5Q3Gx1a+/ls4F/uJAPgFQzG9ItgUqntXSunXOvOufqvcUPgBzv+dnA4865Gufcp8AGQp/bewwlWK3LBrY2Wd7mrZM+xsxygUOBD4Es59xOb9MuICtScUlY/Qn4MRD0ltOBvU1+cev93XeMBAqAv3tDQu83swHovd3nOOe2A7cBWwglVqXAYvTe7utaey/rc1vfdgXwkve8x59rJVjSr5lZIvAUcJ1zrqzpNhe6h4HuY9DLmdkZwB7n3OJIxyLdIgo4DPirc+5QoJJmwwH13u4bvGtvziaUVA8FBnDgECPpw/Re7h/M7GeELu14LNKxdJQSrNZtB4Y1Wc7x1kkfYWbRhJKrx5xzT3urdzcMKfB+7olUfBI2xwBnmVk+oaG+JxG6RifVG1YEen/3JduAbc65D73lJwklXHpv9z1fAD51zhU45+qApwm93/Xe7ttaey/rc1sfZGaXAWcAF7nPbt7b48+1EqzWfQSM9WYjiiF0Md3zEY5JwsS7BucBYI1z7o9NNj0PXOo9vxR4rrtjk/Byzv3UOZfjnMsl9D5+0zl3EfAW8FWvmM51H+Gc2wVsNbPx3qqTgdXovd0XbQGONLME73d6w7nWe7tva+29/DxwiTeb4JFAaZOhhNILmdlphIb3n+Wc29dk0/PABWYWa2YjCU1ssjASMbbGPksGpTkz+xKhazf8wIPOuVsjG5GEi5nNAt4FVvDZdTk3E7oO6wlgOLAZON851/wCW+mlzOwE4Abn3BlmNopQj1Ya8DHwDedcTQTDkzAxs2mEJjSJATYBlxP6QlHv7T7GzH4FzCY0fOhj4EpC12Lovd0HmNlc4AQgA9gN/BJ4lhbey16SfRehYaL7gMudc4siELZ8Dq2c658CsUCRV+wD59zVXvmfEbouq57QZR4vNa8zkpRgiYiIiIiIhImGCIqIiIiIiISJEiwREREREZEwUYIlIiIiIiISJkqwREREREREwkQJloiIiIiISJgowRIREREREQkTJVgiIiIiIiJhogRLREREREQkTJRgiYiIiIiIhIkSLBERERERkTBRgiUiIiIiIhImSrBERERERETCRAmWiEgPY2a5ZubMLCrSsUj/YGarzOyESMchItIXKMESEZFez8zuMbMK71FrZnVNll+KdHw9nXNusnNufjjrNLM0M5tnZkVmVmhmj5lZcjjbEBHpiZRgiYiEmXqeup9z7mrnXKJzLhH4LTCvYdk5d3pDud50bnpTrK34DTAQGAmMBrKAOZEMSESkOyjBEhEJAzPLN7OfmNlyoNLMoszsSDP7r5ntNbNlTYdgmdl8M/tfM1toZmVm9pyZpbVS9+VmtsbMys1sk5l9u9n2s81sqVfPRjM7zVufYmYPmNlOM9tuZr8xM387xzHazN5s1uuQ2mRbsZkd5i0PNbOChuMys7O8oWZ7veOb2Oz1ucHMlptZqdezEXfwr/TBa+XcODMb06TMQ2b2mybLZ3iv6V7vHOZ1sK0TzGybmd3svX75ZnZRk+1fNrOPvXO11czmNNnWMDT0m2a2BXjTW/8vM9vlvW7vmNnkZnH/xcxe8nrr3jOzwWb2JzMrMbO1ZnZoB1+jL3TkGA/CSOBZ51yZc64UeAaY3M4+IiK9nhIsEZHwuRD4MpBK6Nv6Fwh9i58G3AA8ZWaZTcpfAlwBDAHqgTtaqXcPcAaQDFwO3N4kyZkJ/AO40Wv3OCDf2+8hr94xwKHAKcCV7RyDAf8LDAUmAsPweh2ccxuBnwCPmlkC8HfgYefcfDMbB8wFrgMygReBf5tZTJO6zwdOI/TBOw+4rMUAzGZ5iU1rj1ntHENLGs+Nc66+zRcglJA8CHwbSAfuBZ43s9gOtjUYyACygUuB+8xsvLetktB5T/XiucbMzmm2//GEXvtTveWXgLHAIGAJ8Fiz8ucDP/farAHe98plAE8Cf+xg3C0ys5vaOh9t7Ho3cIaZDTSzgcB53rGIiPRpSrBERMLnDufcVudcFfAN4EXn3IvOuaBz7jVgEfClJuUfcc6tdM5VAr8Azm+ph8k594JzbqMLeRt4FTjW2/xN4EHn3GteO9udc2vNLMtr6zrnXKVzbg9wO3BBWwfgnNvg1VXjnCsg9OH8+Cbb/wZsAD4klBj+zNs0G3jB27cOuA2IB45u9vrscM4VA/8GprUSwwLnXGobjwVtHUMrmp6b9lwF3Ouc+9A5F3DOPUwocTnyINr7hfcavk0o0T4fwDk33zm3wjtXywklpcc323eOd86qvH0edM6VO+dqCCW7h5hZSpPyzzjnFjvnqgn1ElU75/7hnAsA8wgl15+bc+53bZ2PNnZdAsQARd4jAPylM7GIiPQGSrBERMJna5PnI4CvNfumfxahpKSl8puBaEK9Dvsxs9PN7ANveN5eQolTQ7lhwMYWYhnh1bezSfv3EuoFaZWZZZnZ496QwjLg0RZi+hswBbjT+9APoR6vzQ0FnHNB7/iym+y3q8nzfUBiW7GE2db2izQaAfyo2bkbRugYO6LES5obbG7Y18yOMLO3vKGVpcDVHPj6NsZqZn4z+52Fhn6W8VnvZNN9djd5XtXCcne+zk09wf9v777D46iuh49/766kVbes3ottWZas5t5xoZlQTAsmofMmpJACKfxIQgsJCYEkJFQnBAJJqKEYU0KoBkwwIPduy5as3ntbbbnvH7uSZRVLtlbalXQ+z6PH2pk7d452NPKcvXfOwEEgCMfo62Ecv09CCDGuSYIlhBCuo3t8X4xjhKrnp/0BWut7e7RJ6PF9ImABanp26JyW9jKOEaEo54jBWzim8nXtZ2o/sRTjGHUJ77H/YK31YPfA/Mb5c2RprYNxjMR17QulVCDwJ+AJ4C517L6xMhyJSVc75fz5SgfZXx9KqWXqWAXA/r6WDd5LH7rX6zbAv8fr6B7fFwP39Dp2/lrr54a4r8lKqYAerxNxvD8AzwIbgASt9SRgHT3e335i/TqwBjgDmAQkO5f33mbEOO8nG/B4nGDTXBwjga1a6xYcP+tXTtBeCCHGBUmwhBBiZPwLOF8pdbZzFMLXWQAhvkebK5VSGc77me4GXnJO6+rJBzAB1YBVKXUOjnupujwBXKeUOl0pZVBKxSmlZmity3FMJfyDUirYuW6qUqr3dLTegoAWoFEpFYfj3q6e/gzkaa2/gWPq2zrn8heBc51xeAM/xpHg/W+wN6o3rfUnPSoA9vf1ycn22Y/twNedx2Y1x0/Texz4tnO0SSmlApSjOEUQdBeWeGqQ/n+plPJxJoPnAf92Lg8C6rTWHc77574+SD9BON7HWhwJ4W9O4md0Ca31b050PE6w6ZfAN5RSfkopPxxTL3eOTtRCCOE+kmAJIcQI0FoX4xh5+DmO5KgYR7LS8+/uP3EUoqgAfIEf9NNPs3P5i0A9jgvyDT3Wf4Gz8AXQCHzEsZGkq3EkaHud277E8VMU+/NLYLazrzeBV7pWKKXW4ChS8R3noh8Bs5VSV2itD+AY7XoIxyjc+cD5WuvOQfbnLj/EEWMDcAWwvmuF1joP+CbwMI73LZ/jC3IkAJ+eoO8K53ZlOApSfFtrvd+57rvA3UqpZuAOHMf1RP6BY4phKY7juHmwH8yDXI9jxK0ER/xTcBT9EEKIcU1p3XvWhBBCiJGmlNoI/Etr/Td3xyKGzlkVcQeQ7Szm0Xv9ChzHNb73OiGEEBPDWH+IoRBCCDFqnCNy6YM2FEIIMWHJFEEhhJhglFLrBihYsG7wrcVYpJRKPEGhikR3xyeEEOOJTBEUQgghhBBCCBeRESwhhBBCCCGEcBGPugcrPDxcJycnuzsMIYQQQgghhDihLVu21GitI3ov96gEKzk5mby8PHeHIYQQQgghhBAnpJQ62t9ymSIohBBCCCGEEC4iCZYQQgghhBBCuIgkWEIIMQiptiqEEEKIofKoe7D6Y7FYKCkpoaOjw92hiDHG19eX+Ph4vL293R2KGMP2l9bwr8f/wILl53H+yiXuDkcIIYQQHs7jE6ySkhKCgoJITk5GKeXucMQYobWmtraWkpISUlJS3B2OGMNq3r6PX/MXPvp0B6x8y93hCCGEEMLDefwUwY6ODsLCwiS5EidFKUVYWJiMfIph86s/AMB0yz7azVY3RyOEEEIIT+fxCRYgyZU4JfJ7I1zBt6MagBhVR+GRvW6ORgghhBCebkwkWEII4S4hthoqDVEA1BzZ4eZohBBCCOHpJMEaAqUUP/7xj7tf//73v+euu+5yX0A9bN68mQULFpCbm0t6enp3XBs3buR///vfKfd79OhRZs+eTW5uLjNnzmTdunUuiliIMURrwnUdRZPmAtBZccDNAQkhhBDC03l8kQtPYDKZeOWVV/jZz35GeHi4y/rVWqO1xmA49Tz3mmuu4cUXXyQnJwebzcaBA44LwI0bNxIYGMjixYtPqd+YmBg+++wzTCYTLS0tZGZmcsEFFxAbG3vKsQox5rTXY8JCfeA0GhuC8GkscHdEQgghhPBwMoI1BF5eXtxwww088MADfdZVV1dzySWXMG/ePObNm8enn34KwF133cXvf//77naZmZkUFhZSWFhIWloaV199NZmZmRQXF/PTn/6UzMxMsrKyeOGFFwBHgrRixQouvfRSZsyYwRVXXNHvs3iqqqqIiYkBwGg0kpGRQWFhIevWreOBBx4gNzeXTz755IRxXnXVVSxatIjU1FQef/xxAHx8fDCZTACYzWbsdnu/782DDz5IRkYG2dnZXH755QDU1dVx4YUXkp2dzcKFC9m5c2f3vq655hqWLVtGUlISr7zyCrfccgtZWVmsXr0ai8UCwN133828efPIzMzkhhtu6PNz2+12kpOTaWho6F6WmppKZWXliQ6jECdNN5cD0OkXSZVPAiFthe4NSAghhBAeb0yNYP3y9T3sLWtyaZ8ZscHcef7MQdvdeOONZGdnc8sttxy3/Ic//CE333wzS5cupaioiLPPPpt9+/adsK9Dhw7x9NNPs3DhQl5++WW2b9/Ojh07qKmpYd68eZx22mkAbNu2jT179hAbG8uSJUv49NNPWbp06XF93XzzzaSlpbFixQpWr17NNddcQ3JyMt/+9rcJDAzkJz/5CQBf//rXB4xz586dbN68mdbWVmbNmsW5555LbGwsxcXFnHvuueTn53P//ff3O3p17733UlBQgMlk6k547rzzTmbNmsX69ev54IMPuPrqq9m+fTsAhw8f5sMPP2Tv3r0sWrSIl19+mfvuu4+LLrqIN998kwsvvJDvfe973HHHHQBcddVVvPHGG5x//vnd+zQYDKxZs4ZXX32V6667js8//5ykpCSioqIGPY5CnIzOtiZMAKYgWv0TiKzf4u6QhBBCCOHhZARriIKDg7n66qt58MEHj1v+3nvv8b3vfY/c3FwuuOACmpqaaGlpOWFfSUlJLFy4EIBNmzbxta99DaPRSFRUFMuXL+fLL78EYP78+cTHx2MwGMjNzaWwsLBPX3fccQd5eXmcddZZPPvss6xevbrffZ4ozjVr1uDn50d4eDgrV67kiy++ACAhIYGdO3eSn5/P008/3e8IUXZ2NldccQX/+te/8PLy6v6ZrrrqKgBWrVpFbW0tTU2OxPicc87B29ubrKwsbDZbd7xZWVndP9+HH37IggULyMrK4oMPPmDPnj199rt27dru0b7nn3+etWvXnvA9F+JUmNsc54jBFICelECkrqOxpd3NUQkhhBDCk42pEayhjDSNpJtuuonZs2dz3XXXdS+z2+1s3rwZX1/f49p6eXkdN62u5/OYAgIChrS/ril64Jj+Z7X2/wyeqVOn8p3vfIdvfvObREREUFtb26fNQHFC33LmvV/HxsaSmZnJJ598wqWXXnrcujfffJOPP/6Y119/nXvuuYddu3YN6WcyGAx4e3t378tgMGC1Wuno6OC73/0ueXl5JCQkcNddd/X7LKtFixaRn59PdXU169ev57bbbjvhfoU4FZYOR4Ll5RuAd2giXoV2ykqOMGmGe/8WCSGEEMJzDXsESymVoJT6UCm1Vym1Ryn1Q+fyUKXUu0qpQ85/Jw8/XPcKDQ3lsssu44knnuhedtZZZ/HQQw91v+6aCpecnMzWrVsB2Lp1KwUF/d8cv2zZMl544QVsNhvV1dV8/PHHzJ8/f8gxvfnmm933KB06dAij0UhISAhBQUE0NzcPGifAa6+9RkdHB7W1tWzcuJF58+ZRUlJCe7vjk/r6+no2bdpEWlracfu22+0UFxezcuVKfve739HY2EhLSwvLli3jmWeeARz3koWHhxMcHDykn6crmQoPD6elpYWXXnqp33ZKKS666CJ+9KMfkZ6eTlhY2JD6F+JkWNodCZbRFEhgZAoAjeVH3BmSEEIIITycK6YIWoEfa60zgIXAjUqpDOBW4H2tdSrwvvP1mPfjH/+Ympqa7tcPPvggeXl5ZGdnk5GR0V3O/JJLLqGuro6ZM2fy8MMPM3369H77u+iii8jOziYnJ4dVq1Zx3333ER0dPeR4/vnPf5KWlkZubi5XXXUVzzzzDEajkfPPP59XX321u8jFQHGCY5rfypUrWbhwIbfffjuxsbHs27ePBQsWkJOTw/Lly/nJT35CVlYWAN/4xjfIy8vDZrNx5ZVXkpWVxaxZs/jBD35ASEgId911F1u2bCE7O5tbb72Vp59+esg/T0hICN/85jfJzMzk7LPPZt68ed3r1q1bd1zca9eu5V//+pdMDxQjxto9ghVESOxUADpqjrozJCGEEEJ4ONVfZbphdajUa8DDzq8VWutypVQMsFFrnXaibefOnavz8vKOW7Zv3z7S09NdGqM45q677jquGMZ4I78/YjiOvnE/SXm/5rNLt7JwejTqN7F8GPctVn7zPneHJoQQQgg3U0pt0VrP7b3cpUUulFLJwCzgcyBKa13uXFUB9FviTSl1g1IqTymVV11d7cpwhBBiWOydrQCY/ANQPgHUq0l4t5S6OSohhBBCeDKXFblQSgUCLwM3aa2behZK0FprpVS/Q2Va678CfwXHCJar4hFDc9ddd7k7BCE8lja3YtFGTL5+ANR5RRHQXj7IVkIIIYSYyFwygqWU8saRXD2jtX7FubjSOTUQ579VrtiXEEKMFt3ZSjsm/H0cn0W1+kYz2VLh5qiEEEII4clcUUVQAU8A+7TWf+yxagNwjfP7a4DXhrsvIYQYVZY22jDh520EoDMwjih7NVarzc2BCSGEEMJTuWIEawlwFbBKKbXd+fUV4F7gTKXUIeAM52shhBgzlKWNNn0swVIhifipTmqqZZqgEEIIIfo37HuwtNabADXA6tOH278QQriLsrTRii/xPo4EyycsEYC68gKiY+LdGZoQQgghPJRLqwiOZ+vXr0cpxf79+wdsU1hYSGZmpsv2eeDAAVasWEFubi7p6enccMMNgOMhwW+99dYp99vR0cH8+fPJyclh5syZ3Hnnna4KWYhxxWBtox0T3kbHZ0hBkckAtFQWui8oIYQQQng0SbCG6LnnnmPp0qU899xz/a63Wq3D3ofNdvx9HT/4wQ+4+eab2b59O/v27eP73/8+MPwEy2Qy8cEHH7Bjxw62b9/O22+/zebNm4cVuxDjkZe1HbPypasqaljcFAAs9UXuDEsIIYQQHkwSrCFoaWlh06ZNPPHEEzz//PPdyzdu3MiyZcu44IILyMjIAByJ1hVXXEF6ejqXXnopbW1tALz//vvMmjWLrKwsrr/+esxmMwDJycn83//9H7Nnz+bf//73cfstLy8nPv7YNKSsrCw6Ozu54447eOGFF8jNzeWFF16gtbWV66+/nvnz5zNr1ixee81RT+Spp55izZo1rFixgtTUVH75y18CoJQiMDAQAIvFgsVioWdZ/S7//ve/yczMJCcnh9NOOw1wjH5dd911ZGVlMWvWLD788MPufV144YWceeaZJCcn8/DDD/PHP/6RWbNmsXDhQurq6gB4/PHHmTdvHjk5OVxyySXd709PCxcuZM+ePd2vV6xYQe8HUAsxGgz2DiwGU/froNAYzNobGuRZWEIIIYTon8uegzUq/nMrVOxybZ/RWXDOietvvPbaa6xevZrp06cTFhbGli1bmDNnDgBbt25l9+7dpKSkUFhYyIEDB3jiiSdYsmQJ119/PY8++ijf+973uPbaa3n//feZPn06V199NY899hg33XQTAGFhYWzdurXPfm+++WZWrVrF4sWLOeuss7juuusICQnh7rvvJi8vj4cffhiAn//856xatYonn3yShoYG5s+fzxlnnAHAF198we7du/H392fevHmce+65zJ07F5vNxpw5c8jPz+fGG29kwYIFffZ/991389///pe4uDgaGhoAeOSRR1BKsWvXLvbv389ZZ53FwYMHAdi9ezfbtm2jo6ODadOm8bvf/Y5t27Zx8803849//IObbrqJiy++mG9+85sA3HbbbTzxxBPdI3Nd1q5dy4svvsgvf/lLysvLKS8vZ+7cPg/JFmLEednMWHskWChFjTEcnzZJsIQQQgjRPxnBGoLnnnuOyy+/HIDLL7/8uGmC8+fPJyUlpft1QkICS5YsAeDKK69k06ZNHDhwgJSUFKZPnw7ANddcw8cff9y9zdq1a/vd73XXXce+ffv46le/ysaNG1m4cGH3yFdP77zzDvfeey+5ubmsWLGCjo4OioocU5jOPPNMwsLC8PPz4+KLL2bTpk0AGI1Gtm/fTklJSXcS1tuSJUu49tprefzxx7unL27atIkrr7wSgBkzZpCUlNSdYK1cuZKgoCAiIiKYNGkS559/PuAYeSssLAQcSdiyZcvIysrimWeeOW6kqstll13GSy+9BMCLL77IpZde2u/7I8RIM9o7sfdMsIAG7ygCOyrdFJEQQgghPN3YGsEaZKRpJNTV1fHBBx+wa9culFLYbDaUUtx///0ABAQEHNe+91S7/qbe9da7j55iY2O5/vrruf7668nMzOw3EdJa8/LLL5OWlnbc8s8//3zQeEJCQli5ciVvv/12nwId69at4/PPP+fNN99kzpw5bNmy5YQ/h8l07ELUYDB0vzYYDN33qF177bWsX7+enJwcnnrqKTZu3Ninn7i4OMLCwti5cycvvPAC69atO+F+hRgp3tqMzXh8gtXhF01cw5duikgIIYQQnk5GsAbx0ksvcdVVV3H06FEKCwspLi4mJSWFTz75pN/2RUVFfPbZZwA8++yzLF26lLS0NAoLC8nPzwfgn//8J8uXLx9032+//TYWiwWAiooKamtriYuLIygoiObm5u52Z599Ng899BBaawC2bdvWve7dd9+lrq6O9vZ21q9fz5IlS6iuru6e8tfe3s67777LjBkz+uz/8OHDLFiwgLvvvpuIiAiKi4tZtmwZzzzzDAAHDx6kqKioT2J3Is3NzcTExGCxWLr76c/atWu57777aGxsJDs7e8j9C+FK3roT3SvBsgbFE6HrMHf2HU0WQgghhJAEaxDPPfccF1100XHLLrnkkgGrCaalpfHII4+Qnp5OfX093/nOd/D19eXvf/87X/3qV8nKysJgMPDtb3970H2/88473UUmzj77bO6//36io6NZuXIle/fu7S5ycfvtt2OxWMjOzmbmzJncfvvt3X3Mnz+fSy65hOzsbC655BLmzp1LeXk5K1euJDs7m3nz5nHmmWdy3nnnAXDHHXewYcMGAH7605+SlZVFZmYmixcvJicnh+9+97vY7XaysrJYu3YtTz311HEjV4P51a9+xYIFC1iyZMlxSd2GDRu44447ul9feumlPP/881x22WVD7lsIl9Iab92J3cv3uMWGyfEYlaam7KibAhNCCCGEJ1Ndox6eYO7cubp3tbh9+/aRnp7upojGtqeeeuq4YhgTkfz+iFNms8Cvwnk97HrO//4D3Yt3f/QKmR9ex56zX2DmotVuDFAIIYQQ7qSU2qK17lOJTUawhBCiP5Z2x7+9RrCCox1FbdpqCkc5ICGEEEKMBWOryIU4Kddeey3XXnutu8MQYmyyOu+x6pVgRXQ9bLiuZLQjEkIIIcQYMCZGsDxpGqMYO+T3RgyL1TGCpXz8jlvsFziJRgIxNEmCJYQQQoi+RjzBUkqtVkodUErlK6VuPdntfX19qa2tlYtlcVK01tTW1uLr6zt4YyH6Ye/sAMDg3fd3qNYYgamtfLRDEkIIIcQYMKJTBJVSRuAR4EygBPhSKbVBa713qH3Ex8dTUlJCdXX1SIUpxilfX1/i4+PdHYYYo8zmVvwAQ68RLIAWUxTB8rBhIYQQQvRjpO/Bmg/ka62PACilngfWAENOsLy9vUlJSRmh8IQQon/m9jb8AC/vvgmWOSCWpNZdaK2H9DBxIYQQQkwcIz1FMA4o7vG6xLmsm1LqBqVUnlIqT0aphBCeorO9DQCjqW+CpYPjmaRaaWysH+2whBBCCOHh3F7kQmv9V631XK313IiICHeHI4QQAFjMjgTLq58Eyyc0AYDq0iOjGpMQQgghPN9IJ1ilQEKP1/HOZUII4dG6Eixvk3+fdYFRjmnLTRUFoxqTp2poaeetV56mqr7B3aEIIYQQbjfSCdaXQKpSKkUp5QNcDmwY4X0KIcSwWcyOMu0+/SRYoTGOBKujpmhUY/JUO5+8ka/s/AHbn7zJ3aEIIYQQbjeiCZbW2gp8D/gvsA94UWu9ZyT3KYQQrmDrdCRY3n59E6zJUYnYtMLeWNxn3URjs1rJrf0PAMubXqeuXu5LE0IIMbGN+D1YWuu3tNbTtdZTtdb3jPT+hBDCFWzOKYIm374JlvLyodYQildz2WiH5XGK9/6PYNXGtrBzMSkreze/7e6QhBBCCLdye5ELIYTwRPZOR4Ll6x/U7/pG7yj8OypGMySPVLP/UwDCz/k5ZrzRRz5yc0RCCCGEe0mCJYQQ/dBdCZZfQL/r2/yimWyRhw2rmkM0aX/iUjIo8U4hqGHIjzkUQgghxiVJsIQQoj+Wdtq1D74m735XW4PiiNK1dHRaRzkwzxLQXECpMQ6D0UBLyAwSOgvotNrdHZZH2Lt3F5t+uYr//vXn7g5FCCHEKJIESwgh+qEtbbTjg5+3sd/1xpAETMpCZUXJKEfmWcLNR6n1TQLAED2TMNVEUVGhe4PyEHVv/pKlegtnlz3Cob1b3R2Ox+i02Hjj2YfZ+IHcr9fb/oJijpZVuTsMIcQwSYIlhBD9MFjb6MCEt7H/P5OmCEep9oay/NEMy7NY2gm319IelAxAYFIuADWHt7gvJg/R3trMnJaP2B24BLtWVP3vWXeH5DE+ef0pzjv4C1Z8vJajB3e4OxyPsSu/kMCnVhD4lzmUHJL3RYixTBIsIYToh7J0YFamAdeHxKYC0FZxaLRC8jjtNUcd30xOBCAmdQ4A5tJd7grJYxzc/gl+qhM9+yoO+aQTUf6hu0PyGBF7/oYVIxZtpPKdP7o7HI9R8vafiVc1hKkmKt++z93hCCGGQRIsIYToh8HWjln5Drg+IsGRYFlrCkYrJI9TV3oYAL9wxxRB30kRVKtQTLX73BmWR2g9vBmAlJzl1EcvZqr1MK3NjW6Oyv1q62pJtx5gR+LV7AxcTHLNJ2i73LOntSap9iMKfDP4X/A5pNe+h7aa3R2WEOIUSYIlhBD9MNo66DzBCJaXbyA1ajJeTUdHMSrP0lxZCMCk6Cndyyp8pxLeOnFH9br41eykjEgCw2LxT5mHUWkKdm92d1huV7D1fbyVjaD0VXSmnEEktZQelPvTDh0tIkMfpiXpdKzTzsafDsr2fOLusIQQp0gSLCGE6IeXtQ2LYeARLIBa7zgC20pHKSLPY647il0rIuNSupe1h6QSZyul0zKxqytObj1Cua8j8UycuRiAxvzP3RmSR2guyAMgOfs0IrNWAlC1f5M7Q/IIxXs+AyAyfRlJc1Zj04qane+4OSohxKmSBEsIIfrhZe/AZvQ7YZu2gHjCrWWjFJHnUY0lVDGZiEmB3cu8I6fjpzopPTpxR7G0zUqstZT2YEeCFRKVSLUKw6tyu3sD8wA+dQepNkTgExBC8rQsGnUAtmIZwdKl2wCInD6fxNhojqgEfCq2uTkqIcSpkgRLCCH64WM3Y/U6cYJlD0kmStfR2NQySlF5FlNrGTXGCAwG1b0sKGEmALWFE7fQRU1JPj7KiiFieveyMv8ZRLfud2NUniG8vZBaf0fiaTQaOGqazuSG3W6Oyv0C6/ZQYYhG+U9GKUVlYDrRbQdAa3eHJoQ4BcNKsJRS9yul9iuldiqlXlVKhfRY9zOlVL5S6oBS6uxhRyqEEKPIW3dg9zrxFEHviBQMSlNefHCUovIsweYKmn1jjlsWPTUbgPbyiZtMVBU4ksug+IzuZa1hWSTpUtqa6twVltvVNrWRpEvoDD2WeLaEZZFoLcRibnNjZO4X2VFAbcC07tedkdlM1o201xa5MSohxKka7gjWu0Cm1jobOAj8DEAplQFcDswEVgOPKqX6f1qnEEJ4IJM2owcZwQqOcVQSbCidgNPh7HbC7NV0BsQetzhwcjQNBGGsm4DviVNb2V4AoqdkdS8zxecAUHZw4j4j7OjhPfgqC76xM7uXGeNn4aNsE/p9qWlsJkGXY+mReAYkOx55ULr3M3eFJYQYhmElWFrrd7TWXXcybwbind+vAZ7XWpu11gVAPjB/OPsSQojR5IsZ7eV/wjaRiWkAmKsOj0ZIHqWtoRwfrDApoc+6Sp9Eglombvl6VXOIWoIJjzw2uhcxNReAhqMTd+pk188elpLTvSw0dREwsQuAFOfvxlvZ8I07lngmps/HphVthXlujEwIcapceQ/W9cB/nN/HAcU91pU4l/WhlLpBKZWnlMqrrq52YThCCHFqtLUTb2wYfE48guUfGkcHPqj6wtEJzIPUlOQDYApL7LOuOTCF2M4i9AS9fySw5QgV3gkodezetLjkNNq0CXvlxH1GmK3CMbIXmnxsZC8pZbqj0EX5HneF5XZdiWfklGOJZ3R4qKPQRdVOd4UlhBiGQRMspdR7Sqnd/Xyt6dHmF4AVeOZkA9Ba/1VrPVdrPTciIuJkNxdCCJcztzYAoE3BJ26oFFXGGHxbi0/cbhxqLneM2gXFTO2zToelEqYaqamqGO2wPEJUZzHNASnHLTMajZR4JeLfOHGnTvo1HKLKEIkyBXUv8/E2UuyVRMAEfl9slfuxo5iceOyePaUUlf6phLdNvNFxIcaDQRMsrfUZWuvMfr5eA1BKXQucB1yhj31cWQr0nDcS71wmhBAer73ZWYjAd9KgbZv84phsnnh/3jprHFMAwxOm91nnF+e4UKwomHjV4ZrrKphME/awvu9LQ+BUos0Td+pkZEdBdwXBnhoCpznelwk64unXcIgqYzTKJ+C45e0h0wm312Bvq3dTZEKIUzXcKoKrgVuAC7TWPUsAbQAuV0qZlFIpQCrwxXD2JYQQo8Xc0gCAwW/wBMsSnEisvQLzBHuwrmoopEZPImJyaJ91Ec4pYM0le0c7LLcry3dM6fKNTe+zzh6eRjgNNNRUjnZYblfX3EaSLsUSmtZnnT0ynWBaaK6ZeCPBWmsizIU09BrxBPCJzQSg+siO0Q5LCDFMw70H62EgCHhXKbVdKbUOQGu9B3gR2Au8DdyotbYNc19CCDEqzC2OT4y9hpBgqbApBCgzZSVHRzosj+LXUkylMfq4Z2B1iYhPpVN7oasPuCEy92oqcdxLFJGS1WedX7zjgrns0MR7sG7J4T2YlBXvmIw+6wITHO9V+cGJ975U1DeTrEuxhvVNPEOdxUDqCiTBEmKsGW4VwWla6wStda7z69s91t2jtZ6qtU7TWv/nRP0IIYQnsbY1AGAMCBm0rX+M48KovnhiFS+YZC6j0Te233UGLy/KvOLwa5p494/Yqw7Sob2JSZjWZ120s5JgU/HEmzrZULgdgLApuX3WxaTOAqCpaOJVWCw+tBMfZcM3LrvPuuQpabRoXywTuACIEGOVK6sICiHEuNA1RdA/aPKgbcOcN6a3VUychw1rm4VwWzWWoL4VBLvU+6cQ3jGxRvUAfBvzKTPG4eXt3WddZPw0WrUvVE2sZBxAV+7BphURPSrldYmOjqNah6CqJ9770nTUMToVmTq7z7ogPx8KDYn4NUy8kWAhxjpJsIQQohdLq2OKYGBw2KBtQ2Om0Km9oCZ/pMPyGPXlBXgpO8awvveNdOkMmUasvZL2trYB24xH4R1H+72fBkAZDJR6JxLYNHF+V7oENuynzCse5d330QdKKcpNyUxqnoCVBCv3YMVIcFzfqZMAtQFTiWw/MmELgAgxVkmCJYQQvdjaGwEIDulbwKE3ZfSiwisGU3PhCEflOaqKHJ+oB0T3LdHexTs6DS9lp+zIxJne1NzSTIy9Cmto6oBtGgOnEdNZOHpBeYjo9sPUBAz8vjQHpxJnOYq2T6zbtYObDlLunQBePv2u7wydwSTdhLVp4hVGEWIskwRLCCF60R1NtGhfgvx9h9S+0S+RsI6iEY7Kc7SUO0ZgIhL63pjfZXLCTADqiyZOglV8cDsGpfHrp4JgF3t4GmE0UltVNoqRuVd1TTVxVGGL6H+UBkBHpOOHmdqyiTO6Z7Nr4joLaAzqW9K/i8lZSbDq8LbRCksI4QKSYAkhRC+qo5FW5Y+xnwp5/emclEysvYKOTssIR+YZbDWHMGtvouP7PtOoS8xUR2U4c+X+0QrL7VqOOJ5GEpa6cMA2/s5KguX5E+eC+ej+PACCk3IHbBOc6CjyUJW/fRQi8gz5RaXEqRpU1MCJZ4SzKEhD4c5RikoI4QqSYAkhRC/enfU0q+AhtzdGpOKrLJQVTYyqeQENhygyxvdbyKGLb0AwFSoCn7qJc1+NKt9Gow4gOmnGgG2ipjkq5rUUTZxKgk0FjmQyfsbcAdvEOisJthVPnEqCZXs2ARCWOn/ANslJydTqIGyVE2ckWIjxQBIsIYToxb+zjiavwe+/6hIc67igrj06MR6sG9lxmPqAge+/6lJtSiSkrXDkA/IQkxv2UOSbhsE48H+tEbEpNOMHE6hinl9FHnUqBP+I5AHbhIWFUUYExpqJM+JpLfwMG4qojGUDtvEzeVFkTCKgceJ8UCHEeCAJlhBC9BJoraPdZ/AKgl0ikx1TfNonQKn2htpqInUtOmLgUZoubcFTibUWY7fZRyEy92pqbiLJepT2iL5lyHtSBgNl3kkETZBKglprklt3UBSUC2rgKbdKKSpMKUxunRjvC0BY3TZKvKegfE88Wl4fOI3ojgKpJCjEGCIJlhBC9KQ1IfZ6rP4RQ94kMDyBdkxQN/6nCB7d8z8AAlMGnu7VRUVMJ0CZqSwrGOmw3C5/52d4KxtBU+YN2rYpcCoxlqPoCXDBXFJwkBhq6Iwb+L60Lq2TUom1FKOtnaMQmXs1tbWTZt1PfficQdtaw2fgTzvm2on3XDkhxipJsIQQogdzawMmLKjAyKFvZDBQ6RVLQEvhiMXlKVqdhRwSM5cM2jbQ+Wyf6iPj/wb9pkOfApCUPfB0ry728BmE0kRNVelIh+V2xdvfAyAma+WgbQ1RGfgoK1VF43/65O4tmwhQZgKmDX4e+cc7CsZUTaDCKEKMdZJgCSFED3WVxQD4TIo6qe2a/JMIN5eMREgexbdqGyUqhqDJgyegkVMcF4ZtZeP/gnlS+f8oNsTjH544aNuABMf7Unlo/F8w68JPacaf+LTBRzxDkh3TK6sPbx/hqNyvcfe7ACTPPmPQtlFTcwFoKhr/H1QIMV64LMFSSv1YKaWVUuHO10op9aBSKl8ptVMpNdtV+xJCiJHSWO1Ikvwmx5zUdraQFGJ1JY2t7SMRlkfQdhtT23ZQGjxrSO3DIuNpwh9VO75v0G9paSatYycVYQuG1D66q5Jg8fiuJNjZaWFG4yYKguejjF6Dto+floNNK8yl47uSoNaapKr3KDDNwHty/KDtk+JiKdehUDUxiugIMR64JMFSSiUAZwE9n7R5DpDq/LoBeMwV+xJCiJHUUV0IQEDUwM946o93ZCreykZZ4YERiMozHN61mUm0QMrg0+DAWdDBK5GA5iMjHJl77f/4JfyVmaBZFw2pfVh0Io0EoMZ5JcF9n/+HMNUIMy8eUvtJk4IpUTF4147vSoIH9u8lQx+mOeWcIbX38TJQ7JU8YQqjCDEeuGoE6wHgFqDnHbtrgH9oh81AiFLq5D4SFkKIUWavK8CmFWGxg5ch7ykkIR2A+uLxe9FctWUDANMWnjfkbZoCUogyj++b8417XqaGEFLnD+2CWRkMlHqnENw8zkf2tvybdkxMXza0BAug0m8KYa3ju1hMwabnAEg57WtD3qYpOJWozqNgs45UWEIIFxp2gqWUWgOUaq139FoVBxT3eF3iXNZ7+xuUUnlKqbzq6urhhiOEEMNiaDhKBeGEBAWc1HYRzlLt5srxW6o9svRdDnjNICx68PuMutjCphFBPc0NtSMYmfvU1dWS0bKZwxFnYPQafBpcl+bgacRZCtH28VnCvrGxkYz6Dzk4aSm+/kFD3q598gxibOXYzK0jGJ37dHRaSC99iaO+aQTFpg15O3tEOiYstFeN76RciPFiSAmWUuo9pdTufr7WAD8H7jjVALTWf9Vaz9Vaz42IGHpZZCGEGAl+LcXU+sSgTvDMnv6YgqNowR9j/ficDnd0/1am2Q5TmzS0UZoupmjH87LKj4zP+2r2v/UwJmUh+rRrT2o7HTGDYNqoKR+fo3u73niYyaqZ4OU3ntR2XtEzMShNZX7vz2zHh81vP0sy5ZjnfPuktgtMyAagUioJCjEmDCnB0lqfobXO7P0FHAFSgB1KqUIgHtiqlIoGSoGEHt3EO5cJIYRn0ppISwltAUMfoemmFFU+8QS2js8L5vL3H8OijaSd9f9OaruwZEfFvKbiPSMRllt1tLeSmv93dvvkkpQ1tPvSunRdMFfkbx2J0NyqqbWNqYee5IBPJimzTz+pbUOn5AJQVzD+EolOi43QbY9SbYggdeWVJ7VtbGoOdq1olUqCQowJw5oiqLXepbWO1Fona62TcUwDnK21rgA2AFc7qwkuBBq11uXDD1kIIUZGc20Jk2nCGpFxStu3BiQR2Vky7h4g21RdRk71erZOOoOwqITBN+ghJmkGndqIrXL8Ff/Ie+n3RFCPccVPT3rbrkqCbSXjr5Lg1ud/TQw1mFbdctLbJk6dSbv2wVo+/t6Xj19+hGy9n/q5P0R5+ZzUtgmRYRQRhaoZ3wVAhBgvRvI5WG/hGOHKBx4HvjuC+xJCiGGrOJAHgG9c9iltbw+dQiw1VNc3uTIst9v7yj34aAuhq2896W19TCbKDDGYGsdXBbSywgPMyn+E3X7zSF907klvHxYZQzUhGGvGV1GU/Xt3sKDocXYGLSN54ZqT3j7Az8RRQwK+9eMrIS88WkjOvt9TYJrB9NUnN20SwGhQlJlSCBnnhVGEGC9cmmA5R7JqnN9rrfWNWuupWussrXWeK/clhBCu1uCclpSUPvhDUftjipqOQWnKC8fPRXPx/jxmlz3H1klnkppxao8zrPNLZnL7+Jk62Wk2U/fM/0MB4V97FE7yfj0ApRTlPimENI+fxLOxsRHjS9dgUd4kX/nIKfdTEzCNyPbxcy9jW4eZ+n9cRZBqI+irj4Lh1C69WoLTiLKWgaXDxREKIVxtJEewhBBiTPEpz6NYxRARdWpPlJjsLNXeWDo+pvF0drRjfulbtKgAkr/+wCn3Y548jVhbOZ1mswujcw+bzc4Xj15PpmUXB+fdTXTi9FPuq3lSKrGWIrTd5sII3aOjo52Dj65lqq2Q8jMeITgq6ZT76gybQaiux9I89isLd3Ra+PLBK5hl28nRhb8mfNqcU+7LEJ2BETtN4/wB1UKMB5JgCSEEgNYktu6iNOjUpgcCRCQ67t2yVI39UQltt7PrsauZZs2nYOFviIiOP+W+fKJm4K1slBbsdWGEo89ms7H50W+ytPENtiVdR+55J1cJrjcVmY6/MlNdPLanfTU11bPrgQuZZ/6MXTm3kbZ0aA9cHogpdiYAlYe2uCI8t2luaWbLny5jedu77J1+I2mrh/f7MinJWUnw8HYXRCeEGEmSYAkhBFByaDuTacKesPCU+zAETKZBBePVMLanN9mtVrY8eh1zGt/h04RvMWf1VcPqLyTRccFcUzh2S7U31Nex4w/ns6T2JfJivsasa099RK9LUEIOAFWHx27FvML8vVT/aQWzOz5nZ/Zt5Fz8k2H3GT7VUQCksXDslmovLMzn6ANnsKTtA3alfZ+Mr90z7D4TU7Mway/MpWP3PBJiohj6UxGFEGIcK8t7g3ggae7JFyzoqdYnnkltY/d+o5aWJvY9dhXzWjfySfTVLL3u3mH3GTfNUardXD42p05u+ewDQv/7PbJ1OZ/P+CkLLv/FKd131Vvs9Fx4G9pLx96UL6vVxkf//jPz998HSnHw9CfJPu1il/SdlDiFOh2IvXLslfa32+xseuURcnb/lihl4cBpD5G16mqX9B05KYADKg7v2rF5HgkxkUiCJYQQgF/RhxSpOBJT0obVT1tQCtHVn2G12fEyjq1JAsUHtmF94Rrm2Y/yZerNLP36nSf9wOX++AZOplqF4lU3tqbCtTQ3sPWfv2Bx5bPUGyZT/JVnWDD/Ky7rPyw0jDIi8Bpjpbfzd22mZcMtnG7ZwUG/bMKu+BvpCcM7b3ry9fFin1cykxoOuqzP0bBnxxd0vPkzTuvM46DvTEK//jfSkk7tkQ/9UUpR5TeVjFZ5FpYQnk4SLCHEhNfeUE16+zY+i76CU3jE8PHCphBd8yZF1bUkRke4IrwRZ+nsYPsLvyIr/y+0KT/2rPo781w0GtGl2pTMpNZCl/Y5UmxWK3kbHmXqzj9wGg1siziP9GseIiIo1OX7qjClENoyNu7ZKy0upPiV25hX9wbNKoDdObeTueZHp1wV70TqA1NJa/wP2O0j0r8rlRQVUvjSL1jU+Cbtyo8dGbeQfcn/oYyuv8TqCEkjvPwDdHs9ym+yy/sXQriGJFhCiAnv4MfPkaPsBM+5dNh9+UdPhwNQUbiXxOjlLohuZG3f+AohH9/BPHsxeQGnkXTlw8yMPfUKcAPpmDSF6RVv0mmx4eNtdHn/rmDpNLPtzb8SvfMxFuhSDnqnUbf678yas2rE9tk6aTqZlVvR1s6TfvjsaDly+AClb9zLvLrXicTOlui1pF3+azInj9wHCLbwGfg3voq5thBTxJQR289wHD1ygJI372N2zQaisLEz9jKmX3Y3OZOjR2yfXrGZUA41R3YQMXPFiO1HCDE8kmAJISY8r32vUUIUmXNOG3ZfYc4pQS2l+wHPTbAKdnxM21t3kGveRrmKZPvSvzDn9LUumRLYH0NUOoGVL1Fw9BAp02aMyD5OVUdbC9s3PELS/seZTzWHjSlsm/cncs+6GmUY2WRQRWfgU2WlsmgfUVNyRnRfJ2vP7h3U/vd3LGx6mwRgd8RXiDv/58x34bS3gfjFZ8FhRyXBRA9LsPbt3krdf+9jXtM7xAK7ws4mcc3tzBqF9yUsJQe2QG3BdkmwhPBgkmAJISa0ptoK0tq28nnMFcS74J6pSXGOe1FsNZ457evwvm00vHEHc1o/po4gPkv9KXMu+TExvn4jut/gpBzYCTWHt3lMgtXcWMfuDX8i9fDTLKSB/d4ZVC36DdkrLkWN0rS0SYnZsBOqD2/3iARLa822Lz+h7cMHWNi2EZsysjfmYlIu+BmzYqeOWhzR02bDR9BStBMWf3XU9jsQrTVbP/+Izo/+wIK2T+hUXuyOuZjk829ldty0UYsjeUoaTdoPa9nYK4wixEQiCZYQYkI7sPE55ik7EQvWuqQ/ZQqizhCKqbHQJf25Sv6BXVS/8SvmN71DByY+S/gG6Zf8nEWTw0Zl/zGpjgesmst2AV8blX0OpKGmkn2v3U9G8bMsopVdptlULf8J6QvPGbXEqkt8ag42rdxeettus5P30WsYP3uIOZYttOLLvqSvM/WCW8kNTxj1eJJioyjWEahq9z47zWq18eWHr2L6/GHmWLfRih87kq9j+pqfMjs0dtTjmeTvw05DIv71Y6sAiBATjSRYQogJze/gekpUNKk5S1zWZ51vIiHtRS7rbzgOHdpPxeu/YmHjf4jHwLbYr5F68W0siogb1Tj8gkOpVOGY6txXMa+mvIhDr91LdvnLLFIdbPdfjP8Z/0fW7BVui2nypGAKVQzetQfcsn+LxcKXb/+T0G2PMt9+iDomsWP6D5hx/k1kBY1O8t0fb6OBUu8U4pvcMxLcYTbz5VtPEblzHYv0EWrVZHbOuJm0837IrED3FpeoDZhGSutG0NoljwsQQrjesBMspdT3gRsBG/Cm1voW5/KfAf/PufwHWuv/DndfQgjhSjVlR8no2MEXCdcT78KRi47gZGJbP6DDYsPXTQUdDh0+RMmGe1jc8DrJaPbEXEzKRXcwN2rYdRJPWYXvVMJbR/+CubS4gKOv/Zo51a8xHyvbJp1O2Opbyc2YN+qx9Kfafyoxo/y+WMxtbH/9MaL2PM5iXU6ZIYaduXcx85xvEWryH9VYBtIaMp3omi1oqxnlZRqVfTY2NbJ9wyNMzX+KZVRSaoxjd+6vyTj7m4T5+I5KDINpj8giqOVNOqsP4RM53d3hCCH6MawESym1ElgD5GitzUqpSOfyDOByYCYQC7ynlJqutbYNN2AhhHCV/I3/YKHSxCy90qX9GsKmEV6xnoNlZUxPGt3pVfkFhRS8dg9L69eTgpW90ReQdNGd5Ea7v1BA2+Q0Mkrz6DR34GMa+YvVoqJCCtbfw4LaV4nCxrbQc4g59+fMnZY54vs+GebwmcQXfUJbUy3+wSM7amTpaGX3hj+RsPdx5lFPvtc0ds9/kJmnX0HsCJQVHw6f2Ey8amxUFuwiKnXuiO6rqameXS/fR/rRf7KcZvJ9ZnBg0V1MX76WuBEudHKygqctggIo272J5FWSYAnhiYb71/Q7wL1aazOA1rrKuXwN8LxzeYFSKh+YD3w2zP0JIYTLhB3ZQL5xKtNmzHZpvwGxabAHagr3jVqCVVRSyv5Xf8OSmn+TQif7I88h4cK7yI5z3QNgh8sUl4V3mY2D+7cxPWfRiO2npKSIQ6/+hoU1LxOHhZ3h5xB3wR3MS0ofsX0Oh++UxVC0jpKdHzF9qWufP9bFYm5j14aHSNz7GLN0PTu8cyhe+mdyl50/6vedDVV46nxHAZD9/xuxBKuluZEdr/ye9IK/s4RmdvvNo+H0W5g250yPnX6XOnMeLe/40npkM6y63t3hCCH6MdwEazqwTCl1D9AB/ERr/SUQB2zu0a7EuUwIITxC+ZE9pFoP8r8pN+HqGmARXaXayw8AZ7m49+NVVlWz6+XfMr/iOc5SbewNO4O4C+9mZuLMEd3vqYhNXwRfQs3Bz0YkwSotLeHAq79lQfW/OY1OdoedTfyaO0elfPZwJGQtxfqhgbb8T8HFCZbV3M6O1x8mYc9jzNa17PbK5Oiyh5h92nkjVpLfVVLScqjXgdiKvnB5360tzWx79Y+kH36CJTSy228u9WfeRubslS7fl6tFhQSQZ0wlonqbu0MRQgxg0ARLKfUe0N9T837h3D4UWAjMA15USp3UPBSl1A3ADQCJie67N0AIMbEUffwPorQieflVLu/bP2oadhTUjtx9NXX19Wx/+T5mFf+DM1QLe0NOI+qCu8iYOmfE9jlcUckzaSQQQ2meS/stLS/jwKv3Mr/yRVbQwZ7QM4hZcyc5yVku3c9IiQoLY59hCn4VrntfrJ1mdrzxKHG7HmGOrmavVzrFS/7A7OVrPHbEqjdfHy92m9KJqdvqsj7b21rZ+uoDTD/0OEtpYI/vLOrP+AWZc8902T5GQ21IFrl1L4ClHbxH9hELQoiTN2iCpbU+Y6B1SqnvAK9orTXwhVLKDoQDpUDPeTHxzmX99f9X4K8Ac+fO1UMPXQghTpHWxBS9wV6fTDKTRuAZNt6+lHvFEdLk+spwzS3NbHn5D2QdeZJVqpF9QQswn3sXGemLXb4vV1MGA0V+GUQ37nBJf9XVVex6+V7mlT/LKtXOrsmriDn/TrKm5rqk/9FUE5rL3NoN2CydGL19Trkfm9XC9jfWEbPjIeboSvYb0yhdfC+zV148ZhKrnlpilxBX+CeaKgoJjk4+5X462tvYsv5Bph34C0uoY78pi4ZV65i54BzXBTuKDAkL8ap7lqq9HxOZc7a7wxFC9DLcv7brgZUASqnpgA9QA2wALldKmZRSKUAq4PoxfiGEOAUl+TtJtJfQNOW8EdtHTUAaCeZDOD5/Gr6OjnY2PXsv7b/PYkXBA1T7T6H4ovWk/+QdosdActWlNXYRybqE8pIjp9xHXV0tHz3+U3wezmVVxRMcnTSfqis+IOumVwkfg8kVgGnKUvzopGDbh6e0vc1qJW/DY5Tfk8Wc7bfRYggib8lfSfvFZuacPnoPTna1sBxHAlT0xWuntH1HRzv/e+F+Gn6XxZIDv6XBJ4YDZz/DjFs/IXWMJlcA0xd+BbP2pjLv1N4XIcTIGu49WE8CTyqldgOdwDXO0aw9SqkXgb2AFbhxLFYQtHR20Nbags3Sic1qwWazYLc6vrTdirbbsNvtzi8b2O3YteN7bbejneu03YbWzn+dyzUape3Q/S99L8SU4vglx+bLO5r2M3++95z6Hq/7tO5ep45fp45vfayLE+9P9Xx9XBzH968UaOeS43tU/dxTrPp+q9TxParevfQfX+/++4sAoL/L4d7Leh+rPtvo3i/7LBjCPvoJ5ETt+2w/hAv7QeLs3cVg++wv6JP+uU7y53YsO3Hcvdn2vUU8kLTg/BM3HAZLZBYxje9TVl5CbOypF7qwdJrZsuExknY/zFKqOWDKpPn0x5gxf2xeHMbNPRcO/5mCz9YT89UfndS2TU317Hj5frIKn2a5amF30BJaz7uDzBkLRyja0TN10QWYv/gpDVtfgvlDH5GwWa1s+88TRG77M3PtpRw2pLBl0aPMOv1rGIxjM6nqaUbWPIpei8J7/3q44IdD3s5sbmfra4+StHcdi6nikPcMGpb/gRlL1nhs8YqTkRQTwRfeOaSUvgN2G3hYpcPxQGuN2WKjva2FzvYmOttbsbQ3Y+1owdrRirXTjMVixmYxY7NYwNbp+LJ3omwWsDmX2W1orbFru/M/J8eX0hrV9b3z/zDVvV6hlXKuMaCVAgygDGhlcPwOK4OzncH5fY/l3e2cy1CgjGDo+t6AUo6+lcFxTaWdy7q2Ud37VGAwdl/jKWV0XDopA6q7bde2x/ru/tdgQGFwhmEEpTAox1Vc1+Wm6nptcP7b1T+OdQYFdu8golNmMsnfe9R+B4ZjWAmW1roT6Le+sdb6HuCe4fTvbltf/RML9v3W3WEIIUZAqSGGuJSRK34QmrYEDv2J4u0fEBt7zUlvb7VY2PrW34jd/mcW6nIOeU1n3/L7SV964Zi+QEyYMZ8yFUVw/gZgaAlWW3M9O179I2lH/s4ymtkVsJCmc24nM2vpyAY7isJCw8gLWMi0iv9g6WjF2zfghO2tlk52/OcJIrc/xFx7KQWGJLYsfJBZZ16JwTh+Lra9vYwciTmP08qepK54H6EJJ64E2dHRztbXHiZl319YRDX5XqnsXfZb0peNzSmSJ1Kbeinz991K+ZbXiZl3obvD8Vjm9hYaq0tprq2gtbEGc3MNnS316PZ6DB2NGDsb8OlswmRtws/WjI+9HZM246fb8aMTX+W6u1fs2pFK2TF0pVQcn2Yd+2Dd4EitOJZm2TG6MJaxZqMth0NffZ7zsmPdHcqQeNZDLzxMWMZyNls7UUZvlNELDI5/tcELZfACgxGD8xMCZTRgUEZH9q2MKIMBZXBm6gYjBoPB0d5gcGTuBqPjEwbUsU8XjnPsJFKKfj6S173Hnfpt03dV7yGJPp/9H9dPz+1ONFqhe7zu2e7YpzGDtEMfF77j+wHGKo5rZ+/TQvXTf69w6foEqWv5setVxydHfd5bR5AnejlY8yFdE/eu6tVnQHLwHvrpc5AWJxoBHMLroQTWN4YT/5z97+Ik35tBFkyKTx/RRCUpZzntr/tgO/IxMPQEy261svU/TxC+9UHm6xKOGFPYsXgd2SvXjo8LRKU4Gr+GBUWPU7B3CykZAxflaKyvYf9r95NW+C8W0cJO33nUnXUbWbNXjF68o0gt+DYhH17BtvV/ZNblt/fbxtzewrY3/0b8nnXM0eUcNqSQt+DPzD7rKlLGUWLVU9LZN9L5939Q/spthP7w5X7bNDbUsufNx0g59HcWU8NB7xnULb2XjHGYWHWZe/aVlO79A/b3fg2zzwXj2Phk31XaWpuoKT1CU2UhHTVFWBrKoKUKr45q/DtrCbLWM9leT5BqJxKI7K8PTLQQSKshiHZjIA0+Mdi8A7B7+YNPIMrHH+UTgPYJQPn4YzAFYjT5Y/QJwMvki7ePCR+TL17eJrx8TBi9TBi9vDF4m/DyNmH08sHLy7t7NLnrN3FYZ6rWoO09vjRa23rMmNLdM6lwzqpytLFjtznWo3V3W8cMK43G7pyJpUHbnLuxO66zjmt3bFu0vbu/7v1gB7s+br3Wx2JAO6/AnNefjnZdy5xXm9q5H9113Qj+plBmJIUO550bVcpV9we4wty5c3VenmurSwkhhLvsvu8swtoOE3n7QYyDXPzarBZ2vf0EYVsfJMFeSqEhkfr5PyL3rKsdH8iMI4015RgfmkWhXzrpP3kXo9fxn/WVHdpB6XsPM6PidYJUO1v9FuF7+v+RMdfzS2gPh91mZ9t9q8no2EbleU+RPO9cwHGRU7JvM6Wf/IsZFa8RQgv5xqk0LfgRuad/bVyNWA3kvcd+xBmVT7Bnxg/I+OqdKKMX1k4zB7/8L81b/k1m7X8JUGb2+8xEL/vpmB/pHarXn3uM8w/cyuGY85j6jafBwx4WPRzNjXVUHt1PU+kBOqoLobEE37YygjsrCLNVM5nmPts0EUCjIYQWrzDaTWF0+oajAyJQgdF4B0fgHxJB4KRwJk2OIDAkHIPPyD/wXIxvSqktWus+D+qTBEsIIUbItjcfZ9aXP2HH8ifJWXlJv206WhvZ+eY6Yvf9nXhdzmFDMvVzb2b22VeN6wvnT1+4nyX7fs1uv/n4zL0S7eVL89FtBBd/yHTLfszai53BKwg988dMzR47RTyGq7SkCMsTq0nWpRR6T8VsDCC8o5gw6rFqA9sDl+Gz6FtkLT5n3I7M9Ke1vYNtf76MpR0f0UwAzYZgwmw1mJSFdu3DnsmrCFnxPablLnN3qKPKZte8+eAPuKDhH+SveJRpK65wd0gnpamhltLDu2kqPYC15jDeDQUEtRcTYSkjnIbj2rbgR40xkiafaDoCYrAHxeE1OQHf8GRCopMJj0nE1+/EU2uFcDVJsIQQYpR1drRR97ts2pU/0T/6BL/ASY4VWlO07wsqP/47MypeI4g2Dnml0jDn+8w+68pBR7vGi4//dQ+zDz1EoGoHHPcn7Dem0ph0FlPO+hZRMRPz2YjVtbXsfvlegqry8NPtNPvFYUtezvSlFxMRHe/u8NzGYrXx6Vv/ROW/i8nagiUwFv8pi0lbuobAwGB3h+c2re0d2O9NJj/yLGbd+A93h9OvproqyvK30Vy0G3vVfgIaDxFpPkokdce1qyKMGp84WgMSsIVMwSdyKsFxaUQlphEUEuam6IUYmCRYQgjhBts/eJHMj75FhTGa6ohF0NlCZONO4uzlWLSRrYGnEXja98iYt2pCjUh0qWtsovDAdrBZSJiSQURUjLtDEmLMyfvdV0hq38vkn+/Hy43T3ppqKyjP30ZT0R501T4CmvKJMhceNxrVpk2UeCXSGDgFa9h0/GNmEJowg8ikNEx+QW6LXYhTIQmWEEK4Sd4HLxPw6e+ItpbSqbwp9Z1OW/KZpK28nIioUy/hLoQQAFvee4E5m25ga+4vmX3hTSO+v6baCsoObaW5eDdU7SOg6TDR5kJCaexu06p9KfFOpDFgCtawGfjHZRAxJZeYxGnjevqzmFgkwRJCCCGEGIfsNjv7f7uYWGsxnde/T2TiDJf021BbRUX+NpqKdqGr9hHYlE+0uZCwHiNSLdqPEu8kGgKnYg9Lwy8ug6ipOUTHTxsXz2IT4kQGSrDGT7kZIYQQQogJyGA04P/Vv6CePQfDk6s5dOYfSV180ZAqKba3tVJVtJ+Gkv20VRxC1R0hoKWQ6M4iIqgnxNmua0TqcMhiDoSl4R8/k8gpuUTHT2WGJFJCHEdGsIQQQgghxoGDOz/H+9XrSdEllBjiKJ+Uiw6Mwe4TgLJbsJrbMZrr8e2oxs9cTYi1hghdj6HHA2wbCKLKO47mwGSsYTPwjXVM7YtOSJURKSF6kREsIYQQQohxbHr2AlqmbOaTt/5G0OHXmVK/icl1Td0JlE0rmlUAdYYwWnzCKQmaSmFwIsbwqQTEpBE7ZSYhoRHdo1ZCiFMjI1hCCCGEEOOU2WLB2tGK8vLBz+Q7IauVCjFSZARLCCGEEGKCMXl7Y/IOcXcYQkwo8jGGEEIIIYQQQriIJFhCCCGEEEII4SKSYAkhhBBCCCGEi3hUkQulVDVw1N1x9BIO1Lg7CDFq5HhPHHKsJw451hOLHO+JQ471xOKJxztJax3Re6FHJVieSCmV1191EDE+yfGeOORYTxxyrCcWOd4ThxzriWUsHW+ZIiiEEEIIIYQQLiIJlhBCCCGEEEK4iCRYg/uruwMQo0qO98Qhx3rikGM9scjxnjjkWE8sY+Z4yz1YQgghhBBCCOEiMoIlhBBCCCGEEC4iCZYQQgghhBBCuIgkWCeglFqtlDqglMpXSt3q7niE6yilEpRSHyql9iql9iilfuhcHqqUelcpdcj572R3xypcQyllVEptU0q94XydopT63Hl+v6CU8nF3jMI1lFIhSqmXlFL7lVL7lFKL5Nwen5RSNzv/hu9WSj2nlPKVc3v8UEo9qZSqUkrt7rGs33NZOTzoPO47lVKz3Re5OFkDHOv7nX/HdyqlXlVKhfRY9zPnsT6glDrbLUGfgCRYA1BKGYFHgHOADOBrSqkM90YlXMgK/FhrnQEsBG50Ht9bgfe11qnA+87XYnz4IbCvx+vfAQ9oracB9cD/c0tUYiT8GXhbaz0DyMFx3OXcHmeUUnHAD4C5WutMwAhcjpzb48lTwOpeywY6l88BUp1fNwCPjVKMwjWeou+xfhfI1FpnAweBnwE4r9cuB2Y6t3nUed3uMSTBGth8IF9rfURr3Qk8D6xxc0zCRbTW5Vrrrc7vm3FcgMXhOMZPO5s9DVzolgCFSyml4oFzgb85XytgFfCSs4kc63FCKTUJOA14AkBr3am1bkDO7fHKC/BTSnkB/kA5cm6PG1rrj4G6XosHOpfXAP/QDpuBEKVUzKgEKoatv2OttX5Ha211vtwMxDu/XwM8r7U2a60LgHwc1+0eQxKsgcUBxT1elziXiXFGKZUMzAI+B6K01uXOVRVAlLviEi71J+AWwO58HQY09PjDLef3+JECVAN/d04J/ZtSKgA5t8cdrXUp8HugCEdi1QhsQc7t8W6gc1mu28a364H/OL/3+GMtCZaY0JRSgcDLwE1a66ae67TjGQbyHIMxTil1HlCltd7i7ljEqPACZgOPaa1nAa30mg4o5/b44Lz3Zg2OpDoWCKDvFCMxjsm5PDEopX6B49aOZ9wdy1BJgjWwUiChx+t45zIxTiilvHEkV89orV9xLq7smlLg/LfKXfEJl1kCXKCUKsQx1XcVjnt0QpzTikDO7/GkBCjRWn/ufP0SjoRLzu3x5wygQGtdrbW2AK/gON/l3B7fBjqX5bptHFJKXQucB1yhjz281+OPtSRYA/sSSHVWI/LBcTPdBjfHJFzEeQ/OE8A+rfUfe6zaAFzj/P4a4LXRjk24ltb6Z1rreK11Mo7z+AOt9RXAh8ClzmZyrMcJrXUFUKyUSnMuOh3Yi5zb41ERsFAp5e/8m951rOXcHt8GOpc3AFc7qwkuBBp7TCUUY5BSajWO6f0XaK3beqzaAFyulDIppVJwFDb5wh0xDkQdSwZFb0qpr+C4d8MIPKm1vse9EQlXUUotBT4BdnHsvpyf47gP60UgETgKXKa17n2DrRijlFIrgJ9orc9TSk3BMaIVCmwDrtRam90YnnARpVQujoImPsAR4DocHyjKuT3OKKV+CazFMX1oG/ANHPdiyLk9DiilngNWAOFAJXAnsJ5+zmVnkv0wjmmibcB1Wus8N4QtTsEAx/pngAmodTbbrLX+trP9L3Dcl2XFcZvHf3r36U6SYAkhhBBCCCGEi8gUQSGEEEIIIYRwEUmwhBBCCCGEEMJFJMESQgghhBBCCBeRBEsIIYQQQgghXEQSLCGEEEIIIYRwEUmwhBBCCCGEEMJFJMESQgghhBBCCBf5/11cpNzDuqTeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -5087,31 +5087,31 @@ " 54\n", " True\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " bAP.soma.v\n", - " 0.00384\n", - " 1.24e-06\n", + " 0.00158\n", + " 3.19e-07\n", " \n", " \n", " 55\n", " True\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step1.soma.v\n", - " 0.00397\n", - " 1.97e-05\n", + " 0.00751\n", + " 1.78e-06\n", " \n", " \n", " 56\n", " True\n", " 8\n", - " 0.07\n", - " 0.0122\n", + " 0.0708\n", + " 0.0267\n", " Step3.soma.v\n", - " 0.00394\n", - " 9.26e-05\n", + " 0.00359\n", + " 8.12e-05\n", " \n", " \n", "\n", @@ -5119,14 +5119,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "54 True 8 0.07 0.0122 bAP.soma.v \n", - "55 True 8 0.07 0.0122 Step1.soma.v \n", - "56 True 8 0.07 0.0122 Step3.soma.v \n", + "54 True 8 0.0708 0.0267 bAP.soma.v \n", + "55 True 8 0.0708 0.0267 Step1.soma.v \n", + "56 True 8 0.0708 0.0267 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "54 0.00384 1.24e-06 \n", - "55 0.00397 1.97e-05 \n", - "56 0.00394 9.26e-05 " + "54 0.00158 3.19e-07 \n", + "55 0.00751 1.78e-06 \n", + "56 0.00359 8.12e-05 " ] }, "metadata": {}, @@ -5134,7 +5134,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACuwElEQVR4nOzdeXxU9b3/8ddnJisQ9hBWCS4gq6iAWMGtvS6tSq1W9Lp7W6+2tmqrdldqr/fXWltbtbdWa2urFrHurVarVVSsqKCICKgsYV9CgISEbDPz+f1xTuIQsmEmTALv5+MxD+ac8z3f8znnZMJ88l2OuTsiIiIiIiLSdpF0ByAiIiIiIrKvUIIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLRKSDMLNCM3Mzy0h3LPs6M7vEzOakO46OxsymmtmH6Y5DRKQzU4IlIiKdmpnNMLNaMytPet2Q7rg6I3d/zd1HpLpeMzvdzBaF9+bfZjYq1ccQEekolGCJiKSIWp7Sapa7d0t63ZrugFKpM/9smdkhwEPAFUBP4G/A0535nEREmqMES0SkDcysyMy+Y2YLgQozyzCzyeFf6beb2XtmdnxS+dlm9v/M7C0zKzOzp8ysdxN1X2pmS8xsh5mtMLP/brB9mpktCOtZbmanhOt7mNl9ZrbBzNaZ2f+YWbSF8zjIzF4ysxIz22JmD5lZz6RtW83siHB5oJkV152XmZ1hZh+E5zvbzEY2uD7XmdlCMys1s1lmlrPnV3rPmdl3w+uyw8wWm9mZTZQzM7vdzDaH1/J9MxsTbss2s9vMbLWZbTKzu80st5XHvz8s/0IYwytmNjRp+6/NbE14zPlmNjVp2wwze9TMHjSzMuASM5tkZm+E13mDmd1lZllJ+7iZfc3MPg6P95Pw3v07PMYjyeWbiPl4M1vbmvPbAycDr7n7HHePAT8DBgHHpfg4IiIdghIsEZG2Ow/4AsFf5wuAZ4D/AXoD1wGPmVl+UvmLgMuAAUAMuKOJejcDpwHdgUuB25OSnEnAn4Hrw+MeCxSF+90f1nswcDhwEvCVFs7BgP8HDARGAkOAGQDuvhz4DvCgmXUB/gj8yd1nm9lwYCZwDZAPPAv8rcEX+XOAU4BhwDjgkkYDMJsSJg9Nvaa0cA4NLQemAj2AH4fxD2ik3EkE1294WPYcoCTc9tNw/XiC6zkIuHEPYjgf+AnQF1hA0JJT5+2w3t7AX4C/Nkg+pwGPEtzfh4A4cG1Y19HAZ4GvNTjeycCRwGTgBuAe4AKC+zmG4Gf1UwsT5abuz/81t2uD9xbGIyKyz1GCJSLSdne4+xp3ryT4Mvusuz/r7gl3fwGYB3w+qfwD7r7I3SuAHwHnNNbC5O7PuPtyD7wC/JMgYQD4L+AP7v5CeJx17r7UzArCY13j7hXuvhm4HTi3uRNw92VhXdXuXgz8kqQWBne/F1gGvEmQGP4g3DQdeCbctxa4DcgFPtPg+qx3960E3cPGNxHDHHfv2cyruUkpzmnwZX+gu/81PG7C3WcBHwOTGtm3FsgDDgXM3Ze4+wYzM+By4Fp33+ruO4D/belaNvCMu7/q7tUE1+xoMxsSnu+D7l7i7jF3/wWQDSSPf3rD3Z8M46909/nuPjcsXwT8jt1bgW519zJ3/wBYBPzT3Ve4eynwD4KE+1Nz93HN3J+GyV6dF4HjwtaxLOD7QBbQpS2xiIh0VEqwRETabk3S+6HAl5O/7ANTCJKSxsqvAjIJWiV2YWanmtncsHvedoLEqa7cEIIWmoaGhvVtSDr+74B+zZ2AmRWY2cMWdCksAx5sJKZ7CVod7gwTBghavFbVFXD3RHh+g5L225j0fifQrblYPqVHGnzZX29mF1nQhbLuOoyhkevs7i8BdwG/ATab2T1m1p2gRa4LMD+pjufC9a1Vf6/dvRzYSnDNCLtOLgm7Tm4naD3r29i+YfnhZvZ3M9sY3qP/beR8NiW9r2xkuT2ufbPcfSlwMcE13kAQ82Ig1V0RRUQ6BCVYIiJt50nv1xC0UCV/2e/q7j9NKjMk6f0BBC0oW5IrNLNs4DGCFqECd+9J0P2urqvVGuCgRmJZA1QDfZOO393dR7dwDv8bnsdYd+9O0BJX363LzLoBvwLuA2bYJ+PG1hMkdXXlLDy/dS0cbzcWTBFe3sxrasu11Nc1lCAhvAroE16/RezaVa2eu9/h7kcCowi6BF5PcE8qgdFJ17KHu+9JklJ/r8Nr2BtYH57LDQTdEXuF8ZU2iC/55wrgt8BS4JDwHn2/qfNpLxaMtWvq/tzd1H7u/qi7j3H3PsBNQCFBF0kRkX2OEiwRkdR6EDjdzE42s6iZ5YRdowYnlbnAzEaF45luBh5193iDerIIuowVAzEzO5VgrFCd+4BLzeyzZhYxs0Fmdqi7byDoSvgLM+sebjvIzFqaUCAPKAdKzWwQQYKR7NfAPHf/CsEYs7ov048AXwjjyAS+TZDg/bulC9VQOEV4t2Zer+1BdV0JEpRiCCYMoYkxP2Y20cyOCuOvAKqARNgady/B2Ld+YdlBZnZy0r5uSZOYNOLz4diyLIKxWHPdfQ3B9Y6F8WWY2Y0EY+2akweUAeVmdihwZQvlU87dRzdzf65oaj8zOzL8POQTjAt7OmzZEhHZ5yjBEhFJofDL8zSC1oVighal69n19+0DBBNRbARygG82Us+OcP0jwDbgP4Gnk7a/RTjxBUHLxyt80pJ0EUGCtjjc91F27aLYmB8DR4R1PQM8XrfBzKYRTFJR94X+W8ARZna+u39I0Np1J0GLz+nA6e5e08Lx2pW7LwZ+AbxB0E1uLPB6E8W7EyRS2wi6O5YAPw+3fYdg7NncsFvei4TjpMKxVDuA95sJ5S8ELTZbCSafuCBc/zxBd8OPwmNW0aBLYCOuI/g52BHGO6uF8h3Jr4HtwIcE1/mraY1GRKQdmXvDHggiItJezGw28KC7/z7dsUjbmNkFBN0Hv9fE9vuBte7+w70amIiIpJUe8iciIvIpuPuD6Y5BREQ6HnURFBHZT1jw0Ns9mpxA9j1m9v0mfg7+ke7YRET2BeoiKCIiIiIikiJqwRIREREREUmRDjUGq2/fvl5YWJjuMERERERERJo1f/78Le6+28PnO1SCVVhYyLx589IdhoiIiIiISLPMbFVj69VFUEREREREJEWUYImIiIiIiKSIEiwREREREZEU6VBjsBpTW1vL2rVrqaqqSnco0gHk5OQwePBgMjMz0x2K7GPcnb/+34/oMuZUTjvumHSHIyIiIp1Uh0+w1q5dS15eHoWFhZhZusORNHJ3SkpKWLt2LcOGDUt3OLKPWbduDecU3wkv30n8M8VEM7PSHZKIiIh0Qh2+i2BVVRV9+vRRciWYGX369FFrprSLkpKS+vdFS95OYyQiIiLSmXX4BAtQciX19LMg7aWyfHv9++Klb6QvEBEREenUOkWCJSLS3qoqyurfZ2x8N42RiIiISGemBKsVzIxvf/vb9cu33XYbM2bMSF9ASY4//vhmH878xS9+kcmTJ++ybsaMGQwaNIjx48czZswYnn766fYOU6TDq6kMEqxqssjbsTzN0YiIiEhnpQSrFbKzs3n88cfZsmVLSut1dxKJRErrTLZ9+3bmz59PaWkpK1as2GXbtddey4IFC/jrX//KZZdd1q5xiHQG8codAGzIHU5+7VrcPc0RiYiISGekBKsVMjIyuPzyy7n99tt321ZcXMxZZ53FxIkTmThxIq+//joQtBLddttt9eXGjBlDUVERRUVFjBgxgosuuogxY8awZs0arr/+esaMGcPYsWOZNWsWALNnz+b444/n7LPP5tBDD+X8889v8gvfAw88UN8a9dZbb9Wvf/zxxzn99NM599xzefjhhxvdd+TIkWRkZOySPH73u99l1KhRjBs3juuuuw6AoqIiTjzxRMaNG8dnP/tZVq9eDcAll1zClVdeyeTJkznwwAOZPXs2l112GSNHjuSSSy6pr/PKK69kwoQJjB49mptuumm3OEpLSxk6dGh9oldRUcGQIUOora1tNG6RVIvUlgOws+9YerODLZs3pjkiERER6Yw6/DTtyX78tw9YvL6s5YJ7YNTA7tx0+ugWy339619n3Lhx3HDDDbusv/rqq7n22muZMmUKq1ev5uSTT2bJkiXN1vXxxx/zpz/9icmTJ/PYY4+xYMEC3nvvPbZs2cLEiRM59thjAXj33Xf54IMPGDhwIMcccwyvv/46U6ZM2a2+nTt3smDBAl599VUuu+wyFi1aBMDMmTO58cYbKSgo4KyzzuL73//+bvu++eabRCIR8vPzgWAmtSeeeIKlS5diZmzfvh2Ab3zjG1x88cVcfPHF/OEPf+Cb3/wmTz75JADbtm3jjTfe4Omnn+aMM87g9ddf5/e//z0TJ05kwYIFjB8/nltuuYXevXsTj8f57Gc/y8KFCxk3blx9HD169GD8+PG88sornHDCCfz973/n5JNP1vOuZK+JxHYG/w48DNbMZPOqxeQXDEhzVCIiItLZqAWrlbp3785FF13EHXfcscv6F198kauuuorx48dzxhlnUFZWRnl5ebN1DR06tH5c1Jw5czjvvPOIRqMUFBRw3HHH8fbbwRTRkyZNYvDgwUQiEcaPH09RUVGj9Z133nkAHHvssZSVlbF9+3Y2bdrExx9/zJQpUxg+fDiZmZn1iRfA7bffzvjx47nuuuuYNWtW/ex8PXr0ICcnh//6r//i8ccfp0uXLgC88cYb/Od//icAF154IXPmzKmv6/TTT8fMGDt2LAUFBYwdO5ZIJMLo0aPrY37kkUc44ogjOPzww/nggw9YvHjxbucxffr0+ha8hx9+mOnTpzd7HUVSKaO2AoBuwyYAULHho3SGIyIiIp1Up2rBak1LU3u65pprOOKII7j00kvr1yUSCebOnUtOTs4uZTMyMnYZ15T87KauXbu26njZ2dn176PRKLFYrNFyDacuNzMeeeQRtm3bVv9A3rKyMmbOnMktt9wCBGOw6rr/NYz7rbfe4l//+hePPvood911Fy+99FKr4oxEIrvEHIlEiMVirFy5kttuu423336bXr16cckllzT6LKszzjiD73//+2zdupX58+dz4oknNntckVTKiFVQQwb9ho0l7kai+ON0hyQiIiKdkFqw9kDv3r0555xzuO++++rXnXTSSdx55531ywsWLACgsLCQd955B4B33nmHlStXNlrn1KlTmTVrFvF4nOLiYl599VUmTZq0R3HVtfrMmTOHHj160KNHD2bOnMlzzz1XP+5r/vz5TY7DSlZeXk5paSmf//znuf3223nvvfcA+MxnPlO//0MPPcTUqVNbHV9ZWRldu3alR48ebNq0iX/84x+NluvWrRsTJ07k6quv5rTTTiMajbb6GCJtlRHbyU5yycrOYUOkgKzSFS3vJCIiItJAp2rB6gi+/e1vc9ddd9Uv33HHHfXjs2KxGMceeyx33303Z511Fn/+858ZPXo0Rx11FMOHD2+0vjPPPJM33niDww47DDPj1ltvpX///ixdurTVMeXk5HD44YdTW1vLH/7wB4qKili1atUu07MPGzaMHj168OabbzZax+c//3l+//vfY2ZMmzaNqqoq3J1f/vKXANx5551ceuml/PznPyc/P58//vGPrY7vsMMO4/DDD+fQQw9lyJAhHHPMMfXbbrzxRiZMmMAZZ5wBBN0Ev/zlLzN79uxW1y+SChnxCnZaLj2BLVmD6VG5Jt0hiYiISCdkHWkq4gkTJnjDZzotWbKEkSNHpiki6Yj0MyHt4b3bTqP7zlUMu/F9/n3npYwr+QfdbtoADbrgioiIiACY2Xx3n9BwfZu7CJrZEDN72cwWm9kHZnZ1uH6Gma0zswXh6/NtPZaISHuJJGqotSwAvOdQulFJeWlJmqMSERGRziYVXQRjwLfd/R0zywPmm9kL4bbb3f22ZvYVEekQIokYCQvG/eX0HQbLYfPqj+jWs2+aIxMREZHOpM0tWO6+wd3fCd/vAJYAg9par4jI3mQeI27B35zy+h8EQNmGZekMSURERDqhlM4iaGaFwOFA3UwKV5nZQjP7g5n1amKfy81snpnNKy4uTmU4IiKtFvFaEhY82LrvkEMAqN5SlMaIREREpDNKWYJlZt2Ax4Br3L0M+C1wEDAe2AD8orH93P0ed5/g7hPy8/NTFY6IyB6JJmIkwhasXr3z2eG5sH11mqMSERGRziYlCZaZZRIkVw+5++MA7r7J3ePungDuBfbs4U4iIntR1GMkIkGCZZEIm6MFZFesTXNUIiIi0tmkYhZBA+4Dlrj7L5PWD0gqdiawqK3HSqcnn3wSM2v2+VRFRUWMGTMmZce85JJLePTRR5vcfs011zBo0CASiUT9uvvvv5/8/HzGjx/PqFGjuPfee1MWj8i+LOIxPOwiCFCaPZAeVevTGJGIiIh0RqlowToGuBA4scGU7Lea2ftmthA4Abg2BcdKm5kzZzJlyhRmzpzZ6PZYLNbmY8Tj8VaXTSQSPPHEEwwZMoRXXnlll23Tp09nwYIFzJ49m+9///ts2rSpzbGJ7OuiHiMR/WRi1epug+iX2AQd6FmBIiIi0vGlYhbBOe5u7j7O3ceHr2fd/UJ3HxuuP8PdN6Qi4HQoLy9nzpw53HfffTz88MP162fPns3UqVM544wzGDVqFBAkWueffz4jR47k7LPPZufOnQD861//4vDDD2fs2LFcdtllVFdXA1BYWMh3vvMdjjjiCP7617/uduwXX3yRCRMmMHz4cP7+97/vcuzRo0dz5ZVXNpn09evXj4MOOohVq1bVr7vjjjsYNWoU48aN49xzzwVg69atfPGLX2TcuHFMnjyZhQsXAjBjxgwuvvhipk6dytChQ3n88ce54YYbGDt2LKeccgq1tbUA3HzzzUycOJExY8Zw+eWX0/Dh1YlEgsLCQrZv316/7pBDDlHiJx1KBjE88kkLFj2H0pUqyrZuTl9QIiIi0umk4jlYe88/vgsb309tnf3Hwqk/bbbIU089xSmnnMLw4cPp06cP8+fP58gjjwTgnXfeYdGiRQwbNoyioiI+/PBD7rvvPo455hguu+wy/u///o+rrrqKSy65hH/9618MHz6ciy66iN/+9rdcc801APTp04d33nmn0WMXFRXx1ltvsXz5ck444QSWLVtGTk4OM2fO5LzzzmPatGl8//vfp7a2lszMzF32XbFiBStWrODggw+uX/fTn/6UlStXkp2dXZ/w3HTTTRx++OE8+eSTvPTSS1x00UUsWLAAgOXLl/Pyyy+zePFijj76aB577DFuvfVWzjzzTJ555hm++MUvctVVV3HjjTcCcOGFF/L3v/+d008/vf6YkUiEadOm8cQTT3DppZfy5ptvMnToUAoKClp9m0TaW9RjuH3yKzGrTyF8DJvXfET3PvpZFRERkdZJ6TTt+6qZM2fWt/ace+65u7QYTZo0iWHDhtUvDxkyhGOOOQaACy64gDlz5vDhhx8ybNgwhg8fDsDFF1/Mq6++Wr/P9OnTmzz2OeecQyQS4ZBDDuHAAw9k6dKl1NTU8Oyzz/LFL36R7t27c9RRR/H888/X7zNr1izGjx/Peeedx+9+9zt69+5dv23cuHGcf/75PPjgg2RkBF8m58yZw4UXXgjAiSeeSElJCWVlZQCceuqpZGZmMnbsWOLxOKeccgoAY8eOpaioCICXX36Zo446irFjx/LSSy/xwQcf7HYe06dPZ9asWQA8/PDDzZ6zSDpEiUP0kz9S9BgYPAtrx8YV6QpJREREOqHO1YLVQktTe9i6dSsvvfQS77//PmZGPB7HzPj5z38OQNeuXXcpH8z50fRyYxrW0VJ9zz//PNu3b2fs2LEA7Ny5k9zcXE477TQgSGbuuuuuRut75plnePXVV/nb3/7GLbfcwvvvN98imJ2dDQStUJmZmfXxRCIRYrEYVVVVfO1rX2PevHkMGTKEGTNmUFVVtVs9Rx99NMuWLaO4uJgnn3ySH/7wh80eV2Rva9hFMH9w8Cysmi0r0xWSiIiIdEJqwWrBo48+yoUXXsiqVasoKipizZo1DBs2jNdee63R8qtXr+aNN94A4C9/+QtTpkxhxIgRFBUVsWzZMgAeeOABjjvuuFYd/69//SuJRILly5ezYsUKRowYwcyZM/n9739PUVERRUVFrFy5khdeeKF+vFdTEokEa9as4YQTTuBnP/sZpaWllJeXM3XqVB566CEgGNvVt29funfv3qr46pKpvn37Ul5e3uSsh2bGmWeeybe+9S1GjhxJnz59WlW/yN6S4bFdWrC69+pLqXfFSvUsLBEREWk9JVgtmDlzJmeeeeYu684666wmJ5YYMWIEv/nNbxg5ciTbtm3jyiuvJCcnhz/+8Y98+ctfZuzYsUQiEa644opWHf+AAw5g0qRJnHrqqdx9990kEgmee+45vvCFL9SX6dq1K1OmTOFvf/tbo3V85StfYd68ecTjcS644ALGjh3L4Ycfzje/+U169uzJjBkzmD9/PuPGjeO73/0uf/rTn1p5daBnz5589atfZcyYMZx88slMnDixftvdd9/N3XffXb88ffp0HnzwQXUPlA4pg/guLVhmRnFGAdnlehaWiIiItJ41nPEtnSZMmODz5s3bZd2SJUsYOXJkmiKSjkg/E5JqiYTDj3vx9gGXctR/3V6//p1bP0/vqjUU3pjiyXVERESk0zOz+e4+oeF6tWCJyH6vNlZLxBwiu87EWd1tMP3im/Ckh3mLiIiINEcJlojs92prgufSEc3adUPPoXSxakpLNu79oERERKRT6hQJVkfqxijppZ8FaQ+x2hoALLprC1Z2fiEAW9Yu29shiYiISCfV4ROsnJwcSkpK9MVacHdKSkrIyclJdyiyj2kqwerev+5ZWMv3ekwiIiLSOXX452ANHjyYtWvXUlxcnO5QpAPIyclh8ODB6Q5D9jFNJVj5Q4KHg9ds0cOGRUREpHU6fIKVmZnJsGHD0h2GiOzD4rXBGCzL2HUMVo+evdlON6x0TTrCEhERkU6ow3cRFBFpb7VNtGABFEcLyKlYt7dDEhERkU5KCZaI7PcSsSDBimTsnmDtyB5Ij+oNezskERER6aTaPcEys1PM7EMzW2Zm323v44mI7KlYbS0A1nCadqA6T8/CEhERkdZr1wTLzKLAb4BTgVHAeWY2qj2PKSKyp+KxYAxWJGP3BMt6DiXXathWrG6CIiIi0rL2bsGaBCxz9xXuXgM8DExr52OKiOyRRG3TXQSz84NJdkr0LCwRERFphfZOsAYBydNvrQ3X1TOzy81snpnN01TsIpIOiXjQRTDaSAtWj4EHAlC2Sc/CEhERkZalfZILd7/H3Se4+4T8/Px0hyMi+6FYMy1Y+YMOBqB2S9HeDElEREQ6qfZOsNYBQ5KWB4frREQ6DA9nEYxmZu+2La9Hb7aRR6R09d4OS0RERDqh9k6w3gYOMbNhZpYFnAs83c7HFBHZI3XTtEcbacEC2BLtr2dhiYiISKtktGfl7h4zs6uA54Eo8Ad3/6A9jykisqcS4SyC0aycRreX5Qwgv1JjsERERKRl7ZpgAbj7s8Cz7X0cEZFP65MugrmNbq/JG0xB+Rt4Io5FonszNBEREelk0j7JhYhIulmsCoBoduMtWJFeQ8m2Wko2rd2bYYmIiEgnpARLRPZ7XpdgZTaeYOXkFwJQsu7jvRWSiIiIdFJKsERkv2fhGKzMrC6Nbu8x4BAAyjeu3GsxiYiISOekBEtEJEywMproIthvSPgsrBIlWCIiItI8JVgist+zeNiC1chzsAC6dOvBVrrrWVgiIiLSIiVYIiLxaqo8k8yMpn8lbsnoT66ehSUiIiItUIIlIhKrpposzKzJIjtyBtKzZuNeDEpEREQ6IyVYIrLfs3g1tdb8YwFr8gZTkNhMIh7fS1GJiIhIZ6QES0T2e5F4NTVkNV+m11CyLEbJRo3DEhERkaYpwRIRiddQa80nWDn5wwA9C0tERESapwRLRPZ70Xg1MctstkzPAcFU7RWbVuyNkERERKSTUoIlIvu9SLyaWKT5FqyCA4KHDddu0bOwREREpGlKsERkvxdN1BBrqYtgl25sojcZpUqwREREpGlKsERkvxf1GhIttGABFGcNJq9Ck1yIiIhI09qUYJnZz81sqZktNLMnzKxnuL7QzCrNbEH4ujsl0YqItIOMRA3xSHaL5cq7DqVfrR42LCIiIk1rawvWC8AYdx8HfAR8L2nbcncfH76uaONxRETaTYbXEI+23IKV6HUgvSijorRkL0QlIiIinVGbEix3/6e7x8LFucDgtockIrJ3ZXotiWjLLVhZ+cFMgpuKFrd3SCIiItJJpXIM1mXAP5KWh5nZu2b2iplNbWonM7vczOaZ2bzi4uIUhiMi0jqZXoO3ogWr55BDAShdt7S9QxIREZFOKqOlAmb2ItC/kU0/cPenwjI/AGLAQ+G2DcAB7l5iZkcCT5rZaHcva1iJu98D3AMwYcIE/3SnISLy6WV7NWTktliuf+FIAGo2L2vvkERERKSTajHBcvfPNbfdzC4BTgM+6+4e7lMNVIfv55vZcmA4MK+tAYuIpFIiHqcblSSy8los261bHpvoQ8Z2TdUuIiIijWvrLIKnADcAZ7j7zqT1+WYWDd8fCBwCrGjLsURE2sPOilIi5pDTo1Xlg6naV7VzVCIiItJZtXUM1l1AHvBCg+nYjwUWmtkC4FHgCnff2sZjiYik3M6y7QBYTvdWld/R9QDya9e3Y0QiIiLSmbXYRbA57n5wE+sfAx5rS90iIntDVfk2AKK5rUuwvNeB9Nr2N3aWldCle5/2DE1EREQ6oVTOIigi0unUJVgZXVrXRTCzn6ZqFxERkaYpwRKR/Vpt+XYAsrr0alX5noPCqdrXaqp2ERER2Z0SLBHZr9VWlgKQ1a11LVgDhmmqdhEREWmaEiwR2a/Fdm4HoEte71aV79Ytj430Jaqp2kVERKQRSrBEZL9WuzNowerRq/UTVhRnDdJU7SIiItIoJVgisl9LVJYSd6NL19bNIghQ3nUo/WrXtWNUIiIi0lkpwRKR/VrGzs1ssx5YpPW/DhM9h9GTHews3dKOkYmIiEhnpARLRPZrXas2URLN36N9MvsdAmiqdhEREdmdEiwR2a/1qN1MWVbBHu3Ta0gwVXvZug/bIyQRERHpxJRgicj+y50+8WIqcvYswepfeCgJN6o1VbuIiIg0oARLRPZbiZ3b6UIV8byBe7RfXrc8iq0Xtn11O0UmIiIinZUSLBHZb23btAKAjF5D9nzfjAJyK9enOiQRERHp5JRgich+q3RDEQBd+gzd430rcgroUbM5xRGJiIhIZ6cES0T2Wzu3BF38uvcv3ON9q7sOpF+iGE8kUhyViIiIdGZtSrDMbIaZrTOzBeHr80nbvmdmy8zsQzM7ue2hioikVmzbGmIeoWDgnrdg0WMw2VZL6ZYNqQ9MREREOq2MFNRxu7vflrzCzEYB5wKjgYHAi2Y23N3jKTieiEhKWNk6NtObAV1z9njfrLBbYcmG5fTsNyjVoYmIiEgn1V5dBKcBD7t7tbuvBJYBk9rpWCIin0pO5UZKMvIxsz3eN69fIQDlm4pSG5SIiIh0aqlIsK4ys4Vm9gcz6xWuGwSsSSqzNlwnItJhdK/eRHn2nj0Dq07vgQcCUFOiqdpFRETkEy0mWGb2opktauQ1DfgtcBAwHtgA/GJPAzCzy81snpnNKy4u3tPdRUQ+HXd6J7ZQ02XAp9q9T9/+7PRsKF2b4sBERESkM2txDJa7f641FZnZvcDfw8V1QPKDZQaH6xqr/x7gHoAJEyZ4a44lItJW1WWbyKYW7/7pGtcj0QibI33JrGj0V5uIiIjsp9o6i2Dyn37PBBaF758GzjWzbDMbBhwCvNWWY4mIpNLW9SsByOi95w8ZrlOaWUC3qo2pCklERET2AW2dRfBWMxsPOFAE/DeAu39gZo8Ai4EY8HXNICgiHUnpxpUMAPLyP8UU7aHK3P4MLJubuqBERESk02tTguXuFzaz7RbglrbULyLSXipLgnl46iar+DRi3QbQZ/s2ErU1RDKzUhWaiIiIdGLtNU27iEiHFt+2hmrPpF//Tz/BabTHICLmbNusiS5EREQkoARLRPZLGeXr2Wx9yM789A352b0HA7Bt48pUhSUiIiKdnBIsEdkv5VZuZHtmvzbVkVdQCEB5sZ6FJSIiIgElWCKyX+pZu5mdOZ/uIcN1eg8oBKB2m7oIioiISEAJlojsdzweo0+ihFi3gW2qp3fvfHZ6NolSPQtLREREAkqwRGS/s33zWjIsgfUY3KZ6LBJhS6QPmRV6FpaIiIgElGCJyH6nZEMwKUVO3wPaXFdpZj+6VG1qcz0iIiKyb1CC1YzSbVtYX/RhusMQkRTbsbkIgLx+hW2uqzKngJ6x4jbXIyIiIvuGNj1oeF+39IU/cNTiW/g4ejBbDjiZgsNPo3DUJCIZumwinVlN+JDh/EGf/iHDdWLdBtC3tIRErJZIRmab6xMREZHOTZlCMw44ahpzq3bQe/VzHL3yN7DyN+x4PJeVuWOp6DOO7IGj6F04lvwDDqVrt+7tHo8nElRXV1JdVUlt9U5qwn9rqyuJVVcSq9lJvKaKeE0lidoqEjVVeG0VHgtexGshEYdEDDyOJeKQiGMeA09gifBfj2GJOOZxIh4HTyRHsVtclrTO3OuXbJeyu++3ax11payFEru+bWJF4+tt12M03KupYxvg1tQxGtdUXU2f357XxR7GJJ/oX7GMnZ5Nj15921yX9TmYjPUJNq5eSv8Dx6Yguv2YO9WVO6go3UpFaQmVO3dQtXMH8aoK4jU7SVRX4LU7oaYSaiugthKP1YS/22oxjxFJxILfXYkYEf/kZR6H8PeTed3vo+Dfuk+S1S83//sq2DPca5fPodVvq/+d1mB7/e9HS/5sN/wX3OqWG/mc267H2eV3hO1aV2O/u3Y/7ifrkn6bJ8XSoM7dIxIRaVfbM/Lx//gfPjeqbbP/7i1KsJoxYOgIBlz0E+AnbF63klXznye+8t8MKH2H0WveJrrW4a2gbDm5bLdelGb0oibajURGDp6RSzyaQ8IyMBKAf/IfuzsWryaSqCESryaaqCaaqCEjUUOm15Dhwb9ZXkMWNWR7LdlWSw6Q08bzqvUocSIkiBCzKAkixEn61yIkiBK3KE4keCX9H93cf84N7bq+qTJ1W5v6b7vp/86b3Ge31bt+kWq4pfkvVI1vazqta6r8pzm/PTuGtN77fU/lqEjbe0n3GDoG3ofNKxa0mGDF43Hee+kRuvcv5OCxR7f52B1dTVUl24rXsmPLBnZuXUf19o3Ed2wiUlFMpGo7mbWl5MR2kJvYQddEOXleTrbFyQZ6t6L+as+glkxiFiVORv2/8fD3V5wM4pZBwjJIWAQwzCwpuQk+SclpVcNEI/l3WMPPXWN/RAr+yJRUoydvY5fydRHs9jvIG/6+Sk57kpJDD/8A1GDbLmXqtzWyfxPbmovFGsTyaf5oJPso/ShIO6qxHayuqE53GK2mBKuV+g0aRr9BVwBXAFBVWcGKj96nbM371G5dRaJsI9lVxXStLaF7rITMmioyE9XkUE2ERNJ/W5/8J15rWdSSSW0ki5hlEYtkU5vRlcpIbxKRLBLRbDyaRSKag2dkQ0YOVvdvZi6WmUMkK4doZi7RrBwysur+7UJmTi6Z2blk5XQhK7sLWTk5ZGbmEIlGyQTUkUn2d22f3iIw6KDDAKhat7jJMtVVFSx85l7yF93LEb6WxRkjYezcFEWQHtVVFRSvXcH2DSvYuWUV8a1riO5YS5fK9eTVbqFXYhvdqaAAaPj3xjLvQlmkO1XRblRF86jIKWBDVg8S2T0gpweW25Nol15k53Yjq0semTldyczpSkZONzJzu5Kd242c3DyyMjPIVkuuiMg+7wCgM/1ZUgnWp5ST25VDDpsMh01OdygikkY9evVmHQXkbH53t23Fm9by0TN3cOjqh5lIKSuiw3g3PoKDY0VBy0AHTg48kWBL8To2r1xM+foPiW9ZTnZZEXlV6+kT20wftjMYqJvoPuHGFuvFtox+lOQeyIbcfBJd8ol0LyC7R39yew+ge99B9MofRPcuXWn/TtUiIiLpoQRLRKSNivoey4TiJ6ks20Zmbjc+mPMEifkPMHrH6xxjcRbmTmLdZ77B2GNO498P/4y8j37Ktk2r6NW/ML2Bu7N9y0Y2rfqAHes+pLZ4GVmlK+mxczUFsfXkWyX5YdGYR9gYKWBr1kCW5Q3no7zBRHsPoUt+Ib0GHET+oGH0y86hX1pPSEREJP2UYImItFHPyReQ+bdH2Xz7RHJ9J4dRwTbymF9wNgd87muMGz6+vmzXIWPgI1j34fy9lmDt2F7CpqIPKF27lNjmj8jYvpK8navpH1tHTyroGZaLu7Ex0o+S7CEs7n049B5Gl/4j6HPASPoNOYTBWdm07dHMIiIi+742JVhmNgsYES72BLa7+3gzKwSWAHUPkZrr7le05VgiIh3V6AnH88b6W+m26CEquw4mc8RJjD5hOkdn7z4lzcGHHUPNixnsXPICHHdWymIoLy9jw4rFlK5bSu3mj4huW0leRRH9atfRh1LywnIJNzZZX7ZkD2Zxj/+A3geRUzCcXkMOZUDhoQzKzmFQyqISERHZ/7QpwXL36XXvzewXQGnS5uXuPr4t9YuIdBZHn3E5nHF5i+W6de/N/NyJDNv4HFUVZeR0bd1opJ07Kyhet5ztG1ZQVbwS37aKzB1r6bpzHb1qN1LAVg5JKr+FnmzOGsLyXlP5qNeBZPUbTq8DDmVA4SgGdOnKgE95niIiItK8lHQRNDMDzgFOTEV9IiL7sqxjr6bP8+ex5I7TqRl/CZnd+xKvqSRWuYPYjmJ8xyaiFZvIqSomt6aEHvES+ngpQ80ZGtYR8wibrS9bs/qzuudRFPU4gKyCEfQYfCj9h42ib14v2v6ULxEREdlT5u4tl2qpErNjgV+6+4RwuRD4APgIKAN+6O6vNbHv5cDlAAcccMCRq1atanM8IiId3ZuP/pIx7/+Mrla127a4G1utJ9ujvdmZ1Yfa3H543kCifQrp0m8YPQceTN8BhWRkZqUhchEREQEws/l1+c8u61tKsMzsRaB/I5t+4O5PhWV+Cyxz91+Ey9lAN3cvMbMjgSeB0e5e1tyxJkyY4PPmzWvN+YiIdHpVO3ew5uP3qS4vISO7K9ld8sjrXUDPPgPIyNTT6kRERDqyphKsFrsIuvvnWqg4A/gScGTSPtVAdfh+vpktB4YDyp5EREI5XfI45LDPpDsMERERSaFICur4HLDU3dfWrTCzfDOLhu8PBA4BVqTgWCIiIiIiIh1WKia5OBeY2WDdscDNZlYLJIAr3H1rCo4lIiIiIiLSYbU5wXL3SxpZ9xjwWFvrFhERERER6UxSMotgqphZMdDRphHsC2xJdxCy1+h+7z90r/cvut/7D93r/Yfu9f6lI97voe6e33Blh0qwOiIzm9fY7CCyb9L93n/oXu9fdL/3H7rX+w/d6/1LZ7rfqZjkQkRERERERFCCJSIiIiIikjJKsFp2T7oDkL1K93v/oXu9f9H93n/oXu8/dK/3L53mfmsMloiIiIiISIqoBUtERERERCRFlGCJiIiIiIikiBKsZpjZKWb2oZktM7PvpjseSR0zG2JmL5vZYjP7wMyuDtf3NrMXzOzj8N9e6Y5VUsPMomb2rpn9PVweZmZvhp/vWWaWle4YJTXMrKeZPWpmS81siZkdrc/2vsnMrg1/hy8ys5lmlqPP9r7DzP5gZpvNbFHSukY/yxa4I7zvC83siPRFLnuqiXv98/D3+EIze8LMeiZt+154rz80s5PTEnQzlGA1wcyiwG+AU4FRwHlmNiq9UUkKxYBvu/soYDLw9fD+fhf4l7sfAvwrXJZ9w9XAkqTlnwG3u/vBwDbgv9ISlbSHXwPPufuhwGEE912f7X2MmQ0CvglMcPcxQBQ4F3229yX3A6c0WNfUZ/lU4JDwdTnw270Uo6TG/ex+r18Axrj7OOAj4HsA4fe1c4HR4T7/F35v7zCUYDVtErDM3Ve4ew3wMDAtzTFJirj7Bnd/J3y/g+AL2CCCe/ynsNifgC+mJUBJKTMbDHwB+H24bMCJwKNhEd3rfYSZ9QCOBe4DcPcad9+OPtv7qgwg18wygC7ABvTZ3me4+6vA1garm/osTwP+7IG5QE8zG7BXApU2a+xeu/s/3T0WLs4FBofvpwEPu3u1u68ElhF8b+8wlGA1bRCwJml5bbhO9jFmVggcDrwJFLj7hnDTRqAgXXFJSv0KuAFIhMt9gO1Jv7j1+d53DAOKgT+GXUJ/b2Zd0Wd7n+Pu64DbgNUEiVUpMB99tvd1TX2W9b1t33YZ8I/wfYe/10qwZL9mZt2Ax4Br3L0seZsHzzDQcww6OTM7Ddjs7vPTHYvsFRnAEcBv3f1woIIG3QH12d43hGNvphEk1QOBruzexUj2Yfos7x/M7AcEQzseSncsraUEq2nrgCFJy4PDdbKPMLNMguTqIXd/PFy9qa5LQfjv5nTFJylzDHCGmRURdPU9kWCMTs+wWxHo870vWQusdfc3w+VHCRIufbb3PZ8DVrp7sbvXAo8TfN712d63NfVZ1ve2fZCZXQKcBpzvnzy8t8PfayVYTXsbOCScjSiLYDDd02mOSVIkHINzH7DE3X+ZtOlp4OLw/cXAU3s7Nkktd/+euw9290KCz/FL7n4+8DJwdlhM93of4e4bgTVmNiJc9VlgMfps74tWA5PNrEv4O73uXuuzvW9r6rP8NHBROJvgZKA0qSuhdEJmdgpB9/4z3H1n0qangXPNLNvMhhFMbPJWOmJsin2SDEpDZvZ5grEbUeAP7n5LeiOSVDGzKcBrwPt8Mi7n+wTjsB4BDgBWAee4e8MBttJJmdnxwHXufpqZHUjQotUbeBe4wN2r0xiepIiZjSeY0CQLWAFcSvAHRX229zFm9mNgOkH3oXeBrxCMxdBnex9gZjOB44G+wCbgJuBJGvksh0n2XQTdRHcCl7r7vDSELZ9CE/f6e0A2UBIWm+vuV4Tlf0AwLitGMMzjHw3rTCclWCIiIiIiIimiLoIiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERERERERSRAmWiIiIiIhIiijBEhERERERSRElWCIiIiIiIimiBEtERERERCRFlGCJiIiIiIikiBIsERERERGRFFGCJSLSQZhZoZm5mWWkO5Z9nZldYmZz0h1HR2NmU83sw3THISLSmSnBEhGRTs3MZphZrZmVJ71uSHdcnZG7v+buI1Jdr5mdbmaLwnvzbzMblepjiIh0FEqwRERSRC1PaTXL3bslvW5Nd0Cp1Jl/tszsEOAh4AqgJ/A34OnOfE4iIs1RgiUi0gZmVmRm3zGzhUCFmWWY2eTwr/Tbzew9Mzs+qfxsM/t/ZvaWmZWZ2VNm1ruJui81syVmtsPMVpjZfzfYPs3MFoT1LDezU8L1PczsPjPbYGbrzOx/zCzawnkcZGYvmVmJmW0xs4fMrGfStq1mdkS4PNDMiuvOy8zOMLMPwvOdbWYjG1yf68xsoZmVmtksM8vZ8yu958zsu+F12WFmi83szCbKmZndbmabw2v5vpmNCbdlm9ltZrbazDaZ2d1mltvK498fln8hjOEVMxuatP3XZrYmPOZ8M5uatG2GmT1qZg+aWRlwiZlNMrM3wuu8wczuMrOspH3czL5mZh+Hx/tJeO/+HR7jkeTyTcR8vJmtbc357YGTgdfcfY67x4CfAYOA41J8HBGRDkEJlohI250HfIHgr/MFwDPA/wC9geuAx8wsP6n8RcBlwAAgBtzRRL2bgdOA7sClwO1JSc4k4M/A9eFxjwWKwv3uD+s9GDgcOAn4SgvnYMD/AwYCI4EhwAwAd18OfAd40My6AH8E/uTus81sODATuAbIB54F/tbgi/w5wCnAMGAccEmjAZhNCZOHpl5TWjiHhpYDU4EewI/D+Ac0Uu4kgus3PCx7DlASbvtpuH48wfUcBNy4BzGcD/wE6AssIGjJqfN2WG9v4C/AXxskn9OARwnu70NAHLg2rOto4LPA1xoc72TgSGAycANwD3ABwf0cQ/Cz+qmFiXJT9+f/mtu1wXsL4xER2ecowRIRabs73H2Nu1cSfJl91t2fdfeEu78AzAM+n1T+AXdf5O4VwI+AcxprYXL3Z9x9uQdeAf5JkDAA/BfwB3d/ITzOOndfamYF4bGucfcKd98M3A6c29wJuPuysK5qdy8GfklSC4O73wssA94kSAx/EG6aDjwT7lsL3AbkAp9pcH3Wu/tWgu5h45uIYY6792zm1dykFOc0+LI/0N3/Gh434e6zgI+BSY3sWwvkAYcC5u5L3H2DmRlwOXCtu2919x3A/7Z0LRt4xt1fdfdqgmt2tJkNCc/3QXcvcfeYu/8CyAaSxz+94e5PhvFXuvt8d58bli8CfsfurUC3unuZu38ALAL+6e4r3L0U+AdBwv2pufu4Zu5Pw2SvzovAcWHrWBbwfSAL6NKWWEREOiolWCIibbcm6f1Q4MvJX/aBKQRJSWPlVwGZBK0SuzCzU81sbtg9bztB4lRXbghBC01DQ8P6NiQd/3dAv+ZOwMwKzOxhC7oUlgEPNhLTvQStDneGCQMELV6r6gq4eyI8v0FJ+21Mer8T6NZcLJ/SIw2+7K83s4ss6EJZdx3G0Mh1dveXgLuA3wCbzeweM+tO0CLXBZifVMdz4frWqr/X7l4ObCW4ZoRdJ5eEXSe3E7Se9W1s37D8cDP7u5ltDO/R/zZyPpuS3lc2stwe175Z7r4UuJjgGm8giHkxkOquiCIiHYISLBGRtvOk92sIWqiSv+x3dfefJpUZkvT+AIIWlC3JFZpZNvAYQYtQgbv3JOh+V9fVag1wUCOxrAGqgb5Jx+/u7qNbOIf/Dc9jrLt3J2iJq+/WZWbdgF8B9wEz7JNxY+sJkrq6chae37oWjrcbC6YIL2/mNbXlWurrGkqQEF4F9Amv3yJ27apWz93vcPcjgVEEXQKvJ7gnlcDopGvZw933JEmpv9fhNewNrA/P5QaC7oi9wvhKG8SX/HMF8FtgKXBIeI++39T5tBcLxto1dX/ubmo/d3/U3ce4ex/gJqCQoIukiMg+RwmWiEhqPQicbmYnm1nUzHLCrlGDk8pcYGajwvFMNwOPunu8QT1ZBF3GioGYmZ1KMFaozn3ApWb2WTOLmNkgMzvU3TcQdCX8hZl1D7cdZGYtTSiQB5QDpWY2iCDBSPZrYJ67f4VgjFndl+lHgC+EcWQC3yZI8P7d0oVqKJwivFszr9f2oLquBAlKMQQThtDEmB8zm2hmR4XxVwBVQCJsjbuXYOxbv7DsIDM7OWlft6RJTBrx+XBsWRbBWKy57r6G4HrHwvgyzOxGgrF2zckDyoByMzsUuLKF8inn7qObuT9XNLWfmR0Zfh7yCcaFPR22bImI7HOUYImIpFD45XkaQetCMUGL0vXs+vv2AYKJKDYCOcA3G6lnR7j+EWAb8J/A00nb3yKc+IKg5eMVPmlJuoggQVsc7vsou3ZRbMyPgSPCup4BHq/bYGbTCCapqPtC/y3gCDM7390/JGjtupOgxed04HR3r2nheO3K3RcDvwDeIOgmNxZ4vYni3QkSqW0E3R1LgJ+H275DMPZsbtgt70XCcVLhWKodwPvNhPIXghabrQSTT1wQrn+eoLvhR+Exq2jQJbAR1xH8HOwI453VQvmO5NfAduBDguv81bRGIyLSjsy9YQ8EERFpL2Y2G3jQ3X+f7likbczsAoLug99rYvv9wFp3/+FeDUxERNJKD/kTERH5FNz9wXTHICIiHY+6CIqI7CcseOjtHk1OIPseM/t+Ez8H/0h3bCIi+wJ1ERQREREREUkRtWCJiIiIiIikSIcag9W3b18vLCxMdxgiIiIiIiLNmj9//hZ33+3h8x0qwSosLGTevHnpDkNERERERKRZZraqsfXqIigiIiIiIpIiSrBERERERERSRAmWiEgLFr41m4+Xf5zuMERERKQT6FBjsBpTW1vL2rVrqaqqSnco0snk5OQwePBgMjMz0x2KdGKxeIJxz04DwG/ajpmlOSIRERHpyDp8grV27Vry8vIoLCzUFxtpNXenpKSEtWvXMmzYsHSHI53YqpJyDqp7v/QdCkcemdZ4REREpGPr8F0Eq6qq6NOnj5Ir2SNmRp8+fdTyKW1Wtq2k/n3x0n+nMRIRERHpDDp8ggUouZJPRT83kgpVZcX17+PrF6YxEhEREekMOkWCJSKSLrU7ttS/71G6NI2RiIiISGegBKsVzIxvf/vb9cu33XYbM2bMSF9ASebOnctRRx3F+PHjGTlyZH1cs2fP5t//blt3plNOOYWePXty2mmnpSBSkc4pVh4kWKszh5FfszrN0YiIiEhHpwSrFbKzs3n88cfZsmVLy4X3gLuTSCTaVMfFF1/MPffcw4IFC1i0aBHnnHMOkJoE6/rrr+eBBx5oUx0ind7OrQBs7zmWvmxnZ3lpmgMSERGRjqzDzyKY7Md/+4DF68tSWueogd256fTRzZbJyMjg8ssv5/bbb+eWW27ZZVtxcTFXXHEFq1cHf9n+1a9+xTHHHMOMGTPo1q0b1113HQBjxozh73//OwAnn3wyRx11FPPnz+fZZ5/lrrvu4h//+Admxg9/+EOmT5/O7NmzmTFjBn379mXRokUceeSRPPjgg7uNK9q8eTMDBgwAIBqNMmrUKIqKirj77ruJRqM8+OCD3HnnnRx66KFNxrl8+XKWLVvGli1buOGGG/jqV78KwGc/+1lmz57d7LX561//yo9//GOi0Sg9evTg1VdfpaqqiiuvvJJ58+aRkZHBL3/5S0444QTuv/9+nnzySSoqKvj444+57rrrqKmp4YEHHiA7O5tnn32W3r17c++993LPPfdQU1PDwQcfzAMPPECXLl12Oe7kyZO57777GD06uHfHH388t912GxMmTGg2XpE9lVG1DYDEoCOh+GnWF33IwWMmpTkqERER6ajUgtVKX//613nooYcoLd31r9dXX3011157LW+//TaPPfYYX/nKV1qs6+OPP+ZrX/saH3zwAfPmzWPBggW89957vPjii1x//fVs2LABgHfffZdf/epXLF68mBUrVvD666/vVte1117LiBEjOPPMM/nd735HVVUVhYWFXHHFFVx77bUsWLCAqVOnNhvnwoULeemll3jjjTe4+eabWb9+fauvy80338zzzz/Pe++9x9NPPw3Ab37zG8yM999/n5kzZ3LxxRfXz+a3aNEiHn/8cd5++21+8IMf0KVLF959912OPvpo/vznPwPwpS99ibfffpv33nuPkSNHct999+123OnTp/PII48AsGHDBjZs2KDkStpFZm0pcTfyhh4OQNn6j9IckYiIiHRknaoFq6WWpvbUvXt3LrroIu644w5yc3Pr17/44ossXry4frmsrIzy8vJm6xo6dCiTJ08GYM6cOZx33nlEo1EKCgo47rjjePvtt+nevTuTJk1i8ODBAIwfP56ioiKmTJmyS1033ngj559/Pv/85z/5y1/+wsyZMxttdWouzmnTppGbm0tubi4nnHACb731Fl/84hdbdV2OOeYYLrnkEs455xy+9KUv1Z/TN77xDQAOPfRQhg4dykcfBV9KTzjhBPLy8sjLy6NHjx6cfvrpAIwdO5aFC4MZ2hYtWsQPf/hDtm/fTnl5OSeffPJuxz3nnHM46aST+PGPf8wjjzzC2Wef3ap4RfaUxWuoJou+B4wAoKZ4RZojEhERkY6sUyVY6XbNNddwxBFHcOmll9avSyQSzJ07l5ycnF3KZmRk7DK+Kvl5TF27dm3V8bKzs+vfR6NRYrFYo+UOOuggrrzySr761a+Sn59PSUnJbmWaihN2n858T6Y3v/vuu3nzzTd55plnOPLII5k/f36z5ZPPKRKJ1C9HIpH687vkkkt48sknOeyww7j//vsbTRgHDRpEnz59WLhwIbNmzeLuu+9udcwie8ISNcTIoHuvfpR5F2z7qnSHJCIiIh1Ym7sImtkQM3vZzBab2QdmdnW4foaZrTOzBeHr820PN7169+7NOeecs0uXtZNOOok777yzfnnBggUAFBYW8s477wDwzjvvsHLlykbrnDp1KrNmzSIej1NcXMyrr77KpEmtH9/xzDPP4O5A0PUwGo3Ss2dP8vLy2LFjR4txAjz11FNUVVVRUlLC7NmzmThxYquPv3z5co466ihuvvlm8vPzWbNmDVOnTuWhhx4C4KOPPmL16tWMGDGi1XXu2LGDAQMGUFtbW19PY6ZPn86tt95KaWkp48aNa3X9InskXkutZWCRCJsz+tOlXDMJioiISNNSMQYrBnzb3UcBk4Gvm9mocNvt7j4+fD2bgmOl3be//e1dZhO84447mDdvHuPGjWPUqFH1LSlnnXUWW7duZfTo0dx1110MHz680frOPPNMxo0bx2GHHcaJJ57IrbfeSv/+/VsdzwMPPMCIESMYP348F154IQ899BDRaJTTTz+dJ554gvHjx/Paa681GSfAuHHjOOGEE5g8eTI/+tGPGDhwIBAkf1/+8pf517/+xeDBg3n++eeBoFti3Xir66+/nrFjxzJmzBg+85nPcNhhh/G1r32NRCLB2LFjmT59Ovfff/8uLVct+clPfsJRRx3FMcccw6GHHlq//umnn+bGG2+sXz777LN5+OGH62dOFGkPkXgttWQCsD17ED2r16U5IhEREenIrK71I2UVmj0F3AUcA5S7+22t3XfChAk+b968XdYtWbKEkSNHpjRG+UTD2Q73Nfr5kbaa/8uzKdjxPoNv+pA5v/0akzbOIvPGTVhUPaxFRET2Z2Y23913m2UtpbMImlkhcDjwZrjqKjNbaGZ/MLNeTexzuZnNM7N5xcXFqQxHRKTNLFFDzMJkqudQsixG2Za16Q1KREREOqyUJVhm1g14DLjG3cuA3wIHAeOBDcAvGtvP3e9x9wnuPiE/Pz9V4UgrzZgxY59tvRJJhUiilnjYRTA3vxCALeuWpzEiERER6chSkmCZWSZBcvWQuz8O4O6b3D3u7gngXkBP5hSRTifiMeIWJFg9+g8DYMfGxietEREREUnFLIIG3AcscfdfJq0fkFTsTGBRW48lIrK3RRK1xCJBgpU/6GAAako0VbuIiIg0LhWjtI8BLgTeN7MF4brvA+eZ2XjAgSLgv1NwLBGRvSqaqCEWtmB179mLUu+KlWkMloiIiDSuzQmWu88BGnsy7T4xLbuI7N+iXktNNBcIHsK9JdqP7ApN1S4iIiKNS+ksgvuyJ598EjNj6dKlTZYpKipizJgxKTvmhx9+yPHHH8/48eMZOXIkl19+ORA8JPjZZ9uWv1522WX069cvpfGK7IuiHiMRtmABlGb3J696UxojEhERkY5MCVYrzZw5kylTpjBz5sxGt8disTYfIx6P77L8zW9+k2uvvZYFCxawZMkSvvGNbwCpSbAuueQSnnvuuTbVIbI/yPBaEpFPEqzqLgPpG9+cxohERESkI+tcT8r8x3dh4/uprbP/WDj1p80WKS8vZ86cObz88sucfvrp/PjHPwZg9uzZ/OhHP6JXr14sXbqUf/7zn8RiMc4//3zeeecdRo8ezZ///Ge6dOnCv/71L6677jpisRgTJ07kt7/9LdnZ2RQWFjJ9+nReeOEFbrjhBs4999z6427YsIHBgwfXL48dO5aamhpuvPFGKisrmTNnDt/73vc47bTT+MY3vsGiRYuora1lxowZTJs2jfvvv58nnniC0tJS1q1bxwUXXMBNN90EwLHHHktRUVGz5/3KK69w9dVXA0HXqFdffZVu3bpxww038I9//AMz44c//CHTp09n9uzZ3HTTTfTs2ZP333+fc845h7Fjx/LrX/+ayspKnnzySQ466CD+9re/8T//8z/U1NTQp08fHnroIQoKCnY57rnnnsuFF17IF77wBSBIBk877TTOPvvs1t1TkRSKemyXBCvRYzB5JTupLNtGbvdGH+8nIiIi+zG1YLXCU089xSmnnMLw4cPp06cP8+fPr9/2zjvv8Otf/5qPPvoICLr1fe1rX2PJkiV0796d//u//6OqqopLLrmEWbNm8f777xOLxfjtb39bX0efPn145513dkmuAK699lpOPPFETj31VG6//Xa2b99OVlYWN998M9OnT2fBggVMnz6dW265hRNPPJG33nqLl19+meuvv56KigoA3nrrLR577DEWLlzIX//6V+bNm9fq877tttv4zW9+w4IFC3jttdfIzc3l8ccfZ8GCBbz33nu8+OKLXH/99WzYsAGA9957j7vvvpslS5bwwAMP8NFHH/HWW2/xla98hTvvvBOAKVOmMHfuXN59913OPfdcbr311t2OO336dB555BEAampq+Ne//lWfbInsbZnUkohkfbLc+wAAitctS1dIIiIi0oF1rhasFlqa2svMmTPrW3LOPfdcZs6cyZFHHgnApEmTGDZsWH3ZIUOGcMwxxwBwwQUXcMcdd/Af//EfDBs2jOHDhwNw8cUX85vf/IZrrrkGCBKKxlx66aWcfPLJPPfcczz11FP87ne/47333tut3D//+U+efvppbrvtNgCqqqpYvXo1AP/xH/9Bnz59APjSl77EnDlzmDBhQqvO+5hjjuFb3/oW559/Pl/60pcYPHgwc+bM4bzzziMajVJQUMBxxx3H22+/Tffu3Zk4cSIDBgSz8x900EGcdNJJQNDy9vLLLwOwdu1apk+fzoYNG6ipqdnl2tU59dRTufrqq6murua5557j2GOPJTc3t1Uxi6RahsfwpASra7/gZ7Zs4woYOTFdYYmIiEgHpRasFmzdupWXXnqJr3zlKxQWFvLzn/+cRx55BHcHoGvXrruUDx4L1vRyYxrWkWzgwIFcdtllPPXUU2RkZLBo0e6PE3N3HnvsMRYsWMCCBQtYvXo1I0eO/NTx1Pnud7/L73//eyorKznmmGOaneADIDs7u/59JBKpX45EIvVj1L7xjW9w1VVX8f777/O73/2Oqqqq3erJycnh+OOP5/nnn2fWrFlNJqAie0MGMTz6SRfBXgMPBKBqi56FJSIiIrtTgtWCRx99lAsvvJBVq1ZRVFTEmjVrGDZsGK+99lqj5VevXs0bb7wBwF/+8hemTJnCiBEjKCoqYtmyoEvRAw88wHHHHdfisZ977jlqa2sB2LhxIyUlJQwaNIi8vDx27NhRX+7kk0/mzjvvrE/63n333fptL7zwAlu3bq0fB1XXutYay5cvZ+zYsXznO99h4sSJLF26lKlTpzJr1izi8TjFxcW8+uqrTJo0qdV1lpaWMmjQIAD+9Kc/NVlu+vTp/PGPf+S1117jlFNOaXX9IqmW6bW7JFj9+g+h2jNIbF+TxqhERESko1KC1YKZM2dy5pln7rLurLPOanI2wREjRvCb3/yGkSNHsm3bNq688kpycnL44x//yJe//GXGjh1LJBLhiiuuaPHY//znPxkzZgyHHXYYJ598Mj//+c/p378/J5xwAosXL2b8+PHMmjWLH/3oR9TW1jJu3DhGjx7Nj370o/o6Jk2axFlnncW4ceM466yz6rsHnnfeeRx99NF8+OGHDB48mPvuuw+Au+++m7vvvhuAX/3qV4wZM4Zx48aRmZnJqaeeyplnnsm4ceM47LDDOPHEE7n11lvp379/q6/njBkz+PKXv8yRRx5J375969fPmzePr3zlK/XLJ510Eq+88gqf+9znyMrKaqwqkb0igxgkdRHMyMig2PqSsUMPGxYREZHdWV2rR0cwYcIEbzgJw5IlS+q7u8meuf/++5k3bx533XVXukNJG/38SJskEnBzL14f/FWO+cpt9avfv+VYsqhlxA/eSGNwIiIikk5mNt/dd5vcQC1YIiJNiMdqgjfRXVtRd+b2p1dMDxsWERGR3SnB2oddcskl+3XrlUhb1dYEk7BYxq4JVixvMH0TW4nX1qQjLBEREenAOkWC1ZG6MUrnoZ8baava2urgTdIkFwCRXkOImLN1Y9HeD0pEREQ6tA6fYOXk5FBSUqIvy7JH3J2SkhJycnLSHYp0YrXVQYLVsAUrt28hANvWL9/bIYmIiEgH1+EfNDx48GDWrl1LcXFxukORTiYnJ4fBgwenOwzpxOJhF0Gi2bus794/eBZWxeaivRyRiIiIdHQdPsHKzMxk2LBh6Q5DRPZDsbCLYKRBC1b+oOB3Uu3W1Xs9JhEREenY2r2LoJmdYmYfmtkyM/tuex9PRCRV6hKshl0E8/K6U0IPImV6FpaIiIjsql0TLDOLAr8BTgVGAeeZ2aj2PKaISKrUJVjRjOzdtpVE88nZuX5vhyQiIiIdXHu3YE0Clrn7CnevAR4GprXzMUVEUiJR03gXQYCy7AF0r964t0MSERGRDq69E6xBwJqk5bXhunpmdrmZzTOzeZrIQkQ6klgsmOQikrV7C1ZN14HkJ4pBM5yKiIhIkrRP0+7u97j7BHefkJ+fn+5wRETqxWuCBwk31oLlPYaQSzXl2zfv7bBERESkA2vvBGsdMCRpeXC4TkSkw0vEggQrmrl7C1ZmnwMAKFmnZ2GJiIjIJ9o7wXobOMTMhplZFnAu8HQ7H1NEJCUSsaYnucjrF0zVXrZxxV6NSURERDq2dn0OlrvHzOwq4HkgCvzB3T9oz2OKiKRKXYKV0cgYrN6DDgKgasuqvRqTiIiIdGzt/qBhd38WeLa9jyMikmqfdBHM2W1b3/wBVHoWlOpZWCIiIvKJtE9yISLSUXltkGBlNtKCFY1G2BTJJ7NcCZaIiIh8QgmWiEgTPB4kWBlZu88iCFCaWUC3Kj0LS0RERD6hBEtEpAkedhHMaKSLIMDOLgPpXbtpb4YkIiIiHZwSLBGRptS3YO3eRRAgnjeI3pQSq6rYm1GJiIhIB6YES0SkCXUtWFlZjbdgRXsFz8LasqFob4UkIiIiHZwSLBGRpsRriLuRmZnZ6OYu+YUAbF+vhw2LiIhIQAmWiEhT4jXUkkE0Yo1u7jXwQAAqNq/cm1GJiIhIB6YES0SkKYlaasnArPEEq2DIQcQ8Qmxr0d6NS0RERDosJVgiIk2wsAWrKdlZ2WyyfDJLV+/FqERERKQjU4IlItIEi9cQs8bHX9UpyRpAt0o9bFhEREQCSrBERJpgYRfB5lR0GUzf2g17KSIRERHp6JRgiYg0JV5DvIUWrFj3A+hNKbWVZXspKBEREenIlGCJiDQh0ooEK6PvMACKV3+0N0ISERGRDk4JlohIEyxRSzzSfBfBrgUHA1C6ftneCElEREQ6OCVYIiJNiCRqSbTQgtVn8HAAKjfrYcMiIiLSxgTLzH5uZkvNbKGZPWFmPcP1hWZWaWYLwtfdKYlWRGQviiZqiEeymi1TUDCAHZ6LbyvaO0GJiIhIh9bWFqwXgDHuPg74CPhe0rbl7j4+fF3RxuOIiOx12Ymd1Ea7NFsmIyPKxkgBOTv0LCwRERFpY4Ll7v9091i4OBcY3PaQREQ6hhyvpDaja4vltmUPIq9q/V6ISERERDq6VI7Bugz4R9LyMDN718xeMbOpTe1kZpeb2Twzm1dcXJzCcERE2ibHq4hlNN+CBVDZdTD94hvBfS9EJSIiIh1ZiwmWmb1oZosaeU1LKvMDIAY8FK7aABzg7ocD3wL+YmbdG6vf3e9x9wnuPiE/P7/tZyQikiJdvJJ4ZsstWN6zkBxqqNqmViwREZH9XfPzDwPu/rnmtpvZJcBpwGfdgz/funs1UB2+n29my4HhwLy2Biwislck4nSxahKt6CKYlT8MlsOWNR8xuPegvRCciIiIdFRtnUXwFOAG4Ax335m0Pt/MouH7A4FDgBVtOZaIyN5UU7kjeJPVrcWy3QcGz8Iq26BnYYmIiOzvWmzBasFdQDbwgpkBzA1nDDwWuNnMaoEEcIW7b23jsURE9pqKsu1kAZGclhOs/MGHkHCjpljPwhIREdnftSnBcveDm1j/GPBYW+oWEUmnivJSegEZOXktls3v2YNN9CJSuqr9AxMREZEOLZWzCIqI7DOqyksByOzS6Pw8u4hEjOKM/uRWrG3vsERERKSDU4IlItKIqooyALJakWABlOYMome1ZhEUERHZ3ynBEhFpRE1lkGBld21dglXd7QD6JEqgtqo9wxIREZEOTgmWiEgjasNZBLt07dGq8ta7kAhO+WZNmCoiIrI/U4IlItIIrygBILdH31aVz+13EABb137cbjGJiIhIx6cES0SkMRXFxN3I69WvVcV7DgomVa3YqGdhiYiI7M+UYImINCKys5ht1oOMzMxWle8/sJAqzyRWUtS+gYmIiEiHpgRLRKQRWVUllEV6trp8r65ZrKWAjDI9C0tERGR/pgRLRKQRuTUlVGT2bnV5M6Mksz9dd65rx6hERESko1OCJSLSiLz4Nqqz++zRPuVdhtCnZj24t1NUIiIi0tEpwRIRaSART9ArsZ14l9bNIFinNm8IXdmJ79zaTpGJiIhIR6cES0SkgeKNq8m1GqxX4R7tl9l7CABlxWvaISoRERHpDJRgiYg0sGX1EgBy+w/fo/3y+g4CoGSjJroQERHZXynBEhFpYOf6pQD0HjJyj/brVTAUgB2b1YIlIiKyv1KCJSLSQM3mj6nxDAqGHLxH+/UfHCRY1ds0k6CIiMj+qk0JlpnNMLN1ZrYgfH0+adv3zGyZmX1oZie3PVQRkb2j27bFrMs8oNUPGa6T1y2P7XQjsWNDO0UmIiIiHV1GCuq43d1vS15hZqOAc4HRwEDgRTMb7u7xFBxPRKTdxONxDqxeytL8Uxj2KfbfHulN1s7NKY9LREREOof26iI4DXjY3avdfSWwDJjUTscSEUmZVUvnk2eV2OAJn2r/8qy+dKspTnFUIiIi0lmkIsG6yswWmtkfzKxXuG4QkDzKe224bjdmdrmZzTOzecXF+lIiIum16Z1nATjgyFM+1f6V2f3oEStJZUgiIiLSibSYYJnZi2a2qJHXNOC3wEHAeGAD8Is9DcDd73H3Ce4+IT8/f093FxFJqe6rX2RlpJB+ezjBRZ3argX09u14Qj2iRURE9kctjsFy98+1piIzuxf4e7i4DhiStHlwuE5EpMNas/wDRte+z5tD//tTjb8CoFt/Mi1OWckmuucPTGV4IiIi0gm0dRbBAUmLZwKLwvdPA+eaWbaZDQMOAd5qy7FERNrbun/dTcwjDDvpyk9dR0aP4Nfi9uLVqQpLREREOpG2ziJ4q5mNBxwoAv4bwN0/MLNHgMVADPi6ZhAUkY6soqKcQ9Y/xcIukzli0KduvyKndzDcdOeWNcDkFEUnIiIinUWbEix3v7CZbbcAt7SlfhGRvWX+oz/nWEopOf6qNtXTre9gAKq26VlYIiIi+6P2mqZdRKTT2LplM+NW/J4Pcicy/KgvtKmuXv2CBCtetjEVoYmIiEgnk4oHDYuIdGqLH/0JU6ycstP/p8119cjLo9S7QrkeNpysJpagYmclFRXlxGK1uMcxT5Cd04Wued3pmpNDNGLpDlNERKTNlGCJyH5t/ZrlHLnhYd7p+R8cMartY6YiEWOr9SSzcv95rl8inmDDhjVsXvk+OzauILFtNdkV6+hauYGcWCld42X0oJxeVkWvJuqo9gxKyWVbpCflGX2ozulLvEs+1n0A2b0G07XvEHoNGErvgqFEs3L26vklc3dq4gnisVpqq3YSj9USjyeIJeLE4wlwJ2JOBCdqYNEokUgGkWgmlhH8G83IJBqNkhGNEjEwU2IpIrIvUYIlIvu11Y/dSF8SDPpS6oaM7sjoTU71lpTV15FU7Sxn1Qdz2b78LeKblpJXtozBsVUMsvJdniZfYr3YmtGP6twCqnJGUJzTk0ROLyJZXYhEMyESwYmQqK0kXl2B11Rg1eVkVW0ht3oL+eWL6FW2ldxNNbvFsI3ubM/oy87sftR0KaC2SwGWnUc0pxvRnDwyc7phGZk4HuwQ/hOvrSZevZN4TSWJ2koSNZVQW4nXVkKsikisEotVEYlVkRGvJJqoJjNRRWaimiyvJturyaGabGroYm2ft6nWo9QQJU6UGBHiRElYhAThy6I4Flwni4b/RnCLhmWMBBEMMBIYjrljJGC3dfU1fbItaf0uFwqw+rcelv9k2yfrPrHr9uY5TSeUzdfS3H6fts7m693TXayJAk3FYK1baPHQMcug4tQ7GT7hs03uJyJ7jxIsEdlvrVzyDhO3PcP8/tOZNHREyurdmdWHvlUfpqy+dInH46xcMp/iJXOw9e/Qt+wDCmNFjLDgS3oZXdmYXcjKXp9lRb+RdB04kn5DhtNr4DD6ZObSp43H90SC7dtK2LJhJTs2r6Zy61ri29cRLd9IduUm8io3U1C+hL5W2qbjVHsG1WRRbdnUWBY1lkNtJJt4JIearF5URXNIZOSQyMiFzFw8I5dERg4ezcGiGUQiESJmWCSKW5CyJBwSbrgnsEQMwpclYuDxT9bFayERxzwG8WBbsD2OuwfvPR6WSQTvvS61ShDxRHjMCGC4BemWE8GNXdbvVsaCZcKYDcB2TZuCxXBduG2XdUlf971+3ybSiRYznV0T4tbu3DC5c298W2M1NJUYNhfCbtvCAza2zy5bGingSYlsc5fHG2xsWHZUxZuUPf8j/IgTsIiG14ukmxIsEdlvbfvbj+hLDsPPnpHSemty8um5c25K69wb4vE4yxbNo3jRi+Sse4MDdy7gYHZwMEEytTpnBG/3v5jswokMHPkZCgYOpXs7fpmzSISeffLp2ScfmNRoGXenqqaGneVl7CwvpbJiB1UVZZAIW5jqcgN3MrKyycrtSlZOF7JzupLdpSu5ud3Izswku93OQqT9vfHwTzl66f/j/TlPMvbYL6U7HJH9nhIsEdkvfbxwLkfsnMObQy/nqPwBLe+wBxLdCuiytYpE1Q4iOXkprTvVirdsYdm/nyTj439w8I43GcEORgCbLJ+VvY5hZeEUBo49gf6FoxjTAf8ybmbkZGeTk51P7z756Q5HJC0On/ZNNnx4H3mzb6TmqM+TlZ2+cYoiogSrWUvfepEdr99L9mFfYuSUaWSmcWC1iKRW2fP/Szm5jPzSDSmvO6N7fwC2bV5LnwNGprz+tnB3Fn/4EevefIxea15gXO1CjrYY28nj4x5HEz3wOA448iQKBg+nIN3Bikir5OR2YfPUn3DYq//N3L/cxORLf5bukET2a0qwmrFjw0eMKH2V7q8+R9mr17Cw6wRiQz5D/3GfY/CII4hGo+kO8VPzRIJEIhHOgBULpk2OxYjFakgk4sTjtcRrY3giRjyRILnHtyca9v72pA7iHhZNKt+w83gjkvv+WyMDfesGMCdvSx5MnDwLV3PjhC15r2amhG5qVi/33QLcdVt9vI2MCbC6bQ3386T9GtaXfDzffVsr9vNG99utysZjboK3cr/dD9fEeIfdBzU0ua3Rc23NsZNWVJesYnL5q7w9+GKO6pn6Vo+cXkGL2PYOkmDFYnHeX/AmJfOfYMDGlxntHzMa2BgdwJIh59Lj8GkMPewEJmZkpjtUEfmUDjvxXOa9O4sJRffw4ZvHMeKoz6c7pL3Kw+80tTVV1NZUEaupora2hlgsQSwc6+gJxxNx3ON4IoEngjGPnkiAJ0h4ov7/cq//rz6CWfDtwc0wi3zyTaJuORyX6HXjFs2C7xv2yTjG5HLhrru8DxaDXgJG8B3FGikbVNugN0GzM5E2/CJkrdyWIq34DtiqaqKZdOsziLyczvH/lLXmy+/eMmHCBJ83b166w9hFdXUlH7z2NIkPnmTw9rfp78HUyxWezfrMAyjtdhA13QvJ6jWQrJ4DyOgxgC7depLbNY+u3bqTndsVIhl8koQE/8YTCaqrKqmprqC2qpLaqp3U1lQSqw5mtorVVBKvqSJRN9tVbRVeWwW1VRALXharwuLVWLyaaLyaSKKajEQ1GYma4F+vIctryPQasqgh02PUzT2VmYIZsEQ6s52eTc1V79Ezxd0DAT587w1GPHEK7x19B4edfHHK62+Nquoa3n/jeSoWPs2BW1/hADYBsDJ7BBWFJzPk6LPpMXRc+/yHKiJpUbp9K6W/PoZuXs6Oc59m6KGHpzukJnkiQXl5GTu2bmJnaTHVpcXUlG+htqKUeGUZieodRGrKidRWkBGrIDNWQVa8guxEZf13nExiZHktWdSQRYyIdZzvtJJaHyUG8fJn/8Z/H3dQukPZhZnNd/cJDderBasF2dm5HPG56fC56QCsW/kh69/7J4n1C8nd/jFDt79J/vbnYPWe1ZsJtKXDYaVnUWOZ1JBFjWVRa1nELItYJJtYJJvqjDzi0RwSkSwSGdl4NAePZOKRaJDwRTLAolgkA5LXRYJ1Fs3AI+HsWOG4i+RpcOv+euKf/EEFklqbdp1lipa/xDUyC1N9Q0z9tsamYGq4mNyE0VyLTCu3fdK4VF9w1xay5JazXetsOEnvrq1vSQvuzVwe37Vss3U2iLOpaYR3W9+66YCbe1ZPwy2t/WPa7sWamuS48ZbNxra1Nl3oNngs/dshuQLoVTAEgOrt69ul/qaUlpay5PUnSSx5hkPL/s1E20ENGSzvegQfDL+SA6ecxbA+B+zVmERk7+nRszel580k8Zdp5D18Bks//wcOnfQfezWGRPVOtm1aRenm1VSWrKV66zooW0905yYyq7eRXbudbvFSevgO8qyW5kapVpDDTnKpjHShOnxVZvUgnpEL0Sw8mk0imo1HM/FoNh7NxjKyIZqNZWRh0Uwi0SiRSBQikeC7i0UxMzySEbQwRaJgESzcbsn/f7rjnqhb+OQP5YS9Tzz81pH03vCwZ0pSj576com6mpIml/T6Y9UvJ3UMarif1R+nTjMzbDbTbWW3GTR3Kdvwy08bpeAPeTUZeRw3ovOMs1WCtYcGDRvBoGG7TudcVVlB8YY1VJSsJVa6kdrKHdRWVRCrqiAS20nE40lT59ZlJBEsMwfLyMEyc4hk5RLJzCGalUs0K5eM7ByiWV3IzMolM6cLWTm5ZOV0JSenC5lZ2eRGIuTu/dMXkVbokz+AmEfwso3tfqyN61ez4vVHyVn+PKMq5zPZatlBF1b0PoZNo0/j4M98kZFderZ7HCLSMRwwfDyr/vNpMmZ+mUOe+TJvzvsyB33pR/Tt37Y/rngizo6STWzbtIry4tVUbV1HonQdkfKN5FRuolvNZnrFS+hOOX1gl8c0lHsOJdaLioyelGX1Z1vOSFbl9obc3liXPmTk9SUrry+5PfPp1r0Ped17ktM1j66RKF3bFLVIeqiLoIhIO1g7YzjF3Udz+LeeSGm9nkiwcvHbbHj7KXqte4lDa5cSMWeT9WVNvxPocfgXOejIk4hkZqX0uCLSuZRu28rSP3+TCVv/jmMszR1Peb8JZA8eR5c+g8np1jN49LQDNRVUlW+ncsc2qndsgR0bydi5iazKzXSpLqZ7rITeiW1kWWyXYyTc2GI92RbtQ3lWPlU5BcS7DSDSYyDZvQbTNX8IvQqG0rdvXzKjHW8WUpG2UhdBEZG9aFN2IX13rkhJXaU7drDszWeJL32OA0pe40Av5kBgWcbBzC/8KgWTzuKAUUdRoPFUIhLq0as3R139IGuWvc/af/2O/pteYdSqe4msbt0f1kvpyrZIb8oy+rI973BWdCmA7gPI7DmILn2H0KPgAPoUHEC/nGz6tfO5iHQ2bUqwzGwWUNdfriew3d3Hm1khsAT4MNw2192vaMuxREQ6k4oeBzF283w8XotF92zWo+rqSj565xVKF/+L7hvnMqJmCUdaLTs9m6VdjmT1wV/nwM+cycEDCtsneBHZZww5eCxDDr4LgPKyrWxY8QEVJeuIVe4gSgLDiWd2I6tLD7p270X3Xn3pnj+EHrld6ZHm2EU6qzYlWO4+ve69mf0CKE3avNzdx7elfhGRziqjYCRZm2Os/XgBgw+d2GQ5TyQo2bCSdR+8TmXR23TbspADq5cw1qpJuFGUOYz3B32ZbiM/x4ETT+WInC578SxEZF/SrXtvDhk/Nd1hiOzzUtJF0ILpxc4BTkxFfSIind3QSWcQW3gTm1+7vz7B2r5lE5tXLmTHmkXUblpK7vZlDKpeRl+20xeo8SirMg/k/X6nkzv8eIZNOJkDe/XjwPSeioiIiOyBVI3BmgpscvePk9YNM7N3gTLgh+7+WoqOJSLS4Q0aUsib3Y7jqHUPsuHHz9Pdd9CTKnqG26s8k/UZQ1jV8yiWFRxO94MnceCYyRySqzmzREREOrMWEywzexHo38imH7j7U+H784CZSds2AAe4e4mZHQk8aWaj3b2skfovBy4HOOAAPZ9FRPYdI6/4M/9+5Gaytq+kKKcXkR6Dyep/KL2HjWNw4QgOjEbTHaKIiIikWJunaTezDGAdcKS7r22izGzgOndvdg52TdMuIiIiIiKdQVPTtKfioQSfA5YmJ1dmlm9m0fD9gcAhQGrmKxYREREREemgUjEG61x27R4IcCxws5nVAgngCnffmoJjiYiIiIiIdFhtTrDc/ZJG1j0GPNbWukVERERERDqTNo/BSiUzKwZWpTuOBvoCW9IdhOw1ut/7D93r/Yvu9/5D93r/oXu9f+mI93uou+c3XNmhEqyOyMzmNTZ4TfZNut/7D93r/Yvu9/5D93r/oXu9f+lM9zsVk1yIiIiIiIgISrBERERERERSRglWy+5JdwCyV+l+7z90r/cvut/7D93r/Yfu9f6l09xvjcESERERERFJEbVgiYiIiIiIpIgSLBERERERkRRRgtUMMzvFzD40s2Vm9t10xyOpY2ZDzOxlM1tsZh+Y2dXh+t5m9oKZfRz+2yvdsUpqmFnUzN41s7+Hy8PM7M3w8z3LzLLSHaOkhpn1NLNHzWypmS0xs6P12d43mdm14e/wRWY208xy9Nned5jZH8xss5ktSlrX6GfZAneE932hmR2RvshlTzVxr38e/h5faGZPmFnPpG3fC+/1h2Z2clqCboYSrCaYWRT4DXAqMAo4z8xGpTcqSaEY8G13HwVMBr4e3t/vAv9y90OAf4XLsm+4GliStPwz4HZ3PxjYBvxXWqKS9vBr4Dl3PxQ4jOC+67O9jzGzQcA3gQnuPgaIAueiz/a+5H7glAbrmvosnwocEr4uB367l2KU1Lif3e/1C8AYdx8HfAR8DyD8vnYuMDrc5//C7+0dhhKspk0Clrn7CnevAR4GpqU5JkkRd9/g7u+E73cQfAEbRHCP/xQW+xPwxbQEKCllZoOBLwC/D5cNOBF4NCyie72PMLMewLHAfQDuXuPu29Fne1+VAeSaWQbQBdiAPtv7DHd/FdjaYHVTn+VpwJ89MBfoaWYD9kqg0maN3Wt3/6e7x8LFucDg8P004GF3r3b3lcAygu/tHYYSrKYNAtYkLa8N18k+xswKgcOBN4ECd98QbtoIFKQrLkmpXwE3AIlwuQ+wPekXtz7f+45hQDHwx7BL6O/NrCv6bO9z3H0dcBuwmiCxKgXmo8/2vq6pz7K+t+3bLgP+Eb7v8PdaCZbs18ysG/AYcI27lyVv8+AZBnqOQSdnZqcBm919frpjkb0iAzgC+K27Hw5U0KA7oD7b+4Zw7M00gqR6INCV3bsYyT5Mn+X9g5n9gGBox0PpjqW1lGA1bR0wJGl5cLhO9hFmlkmQXD3k7o+HqzfVdSkI/92crvgkZY4BzjCzIoKuvicSjNHpGXYrAn2+9yVrgbXu/ma4/ChBwqXP9r7nc8BKdy9291rgcYLPuz7b+7amPsv63rYPMrNLgNOA8/2Th/d2+HutBKtpbwOHhLMRZREMpns6zTFJioRjcO4Dlrj7L5M2PQ1cHL6/GHhqb8cmqeXu33P3we5eSPA5fsndzwdeBs4Oi+le7yPcfSOwxsxGhKs+CyxGn+190Wpgspl1CX+n191rfbb3bU19lp8GLgpnE5wMlCZ1JZROyMxOIejef4a770za9DRwrpllm9kwgolN3kpHjE2xT5JBacjMPk8wdiMK/MHdb0lvRJIqZjYFeA14n0/G5XyfYBzWI8ABwCrgHHdvOMBWOikzOx64zt1PM7MDCVq0egPvAhe4e3Uaw5MUMbPxBBOaZAErgEsJ/qCoz/Y+xsx+DEwn6D70LvAVgrEY+mzvA8xsJnA80BfYBNwEPEkjn+Uwyb6LoJvoTuBSd5+XhrDlU2jiXn8PyAZKwmJz3f2KsPwPCMZlxQiGefyjYZ3ppARLREREREQkRdRFUEREREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIoowRIREREREUkRJVgiIiIiIiIpogRLREREREQkRZRgiYiIiIiIpIgSLBERERERkRRRgiUiIiIiIpIiSrBERDoIMys0MzezjHTHsq8zs0vMbE664+hozGyqmX2Y7jhERDozJVgiItKpmdkMM6s1s/Kk1w3pjqszcvfX3H1Equs1s9PNbFF4b/5tZqNSfQwRkY5CCZaISIqo5SmtZrl7t6TXrekOKJU688+WmR0CPARcAfQE/gY83ZnPSUSkOUqwRETawMyKzOw7ZrYQqDCzDDObHP6VfruZvWdmxyeVn21m/8/M3jKzMjN7ysx6N1H3pWa2xMx2mNkKM/vvBtunmdmCsJ7lZnZKuL6Hmd1nZhvMbJ2Z/Y+ZRVs4j4PM7CUzKzGzLWb2kJn1TNq21cyOCJcHmllx3XmZ2Rlm9kF4vrPNbGSD63OdmS00s1Izm2VmOXt+pfecmX03vC47zGyxmZ3ZRDkzs9vNbHN4Ld83szHhtmwzu83MVpvZJjO728xyW3n8+8PyL4QxvGJmQ5O2/9rM1oTHnG9mU5O2zTCzR83sQTMrAy4xs0lm9kZ4nTeY2V1mlpW0j5vZ18zs4/B4Pwnv3b/DYzySXL6JmI83s7WtOb89cDLwmrvPcfcY8DNgEHBcio8jItIhKMESEWm784AvEPx1vgB4BvgfoDdwHfCYmeUnlb8IuAwYAMSAO5qodzNwGtAduBS4PSnJmQT8Gbg+PO6xQFG43/1hvQcDhwMnAV9p4RwM+H/AQGAkMASYAeDuy4HvAA+aWRfgj8Cf3H22mQ0HZgLXAPnAs8DfGnyRPwc4BRgGjAMuaTQAsylh8tDUa0oL59DQcmAq0AP4cRj/gEbKnURw/YaHZc8BSsJtPw3Xjye4noOAG/cghvOBnwB9gQUELTl13g7r7Q38Bfhrg+RzGvAowf19CIgD14Z1HQ18Fvhag+OdDBwJTAZuAO4BLiC4n2MIflY/tTBRbur+/F9zuzZ4b2E8IiL7HCVYIiJtd4e7r3H3SoIvs8+6+7PunnD3F4B5wOeTyj/g7ovcvQL4EXBOYy1M7v6Muy/3wCvAPwkSBoD/Av7g7i+Ex1nn7kvNrCA81jXuXuHum4HbgXObOwF3XxbWVe3uxcAvSWphcPd7gWXAmwSJ4Q/CTdOBZ8J9a4HbgFzgMw2uz3p330rQPWx8EzHMcfeezbyam5TinAZf9ge6+1/D4ybcfRbwMTCpkX1rgTzgUMDcfYm7bzAzAy4HrnX3re6+A/jflq5lA8+4+6vuXk1wzY42syHh+T7o7iXuHnP3XwDZQPL4pzfc/ckw/kp3n+/uc8PyRcDv2L0V6FZ3L3P3D4BFwD/dfYW7lwL/IEi4PzV3H9fM/WmY7NV5ETgubB3LAr4PZAFd2hKLiEhHpQRLRKTt1iS9Hwp8OfnLPjCFIClprPwqIJOgVWIXZnaqmc0Nu+dtJ0ic6soNIWihaWhoWN+GpOP/DujX3AmYWYGZPWxBl8Iy4MFGYrqXoNXhzjBhgKDFa1VdAXdPhOc3KGm/jUnvdwLdmovlU3qkwZf99WZ2kQVdKOuuwxgauc7u/hJwF/AbYLOZ3WNm3Qla5LoA85PqeC5c31r199rdy4GtBNeMsOvkkrDr5HaC1rO+je0blh9uZn83s43hPfrfRs5nU9L7ykaW2+PaN8vdlwIXE1zjDQQxLwZS3RVRRKRDUIIlItJ2nvR+DUELVfKX/a7u/tOkMkOS3h9A0IKyJblCM8sGHiNoESpw954E3e/qulqtAQ5qJJY1QDXQN+n43d19dAvn8L/heYx19+4ELXH13brMrBvwK+A+YIZ9Mm5sPUFSV1fOwvNb18LxdmPBFOHlzbymtlxLfV1DCRLCq4A+4fVbxK5d1eq5+x3ufiQwiqBL4PUE96QSGJ10LXu4+54kKfX3OryGvYH14bncQNAdsVcYX2mD+JJ/rgB+CywFDgnv0febOp/2YsFYu6buz91N7efuj7r7GHfvA9wEFBJ0kRQR2ecowRIRSa0HgdPN7GQzi5pZTtg1anBSmQvMbFQ4nulm4FF3jzeoJ4ugy1gxEDOzUwnGCtW5D7jUzD5rZhEzG2Rmh7r7BoKuhL8ws+7htoPMrKUJBfKAcqDUzAYRJBjJfg3Mc/evEIwxq/sy/QjwhTCOTODbBAnev1u6UA2FU4R3a+b12h5U15UgQSmGYMIQmhjzY2YTzeyoMP4KoApIhK1x9xKMfesXlh1kZicn7euWNIlJIz4fji3LIhiLNdfd1xBc71gYX4aZ3Ugw1q45eUAZUG5mhwJXtlA+5dx9dDP354qm9jOzI8PPQz7BuLCnw5YtEZF9jhIsEZEUCr88TyNoXSgmaFG6nl1/3z5AMBHFRiAH+GYj9ewI1z8CbAP+E3g6aftbhBNfELR8vMInLUkXESRoi8N9H2XXLoqN+TFwRFjXM8DjdRvMbBrBJBV1X+i/BRxhZue7+4cErV13ErT4nA6c7u41LRyvXbn7YuAXwBsE3eTGAq83Ubw7QSK1jaC7Ywnw83DbdwjGns0Nu+W9SDhOKhxLtQN4v5lQ/kLQYrOVYPKJC8L1zxN0N/woPGYVDboENuI6gp+DHWG8s1oo35H8GtgOfEhwnb+a1mhERNqRuTfsgSAiIu3FzGYDD7r779Mdi7SNmV1A0H3we01svx9Y6+4/3KuBiYhIWukhfyIiIp+Cuz+Y7hhERKTjURdBEZH9hAUPvd2jyQlk32Nm32/i5+Af6Y5NRGRfoC6CIiIiIiIiKaIWLBERERERkRTpUGOw+vbt64WFhekOQ0REREREpFnz58/f4u67PXy+QyVYhYWFzJs3L91hiIiIiIiINMvMVjW2Xl0ERUREREREUkQJloiIiIiISIoowRIRacDdQTOsioiIyKfQocZgNaa2tpa1a9dSVVWV7lCkk8nJyWHw4MFkZmamOxTpZF79v69xVPGjRH+4kcyMaLrDERERkU6kwydYa9euJS8vj8LCQsws3eFIJ+HulJSUsHbtWoYNG5bucKSTOa74LwC8986rHDbphDRHIyIiIp1Jh+8iWFVVRZ8+fZRcyR4xM/r06aOWT9ljiYSzzvsAULXomTRHIyIiIp1Nh0+wACVX8qno50Y+jfKaGF0JEvPsLR+kORoRERHpbDpFgiUisreUlZbS0yoAKKhcluZoREREpLNRgtUKZsa3v/3t+uXbbruNGTNmpC+gJHPnzuWoo45i/PjxjBw5sj6u2bNn8+9///tT17tq1SqOOOIIxo8fz+jRo7n77rtTFLFIx7ZzS/DMwFWRAxjgm6kq35bmiERERKQzUYLVCtnZ2Tz++ONs2bIlpfW6O4lEok11XHzxxdxzzz0sWLCARYsWcc455wBtT7AGDBjAG2+8wYIFC3jzzTf56U9/yvr169sUq0hnULOjBICNvY4AYN3y99MZjoiIiHQySrBaISMjg8svv5zbb799t23FxcWcddZZTJw4kYkTJ/L6668DMGPGDG677bb6cmPGjKGoqIiioiJGjBjBRRddxJgxY1izZg3XX389Y8aMYezYscyaNQsIEqTjjz+es88+m0MPPZTzzz8/eDZPA5s3b2bAgAEARKNRRo0aRVFREXfffTe3334748eP57XXXms2zgsvvJCjjz6aQw45hHvvvReArKwssrOzAaiurm4yEbzjjjsYNWoU48aN49xzzwVg69atfPGLX2TcuHFMnjyZhQsX1h/r4osvZurUqQwdOpTHH3+cG264gbFjx3LKKadQW1sLwM0338zEiRMZM2YMl19++W7nnUgkKCwsZPv27fXrDjnkEDZt2tTcbRRplUSsGoBovxEAbFv7cTrDERERkU6mw0/TnuzHf/uAxevLUlrnqIHduen00S2W+/rXv864ceO44YYbdll/9dVXc+211zJlyhRWr17NySefzJIlS5qt6+OPP+ZPf/oTkydP5rHHHmPBggW89957bNmyhYkTJ3LssccC8O677/LBBx8wcOBAjjnmGF5//XWmTJmyS13XXnstI0aM4Pjjj+eUU07h4osvprCwkCuuuIJu3bpx3XXXAfCf//mfTca5cOFC5s6dS0VFBYcffjhf+MIXGDhwIGvWrOELX/gCy5Yt4+c//zkDBw7c7Vx++tOfsnLlSrKzs+sTnptuuonDDz+cJ598kpdeeomLLrqIBQsWALB8+XJefvllFi9ezNFHH81jjz3GrbfeyplnnskzzzzDF7/4Ra666ipuvPFGAC688EL+/ve/c/rpp9cfMxKJMG3aNJ544gkuvfRS3nzzTYYOHUpBQUGL91GkJYnaGgC6DBwFS6B2y4o0RyQiIiKdiVqwWql79+5cdNFF3HHHHbusf/HFF7nqqqsYP348Z5xxBmVlZZSXlzdb19ChQ5k8eTIAc+bM4bzzziMajVJQUMBxxx3H22+/DcCkSZMYPHgwkUiE8ePHU1RUtFtdN954I/PmzeOkk07iL3/5C6ecckqjx2wuzmnTppGbm0vfvn054YQTeOuttwAYMmQICxcuZNmyZfzpT39qtIVo3LhxnH/++Tz44INkZGTUn9OFF14IwIknnkhJSQllZUFifOqpp5KZmcnYsWOJx+P18Y4dO7b+/F5++WWOOuooxo4dy0svvcQHH+w+k9v06dPrW/sefvhhpk+f3uw1F2mteJhg5XTvQwk9iG4vSm9AIiIi0ql0qhas1rQ0tadrrrmGI444gksvvbR+XSKRYO7cueTk5OxSNiMjY5dudcnPY+ratWurjlfXRQ+C7n+xWKzRcgcddBBXXnklX/3qV8nPz6ekpGS3Mk3FCbtPZ95weeDAgYwZM4bXXnuNs88+e5dtzzzzDK+++ip/+9vfuOWWW3j//ebHq9SdUyQSITMzs/5YkUiEWCxGVVUVX/va15g3bx5DhgxhxowZjT7L6uijj2bZsmUUFxfz5JNP8sMf/rDZ44q0Vl0XwYzMLLZkDKDLzrVpjkhEREQ6E7Vg7YHevXtzzjnncN9999WvO+mkk7jzzjvrl+u6whUWFvLOO+8A8M4777By5cpG65w6dSqzZs0iHo9TXFzMq6++yqRJk1od0zPPPFM/Runjjz8mGo3Ss2dP8vLy2LFjR4txAjz11FNUVVVRUlLC7NmzmThxImvXrqWyshKAbdu2MWfOHEaMGLHLsROJBGvWrOGEE07gZz/7GaWlpZSXlzN16lQeeughIBhL1rdvX7p3796q86lLpvr27Ut5eTmPPvpoo+XMjDPPPJNvfetbjBw5kj59+rSqfpGWeDxowcrIzGFHl8H0rtHkLiIiItJ6SrD20Le//e1dZhO84447mPf/27vv8LjKM/H733v6qPcuWXJvsmUsl2CaKQHSqMFkAwk4gSU9XMlm08gS9pfdbHg3u9lAwoZASAgxEJIAS0JxgARswOCGbXDBRZYly1bv0+d5/5ixkG0V25rRqNyf65pLc9pzbunojM6tp23cyIIFC5g7d27fcObXXHMNra2tzJs3j3vuuYeZM2cOWN5VV13FggULWLhwIRdeeCE/+tGPKCgoOOV4Hn74YWbNmkVVVRU33ngjjzzyCFarlY9+9KP86U9/6hvkYrA4IdLMb+XKlSxfvpw77riDoqIidu7cybJly1i4cCHnn38+X//616msrATgs5/9LBs3biQUCnHDDTdQWVnJokWL+PKXv0xGRgZ33nknmzZtYsGCBXzzm9/k17/+9Sl/PxkZGdxyyy3Mnz+fSy+9lCVLlvRtu++++46Le9WqVfz2t7/V5oEqpsyxGiyHk0DqFPLDTQT9J9eiKqWUUkoNRAYame60ChApBX4D5AMG+IUx5icicidwC9AU3fXbxpi/DFVWdXW12bhx43Hrdu7cyZw5c0YUoxrcnXfeedxgGBON/v6o0/X64//JB969i9Z/3Mre159h6bbv0vCp1yicmtgmykoppZQaW0RkkzGm+sT1sajBCgJfM8bMBZYDXxCRudFt/2WMqYq+hkyulFJqLHi/iaCTpILpALTU7UlkSEoppZQaR0Y8yIUxpgFoiL7vEpGdQPFIy1Wj484770x0CEqNLdEEy+5wkVU8AwDP0X2JjEgppZRS40hM+2CJSDmwCNgQXfVFEdkmIg+KSOYgx9wqIhtFZGNTU9NAuyil1KgxwWMJloPcoikEjJVw+6EER6WUUkqp8SJmCZaIpAB/AL5qjOkEfg5MA6qI1HD950DHGWN+YYypNsZU5+bmxiocpZQ6M6EAAFa7E7vdTpNkY+vSodqVUkopdWpikmCJiJ1IcvWIMeaPAMaYo8aYkDEmDNwPnPrY40oplSghP2EjiCXSgrrNnk+SpyHBQSmllFJqvBhxgiWRmWIfAHYaY37cb31hv92uAnaM9FxKKRV3oQABbBCdBLs3qYjMwNEEB6WUUkqp8SIWNVgrgBuBC0Vka/T1IeBHIrJdRLYBK4HbY3CuhHnyyScREXbt2jXoPjU1NcyfPz9m59y9ezcXXHABVVVVzJkzh1tvvRWITBL8l7+c+aCMXq+XpUuXsnDhQubNm8e//Mu/xCpkpcY9Cfvxi71vOZhSTK5pIej3JTAqpZRSSo0XsRhFcB0gA2yaUMOyr1mzhnPOOYc1a9bw/e9//6TtwWBwxOcIhUJYrda+5S9/+cvcfvvtXHHFFQBs374diCRYGzdu5EMf+tAZncfpdPLSSy+RkpJCIBDgnHPO4fLLL2f58uUj/h6UGu8kFCDY76PRklWGtd7Q0FBD4ZRZCYxMKaWUUuNBTEcRnKi6u7tZt24dDzzwAI8++mjf+r/97W+ce+65fOxjH2Pu3MjUX8FgkE9+8pPMmTOHa6+9lt7eXgBefPFFFi1aRGVlJatXr8bni/w3vLy8nH/+53/mrLPO4ve///1x521oaKCkpKRvubKyEr/fz/e+9z0ee+wxqqqqeOyxx+jp6WH16tUsXbqURYsW8dRTTwHw0EMPccUVV3DBBRcwY8aMvsRQREhJSQEgEAgQCAQQOTlH/v3vf8/8+fNZuHAh5513HhCp/br55puprKxk0aJFvPzyy33nuvLKK7nkkksoLy/nnnvu4cc//jGLFi1i+fLltLa2AnD//fezZMkSFi5cyDXXXNP38+lv+fLlvPPOO33LF1xwASdOQK1UvEjYf1yClZQzBYC2w/sTFZJSSimlxpER12CNqme/CUe2x7bMgkq4/IdD7vLUU09x2WWXMXPmTLKzs9m0aROLFy8GYPPmzezYsYOKigpqamrYvXs3DzzwACtWrGD16tX87Gc/44tf/CI33XQTL774IjNnzuRTn/oUP//5z/nqV78KQHZ2Nps3bz7pvLfffjsXXnghZ599Nh/84Ae5+eabycjI4K677mLjxo3cc889AHz729/mwgsv5MEHH6S9vZ2lS5dy8cUXA/Dmm2+yY8cOkpKSWLJkCR/+8Ieprq4mFAqxePFi9u7dyxe+8AWWLVt20vnvuusunn/+eYqLi2lvbwfg3nvvRUTYvn07u3bt4oMf/CB79kQmYd2xYwdbtmzB6/Uyffp0/uM//oMtW7Zw++2385vf/IavfvWrXH311dxyyy0AfPe73+WBBx7gS1/60nHnXbVqFY8//jjf//73aWhooKGhgerqkybJViouJBwkKO9/NGYUTgWgp7EmQREppZRSajzRGqxTsGbNGq6//noArr/+etasWdO3benSpVRUVPQtl5aWsmLFCgBuuOEG1q1bx+7du6moqGDmzJkAfPrTn+aVV17pO2bVqlUDnvfmm29m586dfPzjH+dvf/sby5cv76v56u+FF17ghz/8IVVVVVxwwQV4vV5qa2sBuOSSS8jOzsbtdnP11Vezbt06AKxWK1u3bqWurq4vCTvRihUruOmmm7j//vsJhUIArFu3jhtuuAGA2bNnM2XKlL4Ea+XKlaSmppKbm0t6ejof/ehHgUjNW01NDRBJws4991wqKyt55JFHjqupOua6667jiSeeAODxxx/n2muvHfDno1Q8WMJ+gv36YOWWTAcg2HowUSEppZRSahwZXzVYw9Q0xUNraysvvfQS27dvR0QIhUKICHfffTcAycnJx+1/YlO7gZrenejEMvorKipi9erVrF69mvnz5w+YCBlj+MMf/sCsWcf3D9mwYcOw8WRkZLBy5Uqee+65kwbouO+++9iwYQN//vOfWbx4MZs2bRry+3A6nX3vLRZL37LFYunro3bTTTfx5JNPsnDhQh566CH+9re/nVROcXEx2dnZbNu2jccee4z77rtvyPMqFUsSDhDqV4PlSkqhlTQsnToXllJKKaWGpzVYw3jiiSe48cYbOXjwIDU1NRw6dIiKigpeffXVAfevra3l9ddfB+B3v/sd55xzDrNmzaKmpoa9e/cC8PDDD3P++ecPe+7nnnuOQCAy6emRI0doaWmhuLiY1NRUurq6+va79NJL+elPf4oxBoAtW7b0bVu7di2tra14PB6efPJJVqxYQVNTU1+TP4/Hw9q1a5k9e/ZJ59+3bx/Lli3jrrvuIjc3l0OHDnHuuefyyCOPALBnzx5qa2tPSuyG0tXVRWFhIYFAoK+cgaxatYof/ehHdHR0sGDBglMuX6mRsoYDhPrVYAG02PJx9+pcWCMRCIUJh02iw1BKKaXiThOsYaxZs4arrrrquHXXXHPNcc0E+5s1axb33nsvc+bMoa2tjc997nO4XC5+9atf8fGPf5zKykosFgu33XbbsOd+4YUX+gaZuPTSS7n77rspKChg5cqVvPvuu32DXNxxxx0EAgEWLFjAvHnzuOOOO/rKWLp0Kddccw0LFizgmmuuobq6moaGBlauXMmCBQtYsmQJl1xyCR/5yEcA+N73vsfTTz8NwD/90z9RWVnJ/PnzOfvss1m4cCGf//znCYfDVFZWsmrVKh566KHjaq6G86//+q8sW7aMFStWHJfUPf3003zve9/rW7722mt59NFHue666065bKViwXJCDRZAt7OAdP+RBEU0/rX1+Lnl3+7jjXs/A+FwosNRSiml4kqO1XqMBdXV1ebE0eJ27tzJnDlzEhTR+PbQQw8dNxjGZKS/P+p07fjBOdgsMPtb6/rWvfnzf2T+kT/h+t4RLFb9v9Tp+vPWGj785EIAAre+ir1Ia6WVUkqNfyKyyRhz0khs+qSglFL9WM3JTQTJLCNJfLQ0azPBM9F06MD777e/lMBIlFJKqfjTBGsCu+mmmyZ17ZVSZ8JqgoRPSLBc2WUANNfvS0RI4563/XDf+9DBNxIYiVJKKRV/4yLBGkvNGNX4ob836kzYTICQ5fgEK7UgMhdW99EDAx2ihhHujPRfO2IysbfrhM1KKaUmtjGfYLlcLlpaWvRhWZ0WYwwtLS24XK5Eh6LGGasJYk5IsHKLpwHgb9G5sM6EpecoALvs80jz1oF+niullJrAxvw8WCUlJdTV1dHU1JToUNQ443K5KCkpSXQYapyxmSDhExKslMx8PDihQ+fCOhNuXzMhrDSlV5LUsg56WyE5O9FhKaWUUnEx5hMsu91ORUVFosNQSk0SNgIY6wmDXIjQZMnD2VOfmKDGubRQKz32TMJZU6EFwi37sGiCpZRSaoIa800ElVJqNNkJYiyOk9Z3OgtI8+lcWKfLGENauAOPPQtn3gwAuhr2JDgqpZRSKn7inmCJyGUisltE9orIN+N9PqWUGomBmggCeJOLyA42an/Q0+QJhEihl5AjlfSi6YSN0NPwXqLDUkoppeImrgmWiFiBe4HLgbnAJ0RkbjzPqZRSI2EnCNaTa7BIKyFbOuno7Bj9oMaxLm+QFDyEHSmU5GRwmGxCzTrcvVJKqYkr3jVYS4G9xpj9xhg/8ChwRZzPqZRSZ8QYE2kiOECCZc+eAkBjnQ4zfjqOJVjGkUpxppuD4XxsnToao1JKqYkr3glWMXCo33JddJ1SSo05wWAQm4RhgCaCKfmRwXY6j2iCdTq6vAGSxYvFlUaSw8ZRWyGpPbWJDksppZSKm4QPciEit4rIRhHZqEOxK6USKRDwRd7YTq7Byi6KzIXlba4ZxYjGvy5vkFQ8WFypAHQnFZMSagd/T2IDU0oppeIk3glWPVDab7kkuq6PMeYXxphqY0x1bm5unMNRSqnBBfx+AGSAJoLp+WWEjBBuO3TSNjW4Hk8vTglgc6cBEEyN/klo15+jUkqpiSneCdZbwAwRqRARB3A98HScz6mUUmck6PdG3pw4DxYgVjstlmzs3ToX1unwdkcGBbEnpwNgyyoHINxak6CIlFJKqfiKa4JljAkCXwSeB3YCjxtj3onnOZVS6kwFo00EZYAmggBtjgJSvA2jGdK45+uJJFiOpEiClZQ/FYCuozqSoFJKqYnJFu8TGGP+Avwl3udRSqmRCvmHTrA87iJy27eMZkjjXqA3kmA5ozVYOfkleI0dT+N+0hMZmFJKKRUnCR/kQimlxopgINJEcKA+WAChtGLyTCs9Ht9ohjWuhTydAFhdkT5YpdnJ1JlcQq06VLtSSqmJSRMspZSKCkWbCFoGqcGyZpZhlxBHD9eMYlTjW9jbFXnjjCRYxRlu6kwu9i4d5EIppdTEpAmWUkpFhQKRUQQtNueA25PzygFoP6xzYZ0y37EEKwUAl91Ks72AZM/hBAallFJKxY8mWEopFRUKDl2DlVEYmQurp6lmtEIa//zHEqzUvlW9ScUkhzrB25mgoJRSSqn40QRLKaWiQtF5sCz2gROs7KLICHihttpRi2m8sw6QYIXSyiJv2vXnqJRSauLRBEsppaLCoaGbCFpcqXSQirWzbjTDGtcsgR7CCNiT+9bZs8sBCOlcWEoppSYgTbCUUioqHB3kwmofOMECaLXnk6T9h06ZPdiN3+IGy/t/bpILIjWBnUd0LiyllFITjyZYSikVFQ5GarCGSrC63MVk+XWy4VPlCPXgtyYfty4/r4ge48TTeCBBUSmllFLxowmWUkpFmVNIsPyppRSZRnyBwGiFNW4ZY3CGegnYUo5bf2wuLNOmc2EppZSaeDTBUkqpqPdrsAYe5ALAklWBUwI01mtyMJxef4gUPATtx9dgFaa7qCNP58JSSik1IWmCpZRSUccmGnY4XYPu48qLDNXeVr93VGIaz3p8QVLEQ9h+fA2WzWqhzV5AqvcwGJOg6JRSSqn40ARLKaWijiVYziESrMyi6QB4GjXBGk6XL0gKHowj9aRtvcnFuMM94G0f/cCUUkqpONIESymlokLRJoIup3vQfXJKphM2QrhFB2gYTrc3SLJ4EdfJCZZJj86Fpf2wlFJKTTCaYCmlVJQJeAFwugavwbI73TRKNjbtPzSsbl+QNHoRV9pJ2xw5FQD4W2pGOSqllFIqvjTBUkqpKEugh7ARLI6kIfdrdRSS0quTDQ+ny+MjTXqxJGWdtC0lX+fCUkopNTGNKMESkbtFZJeIbBORP4lIRnR9uYh4RGRr9HVfTKJVSqk4kkAvHnGCyJD79SSVkB3QubCG4+9uA8CenHnStoL8AjqNG1+TNrVUSik1sYy0BmstMN8YswDYA3yr37Z9xpiq6Ou2EZ5HKaXizhLsxcvgzQOPCaVPIY9WPL09oxDV+BXoagbAnpJ90rbSrGTqTJ7OhaWUUmrCGVGCZYx5wRgTjC6+AZSMPCSllEoMW9CDVwafZPgYe7T/0JHaPfEOaVwL9LQC4E47OcHKS3VymFyc3drUUiml1MQSyz5Yq4Fn+y1XiMgWEfm7iJw72EEicquIbBSRjU1NTTEMRymlTo8t1ItPBh9B8JjUgshQ7e31mmANJdAdSbCsySf3wbJYhHZnIWk6F5ZSSqkJxjbcDiLyV6BggE3fMcY8Fd3nO0AQeCS6rQEoM8a0iMhi4EkRmWeM6TyxEGPML4BfAFRXV+tfWaVUwthCHvyW4ROsnLKZAHgb98c7pHEt1Bvpg4X75D5YAJ6UUpxtXuhphpTcUYxMKaWUip9hEyxjzMVDbReRm4CPABcZE/k3pDHGB/ii7zeJyD5gJrBxpAErpVS8OMIevKeQYGXmluAxDkxbTfyDGsfEM3SCRXoZtAHtBzXBUkopNWGMdBTBy4BvAB8zxvT2W58rItbo+6nADED/1auUGtPsYS8B69BDtAOIxUKjtQBXt86FNRSrrz3yxpU+4HZn3jQAehv3jlJESimlVPwNW4M1jHsAJ7BWIsMavxEdMfA84C4RCQBh4DZjTOsIz6WUUnHlDHsJWoevwQLocBVF+g+pQTn9bXgsybit9gG3pxVG+rJ1Nexj+LRWKaWUGh9GlGAZY6YPsv4PwB9GUrZSSo02l/EQtp1aguVLLWNqz9uEQ2EsVp2zfSCpwRZ63DkM9hMtycumyaTjb9IGDkoppSYOfSpQSqkol/FiHMmntnPmFFLEQ1OTTjg8kG5fkBzThteVN+g+pZlJ1Jo8rO06F5ZSSqmJQxMspZQCwqEQSeLDcooJljvaf6j5kA7VPpCGdg/5tGFSBhqENiI9yc4RSz7uXp0LSyml1MShCZZSSgFd3V0AWJynlmBlFkeGau9seC9uMY1nh9s95EkbtoyiIffrdBWT7j8KocAoRaaUUkrFlyZYSikF9HRGxuGxuNNOaf/c0hkABJsPxC2m8ay56ShOCeLOKh5yv0BaGRbC0KG1WEoppSYGTbCUUgrwdjQCYE3OOaX9HUlptJKOtaM2nmGNWz1NNQCk5pYOuZ8lqxyAcGtNfANSSimlRokmWEopBXjbjwJgS8s/5WOa7UUka/+hAZmWyMiA1pwBB5vt486PbO8+onNhKaWUmhg0wVJKKcDXGanBSso89QSrN6mY7IDOhTUQR0d06PWsqUPul10wBb+x0nN03yhEpZRSSsWfJlhKKQUEowlWWvbgo96ddEz6FApMMz0eb7zCGpeMMSR3HaDDngvOlCH3Lc1Jpd7kEGrRvmxKKaUmBk2wlFIKCHU3EzJCZvap12DZsiuwSZiGWm3e1l9jl4+ycB29KeXD7luc4eYQedg6tS+bUkqpiUETLKWUAiyeFjokFZvNdsrHpBZG5sJqq9eh2vvbXd/MHDlIuHDRsPu67FaabYWkeupHITKllFIq/jTBUkopwOppocuSflrH5JTOAsDbqP2H+qvb+SZOCZI58wOntH9vUinJoQ7wdsY5MqWUUir+NMFSSikg3XeYDufQk+KeKC1vCgGsmLaa+AQ1ToUOrAcgaeryU9s/IzqUe/vBeIWklFJKjRpNsJRSk54Jh8kPNuBNKTmt48Rqo9GSh6v7UJwiG386vQFmdqyn0T0N0k4tYbXnREYaDOhAF0oppSYATbCUUpNeV1szqeIhnDHltI9tdRSS7tOh2o95ddMOFstuwjMuO+VjUvIjfdk6DmtfNqWUUuOfJlhKqUnvaO0uABw5Q8/ZNJAedwl5wSOxDmnc6njtQWwSJv+81ad8TG5uAT3Gia9FJ21WSik1/o0owRKRO0WkXkS2Rl8f6rftWyKyV0R2i8ilIw9VKaXio7X2XQByp8w57WMDqaVk0knA0xXrsMadDTsPcHn3H6nLXoHkTD/l4woy3BwxWYQ7dCRBpZRS418sarD+yxhTFX39BUBE5gLXA/OAy4CfiYg1BudSSqmYCzdsw29sFE6tPO1jrRnFALQemdwDNHj9QVr/+HXSpJfcK/7faR1bkOaiwWRh79amlkoppca/eDURvAJ41BjjM8YcAPYCS+N0LqWUGpHk9l0cspVhczhP+1hXdmRgjI7GyZtgBUNhnvnf73B54K/Uz/tHnGVnndbxboeVZmsubu/ROEWolFJKjZ5YJFhfFJFtIvKgiGRG1xUD/YfVqouuO4mI3CoiG0VkY1NTUwzCUUqpUxcKhSn2vEd72qwzOj4tNzIwRm/z5Ow/1Nnr5fmffpFrW+7jQP4HKbvm386onB5nHqmBZggFYxyhUkopNbqGTbBE5K8ismOA1xXAz4FpQBXQAPzn6QZgjPmFMabaGFOdm5t7uocrpdSI7Nv1NtnSiaVs2Rkdn1UYSbCCbZMrwTLG8Porz3P47rP5cPsj7Cm+iopbHgHLmf3fzpdUgIUwdGstllJKqfHNNtwOxpiLT6UgEbkfeCa6WA+U9ttcEl2nlFJjSuOOl5gJFC286IyOz8zIoNMkQefk6D8UCoXYvO5ZZP1P+ID/TVoki/3n/w8zL/gUiJxxuSa1GNqI/BzTB2zwMOEYY6hv7Wb/rq001bxLqPUAST11iL8LE/TTQSpdzny6cqooX3Qhly0oIdVlT3TYSimlhjFsgjUUESk0xjREF68CdkTfPw38TkR+DBQBM4A3R3IupZSKB1vdG7SRRn7F6Q9wASAiNFuycXgmcM2LMRzasY6G135HWcMLLKGZdlLZOv3zzL/6m2QnpY/4FLbMEqiFUPshrKVLYhD02BMIhdm5ZzeH334JU7+Z/K53mGX2c574+vbxSBJeWyrY7biCHbgDXdDwG44czuSBZz9M3sVfYdUHZmC1nHkyq5RSKr5GlGABPxKRKsAANcA/Ahhj3hGRx4F3gSDwBWNMaITnUkqpmDLGUNq1lYOpVWSOoPalw55LqrcxhpGNAcbQsX8jh179Lbm1z1IaPkq+sfJu0hIa5n2dyotuoMqdGrPTubPLAOhpriUtZqUmVjhs2LNvL/Vb12I5uI6Krs0skAYWAH7sNLhncij3GpIqllAwrRJHzjTc7kzc/X8XPW2Y/X/Hvf6XfPXwbznw/Fru3H4nX//0x0l3j53aLE9PF831+2hraaKrsx383QSNBb/YCTvSsGeXkZVXyvT8VFKcI330UEqpsW1En3LGmBuH2PYD4AcjKV8ppeLpUM0eymikoeTmEZXT68yjtHsCVNIbQ9PejTS8toa82r9QEGogyVjZYq9i1+zPM3flJ6jKzY/LqbOy8+g1TrzNh8Z1glV3pIn3NvwZy/6XKO3YyGzqmQ304KYufRG7ym+kaOElpE2pYorNMXyB7kxk3pWkz7sSs+9l8h6/le82fJl7/nsHn/jcHRRluOP+PfXnb2/g0M436arZgqXxHZK6D5IZOEI2HZRyfN+AE3mNnXfNFPY7ZuMrWkbOwstYOruczORT+DnEgzF4u9tpazlCV+tRervaCfp9hEMBwkEfAWMlaHVjdSbjcKfiyCgkO6+Q/PQkXHadeUYpNTj9N5JSatI6/PZLlAG58y8cUTnBpHwyu9oiI+BZx9nHqjHU797EkdfXUFD3LMWhejKNha22hWydupryc1axdOqUuIdRkOGmwWSR1DG+BgsJBEO88/ZbNG99hqzDrzAv+A4lEqQXFwdTFrKjbBWFVR8ke9oSZo3wd0OmrST5y2/Q/shNfO3wvaz5aS1LbrmX6QUjb6I5oKCf1r0baNrxMtZDr5PT9S4Z4XamRTc3mGyOOkppyTyPPRll2DLLSMnIJS09E7s7FasYbGEfod5WvE0H8Tfto6DxbeZ1rsVZ+wyBg3ey6amZ7Ek7G8fsSziregUz8lOREdQmHyccxt9eT8uhPbQffg9/836k/SDunjoyfA1khNtxSYhCoPAUiwwYK41k0CJZdNhz8bkLCacV48ieQkreFLKLp1FYVIrLMYLaxXAIfJ0EetroaW/G09WCr6uVQHcrwZ42jKcNvB1YvB3YAh1I0IMJGxxX/g9lc6rP/LxKqZgZZ08CSikVO6ZmPV0kUTZ7ZA8lJq0Y61GDt70BV/ZQ/8MfO+r3bKV+/SMUHHqWsvAhCoyw3bGAPVNvYso511E9pXxU48lPc7HHZDGja+wPFtLR1cu29X8mvPP/mN7+GlUSmWLkkG0Ku8v/gZyqD1NYuZI5ttOfV21YydlkfOZPtPzxa3zinYd4+b4jeD71GyqnFo28bH8vrXvWc3T7y9jqXqe0ZwdZ+MkC9pkiNrurCebOI618EaVzllJYUEThmfQFCwUI1r5Jy5ZnmLpvLcu7H4CND3D0rQyesy3CX7yckrnLmDqnmsz0IZqhhsPQfQRPUw0t9Xvpaawh2HoQe2ctqd56soNHcRDsS6DCRjhCFk22QhqTqwkn52NJycKWkoszLQd3SiZ2pxO73YHV5sAuISTQi9/TTaC3k2DnEfzth6HrCEk9R8jx1ZHVuQlXpy8yGU2Uz9iok2za7bkEbckYWxLGnoyx2rESxkIYEw5CKIA92IMj1I0z2I0r1IM73EMSvVgw2IGM6Ou4y2SsdJBMJyn0SDJ+i5uFoXfY+OqvNcFSaozQBEspNWkVdmyhxl1J5QhrFmwZkYfb9iMHKRjDCdbhmt3UvvJb8g7+H1NDByg0wruO+ayfcQMV536CqpL411QNJjvZwVHJZr5nd8JiGEpHZxfbX30S8+7TzO9+jXOlGw9O9qcvoX36FylffiWleeVDNpGLGauN7I//hJasaZz36r+w69cfYuNVv6a6auHplePtoPu9dTTueBnbodcp7N1FFkEyjLBbylmf/hFM2dnkzb+AWdOmMs0Wo2ZxVju2ihUUVKwA/h066unY8Tze7c9xXuNrJNe+DLUQflZolVQ6bdmErC4QCxbCuELduINdpJgubIRwExmqGKDNpNAgeex3VvBO2nmYjCk4cytIL5pBQel0CjPTKIpVDRmAMRhPG20N+2k9vJ+exoME2g5h6aonyXsUl78Zh9eD03ixmwBBrISwEMZKWKz0ShJdliSaLPn4XamE7KmEHGkYVzrizsSalIktJRNHchautGyS0rJJTU0lze0gx2Htq+3b+YMPkNP4Ruy+L6XUiGiCpZSalBqP1lNu6niz6KoRl+WOJlXdzbUjLivWWo/Wseulh8nY9zRzg+9SBOy2zeL1mf9E+fk3ML+4PNEhAmCxCJ32PFL86yNNpCyJ7+PS0e3l7VefxLbjcRZ0r+cc8dJFEgdzzqO96mrKl32UeY6khMWXfdGXacuuoOLJWzB/uoQNb3+GhVd9DVdazsk7GwNtNfTuf52Wna9iO/wW+Z69pGBwGCvvMI3t6ddgKV/BlKqVzC4vZc5ojVSYXkz6itWkr1gN4TDexr3s3/4anvp38XccxuFpgqAPY8IYhF5LDqGkVELODHzJRZBeSkpBBblF0ykpzGPuaA7+IYIkZZE1LYusaYmrPWrN+wDL6x6kt7OFpLTshMWhlIrQBEspNSnVbnmZPCBz9vkjListPzICnq91bPQfCgZDvL3uGcxbD7Cwex1nS4ga6xQ2VHyB0vNuZFbFnESHOCB/UgHWrlBksuG0GDR5OwPhsGHLW6/S/sbDzG9dy3nSRhdJ7M27hLSzrqViyeXMj0fTvzOUWfVROvLXc+DhL7DswM8I/vh/qUueQzizAovVRjjgwdV1iJSegySFu0kCwsbFNjOd9ek3RBKqhedRWV7IItuZTRIdUxYLroKZzC2YmehIxpWUORdhrX+A9zY8y8JLbkh0OEpNeppgKaUmJf+B9fiMnfIF54y4rOzcInzGRqg9sf2H9h+qZ9/a+5le+ziLqaeDFDYVXEfB+Z+hfO4SyhMa3fBMWhF0EZlseJQTrLqGI+xe+0vKDvyexaaGAFb2ZXyA3sX/QPkHrqbKPrqj9Z2O9MJpVH3jOTa/uY66dQ9T2L6Vwu7XEQwhY2O3yaXRfjY9WbOgbDkz5i3lrPJsztaR8CaMOUsuonetE8/OF0ATLKUSThMspdSklNWymf2OmcxxjvzBOTPZSR2ZWLobht85xoKhMG+u/yu+N37J8p6XmSp+9jvnsGPBl5h10adY7koe9ZjOlD2zFOoh3F6HpST+za38wTCvr3+R0JsPsKz7JS4SHwfs09k+97vMuPDTzE7Pi3sMsXTW0nM4a+k5eAMhDrd78ARCpLnsLHDbx9ScWSr2HE4XO1KXM7P1ZUIBP1Z7goa+V0oBmmANqbuzFU93F7lFiev4rZSKvd6eTqYG3mNz8SdjUp6I0GrJJtlzJCblnYrG1la2PfsgRXt/x9lmX2TAhaIPU3TRF5k6fXyOJJace2yy4YPEbgrjkx1taWXrsw9SvPdRzuc9vDjYV3AZuSs/R8Xss+N45tHhsluZmpuS6DDUKAvPv46sN/7Ojtf+j/nnX5PocJSa1DTBGsK7zz9I9Y7/x07nPDqnfoTC6o9ROnUOYhkD7dSVUmds/5ZXmC8h3DPOjVmZXY5c8vz7Y1beQIwx7Hh7I81//zlntT7HxdJDnW0KOyvvYOYln2VeUkZczx9v2TkFeI0dT/OhmCdYxhi2bdtC88v3Ut32LJdKD/X2MvZUfpfpF3+WeUmZMT6jUqNr/vlX0/nGN/BsWgOaYCmVUJpgDaFk8YfY0HWUgrrnmLPrh7Drhxwlm7q0s/AXLCKtbD4FMxaRlVsy6klXOBjE5+3F5+3F7/Pg9/QQ8HsI+jwEfL2E/B5Cfi8hfy9hv5dwwAshf2TujXAo+gq+/9UEI3OKhIOICb3/1YQwYYNgjjv/sWVj6Lft+K9iol/7bRnMcfvIiVsGHslqsGPkhGhPLM70rRl8hKyTQhhkXzNEGYMeM+TAXKd/nqFjUANJ7dxL2AjlVStjVqbHlU9mx4boTRHba9Lr8bDp+d+SuuM3VAW3EcDK7qwL6bngNkoWXBTz8yVKUWYSh002rvbYDRbS6/Xx1trHSXr7QZYENxPAyp6slfRe8DmKJ9DPTimXO4ltOR9kYdMzNB+uIaeoPNEhxU3Q76Onu5Perja8PV14e9vx9XRhfN0Yfw+hgB8T9BEO+jBBX2QUyqAfQn4kHMAa9iPhIBiDEAYTjrw3YQyRr5hwdFt0mXC/CCT6tzfy+WGQfs8X/db1bRtg3bG/3RIpq++JSY4v//3nnOPPOZSTn2EGXTylQuRUn5eGOcHQ55YB3x5b7LLn4Lzom5w7I3fIUsYKTbCGUDR1LkVT78aYH1G/bxv1m5/DWvsaUzrfIqdzLewB/go9xkmbJYsuezbd9hxC9mSMPQmxuzH2JMJii96c799CJhyGkA8JepGQD0vQhyXswxryYQ37sIV9WMN+7MaHPezHbgLY8eM0fhz4cUhk7o9YdbsOmMjcHKHoHB0hsRLCGo14oA8G6H8H9KVWcvy291Ou4W6r4VKwE5jBj+m//sQ9Bj9mmJMNc55TLW/oY07zZzDEMWdS1mSzJfU8FmfG7oM6lFKIq8MP3nZwx6Y25OD+3Rx84WfMOfIk59LOUUseb8/8CjMuu435WYkZZS+eijPcvGOymBaDyYb31x5i7/P3Mbf+cc6nkRbJYvuMzzP98i8yL6s4BtEqNfYUXf4NrL95iv1P/Ts5n/vfRIczrHAoTFd7Ex1NdfS21OPtbMLf1UyopxXpbcXia8Phb8cd7CA11EmS6cFtvDglQDqQfprn8xk7AbERwNb3vGOwYBDCEvlHucFCGMGIJfoMFP0qkeQm8ve135OQeX9ZjnvqMcc9CR33NGXeX/f+tvf/bg+23PcMearf8Bh9FBgqrMGeXw5SxPbmHk2wJhIRoXj6QoqnRydxNIbmo4eo37MFT/0OaK/F2nOUZF8zhZ73cPZ4cOLDZbw4JDRouQFjxS92fJGUiYA4CFgcBMVB0OLEZ0vFY8kmZHUStjoJW10YqxNsTozNjdiciN2F2N1YHC4sdjdWR+Rlc7iwOZOwO93Yo19tDicWqx2rzYbVasNqs2Oz2bFYrdgB7QKtJpOsWBeYWghEhmp3Fp95ghUKBtj28uOw6dcs8LxJKfBuyjLal9/C9LOvJH+EkyKPZWluG82WHOb17jqj4wPBEG+ufxHfhgc4u+dFpkqAve4F7F16B9POvZ5sm3b8VxNbybS5vJVxCZVH/sjBvV9iyvT5CYslEAzRdOQQHYffw3N0H4H2euhqwNZzFLevmfRgMzmmjfRosnSiLtx0SRq91jQ8tnTq3aUEHWkYewo4krG4UrA6U7G5U7G503AkpWB1pWFzJmN3unE4XdgdLhwuJw6HG5vdgVOEsTPJgjodWcCiRAdxGibuX+p4EiGnoIycgjLgikF3M8YQCgbAhKCvijjyVRDsNht2YPyM8aWUGkxSTmSAhqbDNZQUV5728Qf37aT+pf9lev1TLKKVJjLZXHYTFZd+nvklk2NOIBGhM3Ua6d2vQG8rJJ1aGry/pob9Lz1Iee2fWEEtHpzsK/oohZd8ielTz4pz1EqNLRXX/RuB+8/D/+jNeL/+Ci5X/KYY6OjspLF2N+317+Fr2o+01+DqPkSmr57C8FGKxE//uvZu46bVmkW3PYejyQupT84nnFKANb0QR3ohyZl5pGXmk56dR6rTFdfBbpSKJ02w4khEdKhUpSaJwtKpADQfPkDJKR7T0XyY3S/9lpT3nmRu4B1KjLAjaQmHqj7NgguvY8kk/Pzw5y+C7l8RrtuEZeYlg+7X1NrGO3//A86dT1Dte5OpEmKfYza7Ku9ixkWfHvcDfih1pnKKp7Nx2b9RveEr7PjvD1F66+OkZ51Zs6pQKEzjkVpaanfTfWQvoZYD2DoPktJbT27wMHm0HVf71IuLRmsBncllvJN6DpJVjiNnGqmF08guqiA1LRMd31JNBppgKaVUDJSVT8VvrASO7Bxyv+bDB3hv/R9J2vsX5nk3s1TC1FhKeavi81Rc/FkWFk8bpYjHprxZywnvFRp3vEzBCQlW3ZEmdq/7A+69z1DleZMLxEebZLBzyj9QsvIWplUsTFDUSo0t1ZffxAZPJ2e9fSc9/1PFa8XXkVr5YabMWEBqVi4iggmH6e3uoL25gc6WBjzNtQSaD0B7La6eOtJ9DeSHGykUP4XRcsNGaLJk0+oo4lDqB6jJKMeZW0Fa4Uxyy2aSklVIuQ4coxRizJn3gBORx4BZ0cUMoN0YUyUi5cBOYHd02xvGmNuGK6+6utps3LjxjONRSqlE2vKDC8gNN1Nyx46+dV5PD+9t/jtd7zxPwdG/MzV0AIAGyeNg4WVkL/sk0yuX6vQPUR2eAFv+/WIW2w/Q+fE/cKTxKJ27XiG7cT2zAztxSIhWyeBQ/kVkLvk4ZVWXwATul6bUSOzbtp7eZ+9kXu9bWCTyvBc0kUEbBINNwicd004KzdZ8ulxFBFJLkaxy3HnTyCqZSV7pDGwxmJxdqYlCRDYZY06afHJEf5WMMav6neA/gY5+m/cZY6pGUr5SSo0nPRWXsmjPD9n0s5sJYCe9bTvT/HuolCBBY2G3cx7ry75E8dIrmTLrLAo1qTpJuttOw6KvYtt6K8WPXsyx8f5q7NN4d8oNFFR/jIL5K8myWBMap1LjwbQFK2DBWjqbDnNg60t4GvdhelvBGCwWCyFHOva0HFzp+bhzysgtmUFGZjYZiQ5cqXFuRDVYfYWICFALXGiMeS9ag/WMMea0hq/RGiyl1Hjm9XrZ9pNrWOpZh8c4qHVMozX7LJJmnMv06g+SnJ6d6BDHBWMMm7duJlSznrTsIsoXnIMroyDRYSmllFLHGawGK1YJ1nnAj4+dIJpgvUNkpqhO4LvGmFcHOfZW4FaAsrKyxQcPHhxxPEoplUie3h6cTjcWq9ZQKaWUUhPVGTcRFJG/AgP96/A7xpinou8/Aazpt60BKDPGtIjIYuBJEZlnjOk8sRBjzC+AX0CkBmv4b0UppcY2d5JOvqCUUkpNVsMmWMaYi4faLiI24Gpgcb9jfIAv+n6TiOwDZgLa/k8ppZRSSik1YcWi/crFwC5jTN2xFSKSKyLW6PupwAxgfwzOpZRSSimllFJjVizGtr2e45sHApwH3CUiASAM3GaMaY3BuZRSSimllFJqzIrJIBexIiJNwFgb5SIHaE50EGrU6PWePPRaTy56vScPvdaTh17ryWUsXu8pxpjcE1eOqQRrLBKRjQONDqImJr3ek4de68lFr/fkodd68tBrPbmMp+utYwgrpZRSSimlVIxogqWUUkoppZRSMaIJ1vB+kegA1KjS6z156LWeXPR6Tx56rScPvdaTy7i53toHSymllFJKKaViRGuwlFJKKaWUUipGNMFSSimllFJKqRjRBGsIInKZiOwWkb0i8s1Ex6NiR0RKReRlEXlXRN4Rka9E12eJyFoReS/6NTPRsarYEBGriGwRkWeiyxUisiF6fz8mIo5Ex6hiQ0QyROQJEdklIjtF5AN6b09MInJ79DN8h4isERGX3tsTh4g8KCKNIrKj37oB72WJ+J/odd8mImclLnJ1uga51ndHP8e3icifRCSj37ZvRa/1bhG5NCFBD0ETrEGIiBW4F7gcmAt8QkTmJjYqFUNB4GvGmLnAcuAL0ev7TeBFY8wM4MXospoYvgLs7Lf8H8B/GWOmA23AZxISlYqHnwDPGWNmAwuJXHe9tycYESkGvgxUG2PmA1bgevTenkgeAi47Yd1g9/LlwIzo61bg56MUo4qNhzj5Wq8F5htjFgB7gG8BRJ/XrgfmRY/5WfS5fczQBGtwS4G9xpj9xhg/8ChwRYJjUjFijGkwxmyOvu8i8gBWTOQa/zq626+BKxMSoIopESkBPgz8MroswIXAE9Fd9FpPECKSDpwHPABgjPEbY9rRe3uisgFuEbEBSUADem9PGMaYV4DWE1YPdi9fAfzGRLwBZIhI4agEqkZsoGttjHnBGBOMLr4BlETfXwE8aozxGWMOAHuJPLePGZpgDa4YONRvuS66Tk0wIlIOLAI2APnGmIbopiNAfqLiUjH138A3gHB0ORto7/fBrff3xFEBNAG/ijYJ/aWIJKP39oRjjKkH/j+glkhi1QFsQu/tiW6we1mf2ya21cCz0fdj/lprgqUmNRFJAf4AfNUY09l/m4nMYaDzGIxzIvIRoNEYsynRsahRYQPOAn5ujFkE9HBCc0C9tyeGaN+bK4gk1UVAMic3MVITmN7Lk4OIfIdI145HEh3LqdIEa3D1QGm/5ZLoOjVBiIidSHL1iDHmj9HVR481KYh+bUxUfCpmVgAfE5EaIk19LyTSRycj2qwI9P6eSOqAOmPMhujyE0QSLr23J56LgQPGmCZjTAD4I5H7Xe/tiW2we1mf2yYgEbkJ+AjwSfP+5L1j/lprgjW4t4AZ0dGIHEQ60z2d4JhUjET74DwA7DTG/LjfpqeBT0fffxp4arRjU7FljPmWMabEGFNO5D5+yRjzSeBl4NrobnqtJwhjzBHgkIjMiq66CHgXvbcnolpguYgkRT/Tj11rvbcntsHu5aeBT0VHE1wOdPRrSqjGIRG5jEjz/o8ZY3r7bXoauF5EnCJSQWRgkzcTEeNg5P1kUJ1IRD5EpO+GFXjQGPODxEakYkVEzgFeBbbzfr+cbxPph/U4UAYcBK4zxpzYwVaNUyJyAfB1Y8xHRGQqkRqtLGALcIMxxpfA8FSMiEgVkQFNHMB+4GYi/1DUe3uCEZHvA6uINB/aAnyWSF8MvbcnABFZA1wA5ABHgX8BnmSAezmaZN9DpJloL3CzMWZjAsJWZ2CQa/0twAm0RHd7wxhzW3T/7xDplxUk0s3j2RPLTCRNsJRSSimllFIqRrSJoFJKKaWUUkrFiCZYSimllFJKKRUjmmAppZRSSimlVIxogqWUUkoppZRSMaIJllJKKaWUUkrFiCZYSimllFJKKRUjmmAppZRSSimlVIz8/76/BgWLTLWpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACe+UlEQVR4nOzdd5xU9b3/8ddnZhu7bGGXXgRUQKqogBjBlkQxFjQa0di9iT9NTNRYYkyiJPeam2tMTNREY2KiUYPYYtdYUTGigiIiWBCpIiwLW9k+n98f57AuyzbcWWbL+/l4jMyc8z3f8znn7IzzmW855u6IiIiIiIhI20USHYCIiIiIiEhXoQRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiEgHYWbDzMzNLCnRsXR1ZnaOmc1PdBwdjZlNN7MPEx2HiEhnpgRLREQ6NTObbWbVZlZa73FlouPqjNz9VXcfFe96zew4M1saXpv/mNmYeO9DRKSjUIIlIhInanlKqLnu3rPe4/pEBxRPnflvy8xGAPcCFwA5wOPAY535mEREmqMES0SkDcxslZn92MyWAGVmlmRmU8Nf6QvN7F0zO6xe+Xlm9r9m9qaZFZvZo2aW20Td55rZcjMrMbOVZvb/GqyfaWaLw3o+MbMZ4fJsM7vDzDaY2Xoz+x8zi7ZwHHuZ2YtmVmBmm83sXjPLqbdui5ntH74eaGb524/LzI43s/fD451nZqMbnJ/LzWyJmRWZ2VwzS9v1M73rzOyq8LyUmNkyMzuxiXJmZjea2abwXL5nZuPCdalmdoOZrTGzjWZ2m5n1aOX+7wzLPxfG8LKZDa23/g9mtjbc5yIzm15v3Wwze9DM7jGzYuAcM5tiZq+H53mDmd1iZin1tnEz+56ZfRzu77/Da/efcB/31y/fRMyHmdm61hzfLjgKeNXd57t7DfB/wCDg0DjvR0SkQ1CCJSLSdqcBxxD8Ot8PeBL4HyAXuBx4yMz61Ct/FnAeMACoAW5qot5NwLFAFnAucGO9JGcK8A/ginC/hwCrwu3uDOvdG9gPOBL4TgvHYMD/AgOB0cAQYDaAu38C/Bi4x8zSgb8Dd7n7PDMbCcwBLgH6AE8Bjzf4In8KMAMYDkwAzmk0ALNpYfLQ1GNaC8fQ0CfAdCAb+EUY/4BGyh1JcP5GhmVPAQrCdb8Ol08kOJ+DgGt2IYbTgf8GegOLCVpytnsrrDcX+CfwQIPkcybwIMH1vReoBS4N6zoI+CrwvQb7Owo4AJgKXAncDpxBcD3HEfytfmlhotzU9flTc5s2eG5hPCIiXY4SLBGRtrvJ3de6eznBl9mn3P0pd4+5+3PAQuAb9crf7e5L3b0M+DlwSmMtTO7+pLt/4oGXgWcJEgaA/wL+5u7PhftZ7+4fmFm/cF+XuHuZu28CbgRObe4A3H1FWFelu+cDv6NeC4O7/wVYAbxBkBj+NFw1C3gy3LYauAHoAXylwfn5zN23EHQPm9hEDPPdPaeZR3OTUpzS4Mv+QHd/INxvzN3nAh8DUxrZthrIBPYBzN2Xu/sGMzPgfOBSd9/i7iXAr1o6lw086e6vuHslwTk7yMyGhMd7j7sXuHuNu/8WSAXqj3963d0fCeMvd/dF7r4gLL8K+DM7twJd7+7F7v4+sBR41t1XunsR8DRBwv2lufuEZq5Pw2Rvu+eBQ8PWsRTgaiAFSG9LLCIiHZUSLBGRtltb7/lQ4Fv1v+wD0wiSksbKrwaSCVoldmBmR5vZgrB7XiFB4rS93BCCFpqGhob1bai3/z8DfZs7ADPrZ2b3WdClsBi4p5GY/kLQ6nBzmDBA0OK1ensBd4+Fxzeo3naf13u+DejZXCxf0v0Nvux/ZmZnWdCFcvt5GEcj59ndXwRuAf4IbDKz280si6BFLh1YVK+OZ8LlrVV3rd29FNhCcM4Iu04uD7tOFhK0nvVubNuw/Egze8LMPg+v0a8aOZ6N9Z6XN/K6Pc59s9z9A+BsgnO8gSDmZUC8uyKKiHQISrBERNrO6z1fS9BCVf/Lfoa7/7pemSH1nu9B0IKyuX6FZpYKPETQItTP3XMIut9t72q1FtirkVjWApVA73r7z3L3sS0cw6/C4xjv7lkELXF13brMrCfwe+AOYLZ9MW7sM4Kkbns5C49vfQv724kFU4SXNvOY3nItdXUNJUgILwLywvO3lB27qtVx95vc/QBgDEGXwCsIrkk5MLbeucx2911JUuqudXgOc4HPwmO5kqA7Yq8wvqIG8dX/uwK4FfgAGBFeo6ubOp72YsFYu6auz21NbefuD7r7OHfPA64FhhF0kRQR6XKUYImIxNc9wHFmdpSZRc0sLewaNbhemTPMbEw4numXwIPuXtugnhSCLmP5QI2ZHU0wVmi7O4BzzeyrZhYxs0Fmto+7byDoSvhbM8sK1+1lZi1NKJAJlAJFZjaIIMGo7w/AQnf/DsEYs+1fpu8HjgnjSAYuI0jw/tPSiWoonCK8ZzOPV3ehugyCBCUfgglDaGLMj5lNNrMDw/jLgAogFrbG/YVg7FvfsOwgMzuq3rZu9SYxacQ3wrFlKQRjsRa4+1qC810TxpdkZtcQjLVrTiZQDJSa2T7AhS2Ujzt3H9vM9bmgqe3M7IDw/dCHYFzYY2HLlohIl6MES0QkjsIvzzMJWhfyCVqUrmDHz9u7CSai+BxIA37YSD0l4fL7ga3At4HH6q1/k3DiC4KWj5f5oiXpLIIEbVm47YPs2EWxMb8A9g/rehJ4ePsKM5tJMEnF9i/0PwL2N7PT3f1DgtaumwlafI4DjnP3qhb2167cfRnwW+B1gm5y44HXmiieRZBIbSXo7lgA/CZc92OCsWcLwm55zxOOkwrHUpUA7zUTyj8JWmy2EEw+cUa4/N8E3Q0/CvdZQYMugY24nODvoCSMd24L5TuSPwCFwIcE5/m7CY1GRKQdmXvDHggiItJezGwecI+7/zXRsUjbmNkZBN0Hf9LE+juBde7+s90amIiIJJRu8iciIvIluPs9iY5BREQ6HnURFBHpJiy46e0uTU4gXY+ZXd3E38HTiY5NRKQrUBdBERERERGROFELloiIiIiISJx0qDFYvXv39mHDhiU6DBERERERkWYtWrRos7vvdPP5DpVgDRs2jIULFyY6DBERERERkWaZ2erGlquLoIiIiIiISJwowRIREREREYkTJVgiIiIiIiJx0qHGYDWmurqadevWUVFRkehQpANIS0tj8ODBJCcnJzoU6YI2l1by83++zIVfH8+E4QMSHY6IiIh0Qh0+wVq3bh2ZmZkMGzYMM0t0OJJA7k5BQQHr1q1j+PDhiQ5HuqAFy1Zz62ff4o37D4EfP57ocERERKQT6vBdBCsqKsjLy1NyJZgZeXl5as2UdpP10QMAHFD+WoIjERERkc6qwydYgJIrqaO/BWlPkdINABSSmeBIREREpLPqFAmWiMjuEKkpB6A3hVSUFSc4GhEREemMlGC1gplx2WWX1b2+4YYbmD17duICquewww5r9ubMJ5xwAlOnTt1h2ezZsxk0aBATJ05k3LhxPPbYY+0dpkinEA0TLID8NR8kMBIRERHprNqcYJnZEDN7ycyWmdn7ZnZxuHy2ma03s8Xh4xttDzcxUlNTefjhh9m8eXNc63V3YrFYXOusr7CwkEWLFlFUVMTKlSt3WHfppZeyePFiHnjgAc4777x2jUOks4jWfpFgFX7e6M3ZRURERJoVjxasGuAydx8DTAW+b2ZjwnU3uvvE8PFUHPaVEElJSZx//vnceOONO63Lz8/npJNOYvLkyUyePJnXXgsGx8+ePZsbbrihrty4ceNYtWoVq1atYtSoUZx11lmMGzeOtWvXcsUVVzBu3DjGjx/P3LlzAZg3bx6HHXYYJ598Mvvssw+nn3467t5ofHfffXdda9Sbb75Zt/zhhx/muOOO49RTT+W+++5rdNvRo0eTlJS0Q/J41VVXMWbMGCZMmMDll18OwKpVqzjiiCOYMGECX/3qV1mzZg0A55xzDhdeeCFTp05lzz33ZN68eZx33nmMHj2ac845p67OCy+8kEmTJjF27FiuvfbaneIoKipi6NChdYleWVkZQ4YMobq6utG4RdpDtLaCYtIB2LblswRHIyIiIp1Rm6dpd/cNwIbweYmZLQcGtbXexvzi8fdZ9ll8x0WMGZjFtceNbbHc97//fSZMmMCVV165w/KLL76YSy+9lGnTprFmzRqOOuooli9f3mxdH3/8MXfddRdTp07loYceYvHixbz77rts3ryZyZMnc8ghhwDwzjvv8P777zNw4EAOPvhgXnvtNaZNm7ZTfdu2bWPx4sW88sornHfeeSxduhSAOXPmcM0119CvXz9OOukkrr766p22feONN4hEIvTp0weAgoIC/vWvf/HBBx9gZhQWFgLwgx/8gLPPPpuzzz6bv/3tb/zwhz/kkUceAWDr1q28/vrrPPbYYxx//PG89tpr/PWvf2Xy5MksXryYiRMnct1115Gbm0ttbS1f/epXWbJkCRMmTKiLIzs7m4kTJ/Lyyy9z+OGH88QTT3DUUUfpfleyWyXFKtgU7U9W7UpiJRsSHY6IiIh0QnEdg2Vmw4D9gDfCRReZ2RIz+5uZ9Yrnvna3rKwszjrrLG666aYdlj///PNcdNFFTJw4keOPP57i4mJKS0ubrWvo0KF146Lmz5/PaaedRjQapV+/fhx66KG89dZbAEyZMoXBgwcTiUSYOHEiq1atarS+0047DYBDDjmE4uJiCgsL2bhxIx9//DHTpk1j5MiRJCcn1yVeADfeeCMTJ07k8ssvZ+7cuXWz82VnZ5OWlsZ//dd/8fDDD5OeHvya//rrr/Ptb38bgDPPPJP58+fX1XXcccdhZowfP55+/foxfvx4IpEIY8eOrYv5/vvvZ//992e//fbj/fffZ9myZTsdx6xZs+pa8O677z5mzZrV7HkUibfkWAXbolkUk0GkdFOiwxEREZFOKG43GjaznsBDwCXuXmxmtwL/DXj472+B8xrZ7nzgfIA99tij2X20pqWpPV1yySXsv//+nHvuuXXLYrEYCxYsIC0tbYeySUlJO4xrqn/vpoyMjFbtLzU1te55NBqlpqam0XINpy43M+6//362bt1ad0Pe4uJi5syZw3XXXQcEY7C2d/9rGPebb77JCy+8wIMPPsgtt9zCiy++2Ko4I5HIDjFHIhFqamr49NNPueGGG3jrrbfo1asX55xzTqP3sjr++OO5+uqr2bJlC4sWLeKII45odr8i8ZYSq2BbUhZbI71IrshPdDgiIiLSCcWlBcvMkgmSq3vd/WEAd9/o7rXuHgP+AkxpbFt3v93dJ7n7pO3d1Dqq3NxcTjnlFO644466ZUceeSQ333xz3evFixcDMGzYMN5++20A3n77bT799NNG65w+fTpz586ltraW/Px8XnnlFaZMafRUNWl7q8/8+fPJzs4mOzubOXPm8Mwzz9SN+1q0aFGT47DqKy0tpaioiG984xvceOONvPvuuwB85Stfqdv+3nvvZfr06a2Or7i4mIyMDLKzs9m4cSNPP/10o+V69uzJ5MmTufjiizn22GOJRqOt3odIPKTEKqmJplGSlEePyoJEhyMiIiKdUDxmETTgDmC5u/+u3vIB9YqdCCxtuG1ndNlll+0wIcRNN93EwoULmTBhAmPGjOG2224D4KSTTmLLli2MHTuWW265hZEjRzZa34knnsiECRPYd999OeKII7j++uvp37//LsWUlpbGfvvtxwUXXMAdd9zBqlWrWL169Q7Tsw8fPpzs7GzeeOONRuv4xje+wWeffUZJSQnHHnssEyZMYNq0afzud8Elvfnmm/n73//OhAkTuPvuu/nDH/7Q6vj23Xdf9ttvP/bZZx++/e1vc/DBB9etu+aaa3aYJn7WrFncc8896h4oCZHiFdRG06hIzSOzZkuiwxEREZFOyJqama7VFZhNA14F3gO294m7GjgNmEjQRXAV8P/CCTGaNGnSJG94T6fly5czevToNsUoXYv+JqS9FM0exJJeXycpOYV9Nz5C+i80DktEREQaZ2aL3H1Sw+XxmEVwPmCNrOq007KLSPeURiWxpB54z96kb6pkW2kh6T1zEh2WiIiIdCJxnUVQRKTTitWSSjWxaA+iWUE33cKN6xMclIiIiHQ2SrBERACqywGIJfcgLScYQlpcsC6REYmIiEgnpARLRATw6m3Bk6QepOcF90ov3/JZAiMSERGRzkgJlogIUFMZJljJaeT0CRKsmkIlWCIiIrJrlGCJiABVlcHNry0pjV69+1PjEWIlmkVQREREdo0SrFZ65JFHMDM++OCDJsusWrWKcePGxW2f55xzDg8++GCT6y+55BIGDRpELBarW3bnnXfSp08fJk6cyJgxY/jLX/4St3hEurLqymAMViQplaSkJLZaNpFtm1vYSkRERGRHSrBaac6cOUybNo05c+Y0ur6mpqbN+6itrW112Vgsxr/+9S+GDBnCyy+/vMO6WbNmsXjxYubNm8fVV1/Nxo0b2xybSFdXXVUJQCQ5BYCiSC9SKpVgiYiIyK5RgtUKpaWlzJ8/nzvuuIP77ruvbvm8efOYPn06xx9/PGPGjAGCROv0009n9OjRnHzyyWzbFozreOGFF9hvv/0YP3485513HpWVwZe5YcOG8eMf/5j999+fBx54YKd9P//880yaNImRI0fyxBNP7LDvsWPHcuGFFzaZ9PXt25e99tqL1atX1y276aabGDNmDBMmTODUU08FYMuWLZxwwglMmDCBqVOnsmTJEgBmz57N2WefzfTp0xk6dCgPP/wwV155JePHj2fGjBlUV1cD8Mtf/pLJkyczbtw4zj//fBrevDoWizFs2DAKCwvrlo0YMUKJn3Qo1VVBF8FoSioAZcm9SK/aksiQREREpBNq842Gd6unr4LP34tvnf3Hw9G/brbIo48+yowZMxg5ciR5eXksWrSIAw44AIC3336bpUuXMnz4cFatWsWHH37IHXfcwcEHH8x5553Hn/70Jy666CLOOeccXnjhBUaOHMlZZ53FrbfeyiWXXAJAXl4eb7/9dqP7XrVqFW+++SaffPIJhx9+OCtWrCAtLY05c+Zw2mmnMXPmTK6++mqqq6tJTk7eYduVK1eycuVK9t5777plv/71r/n0009JTU2tS3iuvfZa9ttvPx555BFefPFFzjrrLBYvXgzAJ598wksvvcSyZcs46KCDeOihh7j++us58cQTefLJJznhhBO46KKLuOaaawA488wzeeKJJzjuuOPq9hmJRJg5cyb/+te/OPfcc3njjTcYOnQo/fr1a/VlEmlvNWELVjQpSLAqUnvTv2R1c5uIiIiI7EQtWK0wZ86cutaeU089dYcWoylTpjB8+PC610OGDOHggw8G4IwzzmD+/Pl8+OGHDB8+nJEjRwJw9tln88orr9RtM2vWrCb3fcoppxCJRBgxYgR77rknH3zwAVVVVTz11FOccMIJZGVlceCBB/Lvf/+7bpu5c+cyceJETjvtNP785z+Tm5tbt27ChAmcfvrp3HPPPSQlBfn1/PnzOfPMMwE44ogjKCgooLi4GICjjz6a5ORkxo8fT21tLTNmzABg/PjxrFq1CoCXXnqJAw88kPHjx/Piiy/y/vvv73Qcs2bNYu7cuQDcd999zR6zSCLUVActWEkpaQDUpvehV6wQGrTIioiIiDSnc7VgtdDS1B62bNnCiy++yHvvvYeZUVtbi5nxm9/8BoCMjIwdyptZs68b07COlur797//TWFhIePHjwdg27Zt9OjRg2OPPRYIkplbbrml0fqefPJJXnnlFR5//HGuu+463nuv+RbB1NTg1/xIJEJycnJdPJFIhJqaGioqKvje977HwoULGTJkCLNnz6aiomKneg466CBWrFhBfn4+jzzyCD/72c+a3a/I7la7vYtgcpBgkdGXFKuhrHgLGdl5CYxMREREOhO1YLXgwQcf5Mwzz2T16tWsWrWKtWvXMnz4cF599dVGy69Zs4bXX38dgH/+859MmzaNUaNGsWrVKlasWAHA3XffzaGHHtqq/T/wwAPEYjE++eQTVq5cyahRo5gzZw5//etfWbVqFatWreLTTz/lueeeqxvv1ZRYLMbatWs5/PDD+b//+z+KioooLS1l+vTp3HvvvUAwtqt3795kZWW1Kr7tyVTv3r0pLS1tctZDM+PEE0/kRz/6EaNHjyYvT19YpWOpqa4CICkcgxXNCrqwbt20LmExiYiISOejBKsFc+bM4cQTT9xh2UknndTkxBKjRo3ij3/8I6NHj2br1q1ceOGFpKWl8fe//51vfetbjB8/nkgkwgUXXNCq/e+xxx5MmTKFo48+mttuu41YLMYzzzzDMcccU1cmIyODadOm8fjjjzdax3e+8x0WLlxIbW0tZ5xxBuPHj2e//fbjhz/8ITk5OcyePZtFixYxYcIErrrqKu66665Wnh3Iycnhu9/9LuPGjeOoo45i8uTJdetuu+02brvttrrXs2bN4p577lH3QOmQtrdgbe8imJrTH4DSgvUJi0lEREQ6H2s441siTZo0yRcuXLjDsuXLlzN69OgERSQdkf4mpD289/gtjF/0U1ac/jp7jxjDx++9yYiHvs7iA29k4tHnJTo8ERER6WDMbJG7T2q4XC1YIiJAbXUwi2ByctBFMLvPQACqinU7AREREWk9JVgiIkCsJkyw0noA0Kt3f2o8gpdsSmRYIiIi0sl0igSrI3VjlMTS34K0F68JJrlICcdgJSclsdWyiG5TgiUiIiKt1+4JlpnNMLMPzWyFmV21q9unpaVRUFCgL9aCu1NQUEBaWlqiQ5EuyMMugqmpX/x9FUV6kVKxOVEhiYiISCfUrvfBMrMo8Efg68A64C0ze8zdl7W2jsGDB7Nu3Try8/PbK0zpRNLS0hg8eHCiw5AuyGsribmRGk7TDlCWnEt61ZYERiUiIiKdTXvfaHgKsMLdVwKY2X3ATKDVCVZycjLDhw9vp/BEREI1VVSTRErSFw37Fam96VeyJoFBiYiISGfT3l0EBwFr671eFy6rY2bnm9lCM1uoVioRSZjaKqpIwsy+WNSjN71ihaAuyiIiItJKCZ/kwt1vd/dJ7j6pT58+iQ5HRLqr2iqqLXmHRd6zL6lWzbYSdRMUERGR1mnvBGs9MKTe68HhMhGRjqU26CJYX1JmPwAKN+ljS0RERFqnvROst4ARZjbczFKAU4HH2nmfIiK7LBKroqZBC1Za7gAAijcrwRIREZHWaddJLty9xswuAv4NRIG/ufv77blPEZEvwxrpIpjVOxgyWrbls0SEJCIiIp1Qe88iiLs/BTzV3vsREWkLi1VT2yDByu23BwDVW9WCJSIiIq2T8EkuREQ6gmisaqcEK6tXHyo8GYrVgiUiIiKtowRLRASIxiqpjaTssMwiETZH8kjetjFBUYmIiEhnowRLRARIjlVSHUnbaXlxUh96VG5KQEQiIiLSGSnBEhEBkr2KmkjqTsu3pfUlu1o3QRcREZHWUYIlIkLQghWL7pxgVWf0o3dsCx6LJSAqERER6WyUYImIAKleSW105y6CZA4k1aop2apWLBEREWmZEiwRESCFSjypx07Lk3sF98La8vmq3RyRiIiIdEZKsEREgFSvwpN2bsHK6D0EgJL8tbs7JBEREemElGCJSLfnsVrSrBoaacHK7hvcbLiiQAmWiIiItEwJloh0e5UV24InyTu3YOX2DxKsWJFuNiwiIiItU4IlIt1eVXmQYFnyzi1YaWk9KCCbSOmG3R2WiIiIdEJKsESk26soLwuepOycYAFsjeaRVr5xN0YkIiIinZUSLBHp9qoqggQrmpze6PrSlL70rNq0O0MSERGRTkoJloh0e9WVQRfBaGrjLVgVaf3oVVuwO0MSERGRTkoJloh0e1XlpQBEm+giWJvZnxxK6hIxERERkaYowRKRbq+mshyAaGrjXQSjWcHNhgs+X7PbYhIREZHOqU0Jlpn9xsw+MLMlZvYvM8sJlw8zs3IzWxw+botLtCIi7aCmKmiZSkrNaHR9Wu/BABR9/ului0lEREQ6p7a2YD0HjHP3CcBHwE/qrfvE3SeGjwvauB8RkXZTE94HK61H4wlWVr9hAJTlqwVLREREmtemBMvdn3X3mvDlAmBw20MSEdm9aipKAEjLyGp0fd7APYNyW9butphERESkc4rnGKzzgKfrvR5uZu+Y2ctmNr2pjczsfDNbaGYL8/Pz4xiOiEjrxMqLAEjPzG10fVZWDkWeASWf7c6wREREpBNKaqmAmT0P9G9k1U/d/dGwzE+BGuDecN0GYA93LzCzA4BHzGysuxc3rMTdbwduB5g0aZJ/ucMQEWmDiuCjKT0zp9HVZkZBtDep2zbsxqBERESkM2oxwXL3rzW33szOAY4FvuruHm5TCVSGzxeZ2SfASGBhWwMWEYk3qyymzFPJSEltskxxSj8yKzfuxqhERESkM2rrLIIzgCuB4919W73lfcwsGj7fExgBrGzLvkRE2ku0qpgya3yCi+3Ke/Qnt0bdmEVERKR5LbZgteAWIBV4zswAFoQzBh4C/NLMqoEYcIG7b2njvkRE2kVSdQnbIs0nWLHMgfTaWkx1RRnJac2XFRERke6rTQmWu+/dxPKHgIfaUreIyO6SUlNCeQsJVjRnMKyBgs8+pf+e43ZTZCIiItLZxHMWQRGRTimlppTKpMxmy6Tl7QFA0cZVuyEiERER6ayUYIlIt9ejtpSa5OYTrOz+wwDYppsNi4iISDOUYIlIt5fuZcRSGr/J8HZ5A4cDUFOomw2LiIhI05RgiUi3VltbS6aXQVp2s+WyMrPY4plYsW42LCIiIk1TgiUi3Vrx1nySrZZYRt8WyxZE++hmwyIiItIsJVgi0q0Vbw5apKKZ/Vouq5sNi4iISAuUYIlIt1aUvw6AjLyBLZatSO9Pbq1uNiwiIiJNU4IlIt1aWUHQ5S+nz6AWy3rmQLIoo2pbcXuHJSIiIp2UEiwR6daqioIEK6//kBbLRnMGA1Dw2cp2jUlEREQ6LyVYItKtxUo2UkUSqT1zWyzbo89QAIp1s2ERERFpghIsEenWUrZ9ztZILpi1WDa73zAAtm3WzYZFRESkcUqwRKRby6r8nKKU/q0q23vgMGJu1G5d185RiYiISGelBEtEui13J69mE+XpLc8gCJCZkUEB2URKdLNhERERaZwSLBHptorKyunLFmJZg1u9jW42LCIiIs1RgiUi3dam9Z+SZDGScvdo9TYlqf3IrNLNhkVERKRxSrBEpNsq/vxTANL7DG/1NpXpA8irzQf39gpLREREOrE2JVhmNtvM1pvZ4vDxjXrrfmJmK8zsQzM7qu2hiojEV8XmVQDkDGh9ghXLHEAGFVSVFbZPUCIiItKpxaMF60Z3nxg+ngIwszHAqcBYYAbwJzOLxmFfIiJxU7t1LQC9BuzZ6m2SewU3JN6imw2LiIhII9qri+BM4D53r3T3T4EVwJR22peIyJeSXLKOrWQRSc1o9TY9egfjtYo26V5YIiIisrN4JFgXmdkSM/ubmfUKlw0C1tYrsy5cthMzO9/MFprZwvz8/DiEIyLSOunln7Elud8ubZPTN5hxcFuB7oUlIiIiO2sxwTKz581saSOPmcCtwF7ARGAD8NtdDcDdb3f3Se4+qU+fPru6uYjIl5ZTvZHStAG7tE3vAUMBqCz8vD1CEhERkU4uqaUC7v611lRkZn8BnghfrgeG1Fs9OFwmItIh1NbG6BPbzOaMabu0Xc+emRR7OlaqBEtERER21tZZBOv/9HsisDR8/hhwqpmlmtlwYATwZlv2JSIST5s3byLDKrHs1t9keLvCSC+Sy9WlWURERHbWYgtWC643s4mAA6uA/wfg7u+b2f3AMqAG+L6717ZxXyIicbNlw0r6Aal5Q1os21BJch49KjfHPygRERHp9NqUYLn7mc2suw64ri31i4i0l9KNqwHo2WfYLm9bkdqbfqXL4hyRiIiIdAXtNU27iEiHVrklmGY9d2Dr74G1XXV6X3rFtuLu8Q5LREREOjklWCLSPRWtp8YjZPZu9A4SzbKefcmwSkqKt7ZDYCIiItKZKcESkW4puewzCiK5WHTXe0onZQ8EYOtG3QtLREREdqQES0S6pfSKjRTu4k2Gt0vLDRKsknwlWCIiIrIjJVgi0i31qt7EtrT+X2rbzLygW2H51s/iGZKIiIh0AUqwRKTbqa2N0ccLqO45oOXCjejVP5javapwQzzDEhERkS5ACZaIdDsFm9aTatVf6ibDAD2z+1DpyViJWrBERERkR0qwWhCr1f2RRbqaLRs+BSAld9dvMgxgkQibIn1IK1sfz7BERESkC1CC1Yyl8x9nxf9OZcPqDxMdiojEUdmm8CbDfYd+6Tq2Jvcjs/LzeIUkIiIiXYQSrGbEaqroX7OOHn8/gkVP/AWPxRIdkojEQdWWtQDkDdj1mwxvV9ZjALnVG+MVkoiIiHQRu34DmG5kwmEnsWbQSCrnnssBCy9n6Xv3YoddxdipR4FZosNrN+5OLBYjVluDx2rr/vVYLbFYLXiMmAflPObE3IkB7jFwiDmA16+w4R4af75Tud3LaOU17SDXfqcoOkhcO7N6/+0YbMvHVHoy2b2/3CQXALHsPcgreoqK8jLSemS0XL42xqLn7qXnwlsoHPJVDjr7V19639IMd7y2itrqKmpqa6iuiRFzB3fMHScWlAmXOV732QXeYF34o5p/8Y/XPfcd1nVajb0xO+xnSaDVn9WtrG136BindNeC6BAh76rtQXeME76bdI9j9WgKmb36kpYcTXQoraIEqwV7jBhP7VUL+M8Dv2HMh7eQ8+9ZfPz83mwe+g0GTDqePUbuRySpnU5jbQ3V5cWUlxVRUVpI5bZiqspKqC4vora8hNqKEmKVJXhlGVSWQk051FRATRVWW4nFqojWVhH1KpK8miSvJiV8nkw1UWJEvJYIMaLEMJwoMZIsRhToHH/CIruuN7A2MpAhkS/fiJ/ad29YA5+vXMqwsQc2Wa62tpa3/3032QtvYnLsEwA+XFMLdK8Eq6a6mqKiLZQVbqaydCtVpVupLd9K7bZCvLwIrywlVr0NqsqhppxI+IjWVpAcqyTZK0mJVRKlhqjXEqGWJK8hSi1J4bIkakmyGEbwP7ckIC3Bxy0iIm03r3ZfSr91H8dOGJjoUFpFCVYrRJOS+MppP6G89PsseOJWen88l4NW3gQrb2Kbp7I6ZS+K0wZSnd6faM8+RFLS8eQ0LJJMktUSq62ltraGWHUlVG8jUl1KtLqMSFUp0ZptJNWUkVy7jZTYNtJqt5Hm5fSgnDSqSQaSgaxm4qt1o4w0Kkil2lKosWRqLZnaSAo1kRRqo+lUWTKxSAq1kVRi0RRikWQ8koRFosHDIhCJ4hbFLQLb/41EcaIQiYJFcAv+NQt+MzEj2JbtPxh9sc7r/6qyc3NL3bMdyyXml5jW/ghtCW5l226nKDpIXA1ZGGlHjC537ylt2j5z+GRYCEUrFkAjCVZVZQVLnvoLfd+7lcmx9ay3/ryz/6+o/PQNxm59LrhmnfxX1srKcrZsWEXxpjVs2/IZVUUbqS3eiG3bTGplAT2qt5BVs5UsLyKTcvKAvObq82QqSKHSUqmyVKoiqVRH0qi2NCqiPamJpBKzJDySBJEkYuG/Xvd5FjwnmgSRZCKRCJFIdPsHFeGn1hfPLfj8MYt88RwLPpN22OYLhu102TrrZWzsY8M65Lv1C/GNbjcda4c4pbsWhHeMoHdNJwy5rTrKd5LdIdajP+MHZSc6jFZTgrULevTMYuqpPwZ+zIbVH7L2neeoWfcOvYo/YGjpEvKKXyLZWp51sNaNbaSxzXpQbj2ojKRTFUmnNKk/NWkZ1CSn40kZxFJ6QmpPLDWTSGom0R6ZJPfIJKlHFqnpWaRmZNOjZzbpGT1JT0kiK6ohdSK7y/CR4ynyDKrWLNpheWH+BpY9fSt7rbyHSRTwSWQ4i6b8lv2OPJtBScnMv2crmVsfpXTLBnrmdexf4kq2bmLzmuUUf/4pFZvX4EXrSC77jJ4Vn5Nbm0+eFzHAnPodLWNuFFomxdFelCX1YkPPsaxNy4W0HCLpOSSlh/9m9CI5vRepmbn0yMylR88sMtJSyY500mxFREQkpATrSxowdBQDho7acWEsRmlpIRXbyvCqbdRUV1FDlKSkJFJSUklJSSYlPZOU1AwyIxEyExO6iMRBSnKUpen7snfBSxTlr2fNBwupePMf7Fs8j69YDctS92Xj1OsZf+g3sXpdEdMHjIQVsHbFEkYnOMGK1cbY9Pk68lcvo2TDR8QKVpJavJrs8nX0q11PNmU7fE5t81Q2R/tQnNKP1dmj+KTnQCx7MKm5g8nIG0SvvoPo1bs/uUnJ5CbsqERERBJLCVY8RSL0zMqlZ5a+Woh0B8mHXk720ycR+eMYxgMl9OCdPjPpe8T3GDNmUqPbDB13ELwKxR++CgfOaPcYPRZjy8a15K9+n5L1H1FT8AkpRavIrljHgJrP6G8V9A/L1rqxMdKXLamD+CDn69Tm7ElKn73I7L8nfQfvRU5uH/Zow7g1ERGR7qBNCZaZzQW2N+PkAIXuPtHMhgHLge03kFrg7he0ZV8iIh3N+Klf5b3YfZR+8AJpg/dl9MHHc2BGcyMmIa/fED6O7EnWunlxi8NjMQo2BS1RpZ99TGzzClKKPiW7fA39az4jzyrrxj5VeZTPo/0pTB3E+3mTsLw9yeg/grw9RtNn8N4MTE6lY3dcFBER6djalGC5+6ztz83st0BRvdWfuPvEttQvItLRjf/KDPjKrrVEbR5yJAetvo1VS15l2ITprdpmW2khm9d9QvHnK9m26VNqt64muXgdORVr6F+zgd5WTu+wbLVH+TzSl4LUIWzMnQR5e5HefyS99xhDvyF7s0dyMnvs4nGKiIhI65jHYQYSMzNgDXCEu38ctmA94e7jdqWeSZMm+cKFC9scj4hIR7Z1y2ZiN+1PjCirRp9P2oB9iFiEirJiako2QukmvGwTydvyyarcQO/aTfSiZIc6qjxKfqQPW9KGsK3nMMjbkx79RtJrj9H0GzKClJSUxByciIhIN2Fmi9x9pzEB8UqwDgF+t30HYYL1PvARUAz8zN1fbWLb84HzAfbYY48DVq9e3eZ4REQ6uo+XLCDpke8yPLam0fWF9KQo0ovi1P5sSx9ELGswSbl70KPPcHoPHkHfAXsQiepudSIiIonypRMsM3se6sZA1/dTd380LHMrsMLdfxu+TgV6unuBmR0APAKMdffi5valFiwR6U48FmPd6o8p27iSWjfSMzLJyBtIVt4A0tJ0i1wREZGOrKkEq8UxWO7+tRYqTgK+CRxQb5tKoDJ8vsjMPgFGAsqeRERCFokwZPgoGD6q5cIiIiLSKcRjvt2vAR+4+7rtC8ysj5lFw+d7AiOAlXHYl4iIiIiISIcVj/tgnQrMabDsEOCXZlYNxIAL3H1LHPYlIiIiIiLSYbU5wXL3cxpZ9hDwUFvrFhERERER6UziMotgvJhZPtDRphHsDWxOdBCy2+h6dx+61t2HrnX3ouvdfehady8d8XoPdfc+DRd2qASrIzKzhY3NDiJdk65396Fr3X3oWncvut7dh65199KZrnc8JrkQERERERERlGCJiIiIiIjEjRKslt2e6ABkt9L17j50rbsPXevuRde7+9C17l46zfXWGCwREREREZE4UQuWiIiIiIhInCjBEhERERERiRMlWM0wsxlm9qGZrTCzqxIdj8SPmQ0xs5fMbJmZvW9mF4fLc83sOTP7OPy3V6Jjlfgws6iZvWNmT4Svh5vZG+H7e66ZpSQ6RokPM8sxswfN7AMzW25mB+m93TWZ2aXhZ/hSM5tjZml6b3cdZvY3M9tkZkvrLWv0vWyBm8LrvsTM9k9c5LKrmrjWvwk/x5eY2b/MLKfeup+E1/pDMzsqIUE3QwlWE8wsCvwROBoYA5xmZmMSG5XEUQ1wmbuPAaYC3w+v71XAC+4+AnghfC1dw8XA8nqv/w+40d33BrYC/5WQqKQ9/AF4xt33AfYluO56b3cxZjYI+CEwyd3HAVHgVPTe7kruBGY0WNbUe/loYET4OB+4dTfFKPFxJztf6+eAce4+AfgI+AlA+H3tVGBsuM2fwu/tHYYSrKZNAVa4+0p3rwLuA2YmOCaJE3ff4O5vh89LCL6ADSK4xneFxe4CTkhIgBJXZjYYOAb4a/jagCOAB8MiutZdhJllA4cAdwC4e5W7F6L3dleVBPQwsyQgHdiA3ttdhru/AmxpsLip9/JM4B8eWADkmNmA3RKotFlj19rdn3X3mvDlAmBw+HwmcJ+7V7r7p8AKgu/tHYYSrKYNAtbWe70uXCZdjJkNA/YD3gD6ufuGcNXnQL9ExSVx9XvgSiAWvs4DCut9cOv93XUMB/KBv4ddQv9qZhnovd3luPt64AZgDUFiVQQsQu/trq6p97K+t3Vt5wFPh887/LVWgiXdmpn1BB4CLnH34vrrPLiHge5j0MmZ2bHAJndflOhYZLdIAvYHbnX3/YAyGnQH1Hu7awjH3swkSKoHAhns3MVIujC9l7sHM/spwdCOexMdS2spwWraemBIvdeDw2XSRZhZMkFyda+7Pxwu3ri9S0H476ZExSdxczBwvJmtIujqewTBGJ2csFsR6P3dlawD1rn7G+HrBwkSLr23u56vAZ+6e767VwMPE7zf9d7u2pp6L+t7WxdkZucAxwKn+xc37+3w11oJVtPeAkaEsxGlEAymeyzBMUmchGNw7gCWu/vv6q16DDg7fH428Ojujk3iy91/4u6D3X0Ywfv4RXc/HXgJODkspmvdRbj758BaMxsVLvoqsAy9t7uiNcBUM0sPP9O3X2u9t7u2pt7LjwFnhbMJTgWK6nUllE7IzGYQdO8/3t231Vv1GHCqmaWa2XCCiU3eTESMTbEvkkFpyMy+QTB2Iwr8zd2vS2xEEi9mNg14FXiPL8blXE0wDut+YA9gNXCKuzccYCudlJkdBlzu7sea2Z4ELVq5wDvAGe5emcDwJE7MbCLBhCYpwErgXIIfFPXe7mLM7BfALILuQ+8A3yEYi6H3dhdgZnOAw4DewEbgWuARGnkvh0n2LQTdRLcB57r7wgSELV9CE9f6J0AqUBAWW+DuF4Tlf0owLquGYJjH0w3rTCQlWCIiIiIiInGiLoIiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInGiBEtERERERCROlGCJiIiIiIjEiRIsERERERGROFGCJSLSQZjZMDNzM0tKdCxdnZmdY2bzEx1HR2Nm083sw0THISLSmSnBEhGRTs3MZptZtZmV1ntcmei4OiN3f9XdR8W7XjM7zsyWhtfmP2Y2Jt77EBHpKJRgiYjEiVqeEmquu/es97g+0QHFU2f+2zKzEcC9wAVADvA48FhnPiYRkeYowRIRaQMzW2VmPzazJUCZmSWZ2dTwV/pCM3vXzA6rV36emf2vmb1pZsVm9qiZ5TZR97lmttzMSsxspZn9vwbrZ5rZ4rCeT8xsRrg828zuMLMNZrbezP7HzKItHMdeZvaimRWY2WYzu9fMcuqt22Jm+4evB5pZ/vbjMrPjzez98HjnmdnoBufncjNbYmZFZjbXzNJ2/UzvOjO7KjwvJWa2zMxObKKcmdmNZrYpPJfvmdm4cF2qmd1gZmvMbKOZ3WZmPVq5/zvD8s+FMbxsZkPrrf+Dma0N97nIzKbXWzfbzB40s3vMrBg4x8ymmNnr4XneYGa3mFlKvW3czL5nZh+H+/vv8Nr9J9zH/fXLNxHzYWa2rjXHtwuOAl519/nuXgP8HzAIODTO+xER6RCUYImItN1pwDEEv873A54E/gfIBS4HHjKzPvXKnwWcBwwAaoCbmqh3E3AskAWcC9xYL8mZAvwDuCLc7yHAqnC7O8N69wb2A44EvtPCMRjwv8BAYDQwBJgN4O6fAD8G7jGzdODvwF3uPs/MRgJzgEuAPsBTwOMNvsifAswAhgMTgHMaDcBsWpg8NPWY1sIxNPQJMB3IBn4Rxj+gkXJHEpy/kWHZU4CCcN2vw+UTCc7nIOCaXYjhdOC/gd7AYoKWnO3eCuvNBf4JPNAg+ZwJPEhwfe8FaoFLw7oOAr4KfK/B/o4CDgCmAlcCtwNnEFzPcQR/q19amCg3dX3+1NymDZ5bGI+ISJejBEtEpO1ucve17l5O8GX2KXd/yt1j7v4csBD4Rr3yd7v7UncvA34OnNJYC5O7P+nun3jgZeBZgoQB4L+Av7n7c+F+1rv7B2bWL9zXJe5e5u6bgBuBU5s7AHdfEdZV6e75wO+o18Lg7n8BVgBvECSGPw1XzQKeDLetBm4AegBfaXB+PnP3LQTdwyY2EcN8d89p5tHcpBSnNPiyP9DdHwj3G3P3ucDHwJRGtq0GMoF9AHP35e6+wcwMOB+41N23uHsJ8KuWzmUDT7r7K+5eSXDODjKzIeHx3uPuBe5e4+6/BVKB+uOfXnf3R8L4y919kbsvCMuvAv7Mzq1A17t7sbu/DywFnnX3le5eBDxNkHB/ae4+oZnr0zDZ2+554NCwdSwFuBpIAdLbEouISEelBEtEpO3W1ns+FPhW/S/7wDSCpKSx8quBZIJWiR2Y2dFmtiDsnldIkDhtLzeEoIWmoaFhfRvq7f/PQN/mDsDM+pnZfRZ0KSwG7mkkpr8QtDrcHCYMELR4rd5ewN1j4fENqrfd5/WebwN6NhfLl3R/gy/7n5nZWRZ0odx+HsbRyHl29xeBW4A/ApvM7HYzyyJokUsHFtWr45lweWvVXWt3LwW2EJwzwq6Ty8Ouk4UErWe9G9s2LD/SzJ4ws8/Da/SrRo5nY73n5Y28bo9z3yx3/wA4m+AcbyCIeRkQ766IIiIdghIsEZG283rP1xK0UNX/sp/h7r+uV2ZIved7ELSgbK5foZmlAg8RtAj1c/ccgu5327tarQX2aiSWtUAl0Lve/rPcfWwLx/Cr8DjGu3sWQUtcXbcuM+sJ/B64A5htX4wb+4wgqdtezsLjW9/C/nZiwRThpc08prdcS11dQwkSwouAvPD8LWXHrmp13P0mdz8AGEPQJfAKgmtSDoytdy6z3X1XkpS6ax2ew1zgs/BYriTojtgrjK+oQXz1/64AbgU+AEaE1+jqpo6nvVgw1q6p63NbU9u5+4PuPs7d84BrgWEEXSRFRLocJVgiIvF1D3CcmR1lZlEzSwu7Rg2uV+YMMxsTjmf6JfCgu9c2qCeFoMtYPlBjZkcTjBXa7g7gXDP7qplFzGyQme3j7hsIuhL+1syywnV7mVlLEwpkAqVAkZkNIkgw6vsDsNDdv0Mwxmz7l+n7gWPCOJKBywgSvP+0dKIaCqcI79nM49VdqC6DIEHJh2DCEJoY82Nmk83swDD+MqACiIWtcX8hGPvWNyw7yMyOqretW71JTBrxjXBsWQrBWKwF7r6W4HzXhPElmdk1BGPtmpMJFAOlZrYPcGEL5ePO3cc2c30uaGo7MzsgfD/0IRgX9ljYsiUi0uUowRIRiaPwy/NMgtaFfIIWpSvY8fP2boKJKD4H0oAfNlJPSbj8fmAr8G3gsXrr3ySc+IKg5eNlvmhJOosgQVsWbvsgO3ZRbMwvgP3Dup4EHt6+wsxmEkxSsf0L/Y+A/c3sdHf/kKC162aCFp/jgOPcvaqF/bUrd18G/BZ4naCb3HjgtSaKZxEkUlsJujsWAL8J1/2YYOzZgrBb3vOE46TCsVQlwHvNhPJPghabLQSTT5wRLv83QXfDj8J9VtCgS2AjLif4OygJ453bQvmO5A9AIfAhwXn+bkKjERFpR+besAeCiIi0FzObB9zj7n9NdCzSNmZ2BkH3wZ80sf5OYJ27/2y3BiYiIgmlm/yJiIh8Ce5+T6JjEBGRjkddBEVEugkLbnq7S5MTSNdjZlc38XfwdKJjExHpCtRFUEREREREJE7UgiUiIiIiIhInHWoMVu/evX3YsGGJDkNERERERKRZixYt2uzuO918vkMlWMOGDWPhwoWJDkNERERERKRZZra6seXqIigiIiIiIhInSrBERERERETiRAmWiMguWrxiNcs//CDRYYiIiEgH1KHGYDWmurqadevWUVFRkehQpJNJS0tj8ODBJCcnJzoU6ULcnex/fJ3hkY34tYWYWaJDEhERkQ6kwydY69atIzMzk2HDhumLjLSau1NQUMC6desYPnx4osORLmRzaRXDIxsByN+cT98+fRMckYiIiHQkHb6LYEVFBXl5eUquZJeYGXl5eWr5lLgr2rqp7vmmlUsSGImIiIh0RG1OsMxsiJm9ZGbLzOx9M7s4XJ5rZs+Z2cfhv73asI+2hindkP5upD1Ufras7nnVhmXNlBQREZHuKB4tWDXAZe4+BpgKfN/MxgBXAS+4+wjghfC1iEinVl5aVPfct6xMYCQiIiLSEbU5wXL3De7+dvi8BFgODAJmAneFxe4CTmjrvhLFzLjsssvqXt9www3Mnj07cQHVs2DBAg488EAmTpzI6NGj6+KaN28e//nPf9pU94wZM8jJyeHYY4+NQ6QiXUPltpIvXpTmJy4QERER6ZDiOgbLzIYB+wFvAP3cfUO46nOgXxPbnG9mC81sYX5+x/yykpqaysMPP8zmzZvjWq+7E4vF2lTH2Wefze23387ixYtZunQpp5xyChCfBOuKK67g7rvvblMdIl1NdUUZAKWkk1TeMT+zREREJHHiNougmfUEHgIucffi+uNf3N3NzBvbzt1vB24HmDRpUqNltvvF4++z7LPieIUMwJiBWVx73NhmyyQlJXH++edz4403ct111+2wLj8/nwsuuIA1a9YA8Pvf/56DDz6Y2bNn07NnTy6//HIAxo0bxxNPPAHAUUcdxYEHHsiiRYt46qmnuOWWW3j66acxM372s58xa9Ys5s2bx+zZs+nduzdLly7lgAMO4J577tlpXNGmTZsYMGAAANFolDFjxrBq1Spuu+02otEo99xzDzfffDP77LNPk3F+8sknrFixgs2bN3PllVfy3e9+F4CvfvWrzJs3r9lz88ADD/CLX/yCaDRKdnY2r7zyChUVFVx44YUsXLiQpKQkfve733H44Ydz55138sgjj1BWVsbHH3/M5ZdfTlVVFXfffTepqak89dRT5Obm8pe//IXbb7+dqqoq9t57b+6++27S09N32O/UqVO54447GDs2uHaHHXYYN9xwA5MmTWo2XpE2q94GwObkAaRXFSQ4GBEREelo4tKCZWbJBMnVve7+cLh4o5kNCNcPADY1tX1n8P3vf597772XoqKiHZZffPHFXHrppbz11ls89NBDfOc732mxro8//pjvfe97vP/++yxcuJDFixfz7rvv8vzzz3PFFVewYUPQ8PfOO+/w+9//nmXLlrFy5Upee+21neq69NJLGTVqFCeeeCJ//vOfqaioYNiwYVxwwQVceumlLF68mOnTpzcb55IlS3jxxRd5/fXX+eUvf8lnn33W6vPyy1/+kn//+9+8++67PPbYYwD88Y9/xMx47733mDNnDmeffXbdbH5Lly7l4Ycf5q233uKnP/0p6enpvPPOOxx00EH84x//AOCb3/wmb731Fu+++y6jR4/mjjvu2Gm/s2bN4v777wdgw4YNbNiwQcmV7B5hglXcYzBZtVsTHIyIiIh0NG1uwbKgSeUOYLm7/67eqseAs4Ffh/8+2tZ9tdTS1J6ysrI466yzuOmmm+jRo0fd8ueff55ly76YSay4uJjS0tJm6xo6dChTp04FYP78+Zx22mlEo1H69evHoYceyltvvUVWVhZTpkxh8ODBAEycOJFVq1Yxbdq0Heq65pprOP3003n22Wf55z//yZw5cxptdWouzpkzZ9KjRw969OjB4YcfzptvvskJJ5zQqvNy8MEHc84553DKKafwzW9+s+6YfvCDHwCwzz77MHToUD766CMADj/8cDIzM8nMzCQ7O5vjjjsOgPHjx7NkSTDl9dKlS/nZz35GYWEhpaWlHHXUUTvt95RTTuHII4/kF7/4Bffffz8nn3xyq+IVaSurLgegImMwvYrmE6utJRKNJjgqERER6Sji0UXwYOBM4D0zWxwuu5ogsbrfzP4LWA2cEod9JdQll1zC/vvvz7nnnlu3LBaLsWDBAtLS0nYom5SUtMP4qvr3Y8rIyGjV/lJTU+ueR6NRampqGi231157ceGFF/Ld736XPn36UFCwc7elpuKEnacz35XpzW+77TbeeOMNnnzySQ444AAWLVrUbPn6xxSJROpeRyKRuuM755xzeOSRR9h333258847G00YBw0aRF5eHkuWLGHu3LncdtttrY5ZpC2sZhvVRIllDiTFaikqzCc7r3+iwxIREZEOIh6zCM53d3P3Ce4+MXw85e4F7v5Vdx/h7l9z9y3xCDiRcnNzOeWUU3bosnbkkUdy8803171evHgxAMOGDePtt98G4O233+bTTz9ttM7p06czd+5camtryc/P55VXXmHKlCmtjunJJ5/EPRi69vHHHxONRsnJySEzM5OSki9mO2sqToBHH32UiooKCgoKmDdvHpMnT271/j/55BMOPPBAfvnLX9KnTx/Wrl3L9OnTuffeewH46KOPWLNmDaNGjWp1nSUlJQwYMIDq6uq6ehoza9Ysrr/+eoqKipgwYUKr6xdpi0hNBeWkEc0KkqrC/PUJjkhEREQ6krjOItgdXHbZZTvMJnjTTTexcOFCJkyYwJgxY+paUk466SS2bNnC2LFjueWWWxg5cmSj9Z144olMmDCBfffdlyOOOILrr7+e/v1b/2v43XffzahRo5g4cSJnnnkm9957L9FolOOOO45//etfTJw4kVdffbXJOAEmTJjA4YcfztSpU/n5z3/OwIEDgSD5+9a3vsULL7zA4MGD+fe//w0E3RK3j7e64oorGD9+POPGjeMrX/kK++67L9/73veIxWKMHz+eWbNmceedd+7QctWS//7v/+bAAw/k4IMPZp999qlb/thjj3HNNdfUvT755JO577776mZOFNkdIjXlVFoqaTnB+7SsoPVjFkVERKTrs+2tHx3BpEmTfOHChTssW758OaNHj05QRF1fw9kOuxr9/Ui8vXnDiQzc9gFV37qXPecezjuTb2C/Y76b6LBERERkNzOzRe6+0yxrasESEdkFSbUVVFkq2X0GAVBT/HmCIxIREZGOJG73wZLOafbs2YkOQaRTSaotpzqSRk6vPlR6EpRsTHRIIiIi0oGoBUtEZBckewXVkTSi0QhbLIdI+eaWNxIREZFuQwmWiMguSIlVUh0N7oVXHO1FaoUSLBEREfmCEiwRkV2QEqugNhrcT64sOZf06k5/BwoRERGJIyVYIiK7INmriIUJVmVqHpm1hYkNSERERDoUJVit9Mgjj2BmfPDBB02WWbVqFePGjYvbPj/88EMOO+wwJk6cyOjRozn//POB4CbBTz31VJvqPu+88+jbt29c4xXpDpKpxqMpANT2yCMnVggd6HYXIiIiklhKsFppzpw5TJs2jTlz5jS6vqamps37qK2t3eH1D3/4Qy699FIWL17M8uXL+cEPfgDEJ8E655xzeOaZZ9pUh0h3lOJVeDS8cXZGH5KtlooSdRMUERGRQOeapv3pq+Dz9+JbZ//xcPSvmy1SWlrK/PnzeemllzjuuOP4xS9+AcC8efP4+c9/Tq9evfjggw949tlnqamp4fTTT+ftt99m7Nix/OMf/yA9PZ0XXniByy+/nJqaGiZPnsytt95Kamoqw4YNY9asWTz33HNceeWVnHrqqXX73bBhA4MHD657PX78eKqqqrjmmmsoLy9n/vz5/OQnP+HYY4/lBz/4AUuXLqW6uprZs2czc+ZM7rzzTv71r39RVFTE+vXrOeOMM7j22msBOOSQQ1i1alWzx/3yyy9z8cUXA2BmvPLKK/Ts2ZMrr7ySp59+GjPjZz/7GbNmzWLevHlce+215OTk8N5773HKKacwfvx4/vCHP1BeXs4jjzzCXnvtxeOPP87//M//UFVVRV5eHvfeey/9+vXbYb+nnnoqZ555JscccwwQJIPHHnssJ598cuuuqUg7SqEGkoIEK9qzLwCFm9fTPysvkWGJiIhIB6EWrFZ49NFHmTFjBiNHjiQvL49FixbVrXv77bf5wx/+wEcffQQE3fq+973vsXz5crKysvjTn/5ERUUF55xzDnPnzuW9996jpqaGW2+9ta6OvLw83n777R2SK4BLL72UI444gqOPPpobb7yRwsJCUlJS+OUvf8msWbNYvHgxs2bN4rrrruOII47gzTff5KWXXuKKK66grKwMgDfffJOHHnqIJUuW8MADD7Bw4cJWH/cNN9zAH//4RxYvXsyrr75Kjx49ePjhh1m8eDHvvvsuzz//PFdccQUbNmwA4N133+W2225j+fLl3H333Xz00Ue8+eabfOc73+Hmm28GYNq0aSxYsIB33nmHU089leuvv36n/c6aNYv7778fgKqqKl544YW6ZEskkWpqakm1aixMsFJzgh8HSgp0s2EREREJdK4WrBZamtrLnDlz6lpyTj31VObMmcMBBxwAwJQpUxg+fHhd2SFDhnDwwQcDcMYZZ3DTTTfx9a9/neHDhzNy5EgAzj77bP74xz9yySWXAEFC0Zhzzz2Xo446imeeeYZHH32UP//5z7z77rs7lXv22Wd57LHHuOGGGwCoqKhgzZo1AHz9618nLy/4Zf2b3/wm8+fPZ9KkSa067oMPPpgf/ehHnH766Xzzm99k8ODBzJ8/n9NOO41oNEq/fv049NBDeeutt8jKymLy5MkMGDAAgL322osjjzwSCFreXnrpJQDWrVvHrFmz2LBhA1VVVTucu+2OPvpoLr74YiorK3nmmWc45JBD6NGjR6tiFmlPlZUVwYdmUjDJRXpu8PdevlUJloiIiATavQXLzGaY2YdmtsLMrmrv/cXbli1bePHFF/nOd77DsGHD+M1vfsP999+Ph4PaMzIydihvZs2+bkzDOuobOHAg5513Ho8++ihJSUksXbp0pzLuzkMPPcTixYtZvHgxa9asYfTo0V86nu2uuuoq/vrXv1JeXs7BBx/c7AQfAKmpqXXPI5FI3etIJFI3Ru0HP/gBF110Ee+99x5//vOfqaio2KmetLQ0DjvsMP79738zd+7cJhNQkd2tsmIbAJHk4G87M0ywqoo3JiwmERER6VjaNcEysyjwR+BoYAxwmpmNac99xtuDDz7ImWeeyerVq1m1ahVr165l+PDhvPrqq42WX7NmDa+//joA//znP5k2bRqjRo1i1apVrFixAoC7776bQw89tMV9P/PMM1RXVwPw+eefU1BQwKBBg8jMzKSkpKSu3FFHHcXNN99cl/S98847deuee+45tmzZUjcOanvrWmt88sknjB8/nh//+MdMnjyZDz74gOnTpzN37lxqa2vJz8/nlVdeYcqUKa2us6ioiEGDBgFw1113NVlu1qxZ/P3vf+fVV19lxowZra5fpD1VVZQDYMlBC1ZunyDBipXkJywmERER6VjauwVrCrDC3Ve6exVwHzCznfcZV3PmzOHEE0/cYdlJJ53U5GyCo0aN4o9//COjR49m69atXHjhhaSlpfH3v/+db33rW4wfP55IJMIFF1zQ4r6fffZZxo0bx7777stRRx3Fb37zG/r378/hhx/OsmXLmDhxInPnzuXnP/851dXVTJgwgbFjx/Lzn/+8ro4pU6Zw0kknMWHCBE466aS67oGnnXYaBx10EB9++CGDBw/mjjvuAOC2227jtttuA+D3v/8948aNY8KECSQnJ3P00Udz4oknMmHCBPbdd1+OOOIIrr/+evr379/q8zl79my+9a1vccABB9C7d++65QsXLuQ73/lO3esjjzySl19+ma997WukpKS0un6R9lRVFSRYkXAMVo+0VLZ6JrZtUyLDEhERkQ7EvB3v32JmJwMz3P074eszgQPd/aJ6Zc4HzgfYY489Dli9evUOdSxfvryuu5vsmjvvvJOFCxdyyy23JDqUhNHfj8TTJx8sZq/7DmXx5N8w8ZjgvnSf/mIchRnD2e/yxxMcnYiIiOxOZrbI3Xea3CDhswi6++3uPsndJ/Xp0yfR4YiINKmmMhgzGE1Jq1tWmtSLtCrdB0tEREQC7Z1grQeG1Hs9OFwmu8E555zTrVuvROKtJuwiGE3+YlbLipRcetZsTVRIIiIi0sG0d4L1FjDCzIabWQpwKvDYrlbSnt0YpevS343EW03V9hasL2bMrEnLIytWlKiQREREpINp1wTL3WuAi4B/A8uB+939/V2pIy0tjYKCAn1Zll3i7hQUFJCWltZyYZFWqg1bsJJSvmjBiqX3JpvSuuRLREREurd2v9Gwuz8FPPVltx88eDDr1q0jP1/TIMuuSUtLY/DgwYkOQ7qQ2qpKAJJSv0jcI5nB2NHCzRvoPXDnG2eLiIhI99LuCVZbJScnM3y4vrSISOLVVgctWMn1WrCSs4LbFBQXKMESERGRDjCLoIhIZxGrDlqwklPT65b1yOkHQNmWDQmJSURERDoWJVgiIq0Uqw7GWSXX6yLYM28AAFVFutmwiIiIKMESEWk1rwlasFLSvugimNN7EAA1xRsTEpOIiIh0LEqwRERayWuCFqyUejcazsrOodKT8TK1YImIiIgSLBGR1gsTrPrTtFskwhbLIWnb5kRFJSIiIh2IEiwRkVay6gpibpCUusPyoqRc0ip1KwkRERFRgiUi0mpWU0GFpYLZDstLk3uTWV2QoKhERESkI1GCJSLSSpHacipI2Wl5ZVofetUqwRIRERElWCIirRatraDKUndaXpvRjyxKiVWVJyAqERER6UiUYImItFK0poJKS9tpeSQruBdWUf663R2SiIiIdDBKsEREWikpVkFVZOcWrNReAwEo3KQES0REpLtTgiUi0kpJsQpqGukimJEX3Gy4tEAJloiISHfXpgTLzH5jZh+Y2RIz+5eZ5dRb9xMzW2FmH5rZUW2OVEQkwZJrK6iO7NxFMLvvEACqtq7f3SGJiIhIB9PWFqzngHHuPgH4CPgJgJmNAU4FxgIzgD+ZWbSN+xIRSajkWAW10Z0TrN79BlLjEWLFnycgKhEREelI2pRgufuz7l4TvlwADA6fzwTuc/dKd/8UWAFMacu+REQSLcUrqU3qsdPy1ORkCiyHSNnGBEQlIiIiHUk8x2CdBzwdPh8ErK23bl24bCdmdr6ZLTSzhfn5+XEMR0QkvlK8Em8kwQIoiuaSUq7PMBERke6uxQTLzJ43s6WNPGbWK/NToAa4d1cDcPfb3X2Su0/q06fPrm4uIrLbpDaTYJUm9yajavNujkhEREQ6mqSWCrj715pbb2bnAMcCX3V3DxevB4bUKzY4XCYi0inFYk4aVZC88xgsgMoefcipWLaboxIREZGOpq2zCM4ArgSOd/dt9VY9BpxqZqlmNhwYAbzZln2JiCRSRVUVqVaNJac3uj6W0Y9ciqmtrtrNkYmIiEhH0tYxWLcAmcBzZrbYzG4DcPf3gfuBZcAzwPfdvbaN+xIRSZht20oBiKQ0nmBFsgYAUJivxnoREZHurMUugs1x972bWXcdcF1b6hcR6SgqysoAsNTGE6yUnIEAFG5aS97A4bstLhEREelY4jmLoIhIl1VZthWAaFpWo+szegcTpZZtXtvoehEREekelGCJiLRCVVkhAJEe2Y2uz+kbzOtTuXXD7gpJREREOiAlWCIirVATJljR9F6Nrs/tO5iYG7XFSrBERES6MyVYIiKtUFO2BYC0njmNrk9JSWGLZRMt27gboxIREZGORgmWiEgrVG0rBCA9O6/JMoXRPFLKN+2miERERKQjUoIlItIKtduKAMjKaTrBKk3pTc+qzbsrJBEREemAlGCJiLRGRSG1bvTIaHySC4CqtD7k1BbsxqBERESko1GCJSLSGhXFlFoGFmn6Y7M2oz+9vIia6qrdGJiIiIh0JEqwRERaIamqmDLLaLaMZfUnYk7hpvW7KSoRERHpaJRgiYi0QlJ1MRXR5hOs5JyBABTm62bDIiIi3ZUSLBGRVuhZvYVtSY3fA2u7jN6DAdhWoBYsERGR7koJlohIK2TXbqEirU+zZbLCBKtqqxIsERGR7ipuCZaZXWZmbma9w9dmZjeZ2QozW2Jm+8drXyIiu1NtbS25Xkhter9my+X2G0zMjVjx57spMhEREelo4pJgmdkQ4EhgTb3FRwMjwsf5wK3x2JeIyO62ZfMGkq0Wy2o+wUpLTWWLZREpU4IlIiLSXcWrBetG4ErA6y2bCfzDAwuAHDMbEKf9iYjsNoUb1wFfTGLRnK2RPFLLN7V3SCIiItJBtTnBMrOZwHp3f7fBqkFA/am01oXLREQ6lbKCIMFKz235I6wkuTcZVZvbOyQRERHpoJJaU8jMngf6N7Lqp8DVBN0DvxQzO5+gCyF77LHHl61GRKTdbNv0KQB5g/ZssWxFWh+yiz5q75BERESkg2pVguXuX2tsuZmNB4YD75oZwGDgbTObAqwHhtQrPjhc1rDu24HbASZNmuQN14uIJJoXfEKFJ5M3YHiLZWsz+tGrsAivrcaiybshOhEREelI2tRF0N3fc/e+7j7M3YcRdAPc390/Bx4DzgpnE5wKFLn7hraHLCKye/UoWcXnSQOxSLTFspbZn4g5pVv0cSciItIdted9sJ4CVgIrgL8A32vHfYmItJu8irUU9mhdF+ak7GAijMLP17RQUkRERLqiVnURbK2wFWv7cwe+H8/6RUR2t7KyUgbGNvB5ztdbVT49N0iwSgt0s2EREZHuqD1bsEREOr1V779BstXSY+gBrSqfmRfMB1RRtLE9wxIREZEOSgmWiEgzilYsAGDgmINbVT63T9CCVV2c324xiYiISMelBEtEpBnJ6xawyfLoPbDlGQQBsrKyqfBkYmW6F5aIiEh3pARLRKQJlVVVjCxbxNpeUyG4FUWLLBKh0LKJlhe0c3QiIiLSESnBEhFpwodvvUC2lZE8qnUTXGxXGs0mpXJLO0UlIiIiHZkSLBGRJpQsvI9tnsqIg7+5S9uVJ/eiR3Vh+wQlIiIiHZoSLBGRRpSWFDF+y7N81OsQevTM3qVtq1JzyawtbJ/AREREpENTgiUi0oglT/yJLNtG+sH/b5e3re2RR5YXE9wOUERERLoTJVgiIg1UbCtlxId/5oOUsYyc9LVd3t4y8siwSoqLS9ohOhEREenIlGCJiDTw1v3X04et1Bz281bPHlhfUmZfALZu3hDv0ERERKSDU4IlIlLPmlUr2O/T23k/40DGfeXoL1VHSlYfAEq2KMESERHpbpRgiYiE3J0Ncy8liRr6z7rpS9eT0as/AOWFm+IVmoiIiHQSSrBEREILnr2PA8tfYfmI/0feHvt86Xoyc/sBUFW8MV6hiYiISCfR5gTLzH5gZh+Y2ftmdn295T8xsxVm9qGZHdXW/YiItKei4iL2eP0a1kYHM+GUn7epruy8AQDUlGyOR2giIiLSiSS1ZWMzOxyYCezr7pVm1jdcPgY4FRgLDASeN7OR7l7b1oBFRNrDu/dczSFsYuXRDxBNSWtTXUkZvagmCtuUYImIiHQ3bW3BuhD4tbtXArj79gEHM4H73L3S3T8FVgBT2rgvEZF2seK9BXxl4z95O+849px0ZNsrNKPYsoiWb217XSIiItKptDXBGglMN7M3zOxlM5scLh8ErK1Xbl24bCdmdr6ZLTSzhfn5+W0MR0Rk13gsRuyxiym2nux9+u/iVm9ZNJvkKiVYIiIi3U2LXQTN7HmgfyOrfhpunwtMBSYD95vZnrsSgLvfDtwOMGnSJN+VbUVE2mrhM3cxufoDFoz/JVNz+8at3orkHHpUFsatPhEREekcWkyw3P1rTa0zswuBh93dgTfNLAb0BtYDQ+oVHRwuExHpMKqqquj71m9YHd2DyTO/H9e6q1N7kbnto7jW2ZHU1NSwdeNaijetpmzLBioLN1JTugnKNpNUVUy0ZhtJteUk124jubacFK8g6jVEPEaEHR9RYoADhgMxIgS/thmOEQv/Bepe11+3/bkDHm7rdcu+2JZG7hm967eRbmGbVtyY+svsM14a3XcCA2rzrlt5I/BEnvPG7FI8rShcY6mknnonA/cc82VDEpE4atMkF8AjwOHAS2Y2EkgBNgOPAf80s98RTHIxAnizjfsSEYmrxY//iSm+nve+civRpLZ+HO4olp5H9tZiKqprSUuOxrXu3WnLlgLWffAWpavfIVLwEWmla8mp/IwBsU30sWr6NChf5mmUWE8qImlUWQ+qoj2oTOlDTbQHRJPAorhFcYuARXCLgkWCL8peL63yWFChb0+hwiTMgXD99pTK/IuUquFr8507RnjDZ95wedO8yRdNbe87rmtlP41Wd+dopOCudQVpXem2di9p5DK0rb5dWdPmc9RKcd6P78LW+1e8xZInf8XAH9zThj2KSLy09RvF34C/mdlSoAo4O2zNet/M7geWATXA9zvrDILbSotI75md6DBEJM6qq6sYsvQWPkwaxbjDT417/ZaeRw6lbCjexuC8zLjX3x7KyspY+e6rlHz8KqkbF9Nv28cMZiO54foSerApaSCFPfdic+bh1OYMJSl3DzJ69Se79wB69RlIRnomGQk9CpHu5/U/nMn+m5+mcNN6cvo2OuRdRHajNiVY7l4FnNHEuuuA69pSf6ItfOJ2hiz8NRu+eS97TTgo0eGISBy989w/meL55B94LRaJ/z3Xk3v2IWpO4ZbNHTbBqqqq5qOFz1P6/tNkblzI3tUfMd6qAVgXGcjmzNFs6HMy6UMmMmDUJHIHDCezlV2yRGT36X/UZSTPeZxFD13HVy78U6LDEen24tsnpovJHbYvLIQBD81k4afXcsBxF7bLFzER2f0y3rmdDdaXcYef1i71p+QEE2aUFnwGI4a3yz6+jJUb8lm54AlSP3masSX/YZyVUO1RPk3Zm/cGnULqXtMYuu/hDO49gMGJDlZEWmX4PhN5q9cMJn1+H5+tuICBe09IdEgi3ZoSrGbsOe5ANvV6kTV3nsakd67m3Q8eI+u4XzF8zAGJDq1zc8fDR/AyMZNH7vLv8G345b79f/TfcQfWkVoZOlIsoY8Xv8bY6vd5c8SPGBDnsVfbZeQF6UnF1sTO7xOLOe+vXM3q1x8me/W/OaD6Hfa0SkrJ4JPcg1m7zzHsOfV4RmbntlyZiHRYQ2f9horbXqZo7gX0u3Ie0eSURIfUeTT4HhJ8R2mnsXqN2B3/lzSj3f9/3KG+eySYEqwW9B00jLwfv8p/5lzHxBV/JG3uV3m75zTY91TGHvJNUtPSd0scsZhTtq2MbSVb2VZSSHlpIZVlhdRsK8YrSqCyGKpKoboCr6mEmgqsthJqKonUho9YFdFYFckePCJei3ltMJNX3b8xIoTPqSVab8avJGLhQPMdPwys3nxfDddFrPGPJ6Pjzeok3ccIYJunss8x8Z05sL7MPsFEqrVFuz/Bqq6NsXjJe2xa+DD9PnueibFljLcYW6K9WbPHCeQe8E36jjuCfZP0BUykq+g7YAhvHnAtU97+MW/d/v+YdOEdHbbXjcdilJYUUrJlE+WlhVRvK6KqvITa8hJqKkrxymK8sgyqSrGqMqymPPg+E6siEqsm6tVEYlUkxapJ8iqiXkOSV5Pk1UTCeUeD7zLBZDdRD76/RPDwO00wB2mUGNFGvqfoO0rH81LtvpR96z6OnTAw0aG0ihKsVogmJfGVM6+lMP98Fv/r14z57CFy/vMq5a9dyvup+1DSayyRvOEk5w0nJTOPtJ7ZpGdkYWbEYjE8VkttbS1VFWVUbSumelsJ1eXF1JYXE6ssIVZZilWWEqkuIVJVSnJNKck1ZaTWltEjto10ysjwcjKthtaM5KjyKFWkUGVJVJNCtQWPmkgKNZZCdSSVCsskFs7mRSQSzuoVBYtCZPvyaDjjV7g+EsWJsP1jxw2sbvrjhh9FFqwz6srvWKa5dbvBLv8s1ba5oHar3bi7lnZl8Qwmzi2d6XtOYd+c3nGts74eeeGdKoo/b7d91FdZXcPiRa9RuOgR9sh/icl8CsD65GGsGPYdBk/9Frl7TiZXvzCKdFlTjr+A/6xfwlc23subf6xl4vm3k5Katlv2XVFeRsGGNRRtWkN5wVqqCz/DSzcSrdhKcmUhqdVFpNcW0TNWQraXkGm1LX6nqfYo20ij0lKptmRqLIVaS6LGkqmNpFATTaMykkUskkwskkIskgyRJMwi4XeXcLZSrG7GUrd6z4l8MYspFn4VsbqvJ13l09Kh0RlV47+X9lOZNoQRfTvmeObGWKK6ZzVm0qRJvnDhwkSH0aKaqkqWvfY425Y/S96WtxlcvZoeVtWmOis9mTLrQbmlUxHJoDKaQXVSBjXJPYkl98RTMyE1k0haFtEeWSSnZ5OSnk1KRjZJPbJJycghNT2L1B7ppKYkq5lWpAMonj2IxTlf45BL7mqX+isqq1jy+r/Z9u6j7L3lZQbbJmJurEofS9Xe32DYwd8irf/Idtm3iHRMHovxn79cwsEb7uLTyFCKvnI1Yw87meQv2R06VlPD1vzP2LpxFaX566jauo5Y8QaipZ+TWrGJzKrN9IptJofSnbat8iSKLJPSSDbbkrKoTM6hOjWHWFovSM8lmp5HUno2ST0ySUnPJCU9i9T0bNJ6ZpGekU1ajx76PiMdmpktcvdJOy1XgtV2sdoYGzespmzjJ1SWFlJVVkRNeTGOYZEIZhEsEiWSkkZSj+DDIzUji7SMbHpk5pDeM5uklN3zC5OI7D5r/nsCG5MHMfmqp+NWZ1lJEctee4yaZU8wqug1cq2ESpJZmTkJ2+dYhh98Eqk5A+K2PxHpnN5+bg4DXvs5A8hnMzmszppMVZ+xpPQehqVmkpycSsRi1JSXBI+KYmIl+UTLPie1Ip+Mqs1k1xSQ64U7daOrdaPAelEY7U1Zam8q0/vhGf2J5gyiR+4gevbZg9z+Q8nKyeuw3RRF4kEJlojIbrb4+hn0qljH0GuWfuk63J01n37E+jf+Rcbq59mnfDGpVk0J6azImUba+OPZ+6DjSU7X/fpEZEdVlZV88NK9VL7/OHuVLCSX4mbLx9zYallsjeZRlpxHRVofajP6EckcQEruIDJ670FOvyHk9R1MUnLybjoKkY6rqQRLY7BERNrJ1qx9GF+2gFhlGZHU1t9+t7y0iA/fepaS5S8xIP819vZVDAXWW3/e6fdNsvc9lpFTZrCfZgkTkWakpKYyYcZ5MOM8AIq25LP1s5VUV5RQU1VBrUNKejapGdmkZ+aQk9ePvJRU8hIct0hnpwRLRKSdJA/en+jnf2fNB2+xx76HNVmuMH8Dq9+bT9mK+eTmv8FeVR8x0Wqp8igr08aycNiPGDTlRAbtOZ5BGo8gIl9Sdm4fsnP7JDoMkS5PCZaISDsZvu8h1LwVoWDBP9lj38OI1cbIX/8Jn69cQunqd0jb9C4Dtn3AQN9EDlDjET5JHsFbA8+g5z6HM3LSV9knIyvRhyEiIiK7QAmWiEg7GTRkGK9mHcX0DXPZPPtZevg2+lkl/cL1G6wvGzJGs6bfafTccwp7TZjGqMycRIYsIiIibaQES0SkHU08/8/Mf+B/SSpajaX2hD6j6Dl4LHuM2o8Buf3RfH8iIiJdixIsEZF2lJmZzbTzfp3oMERERGQ3afPNCcxsopktMLPFZrbQzKaEy83MbjKzFWa2xMz2b3u4IiIiIiIiHVc87v52PfALd58IXBO+BjgaGBE+zgdujcO+REREREREOqx4JFgObJ/mKhv4LHw+E/iHBxYAOWam4QYiIiIiItJlxWMM1iXAv83sBoKE7Svh8kHA2nrl1oXLNtTf2MzOJ2jhAig1sw/jEFM89QY2JzoI2W10vbsPXevuQ9e6e9H17j50rbuXjni9hza2sFUJlpk9D/RvZNVPga8Cl7r7Q2Z2CnAH8LXWRuXutwO3t7b87mZmC919UqLjkN1D17v70LXuPnStuxdd7+5D17p76UzXu1UJlrs3mTCZ2T+Ai8OXDwB/DZ+vB4bUKzo4XCYiIiIiItIlxWMM1mfAoeHzI4CPw+ePAWeFswlOBYrcfUNjFYiIiIiIiHQF8RiD9V3gD2aWBFTwxXiqp4BvACuAbcC5cdhXInTY7ovSLnS9uw9d6+5D17p70fXuPnStu5dOc73N3RMdg4iIiIiISJcQjy6CIiIiIiIighIsERERERGRuFGC1Qwzm2FmH5rZCjO7KtHxSPyY2RAze8nMlpnZ+2Z2cbg818yeM7OPw397JTpWiQ8zi5rZO2b2RPh6uJm9Eb6/55pZSqJjlPgwsxwze9DMPjCz5WZ2kN7bXZOZXRp+hi81szlmlqb3dtdhZn8zs01mtrTeskbfy+GkajeF132Jme2fuMhlVzVxrX8Tfo4vMbN/mVlOvXU/Ca/1h2Z2VEKCboYSrCaYWRT4I3A0MAY4zczGJDYqiaMa4DJ3HwNMBb4fXt+rgBfcfQTwQvhauoaLgeX1Xv8fcKO77w1sBf4rIVFJe/gD8Iy77wPsS3Dd9d7uYsxsEPBDYJK7jwOiwKnovd2V3AnMaLCsqffy0cCI8HE+cOtuilHi4052vtbPAePcfQLwEfATgPD72qnA2HCbP4Xf2zsMJVhNmwKscPeV7l4F3AfMTHBMEifuvsHd3w6flxB8ARtEcI3vCovdBZyQkAAlrsxsMHAM4X36zMwIbivxYFhE17qLMLNs4BCCm97j7lXuXoje211VEtAjnMk4HdiA3ttdhru/AmxpsLip9/JM4B8eWADkmNmA3RKotFlj19rdn3X3mvDlAoJ76kJwre9z90p3/5RgxvIpuy3YVlCC1bRBwNp6r9eFy6SLMbNhwH7AG0C/evdr+xzol6i4JK5+D1wJxMLXeUBhvQ9uvb+7juFAPvD3sEvoX80sA723uxx3Xw/cAKwhSKyKgEXovd3VNfVe1ve2ru084OnweYe/1kqwpFszs57AQ8Al7l5cf50H9zDQfQw6OTM7Ftjk7osSHYvsFknA/sCt7r4fUEaD7oB6b3cN4dibmQRJ9UAgg527GEkXpvdy92BmPyUY2nFvomNpLSVYTVsPDKn3enC4TLoIM0smSK7udfeHw8Ubt3cpCP/dlKj4JG4OBo43s1UEXX2PIBijkxN2KwK9v7uSdcA6d38jfP0gQcKl93bX8zXgU3fPd/dq4GGC97ve211bU+9lfW/rgszsHOBY4HT/4ua9Hf5aK8Fq2lvAiHA2ohSCwXSPJTgmiZNwDM4dwHJ3/129VY8BZ4fPzwYe3d2xSXy5+0/cfbC7DyN4H7/o7qcDLwEnh8V0rbsId/8cWGtmo8JFXwWWofd2V7QGmGpm6eFn+vZrrfd219bUe/kx4KxwNsGpQFG9roTSCZnZDILu/ce7+7Z6qx4DTjWzVDMbTjCxyZuJiLEp9kUyKA2Z2TcIxm5Egb+5+3WJjUjixcymAa8C7/HFuJyrCcZh3Q/sAawGTnH3hgNspZMys8OAy939WDPbk6BFKxd4BzjD3SsTGJ7EiZlNJJjQJAVYCZxL8IOi3ttdjJn9AphF0H3oHeA7BGMx9N7uAsxsDnAY0BvYCFwLPEIj7+Uwyb6FoJvoNuBcd1+YgLDlS2jiWv8ESAUKwmIL3P2CsPxPCcZl1RAM83i6YZ2JpARLREREREQkTtRFUEREREREJE6UYImIiIiIiMSJEiwREREREZE4UYIlIiIiIiISJ0qwRERERERE4kQJloiIiIiISJwowRIREREREYkTJVgiIiIiIiJxogRLREREREQkTpRgiYiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERDoIMxtmZm5mSYmOpaszs3PMbH6i4+hozGy6mX2Y6DhERDozJVgiItKpmdlsM6s2s9J6jysTHVdn5O6vuvuoeNdrZseZ2dLw2vzHzMbEex8iIh2FEiwRkThRy1NCzXX3nvUe1yc6oHjqzH9bZjYCuBe4AMgBHgce68zHJCLSHCVYIiJtYGarzOzHZrYEKDOzJDObGv5KX2hm75rZYfXKzzOz/zWzN82s2MweNbPcJuo+18yWm1mJma00s//XYP1MM1sc1vOJmc0Il2eb2R1mtsHM1pvZ/5hZtIXj2MvMXjSzAjPbbGb3mllOvXVbzGz/8PVAM8vfflxmdryZvR8e7zwzG93g/FxuZkvMrMjM5ppZ2q6f6V1nZleF56XEzJaZ2YlNlDMzu9HMNoXn8j0zGxeuSzWzG8xsjZltNLPbzKxHK/d/Z1j+uTCGl81saL31fzCzteE+F5nZ9HrrZpvZg2Z2j5kVA+eY2RQzez08zxvM7BYzS6m3jZvZ98zs43B//x1eu/+E+7i/fvkmYj7MzNa15vh2wVHAq+4+391rgP8DBgGHxnk/IiIdghIsEZG2Ow04huDX+X7Ak8D/ALnA5cBDZtanXvmzgPOAAUANcFMT9W4CjgWygHOBG+slOVOAfwBXhPs9BFgVbndnWO/ewH7AkcB3WjgGA/4XGAiMBoYAswHc/RPgx8A9ZpYO/B24y93nmdlIYA5wCdAHeAp4vMEX+VOAGcBwYAJwTqMBmE0Lk4emHtNaOIaGPgGmA9nAL8L4BzRS7kiC8zcyLHsKUBCu+3W4fCLB+RwEXLMLMZwO/DfQG1hM0JKz3VthvbnAP4EHGiSfM4EHCa7vvUAtcGlY10HAV4HvNdjfUcABwFTgSuB24AyC6zmO4G/1SwsT5aauz5+a27TBcwvjERHpcpRgiYi03U3uvtbdywm+zD7l7k+5e8zdnwMWAt+oV/5ud1/q7mXAz4FTGmthcvcn3f0TD7wMPEuQMAD8F/A3d38u3M96d//AzPqF+7rE3cvcfRNwI3Bqcwfg7ivCuirdPR/4HfVaGNz9L8AK4A2CxPCn4apZwJPhttXADUAP4CsNzs9n7r6FoHvYxCZimO/uOc08mpuU4pQGX/YHuvsD4X5j7j4X+BiY0si21UAmsA9g7r7c3TeYmQHnA5e6+xZ3LwF+1dK5bOBJd3/F3SsJztlBZjYkPN573L3A3Wvc/bdAKlB//NPr7v5IGH+5uy9y9wVh+VXAn9m5Feh6dy929/eBpcCz7r7S3YuApwkS7i/N3Sc0c30aJnvbPQ8cGraOpQBXAylAeltiERHpqJRgiYi03dp6z4cC36r/ZR+YRpCUNFZ+NZBM0CqxAzM72swWhN3zCgkSp+3lhhC00DQ0NKxvQ739/xno29wBmFk/M7vPgi6FxcA9jcT0F4JWh5vDhAGCFq/V2wu4eyw8vkH1tvu83vNtQM/mYvmS7m/wZf8zMzvLgi6U28/DOBo5z+7+InAL8Edgk5ndbmZZBC1y6cCienU8Ey5vrbpr7e6lwBaCc0bYdXJ52HWykKD1rHdj24blR5rZE2b2eXiNftXI8Wys97y8kdftce6b5e4fAGcTnOMNBDEvA+LdFVFEpENQgiUi0nZe7/laghaq+l/2M9z91/XKDKn3fA+CFpTN9Ss0s1TgIYIWoX7unkPQ/W57V6u1wF6NxLIWqAR619t/lruPbeEYfhUex3h3zyJoiavr1mVmPYHfA3cAs+2LcWOfESR128tZeHzrW9jfTiyYIry0mcf0lmupq2soQUJ4EZAXnr+l7NhVrY673+TuBwBjCLoEXkFwTcqBsfXOZba770qSUnetw3OYC3wWHsuVBN0Re4XxFTWIr/7fFcCtwAfAiPAaXd3U8bQXC8baNXV9bmtqO3d/0N3HuXsecC0wjKCLpIhIl6MES0Qkvu4BjjOzo8wsamZpYdeowfXKnGFmY8LxTL8EHnT32gb1pBB0GcsHaszsaIKxQtvdAZxrZl81s4iZDTKzfdx9A0FXwt+aWVa4bi8za2lCgUygFCgys0EECUZ9fwAWuvt3CMaYbf8yfT9wTBhHMnAZQYL3n5ZOVEPhFOE9m3m8ugvVZRAkKPkQTBhCE2N+zGyymR0Yxl8GVACxsDXuLwRj3/qGZQeZ2VH1tnWrN4lJI74Rji1LIRiLtcDd1xKc75owviQzu4ZgrF1zMoFioNTM9gEubKF83Ln72GauzwVNbWdmB4Tvhz4E48IeC1u2RES6HCVYIiJxFH55nknQupBP0KJ0BTt+3t5NMBHF50Aa8MNG6ikJl98PbAW+DTxWb/2bhBNfELR8vMwXLUlnESRoy8JtH2THLoqN+QWwf1jXk8DD21eY2UyCSSq2f6H/EbC/mZ3u7h8StHbdTNDicxxwnLtXtbC/duXuy4DfAq8TdJMbD7zWRPEsgkRqK0F3xwLgN+G6HxOMPVsQdst7nnCcVDiWqgR4r5lQ/knQYrOFYPKJM8Ll/ybobvhRuM8KGnQJbMTlBH8HJWG8c1so35H8ASgEPiQ4z99NaDQiIu3I3Bv2QBARkfZiZvOAe9z9r4mORdrGzM4g6D74kybW3wmsc/ef7dbAREQkoXSTPxERkS/B3e9JdAwiItLxqIugiEg3YcFNb3dpcgLpeszs6ib+Dp5OdGwiIl2BugiKiIiIiIjEiVqwRERERERE4qRDjcHq3bu3Dxs2LNFhiIiIiIiINGvRokWb3X2nm893qARr2LBhLFy4MNFhiIiIiIiINMvMVje2XF0ERURERERE4kQJloiIiIiISJwowRIRaUJ1bSzRIYiIiEgn06HGYDWmurqadevWUVFRkehQpJNJS0tj8ODBJCcnJzoU6YTWF5ZzzA3P8LPjJnDygXslOhwRERHpJDp8grVu3ToyMzMZNmwYZpbocKSTcHcKCgpYt24dw4cPT3Q40gmtXPgsi5PO4bnnDoUDH0t0OCIiItJJdPgughUVFeTl5Sm5kl1iZuTl5anlU7689W8DMKVmUYIDERERkc6kwydYgJIr+VL0dyNtEassBaCHV+AxjcUSERGR1ukUCZaIyO7mlWUApFgNW/I/S3A0IiIi0lkowWoFM+Oyyy6re33DDTcwe/bsxAVUz4IFCzjwwAOZOHEio0eProtr3rx5/Oc///nS9a5evZr999+fiRMnMnbsWG677bY4RSzSSVSX1T3dun5FAgMRERGRzqTDT3LREaSmpvLwww/zk5/8hN69e8etXnfH3YlEvnyee/bZZ3P//fez7777Ultby4cffggECVbPnj35yle+8qXqHTBgAK+//jqpqamUlpYybtw4jj/+eAYOHPilYxXpTKL1EqzSjSuBwxIWi4iIiHQeasFqhaSkJM4//3xuvPHGndbl5+dz0kknMXnyZCZPnsxrr70GwOzZs7nhhhvqyo0bN45Vq1axatUqRo0axVlnncW4ceNYu3YtV1xxBePGjWP8+PHMnTsXCBKkww47jJNPPpl99tmH008/HXffaf+bNm1iwIABAESjUcaMGcOqVau47bbbuPHGG5k4cSKvvvpqs3GeeeaZHHTQQYwYMYK//OUvAKSkpJCamgpAZWUlsSbGoNx0002MGTOGCRMmcOqppwKwZcsWTjjhBCZMmMDUqVNZsmRJ3b7OPvtspk+fztChQ3n44Ye58sorGT9+PDNmzKC6uhqAX/7yl0yePJlx48Zx/vnn73TcsViMYcOGUVhYWLdsxIgRbNy4sbnLKLJLUmLb2GK9AKgq+jzB0YiIiEhn0eYWLDMbAvwD6Ac4cLu7/8HMcoG5wDBgFXCKu29ty75+8fj7LPusuG0BNzBmYBbXHje2xXLf//73mTBhAldeeeUOyy+++GIuvfRSpk2bxpo1azjqqKNYvnx5s3V9/PHH3HXXXUydOpWHHnqIxYsX8+6777J582YmT57MIYccAsA777zD+++/z8CBAzn44IN57bXXmDZt2g51XXrppYwaNYrDDjuMGTNmcPbZZzNs2DAuuOACevbsyeWXXw7At7/97SbjXLJkCQsWLKCsrIz99tuPY445hoEDB7J27VqOOeYYVqxYwW9+85tGW69+/etf8+mnn5KamlqX8Fx77bXst99+PPLII7z44oucddZZLF68GIBPPvmEl156iWXLlnHQQQfx0EMPcf3113PiiSfy5JNPcsIJJ3DRRRdxzTXXAHDmmWfyxBNPcNxxx9XtMxKJMHPmTP71r39x7rnn8sYbbzB06FD69evX4nUUaa2UWDlbkvuRVVlErHRTosMRERGRTiIeLVg1wGXuPgaYCnzfzMYAVwEvuPsI4IXwdaeVlZXFWWedxU033bTD8ueff56LLrqIiRMncvzxx1NcXExpaWmzdQ0dOpSpU6cCMH/+fE477TSi0Sj9+vXj0EMP5a233gJgypQpDB48mEgkwsSJE1m1atVOdV1zzTUsXLiQI488kn/+85/MmDGj0X02F+fMmTPp0aMHvXv35vDDD+fNN98EYMiQISxZsoQVK1Zw1113NdpCNGHCBE4//XTuuecekpKS6o7pzDPPBOCII46goKCA4uIgMT766KNJTk5m/Pjx1NbW1sU7fvz4uuN76aWXOPDAAxk/fjwvvvgi77///k77nTVrVl1r33333cesWbOaPeciuyo1Vk5VNINCyyJapgRLREREWqfNLVjuvgHYED4vMbPlwCBgJl8MWrgLmAf8uC37ak1LU3u65JJL2H///Tn33HPrlsViMRYsWEBaWtoOZZOSknboVlf/fkwZGRmt2t/2LnoQdP+rqalptNxee+3FhRdeyHe/+1369OlDQUHBTmWaihN2ns684euBAwcybtw4Xn31VU4++eQd1j355JO88sorPP7441x33XW89957rTqmSCRCcnJy3b4ikQg1NTVUVFTwve99j4ULFzJkyBBmz57d6L2sDjroIFasWEF+fj6PPPIIP/vZz5rdr8iuSouVUxLtS1GkFykVO7+nRERERBoT1zFYZjYM2A94A+gXJl8AnxN0IWxsm/PNbKGZLczPz49nOHGXm5vLKaecwh133FG37Mgjj+Tmm2+ue729K9ywYcN4++3gRqVvv/02n376aaN1Tp8+nblz51JbW0t+fj6vvPIKU6ZMaXVMTz75ZN0YpY8//phoNEpOTg6ZmZmUlJS0GCfAo48+SkVFBQUFBcybN4/Jkyezbt06ysvLAdi6dSvz589n1KhRO+w7Fouxdu1aDj/8cP7v//6PoqIiSktLmT59Ovfeey8QjCXr3bs3WVlZrTqe7clU7969KS0t5cEHH2y0nJlx4okn8qMf/YjRo0eTl5fXqvpFWivNK6hJSqcsJZce1VsSHY6IiIh0EnFLsMysJ/AQcIn7/2/vzsPsqsp8j3/fM9U8pIbMI5KEDFWVQGWQgCQRCLZgxAChFSSkBbVRWh7tFgcQ8Po0wr12XxuEi42iiEDEFmKLDDIotARISMxAEgiQuZJUUvN4pnX/OCdFpVKpDOdUnTpVv8/z5Kmz11577TfZtSv7rbX2Wu6IF6VcLAM4eoaG2L4HnHOVzrnK0tLSZIXTa77+9a9z8ODBju0f//jHrF69mvLycqZOndoxnfmSJUuoqalh2rRp3HPPPUyaNKnb9i699FLKy8upqKhg4cKF3HXXXQwfPvyE43n44YeZPHkyM2bM4Oqrr+aRRx7B6/VyySWX8Lvf/a5jkotjxQmxYX4LFixg7ty53HLLLYwcOZLNmzczZ84cKioqOO+88/jGN75BWVkZAF/4whdYvXo1kUiEq666irKyMmbOnMmNN95IYWEht912G2vWrKG8vJybb76ZX/ziFyf89yksLOS6665j+vTpLFq0iFmzZnXsu//++4+Ie+nSpfzqV7/S8EDpFVm0Evbl0J5RQn4koddHRUREZBCx7mamO+lGzPzAfwPPOud+FC/bCsx3zlWZ2QjgZefc5J7aqaysdKtXrz6ibPPmzUyZMiXhGKV7t9122xGTYQw0+v6RU9X+vRLWjFiK4TizagWB7x3AElhSQURERAYWM1vjnKvsWp7w04LFXqJ5ENh8OLmKWwlcE/98DfBUoucSEekTkTAZFiLqy4LcoWRYiKYG9WKJiIjI8SVjoeF5wNXABjNbFy/7NnAnsMLM/gHYAVyRhHNJkt12222pDkGk34kEW/ACzpeFLy/2+mhd9R7yCvWun4iIiPQsGbMIvgrYMXZ/PNH2RUT6WrC9jSzA/BlkFMbeiWyq2QuUpzQuERER6f/0QoGISBfB9thslubNILc4tsB2a01VT4eIiIiIAEqwRESOEgzGlijw+DPILx0FQLh+XypDEhERkTShBEtEpItwvAfL48+gsGgYEWdEmw6kOCoRERFJB0qwTtCTTz6JmbFly5Zj1tm+fTvTp09P2jm3bt3K/PnzmTFjBlOmTOH6668HYosEP/3006fcbltbG7Nnz6aiooJp06bxve99L1khiwwIoWA8wfJl4PP7qbUCPC39eyF0ERER6R+UYJ2gRx99lHPOOYdHH3202/3hcDjhc0QikSO2b7zxRm666SbWrVvH5s2b+epXvwoknmBlZGTw4osv8re//Y1169bxzDPPsGrVqoRiFxlIQod7sAKZADR4Cgm0HUplSCIiIpImlGCdgKamJl599VUefPBBHnvssY7yl19+mXPPPZdPfepTTJ06FYglWp/73OeYMmUKl112GS0tLQC88MILzJw5k7KyMpYvX057ezsA48eP55vf/CZnnnkmv/nNb444b1VVFaNHj+7YLisrIxgMcuutt/L4448zY8YMHn/8cZqbm1m+fDmzZ89m5syZPPVUbMmxhx56iMWLFzN//nwmTpzI7bffDoCZkZubC0AoFCIUChFbzuxIv/nNb5g+fToVFRV87GMfA2K9X9deey1lZWXMnDmTl156qeNcn/70p7ngggsYP34899xzDz/60Y+YOXMmc+fOpaamBoCf/vSnzJo1i4qKCpYsWdLx79PZ3Llz2bRpU8f2/Pnz6boAtUhvCodiCZbPnwFAs38IWaGaVIYkIiIiaSIZ62D1nT/eDPs2JLfN4WXwiTt7rPLUU09x0UUXMWnSJIqLi1mzZg1nnXUWAG+99RYbN25kwoQJbN++na1bt/Lggw8yb948li9fzk9+8hO+8pWvsGzZMl544QUmTZrE5z//ee677z6+9rWvAVBcXMxbb7111HlvuukmFi5cyNlnn82FF17ItddeS2FhIXfccQerV6/mnnvuAeDb3/42Cxcu5Gc/+xl1dXXMnj2b888/H4A33niDjRs3kp2dzaxZs/jkJz9JZWUlkUiEs846i23btnHDDTcwZ86co85/xx138OyzzzJq1Cjq6uoAuPfeezEzNmzYwJYtW7jwwgt55513ANi4cSNr166lra2N008/nR/+8IesXbuWm266iV/+8pd87Wtf4zOf+QzXXXcdAN/97nd58MEHO3rmDlu6dCkrVqzg9ttvp6qqiqqqKiorj1okW6TXROJDBL3xBKstUExRU5J/9oiIiMiApB6sE/Doo49y5ZVXAnDllVceMUxw9uzZTJgwoWN7zJgxzJs3D4CrrrqKV199la1btzJhwgQmTZoEwDXXXMNf/vKXjmOWLl3a7XmvvfZaNm/ezOWXX87LL7/M3LlzO3q+Onvuuee48847mTFjBvPnz6etrY2dO3cCcMEFF1BcXExWVhaf+cxnePXVVwHwer2sW7eO3bt3dyRhXc2bN49ly5bx05/+tGP44quvvspVV10FwBlnnMG4ceM6EqwFCxaQl5dHaWkpBQUFXHLJJUCs52379u1ALAk799xzKSsr45FHHjmip+qwK664gieeeAKAFStWcNlll3X77yPSW8KHE6z4EMFIVglDonUpjEhERETSRXr1YB2np6k31NTU8OKLL7JhwwbMjEgkgplx9913A5CTk3NE/a5D7bobetdV1zY6GzlyJMuXL2f58uVMnz6920TIOcdvf/tbJk+efET566+/ftx4CgsLWbBgAc8888xRE3Tcf//9vP766/zhD3/grLPOYs2aNT3+PTIyMjo+ezyejm2Px9PxjtqyZct48sknqaio4KGHHuLll18+qp1Ro0ZRXFzM+vXrefzxx7n//vt7PK9IskXDQQD88QTL5ZaSfaCd1qYGsnLzUxmaiIiI9HPqwTqOJ554gquvvpodO3awfft2du3axYQJE3jllVe6rb9z505ee+01AH79619zzjnnMHnyZLZv3862bdsAePjhhznvvPOOe+5nnnmGUCgEwL59+zh06BCjRo0iLy+PxsbGjnqLFi3iP/7jP3DOAbB27dqOfc8//zw1NTW0trby5JNPMm/ePKqrqzuG/LW2tvL8889zxhlnHHX+9957jzlz5nDHHXdQWlrKrl27OPfcc3nkkUcAeOedd9i5c+dRiV1PGhsbGTFiBKFQqKOd7ixdupS77rqL+vp6ysvLT7h9kWSIHH4HK55gefOGAlBbvTdlMYmIiEh6UIJ1HI8++iiXXnrpEWVLliw55myCkydP5t5772XKlCnU1tby5S9/mczMTH7+859z+eWXU1ZWhsfj4Utf+tJxz/3cc891TDKxaNEi7r77boYPH86CBQt4++23Oya5uOWWWwiFQpSXlzNt2jRuueWWjjZmz57NkiVLKC8vZ8mSJVRWVlJVVcWCBQsoLy9n1qxZXHDBBVx88cUA3HrrraxcuRKAf/7nf6asrIzp06dz9tlnU1FRwT/+4z8SjUYpKytj6dKlPPTQQ0f0XB3P97//febMmcO8efOOSOpWrlzJrbfe2rF92WWX8dhjj3HFFVeccNsiyRINxYbi+gNZAGQUDAOg8dCelMUkIiIi6cEO93r0B5WVla7rbHGbN29mypQpKYoovT300ENHTIYxGOn7R07F67/5P8zZdAfV162jdNQE3l37FyY+dQnr5t3HjAs+m+rwREREpB8wszXOuaNmYuv1Hiwzu8jMtprZNjO7ubfPJyKSKBc+3IMVGyKYVzISgGD9vpTFJCIiIumhVye5MDMvcC9wAbAbeNPMVjrn3u7N80rMsmXLWLZsWarDEEk7hxOsQGYswRpSOgKASOOBlMUkIiIi6aG3e7BmA9ucc+8754LAY8Dik22kPw1jlPSh7xs5VR0JVrwHKyMzhway8bRUpzIsERERSQO9nWCNAnZ12t4dL+tgZteb2WozW11dffTDS2ZmJocOHdLDspwU5xyHDh0iM94DIXJS4gnW4VkEAeqtEF/rwVRFJCIiImki5etgOeceAB6A2CQXXfePHj2a3bt3013yJdKTzMxMRo8eneowJA25SIig8xHotG5ck28ImcGaFEYlIiIi6aC3E6w9wJhO26PjZSfM7/czYcKEpAYlItITi7QTND+BTmVtgSKKWj9IWUwiIiKSHnp7iOCbwEQzm2BmAeBKYGUvn1NEJCEWCRLCf0RZMLOE/Gh9iiISERGRdNGrCZZzLgx8BXgW2AyscM5t6s1ziogkyiJBQnZkguWySxhCI6Fge4qiEhERkXTQ6+9gOeeeBp7u7fOIiCSLJxok3KUHy5M3FIDa6iqGjhqfgqhEREQkHfT6QsMiIunGE2kn5AkcUeYvGA5Aw6G9qQhJRERE0oQSLBGRLrzRIGE7MsHKGjIMgOaaqlSEJCIiImlCCZaISBe+6NE9WHnFIwFor9uXipBEREQkTSjBEhHpwhdtJ2IZR5QVlsbWVIs07k9FSCIiIpImlGCJiHThd+2EvUcmWDn5Q2h2mXga1YMlIiIix6YES0SkC58LEvFkHFV+yFNEoPVACiISERGRdKEES0Ski4ALEvEenWDV+0rIbq9OQUQiIiKSLpRgiYh0EXBBXDcJVktGKfkhJVgiIiJybEqwRES6CBAi6s08qjycPZQiVwPOpSAqERERSQdKsEREushwQZzv6B4slzeCDEK0NhxKQVQiIiKSDpRgiYh04qJRMiyE66YHy18QWwvr0L4dfR2WiIiIpAklWCIinYTaW2Mf/EcnWNklsbWwGqt39WVIIiIikkYSSrDM7G4z22Jm683sd2ZW2Gnft8xsm5ltNbNFCUcqItIHgocTLN/RCVZefLHh1kO7+zIkERERSSOJ9mA9D0x3zpUD7wDfAjCzqcCVwDTgIuAnZuZN8FwiIr2uvbUZAPNnHbWvePhYAMJ1e/s0JhEREUkfCSVYzrnnnHPh+OYqYHT882LgMedcu3PuA2AbMDuRc4mI9IW21hYAvIGjE6y8vALqXQ407evrsERERCRNJPMdrOXAH+OfRwGdX1LYHS8TEenX2tuaAPBlZHe7v9ZbRKDlQF+GJCIiImnEd7wKZvYnYHg3u77jnHsqXuc7QBh45GQDMLPrgesBxo4de7KHi4gkVXtb7B0sX8bR72ABNPpKyA4qwRIREZHuHTfBcs6d39N+M1sGXAx83LmO1Tf3AGM6VRsdL+uu/QeABwAqKyu1eqeIpFSoLTZE0B/ovgerNWsYpfWr+zIkERERSSOJziJ4EfAvwKeccy2ddq0ErjSzDDObAEwE3kjkXCIifeFwghXIzOl2fzhnGMWulmgk0pdhiYiISJpI9B2se4A84HkzW2dm9wM45zYBK4C3gWeAG5xzehoRkX4v0loPgD+noNv9nrwR+C1C3cGqvgxLRERE0sRxhwj2xDl3eg/7fgD8IJH2RUT6WrStAYDM3O4TrMCQkQDU7t9J0bDR3dYRERGRwSuZswiKiKS/9kYAMnKGdLs7uySWVDUd3NlnIYmIiEj6UIIlItJZPMHKOkYPVuGwcQC0Hep23h4REREZ5JRgiYh04gk20uoCBAKBbvcXDxtDxBmuYW8fRyYiIiLpQAmWiEgnnmATzZZ1zP3+QAY1Voi3SZNciIiIyNGUYImIdOIJNtJq3U/Rflitt4TM1v19FJGIiIikEyVYIiKdeMNNtHm6X2T4sKaMoeQFD/RRRCIiIpJOlGCJiHTiDzcT9PXcg9WeNZyi6KE+ikhERETSiRIsEZFOMiLNhHy5PdaJ5o0gn2baWxr6KCoRERFJF0qwREQ6yYq2EPX3nGB5C0YBUFO1oy9CEhERkTSiBEtEpJMCV08oo/tFhg/Lii823HBACZaIiIgcSQmWiEhcW3MDOdZOJLu0x3q5pbHFhlsO7eqLsERERCSNKMESEYmrrd4DgC9vWI/1ikfEEqxw7e5ej0lERETSS9ISLDP7upk5MyuJb5uZ/djMtpnZejM7M1nnEhHpDQ0HYwlWRuHwHusV5BdQ53Kwxn19EZaIiIikkaQkWGY2BrgQ2Nmp+BPAxPif64H7knEuEZHe0lITS5hyikf0WM/MqPEUE2ip6ouwREREJI0kqwfr34B/AVynssXAL13MKqDQzHp+ahERSaFg/X4ACkpGHrduvX8o2e1abFhERESOlHCCZWaLgT3Oub912TUK6PwG+O54mYhIvxRpiPVgFZYeP8FqzRrKkPDB3g5JRERE0ozvRCqZ2Z+A7l5K+A7wbWLDA0+JmV1PbAghY8eOPdVmREQS5m3cRTVFlAYyj1s3nDOCIXV1uHAQ8wX6IDoRERFJByeUYDnnzu+u3MzKgAnA38wMYDTwlpnNBvYAYzpVHx0v69r2A8ADAJWVla7rfhGRvpLbvJuD/hH0PEl7jOWPxLPX0XBwD/nDJ/R6bCIiIpIeEhoi6Jzb4Jwb6pwb75wbT2wY4JnOuX3ASuDz8dkE5wL1zjm9ES4i/VZJaC9NOWOOX5EPZxqsPaCp2kVERORDJ9SDdYqeBv4O2Aa0ANf24rlERBLS1tpMqavhg/xxJ1Q/tzj2nlbjob29GZaIiIikmaQmWPFerMOfHXBDMtsXEektu7ZtYqI5AkNPP6H6BSWxOXtaa9UxLyIiIh9K2kLDIiLp7ND7bwFQ8pETWxO9ePhoAMLxqd1FREREQAmWiAgAkb0bCTovo04vP6H6mVk5NJIFLdW9HJmIiIikEyVYIiJATt1mdvvG4vWf+JTrdZ4i/K1KsERERORDSrBEZNCLRCJMaN/MwYLpJ3Vck28IWe2HeikqERERSUdKsERk0Ht/6zoKaMY3dvZJHdcWKCY3XNtLUYmIiEg6UoIlIoPe/g0vAzC6/LyTOi6UVUJhVAmWiIiIfEgJlogMev5d/8MhChk64cQmuDjM5ZRSYM20trT0UmQiIiKSbpRgicigFo1EOa3pLXbmnwVmJ3WsN284ALXVe3ojNBEREUlDSrBEZFDb/u56SqklMu6ckz42UBhLsBoO7U12WCIiIpKmlGCJyKB2YP1zAIycseikj80pGgFAc01VUmMSERGR9KUES0QGNd/Ov3KAIkZMmHLSx+YXjwQgWLcv2WGJiIhImlKCJSKDlotGGd+0lp35Z2Kek/9xWDh0FADRxv3JDk1ERETSVMIJlpl91cy2mNkmM7urU/m3zGybmW01s5MfeyMi0st2bttACXW4sWef0vH+zByayMKaq5McmYiIiKQrXyIHm9kCYDFQ4ZxrN7Oh8fKpwJXANGAk8Cczm+SciyQasIhIslSt/xPjgBEV559yG/VWgK/tYPKCEhERkbSWUIIFfBm40znXDuCcOxAvXww8Fi//wMy2AbOB1xI8n4hI0nh3/JVDFDLqI2Wn3EaTv4jMYE0So+p77cF29u/6gOYD7xM8tJNg00GizbXQWoMvWI8n0oYnEsQbDeF1Qbwu3HGsw0PUDDCiGIYRNQ/gwZnhzIPDA2Y4vLEyPGDxMot9dvH6dkT9HqbN73FG/WPvPLmJ+JN07HEOPJF2E4n7ZJ3kagVHHnvKO5N4nt477Ym3earfuqcYrfNn8ZGld5KdX3RKx4tIciWaYE0CzjWzHwBtwDecc28Co4BVnertjpeJiPQLLhplbONaduTNpPgU3r86rC1QTF7zjiRG1nsikQi7313HgXfXENyznry6zZS072Ro9CBjLXpE3agzGi2bRssjaJlEPH4i5ifiCRC0HAAMBzg8LtrxGefwEgUXwZzDXDSeekVj20TxxL8ah/d/uO1xUTzE/vSYYKUNl8SWkvTv0UNIyYu29/XHWFMRkwfHcKvlzRfLmPXpr6YgAhHp6rgJlpn9CRjeza7vxI8vAuYCs4AVZnbayQRgZtcD1wOMHTv2ZA4VETlluz/YwhgOsWPMRxNqJ5RZQmHjuuQElWThUIhtf3uFmrdfInvv60xo3cg4a2YcEHRedvvGsje3jF0FY/EXj8NffBrZpWPJLx5O4ZASCvx+ClL9lxCRHkUiEWrvGIft+CugBEukPzhuguWcO+bLCWb2ZeC/nHMOeMPMokAJsAcY06nq6HhZd+0/ADwAUFlZ2R9/ISUiA1DV+hcYAwwvW5hQOy6nlMLqJppb28jJykxOcAmor61h61+fxG19hokNr3EGDQDs9Izi3eKFuLFzKJk4mzETKzgtkMlJ/UZMRPodr9fLe9lljKhfm+pQRCQu0SGCTwILgJfMbBIQAA4CK4Ffm9mPiE1yMRF4I8FziYgkjdu9mgayGT3pzITa8eYNxWOO2uq95IxNTbrS3NTA2y+vwLfpCaa1vMFsi1BPLtsKPsr2SYsYV3kRY4eNQWMERAam5uGzGfXBX2nYv5P8YbrTRVIt0QTrZ8DPzGwjEASuifdmbTKzFcDbQBi4IV1nEGxvayEjMzvVYYhIkhXXbWBHxmTKvN6E2gkUDgOg4eBe6MMEy0UjbF31NA2rHmZa/Z+ZZW0coIi1I66g8MxLmXjmQs7y+fssHhFJnaHTF8IH/847q5+j8pNfSHU4IoNeQgmWcy4IXHWMfT8AfpBI+6n21rMPM3TV/yJyxSOMm1KZ6nBEJEnaWpsZF97O6mHd/vg6KdlDRgDQXFOVcFsnorF2P1ufuZ/h7z7GGdG9NJDN5uLzyZ31WSbNWsRQX6K/NxORdDOp4mwafp8DW/8ISrBEUk7/E/cgt2Q0ma6NzMcu5s2Z36HyUzdgCcw2JiL9w/ZNqzjDImSOn51wWwUlsQlS2+v3J9zWMTnH+2+9QN0r/49ptS9RaSHe9k1lVdlXKV/0eSqzc3vv3CLS73l9fjYVLmRG3XMEWxoIZOenOiSRQU0JVg8mnbWAfUNfZNcvr2bWuu+ycfNv8V94G5PPmp/q0PqMc45IJIKLRsBFcNHYVMwuPhltbJtYmQNcbJ9z8bLYF2IjR2PbrqMQzH3YVn9iXaZDdoksDJNYIMmqlJBT/+snN7ZktVa3+c8AjJ5+TsJtFZTEerCijclPsFoba3n7mf+keMuvOC2ynSaXxZriSyiZ/0Wmls9N+vlEJH1lVn6WrD/9nrUvPMLMS76c6nDSQuwZJ0o4EgEXW16CaAQXjXY8z8Tqxet3OZZOTzDuw8ehLh+S9YyT4P+Alngbx38W6I1V3uI8XjJz8vF706OjQwnWcQwf8xFKb36Fv664m+lbf0z+7xez6dlymiZdyunnXk7xsDHHbyQBzjna29toqq+ltbmetsY62lrqCTXXE2ptINragIWa8LQ3QrgVwkEs0o6F27BoEE+kHW80iDfajjcawueCBFwQnwtjRPC4KF4iHevOeF3ss+/wNlF81v8SIJFEzAUOUMTQkeMTbsuXXUg7fmiuTritw3Zsep3ql37C1IN/5CzaecfzEf5nyq1Mv2g5ZxcMSdp5RGTgqPjoRex9YRgZ638FaZpgRdpbaKo7QHNdNS2NdbQ31dPe0kCwpYFoWz20N+EJN+MLNeMJt2KRIBYN4o2044l+uBi63wXxuRB+F8JHOP6c8+E6e9742nyHn3H0MNz/vRypoOnyx7i4fGSqQzkh+p46AV6vl7P//maaG67ntSf/nbEfPM60jbfDxtupsqFU5UwhmD8Olz8KT24pgaxcApm5OK8PomGIhHGRMOFQO+G2RiJtTUTbGqG9EQs24w014gk34w834w+3kBFpJtO1kOVayHWtZFqYE5n8uc35aSdAyPyE8BOyACELEPH4CXsyCPlyaPMUEfH4iZofPF6i5gXzgif21Xm84PGBeTFPfNu8OPOCeeI9OYf/xFmsv8dhmMW/QsdvS7ruix/SqQ3ri06YE9dtPtmfk8zejc0l0Lz143+3/I/MYWgyGjLjgGcouc27E2qmrbWFjc//ktwNv+CM0NsMc37WFZxP3rlfZGrlfCalqhdVRNKCx+th58RrmPvOXWz4828pO29JqkMiGolSW1tN/f4dNB3cTXvtHqL1e7GmA3jaashoryUr0kBupJ5810i2tVMAPa6/1+b8tFgWbWQQsgBh8xP2BIhYgLA3k3ZPPlFvBlFPgIgngPP4Y88wnthzzOHnHTxezDyxZx3zxJ9xPLjDzzxdnk2su0+dnmsOb3dmx9pxkhL5f7hTK70aQ2//fx/OHMGUEekz9NVccq5aUlRWVrrVq1enOozjctEo7214jer1z+Hft5YRLVsYGj2I305+osQWl0GzZdNmWbR5sgl6cwj5cgj7c4j6c3GBPMjIxTLz8WXm4c3KJ5CdTyCnkKzcAjJyCglk55OZk4/P58P0ECbS59bcuYiSUBXjbll/0sdu27SafX9+kKkHfk8Rjey2Eew47e8546IvUlza3RrvIiLda29rZt8PZ5NFK1k3riJvSFJ+jXRMwWCQA3vep27PO7QeeJ9ozXb8jbvIat1HXuggxdEasix41HH1LocGTwEtvgLafAW0BwoJZwwhmlUE2UV4s4sI5BSSmZNPVl4BOXmF5OYNISu3AI9mR5V+xMzWOOeOmglPPVinwDweTq+Yx+kV8zrKQuEwNQf30lpfTWtzE22tjVgkhPn84PFhHh+BQICMnHwyswvIyisgK6eAbK8XTQIvkt6a806jrHo1LhLGvMf/sVpzYC/bXvoFQ959gonhbYx3HjblnU3VnOuYcvYljE5w6ngRGZwyMnNo/OR9jPz9p3nvJ4sZ9sXfMaTk1H9R46JRag8d4MCurTRWvUuw+gM8dTvIadnNkGAVw101oy3C6Hj9sPOw30qo8w9lf+5U9uQMx5M/Al/hKLKKR5NXOoYhw8dSkJ3bYy+VSLpTgpUkfp+PouFjYbgW+BMZbPzDJhOoDlO1YwsjTpvebZ2Gg/vY8soKfFv/wPTWN5ltEbZ5TuP1Sd9g8vnLqRg6qo+jFpGBaHrlx3hz/92Uv/FN6u/5KKvO+CKnz/8sJd08n7holKaGWmr276Jh33u07n+PaM12Ao07KWjbQ2l4H0XWQlGnY2rJ56B/BAfzp1KVPxZP0Xiyhp5G4cjJlI4+jVGBAPppJoOdEiwRkQQVTzkPNsL+1Ss7EiwXjbJj61vsWfM0hTuf44z2jcw2xz4rZd3IpRSfvYyPTJ/N6RrWKyJJNuuT/8B7I08n9IdvMnfLv8KWf6WOPGo8xfEXhxzZrpkh0TryLERep2PbnZ993mHUZYzkYNGZUDiOzKGnUThqIsPGTmZIbiGaakekZ3oHS0QkQc45tn7/LIpcHe+NWYK/Zhvjm96ihDoAtnvGsnfExymuXMKkinlaT09E+oZzbNvwGgfXPws1H5DZVk3UOTzmIejLJZxVgievFH/+cDJKxlM8djJDR4zDq2HKIifkWO9gKcESEUmC9a+/yIg/LqeUWvZTzO78GYTHfYzxlZ9g2LjJqQ5PREREkkyTXIiI9KLyOQuJVr5Pe7CFYVm5DEt1QCIiIpISGqciIpIkHq+HjKzcVIchIiIiKaQES0REREREJEmUYImIiIiIiCSJEiwREREREZEk6VezCJpZNbAj1XF0UQIcTHUQ0md0vQcPXevBQ9d6cNH1Hjx0rQeX/ni9xznnSrsW9qsEqz8ys9XdTb8oA5Ou9+Chaz146FoPLrreg4eu9eCSTtdbQwRFRERERESSRAmWiIiIiIhIkijBOr4HUh2A9Cld78FD13rw0LUeXHS9Bw9d68Elba633sESERERERFJEvVgiYiIiIiIJIkSLBERERERkSRRgtUDM7vIzLaa2TYzuznV8UjymNkYM3vJzN42s01m9k/x8iIze97M3o1/HZLqWCU5zMxrZmvN7L/j2xPM7PX4/f24mQVSHaMkh5kVmtkTZrbFzDab2Ud1bw9MZnZT/Gf4RjN71MwydW8PHGb2MzM7YGYbO5V1ey9bzI/j1329mZ2ZusjlZB3jWt8d/zm+3sx+Z2aFnfZ9K36tt5rZopQE3QMlWMdgZl7gXuATwFTg781samqjkiQKA193zk0F5gI3xK/vzcALzrmJwAvxbRkY/gnY3Gn7h8C/OedOB2qBf0hJVNIb/i/wjHPuDKCC2HXXvT3AmNko4Eag0jk3HfACV6J7eyB5CLioS9mx7uVPABPjf64H7uujGCU5HuLoa/08MN05Vw68A3wLIP68diUwLX7MT+LP7f2GEqxjmw1sc86975wLAo8Bi1MckySJc67KOfdW/HMjsQewUcSu8S/i1X4BfDolAUpSmdlo4JPAf8a3DVgIPBGvoms9QJhZAfAx4EEA51zQOVeH7u2BygdkmZkPyAaq0L09YDjn/gLUdCk+1r28GPili1kFFJrZiD4JVBLW3bV2zj3nnAvHN1cBo+OfFwOPOefanXMfANuIPbf3G0qwjm0UsKvT9u54mQwwZjYemAm8DgxzzlXFd+0DhqUqLkmqfwf+BYjGt4uBuk4/uHV/DxwTgGrg5/Ehof9pZjno3h5wnHN7gP8N7CSWWNUDa9C9PdAd617Wc9vAthz4Y/xzv7/WSrBkUDOzXOC3wNeccw2d97nYGgZaxyDNmdnFwAHn3JpUxyJ9wgecCdznnJsJNNNlOKDu7YEh/u7NYmJJ9Uggh6OHGMkApnt5cDCz7xB7teORVMdyopRgHdseYEyn7dHxMhkgzMxPLLl6xDn3X/Hi/YeHFMS/HkhVfJI084BPmdl2YkN9FxJ7R6cwPqwIdH8PJLuB3c651+PbTxBLuHRvDzznAx8456qdcyHgv4jd77q3B7Zj3ct6bhuAzGwZcDHwOffh4r39/lorwTq2N4GJ8dmIAsRepluZ4pgkSeLv4DwIbHbO/ajTrpXANfHP1wBP9XVsklzOuW8550Y758YTu49fdM59DngJuCxeTdd6gHDO7QN2mdnkeNHHgbfRvT0Q7QTmmll2/Gf64Wute3tgO9a9vBL4fHw2wblAfaehhJKGzOwiYsP7P+Wca+m0ayVwpZllmNkEYhObvJGKGI/FPkwGpSsz+zti7254gZ85536Q2ogkWczsHOAVYAMfvpfzbWLvYa0AxgI7gCucc11fsJU0ZWbzgW845y42s9OI9WgVAWuBq5xz7SkMT5LEzGYQm9AkALwPXEvsF4q6twcYM7sdWEps+NBa4AvE3sXQvT0AmNmjwHygBNgPfA94km7u5XiSfQ+xYaItwLXOudUpCFtOwTGu9beADOBQvNoq59yX4vW/Q+y9rDCx1zz+2LXNVFKCJSIiIiIikiQaIigiIiIiIpIkSrBERERERESSRAmWiIiIiIhIkijBEhERERERSRIlWCIiIiIiIkmiBEtERERERCRJlGCJiIiIiIgkyf8HH0cElPlIfZkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -5179,31 +5179,31 @@ " 27\n", " False\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " bAP.soma.v\n", - " 0.000747\n", - " 8.27e-05\n", + " 0.000788\n", + " 5.35e-05\n", " \n", " \n", " 28\n", " False\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step1.soma.v\n", - " 0.00105\n", - " 0.000133\n", + " 0.000962\n", + " 0.000178\n", " \n", " \n", " 29\n", " False\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step3.soma.v\n", - " 0.00909\n", - " 5.62e-06\n", + " 0.000688\n", + " 1.73e-05\n", " \n", " \n", "\n", @@ -5211,14 +5211,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "27 False 9 0.125 0.0545 bAP.soma.v \n", - "28 False 9 0.125 0.0545 Step1.soma.v \n", - "29 False 9 0.125 0.0545 Step3.soma.v \n", + "27 False 9 0.0731 0.0741 bAP.soma.v \n", + "28 False 9 0.0731 0.0741 Step1.soma.v \n", + "29 False 9 0.0731 0.0741 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "27 0.000747 8.27e-05 \n", - "28 0.00105 0.000133 \n", - "29 0.00909 5.62e-06 " + "27 0.000788 5.35e-05 \n", + "28 0.000962 0.000178 \n", + "29 0.000688 1.73e-05 " ] }, "metadata": {}, @@ -5226,7 +5226,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACw9UlEQVR4nOzdd3wc1b3//9dni4plyb03mWLjigEbTLBpyQUTeiAYQicJFxIS4FJuKnH4hXvzTbghAZIYEhIIEGNCT4AQmgETmm2MKaa4yL3Ili25qO3u5/fHjuSVrGa08krW+/l47EM7Z86c+cyMV96Pzpkz5u6IiIiIiIhI64UyHYCIiIiIiMi+QgmWiIiIiIhImijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNlGCJiIiIiIikiRIsEZF2xswKzczNLJLpWKRzMLMPzezYTMchIrIvUIIlIiIdnpnNNLPtwavKzKpTlp/NdHztnbuPcfc56WzTzAaZ2ZNmVmJmq83sinS2LyLSXpkeNCwikl5mFnH3WCu2LwSWA9HWtNNZmdkM4AB3v6CBda26NntTR4q1IWb2MvAecAMwGngZOMvdX85oYCIibUw9WCIiaWBmRWb232a2CNhhZhEzm2xm/zazrWb2XuoQLDObY2b/a2Zvm1lZ8Jf+no20famZLTazbWa2zMz+s976081sYdDOUjObFpR3M7N7zGydma0xs5+ZWbiZ49jfzF4ys81mtsnMHjSz7inrSszs0GB5oJkV1xyXmZ0WDDXbGhzfqHrn53ozW2RmpWY228xy9vxM77lGro2b2QEpde41s5+lLJ8SnNOtwTUc38J9HRv01vwgOH9FZnZ+yvqTzezd4FqtCpLBmnU1Q0O/bmYrgZeC8r+Z2frgvL1qZmPqxf07M3s26K173cz6m9mvzWyLmX1sZoe08Bx9qSXH2MLz0BU4FrjF3avd/T3gEeCydO1DRKS9UoIlIpI+5wEnA92BfsDTwM+AnsD1wKNm1iel/kUkv3AOAGLA7Y20uxE4BSgALgVuS0lyDgf+QrKXoDtwNFAUbHdv0O4BwCHACcA3mjkGA/4XGAiMAoYAMwDcfSnw38ADZtYF+DNwn7vPMbMRwCzgGqAP8AzwdzPLSmn7HGAaMBwYD1zSYABmU4LEprHXlGaOoSG116a5XqEgIfkT8J9AL+Au4Ckzy27hvvoDvYFBwMXA3WY2Mli3g+R17x7Ec6WZnVFv+2NInvsTg+VngQOBvsAC4MF69c8BfhTssxJ4I6jXm2RS86sWxt0gM/teU9ejsc3q/ax5P7Y1sYiIdARKsERE0ud2d1/l7uXABcAz7v6Muyfc/XlgHvDllPr3u/sH7r4D+DFwTkM9TO7+tLsv9aRXgH8BU4PVXwf+5O7PB/tZ4+4fm1m/YF/XuPsOd98I3Aac29QBuPuSoK1Kdy8m+eX8mJT1fwCWAG+RTAx/GKyaDjwdbFsN3ArkAl+od37WunsJ8HdgQiMxzHX37k285jZ1DI1IvTbNuRy4y93fcve4u99HMnGZvAf7+3FwDl8hmWifA+Duc9z9/eBaLSKZlB5Tb9sZwTUrD7b5k7tvc/dKksnuwWbWLaX+4+4+390rgMeBCnf/i7vHgdkkk+vPzd1/3tT1aGSbbcDrwI/NLCf4g8BZQJfWxCIi0hEowRIRSZ9VKe+HAV+t95f+KSSTkobqrwCiJHsd6jCzk8zszWB43laSiVNNvSHA0gZiGRa0ty5l/3eR7AVplJn1M7OHgiGFZcADDcT0B5I9EXcEX/oh2eO1oqaCuyeC4xuUst36lPc7ga5NxZJmq5qvUmsYcF29azeE5DG2xJYgaa6xomZbMzvCzF4OhlaWAlew+/mtjdXMwmb2c0sO/SxjV+9k6jYbUt6XN7C8N89zqvNJ9lauAn5P8t/S6gzFIiKy1yjBEhFJn9RZg1aR7KFK/Wt/nrv/PKXOkJT3Q4FqYFNqg8GwtEdJ9gj1C3oMnmHX0KtVwP4NxLKKZK9L75T9F7j7mAbqpvqf4DjGuXsByZ642mFewb01vwbuAWbYrvvG1pJMTGrqWXB8a5rZ327MbKrtmgGwodfU5lvZTf0ZnXZStzelf8r7VSTvHUq9dl3cfVYL99XDzPJSloeSPD8AfwWeAoa4ezdgJnWH0dWP9WvA6cCXgG5AYVBef5s2E9xP1uj1aGw7d1/h7qe4ex93P4JkUvj23opbRCRTlGCJiLSNB4BTzezEoBciJ5gAYXBKnQvMbHRwP9PNwCPBsK5UWUA2UAzEzOwkkvdS1bgHuNTMvmhmIUtOjX2Qu68jOZTw/8ysIFi3v5nVH45WXz6wHSg1s0Ek7+1K9Rtgnrt/g+TQt5lB+cPAyUEcUeA6kgnev5s7UfW5+2vu3rWJ12t72mYDFgJfC67NNOoO0/sDcEXQ22RmlmfJySnyoXZiiXubaf+nZpYVJIOnAH8LyvOBEnevCO6f+1oz7eSTPI+bSSaE/7MHx5gW7v4/TV2PxrYzs1Fmlh+chwtI/rtt1f1gIiIdgRIsEZE24O6rSPY8/IBkcrSKZLKS+nv3fpITUawHcoDvNtDOtqD8YWALyS/kT6Wsf5tg4gugFHiFXT1JF5FM0D4Ktn2EukMUG/JT4NCgraeBx2pWmNnpJCepuDIo+i/gUDM7390/IdnbdQfJXrhTgVPdvaqZ/WXK1SRj3EpyKNsTNSvcfR7wTeBOkudtCXUn5BhC8v6ixqwPtltLckKKK9z942Ddt4CbzWwbcBPJ69qUv5AcYriG5HV8s7kDa0dOBJaRPBdXANOC+/pERPZpeg6WiEgGmNkc4AF3/2OmY5GWC2ZFfA8YH0zmUX/9sSSv6+D660REpHOIZDoAERGRjiLokRvVbEUREem0NERQRKSTMbOZjUxYMLP5raUjMrOhTUxUMTTT8YmI7Es0RFBERERERCRN1IMlIiIiIiKSJu3qHqzevXt7YWFhpsMQERERERFp0vz58ze5e5/65e0qwSosLGTevHmZDkNERERERKRJZraioXINERQREREREUkTJVgiIiIiIiJpogRLREREREQkTdrVPVgNqa6uZvXq1VRUVGQ6FGkHcnJyGDx4MNFoNNOhyD5q9fqNzPvL9xl82o+YeNDwTIcjIiIiHUy7T7BWr15Nfn4+hYWFmFmmw5EMcnc2b97M6tWrGT5cX3ylbSx75UHO2PkIc54shYMeyXQ4IiIi0sG0+yGCFRUV9OrVS8mVYGb06tVLvZnSpio2rwRgTPk7xBN6ELuIiIjsmXafYAFKrqSW/i1IW+u2YzkAfdjKmnXrMhyNiIiIdDQdIsESEdlb+lSuIO7JRH79Z3oun4iIiOwZJVgtYGZcd911tcu33norM2bMyFxAKY499tgmH858xhlnMHny5DplM2bMYNCgQUyYMIGxY8fy1FNPtXWYIh1GQXwri7ocAUDFqoWZDUZEREQ6HCVYLZCdnc1jjz3Gpk2b0tquu5NIJNLaZqqtW7cyf/58SktLWbZsWZ111157LQsXLuRvf/sbl112WZvGIdKRRL2K8i4D2UYX2Lw00+GIiIhIB6MEqwUikQiXX345t912227riouLOeuss5g0aRKTJk3i9ddfB5K9RLfeemttvbFjx1JUVERRUREjR47koosuYuzYsaxatYobbriBsWPHMm7cOGbPng3AnDlzOPbYYzn77LM56KCDOP/883Fv+Ib7+++/v7Y36u23364tf+yxxzj11FM599xzeeihhxrcdtSoUUQikTrJ4/e+9z1Gjx7N+PHjuf766wEoKiri+OOPZ/z48Xzxi19k5crkRACXXHIJV155JZMnT2a//fZjzpw5XHbZZYwaNYpLLrmkts0rr7ySiRMnMmbMGH7yk5/sFkdpaSnDhg2rTfR27NjBkCFDqK6ubjBukbaS7ZVYNJdN0YHk7Vyd6XBERESkg2n307Sn+unfP+SjtWVpbXP0wAJ+cuqYZut9+9vfZvz48dx44411yq+++mquvfZapkyZwsqVKznxxBNZvHhxk2199tln3HfffUyePJlHH32UhQsX8t5777Fp0yYmTZrE0UcfDcC7777Lhx9+yMCBAznqqKN4/fXXmTJlym7t7dy5k4ULF/Lqq69y2WWX8cEHHwAwa9YsbrrpJvr168dZZ53FD37wg922feuttwiFQvTp0weAzZs38/jjj/Pxxx9jZmzduhWA73znO1x88cVcfPHF/OlPf+K73/0uTzzxBABbtmzhjTfe4KmnnuK0007j9ddf549//COTJk1i4cKFTJgwgVtuuYWePXsSj8f54he/yKJFixg/fnxtHN26dWPChAm88sorHHfccfzjH//gxBNP1POuZK/yRIIcq4ZILtu7DKZX6aeZDklEREQ6GPVgtVBBQQEXXXQRt99+e53yF154gauuuooJEyZw2mmnUVZWxvbt25tsa9iwYbX3Rc2dO5fzzjuPcDhMv379OOaYY3jnnXcAOPzwwxk8eDChUIgJEyZQVFTUYHvnnXceAEcffTRlZWVs3bqVDRs28NlnnzFlyhRGjBhBNBqtTbwAbrvtNiZMmMD111/P7Nmza2fn69atGzk5OXz961/nscceo0uXLgC88cYbfO1rXwPgwgsvZO7cubVtnXrqqZgZ48aNo1+/fowbN45QKMSYMWNqY3744Yc59NBDOeSQQ/jwww/56KOPdjuO6dOn1/bgPfTQQ0yfPr3J8yiSbrGqcgA8kkN1wTAG+EZ2lFdmOCoRERHpSDpUD1ZLepra0jXXXMOhhx7KpZdeWluWSCR48803ycnJqVM3EonUua8p9dlNeXl5LdpfdnZ27ftwOEwsFmuwXv2py82Mhx9+mC1bttQ+kLesrIxZs2Zxyy23AMl7sGqG/9WP++233+bFF1/kkUce4c477+Sll15qUZyhUKhOzKFQiFgsxvLly7n11lt555136NGjB5dcckmDz7I67bTT+MEPfkBJSQnz58/n+OOPb3K/IulWWVFOFCCaS6R7b7JXxVi1ZjkHHHBQpkMTERGRDkI9WHugZ8+enHPOOdxzzz21ZSeccAJ33HFH7fLChQsBKCwsZMGCBQAsWLCA5cuXN9jm1KlTmT17NvF4nOLiYl599VUOP/zwPYqrptdn7ty5dOvWjW7dujFr1iz++c9/1t73NX/+/Ebvw0q1fft2SktL+fKXv8xtt93Ge++9B8AXvvCF2u0ffPBBpk6d2uL4ysrKyMvLo1u3bmzYsIFnn322wXpdu3Zl0qRJXH311ZxyyimEw+EW70MkHaoqdgBg0Wzy+h8IwJbVGiYoIiIiLdfqBMvMhpjZy2b2kZl9aGZXB+UzzGyNmS0MXl9ufbiZd91119WZEOL2229n3rx5jB8/ntGjRzNz5kwAzjrrLEpKShgzZgx33nknI0aMaLC9M888k/Hjx3PwwQdz/PHH84tf/IL+/fvvUUw5OTkccsghXHHFFdxzzz0UFRWxYsWKOtOzDx8+nG7duvHWW2812MaXv/xl1q5dy7Zt2zjllFMYP348U6ZM4Ve/+hUAd9xxB3/+858ZP348999/P7/5zW9aHN/BBx/MIYccwkEHHcTXvvY1jjrqqNp1N910U51p4qdPn84DDzyg4YGSEdUVOwEIRXPpPST5mS3fsCSTIYmIiEgHY43NTNfiBswGAAPcfYGZ5QPzgTOAc4Dt7n5rU9unmjhxotd/ptPixYsZNWpUq2KUfYv+TUhbWf3JfAbPOp63J/6KSdMuJP7/9eP1/hdyzJW3N7+xiIiIdCpmNt/dJ9Yvb/U9WO6+DlgXvN9mZouBQa1tV0Rkb4tVBj1YWblYJIvicF9ytq/McFQiIiLSkaT1HiwzKwQOAWrGoV1lZovM7E9m1qORbS43s3lmNq+4uDid4YiI7JFYZXIWwXBWctKarVkDyK9Ym8mQREREpINJW4JlZl2BR4Fr3L0M+D2wPzCBZA/X/zW0nbvf7e4T3X1izbOYREQyoaYHK5yVfDxBRd5Aesc2NvqQbxEREZH60pJgmVmUZHL1oLs/BuDuG9w97u4J4A/Ank2NJyKyl8WrkglWJDuZYCUKhtDXtlC2bUcmwxIREZEOJB2zCBpwD7DY3X+VUj4gpdqZwAf1txURaU8SwYOGI0EPVrTnUAA2rF6asZhERESkY0nHg4aPAi4E3jezhUHZD4DzzGwC4EAR8J9p2JeISJtJVCcfgB3JyQWga7/9AChdvwxGH5yxuERERKTjaHUPlrvPdXdz9/HuPiF4PePuF7r7uKD8tGC2wQ7riSeewMz4+OOPG61TVFTE2LFj07bPSy65hEceeaTR9ddccw2DBg0ikUjUlt1777306dOHCRMmMHr0aP7whz+kLR6RfV1ND1Y0GCLYc9D+AFRsKspUSCIiItLBpHUWwX3ZrFmzmDJlCrNmzWpwfSwWa/U+4vF4i+smEgkef/xxhgwZwiuvvFJn3fTp01m4cCFz5szhBz/4ARs2bGh1bCKdgVcnE6ysnDwAuvUbRsKNxJZVmQxLREREOhAlWC2wfft25s6dyz333MNDDz1UWz5nzhymTp3KaaedxujRo4FkonX++eczatQozj77bHbuTN40/+KLL3LIIYcwbtw4LrvsMiorKwEoLCzkv//7vzn00EP529/+ttu+X3jhBSZOnMiIESP4xz/+UWffY8aM4corr2w06evbty/7778/K1asqC27/fbbGT16NOPHj+fcc88FoKSkhDPOOIPx48czefJkFi1aBMCMGTO4+OKLmTp1KsOGDeOxxx7jxhtvZNy4cUybNo3q6moAbr75ZiZNmsTYsWO5/PLLd5txLZFIUFhYyNatW2vLDjzwQCV+0v7EkkMEoznJHiyLZLM51JPo9tWZjEpEREQ6kHTcg7X3PPs9WP9+etvsPw5O+nmTVZ588kmmTZvGiBEj6NWrF/Pnz+ewww4DYMGCBXzwwQcMHz6coqIiPvnkE+655x6OOuooLrvsMn73u99x1VVXcckll/Diiy8yYsQILrroIn7/+99zzTXXANCrVy8WLFjQ4L6Liop4++23Wbp0KccddxxLliwhJyeHWbNmcd5553H66afzgx/8gOrqaqLRaJ1tly1bxrJlyzjggANqy37+85+zfPlysrOzaxOen/zkJxxyyCE88cQTvPTSS1x00UUsXLgQgKVLl/Lyyy/z0UcfceSRR/Loo4/yi1/8gjPPPJOnn36aM844g6uuuoqbbroJgAsvvJB//OMfnHrqqbX7DIVCnH766Tz++ONceumlvPXWWwwbNox+/fq1+DKJ7BWx5B8+srKya4u2ZvUjr7xDj3AWERGRvUg9WC0wa9as2t6ec889t06P0eGHH87w4cNrl4cMGcJRRx0FwAUXXMDcuXP55JNPGD58OCNGjADg4osv5tVXX63dZvr06Y3u+5xzziEUCnHggQey33778fHHH1NVVcUzzzzDGWecQUFBAUcccQTPPfdc7TazZ89mwoQJnHfeedx111307Nmzdt348eM5//zzeeCBB4hEkvn13LlzufDCCwE4/vjj2bx5M2VlZQCcdNJJRKNRxo0bRzweZ9q0aQCMGzeOoqIiAF5++WWOOOIIxo0bx0svvcSHH36423FMnz6d2bNnA/DQQw81ecwimeLxKio9SjSy61fjztwB9Iypt1VERERapmP1YDXT09QWSkpKeOmll3j//fcxM+LxOGbGL3/5SwDy8vLq1E/OWt/4ckPqt9Fce8899xxbt25l3LhxAOzcuZPc3FxOOeUUIJnM3HnnnQ229/TTT/Pqq6/y97//nVtuuYX332+6RzA7O/mX/FAoRDQarY0nFAoRi8WoqKjgW9/6FvPmzWPIkCHMmDGDioqK3do58sgjWbJkCcXFxTzxxBP86Ec/anK/Iplg8WqqiJAX2pVgxfOH0G/LHHZUVJGXk5XB6ERERKQjUA9WMx555BEuvPBCVqxYQVFREatWrWL48OG89tprDdZfuXIlb7zxBgB//etfmTJlCiNHjqSoqIglS5YAcP/993PMMce0aP9/+9vfSCQSLF26lGXLljFy5EhmzZrFH//4R4qKiigqKmL58uU8//zztfd7NSaRSLBq1SqOO+44/t//+3+Ulpayfft2pk6dyoMPPggk7+3q3bs3BQUFLYqvJpnq3bs327dvb3TWQzPjzDPP5L/+678YNWoUvXr1alH7IntVvIpqwoRCu/6wEek5lCyLs2FNUebiEhERkQ5DCVYzZs2axZlnnlmn7Kyzzmp0YomRI0fy29/+llGjRrFlyxauvPJKcnJy+POf/8xXv/pVxo0bRygU4oorrmjR/ocOHcrhhx/OSSedxMyZM0kkEvzzn//k5JNPrq2Tl5fHlClT+Pvf/95gG9/4xjeYN28e8XicCy64gHHjxnHIIYfw3e9+l+7duzNjxgzmz5/P+PHj+d73vsd9993XwrMD3bt355vf/CZjx47lxBNPZNKkSbXrZs6cycyZM2uXp0+fzgMPPKDhgdJuWbyKGHXvZezSNzkEuGSdHjYsIiIizbP6M75l0sSJE33evHl1yhYvXsyoUaMyFJG0R/o3IW1l4e3n0qdkHoNmLKkt27xsIb3+cgyvjf85U79yZQajExERkfbEzOa7+8T65erBEhEJWGL3HqweA5MPG46VrMxESCIiItLBKMESEQlYvJqY1Z37J5STTyn5RLbpWVgiIiLSvA6RYLWnYYySWfq3IG0plNg9wQLYEu1Hl/K1GYhIREREOpp2n2Dl5OSwefNmfbEW3J3NmzeTk5OT6VBkHxX2KuIW3a18R+4Auletz0BEIiIi0tG0++dgDR48mNWrV1NcXJzpUKQdyMnJYfDgwZkOQ/ZRoUQ1VQ0kWNVdB1NY+jYVVTFystr9r00RERHJoHb/TSEajTJ8+PBMhyEinUAoESNu2buX9xhC3tpKijaspXDI0AxEJiIiIh1Fux8iKCKyt4S9mnho9x6s3D7JP/JsXrNsb4ckIiIiHUybJ1hmNs3MPjGzJWb2vbben4jI5xX2ahINDBHsNmA/AHZsXL63QxIREZEOpk0TLDMLA78FTgJGA+eZ2ei23KeIyOcV9moSDfRg9QwSLD0LS0RERJrT1j1YhwNL3H2Zu1cBDwGnt/E+RUQ+l0gjCVYkvw8VZBEqXZWBqERERKQjaesEaxCQ+o1kdVBWy8wuN7N5ZjZPMwWKSCZFPEYilLX7CjM2h/uRs1PPwhIREZGmZXySC3e/290nuvvEPn36ZDocEenEIh7Dw7v3YAFsyxlANz0LS0RERJrR1gnWGmBIyvLgoExEpN2JUo03MEQQoKrrIPomNlIdT+zlqERERKQjaesE6x3gQDMbbmZZwLnAU228TxGRzyVC4z1Y1n0IvWwbGzaV7OWoREREpCNp0wTL3WPAVcBzwGLgYXf/sC33KSLyubgT9Rg0dA8WkN27EIDiNUv2YlAiIiLS0UTaegfu/gzwTFvvR0SkVRJxQuZ4pOEEq6B/8mHD29YvBybvxcBERESkI8n4JBciIu2BxysBsHDDCVbPgQcAUL15xV6LSURERDoeJVgiIkC8Kplg0UiCldVjEDHCoGdhiYiISBOUYImIANVBgmWNDBEkFGZzqDfZOzQRqoiIiDROCZaICFBdVZF800gPFkBZdn8KKvUsLBEREWmcEiwRESBWuTP5JprbaJ3KvEH0iW8gnvC9FJWIiIh0NEqwRESA6sodAISaSLC82xD6soWNW8v2VlgiIiLSwSjBEhEBqsuDBCs7r9E60T77ETZn02o9C0tEREQapgRLRASoDoYIRrIa78HqOmAkANvWfrpXYhIREZGORwmWiAi7hghGchrvweo15CAA4sXqwRIREZGGKcESEQFiFckerGh2l0br5Pboz3ZyCW9dvrfCEhERkQ5GCZaICJCoChKsJnqwMGNDZCB5O1bspahERESko1GCJSICxKvKAcjKbSLBAkpzh9KrUg8bFhERkYYpwRIRATzowcrO7dpkvaqCYfRPbKC6qnJvhCUiIiIdjBIsERHAq5M9WNk5jd+DBRDqfQARS7Bh5Wd7IywRERHpYFqVYJnZL83sYzNbZGaPm1n3oLzQzMrNbGHwmpmWaEVE2ohX7aTaw+Tm5jRZr+uAEQCUrP54b4QlIiIiHUxre7CeB8a6+3jgU+D7KeuWuvuE4HVFK/cjItK2qiuoIIucSLjJan2GjQKgYr2ehSUiIiK7a1WC5e7/cvdYsPgmMLj1IYmI7H0WL6eCLEIha7Je736D2eE5UKKp2kVERGR36bwH6zLg2ZTl4Wb2rpm9YmZTG9vIzC43s3lmNq+4uDiN4YiItJxVV1BlWc3XC4VYFx5I7raitg9KREREOpxIcxXM7AWgfwOrfujuTwZ1fgjEgAeDdeuAoe6+2cwOA54wszHuXla/EXe/G7gbYOLEif75DkNEpHVC8XIqren7r2pszR1C/3JNciEiIiK7azbBcvcvNbXezC4BTgG+6O4ebFMJVAbv55vZUmAEMK+1AYuItIVQvILqFvRgAVTmD6Pf9rl4vBoLR9s4MhEREelIWjuL4DTgRuA0d9+ZUt7HzMLB+/2AA4FlrdmXiEhbisZ2UhVqeor2GtZ7f6IWZ/OapW0clYiIiHQ0rb0H604gH3i+3nTsRwOLzGwh8AhwhbuXtHJfIiJtJidWRmUkv0V1u/RPTtW+eeXitgxJREREOqBmhwg2xd0PaKT8UeDR1rQtIrI3dUlspypa0KK6vYYkp2rfsU5TtYuIiEhd6ZxFUESkw+rq26nO6taiuv0HDWWHZ+ObNfJZRERE6lKCJSISqyKXShLZ3VtUPRoJszY0gGxN1S4iIiL1KMESkU6vekdwi2hu9xZvsyVnMN0qVrdNQCIiItJhKcESkU5v+9ZNANgeJFgVXYfSL74eEvE2ikpEREQ6IiVYItLplW1JJli5Bb1avlHP/cgiRtnGFW0UlYiIiHRESrBEpNPbUVoMQF633i3eJqffgQBsWqGp2kVERGQXJVgi0umVb00mWPk9+7Z4mx5DDgJg27rP2iQmERER6ZiUYIlIp5coWwNAj/5DW7zNoKH7UelR4puWtlVYIiIi0gEpwRKRTi+0bT1bPY/8ri170DBAl+ws1lg/omXL2zAyERER6WiUYIlIp5dVvp7NoV6Y2R5ttzlrEAU7V7VRVCIiItIRKcESkU6vS8VGSqN99ni7HV2H0je2DtzbICoRERHpiJRgiUin1626mMrcfnu8nffYj1wqqdiytg2iEhERkY5ICZaIdGrV5WX0ZguJgiF7vG1W3wMAKNZU7SIiIhJQgiUinVrx0veSb/qN2eNtuw0aAUDZWk3VLiIiIklKsESkU9u2ahEAeUPG7fG2A4ceQMKNyk2aSVBERESSWpVgmdkMM1tjZguD15dT1n3fzJaY2SdmdmLrQxURSb/Y2g/Y4dkMHH7QHm/bIz+PjfTESle2QWQiIiLSEUXS0MZt7n5raoGZjQbOBcYAA4EXzGyEu8fTsD8RkbTJKvmY5TaEsQVd9nhbM2NTtB+5O9a0QWQiIiLSEbXVEMHTgYfcvdLdlwNLgMPbaF8iIp9bn51LKe5ywOfefkfuQLpXrU9jRCIiItKRpSPBusrMFpnZn8ysR1A2CEh9+ubqoGw3Zna5mc0zs3nFxcVpCEdEpGXi2zbS3Uup6jXyc7cRyx9C78Qm4rHqNEYmIiIiHVWzCZaZvWBmHzTwOh34PbA/MAFYB/zfngbg7ne7+0R3n9inz54/6FNE5PPa8Nl8AHIG7fkEFzUivQqJWIINq5elKywRERHpwJq9B8vdv9SShszsD8A/gsU1QOpDZQYHZSIi7cbWovcYCPQ94NDP3UbXvsMB2Lz6MwYWfv6eMBEREdk3tHYWwQEpi2cCHwTvnwLONbNsMxsOHAi83Zp9iYikW2L9B2zyAoYPK/zcbfQYdCAAOzeqB0tERERaP4vgL8xsAuBAEfCfAO7+oZk9DHwExIBvawZBEWlvupR+xspIIYdGw5+7jb6D9yPhRrxkRRojExERkY6qVQmWu1/YxLpbgFta076ISJtJJOhfWURR95Nb1UwkK4cN1pPIttVpCkxEREQ6sraapl1EpF3bvmEJXaiAvqNb3VZJtD95O3WbqYiIiCjBEpFOat1nCwAoGDa+1W3t6DKIntV6FpaIiIgowRKRTmr7ykUADB7x+WcQrBHLH0wf30xVVVWr2xIREZGOTQmWiHRK4eLFrKIf/Xr3an1bPYcRsQTFa5anITIRERHpyJRgiUin1GP7Z2zIGY6ZtbqtLsGzsLas+azVbYmIiEjHpgRLRDqdeFUFA2JrKO9+UFra6zGw5llY6sESERHp7JRgiUins2b5YiKWIKv/yLS016f2WVhFaWlPREREOi4lWE3YsPIzFr3yGOXbyzIdioikUcnKxQD0GDIqLe1Fs3LYZD0J61lYIiIinV6rHjS8r1v26oMcueQ2ql8K83H0AEq7jSI88GC67XcYAw48lK5d8zMdooh8DhUbPgWgX2Hrn4FVoySrP112KsESERHp7JRgNWHCGdfy3rxx7Px0Dt03vcuoTf+iYPMT8D7E3VhnvSjJGsTOrkOozh9KqNtAcrr1pWvPAXTr3Z+uPfqT06UrFmrbjkJPJIjHqqmuqqSquopYVQWxWBXxqipisUpi1ZXEq6qJxyqJV1eRiFWRiFUTj1XhsSoS8WoSsUoSsWqIVeGJajxeBbEYxKsgUQ3xakhUY/FqQl5N2GOYx8Ad3DESte8hAc6uMhKYO4YDTsiTP40EBrU/6xxTnSVLKd99QoLUMq8zYUHqdru3V7etRvaR8nZXedPxNGgPJ1Jo/bQLbcebrbCrRrN196TtZhprenXdtYMql7OVrnTv1a9lgbVAecF+FBa/THUsTjQSTlu7Ah6Psb2shO1lW9i5rYyqijJi5duJlW8jUbmdROV2vHIHVO3AqnaQiFVCvBLiVYQSVYQS1YQT1YQ95adXE/I4Vvs7KoHhhGp/N3md5VDt77AgppRaAImgJpZ8X1Mn2ULw3kJBC7t++yW3qdmb1fv9U7O8qzz5O67uskHdekadtqnTbnJ9Tf1d+6BOfahthpQfnZo190uojdXs3TyzcaTak3PSfqKWjmhl1gEMOv0nTCzsmelQWkQJVhNyu3bj4GPPgmPPAiART7Bi+WJKls4ntvZ9bGsRXXesYnjJa/QuKW2wjZiHqCCbSku+qiybassK/qOt+c9t13vcCXmcMLHkTw9+knyFPE6EOBFihD35M8viREhezNw2OA8JN6qJELMwMSLEiFBNhISF63xJ8OBYgOQxme12jF6nbuoXil2/pnf9955sidryBt6n/MZucP1ubTTX7q61De+vobaa/k8mo/+p7MnO0/QNqi2+iKVhor86EuFslvb/Dw5LY5s2eCI9Nv2dJUs+4ICDDk5jy/sWTyTYVraZLetXs23zaiq2rCNWtgF2bsEqthCpKiWrqpTsWBl58TK6+nbyfQf55rRkzEC5Z1FFlJhFiVmEaqLELUK1ZRG3CDGLUmU5xMIFYCHcwsk/ggW/k91C7PqdVvN7K+X3GVb7m4uU32yk/BGp9o9OkJLABamVJ6D2N18i+Ix6UJ7cs9dut6tNc3a9p6ZN8Jr0qM7+2S2mOn8W8tSy1Ph3Le/+x6Mgrj241unS4j9k7QXtJ5b2EkdnS5zaz3n/vDrqEaypzmdHVTzTYbSYEqw9EAqHGHbAGIYdMGa3dVU7t1GycTVlm9exo2QdFaUbsZ2boWo7VJVDrJxQbCfhWAVRrwy+qAf/qab26JhRHc7BLZxMYCyCWwQPRXAL46EoHgpDKJosC2dhoSiEo1g4CpEsLBzFwllYJEooHCUUyU6+j2QRjmQRjmYRCmcRimYRiWYTiWYTjkaD91lEsrKJRrOIZuUQjmQRCoXJBrL39gkXaUPD0txezxFfgIWw6aPXGk2wSrdu5uPn/kiP/Q5jxKQvpTmCzIvF4mxYv5rNqz5h54ZlsGU54e3ryKooJrdyMwXxEnomtlBgMQrqbZtwo8zy2G757AjnUx4poDR3CLGs7nhudyy3B5HcAqK5+YRz8onkdiWam09WlwKyg1duXldyolFy052Ri4hIRg3PdAB7SAlWmmR1yad/4Sj6F6bnpnkR6ViGjDyUDfSiy6dPAFfVWbfqkwWse/43jC1+liOskiWfHQiT5mUkztZwd0pLt7Jh5aeUrf2Myk3LsC0ryNmxmh6Va+if2Mggq2RQyjYlFLAl1JMd0V5s7VLIsi59sK79iHTrT26PAeT3HkS33oPI79Gb7uEw3TN1cCIiImmiBEtEJA0sHGHZ4DM5YtU9vP+P39Jt2Hg2fPgqBUv/zsjqxfT1KO91/xJ5O1awX2wJHq9O9jq3M1VVVWxcvYzNaz5l54alJEqKyCpbSX75GvrE19OL0jpJ0A5yKA73pyxvKB/lTyHUo5DcfvvTfeAB9Bh0AD275NMxRsyLiIikh3k7ully4sSJPm9ex/urrogIwLayraz79RcZkVhSW7Y0NJwNw05lxLQr6N1vEP9+/Hd84b3vs/zs5xg+dvJej9ETCbZs3kDxyk8oW7eE6k3LCZeuIHfHanpVr6VvYhNR2zXOPeYhNob6sCV7IBV5g0l0H0Z27/0oGHgAfYaOJK97v/TfJCciItIBmNl8d59Yv7xVPVhmNhuoeVJnd2Cru08ws0JgMfBJsO5Nd7+iNfsSEWnv8gu6E75hLm+99iQeq6T/iInst/9o9k9JQEYcMY3Ywh+y/tU/tVmCVbFzGxtWLmHrus+o2LAU37KC7G0rKahYS7/4enpaeZ1epRIK2BQZwIb8MawuGEq453C69t+fXoNH0GvgfgyMRBnYJpGKiIjse1qVYLn79Jr3ZvZ/QOpUekvdfUJr2hcR6Wi65OZyxAnnNrq+98D9mNfjBA7b8Agf/fsMRn/hy3u8j+1lWyhevYSydUup2FSEb11J1rbV5Feso1dsPT0pYxi7JvIo9yw2hPtRmj2ITV0Pgx6F5PTdj+4DD6TvkBH0zO+uYXwiIiJpkpZ7sMzMgHOA49PRnojIvmzEhXew4c5jOPC5C1j41nEkhh9DtNsAQtEsEtUVVO8sJb6zjPjOLdiOjUR3biC3chP5sRJ6JkroapV0TWmv0qNsCPVha9YAPs0fSbxgCFm9hpHff396Dx1Jr76DKWzj5/GJiIhIUlruwTKzo4Ff1YxBDIYIfgh8CpQBP3L31xrZ9nLgcoChQ4cetmLFilbHIyLS3m0uXs/ih37E+E1PU2A7G623zXPZEurBtkgvynP6EMvtg3ftR7TXMLr2HU6vwQfSq+8gQmE93FhERGRvauwerGYTLDN7AejfwKofuvuTQZ3fA0vc/f+C5Wygq7tvNrPDgCeAMe5e1tS+NMmFiHQ2sepqVi//mPKyYhLVlVg0h9yuPehS0IOuBT3I61r/iVEiIiLSHnzuSS7cvcmnYZpZBPgKcFjKNpVAZfB+vpktBUYAyp5ERFJEolEKR4zLdBgiIiKSJukYlP8l4GN3X11TYGZ9zCwcvN8POBBYloZ9iYiIiIiItFvpmOTiXGBWvbKjgZvNrBpIAFe4e0ka9iUiIiIiItJutTrBcvdLGih7FHi0tW2LiIiIiIh0JGmZRTBdzKwYaG/TCPYGNmU6CNlrdL07D13rzkPXunPR9e48dK07l/Z4vYe5e5/6he0qwWqPzGxeQ7ODyL5J17vz0LXuPHStOxdd785D17pz6UjXW0+eFBERERERSRMlWCIiIiIiImmiBKt5d2c6ANmrdL07D13rzkPXunPR9e48dK07lw5zvXUPloiIiIiISJqoB0tERERERCRNlGCJiIiIiIikiRKsJpjZNDP7xMyWmNn3Mh2PpI+ZDTGzl83sIzP70MyuDsp7mtnzZvZZ8LNHpmOV9DCzsJm9a2b/CJaHm9lbwed7tpllZTpGSQ8z625mj5jZx2a22MyO1Gd732Rm1wa/wz8ws1lmlqPP9r7DzP5kZhvN7IOUsgY/y5Z0e3DdF5nZoZmLXPZUI9f6l8Hv8UVm9riZdU9Z9/3gWn9iZidmJOgmKMFqhJmFgd8CJwGjgfPMbHRmo5I0igHXuftoYDLw7eD6fg940d0PBF4MlmXfcDWwOGX5/wG3ufsBwBbg6xmJStrCb4B/uvtBwMEkr7s+2/sYMxsEfBeY6O5jgTBwLvps70vuBabVK2vss3wScGDwuhz4/V6KUdLjXna/1s8DY919PPAp8H2A4PvaucCYYJvfBd/b2w0lWI07HFji7svcvQp4CDg9wzFJmrj7OndfELzfRvIL2CCS1/i+oNp9wBkZCVDSyswGAycDfwyWDTgeeCSoomu9jzCzbsDRwD0A7l7l7lvRZ3tfFQFyzSwCdAHWoc/2PsPdXwVK6hU39lk+HfiLJ70JdDezAXslUGm1hq61u//L3WPB4pvA4OD96cBD7l7p7suBJSS/t7cbSrAaNwhYlbK8OiiTfYyZFQKHAG8B/dx9XbBqPdAvU3FJWv0auBFIBMu9gK0pv7j1+d53DAeKgT8HQ0L/aGZ56LO9z3H3NcCtwEqSiVUpMB99tvd1jX2W9b1t33YZ8Gzwvt1fayVY0qmZWVfgUeAady9LXefJZxjoOQYdnJmdAmx09/mZjkX2ighwKPB7dz8E2EG94YD6bO8bgntvTieZVA8E8th9iJHsw/RZ7hzM7Ickb+14MNOxtJQSrMatAYakLA8OymQfYWZRksnVg+7+WFC8oWZIQfBzY6bik7Q5CjjNzIpIDvU9nuQ9Ot2DYUWgz/e+ZDWw2t3fCpYfIZlw6bO97/kSsNzdi929GniM5Oddn+19W2OfZX1v2weZ2SXAKcD5vuvhve3+WivBatw7wIHBbERZJG+meyrDMUmaBPfg3AMsdvdfpax6Crg4eH8x8OTejk3Sy92/7+6D3b2Q5Of4JXc/H3gZODuopmu9j3D39cAqMxsZFH0R+Ah9tvdFK4HJZtYl+J1ec6312d63NfZZfgq4KJhNcDJQmjKUUDogM5tGcnj/ae6+M2XVU8C5ZpZtZsNJTmzydiZibIztSgalPjP7Msl7N8LAn9z9lsxGJOliZlOA14D32XVfzg9I3of1MDAUWAGc4+71b7CVDsrMjgWud/dTzGw/kj1aPYF3gQvcvTKD4UmamNkEkhOaZAHLgEtJ/kFRn+19jJn9FJhOcvjQu8A3SN6Loc/2PsDMZgHHAr2BDcBPgCdo4LMcJNl3khwmuhO41N3nZSBs+RwaudbfB7KBzUG1N939iqD+D0nelxUjeZvHs/XbzCQlWCIiIiIiImmiIYIiIiIiIiJpogRLREREREQkTZRgiYiIiIiIpIkSLBERERERkTRRgiUiIiIiIpImSrBERERERETSRAmWiIiIiIhImijBEhERERERSRMlWCIiIiIiImmiBEtERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSLSzphZoZm5mUUyHYt0Dmb2oZkdm+k4RET2BUqwRESkwzOzmWa2PXhVmVl1yvKzmY6vvXP3Me4+J51tmtkgM3vSzErMbLWZXZHO9kVE2itz90zHICKyTzGziLvHWrF9IbAciLamnc7KzGYAB7j7BQ2sa9W12Zs6UqwNMbOXgfeAG4DRwMvAWe7+ckYDExFpY+rBEhFJAzMrMrP/NrNFwA4zi5jZZDP7t5ltNbP3UodgmdkcM/tfM3vbzMqCv/T3bKTtS81ssZltM7NlZvaf9dafbmYLg3aWmtm0oLybmd1jZuvMbI2Z/czMws0cx/5m9pKZbTazTWb2oJl1T1lXYmaHBssDzay45rjM7LRgqNnW4PhG1Ts/15vZIjMrNbPZZpaz52d6zzVybdzMDkipc6+Z/Sxl+ZTgnG4NruH4Fu7r2KC35gfB+Ssys/NT1p9sZu8G12pVkAzWrKsZGvp1M1sJvBSU/83M1gfn7VUzG1Mv7t+Z2bNBb93rZtbfzH5tZlvM7GMzO6SF5+hLLTnGFp6HrsCxwC3uXu3u7wGPAJelax8iIu2VEiwRkfQ5DzgZ6A70A54Gfgb0BK4HHjWzPin1LyL5hXMAEANub6TdjcApQAFwKXBbSpJzOPAXkr0E3YGjgaJgu3uDdg8ADgFOAL7RzDEY8L/AQGAUMASYAeDuS4H/Bh4wsy7An4H73H2OmY0AZgHXAH2AZ4C/m1lWStvnANOA4cB44JIGAzCbEiQ2jb2mNHMMDam9Ns31CgUJyZ+A/wR6AXcBT5lZdgv31R/oDQwCLgbuNrORwbodJK979yCeK83sjHrbH0Py3J8YLD8LHAj0BRYAD9arfw7wo2CflcAbQb3eJJOaX7Uw7gaZ2feauh6NbVbvZ837sa2JRUSkI1CCJSKSPre7+yp3LwcuAJ5x92fcPeHuzwPzgC+n1L/f3T9w9x3Aj4FzGuphcven3X2pJ70C/AuYGqz+OvAnd38+2M8ad//YzPoF+7rG3Xe4+0bgNuDcpg7A3ZcEbVW6ezHJL+fHpKz/A7AEeItkYvjDYNV04Olg22rgViAX+EK987PW3UuAvwMTGolhrrt3b+I1t6ljaETqtWnO5cBd7v6Wu8fd/T6SicvkPdjfj4Nz+ArJRPscAHef4+7vB9dqEcmk9Jh6284Irll5sM2f3H2bu1eSTHYPNrNuKfUfd/f57l4BPA5UuPtf3D0OzCaZXH9u7v7zpq5HI9tsA14HfmxmOcEfBM4CurQmFhGRjkAJlohI+qxKeT8M+Gq9v/RPIZmUNFR/BRAl2etQh5mdZGZvBsPztpJMnGrqDQGWNhDLsKC9dSn7v4tkL0ijzKyfmT0UDCksAx5oIKY/kOyJuCP40g/JHq8VNRXcPREc36CU7danvN8JdG0qljRb1XyVWsOA6+pduyEkj7EltgRJc40VNdua2RFm9nIwtLIUuILdz29trGYWNrOfW3LoZxm7eidTt9mQ8r68geW9eZ5TnU+yt3IV8HuS/5ZWZygWEZG9RgmWiEj6pM4atIpkD1XqX/vz3P3nKXWGpLwfClQDm1IbDIalPUqyR6hf0GPwDLuGXq0C9m8gllUke116p+y/wN3HNFA31f8ExzHO3QtI9sTVDvMK7q35NXAPMMN23Te2lmRiUlPPguNb08z+dmNmU23XDIANvaY238pu6s/otJO6vSn9U96vInnvUOq16+Lus1q4rx5mlpeyPJTk+QH4K/AUMMTduwEzqTuMrn6sXwNOB74EdAMKg/L627SZ4H6yRq9HY9u5+wp3P8Xd+7j7ESSTwrf3VtwiIpmiBEtEpG08AJxqZicGvRA5wQQIg1PqXGBmo4P7mW4GHgmGdaXKArKBYiBmZieRvJeqxj3ApWb2RTMLWXJq7IPcfR3JoYT/Z2YFwbr9zaz+cLT68oHtQKmZDSJ5b1eq3wDz3P0bJIe+zQzKHwZODuKIAteRTPD+3dyJqs/dX3P3rk28XtvTNhuwEPhacG2mUXeY3h+AK4LeJjOzPEtOTpEPtRNL3NtM+z81s6wgGTwF+FtQng+UuHtFcP/c15ppJ5/kedxMMiH8nz04xrRw9/9p6no0tp2ZjTKz/OA8XEDy322r7gcTEekIlGCJiLQBd19FsufhBySTo1Ukk5XU37v3k5yIYj2QA3y3gXa2BeUPA1tIfiF/KmX92wQTXwClwCvs6km6iGSC9lGw7SPUHaLYkJ8ChwZtPQ08VrPCzE4nOUnFlUHRfwGHmtn57v4Jyd6uO0j2wp0KnOruVc3sL1OuJhnjVpJD2Z6oWeHu84BvAneSPG9LqDshxxCS9xc1Zn2w3VqSE1Jc4e4fB+u+BdxsZtuAm0he16b8heQQwzUkr+ObzR1YO3IisIzkubgCmBbc1ycisk/Tc7BERDLAzOYAD7j7HzMdi7RcMCvie8D4YDKP+uuPJXldB9dfJyIinUMk0wGIiIh0FEGP3KhmK4qISKelIYIiIp2Mmc1sZMKCmc1vLR2RmQ1tYqKKoZmOT0RkX6IhgiIiIiIiImmiHiwREREREZE0aVf3YPXu3dsLCwszHYaIiIiIiEiT5s+fv8nd+9Qvb1cJVmFhIfPmzct0GCIiIiIiIk0ysxUNlWuIoIiIiIiISJoowRIREREREUkTJVgiIntoc+k2/rXgMzQLq4iIiNTXru7Bakh1dTWrV6+moqIi06FIB5OTk8PgwYOJRqOZDkX2MZ/e801OKHuWVyLzOWb8AZkOR0RERNqRdp9grV69mvz8fAoLCzGzTIcjHYS7s3nzZlavXs3w4cMzHY7sY8aXvQJA5Zv3wPj/zXA0IiIi0p60+yGCFRUV9OrVS8mV7BEzo1evXur5lDZRQj4AXTcvynAkIiIi0t60+wQLUHIln4v+3UhbSMTj9PNNAAysXKr7sERERKSODpFgiYi0F9s3ryHL4my2Hgz19WzcXJLpkERERKQdUYLVAmbGddddV7t86623MmPGjMwFlOLNN9/kiCOOYMKECYwaNao2rjlz5vDvf/+7VW1PmzaN7t27c8opp6QhUpF9w87ilQAsKziCkDlrli3OcEQiIiLSnijBaoHs7Gwee+wxNm3alNZ23Z1EItGqNi6++GLuvvtuFi5cyAcffMA555wDpCfBuuGGG7j//vtb1YbIvmbnti0AeL8xAOzYsCST4YiIiEg70+5nEUz1079/yEdry9La5uiBBfzk1DFN1olEIlx++eXcdttt3HLLLXXWFRcXc8UVV7ByZfKv2r/+9a856qijmDFjBl27duX6668HYOzYsfzjH/8A4MQTT+SII45g/vz5PPPMM9x55508++yzmBk/+tGPmD59OnPmzGHGjBn07t2bDz74gMMOO4wHHnhgt/uKNm7cyIABAwAIh8OMHj2aoqIiZs6cSTgc5oEHHuCOO+7goIMOajTOpUuXsmTJEjZt2sSNN97IN7/5TQC++MUvMmfOnCbPzd/+9jd++tOfEg6H6datG6+++ioVFRVceeWVzJs3j0gkwq9+9SuOO+447r33Xp544gl27NjBZ599xvXXX09VVRX3338/2dnZPPPMM/Ts2ZM//OEP3H333VRVVXHAAQdw//3306VLlzr7nTx5Mvfccw9jxiSv3bHHHsutt97KxIkTm4xXpLUqK3YA0GXQGPgUqjYXZTYgERERaVda3YNlZkPM7GUz+8jMPjSzq4PyGWa2xswWBq8vtz7czPn2t7/Ngw8+SGlpaZ3yq6++mmuvvZZ33nmHRx99lG984xvNtvXZZ5/xrW99iw8//JB58+axcOFC3nvvPV544QVuuOEG1q1bB8C7777Lr3/9az766COWLVvG66+/vltb1157LSNHjuTMM8/krrvuoqKigsLCQq644gquvfZaFi5cyNSpU5uMc9GiRbz00ku88cYb3Hzzzaxdu7bF5+Xmm2/mueee47333uOpp54C4Le//S1mxvvvv8+sWbO4+OKLa2fz++CDD3jsscd45513+OEPf0iXLl149913OfLII/nLX/4CwFe+8hXeeecd3nvvPUaNGsU999yz236nT5/Oww8/DMC6detYt26dkivZK+LVyX/Loe6DKSebcOnKDEckIiIi7Uk6erBiwHXuvsDM8oH5ZvZ8sO42d781DfsAaLanqS0VFBRw0UUXcfvtt5Obm1tb/sILL/DRRx/VLpeVlbF9+/Ym2xo2bBiTJ08GYO7cuZx33nmEw2H69evHMcccwzvvvENBQQGHH344gwcPBmDChAkUFRUxZcqUOm3ddNNNnH/++fzrX//ir3/9K7NmzWqw16mpOE8//XRyc3PJzc3luOOO4+233+aMM85o0Xk56qijuOSSSzjnnHP4yle+UntM3/nOdwA46KCDGDZsGJ9++ikAxx13HPn5+eTn59OtWzdOPfVUAMaNG8eiRckprz/44AN+9KMfsXXrVrZv386JJ564237POeccTjjhBH7605/y8MMPc/bZZ7coXpHW8qpyAMJZuWyK9KfLzpb/QUJERET2fa1OsNx9HbAueL/NzBYDg1rbbnt0zTXXcOihh3LppZfWliUSCd58801ycnLq1I1EInXur0p9HlNeXl6L9pednV37PhwOE4vFGqy3//77c+WVV/LNb36TPn36sHnz5t3qNBYn7D6d+Z5Mbz5z5kzeeustnn76aQ477DDmz5/fZP3UYwqFQrXLoVCo9vguueQSnnjiCQ4++GDuvffeBhPGQYMG0atXLxYtWsTs2bOZOXNmi2MWaY1E0IMVze7CtpyBdN++LsMRiYiISHuS1kkuzKwQOAR4Kyi6yswWmdmfzKxHI9tcbmbzzGxecXFxOsNJu549e3LOOefUGbJ2wgkncMcdd9QuL1y4EIDCwkIWLFgAwIIFC1i+fHmDbU6dOpXZs2cTj8cpLi7m1Vdf5fDDD29xTE8//XTtc3g+++wzwuEw3bt3Jz8/n23btjUbJ8CTTz5JRUUFmzdvZs6cOUyaNKnF+1+6dClHHHEEN998M3369GHVqlVMnTqVBx98EIBPP/2UlStXMnLkyBa3uW3bNgYMGEB1dXVtOw2ZPn06v/jFLygtLWX8+PEtbl+kNbw62YMVze5Cdf4Q+vsGKqoa/uOHiIiIdD5pS7DMrCvwKHCNu5cBvwf2ByaQ7OH6v4a2c/e73X2iu0/s06dPusJpM9ddd12d2QRvv/125s2bx/jx4xk9enRtT8pZZ51FSUkJY8aM4c4772TEiBENtnfmmWcyfvx4Dj74YI4//nh+8Ytf0L9//xbHc//99zNy5EgmTJjAhRdeyIMPPkg4HObUU0/l8ccfZ8KECbz22muNxgkwfvx4jjvuOCZPnsyPf/xjBg4cCCSTv69+9au8+OKLDB48mOeeew5IDkusud/qhhtuYNy4cYwdO5YvfOELHHzwwXzrW98ikUgwbtw4pk+fzr333lun56o5/9//9/9xxBFHcNRRR3HQQQfVlj/11FPcdNNNtctnn302Dz30UO3MiSJ7RU0PVk4XrMcwCqycdRvWZzgoERERaS+spvejVY2YRYF/AM+5+68aWF8I/MPdxzbVzsSJE33evHl1yhYvXsyoUaNaHaM0rP5sh/sa/fuRdHv3LzdwyLK72XL9RorfeYQRr3yLBSc9waFHHJfp0ERERGQvMrP57r7bLGvpmEXQgHuAxanJlZkNSKl2JvBBa/clIpJpFqukwqNkRcMUDNgfgPINyzIclYiIiLQX6ZhF8CjgQuB9M1sYlP0AOM/MJgAOFAH/mYZ9SZrNmDEj0yGIdCgWq6CCLPIiIXoNSiZYVVtWZTgqERERaS/SMYvgXKChaeeeaW3bIiLtjcUqqCRKt5BhXXtTSRZWuibTYYmIiEg7kY4eLBGRTsPilcmkKnicwaZwH3J2aqp2ERERSUrrNO0iIvu6cLyCKts1K+b27H7kV23IYEQiIiLSnijBEhHZA6F4JVWWVbtc2WUAvePFJBKtn5FVREREOj4lWC30xBNPYGZ8/PHHjdYpKipi7NgmZ6LfI5988gnHHnssEyZMYNSoUVx++eVA8iHBzzzTulvcLrvsMvr27ZvWeEU6g1C8kmp2JVjebTB92Mqm0u0ZjEpERETaCyVYLTRr1iymTJnCrFmzGlwfi8VavY94PF5n+bvf/S7XXnstCxcuZPHixXznO98B0pNgXXLJJfzzn/9sVRsinVE4UUl1aFeCldVjCCFzitcuz2BUIiIi0l50rEkunv0erH8/vW32Hwcn/bzJKtu3b2fu3Lm8/PLLnHrqqfz0pz8FYM6cOfz4xz+mR48efPzxx/zrX/8iFotx/vnns2DBAsaMGcNf/vIXunTpwosvvsj1119PLBZj0qRJ/P73vyc7O5vCwkKmT5/O888/z4033si5555bu99169YxePDg2uVx48ZRVVXFTTfdRHl5OXPnzuX73/8+p5xyCt/5znf44IMPqK6uZsaMGZx++unce++9PP7445SWlrJmzRouuOACfvKTnwBw9NFHU1RU1ORxv/LKK1x99dUAmBmvvvoqXbt25cYbb+TZZ5/FzPjRj37E9OnTmTNnDj/5yU/o3r0777//Pueccw7jxo3jN7/5DeXl5TzxxBPsv//+/P3vf+dnP/sZVVVV9OrViwcffJB+/frV2e+5557LhRdeyMknnwwkk8FTTjmFs88+u2XXVKQNRRKVxCyvdjmv7zAASjesgDHjMxWWiIiItBPqwWqBJ598kmnTpjFixAh69erF/Pnza9ctWLCA3/zmN3z66adAcljft771LRYvXkxBQQG/+93vqKio4JJLLmH27Nm8//77xGIxfv/739e20atXLxYsWFAnuQK49tprOf744znppJO47bbb2Lp1K1lZWdx8881Mnz6dhQsXMn36dG655RaOP/543n77bV5++WVuuOEGduzYAcDbb7/No48+yqJFi/jb3/7GvHnzWnzct956K7/97W9ZuHAhr732Grm5uTz22GMsXLiQ9957jxdeeIEbbriBdeuSM6i99957zJw5k8WLF3P//ffz6aef8vbbb/ONb3yDO+64A4ApU6bw5ptv8u6773Luuefyi1/8Yrf9Tp8+nYcffhiAqqoqXnzxxdpkSyTToolKYqFdk1z0HLgfABWbVmYqJBEREWlHOlYPVjM9TW1l1qxZtT055557LrNmzeKwww4D4PDDD2f48OG1dYcMGcJRRx0FwAUXXMDtt9/Of/zHfzB8+HBGjBgBwMUXX8xvf/tbrrnmGiCZUDTk0ksv5cQTT+Sf//wnTz75JHfddRfvvffebvX+9a9/8dRTT3HrrbcCUFFRwcqVyS97//Ef/0GvXr0A+MpXvsLcuXOZOHFii477qKOO4r/+6784//zz+cpXvsLgwYOZO3cu5513HuFwmH79+nHMMcfwzjvvUFBQwKRJkxgwYAAA+++/PyeccAKQ7Hl7+eWXAVi9ejXTp09n3bp1VFVV1Tl3NU466SSuvvpqKisr+ec//8nRRx9Nbm5ui2IWaWthryaeMkSwa59kD1Z8qx42LCIiIurBalZJSQkvvfQS3/jGNygsLOSXv/wlDz/8MO7JGcPy8vLq1K95Nk5jyw2p30aqgQMHctlll/Hkk08SiUT44IMPdqvj7jz66KMsXLiQhQsXsnLlSkaNGvW546nxve99jz/+8Y+Ul5dz1FFHNTnBB0B29q6/6odCodrlUChUe4/ad77zHa666iref/997rrrLioqKnZrJycnh2OPPZbnnnuO2bNnN5qAimRCxKtJhHclWGTns408Itv1sGERERFRgtWsRx55hAsvvJAVK1ZQVFTEqlWrGD58OK+99lqD9VeuXMkbb7wBwF//+lemTJnCyJEjKSoqYsmSJQDcf//9HHPMMc3u+5///CfV1dUArF+/ns2bNzNo0CDy8/PZtm1bbb0TTzyRO+64ozbpe/fdd2vXPf/885SUlNTeB1XTu9YSS5cuZdy4cfz3f/83kyZN4uOPP2bq1KnMnj2beDxOcXExr776KocffniL2ywtLWXQoEEA3HfffY3Wmz59On/+85957bXXmDZtWovbF2lrEa8mkdKDBbA12pcu5eszFJGIiIi0J0qwmjFr1izOPPPMOmVnnXVWo7MJjhw5kt/+9reMGjWKLVu2cOWVV5KTk8Of//xnvvrVrzJu3DhCoRBXXHFFs/v+17/+xdixYzn44IM58cQT+eUvf0n//v057rjj+Oijj5gwYQKzZ8/mxz/+MdXV1YwfP54xY8bw4x//uLaNww8/nLPOOovx48dz1lln1Q4PPO+88zjyyCP55JNPGDx4MPfccw8AM2fOZObMmQD8+te/ZuzYsYwfP55oNMpJJ53EmWeeyfjx4zn44IM5/vjj+cUvfkH//v1bfD5nzJjBV7/6VQ477DB69+5dWz5v3jy+8Y1v1C6fcMIJvPLKK3zpS18iKyuroaZEMiLi1XgoWqdsR+4AulVvzFBEIiIi0p5YTa9HezBx4kSvPwnD4sWLa4e7yZ659957mTdvHnfeeWemQ8kY/fuRdKua0YtXep7Df3x310Q1H9x9GQPXPEf2D1aQl92xbm0VERGRz8fM5rv7bpMbqAdLRKSl3Mkihofr9qqGug2mp21n/aaSDAUmIiIi7YUSrH3YJZdc0ql7r0TSLp68J9IidROsnN7JmQQ3r9PDhkVERDq7DpFgtadhjNJx6N+NpF28EgAPZ9cpLuhXCMC2DUV7OSARERFpb9p9gpWTk8PmzZv1ZVn2iLuzefNmcnJyMh2K7EuCHizqJVjd+yef51ZdoocNi4iIdHZtfje2mU0DfgOEgT+6+x49LXjw4MGsXr2a4uLiNolP9l05OTkMHjw402HIPiRRXUEICEXqziIY6Z589AClehaWiIhIZ9emCZaZhYHfAv8BrAbeMbOn3P2jlrYRjUYZPnx4W4UoItJi1VUVZANE6vZgEclmS6gHWTvWZiIsERERaUfaeojg4cASd1/m7lXAQ8DpbbxPEZE2UV1VAUAosvuz2cqy+pFXuWFvhyQiIiLtTFsnWIOAVSnLq4OyWmZ2uZnNM7N5GgYoIu1ZVWWQYEWzd1tX0aU/veIbiSd0v6iIiEhnlvFJLtz9bnef6O4T+/Tpk+lwREQaFavtwdp98pRE/mAGsJnisoq9HZaIiIi0I22dYK0BhqQsDw7KREQ6nOqq5DTt4QZ6sKI9hpBnlazfqGGCIiIinVlbJ1jvAAea2XAzywLOBZ5q432KiLSJeHWyd6qhBKtL3+TDhreu18OGRUREOrM2nUXQ3WNmdhXwHMlp2v/k7h+25T5FRNpKrKYHK2v3IYLdgocN7ywu2osRiYiISHvT5s/BcvdngGfaej8iIm2t5h6sSAM9WHl9CgGIb1m9N0MSERGRdibjk1yIiHQUiepkD1Yke/ceLLr2JUaY0DbdZioiItKZKcESEWmheE2C1UAPFqEwWyO9ydm5bi9HJSIiIu2JEiwRkRaq6cGKNtSDBWzP7k+3as0iKCIi0pkpwRIRaaFELEiwsnIbXF/ddSB9E5vYVlG9N8MSERGRdkQJlohIC9UkWFlZDQwRBCgYRH8rYd3WnXsxKhEREWlPlGCJiLSQNzNEMKv3MLIsTvHaFXszLBEREWlHlGCJiLSQBz1Y2TkNDxHM738gANs3LN1rMYmIiEj7ogRLRKSFLFZOhUfJjkYbXN9t4AEAxDYt35thiYiISDuiBEtEpIUsVk452UTD1uD6cI+hJDBCpRoiKCIi0lkpwRIRaaFQrJwKsjBrOMEikk1JqBe521ft3cBERESk3VCCJSLSQqFYOZXWyAyCgdKcQXSv1MOGRUREOislWCIiLRSOV1BJwzMI1ijPG0y/xHpi8cReikpERETaEyVYIiItFI5XNNuDleg+jAFWwoYtpXspKhEREWlPlGCJiLRQJF5BVajpBCvaez8AStYs2RshiYiISDujBEtEpIUiiQrizSRY+f33B2D7eiVYIiIinVGrEiwz+6WZfWxmi8zscTPrHpQXmlm5mS0MXjPTEq2ISAZFEhXEwg0/ZLhGzyEjAKjSs7BEREQ6pdb2YD0PjHX38cCnwPdT1i119wnB64pW7kdEJOOyEpXEw01PctGlxyAqiBLaqmdhiYiIdEatSrDc/V/uHgsW3wQGtz4kEZH2KcsrSESaTrAwY2O4v56FJSIi0kml8x6sy4BnU5aHm9m7ZvaKmU1N435ERDIi2yvxSJdm65VmD6Jb5dq9EJGIiIi0N5HmKpjZC0D/Blb90N2fDOr8EIgBDwbr1gFD3X2zmR0GPGFmY9y9rIH2LwcuBxg6dOjnOwoRkbaWSJBDFR5p+h4sgMqugync8R6JeIJQWHMJiYiIdCbNJlju/qWm1pvZJcApwBfd3YNtKoHK4P18M1sKjADmNdD+3cDdABMnTvQ9jF9EZO+IVSR/ZjWfYNFzOPkby9mwaQP9+g1o27hERESkXWntLILTgBuB09x9Z0p5HzMLB+/3Aw4ElrVmXyIimRSrTP6KC0WbT7By+iSfhbVp5SdtGpOIiIi0P60du3InkA88X2869qOBRWa2EHgEuMLdS1q5LxGRjNm5fQsAlpPfbN3ugw4EYJuehSUiItLpNDtEsCnufkAj5Y8Cj7ambRGR9mRn6SYKgHCXns3W7TMkmWDFNqnjXkREpLPR3dciIi1QXroJgGh+8wlWdl53tlBAqFRTtYuIiHQ2SrBERFqgcntylHNOfq8W1S+J9qPLzjVtGZKIiIi0Q0qwRERaoHpbMsHK69ayBGt77iB6VK1ry5BERESkHVKCJSLSAvGdyUku8rr3blH9WP4Q+nsxFVXVbRmWiIiItDNKsEREWqK8hAqP0i2/oEXVI70KybZq1q1Z2caBiYiISHuiBEtEpCUqtlJKV3Kj4RZV79J3OAAlaz5ry6hERESknVGCJSLSAuHKUnZYHmbWovo9ByefYrFzg6ZqFxER6UyUYImItEB2xSa2R3u0uH7PgckEK1ZS1EYRiYiISHukBEtEpAW6V29kR3b/Fte3rDy2WDciZXoWloiISGeiBEtEpDmJOD29hOq8AXu02ZboAPLK17ZRUCIiItIeKcESEWnGzpI1REjgBYP3bLu8QfSqXo+7t1FkIiIi0t4owRIRaUbJuuUAZPUcskfbxfKHMIBiynZWtkVYIiIi0g4pwRIRacbWtUsAKOhfuEfbhXoOI8vibFq3og2iEhERkfZICZaISDMq1n5EzEMMOXDcHm2XGzwLq2z90rYIS0RERNohJVgiIs3I2vwxq0MDKOiav0fbFfRPTtVeUby8LcISERGRdkgJlohIM3rvXMqG3P33eLueAwoBiG1dk+aIREREpL1qVYJlZjPMbI2ZLQxeX05Z930zW2Jmn5jZia0PVURk79u+ZQMDE+uo7D12j7eN5uZTRh6hbZqqXUREpLOIpKGN29z91tQCMxsNnAuMAQYCL5jZCHePp2F/IiJ7zYoFzzMGKDjo2M+1/ZZwb7LLN6Q1JhEREWm/2mqI4OnAQ+5e6e7LgSXA4W20LxGRNlPxyUuUexYHTpj6ubbfnt2X/MqNaY5KRERE2qt0JFhXmdkiM/uTmfUIygYBq1LqrA7KdmNml5vZPDObV1xcnIZwRETSwxNxhhW/xIddJpHXpcvnaqMqtx894pvTHJmIiIi0V80mWGb2gpl90MDrdOD3wP7ABGAd8H97GoC73+3uE919Yp8+ffZ0cxGRNrPknefo7VuIHXTa524jkT+Q3mylbMfONEYmIiIi7VWz92C5+5da0pCZ/QH4R7C4BhiSsnpwUCYi0mHsmHsXpZ7H6OO/9rnbiHQfRMicTetXUbD/yDRGJyIiIu1Ra2cRHJCyeCbwQfD+KeBcM8s2s+HAgcDbrdmXiMjetObjdxhf9gqL+n+FgvyCz91OTq/k35rKNhSlKTIRERFpz1o7i+AvzGwC4EAR8J8A7v6hmT0MfATEgG9rBkER6Ug2PfUjutKFg876UavaKegzFICdm1anIywRERFp51qVYLn7hU2suwW4pTXti4hkwvsv/pWDd77JG/tdxZF9+7eqrR7Bw4bjpRolLSIi0hm01TTtIiId0rp1qxnw2vdZEhrOIdNb13sFkFPQm0qiWJkeNiwiItIZKMESEQlUVFRQfM+55PsOsr96Fzk5ua1v1IzNod5k7Vzf+rZERESk3WvtPVgiIvsEd+edu65gaux9PjjiF4wddUTa2i6N9iFPDxuu5YkE27YWs3n9Kso2raG8ZC2JnVvwqh14VTlU7yCcqAYLQSiEWxiiXbDc7oTyehDN60l2fm+69x9On4HDyMrKyvQhiYiI1FKCJSICvPG325i65XHmDzqfw778n2ltuyKnL31LF6W1zY5g2+a1rPt0HqWrPia2aQnZZSvoWbmaAYkNFFg1jc3NWE42VUQJkUi+PEGuVTVYN+7GBuvJlkhfduT2p7rrQELdBpHdcyj5/QrpPXA/8nsNwEKZHbCRiCeoqqqgsrKC6sqdVFfspLqqgnhVOdWVFcSrK4hVV5PwBDi4J7DkGxzHANzBDAtFCIWjhCJRLBwhHI4QikQJh6OEo8mfoUiESCSr9mc4EiESiRAOhwmHIlg4jFkIzDJzQtxTfqbhfYs0c6zNnouWb+/uKe93rU+Ntk6deu2HzAgZWJ2Ymth/KJx8iUi7oARLRDq9j956nokf/owPuhzGIZf+Ju3tx/IG0HvrHGKxOJHIvvclyBMJ1iz7kPWL/0312kV03fIxAyqW0Jut5Ad1yj2LDZGBbO0ynLVdj4aCQWR1H0DXXgPp1mcwed17k5uXTzQ7j1wz6g/OTMRibN9WwvYtm9hZtomKrRup2LyK+NaVhLetJXfnOvpvX0zvsrlkr6uus22VRygO9aY0qy87s3qRyCrAs7tjud2wLt2xaG5twhIOZ0E4iifiJOLVeO2rCo/FSFSXk6jaCVU7oLqcUGwnoeqdhOPlROLlROIVRBMVZCfKyfYKcqgky6vIsWpygJy9cUH2QNyNOCGcEPHalNZIWG16i+EYTohkQmNQbzlZFiIBwTqrrZdIWb8nyVDH1sK0KG12kMuqaX/moMkn7YW9iUhzlGCJSKe2Yc0y+j77DTaG+jL0P2cTikTTv5OCgWSvjbFx0zr69h+c/vb3svId21i68FW2fvo6eRvnU1j+IYPZxmCSycyqyFCWFRzBx33G0GXIwfTbbzwDBhVSGP78vUihSISCHn0p6NG3yXqJeILiTWsoWVvE9g1FVJasxEvXEN2xlvzKDfTb/gldfAf5vp0s+/xPD0m4UU4WFZZDZfCqCuVQHcqlMquA0kgO8XAuHu2CR3Ihkl37skgOoWgOFskmlJV8H45mE4lECYVqepWszk/DcCPZ1ZGoJh6L4fEYiXiMRLyaRDyWkgwm13kieMWrIREnkYhDzcsTmCfAk+/xeLCcLDffVcchJU0KflrdNMpTYq3pjXFCtfWSRcn3ycOoqc+uNmsEvTa1dWrLUsprqxuN9TxZIwsNJz/eYCJktaXeRAeXYQ0kj6n1zetUb3L/NVXdPZmyevK9s6vXa9dysu7otY/R5bn/onTk4XTr0auxQEVkL1GCJSKdVmXFDkr/PJ1BXsHOcx+loHufNtlPVs9kUrVl/YoOmWBVlO/ks3kvsu3jF+m98d8Mr1rC2CA5WRUaxJLuU/HBk+g18iiGjZzA/lnZ7J+hWEPhEH36DaFPvyHA1EbrJeIJSndsY0fpJuJVFcSqq4jHqohXV5GIVREKhQlHs7BwlEg0i3Aki1A4SnZuF3LzupKT05W8cIi8vXdoIo365K3j2O+Z81l811c56L/+qfsSRTJMCZaIdE7uvH/3N5kY+5QFX7iTQw+a2Ga76ho8bHhH8UrgqDbbT7p4IkHRR2+x8d1nyV0zlwPL32ecVRHzEEuiI3ln0AV0PeAohh9yLEN69GNIpgP+HELhEN0KutGtoFumQxFptZFHnMQ7q29i0vs/4d93XswRVz9AOLzvDUcW6SiUYDXh/VcfI/7GXVQOnUqP0cdTeNBhZGVnZzosEUmDd5+6g4klTzN30GVMObHRZ6anRbd+wwCo2rK6TffTGtVVlXzy1j/ZsegphhW/wnCKGQ4UhYawqN/p5I78IvtPOpGDCnpmOlQRacCks65h/rbVfKHoD7xz+7lMuOpBolH1ZIlkghKsJlRtL6VfxQoGf/ImfPJLKj3Kp9H92NJtFPF+48gfNIr+haPoPWAY1lln73HHEzHi8TiJhJPwBIlE8PIEibiTcMcT8eTYcffkeP/g5mjcMd/1vukZoRoYAN/goPgGyhq89cMaqGlBs7vfD1C3ZWtodb26tlvdmkVvIG5rqKyRY969qjW0p9p46tavW6t2Mq86Zd5AGXUqesraFrdR+9N3K6xz5VuwD09tooF/Nt5EGzu2rGP/Bf/Lh1njmHzpL3ffOM169h1M3I1E6Zo239ee2F5WwqdzH8c/fpoDy95gLDup8Cgf501k5f5XMWzy6RQOGk5hpgMVkRY57JJbeePeCEcW/Z5Ft57EwMv+Qu9+gzIdVrvkiTixWIyqqiqqqquJxapq72v0eDWJWBxPVCfvXYxXk4jHk99n3En4rv9bjLr/z9b5FpByC+Fu9WzXdwQLpby30K71VrtVcBui7drOQljt94HkfZo1dWp2ZBYKbnNMtpM6c6gF93ZS227QSu2MqzVloZTvHan3PO5+f2TNPZV1DrTRbfaQhYhEs4m04l7evcm8oW8mGTJx4kSfN29epsOow93ZsGoJ695/mYqVC+ha8hHDqj+jgJ21dSo8yrrwAMqifajM7kWiSx+sa18srxeRnK5EcvPJyu1KVpcCsnK6EopkEQqHsFCYcCiMhUOELYyFjHg8RjwWIx6rIhGLEYtVJ29gjlUTjyVvZE7EqoLlShKx6mA5+fJ4NV7zM14FsSpIxCBeBYlqLF4NiWpCNT+9GkvECCeqMU/+DHmcsFcHrxgRjxEmToRqIh4nSowIyZ/RVtwkLpJJlR6l5OI5DNhv7F7Z38YZwynqdgSHX/vQXtlfY4rXLGP5638jd9lzjCxfSJbF2UI+n3WfSmT0yRz0hVPp0lXD5kQ6snmP3sa4RbdQavms+cL/x4QvfS3jjyr4XNyJ7dxK6dYtbC8rYXvZFqp2lBKrKCNRXoZXlEHlNqxqO6GqbVisnFCsglC8knCikqhXEk1UEfXkbJ5ZVJFNFdleRcQSmT462QNz4gez/asPccr4gZkOpQ4zm+/uu91joB6sZpgZ/YceSP+hB9aWeSLOpjVL2FC0mG1rPyWxeRl5O1bSpbKYfttW0qN0K9lW3USre1+Vh4lZhBjJV7VFiBMhbjWvKAmLEA9FSFgWMetCVSiKh6IkQlEIRfDwruWERfFQhEQoK/kwUAsFf4EJ/mJiNX/x2PVyC5E621Ttz9rZpHbNPrW7BmZoauhAG/yDwe6/RM13b7Fm795QV0rq+0b/JrF7T0n9maW8gbJk/YaOr6EdNRB4TdyNbJ/atKXUrT1/wbN1kut3+xNcyrYNlDVYr6Fes7qNNDlbVyOzfe1W1tS+G6hTv3q3kVMZspeSK0g+bDi7fMNe218NTyRYsfgdNrz9KL3WvMgBsSX0AVbZQOb3n07BhNMZOfGLHB5tg9kTRSQjJp51LUUHfQF79Osc8u9v8+E7M0l84buMnvoVwpHMffWLVWynrGQDO7ZsYMeWjVSWFRPbVkxixyZC5SVEKraQVb2FLtVbyU+Uku/biBKnF9DU3Ig7PJtyy6XccolZNrFQFrFQNrFwVypCOcTDWSTCOcTD2Xg4m0Q4BwtHa1+hcAQLRyAUCZ4plvxpoZqyCFiYUMhqe41S/09JndGR2ve7/x+cHKdTM5pn14yQtWtT3idH/VCzxe7PgAtm+KyZXBR33BO7dpQyUqh2P6ntpwbndevuts+a9tyDyT+93n5qyoL3db7TpK6vmVGzzreQFqnKHcRB/Rt7emL7ox6sNuCJBGWlW9ixdSOVO8uo3LmNyvLtxHZuI1G5HU/EMY+T8ASeSE6Pm/zpWDj5wQ6FohCO1PngWyj5MMnk81qyCEeziESzg59ZhCPZRLOyiWRlE4lmEc3KJhrNJhyJfr7uWBFJmw9uO5380k8Y+pPFDQ4HTad4dRWfvv1Ptr33d4YUz2GAbyThxqfRkZQM+RIDDj+LwpETOuZftEWkxaoqK1n45K/Z76Pf0ZutbKAXK3sfTeSA4xhw0OH0GTLic0+GEavYwbYtG9m2ZSM7S4upKC2mettmEjs2YeUlhCtKyK4sITdWSl68lG5eRi6VDbYVd2Mr+ZSFCtgR7kZ5tDtVWT2J5/SALj2JdOlGVl53cvK6k53Xjeyu3cju2p2crj3Iyysgoj8QSYY01oOlBEtEZC9Y8JfvMWHpTEquXkrvnul/Tk1ZyUaW/Ptx+PSfHFj2BvmUU+FRFuceRuX+J7LfUWfTd+DQtO9XRNq/iopyPnz5IULvP8yIHfPJs2Sis8Oz2Rzqxc5oD8qjPYiHc7BQBLcQcYdwoqr2AdqReDnReDl5iW0U+Da6WMPJEsA2z6XUdiVLlVk9iOX0xHN7EsrrTSS/D9kFfcjt3pf8nv3o3qMPuTmakEM6Hg0RFBHJoOwhhxBa5qz75B16Hzmt1e15Is7KxfNY9+6zFKx8gRGVH3KoJdhENz7sdjzhUSdx0BdO5ZCC7q0PXkQ6tJycXA476VI46VIqK8tZ/P4blK1YRKh4MaHt68mqLKFH+UoiXkXIE4SIE8aptGwqLZsqyyYWzqUypxslWQcRy+5OIqcndOlBtGtvsgt606V7X7r26Ev3Xv3Jz80lP9MHLZJBSrBERPaCQaOPhFdg66f/hs+ZYK1d/jFrFjxLuOgVhm+bzzDKGAYsCxXy9uCL6XHIaYw45Bgm6/k3ItKI7OxcRk08HiYen+lQRPZZrUqwzGw2MDJY7A5sdfcJZlYILAY+Cda96e5XtGZfIiIdWfd+Q1ka3p/+q54Gbm62flVlBSs+eIOtn75OZO08Bm5/n4G+iYFAMT34rGAyPvwYhkw8if2G7M9+bX4EIiIi0hKtSrDcfXrNezP7P6A0ZfVSd5/QmvZFRPYlxQeczeRP/h8Ln7yDCaddlZw5Mx5j84aVrF/6PjtWvUe4eDHdt33KkOoVHBjMRrqO3qzKG0vR4MPpP2EaQ0ceQh9NUCEiItIupWWSC0tOibUSON7dPwt6sP7h7ns0B7ImuRCRfVllZQVLbj2eMdUfUkpXqonS3UvrPI9lE91Yk7U/5T1HkVV4OAPGHkP/QYVtPvOgiIiI7Jm2nuRiKrDB3T9LKRtuZu8CZcCP3P21RgK7HLgcYOhQzXAlIvuu7Owc9r/uReY++Vts/SLCiRjxvL6ECgaSP/gg+h14KL37DqK3kikREZEOq9keLDN7AejfwKofuvuTQZ3fA0vc/f+C5Wygq7tvNrPDgCeAMe5e1tS+1IMlIiIiIiIdwefuwXL3LzXTcAT4CnBYyjaVkHyanLvPN7OlwAhA2ZOIiIiIiOyz0nGX9JeAj919dU2BmfUxs3Dwfj/gQGBZGvYlIiIiIiLSbqXjHqxzgVn1yo4GbjazaiABXOHuJWnYl4iIiIiISLuVllkE08XMioEVmY6jnt7ApkwHIXuNrnfnoWvdeehady663p2HrnXn0h6v9zB371O/sF0lWO2Rmc1r6OY12Tfpenceutadh65156Lr3XnoWncuHel660mVIiIiIiIiaaIES0REREREJE2UYDXv7kwHIHuVrnfnoWvdeehady663p2HrnXn0mGut+7BEhERERERSRP1YImIiIiIiKSJEiwREREREZE0UYLVBDObZmafmNkSM/tepuOR9DGzIWb2spl9ZGYfmtnVQXlPM3vezD4LfvbIdKySHmYWNrN3zewfwfJwM3sr+HzPNrOsTMco6WFm3c3sETP72MwWm9mR+mzvm8zs2uB3+AdmNsvMcvTZ3neY2Z/MbKOZfZBS1uBn2ZJuD677IjM7NHORy55q5Fr/Mvg9vsjMHjez7inrvh9c60/M7MSMBN0EJViNMLMw8FvgJGA0cJ6Zjc5sVJJGMeA6dx8NTAa+HVzf7wEvuvuBwIvBsuwbrgYWpyz/P+A2dz8A2AJ8PSNRSVv4DfBPdz8IOJjkdddnex9jZoOA7wIT3X0sEAbORZ/tfcm9wLR6ZY19lk8CDgxelwO/30sxSnrcy+7X+nlgrLuPBz4Fvg8QfF87FxgTbPO74Ht7u6EEq3GHA0vcfZm7VwEPAadnOCZJE3df5+4LgvfbSH4BG0TyGt8XVLsPOCMjAUpamdlg4GTgj8GyAccDjwRVdK33EWbWDTgauAfA3avcfSv6bO+rIkCumUWALsA69NneZ7j7q0BJveLGPsunA3/xpDeB7mY2YK8EKq3W0LV293+5eyxYfBMYHLw/HXjI3SvdfTmwhOT39nZDCVbjBgGrUpZXB2WyjzGzQuAQ4C2gn7uvC1atB/plKi5Jq18DNwKJYLkXsDXlF7c+3/uO4UAx8OdgSOgfzSwPfbb3Oe6+BrgVWEkysSoF5qPP9r6usc+yvrft2y4Dng3et/trrQRLOjUz6wo8Clzj7mWp6zz5DAM9x6CDM7NTgI3uPj/TscheEQEOBX7v7ocAO6g3HFCf7X1DcO/N6SST6oFAHrsPMZJ9mD7LnYOZ/ZDkrR0PZjqWllKC1bg1wJCU5cFBmewjzCxKMrl60N0fC4o31AwpCH5uzFR8kjZHAaeZWRHJob7Hk7xHp3swrAj0+d6XrAZWu/tbwfIjJBMufbb3PV8Clrt7sbtXA4+R/Lzrs71va+yzrO9t+yAzuwQ4BTjfdz28t91fayVYjXsHODCYjSiL5M10T2U4JkmT4B6ce4DF7v6rlFVPARcH7y8GntzbsUl6ufv33X2wuxeS/By/5O7nAy8DZwfVdK33Ee6+HlhlZiODoi8CH6HP9r5oJTDZzLoEv9NrrrU+2/u2xj7LTwEXBbMJTgZKU4YSSgdkZtNIDu8/zd13pqx6CjjXzLLNbDjJiU3ezkSMjbFdyaDUZ2ZfJnnvRhj4k7vfktmIJF3MbArwGvA+u+7L+QHJ+7AeBoYCK4Bz3L3+DbbSQZnZscD17n6Kme1HskerJ/AucIG7V2YwPEkTM5tAckKTLGAZcCnJPyjqs72PMbOfAtNJDh96F/gGyXsx9NneB5jZLOBYoDewAfgJ8AQNfJaDJPtOksNEdwKXuvu8DIQtn0Mj1/r7QDawOaj2prtfEdT/Icn7smIkb/N4tn6bmaQES0REREREJE00RFBERERERCRNlGCJiIiIiIikiRIsERERERGRNFGCJSIiIiIikiZKsERERERERNJECZaIiIiIiEiaKMESERERERFJEyVYIiIiIiIiaaIES0REREREJE2UYImIiIiIiKSJEiwREREREZE0UYIlIiIiIiKSJkqwRETaGTMrNDM3s0imY5HOwcw+NLNjMx2HiMi+QAmWiIh0eGY208y2B68qM6tOWX420/G1d+4+xt3npLNNMxtkZk+aWYmZrTazK9LZvohIe2XunukYRET2KWYWcfdYK7YvBJYD0da001mZ2QzgAHe/oIF1rbo2e1NHirUhZvYy8B5wAzAaeBk4y91fzmhgIiJtTD1YIiJpYGZFZvbfZrYI2GFmETObbGb/NrOtZvZe6hAsM5tjZv9rZm+bWVnwl/6ejbR9qZktNrNtZrbMzP6z3vrTzWxh0M5SM5sWlHczs3vMbJ2ZrTGzn5lZuJnj2N/MXjKzzWa2ycweNLPuKetKzOzQYHmgmRXXHJeZnRYMNdsaHN+oeufnejNbZGalZjbbzHL2/EzvuUaujZvZASl17jWzn6UsnxKc063BNRzfwn0dG/TW/CA4f0Vmdn7K+pPN7N3gWq0KksGadTVDQ79uZiuBl4Lyv5nZ+uC8vWpmY+rF/TszezborXvdzPqb2a/NbIuZfWxmh7TwHH2pJcfYwvPQFTgWuMXdq939PeAR4LJ07UNEpL1SgiUikj7nAScD3YF+wNPAz4CewPXAo2bWJ6X+RSS/cA4AYsDtjbS7ETgFKAAuBW5LSXIOB/5CspegO3A0UBRsd2/Q7gHAIcAJwDeaOQYD/hcYCIwChgAzANx9KfDfwANm1gX4M3Cfu88xsxHALOAaoA/wDPB3M8tKafscYBowHBgPXNJgAGZTgsSmsdeUZo6hIbXXprleoSAh+RPwn0Av4C7gKTPLbuG++gO9gUHAxcDdZjYyWLeD5HXvHsRzpZmdUW/7Y0ie+xOD5WeBA4G+wALgwXr1zwF+FOyzEngjqNebZFLzqxbG3SAz+15T16Oxzer9rHk/tjWxiIh0BEqwRETS53Z3X+Xu5cAFwDPu/oy7J9z9eWAe8OWU+ve7+wfuvgP4MXBOQz1M7v60uy/1pFeAfwFTg9VfB/7k7s8H+1nj7h+bWb9gX9e4+w533wjcBpzb1AG4+5KgrUp3Lyb55fyYlPV/AJYAb5FMDH8YrJoOPB1sWw3cCuQCX6h3fta6ewnwd2BCIzHMdffuTbzmNnUMjUi9Ns25HLjL3d9y97i730cycZm8B/v7cXAOXyGZaJ8D4O5z3P394FotIpmUHlNv2xnBNSsPtvmTu29z90qSye7BZtYtpf7j7j7f3SuAx4EKd/+Lu8eB2SST68/N3X/e1PVoZJttwOvAj80sJ/iDwFlAl9bEIiLSESjBEhFJn1Up74cBX633l/4pJJOShuqvAKIkex3qMLOTzOzNYHjeVpKJU029IcDSBmIZFrS3LmX/d5HsBWmUmfUzs4eCIYVlwAMNxPQHkj0RdwRf+iHZ47WipoK7J4LjG5Sy3fqU9zuBrk3Fkmarmq9SaxhwXb1rN4TkMbbEliBprrGiZlszO8LMXg6GVpYCV7D7+a2N1czCZvZzSw79LGNX72TqNhtS3pc3sLw3z3Oq80n2Vq4Cfk/y39LqDMUiIrLXKMESEUmf1FmDVpHsoUr9a3+eu/88pc6QlPdDgWpgU2qDwbC0R0n2CPULegyeYdfQq1XA/g3Esopkr0vvlP0XuPuYBuqm+p/gOMa5ewHJnrjaYV7BvTW/Bu4BZtiu+8bWkkxMaupZcHxrmtnfbsxsqu2aAbCh19TmW9lN/RmddlK3N6V/yvtVJO8dSr12Xdx9Vgv31cPM8lKWh5I8PwB/BZ4Chrh7N2AmdYfR1Y/1a8DpwJeAbkBhUF5/mzYT3E/W6PVobDt3X+Hup7h7H3c/gmRS+PbeiltEJFOUYImItI0HgFPN7MSgFyInmABhcEqdC8xsdHA/083AI8GwrlRZQDZQDMTM7CSS91LVuAe41My+aGYhS06NfZC7ryM5lPD/zKwgWLe/mdUfjlZfPrAdKDWzQSTv7Ur1G2Ceu3+D5NC3mUH5w8DJQRxR4DqSCd6/mztR9bn7a+7etYnXa3vaZgMWAl8Lrs006g7T+wNwRdDbZGaWZ8nJKfKhdmKJe5tp/6dmlhUkg6cAfwvK84ESd68I7p/7WjPt5JM8j5tJJoT/swfHmBbu/j9NXY/GtjOzUWaWH5yHC0j+u23V/WAiIh2BEiwRkTbg7qtI9jz8gGRytIpkspL6e/d+khNRrAdygO820M62oPxhYAvJL+RPpax/m2DiC6AUeIVdPUkXkUzQPgq2fYS6QxQb8lPg0KCtp4HHalaY2ekkJ6m4Mij6L+BQMzvf3T8h2dt1B8leuFOBU929qpn9ZcrVJGPcSnIo2xM1K9x9HvBN4E6S520JdSfkGELy/qLGrA+2W0tyQoor3P3jYN23gJvNbBtwE8nr2pS/kBxiuIbkdXyzuQNrR04ElpE8F1cA04L7+kRE9ml6DpaISAaY2RzgAXf/Y6ZjkZYLZkV8DxgfTOZRf/2xJK/r4PrrRESkc4hkOgAREZGOIuiRG9VsRRER6bQ0RFBEpJMxs5mNTFgws/mtpSMys6FNTFQxNNPxiYjsSzREUEREREREJE3UgyUiIiIiIpIm7eoerN69e3thYWGmwxAREREREWnS/PnzN7l7n/rl7SrBKiwsZN68eZkOQ0REREREpElmtqKhcg0RFBERERERSRMlWCIiIiIiImmiBEtEpAnxhGZaFRERkZZrV/dgNaS6uprVq1dTUVGR6VCkg8nJyWHw4MFEo9FMhyId1LoNG1j++7NZMfGHnHfKtEyHIyIiIh1Au0+wVq9eTX5+PoWFhZhZpsORDsLd2bx5M6tXr2b48OGZDkc6qKKFL/MFFnHQO1+HU9ZkOhwRERHpANr9EMGKigp69eql5Er2iJnRq1cv9XxKq5RvXAZAT9vOhpLSDEcjIiIiHUG7T7AAJVfyuejfjbRWVuny2verPn03g5GIiIhIR9EhEiwRkUwoKF9NNWEAdqxcmNlgREREpENQgtUCZsZ1111Xu3zrrbcyY8aMzAWU4s033+SII45gwoQJjBo1qjauOXPm8O9///tzt7tixQoOPfRQJkyYwJgxY5g5c2aaIhbpOPKrink/OoFKorDho0yHIyIiIh1Au5/koj3Izs7mscce4/vf/z69e/dOW7vujrsTCn3+PPfiiy/m4Ycf5uCDDyYej/PJJ58AyQSra9eufOELX/hc7Q4YMIA33niD7Oxstm/fztixYznttNMYOHDg545VpKOJJiqIZfWnONGf3O2rMh2OiIiIdADqwWqBSCTC5Zdfzm233bbbuuLiYs466ywmTZrEpEmTeP311wGYMWMGt956a229sWPHUlRURFFRESNHjuSiiy5i7NixrFq1ihtuuIGxY8cybtw4Zs+eDSQTpGOPPZazzz6bgw46iPPPPx/33Z/Hs3HjRgYMGABAOBxm9OjRFBUVMXPmTG677TYmTJjAa6+91mScF154IUceeSQHHnggf/jDHwDIysoiOzsbgMrKShKJRIPn5vbbb2f06NGMHz+ec889F4CSkhLOOOMMxo8fz+TJk1m0aFHtvi6++GKmTp3KsGHDeOyxx7jxxhsZN24c06ZNo7q6GoCbb76ZSZMmMXbsWC6//PLdjjuRSFBYWMjWrVtryw488EA2bNjQ1GUU2WORRCUeyWFbzkC6V63LdDgiIiLSAXSoHqyf/v1DPlpbltY2Rw8s4Cenjmm23re//W3Gjx/PjTfeWKf86quv5tprr2XKlCmsXLmSE088kcWLFzfZ1meffcZ9993H5MmTefTRR1m4cCHvvfcemzZtYtKkSRx99NEAvPvuu3z44YcMHDiQo446itdff50pU6bUaevaa69l5MiRHHvssUybNo2LL76YwsJCrrjiCrp27cr1118PwNe+9rVG41y0aBFvvvkmO3bs4JBDDuHkk09m4MCBrFq1ipNPPpklS5bwy1/+ssHeq5///OcsX76c7Ozs2oTnJz/5CYcccghPPPEEL730EhdddBELFy4EYOnSpbz88st89NFHHHnkkTz66KP84he/4Mwzz+Tpp5/mjDPO4KqrruKmm24C4MILL+Qf//gHp556au0+Q6EQp59+Oo8//jiXXnopb731FsOGDaNfv37NXkeRPRH1KjySQ2V2N4Zvf5/KWJzsSDjTYYmIiEg7ph6sFiooKOCiiy7i9ttvr1P+wgsvcNVVVzFhwgROO+00ysrK2L59e5NtDRs2jMmTJwMwd+5czjvvPMLhMP369eOYY47hnXfeAeDwww9n8ODBhEIhJkyYQFFR0W5t3XTTTcybN48TTjiBv/71r0yb1vDDUJuK8/TTTyc3N5fevXtz3HHH8fbbbwMwZMgQFi1axJIlS7jvvvsa7CEaP348559/Pg888ACRSKT2mC688EIAjj/+eDZv3kxZWTIxPumkk4hGo4wbN454PF4b77hx42qP7+WXX+aII45g3LhxvPTSS3z44Ye77Xf69Om1vX0PPfQQ06dPb/Kci3weWSR7sEI9C+lmO1mvXlIRERFpRqt7sMxsCPAXoB/gwN3u/hszmwF8EygOqv7A3Z9pzb5a0tPUlq655hoOPfRQLr300tqyRCLBm2++SU5OTp26kUikzrC61Ocx5eXltWh/NUP0IDn8LxaLNVhv//3358orr+Sb3/wmffr0YfPmzbvVaSxO2H068/rLAwcOZOzYsbz22mucffbZddY9/fTTvPrqq/z973/nlltu4f3332/RMYVCIaLRaO2+QqEQsViMiooKvvWtbzFv3jyGDBnCjBkzGnyW1ZFHHsmSJUsoLi7miSee4Ec/+lGT+xX5PHK8ikQ4h5w+yYdVb1r1KcMG6T5EERERaVw6erBiwHXuPhqYDHzbzEYH625z9wnBq1XJVXvQs2dPzjnnHO65557ashNOOIE77rijdrlmKFxhYSELFiwAYMGCBSxfvpyGTJ06ldmzZxOPxykuLubVV1/l8MMPb3FMTz/9dO09Sp/9/+3dd3xc1Z3//9eZplHvXS5yb3LBFYwBE1oWQg+QDSTG2bBsCgu72U2y2RBCfnnsJvludjcLCQlLIGHpkIBTaKEEHMBgg8HduMhVsnqf0bTz+2PGsmxJtmyNNJL8fj4eeujec+899zO+vqP5zDn3nI8/xul0kpWVRXp6Oq2trSeME+C5557D7/dTX1/P66+/zsKFC9m/fz8+nw+AxsZGVq9ezdSpU486dyQSYd++fSxfvpwf/OAHNDc309bWxrJly3jkkUeA6LNkeXl5ZGRk9Ov1HE6m8vLyaGtr4+mnn+51P2MMV111Ff/wD//A9OnTyc3N7Vf9Iv0WCeM2YazLS3bpZADaqncmOCgREREZ7gacYFlrq6y178eWW4EtQOlA6x2u/vEf/5G6urqu9Z/85CesXbuW2bNnM2PGjK7hzK+55hoaGhqYOXMm99xzD1OmTOm1vquuuorZs2czZ84czj//fH74wx9SVFTU73gefvhhpk6dyty5c7npppt45JFHcDqdfOpTn+K3v/1t1yAXfcUJ0W5+y5cvZ8mSJXz729+mpKSELVu2sHjxYubMmcO5557L1772NSoqKgD4m7/5G9auXUs4HObGG2+koqKCefPmcdttt5GVlcVdd93FunXrmD17Nt/4xjf41a9+1e/Xk5WVxRe/+EVmzZrFxRdfzMKFC7u23XfffUfFff311/N///d/6h4ogyISiH7BYJ1eckuj92+4oTKBEYmIiMhIYHobme6UKzNmPPAGMAv4B2AF0AKsJdrK1djLMbcAtwCMHTt2/p49e47avmXLFqZPnx63GOVod91111GDYYw2+v8jp8rfXIP3Pyfz5sSvseymb9N6VzEfZF3EObf3/wsDERERGb2MMeustQuOLY/bIBfGmDTgGeB2a20L8DNgIjAXqAL+o7fjrLW/sNYusNYuyM/Pj1c4IiIDEuyMtmDhTgag3lVEqu9gAiMSERGRkSAuw7QbY9xEk6tHrLW/AbDWHuq2/X7g9/E4l8TXXXfdlegQRIalUGdHdMEdHRimxVtCdvue4xwhIiIiEocWLBMdBu4BYIu19sfdyou77XYVsHGg5xIRGSqHEyzjirZgBVJLyI/UEYnEr1u1iIiIjD7xaMFaCtwEbDDGrI+V/QvwGWPMXKJDt1cCfxuHc4mIDInDCZbDE5vaILOM9EM+autryc8vSGBkIiIiMpwNOMGy1q4GTC+bRvyw7CJy+grHRhE0sWewPDljAKg/uFsJloiIiPQpboNciIiMJqHYIBfGE02wUgvGA9B2qPc57URERERACVa/Pfvssxhj2Lp1a5/7VFZWMmvWrLidc9u2bZx33nnMnTuX6dOnc8sttwDRSYL/+MdTbyD0+/0sWrSIOXPmMHPmTL7zne/EK2SRUSMciHYRdMYGucgpmQCAv2FfwmISERGR4U8JVj899thjnH322Tz22GO9bg+FQgM+RzgcPmr9tttu44477mD9+vVs2bKFr371q8DAE6ykpCReffVVPvzwQ9avX88LL7zAO++8M6DYRUabSNAPgMuTAkBWfhkh64AmJVgiIiLSNyVY/dDW1sbq1at54IEHePzxx7vKX3/9dZYtW8bll1/OjBkzgGii9dnPfpbp06dz7bXX0tER/Rb8lVdeYd68eVRUVLBy5Uo6OzsBGD9+PF//+tc544wzeOqpp446b1VVFWVlZV3rFRUVBAIB7rzzTp544gnmzp3LE088QXt7OytXrmTRokXMmzeP5557DoCHHnqIK664gvPOO4/Jkyfz3e9+FwBjDGlpaQAEg0GCwSDRwSCP9tRTTzFr1izmzJnDOeecA0Rbv26++WYqKiqYN28er732Wte5rrzySi688ELGjx/PPffcw49//GPmzZvHkiVLaGhoAOD+++9n4cKFzJkzh2uuuabr36e7JUuWsGnTpq718847j7Vr1/b7eonEQyT2DJYzKdpF0Dhd1DnycLdrLiwRERHpW1zmwRoyz38DqjfEt86iCvjkvx93l+eee45LLrmEKVOmkJuby7p165g/fz4A77//Phs3bqS8vJzKykq2bdvGAw88wNKlS1m5ciU//elP+cpXvsKKFSt45ZVXmDJlCp/73Of42c9+xu233w5Abm4u77//fo/z3nHHHZx//vmcddZZXHTRRdx8881kZWVx9913s3btWu655x4A/uVf/oXzzz+fX/7ylzQ1NbFo0SIuuOACAN599102btxISkoKCxcu5NJLL2XBggWEw2Hmz5/Pjh07+PKXv8zixYt7nP/uu+/mxRdfpLS0lKamJgDuvfdejDFs2LCBrVu3ctFFF7F9+3YANm7cyAcffIDf72fSpEn84Ac/4IMPPuCOO+7g17/+NbfffjtXX301X/ziFwH413/9Vx544IGulrnDrr/+ep588km++93vUlVVRVVVFQsW9JgkW2RQ2a4WrOSusiZ3Pqn+6kSFJCIiIiOAWrD64bHHHuOGG24A4IYbbjiqm+CiRYsoLy/vWh8zZgxLly4F4MYbb2T16tVs27aN8vJypkyZAsDnP/953njjja5jrr/++l7Pe/PNN7NlyxY+/elP8/rrr7NkyZKulq/uXnrpJf793/+duXPnct555+H3+9m7dy8AF154Ibm5uSQnJ3P11VezevVqAJxOJ+vXr2f//v1dSdixli5dyooVK7j//vu7ui+uXr2aG2+8EYBp06Yxbty4rgRr+fLlpKenk5+fT2ZmJp/61KeAaMtbZWUlEE3Cli1bRkVFBY888shRLVWHXXfddTz99NMAPPnkk1x77bW9/vuIDCYbit5rriRvV1mHt5isYE2iQhIREZERYGS1YJ2gpWkwNDQ08Oqrr7JhwwaMMYTDYYwx/OhHPwIgNTX1qP2P7WrXW9e7Yx1bR3clJSWsXLmSlStXMmvWrF4TIWstzzzzDFOnTj2qfM2aNSeMJysri+XLl/PCCy/0GKDjvvvuY82aNfzhD39g/vz5rFu37rivIykpqWvZ4XB0rTscjq5n1FasWMGzzz7LnDlzeOihh3j99dd71FNaWkpubi4fffQRTzzxBPfdd99xzysyGCKhAAAu95EEK5ReQkHza4RCIVyukfX2KSIiIkNDLVgn8PTTT3PTTTexZ88eKisr2bdvH+Xl5bz55pu97r93717efvttAB599FHOPvtspk6dSmVlJTt27ADg4Ycf5txzzz3huV944QWCwSAA1dXV1NfXU1paSnp6Oq2trV37XXzxxfzP//wP1loAPvjgg65tL7/8Mg0NDfh8Pp599lmWLl1KbW1tV5c/n8/Hyy+/zLRp03qcf+fOnSxevJi7776b/Px89u3bx7Jly3jkkUcA2L59O3v37u2R2B1Pa2srxcXFBIPBrnp6c/311/PDH/6Q5uZmZs+e3e/6ReLFxhIst+dIgmUyx+AxYeoOHUhUWCIiIjLMKcE6gccee4yrrrrqqLJrrrmmz9EEp06dyr333sv06dNpbGzk7/7u7/B6vTz44IN8+tOfpqKiAofDwa233nrCc7/00ktdg0xcfPHF/OhHP6KoqIjly5ezefPmrkEuvv3tbxMMBpk9ezYzZ87k29/+dlcdixYt4pprrmH27Nlcc801LFiwgKqqKpYvX87s2bNZuHAhF154IZdddhkAd955J6tWrQLgn/7pn6ioqGDWrFmcddZZzJkzhy996UtEIhEqKiq4/vrreeihh45quTqR733veyxevJilS5celdStWrWKO++8s2v92muv5fHHH+e6667rd90i8WTDAcLWkORxd5Ul5UUnG26s2pmosERERGSYM4dbPYaDBQsW2GNHi9uyZQvTp09PUEQj20MPPXTUYBinI/3/kVP10YO3MaXyUfxfP0hWigeAyo1rGP/0Raxd9F8s+KubExyhiIiIJJIxZp21tsdIbGrBEhHpTThAABce15G3yZzS6IA2wYa9iYpKREREhjk9pT2KrVixghUrViQ6DJGRKRwkgJsU55EEKyMrnw6bBC16Bive9jV00O7vZFpJdqJDERERGZAR0YI1nLoxysih/zcyECYcIIgLp6PbyJvGUOfMx6PJhuPKWssT9/4rpT+fTnP9oUSHIyIiMiDDPsHyer3U19frw7KcFGst9fX1eL3eE+8s0gsTDhDC1WNqgxZPIWmabDiuNh1s4bbQQ6QbHwdf/M9EhyMiIjIgw76LYFlZGfv376e2tjbRocgI4/V6KSsrS3QYMlKFg4RMz7dIf0oxhQ0aRTCe9u7dxSwTncw8+cBfEhyNiIjIwAz7BMvtdlNeXp7oMETkNGMiAYK4e5RHMkrJb2iio6OdlJS+JwmX/mut2gVAlaOIwo7tEAmDw5ngqERERE7NoHcRNMZcYozZZozZYYz5xmCfT0QkHhyRAOFeWrDc2dG5sGoOVA5xRKOXv2EfALtzzyXZ+onUfpzgiERERE7doCZYxhgncC/wSWAG8BljzIzBPKeISDw4IkFCpmcLVnL+eACaq3cNcUSjl6st+kybb9xyABr2bkxkOCIiIgMy2C1Yi4Ad1tpd1toA8DhwxSCfU0RkwPpKsLKLo12WfXWaCyteUjqrCRgPqRMWA9B2cHuCIxIRETl1g51glQL7uq3vj5V1McbcYoxZa4xZq4EsRGS4cESCRBw9E6zcWIIValSCFS8ZgVqaXfmUFRfRYNMI1ql1UERERq6ED9Nurf2FtXaBtXZBfn5+osMREQHAaYNEemnBcnlTaSQDR6vmwoqXjHADHUl5FGcms9cW4W6uTHRIIiIip2ywE6wDwJhu62WxMhGRYc1pe2/BAmhwFZDcUTXEEY1OoXCEtEgrQU82Toeh1lNKWse+Ex8oIiIyTA12gvUeMNkYU26M8QA3AKsG+ZwiIgPmtCHCDk+v29q9hWQGDg1xRKNTsy9IlmnHejMB6EgdQ3aoBkKdCY5MRETk1AxqgmWtDQFfAV4EtgBPWms3DeY5RUTiwRUJYPtowQqklpIfqSUSsUMc1ejT2BEkizZMSjYA4axynESwjXsSHJmIiMipGfRnsKy1f7TWTrHWTrTWfn+wzyciEg8uQlhn7wmWySwl3fior9fAPAPV3NJKsgngTM0BwJ0/CYDWKs2FJSIiI1PCB7kQERmOXDaE7aOLYFLeWADqDmq0u4Fqb64DwJ2WC0BGyRQAWjRUu4iIjFBKsEREehFtweo9wUovGA9A6yF1YxsoX0s0wfKm5wFQXFJGm/XSWbszkWGJiIicMiVYIiK9cBOEProI5pRMBKCzvnIIIxqdAq31ACRnRROsspwU9tl8HE2aZ0xEREYmJVgiIseKRHAThr5asPLKCFontknDiQ9UqD2aYKVkRLsIpnhcHHIWkdymf1sRERmZlGCJiBwrHIj+7iPBwuGk1llAUtv+oYtplAp3NAJgknO6ylq8pWQFDoLVKI0iIjLyKMESETlGqLMjuuD29rlPU1IJGT7Nmz5QxhdNsEjO7ioLpI/Fa/3QXpegqERERE6dEiwRkWMEO9sBsK7kPvfxpY2hMFyFVSvLgDj9TYRxQFJ6V5kjZxwAoYbdiQpLRETklCnBEhE5RtAfbcEyx0mwyB5Pjmmlrk6tLAPhDjTT4UgHY7rKUgqic2E1H9BcWCIiMvIowRIROUbQH23BwtN3gpWUPwGAmn3bhiKkUSsp1ILPlXFUWVZpdJTGtuodiQhJRERkQJRgiYgcI9TpA8C4+06wMmMT4rZWKQkYiORwKwF35lFlZQW51NgsQhoGX0RERiAlWCIixwjGBrlwHKcFK3/sVAACtXpO6FT5g2HSbSuhpKMTrOLMZPbbfFwtmshZRERGHiVYIiLHiHQlWCl97uNNz6GZNJzNlUMU1ejT7AuSRRsRb/ZR5U6Hoc5dQppGaRQRkRFICZaIyDFCgWiC5TxOCxZAnauYlA7NhXWqGtoDZJl2HMlZPbZ1pJSSFayBcHDoAxMRERkAJVgiIsc4PA+W25t23P1aU0rJCRwcipBGpcbWdjJMB860vB7bQpnjcBKBZiWwIiIysijBEhE5Rig2iqA3JfW4+wXTx1IUqaEzEBiKsEadtsYaADwZ+T22uXLHA+Cr2TmUIYmIiAzYgBIsY8yPjDFbjTEfGWN+a4zJipWPN8b4jDHrYz/3xSVaEZEhEA5GRxFMSj5+guXMLSfJhKjer4EuToW/OZpgJWcV9tiWVhydC6vpoEZpFBGRkWWgLVgvA7OstbOB7cA3u23baa2dG/u5dYDnEREZMuFYF8GklON3EUwtiiYBDQe2D3pMo1Fncy0Aqb0kWPnF5QSsUy1YIiIy4gwowbLWvmStDcVW3wHKBh6SiEhi2dggFyne47dg5ZRG58LyHVIScCoi7dEEq7dnsMbmpXPA5mEbKoc4KhERkYGJ5zNYK4Hnu62XG2M+MMb82RizLI7nEREZVDbox2c9pHhdx90vt2QCIesgoiTglJiOuuhCas8EKyvFTZUpxNu2b4ijEhERGZjjf3oAjDF/Aop62fQta+1zsX2+BYSAR2LbqoCx1tp6Y8x84FljzExrbUsv9d8C3AIwduzYU3sVIiLxFPLhx0OW8/jfQTncHqod+Xha9g5RYKOLw9cYXUjO6bHNGENjUgkV/reGOCoREZGBOWGCZa294HjbjTErgMuAT1hrbeyYTqAztrzOGLMTmAKs7aX+XwC/AFiwYIE9yfhFROIv6COAB2PMCXdtTCoh3aehxE+Fp7OBdkc6qc7e/xR1ppWR3tAC/hbwZgxxdCIiIqdmoKMIXgL8M3C5tbajW3m+McYZW54ATAZ2DeRcIiJDxRHy0WmS+rWvL3UMBaFqYt8vyUlIC9TQ6uk5RPthNmt89Hdj5dAEJCIiEgcDfQbrHiAdePmY4djPAT4yxqwHngZutdY2DPBcIiJDwhNsoc1x/BEED4tkjSPXNNPc3DS4QY0yHYEQuZF6OpN7jiB4mLdgAgDNVRqqXURERo4TdhE8HmvtpD7KnwGeGUjdIiKJ4g210tjPBCspfwLshEN7t5OVtXiQIxs9Djb5KTIN+NLn9blPRvFkAFqrdpA1RHGJiIgMVDxHERQRGRW84VYC7v4985NREk0CWg5+PJghjTrVjS3k04wrq6TPfYqLimmxyQTq1MNcRERGDiVYIiLHSI60EfT0L8HKHzsNgM5aJQEno/HQfhzGkpzb9+ixZTkp7LMFOJo0SqOIiIwcSrBERLqzlnTbRtiT2a/d0zLzaCUFR1Pl4MY1yvhqKwHIKOw7wfK6nRxyFpPSrrmwRERk5FCCJSLSjQ204SIM3qz+HWAMNa5ikpUEnBTTsBMAd8GU4+7XklxGdqAKIpGhCEtERGTAlGCJiHTjb40OeOpIyer3Ma3eUrI7Dw5SRKOTu2kXIZyQefwJ5oMZY/EQhLbqIYpMRERkYJRgiYh009ZUB4AzJbvfxwTTx1IUOUQoFBqssEadtPa9NHhKoY9Jhg9z5JQDEKzdORRhiYiIDJgSLBGRbg4nWElp/U+wHLnj8Zoghw5qMIb+aGgPMDayD1/G+BPum1w4EYBmjdIoIiIjhBIsEZFuOhqiXf1S80r7fUxyYXRKwPr92wclptFm+75qJpqD2KLZJ9w3r2QCYWtoP6QWLBERGRmUYImIdBNo2A9AVuH4fh+TUxYdqKG9esdghDTqHNz2Lk5jyZu85IT7luVnUUUukYbdQxCZiIjIwCnBEhHpruUA7TaJvNz8fh+SXzaJiDWE65UE9Ed4z7sApE1YeMJ9CzO87LOFuFvU/VJEREYGJVgiIt242quoMbl43M5+H+N0J1HjyMPdsmcQIxsdQuEIxQ1rqEkaB+lFJ9zf6TA0eIrJ8O0fguhEREQGTgmWiEg3Xt8hmt39b706rMFToiSgH9bvrma+3Ux72Tn9PqY9dQwZ4UYItA9iZCIiIvGhBEtEpJvsQDX+5OKTPs6fUkJ2qGYQIhpddq1+imQToHDhVf0+JpI5LrrQqBZCEREZ/pRgiYjE+FsbyKORYPakkz7WZpSSZxtp6fANQmSjQ6s/SFnl0zS68kiZcl6/j3PnR4dq76jRICIiIjL8KcESEYmp3fURAO6i6Sd9rCe7DJeJcOiABmPoy4t/eoGz+Aj/3JXg6P8zbulF0YS35aASLBERGf6UYImIxNTtjiZY2eNPPD/Tsbx5YwFoqamMZ0ijRm2Ljwlr/z9aHJkUf+LLJ3VscVEJ7TYJf23l4AQnIiISRwNKsIwxdxljDhhj1sd+/qrbtm8aY3YYY7YZYy4eeKgiIoMrePBD2m0SEyadfAtWRmzeLH+dWrCOFY5Y/vLAP3EGW/GdeyckZ53U8WNyUzhg86B53+AEKCIiEkfxaMH6T2vt3NjPHwGMMTOAG4CZwCXAT40x/e8PIiKSALkNH7LLMxW3233Sx+YUlwMQbDwQ77BGtHDE8rv7v8OVzQ+zs+RyCs/5wknXkZnsptoUkNSmURpFRGT4G6wuglcAj1trO621u4EdwKJBOpeIyIAFfG2MDe6iKWfuKR3vTs3GRxLOViVYhx2oqeOV/7iJK6v+m53Zy5j4hV+CMSddjzGG5qQi0jurBiFKERGR+IpHgvUVY8xHxphfGmOyY2WlQPe+HPtjZT0YY24xxqw1xqytra2NQzgiIidv57vP4zZhUqb0f36moxhDvSOfJF91fAMbgTqDQV7/7f2E7z2Li9p/x7byzzPxK8+C8+RbBrvqTC0lLdIKna3xC1RERGQQuE60gzHmT0BRL5u+BfwM+B5gY7//A1h5MgFYa38B/AJgwYIF9mSOFRGJF/+mP9JmvUxZ/MlTrqPFU0B656E4RjWytLW1sO4PD1C09VecZ3ez3z2Wmk89xdQ5Fw247kjmGGgEmvZB4YyBBzvCWWtp7QzRGYxgseSkeHA5NW6ViMhwcMIEy1p7QX8qMsbcD/w+tnoAGNNtc1msTERk2LGRCKW1f2ZT8nwWp6Wdcj3+lCJKGtbEMbLhLxyOsOHdV2l+73Hm1P+Rc007+11j2b7wh0y+4AsY5wn/zPSLJ3ccVEJ7zS5ST6MEy1rLgbomdm5eR2vlBzgad+JtryIjUE2GbcVFmE7cbCeDA65xtBfMJ7PiEi6aP5V076m3GIqIyKkb0F8+Y0yxtfZwp/irgI2x5VXAo8aYHwMlwGTg3YGcS0RksGz/6G2m2np2TR7YgKfhtBLy6xvwd3biTUqKU3TDj42EqVz/GvXvPklZ9SvMpY4gTrZknUvtWbcwedElp/Ss1fGkF04AoKV6F6kVca16WPEHw2zZsomGLX/Gtf8dils3UG73U2bCAIRw0ujKpyO9kEhyCTg9pEY6yeqoZWH7qyRV/xFf1Q946aUlNJzxVa675HxSk+KT5IqISP8M9F33h8aYuUS7CFYCfwtgrd1kjHkS2AyEgC9ba8MDPJeIyKCofftRJloHM8799IDqcWaV4txrOVi1lzHjJ8cpuuEhEgqyY91LtK57hvE1r1JOIyXWzeaU+VTN+Eemn3s9szNyB+38eUVj6LRuOuv2DNo5EiEUCrNt60fUfPgyrv3vMKHjQ+aZOgDaSWZf6iy2FlxAZvkZFE9bhDtvIvl9TdIcDmEPvk/7X37Fxduewfn+DTy34ZNMvOHfmDdp7BC+qpPn9/s5dHAPTXVVdHa0EuhoIxT0Yx1uIg4PTm8q3pxS0nNLKc3LJCvFk+iQRUT6NKAEy1p703G2fR/4/kDqFxEZbMFgkCmH/siWtEVU5JUMqC5vbrRndPOhPaMiwQoHA2x75w90rP8NE+tfZwot+KyHjSmL2Tb1MqYuu5Z5uXlDEktZTioHbC6maeQnWPuqDvHxmj/g2Pkqk1rWMNPUMBNoMFlU58yjbfxSiiqWkzl+HtP6SqZ643Rhxiwi74ZF0PYdDj13J1d//Dj7Hn6Xxyq+z6evujahz2mFOjuo2r2J+t0b8FdtxdX4MZkde8kO15FjmxlnLOP6UU+tzeA9M5balEmEC2aQM2khk2ctpCArfdBfw8kIBjppa2mkrbWZjvZWfO1t2GAHNhImbA1ha8AYXO4k3CkZeFKy8KRmkpGeQXaqnqkTGcnUb0BETmsbV69iHg1Uzf7rAdeVlh/9eNgxgicbDgX8fPzW7+j48DdManyDGbTRbr1sSj8TO/1TTDv7GhZmZg15XDmpHraafMa3jbzHeYOhMJvXv03j+lXkVL3J9NA2xpgwHXipzFzAhvJbKJt/KTljppMTr66VaQUUfvY+Oj7+a9Kf/CLXbbiF3+1+mbO+8P8oyMmMzzmOw4aDVO/4kENb/0Jk3zqymzYwJljJGBNhDBCxhmpHPnVJY2nMnM6u9GLcWSUkZxWSlJpJcmoGniQvhAPYUIBARwudjQcJNh0g0riXwqbtVHQ8j7fyWaiEzpfdbHaOpyFzJo7SeRRPP5NxU8/A4Yr/c2iRzg4aavbSfGg/bfX76Ww8SLilGmf7IZL8taQF68kKN5BNK9nGkn3iKo8Ssg5aSKHZZNDuzMTnyiKQlA3JubjS8/Bm5pOSXUR2XhHZecU403IhKSPu3XJF5NQpwRKR01ro/UdoJpXp51434LpySg5PNjyyJsQNBvxse2sVnR/+hsmNbzCddlpsClsyluKYeRUzz7mCRSmnPvhHPBhjaPYUk+5/L6Fx9Fe7r5MP3nqBzg2rmNr0BnOoAWCXezKbyj9P4bxLKZ55DjNcg9vVLWXyOaR8bS27H/l7rtz7JNt/soaDl97L3IXL4ncSa2k9tJP9G1bTsXsNafUfMbbzY4rppBhosqnsTprG/uJzcJfMJGfcLMomzaIkNYMBtRlHwgRqd3Bg89u07lpLUu1HzG18kbTGZ2Ej+HGzzzOJxswZ2KIK0vPHkJ5bSmZuMWmpKThcHnC4INRJsLONTl87ne3NdDRU095YTbC5mkhbLY6OWjy+WlIDdWSG60mngzyge9tt0DppMFm0uHJpSy6hMXkuO1LyITkblzcNT3IaHm8qxpOMw+nCAThMBGMtoWAnIV8rEV8zEX9L9KejEYe/EXdnI/nBatJat5LR3ILnUO9PW/hMMo03/J6SqQsG8i8qInGiBEtETlstzQ3ManmTDfmXssibPOD60jLz8FkPpuVgHKIbXKFAJ1v+sorOD59mStObzDqcVGUuw1VxFTOWXsHilJREh3kUX0oJGc2NEPSBe+DXK97aOnxsePNZIhufZXrLXzjbtNKJm13pC9g45TbKl17DhJyBdUM9JUnplK/8JQfWXEbeC3eQ8fvLWfPO5Uy//vtkFJSddHW2rYbabWuo3/42joPvU9i2iSzbwnSg07rZ6ZrIutzLMWXzKZh2FuMnz2Ke6yS6OvaXw4mncCrlhVNh+YpobJEwB3Zt5MCmtwnse5+spo3MrPkDqbXPHLcqd+wnDej+JGGb9dJAJs3OHBo949iVsZBIaiGuzGK8OSWk55WRUziGnPxiCp1OCuP/KrvYSITm5iZqaw7QWFdFW0MNvuYaQi01XHroPva++YgSLJFhQgmWiJy2tr7yMItMgMwlfT5OenKMod6Zh7u96sT7JoK17N70NrVvPsikQy9QQQstNoWtmctwzr6amUsvZ3Hy8EqqugtnjoFmonNh5U9JdDgA+ANB1v3lRYIfPMHs5tc407TSSgq7cs6mfvblTFhyBdOTMxIdJgCli6+mfcpSPnj0G5xR8xzc+zu25JxD2tyrKZ21DEf2OHB0e+7H34xt2EXD/u007dmIqV5PVtMWcsK1FAB51rCDMj5MO5Nw0Tyyp5zJpFmLmJGauP9DxuGkdNIcSifN6SqLhEIc3LeDuuq9+BqrCLTUEgz4IRzEhoNEXMkYdzIOTwoObxqejELScorJyi8mNzubscNkFEbjcJCZnUNmdg5MPXoozc3ff5OCg69gIxGMQ89uiSTa8HjXEBFJgNStT7HXlDDljOVxq7PFXUBqZ03c6ouHuuq97HzlQQp2/YbycCWl1snG1LOonHsDM5ZdzaJhnFR1584ZB3vBX1eJN4EJlrWWrVs2UPPn+5l06HmWUosfDztyllE393omnXkFczzehMV3PKnZhSz88oPs2Poh+178H2Y3vEjua6/BaxDGgc+RisNG8Fg/LsIYoi062daw2xaxzj2d9oJPkzJ+AeNmnsmkMcVMcQzvZ38cLhcl5dMoKZ+W6FAGjX/KFczY9H02r32NGYs+kehwRE57SrBE5LRUvWcbMwMbeGvc3zE2jt/4dqYUUtj4ftzqO1U2Embz6lUE1txPRdvbLDYRtrmm8va0bzLtghWckVeU6BBPWmpsLqzm6p14pw/9+Wua2/jgT0+Ss+Vh5gc/YAqwLW0hbbP/mUnn3MCsYdJS1R+Tps1h0rT/pba5nVfef4vmHWswLQdwB5oJ4yDkTMYkZxHMGEdq8RRKJ0xn8phiJg6T1hw52rRLvkjrxh/T8eY9oARLJOH0Tikip6W9rz1IETDuvJvjWm8krZj8hgb8gSBeT/xHMDuRloYatjx/H6U7HmWmraKBDN4t+SzF536BqdPmDXk88ZRbNI6gdeKvqRyyc1prWbdxK1Wv/ZwF9c9xsWmg3pHLpsm3Mv6iv2NGQX8GFh++8jNT+cTyC2H5hYkORQYgJT2bd4uvYF7VU+zZuZVxE0dva53ISKAE6zg62pqx1pKanpXoUEQknqyldO+zbHDPpqJ8alyrdmaV4t4X5uDBfYwbPyGudR/PzvVv0PjnnzKr4U8sNkE2u2fybsXtzL7wc5w1QroAnsiY3DSqbQ6RpsEfBr/VF+DtV36Ld/1DnBlcwwITZlfmIqrOuoXihVeS6xz65FnkeCZd/nUiP3+GQ6u+w7g7nkh0OCKnNSVYx7HxxQeZ99HdbPFMoyF/Ecnj5jNm5pnkl07UfBMiI9ieLWsZF6li77Qvxr3u5NyxADRWVw56gtXpa2XTiw+SsfHXTAp9TLv18kHuX5F33peYMXvJoJ47EfLSkniXfMpa9w3aOXbs2cv2F3/O9APPcJGposVksHPiTZRf/BUmFI78yaNl9MopmcA7xdexqOpRPv7wbSbPOTPRIYmctpRgHUfe1DN5r+6z5NW+w5IDD+E8+CC8DY2ks88zifb08ZicCaQUTSa1eDLZhePJysrBMUJmX7fWEg5HCIZCBAJ+QsEAoYCfUCBIMNhJONhJKBQgHOwkHAwSDnYSCQUgEoRwEMIBiIQgEsJGIlgbwVqLtRYOL0div7GYSASwgMVgwYIhWmasjW07WT0TXdtr8tt7Qmx62ddieux9pM5jtpieNdtYyVHlR52nj+Tc9Nx+eMkec0y0ur6S/F7Ke3udh8u6/tmjC7bbZTj2inRft71eLttblbH97bFFPerttU57+FfPjcc7rvfwoqXJVe8wDphw1pW97TUgmcXRpKqjZhdwftzrB6jauYH9L9/L1OpVnEE7ux1jeWvqN5l5yS2cmZ0zKOccDhwOQ6OnmBm+96PXMk5fdAVDYdasfpHQmgdY0vFnJpkgu1NmsWfRPzPu7L8mwz08B6wQOdaM6+6i6Se/w7Hqy4Smv4VrmA62MpQi4TB+Xxudvg4CvjYC/naC/g6CnR2EOtsJd3ZEf0IBwqHoyJJEwthw9PONiUTXD3/eMZEQ2BDWQiT2N8Uc8xfn6L/4tmd514IDS/StLPp3PrbBRJcP/623xhz5ZNH988jhctP3sV3791J+uE5rTLfPQ44jywYMjljVR5+v63PJUZ9Hupcficl2rYO1R2I6+jV3/6zT873d7y1g/KJLGZMzMnpkKME6jgmzFjNh1mIA/B2tfLz5PRp2vIf70IfktG6nvP5F0us74OMjx3RaN40mkxZXDj5XJmFXMmFXCtadinWnYF0pWKcLY5zR4XCNA+NwYowDMFgbhnAIG7uRCUdvZMIhjA1BJBy72UM4wgGMjd78JhLCGQnisEEckRAOG8Jpg7hsCKcN4SSEy4Zwdf9NmCQTwgUMvxllRAbXTvdkJpZNjHu9OWNnELEGW7MtrvWGQ0E2vfYYznUPMtP/PnnWyfq0ZSSd+bfMOvMSykfIFzsD1Zw5jYz6V6C1GjKKB1TXodo6Nrzwv4zZ+Thns5sOvOwsvZKyC79MefnIfl5NTk8ZOQW8t+T7LHznq6z55R0svvVniQ5pwGwkQmtrE6311bQ1VOFvriHQWkeovYmIrxlHZzOOQCuuYBtJoVaSwm0kR9pJse2kWh9JJkgKEK+P5QHrJIyzxxefPeI+ZnvP/W1X8hVNM44ka+Yk9nGYU/lyeuR5PTyHD0uWKsEabbwp6UxbcD4sOPKNtI1EqK8/RE3lZjprdhJsOkikrQZHRy1J/gZSQk14AtV4Ij6S8ZNsO0kywZM+d8g6COMkhIMwLkLGQQh3tMy4CRsnYeMmbFxEjIuwcRF0ptJpXFiHm0jsxzrc4HBhnR5wuMHpjv52eTBO95Eflwfj8uBweXA43ThcSTjcHpyu6LJxRY81zug+xuEE48DpcGBM9JsPpzO67HAYHN3Kj3ybYsA4ui3H3jq6fwtzlJ5vIOZ4zR3dS3pvasHaSG+FfbaT9KzG9mxVsV3NLUfi7C26Yyo7smq77Wt7lHXt28trsvT8Fg2i/097lFl71Jf/xhiwtutbq6MbBnqWHfstXPc2v2O/f+reSthLI92RY7t/6dWPOkwv5+6lgbHP4yakFzAYPMlpVDnycTd9fOKd+6HuYCU7XvgpE/Y+zWzqqSaPN8fcyuRLvsTC0pE9wMKpcJfNg3ro2LuOlFmXnfTxoVCY9995Fd+aXzK/5VUuMH72uiewdc7dTP7EzcwcQSMBivRm4SWf452PX2VJ9aO892gxC//6zkSH1CsbCtBad4DG6kraavcQqN9HpOUgpqMOl7+B5GAjGeEmsmwLGSZIX3dmG8m0k4LPkYrfmYbPk0OLexxhdzoRTzrWnYxxecGdgsOTjPGk4PQk40hKweVJweVNxe1NwePx4nG7cbrdOJwuXK4kjNOFy+XG4XbjcnlwOBx4EvSISLSHUKwfkLXR/j829knk8EePiMUSiZZbG+1ZFCsn1psouo/t6nEU7WUUOdzBqKvX0bH7YQ+fJ4KNHP4McVQ3lSPr9khieFR59ASxv9v2mC4zR/Yx0X5PR73+SS4v2YWD83d7MCjBGgDjcJCbX0xufjFw4mFRrbUEQ8FoE3QkQjgSJhwOY8NhIpEwkUgkeiO7oje0y+WJ/nY6cAFJg/6KRCQe6pPHk9NRecrHhwJ+tq7+DcF1j1DR9hZLTISPkhaw74zvMfv8T1Pk9sQv2BGmYMpCwusN9VtXn1SCdaC6mq0vPkBZ5VMssrvxkcTHBReSf+4tjJ15jp6rlVHljL+9n/f/q46F2/+DdT/bS8WK/8KTnDZk548E/DTW7KWpupL22r0EG/djWw7gaa8mxX+IrFAt2ZFGMow9KnHyWQ8NJot2ZxYdnjyavVOo9OZCah7OtDzcGQV4MwtJyy4kLTuPjIxs0pwuhu6VJY4xptvblN6vhjvT17f7ibBgwQK7du3aRIchIjIg7z1wO3P3/pr22z8mKzu3X8fYSISdH62m4a1fM7nmRbJpoZ5MPi66jLILvkTZpFmDHPXI0OoPsvnfllGe7KfgG+uPu29TSwsbXn8G9+ZnmOt7B68Jssc9kbZZNzLlgptxp2YPTdAiCRAIBFjz8y+zrP5Jqk0Be6Z/kYpLvkBKRv/ek/oS9LXQULWH5kN7aK/fR7DxAKblIJ6OatI6a8gO1ZBDc4/jWm0ydY48mt35dHgLCaUWYzJL8eSUkVYwjqyi8eTnFuBxOwcUn8hQMsass9YuOLZcLVgiInGWPvMi3PseZNd7z3PGRTf2uZ+NhNm5/g0a1j5DSfUrTIocpNO6+ShtKWbuZ6g49yqWeNR23V26182u/AtYXPc/+Ha8SfKkZUdtr2uoZ9vbf8Bu+T2zW99kmemg0WSytfhKis9bybipZ6q1Sk4LHo+HZV+9n/ffuJz0P3+XxZu/T2jTv7E1aTptOTMhZyJJGfngzYw+AmDDBIIBgv426Ggi4msk0t6Aw99Asr+GjEAtOZF60uigECjsdq4mm0q9M48WdwE1aVMJpxXjyCwlKWcM6QXjyC4eT25OHukO3XtyehhQC5Yx5gng8CQyWUCTtXauMWY8sAU4/JT3O9baW09Un1qwRGQ0CHT68f3bRPYkz2D2118+altzfTW73n2e4I7XKK9/k3waCFonm71z6Zh0KdPP/xxZufkJinxkWLfjAEUPL8PrclA376u048V3cAtpte8zLbCJJBOijRR25p5HxsK/ZvzCSzCat0pOYzYSYcu616hb9xwFde9QFtxDmvGf8Dif9dBi0mly5dLmKcDvLcCmF+PKKsWbU0ZG4Vhyi8aTkZnV66i8IqNdXy1YcesiaIz5D6DZWnt3LMH6vbX2pPq0KMESkdHirV/fyVm7/puPMs4lmDURWg6Q07qNcaE9OIyl3XrZkrqQ0JRLmbrsWrKVVJ2UZ59/njPeuY2xpgaAsDXsd42lvugcsudeyri55+Nwq/VPpDehUJi6QwdobqzB+poIhUJEcJDk8ZCUkoYnPZeUjFwy09OVOIkcx6AmWCZ69+0FzrfWfqwES0ROd6FgkL/cfwdzDv2GdDqoN9lUJZXTUbiQ7FkXMHHuObjV/W9Amtp87KvcRrIJMXbiDDzekTF8r4iIjA6DnWCdA/z48AliCdYmYDvQAvyrtfbNE9WjBEtERptgOEIwHCHFo0deRURERpNTHuTCGPMnoKiXTd+y1j4XW/4M8Fi3bVXAWGttvTFmPvCsMWamtball/pvAW4BGDt27IlfiYjICOJ2OnCfJpMAi4iISD8SLGvtBcfbboxxAVcD87sd0wl0xpbXGWN2AlOAHs1T1tpfAL+AaAvWyQQvIiIiIiIynMTja9ULgK3W2v2HC4wx+cYYZ2x5AjAZ2BWHc4mIiIiIiAxb8Xgo4AaO7h4IcA5wtzEmCESAW621DXE4l4iIiIiIyLAVt2Ha48EYUwvsSXQcx8gD6hIdhAwZXe/Th6716UPX+vSi63360LU+vQzH6z3OWttjnpVhlWANR8aYtb2NDiKjk6736UPX+vSha3160fU+fehan15G0vXW0FYiIiIiIiJxogRLREREREQkTpRgndgvEh2ADCld79OHrvXpQ9f69KLrffrQtT69jJjrrWewRERERERE4kQtWCIiIiIiInGiBEtERERERCROlGAdhzHmEmPMNmPMDmPMNxIdj8SPMWaMMeY1Y8xmY8wmY8zfx8pzjDEvG2M+jv3OTnSsEh/GGKcx5gNjzO9j6+XGmDWx+/sJY4wn0TFKfBhjsowxTxtjthpjthhjztS9PToZY+6IvYdvNMY8Zozx6t4ePYwxvzTG1BhjNnYr6/VeNlE/iV33j4wxZyQucjlZfVzrH8Xexz8yxvzWGJPVbds3Y9d6mzHm4oQEfRxKsPpgjHEC9wKfBGYAnzHGzEhsVBJHIeAfrbUzgCXAl2PX9xvAK9baycArsXUZHf4e2NJt/QfAf1prJwGNwBcSEpUMhv8GXrDWTgPmEL3uurdHGWNMKXAbsMBaOwtwAjege3s0eQi45Jiyvu7lTwKTYz+3AD8bohglPh6i57V+GZhlrZ0NbAe+CRD7vHYDMDN2zE9jn9uHDSVYfVsE7LDW7rLWBoDHgSsSHJPEibW2ylr7fmy5legHsFKi1/hXsd1+BVyZkAAlrowxZcClwP/G1g1wPvB0bBdd61HCGJMJnAM8AGCtDVhrm9C9PVq5gGRjjAtIAarQvT1qWGvfABqOKe7rXr4C+LWNegfIMsYUD0mgMmC9XWtr7UvW2lBs9R2gLLZ8BfC4tbbTWrsb2EH0c/uwoQSrb6XAvm7r+2NlMsoYY8YD84A1QKG1tiq2qRooTFRcElf/BfwzEImt5wJN3d64dX+PHuVALfBgrEvo/xpjUtG9PepYaw8A/w/YSzSxagbWoXt7tOvrXtbnttFtJfB8bHnYX2slWHJaM8akAc8At1trW7pvs9E5DDSPwQhnjLkMqLHWrkt0LDIkXMAZwM+stfOAdo7pDqh7e3SIPXtzBdGkugRIpWcXIxnFdC+fHowx3yL6aMcjiY6lv5Rg9e0AMKbbelmsTEYJY4ybaHL1iLX2N7HiQ4e7FMR+1yQqPombpcDlxphKol19zyf6jE5WrFsR6P4eTfYD+621a2LrTxNNuHRvjz4XALuttbXW2iDwG6L3u+7t0a2ve1mf20YhY8wK4DLgs/bI5L3D/lorwerbe8Dk2GhEHqIP061KcEwSJ7FncB4Atlhrf9xt0yrg87HlzwPPDXVsEl/W2m9aa8usteOJ3sevWms/C7wGXBvbTdd6lLDWVgP7jDFTY0WfADaje3s02gssMcakxN7TD19r3dujW1/38irgc7HRBJcAzd26EsoIZIy5hGj3/suttR3dNq0CbjDGJBljyokObPJuImLsizmSDMqxjDF/RfTZDSfwS2vt9xMbkcSLMeZs4E1gA0eey/kXos9hPQmMBfYA11lrj33AVkYoY8x5wNestZcZYyYQbdHKAT4AbrTWdiYwPIkTY8xcogOaeIBdwM1Ev1DUvT3KGGO+C1xPtPvQB8DfEH0WQ/f2KGCMeQw4D8gDDgHfAZ6ll3s5lmTfQ7SbaAdws7V2bQLCllPQx7X+JpAE1Md2e8dae2ts/28RfS4rRPQxj+ePrTORlGCJiIiIiIjEiboIioiIiIiIxIkSLBERERERkThRgiUiIiIiIhInSrBERERERETiRAmWiIiIiIhInCjBEhERERERiRMlWCIiIiIiInHy/wP4Y58hUjZkcQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHwCAYAAAC7T84CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACh7klEQVR4nOzdeXyU1d3//9dnZrITEgj7jgrIKlpArLj3VqwLWq24b7Xe2k2tS3dL/dX79rZ+a6u2pba2WrWodbdq60rdRUBABRdQ9i0QkpB9mc/vj7kIk5CQQCaZJLyfj0dkruuc65zPzJUZ55NzrnOZuyMiIiIiIiKtF0p2ACIiIiIiIl2FEiwREREREZEEUYIlIiIiIiKSIEqwREREREREEkQJloiIiIiISIIowRIREREREUkQJVgiIh2MmQ0zMzezSLJjkX2DmX1kZkcnOw4Rka5ACZaIiHR6ZjbbzEqCnyozq47bfj7Z8XV07j7W3ecmsk0zG2hmT5lZgZmtNbMrEtm+iEhHZbrRsIhIYplZxN1rWnH8MOALIKU17eyrzGwWcIC7n99IWavOTXvqTLE2xsxeBRYD1wNjgFeBM9z91aQGJiLSxjSCJSKSAGa20sx+YGZLgFIzi5jZVDN7y8wKzWxx/BQsM5trZv9rZvPMrDj4S3/PJtq+xMyWmdl2M/vczP67QfkMM1sUtLPCzKYH+3PM7B4z22Bm68zsl2YWbuZ57G9mr5jZVjPbYmYPmlluXFmBmR0SbA8ws/wdz8vMTg2mmhUGz290g9fnOjNbYmZFZvawmaXv+Su955o4N25mB8TVudfMfhm3fXLwmhYG53BCC/s6Ohit+XHw+q00s/Piyk8ys/eDc7UmSAZ3lO2YGvoNM1sNvBLs/4eZbQxet9fMbGyDuH9vZs8Ho3Vvmlk/M/uNmW0zs4/N7OAWvkZfaclzbOHr0A04GrjZ3avdfTHwKHBpovoQEemolGCJiCTOOcBJQC7QF3gW+CXQE7gOeMzMesfVv5DYF87+QA1wRxPtbgZOBroDlwC3xyU5U4C/ERslyAWOBFYGx90btHsAcDBwPHBZM8/BgP8FBgCjgcHALAB3XwH8AHjAzDKBvwL3uftcMxsJzAGuBnoDzwHPmFlqXNtnAdOB4cAE4OJGAzCbFiQ2Tf1Ma+Y5NKbu3DQ3KhQkJH8B/hvIA/4IPG1maS3sqx/QCxgIXATcbWajgrJSYuc9N4jnSjM7rcHxRxF77U8Itp8HRgB9gIXAgw3qnwX8NOizEng7qNeLWFLz6xbG3Sgz++HuzkdThzX4d8fjca2JRUSkM1CCJSKSOHe4+xp3LwfOB55z9+fcPeruLwLzga/G1b/f3T9091LgZ8BZjY0wufuz7r7CY/4DvAAcERR/A/iLu78Y9LPO3T82s75BX1e7e6m7bwZuB87e3RNw9+VBW5Xunk/sy/lRceV/ApYD7xJLDH8SFM0Eng2OrQZuAzKALzd4fda7ewHwDDCxiRjecPfc3fy8sbvn0IT4c9Ocy4E/uvu77l7r7vcRS1ym7kF/Pwtew/8QS7TPAnD3ue7+QXCulhBLSo9qcOys4JyVB8f8xd23u3slsWT3IDPLiav/hLsvcPcK4Amgwt3/5u61wMPEkuu95u637O58NHHMduBN4Gdmlh78QeAMILM1sYiIdAZKsEREEmdN3OOhwNcb/KV/GrGkpLH6q4AUYqMO9ZjZiWb2TjA9r5BY4rSj3mBgRSOxDA3a2xDX/x+JjYI0ycz6mtlDwZTCYuCBRmL6E7GRiDuDL/0QG/FataOCu0eD5zcw7riNcY/LgG67iyXB1jRfpc5Q4NoG524wsefYEtuCpHmHVTuONbNDzezVYGplEXAFu76+dbGaWdjMbrHY1M9ido5Oxh+zKe5xeSPb7fk6xzuP2GjlGuAPxH6X1iYpFhGRdqMES0QkceJXDVpDbIQq/q/9We5+S1ydwXGPhwDVwJb4BoNpaY8RGxHqG4wYPMfOqVdrgP0biWUNsVGXXnH9d3f3sY3Ujfc/wfMY7+7diY3E1U3zCq6t+Q1wDzDLdl43tp5YYrKjngXPb10z/e3CzI6wnSsANvZzRPOt7KLhik5l1B9N6Rf3eA2xa4fiz12mu89pYV89zCwrbnsIsdcH4O/A08Bgd88BZlN/Gl3DWM8FZgBfAXKAYcH+hse0meB6sibPR1PHufsqdz/Z3Xu7+6HEksJ57RW3iEiyKMESEWkbDwCnmNkJwShEerAAwqC4Oueb2ZjgeqabgEeDaV3xUoE0IB+oMbMTiV1LtcM9wCVmdpyZhSy2NPaB7r6B2FTC/2dm3YOy/c2s4XS0hrKBEqDIzAYSu7Yr3m+B+e5+GbGpb7OD/Y8AJwVxpADXEkvw3mruhWrI3V939267+Xl9T9tsxCLg3ODcTKf+NL0/AVcEo01mZlkWW5wiG+oWlri3mfZ/YWapQTJ4MvCPYH82UODuFcH1c+c20042sddxK7GE8H/24DkmhLv/z+7OR1PHmdloM8sOXofzif3etup6MBGRzkAJlohIG3D3NcRGHn5MLDlaQyxZif/cvZ/YQhQbgXTge420sz3Y/wiwjdgX8qfjyucRLHwBFAH/YedI0oXEErSlwbGPUn+KYmN+ARwStPUs8PiOAjObQWyRiiuDXd8HDjGz89z9E2KjXXcSG4U7BTjF3aua6S9ZriIWYyGxqWxP7ihw9/nAN4G7iL1uy6m/IMdgYtcXNWVjcNx6YgtSXOHuHwdl3wJuMrPtwI3Ezuvu/I3YFMN1xM7jO809sQ7kBOBzYq/FFcD04Lo+EZEuTffBEhFJAjObCzzg7n9OdizScsGqiIuBCcFiHg3LjyZ2Xgc1LBMRkX1DJNkBiIiIdBbBiNzoZiuKiMg+S1MERUT2MWY2u4kFC2Y3f7R0RmY2ZDcLVQxJdnwiIl2JpgiKiIiIiIgkiEawREREREREEqRDXYPVq1cvHzZsWLLDEBERERERadKCBQu2uHvvxso6VII1bNgw5s+fn+wwREREREREmmRmq5oq0xRBERERERGRBFGCJSIiIiIikiBKsERERERERBKkQ12D1Zjq6mrWrl1LRUVFskORDiA9PZ1BgwaRkpKS7FCkC1uxqYiX7v9fjv36dxkxdGCywxEREZFOpMMnWGvXriU7O5thw4ZhZskOR5LI3dm6dStr165l+PDhyQ5HurDPXv8H/13yB15/Op8R370n2eGIiIhIJ9LhpwhWVFSQl5en5EowM/Ly8jSaKW0uc9MCAEKl+UmORERERDqbDp9gAUqupI5+F6Q99CleAkDPijVJjkREREQ6m06RYImItKfUmlIA9vM1VFTVJDkaERER6UyUYLWAmXHttdfWbd92223MmjUreQHFOfroo3d7c+bTTjuNqVOn1ts3a9YsBg4cyMSJExk3bhxPP/10W4cp0qmkRCsBSLNqNm1an+RoREREpDNRgtUCaWlpPP7442zZsiWh7bo70Wg0oW3GKywsZMGCBRQVFfH555/XK7vmmmtYtGgR//jHP7j00kvbNA6RzibFK9lOFgCFG79IcjQiIiLSmbQ6wTKzwWb2qpktNbOPzOyqYH9PM3vRzD4L/u3R+nCTIxKJcPnll3P77bfvUpafn88ZZ5zB5MmTmTx5Mm+++SYQGyW67bbb6uqNGzeOlStXsnLlSkaNGsWFF17IuHHjWLNmDddffz3jxo1j/PjxPPzwwwDMnTuXo48+mjPPPJMDDzyQ8847D3dvNL7777+/bjRq3rx5dfsff/xxTjnlFM4++2weeuihRo8dPXo0kUikXvL4wx/+kDFjxjBhwgSuu+46AFauXMmxxx7LhAkTOO6441i9ejUAF198MVdeeSVTp05lv/32Y+7cuVx66aWMHj2aiy++uK7NK6+8kkmTJjF27Fh+/vOf7xJHUVERQ4cOrUv0SktLGTx4MNXV1Y3GLdJW3J00r2Rr2iAASjevTnJEIiIi0pkkYpn2GuBad19oZtnAAjN7EbgYeNndbzGzHwI/BH7Qmo5+8cxHLF1f3OqA440Z0J2fnzK22Xrf/va3mTBhAjfccEO9/VdddRXXXHMN06ZNY/Xq1ZxwwgksW7Zst2199tln3HfffUydOpXHHnuMRYsWsXjxYrZs2cLkyZM58sgjAXj//ff56KOPGDBgAIcffjhvvvkm06ZN26W9srIyFi1axGuvvcall17Khx9+CMCcOXO48cYb6du3L2eccQY//vGPdzn23XffJRQK0bt3bwC2bt3KE088wccff4yZUVhYCMB3v/tdLrroIi666CL+8pe/8L3vfY8nn3wSgG3btvH222/z9NNPc+qpp/Lmm2/y5z//mcmTJ7No0SImTpzIzTffTM+ePamtreW4445jyZIlTJgwoS6OnJwcJk6cyH/+8x+OOeYY/vnPf3LCCSfoflfS7ipromRQycbsYVD5CZXb1iY7JBEREelEWj2C5e4b3H1h8Hg7sAwYCMwA7guq3Qec1tq+kql79+5ceOGF3HHHHfX2v/TSS3znO99h4sSJnHrqqRQXF1NSUrLbtoYOHVp3XdQbb7zBOeecQzgcpm/fvhx11FG89957AEyZMoVBgwYRCoWYOHEiK1eubLS9c845B4AjjzyS4uJiCgsL2bRpE5999hnTpk1j5MiRpKSk1CVeALfffjsTJ07kuuuu4+GHH65bnS8nJ4f09HS+8Y1v8Pjjj5OZmQnA22+/zbnnngvABRdcwBtvvFHX1imnnIKZMX78ePr27cv48eMJhUKMHTu2LuZHHnmEQw45hIMPPpiPPvqIpUuX7vI8Zs6cWTeC99BDDzFz5szdvo4ibaGkoop0q6a6+xBqCBHaviHZIYmIiEgnktAbDZvZMOBg4F2gr7vv+GayEejb2vZbMtLUlq6++moOOeQQLrnkkrp90WiUd955h/T09Hp1I5FIveua4u/dlJWV1aL+0tLS6h6Hw2Fqahpfzazh0uVmxiOPPMK2bdvqbshbXFzMnDlzuPnmm4HYNVg7pv81jHvevHm8/PLLPProo9x111288sorLYozFArVizkUClFTU8MXX3zBbbfdxnvvvUePHj24+OKLG72X1amnnsqPf/xjCgoKWLBgAccee+xu+xVpC5XlsRUESe3GNutBavmm5AYkIiIinUrCFrkws27AY8DV7l5vHp/HLh5q9AIiM7vczOab2fz8/I59U8+ePXty1llncc8999TtO/7447nzzjvrthctWgTAsGHDWLhwIQALFy7kiy8av1D+iCOO4OGHH6a2tpb8/Hxee+01pkyZskdx7Rj1eeONN8jJySEnJ4c5c+bwr3/9q+66rwULFjR5HVa8kpISioqK+OpXv8rtt9/O4sWLAfjyl79cd/yDDz7IEUcc0eL4iouLycrKIicnh02bNvH88883Wq9bt25MnjyZq666ipNPPplwONziPkQSpbK8LPYgJYPt4R6kVW5NbkAiIiLSqSQkwTKzFGLJ1YPu/niwe5OZ9Q/K+wObGzvW3e9290nuPmnHdUAd2bXXXltvQYg77riD+fPnM2HCBMaMGcPs2bMBOOOMMygoKGDs2LHcddddjBw5stH2Tj/9dCZMmMBBBx3Esccey6233kq/fv32KKb09HQOPvhgrrjiCu655x5WrlzJqlWr6i3PPnz4cHJycnj33XcbbeOrX/0q69evZ/v27Zx88slMmDCBadOm8etf/xqAO++8k7/+9a9MmDCB+++/n9/+9rctju+ggw7i4IMP5sADD+Tcc8/l8MMPryu78cYb6y0TP3PmTB544AFND5Skqa6MjWBZaialqXl0qy5IckQiIiLSmVhTK9O1uIHY/LT7gAJ3vzpu/6+ArXGLXPR09xuaaAaASZMmecN7Oi1btozRo0e3KkbpWvQ7IW3pwyXzGff4cSw97P9R/snLDCp4h76ztFS7iIiI7GRmC9x9UmNliRjBOhy4ADjWzBYFP18FbgH+y8w+A74SbIuIdGi1wQhWKDWL2sw+9PQiqpu4/lFERESkoVYvcuHubwDWRPFxrW1fRKQ91VSWAxBJz8S69SHFatm8dTN9+g5IcmQiIiLSGSRskQsRka6gtiI2ghVJyyQlJ3Y9ZNFm3QtLREREWkYJlohInGhVbBXBSFoW6bn9ASjbtjGZIYmIiEgnktD7YImIdHa1VbEpgqkZWXRLjd1ou3Lb+mSGJCIiIp2IEiwRkXjVsRGslLRM0rNyAajdrpsNi4iISMtoimALPfnkk5gZH3/8cZN1Vq5cybhx4xLW58UXX8yjjz7aZPnVV1/NwIEDiUajdfvuvfdeevfuzcSJExkzZgx/+tOfEhaPyL7AgymCqRndyO6eR5VHoLTR2/iJiIiI7EIJVgvNmTOHadOmMWfOnEbLaxKwjHNtbW2L60ajUZ544gkGDx7Mf/7zn3plM2fOZNGiRcydO5cf//jHbNqkv76LtJTXVACQlpGFhUIUWC6RsvwkRyUiIiKdhRKsFigpKeGNN97gnnvu4aGHHqrbP3fuXI444ghOPfVUxowZA8QSrfPOO4/Ro0dz5plnUlYW+2v4yy+/zMEHH8z48eO59NJLqaysBGDYsGH84Ac/4JBDDuEf//jHLn2/9NJLTJo0iZEjR/LPf/6zXt9jx47lyiuvbDLp69OnD/vvvz+rVq2q23fHHXcwZswYJkyYwNlnnw1AQUEBp512GhMmTGDq1KksWbIEgFmzZnHRRRdxxBFHMHToUB5//HFuuOEGxo8fz/Tp06murgbgpptuYvLkyYwbN47LL7+chjevjkajDBs2jMLCwrp9I0aMUOInHZJV71zkAqA40pO0yq3JDElEREQ6kc51DdbzP4SNHyS2zX7j4cTd3wP5qaeeYvr06YwcOZK8vDwWLFjAl770JQAWLlzIhx9+yPDhw1m5ciWffPIJ99xzD4cffjiXXnopv//97/nOd77DxRdfzMsvv8zIkSO58MIL+cMf/sDVV18NQF5eHgsXLmy075UrVzJv3jxWrFjBMcccw/Lly0lPT2fOnDmcc845zJgxgx//+MdUV1eTkpJS79jPP/+czz//nAMOOKBu3y233MIXX3xBWlpaXcLz85//nIMPPpgnn3ySV155hQsvvJBFixYBsGLFCl599VWWLl3KYYcdxmOPPcatt97K6aefzrPPPstpp53Gd77zHW688UYALrjgAv75z39yyimn1PUZCoWYMWMGTzzxBJdccgnvvvsuQ4cOpW/fvi0+TSLtxWoqqPIIqaEwAKUpeeRUaRVBERERaRmNYLXAnDlz6kZ7zj777HojRlOmTGH48OF124MHD+bwww8H4Pzzz+eNN97gk08+Yfjw4YwcORKAiy66iNdee63umJkzZzbZ91lnnUUoFGLEiBHst99+fPzxx1RVVfHcc89x2mmn0b17dw499FD+/e9/1x3z8MMPM3HiRM455xz++Mc/0rNnz7qyCRMmcN555/HAAw8QicTy6zfeeIMLLrgAgGOPPZatW7dSXFwMwIknnkhKSgrjx4+ntraW6dOnAzB+/HhWrlwJwKuvvsqhhx7K+PHjeeWVV/joo492eR4zZ87k4YcfBuChhx7a7XMWSSarKafC0uq2q9Ly6F67LYkRiYiISGfSuUawmhlpagsFBQW88sorfPDBB5gZtbW1mBm/+tWvAMjKyqpX38x2u92Yhm00196///1vCgsLGT9+PABlZWVkZGRw8sknA7Fk5q677mq0vWeffZbXXnuNZ555hptvvpkPPtj9iGBaWuyLZigUIiUlpS6eUChETU0NFRUVfOtb32L+/PkMHjyYWbNmUVFRsUs7hx12GMuXLyc/P58nn3ySn/70p7vtVyRZQjUVVJFat12b1Zse24qI1tQQinSuj0wRERFpfxrBasajjz7KBRdcwKpVq1i5ciVr1qxh+PDhvP76643WX716NW+//TYAf//735k2bRqjRo1i5cqVLF++HID777+fo446qkX9/+Mf/yAajbJixQo+//xzRo0axZw5c/jzn//MypUrWblyJV988QUvvvhi3fVeTYlGo6xZs4ZjjjmG//u//6OoqIiSkhKOOOIIHnzwQSB2bVevXr3o3r17i+LbkUz16tWLkpKSJlc9NDNOP/10vv/97zN69Gjy8vJa1L5IewvVVlAZN4JFt76EzSku0DWDIiIi0jwlWM2YM2cOp59+er19Z5xxRpMLS4waNYrf/e53jB49mm3btnHllVeSnp7OX//6V77+9a8zfvx4QqEQV1xxRYv6HzJkCFOmTOHEE09k9uzZRKNR/vWvf3HSSSfV1cnKymLatGk888wzjbZx2WWXMX/+fGprazn//PMZP348Bx98MN/73vfIzc1l1qxZLFiwgAkTJvDDH/6Q++67r4WvDuTm5vLNb36TcePGccIJJzB58uS6stmzZzN79uy67ZkzZ/LAAw9oeqB0aJHaCqpC6XXbKTn9ACjcsjZZIYmIiEgnYg1XfEt4B2bTgd8CYeDP7t7kPL9Jkyb5/Pnz6+1btmwZo0ePbtMYpXPR74S0pSW3HEd6TTEjf/oeAB+89TzjXzibj469l7FHnt7M0SIiIrIvMLMF7j6psbI2HcEyszDwO+BEYAxwjpmNacs+RURaI1JbSXXcCFZ23gAAKgq1kqCIiIg0r62nCE4Blrv75+5eBTwEzGjjPkVE9lqKV1AT3plg5fQZDEBtsRIsERERaV5bJ1gDgTVx22uDfXXM7HIzm29m8/Pz8xttpK2nMUrnod8FaWup0Qpq40awcrrnUu6pULo5iVGJiIhIZ5H0RS7c/W53n+Tuk3r37r1LeXp6Olu3btUXa8Hd2bp1K+np6c1XFtlLKV5VbwQrFA5RYD2IlDX+ByARERGReG19U5d1wOC47UHBvhYbNGgQa9eupanRLdm3pKenM2jQoGSHIV1YmlcSDWfU27c9kkta5dYkRSQiIiKdSVsnWO8BI8xsOLHE6mzg3D1pICUlheHDh7dFbCIiu0ijEo+k1dtXmtKLvCot0y4iIiLNa9Mpgu5eA3wH+DewDHjE3T9qyz5FRFojzauIRuqPYFWl59G9dluSIhIREZHOpK1HsHD354Dn2rofEZHW8poqUqwWT8mst782sw+5Bdvx2mosnJKk6ERERKQzSPoiFyIiHUVleSkAllJ/IRXL7kPInOKtG5IRloiIiHQiSrBERAJVQYJFgxGslO79ACjK36M1ekRERGQfpARLRCRQVVECQCi1foKV0SOWYJVuXd/uMYmIiEjnogRLRCRQVREbwQql1l/koluv2P3RKwo3tntMIiIi0rkowRIRCVRXlAG7jmDlBAlWbbESLBEREdk9JVgiIoHqYAQrnFY/wcrNyaXE0/GSzckIS0RERDoRJVgiIoGayliCFWkwghUKGdtCPQiXKcESERGR3VOCJSISqK0qByCSnrVLWUmkB2mVW9s7JBEREelklGCJiARqgxGslEYSrPLUXnSrVoIlIiIiu6cES0QkEK2KLXKRkp65S1lNRi9yagvbOSIRERHpbJRgiYgEPJgimJrRbdfC7L7kWgklpaXtHJWIiIh0JkqwREQCXh1LsNIamSKY0r0vAFs2rm3XmERERKRzaVWCZWa/MrOPzWyJmT1hZrlxZT8ys+Vm9omZndDqSEVE2lp1GbVupKdn7FKU0WMAAEVb1rV3VCIiItKJtHYE60VgnLtPAD4FfgRgZmOAs4GxwHTg92YWbmVfIiJtyqsrqCCV9NTILmXZvWM3Gy7dohEsERERaVqrEix3f8Hda4LNd4BBweMZwEPuXunuXwDLgSmt6UtEpK1ZdTkVpBEO2S5lPfsNA6B6mxIsERERaVoir8G6FHg+eDwQWBNXtjbYtwszu9zM5pvZ/Pz8/ASGIyKyZ6y6lEpLa7Qso0d/qglj2zVFUERERJq26zyYBszsJaBfI0U/cfengjo/AWqAB/c0AHe/G7gbYNKkSb6nx4uIJEq4ppRy23WJdgBCYbZaHqmlG9o3KBEREelUmk2w3P0ruys3s4uBk4Hj3H1HgrQOGBxXbVCwT0Skw4pUl1IR2nUFwR2KUvqQVbG5HSMSERGRzqa1qwhOB24ATnX3sriip4GzzSzNzIYDI4B5relLRKStpdaWUBluOsEqy+hHjxolWCIiItK01l6DdReQDbxoZovMbDaAu38EPAIsBf4FfNvda1vZl4hIm0qvLaMm0sQUQaA6qz+9fSs1NTVN1hEREZF9W7NTBHfH3Q/YTdnNwM2taV9EpD2leyk1Kd2arpAziLT1NWzevJ4+A4a0X2AiIiLSaSRyFUERkU4t08up3U2CldYzdmlpwcYv2iskERER6WSUYImIAERryaQCT8tuskq3vkMBKNu8qr2iEhERkU5GCZaICFBTXhx7kNp0gtWz33AAqgrWNFlHRERE9m1KsEREgLLthQBYevcm6+T26k+lp0Cx7johIiIijVOCJSIClJdsAyCc0XSCZaEQW0J5pJSub6+wREREpJNRgiUiApQHI1iR3SRYAIUpfciq2NQOEYmIiEhnpARLRAQoL4zdQDgjp/du65Vl9CO3WjcbFhERkcYpwRIRASqLY0lTVs9+u61XkzWAXl5ArW42LCIiIo1QgiUiAkRL8gHonrf7BMtyBxKxKNs2aSVBERER2ZUSLBERwEu3UOpp5HbP2W29tJ5DANimmw2LiIhII5RgiYgAkfItbLMcIuHdfyx26zMMgJJ83WxYREREdqUES0QESKksYHto96NXAHkDYjcbrtbNhkVERKQRCUmwzOxaM3Mz6xVsm5ndYWbLzWyJmR2SiH5ERNpKelUB5ak9m63Xo2dvSj0NinSzYREREdlVqxMsMxsMHA+sjtt9IjAi+Lkc+ENr+xERaUu5NVupSt/9Eu2w42bDvXSzYREREWlUIkawbgduADxu3wzgbx7zDpBrZv0T0JeISMLVVJTSkyJqswe2qH5RSh+yKnWzYREREdlVqxIsM5sBrHP3xQ2KBgLxFyisDfY11sblZjbfzObn5+e3JhwRkb2ydUNsRcBQz6Etql+R0Zecmi1tGZKIiIh0UpHmKpjZS0BjN4b5CfBjYtMD95q73w3cDTBp0iRvprqISMIVbVhBXyC9V8sSrJqsfuQVbiNaU0Mo0uzHqIiIiOxDmv1m4O5faWy/mY0HhgOLzQxgELDQzKYA64DBcdUHBftERDqc0s2xJddz+u3XovrhnIFE1kfZkr+WXv2HtWFkIiIi0tns9RRBd//A3fu4+zB3H0ZsGuAh7r4ReBq4MFhNcCpQ5O4bEhOyiEhiVeavoNrDDBqyf4vqp/UcBMC2jboXloiIiNTXVnNbngO+CiwHyoBL2qgfEZFWSylcwcZwPwanpbWofrfesQH67Zt1LywRERGpL2EJVjCKteOxA99OVNsiIm2pR9kqtmUOrTeveXd69o9dq1W1TQmWiIiI1JeQGw2LiHRWZRWVDIxuoDq3ZdMDAXr0Hki1h4kWa+aziIiI1KcES0T2aatXLCPNqkntN6rFx1goTEGoB5ESJVgiIiJSnxIsEdmnbf38fQB67nfIHh1XGOlNRsXmtghJREREOjElWCKyT6vd8CFRN/odMHGPjitP70P3at0cXUREROpTgiUi+7SMbR+zIdyfcFrWHh1XndWPvOhWolHdH11ERER2UoIlIvu0vuUr2JI1Yo+PC3UfQDeroKBgaxtEJSIiIp2VEiwR2WcVFRYyyDdSlTd6j49N6TEQgIINKxMclYiIiHRmSrBEZJ+17rOFhMxJHzR+j4/t1jt2L6zi/FWJDktEREQ6MSVYIrLPKlq1GIA+B+zZCoIAuf2GAFCxVTcbFhERkZ2UYInIPss3fkSZp9FnSMvvgbVDbu9YglVbpHthiYiIyE5KsERkn5Vd/BnrUoZiofAeHxtKy6SIboR1s2ERERGJowRLRPZJ7s7Aqs8pzN7zFQR3KIz0Ir1iUwKjEhERkc6u1QmWmX3XzD42s4/M7Na4/T8ys+Vm9omZndDafkREEmnLxjX0pBjvvecrCO5QmtaH7KrNCYxKREREOrtIaw42s2OAGcBB7l5pZn2C/WOAs4GxwADgJTMb6e61rQ1YRCQRNn62kN5A1pAJe91GZWY/BpV8grtjZokLTkRERDqt1o5gXQnc4u6VAO6+40+5M4CH3L3S3b8AlgNTWtmXiEjClK5ZAkC/EV/a+0a69SePYgq3lyYoKhEREensWptgjQSOMLN3zew/ZjY52D8QiF+7eG2wbxdmdrmZzTez+fn5+a0MR0SkZSJblrGVHPL6Dtr7NnoMJGTOlg2rExiZiIiIdGbNThE0s5eAfo0U/SQ4vicwFZgMPGJm++1JAO5+N3A3wKRJk3xPjhUR2Vu52z9jXepw8lrRRkbeYACKN6+EUWMSEpeIiIh0bs0mWO7+labKzOxK4HF3d2CemUWBXsA6YHBc1UHBPhGRpPPaGgbWrGJhr9Na1U5O//0BqMj/IgFRiYiISFfQ2imCTwLHAJjZSCAV2AI8DZxtZmlmNhwYAcxrZV8iIglRsPYzMqiCPnu/giBAjwEHxB5sW5WAqERERKQraNUqgsBfgL+Y2YdAFXBRMJr1kZk9AiwFaoBvd8YVBIu3bqKwYBNDRuz9KmMi0vFsWLmMPKD7oNYlWJH0LLbQg3CxrsESERGRmFYlWO5eBZzfRNnNwM2taT/Zlv39BiZueZa3B1/E6DN+RG6PXskOSUQSoGTjcgD6DT2w1W1tTR1AVunaVrcjIiIiXUOrbzTcle1/5k0syT6Cw9b+mZTfjOWd31/Oqk8XJzssEWkl37aSSk+hV/8hrW6rrNtQ+levxqPRBEQmIiIinV1rpwh2ab36D6XXdU/wxZI3yX/pdr606VFS/v4wK8L7sWnQdPocNJ1h4w8jkpKa7FATw51obQ3V1ZXUVFdTU1NDTU0VNdVV1NZUU1NdTW1tDdHqKjxag0droLYGr63GvRaiTtQd92jwEzyO+s7HHnuMOxD8uBO7ReuOx80vJtnam7ruerg1+rAFLe1tBHt52I7j2uOmtq2Ncc/4Xp/TPT+ue8ESNoX7MCQU3ss+d6ruM55eBc+xacNK+g7co0VUpbXcqamuorKynKrKCqoqy6mprKCqqoKaynKi1RWxz6loDdFoFK+tJRqtiSXD0drYPq+F2hqiHsWjtRCtxaPRep9CtuO/wa9a/c+foDTY5XXbRsPfzZ2HGZjVL22w7bvpY9ff+Qbb8ceaNajR8LNuN8c2PKrBe3TX96w13o+ISCtVZPVn1Pgp5GSkJDuUFlGC1QLDJxzO8AmHU7BxFR+/fB95K5/ly6t+D6t+T8lTGaxOG0FJzgjoPZr0vvuTlTeQnN6D6dGrH+Hw3g8S1tZGqagoo6K8lMryUqoqSqkqL6e6spTqyjJqKkqJVpVTW1lGbXU5XlUO1eVQU47VVGDV5VhtBeHaCkK1lUSiFURqK0nxSlKilaR6JWlUkuZVpFFFulUTAtKCH5Gu7P2sabR+/Apy958CH8OaD9/ebYJVUV7K4qfvpN8n95M/7jImfe2aBPTeOXk0SmlJEUVbN7N92ybKi/KpKdmClxbgFYVYVQlUlRKqLiFSXUqktoyU2jLSouWkR8vJoJxUryaNaiLmRICsZD8pERFpMw/UHEdq/78wcXBuskNpEYutSdExTJo0yefPn5/sMFokf+NqVi14kegXr5NduIxB1avItvJ6dao8TJllUEkaVZZGZSgdt3BshMYdBwzH3Il4NalUkeJVpFJFmleTZtV7HV8VESpIo8pSqbI0qi2N6lAaNaE0akPp1IbTqA1nUBtOIxpOJxpOIxpOw8OphMIRCEWwcAoWjsR+QhFC4VRCkdhjQhEIp0AoHKsbimAGZiEsZLF/LUTIDCyEhSAU7LNYxZ1/Pa37S6/hZrjbLn8pbZEdv8vN/Er7LhV2bu/Z22Hv3ju21+85b0Wve9NdK+Lcq2P3sr+96MtxBo44mOycnnvXZ5zq8u1EbxnOwj6ncdi3/7xL+fbCLSz9553st/w+erONWjc+zDqUg274d6v77mjKtxeyZeNqivLXULZlLVWFGwiVbiK1fDOZlflk1Wwjq7aY7r6dVGt63aMKT6HMMii3DCotg6pwJtXhTGoimdREsohGMohG0iGcBpE0bMdPShqhSBrhlHRCKWkQSQ8+yyKxz59wmFA4EnxOhQmFw7F/Q8H+YF8oFPusgtivl+F1nxsejX8fBv+t+x30umMa/l7uqLPjc3/nx9XO/x/UicZvNXzfN/i8atBP/RkAcfFQv66z62yBek15wx4bvM+8wZTYes8hrq6DmdeN7ImI7I2a9F4MHzGWrLSOMzZkZgvcfVJjZR0nyk6md78h9D7pG8A3AIjWRtmwbgVFG1ZQXrCe6qIN+PZNRCtKCNWWE6mtIFJbHpuCAsF0EAtmnRg1oVRqQul4OA2PBF8MIulYSjqhlHRCqemEUjMJp2YSSYv9pKRnkZqeSUp6JqnpWaRldCMtPZNQagapoTBdZOKiSIeWkpHN/KypjMx/gYqyEtIzuwGwfvkS1rxwJ+M2Pc2hVsGHqQex6cg7KXn7r+xX1vmu5YxGnc0FW9m06lNKNi4nuvVzIkWrySxbQ4/K9eRFt5BFBYOpfxPECk9ha6gnReE88tOGsD61B57RA8vsSbhbHmnZeWR0701GTm/Sc3vRrXtv0tPTSG/lNGAREZFkUYKVIKFwiP5DRtB/yIhkhyIi7Sxj2rfIe+EcPv7tiZT1HE33/AUcULOc3h5mUc6x5Bx7NeMmTgPgjeXv0mfly2zbspEevfolOfL6qqpr2LBuJVvXfkrphuVEC74gtXg12RVr6VOzkX5WSHzEJWSwKdyf/PRhrM08DLL7k5LTn8y8gXTvM5i8/kPJzO7JQDMGJu1ZiYiItC8lWCIirTT2y1/l9ZU/Ytwnd5G+/mO+iOzHm/tfwwHHXszkgcPq1e077ihYeSefvfYPpnztu+0e6/btxWxc9QlF6z+jYvPn2LYvyCiNjUL1j25kqFUzNKgbdSM/1IvCtAGs73EE63oMI6PP/nQfMIKeg0bSrXtvummkSUREpB5dgyUikiDVtVFqa6Okpzb9tyuPRlnzy3FUk8qQH80jJcGrkEZro2zZtJYtaz6hZONyarZ8TqRoFd3K19KregN9KKhXv4x0NkX6sz19IFXdhxDO24+svgeQN3gkPQfsj6WkJzQ+ERGRrkDXYImItIOUcIiUZlYOtVCIgsnXMfHda3j3nu8x5fLfYXuwXLxHoxQV5FOw7jNKNq6gIv9zKFxNeulacirX07d2E32smj5xx2wij4LUAazuMZWVucNI7TWc7gNG0GfIKLr17M9wjUKJiIgkjBIsEZF2NnH6Jby9/HUO2ziHL/7nHfKHnkx6v1FYaiZhMyrLiqkuKyZaVkCodBPh0k1kVGymW/VW8qIF5FoFuXHtFXkW+ZF+bM0YzobsIwn1GEpmn/3oMWgkvQePpG96Jn2T9WRFRET2MZoiKCKSBNHaKO889Qd6fXgPI6MrmqxX7qlsDfWkONKL8vTe1Gb2xbsPJJI3nG799qPPkFHk9shr9c23RUREpOV2N0VQCZaISBK5O1u35LNl7SdEqyqJRmtJ65ZLVnYu2bl5dOveEwvt/Q3LRUREJPHa7BosM5sIzAbSgRrgW+4+z2J/Sv0t8FWgDLjY3Re2pi8Rka7IzOjVuw+9evdpvrKIiIh0eK39s+itwC/cfSJwY7ANcCIwIvi5HPhDK/sRERERERHp8FqbYDnQPXicA6wPHs8A/uYx7wC5Zta/lX2JiIiIiIh0aK1dRfBq4N9mdhuxZO3Lwf6BwJq4emuDfRsaNmBmlxMb5WLIkCGtDEdERERERCR5mk2wzOwloF8jRT8BjgOucffHzOws4B7gK3sSgLvfDdwd9JVvZqv25Ph20AvYkuwgpN3ofO87dK73HTrX+xad732HzvW+oyOe66FNFbRqFUEzKwJy3d2DhS2K3L27mf0RmOvuc4J6nwBHu/suI1gdnZnNb2qFEOl6dL73HTrX+w6d632Lzve+Q+d639HZznVrr8FaDxwVPD4W+Cx4/DRwocVMJZZ4dbrkSkREREREZE+09hqsbwK/NbMIUEFwLRXwHLEl2pcTW6b9klb2IyIiIiIi0uG1KsFy9zeALzWy34Fvt6btDuTuZAcg7Urne9+hc73v0Lnet+h87zt0rvcdnepct+oaLBEREREREdmptddgiYiIiIiISEAJloiIiIiISIIowdoNM5tuZp+Y2XIz+2Gy45HEMbPBZvaqmS01s4/M7Kpgf08ze9HMPgv+7ZHsWCUxzCxsZu+b2T+D7eFm9m7w/n7YzFKTHaMkhpnlmtmjZvaxmS0zs8P03u6azOya4DP8QzObY2bpem93HWb2FzPbbGYfxu1r9L0crFx9R3Del5jZIcmLXPZUE+f6V8Hn+BIze8LMcuPKfhSc60/M7ISkBL0bSrCaYGZh4HfAicAY4BwzG5PcqCSBaoBr3X0MMBX4dnB+fwi87O4jgJeDbekargKWxW3/H3C7ux8AbAO+kZSopC38FviXux8IHETsvOu93cWY2UDge8Akdx8HhIGz0Xu7K7kXmN5gX1Pv5ROBEcHP5cAf2ilGSYx72fVcvwiMc/cJwKfAjwCC72tnA2ODY34ffG/vMJRgNW0KsNzdP3f3KuAhYEaSY5IEcfcN7r4weLyd2BewgcTO8X1BtfuA05ISoCSUmQ0CTgL+HGwbsXv3PRpU0bnuIswsBzgSuAfA3avcvRC9t7uqCJAR3C4mE9iA3ttdhru/BhQ02N3Ue3kG8DePeQfINbP+7RKotFpj59rdX3D3mmDzHWBQ8HgG8JC7V7r7F8RuCzWl3YJtASVYTRsIrInbXhvsky7GzIYBBwPvAn3jboq9EeibrLgkoX4D3ABEg+08oDDug1vv765jOJAP/DWYEvpnM8tC7+0ux93XAbcBq4klVkXAAvTe7uqaei/re1vXdinwfPC4w59rJViyTzOzbsBjwNXuXhxfFtzPTfcx6OTM7GRgs7svSHYs0i4iwCHAH9z9YKCUBtMB9d7uGoJrb2YQS6oHAFnsOsVIujC9l/cNZvYTYpd2PJjsWFpKCVbT1gGD47YHBfukizCzFGLJ1YPu/niwe9OOKQXBv5uTFZ8kzOHAqWa2kthU32OJXaOTG0wrAr2/u5K1wFp3fzfYfpRYwqX3dtfzFeALd89392rgcWLvd723u7am3sv63tYFmdnFwMnAeb7z5r0d/lwrwWrae8CIYDWiVGIX0z2d5JgkQYJrcO4Blrn7r+OKngYuCh5fBDzV3rFJYrn7j9x9kLsPI/Y+fsXdzwNeBc4MqulcdxHuvhFYY2ajgl3HAUvRe7srWg1MNbPM4DN9x7nWe7tra+q9/DRwYbCa4FSgKG4qoXRCZjad2PT+U929LK7oaeBsM0szs+HEFjaZl4wYm2I7k0FpyMy+SuzajTDwF3e/ObkRSaKY2TTgdeADdl6X82Ni12E9AgwBVgFnuXvDC2ylkzKzo4Hr3P1kM9uP2IhWT+B94Hx3r0xieJIgZjaR2IImqcDnwCXE/qCo93YXY2a/AGYSmz70PnAZsWsx9N7uAsxsDnA00AvYBPwceJJG3stBkn0XsWmiZcAl7j4/CWHLXmjiXP8ISAO2BtXecfcrgvo/IXZdVg2xyzyeb9hmMinBEhERERERSRBNERQREREREUkQJVgiIiIiIiIJogRLREREREQkQZRgiYiIiIiIJIgSLBERERERkQRRgiUiIiIiIpIgSrBEREREREQSRAmWiIiIiIhIgijBEhERERERSRAlWCIiIiIiIgmiBEtERERERCRBlGCJiIiIiIgkiBIsEZEOxsyGmZmbWSTZsci+wcw+MrOjkx2HiEhXoARLREQ6PTObbWYlwU+VmVXHbT+f7Pg6Oncf6+5zE9mmmQ00s6fMrMDM1prZFYlsX0SkozJ3T3YMIiJdiplF3L2mFccPA74AUlrTzr7KzGYBB7j7+Y2UterctKfOFGtjzOxVYDFwPTAGeBU4w91fTWpgIiJtTCNYIiIJYGYrzewHZrYEKDWziJlNNbO3zKzQzBbHT8Eys7lm9r9mNs/MioO/9Pdsou1LzGyZmW03s8/N7L8blM8ws0VBOyvMbHqwP8fM7jGzDWa2zsx+aWbhZp7H/mb2ipltNbMtZvagmeXGlRWY2SHB9gAzy9/xvMzs1GCqWWHw/EY3eH2uM7MlZlZkZg+bWfqev9J7rolz42Z2QFyde83sl3HbJwevaWFwDie0sK+jg9GaHwev30ozOy+u/CQzez84V2uCZHBH2Y6pod8ws9XAK8H+f5jZxuB1e83MxjaI+/dm9nwwWvemmfUzs9+Y2TYz+9jMDm7ha/SVljzHFr4O3YCjgZvdvdrdFwOPApcmqg8RkY5KCZaISOKcA5wE5AJ9gWeBXwI9geuAx8ysd1z9C4l94ewP1AB3NNHuZuBkoDtwCXB7XJIzBfgbsVGCXOBIYGVw3L1BuwcABwPHA5c18xwM+F9gADAaGAzMAnD3FcAPgAfMLBP4K3Cfu881s5HAHOBqoDfwHPCMmaXGtX0WMB0YDkwALm40ALNpQWLT1M+0Zp5DY+rOTXOjQkFC8hfgv4E84I/A02aW1sK++gG9gIHARcDdZjYqKCsldt5zg3iuNLPTGhx/FLHX/oRg+3lgBNAHWAg82KD+WcBPgz4rgbeDer2IJTW/bmHcjTKzH+7ufDR1WIN/dzwe15pYREQ6AyVYIiKJc4e7r3H3cuB84Dl3f87do+7+IjAf+Gpc/fvd/UN3LwV+BpzV2AiTuz/r7is85j/AC8ARQfE3gL+4+4tBP+vc/WMz6xv0dbW7l7r7ZuB24OzdPQF3Xx60Venu+cS+nB8VV/4nYDnwLrHE8CdB0Uzg2eDYauA2IAP4coPXZ727FwDPABObiOENd8/dzc8bu3sOTYg/N825HPiju7/r7rXufh+xxGXqHvT3s+A1/A+xRPssAHef6+4fBOdqCbGk9KgGx84Kzll5cMxf3H27u1cSS3YPMrOcuPpPuPsCd68AngAq3P1v7l4LPEwsud5r7n7L7s5HE8dsB94EfmZm6cEfBM4AMlsTi4hIZ6AES0QkcdbEPR4KfL3BX/qnEUtKGqu/CkghNupQj5mdaGbvBNPzCoklTjvqDQZWNBLL0KC9DXH9/5HYKEiTzKyvmT0UTCksBh5oJKY/ERuJuDP40g+xEa9VOyq4ezR4fgPjjtsY97gM6La7WBJsTfNV6gwFrm1w7gYTe44tsS1ImndYteNYMzvUzF4NplYWAVew6+tbF6uZhc3sFotN/Sxm5+hk/DGb4h6XN7Ldnq9zvPOIjVauAf5A7HdpbZJiERFpN0qwREQSJ37VoDXERqji/9qf5e63xNUZHPd4CFANbIlvMJiW9hixEaG+wYjBc+ycerUG2L+RWNYQG3XpFdd/d3cf20jdeP8TPI/x7t6d2Ehc3TSv4Nqa3wD3ALNs53Vj64klJjvqWfD81jXT3y7M7AjbuQJgYz9HNN/KLhqu6FRG/dGUfnGP1xC7dij+3GW6+5wW9tXDzLLitocQe30A/g48DQx29xxgNvWn0TWM9VxgBvAVIAcYFuxveEybCa4na/J8NHWcu69y95Pdvbe7H0osKZzXXnGLiCSLEiwRkbbxAHCKmZ0QjEKkBwsgDIqrc76ZjQmuZ7oJeDSY1hUvFUgD8oEaMzuR2LVUO9wDXGJmx5lZyGJLYx/o7huITSX8f2bWPSjb38waTkdrKBsoAYrMbCCxa7vi/RaY7+6XEZv6NjvY/whwUhBHCnAtsQTvreZeqIbc/XV377abn9f3tM1GLALODc7NdOpP0/sTcEUw2mRmlmWxxSmyoW5hiXubaf8XZpYaJIMnA/8I9mcDBe5eEVw/d24z7WQTex23EksI/2cPnmNCuPv/7O58NHWcmY02s+zgdTif2O9tq64HExHpDJRgiYi0AXdfQ2zk4cfEkqM1xJKV+M/d+4ktRLERSAe+10g724P9jwDbiH0hfzqufB7BwhdAEfAfdo4kXUgsQVsaHPso9acoNuYXwCFBW88Cj+8oMLMZxBapuDLY9X3gEDM7z90/ITbadSexUbhTgFPcvaqZ/pLlKmIxFhKbyvbkjgJ3nw98E7iL2Ou2nPoLcgwmdn1RUzYGx60ntiDFFe7+cVD2LeAmM9sO3EjsvO7O34hNMVxH7Dy+09wT60BOAD4n9lpcAUwPrusTEenSdB8sEZEkMLO5wAPu/udkxyItF6yKuBiYECzm0bD8aGLndVDDMhER2TdEkh2AiIhIZxGMyI1utqKIiOyzWj1F0MwGBysiLbXYDSavCvb3NLMXzeyz4N8erQ9XRERay8xmN7Fgwezmj5bOyMyG7GahiiHJjk9EpCtp9RRBM+sP9Hf3hcEFwAuA04jNVy9w91vM7IdAD3f/QSvjFRERERER6bBaPYLl7hvcfWHweDuwjNh9T2YA9wXV7iOWdImIiIiIiHRZCV3kwsyGAa8RuwHl6h13eA/uh7KtsTu+m9nlwOUAWVlZXzrwwAMTFo+IiIiIiEiiLViwYIu7926sLGEJVnDzyf8Quznj42ZWGJ9Qmdk2d9/tdViTJk3y+fPnJyQeERERERGRtmBmC9x9UmNlCbkPVnBTyceAB919xz1TNgXXZ+24TmtzIvoSERERERHpqBKxiqAB9wDL3D3+Du1PAxcFjy8CnmptXyIiIiIiIh1ZIkawDgcuAI41s0XBz1eBW4D/MrPPgK8E2yIiXZq78/iC1RSV7XIPWhEREdkHtPpGw+7+BmBNFB/X2varq6tZu3YtFRUVrW1K9jHp6ekMGjSIlJSUZIci+5AP3nyer710Dr/5cDZXX3ROssMRERGRdtbqBKutrV27luzsbIYNG0ZsNqJI89ydrVu3snbtWoYPH57scGQfUvrpqwB8ZdVvACVYIiIi+5qELHLRlioqKsjLy1NyJXvEzMjLy9PIp7S72tJtAPSszSeRt8EQERGRzqHDJ1iAkivZK/q9kWRIL98IQD8K2La9NMnRiIiISHvrFAmWiEhn0b1qEwAhc/LXrEhyNCIiItLelGC1gJlx7bXX1m3fdtttzJo1K3kBxXnnnXc49NBDmThxIqNHj66La+7cubz11lutanv69Onk5uZy8sknJyBSkX1Dz9p81lk/AIo3Lk9yNCIiItLelGC1QFpaGo8//jhbtmxJaLvuTjQabVUbF110EXfffTeLFi3iww8/5KyzzgISk2Bdf/313H///a1qQ2Sf4k5OtJgN2eMAqNyyMrnxiIiISLvr8KsIxvvFMx+xdH1xQtscM6A7Pz9l7G7rRCIRLr/8cm6//XZuvvnmemX5+flcccUVrF69GoDf/OY3HH744cyaNYtu3bpx3XXXATBu3Dj++c9/AnDCCSdw6KGHsmDBAp577jnuuusunn/+ecyMn/70p8ycOZO5c+cya9YsevXqxYcffsiXvvQlHnjggV2uK9q8eTP9+/cHIBwOM2bMGFauXMns2bMJh8M88MAD3HnnnRx44IFNxrlixQqWL1/Oli1buOGGG/jmN78JwHHHHcfcuXN3+9r84x//4Be/+AXhcJicnBxee+01KioquPLKK5k/fz6RSIRf//rXHHPMMdx77708+eSTlJaW8tlnn3HddddRVVXF/fffT1paGs899xw9e/bkT3/6E3fffTdVVVUccMAB3H///WRmZtbrd+rUqdxzzz2MHRs7d0cffTS33XYbkyZN2m28Im3JaypJsVpqug+FYqjdvjnZIYmIiEg70whWC33729/mwQcfpKioqN7+q666imuuuYb33nuPxx57jMsuu6zZtj777DO+9a1v8dFHHzF//nwWLVrE4sWLeemll7j++uvZsGEDAO+//z6/+c1vWLp0KZ9//jlvvvnmLm1dc801jBo1itNPP50//vGPVFRUMGzYMK644gquueYaFi1axBFHHLHbOJcsWcIrr7zC22+/zU033cT69etb/LrcdNNN/Pvf/2bx4sU8/fTTAPzud7/DzPjggw+YM2cOF110Ud1qfh9++CGPP/447733Hj/5yU/IzMzk/fff57DDDuNvf/sbAF/72td47733WLx4MaNHj+aee+7Zpd+ZM2fyyCOPALBhwwY2bNig5EqSrqKsBICa9B5sJ5NQWX6SIxIREZH21qlGsJobaWpL3bt358ILL+SOO+4gIyOjbv9LL73E0qVL67aLi4spKSnZbVtDhw5l6tSpALzxxhucc845hMNh+vbty1FHHcV7771H9+7dmTJlCoMGDQJg4sSJrFy5kmnTptVr68Ybb+S8887jhRde4O9//ztz5sxpdNRpd3HOmDGDjIwMMjIyOOaYY5g3bx6nnXZai16Xww8/nIsvvpizzjqLr33ta3XP6bvf/S4ABx54IEOHDuXTTz8F4JhjjiE7O5vs7GxycnI45ZRTABg/fjxLliwBYknYT3/6UwoLCykpKeGEE07Ypd+zzjqL448/nl/84hc88sgjnHnmmS2KV6QtVZQWkwGEUrMoDuWSWrE12SGJiIhIO+tUCVayXX311RxyyCFccskldfui0SjvvPMO6enp9epGIpF611fF348pKyurRf2lpaXVPQ6Hw9TU1DRab//99+fKK6/km9/8Jr1792br1l2/1DUVJ+y6nPmeLG8+e/Zs3n33XZ599lm+9KUvsWDBgt3Wj39OoVCobjsUCtU9v4svvpgnn3ySgw46iHvvvbfRhHHgwIHk5eWxZMkSHn74YWbPnt3imEXaSkXZdgAsLYuSlJ5kVCnBEhER2ddoiuAe6NmzJ2eddVa9KWvHH388d955Z932okWLABg2bBgLFy4EYOHChXzxxReNtnnEEUfw8MMPU1tbS35+Pq+99hpTpkxpcUzPPvts3c1MP/vsM8LhMLm5uWRnZ7N9+/Zm4wR46qmnqKioYOvWrcydO5fJkye3uP8VK1Zw6KGHctNNN9G7d2/WrFnDEUccwYMPPgjAp59+yurVqxk1alSL29y+fTv9+/enurq6rp3GzJw5k1tvvZWioiImTJjQ4vZF2kpVRWxUOJKWRWVqT7rVFiY3IBEREWl3SrD20LXXXltvNcE77riD+fPnM2HCBMaMGVM3knLGGWdQUFDA2LFjueuuuxg5cmSj7Z1++ulMmDCBgw46iGOPPZZbb72Vfv36tTie+++/n1GjRjFx4kQuuOACHnzwQcLhMKeccgpPPPEEEydO5PXXX28yToAJEyZwzDHHMHXqVH72s58xYMAAIJb8ff3rX+fll19m0KBB/Pvf/wZi0xJ3XG91/fXXM378eMaNG8eXv/xlDjroIL71rW8RjUYZP348M2fO5N577603ctWc/+//+/849NBDOfzwwznwwAPr9j/99NPceOONddtnnnkmDz30UN3KiSLJVhWMYIXTu1GT0Yse0cK6P4CIiIjIvsE60v/8J02a5PPnz6+3b9myZYwePTpJEXV9DVc77Gr0+yPtadlrjzL6lW+wZPpjVH/yIl/6YjZF120kp1tG8weLiIhIp2FmC9y90RXWNIIlIpIgNcEUwdSMbMLZfQDYtqXlq3KKiIhI56dFLvZxs2bNSnYIIl1GbWUpAKmZ3Yjm9AVg+5b1MGz/ZIYlIiIi7ajNR7DMbLqZfWJmy83sh23dn4hIskSDBCstI5vMHrFrKcu2bUxmSCIiItLO2jTBMrMw8DvgRGAMcI6ZjWnLPkVEksUrY1ME07Oyye4VWyymulgJloiIyL6kracITgGWu/vnAGb2EDADWLrbo0REOiGvKiPqRmZmNilpsfvJ1W7PT3JUIiIi0p7aeorgQGBN3PbaYJ+ISNdTVUo5qaSnholk5FBJCqEyJVgiIiL7kqSvImhml5vZfDObn5/fcb+IPPnkk5gZH3/8cZN1Vq5cybhx4xLW5yeffMLRRx/NxIkTGT16NJdffjkQu0nwc88916q2L730Uvr06ZPQeEX2dVZTRjnpmBmYUWi5pJRvaf5AERER6TLaOsFaBwyO2x4U7Kvj7ne7+yR3n9S7d+82DmfvzZkzh2nTpjFnzpxGy2tqalrdR21tbb3t733ve1xzzTUsWrSIZcuW8d3vfhdITIJ18cUX869//atVbYhIfaGacips5021t0dySa3alsSIREREpL219TVY7wEjzGw4scTqbODcvW7t+R/Cxg8SFFqg33g48ZbdVikpKeGNN97g1Vdf5ZRTTuEXv/gFAHPnzuVnP/sZPXr04OOPP+aFF16gpqaG8847j4ULFzJ27Fj+9re/kZmZycsvv8x1111HTU0NkydP5g9/+ANpaWkMGzaMmTNn8uKLL3LDDTdw9tln1/W7YcMGBg0aVLc9fvx4qqqquPHGGykvL+eNN97gRz/6ESeffDLf/e53+fDDD6murmbWrFnMmDGDe++9lyeeeIKioiLWrVvH+eefz89//nMAjjzySFauXLnb5/2f//yHq666CgAz47XXXqNbt27ccMMNPP/885gZP/3pT5k5cyZz587l5z//Obm5uXzwwQecddZZjB8/nt/+9reUl5fz5JNPsv/++/PMM8/wy1/+kqqqKvLy8njwwQfp27dvvX7PPvtsLrjgAk466SQglgyefPLJnHnmmS07pyJJEq4upcJ23lS4IqUHmRUFSYxIRERE2lubjmC5ew3wHeDfwDLgEXf/qC37bAtPPfUU06dPZ+TIkeTl5bFgwYK6soULF/Lb3/6WTz/9FIhN6/vWt77FsmXL6N69O7///e+pqKjg4osv5uGHH+aDDz6gpqaGP/zhD3Vt5OXlsXDhwnrJFcA111zDsccey4knnsjtt99OYWEhqamp3HTTTcycOZNFixYxc+ZMbr75Zo499ljmzZvHq6++yvXXX09paWy56Hnz5vHYY4+xZMkS/vGPfzB//vwWP+/bbruN3/3udyxatIjXX3+djIwMHn/8cRYtWsTixYt56aWXuP7669mwYQMAixcvZvbs2Sxbtoz777+fTz/9lHnz5nHZZZdx5513AjBt2jTeeecd3n//fc4++2xuvfXWXfqdOXMmjzzyCABVVVW8/PLLdcmWSEcWqS2nKpRet12Vlkf3aGHyAhIREZF21+Y3Gnb354DWzWfboZmRprYyZ86cupGcs88+mzlz5vClL30JgClTpjB8+PC6uoMHD+bwww8H4Pzzz+eOO+7gv/7rvxg+fDgjR44E4KKLLuJ3v/sdV199NRBLKBpzySWXcMIJJ/Cvf/2Lp556ij/+8Y8sXrx4l3ovvPACTz/9NLfddhsAFRUVrF69GoD/+q//Ii8vD4Cvfe1rvPHGG0yaNKlFz/vwww/n+9//Pueddx5f+9rXGDRoEG+88QbnnHMO4XCYvn37ctRRR/Hee+/RvXt3Jk+eTP/+/QHYf//9Of7444HYyNurr74KwNq1a5k5cyYbNmygqqqq3mu3w4knnshVV11FZWUl//rXvzjyyCPJyMjYpZ5IRxOpLac8tPN3NZrZi54FRVTX1JISCScxMhEREWkvSV/koqMrKCjglVde4bLLLmPYsGH86le/4pFHHsHdAcjKyqpX38x2u92Yhm3EGzBgAJdeeilPPfUUkUiEDz/8cJc67s5jjz3GokWLWLRoEatXr2b06NF7Hc8OP/zhD/nzn/9MeXk5hx9++G4X+ABIS9t57UkoFKrbDoVCddeoffe73+U73/kOH3zwAX/84x+pqKjYpZ309HSOPvpo/v3vf/Pwww83mYCKdDSp0QqqwztHsKxbL9KtmsJCXYclIiKyr1CC1YxHH32UCy64gFWrVrFy5UrWrFnD8OHDef311xutv3r1at5++20A/v73vzNt2jRGjRrFypUrWb58OQD3338/Rx11VLN9/+tf/6K6uhqAjRs3snXrVgYOHEh2djbbt2+vq3fCCSdw55131iV977//fl3Ziy++SEFBQd11UDtG11pixYoVjB8/nh/84AdMnjyZjz/+mCOOOIKHH36Y2tpa8vPzee2115gyZUqL2ywqKmLgwNhK/ffdd1+T9WbOnMlf//pXXn/9daZPn97i9kWSKSVaTk145whWSnYfAIq2bkhWSCIiItLOlGA1Y86cOZx++un19p1xxhlNriY4atQofve73zF69Gi2bdvGlVdeSXp6On/961/5+te/zvjx4wmFQlxxxRXN9v3CCy8wbtw4DjroIE444QR+9atf0a9fP4455hiWLl3KxIkTefjhh/nZz35GdXU1EyZMYOzYsfzsZz+ra2PKlCmcccYZTJgwgTPOOKNueuA555zDYYcdxieffMKgQYO45557AJg9ezazZ88G4De/+Q3jxo1jwoQJpKSkcOKJJ3L66aczYcIEDjroII499lhuvfVW+vXr1+LXc9asWXz961/nS1/6Er169arbP3/+fC677LK67eOPP57//Oc/fOUrXyE1NbXF7YskU7pXUBvJrNtOzYkt4FJasDFZIYmIiEg7sx2jHh3BpEmTvOEiDMuWLaub7iZ75t5772X+/PncddddyQ4lafT7I+2pdFY/FuadzBHf/TMAaz58i8GPnsi7h97FoSdekOToREREJFHMbIG7N7qwgUawREQSwZ10KvCUnSNY3XvFRnerijvuTdRFREQksdp8FUFJnosvvpiLL7442WGI7BtqKgnjROOmCGb3iCVY0ZLNyYpKRERE2lmnGMHqSNMYpfPQ7420p+qKktiD1J2rgobSMikhg3DZliRFJSIiIu2twydY6enpbN26VV+WZY+4O1u3biU9Pb35yiIJUF5aDEAorf5tF7aHcohUFCQjJBEREUmCDj9FcNCgQaxdu5b8fF3DIHsmPT2dQYMGJTsM2UdUlsVundAwwSqJ9CC9SgmWiIjIvqLDJ1gpKSkMHz482WGIiOxWVZBghRskWBWpPckqXZeMkERERCQJOvwUQRGRzqCqPHYNViS9W7391el55ESLkhGSiIiIJIESLBGRBKgKFrlIyeheb79n5NGDYiqqapIRloiIiLQzJVgiIglQUx6bIpiaUX8EK5TdmxSrpaBA15GKiIjsC5RgiYgkQG1lKQCpmfUTrEh2XwC2b1nf7jGJiIhI+1OCJSKSALXBFMGMzOx6+zNy+wBQWrCx3WMSERGR9qcES0QkAaJVsRGs9AYJVree/QGoKNrU7jGJiIhI+2tVgmVmvzKzj81siZk9YWa5cWU/MrPlZvaJmZ3Q6khFRDowryql1o2srPpTBLv3iiVYNdt1DZaIiMi+oLUjWC8C49x9AvAp8CMAMxsDnA2MBaYDvzezcCv7EhHpuKpKKSOdtJT6H3UZObEpgpRuTkJQIiIi0t5alWC5+wvuvmPt4XeAQcHjGcBD7l7p7l8Ay4EprelLRKQjs+pyKkjDzOrvj6RSRDdCZVuSFJmIiIi0p0Reg3Up8HzweCCwJq5sbbBvF2Z2uZnNN7P5+fmaQiMinVOouowKS2+0rDjcg7SKre0ckYiIiCRDpLkKZvYS0K+Rop+4+1NBnZ8ANcCDexqAu98N3A0wadIk39PjRUQ6gnBtGVWhxhOskpSeZFYrwRIREdkXNJtguftXdlduZhcDJwPHufuOBGkdMDiu2qBgn4hIlxSuKafSMhotq0zNo2flsnaOSERERJKhtasITgduAE5197K4oqeBs80szcyGAyOAea3pS0SkI0upLac63PgIVk1GL3pEC9n5NygRERHpqpodwWrGXUAa8GJwYfc77n6Fu39kZo8AS4lNHfy2u9e2si8RkQ4rNVpGcWrPRsu8Wx+yrZyikhJysrMbrSMiIiJdQ6sSLHc/YDdlNwM3t6Z9EZHOIiNaSnVK48lTJLsvANs2ryMn+8D2DEtERETaWSJXERQR2Wd18xJqU3MaLUvLja0TtH3r+vYMSURERJJACZaISCt5bTVZVBBN695oeVZefwDKt21oz7BEREQkCZRgiYi0UmVJIQCW0fgIVk6v2G0Aqwo3tldIIiIikiRKsEREWqm0cAsAoYwejZZ3D0awvGRzu8UkIiIiyaEES0Sklcq2x24iHMlqPMEKpWawnUysNL89wxIREZEkUIIlItJK5dsLAEjNym2yTlGoB6kVW9opIhEREUkWJVgiIq1UtX0bAOnZjd8HC6A0pScZVQXtFZKIiIgkiRIsEZFWqi6NJU6ZOXlN1qlIyyO7VgmWiIhIV6cES0SklaqDa7B69OrbZJ2ajF7kRgtx9/YKS0RERJJACZaISCtZ6WZKPIPsbo3fBwuArN7kWinFJWXtF5iIiIi0OyVYIiKtFCnPZ1soFzNrsk44uw8ABfnr2issERERSQIlWCIirZRWuZXicNMLXACk5/YDYPuWDe0RkoiIiCSJEiwRkVbqVr2V8tSmF7gAyOo5AICybUqwREREujIlWCIirZQb3UZVeq/d1uneK5ZgVRVtbI+QREREJEmUYImItEJ1ZRndKcWzeu+2XnZeLMGKbt/cHmGJiIhIkiQkwTKza83MzaxXsG1mdoeZLTezJWZ2SCL6ERHpaPLXrAAg0nPIbuuF0rtRRjqhsvz2CEtERESSpNUJlpkNBo4HVsftPhEYEfxcDvyhtf2IiHREhes/BSCz7wHN1i0K5ZJSvqWtQxIREZEkSsQI1u3ADUD83TNnAH/zmHeAXDPrn4C+REQ6lPJNsRGsnoNGNlu3NKUnGdVb2zokERERSaJWJVhmNgNY5+6LGxQNBNbEba8N9jXWxuVmNt/M5ufna+qMiHQu0YIvqPAU+gzY/RRBgIrUPLrVbGuHqERERCRZIs1VMLOXgH6NFP0E+DGx6YF7zd3vBu4GmDRpkjdTXUSkQ0kt+oKN4X4MizT7cUpNRi96FC8mGnVCoaZvSiwiIiKdV7PfCNz9K43tN7PxwHBgsZkBDAIWmtkUYB0wOK76oGCfiEiX0rd8OWuyxjGsBXU9qzc92E5RaTk9sjPbOjQRERFJgr2eIujuH7h7H3cf5u7DiE0DPMTdNwJPAxcGqwlOBYrcXXfXFJEupbxoK/08n8q8MS2qH+7el5A527bo41BERKSraqv7YD0HfA4sB/4EfKuN+hERSZqVS98FIGvIxBbVT8uJzbYu3rK+rUISERGRJGv+ooEWCkaxdjx24NuJaltEpCPa/unrAAydcESL6mflxRZTLdumESwREZGuqq1GsEREuryMDe/yeWgoPXu37C4UOXmxxVSriza1ZVgiIiKSREqwRET2QmnJdvYv/5Atvaa0+JhuvWKJWO12JVgiIiJdlRIsEZG98PFbT5NplWRNOKXFx1hadypJJVSqe/6JiIh0VUqwRET2xgePUkQWI6ec0PJjzCgK5RCp2Np2cYmIiEhSKcESEdlDBZvXM674dT7ufSIpqel7dGxJpCcZVUqwREREuiolWCIie2jFM7eSQg19j9vzxVIr0vLoVrOtDaISERGRjkAJlojIHijeuokxa+Ywv9tRDDvwkD0+viajF7nRbUSj3gbRiYiISLIpwRIR2QPL/n4DGV5J3ld/ulfHe1Zv8iimsKwywZGJiIhIR6AES0SkhT5463kO3fok7/U9i/3HTt6rNsLZfYlYlIItWqpdRESkK1KCJSLSAoX5G+j9wnfYYH2YcOGv9rqdtJx+ABRvWZeo0ERERKQDUYIlItKMmqpK1vz5XHp6IcWn3ENGt5y9biujRyzBqijcmKjwREREpANRgiUishsejfL+Hy5lfOVCFh90I6MOObJV7XXrNRCAaiVYIiIiXZISLBGR3XjrLz9g8rZ/8tbAS5j8tata3V73vAEAREs2t7otERER6XiUYImINOHtOf/L4WvvZkGP6Rz2jV8npM1QZg+qiWCl+QlpT0RERDoWJVgiIo2Y//RsDvvkFhZlHs7Ebz+AhRL0cWlGoeWQUrElMe2JiIhIh9Lqbwxm9l0z+9jMPjKzW+P2/8jMlpvZJ2Z2Qmv7ERFpLx++8hATF/yIj1IP4sDv/oNwJCWh7W+P9CC9cmtC2xQREZGOIdKag83sGGAGcJC7V5pZn2D/GOBsYCwwAHjJzEa6e21rAxYRaUvL5/2LA/7zHT6P7M/gbz9JekZWwvsoT8mjm0awREREuqTWjmBdCdzi7pUA7r7jqu0ZwEPuXunuXwDLgSmt7EtEpE2t+WQhfZ+7hI2hPvS4/Cm65/Rsk36q0/PIjha1SdsiIiKSXK1NsEYCR5jZu2b2HzObHOwfCKyJq7c22LcLM7vczOab2fz8fF30LSLJsS1/A6GHzqaSVEIXPkHvvo1+ZCVEbWYeeV5EVbUG9UVERLqaZqcImtlLQL9Gin4SHN8TmApMBh4xs/32JAB3vxu4G2DSpEm+J8eKiCRCbXUlG//0dfaLFrDq1EcYOXxU23bYrQ9pVs3mwgL69O7dtn11Al5bQ2VZMZUV5VRVVVJVWUlVVSW1NVWEvAYzMAtjZlgojIXCYCFCodDOx+Ew4XAk9m8ogkUihMNhIuEIoXCkrsxC4WQ/XRER6eKaTbDc/StNlZnZlcDj7u7APDOLAr2AdcDguKqDgn0iIh3O+3/+DpOqPuCdg/+PqV86ts37S8nuA0DRlvVdNsHyaJQt+evYsnIp2zevIlq0ntD2DaSUbyKjcgvp1cVkREvI8jK6WTnpQHo7xVbjIaKEqCVE1OIe1/2E6/ZHsXrHGrv+HdB22QM0Vs/r79t5nP62uK+xxn9pdq3XklKDslA23b/5DD37DmplZCKSCK1a5AJ4EjgGeNXMRgKpwBbgaeDvZvZrYotcjADmtbIvEZGEW/Ly35m06RHe7PV1Dj/tinbpMy23LwClBRuBg9qlz7ZUuG0rqz96m7JVCwhvXkp26Rf0r15LbyslPn0s8zS2hHpSHM5ja/pgPDWbaHoOtSnZRFO7YZF0wimphCKpRFJSIZyKWziW5ESj4FHwWvAo7rUQdXzHvmgtHt35r0dr6/bXlXkUi9bGjg3KLGgv/rF5LRatDdIrx+O+5hqNp0Pe6DfmJvbZ7ut4M1+rpXNzfJdfIg/+4zu36j/yJh7jmDtTS17k3cdv5stX/qGNohaRPdHaBOsvwF/M7EOgCrgoGM36yMweAZYCNcC3O+sKgh6NJu7+NyLSoWzbuJIhr1/P8vB+TLrsjnbrN6tHfwAqiza2W5+J4tEoq1d8xPrFLxFZ8xb9ij9ksK8nNyjPpweb04byae7xRPMOIL3fKHr034+cvkPpntOTIfo8FUm4Bb89m8kbH2bZwnMZfcgRyQ5HZJ/XqgTL3auA85souxm4uTXtJ9v7z/8V//BxDvjGn+nes2+ywxGRBPJolDV/u4IRXoWd+VfS0jPbre/ueQMAqO4kCVbBptWseOsp+PxVhm5/n6EUMBQooDurMsezrs8MsodNov/oQ+nddzBdc9KjSMc18sI72PbbqWQ+cwWFw18jt0deskMS2ae1dgSrS6vavpmDS96k6I5DmTf+Kg4+5VukpKYlOywRSYBF/76Pg8ve5q39r+LLoye2a9/ZvQZQ4yFs+4Z27belPFrLyg/fJn/B0/RY9yojaj6lJ7CFXFZnH8zqIYfT/6D/YsABE+ipESmRpMvu0Yf10+9k/+fP58M/ns2Y7z9LampqssMS2WeZe8e5uHbSpEk+f/78ZIdRz/IlbxF95mpGVn/COuvLmtGXMX76ZWR1b5v744hI2ystLqDi1wdTEM5j+A/fiV3v0842ztqfNTlfYvI1j7R7342pra1l2bwXKVnwCAdseYVebCPqxqcpo9g68Bj6HHIq+4+bSiishEqko1rw2G186YP/j3lZx3DQVQ+Tpj8Ki7QZM1vg7pMaK9MIVjMOmPBlfNw7LJ77CFlv3cbUpTdT9tFtvJtzNGnjTmH/Q08iu41uRtpeorW1VFWWUV1ZRk1VJTXVVVRXVVFbU0VNddy/weNobTXUVkO0pu5fd8ejUdwdvLbBduzf2IXl1P1rHiV2gW60Xjzx14o3TP+twcXfOy4s37F/l/oWK613DDuOqd9GfC+7XmPeeBtNlcd13il0nkgTI7R2HpMpZPP0vyYluQIoTOlDRnlypwh6NMrHC+dSOO8h9tv8EuPYSoWn8FHWVJYfMJ39v3waB/bTqmQincWXzriOBZXbmfLpb1jy/05k0GV/p2fvxu6008W4E62ppqKilMryMqoqyqiqLKOyoozqynKiVRVQU0k0Wku0thqvrcFra4hGa/DaWjxaE1scp3bnv0ZssZtduiK2IqjHf+NoMFixY2uXeg0YVu87SKP/L274XaKx7ywNthr9XrMHbTT+/aVBP3sYV0u+W+2ujeJu+3PwESfSq1vn+KOBRrD2QOzLyGtsf+seDix4ie6UUe1hvkg5gMIe47D+E8jqN5KcASPIGzCM9NSUhPRbU1NDWWkxlaXbKS8toqq8hOry7VSXb6e2YjvRyhKilWV4ZQlUlWLVpVhNOVZdTqi2gnDwE4lWkhKtJMUrSdvxQxXpVp2QOEU6k8UZh3LQD15IWv8Lf306vbcvY/DPP27Xfj0aZcUHb5H/zhyGbnyBAb6ZKo+wNGsK0bGnc+CRXyczu0e7xiQiifXe47/hoMU3UWTd2XDYzxn/Xxd12AW7qqprKSwsYHvBBiqK8qku3ky0JJ/askKiFduhajtUlhCuLiFSU0pKTSnp0TIyvIwMLyedSlK9irB1nO+zkngP1BzHuP/+CxMH5yY7lDq7G8FSgrWXKisr+GzBq5R++Bzd8t9nWNVnZFlFXXm1h9luWZSGsikNZVMVzgQLQyhM1MLUEgJ3QtEaIl5F2GP/hqLVhL2a1GglGZST7pVkWmWL44q6UUYaFZZGFWlUhdKotjSqQ+nUhNOoDacTDacTDWfgKel4OB2PZBCNpEMknVAkFQunYJEUQpFUQuHg30gK4Ugq4UgqFknBwimEwikQTsFCYULhCCEDQmFCFiIUCmMGofCO7RBmIULhECEzzMJghluI2F81DIIFkXfyhk+uwbNtsKBtw78gue/ahje5CG5ccePHNBVX45/pe/6+2t1fudpUEj8CktW1O/TsMyBpo1cA7/3x20xY/zDhn20iEmnjm9+6s2rZe2x4aw6D1j3PIN9AtYdZmnEIVQeexqijz6Z7bq+2jUFE2tWKxa8RfeoqRkQ/59PISLZPvJxRR59Nt27ZbdpvbW2Uwm1bKN66gZKCDVQUbqZ6ez7Rknwo20pKxVbSqraRVVNIdrSIHl5M2m7+0FvqaZRZJhWh2E91OJOqcBZVkW7URLLw4PsLkXQsJfYTSskgnJpOODX2byg1g1AkDQtHCIcihCKxn9jjFMLBzcjD4WB/OALhFLBQvUGVHaM2FnxniR9vsVD8jBrbedzuZrPEfb9o7PuHN5jh0/A7e3PbLaqzy3b9PlvW7+7jBN/1q1Qz3/EafifySAa5PXuTGuk4fyhQgtUOamtqWL/qE4rWfUZl/gqihWuIlm0jVFFIRk0RqdHyunuwhKglQi2YUU0KtZZCjaVQG0ohGkrFQylEIxnUpmQSTcnCUjIhtRuWlkUorRuhtGwi6VmkZGSTkplNWmZ30jKzSc/KJiOjGylt/WVNRFpt3qP/jykf3sT6i95lwPAD26SPdZ8tYt0bf6fvmucYGl1DrRtL0ydSNnIGo446h9xe+8DUIZF9WFVVFYueuoP+S+9hsK+n3FP5OONgqvsdTPqgCfQYPJrcPoPoltNrlxEuj0apqq6krLSUypJtVBTlU1a4mYriLVSXbKG2ZCtWXkBKRQFpVQVk1hTSPVpEjheTao3fmaeUdIoth9JILuWpPahJ60k0Mw+yehPu1puU7N6kdO9DRm5fsnLy6JadS2qCZgOJJJoSLBGRDubj917mwGe/xqLDf8fE/2r0bhd7ZfVnH7D+rTn0Xf0cw2u/IOrG0tRxbN//FA44+lx69xucsL5EpHOoqanh03eepWzJ0/TNf4uB0Q2E4qZf1LpRRQo1hKm1MKlUk9aCaXfbyaTYulMS6UF5Sg+q03viGXlYVi8i2b1Jy+lDVs9+dO/Zn+55/Qintd/tMETamha5EBHpYIaMnkT0n0b56sU0cTvBFoldU/U2m+Y/SZ91LzMiuoIhwLLIaN4ccT3DjzyXcYP3S1jcItL5RCIRxkybAdNmAFBUtI0Nny6geOPn1BRvhrItWG0VFq3GojXUhlKxlAwsJYNQagaW1h2yepLevTdZub3p3rMvuT37kJ2aRttOOBTpnJRgiYgkQWa3HFaGB9F983t7fGxFeSmfvvs8lR89y5Atr3GAb2E/N5anjmLe/t9nyBHnMnrIiDaIWkS6gpycHuRM/kqywxDpspRgiYgkydq+x3HY+vsoyl9LTu+ml0OvqqzkiyWvUbT0Fbqtf5P9K5Yywaop8zQ+zprEqgOu4oDDT2dkX03/ExERSTYlWCIiSdL/yIvxh/7Gqge+y7hvzyGUmk60ppr1qz4j/9N3qV6zgMwtSxhe+TGjgtVEl4eG836/M8g88DhGHHoSh2RmJflZiIiISDwlWCIiSbL/6IN5ZdDlHLtuNhX/M5hSMsnxYgZZlEFApUdYFdmPj/qcTGT/oxhyyPEc0Kc/ByQ7cBEREWmSEiwRkSQ65rJbePvlKVQve4FITQnRzF6k9hpG7n6TGDJ6EiPTM5IdooiIiOwBJVgiIklkZhz2lTPgK2ckOxQRERFJgI5zO2QREREREZFOTgmWiIiIiIhIgijBEhERERERSRBz92THUMfM8oFVyY6jgV7AlmQHIe1G53vfoXO979C53rfofO87dK73HR3xXA91996NFXSoBKsjMrP57j4p2XFI+9D53nfoXO87dK73LTrf+w6d631HZzvXmiIoIiIiIiKSIEqwREREREREEkQJVvPuTnYA0q50vvcdOtf7Dp3rfYvO975D53rf0anOta7BEhERERERSRCNYImIiIiIiCSIEiwREREREZEEUYK1G2Y23cw+MbPlZvbDZMcjiWNmg83sVTNbamYfmdlVwf6eZvaimX0W/Nsj2bFKYphZ2MzeN7N/BtvDzezd4P39sJmlJjtGSQwzyzWzR83sYzNbZmaH6b3dNZnZNcFn+IdmNsfM0vXe7jrM7C9mttnMPozb1+h72WLuCM77EjM7JHmRy55q4lz/KvgcX2JmT5hZblzZj4Jz/YmZnZCUoHdDCVYTzCwM/A44ERgDnGNmY5IblSRQDXCtu48BpgLfDs7vD4GX3X0E8HKwLV3DVcCyuO3/A2539wOAbcA3khKVtIXfAv9y9wOBg4idd723uxgzGwh8D5jk7uOAMHA2em93JfcC0xvsa+q9fCIwIvi5HPhDO8UoiXEvu57rF4Fx7j4B+BT4EUDwfe1sYGxwzO+D7+0dhhKspk0Blrv75+5eBTwEzEhyTJIg7r7B3RcGj7cT+wI2kNg5vi+odh9wWlIClIQys0HAScCfg20DjgUeDaroXHcRZpYDHAncA+DuVe5eiN7bXVUEyDCzCJAJbEDv7S7D3V8DChrsbuq9PAP4m8e8A+SaWf92CVRarbFz7e4vuHtNsPkOMCh4PAN4yN0r3f0LYDmx7+0dhhKspg0E1sRtrw32SRdjZsOAg4F3gb7uviEo2gj0TVZcklC/AW4AosF2HlAY98Gt93fXMRzIB/4aTAn9s5llofd2l+Pu64DbgNXEEqsiYAF6b3d1Tb2X9b2ta7sUeD543OHPtRIs2aeZWTfgMeBqdy+OL/PYPQx0H4NOzsxOBja7+4JkxyLtIgIcAvzB3Q8GSmkwHVDv7a4huPZmBrGkegCQxa5TjKQL03t532BmPyF2aceDyY6lpZRgNW0dMDhue1CwT7oIM0shllw96O6PB7s37ZhSEPy7OVnxScIcDpxqZiuJTfU9ltg1OrnBtCLQ+7srWQusdfd3g+1HiSVcem93PV8BvnD3fHevBh4n9n7Xe7tra+q9rO9tXZCZXQycDJznO2/e2+HPtRKspr0HjAhWI0oldjHd00mOSRIkuAbnHmCZu/86ruhp4KLg8UXAU+0dmySWu//I3Qe5+zBi7+NX3P084FXgzKCaznUX4e4bgTVmNirYdRywFL23u6LVwFQzyww+03eca723u7am3stPAxcGqwlOBYriphJKJ2Rm04lN7z/V3cviip4GzjazNDMbTmxhk3nJiLEptjMZlIbM7KvErt0IA39x95uTG5EkiplNA14HPmDndTk/JnYd1iPAEGAVcJa7N7zAVjopMzsauM7dTzaz/YiNaPUE3gfOd/fKJIYnCWJmE4ktaJIKfA5cQuwPinpvdzFm9gtgJrHpQ+8DlxG7FkPv7S7AzOYARwO9gE3Az4EnaeS9HCTZdxGbJloGXOLu85MQtuyFJs71j4A0YGtQ7R13vyKo/xNi12XVELvM4/mGbSaTEiwREREREZEE0RRBERERERGRBFGCJSIiIiIikiBKsERERERERBJECZaIiIiIiEiCKMESERERERFJECVYIiIiIiIiCaIES0REREREJEGUYImIiIiIiCSIEiwREREREZEEUYIlIiIiIiKSIEqwREREREREEkQJloiIiIiISIIowRIR6WDMbJiZuZlFkh2L7BvM7CMzOzrZcYiIdAVKsEREpNMzs9lmVhL8VJlZddz288mOr6Nz97HuPjeRbZrZQDN7yswKzGytmV2RyPZFRDoqc/dkxyAi0qWYWcTda1px/DDgCyClNe3sq8xsFnCAu5/fSFmrzk176kyxNsbMXgUWA9cDY4BXgTPc/dWkBiYi0sY0giUikgBmttLMfmBmS4BSM4uY2VQze8vMCs1scfwULDOba2b/a2bzzKw4+Et/zybavsTMlpnZdjP73Mz+u0H5DDNbFLSzwsymB/tzzOweM9tgZuvM7JdmFm7meexvZq+Y2VYz22JmD5pZblxZgZkdEmwPMLP8Hc/LzE4NppoVBs9vdIPX5zozW2JmRWb2sJml7/krveeaODduZgfE1bnXzH4Zt31y8JoWBudwQgv7OjoYrflx8PqtNLPz4spPMrP3g3O1JkgGd5TtmBr6DTNbDbwS7P+HmW0MXrfXzGxsg7h/b2bPB6N1b5pZPzP7jZltM7OPzezgFr5GX2nJc2zh69ANOBq42d2r3X0x8ChwaaL6EBHpqJRgiYgkzjnASUAu0Bd4Fvgl0BO4DnjMzHrH1b+Q2BfO/kANcEcT7W4GTga6A5cAt8clOVOAvxEbJcgFjgRWBsfdG7R7AHAwcDxwWTPPwYD/BQYAo4HBwCwAd18B/AB4wMwygb8C97n7XDMbCcwBrgZ6A88Bz5hZalzbZwHTgeHABODiRgMwmxYkNk39TGvmOTSm7tw0NyoUJCR/Af4byAP+CDxtZmkt7Ksf0AsYCFwE3G1mo4KyUmLnPTeI50ozO63B8UcRe+1PCLafB0YAfYCFwIMN6p8F/DTosxJ4O6jXi1hS8+sWxt0oM/vh7s5HU4c1+HfH43GtiUVEpDNQgiUikjh3uPsady8Hzgeec/fn3D3q7i8C84GvxtW/390/dPdS4GfAWY2NMLn7s+6+wmP+A7wAHBEUfwP4i7u/GPSzzt0/NrO+QV9Xu3upu28GbgfO3t0TcPflQVuV7p5P7Mv5UXHlfwKWA+8SSwx/EhTNBJ4Njq0GbgMygC83eH3Wu3sB8AwwsYkY3nD33N38vLG759CE+HPTnMuBP7r7u+5e6+73EUtcpu5Bfz8LXsP/EEu0zwJw97nu/kFwrpYQS0qPanDsrOCclQfH/MXdt7t7JbFk9yAzy4mr/4S7L3D3CuAJoMLd/+butcDDxJLrvebut+zufDRxzHbgTeBnZpYe/EHgDCCzNbGIiHQGSrBERBJnTdzjocDXG/ylfxqxpKSx+quAFGKjDvWY2Ylm9k4wPa+QWOK0o95gYEUjsQwN2tsQ1/8fiY2CNMnM+prZQ8GUwmLggUZi+hOxkYg7gy/9EBvxWrWjgrtHg+c3MO64jXGPy4Buu4slwdY0X6XOUODaBuduMLHn2BLbgqR5h1U7jjWzQ83s1WBqZRFwBbu+vnWxmlnYzG6x2NTPYnaOTsYfsynucXkj2+35Osc7j9ho5RrgD8R+l9YmKRYRkXajBEtEJHHiVw1aQ2yEKv6v/VnufktcncFxj4cA1cCW+AaDaWmPERsR6huMGDzHzqlXa4D9G4llDbFRl15x/Xd397GN1I33P8HzGO/u3YmNxNVN8wqurfkNcA8wy3ZeN7aeWGKyo54Fz29dM/3twsyOsJ0rADb2c0Tzreyi4YpOZdQfTekX93gNsWuH4s9dprvPaWFfPcwsK257CLHXB+DvwNPAYHfPAWZTfxpdw1jPBWYAXwFygGHB/obHtJngerImz0dTx7n7Knc/2d17u/uhxJLCee0Vt4hIsijBEhFpGw8Ap5jZCcEoRHqwAMKguDrnm9mY4Hqmm4BHg2ld8VKBNCAfqDGzE4ldS7XDPcAlZnacmYUstjT2ge6+gdhUwv9nZt2Dsv3NrOF0tIaygRKgyMwGEru2K95vgfnufhmxqW+zg/2PACcFcaQA1xJL8N5q7oVqyN1fd/duu/l5fU/bbMQi4Nzg3Eyn/jS9PwFXBKNNZmZZFlucIhvqFpa4t5n2f2FmqUEyeDLwj2B/NlDg7hXB9XPnNtNONrHXcSuxhPB/9uA5JoS7/8/uzkdTx5nZaDPLDl6H84n93rbqejARkc5ACZaISBtw9zXERh5+TCw5WkMsWYn/3L2f2EIUG4F04HuNtLM92P8IsI3YF/Kn48rnESx8ARQB/2HnSNKFxBK0pcGxj1J/imJjfgEcErT1LPD4jgIzm0FskYorg13fBw4xs/Pc/RNio113EhuFOwU4xd2rmukvWa4iFmMhsalsT+4ocPf5wDeBu4i9bsupvyDHYGLXFzVlY3DcemILUlzh7h8HZd8CbjKz7cCNxM7r7vyN2BTDdcTO4zvNPbEO5ATgc2KvxRXA9OC6PhGRLk33wRIRSQIzmws84O5/TnYs0nLBqoiLgQnBYh4Ny48mdl4HNSwTEZF9QyTZAYiIiHQWwYjc6GYriojIPktTBEVE9jFmNruJBQtmN3+0dEZmNmQ3C1UMSXZ8IiJdiaYIioiIiIiIJIhGsERERERERBKkQ12D1atXLx82bFiywxAREREREWnSggULtrh778bKOlSCNWzYMObPn5/sMERERERERJpkZquaKtMUQRERERERkQRRgiUiIiIiIpIgSrBERFqgNupo1VURERFpToe6Bqsx1dXVrF27loqKimSHIp1Meno6gwYNIiUlJdmhSCdXVRPlr7d8h16DDuCMi7+f7HBERESkA+vwCdbatWvJzs5m2LBhmFmyw5FOwt3ZunUra9euZfjw4ckORzq5LzZs4r9rHoSVEI1eQyikzyIRERFpXIefIlhRUUFeXp6SK9kjZkZeXp5GPiUhSpa9Uvd4c1FZEiMRERGRjq7VCZaZDTazV81sqZl9ZGZXBft7mtmLZvZZ8G+PVvTR2jBlH6TfG0mUUP7HdY83rVyaxEhERESko0vECFYNcK27jwGmAt82szHAD4GX3X0E8HKwLSLS+VRtr3u4fe1HSQxEREREOrpWJ1juvsHdFwaPtwPLgIHADOC+oNp9wGmt7StZzIxrr722bvu2225j1qxZyQsozjvvvMOhhx7KxIkTGT16dF1cc+fO5a233trrdletWsUhhxzCxIkTGTt2LLNnz05QxCKdT6iqpO5xVeG6JEYiIiIiHV1CF7kws2HAwcC7QF933xAUbQT6NnHM5cDlAEOGDElkOAmTlpbG448/zo9+9CN69eqVsHbdY8s+h0J7n+dedNFFPPLIIxx00EHU1tbyySefALEEq1u3bnz5y1/eq3b79+/P22+/TVpaGiUlJYwbN45TTz2VAQMG7HWsIp1VuGo7a70X/awA276h+QNERERkn5WwRS7MrBvwGHC1uxfHl3ns5jGN3kDG3e9290nuPql3796JCiehIpEIl19+ObfffvsuZfn5+ZxxxhlMnjyZyZMn8+abbwIwa9Ysbrvttrp648aNY+XKlaxcuZJRo0Zx4YUXMm7cONasWcP111/PuHHjGD9+PA8//DAQS5COPvpozjzzTA488EDOO++8Ru/Bs3nzZvr37w9AOBxmzJgxrFy5ktmzZ3P77bczceJEXn/99d3GecEFF3DYYYcxYsQI/vSnPwGQmppKWloaAJWVlUSj0UZfmzvuuIMxY8YwYcIEzj77bAAKCgo47bTTmDBhAlOnTmXJkiV1fV100UUcccQRDB06lMcff5wbbriB8ePHM336dKqrqwG46aabmDx5MuPGjePyyy/f5XlHo1GGDRtGYWFh3b4RI0awadOm3Z1Gkb0WqSmhxLLYZj1ILdPvmYiIiDQtISNYZpZCLLl60N0fD3ZvMrP+7r7BzPoDm1vbzy+e+Yil64ubr7gHxgzozs9PGdtsvW9/+9tMmDCBG264od7+q666imuuuYZp06axevVqTjjhBJYtW7bbtj777DPuu+8+pk6dymOPPcaiRYtYvHgxW7ZsYfLkyRx55JEAvP/++3z00UcMGDCAww8/nDfffJNp06bVa+uaa65h1KhRHH300UyfPp2LLrqIYcOGccUVV9CtWzeuu+46AM4999wm41yyZAnvvPMOpaWlHHzwwZx00kkMGDCANWvWcNJJJ7F8+XJ+9atfNTp6dcstt/DFF1+QlpZWl/D8/Oc/5+CDD+bJJ5/klVde4cILL2TRokUArFixgldffZWlS5dy2GGH8dhjj3Hrrbdy+umn8+yzz3Laaafxne98hxtvvBGACy64gH/+85+ccsopdX2GQiFmzJjBE088wSWXXMK7777L0KFD6du30UFSkVZLqSml2LIoTskgszI/2eGIiIhIB5aIVQQNuAdY5u6/jit6GrgoeHwR8FRr+0qm7t27c+GFF3LHHXfU2//SSy/xne98h4kTJ3LqqadSXFxMSUlJE63EDB06lKlTpwLwxhtvcM455xAOh+nbty9HHXUU7733HgBTpkxh0KBBhEIhJk6cyMqVK3dp68Ybb2T+/Pkcf/zx/P3vf2f69OmN9rm7OGfMmEFGRga9evXimGOOYd68eQAMHjyYJUuWsHz5cu67775GR4gmTJjAeeedxwMPPEAkEql7ThdccAEAxx57LFu3bqW4OJYYn3jiiaSkpDB+/Hhqa2vr4h0/fnzd83v11Vc59NBDGT9+PK+88goffbTrogIzZ86sG+176KGHmDlz5m5fc5HWSK0ppSKUSVlab3JqtiQ7HBEREenAEjGCdThwAfCBmS0K9v0YuAV4xMy+AawCzmptRy0ZaWpLV199NYcccgiXXHJJ3b5oNMo777xDenp6vbqRSKTetLr4+zFlZWW1qL8dU/QgNv2vpqam0Xr7778/V155Jd/85jfp3bs3W7du3aVOU3HCrsuZN9weMGAA48aN4/XXX+fMM8+sV/bss8/y2muv8cwzz3DzzTfzwf/f3p3HyVXVeR///GrtNd2d7s6ekCBJyNJZSGfBEEmQJYwCYoDgCBii8ogoI+qMooKIj89LdB7nGQVl1CiikV0CMyKCLGJm2JIQSEISiCQkgSy9p7eqruU8f1Sl03s66equXr7v16vTde85955f9+1bub86956zZUu3fiaPx4Pf729uy+PxEI1GCYVCfP7zn2fDhg2MHz+e2267rcO5rM4880x27dpFWVkZ69at41vf+laX7Yr0RCBWT8gzmoysIoYf2UQs7vBqsmERERHpQCpGEVzvnDPn3Czn3Jzk1xPOuQrn3Iedc5Odc+c65ypTEXA6DR8+nCuuuII1a9Y0rzv//PP5yU9+0rx89Fa4iRMnsmnTJgA2bdrE7t27O9znkiVLeOCBB4jFYpSVlfHCCy+wYMGCbsf0xz/+sfkZpbfffhuv10t+fj65ubnU1h4bWrqzOAEee+wxQqEQFRUVPP/888yfP5/9+/fT2NgIQFVVFevXr2fq1Kmt2o7H4+zbt49ly5Zxxx13UFNTQ11dHUuWLGHt2rVA4lmyoqIihg0b1q2f52gyVVRURF1dHQ8//HCH9cyMSy+9lC9/+ctMmzaNwsLCbu1f5GRkxOtp8mZB9gjyrZ6q2q57qUVERGToStkgF0PFV77yFcrLj90i9OMf/5gNGzYwa9Yspk+f3jyc+YoVK6isrGTGjBnceeedTJkypcP9XXrppcyaNYvZs2dzzjnn8IMf/IBRo0Z1O57f/va3TJ06lTlz5nD11Vezdu1avF4vF110EY8++mjzIBedxQmJ2/yWLVvGokWLuOWWWxgzZgzbt29n4cKFzJ49m7PPPpuvfvWrlJSUAPCZz3yGDRs2EIvFuOqqqygpKWHu3LnceOON5Ofnc9ttt7Fx40ZmzZrF17/+dX7zm990Fn47+fn5fPazn2XmzJlccMEFzJ8/v7ns7rvvbhX3ypUr+d3vfqfbA6XXZcQbiPhy8A5LPOdXU6aRBEVERKRj1tHIdOlSWlrqNmzY0Grd9u3bmTZtWpoiGvxuu+22VoNhDDb6+5EeizbB/y7m0fxVTJ+9kKl/vZ7NFz7GnIVL0x2ZiIiIpImZbXTOlXZUph4sEZGuJCcZjvmzyR6emBKhsVo9WCIiItKxlE40LAPPbbfdlu4QRPq3SOJZRHyZDCtKTFXQVKO5sERERKRj6sESEelKNDHwigUyyS1M9GDFazUXloiIiHRMCZaISFeOJlj+TCyYS4gAnoYez5suIiIig5QSLBGRLsSbErcIevyZYEa1pwB/qP1ccyIiIiKgBEtEpEuRUAMAnmAmAPW+AjKaBvy0fiIiItJLlGB107p16zAzduzY0WmdPXv2MHPmzJS1uXPnTpYuXcqcOXOYNm0a1113HZCYJPiJJ5446f2GQiEWLFjA7NmzmTFjBt/+9rdTFbLIoNMUrgfAF8gCIBQcTk60Kp0hiYiISD+mBKub7rvvPs466yzuu+++Dsuj0WiP24jFYq2Wb7zxRm666SY2b97M9u3b+eIXvwj0PMEKBoM8++yzvP7662zevJknn3ySl156qUexiwxWTckerKMJViSjmPx4Nf1pDkERERHpP5RgdUNdXR3r169nzZo13H///c3rn3/+eZYsWcLFF1/M9OnTgUSi9clPfpJp06Zx2WWX0dCQuDh75plnmDt3LiUlJaxevZpwOAzAxIkT+drXvsYZZ5zBQw891KrdAwcOMG7cuOblkpISmpqauPXWW3nggQeYM2cODzzwAPX19axevZoFCxYwd+5cHnvsMQDuueceLrnkEpYuXcrkyZP5zne+A4CZkZOTA0AkEiESiWBm7X7uhx56iJkzZzJ79mw+9KEPAYner2uvvZaSkhLmzp3Lc88919zWxz72Mc477zwmTpzInXfeyY9+9CPmzp3LokWLqKxM3FL1i1/8gvnz5zN79mxWrFjR/PtpadGiRWzbtq15eenSpbSdgFqkrxy9RdCXkbhFkOwihnOEIw1NaYxKRERE+quBNQ/Wn74OB7ekdp+jSuDC73dZ5bHHHmP58uVMmTKFwsJCNm7cyLx58wDYtGkTW7duZdKkSezZs4edO3eyZs0aFi9ezOrVq/npT3/KF77wBVatWsUzzzzDlClTuOaaa/jZz37Gl770JQAKCwvZtGlTu3ZvuukmzjnnHD74wQ9y/vnnc+2115Kfn8/tt9/Ohg0buPPOOwH4xje+wTnnnMOvfvUrqqurWbBgAeeeey4Ar7zyClu3biUrK4v58+fzkY98hNLSUmKxGPPmzWPXrl3ccMMNLFy4sF37t99+O3/+858ZO3Ys1dXVANx1112YGVu2bGHHjh2cf/75vPXWWwBs3bqV1157jVAoxGmnncYdd9zBa6+9xk033cS9997Ll770JT7+8Y/z2c9+FoBvfetbrFmzprln7qiVK1fy4IMP8p3vfIcDBw5w4MABSks7nChbpNdFw4kEyx9M9GB5ckbgszgV5YfIy56QztBERESkH1IPVjfcd999XHnllQBceeWVrW4TXLBgAZMmTWpeHj9+PIsXLwbgqquuYv369ezcuZNJkyYxZcoUAD71qU/xwgsvNG+zcuXKDtu99tpr2b59O5dffjnPP/88ixYtau75aumpp57i+9//PnPmzGHp0qWEQiH27t0LwHnnnUdhYSGZmZl8/OMfZ/369QB4vV42b97M/v37m5OwthYvXsyqVav4xS9+0Xz74vr167nqqqsAOP300znllFOaE6xly5aRm5tLcXExeXl5XHTRRUCi523Pnj1AIglbsmQJJSUlrF27tlVP1VFXXHEFDz/8MAAPPvggl112WYe/H5G+cDTBCmQkEqxA3igAaiveS1tMIiIi0n/1eg+WmS0H/h3wAr90znXdXdSV4/Q09YbKykqeffZZtmzZgpkRi8UwM374wx8CkJ2d3ap+21vtOrr1rq22+2hpzJgxrF69mtWrVzNz5swOEyHnHI888ghTp05ttf7ll18+bjz5+fksW7aMJ598st0AHXfffTcvv/wyf/zjH5k3bx4bN27s8ucIBoPNrz0eT/Oyx+NpfkZt1apVrFu3jtmzZ3PPPffw/PPPt9vP2LFjKSws5I033uCBBx7g7rvv7rJdkd4USw7THshMJFhZwxMJVkPlgbTFJCIiIv1Xr/ZgmZkXuAu4EJgOfMLMpvdmm6n28MMPc/XVV/Puu++yZ88e9u3bx6RJk/jb3/7WYf29e/fy4osvAvD73/+es846i6lTp7Jnzx527doFwG9/+1vOPvvs47b95JNPEolEADh48CAVFRWMHTuW3Nxcamtrm+tdcMEF/OQnP2l+6P61115rLnv66aeprKyksbGRdevWsXjxYsrKyppv+WtsbOTpp5/m9NNPb9f+3//+dxYuXMjtt99OcXEx+/btY8mSJaxduxaAt956i71797ZL7LpSW1vL6NGjiUQizfvpyMqVK/nBD35ATU0Ns2bN6vb+RVLt6DxYgYzEByG5hWMAaKo5lLaYREREpP/q7VsEFwC7nHPvOOeagPuBS3q5zZS67777uPTSS1utW7FiRaejCU6dOpW77rqLadOmUVVVxfXXX09GRga//vWvufzyyykpKcHj8fC5z33uuG0/9dRTzYNMXHDBBfzwhz9k1KhRLFu2jDfffLN5kItbbrmFSCTCrFmzmDFjBrfcckvzPhYsWMCKFSuYNWsWK1asoLS0lAMHDrBs2TJmzZrF/PnzOe+88/joRz8KwK233srjjz8OwD//8z9TUlLCzJkz+eAHP8js2bP5/Oc/Tzwep6SkhJUrV3LPPfe06rk6nu9+97ssXLiQxYsXt0rqHn/8cW699dbm5csuu4z777+fK664otv7FukN8UgjEeclM/l3PqxoLACx2sPpDEtERET6KevNoYbN7DJguXPuM8nlq4GFzrkvtKhzHXAdwIQJE+a9++67rfaxfft2pk2b1msxDmb33HNPq8EwhiL9/UhP7bjnBsbufoS6L+9mdF4mxONEby/kb8X/yLIb7kp3eCIiIpIGZrbROdfhKGxpH+TCOfdz51ypc660uLg43eGIiLQWCRHCT6bfm1j2eKixfHyNFemNS0RERPql3h7k4j1gfIvlccl10gdWrVrFqlWr0h2GyMAWbSRMgNyjCRZQ58sno0kJloiIiLTX2z1YrwKTzWySmQWAK4HHT3QnvXkbowxe+ruRVLBoiLDzE/Qde7tsDBSSHalKY1QiIiLSX/VqguWciwJfAP4MbAcedM61n/ioCxkZGVRUVOhiWU6Ic46KigoyMjLSHYoMcBYN0WTBVlMcNGUUkhev0vuSiIiItNPr82A5554AnjjZ7ceNG8f+/fspKytLYVQyFGRkZDBu3Lh0hyEDnCcWotECrdbFs4oppIb6cJScDH+aIhMREZH+qNcTrJ7y+/1MmjQp3WGIyBDljYWJeFpPReDJGUGGRXi3spKcMSPTFJmIiIj0R2kfRVBEpD/zxsNE2yRY/rxEUnWkXGP2iIiISGtKsEREuuCNh4m1SbAy80cBUF95IB0hiYiISD+mBEtEpAv+eJiot/VgKblFYwAI1xxKR0giIiLSjynBEhHpgj/eRLxNgjUsmWBFjyjBEhERkdaUYImIdCHgwsS9bZ7Byh2ReFF/OA0RiYiISH+mBEtEpAsBmsDXZj41r58jlou3oSI9QYmIiEi/pQRLRKQz8Rh+ori2CRZwxFtAMFyehqBERESkP1OCJSLSmUhj4rsvs11Ro7+A7EhlHwckIiIi/Z0SLBGRzkRDie/+9j1Y4WARubHqvo1HRERE+j0lWCIinWgKNQBg/vY9WPHsIgqpIRSJ9XVYIiIi0o8pwRIR6US4sR4Ab6B9gmXZxQyzBsqrj/R1WCIiItKPKcESEelEYzLB8gWz2pX5ho0EoKb8QJ/GJCIiIv1bjxIsM/uhme0wszfM7FEzy29RdrOZ7TKznWZ2QY8jFRHpY809WMH2PVgZ+aMBqKt4v09jEhERkf6tpz1YTwMznXOzgLeAmwHMbDpwJTADWA781My8PWxLRKRPNYUSCVYgmN2uLLswkWCFqg/2aUwiIiLSv/UowXLOPeWciyYXXwLGJV9fAtzvnAs753YDu4AFPWlLRKSvHR3kwp/Rvgcrr2gMANEjh/o0JhEREenfUvkM1mrgT8nXY4F9Lcr2J9eJiAwY0VAdAIHM3HZlwbzEM1iu7nCfxiQiIiL9m+94FczsL8CoDoq+6Zx7LFnnm0AUWHuiAZjZdcB1ABMmTDjRzUVEek2ssRaAYHZe+8JANo1k4Gko7+OoREREpD87boLlnDu3q3IzWwV8FPiwc84lV78HjG9RbVxyXUf7/znwc4DS0lLXUR0RkXRw4cQQ7MGcDhIsoMZbQDCsBEtERESO6ekogsuBfwEuds41tCh6HLjSzIJmNgmYDLzSk7ZERPqaCyduEczM6jjBqvUXkdOkBEtERESOOW4P1nHcCQSBp80M4CXn3Oecc9vM7EHgTRK3Dt7gnIv1sC0Rkb4VriPk/GRlZXRYHMooJj+0vY+DEhERkf6sRwmWc+60Lsq+B3yvJ/sXEUknT1Mt9WQy3NtxZ380aySFVf9DJBbH30kdERERGVp0RSAi0glPpJ56yyTZQ9+Oyx1FjoWoqKzo48hERESkv1KCJSLSCV+0jkbL6rQ8kJ+YC6vq0L5O64iIiMjQogRLRKQTvkg9IU/nCVZWYWJu9boyJVgiIiKSoARLRKQTvlg9UW92p+V5xYkEK1T1fl+FJCIiIv2cEiwRkU4EYg1E/Z0nWPkjE5Ojx2oO9FVIIiIi0s8pwRIR6URmvAEXyOm03JuZR4gAnjolWCIiIpKgBEtEpCPOketqiQXzO69jRpWnEH9jWZ+FJSIiIv2bEiwRkQ6E6qoJWAyyCrusV+svIjusBEtEREQSlGCJiHSgrvIgAJZT1GW9UEYxw2KVfRGSiIiIDABKsEREOlBXfQgAX86ILuvFskdS5CoJR2N9EZaIiIj0c0qwREQ6EKo+DEDGsOIu63mGjSLHQpRXVPRFWCIiItLPKcESEelA5EgywSrougfLnz8WgKpDmmxYRERElGCJiHQoWpcYuCKvcHSX9bILEwlWfbkSLBEREVGCJSLSoeiRwzS6AEUFBV3WyxsxHoBQ5ft9EZaIiIj0cylJsMzsK2bmzKwouWxm9mMz22Vmb5jZGaloR0Skr/jr3qfMU4TX2/Xb5LDiRIIVP6LJhkVERCQFCZaZjQfOB/a2WH0hMDn5dR3ws562IyLSl7JDB6jyjzxuPU9mHiECWN2hPohKRERE+rtU9GD9G/AvgGux7hLgXpfwEpBvZl0/yCAi0o8MjxymIbMbb1tmVHkLCYQO935QIiIi0u/1KMEys0uA95xzr7cpGgu0fOJ7f3JdR/u4zsw2mNmGsrKynoQjIpIS8aZGCqkimjuuW/Xr/EVkhct7OSoREREZCHzHq2BmfwFGdVD0TeAbJG4PPGnOuZ8DPwcoLS11x6kuItLrKg+8QxHgyR/frfrhjGLyQ9t7NygREREZEI6bYDnnzu1ovZmVAJOA180MYBywycwWAO8BLa9MxiXXiYj0e4ff2UIRkDt2Wrfqx7JHUlT1P4QiMTL83t4NTkRERPq1k75F0Dm3xTk3wjk30Tk3kcRtgGc45w4CjwPXJEcTXATUOOc0xJaIDAj1720DYOyUud2qb8NGk2MhysorejMsERERGQB6ax6sJ4B3gF3AL4DP91I7IiIp5ynfyUEKKSws6lb9YH5iMIyqw3uPU1NEREQGu+PeIthdyV6so68dcEOq9i0i0peG177FweDEDh8+7UhWUeKO6Lry/UBpr8UlIiIi/V9v9WCJiAxIofoaJkT3UFs4u9vb5I+YAEC46v3eCktEREQGCCVYIiIt7H7jv/GaI/vURd3eJqdoDACxGj1qKiIiMtQpwRIRaaFm5wvEnXHqnLO7vY1l5BMigKf+YC9GJiIiIgOBEiwRkRbyDvw3u7ynkl/U3SewADOqvcMJNh7uvcBERERkQFCCJSKSVF9TwQdC2ygrPvOEt63zF5PVVN4LUYmIiMhAogRLRCTpnb+uJWAxhs1bccLbhjOKyY9qHiwREZGhTgmWiEhSxo5H2MNopp3R/eevjopmj6SIahqbYr0QmYiIiAwUSrBERIBQxV4+0PA6O4ovxOfznvD2ljuaXGukvKKyF6ITERGRgUIJlogIsPu5e/HgKDrzkye1vb9gNADVZXtTGZaIiIgMMEqwRESAnJ2PsNUmM3fOvJPaPmv4OAAayvenMiwREREZYJRgiciQV7l7M+Mj73DglIvxeuyk9jGsOJFghaveT2VoIiIiMsAowRKRIW/fX39D1Hk4benVJ72PvOLxAMSOaLJhERGRoUwJlogMbfE4o/f+J5sDZzBp4qST3o0nK58wfqz+UAqDExERkYGmxwmWmX3RzHaY2TYz+0GL9Teb2S4z22lmF/S0HRGR3rD39WcZES+jYeqlPduRGdWeAgKNh1MTmIiIiAxIvp5sbGbLgEuA2c65sJmNSK6fDlwJzADGAH8xsynOOU0QIyL9SuWLv6XIBZl+zid6vK9afyFZ4fIURNWPOEdDbRXlB97lSPl+og01xEK1xEL1uHAdLtYEgOGS9cEM4ubDefzg9YM3gPkCye9+8Abx+AJ4fEHwBfD6Anj8iWWP14fP68Hn9eH1evF6Da/Xh9/rxeP1YObFYWCeoy3imps+FsPRb811kq9cizJzDnd0xcn9cnqwbYtg0qkHMZgZR38H1mp9m3otSluWWdv2W5W1rdjxYrv9dVavs4Iu9tH+5+ikrM2vsO12nbfV4vfSZiet27IO17faXyAHyyrovGER6VM9SrCA64HvO+fCAM65ox/dXgLcn1y/28x2AQuAF3vYnohIysQjYU49/Bdez17MmcMLe7y/ULCY3CO7UxBZ36utqeS97S9TvXcr8cM7ya3bTWHTexTEK8iiiQnpDlBEOhXBS9WnX2LE+CnpDkVE6HmCNQVYYmbfA0LAV51zrwJjgZda1NufXNeOmV0HXAcwYYL+CxeRvvP2/6xjKnUw6/KU7C+aNYLhNZuIxd1Jj0bYV97bvZMDm5+EvS9RWLOVU2L7ON0Sn6I3EOR97zj2Z07lnazR2LCRBPLHkFkwhmDOcILZuWRk5ZGRk0sgEAQs+VG6HeshikeIRyPEIiGiTU3EIiFikTCxaBPxSJhYpAkXbSIWC+MiTcSjTbhomHg8RiweIx6L4+Ix4vE48XicWDyxbM5hxDHiAHT22f6xD/2t056IRP+Lte8WOCE9PM5ddXd0g+tp+ynQMoauOsRcJ0sOa1XYWb12S0f/1sxaNdwuhE723XmfUdufo6uIjq6zdgWOLmJqs8OO99n5ipZlFqrm3P138u4r/8WI8V/uqiUR6SPHTbDM7C/AqA6KvpncfjiwCJgPPGhmp55IAM65nwM/BygtLe0H90uIyFDR8NpDVLsc5pz98ZTsz+WMpMDqOFxzhBEFeSnZZ6qEGht466X/IrztCUZXvMQ4d4CxQBW57MucxqsjlhOcUMqoKfMYOXYSp3m8PWwxIxVhi8hxuHicw7f/Ht75K6AES6Q/OG6C5Zw7t7MyM7se+INL3MT+ipnFgSLgPWB8i6rjkutERPqFUGM9k6vXs61gGQszU5MM+PMSn0VVH97fLxKsUEMdO/57HZEt6zi9Zj2zrJF6F+TtrDm8P+FqimdfwClTz6DAqwFlRQYq83jYV/whZh5+guqKMvILi9MdksiQ19NbBNcBy4DnzGwKEADKgceB35vZj0gMcjEZeKWHbYmIpMyO9Y8xh0YyZ69I2T6DBYk7oWvL98PUGSnb74lwzrFty0ZqXribkrInmGP1VJPDzuHLCJR8jClnXsSczKy0xCYivSN/yWfJ/MM6Xn/qlyz6xM3pDkdkyOtpgvUr4FdmthVoAj6V7M3aZmYPAm8CUeCGgTiCYKj+CLVHqikerWfDRAab2NZHqSGb0z94Ucr2mVuUSLAaqw6kbJ/dVXWknlf//DuKdvyOM2Jv0OS8bMtbinfe1Uw78x8oDQT7PCYR6Runlixm1+OnMeKt3xOLfQ2veqVF0qpHCZZzrgm4qpOy7wHf68n+0+21e/+F6Yce55XZ32Dexdfj9fb0mQQR6Q+i4Uam1PyNbXlLWRRMXeKRPyJxZ3S0pu8SrJ1v7WDf0z9j1uHHON+qKPOMYMvUGzn1guuZO3xMn8UhIuljZtTN/jRzNt7Mpqd/xxnLr0l3SCJDWk97sAa1cR/+HO89+DoLXv8me7bcTdms65l14acJBvXwtshA9taGvzCdRnwzLk7pfjPyRxHDsNqDKd1vW5FolI3PPoptXMO80MtMxvH2sIWEz/pfjJ9/CcU9HqBCRAaamcs/w97X7mT4Kz8g8uFP4Pf70x2SyJClBKsL46fMwX1jPZuf/BXDNvyE+Zu/QcXmO9g84nyGzf8EU89Yike9WsflnCMed8RdYrhl5xwunpwC1Dlw8WOvce0mXOyO5pGO2wx5bF0MYZyo2r78uIMen9Swyt3bpnlCyV5so02DJ7jlybdxYkUn2M4J/r5qtj9HzBlTFy4/sXaOx+PlsBWTWbc3tftNKjv0Ptv/dDcT9zzAIg5SzTC2TbyGScu/yNTRp/VKmyIyMPj8AaoXfo1ZL97Iiw98jzOvui3dIQ1czhGPRojHo62uX+LOJa5j4hCPx4i7eKvrGbPk9xbTnB+9Dmm+TPFYi/VH/89vW5b819osc3RGDDu233bzULSfYvvYNVKrim0m9G69XevFlhNidLyNWYufp902dFjWcjqNlmWdxtXDaS36kvVsFvvUKi0tdRs2bEh3GB1y8TjbXniE8Kv3MrPuRYIWoZpc/p5zBtEx8xl2yhzGTp3PsKKORrTvPfG4IxSJ0FhfR7ixjqZQPU2NDTSF6omE6omG6ok1NRBvaiAWbsBFGiHSAE2NEG3EEwvhi4Xwxhrxx8P44iE8LoYnHsHjYpiL4XVRPMTwuBheF8PLsS/f0dcuhrd5XhqX/AKP9Z+/L5GW3vadxuRvbUz5frd+/xwCkRqm3JKafbt4nB2bnuPIC//BnJpnCVqEt4IziJ5xLacvuxpPQD3qIpLg4nFe/9ePML3+FfZe9kdOK1mU7pBSJh6LUVtbTX11OfVHqgjXVhKuryLWUA2hGuJNjbhIA0QasEgjFm3EGw3hjYXwuxD+eAh/PIzXRfG6GB6izdc0PhfFRwwfUbzE8duAGzZg0Ptd9MPMuG4NcycUpDuUZma20TlX2lGZerC6yTweZi69HJZeTm11OVteeIj4359nYs2rjHjrr/AW8DTUkE2Fp4gjgRFEgsMhkEPcn0M8kA3+bHzeRIYfd464M5xzEI/iiYWxWBiioeRXYtkbC+GJJRIfXyxEwIWbv4IuTCZNZFmEkxkTLESAMAHCFqTJgoQtSMSCxMxH1ALEvV6c+XDmxXl8iS/z4TyJ9fHm10freTDzJD5hSH4CYUdf27GJSJvrAM48yVQsuXw0NevgUwrXWc+Wa/fi+FzH9Y+3BzupDyR6P8k8mV6/LmcE7Xyj/tcGJ/HzOyic+5ETbqc7GoedyqRD/0k8FsfTgwfNG+uOsPXPayh487dMi/2dejLYMuIiRn/480w5fX4KIxaRwcI8Hk5Z9UtqfrqYYY98gveyn2DsqdPSHVaHIk0hqg6/z5GK92moPEi45hDR2sNQX4a3sYJAuJKsSBU58RpyXD05roE8cxxvAoxGl7iuOXpt02QZRDxBwp4sGnz5xD1+nPlx3sQ1jXl9OI8fPH5Irosnr3fweI9dx7S4fjl2beNpvrY52l/lmpet3eVJq+uYNv8/tuzwsLbTVDdv36aseRvX6lsHC63aa/9/Zsuy1rHQSczWpoZ18bN1to/2bbtWxS3byMk5nVF5A+cDRfVgpcDh9/fy/tsbadz7Ot6adwk2HiQ3fIis2BEy4w1kEer2pyGNLkCT+WkiQMQCRM1PxJN4c4h5Moh6M4j7Mon7MnDeDPBngT8TC2Rh/kw8gSy8wSx8wSy8wWz8GdkEMrMJZGQTzMwhmJV4bb5M8GiUIZFU2/DgHZS++X9479pNjD3lAye8/Ttb/ofyv/4H08v/TA6NvOOZSPnpn2TG8s+SPaz/fHInIv3X7m0vU/jQpYQJcGj5fzBz0QV92n60KUTFgT1UH9xDXdk+olX74Mh7BBoOkhM+REG0jOGupsO7XMLOT5XlUefLp95XQFOggFhwGATzIDMPb2Ye/uwCAjkFZOQMJyOngEBOPlk5w8jIyO7RB1siJ0I9WL1sxJgJjBgzAbi0w3IXj9PUFCbUWEs4kki0fB7Da4bHHB5fAI8/A58/SKbPS2Yfxi4iqVUweSG8Ce9vfa7bCdaR6nJ2PvMb8rffx+To24xxfrbkn0PWotVMX3g+p+rDEBE5AZNmLOQd9yjBR65h+p9W8urLH2Hkhf/MhClzerzvWFMjFQfepfrQHurL9hKp2p9InuoPJJOncgqpZiQwssV2R1wWFd4iagMjqMydyts5Y/AMG4U/byRZBaPIHT6KvOIxZOfkM0rveTLAqQdLRCSFYtEI9d+dwI7Cc1hw49pO64Uaatn+14ewrQ8zve5lAhblHc8pHJz8Caaf/2nyC0f0YdQiMhg1HKlk8+9upvTQQwQsxl7vBA4OX0C8eCrZIz5A5rDh+DJz8Xk8RCIhwo2NRBpqiNWVE6mrIFpXgdUfJqPxMLlNhymIlTGcI+3aqXHZieTJX0xj1mjiOaPx5I0jo2g8eSMnMnz0RIblFbQfkEFkAOuqB0sJlohIim38v5cyufYl7J9eJ7fgWKJUVfY+77z4GLz9Z04/8iLZFqKcfHYVn0/+on9k6tyzMX1yKyIpVn5oPzuf+gXZ+15gangrmdbU7W2ryaHCW0xtYAShjJFEk8lTZtE4ho2YSOGYieQpeZIhSAmWiEgf2vn6S3zgDxeyzz+RytFLoKGCgpo3mRjZjccc5eTz9/yzyJq3kmmLLsSn+WpEpI+4eIzyA3s4vPdtwvU1uKY6onHw+oMEA0H8WcPw5RSRO3wkhUUj8PkD6Q5ZpF9SgiUi0sf++4/3MuHV7zHCldNAJnuDk2kYVUrhnIs4bfZizaEnIiIygGmQCxGRPrb4I9cQv/BqmmJx8n0eCnT7jIiIyJCgBEtEpJd4PEaGRz1VIiIiQ4mephYREREREUkRJVgiIiIiIiIpogRLREREREQkRfrVKIJmVga8m+442igCytMdhPQZHe+hQ8d66NCxHlp0vIcOHeuhoz8e61Occ8UdFfSrBKs/MrMNnQ3BKIOPjvfQoWM9dOhYDy063kOHjvXQMdCOtW4RFBERERERSRElWCIiIiIiIimiBOv4fp7uAKRP6XgPHTrWQ4eO9dCi4z106FgPHQPqWOsZLBERERERkRRRD5aIiIiIiEiKKMESERERERFJESVYXTCz5Wa208x2mdnX0x2PpI6ZjTez58zsTTPbZmb/lFw/3MyeNrO3k98L0h2rpIaZec3sNTP7r+TyJDN7OXl+P2BmgXTHKKlhZvlm9rCZ7TCz7WZ2ps7twcnMbkq+h281s/vMLEPn9uBhZr8ys8NmtrXFug7PZUv4cfK4v2FmZ6QvcjlRnRzrHybfx98ws0fNLL9F2c3JY73TzC5IS9BdUILVCTPzAncBFwLTgU+Y2fT0RiUpFAW+4pybDiwCbkge368DzzjnJgPPJJdlcPgnYHuL5TuAf3POnQZUAZ9OS1TSG/4deNI5dzowm8Rx17k9yJjZWOBGoNQ5NxPwAleic3swuQdY3mZdZ+fyhcDk5Nd1wM/6KEZJjXtof6yfBmY652YBbwE3AySv164EZiS3+Wnyur3fUILVuQXALufcO865JuB+4JI0xyQp4pw74JzblHxdS+ICbCyJY/ybZLXfAB9LS4CSUmY2DvgI8MvksgHnAA8nq+hYDxJmlgd8CFgD4Jxrcs5Vo3N7sPIBmWbmA7KAA+jcHjSccy8AlW1Wd3YuXwLc6xJeAvLNbHSfBCo91tGxds495ZyLJhdfAsYlX18C3O+cCzvndgO7SFy39xtKsDo3FtjXYnl/cp0MMmY2EZgLvAyMdM4dSBYdBEamKy5Jqf8H/AsQTy4XAtUt3rh1fg8ek4Ay4NfJW0J/aWbZ6NwedJxz7wH/CuwlkVjVABvRuT3YdXYu67ptcFsN/Cn5ut8fayVYMqSZWQ7wCPAl59yRlmUuMYeB5jEY4Mzso8Bh59zGdMcifcIHnAH8zDk3F6inze2AOrcHh+SzN5eQSKrHANm0v8VIBjGdy0ODmX2TxKMda9MdS3cpwerce8D4FsvjkutkkDAzP4nkaq1z7g/J1YeO3lKQ/H44XfFJyiwGLjazPSRu9T2HxDM6+cnbikDn92CyH9jvnHs5ufwwiYRL5/bgcy6w2zlX5pyLAH8gcb7r3B7cOjuXdd02CJnZKuCjwCfdscl7+/2xVoLVuVeBycnRiAIkHqZ7PM0xSYokn8FZA2x3zv2oRdHjwKeSrz8FPNbXsUlqOeduds6Nc85NJHEeP+uc+yTwHHBZspqO9SDhnDsI7DOzqclVHwbeROf2YLQXWGRmWcn39KPHWuf24NbZufw4cE1yNMFFQE2LWwllADKz5SRu77/YOdfQouhx4EozC5rZJBIDm7ySjhg7Y8eSQWnLzP6BxLMbXuBXzrnvpTciSRUzOwv4G7CFY8/lfIPEc1gPAhOAd4ErnHNtH7CVAcrMlgJfdc591MxOJdGjNRx4DbjKORdOY3iSImY2h8SAJgHgHeBaEh8o6tweZMzsO8BKErcPvQZ8hsSzGDq3BwEzuw9YChQBh4BvA+vo4FxOJtl3krhNtAG41jm3IQ1hy0no5FjfDASBimS1l5xzn0vW/yaJ57KiJB7z+FPbfaaTEiwREREREZEU0S2CIiIiIiIiKaIES0REREREJEWUYImIiIiIiKSIEiwREREREZEUUYIlIiIiIiKSIkqwREREREREUkQJloiIiIiISIr8f5G9+c2PRRXlAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -5271,31 +5271,31 @@ " 57\n", " True\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " bAP.soma.v\n", - " 0.00175\n", - " 1.32e-06\n", + " 0.00177\n", + " 1.05e-06\n", " \n", " \n", " 58\n", " True\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step1.soma.v\n", - " 0.00202\n", - " 4.4e-06\n", + " 0.00091\n", + " 2.8e-06\n", " \n", " \n", " 59\n", " True\n", " 9\n", - " 0.125\n", - " 0.0545\n", + " 0.0731\n", + " 0.0741\n", " Step3.soma.v\n", - " 0.0081\n", - " 6.47e-06\n", + " 0.00174\n", + " 2.78e-05\n", " \n", " \n", "\n", @@ -5303,14 +5303,14 @@ ], "text/plain": [ " replace_axon param_i gnabar_hh.somatic gkbar_hh.somatic protocol \\\n", - "57 True 9 0.125 0.0545 bAP.soma.v \n", - "58 True 9 0.125 0.0545 Step1.soma.v \n", - "59 True 9 0.125 0.0545 Step3.soma.v \n", + "57 True 9 0.0731 0.0741 bAP.soma.v \n", + "58 True 9 0.0731 0.0741 Step1.soma.v \n", + "59 True 9 0.0731 0.0741 Step3.soma.v \n", "\n", " residual_rel_l1_norm residual_rel_l1_error \n", - "57 0.00175 1.32e-06 \n", - "58 0.00202 4.4e-06 \n", - "59 0.0081 6.47e-06 " + "57 0.00177 1.05e-06 \n", + "58 0.00091 2.8e-06 \n", + "59 0.00174 2.78e-05 " ] }, "metadata": {}, @@ -5377,43 +5377,43 @@ " \n", " \n", " False\n", - " bAP\n", - " 0.0969\n", - " 0.0153\n", + " bAP\n", + " 0.12\n", + " 0.0406\n", " Spikecount\n", - " 6\n", - " 6\n", + " 1\n", + " 1\n", " 0\n", " 0\n", " \n", " \n", " time_to_first_spike\n", - " -34.4\n", - " -34.4\n", + " 0.9\n", + " 0.9\n", " 0\n", - " -0\n", - " \n", - " \n", - " time_to_second_spike\n", - " -12.4\n", - " -12.4\n", " 0\n", - " -0\n", " \n", " \n", " time_to_last_spike\n", - " 67.8\n", - " 68\n", - " 0.2\n", - " 0.295\n", + " 0.9\n", + " 0.9\n", + " 0\n", + " 0\n", " \n", " \n", - " Step1\n", - " 0.0969\n", - " 0.0153\n", + " Step1\n", + " 0.12\n", + " 0.0406\n", " Spikecount\n", - " 8\n", - " 8\n", + " 4\n", + " 4\n", + " 0\n", + " 0\n", + " \n", + " \n", + " time_to_first_spike\n", + " 1.8\n", + " 1.8\n", " 0\n", " 0\n", " \n", @@ -5430,109 +5430,109 @@ " \n", " \n", " True\n", - " Step1\n", - " 0.125\n", - " 0.0545\n", - " time_to_last_spike\n", - " 2.6\n", - " 2.6\n", + " Step1\n", + " 0.0731\n", + " 0.0741\n", + " time_to_first_spike\n", + " 3.8\n", + " 3.8\n", " 0\n", " 0\n", " \n", " \n", - " Step3\n", - " 0.125\n", - " 0.0545\n", - " Spikecount\n", - " 2\n", - " 2\n", + " time_to_last_spike\n", + " 3.8\n", + " 3.8\n", " 0\n", " 0\n", " \n", " \n", - " time_to_first_spike\n", - " 1.7\n", - " 1.7\n", + " Step3\n", + " 0.0731\n", + " 0.0741\n", + " Spikecount\n", + " 1\n", + " 1\n", " 0\n", " 0\n", " \n", " \n", - " time_to_second_spike\n", - " 16.4\n", - " 16.4\n", + " time_to_first_spike\n", + " 2.1\n", + " 2.1\n", " 0\n", " 0\n", " \n", " \n", " time_to_last_spike\n", - " 16.4\n", - " 16.4\n", + " 2.1\n", + " 2.1\n", " 0\n", " 0\n", " \n", " \n", "\n", - "

205 rows × 4 columns

\n", + "

200 rows × 4 columns

\n", "" ], "text/plain": [ - " Neuron \\\n", - "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 6 \n", - " time_to_first_spike -34.4 \n", - " time_to_second_spike -12.4 \n", - " time_to_last_spike 67.8 \n", - " Step1 0.0969 0.0153 Spikecount 8 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 2.6 \n", - " Step3 0.125 0.0545 Spikecount 2 \n", - " time_to_first_spike 1.7 \n", - " time_to_second_spike 16.4 \n", - " time_to_last_spike 16.4 \n", - "\n", - " Arbor \\\n", + " Neuron \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 6 \n", - " time_to_first_spike -34.4 \n", - " time_to_second_spike -12.4 \n", - " time_to_last_spike 68 \n", - " Step1 0.0969 0.0153 Spikecount 8 \n", + "False bAP 0.12 0.0406 Spikecount 1 \n", + " time_to_first_spike 0.9 \n", + " time_to_last_spike 0.9 \n", + " Step1 0.12 0.0406 Spikecount 4 \n", + " time_to_first_spike 1.8 \n", "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 2.6 \n", - " Step3 0.125 0.0545 Spikecount 2 \n", - " time_to_first_spike 1.7 \n", - " time_to_second_spike 16.4 \n", - " time_to_last_spike 16.4 \n", - "\n", - " abs_diff Arbor to Neuron \\\n", - "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 0 \n", - " time_to_first_spike 0 \n", - " time_to_second_spike 0 \n", - " time_to_last_spike 0.2 \n", - " Step1 0.0969 0.0153 Spikecount 0 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 0 \n", - " Step3 0.125 0.0545 Spikecount 0 \n", - " time_to_first_spike 0 \n", - " time_to_second_spike 0 \n", - " time_to_last_spike 0 \n", - "\n", - " rel_abs_diff Arbor to Neuron [%] \n", - "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 Spikecount 0 \n", - " time_to_first_spike -0 \n", - " time_to_second_spike -0 \n", - " time_to_last_spike 0.295 \n", - " Step1 0.0969 0.0153 Spikecount 0 \n", - "... ... \n", - "True Step1 0.125 0.0545 time_to_last_spike 0 \n", - " Step3 0.125 0.0545 Spikecount 0 \n", - " time_to_first_spike 0 \n", - " time_to_second_spike 0 \n", - " time_to_last_spike 0 \n", - "\n", - "[205 rows x 4 columns]" + "True Step1 0.0731 0.0741 time_to_first_spike 3.8 \n", + " time_to_last_spike 3.8 \n", + " Step3 0.0731 0.0741 Spikecount 1 \n", + " time_to_first_spike 2.1 \n", + " time_to_last_spike 2.1 \n", + "\n", + " Arbor \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.12 0.0406 Spikecount 1 \n", + " time_to_first_spike 0.9 \n", + " time_to_last_spike 0.9 \n", + " Step1 0.12 0.0406 Spikecount 4 \n", + " time_to_first_spike 1.8 \n", + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 3.8 \n", + " time_to_last_spike 3.8 \n", + " Step3 0.0731 0.0741 Spikecount 1 \n", + " time_to_first_spike 2.1 \n", + " time_to_last_spike 2.1 \n", + "\n", + " abs_diff Arbor to Neuron \\\n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + " Step1 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 0 \n", + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + " Step3 0.0731 0.0741 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + "\n", + " rel_abs_diff Arbor to Neuron [%] \n", + "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", + "False bAP 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + " Step1 0.12 0.0406 Spikecount 0 \n", + " time_to_first_spike 0 \n", + "... ... \n", + "True Step1 0.0731 0.0741 time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + " Step3 0.0731 0.0741 Spikecount 0 \n", + " time_to_first_spike 0 \n", + " time_to_last_spike 0 \n", + "\n", + "[200 rows x 4 columns]" ] }, "metadata": {}, @@ -5640,88 +5640,88 @@ " \n", " time_to_first_spike\n", " 60\n", - " 0.005\n", - " 0.022\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 0.1\n", + " 0\n", + " 0\n", + " 0\n", " 60\n", - " 0.219\n", - " 0.97\n", - " -0\n", - " -0\n", " 0\n", " 0\n", - " 5\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", " time_to_last_spike\n", " 60\n", - " 0.015\n", - " 0.0404\n", + " 0.0117\n", + " 0.0555\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 0.2\n", + " 0.3\n", " 60\n", - " 0.0356\n", - " 0.108\n", + " 0.0302\n", + " 0.148\n", " 0\n", " 0\n", " 0\n", " 0\n", - " 0.667\n", + " 0.943\n", " \n", " \n", " time_to_second_spike\n", - " 25\n", - " 0.012\n", - " 0.0332\n", + " 20\n", + " 0.01\n", + " 0.0308\n", " 0\n", " 0\n", " 0\n", " 0\n", " 0.1\n", - " 25\n", - " 0.0926\n", - " 0.259\n", - " -0\n", + " 20\n", + " 0.0775\n", + " 0.245\n", + " 0\n", " 0\n", " 0\n", " 0\n", - " 0.917\n", + " 0.943\n", " \n", " \n", "\n", "" ], "text/plain": [ - " abs_diff Arbor to Neuron \\\n", - " count mean std min 25% 50% 75% \n", - "efel \n", - "Spikecount 60 0 0 0 0 0 0 \n", - "time_to_first_spike 60 0.005 0.022 0 0 0 0 \n", - "time_to_last_spike 60 0.015 0.0404 0 0 0 0 \n", - "time_to_second_spike 25 0.012 0.0332 0 0 0 0 \n", + " abs_diff Arbor to Neuron \\\n", + " count mean std min 25% 50% 75% \n", + "efel \n", + "Spikecount 60 0 0 0 0 0 0 \n", + "time_to_first_spike 60 0 0 0 0 0 0 \n", + "time_to_last_spike 60 0.0117 0.0555 0 0 0 0 \n", + "time_to_second_spike 20 0.01 0.0308 0 0 0 0 \n", "\n", " rel_abs_diff Arbor to Neuron [%] \\\n", " max count mean std min \n", "efel \n", "Spikecount 0 60 0 0 0 \n", - "time_to_first_spike 0.1 60 0.219 0.97 -0 \n", - "time_to_last_spike 0.2 60 0.0356 0.108 0 \n", - "time_to_second_spike 0.1 25 0.0926 0.259 -0 \n", + "time_to_first_spike 0 60 0 0 0 \n", + "time_to_last_spike 0.3 60 0.0302 0.148 0 \n", + "time_to_second_spike 0.1 20 0.0775 0.245 0 \n", "\n", " \n", " 25% 50% 75% max \n", "efel \n", "Spikecount 0 0 0 0 \n", - "time_to_first_spike -0 0 0 5 \n", - "time_to_last_spike 0 0 0 0.667 \n", - "time_to_second_spike 0 0 0 0.917 " + "time_to_first_spike 0 0 0 0 \n", + "time_to_last_spike 0 0 0 0.943 \n", + "time_to_second_spike 0 0 0 0.943 " ] }, "metadata": {}, @@ -5790,54 +5790,53 @@ " \n", " \n", " \n", - " False\n", - " bAP\n", - " 0.0969\n", - " 0.0153\n", + " False\n", + " Step1\n", + " 0.0708\n", + " 0.0267\n", " time_to_last_spike\n", - " 67.8\n", - " 68\n", - " 0.2\n", - " 0.295\n", + " 46.7\n", + " 47\n", + " 0.3\n", + " 0.642\n", " \n", " \n", - " Step3\n", - " 0.125\n", - " 0.0545\n", + " 0.0553\n", + " 0.0212\n", " time_to_last_spike\n", - " 15\n", - " 15.1\n", - " 0.1\n", - " 0.667\n", + " 31.8\n", + " 32.1\n", + " 0.3\n", + " 0.943\n", " \n", " \n", - " 0.07\n", - " 0.0122\n", + " 0.12\n", + " 0.0406\n", " time_to_last_spike\n", - " 50.7\n", - " 50.8\n", + " 44.7\n", + " 44.8\n", " 0.1\n", - " 0.197\n", + " 0.224\n", " \n", " \n", - " 0.0508\n", - " 0.0136\n", + " True\n", + " bAP\n", + " 0.0799\n", + " 0.0189\n", " time_to_last_spike\n", - " 45.7\n", - " 45.8\n", - " 0.1\n", - " 0.219\n", + " 1.3\n", + " 1.3\n", + " 0\n", + " 0\n", " \n", " \n", - " True\n", - " Step1\n", - " 0.0537\n", - " 0.0124\n", + " 0.0592\n", + " 0.0295\n", " time_to_last_spike\n", - " 52\n", - " 52.1\n", - " 0.1\n", - " 0.192\n", + " 1.4\n", + " 1.4\n", + " 0\n", + " 0\n", " \n", " \n", "\n", @@ -5846,35 +5845,35 @@ "text/plain": [ " Neuron \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 time_to_last_spike 67.8 \n", - " Step3 0.125 0.0545 time_to_last_spike 15 \n", - " 0.07 0.0122 time_to_last_spike 50.7 \n", - " 0.0508 0.0136 time_to_last_spike 45.7 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 52 \n", + "False Step1 0.0708 0.0267 time_to_last_spike 46.7 \n", + " 0.0553 0.0212 time_to_last_spike 31.8 \n", + " 0.12 0.0406 time_to_last_spike 44.7 \n", + "True bAP 0.0799 0.0189 time_to_last_spike 1.3 \n", + " 0.0592 0.0295 time_to_last_spike 1.4 \n", "\n", " Arbor \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 time_to_last_spike 68 \n", - " Step3 0.125 0.0545 time_to_last_spike 15.1 \n", - " 0.07 0.0122 time_to_last_spike 50.8 \n", - " 0.0508 0.0136 time_to_last_spike 45.8 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 52.1 \n", + "False Step1 0.0708 0.0267 time_to_last_spike 47 \n", + " 0.0553 0.0212 time_to_last_spike 32.1 \n", + " 0.12 0.0406 time_to_last_spike 44.8 \n", + "True bAP 0.0799 0.0189 time_to_last_spike 1.3 \n", + " 0.0592 0.0295 time_to_last_spike 1.4 \n", "\n", " abs_diff Arbor to Neuron \\\n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 time_to_last_spike 0.2 \n", - " Step3 0.125 0.0545 time_to_last_spike 0.1 \n", - " 0.07 0.0122 time_to_last_spike 0.1 \n", - " 0.0508 0.0136 time_to_last_spike 0.1 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 0.1 \n", + "False Step1 0.0708 0.0267 time_to_last_spike 0.3 \n", + " 0.0553 0.0212 time_to_last_spike 0.3 \n", + " 0.12 0.0406 time_to_last_spike 0.1 \n", + "True bAP 0.0799 0.0189 time_to_last_spike 0 \n", + " 0.0592 0.0295 time_to_last_spike 0 \n", "\n", " rel_abs_diff Arbor to Neuron [%] \n", "replace_axon protocol gnabar_hh.somatic gkbar_hh.somatic efel \n", - "False bAP 0.0969 0.0153 time_to_last_spike 0.295 \n", - " Step3 0.125 0.0545 time_to_last_spike 0.667 \n", - " 0.07 0.0122 time_to_last_spike 0.197 \n", - " 0.0508 0.0136 time_to_last_spike 0.219 \n", - "True Step1 0.0537 0.0124 time_to_last_spike 0.192 " + "False Step1 0.0708 0.0267 time_to_last_spike 0.642 \n", + " 0.0553 0.0212 time_to_last_spike 0.943 \n", + " 0.12 0.0406 time_to_last_spike 0.224 \n", + "True bAP 0.0799 0.0189 time_to_last_spike 0 \n", + " 0.0592 0.0295 time_to_last_spike 0 " ] }, "metadata": {}, @@ -5935,15 +5934,15 @@ " \n", " \n", " time_to_first_spike\n", - " 0.0857\n", + " 0\n", " \n", " \n", " time_to_last_spike\n", - " 0.0462\n", + " 0.038\n", " \n", " \n", " time_to_second_spike\n", - " 0.103\n", + " 0.087\n", " \n", " \n", "\n", @@ -5953,9 +5952,9 @@ " ratio of mean abs_diff Arbor to Neuron for fine dt vs. default dt\n", "efel \n", "Spikecount 0 \n", - "time_to_first_spike 0.0857 \n", - "time_to_last_spike 0.0462 \n", - "time_to_second_spike 0.103 " + "time_to_first_spike 0 \n", + "time_to_last_spike 0.038 \n", + "time_to_second_spike 0.087 " ] }, "metadata": {}, diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index e13ff707..ce4b202b 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -37,7 +37,7 @@ def main(): cell = simplecell_model.create(do_replace_axon=args.replace_axon) if args.replace_axon: nrn_sim = ephys.simulators.NrnSimulator() - cell.instantiate_morphology(nrn_sim) + cell.instantiate_morphology_3d(nrn_sim) if args.output_dir is not None: ephys.create_acc.output_acc(args.output_dir, cell, param_values) diff --git a/examples/simplecell/simplecell_arbor.ipynb b/examples/simplecell/simplecell_arbor.ipynb index 922fdef8..d62f92b1 100644 --- a/examples/simplecell/simplecell_arbor.ipynb +++ b/examples/simplecell/simplecell_arbor.ipynb @@ -8,9 +8,9 @@ } }, "source": [ - "# Creating a simple cell optimisation\n", + "# Creating a simple cell optimisation with Arbor\n", "\n", - "This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised.\n", + "This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised using Arbor as the simulator.\n", "As this optimisation is for example purpose only, no real experimental data is used in this notebook." ] }, From 5d4ad03b09ecc74865dc2c2ec712f26f934d78f6 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Wed, 12 Oct 2022 21:30:40 +0200 Subject: [PATCH 25/42] Removing old axon replacement impl and synapse implementation with spike sources --- bluepyopt/ephys/create_acc.py | 11 +- bluepyopt/ephys/models.py | 103 ++---------------- bluepyopt/ephys/protocols.py | 1 - bluepyopt/ephys/stimuli.py | 11 +- .../acc/CCell/simple_axon_replacement.acc | 13 +++ examples/l5pc/generate_acc.py | 9 +- examples/simplecell/generate_acc.py | 9 +- 7 files changed, 45 insertions(+), 112 deletions(-) create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/CCell/simple_axon_replacement.acc diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 19b842ea..54a86fef 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -560,7 +560,7 @@ def create_acc(mechs, morphology_dir=None, ignored_globals=(), replace_axon=None, - replace_axon_create_mod_acc=False, + create_mod_acc=False, template_name='CCell', template_filename='acc/*_template.jinja2', disable_banner=None, @@ -575,7 +575,7 @@ def create_acc(mechs, morphology_dir (str): Directory of morphology ignored_globals (iterable str): Skipped NrnGlobalParameter in decor replace_axon (): Axon replacement morphology - replace_axon_create_mod_acc (): Create ACC with axon replacement + create_mod_acc (): Create ACC morphology with axon replacement template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) template_dir (str): dir name of the jinja2 templates @@ -601,7 +601,7 @@ def create_acc(mechs, arbor.write_component(replace_axon, replace_axon_acc) replace_axon_acc.seek(0) - if replace_axon_create_mod_acc: + if create_mod_acc: modified_morphology_path = \ pathlib.Path(morphology).stem + '_modified.acc' modified_morpho = ArbFileMorphology.load( @@ -724,6 +724,7 @@ def create_acc(mechs, def output_acc(output_dir, cell, parameters, template_filename='acc/*_template.jinja2', + create_mod_acc=False, sim=None): '''Output mixed JSON/ACC format for Arbor cable cell to files @@ -733,10 +734,12 @@ def output_acc(output_dir, cell, parameters, parameters (): Values for mechanism parameters, etc. template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) + create_mod_acc (str): Output ACC with axon replacement sim (): Neuron simulator instance (only used used with axon replacement if morphology has not yet been instantiated) ''' - output = cell.create_acc(parameters, template_filename, sim=sim) + output = cell.create_acc(parameters, template_filename, + create_mod_acc=create_mod_acc, sim=sim) cell_json = [comp_rendered for comp, comp_rendered in output.items() diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 43b836e6..a034763d 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -301,8 +301,8 @@ def _create_sim_desc(self, param_values, ignored_globals=(), template=None, disable_banner=False, template_dir=None, - sim_desc_creator=None, - sim=None): + extra_params=dict(), + sim_desc_creator=None): """Create simulator description for this model""" to_unfreeze = [] @@ -313,7 +313,6 @@ def _create_sim_desc(self, param_values, template_name = self.name morphology = os.path.basename(self.morphology.morphology_path) - morphology_dir = os.path.dirname(self.morphology.morphology_path) if sim_desc_creator is create_hoc.create_hoc: if self.morphology.do_replace_axon: @@ -343,92 +342,7 @@ def _create_sim_desc(self, param_values, ArbFileMorphology.extract_nrn_seclists( self.icell, [sl for sl in ['axon', 'myelin'] if sl in self.icell_existing_secs]) -# FIXME -# # replace_axon = [] -# # for sec in ['axon', 'myelin']: -# # if sec in self.icell_existing_secs: -# # for section in getattr(self.icell, sec): -# # seg_bounds = [seg for seg -# # in section.allseg()] -# # replace_axon += \ -# # [dict( -# # length=(dist.x - prox.x) * section.L, -# # prox_radius=0.5 * prox.diam, -# # dist_radius=0.5 * dist.diam, -# # tag=morphologies. -# # ArbFileMorphology.tags[sec]) -# # for prox, dist -# # in zip(seg_bounds[:-1], -# # seg_bounds[1:])] -# import arbor -# import bisect -# import numpy - -# replace_axon = arbor.segment_tree() -# nrn_seg_to_dist = dict() -# nrn_seg_to_arb_seg = dict() -# for sec in ['axon', 'myelin']: -# if sec in self.icell_existing_secs: -# for section in getattr(self.icell, sec): - -# if replace_axon.size == 0: -# arb_parent_seg = arbor.mnpos -# else: -# parent_seg = section.parentseg() -# parent_sec = parent_seg.sec.name() -# parent_x = parent_seg.x -# parent_seg_id = bisect.bisect_left( -# nrn_seg_to_dist[parent_sec], -# parent_x) -# arb_parent_seg = \ -# nrn_seg_to_arb_seg[parent_sec][parent_seg_id] - -# pts3d = section.psection()['morphology']['pts3d'] -# if len(pts3d) == 0: -# # stylized geometry, infer it from original geometry -# raise ValueError( -# 'Embed stylized geometry using define_shape()') - -# pts3d = numpy.array(pts3d) -# dist_x = numpy.cumsum( -# numpy.linalg.norm( -# pts3d[1:,:3]-pts3d[:-1,:3], axis=1))/\ -# section.psection()['morphology']['L'] -# assert abs(1.-dist_x[-1]) < 1e-4 -# dist_x[-1] = 1. -# nrn_seg_to_dist[section.name()] = dist_x - -# arb_seg_ids = [] -# for i in range(1,len(pts3d)): -# prox = pts3d[i-1] -# dist = pts3d[i] -# arb_parent_seg = replace_axon.append( -# arb_parent_seg, -# arbor.mpoint(*prox[:3], 0.5 * prox[3]), -# arbor.mpoint(*dist[:3], 0.5 * dist[3]), -# morphologies.ArbFileMorphology.tags[sec]) -# arb_seg_ids.append(arb_parent_seg) -# nrn_seg_to_arb_seg[section.name()] = arb_seg_ids -# # dist, arb_seg_id pairs - -# # allseg = [seg for seg -# # in section.allseg()] -# # nseg = len(allseg) -# # for i, seg in enumerate(allseg): -# # prox_seg = allseg[max(i-1, 0)] -# # dist_seg = allseg[min(i+1, nseg)] -# # prox_x = 0.5 * (prox_seg.x + seg.x) -# # dist_x = 0.5 * (dist_seg.x + seg.x) -# # prox_radius = 0.25 * (prox_seg.diam + seg.diam) -# # dist_radius = 0.25 * (dist_seg.diam + seg.diam) -# # arb_parent_seg = replace_axon.append( -# # arb_parent_seg, -# # # FIXME: geometry -# # arbor.mpoint(prox_x * section.L, 0, 0, prox_radius), -# # arbor.mpoint(dist_x * section.L, 0, 0, dist_radius), -# # morphologies.ArbFileMorphology.tags[sec]) -# # nrn_seg_to_arb_seg[seg.sec()] = arb_parent_seg -# replace_axon = arbor.morphology(replace_axon) + else: replace_axon = None else: @@ -436,10 +350,6 @@ def _create_sim_desc(self, param_values, '(choose either create_hoc.create_hoc or ' 'create_acc.create_acc)', str(sim_desc_creator)) - extra_params = dict() - if sim_desc_creator is create_acc.create_acc: - extra_params['morphology_dir'] = morphology_dir - ret = sim_desc_creator(mechs=self.mechanisms, parameters=self.params.values(), morphology=morphology, @@ -470,6 +380,7 @@ def create_acc(self, param_values, ignored_globals=(), template='acc/*_template.jinja2', disable_banner=False, template_dir=None, + create_mod_acc=False, sim=None): """Create JSON/ACC-description for this model""" destroy_cell = False @@ -483,10 +394,16 @@ def create_acc(self, param_values, self.instantiate_morphology_3d(sim=sim) destroy_cell = True + extra_params = dict( + morphology_dir=os.path.dirname(self.morphology.morphology_path), + create_mod_acc=create_mod_acc + ) + ret = self._create_sim_desc(param_values, ignored_globals, template, disable_banner, template_dir, + extra_params=extra_params, sim_desc_creator=create_acc.create_acc) if destroy_cell: diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index 46777b4a..17ae317d 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -582,7 +582,6 @@ def instantiate_synaptic_stimuli(self, cell_model, use_labels=False): for i, stim in enumerate(self.stimuli): if isinstance(stim, stimuli.SynapticStimulus): for acc_events in stim.acc_events(): - # cell_model.spike_source(**acc_stim, delay=delay) cell_model.event_generator(acc_events) return cell_model diff --git a/bluepyopt/ephys/stimuli.py b/bluepyopt/ephys/stimuli.py index 6ae98fa3..0ecb4468 100644 --- a/bluepyopt/ephys/stimuli.py +++ b/bluepyopt/ephys/stimuli.py @@ -173,7 +173,6 @@ def destroy(self, sim=None): self.connections = {} def acc_events(self): - # spike_sources = [] event_generators = [] for loc in self.locations: @@ -191,13 +190,7 @@ def acc_events(self): raise ValueError( 'Only noise = 0 or 1 for NrnNetStimStimulus' ' supported in Arbor.') - # spike_cell = arbor.spike_source_cell( - # loc.name, schedule) - # spike_sources.append(dict( - # source=spike_cell, - # synapse=loc.pprocess_mech.name, - # weight=self.weight - # )) + event_generators.append( arbor.event_generator(target=loc.pprocess_mech.name, weight=self.weight, @@ -205,8 +198,6 @@ def acc_events(self): return event_generators - # return spike_sources - def __str__(self): """String representation""" diff --git a/bluepyopt/tests/test_ephys/testdata/acc/CCell/simple_axon_replacement.acc b/bluepyopt/tests/test_ephys/testdata/acc/CCell/simple_axon_replacement.acc new file mode 100644 index 00000000..7dee06c1 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/CCell/simple_axon_replacement.acc @@ -0,0 +1,13 @@ +(arbor-component + (meta-data + (version "0.1-dev")) + (morphology + (branch 0 -1 + (segment 0 + (point 5.000000 0.000000 0.000000 0.500000) + (point 35.000000 0.000000 0.000000 0.500000) + 2) + (segment 1 + (point 35.000000 0.000000 0.000000 0.500000) + (point 65.000000 0.000000 0.000000 0.500000) + 2)))) \ No newline at end of file diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index b55ab4e2..e50d5bc5 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -40,10 +40,15 @@ def main(): cell.instantiate_morphology_3d(nrn_sim) if args.output_dir is not None: - ephys.create_acc.output_acc(args.output_dir, cell, param_values) + ephys.create_acc.output_acc(args.output_dir, + cell, + param_values, + create_mod_acc=True) else: output = cell.create_acc( - param_values, template='acc/*_template.jinja2') + param_values, + template='acc/*_template.jinja2', + create_mod_acc=True) for el, val in output.items(): print("%s:\n%s\n" % (el, val)) diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index ce4b202b..9562236a 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -40,10 +40,15 @@ def main(): cell.instantiate_morphology_3d(nrn_sim) if args.output_dir is not None: - ephys.create_acc.output_acc(args.output_dir, cell, param_values) + ephys.create_acc.output_acc(args.output_dir, + cell, + param_values, + create_mod_acc=True) else: output = cell.create_acc( - param_values, template='acc/*_template.jinja2') + param_values, + template='acc/*_template.jinja2', + create_mod_acc=True) for el, val in output.items(): print("%s:\n%s\n" % (el, val)) From d98041da38026db95d608f690547982594ea6c04 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Tue, 18 Oct 2022 01:18:31 +0200 Subject: [PATCH 26/42] Support for general Arbor labels, expsyn example fixed, Arbor iexpr generation moved to parameter-scaler, docs update --- README.rst | 11 +- bluepyopt/ephys/create_acc.py | 257 +++--------------- bluepyopt/ephys/create_hoc.py | 71 +++-- bluepyopt/ephys/locations.py | 38 +-- bluepyopt/ephys/morphologies.py | 8 +- bluepyopt/ephys/parameterscalers.py | 229 +++++++++++++++- bluepyopt/ephys/protocols.py | 6 +- bluepyopt/ephys/simulators.py | 1 + .../templates/acc/decor_acc_template.jinja2 | 8 +- .../acc/label_dict_acc_template.jinja2 | 6 +- bluepyopt/tests/test_ephys/test_create_acc.py | 22 +- bluepyopt/tests/test_ephys/test_create_hoc.py | 8 +- .../testdata/acc/CCell/CCell_decor.acc | 8 +- .../acc/templates/decor_acc_template.jinja2 | 6 +- .../templates/label_dict_acc_template.jinja2 | 6 +- examples/README.md | 2 + examples/expsyn/ExpSyn.ipynb | 2 +- examples/expsyn/ExpSyn_arbor.ipynb | 15 +- examples/expsyn/expsyn.py | 10 +- examples/l5pc/L5PC_arbor.ipynb | 94 +------ examples/simplecell/simplecell_arbor.ipynb | 77 +++--- 21 files changed, 444 insertions(+), 441 deletions(-) diff --git a/README.rst b/README.rst index 4a3ce709..e748cf7e 100644 --- a/README.rst +++ b/README.rst @@ -139,6 +139,11 @@ And then bluepyopt itself: pip install bluepyopt +Support for simulators other than NEURON is optional and not installed by default. If you want to use [Arbor](https://arbor-sim.org/) to run your models, use the followig line instead to install bluepyopt. + +.. code-block:: bash + + pip install bluepyopt[arbor] Cloud infrastructure ==================== @@ -156,7 +161,8 @@ Single compartmental model An iPython notebook with an introductory optimisation of a one compartmental model with 2 HH channels can be found at -https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb +https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb (NEURON) +https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell_arbor.ipynb (Arbor) |landscape_example| @@ -171,7 +177,8 @@ Scripts for a more complex neocortical L5PC are in With a notebook: -https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/L5PC.ipynb +https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/L5PC.ipynb (NEURON) +https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/L5PC_arbor.ipynb (Arbor) Thalamocortical Cells --------------------- diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 54a86fef..9d1333f3 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -12,7 +12,6 @@ import jinja2 import json import shutil -import ast try: import arbor @@ -28,10 +27,9 @@ def __getattribute__(self, _): logger = logging.getLogger(__name__) from .create_hoc import Location, RangeExpr, PointExpr, \ - _get_template_params, format_float, DEFAULT_LOCATION_ORDER + _get_template_params, format_float from .morphologies import ArbFileMorphology - # Define Neuron to Arbor variable conversions ArbVar = namedtuple('ArbVar', 'name, conv') # turn into a class @@ -82,7 +80,7 @@ def _nrn2arb_param(param, name): return RangeExpr(location=param.location, name=_nrn2arb_var_name(name), value=_nrn2arb_var_value(param), - inst_distribution=param.inst_distribution) + value_scaler=param.value_scaler) elif isinstance(param, PointExpr): return PointExpr(name=_nrn2arb_var_name(name), point_loc=param.point_loc, @@ -101,7 +99,7 @@ def _nrn2arb_mech_name(name): def _arb_is_global_property(loc, param): """Returns if region-specific variable is a global property in Arbor.""" - return loc == 'all' and ( + return loc == ArbFileMorphology.region_labels['all'] and ( param.name in ['membrane-potential', 'temperature-kelvin', 'axial-resistivity', @@ -219,16 +217,19 @@ def _arb_convert_params_and_group_by_mech(params, channels): mech_params = [_find_mech_and_convert_param_name( param, channels) for param in params] mechs = {mech: [] for mech, _ in mech_params} + for mech in channels: + if mech not in mechs: + mechs[mech] = [] for mech, param in mech_params: mechs[mech].append(param) return mechs -def _arb_convert_params_and_group_by_mech_global(params, channels): +def _arb_convert_params_and_group_by_mech_global(params): """Group global params by mechanism, rename them to Arbor convention""" return _arb_convert_params_and_group_by_mech( [Location(name=name, value=value) for name, value in params.items()], - channels['all'] + [] # no default mechanisms ) @@ -257,7 +258,8 @@ def _arb_append_scaled_mechs(mechs, scaled_mechs): [RangeIExpr( name=p.name, value=format_float(p.value), - scale=_arb_generate_iexpr(p)) for p in scaled_params] + scale=p.value_scaler.acc_scale_iexpr(p.value)) + for p in scaled_params] def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): @@ -295,7 +297,8 @@ def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): scale=mech_param.scale)) else: remaining_mech_params.append(mech_param) - mech_name += '/' + ','.join(mech_name_suffix) + if len(mech_name_suffix) > 0: + mech_name += '/' + ','.join(mech_name_suffix) return (mech_name, remaining_mech_params) @@ -329,204 +332,6 @@ def _arb_project_scaled_mechs(mechs): return scaled_mechs -# Translating parameter scaling expressions to Arbor S-expressions -class ArbIExprValueEliminator(ast.NodeTransformer): - """Divide expression (symbolically) by value and replace - non-linear occurrences by numeric value""" - def __init__(self, value): - self._stack = [] - self._nodes_to_remove = [] - self._remove_count = 0 - self._value = value - - def generic_visit(self, node): - self._stack.append(node) # keep track of visitor stack - - node = super(ArbIExprValueEliminator, self).generic_visit(node) - - nodes_removed = [] - for node_to_remove in self._nodes_to_remove: - if node_to_remove in ast.iter_child_nodes(node): - # replace this node and remove child - node = node.left if node.right == node_to_remove \ - else node.right - nodes_removed.append(node_to_remove) - self._remove_count += 1 - if self._remove_count > 1: - raise ValueError( - 'Unsupported inhomogeneous expression in Arbor' - ' - must be linear in the parameter value.') - self._nodes_to_remove = [n for n in self._nodes_to_remove - if n not in nodes_removed] - - self._stack.pop() - - # top-level expression node that is non-linear in the value - if len(self._stack) == 2 and self._remove_count == 0: - return ast.BinOp(left=node, op=ast.Div(), - right=ast.Constant(value=self._value)) - else: - return node - - def _is_linear(self, node): - """Check if expression is linear in this node""" - prev_frame = node - for next_frame in reversed(self._stack[2:]): - if not isinstance(next_frame, ast.BinOp) or \ - not (isinstance(next_frame.op, ast.Mult) or - isinstance(next_frame.op, ast.Div) and - next_frame.left == prev_frame): - return False - prev_frame = next_frame - return True - - def visit_Name(self, node): - if node.id == '_arb_parse_iexpr_value': - # remove if expression is linear in value, else replace by constant - if self._is_linear(node) and \ - self._remove_count + len(self._nodes_to_remove) == 0: - self._nodes_to_remove.append(node) - return node - else: - return ast.Constant(value=self._value) - else: - return node - - -class ArbIExprEmitter(ast.NodeVisitor): - """Emit Arbor S-expression from parse tree""" - - _iexpr_symbols = { - ast.Constant: 'scalar', - ast.Num: 'scalar', - ast.Add: 'add', - ast.Sub: 'sub', - ast.Mult: 'mul', - ast.Div: 'div', - 'math.pi': 'pi', - 'math.exp': 'exp', - 'math.log': 'log', - } - - def __init__(self, constant_formatter): - self._base_stack = [] - self._emitted = [] - self._constant_formatter = constant_formatter - - def emit(self): - return ' '.join(self._emitted) - - def _emit(self, expr): - return self._emitted.append(expr) - - def generic_visit(self, node): - self._base_stack.append(node) - - # fail if more than base stack - if len(self._base_stack) > 2: - raise ValueError('Arbor inhomogeneous expression generation' - ' failed: Unsupported node %s' % repr(node)) - - ret = super(ArbIExprEmitter, self).generic_visit(node) - self._base_stack.pop() - return ret - - def visit_Constant(self, node): - self._emit( - '(%s %s)' % (self._iexpr_symbols[type(node)], - self._constant_formatter(node.value)) - ) - - def visit_Num(self, node): - self._emit( - '(%s %s)' % (self._iexpr_symbols[type(node)], - self._constant_formatter(node.n)) - ) - - def visit_Attribute(self, node): - if node.value.id == 'math' and node.attr == 'pi': - self._emit( - '(%s)' % self._iexpr_symbols['math.pi'] - ) - else: - raise ValueError('Unsupported attribute %s in Arbor' - % node) - - def visit_UnaryOp(self, node): - if isinstance(node.op, ast.UAdd): - self.visit(node.value) - elif isinstance(node.op, ast.USub): - if isinstance(node.operand, ast.Constant): - self.visit(ast.Constant(-node.operand.value)) - else: - self.visit(ast.BinOp(left=ast.Constant(-1), - op=ast.Mult(), - right=node.operand)) - else: - raise ValueError('Unsupported unary operation %s in Arbor' - % node.op) - - def visit_BinOp(self, node): - op_type = type(node.op) - if op_type not in self._iexpr_symbols: - raise ValueError('Unsupported binary operation %s in Arbor' - % op_type) - self._emit( - '(' + self._iexpr_symbols[type(node.op)] - ) - self.visit(node.left), - self.visit(node.right) - self._emit( - ')' - ) - - def visit_Call(self, node): - func = node.func - if func.value.id == 'math': - if len(node.args) > 1: - raise ValueError('Arbor iexpr generation failed:' - ' math functions can only have a' - ' single argument.') - func_symbol = func.value.id + '.' + func.attr - if func_symbol not in self._iexpr_symbols: - raise ValueError('Arbor iexpr generation failed - ' - ' Unknown symbol %s.' % func_symbol) - self._emit( - '(' + self._iexpr_symbols[func_symbol] - ) - self.visit(node.args[0]) - self._emit( - ')' - ) - - def visit_Name(self, node): - if node.id == '_arb_parse_iexpr_distance': - self._emit( - '(distance %s)' % - ArbFileMorphology.region_labels['somatic'].ref - ) - - -def _arb_generate_iexpr(range_expr, constant_formatter=format_float): - """Generate Arbor iexpr from instantiated distribution - of NrnSegmentSomaDistanceScaler""" - scaler_expr = range_expr.inst_distribution.format( - value='_arb_parse_iexpr_value', - distance='_arb_parse_iexpr_distance') - - # Parse expression - scaler_ast = ast.parse(scaler_expr) - - # Turn into scaling expression, replacing non-linear occurrences of value - value_eliminator = ArbIExprValueEliminator(range_expr.value) - scaler_ast = value_eliminator.visit(scaler_ast) - - # Generate S-expression - iexpr_emitter = ArbIExprEmitter(constant_formatter=constant_formatter) - iexpr_emitter.visit(scaler_ast) - return iexpr_emitter.emit() - - def _read_templates(template_dir, template_filename): """Expand Jinja2 template filepath with glob and return dict of target filename -> parsed template""" @@ -554,6 +359,11 @@ def _read_templates(template_dir, template_filename): return templates +def _arb_loc_desc(location, param_or_mech): + """Generate Arbor location description for label dict and decor""" + return location.acc_label() + + def create_acc(mechs, parameters, morphology=None, @@ -623,10 +433,14 @@ def create_acc(mechs, templates = _read_templates(template_dir, template_filename) + default_location_order = list(ArbFileMorphology.region_labels.values()) + template_params = _get_template_params(mechs, parameters, ignored_globals, - disable_banner) + disable_banner, + default_location_order, + _arb_loc_desc) if custom_jinja_params is None: custom_jinja_params = {} @@ -644,7 +458,7 @@ def create_acc(mechs, # [mech -> param] global_mechs = \ _arb_convert_params_and_group_by_mech_global( - template_params['global_params'], channels) + template_params['global_params']) # section_mechs refer to locally painted mechanisms/params in Arbor # [loc -> mech -> param.name/.value] @@ -656,8 +470,8 @@ def create_acc(mechs, global_mechs.get(mech, []) + params # scaled_mechs refer to params with iexprs in Arbor - # [loc -> mech -> param.location/.name/.value/.inst_distribution] - range_params = {loc: [] for loc in DEFAULT_LOCATION_ORDER} + # [loc -> mech -> param.location/.name/.value/.value_scaler] + range_params = {loc: [] for loc in default_location_order} for param in template_params['range_params']: range_params[param.location].append(param) range_params = list(range_params.items()) @@ -698,6 +512,23 @@ def create_acc(mechs, section_scaled_mechs = {loc: _arb_project_scaled_mechs(mechs) for loc, mechs in section_mechs.items()} + # populate label dict + label_dict = dict() + + for acc_labels in [section_mechs.keys(), + section_scaled_mechs.keys(), + pprocess_mechs.keys()]: + for acc_label in acc_labels: + if acc_label.name in label_dict and \ + acc_label != label_dict[acc_label.name]: + raise ValueError( + 'Label %s already exists in' % acc_label.name + + ' label_dict with different definition: ' + ' %s != %s.' % (label_dict[acc_label.name].defn, + acc_label.defn)) + elif acc_label.name not in label_dict: + label_dict[acc_label.name] = acc_label + ret = {filenames[name]: template.render(template_name=template_name, banner=banner, @@ -705,7 +536,7 @@ def create_acc(mechs, replace_axon=replace_axon_path, modified_morphology=modified_morphology_path, filenames=filenames, - regions=ArbFileMorphology.region_labels, + label_dict=label_dict, global_mechs=global_mechs, global_scaled_mechs=global_scaled_mechs, section_mechs=section_mechs, @@ -716,7 +547,7 @@ def create_acc(mechs, if replace_axon is not None: ret[replace_axon_path] = replace_axon_acc - if modified_morphology_path is not None: # TODO: make optional + if modified_morphology_path is not None: ret[modified_morphology_path] = modified_morphology_acc return ret diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 9586b967..deb0ba4f 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -23,11 +23,13 @@ FLOAT_FORMAT, format_float) +PointExpr = namedtuple('PointExpr', 'name, point_loc, value') +RangeExpr = namedtuple('RangeExpr', 'location, name, value, value_scaler') + # Consider renaming Location as name already used in locations module Location = namedtuple('Location', 'name, value') -PointExpr = namedtuple('PointExpr', 'name, point_loc, value') -RangeExpr = namedtuple('RangeExpr', 'location, name, value, inst_distribution') Range = namedtuple('Range', 'location, param_name, value') + DEFAULT_LOCATION_ORDER = [ 'all', 'apical', @@ -37,19 +39,17 @@ 'myelinated'] -def _generate_channels_by_location(mechs, location_order): +def _generate_channels_by_location(mechs, location_order, loc_desc): """Create a OrderedDictionary of all channel mechs for hoc template.""" channels = OrderedDict((location, []) for location in location_order) point_channels = OrderedDict((location, []) for location in location_order) for mech in mechs: name = mech.suffix for location in mech.locations: - # TODO this is dangerous, implicitely assumes type of location - seclist_name = getattr(location, 'seclist_name', 'all') if isinstance(mech, mechanisms.NrnMODPointProcessMechanism): - point_channels[seclist_name].append(mech) + point_channels[loc_desc(location, mech)].append(mech) else: - channels[seclist_name].append(name) + channels[loc_desc(location, mech)].append(name) return channels, point_channels @@ -80,7 +80,7 @@ def _range_exprs_to_hoc(range_params): ret = [] for param in range_params: - value = param.inst_distribution + value = param.value_scaler.inst_distribution value = re.sub(r'math\.', '', value) value = re.sub('{distance}', FLOAT_FORMAT, value) value = re.sub('{value}', format_float(param.value), value) @@ -88,33 +88,47 @@ def _range_exprs_to_hoc(range_params): return ret -def _generate_parameters(parameters): +def _loc_desc(location, param_or_mech): + """Generate Neuron location description for HOC template""" + + if isinstance(param_or_mech, mechanisms.NrnMODMechanism): + # TODO this is dangerous, implicitly assumes type of location + return getattr(location, 'seclist_name', 'all') + elif isinstance(param_or_mech, mechanisms.NrnMODPointProcessMechanism): + raise ValueError("%s is currently not supported by create_hoc." % + type(param_or_mech).__name__) + # FIXME: NrnSectionCompLocation + elif not isinstance(param_or_mech, NrnPointProcessParameter): + return location.seclist_name + else: + raise ValueError("%s is currently not supported by create_hoc." % + type(param_or_mech).__name__) + + +def _generate_parameters(parameters, location_order, loc_desc): """Create a list of parameters that need to be added to the hoc template""" param_locations = defaultdict(list) global_params = {} for param in parameters: if isinstance(param, NrnGlobalParameter): - global_params[param.name] = param.value + global_params[param.param_name] = param.value elif isinstance(param, MetaParameter): pass else: assert isinstance( param.locations, (tuple, list)), 'Must have locations list' for location in param.locations: # FIXME: NrnSectionCompLocation - if not isinstance(param, NrnPointProcessParameter): - param_locations[location.seclist_name].append(param) + locs = loc_desc(location, param) + if not isinstance(locs, list): + param_locations[locs].append(param) else: - for pprocess_location in location.pprocess_mech.locations: - pprocess_seclist = getattr(pprocess_location, - 'seclist_name', 'all') - param_locations[pprocess_seclist].append(param) + for loc in locs: + param_locations[loc].append(param) section_params = defaultdict(list) pprocess_params = defaultdict(list) range_params = [] - location_order = DEFAULT_LOCATION_ORDER - for loc in param_locations: if loc not in location_order: location_order.append(loc) @@ -131,7 +145,7 @@ def _generate_parameters(parameters): RangeExpr(loc, param.param_name, param.value, - param.value_scaler.inst_distribution)) + param.value_scaler)) elif isinstance(param.value_scaler, NrnSegmentLinearScaler): value = param.value_scale_func(param.value) section_params[loc].append( @@ -174,8 +188,10 @@ def _read_template(template_dir, template_filename): def _get_template_params( mechs, parameters, - ignored_globals=(), - disable_banner=None): + ignored_globals, + disable_banner, + default_location_order, + loc_desc): '''return parameters to render Jinja2 templates with simulator descriptions Args: @@ -185,13 +201,18 @@ def _get_template_params( NrnGlobalParameter that exists, to test that it matches the values set in the parameters. This iterable contains parameter names that aren't checked + default_location_order (): list of ordered simulator-specific locations + to use by default + loc_desc (): method that extracts simulator-specific location + description from pair of locations and mechanisms/parameters ''' global_params, section_params, range_params, \ pprocess_params, location_order = \ - _generate_parameters(parameters) + _generate_parameters(parameters, default_location_order, loc_desc) + channels, point_channels = _generate_channels_by_location( - mechs, location_order) + mechs, location_order, loc_desc) ignored_global_params = {} for ignored_global in ignored_globals: @@ -250,7 +271,9 @@ def create_hoc(mechs, template_params = _get_template_params(mechs, parameters, ignored_globals, - disable_banner) + disable_banner, + DEFAULT_LOCATION_ORDER, + _loc_desc) # delete empty dicts to avoid conflict with custom_jinja_params del template_params['pprocess_params'] diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index be13e522..33e50dc8 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -640,7 +640,7 @@ def __str__(self): class ArbLocsetLocation(ArbLocation): - """Arbor location set defined by a user-supplied string. + """Arbor location set defined by a user-supplied string (S-expression). """ def __init__(self, name, locset, comment=''): @@ -658,11 +658,11 @@ def acc_label(self): def __str__(self): """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + return '%s %s' % (type(self).__name__, self.acc_label().defn) class ArbRegionLocation(ArbLocation): - """Arbor region defined by a user-supplied string. + """Arbor region defined by a user-supplied string (S-expression). """ def __init__(self, name, region, comment=''): @@ -676,39 +676,11 @@ def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 def acc_label(self): """Arbor label""" - raise EPhysLocAccException( - 'Support for %s not yet implemented in create_acc.' % - type(self).__name__) - # return ArbLabel('region', self.name, self.region) + return ArbLabel('region', self.name, self.region) def __str__(self): """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) - - -class ArbIexprLocation(ArbLocation): - """Arbor iexpr location defined by a user-supplied string. - """ - - def __init__(self, name, iexpr, comment=''): - super().__init__(name, comment) - self.iexpr = iexpr - - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - - def acc_label(self): - """Arbor label""" - raise EPhysLocAccException( - 'Support for %s not yet implemented in create_acc.' % - type(self).__name__) - # return ArbLabel('iexpr', self.name, self.iexpr) - - def __str__(self): - """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) + return '%s %s' % (type(self).__name__, self.acc_label().defn) class EPhysLocInstantiateException(Exception): diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index e5ec4f84..2c9574cd 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -290,6 +290,12 @@ def loc(self): """Expression defining the location of the label""" return self._defn + def __eq__(self, other): + return self.defn == other.defn + + def __hash__(self): + return hash(self.defn) + class ArbFileMorphology(Morphology, DictMixin): """Arbor morphology utilities""" @@ -303,7 +309,7 @@ class ArbFileMorphology(Morphology, DictMixin): myelin=5 ) - # Correspondence of BluePyOpt to Arbor region labels + # Correspondence of BluePyOpt seclists to Arbor region labels # (renaming locations according to SWC convention: using # 'dend' for basal dendrite, 'apic' for apical dendrite) region_labels = dict( diff --git a/bluepyopt/ephys/parameterscalers.py b/bluepyopt/ephys/parameterscalers.py index 68041998..5002773e 100644 --- a/bluepyopt/ephys/parameterscalers.py +++ b/bluepyopt/ephys/parameterscalers.py @@ -22,10 +22,11 @@ # pylint: disable=W0511 import string +import ast from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin - +from bluepyopt.ephys.morphologies import ArbFileMorphology FLOAT_FORMAT = '%.17g' @@ -179,7 +180,233 @@ def scale(self, value, segment, sim=None): # pylint: disable=W0123 return eval(self.eval_dist(value, distance)) + def acc_scale_iexpr(self, value, constant_formatter=format_float): + """Generate Arbor scale iexpr for a given value""" + + iexpr = self.inst_distribution + + variables = dict( + value=value, + distance='(distance %s)' % # could be a ctor param if required + ArbFileMorphology.region_labels['somatic'].ref + ) + + return generate_arbor_iexpr(iexpr, variables, constant_formatter) + def __str__(self): """String representation""" return self.distribution + + +# Utilities to generate Arbor S-expressions for morphologically +# inhomogeneous parameter scalers +class ArbIExprValueEliminator(ast.NodeTransformer): + """Divide expression (symbolically) by named variable and replace + non-linear occurrences by numeric value""" + def __init__(self, variable_name, value): + self._stack = [] + self._nodes_to_remove = [] + self._remove_count = 0 + self._variable_name = variable_name + self._value = value + + def generic_visit(self, node): + self._stack.append(node) # keep track of visitor stack + + node = super(ArbIExprValueEliminator, self).generic_visit(node) + + nodes_removed = [] + for node_to_remove in self._nodes_to_remove: + if node_to_remove in ast.iter_child_nodes(node): + # replace this node and remove child + node = node.left if node.right == node_to_remove \ + else node.right + nodes_removed.append(node_to_remove) + self._remove_count += 1 + if self._remove_count > 1: + raise ValueError( + 'Unsupported inhomogeneous expression in Arbor' + ' - must be linear in the parameter value.') + self._nodes_to_remove = [n for n in self._nodes_to_remove + if n not in nodes_removed] + + self._stack.pop() + + # top-level expression node that is non-linear in the value + if len(self._stack) == 2 and self._remove_count == 0: + return ast.BinOp(left=node, op=ast.Div(), + right=ast.Constant(value=self._value)) + else: + return node + + def _is_linear(self, node): + """Check if expression is linear in this node""" + prev_frame = node + for next_frame in reversed(self._stack[2:]): + if not isinstance(next_frame, ast.BinOp) or \ + not (isinstance(next_frame.op, ast.Mult) or + isinstance(next_frame.op, ast.Div) and + next_frame.left == prev_frame): + return False + prev_frame = next_frame + return True + + def visit_Name(self, node): + if node.id == self._variable_name: + # remove if expression is linear in value, else replace by constant + if self._is_linear(node) and \ + self._remove_count + len(self._nodes_to_remove) == 0: + self._nodes_to_remove.append(node) + return node + else: + return ast.Constant(value=self._value) + else: + return node + + +class ArbIExprEmitter(ast.NodeVisitor): + """Emit Arbor S-expression from parse tree + replacing named variables by specified S-expression""" + + _iexpr_symbols = { + ast.Constant: 'scalar', + ast.Num: 'scalar', + ast.Add: 'add', + ast.Sub: 'sub', + ast.Mult: 'mul', + ast.Div: 'div', + 'math.pi': 'pi', + 'math.exp': 'exp', + 'math.log': 'log', + } + + def __init__(self, var_name_to_sexpr, constant_formatter): + self._base_stack = [] + self._emitted = [] + self._var_name_to_sexpr = var_name_to_sexpr + self._constant_formatter = constant_formatter + + def emit(self): + return ' '.join(self._emitted) + + def _emit(self, expr): + return self._emitted.append(expr) + + def generic_visit(self, node): + self._base_stack.append(node) + + # fail if more than base stack + if len(self._base_stack) > 2: + raise ValueError('Arbor inhomogeneous expression generation' + ' failed: Unsupported node %s' % repr(node)) + + ret = super(ArbIExprEmitter, self).generic_visit(node) + self._base_stack.pop() + return ret + + def visit_Constant(self, node): + self._emit( + '(%s %s)' % (self._iexpr_symbols[type(node)], + self._constant_formatter(node.value)) + ) + + def visit_Num(self, node): + self._emit( + '(%s %s)' % (self._iexpr_symbols[type(node)], + self._constant_formatter(node.n)) + ) + + def visit_Attribute(self, node): + if node.value.id == 'math' and node.attr == 'pi': + self._emit( + '(%s)' % self._iexpr_symbols['math.pi'] + ) + else: + raise ValueError('Unsupported attribute %s in Arbor' + % node) + + def visit_UnaryOp(self, node): + if isinstance(node.op, ast.UAdd): + self.visit(node.value) + elif isinstance(node.op, ast.USub): + if isinstance(node.operand, ast.Constant): + self.visit(ast.Constant(-node.operand.value)) + else: + self.visit(ast.BinOp(left=ast.Constant(-1), + op=ast.Mult(), + right=node.operand)) + else: + raise ValueError('Unsupported unary operation %s in Arbor' + % node.op) + + def visit_BinOp(self, node): + op_type = type(node.op) + if op_type not in self._iexpr_symbols: + raise ValueError('Unsupported binary operation %s in Arbor' + % op_type) + self._emit( + '(' + self._iexpr_symbols[type(node.op)] + ) + self.visit(node.left), + self.visit(node.right) + self._emit( + ')' + ) + + def visit_Call(self, node): + func = node.func + if func.value.id == 'math': + if len(node.args) > 1: + raise ValueError('Arbor iexpr generation failed:' + ' math functions can only have a' + ' single argument.') + func_symbol = func.value.id + '.' + func.attr + if func_symbol not in self._iexpr_symbols: + raise ValueError('Arbor iexpr generation failed - ' + ' Unknown symbol %s.' % func_symbol) + self._emit( + '(' + self._iexpr_symbols[func_symbol] + ) + self.visit(node.args[0]) + self._emit( + ')' + ) + + def visit_Name(self, node): + if node.id in self._var_name_to_sexpr: + self._emit( + self._var_name_to_sexpr[node.id] + ) + else: + raise ValueError('Arb iexpr generation failed:' + ' No valid substitution for %s.' % node.id) + + +def generate_arbor_iexpr(iexpr, variables, constant_formatter): + """Generate Arbor iexpr from parameter-scaler string""" + + assert 'value' in variables + + emit_dict = {'_arb_parse_iexpr_' + k: v + for k, v in variables.items()} + + scaler_expr = iexpr.format( + **{k: '_arb_parse_iexpr_' + k for k in variables}) + + # Parse expression + scaler_ast = ast.parse(scaler_expr) + + # Turn into scaling expression, replacing non-linear occurrences of value + value_eliminator = ArbIExprValueEliminator( + variable_name='_arb_parse_iexpr_value', + value=variables['value']) + scaler_ast = value_eliminator.visit(scaler_ast) + + # Generate S-expression + iexpr_emitter = ArbIExprEmitter( + var_name_to_sexpr=emit_dict, + constant_formatter=constant_formatter) + + iexpr_emitter.visit(scaler_ast) + return iexpr_emitter.emit() diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index 17ae317d..b2fdc6dc 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -519,7 +519,11 @@ def instantiate_locations(self, label_dict): stim_rec_labels = [] for stim in self.stimuli: - arb_loc = stim.location.acc_label() + if hasattr(stim, 'location'): + arb_loc = stim.location.acc_label() + else: + arb_loc = [label for loc in stim.locations + for label in loc.acc_label()] for loc in (arb_loc if isinstance(arb_loc, list) else [arb_loc]): stim_rec_labels.append((loc.name, loc.loc, stim)) diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index aa97e0ec..262d887a 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -203,6 +203,7 @@ def __init__(self, dt=None): # TODO: add discretization policies, etc. def instantiate(self, morph, labels, decor): cable_cell = arbor.cable_cell(morph, labels, decor) + arb_cell_model = arbor.single_cell_model(cable_cell) # Add catalogues with explicit qualifiers diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index 72fc6342..c18ff462 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -21,20 +21,20 @@ {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} {%- if mech in section_scaled_mechs[loc] %} - (paint {{regions[loc].ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + (paint {{loc.ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) {%- else %} - (paint {{regions[loc].ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + (paint {{loc.ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- endif %} {%- else %} {%- for param in params %} - (paint {{regions[loc].ref}} ({{ param.name }} {{ param.value }})) + (paint {{loc.ref}} ({{ param.name }} {{ param.value }})) {%- endfor %} {%- endif %} {%- endfor %} {%- for synapse_name, mech_param_locs in pprocess_mechs[loc].items() %} {%- for point_loc in mech_param_locs.point_locs %} - (place {{point_loc.loc}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") + (place {{loc.ref}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") {%- endfor %} {%- endfor %} diff --git a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 index 9c705325..508c0aa1 100644 --- a/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/label_dict_acc_template.jinja2 @@ -1,8 +1,6 @@ (arbor-component (meta-data (version "0.1-dev")) (label-dict - {%- for loc in section_mechs.keys() %} {# could also use channels.keys() #} - {%- if regions[loc].defn is not none %} - {{ regions[loc].defn }} - {%- endif %} + {%- for loc, label in label_dict.items() %} + {{ label.defn }} {%- endfor %})) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index 00709962..b5941911 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -19,10 +19,10 @@ import pytest DEFAULT_ARBOR_REGION_ORDER = [ - ('apic', 4), + ('soma', 1), ('axon', 2), ('dend', 3), - ('soma', 1), + ('apic', 4), ('myelin', 5)] @@ -143,11 +143,13 @@ def test_create_acc_iexpr_generator(): location='apic', name='gIhbar_Ih', value=2.125, - inst_distribution='(0.62109375 - 0.546875*math.exp(' - '({distance})*0.421875))*{value}') + value_scaler=ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + name='soma_distance_scaler', + distribution='(0.62109375 - 0.546875*math.exp(' + '({distance})*0.421875))*{value}')) - iexpr = ephys.create_acc._arb_generate_iexpr( - range_expr, + iexpr = range_expr.value_scaler.acc_scale_iexpr( + value=range_expr.value, constant_formatter=lambda v: '%.9g' % v) assert iexpr == '(sub (scalar 0.62109375) ' \ @@ -293,9 +295,13 @@ def test_cell_model_output_and_read_acc_replace_axon(): assert len(cable_cell.cables('"soma"')) == 1 assert len(cable_cell.cables('"axon"')) == 1 assert len(arb_morph.branch_segments( - cable_cell.cables('"soma"')[0].branch)) == 4 + cable_cell.cables('"soma"')[0].branch)) == 6 assert len(arb_morph.branch_segments( - cable_cell.cables('"axon"')[0].branch)) == 4 + cable_cell.cables('"axon"')[0].branch)) == 6 + assert cable_cell.cables('"soma"')[0].prox == 0. + assert abs(cable_cell.cables('"soma"')[0].dist - + cable_cell.cables('"axon"')[0].prox) < 1e-6 + assert cable_cell.cables('"axon"')[0].dist == 1. run_short_sim(cable_cell) diff --git a/bluepyopt/tests/test_ephys/test_create_hoc.py b/bluepyopt/tests/test_ephys/test_create_hoc.py index 8a266a5a..2cad87e4 100644 --- a/bluepyopt/tests/test_ephys/test_create_hoc.py +++ b/bluepyopt/tests/test_ephys/test_create_hoc.py @@ -25,7 +25,7 @@ def test__generate_channels_by_location(): """ephys.create_hoc: Test _generate_channels_by_location""" mech = utils.make_mech() channels, point_channels = create_hoc._generate_channels_by_location( - [mech, ], DEFAULT_LOCATION_ORDER) + [mech, ], DEFAULT_LOCATION_ORDER, create_hoc._loc_desc) assert len(channels['apical']) == 1 assert len(channels['basal']) == 1 @@ -44,9 +44,11 @@ def test__generate_parameters(): global_params, section_params, range_params, \ pprocess_params, location_order = \ - create_hoc._generate_parameters(parameters) + create_hoc._generate_parameters(parameters, + DEFAULT_LOCATION_ORDER, + create_hoc._loc_desc) - assert global_params == {'NrnGlobalParameter': 65} + assert global_params == {'gSKv3_1bar_SKv3_1': 65} assert len(section_params[1]) == 2 assert len(section_params[4]) == 2 assert section_params[4][0] == 'somatic' diff --git a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc index 5a9c39ad..dd9c47e9 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc +++ b/bluepyopt/tests/test_ephys/testdata/acc/CCell/CCell_decor.acc @@ -1,8 +1,10 @@ (arbor-component (meta-data (version "0.1-dev")) (decor - (default (NrnGlobalParameter 65)) + (default (gSKv3_1bar_SKv3_1 65)) + (paint (region "soma") (gSKv3_1bar_SKv3_1 65)) + (paint (region "soma") (gSKv3_1bar_SKv3_1 65)) + (paint (region "dend") (density (mechanism "BBP::Ih"))) (paint (region "apic") (gSKv3_1bar_SKv3_1 65)) (paint (region "apic") (gSKv3_1bar_SKv3_1 65)) - (paint (region "soma") (gSKv3_1bar_SKv3_1 65)) - (paint (region "soma") (gSKv3_1bar_SKv3_1 65)))) \ No newline at end of file + (paint (region "apic") (density (mechanism "BBP::Ih"))))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 index 8500ab1a..52570158 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 @@ -20,13 +20,13 @@ {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} {%- if mech in section_scaled_mechs[loc] %} - (paint {{regions[loc].ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + (paint {{loc.ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) {%- else %} - (paint {{regions[loc].ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) + (paint {{loc.ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- endif %} {%- else %} {%- for param in params %} - (paint {{regions[loc].ref}} ({{ param.name }} {{ param.value }})) + (paint {{loc.ref}} ({{ param.name }} {{ param.value }})) {%- endfor %} {%- endif %} {%- endfor %} diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 index 1a1d4cbe..c439b12b 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/label_dict_acc_template.jinja2 @@ -2,8 +2,6 @@ (meta-data (version "0.1-dev")) (meta-data (info "test-label-dict")) (label-dict - {%- for loc in section_mechs.keys() %} {# could also use channels.keys() #} - {%- if regions[loc].defn is not none %} - {{ regions[loc].defn }} - {%- endif %} + {%- for loc, label in label_dict.items() %}{# this is a comment #} + {{ label.defn }} {%- endfor %})) diff --git a/examples/README.md b/examples/README.md index 61c5d9f7..8e7c7427 100644 --- a/examples/README.md +++ b/examples/README.md @@ -15,6 +15,8 @@ They can be used to learn the concepts behind the package, and also as a startin * tsodyksmarkramstp: optimizing parameters of the Tsodyks-Markram model of short-term synaptic plasticity +The expsyn, l5pc and simplecell examples contain an implementation for [Arbor](https://arbor-sim.org/) as an alternative simulator backend to NEURON. + # Documentation [Parallelization with ipyparallel](BluePyOpt-ipyparallel.md) diff --git a/examples/expsyn/ExpSyn.ipynb b/examples/expsyn/ExpSyn.ipynb index fbad4f5e..0a526595 100644 --- a/examples/expsyn/ExpSyn.ipynb +++ b/examples/expsyn/ExpSyn.ipynb @@ -308,7 +308,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xU1b3//9eazIQk5AJDQkIgXJKAgCCIiUUughDo7xQFi9gGFY43kIJY0apftdieUkr4okYrpeixPyvFI1AraD0qGFCiXCQgitwEgghIIAm5kAshmcz6/rGTkZCLk8vMniSf5+PBYyZ79p79zk6YT/Zae6+ltNYaIYQQohksZgcQQgjR+kkxEUII0WxSTIQQQjSbFBMhhBDNJsVECCFEs0kxEUII0WxWswOY6cyZM03aLjw8nNzc3BZO03ySq3EkV+NIrsbx1VzQvGzR0dF1LpczEyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJtPdMCvW7eOzZs3ExoaCsD06dMZNmwYAOvXr2fLli1YLBbuuecehg4dWmv77OxsXnjhBYqKioiNjWX+/PlYrT7xrQkhRLvgM5+4kyZNYvLkyTWWnT59mu3bt/P888+Tn5/PokWLePHFF7FYap5QrV69mkmTJjFy5EheeeUVtmzZwsSJE70ZXwgh2jWfbubKyMhgxIgR2Gw2unbtSlRUFMeOHauxjtaaAwcOMHz4cADGjh1LRkaGGXGFEKLd8pkzk40bN5Kenk5sbCwzZ84kODiYvLw8+vbt61rHbreTl5dXY7uioiKCgoLw8/Ord51qaWlppKWlAZCSkkJ4eHiTslqt1iZv60neyKW15uLGDVj79MX/qkE+k6spJFfjSK7G8dVc4JlsXismixYtoqCgoNby5ORkJk6cyLRp0wBYu3Ytq1atYu7cuS2eISkpiaSkJNfXTb1px1dvRvJGLv3tEZwvLwPA8uc1qMAgn8jVFJKrcSRX4/hqLvDMTYteKyYLFy50a73x48ezdOlSwDjLOH/+vOu1vLw87HZ7jfVDQkIoLS2lsrISPz+/OtcRLUfvu6wJ8eCXcN0I88IIIXyGT/SZ5Ofnu57v2rWLmJgYABISEti+fTsVFRVkZ2eTlZVFfHx8jW2VUlx99dXs3LkTgE8++YSEhATvhW9vzp0BewQEBqH37zE7jRDCR/hEn8nq1as5ceIESikiIiKYPXs2ADExMdxwww088sgjWCwW7rvvPteVXEuWLOGBBx7Abrdz55138sILL7BmzRr69OnDuHHjzPx22jSdew4io6FDIPrIfrPjCCF8hE8Uk/nz59f72tSpU5k6dWqt5U8++aTreWRkJEuWLPFINnGF89moaxIhPBL95U50aQkqqKPZqYQQJvOJZi7ROmhnJVwogE52VK84Y+HJTHNDCSF8ghQT4b6LpcZjx2DoZfRd6e+kmAghpJiIxigtMR6DglEhYWAPh++ONbyNEKJdkGIi3FdaDPBDH0nPePSp4yYGEkL4Cikmwn0lRjEhKBgA1b0nnMtCV5SbGEoI4QukmAj3XfyhmQuA7r1AO+Hs9+ZlEkL4BCkmwm3a1WdiNHOp6J7G8u+/MyuSEMJHSDERddKOitoLyy8Zjx0CjMfIaPDzgzMnvRdMCOGTpJiIWpwfvYNzfjL64N6aL1QXE/8OACirDbpGo6WYCNHuSTERtehP3gdHBc731tZ8ofwSKAVWm2uR6t5LzkyEEFJMRE36Qj5kZ4G/Pxw7jK66HBgwiol/B5RSPyyL7gm559CXyrwfVgjhM6SYiJpyzgGgxt1iXKn1zWWDOVYVk8up7j1Ba8g65c2UQggfI8VE1JRvTJijrhsB/v7ob77+4bVLl8DmX3P96F4A0m8iRDsnxUTUoPOrJiOLiIKY2Jpjb9VxZkLXKKMP5XspJkK0Z1JMRE35uUZ/SVAwqlc8nDqOdjoB0HU1c1n8oFsPOTMRop2TYiJqKi6C4FCjk71nHFwqM2ZXBKgor31mQtXNi2fkxkUh2jPTJ8dat24dmzdvJjQ0FIDp06czbNgw9u3bxxtvvIHD4cBqtTJjxgwGDRrk9vaiafTFUgisusO9Vxwa0CczUd16GM1cAUG1N+reCz7fir5Yigqs43UhRJtnejEBmDRpEpMnT66xLCQkhCeeeAK73c7JkydZvHgxL7/8stvbiya6WOIqJnSLMTrcT2bCT8YYxSQkrNYmKronGoz7TeL6ezWuEMI3+GwzV58+fbDb7YAxF3x5eTkVFXUM8SFa1sUSqDq7UH5+0KP3D53wDodx1/uVqsfokn4TIdotnzgz2bhxI+np6cTGxjJz5kyCg4NrvP75558TGxuLzVbHB5kb21dLS0sjLS0NgJSUFMLDw5uU12q1NnlbT2qJXLmXyrB1thNW9T4X+g6kbPtmunTpwnntxBYc7Hqtmrbbye4QQGBeNiF17L8tHy9PkFyNI7kazxPZvFJMFi1aREFBQa3lycnJTJw4kWnTpgGwdu1aVq1axdy5c13rnDp1ijfeeIOnn366zvf+se0vl5SURFJSkuvr3NzcJn0/4eHhTd7Wk1oiV2VJEU6Ln+t9nOFR6OIico9+g7O8HKejsu59dIuhNPMbLtXxWls+Xp4guRpHcjVec7JFR0fXudwrxWThwoVurTd+/HiWLl3q+vr8+fM8++yzzJs3j6ioqDq36dSpU73bi8bRWhvzvF/Wia669zL6Q77/DhwVYK37V0Z174n+eo93ggohfI7pfSb5+fmu57t27SImJgaAkpISUlJSuOOOO+jfv/5O3fq2F01Q6YDKSugQ+MOy7lV3uH9/AhyOGoM81tC9N1woQBcVejymEML3mN5nsnr1ak6cOIFSioiICGbPng3Ahx9+yNmzZ3nrrbd46623APjtb39LWFgYK1euZMKECcTFxdW7vWiC8qrpdy8bMkV1DAZ7OJw+AZU/cmYCxhlM/2s8HlUI4VtMLybz58+vc/ltt93GbbfdVudrc+bM+dHtRRO45iu5Yvyt7r2N2RQdDvCr58ykeoyu70+ipJgI0e6Y3swlfEhF1ZnJlUOm9OhljL3ldNZ7ZkJYZwgOge9PeDajEMInSTERP3A1c10xZEr33sZw9FB/M5dSEN1L7jURop2SYiJ+UGE0c6krmrlUVSc8UH8HfPV6339nXBUmhGhXpJi0U86Mz3Du+Ljmwuo+kyvnLInq/sPz+pq5wLjyq+wi5OW0TEghRKthege88D6dfQb9yv81nkdEouIHGi+U19NnYrVBxxAoKQK/+n9lXPeknP4OunT1QHIhhK+SM5N2SB/Y+8Pzz7f+8IKrA/6KMxP44eykoTMT1xhdMhy9EO2NFJP2KOsUBHZEXTcSvWd7zcmvoHYHPKAiq4pJ9Tp1UEEdwR5hnJkIIdoVKSbtkM7NNpqhBidAUSFknTZeaOjMJLpqZIHqaX3r072XnJkI0Q5JMWmP8nIgvCuqr9FXoo8eMJZX1L4Dvpoa+zPU6Imo8bc0+Naqey/IOo12OFo0shDCt0kxaY/yclD2CIiIgjA7HD1oLK8uAHVc/qs6BGCZ+SAqtFOt12ro3tMY4yv7TAuHFkL4Mikm7Yx2OIyRgavneY/thz5x1Hixupg0cMXWj1Hdexv7+V6auoRoT6SYtDcXS4zHIGMCMdUrHrLPoEtLjIEcoeErtn5MVHewWIwBH4UQ7YYUk/amtLqYGPO8q17xxtcnM40zE6WMYtBEyuYPXaPlzESIdkaKSXtTWgyAqjozoaqY6O+qiomf1Wj+agYV0wdOfdus9xBCtC5STNqbEqOY0LHqzCQk1LhM+LtjxsRYzWniqhbTB85no6sKlxCi7ZNi0s7o6j6TwOAfFvaKQ393rMHJrxpD9ehjPDl9otnvJYRoHUwfm2vdunVs3ryZ0NBQAKZPn86wYcPIzs5mwYIFrsnr+/btW+csisXFxaSmppKTk0NERAQLFiwgODi41nqiyhVnJgCqZxz6ix0QE1v/5FeNEWMUE33qW1S/Qc1/PyGEzzO9mABMmjSJyZMn11oeFRXFsmXLGtx2w4YNDB48mFtvvZUNGzawYcMG7rrrLk9Fbf3KSo3HwMuKSe++aEB/+03LNHOFdYaQMDh1vPnvJYRoFVp9M1dGRgZjxowBYMyYMWRkZJicyMfVNcx8rzjjMS+3WfeYVFNKQUwf9KkTzX4vIUTr4BNnJhs3biQ9PZ3Y2FhmzpzpaqbKzs7m8ccfJzAwkOTkZAYMGFBr28LCQjp37gxAp06dKCwsrHc/aWlppKWlAZCSkkJ4eHiT8lqt1iZv60nu5Cqy+lFqtRHR9bIh4sPDyYmIxJlzDr8OHVrkeyvqdzWl762jS6dOrfp4mUFyNY7kajxPZPNKMVm0aBEFBQW1licnJzNx4kSmTZsGwNq1a1m1ahVz586lc+fOrFixgpCQEI4fP86yZct47rnnCAoKqnc/SqkGL2tNSkoiKSnJ9XVubm6Tvp/w8PAmb+tJ7uRyFhaCzb/Wes7uvSHnHJVKtcj35uwSCY4Kcg98RcSQ61rt8TKD5GocydV4zclW3Y99Ja8Uk4ULF7q13vjx41m6dCkANpsNm83oDI6NjSUyMpKsrCzi4uJqbBMWFkZ+fj6dO3cmPz/f1ZEv6lFRXmvyK6jqhP/yc6ioaJHdqJhYox/m1HEYcl2LvKcQwneZ3meSn5/ver5r1y5iYoyhzi9cuICzap6Nc+fOkZWVRWRkZK3tExIS2LrVmOBp69atJCYmeiF1K1Z+qc4h5lXPWOPJ2dMts5+o7saAkXLzohDtgul9JqtXr+bEiRMopYiIiHBd/nvw4EHWrVuHn58fFouFWbNmufpSVq5cyYQJE4iLi+PWW28lNTWVLVu2uC4NFvXTFeV1DjFPz6ozPq1bZD/Kz8+Y20SKiRDtgunFZP78+XUuHz58OMOHD6/ztTlz5rieh4SE8Mwzz3gkW5tUXk8x6WRv8V2pmD7oLz9Ht1CBEkL4LtOLifCyivK6m7mUQv3iPugY0nL76tEHPvsIZ34u0LzxvoQQvk2KSXtTfqnGDYuXs0yY0qK7UjF90IDj26PQq1+LvrcQwreY3gEvvKyeMxOP6NEbqComQog2TYpJe1Nebsw54gUqqCNERFFx/Buv7E8IYR4pJu2NN89MMCbfqsiUYiJEWyfFpL2puAS22jctekyvOJzZWejiC97bpxDC66SYtDfl3j8zAeC7TK/tUwjhfW4VE4fDwcmTJzl8+DAnT57E4XB4OpfwAK210czlpT4TwDUisT4hnfBCtGUNXhr8xRdfsGnTJvbv34+fnx+BgYFcvHiRyspKBg0axIQJE7juOhl3qdWodBh3uHuxmKigYPy69aDypJyZCNGW1VtMFi5cSMeOHRk1ahSzZ8/Gbv/hDum8vDwOHjzIRx99xIYNG1i0aJFXwopmqqw0HltiAqxGsMb1p/LgV17dpxDCu+r9VJk1axY9e/as8zW73c6oUaMYNWoUJ0+e9Fg40XT60iWcr6WiesVj+Q9jiH+qmyf9/LyaxRbXn0ufpaGLClEhYV7dtxDCO+rtM+nZsydffPGFa+TehtYTvkdvT4M929Fvr0JnHjYWVlYXkxaY570RbPH9jSffHfPqfoUQ3tNge8df//pXlFKMGjWKsWPHSuFoRfThfcY87JfK0NvSUHH9TTszscZeZWQ6cQw1SPrYhGiLGiwmL7/8Mnv37iU9PZ2nnnqK6OhobrzxRkaPHk1YmDRX+LQTR1EDhoDFD717G/qOOT+cmXi5z8QS1BEiu6Pl8mAh2qwGP1UsFgvXXXcd1113HaWlpWzfvp1PP/2UN998k8GDBzN27Nh6h4kX5tHllyAvF7r1QHWLQe/8GE4cheCqEYH9vD++p+oVjz56wOv7FUJ4h9ufKkFBQa451I8cOcKLL75Iamoqa9eubVaAdevWsXnzZtd0u9OnT2fYsGF8+umnvPvuu671Tp48ydKlS+ndu7db27dreVVzO9u7wlWDQSn0oa9Q1xqFX3n5zAQw7jfZtRV9IR8V2tn7+xdCeJTbnyoVFRXs2rWL9PR0vv76a6666ipuv/32FgkxadIkJk+eXGPZ6NGjGT16NGAUkmXLltUqJA1t364VFQKgwjqjgkMhJhZ9+CvUNVVTGnu5zwRA9Y5Hg3En/OAEr+9fCOFZP1pMDh48SHp6Ojt37iQsLIwbb7yR+++/n4iICG/kA+Czzz5jxIgRXttfq1dUYDxWXYarBlyDTvs3lBYby718NRcAPWONM6Rvj6KkmAjR5jRYTObNm0dpaSk33HADTz75JFdddZVHQmzcuJH09HRiY2OZOXOma673ajt27OCxxx5r8vbtjb5gnJkQWlVM+l+D3rgefWS/sdyEZi4VEATdYmRYFSHaqAY/Ve68804SExOx2Zr3l+yiRYsoKCiotTw5OZmJEycybZpxU93atWtZtWoVc+fOda1z9OhR/P39670s+ce2v1xaWhppaWkApKSkEB4e3qTvx2q1NnlbT6rOVex0UAKE94pF2Ww4E0eSoxTW44epAMLsdvy9mL86V+GAa7i061O6dOmCUuZP4+vrP0dfI7kax1dzgWeyNVhMLm9aysnJ4bvvvqOsrKzGOqNGjfrRnSxcuNCtMOPHj2fp0qU1lm3bto2RI0fWu02nTp0a3P5y1RcQVMvNzXUr15XCw8ObvK0nVedynj0DQR05X1j4w4vde1NRNaRJYXEJyov5Xbmie6KLCsk9tB/VtZvX9v9juXyN5GocydV4zckWHR1d53K32jvWr1/Pv/71L3r06IH/ZcOXV9/Q2Bz5+fl07mxc3bNr1y5iYmJcrzmdTnbs2MEf/vCHJm3fbl0srTXPu4ofgD79rfGFGVdzAarPVWhAf3vEJ4qJEKLluPWp8t5775GSkkKPHj1aPMDq1as5ceIESikiIiKYPXu267VDhw4RHh5OZGRkjW1WrlzJhAkTiIuLa3D79kqXlUJgUM2F8QPgk/eN5ybcZwJAdE/w7wDfHoGfjDEngxDCI9z6VAkODvbY1Vvz58+v97Wrr76axYsX11o+Z84ct7Zvty6WQkDNYqLiBxqX5oJpxUT5+UHveLTMCS9Em+PW5Fh33303L7/8MpmZmeTm5tb4J3xQ2cVaZyaqy2V/DJjUzAWg+vSDU8fRFeWmZRBCtDy3PlUcDgf79u1j27ZttV5r7h3wwgMuljbcJ2HCTYvVVNwA9Mb1xgjC8QNNyyGEaFluFZNXX32V6dOnM3LkyBod8MJH1dVnAqgJU9AfvQMdAk0IVSXOGI5eZx5GSTERos1wq5g4nU5uuukmLBa3WsWE2couQoeAWovV7feiJv4c1dG8mzpVaCfo2g197BD81LQYQogW5lZ1uOWWW9iwYQNa6x9fWZhKaw0V5WDrUOs1pRSqk72OrbxLxQ2AzMPy+yREG+LWmckHH3xAQUEB69evrzVUyV//+lePBBNNVOkArcGXmyPj+8OOLZCdBZF13wAlhGhd3ComcvltK1JedZWUzXeLiYozLlPWmYdQUkyEaBPcKiYDB0pHaavh8P1iQrceENQRjh2CEePNTiOEaAH19pm8//77VFRUNLhxRUUF77//fouHEs1QfWbiw81cymKB2P7ozMNmRxFCtJB6z0wKCgp46KGHuPbaaxk4cCDR0dEEBARQVlbGmTNnOHjwIHv37mXMGBkWw6dUtIIzE0DF9Ufv34MuKTb16jIhRMuot5jccccd3HzzzXzyySds2bKFkydPUlJSQnBwMD179uTaa69l+vTphISEeDOv+DFVxUT5ejGJH2AM73L8Gxh8ndlxhBDN1GCfSWhoKJMnT5YpcVuTVtABD0CffmCxoI8dQkkxEaLVk7sQ25oK3+8zAVAdAoy56Y8dMDuKEKIFSDFpa1pJnwmA6nc1HD8igz4K0QZIMWlrWlMxuWowOCrg+BGzowghmkmKSRujW8GlwS59B4JS6CP7zU4ihGgmtye2KCoqYu/eveTn5zNlyhTy8vLQWtOlS5cWCfLBBx+wceNGLBYLw4YN46677gKMKYO3bNmCxWLhnnvuYejQobW2zc7O5oUXXqCoqIjY2Fjmz5+P1cQ5O0xVfWZi9f1iooKCoUdvKSZCtAFunZkcPHiQhx9+mE8//ZR//etfAJw9e5b//u//bpEQ+/fvZ/fu3Sxbtoznn3+eW265BYDTp0+zfft2nn/+eZ5++mn+9re/4XQ6a22/evVqJk2axEsvvUTHjh3ZsmVLi+RqlVpJB3w11W8QHD+MdjR8g6wQwre5VUz+/ve/8/DDD/P000/jVzWxUnx8PJmZmS0SYtOmTUyZMgWbzQZAWFgYABkZGYwYMQKbzUbXrl2Jiori2LFjNbbVWnPgwAGGDx8OwNixY8nIyGiRXK1Sa7k0uIrqN8jIfOKo2VGEEM3gVltQTk4OgwcPrrmh1UplZWWLhMjKyuLw4cOsWbMGm83GjBkziI+PJy8vj759+7rWs9vt5OXl1di2qKiIoKAgV5Gra51qaWlppKWlAZCSkkJ4eHiT8lqt1iZv60lWq5UgfxslQHhUN2POdR/Q0PFyDh9Nzl+XEHT6WzoOv9FncplJcjWO5Go8T2Rzq5j06NGDL7/8skZ/xddff03Pnj3d3tGiRYsoKCiotTw5ORmn00lxcTGLFy8mMzOT1NRUli9f7vZ7uyspKYmkpCTX102dwz48PLzJ23pSeHg4pRcugLJwPj/f7DguP3q8uvei+IudXBw7yXuh8O2fo+Ryn+RqvOZki46ue6Rvt4rJjBkzWLp0Kddeey3l5eW88sor7Nmzh8cee8ztAAsXLqz3tU2bNnH99dejlCI+Ph6LxUJRURF2u53z58+71svLy8Nurzm5U0hICKWlpVRWVuLn51fnOu1KpcPUOd6bQg0Ygt76Ibqi3OeHgRFC1M2tPpN+/fqxbNkyYmJiuOmmm+jatSt/+tOfiI+Pb5EQiYmJHDhg3Al95swZHA4HISEhJCQksH37dioqKsjOziYrK6vWPpVSXH311ezcuROATz75hISEhBbJ1SpVVoJf67qSTfUfYlw4cOyQ2VGEEE3k9qeO3W5nypQpHgkxbtw4VqxYwaOPPorVamXevHkopYiJieGGG27gkUcewWKxcN9997nmoV+yZAkPPPAAdrudO++8kxdeeIE1a9bQp08fxo0b55GcrUJlBbS2y6KvutoYp+vQV6gBQ8xOI4RoArc+dV566SWUUrU3tlrp0qULiYmJ9O7du+khrFYeeuihOl+bOnUqU6dOrbX8ySefdD2PjIxkyZIlTd5/m1JZ2fqauQKCoE8/9OF9ZkcRQjSRW81cQUFBZGRkoLXGbrejtWb37t1YLBa+//57fvvb37J161ZPZxXuqHS0umYuMPpNOHEMXVpsdhQhRBO49amTlZXFk08+Sf/+/V3Ljhw5wtq1a1m4cCFffvklf//732WiLF/QCs9MoKoT/r218M1+uHa42XGEEI3k1pnJ0aNHa9zvARAbG+u6gXDIkCE1rroSJnK0zjMTYq8C/w7oQ1+anUQI0QRuFZPevXvz5ptvUl51d3V5eTlr16519ZNkZ2cTHCxTr/oCXelofR3wgLLa4KrB6AN7zY4ihGgCtz515s2bx5///Gf+8z//k+DgYIqLi4mLi3N1mhcXF3P//fd7NKhwUytt5gJQVw9Df70bnX0G1bXuG6OEEL7JrWLStWtX/vjHP5Kbm0t+fj6dO3eucSt+XFycxwKKRmqlHfAAavAw9BrQB/ZKMRGilWnUfCbh4eHEx8djt9txOp11juArTNaaz0y6RkNEFHr/F2ZHEUI0klt/wubl5fG3v/2NQ4cOUVJSUuO1tWvXeiSYaKLW2gFfRQ0aht62GV1RgaoaRVoI4fvcOjN55ZVXsFqtPPPMMwQEBLB06VISEhKYNWuWp/OJxmrFzVwA6urroPwSHDtodhQhRCO4VUyOHDnCr371K3r37o1Sit69e/OrX/2K9957z9P5RGO14mYuAK4aBFYrev8es5MIIRrBrWJisVhc84V07NiRCxcu0KFDh3rnDREmau1nJgGB0G8Qel87nuBMiFbIrWISHx/P3r3G9f9DhgwhNTWVZ599Vq7i8kWVDp+ZFKup1DXXw9nv0We/NzuKEMJNbhWT+fPnM3DgQADuvvtuBg0aRExMDL/+9a89Gk78OOenm3C+/hL6QtVkWJWVrfKmxcupIYkA6H27TE4ihHCXW8Vk3759rjvc/f39ue2227jrrrs4fPiwR8OJhunvT6JXLUd/9hHOV55Fa93qm7kAVHgkdO+F/kqauoRoLdwqJitXrqxz+csvv9yiYUTjVP/lrib9Ar75mvKv97T+Dvgqasj1cOwgukRGERaiNWiwmJw7d45z587hdDrJzs52fX3u3Dn27duHv79MsWom/c3X0C0GNemX0KkLpW+93ibOTADUNYngdMpVXUK0Eg1+6lw+YdX8+fNrvNapUyduv/32FgnxwQcfsHHjRiwWC8OGDeOuu+5i3759vPHGGzgcDqxWKzNmzGDQoEG1tl23bh2bN28mNDQUgOnTpzNs2LAWyeXzTn2LGpyAstlQY/4/yt95AyyWVt9nAkCffhASBnt3wk9kagMhfF2DnzrVd7f/7ne/47/+6788EmD//v3s3r2bZcuWYbPZKCwsBCAkJIQnnngCu93OyZMnWbx4cb3NapMmTWLy5MkeyeerdPkluFAAEVEAqBHj0O/+DzidbaOZy2JBXTsc/flWdPkllH8HsyMJIRrgVp+JpwoJwKZNm5gyZQq2qqEzwsLCAOjTpw92ux2AmJgYysvLqaio8FiOVud8tvHYpSsAyh6B/zUJxrI20MwFoIaNgEtlcFCGpRfC19X7qfPMM8/UOe/7lZpbaLKysjh8+DBr1qzBZrMxY8YM4uPja6zz+eefExsb6yo4V9q4cSPp6enExsYyc+bMeudWSUtLIy0tDYCUlJQaIx83htVqbfK2LeXSd0cpADrF9cO/Kkv5hMmUf5VBUEgIwSbnu1xTj5ceeRM5rz6L/4EvCEu62WdyeZrkahzJ1XieyFZvMRk3blyL7WTRokUUFBTUWp6cnIzT6aS4uJjFixeTmZlJamoqy3aISbQAACAASURBVJcvdxWyU6dO8cYbb/D000/X+d4TJ05k2rRpgNEst2rVKubOnVvnuklJSSQlJbm+zs3NbdL3Ex4e3uRtW4rzW2OWy0I/f1RVli4Jo6BHHy527kqZyfku16zjNTiRsl2fUn42y5hAy1dyeZDkahzJ1XjNyRYdXff0EPUWk7FjxzZpR3VZuHBhva9t2rSJ66+/HqUU8fHxWCwWioqKCA0N5fz58zz77LPMmzePqKioOrfv1KmT6/n48eNZunRpi+X2acVG3xKhYa5FqkMH/H73okmBPENdNwK9Ywsc/hoGtZMLK4RohdxuXP/4449JT08nLy8Pu93OjTfeyE033dTsAImJiRw4cIBBgwZx5swZHA4HISEhlJSUkJKSwh133EH//v3r3b56si6AXbt2ERMT0+xMrUJJMXQIbPG/1n3OwKEQEIje/RlKiokQPsutYvL222+zdetWbrnlFtfp0bvvvkt+fj5Tp05tVoBx48axYsUKHn30UaxWK/PmzUMpxYcffsjZs2d56623eOuttwD47W9/S1hYGCtXrmTChAnExcWxevVqTpw4gVKKiIgIZs+e3aw8rUZJEQSHmJ3C45TN37iq64sd6DvnoGxyb5MQvsitYrJ582Z+//vfExER4Vo2ZMgQfve73zW7mFit1hr3s1S77bbbuO222+rcZs6cOa7nV97/0l7okmLoWPeFBm2N+slY9I6P4evdMGyE2XGEEHVw69LgS5cuuW4KrBYSEkJ5eblHQgk3lBRBx7Z/ZgJA/2sgtBPOz7eanUQIUQ+3isnQoUP585//zJkzZygvL+f7779n+fLlDBkyxNP5RH1KilFB7eTMxM8PlTga9mWgS2WsLiF8kVvF5N577yUwMJDf/OY3zJgxg8cff5yAgADuvfdeT+cT9WknfSbV1E/GgsOB3rPd7ChCiDo02GfidDqxWCwEBQXx4IMPMnfuXIqKiggJCcFicasOCU8pLYagjman8J7e8dA1Gv35Vhg90ew0QogrNFgR5syZw+rVqzl58qSxssVCWFiYFBKTaUeFMdR8h0Czo3iNUgr1kzFwZD86/7zZcYQQV2iwKsyaNYvs7GyefPJJnnjiCd5//30uXLjgrWyiPpcuGY8d2tfgh2r4GNAavSvd7ChCiCs02MyVmJhIYmIiJSUlbN++nfT0dFavXs2QIUMYM2YMCQkJWNvCcOetzaWLxqN/gLk5vEx1jYY+/dDbN6Mn3urW2HFCCO9wq72qY8eOTJgwgUWLFpGamkpcXByvv/46DzzwgKfzibq4zkzaVzEBUKMnwpmTkHnI7ChCiMs0qvPD4XCQmZnJ0aNHKSwspGfPnp7KJRpSXgaAao/FJHG0MbxK+kazowghLuNWG9Xhw4fZunUrO3fuJDQ0lNGjR3P//ffXuCNeeNElo5i0yzOTgEDU8LHobZvRv5yFaiejAAjh6xosJuvWrePTTz+luLiY4cOH88QTTzQ46KLwkupmrnY6+6Aa/VP0Jx+gd36MGn+L2XGEEPxIMTl27BjJyckkJibi7y8D7PmM8vZ7ZgKgesZC777orR+ix90sHfFC+IAG+0yeeuopRo4cKYXEx+h23MxVTd34U8g6JR3xQvgIufuwNWqn95lcztURv1U64oXwBVJMWqPqZq52dp/J5VRAIOqGm9C7P0UX5JkdR4h2T4pJa1TdzNVOO+CrqaTJUFmJ/vh/zY4iRLvnE7evf/DBB2zcuBGLxcKwYcO46667yM7OZsGCBa7J6/v27VvnLIrFxcWkpqaSk5NDREQECxYsIDi4jV8uWn4JbP6odj5GmuoaDdcON67s+o9pqID2M1aZEL7G9GKyf/9+du/ezbJly7DZbBQWFrpei4qKYtmyZQ1uv2HDBgYPHsytt97Khg0b2LBhA3fddZenY5vL4YC2Pve7mywTf47zix3obZtR4282O44Q7Zbpf9pu2rSJKVOmYLMZH45hYWGN2j4jI4MxY8YAMGbMGDIyMlo84+X0F9spfvNVj+7jR1VUgIyJBoCK6w9x/dFp76CdlWbHEaLdMv0TKSsri8OHD7NmzRpsNhszZswgPj4egOzsbB5//HECAwNJTk5mwIABtbYvLCykc+fOAHTq1KnGmc2V0tLSSEtLAyAlJYXw8PBG573w3TFK0zfRdfr9jd62pRRa/Sj371Arv9VqbdL35GmezlV220wK/+9ThBw7QMCIcT6Tq6kkV+NIrsbzRDavFJNFixZRUFBQa3lycjJOp5Pi4mIWL15MZmYmqampLF++nM6dO7NixQpCQkI4fvw4y5Yt47nnniMoKKje/SilGryBLSkpiaSkJNfXubm5jf5enJVO9KWyJm3bUpzFxWiLpVaG8PBwU3PVx9O5dNwAiIii8K1VFPUd7PZNjO31eDWV5GocX80FzctW3Y99Ja8Uk4ULF9b72qZNm7j++utRShEfH4/FYqGoqIjQ0FBX01dsbCyRkZFkZWURFxdXY/uwsDDy8/Pp3Lkz+fn5hIaGevR7wd8fKsrRTqdpHeDaUSF9JpdRFj/UT6eiV6+AA1/AoOvMjiREu2N6n0liYiIHDhwA4MyZMzgcDkJCQrhw4QJOpxOAc+fOkZWVRWRkZK3tExIS2Lp1KwBbt24lMTHRs4GrL8etKPfsfhriqACbFJPLqZHjoUtXnBveQGttdhwh2h3T+0zGjRvHihUrePTRR7FarcybNw+lFAcPHmTdunX4+flhsViYNWuW65LflStXMmHCBOLi4rj11ltJTU1ly5YtrkuDPcpWVUzKy80bzsRRAX6m/+h8irLaUDf/Ev36S/DV5zB0uNmRhGhXTP9EslqtPPTQQ7WWDx8+nOHD6/5AmDNnjut5SEgIzzzzjMfy1VI9Tln5Je/t80oOh5yZ1EHdMA79wVs43/kfLNdc3+7vwxHCm+R/W2O5mrnMLCbSZ1IX5eeHuiUZTp+AL7abHUeIdkWKSSOp6mJi6pmJFJP6qOtvhG4xON99U+47EcKLpJg0li8UkwopJvVRFj8sU+6ErFPo9E1mxxGi3ZBi0li26j4Tc6/mUnIHfP2G3QD9BqHfWY0uKTY7jRDtghSTxurgA2cmlTI2V0OUUlimz4KSEvS7/2N2HCHaBSkmjVV1ZqLNvM9Emrl+lOrRBzXmp+hP3kd//53ZcYRo86SYNJYv9JnIpcFuUVPuhIAgnGtflRsZhfAwKSaN5RP3mciowe5QwaGoKXfAoa/QO7aYHUeINk2KSWP5X3YHvAm01lV3wMuZiTvU2P+AvgPRb76Czjlrdhwh2iwpJo1lM7mZy+kErcEmZybuUBY/LPcuAKVw/v+pcu+JEB4ixaSRlJ+f0cRk1h3wjgrjUTrg3abCI1F3PADHDqE/+JfZcYRok6SYNIHqEAhlZebsXIpJk6ifjEUljkb/+030iaNmxxGizZFi0gQqKAjKSs3ZucNhPEoHfKMopVB3/gpCO+N89Xn0JZP+GBCijZJi0gSWoGD0xYvm7LyyqpjIEPSNpjoGY7nn13Due/Rbr5kdR4g2RYpJE6jAjnCxxJydV1Z1IPv5mbP/Vk4NGIKaeCv6kw+4tHub2XGEaDOkmDSB6tgRysw6M6kqJhYpJk2lbp0B3XtxYfmf0PnnzY4jRJvgE20lH3zwARs3bsRisTBs2DDuuusuPv30U959913XOidPnmTp0qX07t27xrbr1q1j8+bNrrnfp0+fzrBhwzya1zgzMWmIjupLW6WZq8mUzYZl1mPolMfRL/4ey2NLUB2DzY4lRKtm+ifS/v372b17N8uWLcNms1FYWAjA6NGjGT16NGAUkmXLltUqJNUmTZrE5MmTvRUZS1Cwec1cVcVE+clJZXOo7j0JezKF/EWP4Fy+CMvDf0BVD+IphGg00z+RNm3axJQpU7BVjTUVFhZWa53PPvuMESNGeDtavVSQNHO1Bf7XJGC5/1HIPIzz5aXo6ivlhBCNZvqZSVZWFocPH2bNmjXYbDZmzJhBfHx8jXV27NjBY489Vu97bNy4kfT0dGJjY5k5cybBwXU3WaSlpZGWlgZASkoK4eHhTcp8MTgEKsrpEhaG8vKAixV558gDQjvb6XBFfqvV2uTvyZN8OVfET6dQqp0UvbwM/7X/Tej8p02fO96Xj5fkcp+v5gLPZPNKMVm0aBEFBQW1licnJ+N0OikuLmbx4sVkZmaSmprK8uXLUUoBcPToUfz9/enZs2ed7z1x4kSmTZsGwNq1a1m1ahVz586tc92kpCSSkpJcX+fm5jbp+wkKCDS2P30KFRLapPdoKp1ndBhfKClGXZE/PDy8yd+TJ/l8roTRqLPfU/bO/3DJPwDL7ff4Ri4fI7kax1dzQfOyRUdH17ncK8Vk4cKF9b62adMmrr/+epRSxMfHY7FYKCoqcnWob9u2jZEjR9a7fadOnVzPx48fz9KlS1sueD1UYEfjycUS8HIxkWYuz1CTfgkXCtGb1uMMDcPy06lmRxKiVTG9zyQxMZEDBw4AcObMGRwOByEhIQA4nU527NjRYDHJz893Pd+1axcxMTGeDQxYqguIGVPCVsrVXJ6glEIlzzKGXHnr7zj/d53MgSJEI5j+iTRu3DhWrFjBo48+itVqZd68ea4mrkOHDhEeHk5kZGSNbVauXMmECROIi4tj9erVnDhxAqUUERERzJ492+OZLWGdjSfFhR7fVy3Vlwab3K7fFimLBe59GJQFvWE1nP0eZj7o9X4xIVoj04uJ1WrloYceqvO1q6++msWLF9daPmfOHNfz+fPneyxbfVSo0bSmLxSivL3zSqfxKHfAe4Sy2uD+R6BbD/Q7b6BzsrDMfcr1MxdC1E3+vG0CU89MZGwuj1NKYbn5l6jZj8PJ4zj/9BuZR16IHyHFpAlUQCDY/OGCmc1ccmbiaZbEUVgeWwIOB86Ux9Ff7zY7khA+S4pJEyilICQMimpf7uxp2tUBLz86b1B9+mJ56lmIiML50h9x/ut1tFmzbArhw+QTqalCwtBFZjRzydVc3qbs4VieWIoaOR794b9w/uFh9NGDZscSwqdIMWmqTnYoyPP+fqWZyxSqQwCW/5yPZcEfwFGBc9mTOP/nZbRZw+oI4WOkmDSRskfA+Wzv79gpzVxmUgOHYvn9S6hxN6M/eR/n7+ejD+w1O5YQppNPpKYK7woXS9GlXr5xUZq5TKcCArEkz8Ly+BKw2XC+8Dsq//wH9Lcyt7xov6SYNJHqUnUjZa6Xz05kOBWfoeIHYnnmRdStd8Hxb3D+6VEqX/wv9PFvzI4mhNdJMWmq8K7GY+457+5Xmrl8irL5Y5n0Cywp/436+Qw4cQTnkseofPH36MzDZscTwmukraSpIo2RM3XWKRQ3eG+/rjvg5UfnS1RAEOpnt6PHTUJ//IExYGTK49CnH2pkEipxtDEPjhBtlHwiNZEKCIKIKDj1rXd3XH0HvDRz+SQVEIT6j9vQN/0M/dlHxr/VK9DrXkUNG4n6yRjoP9gYtkWINkSKSXP06I0+fcK7+5SBHlsFFRCISpqMHn8LnDiG3vYRelc6eufHENgRNSQRNWwEDByK6hBgdlwhmk2KSTOo3n3Re3eiLxR4byDASif4+blGVha+TSkFffqi+vRF//J+OPgVeu929Je70Ds/AasV4gagBgxBDRwKveLMjixEk0gxaQY1YCh6/T/Qh74ymi+8odIhTVytlLL5w5BE1JBEY1icI/vRB75AH/oKvWG1Mex9QCD5/a7G2SMWFXsVxPZDhYSZHV2IHyXFpDl6xRrDquz+DLxVTJyVUkzaAOXnBwOGoAYMAUAXFaIPfQVHD+I8mYn+8C20s+piizA79OiF6tEbuvdGde1m9NeFhMkZqvAZUkyaQVn8UKMmoD98G51zFhUR5fmdOp0yl0kbpELCUNffCNffSJfwcHK+P230tXx3FE6fQJ8+gd78b3A4cM3/2CHQKCpdo4zfvYhuxmMnO4R1hqBgKTbCa3yimKSmpnLmzBkASktLCQoKYtmyZQCsX7+eLVu2YLFYuOeeexg6dGit7bOzs3nhhRcoKioiNjaW+fPnY7V651tTY3+G3vIezr//GcuCP6A8vd/KSikm7YDqEABXDUJdNci1TDsckJMF2WfROVmQcxadcxbOnETvy6hZaMC4fDysE4R0grDOqLDOENoJgkOMQhPUEQKDoWPVY1BHCAiUAiSaxCeKyYIFC1zPV61aRVBQEACnT59m+/btPP/88+Tn57No0SJefPFFLFdcybR69WomTZrEyJEjeeWVV9iyZQsTJ070SnZlD0fd8QD6tRdxPvsUlv+YBrH9UdXzxLc06TNpt5TVCt1ioFtMrRk+tbMS8vMg9yy6IM+YHqGwAArz0RfyIT8X/d0xYw4ebTSf1TnDvbKAfwfo0MF4rP7XIYD84GAqUSj/gMteDzAerVbjjxy/mo/Kaq21rN5Hi8XYv8UCSlU9Vz88r2uZXNXoM3yimFTTWrNjxw6eeeYZADIyMhgxYgQ2m42uXbsSFRXFsWPH6NevX41tDhw4wK9//WsAxo4dyz//+U+vFRMAy4jxOP2s6LWv4lz+R2OhzR8Cg4zH6l/46v8IVP1naIqCPAgMbJHcou1QFj/oEgFdIhqcSlo7K+FiKZSWVP0rhtISY4y56mXll6r+lRlzt1T9cxbmQ0lJjWWUXwJdZ1ky9tfy32ot56DhwoPCOChVR6b6/57rQF2x3LX48uU/sk0dy3MsFpxO5xXvU8f7uzv5t7ufGW6sVj7/aejaw733c5NPFZNDhw4RFhZGt27dAMjLy6Nv376u1+12O3l5NYd9LyoqIigoCL+qpp+61qmWlpZGWloaACkpKYSHhzcpp9Vqrb3tpNvQE2+h4tA+Kr49irMwD11SbPzH09r1T2snOKu+bmJB8b96KEF1ZK8zlw+QXI3jy7kcDkeNZVprKC9HOyqg0mE0xTkqjKvVHA50peOH5a7X61mGNoqdUxtnT1qD02nsw1n1tXa6nmunE7QTCwpnpeOHdV3/xy5br7qsaVfwmo/1vY6uta6rQP7IeyjFDxdR1Fr3yv00TLu5nrvl2xoc2uK/Y14rJosWLaKgoPbMhMnJySQmJgKwbds2Ro4c6bEMSUlJJCUlub7Ozc1t0vuEh4fXv210b+OfBzmA0jr232AuE0muxmn1uSw245+XbvJv9cfLBJZmZIuOjq5zudeKycKFCxt8vbKykl27dpGSkuJaZrfbOX/+vOvrvLw87HZ7je1CQkIoLS2lsrISPz+/OtcRQgjhWT7Te/X1118THR1Nly5dXMsSEhLYvn07FRUVZGdnk5WVRXx8fI3tlFJcffXV7Ny5E4BPPvmEhIQEr2YXQoj2zmeKSV1NXDExMdxwww088sgjLF68mPvuu891JdeSJUtcfSN33nkn7733HvPnz6e4uJhx48Z5Pb8QQrRnSrvfs9PmVN/b0li+2hYquRpHcjWO5GocX80FzctWX5+Jz5yZCCGEaL2kmAghhGg2KSZCCCGaTYqJEEKIZmvXHfBCCCFahpyZNMH/+T//x+wIdZJcjSO5GkdyNY6v5gLPZJNiIoQQotmkmAghhGg2v9///ve/NztEaxQbG2t2hDpJrsaRXI0juRrHV3NBy2eTDnghhBDNJs1cQgghmk2KiRBCiGbzqZkWW4Mvv/yS1157DafTyfjx47n11ltNyZGbm8tf/vIXCgoKUEqRlJTEz372M9atW8fmzZsJDTXmoJ8+fTrDhg3zarZ58+YREBCAxWLBz8+PlJQUiouLSU1NJScnh4iICBYsWEBwcLDXMp05c4bU1FTX19nZ2fziF7+gpKTE68drxYoVfPHFF4SFhfHcc88B1Ht8tNa89tpr7N27lw4dOjB37lyPtcPXlesf//gHe/bswWq1EhkZydy5c+nYsSPZ2dksWLDANehf3759mT17ttdyNfR7vn79erZs2YLFYuGee+5h6NChXsuVmprqGkC2tLSUoKAgli1b5tXjVd9ng8d/x7RwW2VlpX7wwQf12bNndUVFhf7Nb36jT506ZUqWvLw8nZmZqbXWurS0VD/00EP61KlTeu3atfqdd94xJVO1uXPn6sLCwhrL/vGPf+j169drrbVev369/sc//mFGNK218XO8//77dXZ2tinH68CBAzozM1M/8sgjrmX1HZ89e/boxYsXa6fTqb/55hv95JNPejXXl19+qR0Ohytjda5z587VWM+T6spV38/t1KlT+je/+Y0uLy/X586d0w8++KCurKz0Wq7Lvf766/qf//yn1tq7x6u+zwZP/45JM1cjHDt2jKioKCIjI7FarYwYMYKMjAxTsnTu3Nn110NgYCDdu3d3ze/iizIyMhgzZgwAY8aMMe24gTERW1RUFBEREabsf+DAgbXOyuo7Prt37+bGG29EKUW/fv0oKSkhPz/fa7mGDBmCn58fAP369TPld6yuXPXJyMhgxIgR2Gw2unbtSlRUFMeOHfN6Lq01O3bs8Og05PWp77PB079j0szVCHl5eTVmguzSpQtHjx41MZEhOzubb7/9lvj4eA4fPszGjRtJT08nNjaWmTNnerU5qdrixYsBmDBhAklJSRQWFtK5c2cAOnXqRGFhodczVbtyIjZfOF71HZ+8vDzCw8Nd63Xp0oW8vDzXut60ZcsWRowY4fo6Ozubxx9/nMDAQJKTkxkwYIBX89T1c8vLy6Nv376udex2uykF8NChQ4SFhdGtWzfXMjOO1+WfDZ7+HZNi0sqVlZXx3HPPcffddxMUFMTEiROZNm0aAGvXrmXVqlXMnTvXq5kWLVqE3W6nsLCQP/7xj7Um01FKoZTyaqZqDoeDPXv2cMcddwD4xPG6kpnHpz5vv/02fn5+jB49GjD++l2xYgUhISEcP36cZcuW8dxzzxEUFOSVPL74c7vclX+wmHG8rvxsuJwnfsekmasR7HY758+fd319/vx57Ha7aXkcDgfPPfcco0eP5ic/+Qlg/MVhsViwWCyMHz+ezMxMr+eqPiZhYWEkJiZy7NgxwsLCXKfO+fn5ro5Tb9u7dy99+vShU6dOgG8cL6De42O322vMiGfG79wnn3zCnj17eOihh1wfQDabjZCQEMC4+S0yMpKsrCyvZarv53bl/9G8vDyvH6/Kykp27dpV4yzO28errs8GT/+OSTFphLi4OLKyssjOzsbhcLB9+3YSEhJMyaK1ZuXKlXTv3p2bb77Ztfzyts5du3YRExPj1VxlZWVcvHjR9Xzfvn307NmThIQEtm7dCsDWrVtJTEz0aq5qV/7FaPbxqlbf8UlISCA9PR2tNUeOHCEoKMirTVxffvkl77zzDk888QQdOnRwLb9w4QJOpxOAc+fOkZWVRWRkpNdy1fdzS0hIYPv27VRUVJCdnU1WVhbx8fFeywVGn1x0dHSNJnFvHq/6Phs8/Tsmd8A30hdffMHrr7+O0+nkpptuYurUqabkOHz4MM888ww9e/Z0/bU4ffp0tm3bxokTJ1BKERERwezZs7364XPu3DmeffZZwPgLbdSoUUydOpWioiJSU1PJzc015dJgMIrb3LlzWb58ueu0/6WXXvL68XrhhRc4ePAgRUVFhIWF8Ytf/ILExMQ6j4/Wmr/97W989dVX+Pv7M3fuXOLi4ryWa/369TgcDtfPqvqS1p07d7Ju3Tr8/PywWCzcfvvtHvvDqq5cBw4cqPfn9vbbb/Pxxx9jsVi4++67ufbaa72Wa9y4cfzlL3+hb9++TJw40bWuN49XfZ8Nffv29ejvmBQTIYQQzSbNXEIIIZpNiokQQohmk2IihBCi2aSYCCGEaDYpJkIIIZpNiokQTfT222+zcuVKr+1v4cKFfPvtty36nrt3764xmrIQTSXDqQhRjxkzZriel5eXY7VasViMv79mz57t1XuMdu/eTUBAAH369GnR901ISODNN9/ku+++o1evXi363qJ9kftMhHDDvHnzeOCBB7jmmmtM2f+SJUsYNWqUa2yslvT222+Tn5/Pfffd1+LvLdoPOTMRoonWrVvH2bNneeihh8jOzubBBx/kV7/6FevWraOsrIzp06cTGxvLypUryc3NZfTo0TU+sLds2cK///1vCgoKiI+PZ/bs2XUOi+9wONi/f3+NyZTWrVvH6dOnsVqt7N69m4iICB599FE+//xz/vd//xebzcacOXMYMmQIYIyv9dZbb3HhwgVCQkJITk52FaaBAwfy0ksvSTERzSJ9JkK0oKNHj/Liiy/y8MMP8/rrr/P222+zcOFCnn/+eXbs2MHBgwcBY96N9evX8+ijj/Lqq6/Sv39/XnzxxTrfMysrC4vFUmOsJ4A9e/Zw44038tprr9GnTx8WL17sGpfptttu45VXXgGMYWRee+01nnrqKVatWsUf//hHevfu7XqfHj16kJOTQ2lpqWcOimgXpJgI0YKmTZuGv78/Q4YMoUOHDowaNYqwsDDsdjv9+/d3daB/9NFH/PznP6dHjx74+fnx85//nBMnTpCTk1PrPUtKSggICKi1vH///gwdOhQ/Pz+GDx/OhQsXuPXWW7FarYwcOZKcnBxKSkoAY8jxkydPUl5eTufOnWsMaFn93lJMRHNIM5cQLSgsLMz13N/fv9bXZWVlAOTk5PDaa6+xatUq1+taa/Ly8mo1dQUHB7u2a2hfoaGhrgsE/P39AeOspEuXLjz88MP8+9//ZuXKlVx11VXMnDmT7t27u9YBvDYXiWibpJgIYYLw8HCmTp3qVod6VFSUq9A0dW6OoUOHMnToUMrLy1mzZg0vv/wyf/jDHwA4ffo0ERERUkxEs0gzlxAmmDBhAhs2bODUqVOA0cS0Y8eOOte1Wq0MHjzY1d/SWAUFBWRkZFBWVobVaiUgIKDGLHsHDx702DDtov2QMxMhTHD99ddTVlbGCy+8QG5uLkFBQQwePJgbbrihzvUnTJjAhx9+yKhRoxq9L6017733HsuXL0cpePW3xgAAAHNJREFURe/evZk1a5br9W3btjF//vwmfy9CgNxnIkSrsXDhQu69994WvXFx9+7dpKen88gjj7TYe4r2SYqJEEKIZpM+EyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJsUEyGEEM0mxUQIIUSzSTERQgjRbP8PEcaoAXDvuuMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xU1b3//9eazIQk5AJDQkIgXJKAgCCIiUUughDo7xQFi9gGFY43kIJY0apftdieUkr4okYrpeixPyvFI1AraD0qGFCiXCQgitwEgghIIAm5kAshmcz6/rGTkZCLk8vMniSf5+PBYyZ79p79zk6YT/Zae6+ltNYaIYQQohksZgcQQgjR+kkxEUII0WxSTIQQQjSbFBMhhBDNJsVECCFEs0kxEUII0WxWswOY6cyZM03aLjw8nNzc3BZO03ySq3EkV+NIrsbx1VzQvGzR0dF1LpczEyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJtPdMCvW7eOzZs3ExoaCsD06dMZNmwYAOvXr2fLli1YLBbuuecehg4dWmv77OxsXnjhBYqKioiNjWX+/PlYrT7xrQkhRLvgM5+4kyZNYvLkyTWWnT59mu3bt/P888+Tn5/PokWLePHFF7FYap5QrV69mkmTJjFy5EheeeUVtmzZwsSJE70ZXwgh2jWfbubKyMhgxIgR2Gw2unbtSlRUFMeOHauxjtaaAwcOMHz4cADGjh1LRkaGGXGFEKLd8pkzk40bN5Kenk5sbCwzZ84kODiYvLw8+vbt61rHbreTl5dXY7uioiKCgoLw8/Ord51qaWlppKWlAZCSkkJ4eHiTslqt1iZv60neyKW15uLGDVj79MX/qkE+k6spJFfjSK7G8dVc4JlsXismixYtoqCgoNby5ORkJk6cyLRp0wBYu3Ytq1atYu7cuS2eISkpiaSkJNfXTb1px1dvRvJGLv3tEZwvLwPA8uc1qMAgn8jVFJKrcSRX4/hqLvDMTYteKyYLFy50a73x48ezdOlSwDjLOH/+vOu1vLw87HZ7jfVDQkIoLS2lsrISPz+/OtcRLUfvu6wJ8eCXcN0I88IIIXyGT/SZ5Ofnu57v2rWLmJgYABISEti+fTsVFRVkZ2eTlZVFfHx8jW2VUlx99dXs3LkTgE8++YSEhATvhW9vzp0BewQEBqH37zE7jRDCR/hEn8nq1as5ceIESikiIiKYPXs2ADExMdxwww088sgjWCwW7rvvPteVXEuWLOGBBx7Abrdz55138sILL7BmzRr69OnDuHHjzPx22jSdew4io6FDIPrIfrPjCCF8hE8Uk/nz59f72tSpU5k6dWqt5U8++aTreWRkJEuWLPFINnGF89moaxIhPBL95U50aQkqqKPZqYQQJvOJZi7ROmhnJVwogE52VK84Y+HJTHNDCSF8ghQT4b6LpcZjx2DoZfRd6e+kmAghpJiIxigtMR6DglEhYWAPh++ONbyNEKJdkGIi3FdaDPBDH0nPePSp4yYGEkL4Cikmwn0lRjEhKBgA1b0nnMtCV5SbGEoI4QukmAj3XfyhmQuA7r1AO+Hs9+ZlEkL4BCkmwm3a1WdiNHOp6J7G8u+/MyuSEMJHSDERddKOitoLyy8Zjx0CjMfIaPDzgzMnvRdMCOGTpJiIWpwfvYNzfjL64N6aL1QXE/8OACirDbpGo6WYCNHuSTERtehP3gdHBc731tZ8ofwSKAVWm2uR6t5LzkyEEFJMRE36Qj5kZ4G/Pxw7jK66HBgwiol/B5RSPyyL7gm559CXyrwfVgjhM6SYiJpyzgGgxt1iXKn1zWWDOVYVk8up7j1Ba8g65c2UQggfI8VE1JRvTJijrhsB/v7ob77+4bVLl8DmX3P96F4A0m8iRDsnxUTUoPOrJiOLiIKY2Jpjb9VxZkLXKKMP5XspJkK0Z1JMRE35uUZ/SVAwqlc8nDqOdjoB0HU1c1n8oFsPOTMRop2TYiJqKi6C4FCjk71nHFwqM2ZXBKgor31mQtXNi2fkxkUh2jPTJ8dat24dmzdvJjQ0FIDp06czbNgw9u3bxxtvvIHD4cBqtTJjxgwGDRrk9vaiafTFUgisusO9Vxwa0CczUd16GM1cAUG1N+reCz7fir5Yigqs43UhRJtnejEBmDRpEpMnT66xLCQkhCeeeAK73c7JkydZvHgxL7/8stvbiya6WOIqJnSLMTrcT2bCT8YYxSQkrNYmKronGoz7TeL6ezWuEMI3+GwzV58+fbDb7YAxF3x5eTkVFXUM8SFa1sUSqDq7UH5+0KP3D53wDodx1/uVqsfokn4TIdotnzgz2bhxI+np6cTGxjJz5kyCg4NrvP75558TGxuLzVbHB5kb21dLS0sjLS0NgJSUFMLDw5uU12q1NnlbT2qJXLmXyrB1thNW9T4X+g6kbPtmunTpwnntxBYc7Hqtmrbbye4QQGBeNiF17L8tHy9PkFyNI7kazxPZvFJMFi1aREFBQa3lycnJTJw4kWnTpgGwdu1aVq1axdy5c13rnDp1ijfeeIOnn366zvf+se0vl5SURFJSkuvr3NzcJn0/4eHhTd7Wk1oiV2VJEU6Ln+t9nOFR6OIico9+g7O8HKejsu59dIuhNPMbLtXxWls+Xp4guRpHcjVec7JFR0fXudwrxWThwoVurTd+/HiWLl3q+vr8+fM8++yzzJs3j6ioqDq36dSpU73bi8bRWhvzvF/Wia669zL6Q77/DhwVYK37V0Z174n+eo93ggohfI7pfSb5+fmu57t27SImJgaAkpISUlJSuOOOO+jfv/5O3fq2F01Q6YDKSugQ+MOy7lV3uH9/AhyOGoM81tC9N1woQBcVejymEML3mN5nsnr1ak6cOIFSioiICGbPng3Ahx9+yNmzZ3nrrbd46623APjtb39LWFgYK1euZMKECcTFxdW7vWiC8qrpdy8bMkV1DAZ7OJw+AZU/cmYCxhlM/2s8HlUI4VtMLybz58+vc/ltt93GbbfdVudrc+bM+dHtRRO45iu5Yvyt7r2N2RQdDvCr58ykeoyu70+ipJgI0e6Y3swlfEhF1ZnJlUOm9OhljL3ldNZ7ZkJYZwgOge9PeDajEMInSTERP3A1c10xZEr33sZw9FB/M5dSEN1L7jURop2SYiJ+UGE0c6krmrlUVSc8UH8HfPV6339nXBUmhGhXpJi0U86Mz3Du+Ljmwuo+kyvnLInq/sPz+pq5wLjyq+wi5OW0TEghRKthege88D6dfQb9yv81nkdEouIHGi+U19NnYrVBxxAoKQK/+n9lXPeknP4OunT1QHIhhK+SM5N2SB/Y+8Pzz7f+8IKrA/6KMxP44eykoTMT1xhdMhy9EO2NFJP2KOsUBHZEXTcSvWd7zcmvoHYHPKAiq4pJ9Tp1UEEdwR5hnJkIIdoVKSbtkM7NNpqhBidAUSFknTZeaOjMJLpqZIHqaX3r072XnJkI0Q5JMWmP8nIgvCuqr9FXoo8eMJZX1L4Dvpoa+zPU6Imo8bc0+Naqey/IOo12OFo0shDCt0kxaY/yclD2CIiIgjA7HD1oLK8uAHVc/qs6BGCZ+SAqtFOt12ro3tMY4yv7TAuHFkL4Mikm7Yx2OIyRgavneY/thz5x1Hixupg0cMXWj1Hdexv7+V6auoRoT6SYtDcXS4zHIGMCMdUrHrLPoEtLjIEcoeErtn5MVHewWIwBH4UQ7YYUk/amtLqYGPO8q17xxtcnM40zE6WMYtBEyuYPXaPlzESIdkaKSXtTWgyAqjozoaqY6O+qiomf1Wj+agYV0wdOfdus9xBCtC5STNqbEqOY0LHqzCQk1LhM+LtjxsRYzWniqhbTB85no6sKlxCi7ZNi0s7o6j6TwOAfFvaKQ393rMHJrxpD9ehjPDl9otnvJYRoHUwfm2vdunVs3ryZ0NBQAKZPn86wYcPIzs5mwYIFrsnr+/btW+csisXFxaSmppKTk0NERAQLFiwgODi41nqiyhVnJgCqZxz6ix0QE1v/5FeNEWMUE33qW1S/Qc1/PyGEzzO9mABMmjSJyZMn11oeFRXFsmXLGtx2w4YNDB48mFtvvZUNGzawYcMG7rrrLk9Fbf3KSo3HwMuKSe++aEB/+03LNHOFdYaQMDh1vPnvJYRoFVp9M1dGRgZjxowBYMyYMWRkZJicyMfVNcx8rzjjMS+3WfeYVFNKQUwf9KkTzX4vIUTr4BNnJhs3biQ9PZ3Y2FhmzpzpaqbKzs7m8ccfJzAwkOTkZAYMGFBr28LCQjp37gxAp06dKCwsrHc/aWlppKWlAZCSkkJ4eHiT8lqt1iZv60nu5Cqy+lFqtRHR9bIh4sPDyYmIxJlzDr8OHVrkeyvqdzWl762jS6dOrfp4mUFyNY7kajxPZPNKMVm0aBEFBQW1licnJzNx4kSmTZsGwNq1a1m1ahVz586lc+fOrFixgpCQEI4fP86yZct47rnnCAoKqnc/SqkGL2tNSkoiKSnJ9XVubm6Tvp/w8PAmb+tJ7uRyFhaCzb/Wes7uvSHnHJVKtcj35uwSCY4Kcg98RcSQ61rt8TKD5GocydV4zclW3Y99Ja8Uk4ULF7q13vjx41m6dCkANpsNm83oDI6NjSUyMpKsrCzi4uJqbBMWFkZ+fj6dO3cmPz/f1ZEv6lFRXmvyK6jqhP/yc6ioaJHdqJhYox/m1HEYcl2LvKcQwneZ3meSn5/ver5r1y5iYoyhzi9cuICzap6Nc+fOkZWVRWRkZK3tExIS2LrVmOBp69atJCYmeiF1K1Z+qc4h5lXPWOPJ2dMts5+o7saAkXLzohDtgul9JqtXr+bEiRMopYiIiHBd/nvw4EHWrVuHn58fFouFWbNmufpSVq5cyYQJE4iLi+PWW28lNTWVLVu2uC4NFvXTFeV1DjFPz6ozPq1bZD/Kz8+Y20SKiRDtgunFZP78+XUuHz58OMOHD6/ztTlz5rieh4SE8Mwzz3gkW5tUXk8x6WRv8V2pmD7oLz9Ht1CBEkL4LtOLifCyivK6m7mUQv3iPugY0nL76tEHPvsIZ34u0LzxvoQQvk2KSXtTfqnGDYuXs0yY0qK7UjF90IDj26PQq1+LvrcQwreY3gEvvKyeMxOP6NEbqComQog2TYpJe1Nebsw54gUqqCNERFFx/Buv7E8IYR4pJu2NN89MMCbfqsiUYiJEWyfFpL2puAS22jctekyvOJzZWejiC97bpxDC66SYtDfl3j8zAeC7TK/tUwjhfW4VE4fDwcmTJzl8+DAnT57E4XB4OpfwAK210czlpT4TwDUisT4hnfBCtGUNXhr8xRdfsGnTJvbv34+fnx+BgYFcvHiRyspKBg0axIQJE7juOhl3qdWodBh3uHuxmKigYPy69aDypJyZCNGW1VtMFi5cSMeOHRk1ahSzZ8/Gbv/hDum8vDwOHjzIRx99xIYNG1i0aJFXwopmqqw0HltiAqxGsMb1p/LgV17dpxDCu+r9VJk1axY9e/as8zW73c6oUaMYNWoUJ0+e9Fg40XT60iWcr6WiesVj+Q9jiH+qmyf9/LyaxRbXn0ufpaGLClEhYV7dtxDCO+rtM+nZsydffPGFa+TehtYTvkdvT4M929Fvr0JnHjYWVlYXkxaY570RbPH9jSffHfPqfoUQ3tNge8df//pXlFKMGjWKsWPHSuFoRfThfcY87JfK0NvSUHH9TTszscZeZWQ6cQw1SPrYhGiLGiwmL7/8Mnv37iU9PZ2nnnqK6OhobrzxRkaPHk1YmDRX+LQTR1EDhoDFD717G/qOOT+cmXi5z8QS1BEiu6Pl8mAh2qwGP1UsFgvXXXcd1113HaWlpWzfvp1PP/2UN998k8GDBzN27Nh6h4kX5tHllyAvF7r1QHWLQe/8GE4cheCqEYH9vD++p+oVjz56wOv7FUJ4h9ufKkFBQa451I8cOcKLL75Iamoqa9eubVaAdevWsXnzZtd0u9OnT2fYsGF8+umnvPvuu671Tp48ydKlS+ndu7db27dreVVzO9u7wlWDQSn0oa9Q1xqFX3n5zAQw7jfZtRV9IR8V2tn7+xdCeJTbnyoVFRXs2rWL9PR0vv76a6666ipuv/32FgkxadIkJk+eXGPZ6NGjGT16NGAUkmXLltUqJA1t364VFQKgwjqjgkMhJhZ9+CvUNVVTGnu5zwRA9Y5Hg3En/OAEr+9fCOFZP1pMDh48SHp6Ojt37iQsLIwbb7yR+++/n4iICG/kA+Czzz5jxIgRXttfq1dUYDxWXYarBlyDTvs3lBYby718NRcAPWONM6Rvj6KkmAjR5jRYTObNm0dpaSk33HADTz75JFdddZVHQmzcuJH09HRiY2OZOXOma673ajt27OCxxx5r8vbtjb5gnJkQWlVM+l+D3rgefWS/sdyEZi4VEATdYmRYFSHaqAY/Ve68804SExOx2Zr3l+yiRYsoKCiotTw5OZmJEycybZpxU93atWtZtWoVc+fOda1z9OhR/P39670s+ce2v1xaWhppaWkApKSkEB4e3qTvx2q1NnlbT6rOVex0UAKE94pF2Ww4E0eSoxTW44epAMLsdvy9mL86V+GAa7i061O6dOmCUuZP4+vrP0dfI7kax1dzgWeyNVhMLm9aysnJ4bvvvqOsrKzGOqNGjfrRnSxcuNCtMOPHj2fp0qU1lm3bto2RI0fWu02nTp0a3P5y1RcQVMvNzXUr15XCw8ObvK0nVedynj0DQR05X1j4w4vde1NRNaRJYXEJyov5Xbmie6KLCsk9tB/VtZvX9v9juXyN5GocydV4zckWHR1d53K32jvWr1/Pv/71L3r06IH/ZcOXV9/Q2Bz5+fl07mxc3bNr1y5iYmJcrzmdTnbs2MEf/vCHJm3fbl0srTXPu4ofgD79rfGFGVdzAarPVWhAf3vEJ4qJEKLluPWp8t5775GSkkKPHj1aPMDq1as5ceIESikiIiKYPXu267VDhw4RHh5OZGRkjW1WrlzJhAkTiIuLa3D79kqXlUJgUM2F8QPgk/eN5ybcZwJAdE/w7wDfHoGfjDEngxDCI9z6VAkODvbY1Vvz58+v97Wrr76axYsX11o+Z84ct7Zvty6WQkDNYqLiBxqX5oJpxUT5+UHveLTMCS9Em+PW5Fh33303L7/8MpmZmeTm5tb4J3xQ2cVaZyaqy2V/DJjUzAWg+vSDU8fRFeWmZRBCtDy3PlUcDgf79u1j27ZttV5r7h3wwgMuljbcJ2HCTYvVVNwA9Mb1xgjC8QNNyyGEaFluFZNXX32V6dOnM3LkyBod8MJH1dVnAqgJU9AfvQMdAk0IVSXOGI5eZx5GSTERos1wq5g4nU5uuukmLBa3WsWE2couQoeAWovV7feiJv4c1dG8mzpVaCfo2g197BD81LQYQogW5lZ1uOWWW9iwYQNa6x9fWZhKaw0V5WDrUOs1pRSqk72OrbxLxQ2AzMPy+yREG+LWmckHH3xAQUEB69evrzVUyV//+lePBBNNVOkArcGXmyPj+8OOLZCdBZF13wAlhGhd3ComcvltK1JedZWUzXeLiYozLlPWmYdQUkyEaBPcKiYDB0pHaavh8P1iQrceENQRjh2CEePNTiOEaAH19pm8//77VFRUNLhxRUUF77//fouHEs1QfWbiw81cymKB2P7ozMNmRxFCtJB6z0wKCgp46KGHuPbaaxk4cCDR0dEEBARQVlbGmTNnOHjwIHv37mXMGBkWw6dUtIIzE0DF9Ufv34MuKTb16jIhRMuot5jccccd3HzzzXzyySds2bKFkydPUlJSQnBwMD179uTaa69l+vTphISEeDOv+DFVxUT5ejGJH2AM73L8Gxh8ndlxhBDN1GCfSWhoKJMnT5YpcVuTVtABD0CffmCxoI8dQkkxEaLVk7sQ25oK3+8zAVAdAoy56Y8dMDuKEKIFSDFpa1pJnwmA6nc1HD8igz4K0QZIMWlrWlMxuWowOCrg+BGzowghmkmKSRujW8GlwS59B4JS6CP7zU4ihGgmtye2KCoqYu/eveTn5zNlyhTy8vLQWtOlS5cWCfLBBx+wceNGLBYLw4YN46677gKMKYO3bNmCxWLhnnvuYejQobW2zc7O5oUXXqCoqIjY2Fjmz5+P1cQ5O0xVfWZi9f1iooKCoUdvKSZCtAFunZkcPHiQhx9+mE8//ZR//etfAJw9e5b//u//bpEQ+/fvZ/fu3Sxbtoznn3+eW265BYDTp0+zfft2nn/+eZ5++mn+9re/4XQ6a22/evVqJk2axEsvvUTHjh3ZsmVLi+RqlVpJB3w11W8QHD+MdjR8g6wQwre5VUz+/ve/8/DDD/P000/jVzWxUnx8PJmZmS0SYtOmTUyZMgWbzQZAWFgYABkZGYwYMQKbzUbXrl2Jiori2LFjNbbVWnPgwAGGDx8OwNixY8nIyGiRXK1Sa7k0uIrqN8jIfOKo2VGEEM3gVltQTk4OgwcPrrmh1UplZWWLhMjKyuLw4cOsWbMGm83GjBkziI+PJy8vj759+7rWs9vt5OXl1di2qKiIoKAgV5Gra51qaWlppKWlAZCSkkJ4eHiT8lqt1iZv60lWq5UgfxslQHhUN2POdR/Q0PFyDh9Nzl+XEHT6WzoOv9FncplJcjWO5Go8T2Rzq5j06NGDL7/8skZ/xddff03Pnj3d3tGiRYsoKCiotTw5ORmn00lxcTGLFy8mMzOT1NRUli9f7vZ7uyspKYmkpCTX102dwz48PLzJ23pSeHg4pRcugLJwPj/f7DguP3q8uvei+IudXBw7yXuh8O2fo+Ryn+RqvOZki46ue6Rvt4rJjBkzWLp0Kddeey3l5eW88sor7Nmzh8cee8ztAAsXLqz3tU2bNnH99dejlCI+Ph6LxUJRURF2u53z58+71svLy8Nurzm5U0hICKWlpVRWVuLn51fnOu1KpcPUOd6bQg0Ygt76Ibqi3OeHgRFC1M2tPpN+/fqxbNkyYmJiuOmmm+jatSt/+tOfiI+Pb5EQiYmJHDhg3Al95swZHA4HISEhJCQksH37dioqKsjOziYrK6vWPpVSXH311ezcuROATz75hISEhBbJ1SpVVoJf67qSTfUfYlw4cOyQ2VGEEE3k9qeO3W5nypQpHgkxbtw4VqxYwaOPPorVamXevHkopYiJieGGG27gkUcewWKxcN9997nmoV+yZAkPPPAAdrudO++8kxdeeIE1a9bQp08fxo0b55GcrUJlBbS2y6KvutoYp+vQV6gBQ8xOI4RoArc+dV566SWUUrU3tlrp0qULiYmJ9O7du+khrFYeeuihOl+bOnUqU6dOrbX8ySefdD2PjIxkyZIlTd5/m1JZ2fqauQKCoE8/9OF9ZkcRQjSRW81cQUFBZGRkoLXGbrejtWb37t1YLBa+//57fvvb37J161ZPZxXuqHS0umYuMPpNOHEMXVpsdhQhRBO49amTlZXFk08+Sf/+/V3Ljhw5wtq1a1m4cCFffvklf//732WiLF/QCs9MoKoT/r218M1+uHa42XGEEI3k1pnJ0aNHa9zvARAbG+u6gXDIkCE1rroSJnK0zjMTYq8C/w7oQ1+anUQI0QRuFZPevXvz5ptvUl51d3V5eTlr16519ZNkZ2cTHCxTr/oCXelofR3wgLLa4KrB6AN7zY4ihGgCtz515s2bx5///Gf+8z//k+DgYIqLi4mLi3N1mhcXF3P//fd7NKhwUytt5gJQVw9Df70bnX0G1bXuG6OEEL7JrWLStWtX/vjHP5Kbm0t+fj6dO3eucSt+XFycxwKKRmqlHfAAavAw9BrQB/ZKMRGilWnUfCbh4eHEx8djt9txOp11juArTNaaz0y6RkNEFHr/F2ZHEUI0klt/wubl5fG3v/2NQ4cOUVJSUuO1tWvXeiSYaKLW2gFfRQ0aht62GV1RgaoaRVoI4fvcOjN55ZVXsFqtPPPMMwQEBLB06VISEhKYNWuWp/OJxmrFzVwA6urroPwSHDtodhQhRCO4VUyOHDnCr371K3r37o1Sit69e/OrX/2K9957z9P5RGO14mYuAK4aBFYrev8es5MIIRrBrWJisVhc84V07NiRCxcu0KFDh3rnDREmau1nJgGB0G8Qel87nuBMiFbIrWISHx/P3r3G9f9DhgwhNTWVZ599Vq7i8kWVDp+ZFKup1DXXw9nv0We/NzuKEMJNbhWT+fPnM3DgQADuvvtuBg0aRExMDL/+9a89Gk78OOenm3C+/hL6QtVkWJWVrfKmxcupIYkA6H27TE4ihHCXW8Vk3759rjvc/f39ue2227jrrrs4fPiwR8OJhunvT6JXLUd/9hHOV55Fa93qm7kAVHgkdO+F/kqauoRoLdwqJitXrqxz+csvv9yiYUTjVP/lrib9Ar75mvKv97T+Dvgqasj1cOwgukRGERaiNWiwmJw7d45z587hdDrJzs52fX3u3Dn27duHv79MsWom/c3X0C0GNemX0KkLpW+93ibOTADUNYngdMpVXUK0Eg1+6lw+YdX8+fNrvNapUyduv/32FgnxwQcfsHHjRiwWC8OGDeOuu+5i3759vPHGGzgcDqxWKzNmzGDQoEG1tl23bh2bN28mNDQUgOnTpzNs2LAWyeXzTn2LGpyAstlQY/4/yt95AyyWVt9nAkCffhASBnt3wk9kagMhfF2DnzrVd7f/7ne/47/+6788EmD//v3s3r2bZcuWYbPZKCwsBCAkJIQnnngCu93OyZMnWbx4cb3NapMmTWLy5MkeyeerdPkluFAAEVEAqBHj0O/+DzidbaOZy2JBXTsc/flWdPkllH8HsyMJIRrgVp+JpwoJwKZNm5gyZQq2qqEzwsLCAOjTpw92ux2AmJgYysvLqaio8FiOVud8tvHYpSsAyh6B/zUJxrI20MwFoIaNgEtlcFCGpRfC19X7qfPMM8/UOe/7lZpbaLKysjh8+DBr1qzBZrMxY8YM4uPja6zz+eefExsb6yo4V9q4cSPp6enExsYyc+bMeudWSUtLIy0tDYCUlJQaIx83htVqbfK2LeXSd0cpADrF9cO/Kkv5hMmUf5VBUEgIwSbnu1xTj5ceeRM5rz6L/4EvCEu62WdyeZrkahzJ1XieyFZvMRk3blyL7WTRokUUFBTUWp6cnIzT6aS4uJjFixeTmZlJamoqy3aISbQAACAASURBVJcvdxWyU6dO8cYbb/D000/X+d4TJ05k2rRpgNEst2rVKubOnVvnuklJSSQlJbm+zs3NbdL3Ex4e3uRtW4rzW2OWy0I/f1RVli4Jo6BHHy527kqZyfku16zjNTiRsl2fUn42y5hAy1dyeZDkahzJ1XjNyRYdXff0EPUWk7FjxzZpR3VZuHBhva9t2rSJ66+/HqUU8fHxWCwWioqKCA0N5fz58zz77LPMmzePqKioOrfv1KmT6/n48eNZunRpi+X2acVG3xKhYa5FqkMH/H73okmBPENdNwK9Ywsc/hoGtZMLK4RohdxuXP/4449JT08nLy8Pu93OjTfeyE033dTsAImJiRw4cIBBgwZx5swZHA4HISEhlJSUkJKSwh133EH//v3r3b56si6AXbt2ERMT0+xMrUJJMXQIbPG/1n3OwKEQEIje/RlKiokQPsutYvL222+zdetWbrnlFtfp0bvvvkt+fj5Tp05tVoBx48axYsUKHn30UaxWK/PmzUMpxYcffsjZs2d56623eOuttwD47W9/S1hYGCtXrmTChAnExcWxevVqTpw4gVKKiIgIZs+e3aw8rUZJEQSHmJ3C45TN37iq64sd6DvnoGxyb5MQvsitYrJ582Z+//vfExER4Vo2ZMgQfve73zW7mFit1hr3s1S77bbbuO222+rcZs6cOa7nV97/0l7okmLoWPeFBm2N+slY9I6P4evdMGyE2XGEEHVw69LgS5cuuW4KrBYSEkJ5eblHQgk3lBRBx7Z/ZgJA/2sgtBPOz7eanUQIUQ+3isnQoUP585//zJkzZygvL+f7779n+fLlDBkyxNP5RH1KilFB7eTMxM8PlTga9mWgS2WsLiF8kVvF5N577yUwMJDf/OY3zJgxg8cff5yAgADuvfdeT+cT9WknfSbV1E/GgsOB3rPd7ChCiDo02GfidDqxWCwEBQXx4IMPMnfuXIqKiggJCcFicasOCU8pLYagjman8J7e8dA1Gv35Vhg90ew0QogrNFgR5syZw+rVqzl58qSxssVCWFiYFBKTaUeFMdR8h0Czo3iNUgr1kzFwZD86/7zZcYQQV2iwKsyaNYvs7GyefPJJnnjiCd5//30uXLjgrWyiPpcuGY8d2tfgh2r4GNAavSvd7ChCiCs02MyVmJhIYmIiJSUlbN++nfT0dFavXs2QIUMYM2YMCQkJWNvCcOetzaWLxqN/gLk5vEx1jYY+/dDbN6Mn3urW2HFCCO9wq72qY8eOTJgwgUWLFpGamkpcXByvv/46DzzwgKfzibq4zkzaVzEBUKMnwpmTkHnI7ChCiMs0qvPD4XCQmZnJ0aNHKSwspGfPnp7KJRpSXgaAao/FJHG0MbxK+kazowghLuNWG9Xhw4fZunUrO3fuJDQ0lNGjR3P//ffXuCNeeNElo5i0yzOTgEDU8LHobZvRv5yFaiejAAjh6xosJuvWrePTTz+luLiY4cOH88QTTzQ46KLwkupmrnY6+6Aa/VP0Jx+gd36MGn+L2XGEEPxIMTl27BjJyckkJibi7y8D7PmM8vZ7ZgKgesZC777orR+ix90sHfFC+IAG+0yeeuopRo4cKYXEx+h23MxVTd34U8g6JR3xQvgIufuwNWqn95lcztURv1U64oXwBVJMWqPqZq52dp/J5VRAIOqGm9C7P0UX5JkdR4h2T4pJa1TdzNVOO+CrqaTJUFmJ/vh/zY4iRLvnE7evf/DBB2zcuBGLxcKwYcO46667yM7OZsGCBa7J6/v27VvnLIrFxcWkpqaSk5NDREQECxYsIDi4jV8uWn4JbP6odj5GmuoaDdcON67s+o9pqID2M1aZEL7G9GKyf/9+du/ezbJly7DZbBQWFrpei4qKYtmyZQ1uv2HDBgYPHsytt97Khg0b2LBhA3fddZenY5vL4YC2Pve7mywTf47zix3obZtR4282O44Q7Zbpf9pu2rSJKVOmYLMZH45hYWGN2j4jI4MxY8YAMGbMGDIyMlo84+X0F9spfvNVj+7jR1VUgIyJBoCK6w9x/dFp76CdlWbHEaLdMv0TKSsri8OHD7NmzRpsNhszZswgPj4egOzsbB5//HECAwNJTk5mwIABtbYvLCykc+fOAHTq1KnGmc2V0tLSSEtLAyAlJYXw8PBG573w3TFK0zfRdfr9jd62pRRa/Sj371Arv9VqbdL35GmezlV220wK/+9ThBw7QMCIcT6Tq6kkV+NIrsbzRDavFJNFixZRUFBQa3lycjJOp5Pi4mIWL15MZmYmqampLF++nM6dO7NixQpCQkI4fvw4y5Yt47nnniMoKKje/SilGryBLSkpiaSkJNfXubm5jf5enJVO9KWyJm3bUpzFxWiLpVaG8PBwU3PVx9O5dNwAiIii8K1VFPUd7PZNjO31eDWV5GocX80FzctW3Y99Ja8Uk4ULF9b72qZNm7j++utRShEfH4/FYqGoqIjQ0FBX01dsbCyRkZFkZWURFxdXY/uwsDDy8/Pp3Lkz+fn5hIaGevR7wd8fKsrRTqdpHeDaUSF9JpdRFj/UT6eiV6+AA1/AoOvMjiREu2N6n0liYiIHDhwA4MyZMzgcDkJCQrhw4QJOpxOAc+fOkZWVRWRkZK3tExIS2Lp1KwBbt24lMTHRs4GrL8etKPfsfhriqACbFJPLqZHjoUtXnBveQGttdhwh2h3T+0zGjRvHihUrePTRR7FarcybNw+lFAcPHmTdunX4+flhsViYNWuW65LflStXMmHCBOLi4rj11ltJTU1ly5YtrkuDPcpWVUzKy80bzsRRAX6m/+h8irLaUDf/Ev36S/DV5zB0uNmRhGhXTP9EslqtPPTQQ7WWDx8+nOHD6/5AmDNnjut5SEgIzzzzjMfy1VI9Tln5Je/t80oOh5yZ1EHdMA79wVs43/kfLNdc3+7vwxHCm+R/W2O5mrnMLCbSZ1IX5eeHuiUZTp+AL7abHUeIdkWKSSOp6mJi6pmJFJP6qOtvhG4xON99U+47EcKLpJg0li8UkwopJvVRFj8sU+6ErFPo9E1mxxGi3ZBi0li26j4Tc6/mUnIHfP2G3QD9BqHfWY0uKTY7jRDtghSTxurgA2cmlTI2V0OUUlimz4KSEvS7/2N2HCHaBSkmjVV1ZqLNvM9Emrl+lOrRBzXmp+hP3kd//53ZcYRo86SYNJYv9JnIpcFuUVPuhIAgnGtflRsZhfAwKSaN5RP3mciowe5QwaGoKXfAoa/QO7aYHUeINk2KSWP5X3YHvAm01lV3wMuZiTvU2P+AvgPRb76Czjlrdhwh2iwpJo1lM7mZy+kErcEmZybuUBY/LPcuAKVw/v+pcu+JEB4ixaSRlJ+f0cRk1h3wjgrjUTrg3abCI1F3PADHDqE/+JfZcYRok6SYNIHqEAhlZebsXIpJk6ifjEUljkb/+030iaNmxxGizZFi0gQqKAjKSs3ZucNhPEoHfKMopVB3/gpCO+N89Xn0JZP+GBCijZJi0gSWoGD0xYvm7LyyqpjIEPSNpjoGY7nn13Due/Rbr5kdR4g2RYpJE6jAjnCxxJydV1Z1IPv5mbP/Vk4NGIKaeCv6kw+4tHub2XGEaDOkmDSB6tgRysw6M6kqJhYpJk2lbp0B3XtxYfmf0PnnzY4jRJvgE20lH3zwARs3bsRisTBs2DDuuusuPv30U959913XOidPnmTp0qX07t27xrbr1q1j8+bNrrnfp0+fzrBhwzya1zgzMWmIjupLW6WZq8mUzYZl1mPolMfRL/4ey2NLUB2DzY4lRKtm+ifS/v372b17N8uWLcNms1FYWAjA6NGjGT16NGAUkmXLltUqJNUmTZrE5MmTvRUZS1Cwec1cVcVE+clJZXOo7j0JezKF/EWP4Fy+CMvDf0BVD+IphGg00z+RNm3axJQpU7BVjTUVFhZWa53PPvuMESNGeDtavVSQNHO1Bf7XJGC5/1HIPIzz5aXo6ivlhBCNZvqZSVZWFocPH2bNmjXYbDZmzJhBfHx8jXV27NjBY489Vu97bNy4kfT0dGJjY5k5cybBwXU3WaSlpZGWlgZASkoK4eHhTcp8MTgEKsrpEhaG8vKAixV558gDQjvb6XBFfqvV2uTvyZN8OVfET6dQqp0UvbwM/7X/Tej8p02fO96Xj5fkcp+v5gLPZPNKMVm0aBEFBQW1licnJ+N0OikuLmbx4sVkZmaSmprK8uXLUUoBcPToUfz9/enZs2ed7z1x4kSmTZsGwNq1a1m1ahVz586tc92kpCSSkpJcX+fm5jbp+wkKCDS2P30KFRLapPdoKp1ndBhfKClGXZE/PDy8yd+TJ/l8roTRqLPfU/bO/3DJPwDL7ff4Ri4fI7kax1dzQfOyRUdH17ncK8Vk4cKF9b62adMmrr/+epRSxMfHY7FYKCoqcnWob9u2jZEjR9a7fadOnVzPx48fz9KlS1sueD1UYEfjycUS8HIxkWYuz1CTfgkXCtGb1uMMDcPy06lmRxKiVTG9zyQxMZEDBw4AcObMGRwOByEhIQA4nU527NjRYDHJz893Pd+1axcxMTGeDQxYqguIGVPCVsrVXJ6glEIlzzKGXHnr7zj/d53MgSJEI5j+iTRu3DhWrFjBo48+itVqZd68ea4mrkOHDhEeHk5kZGSNbVauXMmECROIi4tj9erVnDhxAqUUERERzJ492+OZLWGdjSfFhR7fVy3Vlwab3K7fFimLBe59GJQFvWE1nP0eZj7o9X4xIVoj04uJ1WrloYceqvO1q6++msWLF9daPmfOHNfz+fPneyxbfVSo0bSmLxSivL3zSqfxKHfAe4Sy2uD+R6BbD/Q7b6BzsrDMfcr1MxdC1E3+vG0CU89MZGwuj1NKYbn5l6jZj8PJ4zj/9BuZR16IHyHFpAlUQCDY/OGCmc1ccmbiaZbEUVgeWwIOB86Ux9Ff7zY7khA+S4pJEyilICQMimpf7uxp2tUBLz86b1B9+mJ56lmIiML50h9x/ut1tFmzbArhw+QTqalCwtBFZjRzydVc3qbs4VieWIoaOR794b9w/uFh9NGDZscSwqdIMWmqTnYoyPP+fqWZyxSqQwCW/5yPZcEfwFGBc9mTOP/nZbRZw+oI4WOkmDSRskfA+Wzv79gpzVxmUgOHYvn9S6hxN6M/eR/n7+ejD+w1O5YQppNPpKYK7woXS9GlXr5xUZq5TKcCArEkz8Ly+BKw2XC+8Dsq//wH9Lcyt7xov6SYNJHqUnUjZa6Xz05kOBWfoeIHYnnmRdStd8Hxb3D+6VEqX/wv9PFvzI4mhNdJMWmq8K7GY+457+5Xmrl8irL5Y5n0Cywp/436+Qw4cQTnkseofPH36MzDZscTwmukraSpIo2RM3XWKRQ3eG+/rjvg5UfnS1RAEOpnt6PHTUJ//IExYGTK49CnH2pkEipxtDEPjhBtlHwiNZEKCIKIKDj1rXd3XH0HvDRz+SQVEIT6j9vQN/0M/dlHxr/VK9DrXkUNG4n6yRjoP9gYtkWINkSKSXP06I0+fcK7+5SBHlsFFRCISpqMHn8LnDiG3vYRelc6eufHENgRNSQRNWwEDByK6hBgdlwhmk2KSTOo3n3Re3eiLxR4byDASif4+blGVha+TSkFffqi+vRF//J+OPgVeu929Je70Ds/AasV4gagBgxBDRwKveLMjixEk0gxaQY1YCh6/T/Qh74ymi+8odIhTVytlLL5w5BE1JBEY1icI/vRB75AH/oKvWG1Mex9QCD5/a7G2SMWFXsVxPZDhYSZHV2IHyXFpDl6xRrDquz+DLxVTJyVUkzaAOXnBwOGoAYMAUAXFaIPfQVHD+I8mYn+8C20s+piizA79OiF6tEbuvdGde1m9NeFhMkZqvAZUkyaQVn8UKMmoD98G51zFhUR5fmdOp0yl0kbpELCUNffCNffSJfwcHK+P230tXx3FE6fQJ8+gd78b3A4cM3/2CHQKCpdo4zfvYhuxmMnO4R1hqBgKTbCa3yimKSmpnLmzBkASktLCQoKYtmyZQCsX7+eLVu2YLFYuOeeexg6dGit7bOzs3nhhRcoKioiNjaW+fPnY7V651tTY3+G3vIezr//GcuCP6A8vd/KSikm7YDqEABXDUJdNci1TDsckJMF2WfROVmQcxadcxbOnETvy6hZaMC4fDysE4R0grDOqLDOENoJgkOMQhPUEQKDoWPVY1BHCAiUAiSaxCeKyYIFC1zPV61aRVBQEACnT59m+/btPP/88+Tn57No0SJefPFFLFdcybR69WomTZrEyJEjeeWVV9iyZQsTJ070SnZlD0fd8QD6tRdxPvsUlv+YBrH9UdXzxLc06TNpt5TVCt1ioFtMrRk+tbMS8vMg9yy6IM+YHqGwAArz0RfyIT8X/d0xYw4ebTSf1TnDvbKAfwfo0MF4rP7XIYD84GAqUSj/gMteDzAerVbjjxy/mo/Kaq21rN5Hi8XYv8UCSlU9Vz88r2uZXNXoM3yimFTTWrNjxw6eeeYZADIyMhgxYgQ2m42uXbsSFRXFsWPH6NevX41tDhw4wK9//WsAxo4dyz//+U+vFRMAy4jxOP2s6LWv4lz+R2OhzR8Cg4zH6l/46v8IVP1naIqCPAgMbJHcou1QFj/oEgFdIhqcSlo7K+FiKZSWVP0rhtISY4y56mXll6r+lRlzt1T9cxbmQ0lJjWWUXwJdZ1ky9tfy32ot56DhwoPCOChVR6b6/57rQF2x3LX48uU/sk0dy3MsFpxO5xXvU8f7uzv5t7ufGW6sVj7/aejaw733c5NPFZNDhw4RFhZGt27dAMjLy6Nv376u1+12O3l5NYd9LyoqIigoCL+qpp+61qmWlpZGWloaACkpKYSHhzcpp9Vqrb3tpNvQE2+h4tA+Kr49irMwD11SbPzH09r1T2snOKu+bmJB8b96KEF1ZK8zlw+QXI3jy7kcDkeNZVprKC9HOyqg0mE0xTkqjKvVHA50peOH5a7X61mGNoqdUxtnT1qD02nsw1n1tXa6nmunE7QTCwpnpeOHdV3/xy5br7qsaVfwmo/1vY6uta6rQP7IeyjFDxdR1Fr3yv00TLu5nrvl2xoc2uK/Y14rJosWLaKgoPbMhMnJySQmJgKwbds2Ro4c6bEMSUlJJCUlub7Ozc1t0vuEh4fXv210b+OfBzmA0jr232AuE0muxmn1uSw245+XbvJv9cfLBJZmZIuOjq5zudeKycKFCxt8vbKykl27dpGSkuJaZrfbOX/+vOvrvLw87HZ7je1CQkIoLS2lsrISPz+/OtcRQgjhWT7Te/X1118THR1Nly5dXMsSEhLYvn07FRUVZGdnk5WVRXx8fI3tlFJcffXV7Ny5E4BPPvmEhIQEr2YXQoj2zmeKSV1NXDExMdxwww088sgjLF68mPvuu891JdeSJUtcfSN33nkn7733HvPnz6e4uJhx48Z5Pb8QQrRnSrvfs9PmVN/b0li+2hYquRpHcjWO5GocX80FzctWX5+Jz5yZCCGEaL2kmAghhGg2KSZCCCGaTYqJEEKIZmvXHfBCCCFahpyZNMH/+T//x+wIdZJcjSO5GkdyNY6v5gLPZJNiIoQQotmkmAghhGg2v9///ve/NztEaxQbG2t2hDpJrsaRXI0juRrHV3NBy2eTDnghhBDNJs1cQgghmk2KiRBCiGbzqZkWW4Mvv/yS1157DafTyfjx47n11ltNyZGbm8tf/vIXCgoKUEqRlJTEz372M9atW8fmzZsJDTXmoJ8+fTrDhg3zarZ58+YREBCAxWLBz8+PlJQUiouLSU1NJScnh4iICBYsWEBwcLDXMp05c4bU1FTX19nZ2fziF7+gpKTE68drxYoVfPHFF4SFhfHcc88B1Ht8tNa89tpr7N27lw4dOjB37lyPtcPXlesf//gHe/bswWq1EhkZydy5c+nYsSPZ2dksWLDANehf3759mT17ttdyNfR7vn79erZs2YLFYuGee+5h6NChXsuVmprqGkC2tLSUoKAgli1b5tXjVd9ng8d/x7RwW2VlpX7wwQf12bNndUVFhf7Nb36jT506ZUqWvLw8nZmZqbXWurS0VD/00EP61KlTeu3atfqdd94xJVO1uXPn6sLCwhrL/vGPf+j169drrbVev369/sc//mFGNK218XO8//77dXZ2tinH68CBAzozM1M/8sgjrmX1HZ89e/boxYsXa6fTqb/55hv95JNPejXXl19+qR0Ohytjda5z587VWM+T6spV38/t1KlT+je/+Y0uLy/X586d0w8++KCurKz0Wq7Lvf766/qf//yn1tq7x6u+zwZP/45JM1cjHDt2jKioKCIjI7FarYwYMYKMjAxTsnTu3Nn110NgYCDdu3d3ze/iizIyMhgzZgwAY8aMMe24gTERW1RUFBEREabsf+DAgbXOyuo7Prt37+bGG29EKUW/fv0oKSkhPz/fa7mGDBmCn58fAP369TPld6yuXPXJyMhgxIgR2Gw2unbtSlRUFMeOHfN6Lq01O3bs8Og05PWp77PB079j0szVCHl5eTVmguzSpQtHjx41MZEhOzubb7/9lvj4eA4fPszGjRtJT08nNjaWmTNnerU5qdrixYsBmDBhAklJSRQWFtK5c2cAOnXqRGFhodczVbtyIjZfOF71HZ+8vDzCw8Nd63Xp0oW8vDzXut60ZcsWRowY4fo6Ozubxx9/nMDAQJKTkxkwYIBX89T1c8vLy6Nv376udex2uykF8NChQ4SFhdGtWzfXMjOO1+WfDZ7+HZNi0sqVlZXx3HPPcffddxMUFMTEiROZNm0aAGvXrmXVqlXMnTvXq5kWLVqE3W6nsLCQP/7xj7Um01FKoZTyaqZqDoeDPXv2cMcddwD4xPG6kpnHpz5vv/02fn5+jB49GjD++l2xYgUhISEcP36cZcuW8dxzzxEUFOSVPL74c7vclX+wmHG8rvxsuJwnfsekmasR7HY758+fd319/vx57Ha7aXkcDgfPPfcco0eP5ic/+Qlg/MVhsViwWCyMHz+ezMxMr+eqPiZhYWEkJiZy7NgxwsLCXKfO+fn5ro5Tb9u7dy99+vShU6dOgG8cL6De42O322vMiGfG79wnn3zCnj17eOihh1wfQDabjZCQEMC4+S0yMpKsrCyvZarv53bl/9G8vDyvH6/Kykp27dpV4yzO28errs8GT/+OSTFphLi4OLKyssjOzsbhcLB9+3YSEhJMyaK1ZuXKlXTv3p2bb77Ztfzyts5du3YRExPj1VxlZWVcvHjR9Xzfvn307NmThIQEtm7dCsDWrVtJTEz0aq5qV/7FaPbxqlbf8UlISCA9PR2tNUeOHCEoKMirTVxffvkl77zzDk888QQdOnRwLb9w4QJOpxOAc+fOkZWVRWRkpNdy1fdzS0hIYPv27VRUVJCdnU1WVhbx8fFeywVGn1x0dHSNJnFvHq/6Phs8/Tsmd8A30hdffMHrr7+O0+nkpptuYurUqabkOHz4MM888ww9e/Z0/bU4ffp0tm3bxokTJ1BKERERwezZs7364XPu3DmeffZZwPgLbdSoUUydOpWioiJSU1PJzc015dJgMIrb3LlzWb58ueu0/6WXXvL68XrhhRc4ePAgRUVFhIWF8Ytf/ILExMQ6j4/Wmr/97W989dVX+Pv7M3fuXOLi4ryWa/369TgcDtfPqvqS1p07d7Ju3Tr8/PywWCzcfvvtHvvDqq5cBw4cqPfn9vbbb/Pxxx9jsVi4++67ufbaa72Wa9y4cfzlL3+hb9++TJw40bWuN49XfZ8Nffv29ejvmBQTIYQQzSbNXEIIIZpNiokQQohmk2IihBCi2aSYCCGEaDYpJkIIIZpNiokQTfT222+zcuVKr+1v4cKFfPvtty36nrt3764xmrIQTSXDqQhRjxkzZriel5eXY7VasViMv79mz57t1XuMdu/eTUBAAH369GnR901ISODNN9/ku+++o1evXi363qJ9kftMhHDDvHnzeOCBB7jmmmtM2f+SJUsYNWqUa2yslvT222+Tn5/Pfffd1+LvLdoPOTMRoonWrVvH2bNneeihh8jOzubBBx/kV7/6FevWraOsrIzp06cTGxvLypUryc3NZfTo0TU+sLds2cK///1vCgoKiI+PZ/bs2XUOi+9wONi/f3+NyZTWrVvH6dOnsVqt7N69m4iICB599FE+//xz/vd//xebzcacOXMYMmQIYIyv9dZbb3HhwgVCQkJITk52FaaBAwfy0ksvSTERzSJ9JkK0oKNHj/Liiy/y8MMP8/rrr/P222+zcOFCnn/+eXbs2MHBgwcBY96N9evX8+ijj/Lqq6/Sv39/XnzxxTrfMysrC4vFUmOsJ4A9e/Zw44038tprr9GnTx8WL17sGpfptttu45VXXgGMYWRee+01nnrqKVatWsUf//hHevfu7XqfHj16kJOTQ2lpqWcOimgXpJgI0YKmTZuGv78/Q4YMoUOHDowaNYqwsDDsdjv9+/d3daB/9NFH/PznP6dHjx74+fnx85//nBMnTpCTk1PrPUtKSggICKi1vH///gwdOhQ/Pz+GDx/OhQsXuPXWW7FarYwcOZKcnBxKSkoAY8jxkydPUl5eTufOnWsMaFn93lJMRHNIM5cQLSgsLMz13N/fv9bXZWVlAOTk5PDaa6+xatUq1+taa/Ly8mo1dQUHB7u2a2hfoaGhrgsE/P39AeOspEuXLjz88MP8+9//ZuXKlVx11VXMnDmT7t27u9YBvDYXiWibpJgIYYLw8HCmTp3qVod6VFSUq9A0dW6OoUOHMnToUMrLy1mzZg0vv/wyf/jDHwA4ffo0ERERUkxEs0gzlxAmmDBhAhs2bODUqVOA0cS0Y8eOOte1Wq0MHjzY1d/SWAUFBWRkZFBWVobVaiUgIKDGLHsHDx702DDtov2QMxMhTHD99ddTVlbGCy+8QG5uLkFBQQwePJgbbrihzvUnTJjAhx9+yKhRoxq9L6017733HsuXL0cpePW3xgAAAHNJREFURe/evZk1a5br9W3btjF//vwmfy9CgNxnIkSrsXDhQu69994WvXFx9+7dpKen88gjj7TYe4r2SYqJEEKIZpM+EyGEEM0mxUQIIUSzSTERQgjRbFJMhBBCNJsUEyGEEM0mxUQIIUSzSTERQgjRbP8PEcaoAXDvuuMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/examples/expsyn/ExpSyn_arbor.ipynb b/examples/expsyn/ExpSyn_arbor.ipynb index 76644685..7f6f14b0 100644 --- a/examples/expsyn/ExpSyn_arbor.ipynb +++ b/examples/expsyn/ExpSyn_arbor.ipynb @@ -42,7 +42,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We need a Simulator (NEURON), Morphology (one compartment) and two Location objects (the 'somatic' sectionlist and the center of the soma)." + "We need a Simulator (Arbor), Morphology (one compartment) and two Location objects (the 'somatic' sectionlist and the center of the soma)." ] }, { @@ -61,10 +61,9 @@ "somatic_loc = ephys.locations.NrnSeclistLocation('somatic',seclist_name='somatic')\n", "\n", "# Object that points to the center of the soma\n", - "somacenter_loc = ephys.locations.ArbBranchRelLocation(\n", + "somacenter_loc = ephys.locations.ArbLocsetLocation(\n", " name='somacenter',\n", - " branch=0,\n", - " pos=0.5)" + " locset='(location 0 0.5)')" ] }, { @@ -255,7 +254,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'maximum_voltage': 497.76464958177615}\n" + "{'maximum_voltage': 29.690040424145465}\n" ] } ], @@ -301,13 +300,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Best individual: [0.331650919141091]\n", - "Fitness values: (5.578722836445564,)\n" + "Best individual: [14.03202650928813]\n", + "Fitness values: (1.1134864832433067,)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApnklEQVR4nO3de2BU9YH28e+ZTEK4JIGQAEaDEhMEZAUiIMYSFALru+mKC6jBCtWtsjYgXbEtWsH2NUVDAVELeK8FoZVU5YX3bS000DWu3BEvIHRNCgImEHMFAslkZs77R8gUhAwzSWbOJHk+/0zmeh5Ownnm/M7NME3TREREpAk2qwOIiEhoU1GIiIhXKgoREfFKRSEiIl6pKERExCsVhYiIeGW3OkAgFBcXN/u9cXFxlJWVtWKa1qFc/lEu/yiXf9pjroSEhCaf0xqFiIh4paIQERGvVBQiIuKVikJERLxSUYiIiFcqChER8UpFISIiXrXL4yjEf2Z5Kebne6DmFLic4OPZ50937oL77JkAp/OfcvlHufwTqrlqBwyG64a0+ueqKATz6yO4n/0x1NX+40HD8Om9NQHK1FLK5R/l8k+o5qqtKldRSGCY7/8BwsKw/e9l0OsKCLNj+FgU7fEI1UBSLv8ol3+6ByiXiqKDM00T82+fY1yfipHQ1+o4IhKCtDG7o6uuhKoKuHag1UlEJERZvkaRl5fH5s2biY6OBmDq1KmkpqYCsG7dOrZs2YLNZuOBBx5g6NChFiZtp6orADB6xlkcRERCleVFAZCZmckdd9xxwWPHjh1j69atPPfcc1RWVpKTk8MLL7yAzaaVoFZV1VAUxMRam0NEQlbILnV37dpFWloa4eHh9OrViz59+lBYWGh1rHbHrFZRiIh3IbFGsXHjRgoKCkhKSmL69Ol069aNiooKUlJSPK+JjY2loqLiku/Pz88nPz8fgNzcXOLimj+MYrfbW/T+QAlUrtOOWmoMg7ikZAy7/38OHW1+tZRy+Ue5/BOoXEEpipycHKqqqi56PCsriwkTJjBlyhQA1q5dy6pVq8jOzvbr8zMyMsjIyPDcb8nuYaG621ugcrnLyyCyM+WX+P34oqPNr5ZSLv8ol38CdeGioBTF/PnzfXrduHHjWLhwIdCwBlFeXu55rqKigthYDY+0urpaiOhkdQoRCWGWb6OorKz0/Lxz504SExMBGD58OFu3bqW+vp7S0lJKSkpITk62Kmb75ahTUYiIV5Zvo1i9ejWHDx/GMAzi4+OZMWMGAImJidx8883MmTMHm83GD37wA+3xFACmikJELsPyonjkkUeafG7SpElMmjQpiGk6IBWFiFyGvqJ3dHUqChHxTkXR0TnqoFOk1SlEJISpKDo6Rx2G1ihExAsVRUfn0O6xIuKdiqKj08ZsEbkMFUVH56iDTioKEWmaiqIDM00THA4Ij7A6ioiEMBVFR+ZyNdyGWX44jYiEMBVFR+ZuLIowa3OISEhTUXRkLhWFiFyeiqIjczkbbjX0JCJeqCg6Mq1RiIgPVBQdmTZmi4gPVBQdWePQk01rFCLSNBVFR6ahJxHxgYqiI9PQk4j4QEXRkZ07jsLQGoWIeGH5V8m8vDw2b95MdHQ0AFOnTiU1NZXPPvuMNWvW4HQ6sdvtTJs2jcGDB1uctp3R7rEi4oOQWEJkZmZyxx13XPBYVFQUc+fOJTY2liNHjrBgwQJeeeUVixK2U56hJ61YikjTQqIoLqVfv36enxMTE3E4HNTX1xMeHm5hqnZGaxQi4oOQWEJs3LiRgoICkpKSmD59Ot26dbvg+R07dpCUlNRkSeTn55Ofnw9Abm4ucXFxzc5it9tb9P5ACUSuuuJuVAExsbFENPOzO9L8ag3K5R/l8k+gchmmaZqt/qnfkpOTQ1VV1UWPZ2VlkZKS4tk+sXbtWiorK8nOzva85ujRo/zqV7/iySefpE+fPj5Nr7i4uNlZ4+LiKCsra/b7A6U1cpn19VBZBs56cLsxCw9grnkJ2+O/wrh2gGW5AkG5/KNc/mmPuRISEpp8LihrFPPnz/fpdePGjWPhwoWe++Xl5SxevJiZM2f6XBJyae6//gnzD7+BesfFT0Z2Dn4gEWkzLB96qqyspEePHgDs3LmTxMREAGpqasjNzeXee+9lwIDmfduVBmZ5Keba1yDleoxRt0FEBEbj0didu0BCX2sDikhIs7woVq9ezeHDhzEMg/j4eGbMmAHAn//8Z44fP84777zDO++8A8C8efOIiYmxMm6bZO77GFwubN/7IUafK62OIyJtjOVF8cgjj1zy8cmTJzN58uQgp2mnig5AdHfo3fQYpIhIU7QDfQdgfnMCrkjEMAyro4hIG6Si6AhOVmJEd7c6hYi0USqKjqC6CmJ6WJ1CRNooFUU7Z9aehbqzEK2iEJHmUVG0dyerGm419CQizaSiaO/qagEwOuugOhFpHhVFe+eoa7iN6GRtDhFps1QU7V1jUYSrKESkeVQU7Z3j3LmdtEYhIs2komjnTA09iUgLqSjaO09RRFibQ0TaLBVFe1evNQoRaRkVRXunoScRaSEVRXvn2etJQ08i0jwqivbO4YCwMAy75WeUF5E2SkXR3jnqNOwkIi1i+dfMvLw8Nm/eTHR0NABTp04lNTXV83xZWRmPPvood911F3fccYdVMdsuR52GnUSkRSwvCoDMzMwmS2DlypUMGzYsyInaEZcL7OFWpxCRNiwkiqIpO3fupFevXnTqpKGTZnM5ISzM6hQi0oaFRFFs3LiRgoICkpKSmD59Ot26daO2tpb169czf/58NmzY4PX9+fn55OfnA5Cbm0tcXFyzs9jt9ha9P1Cam6sq3I4zIiJg/6b2Nr8CTbn8o1z+CVSuoBRFTk4OVVVVFz2elZXFhAkTmDJlCgBr165l1apVZGdnk5eXR2ZmJpGRkZf9/IyMDDIyMjz3y8rKmp01Li6uRe8PlObmcp05A2bL5ok37W1+BZpy+Ue5/NOSXAkJCU0+F5SimD9/vk+vGzduHAsXLgSgsLCQHTt2sGbNGmpqajAMg4iICG6//fZARm1/XC4NPYlIi1g+9FRZWUmPHg2X6dy5cyeJiYkAPP30057X5OXlERkZqZJoDpcLbCoKEWk+n4qirKyMr776ipqaGrp27crVV1/dauNgq1ev5vDhwxiGQXx8PDNmzGiVz5VzXE7QwXYi0gJNLkGcTif5+fn85S9/obS0lD59+hAZGUltbS3Hjx+nV69ejB8/noyMDOwtWBA98sgjl33N3Xff3ezP7/DcbrDpuEoRab4ml/A/+clPGDx4MDNmzCAlJQXbeQsbt9tNYWEhH374IT/96U957rnnghJWmsHl1HEUItIiTRbFL37xC2JiYi75nM1mo3///vTv35+TJ08GLJy0ApcLOl1+zzERkaY0OSYRExPDxo0bqamp8foBjafekBCljdki0kJeNy5s2bKFVatWMWzYMG699VZSU1MvGIKSNsDlhDBtzBaR5vO6BFm4cCFHjhyhoKCAN954g1deeYW0tDTGjBlDUlJSsDJKS7jdEKZyF5Hmu+xXzb59+3Lffffxve99j88//5yCggJ+8YtfEB8fz5gxY3RG11DncmJojUJEWsDnr5qGYXDDDTcwa9Ys5s6dS21tLWvWrAlkNmkN2kYhIi3k81fNiooKCgoKKCgooLy8nJtuuolbb701gNGkVegUHiLSQl6Loq6uju3bt1NQUMAXX3zBoEGDuPPOO7npppt06u8QY9bXY/5xLeYXn0Dt2YaN2KYJ1ZUqChFpEa9F8eCDDxIXF0d6ejrZ2dn07NkzWLnET+b/exvzT3+A/tdDbFzDdgnDgGsHYKSNszqeiLRhXoviqaeeIiUlJVhZpJlM08Qs2AipaYT98HGr44hIO+O1KM4viQMHDnDo0CFqa2sveM2kSZMCk0x8V1oCp09iXD/U6iQi0g75tDH7N7/5Ddu2bWPAgAFERER4HjcMI2DBxA9fHwbAuDrZ2hwi0i75VBQffvghS5YsITY2NtB5pBnM6qqGH7prG5KItD6fjqOIi4sjPFxnIA1ZJ6saNlx303m3RKT1+bRG8fDDD/PKK69wyy23XHRG2UGDBgUkmPjhZBV0i8bQbrAiEgA+FcXf//539u7dy4EDBy7YRgHw0ksvtShAXl4emzdv9pyFdurUqaSmpgLw1Vdf8eqrr3L27FkMw+DZZ5+9aPoC5skqiO5udQwRaad8Korf//73zJ07lxtuuCEgITIzMy86Z5TL5eLXv/41s2bN4pprruHUqVMtupJeu3a6WsNOIhIwPm2j6NSpU9CHmD799FP69u3LNddcA0BUVJROcd4URx1E6Eh5EQkMn76i33PPPfz2t79lypQpF12oqDUW3hs3bqSgoICkpCSmT59Ot27dKCkpwTAMFixYwMmTJ0lLS2PixIktnla75HBgqChEJEAM0zTNy73onnvuafK5tWvXXnYiOTk5VFVVXfR4VlYWKSkpnvJZu3YtlZWVZGdns2HDBjZu3Mizzz5Lp06dePrpp8nKyuKf/umfLvqc/Px88vPzAcjNzcXhcFw2U1PsdjtOp7PZ7w8Ub7m+mTGJiOuHEfOj+UFO1Tbnl5WUyz/K5Z+W5PK2/denNYply5Y1a8KN5s/3bQE2btw4Fi5cCEDPnj0ZOHCgp0SGDRvGoUOHLlkUGRkZZGRkeO6XlZU1O2tcXFyL3h8o3nK5a89S5zYtyd0W55eVlMs/yuWfluRKSEho8jmfiiI+Pr5ZE/ZFZWUlPXr0AGDnzp0kJiYCMGTIEDZs2EBdXR12u50DBw6QmZkZsBxtmsMB2htMRAKkyaJYuXIlEydOpHv37k2+uaqqivXr1/P973+/2QFWr17N4cOHMQyD+Ph4ZsyYAUC3bt3IzMzkiSeewDAMhg0b5tltVr6lvg7CVRQiEhhNFkVCQgJPPPEEV111FQMHDiQhIYHOnTtz9uxZSkpK+OKLLyguLm7xSQEfeeSRJp9LT08nPT29RZ/f3plOZ8N1sbUxW0QCpMmiGD9+PLfddhu7d+9m79697Nq1izNnztC1a1f69u3L+PHjufHGGwnT0cDWqj+34V5DTyISIF63UdjtdkaNGsWoUaOClUf8VV/XcBuuNQoRCQwdwdbWObRGISKBpaJo6xyNaxQqChEJDBVFW3duG4WOzBaRQFFRtHX19Q23dl0vREQCw+fTsX799dds27aNqqoqHnzwQb7++mucTidXX311IPPJ5bhdDbfa+0xEAsSnNYpt27bx85//nIqKCj788EMAamtrWbVqVUDDiQ9cKgoRCSyf1ijy8vKYN28e11xzDdu2bQPg6quv5vDhw4HMJr5oLAqbikJEAsOnNYrq6uqLhpgMw8AwjICEEj94hp50UScRCQyfiiIpKYmCgoILHvvoo49ITk4OSCjxg2foSfsliEhg+PQ19IEHHuCXv/wlW7Zsoa6ujgULFlBcXMy8efMCnU8ux62hJxEJLJ+K4sorr+T5559nz5493HjjjfTs2ZMbb7yRyMjIQOeTyzBdGnoSkcDyeenSqVMn0tLSAplFmkNDTyISYD4VxVNPPXXJDdd2u52ePXsycuRIhg8f3urhxAcaehKRAPPpa+igQYMoLS1l4MCBjB49moEDB/LNN99w7bXXEhMTw0svvcT69esDnVUuRUNPIhJgPi1dPvvsM5588kmuuuoqz2OjR49m+fLlPPPMM9x000288MILTJw4MWBBpQkaehKRAPOpKL7++mt69+59wWPx8fEUFxcDkJycTFVVVbMC5OXlsXnzZqKjowGYOnUqqampOJ1OXn75ZQ4dOoTb7SY9PZ1/+7d/a9Y02jUNPYlIgPlUFAMHDmTFihXcc889xMbGUlFRQV5eHgMGDADgyJEj9OjRo9khMjMzueOOOy54bPv27TidTpYsWUJdXR1z5szhlltuoVevXs2eTrukoScRCTCfli6zZs3i9ddf59FHH8XtdhMWFsbIkSPJzs5u+BC7nR/96EetHq62thaXy4XD4cBut9OlS5dWn0abpzUKEQkwwzRN09cXu91uTp48SXR0NDZb64yJ5+Xl8cEHH9C5c2eSkpKYPn063bp1w+l0smzZMj7//HMcDgff//73ycjIuORn5Ofnk5+fD0Bubi6Oxqu+NYPdbsfpdDb7/YHSVK7Tf/gtNb97lV55H2CEB/9U421tfllNufyjXP5pSa4IL1fJ9Ksozp49y6lTpzj/Ld/ednEpOTk5l9yGkZWVRUpKimf7xNq1a6msrCQ7O5uDBw+yadMmsrOzqamp4amnnuJnP/uZT9Nr3HbSHHFxcZSVlTX7/YHSVC73ht9j/t/fY3vl/2C0Unm3Ri6rKZd/lMs/7TFXQkJCk8/5NPR07NgxXnzxRb766quLnlu7du1l3z9//nxfJsO4ceNYuHAhAP/93//N0KFDsdvtxMTEcN1111FUVORTUbRXZr0D9u/FrKrwXNnOLDoAhs2SkhCRjsGnonj99de5/vrr+fnPf86sWbNYvnw5v/vd7+jfv3+LA1RWVno2hO/cuZPExESgoRn37dtHeno6tbW1fPnll2RmZrZ4em2VWV+PO3cuHCm6+MleVwQ/kIh0GD4VxVdffcW8efOw2+2YpkmXLl247777eOyxx0hPT29RgNWrV3P48GEMwyA+Pp4ZM2YAcPvtt7NixQrmzJmDaZrcdtttHfpqerUFG+FIEca0mRg3jICICODc0fK6XraIBJBPRREeHo7L5cJutxMVFUVZWRldu3bl9OnTLQ7wyCOPXPLxyMhI5syZ0+LPby8c+z6GmB4YoyfoOiAiElQ+FcWAAQPYtm0bt956K6NGjeKZZ54hPDyc66+/PtD55Jz6L7+Afv1VEiISdD4Vxfnf7KdOnUpiYiK1tbWMGTMmYMHkH0zTxH2iBGPwjVZHEZEOyKddZTZs2PCPN9hspKenM2HCBP7yl78ELJic5+wZcNZDdHerk4hIB+RTUbz77rt+PS6t7HR1w21Ud0tjiEjH5HXoad++fUDDEdmNPzc6ceIEnTt3Dlwy+YeTDUVhREVbHEREOiKvRfHSSy8B4HA4PD8DGIZB9+7d+fd///fAppMGp7RGISLW8VoUy5cvB2DZsmXMmjUrKIHkYmbNqYYfukVZG0REOiSftlGoJCx27nQdOrBORKzQ5BrFD3/4Q58+4PwhKQmQxrPhWnB2WBGRJouiqSOmxQL1dQ234VqjEJHga7IoBg0aFMwc4k19PYSFYYTp4kQiEnw+HZntdDp57733KCgo8JztNT09nUmTJmG36xKcAedwYGhtQkQs4tNSfvXq1RQVFfHQQw8RHx/PN998w7vvvsuZM2e4//77AxxRqK87d7ZYEZHg86kotm/fzqJFi4iKatg9MyEhgX79+vGTn/xERREM9fUYnbRGISLW8Gn3WD+uliqBUK+hJxGxjk9rFDfffDMLFy5kypQpnmuyvvvuu9x8882BzieA6ajDiOiE6lpErOC1KNxuNzabjfvuu493332XN954g8rKSmJjY0lLS2Py5MmtEuL9999n48aN2Gw2UlNTue+++wBYt24dW7ZswWaz8cADDzB06NBWmV6bU1+PERGhohARS3gtiocffpj09HTS09O55557uOeee1o9wL59+9i9ezeLFi0iPDyc6uqG8xodO3aMrVu38txzz1FZWUlOTg4vvPACNptPo2XtS30ddIq0OoWIdFBel7oPPfQQpaWlPPHEE8ydO5c//elPnDx5slUDbNq0iYkTJxJ+7qjjmJgYAHbt2kVaWhrh4eH06tWLPn36UFhY2KrTbjMcDgydvkNELOJ1jWLEiBGMGDGCmpoatm7dSkFBAatXr2bIkCGMGTOG4cOHt/g4ipKSEg4ePMjbb79NeHg406ZNIzk5mYqKClJSUjyvi42NpaKi4pKfkZ+fT35+PgC5ubnExcU1O4/dbm/R+wOh3HRj69SJHiGWC0JzfoFy+Uu5/NPRcvm0lO/atSvjx49n/PjxnDhxgg8//JCVK1fy2muv8cYbb1z2/Tk5OVRVVV30eFZWFm63m9OnT7NgwQKKiopYunQpy5Yt8+sfkZGRQUZGhud+WVmZX+8/X+PG+lDictQRFhYWcrkgNOcXKJe/lMs/7TFXQkJCk8/5tTrgdDopKiriyy+/pLq6muuuu86n982fP7/J5zZt2sTIkSMxDIPk5GRsNhunTp0iNjaW8vJyz+sqKiqIjY31J2774XJh2HT6DhGxhk9FcfDgQT744AO2b99OdHQ0o0eP5sEHHyQ+Pr7FAUaMGMH+/fsZPHgwxcXFOJ1OoqKiGD58OC+++CLf/e53qayspKSkhOTk5BZPr01yuSBMp0oREWt4Xfrk5eXx4Ycfcvr0aUaNGsXcuXMZMGBAqwYYO3YsK1as4LHHHsNutzNz5kwMwyAxMZGbb76ZOXPmYLPZ+MEPftAx93gCcLtAJwQUEYt4LYrCwkKysrIYMWIEEQE615Ddbmf27NmXfG7SpElMmjQpINNtU1wuDK1RiIhFvC59fvaznwUrh3jjdmuNQkQs00HHctoYt0vXohARy6go2gKXC7TXk4hYREXRFmhjtohYSEXRFrjcGnoSEcuoKEKc6XaDqY3ZImIdFUWoc7sbbrWNQkQsoqIIdW4XgIaeRMQyKopQd64oNPQkIlZRUYQ6V8PQk04KKCJWUVGEOpez4Van8BARi6goQp2GnkTEYiqKUNc49KQ1ChGxiJY+IcQ8ewbz/63FPPwl1J5tOH7CeW7oqaOeYl1ELKeiCCHulS/Cx9vh2usgpoenHIyEvkQMHkaNxflEpGNSUYQIs7oS9mzF+F9TsE2aftHzYXFxEILX6BWR9k/jGaHicCEAxuAbLQ4iInKhkFijeP/999m4cSM2m43U1FTuu+8+PvvsM9asWYPT6cRutzNt2jQGDx5sddSAMY8WgWFA335WRxERuYDlRbFv3z52797NokWLCA8Pp7q6GoCoqCjmzp1LbGwsR44cYcGCBbzyyisWpw2gynLoFo0R2cXqJCIiF7C8KDZt2sTEiRMJDw8HICYmBoB+/f7xzToxMRGHw0F9fb3nde2NefokdIu2OoaIyEUsL4qSkhIOHjzI22+/TXh4ONOmTSM5OfmC1+zYsYOkpKQmSyI/P5/8/HwAcnNziYuLa3Yeu93eovc3V0XtGYiNI7aJaVuV63KUyz/K5R/l8k+gcgWlKHJycqiqqrro8aysLNxuN6dPn2bBggUUFRWxdOlSli1bhmEYABw9epQ1a9bw5JNPNvn5GRkZZGRkeO6XtWDvoLi4uBa9v7lclRWQkNjktK3KdTnK5R/l8o9y+acluRISEpp8LihFMX/+/Caf27RpEyNHjsQwDJKTk7HZbJw6dYro6GjKy8tZvHgxM2fOpE+fPsGIap1T1Rjdrrc6hYjIRSzfPXbEiBHs378fgOLiYpxOJ1FRUdTU1JCbm8u9997LgAEDLE4ZWKZpQs1p6KptFCISeizfRjF27FhWrFjBY489ht1uZ+bMmRiGwZ///GeOHz/OO++8wzvvvAPAvHnzPBu72xWXs+F0HRERVicREbmI5UVht9uZPXv2RY9PnjyZyZMnW5DIAg5Hw21EJ2tziIhcguVDTwI4zxVFO931V0TaNhVFKKivb7gN19CTiIQeFUUoqD+3RmHXGoWIhB4VRSg4t0ZhaI1CREKQiiIUOOoablUUIhKCVBShwHluG4V2jxWREKSiCAXaRiEiIUxFEQq015OIhDAVRQgwG9coVBQiEoJUFKGgXgfciUjoUlGEAq1RiEgIU1GEAs82Cq1RiEjoUVGEApez4TbM8nM0iohcREURClyuhltbmLU5REQuQUURCkx3w22Yfh0iEnq0ZAoFrnNFYejXISKhJySWTO+//z7/+Z//yZw5c1i9evUFz5WVlTFt2jQ2bNhgUbogcLsgLAzDMKxOIiJyEcu3nu7bt4/du3ezaNEiwsPDqa6uvuD5lStXMmzYMIvSBYnLpe0TIhKyLC+KTZs2MXHiRMLP7Rp6/jWxd+7cSa9evejUqZ1fItStohCR0GV5UZSUlHDw4EHefvttwsPDmTZtGsnJydTW1rJ+/Xrmz59/2WGn/Px88vPzAcjNzSUuLq7Zeex2e4ve3xwnIyKoDQvzOl0rcvlCufyjXP5RLv8EKldQiiInJ4eqqqqLHs/KysLtdnP69GkWLFhAUVERS5cuZdmyZeTl5ZGZmUlkZORlPz8jI4OMjAzP/bKysmZnjYuLa9H7m8N9pgbTZnidrhW5fKFc/lEu/yiXf1qSKyEhocnnglIU8+fPb/K5TZs2MXLkSAzDIDk5GZvNxqlTpygsLGTHjh2sWbOGmpoaDMMgIiKC22+/PRiRg8vl1tCTiIQsy4eeRowYwf79+xk8eDDFxcU4nU6ioqJ4+umnPa/Jy8sjMjKyfZYEaBuFiIQ0y4ti7NixrFixgsceewy73c7MmTM73m6irobdY0VEQpHlRWG325k9e7bX19x9991BSmMRtwtsIXFIi4jIRbR0CgVut9YoRCRkqShCgOly6fQdIhKytHQKBVqjEJEQpqIIBdrrSURCmIoiFLi115OIhC4VRShwaa8nEQldlu8eGyrMY4dxv7qIMrsdl9MZ3ImXl8LV1wZ3miIiPlJRNIqIgIRE7BGdcDnqgjvthESMG78T3GmKiPhIRXGO0SuBsIcfp3uInuxLRMQqGhgXERGvVBQiIuKVikJERLxSUYiIiFcqChER8UpFISIiXqkoRETEKxWFiIh4ZZimaVodQkREQpfWKL7l8ccftzrCJSmXf5TLP8rln46WS0UhIiJeqShERMQrFcW3ZGRkWB3hkpTLP8rlH+XyT0fLpY3ZIiLildYoRETEKxWFiIh4pQsXnfPJJ5/w5ptv4na7GTduHHfeeaclOcrKyli+fDlVVVUYhkFGRgb/8i//Ql5eHps3byY6OhqAqVOnkpqaGtRsM2fOJDIyEpvNRlhYGLm5uZw+fZqlS5fyzTffEB8fz6OPPkq3bt2Clqm4uJilS5d67peWlnL33XdTU1NjyfxasWIFH3/8MTExMSxZsgSgyXlkmiZvvvkme/fupVOnTmRnZ5OUlBSUTG+99RZ79uzBbrfTu3dvsrOz6dq1K6WlpTz66KMkJCQAkJKSwowZM1o9k7ds3v7W161bx5YtW7DZbDzwwAMMHTo0aLmWLl1KcXExAGfOnKFLly4sWrQoaPOsqWVDUP6+TDFdLpc5a9Ys8/jx42Z9fb354x//2Dx69KglWSoqKsyioiLTNE3zzJkz5uzZs82jR4+aa9euNdevX29JpkbZ2dlmdXX1BY+99dZb5rp160zTNM1169aZb731lgXJGrhcLvPBBx80S0tLLZtf+/fvN4uKisw5c+Z4HmtqHu3Zs8dcsGCB6Xa7zb/97W/mE088EbRMn3zyiel0Oj35GjOdOHHigtcF2qWyNfW7O3r0qPnjH//YdDgc5okTJ8xZs2aZLpcraLnOt3LlSvMPf/iDaZrBm2dNLRuC8feloSegsLCQPn360Lt3b+x2O2lpaezatcuSLD169PC0fufOnbnyyiupqKiwJIsvdu3axZgxYwAYM2aMZfMN4PPPP6dPnz7Ex8dblmHQoEEXrVE1NY92795Neno6hmHQv39/ampqqKysDEqmIUOGEBYWBkD//v0t+xu7VLam7Nq1i7S0NMLDw+nVqxd9+vShsLAw6LlM02Tbtm3ccsstAZl2U5paNgTj70tDT0BFRQU9e/b03O/ZsydffvmlhYkalJaWcujQIZKTkzl48CAbN26koKCApKQkpk+fHtQhnkYLFiwAYPz48WRkZFBdXU2PHj0A6N69O9XV1UHP1Oijjz664D9vKMwvoMl5VFFRQVxcnOd1PXv2pKKiwvPaYNmyZQtpaWme+6Wlpfz0pz+lc+fOZGVlMXDgwKDmgUv/7ioqKkhJSfG8JjY21pKCO3DgADExMVxxxRWex4I9z85fNgTj70tFEaJqa2tZsmQJ999/P126dGHChAlMmTIFgLVr17Jq1Sqys7ODmiknJ4fY2Fiqq6v55S9/6RmTbWQYBoZhBDVTI6fTyZ49e7j33nsBQmJ+XYqV8+hS3nvvPcLCwhg9ejTQ8K11xYoVREVF8fe//51FixaxZMkSunTpErRMofq7a/TtLyTBnmffXjacL1B/Xxp6ouGbSXl5ued+eXk5sbGxluVxOp0sWbKE0aNHc9NNNwEN3xRsNhs2m41x48ZRVFQU9FyN8yQmJoYRI0ZQWFhITEyMZ3W2srLSswEy2Pbu3Uu/fv3o3r07EBrzq1FT8yg2NpaysjLP64L9d/df//Vf7Nmzh9mzZ3sWLuHh4URFRQGQlJRE7969KSkpCVomaPp39+3/pxUVFUH/f+pyudi5c+cFa2DBnGeXWjYE4+9LRQFce+21lJSUUFpaitPpZOvWrQwfPtySLKZp8vLLL3PllVfy3e9+1/P4+WOLO3fuJDExMai5amtrOXv2rOfnzz77jL59+zJ8+HA++OADAD744ANGjBgR1FyNvv0tz+r5db6m5tHw4cMpKCjANE3+53/+hy5dugRt2OmTTz5h/fr1zJ07l06dOnkeP3nyJG63G4ATJ05QUlJC7969g5KpUVO/u+HDh7N161bq6+spLS2lpKSE5OTkoGb7/PPPSUhIuGCoOljzrKllQzD+vnRk9jkff/wxK1euxO12c9tttzFp0iRLchw8eJCnnnqKvn37er7lTZ06lY8++ojDhw9jGAbx8fHMmDEjqGPZJ06cYPHixUDDt6rvfOc7TJo0iVOnTrF06VLKysos2T0WGoorOzubZcuWeVbFf/3rX1syv55//nm++OILTp06RUxMDHfffTcjRoy45DwyTZM33niDTz/9lIiICLKzs7n22muDkmndunU4nU7P76pxl87t27eTl5dHWFgYNpuNu+66K6Bfmi6Vbf/+/U3+7t577z3++te/YrPZuP/++xk2bFjQco0dO5bly5eTkpLChAkTPK8N1jxratmQkpIS8L8vFYWIiHiloScREfFKRSEiIl6pKERExCsVhYiIeKWiEBERr1QUIt8yZ84c9u/fH5RpHTt2jMcff5zW3vlw8eLF7N27t1U/UzouncJDOpxp06Z5fnY4HNjtdmy2hu9MM2bM4Lnnngtalrfffpt//dd/bfXTLtx555289tprATvOQDoWFYV0OG+99Zbn55kzZ/If//Ef3HDDDUHPUVlZyf79+5k9e3arf3ZycjJnz56lqKgoIAfxSceiohD5lvPLIy8vj2PHjmG329m9ezfx8fE89thj7Nixgz/+8Y+Eh4fz8MMPM2TIEKDhgjYrV65k7969GIbBbbfdxt133+1ZYznfZ599RlJSEhERERdM+5//+Z8pKCjgxIkTpKWlMXXqVFasWMHBgwdJSUnxHHnrcDh4+eWX+eSTT3C73VxxxRXMnTvXc76rQYMG8fHHH6sopMW0jULkMvbs2UN6ejpvvvkm/fr1Y8GCBZ7z7kyePJlXX33V89rly5cTFhbGiy++yK9+9Ss+/fRTNm/efMnPPXLkyAWnqm60Y8cO5s2bxwsvvMCePXt49tlnmTp1Kq+//jput5v3338faDivz5kzZ3jppZf4zW9+w0MPPXRB6Vx11VV89dVXrTw3pCNSUYhcxoABAxg6dChhYWGMGjWKkydPcuedd2K327nlllv45ptvqKmpoaqqir1793L//fcTGRlJTEwMmZmZbN269ZKfW1NTQ+fOnS96/Pbbb6d79+7ExsYyYMAAkpOT6devHxEREYwcOZJDhw4BEBYWxunTpzl+/Dg2m42kpKQLTjsdGRlJTU1NYGaKdCgaehK5jJiYGM/PERERREdHe4aSGr/B19bWUllZicvluuB6yaZpXnCm0fN169bNc0Zeb9P79v26ujoA0tPTKS8v5/nnn+fMmTOMHj2arKws7Ha7J1PXrl2b+88W8VBRiLSSnj17YrfbeeONNzyXGfWmb9++ntNDN4fdbueuu+7irrvuorS0lGeffZaEhATGjh0LNOx6e/XVVzf780UaaehJpJX06NGDIUOGsGrVKs6cOYPb7eb48eN88cUXl3z9DTfcwKFDh3A4HM2a3r59+zhy5Ahut5suXbpgt9sv2M32wIED2j1WWoXWKERa0axZs1izZg1z5szh7Nmz9O7dm4kTJ17ytd27d2fw4MHs3r37gium+aqqqorXXnuNiooKIiMjufnmm0lPTwegsLCQyMjIoF/YR9onXY9CxELHjh1j+fLlPPPMM6160N3ixYsZO3YsqamprfaZ0nGpKERExCttoxAREa9UFCIi4pWKQkREvFJRiIiIVyoKERHxSkUhIiJeqShERMSr/w9ijy0e2/+1RgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEJCAYAAABR4cpEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABAkElEQVR4nO3deXxU5d3//9c1MwlkX0hICCRAFmQVpQmylEUI9P6VVimihgo89K4iNwi9gSq1CnfvGxFoRNAKUqv1K2ILqYraxYKBSqyABASVrcomIIEQspA9mcz1++MkQ0IWss0S5vN8PPKYmTPnzLwzSc4n13Wdcx2ltdYIIYQQbWBydQAhhBAdnxQTIYQQbSbFRAghRJtJMRFCCNFmUkyEEEK0mRQTIYQQbWZxdQBXunDhQqu2CwsLIycnp53TtJ3kahnJ1XLumk1ytUxbckVFRTW4XFomQggh2kyKiRBCiDaTYiKEEKLNpJgIIYRoM7cYgE9LS2PHjh0EBgYCMG3aNIYMGQLA1q1b2blzJyaTiYceeojbbrut3vbZ2dmsXbuWwsJCYmNjmTdvHhaLW3xrQgjhEdxmjztp0iTuuuuuOsvOnz/P7t27ef7558nLy2PZsmW88MILmEx1G1SbNm1i0qRJjBw5kldeeYWdO3cyceJEZ8YXQgiP5tbdXJmZmYwYMQIvLy+6du1KZGQkJ06cqLOO1pojR44wbNgwAMaOHUtmZqYr4gohhMdym5bJtm3byMjIIDY2lpkzZ+Lv709ubi4JCQn2dUJDQ8nNza2zXWFhIb6+vpjN5kbXqZGenk56ejoAK1euJCwsrFVZLRZLq7d1JEfnqsrJpjzzE3zG/wjl3cltcrWW5Go5d80muVrGEbmcVkyWLVtGfn5+veUpKSlMnDiRqVOnArBlyxY2btzInDlz2j1DcnIyycnJ9setPWnnZjwRqTmq1q2EQ3spyvoO010/dZtcrSW5Ws5ds0mulnHESYtOKyZLlixp1nrjx49n1apVgNHKuHLliv253NxcQkND66wfEBBASUkJVVVVmM3mBtcRbae1hn9/Zdzf80/0j6ehlHJxKiGEu3CLMZO8vDz7/X379hEdHQ1AYmIiu3fvprKykuzsbLKysoiPj6+zrVKKAQMGsHfvXgA+/vhjEhMTnRfeU+TnQmkxdO8JOZfgcparEwkh3IhbjJls2rSJM2fOoJQiPDycWbNmARAdHc3w4cNZuHAhJpOJn/3sZ/YjuVasWMGjjz5KaGgoDzzwAGvXrmXz5s307t2bcePGufLbuTllnQNAjf4B+k+voL85huracHNXCOF53KKYzJs3r9HnpkyZwpQpU+otf/LJJ+33IyIiWLFihUOyCYMuMFqPqv/taL8AOHEURo53cSohhLtwi24u0QEUFhi3gUHQMw599pRr8wgh3IoUE9E8RVfBZAIfP1R0b7jwLdpqdXUqIYSbkGIimqfoKvgHGkdwRceC1QoXz7k6lRDCTUgxEc2iq4sJgIqJNZadPe3KSEIINyLFRDRPcSH4Bxj3I6LA2xvOSTERQhikmIjmKSuFTj4AKJMZuvdCn5NBeCGEQYqJaJ7yclSnzvaHKioGLpx1YSAhhDuRYiKap7wMOtWa3DEqBgoL0DWHDAshPJoUE2Gny8upemYhVeueNebiqq2izN7NBdUtE5DWiRACkGIiaju8H749AYf2wvEv6z5XXl63ZdK9JwBaiokQAikmohZ9pvrCYxYL+vM915ZbK6HKCt7XxkwIDgUfP2mZCCEAN5mbS7gHfTkLIrpD127o2i2T8nLjtvYAvFLQPQb93bdOTimEcEfSMhHXZGdB126o+H5w8bxxoiIYg+9Qt5uLmiO6ztUfXxFCeBwpJuKa3BxUl66ouH7G45P/Nm4rqotJ7W4uMI7oKi6Eq/lOiyiEcE9STAQA2lYFJUXGlCm9EsBkQp+qLibV3Vyqc91iYj+iS7q6hPB4UkyEobQEtAY/f1SnTtAt+toZ7pXVYyZedbu56G4UEzmiSwjh8gH4tLQ0duzYQWCgMYngtGnTGDJkCF9++SVvvfUWVqsVi8XCjBkzGDhwYLO3Fy1UXGjc+hnzb6no3ujjxjXfqZlq3uJVd5uAYKMlI8VECI/n8mICMGnSJO666646ywICAli8eDGhoaGcPXuW5cuX87vf/a7Z24sWKi4CQPn5G4+je8Pej40z3K2VxjJL3V8XpRRExUjLRAjhvt1cvXv3JjQ0FDCuBV9RUUFlZaWLU93E6rVMjGnmOXe6VjHxqrdZzRxdckSXEJ7NLVom27ZtIyMjg9jYWGbOnIm/v3+d5z/77DNiY2Px8qq/M2vO9jXS09NJT08HYOXKlYSFhbUqr8ViafW2jtSWXKUmxVUgpHsPLGFh2AYnchnwzc3GHB5JARASFoblutcvuaU/hR//nVBlwxwW0e65HElytZy7ZpNcLeOIXE4pJsuWLSM/P7/e8pSUFCZOnMjUqVMB2LJlCxs3bmTOnDn2dc6dO8dbb73FU0891eBr32j72pKTk0lOTrY/zsnJadX3ExYW1uptHaktuWyXswHIKytH1bxGaBjFx7+yt0jyioqvPVdNBxqtx9zDh1ADv9fuuRxJcrWcu2aTXC3TllxRUVENLndKMVmyZEmz1hs/fjyrVq2yP75y5QrPPfccc+fOJTIyssFtgoODG91etEBF9RFb3rWO2IqORZ89hep7q/HY0sCvS9S1I7oaKyZCiJufy8dM8vLy7Pf37dtHdHQ0AMXFxaxcuZKf/vSn9O3bt8XbixYqr39ioureCy59B2UlxoKGxkz8AyEoBL6TQXghPJnLx0w2bdrEmTNnUEoRHh7OrFmzAPjHP/7BxYsXefvtt3n77bcBePrppwkKCmLDhg1MmDCBuLi4RrcXLVRRDmYzqnbro0cvsNng3BnjcQPFBJAjuoQQri8m8+bNa3D5Pffcwz333NPgc7Nnz77h9qKFKsrrdnEBqkdPNKC/vTabcENUVAz6k+1omw1lcnljVwjhAvKXLwwV5fXn3uoaZbRGLpwzHjfWMune09j+SrZjMwoh3JYUE2EoLwdv7zqLlNkMUdGgbaAUNNLqUNUXyuK7Mw4OKYRwV1JMBAC6gW4uqFUoLF7GGe8NiYoBpdDnzzguoBDCrUkx8TC6pBjb9q3oq3l1n6goq3PxK7vuvYzbxrq4ANXZB8Ii4LzMHiyEp5Ji4mH0B39E//l1bK+trftEYy2THr2MO40Mvtt174WWbi4hPJYUEw+jj31h3Dl6EH354rUnGikm1Ormaorq0QsuZRndZUIIjyPFxIPo0hK4cBY1Yrzx+PDn156sqEB5edffKCgE/ANu2DJRPXoaA/VZ59ozshCig5Bi4klyLxu3A4dAaDj6+BfXnquyQgMTaSqljHGTG7RMalowWsZNhPBILj9pUThRnjGxmwoJg363og9+du1EQ6sVzA3/OpimzLw2RX1junYDL285PFgIDyUtEw+i864Yd0LCIGGgcc33SxeMZdbKxs9wj70FNSixyddWJrMxrYocHiyER5Ji4knycoyTD4NCUL0SANCnvzaes1pv3JV1A6p7T/hOurmE8ERSTDxJUSH4+BqTOXbrDp184Ex1MalqvGXSbD16wdV89NX8tiYVQnQwUkw8SWkJ+PgB1d1SveLRp78xnrNawdwOLROQ1okQHkiKiQfRpcX2YgIYXV3nTxvnhths7dMyATl5UQgPJMXEk5QWg6+v/aHq3cdokZypbp20sZiowGAICAIZhBfC40gx8SQldVsm9IwDQJ/6t/G4jQPwAPToJeeaCOGBXH6eSVpaGjt27CAwMBCAadOmMWTIELKzs1mwYIH94vUJCQkNXkWxqKiINWvWcPnyZcLDw1mwYAH+/v5O/R46jNISVO1i0qUr+PrXKiZt/3VQ3Xuhd32ItlUZ4zJCCI/g8mICMGnSJO666656yyMjI0lNTW1y2/fee49BgwYxefJk3nvvPd577z2mT5/uqKgdW2kx+NYaM1HKaJ3UFJNGTlpskR49obICsi9CZPe2v54QokPo8N1cmZmZjBkzBoAxY8aQmZnp4kTuSWsNpaXQ2bfOchUdCwXV09G3R8ukZpbh86fb/FpCiI7DLVom27ZtIyMjg9jYWGbOnGnvpsrOzuaJJ57Ax8eHlJQU+vXrV2/bgoICQkJCAAgODqagoKDR90lPTyc9PR2AlStXEhYW1qq8Foul1ds6UlO5dGUF2dqGX0gIfrXWKR04mKvbtwIQGBJK5zZ+XzookGyzmc45Fwmofq2O+Hm5krvmAvfNJrlaxhG5nFJMli1bRn5+fr3lKSkpTJw4kalTpwKwZcsWNm7cyJw5cwgJCWH9+vUEBARw6tQpUlNTWb16Nb6+vvVep4ZSqvGrAQLJyckkJyfbH+fk5LTq+wkLC2v1to7UVC5dUgRAcaWV0lrr6JCu9vuFpaUUtcf31S2akn8fprz6tTri5+VK7poL3Deb5GqZtuSqGce+nlOKyZIlS5q13vjx41m1ahUAXl5eeFXPYhsbG0tERARZWVnExcXV2SYoKIi8vDxCQkLIy8uzD+SL69RcZ+T6aea7RhlnwpeXtvmkxRoqOhZ95PMbryiEuGm4fMwkL+/a5WP37dtHdHQ0AFevXsVmswFw6dIlsrKyiIiIqLd9YmIiu3btAmDXrl0kJSU5IXUHVFFh3F53ASxlMkF0L+NBO4yZABATa0yrkp/bPq8nhHB7Lh8z2bRpE2fOnEEpRXh4uP3w36NHj5KWlobZbMZkMvHII4/Yx1I2bNjAhAkTiIuLY/LkyaxZs4adO3faDw0WDag0ionyrn8BLBUThz5xrH3OMwFUTCwa4NwpCA5tl9cUQrg3lxeTefPmNbh82LBhDBs2rMHnZs+ebb8fEBDA0qVLHZLtplLTMvFq4NK8MdVdh+3VMomOBUCfPXXDqeuFEDcHlxcT4SQ1YyYNtUyGDIfsC/Yz4ttK+fhCeCT67Kl2eT0hhPuTYuIpKmuKSf2WifLxRf1kRvu+X0wsSDERwmO4fABeOIm9m6t+y8QRVHQsXL6ILil2yvsJIVxLiomH0JU1R3M5qZjUjMOckzPhhfAEUkw8hf08kwYG4B0hpnoQ/txJ57yfEMKlpJh4ikbOM3EUFRQCQSEybiKEh5Bi4imslcatlxOPuYiOlSO6hPAQzdqz5OTk8O2331JcXIyfnx89e/Z0y8nLRBNqikk7nZjYHComFn30oHFZYCHETa3RYmK1WklPT+ejjz4iOzubyMhIOnfuTFlZGRcvXqRr165MmDCB5ORkLO11sptwnCqrcdse1yxpJhUTh7bZsJ45CaFdb7yBEKLDanTP8vjjjzNw4EBmzZpFQkICJtO1HjGbzcaJEyf45JNPeOKJJ3j++eedEla0gdUKZnOTsyq3u17xAFSeOAZDpZgIcTNrtJj8+te/JigoqMHnTCYTffr0oU+fPly9etVh4UTr6JPH0Xt2on54Lyo03FhYVeXUVgkAoeEQEFRdTMY4972FEE7V6AB8UFAQ27Zto7i46ZPOZMp396K1xvaHtehd/8C26eVrT1RZ22/urWZSSkGvBKOYCCFuak0ezbVz505mzZrFc889x/79++1Twgs3lnPJmGcrOBS+2o++fNFYbq10fssEUL0SqDp/Bl1W4vT3FkI4T5PFZNWqVaxYsYLIyEhee+01Hn30UV5//XVOnZLDPd3W+TMAqHv/EwB9cK+x3Gp1TTHpnQBaw7fyOyPEzeyG55nExMQwffp01q9fz7x58yguLubXv/41ixYt4oMPPnBGRtEC+rtvAVC3JkGPXuhD1cXEBd1cAPRKMHKd+cb57y2EcJpmn7SolOLWW2/lscceY/HixZSVlfHWW285MptojdzLEBiM6uyDGvQ9OPVvdFmpMQDvgmKiAoIwde0Gp792+nsLIZyn2XuX3NxcMjIyyMjI4MqVK9xxxx2MHTu2zQHS0tLYsWOHfSB/2rRpDBkyhE8++aROy+fs2bOsWrWKXr16NWt7T6Wv5kNgCADqllvRH74DJ46hXTRmAuAV34/yfx92yXsLIZyjyb1LeXk5e/fuJSMjg6NHj9K/f38mT57MHXfcQadO7TfH06RJk7jrrrvqLBs1ahSjRo0CjEKSmppar5A0tb3HKsiDoGDjflxfMJvRX3/lsjETqC4mu3eiCwtQAQ0fbi6E6Nia3Ls8/PDDhIWFMXr0aObMmUOXLl2clauOf/3rX4wYMcIl793hFOShomIAUJ19oFcC+vhX4OPrmjETwCuhn3HnzAkY9D2XZBBCOFaTe5elS5eSkJDg8BDbtm0jIyOD2NhYZs6cib+/f53n9+zZw+OPP97q7Wukp6eTnp4OwMqVK1s9v5jFYnHLucnMZjMU5uMT0Y2A6nxFtw2leOtbWHonoDr7EOqC3KbAAFAKn+zv8A/7gdPfvzHu+nN011zgvtkkV8s4IleTxaR2ITl27BinT5+mrKyszjpTpky54ZssW7aM/Pz8estTUlKYOHEiU6dOBWDLli1s3LiROXPm2Nf55ptv8Pb2JiYmpsHXvtH2tSUnJ5OcnGx/nJOTc8PsDQkLC2v1to7Uxd8PrFZKlZny6ny6RyzYqrCe/hpuGeSS3GFhYRDZg+KjX1DmRp+bu/4c3TUXuG82ydUybckVFRXV4PJm9Xv84Q9/YM+ePfTt2xfvWlfqa+48T0uWLGnWeuPHj2fVqlV1ln366aeMHDmy0W2Cg4Ob3N6T2Goukevje21h7C2gFNhsLhszAePkRX3kc7TWzp0fTAjhFM3au3zyySesXr2a0NDQdg+Ql5dHSIhx9NG+ffuIjo62P2ez2dizZw//93//16rtPY0urV9MlK8fdO9pnMzoytmde/eBPTvhSjaERbguhxDCIZq1dwkLC8PLyzHXwdi0aRNnzpxBKUV4eDizZs2yP3fs2DHCwsKIiKi789mwYQMTJkwgLi6uye09ja6eR03VbpkAKr4/+vwZlCtbJnG3oDEmoVRSTIS46TRr7zJ79mx+97vfMXLkyHozCffv379NAebNm9focwMGDGD58uUN5mnO9p7GZm+Z+NV9Ir4ffPx317ZMuveCTp3h5HG4Q2YQFuJm06y9y6lTpzh48CDHjh2rM2YC8PLLLzeylXA2XVJk3PHxqbNcxfdHg2vHTMxm6N0HffK4yzIIIRynWXuXP/3pTyxevJhbb73V0XlEG+iShlsmqks49Ojt8rEKFdcX/eHb6PIyVKfOLs0ihGhfzSomnTp1anN3lnA8ezHp7FPvOdOS51Ems5MT1aXi+qJtNjjzDdwyyKVZhBDtq1kTPd5///38v//3/8jPz8dms9X5Eu5Dl1efA+Rd/79+VxcSwDhMGdBysSwhbjrNapnUjIt89NFH9Z7bsmVL+yYSraYryo1zSlw50N4E5RcA3aJl3ESIm1Cz9jovvfSSo3OIdqArysHL261PClRxfdEH98rJi0LcZJpVTMLDwx2dQ7QDXV4O3u03m7NDxN4C//oILn0HkT1cnUYI0U4aHTN54403GpxPq7b8/HzeeOON9s4kWklXlMN1h267GxVvzCAsXV1C3FwabZlERUXx5JNP0qNHD/r160dUVBQ+Pj6UlpaSlZXF0aNHuXDhQrMmehTOYXRzuXnLJKI7+PobJy+OTL7x+kKIDqHRYjJhwgTuvPNO9u/fz8GDB8nMzKSkpAQ/Pz9iYmKYMGEC3/ve94xpz4V7KC8DLzdvmZhMENcX/c1RV0cRQrSjJsdMLBYLw4YNY9iwYc7KI9qgI3RzAaiEAeiv9qOv5qGqLzEshOjYmnWeiegYdEWF27dMAFSfAcadr4+4NogQot1IMbmJGC0TNx8zAegZD506o78+7OokQoh2IsXkJlJznom7UxaLMW4iLRMhbhpSTG4mFeWoDjBmAqD6DITvvkUXXnV1FCFEO2j2vBvfffcde/bsIT8/n4cffpjvvvsOq9VKz5492yXIhx9+yLZt2zCZTAwZMoTp06cDsHXrVnbu3InJZOKhhx7itttuq7dtdnY2a9eupbCwkNjYWObNm4fFTacUcaSO0jIBo5hogG+OwJDhro4jhGijZrVM9uzZw//8z/+Qm5vLJ598AkBZWRkbN25slxCHDx9m//79pKam8vzzz/PjH/8YgPPnz7N7926ef/55nnrqKV577bUGJ5fctGkTkyZN4re//S1+fn7s3LmzXXJ1NLqy0m3n5aqnVwJ4e8u4iRA3iWYVk7S0NJ5++mlmzZqFyWRs0rNnT86cOdMuIbZv387dd99tvzRwzdUcMzMzGTFiBF5eXnTt2pXIyEhOnDhRZ1utNUeOHLEfvjx27FgyMzPbJVeHU2V16QWwWkJ5eUFsXykmQtwkmrXnKSgoqNedpZRqt4n6srKyOH78OJs3b8bLy4sZM2YQHx9Pbm4uCQkJ9vVCQ0PJzc2ts21hYSG+vr72kycbWsdTaKvVpdd5bynVZyD6L39CFxeh/PxdHUcI0QbN2vPExsaSkZHBmDHXrt396aefEh8f3+w3WrZsWYNzfaWkpGCz2SgqKmL58uWcPHmSNWvWOGSm4vT0dNLT0wFYuXIlYWFhrXodi8XS6m0d6VKVFd+AAPzdLFtjn1dF0kjyPvgjgdnn6ZT0fbfJ5WrumgvcN5vkahlH5GpWMXnooYd45pln2LlzJ+Xl5SxfvpwLFy7w9NNPN/uNlixZ0uhz27dvZ+jQoSiliI+Px2QyUVhYSGhoKFeuXLGvl5ubS2hoaJ1tAwICKCkpoaqqCrPZ3OA6NZKTk0lOvjYfVE5OTrPz1xYWFtbqbR1F26rAZqOkopIyN8vW2Oelu0SAxYuCfZ9i6t3XbXK5mrvmAvfNJrlapi25oqKiGlzerDGT7t27s3btWn7wgx+QkpLC2LFjWb16Nd26dWtVmOslJSVx5IhxzsGFCxewWq0EBASQmJjI7t27qaysJDs7m6ysrHqtIaUUAwYMYO/evQB8/PHHJCYmtkuuDqWqyrjtQHOlKS9vSOiPPnbI1VGEEG3U7A72Tp06MWLECIeEGDduHOvXr2fRokVYLBbmzp2LUoro6GiGDx/OwoULMZlM/OxnP7MfALBixQoeffRRQkNDeeCBB1i7di2bN2+md+/ejBs3ziE53VqV1bjtKEdzVVP9BqPf3YguyEMFyTxdQnRUzdrzLF26tMHBdovFQpcuXRg6dGibWgMWi4X58+c3+NyUKVManOb+ySeftN+PiIhgxYoVrX7/m4K1uph0oAF4ANX/NqOYHPsCNWysq+MIIVqpWd1c/fv3Jzs7m379+jFq1Cj69evH5cuXiYuLIygoiJdffpn333/f0VlFU+zdXB2rmBAdC/4BcPSQq5MIIdqgWXueL7/8kqeeeooePa5dZnXUqFGsW7eOZ599ljvuuIMXXniBu+++22FBxQ3YWyYdZ8wEjOubqL6D0ccOyXXhhejAmtUy+e6774iIiKizLDw8nAsXLgAQHx9/w0v8Cgezj5l4uTZHa/S/DfJzIeucq5MIIVqpWcWkX79+rF+/nosXL1JRUcHFixfZsGEDffsah3OePXuWkBAZPHWpqo7ZMgFj3ARAH/vCtUGEEK3WrG6uxx57jFdffZUFCxZgs9kwm80MHTqUOXPmGC9isfDzn//coUHFDVQXk450BnwN1aUrdO2GPnoIxv/Y1XGEEK3QrD2Pv78///3f/43NZuPq1asEBgbaD9GFxk9iEU5k7ZiHBtdQ/W9D7/kYba1EdcSuOiE8XIuuZ1JeXk5FRQWXL1/m0qVLXLp0yVG5REt1wJMWa1MDbofyUjhxzNVRhBCt0Kx/Y8+fP8+LL77It99+W++5LVu2tHso0Qod9DwTu76DwWJBf7Uf1fdWV6cRQrRQs1omr776KgMGDOAPf/gDvr6+vP7660yYMIG5c+c6Op9orqqOXUxUZx/oMwj95X5XRxFCtEKzism3337LAw88gJ+fH1prfH19mT59urRK3ElNN1cHHTMBULcmwsXz6OwsV0cRQrRQs4qJl5cXVdU7q4CAAHJyctBaU1RU5NBwogWqKo3bDtoyAVCDjCl59FfSOhGio2nWnqdv377s2bOHsWPHMmzYMJ599lm8vLwYMGCAo/OJ5roZWiZdu0Fkd6OrSw4RFqJDadaeZ+HChfb706ZNIzo6mrKysjoXyxLOpUtL0NveRfW+BTU4Cd1Bp1O5nhqUiP7n39BlpcY4ihCiQ2hWN9cHH3xwbQOTidGjRzNx4kQ++ugjhwUTTdPvv4X+Wxq2dc+gvz7S4Qfga6hBicaRacflbHghOpJmFZN33nmnRcuFY2mbDb1nJwweCiFdsP35Dx3/0OAaCf3Bx1eO6hKig2lyz3P48GEAbDab/X6NS5cu4eMj3RAukXUeSopRQ4bDrYnoN9dD1+qrXlo6eDeXxQs18HvoQ5+hp/8XytSxvx8hPEWTxeTll18GoKKiwn4fjEvlBgcH85//+Z/tEuLDDz9k27ZtmEwmhgwZwvTp0/nyyy956623sFqtWCwWZsyYwcCBA+ttm5aWxo4dOwgMDASMMZ0hQ4a0Sy53pc98A4DqfQuEhqHffgO9L8N40nwTTEVy+3DI/MQ4G75P/Z+5EML9NFlM1q1bB8BLL73EY4895pAAhw8fZv/+/aSmpuLl5UVBQQFgHIK8ePFiQkNDOXv2LMuXL+d3v/tdg68xadIk7rrrLofkc0uXs0CZIDwSZbGght+J3vlX47kOPgAPoAYNQVu80J/vQUkxEaJDaNaYiaMKCcD27du5++678fIy/qMOCgoCoHfv3oSGhgIQHR1NRUUFlZWVDsvRoVzJhpAuqOrDgNX3J1x7rgMfGlxDdfaFAbejD+5Ba+3qOEKIZmh0z/Nf//VfzXqB2t1frZGVlcXx48fZvHkzXl5ezJgxg/j4+DrrfPbZZ8TGxtoLzvW2bdtGRkYGsbGxzJw5E39//wbXS09PJz09HYCVK1cSFhbWqswWi6XV27aH3Pxc6NaD0JoMYWHUTLkZFhHpdlcrbM3nVTp6Ild/+wzB+ZfxSujvNrmcwV1zgftmk1wt44hcjRaTefPmtdubLFu2rMErMaakpGCz2SgqKmL58uWcPHmSNWvW8NJLL9l3iOfOneOtt97iqaeeavC1J06cyNSpUwFj0smNGzfar7NyveTkZJKTk+2Pc3JyWvX9hIWFtXrb9lB1+SIqoX+dDOr+h7Ec3MOVK1dclqsxrfm8dFw/MJvJ2/khppCubpPLGdw1F7hvNsnVMm3J1dglRxotJv37t99/g0uWLGn0ue3btzN06FCUUsTHx2MymSgsLCQwMJArV67w3HPPMXfuXCIjIxvcPjg42H5//PjxrFq1qt1yu62iqxAQVGeRKfkuQlP+0y1/cVtD+QXALYPQn+9GT5npdq0tIURdzepgt1qtvPvuu2RkZJCXl0dISAijR49mypQpWNrYR5+UlMSRI0cYOHAgFy5cwGq1EhAQQHFxMStXruSnP/2p/fLADanJA7Bv3z6io6PblMfd6YpyKC8D/0BXR3E4NWQEetN6+O5b6NHL1XGEEE1oViXYtGkTJ0+e5JFHHiE8PJzLly/zzjvvUFJSwoMPPtimAOPGjWP9+vUsWrQIi8XC3LlzUUrxj3/8g4sXL/L222/z9ttvA/D0008TFBTEhg0bmDBhAnFxcWzatIkzZ86glCI8PJxZs2a1KY/bK7pq3HpCMbl9GPqPG9D7MlBSTIRwa80qJnv37iU1NZWAgADA6DPr3bs3jz/+eJuLicViYf78+fWW33PPPdxzzz0NbjN79mz7/fYc2+kQqouJuq6b62akAoOh32D0vgz0T2ZIV5cQbqxZhwbL4ZluxINaJgDqjrHGodAn5XK+QrizZrVMhg8fzqpVq5g6dar9KIB33nmH4cOHOzqfuF5JsXHr6+faHE6ibr8D7e2N/iwDFe+YQ4SFEG3XZDGx2WyYTCamT5/OO++8w2uvvUZeXh6hoaGMGDGi0W4o4Ti6vMy44yHTs6vOvqjBd6D3/wt9/8P2EzWFEO6lyb/M2bNnM3r0aEaPHs3999/P/fff76xcojFlpcZtp86uzeFE6o4x6MxP4OhBuDXJ1XGEEA1ocszkkUceITs7myeffJLFixfz97//natXrzorm2hITTHxkJYJAANuB78A9GcZrk4ihGhEky2TpKQkkpKSKC4uZvfu3WRkZLBp0yYGDx7MmDFjSExMbPN5JqKFykvBbEFZboLZgZtJWbxQSd9H796BLilGech4kRAdSbOO5vLz82PChAksW7aMNWvWEBcXxxtvvMGjjz7q6HziemVlntUqqaa+PwEqKq5NtS+EcCvNKiY1rFYrJ0+e5JtvvqGgoICYmBhH5RKNKSv1qPESu5g4iO6N/pdcKloId9SsPqrjx4+za9cu9u7dS2BgIKNGjeLhhx8mPDzc0fnEdXS5h7ZMlEKNmoj+4+/QZ0+iYuJcHUkIUUuTxSQtLY1PPvmEoqIihg0bxuLFi5ucJ0s4QVmpRxYTADV0DPrPr6P/9RHqp1JMhHAnTRaTEydOkJKSQlJSEt7e3s7KJJpS7qHdXIDy80d9bwR67y70PQ+hOnVydSQhRLUmx0x+9atfMXLkSCkk7sSDWyYA6vsTobQYfeBTV0cRQtTSogF44QbKy1CdPLeY0GcARPZA7/yrzBknhBuRYtLRlJeBB3fvKKVQ434E356AU/92dRwhRDUpJh2NtRK8PLvbUQ2/E3z80Dv+4uooQohqUkw6msoK8PKcs98bojr7oL6fbFzSN8/9rnkvhCdyi7lQPvzwQ7Zt24bJZGLIkCFMnz6d7OxsFixYYL94fUJCQoNXUSwqKmLNmjVcvnyZ8PBwFixYgL+/v7O/BafQWoPVCh40lUpj1J2T0OkfoD/+O+onM1wdRwiP5/JicvjwYfbv309qaipeXl4UFBTYn4uMjCQ1NbXJ7d977z0GDRrE5MmTee+993jvvfeYPn26o2O7hrXSuPXwbi4AFR4Jg4eiM/6B/uF9cpiwEC7m8m6u7du3c/fdd+NV3XUTFNSyy9FmZmYyZswYAMaMGUNmZma7Z6xNH9pLUdrrDn2PRlVWFxNpmQBgmnA3FBWiP5UpVoRwNZe3TLKysjh+/DibN2/Gy8uLGTNmEB8fD0B2djZPPPEEPj4+pKSk0K9fv3rbFxQUEBISAkBwcHCdls310tPTSU9PB2DlypWEhYW1OO/V019TkrGdrvc91OJt26oq30QO4B8cjG8D2S0WS6u+J0dzWK6wseT2G0zVR+/T5ScPoFo4luRxn1c7cNdskqtlHJHLKcVk2bJl5Ofn11uekpKCzWajqKiI5cuXc/LkSdasWcNLL71ESEgI69evJyAggFOnTpGamsrq1avx9fVt9H2UUiilGn0+OTmZ5ORk++OcnJwWfy+2qip0RVmrtm0rfeUyAEXlFZQ08P41l1R2N47MpSdMxvbi/3L57+9gGpl84w2clKst3DUXuG82ydUybclVM459PacUkyVLljT63Pbt2xk6dChKKeLj4zGZTBQWFhIYGGjv+oqNjSUiIoKsrCzi4urOyRQUFEReXh4hISHk5eURGBjo0O8F707GVOg2G8rk5F5Cq3Rz1TNwCMTEoj98Bz38TpTJ7OpEQngkl4+ZJCUlceTIEQAuXLiA1WolICCAq1evYrPZALh06RJZWVlERETU2z4xMZFdu3YBsGvXLpKSHHxZV6/qgd6a8QtnqqwAQMkAvJ1SCtMP74VL36EP7HF1HCE8lsvHTMaNG8f69etZtGgRFouFuXPnopTi6NGjpKWlYTabMZlMPPLII/ZDfjds2MCECROIi4tj8uTJrFmzhp07d9oPDXYo7+piUlHu/DPRpWXSsNuHGVOs/OVP6O8Nl9aJEC7g8mJisViYP39+veXDhg1j2LBhDW4ze/Zs+/2AgACWLl3qsHz11Ex6WVnuvPesUdMa8nL5j82tKJMZ0+QHsG1Yhd77MWrEeFdHEsLjuLybq8Op3TJxNnvLRLq56hkyAnrGo9//I9oVXZBCeDgpJi1kH6+oqHD+m1ePmXj6dCoNUUphmjITci+jd33o6jhCeBwpJi3lFi0TKSYNUf1vg36D0X9LQ5eWuDqOEB5FiklL2cdMnN8ysXffSMukUaYpM6HoKvpvaa6OIoRHkWLSUtIycWuqVwJq5HhjEsiL510dRwiPIcWkparPM9EuGTORiR6bQ02ZCd7e2La8KldjFMJJpJi0VE03l0taJtUFTFomTVKBIagfT4PDn8OXjp34UwhhkGLSUjXdXC45z8Rq3EoxuSF15yToFo3tT6+gy0pdHUeIm54Uk5bycmHLxH5osJy0eCPKYsE0c65xqPC7G10dR4ibnhSTlnLlAHyVFUwmmS6kmVR8f9S4H6H/+Tf010dcHUeIm5oUkxZSFosxblJW5vw3r7KCWVolLaF+MgPCIrC98SK63AX/AAjhIaSYtILJxw/KXHBSXFUVmKVV0hKqU2dMMx+D7Cz02y66QqYQHkCKSSsoXz8odcGgblUVSBdXi6l+g1ET7kZ//Hf05zJNvRCOIMWkFZSPH1paJh2KmjITesZje+O39itWCiHajxSTVlC+LurmskkxaS1l8cI06xdQVYXt1efQVplZWIj2JMWkFUw+vuCKiQRlAL5NVNco1My5cOIYevPvXR1HiJuKW+yZPvzwQ7Zt24bJZGLIkCFMnz6dTz75hA8++MC+ztmzZ1m1ahW9evWqs21aWho7duywX/t92rRpDBkyxKF5jZaJK8ZMbODs687fZExDR2M7ewq97V1K+g6CxFGujiTETcHlxeTw4cPs37+f1NRUvLy8KCgoAGDUqFGMGmX8oZ89e5bU1NR6haTGpEmTuOuuu5wVGeXjJy2TDkxNmYG+cJbCV5/HFBCMumWQqyMJ0eG5/N/c7du3c/fdd+NVPa16UFBQvXX+9a9/MWLECGdHa5Srxky0jJm0C2UyY3p4EeZu0djWPYs+d9rVkYTo8Fz+b25WVhbHjx9n8+bNeHl5MWPGDOLj4+uss2fPHh5//PFGX2Pbtm1kZGQQGxvLzJkz8ff3b3C99PR00tPTAVi5ciVhYWGtylzqHwBWK12CAq9dedEJ8sxmbJ060aWR3BaLpdXfkyO5Z64w+N8XufzEw/Db/yP42Q1YIru7OhTgrp+XwV2zSa6WcUQupxSTZcuWkZ+fX295SkoKNpuNoqIili9fzsmTJ1mzZg0vvfQSSikAvvnmG7y9vYmJiWnwtSdOnMjUqVMB2LJlCxs3bmTOnDkNrpucnExycrL9cU5OTqu+H99OPsb2586iAoNb9RqtUVVWCjbdaO6wsLBWf0+O5M65mL8U26pfcmXpPEyPr0CFdHF1LLf9vMB9s0mulmlLrqioqAaXO6WYLFmypNHntm/fztChQ1FKER8fj8lkorCw0D6g/umnnzJy5MhGtw8ODrbfHz9+PKtWrWq33I1RAQHGneJCcGIxkfNM2p+KisE0fym2tf+DLfVJTIuWo7qEuzqWEB2Oy8dMkpKSOHLEmITvwoULWK1WAqp31jabjT179jRZTPLy8uz39+3bR3R0tGMDA6aAYONOYYHD36uOqioZgHcAFdcX03//LxQVYkt9En35oqsjCdHhuHzPNG7cONavX8+iRYuwWCzMnTvX3sV17NgxwsLCiIiIqLPNhg0bmDBhAnFxcWzatIkzZ86glCI8PJxZs2Y5PLMpKNi4U3TV4e9VR5X12qzFol2puL6YFi3D9vxSbL/5JaZ5S1Exsa6OJUSH4fJiYrFYmD9/foPPDRgwgOXLl9dbPnv2bPv9efPmOSxbY0yBIQDowqsoZ76xzSbdXA6kesZjevxZbC/+H7bfPInp0SdQg77n6lhCdAgu7+bqiEyB1YcvO72byyoTPTqY6tEL069SIaIbtpeWYdvxF7mOvBDNIMWkFZSXN/j4uqCbSwbgnUEFd8H0+AoYlIje/Hv0K6mumdhTiA5Eiklr+Qe6ZABerrLoHKqzD6Y5v0JNmYk+sBvbM4vQZ0+5OpYQbkuKSWsFBKGdXUxscjSXMymTCdP/NxXTomVQVoLt2UXY/rIZbbW6OpoQbkeKSWuFdIFcJ5+MVFUFZvmROZu6ZRCmX/8W9b2R6A/+iG3FL9BnT7o6lhBuRfZMraS6REDuZecOzsp5Ji6j/AMxPfILTP/1S8i7gu2ZhdjeXOf81qkQbkr2TK3VJRwqK+BqPgSFOOc95Wgul1NDRmDqeyv6L5vR//wbOvNfqEn3ocb+ENVJzgESnktaJq2kunQ17lzJdt6bytFcbkH5+mO6/2FM//MixPZBv/06tl89gu2j99EV5a6OJ4RLSDFprepionMuOe89ZQp6t6K6RWP+7/81DiPu3hOd9hq2Jx/B9sGf0AV5N34BIW4i0s3VWhFRxlUPvzvrvPeUlolbUn0GYF64DP31YWwfvoP+y5/Qf/8zKnEkavR/QEJ/+xRBQtyspJi0kvLyhsge6PNOvLCSrUrGTNyY6jMQc5+B6EsXjPGUT9PRn+2CsAjUsLGoYXeiIhqevluIjk6KSRuoHr3QJ4465b201nI0VwehIqJQKY+gJ09Hf74Hvfef6L+lof+6BXr0Qg0eihp8B/SMQ5mkp1ncHGTP1Ba9E2BfBvpK9rUBeUex2YxbOc+kw1CdfVAjxsGIcei8K+jMDPQX+9B/fxv9tzQICkX1Hwy3DEL1GWi0YKQ7THRQUkzaQPW7HQ3oo4dQoyY69s2qqs+6lpZJh6RCuqAm/gQm/gRddBV9+AB8kYn+6gDs+ScaIDQcldCfkgG3ocO6QUwsqlNnV0cXollkz9QWUdEQGo7e/yk4upjYqoxbGTPp8JR/IGrYnTDsTqP78sI59Ndfof/9Ffr4VxR+tqt6RRNEdkdFx0K3Hqhu0dCtB3TthrJ4ufabEOI6UkzaQCmFGplsHL2Tdc74Y3eUqupiIkdz3VSUUtA9BtU9Bu6cBECICXIPZqK//QZ95oQxLrdvF/a5FkwmCO8GXboalxju0rX6flfjZNrAEJRF/rSFc7nFb9yaNWu4cOECACUlJfj6+pKamgrA1q1b2blzJyaTiYceeojbbrut3vbZ2dmsXbuWwsJCYmNjmTdvHhYn/TGpO3+I3vEBtjd+i2nRM8ZRXo4gxcRjmEPDUIOTUIOT7Mt0WSlcuoDOOgdZ59GXzkNONvrcKfvs1XUm9vELgMBgCAxGBQTZ7+MXAL5+KF8/8PGD2rde3jJmI1rNLYrJggUL7Pc3btyIr68vAOfPn2f37t08//zz5OXlsWzZMl544QVM1x0Bs2nTJiZNmsTIkSN55ZVX2LlzJxMnOrjbqZoKCEJNn4P+/XPYVv0S039MgYQBxh9xe/5hSjHxaKqzj3H0V8+4es/p8nLIvQxXstG52VCQD1fz0Verb8+dNqb9KS2+tk1Db2KxGIXFu9O1r07X7ivvzlwNDMJm08YyLy9jG4sFzF7G76bFAmaL0Q1X6zGW6nXNZqOr1mQyuvFMtb6UqnW/kdvqLyl67sctikkNrTV79uxh6dKlAGRmZjJixAi8vLzo2rUrkZGRnDhxgj59+tTZ5siRI/z85z8HYOzYsfz5z392WjEBMCWNQpst2P70Crbf/cZYaLFAZ1/o1Nn4I6n5QoGp+rYlfxA1A/AyZiKuozp1MsZSuvVo8jLSurICiouMolJifOma+7VvK8qNAlVR/VVUCBU56Ipyyisr0GVlxnJta/y92v/brK+muKC4ZFLGmyq49rdV/Wkorj2ueZ7qZXXWp9by67avWce+Wq1tVON/yzlmM1U1/wg2+ffexHNNbXfDXUjDK1TM+xV07XGjjVvErYrJsWPHCAoKolu3bgDk5uaSkJBgfz40NJTc3Nw62xQWFuLr64u5+j/2htapkZ6eTnp6OgArV64kLCysVTktFkv9bSf+GD3+h1Qe/xLr6W+oys1BlxYbf3jaBtWzC2ubDdBga/mfm+o7CP+Rd2JuJHeDudyA5GoZd80FRjar1XrtvCdrJbrKCpWVaKsVba2EKqtxzRdrJbryusfWSmM7rdG2KqiyGYe9a5vxt2GzGQebVL++tlX/7diqwFa9jrZVb1dl/3symUzYqmr+zrT97632ra55juobra+tX3vZddtraq9bvWIj615PmUzVGZvQxMzjTc9KfoN9SBNPW/wD2/13zGnFZNmyZeTn59dbnpKSQlKS0Tf86aefMnLkSIdlSE5OJjk52f44J6d11yMJCwtrfNuIaOPLQfIAGnnvJnO5kORqGXfNBTfKZgJLJ+PLyRMou+tn5q65TG3IFRXV8CwOTismS5YsafL5qqoq9u3bx8qVK+3LQkNDuXLliv1xbm4uoaGhdbYLCAigpKSEqqoqzGZzg+sIIYRwLLc5nfqrr74iKiqKLl262JclJiaye/duKisryc7OJisri/j4+DrbKaUYMGAAe/fuBeDjjz8mMTHRqdmFEMLTuU0xaaiLKzo6muHDh7Nw4UKWL1/Oz372M/uRXCtWrLCPjTzwwAP89a9/Zd68eRQVFTFu3Din5xdCCE+mtFOvO+teas5taSl37QeVXC0juVrOXbNJrpZpS67GxkzcpmUihBCi45JiIoQQos2kmAghhGgzKSZCCCHazKMH4IUQQrQPaZm0wi9/+UtXR2iQ5GoZydVy7ppNcrWMI3JJMRFCCNFmUkyEEEK0mRSTVqg9WaQ7kVwtI7lazl2zSa6WcUQuGYAXQgjRZtIyEUII0WZSTIQQQrSZW11psSM4dOgQr7/+OjabjfHjxzN58mSX5MjJyWHdunXk5+ejlCI5OZkf/vCHpKWlsWPHDgIDAwGYNm0aQ4YMcWq2uXPn0rlzZ0wmE2azmZUrV1JUVMSaNWu4fPky4eHhLFiwAH9/f6dlunDhAmvWrLE/zs7O5r777qO4uNjpn9f69ev5/PPPCQoKYvXq1QCNfj5aa15//XUOHjxIp06dmDNnDrGxsU7L9eabb3LgwAEsFgsRERHMmTMHPz8/srOzWbBggX3Sv4SEBGbNmuW0XE39nm/dupWdO3diMpl46KGHuO2225yWa82aNfYJZEtKSvD19SU1NdWpn1dj+waH/45p0WxVVVX6scce0xcvXtSVlZX6F7/4hT537pxLsuTm5uqTJ09qrbUuKSnR8+fP1+fOndNbtmzR77//vksy1ZgzZ44uKCios+zNN9/UW7du1VprvXXrVv3mm2+6IJmhqqpKP/zwwzo7O9sln9eRI0f0yZMn9cKFC+3LGvt8Dhw4oJcvX65tNpv+97//rZ988kmn5jp06JC2Wq32jDW5Ll26VGc9R2ooV2M/t3Pnzulf/OIXuqKiQl+6dEk/9thjuqqqymm5anvjjTf0n//8Z621cz+vxvYNjv4dk26uFjhx4gSRkZFERERgsVgYMWIEmZmZLskSEhJi/+/Bx8eH7t2726/v4o4yMzMZM2YMAGPGjHHZ5wbGhdgiIyMJDw93yfv379+/Xqussc9n//79jB49GqUUffr0obi4mLy8PKflGjx4MGazGYA+ffq45HesoVyNyczMZMSIEXh5edG1a1ciIyM5ceKE03NprdmzZ49DL0PemMb2DY7+HZNurhbIzc2tcyXILl268M0337gwkSE7O5vTp08THx/P8ePH2bZtGxkZGcTGxjJz5kyndifVWL58OQATJkwgOTmZgoICQkJCAAgODqagoMDpmWpcfyE2d/i8Gvt8cnNzCQsLs6/XpUsXcnNz7es6086dOxkxYoT9cXZ2Nk888QQ+Pj6kpKTQr18/p+Zp6OeWm5tLQkKCfZ3Q0FCXFMBjx44RFBREt27d7Mtc8XnV3jc4+ndMikkHV1ZWxurVq3nwwQfx9fVl4sSJTJ06FYAtW7awceNG5syZ49RMy5YtIzQ0lIKCAp555pl6F9NRSqGUcmqmGlarlQMHDvDTn/4UwC0+r+u58vNpzLvvvovZbGbUqFGA8d/v+vXrCQgI4NSpU6SmprJ69Wp8fX2dkscdf261Xf8Piys+r+v3DbU54ndMurlaIDQ0lCtXrtgfX7lyhdDQUJflsVqtrF69mlGjRnHHHXcAxn8cJpMJk8nE+PHjOXnypNNz1XwmQUFBJCUlceLECYKCguxN57y8PPvAqbMdPHiQ3r17ExwcDLjH5wU0+vmEhobWuSKeK37nPv74Yw4cOMD8+fPtOyAvLy8CAgIAiI2NJSIigqysLKdlauzndv3faG5urtM/r6qqKvbt21enFefsz6uhfYOjf8ekmLRAXFwcWVlZZGdnY7Va2b17N4mJiS7JorVmw4YNdO/enR/96Ef25bX7Ovft20d0dLRTc5WVlVFaWmq//+WXXxITE0NiYiK7du0CYNeuXSQlJTk1V43r/2N09edVo7HPJzExkYyMDLTWfP311/j6+jq1i+vQoUO8//77LF68mE6dOtmXX716FZvNBsClS5fIysoiIiLCabka+7klJiaye/duKisryc7OJisri/j4eKflAmNMLioqqk6XuDM/r8b2DY7+HZMz4Fvo888/54033sBms3HnnXcyZcoUl+Q4fvw4S5cuJSYmxv7f4rRp0/j00085c+YMSinCw8OZNWuWU3c+ly5d4rnnngOM/9C+//3vM2XKFAoLC1mzZg05OTkuOTQYjOI2Z84cXnrpJXuz/7e//a3TP6+1a9dy9OhRCgsLCQoK4r777iMpKanBz0drzWuvvcYXX3yBt7c3c+bMIS4uzmm5tm7ditVqtf+sag5p3bt3L2lpaZjNZkwmE/fee6/D/rFqKNeRI0ca/bm9++67/POf/8RkMvHggw9y++23Oy3XuHHjWLduHQkJCUycONG+rjM/r8b2DQkJCQ79HZNiIoQQos2km0sIIUSbSTERQgjRZlJMhBBCtJkUEyGEEG0mxUQIIUSbSTERopUWLlzIkSNHnPJe58+f55e//CXtffDlc889x8GDB9v1NYVnkulUhGjEjBkz7PcrKiqwWCyYTMb/X7NmzeL55593WpbNmzfz4x//uN2nwJg8eTK///3vHXYuhvAcUkyEaMSbb75pvz937lweffRRbr31VqfnyMvL48iRI8yfP7/dXzs+Pp7S0lJOnjzpsJMhhWeQYiJEK9UuMGlpaZw/fx6LxcL+/fsJDw9n0aJFfPbZZ/ztb3/Dy8uL2bNnM3jwYMC4cNIbb7zBwYMHUUpx5513ct9999lbPrV9+eWXxMbG4u3tXee9f/CDH5CRkcGlS5cYMWIE06ZNY/369Rw/fpyEhAT7Gc4VFRVs2LCBQ4cOYbPZ6NatG4sXL7bPT9a/f38+//xzKSaiTWTMRIh2cuDAAUaPHs3rr79O7969Wb58uX2epHvuuYdXXnnFvu66deswm828+OKL/OY3v+GLL75gx44dDb7u2bNn60xlXuOzzz7j6aef5oUXXuDAgQOsWLGCadOm8eqrr2Kz2fjwww8BYx6mkpISXn75Zf7whz/wyCOP1ClMPXr04Ntvv23nT0N4GikmQrSTvn37ctttt2E2mxk2bBhXr15l8uTJWCwWRo4cyeXLlykuLiY/P5+DBw/y4IMP0rlzZ4KCgpg0aRK7d+9u8HWLi4vx8fGpt/w//uM/CA4OJjQ0lL59+xIfH0/v3r3x9vZm6NChnD59GgCz2UxRUREXL17EZDIRGxtbZ0ryzp07U1xc7JgPRXgM6eYSop0EBQXZ73t7exMYGGjvtqppCZSVlZGXl0dVVVWda4BrrevMMlubv7+/fSbmpt7v+sfl5eUAjB49mitXrrB27VpKSkoYNWoUKSkpWCwWeyY/P7/WfttCAFJMhHC6Ll26YLFYeO211+yXxG1KTEyMferw1rBYLNx7773ce++9ZGdns2LFCqKiohg3bhxgHHbcs2fPVr++ECDdXEI4XUhICIMHD2bjxo2UlJRgs9m4ePEiR48ebXD9W2+9ldOnT1NRUdGq9zt8+DBnz57FZrPh6+uLxWKpc4jxsWPH5NBg0WbSMhHCBR577DHeeustFi5cSGlpKREREdx9990NrhscHMzAgQPZv39/nav3NVd+fj6///3vyc3NpXPnzgwfPpzRo0cDcOLECTp37uz0C0iJm49cz0SIDuD8+fOsW7eOZ599tl1PXHzuuecYN24cQ4YMabfXFJ5JiokQQog2kzETIYQQbSbFRAghRJtJMRFCCNFmUkyEEEK0mRQTIYQQbSbFRAghRJtJMRFCCNFm/z+LNJCgnFnagwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/examples/expsyn/expsyn.py b/examples/expsyn/expsyn.py index a40ef0fc..32ac0e7f 100644 --- a/examples/expsyn/expsyn.py +++ b/examples/expsyn/expsyn.py @@ -32,10 +32,9 @@ def main(args): sec_index=0, comp_x=0.5) else: - somacenter_loc = ephys.locations.ArbBranchRelLocation( + somacenter_loc = ephys.locations.ArbLocsetLocation( name='somacenter', - branch=0, - pos=0.5) + locset='(location 0 0.5)') pas_mech = ephys.mechanisms.NrnMODMechanism( name='pas', @@ -142,8 +141,7 @@ def main(args): responses = protocol.run( cell_model=cell, param_values=best_ind_dict, - sim=sim, - isolate=False) + sim=sim) time = responses['soma.v']['time'] voltage = responses['soma.v']['voltage'] @@ -166,7 +164,7 @@ def main(args): if __name__ == '__main__': parser = argparse.ArgumentParser(description='expsyn') - parser.add_argument('--sim', default='nrn', + parser.add_argument('--sim', default='nrn', choices=['nrn', 'arb'], help='Simulator (choose either nrn or arb)') parser.add_argument('-o', '--output', help='Path to store voltage trace plot to') diff --git a/examples/l5pc/L5PC_arbor.ipynb b/examples/l5pc/L5PC_arbor.ipynb index b843776e..0fc7fad4 100644 --- a/examples/l5pc/L5PC_arbor.ipynb +++ b/examples/l5pc/L5PC_arbor.ipynb @@ -56,79 +56,7 @@ "\n", "COBJS=''\n", " -> \u001b[32mCompiling\u001b[0m mod_func.c\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/CaDynamics_E2.mod\n", "x86_64-linux-gnu-gcc -O2 -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c mod_func.c -o mod_func.o\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_HVA.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl CaDynamics_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_HVA.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating CaDynamics_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/CaDynamics_E2.c\n", - "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_LVAst.mod\n", - "Translating Ca_HVA.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_HVA.c\n", - "Thread Safe\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_LVAst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ih.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ih.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating Ca_LVAst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_LVAst.c\n", - "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Pst.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Pst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating Ih.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ih.c\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Im.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Im.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Thread Safe\n", - "Translating Im.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Im.c\n", - "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Tst.mod\n", - "Translating K_Pst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Pst.c\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Tst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Nap_Et2.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Nap_Et2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Thread Safe\n", - "Translating K_Tst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Tst.c\n", - "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTa_t.mod\n", - "Translating Nap_Et2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Nap_Et2.c\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTa_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTs2_t.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTs2_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Thread Safe\n", - "Translating NaTa_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTa_t.c\n", - "Translating NaTs2_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTs2_t.c\n", - "Thread Safe\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SK_E2.mod\n", - " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SKv3_1.mod\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SKv3_1.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - "Translating SKv3_1.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SKv3_1.c\n", - "Thread Safe\n", - "Thread Safe\n", - " -> \u001b[32mCompiling\u001b[0m CaDynamics_E2.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c CaDynamics_E2.c -o CaDynamics_E2.o\n", - " -> \u001b[32mCompiling\u001b[0m Ca_HVA.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_HVA.c -o Ca_HVA.o\n", - "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SK_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", - " -> \u001b[32mCompiling\u001b[0m Ca_LVAst.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_LVAst.c -o Ca_LVAst.o\n", - "Translating SK_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SK_E2.c\n", - "Thread Safe\n", - " -> \u001b[32mCompiling\u001b[0m Ih.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ih.c -o Ih.o\n", - " -> \u001b[32mCompiling\u001b[0m Im.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Im.c -o Im.o\n", - " -> \u001b[32mCompiling\u001b[0m K_Pst.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c K_Pst.c -o K_Pst.o\n", - " -> \u001b[32mCompiling\u001b[0m K_Tst.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c K_Tst.c -o K_Tst.o\n", - " -> \u001b[32mCompiling\u001b[0m Nap_Et2.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Nap_Et2.c -o Nap_Et2.o\n", - " -> \u001b[32mCompiling\u001b[0m NaTa_t.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c NaTa_t.c -o NaTa_t.o\n", - " -> \u001b[32mCompiling\u001b[0m NaTs2_t.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c NaTs2_t.c -o NaTs2_t.o\n", - " -> \u001b[32mCompiling\u001b[0m SK_E2.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c SK_E2.c -o SK_E2.o\n", - " -> \u001b[32mCompiling\u001b[0m SKv3_1.c\n", - "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c SKv3_1.c -o SKv3_1.o\n", " => \u001b[32mLINKING\u001b[0m shared library ./libnrnmech.so\n", "x86_64-linux-gnu-g++ -O2 -DVERSION_INFO='8.0.2' -std=c++11 -shared -fPIC -I /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -o ./libnrnmech.so -Wl,-soname,libnrnmech.so \\\n", " ./mod_func.o ./CaDynamics_E2.o ./Ca_HVA.o ./Ca_LVAst.o ./Ih.o ./Im.o ./K_Pst.o ./K_Tst.o ./Nap_Et2.o ./NaTa_t.o ./NaTs2_t.o ./SK_E2.o ./SKv3_1.o -L/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib -lnrniv -Wl,-rpath,/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib \n", @@ -209,21 +137,21 @@ "output_type": "stream", "text": [ "Requirement already satisfied: neurom in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (3.2.2)\n", + "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", + "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", "Requirement already satisfied: pandas>=1.0.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.4.1)\n", - "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", - "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", + "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", "Requirement already satisfied: tqdm>=4.8.4 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (4.63.1)\n", "Requirement already satisfied: click>=7.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (8.1.3)\n", - "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", - "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", - "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", + "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", + "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", - "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (3.0.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", + "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (3.0.7)\n", "Requirement already satisfied: pytz>=2020.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from pandas>=1.0.5->neurom) (2022.1)\n", "Requirement already satisfied: six>=1.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib>=3.2.1->neurom) (1.16.0)\n" ] @@ -232,7 +160,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_111225/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", + "/tmp/ipykernel_76273/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", " neurom.viewer.draw(neurom.load_neuron('morphology/C060114A7.asc'));\n" ] }, @@ -637,8 +565,8 @@ " Square pulse amp 1.900000 delay 295.000000 duration 5.000000 totdur 600.000000 at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", " recordings:\n", " bAP.soma.v: v at ArbBranchRelLocation '(locset-def \"soma\" (location 0 0.5))'\n", - " bAP.dend1.v: v at ArbLocsetLocation '(locset-def \"dend1\" (restrict (distal-translate (proximal (region \"apic\")) 660) (proximal-interval (distal (branch 123)))))'\n", - " bAP.dend2.v: v at ArbLocsetLocation '(locset-def \"dend2\" (restrict (distal-translate (proximal (region \"apic\")) 800) (proximal-interval (distal (branch 123)))))'\n", + " bAP.dend1.v: v at ArbLocsetLocation (locset-def \"dend1\" (restrict (distal-translate (proximal (region \"apic\")) 660) (proximal-interval (distal (branch 123)))))\n", + " bAP.dend2.v: v at ArbLocsetLocation (locset-def \"dend2\" (restrict (distal-translate (proximal (region \"apic\")) 800) (proximal-interval (distal (branch 123)))))\n", "\n", "Step3:\n", " stimuli:\n", diff --git a/examples/simplecell/simplecell_arbor.ipynb b/examples/simplecell/simplecell_arbor.ipynb index d62f92b1..a3e63928 100644 --- a/examples/simplecell/simplecell_arbor.ipynb +++ b/examples/simplecell/simplecell_arbor.ipynb @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "pycharm": { "name": "#%%\n" @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "pycharm": { "name": "#%%\n" @@ -84,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "pycharm": { "name": "#%%\n" @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "pycharm": { "name": "#%%\n" @@ -137,12 +137,12 @@ } }, "source": [ - "By default a Neuron morphology has the following sectionlists: somatic, axonal, apical and basal. Let's create an object that points to the somatic sectionlist. This object will be used later to specify where mechanisms have to be added etc." + "By default a Neuron morphology has the following sectionlists: somatic, axonal, apical and basal. Let's create an object that points to the soma using Arbor's S-expression language. This object will be used later to specify where mechanisms have to be added etc." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "pycharm": { "name": "#%%\n" @@ -150,7 +150,7 @@ }, "outputs": [], "source": [ - "somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic')" + "somatic_loc = ephys.locations.ArbRegionLocation('somatic', region='(intersect (region \"all\") (region \"soma\"))')" ] }, { @@ -168,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "pycharm": { "name": "#%%\n" @@ -200,7 +200,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": { "pycharm": { "name": "#%%\n" @@ -229,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { "pycharm": { "name": "#%%\n" @@ -266,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": { "pycharm": { "name": "#%%\n" @@ -294,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": { "pycharm": { "name": "#%%\n" @@ -309,11 +309,11 @@ " morphology:\n", " simple.swc\n", " mechanisms:\n", - " hh: hh at ['somatic']\n", + " hh: hh at ['ArbRegionLocation (region-def \"somatic\" (intersect (region \"all\") (region \"soma\")))']\n", " params:\n", - " cm: ['somatic'] cm = 1.0\n", - " gnabar_hh: ['somatic'] gnabar_hh = [0.05, 0.125]\n", - " gkbar_hh: ['somatic'] gkbar_hh = [0.01, 0.075]\n", + " cm: ['ArbRegionLocation (region-def \"somatic\" (intersect (region \"all\") (region \"soma\")))'] cm = 1.0\n", + " gnabar_hh: ['ArbRegionLocation (region-def \"somatic\" (intersect (region \"all\") (region \"soma\")))'] gnabar_hh = [0.05, 0.125]\n", + " gkbar_hh: ['ArbRegionLocation (region-def \"somatic\" (intersect (region \"all\") (region \"soma\")))'] gkbar_hh = [0.01, 0.075]\n", "\n" ] } @@ -359,13 +359,13 @@ "\n", "A protocol consists of a set of stimuli, and a set of responses (i.e. recordings). These responses will later be used to calculate\n", "the score of the parameter values.\n", - "Let's create two protocols, two square current pulses at somatic`[0]`(0.5) with different amplitudes.\n", + "Let's create two protocols, two square current pulses at the relative position 0.5 of branch 0 with different amplitudes.\n", "We first need to create a location object" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": { "pycharm": { "name": "#%%\n" @@ -373,10 +373,9 @@ }, "outputs": [], "source": [ - "soma_loc = ephys.locations.ArbBranchRelLocation(\n", - " name='soma',\n", - " branch=0,\n", - " pos=0.5)\n" + "soma_loc = ephys.locations.ArbLocsetLocation(\n", + " name='soma_center',\n", + " locset='(location 0 0.5)')\n" ] }, { @@ -392,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": { "pycharm": { "name": "#%%\n" @@ -432,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": { "pycharm": { "name": "#%%\n" @@ -456,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": { "pycharm": { "name": "#%%\n" @@ -481,7 +480,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": { "pycharm": { "name": "#%%\n" @@ -527,7 +526,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": { "pycharm": { "name": "#%%\n" @@ -567,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": { "pycharm": { "name": "#%%\n" @@ -613,7 +612,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": { "pycharm": { "name": "#%%\n" @@ -637,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": { "pycharm": { "name": "#%%\n" @@ -668,7 +667,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": { "pycharm": { "name": "#%%\n" @@ -702,7 +701,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": { "pycharm": { "name": "#%%\n" @@ -728,7 +727,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": { "pycharm": { "name": "#%%\n" @@ -754,7 +753,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": { "pycharm": { "name": "#%%\n" @@ -786,7 +785,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": { "pycharm": { "name": "#%%\n" @@ -821,7 +820,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": { "pycharm": { "name": "#%%\n" @@ -855,7 +854,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": { "pycharm": { "name": "#%%\n" @@ -895,7 +894,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": { "pycharm": { "name": "#%%\n" @@ -908,7 +907,7 @@ "(0.0, 4.4)" ] }, - "execution_count": 27, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, From c425101344a655f4aa1c87607d321e21675af98d Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Tue, 18 Oct 2022 22:40:13 +0200 Subject: [PATCH 27/42] External mechanism catalogues for Arbor simulator --- bluepyopt/ephys/create_acc.py | 127 +++++++++++------- bluepyopt/ephys/models.py | 6 +- bluepyopt/ephys/protocols.py | 4 +- bluepyopt/ephys/simulators.py | 58 +++++++- .../templates/acc/decor_acc_template.jinja2 | 2 - examples/l5pc/generate_acc.py | 9 +- examples/simplecell/generate_acc.py | 9 +- 7 files changed, 152 insertions(+), 63 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 9d1333f3..1afc2a7e 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -6,7 +6,8 @@ import io import logging import pathlib -from collections import namedtuple +from collections import namedtuple, OrderedDict +import re from glob import glob import jinja2 @@ -139,49 +140,65 @@ def _arb_eval_point_proc_locs(pprocess_mechs): return result -def _arb_load_mech_catalogues(): +def _arb_load_catalogue_desc(cat_dir): + """Load mechanism catalogue description from NMODL files""" + # used to generate arbor_mechanisms.json on NMODL from arbor/mechanisms + + nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' # NOQA + suffix_pattern = nmodl_pattern % 'SUFFIX' + globals_pattern = nmodl_pattern % 'GLOBAL' + ranges_pattern = nmodl_pattern % 'RANGE' + + def process_nmodl(nmodl_str): + """Inspect NMODL for global and range parameters""" + try: + nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, + flags=re.MULTILINE).group(1) + suffix = re.search(suffix_pattern, nrn, + flags=re.MULTILINE) + suffix = suffix if suffix is None else suffix.group(1) + globals = re.search(globals_pattern, nrn, + flags=re.MULTILINE) + globals = globals if globals is None \ + else re.findall(r'\w+', globals.group(1)) + ranges = re.search(ranges_pattern, nrn, + flags=re.MULTILINE) + ranges = ranges if ranges is None \ + else re.findall(r'\w+', ranges.group(1)) + except Exception as e: + raise ValueError('create_acc: NMODL-inspection for' + ' %s failed.' % nmodl_file) from e + + return dict(globals=globals, ranges=ranges) # suffix skipped + + mechs = dict() + for nmodl_file in glob(str(cat_dir / '*.mod')): + with open(os.path.join(cat_dir, nmodl_file)) as f: + mechs[pathlib.Path(nmodl_file).stem] = process_nmodl(f.read()) + + return mechs + + +def _arb_load_mech_catalogues(ext_catalogues): """Load Arbor's built-in mechanism catalogues""" - # # Generated with NMODL in arbor/mechanisms - # import os, re - # - # nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' - # suffix_pattern = nmodl_pattern % 'SUFFIX' - # globals_pattern = nmodl_pattern % 'GLOBAL' - # ranges_pattern = nmodl_pattern % 'RANGE' - # - # def process_nmodl(nmodl_str): - # nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, - # flags=re.MULTILINE).group(1) - # suffix = re.search(suffix_pattern, nrn, - # flags=re.MULTILINE) - # suffix = suffix if suffix is None else suffix.group(1) - # globals = re.search(globals_pattern, nrn, - # flags=re.MULTILINE) - # globals = globals if globals is None \ - # else re.findall(r'\w+', globals.group(1)) - # ranges = re.search(ranges_pattern, nrn, - # flags=re.MULTILINE) - # ranges = ranges if ranges is None \ - # else re.findall(r'\w+', ranges.group(1)) - # return dict(globals=globals, ranges=ranges) # suffix skipped - # - # mechs = dict() - # for cat in ['allen', 'BBP', 'default']: - # mechs[cat] = dict() - # cat_dir = 'arbor/mechanisms/' + cat - # for f in os.listdir(cat_dir): - # with open(os.path.join(cat_dir,f)) as fd: - # print(f"Processing {f}", flush=True) - # mechs[cat][f[:-4]] = process_nmodl(fd.read()) - # print(json.dumps(mechs, indent=4)) - - catalogues = os.path.abspath( + arb_cats = OrderedDict() + + if ext_catalogues is not None: + for cat, cat_nmodl in ext_catalogues.items(): + arb_cats[cat] = _arb_load_catalogue_desc( + pathlib.Path(cat_nmodl).resolve()) + + builtin_catalogues = os.path.abspath( os.path.join( os.path.dirname(__file__), 'static/arbor_mechanisms.json')) - with open(catalogues) as f: - arb_cats = json.load(f) + with open(builtin_catalogues) as f: + builtin_arb_cats = json.load(f) + + for cat in ['BBP', 'default', 'allen']: + if cat not in arb_cats: + arb_cats[cat] = builtin_arb_cats[cat] return arb_cats @@ -265,15 +282,20 @@ def _arb_append_scaled_mechs(mechs, scaled_mechs): def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms into mechanism name and add catalogue prefix""" + arb_mech = None arb_mech_name = _nrn2arb_mech_name(mech_name) - for cat in ['BBP', 'default', 'allen']: # in order of precedence + for cat in arb_cats: # in order of precedence if arb_mech_name in arb_cats[cat]: arb_mech = arb_cats[cat][arb_mech_name] mech_name = cat + '::' + arb_mech_name break - if arb_mech is None: # not Arbor built-in mech + + if arb_mech is None: # not Arbor built-in mech, no qualifier added + if mech_name is not None: + logger.warn('create_acc: Could not find Arbor mech for %s (%s).' + % (mech_name, mech_params)) return (mech_name, mech_params) else: if arb_mech['globals'] is None: # only Arbor range params @@ -368,9 +390,10 @@ def create_acc(mechs, parameters, morphology=None, morphology_dir=None, + ext_catalogues=None, ignored_globals=(), replace_axon=None, - create_mod_acc=False, + create_mod_morph=False, template_name='CCell', template_filename='acc/*_template.jinja2', disable_banner=None, @@ -383,9 +406,11 @@ def create_acc(mechs, parameters (): All the parameters in the decor/label-dict template morphology (str): Name of morphology morphology_dir (str): Directory of morphology + ext_catalogues (): Name to path mapping of non-Arbor built-in + NMODL mechanism catalogues compiled with modcc ignored_globals (iterable str): Skipped NrnGlobalParameter in decor replace_axon (): Axon replacement morphology - create_mod_acc (): Create ACC morphology with axon replacement + create_mod_morph (): Create ACC morphology with axon replacement template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) template_dir (str): dir name of the jinja2 templates @@ -411,7 +436,7 @@ def create_acc(mechs, arbor.write_component(replace_axon, replace_axon_acc) replace_axon_acc.seek(0) - if create_mod_acc: + if create_mod_morph: modified_morphology_path = \ pathlib.Path(morphology).stem + '_modified.acc' modified_morpho = ArbFileMorphology.load( @@ -499,7 +524,8 @@ def create_acc(mechs, pprocess_mechs = _arb_eval_point_proc_locs(pprocess_mechs) # translate mechs to Arbor's convention - arb_cats = _arb_load_mech_catalogues() + arb_cats = _arb_load_mech_catalogues(ext_catalogues) + global_mechs = _arb_nmodl_global_translate_density(global_mechs, arb_cats) section_mechs = { loc: _arb_nmodl_global_translate_density(mechs, arb_cats) @@ -555,7 +581,8 @@ def create_acc(mechs, def output_acc(output_dir, cell, parameters, template_filename='acc/*_template.jinja2', - create_mod_acc=False, + ext_catalogues=None, + create_mod_morph=False, sim=None): '''Output mixed JSON/ACC format for Arbor cable cell to files @@ -565,12 +592,16 @@ def output_acc(output_dir, cell, parameters, parameters (): Values for mechanism parameters, etc. template_filename (str): file path of the cell.json , decor.acc and label_dict.acc jinja2 templates (with wildcards expanded by glob) - create_mod_acc (str): Output ACC with axon replacement + ext_catalogues (): Name to path mapping of non-Arbor built-in + NMODL mechanism catalogues compiled with modcc + create_mod_morph (str): Output ACC with axon replacement sim (): Neuron simulator instance (only used used with axon replacement if morphology has not yet been instantiated) ''' output = cell.create_acc(parameters, template_filename, - create_mod_acc=create_mod_acc, sim=sim) + ext_catalogues=ext_catalogues, + create_mod_morph=create_mod_morph, + sim=sim) cell_json = [comp_rendered for comp, comp_rendered in output.items() diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index a034763d..c1efda37 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -380,7 +380,8 @@ def create_acc(self, param_values, ignored_globals=(), template='acc/*_template.jinja2', disable_banner=False, template_dir=None, - create_mod_acc=False, + ext_catalogues=None, + create_mod_morph=False, sim=None): """Create JSON/ACC-description for this model""" destroy_cell = False @@ -396,7 +397,8 @@ def create_acc(self, param_values, extra_params = dict( morphology_dir=os.path.dirname(self.morphology.morphology_path), - create_mod_acc=create_mod_acc + create_mod_morph=create_mod_morph, + ext_catalogues=ext_catalogues ) ret = self._create_sim_desc(param_values, diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index b2fdc6dc..9f8661f5 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -469,7 +469,9 @@ def run( # Export cell model to mixed JSON/ACC-format with tempfile.TemporaryDirectory() as acc_dir: - create_acc.output_acc(acc_dir, cell_model, param_values) + create_acc.output_acc(acc_dir, cell_model, param_values, + ext_catalogues=sim.ext_catalogues) + cell_json = os.path.join(acc_dir, cell_model.name + '.json') # protocols are directly instantiated on Arbor cell diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index 262d887a..cc6546f4 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -8,6 +8,7 @@ import ctypes import platform import warnings +import pathlib try: import arbor @@ -192,14 +193,28 @@ class ArbSimulator(object): """Arbor simulator""" - def __init__(self, dt=None): # TODO: add discretization policies, etc. + def __init__(self, dt=None, ext_catalogues=None): """Constructor Args: dt (float): the integration time step used by Arbor. + ext_catalogues (): Name to path mapping of non-Arbor built-in + NMODL mechanism catalogues compiled with modcc """ self.dt = dt + self.ext_catalogues = ext_catalogues + if ext_catalogues is not None: + for cat, cat_path in ext_catalogues.items(): + cat_lib = '%s-catalogue.so' % cat + cat_path = pathlib.Path(cat_path).resolve() + if not os.path.exists(cat_path / cat_lib): + raise ArbSimulatorException( + 'Cannot find %s at %s - first build' % (cat_lib, + cat_path) + + ' mechanism catalogue with modcc:' + + ' arbor-build-catalogue %s %s' % (cat, cat_path)) + # TODO: add parameters for discretization def instantiate(self, morph, labels, decor): cable_cell = arbor.cable_cell(morph, labels, decor) @@ -207,12 +222,33 @@ def instantiate(self, morph, labels, decor): arb_cell_model = arbor.single_cell_model(cable_cell) # Add catalogues with explicit qualifiers - # (could also be a simulator-option) arb_cell_model.properties.catalogue = arbor.catalogue() - arb_cell_model.properties.catalogue.extend( - arbor.default_catalogue(), "default::") - arb_cell_model.properties.catalogue.extend( - arbor.bbp_catalogue(), "BBP::") + + # User-supplied catalogues take precedence + if self.ext_catalogues is not None: + for cat, cat_path in self.ext_catalogues.items(): + cat_lib = '%s-catalogue.so' % cat + cat_path = pathlib.Path(cat_path).resolve() + arb_cell_model.properties.catalogue.extend( + arbor.load_catalogue(cat_path / cat_lib), + cat + "::") + + # Built-in catalogues are always added (could be made optional) + if self.ext_catalogues is None or \ + 'default' not in self.ext_catalogues: + arb_cell_model.properties.catalogue.extend( + arbor.default_catalogue(), "default::") + + if self.ext_catalogues is None or \ + 'BBP' not in self.ext_catalogues: + arb_cell_model.properties.catalogue.extend( + arbor.bbp_catalogue(), "BBP::") + + if self.ext_catalogues is None or \ + 'allen' not in self.ext_catalogues: + arb_cell_model.properties.catalogue.extend( + arbor.allen_catalogue(), "allen::") + return arb_cell_model def run(self, @@ -226,3 +262,13 @@ def run(self, return arb_cell_model.run(tfinal=tstop, dt=dt) else: return arb_cell_model.run(tfinal=tstop) + + +class ArbSimulatorException(Exception): + + """All exception generated by Arbor simulator""" + + def __init__(self, message): + """Constructor""" + + super(ArbSimulatorException, self).__init__(message) diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index c18ff462..c10810e1 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -33,9 +33,7 @@ {%- endfor %} {%- for synapse_name, mech_param_locs in pprocess_mechs[loc].items() %} - {%- for point_loc in mech_param_locs.point_locs %} (place {{loc.ref}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") {%- endfor %} - {%- endfor %} {%- endfor %})) diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index e50d5bc5..f5c53c26 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -39,16 +39,21 @@ def main(): nrn_sim = ephys.simulators.NrnSimulator() cell.instantiate_morphology_3d(nrn_sim) + # Add modcc-compiled external mechanisms catalogues here + # ext_catalogues = {'cat-name': 'path/to/nmodl-dir', ...} + if args.output_dir is not None: ephys.create_acc.output_acc(args.output_dir, cell, param_values, - create_mod_acc=True) + # ext_catalogues=ext_catalogues, + create_mod_morph=True) else: output = cell.create_acc( param_values, template='acc/*_template.jinja2', - create_mod_acc=True) + # ext_catalogues=ext_catalogues, + create_mod_morph=True) for el, val in output.items(): print("%s:\n%s\n" % (el, val)) diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index 9562236a..089c0cf3 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -39,16 +39,21 @@ def main(): nrn_sim = ephys.simulators.NrnSimulator() cell.instantiate_morphology_3d(nrn_sim) + # Add modcc-compiled external mechanisms catalogues here + # ext_catalogues = {'cat-name': 'path/to/nmodl-dir', ...} + if args.output_dir is not None: ephys.create_acc.output_acc(args.output_dir, cell, param_values, - create_mod_acc=True) + # ext_catalogues=ext_catalogues, + create_mod_morph=True) else: output = cell.create_acc( param_values, template='acc/*_template.jinja2', - create_mod_acc=True) + # ext_catalogues=ext_catalogues, + create_mod_morph=True) for el, val in output.items(): print("%s:\n%s\n" % (el, val)) From 9443b123c72f35adfba747114406410b4ff3c160 Mon Sep 17 00:00:00 2001 From: Anil Tuncel Date: Wed, 19 Oct 2022 16:14:45 +0200 Subject: [PATCH 28/42] avoid using string concatenation in joining paths --- bluepyopt/ephys/create_acc.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 1afc2a7e..4457e917 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -192,7 +192,7 @@ def _arb_load_mech_catalogues(ext_catalogues): builtin_catalogues = os.path.abspath( os.path.join( os.path.dirname(__file__), - 'static/arbor_mechanisms.json')) + 'static', 'arbor_mechanisms.json')) with open(builtin_catalogues) as f: builtin_arb_cats = json.load(f) From d958c1498e74453beda6b5d004b6e4ef38e9cf8f Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 20 Oct 2022 07:50:36 +0200 Subject: [PATCH 29/42] Removing assertions, adding another Arbor iexpr generation test --- bluepyopt/ephys/acc_utils.py | 10 ++ bluepyopt/ephys/create_acc.py | 94 ++++++++++--------- bluepyopt/ephys/create_hoc.py | 24 +++-- bluepyopt/ephys/models.py | 5 +- bluepyopt/ephys/morphologies.py | 18 +--- bluepyopt/ephys/parameterscalers.py | 45 +++++---- bluepyopt/ephys/protocols.py | 8 +- bluepyopt/ephys/simulators.py | 12 +-- bluepyopt/ephys/stimuli.py | 11 +-- bluepyopt/tests/test_ephys/test_create_acc.py | 25 ++++- bluepyopt/tests/test_l5pc.py | 4 +- 11 files changed, 149 insertions(+), 107 deletions(-) create mode 100644 bluepyopt/ephys/acc_utils.py diff --git a/bluepyopt/ephys/acc_utils.py b/bluepyopt/ephys/acc_utils.py new file mode 100644 index 00000000..d10626c4 --- /dev/null +++ b/bluepyopt/ephys/acc_utils.py @@ -0,0 +1,10 @@ +try: + import arbor +except ImportError as e: + class arbor: + def __getattribute__(self, _): + raise ImportError("Exporting cell models to ACC/JSON, loading" + " them or optimizing them with the Arbor" + " simulator requires missing dependency arbor." + " To install BluePyOpt with arbor," + " run 'pip install bluepyopt[arbor]'.") diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 1afc2a7e..0c969cf5 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -14,16 +14,7 @@ import json import shutil -try: - import arbor -except ImportError as e: - class arbor: - def __getattribute__(self, _): - raise ImportError("Loading an ACC/JSON-exported cell model into an" - " Arbor morphology and cable cell components" - " requires missing dependency arbor." - " To install BluePyOpt with arbor," - " run 'pip install bluepyopt[arbor]'.") +from .acc_utils import arbor logger = logging.getLogger(__name__) @@ -87,7 +78,7 @@ def _nrn2arb_param(param, name): point_loc=param.point_loc, value=_nrn2arb_var_value(param)) else: - raise ValueError('Invalid parameter expression type.') + raise CreateAccException('Invalid parameter expression type.') def _nrn2arb_mech_name(name): @@ -154,22 +145,22 @@ def process_nmodl(nmodl_str): try: nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, flags=re.MULTILINE).group(1) - suffix = re.search(suffix_pattern, nrn, - flags=re.MULTILINE) - suffix = suffix if suffix is None else suffix.group(1) - globals = re.search(globals_pattern, nrn, + suffix_ = re.search(suffix_pattern, nrn, flags=re.MULTILINE) - globals = globals if globals is None \ - else re.findall(r'\w+', globals.group(1)) - ranges = re.search(ranges_pattern, nrn, - flags=re.MULTILINE) - ranges = ranges if ranges is None \ - else re.findall(r'\w+', ranges.group(1)) + suffix_ = suffix_ if suffix_ is None else suffix_.group(1) + globals_ = re.search(globals_pattern, nrn, + flags=re.MULTILINE) + globals_ = globals_ if globals_ is None \ + else re.findall(r'\w+', globals_.group(1)) + ranges_ = re.search(ranges_pattern, nrn, + flags=re.MULTILINE) + ranges_ = ranges_ if ranges_ is None \ + else re.findall(r'\w+', ranges_.group(1)) except Exception as e: - raise ValueError('create_acc: NMODL-inspection for' - ' %s failed.' % nmodl_file) from e + raise CreateAccException( + 'NMODL-inspection for %s failed.' % nmodl_file) from e - return dict(globals=globals, ranges=ranges) # suffix skipped + return dict(globals=globals_, ranges=ranges_) # suffix_ skipped mechs = dict() for nmodl_file in glob(str(cat_dir / '*.mod')): @@ -225,9 +216,9 @@ def _find_mech_and_convert_param_name(param, mechs): return mech, _nrn2arb_param(param, name=name) else: - raise RuntimeError("Parameter name %s matches multiple mechanisms %s " - % (param.name, - [repr(mechs[i]) for i in mech_matches])) + raise CreateAccException("Parameter name %s matches" % param.name + + " multiple mechanisms %s" % + [repr(mechs[i]) for i in mech_matches]) def _arb_convert_params_and_group_by_mech(params, channels): @@ -268,9 +259,9 @@ def _arb_append_scaled_mechs(mechs, scaled_mechs): """Append scaled mechanism parameters to constant ones""" for mech, scaled_params in scaled_mechs.items(): if mech is None and len(scaled_params) > 0: - raise ValueError('Non-mechanism parameters cannot have' - ' inhomogeneous expressions in Arbor', - scaled_params) + raise CreateAccException( + 'Non-mechanism parameters cannot have inhomogeneous' + ' expressions in Arbor %s' % scaled_params) mechs[mech] = mechs.get(mech, []) + \ [RangeIExpr( name=p.name, @@ -300,12 +291,18 @@ def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): else: if arb_mech['globals'] is None: # only Arbor range params for param in mech_params: - assert param.name in arb_mech['ranges'] + if param.name not in arb_mech['ranges']: + raise CreateAccException( + '%s not a GLOBAL or RANGE parameter of %s' % + (param.name, mech_name)) return (mech_name, mech_params) else: for param in mech_params: - assert param.name in arb_mech['globals'] or \ - param.name in arb_mech['ranges'] + if param.name not in arb_mech['globals'] and \ + param.name not in arb_mech['ranges']: + raise CreateAccException( + '%s not a GLOBAL or RANGE parameter of %s' % + (param.name, mech_name)) mech_name_suffix = [] remaining_mech_params = [] for mech_param in mech_params: @@ -419,9 +416,9 @@ def create_acc(mechs, ''' if pathlib.Path(morphology).suffix.lower() not in ['.swc', '.asc']: - raise RuntimeError("Morphology file %s not supported in Arbor " - " (only supported types are .swc and .asc)." - % morphology) + raise CreateAccException("Morphology file %s not supported in Arbor " + " (only supported types are .swc and .asc)." + % morphology) if replace_axon is not None: if not hasattr(arbor.segment_tree, 'tag_roots'): @@ -516,8 +513,8 @@ def create_acc(mechs, _arb_convert_params_and_group_by_mech_local( template_params['pprocess_params'], point_channels) if any(len(params) > 0 for params in global_pprocess_mechs.values()): - raise ValueError('Point process mechanisms cannot be' - ' placed globally in Arbor.') + raise CreateAccException('Point process mechanisms cannot be' + ' placed globally in Arbor.') # Evaluate synapse locations # (no new labels introduced, but locations explicitly defined) @@ -547,7 +544,7 @@ def create_acc(mechs, for acc_label in acc_labels: if acc_label.name in label_dict and \ acc_label != label_dict[acc_label.name]: - raise ValueError( + raise CreateAccException( 'Label %s already exists in' % acc_label.name + ' label_dict with different definition: ' ' %s != %s.' % (label_dict[acc_label.name].defn, @@ -606,7 +603,10 @@ def output_acc(output_dir, cell, parameters, cell_json = [comp_rendered for comp, comp_rendered in output.items() if pathlib.Path(comp).suffix == '.json'] - assert len(cell_json) == 1 + if len(cell_json) != 1: + raise CreateAccException( + 'JSON file from create_acc is non-unique: %s' % cell_json) + cell_json = json.loads(cell_json[0]) if not os.path.exists(output_dir): @@ -614,14 +614,14 @@ def output_acc(output_dir, cell, parameters, for comp, comp_rendered in output.items(): comp_filename = os.path.join(output_dir, comp) if os.path.exists(comp_filename): - raise RuntimeError("%s already exists!" % comp_filename) + raise CreateAccException("%s already exists!" % comp_filename) with open(os.path.join(output_dir, comp), 'w') as f: f.write(comp_rendered) morpho_filename = os.path.join( output_dir, cell_json['morphology']['original']) if os.path.exists(morpho_filename): - raise RuntimeError("%s already exists!" % morpho_filename) + raise CreateAccException("%s already exists!" % morpho_filename) shutil.copy2(cell.morphology.morphology_path, morpho_filename) @@ -652,3 +652,13 @@ def read_acc(cell_json_filename): os.path.join(cell_json_dir, cell_json['decor'])).component return cell_json, morpho, labels, decor + + +class CreateAccException(Exception): + + """All exceptions generated by create_acc module""" + + def __init__(self, message): + """Constructor""" + + super(CreateAccException, self).__init__(message) diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index deb0ba4f..962a0a6b 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -10,6 +10,7 @@ import jinja2 import bluepyopt +from bluepyopt.ephys.locations import NrnSectionCompLocation from . import mechanisms from bluepyopt.ephys.parameters import (NrnGlobalParameter, @@ -95,14 +96,15 @@ def _loc_desc(location, param_or_mech): # TODO this is dangerous, implicitly assumes type of location return getattr(location, 'seclist_name', 'all') elif isinstance(param_or_mech, mechanisms.NrnMODPointProcessMechanism): - raise ValueError("%s is currently not supported by create_hoc." % - type(param_or_mech).__name__) - # FIXME: NrnSectionCompLocation - elif not isinstance(param_or_mech, NrnPointProcessParameter): + raise CreateHocException("%s is currently not supported." % + type(param_or_mech).__name__) + # FIXME: NrnSectionCompLocation has no member seclist_name + elif not isinstance(param_or_mech, NrnPointProcessParameter) or \ + not isinstance(param_or_mech, NrnSectionCompLocation): return location.seclist_name else: - raise ValueError("%s is currently not supported by create_hoc." % - type(param_or_mech).__name__) + raise CreateHocException("%s is currently not supported." % + type(param_or_mech).__name__) def _generate_parameters(parameters, location_order, loc_desc): @@ -293,3 +295,13 @@ def create_hoc(mechs, re_init_rng=re_init_rng, **template_params, **custom_jinja_params) + + +class CreateHocException(Exception): + + """All exceptions generated by create_hoc module""" + + def __init__(self, message): + """Constructor""" + + super(CreateHocException, self).__init__(message) diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index c1efda37..781cdc8a 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -301,7 +301,7 @@ def _create_sim_desc(self, param_values, ignored_globals=(), template=None, disable_banner=False, template_dir=None, - extra_params=dict(), + extra_params=None, sim_desc_creator=None): """Create simulator description for this model""" @@ -350,6 +350,9 @@ def _create_sim_desc(self, param_values, '(choose either create_hoc.create_hoc or ' 'create_acc.create_acc)', str(sim_desc_creator)) + if extra_params is None: + extra_params = dict() + ret = sim_desc_creator(mechs=self.mechanisms, parameters=self.params.values(), morphology=morphology, diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index 2c9574cd..ee0f18f0 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -27,20 +27,10 @@ from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin -try: - import pathlib - import bisect - import numpy - import arbor -except ImportError as e: - class arbor: - def __getattribute__(self, _): - raise ImportError("Loading an ACC/JSON-exported cell model into an" - " Arbor morphology and cable cell components" - " requires missing dependency arbor." - " To install BluePyOpt with arbor," - " run 'pip install bluepyopt[arbor]'.") - +import pathlib +import bisect +import numpy +from .acc_utils import arbor logger = logging.getLogger(__name__) diff --git a/bluepyopt/ephys/parameterscalers.py b/bluepyopt/ephys/parameterscalers.py index 5002773e..546299f7 100644 --- a/bluepyopt/ephys/parameterscalers.py +++ b/bluepyopt/ephys/parameterscalers.py @@ -356,22 +356,29 @@ def visit_BinOp(self, node): def visit_Call(self, node): func = node.func - if func.value.id == 'math': - if len(node.args) > 1: - raise ValueError('Arbor iexpr generation failed:' - ' math functions can only have a' - ' single argument.') - func_symbol = func.value.id + '.' + func.attr - if func_symbol not in self._iexpr_symbols: - raise ValueError('Arbor iexpr generation failed - ' - ' Unknown symbol %s.' % func_symbol) - self._emit( - '(' + self._iexpr_symbols[func_symbol] - ) - self.visit(node.args[0]) - self._emit( - ')' - ) + if hasattr(func, 'value'): + if func.value.id == 'math': + if len(node.args) > 1: + raise ValueError('Arbor iexpr generation failed -' + ' math functions can only have a' + ' single argument.') + func_symbol = func.value.id + '.' + func.attr + if func_symbol not in self._iexpr_symbols: + raise ValueError('Arbor iexpr generation failed -' + ' unknown symbol %s.' % func_symbol) + self._emit( + '(' + self._iexpr_symbols[func_symbol] + ) + self.visit(node.args[0]) + self._emit( + ')' + ) + else: + raise ValueError('Arbor iexpr generation failed -' + ' unsupported module %s.' % func.value.id) + else: + raise ValueError('Arbor iexpr generation failed -' + ' unsupported function %s.' % func.id) def visit_Name(self, node): if node.id in self._var_name_to_sexpr: @@ -384,9 +391,11 @@ def visit_Name(self, node): def generate_arbor_iexpr(iexpr, variables, constant_formatter): - """Generate Arbor iexpr from parameter-scaler string""" + """Generate Arbor iexpr from parameter-scaler python expression""" - assert 'value' in variables + if 'value' not in variables: + raise ValueError('Arbor iexpr generation failed for %s:' % iexpr + + ' \'value\' not in variables dict: %s' % variables) emit_dict = {'_arb_parse_iexpr_' + k: v for k, v in variables.items()} diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index 9f8661f5..a41fd57c 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -532,7 +532,9 @@ def instantiate_locations(self, label_dict): for rec in self.recordings: arb_loc = rec.location.acc_label() - assert not isinstance(arb_loc, list) or len(arb_loc) == 1 + if isinstance(arb_loc, list) and len(arb_loc) != 1: + raise ValueError('ArbSweepProtocol: ACC label %s' % arb_loc + + ' of recording with length != 1.') stim_rec_labels.append((arb_loc.name, arb_loc.loc, rec)) stim_rec_label_dict = dict() @@ -599,7 +601,9 @@ def instantiate_recordings(self, cell_model, use_labels=False): for i, rec in enumerate(self.recordings): # alternatively arbor.cable_probe_membrane_voltage arb_loc = rec.location.acc_label() - assert not isinstance(arb_loc, list) or len(arb_loc) == 1 + if isinstance(arb_loc, list) and len(arb_loc) != 1: + raise ValueError('ArbSweepProtocol: ACC label %s' % arb_loc + + ' of recording with length != 1.') if hasattr(cell_model, 'cable_cell'): rec_locations = cell_model.cable_cell.locations(arb_loc.loc) diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index cc6546f4..ff770591 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -10,16 +10,8 @@ import warnings import pathlib -try: - import arbor -except ImportError as e: - class arbor: - def __getattribute__(self, _): - raise ImportError("Loading an ACC/JSON-exported cell model into an" - " Arbor morphology and cable cell components" - " requires missing dependency arbor." - " To install BluePyOpt with arbor," - " run 'pip install bluepyopt[arbor]'.") +from .acc_utils import arbor + logger = logging.getLogger(__name__) diff --git a/bluepyopt/ephys/stimuli.py b/bluepyopt/ephys/stimuli.py index 0ecb4468..a135d2ee 100644 --- a/bluepyopt/ephys/stimuli.py +++ b/bluepyopt/ephys/stimuli.py @@ -24,16 +24,7 @@ import logging logger = logging.getLogger(__name__) -try: - import arbor -except ImportError as e: - class arbor: - def __getattribute__(self, _): - raise ImportError("Loading an ACC/JSON-exported cell model into an" - " Arbor morphology and cable cell components" - " requires missing dependency arbor." - " To install BluePyOpt with arbor," - " run 'pip install bluepyopt[arbor]'.") +from .acc_utils import arbor class Stimulus(object): diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index b5941911..ba6fa321 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -145,8 +145,8 @@ def test_create_acc_iexpr_generator(): value=2.125, value_scaler=ephys.parameterscalers.NrnSegmentSomaDistanceScaler( name='soma_distance_scaler', - distribution='(0.62109375 - 0.546875*math.exp(' - '({distance})*0.421875))*{value}')) + distribution='(0.62109375 - 0.546875 * math.exp(' + '({distance}) * 0.421875)) * {value}')) iexpr = range_expr.value_scaler.acc_scale_iexpr( value=range_expr.value, @@ -158,6 +158,27 @@ def test_create_acc_iexpr_generator(): '(scalar 0.421875) ) ) ) )' +@pytest.mark.unit +def test_create_acc_iexpr_generator_invalid_op(): + """ephys.create_acc: Test iexpr generation from range expression + with invalid node""" + range_expr = ephys.create_hoc.RangeExpr( + location='apic', + name='gIhbar_Ih', + value=2.125, + value_scaler=ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + name='soma_distance_scaler', + distribution='(0.62109375 - 0.546875 * non_existent_func(' + '({distance}) * 0.421875)) * {value}')) + + with pytest.raises(ValueError, + match='Arbor iexpr generation failed - ' + 'unsupported function non_existent_func.'): + iexpr = range_expr.value_scaler.acc_scale_iexpr( + value=range_expr.value, + constant_formatter=lambda v: '%.9g' % v) + + @pytest.mark.unit def test_create_acc_replace_axon(): """ephys.create_acc: Test create_acc with axon replacement""" diff --git a/bluepyopt/tests/test_l5pc.py b/bluepyopt/tests/test_l5pc.py index 859edbf4..e0eceba2 100644 --- a/bluepyopt/tests/test_l5pc.py +++ b/bluepyopt/tests/test_l5pc.py @@ -193,10 +193,10 @@ def test_l5pc_soma_arbor(): execfile('l5pc_soma_arbor_somatic.py') # NOQA else: with open('l5pc_soma_arbor_somatic.py') as l5pc_file: - globals = {} + l5pc_globals = {} exec(compile(l5pc_file.read(), 'l5pc_soma_arbor_somatic.py', - 'exec'), globals, globals) # NOQA + 'exec'), l5pc_globals, l5pc_globals) # NOQA stdout = output.getvalue() # mean relative L1-deviation between Arbor and Neuron below tolerance assert 'Default dt ({:,.3g}): test_l5pc OK!'.format(0.025) + \ From 4bc64249a4f7c69e6d2752ed62080e2e16cf76d0 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Thu, 20 Oct 2022 19:18:50 +0200 Subject: [PATCH 30/42] More iexpr tests, mech metadata type in ACC exporter, Arbor label moved to acc_utils --- bluepyopt/ephys/acc_utils.py | 35 ++++++ bluepyopt/ephys/create_acc.py | 107 +++++++++--------- bluepyopt/ephys/locations.py | 3 +- bluepyopt/ephys/morphologies.py | 42 +------ bluepyopt/ephys/parameterscalers.py | 39 ++++--- bluepyopt/ephys/simulators.py | 2 +- bluepyopt/ephys/stimuli.py | 5 +- .../templates/acc/decor_acc_template.jinja2 | 10 +- bluepyopt/tests/test_ephys/test_create_acc.py | 45 +------- .../tests/test_ephys/test_parameterscalers.py | 55 +++++++++ .../acc/templates/decor_acc_template.jinja2 | 6 +- 11 files changed, 186 insertions(+), 163 deletions(-) diff --git a/bluepyopt/ephys/acc_utils.py b/bluepyopt/ephys/acc_utils.py index d10626c4..0be82e74 100644 --- a/bluepyopt/ephys/acc_utils.py +++ b/bluepyopt/ephys/acc_utils.py @@ -8,3 +8,38 @@ def __getattribute__(self, _): " simulator requires missing dependency arbor." " To install BluePyOpt with arbor," " run 'pip install bluepyopt[arbor]'.") + + +class ArbLabel: + """Arbor label""" + + def __init__(self, type, name, defn): + self._type = type + self._name = name + self._defn = defn + + @property + def defn(self): + """Label definition for label-dict""" + return '(%s-def "%s" %s)' % (self._type, self._name, self._defn) + + @property + def ref(self): + """Reference to label defined in label-dict""" + return '(%s "%s")' % (self._type, self._name) + + @property + def name(self): + """Name of the label""" + return self._name + + @property + def loc(self): + """Expression defining the location of the label""" + return self._defn + + def __eq__(self, other): + return self.defn == other.defn + + def __hash__(self): + return hash(self.defn) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index d3f3100d..c850b2d3 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -14,22 +14,26 @@ import json import shutil -from .acc_utils import arbor +from bluepyopt.ephys.acc_utils import arbor +from bluepyopt.ephys.morphologies import ArbFileMorphology +from bluepyopt.ephys.create_hoc import \ + Location, RangeExpr, PointExpr, \ + _get_template_params, format_float logger = logging.getLogger(__name__) -from .create_hoc import Location, RangeExpr, PointExpr, \ - _get_template_params, format_float -from .morphologies import ArbFileMorphology - # Define Neuron to Arbor variable conversions ArbVar = namedtuple('ArbVar', 'name, conv') # turn into a class -# Inhomogeneous expression for soma-distance-scaled parameter in Arbor +# Inhomogeneous expression for scaled parameter in Arbor RangeIExpr = namedtuple('RangeIExpr', 'name, value, scale') +# A mechanism's GLOBAL and RANGE variables in Arbor +MechMetaData = namedtuple('MechMetaData', 'globals, ranges') + + def _make_var(name, conv=None): # conv defaults to identity return ArbVar(name=name, conv=conv) @@ -114,7 +118,7 @@ def _arb_pop_global_properties(loc, mechs): return [(None, global_properties)] # list of (mech, params) tuples -def _arb_eval_point_proc_locs(pprocess_mechs): +def _arb_filter_point_proc_locs(pprocess_mechs): """Evaluate point process locations""" result = {loc: dict() for loc in pprocess_mechs} @@ -124,15 +128,13 @@ def _arb_eval_point_proc_locs(pprocess_mechs): result[loc][mech.name] = dict( mech=mech.suffix, params=[Location(point_expr.name, point_expr.value) - for point_expr in point_exprs], - point_locs=[loc.acc_label() - for loc in mech.locations]) + for point_expr in point_exprs]) return result -def _arb_load_catalogue_desc(cat_dir): - """Load mechanism catalogue description from NMODL files""" +def _arb_load_catalogue_meta(cat_dir): + """Load mechanism catalogue metadata from NMODL files""" # used to generate arbor_mechanisms.json on NMODL from arbor/mechanisms nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' # NOQA @@ -160,7 +162,8 @@ def process_nmodl(nmodl_str): raise CreateAccException( 'NMODL-inspection for %s failed.' % nmodl_file) from e - return dict(globals=globals_, ranges=ranges_) # suffix_ skipped + # skipping suffix_ + return MechMetaData(globals=globals_, ranges=ranges_) mechs = dict() for nmodl_file in glob(str(cat_dir / '*.mod')): @@ -170,26 +173,27 @@ def process_nmodl(nmodl_str): return mechs -def _arb_load_mech_catalogues(ext_catalogues): - """Load Arbor's built-in mechanism catalogues""" +def _arb_load_mech_catalogue_meta(ext_catalogues): + """Load metadata of external and Arbor's built-in mechanism catalogues""" arb_cats = OrderedDict() if ext_catalogues is not None: for cat, cat_nmodl in ext_catalogues.items(): - arb_cats[cat] = _arb_load_catalogue_desc( + arb_cats[cat] = _arb_load_catalogue_meta( pathlib.Path(cat_nmodl).resolve()) builtin_catalogues = os.path.abspath( os.path.join( os.path.dirname(__file__), - 'static', 'arbor_mechanisms.json')) + 'static/arbor_mechanisms.json')) with open(builtin_catalogues) as f: builtin_arb_cats = json.load(f) for cat in ['BBP', 'default', 'allen']: if cat not in arb_cats: - arb_cats[cat] = builtin_arb_cats[cat] + arb_cats[cat] = {mech: MechMetaData(**meta) + for mech, meta in builtin_arb_cats[cat].items()} return arb_cats @@ -289,24 +293,24 @@ def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): % (mech_name, mech_params)) return (mech_name, mech_params) else: - if arb_mech['globals'] is None: # only Arbor range params + if arb_mech.globals is None: # only Arbor range params for param in mech_params: - if param.name not in arb_mech['ranges']: + if param.name not in arb_mech.ranges: raise CreateAccException( '%s not a GLOBAL or RANGE parameter of %s' % (param.name, mech_name)) return (mech_name, mech_params) else: for param in mech_params: - if param.name not in arb_mech['globals'] and \ - param.name not in arb_mech['ranges']: + if param.name not in arb_mech.globals and \ + param.name not in arb_mech.ranges: raise CreateAccException( '%s not a GLOBAL or RANGE parameter of %s' % (param.name, mech_name)) mech_name_suffix = [] remaining_mech_params = [] for mech_param in mech_params: - if mech_param.name in arb_mech['globals']: + if mech_param.name in arb_mech.globals: mech_name_suffix.append(mech_param.name + '=' + mech_param.value) if isinstance(mech_param, RangeIExpr): @@ -328,21 +332,20 @@ def _arb_nmodl_global_translate_density(mechs, arb_cats): def _arb_nmodl_global_translate_points(mechs, arb_cats): - """Translate all point mechanisms in a region""" + """Translate all point mechanisms for a specific label""" result = dict() for synapse_name, mech_desc in mechs.items(): mech, params = _arb_nmodl_global_translate_mech( mech_desc['mech'], mech_desc['params'], arb_cats) result[synapse_name] = dict(mech=mech, - params=params, - point_locs=mech_desc['point_locs']) + params=params) return result def _arb_project_scaled_mechs(mechs): - """Returns all mechanisms with scaled parameters in Arbor""" + """Returns all parameters of scaled mechanisms in Arbor""" scaled_mechs = dict() for mech, params in mechs.items(): range_iexprs = [p for p in params if isinstance(p, RangeIExpr)] @@ -476,39 +479,39 @@ def create_acc(mechs, point_channels = template_params['point_channels'] banner = template_params['banner'] - # global_mechs refer to default mechanisms/params in Arbor - # [mech -> param] + # global_mechs refer to default density mechs/params in Arbor + # [mech -> param] (params under mech == None) global_mechs = \ _arb_convert_params_and_group_by_mech_global( template_params['global_params']) - # section_mechs refer to locally painted mechanisms/params in Arbor - # [loc -> mech -> param.name/.value] - section_mechs, additional_global_mechs = \ + # local_mechs refer to locally painted density mechs/params in Arbor + # [label -> mech -> param.name/.value] (params under mech == None) + local_mechs, additional_global_mechs = \ _arb_convert_params_and_group_by_mech_local( template_params['section_params'], channels) for mech, params in additional_global_mechs.items(): global_mechs[mech] = \ global_mechs.get(mech, []) + params - # scaled_mechs refer to params with iexprs in Arbor - # [loc -> mech -> param.location/.name/.value/.value_scaler] + # scaled_mechs refer to iexpr params of scaled density mechs in Arbor + # [label -> mech -> param.location/.name/.value/.value_scaler] range_params = {loc: [] for loc in default_location_order} for param in template_params['range_params']: range_params[param.location].append(param) range_params = list(range_params.items()) - section_scaled_mechs, global_scaled_mechs = \ + local_scaled_mechs, global_scaled_mechs = \ _arb_convert_params_and_group_by_mech_local( range_params, channels) - # join mechs constant params with inhomogeneous ones on mechanisms + # join each mech's constant params with inhomogeneous ones on mechanisms _arb_append_scaled_mechs(global_mechs, global_scaled_mechs) - for loc in section_scaled_mechs: - _arb_append_scaled_mechs(section_mechs[loc], section_scaled_mechs[loc]) + for loc in local_scaled_mechs: + _arb_append_scaled_mechs(local_mechs[loc], local_scaled_mechs[loc]) - # section_pprocess_mechs refer to locally placed mechanisms/params in Arbor - # [loc -> mech -> param.name/.value] + # pprocess_mechs refer to locally placed mechs/params in Arbor + # [label -> mech -> param.name/.value] pprocess_mechs, global_pprocess_mechs = \ _arb_convert_params_and_group_by_mech_local( template_params['pprocess_params'], point_channels) @@ -518,28 +521,30 @@ def create_acc(mechs, # Evaluate synapse locations # (no new labels introduced, but locations explicitly defined) - pprocess_mechs = _arb_eval_point_proc_locs(pprocess_mechs) + pprocess_mechs = _arb_filter_point_proc_locs(pprocess_mechs) - # translate mechs to Arbor's convention - arb_cats = _arb_load_mech_catalogues(ext_catalogues) + # load metadata of external and Arbor's built-in mech catalogues + arb_cats = _arb_load_mech_catalogue_meta(ext_catalogues) + # translate mechs to Arbor's nomenclature global_mechs = _arb_nmodl_global_translate_density(global_mechs, arb_cats) - section_mechs = { + local_mechs = { loc: _arb_nmodl_global_translate_density(mechs, arb_cats) - for loc, mechs in section_mechs.items()} + for loc, mechs in local_mechs.items()} pprocess_mechs = { loc: _arb_nmodl_global_translate_points(mechs, arb_cats) for loc, mechs in pprocess_mechs.items()} + # get iexpr parameters of scaled density mechs global_scaled_mechs = _arb_project_scaled_mechs(global_mechs) - section_scaled_mechs = {loc: _arb_project_scaled_mechs(mechs) - for loc, mechs in section_mechs.items()} + local_scaled_mechs = {loc: _arb_project_scaled_mechs(mechs) + for loc, mechs in local_mechs.items()} # populate label dict label_dict = dict() - for acc_labels in [section_mechs.keys(), - section_scaled_mechs.keys(), + for acc_labels in [local_mechs.keys(), + local_scaled_mechs.keys(), pprocess_mechs.keys()]: for acc_label in acc_labels: if acc_label.name in label_dict and \ @@ -562,8 +567,8 @@ def create_acc(mechs, label_dict=label_dict, global_mechs=global_mechs, global_scaled_mechs=global_scaled_mechs, - section_mechs=section_mechs, - section_scaled_mechs=section_scaled_mechs, + local_mechs=local_mechs, + local_scaled_mechs=local_scaled_mechs, pprocess_mechs=pprocess_mechs, **custom_jinja_params) for name, template in templates.items()} diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index 33e50dc8..dd903fca 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -26,7 +26,8 @@ from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin from bluepyopt.ephys.parameterscalers import format_float -from bluepyopt.ephys.morphologies import ArbLabel, ArbFileMorphology +from bluepyopt.ephys.acc_utils import ArbLabel +from bluepyopt.ephys.morphologies import ArbFileMorphology import numpy as np import logging diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index ee0f18f0..dac2f618 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -24,13 +24,12 @@ import os import platform import logging -from bluepyopt.ephys.base import BaseEPhys -from bluepyopt.ephys.serializer import DictMixin - import pathlib import bisect import numpy -from .acc_utils import arbor +from bluepyopt.ephys.base import BaseEPhys +from bluepyopt.ephys.serializer import DictMixin +from bluepyopt.ephys.acc_utils import arbor, ArbLabel logger = logging.getLogger(__name__) @@ -252,41 +251,6 @@ def replace_axon(sim=None, icell=None): ''' -class ArbLabel: - """Arbor label""" - - def __init__(self, type, name, defn): - self._type = type - self._name = name - self._defn = defn - - @property - def defn(self): - """Label definition for label-dict""" - return '(%s-def "%s" %s)' % (self._type, self._name, self._defn) - - @property - def ref(self): - """Reference to label defined in label-dict""" - return '(%s "%s")' % (self._type, self._name) - - @property - def name(self): - """Name of the label""" - return self._name - - @property - def loc(self): - """Expression defining the location of the label""" - return self._defn - - def __eq__(self, other): - return self.defn == other.defn - - def __hash__(self): - return hash(self.defn) - - class ArbFileMorphology(Morphology, DictMixin): """Arbor morphology utilities""" diff --git a/bluepyopt/ephys/parameterscalers.py b/bluepyopt/ephys/parameterscalers.py index 546299f7..3e98d978 100644 --- a/bluepyopt/ephys/parameterscalers.py +++ b/bluepyopt/ephys/parameterscalers.py @@ -356,26 +356,31 @@ def visit_BinOp(self, node): def visit_Call(self, node): func = node.func - if hasattr(func, 'value'): - if func.value.id == 'math': - if len(node.args) > 1: + if isinstance(func, ast.Attribute): + if isinstance(func.value, ast.Name): + if func.value.id == 'math': + if len(node.args) > 1: + raise ValueError('Arbor iexpr generation failed -' + ' math functions can only have a' + ' single argument.') + func_symbol = func.value.id + '.' + func.attr + if func_symbol not in self._iexpr_symbols: + raise ValueError('Arbor iexpr generation failed -' + ' unknown symbol %s.' % func_symbol) + self._emit( + '(' + self._iexpr_symbols[func_symbol] + ) + self.visit(node.args[0]) + self._emit( + ')' + ) + else: raise ValueError('Arbor iexpr generation failed -' - ' math functions can only have a' - ' single argument.') - func_symbol = func.value.id + '.' + func.attr - if func_symbol not in self._iexpr_symbols: - raise ValueError('Arbor iexpr generation failed -' - ' unknown symbol %s.' % func_symbol) - self._emit( - '(' + self._iexpr_symbols[func_symbol] - ) - self.visit(node.args[0]) - self._emit( - ')' - ) + ' unsupported module %s.' % func.value.id) else: raise ValueError('Arbor iexpr generation failed -' - ' unsupported module %s.' % func.value.id) + ' unsupported attribute %s.' % + func.value.attr) else: raise ValueError('Arbor iexpr generation failed -' ' unsupported function %s.' % func.id) diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index ff770591..4ba89fb1 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -10,7 +10,7 @@ import warnings import pathlib -from .acc_utils import arbor +from bluepyopt.ephys.acc_utils import arbor logger = logging.getLogger(__name__) diff --git a/bluepyopt/ephys/stimuli.py b/bluepyopt/ephys/stimuli.py index a135d2ee..7ae1b556 100644 --- a/bluepyopt/ephys/stimuli.py +++ b/bluepyopt/ephys/stimuli.py @@ -22,9 +22,10 @@ # pylint: disable=W0511 import logging -logger = logging.getLogger(__name__) -from .acc_utils import arbor +from bluepyopt.ephys.acc_utils import arbor + +logger = logging.getLogger(__name__) class Stimulus(object): diff --git a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 index c10810e1..13ae43d1 100644 --- a/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 +++ b/bluepyopt/ephys/templates/acc/decor_acc_template.jinja2 @@ -16,12 +16,12 @@ {%- endfor %} - {%- for loc, mech_parameters in section_mechs.items() %}{# paint-to-region instead of default #} + {%- for loc, mech_parameters in local_mechs.items() %}{# paint-to-region instead of default #} {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} - {%- if mech in section_scaled_mechs[loc] %} - (paint {{loc.ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + {%- if mech in local_scaled_mechs[loc] %} + (paint {{loc.ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in local_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) {%- else %} (paint {{loc.ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- endif %} @@ -32,8 +32,8 @@ {%- endif %} {%- endfor %} - {%- for synapse_name, mech_param_locs in pprocess_mechs[loc].items() %} - (place {{loc.ref}} (synapse (mechanism "{{ mech_param_locs.mech }}" {%- for param in mech_param_locs.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") + {%- for synapse_name, mech_params in pprocess_mechs[loc].items() %} + (place {{loc.ref}} (synapse (mechanism "{{ mech_params.mech }}" {%- for param in mech_params.params %} ("{{ param.name }}" {{ param.value }}){%- endfor %})) "{{ synapse_name }}") {%- endfor %} {%- endfor %})) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index ba6fa321..fba17a4b 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -7,13 +7,13 @@ import json import tempfile +from bluepyopt.ephys.acc_utils import arbor from bluepyopt.ephys.morphologies import ArbFileMorphology from . import utils from bluepyopt import ephys from bluepyopt.ephys import create_acc -import arbor import pytest @@ -136,49 +136,6 @@ def test_create_acc_filename(): assert custom_param_val in cell_json_dict['produced_by'] -@pytest.mark.unit -def test_create_acc_iexpr_generator(): - """ephys.create_acc: Test iexpr generation from range expression""" - range_expr = ephys.create_hoc.RangeExpr( - location='apic', - name='gIhbar_Ih', - value=2.125, - value_scaler=ephys.parameterscalers.NrnSegmentSomaDistanceScaler( - name='soma_distance_scaler', - distribution='(0.62109375 - 0.546875 * math.exp(' - '({distance}) * 0.421875)) * {value}')) - - iexpr = range_expr.value_scaler.acc_scale_iexpr( - value=range_expr.value, - constant_formatter=lambda v: '%.9g' % v) - - assert iexpr == '(sub (scalar 0.62109375) ' \ - '(mul (scalar 0.546875) ' \ - '(exp (mul (distance (region "soma")) ' \ - '(scalar 0.421875) ) ) ) )' - - -@pytest.mark.unit -def test_create_acc_iexpr_generator_invalid_op(): - """ephys.create_acc: Test iexpr generation from range expression - with invalid node""" - range_expr = ephys.create_hoc.RangeExpr( - location='apic', - name='gIhbar_Ih', - value=2.125, - value_scaler=ephys.parameterscalers.NrnSegmentSomaDistanceScaler( - name='soma_distance_scaler', - distribution='(0.62109375 - 0.546875 * non_existent_func(' - '({distance}) * 0.421875)) * {value}')) - - with pytest.raises(ValueError, - match='Arbor iexpr generation failed - ' - 'unsupported function non_existent_func.'): - iexpr = range_expr.value_scaler.acc_scale_iexpr( - value=range_expr.value, - constant_formatter=lambda v: '%.9g' % v) - - @pytest.mark.unit def test_create_acc_replace_axon(): """ephys.create_acc: Test create_acc with axon replacement""" diff --git a/bluepyopt/tests/test_ephys/test_parameterscalers.py b/bluepyopt/tests/test_ephys/test_parameterscalers.py index ffe7fb80..a2dc003c 100644 --- a/bluepyopt/tests/test_ephys/test_parameterscalers.py +++ b/bluepyopt/tests/test_ephys/test_parameterscalers.py @@ -57,3 +57,58 @@ def test_serialize(): deserialized = instantiator(serialized) assert isinstance(deserialized, ps.__class__) assert deserialized.name == ps.__class__.__name__ + + +@pytest.mark.unit +def test_parameterscalers_iexpr_generator(): + """ephys.parameterscalers: Test iexpr generation from python expression""" + + value = 2.125 + value_scaler = ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + name='soma_distance_scaler', + distribution='(0.62109375 - math.log( math.pi ) * math.exp(' + '({distance}) / 0.421875)) * {value}') + + iexpr = value_scaler.acc_scale_iexpr( + value=value, constant_formatter=lambda v: '%.9g' % v) + + assert iexpr == '(sub (scalar 0.62109375) ' \ + '(mul (log (pi) ) ' \ + '(exp (div (distance (region "soma")) ' \ + '(scalar 0.421875) ) ) ) )' + + +@pytest.mark.unit +def test_parameterscalers_iexpr_generator_non_existent_op(): + """ephys.parameterscalers: Test iexpr generation from python expression + with invalid node""" + + value = 2.125 + value_scaler = ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + name='soma_distance_scaler', + distribution='(0.62109375 - math.log( math.pi ) * non_existent_func(' + '({distance}) / 0.421875)) * {value}') + + with pytest.raises(ValueError, + match='Arbor iexpr generation failed - ' + 'unsupported function non_existent_func.'): + iexpr = value_scaler.acc_scale_iexpr( + value=value, constant_formatter=lambda v: '%.9g' % v) + + +@pytest.mark.unit +def test_parameterscalers_iexpr_generator_unsupported_attr(): + """ephys.parameterscalers: Test iexpr generation from python expression + with invalid node""" + + value = 2.125 + value_scaler = ephys.parameterscalers.NrnSegmentSomaDistanceScaler( + name='soma_distance_scaler', + distribution='(0.62109375 - math.log( math.pi )* math.tau.hex(' + '({distance}) / 0.421875)) * {value}') + + with pytest.raises(ValueError, + match='Arbor iexpr generation failed - ' + 'unsupported attribute tau.'): + iexpr = value_scaler.acc_scale_iexpr( + value=value, constant_formatter=lambda v: '%.9g' % v) diff --git a/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 index 52570158..b55ca0bc 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 +++ b/bluepyopt/tests/test_ephys/testdata/acc/templates/decor_acc_template.jinja2 @@ -16,11 +16,11 @@ {%- endif %} {%- endfor %} - {%- for loc, mech_parameters in section_mechs.items() %}{# paint-to-region instead of default #} + {%- for loc, mech_parameters in local_mechs.items() %}{# paint-to-region instead of default #} {%- for mech, params in mech_parameters.items() %} {%- if mech is not none %} - {%- if mech in section_scaled_mechs[loc] %} - (paint {{loc.ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in section_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) + {%- if mech in local_scaled_mechs[loc] %} + (paint {{loc.ref}} (scaled-mechanism (density (mechanism "{{ mech }}" {%- for param in params if param.value is not none %} ("{{ param.name }}" {{ param.value }}){%- endfor %})){%- for param in local_scaled_mechs[loc][mech] %} ("{{ param.name }}" {{ param.scale }}){%- endfor %})) {%- else %} (paint {{loc.ref}} (density (mechanism "{{ mech }}" {%- for param in params %} ("{{ param.name }}" {{ param.value }}){%- endfor %}))) {%- endif %} From e83dbc015366290f38fc7dbf5f459ecc172cf8bb Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Fri, 21 Oct 2022 00:06:33 +0200 Subject: [PATCH 31/42] Renamed l5pc Arbor-Neuron validation --- Makefile | 12 ++++++------ bluepyopt/tests/test_l5pc.py | 9 +++++---- .../param_values.json | 0 ...or.ipynb => l5pc_validate_neuron_arbor.ipynb} | 0 ...or_pm.py => l5pc_validate_neuron_arbor_pm.py} | 16 ++++++++-------- 5 files changed, 19 insertions(+), 18 deletions(-) rename bluepyopt/tests/testdata/{l5pc_soma_arbor => l5pc_validate_neuron_arbor}/param_values.json (100%) rename examples/l5pc/{l5pc_soma_arbor.ipynb => l5pc_validate_neuron_arbor.ipynb} (100%) rename examples/l5pc/{l5pc_soma_arbor_pm.py => l5pc_validate_neuron_arbor_pm.py} (92%) diff --git a/Makefile b/Makefile index e00a5783..c2ebdb03 100644 --- a/Makefile +++ b/Makefile @@ -16,10 +16,10 @@ l5pc_nbconvert: jupyter jupyter nbconvert --to python L5PC.ipynb && \ sed '/get_ipython/d;/plt\./d;/plot_responses/d;/import matplotlib/d;/neurom/d;/axes/d;/fig/d;/for index/d' L5PC.py >L5PC.tmp && \ mv L5PC.tmp L5PC.py && \ - python l5pc_soma_arbor_pm.py --prepare-only --regions somatic --param-values ../../bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json && \ - jupyter nbconvert --to python l5pc_soma_arbor_somatic.ipynb && \ - sed '/get_ipython/d;/plt\./d;/import matplotlib/d;/from IPython.display/d;/multiprocessing/d;s/pool.map/map/g;s/# test_l5pc: insert //g;/# test_l5pc: skip/d' l5pc_soma_arbor_somatic.py >l5pc_soma_arbor_somatic.tmp && \ - mv l5pc_soma_arbor_somatic.tmp l5pc_soma_arbor_somatic.py + python l5pc_validate_neuron_arbor_pm.py --prepare-only --regions somatic --param-values ../../bluepyopt/tests/testdata/l5pc_validate_neuron_arbor/param_values.json && \ + jupyter nbconvert --to python l5pc_validate_neuron_arbor_somatic.ipynb && \ + sed '/get_ipython/d;/plt\./d;/import matplotlib/d;/from IPython.display/d;/multiprocessing/d;s/pool.map/map/g;s/# test_l5pc: insert //g;/# test_l5pc: skip/d' l5pc_validate_neuron_arbor_somatic.py >l5pc_validate_neuron_arbor_somatic.tmp && \ + mv l5pc_validate_neuron_arbor_somatic.tmp l5pc_validate_neuron_arbor_somatic.py l5pc_nrnivmodl: cd examples/l5pc && nrnivmodl mechanisms l5pc_zip: @@ -75,8 +75,8 @@ clean: rm -rf bluepyopt/tests/coverage.xml rm -rf bluepyopt/tests/coverage_html rm -rf examples/l5pc/L5PC.py - rm -rf examples/l5pc/l5pc_soma_arbor_somatic.ipynb - rm -rf examples/l5pc/l5pc_soma_arbor_somatic.py + rm -rf examples/l5pc/l5pc_validate_neuron_arbor_somatic.ipynb + rm -rf examples/l5pc/l5pc_validate_neuron_arbor_somatic.py rm -rf examples/l5pc/x86_64 rm -rf examples/stochkv/x86_64 rm -rf .coverage diff --git a/bluepyopt/tests/test_l5pc.py b/bluepyopt/tests/test_l5pc.py index e0eceba2..67f30847 100644 --- a/bluepyopt/tests/test_l5pc.py +++ b/bluepyopt/tests/test_l5pc.py @@ -177,7 +177,7 @@ def test_exec(): @pytest.mark.slow -def test_l5pc_soma_arbor(): +def test_l5pc_validate_neuron_arbor(): """L5PC Soma Arbor Notebook: test execution""" import numpy numpy.seterr(all='raise') @@ -190,12 +190,13 @@ def test_l5pc_soma_arbor(): # Probably because multiprocessing doesn't work correctly during # import if sys.version_info[0] < 3: - execfile('l5pc_soma_arbor_somatic.py') # NOQA + execfile('l5pc_validate_neuron_arbor_somatic.py') # NOQA else: - with open('l5pc_soma_arbor_somatic.py') as l5pc_file: + with open('l5pc_validate_neuron_arbor_somatic.py') \ + as l5pc_file: l5pc_globals = {} exec(compile(l5pc_file.read(), - 'l5pc_soma_arbor_somatic.py', + 'l5pc_validate_neuron_arbor_somatic.py', 'exec'), l5pc_globals, l5pc_globals) # NOQA stdout = output.getvalue() # mean relative L1-deviation between Arbor and Neuron below tolerance diff --git a/bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json b/bluepyopt/tests/testdata/l5pc_validate_neuron_arbor/param_values.json similarity index 100% rename from bluepyopt/tests/testdata/l5pc_soma_arbor/param_values.json rename to bluepyopt/tests/testdata/l5pc_validate_neuron_arbor/param_values.json diff --git a/examples/l5pc/l5pc_soma_arbor.ipynb b/examples/l5pc/l5pc_validate_neuron_arbor.ipynb similarity index 100% rename from examples/l5pc/l5pc_soma_arbor.ipynb rename to examples/l5pc/l5pc_validate_neuron_arbor.ipynb diff --git a/examples/l5pc/l5pc_soma_arbor_pm.py b/examples/l5pc/l5pc_validate_neuron_arbor_pm.py similarity index 92% rename from examples/l5pc/l5pc_soma_arbor_pm.py rename to examples/l5pc/l5pc_validate_neuron_arbor_pm.py index 5bda3a9e..09e482e0 100755 --- a/examples/l5pc/l5pc_soma_arbor_pm.py +++ b/examples/l5pc/l5pc_validate_neuron_arbor_pm.py @@ -11,7 +11,7 @@ import papermill except ImportError: raise ImportError('Please install papermill to batch-process' - ' l5pc_soma_arbor notebook.') + ' l5pc_validate_neuron_arbor notebook.') import logging @@ -21,7 +21,7 @@ SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) parser = argparse.ArgumentParser(description= - 'Run l5pc_soma_arbor notebook with papermill using different options.') + 'Run l5pc_validate_neuron_arbor notebook with papermill using different options.') parser.add_argument('--output-dir', type=str, default='.', help='Output directory') parser.add_argument('--regions', type=str, nargs='+', @@ -141,19 +141,19 @@ def get_extra_params(loc, mechs): extra_params = get_extra_params(loc, loc_mechs) - target_file = os.path.join(output_dir, 'l5pc_soma_arbor_%s.ipynb' % loc) + target_file = os.path.join(output_dir, 'l5pc_validate_neuron_arbor_%s.ipynb' % loc) if os.path.exists(target_file): raise FileExistsError('Invalid target file - exists already: ', target_file) - logger.info('Outputting l5pc_soma_arbor notebook to %s ' + logger.info('Outputting l5pc_validate_neuron_arbor notebook to %s ' 'with all local mechs/params...\n' 'mechs = %s\nextra_params = %s', target_file, mechanism_defs, extra_params) try: papermill.execute_notebook( - 'l5pc_soma_arbor.ipynb', + 'l5pc_validate_neuron_arbor.ipynb', target_file, parameters=dict(mechanism_defs=mechanism_defs, extra_params=extra_params, @@ -182,18 +182,18 @@ def get_extra_params(loc, mechs): extra_params = get_extra_params(loc, mechs) - target_file = os.path.join(output_dir, 'l5pc_soma_arbor_%s_%s.ipynb' % \ + target_file = os.path.join(output_dir, 'l5pc_validate_neuron_arbor_%s_%s.ipynb' % \ (loc, '_'.join(mechs))) if os.path.exists(target_file): raise FileExistsError('Invalid target file - exists already: ', target_file) - logger.info('Outputting l5pc_soma_arbor notebook to %s' + logger.info('Outputting l5pc_validate_neuron_arbor notebook to %s' ' with...\nmechs = %s\nextra_params = %s', target_file, mechanism_defs, extra_params) try: papermill.execute_notebook( - 'l5pc_soma_arbor.ipynb', + 'l5pc_validate_neuron_arbor.ipynb', target_file, parameters=dict(mechanism_defs=mechanism_defs, extra_params=extra_params, From ebd32d095651cf78c23c69290d2c881c5657b1db Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Fri, 21 Oct 2022 21:33:08 +0200 Subject: [PATCH 32/42] Adding docstrings to create_acc, replaced os by pathlib --- bluepyopt/ephys/create_acc.py | 204 ++++++++++++++++++++++++---------- 1 file changed, 148 insertions(+), 56 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index c850b2d3..82942fc3 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -2,13 +2,11 @@ # pylint: disable=R0914 -import os import io import logging import pathlib from collections import namedtuple, OrderedDict import re -from glob import glob import jinja2 import json @@ -55,12 +53,21 @@ def _make_var(name, conv=None): # conv defaults to identity def _nrn2arb_var_name(name): - """Neuron to Arbor variable renaming.""" + """Neuron to Arbor parameter renaming + + Args: + name (str): Neuron parameter name + """ return _nrn2arb_var[name].name if name in _nrn2arb_var else name def _nrn2arb_var_value(param): - """Neuron to Arbor variable value conversion.""" + """Neuron to Arbor units conversion for parameter values + + Args: + param (): A Neuron parameter with a value in Neuron units + """ + if param.name in _nrn2arb_var and \ _nrn2arb_var[param.name].conv is not None: return format_float(_nrn2arb_var[param.name].conv(float(param.value))) @@ -69,6 +76,12 @@ def _nrn2arb_var_value(param): def _nrn2arb_param(param, name): + """Convert a Neuron parameter to Arbor format (name and units) + + Args: + param (): A Neuron parameter + """ + if isinstance(param, Location): return Location(name=_nrn2arb_var_name(name), value=_nrn2arb_var_value(param)) @@ -86,7 +99,11 @@ def _nrn2arb_param(param, name): def _nrn2arb_mech_name(name): - """Neuron to Arbor mechanism name conversion.""" + """Neuron to Arbor mechanism name conversion + + Args: + name (): A Neuron mechanism name + """ if name in ['Exp2Syn', 'ExpSyn']: return name.lower() else: @@ -94,7 +111,13 @@ def _nrn2arb_mech_name(name): def _arb_is_global_property(loc, param): - """Returns if region-specific variable is a global property in Arbor.""" + """Returns if a label-specific variable is a global property in Arbor + + Args: + loc (): An Arbor label describing the location + param (): A parameter in Arbor format (name and units) + """ + return loc == ArbFileMorphology.region_labels['all'] and ( param.name in ['membrane-potential', 'temperature-kelvin', @@ -106,6 +129,18 @@ def _arb_is_global_property(loc, param): def _arb_pop_global_properties(loc, mechs): + """Pops global properties from a label-specific dict of mechanisms + + Args: + loc (): An Arbor label describing the location + mechs (): A mapping of mechanism name to list of parameters in + Arbor format (None for non-mechanism parameters) from which + Arbor global properties will be removed. + + Returns: + A list of (mech, params) tuples with Arbor global properties + """ + global_properties = [] local_properties = [] if None in mechs: @@ -115,11 +150,16 @@ def _arb_pop_global_properties(loc, mechs): else: local_properties.append(param) mechs[None] = local_properties - return [(None, global_properties)] # list of (mech, params) tuples + return [(None, global_properties)] def _arb_filter_point_proc_locs(pprocess_mechs): - """Evaluate point process locations""" + """Filter locations from point process parameters + + Args: + pprocess_mechs (): Point process mechanisms with parameters in + Arbor format + """ result = {loc: dict() for loc in pprocess_mechs} @@ -134,7 +174,14 @@ def _arb_filter_point_proc_locs(pprocess_mechs): def _arb_load_catalogue_meta(cat_dir): - """Load mechanism catalogue metadata from NMODL files""" + """Load mechanism catalogue metadata from NMODL files + + Args: + cat_dir (): Path to directory with NMODL files of catalogue + + Returns: + Mapping of name to meta data for each mechanism in the directory + """ # used to generate arbor_mechanisms.json on NMODL from arbor/mechanisms nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' # NOQA @@ -143,7 +190,7 @@ def _arb_load_catalogue_meta(cat_dir): ranges_pattern = nmodl_pattern % 'RANGE' def process_nmodl(nmodl_str): - """Inspect NMODL for global and range parameters""" + """Extract global and range parameters from Arbor-conforming NMODL""" try: nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, flags=re.MULTILINE).group(1) @@ -166,15 +213,25 @@ def process_nmodl(nmodl_str): return MechMetaData(globals=globals_, ranges=ranges_) mechs = dict() - for nmodl_file in glob(str(cat_dir / '*.mod')): - with open(os.path.join(cat_dir, nmodl_file)) as f: - mechs[pathlib.Path(nmodl_file).stem] = process_nmodl(f.read()) + cat_dir = pathlib.Path(cat_dir) + for nmodl_file in cat_dir.glob('*.mod'): + with open(cat_dir.joinpath(nmodl_file)) as f: + mechs[nmodl_file.stem] = process_nmodl(f.read()) return mechs def _arb_load_mech_catalogue_meta(ext_catalogues): - """Load metadata of external and Arbor's built-in mechanism catalogues""" + """Load metadata of external and Arbor's built-in mechanism catalogues + + Args: + ext_catalogues (): Mapping of catalogue name to directory + with NMODL files defining the mechanisms + + Returns: + Ordered mapping of catalogue name -> mechanism name -> meta data + for external and built-in catalogues (external ones taking precedence) + """ arb_cats = OrderedDict() @@ -183,10 +240,8 @@ def _arb_load_mech_catalogue_meta(ext_catalogues): arb_cats[cat] = _arb_load_catalogue_meta( pathlib.Path(cat_nmodl).resolve()) - builtin_catalogues = os.path.abspath( - os.path.join( - os.path.dirname(__file__), - 'static/arbor_mechanisms.json')) + builtin_catalogues = pathlib.Path(__file__).parent.joinpath( + 'static/arbor_mechanisms.json').resolve() with open(builtin_catalogues) as f: builtin_arb_cats = json.load(f) @@ -199,7 +254,16 @@ def _arb_load_mech_catalogue_meta(ext_catalogues): def _find_mech_and_convert_param_name(param, mechs): - """Find a parameter's mechanism and convert name to Arbor convention""" + """Find a parameter's mechanism and convert name to Arbor format + + Args: + param (): A parameter in Neuron format + mechs (): List of co-located NMODL mechanisms + + Returns: + A tuple of mechanism name (None for a non-mechanism parameter) and + parameter in Arbor format + """ if not isinstance(param, PointExpr): mech_matches = [i for i, mech in enumerate(mechs) if param.name.endswith("_" + mech)] @@ -226,6 +290,15 @@ def _find_mech_and_convert_param_name(param, mechs): def _arb_convert_params_and_group_by_mech(params, channels): + """Turn list of Neuron parameters to Arbor format and group by mechanism + + Args: + params (): List of parameters in Neuron format + channels (): List of co-located NMODL mechanisms + + Returns: + Mapping of Arbor mechanism name to list of parameters in Arbor format + """ mech_params = [_find_mech_and_convert_param_name( param, channels) for param in params] mechs = {mech: [] for mech, _ in mech_params} @@ -238,7 +311,7 @@ def _arb_convert_params_and_group_by_mech(params, channels): def _arb_convert_params_and_group_by_mech_global(params): - """Group global params by mechanism, rename them to Arbor convention""" + """Group global params by mechanism, convert them to Arbor format""" return _arb_convert_params_and_group_by_mech( [Location(name=name, value=value) for name, value in params.items()], [] # no default mechanisms @@ -246,7 +319,17 @@ def _arb_convert_params_and_group_by_mech_global(params): def _arb_convert_params_and_group_by_mech_local(params, channels): - """Group section params by mechanism, rename them to Arbor convention""" + """Group local params by mechanism, convert them to Arbor format + + Args: + params (): List of Arbor label/local parameters pairs in Neuron format + channels (): Mapping of Arbor label to co-located NMODL mechanisms + + Returns: + Mapping of Arbor label to mechanisms with their parameters in Arbor + format (mechanism name is None for non-mechanism parameters) in the + first component, global properties found in the second + """ local_mechs = dict() global_properties = dict() for loc, params in params: @@ -274,9 +357,19 @@ def _arb_append_scaled_mechs(mechs, scaled_mechs): for p in scaled_params] -def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): - """Integrate NMODL GLOBAL parameters of Arbor-built-in mechanisms - into mechanism name and add catalogue prefix""" +def _arb_nmodl_translate_mech(mech_name, mech_params, arb_cats): + """Translate NMODL mechanism to Arbor ACC format + + Args: + mech_name (): NMODL mechanism name (suffix) + mech_params (): Mechanism parameters in Arbor format + arb_cats (): Mapping of catalogue names to mechanisms + with theirmeta data + + Returns: + Tuple of mechanism name with NMODL GLOBAL parameters integrated and + catalogue prefix added as well as the remaining RANGE parameters + """ arb_mech = None arb_mech_name = _nrn2arb_mech_name(mech_name) @@ -325,18 +418,18 @@ def _arb_nmodl_global_translate_mech(mech_name, mech_params, arb_cats): return (mech_name, remaining_mech_params) -def _arb_nmodl_global_translate_density(mechs, arb_cats): - """Translate all density mechanisms in a region""" - return dict([_arb_nmodl_global_translate_mech(mech, params, arb_cats) +def _arb_nmodl_translate_density(mechs, arb_cats): + """Translate all density mechanisms in a specific region""" + return dict([_arb_nmodl_translate_mech(mech, params, arb_cats) for mech, params in mechs.items()]) -def _arb_nmodl_global_translate_points(mechs, arb_cats): - """Translate all point mechanisms for a specific label""" +def _arb_nmodl_translate_points(mechs, arb_cats): + """Translate all point mechanisms for a specific locset""" result = dict() for synapse_name, mech_desc in mechs.items(): - mech, params = _arb_nmodl_global_translate_mech( + mech, params = _arb_nmodl_translate_mech( mech_desc['mech'], mech_desc['params'], arb_cats) result[synapse_name] = dict(mech=mech, params=params) @@ -345,7 +438,7 @@ def _arb_nmodl_global_translate_points(mechs, arb_cats): def _arb_project_scaled_mechs(mechs): - """Returns all parameters of scaled mechanisms in Arbor""" + """Returns all (iexpr) parameters of scaled mechanisms in Arbor""" scaled_mechs = dict() for mech, params in mechs.items(): range_iexprs = [p for p in params if isinstance(p, RangeIExpr)] @@ -358,19 +451,16 @@ def _read_templates(template_dir, template_filename): """Expand Jinja2 template filepath with glob and return dict of target filename -> parsed template""" if template_dir is None: - template_dir = os.path.abspath( - os.path.join( - os.path.dirname(__file__), - 'templates')) + template_dir = \ + pathlib.Path(__file__).parent.joinpath('templates').resolve() - template_paths = glob(os.path.join(template_dir, - template_filename)) + template_paths = pathlib.Path(template_dir).glob(template_filename) templates = dict() for template_path in template_paths: with open(template_path) as template_file: template = template_file.read() - name = os.path.basename(template_path) + name = template_path.name if name.endswith('.jinja2'): name = name[:-7] if name.endswith('_template'): @@ -378,6 +468,7 @@ def _read_templates(template_dir, template_filename): if '_' in name: name = '.'.join(name.rsplit('_', 1)) templates[name] = jinja2.Template(template) + return templates @@ -440,7 +531,8 @@ def create_acc(mechs, modified_morphology_path = \ pathlib.Path(morphology).stem + '_modified.acc' modified_morpho = ArbFileMorphology.load( - os.path.join(morphology_dir, morphology), replace_axon_acc) + pathlib.Path(morphology_dir).joinpath(morphology), + replace_axon_acc) replace_axon_acc.seek(0) modified_morphology_acc = io.StringIO() arbor.write_component( @@ -527,12 +619,12 @@ def create_acc(mechs, arb_cats = _arb_load_mech_catalogue_meta(ext_catalogues) # translate mechs to Arbor's nomenclature - global_mechs = _arb_nmodl_global_translate_density(global_mechs, arb_cats) + global_mechs = _arb_nmodl_translate_density(global_mechs, arb_cats) local_mechs = { - loc: _arb_nmodl_global_translate_density(mechs, arb_cats) + loc: _arb_nmodl_translate_density(mechs, arb_cats) for loc, mechs in local_mechs.items()} pprocess_mechs = { - loc: _arb_nmodl_global_translate_points(mechs, arb_cats) + loc: _arb_nmodl_translate_points(mechs, arb_cats) for loc, mechs in pprocess_mechs.items()} # get iexpr parameters of scaled density mechs @@ -614,18 +706,18 @@ def output_acc(output_dir, cell, parameters, cell_json = json.loads(cell_json[0]) - if not os.path.exists(output_dir): - os.makedirs(output_dir) + output_dir = pathlib.Path(output_dir) + if not output_dir.exists(): + output_dir.mkdir() for comp, comp_rendered in output.items(): - comp_filename = os.path.join(output_dir, comp) - if os.path.exists(comp_filename): + comp_filename = output_dir.joinpath(comp) + if comp_filename.exists(): raise CreateAccException("%s already exists!" % comp_filename) - with open(os.path.join(output_dir, comp), 'w') as f: + with open(output_dir.joinpath(comp), 'w') as f: f.write(comp_rendered) - morpho_filename = os.path.join( - output_dir, cell_json['morphology']['original']) - if os.path.exists(morpho_filename): + morpho_filename = output_dir.joinpath(cell_json['morphology']['original']) + if morpho_filename.exists(): raise CreateAccException("%s already exists!" % morpho_filename) shutil.copy2(cell.morphology.morphology_path, morpho_filename) @@ -642,19 +734,19 @@ def read_acc(cell_json_filename): with open(cell_json_filename) as cell_json_file: cell_json = json.load(cell_json_file) - cell_json_dir = os.path.dirname(cell_json_filename) + cell_json_dir = pathlib.Path(cell_json_filename).parent - morpho_filename = os.path.join(cell_json_dir, - cell_json['morphology']['original']) + morpho_filename = cell_json_dir.joinpath( + cell_json['morphology']['original']) replace_axon = cell_json['morphology'].get('replace_axon', None) if replace_axon is not None: - replace_axon = os.path.join(cell_json_dir, replace_axon) + replace_axon = cell_json_dir.joinpath(replace_axon) morpho = ArbFileMorphology.load(morpho_filename, replace_axon) labels = arbor.load_component( - os.path.join(cell_json_dir, cell_json['label_dict'])).component + cell_json_dir.joinpath(cell_json['label_dict'])).component decor = arbor.load_component( - os.path.join(cell_json_dir, cell_json['decor'])).component + cell_json_dir.joinpath(cell_json['decor'])).component return cell_json, morpho, labels, decor From 9bbc68ed8396a8985114d9b7b568990658cd9369 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Sun, 23 Oct 2022 22:07:29 +0200 Subject: [PATCH 33/42] Python 3 exception handling in protocols, better create_hoc error messages --- bluepyopt/ephys/create_hoc.py | 50 ++++++++++++++++++++++++----------- bluepyopt/ephys/locations.py | 16 ++++++----- bluepyopt/ephys/protocols.py | 40 +++++++++++++++++++--------- 3 files changed, 70 insertions(+), 36 deletions(-) diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 962a0a6b..2e883e71 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -10,8 +10,17 @@ import jinja2 import bluepyopt -from bluepyopt.ephys.locations import NrnSectionCompLocation -from . import mechanisms +from bluepyopt.ephys.locations import (NrnSeclistCompLocation, + NrnSeclistLocation, + NrnSectionCompLocation, + NrnSomaDistanceCompLocation, + NrnSecSomaDistanceCompLocation, + NrnTrunkSomaDistanceCompLocation, + ArbLocation) + +from bluepyopt.ephys.mechanisms import (Mechanism, + NrnMODMechanism, + NrnMODPointProcessMechanism) from bluepyopt.ephys.parameters import (NrnGlobalParameter, NrnSectionParameter, @@ -47,7 +56,7 @@ def _generate_channels_by_location(mechs, location_order, loc_desc): for mech in mechs: name = mech.suffix for location in mech.locations: - if isinstance(mech, mechanisms.NrnMODPointProcessMechanism): + if isinstance(mech, NrnMODPointProcessMechanism): point_channels[loc_desc(location, mech)].append(mech) else: channels[loc_desc(location, mech)].append(name) @@ -58,7 +67,7 @@ def _generate_reinitrng(mechs): """Create re_init_rng function""" for mech in mechs: - if isinstance(mech, mechanisms.NrnMODPointProcessMechanism): + if isinstance(mech, NrnMODPointProcessMechanism): raise NotImplementedError( 'HOC generation for models with point process mechanisms' ' is not yet supported.') @@ -68,9 +77,9 @@ def _generate_reinitrng(mechs): for mech in mechs: reinitrng_hoc_blocks += mech.generate_reinitrng_hoc_block() - reinitrng_content = mechanisms.NrnMODMechanism.hash_hoc_string + reinitrng_content = NrnMODMechanism.hash_hoc_string - reinitrng_content += mechanisms.NrnMODMechanism.reinitrng_hoc_string % { + reinitrng_content += NrnMODMechanism.reinitrng_hoc_string % { 'reinitrng_hoc_blocks': reinitrng_hoc_blocks} return reinitrng_content @@ -92,15 +101,24 @@ def _range_exprs_to_hoc(range_params): def _loc_desc(location, param_or_mech): """Generate Neuron location description for HOC template""" - if isinstance(param_or_mech, mechanisms.NrnMODMechanism): - # TODO this is dangerous, implicitly assumes type of location - return getattr(location, 'seclist_name', 'all') - elif isinstance(param_or_mech, mechanisms.NrnMODPointProcessMechanism): - raise CreateHocException("%s is currently not supported." % - type(param_or_mech).__name__) - # FIXME: NrnSectionCompLocation has no member seclist_name - elif not isinstance(param_or_mech, NrnPointProcessParameter) or \ - not isinstance(param_or_mech, NrnSectionCompLocation): + if isinstance(param_or_mech, Mechanism): + if isinstance(param_or_mech, NrnMODMechanism): + if isinstance(location, NrnSeclistLocation): + return location.seclist_name + else: + raise CreateHocException( + "%s is currently not supported for mechs." % + type(location).__name__) + elif isinstance(param_or_mech, NrnMODPointProcessMechanism): + raise CreateHocException("%s is currently not supported." % + type(param_or_mech).__name__) + elif not (isinstance(location, NrnSeclistCompLocation) or + isinstance(location, NrnSectionCompLocation) or + isinstance(location, NrnSomaDistanceCompLocation) or + isinstance(location, NrnSecSomaDistanceCompLocation) or + isinstance(location, NrnTrunkSomaDistanceCompLocation)) and \ + not isinstance(location, ArbLocation) and \ + not isinstance(param_or_mech, NrnPointProcessParameter): return location.seclist_name else: raise CreateHocException("%s is currently not supported." % @@ -119,7 +137,7 @@ def _generate_parameters(parameters, location_order, loc_desc): else: assert isinstance( param.locations, (tuple, list)), 'Must have locations list' - for location in param.locations: # FIXME: NrnSectionCompLocation + for location in param.locations: locs = loc_desc(location, param) if not isinstance(locs, list): param_locations[locs].append(param) diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index dd903fca..958a1c1f 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -115,9 +115,10 @@ def acc_label(self): raise EPhysLocAccException( '%s not supported in Arbor' % type(self).__name__ + ' (uses branches instead of NEURON sections).' - ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' - ' instead (consider using the Arbor GUI to identify the' - ' precise branch/segment index and relative position).') + ' Use ArbBranchRelLocation/ArbSegmentRelLocation/' + 'ArbLocsetLocation instead (consider using the' + ' Arbor GUI to identify the precise branch/segment index' + ' and relative position).') def __str__(self): """String representation""" @@ -170,9 +171,10 @@ def acc_label(self): raise EPhysLocAccException( '%s not supported in Arbor' % type(self).__name__ + ' (uses branches instead of NEURON sections).' - ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' - ' instead (consider using the Arbor GUI to identify the' - ' precise branch/segment index and relative position).') + ' Use ArbBranchRelLocation/ArbSegmentRelLocation/' + 'ArbLocsetLocation instead (consider using the' + ' Arbor GUI to identify the precise branch/segment index' + ' and relative position).') def __str__(self): return '%s(%s)' % (self.sec_name, self.comp_x) @@ -286,7 +288,7 @@ def acc_label(self): raise EPhysLocAccException( '%s not supported in Arbor' % type(self).__name__ + ' (uses branches instead of NEURON sections).' - ' Use ArbBranchLocation/ArbSegmentLocation/ArbLocsetLocation' + ' Use ArbBranchLocation/ArbSegmentLocation/ArbRegionLocation' ' instead (consider using the Arbor GUI to identify the' ' precise branch/segment index).') diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index a41fd57c..c76bde7f 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -221,12 +221,9 @@ def _run_func(self, cell_model, param_values, sim=None): cell_model.unfreeze(param_values.keys()) return responses - except BaseException: - import sys - import traceback - raise Exception( - "".join( - traceback.format_exception(*sys.exc_info()))) + except BaseException as e: + raise SweepProtocolException( + 'Failed to run Neuron Sweep Protocol') from e @adjust_stochasticity def run( @@ -431,7 +428,7 @@ def _run_func(self, cell_json, param_values, sim=None): try: sim.run(arb_cell_model, tstop=self.total_duration) - except (RuntimeError, simulators.NrnSimulatorException): + except (RuntimeError, simulators.ArbSimulatorException): logger.debug( 'ArbSweepProtocol: Running of parameter set {%s} ' 'generated an exception, returning None in responses', @@ -451,12 +448,9 @@ def _run_func(self, cell_json, param_values, sim=None): arb_cell_model.traces)} return responses - except BaseException: - import sys - import traceback - raise Exception( - "".join( - traceback.format_exception(*sys.exc_info()))) + except BaseException as e: + raise ArbSweepProtocolException( + 'Failed to run Arbor Sweep Protocol') from e def run( self, @@ -633,3 +627,23 @@ def __str__(self): content += ' %s\n' % str(recording) return content + + +class SweepProtocolException(Exception): + + """All exceptions generated by SweepProtocol""" + + def __init__(self, message): + """Constructor""" + + super(SweepProtocolException, self).__init__(message) + + +class ArbSweepProtocolException(Exception): + + """All exceptions generated by ArbSweepProtocol""" + + def __init__(self, message): + """Constructor""" + + super(ArbSweepProtocolException, self).__init__(message) From bcada48a54079cc67b1aa65a0a65d00126d900d6 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 24 Oct 2022 15:59:43 +0200 Subject: [PATCH 34/42] Use kwargs for cable cell constructor and swap label-dict and decor --- bluepyopt/ephys/create_acc.py | 6 +++--- bluepyopt/ephys/protocols.py | 4 ++-- bluepyopt/ephys/simulators.py | 6 ++++-- bluepyopt/tests/test_ephys/test_create_acc.py | 12 ++++++++---- examples/l5pc/generate_acc.py | 4 ++-- examples/simplecell/generate_acc.py | 4 ++-- 6 files changed, 21 insertions(+), 15 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 82942fc3..7c44875a 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -743,12 +743,12 @@ def read_acc(cell_json_filename): replace_axon = cell_json_dir.joinpath(replace_axon) morpho = ArbFileMorphology.load(morpho_filename, replace_axon) - labels = arbor.load_component( - cell_json_dir.joinpath(cell_json['label_dict'])).component decor = arbor.load_component( cell_json_dir.joinpath(cell_json['decor'])).component + labels = arbor.load_component( + cell_json_dir.joinpath(cell_json['label_dict'])).component - return cell_json, morpho, labels, decor + return cell_json, morpho, decor, labels class CreateAccException(Exception): diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index c76bde7f..0973066c 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -401,7 +401,7 @@ def _run_func(self, cell_json, param_values, sim=None): try: # Loading cell constituents from ACC - cell_json, morph, labels, decor = \ + cell_json, morph, decor, labels = \ create_acc.read_acc(cell_json) # Locations of stimuli and recordings can be instantiated @@ -414,7 +414,7 @@ def _run_func(self, cell_json, param_values, sim=None): decor, use_labels=self.use_labels) - arb_cell_model = sim.instantiate(morph, labels, decor) + arb_cell_model = sim.instantiate(morph, decor, labels) # Adding synaptic stimuli to cell model (no representation in ACC) arb_cell_model = self.instantiate_synaptic_stimuli( diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index 4ba89fb1..46ef9d71 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -208,8 +208,10 @@ def __init__(self, dt=None, ext_catalogues=None): ' arbor-build-catalogue %s %s' % (cat, cat_path)) # TODO: add parameters for discretization - def instantiate(self, morph, labels, decor): - cable_cell = arbor.cable_cell(morph, labels, decor) + def instantiate(self, morph, decor, labels): + cable_cell = arbor.cable_cell(morphology=morph, + decor=decor, + labels=labels) arb_cell_model = arbor.single_cell_model(cable_cell) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index fba17a4b..fa6d4bcd 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -229,12 +229,14 @@ def test_cell_model_output_and_read_acc(): with tempfile.TemporaryDirectory() as acc_dir: create_acc.output_acc(acc_dir, cell, param_values) - cell_json, arb_morph, arb_labels, arb_decor = \ + cell_json, arb_morph, arb_decor, arb_labels = \ create_acc.read_acc( os.path.join(acc_dir, cell.name + '.json')) assert 'replace_axon' not in cell_json['morphology'] - cable_cell = arbor.cable_cell(arb_morph, arb_labels, arb_decor) + cable_cell = arbor.cable_cell(morphology=arb_morph, + decor=arb_decor, + labels=arb_labels) assert isinstance(cable_cell, arbor.cable_cell) assert len(cable_cell.cables('"soma"')) == 1 assert len(cable_cell.cables('"axon"')) == 1 @@ -263,12 +265,14 @@ def test_cell_model_output_and_read_acc_replace_axon(): return # Axon replacement implemented in installed Arbor version - cell_json, arb_morph, arb_labels, arb_decor = \ + cell_json, arb_morph, arb_decor, arb_labels = \ create_acc.read_acc( os.path.join(acc_dir, cell.name + '.json')) assert 'replace_axon' in cell_json['morphology'] - cable_cell = arbor.cable_cell(arb_morph, arb_labels, arb_decor) + cable_cell = arbor.cable_cell(morphology=arb_morph, + decor=arb_decor, + labels=arb_labels) assert isinstance(cable_cell, arbor.cable_cell) assert len(cable_cell.cables('"soma"')) == 1 assert len(cable_cell.cables('"axon"')) == 1 diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index f5c53c26..b64a55cd 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -6,10 +6,10 @@ Will save 'l5pc.json', 'l5pc_label_dict.acc' and 'l5pc_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: - 'cell_json, morpho, labels, decor = \ + 'cell_json, morpho, decor, labels = \ ephys.create_acc.read_acc("test_acc/l5pc_cell.json")' An Arbor cable cell can then be created with - 'cell = arbor.cable_cell(morpho, labels, decor)' + 'cell = arbor.cable_cell(morphology=morpho, decor=decor, labels=labels)' The resulting cable cell can be output to ACC for visual inspection and e.g. validating/deriving custom Arbor locset/region/iexpr expressions in the Arbor GUI (File > Cable cell > Load) using diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index 089c0cf3..43654dd2 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -6,10 +6,10 @@ Will save 'simple_cell.json', 'simple_cell_label_dict.acc' and 'simple_cell_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: - 'cell_json, morpho, labels, decor = \ + 'cell_json, morpho, decor, labels = \ ephys.create_acc.read_acc("test_acc/simple_cell_cell.json")' An Arbor cable cell is then created with - 'cell = arbor.cable_cell(morpho, labels, decor)' + 'cell = arbor.cable_cell(morphology=morpho, decor=decor, labels=labels)' The resulting cable cell can be output to ACC for visual inspection and e.g. validating/deriving custom Arbor locset/region/iexpr expressions in the Arbor GUI (File > Cable cell > Load) using From b9731627b225a1ec0b6d6c5446ce1f6376c52e86 Mon Sep 17 00:00:00 2001 From: Anil Tuncel Date: Mon, 24 Oct 2022 15:34:49 +0200 Subject: [PATCH 35/42] tox use the same EXTRA_ARBOR defined in setup.py --- tox.ini | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tox.ini b/tox.ini index b08ef2cb..6229e2f4 100644 --- a/tox.ini +++ b/tox.ini @@ -20,9 +20,9 @@ deps = flake8 mock neuron-nightly - arbor sh pytest-cov +extras = arbor download = true whitelist_externals = make From 9dd09e62de3befc12b04a236d832c8429090606a Mon Sep 17 00:00:00 2001 From: Anil Tuncel Date: Tue, 25 Oct 2022 10:53:53 +0200 Subject: [PATCH 36/42] create a submodule for arbor's dsl inside parameterscalers --- bluepyopt/ephys/parameterscalers/__init__.py | 1 + .../arbor_dsl.py} | 182 +--------------- .../parameterscalers/parameterscalers.py | 198 ++++++++++++++++++ 3 files changed, 201 insertions(+), 180 deletions(-) create mode 100644 bluepyopt/ephys/parameterscalers/__init__.py rename bluepyopt/ephys/{parameterscalers.py => parameterscalers/arbor_dsl.py} (60%) create mode 100644 bluepyopt/ephys/parameterscalers/parameterscalers.py diff --git a/bluepyopt/ephys/parameterscalers/__init__.py b/bluepyopt/ephys/parameterscalers/__init__.py new file mode 100644 index 00000000..c3f35848 --- /dev/null +++ b/bluepyopt/ephys/parameterscalers/__init__.py @@ -0,0 +1 @@ +from .parameterscalers import * diff --git a/bluepyopt/ephys/parameterscalers.py b/bluepyopt/ephys/parameterscalers/arbor_dsl.py similarity index 60% rename from bluepyopt/ephys/parameterscalers.py rename to bluepyopt/ephys/parameterscalers/arbor_dsl.py index 3e98d978..5db3ba81 100644 --- a/bluepyopt/ephys/parameterscalers.py +++ b/bluepyopt/ephys/parameterscalers/arbor_dsl.py @@ -1,7 +1,7 @@ -"""Parameter scaler classes""" +"""Module that generates Arbor's iexpr expression language.""" """ -Copyright (c) 2016-2020, EPFL/Blue Brain Project +Copyright (c) 2016-2022, EPFL/Blue Brain Project This file is part of BluePyOpt @@ -19,185 +19,8 @@ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ -# pylint: disable=W0511 - -import string import ast -from bluepyopt.ephys.base import BaseEPhys -from bluepyopt.ephys.serializer import DictMixin -from bluepyopt.ephys.morphologies import ArbFileMorphology - -FLOAT_FORMAT = '%.17g' - - -def format_float(value): - """Return formatted float string""" - return FLOAT_FORMAT % value - - -class MissingFormatDict(dict): - - """Extend dict for string formatting with missing values""" - - def __missing__(self, key): # pylint: disable=R0201 - """Return string with format key for missing keys""" - return '{' + key + '}' - - -class ParameterScaler(BaseEPhys): - - """Parameter scalers""" - pass - -# TODO get rid of the 'segment' here - - -class NrnSegmentLinearScaler(ParameterScaler, DictMixin): - - """Linear scaler""" - SERIALIZED_FIELDS = ('name', 'comment', 'multiplier', 'offset', ) - - def __init__( - self, - name=None, - multiplier=1.0, - offset=0.0, - comment=''): - """Constructor - - Args: - name (str): name of this object - multiplier (float): slope of the linear scaler - offset (float): intercept of the linear scaler - """ - - super(NrnSegmentLinearScaler, self).__init__(name, comment) - self.multiplier = multiplier - self.offset = offset - - def scale(self, value, segment=None, sim=None): # pylint: disable=W0613 - """Scale a value based on a segment""" - - return self.multiplier * value + self.offset - - def __str__(self): - """String representation""" - - return '%s * value + %s' % (self.multiplier, self.offset) - - -class NrnSegmentSomaDistanceScaler(ParameterScaler, DictMixin): - - """Scaler based on distance from soma""" - SERIALIZED_FIELDS = ('name', 'comment', 'distribution', ) - - def __init__( - self, - name=None, - distribution=None, - comment='', - dist_param_names=None, - soma_ref_location=0.5): - """Constructor - - Args: - name (str): name of this object - distribution (str): distribution of parameter dependent on distance - from soma. string can contain `distance` and/or `value` as - placeholders for the distance to the soma and parameter value - respectivily - dist_params (list): list of names of parameters that parametrise - the distribution. These names will become attributes of this - object. - The distribution string should contain these names, and they - will be replaced by values of the corresponding attributes - soma_ref_location (float): location along the soma used as origin - from which to compute the distances. Expressed as a fraction - (between 0.0 and 1.0). - """ - - super(NrnSegmentSomaDistanceScaler, self).__init__(name, comment) - self.distribution = distribution - - self.dist_param_names = dist_param_names - self.soma_ref_location = soma_ref_location - - if not (0. <= self.soma_ref_location <= 1.): - raise ValueError('soma_ref_location must be between 0 and 1.') - - if self.dist_param_names is not None: - for dist_param_name in self.dist_param_names: - if dist_param_name not in self.distribution: - raise ValueError( - 'NrnSegmentSomaDistanceScaler: "{%s}" ' - 'missing from distribution string "%s"' % - (dist_param_name, distribution)) - setattr(self, dist_param_name, None) - - @property - def inst_distribution(self): - """The instantiated distribution""" - - dist_dict = MissingFormatDict() - - if self.dist_param_names is not None: - for dist_param_name in self.dist_param_names: - dist_param_value = getattr(self, dist_param_name) - if dist_param_value is None: - raise ValueError('NrnSegmentSomaDistanceScaler: %s ' - 'was uninitialised' % dist_param_name) - dist_dict[dist_param_name] = dist_param_value - - # Use this special formatting to bypass missing keys - return string.Formatter().vformat(self.distribution, (), dist_dict) - - def eval_dist(self, value, distance): - """Create the final dist string""" - - scale_dict = {} - scale_dict['distance'] = format_float(distance) - scale_dict['value'] = format_float(value) - - return self.inst_distribution.format(**scale_dict) - - def scale(self, value, segment, sim=None): - """Scale a value based on a segment""" - - # TODO soma needs other addressing scheme - - soma = segment.sec.cell().soma[0] - - # Initialise origin - sim.neuron.h.distance(0, self.soma_ref_location, sec=soma) - - distance = sim.neuron.h.distance(1, segment.x, sec=segment.sec) - - # Find something to generalise this - import math # pylint:disable=W0611 #NOQA - - # This eval is unsafe (but is it ever dangerous ?) - # pylint: disable=W0123 - return eval(self.eval_dist(value, distance)) - - def acc_scale_iexpr(self, value, constant_formatter=format_float): - """Generate Arbor scale iexpr for a given value""" - - iexpr = self.inst_distribution - - variables = dict( - value=value, - distance='(distance %s)' % # could be a ctor param if required - ArbFileMorphology.region_labels['somatic'].ref - ) - - return generate_arbor_iexpr(iexpr, variables, constant_formatter) - - def __str__(self): - """String representation""" - - return self.distribution - # Utilities to generate Arbor S-expressions for morphologically # inhomogeneous parameter scalers @@ -410,7 +233,6 @@ def generate_arbor_iexpr(iexpr, variables, constant_formatter): # Parse expression scaler_ast = ast.parse(scaler_expr) - # Turn into scaling expression, replacing non-linear occurrences of value value_eliminator = ArbIExprValueEliminator( variable_name='_arb_parse_iexpr_value', diff --git a/bluepyopt/ephys/parameterscalers/parameterscalers.py b/bluepyopt/ephys/parameterscalers/parameterscalers.py new file mode 100644 index 00000000..f8561af1 --- /dev/null +++ b/bluepyopt/ephys/parameterscalers/parameterscalers.py @@ -0,0 +1,198 @@ +"""Parameter scaler classes""" + +""" +Copyright (c) 2016-2020, EPFL/Blue Brain Project + + This file is part of BluePyOpt + + This library is free software; you can redistribute it and/or modify it under + the terms of the GNU Lesser General Public License version 3.0 as published + by the Free Software Foundation. + + This library is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more + details. + + You should have received a copy of the GNU Lesser General Public License + along with this library; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. +""" + +# pylint: disable=W0511 + +import string + +from bluepyopt.ephys.base import BaseEPhys +from bluepyopt.ephys.parameterscalers.arbor_dsl import generate_arbor_iexpr +from bluepyopt.ephys.serializer import DictMixin +from bluepyopt.ephys.morphologies import ArbFileMorphology + +FLOAT_FORMAT = '%.17g' + + +def format_float(value): + """Return formatted float string""" + return FLOAT_FORMAT % value + + +class MissingFormatDict(dict): + + """Extend dict for string formatting with missing values""" + + def __missing__(self, key): # pylint: disable=R0201 + """Return string with format key for missing keys""" + return '{' + key + '}' + + +class ParameterScaler(BaseEPhys): + + """Parameter scalers""" + pass + +# TODO get rid of the 'segment' here + + +class NrnSegmentLinearScaler(ParameterScaler, DictMixin): + + """Linear scaler""" + SERIALIZED_FIELDS = ('name', 'comment', 'multiplier', 'offset', ) + + def __init__( + self, + name=None, + multiplier=1.0, + offset=0.0, + comment=''): + """Constructor + + Args: + name (str): name of this object + multiplier (float): slope of the linear scaler + offset (float): intercept of the linear scaler + """ + + super(NrnSegmentLinearScaler, self).__init__(name, comment) + self.multiplier = multiplier + self.offset = offset + + def scale(self, value, segment=None, sim=None): # pylint: disable=W0613 + """Scale a value based on a segment""" + + return self.multiplier * value + self.offset + + def __str__(self): + """String representation""" + + return '%s * value + %s' % (self.multiplier, self.offset) + + +class NrnSegmentSomaDistanceScaler(ParameterScaler, DictMixin): + + """Scaler based on distance from soma""" + SERIALIZED_FIELDS = ('name', 'comment', 'distribution', ) + + def __init__( + self, + name=None, + distribution=None, + comment='', + dist_param_names=None, + soma_ref_location=0.5): + """Constructor + + Args: + name (str): name of this object + distribution (str): distribution of parameter dependent on distance + from soma. string can contain `distance` and/or `value` as + placeholders for the distance to the soma and parameter value + respectivily + dist_params (list): list of names of parameters that parametrise + the distribution. These names will become attributes of this + object. + The distribution string should contain these names, and they + will be replaced by values of the corresponding attributes + soma_ref_location (float): location along the soma used as origin + from which to compute the distances. Expressed as a fraction + (between 0.0 and 1.0). + """ + + super(NrnSegmentSomaDistanceScaler, self).__init__(name, comment) + self.distribution = distribution + + self.dist_param_names = dist_param_names + self.soma_ref_location = soma_ref_location + + if not (0. <= self.soma_ref_location <= 1.): + raise ValueError('soma_ref_location must be between 0 and 1.') + + if self.dist_param_names is not None: + for dist_param_name in self.dist_param_names: + if dist_param_name not in self.distribution: + raise ValueError( + 'NrnSegmentSomaDistanceScaler: "{%s}" ' + 'missing from distribution string "%s"' % + (dist_param_name, distribution)) + setattr(self, dist_param_name, None) + + @property + def inst_distribution(self): + """The instantiated distribution""" + + dist_dict = MissingFormatDict() + + if self.dist_param_names is not None: + for dist_param_name in self.dist_param_names: + dist_param_value = getattr(self, dist_param_name) + if dist_param_value is None: + raise ValueError('NrnSegmentSomaDistanceScaler: %s ' + 'was uninitialised' % dist_param_name) + dist_dict[dist_param_name] = dist_param_value + + # Use this special formatting to bypass missing keys + return string.Formatter().vformat(self.distribution, (), dist_dict) + + def eval_dist(self, value, distance): + """Create the final dist string""" + + scale_dict = {} + scale_dict['distance'] = format_float(distance) + scale_dict['value'] = format_float(value) + + return self.inst_distribution.format(**scale_dict) + + def scale(self, value, segment, sim=None): + """Scale a value based on a segment""" + + # TODO soma needs other addressing scheme + + soma = segment.sec.cell().soma[0] + + # Initialise origin + sim.neuron.h.distance(0, self.soma_ref_location, sec=soma) + + distance = sim.neuron.h.distance(1, segment.x, sec=segment.sec) + + # Find something to generalise this + import math # pylint:disable=W0611 #NOQA + + # This eval is unsafe (but is it ever dangerous ?) + # pylint: disable=W0123 + return eval(self.eval_dist(value, distance)) + + def acc_scale_iexpr(self, value, constant_formatter=format_float): + """Generate Arbor scale iexpr for a given value""" + + iexpr = self.inst_distribution + + variables = dict( + value=value, + distance='(distance %s)' % # could be a ctor param if required + ArbFileMorphology.region_labels['somatic'].ref + ) + return generate_arbor_iexpr(iexpr, variables, constant_formatter) + + def __str__(self): + """String representation""" + + return self.distribution From 4148974fe3273270f3b7b74577b43c2b7fb5aa12 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Tue, 25 Oct 2022 20:21:36 +0200 Subject: [PATCH 37/42] Renaming Arbor iexpr module, adding docstring --- .../{arbor_dsl.py => acc_iexpr.py} | 16 +++++++++++++--- .../ephys/parameterscalers/parameterscalers.py | 4 ++-- 2 files changed, 15 insertions(+), 5 deletions(-) rename bluepyopt/ephys/parameterscalers/{arbor_dsl.py => acc_iexpr.py} (93%) diff --git a/bluepyopt/ephys/parameterscalers/arbor_dsl.py b/bluepyopt/ephys/parameterscalers/acc_iexpr.py similarity index 93% rename from bluepyopt/ephys/parameterscalers/arbor_dsl.py rename to bluepyopt/ephys/parameterscalers/acc_iexpr.py index 5db3ba81..5d3d20b2 100644 --- a/bluepyopt/ephys/parameterscalers/arbor_dsl.py +++ b/bluepyopt/ephys/parameterscalers/acc_iexpr.py @@ -1,4 +1,4 @@ -"""Module that generates Arbor's iexpr expression language.""" +"""Translate spatially varying parameter-scaler expressions to Arbor iexprs""" """ Copyright (c) 2016-2022, EPFL/Blue Brain Project @@ -218,8 +218,18 @@ def visit_Name(self, node): ' No valid substitution for %s.' % node.id) -def generate_arbor_iexpr(iexpr, variables, constant_formatter): - """Generate Arbor iexpr from parameter-scaler python expression""" +def generate_acc_scale_iexpr(iexpr, variables, constant_formatter): + """Translate parameter-scaler python arithmetic expression to Arbor iexpr + + Args: + iexpr (str): Python arithmetic expression (instantiated distribution) + variables (): Mapping of variable name (referenced in the iexpr + argument) to Arbor iexpr representation + + Returns: + The Arbor iexpr corresponding to the python arithmetic expression + with the variables substituted by their value. + """ if 'value' not in variables: raise ValueError('Arbor iexpr generation failed for %s:' % iexpr + diff --git a/bluepyopt/ephys/parameterscalers/parameterscalers.py b/bluepyopt/ephys/parameterscalers/parameterscalers.py index f8561af1..bab4f2a7 100644 --- a/bluepyopt/ephys/parameterscalers/parameterscalers.py +++ b/bluepyopt/ephys/parameterscalers/parameterscalers.py @@ -24,7 +24,7 @@ import string from bluepyopt.ephys.base import BaseEPhys -from bluepyopt.ephys.parameterscalers.arbor_dsl import generate_arbor_iexpr +from bluepyopt.ephys.parameterscalers.acc_iexpr import generate_acc_scale_iexpr from bluepyopt.ephys.serializer import DictMixin from bluepyopt.ephys.morphologies import ArbFileMorphology @@ -190,7 +190,7 @@ def acc_scale_iexpr(self, value, constant_formatter=format_float): distance='(distance %s)' % # could be a ctor param if required ArbFileMorphology.region_labels['somatic'].ref ) - return generate_arbor_iexpr(iexpr, variables, constant_formatter) + return generate_acc_scale_iexpr(iexpr, variables, constant_formatter) def __str__(self): """String representation""" From 73772ea618bd3395e21603a85bd1f41c6b632d10 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Mon, 7 Nov 2022 18:32:39 +0100 Subject: [PATCH 38/42] Integrating Anil's review including large extension of the create_acc testsuite and refactoring ACC/JSON exporter, rename output_acc to write_acc and make it a method of cell models --- README.rst | 1 + bluepyopt/ephys/{acc_utils.py => acc.py} | 26 +- bluepyopt/ephys/create_acc.py | 851 +- bluepyopt/ephys/locations.py | 2 +- bluepyopt/ephys/models.py | 12 + bluepyopt/ephys/morphologies.py | 18 +- bluepyopt/ephys/protocols.py | 6 +- bluepyopt/ephys/simulators.py | 2 +- bluepyopt/ephys/stimuli.py | 2 +- bluepyopt/tests/test_ephys/test_acc.py | 39 + bluepyopt/tests/test_ephys/test_create_acc.py | 455 +- .../test_ephys/testdata/acc/expsyn/simple.swc | 4 + .../testdata/acc/expsyn/simple_cell.json | 9 + .../testdata/acc/expsyn/simple_cell_decor.acc | 6 + .../acc/expsyn/simple_cell_label_dict.acc | 10 + .../testdata/acc/l5pc/C060114A7.asc | 16307 ++++++++++++ .../acc/l5pc/C060114A7_axon_replacement.acc | 21 + .../testdata/acc/l5pc/C060114A7_modified.acc | 21702 ++++++++++++++++ .../test_ephys/testdata/acc/l5pc/l5pc.json | 11 + .../testdata/acc/l5pc/l5pc_decor.acc | 37 + .../testdata/acc/l5pc/l5pc_label_dict.acc | 9 + .../testdata/acc/simplecell/simple.swc | 4 + .../simplecell/simple_axon_replacement.acc | 21 + .../testdata/acc/simplecell/simple_cell.json | 11 + .../acc/simplecell/simple_cell_decor.acc | 5 + .../acc/simplecell/simple_cell_label_dict.acc | 9 + .../acc/simplecell/simple_modified.acc | 30 + bluepyopt/tests/test_l5pc.py | 2 +- examples/expsyn/expsyn.py | 67 +- examples/expsyn/generate_acc.py | 62 + examples/l5pc/L5PC_arbor.ipynb | 119 +- examples/l5pc/generate_acc.py | 9 +- examples/simplecell/generate_acc.py | 9 +- 33 files changed, 39393 insertions(+), 485 deletions(-) rename bluepyopt/ephys/{acc_utils.py => acc.py} (61%) create mode 100644 bluepyopt/tests/test_ephys/test_acc.py create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple.swc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell.json create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_decor.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_label_dict.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7.asc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc.json create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_decor.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_label_dict.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple.swc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_axon_replacement.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell.json create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_decor.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_label_dict.acc create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_modified.acc create mode 100755 examples/expsyn/generate_acc.py diff --git a/README.rst b/README.rst index e748cf7e..5009967e 100644 --- a/README.rst +++ b/README.rst @@ -107,6 +107,7 @@ We are providing support using a chat channel on `Gitter mechanism name -> meta data - for external and built-in catalogues (external ones taking precedence) - """ - - arb_cats = OrderedDict() - - if ext_catalogues is not None: - for cat, cat_nmodl in ext_catalogues.items(): - arb_cats[cat] = _arb_load_catalogue_meta( - pathlib.Path(cat_nmodl).resolve()) - - builtin_catalogues = pathlib.Path(__file__).parent.joinpath( - 'static/arbor_mechanisms.json').resolve() - with open(builtin_catalogues) as f: - builtin_arb_cats = json.load(f) - - for cat in ['BBP', 'default', 'allen']: - if cat not in arb_cats: - arb_cats[cat] = {mech: MechMetaData(**meta) - for mech, meta in builtin_arb_cats[cat].items()} - - return arb_cats - - -def _find_mech_and_convert_param_name(param, mechs): - """Find a parameter's mechanism and convert name to Arbor format - - Args: - param (): A parameter in Neuron format - mechs (): List of co-located NMODL mechanisms - - Returns: - A tuple of mechanism name (None for a non-mechanism parameter) and - parameter in Arbor format - """ - if not isinstance(param, PointExpr): - mech_matches = [i for i, mech in enumerate(mechs) - if param.name.endswith("_" + mech)] - else: - param_pprocesses = [loc.pprocess_mech for loc in param.point_loc] - mech_matches = [i for i, mech in enumerate(mechs) - if mech in param_pprocesses] - - if len(mech_matches) == 0: - return None, _nrn2arb_param(param, name=param.name) - - elif len(mech_matches) == 1: - mech = mechs[mech_matches[0]] - if not isinstance(param, PointExpr): - name = param.name[:-(len(mech) + 1)] - else: - name = param.name - return mech, _nrn2arb_param(param, name=name) - - else: - raise CreateAccException("Parameter name %s matches" % param.name + - " multiple mechanisms %s" % - [repr(mechs[i]) for i in mech_matches]) - - -def _arb_convert_params_and_group_by_mech(params, channels): - """Turn list of Neuron parameters to Arbor format and group by mechanism - - Args: - params (): List of parameters in Neuron format - channels (): List of co-located NMODL mechanisms - - Returns: - Mapping of Arbor mechanism name to list of parameters in Arbor format - """ - mech_params = [_find_mech_and_convert_param_name( - param, channels) for param in params] - mechs = {mech: [] for mech, _ in mech_params} - for mech in channels: - if mech not in mechs: - mechs[mech] = [] - for mech, param in mech_params: - mechs[mech].append(param) - return mechs - - -def _arb_convert_params_and_group_by_mech_global(params): - """Group global params by mechanism, convert them to Arbor format""" - return _arb_convert_params_and_group_by_mech( - [Location(name=name, value=value) for name, value in params.items()], - [] # no default mechanisms - ) - - -def _arb_convert_params_and_group_by_mech_local(params, channels): - """Group local params by mechanism, convert them to Arbor format - - Args: - params (): List of Arbor label/local parameters pairs in Neuron format - channels (): Mapping of Arbor label to co-located NMODL mechanisms - - Returns: - Mapping of Arbor label to mechanisms with their parameters in Arbor - format (mechanism name is None for non-mechanism parameters) in the - first component, global properties found in the second - """ - local_mechs = dict() - global_properties = dict() - for loc, params in params: - mechs = _arb_convert_params_and_group_by_mech(params, channels[loc]) - - # move Arbor global properties to global_params - for mech, props in _arb_pop_global_properties(loc, mechs): - global_properties[mech] = global_properties.get(mech, []) + props - local_mechs[loc] = mechs - return local_mechs, global_properties - - def _arb_append_scaled_mechs(mechs, scaled_mechs): """Append scaled mechanism parameters to constant ones""" for mech, scaled_params in scaled_mechs.items(): @@ -352,89 +289,199 @@ def _arb_append_scaled_mechs(mechs, scaled_mechs): mechs[mech] = mechs.get(mech, []) + \ [RangeIExpr( name=p.name, - value=format_float(p.value), + value=p.value, scale=p.value_scaler.acc_scale_iexpr(p.value)) for p in scaled_params] -def _arb_nmodl_translate_mech(mech_name, mech_params, arb_cats): - """Translate NMODL mechanism to Arbor ACC format - - Args: - mech_name (): NMODL mechanism name (suffix) - mech_params (): Mechanism parameters in Arbor format - arb_cats (): Mapping of catalogue names to mechanisms - with theirmeta data - - Returns: - Tuple of mechanism name with NMODL GLOBAL parameters integrated and - catalogue prefix added as well as the remaining RANGE parameters - """ - - arb_mech = None - arb_mech_name = _nrn2arb_mech_name(mech_name) +# An mechanism's NMODL GLOBAL and RANGE variables in Arbor +MechMetaData = namedtuple('MechMetaData', 'globals, ranges') - for cat in arb_cats: # in order of precedence - if arb_mech_name in arb_cats[cat]: - arb_mech = arb_cats[cat][arb_mech_name] - mech_name = cat + '::' + arb_mech_name - break - if arb_mech is None: # not Arbor built-in mech, no qualifier added - if mech_name is not None: - logger.warn('create_acc: Could not find Arbor mech for %s (%s).' - % (mech_name, mech_params)) - return (mech_name, mech_params) - else: - if arb_mech.globals is None: # only Arbor range params - for param in mech_params: - if param.name not in arb_mech.ranges: - raise CreateAccException( - '%s not a GLOBAL or RANGE parameter of %s' % - (param.name, mech_name)) +class ArbNmodlMechFormatter: + """Loads catalogue metadata and reformats mechanism name for ACC""" + + def __init__(self, ext_catalogues): + """Load metadata of external and Arbor's built-in mechanism catalogues + + Args: + ext_catalogues (): Mapping of catalogue name to directory + with NMODL files defining the mechanisms. + """ + self.cats = self._load_mech_catalogue_meta(ext_catalogues) + + @staticmethod + def _load_catalogue_meta(cat_dir): + """Load mechanism catalogue metadata from NMODL files + + Args: + cat_dir (): Path to directory with NMODL files of catalogue + + Returns: + Mapping of name to meta data for each mechanism in the directory + """ + # used to generate arbor_mechanisms.json on NMODL from arbor/mechanisms + + nmodl_pattern = '^\s*%s\s+((?:\w+\,\s*)*?\w+)\s*?$' # NOQA + suffix_pattern = nmodl_pattern % 'SUFFIX' + globals_pattern = nmodl_pattern % 'GLOBAL' + ranges_pattern = nmodl_pattern % 'RANGE' + + def process_nmodl(nmodl_str): + """Extract global and range params from Arbor-conforming NMODL""" + try: + nrn = re.search(r'NEURON\s+{([^}]+)}', nmodl_str, + flags=re.MULTILINE).group(1) + suffix_ = re.search(suffix_pattern, nrn, + flags=re.MULTILINE) + suffix_ = suffix_ if suffix_ is None else suffix_.group(1) + globals_ = re.search(globals_pattern, nrn, + flags=re.MULTILINE) + globals_ = globals_ if globals_ is None \ + else re.findall(r'\w+', globals_.group(1)) + ranges_ = re.search(ranges_pattern, nrn, + flags=re.MULTILINE) + ranges_ = ranges_ if ranges_ is None \ + else re.findall(r'\w+', ranges_.group(1)) + except Exception as e: + raise CreateAccException( + 'NMODL-inspection for %s failed.' % nmodl_file) from e + + # skipping suffix_ + return MechMetaData(globals=globals_, ranges=ranges_) + + mechs = dict() + cat_dir = pathlib.Path(cat_dir) + for nmodl_file in cat_dir.glob('*.mod'): + with open(cat_dir.joinpath(nmodl_file)) as f: + mechs[nmodl_file.stem] = process_nmodl(f.read()) + + return mechs + + @classmethod + def _load_mech_catalogue_meta(cls, ext_catalogues): + """Load metadata of external and Arbor's built-in mechanism catalogues + + Args: + ext_catalogues (): Mapping of catalogue name to directory + with NMODL files defining the mechanisms + + Returns: + Ordered mapping of catalogue name -> mechanism name -> meta data + for external and built-in catalogues (external ones taking + precedence) + """ + + arb_cats = OrderedDict() + + if ext_catalogues is not None: + for cat, cat_nmodl in ext_catalogues.items(): + arb_cats[cat] = cls._load_catalogue_meta( + pathlib.Path(cat_nmodl).resolve()) + + builtin_catalogues = pathlib.Path(__file__).parent.joinpath( + 'static/arbor_mechanisms.json').resolve() + with open(builtin_catalogues) as f: + builtin_arb_cats = json.load(f) + + for cat in ['BBP', 'default', 'allen']: + if cat not in arb_cats: + arb_cats[cat] = { + mech: MechMetaData(**meta) + for mech, meta in builtin_arb_cats[cat].items()} + + return arb_cats + + @staticmethod + def _mech_name(name): + """Neuron to Arbor mechanism name conversion + + Args: + name (): A Neuron mechanism name + """ + if name in ['Exp2Syn', 'ExpSyn']: + return name.lower() + else: + return name + + @classmethod + def _translate_mech(cls, mech_name, mech_params, arb_cats): + """Translate NMODL mechanism to Arbor ACC format + + Args: + mech_name (): NMODL mechanism name (suffix) + mech_params (): Mechanism parameters in Arbor format + arb_cats (): Mapping of catalogue names to mechanisms + with theirmeta data + + Returns: + Tuple of mechanism name with NMODL GLOBAL parameters integrated and + catalogue prefix added as well as the remaining RANGE parameters + """ + + arb_mech = None + arb_mech_name = cls._mech_name(mech_name) + + for cat in arb_cats: # in order of precedence + if arb_mech_name in arb_cats[cat]: + arb_mech = arb_cats[cat][arb_mech_name] + mech_name = cat + '::' + arb_mech_name + break + + if arb_mech is None: # not Arbor built-in mech, no qualifier added + if mech_name is not None: + logger.warn( + 'create_acc: Could not find Arbor mech for %s (%s).' + % (mech_name, mech_params)) return (mech_name, mech_params) else: - for param in mech_params: - if param.name not in arb_mech.globals and \ - param.name not in arb_mech.ranges: - raise CreateAccException( - '%s not a GLOBAL or RANGE parameter of %s' % - (param.name, mech_name)) - mech_name_suffix = [] - remaining_mech_params = [] - for mech_param in mech_params: - if mech_param.name in arb_mech.globals: - mech_name_suffix.append(mech_param.name + '=' + - mech_param.value) - if isinstance(mech_param, RangeIExpr): - remaining_mech_params.append( - RangeIExpr(name=mech_param.name, - value=None, - scale=mech_param.scale)) - else: - remaining_mech_params.append(mech_param) - if len(mech_name_suffix) > 0: - mech_name += '/' + ','.join(mech_name_suffix) - return (mech_name, remaining_mech_params) - - -def _arb_nmodl_translate_density(mechs, arb_cats): - """Translate all density mechanisms in a specific region""" - return dict([_arb_nmodl_translate_mech(mech, params, arb_cats) - for mech, params in mechs.items()]) - - -def _arb_nmodl_translate_points(mechs, arb_cats): - """Translate all point mechanisms for a specific locset""" - result = dict() - - for synapse_name, mech_desc in mechs.items(): - mech, params = _arb_nmodl_translate_mech( - mech_desc['mech'], mech_desc['params'], arb_cats) - result[synapse_name] = dict(mech=mech, - params=params) - - return result + if arb_mech.globals is None: # only Arbor range params + for param in mech_params: + if param.name not in arb_mech.ranges: + raise CreateAccException( + '%s not a GLOBAL or RANGE parameter of %s' % + (param.name, mech_name)) + return (mech_name, mech_params) + else: + for param in mech_params: + if param.name not in arb_mech.globals and \ + param.name not in arb_mech.ranges: + raise CreateAccException( + '%s not a GLOBAL or RANGE parameter of %s' % + (param.name, mech_name)) + mech_name_suffix = [] + remaining_mech_params = [] + for mech_param in mech_params: + if mech_param.name in arb_mech.globals: + mech_name_suffix.append(mech_param.name + '=' + + mech_param.value) + if isinstance(mech_param, RangeIExpr): + remaining_mech_params.append( + RangeIExpr(name=mech_param.name, + value=None, + scale=mech_param.scale)) + else: + remaining_mech_params.append(mech_param) + if len(mech_name_suffix) > 0: + mech_name += '/' + ','.join(mech_name_suffix) + return (mech_name, remaining_mech_params) + + def translate_density(self, mechs): + """Translate all density mechanisms in a specific region""" + return dict([self._translate_mech(mech, params, self.cats) + for mech, params in mechs.items()]) + + def translate_points(self, mechs): + """Translate all point mechanisms for a specific locset""" + result = dict() + + for synapse_name, mech_desc in mechs.items(): + mech, params = self._translate_mech( + mech_desc['mech'], mech_desc['params'], self.cats) + result[synapse_name] = dict(mech=mech, + params=params) + + return result def _arb_project_scaled_mechs(mechs): @@ -447,6 +494,37 @@ def _arb_project_scaled_mechs(mechs): return scaled_mechs +def _arb_populate_label_dict(local_mechs, local_scaled_mechs, pprocess_mechs): + """Creates a dict of labels from label-specific parameters/mechanisms + + Args: + local_mechs (): label-specific parameters/density mechanisms + local_scaled_mechs (): label-specific iexpr parameters/density mechs + pprocess_mechs (): label-specific point processes + + Returns: + A dict mapping label name to ArbLabel for each label in the input + """ + + label_dict = dict() + + for acc_labels in [local_mechs.keys(), + local_scaled_mechs.keys(), + pprocess_mechs.keys()]: + for acc_label in acc_labels: + if acc_label.name in label_dict and \ + acc_label != label_dict[acc_label.name]: + raise CreateAccException( + 'Label %s already exists in' % acc_label.name + + ' label_dict with different s-expression: ' + ' %s != %s.' % (label_dict[acc_label.name].loc, + acc_label.loc)) + elif acc_label.name not in label_dict: + label_dict[acc_label.name] = acc_label + + return label_dict + + def _read_templates(template_dir, template_filename): """Expand Jinja2 template filepath with glob and return dict of target filename -> parsed template""" @@ -469,6 +547,10 @@ def _read_templates(template_dir, template_filename): name = '.'.join(name.rsplit('_', 1)) templates[name] = jinja2.Template(template) + if templates == {}: + raise FileNotFoundError( + f'No templates found for JSON/ACC-export in {template_dir}') + return templates @@ -574,13 +656,13 @@ def create_acc(mechs, # global_mechs refer to default density mechs/params in Arbor # [mech -> param] (params under mech == None) global_mechs = \ - _arb_convert_params_and_group_by_mech_global( + Nrn2ArbMechGrouper.process_global( template_params['global_params']) # local_mechs refer to locally painted density mechs/params in Arbor # [label -> mech -> param.name/.value] (params under mech == None) local_mechs, additional_global_mechs = \ - _arb_convert_params_and_group_by_mech_local( + Nrn2ArbMechGrouper.process_local( template_params['section_params'], channels) for mech, params in additional_global_mechs.items(): global_mechs[mech] = \ @@ -594,7 +676,7 @@ def create_acc(mechs, range_params = list(range_params.items()) local_scaled_mechs, global_scaled_mechs = \ - _arb_convert_params_and_group_by_mech_local( + Nrn2ArbMechGrouper.process_local( range_params, channels) # join each mech's constant params with inhomogeneous ones on mechanisms @@ -605,7 +687,7 @@ def create_acc(mechs, # pprocess_mechs refer to locally placed mechs/params in Arbor # [label -> mech -> param.name/.value] pprocess_mechs, global_pprocess_mechs = \ - _arb_convert_params_and_group_by_mech_local( + Nrn2ArbMechGrouper.process_local( template_params['pprocess_params'], point_channels) if any(len(params) > 0 for params in global_pprocess_mechs.values()): raise CreateAccException('Point process mechanisms cannot be' @@ -615,16 +697,17 @@ def create_acc(mechs, # (no new labels introduced, but locations explicitly defined) pprocess_mechs = _arb_filter_point_proc_locs(pprocess_mechs) - # load metadata of external and Arbor's built-in mech catalogues - arb_cats = _arb_load_mech_catalogue_meta(ext_catalogues) + # NMODL formatter loads metadata of external and Arbor's built-in + # mech catalogues + nmodl_formatter = ArbNmodlMechFormatter(ext_catalogues) # translate mechs to Arbor's nomenclature - global_mechs = _arb_nmodl_translate_density(global_mechs, arb_cats) + global_mechs = nmodl_formatter.translate_density(global_mechs) local_mechs = { - loc: _arb_nmodl_translate_density(mechs, arb_cats) + loc: nmodl_formatter.translate_density(mechs) for loc, mechs in local_mechs.items()} pprocess_mechs = { - loc: _arb_nmodl_translate_points(mechs, arb_cats) + loc: nmodl_formatter.translate_points(mechs) for loc, mechs in pprocess_mechs.items()} # get iexpr parameters of scaled density mechs @@ -633,21 +716,9 @@ def create_acc(mechs, for loc, mechs in local_mechs.items()} # populate label dict - label_dict = dict() - - for acc_labels in [local_mechs.keys(), - local_scaled_mechs.keys(), - pprocess_mechs.keys()]: - for acc_label in acc_labels: - if acc_label.name in label_dict and \ - acc_label != label_dict[acc_label.name]: - raise CreateAccException( - 'Label %s already exists in' % acc_label.name + - ' label_dict with different definition: ' - ' %s != %s.' % (label_dict[acc_label.name].defn, - acc_label.defn)) - elif acc_label.name not in label_dict: - label_dict[acc_label.name] = acc_label + label_dict = _arb_populate_label_dict(local_mechs, + local_scaled_mechs, + pprocess_mechs) ret = {filenames[name]: template.render(template_name=template_name, @@ -673,11 +744,11 @@ def create_acc(mechs, return ret -def output_acc(output_dir, cell, parameters, - template_filename='acc/*_template.jinja2', - ext_catalogues=None, - create_mod_morph=False, - sim=None): +def write_acc(output_dir, cell, parameters, + template_filename='acc/*_template.jinja2', + ext_catalogues=None, + create_mod_morph=False, + sim=None): '''Output mixed JSON/ACC format for Arbor cable cell to files Args: @@ -692,7 +763,7 @@ def output_acc(output_dir, cell, parameters, sim (): Neuron simulator instance (only used used with axon replacement if morphology has not yet been instantiated) ''' - output = cell.create_acc(parameters, template_filename, + output = cell.create_acc(parameters, template=template_filename, ext_catalogues=ext_catalogues, create_mod_morph=create_mod_morph, sim=sim) diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index 958a1c1f..8c2bef4e 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -26,7 +26,7 @@ from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin from bluepyopt.ephys.parameterscalers import format_float -from bluepyopt.ephys.acc_utils import ArbLabel +from bluepyopt.ephys.acc import ArbLabel from bluepyopt.ephys.morphologies import ArbFileMorphology import numpy as np diff --git a/bluepyopt/ephys/models.py b/bluepyopt/ephys/models.py index 781cdc8a..658d73b2 100644 --- a/bluepyopt/ephys/models.py +++ b/bluepyopt/ephys/models.py @@ -415,6 +415,18 @@ def create_acc(self, param_values, self.destroy(sim=sim) return ret + def write_acc(self, output_dir, param_values, + template_filename='acc/*_template.jinja2', + ext_catalogues=None, + create_mod_morph=False, + sim=None): + """Write JSON/ACC-description for this model to output directory""" + create_acc.write_acc(output_dir, self, param_values, + template_filename=template_filename, + ext_catalogues=ext_catalogues, + create_mod_morph=create_mod_morph, + sim=sim) + def __str__(self): """Return string representation""" diff --git a/bluepyopt/ephys/morphologies.py b/bluepyopt/ephys/morphologies.py index dac2f618..09028a6b 100644 --- a/bluepyopt/ephys/morphologies.py +++ b/bluepyopt/ephys/morphologies.py @@ -29,7 +29,7 @@ import numpy from bluepyopt.ephys.base import BaseEPhys from bluepyopt.ephys.serializer import DictMixin -from bluepyopt.ephys.acc_utils import arbor, ArbLabel +from bluepyopt.ephys.acc import arbor, ArbLabel logger = logging.getLogger(__name__) @@ -61,7 +61,7 @@ def __init__( """Constructor Args: - morphology_path (str): location of the file describing the + morphology_path (str or Path): location of the file describing the morphology do_replace_axon (bool): Does the axon need to be replaced by an AIS stub with default function ? @@ -82,6 +82,8 @@ def __init__( super(NrnFileMorphology, self).__init__(name=name, comment=comment) # TODO speed up loading of morphologies from files # Path to morphology + if isinstance(morphology_path, pathlib.Path): + morphology_path = str(morphology_path) self.morphology_path = morphology_path self.do_replace_axon = do_replace_axon self.do_set_nseg = do_set_nseg @@ -268,17 +270,17 @@ class ArbFileMorphology(Morphology, DictMixin): # 'dend' for basal dendrite, 'apic' for apical dendrite) region_labels = dict( all=ArbLabel( - type='region', name='all', defn='(all)'), + type='region', name='all', s_expr='(all)'), somatic=ArbLabel( - type='region', name='soma', defn='(tag %i)' % tags['soma']), + type='region', name='soma', s_expr='(tag %i)' % tags['soma']), axonal=ArbLabel( - type='region', name='axon', defn='(tag %i)' % tags['axon']), + type='region', name='axon', s_expr='(tag %i)' % tags['axon']), basal=ArbLabel( - type='region', name='dend', defn='(tag %i)' % tags['dend']), + type='region', name='dend', s_expr='(tag %i)' % tags['dend']), apical=ArbLabel( - type='region', name='apic', defn='(tag %i)' % tags['apic']), + type='region', name='apic', s_expr='(tag %i)' % tags['apic']), myelinated=ArbLabel( - type='region', name='myelin', defn='(tag %i)' % tags['myelin']), + type='region', name='myelin', s_expr='(tag %i)' % tags['myelin']), ) @staticmethod diff --git a/bluepyopt/ephys/protocols.py b/bluepyopt/ephys/protocols.py index 0973066c..a2827a79 100644 --- a/bluepyopt/ephys/protocols.py +++ b/bluepyopt/ephys/protocols.py @@ -33,8 +33,8 @@ from . import simulators from . import stimuli from .responses import TimeVoltageResponse +from .acc import arbor from . import create_acc -arbor = create_acc.arbor class Protocol(object): @@ -463,8 +463,8 @@ def run( # Export cell model to mixed JSON/ACC-format with tempfile.TemporaryDirectory() as acc_dir: - create_acc.output_acc(acc_dir, cell_model, param_values, - ext_catalogues=sim.ext_catalogues) + cell_model.write_acc(acc_dir, param_values, + ext_catalogues=sim.ext_catalogues) cell_json = os.path.join(acc_dir, cell_model.name + '.json') diff --git a/bluepyopt/ephys/simulators.py b/bluepyopt/ephys/simulators.py index 46ef9d71..6ca2448a 100644 --- a/bluepyopt/ephys/simulators.py +++ b/bluepyopt/ephys/simulators.py @@ -10,7 +10,7 @@ import warnings import pathlib -from bluepyopt.ephys.acc_utils import arbor +from bluepyopt.ephys.acc import arbor logger = logging.getLogger(__name__) diff --git a/bluepyopt/ephys/stimuli.py b/bluepyopt/ephys/stimuli.py index 7ae1b556..7e1bbaf4 100644 --- a/bluepyopt/ephys/stimuli.py +++ b/bluepyopt/ephys/stimuli.py @@ -23,7 +23,7 @@ import logging -from bluepyopt.ephys.acc_utils import arbor +from bluepyopt.ephys.acc import arbor logger = logging.getLogger(__name__) diff --git a/bluepyopt/tests/test_ephys/test_acc.py b/bluepyopt/tests/test_ephys/test_acc.py new file mode 100644 index 00000000..c198e783 --- /dev/null +++ b/bluepyopt/tests/test_ephys/test_acc.py @@ -0,0 +1,39 @@ +"""Unit tests for acc.""" + +from bluepyopt.ephys.acc import arbor, ArbLabel + + +import pytest + + +@pytest.mark.unit +def test_arbor_labels(): + """Test Arbor labels.""" + + region_label = ArbLabel(type='region', + name='first_branch', + s_expr='(branch 0)') + + assert region_label.defn == '(region-def "first_branch" (branch 0))' + assert region_label.ref == '(region "first_branch")' + assert region_label.name == 'first_branch' + assert region_label.loc == '(branch 0)' + assert region_label == region_label + assert region_label is not None + + locset_label = ArbLabel(type='locset', + name='first_branch_center', + s_expr='(location 0 0.5)') + + assert locset_label.defn == \ + '(locset-def "first_branch_center" (location 0 0.5))' + assert locset_label.ref == '(locset "first_branch_center")' + assert locset_label.name == 'first_branch_center' + assert locset_label.loc == '(location 0 0.5)' + assert locset_label == locset_label + assert locset_label is not None + + assert locset_label != region_label + + arbor.label_dict({region_label.name: region_label.loc, + locset_label.name: locset_label.loc}) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index fa6d4bcd..8fe0dc4c 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -3,18 +3,23 @@ # pylint: disable=W0212 import os +import sys +import pathlib import re import json import tempfile -from bluepyopt.ephys.acc_utils import arbor +from bluepyopt.ephys.acc import arbor, ArbLabel from bluepyopt.ephys.morphologies import ArbFileMorphology +from bluepyopt.ephys.parameterscalers import NrnSegmentSomaDistanceScaler from . import utils from bluepyopt import ephys from bluepyopt.ephys import create_acc - +from bluepyopt.ephys.create_acc import (Nrn2ArbParamFormatter, + Nrn2ArbMechGrouper, + ArbNmodlMechFormatter) import pytest @@ -26,12 +31,283 @@ ('myelin', 5)] -testdata_dir = os.path.join( - os.path.dirname( - os.path.abspath(__file__)), +testdata_dir = pathlib.Path(__file__).parent.joinpath( 'testdata') +@pytest.mark.unit +def test_read_templates(): + """Unit test for _read_templates function.""" + template_dir = testdata_dir / 'acc/templates' + template_filename = "*_template.jinja2" + templates = create_acc._read_templates(template_dir, template_filename) + assert templates.keys() == {'label_dict.acc', 'cell.json', 'decor.acc'} + + with pytest.raises(FileNotFoundError): + create_acc._read_templates("DOES_NOT_EXIST", template_filename) + + +@pytest.mark.unit +def test_Nrn2ArbParamFormatter_param_name(): + """Test Neuron to Arbor parameter mapping.""" + # Identity + mech_param_name = "gSKv3_1bar_SKv3_1" + assert Nrn2ArbParamFormatter._param_name(mech_param_name) \ + == mech_param_name + + # Non-trivial transformation + global_property_name = "v_init" + assert Nrn2ArbParamFormatter._param_name(global_property_name) \ + == "membrane-potential" + + +@pytest.mark.unit +def test_Nrn2ArbParamFormatter_param_value(): + """Test Neuron to Arbor parameter units conversion.""" + # Identity for region parameter + mech_param = create_acc.Location(name="gSKv3_1bar_SKv3_1", value="1.025") + assert Nrn2ArbParamFormatter._param_value(mech_param) == "1.025" + + # Non-trivial name transformation, but identical value/units + global_property = create_acc.Location(name="v_init", value=-65) + assert Nrn2ArbParamFormatter._param_value(global_property) == "-65" + + # Non-trivial name and value/units transformation + global_property = create_acc.Location(name="celsius", value=34) + assert Nrn2ArbParamFormatter._param_value(global_property) == ( + "307.14999999999998") + + +@pytest.mark.unit +def test_Nrn2ArbParamFormatter_format(): + """Test Neuron to Arbor parameter reformatting.""" + # Constant mechanism parameter + mech_param = create_acc.Location(name="gSKv3_1bar_SKv3_1", value="1.025") + mech = "SKv3_1" + arb_mech_param = create_acc.Location(name="gSKv3_1bar", value="1.025") + assert ( + Nrn2ArbParamFormatter.format( + mech_param, mechs=[mech]) + == (mech, arb_mech_param) + ) + + # Non-unique mapping to mechanisms + with pytest.raises(create_acc.CreateAccException): + Nrn2ArbParamFormatter.format( + mech_param, mechs=["SKv3_1", "1"]) + + # Global property with non-trivial transformation + global_property = create_acc.Location(name="celsius", value="0") + mech = None + arb_global_property = create_acc.Location( + name="temperature-kelvin", value="273.14999999999998") + # Non-trivial name and value/units transformation + assert Nrn2ArbParamFormatter.format(global_property, []) == \ + (mech, arb_global_property) + + # Inhomogeneuos mechanism parameter + apical_region = ArbLabel("region", "apic", "(tag 4)") + param_scaler = NrnSegmentSomaDistanceScaler( + name='soma-distance-scaler', + distribution='(-0.8696 + 2.087*math.exp(({distance})*0.0031))*{value}' + ) + + iexpr_param = create_acc.RangeExpr( + location=apical_region, + name="gkbar_hh", + value="0.025", + value_scaler=param_scaler + ) + mech = "hh" + arb_iexpr_param = create_acc.RangeExpr( + location=apical_region, + name="gkbar", + value="0.025", + value_scaler=param_scaler, + ) + assert ( + Nrn2ArbParamFormatter.format( + iexpr_param, mechs=[mech]) + == (mech, arb_iexpr_param) + ) + + # Point process mechanism parameter + loc = ephys.locations.ArbLocsetLocation( + name='somacenter', + locset='(location 0 0.5)') + + mech = ephys.mechanisms.NrnMODPointProcessMechanism( + name='expsyn', + suffix='ExpSyn', + locations=[loc]) + + mech_loc = ephys.locations.NrnPointProcessLocation( + 'expsyn_loc', + pprocess_mech=mech) + + point_expr_param = create_acc.PointExpr( + name="tau", value="10", point_loc=[mech_loc]) + + arb_point_expr_param = create_acc.PointExpr( + name="tau", value="10", point_loc=[mech_loc]) + assert ( + Nrn2ArbParamFormatter.format( + point_expr_param, mechs=[mech]) + == (mech, arb_point_expr_param) + ) + + +@pytest.mark.unit +def test_Nrn2ArbMechGrouper_format_params_and_group_by_mech(): + """Test grouping of parameters by mechanism.""" + params = [create_acc.Location(name="gSKv3_1bar_SKv3_1", value="1.025"), + create_acc.Location(name="ena", value="-30")] + mechs = ["SKv3_1"] + local_mechs = Nrn2ArbMechGrouper.\ + _format_params_and_group_by_mech(params, mechs) + assert local_mechs == \ + {None: [create_acc.Location(name="ion-reversal-potential \"na\"", + value="-30")], + "SKv3_1": [create_acc.Location(name="gSKv3_1bar", value="1.025")]} + + +@pytest.mark.unit +def test_Nrn2ArbMechGrouper_process_global(): + """Test adapting global parameters from Neuron to Arbor.""" + params = {"ki": 3, "v_init": -65} + global_mechs = Nrn2ArbMechGrouper.process_global(params) + assert global_mechs == { + None: [create_acc.Location(name="ion-internal-concentration \"k\"", + value="3"), + create_acc.Location(name="membrane-potential", + value="-65")]} + + +@pytest.mark.unit +def test_Nrn2ArbMechGrouper_is_global_property(): + """Test adapting local parameters from Neuron to Arbor.""" + all_regions = ArbLabel("region", "all_regions", "(all)") + param = create_acc.Location(name="axial-resistivity", value="1") + assert Nrn2ArbMechGrouper._is_global_property( + all_regions, param) is True + + soma_region = ArbLabel("region", "soma", "(tag 1)") + assert Nrn2ArbMechGrouper._is_global_property( + soma_region, param) is False + + +@pytest.mark.unit +def test_separate_global_properties(): + """Test separating global properties from label-specific mechs.""" + all_regions = ArbLabel("region", "all_regions", "(all)") + mechs = {None: [create_acc.Location(name="axial-resistivity", value="1")], + "SKv3_1": [create_acc.Location(name="gSKv3_1bar", value="1.025")]} + local_mechs, global_properties = \ + Nrn2ArbMechGrouper._separate_global_properties(all_regions, mechs) + assert local_mechs == {None: [], "SKv3_1": mechs["SKv3_1"]} + assert global_properties == {None: mechs[None]} + + +@pytest.mark.unit +def test_Nrn2ArbMechGrouper_process_local(): + """Test adapting local parameters from Neuron to Arbor.""" + all_regions = ArbLabel("region", "all_regions", "(all)") + soma_region = ArbLabel("region", "soma", "(tag 1)") + params = [ + (all_regions, + [create_acc.Location(name="cm", value="100")]), + (soma_region, + [create_acc.Location(name="v_init", value="-65"), + create_acc.Location(name="gSKv3_1bar_SKv3_1", value="1.025")]) + ] + channels = {all_regions: [], soma_region: ["SKv3_1"]} + local_mechs, global_properties = \ + Nrn2ArbMechGrouper.process_local(params, channels) + assert local_mechs.keys() == {all_regions, soma_region} + assert local_mechs[all_regions] == {None: []} + assert local_mechs[soma_region] == { + None: [create_acc.Location(name="membrane-potential", value="-65")], + "SKv3_1": [create_acc.Location(name="gSKv3_1bar", value="1.025")] + } + assert global_properties == { + None: [create_acc.Location(name="membrane-capacitance", value="1")]} + + +@pytest.mark.unit +def test_ArbNmodlMechFormatter_load_mech_catalogue_meta(): + """Test loading Arbor built-in mech catalogue metadata.""" + nmodl_formatter = ArbNmodlMechFormatter(None) + + assert isinstance(nmodl_formatter.cats, dict) + assert nmodl_formatter.cats.keys() == {'BBP', 'default', 'allen'} + assert "Ca_HVA" in nmodl_formatter.cats['BBP'] + + +@pytest.mark.unit +def test_ArbNmodlMechFormatter_mech_name(): + """Test mechanism name translation.""" + assert ArbNmodlMechFormatter._mech_name("Ca_HVA") == "Ca_HVA" + assert ArbNmodlMechFormatter._mech_name("ExpSyn") == "expsyn" + + +@pytest.mark.unit +def test_ArbNmodlMechFormatter_translate_density(): + """Test NMODL GLOBAL parameter handling in mechanism translation.""" + mechs = { + "hh": [ + create_acc.Location(name="gnabar", value="0.10000000000000001"), + create_acc.RangeIExpr( + name="gkbar", + value="0.029999999999999999", + scale=( + "(add (scalar -0.62109375) (mul (scalar 0.546875) " + "(log (add (mul (distance (region \"soma\"))" + " (scalar 0.421875) ) (scalar 1.25) ) ) ) )" + ), + ), + ], + "pas": [ + create_acc.Location(name="e", value="0.25"), + create_acc.RangeIExpr( + name="g", + value="0.029999999999999999", + scale=( + "(add (scalar -0.62109375) (mul (scalar 0.546875) " + "(log (add (mul (distance (region \"soma\"))" + " (scalar 0.421875) ) (scalar 1.25) ) ) ) )" + ), + ), + ], + } + nmodl_formatter = ArbNmodlMechFormatter(None) + translated_mechs = nmodl_formatter.translate_density(mechs) + assert translated_mechs.keys() == {"default::hh", + "default::pas/e=0.25"} + assert translated_mechs["default::hh"] == mechs["hh"] + assert translated_mechs["default::pas/e=0.25"] == mechs["pas"][1:] + + +@pytest.mark.unit +def test_arb_populate_label_dict(): + """Unit test for _populate_label_dict.""" + local_mechs = {ArbLabel("region", "all", "(all)"): {}} + local_scaled_mechs = { + ArbLabel("region", "first_branch", "(branch 0)"): {}} + pprocess_mechs = {} + + label_dict = create_acc._arb_populate_label_dict(local_mechs, + local_scaled_mechs, + pprocess_mechs) + assert label_dict.keys() == {"all", "first_branch"} + + with pytest.raises(create_acc.CreateAccException): + other_pprocess_mechs = { + ArbLabel("region", "first_branch", "(branch 1)"): {}} + create_acc._arb_populate_label_dict(local_mechs, + local_scaled_mechs, + other_pprocess_mechs) + + @pytest.mark.unit def test_create_acc(): """ephys.create_acc: Test create_acc""" @@ -42,7 +318,7 @@ def test_create_acc(): morphology='CCell.swc', template_name='CCell') - ref_dir = os.path.join(testdata_dir, 'acc/CCell') + ref_dir = testdata_dir / 'acc/CCell' cell_json = "CCell.json" decor_acc = "CCell_decor.acc" label_dict_acc = "CCell_label_dict.acc" @@ -56,7 +332,7 @@ def test_create_acc(): assert 'label_dict' in cell_json_dict assert 'decor' in cell_json_dict # Testing values - with open(os.path.join(ref_dir, cell_json)) as f: + with open(ref_dir / cell_json) as f: ref_cell_json = json.load(f) for k in ref_cell_json: if k != 'produced_by': @@ -67,7 +343,7 @@ def test_create_acc(): assert acc[decor_acc].startswith('(arbor-component') assert '(decor' in acc[decor_acc] # Testing values - with open(os.path.join(ref_dir, decor_acc)) as f: + with open(ref_dir / decor_acc) as f: ref_decor = f.read() assert ref_decor == acc[decor_acc] # decor data not exposed in Python @@ -82,9 +358,9 @@ def test_create_acc(): assert matches[pos][1] == str(loc_tag[1]) # Testing values ref_labels = arbor.load_component( - os.path.join(ref_dir, label_dict_acc)).component + ref_dir / label_dict_acc).component with tempfile.TemporaryDirectory() as test_dir: - test_labels_filename = os.path.join(test_dir, label_dict_acc) + test_labels_filename = pathlib.Path(test_dir).joinpath(label_dict_acc) with open(test_labels_filename, 'w') as f: f.write(acc[label_dict_acc]) test_labels = arbor.load_component(test_labels_filename).component @@ -171,8 +447,7 @@ def test_create_acc_replace_axon(): cell_json_dict = json.loads(acc[cell_json]) assert 'replace_axon' in cell_json_dict['morphology'] - with open(os.path.join(testdata_dir, - 'acc/CCell/simple_axon_replacement.acc')) as f: + with open(testdata_dir / 'acc/CCell/simple_axon_replacement.acc') as f: replace_axon_ref = f.read() assert acc[cell_json_dict['morphology']['replace_axon']] == \ @@ -180,7 +455,7 @@ def test_create_acc_replace_axon(): def make_cell(replace_axon): - morph_filename = os.path.join(testdata_dir, 'simple_ax2.swc') + morph_filename = testdata_dir / 'simple_ax2.swc' morph = ephys.morphologies.NrnFileMorphology(morph_filename, do_replace_axon=replace_axon) somatic_loc = ephys.locations.NrnSeclistLocation( @@ -221,17 +496,17 @@ def run_short_sim(cable_cell): @pytest.mark.unit -def test_cell_model_output_and_read_acc(): - """ephys.create_acc: Test output_acc and read_acc w/o axon replacement""" +def test_cell_model_write_and_read_acc(): + """ephys.create_acc: Test write_acc and read_acc w/o axon replacement""" cell = make_cell(replace_axon=False) param_values = {'gnabar_hh': 0.1, 'gkbar_hh': 0.03} with tempfile.TemporaryDirectory() as acc_dir: - create_acc.output_acc(acc_dir, cell, param_values) + cell.write_acc(acc_dir, param_values) cell_json, arb_morph, arb_decor, arb_labels = \ create_acc.read_acc( - os.path.join(acc_dir, cell.name + '.json')) + pathlib.Path(acc_dir).joinpath(cell.name + '.json')) assert 'replace_axon' not in cell_json['morphology'] cable_cell = arbor.cable_cell(morphology=arb_morph, @@ -248,16 +523,17 @@ def test_cell_model_output_and_read_acc(): run_short_sim(cable_cell) -def test_cell_model_output_and_read_acc_replace_axon(): - """ephys.create_acc: Test output_acc and read_acc w/ axon replacement""" +@pytest.mark.unit +def test_cell_model_write_and_read_acc_replace_axon(): + """ephys.create_acc: Test write_acc and read_acc w/ axon replacement""" cell = make_cell(replace_axon=True) param_values = {'gnabar_hh': 0.1, 'gkbar_hh': 0.03} with tempfile.TemporaryDirectory() as acc_dir: try: - create_acc.output_acc(acc_dir, cell, param_values, - sim=ephys.simulators.NrnSimulator()) + cell.write_acc(acc_dir, param_values, + sim=ephys.simulators.NrnSimulator()) except Exception as e: # fail with an older Arbor version assert isinstance(e, NotImplementedError) assert len(e.args) == 1 and e.args[0] == \ @@ -267,7 +543,7 @@ def test_cell_model_output_and_read_acc_replace_axon(): # Axon replacement implemented in installed Arbor version cell_json, arb_morph, arb_decor, arb_labels = \ create_acc.read_acc( - os.path.join(acc_dir, cell.name + '.json')) + pathlib.Path(acc_dir).joinpath(cell.name + '.json')) assert 'replace_axon' in cell_json['morphology'] cable_cell = arbor.cable_cell(morphology=arb_morph, @@ -288,8 +564,9 @@ def test_cell_model_output_and_read_acc_replace_axon(): run_short_sim(cable_cell) +@pytest.mark.unit def test_cell_model_create_acc_replace_axon_without_instantiate(): - """ephys.create_acc: Test output_acc and read_acc w/ axon replacement""" + """ephys.create_acc: Test write_acc and read_acc w/ axon replacement""" cell = make_cell(replace_axon=True) param_values = {'gnabar_hh': 0.1, 'gkbar_hh': 0.03} @@ -300,3 +577,135 @@ def test_cell_model_create_acc_replace_axon_without_instantiate(): ' create JSON/ACC-description with' ' axon replacement.'): cell.create_acc(param_values) + + +def check_acc_dir(test_dir, ref_dir): + assert os.listdir(ref_dir) == os.listdir(test_dir) + + for file in os.listdir(ref_dir): + if file.endswith('.json'): + with open(os.path.join(test_dir, file)) as f: + cell_json_dict = json.load(f) + with open(ref_dir / file) as f: + ref_cell_json = json.load(f) + for k in ref_cell_json: + if k != 'produced_by': + assert ref_cell_json[k] == cell_json_dict[k] + else: + with open(os.path.join(test_dir, file)) as f: + test_file = f.read() + with open(ref_dir / file) as f: + ref_file = f.read() + assert ref_file == test_file + + +@pytest.mark.unit +def test_write_acc_simple(): + SIMPLECELL_PATH = str((pathlib.Path(__file__).parent / + '../../../examples/simplecell').resolve()) + sys.path.insert(0, SIMPLECELL_PATH) + ref_dir = (testdata_dir / 'acc/simplecell').resolve() + old_cwd = os.getcwd() + try: + os.chdir(SIMPLECELL_PATH) + import simplecell_model + param_values = { + 'gnabar_hh': 0.10299326453483033, + 'gkbar_hh': 0.027124836082684685 + } + + cell = simplecell_model.create(do_replace_axon=True) + nrn_sim = ephys.simulators.NrnSimulator() + cell.instantiate_morphology_3d(nrn_sim) + + with tempfile.TemporaryDirectory() as test_dir: + cell.write_acc(test_dir, + param_values, + # ext_catalogues=ext_catalogues, + create_mod_morph=True) + + check_acc_dir(test_dir, ref_dir) + except Exception as e: # fail with an older Arbor version + assert isinstance(e, NotImplementedError) + assert len(e.args) == 1 and e.args[0] == \ + "Need a newer version of Arbor for axon replacement." + finally: + os.chdir(old_cwd) + sys.path.pop(0) + + +@pytest.mark.unit +def test_write_acc_l5pc(): + L5PC_PATH = str((pathlib.Path(__file__).parent / + '../../../examples/l5pc').resolve()) + sys.path.insert(0, L5PC_PATH) + ref_dir = (testdata_dir / 'acc/l5pc').resolve() + old_cwd = os.getcwd() + try: + import l5pc_model + param_values = { + 'gNaTs2_tbar_NaTs2_t.apical': 0.026145, + 'gSKv3_1bar_SKv3_1.apical': 0.004226, + 'gImbar_Im.apical': 0.000143, + 'gNaTa_tbar_NaTa_t.axonal': 3.137968, + 'gK_Tstbar_K_Tst.axonal': 0.089259, + 'gamma_CaDynamics_E2.axonal': 0.002910, + 'gNap_Et2bar_Nap_Et2.axonal': 0.006827, + 'gSK_E2bar_SK_E2.axonal': 0.007104, + 'gCa_HVAbar_Ca_HVA.axonal': 0.000990, + 'gK_Pstbar_K_Pst.axonal': 0.973538, + 'gSKv3_1bar_SKv3_1.axonal': 1.021945, + 'decay_CaDynamics_E2.axonal': 287.198731, + 'gCa_LVAstbar_Ca_LVAst.axonal': 0.008752, + 'gamma_CaDynamics_E2.somatic': 0.000609, + 'gSKv3_1bar_SKv3_1.somatic': 0.303472, + 'gSK_E2bar_SK_E2.somatic': 0.008407, + 'gCa_HVAbar_Ca_HVA.somatic': 0.000994, + 'gNaTs2_tbar_NaTs2_t.somatic': 0.983955, + 'decay_CaDynamics_E2.somatic': 210.485284, + 'gCa_LVAstbar_Ca_LVAst.somatic': 0.000333, + } + + cell = l5pc_model.create(do_replace_axon=True) + nrn_sim = ephys.simulators.NrnSimulator() + cell.instantiate_morphology_3d(nrn_sim) + + with tempfile.TemporaryDirectory() as test_dir: + cell.write_acc(test_dir, + param_values, + # ext_catalogues=ext_catalogues, + create_mod_morph=True) + + check_acc_dir(test_dir, ref_dir) + except Exception as e: # fail with an older Arbor version + assert isinstance(e, NotImplementedError) + assert len(e.args) == 1 and e.args[0] == \ + "Need a newer version of Arbor for axon replacement." + finally: + os.chdir(old_cwd) + sys.path.pop(0) + + +@pytest.mark.unit +def test_write_acc_expsyn(): + EXPSYN_PATH = str((pathlib.Path(__file__).parent / + '../../../examples/expsyn').resolve()) + sys.path.insert(0, EXPSYN_PATH) + ref_dir = (testdata_dir / 'acc/expsyn').resolve() + old_cwd = os.getcwd() + try: + import expsyn + param_values = {'expsyn_tau': 10.0} + + cell = expsyn.create_model(sim='arb', do_replace_axon=False) + + with tempfile.TemporaryDirectory() as test_dir: + cell.write_acc(test_dir, + param_values, + # ext_catalogues=ext_catalogues, + create_mod_morph=True) + + check_acc_dir(test_dir, ref_dir) + finally: + os.chdir(old_cwd) + sys.path.pop(0) diff --git a/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple.swc b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple.swc new file mode 100644 index 00000000..cf106230 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple.swc @@ -0,0 +1,4 @@ +# Dummy granule cell morphology +1 1 -5.0 0.0 0.0 5.0 -1 +2 1 0.0 0.0 0.0 5.0 1 +3 1 5.0 0.0 0.0 5.0 2 diff --git a/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell.json b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell.json new file mode 100644 index 00000000..c7588897 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell.json @@ -0,0 +1,9 @@ +{ + "cell_model_name": "simple_cell", + "produced_by": "Created by BluePyOpt(1.12.113) at 2022-11-07 01:06:09.370611", + "morphology": { + "original": "simple.swc" + }, + "label_dict": "simple_cell_label_dict.acc", + "decor": "simple_cell_decor.acc" +} diff --git a/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_decor.acc b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_decor.acc new file mode 100644 index 00000000..ff1e8f1b --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_decor.acc @@ -0,0 +1,6 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (decor + (paint (region "soma") (membrane-capacitance 0.01)) + (paint (region "soma") (density (mechanism "default::pas"))) + (place (locset "somacenter") (synapse (mechanism "default::expsyn" ("tau" 10))) "expsyn"))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_label_dict.acc b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_label_dict.acc new file mode 100644 index 00000000..fe69d135 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/expsyn/simple_cell_label_dict.acc @@ -0,0 +1,10 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (label-dict + (region-def "all" (all)) + (region-def "soma" (tag 1)) + (region-def "axon" (tag 2)) + (region-def "dend" (tag 3)) + (region-def "apic" (tag 4)) + (region-def "myelin" (tag 5)) + (locset-def "somacenter" (location 0 0.5)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7.asc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7.asc new file mode 100644 index 00000000..ba898076 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7.asc @@ -0,0 +1,16307 @@ +; V3 text file written for MicroBrightField products. +(ImageCoords) + +("CellBody" + (Color RGB (255, 255, 128)) + (CellBody) + ( 255.82 28.81 -3.38 0.46) ; 1, 1 + ( 257.78 30.46 -3.38 0.46) ; 1, 2 + ( 260.32 31.66 -3.38 0.46) ; 1, 3 + ( 263.28 31.16 -3.38 0.46) ; 1, 4 + ( 266.17 28.84 -3.38 0.46) ; 1, 5 + ( 268.61 26.44 -3.38 0.46) ; 1, 6 + ( 270.67 25.72 -3.38 0.46) ; 1, 7 + ( 272.68 23.21 -3.38 0.46) ; 1, 8 + ( 273.91 19.92 -3.38 0.46) ; 1, 9 + ( 274.09 15.19 -3.38 0.46) ; 1, 10 + ( 272.78 10.69 -3.38 0.46) ; 1, 11 + ( 268.53 6.72 -3.38 0.46) ; 1, 12 + ( 262.29 5.24 -3.38 0.46) ; 1, 13 + ( 257.02 7.60 -3.38 0.46) ; 1, 14 + ( 253.81 9.24 -3.38 0.46) ; 1, 15 + ( 254.26 9.35 -3.38 0.46) ; 1, 16 + ( 253.47 12.73 -3.38 0.46) ; 1, 17 + ( 254.45 16.55 -3.38 0.46) ; 1, 18 + ( 254.10 20.05 -3.38 0.46) ; 1, 19 + ( 255.03 22.06 -3.38 0.46) ; 1, 20 + ( 255.71 25.20 -3.38 0.46) ; 1, 21 +) ; End of contour + +( (Color Yellow) + (Axon) + ( 265.18 5.33 -6.20 1.83) ; Root + ( 265.63 5.43 -6.20 1.83) ; 1, R + ( 265.28 2.96 -6.20 1.83) ; 2 + ( 266.38 0.23 -5.90 1.83) ; 3 + ( 266.38 0.23 -5.92 1.83) ; 4 + ( 267.17 -3.15 -5.20 1.83) ; 5 + ( 267.53 -6.66 -5.20 1.83) ; 6 + ( 267.42 -10.27 -6.55 1.83) ; 7 + ( 267.33 -13.87 -7.57 1.83) ; 8 + ( 266.21 -17.12 -7.57 1.83) ; 9 + ( 265.80 -21.41 -8.55 1.83) ; 10 + ( 267.09 -22.89 -7.45 1.83) ; 11 + ( 267.09 -22.89 -7.47 1.83) ; 12 + ( 267.04 -24.69 -5.30 1.38) ; 13 + ( 267.44 -26.39 -3.55 1.38) ; 14 + ( 266.63 -28.96 -2.70 1.38) ; 15 + ( 266.27 -31.44 -2.00 1.38) ; 16 + ( 266.04 -34.49 -1.15 1.38) ; 17 + ( 265.75 -39.33 -0.35 1.38) ; 18 + ( 265.65 -42.94 0.22 1.38) ; 19 + ( 265.57 -46.54 0.70 1.38) ; 20 + ( 265.52 -48.34 2.17 1.38) ; 21 + ( 264.70 -50.91 4.07 1.38) ; 22 + ( 264.61 -54.52 5.03 1.38) ; 23 + ( 264.64 -58.69 5.03 1.38) ; 24 + ( 264.87 -61.63 3.70 1.38) ; 25 + ( 265.07 -64.57 2.60 1.38) ; 26 + ( 266.00 -68.53 2.03 1.38) ; 27 + ( 266.48 -72.59 2.10 1.38) ; 28 + ( 266.96 -76.67 2.78 1.38) ; 29 + ( 266.96 -76.67 2.75 1.38) ; 30 + ( 266.56 -80.94 3.92 1.38) ; 31 + ( 268.82 -84.59 3.55 1.38) ; 32 + ( 270.38 -87.20 2.88 1.38) ; 33 + ( 270.38 -87.20 2.85 1.38) ; 34 + ( 272.39 -89.72 2.85 1.38) ; 35 + ( 274.21 -93.48 2.85 1.38) ; 36 + ( 277.51 -97.48 2.85 1.38) ; 37 + ( 278.60 -100.08 3.70 1.38) ; 38 + ( + ( 279.59 -102.36 3.70 0.92) ; 1, R-1 + ( 280.51 -106.33 3.85 0.92) ; 2 + ( 279.98 -110.04 2.97 0.92) ; 3 + ( 281.97 -112.56 2.97 0.92) ; 4 + ( 283.62 -117.54 2.20 0.92) ; 5 + ( 284.23 -122.17 2.20 0.92) ; 6 + ( 285.29 -126.71 1.77 0.92) ; 7 + ( 286.41 -133.50 3.47 0.92) ; 8 + ( 287.68 -146.94 3.94 0.92) ; 9 + ( 288.50 -160.48 5.04 0.92) ; 10 + ( 289.62 -179.32 6.95 0.92) ; 11 + ( 290.40 -188.70 6.95 0.92) ; 12 + ( 289.90 -196.58 6.95 0.92) ; 13 + ( 290.38 -200.65 6.95 0.92) ; 14 + ( 289.96 -204.92 6.95 0.92) ; 15 + ( 291.64 -208.10 6.95 0.92) ; 16 + ( 289.82 -210.33 6.95 0.92) ; 17 + ( 291.01 -215.42 7.80 0.92) ; 18 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 269.05 -27.20 -2.70 1.38) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 267.84 -44.21 0.70 1.38) ; 1 + ) ; End of markers + ( + ( 287.75 -211.76 6.93 0.46) ; 1, R-1-1 + ( 285.51 -212.28 6.93 0.46) ; 2 + ( 283.87 -213.27 6.93 0.46) ; 3 + ( 281.23 -212.08 6.93 0.46) ; 4 + ( 280.60 -213.43 6.93 0.46) ; 5 + ( 277.22 -213.02 6.93 0.46) ; 6 + ( 273.19 -213.96 6.52 0.46) ; 7 + ( 268.01 -213.99 6.05 0.46) ; 8 + ( 264.62 -213.59 6.05 0.46) ; 9 + ( 260.47 -213.97 5.70 0.46) ; 10 + ( 255.34 -212.18 4.60 0.46) ; 11 + ( 252.84 -211.57 3.75 0.46) ; 12 + ( 248.38 -212.62 2.88 0.46) ; 13 + ( 243.65 -212.53 2.13 0.46) ; 14 + ( 238.01 -212.66 2.13 0.46) ; 15 + ( 232.26 -212.22 1.75 0.46) ; 16 + ( 228.42 -211.92 2.03 0.46) ; 17 + ( 228.42 -211.92 2.00 0.46) ; 18 + ( 224.71 -212.19 2.00 0.46) ; 19 + ( 221.96 -210.45 1.30 0.46) ; 20 + ( 219.27 -211.08 0.82 0.46) ; 21 + ( 216.01 -211.24 -0.30 0.46) ; 22 + ( 213.07 -210.74 -1.25 0.46) ; 23 + ( 210.26 -210.81 -2.55 0.46) ; 24 + ( 205.21 -211.39 -3.25 0.46) ; 25 + ( 201.51 -211.66 -3.25 0.46) ; 26 + ( 198.24 -211.83 -4.68 0.46) ; 27 + ( 193.21 -212.42 -5.48 0.46) ; 28 + ( 193.21 -212.42 -5.50 0.46) ; 29 + ( 189.95 -212.58 -5.17 0.46) ; 30 + ( 186.24 -212.85 -5.60 0.46) ; 31 + ( 183.15 -211.78 -3.20 0.46) ; 32 + ( 180.48 -212.41 -1.30 0.46) ; 33 + ( 178.83 -213.40 -0.75 0.46) ; 34 + ( 176.15 -214.02 -0.75 0.46) ; 35 + ( 172.30 -213.73 -0.47 0.46) ; 36 + ( 168.65 -212.20 -0.47 0.46) ; 37 + ( 166.23 -211.84 -0.47 0.46) ; 38 + ( + ( 165.30 -209.99 -0.47 0.46) ; 1, R-1-1-1 + ( 162.55 -208.25 -1.00 0.46) ; 2 + ( 160.23 -206.40 -1.00 0.46) ; 3 + ( 157.46 -204.66 0.45 0.46) ; 4 + ( 154.64 -204.72 0.45 0.46) ; 5 + ( 149.96 -202.84 -0.35 0.46) ; 6 + ( 145.54 -202.08 -0.95 0.46) ; 7 + ( 142.47 -201.02 -0.17 0.46) ; 8 + ( 140.28 -199.73 0.35 0.46) ; 9 + ( 137.65 -198.55 0.35 0.46) ; 10 + ( 134.52 -199.29 0.35 0.46) ; 11 + ( 131.19 -197.08 0.35 0.46) ; 12 + ( 128.24 -196.59 0.35 0.46) ; 13 + ( 126.18 -195.87 0.80 0.46) ; 14 + ( 122.53 -194.34 -0.12 0.46) ; 15 + ( 119.37 -190.89 -0.82 0.46) ; 16 + ( 119.37 -190.89 -0.85 0.46) ; 17 + ( 115.53 -190.60 -1.45 0.46) ; 18 + ( 112.58 -190.11 -3.10 0.46) ; 19 + ( 110.71 -188.15 -4.52 0.46) ; 20 + ( 110.71 -188.15 -4.57 0.46) ; 21 + ( 107.77 -187.64 -5.90 0.46) ; 22 + ( 107.77 -187.64 -5.92 0.46) ; 23 + ( 104.56 -186.00 -7.22 0.46) ; 24 + ( 102.06 -185.40 -9.32 0.46) ; 25 + ( 102.06 -185.40 -9.35 0.46) ; 26 + ( 99.56 -184.79 -8.13 0.46) ; 27 + ( 98.02 -183.48 -8.13 0.46) ; 28 + ( 94.82 -181.85 -8.47 0.46) ; 29 + ( 94.82 -181.85 -8.57 0.46) ; 30 + ( 90.90 -179.19 -8.57 0.46) ; 31 + ( 89.02 -177.23 -9.72 0.46) ; 32 + ( 89.02 -177.23 -9.75 0.46) ; 33 + ( 85.10 -174.57 -11.30 0.46) ; 34 + ( 83.50 -173.75 -12.75 0.46) ; 35 + ( 82.34 -172.83 -14.35 0.46) ; 36 + ( 79.39 -172.33 -15.65 0.46) ; 37 + ( 77.47 -172.17 -17.13 0.46) ; 38 + ( 75.06 -173.94 -17.13 0.46) ; 39 + ( 73.00 -173.22 -18.20 0.46) ; 40 + ( 73.00 -173.22 -18.23 0.46) ; 41 + ( 71.27 -171.83 -19.00 0.46) ; 42 + ( 71.27 -171.83 -19.02 0.46) ; 43 + ( 68.06 -170.20 -19.02 0.46) ; 44 + ( 64.10 -169.34 -20.33 0.46) ; 45 + ( 64.10 -169.34 -20.35 0.46) ; 46 + ( 62.30 -169.76 -21.50 0.46) ; 47 + ( 59.67 -168.58 -21.95 0.46) ; 48 + ( 59.67 -168.58 -21.98 0.46) ; 49 + ( 54.49 -168.61 -23.10 0.46) ; 50 + ( 50.52 -167.74 -24.22 0.46) ; 51 + ( 47.13 -167.35 -25.33 0.46) ; 52 + ( 47.13 -167.35 -25.35 0.46) ; 53 + ( 42.13 -166.12 -26.28 0.46) ; 54 + ( 42.13 -166.12 -26.30 0.46) ; 55 + ( 39.64 -165.52 -24.52 0.46) ; 56 + ( 38.88 -166.29 -22.38 0.46) ; 57 + ( 37.53 -166.61 -21.30 0.46) ; 58 + ( 32.54 -165.39 -18.97 0.46) ; 59 + ( 28.25 -165.20 -17.35 0.46) ; 60 + ( 25.13 -165.93 -16.75 0.46) ; 61 + ( 22.64 -165.32 -16.75 0.46) ; 62 + ( 19.94 -165.96 -15.90 0.46) ; 63 + ( 17.14 -166.02 -15.63 0.46) ; 64 + ( 14.20 -165.50 -14.72 0.46) ; 65 + ( 13.16 -165.15 -13.25 0.46) ; 66 + ( 11.69 -164.90 -12.17 0.46) ; 67 + ( 8.61 -163.83 -10.00 0.46) ; 68 + ( 5.99 -162.65 -8.68 0.46) ; 69 + ( 2.16 -163.10 -10.75 0.46) ; 70 + ( + ( 2.59 -162.25 -10.75 0.46) ; 1, R-1-1-1-1 + ( -0.75 -160.05 -11.22 0.46) ; 2 + ( -2.30 -157.43 -11.22 0.46) ; 3 + ( -5.38 -156.36 -12.07 0.46) ; 4 + ( -5.38 -156.36 -12.10 0.46) ; 5 + ( -6.22 -154.77 -13.85 0.46) ; 6 + ( -6.22 -154.77 -13.90 0.46) ; 7 + ( -8.11 -152.82 -15.85 0.46) ; 8 + ( -8.11 -152.82 -15.90 0.46) ; 9 + ( -10.15 -152.11 -18.25 0.46) ; 10 + ( -10.15 -152.11 -18.27 0.46) ; 11 + ( -11.58 -150.05 -19.60 0.46) ; 12 + ( -11.58 -150.05 -19.63 0.46) ; 13 + ( -14.65 -148.99 -21.15 0.46) ; 14 + ( -14.65 -148.99 -21.18 0.46) ; 15 + ( -15.81 -148.06 -23.63 0.46) ; 16 + ( -15.81 -148.06 -23.65 0.46) ; 17 + ( -17.29 -147.81 -26.60 0.46) ; 18 + ( -17.29 -147.81 -26.63 0.46) ; 19 + ( -19.52 -148.33 -26.63 0.46) ; 20 + ( -22.46 -147.82 -28.85 0.46) ; 21 + ( -22.46 -147.82 -29.67 0.46) ; 22 + ( -25.59 -148.56 -31.17 0.46) ; 23 + ( -25.59 -148.56 -31.20 0.46) ; 24 + ( -29.74 -148.93 -32.67 0.46) ; 25 + ( -32.54 -149.00 -33.67 0.46) ; 26 + ( -32.54 -149.00 -33.70 0.46) ; 27 + ( -36.70 -149.38 -35.63 0.46) ; 28 + ( -41.25 -148.05 -37.45 0.46) ; 29 + ( -41.25 -148.05 -37.47 0.46) ; 30 + ( -45.04 -145.96 -39.70 0.46) ; 31 + ( -48.56 -144.99 -40.70 0.46) ; 32 + ( -48.56 -144.99 -40.72 0.46) ; 33 + ( -52.09 -144.02 -42.55 0.46) ; 34 + ( -52.09 -144.02 -42.57 0.46) ; 35 + ( -55.31 -142.38 -44.23 0.46) ; 36 + ( -55.31 -142.38 -44.25 0.46) ; 37 + ( -58.83 -141.42 -46.03 0.46) ; 38 + ( -60.04 -142.30 -48.92 0.46) ; 39 + ( -62.22 -141.02 -54.32 0.46) ; 40 + ( -62.22 -141.02 -54.38 0.46) ; 41 + ( -64.53 -139.17 -57.42 0.46) ; 42 + ( -64.53 -139.17 -57.45 0.46) ; 43 + ( -69.49 -136.15 -59.02 0.46) ; 44 + ( -69.49 -136.15 -59.05 0.46) ; 45 + ( -70.96 -135.90 -60.75 0.46) ; 46 + ( -72.38 -133.85 -63.38 0.46) ; 47 + ( -77.06 -131.97 -65.38 0.46) ; 48 + ( -76.61 -131.86 -65.38 0.46) ; 49 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 272.87 -214.64 6.52 0.46) ; 1 + ( 269.62 -214.80 6.05 0.46) ; 2 + ( 261.18 -214.99 5.70 0.46) ; 3 + ( 255.74 -213.88 4.60 0.46) ; 4 + ( 233.48 -211.33 1.75 0.46) ; 5 + ( 219.54 -212.22 0.82 0.46) ; 6 + ( 211.42 -211.72 -2.55 0.46) ; 7 + ( 171.11 -214.61 -0.47 0.46) ; 8 + ( 149.78 -204.08 -0.35 0.46) ; 9 + ( 145.36 -203.31 -0.95 0.46) ; 10 + ( 115.35 -191.84 -1.45 0.46) ; 11 + ( 59.04 -169.93 -21.98 0.46) ; 12 + ( 42.98 -167.72 -26.30 0.46) ; 13 + ( 17.85 -167.04 -15.63 0.46) ; 14 + ( 11.38 -165.57 -12.17 0.46) ; 15 + ( -10.60 -152.22 -18.27 0.46) ; 16 + ( -19.34 -147.09 -26.63 0.46) ; 17 + ( -45.81 -146.73 -39.70 0.46) ; 18 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 249.58 -211.73 2.85 0.46) ; 1 + ( 186.55 -212.18 -5.60 0.46) ; 2 + ( 160.23 -206.40 -1.00 0.46) ; 3 + ( 126.50 -195.20 0.80 0.46) ; 4 + ( 102.64 -185.86 -9.35 0.46) ; 5 + ( 104.74 -184.77 -9.35 0.46) ; 6 + ( 99.56 -184.79 -8.13 0.46) ; 7 + ( 81.76 -172.37 -14.35 0.46) ; 8 + ( 71.72 -171.73 -19.02 0.46) ; 9 + ( 54.93 -168.50 -23.10 0.46) ; 10 + ( 37.53 -166.61 -21.30 0.46) ; 11 + ( 32.99 -165.28 -18.97 0.46) ; 12 + ( 6.43 -162.55 -8.68 0.46) ; 13 + ( 3.62 -162.61 -8.95 0.46) ; 14 + ( -31.66 -148.79 -33.67 0.46) ; 15 + ( -77.19 -131.39 -65.38 0.46) ; 16 + ) ; End of markers + Normal + | + ( 1.85 -163.78 -8.52 0.46) ; 1, R-1-1-1-2 + ( -0.07 -163.64 -6.22 0.46) ; 2 + ( -0.07 -163.64 -6.20 0.46) ; 3 + ( -0.82 -164.42 -1.47 0.46) ; 4 + ( -2.30 -164.16 0.60 0.46) ; 5 + ( -4.53 -164.69 2.78 0.46) ; 6 + ( -7.49 -164.19 2.85 0.46) ; 7 + ( -7.22 -165.31 3.97 0.46) ; 8 + ( -7.22 -165.31 3.95 0.46) ; 9 + ( -7.39 -166.55 6.07 0.46) ; 10 + ( -8.60 -167.44 7.90 0.46) ; 11 + ( -8.60 -167.44 7.87 0.46) ; 12 + ( -9.89 -165.94 8.75 0.46) ; 13 + ( -10.52 -167.28 10.00 0.46) ; 14 + ( -11.99 -167.03 12.07 0.46) ; 15 + ( -11.99 -167.03 12.05 0.46) ; 16 + ( -13.34 -167.34 13.80 0.46) ; 17 + ( -14.67 -167.66 14.72 0.46) ; 18 + ( -16.51 -169.89 15.17 0.46) ; 19 + ( -16.43 -172.25 15.17 0.46) ; 20 + ( -19.42 -173.55 15.17 0.46) ; 21 + ( -20.31 -173.76 17.10 0.46) ; 22 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( -13.81 -163.28 12.20 0.46) ; 1 + ( -17.94 -173.80 15.17 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( -0.38 -164.31 -6.20 0.46) ; 1 + ) ; End of markers + Normal + ) ; End of split + | + ( 164.12 -212.93 -1.70 0.46) ; 1, R-1-1-2 + ( 161.76 -212.88 -1.70 0.46) ; 2 + ( 158.82 -212.38 -2.73 0.46) ; 3 + ( 156.00 -212.44 -3.80 0.46) ; 4 + ( 152.48 -211.47 -3.80 0.46) ; 5 + ( 149.36 -212.21 -2.90 0.46) ; 6 + ( 146.66 -212.83 -2.03 0.46) ; 7 + ( 143.41 -213.00 -2.03 0.46) ; 8 + ( 140.15 -213.17 -1.27 0.46) ; 9 + ( 137.03 -213.90 -1.27 0.46) ; 10 + ( 133.77 -214.07 -2.03 0.46) ; 11 + ( 131.22 -215.26 -2.03 0.46) ; 12 + ( 130.77 -215.37 -2.03 0.46) ; 13 + ( 128.85 -215.22 -2.90 0.46) ; 14 + ( 125.15 -215.49 -2.90 0.46) ; 15 + ( 118.95 -215.16 -4.00 0.46) ; 16 + ( 114.21 -215.07 -4.55 0.46) ; 17 + ( 109.17 -215.65 -4.55 0.46) ; 18 + ( 105.78 -215.26 -4.55 0.46) ; 19 + ( 103.41 -215.22 -4.00 0.46) ; 20 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 129.12 -216.36 -2.90 0.46) ; 1 + ( 125.86 -216.53 -2.90 0.46) ; 2 + ( 108.99 -216.89 -4.55 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 152.61 -212.05 -3.80 0.46) ; 1 + ( 143.86 -212.90 -2.03 0.46) ; 2 + ( 137.47 -213.80 -1.27 0.46) ; 3 + ( 118.95 -215.16 -4.00 0.46) ; 4 + ) ; End of markers + ( + ( 101.93 -216.16 -1.75 0.46) ; 1, R-1-1-2-1 + ( 102.06 -216.73 0.40 0.46) ; 2 + ( 101.30 -217.51 2.47 0.46) ; 3 + ( 100.24 -218.96 4.30 0.46) ; 4 + ( 100.24 -218.96 5.90 0.46) ; 5 + ( 97.87 -218.91 8.10 0.46) ; 6 + ( 98.41 -215.20 7.72 0.46) ; 7 + ( 99.54 -211.95 7.02 0.46) ; 8 + ( 100.02 -210.05 6.78 0.46) ; 9 + ( 100.12 -206.44 7.50 0.46) ; 10 + ( 99.92 -203.50 8.40 0.46) ; 11 + ( 99.78 -202.93 9.38 0.46) ; 12 + ( 99.12 -200.10 10.40 0.46) ; 13 + ( 98.32 -196.70 12.17 0.46) ; 14 + ( 99.67 -196.39 13.85 0.46) ; 15 + ( 99.67 -196.39 13.82 0.46) ; 16 + ( 99.00 -193.57 15.57 0.46) ; 17 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 99.05 -207.88 7.50 0.46) ; 1 + ( 97.11 -197.59 12.17 0.46) ; 2 + ( 98.56 -193.67 15.57 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 101.75 -217.40 2.47 0.46) ; 1 + ( 99.12 -200.10 10.40 0.46) ; 2 + ) ; End of markers + Normal + | + ( 97.70 -214.17 -4.63 0.46) ; 1, R-1-1-2-2 + ( 94.71 -215.47 -4.63 0.46) ; 2 + ( 91.89 -215.53 -4.63 0.46) ; 3 + ( 88.64 -215.70 -4.63 0.46) ; 4 + ( 84.48 -216.07 -5.90 0.46) ; 5 + ( 82.69 -216.49 -5.90 0.46) ; 6 + ( 79.17 -215.53 -5.97 0.46) ; 7 + ( 77.38 -215.95 -6.05 0.46) ; 8 + ( 77.38 -215.95 -6.07 0.46) ; 9 + ( 74.31 -214.87 -5.32 0.46) ; 10 + ( 71.63 -215.50 -5.32 0.46) ; 11 + ( 68.81 -215.56 -5.03 0.46) ; 12 + ( 66.58 -216.09 -5.03 0.46) ; 13 + ( 63.68 -213.77 -8.02 0.46) ; 14 + ( 61.76 -213.63 -8.27 0.46) ; 15 + ( 59.17 -216.63 -9.00 0.46) ; 16 + ( 57.25 -216.49 -9.00 0.46) ; 17 + ( 54.13 -217.22 -7.25 0.46) ; 18 + ( 50.60 -216.25 -5.40 0.46) ; 19 + ( 50.60 -216.25 -5.42 0.46) ; 20 + ( 48.55 -215.54 -3.95 0.46) ; 21 + ( 48.55 -215.54 -3.97 0.46) ; 22 + ( 45.04 -214.57 -3.22 0.46) ; 23 + ( 41.63 -214.17 -3.78 0.46) ; 24 + ( 37.80 -213.88 -4.75 0.46) ; 25 + ( 34.27 -212.91 -5.72 0.46) ; 26 + ( 31.77 -212.30 -6.67 0.46) ; 27 + ( 28.83 -211.80 -6.52 0.46) ; 28 + ( 25.26 -212.64 -6.52 0.46) ; 29 + ( 21.60 -211.11 -6.52 0.46) ; 30 + ( 17.89 -211.37 -5.80 0.46) ; 31 + ( 15.08 -211.44 -5.80 0.46) ; 32 + ( 10.99 -210.02 -5.80 0.46) ; 33 + ( 8.47 -209.40 -4.47 0.46) ; 34 + ( 6.30 -208.12 -4.47 0.46) ; 35 + ( 4.37 -207.98 -3.70 0.46) ; 36 + ( 2.28 -209.06 -2.05 0.46) ; 37 + ( -1.56 -208.78 -2.05 0.46) ; 38 + ( -5.35 -206.67 -0.97 0.46) ; 39 + ( -8.88 -205.71 -0.02 0.46) ; 40 + ( -10.53 -206.69 0.93 0.46) ; 41 + ( -13.87 -204.48 1.42 0.46) ; 42 + ( -17.40 -203.53 1.65 0.46) ; 43 + ( -21.55 -203.90 1.65 0.46) ; 44 + ( -27.53 -200.52 0.57 0.46) ; 45 + ( -29.76 -201.05 0.57 0.46) ; 46 + ( -34.05 -200.86 -0.35 0.46) ; 47 + ( -36.41 -200.81 1.00 0.46) ; 48 + ( -39.03 -199.64 2.17 0.46) ; 49 + ( -41.14 -200.73 3.35 0.46) ; 50 + ( -43.90 -198.98 4.17 0.46) ; 51 + ( -47.87 -198.13 4.68 0.46) ; 52 + ( -51.00 -198.86 5.40 0.46) ; 53 + ( -54.97 -198.00 5.92 0.46) ; 54 + ( -57.34 -197.95 6.67 0.46) ; 55 + ( -58.62 -196.47 7.38 0.46) ; 56 + ( -61.27 -195.29 8.42 0.46) ; 57 + ( -63.89 -194.11 9.57 0.46) ; 58 + ( -68.90 -192.89 9.57 0.46) ; 59 + ( -72.28 -192.50 8.60 0.46) ; 60 + ( -75.35 -191.43 7.35 0.46) ; 61 + ( -79.83 -192.48 7.35 0.46) ; 62 + ( -84.24 -191.72 8.25 0.46) ; 63 + ( -83.79 -191.61 8.23 0.46) ; 64 + ( -87.90 -190.19 9.15 0.46) ; 65 + ( -91.42 -189.22 10.15 0.46) ; 66 + ( -94.18 -187.49 11.45 0.46) ; 67 + ( -98.16 -186.62 12.62 0.46) ; 68 + ( -101.99 -186.33 13.92 0.46) ; 69 + ( -108.34 -185.42 14.07 0.46) ; 70 + ( -113.33 -184.20 14.50 0.46) ; 71 + ( -116.98 -182.67 13.95 0.46) ; 72 + ( -119.04 -181.96 14.55 0.46) ; 73 + ( -121.66 -180.78 13.85 0.46) ; 74 + ( -124.17 -180.18 12.57 0.46) ; 75 + ( -127.43 -180.34 13.07 0.46) ; 76 + ( -130.23 -180.41 13.07 0.46) ; 77 + ( -132.42 -179.13 14.70 0.46) ; 78 + ( -137.42 -177.90 15.57 0.46) ; 79 + ( -140.94 -176.94 16.27 0.46) ; 80 + ( -145.18 -174.95 17.47 0.46) ; 81 + ( -147.10 -174.81 18.48 0.46) ; 82 + ( -150.18 -173.73 19.58 0.46) ; 83 + ( -152.94 -171.99 19.23 0.46) ; 84 + ( -157.17 -169.99 19.23 0.46) ; 85 + ( -161.46 -169.81 19.23 0.46) ; 86 + ( -164.22 -168.07 19.73 0.46) ; 87 + ( -166.14 -167.92 19.73 0.46) ; 88 + ( -170.17 -168.86 20.25 0.46) ; 89 + ( -174.13 -168.00 21.00 0.46) ; 90 + ( -177.22 -166.93 22.38 0.46) ; 91 + ( -180.16 -166.43 22.92 0.46) ; 92 + ( -183.31 -164.18 23.33 0.46) ; 93 + ( -186.70 -163.79 23.33 0.46) ; 94 + ( -190.35 -162.26 22.83 0.46) ; 95 + ( -190.81 -162.36 22.83 0.46) ; 96 + ( -194.01 -160.73 24.15 0.46) ; 97 + ( -195.80 -161.14 25.57 0.46) ; 98 + ( -198.74 -160.65 27.20 0.46) ; 99 + ( -201.69 -160.13 28.33 0.46) ; 100 + ( -204.63 -159.63 29.25 0.46) ; 101 + ( -207.76 -160.36 29.52 0.46) ; 102 + ( -211.99 -158.37 28.88 0.46) ; 103 + ( -213.60 -157.56 29.92 0.46) ; 104 + ( -213.60 -157.56 29.90 0.46) ; 105 + ( -216.29 -158.18 31.13 0.46) ; 106 + ( -218.52 -158.70 31.95 0.46) ; 107 + ( -221.59 -157.64 31.95 0.46) ; 108 + ( -224.58 -158.93 32.02 0.46) ; 109 + ( -227.63 -162.03 31.20 0.46) ; 110 + ( -228.31 -165.19 31.20 0.46) ; 111 + ( -228.48 -166.42 32.22 0.46) ; 112 + ( -227.65 -168.02 33.85 0.46) ; 113 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 89.35 -216.73 -4.63 0.46) ; 1 + ( 69.31 -213.66 -5.03 0.46) ; 2 + ( 42.39 -213.39 -3.78 0.46) ; 3 + ( 18.47 -211.84 -5.80 0.46) ; 4 + ( 4.24 -207.41 -3.70 0.46) ; 5 + ( 0.22 -208.36 -2.05 0.46) ; 6 + ( -20.97 -204.37 1.65 0.46) ; 7 + ( -32.89 -201.77 -0.35 0.46) ; 8 + ( -44.09 -200.22 4.17 0.46) ; 9 + ( -50.41 -199.32 5.40 0.46) ; 10 + ( -63.89 -194.11 9.57 0.46) ; 11 + ( -90.35 -187.78 10.15 0.46) ; 12 + ( -113.06 -185.34 14.50 0.46) ; 13 + ( -123.91 -181.31 12.57 0.46) ; 14 + ( -129.53 -181.43 13.07 0.46) ; 15 + ( -144.78 -176.64 17.47 0.46) ; 16 + ( -169.01 -169.78 20.25 0.46) ; 17 + ( -177.08 -167.49 22.38 0.46) ; 18 + ( -189.95 -163.96 22.83 0.46) ; 19 + ( -197.45 -162.13 27.20 0.46) ; 20 + ( -211.73 -159.51 28.88 0.46) ; 21 + ( -217.36 -159.63 31.95 0.46) ; 22 + ( -226.70 -166.00 33.85 0.46) ; 23 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 32.22 -212.20 -6.67 0.46) ; 1 + ( 11.12 -210.57 -5.80 0.46) ; 2 + ( 6.74 -208.02 -4.47 0.46) ; 3 + ( -58.62 -196.47 7.38 0.46) ; 4 + ( -72.41 -191.94 8.60 0.46) ; 5 + ( -77.59 -191.96 7.35 0.46) ; 6 + ( -94.18 -187.49 11.45 0.46) ; 7 + ( -118.59 -181.86 14.55 0.46) ; 8 + ( -152.49 -171.88 19.23 0.46) ; 9 + ( -166.14 -167.92 19.73 0.46) ; 10 + ( -180.16 -166.43 22.92 0.46) ; 11 + ) ; End of markers + High + ) ; End of split + ) ; End of split + | + ( 292.80 -219.06 8.60 0.92) ; 1, R-1-2 + ( 295.55 -226.77 8.60 0.92) ; 2 + ( 296.22 -229.60 7.25 0.92) ; 3 + ( + ( 294.71 -230.43 4.75 0.46) ; 1, R-1-2-1 + ( 294.71 -230.43 4.72 0.46) ; 2 + ( 294.21 -232.34 2.33 0.46) ; 3 + ( 291.98 -232.86 0.82 0.46) ; 4 + ( 291.98 -232.86 0.80 0.46) ; 5 + ( 290.50 -232.61 -0.95 0.46) ; 6 + ( 290.50 -232.61 -0.97 0.46) ; 7 + ( 290.18 -233.27 -3.27 0.46) ; 8 + ( 289.03 -232.36 -5.37 0.46) ; 9 + ( 289.03 -232.36 -5.40 0.46) ; 10 + ( 287.82 -233.23 -6.93 0.46) ; 11 + ( 286.17 -234.22 -9.27 0.46) ; 12 + ( 285.02 -233.29 -11.37 0.46) ; 13 + ( 284.39 -234.64 -13.57 0.46) ; 14 + ( 282.32 -233.93 -16.10 0.46) ; 15 + ( 282.32 -233.93 -16.13 0.46) ; 16 + ( 282.46 -234.49 -16.67 0.46) ; 17 + ( 280.68 -234.91 -19.77 0.46) ; 18 + ( 279.78 -235.12 -22.55 0.46) ; 19 + ( 279.78 -235.12 -22.57 0.46) ; 20 + ( 279.15 -236.47 -23.47 0.46) ; 21 + ( 277.95 -237.35 -25.87 0.46) ; 22 + ( 277.95 -237.35 -25.90 0.46) ; 23 + ( 275.71 -237.87 -26.75 0.46) ; 24 + ( 275.09 -239.21 -29.08 0.46) ; 25 + ( 274.14 -241.22 -31.10 0.46) ; 26 + ( 274.14 -241.22 -31.13 0.46) ; 27 + ( 272.50 -242.21 -33.25 0.46) ; 28 + ( 269.38 -242.94 -34.25 0.46) ; 29 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 286.04 -233.65 -11.37 0.46) ; 1 + ( 282.02 -234.60 -16.67 0.46) ; 2 + ( 279.34 -235.22 -23.47 0.46) ; 3 + ( 275.71 -237.87 -26.75 0.46) ; 4 + ) ; End of markers + ( + ( 271.07 -243.13 -36.58 0.46) ; 1, R-1-2-1-1 + ( 271.07 -243.13 -36.63 0.46) ; 2 + ( 271.65 -243.59 -38.83 0.46) ; 3 + ( 271.65 -243.59 -38.85 0.46) ; 4 + ( 270.00 -244.57 -40.88 0.46) ; 5 + ( 270.00 -244.57 -40.90 0.46) ; 6 + ( 269.29 -243.55 -43.45 0.46) ; 7 + ( 269.29 -243.55 -43.47 0.46) ; 8 + ( 267.77 -245.09 -44.90 0.46) ; 9 + ( 267.14 -246.44 -46.70 0.46) ; 10 + ( 266.51 -247.79 -48.88 0.46) ; 11 + ( 266.51 -247.79 -48.90 0.46) ; 12 + ( 265.88 -249.12 -51.35 0.46) ; 13 + ( 265.88 -249.12 -51.38 0.46) ; 14 + ( 265.38 -251.03 -53.53 0.46) ; 15 + ( 265.38 -251.03 -53.55 0.46) ; 16 + ( 264.05 -251.33 -56.67 0.46) ; 17 + ( 264.05 -251.33 -56.70 0.46) ; 18 + ( 266.28 -250.82 -60.03 0.46) ; 19 + ( 267.62 -250.50 -63.33 0.46) ; 20 + ( 267.62 -250.50 -63.35 0.46) ; 21 + ( 268.78 -251.43 -65.75 0.46) ; 22 + ( 268.78 -251.43 -65.80 0.46) ; 23 + ( 269.36 -251.89 -68.35 0.46) ; 24 + ( 270.52 -252.81 -70.45 0.46) ; 25 + ( 270.52 -252.81 -70.50 0.46) ; 26 + ( 270.34 -254.05 -72.95 0.46) ; 27 + ( 271.76 -256.10 -87.90 0.46) ; 28 + ( 271.76 -256.10 -87.95 0.46) ; 29 + ( 272.03 -257.24 -96.57 0.46) ; 30 + ( 272.52 -255.33 -102.65 0.46) ; 31 + ( 272.97 -255.23 -106.43 0.46) ; 32 + ( 271.63 -255.54 -112.20 0.46) ; 33 + ( 271.63 -255.54 -116.75 0.46) ; 34 + ( 272.79 -256.46 -120.82 0.46) ; 35 + ( 271.89 -256.67 -125.55 0.46) ; 36 + ( 270.65 -259.36 -128.70 0.46) ; 37 + ( 270.65 -259.36 -128.72 0.46) ; 38 + ( 273.01 -259.39 -133.75 0.46) ; 39 + ( 274.47 -259.65 -136.17 0.46) ; 40 + ( 274.47 -259.65 -136.25 0.46) ; 41 + ( 275.18 -260.68 -139.90 0.46) ; 42 + ( 275.18 -260.68 -139.95 0.46) ; 43 + ( 274.87 -261.34 -143.65 0.46) ; 44 + ( 275.94 -259.90 -147.10 0.46) ; 45 + ( 275.94 -259.90 -147.20 0.46) ; 46 + ( 276.84 -259.69 -149.32 0.46) ; 47 + ( 277.55 -260.72 -152.00 0.46) ; 48 + ( 278.57 -261.08 -154.75 0.46) ; 49 + ( 278.57 -261.08 -154.82 0.46) ; 50 + ( 279.92 -260.77 -157.73 0.46) ; 51 + ( 279.92 -260.77 -157.95 0.46) ; 52 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 268.38 -249.72 -65.82 0.46) ; 1 + ( 272.71 -254.10 -106.43 0.46) ; 2 + ( 271.53 -259.15 -128.72 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 276.71 -259.13 -149.32 0.46) ; 1 + ( 275.02 -255.94 -151.15 0.46) ; 2 + ) ; End of markers + ( + ( 282.11 -262.04 -160.50 0.46) ; 1, R-1-2-1-1-1 + ( 282.11 -262.04 -160.52 0.46) ; 2 + ( 282.81 -263.07 -163.70 0.46) ; 3 + ( 282.81 -263.07 -163.75 0.46) ; 4 + ( 284.20 -260.95 -166.10 0.46) ; 5 + ( 288.10 -259.44 -167.68 0.46) ; 6 + ( 289.92 -257.22 -169.40 0.46) ; 7 + ( 292.28 -257.26 -171.65 0.46) ; 8 + ( 292.28 -257.26 -171.70 0.46) ; 9 + ( 292.60 -256.59 -174.58 0.46) ; 10 + ( 293.86 -253.91 -176.50 0.46) ; 11 + ( 293.86 -253.91 -176.52 0.46) ; 12 + ( 295.96 -252.83 -178.52 0.46) ; 13 + ( 295.51 -252.93 -178.55 0.46) ; 14 + ( 297.30 -252.51 -181.43 0.46) ; 15 + ( 299.84 -251.31 -184.60 0.46) ; 16 + ( 301.05 -250.43 -187.50 0.46) ; 17 + ( 301.05 -250.43 -187.57 0.46) ; 18 + ( 300.08 -248.28 -189.70 0.46) ; 19 + ( 300.08 -248.28 -189.80 0.46) ; 20 + ( 300.26 -247.03 -192.55 0.46) ; 21 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 297.17 -251.93 -181.43 0.46) ; 1 + ) ; End of markers + Low + | + ( 281.03 -263.49 -160.15 0.46) ; 1, R-1-2-1-1-2 + ( 283.84 -263.42 -163.48 0.46) ; 2 + ( 283.84 -263.42 -163.50 0.46) ; 3 + ( 285.63 -263.00 -167.32 0.46) ; 4 + ( 285.98 -266.50 -169.50 0.46) ; 5 + ( 285.98 -266.50 -169.52 0.46) ; 6 + ( 287.57 -267.34 -172.45 0.46) ; 7 + ( 288.15 -267.79 -176.02 0.46) ; 8 + ( 288.15 -267.79 -176.05 0.46) ; 9 + ( 289.63 -268.04 -179.73 0.46) ; 10 + ( 292.00 -268.08 -182.45 0.46) ; 11 + ( 292.00 -268.08 -182.50 0.46) ; 12 + ( 293.16 -269.00 -186.22 0.46) ; 13 + ( 293.16 -269.00 -186.25 0.46) ; 14 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 292.84 -269.67 -183.50 0.46) ; 1 + ) ; End of markers + Low + ) ; End of split + | + ( 266.68 -243.58 -33.27 0.46) ; 1, R-1-2-1-2 + ( 266.68 -243.58 -33.35 0.46) ; 2 + ( 261.01 -245.50 -32.05 0.46) ; 3 + ( 259.10 -245.35 -30.45 0.46) ; 4 + ( 256.99 -246.44 -30.45 0.46) ; 5 + ( 254.64 -246.39 -28.85 0.46) ; 6 + ( 254.64 -246.39 -28.88 0.46) ; 7 + ( 254.00 -247.73 -29.88 0.46) ; 8 + ( 251.90 -248.83 -28.42 0.46) ; 9 + ( 248.91 -250.12 -26.52 0.46) ; 10 + ( 245.90 -251.42 -26.52 0.46) ; 11 + ( 244.39 -252.97 -24.80 0.46) ; 12 + ( 244.39 -252.97 -24.82 0.46) ; 13 + ( 241.85 -254.17 -23.63 0.46) ; 14 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 254.87 -243.35 -27.45 0.46) ; 1 + ( 255.98 -240.10 -26.52 0.46) ; 2 + ( 252.48 -249.28 -28.42 0.46) ; 3 + ( 246.93 -251.77 -26.50 0.46) ; 4 + ( 242.12 -255.30 -23.63 0.46) ; 5 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 261.46 -245.39 -32.05 0.46) ; 1 + ) ; End of markers + ( + ( 240.87 -254.99 -27.35 0.46) ; 1, R-1-2-1-2-1 + ( 240.87 -254.99 -27.38 0.46) ; 2 + ( 238.73 -257.88 -28.95 0.46) ; 3 + ( 237.78 -259.89 -30.27 0.46) ; 4 + ( 236.39 -262.00 -31.45 0.46) ; 5 + ( 236.39 -262.00 -31.48 0.46) ; 6 + ( 235.31 -263.46 -32.83 0.46) ; 7 + ( 235.31 -263.46 -32.85 0.46) ; 8 + ( 233.48 -265.67 -34.28 0.46) ; 9 + ( 233.12 -268.15 -35.00 0.46) ; 10 + ( 231.86 -270.82 -35.00 0.46) ; 11 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 232.77 -264.65 -34.28 0.46) ; 1 + ( 230.83 -270.47 -35.00 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 238.28 -257.98 -28.98 0.46) ; 1 + ) ; End of markers + Normal + | + ( 239.88 -255.82 -23.50 0.46) ; 1, R-1-2-1-2-2 + ( 239.88 -255.82 -23.52 0.46) ; 2 + ( 237.91 -257.48 -23.52 0.46) ; 3 + ( 235.23 -258.11 -23.52 0.46) ; 4 + ( 232.68 -259.30 -23.52 0.46) ; 5 + ( 231.29 -261.42 -23.52 0.46) ; 6 + ( 227.85 -262.82 -22.25 0.46) ; 7 + ( 225.12 -265.25 -23.23 0.46) ; 8 + ( 223.47 -266.23 -21.18 0.46) ; 9 + ( 219.81 -264.71 -19.97 0.46) ; 10 + ( 219.81 -264.71 -20.03 0.46) ; 11 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 234.65 -257.64 -23.52 0.46) ; 1 + ( 225.12 -265.25 -23.23 0.46) ; 2 + ) ; End of markers + ( + ( 217.19 -263.54 -20.03 0.46) ; 1, R-1-2-1-2-2-1 + ( 214.37 -263.59 -18.92 0.46) ; 2 + ( 214.37 -263.59 -18.95 0.46) ; 3 + ( 212.18 -262.32 -17.63 0.46) ; 4 + ( 209.38 -262.38 -16.40 0.46) ; 5 + ( 207.90 -262.13 -14.43 0.46) ; 6 + ( 205.98 -261.98 -13.02 0.46) ; 7 + ( 203.47 -261.36 -12.30 0.46) ; 8 + ( 200.20 -261.52 -11.75 0.46) ; 9 + ( 197.88 -259.69 -11.75 0.46) ; 10 + ( 195.08 -259.75 -11.50 0.46) ; 11 + ( 192.63 -257.33 -10.95 0.46) ; 12 + ( 189.11 -256.37 -10.12 0.46) ; 13 + ( 185.72 -255.96 -8.88 0.46) ; 14 + ( 182.19 -255.01 -8.07 0.46) ; 15 + ( 179.82 -254.97 -7.22 0.46) ; 16 + ( 178.21 -254.14 -6.00 0.46) ; 17 + ( 178.08 -253.58 -6.00 0.46) ; 18 + ( 177.06 -253.22 -4.60 0.46) ; 19 + ( 177.06 -253.22 -4.63 0.46) ; 20 + ( 176.35 -252.19 -3.05 0.46) ; 21 + ( 176.35 -252.19 -3.08 0.46) ; 22 + ( 171.98 -249.63 -1.88 0.46) ; 23 + ( 169.43 -250.82 -1.32 0.46) ; 24 + ( 167.86 -254.18 -1.13 0.46) ; 25 + ( 166.61 -256.86 -1.00 0.46) ; 26 + ( 165.66 -258.88 -1.00 0.46) ; 27 + ( 164.54 -262.13 -1.32 0.46) ; 28 + ( 162.27 -264.45 0.12 0.46) ; 29 + ( 160.79 -264.20 0.95 0.46) ; 30 + ( 158.37 -265.95 1.55 0.46) ; 31 + ( 155.52 -267.81 1.50 0.46) ; 32 + ( 151.76 -269.90 1.50 0.46) ; 33 + ( 148.06 -270.17 2.20 0.46) ; 34 + ( 145.82 -270.70 2.20 0.46) ; 35 + ( 144.43 -272.81 2.20 0.46) ; 36 + ( 142.64 -273.23 2.67 0.46) ; 37 + ( 137.68 -276.18 4.20 0.46) ; 38 + ( 135.72 -277.84 4.68 0.46) ; 39 + ( 133.48 -278.37 5.07 0.46) ; 40 + ( 131.33 -281.25 5.55 0.46) ; 41 + ( 129.81 -282.80 6.20 0.46) ; 42 + ( 128.34 -282.55 6.20 0.46) ; 43 + ( 126.38 -284.21 6.47 0.46) ; 44 + ( 122.35 -285.15 6.47 0.46) ; 45 + ( 119.93 -286.91 6.50 0.46) ; 46 + ( 118.60 -287.23 4.63 0.46) ; 47 + ( 118.60 -287.23 4.60 0.46) ; 48 + ( 116.94 -288.21 3.22 0.46) ; 49 + ( 112.30 -290.49 2.73 0.46) ; 50 + ( 109.61 -291.12 2.73 0.46) ; 51 + ( 109.16 -291.23 2.73 0.46) ; 52 + ( 105.08 -293.98 1.90 0.46) ; 53 + ( 103.25 -296.20 1.02 0.46) ; 54 + ( 101.99 -298.88 0.77 0.46) ; 55 + ( 98.25 -300.95 0.35 0.46) ; 56 + ( 97.30 -302.96 0.35 0.46) ; 57 + ( 95.33 -304.62 0.35 0.46) ; 58 + ( 93.81 -306.17 -0.32 0.46) ; 59 + ( 92.47 -306.49 -0.32 0.46) ; 60 + ( 90.64 -308.71 -0.32 0.46) ; 61 + ( 87.32 -310.67 -0.32 0.46) ; 62 + ( 85.68 -311.66 -0.32 0.46) ; 63 + ( 83.26 -313.42 -0.32 0.46) ; 64 + ( 80.13 -314.16 -0.37 0.46) ; 65 + ( 77.45 -314.78 -0.93 0.46) ; 66 + ( 74.91 -315.98 -0.93 0.46) ; 67 + ( 73.38 -317.53 -2.63 0.46) ; 68 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 192.45 -258.56 -10.95 0.46) ; 1 + ( 159.39 -266.31 1.55 0.46) ; 2 + ( 152.77 -270.26 1.50 0.46) ; 3 + ( 118.78 -285.99 4.60 0.46) ; 4 + ( 112.57 -291.63 2.73 0.46) ; 5 + ( 100.70 -297.38 0.77 0.46) ; 6 + ( 94.93 -302.92 0.35 0.46) ; 7 + ( 81.29 -315.07 -0.37 0.46) ; 8 + ( 75.18 -317.11 -0.93 0.46) ; 9 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 206.56 -262.44 -13.02 0.46) ; 1 + ( 176.48 -252.76 -3.08 0.46) ; 2 + ( 174.74 -251.38 -1.88 0.46) ; 3 + ( 167.41 -254.28 -1.13 0.46) ; 4 + ( 142.20 -273.33 2.67 0.46) ; 5 + ( 98.25 -300.95 0.35 0.46) ; 6 + ) ; End of markers + Normal + | + ( 216.76 -267.80 -19.07 0.46) ; 1, R-1-2-1-2-2-2 + ( 216.15 -269.14 -17.90 0.46) ; 2 + ( 216.15 -269.14 -17.92 0.46) ; 3 + ( 215.78 -271.62 -17.08 0.46) ; 4 + ( 215.65 -271.05 -17.08 0.46) ; 5 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 214.75 -271.26 -17.08 0.46) ; 1 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 296.30 -231.98 7.38 0.92) ; 1, R-1-2-2 + ( + ( 294.90 -233.85 5.40 0.46) ; 1, R-1-2-2-1 + ( 294.28 -235.20 4.07 0.46) ; 2 + ( 294.28 -235.20 4.05 0.46) ; 3 + ( 294.41 -235.77 1.05 0.46) ; 4 + ( 294.41 -235.77 1.02 0.46) ; 5 + ( 293.07 -236.08 -0.95 0.46) ; 6 + ( 293.07 -236.08 -0.97 0.46) ; 7 + ( 293.33 -237.21 -4.05 0.46) ; 8 + ( 293.33 -237.21 -4.07 0.46) ; 9 + ( 291.99 -237.53 -6.70 0.46) ; 10 + ( 291.99 -237.53 -6.73 0.46) ; 11 + ( 290.65 -237.84 -9.38 0.46) ; 12 + ( 290.91 -238.97 -11.50 0.46) ; 13 + ( 290.15 -239.75 -13.15 0.46) ; 14 + ( 289.09 -241.20 -15.15 0.46) ; 15 + ( 288.77 -241.87 -17.25 0.46) ; 16 + ( 288.19 -241.41 -20.00 0.46) ; 17 + ( 288.46 -242.53 -22.60 0.46) ; 18 + ( 287.69 -243.31 -25.60 0.46) ; 19 + ( 288.27 -243.78 -27.65 0.46) ; 20 + ( 288.27 -243.78 -27.67 0.46) ; 21 + ( 287.25 -243.42 -29.92 0.46) ; 22 + ( 285.99 -246.10 -32.60 0.46) ; 23 + ( 285.67 -246.77 -35.22 0.46) ; 24 + ( 285.23 -246.88 -38.20 0.46) ; 25 + ( 285.23 -246.88 -38.22 0.46) ; 26 + ( 284.60 -248.22 -41.22 0.46) ; 27 + ( 283.84 -248.99 -43.20 0.46) ; 28 + ( 283.84 -248.99 -43.22 0.46) ; 29 + ( 283.98 -249.55 -45.70 0.46) ; 30 + ( 283.80 -250.79 -47.90 0.46) ; 31 + ( 283.35 -250.90 -51.08 0.46) ; 32 + ( 284.06 -251.93 -54.52 0.46) ; 33 + ( 284.06 -251.93 -54.58 0.46) ; 34 + ( 282.01 -251.21 -58.13 0.46) ; 35 + ( 282.22 -254.15 -60.95 0.46) ; 36 + ( 280.83 -256.27 -64.57 0.46) ; 37 + ( 280.83 -256.27 -64.60 0.46) ; 38 + ( 279.94 -256.48 -67.13 0.46) ; 39 + ( 279.94 -256.48 -67.15 0.46) ; 40 + ( 279.89 -258.27 -69.92 0.46) ; 41 + ( 279.89 -258.27 -69.95 0.46) ; 42 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 285.14 -244.50 -32.60 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 290.47 -239.07 -11.50 0.46) ; 1 + ( 288.01 -242.64 -22.60 0.46) ; 2 + ( 283.21 -250.33 -47.90 0.46) ; 3 + ( 280.70 -255.70 -64.60 0.46) ; 4 + ) ; End of markers + ( + ( 276.48 -257.99 -71.35 0.46) ; 1, R-1-2-2-1-1 + ( 273.81 -258.61 -72.03 0.46) ; 2 + ( 271.44 -258.57 -74.90 0.46) ; 3 + ( 269.20 -259.08 -76.97 0.46) ; 4 + ( 265.63 -259.93 -79.60 0.46) ; 5 + ( 263.26 -259.88 -79.65 0.46) ; 6 + ( 260.59 -260.51 -81.00 0.46) ; 7 + ( 257.65 -260.01 -83.20 0.46) ; 8 + ( 254.96 -260.64 -85.28 0.46) ; 9 + ( 253.89 -262.08 -88.25 0.46) ; 10 + ( 252.73 -261.16 -91.58 0.46) ; 11 + ( 250.99 -259.78 -93.65 0.46) ; 12 + ( 250.99 -259.78 -93.75 0.46) ; 13 + ( 248.36 -258.60 -96.47 0.46) ; 14 + ( 248.36 -258.60 -96.50 0.46) ; 15 + ( 246.00 -258.56 -99.20 0.46) ; 16 + ( 246.00 -258.56 -99.25 0.46) ; 17 + ( 243.94 -257.84 -102.02 0.46) ; 18 + ( 243.94 -257.84 -102.07 0.46) ; 19 + ( 241.58 -257.81 -104.85 0.46) ; 20 + ( 238.05 -256.83 -107.60 0.46) ; 21 + ( 233.37 -254.94 -108.57 0.46) ; 22 + ( 233.37 -254.94 -108.60 0.46) ; 23 + ( 231.32 -254.23 -110.35 0.46) ; 24 + ( 231.32 -254.23 -110.37 0.46) ; 25 + ( 230.12 -255.11 -113.75 0.46) ; 26 + ( 226.46 -253.58 -115.90 0.46) ; 27 + ( 222.36 -252.15 -117.85 0.46) ; 28 + ( 218.02 -253.76 -119.25 0.46) ; 29 + ( 215.08 -253.27 -121.75 0.46) ; 30 + ( 212.44 -252.10 -125.80 0.46) ; 31 + ( 210.47 -253.75 -126.60 0.46) ; 32 + ( 210.47 -253.75 -126.62 0.46) ; 33 + ( 208.11 -253.71 -127.90 0.46) ; 34 + ( 205.69 -255.47 -128.75 0.46) ; 35 + ( 205.69 -255.47 -128.77 0.46) ; 36 + ( 204.54 -254.54 -130.77 0.46) ; 37 + ( 204.54 -254.54 -130.80 0.46) ; 38 + ( 201.36 -257.08 -131.48 0.46) ; 39 + ( 198.41 -256.57 -132.18 0.46) ; 40 + ( 198.41 -256.57 -132.20 0.46) ; 41 + ( 195.28 -257.31 -134.05 0.46) ; 42 + ( 195.28 -257.31 -134.13 0.46) ; 43 + ( 193.06 -257.82 -135.65 0.46) ; 44 + ( 191.83 -259.91 -137.27 0.46) ; 45 + ( 191.83 -259.91 -137.30 0.46) ; 46 + ( 189.29 -261.11 -139.32 0.46) ; 47 + ( 186.74 -262.31 -141.07 0.46) ; 48 + ( 186.74 -262.31 -141.10 0.46) ; 49 + ( 184.52 -262.83 -143.32 0.46) ; 50 + ( 184.33 -264.06 -146.30 0.46) ; 51 + ( 183.25 -265.51 -149.20 0.46) ; 52 + ( 181.28 -267.16 -150.55 0.46) ; 53 + ( 178.88 -268.92 -152.85 0.46) ; 54 + ( 178.88 -268.92 -152.88 0.46) ; 55 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 273.81 -258.61 -72.03 0.46) ; 1 + ( 241.58 -257.81 -104.85 0.46) ; 2 + ( 213.55 -254.81 -125.82 0.46) ; 3 + ( 212.44 -252.10 -125.82 0.46) ; 4 + ( 206.46 -254.69 -128.50 0.46) ; 5 + ( 192.61 -257.93 -135.65 0.46) ; 6 + ( 181.15 -266.60 -150.55 0.46) ; 7 + ) ; End of markers + Normal + | + ( 278.82 -259.72 -72.38 0.46) ; 1, R-1-2-2-1-2 + ( 279.09 -260.86 -74.82 0.46) ; 2 + ( 279.04 -262.66 -76.45 0.46) ; 3 + ( 279.17 -263.22 -82.63 0.46) ; 4 + ( 278.85 -263.89 -85.97 0.46) ; 5 + ( 278.85 -263.89 -86.00 0.46) ; 6 + ( 279.12 -265.03 -89.72 0.46) ; 7 + ( 279.12 -265.03 -89.75 0.46) ; 8 + ( 277.20 -264.87 -93.05 0.46) ; 9 + ( 276.45 -265.66 -96.25 0.46) ; 10 + ( 276.45 -265.66 -96.27 0.46) ; 11 + ( 275.67 -266.43 -100.68 0.46) ; 12 + ( 273.13 -267.63 -103.15 0.46) ; 13 + ( 272.95 -268.86 -107.22 0.46) ; 14 + ( 273.35 -270.56 -110.47 0.46) ; 15 + ( 273.35 -270.56 -110.50 0.46) ; 16 + ( 272.32 -270.20 -113.57 0.46) ; 17 + ( 272.32 -270.20 -113.60 0.46) ; 18 + ( 271.56 -270.99 -116.15 0.46) ; 19 + ( 271.56 -270.99 -116.17 0.46) ; 20 + ( 271.38 -272.22 -119.27 0.46) ; 21 + ( 271.38 -272.22 -119.30 0.46) ; 22 + ( 270.63 -272.99 -121.77 0.46) ; 23 + ( 270.63 -272.99 -121.80 0.46) ; 24 + ( 271.60 -275.15 -124.20 0.46) ; 25 + ( 271.60 -275.15 -124.30 0.46) ; 26 + ( 272.75 -276.08 -128.15 0.46) ; 27 + ( 273.02 -277.20 -131.10 0.46) ; 28 + ( 272.97 -279.01 -133.60 0.46) ; 29 + ( 273.68 -280.03 -135.98 0.46) ; 30 + ( 271.82 -278.08 -138.67 0.46) ; 31 + ( 271.90 -280.45 -141.35 0.46) ; 32 + ( 271.90 -280.45 -141.38 0.46) ; 33 + ( 273.06 -281.37 -143.63 0.46) ; 34 + ( 273.06 -281.37 -143.65 0.46) ; 35 + ( 275.16 -280.29 -146.17 0.46) ; 36 + ( 275.16 -280.29 -146.22 0.46) ; 37 + ( 276.18 -280.64 -149.00 0.46) ; 38 + ( 276.13 -282.44 -151.32 0.46) ; 39 + ( 276.45 -281.77 -153.63 0.46) ; 40 + ( 276.40 -283.58 -157.23 0.46) ; 41 + ( 276.53 -284.15 -160.57 0.46) ; 42 + ( 276.53 -284.15 -160.63 0.46) ; 43 + ( 277.11 -284.60 -163.15 0.46) ; 44 + ( 275.72 -286.72 -164.50 0.46) ; 45 + ( 276.70 -288.88 -167.25 0.46) ; 46 + ( 277.91 -288.00 -169.07 0.46) ; 47 + ( 278.62 -289.03 -171.92 0.46) ; 48 + ( 278.62 -289.03 -172.55 0.46) ; 49 + ( 278.17 -289.13 -174.85 0.46) ; 50 + ( 279.02 -290.73 -177.62 0.46) ; 51 + ( 279.02 -290.73 -177.68 0.46) ; 52 + ( 279.02 -290.73 -181.15 0.46) ; 53 + ( 279.42 -292.43 -185.30 0.46) ; 54 + ( 280.70 -293.91 -187.85 0.46) ; 55 + ( 280.97 -295.05 -190.42 0.46) ; 56 + ( 280.97 -295.05 -190.45 0.46) ; 57 + ( 282.26 -296.53 -193.60 0.46) ; 58 + ( 283.37 -299.27 -198.27 0.46) ; 59 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 278.14 -262.86 -76.45 0.46) ; 1 + ( 271.29 -269.84 -110.55 0.46) ; 2 + ( 271.55 -276.95 -131.10 0.46) ; 3 + ( 274.43 -285.23 -164.50 0.46) ; 4 + ( 277.54 -290.47 -181.15 0.46) ; 5 + ( 279.10 -293.09 -185.27 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 273.68 -280.03 -135.98 0.46) ; 1 + ( 275.74 -280.75 -149.00 0.46) ; 2 + ) ; End of markers + Low + ) ; End of split + | + ( 297.10 -235.38 8.38 0.92) ; 1, R-1-2-2-2 + ( 298.21 -238.09 9.48 0.92) ; 2 + ( 298.87 -240.93 10.70 0.92) ; 3 + ( 300.30 -242.97 11.63 0.92) ; 4 + ( 300.30 -242.97 11.60 0.92) ; 5 + ( 301.14 -244.57 12.67 0.92) ; 6 + ( + ( 303.39 -244.87 14.15 0.46) ; 1, R-1-2-2-2-1 + ( 306.78 -245.28 15.38 0.46) ; 2 + ( 309.59 -245.22 15.38 0.46) ; 3 + ( 313.30 -244.94 15.38 0.46) ; 4 + ( 317.14 -245.24 15.38 0.46) ; 5 + ( 321.87 -245.31 15.30 0.46) ; 6 + ( 324.55 -244.69 14.57 0.46) ; 7 + ( 328.26 -244.43 14.57 0.46) ; 8 + ( 331.38 -243.69 14.57 0.46) ; 9 + ( 334.19 -243.63 15.65 0.46) ; 10 + ( 338.35 -243.25 16.70 0.46) ; 11 + ( 342.49 -242.87 16.70 0.46) ; 12 + ( 345.76 -242.70 16.70 0.46) ; 13 + ( 350.35 -242.23 17.35 0.46) ; 14 + ( 352.58 -241.70 18.13 0.46) ; 15 + ( 356.87 -241.90 18.77 0.46) ; 16 + ( 360.57 -241.63 19.40 0.46) ; 17 + ( 364.28 -241.35 19.35 0.46) ; 18 + ( 367.09 -241.29 20.47 0.46) ; 19 + ( 369.46 -241.33 21.38 0.46) ; 20 + ( 371.88 -239.58 22.27 0.46) ; 21 + ( 375.40 -240.53 22.27 0.46) ; 22 + ( 380.14 -240.63 22.32 0.46) ; 23 + ( 383.21 -241.69 21.18 0.46) ; 24 + ( 387.05 -241.98 21.18 0.46) ; 25 + ( 388.96 -242.13 21.18 0.46) ; 26 + ( 390.31 -241.82 21.18 0.46) ; 27 + ( 394.48 -241.47 21.18 0.46) ; 28 + ( + ( 395.42 -239.46 18.63 0.46) ; 1, R-1-2-2-2-1-1 + ( 396.90 -239.71 17.47 0.46) ; 2 + ( 396.45 -239.81 17.42 0.46) ; 3 + ( 398.68 -239.29 16.42 0.46) ; 4 + ( 400.91 -238.77 15.52 0.46) ; 5 + ( 402.84 -238.91 14.95 0.46) ; 6 + ( 404.93 -237.82 14.13 0.46) ; 7 + ( 406.98 -238.54 13.02 0.46) ; 8 + ( 406.98 -238.54 13.00 0.46) ; 9 + ( 408.28 -240.03 12.98 0.46) ; 10 + ( 410.78 -240.63 12.42 0.46) ; 11 + ( 410.78 -240.63 12.40 0.46) ; 12 + ( 413.14 -240.67 12.38 0.46) ; 13 + ( 416.39 -240.51 12.60 0.46) ; 14 + ( 419.52 -239.78 12.60 0.46) ; 15 + ( 422.60 -240.84 11.68 0.46) ; 16 + ( 425.69 -241.92 10.35 0.46) ; 17 + ( 425.69 -241.92 10.33 0.46) ; 18 + ( 429.07 -242.32 9.20 0.46) ; 19 + ( 429.07 -242.32 9.17 0.46) ; 20 + ( 432.33 -242.15 8.55 0.46) ; 21 + ( 432.33 -242.15 8.52 0.46) ; 22 + ( 434.53 -243.43 7.02 0.46) ; 23 + ( 439.87 -242.18 6.73 0.46) ; 24 + ( 442.56 -241.55 5.80 0.46) ; 25 + ( 445.50 -242.05 5.30 0.46) ; 26 + ( 445.50 -242.05 5.27 0.46) ; 27 + ( 447.10 -242.86 4.88 0.46) ; 28 + ( 447.10 -242.86 4.82 0.46) ; 29 + ( 449.78 -242.24 3.65 0.46) ; 30 + ( 449.64 -241.67 3.65 0.46) ; 31 + ( 452.59 -242.18 3.65 0.46) ; 32 + ( 455.15 -240.98 3.65 0.46) ; 33 + ( 459.44 -241.18 2.70 0.46) ; 34 + ( 459.44 -241.18 2.67 0.46) ; 35 + ( 463.27 -241.47 1.88 0.46) ; 36 + ( 466.08 -241.41 1.00 0.46) ; 37 + ( 469.61 -242.37 -0.90 0.46) ; 38 + ( 471.39 -241.95 -2.05 0.46) ; 39 + ( 473.71 -243.80 -3.10 0.46) ; 40 + ( 473.71 -243.80 -3.13 0.46) ; 41 + ( 477.42 -243.52 -2.83 0.46) ; 42 + ( 477.42 -243.52 -3.17 0.46) ; 43 + ( 480.49 -244.61 -4.13 0.46) ; 44 + ( 483.30 -244.54 -5.50 0.46) ; 45 + ( 487.14 -244.83 -6.65 0.46) ; 46 + ( 490.97 -245.12 -8.05 0.46) ; 47 + ( 493.35 -245.16 -9.25 0.46) ; 48 + ( 493.35 -245.16 -9.27 0.46) ; 49 + ( 496.29 -245.68 -10.80 0.46) ; 50 + ( 500.39 -247.10 -11.80 0.46) ; 51 + ( 503.87 -249.87 -13.05 0.46) ; 52 + ( 503.87 -249.87 -13.07 0.46) ; 53 + ( 508.42 -251.19 -15.05 0.46) ; 54 + ( 511.37 -251.70 -15.40 0.46) ; 55 + ( 514.57 -253.33 -15.43 0.46) ; 56 + ( 517.39 -253.27 -16.17 0.46) ; 57 + ( 517.39 -253.27 -16.20 0.46) ; 58 + ( 521.80 -254.02 -16.70 0.46) ; 59 + ( 524.75 -254.53 -16.70 0.46) ; 60 + ( 529.17 -255.28 -16.73 0.46) ; 61 + ( 531.50 -255.92 -15.52 0.46) ; 62 + ( 535.46 -256.78 -14.75 0.46) ; 63 + ( 537.65 -258.06 -14.75 0.46) ; 64 + ( 542.83 -258.04 -14.75 0.46) ; 65 + ( 545.91 -259.11 -14.05 0.46) ; 66 + ( 548.14 -258.59 -13.52 0.46) ; 67 + ( 551.52 -258.99 -13.52 0.46) ; 68 + ( 553.46 -259.14 -13.52 0.46) ; 69 + ( 556.44 -257.83 -13.20 0.46) ; 70 + ( 559.56 -257.10 -13.20 0.46) ; 71 + ( 563.99 -257.86 -13.20 0.46) ; 72 + ( 568.40 -258.62 -13.20 0.46) ; 73 + ( 574.03 -258.50 -12.55 0.46) ; 74 + ( 574.03 -258.50 -12.57 0.46) ; 75 + ( 579.16 -260.27 -12.57 0.46) ; 76 + ( 584.16 -261.50 -12.57 0.46) ; 77 + ( 587.82 -263.02 -12.57 0.46) ; 78 + ( 593.12 -263.57 -12.57 0.46) ; 79 + ( 595.75 -264.74 -12.13 0.46) ; 80 + ( 597.99 -264.22 -12.13 0.46) ; 81 + ( 605.04 -266.15 -11.75 0.46) ; 82 + ( 609.01 -267.02 -11.75 0.46) ; 83 + ( 612.52 -267.98 -13.65 0.46) ; 84 + ( 612.52 -267.98 -13.67 0.46) ; 85 + ( 616.63 -269.40 -15.55 0.46) ; 86 + ( 621.49 -270.06 -17.17 0.46) ; 87 + ( 626.50 -271.27 -18.45 0.46) ; 88 + ( 631.81 -271.83 -18.45 0.46) ; 89 + ( 636.67 -272.47 -18.45 0.46) ; 90 + ( 639.48 -272.41 -20.47 0.46) ; 91 + ( 643.90 -273.17 -21.63 0.46) ; 92 + ( 643.90 -273.17 -21.65 0.46) ; 93 + ( 647.15 -273.01 -22.80 0.46) ; 94 + ( 647.15 -273.01 -22.83 0.46) ; 95 + ( 654.12 -272.56 -23.33 0.46) ; 96 + ( 658.72 -272.08 -23.33 0.46) ; 97 + ( 662.16 -270.68 -22.22 0.46) ; 98 + ( 662.16 -270.68 -22.25 0.46) ; 99 + ( 664.26 -269.59 -19.85 0.46) ; 100 + ( 666.19 -269.73 -17.85 0.46) ; 101 + ( 669.57 -270.14 -17.15 0.46) ; 102 + ( 671.94 -270.19 -18.00 0.46) ; 103 + ( 676.67 -270.27 -18.02 0.46) ; 104 + ( 682.29 -270.14 -18.90 0.46) ; 105 + ( 685.69 -270.54 -19.73 0.46) ; 106 + ( 690.60 -269.40 -20.52 0.46) ; 107 + ( 694.30 -269.12 -21.28 0.46) ; 108 + ( 697.43 -268.39 -21.28 0.46) ; 109 + ( 701.72 -268.57 -21.95 0.46) ; 110 + ( 706.01 -268.76 -23.52 0.46) ; 111 + ( 706.01 -268.76 -23.57 0.46) ; 112 + ( 710.60 -268.28 -25.03 0.46) ; 113 + ( 715.02 -269.05 -26.13 0.46) ; 114 + ( 721.67 -268.08 -26.13 0.46) ; 115 + ( 723.91 -267.55 -27.15 0.46) ; 116 + ( 726.72 -267.49 -27.15 0.46) ; 117 + ( 728.19 -267.74 -29.50 0.46) ; 118 + ( 730.42 -267.22 -30.92 0.46) ; 119 + ( 733.55 -266.49 -31.32 0.46) ; 120 + ( 733.55 -266.49 -31.35 0.46) ; 121 + ( 736.50 -266.98 -33.05 0.46) ; 122 + ( 740.02 -267.96 -34.32 0.46) ; 123 + ( 740.02 -267.96 -34.35 0.46) ; 124 + ( 745.33 -268.50 -35.65 0.46) ; 125 + ( 751.98 -268.74 -35.97 0.46) ; 126 + ( 755.69 -268.47 -37.52 0.46) ; 127 + ( 755.69 -268.47 -37.55 0.46) ; 128 + ( 760.42 -268.55 -37.55 0.46) ; 129 + ( 765.72 -269.11 -37.55 0.46) ; 130 + ( 768.99 -268.94 -38.45 0.46) ; 131 + ( 774.03 -268.35 -39.63 0.46) ; 132 + ( 778.19 -267.97 -41.93 0.46) ; 133 + ( 782.77 -267.49 -41.93 0.46) ; 134 + ( 789.44 -267.73 -41.93 0.46) ; 135 + ( 794.03 -267.24 -42.92 0.46) ; 136 + ( 796.40 -267.29 -43.30 0.46) ; 137 + ( 796.40 -267.29 -43.33 0.46) ; 138 + ( 799.47 -268.35 -42.65 0.46) ; 139 + ( 799.47 -268.35 -42.67 0.46) ; 140 + ( 802.24 -270.10 -43.00 0.46) ; 141 + ( 805.49 -269.93 -44.30 0.46) ; 142 + ( 808.63 -269.20 -45.83 0.46) ; 143 + ( 812.64 -268.25 -47.33 0.46) ; 144 + ( 816.03 -268.65 -47.42 0.46) ; 145 + ( 816.03 -268.65 -47.45 0.46) ; 146 + ( 818.41 -268.69 -49.02 0.46) ; 147 + ( 821.21 -268.63 -50.38 0.46) ; 148 + ( 821.21 -268.63 -50.40 0.46) ; 149 + ( 824.33 -267.90 -51.57 0.46) ; 150 + ( 829.07 -267.99 -52.88 0.46) ; 151 + ( 829.07 -267.99 -52.90 0.46) ; 152 + ( 834.50 -269.10 -53.97 0.46) ; 153 + ( 837.33 -269.03 -54.27 0.46) ; 154 + ( 837.33 -269.03 -54.30 0.46) ; 155 + ( 841.17 -269.33 -54.30 0.46) ; 156 + ( 844.88 -269.06 -55.42 0.46) ; 157 + ( 844.88 -269.06 -55.45 0.46) ; 158 + ( 849.46 -268.58 -57.13 0.46) ; 159 + ( 854.60 -270.37 -55.97 0.46) ; 160 + ( 856.79 -270.45 -55.00 0.46) ; 161 + ( 860.18 -270.85 -57.28 0.46) ; 162 + ( 863.12 -271.35 -59.22 0.46) ; 163 + ( 868.12 -272.57 -58.05 0.46) ; 164 + ( 871.54 -277.14 -57.17 0.46) ; 165 + ( 873.55 -279.66 -56.28 0.46) ; 166 + ( 876.89 -281.87 -55.57 0.46) ; 167 + ( 880.24 -284.06 -55.57 0.46) ; 168 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 409.62 -239.72 12.40 0.46) ; 1 + ( 449.06 -241.21 3.65 0.46) ; 2 + ( 487.27 -245.40 -6.65 0.46) ; 3 + ( 625.74 -272.06 -18.45 0.46) ; 4 + ( 653.50 -273.91 -23.33 0.46) ; 5 + ( 714.40 -270.38 -26.13 0.46) ; 6 + ( 815.41 -269.99 -47.45 0.46) ; 7 + ( 875.56 -282.18 -55.57 0.46) ; 8 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 400.02 -238.97 15.52 0.46) ; 1 + ( 413.14 -240.67 12.38 0.46) ; 2 + ( 434.96 -243.33 7.02 0.46) ; 3 + ( 466.08 -241.41 1.00 0.46) ; 4 + ( 468.13 -242.11 -0.90 0.46) ; 5 + ( 473.71 -243.80 -3.13 0.46) ; 6 + ( 496.29 -245.68 -10.80 0.46) ; 7 + ( 498.78 -246.28 -11.77 0.46) ; 8 + ( 595.75 -264.74 -12.13 0.46) ; 9 + ( 598.70 -265.25 -12.13 0.46) ; 10 + ( 602.09 -265.65 -11.75 0.46) ; 11 + ( 608.56 -267.13 -11.75 0.46) ; 12 + ( 669.57 -270.14 -17.15 0.46) ; 13 + ( 768.54 -269.04 -38.45 0.46) ; 14 + ( 778.77 -268.43 -41.93 0.46) ; 15 + ( 796.40 -267.29 -43.33 0.46) ; 16 + ( 800.72 -271.65 -41.35 0.46) ; 17 + ( 855.05 -270.26 -56.00 0.46) ; 18 + ( 854.68 -272.73 -55.00 0.46) ; 19 + ( 863.56 -271.25 -59.22 0.46) ; 20 + ( 880.24 -284.06 -55.57 0.46) ; 21 + ) ; End of markers + Normal + | + ( 394.60 -242.01 21.18 0.46) ; 1, R-1-2-2-2-1-2 + ( 396.83 -241.49 21.18 0.46) ; 2 + ( 399.65 -241.43 22.15 0.46) ; 3 + ( 401.18 -239.88 22.15 0.46) ; 4 + ( 404.13 -240.39 22.73 0.46) ; 5 + ( 407.25 -239.65 23.27 0.46) ; 6 + ( 410.51 -239.49 22.55 0.46) ; 7 + ( 413.72 -241.12 23.33 0.46) ; 8 + ( 415.06 -240.80 23.50 0.46) ; 9 + ( 419.40 -239.19 24.45 0.46) ; 10 + ( 422.83 -237.79 24.45 0.46) ; 11 + ( 425.19 -237.83 24.48 0.46) ; 12 + ( 428.59 -238.23 24.88 0.46) ; 13 + ( 432.29 -237.96 26.13 0.46) ; 14 + ( 435.24 -238.47 26.55 0.46) ; 15 + ( 437.48 -237.94 26.55 0.46) ; 16 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 321.11 -246.10 15.30 0.46) ; 1 + ( 330.76 -245.03 14.57 0.46) ; 2 + ( 355.98 -242.11 18.77 0.46) ; 3 + ( 394.78 -240.77 21.18 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 306.78 -245.28 15.38 0.46) ; 1 + ( 337.90 -243.35 16.70 0.46) ; 2 + ( 345.76 -242.70 16.70 0.46) ; 3 + ( 360.71 -242.19 19.40 0.46) ; 4 + ( 363.39 -241.56 19.35 0.46) ; 5 + ( 369.33 -240.76 21.38 0.46) ; 6 + ( 372.59 -240.60 22.27 0.46) ; 7 + ( 375.40 -240.53 22.27 0.46) ; 8 + ( 380.14 -240.63 22.32 0.46) ; 9 + ( 406.80 -239.76 23.27 0.46) ; 10 + ( 415.06 -240.80 23.50 0.46) ; 11 + ( 428.59 -238.23 24.95 0.46) ; 12 + ) ; End of markers + ( + ( 439.04 -234.60 24.80 0.46) ; 1, R-1-2-2-2-1-2-1 + ( 442.67 -231.97 23.75 0.46) ; 2 + ( 442.67 -231.97 23.72 0.46) ; 3 + ( 445.13 -228.40 23.05 0.46) ; 4 + ( 448.44 -226.44 22.05 0.46) ; 5 + ( 450.72 -224.10 22.05 0.46) ; 6 + ( 451.53 -221.53 21.60 0.46) ; 7 + ( 453.05 -219.98 21.60 0.46) ; 8 + ( 456.04 -218.68 21.60 0.46) ; 9 + ( 458.76 -216.25 22.27 0.46) ; 10 + ( 461.23 -212.69 23.25 0.46) ; 11 + ( 464.27 -209.58 24.15 0.46) ; 12 + ( 467.90 -206.94 24.42 0.46) ; 13 + ( 471.07 -204.41 24.45 0.46) ; 14 + ( 475.14 -201.66 23.42 0.46) ; 15 + ( 476.09 -199.65 22.60 0.46) ; 16 + ( 478.76 -199.03 21.90 0.46) ; 17 + ( 478.81 -197.22 20.95 0.46) ; 18 + ( 480.91 -196.12 20.95 0.46) ; 19 + ( 483.06 -193.24 19.75 0.46) ; 20 + ( 484.58 -191.68 19.02 0.46) ; 21 + ( 486.55 -190.03 19.02 0.46) ; 22 + ( 488.38 -187.81 18.72 0.46) ; 23 + ( 490.35 -186.15 20.15 0.46) ; 24 + ( 492.18 -183.93 21.35 0.46) ; 25 + ( 495.05 -182.08 22.38 0.46) ; 26 + ( 496.31 -179.38 24.30 0.46) ; 27 + ( 497.95 -178.40 25.55 0.46) ; 28 + ( 498.00 -176.60 25.45 0.46) ; 29 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 445.39 -229.53 23.05 0.46) ; 1 + ( 449.02 -226.90 22.05 0.46) ; 2 + ( 458.18 -215.79 22.27 0.46) ; 3 + ( 463.12 -208.66 24.15 0.46) ; 4 + ( 473.45 -204.46 23.42 0.46) ; 5 + ( 478.58 -200.26 21.90 0.46) ; 6 + ( 496.79 -177.48 25.45 0.46) ; 7 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 452.10 -222.00 21.60 0.46) ; 1 + ( 466.57 -207.25 24.42 0.46) ; 2 + ( 470.75 -205.08 24.45 0.46) ; 3 + ( 483.06 -193.24 19.75 0.46) ; 4 + ( 486.11 -190.14 19.02 0.46) ; 5 + ( 488.51 -188.38 18.72 0.46) ; 6 + ( 490.49 -186.73 20.17 0.46) ; 7 + ( 494.78 -180.93 22.38 0.46) ; 8 + ) ; End of markers + Normal + | + ( 441.44 -238.80 26.55 0.46) ; 1, R-1-2-2-2-1-2-2 + ( 445.46 -237.86 25.25 0.46) ; 2 + ( 447.70 -237.34 25.25 0.46) ; 3 + ( 450.07 -237.39 26.15 0.46) ; 4 + ( 451.41 -237.07 26.15 0.46) ; 5 + ( 455.69 -237.25 26.70 0.46) ; 6 + ( 458.94 -237.09 26.70 0.46) ; 7 + ( 464.25 -237.63 27.35 0.46) ; 8 + ( 468.15 -236.13 28.17 0.46) ; 9 + ( 470.02 -236.87 28.82 0.46) ; 10 + ( 474.00 -237.75 29.05 0.46) ; 11 + ( 476.67 -237.12 29.05 0.46) ; 12 + ( 479.16 -237.73 29.72 0.46) ; 13 + ( 482.29 -236.99 30.23 0.46) ; 14 + ( 485.69 -237.39 30.57 0.46) ; 15 + ( 489.71 -236.44 30.57 0.46) ; 16 + ( 495.33 -236.33 31.00 0.46) ; 17 + ( 498.99 -237.85 31.52 0.46) ; 18 + ( 501.80 -237.79 30.83 0.46) ; 19 + ( 506.09 -237.99 30.83 0.46) ; 20 + ( 512.55 -239.45 29.88 0.46) ; 21 + ( 516.26 -239.19 29.58 0.46) ; 22 + ( 519.78 -240.15 29.58 0.46) ; 23 + ( 522.02 -239.63 29.58 0.46) ; 24 + ( 525.73 -239.35 29.58 0.46) ; 25 + ( 528.53 -239.29 30.33 0.46) ; 26 + ( 528.53 -239.29 30.30 0.46) ; 27 + ( 530.76 -238.77 31.30 0.46) ; 28 + ( 536.97 -239.11 32.50 0.46) ; 29 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 512.60 -237.65 29.88 0.46) ; 1 + ( 533.32 -237.58 32.50 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 447.70 -237.34 25.25 0.46) ; 1 + ( 468.15 -236.13 28.17 0.46) ; 2 + ( 499.44 -237.75 31.52 0.46) ; 3 + ( 505.64 -238.09 30.83 0.46) ; 4 + ( 522.46 -239.52 29.58 0.46) ; 5 + ) ; End of markers + ( + ( 537.38 -234.83 30.07 0.46) ; 1, R-1-2-2-2-1-2-2-1 + ( 537.38 -234.83 30.05 0.46) ; 2 + ( 539.18 -228.43 29.32 0.46) ; 3 + ( 539.28 -224.82 29.70 0.46) ; 4 + ( 539.28 -224.82 29.65 0.46) ; 5 + ( 538.22 -220.30 28.45 0.46) ; 6 + ( 540.54 -216.18 27.97 0.46) ; 7 + ( 540.54 -216.18 27.95 0.46) ; 8 + ( 542.83 -213.85 28.45 0.46) ; 9 + ( 542.83 -213.85 28.52 0.46) ; 10 + ( 546.63 -209.97 28.95 0.46) ; 11 + ( 549.10 -206.41 28.70 0.46) ; 12 + ( 549.10 -206.41 28.67 0.46) ; 13 + ( 549.38 -201.57 27.97 0.46) ; 14 + ( 550.76 -199.45 26.95 0.46) ; 15 + ( 550.76 -199.45 26.92 0.46) ; 16 + ( 550.86 -195.84 26.25 0.46) ; 17 + ( 551.68 -193.27 26.25 0.46) ; 18 + ( 555.12 -191.87 25.67 0.46) ; 19 + ( 555.12 -191.87 25.65 0.46) ; 20 + ( 556.99 -187.84 25.13 0.46) ; 21 + ( 560.75 -185.77 24.60 0.46) ; 22 + ( 560.75 -185.77 24.58 0.46) ; 23 + ( 563.16 -184.00 25.87 0.46) ; 24 + ( 563.16 -184.00 25.85 0.46) ; 25 + ( 564.99 -181.78 26.32 0.46) ; 26 + ( 569.46 -180.74 25.63 0.46) ; 27 + ( 569.46 -180.74 25.60 0.46) ; 28 + ( 570.01 -177.02 24.52 0.46) ; 29 + ( 570.01 -177.02 24.50 0.46) ; 30 + ( 572.74 -174.59 23.13 0.46) ; 31 + ( 574.08 -174.29 21.50 0.46) ; 32 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 545.83 -212.54 28.95 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 537.26 -234.27 30.05 0.46) ; 1 + ( 538.43 -229.21 29.32 0.46) ; 2 + ( 549.64 -202.70 27.95 0.46) ; 3 + ( 552.33 -196.09 27.92 0.46) ; 4 + ) ; End of markers + ( + ( 575.64 -170.95 22.92 0.46) ; 1, R-1-2-2-2-1-2-2-1-1 + ( 575.56 -168.57 21.55 0.46) ; 2 + ( 578.60 -165.47 20.30 0.46) ; 3 + ( 580.96 -165.52 19.50 0.46) ; 4 + ( 582.67 -162.72 19.50 0.46) ; 5 + ( 585.72 -159.62 19.50 0.46) ; 6 + ( 587.68 -157.97 19.50 0.46) ; 7 + ( 588.44 -157.20 20.35 0.46) ; 8 + ( 588.44 -157.20 20.33 0.46) ; 9 + ( 590.28 -154.98 19.17 0.46) ; 10 + ( 591.98 -152.19 18.23 0.46) ; 11 + ( 593.81 -149.97 17.13 0.46) ; 12 + ( 595.64 -147.74 15.95 0.46) ; 13 + ( 595.64 -147.74 15.92 0.46) ; 14 + ( 597.76 -146.65 15.15 0.46) ; 15 + ( 600.16 -144.90 14.75 0.46) ; 16 + ( 603.30 -144.16 14.65 0.46) ; 17 + ( 608.46 -144.14 14.07 0.46) ; 18 + ( 610.96 -144.75 13.72 0.46) ; 19 + ( 613.73 -146.50 13.80 0.46) ; 20 + ( 613.73 -146.50 13.72 0.46) ; 21 + ( 616.94 -148.13 13.47 0.46) ; 22 + ( 618.86 -148.27 10.95 0.46) ; 23 + ( 618.86 -148.27 10.77 0.46) ; 24 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 583.80 -159.47 19.50 0.46) ; 1 + ( 596.05 -149.44 15.92 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 579.18 -165.94 20.30 0.46) ; 1 + ( 581.15 -164.28 19.50 0.46) ; 2 + ( 590.28 -154.98 19.17 0.46) ; 3 + ( 599.85 -145.56 14.75 0.46) ; 4 + ( 608.33 -143.57 14.07 0.46) ; 5 + ( 610.83 -144.18 13.72 0.46) ; 6 + ) ; End of markers + Normal + | + ( 575.68 -175.10 20.45 0.46) ; 1, R-1-2-2-2-1-2-2-1-2 + ( 576.16 -179.17 19.63 0.46) ; 2 + ( 577.59 -181.21 18.85 0.46) ; 3 + ( 577.59 -181.21 18.80 0.46) ; 4 + ( 577.72 -181.79 18.50 0.46) ; 5 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 576.48 -178.50 19.63 0.46) ; 1 + ) ; End of markers + ( + ( 575.62 -182.89 18.15 0.46) ; 1, R-1-2-2-2-1-2-2-1-2-1 + ( 575.62 -182.89 18.13 0.46) ; 2 + ( 576.33 -183.92 15.90 0.46) ; 3 + ( 577.48 -184.84 13.13 0.46) ; 4 + ( 577.05 -184.94 13.10 0.46) ; 5 + ( 580.36 -182.98 11.50 0.46) ; 6 + ( 580.36 -182.98 11.42 0.46) ; 7 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 580.30 -184.78 9.85 0.46) ; 1 + ) ; End of markers + Normal + | + ( 577.49 -184.82 18.50 0.46) ; 1, R-1-2-2-2-1-2-2-1-2-2 + ( 577.26 -187.87 16.65 0.46) ; 2 + ( 578.06 -191.27 14.97 0.46) ; 3 + ( 578.45 -192.96 12.90 0.46) ; 4 + ( 580.64 -194.25 11.55 0.46) ; 5 + ( 581.04 -195.94 9.65 0.46) ; 6 + ( 581.04 -195.94 9.60 0.46) ; 7 + ( 583.08 -196.65 7.02 0.46) ; 8 + ( 584.82 -198.03 6.25 0.46) ; 9 + ( 585.09 -199.17 5.20 0.46) ; 10 + ( 586.38 -200.65 3.90 0.46) ; 11 + ( 586.38 -200.65 3.88 0.46) ; 12 + ( 587.76 -204.50 2.55 0.46) ; 13 + ( 589.05 -206.01 0.50 0.46) ; 14 + ( 589.05 -206.01 0.47 0.46) ; 15 + ( 590.66 -206.82 -1.25 0.46) ; 16 + ( 592.35 -210.01 -2.50 0.46) ; 17 + ( 591.22 -213.26 -4.25 0.46) ; 18 + ( 590.86 -215.73 -6.02 0.46) ; 19 + ( 590.86 -215.73 -6.05 0.46) ; 20 + ( 592.60 -217.12 -7.60 0.46) ; 21 + ( 592.60 -217.12 -7.63 0.46) ; 22 + ( 593.13 -219.37 -8.75 0.46) ; 23 + ( 596.73 -222.71 -9.40 0.46) ; 24 + ( 597.98 -226.00 -9.43 0.46) ; 25 + ( 599.40 -228.06 -10.60 0.46) ; 26 + ( 601.84 -230.47 -11.88 0.46) ; 27 + ( 603.73 -232.43 -13.42 0.46) ; 28 + ( 603.73 -232.43 -13.45 0.46) ; 29 + ( 606.22 -233.03 -15.15 0.46) ; 30 + ( 606.22 -233.03 -15.17 0.46) ; 31 + ( 609.88 -234.56 -16.05 0.46) ; 32 + ( 612.06 -235.84 -15.07 0.46) ; 33 + ( 615.09 -238.72 -16.05 0.46) ; 34 + ( 615.09 -238.72 -16.07 0.46) ; 35 + ( 616.25 -239.63 -17.63 0.46) ; 36 + ( 616.25 -239.63 -17.65 0.46) ; 37 + ( 617.15 -239.42 -19.73 0.46) ; 38 + ( 617.15 -239.42 -19.75 0.46) ; 39 + ( 619.27 -242.51 -21.50 0.46) ; 40 + ( 619.27 -242.51 -21.55 0.46) ; 41 + ( 621.78 -243.12 -23.25 0.46) ; 42 + ( 625.26 -245.88 -24.65 0.46) ; 43 + ( 625.26 -245.88 -24.67 0.46) ; 44 + ( 627.18 -246.03 -26.15 0.46) ; 45 + ( 629.04 -247.99 -27.27 0.46) ; 46 + ( 631.10 -248.69 -29.22 0.46) ; 47 + ( 634.31 -250.33 -30.10 0.46) ; 48 + ( 635.60 -251.82 -31.88 0.46) ; 49 + ( 635.60 -251.82 -31.90 0.46) ; 50 + ( 637.20 -252.64 -33.33 0.46) ; 51 + ( 640.10 -254.94 -34.63 0.46) ; 52 + ( 640.10 -254.94 -34.65 0.46) ; 53 + ( 643.90 -257.04 -36.55 0.46) ; 54 + ( 647.23 -259.25 -37.72 0.46) ; 55 + ( 647.23 -259.25 -37.75 0.46) ; 56 + ( 649.86 -260.42 -40.45 0.46) ; 57 + ( 649.86 -260.42 -41.35 0.46) ; 58 + ( 653.06 -262.05 -41.90 0.46) ; 59 + ( 655.31 -261.53 -42.85 0.46) ; 60 + ( 658.38 -262.61 -42.85 0.46) ; 61 + ( 662.80 -263.36 -44.23 0.46) ; 62 + ( 662.80 -263.36 -44.25 0.46) ; 63 + ( 666.27 -266.13 -44.25 0.46) ; 64 + ( 671.09 -268.59 -44.60 0.46) ; 65 + ( 674.62 -269.54 -44.60 0.46) ; 66 + ( 677.56 -270.06 -46.00 0.46) ; 67 + ( 677.56 -270.06 -46.08 0.46) ; 68 + ( 679.88 -271.90 -47.65 0.46) ; 69 + ( 679.88 -271.90 -47.67 0.46) ; 70 + ( 684.56 -273.78 -48.67 0.46) ; 71 + ( 687.95 -274.18 -50.25 0.46) ; 72 + ( 690.72 -275.93 -52.15 0.46) ; 73 + ( 690.72 -275.93 -52.17 0.46) ; 74 + ( 694.64 -278.59 -54.70 0.46) ; 75 + ( 694.64 -278.59 -54.72 0.46) ; 76 + ( 700.03 -281.51 -56.28 0.46) ; 77 + ( 702.66 -282.68 -58.50 0.46) ; 78 + ( 702.66 -282.68 -58.60 0.46) ; 79 + ( 705.74 -283.75 -59.80 0.46) ; 80 + ( 707.91 -283.74 -60.60 0.46) ; 81 + ( 710.98 -284.81 -62.60 0.46) ; 82 + ( 710.98 -284.81 -62.65 0.46) ; 83 + ( 715.39 -285.56 -64.05 0.46) ; 84 + ( 715.39 -285.56 -64.07 0.46) ; 85 + ( 718.74 -287.77 -65.00 0.46) ; 86 + ( 718.74 -287.77 -65.03 0.46) ; 87 + ( 720.74 -290.29 -66.40 0.46) ; 88 + ( 723.55 -290.22 -68.07 0.46) ; 89 + ( 727.03 -292.99 -68.88 0.46) ; 90 + ( 727.03 -292.99 -68.90 0.46) ; 91 + ( 731.18 -292.61 -70.20 0.46) ; 92 + ( 733.10 -292.76 -70.07 0.46) ; 93 + ( 733.37 -293.89 -71.43 0.46) ; 94 + ( 736.76 -294.30 -72.03 0.46) ; 95 + ( 739.65 -296.60 -72.03 0.46) ; 96 + ( 742.59 -297.12 -73.85 0.46) ; 97 + ( 745.28 -296.48 -76.80 0.46) ; 98 + ( 748.09 -296.42 -79.32 0.46) ; 99 + ( 748.09 -296.42 -79.35 0.46) ; 100 + ( 751.74 -297.95 -80.92 0.46) ; 101 + ( 755.27 -298.91 -82.72 0.46) ; 102 + ( 755.27 -298.91 -82.95 0.46) ; 103 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 583.61 -198.92 5.20 0.46) ; 1 + ( 595.98 -223.48 -9.43 0.46) ; 2 + ( 638.63 -254.70 -34.65 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 577.57 -187.20 16.65 0.46) ; 1 + ( 578.45 -192.96 12.90 0.46) ; 2 + ( 582.95 -196.09 7.02 0.46) ; 3 + ( 591.80 -213.72 -4.27 0.46) ; 4 + ( 609.88 -234.56 -16.05 0.46) ; 5 + ( 628.91 -247.42 -27.27 0.46) ; 6 + ( 655.44 -262.11 -42.85 0.46) ; 7 + ( 659.14 -261.83 -42.85 0.46) ; 8 + ( 684.56 -273.78 -48.67 0.46) ; 9 + ( 718.74 -287.77 -65.03 0.46) ; 10 + ( 744.84 -296.59 -76.80 0.46) ; 11 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 540.82 -239.41 30.23 0.46) ; 1, R-1-2-2-2-1-2-2-2 + ( 544.78 -240.26 30.63 0.46) ; 2 + ( 548.35 -239.42 32.05 0.46) ; 3 + ( 551.75 -239.83 33.25 0.46) ; 4 + ( 554.11 -239.87 32.95 0.46) ; 5 + ( 556.30 -241.14 33.10 0.46) ; 6 + ( 559.43 -240.41 33.47 0.46) ; 7 + ( 564.74 -240.96 33.88 0.46) ; 8 + ( 567.54 -240.90 33.88 0.46) ; 9 + ( 568.89 -240.58 33.88 0.46) ; 10 + ( 571.83 -241.09 34.72 0.46) ; 11 + ( 576.12 -241.28 34.72 0.46) ; 12 + ( 577.72 -242.10 35.50 0.46) ; 13 + ( 577.28 -242.20 35.50 0.46) ; 14 + ( 579.02 -243.58 37.70 0.46) ; 15 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 565.00 -242.10 33.88 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 540.82 -239.41 30.23 0.46) ; 1 + ( 551.17 -239.36 33.25 0.46) ; 2 + ) ; End of markers + High + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 301.49 -248.08 12.65 0.92) ; 1, R-1-2-2-2-2 + ( 301.34 -253.49 12.65 0.92) ; 2 + ( 302.27 -257.45 12.65 0.92) ; 3 + ( 304.10 -261.20 11.50 0.92) ; 4 + ( 305.34 -264.49 10.02 0.92) ; 5 + ( 306.18 -266.08 9.20 0.92) ; 6 + ( 306.18 -266.08 9.17 0.92) ; 7 + ( 304.61 -269.44 8.10 0.92) ; 8 + ( 306.75 -272.53 7.38 0.92) ; 9 + ( 307.63 -278.28 7.38 0.92) ; 10 + ( 307.27 -280.77 8.93 0.92) ; 11 + ( 307.17 -284.36 10.28 0.92) ; 12 + ( 307.38 -287.30 11.68 0.92) ; 13 + ( 309.52 -290.38 12.57 0.92) ; 14 + ( 312.42 -292.69 12.57 0.92) ; 15 + ( 312.32 -296.30 12.90 0.92) ; 16 + ( 310.70 -301.45 12.90 0.92) ; 17 + ( 310.68 -307.43 11.98 0.92) ; 18 + ( 311.43 -312.63 10.45 0.92) ; 19 + ( 311.43 -312.63 10.43 0.92) ; 20 + ( 312.23 -316.02 10.43 0.92) ; 21 + ( + ( 309.50 -317.45 10.43 0.46) ; 1, R-1-2-2-2-2-1 + ( 307.71 -317.87 9.00 0.46) ; 2 + ( 305.62 -318.97 7.77 0.46) ; 3 + ( 304.27 -319.28 6.18 0.46) ; 4 + ( 303.52 -320.06 4.63 0.46) ; 5 + ( 303.02 -321.96 3.32 0.46) ; 6 + ( 303.02 -321.96 3.30 0.46) ; 7 + ( 302.70 -322.62 1.67 0.46) ; 8 + ( 301.36 -322.94 0.20 0.46) ; 9 + ( 302.20 -324.54 0.20 0.46) ; 10 + ( 300.42 -324.96 -0.37 0.46) ; 11 + ( 300.37 -326.76 -1.75 0.46) ; 12 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 303.02 -321.96 3.30 0.46) ; 1 + ) ; End of markers + ( + ( 300.33 -328.57 -3.45 0.46) ; 1, R-1-2-2-2-2-1-1 + ( 299.43 -328.78 -5.07 0.46) ; 2 + ( 297.91 -330.33 -6.45 0.46) ; 3 + ( 297.16 -331.09 -8.00 0.46) ; 4 + ( 295.80 -331.41 -10.30 0.46) ; 5 + ( 296.33 -333.68 -12.22 0.46) ; 6 + ( 294.69 -334.66 -14.25 0.46) ; 7 + ( 293.79 -334.87 -16.55 0.46) ; 8 + ( 293.79 -334.87 -16.57 0.46) ; 9 + ( 292.90 -335.08 -18.63 0.46) ; 10 + ( 292.00 -335.29 -21.72 0.46) ; 11 + ( 290.67 -335.61 -23.45 0.46) ; 12 + ( 290.67 -335.61 -23.47 0.46) ; 13 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 297.51 -328.63 -6.45 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 300.33 -328.57 -3.45 0.46) ; 1 + ( 294.99 -334.00 -14.25 0.46) ; 2 + ( 291.12 -335.50 -23.50 0.46) ; 3 + ) ; End of markers + ( + ( 288.47 -340.30 -25.47 0.46) ; 1, R-1-2-2-2-2-1-1-1 + ( 286.95 -341.85 -28.05 0.46) ; 2 + ( 285.61 -342.16 -29.77 0.46) ; 3 + ( 284.54 -343.61 -31.80 0.46) ; 4 + ( 284.54 -343.61 -31.82 0.46) ; 5 + ( 282.43 -344.71 -33.33 0.46) ; 6 + ( 280.64 -345.12 -35.70 0.46) ; 7 + ( 280.73 -347.49 -36.82 0.46) ; 8 + ( 279.21 -349.04 -39.00 0.46) ; 9 + ( 279.21 -349.04 -39.02 0.46) ; 10 + ( 279.48 -350.17 -40.85 0.46) ; 11 + ( 279.48 -350.17 -40.88 0.46) ; 12 + ( 279.30 -351.41 -42.75 0.46) ; 13 + ( 278.67 -352.75 -45.03 0.46) ; 14 + ( 278.67 -352.75 -45.05 0.46) ; 15 + ( 277.91 -353.54 -48.02 0.46) ; 16 + ( 276.56 -353.84 -49.83 0.46) ; 17 + ( 276.12 -353.95 -49.90 0.46) ; 18 + ( 275.62 -355.85 -52.88 0.46) ; 19 + ( 274.72 -356.06 -55.25 0.46) ; 20 + ( 273.53 -356.95 -56.72 0.46) ; 21 + ( 273.53 -356.95 -56.75 0.46) ; 22 + ( 271.87 -357.93 -59.35 0.46) ; 23 + ( 271.87 -357.93 -59.40 0.46) ; 24 + ( 269.58 -360.26 -60.55 0.46) ; 25 + ( 269.58 -360.26 -60.63 0.46) ; 26 + ( 268.07 -361.81 -63.97 0.46) ; 27 + ( 265.97 -362.89 -66.55 0.46) ; 28 + ( 265.97 -362.89 -66.63 0.46) ; 29 + ( 263.87 -363.99 -69.18 0.46) ; 30 + ( 262.83 -363.63 -72.07 0.46) ; 31 + ( 261.19 -364.61 -74.40 0.46) ; 32 + ( 261.19 -364.61 -74.42 0.46) ; 33 + ( 260.56 -365.94 -77.47 0.46) ; 34 + ( 257.70 -367.82 -79.53 0.46) ; 35 + ( 256.04 -368.81 -80.88 0.46) ; 36 + ( 253.63 -370.56 -83.18 0.46) ; 37 + ( 252.60 -370.21 -86.00 0.46) ; 38 + ( 252.60 -370.21 -86.03 0.46) ; 39 + ( 250.51 -371.29 -89.22 0.46) ; 40 + ( 248.27 -371.81 -91.30 0.46) ; 41 + ( 248.27 -371.81 -91.32 0.46) ; 42 + ( 247.91 -374.30 -94.10 0.46) ; 43 + ( 247.91 -374.30 -94.12 0.46) ; 44 + ( 246.83 -375.74 -96.32 0.46) ; 45 + ( 246.83 -375.74 -96.35 0.46) ; 46 + ( 245.18 -376.72 -98.77 0.46) ; 47 + ( 243.34 -378.95 -100.30 0.46) ; 48 + ( 240.79 -380.14 -101.57 0.46) ; 49 + ( 240.79 -380.14 -101.60 0.46) ; 50 + ( 236.73 -382.88 -104.12 0.46) ; 51 + ( 235.38 -383.20 -106.43 0.46) ; 52 + ( 232.21 -385.74 -108.77 0.46) ; 53 + ( 229.27 -385.23 -110.90 0.46) ; 54 + ( 228.91 -387.70 -113.72 0.46) ; 55 + ( 229.94 -388.06 -116.38 0.46) ; 56 + ( 230.20 -389.19 -119.95 0.46) ; 57 + ( 229.58 -390.53 -122.72 0.46) ; 58 + ( 229.58 -390.53 -122.75 0.46) ; 59 + ( 228.36 -391.42 -125.52 0.46) ; 60 + ( 228.36 -391.42 -125.55 0.46) ; 61 + ( 225.50 -393.28 -127.82 0.46) ; 62 + ( 221.80 -393.55 -129.22 0.46) ; 63 + ( 218.40 -393.15 -130.50 0.46) ; 64 + ( 218.40 -393.15 -130.52 0.46) ; 65 + ( 215.59 -393.21 -132.52 0.46) ; 66 + ( 213.36 -393.73 -134.63 0.46) ; 67 + ( 213.36 -393.73 -134.68 0.46) ; 68 + ( 213.36 -393.73 -138.07 0.46) ; 69 + ( 211.70 -394.72 -140.07 0.46) ; 70 + ( 209.79 -394.56 -141.63 0.46) ; 71 + ( 209.79 -394.56 -141.65 0.46) ; 72 + ( 207.69 -395.67 -143.77 0.46) ; 73 + ( 207.69 -395.67 -143.80 0.46) ; 74 + ( 206.21 -395.41 -146.52 0.46) ; 75 + ( 206.17 -397.22 -149.70 0.46) ; 76 + ( 206.17 -397.22 -149.73 0.46) ; 77 + ( 204.06 -398.30 -151.27 0.46) ; 78 + ( 202.28 -398.72 -154.40 0.46) ; 79 + ( 202.28 -398.72 -154.43 0.46) ; 80 + ( 199.68 -401.71 -156.07 0.46) ; 81 + ( 199.55 -401.15 -156.07 0.46) ; 82 + ( 197.89 -402.13 -158.35 0.46) ; 83 + ( 196.74 -401.21 -160.63 0.46) ; 84 + ( 196.29 -401.32 -160.63 0.46) ; 85 + ( 195.21 -402.76 -162.15 0.46) ; 86 + ( 195.21 -402.76 -162.23 0.46) ; 87 + ( 191.37 -402.47 -164.45 0.46) ; 88 + ( 189.37 -399.96 -164.45 0.46) ; 89 + ( 187.82 -397.33 -164.45 0.46) ; 90 + ( 184.48 -395.12 -164.45 0.46) ; 91 + ( 180.73 -391.23 -165.10 0.46) ; 92 + ( 180.73 -391.23 -165.12 0.46) ; 93 + ( 176.36 -388.67 -165.95 0.46) ; 94 + ( 171.86 -385.54 -164.77 0.46) ; 95 + ( 168.33 -384.58 -162.68 0.46) ; 96 + ( 165.08 -384.75 -159.90 0.46) ; 97 + ( 162.44 -383.58 -158.48 0.46) ; 98 + ( 158.19 -381.60 -158.48 0.46) ; 99 + ( 154.99 -379.95 -158.48 0.46) ; 100 + ( 150.57 -379.21 -158.07 0.46) ; 101 + ( 145.84 -379.11 -157.68 0.46) ; 102 + ( 140.58 -376.76 -157.68 0.46) ; 103 + ( 137.63 -376.26 -156.95 0.46) ; 104 + ( 134.16 -373.49 -156.32 0.46) ; 105 + ( 132.60 -370.87 -155.38 0.46) ; 106 + ( 130.86 -369.49 -153.98 0.46) ; 107 + ( 130.86 -369.49 -154.00 0.46) ; 108 + ( 129.12 -368.11 -153.07 0.46) ; 109 + ( 128.14 -365.94 -151.85 0.46) ; 110 + ( 124.22 -363.28 -151.65 0.46) ; 111 + ( 118.95 -360.93 -151.65 0.46) ; 112 + ( 115.75 -359.29 -150.55 0.46) ; 113 + ( 111.52 -357.30 -150.55 0.46) ; 114 + ( 110.79 -356.27 -149.35 0.46) ; 115 + ( 109.51 -354.79 -148.18 0.46) ; 116 + ( 107.77 -353.40 -146.43 0.46) ; 117 + ( 105.46 -351.56 -144.82 0.46) ; 118 + ( 105.46 -351.56 -144.85 0.46) ; 119 + ( 103.14 -349.71 -143.22 0.46) ; 120 + ( 103.14 -349.71 -143.25 0.46) ; 121 + ( 99.48 -348.18 -142.10 0.46) ; 122 + ( 95.96 -347.21 -140.88 0.46) ; 123 + ( 93.46 -346.60 -139.60 0.46) ; 124 + ( 90.56 -344.30 -138.50 0.46) ; 125 + ( 87.48 -343.23 -137.77 0.46) ; 126 + ( 84.72 -341.50 -137.77 0.46) ; 127 + ( 80.34 -338.93 -137.77 0.46) ; 128 + ( 74.64 -336.69 -137.38 0.46) ; 129 + ( 71.11 -335.72 -139.13 0.46) ; 130 + ( 65.23 -334.72 -140.15 0.46) ; 131 + ( 65.23 -334.72 -140.18 0.46) ; 132 + ( 61.43 -332.61 -141.07 0.46) ; 133 + ( 56.18 -330.27 -142.70 0.46) ; 134 + ( 56.18 -330.27 -142.73 0.46) ; 135 + ( 50.33 -327.46 -143.72 0.46) ; 136 + ( 44.68 -323.41 -143.72 0.46) ; 137 + ( 39.46 -319.26 -142.30 0.46) ; 138 + ( 39.59 -319.82 -142.32 0.46) ; 139 + ( 37.27 -317.99 -140.75 0.46) ; 140 + ( 35.27 -315.47 -139.43 0.46) ; 141 + ( 31.03 -313.47 -138.67 0.46) ; 142 + ( 26.53 -310.35 -138.67 0.46) ; 143 + ( 23.32 -308.72 -140.07 0.46) ; 144 + ( 23.32 -308.72 -140.10 0.46) ; 145 + ( 20.29 -305.85 -141.38 0.46) ; 146 + ( 20.29 -305.85 -141.40 0.46) ; 147 + ( 16.24 -302.62 -142.00 0.46) ; 148 + ( 16.24 -302.62 -142.02 0.46) ; 149 + ( 12.64 -299.28 -141.67 0.46) ; 150 + ( 9.01 -295.95 -140.55 0.46) ; 151 + ( 4.38 -292.25 -140.20 0.46) ; 152 + ( 1.18 -290.61 -140.20 0.46) ; 153 + ( -2.03 -288.98 -140.20 0.46) ; 154 + ( -3.15 -286.26 -139.30 0.46) ; 155 + ( -8.09 -283.24 -139.02 0.46) ; 156 + ( -12.47 -280.68 -139.02 0.46) ; 157 + ( -14.64 -279.40 -138.72 0.46) ; 158 + ( -17.01 -279.36 -138.15 0.46) ; 159 + ( -21.19 -275.57 -138.15 0.46) ; 160 + ( -23.46 -271.92 -138.88 0.46) ; 161 + ( -25.92 -269.50 -137.82 0.46) ; 162 + ( -27.91 -266.98 -136.85 0.46) ; 163 + ( -31.00 -265.92 -135.50 0.46) ; 164 + ( -34.26 -266.09 -133.77 0.46) ; 165 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 230.12 -386.83 -110.90 0.46) ; 1 + ( 201.60 -401.87 -156.07 0.46) ; 2 + ( 129.35 -365.07 -151.85 0.46) ; 3 + ( 12.59 -301.09 -141.67 0.46) ; 4 + ( 3.32 -293.69 -140.20 0.46) ; 5 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 288.34 -339.73 -25.47 0.46) ; 1 + ( 269.45 -359.68 -60.63 0.46) ; 2 + ( 225.50 -393.28 -127.82 0.46) ; 3 + ( 213.36 -393.73 -138.07 0.46) ; 4 + ( 206.35 -395.98 -149.73 0.46) ; 5 + ( 191.51 -403.04 -164.45 0.46) ; 6 + ( 176.36 -388.67 -165.95 0.46) ; 7 + ( 165.08 -384.75 -159.90 0.46) ; 8 + ( 150.57 -379.21 -158.07 0.46) ; 9 + ( 146.15 -378.44 -157.68 0.46) ; 10 + ( 119.40 -360.83 -151.65 0.46) ; 11 + ( 111.52 -357.30 -150.55 0.46) ; 12 + ( 95.83 -346.65 -140.88 0.46) ; 13 + ( 85.17 -341.40 -137.77 0.46) ; 14 + ( 61.75 -331.95 -141.07 0.46) ; 15 + ( 50.33 -327.46 -143.72 0.46) ; 16 + ( 39.46 -319.26 -142.32 0.46) ; 17 + ( -14.51 -279.96 -138.72 0.46) ; 18 + ( -21.19 -275.57 -138.15 0.46) ; 19 + ( -22.75 -272.94 -138.15 0.46) ; 20 + ( -24.76 -270.42 -137.07 0.46) ; 21 + ( -27.34 -267.45 -136.32 0.46) ; 22 + ( -33.81 -265.98 -133.77 0.46) ; 23 + ( -37.33 -265.00 -133.02 0.46) ; 24 + ) ; End of markers + Normal + | + ( 288.34 -333.76 -25.15 0.46) ; 1, R-1-2-2-2-2-1-1-2 + ( 287.81 -331.50 -26.85 0.46) ; 2 + ( 286.08 -330.12 -28.15 0.46) ; 3 + ( 285.63 -330.22 -28.17 0.46) ; 4 + ( 283.63 -327.71 -29.58 0.46) ; 5 + ( 282.34 -326.21 -31.15 0.46) ; 6 + ( 281.19 -325.29 -33.00 0.46) ; 7 + ( 278.42 -323.55 -34.17 0.46) ; 8 + ( 276.10 -321.70 -36.07 0.46) ; 9 + ( 273.78 -319.86 -37.30 0.46) ; 10 + ( 272.36 -317.81 -38.92 0.46) ; 11 + ( 271.78 -317.34 -41.00 0.46) ; 12 + ( 271.78 -317.34 -41.03 0.46) ; 13 + ( 270.94 -315.74 -43.10 0.46) ; 14 + ( 268.75 -314.47 -46.15 0.46) ; 15 + ( 267.90 -312.87 -48.15 0.46) ; 16 + ( 265.40 -312.26 -50.40 0.46) ; 17 + ( 265.40 -312.26 -50.42 0.46) ; 18 + ( 263.41 -309.76 -52.57 0.46) ; 19 + ( 261.35 -309.03 -54.97 0.46) ; 20 + ( 259.71 -310.02 -57.92 0.46) ; 21 + ( 257.19 -309.41 -60.75 0.46) ; 22 + ( 256.13 -310.85 -62.42 0.46) ; 23 + ( 253.81 -309.01 -63.85 0.46) ; 24 + ( 251.71 -310.11 -65.80 0.46) ; 25 + ( 249.08 -308.94 -68.82 0.46) ; 26 + ( 249.08 -308.94 -68.85 0.46) ; 27 + ( 249.08 -308.94 -71.35 0.46) ; 28 + ( 249.08 -308.94 -71.38 0.46) ; 29 + ( 247.60 -308.68 -73.05 0.46) ; 30 + ( 245.42 -307.40 -76.50 0.46) ; 31 + ( 243.95 -307.15 -79.65 0.46) ; 32 + ( 243.95 -307.15 -79.70 0.46) ; 33 + ( 242.34 -306.33 -83.70 0.46) ; 34 + ( 241.90 -306.43 -83.72 0.46) ; 35 + ( 237.47 -305.68 -86.00 0.46) ; 36 + ( 234.53 -305.17 -88.42 0.46) ; 37 + ( 233.06 -304.92 -91.13 0.46) ; 38 + ( 233.06 -304.92 -91.15 0.46) ; 39 + ( 231.33 -303.53 -95.82 0.46) ; 40 + ( 231.33 -303.53 -95.85 0.46) ; 41 + ( 228.96 -303.49 -98.42 0.46) ; 42 + ( 225.26 -303.76 -102.50 0.46) ; 43 + ( 221.85 -303.36 -104.48 0.46) ; 44 + ( 219.18 -303.99 -105.63 0.46) ; 45 + ( 219.18 -303.99 -105.65 0.46) ; 46 + ( 215.79 -303.59 -107.90 0.46) ; 47 + ( 215.79 -303.59 -107.92 0.46) ; 48 + ( 214.32 -303.34 -110.77 0.46) ; 49 + ( 214.32 -303.34 -110.85 0.46) ; 50 + ( 212.26 -302.63 -113.70 0.46) ; 51 + ( 212.26 -302.63 -113.75 0.46) ; 52 + ( 208.74 -301.67 -116.15 0.46) ; 53 + ( 205.67 -300.59 -118.97 0.46) ; 54 + ( 203.16 -299.99 -121.10 0.46) ; 55 + ( 202.01 -299.06 -123.65 0.46) ; 56 + ( 200.98 -298.71 -125.95 0.46) ; 57 + ( 198.61 -298.66 -128.70 0.46) ; 58 + ( 198.61 -298.66 -128.72 0.46) ; 59 + ( 196.12 -298.05 -132.32 0.46) ; 60 + ( 194.95 -297.14 -133.90 0.46) ; 61 + ( 191.74 -295.50 -136.10 0.46) ; 62 + ( 190.19 -292.87 -137.45 0.46) ; 63 + ( 188.77 -290.81 -139.00 0.46) ; 64 + ( 187.74 -290.47 -140.88 0.46) ; 65 + ( 186.00 -289.08 -144.05 0.46) ; 66 + ( 184.46 -286.46 -145.42 0.46) ; 67 + ( 181.41 -283.59 -147.80 0.46) ; 68 + ( 180.88 -281.31 -149.75 0.46) ; 69 + ( 178.97 -281.16 -152.05 0.46) ; 70 + ( 178.34 -282.51 -154.70 0.46) ; 71 + ( 178.34 -282.51 -154.73 0.46) ; 72 + ( 177.18 -281.59 -157.63 0.46) ; 73 + ( 177.18 -281.59 -157.65 0.46) ; 74 + ( 174.36 -281.65 -159.52 0.46) ; 75 + ( 174.36 -281.65 -159.55 0.46) ; 76 + ( 173.20 -280.73 -162.27 0.46) ; 77 + ( 170.98 -281.25 -162.20 0.46) ; 78 + ( 169.19 -281.67 -164.82 0.46) ; 79 + ( 169.19 -281.67 -164.85 0.46) ; 80 + ( 167.59 -280.86 -167.57 0.46) ; 81 + ( 167.59 -280.86 -168.10 0.46) ; 82 + ( 165.21 -280.81 -169.67 0.46) ; 83 + ( 163.61 -279.99 -171.47 0.46) ; 84 + ( 162.09 -281.53 -171.47 0.46) ; 85 + ( 159.47 -280.37 -172.90 0.46) ; 86 + ( 159.47 -280.37 -172.92 0.46) ; 87 + ( 157.86 -279.56 -174.75 0.46) ; 88 + ( 157.86 -279.56 -174.77 0.46) ; 89 + ( 156.78 -281.00 -177.35 0.46) ; 90 + ( 156.78 -281.00 -177.45 0.46) ; 91 + ( 153.98 -281.06 -180.63 0.46) ; 92 + ( 151.79 -279.78 -182.85 0.46) ; 93 + ( 149.69 -280.87 -184.88 0.46) ; 94 + ( 148.03 -281.86 -186.45 0.46) ; 95 + ( 147.27 -282.63 -188.85 0.46) ; 96 + ( 143.75 -281.66 -191.13 0.46) ; 97 + ( 140.66 -280.59 -192.02 0.46) ; 98 + ( 140.58 -278.22 -193.77 0.46) ; 99 + ( 140.58 -278.22 -193.80 0.46) ; 100 + ( 136.93 -276.69 -195.83 0.46) ; 101 + ( 130.59 -275.78 -196.22 0.46) ; 102 + ( 128.09 -275.18 -198.00 0.46) ; 103 + ( 125.47 -274.01 -200.20 0.46) ; 104 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 155.62 -280.07 -177.45 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 283.63 -327.71 -29.58 0.46) ; 1 + ( 281.63 -325.18 -33.00 0.46) ; 2 + ( 276.10 -321.70 -36.07 0.46) ; 3 + ( 221.73 -302.81 -104.48 0.46) ; 4 + ( 205.35 -301.26 -118.97 0.46) ; 5 + ( 201.43 -298.61 -125.95 0.46) ; 6 + ( 186.00 -289.08 -144.05 0.46) ; 7 + ( 171.43 -281.15 -162.20 0.46) ; 8 + ) ; End of markers + Low + ) ; End of split + | + ( 301.62 -330.05 -1.75 0.46) ; 1, R-1-2-2-2-2-1-2 + ( 301.70 -332.42 -1.75 0.46) ; 2 + ( 301.60 -336.02 -0.70 0.46) ; 3 + ( 301.60 -336.02 -0.72 0.46) ; 4 + ( 300.97 -337.38 -0.72 0.46) ; 5 + ( 300.57 -341.65 0.15 0.46) ; 6 + ( 300.46 -345.25 -0.02 0.46) ; 7 + ( 299.39 -346.70 -0.02 0.46) ; 8 + ( 300.50 -349.42 -0.02 0.46) ; 9 + ( 300.14 -351.89 -0.02 0.46) ; 10 + ( 299.46 -355.04 -0.97 0.46) ; 11 + ( 300.39 -359.01 -0.97 0.46) ; 12 + ( 300.34 -360.81 -1.45 0.46) ; 13 + ( 300.11 -363.85 -1.45 0.46) ; 14 + ( 299.98 -363.28 -1.45 0.46) ; 15 + ( 301.85 -365.23 -2.42 0.46) ; 16 + ( 303.73 -367.18 -4.32 0.46) ; 17 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 299.78 -332.27 -1.75 0.46) ; 1 + ( 301.68 -344.36 -0.02 0.46) ; 2 + ( 301.67 -350.35 -0.02 0.46) ; 3 + ( 301.15 -358.22 -0.97 0.46) ; 4 + ) ; End of markers + ( + ( 306.39 -366.55 -5.63 0.46) ; 1, R-1-2-2-2-2-1-2-1 + ( 308.31 -366.70 -5.63 0.46) ; 2 + ( 312.01 -366.43 -5.63 0.46) ; 3 + ( 314.37 -366.47 -5.63 0.46) ; 4 + ( 318.66 -366.66 -6.15 0.46) ; 5 + ( 323.09 -367.42 -6.18 0.46) ; 6 + ( 325.84 -369.15 -6.25 0.46) ; 7 + ( 328.35 -369.77 -6.40 0.46) ; 8 + ( 332.72 -372.33 -6.85 0.46) ; 9 + ( 333.42 -373.36 -7.97 0.46) ; 10 + ( 336.06 -374.53 -9.35 0.46) ; 11 + ( 338.95 -376.84 -10.55 0.46) ; 12 + ( 342.42 -379.61 -11.27 0.46) ; 13 + ( 345.91 -382.37 -12.35 0.46) ; 14 + ( 345.91 -382.37 -12.38 0.46) ; 15 + ( 347.77 -384.32 -13.35 0.46) ; 16 + ( 349.64 -386.28 -14.32 0.46) ; 17 + ( 351.82 -387.55 -13.82 0.46) ; 18 + ( 354.47 -388.73 -12.57 0.46) ; 19 + ( 355.75 -390.21 -11.58 0.46) ; 20 + ( 358.38 -391.39 -11.05 0.46) ; 21 + ( 362.17 -393.49 -10.75 0.46) ; 22 + ( 363.46 -394.97 -10.57 0.46) ; 23 + ( 365.52 -395.69 -10.57 0.46) ; 24 + ( 367.31 -395.27 -10.05 0.46) ; 25 + ( 368.14 -396.86 -10.05 0.46) ; 26 + ( 367.70 -396.97 -10.05 0.46) ; 27 + ( 370.46 -398.71 -10.77 0.46) ; 28 + ( 372.77 -400.56 -10.77 0.46) ; 29 + ( 376.00 -402.20 -11.55 0.46) ; 30 + ( 379.33 -404.41 -11.82 0.46) ; 31 + ( 381.25 -404.54 -12.02 0.46) ; 32 + ( 383.31 -405.26 -12.15 0.46) ; 33 + ( 390.53 -405.95 -12.65 0.46) ; 34 + ( 392.72 -407.24 -13.52 0.46) ; 35 + ( 392.72 -407.24 -13.55 0.46) ; 36 + ( 394.72 -409.75 -14.18 0.46) ; 37 + ( 396.91 -411.02 -14.18 0.46) ; 38 + ( 399.27 -411.06 -14.18 0.46) ; 39 + ( 401.90 -412.24 -14.18 0.46) ; 40 + ( 407.21 -412.79 -14.60 0.46) ; 41 + ( 409.44 -412.26 -14.82 0.46) ; 42 + ( 411.37 -412.41 -14.82 0.46) ; 43 + ( 415.21 -412.70 -14.82 0.46) ; 44 + ( 415.07 -412.14 -14.82 0.46) ; 45 + ( 418.28 -413.78 -14.82 0.46) ; 46 + ( 422.12 -414.07 -15.43 0.46) ; 47 + ( 424.17 -414.79 -15.45 0.46) ; 48 + ( 426.09 -414.94 -16.17 0.46) ; 49 + ( 429.93 -415.23 -17.20 0.46) ; 50 + ( 434.40 -414.19 -17.80 0.46) ; 51 + ( 438.81 -414.94 -18.05 0.46) ; 52 + ( 443.23 -415.70 -19.35 0.46) ; 53 + ( 444.71 -414.75 -19.65 0.46) ; 54 + ( 444.71 -414.75 -19.70 0.46) ; 55 + ( 447.97 -414.59 -20.97 0.46) ; 56 + ( 447.97 -414.59 -21.00 0.46) ; 57 + ( 451.81 -414.88 -21.15 0.46) ; 58 + ( 456.10 -415.08 -22.22 0.46) ; 59 + ( 458.79 -414.45 -23.30 0.46) ; 60 + ( 462.04 -414.28 -24.00 0.46) ; 61 + ( 466.45 -415.04 -24.55 0.46) ; 62 + ( 470.47 -414.09 -25.45 0.46) ; 63 + ( 473.60 -413.35 -26.60 0.46) ; 64 + ( 476.86 -413.19 -27.55 0.46) ; 65 + ( 481.19 -411.58 -28.47 0.46) ; 66 + ( 483.87 -410.95 -28.47 0.46) ; 67 + ( 487.13 -410.79 -29.20 0.46) ; 68 + ( 489.37 -410.26 -30.07 0.46) ; 69 + ( 492.04 -409.63 -31.10 0.46) ; 70 + ( 495.48 -408.23 -31.10 0.46) ; 71 + ( 500.22 -408.31 -32.02 0.46) ; 72 + ( 501.11 -408.10 -32.38 0.46) ; 73 + ( 503.79 -407.47 -33.70 0.46) ; 74 + ( 503.79 -407.47 -33.72 0.46) ; 75 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 330.79 -372.18 -6.85 0.46) ; 1 + ( 350.04 -387.97 -13.82 0.46) ; 2 + ( 406.00 -413.67 -14.60 0.46) ; 3 + ( 471.18 -415.11 -25.45 0.46) ; 4 + ( 487.75 -409.44 -30.07 0.46) ; 5 + ( 500.93 -409.34 -31.88 0.46) ; 6 + ( 503.60 -408.72 -33.67 0.46) ; 7 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 319.11 -366.55 -6.15 0.46) ; 1 + ( 358.25 -390.82 -11.05 0.46) ; 2 + ( 365.38 -395.13 -10.57 0.46) ; 3 + ( 372.77 -400.56 -10.77 0.46) ; 4 + ( 395.17 -409.64 -14.18 0.46) ; 5 + ( 448.56 -415.05 -21.00 0.46) ; 6 + ( 459.35 -414.91 -23.30 0.46) ; 7 + ( 475.84 -412.84 -27.55 0.46) ; 8 + ( 495.61 -408.80 -31.10 0.46) ; 9 + ) ; End of markers + Normal + | + ( 305.27 -369.79 -2.55 0.46) ; 1, R-1-2-2-2-2-1-2-2 + ( 307.14 -371.75 -2.55 0.46) ; 2 + ( 306.77 -374.22 -3.08 0.46) ; 3 + ( 306.55 -377.26 -3.08 0.46) ; 4 + ( 306.27 -382.10 -3.75 0.46) ; 5 + ( 306.17 -385.71 -4.57 0.46) ; 6 + ( 307.42 -389.00 -4.57 0.46) ; 7 + ( 308.53 -391.72 -5.00 0.46) ; 8 + ( 308.29 -394.77 -5.00 0.46) ; 9 + ( 309.09 -398.16 -5.00 0.46) ; 10 + ( 309.49 -399.85 -5.53 0.46) ; 11 + ( 309.97 -403.93 -6.22 0.46) ; 12 + ( 310.33 -407.43 -6.65 0.46) ; 13 + ( 311.13 -410.83 -7.02 0.46) ; 14 + ( 311.92 -414.22 -7.02 0.46) ; 15 + ( 311.99 -416.58 -7.02 0.46) ; 16 + ( 313.12 -419.32 -7.02 0.46) ; 17 + ( 312.43 -422.46 -7.97 0.46) ; 18 + ( 312.64 -425.40 -9.02 0.46) ; 19 + ( 312.86 -428.32 -9.72 0.46) ; 20 + ( 313.71 -429.92 -9.72 0.46) ; 21 + ( 313.79 -432.29 -8.77 0.46) ; 22 + ( 313.11 -435.44 -8.77 0.46) ; 23 + ( 313.46 -438.94 -8.88 0.46) ; 24 + ( 312.96 -440.85 -9.05 0.46) ; 25 + ( 312.03 -442.86 -9.80 0.46) ; 26 + ( 312.03 -442.86 -9.82 0.46) ; 27 + ( 312.43 -444.56 -10.95 0.46) ; 28 + ( 310.14 -446.88 -12.35 0.46) ; 29 + ( 309.69 -446.99 -12.35 0.46) ; 30 + ( 308.88 -449.57 -13.18 0.46) ; 31 + ( 308.57 -450.24 -15.27 0.46) ; 32 + ( 308.57 -450.24 -15.30 0.46) ; 33 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 310.58 -392.44 -5.00 0.46) ; 1 + ( 312.13 -433.29 -8.77 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 306.56 -371.30 -2.55 0.46) ; 1 + ( 306.55 -377.26 -3.08 0.46) ; 2 + ( 306.27 -382.10 -3.75 0.46) ; 3 + ( 307.28 -388.44 -4.57 0.46) ; 4 + ( 309.62 -400.43 -5.53 0.46) ; 5 + ( 310.77 -407.32 -6.65 0.46) ; 6 + ( 311.92 -414.22 -7.02 0.46) ; 7 + ( 312.29 -421.90 -7.97 0.46) ; 8 + ( 312.25 -423.69 -9.02 0.46) ; 9 + ( 312.73 -427.77 -9.72 0.46) ; 10 + ( 313.71 -429.92 -9.72 0.46) ; 11 + ( 309.69 -446.99 -12.35 0.46) ; 12 + ( 308.88 -449.57 -13.18 0.46) ; 13 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 313.90 -319.09 11.85 0.92) ; 1, R-1-2-2-2-2-2 + ( 315.59 -322.28 13.05 0.92) ; 2 + ( 315.49 -325.89 14.07 0.92) ; 3 + ( 316.15 -328.72 15.15 0.92) ; 4 + ( 317.08 -332.69 16.25 0.92) ; 5 + ( 318.32 -335.98 17.42 0.92) ; 6 + ( 319.70 -339.83 18.02 0.46) ; 7 + ( 321.12 -341.88 19.10 0.46) ; 8 + ( 319.82 -346.37 19.07 0.46) ; 9 + ( 318.29 -347.92 19.07 0.46) ; 10 + ( 319.26 -350.08 19.07 0.46) ; 11 + ( 319.49 -353.01 19.35 0.46) ; 12 + ( 319.61 -359.56 19.35 0.46) ; 13 + ( 319.82 -362.50 19.35 0.46) ; 14 + ( 319.79 -368.36 15.85 0.46) ; 15 + ( 320.43 -377.17 17.20 0.46) ; 16 + ( 321.39 -391.28 18.08 0.46) ; 17 + ( 324.69 -411.41 18.08 0.46) ; 18 + ( 328.03 -435.70 18.92 0.46) ; 19 + ( 328.03 -435.70 19.10 0.46) ; 20 + ( 331.25 -453.46 19.90 0.46) ; 21 + ( 331.25 -453.46 19.95 0.46) ; 22 + ( 332.28 -475.91 21.45 0.46) ; 23 + ( 330.87 -483.99 22.50 0.46) ; 24 + ( 332.33 -490.23 22.95 0.46) ; 25 + ( 332.00 -496.87 23.25 0.46) ; 26 + ( 331.01 -500.69 23.57 0.46) ; 27 + ( 331.49 -504.75 23.25 0.46) ; 28 + ( 330.81 -507.90 23.25 0.46) ; 29 + ( 329.20 -513.05 23.25 0.46) ; 30 + ( 328.88 -513.73 20.95 0.46) ; 31 + ( 327.77 -516.98 19.02 0.46) ; 32 + ( 327.77 -516.98 19.00 0.46) ; 33 + ( 326.23 -518.53 17.05 0.46) ; 34 + ( 326.23 -518.53 17.00 0.46) ; 35 + ( 326.58 -522.03 16.67 0.46) ; 36 + ( 326.89 -527.33 16.67 0.46) ; 37 + ( 324.96 -533.16 15.75 0.46) ; 38 + ( 324.96 -533.16 15.60 0.46) ; 39 + ( 323.63 -542.80 16.50 0.46) ; 40 + ( 322.77 -553.14 14.15 0.46) ; 41 + ( 322.77 -553.14 14.07 0.46) ; 42 + ( 322.27 -571.17 13.75 0.46) ; 43 + ( 322.27 -571.17 13.47 0.46) ; 44 + ( 326.57 -603.60 12.75 0.46) ; 45 + ( 326.73 -614.32 14.55 0.46) ; 46 + ( 326.70 -626.27 14.55 0.46) ; 47 + ( 326.27 -626.38 14.55 0.46) ; 48 + ( 325.74 -640.23 14.55 0.46) ; 49 + ( 323.99 -644.82 13.32 0.46) ; 50 + ( 323.99 -644.82 13.30 0.46) ; 51 + ( 323.90 -648.43 11.35 0.46) ; 52 + ( 322.95 -650.44 9.80 0.46) ; 53 + ( 322.18 -651.21 7.55 0.46) ; 54 + ( 322.58 -652.91 5.42 0.46) ; 55 + ( 321.20 -655.03 3.47 0.46) ; 56 + ( 320.34 -659.41 1.95 0.46) ; 57 + ( 320.34 -659.41 1.90 0.46) ; 58 + ( 319.30 -665.02 0.05 0.46) ; 59 + ( 319.91 -669.65 -2.85 0.46) ; 60 + ( 319.91 -669.65 -2.92 0.46) ; 61 + ( 319.86 -671.46 -4.72 0.46) ; 62 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 327.47 -511.68 23.25 0.46) ; 1 + ( 322.11 -648.85 9.80 0.46) ; 2 + ) ; End of markers + Incomplete + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 280.96 -100.13 5.05 0.46) ; 1, R-2 + ( 282.62 -99.15 6.13 0.46) ; 2 + ( 284.58 -97.49 6.62 0.46) ; 3 + ( 287.32 -95.05 6.90 0.46) ; 4 + ( + ( 290.57 -94.90 7.80 0.46) ; 1, R-2-1 + ( 292.09 -93.34 7.80 0.46) ; 2 + ( 293.62 -91.79 8.38 0.46) ; 3 + ( 293.67 -89.99 8.82 0.46) ; 4 + ( 293.53 -89.42 8.82 0.46) ; 5 + ( 295.37 -87.20 9.00 0.46) ; 6 + ( 298.23 -85.34 8.55 0.46) ; 7 + ( 300.91 -84.71 10.48 0.46) ; 8 + ( 302.43 -83.15 10.63 0.46) ; 9 + ( 304.08 -82.17 9.65 0.46) ; 10 + ( 306.31 -81.65 9.65 0.46) ; 11 + ( 308.11 -81.23 9.32 0.46) ; 12 + ( 311.99 -79.72 10.10 0.46) ; 13 + ( 313.32 -79.41 11.00 0.46) ; 14 + ( 316.32 -78.11 11.93 0.46) ; 15 + ( 317.85 -76.56 11.93 0.46) ; 16 + ( 320.12 -74.23 12.30 0.46) ; 17 + ( 323.75 -71.60 12.75 0.46) ; 18 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 299.75 -83.78 10.63 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 292.09 -93.34 7.80 0.46) ; 1 + ( 295.19 -88.43 9.00 0.46) ; 2 + ( 297.02 -86.21 8.55 0.46) ; 3 + ( 308.11 -81.23 9.32 0.46) ; 4 + ) ; End of markers + ( + ( 327.47 -71.33 11.95 0.46) ; 1, R-2-1-1 + ( 329.98 -71.95 11.47 0.46) ; 2 + ( 331.77 -71.53 11.13 0.46) ; 3 + ( 332.83 -70.08 11.13 0.46) ; 4 + ( + ( 337.57 -70.17 9.95 0.46) ; 1, R-2-1-1-1 + ( 341.22 -71.70 9.27 0.46) ; 2 + ( 341.22 -71.70 9.25 0.46) ; 3 + ( 344.62 -72.10 8.40 0.46) ; 4 + ( 347.43 -72.05 8.60 0.46) ; 5 + ( 347.43 -72.05 8.55 0.46) ; 6 + ( 350.38 -72.54 9.48 0.46) ; 7 + ( 353.32 -73.05 10.60 0.46) ; 8 + ( 356.58 -72.88 11.70 0.46) ; 9 + ( 358.50 -73.02 10.15 0.46) ; 10 + ( 360.23 -74.41 8.35 0.46) ; 11 + ( 363.31 -75.48 7.38 0.46) ; 12 + ( 367.91 -74.99 6.65 0.46) ; 13 + ( 372.20 -75.19 6.65 0.46) ; 14 + ( 375.72 -76.16 6.38 0.46) ; 15 + ( 378.66 -76.65 5.60 0.46) ; 16 + ( 380.62 -77.05 5.04 0.46) ; 17 + ( 382.50 -76.96 4.60 0.46) ; 18 + ( 382.50 -76.96 4.57 0.46) ; 19 + ( 385.14 -78.13 3.80 0.46) ; 20 + ( 389.73 -77.65 3.45 0.46) ; 21 + ( 391.03 -79.15 3.45 0.46) ; 22 + ( 395.57 -80.46 3.15 0.46) ; 23 + ( 397.05 -80.72 6.13 0.46) ; 24 + ( 399.99 -81.22 6.95 0.46) ; 25 + ( 405.43 -82.34 6.73 0.46) ; 26 + ( 407.93 -82.94 5.70 0.46) ; 27 + ( 407.93 -82.94 5.68 0.46) ; 28 + ( 410.82 -85.26 4.47 0.46) ; 29 + ( 411.67 -86.85 2.70 0.46) ; 30 + ( 411.67 -86.85 2.67 0.46) ; 31 + ( 413.22 -89.47 1.38 0.46) ; 32 + ( 416.57 -91.68 0.37 0.46) ; 33 + ( 419.96 -92.07 -0.12 0.46) ; 34 + ( 424.33 -94.63 -0.12 0.46) ; 35 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 336.81 -70.95 9.95 0.46) ; 1 + ( 354.48 -73.96 11.70 0.46) ; 2 + ( 373.85 -74.21 6.38 0.46) ; 3 + ( 394.59 -78.30 3.15 0.46) ; 4 + ( 409.84 -83.09 4.47 0.46) ; 5 + ( 417.20 -90.33 0.37 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 347.43 -72.05 8.55 0.46) ; 1 + ( 360.10 -73.84 8.35 0.46) ; 2 + ( 363.31 -75.48 7.38 0.46) ; 3 + ( 385.57 -78.02 3.80 0.46) ; 4 + ) ; End of markers + ( + ( 427.09 -96.37 -0.28 0.46) ; 1, R-2-1-1-1-1 + ( 427.09 -96.37 -0.32 0.46) ; 2 + ( 429.99 -98.67 -1.17 0.46) ; 3 + ( 431.77 -98.26 -1.17 0.46) ; 4 + ( 434.15 -98.29 -2.10 0.46) ; 5 + ( 435.56 -100.36 -2.65 0.46) ; 6 + ( 438.51 -100.86 -1.80 0.46) ; 7 + ( 441.90 -101.26 -1.80 0.46) ; 8 + ( 446.76 -101.91 -2.88 0.46) ; 9 + ( 448.82 -102.63 -3.67 0.46) ; 10 + ( 451.05 -102.10 -4.47 0.46) ; 11 + ( 453.29 -101.58 -5.30 0.46) ; 12 + ( 456.18 -103.89 -6.50 0.46) ; 13 + ( 459.52 -106.08 -7.05 0.46) ; 14 + ( 462.78 -105.92 -6.93 0.46) ; 15 + ( 464.84 -106.64 -6.10 0.46) ; 16 + ( 466.75 -106.78 -5.55 0.46) ; 17 + ( 470.01 -106.62 -5.37 0.46) ; 18 + ( 473.08 -107.68 -5.63 0.46) ; 19 + ( 476.29 -109.32 -6.52 0.46) ; 20 + ( 476.29 -109.32 -6.55 0.46) ; 21 + ( 477.90 -110.14 -6.78 0.46) ; 22 + ( 479.45 -112.76 -6.88 0.46) ; 23 + ( 481.82 -112.80 -6.75 0.46) ; 24 + ( 483.24 -114.86 -6.75 0.46) ; 25 + ( 486.06 -114.80 -7.77 0.46) ; 26 + ( 488.24 -116.07 -7.77 0.46) ; 27 + ( 490.74 -116.68 -8.25 0.46) ; 28 + ( 494.57 -116.98 -8.95 0.46) ; 29 + ( 497.21 -118.16 -9.60 0.46) ; 30 + ( 498.81 -118.97 -10.88 0.46) ; 31 + ( 498.81 -118.97 -10.92 0.46) ; 32 + ( 500.55 -120.36 -11.53 0.46) ; 33 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 446.14 -103.25 -2.88 0.46) ; 1 + ( 467.01 -107.91 -5.55 0.46) ; 2 + ( 473.93 -109.28 -6.55 0.46) ; 3 + ) ; End of markers + ( + ( 502.25 -117.57 -12.38 0.46) ; 1, R-2-1-1-1-1-1 + ( 505.69 -116.17 -13.20 0.46) ; 2 + ( 506.27 -116.62 -14.43 0.46) ; 3 + ( 507.80 -115.07 -14.43 0.46) ; 4 + ( 510.02 -114.56 -15.02 0.46) ; 5 + ( 511.68 -113.57 -16.77 0.46) ; 6 + ( 513.02 -113.25 -17.75 0.46) ; 7 + ( 514.36 -112.94 -19.52 0.46) ; 8 + ( 516.09 -114.33 -21.63 0.46) ; 9 + ( 518.33 -113.80 -23.52 0.46) ; 10 + ( 520.24 -113.95 -25.20 0.46) ; 11 + ( 522.80 -112.75 -26.40 0.46) ; 12 + ( 525.92 -112.02 -28.15 0.46) ; 13 + ( 525.92 -112.02 -28.17 0.46) ; 14 + ( 531.10 -112.01 -29.25 0.46) ; 15 + ( 534.54 -110.59 -30.10 0.46) ; 16 + ( 537.98 -109.19 -30.85 0.46) ; 17 + ( 541.68 -108.92 -31.38 0.46) ; 18 + ( 544.78 -110.01 -32.13 0.46) ; 19 + ( 547.45 -109.38 -32.92 0.46) ; 20 + ( 550.09 -110.55 -33.42 0.46) ; 21 + ( 552.14 -111.27 -34.80 0.46) ; 22 + ( 554.06 -111.41 -35.02 0.46) ; 23 + ( 555.53 -111.66 -37.77 0.46) ; 24 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 518.60 -114.93 -23.52 0.46) ; 1 + ( 530.70 -110.31 -29.25 0.46) ; 2 + ( 550.92 -112.15 -34.80 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 541.68 -108.92 -31.38 0.46) ; 1 + ) ; End of markers + Normal + | + ( 502.47 -120.51 -11.75 0.46) ; 1, R-2-1-1-1-1-2 + ( 504.35 -122.47 -11.75 0.46) ; 2 + ( 506.58 -121.94 -11.32 0.46) ; 3 + ( 509.66 -123.00 -11.37 0.46) ; 4 + ( 512.47 -122.95 -11.77 0.46) ; 5 + ( 514.21 -124.34 -11.77 0.46) ; 6 + ( 516.32 -123.25 -11.77 0.46) ; 7 + ( 519.70 -123.65 -12.72 0.46) ; 8 + ( 521.43 -125.04 -13.57 0.46) ; 9 + ( 524.96 -125.99 -13.87 0.46) ; 10 + ( 528.93 -126.85 -14.23 0.46) ; 11 + ( 531.44 -127.46 -15.50 0.46) ; 12 + ( 533.35 -127.61 -16.88 0.46) ; 13 + ( 535.41 -128.33 -17.65 0.46) ; 14 + ( 537.63 -127.80 -18.90 0.46) ; 15 + ( 540.90 -127.63 -19.58 0.46) ; 16 + ( 544.87 -128.50 -18.20 0.46) ; 17 + ( 544.87 -128.50 -18.23 0.46) ; 18 + ( 547.37 -129.10 -16.73 0.46) ; 19 + ( 549.82 -131.52 -16.27 0.46) ; 20 + ( 552.58 -133.26 -17.30 0.46) ; 21 + ( 555.08 -133.86 -17.98 0.46) ; 22 + ( 557.97 -136.18 -18.77 0.46) ; 23 + ( 560.87 -138.48 -18.35 0.46) ; 24 + ( 565.23 -141.05 -18.55 0.46) ; 25 + ( 569.08 -141.33 -18.55 0.46) ; 26 + ( 572.29 -142.97 -19.13 0.46) ; 27 + ( 572.29 -142.97 -19.15 0.46) ; 28 + ( 576.52 -144.96 -19.92 0.46) ; 29 + ( 579.34 -144.90 -20.57 0.46) ; 30 + ( 583.76 -145.66 -20.17 0.46) ; 31 + ( 583.76 -145.66 -20.23 0.46) ; 32 + ( 586.57 -145.60 -18.48 0.46) ; 33 + ( 589.33 -147.34 -19.50 0.46) ; 34 + ( 589.33 -147.34 -19.52 0.46) ; 35 + ( 591.25 -147.48 -21.52 0.46) ; 36 + ( 591.25 -147.48 -21.55 0.46) ; 37 + ( 592.98 -148.87 -21.77 0.46) ; 38 + ( 596.98 -149.71 -22.15 0.46) ; 39 + ( 600.94 -150.57 -22.15 0.46) ; 40 + ( 603.25 -152.42 -21.20 0.46) ; 41 + ( 603.25 -152.42 -20.70 0.46) ; 42 + ( 606.32 -153.48 -20.57 0.46) ; 43 + ( 610.57 -155.48 -19.95 0.46) ; 44 + ( 613.96 -155.88 -21.28 0.46) ; 45 + ( 617.05 -156.94 -22.27 0.46) ; 46 + ( 616.91 -156.37 -22.30 0.46) ; 47 + ( 619.36 -158.79 -22.85 0.46) ; 48 + ( 623.45 -160.21 -23.60 0.46) ; 49 + ( 626.54 -161.29 -23.82 0.46) ; 50 + ( 629.17 -162.46 -23.70 0.46) ; 51 + ( 631.08 -162.61 -23.75 0.46) ; 52 + ( 634.43 -164.81 -23.65 0.46) ; 53 + ( 637.07 -165.99 -24.90 0.46) ; 54 + ( 640.14 -167.06 -26.38 0.46) ; 55 + ( 643.66 -168.02 -27.08 0.46) ; 56 + ( 646.17 -168.64 -26.38 0.46) ; 57 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 509.04 -124.36 -11.37 0.46) ; 1 + ( 519.97 -124.77 -12.72 0.46) ; 2 + ( 565.50 -142.17 -18.55 0.46) ; 3 + ( 569.34 -142.47 -18.55 0.46) ; 4 + ( 591.65 -149.18 -21.77 0.46) ; 5 + ( 622.84 -161.56 -23.60 0.46) ; 6 + ( 626.23 -161.96 -23.82 0.46) ; 7 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 531.44 -127.46 -15.50 0.46) ; 1 + ( 549.37 -131.63 -16.27 0.46) ; 2 + ( 552.44 -132.69 -17.30 0.46) ; 3 + ( 557.84 -135.61 -18.77 0.46) ; 4 + ( 611.15 -155.94 -19.95 0.46) ; 5 + ( 630.77 -163.29 -23.75 0.46) ; 6 + ) ; End of markers + ( + ( 646.79 -167.28 -25.17 0.46) ; 1, R-2-1-1-1-1-2-1 + ( 648.40 -168.11 -22.65 0.46) ; 2 + ( 648.08 -168.79 -20.50 0.46) ; 3 + ( 649.69 -169.60 -17.20 0.46) ; 4 + ( 648.35 -169.91 -14.88 0.46) ; 5 + ( 648.79 -169.81 -11.95 0.46) ; 6 + ( 648.21 -169.35 -11.95 0.46) ; 7 + ( 650.40 -170.62 -9.93 0.46) ; 8 + ( 650.80 -172.32 -7.97 0.46) ; 9 + ( 651.95 -173.25 -6.42 0.46) ; 10 + ( 652.93 -175.40 -5.15 0.46) ; 11 + ( 654.68 -176.79 -3.75 0.46) ; 12 + ( 655.52 -178.38 -2.53 0.46) ; 13 + ( 658.41 -180.69 -1.38 0.46) ; 14 + ( 662.07 -182.22 -0.77 0.46) ; 15 + ( 668.23 -184.37 -1.05 0.46) ; 16 + ( 673.03 -186.81 -1.05 0.46) ; 17 + ( 675.41 -186.86 -0.15 0.46) ; 18 + ( 676.97 -189.48 1.27 0.46) ; 19 + ( 678.88 -189.63 2.33 0.46) ; 20 + ( 680.36 -189.88 3.85 0.46) ; 21 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 649.11 -169.13 -20.50 0.46) ; 1 + ( 650.17 -173.67 -6.42 0.46) ; 2 + ( 653.33 -177.10 -3.75 0.46) ; 3 + ( 680.17 -191.12 3.85 0.46) ; 4 + ) ; End of markers + Normal + | + ( 649.24 -169.70 -27.95 0.46) ; 1, R-2-1-1-1-1-2-2 + ( 652.31 -170.78 -29.17 0.46) ; 2 + ( 654.51 -172.05 -29.92 0.46) ; 3 + ( 654.51 -172.05 -30.92 0.46) ; 4 + ( 655.98 -172.30 -31.35 0.46) ; 5 + ( 655.98 -172.30 -31.38 0.46) ; 6 + ( 659.50 -173.28 -32.00 0.46) ; 7 + ( 659.50 -173.28 -32.08 0.46) ; 8 + ( 661.68 -174.55 -33.10 0.46) ; 9 + ( 664.18 -175.15 -32.30 0.46) ; 10 + ( 668.11 -176.60 -33.35 0.46) ; 11 + ( 670.93 -176.54 -33.35 0.46) ; 12 + ( 674.00 -177.62 -33.77 0.46) ; 13 + ( 676.64 -178.79 -34.65 0.46) ; 14 + ( 679.72 -179.86 -35.17 0.46) ; 15 + ( 682.08 -179.91 -35.57 0.46) ; 16 + ( 685.73 -181.43 -36.88 0.46) ; 17 + ( 685.28 -181.54 -36.90 0.46) ; 18 + ( 688.81 -182.52 -37.55 0.46) ; 19 + ( 688.81 -182.52 -37.58 0.46) ; 20 + ( 691.05 -181.99 -38.47 0.46) ; 21 + ( 692.65 -182.80 -38.47 0.46) ; 22 + ( 695.86 -184.44 -39.67 0.46) ; 23 + ( 698.05 -185.71 -40.55 0.46) ; 24 + ( 700.85 -185.65 -41.47 0.46) ; 25 + ( 704.83 -186.52 -43.00 0.46) ; 26 + ( 704.83 -186.52 -43.02 0.46) ; 27 + ( 709.06 -188.51 -44.02 0.46) ; 28 + ( 713.48 -189.27 -44.87 0.46) ; 29 + ( 713.48 -189.27 -44.90 0.46) ; 30 + ( 715.09 -190.08 -45.60 0.46) ; 31 + ( 719.91 -192.54 -45.92 0.46) ; 32 + ( 722.08 -193.81 -45.92 0.46) ; 33 + ( 723.51 -195.88 -45.92 0.46) ; 34 + ( 725.88 -195.92 -44.80 0.46) ; 35 + ( 730.42 -197.23 -44.00 0.46) ; 36 + ( 730.42 -197.23 -44.05 0.46) ; 37 + ( 734.72 -197.43 -43.47 0.46) ; 38 + ( 734.72 -197.43 -43.50 0.46) ; 39 + ( 740.91 -197.76 -41.97 0.46) ; 40 + ( 740.91 -197.76 -42.00 0.46) ; 41 + ( 744.49 -196.93 -41.82 0.46) ; 42 + ( 744.49 -196.93 -41.85 0.46) ; 43 + ( 747.74 -196.76 -43.30 0.46) ; 44 + ( 747.74 -196.76 -43.33 0.46) ; 45 + ( 749.80 -197.47 -44.58 0.46) ; 46 + ( 752.12 -199.32 -44.78 0.46) ; 47 + ( 758.33 -199.66 -45.10 0.46) ; 48 + ( 763.94 -199.54 -45.10 0.46) ; 49 + ( 768.37 -200.28 -45.10 0.46) ; 50 + ( 772.33 -201.16 -45.88 0.46) ; 51 + ( 774.56 -200.63 -43.67 0.46) ; 52 + ( 777.34 -202.36 -43.05 0.46) ; 53 + ( 780.99 -203.90 -41.88 0.46) ; 54 + ( 785.60 -203.42 -41.88 0.46) ; 55 + ( 790.45 -204.07 -41.88 0.46) ; 56 + ( 795.14 -205.96 -43.07 0.46) ; 57 + ( 798.92 -208.06 -43.22 0.46) ; 58 + ( 803.15 -210.05 -43.22 0.46) ; 59 + ( 808.03 -210.70 -43.75 0.46) ; 60 + ( 808.03 -210.70 -43.78 0.46) ; 61 + ( 810.16 -213.79 -44.30 0.46) ; 62 + ( 815.60 -214.90 -44.30 0.46) ; 63 + ( 821.05 -216.01 -44.52 0.46) ; 64 + ( 826.04 -217.22 -43.22 0.46) ; 65 + ( 831.49 -218.34 -42.17 0.46) ; 66 + ( 831.49 -218.34 -42.20 0.46) ; 67 + ( 833.90 -216.59 -41.32 0.46) ; 68 + ( 837.02 -215.85 -40.45 0.46) ; 69 + ( 839.85 -215.79 -39.63 0.46) ; 70 + ( 844.70 -216.43 -39.63 0.46) ; 71 + ( 848.49 -218.53 -39.15 0.46) ; 72 + ( 852.64 -218.16 -41.57 0.46) ; 73 + ( 858.94 -220.86 -41.42 0.46) ; 74 + ( 863.49 -222.19 -41.42 0.46) ; 75 + ( 866.88 -222.58 -40.55 0.46) ; 76 + ( 871.34 -221.54 -39.30 0.46) ; 77 + ( 874.15 -221.50 -37.00 0.46) ; 78 + ( 878.62 -220.45 -35.97 0.46) ; 79 + ( 878.17 -220.55 -35.97 0.46) ; 80 + ( 881.12 -221.06 -34.95 0.46) ; 81 + ( 883.93 -220.99 -33.85 0.46) ; 82 + ( 888.08 -220.62 -34.47 0.46) ; 83 + ( 891.02 -221.13 -34.47 0.46) ; 84 + ( 895.18 -220.75 -35.92 0.46) ; 85 + ( 899.91 -220.83 -35.92 0.46) ; 86 + ( 904.34 -221.59 -37.02 0.46) ; 87 + ( 904.34 -221.59 -37.05 0.46) ; 88 + ( 907.14 -221.53 -37.05 0.46) ; 89 + ( 909.63 -222.14 -37.05 0.46) ; 90 + ( 911.74 -221.04 -37.05 0.46) ; 91 + ( 916.60 -221.70 -37.05 0.46) ; 92 + ( 918.39 -221.28 -35.97 0.46) ; 93 + ( 918.39 -221.28 -36.10 0.46) ; 94 + ( 921.92 -222.25 -36.17 0.46) ; 95 + ( 929.01 -222.37 -36.17 0.46) ; 96 + ( 931.24 -221.85 -36.17 0.46) ; 97 + ( 936.42 -221.83 -36.17 0.46) ; 98 + ( 941.47 -221.25 -37.28 0.46) ; 99 + ( 945.50 -220.31 -38.25 0.46) ; 100 + ( 945.50 -220.31 -38.27 0.46) ; 101 + ( 949.77 -220.50 -39.13 0.46) ; 102 + ( 952.09 -222.34 -40.32 0.46) ; 103 + ( 952.09 -222.34 -40.35 0.46) ; 104 + ( 952.93 -223.94 -40.97 0.46) ; 105 + ( 952.93 -223.94 -41.00 0.46) ; 106 + ( 955.35 -222.18 -41.52 0.46) ; 107 + ( 955.35 -222.18 -41.55 0.46) ; 108 + ( 954.69 -219.35 -40.90 0.46) ; 109 + ( 953.89 -215.95 -39.65 0.46) ; 110 + ( 953.36 -213.68 -39.65 0.46) ; 111 + ( 952.65 -212.66 -38.38 0.46) ; 112 + ( 950.86 -213.07 -36.25 0.46) ; 113 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 678.96 -180.64 -35.17 0.46) ; 1 + ( 883.31 -222.34 -33.85 0.46) ; 2 + ( 890.40 -222.47 -34.47 0.46) ; 3 + ( 899.73 -222.07 -35.92 0.46) ; 4 + ( 955.30 -223.98 -41.57 0.46) ; 5 + ( 954.26 -213.47 -41.70 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 664.18 -175.15 -32.30 0.46) ; 1 + ( 692.65 -182.80 -38.47 0.46) ; 2 + ( 715.09 -190.08 -45.60 0.46) ; 3 + ( 772.91 -201.62 -45.88 0.46) ; 4 + ( 821.50 -215.90 -44.52 0.46) ; 5 + ( 839.85 -215.79 -39.63 0.46) ; 6 + ( 858.62 -221.53 -41.42 0.46) ; 7 + ( 863.49 -222.19 -41.42 0.46) ; 8 + ( 870.89 -221.65 -39.30 0.46) ; 9 + ( 951.18 -212.40 -36.25 0.46) ; 10 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 427.40 -91.87 -0.88 0.46) ; 1, R-2-1-1-1-2 + ( 428.66 -89.19 -1.40 0.46) ; 2 + ( 429.29 -87.85 -1.65 0.46) ; 3 + ( 431.69 -86.08 -1.65 0.46) ; 4 + ( 434.42 -83.66 -2.45 0.46) ; 5 + ( 434.47 -81.85 -3.88 0.46) ; 6 + ( 437.96 -78.65 -4.57 0.46) ; 7 + ( 437.96 -78.65 -4.60 0.46) ; 8 + ( 438.72 -77.87 -5.27 0.46) ; 9 + ( 441.45 -75.44 -6.07 0.46) ; 10 + ( 444.18 -73.01 -6.80 0.46) ; 11 + ( 447.04 -71.15 -7.35 0.46) ; 12 + ( 449.64 -68.15 -7.35 0.46) ; 13 + ( 451.91 -65.83 -8.18 0.46) ; 14 + ( 452.91 -62.01 -8.18 0.46) ; 15 + ( 453.84 -60.00 -8.52 0.46) ; 16 + ( 455.56 -57.21 -8.52 0.46) ; 17 + ( 455.11 -57.31 -8.52 0.46) ; 18 + ( 456.76 -56.33 -8.52 0.46) ; 19 + ( 456.67 -53.96 -8.52 0.46) ; 20 + ( 458.06 -51.84 -8.88 0.46) ; 21 + ( 460.66 -48.84 -9.17 0.46) ; 22 + ( 460.66 -48.84 -9.20 0.46) ; 23 + ( 460.27 -47.15 -9.80 0.46) ; 24 + ( 462.99 -44.71 -10.57 0.46) ; 25 + ( 463.84 -40.33 -11.42 0.46) ; 26 + ( 465.56 -37.55 -12.52 0.46) ; 27 + ( 465.56 -37.55 -12.55 0.46) ; 28 + ( 466.80 -34.86 -13.67 0.46) ; 29 + ( 466.80 -34.86 -13.70 0.46) ; 30 + ( 468.06 -32.19 -14.30 0.46) ; 31 + ( 470.02 -30.53 -14.57 0.46) ; 32 + ( 471.29 -27.84 -14.57 0.46) ; 33 + ( 472.67 -25.73 -15.17 0.46) ; 34 + ( 473.93 -23.04 -15.05 0.46) ; 35 + ( 475.63 -20.26 -15.68 0.46) ; 36 + ( 477.15 -18.71 -15.68 0.46) ; 37 + ( 479.17 -15.25 -16.52 0.46) ; 38 + ( 481.81 -10.44 -17.05 0.46) ; 39 + ( 482.62 -7.87 -17.80 0.46) ; 40 + ( 485.21 -4.87 -17.13 0.46) ; 41 + ( 486.52 -0.38 -16.27 0.46) ; 42 + ( 488.23 2.40 -15.90 0.46) ; 43 + ( 490.15 8.24 -16.25 0.46) ; 44 + ( 491.28 11.48 -16.27 0.46) ; 45 + ( 491.77 13.39 -17.15 0.46) ; 46 + ( 493.35 16.74 -17.80 0.46) ; 47 + ( 495.49 19.63 -18.63 0.46) ; 48 + ( 497.95 23.20 -19.33 0.46) ; 49 + ( 500.47 28.56 -20.20 0.46) ; 50 + ( 500.47 28.56 -20.25 0.46) ; 51 + ( 504.59 33.11 -20.85 0.46) ; 52 + ( 504.59 33.11 -20.87 0.46) ; 53 + ( 508.56 38.22 -21.32 0.46) ; 54 + ( 509.42 42.61 -21.32 0.46) ; 55 + ( 512.39 48.07 -21.42 0.46) ; 56 + ( 513.40 51.91 -19.58 0.46) ; 57 + ( 515.86 55.47 -20.13 0.46) ; 58 + ( 518.64 59.71 -20.42 0.46) ; 59 + ( 520.52 63.73 -19.58 0.46) ; 60 + ( 520.88 66.21 -19.58 0.46) ; 61 + ( 523.80 69.88 -19.58 0.46) ; 62 + ( 524.65 74.25 -19.58 0.46) ; 63 + ( 528.32 78.70 -19.75 0.46) ; 64 + ( 529.89 82.06 -20.57 0.46) ; 65 + ( 530.75 86.44 -21.48 0.46) ; 66 + ( 530.75 86.44 -21.50 0.46) ; 67 + ( 533.22 89.99 -22.08 0.46) ; 68 + ( 533.22 89.99 -22.10 0.46) ; 69 + ( 534.07 94.37 -22.32 0.46) ; 70 + ( 535.19 97.63 -22.12 0.46) ; 71 + ( 535.19 97.63 -22.20 0.46) ; 72 + ( 538.06 99.49 -23.72 0.46) ; 73 + ( 538.06 99.49 -23.78 0.46) ; 74 + ( 537.71 102.99 -24.62 0.46) ; 75 + ( 537.71 102.99 -24.65 0.46) ; 76 + ( 537.81 106.60 -25.57 0.46) ; 77 + ( 539.37 109.95 -26.17 0.46) ; 78 + ( 539.20 114.70 -26.82 0.46) ; 79 + ( 539.20 114.70 -26.85 0.46) ; 80 + ( 538.41 118.10 -27.47 0.46) ; 81 + ( 538.91 120.01 -24.77 0.46) ; 82 + ( 538.83 122.37 -25.95 0.46) ; 83 + ( 539.23 126.65 -27.12 0.46) ; 84 + ( 539.08 131.39 -28.10 0.46) ; 85 + ( 539.76 134.53 -28.52 0.46) ; 86 + ( 539.54 137.47 -29.85 0.46) ; 87 + ( 539.54 137.47 -29.88 0.46) ; 88 + ( 539.31 140.39 -30.42 0.46) ; 89 + ( 539.31 140.39 -30.45 0.46) ; 90 + ( 539.59 145.25 -30.63 0.46) ; 91 + ( 538.71 151.01 -30.63 0.46) ; 92 + ( 536.81 157.12 -30.13 0.46) ; 93 + ( 535.61 162.22 -29.30 0.46) ; 94 + ( 535.26 165.73 -28.88 0.46) ; 95 + ( 535.99 170.67 -28.02 0.46) ; 96 + ( 536.99 174.48 -28.02 0.46) ; 97 + ( 536.82 179.23 -27.42 0.46) ; 98 + ( 536.77 183.40 -26.85 0.46) ; 99 + ( 536.56 186.33 -26.98 0.46) ; 100 + ( 536.56 186.33 -27.00 0.46) ; 101 + ( 533.93 187.51 -27.00 0.46) ; 102 + ( 530.98 188.01 -27.80 0.46) ; 103 + ( 526.44 189.34 -28.27 0.46) ; 104 + ( 524.83 190.16 -29.32 0.46) ; 105 + ( 524.30 192.41 -30.25 0.46) ; 106 + ( 523.32 194.58 -31.48 0.46) ; 107 + ( 522.34 196.73 -32.67 0.46) ; 108 + ( 522.34 196.73 -32.70 0.46) ; 109 + ( 521.64 197.77 -34.35 0.46) ; 110 + ( 521.64 197.77 -34.40 0.46) ; 111 + ( 520.48 198.68 -36.25 0.46) ; 112 + ( 520.48 198.68 -36.27 0.46) ; 113 + ( 519.77 199.71 -38.10 0.46) ; 114 + ( 519.24 201.97 -40.13 0.46) ; 115 + ( 519.24 201.97 -40.17 0.46) ; 116 + ( 518.84 203.67 -42.30 0.46) ; 117 + ( 518.84 203.67 -42.42 0.46) ; 118 + ( 518.56 204.81 -44.97 0.46) ; 119 + ( 519.25 207.95 -46.50 0.46) ; 120 + ( 519.03 210.89 -47.67 0.46) ; 121 + ( 519.21 212.12 -49.02 0.46) ; 122 + ( 520.47 214.81 -49.45 0.46) ; 123 + ( 521.27 217.38 -51.77 0.46) ; 124 + ( 520.17 220.11 -53.15 0.46) ; 125 + ( 520.17 220.11 -53.18 0.46) ; 126 + ( 519.68 224.17 -54.02 0.46) ; 127 + ( 519.24 224.07 -54.02 0.46) ; 128 + ( 519.59 226.55 -54.78 0.46) ; 129 + ( 514.94 228.34 -54.32 0.46) ; 130 + ( 514.94 228.34 -54.35 0.46) ; 131 + ( 511.20 232.24 -54.35 0.46) ; 132 + ( 508.80 236.46 -55.07 0.46) ; 133 + ( 507.03 242.00 -55.83 0.46) ; 134 + ( 505.70 247.66 -56.92 0.46) ; 135 + ( 505.70 247.66 -56.95 0.46) ; 136 + ( 503.82 249.62 -58.05 0.46) ; 137 + ( 502.98 251.21 -59.22 0.46) ; 138 + ( 499.51 253.98 -59.95 0.46) ; 139 + ( 497.68 257.73 -60.95 0.46) ; 140 + ( 497.68 257.73 -60.97 0.46) ; 141 + ( 495.82 259.69 -62.28 0.46) ; 142 + ( 493.32 260.29 -63.42 0.46) ; 143 + ( 491.31 262.81 -64.80 0.46) ; 144 + ( 491.31 262.81 -64.82 0.46) ; 145 + ( 489.12 264.09 -66.70 0.46) ; 146 + ( 487.44 267.28 -68.10 0.46) ; 147 + ( 487.48 269.07 -69.88 0.46) ; 148 + ( 487.53 270.88 -71.92 0.46) ; 149 + ( 486.25 272.37 -73.22 0.46) ; 150 + ( 485.89 275.87 -75.18 0.46) ; 151 + ( 485.89 275.87 -75.20 0.46) ; 152 + ( 486.57 279.02 -76.90 0.46) ; 153 + ( 486.57 279.02 -76.92 0.46) ; 154 + ( 486.80 282.06 -78.20 0.46) ; 155 + ( 486.80 282.06 -78.22 0.46) ; 156 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 427.22 -93.11 -0.88 0.46) ; 1 + ( 437.83 -78.08 -5.27 0.46) ; 2 + ( 459.18 -48.59 -9.20 0.46) ; 3 + ( 483.78 -8.79 -17.80 0.46) ; 4 + ( 487.60 1.06 -14.85 0.46) ; 5 + ( 491.18 7.87 -16.25 0.46) ; 6 + ( 511.23 49.00 -21.42 0.46) ; 7 + ( 519.35 58.68 -20.42 0.46) ; 8 + ( 529.04 77.67 -19.75 0.46) ; 9 + ( 537.51 117.88 -27.47 0.46) ; 10 + ( 540.55 131.13 -28.10 0.46) ; 11 + ( 506.60 247.88 -56.97 0.46) ; 12 + ( 499.02 258.05 -60.97 0.46) ; 13 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 426.82 -85.44 -1.65 0.46) ; 1 + ( 431.25 -86.19 -1.65 0.46) ; 2 + ( 443.60 -72.55 -6.80 0.46) ; 3 + ( 449.32 -68.82 -7.35 0.46) ; 4 + ( 455.69 -57.78 -8.52 0.46) ; 5 + ( 463.53 -41.01 -11.42 0.46) ; 6 + ( 468.64 -32.64 -14.30 0.46) ; 7 + ( 474.37 -22.94 -15.05 0.46) ; 8 + ( 484.77 -4.98 -17.13 0.46) ; 9 + ( 538.25 106.70 -25.60 0.46) ; 10 + ( 539.76 140.50 -30.45 0.46) ; 11 + ( 536.81 157.12 -30.13 0.46) ; 12 + ( 535.99 170.67 -28.02 0.46) ; 13 + ( 536.69 185.76 -27.00 0.46) ; 14 + ( 525.99 189.23 -28.27 0.46) ; 15 + ( 518.44 205.37 -44.97 0.46) ; 16 + ( 520.02 214.70 -49.45 0.46) ; 17 + ( 519.59 226.55 -54.78 0.46) ; 18 + ( 502.98 251.21 -59.25 0.46) ; 19 + ( 489.44 264.76 -66.72 0.46) ; 20 + ( 487.48 269.07 -71.92 0.46) ; 21 + ) ; End of markers + Normal + ) ; End of split + | + ( 334.92 -67.41 12.88 0.46) ; 1, R-2-1-1-2 + ( 334.92 -67.41 12.85 0.46) ; 2 + ( 336.39 -67.66 15.02 0.46) ; 3 + ( 337.86 -67.91 16.92 0.46) ; 4 + ( 338.81 -65.90 17.38 0.46) ; 5 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 334.73 -68.64 12.85 0.46) ; 1 + ) ; End of markers + ( + ( 340.85 -66.61 17.38 0.46) ; 1, R-2-1-1-2-1 + ( 343.80 -67.11 18.72 0.46) ; 2 + ( 345.58 -66.69 20.00 0.46) ; 3 + ( 347.25 -65.71 21.50 0.46) ; 4 + ( 348.98 -67.10 22.27 0.46) ; 5 + ( 350.45 -67.35 22.92 0.46) ; 6 + ( 352.50 -68.06 23.17 0.46) ; 7 + ( 354.16 -67.08 23.17 0.46) ; 8 + ( 356.21 -67.78 23.90 0.46) ; 9 + ( 358.18 -66.13 24.52 0.46) ; 10 + ( 359.20 -66.49 25.80 0.46) ; 11 + ( 359.20 -66.49 25.77 0.46) ; 12 + ( 360.67 -66.74 27.92 0.46) ; 13 + ( 363.04 -66.78 29.20 0.46) ; 14 + ( 366.39 -68.98 30.00 0.46) ; 15 + ( 370.79 -69.74 30.87 0.46) ; 16 + ( 373.12 -71.59 30.87 0.46) ; 17 + ( 376.20 -72.65 31.65 0.46) ; 18 + ( 378.25 -73.37 32.55 0.46) ; 19 + ( 379.98 -74.76 34.50 0.46) ; 20 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 347.38 -66.27 21.50 0.46) ; 1 + ( 360.36 -67.41 27.92 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 343.80 -67.11 18.72 0.46) ; 1 + ( 351.03 -67.81 22.92 0.46) ; 2 + ( 365.36 -68.64 30.00 0.46) ; 3 + ) ; End of markers + High + | + ( 339.89 -64.45 15.80 0.46) ; 1, R-2-1-1-2-2 + ( 343.49 -61.81 15.07 0.46) ; 2 + ( 345.66 -58.92 16.30 0.46) ; 3 + ( 347.80 -56.02 16.30 0.46) ; 4 + ( 352.31 -53.18 15.00 0.46) ; 5 + ( 355.05 -50.74 15.00 0.46) ; 6 + ( 358.93 -49.23 15.77 0.46) ; 7 + ( 358.93 -49.23 15.73 0.46) ; 8 + ( 360.14 -48.36 17.08 0.46) ; 9 + ( 362.55 -46.60 17.60 0.46) ; 10 + ( 364.65 -45.50 18.60 0.46) ; 11 + ( 365.86 -44.63 19.60 0.46) ; 12 + ( 365.86 -44.63 19.58 0.46) ; 13 + ( 368.27 -42.87 20.35 0.46) ; 14 + ( 370.06 -42.45 20.27 0.46) ; 15 + ( 372.92 -40.59 20.27 0.46) ; 16 + ( 374.40 -40.84 20.77 0.46) ; 17 + ( 378.14 -38.76 20.35 0.46) ; 18 + ( 379.66 -37.21 20.85 0.46) ; 19 + ( 382.35 -36.58 20.85 0.46) ; 20 + ( 384.58 -36.06 20.85 0.46) ; 21 + ( 386.55 -34.41 21.25 0.46) ; 22 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 343.32 -63.04 15.07 0.46) ; 1 + ( 351.29 -52.81 15.00 0.46) ; 2 + ( 361.52 -46.24 17.60 0.46) ; 3 + ( 368.53 -44.00 20.35 0.46) ; 4 + ( 372.42 -42.49 20.27 0.46) ; 5 + ( 380.83 -38.13 20.85 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 339.89 -64.45 15.80 0.46) ; 1 + ( 345.66 -58.92 16.30 0.46) ; 2 + ( 353.84 -51.62 15.00 0.46) ; 3 + ) ; End of markers + ( + ( 385.88 -31.57 20.25 0.46) ; 1, R-2-1-1-2-2-1 + ( 385.88 -31.57 20.20 0.46) ; 2 + ( 382.99 -29.27 19.13 0.46) ; 3 + ( 382.99 -29.27 19.10 0.46) ; 4 + ( 380.85 -26.19 18.27 0.46) ; 5 + ( 378.98 -24.23 17.60 0.46) ; 6 + ( 378.98 -24.23 17.57 0.46) ; 7 + ( 377.38 -23.41 16.38 0.46) ; 8 + ( 376.67 -22.39 14.80 0.46) ; 9 + ( 376.67 -22.39 14.75 0.46) ; 10 + ( 375.24 -20.33 13.30 0.46) ; 11 + ( 375.24 -20.33 13.27 0.46) ; 12 + ( 373.19 -19.63 11.50 0.46) ; 13 + ( 370.61 -16.64 10.80 0.46) ; 14 + ( 370.61 -16.64 10.77 0.46) ; 15 + ( 368.21 -12.43 9.95 0.46) ; 16 + ( 368.21 -12.43 9.93 0.46) ; 17 + ( 365.89 -10.58 9.05 0.46) ; 18 + ( 365.89 -10.58 9.02 0.46) ; 19 + ( 363.32 -7.61 10.10 0.46) ; 20 + ( 361.30 -5.09 10.97 0.46) ; 21 + ( 358.85 -2.68 11.85 0.46) ; 22 + ( 356.72 0.41 12.70 0.46) ; 23 + ( 355.74 2.56 13.40 0.46) ; 24 + ( 352.01 6.47 14.40 0.46) ; 25 + ( 349.10 8.77 14.90 0.46) ; 26 + ( 347.23 10.73 14.40 0.46) ; 27 + ( 345.54 13.90 15.15 0.46) ; 28 + ( 343.23 15.76 14.67 0.46) ; 29 + ( 341.54 18.94 15.32 0.46) ; 30 + ( 339.85 22.13 15.63 0.46) ; 31 + ( 339.40 22.03 15.63 0.46) ; 32 + ( 338.29 24.74 15.12 0.46) ; 33 + ( 337.22 29.29 16.05 0.46) ; 34 + ( 337.20 33.44 15.07 0.46) ; 35 + ( 335.77 35.50 13.95 0.46) ; 36 + ( 335.77 35.50 13.92 0.46) ; 37 + ( 333.19 38.48 13.25 0.46) ; 38 + ( 332.66 40.75 12.77 0.46) ; 39 + ( 331.36 42.24 12.77 0.46) ; 40 + ( 330.65 43.26 12.22 0.46) ; 41 + ( 330.65 43.26 11.95 0.46) ; 42 + ( 328.74 43.41 12.13 0.46) ; 43 + ( 326.33 45.71 12.13 0.46) ; 44 + ( 325.09 49.00 11.30 0.46) ; 45 + ( 322.50 51.98 11.30 0.46) ; 46 + ( 320.29 57.43 11.10 0.46) ; 47 + ( 318.91 61.29 10.52 0.46) ; 48 + ( 317.09 65.04 10.28 0.46) ; 49 + ( 315.36 66.43 9.35 0.46) ; 50 + ( 313.79 69.05 8.68 0.46) ; 51 + ( 313.26 71.31 8.05 0.46) ; 52 + ( 312.41 72.90 7.50 0.46) ; 53 + ( 312.33 75.28 6.55 0.46) ; 54 + ( 312.33 75.28 6.52 0.46) ; 55 + ( 310.64 78.46 5.27 0.46) ; 56 + ( 308.28 78.51 4.27 0.46) ; 57 + ( 308.28 78.51 4.25 0.46) ; 58 + ( 307.93 82.01 3.57 0.46) ; 59 + ( 307.48 81.90 3.55 0.46) ; 60 + ( 306.82 84.73 3.02 0.46) ; 61 + ( 306.82 84.73 3.00 0.46) ; 62 + ( 305.08 86.11 2.47 0.46) ; 63 + ( 304.68 87.81 1.80 0.46) ; 64 + ( 303.57 90.54 1.38 0.46) ; 65 + ( 302.28 92.02 0.70 0.46) ; 66 + ( 301.88 93.73 -0.30 0.46) ; 67 + ( 301.05 95.32 -1.63 0.46) ; 68 + ( 301.05 95.32 -1.65 0.46) ; 69 + ( 299.04 97.83 -2.38 0.46) ; 70 + ( 299.04 97.83 -2.40 0.46) ; 71 + ( 297.75 99.32 -3.80 0.46) ; 72 + ( 298.24 101.23 -5.32 0.46) ; 73 + ( 296.76 101.48 -6.55 0.46) ; 74 + ( 296.95 102.71 -6.88 0.46) ; 75 + ( 296.95 102.71 -6.90 0.46) ; 76 + ( 296.23 103.76 -8.00 0.46) ; 77 + ( 296.23 103.76 -8.02 0.46) ; 78 + ( 294.50 105.13 -8.70 0.46) ; 79 + ( 294.10 106.83 -9.90 0.46) ; 80 + ( 294.10 106.83 -9.93 0.46) ; 81 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 358.10 -3.44 11.85 0.46) ; 1 + ( 351.95 4.67 14.40 0.46) ; 2 + ( 338.63 21.25 15.63 0.46) ; 3 + ( 336.47 28.50 16.00 0.46) ; 4 + ( 333.14 36.67 13.25 0.46) ; 5 + ( 319.39 57.22 11.10 0.46) ; 6 + ( 313.03 68.27 8.68 0.46) ; 7 + ( 308.55 83.34 3.00 0.46) ; 8 + ( 303.08 88.64 1.38 0.46) ; 9 + ( 295.57 106.58 -9.93 0.46) ; 10 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 376.41 -21.26 13.27 0.46) ; 1 + ( 365.89 -10.58 9.02 0.46) ; 2 + ( 363.32 -7.61 10.10 0.46) ; 3 + ( 347.68 10.83 14.40 0.46) ; 4 + ( 343.67 15.86 14.67 0.46) ; 5 + ( 328.74 43.41 12.13 0.46) ; 6 + ( 315.22 67.00 9.35 0.46) ; 7 + ( 298.33 98.86 -3.80 0.46) ; 8 + ) ; End of markers + ( + ( 292.12 109.25 -10.60 0.46) ; 1, R-2-1-1-2-2-1-1 + ( 292.12 109.25 -10.63 0.46) ; 2 + ( 290.69 111.29 -12.22 0.46) ; 3 + ( 290.69 111.29 -12.25 0.46) ; 4 + ( 289.28 113.35 -13.72 0.46) ; 5 + ( 289.28 113.35 -13.75 0.46) ; 6 + ( 288.30 115.52 -15.45 0.46) ; 7 + ( 287.14 116.43 -17.35 0.46) ; 8 + ( 287.06 118.80 -18.82 0.46) ; 9 + ( 285.50 121.42 -20.23 0.46) ; 10 + ( 285.73 124.46 -21.45 0.46) ; 11 + ( 283.14 127.44 -21.92 0.46) ; 12 + ( 280.97 128.72 -22.85 0.46) ; 13 + ( 280.97 128.72 -22.88 0.46) ; 14 + ( 278.69 132.36 -24.20 0.46) ; 15 + ( 278.69 132.36 -24.22 0.46) ; 16 + ( 276.42 136.01 -24.70 0.46) ; 17 + ( 276.42 136.01 -24.72 0.46) ; 18 + ( 275.58 137.60 -25.95 0.46) ; 19 + ( 273.57 140.12 -27.32 0.46) ; 20 + ( 273.57 140.12 -27.35 0.46) ; 21 + ( 271.84 141.50 -28.55 0.46) ; 22 + ( 271.71 142.08 -28.55 0.46) ; 23 + ( 270.29 144.12 -29.70 0.46) ; 24 + ( 270.29 144.12 -29.72 0.46) ; 25 + ( 266.10 147.92 -30.38 0.46) ; 26 + ( 264.80 149.42 -31.88 0.46) ; 27 + ( 264.80 149.42 -31.90 0.46) ; 28 + ( 263.70 152.13 -33.57 0.46) ; 29 + ( 261.68 154.65 -34.28 0.46) ; 30 + ( 259.95 156.04 -35.13 0.46) ; 31 + ( 259.51 155.94 -35.15 0.46) ; 32 + ( 256.35 159.37 -36.20 0.46) ; 33 + ( 256.27 161.75 -37.32 0.46) ; 34 + ( 256.27 161.75 -37.35 0.46) ; 35 + ( 255.02 165.04 -38.27 0.46) ; 36 + ( 255.02 165.04 -38.30 0.46) ; 37 + ( 251.15 169.50 -39.25 0.46) ; 38 + ( 249.01 172.58 -38.20 0.46) ; 39 + ( 245.71 176.59 -36.65 0.46) ; 40 + ( 242.37 178.79 -35.27 0.46) ; 41 + ( 237.82 180.11 -35.13 0.46) ; 42 + ( 235.82 182.63 -36.63 0.46) ; 43 + ( 234.39 184.69 -35.80 0.46) ; 44 + ( 234.39 184.69 -35.88 0.46) ; 45 + ( 231.19 186.32 -37.17 0.46) ; 46 + ( 230.74 186.22 -37.17 0.46) ; 47 + ( 227.39 188.42 -38.92 0.46) ; 48 + ( 227.39 188.42 -38.95 0.46) ; 49 + ( 225.52 190.36 -40.88 0.46) ; 50 + ( 225.52 190.36 -40.90 0.46) ; 51 + ( 223.03 190.98 -42.45 0.46) ; 52 + ( 219.68 193.17 -43.65 0.46) ; 53 + ( 218.04 198.17 -44.65 0.46) ; 54 + ( 214.43 201.50 -44.70 0.46) ; 55 + ( 212.25 202.78 -44.70 0.46) ; 56 + ( 209.36 205.09 -45.50 0.46) ; 57 + ( 207.66 208.28 -46.20 0.46) ; 58 + ( 204.94 211.83 -46.32 0.46) ; 59 + ( 201.16 213.92 -47.88 0.46) ; 60 + ( 201.16 213.92 -47.90 0.46) ; 61 + ( 198.85 215.76 -48.95 0.46) ; 62 + ( 195.23 219.10 -49.65 0.46) ; 63 + ( 191.04 222.89 -50.27 0.46) ; 64 + ( 187.84 224.53 -51.25 0.46) ; 65 + ( 185.52 226.38 -52.22 0.46) ; 66 + ( 182.62 228.68 -52.22 0.46) ; 67 + ( 179.86 230.42 -53.42 0.46) ; 68 + ( 177.14 233.96 -53.92 0.46) ; 69 + ( 175.59 236.59 -54.32 0.46) ; 70 + ( 174.08 241.01 -55.85 0.46) ; 71 + ( 171.94 244.09 -57.42 0.46) ; 72 + ( 169.81 247.18 -58.40 0.46) ; 73 + ( 168.75 251.71 -59.45 0.46) ; 74 + ( 168.75 251.71 -59.47 0.46) ; 75 + ( 168.53 254.65 -61.40 0.46) ; 76 + ( 167.15 258.51 -62.55 0.46) ; 77 + ( 167.15 258.51 -62.57 0.46) ; 78 + ( 165.96 263.59 -63.02 0.46) ; 79 + ( 163.47 270.17 -63.02 0.46) ; 80 + ( 160.62 274.29 -63.13 0.46) ; 81 + ( 157.52 279.53 -63.13 0.46) ; 82 + ( 156.54 281.69 -61.65 0.46) ; 83 + ( 156.09 281.59 -61.65 0.46) ; 84 + ( 154.10 284.10 -58.07 0.46) ; 85 + ( 151.63 286.52 -56.60 0.46) ; 86 + ( 149.32 288.35 -55.32 0.46) ; 87 + ( 149.32 288.35 -55.35 0.46) ; 88 + ( 146.92 292.58 -54.40 0.46) ; 89 + ( 146.92 292.58 -54.05 0.46) ; 90 + ( 144.08 296.68 -53.62 0.46) ; 91 + ( 141.86 302.13 -53.05 0.46) ; 92 + ( 139.13 305.67 -52.50 0.46) ; 93 + ( 136.64 306.18 -51.32 0.46) ; 94 + ( 133.08 311.32 -50.92 0.46) ; 95 + ( 131.53 313.95 -49.72 0.46) ; 96 + ( 129.92 314.76 -48.15 0.46) ; 97 + ( 128.37 317.39 -47.17 0.46) ; 98 + ( 125.97 321.60 -46.25 0.46) ; 99 + ( 122.93 324.47 -45.45 0.46) ; 100 + ( 122.93 324.47 -45.50 0.46) ; 101 + ( 121.06 326.42 -44.30 0.46) ; 102 + ( 118.74 328.27 -43.88 0.46) ; 103 + ( 118.74 328.27 -43.90 0.46) ; 104 + ( 116.88 330.22 -42.72 0.46) ; 105 + ( 115.01 332.16 -41.50 0.46) ; 106 + ( 111.66 334.36 -40.32 0.46) ; 107 + ( 109.79 336.32 -39.17 0.46) ; 108 + ( 108.50 337.80 -37.15 0.46) ; 109 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 288.38 113.14 -13.75 0.46) ; 1 + ( 198.09 214.99 -48.95 0.46) ; 2 + ( 183.02 226.98 -52.22 0.46) ; 3 + ( 119.01 327.13 -43.90 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 286.48 119.25 -18.82 0.46) ; 1 + ( 246.29 176.13 -36.65 0.46) ; 2 + ( 219.68 193.17 -43.65 0.46) ; 3 + ( 176.04 236.70 -54.32 0.46) ; 4 + ( 157.78 278.39 -63.13 0.46) ; 5 + ( 139.13 305.67 -52.50 0.46) ; 6 + ( 131.66 313.37 -49.72 0.46) ; 7 + ) ; End of markers + Normal + | + ( 292.93 108.96 -12.15 0.46) ; 1, R-2-1-1-2-2-1-2 + ( 291.82 111.69 -12.67 0.46) ; 2 + ( 292.20 114.16 -13.72 0.46) ; 3 + ( 291.92 115.30 -15.63 0.46) ; 4 + ( 292.47 119.00 -17.82 0.46) ; 5 + ( 294.04 122.36 -20.07 0.46) ; 6 + ( 294.04 122.36 -20.13 0.46) ; 7 + ( 295.11 123.80 -22.55 0.46) ; 8 + ( 295.11 123.80 -22.57 0.46) ; 9 + ( 295.29 125.04 -24.22 0.46) ; 10 + ( 295.29 125.04 -24.25 0.46) ; 11 + ( 295.47 126.27 -25.67 0.46) ; 12 + ( 293.43 126.99 -27.12 0.46) ; 13 + ( 291.42 129.50 -31.72 0.46) ; 14 + ( 291.42 129.50 -31.75 0.46) ; 15 + ( 289.86 132.13 -33.38 0.46) ; 16 + ( 289.07 135.53 -36.72 0.46) ; 17 + ( 286.62 137.93 -37.60 0.46) ; 18 + ( 284.29 139.78 -39.75 0.46) ; 19 + ( 284.29 139.78 -39.80 0.46) ; 20 + ( 282.56 141.16 -41.97 0.46) ; 21 + ( 282.56 141.16 -42.05 0.46) ; 22 + ( 282.35 144.10 -43.55 0.46) ; 23 + ( 282.35 144.10 -43.58 0.46) ; 24 + ( 280.47 146.04 -45.72 0.46) ; 25 + ( 279.68 149.44 -46.82 0.46) ; 26 + ( 279.68 149.44 -46.85 0.46) ; 27 + ( 278.57 152.17 -48.25 0.46) ; 28 + ( 278.57 152.17 -48.30 0.46) ; 29 + ( 277.72 153.76 -50.38 0.46) ; 30 + ( 276.74 155.92 -52.30 0.46) ; 31 + ( 276.74 155.92 -52.35 0.46) ; 32 + ( 276.08 158.76 -54.52 0.46) ; 33 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 292.40 111.22 -12.67 0.46) ; 1 + ( 295.29 125.04 -24.25 0.46) ; 2 + ( 289.20 134.95 -36.72 0.46) ; 3 + ( 275.63 158.65 -54.52 0.46) ; 4 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 276.37 158.19 -7.22 0.46) ; 1 + ) ; End of markers + Normal + ) ; End of split + | + ( 390.27 -32.93 21.42 0.46) ; 1, R-2-1-1-2-2-2 + ( 390.27 -32.93 21.40 0.46) ; 2 + ( 392.87 -29.93 21.40 0.46) ; 3 + ( 395.99 -29.20 22.70 0.46) ; 4 + ( 398.67 -28.58 23.88 0.46) ; 5 + ( 400.32 -27.59 25.15 0.46) ; 6 + ( 402.74 -25.83 25.83 0.46) ; 7 + ( 406.62 -24.32 25.83 0.46) ; 8 + ( 407.39 -23.54 26.70 0.46) ; 9 + ( 409.62 -23.02 27.45 0.46) ; 10 + ( 410.95 -22.71 29.15 0.46) ; 11 + ( 410.95 -22.71 29.10 0.46) ; 12 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 409.89 -24.16 29.10 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 396.44 -29.09 22.70 0.46) ; 1 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 321.59 -67.56 11.70 0.46) ; 1, R-2-1-2 + ( 320.79 -64.16 10.60 0.46) ; 2 + ( 320.79 -64.16 10.57 0.46) ; 3 + ( 320.71 -61.79 9.82 0.46) ; 4 + ( 320.71 -61.79 9.80 0.46) ; 5 + ( 321.39 -58.64 9.32 0.46) ; 6 + ( 321.44 -56.84 8.05 0.46) ; 7 + ( 321.04 -55.15 6.78 0.46) ; 8 + ( 320.19 -53.55 5.97 0.46) ; 9 + ( 320.19 -53.55 5.95 0.46) ; 10 + ( 320.24 -51.75 5.15 0.46) ; 11 + ( 320.24 -51.75 5.13 0.46) ; 12 + ( 318.95 -50.25 4.60 0.46) ; 13 + ( 318.95 -50.25 4.57 0.46) ; 14 + ( 318.16 -46.87 4.72 0.46) ; 15 + ( 316.60 -44.25 4.92 0.46) ; 16 + ( 316.33 -43.11 4.92 0.46) ; 17 + ( 317.14 -40.53 4.47 0.46) ; 18 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 319.43 -60.30 9.32 0.46) ; 1 + ( 317.66 -48.77 4.72 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 320.48 -48.71 4.00 0.46) ; 1 + ) ; End of markers + ( + ( 316.35 -37.13 3.92 0.46) ; 1, R-2-1-2-1 + ( 316.45 -33.52 3.02 0.46) ; 2 + ( 314.89 -30.91 1.70 0.46) ; 3 + ( 314.89 -30.91 1.67 0.46) ; 4 + ( 316.41 -29.36 0.32 0.46) ; 5 + ( 316.41 -29.36 0.28 0.46) ; 6 + ( 316.33 -26.99 -0.52 0.46) ; 7 + ( 314.46 -25.03 -1.55 0.46) ; 8 + ( 315.53 -23.59 -3.10 0.46) ; 9 + ( 315.45 -21.21 -4.05 0.46) ; 10 + ( 315.68 -18.18 -4.68 0.46) ; 11 + ( 315.33 -14.68 -5.22 0.46) ; 12 + ( 316.26 -12.67 -6.38 0.46) ; 13 + ( 316.13 -12.10 -7.70 0.46) ; 14 + ( 314.98 -11.18 -8.95 0.46) ; 15 + ( 314.76 -8.24 -10.22 0.46) ; 16 + ( 314.81 -6.44 -9.77 0.46) ; 17 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 317.37 -37.49 3.92 0.46) ; 1 + ( 315.58 -27.77 -0.52 0.46) ; 2 + ( 316.74 -22.72 -4.05 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 321.45 -28.77 -0.52 0.46) ; 1 + ( 316.94 -9.53 -10.22 0.46) ; 2 + ) ; End of markers + ( + ( 315.62 -3.86 -11.70 0.46) ; 1, R-2-1-2-1-1 + ( 316.97 -3.55 -12.98 0.46) ; 2 + ( 315.86 -0.83 -13.85 0.46) ; 3 + ( 315.86 -0.83 -13.87 0.46) ; 4 + ( 316.21 1.65 -14.40 0.46) ; 5 + ( 316.49 6.49 -14.82 0.46) ; 6 + ( 314.93 9.11 -14.65 0.46) ; 7 + ( 314.14 12.51 -15.40 0.46) ; 8 + ( 314.14 12.51 -15.43 0.46) ; 9 + ( 314.50 14.98 -16.90 0.46) ; 10 + ( 314.73 18.02 -18.48 0.46) ; 11 + ( 314.73 18.02 -18.50 0.46) ; 12 + ( 316.69 19.67 -20.03 0.46) ; 13 + ( 318.14 23.60 -20.97 0.46) ; 14 + ( 318.95 26.17 -21.77 0.46) ; 15 + ( 320.52 29.53 -22.65 0.46) ; 16 + ( 321.10 35.03 -23.30 0.46) ; 17 + ( 321.10 35.03 -23.33 0.46) ; 18 + ( 320.76 38.54 -23.67 0.46) ; 19 + ( 321.48 43.48 -24.45 0.46) ; 20 + ( 321.13 46.99 -25.00 0.46) ; 21 + ( 321.86 51.93 -25.67 0.46) ; 22 + ( 322.27 56.21 -26.42 0.46) ; 23 + ( 321.69 56.67 -27.97 0.46) ; 24 + ( 321.42 57.81 -28.82 0.46) ; 25 + ( 321.42 57.81 -28.85 0.46) ; 26 + ( 322.10 60.95 -30.30 0.46) ; 27 + ( 323.59 66.67 -31.40 0.46) ; 28 + ( 324.71 69.92 -31.40 0.46) ; 29 + ( 325.52 72.50 -31.40 0.46) ; 30 + ( 326.91 74.62 -31.88 0.46) ; 31 + ( 326.74 79.35 -32.50 0.46) ; 32 + ( 327.02 84.20 -33.03 0.46) ; 33 + ( 327.12 87.80 -34.20 0.46) ; 34 + ( 328.06 89.82 -35.13 0.46) ; 35 + ( 327.40 92.65 -35.20 0.46) ; 36 + ( 327.94 96.35 -35.65 0.46) ; 37 + ( 328.39 100.54 -35.42 0.46) ; 38 + ( 328.45 102.34 -36.85 0.46) ; 39 + ( 328.22 105.27 -37.60 0.46) ; 40 + ( 328.22 105.27 -37.63 0.46) ; 41 + ( 329.80 108.63 -38.67 0.46) ; 42 + ( 329.27 110.88 -38.15 0.46) ; 43 + ( 329.54 115.73 -38.15 0.46) ; 44 + ( 329.63 119.33 -38.15 0.46) ; 45 + ( 332.10 122.90 -37.17 0.46) ; 46 + ( 332.51 127.18 -37.10 0.46) ; 47 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 314.69 0.10 -14.40 0.46) ; 1 + ( 322.74 46.18 -25.00 0.46) ; 2 + ( 333.13 122.55 -37.17 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 315.38 9.21 -14.65 0.46) ; 1 + ( 313.65 10.60 -17.05 0.46) ; 2 + ( 314.27 11.94 -15.27 0.46) ; 3 + ( 318.28 23.03 -20.97 0.46) ; 4 + ( 322.10 60.95 -30.30 0.46) ; 5 + ( 326.91 74.62 -31.88 0.46) ; 6 + ( 328.07 95.79 -35.67 0.46) ; 7 + ) ; End of markers + ( + ( 334.92 128.94 -35.83 0.46) ; 1, R-2-1-2-1-1-1 + ( 334.92 128.94 -35.88 0.46) ; 2 + ( 338.82 130.44 -34.78 0.46) ; 3 + ( 338.82 130.44 -34.80 0.46) ; 4 + ( 342.20 130.04 -33.92 0.46) ; 5 + ( 344.49 132.37 -33.10 0.46) ; 6 + ( 348.06 133.21 -32.42 0.46) ; 7 + ( 350.33 135.54 -31.00 0.46) ; 8 + ( 352.27 135.39 -30.65 0.46) ; 9 + ( 354.36 136.48 -29.97 0.46) ; 10 + ( 357.66 138.45 -28.77 0.46) ; 11 + ( 360.35 139.07 -28.77 0.46) ; 12 + ( 363.21 140.93 -28.77 0.46) ; 13 + ( 364.86 141.92 -28.77 0.46) ; 14 + ( 367.54 142.54 -28.77 0.46) ; 15 + ( 370.09 143.75 -28.05 0.46) ; 16 + ( 373.65 144.58 -27.22 0.46) ; 17 + ( 377.28 147.23 -26.88 0.46) ; 18 + ( 379.97 147.85 -26.07 0.46) ; 19 + ( 381.49 149.41 -25.05 0.46) ; 20 + ( 383.01 150.96 -24.20 0.46) ; 21 + ( 385.42 152.72 -22.67 0.46) ; 22 + ( 385.42 152.72 -22.70 0.46) ; 23 + ( 388.29 154.58 -22.47 0.46) ; 24 + ( 390.38 155.67 -22.47 0.46) ; 25 + ( 391.14 156.44 -22.47 0.46) ; 26 + ( 395.75 156.92 -22.47 0.46) ; 27 + ( 398.60 158.79 -23.57 0.46) ; 28 + ( 402.44 158.50 -23.67 0.46) ; 29 + ( 406.02 159.33 -23.72 0.46) ; 30 + ( 408.69 159.96 -22.12 0.46) ; 31 + ( 411.25 161.15 -20.60 0.46) ; 32 + ( 414.77 160.19 -19.92 0.46) ; 33 + ( 418.92 160.57 -20.27 0.46) ; 34 + ( 422.63 160.84 -20.27 0.46) ; 35 + ( 425.75 161.57 -20.27 0.46) ; 36 + ( 428.44 162.20 -19.52 0.46) ; 37 + ( 432.90 163.24 -19.52 0.46) ; 38 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 341.49 131.07 -33.92 0.46) ; 1 + ( 351.05 134.51 -31.00 0.46) ; 2 + ( 405.70 158.66 -23.72 0.46) ; 3 + ( 417.40 159.01 -20.27 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 354.23 137.04 -29.97 0.46) ; 1 + ( 385.29 153.28 -22.70 0.46) ; 2 + ( 383.01 150.96 -22.70 0.46) ; 3 + ( 398.47 159.36 -23.57 0.46) ; 4 + ( 402.89 158.60 -23.67 0.46) ; 5 + ( 411.12 161.72 -20.60 0.46) ; 6 + ( 428.44 162.20 -19.52 0.46) ; 7 + ) ; End of markers + ( + ( 433.75 161.65 -19.67 0.46) ; 1, R-2-1-2-1-1-1-1 + ( 435.29 159.02 -20.10 0.46) ; 2 + ( 435.29 159.02 -20.13 0.46) ; 3 + ( 436.27 156.87 -20.55 0.46) ; 4 + ( 436.94 154.04 -21.50 0.46) ; 5 + ( 434.84 152.95 -22.92 0.46) ; 6 + ( 431.59 152.79 -23.35 0.46) ; 7 + ( 428.01 151.94 -24.22 0.46) ; 8 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 436.46 158.10 -20.55 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 436.22 155.07 -21.50 0.46) ; 1 + ( 428.46 152.05 -24.22 0.46) ; 2 + ) ; End of markers + Normal + | + ( 434.87 164.90 -19.52 0.46) ; 1, R-2-1-2-1-1-1-2 + ( 435.50 166.24 -19.52 0.46) ; 2 + ( 437.55 165.53 -18.67 0.46) ; 3 + ( 439.65 166.61 -18.05 0.46) ; 4 + ( 441.69 165.91 -16.95 0.46) ; 5 + ( 443.93 166.43 -15.88 0.46) ; 6 + ( 447.63 166.70 -15.88 0.46) ; 7 + ( 451.04 166.30 -16.98 0.46) ; 8 + ( 452.95 166.15 -18.08 0.46) ; 9 + ( 454.47 167.70 -18.50 0.46) ; 10 + ( 457.73 167.87 -19.70 0.46) ; 11 + ( 460.41 168.50 -20.42 0.46) ; 12 + ( 462.77 168.45 -21.75 0.46) ; 13 + ( 462.77 168.45 -22.22 0.46) ; 14 + ( 466.16 168.05 -22.92 0.46) ; 15 + ( 469.29 168.79 -23.60 0.46) ; 16 + ( 469.29 168.79 -23.63 0.46) ; 17 + ( 472.86 169.62 -24.27 0.46) ; 18 + ( 477.60 169.54 -24.52 0.46) ; 19 + ( 478.88 169.24 -23.23 0.46) ; 20 + ( 481.13 169.76 -21.82 0.46) ; 21 + ( 481.13 169.76 -21.80 0.46) ; 22 + ( 482.33 170.65 -20.55 0.46) ; 23 + ( 481.88 170.55 -20.55 0.46) ; 24 + ( 484.96 169.48 -20.10 0.46) ; 25 + ( 487.51 170.67 -19.50 0.46) ; 26 + ( 489.29 171.08 -18.77 0.46) ; 27 + ( 491.80 170.48 -18.33 0.46) ; 28 + ( 496.26 171.53 -17.70 0.46) ; 29 + ( 499.83 172.36 -17.70 0.46) ; 30 + ( 503.40 173.20 -17.70 0.46) ; 31 + ( 506.49 172.13 -17.72 0.46) ; 32 + ( 509.43 171.62 -18.82 0.46) ; 33 + ( 510.59 170.70 -19.05 0.46) ; 34 + ( 510.59 170.70 -19.15 0.46) ; 35 + ( 512.24 171.69 -20.20 0.46) ; 36 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 508.67 170.84 -18.82 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 439.20 166.52 -18.05 0.46) ; 1 + ( 443.93 166.43 -15.88 0.46) ; 2 + ( 457.28 167.76 -19.70 0.46) ; 3 + ( 477.15 169.43 -24.60 0.46) ; 4 + ( 479.79 169.44 -21.80 0.46) ; 5 + ( 491.80 170.48 -18.33 0.46) ; 6 + ( 499.52 171.70 -17.70 0.46) ; 7 + ( 512.24 171.69 -20.20 0.46) ; 8 + ) ; End of markers + Normal + ) ; End of split + | + ( 332.11 128.87 -38.33 0.46) ; 1, R-2-1-2-1-1-2 + ( 331.58 131.14 -39.52 0.46) ; 2 + ( 332.12 134.85 -40.40 0.46) ; 3 + ( 332.92 137.43 -40.90 0.46) ; 4 + ( 333.56 138.76 -41.97 0.46) ; 5 + ( 333.79 141.81 -42.75 0.46) ; 6 + ( 334.02 144.85 -43.38 0.46) ; 7 + ( 334.02 144.85 -43.40 0.46) ; 8 + ( 334.11 148.45 -44.07 0.46) ; 9 + ( 334.03 150.82 -44.75 0.46) ; 10 + ( 334.21 152.05 -45.52 0.46) ; 11 + ( 332.97 155.35 -45.90 0.46) ; 12 + ( 333.83 159.72 -46.08 0.46) ; 13 + ( 333.48 163.23 -46.77 0.46) ; 14 + ( 332.82 166.07 -47.22 0.46) ; 15 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 334.44 155.09 -45.90 0.46) ; 1 + ( 334.72 159.93 -46.08 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 329.03 129.95 -39.52 0.46) ; 1 + ( 331.84 130.00 -39.52 0.46) ; 2 + ) ; End of markers + ( + ( 330.50 167.91 -47.22 0.46) ; 1, R-2-1-2-1-1-2-1 + ( 327.56 168.41 -46.65 0.46) ; 2 + ( 324.48 169.49 -46.10 0.46) ; 3 + ( 322.16 171.33 -45.25 0.46) ; 4 + ( 320.43 172.72 -44.23 0.46) ; 5 + ( 320.43 172.72 -44.25 0.46) ; 6 + ( 318.69 174.10 -43.50 0.46) ; 7 + ( 316.68 176.61 -42.37 0.46) ; 8 + ( 314.94 178.00 -41.10 0.46) ; 9 + ( 310.89 181.23 -41.10 0.46) ; 10 + ( 306.26 184.92 -40.75 0.46) ; 11 + ( 304.65 185.73 -42.88 0.46) ; 12 + ( 301.62 188.61 -43.58 0.46) ; 13 + ( 300.91 189.64 -44.70 0.46) ; 14 + ( 300.91 189.64 -44.72 0.46) ; 15 + ( 298.72 190.92 -46.05 0.46) ; 16 + ( 298.72 190.92 -46.08 0.46) ; 17 + ( 297.04 194.10 -47.00 0.46) ; 18 + ( 293.15 198.58 -47.55 0.46) ; 19 + ( 293.15 198.58 -47.57 0.46) ; 20 + ( 289.41 202.47 -47.35 0.46) ; 21 + ( 285.00 203.23 -46.42 0.46) ; 22 + ( 281.47 204.19 -47.37 0.46) ; 23 + ( 281.47 204.19 -47.40 0.46) ; 24 + ( 277.92 209.33 -46.88 0.46) ; 25 + ( 273.29 213.02 -46.28 0.46) ; 26 + ( 273.29 213.02 -46.30 0.46) ; 27 + ( 270.72 215.86 -45.92 0.46) ; 28 + ( 270.50 218.80 -44.45 0.46) ; 29 + ( 270.05 218.69 -44.20 0.46) ; 30 + ( 267.88 219.98 -43.35 0.46) ; 31 + ( 267.43 219.87 -43.35 0.46) ; 32 + ( 265.82 220.69 -41.97 0.46) ; 33 + ( 263.50 222.53 -40.57 0.46) ; 34 + ( 263.50 222.53 -40.60 0.46) ; 35 + ( 262.97 224.79 -39.70 0.46) ; 36 + ( 262.90 227.16 -38.55 0.46) ; 37 + ( 261.79 229.89 -37.17 0.46) ; 38 + ( 261.31 233.96 -36.22 0.46) ; 39 + ( 259.80 238.38 -35.42 0.46) ; 40 + ( 259.80 238.38 -35.45 0.46) ; 41 + ( 259.97 239.63 -34.22 0.46) ; 42 + ( 259.63 243.11 -33.25 0.46) ; 43 + ( 258.20 245.17 -32.42 0.46) ; 44 + ( 256.50 248.36 -31.85 0.46) ; 45 + ( 252.64 252.83 -31.85 0.46) ; 46 + ( 251.39 256.13 -31.60 0.46) ; 47 + ( 250.15 259.42 -31.60 0.46) ; 48 + ( 247.97 260.69 -31.05 0.46) ; 49 + ( 246.28 263.88 -30.05 0.46) ; 50 + ( 243.68 266.86 -30.05 0.46) ; 51 + ( 240.98 270.40 -30.05 0.46) ; 52 + ( 238.71 274.05 -30.05 0.46) ; 53 + ( 235.73 278.73 -30.05 0.46) ; 54 + ( 231.86 283.19 -30.85 0.46) ; 55 + ( 229.14 286.73 -30.85 0.46) ; 56 + ( 229.00 287.30 -30.85 0.46) ; 57 + ( 227.31 290.49 -30.77 0.46) ; 58 + ( 224.56 292.24 -30.77 0.46) ; 59 + ( 224.02 294.49 -30.77 0.46) ; 60 + ( 220.47 299.63 -30.85 0.46) ; 61 + ( 218.02 302.04 -30.02 0.46) ; 62 + ( 214.99 304.91 -30.02 0.46) ; 63 + ( 212.14 309.02 -29.80 0.46) ; 64 + ( 210.06 313.91 -29.85 0.46) ; 65 + ( 208.23 317.66 -29.25 0.46) ; 66 + ( 205.65 320.64 -27.95 0.46) ; 67 + ( 203.19 323.06 -26.75 0.46) ; 68 + ( 202.13 327.59 -25.63 0.46) ; 69 + ( 201.20 331.55 -25.63 0.46) ; 70 + ( 198.35 335.65 -25.63 0.46) ; 71 + ( 196.22 338.74 -25.63 0.46) ; 72 + ( 194.27 343.06 -25.63 0.46) ; 73 + ( 194.05 345.99 -25.63 0.46) ; 74 + ( 190.71 348.20 -25.63 0.46) ; 75 + ( 189.34 352.05 -25.63 0.46) ; 76 + ( 189.30 356.22 -26.32 0.46) ; 77 + ( 187.57 357.60 -27.05 0.46) ; 78 + ( 185.36 358.25 -27.05 0.46) ; 79 + ( + ( 185.87 360.79 -27.63 0.46) ; 1, R-2-1-2-1-1-2-1-1 + ( 185.08 364.19 -27.20 0.46) ; 2 + ( 184.28 367.59 -26.75 0.46) ; 3 + ( 183.09 372.68 -26.75 0.46) ; 4 + ( 183.00 375.06 -26.75 0.46) ; 5 + ( 182.92 377.42 -26.75 0.46) ; 6 + ( 181.99 381.38 -27.32 0.46) ; 7 + ( 180.43 384.00 -25.92 0.46) ; 8 + ( 180.80 386.48 -24.75 0.46) ; 9 + ( 179.69 389.20 -24.15 0.46) ; 10 + ( 180.21 391.00 -22.57 0.46) ; 11 + ( 180.26 392.80 -21.00 0.46) ; 12 + ( 180.30 394.60 -19.58 0.46) ; 13 + ( 180.53 397.65 -18.38 0.46) ; 14 + ( 178.98 400.27 -17.17 0.46) ; 15 + ( 177.87 402.99 -16.20 0.46) ; 16 + ( 177.52 406.49 -15.35 0.46) ; 17 + ( 176.85 409.32 -14.82 0.46) ; 18 + ( 176.90 411.12 -13.57 0.46) ; 19 + ( 177.58 414.27 -13.07 0.46) ; 20 + ( 177.23 417.76 -12.10 0.46) ; 21 + ( 176.52 418.79 -10.73 0.46) ; 22 + ( 176.31 421.73 -9.43 0.46) ; 23 + ( 175.64 424.56 -8.82 0.46) ; 24 + ( 175.64 424.56 -8.80 0.46) ; 25 + ( 175.11 426.83 -8.40 0.46) ; 26 + ( 173.69 428.87 -7.35 0.46) ; 27 + ( 173.69 428.87 -7.38 0.46) ; 28 + ( 172.26 430.93 -6.73 0.46) ; 29 + ( 169.81 433.36 -5.75 0.46) ; 30 + ( 168.38 435.40 -4.63 0.46) ; 31 + ( 166.25 438.49 -3.57 0.46) ; 32 + ( 166.25 438.49 -3.00 0.46) ; 33 + ( 164.56 441.68 -2.27 0.46) ; 34 + ( 163.72 443.27 -1.02 0.46) ; 35 + ( 163.00 444.29 0.57 0.46) ; 36 + ( 163.05 446.10 1.50 0.46) ; 37 + ( 162.66 447.79 2.60 0.46) ; 38 + ( 163.15 449.71 2.60 0.46) ; 39 + ( 162.62 451.96 3.72 0.46) ; 40 + ( 161.78 453.56 5.22 0.46) ; 41 + ( 161.25 455.82 6.02 0.46) ; 42 + ( 160.00 459.11 5.65 0.46) ; 43 + ( 159.65 462.61 7.35 0.46) ; 44 + ( 159.65 462.61 7.32 0.46) ; 45 + ( 158.41 465.91 8.77 0.46) ; 46 + ( 157.43 468.06 10.80 0.46) ; 47 + ( 157.35 470.43 11.93 0.46) ; 48 + ( 155.92 472.48 11.93 0.46) ; 49 + ( 154.36 475.10 12.80 0.46) ; 50 + ( 152.50 477.06 13.72 0.46) ; 51 + ( 152.47 481.24 13.82 0.46) ; 52 + ( 152.47 481.24 13.80 0.46) ; 53 + ( 150.60 483.18 15.07 0.46) ; 54 + ( 150.60 483.18 15.05 0.46) ; 55 + ( 150.20 484.89 16.32 0.46) ; 56 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 306.66 183.22 -40.75 0.46) ; 1 + ( 263.12 230.20 -37.17 0.46) ; 2 + ( 258.28 242.81 -33.25 0.46) ; 3 + ( 191.65 350.20 -25.63 0.46) ; 4 + ( 186.02 366.21 -26.75 0.46) ; 5 + ( 163.80 440.90 -2.27 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 220.47 299.63 -30.85 0.46) ; 1 + ( 215.57 304.45 -30.02 0.46) ; 2 + ( 210.63 313.45 -29.85 0.46) ; 3 + ( 208.37 317.09 -29.25 0.46) ; 4 + ( 202.13 327.59 -25.63 0.46) ; 5 + ( 182.34 377.88 -26.75 0.46) ; 6 + ( 181.99 381.38 -27.32 0.46) ; 7 + ( 179.69 389.20 -24.15 0.46) ; 8 + ( 179.55 399.80 -17.15 0.46) ; 9 + ( 176.90 411.12 -13.57 0.46) ; 10 + ( 172.71 431.04 -6.73 0.46) ; 11 + ( 170.25 433.46 -5.07 0.46) ; 12 + ( 168.96 434.94 -4.10 0.46) ; 13 + ( 163.50 446.20 1.50 0.46) ; 14 + ( 157.88 468.17 10.80 0.46) ; 15 + ( 156.06 471.92 11.93 0.46) ; 16 + ( 152.95 477.17 13.72 0.46) ; 17 + ( 150.33 484.31 16.32 0.46) ; 18 + ) ; End of markers + Normal + | + ( 183.19 359.54 -24.92 0.46) ; 1, R-2-1-2-1-1-2-1-2 + ( 180.12 360.60 -22.97 0.46) ; 2 + ( 177.55 359.41 -21.20 0.46) ; 3 + ( 174.61 359.91 -19.40 0.46) ; 4 + ( 172.57 360.62 -17.47 0.46) ; 5 + ( 170.70 362.58 -15.27 0.46) ; 6 + ( 168.38 364.43 -15.02 0.46) ; 7 + ( 165.51 366.63 -13.47 0.46) ; 8 + ( 163.77 368.02 -12.27 0.46) ; 9 + ( 161.91 369.97 -10.95 0.46) ; 10 + ( 160.61 371.46 -9.60 0.46) ; 11 + ( 159.63 373.61 -7.87 0.46) ; 12 + ( 158.21 375.67 -6.10 0.46) ; 13 + ( 156.73 375.92 -4.85 0.46) ; 14 + ( 155.26 376.18 -3.62 0.46) ; 15 + ( 153.52 377.55 -2.55 0.46) ; 16 + ( 152.19 377.24 -1.10 0.46) ; 17 + ( 151.47 378.27 0.93 0.46) ; 18 + ( 150.18 379.76 2.40 0.46) ; 19 + ( 149.16 380.11 4.00 0.46) ; 20 + ( 147.10 380.84 5.10 0.46) ; 21 + ( 146.25 382.42 6.35 0.46) ; 22 + ( 146.76 384.33 7.57 0.46) ; 23 + ( 146.81 386.14 8.80 0.46) ; 24 + ( 145.97 387.73 10.55 0.46) ; 25 + ( 144.17 387.31 12.50 0.46) ; 26 + ( 144.17 387.31 12.47 0.46) ; 27 + ( 146.59 389.06 14.38 0.46) ; 28 + ( 146.33 390.20 16.15 0.46) ; 29 + ( 146.33 390.20 16.13 0.46) ; 30 + ( 144.90 392.25 17.42 0.46) ; 31 + ( 143.93 394.42 18.52 0.46) ; 32 + ( 142.10 398.16 19.45 0.46) ; 33 + ( 142.10 398.16 19.42 0.46) ; 34 + ( 140.23 400.11 20.17 0.46) ; 35 + ( 138.94 401.61 21.88 0.46) ; 36 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 171.46 363.35 -15.27 0.46) ; 1 + ( 154.94 375.50 -3.62 0.46) ; 2 + ( 148.98 378.88 4.00 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 168.38 364.43 -15.02 0.46) ; 1 + ( 161.91 369.97 -10.77 0.46) ; 2 + ( 159.63 373.61 -7.87 0.46) ; 3 + ( 146.45 383.66 7.57 0.46) ; 4 + ( 144.24 395.08 18.52 0.46) ; 5 + ) ; End of markers + Normal + ) ; End of split + | + ( 333.75 168.06 -48.58 0.46) ; 1, R-2-1-2-1-1-2-2 + ( 335.33 171.40 -49.83 0.46) ; 2 + ( 334.53 174.80 -51.63 0.46) ; 3 + ( 334.67 180.22 -51.63 0.46) ; 4 + ( 335.84 185.27 -51.90 0.46) ; 5 + ( 335.81 189.45 -52.00 0.46) ; 6 + ( 335.64 194.18 -52.35 0.46) ; 7 + ( 335.16 198.24 -52.95 0.46) ; 8 + ( 335.16 198.24 -52.97 0.46) ; 9 + ( 335.96 200.82 -53.42 0.46) ; 10 + ( 335.48 204.88 -53.42 0.46) ; 11 + ( 335.58 208.49 -53.33 0.46) ; 12 + ( 336.39 211.08 -54.15 0.46) ; 13 + ( 337.07 214.21 -54.15 0.46) ; 14 + ( 337.75 217.36 -54.95 0.46) ; 15 + ( 337.66 219.74 -56.20 0.46) ; 16 + ( 337.89 222.77 -57.60 0.46) ; 17 + ( 339.11 229.63 -57.92 0.46) ; 18 + ( 339.07 233.80 -58.42 0.46) ; 19 + ( 339.07 233.80 -58.45 0.46) ; 20 + ( 338.99 236.16 -58.67 0.46) ; 21 + ( 341.06 241.43 -59.17 0.46) ; 22 + ( 342.18 244.68 -58.75 0.46) ; 23 + ( 343.04 249.05 -58.60 0.46) ; 24 + ( 343.14 252.66 -58.60 0.46) ; 25 + ( 344.44 257.15 -59.80 0.46) ; 26 + ( 344.80 259.63 -60.63 0.46) ; 27 + ( 345.61 262.20 -61.63 0.46) ; 28 + ( 345.61 262.20 -61.67 0.46) ; 29 + ( 346.59 266.01 -62.20 0.46) ; 30 + ( 347.59 269.83 -63.10 0.46) ; 31 + ( 348.01 274.11 -63.95 0.46) ; 32 + ( 349.12 277.35 -64.65 0.46) ; 33 + ( 349.12 277.35 -64.67 0.46) ; 34 + ( 349.84 282.31 -63.95 0.46) ; 35 + ( 351.47 287.47 -64.53 0.46) ; 36 + ( 350.73 292.66 -64.80 0.46) ; 37 + ( 351.89 297.71 -62.80 0.46) ; 38 + ( 351.89 297.71 -62.82 0.46) ; 39 + ( 352.36 301.85 -59.70 0.46) ; 40 + ( 351.88 305.92 -58.25 0.46) ; 41 + ( 351.88 305.92 -58.27 0.46) ; 42 + ( 352.28 310.19 -60.22 0.46) ; 43 + ( 353.09 312.78 -62.37 0.46) ; 44 + ( 353.09 312.78 -62.40 0.46) ; 45 + ( 352.79 318.09 -63.70 0.46) ; 46 + ( 352.79 318.09 -63.75 0.46) ; 47 + ( 353.07 322.93 -65.32 0.46) ; 48 + ( 353.07 322.93 -65.35 0.46) ; 49 + ( 352.64 328.80 -65.45 0.46) ; 50 + ( 353.49 333.18 -65.55 0.46) ; 51 + ( 354.48 337.00 -65.55 0.46) ; 52 + ( 353.64 338.59 -65.55 0.46) ; 53 + ( 354.00 341.06 -66.50 0.46) ; 54 + ( 355.00 344.87 -67.57 0.46) ; 55 + ( 356.17 349.92 -68.42 0.46) ; 56 + ( 356.39 352.96 -67.85 0.46) ; 57 + ( 356.39 352.96 -67.88 0.46) ; 58 + ( 357.07 356.11 -68.82 0.46) ; 59 + ( 357.04 360.29 -69.30 0.46) ; 60 + ( 356.24 363.69 -69.53 0.46) ; 61 + ( 356.21 367.85 -69.53 0.46) ; 62 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 337.96 214.42 -54.15 0.46) ; 1 + ( 355.73 355.79 -68.82 0.46) ; 2 + ( 355.00 366.98 -69.53 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 336.26 189.55 -52.00 0.46) ; 1 + ( 335.89 209.16 -53.33 0.46) ; 2 + ( 339.56 229.73 -57.92 0.46) ; 3 + ( 342.18 244.68 -58.75 0.46) ; 4 + ( 343.14 252.66 -58.62 0.46) ; 5 + ( 352.77 328.24 -65.45 0.46) ; 6 + ( 354.45 341.17 -66.50 0.46) ; 7 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 314.04 -3.06 -9.05 0.46) ; 1, R-2-1-2-1-2 + ( 311.85 -1.79 -7.07 0.46) ; 2 + ( 308.34 -0.82 -6.02 0.46) ; 3 + ( 306.29 -0.10 -4.47 0.46) ; 4 + ( 303.91 -0.06 -3.60 0.46) ; 5 + ( 300.84 1.00 -2.35 0.46) ; 6 + ( 298.92 1.15 -1.82 0.46) ; 7 + ( 298.92 1.15 -1.88 0.46) ; 8 + ( 294.68 3.15 -0.72 0.46) ; 9 + ( 289.82 3.79 -0.72 0.46) ; 10 + ( 286.16 5.33 0.22 0.46) ; 11 + ( 281.75 6.08 0.80 0.46) ; 12 + ( 278.68 7.16 -0.28 0.46) ; 13 + ( 278.68 7.16 -0.30 0.46) ; 14 + ( 274.43 9.15 -2.50 0.46) ; 15 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 301.87 0.65 -2.35 0.46) ; 1 + ( 286.61 5.43 0.22 0.46) ; 2 + ) ; End of markers + Normal + ) ; End of split + | + ( 319.61 -38.80 6.40 0.46) ; 1, R-2-1-2-2 + ( 319.61 -38.80 6.42 0.46) ; 2 + ( 321.70 -37.71 7.22 0.46) ; 3 + ( 322.65 -35.70 8.42 0.46) ; 4 + ( 325.64 -34.40 10.07 0.46) ; 5 + ( 328.05 -32.63 10.07 0.46) ; 6 + ( 331.41 -28.87 10.07 0.46) ; 7 + ( 334.14 -26.44 10.07 0.46) ; 8 + ( 337.94 -22.56 8.77 0.46) ; 9 + ( 340.17 -22.04 8.35 0.46) ; 10 + ( 343.54 -18.26 7.55 0.46) ; 11 + ( 346.97 -16.86 7.05 0.46) ; 12 + ( 346.97 -16.86 7.02 0.46) ; 13 + ( 348.85 -12.83 7.95 0.46) ; 14 + ( 351.45 -9.83 7.80 0.46) ; 15 + ( 354.93 -6.63 7.80 0.46) ; 16 + ( 357.09 -3.74 8.68 0.46) ; 17 + ( 360.97 -2.24 9.10 0.46) ; 18 + ( 363.33 -2.27 9.10 0.46) ; 19 + ( 365.44 -1.18 10.25 0.46) ; 20 + ( 365.31 -0.61 10.25 0.46) ; 21 + ( 367.99 0.01 11.45 0.46) ; 22 + ( 370.21 0.53 13.25 0.46) ; 23 + ( 372.06 2.75 14.97 0.46) ; 24 + ( 373.71 3.74 14.97 0.46) ; 25 + ( 375.23 5.29 15.65 0.46) ; 26 + ( 378.41 7.82 16.80 0.46) ; 27 + ( 378.63 10.86 17.42 0.46) ; 28 + ( 380.60 12.52 17.75 0.46) ; 29 + ( 382.57 14.18 19.15 0.46) ; 30 + ( 382.57 14.18 19.13 0.46) ; 31 + ( 384.80 14.70 21.52 0.46) ; 32 + ( 385.56 15.47 23.42 0.46) ; 33 + ( 385.12 15.37 23.40 0.46) ; 34 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 337.45 -24.47 8.77 0.46) ; 1 + ( 346.76 -13.92 7.95 0.46) ; 2 + ( 350.29 -8.92 7.80 0.46) ; 3 + ( 360.66 -2.90 9.10 0.46) ; 4 + ( 370.03 -0.70 13.25 0.46) ; 5 + ( 372.63 2.29 14.97 0.46) ; 6 + ( 377.04 11.69 19.05 0.46) ; 7 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 319.61 -38.80 6.42 0.46) ; 1 + ( 322.65 -35.70 8.42 0.46) ; 2 + ( 328.81 -31.86 10.07 0.46) ; 3 + ( 321.63 -35.35 10.07 0.46) ; 4 + ( 356.64 -3.85 8.68 0.46) ; 5 + ( 375.23 5.29 15.65 0.46) ; 6 + ( 378.41 7.82 16.80 0.46) ; 7 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 286.67 -92.36 6.90 0.46) ; 1, R-2-2 + ( 285.12 -89.75 6.90 0.46) ; 2 + ( 283.69 -87.69 6.15 0.46) ; 3 + ( + ( 282.14 -85.06 7.22 0.46) ; 1, R-2-2-1 + ( 281.69 -85.17 7.22 0.46) ; 2 + ( 279.83 -83.23 7.87 0.46) ; 3 + ( 276.60 -81.59 7.53 0.46) ; 4 + ( + ( 274.47 -78.50 7.53 0.46) ; 1, R-2-2-1-1 + ( 272.10 -78.46 7.53 0.46) ; 2 + ( 270.16 -74.14 7.53 0.46) ; 3 + ( 268.52 -69.15 7.92 0.46) ; 4 + ( + ( 269.63 -65.90 8.75 0.46) ; 1, R-2-2-1-1-1 + ( 269.41 -62.97 9.50 0.46) ; 2 + ( 269.51 -59.37 9.88 0.46) ; 3 + ( 268.90 -54.73 11.45 0.46) ; 4 + ( 268.37 -52.46 12.47 0.46) ; 5 + ( 268.42 -50.65 13.80 0.46) ; 6 + ( 268.28 -50.09 15.17 0.46) ; 7 + ( 265.88 -45.88 15.90 0.46) ; 8 + ( 262.91 -41.21 15.90 0.46) ; 9 + ( 261.66 -37.91 14.85 0.46) ; 10 + ( 260.02 -32.93 14.30 0.46) ; 11 + ( 258.65 -29.07 14.88 0.46) ; 12 + ( 257.54 -26.34 14.70 0.46) ; 13 + ( 255.85 -23.15 14.40 0.46) ; 14 + ( 254.43 -21.10 14.40 0.46) ; 15 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 268.14 -55.51 11.45 0.46) ; 1 + ( 265.12 -46.66 15.90 0.46) ; 2 + ( 259.26 -33.70 14.30 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 267.97 -50.76 15.17 0.46) ; 1 + ( 263.61 -42.23 15.90 0.46) ; 2 + ( 257.57 -30.51 16.70 0.46) ; 3 + ) ; End of markers + ( + ( 254.39 -16.92 14.40 0.46) ; 1, R-2-2-1-1-1-1 + ( 253.46 -12.97 14.40 0.46) ; 2 + ( 252.66 -9.57 15.35 0.46) ; 3 + ( 251.68 -7.40 16.00 0.46) ; 4 + ( 251.68 -7.40 15.97 0.46) ; 5 + ( 250.73 -5.37 17.20 0.46) ; 6 + ( 250.08 -2.55 18.02 0.46) ; 7 + ( 249.09 -0.39 17.52 0.46) ; 8 + ( 249.02 1.97 19.10 0.46) ; 9 + ( 247.58 4.03 19.70 0.46) ; 10 + ( 247.18 5.73 20.20 0.46) ; 11 + ( 247.56 8.20 21.15 0.46) ; 12 + ( 245.85 11.39 22.50 0.46) ; 13 + ( 244.89 13.55 22.75 0.46) ; 14 + ( 242.03 17.67 22.27 0.46) ; 15 + ( 241.24 21.06 23.27 0.46) ; 16 + ( 239.11 24.14 24.10 0.46) ; 17 + ( 237.11 26.65 24.67 0.46) ; 18 + ( 233.01 28.08 24.67 0.46) ; 19 + ( 232.07 32.04 23.72 0.46) ; 20 + ( 230.38 35.23 22.75 0.46) ; 21 + ( 230.38 35.23 22.73 0.46) ; 22 + ( 227.17 36.87 21.55 0.46) ; 23 + ( 227.17 36.87 21.52 0.46) ; 24 + ( 225.12 37.59 22.63 0.46) ; 25 + ( 222.93 38.87 21.25 0.46) ; 26 + ( 222.93 38.87 21.02 0.46) ; 27 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 250.93 -8.19 15.97 0.46) ; 1 + ( 237.87 27.43 24.67 0.46) ; 2 + ( 224.72 39.29 20.92 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 250.26 -1.31 17.52 0.46) ; 1 + ( 245.47 13.08 22.75 0.46) ; 2 + ) ; End of markers + Normal + | + ( 250.43 -22.17 13.32 0.46) ; 1, R-2-2-1-1-1-2 + ( 245.97 -23.22 11.88 0.46) ; 2 + ( 241.50 -24.26 11.98 0.46) ; 3 + ( 238.50 -25.56 11.17 0.46) ; 4 + ( 236.27 -26.08 9.90 0.46) ; 5 + ( 232.52 -28.15 9.17 0.46) ; 6 + ( 227.79 -28.07 8.57 0.46) ; 7 + ( 225.56 -28.59 6.97 0.46) ; 8 + ( 221.98 -29.44 6.28 0.46) ; 9 + ( 221.98 -29.44 6.25 0.46) ; 10 + ( 219.43 -30.63 5.55 0.46) ; 11 + ( 216.30 -31.36 4.90 0.46) ; 12 + ( 213.63 -31.98 4.15 0.46) ; 13 + ( 213.63 -31.98 4.13 0.46) ; 14 + ( 211.27 -31.94 2.78 0.46) ; 15 + ( 209.79 -31.70 2.10 0.46) ; 16 + ( 207.42 -31.66 1.20 0.46) ; 17 + ( 203.27 -32.03 0.57 0.46) ; 18 + ( 199.43 -31.73 -0.43 0.46) ; 19 + ( 199.43 -31.73 -0.45 0.46) ; 20 + ( 196.31 -32.46 0.52 0.46) ; 21 + ( 192.68 -35.11 -0.22 0.46) ; 22 + ( 187.64 -35.70 -1.13 0.46) ; 23 + ( 185.68 -37.35 -1.82 0.46) ; 24 + ( 182.05 -39.98 -2.63 0.46) ; 25 + ( 178.93 -40.72 -2.42 0.46) ; 26 + ( 174.59 -42.33 -2.50 0.46) ; 27 + ( 170.97 -44.97 -2.83 0.46) ; 28 + ( 167.71 -45.14 -4.32 0.46) ; 29 + ( 167.71 -45.14 -4.35 0.46) ; 30 + ( 165.61 -46.23 -5.75 0.46) ; 31 + ( 163.70 -46.08 -4.90 0.46) ; 32 + ( 161.01 -46.72 -6.55 0.46) ; 33 + ( 158.78 -47.23 -7.82 0.46) ; 34 + ( 158.15 -48.57 -8.60 0.46) ; 35 + ( 154.57 -49.41 -9.25 0.46) ; 36 + ( 150.72 -49.10 -9.25 0.46) ; 37 + ( 148.57 -52.00 -9.25 0.46) ; 38 + ( 144.77 -55.87 -9.48 0.46) ; 39 + ( 139.86 -57.02 -10.38 0.46) ; 40 + ( 137.19 -57.65 -11.40 0.46) ; 41 + ( 133.74 -59.06 -12.72 0.46) ; 42 + ( 133.74 -59.06 -12.75 0.46) ; 43 + ( 132.40 -59.38 -15.00 0.46) ; 44 + ( 129.54 -61.24 -15.70 0.46) ; 45 + ( 128.47 -62.68 -15.70 0.46) ; 46 + ( 124.89 -63.51 -16.57 0.46) ; 47 + ( 121.45 -64.92 -16.90 0.46) ; 48 + ( 118.01 -66.32 -16.90 0.46) ; 49 + ( 112.39 -66.45 -18.35 0.46) ; 50 + ( 107.79 -66.93 -18.35 0.46) ; 51 + ( 105.43 -66.89 -20.23 0.46) ; 52 + ( 105.43 -66.89 -20.25 0.46) ; 53 + ( 101.85 -67.72 -22.77 0.46) ; 54 + ( 98.15 -68.00 -22.77 0.46) ; 55 + ( 95.65 -68.56 -24.25 0.46) ; 56 + ( 93.87 -68.97 -25.70 0.46) ; 57 + ( 93.87 -68.97 -25.73 0.46) ; 58 + ( 91.50 -68.93 -26.98 0.46) ; 59 + ( 90.11 -71.05 -28.70 0.46) ; 60 + ( 86.72 -70.66 -30.02 0.46) ; 61 + ( 86.59 -70.09 -30.02 0.46) ; 62 + ( 83.64 -69.59 -31.45 0.46) ; 63 + ( 81.85 -70.01 -33.10 0.46) ; 64 + ( 80.21 -70.99 -35.02 0.46) ; 65 + ( 79.58 -72.33 -37.20 0.46) ; 66 + ( 76.89 -72.95 -39.58 0.46) ; 67 + ( 76.89 -72.95 -39.60 0.46) ; 68 + ( 74.22 -73.58 -41.47 0.46) ; 69 + ( 70.52 -73.86 -41.28 0.46) ; 70 + ( 67.24 -74.03 -43.33 0.46) ; 71 + ( 63.82 -75.42 -44.35 0.46) ; 72 + ( 59.39 -74.68 -46.00 0.46) ; 73 + ( 56.98 -76.44 -47.47 0.46) ; 74 + ( 49.74 -75.73 -47.47 0.46) ; 75 + ( 48.46 -74.25 -49.70 0.46) ; 76 + ( 47.20 -76.93 -50.52 0.46) ; 77 + ( 44.21 -78.23 -51.70 0.46) ; 78 + ( 38.59 -78.35 -52.85 0.46) ; 79 + ( 35.50 -77.29 -53.70 0.46) ; 80 + ( 30.52 -76.06 -54.45 0.46) ; 81 + ( 30.52 -76.06 -54.47 0.46) ; 82 + ( 25.51 -74.85 -53.67 0.46) ; 83 + ( 22.26 -75.02 -53.65 0.46) ; 84 + ( 19.18 -73.94 -53.47 0.46) ; 85 + ( 15.61 -74.78 -52.15 0.46) ; 86 + ( 12.79 -74.85 -51.50 0.46) ; 87 + ( 8.77 -75.79 -51.50 0.46) ; 88 + ( 4.63 -76.16 -50.40 0.46) ; 89 + ( -0.69 -75.62 -49.67 0.46) ; 90 + ( -3.81 -76.35 -49.27 0.46) ; 91 + ( -8.11 -76.16 -49.72 0.46) ; 92 + ( -12.65 -74.84 -49.72 0.46) ; 93 + ( -18.77 -76.87 -49.45 0.46) ; 94 + ( -22.30 -77.10 -48.42 0.46) ; 95 + ( -26.19 -78.61 -48.42 0.46) ; 96 + ( -31.50 -78.05 -48.13 0.46) ; 97 + ( -35.21 -78.32 -47.75 0.46) ; 98 + ( -39.04 -78.04 -47.75 0.46) ; 99 + ( -41.58 -79.23 -46.52 0.46) ; 100 + ( -44.53 -78.72 -45.60 0.46) ; 101 + ( -47.03 -78.12 -45.60 0.46) ; 102 + ( -50.47 -79.52 -45.60 0.46) ; 103 + ( -55.38 -80.67 -45.20 0.46) ; 104 + ( -59.67 -80.47 -42.80 0.46) ; 105 + ( -63.64 -79.62 -42.22 0.46) ; 106 + ( -68.11 -80.67 -41.32 0.46) ; 107 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 246.68 -24.24 11.88 0.46) ; 1 + ( 205.32 -32.74 0.57 0.46) ; 2 + ( 192.81 -35.67 -0.22 0.46) ; 3 + ( 182.10 -38.18 -2.63 0.46) ; 4 + ( 175.56 -44.50 -2.50 0.46) ; 5 + ( 83.91 -70.72 -31.45 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 219.88 -30.52 5.55 0.46) ; 1 + ( 216.43 -31.92 4.90 0.46) ; 2 + ( 209.34 -31.80 2.10 0.46) ; 3 + ( 200.01 -32.18 -0.45 0.46) ; 4 + ( 163.83 -46.64 -4.90 0.46) ; 5 + ( 155.02 -49.30 -9.25 0.46) ; 6 + ( 144.32 -55.97 -9.48 0.46) ; 7 + ( 118.45 -66.22 -16.90 0.46) ; 8 + ( 121.45 -64.92 -16.90 0.46) ; 9 + ( 108.23 -66.83 -18.33 0.46) ; 10 + ( 98.73 -68.46 -22.77 0.46) ; 11 + ( 102.30 -67.62 -22.77 0.46) ; 12 + ( 91.64 -69.50 -26.98 0.46) ; 13 + ( 70.96 -73.75 -41.28 0.46) ; 14 + ( 64.12 -74.76 -44.35 0.46) ; 15 + ( 23.37 -77.74 -53.65 0.46) ; 16 + ( 22.71 -74.91 -53.65 0.46) ; 17 + ( 15.61 -74.78 -52.15 0.46) ; 18 + ( 9.66 -75.58 -51.50 0.46) ; 19 + ( -18.46 -76.20 -49.45 0.46) ; 20 + ( -54.93 -80.56 -45.20 0.46) ; 21 + ( -60.12 -80.58 -42.80 0.46) ; 22 + ) ; End of markers + Normal + ) ; End of split + | + ( 265.02 -68.28 7.43 0.46) ; 1, R-2-2-1-1-2 + ( 262.56 -65.87 8.47 0.46) ; 2 + ( 261.13 -63.82 9.75 0.46) ; 3 + ( 259.98 -62.89 10.33 0.46) ; 4 + ( 257.92 -62.19 10.95 0.46) ; 5 + ( 257.92 -62.19 10.92 0.46) ; 6 + ( 256.50 -60.13 11.55 0.46) ; 7 + ( 252.90 -56.79 12.60 0.46) ; 8 + ( 250.58 -54.94 12.60 0.46) ; 9 + ( 248.57 -52.43 11.00 0.46) ; 10 + ( 245.81 -50.69 9.95 0.46) ; 11 + ( 242.03 -48.60 9.67 0.46) ; 12 + ( 241.41 -48.12 9.67 0.46) ; 13 + ( + ( 240.44 -45.97 7.47 0.46) ; 1, R-2-2-1-1-2-1 + ( 239.01 -43.91 6.15 0.46) ; 2 + ( 236.39 -42.74 5.30 0.46) ; 3 + ( 233.75 -41.55 6.32 0.46) ; 4 + ( 231.31 -39.15 6.90 0.46) ; 5 + ( 228.85 -36.73 6.90 0.46) ; 6 + ( 225.64 -35.09 7.20 0.46) ; 7 + ( 223.95 -31.91 7.77 0.46) ; 8 + ( 219.26 -30.03 8.42 0.46) ; 9 + ( 217.14 -26.94 9.55 0.46) ; 10 + ( 214.10 -24.07 10.45 0.46) ; 11 + ( 212.19 -23.92 10.75 0.46) ; 12 + ( 211.53 -21.09 10.75 0.46) ; 13 + ( 208.58 -20.58 11.15 0.46) ; 14 + ( 206.71 -18.64 11.15 0.46) ; 15 + ( 203.63 -17.56 10.77 0.46) ; 16 + ( 201.05 -14.59 12.40 0.46) ; 17 + ( 201.05 -14.59 12.42 0.46) ; 18 + ( 196.99 -11.36 12.42 0.46) ; 19 + ( 192.62 -8.80 12.42 0.46) ; 20 + ( 189.60 -5.93 11.93 0.46) ; 21 + ( 186.12 -3.16 12.30 0.46) ; 22 + ( 183.22 -0.86 13.18 0.46) ; 23 + ( 180.06 2.58 13.27 0.46) ; 24 + ( 175.74 6.95 14.77 0.46) ; 25 + ( 171.98 8.93 14.52 0.46) ; 26 + ( 168.76 10.56 14.52 0.46) ; 27 + ( 165.16 13.89 15.38 0.46) ; 28 + ( 159.59 15.58 15.38 0.46) ; 29 + ( 157.00 18.55 16.10 0.46) ; 30 + ( 154.51 19.16 16.10 0.46) ; 31 + ( 151.47 22.03 16.77 0.46) ; 32 + ( 146.80 23.93 16.77 0.46) ; 33 + ( 144.03 25.66 17.27 0.46) ; 34 + ( 142.92 28.39 17.45 0.46) ; 35 + ( 141.00 28.54 17.63 0.46) ; 36 + ( 138.41 31.51 17.63 0.46) ; 37 + ( 135.84 34.50 17.63 0.46) ; 38 + ( 133.12 38.04 18.02 0.46) ; 39 + ( 130.93 39.32 18.02 0.46) ; 40 + ( 129.19 40.71 16.98 0.46) ; 41 + ( 125.09 42.13 16.92 0.46) ; 42 + ( 121.48 45.46 16.92 0.46) ; 43 + ( 119.79 48.65 17.20 0.46) ; 44 + ( 118.68 51.38 16.45 0.46) ; 45 + ( 116.73 55.70 16.07 0.46) ; 46 + ( 114.99 57.09 15.50 0.46) ; 47 + ( 113.43 59.70 15.50 0.46) ; 48 + ( 110.77 65.05 14.70 0.46) ; 49 + ( 107.16 68.39 14.70 0.46) ; 50 + ( 104.49 73.73 14.25 0.46) ; 51 + ( 101.60 76.04 13.90 0.46) ; 52 + ( 98.75 80.15 14.60 0.46) ; 53 + ( 95.99 81.89 14.40 0.46) ; 54 + ( 94.88 84.61 13.80 0.46) ; 55 + ( 91.40 87.38 13.80 0.46) ; 56 + ( 89.53 89.34 13.80 0.46) ; 57 + ( 88.73 92.72 13.15 0.46) ; 58 + ( 85.98 94.47 13.15 0.46) ; 59 + ( 83.79 95.74 12.65 0.46) ; 60 + ( 82.55 99.04 12.65 0.46) ; 61 + ( 79.51 101.91 12.05 0.46) ; 62 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 241.75 -41.48 7.47 0.46) ; 1 + ( 239.33 -43.23 5.30 0.46) ; 2 + ( 226.94 -36.59 7.20 0.46) ; 3 + ( 216.77 -29.42 9.55 0.46) ; 4 + ( 186.07 -4.96 12.30 0.46) ; 5 + ( 148.21 21.87 16.77 0.46) ; 6 + ( 141.13 27.98 16.55 0.46) ; 7 + ( 141.00 28.54 12.67 0.46) ; 8 + ( 122.60 42.73 16.92 0.46) ; 9 + ( 116.81 53.33 16.07 0.46) ; 10 + ( 98.70 78.35 14.60 0.46) ; 11 + ( 88.78 94.53 13.15 0.46) ; 12 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 214.68 -24.53 10.35 0.46) ; 1 + ( 206.97 -19.77 11.15 0.46) ; 2 + ( 176.32 6.49 14.77 0.46) ; 3 + ( 169.21 10.66 14.52 0.46) ; 4 + ( 102.04 76.14 13.90 0.46) ; 5 + ( 91.40 87.38 13.80 0.46) ; 6 + ) ; End of markers + ( + ( 77.33 103.16 13.63 0.46) ; 1, R-2-2-1-1-2-1-1 + ( 75.32 105.68 14.75 0.46) ; 2 + ( 73.77 108.29 15.75 0.46) ; 3 + ( 70.21 113.43 16.17 0.46) ; 4 + ( 67.49 116.98 15.38 0.46) ; 5 + ( 65.10 121.20 14.18 0.46) ; 6 + ( 63.27 124.94 13.05 0.46) ; 7 + ( 62.82 124.84 13.05 0.46) ; 8 + ( 58.27 126.15 12.77 0.46) ; 9 + ( 54.30 127.02 12.77 0.46) ; 10 + ( 51.59 130.57 11.80 0.46) ; 11 + ( 49.90 133.76 11.88 0.46) ; 12 + ( 48.17 135.14 11.88 0.46) ; 13 + ( 45.85 136.99 11.88 0.46) ; 14 + ( 41.65 140.79 12.72 0.46) ; 15 + ( 37.92 144.68 12.45 0.46) ; 16 + ( 34.32 148.02 12.45 0.46) ; 17 + ( 32.18 151.10 10.73 0.46) ; 18 + ( 30.04 154.17 11.13 0.46) ; 19 + ( 28.03 156.69 10.15 0.46) ; 20 + ( 26.03 159.21 8.63 0.46) ; 21 + ( 25.86 163.94 8.45 0.46) ; 22 + ( 26.36 165.85 9.60 0.46) ; 23 + ( 26.32 170.02 10.75 0.46) ; 24 + ( 25.21 172.75 11.05 0.46) ; 25 + ( 25.07 173.32 11.05 0.46) ; 26 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 58.10 124.92 12.77 0.46) ; 1 + ( 45.67 135.75 11.88 0.46) ; 2 + ( 41.34 140.10 12.72 0.46) ; 3 + ( 33.21 150.73 10.73 0.46) ; 4 + ( 30.93 154.38 11.53 0.46) ; 5 + ( 27.02 163.03 8.45 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 73.77 108.29 15.75 0.46) ; 1 + ( 70.79 112.98 16.17 0.46) ; 2 + ( 49.90 133.76 11.88 0.46) ; 3 + ( 37.92 144.68 12.45 0.46) ; 4 + ( 28.48 156.80 10.15 0.46) ; 5 + ) ; End of markers + ( + ( 24.72 170.84 12.17 0.46) ; 1, R-2-2-1-1-2-1-1-1 + ( 24.85 170.28 14.95 0.46) ; 2 + ( 25.43 169.82 16.20 0.46) ; 3 + ( 27.48 169.10 17.57 0.46) ; 4 + ( 28.38 169.31 19.02 0.46) ; 5 + ( 28.20 168.07 20.20 0.46) ; 6 + ( 30.29 169.15 21.40 0.46) ; 7 + ( 31.90 168.34 21.38 0.46) ; 8 + ( 32.03 167.77 22.02 0.46) ; 9 + ( 28.20 168.07 23.82 0.46) ; 10 + ( 27.25 166.06 24.77 0.46) ; 11 + ( 28.36 163.33 25.20 0.46) ; 12 + ( 26.34 159.88 25.20 0.46) ; 13 + ( 26.29 158.07 23.98 0.46) ; 14 + ( 26.69 156.38 22.57 0.46) ; 15 + ( 26.96 155.24 21.75 0.46) ; 16 + ( 26.46 153.34 20.73 0.46) ; 17 + ( 27.75 151.85 18.42 0.46) ; 18 + ( 27.75 151.85 18.40 0.46) ; 19 + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 25.30 170.38 16.20 0.46) ; 1 + ( 26.25 156.27 21.75 0.46) ; 2 + ) ; End of markers + Normal + | + ( 23.39 176.51 9.25 0.46) ; 1, R-2-2-1-1-2-1-1-2 + ( 22.94 176.40 9.25 0.46) ; 2 + ( 23.54 181.91 9.82 0.46) ; 3 + ( 22.29 185.21 11.10 0.46) ; 4 + ( 21.76 187.47 12.17 0.46) ; 5 + ( 20.25 191.90 13.27 0.46) ; 6 + ( 19.46 195.30 14.67 0.46) ; 7 + ( 19.42 199.46 15.38 0.46) ; 8 + ( 16.85 202.43 15.38 0.46) ; 9 + ( 13.53 204.52 15.38 0.46) ; 10 + ( 12.03 208.94 16.45 0.46) ; 11 + ( 11.50 211.22 16.45 0.46) ; 12 + ( 11.45 215.39 17.30 0.46) ; 13 + ( 10.62 216.98 18.57 0.46) ; 14 + ( 10.52 219.35 19.02 0.46) ; 15 + ( 8.84 222.54 19.50 0.46) ; 16 + ( 8.18 225.37 17.92 0.46) ; 17 + ( 6.80 229.22 17.02 0.46) ; 18 + ( 5.37 231.28 16.47 0.46) ; 19 + ( 3.41 235.59 16.47 0.46) ; 20 + ( 2.04 239.45 16.85 0.46) ; 21 + ( -0.41 241.87 16.80 0.46) ; 22 + ( -2.85 244.27 16.45 0.46) ; 23 + ( -3.70 245.87 16.75 0.46) ; 24 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 24.83 180.43 9.82 0.46) ; 1 + ( 1.41 238.12 16.85 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 21.76 187.47 12.17 0.46) ; 1 + ( 20.39 191.33 13.27 0.46) ; 2 + ( 18.01 201.52 15.38 0.46) ; 3 + ( 11.25 208.17 16.45 0.46) ; 4 + ( 11.63 210.65 16.45 0.46) ; 5 + ( 10.08 219.24 19.02 0.46) ; 6 + ( 5.37 231.28 16.47 0.46) ; 7 + ( -4.28 246.33 16.75 0.46) ; 8 + ) ; End of markers + Normal + ) ; End of split + | + ( 79.34 106.62 13.10 0.46) ; 1, R-2-2-1-1-2-1-2 + ( 79.70 109.11 14.07 0.46) ; 2 + ( 79.93 112.14 12.50 0.46) ; 3 + ( 80.42 114.05 11.20 0.46) ; 4 + ( 80.20 116.99 10.07 0.46) ; 5 + ( 81.33 120.23 9.40 0.46) ; 6 + ( 80.98 123.73 8.15 0.46) ; 7 + ( 81.08 127.34 6.95 0.46) ; 8 + ( 80.54 129.61 5.57 0.46) ; 9 + ( 81.67 132.85 3.65 0.46) ; 10 + ( 80.88 136.25 2.78 0.46) ; 11 + ( 79.63 139.54 1.90 0.46) ; 12 + ( 79.42 142.48 0.82 0.46) ; 13 + ( 78.89 144.74 -0.43 0.46) ; 14 + ( 78.89 144.74 -0.45 0.46) ; 15 + ( 77.06 148.49 -1.82 0.46) ; 16 + ( 77.06 148.49 -1.85 0.46) ; 17 + ( 76.14 152.46 -2.35 0.46) ; 18 + ( 75.87 153.58 -2.35 0.46) ; 19 + ( 74.63 156.87 -2.92 0.46) ; 20 + ( 74.23 158.58 -3.95 0.46) ; 21 + ( 73.65 159.04 -3.95 0.46) ; 22 + ( 73.43 161.97 -3.95 0.46) ; 23 + ( 72.90 164.24 -5.55 0.46) ; 24 + ( 72.55 167.74 -6.95 0.46) ; 25 + ( 70.99 170.36 -7.15 0.46) ; 26 + ( 71.36 172.83 -9.00 0.46) ; 27 + ( 71.23 173.40 -10.35 0.46) ; 28 + ( 71.23 173.40 -10.38 0.46) ; 29 + ( 71.59 175.88 -11.40 0.46) ; 30 + ( 70.16 177.93 -11.75 0.46) ; 31 + ( 69.37 181.33 -13.35 0.46) ; 32 + ( 70.18 183.90 -15.35 0.46) ; 33 + ( 68.94 187.20 -16.42 0.46) ; 34 + ( 67.83 189.92 -18.23 0.46) ; 35 + ( 68.09 192.84 -19.55 0.46) ; 36 + ( 66.34 194.23 -20.30 0.46) ; 37 + ( 66.34 194.23 -20.33 0.46) ; 38 + ( 65.81 196.50 -21.05 0.46) ; 39 + ( 65.23 196.95 -23.10 0.46) ; 40 + ( 65.28 198.76 -24.52 0.46) ; 41 + ( 65.28 198.76 -24.58 0.46) ; 42 + ( 64.56 199.79 -25.75 0.46) ; 43 + ( 64.56 199.79 -25.77 0.46) ; 44 + ( 62.57 202.30 -27.50 0.46) ; 45 + ( 63.82 204.99 -29.13 0.46) ; 46 + ( 62.39 207.04 -30.60 0.46) ; 47 + ( 60.26 210.13 -31.85 0.46) ; 48 + ( 58.57 213.32 -32.67 0.46) ; 49 + ( 55.68 215.61 -32.92 0.46) ; 50 + ( 53.94 217.00 -33.85 0.46) ; 51 + ( 53.73 219.94 -35.27 0.46) ; 52 + ( 51.66 220.65 -36.52 0.46) ; 53 + ( 48.37 224.66 -37.20 0.46) ; 54 + ( 48.37 224.66 -37.22 0.46) ; 55 + ( 46.68 227.85 -38.33 0.46) ; 56 + ( 46.15 230.10 -40.03 0.46) ; 57 + ( 43.44 233.65 -41.80 0.46) ; 58 + ( 40.99 236.06 -42.77 0.46) ; 59 + ( 40.01 238.22 -44.07 0.46) ; 60 + ( 36.09 240.88 -44.07 0.46) ; 61 + ( 34.54 243.50 -45.35 0.46) ; 62 + ( 32.08 245.91 -46.22 0.46) ; 63 + ( 30.44 250.90 -46.57 0.46) ; 64 + ( 28.80 255.90 -47.05 0.46) ; 65 + ( 28.80 255.90 -47.08 0.46) ; 66 + ( 28.14 258.72 -48.58 0.46) ; 67 + ( 28.68 262.43 -50.00 0.46) ; 68 + ( 27.03 267.42 -51.93 0.46) ; 69 + ( 25.09 271.73 -52.13 0.46) ; 70 + ( 23.98 274.47 -51.75 0.46) ; 71 + ( 21.71 278.11 -52.92 0.46) ; 72 + ( 20.99 279.14 -54.85 0.46) ; 73 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 79.67 119.25 9.40 0.46) ; 1 + ( 80.67 123.07 8.15 0.46) ; 2 + ( 79.54 135.94 2.78 0.46) ; 3 + ( 68.21 182.24 -13.35 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 79.57 109.67 14.07 0.46) ; 1 + ( 80.10 113.38 11.20 0.46) ; 2 + ( 81.21 126.77 6.95 0.46) ; 3 + ( 77.06 148.49 -1.85 0.46) ; 4 + ( 74.94 157.55 -2.92 0.46) ; 5 + ( 73.43 161.97 -3.95 0.46) ; 6 + ( 67.83 189.92 -18.23 0.46) ; 7 + ( 65.94 195.93 -21.05 0.46) ; 8 + ( 61.81 207.50 -30.60 0.46) ; 9 + ( 46.29 229.54 -40.03 0.46) ; 10 + ( 34.09 243.40 -45.35 0.46) ; 11 + ( 28.23 262.33 -50.00 0.46) ; 12 + ( 23.98 274.47 -51.75 0.46) ; 13 + ) ; End of markers + Normal + ) ; End of split + | + ( 238.58 -50.00 11.15 0.46) ; 1, R-2-2-1-1-2-2 + ( 238.58 -50.00 11.13 0.46) ; 2 + ( 234.12 -51.05 13.15 0.46) ; 3 + ( 231.48 -49.86 14.92 0.46) ; 4 + ( 228.10 -49.47 16.15 0.46) ; 5 + ( 225.46 -48.29 17.08 0.46) ; 6 + ( 224.43 -47.94 18.25 0.46) ; 7 + ( 221.80 -46.76 19.70 0.46) ; 8 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 257.39 -59.92 11.55 0.46) ; 1 + ( 246.66 -52.29 9.95 0.46) ; 2 + ( 222.43 -45.42 19.70 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 251.17 -55.41 12.60 0.46) ; 1 + ( 254.50 -57.60 12.60 0.46) ; 2 + ) ; End of markers + ( + ( 219.76 -46.05 18.55 0.46) ; 1, R-2-2-1-1-2-2-1 + ( 218.41 -46.37 17.20 0.46) ; 2 + ( 218.41 -46.37 17.15 0.46) ; 3 + ( 216.45 -48.02 15.75 0.46) ; 4 + ( 215.23 -48.89 14.67 0.46) ; 5 + ( 213.01 -49.42 13.63 0.46) ; 6 + ( 210.90 -50.50 12.80 0.46) ; 7 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 217.47 -48.37 15.75 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 213.14 -49.99 13.63 0.46) ; 1 + ( 210.46 -50.61 12.80 0.46) ; 2 + ) ; End of markers + Normal + | + ( 218.73 -45.69 20.63 0.46) ; 1, R-2-2-1-1-2-2-2 + ( 216.94 -46.12 22.32 0.46) ; 2 + ( 214.26 -46.74 23.65 0.46) ; 3 + ( 212.96 -45.24 24.95 0.46) ; 4 + ( 212.30 -42.41 26.35 0.46) ; 5 + ( 211.77 -40.15 28.63 0.46) ; 6 + ( 210.93 -38.55 30.80 0.46) ; 7 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 217.39 -46.01 22.32 0.46) ; 1 + ( 212.43 -42.99 26.35 0.46) ; 2 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 272.79 -81.39 7.15 0.46) ; 1, R-2-2-1-2 + ( 269.27 -80.41 7.15 0.46) ; 2 + ( 264.14 -78.65 7.15 0.46) ; 3 + ( 260.04 -77.20 7.77 0.46) ; 4 + ( 255.04 -75.99 7.90 0.46) ; 5 + ( 251.52 -75.03 8.10 0.46) ; 6 + ( 247.09 -74.27 8.10 0.46) ; 7 + ( 242.23 -73.62 8.10 0.46) ; 8 + ( 238.26 -72.77 6.35 0.46) ; 9 + ( 236.34 -72.62 6.18 0.46) ; 10 + ( 235.90 -72.72 6.18 0.46) ; 11 + ( 231.17 -72.64 5.77 0.46) ; 12 + ( 222.51 -69.88 6.65 0.46) ; 13 + ( 219.12 -69.48 7.45 0.46) ; 14 + ( 215.60 -68.53 7.97 0.46) ; 15 + ( 212.07 -67.55 9.67 0.46) ; 16 + ( 206.36 -65.31 10.30 0.46) ; 17 + ( 201.55 -62.86 10.30 0.46) ; 18 + ( 197.05 -59.73 10.85 0.46) ; 19 + ( 195.44 -58.91 11.75 0.46) ; 20 + ( 194.73 -57.88 13.32 0.46) ; 21 + ( 194.73 -57.88 13.30 0.46) ; 22 + ( 192.68 -57.17 13.97 0.46) ; 23 + ( 188.13 -55.85 14.50 0.46) ; 24 + ( 185.68 -53.44 15.12 0.46) ; 25 + ( 182.20 -50.67 15.70 0.46) ; 26 + ( 182.20 -50.67 15.73 0.46) ; 27 + ( 178.23 -49.80 16.20 0.46) ; 28 + ( 176.05 -48.53 16.70 0.46) ; 29 + ( 176.05 -48.53 16.67 0.46) ; 30 + ( 172.52 -47.56 17.27 0.46) ; 31 + ( 169.72 -47.60 18.33 0.46) ; 32 + ( 167.26 -45.19 19.25 0.46) ; 33 + ( 163.29 -44.33 19.25 0.46) ; 34 + ( 162.15 -43.40 19.25 0.46) ; 35 + ( 160.85 -41.92 18.63 0.46) ; 36 + ( 158.04 -41.97 18.63 0.46) ; 37 + ( 155.27 -40.24 17.75 0.46) ; 38 + ( 155.27 -40.24 17.72 0.46) ; 39 + ( 152.96 -38.39 18.55 0.46) ; 40 + ( 149.88 -37.32 19.50 0.46) ; 41 + ( 149.88 -37.32 19.48 0.46) ; 42 + ( 145.33 -36.00 19.73 0.46) ; 43 + ( 141.36 -35.14 20.27 0.46) ; 44 + ( 137.88 -33.48 21.45 0.46) ; 45 + ( + ( 138.86 -35.63 19.55 0.46) ; 1, R-2-2-1-2-1 + ( 139.52 -38.46 18.27 0.46) ; 2 + ( 140.19 -41.30 17.13 0.46) ; 3 + ( 140.19 -41.30 17.08 0.46) ; 4 + ( 141.16 -43.45 15.60 0.46) ; 5 + ( 141.16 -43.45 15.50 0.46) ; 6 + ( 139.09 -48.71 13.47 0.46) ; 7 + ( 139.09 -48.71 13.42 0.46) ; 8 + ( 139.36 -49.86 11.68 0.46) ; 9 + ( 139.13 -52.89 8.45 0.46) ; 10 + ( 139.26 -53.45 6.57 0.46) ; 11 + ( 140.24 -55.61 4.52 0.46) ; 12 + ( 141.13 -55.40 2.42 0.46) ; 13 + ( 142.49 -55.09 0.82 0.46) ; 14 + ( 141.40 -56.54 -5.27 0.46) ; 15 + ( 140.11 -55.04 -6.52 0.46) ; 16 + ( 137.30 -55.11 -7.47 0.46) ; 17 + ( 134.67 -53.93 -7.87 0.46) ; 18 + ( 132.69 -55.59 -8.75 0.46) ; 19 + ( 129.84 -57.45 -10.65 0.46) ; 20 + ( 127.61 -57.98 -11.27 0.46) ; 21 + ( 127.61 -57.98 -11.42 0.46) ; 22 + ( 127.88 -59.11 -13.32 0.46) ; 23 + ( 125.14 -61.54 -15.43 0.46) ; 24 + ( 125.14 -61.54 -15.48 0.46) ; 25 + ( 123.49 -62.53 -19.60 0.46) ; 26 + ( 121.53 -64.18 -22.12 0.46) ; 27 + ( 122.50 -66.34 -24.13 0.46) ; 28 + ( 122.90 -68.04 -26.32 0.46) ; 29 + ( 122.90 -68.04 -26.35 0.46) ; 30 + ( 120.26 -66.86 -27.45 0.46) ; 31 + ( 120.22 -68.67 -29.30 0.46) ; 32 + ( 120.22 -68.67 -29.32 0.46) ; 33 + ( 121.18 -70.82 -31.75 0.46) ; 34 + ( 120.12 -72.28 -32.77 0.46) ; 35 + ( 118.59 -73.83 -33.50 0.46) ; 36 + ( 117.35 -76.51 -34.52 0.46) ; 37 + ( 116.80 -80.21 -35.72 0.46) ; 38 + ( 115.09 -83.00 -36.35 0.46) ; 39 + ( 111.79 -84.97 -37.67 0.46) ; 40 + ( 110.53 -87.66 -38.47 0.46) ; 41 + ( 109.54 -91.47 -40.32 0.46) ; 42 + ( 109.54 -91.47 -40.32 0.46) ; 43 + ( 107.13 -93.23 -41.57 0.46) ; 44 + ( 107.13 -93.23 -41.60 0.46) ; 45 + ( 104.98 -96.12 -43.62 0.46) ; 46 + ( 102.82 -99.02 -45.90 0.46) ; 47 + ( 101.08 -103.60 -47.55 0.46) ; 48 + ( 98.80 -105.93 -47.55 0.46) ; 49 + ( 98.31 -107.84 -49.25 0.46) ; 50 + ( 98.31 -107.84 -49.27 0.46) ; 51 + ( 98.78 -111.91 -50.30 0.46) ; 52 + ( 95.34 -113.32 -52.05 0.46) ; 53 + ( 93.12 -113.83 -54.90 0.46) ; 54 + ( 93.12 -113.83 -54.95 0.46) ; 55 + ( 90.25 -115.69 -58.10 0.46) ; 56 + ( 87.00 -115.86 -61.25 0.46) ; 57 + ( 87.00 -115.86 -61.35 0.46) ; 58 + ( 85.02 -117.52 -64.05 0.46) ; 59 + ( 85.02 -117.52 -64.10 0.46) ; 60 + ( 83.00 -120.98 -64.97 0.46) ; 61 + ( 83.00 -120.98 -65.00 0.46) ; 62 + ( 83.54 -123.25 -67.57 0.46) ; 63 + ( 83.54 -123.25 -67.60 0.46) ; 64 + ( 82.99 -126.95 -69.47 0.46) ; 65 + ( 82.95 -128.76 -72.35 0.46) ; 66 + ( 82.95 -128.76 -72.40 0.46) ; 67 + ( 82.40 -132.47 -74.25 0.46) ; 68 + ( 82.49 -134.83 -74.22 0.46) ; 69 + ( 82.49 -134.83 -74.38 0.46) ; 70 + ( 81.81 -137.98 -78.32 0.46) ; 71 + ( 81.26 -141.69 -81.22 0.46) ; 72 + ( 82.11 -143.28 -84.63 0.46) ; 73 + ( 82.19 -145.66 -87.42 0.46) ; 74 + ( 80.67 -147.21 -89.88 0.46) ; 75 + ( 79.69 -151.02 -89.32 0.46) ; 76 + ( 79.45 -154.06 -93.88 0.46) ; 77 + ( 79.45 -154.06 -94.10 0.46) ; 78 + ( 78.18 -156.73 -97.38 0.46) ; 79 + ( 78.18 -156.73 -97.40 0.46) ; 80 + ( 75.46 -159.17 -99.63 0.46) ; 81 + ( 74.70 -159.94 -101.53 0.46) ; 82 + ( 75.41 -160.97 -103.42 0.46) ; 83 + ( 75.41 -160.97 -103.45 0.46) ; 84 + ( 75.54 -161.53 -105.65 0.46) ; 85 + ( 76.70 -162.46 -106.15 0.46) ; 86 + ( 76.70 -162.46 -106.30 0.46) ; 87 + ( 76.87 -167.20 -108.47 0.46) ; 88 + ( 76.87 -167.20 -109.63 0.46) ; 89 + ( 78.38 -171.62 -109.63 0.46) ; 90 + ( 76.95 -175.54 -111.80 0.46) ; 91 + ( 76.95 -175.54 -111.82 0.46) ; 92 + ( 77.48 -177.80 -115.57 0.46) ; 93 + ( 78.33 -179.40 -118.20 0.46) ; 94 + ( 78.33 -179.40 -118.22 0.46) ; 95 + ( 78.09 -182.43 -119.78 0.46) ; 96 + ( 78.09 -182.43 -119.88 0.46) ; 97 + ( 78.05 -184.24 -122.05 0.46) ; 98 + ( 79.29 -187.54 -123.42 0.46) ; 99 + ( 78.02 -190.21 -125.02 0.46) ; 100 + ( 78.37 -193.71 -127.52 0.46) ; 101 + ( 77.70 -196.86 -129.92 0.46) ; 102 + ( 77.57 -196.30 -129.92 0.46) ; 103 + ( 78.81 -199.58 -130.65 0.46) ; 104 + ( 80.19 -203.43 -131.57 0.46) ; 105 + ( 81.02 -204.92 -132.52 0.46) ; 106 + ( 81.60 -205.40 -134.75 0.46) ; 107 + ( 82.53 -209.36 -136.07 0.46) ; 108 + ( 83.19 -212.18 -137.55 0.46) ; 109 + ( 83.41 -215.12 -138.82 0.46) ; 110 + ( 81.26 -218.01 -141.43 0.46) ; 111 + ( 80.05 -218.90 -145.50 0.46) ; 112 + ( 79.43 -220.23 -148.05 0.46) ; 113 + ( 77.72 -223.02 -150.23 0.46) ; 114 + ( 75.45 -225.35 -150.23 0.46) ; 115 + ( 72.90 -226.54 -150.27 0.46) ; 116 + ( 72.90 -226.54 -150.32 0.46) ; 117 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 140.42 -38.25 18.27 0.46) ; 1 + ( 141.60 -49.33 9.80 0.46) ; 2 + ( 139.89 -52.11 8.05 0.46) ; 3 + ( 140.87 -54.28 4.50 0.46) ; 4 + ( 142.30 -56.33 0.82 0.46) ; 5 + ( 131.18 -57.14 -10.65 0.46) ; 6 + ( 124.23 -67.73 -26.35 0.46) ; 7 + ( 79.16 -180.99 -120.05 0.46) ; 8 + ( 79.74 -203.54 -131.57 0.46) ; 9 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 118.59 -73.83 -33.50 0.46) ; 1 + ( 113.53 -86.36 -36.88 0.46) ; 2 + ( 107.58 -93.12 -41.97 0.46) ; 3 + ( 80.13 -150.92 -89.32 0.46) ; 4 + ( 76.95 -175.54 -111.82 0.46) ; 5 + ( 79.15 -186.96 -123.42 0.46) ; 6 + ) ; End of markers + Incomplete + | + ( 138.01 -32.94 21.45 0.46) ; 1, R-2-2-1-2-2 + ( 134.93 -31.87 22.65 0.46) ; 2 + ( 131.91 -28.99 23.67 0.46) ; 3 + ( 128.25 -27.45 24.75 0.46) ; 4 + ( 124.60 -25.93 24.75 0.46) ; 5 + ( 121.56 -23.06 25.05 0.46) ; 6 + ( 118.61 -22.55 25.45 0.46) ; 7 + ( 114.78 -22.26 26.15 0.46) ; 8 + ( 114.78 -22.26 26.13 0.46) ; 9 + ( 112.34 -19.85 26.77 0.46) ; 10 + ( 112.34 -19.85 26.75 0.46) ; 11 + ( 107.33 -18.63 26.92 0.46) ; 12 + ( 105.78 -16.01 27.63 0.46) ; 13 + ( 105.78 -16.01 27.60 0.46) ; 14 + ( 103.02 -14.27 30.33 0.46) ; 15 + ( 101.86 -13.35 31.88 0.46) ; 16 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 269.53 -81.56 7.15 0.46) ; 1 + ( 256.33 -77.48 7.90 0.46) ; 2 + ( 228.93 -73.16 6.65 0.46) ; 3 + ( 222.91 -71.59 6.65 0.46) ; 4 + ( 211.75 -68.22 9.67 0.46) ; 5 + ( 207.07 -66.34 10.30 0.46) ; 6 + ( 202.83 -64.34 10.30 0.46) ; 7 + ( 196.87 -60.96 10.85 0.46) ; 8 + ( 184.13 -50.82 15.73 0.46) ; 9 + ( 173.14 -46.22 17.27 0.46) ; 10 + ( 161.96 -44.64 19.25 0.46) ; 11 + ( 158.17 -42.55 18.63 0.46) ; 12 + ( 145.28 -37.81 19.73 0.46) ; 13 + ( 105.16 -11.37 27.47 0.46) ; 14 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 241.79 -73.72 8.10 0.46) ; 1 + ( 248.12 -74.63 8.10 0.46) ; 2 + ( 231.62 -72.53 5.77 0.46) ; 3 + ( 192.81 -57.73 13.97 0.46) ; 4 + ( 188.58 -55.74 14.50 0.46) ; 5 + ( 120.09 -22.80 25.45 0.46) ; 6 + ) ; End of markers + High + ) ; End of split + ) ; End of split + | + ( 281.63 -88.84 4.20 0.46) ; 1, R-2-2-2 + ( 280.91 -87.82 3.10 0.46) ; 2 + ( 280.47 -87.93 3.08 0.46) ; 3 + ( 278.98 -87.67 0.95 0.46) ; 4 + ( 276.49 -87.06 -0.32 0.46) ; 5 + ( 275.91 -86.60 -2.78 0.46) ; 6 + ( 275.64 -85.46 -5.15 0.46) ; 7 + ( 275.51 -84.91 -6.93 0.46) ; 8 + ( 275.07 -85.00 -6.95 0.46) ; 9 + ( 273.95 -82.28 -8.77 0.46) ; 10 + ( 272.49 -82.02 -10.97 0.46) ; 11 + ( 272.49 -82.02 -11.00 0.46) ; 12 + ( 272.22 -80.90 -13.55 0.46) ; 13 + ( 271.78 -81.00 -13.57 0.46) ; 14 + ( 270.04 -79.61 -15.50 0.46) ; 15 + ( 269.31 -78.58 -18.13 0.46) ; 16 + ( 269.31 -78.58 -18.15 0.46) ; 17 + ( 268.11 -79.47 -20.23 0.46) ; 18 + ( 267.00 -76.75 -21.60 0.46) ; 19 + ( 264.51 -76.13 -22.27 0.46) ; 20 + ( 263.35 -75.21 -24.00 0.46) ; 21 + ( 263.35 -75.21 -24.02 0.46) ; 22 + ( 261.43 -75.07 -25.92 0.46) ; 23 + ( 260.09 -75.37 -27.88 0.46) ; 24 + ( 258.61 -75.13 -29.67 0.46) ; 25 + ( 258.61 -75.13 -29.70 0.46) ; 26 + ( 256.25 -75.09 -31.38 0.46) ; 27 + ( 256.25 -75.09 -31.40 0.46) ; 28 + ( 254.20 -74.37 -33.03 0.46) ; 29 + ( 254.20 -74.37 -33.05 0.46) ; 30 + ( 253.05 -73.45 -34.55 0.46) ; 31 + ( 250.42 -72.28 -37.08 0.46) ; 32 + ( 250.42 -72.28 -37.10 0.46) ; 33 + ( 248.81 -71.45 -39.35 0.46) ; 34 + ( 248.81 -71.45 -39.42 0.46) ; 35 + ( 246.17 -70.28 -41.60 0.46) ; 36 + ( 245.59 -69.82 -44.07 0.46) ; 37 + ( 245.59 -69.82 -44.10 0.46) ; 38 + ( 243.41 -68.54 -46.08 0.46) ; 39 + ( 240.90 -67.93 -47.10 0.46) ; 40 + ( 240.90 -67.93 -47.13 0.46) ; 41 + ( 238.41 -67.33 -49.02 0.46) ; 42 + ( 235.79 -66.14 -51.20 0.46) ; 43 + ( 234.31 -65.90 -52.75 0.46) ; 44 + ( 230.92 -65.50 -53.97 0.46) ; 45 + ( 230.92 -65.50 -54.00 0.46) ; 46 + ( 227.98 -64.99 -54.58 0.46) ; 47 + ( 225.66 -63.14 -56.75 0.46) ; 48 + ( 225.66 -63.14 -56.80 0.46) ; 49 + ( 223.16 -62.54 -59.20 0.46) ; 50 + ( 220.26 -60.23 -61.52 0.46) ; 51 + ( 220.26 -60.23 -61.57 0.46) ; 52 + ( 218.66 -59.41 -63.15 0.46) ; 53 + ( 218.66 -59.41 -63.20 0.46) ; 54 + ( 217.23 -57.35 -62.88 0.46) ; 55 + ( 215.82 -55.30 -64.70 0.46) ; 56 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 242.07 -68.85 -47.13 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 262.19 -74.29 -25.92 0.46) ; 1 + ( 238.86 -67.22 -49.02 0.46) ; 2 + ( 228.42 -64.89 -54.58 0.46) ; 3 + ) ; End of markers + Normal + | + ( 287.43 -87.48 6.15 0.46) ; 1, R-2-2-3 + ( 290.12 -86.85 4.78 0.46) ; 2 + ( + ( 290.48 -84.38 3.47 0.46) ; 1, R-2-2-3-1 + ( 290.65 -83.15 1.75 0.46) ; 2 + ( 290.22 -83.25 1.73 0.46) ; 3 + ( 292.57 -83.30 1.70 0.46) ; 4 + ( 293.65 -81.85 0.50 0.46) ; 5 + ( 293.65 -81.85 0.47 0.46) ; 6 + ( 295.44 -81.43 -1.07 0.46) ; 7 + ( 296.52 -79.98 -3.10 0.46) ; 8 + ( 297.40 -79.77 -4.92 0.46) ; 9 + ( 297.40 -79.77 -4.95 0.46) ; 10 + ( 298.93 -78.22 -7.05 0.46) ; 11 + ( 298.93 -78.22 -7.07 0.46) ; 12 + ( 299.82 -78.01 -8.63 0.46) ; 13 + ( 302.69 -76.15 -10.25 0.46) ; 14 + ( 302.69 -76.15 -10.28 0.46) ; 15 + ( 303.44 -75.38 -12.17 0.46) ; 16 + ( 304.38 -73.36 -13.52 0.46) ; 17 + ( 306.66 -71.04 -14.35 0.46) ; 18 + ( 306.66 -71.04 -14.43 0.46) ; 19 + ( 309.66 -69.74 -14.67 0.46) ; 20 + ( 310.87 -68.85 -14.67 0.46) ; 21 + ( 312.38 -67.30 -14.67 0.46) ; 22 + ( 315.52 -66.57 -15.55 0.46) ; 23 + ( 317.48 -64.92 -15.55 0.46) ; 24 + ( 319.26 -64.50 -16.65 0.46) ; 25 + ( 320.34 -63.06 -18.42 0.46) ; 26 + ( 322.58 -62.53 -19.77 0.46) ; 27 + ( 322.58 -62.53 -19.82 0.46) ; 28 + ( 323.78 -61.64 -21.18 0.46) ; 29 + ( 323.33 -61.75 -21.18 0.46) ; 30 + ( 324.55 -60.87 -22.12 0.46) ; 31 + ( 325.44 -60.66 -22.12 0.46) ; 32 + ( 328.60 -58.13 -21.77 0.46) ; 33 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 302.50 -77.38 -10.28 0.46) ; 1 + ( 306.17 -72.94 -14.48 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 294.99 -81.54 -1.07 0.46) ; 1 + ( 299.51 -78.69 -7.07 0.46) ; 2 + ( 303.44 -75.38 -12.17 0.46) ; 3 + ( 315.52 -66.57 -15.55 0.46) ; 4 + ) ; End of markers + ( + ( 329.69 -56.68 -23.98 0.46) ; 1, R-2-2-3-1-1 + ( 331.16 -56.94 -23.98 0.46) ; 2 + ( 334.15 -55.64 -25.50 0.46) ; 3 + ( 334.15 -55.64 -25.55 0.46) ; 4 + ( 335.75 -56.45 -27.50 0.46) ; 5 + ( 335.75 -56.45 -27.53 0.46) ; 6 + ( 336.20 -56.35 -27.97 0.46) ; 7 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 333.39 -56.41 -25.55 0.46) ; 1 + ) ; End of markers + ( + ( 339.46 -56.18 -29.27 0.46) ; 1, R-2-2-3-1-1-1 + ( 339.19 -55.05 -30.60 0.46) ; 2 + ( + ( 343.26 -52.31 -31.50 0.46) ; 1, R-2-2-3-1-1-1-1 + ( 344.02 -51.53 -33.03 0.46) ; 2 + ( 345.55 -49.98 -34.08 0.46) ; 3 + ( 347.60 -50.69 -35.27 0.46) ; 4 + ( 348.10 -48.79 -36.50 0.46) ; 5 + ( 351.09 -47.49 -38.57 0.46) ; 6 + ( 353.64 -46.29 -39.85 0.46) ; 7 + ( 353.64 -46.29 -39.88 0.46) ; 8 + ( 353.24 -44.59 -39.88 0.46) ; 9 + ( 356.41 -42.06 -41.08 0.46) ; 10 + ( 357.48 -40.61 -41.97 0.46) ; 11 + ( 358.43 -38.60 -44.10 0.46) ; 12 + ( 360.39 -36.95 -46.10 0.46) ; 13 + ( 363.56 -34.41 -47.80 0.46) ; 14 + ( 363.56 -34.41 -47.82 0.46) ; 15 + ( 367.06 -31.21 -49.32 0.46) ; 16 + ( 367.06 -31.21 -49.38 0.46) ; 17 + ( 371.57 -28.35 -50.72 0.46) ; 18 + ( 373.85 -26.03 -52.45 0.46) ; 19 + ( 373.85 -26.03 -52.47 0.46) ; 20 + ( 376.26 -24.28 -54.40 0.46) ; 21 + ( 378.24 -22.61 -55.60 0.46) ; 22 + ( 381.55 -20.64 -56.57 0.46) ; 23 + ( 384.72 -18.11 -58.45 0.46) ; 24 + ( 385.53 -15.53 -59.75 0.46) ; 25 + ( 385.53 -15.53 -59.78 0.46) ; 26 + ( 387.63 -14.44 -60.85 0.46) ; 27 + ( 390.49 -12.57 -62.28 0.46) ; 28 + ( 392.46 -10.91 -64.30 0.46) ; 29 + ( 392.46 -10.91 -64.32 0.46) ; 30 + ( 395.76 -8.95 -66.17 0.46) ; 31 + ( 395.32 -9.05 -66.17 0.46) ; 32 + ( 398.62 -7.08 -68.47 0.46) ; 33 + ( 400.91 -4.76 -70.55 0.46) ; 34 + ( 400.91 -4.76 -70.57 0.46) ; 35 + ( 402.16 -2.07 -71.15 0.46) ; 36 + ( 404.75 0.92 -72.93 0.46) ; 37 + ( 405.75 4.74 -74.32 0.46) ; 38 + ( 407.50 9.33 -76.07 0.46) ; 39 + ( 409.97 12.89 -78.47 0.46) ; 40 + ( 409.97 12.89 -78.50 0.46) ; 41 + ( 411.62 13.87 -80.60 0.46) ; 42 + ( 411.62 13.87 -80.63 0.46) ; 43 + ( 412.88 16.56 -82.47 0.46) ; 44 + ( 412.88 16.56 -82.55 0.46) ; 45 + ( 415.91 19.66 -85.10 0.46) ; 46 + ( 415.91 19.66 -86.55 0.46) ; 47 + ( 419.36 21.06 -87.72 0.46) ; 48 + ( 420.74 23.18 -89.72 0.46) ; 49 + ( 420.74 23.18 -89.75 0.46) ; 50 + ( 423.39 27.98 -91.22 0.46) ; 51 + ( 425.80 29.73 -93.45 0.46) ; 52 + ( 428.26 33.30 -94.55 0.46) ; 53 + ( 430.55 35.63 -96.75 0.46) ; 54 + ( 432.30 40.20 -98.05 0.46) ; 55 + ( 433.95 41.19 -98.72 0.46) ; 56 + ( 435.35 43.31 -98.72 0.46) ; 57 + ( 435.18 43.27 -98.77 0.46) ; 58 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 355.91 -43.96 -41.08 0.46) ; 1 + ( 359.09 -41.44 -41.97 0.46) ; 2 + ( 378.96 -23.64 -55.60 0.46) ; 3 + ( 411.98 16.35 -82.55 0.46) ; 4 + ( 424.52 31.23 -93.45 0.46) ; 5 + ( 428.62 35.78 -96.75 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 347.78 -49.45 -36.50 0.46) ; 1 + ( 376.81 -20.56 -54.70 0.46) ; 2 + ( 388.20 -14.90 -60.85 0.46) ; 3 + ( 402.74 -2.54 -71.15 0.46) ; 4 + ( 405.75 4.74 -74.42 0.46) ; 5 + ) ; End of markers + ( + ( 436.75 46.63 -98.77 0.46) ; 1, R-2-2-3-1-1-1-1-1 + ( 440.06 48.59 -99.85 0.46) ; 2 + ( 441.94 52.62 -99.17 0.46) ; 3 + ( 441.94 52.62 -99.22 0.46) ; 4 + ( 444.46 57.99 -99.78 0.46) ; 5 + ( 446.34 62.02 -99.78 0.46) ; 6 + ( 446.57 65.05 -99.78 0.46) ; 7 + ( 448.58 68.51 -99.78 0.46) ; 8 + ( 449.89 72.99 -101.10 0.46) ; 9 + ( 452.34 76.56 -101.60 0.46) ; 10 + ( 453.29 78.57 -101.67 0.46) ; 11 + ( 456.97 83.01 -102.20 0.46) ; 12 + ( 457.02 84.81 -103.07 0.46) ; 13 + ( 458.00 88.63 -103.97 0.46) ; 14 + ( 458.36 91.11 -105.40 0.46) ; 15 + ( 459.32 93.11 -107.05 0.46) ; 16 + ( 460.52 93.99 -108.47 0.46) ; 17 + ( 459.85 96.82 -109.65 0.46) ; 18 + ( 459.85 96.82 -109.67 0.46) ; 19 + ( 461.81 98.47 -111.82 0.46) ; 20 + ( 463.83 101.94 -114.03 0.46) ; 21 + ( 463.83 101.94 -114.22 0.46) ; 22 + ( 466.43 104.94 -115.60 0.46) ; 23 + ( 466.43 104.94 -116.17 0.46) ; 24 + ( 468.71 107.26 -116.45 0.46) ; 25 + ( 472.12 112.84 -117.50 0.46) ; 26 + ( 473.82 115.63 -117.50 0.46) ; 27 + ( 475.30 121.35 -118.15 0.46) ; 28 + ( 475.99 124.50 -119.15 0.46) ; 29 + ( 478.49 129.86 -119.52 0.46) ; 30 + ( 479.92 133.79 -119.52 0.46) ; 31 + ( 482.66 136.21 -118.27 0.46) ; 32 + ( 483.78 139.46 -118.27 0.46) ; 33 + ( 485.53 144.06 -118.82 0.46) ; 34 + ( 487.23 146.83 -119.85 0.46) ; 35 + ( 486.89 150.34 -120.42 0.46) ; 36 + ( 488.46 153.69 -122.35 0.46) ; 37 + ( 491.11 158.49 -122.85 0.46) ; 38 + ( 493.57 162.05 -124.07 0.46) ; 39 + ( 495.58 165.51 -124.82 0.46) ; 40 + ( 496.84 168.19 -126.20 0.46) ; 41 + ( 497.46 169.54 -128.38 0.46) ; 42 + ( 497.46 169.54 -128.40 0.46) ; 43 + ( 498.54 170.98 -129.85 0.46) ; 44 + ( 498.54 170.98 -129.88 0.46) ; 45 + ( 500.50 172.63 -131.27 0.46) ; 46 + ( 500.50 172.63 -131.30 0.46) ; 47 + ( 500.24 173.77 -133.90 0.46) ; 48 + ( 500.24 173.77 -133.95 0.46) ; 49 + ( 499.97 174.89 -136.00 0.46) ; 50 + ( 499.97 174.89 -136.05 0.46) ; 51 + ( 501.18 175.78 -138.77 0.46) ; 52 + ( 501.18 175.78 -138.80 0.46) ; 53 + ( 503.60 177.54 -139.38 0.46) ; 54 + ( 504.99 179.66 -139.38 0.46) ; 55 + ( 508.16 182.19 -140.55 0.46) ; 56 + ( 509.87 184.99 -141.60 0.46) ; 57 + ( 510.10 188.03 -143.13 0.46) ; 58 + ( 512.06 189.68 -144.35 0.46) ; 59 + ( 513.00 191.69 -145.68 0.46) ; 60 + ( 513.62 193.03 -145.98 0.46) ; 61 + ( 513.62 193.03 -146.00 0.46) ; 62 + ( 515.07 196.95 -147.27 0.46) ; 63 + ( 518.11 200.05 -149.40 0.46) ; 64 + ( 520.40 202.38 -149.40 0.46) ; 65 + ( 520.40 202.38 -150.15 0.46) ; 66 + ( 524.38 207.49 -150.25 0.46) ; 67 + ( 527.29 211.15 -148.80 0.46) ; 68 + ( 528.23 213.16 -148.80 0.46) ; 69 + ( 531.89 217.61 -148.80 0.46) ; 70 + ( 533.34 221.53 -149.22 0.46) ; 71 + ( 534.28 223.55 -149.50 0.46) ; 72 + ( 537.00 225.98 -150.57 0.46) ; 73 + ( 538.03 225.62 -150.20 0.46) ; 74 + ( 540.85 225.68 -151.27 0.46) ; 75 + ( 544.33 228.88 -151.27 0.46) ; 76 + ( 548.26 232.20 -151.27 0.46) ; 77 + ( 551.00 234.63 -151.27 0.46) ; 78 + ( 553.02 238.09 -152.38 0.46) ; 79 + ( 555.74 240.52 -152.38 0.46) ; 80 + ( 557.84 241.60 -152.38 0.46) ; 81 + ( 559.87 245.07 -152.38 0.46) ; 82 + ( 561.83 246.72 -153.10 0.46) ; 83 + ( 564.28 250.28 -153.40 0.46) ; 84 + ( 567.46 252.82 -154.05 0.46) ; 85 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 440.33 47.47 -99.88 0.46) ; 1 + ( 462.81 102.30 -114.22 0.46) ; 2 + ( 515.44 199.42 -149.40 0.46) ; 3 + ( 536.60 227.67 -150.20 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 448.46 69.07 -99.78 0.46) ; 1 + ( 453.74 78.67 -101.67 0.46) ; 2 + ( 475.85 125.06 -119.15 0.46) ; 3 + ( 486.80 146.73 -119.85 0.46) ; 4 + ( 487.02 149.77 -120.42 0.46) ; 5 + ( 493.57 162.05 -124.07 0.46) ; 6 + ( 501.63 175.88 -138.80 0.46) ; 7 + ( 510.00 184.42 -141.60 0.46) ; 8 + ( 513.94 193.71 -146.00 0.46) ; 9 + ( 525.26 207.69 -150.25 0.46) ; 10 + ( 562.27 246.82 -153.10 0.46) ; 11 + ( 564.73 250.39 -153.67 0.46) ; 12 + ( 567.02 252.72 -154.15 0.46) ; 13 + ) ; End of markers + Normal + | + ( 437.68 42.67 -97.40 0.46) ; 1, R-2-2-3-1-1-1-1-2 + ( 437.68 42.67 -97.32 0.46) ; 2 + ( 441.34 41.13 -96.27 0.46) ; 3 + ( 443.07 39.75 -95.15 0.46) ; 4 + ( 445.39 37.90 -93.20 0.46) ; 5 + ( 446.10 36.88 -91.27 0.46) ; 6 + ( 447.57 36.63 -89.50 0.46) ; 7 + ( 448.81 33.34 -88.40 0.46) ; 8 + ( 450.70 31.38 -87.45 0.46) ; 9 + ( 451.54 29.79 -86.00 0.46) ; 10 + ( 451.54 29.79 -86.03 0.46) ; 11 + ( 452.70 28.86 -86.03 0.46) ; 12 + ( 454.88 27.58 -85.15 0.46) ; 13 + ( 456.44 24.96 -85.15 0.46) ; 14 + ( 458.17 23.58 -85.15 0.46) ; 15 + ( 461.66 20.81 -84.08 0.46) ; 16 + ( 465.84 17.02 -83.07 0.46) ; 17 + ( 471.31 15.90 -84.30 0.46) ; 18 + ( 476.44 14.11 -83.80 0.46) ; 19 + ( 479.96 13.15 -82.90 0.46) ; 20 + ( 483.35 12.75 -82.15 0.46) ; 21 + ( 483.35 12.75 -81.62 0.46) ; 22 + ( 486.56 11.11 -81.67 0.46) ; 23 + ( 491.43 10.46 -81.30 0.46) ; 24 + ( 496.87 9.34 -80.80 0.46) ; 25 + ( 500.09 7.71 -80.57 0.46) ; 26 + ( 503.16 6.64 -79.50 0.46) ; 27 + ( 506.69 5.67 -78.47 0.46) ; 28 + ( 509.01 3.83 -77.22 0.46) ; 29 + ( 509.01 3.83 -77.30 0.46) ; 30 + ( 513.42 3.07 -76.50 0.46) ; 31 + ( 516.69 3.24 -75.78 0.46) ; 32 + ( 516.69 3.24 -75.80 0.46) ; 33 + ( 520.21 2.27 -77.70 0.46) ; 34 + ( 523.10 -0.03 -79.15 0.46) ; 35 + ( 528.68 -1.71 -79.80 0.46) ; 36 + ( 528.68 -1.71 -79.82 0.46) ; 37 + ( 533.81 -3.50 -80.22 0.46) ; 38 + ( 538.30 -6.63 -78.00 0.46) ; 39 + ( 541.25 -7.12 -76.47 0.46) ; 40 + ( 544.52 -6.95 -74.63 0.46) ; 41 + ( 548.04 -7.93 -73.10 0.46) ; 42 + ( 550.53 -8.53 -71.77 0.46) ; 43 + ( 550.53 -8.53 -71.85 0.46) ; 44 + ( 554.24 -8.26 -70.70 0.46) ; 45 + ( 554.24 -8.26 -70.72 0.46) ; 46 + ( 558.07 -8.55 -69.22 0.46) ; 47 + ( 559.81 -9.94 -67.88 0.46) ; 48 + ( 563.21 -10.34 -66.65 0.46) ; 49 + ( 563.21 -10.34 -66.68 0.46) ; 50 + ( 566.02 -10.28 -65.65 0.46) ; 51 + ( 570.44 -11.03 -65.05 0.46) ; 52 + ( 574.09 -12.56 -65.20 0.46) ; 53 + ( 574.09 -12.56 -65.22 0.46) ; 54 + ( 578.92 -15.02 -64.92 0.46) ; 55 + ( 581.72 -14.96 -64.92 0.46) ; 56 + ( 586.00 -15.15 -64.13 0.46) ; 57 + ( 589.27 -14.98 -63.38 0.46) ; 58 + ( 594.38 -16.76 -62.30 0.46) ; 59 + ( 594.38 -16.76 -62.33 0.46) ; 60 + ( 597.33 -17.25 -61.42 0.46) ; 61 + ( 600.41 -18.32 -60.45 0.46) ; 62 + ( 603.35 -18.82 -59.20 0.46) ; 63 + ( 604.91 -21.45 -58.55 0.46) ; 64 + ( 609.47 -22.77 -59.58 0.46) ; 65 + ( 616.07 -24.81 -59.07 0.46) ; 66 + ( 616.07 -24.81 -59.10 0.46) ; 67 + ( 619.90 -25.10 -59.10 0.46) ; 68 + ( 623.42 -26.07 -59.10 0.46) ; 69 + ( 626.24 -26.00 -59.85 0.46) ; 70 + ( 629.18 -26.51 -58.90 0.46) ; 71 + ( 632.26 -27.57 -57.30 0.46) ; 72 + ( 632.26 -27.57 -57.33 0.46) ; 73 + ( 633.72 -27.83 -56.55 0.46) ; 74 + ( 640.64 -29.19 -55.70 0.46) ; 75 + ( 646.23 -30.87 -55.70 0.46) ; 76 + ( 647.78 -33.50 -55.70 0.46) ; 77 + ( 652.21 -34.25 -55.45 0.46) ; 78 + ( 655.59 -34.65 -54.75 0.46) ; 79 + ( 658.98 -35.04 -54.17 0.46) ; 80 + ( 664.60 -34.94 -54.45 0.46) ; 81 + ( 669.34 -35.01 -53.67 0.46) ; 82 + ( 669.34 -35.01 -53.70 0.46) ; 83 + ( 674.15 -37.47 -52.67 0.46) ; 84 + ( 676.51 -37.51 -53.95 0.46) ; 85 + ( 676.51 -37.51 -53.97 0.46) ; 86 + ( 679.46 -38.01 -54.72 0.46) ; 87 + ( 681.96 -38.62 -55.97 0.46) ; 88 + ( 686.70 -38.71 -56.42 0.46) ; 89 + ( 689.96 -38.54 -56.42 0.46) ; 90 + ( 693.03 -39.61 -55.92 0.46) ; 91 + ( 693.03 -39.61 -55.90 0.46) ; 92 + ( 694.94 -39.75 -54.65 0.46) ; 93 + ( 698.47 -40.72 -53.82 0.46) ; 94 + ( 702.17 -40.46 -53.05 0.46) ; 95 + ( 706.73 -41.77 -53.05 0.46) ; 96 + ( 712.63 -42.78 -52.28 0.46) ; 97 + ( 716.73 -44.21 -53.95 0.46) ; 98 + ( 716.73 -44.21 -53.97 0.46) ; 99 + ( 718.01 -45.70 -53.97 0.46) ; 100 + ( 721.59 -44.87 -54.97 0.46) ; 101 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 499.32 6.94 -80.57 0.46) ; 1 + ( 553.17 -9.70 -70.72 0.46) ; 2 + ( 556.56 -10.11 -69.22 0.46) ; 3 + ( 593.18 -17.63 -62.33 0.46) ; 4 + ( 651.44 -35.03 -55.45 0.46) ; 5 + ( 673.84 -38.13 -52.67 0.46) ; 6 + ( 697.72 -41.50 -53.82 0.46) ; 7 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 452.70 28.86 -86.03 0.46) ; 1 + ( 456.57 24.39 -85.15 0.46) ; 2 + ( 465.84 17.02 -83.07 0.46) ; 3 + ( 486.56 11.11 -81.67 0.46) ; 4 + ( 516.69 3.24 -75.80 0.46) ; 5 + ( 533.81 -3.50 -80.22 0.46) ; 6 + ( 589.40 -15.55 -63.38 0.46) ; 7 + ( 600.41 -18.32 -60.45 0.46) ; 8 + ( 604.78 -20.88 -58.55 0.46) ; 9 + ( 626.24 -26.00 -59.85 0.46) ; 10 + ( 632.71 -27.47 -56.55 0.46) ; 11 + ( 639.18 -28.94 -55.70 0.46) ; 12 + ( 645.78 -30.98 -55.70 0.46) ; 13 + ( 681.52 -38.72 -55.97 0.46) ; 14 + ) ; End of markers + ( + ( 721.64 -43.07 -54.58 0.46) ; 1, R-2-2-3-1-1-1-1-2-1 + ( 722.00 -40.58 -53.75 0.46) ; 2 + ( 721.70 -35.28 -54.27 0.46) ; 3 + ( 721.92 -32.24 -54.27 0.46) ; 4 + ( 723.05 -28.99 -53.78 0.46) ; 5 + ( 723.99 -26.98 -52.92 0.46) ; 6 + ( 724.94 -24.97 -52.92 0.46) ; 7 + ( 728.37 -23.56 -52.15 0.46) ; 8 + ( 729.90 -22.01 -50.77 0.46) ; 9 + ( 731.74 -19.79 -49.72 0.46) ; 10 + ( 734.46 -17.36 -49.40 0.46) ; 11 + ( 736.73 -15.04 -49.10 0.46) ; 12 + ( 738.58 -12.81 -49.10 0.46) ; 13 + ( 741.94 -9.04 -48.35 0.46) ; 14 + ( 743.00 -7.59 -47.67 0.46) ; 15 + ( 743.18 -6.36 -47.25 0.46) ; 16 + ( 745.65 -2.80 -46.55 0.46) ; 17 + ( 747.37 0.00 -44.52 0.46) ; 18 + ( 750.36 1.31 -44.10 0.46) ; 19 + ( 752.96 4.29 -44.10 0.46) ; 20 + ( 755.86 7.97 -43.62 0.46) ; 21 + ( 756.04 9.20 -46.60 0.46) ; 22 + ( 755.64 10.90 -48.02 0.46) ; 23 + ( 755.56 13.27 -49.15 0.46) ; 24 + ( 755.56 13.27 -49.17 0.46) ; 25 + ( 756.37 15.85 -50.10 0.46) ; 26 + ( 755.58 19.25 -50.22 0.46) ; 27 + ( 755.58 19.25 -50.25 0.46) ; 28 + ( 756.84 21.93 -49.92 0.46) ; 29 + ( 758.85 25.39 -48.00 0.46) ; 30 + ( 759.79 27.39 -47.60 0.46) ; 31 + ( 762.66 29.26 -48.67 0.46) ; 32 + ( 764.62 30.91 -48.67 0.46) ; 33 + ( 766.13 32.46 -49.70 0.46) ; 34 + ( 767.53 34.59 -50.15 0.46) ; 35 + ( 769.23 37.37 -50.57 0.46) ; 36 + ( 770.93 40.16 -50.57 0.46) ; 37 + ( 772.76 42.38 -50.97 0.46) ; 38 + ( 775.54 46.61 -50.97 0.46) ; 39 + ( 776.36 49.19 -50.07 0.46) ; 40 + ( 777.47 52.44 -49.05 0.46) ; 41 + ( 781.60 56.99 -49.35 0.46) ; 42 + ( 784.46 58.85 -49.30 0.46) ; 43 + ( 786.79 62.98 -48.72 0.46) ; 44 + ( 789.69 66.66 -48.20 0.46) ; 45 + ( 791.85 69.54 -49.02 0.46) ; 46 + ( 793.86 73.00 -50.27 0.46) ; 47 + ( 794.27 77.25 -49.13 0.46) ; 48 + ( 796.73 80.82 -48.05 0.46) ; 49 + ( 796.96 83.86 -46.63 0.46) ; 50 + ( 797.58 85.21 -45.68 0.46) ; 51 + ( 797.94 87.68 -44.72 0.46) ; 52 + ( 799.48 89.23 -43.78 0.46) ; 53 + ( 799.70 92.27 -43.78 0.46) ; 54 + ( 801.09 94.38 -43.78 0.46) ; 55 + ( 803.95 96.24 -43.78 0.46) ; 56 + ( 806.50 97.43 -43.78 0.46) ; 57 + ( 809.35 99.31 -43.78 0.46) ; 58 + ( 810.61 101.99 -43.78 0.46) ; 59 + ( 811.28 105.13 -43.78 0.46) ; 60 + ( 811.12 109.87 -44.27 0.46) ; 61 + ( 811.80 113.02 -42.05 0.46) ; 62 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 753.62 7.44 -43.62 0.46) ; 1 + ( 773.32 46.10 -50.97 0.46) ; 2 + ( 792.08 72.58 -50.27 0.46) ; 3 + ( 794.94 80.40 -48.05 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 722.00 -40.58 -53.75 0.46) ; 1 + ( 728.55 -22.33 -50.77 0.46) ; 2 + ( 734.01 -17.47 -49.40 0.46) ; 3 + ( 745.65 -2.80 -46.55 0.46) ; 4 + ( 758.98 24.82 -48.00 0.46) ; 5 + ( 760.36 26.94 -47.60 0.46) ; 6 + ( 777.60 51.87 -49.05 0.46) ; 7 + ( 781.28 56.32 -49.15 0.46) ; 8 + ( 784.46 58.85 -49.30 0.46) ; 9 + ( 786.34 62.88 -48.72 0.46) ; 10 + ( 798.39 87.78 -44.72 0.46) ; 11 + ( 800.28 91.80 -43.78 0.46) ; 12 + ( 803.18 95.47 -43.78 0.46) ; 13 + ( 805.74 96.66 -43.78 0.46) ; 14 + ( 811.15 105.70 -43.78 0.46) ; 15 + ) ; End of markers + Normal + | + ( 724.23 -46.04 -56.45 0.46) ; 1, R-2-2-3-1-1-1-1-2-2 + ( 727.62 -46.43 -56.52 0.46) ; 2 + ( 732.31 -48.32 -56.40 0.46) ; 3 + ( 736.41 -49.75 -58.05 0.46) ; 4 + ( 740.20 -51.85 -58.55 0.46) ; 5 + ( 744.48 -52.05 -58.55 0.46) ; 6 + ( 746.53 -52.75 -57.37 0.46) ; 7 + ( 748.32 -52.34 -57.80 0.46) ; 8 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 747.56 -53.11 -57.80 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 728.20 -46.90 -56.52 0.46) ; 1 + ( 740.20 -51.85 -58.55 0.46) ; 2 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 337.44 -53.80 -30.67 0.46) ; 1, R-2-2-3-1-1-1-2 + ( 337.44 -53.80 -30.73 0.46) ; 2 + ( 337.62 -52.57 -32.83 0.46) ; 3 + ( 337.62 -52.57 -32.85 0.46) ; 4 + ( 336.91 -51.54 -34.67 0.46) ; 5 + ( 336.19 -50.51 -36.40 0.46) ; 6 + ( 336.69 -48.60 -37.50 0.46) ; 7 + ( 335.58 -45.87 -39.22 0.46) ; 8 + ( 333.89 -42.69 -40.13 0.46) ; 9 + ( 333.09 -39.30 -41.57 0.46) ; 10 + ( 332.39 -38.27 -42.88 0.46) ; 11 + ( 332.03 -34.76 -44.30 0.46) ; 12 + ( 331.37 -31.93 -45.22 0.46) ; 13 + ( 328.66 -28.40 -46.77 0.46) ; 14 + ( 327.55 -25.66 -48.45 0.46) ; 15 + ( 328.36 -23.09 -49.35 0.46) ; 16 + ( 328.90 -19.38 -50.52 0.46) ; 17 + ( 329.97 -17.93 -52.67 0.46) ; 18 + ( 330.66 -14.79 -53.47 0.46) ; 19 + ( 330.66 -14.79 -53.50 0.46) ; 20 + ( 330.88 -11.74 -55.97 0.46) ; 21 + ( 331.56 -8.60 -56.17 0.46) ; 22 + ( 331.35 -5.67 -59.27 0.46) ; 23 + ( 331.35 -5.67 -59.30 0.46) ; 24 + ( 331.44 -2.06 -60.30 0.46) ; 25 + ( 331.35 0.30 -62.77 0.46) ; 26 + ( 331.35 0.30 -62.80 0.46) ; 27 + ( 332.08 5.26 -66.68 0.46) ; 28 + ( 332.08 5.26 -66.77 0.46) ; 29 + ( 331.86 8.20 -68.53 0.46) ; 30 + ( 330.76 10.91 -68.85 0.46) ; 31 + ( 331.71 12.93 -69.40 0.46) ; 32 + ( 331.71 12.93 -69.10 0.46) ; 33 + ( 330.46 16.22 -66.43 0.46) ; 34 + ( 329.72 21.42 -64.38 0.46) ; 35 + ( 329.05 24.25 -62.72 0.46) ; 36 + ( 329.64 29.76 -62.72 0.46) ; 37 + ( 329.92 34.61 -61.70 0.46) ; 38 + ( 330.45 38.32 -60.45 0.46) ; 39 + ( 331.09 39.65 -58.90 0.46) ; 40 + ( 331.09 39.65 -58.92 0.46) ; 41 + ( 330.35 44.85 -57.82 0.46) ; 42 + ( 330.44 48.46 -56.42 0.46) ; 43 + ( 330.09 51.96 -55.80 0.46) ; 44 + ( 331.26 57.02 -54.63 0.46) ; 45 + ( 332.11 61.39 -53.50 0.46) ; 46 + ( 332.11 61.39 -53.53 0.46) ; 47 + ( 331.23 67.16 -51.90 0.46) ; 48 + ( 330.87 68.76 -50.57 0.46) ; 49 + ( 330.60 69.88 -48.13 0.46) ; 50 + ( 330.60 69.88 -48.15 0.46) ; 51 + ( 331.58 73.70 -47.08 0.46) ; 52 + ( 331.05 75.95 -45.32 0.46) ; 53 + ( 331.05 75.95 -45.38 0.46) ; 54 + ( 332.05 79.77 -43.62 0.46) ; 55 + ( 332.72 82.92 -41.93 0.46) ; 56 + ( 333.27 86.63 -42.40 0.46) ; 57 + ( 332.34 90.60 -41.70 0.46) ; 58 + ( 331.86 94.66 -41.70 0.46) ; 59 + ( 332.22 97.13 -40.75 0.46) ; 60 + ( 330.09 100.21 -39.05 0.46) ; 61 + ( 330.09 100.21 -39.08 0.46) ; 62 + ( 328.71 104.08 -39.85 0.46) ; 63 + ( 328.71 104.08 -39.88 0.46) ; 64 + ( 327.33 107.93 -38.55 0.46) ; 65 + ( 326.72 112.57 -38.55 0.46) ; 66 + ( 326.64 114.93 -37.58 0.46) ; 67 + ( 327.18 118.64 -36.33 0.46) ; 68 + ( 327.18 118.64 -36.35 0.46) ; 69 + ( 325.67 123.07 -36.35 0.46) ; 70 + ( 326.21 126.77 -36.35 0.46) ; 71 + ( 325.99 129.71 -35.77 0.46) ; 72 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 335.35 -48.92 -37.50 0.46) ; 1 + ( 331.10 93.88 -41.70 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 328.58 -20.06 -50.52 0.46) ; 1 + ( 329.85 20.85 -64.38 0.46) ; 2 + ( 331.63 65.46 -51.90 0.46) ; 3 + ( 332.58 83.48 -43.60 0.46) ; 4 + ( 333.27 86.63 -42.40 0.46) ; 5 + ( 328.58 104.63 -39.88 0.46) ; 6 + ( 327.03 113.23 -38.55 0.46) ; 7 + ( 326.73 118.53 -36.35 0.46) ; 8 + ( 326.47 125.64 -36.35 0.46) ; 9 + ( 326.44 129.81 -36.70 0.46) ; 10 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 328.95 -29.42 -47.67 0.46) ; 1 + ) ; End of markers + ( + ( 326.01 135.69 -36.78 0.46) ; 1, R-2-2-3-1-1-1-2-1 + ( 327.00 139.51 -36.78 0.46) ; 2 + ( 327.68 142.65 -38.57 0.46) ; 3 + ( 327.68 142.65 -38.55 0.46) ; 4 + ( 327.38 147.96 -39.63 0.46) ; 5 + ( 328.23 152.34 -39.63 0.46) ; 6 + ( 328.64 156.61 -40.70 0.46) ; 7 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 327.23 142.54 -38.55 0.46) ; 1 + ) ; End of markers + ( + ( 330.61 158.26 -38.63 0.46) ; 1, R-2-2-3-1-1-1-2-1-1 + ( 329.15 158.51 -36.15 0.46) ; 2 + ( 328.56 158.98 -33.90 0.46) ; 3 + ( 326.95 159.80 -32.20 0.46) ; 4 + ( 324.64 161.64 -30.25 0.46) ; 5 + ( 323.04 162.46 -30.17 0.46) ; 6 + ( 321.83 161.58 -28.30 0.46) ; 7 + ( 320.54 163.07 -26.82 0.46) ; 8 + ( 318.35 164.35 -25.03 0.46) ; 9 + ( 316.87 164.59 -23.70 0.46) ; 10 + ( 315.27 165.41 -22.17 0.46) ; 11 + ( 315.27 165.41 -22.20 0.46) ; 12 + ( 313.93 165.10 -20.90 0.46) ; 13 + ( 312.78 166.04 -19.58 0.46) ; 14 + ( 312.52 167.16 -19.50 0.46) ; 15 + ( 311.04 167.41 -18.52 0.46) ; 16 + ( 309.16 169.36 -16.73 0.46) ; 17 + ( 307.25 169.51 -15.60 0.46) ; 18 + ( 305.06 170.79 -14.05 0.46) ; 19 + ( 302.17 173.10 -13.42 0.46) ; 20 + ( 299.41 174.83 -13.15 0.46) ; 21 + ( 294.99 175.60 -13.13 0.46) ; 22 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 324.64 161.64 -30.25 0.46) ; 1 + ( 320.08 162.97 -26.82 0.46) ; 2 + ( 311.04 167.41 -18.52 0.46) ; 3 + ( 307.69 169.61 -15.60 0.46) ; 4 + ( 299.27 175.41 -13.15 0.46) ; 5 + ( 296.90 175.45 -13.13 0.46) ; 6 + ) ; End of markers + Normal + | + ( 328.75 160.21 -39.60 0.46) ; 1, R-2-2-3-1-1-1-2-1-2 + ( 329.42 163.35 -39.60 0.46) ; 2 + ( 329.83 167.64 -39.60 0.46) ; 3 + ( 330.82 171.45 -39.60 0.46) ; 4 + ( 329.75 175.98 -39.60 0.46) ; 5 + ( 331.01 178.66 -38.92 0.46) ; 6 + ( 333.03 182.11 -38.30 0.46) ; 7 + ( 334.91 186.14 -37.80 0.46) ; 8 + ( 335.33 190.42 -37.55 0.46) ; 9 + ( 335.47 195.82 -37.47 0.46) ; 10 + ( 336.73 198.52 -36.47 0.46) ; 11 + ( 337.68 200.53 -35.22 0.46) ; 12 + ( 337.90 203.57 -34.30 0.46) ; 13 + ( 337.99 207.18 -33.20 0.46) ; 14 + ( 339.74 211.76 -33.40 0.46) ; 15 + ( 342.47 214.20 -32.55 0.46) ; 16 + ( 342.47 214.20 -32.60 0.46) ; 17 + ( 344.89 215.96 -31.75 0.46) ; 18 + ( 345.56 219.11 -30.67 0.46) ; 19 + ( 345.92 221.58 -29.88 0.46) ; 20 + ( 348.61 222.21 -28.63 0.46) ; 21 + ( 350.04 226.12 -27.80 0.46) ; 22 + ( 352.55 231.49 -27.35 0.46) ; 23 + ( 352.55 231.49 -27.08 0.46) ; 24 + ( 354.76 236.19 -27.08 0.46) ; 25 + ( 355.29 239.90 -27.08 0.46) ; 26 + ( 355.34 241.70 -30.23 0.46) ; 27 + ( 356.29 243.72 -31.63 0.46) ; 28 + ( 357.50 244.60 -31.85 0.46) ; 29 + ( 359.10 243.78 -35.10 0.46) ; 30 + ( 358.65 243.67 -36.35 0.46) ; 31 + ( 358.65 243.67 -36.38 0.46) ; 32 + ( 359.60 245.69 -39.17 0.46) ; 33 + ( 359.60 245.69 -39.22 0.46) ; 34 + ( 360.09 247.59 -41.32 0.46) ; 35 + ( 360.45 250.06 -42.55 0.46) ; 36 + ( 361.39 252.07 -43.65 0.46) ; 37 + ( 364.39 253.38 -44.40 0.46) ; 38 + ( 366.35 255.04 -46.00 0.46) ; 39 + ( 367.74 257.14 -47.45 0.46) ; 40 + ( 367.74 257.14 -47.47 0.46) ; 41 + ( 368.81 258.59 -48.95 0.46) ; 42 + ( 368.81 258.59 -48.97 0.46) ; 43 + ( 370.03 259.48 -49.45 0.46) ; 44 + ( 372.12 260.56 -51.60 0.46) ; 45 + ( 373.65 262.12 -53.78 0.46) ; 46 + ( 373.65 262.12 -53.82 0.46) ; 47 + ( 374.85 262.99 -55.72 0.46) ; 48 + ( 375.93 264.43 -56.10 0.46) ; 49 + ( 376.75 267.02 -58.05 0.46) ; 50 + ( 378.26 268.57 -59.32 0.46) ; 51 + ( 378.94 271.72 -60.20 0.46) ; 52 + ( 379.56 273.05 -61.40 0.46) ; 53 + ( 379.56 273.05 -61.42 0.46) ; 54 + ( 381.46 277.08 -62.45 0.46) ; 55 + ( 382.84 279.20 -62.75 0.46) ; 56 + ( 385.29 282.75 -61.90 0.46) ; 57 + ( 388.03 285.19 -60.67 0.46) ; 58 + ( 389.87 287.42 -59.25 0.46) ; 59 + ( 391.69 289.63 -60.17 0.46) ; 60 + ( 393.66 291.30 -61.90 0.46) ; 61 + ( 396.84 293.82 -63.78 0.46) ; 62 + ( 398.94 294.92 -65.22 0.46) ; 63 + ( 400.90 296.58 -67.00 0.46) ; 64 + ( 400.90 296.58 -67.95 0.46) ; 65 + ( 403.82 300.23 -68.05 0.46) ; 66 + ( 403.82 300.23 -68.07 0.46) ; 67 + ( 404.45 301.59 -70.07 0.46) ; 68 + ( 404.45 301.59 -70.10 0.46) ; 69 + ( 406.54 302.67 -70.35 0.46) ; 70 + ( 406.54 302.67 -70.38 0.46) ; 71 + ( 407.81 305.36 -72.57 0.46) ; 72 + ( 407.81 305.36 -72.60 0.46) ; 73 + ( 409.90 306.44 -73.78 0.46) ; 74 + ( 411.73 308.67 -74.35 0.46) ; 75 + ( 414.07 312.79 -75.25 0.46) ; 76 + ( 414.07 312.79 -75.27 0.46) ; 77 + ( 415.46 314.91 -76.45 0.46) ; 78 + ( 416.84 317.02 -77.60 0.46) ; 79 + ( 419.13 319.35 -78.70 0.46) ; 80 + ( 420.07 321.36 -80.88 0.46) ; 81 + ( 420.07 321.36 -80.90 0.46) ; 82 + ( 422.17 322.45 -82.22 0.46) ; 83 + ( 422.66 324.36 -84.40 0.46) ; 84 + ( 423.55 324.57 -86.47 0.46) ; 85 + ( 425.52 326.22 -86.72 0.46) ; 86 + ( 425.52 326.22 -86.75 0.46) ; 87 + ( 427.55 329.68 -88.93 0.46) ; 88 + ( 429.82 332.01 -91.10 0.46) ; 89 + ( 429.82 332.01 -91.13 0.46) ; 90 + ( 430.32 333.92 -93.65 0.46) ; 91 + ( 430.32 333.92 -93.63 0.46) ; 92 + ( 429.16 334.84 -92.00 0.46) ; 93 + ( 429.16 334.84 -92.05 0.46) ; 94 + ( 429.79 336.18 -94.75 0.46) ; 95 + ( 431.49 338.97 -95.90 0.46) ; 96 + ( 434.53 342.07 -97.30 0.46) ; 97 + ( 436.68 344.96 -99.20 0.46) ; 98 + ( 437.31 346.31 -101.75 0.46) ; 99 + ( 438.69 348.42 -104.63 0.46) ; 100 + ( 439.64 350.43 -107.30 0.46) ; 101 + ( 439.64 350.43 -107.32 0.46) ; 102 + ( 440.58 352.44 -109.72 0.46) ; 103 + ( 441.20 353.79 -112.05 0.46) ; 104 + ( 441.20 353.79 -112.10 0.46) ; 105 + ( 442.01 356.36 -115.37 0.46) ; 106 + ( 442.01 356.36 -115.40 0.46) ; 107 + ( 441.17 357.96 -116.30 0.46) ; 108 + ( 442.25 359.41 -118.47 0.46) ; 109 + ( 442.25 359.41 -118.88 0.46) ; 110 + ( 442.30 361.20 -121.65 0.46) ; 111 + ( 444.40 362.30 -121.70 0.46) ; 112 + ( 444.18 365.23 -126.97 0.46) ; 113 + ( 444.23 367.04 -129.97 0.46) ; 114 + ( 445.74 368.59 -131.15 0.46) ; 115 + ( 445.74 368.59 -131.17 0.46) ; 116 + ( 447.41 369.57 -134.00 0.46) ; 117 + ( 447.41 369.57 -134.02 0.46) ; 118 + ( 447.59 370.80 -133.85 0.46) ; 119 + ( 449.11 372.36 -137.15 0.46) ; 120 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 338.56 200.73 -35.22 0.46) ; 1 + ( 379.03 275.32 -62.45 0.46) ; 2 + ( 442.74 355.33 -115.40 0.46) ; 3 + ( 442.97 364.35 -126.97 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 329.83 167.64 -39.60 0.46) ; 1 + ( 339.74 211.76 -33.40 0.46) ; 2 + ( 348.47 222.77 -28.63 0.46) ; 3 + ( 355.29 239.90 -27.08 0.46) ; 4 + ( 357.63 244.03 -31.85 0.46) ; 5 + ( 364.39 253.38 -44.40 0.46) ; 6 + ( 375.61 263.77 -56.10 0.46) ; 7 + ( 377.81 268.46 -59.35 0.46) ; 8 + ( 389.73 287.98 -59.25 0.46) ; 9 + ( 394.11 291.39 -61.90 0.46) ; 10 + ( 398.81 295.48 -65.22 0.46) ; 11 + ( 415.32 315.48 -76.45 0.46) ; 12 + ( 420.52 321.46 -80.90 0.46) ; 13 + ( 421.46 323.48 -82.22 0.46) ; 14 + ( 431.18 338.30 -95.90 0.46) ; 15 + ( 442.75 361.31 -121.65 0.46) ; 16 + ( 445.08 371.42 -133.85 0.46) ; 17 + ) ; End of markers + ( + ( 450.50 374.47 -137.15 0.46) ; 1, R-2-2-3-1-1-1-2-1-2-1 + ( 451.75 377.17 -138.50 0.46) ; 2 + ( 453.55 377.58 -140.23 0.46) ; 3 + ( 453.55 377.58 -140.25 0.46) ; 4 + ( 455.77 378.10 -141.85 0.46) ; 5 + ( 457.42 379.09 -144.47 0.46) ; 6 + ( 459.84 380.85 -147.23 0.46) ; 7 + ( 460.52 383.99 -148.35 0.46) ; 8 + ( 463.24 386.42 -149.35 0.46) ; 9 + ( 465.21 388.07 -151.55 0.46) ; 10 + ( 467.05 390.30 -153.48 0.46) ; 11 + ( 468.13 391.74 -155.32 0.46) ; 12 + ( 469.06 393.76 -156.67 0.46) ; 13 + ( 469.06 393.76 -156.70 0.46) ; 14 + ( 470.45 395.87 -158.30 0.46) ; 15 + ( 470.45 395.87 -158.27 0.46) ; 16 + ( 471.70 398.56 -160.05 0.46) ; 17 + ( 473.81 399.65 -162.02 0.46) ; 18 + ( 473.81 399.65 -162.05 0.46) ; 19 + ( 476.80 400.95 -164.00 0.46) ; 20 + ( 476.80 400.95 -164.02 0.46) ; 21 + ( 478.58 401.37 -165.92 0.46) ; 22 + ( 481.13 402.56 -166.65 0.46) ; 23 + ( 485.99 401.91 -167.15 0.46) ; 24 + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 459.26 381.30 -147.23 0.46) ; 1 + ( 469.19 393.18 -156.70 0.46) ; 2 + ( 485.86 402.47 -167.15 0.46) ; 3 + ) ; End of markers + Normal + | + ( 451.43 370.52 -139.15 0.46) ; 1, R-2-2-3-1-1-1-2-1-2-2 + ( 454.37 370.01 -140.60 0.46) ; 2 + ( 456.29 369.86 -142.30 0.46) ; 3 + ( 456.29 369.86 -142.32 0.46) ; 4 + ( 460.35 372.60 -142.05 0.46) ; 5 + ( 464.11 374.67 -142.73 0.46) ; 6 + ( 464.11 374.67 -142.75 0.46) ; 7 + ( 464.92 377.26 -143.38 0.46) ; 8 + ( 464.96 379.06 -145.45 0.46) ; 9 + ( 464.57 380.76 -147.15 0.46) ; 10 + ( 465.06 382.67 -148.60 0.46) ; 11 + ( 466.63 386.03 -149.73 0.46) ; 12 + ( 466.63 386.03 -149.82 0.46) ; 13 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 467.16 383.75 -149.82 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 464.92 377.26 -143.38 0.46) ; 1 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 327.25 133.20 -36.90 0.46) ; 1, R-2-2-3-1-1-1-2-2 + ( 329.22 134.86 -38.33 0.46) ; 2 + ( 329.22 134.86 -38.35 0.46) ; 3 + ( 330.47 137.55 -39.88 0.46) ; 4 + ( 330.47 137.55 -39.90 0.46) ; 5 + ( 332.62 140.43 -41.35 0.46) ; 6 + ( 335.48 142.30 -42.95 0.46) ; 7 + ( 335.48 142.30 -42.98 0.46) ; 8 + ( 337.89 144.06 -44.97 0.46) ; 9 + ( 339.68 144.48 -46.82 0.46) ; 10 + ( 341.79 145.57 -48.35 0.46) ; 11 + ( 341.79 145.57 -48.38 0.46) ; 12 + ( 344.77 146.86 -48.55 0.46) ; 13 + ( 344.77 146.86 -48.60 0.46) ; 14 + ( 347.19 148.62 -50.38 0.46) ; 15 + ( 348.14 150.64 -51.50 0.46) ; 16 + ( 350.10 152.29 -51.72 0.46) ; 17 + ( 351.31 153.18 -51.75 0.46) ; 18 + ( 353.98 153.81 -52.77 0.46) ; 19 + ( 356.71 156.23 -54.15 0.46) ; 20 + ( 360.46 158.31 -54.20 0.46) ; 21 + ( 363.60 159.05 -55.20 0.46) ; 22 + ( 366.00 160.80 -56.40 0.46) ; 23 + ( 366.00 160.80 -56.42 0.46) ; 24 + ( 367.26 163.49 -57.65 0.46) ; 25 + ( 370.26 164.78 -59.45 0.46) ; 26 + ( 370.26 164.78 -59.47 0.46) ; 27 + ( 371.83 168.13 -60.07 0.46) ; 28 + ( 374.11 170.46 -61.10 0.46) ; 29 + ( 376.21 171.55 -62.13 0.46) ; 30 + ( 377.56 171.86 -63.62 0.46) ; 31 + ( 377.42 172.43 -63.62 0.46) ; 32 + ( 378.36 174.45 -63.62 0.46) ; 33 + ( 381.80 175.85 -63.42 0.46) ; 34 + ( 385.87 178.59 -63.72 0.46) ; 35 + ( 389.63 180.66 -62.47 0.46) ; 36 + ( 392.35 183.09 -62.47 0.46) ; 37 + ( 396.29 186.40 -62.47 0.46) ; 38 + ( 398.52 186.93 -62.47 0.46) ; 39 + ( 402.60 189.67 -64.35 0.46) ; 40 + ( 407.68 192.06 -65.27 0.46) ; 41 + ( 411.39 192.33 -66.17 0.46) ; 42 + ( 411.39 192.33 -66.20 0.46) ; 43 + ( 414.11 194.76 -67.05 0.46) ; 44 + ( 416.58 198.32 -66.60 0.46) ; 45 + ( 416.58 198.32 -66.63 0.46) ; 46 + ( 420.20 200.97 -68.40 0.46) ; 47 + ( 420.20 200.97 -68.42 0.46) ; 48 + ( 423.06 202.83 -70.70 0.46) ; 49 + ( 423.06 202.83 -70.72 0.46) ; 50 + ( 426.06 204.13 -70.05 0.46) ; 51 + ( 426.06 204.13 -70.07 0.46) ; 52 + ( 430.40 205.74 -71.03 0.46) ; 53 + ( 430.40 205.74 -71.07 0.46) ; 54 + ( 433.25 207.60 -71.07 0.46) ; 55 + ( 437.77 210.45 -71.50 0.46) ; 56 + ( 441.38 213.09 -71.50 0.46) ; 57 + ( 444.83 214.49 -71.50 0.46) ; 58 + ( 449.03 216.68 -71.25 0.46) ; 59 + ( 451.43 218.43 -71.25 0.46) ; 60 + ( 454.30 220.30 -71.25 0.46) ; 61 + ( 458.81 223.15 -71.25 0.46) ; 62 + ( 463.82 227.90 -72.55 0.46) ; 63 + ( 463.82 227.90 -72.57 0.46) ; 64 + ( 465.41 232.44 -71.22 0.46) ; 65 + ( 468.86 233.84 -71.22 0.46) ; 66 + ( 475.10 235.30 -71.70 0.46) ; 67 + ( 479.04 238.63 -71.68 0.46) ; 68 + ( 482.35 240.59 -70.82 0.46) ; 69 + ( 486.10 242.66 -71.97 0.46) ; 70 + ( 488.65 243.87 -74.40 0.46) ; 71 + ( 488.78 243.29 -74.40 0.46) ; 72 + ( 493.38 243.77 -75.72 0.46) ; 73 + ( 493.38 243.77 -75.75 0.46) ; 74 + ( 497.00 246.42 -77.10 0.46) ; 75 + ( 497.00 246.42 -77.13 0.46) ; 76 + ( 499.91 250.08 -78.20 0.46) ; 77 + ( 502.19 252.41 -78.30 0.46) ; 78 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 376.58 174.03 -63.62 0.46) ; 1 + ( 414.38 193.62 -67.05 0.46) ; 2 + ( 485.79 242.00 -71.97 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 351.75 153.28 -51.75 0.46) ; 1 + ( 363.46 159.60 -55.20 0.46) ; 2 + ( 385.87 178.59 -63.72 0.46) ; 3 + ( 422.74 202.16 -70.72 0.46) ; 4 + ( 463.37 227.81 -72.57 0.46) ; 5 + ( 475.10 235.30 -71.70 0.46) ; 6 + ( 501.75 252.31 -78.30 0.46) ; 7 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 336.44 -58.04 -29.25 0.46) ; 1, R-2-2-3-1-1-2 + ( 336.57 -58.61 -30.90 0.46) ; 2 + ( 335.64 -60.61 -30.60 0.46) ; 3 + ( 335.64 -60.61 -30.65 0.46) ; 4 + ( 335.27 -63.09 -32.47 0.46) ; 5 + ( + ( 337.77 -63.70 -32.55 0.46) ; 1, R-2-2-3-1-1-2-1 + ( 337.58 -64.93 -34.30 0.46) ; 2 + ( 337.58 -64.93 -34.35 0.46) ; 3 + ( 337.58 -64.93 -36.58 0.46) ; 4 + ( 337.58 -64.93 -36.60 0.46) ; 5 + Normal + | + ( 334.45 -65.66 -35.08 0.46) ; 1, R-2-2-3-1-1-2-2 + ( 333.65 -68.25 -37.47 0.46) ; 2 + ( 333.47 -69.48 -39.17 0.46) ; 3 + ( 331.63 -71.71 -40.07 0.46) ; 4 + ( 330.52 -74.95 -40.97 0.46) ; 5 + ( 329.57 -76.97 -42.60 0.46) ; 6 + ( 327.47 -78.05 -43.82 0.46) ; 7 + ( 327.47 -78.05 -43.85 0.46) ; 8 + ( 325.55 -77.91 -46.00 0.46) ; 9 + ( 325.55 -77.91 -46.03 0.46) ; 10 + ( 325.06 -79.81 -48.27 0.46) ; 11 + ( 325.06 -79.81 -48.30 0.46) ; 12 + ( 324.74 -80.48 -49.80 0.46) ; 13 + ( 324.43 -81.15 -51.88 0.46) ; 14 + ( 322.34 -82.25 -52.30 0.46) ; 15 + ( 319.64 -82.88 -55.10 0.46) ; 16 + ( 319.16 -84.78 -57.30 0.46) ; 17 + ( 317.50 -85.77 -59.63 0.46) ; 18 + ( 317.00 -87.68 -61.57 0.46) ; 19 + ( 317.00 -87.68 -61.60 0.46) ; 20 + ( 317.10 -90.04 -62.15 0.46) ; 21 + ( 314.98 -91.13 -62.30 0.46) ; 22 + ( 314.98 -91.13 -62.33 0.46) ; 23 + ( 312.13 -93.00 -63.25 0.46) ; 24 + ( 311.14 -96.80 -63.25 0.46) ; 25 + ( 309.24 -100.83 -64.42 0.46) ; 26 + ( 306.21 -103.94 -65.52 0.46) ; 27 + ( 303.82 -109.87 -65.72 0.46) ; 28 + ( 300.79 -112.97 -65.43 0.46) ; 29 + ( 297.20 -119.77 -65.43 0.46) ; 30 + ( 295.14 -125.03 -65.43 0.46) ; 31 + ( 293.25 -129.05 -65.95 0.46) ; 32 + ( 290.48 -133.29 -65.88 0.46) ; 33 + ( 288.16 -137.43 -65.70 0.46) ; 34 + ( 286.32 -139.64 -65.70 0.46) ; 35 + ( 286.22 -143.25 -65.15 0.46) ; 36 + ( 286.22 -143.25 -65.22 0.46) ; 37 + ( 284.65 -146.60 -67.50 0.46) ; 38 + ( 284.65 -146.60 -67.53 0.46) ; 39 + ( 281.82 -152.64 -68.80 0.46) ; 40 + ( 281.82 -152.64 -68.82 0.46) ; 41 + ( 278.16 -157.08 -69.55 0.46) ; 42 + ( 274.69 -164.46 -69.55 0.46) ; 43 + ( 271.61 -169.36 -70.35 0.46) ; 44 + ( 269.40 -174.06 -70.35 0.46) ; 45 + ( 267.84 -177.41 -71.63 0.46) ; 46 + ( 266.59 -180.10 -71.43 0.46) ; 47 + ( 266.59 -180.10 -71.45 0.46) ; 48 + ( 264.96 -185.26 -72.38 0.46) ; 49 + ( 262.37 -194.22 -72.80 0.46) ; 50 + ( 260.43 -200.05 -73.38 0.46) ; 51 + ( 258.86 -203.41 -73.38 0.46) ; 52 + ( 255.81 -206.50 -74.92 0.46) ; 53 + ( 252.59 -210.85 -76.32 0.46) ; 54 + ( 251.02 -214.21 -78.20 0.46) ; 55 + ( 251.02 -214.21 -78.22 0.46) ; 56 + ( 249.27 -218.79 -78.93 0.46) ; 57 + ( 247.94 -223.29 -78.75 0.46) ; 58 + ( 246.83 -226.54 -79.85 0.46) ; 59 + ( 246.83 -226.54 -79.88 0.46) ; 60 + ( 245.26 -229.89 -81.75 0.46) ; 61 + ( 244.71 -233.60 -84.32 0.46) ; 62 + ( 244.71 -233.60 -84.38 0.46) ; 63 + ( 243.63 -235.05 -84.72 0.46) ; 64 + ( 242.83 -237.62 -85.68 0.46) ; 65 + ( 242.83 -237.62 -85.80 0.46) ; 66 + ( 241.84 -241.44 -86.90 0.46) ; 67 + ( 241.84 -241.44 -87.02 0.46) ; 68 + ( 241.75 -245.05 -87.42 0.46) ; 69 + ( 241.75 -245.05 -87.68 0.46) ; 70 + ( 239.23 -250.40 -88.20 0.46) ; 71 + ( 239.23 -250.40 -88.23 0.46) ; 72 + ( 239.00 -253.45 -88.95 0.46) ; 73 + ( 239.00 -253.45 -88.97 0.46) ; 74 + ( 237.43 -256.81 -90.40 0.46) ; 75 + ( 236.43 -260.62 -91.58 0.46) ; 76 + ( 236.43 -260.62 -91.60 0.46) ; 77 + ( 234.29 -263.51 -92.92 0.46) ; 78 + ( 233.48 -266.09 -96.43 0.46) ; 79 + ( 231.97 -267.64 -97.80 0.46) ; 80 + ( 230.38 -270.99 -99.63 0.46) ; 81 + ( 230.25 -270.42 -99.67 0.46) ; 82 + ( 228.11 -273.32 -101.98 0.46) ; 83 + ( 226.54 -276.67 -103.15 0.46) ; 84 + ( 225.54 -280.49 -104.67 0.46) ; 85 + ( 224.69 -284.87 -105.60 0.46) ; 86 + ( 224.69 -284.87 -105.63 0.46) ; 87 + ( 223.25 -288.79 -104.70 0.46) ; 88 + ( 222.35 -294.97 -105.75 0.46) ; 89 + ( 221.22 -298.21 -108.75 0.46) ; 90 + ( 220.86 -300.70 -111.95 0.46) ; 91 + ( 220.86 -300.70 -111.97 0.46) ; 92 + ( 220.31 -304.41 -113.42 0.46) ; 93 + ( 218.80 -305.96 -114.07 0.46) ; 94 + ( 218.35 -306.06 -114.10 0.46) ; 95 + ( 217.08 -308.75 -115.77 0.46) ; 96 + ( 216.28 -311.32 -116.90 0.46) ; 97 + ( 216.28 -311.32 -116.93 0.46) ; 98 + ( 215.29 -315.14 -118.38 0.46) ; 99 + ( 212.83 -318.70 -120.10 0.46) ; 100 + ( 211.89 -320.71 -121.72 0.46) ; 101 + ( 211.89 -320.71 -121.77 0.46) ; 102 + ( 211.39 -322.62 -122.85 0.46) ; 103 + ( 211.21 -323.85 -124.52 0.46) ; 104 + ( 210.80 -328.14 -126.07 0.46) ; 105 + ( 208.02 -332.37 -126.95 0.46) ; 106 + ( 207.21 -334.94 -128.65 0.46) ; 107 + ( 207.21 -334.94 -128.67 0.46) ; 108 + ( 206.76 -335.05 -130.72 0.46) ; 109 + ( 206.09 -338.19 -132.40 0.46) ; 110 + ( 206.09 -338.19 -132.42 0.46) ; 111 + ( 206.04 -339.99 -133.43 0.46) ; 112 + ( 205.37 -343.14 -135.20 0.46) ; 113 + ( 205.14 -346.18 -136.15 0.46) ; 114 + ( 206.69 -348.80 -136.15 0.46) ; 115 + ( 208.20 -353.23 -137.27 0.46) ; 116 + ( 208.64 -359.09 -138.02 0.46) ; 117 + ( 210.19 -361.72 -139.00 0.46) ; 118 + ( 212.01 -365.48 -140.02 0.46) ; 119 + ( 213.83 -369.22 -141.52 0.46) ; 120 + ( 216.56 -372.76 -143.18 0.46) ; 121 + ( 219.13 -375.73 -145.02 0.46) ; 122 + ( 218.83 -376.41 -147.25 0.46) ; 123 + ( 220.78 -380.72 -148.60 0.46) ; 124 + ( 222.08 -382.21 -149.32 0.46) ; 125 + ( 222.74 -385.05 -150.68 0.46) ; 126 + ( 222.50 -388.09 -151.67 0.46) ; 127 + ( 223.79 -389.57 -153.15 0.46) ; 128 + ( 223.79 -389.57 -153.18 0.46) ; 129 + ( 225.23 -391.63 -154.25 0.46) ; 130 + ( 226.52 -393.11 -156.02 0.46) ; 131 + ( 227.05 -395.38 -159.95 0.46) ; 132 + ( 227.05 -395.38 -159.97 0.46) ; 133 + ( 227.58 -397.64 -162.40 0.46) ; 134 + ( 228.42 -399.24 -163.93 0.46) ; 135 + ( 229.40 -401.40 -165.35 0.46) ; 136 + ( 230.37 -403.56 -166.60 0.46) ; 137 + ( 230.37 -403.56 -166.63 0.46) ; 138 + ( 229.44 -405.56 -167.72 0.46) ; 139 + ( 229.39 -407.37 -169.27 0.46) ; 140 + ( 229.33 -409.17 -169.93 0.46) ; 141 + ( 228.97 -411.65 -171.98 0.46) ; 142 + ( 227.45 -413.20 -173.97 0.46) ; 143 + ( 227.45 -413.20 -174.02 0.46) ; 144 + ( 227.54 -415.57 -175.85 0.46) ; 145 + ( 227.54 -415.57 -175.92 0.46) ; 146 + ( 229.35 -419.32 -177.60 0.46) ; 147 + ( 229.35 -419.32 -177.62 0.46) ; 148 + ( 228.42 -421.33 -179.73 0.46) ; 149 + ( 227.34 -422.78 -181.67 0.46) ; 150 + ( 225.32 -426.24 -182.80 0.46) ; 151 + ( 223.80 -427.78 -183.78 0.46) ; 152 + ( 223.80 -427.78 -183.82 0.46) ; 153 + ( 223.89 -430.16 -185.80 0.46) ; 154 + ( 223.39 -432.07 -187.02 0.46) ; 155 + ( 225.52 -435.15 -187.95 0.46) ; 156 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 304.98 -110.79 -65.72 0.46) ; 1 + ( 223.79 -285.08 -105.63 0.46) ; 2 + ( 204.62 -337.94 -132.42 0.46) ; 3 + ( 225.71 -395.69 -159.97 0.46) ; 4 + ( 227.89 -419.06 -177.65 0.46) ; 5 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 329.57 -76.97 -42.60 0.46) ; 1 + ( 295.14 -125.03 -65.43 0.46) ; 2 + ( 288.60 -137.32 -65.70 0.46) ; 3 + ( 269.85 -173.95 -70.35 0.46) ; 4 + ( 266.59 -180.10 -71.45 0.46) ; 5 + ( 258.41 -203.51 -73.38 0.46) ; 6 + ( 239.45 -253.35 -88.97 0.46) ; 7 + ( 234.29 -263.51 -92.92 0.46) ; 8 + ( 224.01 -288.01 -104.70 0.46) ; 9 + ( 216.41 -311.88 -116.93 0.46) ; 10 + ( 210.80 -328.14 -126.07 0.46) ; 11 + ( 208.02 -332.37 -126.95 0.46) ; 12 + ( 205.55 -341.91 -135.20 0.46) ; 13 + ( 207.76 -353.33 -137.27 0.46) ; 14 + ( 208.50 -358.53 -138.02 0.46) ; 15 + ( 212.01 -365.48 -140.02 0.46) ; 16 + ( 210.58 -369.38 -141.52 0.46) ; 17 + ( 213.25 -368.76 -141.52 0.46) ; 18 + ( 219.27 -376.30 -147.25 0.46) ; 19 + ( 225.10 -391.06 -154.25 0.46) ; 20 + ( 229.33 -409.17 -169.93 0.46) ; 21 + ( 225.52 -435.15 -187.95 0.46) ; 22 + ) ; End of markers + High + ) ; End of split + ) ; End of split + | + ( 329.41 -57.06 -20.27 0.46) ; 1, R-2-2-3-1-2 + ( 329.86 -56.95 -18.20 0.46) ; 2 + ( 329.86 -56.95 -18.25 0.46) ; 3 + ( 330.94 -55.51 -16.13 0.46) ; 4 + ( + ( 331.92 -51.69 -15.57 0.46) ; 1, R-2-2-3-1-2-1 + ( 333.19 -49.01 -14.72 0.46) ; 2 + ( 333.54 -46.54 -14.72 0.46) ; 3 + ( 333.33 -43.60 -14.15 0.46) ; 4 + ( 334.32 -39.79 -13.30 0.46) ; 5 + ( 334.99 -36.65 -14.48 0.46) ; 6 + ( 334.06 -32.68 -15.20 0.46) ; 7 + ( 334.06 -32.68 -15.22 0.46) ; 8 + ( 332.95 -29.96 -16.15 0.46) ; 9 + ( 330.82 -26.87 -16.92 0.46) ; 10 + ( 329.40 -24.82 -17.55 0.46) ; 11 + ( 330.34 -22.80 -18.10 0.46) ; 12 + ( 329.28 -18.28 -18.10 0.46) ; 13 + ( 329.01 -17.15 -18.05 0.46) ; 14 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 332.53 -40.21 -13.30 0.46) ; 1 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 331.40 -27.34 -16.92 0.46) ; 1 + ) ; End of markers + ( + ( 327.64 -13.29 -18.20 0.46) ; 1, R-2-2-3-1-2-1-1 + ( 328.04 -9.01 -18.20 0.46) ; 2 + ( 327.17 -3.25 -18.20 0.46) ; 3 + ( 325.66 1.17 -19.07 0.46) ; 4 + ( 324.55 3.90 -19.88 0.46) ; 5 + ( 324.55 3.90 -19.90 0.46) ; 6 + ( 325.48 5.92 -20.60 0.46) ; 7 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 324.02 6.17 -20.60 0.46) ; 1 + ) ; End of markers + Normal + | + ( 326.51 -16.54 -16.38 0.46) ; 1, R-2-2-3-1-2-1-2 + ( 324.51 -14.02 -14.67 0.46) ; 2 + ( 322.96 -11.40 -13.30 0.46) ; 3 + ( 320.27 -12.03 -11.98 0.46) ; 4 + ( 316.31 -11.16 -12.02 0.46) ; 5 + ( 311.12 -11.19 -11.15 0.46) ; 6 + ( 309.44 -8.00 -9.90 0.46) ; 7 + ( 304.68 -3.75 -9.52 0.46) ; 8 + ( 302.74 -3.59 -8.00 0.46) ; 9 + ( 299.85 -1.29 -7.05 0.46) ; 10 + ( 298.11 0.10 -5.68 0.46) ; 11 + ( 295.36 1.84 -4.70 0.46) ; 12 + ( 293.04 3.68 -3.90 0.46) ; 13 + ( 291.30 5.07 -2.53 0.46) ; 14 + ( 289.56 6.46 -1.60 0.46) ; 15 + ( 287.95 7.27 -0.20 0.46) ; 16 + ( 286.93 7.62 0.43 0.46) ; 17 + ( 282.11 10.08 1.35 0.46) ; 18 + ( 279.26 14.19 0.30 0.46) ; 19 + ( 275.84 18.76 1.07 0.46) ; 20 + ( 273.44 22.97 2.45 0.46) ; 21 + ( 269.19 24.96 4.80 0.46) ; 22 + ( 269.19 24.96 4.75 0.46) ; 23 + ( 266.80 29.18 5.00 0.46) ; 24 + ( 261.85 32.20 5.17 0.46) ; 25 + ( 256.85 33.43 5.68 0.46) ; 26 + ( 254.99 35.38 5.50 0.46) ; 27 + ( 250.35 39.08 5.97 0.46) ; 28 + ( 246.83 40.04 5.95 0.46) ; 29 + ( 243.88 40.54 7.87 0.46) ; 30 + ( 240.66 42.18 8.42 0.46) ; 31 + ( 239.07 43.00 10.15 0.46) ; 32 + ( 237.28 42.57 9.85 0.46) ; 33 + ( 235.93 42.26 12.13 0.46) ; 34 + ( 234.65 43.76 13.70 0.46) ; 35 + ( 233.18 44.00 15.30 0.46) ; 36 + ( 230.91 47.66 16.38 0.46) ; 37 + ( 229.48 49.71 17.38 0.46) ; 38 + ( 228.01 49.96 18.45 0.46) ; 39 + ( 228.01 49.96 18.42 0.46) ; 40 + ( 226.41 50.78 20.60 0.46) ; 41 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 320.40 -12.59 -11.98 0.46) ; 1 + ( 299.67 -2.53 -7.05 0.46) ; 2 + ( 236.96 41.91 9.85 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 326.38 -15.97 -16.38 0.46) ; 1 + ( 286.80 8.19 0.43 0.46) ; 2 + ( 279.52 13.06 0.30 0.46) ; 3 + ( 281.53 10.54 0.30 0.46) ; 4 + ( 262.43 31.74 5.17 0.46) ; 5 + ( 255.57 34.92 5.50 0.46) ; 6 + ( 251.82 38.82 9.80 0.46) ; 7 + ( 243.88 40.54 7.85 0.46) ; 8 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 245.33 41.67 -11.90 1.83) ; 1 + ) ; End of markers + Normal + ) ; End of split + | + ( 334.94 -54.56 -15.40 0.46) ; 1, R-2-2-3-1-2-2 + ( 338.78 -54.86 -15.40 0.46) ; 2 + ( 343.78 -56.07 -15.40 0.46) ; 3 + ( 347.03 -55.90 -15.40 0.46) ; 4 + ( 351.77 -56.00 -15.40 0.46) ; 5 + ( 354.45 -55.37 -14.30 0.46) ; 6 + ( 356.81 -55.41 -13.92 0.46) ; 7 + ( 361.10 -55.60 -13.25 0.46) ; 8 + ( 363.55 -58.02 -13.25 0.46) ; 9 + ( 367.20 -59.54 -13.25 0.46) ; 10 + ( 370.87 -61.08 -13.25 0.46) ; 11 + ( 373.64 -62.81 -12.95 0.46) ; 12 + ( 377.82 -66.61 -12.95 0.46) ; 13 + ( 381.88 -69.84 -13.07 0.46) ; 14 + ( 385.09 -71.47 -12.90 0.46) ; 15 + ( 388.75 -73.01 -12.90 0.46) ; 16 + ( 390.94 -74.28 -12.90 0.46) ; 17 + ( 394.59 -75.82 -12.98 0.46) ; 18 + ( 398.37 -77.91 -13.75 0.46) ; 19 + ( 401.01 -79.09 -13.75 0.46) ; 20 + ( 403.95 -79.59 -13.13 0.46) ; 21 + ( 408.06 -81.02 -13.13 0.46) ; 22 + ( 412.16 -82.44 -13.13 0.46) ; 23 + ( 414.21 -83.16 -13.13 0.46) ; 24 + ( 416.39 -84.44 -13.13 0.46) ; 25 + ( 420.32 -87.11 -11.82 0.46) ; 26 + ( 423.08 -88.84 -10.52 0.46) ; 27 + ( 426.42 -91.05 -9.32 0.46) ; 28 + ( 428.74 -92.89 -8.77 0.46) ; 29 + ( 431.38 -94.07 -8.35 0.46) ; 30 + ( 434.18 -94.01 -7.13 0.46) ; 31 + ( 434.18 -94.01 -7.15 0.46) ; 32 + ( 438.43 -96.00 -5.95 0.46) ; 33 + ( 441.94 -96.96 -5.60 0.46) ; 34 + ( 444.71 -98.71 -5.27 0.46) ; 35 + ( 448.11 -99.11 -7.02 0.46) ; 36 + ( 452.08 -99.96 -7.02 0.46) ; 37 + ( 455.34 -99.80 -6.25 0.46) ; 38 + ( 455.34 -99.80 -6.28 0.46) ; 39 + ( 457.70 -99.84 -4.35 0.46) ; 40 + ( 457.70 -99.84 -4.38 0.46) ; 41 + ( 461.04 -102.04 -3.45 0.46) ; 42 + ( 464.17 -101.31 -3.25 0.46) ; 43 + ( 467.12 -101.82 -3.10 0.46) ; 44 + ( 469.79 -101.19 -1.73 0.46) ; 45 + ( 472.61 -101.13 -0.93 0.46) ; 46 + ( 472.61 -101.13 -0.97 0.46) ; 47 + ( 475.55 -101.63 -0.32 0.46) ; 48 + ( 479.56 -100.69 0.55 0.46) ; 49 + ( 481.79 -100.17 1.67 0.46) ; 50 + ( 483.63 -97.95 2.95 0.46) ; 51 + ( 484.38 -97.16 4.45 0.46) ; 52 + ( 485.46 -95.72 5.77 0.46) ; 53 + ( 487.52 -96.44 6.90 0.46) ; 54 + ( 489.25 -97.82 7.67 0.46) ; 55 + ( 490.68 -99.87 8.38 0.46) ; 56 + ( 494.51 -100.17 9.10 0.46) ; 57 + ( 497.19 -99.55 9.77 0.46) ; 58 + ( 502.37 -99.52 9.90 0.46) ; 59 + ( 502.37 -99.52 10.00 0.46) ; 60 + ( 505.05 -98.90 10.33 0.46) ; 61 + ( 507.73 -98.27 9.05 0.46) ; 62 + ( 512.15 -99.02 9.22 0.46) ; 63 + ( 515.54 -99.42 9.98 0.46) ; 64 + ( 515.09 -99.53 9.98 0.46) ; 65 + ( 519.24 -99.15 10.92 0.46) ; 66 + ( 522.64 -99.55 11.30 0.46) ; 67 + ( 522.64 -99.55 11.27 0.46) ; 68 + ( 526.47 -99.84 12.00 0.46) ; 69 + ( 528.83 -99.89 12.20 0.46) ; 70 + ( 530.63 -99.46 12.32 0.46) ; 71 + ( 534.15 -100.43 13.07 0.46) ; 72 + ( 537.86 -100.16 14.20 0.46) ; 73 + ( 540.09 -99.64 15.00 0.46) ; 74 + ( 542.59 -100.24 15.73 0.46) ; 75 + ( 546.12 -101.22 16.50 0.46) ; 76 + ( 550.71 -100.74 17.17 0.46) ; 77 + ( 553.26 -99.54 18.08 0.46) ; 78 + ( 556.20 -100.04 18.65 0.46) ; 79 + ( 560.49 -100.23 18.38 0.46) ; 80 + ( 566.24 -100.68 18.38 0.46) ; 81 + ( 569.63 -101.07 19.85 0.46) ; 82 + ( 574.81 -101.05 20.38 0.46) ; 83 + ( 576.99 -102.34 20.83 0.46) ; 84 + ( 578.95 -106.66 21.15 0.46) ; 85 + ( 581.28 -108.50 22.12 0.46) ; 86 + ( 583.09 -112.25 22.80 0.46) ; 87 + ( 583.09 -112.25 22.77 0.46) ; 88 + ( 586.31 -113.89 22.67 0.46) ; 89 + ( 586.31 -113.89 22.65 0.46) ; 90 + ( 590.14 -114.18 22.65 0.46) ; 91 + ( 593.27 -113.44 23.33 0.46) ; 92 + ( 595.90 -114.63 24.20 0.46) ; 93 + ( 597.11 -113.74 24.52 0.46) ; 94 + ( 597.11 -113.74 24.88 0.46) ; 95 + ( 602.81 -115.99 24.90 0.46) ; 96 + ( 607.36 -117.32 26.05 0.46) ; 97 + ( 608.98 -118.13 26.70 0.46) ; 98 + ( 609.82 -119.72 27.92 0.46) ; 99 + ( 609.82 -119.72 27.90 0.46) ; 100 + ( 612.13 -121.57 29.02 0.46) ; 101 + ( 612.13 -121.57 29.00 0.46) ; 102 + ( 614.36 -121.05 29.75 0.46) ; 103 + ( 616.23 -123.00 30.27 0.46) ; 104 + ( 619.18 -123.50 30.95 0.46) ; 105 + ( 623.28 -124.92 31.82 0.46) ; 106 + ( 624.89 -125.75 33.42 0.46) ; 107 + ( 624.75 -125.18 33.38 0.46) ; 108 + ( 626.68 -125.33 35.45 0.46) ; 109 + ( 626.68 -125.33 35.38 0.46) ; 110 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 357.57 -54.64 -13.92 0.46) ; 1 + ( 365.99 -60.43 -13.25 0.46) ; 2 + ( 380.54 -70.16 -13.07 0.46) ; 3 + ( 389.27 -75.27 -12.90 0.46) ; 4 + ( 406.85 -81.91 -13.13 0.46) ; 5 + ( 419.57 -87.88 -11.82 0.46) ; 6 + ( 437.22 -96.88 -5.95 0.46) ; 7 + ( 484.78 -98.87 2.95 0.46) ; 8 + ( 496.93 -98.40 9.77 0.46) ; 9 + ( 508.23 -96.36 11.63 0.46) ; 10 + ( 507.28 -98.37 8.15 0.46) ; 11 + ( 520.01 -98.38 10.92 0.46) ; 12 + ( 521.79 -97.96 11.50 0.46) ; 13 + ( 525.18 -98.36 12.30 0.46) ; 14 + ( 533.88 -99.31 13.07 0.46) ; 15 + ( 545.72 -99.52 16.50 0.46) ; 16 + ( 553.52 -100.67 18.08 0.46) ; 17 + ( 568.88 -101.85 19.85 0.46) ; 18 + ( 592.56 -112.42 23.33 0.46) ; 19 + ( 601.17 -116.97 24.90 0.46) ; 20 + ( 622.57 -123.90 31.45 0.46) ; 21 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 398.37 -77.91 -13.75 0.46) ; 1 + ( 457.70 -99.84 -4.38 0.46) ; 2 + ( 475.10 -101.74 -0.32 0.46) ; 3 + ( 512.15 -99.02 9.22 0.46) ; 4 + ( 561.07 -100.69 18.38 0.46) ; 5 + ( 579.26 -105.99 21.15 0.46) ; 6 + ( 576.42 -101.88 21.15 0.46) ; 7 + ( 582.96 -111.69 22.77 0.46) ; 8 + ( 599.16 -114.46 24.90 0.46) ; 9 + ) ; End of markers + High + ) ; End of split + ) ; End of split + | + ( 293.81 -86.44 3.57 0.46) ; 1, R-2-2-3-2 + ( 296.50 -85.81 2.70 0.46) ; 2 + ( 300.64 -85.43 1.30 0.46) ; 3 + ( 302.12 -85.68 0.47 0.46) ; 4 + ( 304.36 -85.15 -0.12 0.46) ; 5 + ( 306.72 -85.20 -0.12 0.46) ; 6 + ( 310.73 -84.26 -0.82 0.46) ; 7 + ( 315.02 -84.45 -1.73 0.46) ; 8 + ( 319.48 -83.40 -2.05 0.46) ; 9 + ( 323.06 -82.56 -2.27 0.46) ; 10 + ( 326.05 -81.26 -3.72 0.46) ; 11 + ( 329.45 -81.66 -4.70 0.46) ; 12 + ( 330.79 -81.34 -4.52 0.46) ; 13 + ( 334.36 -80.51 -4.03 0.46) ; 14 + ( 337.62 -80.35 -4.03 0.46) ; 15 + ( 341.33 -80.08 -4.03 0.46) ; 16 + ( 344.32 -78.78 -3.13 0.46) ; 17 + ( 344.32 -78.78 -3.15 0.46) ; 18 + ( 348.74 -79.53 -4.60 0.46) ; 19 + ( 348.74 -79.53 -4.63 0.46) ; 20 + ( 351.42 -78.90 -5.95 0.46) ; 21 + ( 353.78 -78.94 -5.95 0.46) ; 22 + ( 356.15 -78.98 -6.93 0.46) ; 23 + ( 356.15 -78.98 -6.95 0.46) ; 24 + ( 357.48 -78.67 -7.35 0.46) ; 25 + ( 358.96 -78.92 -7.35 0.46) ; 26 + ( 360.61 -77.94 -7.35 0.46) ; 27 + ( 362.53 -78.09 -5.97 0.46) ; 28 + ( 364.76 -77.56 -5.97 0.46) ; 29 + ( 367.45 -76.93 -7.05 0.46) ; 30 + ( 368.92 -77.20 -7.85 0.46) ; 31 + ( 368.92 -77.20 -7.87 0.46) ; 32 + ( 370.26 -76.88 -8.60 0.46) ; 33 + ( 370.26 -76.88 -8.63 0.46) ; 34 + ( 372.44 -78.15 -9.60 0.46) ; 35 + ( 372.44 -78.15 -9.65 0.46) ; 36 + ( 373.07 -76.82 -10.95 0.46) ; 37 + ( 372.94 -76.25 -10.97 0.46) ; 38 + ( 374.74 -75.84 -10.97 0.46) ; 39 + ( 375.60 -74.49 -12.17 0.46) ; 40 + ( + ( 375.93 -74.94 -11.70 0.46) ; 1, R-2-2-3-2-1 + ( 377.99 -75.67 -12.17 0.46) ; 2 + ( 382.84 -76.31 -13.00 0.46) ; 3 + ( 385.49 -77.48 -14.38 0.46) ; 4 + ( 387.45 -75.83 -16.00 0.46) ; 5 + ( 387.45 -75.83 -16.02 0.46) ; 6 + ( 388.92 -76.08 -18.40 0.46) ; 7 + ( 391.73 -76.02 -19.42 0.46) ; 8 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 305.65 -86.64 -0.12 0.46) ; 1 + ( 314.31 -83.42 -1.73 0.46) ; 2 + ( 330.08 -80.32 -4.52 0.46) ; 3 + ( 340.61 -79.04 -4.03 0.46) ; 4 + ( 381.38 -76.06 -12.98 0.46) ; 5 + ( 390.65 -77.47 -19.42 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 296.63 -86.37 2.70 0.46) ; 1 + ( 302.43 -85.01 -0.12 0.46) ; 2 + ( 319.48 -83.40 -2.05 0.46) ; 3 + ( 334.81 -80.41 -4.03 0.46) ; 4 + ( 348.60 -78.96 -4.63 0.46) ; 5 + ( 356.60 -78.88 -6.42 0.46) ; 6 + ( 364.76 -77.56 -5.97 0.46) ; 7 + ( 378.43 -75.56 -12.17 0.46) ; 8 + ( 386.68 -76.61 -16.02 0.46) ; 9 + ( 388.92 -76.08 -18.40 0.46) ; 10 + ) ; End of markers + ( + ( 393.25 -74.47 -17.05 0.46) ; 1, R-2-2-3-2-1-1 + ( 396.07 -74.41 -16.70 0.46) ; 2 + ( 401.06 -75.63 -16.40 0.46) ; 3 + ( 401.06 -75.63 -16.42 0.46) ; 4 + ( 403.70 -76.79 -16.15 0.46) ; 5 + ( 408.28 -76.32 -15.35 0.46) ; 6 + ( 413.02 -76.41 -14.52 0.46) ; 7 + ( 417.45 -77.16 -13.82 0.46) ; 8 + ( 419.81 -77.20 -13.82 0.46) ; 9 + ( 422.62 -77.14 -13.82 0.46) ; 10 + ( 425.89 -76.98 -13.10 0.46) ; 11 + ( 429.27 -77.38 -12.40 0.46) ; 12 + ( 431.95 -76.75 -11.80 0.46) ; 13 + ( 434.45 -77.36 -11.13 0.46) ; 14 + ( 439.36 -76.20 -11.13 0.46) ; 15 + ( 439.36 -76.20 -10.55 0.46) ; 16 + ( 443.83 -75.16 -10.05 0.46) ; 17 + ( 447.09 -74.99 -8.97 0.46) ; 18 + ( 450.22 -74.26 -7.92 0.46) ; 19 + ( 450.22 -74.26 -7.95 0.46) ; 20 + ( 452.71 -74.88 -7.17 0.46) ; 21 + ( 457.94 -73.05 -5.30 0.46) ; 22 + ( 462.47 -70.21 -4.35 0.46) ; 23 + ( 465.29 -70.15 -4.82 0.46) ; 24 + ( 468.23 -70.65 -3.50 0.46) ; 25 + ( 470.95 -68.22 -1.88 0.46) ; 26 + ( 473.38 -66.47 -0.45 0.46) ; 27 + ( 475.65 -64.14 -0.45 0.46) ; 28 + ( 477.75 -63.05 0.80 0.46) ; 29 + ( 479.55 -62.62 2.25 0.46) ; 30 + ( 479.55 -62.62 2.17 0.46) ; 31 + ( 483.11 -61.79 2.08 0.46) ; 32 + ( 485.79 -61.16 4.03 0.46) ; 33 + ( 489.05 -60.99 4.72 0.46) ; 34 + ( 492.31 -60.83 5.30 0.46) ; 35 + ( 493.52 -59.95 6.42 0.46) ; 36 + ( 495.93 -58.20 7.22 0.46) ; 37 + ( 498.29 -58.24 9.95 0.46) ; 38 + ( 500.93 -59.40 11.55 0.46) ; 39 + ( 502.27 -59.09 12.55 0.46) ; 40 + ( 502.27 -59.09 12.52 0.46) ; 41 + ( 505.71 -57.69 14.13 0.46) ; 42 + ( 505.71 -57.69 14.10 0.46) ; 43 + ( 507.36 -56.70 14.92 0.46) ; 44 + ( 510.94 -55.87 14.92 0.46) ; 45 + ( 515.84 -54.71 15.92 0.46) ; 46 + ( 517.82 -53.06 17.35 0.46) ; 47 + ( 522.41 -52.59 18.45 0.46) ; 48 + ( 526.11 -51.11 19.45 0.46) ; 49 + ( 529.11 -49.82 19.13 0.46) ; 50 + ( 532.10 -48.53 19.35 0.46) ; 51 + ( 535.22 -47.79 20.60 0.46) ; 52 + ( 535.22 -47.79 20.83 0.46) ; 53 + ( 537.19 -46.14 22.05 0.46) ; 54 + ( 540.45 -45.97 23.47 0.46) ; 55 + ( 540.45 -45.97 23.45 0.46) ; 56 + ( 542.74 -43.65 24.50 0.46) ; 57 + ( 546.71 -44.50 26.92 0.46) ; 58 + ( 549.07 -44.55 28.15 0.46) ; 59 + ( 550.50 -46.61 29.08 0.46) ; 60 + ( 552.49 -49.11 29.70 0.46) ; 61 + ( 553.07 -49.58 31.77 0.46) ; 62 + ( 554.11 -49.94 32.77 0.46) ; 63 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 462.29 -71.44 -4.35 0.46) ; 1 + ( 481.64 -61.54 2.08 0.46) ; 2 + ( 505.08 -59.04 14.10 0.46) ; 3 + ( 510.63 -56.53 14.92 0.46) ; 4 + ( 525.04 -52.58 19.45 0.46) ; 5 + ( 532.81 -49.55 19.35 0.46) ; 6 + ( 542.02 -42.61 24.50 0.46) ; 7 + ( 545.32 -46.62 26.90 0.46) ; 8 + ( 547.33 -43.17 26.92 0.46) ; 9 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 413.60 -76.87 -14.52 0.46) ; 1 + ( 457.51 -73.17 -5.30 0.46) ; 2 + ( 458.94 -75.22 -3.88 0.46) ; 3 + ( 470.06 -68.43 -1.88 0.46) ; 4 + ( 475.21 -64.24 -0.45 0.46) ; 5 + ( 492.75 -60.72 6.42 0.46) ; 6 + ( 495.49 -58.30 7.22 0.46) ; 7 + ( 522.54 -53.14 18.45 0.46) ; 8 + ) ; End of markers + High + | + ( 394.42 -75.41 -20.38 0.46) ; 1, R-2-2-3-2-1-2 + ( 394.42 -75.41 -20.42 0.46) ; 2 + ( 398.44 -74.48 -21.10 0.46) ; 3 + ( 398.44 -74.48 -21.13 0.46) ; 4 + ( 400.23 -74.06 -21.95 0.46) ; 5 + ( 402.19 -72.40 -23.23 0.46) ; 6 + ( 403.98 -71.98 -24.22 0.46) ; 7 + ( 406.66 -71.36 -25.33 0.46) ; 8 + ( 409.02 -71.41 -26.52 0.46) ; 9 + ( 411.53 -72.00 -27.73 0.46) ; 10 + ( 414.08 -70.81 -28.63 0.46) ; 11 + ( 417.20 -70.08 -30.23 0.46) ; 12 + ( 420.05 -68.22 -31.42 0.46) ; 13 + ( 423.77 -67.94 -32.67 0.46) ; 14 + ( 427.15 -68.34 -33.42 0.46) ; 15 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 400.59 -71.58 -23.23 0.46) ; 1 + ( 405.95 -70.32 -25.33 0.46) ; 2 + ( 422.25 -69.49 -32.67 0.46) ; 3 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 417.07 -69.52 -30.23 0.46) ; 1 + ) ; End of markers + ( + ( 431.26 -69.77 -31.20 0.46) ; 1, R-2-2-3-2-1-2-1 + ( 433.90 -70.94 -29.77 0.46) ; 2 + ( 433.90 -70.94 -29.80 0.46) ; 3 + ( 436.52 -72.12 -29.02 0.46) ; 4 + ( 438.94 -70.36 -29.02 0.46) ; 5 + ( 442.96 -69.41 -27.65 0.46) ; 6 + ( 442.96 -69.41 -27.67 0.46) ; 7 + ( 444.92 -67.76 -25.97 0.46) ; 8 + ( 447.43 -68.37 -25.33 0.46) ; 9 + ( 451.00 -67.53 -25.07 0.46) ; 10 + ( 451.00 -67.53 -25.10 0.46) ; 11 + ( 455.28 -67.72 -24.02 0.46) ; 12 + ( 456.93 -66.73 -23.30 0.46) ; 13 + ( 459.03 -65.65 -22.57 0.46) ; 14 + ( 459.03 -65.65 -22.63 0.46) ; 15 + ( 460.50 -65.90 -21.65 0.46) ; 16 + ( 460.50 -65.90 -21.67 0.46) ; 17 + ( 462.43 -66.05 -20.85 0.46) ; 18 + ( 464.40 -64.39 -19.88 0.46) ; 19 + ( 467.52 -63.66 -19.00 0.46) ; 20 + ( 471.99 -62.62 -18.33 0.46) ; 21 + ( 476.18 -60.44 -17.65 0.46) ; 22 + ( 479.49 -58.47 -17.42 0.46) ; 23 + ( 482.08 -55.47 -16.83 0.46) ; 24 + ( 485.08 -54.17 -16.42 0.46) ; 25 + ( 487.05 -52.51 -15.17 0.46) ; 26 + ( 487.05 -52.51 -15.20 0.46) ; 27 + ( 488.27 -50.44 -13.87 0.46) ; 28 + ( 490.81 -49.24 -13.20 0.46) ; 29 + ( 490.81 -49.24 -13.23 0.46) ; 30 + ( 493.53 -46.82 -12.72 0.46) ; 31 + ( 493.53 -46.82 -12.75 0.46) ; 32 + ( 497.60 -44.07 -12.30 0.46) ; 33 + ( 500.73 -43.34 -11.65 0.46) ; 34 + ( 503.59 -41.48 -10.38 0.46) ; 35 + ( 505.38 -41.06 -8.47 0.46) ; 36 + ( 507.74 -41.10 -6.73 0.46) ; 37 + ( 510.16 -39.34 -4.82 0.46) ; 38 + ( 512.26 -38.25 -3.25 0.46) ; 39 + ( 513.78 -36.69 -2.38 0.46) ; 40 + ( 517.36 -35.86 -1.42 0.46) ; 41 + ( 517.22 -35.29 -1.45 0.46) ; 42 + ( 519.50 -32.96 -0.50 0.46) ; 43 + ( 523.97 -31.92 0.70 0.46) ; 44 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 442.19 -70.19 -27.67 0.46) ; 1 + ( 472.12 -63.17 -18.33 0.46) ; 2 + ( 503.41 -42.71 -10.38 0.46) ; 3 + ( 507.79 -39.30 -4.82 0.46) ; 4 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 436.07 -72.22 -29.02 0.46) ; 1 + ( 454.71 -67.26 -24.02 0.46) ; 2 + ( 462.43 -66.05 -20.85 0.46) ; 3 + ( 487.05 -52.51 -15.20 0.46) ; 4 + ( 491.25 -49.14 -13.23 0.46) ; 5 + ) ; End of markers + ( + ( 527.62 -33.45 0.70 0.46) ; 1, R-2-2-3-2-1-2-1-1 + ( 529.63 -35.96 -0.93 0.46) ; 2 + ( 530.65 -36.32 -2.50 0.46) ; 3 + ( 530.65 -36.32 -2.53 0.46) ; 4 + ( 531.94 -37.81 -4.47 0.46) ; 5 + ( 532.07 -38.38 -6.25 0.46) ; 6 + ( 533.10 -38.74 -8.15 0.46) ; 7 + ( 533.10 -38.74 -8.18 0.46) ; 8 + ( 533.81 -39.76 -10.28 0.46) ; 9 + ( 533.90 -42.14 -11.70 0.46) ; 10 + ( 533.90 -42.14 -11.73 0.46) ; 11 + ( 536.17 -45.79 -12.95 0.46) ; 12 + ( 536.17 -45.79 -12.98 0.46) ; 13 + ( 537.06 -45.58 -15.17 0.46) ; 14 + ( 537.51 -45.47 -18.95 0.46) ; 15 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 534.97 -40.69 -11.73 0.46) ; 1 + ( 535.01 -44.85 -12.98 0.46) ; 2 + ) ; End of markers + Normal + | + ( 526.25 -29.59 0.70 0.46) ; 1, R-2-2-3-2-1-2-1-2 + ( 529.87 -26.96 1.80 0.46) ; 2 + ( 532.42 -25.76 3.22 0.46) ; 3 + ( 534.96 -24.57 3.22 0.46) ; 4 + ( 538.98 -23.63 3.70 0.46) ; 5 + ( 541.09 -22.53 4.22 0.46) ; 6 + ( 543.94 -20.66 4.78 0.46) ; 7 + ( 543.94 -20.66 4.75 0.46) ; 8 + ( 547.13 -18.14 5.75 0.46) ; 9 + ( 547.13 -18.14 5.72 0.46) ; 10 + ( 548.32 -17.26 7.53 0.46) ; 11 + ( 549.40 -15.80 9.15 0.46) ; 12 + ( 551.36 -14.15 10.17 0.46) ; 13 + ( 551.36 -14.15 10.15 0.46) ; 14 + ( 553.16 -13.73 11.10 0.46) ; 15 + ( 553.16 -13.73 11.07 0.46) ; 16 + ( 554.36 -12.86 12.00 0.46) ; 17 + ( 554.86 -10.95 12.00 0.46) ; 18 + ( 557.98 -10.21 12.62 0.46) ; 19 + ( 559.51 -8.66 12.88 0.46) ; 20 + ( 561.16 -7.68 12.88 0.46) ; 21 + ( 562.55 -5.56 12.88 0.46) ; 22 + ( 564.33 -5.14 12.88 0.46) ; 23 + ( 568.85 -2.29 11.37 0.46) ; 24 + ( 571.71 -0.43 12.07 0.46) ; 25 + ( 575.02 1.54 13.70 0.46) ; 26 + ( 577.43 3.31 15.12 0.46) ; 27 + ( 581.64 5.48 16.07 0.46) ; 28 + ( 586.72 7.87 16.07 0.46) ; 29 + ( 591.96 9.69 16.47 0.46) ; 30 + ( 594.51 10.88 16.47 0.46) ; 31 + ( 597.26 9.15 16.47 0.46) ; 32 + ( 599.77 8.54 15.20 0.46) ; 33 + ( 599.77 8.54 15.17 0.46) ; 34 + ( 603.15 8.14 14.13 0.46) ; 35 + ( 606.73 8.97 14.13 0.46) ; 36 + ( 609.14 10.74 13.52 0.46) ; 37 + ( 610.98 12.96 14.60 0.46) ; 38 + ( 612.50 14.50 15.75 0.46) ; 39 + ( 614.96 18.07 16.57 0.46) ; 40 + ( 617.87 21.74 16.90 0.46) ; 41 + ( 619.00 24.98 18.05 0.46) ; 42 + ( 619.36 27.47 19.58 0.46) ; 43 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 530.71 -28.54 1.80 0.46) ; 1 + ( 545.65 -17.89 5.72 0.46) ; 2 + ( 573.86 2.47 13.70 0.46) ; 3 + ( 577.74 3.98 15.12 0.46) ; 4 + ( 586.02 8.89 16.07 0.46) ; 5 + ( 617.66 24.67 18.05 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 559.96 -8.55 12.88 0.46) ; 1 + ( 564.33 -5.14 12.88 0.46) ; 2 + ( 571.71 -0.43 12.07 0.46) ; 3 + ( 603.15 8.14 14.13 0.46) ; 4 + ( 606.28 8.86 14.13 0.46) ; 5 + ( 608.69 10.63 14.13 0.46) ; 6 + ) ; End of markers + Normal + ) ; End of split + | + ( 431.33 -67.95 -33.67 0.46) ; 1, R-2-2-3-2-1-2-2 + ( 436.19 -68.60 -34.52 0.46) ; 2 + ( 439.32 -67.87 -35.90 0.46) ; 3 + ( 442.44 -67.13 -37.28 0.46) ; 4 + ( 445.83 -67.54 -37.28 0.46) ; 5 + ( 449.67 -67.83 -38.57 0.46) ; 6 + ( 452.61 -68.33 -39.67 0.46) ; 7 + ( 454.14 -66.78 -40.77 0.46) ; 8 + ( 457.85 -66.51 -41.65 0.46) ; 9 + ( 461.42 -65.68 -42.88 0.46) ; 10 + ( 465.57 -65.30 -43.82 0.46) ; 11 + ( 468.38 -65.23 -44.80 0.46) ; 12 + ( 471.65 -65.08 -47.02 0.46) ; 13 + ( 472.71 -63.63 -48.58 0.46) ; 14 + ( 477.44 -63.72 -48.58 0.46) ; 15 + ( 480.13 -63.09 -49.52 0.46) ; 16 + ( 483.69 -62.25 -50.42 0.46) ; 17 + ( 487.59 -60.73 -51.75 0.46) ; 18 + ( 487.59 -60.73 -51.77 0.46) ; 19 + ( 492.32 -59.63 -52.45 0.46) ; 20 + ( 495.31 -58.33 -54.52 0.46) ; 21 + ( 498.30 -57.03 -55.55 0.46) ; 22 + ( 498.30 -57.03 -55.57 0.46) ; 23 + ( 500.99 -56.41 -57.63 0.46) ; 24 + ( 503.08 -55.31 -59.58 0.46) ; 25 + ( 508.85 -55.75 -59.78 0.46) ; 26 + ( 512.54 -55.49 -61.28 0.46) ; 27 + ( 518.17 -55.36 -61.67 0.46) ; 28 + ( 523.09 -54.20 -62.22 0.46) ; 29 + ( 523.09 -54.20 -62.28 0.46) ; 30 + ( 527.42 -52.60 -62.28 0.46) ; 31 + ( 531.76 -50.99 -62.80 0.46) ; 32 + ( 534.88 -50.26 -61.60 0.46) ; 33 + ( 539.85 -47.29 -60.05 0.46) ; 34 + ( 542.97 -46.57 -58.70 0.46) ; 35 + ( 546.23 -46.40 -59.72 0.46) ; 36 + ( 550.82 -45.91 -59.22 0.46) ; 37 + ( 550.82 -45.91 -59.25 0.46) ; 38 + ( 557.35 -45.59 -58.05 0.46) ; 39 + ( 561.81 -44.55 -59.67 0.46) ; 40 + ( 563.07 -41.85 -59.67 0.46) ; 41 + ( 564.18 -38.60 -59.67 0.46) ; 42 + ( 568.89 -34.52 -60.22 0.46) ; 43 + ( 575.64 -31.14 -60.47 0.46) ; 44 + ( 580.41 -29.42 -61.38 0.46) ; 45 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 470.43 -65.95 -47.02 0.46) ; 1 + ( 488.17 -61.20 -50.60 0.46) ; 2 + ( 516.88 -53.87 -61.70 0.46) ; 3 + ( 580.22 -30.67 -61.38 0.46) ; 4 + ( 585.44 -34.82 -61.50 0.46) ; 5 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 439.77 -67.76 -35.90 0.46) ; 1 + ( 445.83 -67.54 -37.28 0.46) ; 2 + ( 461.42 -65.68 -42.88 0.46) ; 3 + ( 498.30 -57.03 -55.57 0.46) ; 4 + ( 531.76 -50.99 -62.80 0.46) ; 5 + ( 557.48 -46.15 -58.05 0.46) ; 6 + ) ; End of markers + ( + ( 586.21 -34.04 -61.90 0.46) ; 1, R-2-2-3-2-1-2-2-1 + ( 588.66 -36.45 -64.25 0.46) ; 2 + ( 591.55 -38.76 -65.10 0.46) ; 3 + ( 594.00 -41.18 -65.60 0.46) ; 4 + ( 594.35 -44.68 -66.65 0.46) ; 5 + ( 596.04 -47.86 -67.15 0.46) ; 6 + ( 596.04 -47.86 -67.17 0.46) ; 7 + ( 597.42 -51.72 -68.17 0.46) ; 8 + ( 600.57 -55.16 -69.02 0.46) ; 9 + ( 602.45 -57.11 -70.18 0.46) ; 10 + ( 604.94 -57.72 -71.28 0.46) ; 11 + ( 607.27 -59.57 -72.53 0.46) ; 12 + ( 607.27 -59.57 -72.55 0.46) ; 13 + ( 608.69 -61.61 -73.63 0.46) ; 14 + ( 610.42 -63.01 -74.65 0.46) ; 15 + ( 611.40 -65.16 -76.22 0.46) ; 16 + ( 611.40 -65.16 -76.25 0.46) ; 17 + ( 613.89 -65.78 -78.40 0.46) ; 18 + ( 616.08 -67.05 -80.00 0.46) ; 19 + ( 618.53 -69.47 -80.30 0.46) ; 20 + ( 618.53 -69.47 -80.33 0.46) ; 21 + ( 621.75 -71.10 -81.03 0.46) ; 22 + ( 624.19 -73.51 -82.07 0.46) ; 23 + ( 624.59 -75.20 -83.47 0.46) ; 24 + ( 626.46 -77.16 -84.45 0.46) ; 25 + ( 628.32 -79.11 -85.07 0.46) ; 26 + ( 628.32 -79.11 -85.10 0.46) ; 27 + ( 629.49 -80.03 -85.10 0.46) ; 28 + ( 633.59 -81.45 -85.10 0.46) ; 29 + ( 635.78 -82.73 -84.30 0.46) ; 30 + ( 637.96 -84.02 -84.60 0.46) ; 31 + ( 637.96 -84.02 -84.80 0.46) ; 32 + ( 640.05 -88.90 -84.78 0.46) ; 33 + ( 642.02 -91.30 -84.78 0.46) ; 34 + ( 644.95 -97.78 -85.65 0.46) ; 35 + ( 646.84 -99.73 -86.75 0.46) ; 36 + ( 649.99 -103.18 -87.68 0.46) ; 37 + ( 650.66 -105.99 -88.65 0.46) ; 38 + ( 650.66 -105.99 -88.67 0.46) ; 39 + ( 652.79 -109.08 -89.90 0.46) ; 40 + ( 652.79 -109.08 -89.92 0.46) ; 41 + ( 655.10 -110.93 -91.22 0.46) ; 42 + ( 656.40 -112.41 -92.92 0.46) ; 43 + ( 658.26 -114.37 -94.25 0.46) ; 44 + ( 660.54 -118.02 -94.48 0.46) ; 45 + ( 666.02 -123.30 -94.38 0.46) ; 46 + ( 666.02 -123.30 -94.40 0.46) ; 47 + ( 666.15 -123.87 -92.78 0.46) ; 48 + ( 666.81 -126.70 -91.93 0.46) ; 49 + ( 669.53 -130.24 -91.45 0.46) ; 50 + ( 671.08 -132.87 -91.00 0.46) ; 51 + ( 674.83 -136.77 -90.70 0.46) ; 52 + ( 675.93 -139.49 -90.70 0.46) ; 53 + ( 677.31 -143.36 -90.70 0.46) ; 54 + ( 678.95 -148.34 -89.57 0.46) ; 55 + ( 680.91 -152.66 -89.05 0.46) ; 56 + ( 683.31 -156.86 -90.05 0.46) ; 57 + ( 684.86 -159.50 -89.78 0.46) ; 58 + ( 685.79 -163.46 -89.78 0.46) ; 59 + ( 686.27 -167.52 -89.45 0.46) ; 60 + ( 689.44 -170.96 -89.45 0.46) ; 61 + ( 690.99 -173.58 -88.55 0.46) ; 62 + ( 693.85 -177.70 -87.75 0.46) ; 63 + ( 695.98 -180.78 -86.85 0.46) ; 64 + ( 695.98 -180.78 -86.88 0.46) ; 65 + ( 696.51 -183.04 -85.50 0.46) ; 66 + ( 698.46 -187.36 -85.02 0.46) ; 67 + ( 700.00 -190.00 -84.50 0.46) ; 68 + ( 704.13 -195.59 -85.02 0.46) ; 69 + ( 707.89 -199.49 -85.02 0.46) ; 70 + ( 711.44 -204.63 -84.48 0.46) ; 71 + ( 712.60 -205.55 -83.72 0.46) ; 72 + ( 715.31 -209.09 -83.40 0.46) ; 73 + ( 718.48 -212.53 -82.57 0.46) ; 74 + ( 718.48 -212.53 -82.60 0.46) ; 75 + ( 722.09 -215.87 -81.62 0.46) ; 76 + ( 724.26 -217.14 -80.22 0.46) ; 77 + ( 726.14 -219.10 -79.10 0.46) ; 78 + ( 728.64 -219.71 -77.53 0.46) ; 79 + ( 728.64 -219.71 -77.55 0.46) ; 80 + ( 730.38 -221.09 -75.78 0.46) ; 81 + ( 730.38 -221.09 -75.80 0.46) ; 82 + ( 732.74 -221.14 -73.85 0.46) ; 83 + ( 732.74 -221.14 -73.88 0.46) ; 84 + ( 733.85 -223.85 -72.88 0.46) ; 85 + ( 735.41 -226.47 -71.40 0.46) ; 86 + ( 737.27 -228.43 -70.07 0.46) ; 87 + ( 737.05 -231.46 -66.45 0.46) ; 88 + ( 740.40 -233.67 -65.03 0.46) ; 89 + ( 741.56 -234.59 -63.07 0.46) ; 90 + ( 743.15 -235.41 -61.42 0.46) ; 91 + ( 744.18 -235.77 -59.35 0.46) ; 92 + ( 746.09 -235.92 -57.20 0.46) ; 93 + ( 746.09 -235.92 -57.22 0.46) ; 94 + ( 749.05 -236.42 -55.52 0.46) ; 95 + ( 751.99 -236.92 -53.78 0.46) ; 96 + ( 756.16 -236.54 -53.15 0.46) ; 97 + ( 761.47 -237.09 -52.67 0.46) ; 98 + ( 761.02 -237.19 -52.67 0.46) ; 99 + ( 765.25 -239.18 -51.52 0.46) ; 100 + ( 768.92 -240.72 -50.27 0.46) ; 101 + ( 772.26 -242.93 -48.38 0.46) ; 102 + ( 776.68 -243.67 -46.65 0.46) ; 103 + ( 777.39 -244.70 -44.43 0.46) ; 104 + ( 779.13 -246.09 -43.18 0.46) ; 105 + ( 779.13 -246.09 -43.20 0.46) ; 106 + ( 780.87 -247.47 -42.08 0.46) ; 107 + ( 780.87 -247.47 -41.55 0.46) ; 108 + ( 783.05 -248.75 -41.55 0.46) ; 109 + ( 786.44 -249.15 -40.88 0.46) ; 110 + ( 790.36 -251.82 -40.10 0.46) ; 111 + ( 793.39 -254.68 -39.50 0.46) ; 112 + ( 795.70 -256.53 -38.42 0.46) ; 113 + ( 795.70 -256.53 -38.45 0.46) ; 114 + ( 798.34 -257.70 -37.88 0.46) ; 115 + ( 800.39 -258.42 -36.58 0.46) ; 116 + ( 800.39 -258.42 -36.60 0.46) ; 117 + ( 802.57 -259.70 -35.27 0.46) ; 118 + ( 805.21 -260.87 -33.70 0.46) ; 119 + ( 809.71 -264.00 -33.15 0.46) ; 120 + ( 814.52 -266.45 -33.15 0.46) ; 121 + ( 817.92 -266.86 -33.15 0.46) ; 122 + ( 821.13 -268.49 -32.38 0.46) ; 123 + ( 824.66 -269.46 -30.77 0.46) ; 124 + ( 827.73 -270.52 -29.48 0.46) ; 125 + ( 831.51 -272.63 -28.33 0.46) ; 126 + ( 834.01 -273.23 -27.08 0.46) ; 127 + ( 837.18 -276.67 -27.08 0.46) ; 128 + ( 840.83 -278.20 -27.08 0.46) ; 129 + ( 842.70 -280.15 -27.08 0.46) ; 130 + ( 846.23 -281.13 -26.80 0.46) ; 131 + ( 848.86 -282.29 -26.00 0.46) ; 132 + ( 851.80 -282.80 -25.38 0.46) ; 133 + ( 851.80 -282.80 -25.40 0.46) ; 134 + ( 855.74 -285.46 -25.13 0.46) ; 135 + ( 858.81 -286.53 -25.52 0.46) ; 136 + ( 860.59 -286.11 -27.17 0.46) ; 137 + ( 863.72 -285.39 -28.42 0.46) ; 138 + ( 863.72 -285.39 -28.55 0.46) ; 139 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 598.66 -55.01 -69.02 0.46) ; 1 + ( 610.51 -65.37 -76.25 0.46) ; 2 + ( 665.25 -124.07 -94.40 0.46) ; 3 + ( 677.22 -146.95 -89.57 0.46) ; 4 + ( 697.44 -187.00 -85.02 0.46) ; 5 + ( 750.78 -237.80 -53.78 0.46) ; 6 + ( 771.24 -242.56 -48.38 0.46) ; 7 + ( 838.61 -278.73 -27.08 0.46) ; 8 + ( 853.36 -285.42 -25.13 0.46) ; 9 + ( 857.91 -286.74 -25.52 0.46) ; 10 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 593.55 -41.28 -65.60 0.46) ; 1 + ( 640.77 -89.93 -84.78 0.46) ; 2 + ( 645.40 -97.67 -85.65 0.46) ; 3 + ( 653.24 -108.97 -89.92 0.46) ; 4 + ( 650.08 -105.54 -87.30 0.46) ; 5 + ( 671.08 -132.87 -91.00 0.46) ; 6 + ( 712.47 -204.99 -83.72 0.46) ; 7 + ( 722.09 -215.87 -81.62 0.46) ; 8 + ( 736.83 -228.54 -70.07 0.46) ; 9 + ( 768.92 -240.72 -50.27 0.46) ; 10 + ( 775.78 -243.88 -46.65 0.46) ; 11 + ( 797.77 -257.24 -37.88 0.46) ; 12 + ( 805.21 -260.87 -33.70 0.46) ; 13 + ( 809.27 -264.10 -33.15 0.46) ; 14 + ( 814.66 -267.03 -33.15 0.46) ; 15 + ( 817.16 -267.63 -33.15 0.46) ; 16 + ( 831.65 -273.19 -28.33 0.46) ; 17 + ( 845.79 -281.23 -26.80 0.46) ; 18 + ) ; End of markers + Normal + | + ( 582.04 -27.48 -63.00 0.46) ; 1, R-2-2-3-2-1-2-2-2 + ( 585.61 -26.65 -64.60 0.46) ; 2 + ( 587.00 -24.54 -65.52 0.46) ; 3 + ( 587.00 -24.54 -65.55 0.46) ; 4 + ( 591.69 -20.44 -66.13 0.46) ; 5 + ( 594.05 -20.49 -66.40 0.46) ; 6 + ( 597.18 -19.76 -67.80 0.46) ; 7 + ( 598.58 -17.64 -69.47 0.46) ; 8 + ( 600.55 -15.99 -71.20 0.46) ; 9 + ( 602.38 -13.76 -72.28 0.46) ; 10 + ( 602.38 -13.76 -72.30 0.46) ; 11 + ( 602.61 -10.73 -73.35 0.46) ; 12 + ( 605.51 -7.06 -74.40 0.46) ; 13 + ( 605.51 -7.06 -74.42 0.46) ; 14 + ( 608.87 -3.28 -75.57 0.46) ; 15 + ( 608.87 -3.28 -75.60 0.46) ; 16 + ( 610.12 -0.61 -76.77 0.46) ; 17 + ( 609.99 -0.03 -76.80 0.46) ; 18 + ( 611.38 2.08 -75.82 0.46) ; 19 + ( 611.38 2.08 -75.85 0.46) ; 20 + ( 612.20 4.65 -75.85 0.46) ; 21 + ( 614.03 6.88 -77.95 0.46) ; 22 + ( 616.39 6.84 -78.65 0.46) ; 23 + ( 620.19 4.74 -80.97 0.46) ; 24 + ( 620.19 4.74 -81.03 0.46) ; 25 + ( 622.14 0.42 -81.98 0.46) ; 26 + ( 624.15 -2.09 -81.35 0.46) ; 27 + ( 627.35 -3.72 -81.43 0.46) ; 28 + ( 629.23 -5.68 -82.47 0.46) ; 29 + ( 630.33 -8.41 -83.57 0.46) ; 30 + ( 630.33 -8.41 -83.60 0.46) ; 31 + ( 631.88 -11.02 -84.63 0.46) ; 32 + ( 631.88 -11.02 -84.65 0.46) ; 33 + ( 636.57 -12.92 -85.10 0.46) ; 34 + ( 637.78 -12.03 -85.10 0.46) ; 35 + ( 640.41 -13.21 -86.10 0.46) ; 36 + ( 640.41 -13.21 -86.13 0.46) ; 37 + ( 646.74 -14.12 -86.72 0.46) ; 38 + ( 650.77 -13.17 -87.28 0.46) ; 39 + ( 656.66 -14.18 -87.95 0.46) ; 40 + ( 660.41 -12.11 -87.97 0.46) ; 41 + ( 665.27 -12.75 -89.22 0.46) ; 42 + ( 668.85 -11.91 -88.07 0.46) ; 43 + ( 668.85 -11.91 -88.10 0.46) ; 44 + ( 673.00 -11.53 -87.07 0.46) ; 45 + ( 673.00 -11.53 -87.10 0.46) ; 46 + ( 679.38 -10.63 -87.10 0.46) ; 47 + ( 684.87 -9.95 -87.10 0.46) ; 48 + ( 689.34 -8.90 -86.60 0.46) ; 49 + ( 693.23 -7.39 -85.70 0.46) ; 50 + ( 697.29 -4.65 -85.70 0.46) ; 51 + ( 700.16 -2.78 -84.92 0.46) ; 52 + ( 705.06 -1.63 -84.45 0.46) ; 53 + + (Dot + (Color Yellow) + (Name "Marker 1") + ( 625.70 -4.71 -81.43 0.46) ; 1 + ( 664.51 -13.54 -89.22 0.46) ; 2 + ) ; End of markers + + (OpenCircle + (Color Yellow) + (Name "Marker 2") + ( 596.61 -19.30 -67.80 0.46) ; 1 + ( 624.02 -1.53 -81.35 0.46) ; 2 + ( 689.34 -8.90 -86.60 0.46) ; 3 + ( 700.16 -2.78 -84.92 0.46) ; 4 + ( 705.06 -1.63 -84.45 0.46) ; 5 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 378.77 -76.13 -11.22 0.46) ; 1, R-2-2-3-2-2 + ( 381.27 -76.74 -9.35 0.46) ; 2 + ( 381.27 -76.74 -9.38 0.46) ; 3 + ( 384.80 -77.70 -7.92 0.46) ; 4 + ( 384.80 -77.70 -7.95 0.46) ; 5 + ( 387.12 -79.54 -7.65 0.46) ; 6 + ( 389.79 -78.91 -8.27 0.46) ; 7 + ( 391.31 -77.37 -6.60 0.46) ; 8 + ( 392.26 -75.35 -5.30 0.46) ; 9 + ( 392.75 -73.44 -4.52 0.46) ; 10 + ( 392.75 -73.44 -4.55 0.46) ; 11 + ( 394.32 -70.09 -3.38 0.46) ; 12 + ( 395.83 -68.54 -2.22 0.46) ; 13 + ( 397.81 -66.89 -0.90 0.46) ; 14 + ( 399.46 -65.91 0.32 0.46) ; 15 + ( 400.54 -64.46 1.55 0.46) ; 16 + ( 401.78 -61.78 3.08 0.46) ; 17 + ( 402.60 -59.20 3.82 0.46) ; 18 + ( 404.43 -56.98 3.82 0.46) ; 19 + ( 406.76 -52.85 4.63 0.46) ; 20 + ( 409.50 -50.41 5.50 0.46) ; 21 + ( 411.02 -48.86 6.75 0.46) ; 22 + ( 411.91 -48.65 8.52 0.46) ; 23 + ( 413.29 -46.54 9.77 0.46) ; 24 + ( 414.96 -45.56 13.72 0.46) ; 25 + ( 416.34 -43.44 15.35 0.46) ; 26 + ( 416.34 -43.44 15.38 0.46) ; 27 + ( 417.28 -41.43 17.02 0.46) ; 28 + ( 417.28 -41.43 17.05 0.46) ; 29 + ( 418.53 -38.74 18.50 0.46) ; 30 + ( 419.16 -37.40 20.17 0.46) ; 31 + ( 419.16 -37.40 20.15 0.46) ; 32 + ( 420.95 -36.98 21.67 0.46) ; 33 + ( 422.21 -34.29 22.83 0.46) ; 34 + ( 426.09 -32.79 24.05 0.46) ; 35 + ( 427.52 -28.86 23.72 0.46) ; 36 + ( 430.34 -28.81 24.35 0.46) ; 37 + ( 432.23 -24.79 24.32 0.46) ; 38 + ( 435.36 -24.05 23.67 0.46) ; 39 + ( 436.96 -24.87 24.48 0.46) ; 40 + ( 438.43 -25.12 25.55 0.46) ; 41 + ( 438.43 -25.12 25.52 0.46) ; 42 + ( 438.61 -23.88 27.45 0.46) ; 43 + ( 438.61 -23.88 27.38 0.46) ; 44 + ( 439.37 -23.12 29.67 0.46) ; 45 + ( 439.37 -23.12 29.70 0.46) ; 46 + + (Dot + (Color Cyan) + (Name "Marker 1") + ( 390.05 -80.05 -8.27 0.46) ; 1 + ( 391.73 -73.10 -4.55 0.46) ; 2 + ( 402.50 -62.81 3.08 0.46) ; 3 + ( 413.69 -48.23 9.77 0.46) ; 4 + ( 418.93 -40.45 18.50 0.46) ; 5 + ( 424.26 -35.02 24.05 0.46) ; 6 + ) ; End of markers + + (OpenCircle + (Color RGB (255, 128, 255)) + (Name "Marker 2") + ( 394.76 -69.99 -3.38 0.46) ; 1 + ( 404.30 -56.41 3.82 0.46) ; 2 + ( 428.77 -32.16 21.82 0.46) ; 3 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split +) ; End of tree + +( (Color Yellow) + (Dendrite) + ( 254.22 19.87 -2.65 1.38) ; Root + ( 254.22 19.87 -2.65 1.38) ; 1, R + ( 253.51 20.90 -4.07 1.38) ; 2 + ( 251.45 21.61 -5.05 1.38) ; 3 + ( 248.96 22.23 -5.40 1.38) ; 4 + ( 247.22 23.60 -6.30 1.38) ; 5 + ( 244.14 24.68 -6.95 1.38) ; 6 + ( 241.46 24.06 -7.27 1.38) ; 7 + ( 239.23 23.53 -8.77 1.38) ; 8 + ( 237.49 24.91 -9.60 0.92) ; 9 + ( 234.90 27.89 -10.45 0.92) ; 10 + ( 232.59 29.73 -11.40 0.92) ; 11 + ( 228.62 30.60 -12.15 0.92) ; 12 + ( 224.92 30.33 -12.27 0.92) ; 13 + ( 222.33 33.30 -11.75 0.92) ; 14 + ( 220.78 35.91 -11.17 0.92) ; 15 + ( 217.56 37.55 -11.17 0.92) ; 16 + ( 214.98 40.53 -11.53 0.92) ; 17 + ( 211.73 40.36 -12.13 0.92) ; 18 + ( 211.73 40.36 -12.15 0.92) ; 19 + ( 209.72 42.89 -12.75 0.92) ; 20 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 243.51 23.33 -6.95 1.38) ; 1 + ( 248.30 25.05 -7.72 1.38) ; 2 + ( 250.74 22.65 -5.48 1.38) ; 3 + ( 253.69 22.13 -5.13 1.38) ; 4 + ( 247.17 21.80 -3.25 1.38) ; 5 + ( 237.44 23.11 -8.77 1.38) ; 6 + ( 231.96 28.39 -11.77 0.92) ; 7 + ( 235.27 30.36 -9.77 0.92) ; 8 + ( 234.28 26.54 -9.57 0.92) ; 9 + ( 228.58 28.79 -11.85 0.92) ; 10 + ( 227.41 29.72 -11.85 0.92) ; 11 + ( 223.80 33.05 -9.95 0.92) ; 12 + ( 218.68 34.83 -11.17 0.92) ; 13 + ( 215.20 37.60 -11.17 0.92) ; 14 + ( 209.94 39.95 -10.60 0.92) ; 15 + ( 209.06 45.71 -10.65 0.92) ; 16 + ( 205.08 46.58 -10.65 0.92) ; 17 + ) ; End of markers + ( + ( 209.19 45.15 -13.75 0.46) ; 1, R-1 + ( 207.86 44.84 -15.05 0.46) ; 2 + ( 205.98 46.79 -16.17 0.46) ; 3 + ( 204.68 48.27 -17.72 0.46) ; 4 + ( 204.24 48.17 -17.72 0.46) ; 5 + ( 201.79 50.58 -19.17 0.46) ; 6 + ( 199.74 51.29 -19.55 0.46) ; 7 + ( 196.48 51.13 -19.55 0.46) ; 8 + ( + ( 194.48 53.64 -20.67 0.46) ; 1, R-1-1 + ( 191.45 56.51 -20.87 0.46) ; 2 + ( 191.05 58.21 -23.92 0.46) ; 3 + ( 190.92 58.78 -23.92 0.46) ; 4 + ( 186.19 58.87 -25.13 0.46) ; 5 + ( 186.19 58.87 -25.15 0.46) ; 6 + ( 182.71 61.64 -26.02 0.46) ; 7 + ( 182.71 61.64 -26.10 0.46) ; 8 + ( 180.40 63.48 -27.57 0.46) ; 9 + ( 177.68 67.02 -28.50 0.46) ; 10 + ( 175.89 66.60 -29.13 0.46) ; 11 + ( 174.02 68.56 -30.23 0.46) ; 12 + ( 173.40 67.21 -32.20 0.46) ; 13 + ( 173.40 67.21 -32.22 0.46) ; 14 + ( 170.76 68.39 -33.83 0.46) ; 15 + ( 170.76 68.39 -33.85 0.46) ; 16 + ( 169.35 70.44 -35.47 0.46) ; 17 + ( 166.79 69.24 -37.08 0.46) ; 18 + ( 165.37 71.31 -38.07 0.46) ; 19 + ( 164.08 72.79 -38.88 0.46) ; 20 + ( 162.24 70.58 -39.58 0.46) ; 21 + ( 159.48 72.30 -40.57 0.46) ; 22 + ( 155.51 73.18 -41.97 0.46) ; 23 + ( 155.51 73.18 -42.00 0.46) ; 24 + ( 153.63 75.12 -43.18 0.46) ; 25 + ( 151.46 76.41 -44.05 0.46) ; 26 + ( 151.51 78.21 -46.20 0.46) ; 27 + ( 149.90 79.02 -48.95 0.46) ; 28 + ( 149.18 80.06 -51.20 0.46) ; 29 + ( 147.31 82.00 -52.67 0.46) ; 30 + ( 144.37 82.50 -53.33 0.46) ; 31 + ( 143.13 85.79 -54.87 0.46) ; 32 + ( 142.02 88.53 -56.77 0.46) ; 33 + ( 141.80 91.46 -58.60 0.46) ; 34 + ( 140.38 93.52 -60.22 0.46) ; 35 + ( 137.04 95.71 -62.45 0.46) ; 36 + ( 134.40 96.88 -64.47 0.46) ; 37 + ( 134.40 96.88 -64.50 0.46) ; 38 + ( 134.44 98.69 -68.13 0.46) ; 39 + ( 133.73 99.72 -69.45 0.46) ; 40 + ( 133.73 99.72 -69.60 0.46) ; 41 + + (Cross + (Color White) + (Name "Marker 3") + ( 192.66 57.40 -21.32 0.46) ; 1 + ( 182.67 59.83 -26.10 0.46) ; 2 + ( 184.85 58.55 -26.10 0.46) ; 3 + ( 178.48 63.63 -26.77 0.46) ; 4 + ( 163.76 72.13 -36.42 0.46) ; 5 + ( 160.33 70.72 -38.72 0.46) ; 6 + ( 157.38 71.22 -43.18 0.46) ; 7 + ( 151.14 75.73 -44.05 0.46) ; 8 + ( 190.56 56.31 -20.87 0.46) ; 9 + ) ; End of markers + Normal + | + ( 193.30 48.59 -19.55 0.46) ; 1, R-1-2 + ( 191.21 47.51 -20.45 0.46) ; 2 + ( 188.08 46.77 -20.10 0.46) ; 3 + ( 185.85 46.25 -21.48 0.46) ; 4 + ( 185.09 45.48 -22.92 0.46) ; 5 + ( 182.09 44.17 -23.17 0.46) ; 6 + ( 176.92 44.16 -23.92 0.46) ; 7 + ( 173.58 46.35 -23.92 0.46) ; 8 + ( 170.00 45.52 -23.92 0.46) ; 9 + ( 164.87 47.29 -23.92 0.46) ; 10 + ( 160.90 48.17 -24.32 0.46) ; 11 + ( 157.38 49.13 -22.83 0.46) ; 12 + ( 152.69 51.02 -23.37 0.46) ; 13 + ( 149.30 51.42 -23.72 0.46) ; 14 + ( 145.19 52.85 -24.10 0.46) ; 15 + ( 140.91 53.04 -24.52 0.46) ; 16 + ( 140.91 53.04 -24.50 0.46) ; 17 + ( 138.14 54.77 -25.35 0.46) ; 18 + ( 135.34 54.71 -25.95 0.46) ; 19 + ( 132.53 54.66 -27.02 0.46) ; 20 + ( 127.26 56.99 -27.35 0.46) ; 21 + ( 124.32 57.51 -28.52 0.46) ; 22 + ( 120.97 59.70 -29.77 0.46) ; 23 + ( 116.73 61.70 -30.95 0.46) ; 24 + ( 113.03 61.42 -32.00 0.46) ; 25 + ( 108.92 62.85 -32.85 0.46) ; 26 + ( 107.77 63.78 -35.22 0.46) ; 27 + + (Cross + (Color White) + (Name "Marker 3") + ( 192.24 47.15 -20.45 0.46) ; 1 + ( 190.71 45.59 -20.10 0.46) ; 2 + ( 182.94 42.58 -23.17 0.46) ; 3 + ( 175.72 43.28 -23.40 0.46) ; 4 + ( 162.64 46.78 -24.32 0.46) ; 5 + ( 162.29 50.28 -23.47 0.46) ; 6 + ( 158.22 47.54 -21.65 0.46) ; 7 + ( 153.80 48.29 -21.50 0.46) ; 8 + ( 148.01 52.90 -21.58 0.46) ; 9 + ( 146.72 54.40 -24.10 0.46) ; 10 + ( 136.00 51.88 -27.02 0.46) ; 11 + ( 126.32 54.98 -28.85 0.46) ; 12 + ( 122.53 57.09 -29.67 0.46) ; 13 + ( 127.67 61.27 -25.95 0.46) ; 14 + ( 115.94 65.09 -32.00 0.46) ; 15 + ) ; End of markers + Normal + ) ; End of split + | + ( 207.40 44.73 -11.95 0.46) ; 1, R-2 + ( 204.46 45.22 -10.20 0.46) ; 2 + ( 203.04 47.29 -9.77 0.46) ; 3 + ( 200.98 48.00 -11.47 0.46) ; 4 + ( 199.74 51.29 -12.77 0.46) ; 5 + ( 199.74 51.29 -12.80 0.46) ; 6 + ( 199.34 53.00 -12.17 0.46) ; 7 + ( 199.34 53.00 -12.20 0.46) ; 8 + ( 196.66 52.37 -10.43 0.46) ; 9 + ( 194.53 55.44 -10.43 0.46) ; 10 + ( 191.81 58.99 -9.38 0.46) ; 11 + ( 190.97 60.58 -8.38 0.46) ; 12 + ( 186.55 61.33 -7.92 0.46) ; 13 + ( 182.31 63.33 -6.05 0.46) ; 14 + ( 179.50 63.27 -4.35 0.46) ; 15 + ( 179.50 63.27 -4.32 0.46) ; 16 + ( 177.13 63.31 -2.97 0.46) ; 17 + ( 177.77 64.65 -1.55 0.46) ; 18 + ( 175.13 65.83 0.07 0.46) ; 19 + ( 173.97 66.75 1.13 0.46) ; 20 + ( 173.22 65.98 3.05 0.46) ; 21 + ( 173.22 65.98 3.15 0.46) ; 22 + ( 173.03 64.74 5.15 0.46) ; 23 + ( 171.69 64.42 7.10 0.46) ; 24 + ( 170.49 63.55 8.95 0.46) ; 25 + ( 168.21 67.20 9.88 0.46) ; 26 + ( 168.27 69.00 11.25 0.46) ; 27 + ( 168.27 69.00 11.27 0.46) ; 28 + ( 168.19 71.37 12.27 0.46) ; 29 + ( 167.21 73.53 12.90 0.46) ; 30 + ( 166.86 77.03 13.25 0.46) ; 31 + ( 167.36 78.93 14.15 0.46) ; 32 + ( 168.42 80.38 16.07 0.46) ; 33 + ( 168.42 80.38 16.05 0.46) ; 34 + + (Cross + (Color White) + (Name "Marker 3") + ( 205.08 46.58 -9.77 0.46) ; 1 + ( 186.95 59.64 -7.92 0.46) ; 2 + ( 181.51 60.75 -6.60 0.46) ; 3 + ( 187.50 63.35 -5.60 0.46) ; 4 + ( 191.15 61.82 -7.85 0.46) ; 5 + ( 182.36 65.13 -4.92 0.46) ; 6 + ( 180.03 61.01 -4.68 0.46) ; 7 + ( 180.58 64.71 -5.53 0.46) ; 8 + ( 174.28 67.42 3.15 0.46) ; 9 + ( 169.14 63.23 8.97 0.46) ; 10 + ( 166.17 73.88 13.25 0.46) ; 11 + ( 166.22 75.69 13.25 0.46) ; 12 + ) ; End of markers + Normal + ) ; End of split +) ; End of tree + +( (Color Green) + (Dendrite) + ( 253.66 10.19 4.07 3.21) ; Root + ( 253.66 10.19 4.07 3.21) ; 1, R + ( 251.83 7.96 4.07 2.75) ; 2 + ( + ( 248.70 7.23 4.07 1.38) ; 1, R-1 + ( 246.61 6.14 2.90 1.38) ; 2 + ( 245.08 4.59 1.63 1.38) ; 3 + ( 242.80 2.27 0.30 1.38) ; 4 + ( 240.87 2.41 -0.70 1.38) ; 5 + ( 239.28 3.23 -1.77 1.38) ; 6 + ( 237.62 2.25 -3.42 1.38) ; 7 + + (Cross + (Color Green) + (Name "Marker 3") + ( 244.98 0.98 -0.70 1.38) ; 1 + ) ; End of markers + ( + ( 233.96 3.78 -3.42 0.92) ; 1, R-1-1 + ( 229.63 2.16 -2.90 0.92) ; 2 + ( 226.86 3.91 -1.75 0.92) ; 3 + ( 223.61 3.74 -0.45 0.92) ; 4 + ( 220.88 1.31 -0.12 0.92) ; 5 + ( 218.07 1.25 1.75 0.92) ; 6 + ( 215.88 2.53 1.75 0.92) ; 7 + ( 214.28 3.35 1.75 0.92) ; 8 + ( 211.83 5.76 2.63 0.92) ; 9 + ( 209.52 7.60 3.57 0.92) ; 10 + ( 208.35 8.53 4.80 0.92) ; 11 + ( 205.41 9.03 6.22 0.92) ; 12 + ( 202.91 9.64 7.07 0.92) ; 13 + ( 201.00 9.78 8.25 0.92) ; 14 + + (Cross + (Color Green) + (Name "Marker 3") + ( 221.86 -0.85 -0.12 0.92) ; 1 + ( 223.79 4.98 -0.12 0.92) ; 2 + ( 226.15 4.94 0.40 0.92) ; 3 + ( 215.98 6.14 0.70 0.92) ; 4 + ( 214.95 0.51 2.65 0.92) ; 5 + ( 211.86 1.58 1.75 0.92) ; 6 + ( 218.33 0.12 1.75 0.92) ; 7 + ( 199.62 13.64 8.25 0.92) ; 8 + ( 194.21 10.59 6.93 0.92) ; 9 + ( 190.63 9.74 8.20 0.92) ; 10 + ( 188.75 5.73 9.75 0.92) ; 11 + ( 199.64 9.47 9.75 0.92) ; 12 + ) ; End of markers + ( + ( 198.00 8.48 6.13 0.92) ; 1, R-1-1-1 + ( 196.47 6.94 6.82 0.92) ; 2 + ( 196.47 6.94 6.80 0.92) ; 3 + ( 193.40 8.00 7.53 0.92) ; 4 + ( 191.03 8.05 8.90 0.92) ; 5 + ( 188.53 8.66 9.22 0.92) ; 6 + ( 184.88 10.19 10.10 0.46) ; 7 + ( 181.48 10.60 10.70 0.46) ; 8 + ( 179.44 11.30 12.10 0.46) ; 9 + ( 178.23 10.43 13.38 0.46) ; 10 + ( 178.23 10.43 13.35 0.46) ; 11 + ( 177.15 8.98 14.30 0.46) ; 12 + ( 176.00 9.90 14.90 0.46) ; 13 + ( 174.83 10.82 14.90 0.46) ; 14 + ( 172.16 10.20 15.88 0.46) ; 15 + ( 169.39 11.94 16.50 0.46) ; 16 + ( 167.61 11.52 17.60 0.46) ; 17 + ( 166.12 11.77 18.27 0.46) ; 18 + ( 163.90 11.25 18.48 0.46) ; 19 + ( 161.53 11.29 19.75 0.46) ; 20 + ( 161.53 11.29 19.73 0.46) ; 21 + ( 157.69 11.58 19.85 0.46) ; 22 + ( 154.56 10.85 20.25 0.46) ; 23 + ( 151.71 8.99 20.25 0.46) ; 24 + ( 151.26 8.88 20.25 0.46) ; 25 + ( 149.02 8.35 20.25 0.46) ; 26 + ( 145.51 9.32 20.92 0.46) ; 27 + ( 144.48 9.67 23.10 0.46) ; 28 + ( 140.90 8.84 24.00 0.46) ; 29 + ( 140.90 8.84 23.98 0.46) ; 30 + ( 139.12 8.42 25.13 0.46) ; 31 + ( 136.30 8.36 25.70 0.46) ; 32 + ( 136.30 8.36 25.73 0.46) ; 33 + + (Cross + (Color Green) + (Name "Marker 3") + ( 183.62 7.50 10.70 0.46) ; 1 + ( 185.28 8.49 10.70 0.46) ; 2 + ( 174.57 11.95 14.90 0.46) ; 3 + ( 165.19 9.75 18.48 0.46) ; 4 + ( 168.01 9.82 18.48 0.46) ; 5 + ( 160.15 9.17 19.27 0.46) ; 6 + ( 161.18 14.79 21.00 0.46) ; 7 + ( 157.78 9.22 21.25 0.46) ; 8 + ( 150.45 6.30 21.25 0.46) ; 9 + ( 151.52 7.75 21.25 0.46) ; 10 + ( 154.21 8.38 21.25 0.46) ; 11 + ( 155.86 9.36 21.25 0.46) ; 12 + ( 148.21 5.78 21.25 0.46) ; 13 + ( 143.18 11.16 25.73 0.46) ; 14 + ( 141.11 5.91 25.75 0.46) ; 15 + ( 141.08 10.08 24.88 0.46) ; 16 + ) ; End of markers + Normal + | + ( 198.48 10.40 6.07 0.92) ; 1, R-1-1-2 + ( 197.15 10.08 4.07 0.92) ; 2 + ( 195.18 8.42 2.15 0.92) ; 3 + ( 193.09 7.34 0.30 0.92) ; 4 + ( 190.00 8.41 -0.32 0.92) ; 5 + ( 188.21 7.99 -0.95 0.46) ; 6 + ( 186.12 6.90 -0.95 0.46) ; 7 + ( 183.17 7.41 -1.60 0.46) ; 8 + ( 183.17 7.41 -1.63 0.46) ; 9 + ( 181.70 7.65 -3.67 0.46) ; 10 + ( 182.09 5.96 -5.80 0.46) ; 11 + ( 179.47 7.13 -7.50 0.46) ; 12 + ( 179.47 7.13 -7.53 0.46) ; 13 + ( 177.23 6.61 -8.13 0.46) ; 14 + ( 174.55 5.98 -8.93 0.46) ; 15 + ( 172.69 7.93 -10.45 0.46) ; 16 + ( 172.69 7.93 -10.50 0.46) ; 17 + ( 170.95 9.31 -11.27 0.46) ; 18 + ( 170.55 11.01 -12.60 0.46) ; 19 + ( 170.55 11.01 -12.67 0.46) ; 20 + ( 171.67 14.26 -14.18 0.46) ; 21 + ( 169.49 15.53 -15.60 0.46) ; 22 + ( 166.73 17.28 -16.80 0.46) ; 23 + ( 165.30 19.34 -18.20 0.46) ; 24 + ( 163.82 19.59 -19.75 0.46) ; 25 + ( 162.71 22.31 -20.35 0.46) ; 26 + ( 162.71 22.31 -20.38 0.46) ; 27 + ( 161.43 23.80 -22.27 0.46) ; 28 + ( 159.69 25.19 -23.60 0.46) ; 29 + ( 158.08 26.01 -25.50 0.46) ; 30 + ( 158.08 26.01 -25.55 0.46) ; 31 + ( 155.59 26.62 -26.92 0.46) ; 32 + ( 153.40 27.89 -28.70 0.46) ; 33 + ( 151.16 27.37 -30.90 0.46) ; 34 + ( 150.76 29.07 -32.80 0.46) ; 35 + ( 150.19 29.53 -35.40 0.46) ; 36 + ( 150.19 29.53 -35.42 0.46) ; 37 + ( 148.72 29.79 -37.90 0.46) ; 38 + ( 148.72 29.79 -37.92 0.46) ; 39 + ( 148.32 31.48 -41.40 0.46) ; 40 + ( 147.88 31.38 -43.78 0.46) ; 41 + ( 147.88 31.38 -43.80 0.46) ; 42 + + (Cross + (Color Green) + (Name "Marker 3") + ( 198.67 11.63 4.07 0.92) ; 1 + ( 196.31 11.67 2.15 0.92) ; 2 + ( 184.91 6.01 -1.63 0.46) ; 3 + ( 180.45 4.97 -8.13 0.46) ; 4 + ( 176.60 5.27 -7.90 0.46) ; 5 + ( 175.63 7.42 -7.32 0.46) ; 6 + ( 175.36 8.57 -9.05 0.46) ; 7 + ( 174.63 3.61 -10.95 0.46) ; 8 + ( 170.14 6.73 -12.42 0.46) ; 9 + ( 169.47 9.56 -9.77 0.46) ; 10 + ( 169.57 13.17 -14.18 0.46) ; 11 + ( 168.06 17.59 -15.02 0.46) ; 12 + ( 173.09 12.20 -15.02 0.46) ; 13 + ( 173.14 14.01 -15.60 0.46) ; 14 + ( 166.81 14.91 -15.60 0.46) ; 15 + ( 169.44 13.73 -15.60 0.46) ; 16 + ( 159.80 18.64 -20.38 0.46) ; 17 + ( 164.64 22.16 -21.45 0.46) ; 18 + ( 163.92 23.20 -22.27 0.46) ; 19 + ( 156.12 24.35 -27.08 0.46) ; 20 + ) ; End of markers + Normal + ) ; End of split + | + ( 237.57 0.45 -4.55 1.38) ; 1, R-1-2 + ( + ( 234.22 2.64 -6.25 0.92) ; 1, R-1-2-1 + ( 234.22 2.64 -6.28 0.92) ; 2 + ( 231.91 4.49 -7.55 0.92) ; 3 + ( 231.91 4.49 -7.57 0.92) ; 4 + ( 229.99 4.64 -8.93 0.92) ; 5 + ( 228.03 2.98 -10.17 0.92) ; 6 + ( 225.21 2.92 -9.88 0.92) ; 7 + ( 221.11 4.35 -11.37 0.92) ; 8 + ( 221.95 2.76 -13.23 0.92) ; 9 + ( 221.95 2.76 -13.25 0.92) ; 10 + ( 219.82 5.83 -14.25 0.92) ; 11 + ( 219.82 5.83 -14.27 0.92) ; 12 + ( 217.82 8.36 -13.82 0.92) ; 13 + ( 216.52 9.85 -15.57 0.92) ; 14 + ( 215.50 10.20 -17.67 0.92) ; 15 + ( 215.50 10.20 -17.70 0.92) ; 16 + ( 213.26 9.68 -19.33 0.92) ; 17 + ( 211.61 8.69 -19.60 0.92) ; 18 + ( 210.85 7.91 -21.10 0.92) ; 19 + ( 210.85 7.91 -21.13 0.92) ; 20 + ( 209.65 7.03 -22.92 0.46) ; 21 + ( 209.11 9.30 -24.90 0.46) ; 22 + ( 208.86 10.43 -26.90 0.92) ; 23 + ( 205.14 10.16 -28.13 0.92) ; 24 + ( 205.14 10.16 -28.15 0.92) ; 25 + ( 203.09 10.88 -28.15 0.92) ; 26 + ( 199.88 12.51 -28.15 0.92) ; 27 + + (Cross + (Color Green) + (Name "Marker 3") + ( 224.58 1.58 -9.88 0.92) ; 1 + ( 216.74 6.91 -13.82 0.92) ; 2 + ( 214.37 6.95 -19.33 0.92) ; 3 + ( 213.44 10.91 -19.33 0.92) ; 4 + ( 211.70 6.33 -19.60 0.92) ; 5 + ( 202.11 13.03 -28.15 0.92) ; 6 + ( 205.18 11.96 -27.65 0.92) ; 7 + ) ; End of markers + ( + ( 195.01 13.16 -27.70 0.46) ; 1, R-1-2-1-1 + ( 191.49 14.13 -29.27 0.46) ; 2 + ( 190.32 15.05 -30.30 0.46) ; 3 + ( 188.33 17.57 -30.83 0.46) ; 4 + ( 186.06 21.21 -32.00 0.46) ; 5 + ( 184.77 22.70 -33.22 0.46) ; 6 + ( 183.61 23.63 -34.52 0.46) ; 7 + ( 183.61 23.63 -34.55 0.46) ; 8 + ( 182.37 26.92 -34.55 0.46) ; 9 + ( 179.97 31.13 -34.60 0.46) ; 10 + ( 179.97 31.13 -34.63 0.46) ; 11 + ( 177.84 34.22 -37.02 0.46) ; 12 + ( 177.84 34.22 -37.05 0.46) ; 13 + ( 175.64 35.50 -38.03 0.46) ; 14 + ( 174.40 38.79 -38.38 0.46) ; 15 + ( 171.19 40.42 -38.60 0.46) ; 16 + ( 169.64 43.04 -39.67 0.46) ; 17 + ( 167.59 43.76 -40.57 0.46) ; 18 + ( 167.59 43.76 -40.60 0.46) ; 19 + + (Cross + (Color Green) + (Name "Marker 3") + ( 183.61 23.63 -33.22 0.46) ; 1 + ( 183.17 29.49 -38.35 0.46) ; 2 + ) ; End of markers + Normal + | + ( 195.86 11.57 -30.10 0.46) ; 1, R-1-2-1-2 + ( 192.74 10.84 -32.25 0.46) ; 2 + ( 192.74 10.84 -32.30 0.46) ; 3 + ( 190.67 11.54 -33.45 0.46) ; 4 + ( 190.67 11.54 -33.47 0.46) ; 5 + ( 189.21 11.81 -35.27 0.46) ; 6 + ( 189.21 11.81 -35.33 0.46) ; 7 + ( 186.71 12.42 -36.92 0.46) ; 8 + ( 186.71 12.42 -36.95 0.46) ; 9 + ( 185.74 14.56 -37.85 0.46) ; 10 + ( 185.74 14.56 -37.88 0.46) ; 11 + ( 182.21 15.54 -39.13 0.46) ; 12 + ( 178.94 15.37 -40.80 0.46) ; 13 + ( 177.13 19.12 -41.82 0.46) ; 14 + ( 177.13 19.12 -41.85 0.46) ; 15 + ( 174.58 17.93 -44.10 0.46) ; 16 + ( 172.53 18.65 -46.25 0.46) ; 17 + ( 170.47 19.35 -48.35 0.46) ; 18 + ( 170.47 19.35 -48.38 0.46) ; 19 + ( 168.56 19.50 -50.35 0.46) ; 20 + ( 168.56 19.50 -50.38 0.46) ; 21 + ( 167.71 21.10 -52.65 0.46) ; 22 + ( 167.71 21.10 -52.70 0.46) ; 23 + ( 167.45 22.22 -54.65 0.46) ; 24 + ( 167.45 22.22 -54.72 0.46) ; 25 + ( 165.71 23.61 -56.42 0.46) ; 26 + ( 165.71 23.61 -56.45 0.46) ; 27 + ( 163.61 22.52 -58.38 0.46) ; 28 + ( 163.61 22.52 -58.40 0.46) ; 29 + ( 165.22 21.71 -60.05 0.46) ; 30 + ( 165.22 21.71 -60.22 0.46) ; 31 + ( 162.84 21.75 -62.70 0.46) ; 32 + ( 162.84 21.75 -62.75 0.46) ; 33 + ( 161.33 20.20 -66.13 0.46) ; 34 + ( 159.99 19.89 -69.00 0.46) ; 35 + ( 158.52 20.14 -69.30 0.46) ; 36 + ( 158.12 21.83 -71.17 0.46) ; 37 + ( 158.12 21.83 -71.20 0.46) ; 38 + ( 156.83 23.33 -73.95 0.46) ; 39 + ( 156.83 23.33 -73.97 0.46) ; 40 + ( 155.77 27.85 -76.28 0.46) ; 41 + ( 155.77 27.85 -76.30 0.46) ; 42 + ( 155.55 30.79 -78.28 0.46) ; 43 + ( 155.55 30.79 -78.32 0.46) ; 44 + ( 155.34 33.71 -80.63 0.46) ; 45 + ( 155.34 33.71 -80.68 0.46) ; 46 + ( 154.62 34.75 -84.12 0.46) ; 47 + ( 154.62 34.75 -84.17 0.46) ; 48 + ( 154.72 38.36 -86.62 0.46) ; 49 + ( 154.72 38.36 -86.65 0.46) ; 50 + ( 153.88 39.95 -89.05 0.46) ; 51 + ( 152.77 42.68 -92.00 0.46) ; 52 + ( 151.61 43.59 -94.80 0.46) ; 53 + ( 151.61 43.59 -94.82 0.46) ; 54 + ( 149.73 45.55 -96.80 0.46) ; 55 + ( 149.92 46.78 -99.05 0.46) ; 56 + ( 147.60 48.62 -102.63 0.46) ; 57 + ( 147.60 48.62 -102.65 0.46) ; 58 + + (Cross + (Color White) + (Name "Marker 3") + ( 147.72 48.06 -50.55 0.46) ; 1 + ) ; End of markers + + (Cross + (Color Green) + (Name "Marker 3") + ( 193.45 9.81 -32.30 0.46) ; 1 + ( 190.54 12.12 -31.77 0.46) ; 2 + ( 183.19 13.37 -39.13 0.46) ; 3 + ( 179.21 14.24 -41.85 0.46) ; 4 + ( 168.74 20.74 -48.38 0.46) ; 5 + ( 158.79 19.00 -67.32 0.46) ; 6 + ( 157.53 38.41 -86.65 0.46) ; 7 + ) ; End of markers + Normal + ) ; End of split + | + ( 234.31 0.28 -6.78 0.92) ; 1, R-1-2-2 + ( 232.98 -0.04 -7.43 0.92) ; 2 + ( 231.72 -2.72 -8.00 0.92) ; 3 + ( 231.72 -2.72 -8.02 0.92) ; 4 + ( 230.92 -5.30 -8.50 0.92) ; 5 + ( 229.12 -5.72 -8.50 0.92) ; 6 + ( 227.29 -7.94 -8.50 0.92) ; 7 + ( 227.32 -12.11 -9.60 0.92) ; 8 + ( 227.32 -12.11 -9.63 0.92) ; 9 + ( 227.04 -16.95 -10.20 0.92) ; 10 + ( 226.69 -19.43 -10.70 0.92) ; 11 + ( 224.90 -19.85 -11.02 0.92) ; 12 + ( 224.35 -23.55 -11.07 0.92) ; 13 + ( 223.23 -26.79 -11.07 0.92) ; 14 + ( 221.08 -29.70 -11.37 0.92) ; 15 + ( 219.50 -33.06 -11.37 0.92) ; 16 + ( 219.06 -33.16 -11.37 0.92) ; 17 + ( 217.57 -38.87 -11.37 0.92) ; 18 + ( 215.88 -41.66 -11.60 0.92) ; 19 + ( 214.87 -45.48 -11.40 0.92) ; 20 + ( 214.87 -45.48 -11.42 0.92) ; 21 + ( 214.79 -49.08 -13.13 0.92) ; 22 + ( 214.59 -50.33 -13.72 0.92) ; 23 + ( 214.59 -50.33 -13.75 0.92) ; 24 + ( 215.31 -51.36 -15.88 0.92) ; 25 + ( 214.55 -52.14 -17.82 0.92) ; 26 + ( 214.55 -52.14 -17.85 0.92) ; 27 + ( 213.03 -53.69 -19.27 0.92) ; 28 + ( 210.35 -54.31 -20.50 0.92) ; 29 + ( 208.82 -55.86 -22.22 0.92) ; 30 + ( 206.78 -55.15 -24.15 0.92) ; 31 + ( 205.17 -54.33 -25.92 0.92) ; 32 + ( 203.70 -54.09 -27.80 0.92) ; 33 + ( 201.74 -55.74 -29.00 0.92) ; 34 + ( 201.74 -55.74 -29.02 0.92) ; 35 + ( 199.05 -56.36 -30.13 0.92) ; 36 + ( 196.81 -56.89 -30.13 0.92) ; 37 + ( 194.72 -57.97 -30.30 0.46) ; 38 + ( 192.75 -59.63 -30.30 0.46) ; 39 + ( 189.63 -60.36 -30.30 0.46) ; 40 + ( 187.52 -61.46 -32.28 0.46) ; 41 + ( 185.29 -61.97 -33.92 0.46) ; 42 + ( 183.63 -62.97 -35.83 0.46) ; 43 + ( 183.58 -64.77 -38.00 0.46) ; 44 + ( 183.58 -64.77 -38.03 0.46) ; 45 + ( 182.52 -66.21 -38.20 0.46) ; 46 + ( 180.54 -67.87 -39.78 0.46) ; 47 + ( 178.26 -70.20 -40.60 0.46) ; 48 + ( 176.74 -71.75 -40.83 0.46) ; 49 + ( 175.04 -74.53 -43.18 0.46) ; 50 + ( 173.66 -76.65 -44.45 0.46) ; 51 + ( 173.28 -79.12 -46.93 0.46) ; 52 + ( 171.99 -77.63 -49.52 0.46) ; 53 + ( 170.66 -77.94 -52.10 0.46) ; 54 + ( 170.66 -77.94 -52.13 0.46) ; 55 + ( 169.63 -77.59 -55.03 0.46) ; 56 + ( 169.63 -77.59 -55.05 0.46) ; 57 + ( 169.05 -77.13 -58.50 0.46) ; 58 + ( 167.89 -76.21 -62.47 0.46) ; 59 + ( 167.63 -75.08 -67.17 0.46) ; 60 + ( 167.63 -75.08 -67.28 0.46) ; 61 + + (Cross + (Color Green) + (Name "Marker 3") + ( 225.37 -7.79 -8.50 0.92) ; 1 + ( 229.07 -7.52 -8.50 0.92) ; 2 + ( 226.89 -6.25 -8.50 0.92) ; 3 + ( 228.09 -5.36 -8.50 0.92) ; 4 + ( 227.97 -20.91 -10.70 0.92) ; 5 + ( 225.10 -28.75 -10.30 0.92) ; 6 + ( 213.49 -47.60 -13.13 0.92) ; 7 + ( 220.98 -33.31 -7.95 0.92) ; 8 + ( 223.44 -29.74 -7.95 0.92) ; 9 + ( 217.64 -31.10 -7.95 0.92) ; 10 + ( 220.16 -35.88 -7.80 0.92) ; 11 + ( 220.54 -33.41 -8.82 0.92) ; 12 + ( 216.54 -44.49 -9.48 0.92) ; 13 + ( 214.01 -55.84 -17.60 0.92) ; 14 + ( 203.38 -54.75 -24.15 0.92) ; 15 + ( 193.02 -60.77 -30.30 0.46) ; 16 + ( 181.95 -59.78 -35.25 0.46) ; 17 + ( 179.87 -71.01 -40.83 0.46) ; 18 + ( 174.69 -71.03 -42.02 0.46) ; 19 + ( 177.46 -72.78 -42.02 0.46) ; 20 + ( 175.40 -78.04 -43.80 0.46) ; 21 + ) ; End of markers + Normal + | + ( 236.33 -2.03 -4.55 0.92) ; 1, R-1-2-3 + ( 235.12 -2.92 -4.35 0.92) ; 2 + ( 235.12 -2.92 -4.40 0.92) ; 3 + ( 234.19 -4.93 -3.17 0.92) ; 4 + ( 234.45 -6.06 -1.70 0.92) ; 5 + ( 233.37 -7.50 -0.40 0.92) ; 6 + ( + ( 233.18 -8.74 0.95 0.92) ; 1, R-1-2-3-1 + ( 234.03 -10.34 2.05 0.92) ; 2 + ( 235.20 -11.26 3.38 0.92) ; 3 + ( 235.20 -11.26 3.35 0.92) ; 4 + ( 235.91 -12.28 4.43 0.92) ; 5 + ( 236.75 -13.88 5.15 0.92) ; 6 + ( 237.28 -16.14 5.85 0.92) ; 7 + ( 237.37 -18.51 6.57 0.92) ; 8 + ( 235.84 -20.07 8.35 0.92) ; 9 + ( 235.08 -20.84 9.20 0.92) ; 10 + ( 235.17 -23.21 8.80 0.92) ; 11 + ( 235.25 -25.57 10.50 0.92) ; 12 + ( 235.47 -28.51 11.35 0.92) ; 13 + ( 234.97 -30.41 11.07 0.92) ; 14 + ( 235.95 -32.58 12.25 0.92) ; 15 + ( 235.95 -32.58 12.22 0.92) ; 16 + ( 235.59 -35.06 12.50 0.92) ; 17 + ( 234.20 -37.16 12.07 0.92) ; 18 + ( 234.20 -37.16 12.05 0.92) ; 19 + ( 233.75 -37.27 14.30 0.92) ; 20 + ( 234.65 -37.06 16.57 0.92) ; 21 + ( 235.36 -38.09 18.67 0.92) ; 22 + ( 233.83 -39.65 20.17 0.92) ; 23 + ( 233.60 -42.68 20.97 0.92) ; 24 + ( 232.35 -45.37 21.88 0.92) ; 25 + ( 230.33 -48.83 21.55 0.92) ; 26 + ( 230.33 -48.83 21.52 0.92) ; 27 + ( 229.79 -52.53 22.08 0.92) ; 28 + ( 227.64 -55.43 22.57 0.92) ; 29 + ( 226.57 -56.87 23.33 0.92) ; 30 + ( 224.92 -57.85 23.80 0.92) ; 31 + ( 224.92 -57.85 23.78 0.92) ; 32 + ( 224.11 -60.44 24.38 0.92) ; 33 + ( 224.11 -60.44 24.35 0.92) ; 34 + ( 225.53 -62.48 25.23 0.92) ; 35 + ( 223.64 -66.51 26.45 0.92) ; 36 + ( 223.41 -69.55 27.25 0.92) ; 37 + ( 222.29 -72.80 27.77 0.92) ; 38 + ( 220.27 -76.25 29.13 0.92) ; 39 + ( 218.93 -76.57 30.65 0.92) ; 40 + ( 217.55 -78.69 31.95 0.92) ; 41 + ( 216.47 -80.14 33.85 0.92) ; 42 + ( 216.02 -80.24 34.40 0.92) ; 43 + + (Cross + (Color White) + (Name "Marker 3") + ( 239.02 -17.53 5.85 0.92) ; 1 + ( 233.48 -20.03 9.20 0.92) ; 2 + ( 235.13 -19.04 9.20 0.92) ; 3 + ( 240.05 -17.89 10.33 0.92) ; 4 + ( 232.19 -34.65 12.50 0.92) ; 5 + ( 236.43 -36.65 12.50 0.92) ; 6 + ( 236.00 -30.78 12.50 0.92) ; 7 + ( 237.11 -33.49 12.50 0.92) ; 8 + ( 234.53 -30.52 9.65 0.92) ; 9 + ( 232.99 -38.05 18.67 0.92) ; 10 + ( 236.83 -38.34 20.97 0.92) ; 11 + ( 231.64 -44.34 21.88 0.92) ; 12 + ( 231.87 -41.30 21.88 0.92) ; 13 + ( 230.58 -55.93 22.57 0.92) ; 14 + ( 231.44 -51.55 22.57 0.92) ; 15 + ( 225.59 -54.72 26.58 0.92) ; 16 + ( 226.20 -59.35 23.07 0.92) ; 17 + ( 221.99 -67.50 26.45 0.92) ; 18 + ( 219.80 -72.19 27.30 0.92) ; 19 + ( 225.59 -70.83 27.30 0.92) ; 20 + ( 224.21 -72.95 28.52 0.92) ; 21 + ) ; End of markers + High + | + ( 231.22 -10.40 -1.42 0.92) ; 1, R-1-2-3-2 + ( 231.89 -13.23 -2.42 0.92) ; 2 + ( 231.89 -13.23 -2.45 0.92) ; 3 + ( 231.66 -16.27 -1.65 0.92) ; 4 + ( 230.85 -18.85 -0.47 0.92) ; 5 + ( 229.60 -21.53 0.17 0.92) ; 6 + ( 227.44 -24.42 0.95 0.92) ; 7 + ( 226.23 -25.31 1.95 0.92) ; 8 + ( 224.98 -27.98 3.08 0.92) ; 9 + ( 223.72 -30.66 4.35 0.92) ; 10 + ( 222.82 -30.87 5.55 0.92) ; 11 + ( 221.71 -34.12 4.38 0.92) ; 12 + ( 220.14 -37.47 4.38 0.92) ; 13 + ( 218.44 -40.27 4.38 0.92) ; 14 + ( 219.10 -43.10 5.37 0.92) ; 15 + ( 220.34 -46.38 6.07 0.92) ; 16 + ( 220.34 -46.38 5.22 0.92) ; 17 + ( 220.87 -48.66 4.50 0.92) ; 18 + ( 220.87 -48.66 4.22 0.92) ; 19 + ( 221.85 -50.82 3.35 0.92) ; 20 + ( 220.54 -55.29 2.83 0.92) ; 21 + ( 217.81 -57.74 1.67 0.92) ; 22 + ( 217.81 -57.74 1.65 0.92) ; 23 + ( 215.53 -60.05 1.42 0.92) ; 24 + ( 215.56 -64.23 0.45 0.92) ; 25 + ( 214.76 -66.81 0.22 0.92) ; 26 + ( 214.76 -66.81 0.17 0.92) ; 27 + ( 213.77 -70.62 -0.67 0.92) ; 28 + ( 213.77 -70.62 -0.72 0.92) ; 29 + ( 213.54 -73.66 -1.17 0.92) ; 30 + ( 214.51 -75.82 -1.17 0.92) ; 31 + ( 213.35 -80.87 -1.47 0.92) ; 32 + ( 212.80 -84.59 -1.60 0.92) ; 33 + ( 212.07 -89.53 -1.60 0.92) ; 34 + ( 212.42 -93.04 -2.75 0.92) ; 35 + ( 210.54 -97.06 -3.78 0.92) ; 36 + ( 209.86 -100.19 -3.78 0.92) ; 37 + ( 209.14 -105.15 -4.78 0.92) ; 38 + ( 209.35 -108.08 -3.60 0.92) ; 39 + ( 208.94 -112.35 -2.22 0.92) ; 40 + ( 208.99 -116.53 -1.32 0.92) ; 41 + ( 210.35 -120.38 -0.45 0.92) ; 42 + ( 211.15 -123.78 0.32 0.92) ; 43 + ( 212.08 -127.75 1.07 0.92) ; 44 + ( 209.80 -130.07 1.90 0.92) ; 45 + ( 207.43 -130.03 2.92 0.92) ; 46 + ( 206.04 -132.15 3.65 0.92) ; 47 + ( 206.04 -132.15 3.70 0.92) ; 48 + ( 204.57 -131.89 4.63 0.92) ; 49 + ( 202.92 -132.88 5.20 0.92) ; 50 + ( 202.56 -135.35 4.63 0.92) ; 51 + ( 202.56 -135.35 4.60 0.92) ; 52 + ( 203.27 -136.37 4.82 0.92) ; 53 + ( 204.51 -139.67 6.02 0.92) ; 54 + ( 202.18 -143.80 7.10 0.92) ; 55 + ( 201.77 -148.07 8.45 0.92) ; 56 + ( 202.30 -150.35 9.77 0.92) ; 57 + ( 203.01 -151.37 12.00 0.92) ; 58 + ( 203.59 -151.83 13.30 0.92) ; 59 + + (Cross + (Color White) + (Name "Marker 3") + ( 230.69 -8.14 -1.42 0.92) ; 1 + ( 233.98 -18.12 -1.42 0.92) ; 2 + ( 233.80 -13.38 -2.97 0.92) ; 3 + ( 231.20 -22.34 -0.55 0.92) ; 4 + ( 227.49 -22.61 1.25 0.92) ; 5 + ( 228.59 -25.35 2.88 0.92) ; 6 + ( 222.25 -52.51 5.13 0.92) ; 7 + ( 219.42 -58.55 5.13 0.92) ; 8 + ( 219.24 -59.78 2.57 0.92) ; 9 + ( 221.43 -55.08 2.57 0.92) ; 10 + ( 217.59 -60.78 2.57 0.92) ; 11 + ( 218.12 -63.03 2.57 0.92) ; 12 + ( 214.10 -58.00 1.13 0.92) ; 13 + ( 217.41 -56.03 1.13 0.92) ; 14 + ( 210.58 -79.14 -1.60 0.92) ; 15 + ( 213.76 -76.59 -1.60 0.92) ; 16 + ( 214.69 -80.56 -1.60 0.92) ; 17 + ( 211.46 -84.89 -1.60 0.92) ; 18 + ( 210.91 -88.61 -1.60 0.92) ; 19 + ( 214.57 -90.13 -1.60 0.92) ; 20 + ( 213.10 -67.79 -1.60 0.92) ; 21 + ( 216.18 -68.86 -1.60 0.92) ; 22 + ( 210.20 -93.55 -3.78 0.92) ; 23 + ( 212.42 -99.00 -1.77 0.92) ; 24 + ( 207.40 -103.76 -4.70 0.92) ; 25 + ( 211.24 -104.05 -5.57 0.92) ; 26 + ( 211.18 -111.83 -2.22 0.92) ; 27 + ( 208.49 -118.44 -1.32 0.92) ; 28 + ( 211.61 -117.71 -1.32 0.92) ; 29 + ( 211.88 -118.83 -1.32 0.92) ; 30 + ( 202.84 -130.51 4.60 0.92) ; 31 + ( 198.85 -135.62 4.60 0.92) ; 32 + ( 207.07 -132.50 4.17 0.92) ; 33 + ( 203.60 -145.85 9.52 0.92) ; 34 + ( 203.24 -148.33 9.52 0.92) ; 35 + ( 213.10 -128.10 3.32 0.92) ; 36 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 250.10 9.55 4.75 0.92) ; 1, R-2 + ( 247.61 10.16 6.35 0.92) ; 2 + ( 245.28 12.01 6.97 0.92) ; 3 + ( 243.42 13.95 8.52 0.92) ; 4 + ( 244.49 15.40 9.77 0.92) ; 5 + ( 246.99 14.79 10.12 0.92) ; 6 + ( 245.92 13.35 11.47 0.92) ; 7 + ( 244.26 12.36 14.88 0.92) ; 8 + + (Cross + (Color White) + (Name "Marker 3") + ( 251.31 10.43 6.35 0.92) ; 1 + ( 246.60 16.50 8.85 0.92) ; 2 + ( 248.46 14.54 11.47 0.92) ; 3 + ) ; End of markers + ( + ( 245.34 13.80 14.88 0.92) ; 1, R-2-1 + ( 241.54 15.91 14.45 0.92) ; 2 + ( 240.08 16.16 14.85 0.92) ; 3 + ( 240.08 16.16 14.82 0.92) ; 4 + ( 239.86 19.09 16.60 0.92) ; 5 + ( 239.46 20.79 18.38 0.92) ; 6 + ( 238.22 24.08 19.52 0.92) ; 7 + ( 236.21 26.60 20.75 0.92) ; 8 + ( 234.08 29.69 20.92 0.92) ; 9 + ( 231.76 31.53 20.13 0.92) ; 10 + + (Cross + (Color White) + (Name "Marker 3") + ( 238.20 18.11 14.82 0.92) ; 1 + ( 237.23 20.27 18.40 0.92) ; 2 + ( 240.13 23.93 18.40 0.92) ; 3 + ( 238.44 27.12 19.02 0.92) ; 4 + ( 231.53 28.49 18.55 0.92) ; 5 + ( 234.26 30.92 18.55 0.92) ; 6 + ( 232.58 34.11 18.55 0.92) ; 7 + ) ; End of markers + ( + ( 229.93 35.27 20.85 0.46) ; 1, R-2-1-1 + ( 227.31 36.46 21.85 0.46) ; 2 + ( 224.86 38.86 22.67 0.46) ; 3 + ( 223.84 39.22 24.20 0.46) ; 4 + ( 223.39 39.12 24.20 0.46) ; 5 + ( 222.63 38.35 26.35 0.46) ; 6 + Normal + | + ( 228.42 33.73 19.23 0.92) ; 1, R-2-1-2 + ( 226.23 35.01 19.58 0.92) ; 2 + ( 226.23 35.01 19.55 0.92) ; 3 + ( 224.63 35.83 21.10 0.92) ; 4 + ( 222.00 37.00 23.00 0.92) ; 5 + ( 219.99 39.53 24.08 0.92) ; 6 + ( 217.41 42.50 25.60 0.92) ; 7 + + (Cross + (Color White) + (Name "Marker 3") + ( 214.29 41.77 25.05 0.92) ; 1 + ( 218.09 45.64 25.05 0.92) ; 2 + ) ; End of markers + Normal + ) ; End of split + | + ( 242.34 12.51 14.88 0.92) ; 1, R-2-2 + ( 242.29 10.71 16.38 0.92) ; 2 + ( 242.29 10.71 16.35 0.92) ; 3 + ( 239.40 13.01 18.27 0.92) ; 4 + ( 239.09 12.34 20.00 0.92) ; 5 + ( 237.31 11.93 20.77 0.92) ; 6 + ( 235.32 10.27 22.30 0.92) ; 7 + ( 233.36 8.61 23.25 0.92) ; 8 + ( 233.36 8.61 23.23 0.92) ; 9 + ( 230.61 10.35 24.60 0.92) ; 10 + ( 228.99 11.18 25.47 0.92) ; 11 + ( 227.29 8.38 26.60 0.92) ; 12 + ( 224.08 10.02 27.63 0.92) ; 13 + ( 221.32 11.76 28.02 0.92) ; 14 + ( 218.64 11.14 29.50 0.92) ; 15 + ( 218.64 11.14 29.48 0.92) ; 16 + ( 217.38 8.45 30.27 0.92) ; 17 + ( 217.38 8.45 30.23 0.92) ; 18 + ( 219.12 7.07 31.80 0.92) ; 19 + ( 221.62 6.46 33.70 0.46) ; 20 + + (Cross + (Color White) + (Name "Marker 3") + ( 241.49 8.13 18.27 0.92) ; 1 + ( 239.04 10.54 20.77 0.92) ; 2 + ( 240.61 13.90 20.77 0.92) ; 3 + ( 226.45 9.97 27.63 0.92) ; 4 + ( 225.73 11.01 29.42 0.92) ; 5 + ( 221.64 12.43 30.67 0.92) ; 6 + ( 219.30 14.28 30.67 0.92) ; 7 + ( 229.42 11.07 -25.80 0.92) ; 8 + ) ; End of markers + High + | + ( 245.82 9.74 15.90 0.46) ; 1, R-2-3 + ( 247.29 9.49 18.80 0.46) ; 2 + ( 245.90 7.37 21.22 0.46) ; 3 + ( 244.56 7.06 23.92 0.46) ; 4 + ( 244.06 5.15 24.80 0.46) ; 5 + ( 243.18 4.94 24.80 0.46) ; 6 + ( + ( 243.13 3.14 25.77 0.46) ; 1, R-2-3-1 + ( 244.64 -1.28 26.52 0.46) ; 2 + ( 246.24 -2.10 28.15 0.46) ; 3 + ( 246.24 -2.10 28.13 0.46) ; 4 + ( 247.13 -1.89 30.63 0.46) ; 5 + ( 247.13 -1.89 30.57 0.46) ; 6 + ( 248.46 -1.57 33.22 0.46) ; 7 + ( 248.46 -1.57 33.27 0.46) ; 8 + + (Cross + (Color Green) + (Name "Marker 3") + ( 243.40 7.98 24.80 0.46) ; 1 + ( 244.34 9.99 24.80 0.46) ; 2 + ( 244.86 1.76 26.52 0.46) ; 3 + ( 242.19 1.13 26.52 0.46) ; 4 + ( 242.72 -1.14 26.52 0.46) ; 5 + ) ; End of markers + High + | + ( 246.70 3.98 24.80 0.46) ; 1, R-2-3-2 + ( 248.17 3.73 23.27 0.46) ; 2 + ( 248.57 2.03 21.77 0.46) ; 3 + ( + ( 250.71 -1.05 22.50 0.46) ; 1, R-2-3-2-1 + ( 253.60 -3.36 22.50 0.46) ; 2 + ( 255.92 -5.21 23.75 0.46) ; 3 + ( 259.50 -4.37 23.75 0.46) ; 4 + ( 260.74 -7.66 23.75 0.46) ; 5 + ( 259.80 -9.67 25.35 0.46) ; 6 + ( 262.60 -9.61 26.35 0.46) ; 7 + ( 264.92 -11.46 27.60 0.46) ; 8 + ( 264.92 -11.46 27.57 0.46) ; 9 + ( 265.94 -11.82 29.58 0.46) ; 10 + ( 266.39 -11.71 32.28 0.46) ; 11 + ( 266.39 -11.71 32.30 0.46) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 252.53 -4.80 22.50 0.46) ; 1 + ( 259.09 -8.65 23.75 0.46) ; 2 + ( 261.68 -5.65 23.75 0.46) ; 3 + ( 259.11 -12.82 23.95 0.46) ; 4 + ( 264.53 -9.75 26.65 0.46) ; 5 + ( 264.43 -13.36 27.10 0.46) ; 6 + ) ; End of markers + High + | + ( 244.55 1.08 21.77 0.46) ; 1, R-2-3-2-2 + ( 241.74 1.03 22.25 0.46) ; 2 + ( 239.19 -0.17 22.25 0.46) ; 3 + ( 238.74 -0.28 22.25 0.46) ; 4 + ( 236.51 -0.80 22.25 0.46) ; 5 + ( 234.23 -3.13 22.25 0.46) ; 6 + ( 231.59 -1.95 22.45 0.46) ; 7 + ( 230.35 1.34 22.45 0.46) ; 8 + ( 227.94 -0.41 20.73 0.46) ; 9 + ( 225.58 -0.37 19.15 0.46) ; 10 + ( 222.32 -0.54 17.67 0.46) ; 11 + ( 220.35 -2.19 16.17 0.46) ; 12 + ( 219.72 -3.54 15.50 0.46) ; 13 + ( 216.33 -3.14 15.12 0.46) ; 14 + ( 212.88 -4.54 15.12 0.46) ; 15 + ( 209.37 -3.58 14.18 0.46) ; 16 + ( 207.58 -4.00 12.62 0.46) ; 17 + ( 206.23 -4.31 11.07 0.46) ; 18 + ( 204.85 -6.42 10.10 0.46) ; 19 + ( 202.04 -6.49 9.25 0.46) ; 20 + ( 199.62 -8.24 8.85 0.46) ; 21 + ( 196.63 -9.55 8.60 0.46) ; 22 + ( 193.76 -11.41 8.63 0.46) ; 23 + ( 189.56 -13.59 8.63 0.46) ; 24 + ( 187.52 -12.88 8.63 0.46) ; 25 + ( 184.92 -15.87 7.72 0.46) ; 26 + ( 180.27 -18.17 7.72 0.46) ; 27 + ( 177.90 -18.11 7.02 0.46) ; 28 + ( 176.07 -20.34 6.62 0.46) ; 29 + ( 173.08 -21.64 7.55 0.46) ; 30 + ( 173.08 -21.64 7.50 0.46) ; 31 + ( 171.69 -23.75 7.25 0.46) ; 32 + ( 171.69 -23.75 7.22 0.46) ; 33 + ( 168.52 -26.29 6.82 0.46) ; 34 + ( 166.42 -27.37 6.38 0.46) ; 35 + ( 163.73 -28.00 6.38 0.46) ; 36 + ( 161.50 -28.53 6.15 0.46) ; 37 + ( 161.50 -28.53 6.13 0.46) ; 38 + ( 159.67 -30.75 5.75 0.46) ; 39 + ( 157.06 -33.75 4.92 0.46) ; 40 + ( 157.06 -33.75 4.90 0.46) ; 41 + ( 155.10 -35.40 3.45 0.46) ; 42 + ( 153.01 -36.49 1.75 0.46) ; 43 + ( 151.17 -38.72 -0.28 0.46) ; 44 + ( 147.99 -41.25 -1.85 0.46) ; 45 + ( 142.90 -43.64 -3.85 0.46) ; 46 + ( 142.90 -43.64 -3.95 0.46) ; 47 + + (Cross + (Color White) + (Name "Marker 3") + ( 247.49 0.58 21.77 0.46) ; 1 + ( 231.83 1.09 22.45 0.46) ; 2 + ( 229.07 2.84 23.07 0.46) ; 3 + ( 228.52 -0.88 22.60 0.46) ; 4 + ( 225.50 2.00 18.40 0.46) ; 5 + ( 223.91 -1.36 18.33 0.46) ; 6 + ( 225.71 -0.94 18.33 0.46) ; 7 + ( 223.60 -2.03 14.52 0.46) ; 8 + ( 218.65 -4.99 15.12 0.46) ; 9 + ( 216.59 -4.27 15.12 0.46) ; 10 + ( 214.36 -4.79 15.12 0.46) ; 11 + ( 213.28 -6.24 14.40 0.46) ; 12 + ( 212.62 -3.41 16.52 0.46) ; 13 + ( 207.84 -5.13 12.17 0.46) ; 14 + ( 206.32 -6.68 13.15 0.46) ; 15 + ( 199.99 -5.78 8.85 0.46) ; 16 + ( 201.81 -9.53 10.00 0.46) ; 17 + ( 200.46 -9.84 10.00 0.46) ; 18 + ( 194.09 -10.75 8.13 0.46) ; 19 + ( 191.62 -14.30 9.77 0.46) ; 20 + ( 191.58 -10.13 6.70 0.46) ; 21 + ( 184.21 -14.85 10.30 0.46) ; 22 + ( 184.87 -17.68 8.97 0.46) ; 23 + ( 182.33 -18.87 8.93 0.46) ; 24 + ( 177.23 -21.26 6.62 0.46) ; 25 + ( 173.87 -25.04 7.25 0.46) ; 26 + ( 173.13 -19.84 7.25 0.46) ; 27 + ( 166.33 -25.01 7.25 0.46) ; 28 + ( 164.23 -26.10 7.25 0.46) ; 29 + ( 169.49 -28.45 7.82 0.46) ; 30 + ( 161.24 -27.40 5.63 0.46) ; 31 + ( 161.27 -31.57 5.60 0.46) ; 32 + ) ; End of markers + Incomplete + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split +) ; End of tree + +( (Color Yellow) + (Dendrite) + ( 273.70 23.33 0.80 1.38) ; Root + ( 273.70 23.33 0.80 1.38) ; 1, R + ( 276.57 25.19 0.80 1.38) ; 2 + ( 277.82 27.88 0.80 1.38) ; 3 + ( 278.77 29.89 0.80 1.38) ; 4 + ( 281.58 29.95 -0.35 1.38) ; 5 + ( 281.58 29.95 -0.37 1.38) ; 6 + ( 282.42 28.35 -2.08 1.38) ; 7 + + (Cross + (Color White) + (Name "Marker 3") + ( 274.62 25.34 2.42 0.46) ; 1 + ) ; End of markers + ( + ( 284.52 29.45 -3.25 0.92) ; 1, R-1 + ( 286.31 29.87 -4.65 0.92) ; 2 + ( 289.49 32.40 -6.00 0.92) ; 3 + ( 292.74 32.57 -7.00 0.92) ; 4 + ( 295.24 31.96 -7.63 0.92) ; 5 + ( 299.26 32.91 -7.65 0.92) ; 6 + ( 300.47 33.78 -6.02 0.92) ; 7 + ( 302.25 34.20 -4.82 0.92) ; 8 + ( 302.25 34.20 -4.85 0.92) ; 9 + ( 304.67 35.96 -3.92 0.92) ; 10 + ( 308.10 37.36 -2.90 0.92) ; 11 + ( 308.10 37.36 -2.92 0.92) ; 12 + ( 309.77 38.35 -2.27 0.92) ; 13 + ( 312.76 39.64 -1.22 0.92) ; 14 + ( 316.01 39.81 -3.25 0.92) ; 15 + ( 316.01 39.81 -3.27 0.92) ; 16 + ( 316.25 42.85 -4.13 0.92) ; 17 + ( 316.25 42.85 -4.15 0.92) ; 18 + ( 318.66 44.61 -5.15 0.92) ; 19 + ( 319.99 44.92 -4.97 0.92) ; 20 + ( 322.28 47.26 -5.10 0.92) ; 21 + ( 323.35 48.70 -6.20 0.92) ; 22 + ( 324.75 50.82 -7.72 0.92) ; 23 + ( 329.21 51.86 -8.32 0.92) ; 24 + ( 332.38 54.40 -9.22 0.92) ; 25 + ( 334.98 57.39 -9.77 0.92) ; 26 + ( 336.81 59.62 -10.25 0.92) ; 27 + ( 336.81 59.62 -10.28 0.92) ; 28 + ( 339.10 61.94 -11.55 0.92) ; 29 + ( 339.10 61.94 -11.58 0.92) ; 30 + ( 340.93 64.17 -13.45 0.92) ; 31 + ( 340.93 64.17 -13.47 0.92) ; 32 + ( 341.11 65.40 -15.02 0.92) ; 33 + ( 341.47 67.87 -16.35 0.92) ; 34 + ( 341.47 67.87 -16.38 0.92) ; 35 + ( 342.16 71.02 -16.00 0.92) ; 36 + ( 342.67 74.73 -13.85 0.92) ; 37 + ( 342.67 74.73 -13.87 0.92) ; 38 + ( 343.35 77.87 -12.72 0.92) ; 39 + ( 345.94 80.87 -11.98 0.92) ; 40 + ( 348.10 83.76 -13.00 0.92) ; 41 + ( 350.50 85.52 -14.13 0.92) ; 42 + ( 353.67 88.06 -14.75 0.92) ; 43 + ( 356.42 90.49 -15.73 0.92) ; 44 + ( 359.01 93.49 -16.38 0.92) ; 45 + ( 361.29 95.80 -15.05 0.46) ; 46 + ( 363.88 98.81 -13.32 0.46) ; 47 + ( 363.88 98.81 -13.35 0.46) ; 48 + ( 365.00 102.06 -11.32 0.46) ; 49 + ( 365.00 102.06 -11.30 0.46) ; 50 + ( 365.63 103.40 -9.67 0.46) ; 51 + ( 365.87 106.44 -9.67 0.46) ; 52 + ( 366.19 107.12 -8.25 0.46) ; 53 + ( 367.70 108.66 -7.30 0.46) ; 54 + ( 367.70 108.66 -7.32 0.46) ; 55 + ( 368.46 109.43 -5.50 0.46) ; 56 + ( 369.99 110.99 -3.70 0.46) ; 57 + ( 369.99 110.99 -3.72 0.46) ; 58 + ( 371.05 112.44 -1.60 0.46) ; 59 + ( 371.05 112.44 -1.63 0.46) ; 60 + + (Cross + (Color White) + (Name "Marker 3") + ( 285.92 31.56 -4.65 0.92) ; 1 + ( 297.52 34.28 -7.65 0.92) ; 2 + ( 314.05 38.16 -1.22 0.92) ; 3 + ( 313.21 45.72 -0.12 0.92) ; 4 + ( 323.56 45.76 -5.05 0.92) ; 5 + ( 322.69 51.53 -7.75 0.92) ; 6 + ( 331.28 57.13 -10.00 0.92) ; 7 + ( 334.45 59.66 -9.15 0.92) ; 8 + ( 334.67 62.70 -10.95 0.92) ; 9 + ( 344.20 70.30 -16.02 0.92) ; 10 + ( 341.56 77.45 -11.98 0.92) ; 11 + ( 346.21 79.74 -11.98 0.92) ; 12 + ( 349.54 87.68 -14.75 0.92) ; 13 + ( 355.47 88.48 -14.90 0.92) ; 14 + ( 358.33 90.34 -15.05 0.92) ; 15 + ( 355.57 92.09 -16.38 0.92) ; 16 + ( 366.32 112.52 -5.65 0.46) ; 17 + ( 363.90 104.78 -9.67 0.46) ; 18 + ) ; End of markers + Normal + | + ( 284.38 30.01 -0.90 0.92) ; 1, R-2 + ( 283.99 31.71 -0.25 0.92) ; 2 + ( 286.22 32.23 0.17 0.92) ; 3 + ( 288.01 32.65 0.17 0.92) ; 4 + ( 290.24 33.18 0.45 0.92) ; 5 + ( 291.76 34.73 1.38 0.92) ; 6 + ( 294.13 34.68 2.63 0.92) ; 7 + ( 295.47 35.00 2.38 0.92) ; 8 + ( 297.65 33.72 3.08 0.92) ; 9 + ( 300.20 34.92 3.08 0.92) ; 10 + ( 302.49 37.23 3.08 0.92) ; 11 + ( 304.58 38.33 3.82 0.92) ; 12 + ( 304.58 38.33 3.80 0.92) ; 13 + ( 306.81 38.85 5.22 0.92) ; 14 + ( 309.32 38.24 6.80 0.92) ; 15 + ( 309.32 38.24 6.78 0.92) ; 16 + ( 310.52 39.11 7.57 0.92) ; 17 + ( 312.04 40.68 7.55 0.92) ; 18 + ( 314.72 41.30 9.82 0.92) ; 19 + ( 316.51 41.72 10.07 0.46) ; 20 + ( 316.37 42.29 10.07 0.46) ; 21 + ( 317.72 42.60 10.82 0.46) ; 22 + ( 317.27 42.49 10.82 0.46) ; 23 + ( 321.86 42.98 11.53 0.46) ; 24 + ( 325.00 43.71 12.10 0.46) ; 25 + ( 327.72 46.14 12.32 0.46) ; 26 + ( 328.08 48.62 13.52 0.46) ; 27 + ( 328.08 48.62 13.47 0.46) ; 28 + ( 330.36 50.94 13.60 0.46) ; 29 + ( 332.74 50.90 14.30 0.46) ; 30 + ( 335.01 53.21 15.55 0.46) ; 31 + ( 334.88 53.79 15.55 0.46) ; 32 + ( 337.19 51.94 16.90 0.46) ; 33 + ( 340.59 51.55 18.45 0.46) ; 34 + ( 340.59 51.55 18.40 0.46) ; 35 + ( 344.12 50.57 20.65 0.46) ; 36 + ( 343.99 51.14 20.65 0.46) ; 37 + ( 347.50 50.18 22.50 0.46) ; 38 + ( 347.06 50.08 22.50 0.46) ; 39 + ( 350.27 48.44 22.05 0.46) ; 40 + ( 353.89 51.08 21.42 0.46) ; 41 + ( 353.89 51.08 21.40 0.46) ; 42 + ( 356.66 49.33 22.50 0.46) ; 43 + ( 356.66 49.33 22.47 0.46) ; 44 + ( 358.00 49.65 20.33 0.46) ; 45 + ( 358.00 49.65 20.30 0.46) ; 46 + ( 359.51 51.20 17.38 0.46) ; 47 + ( 359.07 51.10 17.30 0.46) ; 48 + ( 363.53 52.15 15.82 0.46) ; 49 + ( 366.08 53.34 14.48 0.46) ; 50 + ( 366.08 53.34 14.45 0.46) ; 51 + ( 366.97 53.55 12.20 0.46) ; 52 + ( 366.97 53.55 12.15 0.46) ; 53 + + (Cross + (Color White) + (Name "Marker 3") + ( 297.70 35.52 2.63 0.92) ; 1 + ( 300.42 37.96 5.50 0.92) ; 2 + ( 304.85 37.19 3.65 0.92) ; 3 + ( 307.52 37.82 6.80 0.92) ; 4 + ( 315.51 37.90 6.40 0.92) ; 5 + ( 313.78 39.28 9.95 0.92) ; 6 + ( 316.43 44.09 10.75 0.92) ; 7 + ( 322.68 45.55 10.77 0.92) ; 8 + ( 349.61 51.27 22.73 0.46) ; 9 + ( 334.30 54.26 15.20 0.46) ; 10 + ( 359.29 48.17 18.30 0.46) ; 11 + ( 354.82 47.11 23.70 0.46) ; 12 + ) ; End of markers + Normal + ) ; End of split +) ; End of tree + +( (Color Green) + (Dendrite) + ( 273.97 18.01 5.45 1.38) ; Root + ( 273.97 18.01 5.45 1.38) ; 1, R + ( 276.34 17.97 5.45 1.38) ; 2 + ( 279.28 17.46 5.45 1.38) ; 3 + ( 280.57 15.97 5.80 1.38) ; 4 + ( 281.47 16.18 7.38 1.38) ; 5 + ( 282.10 17.52 9.35 1.38) ; 6 + ( + ( 284.95 19.39 8.75 1.38) ; 1, R-1 + ( 287.94 20.70 8.35 1.38) ; 2 + ( 287.94 20.70 8.32 1.38) ; 3 + ( 289.92 22.35 7.70 1.38) ; 4 + ( + ( 292.60 22.97 7.57 0.92) ; 1, R-1-1 + ( 295.09 22.37 6.73 0.92) ; 2 + ( 296.97 20.41 6.15 0.92) ; 3 + ( 296.97 20.41 6.13 0.92) ; 4 + ( 298.22 17.12 4.50 0.92) ; 5 + ( 300.71 16.51 3.27 0.92) ; 6 + ( 300.71 16.51 3.25 0.92) ; 7 + ( 302.58 14.55 1.95 0.92) ; 8 + ( 302.58 14.55 1.92 0.92) ; 9 + ( 304.89 12.72 1.35 0.92) ; 10 + ( 306.76 10.77 0.90 0.92) ; 11 + ( 306.76 10.77 0.88 0.92) ; 12 + ( 308.20 8.71 -0.05 0.92) ; 13 + ( 308.86 5.88 0.60 0.92) ; 14 + ( 308.86 5.88 0.52 0.92) ; 15 + ( 311.49 4.71 -0.85 0.92) ; 16 + ( 311.49 4.71 -0.88 0.92) ; 17 + ( 314.69 3.07 -1.70 0.92) ; 18 + ( 318.35 1.54 -1.58 0.92) ; 19 + ( 318.35 1.54 -1.60 0.92) ; 20 + ( 321.44 0.47 0.93 0.92) ; 21 + ( 324.64 -1.16 1.70 0.92) ; 22 + ( 327.27 -2.34 2.40 0.92) ; 23 + ( 330.79 -3.30 2.55 0.92) ; 24 + ( 333.87 -4.38 1.70 0.92) ; 25 + ( 333.87 -4.38 1.67 0.92) ; 26 + ( 335.24 -8.24 1.77 0.92) ; 27 + ( 337.38 -11.32 1.77 0.92) ; 28 + ( 341.57 -15.12 1.77 0.92) ; 29 + ( 342.87 -16.60 2.57 0.92) ; 30 + ( 344.55 -19.79 3.57 0.92) ; 31 + ( 344.55 -19.79 3.55 0.92) ; 32 + ( 346.24 -22.98 3.65 0.92) ; 33 + ( 348.38 -26.07 4.50 0.92) ; 34 + ( 351.08 -29.59 5.65 0.92) ; 35 + ( 353.23 -32.69 7.77 0.92) ; 36 + ( 353.23 -32.69 7.75 0.92) ; 37 + ( 353.57 -36.18 9.15 0.92) ; 38 + ( 353.57 -36.18 9.10 0.92) ; 39 + ( 356.30 -39.72 10.15 0.92) ; 40 + ( 359.32 -42.60 10.95 0.92) ; 41 + ( 360.43 -45.33 12.45 0.92) ; 42 + ( 360.43 -45.33 12.35 0.92) ; 43 + ( 361.10 -48.15 14.05 0.92) ; 44 + ( 361.10 -48.15 14.02 0.92) ; 45 + ( 361.13 -52.33 12.95 0.92) ; 46 + ( 362.51 -56.18 14.38 0.92) ; 47 + ( 364.73 -61.64 15.20 0.92) ; 48 + ( 367.62 -63.94 12.70 0.92) ; 49 + ( 367.17 -64.05 12.70 0.92) ; 50 + ( 370.83 -65.59 11.53 0.92) ; 51 + ( 370.83 -65.59 11.50 0.92) ; 52 + ( 373.77 -66.08 10.20 0.92) ; 53 + ( 373.77 -66.08 10.17 0.92) ; 54 + ( 375.83 -66.81 7.85 0.92) ; 55 + ( 375.83 -66.81 7.70 0.92) ; 56 + + (Cross + (Color White) + (Name "Marker 3") + ( 295.04 20.56 6.13 0.92) ; 1 + ( 298.49 21.96 3.85 0.92) ; 2 + ( 299.28 18.57 4.35 0.92) ; 3 + ( 297.05 18.05 6.38 0.92) ; 4 + ( 297.58 15.78 5.57 0.92) ; 5 + ( 299.19 14.96 5.57 0.92) ; 6 + ( 299.64 15.07 1.92 0.92) ; 7 + ( 314.51 1.83 -1.65 0.92) ; 8 + ( 318.75 -0.17 0.17 0.92) ; 9 + ( 320.36 -0.98 0.67 0.92) ; 10 + ( 323.66 0.99 2.38 0.92) ; 11 + ( 320.72 1.50 1.75 0.92) ; 12 + ( 328.22 -0.32 3.08 0.92) ; 13 + ( 332.77 -1.65 0.85 0.92) ; 14 + ( 345.23 -16.64 3.55 0.92) ; 15 + ( 346.07 -18.24 4.60 0.92) ; 16 + ( 347.18 -20.97 5.07 0.92) ; 17 + ( 347.13 -22.77 5.05 0.92) ; 18 + ( 349.76 -23.94 5.70 0.92) ; 19 + ( 346.32 -25.34 3.08 0.92) ; 20 + ( 349.30 -30.01 5.97 0.92) ; 21 + ( 349.30 -30.01 5.65 0.92) ; 22 + ( 358.19 -51.82 12.95 0.92) ; 23 + ( 371.36 -67.85 11.80 0.92) ; 24 + ) ; End of markers + Normal + | + ( 289.26 25.18 6.70 0.92) ; 1, R-1-2 + ( 291.04 25.60 7.15 0.92) ; 2 + ( 292.43 27.71 7.15 0.92) ; 3 + ( 293.95 29.26 8.75 0.92) ; 4 + ( 293.87 31.63 10.35 0.92) ; 5 + ( 296.23 31.59 11.40 0.92) ; 6 + ( 299.05 31.65 12.35 0.92) ; 7 + ( 300.11 33.09 13.57 0.92) ; 8 + ( 299.58 35.35 16.63 0.92) ; 9 + ( 299.95 37.84 18.05 0.92) ; 10 + ( 299.69 38.96 20.23 0.92) ; 11 + ( 300.59 39.17 23.23 0.92) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 288.10 26.09 8.00 0.92) ; 1 + ( 290.33 26.62 5.82 0.92) ; 2 + ( 292.48 29.51 9.50 0.92) ; 3 + ( 295.83 33.28 12.38 0.92) ; 4 + ( 301.38 35.78 18.05 0.92) ; 5 + ) ; End of markers + Normal + ) ; End of split + | + ( 282.99 17.73 10.48 1.38) ; 1, R-2 + ( 285.48 17.13 12.17 1.38) ; 2 + ( 286.46 14.96 13.57 0.92) ; 3 + ( 285.48 11.15 14.67 0.92) ; 4 + ( 285.88 9.45 16.02 0.92) ; 5 + ( 285.51 6.99 17.72 0.92) ; 6 + ( 286.36 5.39 18.70 0.92) ; 7 + ( 286.49 4.82 18.70 0.92) ; 8 + ( 287.78 3.34 20.00 0.92) ; 9 + ( 290.86 2.26 20.83 0.92) ; 10 + ( 294.20 0.06 21.67 0.92) ; 11 + ( 296.51 -1.79 22.12 0.92) ; 12 + ( 298.25 -3.17 22.97 0.92) ; 13 + ( 298.92 -6.00 23.52 0.92) ; 14 + ( 300.03 -8.73 24.58 0.92) ; 15 + ( 302.79 -10.47 25.70 0.92) ; 16 + ( 306.01 -12.11 26.25 0.92) ; 17 + ( 305.40 -17.61 26.95 0.92) ; 18 + ( 305.89 -21.68 27.22 0.92) ; 19 + ( 306.55 -24.51 28.42 0.92) ; 20 + ( 306.05 -26.42 29.48 0.92) ; 21 + ( 307.61 -29.05 30.60 0.92) ; 22 + ( 311.59 -29.90 31.48 0.92) ; 23 + ( 314.98 -30.31 31.92 0.92) ; 24 + ( 316.76 -29.89 31.92 0.92) ; 25 + ( 318.55 -29.47 33.80 0.92) ; 26 + ( 319.32 -28.70 35.38 0.92) ; 27 + + (Cross + (Color White) + (Name "Marker 3") + ( 281.12 19.69 11.05 1.38) ; 1 + ( 284.04 7.23 18.70 0.92) ; 2 + ( 286.67 6.05 20.00 0.92) ; 3 + ( 290.81 0.46 21.67 0.92) ; 4 + ( 294.12 2.43 21.67 0.92) ; 5 + ( 295.58 -3.80 22.15 0.92) ; 6 + ( 303.13 -13.97 25.15 0.92) ; 7 + ( 307.77 -17.65 27.27 0.92) ; 8 + ( 304.77 -24.93 27.22 0.92) ; 9 + ( 310.20 -32.02 31.92 0.92) ; 10 + ( 311.51 -27.53 31.92 0.92) ; 11 + ) ; End of markers + High + ) ; End of split +) ; End of tree + +( (Color RGB (255, 255, 128)) + (Dendrite) + ( 268.25 8.31 8.88 1.38) ; Root + ( 268.25 8.31 8.88 1.38) ; 1, R + ( 270.24 5.79 8.90 1.38) ; 2 + ( 271.09 4.20 9.43 1.38) ; 3 + ( 270.28 1.62 9.43 1.38) ; 4 + ( 268.30 -0.03 10.75 1.38) ; 5 + ( 267.36 -2.04 12.83 1.38) ; 6 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 272.51 2.14 9.43 1.38) ; 1 + ) ; End of markers + ( + ( 269.06 -1.19 12.83 0.92) ; 1, R-1 + ( 271.87 -1.13 12.83 0.92) ; 2 + ( 273.62 -2.51 14.30 0.92) ; 3 + ( 273.49 -1.94 14.27 0.92) ; 4 + ( 275.40 -2.09 16.67 0.92) ; 5 + ( 277.00 -2.90 18.35 0.92) ; 6 + ( + ( 276.95 -4.70 19.63 0.92) ; 1, R-1-1 + ( 278.25 -6.21 21.98 0.92) ; 2 + ( 278.25 -6.21 21.95 0.92) ; 3 + ( 278.88 -4.86 24.20 0.92) ; 4 + ( 279.31 -4.76 24.20 0.92) ; 5 + ( 275.21 -3.33 25.10 0.92) ; 6 + ( 275.26 -1.53 25.73 0.92) ; 7 + ( 276.34 -0.07 27.30 0.92) ; 8 + ( 275.31 0.28 28.90 0.92) ; 9 + ( 274.15 1.20 31.17 0.92) ; 10 + ( 273.14 1.56 33.42 0.92) ; 11 + ( 273.14 1.56 33.50 0.92) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 278.39 -0.80 25.23 0.92) ; 1 + ) ; End of markers + High + | + ( 279.63 -4.08 19.17 0.92) ; 1, R-1-2 + ( 281.05 -6.14 20.35 0.92) ; 2 + ( 283.79 -3.71 20.35 0.92) ; 3 + ( 286.59 -3.65 21.85 0.92) ; 4 + ( 289.23 -4.82 23.05 0.92) ; 5 + ( 292.31 -5.88 23.05 0.92) ; 6 + ( 295.70 -6.29 23.57 0.92) ; 7 + ( 295.70 -6.29 23.55 0.92) ; 8 + ( 298.02 -8.13 23.42 0.92) ; 9 + ( 302.56 -9.46 23.80 0.92) ; 10 + ( 306.40 -9.75 24.62 0.92) ; 11 + ( 310.82 -10.51 24.62 0.92) ; 12 + ( 312.25 -12.56 25.40 0.92) ; 13 + ( 314.12 -14.52 25.52 0.92) ; 14 + ( 318.80 -16.40 26.77 0.92) ; 15 + ( 322.45 -17.94 26.80 0.92) ; 16 + ( 326.11 -19.47 25.35 0.92) ; 17 + ( 330.44 -17.85 25.35 0.92) ; 18 + ( 334.01 -17.01 23.70 0.92) ; 19 + ( 334.01 -17.01 23.67 0.92) ; 20 + ( 336.13 -15.93 21.92 0.92) ; 21 + ( 339.51 -16.33 21.48 0.92) ; 22 + ( 342.68 -13.79 21.20 0.92) ; 23 + ( 346.08 -14.18 21.58 0.92) ; 24 + ( 349.91 -14.48 21.58 0.92) ; 25 + ( 351.70 -14.07 19.63 0.92) ; 26 + ( 353.49 -13.65 17.27 0.92) ; 27 + ( 356.25 -15.39 15.20 0.92) ; 28 + ( 356.25 -15.39 15.17 0.92) ; 29 + ( 357.59 -15.07 12.88 0.92) ; 30 + ( 360.23 -16.25 11.65 0.92) ; 31 + ( 363.30 -17.31 10.97 0.92) ; 32 + ( 367.48 -21.11 13.38 0.92) ; 33 + ( 370.51 -23.98 12.98 0.92) ; 34 + ( 373.10 -26.96 12.98 0.92) ; 35 + ( 372.97 -26.40 12.98 0.92) ; 36 + ( 374.97 -28.91 12.95 0.92) ; 37 + ( 374.97 -28.91 12.93 0.92) ; 38 + ( 377.33 -28.96 12.88 0.46) ; 39 + ( 378.67 -28.64 10.40 0.46) ; 40 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 280.13 -2.18 19.17 0.92) ; 1 + ( 280.29 -6.91 20.17 0.92) ; 2 + ( 285.92 -6.79 20.38 0.92) ; 3 + ( 292.26 -7.69 20.92 0.92) ; 4 + ( 296.94 -9.58 23.80 0.92) ; 5 + ( 306.80 -11.46 24.62 0.92) ; 6 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 316.21 -13.43 26.80 0.92) ; 1 + ( 321.22 -14.64 26.80 0.92) ; 2 + ( 321.70 -18.70 26.80 0.92) ; 3 + ( 322.95 -16.03 29.08 0.92) ; 4 + ( 326.79 -16.33 28.10 0.92) ; 5 + ( 323.43 -20.09 24.10 0.92) ; 6 + ( 332.63 -19.14 24.08 0.92) ; 7 + ( 331.29 -19.45 21.38 0.92) ; 8 + ( 330.49 -16.05 25.38 0.92) ; 9 + ( 340.94 -12.41 21.58 0.92) ; 10 + ( 348.80 -11.76 21.58 0.92) ; 11 + ( 359.59 -17.59 10.97 0.92) ; 12 + ( 364.54 -20.61 11.25 0.92) ; 13 + ) ; End of markers + Normal + ) ; End of split + | + ( 266.82 -5.76 12.00 1.38) ; 1, R-2 + ( 267.62 -9.15 11.32 1.38) ; 2 + ( 267.62 -9.15 11.30 1.38) ; 3 + ( 269.80 -10.44 11.13 1.38) ; 4 + ( 269.80 -10.44 11.10 1.38) ; 5 + ( 272.25 -12.85 10.02 1.38) ; 6 + ( 272.25 -12.85 10.00 1.38) ; 7 + ( 273.99 -14.24 8.30 1.38) ; 8 + ( 275.02 -14.59 6.60 1.38) ; 9 + ( + ( 275.91 -14.40 4.90 0.92) ; 1, R-2-1 + ( 276.62 -15.42 3.25 0.92) ; 2 + ( 276.62 -15.42 3.22 0.92) ; 3 + ( 277.28 -18.26 1.53 0.92) ; 4 + ( 279.92 -19.43 1.53 0.92) ; 5 + ( 282.29 -19.48 1.53 0.92) ; 6 + ( 283.18 -19.27 1.53 0.92) ; 7 + ( 283.05 -18.69 1.53 0.92) ; 8 + ( 283.93 -18.49 0.15 0.92) ; 9 + ( 284.69 -17.72 -1.53 0.92) ; 10 + ( 286.66 -16.06 -2.88 0.92) ; 11 + ( 289.12 -18.47 -3.47 0.92) ; 12 + ( 291.30 -19.75 -3.65 0.92) ; 13 + ( 291.30 -19.75 -3.67 0.92) ; 14 + ( 293.43 -22.84 -4.47 0.92) ; 15 + ( 295.31 -24.79 -5.37 0.92) ; 16 + ( 296.47 -25.71 -5.27 0.92) ; 17 + ( 298.64 -26.99 -3.45 0.92) ; 18 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 278.52 -21.56 1.53 0.92) ; 1 + ( 276.40 -18.46 1.53 0.92) ; 2 + ( 278.23 -16.25 1.53 0.92) ; 3 + ( 295.84 -27.05 -2.38 0.92) ; 4 + ( 295.80 -22.87 -2.38 0.92) ; 5 + ( 291.66 -17.28 -1.40 0.92) ; 6 + ( 293.66 -19.79 -1.53 0.92) ; 7 + ( 294.68 -26.13 -6.13 0.92) ; 8 + ( 298.01 -28.33 -5.13 0.92) ; 9 + ) ; End of markers + ( + ( 300.56 -27.13 -5.13 0.92) ; 1, R-2-1-1 + ( 302.49 -27.29 -7.07 0.92) ; 2 + ( 302.49 -27.29 -7.10 0.92) ; 3 + ( 306.90 -28.04 -8.57 0.92) ; 4 + ( 309.40 -28.65 -8.90 0.92) ; 5 + ( 310.88 -28.90 -10.70 0.92) ; 6 + ( 312.04 -29.82 -13.55 0.92) ; 7 + ( 312.04 -29.82 -13.57 0.92) ; 8 + ( 314.66 -30.99 -16.67 0.92) ; 9 + ( 314.66 -30.99 -16.70 0.92) ; 10 + ( 316.90 -30.48 -19.23 0.92) ; 11 + ( 316.90 -30.48 -19.27 0.92) ; 12 + ( 320.68 -32.57 -20.65 0.92) ; 13 + ( 323.32 -33.74 -22.97 0.92) ; 14 + ( 323.32 -33.74 -23.02 0.92) ; 15 + ( 324.03 -34.77 -26.30 0.92) ; 16 + ( 324.03 -34.77 -26.32 0.92) ; 17 + ( 323.27 -35.55 -30.42 0.46) ; 18 + ( 323.40 -36.12 -30.45 0.46) ; 19 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 310.93 -27.10 -7.97 0.92) ; 1 + ) ; End of markers + Normal + | + ( 300.83 -28.27 -3.95 0.46) ; 1, R-2-1-2 + ( 304.36 -29.23 -2.73 0.46) ; 2 + ( 306.94 -32.21 -1.77 0.46) ; 3 + ( 308.99 -32.92 -1.17 0.46) ; 4 + ( 312.07 -34.00 2.78 0.46) ; 5 + ( 313.80 -35.38 2.78 0.46) ; 6 + ( 315.86 -36.09 2.78 0.46) ; 7 + ( 318.09 -35.57 2.22 0.46) ; 8 + ( 318.09 -35.57 2.20 0.46) ; 9 + ( 322.11 -34.62 2.60 0.46) ; 10 + ( 324.03 -34.77 2.90 0.46) ; 11 + ( 324.73 -35.80 4.32 0.46) ; 12 + ( 326.22 -36.05 6.22 0.46) ; 13 + ( 329.03 -35.99 8.15 0.46) ; 14 + ( 329.03 -35.99 8.13 0.46) ; 15 + ( 331.13 -34.91 4.17 0.46) ; 16 + ( 335.15 -33.96 2.67 0.46) ; 17 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 306.62 -32.88 -1.17 0.46) ; 1 + ( 308.15 -31.33 -1.17 0.46) ; 2 + ( 312.70 -32.64 1.40 0.46) ; 3 + ( 309.97 -35.09 2.60 0.46) ; 4 + ( 315.23 -37.43 2.78 0.46) ; 5 + ( 320.60 -36.18 2.90 0.46) ; 6 + ( 318.28 -34.33 2.90 0.46) ; 7 + ( 337.25 -32.87 2.50 0.46) ; 8 + ( 330.23 -35.12 2.50 0.46) ; 9 + ( 324.83 -38.17 7.65 0.46) ; 10 + ( 331.66 -37.16 7.65 0.46) ; 11 + ) ; End of markers + Normal + ) ; End of split + | + ( 274.79 -17.63 6.60 0.92) ; 1, R-2-2 + ( 273.79 -21.44 7.30 0.92) ; 2 + ( 274.14 -24.95 9.05 0.92) ; 3 + ( 274.23 -27.31 10.52 0.92) ; 4 + ( 274.23 -27.31 10.50 0.92) ; 5 + ( 275.97 -28.69 11.68 0.92) ; 6 + ( 277.84 -30.65 12.57 0.92) ; 7 + ( 279.26 -32.70 13.75 0.92) ; 8 + ( 280.11 -34.30 13.95 0.92) ; 9 + ( 280.95 -35.89 14.97 0.92) ; 10 + ( 283.27 -37.74 14.97 0.92) ; 11 + ( 282.91 -40.20 14.67 0.92) ; 12 + ( 283.88 -42.37 15.55 0.92) ; 13 + ( 285.44 -44.98 16.10 0.92) ; 14 + ( 289.22 -47.08 16.10 0.92) ; 15 + ( 291.15 -47.23 16.73 0.92) ; 16 + ( 293.99 -51.34 16.73 0.92) ; 17 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 275.02 -30.71 10.50 0.92) ; 1 + ( 276.76 -32.09 12.22 0.92) ; 2 + ( 280.33 -37.22 14.97 0.92) ; 3 + ( 282.20 -39.18 14.82 0.92) ; 4 + ( 282.60 -40.87 14.82 0.92) ; 5 + ( 281.65 -42.90 16.90 0.92) ; 6 + ( 285.72 -40.14 17.13 0.92) ; 7 + ( 289.62 -48.79 16.73 0.92) ; 8 + ( 294.09 -47.75 18.35 0.92) ; 9 + ( 292.53 -51.09 15.40 0.92) ; 10 + ( 297.25 -51.19 15.48 0.92) ; 11 + ) ; End of markers + ( + ( 293.05 -53.37 16.73 0.92) ; 1, R-2-2-1 + ( 292.69 -55.86 17.45 0.92) ; 2 + ( 293.05 -59.36 17.13 0.92) ; 3 + ( 292.50 -63.06 20.13 0.92) ; 4 + ( 293.35 -64.66 21.18 0.92) ; 5 + ( 289.95 -64.25 22.25 0.92) ; 6 + ( 287.76 -62.98 23.67 0.92) ; 7 + ( 286.17 -62.16 25.35 0.92) ; 8 + ( 286.03 -61.60 25.35 0.92) ; 9 + ( 283.98 -60.88 26.55 0.46) ; 10 + ( 282.94 -60.52 29.02 0.46) ; 11 + ( 281.92 -60.17 31.38 0.46) ; 12 + ( 281.34 -59.71 32.35 0.46) ; 13 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 287.86 -59.37 17.13 0.92) ; 1 + ( 294.65 -60.17 18.55 0.92) ; 2 + ( 291.46 -62.71 19.95 0.92) ; 3 + ( 293.84 -62.75 19.95 0.92) ; 4 + ( 293.61 -65.79 20.13 0.92) ; 5 + ) ; End of markers + High + | + ( 296.62 -52.53 18.08 0.92) ; 1, R-2-2-2 + ( 297.68 -57.06 17.70 0.92) ; 2 + ( 298.93 -60.35 17.70 0.92) ; 3 + ( 303.03 -61.77 17.70 0.92) ; 4 + ( 304.01 -63.94 16.47 0.92) ; 5 + ( 304.49 -68.00 16.47 0.92) ; 6 + ( 305.92 -70.05 15.90 0.92) ; 7 + ( 309.21 -74.07 15.22 0.92) ; 8 + ( 309.21 -74.07 15.20 0.92) ; 9 + ( 308.98 -77.10 14.65 0.92) ; 10 + ( 312.09 -82.35 14.65 0.92) ; 11 + ( 314.40 -84.19 12.07 0.92) ; 12 + ( 317.31 -86.49 11.35 0.92) ; 13 + ( 320.02 -90.04 12.22 0.92) ; 14 + ( 321.98 -94.35 11.80 0.92) ; 15 + ( 322.77 -97.75 11.80 0.92) ; 16 + ( 324.78 -100.27 10.63 0.92) ; 17 + ( 324.78 -100.27 10.60 0.92) ; 18 + ( 325.57 -103.67 9.50 0.92) ; 19 + ( 323.87 -106.45 8.05 0.92) ; 20 + ( 323.87 -106.45 8.02 0.92) ; 21 + ( 324.98 -109.19 6.73 0.92) ; 22 + ( 326.94 -113.50 4.60 0.92) ; 23 + ( 326.79 -118.91 4.60 0.92) ; 24 + ( 327.72 -122.87 4.60 0.92) ; 25 + ( 328.78 -127.40 3.42 0.92) ; 26 + ( 330.34 -130.02 2.17 0.92) ; 27 + ( 331.31 -132.18 0.82 0.92) ; 28 + ( 333.14 -135.93 0.28 0.92) ; 29 + ( 333.30 -140.67 -0.75 0.92) ; 30 + ( 334.63 -146.33 -0.80 0.92) ; 31 + ( 335.30 -149.18 0.57 0.92) ; 32 + ( 333.81 -154.89 2.08 0.92) ; 33 + ( 333.44 -157.38 1.63 0.46) ; 34 + ( 333.44 -157.38 1.58 0.46) ; 35 + ( 331.79 -158.36 -0.37 0.46) ; 36 + ( 331.79 -158.36 -0.43 0.46) ; 37 + + (Cross + (Color RGB (255, 255, 128)) + (Name "Marker 3") + ( 295.55 -53.97 17.70 0.92) ; 1 + ( 296.22 -56.80 17.70 0.92) ; 2 + ( 300.04 -63.06 17.70 0.92) ; 3 + ( 301.52 -63.33 17.70 0.92) ; 4 + ( 304.53 -72.18 15.20 0.92) ; 5 + ( 306.42 -68.14 17.35 0.92) ; 6 + ( 308.04 -79.12 14.65 0.92) ; 7 + ( 312.06 -78.17 14.65 0.92) ; 8 + ( 320.83 -87.46 11.17 0.92) ; 9 + ( 317.73 -92.37 10.22 0.92) ; 10 + ( 310.70 -84.46 10.22 0.92) ; 11 + ( 309.73 -82.30 10.22 0.92) ; 12 + ( 311.61 -78.28 10.22 0.92) ; 13 + ( 321.48 -96.26 11.58 0.92) ; 14 + ( 322.14 -99.10 11.58 0.92) ; 15 + ( 322.44 -110.38 6.73 0.92) ; 16 + ( 325.23 -116.28 5.85 0.92) ; 17 + ( 328.85 -113.65 4.60 0.92) ; 18 + ( 326.19 -108.29 4.60 0.92) ; 19 + ( 329.77 -123.58 4.60 0.92) ; 20 + ( 326.12 -122.06 4.60 0.92) ; 21 + ( 326.28 -126.79 3.42 0.92) ; 22 + ( 328.02 -128.17 3.42 0.92) ; 23 + ( 332.28 -140.31 -1.58 0.92) ; 24 + ( 332.39 -146.86 -0.80 0.92) ; 25 + ( 335.83 -151.43 2.08 0.92) ; 26 + ( 332.46 -155.21 2.08 0.92) ; 27 + ( 330.67 -161.60 0.82 0.92) ; 28 + ( 336.63 -148.86 2.22 0.92) ; 29 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split +) ; End of tree + +( (Color RGB (128, 255, 128)) + (Dendrite) + ( 267.79 12.25 -16.13 0.92) ; Root + ( 267.79 12.25 -16.13 0.92) ; 1, R + ( 269.84 11.54 -16.13 0.92) ; 2 + ( 270.38 9.27 -16.13 0.92) ; 3 + ( 269.43 7.26 -16.13 0.92) ; 4 + ( 269.30 7.83 -16.13 0.92) ; 5 + ( 268.10 6.96 -18.42 0.92) ; 6 + ( 268.50 5.25 -19.55 0.92) ; 7 + ( 272.34 4.96 -19.55 0.92) ; 8 + ( 274.12 5.38 -21.48 0.92) ; 9 + ( 276.04 5.23 -21.48 0.92) ; 10 + ( 276.31 4.09 -23.10 0.92) ; 11 + ( 276.17 4.66 -23.10 0.92) ; 12 + ( 274.65 3.11 -24.02 0.92) ; 13 + ( 274.65 3.11 -24.05 0.92) ; 14 + ( 274.70 4.91 -25.87 0.92) ; 15 + ( 275.51 7.49 -27.42 0.92) ; 16 + ( 276.75 4.20 -29.22 0.92) ; 17 + ( 278.35 3.38 -30.77 0.92) ; 18 + ( 278.93 2.92 -32.25 0.92) ; 19 + ( 280.01 4.37 -34.17 0.92) ; 20 + ( 279.49 6.63 -36.10 0.92) ; 21 + ( 281.85 6.59 -37.52 0.92) ; 22 + ( 284.02 5.31 -38.88 0.92) ; 23 + ( 286.53 4.69 -39.32 0.92) ; 24 + ( 287.69 3.78 -40.70 0.92) ; 25 + ( 288.89 4.65 -41.22 0.92) ; 26 + ( 288.89 4.65 -41.25 0.92) ; 27 + ( 291.66 2.92 -43.25 0.92) ; 28 + ( 292.95 1.42 -44.95 0.92) ; 29 + ( 294.10 0.51 -47.05 0.92) ; 30 + ( 297.49 0.11 -48.38 0.92) ; 31 + ( 298.79 -1.39 -50.92 0.92) ; 32 + ( 301.15 -1.43 -51.47 0.92) ; 33 + ( 302.26 -4.15 -53.42 0.92) ; 34 + ( 304.32 -4.87 -56.03 0.92) ; 35 + ( 306.23 -5.02 -58.55 0.92) ; 36 + ( 306.23 -5.02 -58.58 0.92) ; 37 + ( 308.43 -6.29 -60.75 0.92) ; 38 + ( 308.43 -6.29 -60.77 0.92) ; 39 + ( 310.34 -6.45 -63.45 0.92) ; 40 + ( 312.26 -6.59 -64.78 0.92) ; 41 + ( 314.62 -6.64 -66.77 0.92) ; 42 + ( 317.84 -8.27 -68.38 0.92) ; 43 + ( 320.82 -6.96 -70.25 0.92) ; 44 + ( 324.27 -5.56 -71.17 0.46) ; 45 + ( 328.42 -5.18 -72.93 0.46) ; 46 + ( 330.47 -5.91 -75.43 0.46) ; 47 + ( 330.47 -5.91 -75.55 0.46) ; 48 + ( 331.09 -4.56 -78.40 0.46) ; 49 + ( 334.22 -3.83 -80.15 0.46) ; 50 + ( 335.43 -2.94 -82.02 0.46) ; 51 + ( 335.43 -2.94 -82.05 0.46) ; 52 + ( 338.37 -3.45 -84.22 0.46) ; 53 + ( 338.37 -3.45 -84.25 0.46) ; 54 + ( 340.49 -2.36 -86.62 0.46) ; 55 + ( 342.71 -1.84 -88.77 0.46) ; 56 + ( 342.71 -1.84 -88.80 0.46) ; 57 + ( 344.63 -1.98 -90.20 0.46) ; 58 + ( 345.57 0.02 -90.20 0.46) ; 59 + ( 347.36 0.45 -91.70 0.46) ; 60 + ( 350.18 0.51 -93.23 0.46) ; 61 + ( 351.95 0.93 -94.40 0.46) ; 62 + ( 352.40 1.03 -94.40 0.46) ; 63 + ( 357.14 0.95 -95.32 0.46) ; 64 + ( 362.00 0.29 -96.47 0.46) ; 65 + ( 364.37 0.25 -97.50 0.46) ; 66 + ( 368.12 2.32 -97.65 0.46) ; 67 + ( 370.22 3.40 -97.63 0.46) ; 68 + ( 373.17 2.91 -99.80 0.46) ; 69 + ( 373.17 2.91 -99.82 0.46) ; 70 + ( 374.91 1.53 -101.13 0.46) ; 71 + + (Cross + (Color White) + (Name "Marker 3") + ( 271.54 8.35 -16.13 0.92) ; 1 + ( 287.69 3.78 -39.32 0.92) ; 2 + ( 291.44 5.85 -43.25 0.92) ; 3 + ( 297.84 -3.40 -49.13 0.92) ; 4 + ( 309.36 -4.28 -63.45 0.92) ; 5 + ( 304.19 -4.30 -63.45 0.92) ; 6 + ( 313.23 -8.74 -64.78 0.92) ; 7 + ( 326.01 -6.95 -69.75 0.92) ; 8 + ( 315.47 -8.22 -69.75 0.92) ; 9 + ( 328.87 -5.08 -80.15 0.46) ; 10 + ( 366.37 -2.27 -97.65 0.46) ; 11 + ) ; End of markers + Normal +) ; End of tree + +( (Color RGB (128, 255, 255)) + (Dendrite) + ( 260.47 9.34 -15.50 0.92) ; Root + ( 260.47 9.34 -15.50 0.92) ; 1, R + ( 258.18 7.02 -15.50 0.92) ; 2 + ( 256.22 5.36 -15.50 0.92) ; 3 + ( 253.80 3.60 -15.50 0.92) ; 4 + ( 252.28 2.05 -16.25 0.92) ; 5 + ( 250.63 1.07 -17.13 0.92) ; 6 + ( 250.63 1.07 -17.15 0.92) ; 7 + ( 250.90 -0.06 -17.80 0.92) ; 8 + ( 250.90 -0.06 -17.82 0.92) ; 9 + ( 252.63 -1.45 -19.42 0.92) ; 10 + ( 252.63 -1.45 -19.45 0.92) ; 11 + ( 252.68 0.36 -21.32 0.92) ; 12 + ( 252.68 0.36 -21.38 0.92) ; 13 + ( 251.21 0.61 -23.23 0.92) ; 14 + ( 249.42 0.19 -25.27 0.92) ; 15 + ( 248.49 -1.83 -26.48 0.92) ; 16 + ( 248.49 -1.83 -26.50 0.92) ; 17 + ( 246.64 -4.04 -26.77 0.92) ; 18 + ( 244.41 -4.57 -27.20 0.92) ; 19 + ( 242.62 -4.99 -28.95 0.92) ; 20 + ( 242.62 -4.99 -28.98 0.92) ; 21 + ( 241.74 -5.20 -32.02 0.92) ; 22 + ( 241.74 -5.20 -32.05 0.92) ; 23 + ( 243.34 -6.01 -36.00 0.92) ; 24 + ( 243.34 -6.01 -36.03 0.92) ; 25 + ( 243.74 -7.71 -38.85 0.92) ; 26 + ( 243.74 -7.71 -38.88 0.92) ; 27 + ( 240.87 -9.58 -38.85 0.92) ; 28 + ( 238.01 -11.44 -39.90 0.92) ; 29 + + (Cross + (Color RGB (128, 255, 255)) + (Name "Marker 3") + ( 246.59 -5.85 -27.20 0.92) ; 1 + ( 238.46 -11.33 -40.05 0.92) ; 2 + ) ; End of markers + ( + ( 238.41 -13.14 -41.93 0.46) ; 1, R-1 + ( 236.76 -14.13 -44.43 0.46) ; 2 + ( 236.76 -14.13 -44.50 0.46) ; 3 + ( 236.58 -15.36 -42.40 0.46) ; 4 + ( 235.41 -14.44 -48.22 0.46) ; 5 + ( 235.41 -14.44 -48.25 0.46) ; 6 + ( 234.20 -15.32 -51.20 0.46) ; 7 + ( 234.20 -15.32 -51.22 0.46) ; 8 + ( 235.68 -15.57 -54.30 0.46) ; 9 + ( 235.68 -15.57 -54.32 0.46) ; 10 + ( 236.40 -16.60 -57.53 0.46) ; 11 + ( 236.40 -16.60 -57.55 0.46) ; 12 + ( 237.87 -16.86 -60.63 0.46) ; 13 + ( 237.87 -16.86 -60.65 0.46) ; 14 + ( 237.96 -19.21 -63.50 0.46) ; 15 + ( 238.09 -19.78 -63.82 0.46) ; 16 + ( 238.09 -19.78 -63.88 0.46) ; 17 + ( 235.58 -19.18 -67.07 0.46) ; 18 + ( 235.58 -19.18 -67.13 0.46) ; 19 + ( 235.53 -20.99 -71.82 0.46) ; 20 + ( 236.11 -21.44 -74.40 0.46) ; 21 + ( 236.11 -21.44 -74.42 0.46) ; 22 + ( 234.46 -22.43 -74.42 0.46) ; 23 + ( 235.61 -23.35 -77.25 0.46) ; 24 + ( 235.61 -23.35 -77.28 0.46) ; 25 + ( 237.09 -23.60 -80.82 0.46) ; 26 + ( 237.09 -23.60 -80.90 0.46) ; 27 + ( 238.25 -24.52 -83.70 0.46) ; 28 + ( 238.25 -24.52 -83.72 0.46) ; 29 + ( 237.49 -25.31 -86.50 0.46) ; 30 + ( 237.04 -25.41 -86.53 0.46) ; 31 + ( 236.15 -25.62 -89.72 0.46) ; 32 + ( 233.78 -25.57 -91.30 0.46) ; 33 + ( 233.34 -25.67 -91.30 0.46) ; 34 + ( 232.14 -26.56 -94.48 0.46) ; 35 + ( 231.51 -27.89 -97.05 0.46) ; 36 + ( 228.64 -29.76 -99.25 0.46) ; 37 + ( 227.88 -30.54 -101.60 0.46) ; 38 + ( 226.67 -31.42 -103.80 0.46) ; 39 + ( 226.67 -31.42 -103.82 0.46) ; 40 + ( 224.49 -30.14 -107.32 0.46) ; 41 + ( 224.49 -30.14 -107.38 0.46) ; 42 + ( 223.78 -29.12 -110.55 0.46) ; 43 + ( 223.78 -29.12 -110.63 0.46) ; 44 + ( 220.65 -29.85 -112.13 0.46) ; 45 + ( 218.87 -30.26 -115.47 0.46) ; 46 + ( 217.22 -31.25 -118.22 0.46) ; 47 + ( 218.95 -32.63 -121.47 0.46) ; 48 + ( 221.63 -32.00 -122.75 0.46) ; 49 + ( 221.94 -31.34 -125.40 0.46) ; 50 + ( 223.41 -31.58 -128.45 0.46) ; 51 + ( 223.41 -31.58 -128.48 0.46) ; 52 + ( 223.87 -31.48 -131.67 0.46) ; 53 + ( 223.87 -31.48 -131.75 0.46) ; 54 + ( 224.18 -30.81 -136.00 0.46) ; 55 + ( 224.94 -30.03 -139.32 0.46) ; 56 + + (Cross + (Color RGB (128, 255, 255)) + (Name "Marker 3") + ( 238.99 -13.61 -44.50 0.46) ; 1 + ( 240.55 -16.23 -63.50 0.46) ; 2 + ( 229.49 -31.36 -102.40 0.46) ; 3 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 219.35 -34.33 -120.40 0.46) ; 1 + ( 220.60 -31.64 -120.40 0.46) ; 2 + ) ; End of markers + Normal + | + ( 235.20 -11.50 -40.77 0.92) ; 1, R-2 + ( 232.74 -15.07 -42.35 0.92) ; 2 + ( 231.35 -17.18 -44.27 0.92) ; 3 + ( 231.35 -17.18 -44.30 0.92) ; 4 + ( 231.56 -20.12 -45.72 0.92) ; 5 + ( 230.32 -22.81 -48.07 0.92) ; 6 + ( 230.32 -22.81 -48.10 0.92) ; 7 + ( 227.90 -24.57 -50.60 0.92) ; 8 + ( 227.90 -24.57 -50.65 0.92) ; 9 + ( 224.41 -27.77 -51.70 0.92) ; 10 + ( 222.96 -31.68 -53.22 0.92) ; 11 + ( 220.69 -34.02 -54.52 0.92) ; 12 + ( 219.57 -37.26 -56.08 0.92) ; 13 + ( 219.47 -40.87 -57.60 0.92) ; 14 + ( 219.11 -43.35 -60.10 0.92) ; 15 + ( 217.80 -47.83 -62.88 0.92) ; 16 + ( 216.24 -51.19 -62.57 0.46) ; 17 + ( 216.45 -54.11 -63.17 0.46) ; 18 + ( 216.45 -54.11 -63.30 0.46) ; 19 + ( 215.01 -58.04 -65.82 0.46) ; 20 + ( 215.01 -58.04 -65.85 0.46) ; 21 + ( 214.02 -61.86 -68.20 0.46) ; 22 + ( 214.02 -61.86 -68.22 0.46) ; 23 + ( 211.87 -64.74 -71.57 0.46) ; 24 + ( 211.87 -64.74 -71.63 0.46) ; 25 + ( 209.85 -68.20 -73.47 0.46) ; 26 + ( 205.48 -71.62 -75.27 0.46) ; 27 + ( 205.48 -71.62 -75.32 0.46) ; 28 + ( 203.37 -72.71 -77.13 0.46) ; 29 + ( 203.37 -72.71 -77.15 0.46) ; 30 + ( 201.40 -74.36 -78.55 0.46) ; 31 + ( 201.40 -74.36 -78.57 0.46) ; 32 + ( 200.06 -74.68 -80.65 0.46) ; 33 + ( 198.10 -76.33 -82.97 0.46) ; 34 + ( 198.10 -76.33 -83.00 0.46) ; 35 + ( 198.63 -78.60 -86.53 0.46) ; 36 + ( 198.63 -78.60 -86.62 0.46) ; 37 + + (Cross + (Color RGB (128, 255, 255)) + (Name "Marker 3") + ( 216.77 -31.36 -54.52 0.92) ; 1 + ( 210.23 -59.75 -71.65 0.46) ; 2 + ( 203.28 -76.32 -78.57 0.46) ; 3 + ) ; End of markers + Normal + ) ; End of split +) ; End of tree + +( (Color Yellow) + (Dendrite) + ( 264.44 8.49 -15.95 0.92) ; Root + ( 264.40 6.68 -15.95 0.92) ; 1, R + ( 265.06 3.85 -15.95 0.92) ; 2 + ( 265.59 1.59 -16.70 0.92) ; 3 + ( 265.53 -0.21 -16.70 0.92) ; 4 + ( 263.34 1.06 -16.70 0.92) ; 5 + ( 263.08 2.19 -19.00 0.92) ; 6 + ( 263.08 2.19 -19.02 0.92) ; 7 + ( 261.43 1.21 -21.30 0.92) ; 8 + ( 261.10 0.66 -21.30 0.92) ; 9 + ( + ( 263.64 1.86 -26.42 0.92) ; 1, R-1 + ( 265.30 2.84 -34.00 0.92) ; 2 + ( 264.14 3.76 -37.75 0.92) ; 3 + ( 264.14 3.76 -37.77 0.92) ; 4 + ( 263.83 3.10 -39.90 0.92) ; 5 + ( 263.83 3.10 -39.92 0.92) ; 6 + ( 264.77 5.12 -42.95 0.92) ; 7 + ( 264.77 5.12 -43.00 0.92) ; 8 + ( 263.30 5.36 -45.90 0.92) ; 9 + ( 263.30 5.36 -46.00 0.92) ; 10 + ( 265.65 5.31 -50.63 0.92) ; 11 + ( 265.65 5.31 -50.65 0.92) ; 12 + ( 266.15 7.22 -54.65 0.92) ; 13 + ( 266.15 7.22 -54.72 0.92) ; 14 + ( 264.11 7.94 -59.22 0.92) ; 15 + ( 264.01 10.30 -63.80 0.92) ; 16 + ( 265.17 9.39 -67.42 0.92) ; 17 + ( 264.33 10.98 -69.72 0.92) ; 18 + ( 264.33 10.98 -69.80 0.92) ; 19 + ( 264.64 11.65 -71.72 0.92) ; 20 + ( + ( 262.20 14.06 -73.80 0.46) ; 1, R-1-1 + ( 262.20 14.06 -73.82 0.46) ; 2 + ( 261.17 14.42 -77.15 0.46) ; 3 + ( 260.73 14.31 -77.17 0.46) ; 4 + ( 259.88 15.90 -80.25 0.46) ; 5 + ( 259.88 15.90 -80.28 0.46) ; 6 + ( 261.67 16.32 -82.92 0.46) ; 7 + ( 261.67 16.32 -82.95 0.46) ; 8 + ( 259.93 17.71 -85.63 0.46) ; 9 + ( 259.93 17.71 -85.65 0.46) ; 10 + ( 258.60 17.39 -89.10 0.46) ; 11 + ( 258.60 17.39 -89.12 0.46) ; 12 + ( 259.26 14.56 -92.87 0.46) ; 13 + ( 259.26 14.56 -92.90 0.46) ; 14 + ( 257.12 17.65 -96.72 0.46) ; 15 + ( 257.12 17.65 -96.77 0.46) ; 16 + ( 259.66 18.83 -99.00 0.46) ; 17 + ( 259.66 18.83 -99.03 0.46) ; 18 + ( 258.33 18.53 -101.50 0.46) ; 19 + ( 258.33 18.53 -101.53 0.46) ; 20 + ( 256.46 20.48 -104.65 0.46) ; 21 + ( 256.46 20.48 -104.67 0.46) ; 22 + ( 258.50 19.76 -108.23 0.46) ; 23 + ( 258.50 19.76 -108.27 0.46) ; 24 + ( 257.17 19.45 -112.70 0.46) ; 25 + ( 256.54 18.11 -116.32 0.46) ; 26 + ( 256.81 16.97 -120.42 0.46) ; 27 + ( 256.81 16.97 -120.45 0.46) ; 28 + ( 254.93 18.92 -124.25 0.46) ; 29 + ( 254.93 18.92 -124.32 0.46) ; 30 + ( 254.66 20.06 -128.10 0.46) ; 31 + ( 254.66 20.06 -128.15 0.46) ; 32 + ( 253.46 19.18 -132.95 0.46) ; 33 + ( 253.46 19.18 -133.00 0.46) ; 34 + ( 253.41 17.37 -137.80 0.46) ; 35 + Normal + | + ( 267.46 11.71 -73.07 0.46) ; 1, R-1-2 + ( 268.67 12.59 -73.97 0.46) ; 2 + ( 268.67 12.59 -74.00 0.46) ; 3 + ( 270.59 12.44 -75.57 0.46) ; 4 + ( 270.59 12.44 -75.60 0.46) ; 5 + ( 271.97 14.55 -77.05 0.46) ; 6 + ( 271.97 14.55 -77.10 0.46) ; 7 + ( 274.34 14.51 -79.32 0.46) ; 8 + ( 274.34 14.51 -79.35 0.46) ; 9 + ( 277.16 14.58 -82.35 0.46) ; 10 + ( 279.70 15.77 -84.45 0.46) ; 11 + ( 280.46 16.54 -86.45 0.46) ; 12 + ( 280.46 16.54 -86.47 0.46) ; 13 + ( 282.96 15.94 -87.22 0.46) ; 14 + ( 282.96 15.94 -87.25 0.46) ; 15 + ( 285.24 18.27 -88.80 0.46) ; 16 + ( 286.18 20.28 -91.15 0.46) ; 17 + ( 286.18 20.28 -91.20 0.46) ; 18 + ( 288.15 21.93 -93.60 0.46) ; 19 + ( 288.15 21.93 -93.65 0.46) ; 20 + ( 289.94 22.35 -95.92 0.46) ; 21 + ( 289.94 22.35 -95.95 0.46) ; 22 + ( 290.88 24.37 -97.75 0.46) ; 23 + ( 290.88 24.37 -97.78 0.46) ; 24 + ( 292.22 24.68 -101.40 0.46) ; 25 + ( 294.89 25.31 -104.97 0.46) ; 26 + ( 294.89 25.31 -105.00 0.46) ; 27 + ( 295.79 25.52 -108.15 0.46) ; 28 + ( 297.71 25.37 -110.68 0.46) ; 29 + ( 297.58 25.94 -110.70 0.46) ; 30 + ( 300.00 27.70 -113.25 0.46) ; 31 + ( 301.01 27.34 -116.53 0.46) ; 32 + ( 301.01 27.34 -116.70 0.46) ; 33 + ( 300.75 28.46 -120.52 0.46) ; 34 + + (Cross + (Color White) + (Name "Marker 3") + ( 293.82 23.86 -97.78 0.46) ; 1 + ) ; End of markers + Normal + ) ; End of split + | + ( 260.93 -0.70 -23.60 0.92) ; 1, R-2 + ( 260.93 -0.70 -23.65 0.92) ; 2 + ( 261.91 -2.86 -25.35 0.92) ; 3 + ( 262.49 -3.33 -26.95 0.92) ; 4 + ( 262.44 -5.11 -26.65 0.92) ; 5 + ( 262.84 -6.82 -26.65 0.92) ; 6 + ( + ( 262.75 -10.43 -25.55 0.92) ; 1, R-2-1 + ( 262.31 -10.53 -25.55 0.92) ; 2 + ( 262.40 -12.91 -25.57 0.92) ; 3 + ( 258.64 -14.98 -25.83 0.92) ; 4 + ( 257.43 -15.86 -24.85 0.92) ; 5 + ( 255.73 -18.64 -26.25 0.92) ; 6 + ( 255.73 -18.64 -26.28 0.92) ; 7 + ( 255.55 -19.88 -27.27 0.92) ; 8 + ( 255.55 -19.88 -27.30 0.92) ; 9 + ( 254.29 -22.57 -28.02 0.92) ; 10 + ( 254.29 -22.57 -28.05 0.92) ; 11 + ( 252.82 -22.31 -28.63 0.92) ; 12 + ( 252.27 -26.02 -29.42 0.92) ; 13 + ( 250.13 -28.91 -30.38 0.92) ; 14 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 255.34 -16.94 -24.85 0.92) ; 1 + ( 258.46 -16.21 -24.85 0.92) ; 2 + ) ; End of markers + ( + ( 247.00 -29.65 -30.38 0.92) ; 1, R-2-1-1 + ( 244.76 -30.18 -31.42 0.92) ; 2 + ( 244.76 -30.18 -31.45 0.92) ; 3 + ( 243.17 -29.35 -32.83 0.92) ; 4 + ( 243.17 -29.35 -32.88 0.92) ; 5 + ( 240.80 -29.31 -34.45 0.92) ; 6 + ( 240.80 -29.31 -34.47 0.92) ; 7 + ( 238.69 -30.41 -36.42 0.92) ; 8 + ( 237.44 -33.08 -38.05 0.92) ; 9 + ( 237.44 -33.08 -38.07 0.92) ; 10 + ( 236.05 -35.21 -39.95 0.92) ; 11 + ( 236.05 -35.21 -40.07 0.92) ; 12 + ( 234.67 -37.32 -39.38 0.92) ; 13 + ( 232.56 -38.40 -41.00 0.92) ; 14 + ( 232.56 -38.40 -41.03 0.92) ; 15 + ( 232.20 -40.89 -43.07 0.92) ; 16 + ( 231.26 -42.89 -47.22 0.92) ; 17 + ( 231.26 -42.89 -47.28 0.92) ; 18 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 236.71 -38.03 -40.10 0.92) ; 1 + ( 233.38 -35.84 -38.10 0.92) ; 2 + ) ; End of markers + ( + ( 233.30 -43.61 -49.10 0.92) ; 1, R-2-1-1-1 + ( 233.30 -43.61 -49.13 0.92) ; 2 + ( 234.02 -44.63 -51.67 0.92) ; 3 + ( 234.02 -44.63 -51.72 0.92) ; 4 + ( 233.40 -45.98 -54.20 0.92) ; 5 + ( 232.37 -45.62 -59.13 0.92) ; 6 + ( 230.27 -46.71 -62.22 0.92) ; 7 + ( 230.27 -46.71 -62.33 0.92) ; 8 + ( 229.38 -46.92 -66.88 0.92) ; 9 + ( 229.91 -49.19 -70.80 0.92) ; 10 + ( 229.91 -49.19 -70.82 0.92) ; 11 + ( 230.04 -49.75 -73.42 0.92) ; 12 + ( 231.11 -48.29 -74.67 0.92) ; 13 + ( 232.77 -47.31 -76.82 0.92) ; 14 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 234.52 -42.73 -54.20 0.92) ; 1 + ) ; End of markers + Normal + | + ( 229.16 -43.98 -47.22 0.92) ; 1, R-2-1-1-2 + ( 229.16 -43.98 -47.25 0.92) ; 2 + ( 227.74 -41.93 -48.35 0.92) ; 3 + ( 226.03 -44.71 -50.77 0.92) ; 4 + ( 226.03 -44.71 -50.88 0.92) ; 5 + ( 225.27 -45.50 -54.05 0.92) ; 6 + ( 223.80 -45.23 -55.60 0.92) ; 7 + ( 223.80 -45.23 -55.63 0.92) ; 8 + ( 222.02 -45.65 -58.15 0.92) ; 9 + ( 220.41 -44.84 -61.38 0.92) ; 10 + ( 220.36 -46.64 -63.20 0.92) ; 11 + ( 220.36 -46.64 -63.25 0.92) ; 12 + ( 218.44 -46.49 -66.77 0.92) ; 13 + ( 218.52 -48.86 -70.07 0.92) ; 14 + ( 218.52 -48.86 -70.18 0.92) ; 15 + ( 216.29 -49.39 -72.72 0.92) ; 16 + ( 215.85 -49.49 -72.80 0.92) ; 17 + ( 214.37 -49.24 -73.00 0.92) ; 18 + ( 214.37 -49.24 -73.02 0.92) ; 19 + ( 215.00 -47.91 -76.47 0.92) ; 20 + ( 215.00 -47.91 -76.60 0.92) ; 21 + ( 217.18 -49.18 -80.68 0.92) ; 22 + ( 217.18 -49.18 -80.73 0.92) ; 23 + ( 217.00 -50.41 -85.28 0.92) ; 24 + ( 217.00 -50.41 -85.37 0.92) ; 25 + ( 214.24 -48.67 -89.60 0.92) ; 26 + ( 214.24 -48.67 -89.65 0.92) ; 27 + ( 213.61 -50.02 -92.30 0.92) ; 28 + ( 213.61 -50.02 -92.32 0.92) ; 29 + ( 212.50 -47.29 -93.40 0.92) ; 30 + ( 210.58 -47.14 -94.67 0.92) ; 31 + ( 210.58 -47.14 -94.70 0.92) ; 32 + ( 208.66 -46.99 -96.85 0.92) ; 33 + ( 208.66 -46.99 -96.90 0.92) ; 34 + ( 207.46 -47.87 -99.17 0.92) ; 35 + ( 205.80 -48.85 -100.97 0.92) ; 36 + ( 204.52 -47.37 -102.20 0.92) ; 37 + ( 201.51 -48.67 -104.05 0.92) ; 38 + ( 201.51 -48.67 -104.07 0.92) ; 39 + ( 199.28 -49.19 -104.90 0.92) ; 40 + ( 199.28 -49.19 -104.97 0.92) ; 41 + ( 197.14 -52.09 -105.32 0.92) ; 42 + ( 194.85 -54.41 -106.62 0.92) ; 43 + ( 191.10 -56.48 -108.32 0.92) ; 44 + ( 192.53 -58.54 -111.97 0.92) ; 45 + ( 192.53 -58.54 -112.02 0.92) ; 46 + ( 192.79 -59.67 -113.95 0.92) ; 47 + ( 192.79 -59.67 -113.97 0.92) ; 48 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 222.77 -44.88 -54.07 0.92) ; 1 + ( 216.96 -46.24 -69.75 0.92) ; 2 + ( 198.87 -53.47 -105.32 0.92) ; 3 + ) ; End of markers + Normal + ) ; End of split + | + ( 248.43 -31.71 -30.38 0.92) ; 1, R-2-1-2 + ( 247.61 -34.28 -30.75 0.92) ; 2 + ( 245.79 -36.51 -30.75 0.92) ; 3 + ( 244.66 -39.75 -30.75 0.92) ; 4 + ( 243.15 -41.31 -30.75 0.92) ; 5 + ( 242.70 -41.41 -30.75 0.92) ; 6 + ( 242.14 -45.12 -30.75 0.92) ; 7 + ( 239.55 -48.11 -30.75 0.92) ; 8 + ( 239.90 -51.62 -30.75 0.92) ; 9 + ( 239.93 -55.80 -30.00 0.92) ; 10 + ( 239.40 -59.50 -28.88 0.92) ; 11 + ( 239.40 -59.50 -28.92 0.92) ; 12 + ( 239.93 -61.76 -27.83 0.92) ; 13 + ( 239.93 -61.76 -27.77 0.92) ; 14 + ( 239.37 -65.48 -27.77 0.92) ; 15 + ( 239.27 -69.08 -26.82 0.92) ; 16 + ( 239.85 -69.55 -26.82 0.92) ; 17 + ( 237.84 -73.00 -26.82 0.92) ; 18 + ( 239.09 -76.28 -29.17 0.92) ; 19 + ( 239.30 -79.23 -29.17 0.92) ; 20 + ( 238.63 -82.37 -29.92 0.92) ; 21 + ( 237.90 -87.32 -28.57 0.92) ; 22 + ( 235.94 -88.97 -28.57 0.92) ; 23 + ( 236.91 -91.14 -28.57 0.92) ; 24 + ( 236.63 -95.98 -28.55 0.92) ; 25 + ( 236.17 -102.05 -28.55 0.92) ; 26 + ( 233.44 -104.49 -29.85 0.92) ; 27 + ( 229.38 -107.23 -30.65 0.92) ; 28 + ( 228.44 -109.24 -32.70 0.92) ; 29 + ( 229.42 -111.40 -32.70 0.92) ; 30 + ( 227.75 -112.38 -34.70 0.92) ; 31 + ( 227.66 -115.99 -36.07 0.92) ; 32 + ( 225.96 -118.78 -38.03 0.92) ; 33 + ( 225.96 -118.78 -38.15 0.92) ; 34 + ( 226.35 -120.47 -39.72 0.92) ; 35 + ( 227.33 -122.64 -40.72 0.92) ; 36 + ( 225.19 -125.52 -40.72 0.92) ; 37 + ( 224.77 -129.80 -39.63 0.92) ; 38 + ( 224.77 -129.80 -39.70 0.92) ; 39 + ( 221.46 -131.77 -41.67 0.92) ; 40 + ( 219.05 -133.54 -43.22 0.92) ; 41 + ( 219.05 -133.54 -43.27 0.92) ; 42 + ( 217.27 -133.96 -43.80 0.92) ; 43 + ( 214.71 -135.15 -41.47 0.92) ; 44 + ( 212.93 -135.57 -40.17 0.92) ; 45 + ( 212.93 -135.57 -40.15 0.92) ; 46 + ( 210.65 -137.89 -40.13 0.92) ; 47 + ( 209.21 -141.81 -39.45 0.92) ; 48 + ( 207.25 -143.46 -39.67 0.92) ; 49 + ( 204.71 -144.66 -39.67 0.92) ; 50 + ( 203.17 -146.22 -37.55 0.92) ; 51 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 241.53 -62.58 -27.77 0.92) ; 1 + ( 237.94 -69.40 -26.82 0.92) ; 2 + ( 239.19 -72.69 -26.82 0.92) ; 3 + ( 240.56 -76.54 -29.25 0.92) ; 4 + ( 240.46 -80.14 -29.35 0.92) ; 5 + ( 238.06 -81.91 -29.35 0.92) ; 6 + ( 238.01 -77.74 -29.35 0.92) ; 7 + ( 233.17 -103.35 -29.85 0.92) ; 8 + ( 226.51 -109.09 -29.65 0.92) ; 9 + ( 234.10 -107.31 -29.65 0.92) ; 10 + ( 233.35 -108.10 -29.65 0.92) ; 11 + ( 233.17 -103.35 -30.65 0.92) ; 12 + ( 224.21 -123.38 -40.72 0.92) ; 13 + ( 227.60 -123.77 -40.72 0.92) ; 14 + ( 225.93 -130.72 -38.75 0.92) ; 15 + ( 223.35 -127.75 -41.28 0.92) ; 16 + ( 215.97 -132.46 -43.80 0.92) ; 17 + ) ; End of markers + Normal + ) ; End of split + | + ( 266.05 -8.45 -27.90 0.92) ; 1, R-2-2 + ( 267.80 -9.85 -28.92 0.92) ; 2 + ( 267.80 -9.85 -28.95 0.92) ; 3 + ( 269.35 -12.46 -29.97 0.92) ; 4 + ( 269.35 -12.46 -30.00 0.92) ; 5 + ( 272.29 -12.97 -31.17 0.92) ; 6 + ( 276.13 -13.26 -32.10 0.92) ; 7 + ( 277.92 -12.85 -32.92 0.92) ; 8 + ( 279.21 -14.33 -32.47 0.92) ; 9 + ( 279.21 -14.33 -32.50 0.92) ; 10 + ( 281.22 -16.84 -34.17 0.92) ; 11 + ( 283.39 -18.12 -33.75 0.92) ; 12 + ( 285.62 -17.60 -35.95 0.92) ; 13 + ( 287.87 -17.08 -37.55 0.92) ; 14 + ( 290.54 -16.44 -39.15 0.92) ; 15 + ( 290.54 -16.44 -39.17 0.92) ; 16 + ( 294.96 -17.21 -40.15 0.92) ; 17 + ( 297.90 -17.71 -41.10 0.92) ; 18 + ( 302.14 -19.70 -41.93 0.92) ; 19 + ( 304.14 -22.22 -43.47 0.92) ; 20 + ( 304.14 -22.22 -43.50 0.92) ; 21 + ( 307.36 -23.85 -45.15 0.92) ; 22 + ( 310.51 -27.29 -46.70 0.92) ; 23 + ( 313.15 -28.48 -48.45 0.92) ; 24 + ( 315.38 -27.95 -48.10 0.92) ; 25 + ( 315.38 -27.95 -48.13 0.92) ; 26 + ( 316.67 -29.44 -49.35 0.92) ; 27 + ( 318.40 -30.82 -51.42 0.92) ; 28 + ( 318.40 -30.82 -51.50 0.92) ; 29 + ( 320.65 -30.30 -52.15 0.92) ; 30 + ( 320.65 -30.30 -52.17 0.92) ; 31 + ( 323.87 -31.94 -52.95 0.92) ; 32 + ( 326.04 -33.22 -52.63 0.92) ; 33 + ( 328.94 -35.53 -53.88 0.92) ; 34 + ( 328.94 -35.53 -53.90 0.92) ; 35 + ( 330.67 -36.91 -55.55 0.92) ; 36 + ( 330.67 -36.91 -55.57 0.92) ; 37 + ( 331.79 -39.64 -56.47 0.92) ; 38 + ( 331.96 -44.37 -57.77 0.92) ; 39 + ( 333.91 -48.69 -57.77 0.92) ; 40 + ( 334.36 -48.58 -57.77 0.92) ; 41 + ( 337.40 -51.46 -57.60 0.92) ; 42 + ( 337.40 -51.46 -57.57 0.92) ; 43 + ( 339.39 -53.98 -55.52 0.92) ; 44 + ( 339.39 -53.98 -55.55 0.92) ; 45 + ( 341.71 -55.82 -55.47 0.92) ; 46 + ( 342.82 -58.55 -54.80 0.92) ; 47 + ( 345.27 -60.97 -55.95 0.92) ; 48 + ( 348.03 -62.70 -55.30 0.92) ; 49 + ( 348.03 -62.70 -55.35 0.92) ; 50 + ( 349.15 -65.43 -55.35 0.92) ; 51 + ( 351.20 -66.13 -57.20 0.46) ; 52 + ( 351.20 -66.13 -57.22 0.46) ; 53 + ( 354.85 -67.67 -58.07 0.46) ; 54 + ( 355.30 -67.56 -58.10 0.46) ; 55 + ( 358.38 -68.64 -59.22 0.46) ; 56 + ( 358.38 -68.64 -59.25 0.46) ; 57 + ( 362.48 -70.07 -59.83 0.46) ; 58 + ( 362.48 -70.07 -59.85 0.46) ; 59 + ( 365.87 -70.47 -61.05 0.46) ; 60 + ( 367.67 -70.04 -63.70 0.46) ; 61 + ( 367.67 -70.04 -64.00 0.46) ; 62 + + (Cross + (Color Yellow) + (Name "Marker 3") + ( 276.94 -10.68 -32.92 0.92) ; 1 + ( 280.42 -13.45 -32.15 0.92) ; 2 + ( 280.01 -17.73 -33.75 0.92) ; 3 + ( 314.75 -29.29 -48.15 0.92) ; 4 + ( 316.58 -33.05 -51.00 0.92) ; 5 + ( 319.99 -27.47 -52.95 0.92) ; 6 + ( 333.67 -41.59 -57.77 0.92) ; 7 + ( 338.46 -55.99 -55.47 0.92) ; 8 + ( 339.76 -51.50 -58.35 0.92) ; 9 + ( 339.36 -49.80 -58.35 0.92) ; 10 + ( 344.07 -55.86 -54.85 0.92) ; 11 + ( 348.08 -60.90 -54.80 0.92) ; 12 + ( 359.36 -70.79 -58.38 0.46) ; 13 + ( 358.30 -66.27 -59.80 0.46) ; 14 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split +) ; End of tree + +( (Color Cyan) + (Dendrite) + ( 265.52 17.95 -15.45 0.92) ; Root + ( 265.52 17.95 -15.45 0.92) ; 1, R + ( 267.75 18.48 -15.48 0.92) ; 2 + ( 267.67 20.84 -18.15 0.92) ; 3 + ( 265.57 19.75 -19.20 0.92) ; 4 + ( 262.50 20.83 -20.95 0.92) ; 5 + ( 264.54 20.11 -22.85 0.92) ; 6 + ( 267.48 19.60 -24.72 0.92) ; 7 + ( 267.48 19.60 -24.75 0.92) ; 8 + ( 270.17 20.24 -26.55 0.92) ; 9 + ( 269.73 20.13 -26.55 0.92) ; 10 + ( 273.11 19.73 -28.00 0.92) ; 11 + ( 274.46 20.05 -27.95 0.92) ; 12 + ( + ( 276.23 24.52 -27.35 0.46) ; 1, R-1 + ( 277.89 25.51 -30.13 0.46) ; 2 + ( 282.05 25.89 -31.35 0.46) ; 3 + ( 281.60 25.78 -31.35 0.46) ; 4 + ( 284.54 25.27 -32.13 0.46) ; 5 + ( 285.79 27.95 -33.47 0.46) ; 6 + ( 285.79 27.95 -33.53 0.46) ; 7 + ( 290.26 29.00 -35.72 0.46) ; 8 + ( 293.52 29.17 -36.72 0.46) ; 9 + ( 296.83 31.14 -37.88 0.46) ; 10 + ( 303.84 33.38 -38.55 0.46) ; 11 + ( 303.84 33.38 -38.57 0.46) ; 12 + ( 308.99 37.57 -39.70 0.46) ; 13 + ( 311.99 38.86 -41.45 0.46) ; 14 + ( 311.99 38.86 -41.47 0.46) ; 15 + ( 313.95 40.51 -42.15 0.46) ; 16 + ( 316.81 42.37 -42.15 0.46) ; 17 + ( 319.35 43.58 -42.17 0.46) ; 18 + ( 323.55 45.76 -42.22 0.46) ; 19 + ( 327.49 49.07 -42.22 0.46) ; 20 + ( 327.36 49.64 -42.22 0.46) ; 21 + ( 331.43 52.38 -42.22 0.46) ; 22 + ( 333.71 54.70 -43.80 0.46) ; 23 + ( 335.59 58.73 -45.22 0.46) ; 24 + ( 335.59 58.73 -45.25 0.46) ; 25 + ( 339.67 61.48 -46.57 0.46) ; 26 + ( 341.49 63.69 -48.07 0.46) ; 27 + ( 344.58 62.63 -49.58 0.46) ; 28 + ( 347.61 65.72 -51.28 0.46) ; 29 + ( 347.61 65.72 -51.30 0.46) ; 30 + ( 351.46 65.43 -52.75 0.46) ; 31 + ( 355.03 66.27 -54.20 0.46) ; 32 + ( 355.03 66.27 -54.78 0.46) ; 33 + ( 358.79 68.34 -53.38 0.46) ; 34 + ( 359.86 69.79 -55.63 0.46) ; 35 + ( 359.42 69.68 -55.63 0.46) ; 36 + + (Cross + (Color White) + (Name "Marker 3") + ( 302.14 30.59 -38.57 0.46) ; 1 + ( 303.71 33.94 -38.57 0.46) ; 2 + ( 319.17 42.33 -42.17 0.46) ; 3 + ( 315.24 39.03 -42.17 0.46) ; 4 + ( 315.46 42.07 -42.17 0.46) ; 5 + ( 322.71 47.35 -42.17 0.46) ; 6 + ( 329.09 48.25 -42.90 0.46) ; 7 + ( 330.18 49.69 -42.20 0.46) ; 8 + ( 338.85 58.89 -46.57 0.46) ; 9 + ( 307.47 36.02 -31.70 0.46) ; 10 + ) ; End of markers + Normal + | + ( 271.69 21.78 -29.82 0.46) ; 1, R-2 + ( 269.91 21.36 -33.03 0.46) ; 2 + ( 269.38 23.64 -32.97 0.46) ; 3 + ( 269.38 23.64 -33.05 0.46) ; 4 + ( 266.88 24.23 -35.67 0.46) ; 5 + ( 266.88 24.23 -35.70 0.46) ; 6 + ( 265.00 26.19 -38.05 0.46) ; 7 + ( 263.13 28.14 -41.08 0.46) ; 8 + ( 261.26 30.09 -43.33 0.46) ; 9 + ( 260.20 34.62 -44.90 0.46) ; 10 + ( 256.41 36.72 -45.95 0.46) ; 11 + ( 255.75 39.55 -47.17 0.46) ; 12 + ( 252.53 41.18 -47.17 0.46) ; 13 + ( 249.64 43.49 -49.15 0.46) ; 14 + ( 249.16 47.56 -50.83 0.46) ; 15 + ( 248.18 49.72 -51.75 0.46) ; 16 + ( 247.74 49.61 -51.75 0.46) ; 17 + ( 247.07 52.44 -52.70 0.46) ; 18 + ( 247.07 52.44 -52.72 0.46) ; 19 + ( 245.78 53.93 -51.72 0.46) ; 20 + ( 244.22 56.55 -54.15 0.46) ; 21 + ( 241.46 58.29 -55.65 0.46) ; 22 + ( 237.98 61.07 -57.53 0.46) ; 23 + ( 237.98 61.07 -57.55 0.46) ; 24 + ( 233.49 64.18 -58.20 0.46) ; 25 + ( 233.49 64.18 -58.22 0.46) ; 26 + ( 230.49 66.94 -57.67 0.46) ; 27 + ( 227.73 68.67 -60.22 0.46) ; 28 + ( 226.11 69.50 -62.70 0.46) ; 29 + ( 223.54 72.48 -64.75 0.46) ; 30 + ( 223.54 72.48 -64.78 0.46) ; 31 + ( 220.90 73.65 -66.95 0.46) ; 32 + ( 220.46 73.55 -66.97 0.46) ; 33 + ( 219.92 75.82 -68.85 0.46) ; 34 + ( 219.92 75.82 -68.90 0.46) ; 35 + ( 217.70 75.29 -71.17 0.46) ; 36 + ( 217.70 75.29 -71.20 0.46) ; 37 + ( 217.22 79.36 -72.40 0.46) ; 38 + ( 216.24 81.51 -75.05 0.46) ; 39 + ( 216.11 82.08 -75.05 0.46) ; 40 + ( 215.53 82.54 -78.30 0.46) ; 41 + ( 215.53 82.54 -78.35 0.46) ; 42 + + (Cross + (Color White) + (Name "Marker 3") + ( 256.29 43.26 -47.17 0.46) ; 1 + ( 245.28 52.02 -51.72 0.46) ; 2 + ) ; End of markers + Normal + ) ; End of split +) ; End of tree + +( (Color White) + (Dendrite) + ( 269.00 15.19 12.42 0.92) ; Root + ( 268.88 15.75 12.42 0.92) ; 1, R + ( 272.05 18.28 12.42 0.92) ; 2 + ( 269.54 18.89 12.42 0.92) ; 3 + ( 267.18 18.93 14.05 0.92) ; 4 + ( 265.97 18.06 17.32 0.92) ; 5 + ( 264.37 18.87 20.73 0.92) ; 6 + ( 262.76 19.69 23.02 0.92) ; 7 + ( 263.43 16.86 24.60 0.92) ; 8 + ( 261.12 18.70 27.02 0.92) ; 9 + ( 260.67 18.61 27.00 0.92) ; 10 + ( 258.70 16.95 28.90 0.92) ; 11 + ( 259.18 12.88 28.33 0.92) ; 12 + ( 261.68 12.26 30.23 0.92) ; 13 + ( 261.68 12.26 30.20 0.92) ; 14 + ( 263.46 12.68 33.83 0.92) ; 15 + ( 263.46 12.68 33.85 0.92) ; 16 + + (Cross + (Color White) + (Name "Marker 3") + ( 262.05 20.71 23.02 0.92) ; 1 + ) ; End of markers + High +) ; End of tree + +( (Color RGB (128, 255, 128)) + (Apical) + ( 259.44 31.45 -6.38 6.88) ; Root + ( 259.44 31.45 -6.38 6.88) ; 1, R + ( 259.35 33.82 -6.38 6.88) ; 2 + ( 258.93 35.90 -6.38 6.88) ; 3 + ( + ( 259.89 37.53 -6.38 3.67) ; 1, R-1 + ( 260.30 41.81 -6.38 3.67) ; 2 + ( 260.10 44.74 -6.38 3.67) ; 3 + ( + ( 258.08 47.25 -5.92 3.67) ; 1, R-1-1 + ( 256.21 49.21 -4.70 3.67) ; 2 + ( + ( 255.55 52.03 -3.00 3.21) ; 1, R-1-1-1 + ( 254.00 54.66 -1.90 2.75) ; 2 + ( 252.31 57.85 -1.90 2.75) ; 3 + ( 252.36 59.65 -1.90 2.75) ; 4 + ( 254.18 61.88 -1.90 2.75) ; 5 + ( 256.47 64.19 -0.85 2.75) ; 6 + ( 257.46 68.01 0.17 2.75) ; 7 + ( 258.71 70.70 0.55 2.75) ; 8 + ( 258.63 73.06 1.38 2.75) ; 9 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 258.51 51.54 -3.92 1.38) ; 1 + ( 253.84 65.38 -0.85 2.75) ; 2 + ) ; End of markers + ( + ( 259.49 75.44 -0.63 2.75) ; 1, R-1-1-1-1 + ( 259.04 77.35 -0.63 2.75) ; 2 + ( 259.42 79.82 -1.22 2.75) ; 3 + ( 259.42 79.82 -1.25 2.75) ; 4 + ( 259.50 83.43 -1.25 2.75) ; 5 + ( 258.63 89.18 -1.25 2.75) ; 6 + ( 257.70 93.15 -2.08 2.75) ; 7 + ( 259.00 97.63 -2.85 2.75) ; 8 + ( 258.47 99.89 -3.60 2.75) ; 9 + ( 258.38 102.27 -5.95 2.75) ; 10 + ( 258.38 102.27 -5.97 2.75) ; 11 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 261.27 71.90 2.15 2.75) ; 1 + ) ; End of markers + ( + ( 255.96 104.56 -4.38 2.75) ; 1, R-1-1-1-1-1 + ( 257.53 107.92 -3.13 2.75) ; 2 + ( 259.11 111.27 -1.80 2.75) ; 3 + ( 258.31 114.66 -0.90 2.75) ; 4 + ( 257.25 119.20 0.12 2.75) ; 5 + ( 255.87 123.05 1.32 2.75) ; 6 + ( + ( 254.55 128.72 1.32 2.75) ; 1, R-1-1-1-1-1-1 + ( + ( 255.26 133.67 0.35 2.75) ; 1, R-1-1-1-1-1-1-1 + ( 255.55 138.51 -0.63 2.75) ; 2 + ( 256.36 141.09 -1.82 2.75) ; 3 + ( 257.93 144.44 -3.20 2.75) ; 4 + ( 257.93 144.44 -3.22 2.75) ; 5 + ( 256.06 146.39 -3.55 2.75) ; 6 + ( 256.20 151.79 -3.55 2.75) ; 7 + ( 256.92 156.74 -3.55 2.75) ; 8 + ( 257.38 162.83 -3.55 2.75) ; 9 + ( 258.82 166.73 -2.55 2.75) ; 10 + ( 262.44 169.39 -2.55 2.75) ; 11 + ( 264.33 173.41 -3.20 2.75) ; 12 + ( 263.09 176.70 -3.85 2.75) ; 13 + ( 259.87 178.33 -4.82 2.75) ; 14 + ( 257.08 184.25 -4.82 2.75) ; 15 + ( 254.73 190.26 -4.82 2.75) ; 16 + ( 251.34 196.64 -4.82 2.75) ; 17 + ( 251.31 200.81 -5.72 2.75) ; 18 + ( 251.86 204.53 -7.35 2.75) ; 19 + ( 253.48 209.68 -8.82 2.75) ; 20 + ( 254.46 213.49 -10.00 2.75) ; 21 + ( 254.11 216.99 -11.25 2.75) ; 22 + ( 251.09 219.87 -12.10 2.75) ; 23 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 253.56 147.00 -3.55 2.75) ; 1 + ( 258.38 150.52 -3.55 2.75) ; 2 + ( 257.60 176.02 -4.82 2.75) ; 3 + ( 258.91 186.47 -4.82 2.75) ; 4 + ( 256.22 179.87 -4.82 2.75) ; 5 + ( 265.90 176.76 -4.82 2.75) ; 6 + ( 254.62 202.78 -7.35 2.75) ; 7 + ( 254.27 206.28 -8.82 2.75) ; 8 + ( 250.79 209.05 -8.82 2.75) ; 9 + ( 254.95 209.43 -8.82 2.75) ; 10 + ( 256.65 212.21 -8.82 2.75) ; 11 + ) ; End of markers + ( + ( 250.03 224.39 -12.65 2.75) ; 1, R-1-1-1-1-1-1-1-1 + ( 248.47 227.01 -11.80 2.75) ; 2 + ( 245.70 228.76 -11.80 2.75) ; 3 + ( 243.70 231.27 -12.65 2.75) ; 4 + ( 243.57 231.83 -12.65 2.75) ; 5 + ( 245.01 235.76 -13.32 2.75) ; 6 + ( 245.42 240.04 -14.38 2.75) ; 7 + ( 244.76 242.87 -16.32 2.75) ; 8 + ( 245.88 246.12 -18.70 2.75) ; 9 + ( 245.60 249.49 -19.67 2.75) ; 10 + ( 246.58 253.31 -19.88 2.75) ; 11 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 255.19 218.45 -12.10 2.75) ; 1 + ( 252.84 224.46 -12.65 2.75) ; 2 + ( 243.03 244.25 -18.70 2.75) ; 3 + ) ; End of markers + ( + ( 248.91 257.44 -19.88 2.29) ; 1, R-1-1-1-1-1-1-1-1-1 + ( 250.03 260.68 -19.05 2.29) ; 2 + ( 251.30 263.37 -19.60 2.29) ; 3 + ( 252.50 264.25 -17.77 2.29) ; 4 + ( 254.77 266.58 -16.13 2.29) ; 5 + ( 256.17 268.69 -15.02 2.29) ; 6 + ( 255.82 272.20 -15.02 2.29) ; 7 + ( 254.39 274.25 -16.47 2.29) ; 8 + ( 253.86 276.51 -18.35 2.29) ; 9 + ( 253.33 278.77 -19.42 2.29) ; 10 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 251.63 275.99 -18.35 2.29) ; 1 + ( 256.63 274.76 -18.35 2.29) ; 2 + ) ; End of markers + ( + ( 251.06 282.42 -19.42 2.29) ; 1, R-1-1-1-1-1-1-1-1-1-1 + ( 250.98 284.79 -20.52 2.29) ; 2 + ( 252.56 288.15 -21.50 2.29) ; 3 + ( 252.56 288.15 -21.52 2.29) ; 4 + ( 252.51 292.32 -21.25 2.29) ; 5 + ( 254.22 295.10 -20.70 2.29) ; 6 + ( 254.62 299.38 -20.70 2.29) ; 7 + ( 254.28 302.89 -19.63 2.29) ; 8 + ( 254.82 306.60 -18.77 2.29) ; 9 + ( 253.58 309.89 -18.77 2.29) ; 10 + ( 252.92 312.71 -20.83 2.29) ; 11 + ( 252.92 312.71 -20.85 2.29) ; 12 + ( 252.44 316.78 -21.67 2.29) ; 13 + ( 251.65 320.17 -22.50 2.29) ; 14 + ( 249.82 323.93 -23.33 2.29) ; 15 + ( 247.24 326.91 -23.90 2.29) ; 16 + ( 246.39 328.51 -24.92 2.29) ; 17 + ( 246.61 331.55 -25.83 2.29) ; 18 + ( 249.09 335.11 -26.50 2.29) ; 19 + ( 251.37 337.44 -25.85 2.29) ; 20 + ( 251.77 341.72 -25.23 2.29) ; 21 + ( 248.48 345.72 -25.23 2.29) ; 22 + ( 245.01 348.49 -26.38 2.29) ; 23 + ( 243.77 351.77 -26.85 2.29) ; 24 + ( 244.18 356.05 -27.35 2.29) ; 25 + ( 244.40 359.09 -26.95 2.29) ; 26 + + (Cross + (Color White) + (Name "Marker 3") + ( 247.73 353.23 -26.95 0.92) ; 1 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 249.73 288.08 -21.25 2.29) ; 1 + ( 250.78 293.70 -21.25 2.29) ; 2 + ( 253.40 286.55 -21.25 2.29) ; 3 + ( 255.10 289.35 -21.25 2.29) ; 4 + ( 257.05 301.14 -20.83 2.29) ; 5 + ( 255.55 311.55 -21.67 2.29) ; 6 + ( 248.38 320.01 -23.33 2.29) ; 7 + ( 249.18 316.62 -23.33 2.29) ; 8 + ( 253.21 323.53 -23.33 2.29) ; 9 + ( 245.00 326.39 -23.90 2.29) ; 10 + ( 246.08 333.81 -26.50 2.29) ; 11 + ( 253.10 336.05 -26.72 2.29) ; 12 + ( 248.70 342.78 -25.23 2.29) ; 13 + ( 250.89 347.48 -25.23 2.29) ; 14 + ( 242.46 347.29 -25.23 2.29) ; 15 + ) ; End of markers + ( + ( 243.05 361.09 -26.02 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-1 + ( 242.09 363.25 -24.32 1.83) ; 2 + ( 241.68 364.95 -22.80 1.83) ; 3 + ( 241.73 366.75 -21.32 1.83) ; 4 + ( 242.22 368.67 -19.65 1.83) ; 5 + ( 243.04 371.25 -18.72 1.83) ; 6 + ( 244.28 373.93 -18.80 1.83) ; 7 + ( 245.10 376.50 -17.60 1.83) ; 8 + ( 245.01 378.87 -16.67 1.83) ; 9 + ( 244.75 380.00 -15.90 1.83) ; 10 + ( 242.74 382.52 -15.40 1.83) ; 11 + ( 242.52 385.46 -15.10 1.83) ; 12 + ( 240.25 389.11 -15.10 1.83) ; 13 + ( 238.39 391.06 -15.10 1.83) ; 14 + ( 237.73 393.89 -14.13 1.83) ; 15 + ( 238.66 395.90 -13.42 1.83) ; 16 + ( 239.60 397.92 -12.62 1.83) ; 17 + ( 238.54 402.44 -12.40 1.83) ; 18 + ( 237.93 407.07 -12.40 1.83) ; 19 + ( 236.19 408.45 -12.40 1.83) ; 20 + ( 236.69 410.36 -13.32 1.83) ; 21 + ( 237.23 414.08 -14.52 1.83) ; 22 + ( 238.04 416.65 -15.48 1.83) ; 23 + ( 236.53 421.07 -16.38 1.83) ; 24 + ( 235.04 425.50 -14.65 1.83) ; 25 + ( 234.06 427.66 -15.40 1.83) ; 26 + ( 232.63 429.71 -16.35 1.83) ; 27 + ( 233.48 434.09 -16.77 1.83) ; 28 + ( 234.21 439.05 -17.25 1.83) ; 29 + ( 236.04 441.27 -17.30 1.83) ; 30 + ( 236.54 443.17 -18.10 1.83) ; 31 + ( 235.16 447.02 -18.92 1.83) ; 32 + ( 233.30 448.98 -18.92 1.83) ; 33 + ( 236.18 450.72 -19.73 1.83) ; 34 + ( 237.25 452.16 -18.72 1.83) ; 35 + ( 237.29 453.97 -17.27 1.83) ; 36 + ( 237.29 453.97 -17.30 1.83) ; 37 + + (Cross + (Color White) + (Name "Marker 3") + ( 240.91 402.40 -12.40 1.83) ; 1 + ( 240.00 412.33 -14.52 1.83) ; 2 + ( 239.70 417.64 -16.38 1.83) ; 3 + ( 238.50 422.74 -13.52 1.83) ; 4 + ( 239.26 439.62 -18.92 1.83) ; 5 + ( 237.41 447.55 -19.97 1.83) ; 6 + ( 238.27 451.81 -20.27 1.83) ; 7 + ( 234.36 444.45 -18.10 1.83) ; 8 + ( 234.62 443.33 -20.77 1.83) ; 9 + ( 232.12 437.95 -17.25 1.83) ; 10 + ( 233.95 424.05 -13.52 1.83) ; 11 + ( 232.79 424.97 -17.30 1.83) ; 12 + ( 235.27 434.51 -14.60 1.83) ; 13 + ( 235.17 430.91 -14.60 1.83) ; 14 + ( 241.61 395.39 -12.75 1.83) ; 15 + ( 241.51 391.78 -15.10 1.83) ; 16 + ( 244.81 387.78 -15.10 1.83) ; 17 + ( 240.12 383.69 -15.88 1.83) ; 18 + ( 239.93 382.46 -13.35 1.83) ; 19 + ( 236.15 390.53 -14.13 1.83) ; 20 + ( 245.71 371.87 -17.95 1.83) ; 21 + ( 246.52 374.45 -17.30 1.83) ; 22 + ( 241.56 371.49 -17.95 1.83) ; 23 + ( 244.36 365.58 -22.80 1.83) ; 24 + ( 244.23 366.15 -18.72 1.83) ; 25 + ( 246.11 370.17 -18.72 1.83) ; 26 + ( 235.04 415.35 -14.52 1.83) ; 27 + ( 234.51 411.64 -14.52 1.83) ; 28 + ( 240.09 393.85 -13.23 1.83) ; 29 + ( 236.62 396.61 -12.40 1.83) ; 30 + ) ; End of markers + ( + ( 238.43 457.22 -16.17 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1 + ( 238.34 459.59 -16.17 1.83) ; 2 + ( 236.79 462.21 -16.77 1.83) ; 3 + ( 235.81 464.37 -16.65 1.83) ; 4 + ( + ( 234.88 468.33 -16.65 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1 + ( 234.22 471.17 -17.57 1.83) ; 2 + ( 235.21 474.98 -18.88 1.83) ; 3 + ( 235.61 479.26 -18.88 1.83) ; 4 + ( 234.82 482.65 -18.72 1.83) ; 5 + ( 234.15 485.47 -19.30 1.83) ; 6 + ( 236.04 489.51 -19.33 1.83) ; 7 + ( 237.17 492.76 -19.33 1.83) ; 8 + ( 238.55 494.87 -19.90 1.83) ; 9 + ( 239.04 496.78 -19.80 1.83) ; 10 + ( 236.92 499.87 -19.80 1.83) ; 11 + ( 235.23 503.05 -20.10 1.83) ; 12 + ( 233.14 507.94 -20.47 1.83) ; 13 + ( 233.05 510.30 -19.58 1.83) ; 14 + ( 233.60 514.01 -20.38 1.83) ; 15 + ( 231.15 516.43 -20.90 1.83) ; 16 + ( 230.80 519.93 -20.90 1.83) ; 17 + ( 231.16 522.40 -20.63 1.83) ; 18 + ( 232.14 526.21 -21.07 1.83) ; 19 + ( 231.79 529.72 -21.72 1.83) ; 20 + ( 230.87 533.68 -21.72 1.83) ; 21 + ( 229.04 537.43 -22.55 1.83) ; 22 + ( 229.04 537.43 -22.57 1.83) ; 23 + ( 228.25 540.83 -23.92 1.83) ; 24 + ( 228.25 540.83 -23.98 1.83) ; 25 + ( 228.61 543.30 -24.85 1.83) ; 26 + ( 230.23 548.46 -25.42 1.83) ; 27 + ( 230.33 552.06 -26.07 1.83) ; 28 + ( 232.36 555.42 -24.85 1.83) ; 29 + ( 232.47 559.02 -24.85 1.83) ; 30 + ( 231.10 562.87 -25.52 1.83) ; 31 + ( 231.10 562.87 -25.55 1.83) ; 32 + ( 230.17 566.84 -26.32 1.83) ; 33 + ( 230.27 570.44 -27.50 1.83) ; 34 + ( 231.25 574.26 -27.50 1.83) ; 35 + ( 231.48 577.30 -28.47 1.83) ; 36 + ( 232.03 581.02 -29.02 1.83) ; 37 + ( 231.68 584.50 -29.27 1.83) ; 38 + ( 231.32 588.00 -29.60 1.83) ; 39 + ( 230.92 589.71 -30.55 1.83) ; 40 + ( 232.50 593.05 -31.38 1.83) ; 41 + ( 234.78 595.39 -32.63 1.83) ; 42 + ( 233.40 599.25 -32.65 1.83) ; 43 + ( 232.66 604.45 -31.45 1.83) ; 44 + ( 233.52 608.83 -32.25 1.83) ; 45 + ( 232.54 610.99 -32.88 1.83) ; 46 + + (Cross + (Color White) + (Name "Marker 3") + ( 235.75 609.35 -31.77 1.83) ; 1 + ( 235.15 603.84 -31.70 1.83) ; 2 + ( 235.81 601.01 -31.45 1.83) ; 3 + ( 236.44 596.38 -31.52 1.83) ; 4 + ( 234.26 559.43 -25.97 1.83) ; 5 + ( 233.90 562.93 -25.00 1.83) ; 6 + ( 232.84 567.47 -27.50 1.83) ; 7 + ( 233.44 572.98 -27.50 1.83) ; 8 + ( 230.15 582.95 -29.27 1.83) ; 9 + ( 230.82 580.12 -29.27 1.83) ; 10 + ( 229.67 587.03 -29.27 1.83) ; 11 + ( 229.27 588.73 -29.27 1.83) ; 12 + ( 229.64 591.19 -31.40 1.83) ; 13 + ( 230.12 593.11 -31.40 1.83) ; 14 + ( 233.88 589.20 -31.40 1.83) ; 15 + ( 239.86 499.35 -19.80 1.83) ; 16 + ( 237.45 497.60 -19.80 1.83) ; 17 + ( 233.69 501.50 -20.47 1.83) ; 18 + ( 232.72 503.67 -20.47 1.83) ; 19 + ( 235.49 507.89 -21.50 1.83) ; 20 + ( 229.73 524.46 -21.15 1.83) ; 21 + ( 230.23 526.36 -21.15 1.83) ; 22 + ( 236.62 527.27 -19.97 1.83) ; 23 + ( 229.75 530.43 -20.10 1.83) ; 24 + ( 233.36 533.07 -20.50 1.83) ; 25 + ( 233.42 534.87 -21.70 1.83) ; 26 + ( 232.11 546.51 -26.07 1.83) ; 27 + ( 233.85 551.10 -26.07 1.83) ; 28 + ( 227.84 552.67 -26.07 1.83) ; 29 + ( 227.63 545.47 -26.07 1.83) ; 30 + ( 228.31 548.60 -26.07 1.83) ; 31 + ( 230.00 555.46 -25.97 1.83) ; 32 + ( 229.89 562.00 -25.97 1.83) ; 33 + ( 227.85 568.69 -27.50 1.83) ; 34 + ( 236.90 493.88 -19.90 1.83) ; 35 + ( 238.41 489.46 -21.35 1.83) ; 36 + ( 237.32 488.02 -21.95 1.83) ; 37 + ( 237.92 471.44 -18.88 1.83) ; 38 + ( 233.23 473.33 -19.30 1.83) ; 39 + ( 236.81 474.16 -19.35 1.83) ; 40 + ( 234.15 463.39 -17.92 1.83) ; 41 + ) ; End of markers + ( + ( 232.06 615.06 -32.88 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1 + ( 231.83 617.99 -32.75 1.83) ; 2 + ( 232.52 621.14 -33.15 1.83) ; 3 + ( 233.51 624.95 -33.15 1.83) ; 4 + ( 232.14 628.81 -32.58 1.83) ; 5 + ( 230.71 630.86 -32.65 1.83) ; 6 + ( 232.27 634.21 -33.22 1.83) ; 7 + ( 233.53 636.90 -34.20 1.83) ; 8 + ( 233.67 642.31 -34.78 1.83) ; 9 + ( 235.52 644.54 -34.78 1.83) ; 10 + ( 237.22 647.31 -34.78 1.83) ; 11 + ( 238.29 648.76 -35.83 1.83) ; 12 + ( 238.29 648.76 -35.85 1.83) ; 13 + ( 238.34 650.57 -37.13 1.83) ; 14 + ( 238.21 651.13 -37.15 1.83) ; 15 + ( 237.36 652.72 -36.42 1.83) ; 16 + ( 237.36 652.72 -36.45 1.83) ; 17 + ( 236.70 655.55 -36.42 1.83) ; 18 + ( 235.54 656.48 -34.85 1.83) ; 19 + ( 235.32 659.41 -34.15 1.83) ; 20 + + (Cross + (Color White) + (Name "Marker 3") + ( 233.22 658.33 -35.95 1.83) ; 1 + ( 237.55 659.94 -35.95 1.83) ; 2 + ( 237.82 658.80 -33.05 1.83) ; 3 + ( 238.22 657.10 -36.00 1.83) ; 4 + ( 236.15 651.84 -34.55 1.83) ; 5 + ( 239.22 644.81 -34.78 1.83) ; 6 + ( 236.32 641.13 -34.78 1.83) ; 7 + ( 230.88 626.12 -34.78 1.83) ; 8 + ( 230.33 622.41 -32.75 1.83) ; 9 + ( 234.13 620.32 -32.75 1.83) ; 10 + ( 234.43 615.00 -31.92 1.83) ; 11 + ( 235.72 613.52 -32.88 1.83) ; 12 + ( 235.76 637.42 -34.78 1.83) ; 13 + ( 228.81 620.86 -32.75 1.83) ; 14 + ) ; End of markers + ( + ( 233.23 664.30 -35.47 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 + ( 234.36 667.55 -35.13 1.83) ; 2 + ( 234.36 667.55 -35.15 1.83) ; 3 + ( 233.56 670.95 -35.65 1.83) ; 4 + ( 232.32 674.24 -35.65 1.83) ; 5 + ( 232.68 676.71 -34.42 1.83) ; 6 + ( 232.55 677.27 -34.42 1.83) ; 7 + ( 233.68 680.52 -33.13 1.83) ; 8 + ( 233.46 683.47 -33.88 1.83) ; 9 + ( 233.38 685.82 -33.27 1.83) ; 10 + ( 232.58 689.22 -33.05 1.83) ; 11 + ( 232.94 691.70 -33.97 1.83) ; 12 + ( 232.90 695.87 -35.02 1.83) ; 13 + ( 232.90 695.87 -35.05 1.83) ; 14 + ( 230.64 699.52 -36.10 1.83) ; 15 + ( 231.31 702.66 -37.45 1.83) ; 16 + ( 230.78 704.93 -37.77 1.83) ; 17 + ( 229.35 706.99 -36.63 1.83) ; 18 + ( 229.90 710.69 -35.75 1.83) ; 19 + ( 230.45 714.40 -34.95 1.83) ; 20 + ( 231.57 717.65 -34.67 1.83) ; 21 + ( 230.64 721.62 -35.83 1.83) ; 22 + ( 230.64 721.62 -35.85 1.83) ; 23 + ( 230.87 724.66 -36.22 1.83) ; 24 + ( 230.79 727.03 -37.20 1.83) ; 25 + ( 231.91 730.28 -38.15 1.83) ; 26 + ( 231.47 736.14 -39.67 1.83) ; 27 + ( 229.97 740.57 -39.02 1.83) ; 28 + ( 231.22 743.25 -38.88 1.83) ; 29 + ( 230.92 748.55 -38.27 1.83) ; 30 + ( 231.32 750.94 -35.53 1.83) ; 31 + ( 231.32 750.94 -35.55 1.83) ; 32 + ( 231.24 753.30 -34.92 1.83) ; 33 + ( 229.28 757.62 -34.92 1.83) ; 34 + ( 229.43 760.49 -34.63 1.83) ; 35 + ( 230.73 764.97 -33.77 1.83) ; 36 + ( 231.40 768.12 -34.72 1.83) ; 37 + ( 231.91 770.02 -33.97 1.83) ; 38 + ( 231.51 771.73 -33.67 1.83) ; 39 + ( 229.82 774.90 -33.03 1.83) ; 40 + ( 229.74 777.28 -33.00 1.83) ; 41 + ( 230.68 779.28 -33.00 1.83) ; 42 + ( 231.35 782.44 -32.63 1.83) ; 43 + ( 231.53 783.67 -33.13 1.83) ; 44 + ( 230.60 787.62 -32.35 1.83) ; 45 + ( 231.15 791.34 -31.75 1.83) ; 46 + ( 231.07 793.72 -31.35 1.83) ; 47 + ( 232.64 797.06 -31.35 1.83) ; 48 + ( 233.14 798.98 -31.17 1.83) ; 49 + ( 232.21 802.93 -30.80 1.83) ; 50 + ( 232.12 805.30 -31.02 1.83) ; 51 + ( 232.12 805.30 -31.00 1.83) ; 52 + ( 234.08 806.96 -30.57 1.83) ; 53 + ( 234.50 811.25 -29.70 1.83) ; 54 + ( 233.39 813.96 -29.38 1.83) ; 55 + ( 233.17 816.90 -29.38 1.83) ; 56 + ( 233.97 819.48 -30.50 1.83) ; 57 + ( 233.32 822.30 -31.40 1.83) ; 58 + ( 233.32 822.30 -31.42 1.83) ; 59 + ( 234.00 825.45 -32.22 1.83) ; 60 + ( 234.36 827.93 -31.52 1.83) ; 61 + ( 234.28 830.29 -30.38 1.83) ; 62 + ( 234.95 833.44 -30.07 1.83) ; 63 + ( 235.49 837.15 -30.07 1.83) ; 64 + ( 236.17 840.28 -30.07 1.83) ; 65 + ( 236.79 841.64 -30.07 1.83) ; 66 + ( 235.69 844.36 -29.97 1.83) ; 67 + ( 235.21 848.42 -30.75 1.83) ; 68 + ( 236.47 851.11 -30.75 1.83) ; 69 + ( 237.00 854.82 -29.60 1.83) ; 70 + ( 235.89 857.54 -28.63 1.83) ; 71 + ( 235.54 861.04 -29.77 1.83) ; 72 + ( 236.80 863.73 -30.20 1.83) ; 73 + + (Cross + (Color White) + (Name "Marker 3") + ( 235.10 860.94 -28.50 1.83) ; 1 + ( 237.80 851.43 -30.20 1.83) ; 2 + ( 238.54 846.23 -32.38 1.83) ; 3 + ( 237.13 848.28 -30.55 1.83) ; 4 + ( 233.62 839.10 -30.07 1.83) ; 5 + ( 238.34 833.04 -30.07 1.83) ; 6 + ( 233.30 832.46 -30.07 1.83) ; 7 + ( 232.57 827.51 -30.15 1.83) ; 8 + ( 236.41 827.21 -33.10 1.83) ; 9 + ( 236.57 822.47 -32.22 1.83) ; 10 + ( 235.29 823.97 -32.22 1.83) ; 11 + ( 234.83 817.88 -32.22 1.83) ; 12 + ( 232.89 812.06 -29.20 1.83) ; 13 + ( 230.02 804.22 -30.80 1.83) ; 14 + ( 231.41 806.33 -30.30 1.83) ; 15 + ( 231.64 809.37 -29.52 1.83) ; 16 + ( 231.80 760.45 -33.77 1.83) ; 17 + ( 228.63 763.89 -33.77 1.83) ; 18 + ( 233.42 765.60 -33.77 1.83) ; 19 + ( 233.80 780.02 -32.63 1.83) ; 20 + ( 233.87 787.79 -32.25 1.83) ; 21 + ( 233.12 792.99 -31.35 1.83) ; 22 + ( 234.83 795.79 -31.35 1.83) ; 23 + ( 231.12 795.52 -33.30 1.83) ; 24 + ( 229.49 790.36 -33.13 1.83) ; 25 + ( 236.11 810.41 -29.20 1.83) ; 26 + ( 235.56 812.69 -29.20 1.83) ; 27 + ( 234.22 744.54 -38.27 1.83) ; 28 + ( 228.44 733.04 -39.58 1.83) ; 29 + ( 227.49 731.02 -38.85 1.83) ; 30 + ( 228.47 728.88 -38.17 1.83) ; 31 + ( 234.01 731.36 -39.22 1.83) ; 32 + ( 233.63 716.95 -34.67 1.83) ; 33 + ( 229.28 715.33 -34.67 1.83) ; 34 + ( 232.37 714.25 -33.25 1.83) ; 35 + ( 228.61 712.18 -33.25 1.83) ; 36 + ( 229.13 703.94 -37.92 1.83) ; 37 + ( 233.85 703.86 -37.92 1.83) ; 38 + ( 233.58 699.01 -34.92 1.83) ; 39 + ( 229.75 699.31 -37.52 1.83) ; 40 + ( 233.32 722.25 -33.45 1.83) ; 41 + ( 230.74 687.00 -33.05 1.83) ; 42 + ( 231.37 688.35 -33.05 1.83) ; 43 + ( 231.16 691.28 -33.05 1.83) ; 44 + ( 230.05 694.01 -36.88 1.83) ; 45 + ( 235.92 687.03 -33.05 1.83) ; 46 + ( 231.57 679.44 -33.13 1.83) ; 47 + ( 234.79 677.80 -33.77 1.83) ; 48 + ( 235.90 681.05 -33.77 1.83) ; 49 + ( 235.40 673.17 -36.85 1.83) ; 50 + ( 235.16 670.13 -36.03 1.83) ; 51 + ( 236.02 668.54 -36.03 1.83) ; 52 + ( 232.62 668.94 -36.33 1.83) ; 53 + ) ; End of markers + ( + ( 238.51 866.50 -30.20 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 + ( 239.13 867.84 -31.58 0.92) ; 2 + ( 238.78 871.34 -30.10 0.92) ; 3 + ( 239.72 873.35 -30.77 0.92) ; 4 + ( 239.59 873.91 -30.77 0.92) ; 5 + ( 239.37 876.86 -31.52 0.92) ; 6 + ( 239.42 878.66 -33.33 0.92) ; 7 + ( 241.13 881.45 -34.45 0.92) ; 8 + ( 242.64 882.99 -35.17 0.92) ; 9 + ( 242.69 884.79 -36.82 0.92) ; 10 + ( 244.71 888.25 -37.55 0.92) ; 11 + ( 246.24 889.80 -37.63 0.92) ; 12 + ( 247.05 892.39 -38.07 0.92) ; 13 + ( 246.82 895.32 -38.90 0.92) ; 14 + ( 247.90 896.77 -40.15 0.92) ; 15 + ( 249.99 897.85 -40.97 0.92) ; 16 + ( 249.64 901.35 -40.38 0.92) ; 17 + ( 250.33 904.50 -41.52 0.92) ; 18 + + (Cross + (Color White) + (Name "Marker 3") + ( 251.76 902.45 -41.52 0.92) ; 1 + ( 251.38 899.97 -40.38 0.92) ; 2 + ( 248.25 893.26 -39.75 0.92) ; 3 + ( 245.57 892.63 -38.88 0.92) ; 4 + ( 246.53 884.50 -37.55 0.92) ; 5 + ( 241.58 887.52 -32.80 0.92) ; 6 + ( 242.66 888.96 -36.90 0.92) ; 7 + ( 238.21 877.77 -35.17 0.92) ; 8 + ( 240.71 877.16 -31.98 0.92) ; 9 + ) ; End of markers + ( + ( 252.48 907.39 -42.55 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 + ( 254.31 909.61 -44.17 0.92) ; 2 + ( 255.89 912.96 -44.87 0.92) ; 3 + + (Cross + (Color White) + (Name "Marker 3") + ( 256.04 908.22 -44.17 0.92) ; 1 + ( 253.32 905.80 -44.17 0.92) ; 2 + ) ; End of markers + ( + ( 256.86 914.37 -44.10 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 + ( 258.68 916.60 -42.30 0.46) ; 2 + ( 258.68 916.60 -42.28 0.46) ; 3 + ( 259.89 917.48 -41.45 0.46) ; 4 + ( 263.21 919.45 -40.57 0.46) ; 5 + ( 265.12 919.30 -41.52 0.46) ; 6 + ( 266.91 919.72 -40.22 0.46) ; 7 + ( 268.17 922.41 -39.52 0.46) ; 8 + ( 270.54 922.36 -39.52 0.46) ; 9 + ( 273.21 922.99 -38.55 0.46) ; 10 + ( 275.31 924.08 -37.77 0.46) ; 11 + ( 276.92 923.26 -36.78 0.46) ; 12 + ( 279.10 921.98 -35.60 0.46) ; 13 + ( 281.39 924.30 -34.58 0.46) ; 14 + ( 282.45 925.75 -33.33 0.46) ; 15 + ( 286.16 926.02 -32.75 0.46) ; 16 + ( 287.82 927.02 -32.20 0.46) ; 17 + ( 289.97 929.90 -31.60 0.46) ; 18 + ( 292.20 930.43 -31.00 0.46) ; 19 + ( 296.08 931.93 -30.30 0.46) ; 20 + ( 297.88 932.35 -29.38 0.46) ; 21 + ( 298.82 934.36 -29.38 0.46) ; 22 + ( 300.47 935.35 -28.27 0.46) ; 23 + ( 302.38 935.20 -27.27 0.46) ; 24 + ( 303.51 938.44 -26.72 0.46) ; 25 + ( 303.51 938.44 -26.75 0.46) ; 26 + ( 305.61 939.53 -26.75 0.46) ; 27 + ( 306.56 941.55 -25.73 0.46) ; 28 + ( 308.52 943.20 -24.40 0.46) ; 29 + ( 310.30 943.62 -23.60 0.46) ; 30 + ( 312.41 944.70 -22.97 0.46) ; 31 + ( 314.06 945.69 -22.77 0.46) ; 32 + ( 317.18 946.42 -22.67 0.46) ; 33 + ( 317.18 946.42 -22.70 0.46) ; 34 + ( 318.67 946.18 -20.92 0.46) ; 35 + ( 318.85 947.42 -20.00 0.46) ; 36 + ( 320.45 946.60 -18.40 0.46) ; 37 + ( 323.39 946.09 -17.42 0.46) ; 38 + ( 323.39 946.09 -17.45 0.46) ; 39 + ( 324.28 946.30 -16.20 0.46) ; 40 + ( 324.33 948.10 -14.48 0.46) ; 41 + ( 327.29 947.60 -14.38 0.46) ; 42 + ( 330.72 949.00 -13.05 0.46) ; 43 + ( 331.61 949.21 -13.05 0.46) ; 44 + ( 332.10 951.12 -13.05 0.46) ; 45 + ( 335.42 953.09 -13.05 0.46) ; 46 + ( 337.69 955.42 -14.02 0.46) ; 47 + ( 340.10 957.18 -14.88 0.46) ; 48 + ( 341.45 957.49 -13.72 0.46) ; 49 + ( 342.08 958.84 -12.95 0.46) ; 50 + ( 344.36 961.15 -12.32 0.46) ; 51 + ( 344.36 961.15 -12.35 0.46) ; 52 + ( 345.75 963.28 -12.10 0.46) ; 53 + ( 345.75 963.28 -12.13 0.46) ; 54 + ( 347.59 965.50 -11.17 0.46) ; 55 + ( 350.71 966.22 -10.48 0.46) ; 56 + ( 351.52 968.81 -9.65 0.46) ; 57 + ( 353.17 969.79 -8.42 0.46) ; 58 + ( 353.17 969.79 -8.45 0.46) ; 59 + ( 354.70 971.34 -6.65 0.46) ; 60 + ( 356.35 972.33 -4.17 0.46) ; 61 + ( 355.90 972.22 -4.17 0.46) ; 62 + ( 356.80 972.43 -1.60 0.46) ; 63 + + (Cross + (Color White) + (Name "Marker 3") + ( 261.91 920.94 -41.45 0.46) ; 1 + ( 309.33 945.79 -22.20 0.46) ; 2 + ( 305.98 942.01 -24.58 0.46) ; 3 + ( 307.94 943.66 -22.43 0.46) ; 4 + ( 318.34 945.50 -20.00 0.46) ; 5 + ( 325.26 944.14 -18.45 0.46) ; 6 + ( 319.83 945.25 -17.20 0.46) ; 7 + ( 313.79 946.83 -22.85 0.46) ; 8 + ( 316.16 946.79 -20.00 0.46) ; 9 + ( 324.38 949.91 -14.38 0.46) ; 10 + ( 328.09 950.18 -12.62 0.46) ; 11 + ( 332.15 952.92 -12.30 0.46) ; 12 + ( 335.05 950.61 -12.32 0.46) ; 13 + ( 339.02 949.76 -12.32 0.46) ; 14 + ( 341.24 960.43 -12.35 0.46) ; 15 + ( 346.28 961.00 -12.52 0.46) ; 16 + ( 293.01 933.00 -29.38 0.46) ; 17 + ( 286.84 929.16 -31.60 0.46) ; 18 + ( 284.12 926.74 -32.75 0.46) ; 19 + ( 278.03 920.53 -35.63 0.46) ; 20 + ( 275.13 922.84 -35.63 0.46) ; 21 + ( 271.47 924.37 -41.05 0.46) ; 22 + ( 272.00 922.10 -41.67 0.46) ; 23 + ( 268.57 920.70 -39.52 0.46) ; 24 + ( 343.83 963.42 -12.57 0.46) ; 25 + ( 345.66 965.64 -11.02 0.46) ; 26 + ( 350.28 972.10 -12.52 0.46) ; 27 + ( 275.23 926.45 -36.78 0.46) ; 28 + ( 259.35 913.77 -42.28 0.46) ; 29 + ) ; End of markers + Normal + | + ( 255.99 916.57 -45.75 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2 + ( 258.40 918.33 -46.67 0.46) ; 2 + ( 258.89 920.24 -47.60 0.46) ; 3 + ( 258.76 920.81 -48.60 0.46) ; 4 + ( 257.28 921.06 -49.05 0.46) ; 5 + ( 257.28 921.06 -49.07 0.46) ; 6 + ( 257.60 921.72 -49.85 0.46) ; 7 + ( 259.43 923.95 -49.85 0.46) ; 8 + ( 259.87 924.06 -50.52 0.46) ; 9 + ( 258.58 925.54 -52.22 0.46) ; 10 + ( 259.43 923.95 -53.60 0.46) ; 11 + ( 259.43 923.95 -53.62 0.46) ; 12 + ( 259.92 925.86 -55.22 0.46) ; 13 + ( 259.92 925.86 -55.30 0.46) ; 14 + ( 260.56 927.19 -57.13 0.46) ; 15 + ( 262.21 928.18 -58.25 0.46) ; 16 + ( 264.18 929.85 -59.38 0.46) ; 17 + + (Cross + (Color White) + (Name "Marker 3") + ( 255.99 922.55 -49.17 0.46) ; 1 + ( 259.08 927.46 -57.13 0.46) ; 2 + ( 259.84 928.23 -58.22 0.46) ; 3 + ) ; End of markers + ( + ( 263.49 930.27 -60.57 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1 + ( 264.30 932.84 -61.25 0.46) ; 2 + ( 262.56 934.23 -62.67 0.46) ; 3 + ( 264.23 935.21 -63.75 0.46) ; 4 + ( 262.94 936.70 -64.65 0.46) ; 5 + ( 263.57 938.04 -65.52 0.46) ; 6 + ( 263.34 940.98 -66.20 0.46) ; 7 + ( 264.60 943.66 -67.00 0.46) ; 8 + ( 264.65 945.46 -67.55 0.46) ; 9 + ( 264.65 945.46 -67.57 0.46) ; 10 + ( 263.36 946.95 -69.60 0.46) ; 11 + ( 263.09 948.09 -70.70 0.46) ; 12 + ( 265.18 949.17 -71.85 0.46) ; 13 + ( 265.05 949.74 -72.72 0.46) ; 14 + ( 265.10 951.53 -73.38 0.46) ; 15 + ( 265.10 951.53 -73.40 0.46) ; 16 + ( 263.95 952.47 -74.25 0.46) ; 17 + ( 262.92 952.82 -75.52 0.46) ; 18 + ( 262.97 954.62 -76.80 0.46) ; 19 + ( 262.97 954.62 -76.82 0.46) ; 20 + ( 262.89 956.99 -78.38 0.46) ; 21 + ( 263.64 957.77 -79.75 0.46) ; 22 + ( 262.93 958.79 -81.32 0.46) ; 23 + ( 259.72 960.43 -82.97 0.46) ; 24 + ( 262.40 961.06 -85.85 0.46) ; 25 + ( 261.56 962.65 -88.02 0.46) ; 26 + ( 260.85 963.68 -89.32 0.46) ; 27 + ( 260.90 965.48 -91.07 0.46) ; 28 + ( 260.37 967.75 -92.90 0.46) ; 29 + ( 259.34 968.11 -95.02 0.46) ; 30 + ( 260.99 969.09 -95.82 0.46) ; 31 + ( 260.99 969.09 -95.85 0.46) ; 32 + ( 259.71 970.58 -96.65 0.46) ; 33 + ( 259.93 973.62 -97.80 0.46) ; 34 + ( 260.02 977.22 -98.47 0.46) ; 35 + ( 260.02 977.22 -98.53 0.46) ; 36 + ( 260.98 979.23 -99.45 0.46) ; 37 + ( 261.65 982.38 -100.50 0.46) ; 38 + ( 262.09 982.48 -100.50 0.46) ; 39 + ( 260.98 985.21 -101.27 0.46) ; 40 + ( 261.17 986.45 -102.52 0.46) ; 41 + ( 262.24 987.89 -103.90 0.46) ; 42 + ( 261.45 991.29 -104.82 0.46) ; 43 + ( 260.78 994.12 -105.77 0.46) ; 44 + ( 261.15 996.59 -107.35 0.46) ; 45 + ( 260.92 999.53 -108.72 0.46) ; 46 + ( 260.52 1001.22 -110.02 0.46) ; 47 + ( 260.44 1003.59 -111.53 0.46) ; 48 + ( 258.08 1003.63 -112.75 0.46) ; 49 + ( 256.29 1003.22 -114.65 0.46) ; 50 + ( 252.58 1002.95 -115.47 0.46) ; 51 + ( 251.38 1002.07 -117.40 0.46) ; 52 + ( 249.46 1002.21 -118.10 0.46) ; 53 + ( 249.46 1002.21 -118.22 0.46) ; 54 + + (Cross + (Color White) + (Name "Marker 3") + ( 261.82 999.74 -111.53 0.46) ; 1 + ( 263.62 990.02 -104.82 0.46) ; 2 + ( 263.71 987.64 -104.48 0.46) ; 3 + ( 261.08 988.81 -103.47 0.46) ; 4 + ( 264.31 954.93 -78.38 0.46) ; 5 + ( 259.41 959.76 -84.72 0.46) ; 6 + ( 259.69 964.61 -91.07 0.46) ; 7 + ( 259.08 975.20 -99.45 0.46) ; 8 + ( 259.54 981.29 -100.50 0.46) ; 9 + ( 265.15 943.79 -58.53 0.46) ; 10 + ( 265.81 944.54 -65.67 0.46) ; 11 + ( 264.68 941.29 -67.35 0.46) ; 12 + ( 263.34 979.19 -102.65 0.46) ; 13 + ( 259.26 992.56 -105.77 0.46) ; 14 + ) ; End of markers + Normal + | + ( 265.88 932.61 -57.90 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2 + ( 266.11 935.65 -57.02 0.46) ; 2 + ( 266.21 939.26 -56.95 0.46) ; 3 + ( 267.28 940.71 -57.05 0.46) ; 4 + ( 267.51 943.75 -57.05 0.46) ; 5 + ( 267.47 947.92 -58.17 0.46) ; 6 + ( 268.46 951.74 -59.13 0.46) ; 7 + ( 271.38 955.39 -59.67 0.46) ; 8 + ( 272.84 955.15 -60.15 0.46) ; 9 + ( 274.23 957.27 -60.15 0.46) ; 10 + ( 278.13 958.78 -60.95 0.46) ; 11 + ( 280.09 960.43 -60.95 0.46) ; 12 + ( 282.63 961.62 -61.55 0.46) ; 13 + ( 284.48 963.85 -62.28 0.46) ; 14 + ( 287.02 965.04 -60.77 0.46) ; 15 + ( 289.69 965.67 -59.65 0.46) ; 16 + ( 291.35 966.65 -59.83 0.46) ; 17 + ( 295.19 966.36 -58.95 0.46) ; 18 + ( 296.84 967.35 -58.95 0.46) ; 19 + ( 299.79 966.83 -60.67 0.46) ; 20 + ( 299.66 967.41 -62.13 0.46) ; 21 + ( 303.54 968.91 -62.13 0.46) ; 22 + ( 304.66 972.16 -62.35 0.46) ; 23 + ( 306.77 973.26 -62.28 0.46) ; 24 + ( 308.63 974.88 -62.28 0.46) ; 25 + ( 311.50 976.74 -60.92 0.46) ; 26 + ( 313.46 978.39 -59.78 0.46) ; 27 + ( 316.19 980.84 -58.45 0.46) ; 28 + ( 317.84 981.82 -57.20 0.46) ; 29 + ( 320.13 984.14 -56.57 0.46) ; 30 + ( 322.80 984.77 -55.57 0.46) ; 31 + ( 324.73 984.62 -53.95 0.46) ; 32 + ( 325.31 984.16 -52.77 0.46) ; 33 + + (Cross + (Color White) + (Name "Marker 3") + ( 265.94 940.39 -57.40 0.46) ; 1 + ( 268.85 944.06 -57.40 0.46) ; 2 + ( 266.89 948.38 -56.08 0.46) ; 3 + ( 314.09 979.74 -58.53 0.46) ; 4 + ( 314.62 977.48 -61.00 0.46) ; 5 + ( 305.03 974.64 -62.28 0.46) ; 6 + ( 289.17 967.93 -60.75 0.46) ; 7 + ( 290.54 964.07 -61.20 0.46) ; 8 + ( 288.66 960.05 -59.25 0.46) ; 9 + ( 268.70 954.77 -59.67 0.46) ; 10 + ( 270.25 952.15 -59.67 0.46) ; 11 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 248.94 908.14 -41.52 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2 + ( 248.41 910.40 -42.45 0.92) ; 2 + ( 247.75 913.22 -43.50 0.92) ; 3 + ( 247.98 916.27 -44.13 0.92) ; 4 + ( 246.10 918.22 -44.78 0.92) ; 5 + ( 245.89 921.15 -45.32 0.92) ; 6 + ( 245.22 923.98 -46.12 0.92) ; 7 + ( 245.22 923.98 -46.15 0.92) ; 8 + ( 244.30 927.95 -46.60 0.92) ; 9 + ( 243.05 931.24 -46.82 0.92) ; 10 + ( 241.05 933.76 -47.30 0.92) ; 11 + ( 241.01 937.93 -47.33 0.92) ; 12 + ( 239.15 939.88 -48.15 0.92) ; 13 + ( 237.46 943.07 -48.72 0.92) ; 14 + ( 235.77 946.26 -48.72 0.92) ; 15 + ( 234.79 948.40 -49.27 0.92) ; 16 + ( 233.99 951.80 -49.40 0.92) ; 17 + ( 233.46 954.07 -49.80 0.92) ; 18 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 247.86 906.68 -41.52 0.92) ; 1 + ( 249.35 912.41 -44.13 0.92) ; 2 + ( 245.48 916.87 -44.13 0.92) ; 3 + ( 243.93 925.48 -47.33 0.92) ; 4 + ( 243.53 927.17 -47.33 0.92) ; 5 + ( 245.06 928.72 -47.82 0.92) ; 6 + ( 240.30 932.98 -45.97 0.92) ; 7 + ) ; End of markers + ( + ( 233.65 955.31 -50.70 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1 + ( 231.20 957.72 -50.70 0.46) ; 2 + ( 230.22 959.87 -50.60 0.46) ; 3 + ( 228.85 963.73 -50.47 0.46) ; 4 + ( 227.92 967.70 -50.97 0.46) ; 5 + ( 226.04 969.65 -50.97 0.46) ; 6 + ( 225.77 970.78 -51.32 0.46) ; 7 + ( 223.78 973.30 -51.35 0.46) ; 8 + ( 223.06 974.33 -53.00 0.46) ; 9 + ( 221.95 977.05 -54.43 0.46) ; 10 + ( 220.21 978.43 -55.30 0.46) ; 11 + ( 218.93 979.92 -56.03 0.46) ; 12 + ( 218.93 979.92 -56.05 0.46) ; 13 + ( 218.53 981.62 -56.55 0.46) ; 14 + ( 216.61 981.77 -56.90 0.46) ; 15 + ( 215.18 983.83 -57.45 0.46) ; 16 + ( 215.81 985.16 -58.50 0.46) ; 17 + ( 215.42 986.86 -59.38 0.46) ; 18 + ( 216.23 989.45 -59.20 0.46) ; 19 + ( 215.26 991.50 -59.92 0.46) ; 20 + ( 214.73 993.77 -60.95 0.46) ; 21 + ( 215.22 995.68 -61.50 0.46) ; 22 + ( 214.56 998.50 -62.45 0.46) ; 23 + ( 214.78 1001.54 -63.40 0.46) ; 24 + ( 214.78 1001.54 -63.42 0.46) ; 25 + ( 214.08 1002.57 -63.88 0.46) ; 26 + ( 214.08 1002.57 -62.88 0.46) ; 27 + ( 214.57 1004.48 -61.88 0.46) ; 28 + ( 214.09 1008.55 -60.72 0.46) ; 29 + ( 215.04 1010.56 -62.57 0.46) ; 30 + ( 214.06 1012.73 -63.42 0.46) ; 31 + ( 214.56 1014.63 -64.02 0.46) ; 32 + ( 213.71 1016.23 -64.95 0.46) ; 33 + ( 212.60 1018.94 -66.17 0.46) ; 34 + ( 211.49 1021.67 -67.07 0.46) ; 35 + ( 210.20 1023.15 -68.00 0.46) ; 36 + ( 209.04 1024.09 -68.75 0.46) ; 37 + ( 209.08 1025.89 -69.92 0.46) ; 38 + ( 208.68 1027.59 -71.38 0.46) ; 39 + ( 211.24 1028.78 -72.60 0.46) ; 40 + ( 211.24 1028.78 -72.63 0.46) ; 41 + ( 209.95 1030.27 -74.40 0.46) ; 42 + ( 209.86 1032.64 -75.30 0.46) ; 43 + ( 209.78 1035.00 -76.85 0.46) ; 44 + ( 208.94 1036.60 -78.38 0.46) ; 45 + ( 208.94 1036.60 -78.35 0.46) ; 46 + ( 208.67 1037.74 -81.07 0.46) ; 47 + ( 208.67 1037.74 -81.10 0.46) ; 48 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 229.27 957.87 -50.60 0.46) ; 1 + ( 232.00 954.33 -50.60 0.46) ; 2 + ( 228.93 961.36 -51.50 0.46) ; 3 + ( 227.95 963.52 -50.47 0.46) ; 4 + ( 225.24 973.04 -51.35 0.46) ; 5 + ( 225.17 975.41 -54.43 0.46) ; 6 + ( 213.93 987.12 -59.20 0.46) ; 7 + ( 216.73 991.25 -60.95 0.46) ; 8 + ( 216.47 992.39 -60.95 0.46) ; 9 + ( 216.21 999.49 -63.88 0.46) ; 10 + ( 216.28 1007.27 -64.20 0.46) ; 11 + ( 217.66 1003.41 -60.72 0.46) ; 12 + ( 212.58 1012.97 -61.30 0.46) ; 13 + ( 213.28 1022.09 -63.62 0.46) ; 14 + ( 208.81 1021.05 -65.95 0.46) ; 15 + ( 211.99 1023.57 -69.92 0.46) ; 16 + ( 208.46 1024.55 -68.07 0.46) ; 17 + ) ; End of markers + Normal + | + ( 231.74 955.35 -48.00 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2 + ( 228.98 957.10 -46.12 0.92) ; 2 + ( 228.58 958.79 -45.32 0.92) ; 3 + ( 226.90 961.98 -45.03 0.92) ; 4 + ( 225.91 964.15 -44.00 0.92) ; 5 + ( 225.91 964.15 -44.02 0.92) ; 6 + ( 224.35 966.76 -42.90 0.92) ; 7 + ( 224.35 966.76 -42.92 0.92) ; 8 + ( 222.31 967.48 -42.45 0.92) ; 9 + ( 222.08 970.41 -42.45 0.92) ; 10 + ( 221.38 971.44 -41.15 0.92) ; 11 + ( 221.38 971.44 -41.17 0.92) ; 12 + ( 219.37 973.95 -40.38 0.92) ; 13 + ( 218.08 975.45 -40.40 0.92) ; 14 + ( 218.08 975.45 -40.42 0.92) ; 15 + ( 217.28 978.85 -39.72 0.92) ; 16 + ( 215.87 980.90 -38.80 0.92) ; 17 + ( 213.55 982.74 -38.20 0.92) ; 18 + ( 212.26 984.22 -37.25 0.92) ; 19 + ( 212.35 987.83 -36.27 0.92) ; 20 + ( 211.23 990.57 -37.88 0.92) ; 21 + ( 208.97 994.22 -37.88 0.92) ; 22 + ( 207.86 996.93 -37.88 0.92) ; 23 + ( 205.67 998.22 -36.33 0.92) ; 24 + ( 203.45 1003.67 -36.33 0.92) ; 25 + ( 203.02 1003.56 -36.33 0.92) ; 26 + ( 202.17 1005.16 -36.47 0.92) ; 27 + ( 201.69 1009.23 -36.52 0.92) ; 28 + ( 199.86 1012.98 -37.85 0.92) ; 29 + ( 197.15 1016.52 -39.28 0.92) ; 30 + ( 196.35 1019.91 -39.92 0.92) ; 31 + ( 196.22 1020.49 -39.92 0.92) ; 32 + ( 195.95 1021.61 -40.80 0.92) ; 33 + ( 193.50 1024.04 -41.73 0.92) ; 34 + ( 192.98 1026.29 -40.50 0.92) ; 35 + ( 191.87 1029.01 -39.85 0.92) ; 36 + ( 189.54 1030.85 -39.85 0.92) ; 37 + ( 189.64 1034.46 -40.48 0.92) ; 38 + ( 187.95 1037.65 -39.63 0.92) ; 39 + ( 186.71 1040.94 -40.55 0.92) ; 40 + ( 184.76 1045.27 -40.97 0.92) ; 41 + ( 183.02 1046.65 -41.22 0.92) ; 42 + ( 183.07 1048.46 -42.05 0.92) ; 43 + ( 181.95 1051.18 -42.45 0.92) ; 44 + ( 181.16 1054.57 -42.60 0.92) ; 45 + ( 179.30 1056.53 -42.60 0.92) ; 46 + ( 178.05 1059.82 -41.47 0.92) ; 47 + ( 178.10 1061.62 -41.10 0.92) ; 48 + ( 176.15 1065.93 -40.48 0.92) ; 49 + ( 176.24 1069.54 -39.97 0.92) ; 50 + ( 172.45 1071.64 -40.32 0.92) ; 51 + ( 171.21 1074.94 -41.60 0.92) ; 52 + ( 168.70 1075.54 -42.35 0.92) ; 53 + ( 168.36 1079.04 -43.22 0.92) ; 54 + ( 168.85 1080.95 -43.72 0.92) ; 55 + ( 164.17 1082.84 -43.97 0.92) ; 56 + ( 164.17 1082.84 -44.00 0.92) ; 57 + ( 162.17 1085.35 -43.10 0.92) ; 58 + ( 156.46 1087.59 -43.35 0.92) ; 59 + ( 156.46 1087.59 -43.47 0.92) ; 60 + ( 153.26 1089.24 -44.63 0.46) ; 61 + ( 149.46 1091.34 -45.27 0.46) ; 62 + ( 149.46 1091.34 -45.40 0.46) ; 63 + ( 146.20 1091.17 -48.22 0.46) ; 64 + ( 146.20 1091.17 -48.27 0.46) ; 65 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 225.00 957.95 -45.32 0.92) ; 1 + ( 225.36 960.43 -45.32 0.92) ; 2 + ( 230.28 961.58 -45.32 0.92) ; 3 + ( 228.23 962.30 -43.78 0.92) ; 4 + ( 227.75 966.36 -42.28 0.92) ; 5 + ( 223.99 964.30 -45.88 0.92) ; 6 + ( 221.86 973.34 -40.38 0.92) ; 7 + ( 223.56 970.16 -38.85 0.92) ; 8 + ( 219.60 977.00 -38.55 0.92) ; 9 + ( 214.66 980.01 -37.80 0.92) ; 10 + ( 211.44 981.66 -37.17 0.92) ; 11 + ( 210.38 986.18 -37.17 0.92) ; 12 + ( 215.03 988.46 -35.70 0.92) ; 13 + ( 211.80 984.12 -36.72 0.92) ; 14 + ( 211.00 987.52 -33.67 0.92) ; 15 + ( 202.65 1001.09 -36.33 0.92) ; 16 + ( 206.09 1002.50 -38.60 0.92) ; 17 + ( 201.04 1001.91 -38.60 0.92) ; 18 + ( 203.37 1006.03 -38.60 0.92) ; 19 + ( 201.01 1006.08 -37.32 0.92) ; 20 + ( 203.07 1011.34 -36.30 0.92) ; 21 + ( 195.62 1014.97 -39.28 0.92) ; 22 + ( 195.54 1017.34 -39.28 0.92) ; 23 + ( 200.00 1018.38 -39.28 0.92) ; 24 + ( 199.52 1016.47 -39.28 0.92) ; 25 + ( 201.38 1014.52 -39.28 0.92) ; 26 + ( 193.14 1021.55 -41.73 0.92) ; 27 + ( 195.65 1026.92 -41.73 0.92) ; 28 + ( 191.36 1027.11 -37.28 0.92) ; 29 + ( 191.45 1024.74 -36.25 0.92) ; 30 + ( 193.65 1029.43 -41.28 0.92) ; 31 + ( 190.00 1036.94 -39.63 0.92) ; 32 + ( 184.53 1042.22 -39.72 0.92) ; 33 + ( 190.41 1035.24 -37.90 0.92) ; 34 + ( 182.26 1045.87 -42.45 0.92) ; 35 + ( 179.73 1050.65 -42.45 0.92) ; 36 + ( 177.95 1056.21 -42.60 0.92) ; 37 + ( 179.40 1066.10 -41.47 0.92) ; 38 + ( 175.60 1062.22 -40.40 0.92) ; 39 + ( 175.55 1060.42 -41.05 0.92) ; 40 + ( 174.49 1064.95 -40.13 0.92) ; 41 + ( 178.02 1064.00 -40.13 0.92) ; 42 + ( 171.06 1069.52 -40.32 0.92) ; 43 + ( 173.66 1072.52 -40.32 0.92) ; 44 + ( 170.21 1071.12 -42.13 0.92) ; 45 + ( 172.10 1075.15 -42.22 0.92) ; 46 + ( 165.32 1075.94 -41.35 0.92) ; 47 + ( 163.76 1078.56 -41.38 0.92) ; 48 + ( 167.87 1083.11 -45.03 0.92) ; 49 + ( 171.72 1082.81 -45.05 0.92) ; 50 + ( 160.21 1083.69 -41.67 0.92) ; 51 + ( 162.39 1082.42 -41.75 0.92) ; 52 + ( 166.63 1086.41 -41.75 0.92) ; 53 + ( 159.51 1090.70 -44.70 0.92) ; 54 + ( 164.90 1087.78 -44.72 0.92) ; 55 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 235.72 866.34 -28.50 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2 + ( 234.79 870.30 -29.10 1.38) ; 2 + ( 233.09 873.50 -29.10 1.38) ; 3 + ( 231.59 877.92 -29.38 1.38) ; 4 + ( 230.34 881.21 -28.50 1.38) ; 5 + ( 230.58 884.24 -27.97 1.38) ; 6 + ( 230.76 885.48 -27.97 1.38) ; 7 + ( 228.76 888.00 -27.97 1.38) ; 8 + ( 227.02 889.39 -27.22 1.38) ; 9 + ( 225.91 892.10 -26.52 1.38) ; 10 + ( 224.80 894.84 -25.50 1.38) ; 11 + ( 222.34 897.24 -25.20 1.38) ; 12 + ( 219.95 901.46 -24.62 1.38) ; 13 + ( 218.84 904.19 -26.85 1.38) ; 14 + ( 216.88 908.50 -27.27 1.38) ; 15 + ( 212.69 912.30 -27.57 1.38) ; 16 + ( 213.51 914.88 -28.15 1.38) ; 17 + ( 213.43 917.25 -27.97 1.38) ; 18 + ( 213.78 919.72 -28.65 1.38) ; 19 + ( 213.78 919.72 -28.67 1.38) ; 20 + ( 212.23 922.34 -29.08 1.38) ; 21 + ( 210.73 926.76 -29.90 1.38) ; 22 + ( 211.66 928.78 -30.35 1.38) ; 23 + ( 211.66 928.78 -30.38 1.38) ; 24 + ( 211.31 932.28 -30.95 1.38) ; 25 + ( 210.78 934.54 -31.58 1.38) ; 26 + ( 210.78 934.54 -31.60 1.38) ; 27 + ( 209.36 936.61 -32.25 1.38) ; 28 + ( 207.04 938.44 -32.45 1.38) ; 29 + ( 207.04 938.44 -32.47 1.38) ; 30 + ( 207.28 941.49 -33.17 1.38) ; 31 + ( 206.75 943.74 -34.32 1.38) ; 32 + ( 206.75 943.74 -34.35 1.38) ; 33 + ( 206.79 945.55 -33.95 1.38) ; 34 + ( 207.78 949.37 -34.90 1.38) ; 35 + ( 208.09 950.04 -35.85 1.38) ; 36 + ( 206.22 951.98 -37.08 1.38) ; 37 + ( 204.04 953.27 -37.63 1.38) ; 38 + ( 202.80 956.56 -38.42 1.38) ; 39 + ( 202.27 958.82 -39.17 1.38) ; 40 + ( 199.50 960.56 -40.07 1.38) ; 41 + ( 199.29 963.49 -41.03 1.38) ; 42 + ( 200.10 966.08 -41.90 1.38) ; 43 + ( 199.56 968.34 -42.33 1.38) ; 44 + ( 196.58 973.02 -42.57 1.38) ; 45 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 198.99 962.84 -87.00 0.46) ; 1 + ( 206.64 950.31 -79.55 0.46) ; 2 + ( 206.07 950.76 -79.55 0.46) ; 3 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 197.51 969.05 -42.57 1.38) ; 1 + ( 196.87 961.73 -41.03 1.38) ; 2 + ( 199.77 959.44 -38.42 1.38) ; 3 + ( 201.58 955.68 -38.42 1.38) ; 4 + ( 203.75 942.45 -31.15 1.38) ; 5 + ( 213.68 932.23 -31.15 1.38) ; 6 + ( 209.75 928.93 -31.00 1.38) ; 7 + ( 209.56 927.69 -31.00 1.38) ; 8 + ( 214.64 924.10 -30.97 1.38) ; 9 + ( 209.86 922.38 -27.00 1.38) ; 10 + ( 211.86 919.88 -27.00 1.38) ; 11 + ( 220.17 898.52 -24.62 1.38) ; 12 + ( 223.29 899.26 -25.27 1.38) ; 13 + ( 224.65 889.43 -27.22 1.38) ; 14 + ( 234.78 864.32 -29.38 1.38) ; 15 + ( 233.98 867.72 -29.38 1.38) ; 16 + ( 231.18 873.64 -29.38 1.38) ; 17 + ( 231.09 876.00 -29.38 1.38) ; 18 + ( 233.86 874.27 -29.58 1.38) ; 19 + ( 213.22 910.03 -26.40 1.38) ; 20 + ) ; End of markers + ( + ( 196.20 974.70 -43.95 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1 + ( 194.32 976.64 -44.70 0.92) ; 2 + ( 192.85 976.89 -45.52 0.92) ; 3 + ( 191.42 978.96 -47.02 0.92) ; 4 + ( 190.31 981.67 -47.85 0.92) ; 5 + ( 189.20 984.41 -48.90 0.92) ; 6 + ( 187.02 985.68 -49.32 0.92) ; 7 + ( 184.26 987.43 -49.32 0.92) ; 8 + ( 184.26 987.43 -49.35 0.92) ; 9 + ( 183.41 989.01 -50.42 0.92) ; 10 + ( 183.01 990.72 -50.42 0.92) ; 11 + ( 182.75 991.84 -51.35 0.92) ; 12 + ( 181.32 993.91 -52.13 0.92) ; 13 + ( 181.42 997.50 -52.77 0.92) ; 14 + ( 181.42 997.50 -52.80 0.92) ; 15 + ( 180.72 998.54 -53.30 0.92) ; 16 + ( 179.61 1001.26 -53.58 0.92) ; 17 + ( 179.79 1002.50 -54.00 0.92) ; 18 + ( 179.26 1004.77 -54.40 0.92) ; 19 + ( 181.72 1008.32 -54.90 0.92) ; 20 + ( 180.92 1011.72 -54.35 0.92) ; 21 + ( 181.14 1014.77 -54.35 0.92) ; 22 + ( 177.85 1018.77 -54.90 0.92) ; 23 + ( 177.46 1020.46 -55.88 0.92) ; 24 + ( 177.46 1020.46 -55.90 0.92) ; 25 + ( 176.34 1023.19 -57.00 0.92) ; 26 + ( 176.34 1023.19 -57.02 0.92) ; 27 + ( 175.23 1025.91 -57.95 0.92) ; 28 + ( 173.95 1027.41 -59.00 0.92) ; 29 + ( 172.53 1029.46 -60.00 0.92) ; 30 + ( 172.53 1029.46 -60.03 0.92) ; 31 + ( 171.60 1033.42 -60.70 0.92) ; 32 + ( 169.13 1035.83 -61.60 0.92) ; 33 + ( 166.82 1037.69 -62.63 0.92) ; 34 + ( 164.95 1039.62 -63.35 0.92) ; 35 + ( 163.40 1042.25 -64.18 0.92) ; 36 + ( 160.82 1045.23 -64.55 0.92) ; 37 + ( 159.44 1049.09 -65.43 0.92) ; 38 + ( 158.91 1051.34 -65.13 0.92) ; 39 + ( 158.38 1053.61 -65.95 0.92) ; 40 + ( 157.09 1055.10 -67.07 0.92) ; 41 + ( 156.56 1057.37 -68.28 0.92) ; 42 + ( 153.52 1060.24 -68.72 0.92) ; 43 + ( 153.57 1062.04 -69.47 0.92) ; 44 + ( 153.94 1064.53 -70.03 0.92) ; 45 + ( 153.42 1066.78 -71.05 0.92) ; 46 + + (Cross + (Color White) + (Name "Marker 3") + ( 151.83 1063.43 -70.03 0.92) ; 1 + ( 151.30 1065.69 -70.03 0.92) ; 2 + ( 167.77 1039.70 -61.63 0.92) ; 3 + ( 165.50 1043.34 -64.18 0.92) ; 4 + ( 157.92 1047.53 -65.43 0.92) ; 5 + ( 157.12 1050.93 -66.45 0.92) ; 6 + ( 159.27 1053.83 -64.13 0.92) ; 7 + ( 155.35 1056.49 -68.28 0.92) ; 8 + ( 158.66 1058.46 -69.22 0.92) ; 9 + ( 178.35 1020.67 -57.02 0.92) ; 10 + ( 172.42 1025.86 -60.03 0.92) ; 11 + ( 170.38 1032.54 -61.63 0.92) ; 12 + ( 176.28 1031.54 -61.63 0.92) ; 13 + ( 181.37 1017.80 -53.72 0.92) ; 14 + ( 177.67 1017.53 -53.72 0.92) ; 15 + ( 182.47 987.01 -49.35 0.92) ; 16 + ( 185.23 985.26 -49.35 0.92) ; 17 + ( 187.51 987.59 -49.00 0.92) ; 18 + ( 182.26 989.94 -50.42 0.92) ; 19 + ( 183.43 994.99 -52.80 0.92) ; 20 + ( 178.73 1007.03 -54.90 0.92) ; 21 + ( 179.66 1009.04 -52.80 0.92) ; 22 + ( 181.72 1008.32 -50.97 0.92) ; 23 + ( 178.52 1015.94 -50.97 0.92) ; 24 + ( 190.61 976.38 -47.02 0.92) ; 25 + ( 194.40 974.27 -44.70 0.92) ; 26 + ( 195.53 977.53 -43.58 0.92) ; 27 + ( 195.54 977.55 -39.05 0.92) ; 28 + ) ; End of markers + ( + ( 151.53 1068.73 -71.82 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1-1 + ( 150.51 1069.09 -72.57 0.46) ; 2 + ( 149.53 1071.24 -73.28 0.46) ; 3 + ( 148.69 1072.85 -74.32 0.46) ; 4 + ( 146.77 1072.98 -75.57 0.46) ; 5 + ( 145.34 1075.05 -76.92 0.46) ; 6 + ( 144.33 1075.41 -78.63 0.46) ; 7 + ( 142.01 1077.25 -79.10 0.46) ; 8 + ( 140.40 1078.07 -81.25 0.46) ; 9 + ( 140.40 1078.07 -81.30 0.46) ; 10 + + (Cross + (Color White) + (Name "Marker 3") + ( 149.49 1069.45 -72.57 0.46) ; 1 + ) ; End of markers + Normal + | + ( 153.64 1069.82 -71.05 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1-2 + ( 152.84 1073.22 -71.05 0.46) ; 2 + ( 152.76 1075.58 -71.85 0.46) ; 3 + ( 154.86 1076.67 -73.25 0.46) ; 4 + Normal + ) ; End of split + | + ( 197.55 975.03 -41.30 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2 + ( 198.17 976.38 -40.55 0.92) ; 2 + ( 196.18 978.88 -39.60 0.92) ; 3 + ( 195.95 981.83 -39.05 0.92) ; 4 + ( 194.98 983.99 -38.42 0.92) ; 5 + ( 193.69 985.47 -38.42 0.92) ; 6 + ( 193.55 986.04 -37.85 0.92) ; 7 + ( 193.74 987.27 -37.15 0.92) ; 8 + ( 193.74 987.27 -37.17 0.92) ; 9 + ( 194.23 989.18 -36.40 0.92) ; 10 + ( 194.23 989.18 -36.42 0.92) ; 11 + ( 194.59 991.66 -35.45 0.92) ; 12 + ( 194.77 992.90 -35.57 0.92) ; 13 + ( 194.69 995.27 -34.02 0.92) ; 14 + ( 193.66 995.61 -32.40 0.92) ; 15 + ( 191.35 997.46 -31.05 0.92) ; 16 + ( 188.71 998.64 -31.22 0.92) ; 17 + ( 188.31 1000.34 -32.17 0.92) ; 18 + ( 188.67 1002.81 -33.25 0.92) ; 19 + ( 188.67 1002.81 -33.27 0.92) ; 20 + ( 189.58 1003.02 -34.88 0.92) ; 21 + ( 189.58 1003.02 -34.90 0.92) ; 22 + ( 190.96 1005.14 -35.75 0.92) ; 23 + ( 190.96 1005.14 -35.77 0.92) ; 24 + ( 192.53 1008.49 -35.75 0.92) ; 25 + ( 192.75 1011.53 -36.20 0.92) ; 26 + ( 193.12 1014.00 -35.53 0.92) ; 27 + ( 194.19 1015.46 -34.25 0.92) ; 28 + ( 193.99 1018.39 -33.00 0.92) ; 29 + ( 194.21 1021.42 -32.30 0.92) ; 30 + ( 194.21 1021.42 -32.32 0.92) ; 31 + ( 195.73 1022.98 -31.67 0.92) ; 32 + ( 196.98 1025.66 -30.83 0.92) ; 33 + ( 196.98 1025.66 -30.85 0.92) ; 34 + ( 198.11 1028.91 -30.25 0.92) ; 35 + ( 197.70 1030.58 -28.33 0.92) ; 36 + ( 198.38 1033.73 -26.88 0.92) ; 37 + ( 198.42 1035.53 -26.88 0.92) ; 38 + ( 199.50 1036.98 -25.97 0.92) ; 39 + ( 200.13 1038.32 -24.17 0.92) ; 40 + ( 201.46 1038.63 -23.47 0.92) ; 41 + ( 201.75 1043.47 -23.47 0.92) ; 42 + ( 202.56 1046.05 -23.47 0.92) ; 43 + ( 204.84 1048.38 -22.88 0.92) ; 44 + ( 206.04 1049.26 -23.63 0.92) ; 45 + ( 206.04 1049.26 -23.60 0.92) ; 46 + ( 206.91 1053.64 -22.97 0.92) ; 47 + ( 206.56 1057.14 -21.63 0.92) ; 48 + ( 208.65 1058.23 -20.20 0.92) ; 49 + ( 209.86 1059.11 -18.30 0.92) ; 50 + ( 212.27 1060.88 -16.73 0.92) ; 51 + ( 212.91 1062.21 -15.27 0.92) ; 52 + ( 213.27 1064.69 -14.70 0.92) ; 53 + ( 214.25 1068.49 -14.27 0.92) ; 54 + ( 216.53 1070.83 -14.27 0.92) ; 55 + ( 219.40 1072.69 -14.27 0.92) ; 56 + ( 220.39 1076.51 -14.25 0.92) ; 57 + ( 220.39 1076.51 -14.32 0.92) ; 58 + ( 221.19 1079.08 -15.80 0.92) ; 59 + ( 221.19 1079.08 -15.88 0.92) ; 60 + ( 223.48 1081.42 -16.67 0.92) ; 61 + ( 226.84 1085.18 -16.90 0.92) ; 62 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 216.10 1064.78 8.55 0.46) ; 1 + ) ; End of markers + + (Cross + (Color White) + (Name "Marker 3") + ( 200.10 976.22 -39.05 0.92) ; 1 + ( 199.25 977.82 -39.05 0.92) ; 2 + ( 197.16 982.70 -38.42 0.92) ; 3 + ( 194.03 981.98 -38.42 0.92) ; 4 + ( 196.18 984.87 -38.42 0.92) ; 5 + ( 192.39 986.96 -38.42 0.92) ; 6 + ( 196.25 992.64 -35.47 0.92) ; 7 + ( 192.37 991.13 -32.72 0.92) ; 8 + ( 197.50 995.33 -33.97 0.92) ; 9 + ( 196.52 997.49 -32.67 0.92) ; 10 + ( 193.05 1000.25 -31.05 0.92) ; 11 + ( 188.22 996.74 -31.05 0.92) ; 12 + ( 190.42 1001.43 -30.40 0.92) ; 13 + ( 187.83 1004.41 -35.77 0.92) ; 14 + ( 193.25 1007.46 -35.88 0.92) ; 15 + ( 191.55 1010.65 -35.00 0.92) ; 16 + ( 192.64 1018.08 -32.32 0.92) ; 17 + ( 194.68 1011.38 -33.80 0.92) ; 18 + ( 196.89 1022.05 -29.38 0.92) ; 19 + ( 196.61 1023.17 -26.88 0.92) ; 20 + ( 196.72 1032.74 -26.88 0.92) ; 21 + ( 201.01 1032.55 -24.17 0.92) ; 22 + ( 200.36 1041.36 -23.47 0.92) ; 23 + ( 196.27 1026.68 -30.25 0.92) ; 24 + ( 206.03 1043.29 -23.47 0.92) ; 25 + ( 207.65 1048.44 -23.47 0.92) ; 26 + ( 203.01 1052.13 -26.22 0.92) ; 27 + ( 204.54 1053.68 -22.97 0.92) ; 28 + ( 204.75 1050.76 -22.30 0.92) ; 29 + ( 207.11 1050.71 -22.30 0.92) ; 30 + ( 208.73 1055.87 -20.35 0.92) ; 31 + ( 209.40 1053.03 -18.25 0.92) ; 32 + ( 225.70 1075.96 -17.27 0.92) ; 33 + ( 226.43 1080.91 -17.27 0.92) ; 34 + ( 219.46 1080.47 -17.32 0.92) ; 35 + ( 218.42 1074.86 -14.35 0.92) ; 36 + ( 219.05 1076.20 -14.35 0.92) ; 37 + ( 217.19 1078.14 -14.32 0.92) ; 38 + ( 205.99 1063.58 -17.70 0.92) ; 39 + ( 210.00 1064.53 -14.70 0.92) ; 40 + ( 221.37 1074.35 -14.35 0.92) ; 41 + ( 211.85 1066.74 -14.70 0.92) ; 42 + ( 217.36 1063.26 -14.27 0.92) ; 43 + ( 218.22 1067.64 -14.27 0.92) ; 44 + ( 212.08 1069.79 -14.27 0.92) ; 45 + ( 214.04 1071.44 -14.27 0.92) ; 46 + ( 221.49 1067.81 -14.27 0.92) ; 47 + ) ; End of markers + ( + ( 224.88 1089.51 -16.90 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2-1 + ( 222.88 1092.01 -18.25 0.92) ; 2 + ( 219.53 1094.22 -20.97 0.92) ; 3 + ( 219.53 1094.22 -21.02 0.92) ; 4 + Normal + | + ( 227.54 1084.15 -16.90 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2-2 + ( 229.65 1085.25 -17.82 0.92) ; 2 + ( 229.65 1085.25 -17.85 0.92) ; 3 + ( 230.71 1086.70 -16.47 0.92) ; 4 + ( 230.71 1086.70 -16.50 0.92) ; 5 + ( 233.09 1086.65 -14.88 0.92) ; 6 + ( 235.19 1087.74 -12.83 0.92) ; 7 + ( 236.26 1089.18 -11.27 0.92) ; 8 + + (Cross + (Color White) + (Name "Marker 3") + ( 230.46 1087.82 -16.50 0.92) ; 1 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 235.39 662.78 -32.52 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2 + ( 236.45 664.22 -31.20 1.38) ; 2 + ( 237.14 667.36 -30.45 1.38) ; 3 + ( 237.82 670.52 -29.85 1.38) ; 4 + ( 238.04 673.55 -29.25 1.38) ; 5 + ( 238.67 674.90 -27.88 1.38) ; 6 + ( 237.83 676.49 -26.70 1.38) ; 7 + ( 237.03 679.88 -26.00 1.38) ; 8 + ( 237.58 683.60 -26.92 1.38) ; 9 + ( 238.51 685.60 -26.65 1.38) ; 10 + ( 238.49 689.78 -26.65 1.38) ; 11 + ( 239.48 693.59 -27.65 1.38) ; 12 + ( 239.57 697.20 -27.65 1.38) ; 13 + ( 239.09 701.26 -27.65 1.38) ; 14 + ( 239.27 702.50 -27.65 1.38) ; 15 + ( 239.05 705.44 -27.65 1.38) ; 16 + ( 236.74 707.28 -27.65 1.38) ; 17 + ( 236.08 710.11 -27.80 1.38) ; 18 + ( 235.98 712.48 -27.15 1.38) ; 19 + ( 237.38 714.60 -26.72 1.38) ; 20 + ( 238.18 717.18 -26.30 1.38) ; 21 + ( 237.25 721.14 -26.25 1.38) ; 22 + ( 236.05 726.23 -26.25 1.38) ; 23 + ( 236.29 729.27 -27.25 1.38) ; 24 + ( 236.97 732.42 -27.90 1.38) ; 25 + ( 237.34 734.89 -27.90 1.38) ; 26 + ( 237.56 737.93 -28.17 1.38) ; 27 + ( 238.82 740.62 -26.80 1.38) ; 28 + ( 238.82 740.62 -26.82 1.38) ; 29 + ( 238.47 744.12 -26.38 1.38) ; 30 + ( 238.39 746.48 -26.38 1.38) ; 31 + ( 238.39 746.48 -26.35 1.38) ; 32 + ( 239.73 746.79 -26.30 1.38) ; 33 + ( 239.58 747.37 -26.30 1.38) ; 34 + ( 237.32 751.02 -25.63 1.38) ; 35 + ( 236.79 753.27 -25.42 1.38) ; 36 + ( 237.34 756.99 -25.42 1.38) ; 37 + ( 238.33 760.81 -25.42 1.38) ; 38 + ( 239.00 763.95 -26.00 1.38) ; 39 + ( 238.07 767.91 -26.00 1.38) ; 40 + ( 238.07 767.91 -26.02 1.38) ; 41 + ( 236.83 771.20 -26.02 1.38) ; 42 + ( 236.93 774.80 -26.70 1.38) ; 43 + ( 236.93 774.80 -26.72 1.38) ; 44 + ( 236.13 778.20 -27.20 1.38) ; 45 + ( 236.68 781.91 -27.20 1.38) ; 46 + ( 236.23 781.81 -27.20 1.38) ; 47 + ( 238.56 785.94 -27.20 1.38) ; 48 + ( 237.92 788.65 -25.77 1.38) ; 49 + ( 238.29 791.14 -24.72 1.38) ; 50 + ( 237.80 795.20 -24.20 1.38) ; 51 + ( 237.80 795.20 -24.17 1.38) ; 52 + ( 237.14 798.03 -23.42 1.38) ; 53 + ( 237.63 799.93 -22.47 1.38) ; 54 + ( 238.00 802.41 -21.32 1.38) ; 55 + ( 237.84 807.14 -20.90 1.38) ; 56 + ( 238.07 810.19 -21.95 1.38) ; 57 + ( 239.63 813.54 -21.95 1.38) ; 58 + ( 239.15 817.61 -22.45 1.38) ; 59 + ( 239.25 821.22 -23.05 1.38) ; 60 + ( 239.47 824.25 -22.12 1.38) ; 61 + ( 239.26 827.18 -21.30 1.38) ; 62 + ( 240.07 829.77 -20.97 1.38) ; 63 + ( 242.17 830.86 -22.38 1.38) ; 64 + ( 241.95 833.78 -21.67 1.38) ; 65 + ( 242.76 836.37 -21.60 1.38) ; 66 + ( 242.81 838.17 -20.20 1.38) ; 67 + ( 244.38 841.52 -18.95 1.38) ; 68 + ( 244.38 841.52 -18.97 1.38) ; 69 + ( 245.01 842.86 -18.05 1.38) ; 70 + ( 244.35 845.69 -18.17 1.38) ; 71 + ( 244.35 845.69 -18.15 1.38) ; 72 + ( 244.12 848.64 -16.63 1.38) ; 73 + ( 243.20 852.59 -16.05 1.38) ; 74 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 237.76 662.73 -29.85 1.38) ; 1 + ( 239.72 664.39 -29.85 1.38) ; 2 + ( 240.81 671.82 -28.63 1.38) ; 3 + ( 234.36 679.25 -26.92 1.38) ; 4 + ( 239.13 680.97 -26.92 1.38) ; 5 + ( 235.92 682.61 -26.92 1.38) ; 6 + ( 235.97 684.41 -26.92 1.38) ; 7 + ( 237.57 699.72 -27.65 1.38) ; 8 + ( 237.97 698.01 -27.65 1.38) ; 9 + ( 241.09 698.75 -28.00 1.38) ; 10 + ( 240.86 695.71 -28.00 1.38) ; 11 + ( 239.37 706.11 -28.00 1.38) ; 12 + ( 236.65 693.53 -29.80 1.38) ; 13 + ( 240.14 690.76 -29.80 1.38) ; 14 + ( 238.17 711.20 -28.75 1.38) ; 15 + ( 238.57 709.50 -28.75 1.38) ; 16 + ( 240.16 718.84 -27.25 1.38) ; 17 + ( 239.02 715.58 -27.25 1.38) ; 18 + ( 238.70 725.05 -28.70 1.38) ; 19 + ( 237.64 729.59 -28.70 1.38) ; 20 + ( 234.99 724.79 -27.08 1.38) ; 21 + ( 235.04 726.59 -27.08 1.38) ; 22 + ( 235.44 730.87 -27.08 1.38) ; 23 + ( 235.96 738.75 -27.08 1.38) ; 24 + ( 236.26 733.45 -25.50 1.38) ; 25 + ( 239.53 739.58 -25.50 1.38) ; 26 + ( 240.15 740.93 -24.72 1.38) ; 27 + ( 236.99 744.37 -28.40 1.38) ; 28 + ( 241.04 751.29 -25.42 1.38) ; 29 + ( 240.19 758.85 -24.90 1.38) ; 30 + ( 240.11 761.23 -23.88 1.38) ; 31 + ( 237.07 758.11 -22.02 1.38) ; 32 + ( 237.85 748.75 -21.92 1.38) ; 33 + ( 238.58 753.69 -21.95 1.38) ; 34 + ( 235.89 769.19 -26.05 1.38) ; 35 + ( 236.24 765.69 -26.05 1.38) ; 36 + ( 239.99 767.76 -26.07 1.38) ; 37 + ( 237.82 775.01 -28.90 1.38) ; 38 + ( 238.27 775.12 -27.20 1.38) ; 39 + ( 235.97 792.98 -24.17 1.38) ; 40 + ( 240.94 795.94 -24.17 1.38) ; 41 + ( 235.35 797.61 -22.65 1.38) ; 42 + ( 235.45 801.22 -20.90 1.38) ; 43 + ( 236.57 804.47 -20.90 1.38) ; 44 + ( 235.82 809.66 -22.55 1.38) ; 45 + ( 236.54 808.63 -20.20 1.38) ; 46 + ( 237.22 811.78 -23.00 1.38) ; 47 + ( 238.02 814.36 -23.00 1.38) ; 48 + ( 239.75 806.99 -24.82 1.38) ; 49 + ( 240.48 811.94 -24.90 1.38) ; 50 + ( 237.86 819.09 -21.95 1.38) ; 51 + ( 237.88 831.05 -22.70 1.38) ; 52 + ( 245.57 836.43 -18.05 1.38) ; 53 + ( 244.18 834.31 -21.18 1.38) ; 54 + ( 242.10 839.20 -20.97 1.38) ; 55 + ) ; End of markers + ( + ( 243.43 855.63 -16.05 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1 + ( 244.37 857.64 -16.05 1.38) ; 2 + ( 244.87 859.55 -15.77 1.38) ; 3 + ( 244.96 863.16 -15.77 1.38) ; 4 + ( 246.41 867.08 -15.77 1.38) ; 5 + ( 244.26 870.16 -16.95 1.38) ; 6 + ( 242.57 873.35 -17.30 1.38) ; 7 + ( 242.09 877.42 -16.85 1.38) ; 8 + ( 242.09 877.42 -16.88 1.38) ; 9 + ( 241.60 881.48 -15.17 1.38) ; 10 + ( 239.47 884.56 -14.57 1.38) ; 11 + ( 238.63 886.16 -14.10 1.38) ; 12 + ( 237.83 889.56 -14.10 1.38) ; 13 + ( 237.62 892.48 -15.40 1.38) ; 14 + ( 237.66 894.29 -16.52 1.38) ; 15 + ( 237.66 894.29 -16.55 1.38) ; 16 + ( 237.77 897.90 -17.30 1.38) ; 17 + ( 237.77 897.90 -17.32 1.38) ; 18 + ( 238.63 902.29 -17.57 1.38) ; 19 + ( 240.51 906.30 -17.57 1.38) ; 20 + ( 239.26 909.59 -17.75 1.38) ; 21 + ( 239.44 910.83 -18.60 1.38) ; 22 + ( 239.44 910.83 -18.63 1.38) ; 23 + ( 241.46 914.29 -19.02 1.38) ; 24 + ( 243.29 916.51 -17.65 1.38) ; 25 + ( 243.97 919.65 -18.20 1.38) ; 26 + ( 245.09 922.91 -17.63 1.38) ; 27 + ( 245.85 923.68 -17.75 1.38) ; 28 + ( 245.90 925.49 -16.17 1.38) ; 29 + ( 245.90 925.49 -16.15 1.38) ; 30 + ( 245.08 927.07 -14.23 1.38) ; 31 + ( 243.33 928.45 -12.10 1.38) ; 32 + ( 240.00 930.66 -10.88 1.38) ; 33 + ( 238.00 933.18 -10.63 1.38) ; 34 + ( 237.20 936.58 -10.33 1.38) ; 35 + ( 236.41 939.98 -10.33 1.38) ; 36 + ( 236.14 941.10 -11.37 1.38) ; 37 + ( 234.90 944.40 -12.42 1.38) ; 38 + ( 233.47 946.45 -13.67 1.38) ; 39 + ( 233.47 946.45 -13.70 1.38) ; 40 + ( 231.65 950.19 -13.95 1.38) ; 41 + ( 229.92 951.58 -13.18 1.38) ; 42 + ( 228.53 955.44 -12.95 1.38) ; 43 + ( 228.95 959.73 -12.07 1.38) ; 44 + ( 228.28 962.54 -12.42 1.38) ; 45 + ( 226.34 966.86 -12.42 1.38) ; 46 + ( 224.65 970.05 -14.10 1.38) ; 47 + ( 224.56 972.42 -13.63 1.38) ; 48 + ( 224.92 974.89 -13.32 1.38) ; 49 + ( 224.39 977.16 -11.93 1.38) ; 50 + ( 223.99 978.85 -10.45 1.38) ; 51 + ( 223.19 982.25 -9.17 1.38) ; 52 + ( 221.78 984.31 -7.32 1.38) ; 53 + ( 222.71 986.32 -6.47 1.38) ; 54 + ( 226.64 989.64 -6.13 1.38) ; 55 + ( 227.01 992.10 -6.18 1.38) ; 56 + ( 224.86 995.18 -5.07 1.38) ; 57 + ( 222.86 997.70 -3.40 1.38) ; 58 + ( 223.09 1000.74 -2.50 1.38) ; 59 + ( 222.60 1004.81 -2.25 1.38) ; 60 + ( 220.91 1008.00 -1.82 1.38) ; 61 + ( 219.80 1010.72 -1.60 1.38) ; 62 + ( 219.95 1016.13 -1.02 1.38) ; 63 + ( 218.71 1019.42 -0.63 1.38) ; 64 + ( 217.15 1022.03 -0.63 1.38) ; 65 + ( 216.71 1021.93 -0.63 1.38) ; 66 + ( 215.60 1024.66 -0.63 1.38) ; 67 + ( 215.56 1028.83 -0.07 1.38) ; 68 + ( 214.76 1032.23 0.97 1.38) ; 69 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 246.76 847.45 -16.05 1.38) ; 1 + ( 245.25 851.88 -16.05 1.38) ; 2 + ( 246.83 861.21 -15.77 1.38) ; 3 + ( 247.20 863.68 -15.77 1.38) ; 4 + ( 243.34 858.00 -14.43 1.38) ; 5 + ( 246.20 859.86 -16.65 1.38) ; 6 + ( 243.09 865.11 -17.82 1.38) ; 7 + ( 241.77 870.78 -16.88 1.38) ; 8 + ( 245.13 874.54 -18.17 1.38) ; 9 + ( 239.73 877.46 -15.10 1.38) ; 10 + ( 243.67 880.77 -17.63 1.38) ; 11 + ( 236.00 887.34 -14.10 1.38) ; 12 + ( 236.09 890.93 -14.10 1.38) ; 13 + ( 239.32 895.28 -15.85 1.38) ; 14 + ( 236.19 894.54 -16.22 1.38) ; 15 + ( 242.06 903.69 -17.57 1.38) ; 16 + ( 238.05 902.74 -17.57 1.38) ; 17 + ( 236.34 899.95 -14.20 1.38) ; 18 + ( 239.24 897.65 -17.15 1.38) ; 19 + ( 236.57 902.99 -19.00 1.38) ; 20 + ( 237.12 906.71 -16.77 1.38) ; 21 + ( 239.03 906.56 -16.77 1.38) ; 22 + ( 242.29 906.72 -15.92 1.38) ; 23 + ( 239.23 913.77 -19.05 1.38) ; 24 + ( 243.07 913.47 -20.50 1.38) ; 25 + ( 241.20 915.42 -16.75 1.38) ; 26 + ( 241.56 917.90 -16.52 1.38) ; 27 + ( 241.43 918.46 -17.63 1.38) ; 28 + ( 246.51 920.85 -19.15 1.38) ; 29 + ( 248.36 923.08 -16.15 1.38) ; 30 + ( 238.17 928.44 -10.88 1.38) ; 31 + ( 241.52 932.20 -10.88 1.38) ; 32 + ( 244.73 930.57 -10.88 1.38) ; 33 + ( 248.07 928.37 -14.55 1.38) ; 34 + ( 238.08 930.80 -10.33 1.38) ; 35 + ( 237.24 932.40 -10.33 1.38) ; 36 + ( 240.81 933.24 -10.33 1.38) ; 37 + ( 239.43 937.09 -10.33 1.38) ; 38 + ( 234.55 931.77 -10.33 1.38) ; 39 + ( 235.80 950.57 -13.95 1.38) ; 40 + ( 238.15 944.56 -13.95 1.38) ; 41 + ( 237.92 941.52 -15.55 1.38) ; 42 + ( 232.98 944.54 -15.55 1.38) ; 43 + ( 229.55 949.11 -15.55 1.38) ; 44 + ( 232.01 952.68 -15.32 1.38) ; 45 + ( 227.23 950.96 -12.27 1.38) ; 46 + ( 232.10 950.30 -12.27 1.38) ; 47 + ( 231.32 959.67 -12.42 1.38) ; 48 + ( 231.27 957.87 -12.42 1.38) ; 49 + ( 227.21 961.10 -13.75 1.38) ; 50 + ( 224.04 964.54 -9.77 1.38) ; 51 + ( 224.94 964.75 -13.18 1.38) ; 52 + ( 227.59 969.55 -15.30 1.38) ; 53 + ( 222.68 974.37 -12.75 1.38) ; 54 + ( 221.93 979.58 -10.15 1.38) ; 55 + ( 229.28 988.45 -6.13 1.38) ; 56 + ( 227.99 989.95 -6.20 1.38) ; 57 + ( 227.87 996.49 -7.07 1.38) ; 58 + ( 227.54 995.81 -6.20 1.38) ; 59 + ( 223.08 994.77 -6.20 1.38) ; 60 + ( 228.36 998.38 -4.20 1.38) ; 61 + ( 227.43 1002.35 -4.20 1.38) ; 62 + ( 225.73 999.57 -1.58 1.38) ; 63 + ( 224.35 1003.42 -1.58 1.38) ; 64 + ( 221.22 1002.69 -1.58 1.38) ; 65 + ( 220.56 1005.51 -1.58 1.38) ; 66 + ( 223.61 1008.62 -1.58 1.38) ; 67 + ( 216.02 1012.82 -1.02 1.38) ; 68 + ( 218.97 1012.31 -1.02 1.38) ; 69 + ( 216.88 1017.19 0.97 1.38) ; 70 + ( 214.48 1021.41 -0.75 1.38) ; 71 + ( 218.55 1024.16 -0.12 1.38) ; 72 + ( 213.68 1024.80 0.00 1.38) ; 73 + ( 218.47 1026.53 -0.67 1.38) ; 74 + ( 214.36 1027.96 -0.67 1.38) ; 75 + ) ; End of markers + ( + ( 213.35 1034.28 -0.47 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1-1 + ( 212.90 1034.17 -0.47 1.38) ; 2 + ( 212.37 1036.45 2.13 0.92) ; 3 + ( 212.15 1039.38 3.65 0.92) ; 4 + ( 212.15 1039.38 3.60 0.92) ; 5 + ( 209.96 1040.65 4.32 0.46) ; 6 + ( 209.57 1042.35 5.45 0.46) ; 7 + ( 209.88 1043.03 5.55 0.46) ; 8 + ( 208.01 1044.97 7.55 0.46) ; 9 + ( 208.01 1044.97 7.57 0.46) ; 10 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 214.52 1039.33 5.45 0.46) ; 1 + ( 210.66 1033.65 5.45 0.46) ; 2 + ) ; End of markers + Normal + | + ( 216.66 1036.26 2.08 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-1-2 + ( 215.55 1038.97 2.97 0.92) ; 2 + ( 217.77 1039.50 3.50 0.92) ; 3 + ( 219.25 1039.25 4.17 0.92) ; 4 + ( 221.08 1041.48 5.07 0.92) ; 5 + ( 221.58 1043.38 5.70 0.92) ; 6 + ( 222.52 1045.38 6.35 0.92) ; 7 + ( 222.17 1048.88 6.80 0.92) ; 8 + ( 222.17 1048.88 6.78 0.92) ; 9 + ( 224.06 1052.91 5.42 0.92) ; 10 + ( 223.83 1055.85 5.17 0.92) ; 11 + ( 223.75 1058.22 6.35 0.92) ; 12 + ( 223.75 1058.22 6.28 0.92) ; 13 + ( 222.33 1060.28 7.67 0.92) ; 14 + ( 222.69 1062.74 8.55 0.92) ; 15 + ( 223.95 1065.43 8.55 0.92) ; 16 + ( 222.84 1068.16 8.55 0.46) ; 17 + ( 223.96 1071.40 8.55 0.46) ; 18 + ( 224.64 1074.55 8.55 0.46) ; 19 + ( 224.19 1074.44 8.55 0.46) ; 20 + ( 228.08 1075.95 8.55 0.46) ; 21 + ( 228.98 1076.16 9.55 0.46) ; 22 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 214.73 1036.40 2.97 0.92) ; 1 + ( 221.75 1038.64 5.70 0.92) ; 2 + ( 219.92 1042.39 5.70 0.92) ; 3 + ( 220.74 1044.97 5.70 0.92) ; 4 + ( 229.42 1054.17 5.70 0.92) ; 5 + ( 226.21 1055.81 5.70 0.92) ; 6 + ( 226.63 1066.06 8.55 0.46) ; 7 + ( 226.44 1058.85 8.55 0.46) ; 8 + ) ; End of markers + Normal + ) ; End of split + | + ( 241.31 854.66 -17.08 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-1-2-2 + ( 241.49 855.89 -18.67 1.38) ; 2 + ( 240.91 856.36 -19.80 1.38) ; 3 + ( 241.09 857.59 -21.63 1.38) ; 4 + ( 241.99 857.81 -23.27 1.38) ; 5 + ( 241.59 859.50 -25.05 1.38) ; 6 + ( 239.98 860.33 -26.22 1.38) ; 7 + ( 238.07 860.48 -27.73 1.38) ; 8 + ( 240.48 862.23 -29.70 0.92) ; 9 + ( 239.63 863.82 -31.70 0.92) ; 10 + ( 238.21 865.87 -32.97 0.92) ; 11 + ( 239.02 868.45 -34.17 0.92) ; 12 + ( 239.38 870.94 -34.45 0.92) ; 13 + ( 237.51 872.88 -35.40 0.92) ; 14 + ( 235.60 873.03 -36.75 0.92) ; 15 + ( 233.68 873.18 -38.38 0.92) ; 16 + ( 233.59 875.54 -39.40 0.92) ; 17 + ( 234.09 877.46 -40.75 0.92) ; 18 + ( 234.14 879.26 -41.93 0.92) ; 19 + ( 231.64 879.87 -43.07 0.92) ; 20 + ( 230.84 883.26 -43.47 0.92) ; 21 + ( 229.11 884.65 -44.05 0.92) ; 22 + ( 229.11 884.65 -44.07 0.92) ; 23 + ( 228.45 887.48 -44.60 0.92) ; 24 + ( 227.16 888.97 -45.95 0.92) ; 25 + ( 227.02 889.53 -47.22 0.92) ; 26 + ( 227.25 892.57 -48.45 0.92) ; 27 + ( 226.41 894.16 -48.62 0.92) ; 28 + ( 226.94 897.87 -49.52 0.92) ; 29 + ( 226.94 897.87 -49.55 0.92) ; 30 + ( 226.41 900.14 -50.00 0.92) ; 31 + ( 226.41 900.14 -50.03 0.92) ; 32 + ( 225.13 901.63 -51.28 0.92) ; 33 + ( 224.87 902.75 -52.65 0.92) ; 34 + ( 224.95 906.36 -53.45 0.92) ; 35 + ( 224.87 908.74 -54.17 0.92) ; 36 + ( 223.76 911.45 -54.58 0.92) ; 37 + ( 222.70 915.98 -54.72 0.92) ; 38 + ( 220.97 917.38 -55.52 0.92) ; 39 + ( 222.80 919.59 -56.20 0.92) ; 40 + ( 222.76 923.76 -56.75 0.92) ; 41 + ( 222.05 924.79 -58.55 0.46) ; 42 + ( 221.34 925.83 -60.35 0.46) ; 43 + ( 221.34 925.83 -60.38 0.46) ; 44 + ( 221.39 927.62 -62.13 0.46) ; 45 + ( 220.72 930.45 -63.42 0.46) ; 46 + ( 218.11 931.49 -64.27 0.46) ; 47 + ( 220.08 933.15 -65.00 0.46) ; 48 + ( 219.82 934.27 -66.17 0.46) ; 49 + ( 218.08 935.66 -67.20 0.46) ; 50 + ( 216.02 936.38 -68.13 0.46) ; 51 + ( 215.64 938.07 -69.18 0.46) ; 52 + ( 215.64 938.07 -69.20 0.46) ; 53 + ( 214.15 938.32 -70.45 0.46) ; 54 + ( 214.07 940.69 -71.43 0.46) ; 55 + ( 214.07 940.69 -71.45 0.46) ; 56 + ( 212.46 941.51 -72.32 0.46) ; 57 + ( 212.46 941.51 -72.35 0.46) ; 58 + ( 210.86 942.33 -72.95 0.46) ; 59 + ( 209.89 944.49 -74.15 0.46) ; 60 + ( 209.57 943.82 -76.00 0.46) ; 61 + ( 209.57 943.82 -76.03 0.46) ; 62 + ( 208.28 945.31 -77.47 0.46) ; 63 + ( 207.00 946.80 -78.57 0.46) ; 64 + ( 206.77 949.74 -79.55 0.46) ; 65 + ( 204.53 949.21 -80.70 0.46) ; 66 + ( 201.78 950.95 -81.75 0.46) ; 67 + ( 200.93 952.55 -82.45 0.46) ; 68 + ( 199.50 954.60 -83.00 0.46) ; 69 + ( 197.33 955.87 -83.00 0.46) ; 70 + ( 196.93 957.58 -84.72 0.46) ; 71 + ( 197.10 958.81 -86.32 0.46) ; 72 + ( 197.02 961.19 -87.00 0.46) ; 73 + ( 194.97 961.90 -87.52 0.46) ; 74 + ( 193.50 962.14 -88.42 0.46) ; 75 + ( 192.34 963.07 -89.52 0.46) ; 76 + ( 191.81 965.33 -90.77 0.46) ; 77 + ( 191.81 965.33 -90.80 0.46) ; 78 + ( 190.52 966.82 -91.72 0.46) ; 79 + ( 189.40 969.55 -92.42 0.46) ; 80 + ( 187.35 970.25 -93.47 0.46) ; 81 + ( 184.99 970.31 -94.70 0.46) ; 82 + ( 183.51 970.56 -95.75 0.46) ; 83 + ( 182.23 972.04 -96.80 0.46) ; 84 + ( 180.93 973.54 -97.65 0.46) ; 85 + ( 180.93 973.54 -97.68 0.46) ; 86 + ( 179.64 975.02 -98.53 0.46) ; 87 + ( 177.01 976.20 -99.30 0.46) ; 88 + ( 173.81 977.84 -100.37 0.46) ; 89 + ( 172.07 979.22 -100.37 0.46) ; 90 + ( 169.70 979.26 -101.32 0.46) ; 91 + ( 168.54 980.19 -102.40 0.46) ; 92 + ( 166.40 983.27 -103.60 0.46) ; 93 + ( 163.83 986.24 -103.97 0.46) ; 94 + ( 162.76 990.78 -103.97 0.46) ; 95 + ( 161.39 994.63 -104.85 0.46) ; 96 + ( 161.30 997.00 -106.10 0.46) ; 97 + ( 159.88 999.06 -107.42 0.46) ; 98 + ( 158.68 1004.15 -108.35 0.46) ; 99 + ( 156.15 1008.93 -107.78 0.46) ; 100 + ( 155.31 1010.53 -106.60 0.46) ; 101 + ( 155.35 1012.33 -105.90 0.46) ; 102 + ( 155.27 1014.70 -104.10 0.46) ; 103 + ( 154.74 1016.96 -102.70 0.46) ; 104 + ( 154.29 1016.85 -102.70 0.46) ; 105 + ( 154.92 1018.20 -101.88 0.46) ; 106 + ( 155.28 1020.67 -100.37 0.46) ; 107 + ( 154.75 1022.93 -99.78 0.46) ; 108 + ( 153.77 1025.09 -99.03 0.46) ; 109 + ( 154.40 1026.44 -98.00 0.46) ; 110 + ( 153.56 1028.03 -97.25 0.46) ; 111 + ( 153.47 1030.40 -96.07 0.46) ; 112 + ( 151.52 1034.72 -95.25 0.46) ; 113 + ( 149.83 1037.91 -93.53 0.46) ; 114 + ( 148.58 1041.19 -93.15 0.46) ; 115 + ( 147.48 1043.92 -92.72 0.46) ; 116 + ( 146.95 1046.20 -92.20 0.46) ; 117 + ( 144.80 1049.28 -90.42 0.46) ; 118 + + (Cross + (Color White) + (Name "Marker 3") + ( 234.10 877.30 -31.48 1.38) ; 1 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 239.63 857.85 -21.63 1.38) ; 1 + ( 237.59 870.51 -34.45 0.92) ; 2 + ( 235.33 874.17 -38.38 0.92) ; 3 + ( 229.86 879.45 -43.97 0.92) ; 4 + ( 235.25 876.53 -42.70 0.92) ; 5 + ( 225.28 890.90 -48.45 0.92) ; 6 + ( 229.70 890.16 -45.65 0.92) ; 7 + ( 223.70 903.69 -53.45 0.92) ; 8 + ( 226.83 904.42 -53.45 0.92) ; 9 + ( 223.46 916.77 -54.72 0.92) ; 10 + ( 223.66 923.97 -64.27 0.46) ; 11 + ( 212.77 936.21 -69.22 0.46) ; 12 + ( 207.48 942.73 -77.47 0.46) ; 13 + ( 202.62 949.36 -81.75 0.46) ; 14 + ( 193.65 967.55 -91.72 0.46) ; 15 + ( 169.74 981.07 -103.60 0.46) ; 16 + ( 160.71 991.49 -104.85 0.46) ; 17 + ( 164.19 988.72 -104.85 0.46) ; 18 + ( 160.21 1005.70 -108.35 0.46) ; 19 + ( 158.27 999.87 -106.27 0.46) ; 20 + ( 158.05 1002.81 -109.67 0.46) ; 21 + ( 155.47 1005.78 -109.67 0.46) ; 22 + ( 156.11 1007.13 -109.67 0.46) ; 23 + ( 154.14 1011.44 -105.90 0.46) ; 24 + ( 157.41 1011.61 -107.07 0.46) ; 25 + ( 153.63 1019.68 -101.88 0.46) ; 26 + ( 156.26 1018.52 -101.07 0.46) ; 27 + ( 153.99 1022.17 -99.03 0.46) ; 28 + ( 153.06 1026.12 -98.40 0.46) ; 29 + ( 154.98 1025.98 -97.42 0.46) ; 30 + ( 153.57 1034.01 -95.25 0.46) ; 31 + ( 146.83 1036.60 -93.95 0.46) ; 32 + ( 148.86 1046.05 -90.42 0.46) ; 33 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 231.42 611.32 -31.42 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-1-2 + ( 231.21 611.36 -31.42 0.92) ; 2 + ( 230.58 612.92 -30.00 0.92) ; 3 + ( 230.31 614.05 -28.57 0.92) ; 4 + ( 228.85 614.30 -27.15 0.92) ; 5 + ( 229.48 615.64 -26.32 0.92) ; 6 + ( 229.96 617.55 -25.07 0.46) ; 7 + ( 228.41 620.17 -23.60 0.46) ; 8 + ( 228.77 622.64 -22.57 0.46) ; 9 + ( 228.77 622.64 -22.60 0.46) ; 10 + ( 228.06 623.66 -21.75 0.46) ; 11 + ( 228.37 624.35 -21.75 0.46) ; 12 + ( 228.30 626.70 -20.90 0.46) ; 13 + ( 228.79 628.62 -19.85 0.46) ; 14 + ( 227.18 629.44 -18.97 0.46) ; 15 + ( 225.89 630.92 -18.08 0.46) ; 16 + ( 224.42 631.17 -15.97 0.46) ; 17 + ( 224.42 631.17 -15.95 0.46) ; 18 + + (Cross + (Color White) + (Name "Marker 3") + ( 231.06 611.25 -31.77 1.83) ; 1 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 230.74 618.32 -23.60 0.46) ; 1 + ( 226.41 622.68 -23.60 0.46) ; 2 + ) ; End of markers + Normal + ) ; End of split + | + ( 239.41 464.61 -16.32 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-1-2 + ( 240.94 466.16 -15.48 0.46) ; 2 + ( 240.86 468.54 -14.90 0.46) ; 3 + ( 240.60 469.66 -14.15 0.46) ; 4 + ( 242.24 470.64 -12.62 0.46) ; 5 + ( 245.23 471.94 -11.63 0.46) ; 6 + ( 248.37 472.67 -10.70 0.46) ; 7 + ( 248.15 475.61 -9.77 0.46) ; 8 + ( 248.69 479.32 -9.13 0.46) ; 9 + ( 250.97 481.65 -10.07 0.46) ; 10 + ( 252.95 483.30 -9.22 0.46) ; 11 + ( 254.46 484.85 -7.87 0.46) ; 12 + ( 255.09 486.19 -6.67 0.46) ; 13 + ( 254.25 487.78 -5.13 0.46) ; 14 + ( 254.25 487.78 -5.15 0.46) ; 15 + ( 256.42 486.51 -3.57 0.46) ; 16 + ( 256.42 486.51 -3.60 0.46) ; 17 + ( 257.90 486.25 -2.45 0.46) ; 18 + ( 257.63 487.39 -0.63 0.46) ; 19 + ( 254.83 487.33 0.93 0.46) ; 20 + ( 254.56 488.46 2.45 0.46) ; 21 + ( 256.79 488.99 3.85 0.46) ; 22 + ( 256.75 493.16 3.45 0.46) ; 23 + ( 255.96 496.55 1.22 0.46) ; 24 + ( 255.96 496.55 0.88 0.46) ; 25 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 238.13 466.10 -16.32 0.46) ; 1 + ( 238.53 464.40 -16.32 0.46) ; 2 + ( 240.89 464.36 -15.48 0.46) ; 3 + ( 243.82 474.00 -11.63 0.46) ; 4 + ( 243.72 470.39 -11.63 0.46) ; 5 + ( 246.08 470.36 -11.63 0.46) ; 6 + ( 246.60 478.24 -9.13 0.46) ; 7 + ( 247.66 479.68 -9.13 0.46) ; 8 + ( 252.76 482.07 -8.07 0.46) ; 9 + ( 250.49 485.71 -8.25 0.46) ; 10 + ( 250.44 483.92 -10.80 0.46) ; 11 + ( 252.86 485.67 -6.67 0.46) ; 12 + ( 257.67 483.21 -6.67 0.46) ; 13 + ( 253.75 485.88 2.45 0.46) ; 14 + ( 253.09 488.72 3.85 0.46) ; 15 + ( 258.71 488.83 3.85 0.46) ; 16 + ( 255.06 490.37 5.37 0.46) ; 17 + ( 255.81 491.14 6.22 0.46) ; 18 + ) ; End of markers + Normal + ) ; End of split + | + ( 235.28 454.09 -16.50 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-1-2 + ( 233.82 454.34 -15.32 0.92) ; 2 + ( 232.08 455.72 -14.05 0.92) ; 3 + ( 231.94 456.29 -12.62 0.92) ; 4 + ( 231.58 453.82 -11.55 0.92) ; 5 + ( 230.51 452.36 -10.20 0.92) ; 6 + ( 229.44 450.92 -9.67 0.92) ; 7 + ( 228.68 450.14 -8.23 0.92) ; 8 + ( 227.47 449.27 -8.23 0.92) ; 9 + ( 226.52 447.25 -8.23 0.92) ; 10 + ( 223.58 447.76 -6.97 0.92) ; 11 + ( 220.90 447.13 -6.55 0.92) ; 12 + ( 217.64 446.97 -6.85 0.92) ; 13 + ( 214.83 446.90 -6.02 0.92) ; 14 + ( 211.83 445.61 -4.92 0.92) ; 15 + ( 209.97 447.55 -3.65 0.92) ; 16 + ( 210.45 449.46 -3.20 0.92) ; 17 + ( 210.19 450.59 -1.70 0.92) ; 18 + ( 207.51 449.96 -0.97 0.92) ; 19 + ( 205.20 451.82 0.35 0.92) ; 20 + ( 205.20 451.82 0.32 0.92) ; 21 + ( 203.33 453.76 0.67 0.92) ; 22 + ( 200.38 454.27 0.67 0.92) ; 23 + ( 196.73 455.79 -0.02 0.92) ; 24 + ( 193.96 457.54 -1.25 0.92) ; 25 + ( 191.64 459.38 -0.30 0.92) ; 26 + ( 190.57 457.94 0.32 0.92) ; 27 + ( 187.05 458.90 1.22 0.92) ; 28 + ( 184.54 459.52 0.75 0.92) ; 29 + ( 181.02 460.47 -0.55 0.92) ; 30 + ( 178.84 461.75 -0.90 0.92) ; 31 + ( 175.85 460.45 -2.15 0.92) ; 32 + ( 174.59 457.78 -2.80 0.92) ; 33 + ( 171.46 457.04 -3.10 0.92) ; 34 + ( 167.18 457.23 -3.97 0.92) ; 35 + ( 167.18 457.23 -4.00 0.92) ; 36 + ( 164.81 457.27 -3.60 0.92) ; 37 + ( 164.81 457.27 -3.62 0.92) ; 38 + ( 163.16 456.29 -1.77 0.92) ; 39 + ( 160.48 455.66 -1.02 0.92) ; 40 + ( 158.02 458.07 0.85 0.92) ; 41 + ( 155.85 459.35 2.85 0.92) ; 42 + ( 155.85 459.35 2.83 0.92) ; 43 + ( 152.50 461.56 4.50 0.92) ; 44 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 230.17 455.87 -12.62 0.92) ; 1 + ( 231.04 450.10 -9.67 0.92) ; 2 + ( 229.04 452.63 -8.30 0.92) ; 3 + ( 222.19 445.64 -6.55 0.92) ; 4 + ( 222.16 449.81 -6.55 0.92) ; 5 + ( 219.95 445.11 -4.82 0.92) ; 6 + ( 219.92 449.29 -4.85 0.92) ; 7 + ( 215.95 450.15 -7.43 0.92) ; 8 + ( 213.55 448.39 -7.75 0.92) ; 9 + ( 216.25 444.84 -9.13 0.92) ; 10 + ( 206.84 446.82 -3.65 0.92) ; 11 + ( 209.60 445.08 -2.30 0.92) ; 12 + ( 212.12 450.45 -1.40 0.92) ; 13 + ( 204.97 448.77 -0.97 0.92) ; 14 + ( 207.56 451.77 -0.97 0.92) ; 15 + ( 209.79 452.30 -0.97 0.92) ; 16 + ( 207.03 454.03 1.90 0.92) ; 17 + ( 201.81 452.22 -1.82 0.92) ; 18 + ( 199.70 451.12 -0.75 0.92) ; 19 + ( 180.08 458.46 -0.90 0.92) ; 20 + ( 182.67 461.46 -0.90 0.92) ; 21 + ( 183.70 461.10 0.47 0.92) ; 22 + ( 181.07 462.27 -0.95 0.92) ; 23 + ( 174.09 455.86 -2.90 0.92) ; 24 + ( 169.05 455.28 -4.25 0.92) ; 25 + ( 169.02 459.45 -4.32 0.92) ; 26 + ( 166.91 458.36 -5.37 0.92) ; 27 + ( 161.79 460.15 -1.02 0.92) ; 28 + ( 160.43 453.86 -1.02 0.92) ; 29 + ( 163.11 454.49 -1.02 0.92) ; 30 + ( 158.92 458.28 -1.22 0.92) ; 31 + ( 157.36 460.89 4.50 0.92) ; 32 + ) ; End of markers + Normal + ) ; End of split + | + ( 247.39 360.39 -28.37 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-2 + ( 247.17 363.33 -29.50 1.83) ; 2 + ( 245.93 366.62 -30.90 1.83) ; 3 + ( 244.38 369.24 -32.15 1.83) ; 4 + ( 242.96 371.30 -33.80 1.83) ; 5 + ( 242.03 375.25 -34.85 1.83) ; 6 + ( 240.07 379.58 -34.75 1.83) ; 7 + ( 237.94 382.66 -35.02 1.83) ; 8 + ( 237.90 386.83 -35.33 1.83) ; 9 + ( 237.90 386.83 -35.35 1.83) ; 10 + ( 236.84 391.36 -35.35 1.83) ; 11 + ( 236.11 394.40 -36.38 1.83) ; 12 + ( 235.87 396.36 -36.40 1.83) ; 13 + ( 235.78 398.72 -36.38 1.83) ; 14 + ( 235.84 403.66 -36.72 1.83) ; 15 + ( 232.99 407.77 -37.02 1.83) ; 16 + ( 233.04 409.57 -38.15 1.83) ; 17 + ( 231.66 413.43 -39.20 1.83) ; 18 + ( 229.72 417.76 -40.17 1.83) ; 19 + ( 229.72 423.72 -41.17 1.83) ; 20 + ( 229.55 426.58 -41.77 1.83) ; 21 + ( 230.28 431.52 -41.85 1.83) ; 22 + ( 229.93 435.02 -40.60 1.83) ; 23 + ( 228.87 439.55 -41.03 1.83) ; 24 + ( 228.87 439.55 -41.05 1.83) ; 25 + ( 226.34 444.33 -41.73 1.83) ; 26 + ( 224.38 448.65 -42.10 1.83) ; 27 + ( 224.93 452.36 -43.10 1.83) ; 28 + ( 225.73 454.93 -43.92 1.83) ; 29 + ( 225.73 454.93 -43.95 1.83) ; 30 + ( 224.80 458.90 -44.97 1.83) ; 31 + ( 223.07 460.29 -45.75 1.83) ; 32 + ( 223.07 460.29 -45.77 1.83) ; 33 + ( 221.65 462.34 -47.02 1.83) ; 34 + ( 222.18 466.04 -47.88 1.83) ; 35 + ( 221.65 468.31 -47.88 1.83) ; 36 + + (Cross + (Color White) + (Name "Marker 3") + ( 236.18 402.48 -12.40 1.83) ; 1 + ( 236.30 395.94 -13.23 1.83) ; 2 + ( 236.22 398.31 -12.40 1.83) ; 3 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 242.46 369.39 -34.45 1.83) ; 1 + ( 245.90 370.79 -31.98 1.83) ; 2 + ( 247.60 367.60 -28.37 1.83) ; 3 + ( 234.79 392.07 -36.40 1.83) ; 4 + ( 238.68 393.58 -36.40 1.83) ; 5 + ( 239.41 398.54 -35.70 1.83) ; 6 + ( 239.19 401.46 -35.70 1.83) ; 7 + ( 232.64 405.30 -35.70 1.83) ; 8 + ( 229.97 410.65 -39.20 1.83) ; 9 + ( 228.21 422.18 -41.17 1.83) ; 10 + ( 227.76 426.15 -41.85 1.83) ; 11 + ( 227.86 429.75 -41.85 1.83) ; 12 + ( 228.28 434.04 -39.78 1.83) ; 13 + ( 228.14 456.70 -44.85 1.83) ; 14 + ( 220.24 460.22 -47.02 1.83) ; 15 + ( 232.37 426.63 -41.85 1.83) ; 16 + ) ; End of markers + ( + ( 223.54 470.57 -46.93 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-1 + ( 225.94 472.34 -46.45 0.92) ; 2 + ( 228.22 474.66 -46.25 0.92) ; 3 + ( 230.46 475.19 -46.25 0.92) ; 4 + ( 231.58 478.44 -46.88 0.92) ; 5 + ( 232.53 480.45 -47.60 0.92) ; 6 + ( 235.39 482.30 -47.92 0.92) ; 7 + ( 236.86 482.06 -47.33 0.92) ; 8 + ( 238.78 481.91 -48.88 0.92) ; 9 + ( 238.70 484.28 -50.13 0.92) ; 10 + ( 238.70 484.28 -50.15 0.92) ; 11 + ( 238.70 484.28 -51.50 0.92) ; 12 + ( 238.70 484.28 -51.52 0.92) ; 13 + ( 237.40 485.76 -52.20 0.92) ; 14 + ( 237.59 487.01 -53.38 0.92) ; 15 + ( 239.36 487.41 -54.35 0.92) ; 16 + ( 241.48 488.51 -55.35 0.92) ; 17 + ( 241.48 488.51 -55.38 0.92) ; 18 + ( 241.78 489.19 -55.72 0.92) ; 19 + ( 241.00 492.57 -55.72 0.92) ; 20 + ( 242.51 494.14 -56.42 0.92) ; 21 + ( 243.59 495.58 -57.50 0.92) ; 22 + ( 244.65 497.02 -58.30 0.92) ; 23 + ( 245.23 496.56 -58.90 0.92) ; 24 + ( 246.13 496.77 -58.88 0.92) ; 25 + ( 245.47 499.60 -59.02 0.92) ; 26 + ( 245.91 499.70 -59.02 0.92) ; 27 + ( 248.02 500.80 -59.63 0.92) ; 28 + ( 248.83 503.38 -59.63 0.92) ; 29 + ( 249.27 503.48 -60.67 0.92) ; 30 + ( 248.16 506.21 -61.52 0.92) ; 31 + ( 251.15 507.50 -62.60 0.92) ; 32 + ( 253.26 508.59 -63.17 0.92) ; 33 + ( 255.09 510.82 -63.95 0.92) ; 34 + ( 255.32 513.86 -65.00 0.92) ; 35 + ( 256.97 514.84 -65.75 0.92) ; 36 + ( 259.52 516.03 -66.60 0.92) ; 37 + ( 262.38 517.90 -64.57 0.92) ; 38 + ( 264.17 518.32 -65.30 0.92) ; 39 + ( 264.17 518.32 -65.32 0.92) ; 40 + ( 266.59 520.08 -65.97 0.92) ; 41 + ( 268.19 519.25 -66.65 0.92) ; 42 + ( 268.19 519.25 -66.68 0.92) ; 43 + ( 270.42 519.78 -67.90 0.92) ; 44 + ( 270.42 519.78 -67.93 0.92) ; 45 + ( 272.07 520.76 -69.42 0.92) ; 46 + ( 272.07 520.76 -69.45 0.92) ; 47 + ( 273.15 522.21 -70.27 0.92) ; 48 + ( 272.76 523.91 -71.72 0.92) ; 49 + ( 272.76 523.91 -71.75 0.92) ; 50 + ( 276.33 524.75 -72.20 0.92) ; 51 + ( 280.67 526.36 -73.57 0.92) ; 52 + ( 283.39 528.80 -74.30 0.92) ; 53 + ( 286.69 530.77 -74.78 0.92) ; 54 + ( 289.24 531.95 -75.25 0.92) ; 55 + ( 293.31 534.69 -75.88 0.92) ; 56 + ( 295.55 535.22 -76.03 0.92) ; 57 + ( 298.27 537.66 -75.72 0.92) ; 58 + ( 301.79 536.68 -76.03 0.92) ; 59 + ( 305.10 538.66 -76.13 0.92) ; 60 + ( 308.09 539.96 -77.35 0.92) ; 61 + ( 309.61 541.51 -78.20 0.92) ; 62 + ( 313.19 542.34 -79.07 0.92) ; 63 + ( 316.05 544.20 -80.37 0.92) ; 64 + ( 318.42 544.16 -82.22 0.92) ; 65 + ( 318.42 544.16 -82.52 0.92) ; 66 + + (Cross + (Color White) + (Name "Marker 3") + ( 236.69 486.79 -53.38 0.92) ; 1 + ( 236.46 483.76 -47.33 0.92) ; 2 + ( 234.70 479.16 -47.92 0.92) ; 3 + ( 227.51 475.68 -46.25 0.92) ; 4 + ( 223.72 471.82 -46.25 0.92) ; 5 + ( 243.44 490.17 -55.72 0.92) ; 6 + ( 245.40 491.82 -55.92 0.92) ; 7 + ( 244.87 494.10 -56.42 0.92) ; 8 + ( 247.65 498.31 -59.02 0.92) ; 9 + ( 250.24 501.31 -59.63 0.92) ; 10 + ( 249.86 508.99 -62.60 0.92) ; 11 + ( 252.88 506.12 -62.60 0.92) ; 12 + ( 254.10 507.00 -63.95 0.92) ; 13 + ( 253.94 511.73 -63.95 0.92) ; 14 + ( 256.51 508.75 -64.13 0.92) ; 15 + ( 257.64 517.98 -66.60 0.92) ; 16 + ( 261.00 515.78 -64.57 0.92) ; 17 + ( 265.10 520.33 -64.57 0.92) ; 18 + ( 267.48 520.29 -64.42 0.92) ; 19 + ( 271.75 520.09 -65.70 0.92) ; 20 + ( 270.91 521.69 -69.20 0.92) ; 21 + ( 273.56 526.49 -72.20 0.92) ; 22 + ( 275.07 522.06 -71.47 0.92) ; 23 + ( 280.03 525.02 -73.57 0.92) ; 24 + ( 280.00 529.19 -71.57 0.92) ; 25 + ( 284.01 530.13 -70.97 0.92) ; 26 + ( 304.89 541.58 -77.35 0.92) ; 27 + ( 303.85 535.97 -74.78 0.92) ; 28 + ) ; End of markers + Normal + | + ( 220.10 470.93 -47.88 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2 + ( 219.93 475.68 -47.88 1.83) ; 2 + ( 219.00 479.63 -47.13 1.83) ; 3 + ( 217.94 484.16 -47.67 1.83) ; 4 + ( 216.57 488.02 -47.55 1.83) ; 5 + ( 215.46 490.75 -48.75 1.83) ; 6 + ( 216.44 494.55 -50.05 1.83) ; 7 + ( 215.02 496.62 -50.05 1.83) ; 8 + ( 216.14 499.86 -48.62 1.83) ; 9 + ( 215.66 503.93 -48.62 1.83) ; 10 + ( 215.63 508.10 -48.62 1.83) ; 11 + ( 214.96 510.92 -48.62 1.83) ; 12 + ( + ( 212.13 513.27 -48.62 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-1 + ( 210.84 514.76 -50.42 0.92) ; 2 + ( 210.03 512.17 -51.88 0.92) ; 3 + ( 210.03 512.17 -51.90 0.92) ; 4 + ( 209.81 515.12 -53.35 0.92) ; 5 + ( 210.57 515.89 -54.32 0.92) ; 6 + ( 208.70 517.83 -55.05 0.92) ; 7 + ( 207.72 520.00 -55.97 0.92) ; 8 + ( 205.99 521.38 -56.95 0.92) ; 9 + ( 205.54 521.28 -58.13 0.92) ; 10 + ( 205.45 523.65 -57.63 0.92) ; 11 + ( 205.64 524.88 -58.88 0.92) ; 12 + ( 205.06 525.34 -60.27 0.92) ; 13 + ( 202.68 525.39 -61.92 0.92) ; 14 + ( 202.29 527.08 -63.40 0.92) ; 15 + ( 203.05 527.86 -64.90 0.92) ; 16 + ( 202.07 530.03 -65.47 0.92) ; 17 + ( 201.67 531.72 -64.75 0.92) ; 18 + ( 200.39 533.21 -65.63 0.92) ; 19 + ( 199.23 534.13 -66.22 0.92) ; 20 + ( 199.41 535.36 -67.10 0.92) ; 21 + ( 198.43 537.53 -67.57 0.92) ; 22 + ( 197.27 538.45 -68.35 0.92) ; 23 + ( 195.36 538.59 -69.32 0.92) ; 24 + ( 194.83 540.87 -69.88 0.92) ; 25 + ( 193.85 543.02 -70.72 0.92) ; 26 + ( 192.38 543.27 -72.13 0.92) ; 27 + ( 191.21 544.20 -73.47 0.92) ; 28 + ( 190.23 546.36 -74.65 0.92) ; 29 + ( 186.76 549.12 -75.07 0.92) ; 30 + ( 186.05 550.14 -76.00 0.92) ; 31 + ( 183.92 553.24 -77.13 0.92) ; 32 + ( 181.73 554.51 -78.60 0.92) ; 33 + ( 179.54 555.79 -80.02 0.92) ; 34 + ( 178.70 557.38 -80.92 0.92) ; 35 + ( 178.17 559.66 -82.57 0.92) ; 36 + ( 176.61 562.27 -83.53 0.92) ; 37 + ( 176.66 564.07 -84.88 0.92) ; 38 + ( 174.17 564.69 -85.63 0.92) ; 39 + ( 173.32 566.28 -86.72 0.92) ; 40 + ( 173.32 566.28 -86.75 0.92) ; 41 + ( 172.34 568.43 -88.00 0.92) ; 42 + ( 172.34 568.43 -88.02 0.92) ; 43 + ( 171.37 570.60 -87.65 0.92) ; 44 + ( 171.37 570.60 -87.68 0.92) ; 45 + ( 168.92 573.01 -88.53 0.92) ; 46 + ( 166.41 573.62 -88.80 0.92) ; 47 + ( 166.41 573.62 -88.82 0.92) ; 48 + ( 163.97 576.03 -89.45 0.92) ; 49 + ( 163.97 576.03 -89.48 0.92) ; 50 + ( 162.94 576.38 -89.55 0.92) ; 51 + ( 161.52 578.44 -91.22 0.92) ; 52 + ( 158.76 580.18 -92.38 0.92) ; 53 + ( 158.76 580.18 -92.40 0.92) ; 54 + ( 157.78 582.34 -93.65 0.92) ; 55 + ( 155.91 584.29 -95.20 0.92) ; 56 + ( 155.91 584.29 -95.22 0.92) ; 57 + ( 155.06 585.88 -95.88 0.92) ; 58 + ( 154.66 587.59 -96.93 0.92) ; 59 + ( 154.66 587.59 -96.95 0.92) ; 60 + ( 154.45 590.51 -97.75 0.92) ; 61 + ( 154.45 590.51 -97.78 0.92) ; 62 + ( 151.99 592.92 -98.38 0.92) ; 63 + ( 150.84 593.85 -99.63 0.92) ; 64 + ( 150.26 594.30 -101.25 0.92) ; 65 + ( 150.26 594.30 -101.27 0.92) ; 66 + + (Cross + (Color White) + (Name "Marker 3") + ( 206.07 519.01 -56.28 0.92) ; 1 + ( 209.06 520.32 -53.90 0.92) ; 2 + ( 206.62 522.73 -57.63 0.92) ; 3 + ( 207.69 524.17 -58.88 0.92) ; 4 + ( 201.49 524.51 -61.92 0.92) ; 5 + ( 203.34 532.70 -63.90 0.92) ; 6 + ( 197.89 533.82 -66.22 0.92) ; 7 + ( 195.89 536.33 -67.57 0.92) ; 8 + ( 199.63 538.41 -67.57 0.92) ; 9 + ( 197.90 539.79 -67.57 0.92) ; 10 + ( 211.37 512.49 -50.42 0.92) ; 11 + ( 163.30 578.86 -89.55 0.92) ; 12 + ( 158.86 583.79 -95.22 0.92) ; 13 + ( 155.81 580.69 -95.22 0.92) ; 14 + ( 153.32 587.27 -95.88 0.92) ; 15 + ( 163.47 574.12 -88.75 0.92) ; 16 + ( 211.82 512.60 -54.35 0.92) ; 17 + ) ; End of markers + Normal + | + ( 214.35 515.57 -49.25 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2 + ( 214.85 517.48 -49.47 1.83) ; 2 + ( 215.34 519.38 -49.47 1.83) ; 3 + ( 213.78 522.00 -49.47 1.83) ; 4 + ( 214.20 526.28 -49.47 1.83) ; 5 + ( 213.72 530.35 -49.47 1.83) ; 6 + ( 213.19 532.61 -49.47 1.83) ; 7 + ( 214.17 536.42 -50.20 1.83) ; 8 + ( 214.08 538.80 -49.32 1.83) ; 9 + ( 212.39 541.98 -49.32 1.83) ; 10 + ( 212.05 545.48 -49.32 1.83) ; 11 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 212.87 515.82 -49.25 1.83) ; 1 + ( 216.59 522.07 -49.47 1.83) ; 2 + ( 211.56 527.45 -49.47 1.83) ; 3 + ( 216.34 529.17 -49.47 1.83) ; 4 + ( 215.93 524.89 -49.47 1.83) ; 5 + ) ; End of markers + ( + ( 209.61 546.12 -47.82 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-1 + ( 209.03 546.59 -46.82 0.92) ; 2 + ( 208.58 546.48 -46.82 0.92) ; 3 + ( 208.32 547.61 -46.82 0.92) ; 4 + ( 205.05 547.44 -45.77 0.92) ; 5 + ( 205.55 549.35 -45.07 0.92) ; 6 + ( 207.35 549.77 -43.67 0.92) ; 7 + ( 205.60 551.15 -42.17 0.92) ; 8 + ( 204.62 553.31 -41.17 0.92) ; 9 + ( 203.20 555.37 -40.57 0.92) ; 10 + ( 201.33 557.31 -41.35 0.92) ; 11 + ( 199.46 559.27 -41.50 0.92) ; 12 + ( 197.73 560.65 -40.63 0.92) ; 13 + ( 196.70 561.01 -39.55 0.92) ; 14 + ( 194.87 564.77 -39.05 0.92) ; 15 + ( 194.22 567.59 -38.77 0.92) ; 16 + ( 192.16 568.31 -38.77 0.92) ; 17 + ( 189.97 569.59 -37.90 0.92) ; 18 + ( 187.80 570.86 -37.30 0.92) ; 19 + ( 185.43 570.90 -35.83 0.92) ; 20 + ( 183.11 572.76 -35.83 0.92) ; 21 + ( 180.87 572.23 -35.83 0.92) ; 22 + ( 178.78 571.14 -37.47 0.92) ; 23 + ( 178.78 571.14 -37.50 0.92) ; 24 + ( 176.18 568.15 -38.25 0.92) ; 25 + ( 173.82 568.18 -36.50 0.92) ; 26 + ( 172.66 569.11 -36.50 0.92) ; 27 + ( 170.55 568.02 -36.78 0.92) ; 28 + ( 167.92 569.20 -37.70 0.92) ; 29 + ( 164.09 569.48 -38.35 0.92) ; 30 + ( 160.72 565.72 -38.63 0.92) ; 31 + ( 159.88 567.31 -39.60 0.92) ; 32 + ( 158.10 566.89 -40.10 0.92) ; 33 + ( 155.82 564.57 -39.75 0.92) ; 34 + ( 150.45 563.31 -39.75 0.92) ; 35 + ( 146.62 563.61 -41.20 0.92) ; 36 + ( 144.30 565.45 -40.85 0.92) ; 37 + ( 144.30 565.45 -40.88 0.92) ; 38 + ( 142.78 563.89 -40.00 0.92) ; 39 + ( 140.15 565.08 -39.80 0.92) ; 40 + ( 137.48 564.45 -39.80 0.92) ; 41 + ( 134.08 564.85 -38.88 0.92) ; 42 + ( 131.09 563.55 -37.58 0.92) ; 43 + ( 127.12 564.41 -36.97 0.92) ; 44 + ( 125.64 564.66 -35.70 0.92) ; 45 + ( 126.04 562.97 -34.90 0.92) ; 46 + ( 127.02 560.80 -34.70 0.92) ; 47 + + (Cross + (Color White) + (Name "Marker 3") + ( 209.71 549.72 -43.67 0.92) ; 1 + ( 204.13 551.41 -43.67 0.92) ; 2 + ( 201.38 559.12 -41.08 0.92) ; 3 + ( 201.86 555.06 -38.97 0.92) ; 4 + ( 200.09 560.60 -38.97 0.92) ; 5 + ( 194.77 561.16 -38.53 0.92) ; 6 + ( 198.66 556.69 -40.42 0.92) ; 7 + ( 191.62 564.60 -38.77 0.92) ; 8 + ( 193.66 563.87 -38.77 0.92) ; 9 + ( 196.27 566.88 -38.77 0.92) ; 10 + ( 195.64 565.54 -38.77 0.92) ; 11 + ( 188.63 569.27 -37.30 0.92) ; 12 + ( 190.02 571.39 -37.30 0.92) ; 13 + ( 185.92 572.82 -36.13 0.92) ; 14 + ( 184.76 573.73 -35.80 0.92) ; 15 + ( 177.80 573.29 -38.25 0.92) ; 16 + ( 180.07 569.65 -36.80 0.92) ; 17 + ( 175.42 567.37 -36.78 0.92) ; 18 + ( 178.55 568.10 -38.88 0.92) ; 19 + ( 167.42 567.29 -36.92 0.92) ; 20 + ( 167.98 571.00 -37.25 0.92) ; 21 + ( 172.97 569.78 -35.83 0.92) ; 22 + ( 158.15 568.69 -40.10 0.92) ; 23 + ( 153.37 566.98 -40.32 0.92) ; 24 + ( 150.10 560.83 -40.10 0.92) ; 25 + ( 146.27 561.13 -40.72 0.92) ; 26 + ( 148.46 565.82 -38.70 0.92) ; 27 + ( 143.31 561.64 -39.40 0.92) ; 28 + ( 141.84 561.89 -38.83 0.92) ; 29 + ( 140.55 563.38 -38.53 0.92) ; 30 + ( 138.76 562.96 -38.53 0.92) ; 31 + ( 140.33 566.31 -38.47 0.92) ; 32 + ( 138.76 562.96 -39.80 0.92) ; 33 + ( 136.39 563.00 -39.80 0.92) ; 34 + ( 137.66 565.68 -39.80 0.92) ; 35 + ( 140.33 566.31 -39.80 0.92) ; 36 + ( 134.25 566.08 -37.58 0.92) ; 37 + ( 125.06 565.11 -34.70 0.92) ; 38 + ( 188.85 544.24 -74.65 0.92) ; 39 + ( 180.53 553.63 -80.02 0.92) ; 40 + ( 178.00 564.39 -81.67 0.92) ; 41 + ( 177.14 560.00 -84.92 0.92) ; 42 + ( 173.37 568.08 -88.02 0.92) ; 43 + ( 172.38 564.26 -88.02 0.92) ; 44 + ( 168.87 571.21 -87.22 0.92) ; 45 + ( 208.09 544.57 -46.82 0.92) ; 46 + ) ; End of markers + Normal + | + ( 212.78 550.42 -49.92 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2 + ( 214.30 551.98 -49.83 1.83) ; 2 + ( 214.66 554.45 -49.83 1.83) ; 3 + ( 213.68 556.61 -51.22 1.83) ; 4 + ( 213.33 560.11 -52.02 1.83) ; 5 + ( 214.45 563.35 -52.77 1.83) ; 6 + ( 214.28 568.11 -53.62 1.83) ; 7 + ( 214.84 571.80 -55.27 1.83) ; 8 + ( 215.69 576.19 -55.27 1.83) ; 9 + ( 216.24 579.91 -56.20 1.83) ; 10 + ( 216.46 582.95 -57.40 1.83) ; 11 + ( 216.11 586.45 -58.65 1.83) ; 12 + ( 217.96 588.66 -59.40 1.83) ; 13 + ( 218.89 590.68 -58.80 1.83) ; 14 + ( 217.07 594.44 -57.47 1.83) ; 15 + ( 216.85 597.36 -57.92 1.83) ; 16 + ( 217.84 601.18 -57.92 1.83) ; 17 + ( 218.34 603.08 -59.10 1.83) ; 18 + ( 218.83 605.00 -59.10 1.83) ; 19 + ( 218.66 609.73 -59.80 1.83) ; 20 + ( 218.76 613.34 -60.60 1.83) ; 21 + ( 219.30 617.06 -61.55 1.83) ; 22 + ( 219.40 620.65 -62.40 1.83) ; 23 + ( 219.40 620.65 -62.42 1.83) ; 24 + ( 220.08 623.80 -63.40 1.83) ; 25 + ( 220.08 623.80 -63.42 1.83) ; 26 + ( 218.84 627.09 -63.42 1.83) ; 27 + ( 220.45 632.24 -63.88 1.83) ; 28 + ( 221.46 635.94 -64.05 1.83) ; 29 + ( 220.35 638.66 -63.05 1.83) ; 30 + ( 221.65 643.16 -62.45 1.83) ; 31 + ( 220.99 645.98 -62.08 1.83) ; 32 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 212.12 537.13 -49.32 1.83) ; 1 + ( 216.06 540.45 -49.32 1.83) ; 2 + ( 211.46 539.97 -49.32 1.83) ; 3 + ( 214.78 547.92 -48.95 1.83) ; 4 + ( 212.54 563.51 -51.72 1.83) ; 5 + ( 217.00 564.56 -51.72 1.83) ; 6 + ( 212.24 568.82 -55.27 1.83) ; 7 + ( 216.52 568.63 -55.27 1.83) ; 8 + ( 217.51 572.43 -55.27 1.83) ; 9 + ( 217.88 574.92 -55.27 1.83) ; 10 + ( 213.73 580.50 -55.27 1.83) ; 11 + ( 214.10 582.99 -57.92 1.83) ; 12 + ( 219.89 600.46 -57.92 1.83) ; 13 + ( 216.29 603.80 -58.25 1.83) ; 14 + ( 217.36 605.25 -58.25 1.83) ; 15 + ( 218.44 628.79 -63.88 1.83) ; 16 + ( 219.12 631.93 -64.53 1.83) ; 17 + ( 223.18 634.68 -63.75 1.83) ; 18 + ) ; End of markers + ( + ( 223.32 646.54 -62.08 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-1 + ( 227.43 645.10 -61.15 0.46) ; 2 + ( 229.21 645.53 -62.35 0.46) ; 3 + ( 230.81 644.70 -63.53 0.46) ; 4 + ( 231.84 644.35 -64.85 0.46) ; 5 + ( 232.60 645.13 -66.82 0.46) ; 6 + ( 233.23 645.89 -65.95 0.46) ; 7 + ( 234.03 644.98 -66.57 0.46) ; 8 + ( 235.28 645.76 -68.20 0.46) ; 9 + ( 237.78 645.15 -68.85 0.46) ; 10 + ( 239.57 645.57 -69.60 0.46) ; 11 + ( 241.16 644.74 -70.00 0.46) ; 12 + ( 245.27 643.32 -70.78 0.46) ; 13 + ( 246.96 640.13 -71.63 0.46) ; 14 + ( 249.46 639.53 -70.72 0.46) ; 15 + ( 252.73 639.69 -71.75 0.46) ; 16 + ( 255.80 638.61 -72.53 0.46) ; 17 + ( 257.27 638.36 -73.47 0.46) ; 18 + ( 260.00 640.79 -72.85 0.46) ; 19 + ( 262.60 643.79 -72.95 0.46) ; 20 + ( 264.25 644.78 -74.05 0.46) ; 21 + ( 266.04 645.20 -75.70 0.46) ; 22 + ( 267.11 646.64 -78.42 0.46) ; 23 + ( 267.11 646.64 -78.53 0.46) ; 24 + + (Cross + (Color White) + (Name "Marker 3") + ( 260.52 638.53 -73.70 0.46) ; 1 + ( 255.49 637.95 -70.22 0.46) ; 2 + ( 254.06 639.99 -73.25 0.46) ; 3 + ( 260.81 643.38 -72.95 0.46) ; 4 + ( 264.43 646.01 -72.40 0.46) ; 5 + ( 240.63 647.01 -70.00 0.46) ; 6 + ( 225.19 644.58 -61.15 0.46) ; 7 + ( 233.91 645.35 -34.78 1.83) ; 8 + ) ; End of markers + Normal + | + ( 220.64 649.48 -61.57 1.83) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2 + ( 219.71 653.45 -61.57 1.83) ; 2 + ( 219.23 657.51 -61.57 1.83) ; 3 + ( 220.36 660.76 -61.57 1.83) ; 4 + ( 220.90 664.47 -61.57 1.83) ; 5 + ( 220.24 667.30 -61.57 1.83) ; 6 + ( 220.51 672.14 -62.65 1.83) ; 7 + ( 220.92 676.42 -63.53 1.83) ; 8 + ( 220.57 679.92 -62.35 1.83) ; 9 + ( 221.11 683.63 -62.35 1.83) ; 10 + ( 221.72 689.15 -62.97 1.83) ; 11 + ( 221.68 693.31 -63.72 1.83) ; 12 + ( 222.17 695.23 -64.13 1.83) ; 13 + ( 222.71 698.94 -64.40 1.83) ; 14 + ( 221.60 701.66 -64.40 1.83) ; 15 + ( 221.97 704.14 -64.85 1.83) ; 16 + ( 222.56 709.64 -64.85 1.83) ; 17 + ( 222.66 713.25 -64.27 1.83) ; 18 + ( 222.58 715.62 -64.27 1.83) ; 19 + ( 223.83 718.30 -64.60 1.83) ; 20 + ( 224.42 723.82 -64.32 1.83) ; 21 + ( 224.34 726.19 -63.05 1.83) ; 22 + ( 224.57 729.23 -61.88 1.83) ; 23 + ( 224.08 733.29 -61.10 1.83) ; 24 + ( 223.41 736.13 -60.25 1.83) ; 25 + ( 224.68 738.81 -59.27 1.83) ; 26 + ( 225.09 743.09 -58.82 1.83) ; 27 + ( 225.63 746.79 -58.82 1.83) ; 28 + ( 224.70 750.76 -59.95 1.83) ; 29 + ( 226.41 753.55 -59.85 1.83) ; 30 + ( 226.31 755.92 -59.85 1.83) ; 31 + ( 226.29 760.08 -59.85 1.83) ; 32 + ( 224.99 761.58 -60.45 1.83) ; 33 + ( 224.96 765.74 -60.45 1.83) ; 34 + ( 225.33 768.23 -61.00 1.83) ; 35 + ( 224.80 770.49 -59.97 1.83) ; 36 + ( 224.00 773.88 -59.32 1.83) ; 37 + + (Cross + (Color White) + (Name "Marker 3") + ( 217.22 650.48 -59.32 0.46) ; 1 + ( 218.60 652.58 -59.32 0.46) ; 2 + ( 223.07 653.64 -58.45 0.46) ; 3 + ( 222.57 651.73 -58.45 0.46) ; 4 + ( 221.69 657.49 -57.28 0.46) ; 5 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 217.92 647.06 -62.08 1.83) ; 1 + ( 223.31 666.23 -59.80 1.83) ; 2 + ( 222.20 668.97 -59.80 1.83) ; 3 + ( 218.55 670.49 -59.80 1.83) ; 4 + ( 223.01 671.53 -59.80 1.83) ; 5 + ( 218.83 675.33 -59.80 1.83) ; 6 + ( 220.14 685.80 -62.97 1.83) ; 7 + ( 219.92 688.73 -62.97 1.83) ; 8 + ( 224.29 686.17 -62.97 1.83) ; 9 + ( 223.80 684.26 -63.05 1.83) ; 10 + ( 224.76 698.22 -64.40 1.83) ; 11 + ( 220.75 697.28 -64.40 1.83) ; 12 + ( 224.01 703.42 -64.85 1.83) ; 13 + ( 221.30 723.08 -64.32 1.83) ; 14 + ( 227.49 722.75 -64.32 1.83) ; 15 + ( 221.28 717.11 -64.32 1.83) ; 16 + ( 226.50 735.05 -59.27 1.83) ; 17 + ( 221.50 736.28 -58.27 1.83) ; 18 + ( 227.49 738.87 -58.27 1.83) ; 19 + ( 228.62 748.10 -59.95 1.83) ; 20 + ( 224.17 753.03 -60.63 1.83) ; 21 + ( 224.63 759.10 -61.88 1.83) ; 22 + ( 223.79 760.69 -61.88 1.83) ; 23 + ) ; End of markers + ( + ( 223.30 779.28 -59.32 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1 + ( 223.10 782.21 -59.32 1.38) ; 2 + ( 223.64 785.92 -59.22 1.38) ; 3 + ( 224.58 787.94 -60.57 1.38) ; 4 + ( 224.49 790.31 -60.85 1.38) ; 5 + ( 225.04 794.01 -60.85 1.38) ; 6 + ( 225.08 795.81 -61.30 1.38) ; 7 + ( 225.31 798.85 -60.32 1.38) ; 8 + ( 225.54 801.90 -59.20 1.38) ; 9 + ( 225.32 804.84 -58.70 1.38) ; 10 + ( 225.57 807.87 -59.15 1.38) ; 11 + ( 225.21 811.37 -59.65 1.38) ; 12 + ( 225.17 815.55 -60.07 1.38) ; 13 + ( 224.96 818.49 -60.72 1.38) ; 14 + ( 224.03 822.44 -61.60 1.38) ; 15 + ( 224.26 825.48 -62.25 1.38) ; 16 + ( 223.33 829.44 -62.25 1.38) ; 17 + ( 222.40 833.41 -62.95 1.38) ; 18 + ( 222.63 836.45 -64.02 1.38) ; 19 + ( 223.75 839.70 -64.65 1.38) ; 20 + ( 222.50 842.99 -64.65 1.38) ; 21 + ( 221.26 846.27 -65.13 1.38) ; 22 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 223.43 794.83 -61.30 1.38) ; 1 + ( 222.96 804.88 -58.70 1.38) ; 2 + ( 226.44 802.12 -58.70 1.38) ; 3 + ( 227.26 810.67 -59.60 1.38) ; 4 + ( 224.22 807.55 -59.60 1.38) ; 5 + ( 222.65 820.33 -61.60 1.38) ; 6 + ( 226.03 819.93 -61.60 1.38) ; 7 + ( 221.99 829.12 -62.25 1.38) ; 8 + ) ; End of markers + ( + ( 222.29 850.00 -65.80 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1-1 + ( 222.38 853.60 -64.88 1.38) ; 2 + ( 222.62 856.64 -64.88 1.38) ; 3 + ( 221.55 861.17 -66.20 1.38) ; 4 + ( 221.47 863.54 -66.50 1.38) ; 5 + ( 220.67 866.94 -66.75 1.38) ; 6 + ( 220.67 866.94 -66.77 1.38) ; 7 + ( 221.34 870.08 -67.28 1.38) ; 8 + ( 221.08 871.21 -67.40 1.38) ; 9 + ( 221.05 875.38 -67.40 1.38) ; 10 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 224.74 847.59 -64.88 1.38) ; 1 + ( 220.64 849.02 -64.88 1.38) ; 2 + ( 224.26 851.65 -62.00 1.38) ; 3 + ( 219.33 866.62 -66.38 1.38) ; 4 + ( 220.31 864.46 -66.35 1.38) ; 5 + ( 219.12 869.56 -67.30 1.38) ; 6 + ( 222.79 874.00 -67.40 1.38) ; 7 + ) ; End of markers + ( + ( 219.47 878.56 -67.40 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1-1-1 + ( 218.92 880.84 -67.40 0.92) ; 2 + ( 219.30 883.30 -67.40 0.92) ; 3 + ( 218.77 885.57 -68.17 0.92) ; 4 + ( 218.68 887.94 -69.07 0.92) ; 5 + ( 218.34 891.44 -69.70 0.92) ; 6 + ( 216.64 894.63 -70.20 0.92) ; 7 + ( 217.01 897.10 -70.20 0.92) ; 8 + ( 216.48 899.37 -70.20 0.92) ; 9 + ( 215.81 902.20 -70.70 0.92) ; 10 + ( 215.28 904.47 -71.15 0.92) ; 11 + ( 214.62 907.29 -71.22 0.92) ; 12 + ( 212.75 909.24 -70.78 0.92) ; 13 + ( 212.08 912.06 -70.78 0.92) ; 14 + + (Cross + (Color White) + (Name "Marker 3") + ( 213.22 910.03 -27.00 1.38) ; 1 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 220.67 879.45 -67.40 0.92) ; 1 + ( 217.72 879.95 -67.40 0.92) ; 2 + ( 220.64 883.62 -67.40 0.92) ; 3 + ( 220.55 885.99 -69.70 0.92) ; 4 + ( 217.82 905.66 -71.22 0.92) ; 5 + ( 214.80 908.52 -71.22 0.92) ; 6 + ( 211.41 908.93 -70.78 0.92) ; 7 + ) ; End of markers + ( + ( 213.34 914.76 -71.52 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1-1-1-1 + ( 214.01 917.90 -72.17 0.92) ; 2 + ( 214.69 921.04 -73.00 0.92) ; 3 + ( 216.98 923.37 -73.28 0.92) ; 4 + ( 218.23 926.05 -74.13 0.92) ; 5 + ( 221.09 927.92 -74.13 0.92) ; 6 + ( 220.96 928.49 -74.13 0.92) ; 7 + ( 223.96 929.78 -74.97 0.92) ; 8 + ( 225.78 932.00 -75.90 0.92) ; 9 + ( 226.60 934.58 -76.75 0.92) ; 10 + ( 229.15 935.77 -77.50 0.92) ; 11 + ( 230.13 939.59 -77.50 0.92) ; 12 + ( 231.21 941.03 -78.88 0.92) ; 13 + ( 231.52 941.70 -78.65 0.92) ; 14 + ( 233.03 943.26 -80.50 0.92) ; 15 + ( 233.40 945.72 -81.07 0.92) ; 16 + ( 234.04 947.07 -81.53 0.92) ; 17 + ( 235.51 946.82 -82.45 0.92) ; 18 + ( 237.21 949.61 -83.88 0.92) ; 19 + ( 238.72 951.15 -83.80 0.92) ; 20 + ( 240.26 952.70 -83.82 0.92) ; 21 + ( 240.43 953.95 -85.13 0.92) ; 22 + ( 241.82 956.06 -86.85 0.92) ; 23 + ( 243.34 957.61 -87.75 0.92) ; 24 + ( 243.56 960.65 -88.65 0.92) ; 25 + ( 242.90 963.48 -88.65 0.92) ; 26 + ( 243.27 965.96 -88.65 0.92) ; 27 + ( 244.03 966.73 -89.55 0.92) ; 28 + ( 245.15 969.98 -90.65 0.92) ; 29 + ( 245.15 969.98 -90.68 0.92) ; 30 + ( 246.36 970.86 -90.85 0.92) ; 31 + ( 248.77 972.63 -90.88 0.92) ; 32 + ( 249.00 975.66 -91.62 0.92) ; 33 + ( 248.92 978.04 -92.38 0.92) ; 34 + ( 250.26 978.34 -92.97 0.92) ; 35 + ( 249.81 978.25 -92.97 0.92) ; 36 + ( 251.39 981.60 -93.53 0.92) ; 37 + ( 251.60 984.62 -94.90 0.92) ; 38 + ( 251.60 984.62 -94.92 0.92) ; 39 + ( 251.33 985.76 -95.77 0.92) ; 40 + ( 253.44 986.84 -96.43 0.92) ; 41 + ( 253.92 988.75 -97.38 0.92) ; 42 + ( 253.92 988.75 -97.42 0.92) ; 43 + ( 255.01 990.20 -98.15 0.92) ; 44 + ( 256.67 991.19 -98.47 0.92) ; 45 + ( 257.60 993.20 -98.47 0.92) ; 46 + ( 258.41 995.77 -99.63 0.92) ; 47 + ( 259.99 999.12 -99.63 0.92) ; 48 + ( 259.90 1001.50 -99.63 0.92) ; 49 + ( 258.65 1004.79 -100.22 0.92) ; 50 + ( 257.98 1007.62 -101.13 0.92) ; 51 + ( 258.36 1010.09 -102.13 0.92) ; 52 + ( 258.41 1011.88 -103.23 0.92) ; 53 + ( 258.46 1013.69 -103.60 0.92) ; 54 + ( 259.84 1015.81 -104.88 0.92) ; 55 + ( 260.91 1017.26 -105.42 0.92) ; 56 + ( 262.21 1021.75 -106.13 0.92) ; 57 + ( 262.72 1023.66 -106.32 0.92) ; 58 + ( 262.72 1023.66 -106.35 0.92) ; 59 + ( 262.77 1025.46 -107.10 0.92) ; 60 + ( 262.82 1027.26 -108.42 0.92) ; 61 + ( 263.75 1029.27 -109.82 0.92) ; 62 + ( 264.43 1032.41 -110.63 0.92) ; 63 + ( 264.30 1032.98 -112.15 0.92) ; 64 + ( 265.41 1036.23 -113.67 0.92) ; 65 + ( 266.95 1037.78 -115.37 0.92) ; 66 + ( 266.10 1039.37 -117.02 0.92) ; 67 + ( 264.48 1040.20 -118.32 0.92) ; 68 + ( 264.48 1040.20 -118.38 0.92) ; 69 + ( 263.34 1041.11 -120.65 0.92) ; 70 + ( 264.28 1043.12 -122.50 0.92) ; 71 + ( 263.74 1045.39 -124.52 0.92) ; 72 + ( 263.48 1046.52 -126.65 0.92) ; 73 + ( 262.18 1048.01 -130.23 0.92) ; 74 + ( 263.85 1049.00 -133.30 0.92) ; 75 + ( 263.85 1049.00 -133.32 0.92) ; 76 + ( 265.06 1049.88 -132.68 0.92) ; 77 + ( 265.06 1049.88 -132.77 0.92) ; 78 + ( 265.76 1048.86 -135.93 0.92) ; 79 + ( 266.84 1050.30 -138.70 0.92) ; 80 + ( 266.84 1050.30 -138.72 0.92) ; 81 + ( 267.25 1054.57 -140.47 0.92) ; 82 + ( 269.67 1056.33 -140.47 0.92) ; 83 + ( 271.41 1060.92 -141.35 0.92) ; 84 + ( 274.53 1061.65 -141.38 0.92) ; 85 + ( 275.09 1065.37 -142.68 0.92) ; 86 + ( 278.21 1066.10 -143.20 0.92) ; 87 + ( 279.24 1065.74 -145.63 0.92) ; 88 + ( 280.26 1065.39 -148.48 0.92) ; 89 + ( 280.26 1065.39 -148.52 0.92) ; 90 + ( 282.36 1066.47 -149.73 0.92) ; 91 + ( 282.36 1066.47 -149.75 0.92) ; 92 + ( 283.30 1068.48 -152.05 0.92) ; 93 + ( 283.80 1070.39 -153.82 0.46) ; 94 + ( 285.76 1072.05 -156.72 0.46) ; 95 + ( 285.76 1072.05 -157.27 0.46) ; 96 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 215.21 912.80 -71.52 0.92) ; 1 + ( 214.96 925.89 -73.28 0.92) ; 2 + ( 217.21 926.42 -74.13 0.92) ; 3 + ( 218.41 927.29 -74.13 0.92) ; 4 + ( 220.38 928.94 -74.13 0.92) ; 5 + ( 218.32 923.68 -74.13 0.92) ; 6 + ( 224.80 928.19 -76.75 0.92) ; 7 + ( 231.95 935.83 -77.50 0.92) ; 8 + ( 231.57 943.51 -78.65 0.92) ; 9 + ( 235.41 943.21 -79.60 0.92) ; 10 + ( 235.20 946.15 -79.60 0.92) ; 11 + ( 238.77 946.99 -83.70 0.92) ; 12 + ( 236.50 950.64 -82.40 0.92) ; 13 + ( 242.66 954.47 -86.85 0.92) ; 14 + ( 240.82 968.37 -88.97 0.92) ; 15 + ( 242.34 969.91 -88.97 0.92) ; 16 + ( 244.14 970.34 -89.90 0.92) ; 17 + ( 247.52 969.93 -89.90 0.92) ; 18 + ( 247.94 980.18 -93.53 0.92) ; 19 + ( 251.07 986.88 -93.40 0.92) ; 20 + ( 253.57 986.28 -95.88 0.92) ; 21 + ( 259.79 991.91 -97.42 0.92) ; 22 + ( 258.94 993.50 -99.63 0.92) ; 23 + ( 260.71 1004.08 -99.63 0.92) ; 24 + ( 258.28 1002.31 -99.63 0.92) ; 25 + ( 256.16 1011.37 -101.77 0.92) ; 26 + ( 260.10 1014.68 -105.42 0.92) ; 27 + ( 260.87 1015.45 -105.42 0.92) ; 28 + ( 259.64 1024.72 -105.63 0.92) ; 29 + ( 262.94 1020.71 -105.65 0.92) ; 30 + ( 263.56 1022.07 -105.65 0.92) ; 31 + ( 262.69 1027.82 -105.65 0.92) ; 32 + ( 267.14 1028.88 -108.53 0.92) ; 33 + ( 260.32 1027.87 -112.15 0.92) ; 34 + ( 262.69 1033.80 -112.15 0.92) ; 35 + ( 269.12 1036.50 -112.90 0.92) ; 36 + ( 263.10 1038.07 -113.15 0.92) ; 37 + ( 262.21 1037.86 -118.45 0.92) ; 38 + ( 267.18 1040.83 -118.45 0.92) ; 39 + ( 260.78 1039.92 -120.65 0.92) ; 40 + ( 266.25 1044.79 -124.52 0.92) ; 41 + ( 266.16 1047.15 -124.52 0.92) ; 42 + ( 264.79 1051.00 -133.05 0.92) ; 43 + ( 260.93 1045.33 -129.75 0.92) ; 44 + ( 269.72 1058.14 -141.35 0.92) ; 45 + ( 272.71 1065.41 -143.20 0.92) ; 46 + ( 280.67 1069.67 -145.63 0.92) ; 47 + ( 278.48 1064.97 -145.63 0.92) ; 48 + ) ; End of markers + Normal + ) ; End of split + | + ( 222.75 878.16 -67.40 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1-1-2 + ( 224.14 880.29 -68.25 0.92) ; 2 + ( 225.08 882.30 -68.25 0.92) ; 3 + ( 226.20 885.55 -68.25 0.92) ; 4 + ( 227.91 888.34 -69.05 0.92) ; 5 + ( 228.40 890.24 -68.75 0.92) ; 6 + ( 230.06 891.23 -68.67 0.92) ; 7 + ( 231.62 894.59 -68.67 0.92) ; 8 + ( 234.49 896.45 -69.32 0.92) ; 9 + ( 236.90 898.21 -69.32 0.92) ; 10 + ( 238.69 898.63 -70.32 0.92) ; 11 + ( 240.48 899.04 -71.17 0.92) ; 12 + ( 241.55 900.49 -71.85 0.92) ; 13 + ( 242.93 902.60 -72.53 0.92) ; 14 + ( 245.04 903.70 -72.53 0.92) ; 15 + ( 247.01 905.35 -72.28 0.92) ; 16 + ( 247.64 906.70 -73.78 0.92) ; 17 + ( 251.26 909.33 -74.13 0.92) ; 18 + ( 254.57 911.30 -74.13 0.92) ; 19 + ( 257.42 913.17 -73.80 0.92) ; 20 + ( 259.52 914.26 -73.80 0.92) ; 21 + ( 260.34 916.83 -73.80 0.92) ; 22 + ( 262.75 918.60 -74.10 0.92) ; 23 + ( 264.71 920.25 -74.10 0.92) ; 24 + ( 266.56 922.47 -74.10 0.92) ; 25 + ( 268.20 923.46 -73.47 0.92) ; 26 + ( 270.93 925.89 -73.47 0.92) ; 27 + ( 274.24 927.86 -73.47 0.92) ; 28 + ( 276.52 930.18 -74.53 0.92) ; 29 + ( 278.94 931.94 -74.82 0.92) ; 30 + ( 279.88 933.95 -75.10 0.92) ; 31 + ( 283.18 935.93 -75.38 0.92) ; 32 + ( 285.60 937.69 -75.67 0.92) ; 33 + ( 286.81 938.57 -74.67 0.92) ; 34 + ( 286.81 938.57 -74.72 0.92) ; 35 + ( 289.54 940.99 -73.42 0.92) ; 36 + ( 290.03 942.90 -72.20 0.92) ; 37 + ( 291.86 945.13 -70.75 0.92) ; 38 + ( 292.80 947.14 -69.57 0.92) ; 39 + ( 294.64 949.36 -69.57 0.92) ; 40 + ( 294.19 949.26 -69.57 0.92) ; 41 + ( 296.22 952.71 -68.65 0.92) ; 42 + ( 298.04 954.94 -68.20 0.92) ; 43 + ( 298.04 954.94 -68.25 0.92) ; 44 + ( 298.86 957.52 -67.47 0.92) ; 45 + ( 298.86 957.52 -67.50 0.92) ; 46 + ( 301.41 958.71 -66.82 0.92) ; 47 + ( 303.81 960.47 -66.22 0.46) ; 48 + ( 304.71 960.69 -65.52 0.46) ; 49 + ( 305.97 963.36 -64.50 0.46) ; 50 + ( 308.65 963.99 -63.22 0.46) ; 51 + ( 310.30 964.97 -63.17 0.46) ; 52 + ( 311.99 967.77 -62.28 0.46) ; 53 + ( 314.02 971.23 -61.05 0.46) ; 54 + ( 316.88 973.09 -60.15 0.46) ; 55 + ( 316.88 973.09 -60.17 0.46) ; 56 + ( 319.48 976.08 -59.32 0.46) ; 57 + ( 319.48 976.08 -59.30 0.46) ; 58 + ( 321.89 977.85 -59.95 0.46) ; 59 + ( 322.97 979.29 -59.13 0.46) ; 60 + ( 325.12 982.18 -58.58 0.46) ; 61 + ( 328.29 984.72 -58.10 0.46) ; 62 + ( 328.47 985.95 -57.50 0.46) ; 63 + ( 331.06 988.96 -56.82 0.46) ; 64 + ( 333.03 990.61 -55.83 0.46) ; 65 + ( 335.58 991.80 -54.78 0.46) ; 66 + ( 336.78 992.67 -54.45 0.46) ; 67 + ( 337.60 995.26 -53.85 0.46) ; 68 + ( 338.54 997.27 -54.32 0.46) ; 69 + ( 341.26 999.70 -54.85 0.46) ; 70 + ( 343.85 1002.70 -55.60 0.46) ; 71 + ( 343.85 1002.70 -55.63 0.46) ; 72 + ( 344.18 1003.36 -54.40 0.46) ; 73 + ( 345.30 1006.61 -52.82 0.46) ; 74 + ( 347.40 1007.71 -51.82 0.46) ; 75 + ( 349.99 1010.71 -51.52 0.46) ; 76 + ( 349.99 1010.71 -51.55 0.46) ; 77 + ( 350.62 1012.03 -49.72 0.46) ; 78 + ( 350.67 1013.83 -48.65 0.46) ; 79 + ( 353.52 1015.70 -48.00 0.46) ; 80 + ( 352.99 1017.97 -48.05 0.46) ; 81 + ( 355.40 1019.73 -47.33 0.46) ; 82 + ( 358.71 1021.69 -47.33 0.46) ; 83 + ( 358.55 1026.44 -47.92 0.46) ; 84 + ( 359.62 1027.88 -49.13 0.46) ; 85 + ( 360.88 1030.56 -49.13 0.46) ; 86 + ( 360.67 1033.50 -48.42 0.46) ; 87 + ( 360.21 1033.40 -48.42 0.46) ; 88 + ( 361.16 1035.40 -47.37 0.46) ; 89 + ( 360.95 1038.35 -47.72 0.46) ; 90 + ( 360.95 1038.35 -47.75 0.46) ; 91 + ( 360.55 1040.04 -47.75 0.46) ; 92 + ( 362.64 1041.13 -48.95 0.46) ; 93 + ( 365.19 1042.31 -48.58 0.46) ; 94 + ( 365.19 1042.31 -48.60 0.46) ; 95 + ( 364.80 1044.02 -49.65 0.46) ; 96 + ( 364.80 1044.02 -49.67 0.46) ; 97 + ( 365.29 1045.92 -49.80 0.46) ; 98 + ( 367.39 1047.02 -50.27 0.46) ; 99 + ( 369.09 1049.81 -49.95 0.46) ; 100 + ( 371.06 1051.46 -51.57 0.46) ; 101 + ( 372.72 1052.45 -52.15 0.46) ; 102 + ( 373.97 1055.13 -53.65 0.46) ; 103 + ( 373.97 1055.13 -53.67 0.46) ; 104 + ( 374.91 1057.14 -54.92 0.46) ; 105 + ( 374.96 1058.95 -56.77 0.46) ; 106 + ( 373.98 1061.10 -59.55 0.46) ; 107 + ( 373.98 1061.10 -59.67 0.46) ; 108 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 223.16 882.44 -67.70 0.92) ; 1 + ( 225.62 886.01 -66.38 0.92) ; 2 + ( 227.24 891.17 -68.75 0.92) ; 3 + ( 227.64 889.47 -71.05 0.92) ; 4 + ( 231.04 889.07 -68.67 0.92) ; 5 + ( 235.07 895.99 -69.32 0.92) ; 6 + ( 242.35 897.10 -71.17 0.92) ; 7 + ( 241.60 902.29 -72.53 0.92) ; 8 + ( 243.65 901.58 -70.95 0.92) ; 9 + ( 249.91 909.02 -71.28 0.92) ; 10 + ( 247.56 909.07 -73.53 0.92) ; 11 + ( 250.44 906.76 -74.38 0.92) ; 12 + ( 257.82 911.46 -72.70 0.92) ; 13 + ( 260.82 912.77 -72.55 0.92) ; 14 + ( 262.83 916.22 -74.45 0.92) ; 15 + ( 274.19 926.06 -71.75 0.92) ; 16 + ( 276.16 927.71 -73.35 0.92) ; 17 + ( 277.81 928.69 -73.35 0.92) ; 18 + ( 277.01 932.09 -73.35 0.92) ; 19 + ( 273.53 928.89 -73.90 0.92) ; 20 + ( 287.17 941.04 -73.42 0.92) ; 21 + ( 298.44 953.24 -68.65 0.92) ; 22 + ( 293.85 952.75 -67.15 0.92) ; 23 + ( 291.54 944.46 -73.42 0.92) ; 24 + ( 300.15 956.03 -68.28 0.92) ; 25 + ( 297.89 959.68 -65.05 0.92) ; 26 + ( 305.11 958.98 -69.10 0.92) ; 27 + ( 320.14 973.26 -58.67 0.46) ; 28 + ( 317.37 975.00 -61.67 0.46) ; 29 + ( 325.19 979.81 -58.58 0.46) ; 30 + ( 329.94 985.70 -59.20 0.46) ; 31 + ( 329.46 989.77 -57.88 0.46) ; 32 + ( 341.36 997.34 -55.95 0.46) ; 33 + ( 339.85 1001.75 -55.50 0.46) ; 34 + ( 340.33 1003.67 -53.88 0.46) ; 35 + ( 337.43 1000.00 -53.07 0.46) ; 36 + ( 343.00 998.31 -53.07 0.46) ; 37 + ( 350.20 1007.77 -51.52 0.46) ; 38 + ( 349.51 1014.76 -48.00 0.46) ; 39 + ( 352.67 1011.33 -48.00 0.46) ; 40 + ( 354.32 1012.31 -48.00 0.46) ; 41 + ( 354.57 1021.32 -47.08 0.46) ; 42 + ( 353.31 1018.63 -49.85 0.46) ; 43 + ( 351.93 1016.52 -48.05 0.46) ; 44 + ( 354.15 1017.04 -48.05 0.46) ; 45 + ( 361.69 1033.14 -46.50 0.46) ; 46 + ( 362.09 1031.45 -46.32 0.46) ; 47 + ( 362.15 1039.22 -48.45 0.46) ; 48 + ( 361.55 1027.73 -49.13 0.46) ; 49 + ( 359.72 1031.49 -50.05 0.46) ; 50 + ( 365.79 1047.84 -50.27 0.46) ; 51 + ( 369.44 1046.30 -50.27 0.46) ; 52 + ( 358.49 1040.75 -45.40 0.46) ; 53 + ( 358.80 1035.44 -45.42 0.46) ; 54 + ( 370.69 1048.99 -51.57 0.46) ; 55 + ( 372.36 1049.98 -51.57 0.46) ; 56 + ( 369.63 1053.52 -52.35 0.46) ; 57 + ( 367.44 1048.82 -49.30 0.46) ; 58 + ( 372.41 1051.77 -49.90 0.46) ; 59 + ) ; End of markers + Normal + ) ; End of split + | + ( 218.53 847.92 -63.30 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1-2 + ( 218.57 849.72 -62.45 1.38) ; 2 + ( 217.65 853.69 -61.28 1.38) ; 3 + ( 216.98 856.52 -61.32 1.38) ; 4 + ( 215.88 859.24 -60.85 1.38) ; 5 + ( 214.46 861.30 -60.07 1.38) ; 6 + ( 213.61 862.88 -59.13 1.38) ; 7 + ( 213.97 865.37 -58.45 1.38) ; 8 + ( 213.26 866.39 -57.35 1.38) ; 9 + ( 211.70 869.02 -56.57 1.38) ; 10 + ( 210.99 870.04 -55.25 1.38) ; 11 + ( 210.86 870.61 -54.38 1.38) ; 12 + ( 208.55 872.46 -53.13 1.38) ; 13 + ( 207.26 873.94 -52.60 1.38) ; 14 + ( 206.54 874.97 -51.38 1.38) ; 15 + ( 207.35 877.55 -50.63 1.38) ; 16 + ( 207.09 878.68 -49.60 1.38) ; 17 + ( 206.24 880.28 -48.70 1.38) ; 18 + ( 205.89 883.78 -47.77 1.38) ; 19 + ( 206.25 886.24 -47.95 1.38) ; 20 + ( 204.83 888.30 -47.57 1.38) ; 21 + ( 200.73 889.72 -47.10 1.38) ; 22 + ( 200.07 892.55 -45.50 1.38) ; 23 + ( 200.16 896.16 -44.30 1.38) ; 24 + ( 199.06 898.90 -43.13 1.38) ; 25 + ( 197.26 898.48 -41.75 1.38) ; 26 + ( 197.34 896.10 -40.80 1.38) ; 27 + ( 197.29 894.30 -39.55 1.38) ; 28 + ( 197.74 894.41 -37.63 1.38) ; 29 + ( 196.86 894.20 -35.38 1.38) ; 30 + ( 194.04 894.13 -33.33 1.38) ; 31 + ( 197.66 896.77 -32.13 1.38) ; 32 + ( 198.69 896.42 -30.02 1.38) ; 33 + ( 195.35 898.63 -29.40 1.38) ; 34 + ( 194.95 900.32 -28.55 1.38) ; 35 + ( 194.77 905.05 -27.35 1.38) ; 36 + ( 196.89 906.14 -26.05 1.38) ; 37 + ( 197.64 906.93 -24.35 1.38) ; 38 + ( 197.95 907.59 -25.05 1.38) ; 39 + ( 194.42 908.56 -23.05 1.38) ; 40 + ( 191.48 909.05 -21.85 1.38) ; 41 + ( 190.06 911.11 -22.08 1.38) ; 42 + ( 189.79 912.24 -20.80 1.38) ; 43 + ( 187.93 914.20 -19.75 1.38) ; 44 + ( 186.64 915.68 -18.85 1.38) ; 45 + ( 186.64 915.68 -18.88 1.38) ; 46 + ( 187.45 918.27 -17.05 1.38) ; 47 + ( 186.29 919.18 -15.95 1.38) ; 48 + ( 186.29 919.18 -15.92 1.38) ; 49 + ( 185.26 919.54 -14.60 1.38) ; 50 + ( 184.73 921.81 -13.42 1.38) ; 51 + ( 184.78 923.61 -12.30 1.38) ; 52 + ( 184.78 923.61 -12.32 1.38) ; 53 + ( 185.72 925.63 -12.00 1.38) ; 54 + ( 184.43 927.12 -12.00 1.38) ; 55 + ( 182.06 927.15 -10.12 1.38) ; 56 + ( 182.24 928.39 -8.95 1.38) ; 57 + ( 183.77 929.95 -8.25 1.38) ; 58 + ( 183.10 932.77 -8.35 1.38) ; 59 + ( 182.26 934.37 -7.67 1.38) ; 60 + ( 179.50 936.10 -6.78 1.38) ; 61 + ( 179.59 939.71 -6.28 1.38) ; 62 + ( 177.98 940.53 -5.82 1.38) ; 63 + ( 176.82 941.46 -4.03 1.38) ; 64 + ( 176.82 941.46 -4.05 1.38) ; 65 + ( 174.46 941.50 -2.45 1.38) ; 66 + ( 170.81 943.03 -1.67 1.38) ; 67 + ( 171.17 945.50 0.07 1.38) ; 68 + ( 172.61 949.42 0.63 1.38) ; 69 + ( 174.25 950.41 -0.50 1.38) ; 70 + ( 174.25 950.41 -0.55 1.38) ; 71 + ( 173.90 953.90 0.28 1.38) ; 72 + ( 176.06 956.80 1.00 1.38) ; 73 + ( 177.90 959.03 2.05 1.38) ; 74 + ( 177.90 959.03 2.17 1.38) ; 75 + ( 179.99 960.11 3.82 1.38) ; 76 + ( 179.99 960.11 3.80 1.38) ; 77 + ( 182.01 963.57 4.40 1.38) ; 78 + ( 182.01 963.57 4.38 1.38) ; 79 + ( 184.78 967.79 4.85 1.38) ; 80 + ( 187.20 969.56 5.35 1.38) ; 81 + ( 186.48 970.59 4.47 1.38) ; 82 + ( 186.85 973.06 5.72 0.92) ; 83 + ( 186.77 975.43 6.82 0.92) ; 84 + ( 188.69 975.29 7.47 0.92) ; 85 + ( 188.69 975.29 7.45 0.92) ; 86 + ( 190.02 975.60 8.05 0.92) ; 87 + ( 190.02 975.60 8.02 0.92) ; 88 + ( 191.63 974.78 8.97 0.92) ; 89 + ( 191.63 974.78 8.95 0.92) ; 90 + ( 193.09 974.54 10.90 0.92) ; 91 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 217.54 844.11 -63.30 1.38) ; 1 + ( 216.45 852.81 -61.28 1.38) ; 2 + ( 218.54 853.90 -62.00 1.38) ; 3 + ( 210.89 866.43 -56.57 1.38) ; 4 + ( 214.79 867.94 -56.57 1.38) ; 5 + ( 208.00 868.74 -53.13 1.38) ; 6 + ( 205.38 875.89 -50.63 1.38) ; 7 + ( 207.49 882.95 -47.22 1.38) ; 8 + ( 207.77 887.80 -47.22 1.38) ; 9 + ( 199.65 888.28 -47.10 1.38) ; 10 + ( 202.28 887.11 -47.10 1.38) ; 11 + ( 206.03 889.18 -48.55 1.38) ; 12 + ( 203.32 892.72 -46.40 1.38) ; 13 + ( 202.35 894.88 -44.30 1.38) ; 14 + ( 196.23 898.83 -39.55 1.38) ; 15 + ( 195.88 896.35 -39.55 1.38) ; 16 + ( 198.45 893.37 -37.63 1.38) ; 17 + ( 199.54 894.83 -30.02 1.38) ; 18 + ( 200.03 896.73 -29.20 1.38) ; 19 + ( 197.71 898.58 -28.27 1.38) ; 20 + ( 197.55 903.32 -28.27 1.38) ; 21 + ( 192.50 902.73 -27.30 1.38) ; 22 + ( 197.11 909.18 -25.05 1.38) ; 23 + ( 191.98 910.97 -21.85 1.38) ; 24 + ( 189.66 906.84 -20.03 1.38) ; 25 + ( 188.33 912.49 -18.70 1.38) ; 26 + ( 186.01 914.34 -17.27 1.38) ; 27 + ( 190.47 915.40 -16.42 1.38) ; 28 + ( 185.34 917.17 -16.47 1.38) ; 29 + ( 183.47 919.12 -14.60 1.38) ; 30 + ( 188.03 923.78 -12.00 1.38) ; 31 + ( 185.15 932.06 -8.35 1.38) ; 32 + ( 183.07 936.94 -8.35 1.38) ; 33 + ( 181.45 931.79 -6.75 1.38) ; 34 + ( 180.92 934.05 -6.67 1.38) ; 35 + ( 180.88 938.23 -4.95 1.38) ; 36 + ( 179.64 941.52 -7.40 1.38) ; 37 + ( 178.33 937.04 -8.35 1.38) ; 38 + ( 170.31 941.12 -1.67 1.38) ; 39 + ( 176.56 942.58 -1.67 1.38) ; 40 + ( 172.19 945.15 0.07 1.38) ; 41 + ( 172.90 944.12 0.07 1.38) ; 42 + ( 171.00 950.24 0.63 1.38) ; 43 + ( 176.54 952.73 0.85 1.38) ; 44 + ( 178.19 953.72 0.85 1.38) ; 45 + ( 174.41 955.81 2.50 1.38) ; 46 + ( 180.85 964.49 4.35 1.38) ; 47 + ( 175.56 954.89 3.52 1.38) ; 48 + ( 187.60 967.86 5.35 1.38) ; 49 + ( 184.88 971.40 4.68 1.38) ; 50 + ( 188.01 972.14 1.75 1.38) ; 51 + ( 188.54 969.88 1.75 1.38) ; 52 + ) ; End of markers + Normal + ) ; End of split + | + ( 225.26 776.47 -57.92 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2 + ( 225.89 777.81 -56.15 1.38) ; 2 + ( 225.23 780.64 -55.70 1.38) ; 3 + ( 225.58 783.11 -55.70 1.38) ; 4 + ( 227.16 786.47 -55.70 1.38) ; 5 + ( 227.38 789.51 -55.15 1.38) ; 6 + ( 226.72 792.33 -55.03 1.38) ; 7 + ( 227.66 794.35 -55.03 1.38) ; 8 + ( 229.06 796.46 -54.55 1.38) ; 9 + ( 229.86 799.04 -54.55 1.38) ; 10 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 229.49 790.59 -55.03 1.38) ; 1 + ) ; End of markers + ( + ( 229.27 802.04 -54.55 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1 + ( 229.50 805.07 -55.27 1.38) ; 2 + ( 229.73 808.11 -55.90 1.38) ; 3 + ( 229.07 810.94 -56.70 1.38) ; 4 + ( 228.09 813.10 -57.40 1.38) ; 5 + ( 227.74 816.60 -57.97 1.38) ; 6 + ( 226.36 820.46 -58.55 1.38) ; 7 + ( 225.88 824.52 -58.82 1.38) ; 8 + ( 224.69 829.62 -58.82 1.38) ; 9 + ( 224.47 832.55 -58.82 1.38) ; 10 + ( 222.20 836.20 -58.10 1.38) ; 11 + ( 221.94 837.33 -58.10 1.38) ; 12 + ( 222.93 841.15 -58.10 1.38) ; 13 + ( 223.03 844.76 -58.55 1.38) ; 14 + ( 221.52 849.18 -58.78 1.38) ; 15 + ( 220.99 851.45 -59.20 1.38) ; 16 + ( 220.77 854.37 -60.03 1.38) ; 17 + ( 220.77 854.37 -60.05 1.38) ; 18 + ( 220.86 857.98 -60.47 1.38) ; 19 + ( 219.93 861.95 -59.50 1.38) ; 20 + ( 220.04 865.56 -58.75 1.38) ; 21 + ( 220.85 868.13 -57.25 1.38) ; 22 + ( 220.67 872.87 -56.47 1.38) ; 23 + ( 221.35 876.01 -58.00 1.38) ; 24 + ( 221.77 880.29 -58.80 1.38) ; 25 + ( 221.94 881.53 -59.78 1.38) ; 26 + ( 221.59 885.02 -59.78 1.38) ; 27 + ( 223.30 887.81 -59.78 1.38) ; 28 + ( 223.35 889.61 -58.20 1.38) ; 29 + ( 222.38 891.78 -56.17 1.38) ; 30 + ( 223.58 892.66 -55.20 1.38) ; 31 + ( 223.81 895.70 -54.38 1.38) ; 32 + ( 225.46 896.68 -53.40 1.38) ; 33 + ( 226.53 898.12 -52.10 1.38) ; 34 + ( 227.17 899.47 -50.55 1.38) ; 35 + ( 225.15 901.98 -49.00 1.38) ; 36 + ( 225.07 904.36 -47.40 1.38) ; 37 + ( 227.80 906.78 -45.83 1.38) ; 38 + ( 228.88 908.22 -45.07 1.38) ; 39 + ( 228.66 911.17 -45.07 1.38) ; 40 + ( 229.86 912.04 -43.70 1.38) ; 41 + ( 231.58 914.84 -43.70 1.38) ; 42 + ( 232.51 916.84 -42.75 1.38) ; 43 + ( 233.90 918.97 -42.45 1.38) ; 44 + ( 233.69 921.89 -42.45 1.38) ; 45 + ( 234.27 925.50 -40.03 1.38) ; 46 + ( 237.17 929.17 -41.32 1.38) ; 47 + ( 238.60 933.09 -41.75 1.38) ; 48 + ( 238.83 936.13 -42.67 1.38) ; 49 + ( 241.88 939.23 -43.53 1.38) ; 50 + ( 240.64 942.52 -43.90 1.38) ; 51 + ( 240.42 945.47 -43.90 1.38) ; 52 + ( 241.80 947.57 -42.90 1.38) ; 53 + ( 242.35 951.29 -42.90 1.38) ; 54 + ( 244.50 954.18 -44.10 1.38) ; 55 + ( 243.70 957.57 -42.85 1.38) ; 56 + ( 243.70 957.57 -42.90 1.38) ; 57 + ( 242.73 959.73 -41.73 1.38) ; 58 + ( 242.69 963.91 -40.65 1.38) ; 59 + ( 243.59 970.09 -41.80 1.38) ; 60 + ( 244.27 973.23 -41.30 1.38) ; 61 + ( 244.50 976.27 -42.37 1.38) ; 62 + ( 243.08 978.33 -42.37 1.38) ; 63 + ( 244.20 981.58 -41.95 1.38) ; 64 + ( 244.62 985.86 -41.95 1.38) ; 65 + ( 243.24 989.71 -41.95 1.38) ; 66 + ( 243.47 992.75 -41.95 1.38) ; 67 + ( 243.87 997.03 -42.35 1.38) ; 68 + ( 244.24 999.50 -43.00 1.38) ; 69 + ( 244.39 1004.90 -43.00 1.38) ; 70 + ( 245.78 1007.03 -43.90 1.38) ; 71 + ( 246.19 1011.31 -44.70 1.38) ; 72 + ( 246.42 1014.35 -45.17 1.38) ; 73 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 224.30 837.30 -58.10 1.38) ; 1 + ( 217.89 862.65 -59.50 1.38) ; 2 + ( 218.73 861.07 -59.32 1.38) ; 3 + ( 223.87 881.37 -58.80 1.38) ; 4 + ( 222.92 879.36 -58.80 1.38) ; 5 + ( 220.39 884.15 -59.78 1.38) ; 6 + ( 220.44 885.96 -59.78 1.38) ; 7 + ( 220.92 881.89 -59.78 1.38) ; 8 + ( 220.45 891.92 -57.88 1.38) ; 9 + ( 220.48 887.75 -56.82 1.38) ; 10 + ( 222.43 893.58 -54.38 1.38) ; 11 + ( 227.71 903.17 -45.07 1.38) ; 12 + ( 224.49 904.81 -45.07 1.38) ; 13 + ( 232.73 913.90 -43.70 1.38) ; 14 + ( 230.77 918.24 -42.45 1.38) ; 15 + ( 229.25 916.67 -41.75 1.38) ; 16 + ( 230.70 920.60 -40.57 1.38) ; 17 + ( 236.31 920.72 -42.02 1.38) ; 18 + ( 235.33 922.88 -40.77 1.38) ; 19 + ( 232.94 927.10 -40.00 1.38) ; 20 + ( 238.02 927.58 -41.32 1.38) ; 21 + ( 236.32 930.77 -40.63 1.38) ; 22 + ( 237.26 932.78 -40.63 1.38) ; 23 + ( 238.57 937.26 -43.53 1.38) ; 24 + ( 243.26 941.35 -44.72 1.38) ; 25 + ( 241.65 936.20 -44.72 1.38) ; 26 + ( 243.66 939.65 -44.72 1.38) ; 27 + ( 238.23 946.74 -43.90 1.38) ; 28 + ( 240.34 947.83 -43.90 1.38) ; 29 + ( 244.97 966.23 -43.50 1.38) ; 30 + ( 241.35 963.60 -37.97 1.38) ; 31 + ( 244.87 962.63 -44.72 1.38) ; 32 + ( 246.37 974.32 -42.37 1.38) ; 33 + ( 245.91 984.38 -41.95 1.38) ; 34 + ( 242.29 987.71 -43.65 1.38) ; 35 + ( 245.43 988.44 -41.57 1.38) ; 36 + ( 246.26 986.84 -41.57 1.38) ; 37 + ( 246.59 993.49 -41.90 1.38) ; 38 + ( 241.68 992.34 -41.90 1.38) ; 39 + ( 246.29 998.79 -43.30 1.38) ; 40 + ) ; End of markers + ( + ( 245.44 1016.50 -43.55 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1 + ( 245.44 1016.50 -43.53 1.38) ; 2 + ( 243.12 1018.35 -42.05 1.38) ; 3 + ( 243.12 1018.35 -42.10 1.38) ; 4 + ( 243.67 1022.06 -40.85 0.92) ; 5 + ( 243.59 1024.43 -39.70 0.92) ; 6 + ( 242.66 1028.39 -39.15 0.92) ; 7 + ( 244.04 1030.50 -39.15 0.92) ; 8 + ( 242.93 1033.23 -38.50 0.92) ; 9 + ( 242.89 1037.40 -37.15 0.92) ; 10 + ( 243.26 1039.88 -37.15 0.92) ; 11 + ( 244.91 1040.86 -37.15 0.92) ; 12 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 241.50 1029.31 -39.15 0.92) ; 1 + ( 245.15 1027.79 -39.15 0.92) ; 2 + ( 241.98 1025.24 -39.15 0.92) ; 3 + ( 242.03 1027.05 -39.15 0.92) ; 4 + ( 245.36 1034.99 -37.15 0.92) ; 5 + ( 244.11 1038.28 -37.15 0.92) ; 6 + ) ; End of markers + ( + ( 243.22 1044.05 -35.80 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1 + ( 243.15 1046.42 -35.15 0.46) ; 2 + ( 243.95 1049.00 -33.95 0.46) ; 3 + ( 243.87 1051.37 -33.95 0.46) ; 4 + ( 242.49 1055.22 -33.95 0.46) ; 5 + ( 241.83 1058.06 -32.75 0.46) ; 6 + ( 241.61 1060.99 -31.92 0.46) ; 7 + ( 240.32 1062.48 -34.10 0.46) ; 8 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 240.54 1043.42 -35.15 0.46) ; 1 + ( 241.22 1046.56 -33.42 0.46) ; 2 + ( 246.40 1046.59 -33.27 0.46) ; 3 + ( 241.69 1052.65 -33.95 0.46) ; 4 + ( 239.41 1056.30 -33.95 0.46) ; 5 + ( 239.92 1058.21 -33.95 0.46) ; 6 + ( 245.13 1060.03 -30.25 0.46) ; 7 + ( 239.34 1064.64 -34.08 0.46) ; 8 + ) ; End of markers + ( + ( 236.47 1062.77 -34.10 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1-1 + ( 233.35 1062.03 -32.25 0.46) ; 2 + ( 231.13 1061.51 -31.48 0.46) ; 3 + ( 229.83 1063.00 -31.95 0.46) ; 4 + ( 227.20 1064.18 -30.73 0.46) ; 5 + ( 222.97 1066.17 -29.25 0.46) ; 6 + ( 221.49 1066.42 -27.90 0.46) ; 7 + ( 217.98 1067.27 -31.52 0.46) ; 8 + ( 217.96 1067.40 -31.55 0.46) ; 9 + ( 214.84 1066.66 -32.67 0.46) ; 10 + ( 211.77 1067.73 -33.97 0.46) ; 11 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 238.03 1060.15 -34.10 0.46) ; 1 + ( 234.46 1059.32 -32.52 0.46) ; 2 + ( 230.50 1060.17 -31.60 0.46) ; 3 + ( 225.63 1060.83 -33.30 0.46) ; 4 + ( 231.26 1066.93 -30.25 0.46) ; 5 + ) ; End of markers + Normal + | + ( 242.34 1065.94 -32.40 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1-2 + ( 243.22 1066.15 -32.17 0.46) ; 2 + ( 243.54 1066.81 -28.72 0.46) ; 3 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 240.91 1067.99 -33.53 0.46) ; 1 + ) ; End of markers + ( + ( 246.85 1068.78 -28.72 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1-2-1 + ( 248.91 1068.08 -27.60 0.46) ; 2 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 246.90 1070.59 -28.72 0.46) ; 1 + ( 253.18 1067.89 -25.10 0.46) ; 2 + ) ; End of markers + ( + ( 248.41 1066.17 -26.25 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1-2-1-1 + ( 247.47 1064.15 -24.08 0.46) ; 2 + ( 247.47 1064.15 -24.10 0.46) ; 3 + ( 248.63 1063.24 -21.67 0.46) ; 4 + ( 248.63 1063.24 -21.70 0.46) ; 5 + ( 247.37 1060.54 -19.88 0.46) ; 6 + ( 247.05 1059.88 -18.70 0.46) ; 7 + Normal + | + ( 251.89 1069.37 -26.20 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1-2-1-2 + ( 255.47 1070.21 -25.52 0.46) ; 2 + ( 257.43 1071.86 -23.60 0.46) ; 3 + ( 257.43 1071.86 -23.57 0.46) ; 4 + Normal + ) ; End of split + | + ( 241.98 1069.44 -28.72 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-1-2-2 + ( 240.30 1072.63 -28.72 0.46) ; 2 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 236.91 1073.03 -28.72 0.46) ; 1 + ( 244.41 1077.16 -28.72 0.46) ; 2 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 245.99 1042.31 -37.15 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-1-2 + ( 245.33 1045.14 -37.15 0.46) ; 2 + ( 248.63 1047.11 -37.15 0.46) ; 3 + ( 249.76 1050.36 -36.15 0.46) ; 4 + ( 251.73 1052.01 -35.57 0.46) ; 5 + ( 253.87 1054.91 -34.85 0.46) ; 6 + ( 255.00 1058.15 -34.25 0.46) ; 7 + ( 256.65 1059.13 -36.20 0.46) ; 8 + ( 258.48 1061.36 -36.20 0.46) ; 9 + ( 259.69 1062.24 -38.15 0.46) ; 10 + ( 259.92 1065.29 -39.52 0.46) ; 11 + ( 261.12 1066.16 -39.82 0.46) ; 12 + ( 263.68 1067.36 -41.38 0.46) ; 13 + ( 264.88 1068.23 -42.40 0.46) ; 14 + ( 264.88 1068.23 -42.42 0.46) ; 15 + ( 266.67 1068.65 -43.00 0.46) ; 16 + ( 268.32 1069.63 -43.00 0.46) ; 17 + ( 269.93 1068.82 -44.43 0.46) ; 18 + ( 271.58 1069.80 -45.05 0.46) ; 19 + ( 273.19 1068.99 -46.05 0.46) ; 20 + ( 273.19 1068.99 -46.08 0.46) ; 21 + ( 274.53 1069.31 -47.13 0.46) ; 22 + ( 274.53 1069.31 -47.15 0.46) ; 23 + ( 276.94 1071.06 -47.17 0.46) ; 24 + ( 278.28 1071.37 -48.95 0.46) ; 25 + ( 279.13 1069.78 -50.15 0.46) ; 26 + ( 281.05 1069.64 -51.67 0.46) ; 27 + ( 282.43 1071.75 -53.62 0.46) ; 28 + ( 282.43 1071.75 -53.67 0.46) ; 29 + ( 283.72 1070.26 -55.72 0.46) ; 30 + ( 284.75 1069.90 -58.47 0.46) ; 31 + ( 284.75 1069.90 -58.65 0.46) ; 32 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 251.83 1055.62 -34.25 0.46) ; 1 + ( 256.10 1055.43 -34.25 0.46) ; 2 + ( 257.18 1056.88 -37.83 0.46) ; 3 + ( 257.02 1061.62 -36.25 0.46) ; 4 + ( 259.46 1059.20 -36.25 0.46) ; 5 + ( 261.47 1062.66 -39.52 0.46) ; 6 + ( 263.63 1065.56 -39.82 0.46) ; 7 + ( 263.72 1069.15 -43.00 0.46) ; 8 + ( 266.72 1070.46 -43.00 0.46) ; 9 + ( 266.75 1066.29 -43.00 0.46) ; 10 + ( 273.34 1074.40 -47.17 0.46) ; 11 + ( 281.00 1073.81 -50.15 0.46) ; 12 + ) ; End of markers + Normal + ) ; End of split + | + ( 248.12 1017.13 -43.80 0.46) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-1-2 + ( 249.24 1020.38 -43.80 0.46) ; 2 + ( 251.21 1022.03 -43.88 0.46) ; 3 + ( 254.78 1022.87 -44.30 0.46) ; 4 + ( 254.78 1022.87 -44.32 0.46) ; 5 + ( 257.09 1021.03 -44.70 0.46) ; 6 + ( 257.09 1021.03 -44.80 0.46) ; 7 + ( 259.47 1020.98 -44.90 0.46) ; 8 + ( 259.47 1020.98 -45.15 0.46) ; 9 + ( 261.57 1022.08 -47.13 0.46) ; 10 + ( 261.57 1022.08 -47.20 0.46) ; 11 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 248.73 1006.53 -45.17 1.38) ; 1 + ( 247.30 1008.58 -45.17 1.38) ; 2 + ( 248.42 1011.83 -45.17 1.38) ; 3 + ( 242.74 1009.90 -43.80 1.38) ; 4 + ) ; End of markers + Normal + ) ; End of split + | + ( 231.44 802.40 -54.55 1.38) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2 + ( 233.80 802.34 -53.30 1.38) ; 2 + ( 234.88 803.81 -52.50 1.38) ; 3 + ( 234.88 803.81 -52.55 1.38) ; 4 + ( 235.10 806.84 -52.55 1.38) ; 5 + ( 237.08 808.50 -51.55 1.38) ; 6 + ( 238.01 810.51 -50.40 1.38) ; 7 + ( 238.19 811.74 -49.60 1.38) ; 8 + ( 237.80 813.44 -48.75 1.38) ; 9 + ( 241.74 816.75 -48.75 1.38) ; 10 + ( 242.94 817.62 -47.67 1.38) ; 11 + ( 244.38 821.55 -47.67 1.38) ; 12 + ( 246.03 822.53 -47.67 1.38) ; 13 + ( 246.84 825.11 -47.67 1.38) ; 14 + ( 247.65 827.70 -47.67 1.38) ; 15 + ( 250.38 830.12 -47.67 1.38) ; 16 + ( 250.34 834.30 -47.67 1.38) ; 17 + ( 251.91 837.65 -47.57 1.38) ; 18 + ( 252.50 843.16 -47.55 1.38) ; 19 + ( 255.10 846.16 -47.15 1.38) ; 20 + ( 255.46 848.63 -46.65 1.38) ; 21 + ( 255.96 850.53 -46.38 1.38) ; 22 + ( 256.45 852.45 -45.65 1.38) ; 23 + ( 258.87 854.21 -45.65 1.38) ; 24 + ( 259.36 856.12 -44.43 1.38) ; 25 + ( 259.36 856.12 -44.45 1.38) ; 26 + ( 259.59 859.15 -43.58 1.38) ; 27 + ( 262.44 861.02 -43.15 1.38) ; 28 + ( 262.44 861.02 -43.18 1.38) ; 29 + ( 261.33 863.74 -43.10 1.38) ; 30 + ( 263.18 865.97 -42.57 1.38) ; 31 + ( 263.18 865.97 -42.60 1.38) ; 32 + ( 263.02 870.70 -43.50 1.38) ; 33 + ( 265.74 873.13 -42.92 1.38) ; 34 + ( 266.09 875.61 -42.05 1.38) ; 35 + ( 266.91 878.18 -41.20 1.38) ; 36 + ( 269.77 880.06 -40.48 1.38) ; 37 + ( 269.77 880.06 -40.50 1.38) ; 38 + ( 270.90 883.30 -39.65 1.38) ; 39 + ( 273.76 885.17 -39.20 1.38) ; 40 + ( 276.35 888.16 -39.02 1.38) ; 41 + ( 278.41 893.42 -39.02 1.38) ; 42 + ( 278.92 895.33 -37.70 1.38) ; 43 + ( 281.64 897.76 -38.03 1.38) ; 44 + ( 283.60 899.43 -38.03 1.38) ; 45 + ( 284.33 904.37 -38.03 1.38) ; 46 + ( 285.77 908.29 -38.03 1.38) ; 47 + ( 286.89 911.53 -36.10 1.38) ; 48 + ( 286.72 916.27 -36.10 1.38) ; 49 + ( 287.22 918.18 -37.20 1.38) ; 50 + ( 287.22 918.18 -37.17 1.38) ; 51 + ( 287.58 920.65 -38.35 1.38) ; 52 + ( 287.58 920.65 -38.38 1.38) ; 53 + ( 288.13 924.36 -38.70 1.38) ; 54 + ( 288.04 926.73 -38.90 1.38) ; 55 + ( 289.17 929.99 -38.90 1.38) ; 56 + ( 288.95 932.92 -39.60 1.38) ; 57 + ( 291.10 935.81 -40.45 1.38) ; 58 + ( 293.12 939.27 -41.00 1.38) ; 59 + ( 295.08 940.92 -40.48 1.38) ; 60 + ( 295.08 940.92 -40.50 1.38) ; 61 + ( 295.31 943.96 -40.50 1.38) ; 62 + ( 295.85 947.67 -40.50 1.38) ; 63 + ( 298.45 950.67 -40.50 1.38) ; 64 + ( 299.70 953.35 -39.72 1.38) ; 65 + ( 301.32 958.52 -38.85 1.38) ; 66 + ( 302.72 960.62 -38.57 1.38) ; 67 + ( 304.86 963.52 -38.57 1.38) ; 68 + ( 307.19 967.64 -37.58 1.38) ; 69 + ( 308.45 970.33 -36.40 1.38) ; 70 + ( 308.10 973.84 -35.15 1.38) ; 71 + ( 308.51 978.11 -36.88 1.38) ; 72 + ( 309.50 981.93 -35.90 1.38) ; 73 + ( 309.42 984.30 -34.70 1.38) ; 74 + ( 311.51 985.38 -33.55 1.38) ; 75 + ( 313.22 988.17 -32.50 1.38) ; 76 + ( 313.85 989.51 -31.80 1.38) ; 77 + ( 312.39 995.74 -31.25 1.38) ; 78 + ( 313.95 999.09 -31.80 1.38) ; 79 + + (Cross + (Color White) + (Name "Marker 3") + ( 231.13 801.49 -32.20 1.83) ; 1 + ( 230.68 801.39 -32.02 1.83) ; 2 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 227.32 797.85 -54.55 1.38) ; 1 + ( 239.88 808.56 -50.40 1.38) ; 2 + ( 235.88 813.59 -48.75 1.38) ; 3 + ( 239.72 813.30 -48.75 1.38) ; 4 + ( 241.15 817.21 -47.67 1.38) ; 5 + ( 252.03 831.11 -46.57 1.38) ; 6 + ( 247.76 821.15 -46.57 1.38) ; 7 + ( 249.23 837.02 -46.20 1.38) ; 8 + ( 254.06 840.54 -46.20 1.38) ; 9 + ( 256.88 846.57 -46.20 1.38) ; 10 + ( 255.42 852.80 -45.65 1.38) ; 11 + ( 256.50 854.25 -45.65 1.38) ; 12 + ( 260.50 865.34 -43.95 1.38) ; 13 + ( 259.55 863.33 -42.17 1.38) ; 14 + ( 262.57 870.60 -45.00 1.38) ; 15 + ( 270.63 884.43 -39.65 1.38) ; 16 + ( 272.31 881.25 -39.65 1.38) ; 17 + ( 267.28 880.66 -39.65 1.38) ; 18 + ( 273.45 890.47 -39.02 1.38) ; 19 + ( 276.30 886.36 -37.70 1.38) ; 20 + ( 282.57 893.80 -39.42 1.38) ; 21 + ( 282.92 896.27 -39.90 1.38) ; 22 + ( 285.44 901.64 -39.90 1.38) ; 23 + ( 286.70 904.33 -40.35 1.38) ; 24 + ( 281.96 904.41 -37.38 1.38) ; 25 + ( 281.43 906.68 -37.38 1.38) ; 26 + ( 289.17 913.86 -36.55 1.38) ; 27 + ( 287.18 922.35 -39.50 1.38) ; 28 + ( 289.15 924.01 -38.38 1.38) ; 29 + ( 290.90 928.59 -38.38 1.38) ; 30 + ( 288.11 918.39 -37.47 1.38) ; 31 + ( 286.19 918.53 -37.47 1.38) ; 32 + ( 291.82 940.76 -41.00 1.38) ; 33 + ( 295.03 939.12 -41.00 1.38) ; 34 + ( 300.19 949.28 -40.50 1.38) ; 35 + ( 297.03 952.72 -40.50 1.38) ; 36 + ( 301.63 953.20 -38.85 1.38) ; 37 + ( 300.08 961.80 -38.85 1.38) ; 38 + ( 302.82 964.23 -38.57 1.38) ; 39 + ( 304.33 965.78 -38.57 1.38) ; 40 + ( 308.48 966.16 -38.57 1.38) ; 41 + ( 308.66 967.40 -38.57 1.38) ; 42 + ( 306.39 971.04 -35.15 1.38) ; 43 + ( 310.65 975.03 -36.40 1.38) ; 44 + ( 315.27 987.46 -31.25 1.38) ; 45 + ( 311.31 988.32 -31.25 1.38) ; 46 + ( 313.43 985.23 -35.00 1.38) ; 47 + ( 311.71 992.60 -35.00 1.38) ; 48 + ) ; End of markers + ( + ( 313.70 1000.24 -30.57 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-1 + ( 313.89 1001.48 -29.17 0.92) ; 2 + ( 312.91 1003.64 -27.38 0.92) ; 3 + ( 313.90 1007.45 -26.77 0.92) ; 4 + ( 315.03 1010.70 -26.15 0.92) ; 5 + ( 314.68 1014.20 -25.23 0.92) ; 6 + ( 314.91 1017.24 -24.40 0.92) ; 7 + ( 315.89 1021.06 -24.40 0.92) ; 8 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 311.53 1001.53 -27.38 0.92) ; 1 + ( 315.01 1004.73 -27.38 0.92) ; 2 + ( 312.24 1006.47 -27.38 0.92) ; 3 + ( 312.44 1013.67 -24.40 0.92) ; 4 + ( 319.04 1011.64 -24.40 0.92) ; 5 + ( 317.22 1015.39 -24.40 0.92) ; 6 + ( 313.64 1014.56 -24.40 0.92) ; 7 + ( 313.67 1020.53 -24.40 0.92) ; 8 + ) ; End of markers + ( + ( 318.18 1023.38 -24.40 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-1-1 + ( 320.46 1025.71 -24.38 0.92) ; 2 + ( 321.00 1029.42 -24.35 0.92) ; 3 + ( 322.39 1031.54 -23.67 0.92) ; 4 + ( 323.69 1036.02 -22.60 0.92) ; 5 + ( 323.61 1038.39 -21.60 0.92) ; 6 + ( 326.16 1039.59 -20.92 0.92) ; 7 + ( 327.60 1043.50 -20.92 0.92) ; 8 + ( 328.35 1044.28 -19.70 0.92) ; 9 + ( 330.90 1045.48 -18.50 0.92) ; 10 + ( 331.71 1048.05 -17.45 0.92) ; 11 + ( 334.00 1050.38 -16.80 0.92) ; 12 + ( 335.01 1050.02 -16.73 0.92) ; 13 + ( 337.25 1050.55 -16.07 0.92) ; 14 + ( 340.43 1053.08 -16.90 0.92) ; 15 + ( 340.43 1053.08 -16.88 0.92) ; 16 + ( 340.84 1057.36 -15.57 0.92) ; 17 + ( 342.62 1057.78 -15.57 0.92) ; 18 + ( 341.51 1060.50 -14.75 0.92) ; 19 + ( 341.51 1060.50 -14.77 0.92) ; 20 + ( 339.91 1061.33 -12.98 0.92) ; 21 + ( 339.91 1061.33 -13.00 0.92) ; 22 + ( 338.57 1061.01 -11.37 0.92) ; 23 + ( 338.57 1061.01 -11.40 0.92) ; 24 + ( 336.78 1060.59 -9.93 0.92) ; 25 + ( 336.78 1060.59 -9.95 0.92) ; 26 + ( 332.94 1060.88 -7.80 0.92) ; 27 + ( 332.94 1060.88 -7.72 0.92) ; 28 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 323.90 1027.12 -24.32 0.92) ; 1 + ( 320.62 1020.97 -24.32 0.92) ; 2 + ( 325.11 1033.97 -22.60 0.92) ; 3 + ( 324.90 1036.90 -22.60 0.92) ; 4 + ( 321.11 1039.00 -21.60 0.92) ; 5 + ( 323.31 1043.70 -21.60 0.92) ; 6 + ( 328.53 1039.54 -20.92 0.92) ; 7 + ( 326.70 1043.29 -18.50 0.92) ; 8 + ( 328.88 1042.02 -18.50 0.92) ; 9 + ( 330.54 1043.00 -17.45 0.92) ; 10 + ( 328.00 1047.77 -17.45 0.92) ; 11 + ( 338.41 1049.61 -16.88 0.92) ; 12 + ( 339.75 1049.93 -16.88 0.92) ; 13 + ( 339.77 1055.92 -15.57 0.92) ; 14 + ( 335.99 1063.99 -11.40 0.92) ; 15 + ) ; End of markers + Normal + | + ( 314.65 1024.35 -24.40 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-1-2 + ( 315.96 1028.83 -24.40 0.92) ; 2 + ( 316.19 1031.88 -22.88 0.92) ; 3 + ( 316.19 1031.88 -22.90 0.92) ; 4 + ( 315.83 1035.37 -22.05 0.92) ; 5 + ( 316.51 1038.52 -22.02 0.92) ; 6 + ( 313.09 1043.09 -22.77 0.92) ; 7 + ( 313.09 1043.09 -22.80 0.92) ; 8 + ( 311.48 1043.90 -24.17 0.92) ; 9 + ( 310.27 1043.03 -26.00 0.92) ; 10 + ( 308.62 1042.04 -28.98 0.92) ; 11 + ( 308.62 1042.04 -29.00 0.92) ; 12 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 314.63 1034.49 -22.05 0.92) ; 1 + ( 315.30 1037.64 -22.05 0.92) ; 2 + ( 319.77 1038.69 -21.10 0.92) ; 3 + ( 315.71 1041.92 -22.02 0.92) ; 4 + ) ; End of markers + Normal + ) ; End of split + | + ( 316.83 1000.97 -30.90 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2 + ( 316.83 1000.97 -30.92 0.92) ; 2 + ( 316.61 1003.91 -31.35 0.92) ; 3 + ( 316.61 1003.91 -31.38 0.92) ; 4 + ( 318.19 1007.27 -30.60 0.92) ; 5 + ( 318.19 1007.27 -30.63 0.92) ; 6 + ( 319.18 1011.07 -29.67 0.92) ; 7 + ( 318.96 1014.01 -29.67 0.92) ; 8 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 316.29 997.26 -33.13 0.92) ; 1 + ( 319.20 1000.93 -30.50 0.92) ; 2 + ) ; End of markers + ( + ( 320.92 1015.66 -31.32 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-1 + ( 320.92 1015.66 -31.35 0.92) ; 2 + ( 320.84 1018.04 -32.15 0.92) ; 3 + ( 321.79 1020.05 -33.13 0.92) ; 4 + ( 322.86 1021.50 -34.42 0.92) ; 5 + ( 323.22 1023.96 -34.88 0.92) ; 6 + ( 323.09 1024.53 -36.40 0.92) ; 7 + ( 325.50 1026.30 -37.32 0.92) ; 8 + ( 325.50 1026.30 -37.38 0.92) ; 9 + ( 325.81 1026.97 -39.02 0.92) ; 10 + ( 326.57 1027.74 -40.77 0.92) ; 11 + ( 326.57 1027.74 -40.80 0.92) ; 12 + ( 326.36 1030.68 -42.20 0.92) ; 13 + ( 328.20 1032.90 -42.98 0.92) ; 14 + ( 329.19 1036.72 -43.75 0.92) ; 15 + ( 331.02 1038.94 -43.75 0.92) ; 16 + ( 334.02 1040.23 -44.35 0.92) ; 17 + ( 335.99 1041.89 -44.75 0.92) ; 18 + ( 335.99 1041.89 -44.78 0.92) ; 19 + ( 337.10 1045.13 -46.10 0.92) ; 20 + ( 337.10 1045.13 -46.12 0.92) ; 21 + ( 340.86 1047.22 -46.63 0.92) ; 22 + ( 343.09 1047.74 -46.63 0.92) ; 23 + ( 345.15 1047.02 -47.65 0.92) ; 24 + ( 345.99 1045.43 -48.07 0.92) ; 25 + ( 345.99 1045.43 -48.10 0.92) ; 26 + ( 348.99 1046.72 -47.72 0.92) ; 27 + ( 352.43 1048.13 -48.42 0.92) ; 28 + ( 352.43 1048.13 -48.45 0.92) ; 29 + ( 356.81 1051.55 -49.07 0.92) ; 30 + ( 360.51 1051.83 -50.07 0.92) ; 31 + ( 360.74 1054.86 -50.92 0.46) ; 32 + ( 360.74 1054.86 -50.97 0.46) ; 33 + ( 358.11 1056.03 -51.77 0.46) ; 34 + ( 358.11 1056.03 -51.80 0.46) ; 35 + ( 356.06 1056.75 -50.50 0.46) ; 36 + ( 356.06 1056.75 -50.52 0.46) ; 37 + ( 352.14 1059.41 -53.18 0.46) ; 38 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 322.27 1015.98 -31.35 0.92) ; 1 + ( 322.35 1013.62 -31.35 0.92) ; 2 + ( 322.64 1018.46 -30.27 0.92) ; 3 + ( 321.44 1023.55 -34.88 0.92) ; 4 + ( 321.93 1025.46 -37.38 0.92) ; 5 + ( 325.64 1031.71 -42.98 0.92) ; 6 + ( 332.00 1036.78 -43.75 0.92) ; 7 + ( 335.68 1047.19 -46.12 0.92) ; 8 + ( 341.85 1051.03 -46.63 0.92) ; 9 + ( 348.81 1045.49 -47.72 0.92) ; 10 + ) ; End of markers + Normal + | + ( 318.74 1016.95 -29.67 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2 + ( 319.73 1020.76 -29.67 0.92) ; 2 + ( 319.11 1025.39 -29.17 0.92) ; 3 + ( 320.83 1028.18 -28.02 0.92) ; 4 + ( 320.34 1032.24 -26.32 0.92) ; 5 + ( 320.70 1034.73 -26.32 0.92) ; 6 + ( 321.11 1039.00 -26.17 0.92) ; 7 + ( 322.81 1041.79 -26.90 0.92) ; 8 + ( 321.12 1044.97 -26.50 0.92) ; 9 + ( 323.15 1048.44 -25.87 0.92) ; 10 + ( 323.50 1050.90 -24.20 0.92) ; 11 + ( 322.92 1051.37 -21.50 0.92) ; 12 + ( 321.77 1052.30 -18.67 0.92) ; 13 + ( 321.77 1052.30 -18.63 0.92) ; 14 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 322.02 1023.09 -29.17 0.92) ; 1 + ( 322.38 1025.56 -29.17 0.92) ; 2 + ( 319.10 1035.55 -26.15 0.92) ; 3 + ( 324.14 1036.13 -26.15 0.92) ; 4 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 255.98 279.41 -19.42 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-2 + ( + ( 257.70 278.01 -18.00 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-2-1 + ( 258.24 275.74 -16.80 0.92) ; 2 + ( 259.08 274.15 -15.90 0.92) ; 3 + ( 260.68 273.34 -14.97 0.92) ; 4 + ( 260.46 270.30 -13.87 0.92) ; 5 + ( 259.64 267.72 -12.30 0.92) ; 6 + ( 259.55 264.11 -10.88 0.92) ; 7 + ( 260.66 261.38 -9.20 0.92) ; 8 + ( 261.37 260.36 -8.00 0.92) ; 9 + ( 262.66 258.87 -7.22 0.92) ; 10 + ( 263.19 256.61 -5.53 0.92) ; 11 + ( 265.55 256.57 -4.85 0.92) ; 12 + ( 267.74 255.28 -4.15 0.92) ; 13 + ( 268.54 251.88 -3.70 0.92) ; 14 + ( 270.09 249.26 -3.00 0.92) ; 15 + ( 272.28 247.98 -1.07 0.92) ; 16 + ( 274.72 245.58 -0.25 0.92) ; 17 + ( 277.18 243.16 0.30 0.92) ; 18 + ( 279.17 240.65 1.85 0.92) ; 19 + ( 280.33 239.72 3.40 0.92) ; 20 + ( 282.84 239.12 4.80 0.92) ; 21 + ( 283.68 237.52 4.52 0.92) ; 22 + ( 284.08 235.83 3.85 0.92) ; 23 + ( 285.19 233.09 4.07 0.92) ; 24 + ( 285.19 233.09 4.05 0.92) ; 25 + ( 284.39 230.53 5.55 0.92) ; 26 + ( 284.39 230.53 5.48 0.92) ; 27 + ( 286.25 228.57 6.95 0.92) ; 28 + ( 288.65 224.36 7.50 0.92) ; 29 + ( 290.08 222.30 9.88 0.92) ; 30 + ( 290.08 222.30 9.85 0.92) ; 31 + ( 291.54 222.05 11.30 0.92) ; 32 + ( 294.76 220.41 12.83 0.92) ; 33 + ( 297.84 219.34 13.20 0.92) ; 34 + ( 299.57 217.95 14.55 0.92) ; 35 + ( 299.57 217.95 14.52 0.92) ; 36 + ( 299.97 216.25 16.07 0.92) ; 37 + ( 299.04 214.25 17.35 0.92) ; 38 + ( 300.58 211.62 17.92 0.92) ; 39 + ( 299.60 207.81 18.42 0.92) ; 40 + ( 299.19 203.53 20.52 0.92) ; 41 + ( 299.19 203.53 20.60 0.92) ; 42 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 262.87 272.05 -15.35 0.92) ; 1 + ( 261.43 268.14 -12.52 0.92) ; 2 + ( 257.50 264.82 -10.88 0.92) ; 3 + ( 261.70 267.00 -10.88 0.92) ; 4 + ( 260.44 264.32 -10.10 0.92) ; 5 + ( 259.33 261.07 -7.22 0.92) ; 6 + ( 262.13 261.13 -7.22 0.92) ; 7 + ( 263.56 259.07 -8.42 0.92) ; 8 + ( 261.98 255.72 -6.57 0.92) ; 9 + ( 268.30 248.85 -3.00 0.92) ; 10 + ( 266.89 256.88 -3.00 0.92) ; 11 + ( 269.80 254.57 -1.73 0.92) ; 12 + ( 270.06 247.46 -2.75 0.92) ; 13 + ( 270.86 250.04 -2.75 0.92) ; 14 + ( 271.29 244.16 -2.10 0.92) ; 15 + ( 271.52 247.21 -2.10 0.92) ; 16 + ( 276.51 245.99 0.30 0.92) ; 17 + ( 274.06 248.40 0.30 0.92) ; 18 + ( 278.24 244.60 0.30 0.92) ; 19 + ( 275.92 240.48 0.30 0.92) ; 20 + ( 275.26 243.31 2.42 0.92) ; 21 + ( 279.54 243.12 0.55 0.92) ; 22 + ( 285.34 238.50 4.52 0.92) ; 23 + ( 286.66 232.84 4.52 0.92) ; 24 + ( 284.84 236.60 2.95 0.92) ; 25 + ( 283.63 229.74 7.50 0.92) ; 26 + ( 286.60 225.07 7.50 0.92) ; 27 + ( 284.28 226.92 8.57 0.92) ; 28 + ( 287.64 230.68 8.57 0.92) ; 29 + ( 287.28 228.21 8.57 0.92) ; 30 + ( 291.01 224.32 9.22 0.92) ; 31 + ( 293.79 222.57 12.83 0.92) ; 32 + ( 294.26 218.50 13.45 0.92) ; 33 + ( 295.57 222.98 13.45 0.92) ; 34 + ( 298.02 220.57 14.52 0.92) ; 35 + ( 300.70 221.21 14.75 0.92) ; 36 + ( 297.61 216.29 17.35 0.92) ; 37 + ( 301.69 208.90 18.92 0.92) ; 38 + ) ; End of markers + Normal + | + ( 258.33 279.34 -19.85 0.92) ; 1, R-1-1-1-1-1-1-1-1-1-2-2 + ( 260.96 278.18 -20.52 0.92) ; 2 + ( 263.29 276.33 -20.80 0.92) ; 3 + ( 264.70 274.27 -20.80 0.92) ; 4 + ( 265.73 273.93 -20.80 0.92) ; 5 + ( 267.87 270.84 -21.45 0.92) ; 6 + ( 270.05 269.55 -21.70 0.92) ; 7 + ( 271.92 267.61 -20.30 0.92) ; 8 + ( 273.33 265.55 -19.48 0.92) ; 9 + ( 274.00 262.72 -19.33 0.92) ; 10 + ( 274.98 260.56 -18.70 0.92) ; 11 + ( 277.75 258.82 -18.10 0.92) ; 12 + ( 281.27 257.85 -20.65 0.92) ; 13 + ( 284.49 256.21 -20.73 0.92) ; 14 + ( 284.49 256.21 -20.75 0.92) ; 15 + ( 286.63 253.14 -19.52 0.92) ; 16 + ( 288.17 250.52 -19.23 0.92) ; 17 + ( 289.42 247.22 -18.57 0.92) ; 18 + ( 289.42 247.22 -18.63 0.92) ; 19 + ( 291.11 244.04 -18.15 0.92) ; 20 + ( 293.55 241.63 -18.15 0.92) ; 21 + ( 296.00 239.22 -19.40 0.92) ; 22 + ( 298.46 236.80 -18.20 0.92) ; 23 + ( 299.57 234.08 -16.83 0.92) ; 24 + ( 299.57 234.08 -16.85 0.92) ; 25 + ( 300.50 230.12 -17.30 0.92) ; 26 + ( 302.05 227.50 -17.08 0.92) ; 27 + ( 302.05 227.50 -17.10 0.92) ; 28 + ( 305.26 225.86 -15.70 0.92) ; 29 + ( 307.31 225.14 -15.60 0.92) ; 30 + ( 309.57 221.50 -14.88 0.92) ; 31 + ( 311.14 218.87 -14.40 0.92) ; 32 + ( 313.33 217.60 -14.40 0.92) ; 33 + ( 314.13 214.20 -15.35 0.92) ; 34 + ( 315.73 213.40 -16.45 0.92) ; 35 + ( 317.86 210.30 -17.13 0.92) ; 36 + ( 319.73 208.37 -17.20 0.92) ; 37 + ( 321.47 206.98 -17.05 0.92) ; 38 + ( 324.37 204.67 -18.05 0.92) ; 39 + ( 327.89 203.71 -18.77 0.92) ; 40 + ( 329.63 202.32 -17.02 0.92) ; 41 + ( 331.23 201.50 -15.00 0.92) ; 42 + ( 333.61 201.46 -13.87 0.92) ; 43 + ( 334.59 199.30 -12.85 0.92) ; 44 + ( 337.34 197.55 -12.30 0.92) ; 45 + ( 339.48 194.47 -11.95 0.92) ; 46 + ( 340.45 192.32 -13.63 0.92) ; 47 + ( 342.90 189.90 -13.00 0.92) ; 48 + ( 342.46 189.80 -13.00 0.92) ; 49 + ( 345.08 188.63 -11.53 0.92) ; 50 + ( 346.96 186.67 -11.45 0.46) ; 51 + ( 349.45 186.06 -10.68 0.46) ; 52 + ( 350.75 184.57 -10.68 0.46) ; 53 + ( 352.04 183.09 -8.50 0.46) ; 54 + ( 352.04 183.09 -8.45 0.46) ; 55 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 262.91 273.86 -21.70 0.92) ; 1 + ( 265.33 275.62 -18.40 0.92) ; 2 + ( 267.11 270.07 -19.15 0.92) ; 3 + ( 270.54 271.46 -21.35 0.92) ; 4 + ( 268.71 269.23 -21.35 0.92) ; 5 + ( 270.39 266.06 -20.35 0.92) ; 6 + ( 271.82 264.00 -20.35 0.92) ; 7 + ( 273.31 269.72 -20.55 0.92) ; 8 + ( 277.26 256.91 -18.10 0.92) ; 9 + ( 276.05 256.03 -19.42 0.92) ; 10 + ( 279.75 256.30 -17.77 0.92) ; 11 + ( 284.54 258.02 -22.22 0.92) ; 12 + ( 282.12 256.26 -22.22 0.92) ; 13 + ( 291.92 252.59 -19.23 0.92) ; 14 + ( 290.94 248.77 -17.02 0.92) ; 15 + ( 291.34 247.08 -17.02 0.92) ; 16 + ( 286.26 250.66 -17.02 0.92) ; 17 + ( 288.09 246.91 -17.02 0.92) ; 18 + ( 291.72 239.41 -19.40 0.92) ; 19 + ( 298.69 239.84 -18.30 0.92) ; 20 + ( 299.53 238.24 -18.20 0.92) ; 21 + ( 296.67 236.38 -18.20 0.92) ; 22 + ( 300.11 237.79 -15.30 0.92) ; 23 + ( 304.33 229.82 -18.35 0.92) ; 24 + ( 303.84 227.92 -15.55 0.92) ; 25 + ( 305.89 227.20 -14.95 0.92) ; 26 + ( 306.01 220.66 -14.72 0.92) ; 27 + ( 312.00 223.26 -14.45 0.92) ; 28 + ( 312.52 215.01 -15.35 0.92) ; 29 + ( 322.83 213.26 -17.20 0.92) ; 30 + ( 322.85 209.09 -17.57 0.92) ; 31 + ( 317.69 209.07 -14.15 0.92) ; 32 + ( 320.98 205.08 -16.50 0.92) ; 33 + ( 326.95 201.70 -18.77 0.92) ; 34 + ( 328.69 200.31 -13.87 0.92) ; 35 + ( 334.81 202.33 -12.40 0.92) ; 36 + ( 334.27 198.63 -11.58 0.92) ; 37 + ( 336.27 196.11 -11.58 0.92) ; 38 + ( 338.99 198.54 -11.42 0.92) ; 39 + ( 343.09 191.14 -13.00 0.92) ; 40 + ( 341.71 195.00 -14.95 0.92) ; 41 + ( 342.99 187.53 -14.40 0.92) ; 42 + ( 340.05 188.04 -12.15 0.92) ; 43 + ( 346.46 184.77 -10.68 0.46) ; 44 + ( 350.65 180.96 -10.68 0.46) ; 45 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 244.93 254.13 -18.75 0.92) ; 1, R-1-1-1-1-1-1-1-1-2 + ( 244.68 255.26 -16.65 0.92) ; 2 + ( 246.14 255.02 -14.95 0.92) ; 3 + ( 247.03 255.22 -12.80 0.92) ; 4 + ( 242.74 255.42 -11.95 0.92) ; 5 + ( 240.17 258.39 -11.40 0.92) ; 6 + ( 236.25 261.06 -11.15 0.92) ; 7 + ( 236.25 261.06 -11.17 0.92) ; 8 + ( 234.45 260.64 -10.05 0.92) ; 9 + ( 231.64 260.57 -9.72 0.92) ; 10 + ( 230.30 260.26 -8.73 0.92) ; 11 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 242.84 259.02 -11.40 0.92) ; 1 + ( 240.83 255.56 -12.13 0.92) ; 2 + ( 238.96 257.51 -12.13 0.92) ; 3 + ( 236.33 258.69 -12.13 0.92) ; 4 + ( 237.58 261.37 -11.63 0.92) ; 5 + ( 233.37 259.19 -9.72 0.92) ; 6 + ( 233.65 264.03 -9.72 0.92) ; 7 + ( 230.80 262.17 -9.72 0.92) ; 8 + ( 230.25 258.46 -7.43 0.92) ; 9 + ) ; End of markers + ( + ( 228.08 259.73 -9.43 0.92) ; 1, R-1-1-1-1-1-1-1-1-2-1 + ( 224.23 260.04 -9.43 0.92) ; 2 + ( 223.20 260.39 -10.57 0.92) ; 3 + ( 223.20 260.39 -10.60 0.92) ; 4 + ( 220.00 262.02 -11.63 0.92) ; 5 + ( 217.99 264.54 -12.75 0.92) ; 6 + ( 215.76 264.02 -13.70 0.92) ; 7 + ( 213.27 264.62 -14.67 0.92) ; 8 + ( 210.05 266.26 -14.67 0.92) ; 9 + ( 210.05 266.26 -14.70 0.92) ; 10 + ( 209.21 267.85 -15.20 0.92) ; 11 + ( 207.02 269.14 -15.88 0.92) ; 12 + ( 207.02 269.14 -15.90 0.92) ; 13 + ( 204.08 269.64 -16.70 0.92) ; 14 + ( 202.65 271.70 -17.42 0.92) ; 15 + ( 198.94 271.43 -17.42 0.92) ; 16 + ( 194.98 272.28 -17.45 0.92) ; 17 + ( 193.42 274.91 -18.77 0.92) ; 18 + ( 193.42 274.91 -18.75 0.92) ; 19 + ( 191.90 273.35 -20.10 0.92) ; 20 + ( 189.97 273.50 -21.18 0.92) ; 21 + ( 187.93 274.22 -22.02 0.92) ; 22 + ( 185.74 275.49 -22.70 0.92) ; 23 + ( 183.11 276.68 -23.50 0.92) ; 24 + ( 181.56 279.29 -23.50 0.92) ; 25 + ( 179.05 279.91 -23.50 0.92) ; 26 + ( 175.98 280.97 -23.63 0.92) ; 27 + ( 172.77 282.61 -23.63 0.92) ; 28 + ( 169.60 286.05 -23.40 0.46) ; 29 + ( 166.22 286.44 -24.17 0.46) ; 30 + ( 162.70 287.41 -25.15 0.46) ; 31 + ( 160.95 288.80 -25.03 0.46) ; 32 + ( 160.55 290.49 -24.00 0.46) ; 33 + ( 157.97 293.47 -24.92 0.46) ; 34 + ( 157.97 293.47 -24.95 0.46) ; 35 + ( 156.81 294.38 -26.35 0.46) ; 36 + ( 156.81 294.38 -26.38 0.46) ; 37 + ( 154.50 296.24 -27.20 0.46) ; 38 + ( 151.74 297.97 -27.97 0.46) ; 39 + ( 150.76 300.14 -28.15 0.46) ; 40 + ( 148.65 299.06 -28.15 0.46) ; 41 + ( 144.29 301.61 -28.15 0.46) ; 42 + ( 140.31 302.46 -28.25 0.46) ; 43 + ( 140.31 302.46 -28.30 0.46) ; 44 + ( 137.55 304.21 -28.30 0.46) ; 45 + ( 134.07 306.99 -28.30 0.46) ; 46 + ( 130.60 309.74 -27.60 0.46) ; 47 + ( 127.97 310.92 -26.65 0.46) ; 48 + ( 125.08 313.23 -26.00 0.46) ; 49 + ( 123.79 314.72 -25.07 0.46) ; 50 + ( 121.33 317.13 -24.20 0.46) ; 51 + ( 118.57 318.87 -22.77 0.46) ; 52 + ( 117.14 320.93 -22.27 0.46) ; 53 + ( 114.43 324.47 -21.72 0.46) ; 54 + ( 114.43 324.47 -21.75 0.46) ; 55 + ( 114.35 326.83 -20.07 0.46) ; 56 + ( 114.35 326.83 -19.95 0.46) ; 57 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 222.00 259.51 -11.63 0.92) ; 1 + ( 216.39 265.36 -13.50 0.92) ; 2 + ( 218.89 264.75 -14.35 0.92) ; 3 + ( 207.50 265.07 -14.32 0.92) ; 4 + ( 212.29 266.79 -14.27 0.92) ; 5 + ( 208.81 269.56 -14.27 0.92) ; 6 + ( 205.86 270.06 -14.27 0.92) ; 7 + ( 201.80 267.32 -17.45 0.92) ; 8 + ( 201.49 272.62 -17.45 0.92) ; 9 + ( 187.25 271.07 -21.18 0.92) ; 10 + ( 185.79 277.30 -22.70 0.92) ; 11 + ( 190.03 275.30 -22.70 0.92) ; 12 + ( 181.16 280.99 -23.50 0.92) ; 13 + ( 179.40 276.40 -23.50 0.92) ; 14 + ( 181.33 276.26 -23.50 0.92) ; 15 + ( 182.32 280.07 -23.50 0.92) ; 16 + ( 176.25 279.85 -23.63 0.92) ; 17 + ( 176.78 283.55 -24.77 0.92) ; 18 + ( 170.40 282.65 -23.27 0.92) ; 19 + ( 169.55 284.24 -23.85 0.92) ; 20 + ( 165.68 288.71 -25.17 0.92) ; 21 + ( 165.68 288.71 -25.15 0.46) ; 22 + ( 159.75 293.89 -25.27 0.46) ; 23 + ( 152.85 295.26 -27.97 0.46) ; 24 + ( 155.25 297.01 -27.97 0.46) ; 25 + ( 155.34 294.64 -27.97 0.46) ; 26 + ( 148.12 301.31 -28.15 0.46) ; 27 + ( 145.37 303.06 -30.73 0.46) ; 28 + ( 142.64 300.63 -31.45 0.46) ; 29 + ( 137.47 306.58 -29.42 0.46) ; 30 + ( 140.95 303.81 -29.45 0.46) ; 31 + ( 131.28 312.89 -26.65 0.46) ; 32 + ( 127.21 310.15 -26.00 0.46) ; 33 + ( 122.78 321.05 -24.20 0.46) ; 34 + ( 121.52 318.37 -23.15 0.46) ; 35 + ( 123.16 313.38 -23.50 0.46) ; 36 + ) ; End of markers + Normal + | + ( 227.15 263.70 -8.00 0.46) ; 1, R-1-1-1-1-1-1-1-1-2-2 + ( + ( 227.20 265.51 -6.93 0.46) ; 1, R-1-1-1-1-1-1-1-1-2-2-1 + ( 225.71 265.76 -5.60 0.46) ; 2 + ( 223.84 267.71 -4.92 0.46) ; 3 + ( 222.64 266.82 -4.88 0.46) ; 4 + ( 223.14 268.74 -2.97 0.46) ; 5 + ( 223.14 268.74 -2.95 0.46) ; 6 + ( 222.42 269.76 -1.75 0.46) ; 7 + ( 221.58 271.35 -0.12 0.46) ; 8 + ( 222.34 272.14 1.75 0.46) ; 9 + ( 219.97 272.18 3.82 0.46) ; 10 + ( 217.03 272.68 4.72 0.46) ; 11 + ( 217.21 273.91 6.18 0.46) ; 12 + ( 217.98 274.68 8.10 0.46) ; 13 + ( 217.44 276.95 9.45 0.46) ; 14 + ( 218.46 276.60 9.85 0.46) ; 15 + ( 218.06 278.29 11.98 0.46) ; 16 + ( 216.15 278.44 14.23 0.46) ; 17 + ( 217.67 279.99 16.15 0.46) ; 18 + ( 217.32 283.49 17.35 0.46) ; 19 + ( 217.32 283.49 17.40 0.46) ; 20 + ( 218.71 285.61 18.75 0.46) ; 21 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 223.80 265.91 -4.92 0.46) ; 1 + ( 226.80 267.20 -4.92 0.46) ; 2 + ( 224.24 266.01 -2.80 0.46) ; 3 + ( 220.63 269.35 1.75 0.46) ; 4 + ( 223.09 272.90 2.63 0.46) ; 5 + ( 215.66 276.53 8.15 0.46) ; 6 + ( 219.44 274.43 8.85 0.46) ; 7 + ( 220.20 275.21 9.90 0.46) ; 8 + ( 218.69 279.63 17.40 0.46) ; 9 + ) ; End of markers + ( + ( 219.38 288.76 18.80 0.46) ; 1, R-1-1-1-1-1-1-1-1-2-2-1-1 + ( 219.75 291.23 20.27 0.46) ; 2 + ( 221.54 291.64 21.92 0.46) ; 3 + ( 222.56 291.29 23.33 0.46) ; 4 + ( 222.56 291.29 23.30 0.46) ; 5 + Normal + | + ( 220.17 285.36 17.50 0.46) ; 1, R-1-1-1-1-1-1-1-1-2-2-1-2 + ( 221.26 286.80 19.13 0.46) ; 2 + ( 221.26 286.80 19.20 0.46) ; 3 + ( 221.76 288.71 21.05 0.46) ; 4 + ( 220.91 290.31 21.80 0.46) ; 5 + ( 221.54 291.64 23.10 0.46) ; 6 + ( 223.32 292.06 23.78 0.46) ; 7 + ( 223.32 292.06 23.95 0.46) ; 8 + Normal + ) ; End of split + | + ( 225.08 264.42 -9.15 0.92) ; 1, R-1-1-1-1-1-1-1-1-2-2-2 + ( 222.46 265.59 -9.40 0.92) ; 2 + ( 220.15 267.44 -8.32 0.92) ; 3 + ( 220.15 267.44 -8.35 0.92) ; 4 + ( 218.36 267.02 -8.20 0.92) ; 5 + ( 214.38 267.87 -8.32 0.92) ; 6 + ( 211.04 270.08 -9.43 0.92) ; 7 + ( 207.91 269.35 -9.43 0.92) ; 8 + ( 207.25 272.18 -10.17 0.92) ; 9 + ( 205.38 274.12 -10.17 0.92) ; 10 + ( 202.88 274.73 -9.25 0.92) ; 11 + ( 200.21 274.10 -8.15 0.92) ; 12 + ( 196.99 275.74 -7.95 0.92) ; 13 + ( 195.17 279.50 -7.47 0.92) ; 14 + ( 191.51 281.02 -7.47 0.92) ; 15 + ( 188.11 281.43 -6.55 0.92) ; 16 + ( 185.22 283.73 -6.55 0.92) ; 17 + ( 181.97 283.56 -7.90 0.92) ; 18 + ( 179.33 284.75 -9.15 0.92) ; 19 + ( 177.02 286.59 -9.60 0.92) ; 20 + ( 177.02 286.59 -9.63 0.92) ; 21 + ( 173.10 289.25 -7.15 0.92) ; 22 + ( 173.10 289.25 -7.17 0.92) ; 23 + ( 171.67 291.31 -7.17 0.92) ; 24 + ( 169.23 293.71 -6.52 0.92) ; 25 + ( 166.77 296.13 -6.52 0.92) ; 26 + ( 165.61 297.05 -5.80 0.92) ; 27 + ( 163.83 296.63 -5.80 0.92) ; 28 + ( 160.18 298.16 -5.03 0.92) ; 29 + ( 156.91 297.99 -4.15 0.92) ; 30 + ( 154.28 299.18 -4.10 0.92) ; 31 + ( 153.61 302.00 -3.57 0.92) ; 32 + ( 150.72 304.31 -3.57 0.46) ; 33 + ( 147.38 306.52 -3.57 0.46) ; 34 + ( 144.44 307.02 -3.57 0.46) ; 35 + ( 141.01 311.59 -3.95 0.46) ; 36 + ( 141.01 311.59 -3.97 0.46) ; 37 + ( 138.96 312.30 -3.27 0.46) ; 38 + ( 134.59 314.86 -4.35 0.46) ; 39 + ( 132.40 316.14 -5.13 0.46) ; 40 + ( 129.77 317.31 -5.13 0.46) ; 41 + ( 127.89 319.27 -6.22 0.46) ; 42 + ( 127.18 320.29 -8.30 0.46) ; 43 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 223.88 263.53 -9.15 0.92) ; 1 + ( 218.41 268.82 -8.32 0.92) ; 2 + ( 213.49 267.66 -9.27 0.92) ; 3 + ( 215.54 266.96 -10.60 0.92) ; 4 + ( 216.04 268.86 -9.05 0.92) ; 5 + ( 213.14 271.17 -10.70 0.92) ; 6 + ( 211.23 271.31 -7.67 0.92) ; 7 + ( 209.65 267.96 -9.13 0.92) ; 8 + ( 206.04 271.29 -8.15 0.92) ; 9 + ( 196.76 272.70 -8.15 0.92) ; 10 + ( 193.48 282.69 -8.25 0.92) ; 11 + ( 187.94 280.18 -6.55 0.92) ; 12 + ( 183.84 281.62 -6.55 0.92) ; 13 + ( 187.72 283.13 -6.55 0.92) ; 14 + ( 177.10 284.22 -9.63 0.92) ; 15 + ( 180.86 286.29 -8.57 0.92) ; 16 + ( 177.64 287.94 -8.40 0.92) ; 17 + ( 171.27 293.01 -9.38 0.92) ; 18 + ( 165.65 292.88 -6.95 0.92) ; 19 + ( 166.14 294.79 -6.95 0.92) ; 20 + ( 169.15 296.09 -7.27 0.92) ; 21 + ( 173.73 290.60 -7.57 0.92) ; 22 + ( 160.81 299.51 -4.15 0.92) ; 23 + ( 163.30 298.90 -4.15 0.92) ; 24 + ( 160.44 297.04 -4.15 0.92) ; 25 + ( 153.13 300.10 -2.88 0.92) ; 26 + ( 150.67 302.52 -2.88 0.92) ; 27 + ( 148.58 307.40 -2.88 0.92) ; 28 + ( 142.84 313.82 -3.27 0.46) ; 29 + ( 142.48 311.33 -4.30 0.46) ; 30 + ( 132.50 319.75 -4.65 0.46) ; 31 + ( 134.64 316.67 -4.72 0.46) ; 32 + ( 137.48 312.55 -2.63 0.46) ; 33 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 247.52 217.10 -12.10 1.38) ; 1, R-1-1-1-1-1-1-1-2 + ( 244.97 215.90 -13.25 1.38) ; 2 + ( 242.46 216.52 -14.40 1.38) ; 3 + ( 241.62 218.11 -15.60 1.38) ; 4 + ( 240.82 221.51 -19.42 1.38) ; 5 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 249.43 216.94 -12.10 1.38) ; 1 + ( 246.54 219.26 -12.10 1.38) ; 2 + ( 245.45 217.82 -12.10 1.38) ; 3 + ( 240.15 218.36 -15.60 1.38) ; 4 + ( 243.76 215.03 -15.60 1.38) ; 5 + ( 243.09 217.86 -17.90 1.38) ; 6 + ( 243.01 220.23 -14.35 1.38) ; 7 + ) ; End of markers + ( + ( 238.64 222.78 -20.75 1.38) ; 1, R-1-1-1-1-1-1-1-2-1 + ( 234.35 222.98 -22.30 1.38) ; 2 + ( 232.13 222.46 -23.25 1.38) ; 3 + ( 232.13 222.46 -23.27 1.38) ; 4 + ( 230.78 222.14 -25.00 1.38) ; 5 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 235.02 220.14 -22.30 1.38) ; 1 + ( 236.67 221.13 -22.30 1.38) ; 2 + ( 232.18 224.26 -21.50 1.38) ; 3 + ) ; End of markers + ( + ( 228.51 219.81 -25.70 0.92) ; 1, R-1-1-1-1-1-1-1-2-1-1 + ( 226.09 218.05 -27.15 0.92) ; 2 + ( 224.48 218.87 -28.85 0.92) ; 3 + ( 223.59 218.66 -30.23 0.92) ; 4 + ( 222.97 217.32 -31.67 0.92) ; 5 + ( 221.63 217.01 -33.10 0.92) ; 6 + ( 219.65 215.35 -34.17 0.92) ; 7 + ( 218.71 213.33 -35.92 0.92) ; 8 + ( 220.05 213.65 -38.53 0.92) ; 9 + ( 218.94 216.38 -40.95 0.92) ; 10 + ( 216.13 216.31 -43.05 0.92) ; 11 + ( 212.99 215.58 -44.35 0.92) ; 12 + ( 210.59 213.83 -44.25 0.92) ; 13 + ( 207.86 211.39 -44.75 0.92) ; 14 + ( 203.79 208.65 -45.15 0.92) ; 15 + ( 202.14 207.66 -45.15 0.46) ; 16 + ( 197.62 204.81 -45.97 0.46) ; 17 + ( 195.26 204.86 -46.93 0.46) ; 18 + ( 195.26 204.86 -46.95 0.46) ; 19 + ( 193.52 206.24 -47.80 0.46) ; 20 + ( 190.84 205.61 -48.70 0.46) ; 21 + ( 190.84 205.61 -48.72 0.46) ; 22 + ( 187.27 204.78 -49.58 0.46) ; 23 + ( 183.88 205.17 -49.38 0.46) ; 24 + ( 181.38 205.79 -49.38 0.46) ; 25 + ( 177.99 206.19 -49.38 0.46) ; 26 + ( 175.94 206.89 -50.32 0.46) ; 27 + ( 175.94 206.89 -50.35 0.46) ; 28 + ( 173.75 208.18 -51.25 0.46) ; 29 + ( 172.90 209.77 -52.08 0.46) ; 30 + ( 172.52 211.46 -53.38 0.46) ; 31 + ( 172.52 211.46 -53.40 0.46) ; 32 + ( 172.11 213.16 -54.67 0.46) ; 33 + ( 172.11 213.16 -54.83 0.46) ; 34 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 226.76 221.20 -27.15 0.92) ; 1 + ( 225.91 216.82 -28.85 0.92) ; 2 + ( 221.86 220.05 -31.67 0.92) ; 3 + ( 216.57 216.42 -35.92 0.92) ; 4 + ( 214.88 213.64 -44.35 0.92) ; 5 + ( 212.33 212.44 -44.25 0.92) ; 6 + ( 209.56 214.18 -44.25 0.92) ; 7 + ( 211.08 215.73 -44.25 0.92) ; 8 + ( 206.87 207.58 -45.15 0.92) ; 9 + ( 196.38 208.10 -45.97 0.46) ; 10 + ( 195.79 202.59 -46.12 0.46) ; 11 + ( 188.43 203.85 -49.58 0.46) ; 12 + ( 178.65 203.35 -49.38 0.46) ; 13 + ) ; End of markers + Normal + | + ( 226.81 222.99 -25.00 0.92) ; 1, R-1-1-1-1-1-1-1-2-1-2 + ( 225.08 224.38 -27.63 0.92) ; 2 + ( 224.94 224.95 -27.63 0.92) ; 3 + ( 223.60 224.63 -29.77 0.92) ; 4 + ( 221.51 223.54 -30.60 0.92) ; 5 + ( 219.64 225.50 -32.38 0.92) ; 6 + ( 217.27 225.54 -33.45 0.92) ; 7 + ( 213.96 223.57 -34.32 0.92) ; 8 + ( 211.96 226.09 -35.25 0.92) ; 9 + ( 212.01 227.89 -35.25 0.92) ; 10 + ( 208.93 228.96 -35.25 0.92) ; 11 + ( 207.50 231.01 -34.28 0.92) ; 12 + ( 205.36 234.09 -34.35 0.92) ; 13 + ( 203.68 237.29 -33.35 0.92) ; 14 + ( 202.07 238.10 -32.13 0.92) ; 15 + ( 199.58 238.71 -31.67 0.92) ; 16 + ( 199.05 240.97 -30.73 0.92) ; 17 + ( 198.52 243.24 -29.77 0.92) ; 18 + ( 196.90 244.06 -30.55 0.92) ; 19 + ( 192.89 243.12 -30.55 0.92) ; 20 + ( 190.13 244.86 -29.40 0.92) ; 21 + ( 188.02 243.76 -28.33 0.92) ; 22 + ( 186.10 243.91 -26.17 0.92) ; 23 + ( 183.30 243.85 -24.70 0.92) ; 24 + ( 181.64 242.87 -24.32 0.92) ; 25 + ( 179.72 243.01 -24.32 0.92) ; 26 + ( 177.43 240.69 -24.42 0.92) ; 27 + ( 173.16 240.88 -24.13 0.92) ; 28 + ( 169.05 242.31 -23.23 0.92) ; 29 + ( 164.95 243.73 -22.53 0.92) ; 30 + ( 160.98 244.59 -22.00 0.92) ; 31 + ( 158.39 247.58 -21.18 0.92) ; 32 + ( 155.77 248.75 -19.85 0.92) ; 33 + ( 153.53 248.22 -19.85 0.92) ; 34 + ( 151.21 250.07 -18.55 0.92) ; 35 + ( 146.80 250.82 -18.95 0.92) ; 36 + ( 141.78 252.03 -18.15 0.92) ; 37 + ( 139.46 253.86 -17.55 0.92) ; 38 + ( 137.78 257.05 -16.67 0.92) ; 39 + ( 135.86 257.19 -16.07 0.92) ; 40 + ( 133.76 256.11 -15.65 0.92) ; 41 + ( 131.17 259.09 -14.65 0.92) ; 42 + ( 127.39 261.18 -14.13 0.92) ; 43 + ( 124.36 264.05 -14.13 0.92) ; 44 + ( 122.94 266.12 -13.15 0.92) ; 45 + ( 121.32 266.93 -12.30 0.92) ; 46 + ( 119.28 267.64 -11.30 0.92) ; 47 + ( 116.39 269.95 -10.30 0.46) ; 48 + ( 114.38 272.47 -9.88 0.46) ; 49 + ( 110.95 277.04 -9.22 0.46) ; 50 + ( 107.47 279.80 -8.25 0.46) ; 51 + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 229.36 224.19 -25.00 0.92) ; 1 + ( 226.59 225.94 -28.35 0.92) ; 2 + ( 224.55 226.65 -28.47 0.92) ; 3 + ( 221.55 225.35 -28.55 0.92) ; 4 + ( 218.63 221.68 -32.38 0.92) ; 5 + ( 221.91 221.85 -32.38 0.92) ; 6 + ( 217.97 224.51 -32.05 0.92) ; 7 + ( 214.32 226.03 -34.32 0.92) ; 8 + ( 205.46 237.70 -30.13 0.92) ; 9 + ( 203.28 238.98 -29.72 0.92) ; 10 + ( 200.70 241.96 -28.82 0.92) ; 11 + ( 197.63 243.03 -28.82 0.92) ; 12 + ( 198.16 240.76 -28.82 0.92) ; 13 + ( 199.85 243.55 -31.05 0.92) ; 14 + ( 194.58 245.90 -30.55 0.92) ; 15 + ( 196.67 241.01 -30.55 0.92) ; 16 + ( 177.40 244.86 -24.42 0.92) ; 17 + ( 174.54 243.00 -24.42 0.92) ; 18 + ( 174.58 238.83 -26.52 0.92) ; 19 + ( 176.10 240.37 -26.52 0.92) ; 20 + ( 168.57 246.38 -23.23 0.92) ; 21 + ( 171.18 239.22 -23.23 0.92) ; 22 + ( 159.20 250.15 -19.40 0.92) ; 23 + ( 155.55 251.68 -19.63 0.92) ; 24 + ( 156.30 246.48 -19.65 0.92) ; 25 + ( 151.52 250.74 -16.55 0.92) ; 26 + ( 150.15 254.60 -18.95 0.92) ; 27 + ( 143.89 253.11 -18.15 0.92) ; 28 + ( 140.67 254.74 -15.73 0.92) ; 29 + ( 137.07 258.08 -15.73 0.92) ; 30 + ( 130.41 258.31 -14.65 0.92) ; 31 + ( 129.48 262.27 -14.65 0.92) ; 32 + ( 126.05 260.87 -13.92 0.92) ; 33 + ( 124.89 261.79 -13.92 0.92) ; 34 + ( 123.73 262.72 -13.92 0.92) ; 35 + ( 119.23 265.84 -11.30 0.92) ; 36 + ( 116.16 266.91 -10.55 0.92) ; 37 + ( 120.04 268.42 -10.55 0.92) ; 38 + ( 110.45 275.13 -8.25 0.46) ; 39 + ( 111.63 280.18 -7.27 0.46) ; 40 + ) ; End of markers + Normal + ) ; End of split + | + ( 242.02 222.35 -22.63 0.92) ; 1, R-1-1-1-1-1-1-1-2-2 + ( 239.97 223.08 -24.72 0.92) ; 2 + ( 239.97 223.08 -24.75 0.92) ; 3 + ( 237.78 224.35 -26.85 0.92) ; 4 + ( 237.21 224.80 -28.05 0.92) ; 5 + ( 236.53 221.67 -28.35 0.46) ; 6 + ( 239.74 220.03 -29.50 0.46) ; 7 + ( 239.74 220.03 -29.52 0.46) ; 8 + ( 241.97 220.55 -31.25 0.46) ; 9 + ( 243.95 222.21 -32.45 0.46) ; 10 + ( 244.57 223.55 -33.38 0.46) ; 11 + ( 245.64 224.99 -34.63 0.46) ; 12 + ( 246.40 225.77 -36.05 0.46) ; 13 + ( 246.80 224.08 -37.72 0.46) ; 14 + ( 246.35 223.97 -39.32 0.46) ; 15 + ( 248.32 225.62 -40.88 0.46) ; 16 + ( 249.40 227.07 -42.80 0.46) ; 17 + ( 249.40 227.07 -42.82 0.46) ; 18 + ( 247.83 229.70 -44.63 0.46) ; 19 + ( 247.58 230.82 -46.40 0.46) ; 20 + ( 247.68 234.43 -47.67 0.46) ; 21 + ( 245.39 232.10 -49.07 0.46) ; 22 + ( 244.45 230.09 -50.83 0.46) ; 23 + ( 246.29 232.31 -53.40 0.46) ; 24 + ( 249.37 231.24 -56.05 0.46) ; 25 + ( 251.02 232.22 -58.38 0.46) ; 26 + ( 250.62 233.93 -60.85 0.46) ; 27 + ( 249.42 233.04 -63.70 0.46) ; 28 + ( 248.97 232.94 -63.72 0.46) ; 29 + ( 249.68 231.91 -67.00 0.46) ; 30 + ( 250.44 232.69 -70.25 0.46) ; 31 + ( 253.12 233.32 -72.47 0.46) ; 32 + ( 253.12 233.32 -72.50 0.46) ; 33 + ( 251.69 235.37 -75.15 0.46) ; 34 + ( 251.56 235.94 -75.15 0.46) ; 35 + ( 249.51 236.65 -77.63 0.46) ; 36 + ( 249.51 236.65 -77.65 0.46) ; 37 + ( 248.17 236.34 -80.18 0.46) ; 38 + ( 248.17 236.34 -80.20 0.46) ; 39 + ( 247.68 234.43 -82.83 0.46) ; 40 + ( 247.68 234.43 -82.85 0.46) ; 41 + ( 248.22 238.15 -84.40 0.46) ; 42 + ( 248.09 238.70 -84.43 0.46) ; 43 + ( 249.60 240.25 -84.43 0.46) ; 44 + ( 246.53 241.33 -86.90 0.46) ; 45 + ( 247.48 243.34 -91.43 0.46) ; 46 + ( 247.34 243.90 -91.45 0.46) ; 47 + ( 249.26 243.75 -94.10 0.46) ; 48 + ( 249.26 243.75 -94.15 0.46) ; 49 + ( 249.35 247.36 -96.62 0.46) ; 50 + ( 248.91 247.26 -96.65 0.46) ; 51 + ( 247.88 247.61 -100.60 0.46) ; 52 + ( 247.88 247.61 -100.63 0.46) ; 53 + ( 248.46 247.15 -104.05 0.46) ; 54 + ( 248.46 247.15 -104.12 0.46) ; 55 + ( 248.69 250.20 -106.80 0.46) ; 56 + ( 248.69 250.20 -106.82 0.46) ; 57 + ( 247.13 252.81 -108.63 0.46) ; 58 + ( 247.13 252.81 -108.65 0.46) ; 59 + ( 247.90 253.59 -110.85 0.46) ; 60 + ( 249.01 256.84 -111.97 0.46) ; 61 + ( 248.56 256.74 -112.00 0.46) ; 62 + ( 248.62 258.54 -114.55 0.46) ; 63 + ( 248.62 258.54 -114.57 0.46) ; 64 + ( 248.21 260.24 -117.90 0.46) ; 65 + + (Cross + (Color White) + (Name "Marker 3") + ( 247.23 256.42 -112.13 0.46) ; 1 + ( 247.90 259.57 -113.93 0.46) ; 2 + ( 250.13 238.00 -79.25 0.46) ; 3 + ( 253.30 234.56 -70.60 0.46) ; 4 + ( 252.94 232.08 -61.57 0.46) ; 5 + ( 246.77 250.34 -102.78 0.46) ; 6 + ) ; End of markers + + (Cross + (Color RGB (128, 255, 128)) + (Name "Marker 3") + ( 236.93 219.96 -29.52 0.46) ; 1 + ( 248.16 262.63 -19.60 2.29) ; 2 + ( 246.06 257.39 -12.80 0.92) ; 3 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 251.92 127.92 1.32 0.92) ; 1, R-1-1-1-1-1-1-2 + ( 250.64 129.42 2.38 0.92) ; 2 + ( 250.24 131.12 2.38 0.46) ; 3 + ( 251.57 131.43 3.50 0.46) ; 4 + ( 252.33 132.21 4.78 0.46) ; 5 + ( 252.33 132.21 6.42 0.46) ; 6 + ( 251.94 133.90 7.75 0.46) ; 7 + ( 249.31 135.08 7.15 0.46) ; 8 + ( 247.16 138.16 8.07 0.46) ; 9 + ( 244.14 141.04 8.45 0.46) ; 10 + ( 241.95 142.32 9.22 0.46) ; 11 + ( 241.06 142.11 10.05 0.46) ; 12 + ( 238.57 142.71 10.70 0.46) ; 13 + ( 235.62 143.22 11.75 0.46) ; 14 + ( 235.04 143.69 12.85 0.46) ; 15 + ( 233.83 142.80 14.23 0.46) ; 16 + ( 233.69 143.37 14.20 0.46) ; 17 + ( 235.75 142.64 15.90 0.46) ; 18 + ( 235.75 142.64 17.55 0.46) ; 19 + ( 236.59 141.05 19.27 0.46) ; 20 + ( 236.59 141.05 19.25 0.46) ; 21 + ( 234.09 141.66 20.73 0.46) ; 22 + ( 231.02 142.74 21.38 0.46) ; 23 + ( 228.65 142.78 22.08 0.46) ; 24 + ( 227.72 146.75 22.85 0.46) ; 25 + ( 229.56 148.97 23.40 0.46) ; 26 + ( 229.74 150.20 24.60 0.46) ; 27 + ( 229.74 150.20 24.58 0.46) ; 28 + ( 230.06 150.87 26.58 0.46) ; 29 + ( 231.39 151.19 28.70 0.46) ; 30 + ( 232.28 151.40 29.92 0.46) ; 31 + + (Cross + (Color White) + (Name "Marker 3") + ( 248.57 130.13 2.38 0.46) ; 1 + ( 248.89 130.81 2.38 0.46) ; 2 + ( 247.54 140.64 7.57 0.46) ; 3 + ( 244.84 140.00 8.57 0.46) ; 4 + ( 242.48 140.04 8.57 0.46) ; 5 + ( 243.03 143.76 8.95 0.46) ; 6 + ( 240.12 140.10 10.48 0.46) ; 7 + ( 241.82 142.88 11.45 0.46) ; 8 + ( 237.72 144.31 11.45 0.46) ; 9 + ( 230.52 140.82 21.38 0.46) ; 10 + ( 229.78 146.02 23.55 0.46) ; 11 + ( 226.33 144.62 23.40 0.46) ; 12 + ( 226.26 152.96 23.40 0.46) ; 13 + ( 250.51 135.96 7.15 0.46) ; 14 + ) ; End of markers + High + | + ( 258.12 127.60 1.30 0.92) ; 1, R-1-1-1-1-1-1-3 + ( 261.87 129.67 1.73 0.92) ; 2 + ( 266.15 129.48 1.85 0.92) ; 3 + ( 269.11 128.97 2.55 0.92) ; 4 + ( 271.74 127.80 2.08 0.92) ; 5 + ( 274.10 127.76 0.28 0.92) ; 6 + ( 276.48 127.72 -0.70 0.92) ; 7 + ( 278.39 127.57 -0.05 0.92) ; 8 + + (Cross + (Color White) + (Name "Marker 3") + ( 264.64 127.93 1.85 0.92) ; 1 + ( 261.74 130.23 2.55 0.92) ; 2 + ( 263.53 130.65 2.55 0.92) ; 3 + ( 265.89 130.61 2.55 0.92) ; 4 + ( 268.40 130.01 2.55 0.92) ; 5 + ( 270.35 125.68 2.55 0.92) ; 6 + ( 266.55 127.78 2.55 0.92) ; 7 + ) ; End of markers + ( + ( 282.40 128.51 0.90 0.46) ; 1, R-1-1-1-1-1-1-3-1 + ( 283.58 127.58 2.50 0.46) ; 2 + ( 283.58 127.58 2.47 0.46) ; 3 + ( 283.70 127.02 4.22 0.46) ; 4 + ( 282.89 124.44 5.50 0.46) ; 5 + ( 282.89 124.44 5.48 0.46) ; 6 + ( 284.49 123.62 5.95 0.46) ; 7 + ( 288.07 124.45 6.47 0.46) ; 8 + ( 290.75 125.09 7.00 0.46) ; 9 + ( 291.97 125.96 7.75 0.46) ; 10 + ( 293.75 126.38 6.90 0.46) ; 11 + ( 294.77 126.02 6.90 0.46) ; 12 + ( 297.18 127.79 8.35 0.46) ; 13 + ( 301.16 126.93 9.80 0.46) ; 14 + ( 301.11 125.13 11.75 0.46) ; 15 + ( 301.11 125.13 11.70 0.46) ; 16 + ( 300.17 129.09 14.10 0.46) ; 17 + ( 300.17 129.09 15.68 0.46) ; 18 + ( 300.17 129.09 15.65 0.46) ; 19 + ( 302.37 127.81 17.30 0.46) ; 20 + ( 302.37 127.81 17.27 0.46) ; 21 + ( 303.78 125.76 19.23 0.46) ; 22 + ( 303.78 125.76 19.20 0.46) ; 23 + ( 305.21 123.70 20.33 0.46) ; 24 + ( 309.22 124.64 20.33 0.46) ; 25 + ( 312.80 125.48 21.60 0.46) ; 26 + ( 312.85 127.29 21.60 0.46) ; 27 + ( 314.68 129.51 22.67 0.46) ; 28 + ( 315.71 129.15 24.05 0.46) ; 29 + ( 315.71 129.15 24.00 0.46) ; 30 + ( 315.18 131.41 25.13 0.46) ; 31 + ( 314.20 133.57 26.70 0.46) ; 32 + ( 313.17 133.92 27.77 0.46) ; 33 + ( 312.72 133.82 28.05 0.46) ; 34 + ( 312.46 134.95 29.15 0.46) ; 35 + ( 312.01 134.84 29.30 0.46) ; 36 + + (Cross + (Color White) + (Name "Marker 3") + ( 288.25 125.71 8.15 0.46) ; 1 + ( 286.65 126.52 6.47 0.46) ; 2 + ( 283.29 122.74 8.13 0.46) ; 3 + ( 294.42 129.53 9.80 0.46) ; 4 + ( 317.08 125.29 21.28 0.46) ; 5 + ( 315.86 134.56 21.55 0.46) ; 6 + ( 318.34 127.97 23.67 0.46) ; 7 + ( 307.48 126.03 20.33 0.46) ; 8 + ( 305.57 126.18 20.33 0.46) ; 9 + ( 303.16 124.41 19.20 0.46) ; 10 + ( 301.11 125.13 19.20 0.46) ; 11 + ( 299.45 124.15 9.80 0.46) ; 12 + ( 296.90 122.94 8.35 0.46) ; 13 + ( 289.67 123.64 7.87 0.46) ; 14 + ) ; End of markers + High + | + ( 280.13 126.18 -1.30 0.92) ; 1, R-1-1-1-1-1-1-3-2 + ( 281.73 125.37 -2.70 0.92) ; 2 + ( 283.20 125.12 -4.20 0.92) ; 3 + ( 283.15 123.31 -5.60 0.92) ; 4 + ( 284.63 123.06 -7.20 0.92) ; 5 + ( 285.39 123.82 -9.57 0.92) ; 6 + ( 286.86 123.58 -11.15 0.92) ; 7 + ( 288.47 122.76 -11.65 0.92) ; 8 + ( 289.13 119.93 -10.35 0.92) ; 9 + ( 290.86 118.55 -9.55 0.92) ; 10 + ( 293.55 119.18 -10.05 0.92) ; 11 + ( 295.74 117.89 -10.25 0.92) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 286.91 125.39 -9.63 0.92) ; 1 + ( 285.75 126.31 -11.65 0.92) ; 2 + ( 289.09 124.10 -10.12 0.92) ; 3 + ( 290.78 120.91 -11.77 0.92) ; 4 + ( 281.81 122.99 -5.60 0.92) ; 5 + ( 292.02 117.62 -11.77 0.92) ; 6 + ) ; End of markers + ( + ( 298.10 117.85 -10.25 0.92) ; 1, R-1-1-1-1-1-1-3-2-1 + ( 301.35 118.02 -11.73 0.92) ; 2 + ( 303.55 116.74 -12.85 0.92) ; 3 + ( 303.55 116.74 -12.88 0.92) ; 4 + ( 306.44 114.43 -12.13 0.92) ; 5 + ( 310.54 113.00 -14.07 0.92) ; 6 + ( 314.20 111.47 -17.77 0.92) ; 7 + ( 317.28 110.40 -18.15 0.92) ; 8 + ( 319.32 109.69 -18.15 0.92) ; 9 + ( 323.17 109.40 -17.10 0.92) ; 10 + ( 325.53 109.36 -15.70 0.92) ; 11 + ( 327.26 107.97 -16.30 0.92) ; 12 + ( 327.26 107.97 -16.32 0.92) ; 13 + ( 330.70 109.37 -16.75 0.92) ; 14 + ( 332.49 109.79 -17.77 0.92) ; 15 + ( 335.61 110.51 -18.65 0.92) ; 16 + ( 338.56 110.02 -17.20 0.92) ; 17 + ( 341.45 107.71 -18.13 0.92) ; 18 + ( 345.92 108.76 -18.57 0.92) ; 19 + ( 349.31 108.36 -17.25 0.92) ; 20 + ( 352.97 106.83 -17.25 0.92) ; 21 + ( 354.34 102.97 -18.38 0.92) ; 22 + ( 358.00 101.43 -18.82 0.92) ; 23 + + (Cross + (Color White) + (Name "Marker 3") + ( 308.71 110.79 -14.07 0.92) ; 1 + ( 311.74 113.89 -15.12 0.92) ; 2 + ( 316.75 112.67 -16.75 0.92) ; 3 + ( 319.37 111.50 -16.75 0.92) ; 4 + ( 312.54 110.49 -16.25 0.92) ; 5 + ( 313.67 113.73 -17.85 0.92) ; 6 + ( 319.72 108.00 -17.10 0.92) ; 7 + ( 322.53 108.06 -17.10 0.92) ; 8 + ( 317.55 109.27 -17.10 0.92) ; 9 + ( 324.73 106.77 -17.10 0.92) ; 10 + ( 332.27 112.72 -18.65 0.92) ; 11 + ( 338.30 111.15 -19.05 0.92) ; 12 + ( 340.21 111.00 -20.33 0.92) ; 13 + ( 344.54 106.64 -18.57 0.92) ; 14 + ( 341.72 106.58 -16.98 0.92) ; 15 + ( 352.30 109.65 -19.23 0.92) ; 16 + ( 349.94 109.69 -16.67 0.92) ; 17 + ( 357.92 103.81 -18.82 0.92) ; 18 + ( 356.61 99.32 -18.82 0.92) ; 19 + ) ; End of markers + ( + ( 359.35 101.75 -20.57 0.92) ; 1, R-1-1-1-1-1-1-3-2-1-1 + ( 358.98 99.27 -22.25 0.92) ; 2 + ( 360.14 98.35 -24.00 0.92) ; 3 + ( 362.05 98.20 -24.88 0.92) ; 4 + ( 363.75 95.02 -25.87 0.92) ; 5 + ( 366.06 93.18 -25.20 0.92) ; 6 + ( 369.77 93.45 -25.97 0.92) ; 7 + ( 372.22 91.04 -26.58 0.92) ; 8 + ( 374.71 90.43 -27.97 0.46) ; 9 + ( 379.40 88.54 -29.20 0.46) ; 10 + ( 382.92 87.57 -30.00 0.46) ; 11 + ( 384.66 86.19 -30.35 0.46) ; 12 + ( 386.71 85.47 -30.40 0.46) ; 13 + ( 388.69 87.13 -31.32 0.46) ; 14 + ( 388.24 87.02 -31.35 0.46) ; 15 + ( 392.74 83.90 -32.40 0.46) ; 16 + ( 394.20 83.64 -33.85 0.46) ; 17 + ( 394.20 83.64 -33.88 0.46) ; 18 + ( 395.64 81.59 -35.42 0.46) ; 19 + ( 398.01 81.55 -36.95 0.46) ; 20 + ( 398.18 82.79 -39.08 0.46) ; 21 + ( 398.18 82.79 -39.10 0.46) ; 22 + ( 398.62 82.90 -41.35 0.46) ; 23 + ( 400.99 82.85 -43.47 0.46) ; 24 + ( 400.99 82.85 -43.50 0.46) ; 25 + ( 401.39 81.15 -45.85 0.46) ; 26 + ( 402.24 79.56 -49.07 0.46) ; 27 + ( 402.24 79.56 -49.13 0.46) ; 28 + ( 402.94 78.53 -52.40 0.46) ; 29 + ( 402.94 78.53 -52.45 0.46) ; 30 + + (Cross + (Color White) + (Name "Marker 3") + ( 363.79 96.83 -20.47 0.92) ; 1 + ( 367.46 95.29 -23.35 0.92) ; 2 + ( 371.42 94.44 -26.05 0.92) ; 3 + ( 369.59 92.21 -20.47 0.92) ; 4 + ( 367.35 91.68 -25.85 0.92) ; 5 + ( 383.55 88.92 -28.35 0.46) ; 6 + ( 378.11 90.02 -19.13 0.92) ; 7 + ( 377.89 86.99 -21.02 0.92) ; 8 + ( 384.03 84.84 -29.67 0.46) ; 9 + ( 396.45 84.17 -34.67 0.46) ; 10 + ) ; End of markers + Normal + | + ( 358.90 101.65 -17.20 0.92) ; 1, R-1-1-1-1-1-1-3-2-1-2 + ( 358.90 101.65 -17.23 0.92) ; 2 + ( 360.01 98.92 -17.17 0.92) ; 3 + ( 360.41 97.23 -16.10 0.92) ; 4 + ( 362.14 95.84 -19.13 0.92) ; 5 + ( 362.14 95.84 -19.15 0.92) ; 6 + ( 363.88 94.45 -19.73 0.92) ; 7 + ( 363.88 94.45 -19.75 0.92) ; 8 + ( 367.22 92.25 -20.47 0.92) ; 9 + ( 368.65 90.20 -20.47 0.92) ; 10 + ( 371.28 89.02 -20.47 0.92) ; 11 + ( 374.36 87.95 -20.60 0.46) ; 12 + ( 376.35 85.43 -21.00 0.46) ; 13 + ( 378.63 81.78 -21.00 0.46) ; 14 + ( 380.76 78.71 -22.43 0.46) ; 15 + ( 383.21 76.30 -22.57 0.46) ; 16 + ( 385.22 73.78 -22.63 0.46) ; 17 + ( 389.00 71.67 -23.35 0.46) ; 18 + ( 390.16 70.76 -24.88 0.46) ; 19 + ( 390.55 69.06 -26.88 0.46) ; 20 + ( 390.55 69.06 -26.90 0.46) ; 21 + ( 391.99 67.00 -28.33 0.46) ; 22 + ( 392.97 64.85 -30.00 0.46) ; 23 + ( 394.26 63.35 -31.50 0.46) ; 24 + ( 394.26 63.35 -31.52 0.46) ; 25 + ( 392.99 60.68 -33.57 0.46) ; 26 + ( 392.95 58.89 -37.38 0.46) ; 27 + ( 392.95 58.89 -37.42 0.46) ; 28 + ( 393.93 56.72 -39.17 0.46) ; 29 + ( 393.93 56.72 -39.20 0.46) ; 30 + ( 395.08 55.80 -41.80 0.46) ; 31 + ( 395.08 55.80 -41.93 0.46) ; 32 + ( 395.30 52.87 -43.42 0.46) ; 33 + ( 395.30 52.87 -43.45 0.46) ; 34 + ( 394.67 51.53 -45.72 0.46) ; 35 + + (Cross + (Color White) + (Name "Marker 3") + ( 361.07 94.39 -23.40 0.92) ; 1 + ( 374.36 87.95 -29.40 0.92) ; 2 + ( 373.46 87.75 -21.02 0.92) ; 3 + ( 375.42 83.42 -21.02 0.92) ; 4 + ( 381.75 82.52 -19.52 0.92) ; 5 + ( 381.84 80.15 -20.67 0.92) ; 6 + ( 381.42 75.88 -22.57 0.46) ; 7 + ( 387.31 74.86 -23.57 0.46) ; 8 + ( 390.93 71.53 -24.97 0.46) ; 9 + ( 391.04 64.99 -28.33 0.46) ; 10 + ( 391.71 62.16 -33.57 0.46) ; 11 + ) ; End of markers + Normal + ) ; End of split + | + ( 296.55 116.33 -11.65 0.92) ; 1, R-1-1-1-1-1-1-3-2-2 + ( 297.08 114.06 -13.57 0.92) ; 2 + ( 297.08 114.06 -13.60 0.92) ; 3 + ( 295.35 115.45 -16.02 0.92) ; 4 + ( 293.69 114.46 -18.05 0.92) ; 5 + ( 292.05 113.48 -18.72 0.92) ; 6 + ( 292.05 113.48 -18.75 0.92) ; 7 + ( 290.44 114.30 -20.10 0.92) ; 8 + ( 290.06 111.82 -21.45 0.92) ; 9 + ( 290.91 110.24 -22.97 0.92) ; 10 + ( 290.24 107.08 -24.52 0.92) ; 11 + ( 289.70 103.38 -25.10 0.92) ; 12 + ( 288.75 101.37 -27.75 0.92) ; 13 + ( 288.22 97.65 -29.95 0.46) ; 14 + ( 289.06 96.06 -29.95 0.46) ; 15 + ( 290.08 95.70 -31.17 0.46) ; 16 + ( 289.41 92.56 -32.60 0.46) ; 17 + ( 290.52 89.83 -33.53 0.46) ; 18 + ( 290.60 87.46 -34.75 0.46) ; 19 + ( 290.60 87.46 -34.78 0.46) ; 20 + ( 290.95 83.96 -34.47 0.46) ; 21 + ( 291.48 81.70 -36.52 0.46) ; 22 + ( 292.41 77.73 -37.58 0.46) ; 23 + ( 292.25 72.33 -38.05 0.46) ; 24 + ( 291.80 66.25 -36.63 0.46) ; 25 + ( 291.12 63.11 -38.25 0.46) ; 26 + ( 289.56 59.75 -39.55 0.46) ; 27 + ( 289.56 59.75 -39.60 0.46) ; 28 + ( 286.96 56.75 -41.05 0.46) ; 29 + ( 286.96 56.75 -41.08 0.46) ; 30 + ( 284.99 55.09 -43.00 0.46) ; 31 + ( 284.24 54.32 -45.68 0.46) ; 32 + + (Cross + (Color White) + (Name "Marker 3") + ( 288.19 107.80 -25.10 0.92) ; 1 + ( 292.25 104.57 -26.72 0.92) ; 2 + ( 286.31 103.77 -26.32 0.92) ; 3 + ( 289.55 97.97 -29.95 0.46) ; 4 + ( 287.19 98.01 -29.95 0.46) ; 5 + ( 286.78 93.73 -33.27 0.46) ; 6 + ( 291.85 90.14 -33.53 0.46) ; 7 + ( 291.85 84.17 -34.47 0.46) ; 8 + ( 290.13 81.39 -34.78 0.46) ; 9 + ( 290.38 68.30 -36.63 0.46) ; 10 + ( 291.49 62.14 -15.32 0.92) ; 11 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 255.22 125.77 2.25 0.92) ; 1, R-1-1-1-1-1-2 + ( 255.60 128.24 3.50 0.92) ; 2 + ( 257.69 129.32 3.57 0.92) ; 3 + ( 259.93 129.85 4.60 0.92) ; 4 + ( 260.28 132.33 5.13 0.92) ; 5 + ( 261.10 134.90 5.37 0.92) ; 6 + ( 261.33 137.94 5.97 0.92) ; 7 + ( 262.40 139.39 6.00 0.92) ; 8 + + (Cross + (Color White) + (Name "Marker 3") + ( 259.91 140.00 6.00 0.92) ; 1 + ( 256.98 130.36 3.57 0.92) ; 2 + ) ; End of markers + ( + ( 264.82 141.16 6.65 0.92) ; 1, R-1-1-1-1-1-2-1 + ( 265.13 141.82 8.20 0.92) ; 2 + ( 265.13 141.82 8.18 0.92) ; 3 + ( 267.82 142.45 9.07 0.92) ; 4 + ( 269.20 144.56 10.52 0.92) ; 5 + ( 269.83 145.91 10.60 0.92) ; 6 + + (Cross + (Color White) + (Name "Marker 3") + ( 267.08 137.50 9.07 0.92) ; 1 + ) ; End of markers + ( + ( 270.77 147.92 12.07 0.92) ; 1, R-1-1-1-1-1-2-1-1 + ( 270.81 149.72 13.52 0.92) ; 2 + ( 269.84 151.88 14.50 0.92) ; 3 + ( 270.01 153.12 15.85 0.92) ; 4 + ( 270.38 155.59 16.77 0.92) ; 5 + ( 268.95 157.64 18.00 0.92) ; 6 + ( 268.42 159.90 19.42 0.92) ; 7 + ( 268.34 162.27 20.42 0.92) ; 8 + ( 270.19 164.50 21.13 0.92) ; 9 + ( 273.44 164.67 21.70 0.92) ; 10 + ( 275.44 162.15 21.07 0.92) ; 11 + ( 278.48 159.27 22.25 0.92) ; 12 + ( 280.13 160.26 23.47 0.92) ; 13 + + (Cross + (Color White) + (Name "Marker 3") + ( 272.81 163.32 21.07 0.92) ; 1 + ( 269.05 155.28 16.52 0.92) ; 2 + ( 271.59 156.48 16.15 0.92) ; 3 + ( 271.57 150.50 14.92 0.92) ; 4 + ( 272.24 147.67 14.50 0.92) ; 5 + ( 270.06 148.94 14.92 0.92) ; 6 + ( 270.51 149.05 1.25 0.92) ; 7 + ( 280.21 157.90 22.32 0.92) ; 8 + ) ; End of markers + ( + ( 282.40 162.59 23.47 0.92) ; 1, R-1-1-1-1-1-2-1-1-1 + ( 284.11 165.38 23.57 0.92) ; 2 + ( 284.11 165.38 23.55 0.92) ; 3 + ( 284.88 166.15 24.70 0.46) ; 4 + ( 284.88 166.15 24.80 0.46) ; 5 + ( 285.77 166.36 27.42 0.46) ; 6 + + (Cross + (Color White) + (Name "Marker 3") + ( 280.27 165.67 21.32 0.92) ; 1 + ) ; End of markers + Normal + | + ( 282.00 158.32 23.47 0.46) ; 1, R-1-1-1-1-1-2-1-1-2 + ( 282.48 154.25 23.47 0.46) ; 2 + ( 281.50 150.43 24.70 0.46) ; 3 + ( 280.86 149.09 26.80 0.46) ; 4 + ( 280.86 149.09 26.75 0.46) ; 5 + ( 280.68 147.85 28.42 0.46) ; 6 + + (Cross + (Color White) + (Name "Marker 3") + ( 284.18 157.02 23.57 0.92) ; 1 + ) ; End of markers + Normal + ) ; End of split + | + ( 268.67 146.83 11.77 0.92) ; 1, R-1-1-1-1-1-2-1-2 + ( 267.07 147.65 13.60 0.92) ; 2 + ( 264.82 147.12 15.48 0.92) ; 3 + ( 262.07 148.87 16.30 0.92) ; 4 + ( 260.19 150.81 17.15 0.92) ; 5 + ( 257.30 153.12 17.85 0.92) ; 6 + ( 254.49 153.06 19.27 0.92) ; 7 + ( 251.63 151.19 20.57 0.92) ; 8 + ( 249.66 149.53 22.08 0.46) ; 9 + ( 248.46 148.66 23.67 0.46) ; 10 + ( 248.53 146.29 25.63 0.46) ; 11 + + (Cross + (Color White) + (Name "Marker 3") + ( 250.39 154.49 20.57 0.92) ; 1 + ( 257.80 155.02 19.00 0.92) ; 2 + ( 263.85 149.29 17.42 0.92) ; 3 + ( 259.84 148.34 17.50 0.92) ; 4 + ( 259.66 153.08 17.85 0.92) ; 5 + ( 261.98 151.23 17.85 0.92) ; 6 + ( 262.55 144.80 15.48 0.92) ; 7 + ( 256.08 152.24 18.95 0.92) ; 8 + ) ; End of markers + Normal + ) ; End of split + | + ( 262.76 141.86 4.85 0.92) ; 1, R-1-1-1-1-1-2-2 + ( 263.97 142.74 3.60 0.92) ; 2 + ( 266.12 145.64 2.88 0.92) ; 3 + ( 267.64 147.18 2.27 0.92) ; 4 + ( 268.58 149.19 1.27 0.92) ; 5 + ( 270.59 152.65 0.12 0.92) ; 6 + ( 270.64 154.45 -0.72 0.92) ; 7 + ( 272.05 156.58 -1.40 0.92) ; 8 + ( 274.27 157.10 -2.85 0.92) ; 9 + ( 274.32 158.90 -4.20 0.46) ; 10 + ( 273.87 158.79 -4.22 0.46) ; 11 + ( 275.26 160.92 -5.63 0.46) ; 12 + ( 275.26 160.92 -5.68 0.46) ; 13 + ( 275.88 162.25 -6.93 0.46) ; 14 + ( 276.56 165.40 -8.73 0.92) ; 15 + ( 277.07 167.30 -9.43 0.92) ; 16 + ( 279.39 171.44 -10.12 0.92) ; 17 + ( 279.48 175.04 -11.53 0.92) ; 18 + ( 279.40 177.40 -13.18 0.92) ; 19 + ( 279.18 180.35 -13.70 0.92) ; 20 + ( 281.34 183.24 -12.93 0.92) ; 21 + ( 284.64 185.21 -13.00 0.92) ; 22 + ( 285.32 188.36 -13.13 0.92) ; 23 + ( 285.86 192.06 -14.00 0.92) ; 24 + ( 285.86 192.06 -14.02 0.92) ; 25 + ( 287.70 194.28 -14.60 0.92) ; 26 + ( 292.35 196.56 -15.30 0.92) ; 27 + ( 294.45 197.66 -15.32 0.92) ; 28 + ( 297.11 198.30 -17.63 0.92) ; 29 + ( 300.05 197.79 -18.45 0.92) ; 30 + ( 303.50 199.20 -19.60 0.92) ; 31 + ( 306.99 202.40 -20.60 0.92) ; 32 + ( 308.68 205.19 -21.07 0.92) ; 33 + ( 311.60 208.86 -21.20 0.92) ; 34 + ( 313.88 211.19 -22.63 0.92) ; 35 + ( 313.88 211.19 -22.65 0.92) ; 36 + ( 316.17 213.50 -24.08 0.92) ; 37 + ( 317.68 215.06 -25.55 0.92) ; 38 + ( 317.68 215.06 -25.57 0.92) ; 39 + ( 317.60 217.43 -26.45 0.92) ; 40 + ( 318.63 217.07 -27.67 0.46) ; 41 + ( 318.63 217.07 -27.70 0.46) ; 42 + ( 318.99 219.55 -29.80 0.46) ; 43 + ( 318.51 223.62 -31.32 0.46) ; 44 + ( 318.51 223.62 -31.35 0.46) ; 45 + ( 317.53 225.77 -32.52 0.46) ; 46 + ( 319.23 228.57 -33.40 0.46) ; 47 + ( 321.69 232.11 -33.92 0.46) ; 48 + ( 322.77 233.58 -35.57 0.46) ; 49 + ( 322.77 233.58 -35.60 0.46) ; 50 + ( 323.89 236.82 -36.78 0.46) ; 51 + ( 323.89 236.82 -36.80 0.46) ; 52 + ( 325.28 238.94 -38.47 0.46) ; 53 + ( 325.28 238.94 -38.50 0.46) ; 54 + ( 325.24 243.11 -39.88 0.46) ; 55 + ( 325.24 243.11 -39.90 0.46) ; 56 + ( 324.71 245.37 -41.47 0.46) ; 57 + ( 324.45 246.51 -43.40 0.46) ; 58 + ( 324.45 246.51 -43.42 0.46) ; 59 + ( 324.23 249.43 -45.25 0.46) ; 60 + + (Cross + (Color White) + (Name "Marker 3") + ( 316.64 225.56 -32.47 0.46) ; 1 + ( 319.76 226.30 -32.77 0.46) ; 2 + ( 320.45 219.29 -31.35 0.46) ; 3 + ( 316.00 218.25 -26.45 0.92) ; 4 + ( 309.29 210.70 -21.07 0.92) ; 5 + ( 311.82 205.93 -20.13 0.92) ; 6 + ( 308.92 208.23 -21.07 0.92) ; 7 + ( 308.11 205.65 -21.07 0.92) ; 8 + ( 305.87 205.13 -21.07 0.92) ; 9 + ( 306.41 202.86 -21.07 0.92) ; 10 + ( 306.62 199.93 -21.07 0.92) ; 11 + ( 300.14 195.42 -18.45 0.92) ; 12 + ( 302.42 197.75 -18.45 0.92) ; 13 + ( 300.10 199.59 -21.07 0.92) ; 14 + ( 295.74 196.17 -15.32 0.92) ; 15 + ( 290.51 194.34 -15.32 0.92) ; 16 + ( 282.46 186.48 -12.88 0.92) ; 17 + ( 281.52 184.47 -12.88 0.92) ; 18 + ( 283.13 183.66 -12.88 0.92) ; 19 + ( 278.28 174.16 -11.53 0.92) ; 20 + ( 281.94 172.63 -11.00 0.92) ; 21 + ( 278.02 181.26 -12.77 0.92) ; 22 + ( 274.07 166.01 -8.18 0.46) ; 23 + ( 272.89 154.98 -3.50 0.92) ; 24 + ( 272.39 153.08 2.08 0.92) ; 25 + ( 271.31 151.63 1.25 0.92) ; 26 + ( 268.68 152.80 -0.43 0.92) ; 27 + ( 263.56 138.46 6.00 0.92) ; 28 + ( 261.43 141.55 6.00 0.92) ; 29 + ( 274.95 160.24 21.07 0.92) ; 30 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 259.91 101.78 -7.35 0.92) ; 1, R-1-1-1-1-2 + ( 261.79 99.83 -8.82 0.92) ; 2 + ( 263.04 102.52 -9.43 0.92) ; 3 + ( 263.01 106.69 -10.07 0.92) ; 4 + ( 264.53 108.24 -10.57 0.92) ; 5 + ( 266.76 108.76 -10.85 0.92) ; 6 + ( 267.83 110.21 -11.35 0.92) ; 7 + ( 269.81 111.87 -12.57 0.92) ; 8 + ( 270.57 112.64 -13.72 0.92) ; 9 + ( 273.37 112.71 -14.80 0.92) ; 10 + ( 271.50 114.65 -16.13 0.92) ; 11 + ( 273.29 115.06 -17.95 0.92) ; 12 + ( 275.15 113.13 -18.82 0.92) ; 13 + ( 276.82 114.11 -19.97 0.92) ; 14 + ( 275.84 116.27 -21.28 0.92) ; 15 + ( 275.84 116.27 -21.30 0.92) ; 16 + ( 276.79 118.28 -22.77 0.92) ; 17 + ( 276.79 118.28 -22.80 0.92) ; 18 + ( 277.54 119.05 -23.70 0.92) ; 19 + ( 278.75 119.94 -24.42 0.92) ; 20 + ( 280.49 118.55 -24.42 0.92) ; 21 + ( 282.99 117.95 -26.00 0.92) ; 22 + ( 283.93 119.96 -28.55 0.92) ; 23 + ( 284.11 121.19 -30.67 0.92) ; 24 + ( 285.90 121.61 -32.35 0.92) ; 25 + ( 285.90 121.61 -32.38 0.92) ; 26 + ( 288.70 121.67 -31.60 0.92) ; 27 + ( 288.70 121.67 -31.63 0.92) ; 28 + ( 290.54 123.89 -34.50 0.92) ; 29 + ( 291.22 127.04 -35.42 0.92) ; 30 + ( 291.22 127.04 -35.45 0.92) ; 31 + ( 291.98 127.81 -37.40 0.92) ; 32 + ( 294.03 127.10 -39.47 0.92) ; 33 + ( 294.03 127.10 -39.50 0.92) ; 34 + ( 296.85 127.16 -41.55 0.92) ; 35 + ( 296.85 127.16 -41.57 0.92) ; 36 + ( 298.55 129.95 -44.35 0.92) ; 37 + ( 299.49 131.96 -45.85 0.92) ; 38 + ( 299.49 131.96 -45.88 0.92) ; 39 + ( 301.19 134.74 -47.33 0.92) ; 40 + ( 300.79 136.44 -48.38 0.92) ; 41 + ( 300.79 136.44 -48.40 0.92) ; 42 + ( 303.34 137.63 -49.40 0.92) ; 43 + ( 301.73 138.45 -51.85 0.92) ; 44 + ( 303.70 140.12 -53.70 0.92) ; 45 + ( 306.25 141.31 -55.05 0.92) ; 46 + ( 306.25 141.31 -57.67 0.92) ; 47 + ( 306.25 141.31 -57.70 0.92) ; 48 + ( 306.43 142.55 -59.80 0.92) ; 49 + ( 308.27 144.76 -61.15 0.92) ; 50 + ( 310.24 146.42 -62.85 0.92) ; 51 + ( 311.49 149.10 -64.67 0.92) ; 52 + ( 310.51 151.27 -64.97 0.92) ; 53 + ( 310.51 151.27 -65.00 0.92) ; 54 + ( 309.67 152.88 -66.52 0.46) ; 55 + ( 308.06 153.69 -69.25 0.46) ; 56 + ( 307.08 155.86 -71.17 0.46) ; 57 + ( 307.45 158.33 -73.50 0.46) ; 58 + ( 307.76 159.00 -75.63 0.46) ; 59 + ( 307.76 159.00 -75.65 0.46) ; 60 + ( 308.25 160.91 -77.93 0.46) ; 61 + ( 308.25 160.91 -77.95 0.46) ; 62 + ( 308.03 163.84 -80.02 0.46) ; 63 + ( 308.40 166.31 -82.15 0.46) ; 64 + ( 309.21 168.89 -83.35 0.46) ; 65 + ( 307.34 170.85 -85.05 0.46) ; 66 + ( 308.15 173.42 -86.40 0.46) ; 67 + ( 307.44 174.45 -88.42 0.46) ; 68 + ( 306.59 176.05 -90.80 0.46) ; 69 + ( 306.37 178.97 -91.93 0.46) ; 70 + ( 306.91 182.69 -92.70 0.46) ; 71 + ( 306.51 184.39 -94.07 0.46) ; 72 + ( 306.51 184.39 -94.10 0.46) ; 73 + ( 306.61 188.00 -95.57 0.46) ; 74 + ( 306.61 188.00 -95.63 0.46) ; 75 + ( 306.80 189.23 -98.40 0.46) ; 76 + ( 307.03 192.27 -100.40 0.46) ; 77 + ( 306.10 196.24 -101.55 0.46) ; 78 + ( 305.13 198.38 -103.85 0.46) ; 79 + ( 305.49 200.87 -104.97 0.46) ; 80 + ( 305.49 200.87 -105.00 0.46) ; 81 + ( 305.80 201.54 -106.17 0.46) ; 82 + ( 305.80 201.54 -106.35 0.46) ; 83 + + (Cross + (Color White) + (Name "Marker 3") + ( 308.51 197.99 -101.55 0.46) ; 1 + ( 307.91 199.14 -97.07 0.46) ; 2 + ( 308.95 176.00 -90.80 0.46) ; 3 + ( 308.80 177.26 -87.05 0.46) ; 4 + ( 306.26 169.40 -85.05 0.46) ; 5 + ( 305.92 169.42 -81.80 0.46) ; 6 + ( 306.97 146.25 -61.15 0.92) ; 7 + ( 309.39 148.01 -64.67 0.92) ; 8 + ( 312.26 146.42 -65.25 0.46) ; 9 + ( 299.04 131.86 -42.33 0.92) ; 10 + ( 298.65 133.55 -48.20 0.92) ; 11 + ( 260.67 102.56 -7.32 0.92) ; 12 + ( 261.79 99.83 -7.32 0.92) ; 13 + ( 262.02 102.87 -7.32 0.92) ; 14 + ( 274.04 115.85 -16.13 0.92) ; 15 + ( 282.63 115.46 -26.45 0.92) ; 16 + ( 285.17 116.66 -26.45 0.92) ; 17 + ( 287.63 120.23 -31.63 0.92) ; 18 + ( 285.22 122.59 7.53 0.46) ; 19 + ( 290.42 130.44 -34.47 0.92) ; 20 + ( 289.74 127.28 -34.95 0.92) ; 21 + ( 285.36 123.87 -31.63 0.92) ; 22 + ) ; End of markers + Normal + ) ; End of split + | + ( 255.15 73.83 0.70 0.92) ; 1, R-1-1-1-2 + ( 252.75 72.06 0.70 0.92) ; 2 + ( 251.36 69.94 1.80 0.92) ; 3 + ( 251.36 69.94 1.77 0.92) ; 4 + ( 249.81 72.56 3.70 0.92) ; 5 + ( 250.04 75.60 5.25 0.92) ; 6 + + (Cross + (Color White) + (Name "Marker 3") + ( 255.35 75.06 0.70 0.92) ; 1 + ( 254.72 73.72 7.57 0.92) ; 2 + ( 249.44 70.09 3.78 0.92) ; 3 + ( 249.18 71.22 3.78 0.92) ; 4 + ( 248.51 74.05 8.02 0.92) ; 5 + ) ; End of markers + ( + ( 252.26 76.12 4.52 1.38) ; 1, R-1-1-1-2-1 + ( 251.87 77.83 6.42 1.38) ; 2 + ( 252.05 79.06 8.70 1.38) ; 3 + ( 252.05 79.06 8.68 1.38) ; 4 + ( 251.34 80.09 10.82 1.38) ; 5 + ( 252.54 80.97 12.07 1.38) ; 6 + ( 253.89 81.29 14.00 1.38) ; 7 + ( 253.44 81.18 13.95 1.38) ; 8 + ( 255.94 80.57 15.65 1.38) ; 9 + ( 259.51 81.40 16.80 1.38) ; 10 + ( 263.22 81.68 17.95 1.38) ; 11 + ( 265.35 78.59 19.15 1.38) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 262.42 85.07 16.80 1.38) ; 1 + ( 257.32 82.69 16.83 1.38) ; 2 + ( 255.31 79.22 15.65 1.38) ; 3 + ) ; End of markers + ( + ( 263.70 77.61 19.75 1.38) ; 1, R-1-1-1-2-1-1 + ( 263.70 77.61 19.73 1.38) ; 2 + ( 260.62 78.69 21.45 0.92) ; 3 + ( 260.35 79.81 23.33 0.92) ; 4 + ( 261.03 82.96 24.40 0.92) ; 5 + ( 261.21 84.19 26.13 0.92) ; 6 + ( 259.48 85.58 27.02 0.92) ; 7 + ( 258.31 86.51 28.88 0.92) ; 8 + ( 257.60 87.53 30.23 0.92) ; 9 + + (Cross + (Color White) + (Name "Marker 3") + ( 261.47 77.09 21.45 0.92) ; 1 + ( 259.15 78.94 24.40 0.92) ; 2 + ) ; End of markers + High + | + ( 266.46 75.88 18.17 0.92) ; 1, R-1-1-1-2-1-2 + ( 267.17 74.84 18.57 0.92) ; 2 + ( 269.85 75.47 20.65 0.92) ; 3 + ( 271.02 74.54 21.75 0.92) ; 4 + ( 271.91 74.75 23.42 0.92) ; 5 + ( 273.61 77.55 24.77 0.92) ; 6 + ( 273.61 77.55 24.75 0.92) ; 7 + ( 276.86 77.71 25.38 0.92) ; 8 + ( 279.37 77.10 24.95 0.92) ; 9 + ( 281.28 76.95 25.87 0.92) ; 10 + ( 281.28 76.95 25.85 0.92) ; 11 + ( 281.86 76.49 28.10 0.92) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 266.42 80.05 19.15 1.38) ; 1 + ( 268.33 73.92 21.75 0.92) ; 2 + ) ; End of markers + Normal + ) ; End of split + | + ( 247.40 76.78 6.15 0.92) ; 1, R-1-1-1-2-2 + ( 244.85 75.58 8.02 0.92) ; 2 + ( 241.33 76.55 8.60 0.92) ; 3 + ( 241.33 76.55 8.57 0.92) ; 4 + ( 236.86 75.50 9.50 0.92) ; 5 + ( 236.86 75.50 9.48 0.92) ; 6 + ( 234.32 74.31 10.85 0.92) ; 7 + ( 234.32 74.31 10.82 0.92) ; 8 + ( 231.59 71.88 10.85 0.92) ; 9 + ( 230.70 71.67 10.85 0.92) ; 10 + ( 230.20 69.76 10.85 0.92) ; 11 + ( 227.12 70.84 12.10 0.92) ; 12 + ( 225.21 70.99 13.07 0.92) ; 13 + ( 225.21 70.99 13.05 0.92) ; 14 + ( 223.10 69.89 12.35 0.92) ; 15 + ( 219.71 70.29 13.40 0.92) ; 16 + ( 217.48 69.76 14.25 0.92) ; 17 + ( 213.83 71.29 14.60 0.92) ; 18 + ( 210.65 68.76 14.10 0.92) ; 19 + ( 209.39 66.07 14.43 0.92) ; 20 + ( 207.55 63.86 15.68 0.92) ; 21 + ( 203.40 63.48 14.97 0.92) ; 22 + ( 201.76 62.49 15.43 0.92) ; 23 + ( 200.50 59.81 17.20 0.92) ; 24 + ( 197.90 56.82 18.45 0.92) ; 25 + ( 194.73 54.28 20.15 0.92) ; 26 + ( 192.94 53.86 21.75 0.92) ; 27 + ( 190.70 53.34 22.95 0.92) ; 28 + ( 190.70 53.34 22.92 0.92) ; 29 + ( 188.03 52.71 24.27 0.92) ; 30 + ( 183.74 52.91 25.20 0.92) ; 31 + ( 182.32 54.95 25.20 0.92) ; 32 + ( 181.79 57.22 24.30 0.92) ; 33 + ( 182.41 58.56 24.67 0.92) ; 34 + ( 182.41 58.56 24.65 0.92) ; 35 + ( 183.50 60.00 25.63 0.92) ; 36 + ( 183.50 60.00 27.35 0.92) ; 37 + ( 183.50 60.00 27.32 0.92) ; 38 + ( 183.94 60.10 29.42 0.92) ; 39 + ( 183.54 61.81 30.60 0.92) ; 40 + ( 183.54 61.81 30.57 0.92) ; 41 + + (Cross + (Color White) + (Name "Marker 3") + ( 247.72 77.45 6.82 0.92) ; 1 + ( 241.78 76.66 8.35 0.92) ; 2 + ( 238.26 77.62 8.07 0.92) ; 3 + ( 235.71 76.43 8.30 0.92) ; 4 + ( 227.17 72.64 13.02 0.92) ; 5 + ( 231.51 74.25 14.10 0.92) ; 6 + ( 231.86 70.74 14.20 0.92) ; 7 + ( 230.20 69.76 14.20 0.92) ; 8 + ( 234.71 72.62 11.35 0.92) ; 9 + ( 218.01 67.50 14.60 0.92) ; 10 + ( 213.77 69.49 12.60 0.92) ; 11 + ( 212.39 67.39 15.20 0.92) ; 12 + ( 201.84 60.13 18.45 0.92) ; 13 + ( 201.21 58.78 16.20 0.92) ; 14 + ( 198.58 59.97 16.80 0.92) ; 15 + ( 184.36 54.24 24.65 0.92) ; 16 + ( 192.22 54.90 24.27 0.92) ; 17 + ( 187.89 47.30 25.20 0.92) ; 18 + ( 198.88 54.65 18.45 0.92) ; 19 + ) ; End of markers + High + ) ; End of split + | + ( 259.28 74.90 3.67 0.92) ; 1, R-1-1-1-3 + ( 259.28 74.90 3.65 0.92) ; 2 + ( 260.35 76.34 5.97 0.92) ; 3 + ( 259.95 78.04 7.47 0.92) ; 4 + ( 261.73 78.46 8.38 0.46) ; 5 + ( 263.83 79.56 8.77 0.46) ; 6 + ( 265.68 81.77 8.77 0.46) ; 7 + ( 268.09 83.53 9.57 0.46) ; 8 + ( 267.55 85.80 10.10 0.46) ; 9 + ( 266.44 88.52 11.00 0.46) ; 10 + ( 266.76 89.19 11.90 0.46) ; 11 + ( 268.28 90.74 12.65 0.46) ; 12 + ( 270.96 91.37 13.80 0.46) ; 13 + ( 272.43 91.12 14.75 0.46) ; 14 + ( 273.59 90.19 15.88 0.46) ; 15 + ( 276.00 91.95 16.92 0.46) ; 16 + ( 278.42 93.72 17.95 0.46) ; 17 + ( 279.68 96.40 19.63 0.46) ; 18 + ( 279.68 96.40 19.60 0.46) ; 19 + ( 281.47 96.82 20.90 0.46) ; 20 + ( 281.47 96.82 20.87 0.46) ; 21 + ( 282.04 96.36 22.10 0.46) ; 22 + ( 285.47 97.76 23.47 0.46) ; 23 + ( 287.45 99.41 24.45 0.46) ; 24 + ( 287.01 99.31 24.45 0.46) ; 25 + ( 288.88 103.34 25.30 0.46) ; 26 + ( 289.11 106.38 26.42 0.46) ; 27 + ( 289.16 108.18 24.05 0.46) ; 28 + ( 290.23 109.63 23.17 0.46) ; 29 + ( 289.83 111.32 22.45 0.46) ; 30 + ( 289.83 111.32 22.43 0.46) ; 31 + ( 288.99 112.91 20.55 0.46) ; 32 + ( 288.42 113.38 18.50 0.46) ; 33 + ( 288.42 113.38 18.48 0.46) ; 34 + + (Cross + (Color White) + (Name "Marker 3") + ( 289.62 111.72 -21.60 0.92) ; 1 + ( 286.18 96.74 23.45 0.46) ; 2 + ( 267.12 91.67 12.65 0.46) ; 3 + ( 270.24 92.40 13.80 0.46) ; 4 + ( 270.19 90.59 13.80 0.46) ; 5 + ( 271.01 93.18 14.75 0.46) ; 6 + ( 276.18 93.20 17.95 0.46) ; 7 + ( 277.16 91.04 19.50 0.46) ; 8 + ( 282.00 94.56 22.30 0.46) ; 9 + ( 277.52 93.52 22.32 0.46) ; 10 + ( 279.10 96.87 18.45 0.46) ; 11 + ( 283.64 95.54 23.45 0.46) ; 12 + ( 265.27 80.96 19.15 1.38) ; 13 + ( 266.64 79.62 8.77 0.46) ; 14 + ) ; End of markers + Normal + ) ; End of split + | + ( 251.51 49.77 -3.38 0.92) ; 1, R-1-1-2 + ( 249.56 54.10 -2.95 0.92) ; 2 + ( 246.47 55.17 -2.95 0.92) ; 3 + ( 244.11 55.21 -3.97 0.92) ; 4 + ( 242.82 56.69 -5.65 0.92) ; 5 + ( 241.97 58.29 -6.60 0.92) ; 6 + ( 241.27 59.32 -8.23 0.92) ; 7 + ( 239.67 60.14 -8.95 0.92) ; 8 + ( 236.85 60.07 -9.17 0.92) ; 9 + ( 232.75 61.50 -8.42 0.92) ; 10 + ( 232.75 61.50 -8.45 0.92) ; 11 + ( 231.09 60.51 -9.22 0.92) ; 12 + ( 230.16 58.50 -10.12 0.92) ; 13 + ( 228.81 58.19 -11.25 0.92) ; 14 + ( 225.73 59.26 -12.00 0.92) ; 15 + ( 222.30 57.86 -12.35 0.92) ; 16 + ( 219.17 57.13 -13.00 0.92) ; 17 + ( 215.91 56.96 -13.72 0.92) ; 18 + ( 213.41 57.57 -14.75 0.92) ; 19 + ( 210.81 54.57 -15.22 0.92) ; 20 + ( 207.11 54.30 -15.50 0.92) ; 21 + ( 204.16 54.80 -17.13 0.92) ; 22 + ( 201.61 55.31 -16.57 0.92) ; 23 + + (Cross + (Color White) + (Name "Marker 3") + ( 238.82 61.73 -9.17 0.92) ; 1 + ( 242.87 58.50 -5.70 0.92) ; 2 + ( 240.91 56.84 -7.32 0.92) ; 3 + ( 238.01 59.15 -9.17 0.92) ; 4 + ( 234.60 61.47 -58.22 0.46) ; 5 + ( 228.28 60.45 -11.25 0.92) ; 6 + ( 223.36 59.30 -10.80 0.92) ; 7 + ( 219.79 58.46 -14.65 0.92) ; 8 + ( 221.21 56.41 -10.80 0.92) ; 9 + ( 208.27 53.37 -15.50 0.92) ; 10 + ) ; End of markers + ( + ( 200.64 55.77 -16.57 0.92) ; 1, R-1-1-2-1 + ( 198.32 57.62 -15.30 0.92) ; 2 + ( 195.32 56.31 -14.65 0.92) ; 3 + ( 190.34 57.54 -14.27 0.92) ; 4 + ( 187.16 55.00 -13.63 0.92) ; 5 + ( 183.23 51.68 -12.57 0.92) ; 6 + ( 183.31 49.32 -10.82 0.92) ; 7 + ( 180.76 48.13 -8.42 0.92) ; 8 + ( 179.23 46.57 -6.78 0.92) ; 9 + ( 178.48 45.79 -4.63 0.92) ; 10 + ( 174.32 45.41 -2.15 0.46) ; 11 + ( 174.32 45.41 -2.17 0.46) ; 12 + ( 171.87 47.83 -1.67 0.46) ; 13 + ( 171.87 47.83 -1.70 0.46) ; 14 + ( 170.94 51.80 -1.00 0.46) ; 15 + ( 168.63 53.64 0.15 0.46) ; 16 + ( 168.63 53.64 0.12 0.46) ; 17 + ( 167.65 55.80 1.07 0.46) ; 18 + ( 167.65 55.80 1.05 0.46) ; 19 + ( 166.94 56.82 2.45 0.46) ; 20 + ( 166.94 56.82 2.42 0.46) ; 21 + ( 166.36 57.29 4.32 0.46) ; 22 + + (Cross + (Color White) + (Name "Marker 3") + ( 176.11 47.54 -25.90 0.92) ; 1 + ( 178.65 47.02 -4.63 0.92) ; 2 + ( 198.35 55.14 -22.05 0.92) ; 3 + ( 176.16 47.64 -3.47 0.92) ; 4 + ) ; End of markers + Normal + | + ( 198.54 56.39 -16.98 0.46) ; 1, R-1-1-2-2 + ( 195.27 56.22 -15.97 0.46) ; 2 + ( 190.86 56.97 -16.45 0.46) ; 3 + ( 188.32 55.78 -15.80 0.46) ; 4 + ( 185.90 54.02 -15.07 0.46) ; 5 + ( 184.51 51.90 -14.63 0.46) ; 6 + ( 183.13 49.78 -13.30 0.46) ; 7 + ( 183.52 48.08 -11.47 0.46) ; 8 + ( 183.52 48.08 -11.50 0.46) ; 9 + ( 182.18 47.77 -9.90 0.46) ; 10 + ( 179.81 47.81 -8.57 0.46) ; 11 + ( 179.81 47.81 -8.55 0.46) ; 12 + ( 179.00 45.23 -7.15 0.46) ; 13 + ( 178.69 44.56 -6.30 0.46) ; 14 + ( 176.77 44.71 -4.70 0.46) ; 15 + ( 172.93 45.01 -3.47 0.46) ; 16 + ( 172.41 47.26 -3.47 0.46) ; 17 + ( 170.71 50.46 -2.95 0.46) ; 18 + ( 170.18 52.72 -1.88 0.46) ; 19 + ( 168.75 54.77 -1.20 0.46) ; 20 + ( 167.47 56.27 0.00 0.46) ; 21 + ( 166.44 56.63 1.63 0.46) ; 22 + ( 166.44 56.63 1.60 0.46) ; 23 + ( 165.42 56.98 2.90 0.46) ; 24 + + (Cross + (Color White) + (Name "Marker 3") + ( 186.92 53.66 -14.63 0.46) ; 1 + ( 172.75 43.77 -4.07 0.46) ; 2 + ( 172.35 43.76 -3.47 0.92) ; 3 + ( 180.92 43.39 -3.47 0.92) ; 4 + ( 179.40 43.54 -4.70 0.46) ; 5 + ( 198.85 55.35 -16.57 0.92) ; 6 + ( 177.44 47.85 -4.70 0.46) ; 7 + ) ; End of markers + Normal + | + ( 199.07 54.11 -19.70 0.92) ; 1, R-1-1-2-3 + ( 196.97 53.03 -22.05 0.92) ; 2 + ( 191.92 52.44 -23.00 0.92) ; 3 + ( 189.38 51.24 -23.63 0.92) ; 4 + ( 188.29 49.80 -24.60 0.92) ; 5 + ( 184.46 50.09 -24.60 0.92) ; 6 + ( 181.39 51.17 -25.25 0.92) ; 7 + ( 178.39 49.87 -25.25 0.92) ; 8 + ( 177.89 47.96 -24.82 0.92) ; 9 + ( 177.89 47.96 -24.85 0.92) ; 10 + ( 174.37 48.92 -25.90 0.92) ; 11 + ( 172.27 47.83 -27.67 0.92) ; 12 + ( 171.51 47.06 -29.62 0.92) ; 13 + ( 171.06 46.96 -31.63 0.92) ; 14 + ( 168.20 45.09 -33.10 0.92) ; 15 + ( 165.34 43.23 -34.02 0.92) ; 16 + ( 162.26 44.29 -35.65 0.92) ; 17 + ( 161.55 45.32 -37.77 0.92) ; 18 + ( 160.21 45.01 -39.95 0.92) ; 19 + ( 157.79 43.25 -42.10 0.92) ; 20 + ( 157.79 43.25 -42.13 0.92) ; 21 + ( 154.09 42.98 -43.47 0.92) ; 22 + ( 149.22 43.63 -49.65 0.46) ; 23 + ( 145.38 43.92 -51.22 0.46) ; 24 + ( 145.38 43.92 -51.28 0.46) ; 25 + ( 142.58 43.86 -52.63 0.46) ; 26 + ( 142.58 43.86 -52.65 0.46) ; 27 + ( 141.28 45.36 -54.50 0.46) ; 28 + ( 140.08 44.47 -56.20 0.46) ; 29 + ( 140.08 44.47 -56.22 0.46) ; 30 + ( 137.27 44.42 -57.47 0.46) ; 31 + ( 137.27 44.42 -57.50 0.46) ; 32 + ( 135.61 43.42 -59.47 0.46) ; 33 + ( 135.61 43.42 -59.50 0.46) ; 34 + ( 133.57 44.15 -60.95 0.46) ; 35 + ( 132.54 44.49 -63.05 0.46) ; 36 + ( 132.54 44.49 -63.07 0.46) ; 37 + ( 130.04 45.10 -63.15 0.46) ; 38 + ( 130.08 46.90 -64.70 0.46) ; 39 + ( 127.72 46.96 -66.03 0.46) ; 40 + ( 126.56 47.87 -67.65 0.46) ; 41 + ( 124.46 46.79 -69.70 0.46) ; 42 + ( 121.83 47.96 -71.68 0.46) ; 43 + ( 121.83 47.96 -71.70 0.46) ; 44 + ( 120.49 47.64 -73.78 0.46) ; 45 + ( 120.49 47.64 -73.82 0.46) ; 46 + ( 119.01 47.89 -76.38 0.46) ; 47 + ( 116.97 48.62 -78.07 0.46) ; 48 + ( 116.97 48.62 -78.10 0.46) ; 49 + ( 115.49 48.86 -80.35 0.46) ; 50 + ( 115.49 48.86 -80.40 0.46) ; 51 + ( 114.02 49.11 -82.97 0.46) ; 52 + ( 110.18 49.41 -84.80 0.46) ; 53 + ( 108.89 50.90 -86.67 0.46) ; 54 + ( 108.89 50.90 -86.70 0.46) ; 55 + ( 107.42 51.15 -88.57 0.46) ; 56 + ( 107.42 51.15 -88.60 0.46) ; 57 + ( 104.34 52.22 -90.25 0.46) ; 58 + ( 104.34 52.22 -90.28 0.46) ; 59 + ( 102.46 54.17 -92.15 0.46) ; 60 + ( 101.89 54.63 -93.82 0.46) ; 61 + ( 101.89 54.63 -93.85 0.46) ; 62 + ( 99.13 56.37 -96.10 0.46) ; 63 + ( 97.21 56.53 -98.80 0.46) ; 64 + ( 96.37 58.12 -101.65 0.46) ; 65 + ( 93.55 58.05 -104.25 0.46) ; 66 + ( 91.10 60.46 -106.15 0.46) ; 67 + ( 88.74 60.51 -109.20 0.46) ; 68 + + (Cross + (Color White) + (Name "Marker 3") + ( 192.44 51.95 24.27 0.92) ; 1 + ( 175.89 50.48 -25.90 0.92) ; 2 + ( 175.80 46.87 -3.47 0.46) ; 3 + ( 168.47 43.96 -31.42 0.92) ; 4 + ( 160.29 42.64 -37.77 0.92) ; 5 + ( 155.75 43.96 -39.02 0.46) ; 6 + ( 153.46 41.63 -44.07 0.46) ; 7 + ( 147.97 40.95 -50.55 0.46) ; 8 + ( 165.13 46.16 -32.55 0.92) ; 9 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 262.09 46.88 -7.07 1.38) ; 1, R-1-2 + ( 266.25 47.26 -7.70 1.38) ; 2 + ( 268.34 48.34 -8.52 1.38) ; 3 + ( 270.17 50.56 -9.20 1.38) ; 4 + ( 271.96 50.98 -9.85 1.38) ; 5 + ( 274.33 50.94 -8.23 1.38) ; 6 + ( 276.25 50.79 -7.32 1.38) ; 7 + ( 278.21 52.45 -7.95 1.38) ; 8 + ( 278.97 53.22 -9.95 0.92) ; 9 + + (Cross + (Color White) + (Name "Marker 3") + ( 274.51 52.17 -9.77 1.38) ; 1 + ( 268.26 50.71 -9.20 1.38) ; 2 + ( 264.76 47.51 -10.57 1.38) ; 3 + ) ; End of markers + ( + ( 279.16 54.47 -12.22 0.92) ; 1, R-1-2-1 + ( 280.68 56.01 -13.52 0.92) ; 2 + ( 282.77 57.10 -13.55 0.92) ; 3 + ( 284.12 57.41 -13.35 0.92) ; 4 + ( 288.21 55.99 -13.38 0.92) ; 5 + ( 288.08 56.56 -13.38 0.92) ; 6 + ( 291.13 59.65 -14.00 0.92) ; 7 + ( 290.33 63.05 -13.07 0.92) ; 8 + ( 290.33 63.05 -13.13 0.92) ; 9 + ( 289.67 65.88 -13.52 0.92) ; 10 + ( 287.62 66.60 -14.63 0.92) ; 11 + ( 287.80 67.83 -16.45 0.92) ; 12 + ( 287.80 67.83 -16.47 0.92) ; 13 + ( 288.69 68.04 -18.85 0.92) ; 14 + ( 290.03 68.36 -21.18 0.92) ; 15 + ( 291.42 70.48 -22.45 0.92) ; 16 + ( 291.42 70.48 -22.47 0.92) ; 17 + ( 291.91 72.38 -23.40 0.92) ; 18 + ( 290.93 74.54 -23.33 0.46) ; 19 + ( 291.12 75.78 -24.50 0.46) ; 20 + ( 291.12 75.78 -24.52 0.46) ; 21 + ( 292.47 76.09 -26.00 0.46) ; 22 + ( 295.64 78.63 -27.05 0.46) ; 23 + ( 297.73 79.72 -27.63 0.46) ; 24 + ( 297.12 84.36 -28.90 0.46) ; 25 + ( 297.75 85.69 -30.45 0.46) ; 26 + ( 299.54 86.12 -31.92 0.46) ; 27 + ( 300.75 86.99 -33.80 0.46) ; 28 + + (Cross + (Color White) + (Name "Marker 3") + ( 297.17 86.16 -31.92 0.46) ; 1 + ( 300.30 86.88 -32.25 0.46) ; 2 + ( 301.58 85.40 -31.92 0.46) ; 3 + ( 291.41 73.92 -38.07 0.46) ; 4 + ( 294.15 72.90 -23.40 0.92) ; 5 + ( 288.54 62.63 -11.17 0.92) ; 6 + ( 291.41 64.49 -11.07 0.92) ; 7 + ( 291.13 59.65 -15.32 0.92) ; 8 + ( 277.86 55.95 -13.55 0.92) ; 9 + ( 279.64 56.37 -13.55 0.92) ; 10 + ( 280.86 57.24 -13.55 0.92) ; 11 + ) ; End of markers + ( + ( 307.13 87.89 -34.28 0.46) ; 1, R-1-2-1-1 + ( 306.42 88.92 -35.63 0.46) ; 2 + ( 310.39 88.06 -36.63 0.46) ; 3 + ( 312.35 89.72 -37.77 0.46) ; 4 + ( 314.63 92.04 -39.10 0.46) ; 5 + ( 314.63 92.04 -39.13 0.46) ; 6 + ( 316.74 93.14 -40.10 0.46) ; 7 + ( 319.73 94.43 -41.20 0.46) ; 8 + ( 323.80 97.17 -41.52 0.46) ; 9 + ( 326.93 97.90 -41.70 0.46) ; 10 + ( 327.60 101.05 -41.60 0.46) ; 11 + ( 327.60 101.05 -41.63 0.46) ; 12 + ( 328.68 102.49 -43.15 0.46) ; 13 + ( 328.68 102.49 -43.27 0.46) ; 14 + + (Cross + (Color White) + (Name "Marker 3") + ( 303.50 85.25 -33.55 0.46) ; 1 + ( 313.19 88.13 -39.10 0.46) ; 2 + ) ; End of markers + Normal + | + ( 302.71 88.64 -34.67 0.46) ; 1, R-1-2-1-2 + ( 303.20 90.56 -36.10 0.46) ; 2 + ( 304.28 92.00 -38.83 0.46) ; 3 + ( 303.57 93.02 -39.60 0.46) ; 4 + ( 303.17 94.72 -41.82 0.46) ; 5 + ( 301.43 96.11 -42.37 0.46) ; 6 + ( 301.43 96.11 -42.42 0.46) ; 7 + ( 301.48 97.92 -44.05 0.46) ; 8 + ( 303.27 98.33 -45.72 0.46) ; 9 + ( 300.96 100.17 -46.15 0.46) ; 10 + ( 301.76 102.76 -47.65 0.46) ; 11 + ( 301.68 105.12 -49.47 0.46) ; 12 + ( 301.68 105.12 -49.50 0.46) ; 13 + ( 301.28 106.82 -50.68 0.46) ; 14 + ( 301.82 110.54 -51.15 0.46) ; 15 + ( 302.81 114.35 -51.15 0.46) ; 16 + ( 302.46 117.85 -51.42 0.46) ; 17 + ( 303.27 120.43 -52.80 0.46) ; 18 + ( 303.27 120.43 -52.82 0.46) ; 19 + ( 303.33 122.23 -53.65 0.46) ; 20 + ( 303.33 122.23 -53.67 0.46) ; 21 + ( 302.53 125.62 -54.32 0.46) ; 22 + ( 301.94 126.09 -55.77 0.46) ; 23 + ( 301.94 126.09 -55.80 0.46) ; 24 + ( 302.75 128.66 -57.25 0.46) ; 25 + ( 303.75 132.49 -58.85 0.46) ; 26 + ( 304.38 133.82 -59.75 0.46) ; 27 + ( 304.38 133.82 -59.78 0.46) ; 28 + ( 306.52 136.71 -61.10 0.46) ; 29 + ( 307.33 139.29 -61.38 0.46) ; 30 + ( 307.33 139.29 -61.40 0.46) ; 31 + ( 308.99 140.28 -61.38 0.46) ; 32 + ( 310.15 145.32 -62.95 0.46) ; 33 + ( 311.01 149.71 -63.72 0.46) ; 34 + ( 311.01 149.71 -63.75 0.46) ; 35 + ( 311.82 152.29 -63.05 0.46) ; 36 + ( 313.08 154.97 -61.28 0.46) ; 37 + ( 314.02 156.99 -59.80 0.46) ; 38 + ( 314.02 156.99 -59.83 0.46) ; 39 + ( 317.96 160.29 -59.15 0.46) ; 40 + ( 319.13 165.34 -58.05 0.46) ; 41 + ( 319.04 167.71 -58.62 0.46) ; 42 + ( 317.71 173.37 -60.07 0.46) ; 43 + ( 317.05 176.20 -61.42 0.46) ; 44 + ( 315.63 178.26 -64.27 0.46) ; 45 + + (Cross + (Color White) + (Name "Marker 3") + ( 321.46 169.47 -58.62 0.46) ; 1 + ( 316.51 172.50 -60.07 0.46) ; 2 + ( 305.00 135.16 -58.75 0.46) ; 3 + ( 302.99 129.16 19.20 0.46) ; 4 + ( 301.89 124.29 -53.72 0.46) ; 5 + ( 304.68 112.40 -51.15 0.46) ; 6 + ( 300.88 108.52 -51.15 0.46) ; 7 + ( 304.43 97.41 -45.72 0.46) ; 8 + ( 300.83 90.60 -36.10 0.46) ; 9 + ( 302.18 90.91 -39.10 0.46) ; 10 + ( 301.95 87.87 -33.53 0.46) ; 11 + ) ; End of markers + Normal + ) ; End of split + | + ( 278.18 52.44 -12.95 0.92) ; 1, R-1-2-2 + ( 278.63 52.55 -14.80 0.92) ; 2 + ( 278.63 52.55 -14.92 0.92) ; 3 + ( 278.76 51.98 -17.47 0.92) ; 4 + ( 281.14 51.94 -18.02 0.92) ; 5 + ( 283.28 54.84 -18.50 0.92) ; 6 + ( 284.93 55.82 -18.88 0.92) ; 7 + ( 286.99 55.10 -19.50 0.92) ; 8 + ( 289.57 52.13 -19.50 0.92) ; 9 + ( 291.63 51.41 -20.00 0.92) ; 10 + ( 292.92 49.93 -20.77 0.92) ; 11 + ( 295.28 49.89 -21.88 0.92) ; 12 + + (Cross + (Color White) + (Name "Marker 3") + ( 293.32 48.24 -20.00 0.92) ; 1 + ( 290.28 51.10 -20.00 0.92) ; 2 + ) ; End of markers + ( + ( 296.62 50.20 -23.27 0.46) ; 1, R-1-2-2-1 + ( 294.75 52.14 -24.77 0.46) ; 2 + ( 294.30 52.03 -24.80 0.46) ; 3 + ( 293.85 51.93 -26.32 0.46) ; 4 + ( 295.38 53.50 -27.83 0.46) ; 5 + ( 294.80 53.95 -27.85 0.46) ; 6 + ( 295.56 54.73 -29.42 0.46) ; 7 + ( 295.43 55.30 -29.42 0.46) ; 8 + ( 294.85 55.75 -31.30 0.46) ; 9 + ( 293.32 54.20 -31.13 0.46) ; 10 + ( 292.29 54.56 -33.75 0.46) ; 11 + ( 294.00 57.35 -35.55 0.46) ; 12 + ( 293.34 60.18 -36.52 0.46) ; 13 + ( 292.18 61.10 -40.80 0.46) ; 14 + ( 293.52 61.42 -43.72 0.46) ; 15 + ( 293.70 62.65 -45.80 0.46) ; 16 + ( 293.70 62.65 -45.83 0.46) ; 17 + ( 292.09 63.47 -47.02 0.46) ; 18 + ( 291.96 64.03 -49.25 0.46) ; 19 + ( 293.75 64.45 -51.25 0.46) ; 20 + ( 294.51 65.23 -52.97 0.46) ; 21 + ( 294.51 65.23 -53.00 0.46) ; 22 + ( 295.90 67.34 -55.83 0.46) ; 23 + ( 294.93 69.50 -57.85 0.46) ; 24 + ( 295.68 70.29 -59.83 0.46) ; 25 + ( 296.12 70.38 -59.83 0.46) ; 26 + ( 297.28 69.46 -62.10 0.46) ; 27 + ( 297.65 71.94 -63.82 0.46) ; 28 + ( 300.01 71.90 -65.32 0.46) ; 29 + ( 300.78 72.67 -67.25 0.46) ; 30 + ( 300.78 72.67 -67.28 0.46) ; 31 + ( 299.35 74.72 -69.55 0.46) ; 32 + ( 298.76 75.19 -70.57 0.46) ; 33 + ( 299.21 75.30 -72.77 0.46) ; 34 + ( 301.46 75.81 -74.45 0.46) ; 35 + ( 301.28 74.57 -76.60 0.46) ; 36 + ( 301.28 74.57 -76.63 0.46) ; 37 + ( 302.61 74.89 -78.97 0.46) ; 38 + ( 303.72 72.17 -80.52 0.46) ; 39 + ( 303.72 72.17 -80.60 0.46) ; 40 + ( 305.11 74.28 -83.02 0.46) ; 41 + ( 305.46 76.76 -85.02 0.46) ; 42 + ( 304.50 78.92 -87.07 0.46) ; 43 + ( 304.50 78.92 -87.10 0.46) ; 44 + ( 303.65 80.51 -89.65 0.46) ; 45 + ( 303.65 80.51 -89.70 0.46) ; 46 + ( 303.87 83.55 -91.32 0.46) ; 47 + ( 303.79 85.91 -92.15 0.46) ; 48 + ( 303.66 86.48 -95.30 0.46) ; 49 + + (Cross + (Color White) + (Name "Marker 3") + ( 296.80 73.53 -69.55 0.46) ; 1 + ( 297.70 73.74 -65.67 0.46) ; 2 + ( 297.05 66.43 -57.82 0.46) ; 3 + ( 295.04 62.97 -51.25 0.46) ; 4 + ( 291.81 58.62 -36.52 0.46) ; 5 + ( 293.99 51.37 -21.82 0.92) ; 6 + ) ; End of markers + Normal + | + ( 296.12 48.29 -21.10 0.46) ; 1, R-1-2-2-2 + ( 295.58 44.58 -22.67 0.46) ; 2 + ( 295.58 44.58 -22.70 0.46) ; 3 + ( 296.60 44.22 -24.40 0.46) ; 4 + ( 298.21 43.41 -25.90 0.46) ; 5 + ( 299.05 41.82 -27.60 0.46) ; 6 + ( 299.01 40.01 -29.17 0.46) ; 7 + ( 302.09 38.94 -30.13 0.46) ; 8 + ( 303.11 38.59 -31.17 0.46) ; 9 + ( 305.25 35.50 -31.70 0.46) ; 10 + ( 307.70 33.09 -32.88 0.46) ; 11 + ( 308.98 31.60 -34.30 0.46) ; 12 + ( 310.67 28.41 -35.45 0.46) ; 13 + ( 311.60 24.45 -36.33 0.46) ; 14 + ( 314.50 22.14 -36.58 0.46) ; 15 + ( 316.90 17.92 -37.00 0.46) ; 16 + ( 318.41 13.50 -37.00 0.46) ; 17 + ( 320.68 9.85 -37.22 0.46) ; 18 + ( 320.68 9.85 -37.25 0.46) ; 19 + ( 320.77 7.48 -38.40 0.46) ; 20 + ( 320.62 2.08 -39.25 0.46) ; 21 + ( 321.37 -3.12 -40.15 0.46) ; 22 + ( 323.64 -6.77 -40.03 0.46) ; 23 + ( 324.17 -9.04 -42.05 0.46) ; 24 + ( 325.99 -12.79 -43.80 0.46) ; 25 + ( 324.29 -15.58 -45.45 0.46) ; 26 + ( 326.19 -21.70 -46.08 0.46) ; 27 + ( 328.20 -24.21 -46.73 0.46) ; 28 + ( 330.99 -30.13 -47.77 0.46) ; 29 + ( 332.25 -31.60 -47.85 0.46) ; 30 + ( 331.62 -32.95 -49.83 0.46) ; 31 + ( 331.62 -32.95 -49.87 0.46) ; 32 + ( 331.57 -34.76 -51.32 0.46) ; 33 + ( 331.57 -34.76 -51.35 0.46) ; 34 + ( 333.13 -37.37 -52.70 0.46) ; 35 + ( 333.13 -37.37 -52.72 0.46) ; 36 + ( 335.97 -41.48 -53.10 0.46) ; 37 + ( 335.97 -41.48 -53.13 0.46) ; 38 + ( 337.53 -44.10 -52.85 0.46) ; 39 + ( 339.80 -47.75 -52.85 0.46) ; 40 + ( 339.80 -47.75 -52.88 0.46) ; 41 + ( 340.28 -51.82 -52.70 0.46) ; 42 + + (Cross + (Color White) + (Name "Marker 3") + ( 295.00 45.05 -24.42 0.46) ; 1 + ( 311.54 32.79 -35.45 0.46) ; 2 + ( 307.87 28.35 -35.45 0.46) ; 3 + ( 317.98 19.37 -37.67 0.46) ; 4 + ( 316.62 13.08 -37.67 0.46) ; 5 + ( 319.43 7.17 -38.40 0.46) ; 6 + ( 321.42 -1.32 -40.03 0.46) ; 7 + ( 330.96 -25.96 -47.77 0.46) ; 8 + ( 336.65 -38.34 -53.13 0.46) ; 9 + ( 338.33 -47.50 -52.70 0.46) ; 10 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + ) ; End of split + | + ( 256.57 35.95 -7.82 1.83) ; 1, R-2 + ( 253.05 36.90 -9.30 1.83) ; 2 + ( 250.73 38.75 -9.32 1.83) ; 3 + ( 246.88 39.05 -9.32 1.83) ; 4 + ( 245.14 40.44 -10.50 1.83) ; 5 + ( 243.23 40.58 -11.90 1.83) ; 6 + ( 242.78 40.48 -13.27 1.38) ; 7 + ( 241.30 40.73 -14.92 1.38) ; 8 + ( 240.41 40.52 -15.92 1.38) ; 9 + ( 236.35 37.78 -16.20 1.38) ; 10 + + (Cross + (Color White) + (Name "Marker 3") + ( 238.71 37.72 -16.20 1.38) ; 1 + ) ; End of markers + ( + ( 235.99 35.30 -17.17 1.38) ; 1, R-2-1 + ( 235.04 33.29 -18.33 1.38) ; 2 + ( 233.20 31.06 -19.33 1.38) ; 3 + ( 232.58 29.73 -21.72 1.38) ; 4 + ( + ( 232.49 26.12 -22.53 0.92) ; 1, R-2-1-1 + ( 231.49 22.30 -23.50 0.92) ; 2 + ( 231.27 19.26 -24.10 0.92) ; 3 + ( 230.90 16.80 -24.85 0.92) ; 4 + ( 231.11 13.85 -25.38 0.92) ; 5 + ( 230.25 9.47 -25.77 0.92) ; 6 + ( 228.82 5.55 -25.80 0.92) ; 7 + ( 227.84 1.75 -26.13 0.92) ; 8 + ( 225.24 -1.26 -24.70 0.92) ; 9 + ( 222.50 -3.68 -23.30 0.92) ; 10 + ( 219.90 -6.69 -22.88 0.92) ; 11 + ( 218.97 -8.69 -23.27 0.92) ; 12 + ( 215.67 -10.67 -23.27 0.92) ; 13 + ( 215.62 -12.47 -23.27 0.46) ; 14 + ( 213.82 -12.89 -23.27 0.46) ; 15 + ( 213.78 -14.69 -23.27 0.46) ; 16 + ( 211.86 -14.54 -23.27 0.46) ; 17 + ( 210.48 -16.66 -23.27 0.46) ; 18 + ( 209.27 -17.54 -24.08 0.46) ; 19 + ( 208.19 -18.99 -24.08 0.46) ; 20 + ( 204.43 -21.05 -24.08 0.46) ; 21 + ( 200.69 -23.14 -24.75 0.46) ; 22 + ( 197.11 -23.98 -24.05 0.46) ; 23 + ( 195.50 -23.15 -24.08 0.46) ; 24 + ( 195.50 -23.15 -24.10 0.46) ; 25 + ( 193.59 -23.00 -24.40 0.46) ; 26 + ( 193.59 -23.00 -24.42 0.46) ; 27 + ( 190.90 -23.63 -25.57 0.46) ; 28 + ( 189.52 -25.76 -27.22 0.46) ; 29 + ( 188.62 -25.97 -29.48 0.46) ; 30 + ( 188.62 -25.97 -29.50 0.46) ; 31 + ( 188.36 -24.82 -31.85 0.46) ; 32 + ( 188.36 -24.82 -31.88 0.46) ; 33 + ( 186.44 -24.67 -34.13 0.46) ; 34 + ( 186.44 -24.67 -34.15 0.46) ; 35 + + (Cross + (Color White) + (Name "Marker 3") + ( 194.65 -27.53 -24.67 0.46) ; 1 + ( 193.23 -25.48 -25.57 0.46) ; 2 + ( 190.98 -26.01 -25.57 0.46) ; 3 + ( 233.18 19.11 -24.10 0.92) ; 4 + ( 216.02 -8.20 -23.27 0.92) ; 5 + ( 229.80 3.40 -26.13 0.92) ; 6 + ) ; End of markers + Normal + | + ( 229.63 30.23 -21.72 0.92) ; 1, R-2-1-2 + ( 227.27 30.27 -22.88 0.92) ; 2 + ( 226.64 28.93 -24.30 0.92) ; 3 + ( 227.35 27.91 -26.58 0.92) ; 4 + ( 226.59 27.13 -28.30 0.92) ; 5 + ( 226.85 25.99 -27.80 0.92) ; 6 + ( 225.79 24.55 -29.22 0.92) ; 7 + ( 224.39 22.43 -30.45 0.92) ; 8 + ( 222.66 23.81 -31.60 0.92) ; 9 + ( 222.66 23.81 -31.63 0.92) ; 10 + ( 221.95 24.84 -33.00 0.92) ; 11 + ( 220.79 25.77 -34.88 0.92) ; 12 + ( 219.62 26.69 -36.60 0.92) ; 13 + + (Cross + (Color White) + (Name "Marker 3") + ( 228.78 25.84 -27.80 0.92) ; 1 + ) ; End of markers + ( + ( 217.66 25.04 -38.13 0.92) ; 1, R-2-1-2-1 + ( 216.45 24.15 -41.22 0.46) ; 2 + ( 216.45 24.15 -41.20 0.46) ; 3 + ( 214.14 26.00 -42.37 0.46) ; 4 + ( 211.19 26.51 -43.60 0.46) ; 5 + ( 208.38 26.43 -43.72 0.46) ; 6 + ( 206.06 28.28 -44.58 0.46) ; 7 + ( 206.51 28.39 -46.45 0.46) ; 8 + ( 205.93 28.85 -49.10 0.46) ; 9 + ( 203.44 29.46 -50.77 0.46) ; 10 + ( 202.04 27.35 -52.80 0.46) ; 11 + ( 200.39 26.36 -54.38 0.46) ; 12 + ( 200.39 26.36 -54.40 0.46) ; 13 + ( 196.43 27.22 -55.32 0.46) ; 14 + ( 192.85 26.38 -56.80 0.46) ; 15 + ( 191.64 25.51 -58.15 0.46) ; 16 + ( 191.64 25.51 -58.17 0.46) ; 17 + ( 189.73 25.65 -58.90 0.46) ; 18 + ( 187.21 26.26 -59.80 0.46) ; 19 + ( 184.54 25.64 -60.70 0.46) ; 20 + ( 181.82 23.20 -61.38 0.46) ; 21 + ( 178.92 25.50 -62.88 0.46) ; 22 + ( 176.28 26.68 -63.95 0.46) ; 23 + ( 174.54 28.07 -65.30 0.46) ; 24 + ( 172.05 28.68 -66.88 0.46) ; 25 + ( 172.18 28.11 -66.88 0.46) ; 26 + ( 168.65 29.07 -68.20 0.46) ; 27 + ( 166.03 30.25 -69.40 0.46) ; 28 + ( 164.42 31.07 -71.00 0.46) ; 29 + ( 162.77 30.09 -72.93 0.46) ; 30 + ( 160.40 30.12 -74.55 0.46) ; 31 + ( 160.40 30.12 -74.57 0.46) ; 32 + ( 157.32 31.20 -75.63 0.46) ; 33 + ( 156.48 32.79 -77.28 0.46) ; 34 + ( 154.43 33.50 -79.50 0.46) ; 35 + ( 151.93 34.11 -81.22 0.46) ; 36 + ( 150.32 34.93 -83.02 0.46) ; 37 + ( 149.38 32.92 -85.30 0.46) ; 38 + ( 147.02 32.96 -87.70 0.46) ; 39 + ( 147.37 29.46 -89.92 0.46) ; 40 + ( 147.37 29.46 -89.95 0.46) ; 41 + ( 144.95 27.70 -91.13 0.46) ; 42 + ( 142.71 27.17 -92.90 0.46) ; 43 + ( 142.71 27.17 -92.92 0.46) ; 44 + ( 140.31 25.42 -94.10 0.46) ; 45 + ( 140.31 25.42 -94.15 0.46) ; 46 + ( 138.79 23.87 -93.63 0.46) ; 47 + ( 138.79 23.87 -93.88 0.46) ; 48 + ( 136.36 22.10 -94.17 0.46) ; 49 + ( 135.56 19.53 -95.18 0.46) ; 50 + ( 134.04 17.98 -97.28 0.46) ; 51 + + (Cross + (Color White) + (Name "Marker 3") + ( 134.00 22.15 -93.82 0.46) ; 1 + ( 185.22 28.78 -60.65 0.46) ; 2 + ( 181.02 26.60 -62.95 0.46) ; 3 + ( 190.69 23.49 -58.90 0.46) ; 4 + ( 219.40 23.64 -41.20 0.46) ; 5 + ( 160.30 26.52 -74.57 0.46) ; 6 + ) ; End of markers + Normal + | + ( 223.20 27.53 -39.55 0.46) ; 1, R-2-1-2-2 + ( 223.65 27.63 -42.47 0.46) ; 2 + ( 223.65 27.63 -42.53 0.46) ; 3 + ( 223.38 28.76 -45.97 0.46) ; 4 + ( 223.38 28.76 -46.10 0.46) ; 5 + ( 225.12 27.38 -48.70 0.46) ; 6 + ( 225.12 27.38 -48.72 0.46) ; 7 + ( 225.17 29.18 -50.95 0.46) ; 8 + ( 224.72 29.07 -50.97 0.46) ; 9 + ( 223.83 28.86 -53.40 0.46) ; 10 + ( 223.70 29.43 -53.42 0.46) ; 11 + ( 223.43 30.57 -55.67 0.46) ; 12 + ( 223.43 30.57 -55.70 0.46) ; 13 + ( 225.34 30.41 -58.42 0.46) ; 14 + ( 225.34 30.41 -58.47 0.46) ; 15 + ( 224.95 32.11 -61.40 0.46) ; 16 + ( 224.95 32.11 -61.47 0.46) ; 17 + ( 224.06 31.91 -63.88 0.46) ; 18 + ( 224.06 31.91 -63.90 0.46) ; 19 + ( 224.86 34.48 -66.65 0.46) ; 20 + ( 225.84 32.32 -69.35 0.46) ; 21 + ( 226.10 31.20 -72.07 0.46) ; 22 + ( 226.10 31.20 -72.17 0.46) ; 23 + ( 228.04 31.04 -76.22 0.46) ; 24 + ( 228.04 31.04 -76.30 0.46) ; 25 + ( 228.04 31.04 -81.53 0.46) ; 26 + ( 228.04 31.04 -81.58 0.46) ; 27 + ( 227.72 30.38 -85.92 0.46) ; 28 + ( 226.50 29.49 -89.05 0.46) ; 29 + ( 226.50 29.49 -89.08 0.46) ; 30 + ( 224.81 26.72 -92.40 0.46) ; 31 + ( 224.76 24.91 -94.75 0.46) ; 32 + ( 225.16 23.21 -97.13 0.46) ; 33 + ( 225.87 22.17 -99.50 0.46) ; 34 + ( 225.87 22.17 -99.52 0.46) ; 35 + ( 224.79 20.73 -102.68 0.46) ; 36 + ( 224.79 20.73 -102.72 0.46) ; 37 + ( 225.24 20.84 -106.25 0.46) ; 38 + ( 225.37 20.27 -110.32 0.46) ; 39 + ( 225.37 20.27 -110.37 0.46) ; 40 + + (Cross + (Color White) + (Name "Marker 3") + ( 228.06 26.87 -88.72 0.46) ; 1 + ( 223.20 27.53 -92.40 0.46) ; 2 + ) ; End of markers + Normal + | + ( 219.81 27.93 -40.52 0.46) ; 1, R-2-1-2-3 + ( 218.34 28.18 -43.45 0.46) ; 2 + ( 218.34 28.18 -43.47 0.46) ; 3 + ( 216.78 30.80 -45.70 0.46) ; 4 + ( 217.68 31.01 -48.20 0.46) ; 5 + ( 218.62 33.02 -51.08 0.46) ; 6 + ( 219.25 34.37 -54.20 0.46) ; 7 + ( 219.25 34.37 -54.22 0.46) ; 8 + ( 218.17 32.91 -57.15 0.46) ; 9 + ( 218.17 32.91 -57.20 0.46) ; 10 + ( 216.61 35.53 -59.35 0.46) ; 11 + ( 217.87 38.23 -60.27 0.46) ; 12 + ( 217.39 42.29 -61.38 0.46) ; 13 + ( 217.26 42.86 -63.10 0.46) ; 14 + ( 215.77 43.11 -65.45 0.46) ; 15 + ( 215.25 45.36 -67.50 0.46) ; 16 + ( 216.60 45.68 -69.15 0.46) ; 17 + ( 218.24 46.67 -70.45 0.46) ; 18 + ( 216.06 47.95 -70.27 0.46) ; 19 + ( 214.59 48.20 -72.17 0.46) ; 20 + ( 216.11 49.75 -73.95 0.46) ; 21 + ( 216.29 50.99 -74.45 0.46) ; 22 + ( 214.92 54.85 -74.57 0.46) ; 23 + ( 214.92 54.85 -74.60 0.46) ; 24 + ( 214.21 55.87 -76.38 0.46) ; 25 + ( 213.68 58.14 -78.13 0.46) ; 26 + ( 214.17 60.05 -79.55 0.46) ; 27 + ( 213.69 64.11 -80.57 0.46) ; 28 + ( 214.09 68.39 -81.25 0.46) ; 29 + ( 213.56 70.64 -82.75 0.46) ; 30 + ( 213.56 70.64 -82.78 0.46) ; 31 + ( 212.32 73.94 -84.57 0.46) ; 32 + ( 213.58 76.63 -86.10 0.46) ; 33 + ( 214.65 78.07 -87.70 0.46) ; 34 + ( 214.65 78.07 -87.72 0.46) ; 35 + ( 213.40 81.36 -89.25 0.46) ; 36 + ( 212.17 84.66 -90.40 0.46) ; 37 + ( 213.11 86.67 -92.83 0.46) ; 38 + ( 213.11 86.67 -92.90 0.46) ; 39 + + (Cross + (Color White) + (Name "Marker 3") + ( 213.13 54.43 -74.60 0.46) ; 1 + ( 217.89 50.17 -70.25 0.46) ; 2 + ( 218.87 42.03 -61.38 0.46) ; 3 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split + | + ( 234.11 37.26 -15.38 0.92) ; 1, R-2-2 + ( 232.72 35.13 -15.65 0.92) ; 2 + ( 229.47 34.97 -16.52 0.92) ; 3 + ( 227.02 37.38 -17.25 0.92) ; 4 + ( 224.38 38.55 -18.17 0.92) ; 5 + ( 222.42 36.90 -19.38 0.92) ; 6 + ( 220.81 37.71 -20.38 0.92) ; 7 + ( 218.85 36.06 -21.55 0.92) ; 8 + ( 218.85 36.06 -21.58 0.92) ; 9 + ( 216.65 37.34 -22.30 0.92) ; 10 + ( 215.82 38.93 -23.95 0.92) ; 11 + ( 213.00 38.87 -25.33 0.92) ; 12 + ( 212.87 39.44 -27.15 0.92) ; 13 + ( 210.77 38.34 -28.65 0.92) ; 14 + ( 210.77 38.34 -28.67 0.92) ; 15 + ( 208.22 37.15 -29.70 0.46) ; 16 + ( 208.01 40.09 -30.40 0.46) ; 17 + ( 203.91 41.52 -31.10 0.46) ; 18 + ( 200.56 43.72 -32.08 0.46) ; 19 + ( 198.70 45.67 -33.13 0.46) ; 20 + ( 193.83 46.32 -33.67 0.92) ; 21 + ( 191.07 48.05 -35.60 0.92) ; 22 + ( 188.56 48.67 -37.72 0.92) ; 23 + ( 186.51 49.38 -39.15 0.92) ; 24 + ( 183.84 48.76 -41.05 0.92) ; 25 + ( 183.84 48.76 -41.08 0.92) ; 26 + ( 182.68 49.67 -44.17 0.92) ; 27 + ( 182.68 49.67 -44.20 0.92) ; 28 + ( 180.32 49.72 -45.57 0.92) ; 29 + ( 177.54 51.46 -46.82 0.92) ; 30 + ( 173.84 51.19 -48.35 0.92) ; 31 + ( 171.02 51.12 -49.05 0.92) ; 32 + ( 169.28 52.51 -51.22 0.46) ; 33 + ( 165.90 52.91 -53.35 0.46) ; 34 + ( 165.90 52.91 -53.38 0.46) ; 35 + ( 163.72 54.19 -55.40 0.46) ; 36 + ( 163.72 54.19 -55.42 0.46) ; 37 + ( 161.52 55.47 -57.28 0.46) ; 38 + ( 161.52 55.47 -57.30 0.46) ; 39 + ( 159.03 56.08 -58.22 0.46) ; 40 + ( 155.64 56.48 -59.90 0.46) ; 41 + ( 155.11 58.74 -60.97 0.46) ; 42 + ( 151.90 60.37 -62.45 0.46) ; 43 + ( 149.84 61.10 -64.20 0.46) ; 44 + ( 147.40 63.50 -66.00 0.46) ; 45 + ( 145.53 65.45 -67.95 0.46) ; 46 + ( 145.53 65.45 -67.97 0.46) ; 47 + ( 143.70 69.21 -69.72 0.46) ; 48 + ( 140.76 69.71 -71.50 0.46) ; 49 + ( 140.76 69.71 -71.52 0.46) ; 50 + ( 138.62 72.80 -73.40 0.46) ; 51 + ( 136.44 74.07 -74.97 0.46) ; 52 + ( 134.57 76.03 -76.70 0.46) ; 53 + ( 133.28 77.51 -78.65 0.46) ; 54 + ( 130.51 79.26 -79.80 0.46) ; 55 + ( 126.72 81.35 -82.00 0.46) ; 56 + ( 124.10 82.53 -84.08 0.46) ; 57 + ( 124.10 82.53 -84.10 0.46) ; 58 + ( 121.78 84.37 -86.70 0.46) ; 59 + ( 120.67 87.09 -88.97 0.46) ; 60 + ( 120.67 87.09 -89.00 0.46) ; 61 + ( 118.79 89.05 -90.88 0.46) ; 62 + ( 118.79 89.05 -90.90 0.46) ; 63 + ( 117.10 92.24 -93.50 0.46) ; 64 + ( 117.10 92.24 -93.53 0.46) ; 65 + ( 117.28 93.47 -96.20 0.46) ; 66 + ( 116.57 94.49 -99.92 0.46) ; 67 + ( 116.57 94.49 -100.00 0.46) ; 68 + + (Cross + (Color White) + (Name "Marker 3") + ( 155.03 61.11 -60.97 0.46) ; 1 + ( 150.87 60.74 -60.97 0.46) ; 2 + ( 160.46 54.02 -58.22 0.46) ; 3 + ( 173.30 47.47 -49.05 0.92) ; 4 + ( 124.28 83.76 -84.10 0.46) ; 5 + ( 208.45 40.19 -30.38 0.46) ; 6 + ( 198.01 42.53 -33.13 0.46) ; 7 + ( 194.22 44.61 -33.67 0.46) ; 8 + ) ; End of markers + Normal + ) ; End of split + ) ; End of split +) ; End of tree + diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc new file mode 100644 index 00000000..9318d731 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc @@ -0,0 +1,21 @@ +(arbor-component + (meta-data + (version "0.1-dev")) + (morphology + (branch 0 -1 + (segment 0 + (point 263.248016 5.356219 -3.380000 0.690000) + (point 262.996735 -9.641676 -3.380000 0.690000) + 2) + (segment 1 + (point 262.996735 -9.641676 -3.380000 0.690000) + (point 262.745453 -24.639570 -3.380000 0.690000) + 2) + (segment 2 + (point 262.745453 -24.639570 -3.380000 0.460000) + (point 262.494171 -39.637466 -3.380000 0.460000) + 2) + (segment 3 + (point 262.494171 -39.637466 -3.380000 0.460000) + (point 262.242889 -54.635361 -3.380000 0.460000) + 2)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc new file mode 100644 index 00000000..0f0910d5 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc @@ -0,0 +1,21702 @@ +(arbor-component + (meta-data + (version "0.1-dev")) + (morphology + (branch 0 -1 + (segment 0 + (point 262.132381 19.373333 -3.380000 11.328448) + (point 262.132381 8.044885 -3.380000 11.328448) + 1)) + (branch 1 -1 + (segment 1 + (point 262.132381 19.373333 -3.380000 11.328448) + (point 262.132381 30.701782 -3.380000 11.328448) + 1)) + (branch 2 -1 + (segment 2 + (point 254.220000 19.870000 -2.650000 0.690000) + (point 254.220000 19.870000 -2.650000 0.690000) + 3) + (segment 3 + (point 254.220000 19.870000 -2.650000 0.690000) + (point 253.510000 20.900000 -4.070000 0.690000) + 3) + (segment 4 + (point 253.510000 20.900000 -4.070000 0.690000) + (point 251.450000 21.610000 -5.050000 0.690000) + 3) + (segment 5 + (point 251.450000 21.610000 -5.050000 0.690000) + (point 248.960000 22.230000 -5.400000 0.690000) + 3) + (segment 6 + (point 248.960000 22.230000 -5.400000 0.690000) + (point 247.220000 23.600000 -6.300000 0.690000) + 3) + (segment 7 + (point 247.220000 23.600000 -6.300000 0.690000) + (point 244.140000 24.680000 -6.950000 0.690000) + 3) + (segment 8 + (point 244.140000 24.680000 -6.950000 0.690000) + (point 241.460000 24.060000 -7.270000 0.690000) + 3) + (segment 9 + (point 241.460000 24.060000 -7.270000 0.690000) + (point 239.230000 23.530000 -8.770000 0.690000) + 3) + (segment 10 + (point 239.230000 23.530000 -8.770000 0.690000) + (point 237.490000 24.910000 -9.600000 0.460000) + 3) + (segment 11 + (point 237.490000 24.910000 -9.600000 0.460000) + (point 234.900000 27.890000 -10.450000 0.460000) + 3) + (segment 12 + (point 234.900000 27.890000 -10.450000 0.460000) + (point 232.590000 29.730000 -11.400000 0.460000) + 3) + (segment 13 + (point 232.590000 29.730000 -11.400000 0.460000) + (point 228.620000 30.600000 -12.150000 0.460000) + 3) + (segment 14 + (point 228.620000 30.600000 -12.150000 0.460000) + (point 224.920000 30.330000 -12.270000 0.460000) + 3) + (segment 15 + (point 224.920000 30.330000 -12.270000 0.460000) + (point 222.330000 33.300000 -11.750000 0.460000) + 3) + (segment 16 + (point 222.330000 33.300000 -11.750000 0.460000) + (point 220.780000 35.910000 -11.170000 0.460000) + 3) + (segment 17 + (point 220.780000 35.910000 -11.170000 0.460000) + (point 217.560000 37.550000 -11.170000 0.460000) + 3) + (segment 18 + (point 217.560000 37.550000 -11.170000 0.460000) + (point 214.980000 40.530000 -11.530000 0.460000) + 3) + (segment 19 + (point 214.980000 40.530000 -11.530000 0.460000) + (point 211.730000 40.360000 -12.130000 0.460000) + 3) + (segment 20 + (point 211.730000 40.360000 -12.130000 0.460000) + (point 211.730000 40.360000 -12.150000 0.460000) + 3) + (segment 21 + (point 211.730000 40.360000 -12.150000 0.460000) + (point 209.720000 42.890000 -12.750000 0.460000) + 3)) + (branch 3 2 + (segment 22 + (point 209.720000 42.890000 -12.750000 0.460000) + (point 209.190000 45.150000 -13.750000 0.230000) + 3) + (segment 23 + (point 209.190000 45.150000 -13.750000 0.230000) + (point 207.860000 44.840000 -15.050000 0.230000) + 3) + (segment 24 + (point 207.860000 44.840000 -15.050000 0.230000) + (point 205.980000 46.790000 -16.170000 0.230000) + 3) + (segment 25 + (point 205.980000 46.790000 -16.170000 0.230000) + (point 204.680000 48.270000 -17.720000 0.230000) + 3) + (segment 26 + (point 204.680000 48.270000 -17.720000 0.230000) + (point 204.240000 48.170000 -17.720000 0.230000) + 3) + (segment 27 + (point 204.240000 48.170000 -17.720000 0.230000) + (point 201.790000 50.580000 -19.170000 0.230000) + 3) + (segment 28 + (point 201.790000 50.580000 -19.170000 0.230000) + (point 199.740000 51.290000 -19.550000 0.230000) + 3) + (segment 29 + (point 199.740000 51.290000 -19.550000 0.230000) + (point 196.480000 51.130000 -19.550000 0.230000) + 3)) + (branch 4 3 + (segment 30 + (point 196.480000 51.130000 -19.550000 0.230000) + (point 194.480000 53.640000 -20.670000 0.230000) + 3) + (segment 31 + (point 194.480000 53.640000 -20.670000 0.230000) + (point 191.450000 56.510000 -20.870000 0.230000) + 3) + (segment 32 + (point 191.450000 56.510000 -20.870000 0.230000) + (point 191.050000 58.210000 -23.920000 0.230000) + 3) + (segment 33 + (point 191.050000 58.210000 -23.920000 0.230000) + (point 190.920000 58.780000 -23.920000 0.230000) + 3) + (segment 34 + (point 190.920000 58.780000 -23.920000 0.230000) + (point 186.190000 58.870000 -25.130000 0.230000) + 3) + (segment 35 + (point 186.190000 58.870000 -25.130000 0.230000) + (point 186.190000 58.870000 -25.150000 0.230000) + 3) + (segment 36 + (point 186.190000 58.870000 -25.150000 0.230000) + (point 182.710000 61.640000 -26.020000 0.230000) + 3) + (segment 37 + (point 182.710000 61.640000 -26.020000 0.230000) + (point 182.710000 61.640000 -26.100000 0.230000) + 3) + (segment 38 + (point 182.710000 61.640000 -26.100000 0.230000) + (point 180.400000 63.480000 -27.570000 0.230000) + 3) + (segment 39 + (point 180.400000 63.480000 -27.570000 0.230000) + (point 177.680000 67.020000 -28.500000 0.230000) + 3) + (segment 40 + (point 177.680000 67.020000 -28.500000 0.230000) + (point 175.890000 66.600000 -29.130000 0.230000) + 3) + (segment 41 + (point 175.890000 66.600000 -29.130000 0.230000) + (point 174.020000 68.560000 -30.230000 0.230000) + 3) + (segment 42 + (point 174.020000 68.560000 -30.230000 0.230000) + (point 173.400000 67.210000 -32.200000 0.230000) + 3) + (segment 43 + (point 173.400000 67.210000 -32.200000 0.230000) + (point 173.400000 67.210000 -32.220000 0.230000) + 3) + (segment 44 + (point 173.400000 67.210000 -32.220000 0.230000) + (point 170.760000 68.390000 -33.830000 0.230000) + 3) + (segment 45 + (point 170.760000 68.390000 -33.830000 0.230000) + (point 170.760000 68.390000 -33.850000 0.230000) + 3) + (segment 46 + (point 170.760000 68.390000 -33.850000 0.230000) + (point 169.350000 70.440000 -35.470000 0.230000) + 3) + (segment 47 + (point 169.350000 70.440000 -35.470000 0.230000) + (point 166.790000 69.240000 -37.080000 0.230000) + 3) + (segment 48 + (point 166.790000 69.240000 -37.080000 0.230000) + (point 165.370000 71.310000 -38.070000 0.230000) + 3) + (segment 49 + (point 165.370000 71.310000 -38.070000 0.230000) + (point 164.080000 72.790000 -38.880000 0.230000) + 3) + (segment 50 + (point 164.080000 72.790000 -38.880000 0.230000) + (point 162.240000 70.580000 -39.580000 0.230000) + 3) + (segment 51 + (point 162.240000 70.580000 -39.580000 0.230000) + (point 159.480000 72.300000 -40.570000 0.230000) + 3) + (segment 52 + (point 159.480000 72.300000 -40.570000 0.230000) + (point 155.510000 73.180000 -41.970000 0.230000) + 3) + (segment 53 + (point 155.510000 73.180000 -41.970000 0.230000) + (point 155.510000 73.180000 -42.000000 0.230000) + 3) + (segment 54 + (point 155.510000 73.180000 -42.000000 0.230000) + (point 153.630000 75.120000 -43.180000 0.230000) + 3) + (segment 55 + (point 153.630000 75.120000 -43.180000 0.230000) + (point 151.460000 76.410000 -44.050000 0.230000) + 3) + (segment 56 + (point 151.460000 76.410000 -44.050000 0.230000) + (point 151.510000 78.210000 -46.200000 0.230000) + 3) + (segment 57 + (point 151.510000 78.210000 -46.200000 0.230000) + (point 149.900000 79.020000 -48.950000 0.230000) + 3) + (segment 58 + (point 149.900000 79.020000 -48.950000 0.230000) + (point 149.180000 80.060000 -51.200000 0.230000) + 3) + (segment 59 + (point 149.180000 80.060000 -51.200000 0.230000) + (point 147.310000 82.000000 -52.670000 0.230000) + 3) + (segment 60 + (point 147.310000 82.000000 -52.670000 0.230000) + (point 144.370000 82.500000 -53.330000 0.230000) + 3) + (segment 61 + (point 144.370000 82.500000 -53.330000 0.230000) + (point 143.130000 85.790000 -54.870000 0.230000) + 3) + (segment 62 + (point 143.130000 85.790000 -54.870000 0.230000) + (point 142.020000 88.530000 -56.770000 0.230000) + 3) + (segment 63 + (point 142.020000 88.530000 -56.770000 0.230000) + (point 141.800000 91.460000 -58.600000 0.230000) + 3) + (segment 64 + (point 141.800000 91.460000 -58.600000 0.230000) + (point 140.380000 93.520000 -60.220000 0.230000) + 3) + (segment 65 + (point 140.380000 93.520000 -60.220000 0.230000) + (point 137.040000 95.710000 -62.450000 0.230000) + 3) + (segment 66 + (point 137.040000 95.710000 -62.450000 0.230000) + (point 134.400000 96.880000 -64.470000 0.230000) + 3) + (segment 67 + (point 134.400000 96.880000 -64.470000 0.230000) + (point 134.400000 96.880000 -64.500000 0.230000) + 3) + (segment 68 + (point 134.400000 96.880000 -64.500000 0.230000) + (point 134.440000 98.690000 -68.130000 0.230000) + 3) + (segment 69 + (point 134.440000 98.690000 -68.130000 0.230000) + (point 133.730000 99.720000 -69.450000 0.230000) + 3) + (segment 70 + (point 133.730000 99.720000 -69.450000 0.230000) + (point 133.730000 99.720000 -69.600000 0.230000) + 3)) + (branch 5 3 + (segment 71 + (point 196.480000 51.130000 -19.550000 0.230000) + (point 193.300000 48.590000 -19.550000 0.230000) + 3) + (segment 72 + (point 193.300000 48.590000 -19.550000 0.230000) + (point 191.210000 47.510000 -20.450000 0.230000) + 3) + (segment 73 + (point 191.210000 47.510000 -20.450000 0.230000) + (point 188.080000 46.770000 -20.100000 0.230000) + 3) + (segment 74 + (point 188.080000 46.770000 -20.100000 0.230000) + (point 185.850000 46.250000 -21.480000 0.230000) + 3) + (segment 75 + (point 185.850000 46.250000 -21.480000 0.230000) + (point 185.090000 45.480000 -22.920000 0.230000) + 3) + (segment 76 + (point 185.090000 45.480000 -22.920000 0.230000) + (point 182.090000 44.170000 -23.170000 0.230000) + 3) + (segment 77 + (point 182.090000 44.170000 -23.170000 0.230000) + (point 176.920000 44.160000 -23.920000 0.230000) + 3) + (segment 78 + (point 176.920000 44.160000 -23.920000 0.230000) + (point 173.580000 46.350000 -23.920000 0.230000) + 3) + (segment 79 + (point 173.580000 46.350000 -23.920000 0.230000) + (point 170.000000 45.520000 -23.920000 0.230000) + 3) + (segment 80 + (point 170.000000 45.520000 -23.920000 0.230000) + (point 164.870000 47.290000 -23.920000 0.230000) + 3) + (segment 81 + (point 164.870000 47.290000 -23.920000 0.230000) + (point 160.900000 48.170000 -24.320000 0.230000) + 3) + (segment 82 + (point 160.900000 48.170000 -24.320000 0.230000) + (point 157.380000 49.130000 -22.830000 0.230000) + 3) + (segment 83 + (point 157.380000 49.130000 -22.830000 0.230000) + (point 152.690000 51.020000 -23.370000 0.230000) + 3) + (segment 84 + (point 152.690000 51.020000 -23.370000 0.230000) + (point 149.300000 51.420000 -23.720000 0.230000) + 3) + (segment 85 + (point 149.300000 51.420000 -23.720000 0.230000) + (point 145.190000 52.850000 -24.100000 0.230000) + 3) + (segment 86 + (point 145.190000 52.850000 -24.100000 0.230000) + (point 140.910000 53.040000 -24.520000 0.230000) + 3) + (segment 87 + (point 140.910000 53.040000 -24.520000 0.230000) + (point 140.910000 53.040000 -24.500000 0.230000) + 3) + (segment 88 + (point 140.910000 53.040000 -24.500000 0.230000) + (point 138.140000 54.770000 -25.350000 0.230000) + 3) + (segment 89 + (point 138.140000 54.770000 -25.350000 0.230000) + (point 135.340000 54.710000 -25.950000 0.230000) + 3) + (segment 90 + (point 135.340000 54.710000 -25.950000 0.230000) + (point 132.530000 54.660000 -27.020000 0.230000) + 3) + (segment 91 + (point 132.530000 54.660000 -27.020000 0.230000) + (point 127.260000 56.990000 -27.350000 0.230000) + 3) + (segment 92 + (point 127.260000 56.990000 -27.350000 0.230000) + (point 124.320000 57.510000 -28.520000 0.230000) + 3) + (segment 93 + (point 124.320000 57.510000 -28.520000 0.230000) + (point 120.970000 59.700000 -29.770000 0.230000) + 3) + (segment 94 + (point 120.970000 59.700000 -29.770000 0.230000) + (point 116.730000 61.700000 -30.950000 0.230000) + 3) + (segment 95 + (point 116.730000 61.700000 -30.950000 0.230000) + (point 113.030000 61.420000 -32.000000 0.230000) + 3) + (segment 96 + (point 113.030000 61.420000 -32.000000 0.230000) + (point 108.920000 62.850000 -32.850000 0.230000) + 3) + (segment 97 + (point 108.920000 62.850000 -32.850000 0.230000) + (point 107.770000 63.780000 -35.220000 0.230000) + 3)) + (branch 6 2 + (segment 98 + (point 209.720000 42.890000 -12.750000 0.460000) + (point 207.400000 44.730000 -11.950000 0.230000) + 3) + (segment 99 + (point 207.400000 44.730000 -11.950000 0.230000) + (point 204.460000 45.220000 -10.200000 0.230000) + 3) + (segment 100 + (point 204.460000 45.220000 -10.200000 0.230000) + (point 203.040000 47.290000 -9.770000 0.230000) + 3) + (segment 101 + (point 203.040000 47.290000 -9.770000 0.230000) + (point 200.980000 48.000000 -11.470000 0.230000) + 3) + (segment 102 + (point 200.980000 48.000000 -11.470000 0.230000) + (point 199.740000 51.290000 -12.770000 0.230000) + 3) + (segment 103 + (point 199.740000 51.290000 -12.770000 0.230000) + (point 199.740000 51.290000 -12.800000 0.230000) + 3) + (segment 104 + (point 199.740000 51.290000 -12.800000 0.230000) + (point 199.340000 53.000000 -12.170000 0.230000) + 3) + (segment 105 + (point 199.340000 53.000000 -12.170000 0.230000) + (point 199.340000 53.000000 -12.200000 0.230000) + 3) + (segment 106 + (point 199.340000 53.000000 -12.200000 0.230000) + (point 196.660000 52.370000 -10.430000 0.230000) + 3) + (segment 107 + (point 196.660000 52.370000 -10.430000 0.230000) + (point 194.530000 55.440000 -10.430000 0.230000) + 3) + (segment 108 + (point 194.530000 55.440000 -10.430000 0.230000) + (point 191.810000 58.990000 -9.380000 0.230000) + 3) + (segment 109 + (point 191.810000 58.990000 -9.380000 0.230000) + (point 190.970000 60.580000 -8.380000 0.230000) + 3) + (segment 110 + (point 190.970000 60.580000 -8.380000 0.230000) + (point 186.550000 61.330000 -7.920000 0.230000) + 3) + (segment 111 + (point 186.550000 61.330000 -7.920000 0.230000) + (point 182.310000 63.330000 -6.050000 0.230000) + 3) + (segment 112 + (point 182.310000 63.330000 -6.050000 0.230000) + (point 179.500000 63.270000 -4.350000 0.230000) + 3) + (segment 113 + (point 179.500000 63.270000 -4.350000 0.230000) + (point 179.500000 63.270000 -4.320000 0.230000) + 3) + (segment 114 + (point 179.500000 63.270000 -4.320000 0.230000) + (point 177.130000 63.310000 -2.970000 0.230000) + 3) + (segment 115 + (point 177.130000 63.310000 -2.970000 0.230000) + (point 177.770000 64.650000 -1.550000 0.230000) + 3) + (segment 116 + (point 177.770000 64.650000 -1.550000 0.230000) + (point 175.130000 65.830000 0.070000 0.230000) + 3) + (segment 117 + (point 175.130000 65.830000 0.070000 0.230000) + (point 173.970000 66.750000 1.130000 0.230000) + 3) + (segment 118 + (point 173.970000 66.750000 1.130000 0.230000) + (point 173.220000 65.980000 3.050000 0.230000) + 3) + (segment 119 + (point 173.220000 65.980000 3.050000 0.230000) + (point 173.220000 65.980000 3.150000 0.230000) + 3) + (segment 120 + (point 173.220000 65.980000 3.150000 0.230000) + (point 173.030000 64.740000 5.150000 0.230000) + 3) + (segment 121 + (point 173.030000 64.740000 5.150000 0.230000) + (point 171.690000 64.420000 7.100000 0.230000) + 3) + (segment 122 + (point 171.690000 64.420000 7.100000 0.230000) + (point 170.490000 63.550000 8.950000 0.230000) + 3) + (segment 123 + (point 170.490000 63.550000 8.950000 0.230000) + (point 168.210000 67.200000 9.880000 0.230000) + 3) + (segment 124 + (point 168.210000 67.200000 9.880000 0.230000) + (point 168.270000 69.000000 11.250000 0.230000) + 3) + (segment 125 + (point 168.270000 69.000000 11.250000 0.230000) + (point 168.270000 69.000000 11.270000 0.230000) + 3) + (segment 126 + (point 168.270000 69.000000 11.270000 0.230000) + (point 168.190000 71.370000 12.270000 0.230000) + 3) + (segment 127 + (point 168.190000 71.370000 12.270000 0.230000) + (point 167.210000 73.530000 12.900000 0.230000) + 3) + (segment 128 + (point 167.210000 73.530000 12.900000 0.230000) + (point 166.860000 77.030000 13.250000 0.230000) + 3) + (segment 129 + (point 166.860000 77.030000 13.250000 0.230000) + (point 167.360000 78.930000 14.150000 0.230000) + 3) + (segment 130 + (point 167.360000 78.930000 14.150000 0.230000) + (point 168.420000 80.380000 16.070000 0.230000) + 3) + (segment 131 + (point 168.420000 80.380000 16.070000 0.230000) + (point 168.420000 80.380000 16.050000 0.230000) + 3)) + (branch 7 -1 + (segment 132 + (point 253.660000 10.190000 4.070000 1.605000) + (point 253.660000 10.190000 4.070000 1.605000) + 3) + (segment 133 + (point 253.660000 10.190000 4.070000 1.605000) + (point 251.830000 7.960000 4.070000 1.375000) + 3)) + (branch 8 7 + (segment 134 + (point 251.830000 7.960000 4.070000 1.375000) + (point 248.700000 7.230000 4.070000 0.690000) + 3) + (segment 135 + (point 248.700000 7.230000 4.070000 0.690000) + (point 246.610000 6.140000 2.900000 0.690000) + 3) + (segment 136 + (point 246.610000 6.140000 2.900000 0.690000) + (point 245.080000 4.590000 1.630000 0.690000) + 3) + (segment 137 + (point 245.080000 4.590000 1.630000 0.690000) + (point 242.800000 2.270000 0.300000 0.690000) + 3) + (segment 138 + (point 242.800000 2.270000 0.300000 0.690000) + (point 240.870000 2.410000 -0.700000 0.690000) + 3) + (segment 139 + (point 240.870000 2.410000 -0.700000 0.690000) + (point 239.280000 3.230000 -1.770000 0.690000) + 3) + (segment 140 + (point 239.280000 3.230000 -1.770000 0.690000) + (point 237.620000 2.250000 -3.420000 0.690000) + 3)) + (branch 9 8 + (segment 141 + (point 237.620000 2.250000 -3.420000 0.690000) + (point 233.960000 3.780000 -3.420000 0.460000) + 3) + (segment 142 + (point 233.960000 3.780000 -3.420000 0.460000) + (point 229.630000 2.160000 -2.900000 0.460000) + 3) + (segment 143 + (point 229.630000 2.160000 -2.900000 0.460000) + (point 226.860000 3.910000 -1.750000 0.460000) + 3) + (segment 144 + (point 226.860000 3.910000 -1.750000 0.460000) + (point 223.610000 3.740000 -0.450000 0.460000) + 3) + (segment 145 + (point 223.610000 3.740000 -0.450000 0.460000) + (point 220.880000 1.310000 -0.120000 0.460000) + 3) + (segment 146 + (point 220.880000 1.310000 -0.120000 0.460000) + (point 218.070000 1.250000 1.750000 0.460000) + 3) + (segment 147 + (point 218.070000 1.250000 1.750000 0.460000) + (point 215.880000 2.530000 1.750000 0.460000) + 3) + (segment 148 + (point 215.880000 2.530000 1.750000 0.460000) + (point 214.280000 3.350000 1.750000 0.460000) + 3) + (segment 149 + (point 214.280000 3.350000 1.750000 0.460000) + (point 211.830000 5.760000 2.630000 0.460000) + 3) + (segment 150 + (point 211.830000 5.760000 2.630000 0.460000) + (point 209.520000 7.600000 3.570000 0.460000) + 3) + (segment 151 + (point 209.520000 7.600000 3.570000 0.460000) + (point 208.350000 8.530000 4.800000 0.460000) + 3) + (segment 152 + (point 208.350000 8.530000 4.800000 0.460000) + (point 205.410000 9.030000 6.220000 0.460000) + 3) + (segment 153 + (point 205.410000 9.030000 6.220000 0.460000) + (point 202.910000 9.640000 7.070000 0.460000) + 3) + (segment 154 + (point 202.910000 9.640000 7.070000 0.460000) + (point 201.000000 9.780000 8.250000 0.460000) + 3)) + (branch 10 9 + (segment 155 + (point 201.000000 9.780000 8.250000 0.460000) + (point 198.000000 8.480000 6.130000 0.460000) + 3) + (segment 156 + (point 198.000000 8.480000 6.130000 0.460000) + (point 196.470000 6.940000 6.820000 0.460000) + 3) + (segment 157 + (point 196.470000 6.940000 6.820000 0.460000) + (point 196.470000 6.940000 6.800000 0.460000) + 3) + (segment 158 + (point 196.470000 6.940000 6.800000 0.460000) + (point 193.400000 8.000000 7.530000 0.460000) + 3) + (segment 159 + (point 193.400000 8.000000 7.530000 0.460000) + (point 191.030000 8.050000 8.900000 0.460000) + 3) + (segment 160 + (point 191.030000 8.050000 8.900000 0.460000) + (point 188.530000 8.660000 9.220000 0.460000) + 3) + (segment 161 + (point 188.530000 8.660000 9.220000 0.460000) + (point 184.880000 10.190000 10.100000 0.230000) + 3) + (segment 162 + (point 184.880000 10.190000 10.100000 0.230000) + (point 181.480000 10.600000 10.700000 0.230000) + 3) + (segment 163 + (point 181.480000 10.600000 10.700000 0.230000) + (point 179.440000 11.300000 12.100000 0.230000) + 3) + (segment 164 + (point 179.440000 11.300000 12.100000 0.230000) + (point 178.230000 10.430000 13.380000 0.230000) + 3) + (segment 165 + (point 178.230000 10.430000 13.380000 0.230000) + (point 178.230000 10.430000 13.350000 0.230000) + 3) + (segment 166 + (point 178.230000 10.430000 13.350000 0.230000) + (point 177.150000 8.980000 14.300000 0.230000) + 3) + (segment 167 + (point 177.150000 8.980000 14.300000 0.230000) + (point 176.000000 9.900000 14.900000 0.230000) + 3) + (segment 168 + (point 176.000000 9.900000 14.900000 0.230000) + (point 174.830000 10.820000 14.900000 0.230000) + 3) + (segment 169 + (point 174.830000 10.820000 14.900000 0.230000) + (point 172.160000 10.200000 15.880000 0.230000) + 3) + (segment 170 + (point 172.160000 10.200000 15.880000 0.230000) + (point 169.390000 11.940000 16.500000 0.230000) + 3) + (segment 171 + (point 169.390000 11.940000 16.500000 0.230000) + (point 167.610000 11.520000 17.600000 0.230000) + 3) + (segment 172 + (point 167.610000 11.520000 17.600000 0.230000) + (point 166.120000 11.770000 18.270000 0.230000) + 3) + (segment 173 + (point 166.120000 11.770000 18.270000 0.230000) + (point 163.900000 11.250000 18.480000 0.230000) + 3) + (segment 174 + (point 163.900000 11.250000 18.480000 0.230000) + (point 161.530000 11.290000 19.750000 0.230000) + 3) + (segment 175 + (point 161.530000 11.290000 19.750000 0.230000) + (point 161.530000 11.290000 19.730000 0.230000) + 3) + (segment 176 + (point 161.530000 11.290000 19.730000 0.230000) + (point 157.690000 11.580000 19.850000 0.230000) + 3) + (segment 177 + (point 157.690000 11.580000 19.850000 0.230000) + (point 154.560000 10.850000 20.250000 0.230000) + 3) + (segment 178 + (point 154.560000 10.850000 20.250000 0.230000) + (point 151.710000 8.990000 20.250000 0.230000) + 3) + (segment 179 + (point 151.710000 8.990000 20.250000 0.230000) + (point 151.260000 8.880000 20.250000 0.230000) + 3) + (segment 180 + (point 151.260000 8.880000 20.250000 0.230000) + (point 149.020000 8.350000 20.250000 0.230000) + 3) + (segment 181 + (point 149.020000 8.350000 20.250000 0.230000) + (point 145.510000 9.320000 20.920000 0.230000) + 3) + (segment 182 + (point 145.510000 9.320000 20.920000 0.230000) + (point 144.480000 9.670000 23.100000 0.230000) + 3) + (segment 183 + (point 144.480000 9.670000 23.100000 0.230000) + (point 140.900000 8.840000 24.000000 0.230000) + 3) + (segment 184 + (point 140.900000 8.840000 24.000000 0.230000) + (point 140.900000 8.840000 23.980000 0.230000) + 3) + (segment 185 + (point 140.900000 8.840000 23.980000 0.230000) + (point 139.120000 8.420000 25.130000 0.230000) + 3) + (segment 186 + (point 139.120000 8.420000 25.130000 0.230000) + (point 136.300000 8.360000 25.700000 0.230000) + 3) + (segment 187 + (point 136.300000 8.360000 25.700000 0.230000) + (point 136.300000 8.360000 25.730000 0.230000) + 3)) + (branch 11 9 + (segment 188 + (point 201.000000 9.780000 8.250000 0.460000) + (point 198.480000 10.400000 6.070000 0.460000) + 3) + (segment 189 + (point 198.480000 10.400000 6.070000 0.460000) + (point 197.150000 10.080000 4.070000 0.460000) + 3) + (segment 190 + (point 197.150000 10.080000 4.070000 0.460000) + (point 195.180000 8.420000 2.150000 0.460000) + 3) + (segment 191 + (point 195.180000 8.420000 2.150000 0.460000) + (point 193.090000 7.340000 0.300000 0.460000) + 3) + (segment 192 + (point 193.090000 7.340000 0.300000 0.460000) + (point 190.000000 8.410000 -0.320000 0.460000) + 3) + (segment 193 + (point 190.000000 8.410000 -0.320000 0.460000) + (point 188.210000 7.990000 -0.950000 0.230000) + 3) + (segment 194 + (point 188.210000 7.990000 -0.950000 0.230000) + (point 186.120000 6.900000 -0.950000 0.230000) + 3) + (segment 195 + (point 186.120000 6.900000 -0.950000 0.230000) + (point 183.170000 7.410000 -1.600000 0.230000) + 3) + (segment 196 + (point 183.170000 7.410000 -1.600000 0.230000) + (point 183.170000 7.410000 -1.630000 0.230000) + 3) + (segment 197 + (point 183.170000 7.410000 -1.630000 0.230000) + (point 181.700000 7.650000 -3.670000 0.230000) + 3) + (segment 198 + (point 181.700000 7.650000 -3.670000 0.230000) + (point 182.090000 5.960000 -5.800000 0.230000) + 3) + (segment 199 + (point 182.090000 5.960000 -5.800000 0.230000) + (point 179.470000 7.130000 -7.500000 0.230000) + 3) + (segment 200 + (point 179.470000 7.130000 -7.500000 0.230000) + (point 179.470000 7.130000 -7.530000 0.230000) + 3) + (segment 201 + (point 179.470000 7.130000 -7.530000 0.230000) + (point 177.230000 6.610000 -8.130000 0.230000) + 3) + (segment 202 + (point 177.230000 6.610000 -8.130000 0.230000) + (point 174.550000 5.980000 -8.930000 0.230000) + 3) + (segment 203 + (point 174.550000 5.980000 -8.930000 0.230000) + (point 172.690000 7.930000 -10.450000 0.230000) + 3) + (segment 204 + (point 172.690000 7.930000 -10.450000 0.230000) + (point 172.690000 7.930000 -10.500000 0.230000) + 3) + (segment 205 + (point 172.690000 7.930000 -10.500000 0.230000) + (point 170.950000 9.310000 -11.270000 0.230000) + 3) + (segment 206 + (point 170.950000 9.310000 -11.270000 0.230000) + (point 170.550000 11.010000 -12.600000 0.230000) + 3) + (segment 207 + (point 170.550000 11.010000 -12.600000 0.230000) + (point 170.550000 11.010000 -12.670000 0.230000) + 3) + (segment 208 + (point 170.550000 11.010000 -12.670000 0.230000) + (point 171.670000 14.260000 -14.180000 0.230000) + 3) + (segment 209 + (point 171.670000 14.260000 -14.180000 0.230000) + (point 169.490000 15.530000 -15.600000 0.230000) + 3) + (segment 210 + (point 169.490000 15.530000 -15.600000 0.230000) + (point 166.730000 17.280000 -16.800000 0.230000) + 3) + (segment 211 + (point 166.730000 17.280000 -16.800000 0.230000) + (point 165.300000 19.340000 -18.200000 0.230000) + 3) + (segment 212 + (point 165.300000 19.340000 -18.200000 0.230000) + (point 163.820000 19.590000 -19.750000 0.230000) + 3) + (segment 213 + (point 163.820000 19.590000 -19.750000 0.230000) + (point 162.710000 22.310000 -20.350000 0.230000) + 3) + (segment 214 + (point 162.710000 22.310000 -20.350000 0.230000) + (point 162.710000 22.310000 -20.380000 0.230000) + 3) + (segment 215 + (point 162.710000 22.310000 -20.380000 0.230000) + (point 161.430000 23.800000 -22.270000 0.230000) + 3) + (segment 216 + (point 161.430000 23.800000 -22.270000 0.230000) + (point 159.690000 25.190000 -23.600000 0.230000) + 3) + (segment 217 + (point 159.690000 25.190000 -23.600000 0.230000) + (point 158.080000 26.010000 -25.500000 0.230000) + 3) + (segment 218 + (point 158.080000 26.010000 -25.500000 0.230000) + (point 158.080000 26.010000 -25.550000 0.230000) + 3) + (segment 219 + (point 158.080000 26.010000 -25.550000 0.230000) + (point 155.590000 26.620000 -26.920000 0.230000) + 3) + (segment 220 + (point 155.590000 26.620000 -26.920000 0.230000) + (point 153.400000 27.890000 -28.700000 0.230000) + 3) + (segment 221 + (point 153.400000 27.890000 -28.700000 0.230000) + (point 151.160000 27.370000 -30.900000 0.230000) + 3) + (segment 222 + (point 151.160000 27.370000 -30.900000 0.230000) + (point 150.760000 29.070000 -32.800000 0.230000) + 3) + (segment 223 + (point 150.760000 29.070000 -32.800000 0.230000) + (point 150.190000 29.530000 -35.400000 0.230000) + 3) + (segment 224 + (point 150.190000 29.530000 -35.400000 0.230000) + (point 150.190000 29.530000 -35.420000 0.230000) + 3) + (segment 225 + (point 150.190000 29.530000 -35.420000 0.230000) + (point 148.720000 29.790000 -37.900000 0.230000) + 3) + (segment 226 + (point 148.720000 29.790000 -37.900000 0.230000) + (point 148.720000 29.790000 -37.920000 0.230000) + 3) + (segment 227 + (point 148.720000 29.790000 -37.920000 0.230000) + (point 148.320000 31.480000 -41.400000 0.230000) + 3) + (segment 228 + (point 148.320000 31.480000 -41.400000 0.230000) + (point 147.880000 31.380000 -43.780000 0.230000) + 3) + (segment 229 + (point 147.880000 31.380000 -43.780000 0.230000) + (point 147.880000 31.380000 -43.800000 0.230000) + 3)) + (branch 12 8 + (segment 230 + (point 237.620000 2.250000 -3.420000 0.690000) + (point 237.570000 0.450000 -4.550000 0.690000) + 3)) + (branch 13 12 + (segment 231 + (point 237.570000 0.450000 -4.550000 0.690000) + (point 234.220000 2.640000 -6.250000 0.460000) + 3) + (segment 232 + (point 234.220000 2.640000 -6.250000 0.460000) + (point 234.220000 2.640000 -6.280000 0.460000) + 3) + (segment 233 + (point 234.220000 2.640000 -6.280000 0.460000) + (point 231.910000 4.490000 -7.550000 0.460000) + 3) + (segment 234 + (point 231.910000 4.490000 -7.550000 0.460000) + (point 231.910000 4.490000 -7.570000 0.460000) + 3) + (segment 235 + (point 231.910000 4.490000 -7.570000 0.460000) + (point 229.990000 4.640000 -8.930000 0.460000) + 3) + (segment 236 + (point 229.990000 4.640000 -8.930000 0.460000) + (point 228.030000 2.980000 -10.170000 0.460000) + 3) + (segment 237 + (point 228.030000 2.980000 -10.170000 0.460000) + (point 225.210000 2.920000 -9.880000 0.460000) + 3) + (segment 238 + (point 225.210000 2.920000 -9.880000 0.460000) + (point 221.110000 4.350000 -11.370000 0.460000) + 3) + (segment 239 + (point 221.110000 4.350000 -11.370000 0.460000) + (point 221.950000 2.760000 -13.230000 0.460000) + 3) + (segment 240 + (point 221.950000 2.760000 -13.230000 0.460000) + (point 221.950000 2.760000 -13.250000 0.460000) + 3) + (segment 241 + (point 221.950000 2.760000 -13.250000 0.460000) + (point 219.820000 5.830000 -14.250000 0.460000) + 3) + (segment 242 + (point 219.820000 5.830000 -14.250000 0.460000) + (point 219.820000 5.830000 -14.270000 0.460000) + 3) + (segment 243 + (point 219.820000 5.830000 -14.270000 0.460000) + (point 217.820000 8.360000 -13.820000 0.460000) + 3) + (segment 244 + (point 217.820000 8.360000 -13.820000 0.460000) + (point 216.520000 9.850000 -15.570000 0.460000) + 3) + (segment 245 + (point 216.520000 9.850000 -15.570000 0.460000) + (point 215.500000 10.200000 -17.670000 0.460000) + 3) + (segment 246 + (point 215.500000 10.200000 -17.670000 0.460000) + (point 215.500000 10.200000 -17.700000 0.460000) + 3) + (segment 247 + (point 215.500000 10.200000 -17.700000 0.460000) + (point 213.260000 9.680000 -19.330000 0.460000) + 3) + (segment 248 + (point 213.260000 9.680000 -19.330000 0.460000) + (point 211.610000 8.690000 -19.600000 0.460000) + 3) + (segment 249 + (point 211.610000 8.690000 -19.600000 0.460000) + (point 210.850000 7.910000 -21.100000 0.460000) + 3) + (segment 250 + (point 210.850000 7.910000 -21.100000 0.460000) + (point 210.850000 7.910000 -21.130000 0.460000) + 3) + (segment 251 + (point 210.850000 7.910000 -21.130000 0.460000) + (point 209.650000 7.030000 -22.920000 0.230000) + 3) + (segment 252 + (point 209.650000 7.030000 -22.920000 0.230000) + (point 209.110000 9.300000 -24.900000 0.230000) + 3) + (segment 253 + (point 209.110000 9.300000 -24.900000 0.230000) + (point 208.860000 10.430000 -26.900000 0.460000) + 3) + (segment 254 + (point 208.860000 10.430000 -26.900000 0.460000) + (point 205.140000 10.160000 -28.130000 0.460000) + 3) + (segment 255 + (point 205.140000 10.160000 -28.130000 0.460000) + (point 205.140000 10.160000 -28.150000 0.460000) + 3) + (segment 256 + (point 205.140000 10.160000 -28.150000 0.460000) + (point 203.090000 10.880000 -28.150000 0.460000) + 3) + (segment 257 + (point 203.090000 10.880000 -28.150000 0.460000) + (point 199.880000 12.510000 -28.150000 0.460000) + 3)) + (branch 14 13 + (segment 258 + (point 199.880000 12.510000 -28.150000 0.460000) + (point 195.010000 13.160000 -27.700000 0.230000) + 3) + (segment 259 + (point 195.010000 13.160000 -27.700000 0.230000) + (point 191.490000 14.130000 -29.270000 0.230000) + 3) + (segment 260 + (point 191.490000 14.130000 -29.270000 0.230000) + (point 190.320000 15.050000 -30.300000 0.230000) + 3) + (segment 261 + (point 190.320000 15.050000 -30.300000 0.230000) + (point 188.330000 17.570000 -30.830000 0.230000) + 3) + (segment 262 + (point 188.330000 17.570000 -30.830000 0.230000) + (point 186.060000 21.210000 -32.000000 0.230000) + 3) + (segment 263 + (point 186.060000 21.210000 -32.000000 0.230000) + (point 184.770000 22.700000 -33.220000 0.230000) + 3) + (segment 264 + (point 184.770000 22.700000 -33.220000 0.230000) + (point 183.610000 23.630000 -34.520000 0.230000) + 3) + (segment 265 + (point 183.610000 23.630000 -34.520000 0.230000) + (point 183.610000 23.630000 -34.550000 0.230000) + 3) + (segment 266 + (point 183.610000 23.630000 -34.550000 0.230000) + (point 182.370000 26.920000 -34.550000 0.230000) + 3) + (segment 267 + (point 182.370000 26.920000 -34.550000 0.230000) + (point 179.970000 31.130000 -34.600000 0.230000) + 3) + (segment 268 + (point 179.970000 31.130000 -34.600000 0.230000) + (point 179.970000 31.130000 -34.630000 0.230000) + 3) + (segment 269 + (point 179.970000 31.130000 -34.630000 0.230000) + (point 177.840000 34.220000 -37.020000 0.230000) + 3) + (segment 270 + (point 177.840000 34.220000 -37.020000 0.230000) + (point 177.840000 34.220000 -37.050000 0.230000) + 3) + (segment 271 + (point 177.840000 34.220000 -37.050000 0.230000) + (point 175.640000 35.500000 -38.030000 0.230000) + 3) + (segment 272 + (point 175.640000 35.500000 -38.030000 0.230000) + (point 174.400000 38.790000 -38.380000 0.230000) + 3) + (segment 273 + (point 174.400000 38.790000 -38.380000 0.230000) + (point 171.190000 40.420000 -38.600000 0.230000) + 3) + (segment 274 + (point 171.190000 40.420000 -38.600000 0.230000) + (point 169.640000 43.040000 -39.670000 0.230000) + 3) + (segment 275 + (point 169.640000 43.040000 -39.670000 0.230000) + (point 167.590000 43.760000 -40.570000 0.230000) + 3) + (segment 276 + (point 167.590000 43.760000 -40.570000 0.230000) + (point 167.590000 43.760000 -40.600000 0.230000) + 3)) + (branch 15 13 + (segment 277 + (point 199.880000 12.510000 -28.150000 0.460000) + (point 195.860000 11.570000 -30.100000 0.230000) + 3) + (segment 278 + (point 195.860000 11.570000 -30.100000 0.230000) + (point 192.740000 10.840000 -32.250000 0.230000) + 3) + (segment 279 + (point 192.740000 10.840000 -32.250000 0.230000) + (point 192.740000 10.840000 -32.300000 0.230000) + 3) + (segment 280 + (point 192.740000 10.840000 -32.300000 0.230000) + (point 190.670000 11.540000 -33.450000 0.230000) + 3) + (segment 281 + (point 190.670000 11.540000 -33.450000 0.230000) + (point 190.670000 11.540000 -33.470000 0.230000) + 3) + (segment 282 + (point 190.670000 11.540000 -33.470000 0.230000) + (point 189.210000 11.810000 -35.270000 0.230000) + 3) + (segment 283 + (point 189.210000 11.810000 -35.270000 0.230000) + (point 189.210000 11.810000 -35.330000 0.230000) + 3) + (segment 284 + (point 189.210000 11.810000 -35.330000 0.230000) + (point 186.710000 12.420000 -36.920000 0.230000) + 3) + (segment 285 + (point 186.710000 12.420000 -36.920000 0.230000) + (point 186.710000 12.420000 -36.950000 0.230000) + 3) + (segment 286 + (point 186.710000 12.420000 -36.950000 0.230000) + (point 185.740000 14.560000 -37.850000 0.230000) + 3) + (segment 287 + (point 185.740000 14.560000 -37.850000 0.230000) + (point 185.740000 14.560000 -37.880000 0.230000) + 3) + (segment 288 + (point 185.740000 14.560000 -37.880000 0.230000) + (point 182.210000 15.540000 -39.130000 0.230000) + 3) + (segment 289 + (point 182.210000 15.540000 -39.130000 0.230000) + (point 178.940000 15.370000 -40.800000 0.230000) + 3) + (segment 290 + (point 178.940000 15.370000 -40.800000 0.230000) + (point 177.130000 19.120000 -41.820000 0.230000) + 3) + (segment 291 + (point 177.130000 19.120000 -41.820000 0.230000) + (point 177.130000 19.120000 -41.850000 0.230000) + 3) + (segment 292 + (point 177.130000 19.120000 -41.850000 0.230000) + (point 174.580000 17.930000 -44.100000 0.230000) + 3) + (segment 293 + (point 174.580000 17.930000 -44.100000 0.230000) + (point 172.530000 18.650000 -46.250000 0.230000) + 3) + (segment 294 + (point 172.530000 18.650000 -46.250000 0.230000) + (point 170.470000 19.350000 -48.350000 0.230000) + 3) + (segment 295 + (point 170.470000 19.350000 -48.350000 0.230000) + (point 170.470000 19.350000 -48.380000 0.230000) + 3) + (segment 296 + (point 170.470000 19.350000 -48.380000 0.230000) + (point 168.560000 19.500000 -50.350000 0.230000) + 3) + (segment 297 + (point 168.560000 19.500000 -50.350000 0.230000) + (point 168.560000 19.500000 -50.380000 0.230000) + 3) + (segment 298 + (point 168.560000 19.500000 -50.380000 0.230000) + (point 167.710000 21.100000 -52.650000 0.230000) + 3) + (segment 299 + (point 167.710000 21.100000 -52.650000 0.230000) + (point 167.710000 21.100000 -52.700000 0.230000) + 3) + (segment 300 + (point 167.710000 21.100000 -52.700000 0.230000) + (point 167.450000 22.220000 -54.650000 0.230000) + 3) + (segment 301 + (point 167.450000 22.220000 -54.650000 0.230000) + (point 167.450000 22.220000 -54.720000 0.230000) + 3) + (segment 302 + (point 167.450000 22.220000 -54.720000 0.230000) + (point 165.710000 23.610000 -56.420000 0.230000) + 3) + (segment 303 + (point 165.710000 23.610000 -56.420000 0.230000) + (point 165.710000 23.610000 -56.450000 0.230000) + 3) + (segment 304 + (point 165.710000 23.610000 -56.450000 0.230000) + (point 163.610000 22.520000 -58.380000 0.230000) + 3) + (segment 305 + (point 163.610000 22.520000 -58.380000 0.230000) + (point 163.610000 22.520000 -58.400000 0.230000) + 3) + (segment 306 + (point 163.610000 22.520000 -58.400000 0.230000) + (point 165.220000 21.710000 -60.050000 0.230000) + 3) + (segment 307 + (point 165.220000 21.710000 -60.050000 0.230000) + (point 165.220000 21.710000 -60.220000 0.230000) + 3) + (segment 308 + (point 165.220000 21.710000 -60.220000 0.230000) + (point 162.840000 21.750000 -62.700000 0.230000) + 3) + (segment 309 + (point 162.840000 21.750000 -62.700000 0.230000) + (point 162.840000 21.750000 -62.750000 0.230000) + 3) + (segment 310 + (point 162.840000 21.750000 -62.750000 0.230000) + (point 161.330000 20.200000 -66.130000 0.230000) + 3) + (segment 311 + (point 161.330000 20.200000 -66.130000 0.230000) + (point 159.990000 19.890000 -69.000000 0.230000) + 3) + (segment 312 + (point 159.990000 19.890000 -69.000000 0.230000) + (point 158.520000 20.140000 -69.300000 0.230000) + 3) + (segment 313 + (point 158.520000 20.140000 -69.300000 0.230000) + (point 158.120000 21.830000 -71.170000 0.230000) + 3) + (segment 314 + (point 158.120000 21.830000 -71.170000 0.230000) + (point 158.120000 21.830000 -71.200000 0.230000) + 3) + (segment 315 + (point 158.120000 21.830000 -71.200000 0.230000) + (point 156.830000 23.330000 -73.950000 0.230000) + 3) + (segment 316 + (point 156.830000 23.330000 -73.950000 0.230000) + (point 156.830000 23.330000 -73.970000 0.230000) + 3) + (segment 317 + (point 156.830000 23.330000 -73.970000 0.230000) + (point 155.770000 27.850000 -76.280000 0.230000) + 3) + (segment 318 + (point 155.770000 27.850000 -76.280000 0.230000) + (point 155.770000 27.850000 -76.300000 0.230000) + 3) + (segment 319 + (point 155.770000 27.850000 -76.300000 0.230000) + (point 155.550000 30.790000 -78.280000 0.230000) + 3) + (segment 320 + (point 155.550000 30.790000 -78.280000 0.230000) + (point 155.550000 30.790000 -78.320000 0.230000) + 3) + (segment 321 + (point 155.550000 30.790000 -78.320000 0.230000) + (point 155.340000 33.710000 -80.630000 0.230000) + 3) + (segment 322 + (point 155.340000 33.710000 -80.630000 0.230000) + (point 155.340000 33.710000 -80.680000 0.230000) + 3) + (segment 323 + (point 155.340000 33.710000 -80.680000 0.230000) + (point 154.620000 34.750000 -84.120000 0.230000) + 3) + (segment 324 + (point 154.620000 34.750000 -84.120000 0.230000) + (point 154.620000 34.750000 -84.170000 0.230000) + 3) + (segment 325 + (point 154.620000 34.750000 -84.170000 0.230000) + (point 154.720000 38.360000 -86.620000 0.230000) + 3) + (segment 326 + (point 154.720000 38.360000 -86.620000 0.230000) + (point 154.720000 38.360000 -86.650000 0.230000) + 3) + (segment 327 + (point 154.720000 38.360000 -86.650000 0.230000) + (point 153.880000 39.950000 -89.050000 0.230000) + 3) + (segment 328 + (point 153.880000 39.950000 -89.050000 0.230000) + (point 152.770000 42.680000 -92.000000 0.230000) + 3) + (segment 329 + (point 152.770000 42.680000 -92.000000 0.230000) + (point 151.610000 43.590000 -94.800000 0.230000) + 3) + (segment 330 + (point 151.610000 43.590000 -94.800000 0.230000) + (point 151.610000 43.590000 -94.820000 0.230000) + 3) + (segment 331 + (point 151.610000 43.590000 -94.820000 0.230000) + (point 149.730000 45.550000 -96.800000 0.230000) + 3) + (segment 332 + (point 149.730000 45.550000 -96.800000 0.230000) + (point 149.920000 46.780000 -99.050000 0.230000) + 3) + (segment 333 + (point 149.920000 46.780000 -99.050000 0.230000) + (point 147.600000 48.620000 -102.630000 0.230000) + 3) + (segment 334 + (point 147.600000 48.620000 -102.630000 0.230000) + (point 147.600000 48.620000 -102.650000 0.230000) + 3)) + (branch 16 12 + (segment 335 + (point 237.570000 0.450000 -4.550000 0.690000) + (point 234.310000 0.280000 -6.780000 0.460000) + 3) + (segment 336 + (point 234.310000 0.280000 -6.780000 0.460000) + (point 232.980000 -0.040000 -7.430000 0.460000) + 3) + (segment 337 + (point 232.980000 -0.040000 -7.430000 0.460000) + (point 231.720000 -2.720000 -8.000000 0.460000) + 3) + (segment 338 + (point 231.720000 -2.720000 -8.000000 0.460000) + (point 231.720000 -2.720000 -8.020000 0.460000) + 3) + (segment 339 + (point 231.720000 -2.720000 -8.020000 0.460000) + (point 230.920000 -5.300000 -8.500000 0.460000) + 3) + (segment 340 + (point 230.920000 -5.300000 -8.500000 0.460000) + (point 229.120000 -5.720000 -8.500000 0.460000) + 3) + (segment 341 + (point 229.120000 -5.720000 -8.500000 0.460000) + (point 227.290000 -7.940000 -8.500000 0.460000) + 3) + (segment 342 + (point 227.290000 -7.940000 -8.500000 0.460000) + (point 227.320000 -12.110000 -9.600000 0.460000) + 3) + (segment 343 + (point 227.320000 -12.110000 -9.600000 0.460000) + (point 227.320000 -12.110000 -9.630000 0.460000) + 3) + (segment 344 + (point 227.320000 -12.110000 -9.630000 0.460000) + (point 227.040000 -16.950000 -10.200000 0.460000) + 3) + (segment 345 + (point 227.040000 -16.950000 -10.200000 0.460000) + (point 226.690000 -19.430000 -10.700000 0.460000) + 3) + (segment 346 + (point 226.690000 -19.430000 -10.700000 0.460000) + (point 224.900000 -19.850000 -11.020000 0.460000) + 3) + (segment 347 + (point 224.900000 -19.850000 -11.020000 0.460000) + (point 224.350000 -23.550000 -11.070000 0.460000) + 3) + (segment 348 + (point 224.350000 -23.550000 -11.070000 0.460000) + (point 223.230000 -26.790000 -11.070000 0.460000) + 3) + (segment 349 + (point 223.230000 -26.790000 -11.070000 0.460000) + (point 221.080000 -29.700000 -11.370000 0.460000) + 3) + (segment 350 + (point 221.080000 -29.700000 -11.370000 0.460000) + (point 219.500000 -33.060000 -11.370000 0.460000) + 3) + (segment 351 + (point 219.500000 -33.060000 -11.370000 0.460000) + (point 219.060000 -33.160000 -11.370000 0.460000) + 3) + (segment 352 + (point 219.060000 -33.160000 -11.370000 0.460000) + (point 217.570000 -38.870000 -11.370000 0.460000) + 3) + (segment 353 + (point 217.570000 -38.870000 -11.370000 0.460000) + (point 215.880000 -41.660000 -11.600000 0.460000) + 3) + (segment 354 + (point 215.880000 -41.660000 -11.600000 0.460000) + (point 214.870000 -45.480000 -11.400000 0.460000) + 3) + (segment 355 + (point 214.870000 -45.480000 -11.400000 0.460000) + (point 214.870000 -45.480000 -11.420000 0.460000) + 3) + (segment 356 + (point 214.870000 -45.480000 -11.420000 0.460000) + (point 214.790000 -49.080000 -13.130000 0.460000) + 3) + (segment 357 + (point 214.790000 -49.080000 -13.130000 0.460000) + (point 214.590000 -50.330000 -13.720000 0.460000) + 3) + (segment 358 + (point 214.590000 -50.330000 -13.720000 0.460000) + (point 214.590000 -50.330000 -13.750000 0.460000) + 3) + (segment 359 + (point 214.590000 -50.330000 -13.750000 0.460000) + (point 215.310000 -51.360000 -15.880000 0.460000) + 3) + (segment 360 + (point 215.310000 -51.360000 -15.880000 0.460000) + (point 214.550000 -52.140000 -17.820000 0.460000) + 3) + (segment 361 + (point 214.550000 -52.140000 -17.820000 0.460000) + (point 214.550000 -52.140000 -17.850000 0.460000) + 3) + (segment 362 + (point 214.550000 -52.140000 -17.850000 0.460000) + (point 213.030000 -53.690000 -19.270000 0.460000) + 3) + (segment 363 + (point 213.030000 -53.690000 -19.270000 0.460000) + (point 210.350000 -54.310000 -20.500000 0.460000) + 3) + (segment 364 + (point 210.350000 -54.310000 -20.500000 0.460000) + (point 208.820000 -55.860000 -22.220000 0.460000) + 3) + (segment 365 + (point 208.820000 -55.860000 -22.220000 0.460000) + (point 206.780000 -55.150000 -24.150000 0.460000) + 3) + (segment 366 + (point 206.780000 -55.150000 -24.150000 0.460000) + (point 205.170000 -54.330000 -25.920000 0.460000) + 3) + (segment 367 + (point 205.170000 -54.330000 -25.920000 0.460000) + (point 203.700000 -54.090000 -27.800000 0.460000) + 3) + (segment 368 + (point 203.700000 -54.090000 -27.800000 0.460000) + (point 201.740000 -55.740000 -29.000000 0.460000) + 3) + (segment 369 + (point 201.740000 -55.740000 -29.000000 0.460000) + (point 201.740000 -55.740000 -29.020000 0.460000) + 3) + (segment 370 + (point 201.740000 -55.740000 -29.020000 0.460000) + (point 199.050000 -56.360000 -30.130000 0.460000) + 3) + (segment 371 + (point 199.050000 -56.360000 -30.130000 0.460000) + (point 196.810000 -56.890000 -30.130000 0.460000) + 3) + (segment 372 + (point 196.810000 -56.890000 -30.130000 0.460000) + (point 194.720000 -57.970000 -30.300000 0.230000) + 3) + (segment 373 + (point 194.720000 -57.970000 -30.300000 0.230000) + (point 192.750000 -59.630000 -30.300000 0.230000) + 3) + (segment 374 + (point 192.750000 -59.630000 -30.300000 0.230000) + (point 189.630000 -60.360000 -30.300000 0.230000) + 3) + (segment 375 + (point 189.630000 -60.360000 -30.300000 0.230000) + (point 187.520000 -61.460000 -32.280000 0.230000) + 3) + (segment 376 + (point 187.520000 -61.460000 -32.280000 0.230000) + (point 185.290000 -61.970000 -33.920000 0.230000) + 3) + (segment 377 + (point 185.290000 -61.970000 -33.920000 0.230000) + (point 183.630000 -62.970000 -35.830000 0.230000) + 3) + (segment 378 + (point 183.630000 -62.970000 -35.830000 0.230000) + (point 183.580000 -64.770000 -38.000000 0.230000) + 3) + (segment 379 + (point 183.580000 -64.770000 -38.000000 0.230000) + (point 183.580000 -64.770000 -38.030000 0.230000) + 3) + (segment 380 + (point 183.580000 -64.770000 -38.030000 0.230000) + (point 182.520000 -66.210000 -38.200000 0.230000) + 3) + (segment 381 + (point 182.520000 -66.210000 -38.200000 0.230000) + (point 180.540000 -67.870000 -39.780000 0.230000) + 3) + (segment 382 + (point 180.540000 -67.870000 -39.780000 0.230000) + (point 178.260000 -70.200000 -40.600000 0.230000) + 3) + (segment 383 + (point 178.260000 -70.200000 -40.600000 0.230000) + (point 176.740000 -71.750000 -40.830000 0.230000) + 3) + (segment 384 + (point 176.740000 -71.750000 -40.830000 0.230000) + (point 175.040000 -74.530000 -43.180000 0.230000) + 3) + (segment 385 + (point 175.040000 -74.530000 -43.180000 0.230000) + (point 173.660000 -76.650000 -44.450000 0.230000) + 3) + (segment 386 + (point 173.660000 -76.650000 -44.450000 0.230000) + (point 173.280000 -79.120000 -46.930000 0.230000) + 3) + (segment 387 + (point 173.280000 -79.120000 -46.930000 0.230000) + (point 171.990000 -77.630000 -49.520000 0.230000) + 3) + (segment 388 + (point 171.990000 -77.630000 -49.520000 0.230000) + (point 170.660000 -77.940000 -52.100000 0.230000) + 3) + (segment 389 + (point 170.660000 -77.940000 -52.100000 0.230000) + (point 170.660000 -77.940000 -52.130000 0.230000) + 3) + (segment 390 + (point 170.660000 -77.940000 -52.130000 0.230000) + (point 169.630000 -77.590000 -55.030000 0.230000) + 3) + (segment 391 + (point 169.630000 -77.590000 -55.030000 0.230000) + (point 169.630000 -77.590000 -55.050000 0.230000) + 3) + (segment 392 + (point 169.630000 -77.590000 -55.050000 0.230000) + (point 169.050000 -77.130000 -58.500000 0.230000) + 3) + (segment 393 + (point 169.050000 -77.130000 -58.500000 0.230000) + (point 167.890000 -76.210000 -62.470000 0.230000) + 3) + (segment 394 + (point 167.890000 -76.210000 -62.470000 0.230000) + (point 167.630000 -75.080000 -67.170000 0.230000) + 3) + (segment 395 + (point 167.630000 -75.080000 -67.170000 0.230000) + (point 167.630000 -75.080000 -67.280000 0.230000) + 3)) + (branch 17 12 + (segment 396 + (point 237.570000 0.450000 -4.550000 0.690000) + (point 236.330000 -2.030000 -4.550000 0.460000) + 3) + (segment 397 + (point 236.330000 -2.030000 -4.550000 0.460000) + (point 235.120000 -2.920000 -4.350000 0.460000) + 3) + (segment 398 + (point 235.120000 -2.920000 -4.350000 0.460000) + (point 235.120000 -2.920000 -4.400000 0.460000) + 3) + (segment 399 + (point 235.120000 -2.920000 -4.400000 0.460000) + (point 234.190000 -4.930000 -3.170000 0.460000) + 3) + (segment 400 + (point 234.190000 -4.930000 -3.170000 0.460000) + (point 234.450000 -6.060000 -1.700000 0.460000) + 3) + (segment 401 + (point 234.450000 -6.060000 -1.700000 0.460000) + (point 233.370000 -7.500000 -0.400000 0.460000) + 3)) + (branch 18 17 + (segment 402 + (point 233.370000 -7.500000 -0.400000 0.460000) + (point 233.180000 -8.740000 0.950000 0.460000) + 3) + (segment 403 + (point 233.180000 -8.740000 0.950000 0.460000) + (point 234.030000 -10.340000 2.050000 0.460000) + 3) + (segment 404 + (point 234.030000 -10.340000 2.050000 0.460000) + (point 235.200000 -11.260000 3.380000 0.460000) + 3) + (segment 405 + (point 235.200000 -11.260000 3.380000 0.460000) + (point 235.200000 -11.260000 3.350000 0.460000) + 3) + (segment 406 + (point 235.200000 -11.260000 3.350000 0.460000) + (point 235.910000 -12.280000 4.430000 0.460000) + 3) + (segment 407 + (point 235.910000 -12.280000 4.430000 0.460000) + (point 236.750000 -13.880000 5.150000 0.460000) + 3) + (segment 408 + (point 236.750000 -13.880000 5.150000 0.460000) + (point 237.280000 -16.140000 5.850000 0.460000) + 3) + (segment 409 + (point 237.280000 -16.140000 5.850000 0.460000) + (point 237.370000 -18.510000 6.570000 0.460000) + 3) + (segment 410 + (point 237.370000 -18.510000 6.570000 0.460000) + (point 235.840000 -20.070000 8.350000 0.460000) + 3) + (segment 411 + (point 235.840000 -20.070000 8.350000 0.460000) + (point 235.080000 -20.840000 9.200000 0.460000) + 3) + (segment 412 + (point 235.080000 -20.840000 9.200000 0.460000) + (point 235.170000 -23.210000 8.800000 0.460000) + 3) + (segment 413 + (point 235.170000 -23.210000 8.800000 0.460000) + (point 235.250000 -25.570000 10.500000 0.460000) + 3) + (segment 414 + (point 235.250000 -25.570000 10.500000 0.460000) + (point 235.470000 -28.510000 11.350000 0.460000) + 3) + (segment 415 + (point 235.470000 -28.510000 11.350000 0.460000) + (point 234.970000 -30.410000 11.070000 0.460000) + 3) + (segment 416 + (point 234.970000 -30.410000 11.070000 0.460000) + (point 235.950000 -32.580000 12.250000 0.460000) + 3) + (segment 417 + (point 235.950000 -32.580000 12.250000 0.460000) + (point 235.950000 -32.580000 12.220000 0.460000) + 3) + (segment 418 + (point 235.950000 -32.580000 12.220000 0.460000) + (point 235.590000 -35.060000 12.500000 0.460000) + 3) + (segment 419 + (point 235.590000 -35.060000 12.500000 0.460000) + (point 234.200000 -37.160000 12.070000 0.460000) + 3) + (segment 420 + (point 234.200000 -37.160000 12.070000 0.460000) + (point 234.200000 -37.160000 12.050000 0.460000) + 3) + (segment 421 + (point 234.200000 -37.160000 12.050000 0.460000) + (point 233.750000 -37.270000 14.300000 0.460000) + 3) + (segment 422 + (point 233.750000 -37.270000 14.300000 0.460000) + (point 234.650000 -37.060000 16.570000 0.460000) + 3) + (segment 423 + (point 234.650000 -37.060000 16.570000 0.460000) + (point 235.360000 -38.090000 18.670000 0.460000) + 3) + (segment 424 + (point 235.360000 -38.090000 18.670000 0.460000) + (point 233.830000 -39.650000 20.170000 0.460000) + 3) + (segment 425 + (point 233.830000 -39.650000 20.170000 0.460000) + (point 233.600000 -42.680000 20.970000 0.460000) + 3) + (segment 426 + (point 233.600000 -42.680000 20.970000 0.460000) + (point 232.350000 -45.370000 21.880000 0.460000) + 3) + (segment 427 + (point 232.350000 -45.370000 21.880000 0.460000) + (point 230.330000 -48.830000 21.550000 0.460000) + 3) + (segment 428 + (point 230.330000 -48.830000 21.550000 0.460000) + (point 230.330000 -48.830000 21.520000 0.460000) + 3) + (segment 429 + (point 230.330000 -48.830000 21.520000 0.460000) + (point 229.790000 -52.530000 22.080000 0.460000) + 3) + (segment 430 + (point 229.790000 -52.530000 22.080000 0.460000) + (point 227.640000 -55.430000 22.570000 0.460000) + 3) + (segment 431 + (point 227.640000 -55.430000 22.570000 0.460000) + (point 226.570000 -56.870000 23.330000 0.460000) + 3) + (segment 432 + (point 226.570000 -56.870000 23.330000 0.460000) + (point 224.920000 -57.850000 23.800000 0.460000) + 3) + (segment 433 + (point 224.920000 -57.850000 23.800000 0.460000) + (point 224.920000 -57.850000 23.780000 0.460000) + 3) + (segment 434 + (point 224.920000 -57.850000 23.780000 0.460000) + (point 224.110000 -60.440000 24.380000 0.460000) + 3) + (segment 435 + (point 224.110000 -60.440000 24.380000 0.460000) + (point 224.110000 -60.440000 24.350000 0.460000) + 3) + (segment 436 + (point 224.110000 -60.440000 24.350000 0.460000) + (point 225.530000 -62.480000 25.230000 0.460000) + 3) + (segment 437 + (point 225.530000 -62.480000 25.230000 0.460000) + (point 223.640000 -66.510000 26.450000 0.460000) + 3) + (segment 438 + (point 223.640000 -66.510000 26.450000 0.460000) + (point 223.410000 -69.550000 27.250000 0.460000) + 3) + (segment 439 + (point 223.410000 -69.550000 27.250000 0.460000) + (point 222.290000 -72.800000 27.770000 0.460000) + 3) + (segment 440 + (point 222.290000 -72.800000 27.770000 0.460000) + (point 220.270000 -76.250000 29.130000 0.460000) + 3) + (segment 441 + (point 220.270000 -76.250000 29.130000 0.460000) + (point 218.930000 -76.570000 30.650000 0.460000) + 3) + (segment 442 + (point 218.930000 -76.570000 30.650000 0.460000) + (point 217.550000 -78.690000 31.950000 0.460000) + 3) + (segment 443 + (point 217.550000 -78.690000 31.950000 0.460000) + (point 216.470000 -80.140000 33.850000 0.460000) + 3) + (segment 444 + (point 216.470000 -80.140000 33.850000 0.460000) + (point 216.020000 -80.240000 34.400000 0.460000) + 3)) + (branch 19 17 + (segment 445 + (point 233.370000 -7.500000 -0.400000 0.460000) + (point 231.220000 -10.400000 -1.420000 0.460000) + 3) + (segment 446 + (point 231.220000 -10.400000 -1.420000 0.460000) + (point 231.890000 -13.230000 -2.420000 0.460000) + 3) + (segment 447 + (point 231.890000 -13.230000 -2.420000 0.460000) + (point 231.890000 -13.230000 -2.450000 0.460000) + 3) + (segment 448 + (point 231.890000 -13.230000 -2.450000 0.460000) + (point 231.660000 -16.270000 -1.650000 0.460000) + 3) + (segment 449 + (point 231.660000 -16.270000 -1.650000 0.460000) + (point 230.850000 -18.850000 -0.470000 0.460000) + 3) + (segment 450 + (point 230.850000 -18.850000 -0.470000 0.460000) + (point 229.600000 -21.530000 0.170000 0.460000) + 3) + (segment 451 + (point 229.600000 -21.530000 0.170000 0.460000) + (point 227.440000 -24.420000 0.950000 0.460000) + 3) + (segment 452 + (point 227.440000 -24.420000 0.950000 0.460000) + (point 226.230000 -25.310000 1.950000 0.460000) + 3) + (segment 453 + (point 226.230000 -25.310000 1.950000 0.460000) + (point 224.980000 -27.980000 3.080000 0.460000) + 3) + (segment 454 + (point 224.980000 -27.980000 3.080000 0.460000) + (point 223.720000 -30.660000 4.350000 0.460000) + 3) + (segment 455 + (point 223.720000 -30.660000 4.350000 0.460000) + (point 222.820000 -30.870000 5.550000 0.460000) + 3) + (segment 456 + (point 222.820000 -30.870000 5.550000 0.460000) + (point 221.710000 -34.120000 4.380000 0.460000) + 3) + (segment 457 + (point 221.710000 -34.120000 4.380000 0.460000) + (point 220.140000 -37.470000 4.380000 0.460000) + 3) + (segment 458 + (point 220.140000 -37.470000 4.380000 0.460000) + (point 218.440000 -40.270000 4.380000 0.460000) + 3) + (segment 459 + (point 218.440000 -40.270000 4.380000 0.460000) + (point 219.100000 -43.100000 5.370000 0.460000) + 3) + (segment 460 + (point 219.100000 -43.100000 5.370000 0.460000) + (point 220.340000 -46.380000 6.070000 0.460000) + 3) + (segment 461 + (point 220.340000 -46.380000 6.070000 0.460000) + (point 220.340000 -46.380000 5.220000 0.460000) + 3) + (segment 462 + (point 220.340000 -46.380000 5.220000 0.460000) + (point 220.870000 -48.660000 4.500000 0.460000) + 3) + (segment 463 + (point 220.870000 -48.660000 4.500000 0.460000) + (point 220.870000 -48.660000 4.220000 0.460000) + 3) + (segment 464 + (point 220.870000 -48.660000 4.220000 0.460000) + (point 221.850000 -50.820000 3.350000 0.460000) + 3) + (segment 465 + (point 221.850000 -50.820000 3.350000 0.460000) + (point 220.540000 -55.290000 2.830000 0.460000) + 3) + (segment 466 + (point 220.540000 -55.290000 2.830000 0.460000) + (point 217.810000 -57.740000 1.670000 0.460000) + 3) + (segment 467 + (point 217.810000 -57.740000 1.670000 0.460000) + (point 217.810000 -57.740000 1.650000 0.460000) + 3) + (segment 468 + (point 217.810000 -57.740000 1.650000 0.460000) + (point 215.530000 -60.050000 1.420000 0.460000) + 3) + (segment 469 + (point 215.530000 -60.050000 1.420000 0.460000) + (point 215.560000 -64.230000 0.450000 0.460000) + 3) + (segment 470 + (point 215.560000 -64.230000 0.450000 0.460000) + (point 214.760000 -66.810000 0.220000 0.460000) + 3) + (segment 471 + (point 214.760000 -66.810000 0.220000 0.460000) + (point 214.760000 -66.810000 0.170000 0.460000) + 3) + (segment 472 + (point 214.760000 -66.810000 0.170000 0.460000) + (point 213.770000 -70.620000 -0.670000 0.460000) + 3) + (segment 473 + (point 213.770000 -70.620000 -0.670000 0.460000) + (point 213.770000 -70.620000 -0.720000 0.460000) + 3) + (segment 474 + (point 213.770000 -70.620000 -0.720000 0.460000) + (point 213.540000 -73.660000 -1.170000 0.460000) + 3) + (segment 475 + (point 213.540000 -73.660000 -1.170000 0.460000) + (point 214.510000 -75.820000 -1.170000 0.460000) + 3) + (segment 476 + (point 214.510000 -75.820000 -1.170000 0.460000) + (point 213.350000 -80.870000 -1.470000 0.460000) + 3) + (segment 477 + (point 213.350000 -80.870000 -1.470000 0.460000) + (point 212.800000 -84.590000 -1.600000 0.460000) + 3) + (segment 478 + (point 212.800000 -84.590000 -1.600000 0.460000) + (point 212.070000 -89.530000 -1.600000 0.460000) + 3) + (segment 479 + (point 212.070000 -89.530000 -1.600000 0.460000) + (point 212.420000 -93.040000 -2.750000 0.460000) + 3) + (segment 480 + (point 212.420000 -93.040000 -2.750000 0.460000) + (point 210.540000 -97.060000 -3.780000 0.460000) + 3) + (segment 481 + (point 210.540000 -97.060000 -3.780000 0.460000) + (point 209.860000 -100.190000 -3.780000 0.460000) + 3) + (segment 482 + (point 209.860000 -100.190000 -3.780000 0.460000) + (point 209.140000 -105.150000 -4.780000 0.460000) + 3) + (segment 483 + (point 209.140000 -105.150000 -4.780000 0.460000) + (point 209.350000 -108.080000 -3.600000 0.460000) + 3) + (segment 484 + (point 209.350000 -108.080000 -3.600000 0.460000) + (point 208.940000 -112.350000 -2.220000 0.460000) + 3) + (segment 485 + (point 208.940000 -112.350000 -2.220000 0.460000) + (point 208.990000 -116.530000 -1.320000 0.460000) + 3) + (segment 486 + (point 208.990000 -116.530000 -1.320000 0.460000) + (point 210.350000 -120.380000 -0.450000 0.460000) + 3) + (segment 487 + (point 210.350000 -120.380000 -0.450000 0.460000) + (point 211.150000 -123.780000 0.320000 0.460000) + 3) + (segment 488 + (point 211.150000 -123.780000 0.320000 0.460000) + (point 212.080000 -127.750000 1.070000 0.460000) + 3) + (segment 489 + (point 212.080000 -127.750000 1.070000 0.460000) + (point 209.800000 -130.070000 1.900000 0.460000) + 3) + (segment 490 + (point 209.800000 -130.070000 1.900000 0.460000) + (point 207.430000 -130.030000 2.920000 0.460000) + 3) + (segment 491 + (point 207.430000 -130.030000 2.920000 0.460000) + (point 206.040000 -132.150000 3.650000 0.460000) + 3) + (segment 492 + (point 206.040000 -132.150000 3.650000 0.460000) + (point 206.040000 -132.150000 3.700000 0.460000) + 3) + (segment 493 + (point 206.040000 -132.150000 3.700000 0.460000) + (point 204.570000 -131.890000 4.630000 0.460000) + 3) + (segment 494 + (point 204.570000 -131.890000 4.630000 0.460000) + (point 202.920000 -132.880000 5.200000 0.460000) + 3) + (segment 495 + (point 202.920000 -132.880000 5.200000 0.460000) + (point 202.560000 -135.350000 4.630000 0.460000) + 3) + (segment 496 + (point 202.560000 -135.350000 4.630000 0.460000) + (point 202.560000 -135.350000 4.600000 0.460000) + 3) + (segment 497 + (point 202.560000 -135.350000 4.600000 0.460000) + (point 203.270000 -136.370000 4.820000 0.460000) + 3) + (segment 498 + (point 203.270000 -136.370000 4.820000 0.460000) + (point 204.510000 -139.670000 6.020000 0.460000) + 3) + (segment 499 + (point 204.510000 -139.670000 6.020000 0.460000) + (point 202.180000 -143.800000 7.100000 0.460000) + 3) + (segment 500 + (point 202.180000 -143.800000 7.100000 0.460000) + (point 201.770000 -148.070000 8.450000 0.460000) + 3) + (segment 501 + (point 201.770000 -148.070000 8.450000 0.460000) + (point 202.300000 -150.350000 9.770000 0.460000) + 3) + (segment 502 + (point 202.300000 -150.350000 9.770000 0.460000) + (point 203.010000 -151.370000 12.000000 0.460000) + 3) + (segment 503 + (point 203.010000 -151.370000 12.000000 0.460000) + (point 203.590000 -151.830000 13.300000 0.460000) + 3)) + (branch 20 7 + (segment 504 + (point 251.830000 7.960000 4.070000 1.375000) + (point 250.100000 9.550000 4.750000 0.460000) + 3) + (segment 505 + (point 250.100000 9.550000 4.750000 0.460000) + (point 247.610000 10.160000 6.350000 0.460000) + 3) + (segment 506 + (point 247.610000 10.160000 6.350000 0.460000) + (point 245.280000 12.010000 6.970000 0.460000) + 3) + (segment 507 + (point 245.280000 12.010000 6.970000 0.460000) + (point 243.420000 13.950000 8.520000 0.460000) + 3) + (segment 508 + (point 243.420000 13.950000 8.520000 0.460000) + (point 244.490000 15.400000 9.770000 0.460000) + 3) + (segment 509 + (point 244.490000 15.400000 9.770000 0.460000) + (point 246.990000 14.790000 10.120000 0.460000) + 3) + (segment 510 + (point 246.990000 14.790000 10.120000 0.460000) + (point 245.920000 13.350000 11.470000 0.460000) + 3) + (segment 511 + (point 245.920000 13.350000 11.470000 0.460000) + (point 244.260000 12.360000 14.880000 0.460000) + 3)) + (branch 21 20 + (segment 512 + (point 244.260000 12.360000 14.880000 0.460000) + (point 245.340000 13.800000 14.880000 0.460000) + 3) + (segment 513 + (point 245.340000 13.800000 14.880000 0.460000) + (point 241.540000 15.910000 14.450000 0.460000) + 3) + (segment 514 + (point 241.540000 15.910000 14.450000 0.460000) + (point 240.080000 16.160000 14.850000 0.460000) + 3) + (segment 515 + (point 240.080000 16.160000 14.850000 0.460000) + (point 240.080000 16.160000 14.820000 0.460000) + 3) + (segment 516 + (point 240.080000 16.160000 14.820000 0.460000) + (point 239.860000 19.090000 16.600000 0.460000) + 3) + (segment 517 + (point 239.860000 19.090000 16.600000 0.460000) + (point 239.460000 20.790000 18.380000 0.460000) + 3) + (segment 518 + (point 239.460000 20.790000 18.380000 0.460000) + (point 238.220000 24.080000 19.520000 0.460000) + 3) + (segment 519 + (point 238.220000 24.080000 19.520000 0.460000) + (point 236.210000 26.600000 20.750000 0.460000) + 3) + (segment 520 + (point 236.210000 26.600000 20.750000 0.460000) + (point 234.080000 29.690000 20.920000 0.460000) + 3) + (segment 521 + (point 234.080000 29.690000 20.920000 0.460000) + (point 231.760000 31.530000 20.130000 0.460000) + 3)) + (branch 22 21 + (segment 522 + (point 231.760000 31.530000 20.130000 0.460000) + (point 229.930000 35.270000 20.850000 0.230000) + 3) + (segment 523 + (point 229.930000 35.270000 20.850000 0.230000) + (point 227.310000 36.460000 21.850000 0.230000) + 3) + (segment 524 + (point 227.310000 36.460000 21.850000 0.230000) + (point 224.860000 38.860000 22.670000 0.230000) + 3) + (segment 525 + (point 224.860000 38.860000 22.670000 0.230000) + (point 223.840000 39.220000 24.200000 0.230000) + 3) + (segment 526 + (point 223.840000 39.220000 24.200000 0.230000) + (point 223.390000 39.120000 24.200000 0.230000) + 3) + (segment 527 + (point 223.390000 39.120000 24.200000 0.230000) + (point 222.630000 38.350000 26.350000 0.230000) + 3)) + (branch 23 21 + (segment 528 + (point 231.760000 31.530000 20.130000 0.460000) + (point 228.420000 33.730000 19.230000 0.460000) + 3) + (segment 529 + (point 228.420000 33.730000 19.230000 0.460000) + (point 226.230000 35.010000 19.580000 0.460000) + 3) + (segment 530 + (point 226.230000 35.010000 19.580000 0.460000) + (point 226.230000 35.010000 19.550000 0.460000) + 3) + (segment 531 + (point 226.230000 35.010000 19.550000 0.460000) + (point 224.630000 35.830000 21.100000 0.460000) + 3) + (segment 532 + (point 224.630000 35.830000 21.100000 0.460000) + (point 222.000000 37.000000 23.000000 0.460000) + 3) + (segment 533 + (point 222.000000 37.000000 23.000000 0.460000) + (point 219.990000 39.530000 24.080000 0.460000) + 3) + (segment 534 + (point 219.990000 39.530000 24.080000 0.460000) + (point 217.410000 42.500000 25.600000 0.460000) + 3)) + (branch 24 20 + (segment 535 + (point 244.260000 12.360000 14.880000 0.460000) + (point 242.340000 12.510000 14.880000 0.460000) + 3) + (segment 536 + (point 242.340000 12.510000 14.880000 0.460000) + (point 242.290000 10.710000 16.380000 0.460000) + 3) + (segment 537 + (point 242.290000 10.710000 16.380000 0.460000) + (point 242.290000 10.710000 16.350000 0.460000) + 3) + (segment 538 + (point 242.290000 10.710000 16.350000 0.460000) + (point 239.400000 13.010000 18.270000 0.460000) + 3) + (segment 539 + (point 239.400000 13.010000 18.270000 0.460000) + (point 239.090000 12.340000 20.000000 0.460000) + 3) + (segment 540 + (point 239.090000 12.340000 20.000000 0.460000) + (point 237.310000 11.930000 20.770000 0.460000) + 3) + (segment 541 + (point 237.310000 11.930000 20.770000 0.460000) + (point 235.320000 10.270000 22.300000 0.460000) + 3) + (segment 542 + (point 235.320000 10.270000 22.300000 0.460000) + (point 233.360000 8.610000 23.250000 0.460000) + 3) + (segment 543 + (point 233.360000 8.610000 23.250000 0.460000) + (point 233.360000 8.610000 23.230000 0.460000) + 3) + (segment 544 + (point 233.360000 8.610000 23.230000 0.460000) + (point 230.610000 10.350000 24.600000 0.460000) + 3) + (segment 545 + (point 230.610000 10.350000 24.600000 0.460000) + (point 228.990000 11.180000 25.470000 0.460000) + 3) + (segment 546 + (point 228.990000 11.180000 25.470000 0.460000) + (point 227.290000 8.380000 26.600000 0.460000) + 3) + (segment 547 + (point 227.290000 8.380000 26.600000 0.460000) + (point 224.080000 10.020000 27.630000 0.460000) + 3) + (segment 548 + (point 224.080000 10.020000 27.630000 0.460000) + (point 221.320000 11.760000 28.020000 0.460000) + 3) + (segment 549 + (point 221.320000 11.760000 28.020000 0.460000) + (point 218.640000 11.140000 29.500000 0.460000) + 3) + (segment 550 + (point 218.640000 11.140000 29.500000 0.460000) + (point 218.640000 11.140000 29.480000 0.460000) + 3) + (segment 551 + (point 218.640000 11.140000 29.480000 0.460000) + (point 217.380000 8.450000 30.270000 0.460000) + 3) + (segment 552 + (point 217.380000 8.450000 30.270000 0.460000) + (point 217.380000 8.450000 30.230000 0.460000) + 3) + (segment 553 + (point 217.380000 8.450000 30.230000 0.460000) + (point 219.120000 7.070000 31.800000 0.460000) + 3) + (segment 554 + (point 219.120000 7.070000 31.800000 0.460000) + (point 221.620000 6.460000 33.700000 0.230000) + 3)) + (branch 25 20 + (segment 555 + (point 244.260000 12.360000 14.880000 0.460000) + (point 245.820000 9.740000 15.900000 0.230000) + 3) + (segment 556 + (point 245.820000 9.740000 15.900000 0.230000) + (point 247.290000 9.490000 18.800000 0.230000) + 3) + (segment 557 + (point 247.290000 9.490000 18.800000 0.230000) + (point 245.900000 7.370000 21.220000 0.230000) + 3) + (segment 558 + (point 245.900000 7.370000 21.220000 0.230000) + (point 244.560000 7.060000 23.920000 0.230000) + 3) + (segment 559 + (point 244.560000 7.060000 23.920000 0.230000) + (point 244.060000 5.150000 24.800000 0.230000) + 3) + (segment 560 + (point 244.060000 5.150000 24.800000 0.230000) + (point 243.180000 4.940000 24.800000 0.230000) + 3)) + (branch 26 25 + (segment 561 + (point 243.180000 4.940000 24.800000 0.230000) + (point 243.130000 3.140000 25.770000 0.230000) + 3) + (segment 562 + (point 243.130000 3.140000 25.770000 0.230000) + (point 244.640000 -1.280000 26.520000 0.230000) + 3) + (segment 563 + (point 244.640000 -1.280000 26.520000 0.230000) + (point 246.240000 -2.100000 28.150000 0.230000) + 3) + (segment 564 + (point 246.240000 -2.100000 28.150000 0.230000) + (point 246.240000 -2.100000 28.130000 0.230000) + 3) + (segment 565 + (point 246.240000 -2.100000 28.130000 0.230000) + (point 247.130000 -1.890000 30.630000 0.230000) + 3) + (segment 566 + (point 247.130000 -1.890000 30.630000 0.230000) + (point 247.130000 -1.890000 30.570000 0.230000) + 3) + (segment 567 + (point 247.130000 -1.890000 30.570000 0.230000) + (point 248.460000 -1.570000 33.220000 0.230000) + 3) + (segment 568 + (point 248.460000 -1.570000 33.220000 0.230000) + (point 248.460000 -1.570000 33.270000 0.230000) + 3)) + (branch 27 25 + (segment 569 + (point 243.180000 4.940000 24.800000 0.230000) + (point 246.700000 3.980000 24.800000 0.230000) + 3) + (segment 570 + (point 246.700000 3.980000 24.800000 0.230000) + (point 248.170000 3.730000 23.270000 0.230000) + 3) + (segment 571 + (point 248.170000 3.730000 23.270000 0.230000) + (point 248.570000 2.030000 21.770000 0.230000) + 3)) + (branch 28 27 + (segment 572 + (point 248.570000 2.030000 21.770000 0.230000) + (point 250.710000 -1.050000 22.500000 0.230000) + 3) + (segment 573 + (point 250.710000 -1.050000 22.500000 0.230000) + (point 253.600000 -3.360000 22.500000 0.230000) + 3) + (segment 574 + (point 253.600000 -3.360000 22.500000 0.230000) + (point 255.920000 -5.210000 23.750000 0.230000) + 3) + (segment 575 + (point 255.920000 -5.210000 23.750000 0.230000) + (point 259.500000 -4.370000 23.750000 0.230000) + 3) + (segment 576 + (point 259.500000 -4.370000 23.750000 0.230000) + (point 260.740000 -7.660000 23.750000 0.230000) + 3) + (segment 577 + (point 260.740000 -7.660000 23.750000 0.230000) + (point 259.800000 -9.670000 25.350000 0.230000) + 3) + (segment 578 + (point 259.800000 -9.670000 25.350000 0.230000) + (point 262.600000 -9.610000 26.350000 0.230000) + 3) + (segment 579 + (point 262.600000 -9.610000 26.350000 0.230000) + (point 264.920000 -11.460000 27.600000 0.230000) + 3) + (segment 580 + (point 264.920000 -11.460000 27.600000 0.230000) + (point 264.920000 -11.460000 27.570000 0.230000) + 3) + (segment 581 + (point 264.920000 -11.460000 27.570000 0.230000) + (point 265.940000 -11.820000 29.580000 0.230000) + 3) + (segment 582 + (point 265.940000 -11.820000 29.580000 0.230000) + (point 266.390000 -11.710000 32.280000 0.230000) + 3) + (segment 583 + (point 266.390000 -11.710000 32.280000 0.230000) + (point 266.390000 -11.710000 32.300000 0.230000) + 3)) + (branch 29 27 + (segment 584 + (point 248.570000 2.030000 21.770000 0.230000) + (point 244.550000 1.080000 21.770000 0.230000) + 3) + (segment 585 + (point 244.550000 1.080000 21.770000 0.230000) + (point 241.740000 1.030000 22.250000 0.230000) + 3) + (segment 586 + (point 241.740000 1.030000 22.250000 0.230000) + (point 239.190000 -0.170000 22.250000 0.230000) + 3) + (segment 587 + (point 239.190000 -0.170000 22.250000 0.230000) + (point 238.740000 -0.280000 22.250000 0.230000) + 3) + (segment 588 + (point 238.740000 -0.280000 22.250000 0.230000) + (point 236.510000 -0.800000 22.250000 0.230000) + 3) + (segment 589 + (point 236.510000 -0.800000 22.250000 0.230000) + (point 234.230000 -3.130000 22.250000 0.230000) + 3) + (segment 590 + (point 234.230000 -3.130000 22.250000 0.230000) + (point 231.590000 -1.950000 22.450000 0.230000) + 3) + (segment 591 + (point 231.590000 -1.950000 22.450000 0.230000) + (point 230.350000 1.340000 22.450000 0.230000) + 3) + (segment 592 + (point 230.350000 1.340000 22.450000 0.230000) + (point 227.940000 -0.410000 20.730000 0.230000) + 3) + (segment 593 + (point 227.940000 -0.410000 20.730000 0.230000) + (point 225.580000 -0.370000 19.150000 0.230000) + 3) + (segment 594 + (point 225.580000 -0.370000 19.150000 0.230000) + (point 222.320000 -0.540000 17.670000 0.230000) + 3) + (segment 595 + (point 222.320000 -0.540000 17.670000 0.230000) + (point 220.350000 -2.190000 16.170000 0.230000) + 3) + (segment 596 + (point 220.350000 -2.190000 16.170000 0.230000) + (point 219.720000 -3.540000 15.500000 0.230000) + 3) + (segment 597 + (point 219.720000 -3.540000 15.500000 0.230000) + (point 216.330000 -3.140000 15.120000 0.230000) + 3) + (segment 598 + (point 216.330000 -3.140000 15.120000 0.230000) + (point 212.880000 -4.540000 15.120000 0.230000) + 3) + (segment 599 + (point 212.880000 -4.540000 15.120000 0.230000) + (point 209.370000 -3.580000 14.180000 0.230000) + 3) + (segment 600 + (point 209.370000 -3.580000 14.180000 0.230000) + (point 207.580000 -4.000000 12.620000 0.230000) + 3) + (segment 601 + (point 207.580000 -4.000000 12.620000 0.230000) + (point 206.230000 -4.310000 11.070000 0.230000) + 3) + (segment 602 + (point 206.230000 -4.310000 11.070000 0.230000) + (point 204.850000 -6.420000 10.100000 0.230000) + 3) + (segment 603 + (point 204.850000 -6.420000 10.100000 0.230000) + (point 202.040000 -6.490000 9.250000 0.230000) + 3) + (segment 604 + (point 202.040000 -6.490000 9.250000 0.230000) + (point 199.620000 -8.240000 8.850000 0.230000) + 3) + (segment 605 + (point 199.620000 -8.240000 8.850000 0.230000) + (point 196.630000 -9.550000 8.600000 0.230000) + 3) + (segment 606 + (point 196.630000 -9.550000 8.600000 0.230000) + (point 193.760000 -11.410000 8.630000 0.230000) + 3) + (segment 607 + (point 193.760000 -11.410000 8.630000 0.230000) + (point 189.560000 -13.590000 8.630000 0.230000) + 3) + (segment 608 + (point 189.560000 -13.590000 8.630000 0.230000) + (point 187.520000 -12.880000 8.630000 0.230000) + 3) + (segment 609 + (point 187.520000 -12.880000 8.630000 0.230000) + (point 184.920000 -15.870000 7.720000 0.230000) + 3) + (segment 610 + (point 184.920000 -15.870000 7.720000 0.230000) + (point 180.270000 -18.170000 7.720000 0.230000) + 3) + (segment 611 + (point 180.270000 -18.170000 7.720000 0.230000) + (point 177.900000 -18.110000 7.020000 0.230000) + 3) + (segment 612 + (point 177.900000 -18.110000 7.020000 0.230000) + (point 176.070000 -20.340000 6.620000 0.230000) + 3) + (segment 613 + (point 176.070000 -20.340000 6.620000 0.230000) + (point 173.080000 -21.640000 7.550000 0.230000) + 3) + (segment 614 + (point 173.080000 -21.640000 7.550000 0.230000) + (point 173.080000 -21.640000 7.500000 0.230000) + 3) + (segment 615 + (point 173.080000 -21.640000 7.500000 0.230000) + (point 171.690000 -23.750000 7.250000 0.230000) + 3) + (segment 616 + (point 171.690000 -23.750000 7.250000 0.230000) + (point 171.690000 -23.750000 7.220000 0.230000) + 3) + (segment 617 + (point 171.690000 -23.750000 7.220000 0.230000) + (point 168.520000 -26.290000 6.820000 0.230000) + 3) + (segment 618 + (point 168.520000 -26.290000 6.820000 0.230000) + (point 166.420000 -27.370000 6.380000 0.230000) + 3) + (segment 619 + (point 166.420000 -27.370000 6.380000 0.230000) + (point 163.730000 -28.000000 6.380000 0.230000) + 3) + (segment 620 + (point 163.730000 -28.000000 6.380000 0.230000) + (point 161.500000 -28.530000 6.150000 0.230000) + 3) + (segment 621 + (point 161.500000 -28.530000 6.150000 0.230000) + (point 161.500000 -28.530000 6.130000 0.230000) + 3) + (segment 622 + (point 161.500000 -28.530000 6.130000 0.230000) + (point 159.670000 -30.750000 5.750000 0.230000) + 3) + (segment 623 + (point 159.670000 -30.750000 5.750000 0.230000) + (point 157.060000 -33.750000 4.920000 0.230000) + 3) + (segment 624 + (point 157.060000 -33.750000 4.920000 0.230000) + (point 157.060000 -33.750000 4.900000 0.230000) + 3) + (segment 625 + (point 157.060000 -33.750000 4.900000 0.230000) + (point 155.100000 -35.400000 3.450000 0.230000) + 3) + (segment 626 + (point 155.100000 -35.400000 3.450000 0.230000) + (point 153.010000 -36.490000 1.750000 0.230000) + 3) + (segment 627 + (point 153.010000 -36.490000 1.750000 0.230000) + (point 151.170000 -38.720000 -0.280000 0.230000) + 3) + (segment 628 + (point 151.170000 -38.720000 -0.280000 0.230000) + (point 147.990000 -41.250000 -1.850000 0.230000) + 3) + (segment 629 + (point 147.990000 -41.250000 -1.850000 0.230000) + (point 142.900000 -43.640000 -3.850000 0.230000) + 3) + (segment 630 + (point 142.900000 -43.640000 -3.850000 0.230000) + (point 142.900000 -43.640000 -3.950000 0.230000) + 3)) + (branch 30 -1 + (segment 631 + (point 273.700000 23.330000 0.800000 0.690000) + (point 273.700000 23.330000 0.800000 0.690000) + 3) + (segment 632 + (point 273.700000 23.330000 0.800000 0.690000) + (point 276.570000 25.190000 0.800000 0.690000) + 3) + (segment 633 + (point 276.570000 25.190000 0.800000 0.690000) + (point 277.820000 27.880000 0.800000 0.690000) + 3) + (segment 634 + (point 277.820000 27.880000 0.800000 0.690000) + (point 278.770000 29.890000 0.800000 0.690000) + 3) + (segment 635 + (point 278.770000 29.890000 0.800000 0.690000) + (point 281.580000 29.950000 -0.350000 0.690000) + 3) + (segment 636 + (point 281.580000 29.950000 -0.350000 0.690000) + (point 281.580000 29.950000 -0.370000 0.690000) + 3) + (segment 637 + (point 281.580000 29.950000 -0.370000 0.690000) + (point 282.420000 28.350000 -2.080000 0.690000) + 3)) + (branch 31 30 + (segment 638 + (point 282.420000 28.350000 -2.080000 0.690000) + (point 284.520000 29.450000 -3.250000 0.460000) + 3) + (segment 639 + (point 284.520000 29.450000 -3.250000 0.460000) + (point 286.310000 29.870000 -4.650000 0.460000) + 3) + (segment 640 + (point 286.310000 29.870000 -4.650000 0.460000) + (point 289.490000 32.400000 -6.000000 0.460000) + 3) + (segment 641 + (point 289.490000 32.400000 -6.000000 0.460000) + (point 292.740000 32.570000 -7.000000 0.460000) + 3) + (segment 642 + (point 292.740000 32.570000 -7.000000 0.460000) + (point 295.240000 31.960000 -7.630000 0.460000) + 3) + (segment 643 + (point 295.240000 31.960000 -7.630000 0.460000) + (point 299.260000 32.910000 -7.650000 0.460000) + 3) + (segment 644 + (point 299.260000 32.910000 -7.650000 0.460000) + (point 300.470000 33.780000 -6.020000 0.460000) + 3) + (segment 645 + (point 300.470000 33.780000 -6.020000 0.460000) + (point 302.250000 34.200000 -4.820000 0.460000) + 3) + (segment 646 + (point 302.250000 34.200000 -4.820000 0.460000) + (point 302.250000 34.200000 -4.850000 0.460000) + 3) + (segment 647 + (point 302.250000 34.200000 -4.850000 0.460000) + (point 304.670000 35.960000 -3.920000 0.460000) + 3) + (segment 648 + (point 304.670000 35.960000 -3.920000 0.460000) + (point 308.100000 37.360000 -2.900000 0.460000) + 3) + (segment 649 + (point 308.100000 37.360000 -2.900000 0.460000) + (point 308.100000 37.360000 -2.920000 0.460000) + 3) + (segment 650 + (point 308.100000 37.360000 -2.920000 0.460000) + (point 309.770000 38.350000 -2.270000 0.460000) + 3) + (segment 651 + (point 309.770000 38.350000 -2.270000 0.460000) + (point 312.760000 39.640000 -1.220000 0.460000) + 3) + (segment 652 + (point 312.760000 39.640000 -1.220000 0.460000) + (point 316.010000 39.810000 -3.250000 0.460000) + 3) + (segment 653 + (point 316.010000 39.810000 -3.250000 0.460000) + (point 316.010000 39.810000 -3.270000 0.460000) + 3) + (segment 654 + (point 316.010000 39.810000 -3.270000 0.460000) + (point 316.250000 42.850000 -4.130000 0.460000) + 3) + (segment 655 + (point 316.250000 42.850000 -4.130000 0.460000) + (point 316.250000 42.850000 -4.150000 0.460000) + 3) + (segment 656 + (point 316.250000 42.850000 -4.150000 0.460000) + (point 318.660000 44.610000 -5.150000 0.460000) + 3) + (segment 657 + (point 318.660000 44.610000 -5.150000 0.460000) + (point 319.990000 44.920000 -4.970000 0.460000) + 3) + (segment 658 + (point 319.990000 44.920000 -4.970000 0.460000) + (point 322.280000 47.260000 -5.100000 0.460000) + 3) + (segment 659 + (point 322.280000 47.260000 -5.100000 0.460000) + (point 323.350000 48.700000 -6.200000 0.460000) + 3) + (segment 660 + (point 323.350000 48.700000 -6.200000 0.460000) + (point 324.750000 50.820000 -7.720000 0.460000) + 3) + (segment 661 + (point 324.750000 50.820000 -7.720000 0.460000) + (point 329.210000 51.860000 -8.320000 0.460000) + 3) + (segment 662 + (point 329.210000 51.860000 -8.320000 0.460000) + (point 332.380000 54.400000 -9.220000 0.460000) + 3) + (segment 663 + (point 332.380000 54.400000 -9.220000 0.460000) + (point 334.980000 57.390000 -9.770000 0.460000) + 3) + (segment 664 + (point 334.980000 57.390000 -9.770000 0.460000) + (point 336.810000 59.620000 -10.250000 0.460000) + 3) + (segment 665 + (point 336.810000 59.620000 -10.250000 0.460000) + (point 336.810000 59.620000 -10.280000 0.460000) + 3) + (segment 666 + (point 336.810000 59.620000 -10.280000 0.460000) + (point 339.100000 61.940000 -11.550000 0.460000) + 3) + (segment 667 + (point 339.100000 61.940000 -11.550000 0.460000) + (point 339.100000 61.940000 -11.580000 0.460000) + 3) + (segment 668 + (point 339.100000 61.940000 -11.580000 0.460000) + (point 340.930000 64.170000 -13.450000 0.460000) + 3) + (segment 669 + (point 340.930000 64.170000 -13.450000 0.460000) + (point 340.930000 64.170000 -13.470000 0.460000) + 3) + (segment 670 + (point 340.930000 64.170000 -13.470000 0.460000) + (point 341.110000 65.400000 -15.020000 0.460000) + 3) + (segment 671 + (point 341.110000 65.400000 -15.020000 0.460000) + (point 341.470000 67.870000 -16.350000 0.460000) + 3) + (segment 672 + (point 341.470000 67.870000 -16.350000 0.460000) + (point 341.470000 67.870000 -16.380000 0.460000) + 3) + (segment 673 + (point 341.470000 67.870000 -16.380000 0.460000) + (point 342.160000 71.020000 -16.000000 0.460000) + 3) + (segment 674 + (point 342.160000 71.020000 -16.000000 0.460000) + (point 342.670000 74.730000 -13.850000 0.460000) + 3) + (segment 675 + (point 342.670000 74.730000 -13.850000 0.460000) + (point 342.670000 74.730000 -13.870000 0.460000) + 3) + (segment 676 + (point 342.670000 74.730000 -13.870000 0.460000) + (point 343.350000 77.870000 -12.720000 0.460000) + 3) + (segment 677 + (point 343.350000 77.870000 -12.720000 0.460000) + (point 345.940000 80.870000 -11.980000 0.460000) + 3) + (segment 678 + (point 345.940000 80.870000 -11.980000 0.460000) + (point 348.100000 83.760000 -13.000000 0.460000) + 3) + (segment 679 + (point 348.100000 83.760000 -13.000000 0.460000) + (point 350.500000 85.520000 -14.130000 0.460000) + 3) + (segment 680 + (point 350.500000 85.520000 -14.130000 0.460000) + (point 353.670000 88.060000 -14.750000 0.460000) + 3) + (segment 681 + (point 353.670000 88.060000 -14.750000 0.460000) + (point 356.420000 90.490000 -15.730000 0.460000) + 3) + (segment 682 + (point 356.420000 90.490000 -15.730000 0.460000) + (point 359.010000 93.490000 -16.380000 0.460000) + 3) + (segment 683 + (point 359.010000 93.490000 -16.380000 0.460000) + (point 361.290000 95.800000 -15.050000 0.230000) + 3) + (segment 684 + (point 361.290000 95.800000 -15.050000 0.230000) + (point 363.880000 98.810000 -13.320000 0.230000) + 3) + (segment 685 + (point 363.880000 98.810000 -13.320000 0.230000) + (point 363.880000 98.810000 -13.350000 0.230000) + 3) + (segment 686 + (point 363.880000 98.810000 -13.350000 0.230000) + (point 365.000000 102.060000 -11.320000 0.230000) + 3) + (segment 687 + (point 365.000000 102.060000 -11.320000 0.230000) + (point 365.000000 102.060000 -11.300000 0.230000) + 3) + (segment 688 + (point 365.000000 102.060000 -11.300000 0.230000) + (point 365.630000 103.400000 -9.670000 0.230000) + 3) + (segment 689 + (point 365.630000 103.400000 -9.670000 0.230000) + (point 365.870000 106.440000 -9.670000 0.230000) + 3) + (segment 690 + (point 365.870000 106.440000 -9.670000 0.230000) + (point 366.190000 107.120000 -8.250000 0.230000) + 3) + (segment 691 + (point 366.190000 107.120000 -8.250000 0.230000) + (point 367.700000 108.660000 -7.300000 0.230000) + 3) + (segment 692 + (point 367.700000 108.660000 -7.300000 0.230000) + (point 367.700000 108.660000 -7.320000 0.230000) + 3) + (segment 693 + (point 367.700000 108.660000 -7.320000 0.230000) + (point 368.460000 109.430000 -5.500000 0.230000) + 3) + (segment 694 + (point 368.460000 109.430000 -5.500000 0.230000) + (point 369.990000 110.990000 -3.700000 0.230000) + 3) + (segment 695 + (point 369.990000 110.990000 -3.700000 0.230000) + (point 369.990000 110.990000 -3.720000 0.230000) + 3) + (segment 696 + (point 369.990000 110.990000 -3.720000 0.230000) + (point 371.050000 112.440000 -1.600000 0.230000) + 3) + (segment 697 + (point 371.050000 112.440000 -1.600000 0.230000) + (point 371.050000 112.440000 -1.630000 0.230000) + 3)) + (branch 32 30 + (segment 698 + (point 282.420000 28.350000 -2.080000 0.690000) + (point 284.380000 30.010000 -0.900000 0.460000) + 3) + (segment 699 + (point 284.380000 30.010000 -0.900000 0.460000) + (point 283.990000 31.710000 -0.250000 0.460000) + 3) + (segment 700 + (point 283.990000 31.710000 -0.250000 0.460000) + (point 286.220000 32.230000 0.170000 0.460000) + 3) + (segment 701 + (point 286.220000 32.230000 0.170000 0.460000) + (point 288.010000 32.650000 0.170000 0.460000) + 3) + (segment 702 + (point 288.010000 32.650000 0.170000 0.460000) + (point 290.240000 33.180000 0.450000 0.460000) + 3) + (segment 703 + (point 290.240000 33.180000 0.450000 0.460000) + (point 291.760000 34.730000 1.380000 0.460000) + 3) + (segment 704 + (point 291.760000 34.730000 1.380000 0.460000) + (point 294.130000 34.680000 2.630000 0.460000) + 3) + (segment 705 + (point 294.130000 34.680000 2.630000 0.460000) + (point 295.470000 35.000000 2.380000 0.460000) + 3) + (segment 706 + (point 295.470000 35.000000 2.380000 0.460000) + (point 297.650000 33.720000 3.080000 0.460000) + 3) + (segment 707 + (point 297.650000 33.720000 3.080000 0.460000) + (point 300.200000 34.920000 3.080000 0.460000) + 3) + (segment 708 + (point 300.200000 34.920000 3.080000 0.460000) + (point 302.490000 37.230000 3.080000 0.460000) + 3) + (segment 709 + (point 302.490000 37.230000 3.080000 0.460000) + (point 304.580000 38.330000 3.820000 0.460000) + 3) + (segment 710 + (point 304.580000 38.330000 3.820000 0.460000) + (point 304.580000 38.330000 3.800000 0.460000) + 3) + (segment 711 + (point 304.580000 38.330000 3.800000 0.460000) + (point 306.810000 38.850000 5.220000 0.460000) + 3) + (segment 712 + (point 306.810000 38.850000 5.220000 0.460000) + (point 309.320000 38.240000 6.800000 0.460000) + 3) + (segment 713 + (point 309.320000 38.240000 6.800000 0.460000) + (point 309.320000 38.240000 6.780000 0.460000) + 3) + (segment 714 + (point 309.320000 38.240000 6.780000 0.460000) + (point 310.520000 39.110000 7.570000 0.460000) + 3) + (segment 715 + (point 310.520000 39.110000 7.570000 0.460000) + (point 312.040000 40.680000 7.550000 0.460000) + 3) + (segment 716 + (point 312.040000 40.680000 7.550000 0.460000) + (point 314.720000 41.300000 9.820000 0.460000) + 3) + (segment 717 + (point 314.720000 41.300000 9.820000 0.460000) + (point 316.510000 41.720000 10.070000 0.230000) + 3) + (segment 718 + (point 316.510000 41.720000 10.070000 0.230000) + (point 316.370000 42.290000 10.070000 0.230000) + 3) + (segment 719 + (point 316.370000 42.290000 10.070000 0.230000) + (point 317.720000 42.600000 10.820000 0.230000) + 3) + (segment 720 + (point 317.720000 42.600000 10.820000 0.230000) + (point 317.270000 42.490000 10.820000 0.230000) + 3) + (segment 721 + (point 317.270000 42.490000 10.820000 0.230000) + (point 321.860000 42.980000 11.530000 0.230000) + 3) + (segment 722 + (point 321.860000 42.980000 11.530000 0.230000) + (point 325.000000 43.710000 12.100000 0.230000) + 3) + (segment 723 + (point 325.000000 43.710000 12.100000 0.230000) + (point 327.720000 46.140000 12.320000 0.230000) + 3) + (segment 724 + (point 327.720000 46.140000 12.320000 0.230000) + (point 328.080000 48.620000 13.520000 0.230000) + 3) + (segment 725 + (point 328.080000 48.620000 13.520000 0.230000) + (point 328.080000 48.620000 13.470000 0.230000) + 3) + (segment 726 + (point 328.080000 48.620000 13.470000 0.230000) + (point 330.360000 50.940000 13.600000 0.230000) + 3) + (segment 727 + (point 330.360000 50.940000 13.600000 0.230000) + (point 332.740000 50.900000 14.300000 0.230000) + 3) + (segment 728 + (point 332.740000 50.900000 14.300000 0.230000) + (point 335.010000 53.210000 15.550000 0.230000) + 3) + (segment 729 + (point 335.010000 53.210000 15.550000 0.230000) + (point 334.880000 53.790000 15.550000 0.230000) + 3) + (segment 730 + (point 334.880000 53.790000 15.550000 0.230000) + (point 337.190000 51.940000 16.900000 0.230000) + 3) + (segment 731 + (point 337.190000 51.940000 16.900000 0.230000) + (point 340.590000 51.550000 18.450000 0.230000) + 3) + (segment 732 + (point 340.590000 51.550000 18.450000 0.230000) + (point 340.590000 51.550000 18.400000 0.230000) + 3) + (segment 733 + (point 340.590000 51.550000 18.400000 0.230000) + (point 344.120000 50.570000 20.650000 0.230000) + 3) + (segment 734 + (point 344.120000 50.570000 20.650000 0.230000) + (point 343.990000 51.140000 20.650000 0.230000) + 3) + (segment 735 + (point 343.990000 51.140000 20.650000 0.230000) + (point 347.500000 50.180000 22.500000 0.230000) + 3) + (segment 736 + (point 347.500000 50.180000 22.500000 0.230000) + (point 347.060000 50.080000 22.500000 0.230000) + 3) + (segment 737 + (point 347.060000 50.080000 22.500000 0.230000) + (point 350.270000 48.440000 22.050000 0.230000) + 3) + (segment 738 + (point 350.270000 48.440000 22.050000 0.230000) + (point 353.890000 51.080000 21.420000 0.230000) + 3) + (segment 739 + (point 353.890000 51.080000 21.420000 0.230000) + (point 353.890000 51.080000 21.400000 0.230000) + 3) + (segment 740 + (point 353.890000 51.080000 21.400000 0.230000) + (point 356.660000 49.330000 22.500000 0.230000) + 3) + (segment 741 + (point 356.660000 49.330000 22.500000 0.230000) + (point 356.660000 49.330000 22.470000 0.230000) + 3) + (segment 742 + (point 356.660000 49.330000 22.470000 0.230000) + (point 358.000000 49.650000 20.330000 0.230000) + 3) + (segment 743 + (point 358.000000 49.650000 20.330000 0.230000) + (point 358.000000 49.650000 20.300000 0.230000) + 3) + (segment 744 + (point 358.000000 49.650000 20.300000 0.230000) + (point 359.510000 51.200000 17.380000 0.230000) + 3) + (segment 745 + (point 359.510000 51.200000 17.380000 0.230000) + (point 359.070000 51.100000 17.300000 0.230000) + 3) + (segment 746 + (point 359.070000 51.100000 17.300000 0.230000) + (point 363.530000 52.150000 15.820000 0.230000) + 3) + (segment 747 + (point 363.530000 52.150000 15.820000 0.230000) + (point 366.080000 53.340000 14.480000 0.230000) + 3) + (segment 748 + (point 366.080000 53.340000 14.480000 0.230000) + (point 366.080000 53.340000 14.450000 0.230000) + 3) + (segment 749 + (point 366.080000 53.340000 14.450000 0.230000) + (point 366.970000 53.550000 12.200000 0.230000) + 3) + (segment 750 + (point 366.970000 53.550000 12.200000 0.230000) + (point 366.970000 53.550000 12.150000 0.230000) + 3)) + (branch 33 -1 + (segment 751 + (point 273.970000 18.010000 5.450000 0.690000) + (point 273.970000 18.010000 5.450000 0.690000) + 3) + (segment 752 + (point 273.970000 18.010000 5.450000 0.690000) + (point 276.340000 17.970000 5.450000 0.690000) + 3) + (segment 753 + (point 276.340000 17.970000 5.450000 0.690000) + (point 279.280000 17.460000 5.450000 0.690000) + 3) + (segment 754 + (point 279.280000 17.460000 5.450000 0.690000) + (point 280.570000 15.970000 5.800000 0.690000) + 3) + (segment 755 + (point 280.570000 15.970000 5.800000 0.690000) + (point 281.470000 16.180000 7.380000 0.690000) + 3) + (segment 756 + (point 281.470000 16.180000 7.380000 0.690000) + (point 282.100000 17.520000 9.350000 0.690000) + 3)) + (branch 34 33 + (segment 757 + (point 282.100000 17.520000 9.350000 0.690000) + (point 284.950000 19.390000 8.750000 0.690000) + 3) + (segment 758 + (point 284.950000 19.390000 8.750000 0.690000) + (point 287.940000 20.700000 8.350000 0.690000) + 3) + (segment 759 + (point 287.940000 20.700000 8.350000 0.690000) + (point 287.940000 20.700000 8.320000 0.690000) + 3) + (segment 760 + (point 287.940000 20.700000 8.320000 0.690000) + (point 289.920000 22.350000 7.700000 0.690000) + 3)) + (branch 35 34 + (segment 761 + (point 289.920000 22.350000 7.700000 0.690000) + (point 292.600000 22.970000 7.570000 0.460000) + 3) + (segment 762 + (point 292.600000 22.970000 7.570000 0.460000) + (point 295.090000 22.370000 6.730000 0.460000) + 3) + (segment 763 + (point 295.090000 22.370000 6.730000 0.460000) + (point 296.970000 20.410000 6.150000 0.460000) + 3) + (segment 764 + (point 296.970000 20.410000 6.150000 0.460000) + (point 296.970000 20.410000 6.130000 0.460000) + 3) + (segment 765 + (point 296.970000 20.410000 6.130000 0.460000) + (point 298.220000 17.120000 4.500000 0.460000) + 3) + (segment 766 + (point 298.220000 17.120000 4.500000 0.460000) + (point 300.710000 16.510000 3.270000 0.460000) + 3) + (segment 767 + (point 300.710000 16.510000 3.270000 0.460000) + (point 300.710000 16.510000 3.250000 0.460000) + 3) + (segment 768 + (point 300.710000 16.510000 3.250000 0.460000) + (point 302.580000 14.550000 1.950000 0.460000) + 3) + (segment 769 + (point 302.580000 14.550000 1.950000 0.460000) + (point 302.580000 14.550000 1.920000 0.460000) + 3) + (segment 770 + (point 302.580000 14.550000 1.920000 0.460000) + (point 304.890000 12.720000 1.350000 0.460000) + 3) + (segment 771 + (point 304.890000 12.720000 1.350000 0.460000) + (point 306.760000 10.770000 0.900000 0.460000) + 3) + (segment 772 + (point 306.760000 10.770000 0.900000 0.460000) + (point 306.760000 10.770000 0.880000 0.460000) + 3) + (segment 773 + (point 306.760000 10.770000 0.880000 0.460000) + (point 308.200000 8.710000 -0.050000 0.460000) + 3) + (segment 774 + (point 308.200000 8.710000 -0.050000 0.460000) + (point 308.860000 5.880000 0.600000 0.460000) + 3) + (segment 775 + (point 308.860000 5.880000 0.600000 0.460000) + (point 308.860000 5.880000 0.520000 0.460000) + 3) + (segment 776 + (point 308.860000 5.880000 0.520000 0.460000) + (point 311.490000 4.710000 -0.850000 0.460000) + 3) + (segment 777 + (point 311.490000 4.710000 -0.850000 0.460000) + (point 311.490000 4.710000 -0.880000 0.460000) + 3) + (segment 778 + (point 311.490000 4.710000 -0.880000 0.460000) + (point 314.690000 3.070000 -1.700000 0.460000) + 3) + (segment 779 + (point 314.690000 3.070000 -1.700000 0.460000) + (point 318.350000 1.540000 -1.580000 0.460000) + 3) + (segment 780 + (point 318.350000 1.540000 -1.580000 0.460000) + (point 318.350000 1.540000 -1.600000 0.460000) + 3) + (segment 781 + (point 318.350000 1.540000 -1.600000 0.460000) + (point 321.440000 0.470000 0.930000 0.460000) + 3) + (segment 782 + (point 321.440000 0.470000 0.930000 0.460000) + (point 324.640000 -1.160000 1.700000 0.460000) + 3) + (segment 783 + (point 324.640000 -1.160000 1.700000 0.460000) + (point 327.270000 -2.340000 2.400000 0.460000) + 3) + (segment 784 + (point 327.270000 -2.340000 2.400000 0.460000) + (point 330.790000 -3.300000 2.550000 0.460000) + 3) + (segment 785 + (point 330.790000 -3.300000 2.550000 0.460000) + (point 333.870000 -4.380000 1.700000 0.460000) + 3) + (segment 786 + (point 333.870000 -4.380000 1.700000 0.460000) + (point 333.870000 -4.380000 1.670000 0.460000) + 3) + (segment 787 + (point 333.870000 -4.380000 1.670000 0.460000) + (point 335.240000 -8.240000 1.770000 0.460000) + 3) + (segment 788 + (point 335.240000 -8.240000 1.770000 0.460000) + (point 337.380000 -11.320000 1.770000 0.460000) + 3) + (segment 789 + (point 337.380000 -11.320000 1.770000 0.460000) + (point 341.570000 -15.120000 1.770000 0.460000) + 3) + (segment 790 + (point 341.570000 -15.120000 1.770000 0.460000) + (point 342.870000 -16.600000 2.570000 0.460000) + 3) + (segment 791 + (point 342.870000 -16.600000 2.570000 0.460000) + (point 344.550000 -19.790000 3.570000 0.460000) + 3) + (segment 792 + (point 344.550000 -19.790000 3.570000 0.460000) + (point 344.550000 -19.790000 3.550000 0.460000) + 3) + (segment 793 + (point 344.550000 -19.790000 3.550000 0.460000) + (point 346.240000 -22.980000 3.650000 0.460000) + 3) + (segment 794 + (point 346.240000 -22.980000 3.650000 0.460000) + (point 348.380000 -26.070000 4.500000 0.460000) + 3) + (segment 795 + (point 348.380000 -26.070000 4.500000 0.460000) + (point 351.080000 -29.590000 5.650000 0.460000) + 3) + (segment 796 + (point 351.080000 -29.590000 5.650000 0.460000) + (point 353.230000 -32.690000 7.770000 0.460000) + 3) + (segment 797 + (point 353.230000 -32.690000 7.770000 0.460000) + (point 353.230000 -32.690000 7.750000 0.460000) + 3) + (segment 798 + (point 353.230000 -32.690000 7.750000 0.460000) + (point 353.570000 -36.180000 9.150000 0.460000) + 3) + (segment 799 + (point 353.570000 -36.180000 9.150000 0.460000) + (point 353.570000 -36.180000 9.100000 0.460000) + 3) + (segment 800 + (point 353.570000 -36.180000 9.100000 0.460000) + (point 356.300000 -39.720000 10.150000 0.460000) + 3) + (segment 801 + (point 356.300000 -39.720000 10.150000 0.460000) + (point 359.320000 -42.600000 10.950000 0.460000) + 3) + (segment 802 + (point 359.320000 -42.600000 10.950000 0.460000) + (point 360.430000 -45.330000 12.450000 0.460000) + 3) + (segment 803 + (point 360.430000 -45.330000 12.450000 0.460000) + (point 360.430000 -45.330000 12.350000 0.460000) + 3) + (segment 804 + (point 360.430000 -45.330000 12.350000 0.460000) + (point 361.100000 -48.150000 14.050000 0.460000) + 3) + (segment 805 + (point 361.100000 -48.150000 14.050000 0.460000) + (point 361.100000 -48.150000 14.020000 0.460000) + 3) + (segment 806 + (point 361.100000 -48.150000 14.020000 0.460000) + (point 361.130000 -52.330000 12.950000 0.460000) + 3) + (segment 807 + (point 361.130000 -52.330000 12.950000 0.460000) + (point 362.510000 -56.180000 14.380000 0.460000) + 3) + (segment 808 + (point 362.510000 -56.180000 14.380000 0.460000) + (point 364.730000 -61.640000 15.200000 0.460000) + 3) + (segment 809 + (point 364.730000 -61.640000 15.200000 0.460000) + (point 367.620000 -63.940000 12.700000 0.460000) + 3) + (segment 810 + (point 367.620000 -63.940000 12.700000 0.460000) + (point 367.170000 -64.050000 12.700000 0.460000) + 3) + (segment 811 + (point 367.170000 -64.050000 12.700000 0.460000) + (point 370.830000 -65.590000 11.530000 0.460000) + 3) + (segment 812 + (point 370.830000 -65.590000 11.530000 0.460000) + (point 370.830000 -65.590000 11.500000 0.460000) + 3) + (segment 813 + (point 370.830000 -65.590000 11.500000 0.460000) + (point 373.770000 -66.080000 10.200000 0.460000) + 3) + (segment 814 + (point 373.770000 -66.080000 10.200000 0.460000) + (point 373.770000 -66.080000 10.170000 0.460000) + 3) + (segment 815 + (point 373.770000 -66.080000 10.170000 0.460000) + (point 375.830000 -66.810000 7.850000 0.460000) + 3) + (segment 816 + (point 375.830000 -66.810000 7.850000 0.460000) + (point 375.830000 -66.810000 7.700000 0.460000) + 3)) + (branch 36 34 + (segment 817 + (point 289.920000 22.350000 7.700000 0.690000) + (point 289.260000 25.180000 6.700000 0.460000) + 3) + (segment 818 + (point 289.260000 25.180000 6.700000 0.460000) + (point 291.040000 25.600000 7.150000 0.460000) + 3) + (segment 819 + (point 291.040000 25.600000 7.150000 0.460000) + (point 292.430000 27.710000 7.150000 0.460000) + 3) + (segment 820 + (point 292.430000 27.710000 7.150000 0.460000) + (point 293.950000 29.260000 8.750000 0.460000) + 3) + (segment 821 + (point 293.950000 29.260000 8.750000 0.460000) + (point 293.870000 31.630000 10.350000 0.460000) + 3) + (segment 822 + (point 293.870000 31.630000 10.350000 0.460000) + (point 296.230000 31.590000 11.400000 0.460000) + 3) + (segment 823 + (point 296.230000 31.590000 11.400000 0.460000) + (point 299.050000 31.650000 12.350000 0.460000) + 3) + (segment 824 + (point 299.050000 31.650000 12.350000 0.460000) + (point 300.110000 33.090000 13.570000 0.460000) + 3) + (segment 825 + (point 300.110000 33.090000 13.570000 0.460000) + (point 299.580000 35.350000 16.630000 0.460000) + 3) + (segment 826 + (point 299.580000 35.350000 16.630000 0.460000) + (point 299.950000 37.840000 18.050000 0.460000) + 3) + (segment 827 + (point 299.950000 37.840000 18.050000 0.460000) + (point 299.690000 38.960000 20.230000 0.460000) + 3) + (segment 828 + (point 299.690000 38.960000 20.230000 0.460000) + (point 300.590000 39.170000 23.230000 0.460000) + 3)) + (branch 37 33 + (segment 829 + (point 282.100000 17.520000 9.350000 0.690000) + (point 282.990000 17.730000 10.480000 0.690000) + 3) + (segment 830 + (point 282.990000 17.730000 10.480000 0.690000) + (point 285.480000 17.130000 12.170000 0.690000) + 3) + (segment 831 + (point 285.480000 17.130000 12.170000 0.690000) + (point 286.460000 14.960000 13.570000 0.460000) + 3) + (segment 832 + (point 286.460000 14.960000 13.570000 0.460000) + (point 285.480000 11.150000 14.670000 0.460000) + 3) + (segment 833 + (point 285.480000 11.150000 14.670000 0.460000) + (point 285.880000 9.450000 16.020000 0.460000) + 3) + (segment 834 + (point 285.880000 9.450000 16.020000 0.460000) + (point 285.510000 6.990000 17.720000 0.460000) + 3) + (segment 835 + (point 285.510000 6.990000 17.720000 0.460000) + (point 286.360000 5.390000 18.700000 0.460000) + 3) + (segment 836 + (point 286.360000 5.390000 18.700000 0.460000) + (point 286.490000 4.820000 18.700000 0.460000) + 3) + (segment 837 + (point 286.490000 4.820000 18.700000 0.460000) + (point 287.780000 3.340000 20.000000 0.460000) + 3) + (segment 838 + (point 287.780000 3.340000 20.000000 0.460000) + (point 290.860000 2.260000 20.830000 0.460000) + 3) + (segment 839 + (point 290.860000 2.260000 20.830000 0.460000) + (point 294.200000 0.060000 21.670000 0.460000) + 3) + (segment 840 + (point 294.200000 0.060000 21.670000 0.460000) + (point 296.510000 -1.790000 22.120000 0.460000) + 3) + (segment 841 + (point 296.510000 -1.790000 22.120000 0.460000) + (point 298.250000 -3.170000 22.970000 0.460000) + 3) + (segment 842 + (point 298.250000 -3.170000 22.970000 0.460000) + (point 298.920000 -6.000000 23.520000 0.460000) + 3) + (segment 843 + (point 298.920000 -6.000000 23.520000 0.460000) + (point 300.030000 -8.730000 24.580000 0.460000) + 3) + (segment 844 + (point 300.030000 -8.730000 24.580000 0.460000) + (point 302.790000 -10.470000 25.700000 0.460000) + 3) + (segment 845 + (point 302.790000 -10.470000 25.700000 0.460000) + (point 306.010000 -12.110000 26.250000 0.460000) + 3) + (segment 846 + (point 306.010000 -12.110000 26.250000 0.460000) + (point 305.400000 -17.610000 26.950000 0.460000) + 3) + (segment 847 + (point 305.400000 -17.610000 26.950000 0.460000) + (point 305.890000 -21.680000 27.220000 0.460000) + 3) + (segment 848 + (point 305.890000 -21.680000 27.220000 0.460000) + (point 306.550000 -24.510000 28.420000 0.460000) + 3) + (segment 849 + (point 306.550000 -24.510000 28.420000 0.460000) + (point 306.050000 -26.420000 29.480000 0.460000) + 3) + (segment 850 + (point 306.050000 -26.420000 29.480000 0.460000) + (point 307.610000 -29.050000 30.600000 0.460000) + 3) + (segment 851 + (point 307.610000 -29.050000 30.600000 0.460000) + (point 311.590000 -29.900000 31.480000 0.460000) + 3) + (segment 852 + (point 311.590000 -29.900000 31.480000 0.460000) + (point 314.980000 -30.310000 31.920000 0.460000) + 3) + (segment 853 + (point 314.980000 -30.310000 31.920000 0.460000) + (point 316.760000 -29.890000 31.920000 0.460000) + 3) + (segment 854 + (point 316.760000 -29.890000 31.920000 0.460000) + (point 318.550000 -29.470000 33.800000 0.460000) + 3) + (segment 855 + (point 318.550000 -29.470000 33.800000 0.460000) + (point 319.320000 -28.700000 35.380000 0.460000) + 3)) + (branch 38 -1 + (segment 856 + (point 268.250000 8.310000 8.880000 0.690000) + (point 268.250000 8.310000 8.880000 0.690000) + 3) + (segment 857 + (point 268.250000 8.310000 8.880000 0.690000) + (point 270.240000 5.790000 8.900000 0.690000) + 3) + (segment 858 + (point 270.240000 5.790000 8.900000 0.690000) + (point 271.090000 4.200000 9.430000 0.690000) + 3) + (segment 859 + (point 271.090000 4.200000 9.430000 0.690000) + (point 270.280000 1.620000 9.430000 0.690000) + 3) + (segment 860 + (point 270.280000 1.620000 9.430000 0.690000) + (point 268.300000 -0.030000 10.750000 0.690000) + 3) + (segment 861 + (point 268.300000 -0.030000 10.750000 0.690000) + (point 267.360000 -2.040000 12.830000 0.690000) + 3)) + (branch 39 38 + (segment 862 + (point 267.360000 -2.040000 12.830000 0.690000) + (point 269.060000 -1.190000 12.830000 0.460000) + 3) + (segment 863 + (point 269.060000 -1.190000 12.830000 0.460000) + (point 271.870000 -1.130000 12.830000 0.460000) + 3) + (segment 864 + (point 271.870000 -1.130000 12.830000 0.460000) + (point 273.620000 -2.510000 14.300000 0.460000) + 3) + (segment 865 + (point 273.620000 -2.510000 14.300000 0.460000) + (point 273.490000 -1.940000 14.270000 0.460000) + 3) + (segment 866 + (point 273.490000 -1.940000 14.270000 0.460000) + (point 275.400000 -2.090000 16.670000 0.460000) + 3) + (segment 867 + (point 275.400000 -2.090000 16.670000 0.460000) + (point 277.000000 -2.900000 18.350000 0.460000) + 3)) + (branch 40 39 + (segment 868 + (point 277.000000 -2.900000 18.350000 0.460000) + (point 276.950000 -4.700000 19.630000 0.460000) + 3) + (segment 869 + (point 276.950000 -4.700000 19.630000 0.460000) + (point 278.250000 -6.210000 21.980000 0.460000) + 3) + (segment 870 + (point 278.250000 -6.210000 21.980000 0.460000) + (point 278.250000 -6.210000 21.950000 0.460000) + 3) + (segment 871 + (point 278.250000 -6.210000 21.950000 0.460000) + (point 278.880000 -4.860000 24.200000 0.460000) + 3) + (segment 872 + (point 278.880000 -4.860000 24.200000 0.460000) + (point 279.310000 -4.760000 24.200000 0.460000) + 3) + (segment 873 + (point 279.310000 -4.760000 24.200000 0.460000) + (point 275.210000 -3.330000 25.100000 0.460000) + 3) + (segment 874 + (point 275.210000 -3.330000 25.100000 0.460000) + (point 275.260000 -1.530000 25.730000 0.460000) + 3) + (segment 875 + (point 275.260000 -1.530000 25.730000 0.460000) + (point 276.340000 -0.070000 27.300000 0.460000) + 3) + (segment 876 + (point 276.340000 -0.070000 27.300000 0.460000) + (point 275.310000 0.280000 28.900000 0.460000) + 3) + (segment 877 + (point 275.310000 0.280000 28.900000 0.460000) + (point 274.150000 1.200000 31.170000 0.460000) + 3) + (segment 878 + (point 274.150000 1.200000 31.170000 0.460000) + (point 273.140000 1.560000 33.420000 0.460000) + 3) + (segment 879 + (point 273.140000 1.560000 33.420000 0.460000) + (point 273.140000 1.560000 33.500000 0.460000) + 3)) + (branch 41 39 + (segment 880 + (point 277.000000 -2.900000 18.350000 0.460000) + (point 279.630000 -4.080000 19.170000 0.460000) + 3) + (segment 881 + (point 279.630000 -4.080000 19.170000 0.460000) + (point 281.050000 -6.140000 20.350000 0.460000) + 3) + (segment 882 + (point 281.050000 -6.140000 20.350000 0.460000) + (point 283.790000 -3.710000 20.350000 0.460000) + 3) + (segment 883 + (point 283.790000 -3.710000 20.350000 0.460000) + (point 286.590000 -3.650000 21.850000 0.460000) + 3) + (segment 884 + (point 286.590000 -3.650000 21.850000 0.460000) + (point 289.230000 -4.820000 23.050000 0.460000) + 3) + (segment 885 + (point 289.230000 -4.820000 23.050000 0.460000) + (point 292.310000 -5.880000 23.050000 0.460000) + 3) + (segment 886 + (point 292.310000 -5.880000 23.050000 0.460000) + (point 295.700000 -6.290000 23.570000 0.460000) + 3) + (segment 887 + (point 295.700000 -6.290000 23.570000 0.460000) + (point 295.700000 -6.290000 23.550000 0.460000) + 3) + (segment 888 + (point 295.700000 -6.290000 23.550000 0.460000) + (point 298.020000 -8.130000 23.420000 0.460000) + 3) + (segment 889 + (point 298.020000 -8.130000 23.420000 0.460000) + (point 302.560000 -9.460000 23.800000 0.460000) + 3) + (segment 890 + (point 302.560000 -9.460000 23.800000 0.460000) + (point 306.400000 -9.750000 24.620000 0.460000) + 3) + (segment 891 + (point 306.400000 -9.750000 24.620000 0.460000) + (point 310.820000 -10.510000 24.620000 0.460000) + 3) + (segment 892 + (point 310.820000 -10.510000 24.620000 0.460000) + (point 312.250000 -12.560000 25.400000 0.460000) + 3) + (segment 893 + (point 312.250000 -12.560000 25.400000 0.460000) + (point 314.120000 -14.520000 25.520000 0.460000) + 3) + (segment 894 + (point 314.120000 -14.520000 25.520000 0.460000) + (point 318.800000 -16.400000 26.770000 0.460000) + 3) + (segment 895 + (point 318.800000 -16.400000 26.770000 0.460000) + (point 322.450000 -17.940000 26.800000 0.460000) + 3) + (segment 896 + (point 322.450000 -17.940000 26.800000 0.460000) + (point 326.110000 -19.470000 25.350000 0.460000) + 3) + (segment 897 + (point 326.110000 -19.470000 25.350000 0.460000) + (point 330.440000 -17.850000 25.350000 0.460000) + 3) + (segment 898 + (point 330.440000 -17.850000 25.350000 0.460000) + (point 334.010000 -17.010000 23.700000 0.460000) + 3) + (segment 899 + (point 334.010000 -17.010000 23.700000 0.460000) + (point 334.010000 -17.010000 23.670000 0.460000) + 3) + (segment 900 + (point 334.010000 -17.010000 23.670000 0.460000) + (point 336.130000 -15.930000 21.920000 0.460000) + 3) + (segment 901 + (point 336.130000 -15.930000 21.920000 0.460000) + (point 339.510000 -16.330000 21.480000 0.460000) + 3) + (segment 902 + (point 339.510000 -16.330000 21.480000 0.460000) + (point 342.680000 -13.790000 21.200000 0.460000) + 3) + (segment 903 + (point 342.680000 -13.790000 21.200000 0.460000) + (point 346.080000 -14.180000 21.580000 0.460000) + 3) + (segment 904 + (point 346.080000 -14.180000 21.580000 0.460000) + (point 349.910000 -14.480000 21.580000 0.460000) + 3) + (segment 905 + (point 349.910000 -14.480000 21.580000 0.460000) + (point 351.700000 -14.070000 19.630000 0.460000) + 3) + (segment 906 + (point 351.700000 -14.070000 19.630000 0.460000) + (point 353.490000 -13.650000 17.270000 0.460000) + 3) + (segment 907 + (point 353.490000 -13.650000 17.270000 0.460000) + (point 356.250000 -15.390000 15.200000 0.460000) + 3) + (segment 908 + (point 356.250000 -15.390000 15.200000 0.460000) + (point 356.250000 -15.390000 15.170000 0.460000) + 3) + (segment 909 + (point 356.250000 -15.390000 15.170000 0.460000) + (point 357.590000 -15.070000 12.880000 0.460000) + 3) + (segment 910 + (point 357.590000 -15.070000 12.880000 0.460000) + (point 360.230000 -16.250000 11.650000 0.460000) + 3) + (segment 911 + (point 360.230000 -16.250000 11.650000 0.460000) + (point 363.300000 -17.310000 10.970000 0.460000) + 3) + (segment 912 + (point 363.300000 -17.310000 10.970000 0.460000) + (point 367.480000 -21.110000 13.380000 0.460000) + 3) + (segment 913 + (point 367.480000 -21.110000 13.380000 0.460000) + (point 370.510000 -23.980000 12.980000 0.460000) + 3) + (segment 914 + (point 370.510000 -23.980000 12.980000 0.460000) + (point 373.100000 -26.960000 12.980000 0.460000) + 3) + (segment 915 + (point 373.100000 -26.960000 12.980000 0.460000) + (point 372.970000 -26.400000 12.980000 0.460000) + 3) + (segment 916 + (point 372.970000 -26.400000 12.980000 0.460000) + (point 374.970000 -28.910000 12.950000 0.460000) + 3) + (segment 917 + (point 374.970000 -28.910000 12.950000 0.460000) + (point 374.970000 -28.910000 12.930000 0.460000) + 3) + (segment 918 + (point 374.970000 -28.910000 12.930000 0.460000) + (point 377.330000 -28.960000 12.880000 0.230000) + 3) + (segment 919 + (point 377.330000 -28.960000 12.880000 0.230000) + (point 378.670000 -28.640000 10.400000 0.230000) + 3)) + (branch 42 38 + (segment 920 + (point 267.360000 -2.040000 12.830000 0.690000) + (point 266.820000 -5.760000 12.000000 0.690000) + 3) + (segment 921 + (point 266.820000 -5.760000 12.000000 0.690000) + (point 267.620000 -9.150000 11.320000 0.690000) + 3) + (segment 922 + (point 267.620000 -9.150000 11.320000 0.690000) + (point 267.620000 -9.150000 11.300000 0.690000) + 3) + (segment 923 + (point 267.620000 -9.150000 11.300000 0.690000) + (point 269.800000 -10.440000 11.130000 0.690000) + 3) + (segment 924 + (point 269.800000 -10.440000 11.130000 0.690000) + (point 269.800000 -10.440000 11.100000 0.690000) + 3) + (segment 925 + (point 269.800000 -10.440000 11.100000 0.690000) + (point 272.250000 -12.850000 10.020000 0.690000) + 3) + (segment 926 + (point 272.250000 -12.850000 10.020000 0.690000) + (point 272.250000 -12.850000 10.000000 0.690000) + 3) + (segment 927 + (point 272.250000 -12.850000 10.000000 0.690000) + (point 273.990000 -14.240000 8.300000 0.690000) + 3) + (segment 928 + (point 273.990000 -14.240000 8.300000 0.690000) + (point 275.020000 -14.590000 6.600000 0.690000) + 3)) + (branch 43 42 + (segment 929 + (point 275.020000 -14.590000 6.600000 0.690000) + (point 275.910000 -14.400000 4.900000 0.460000) + 3) + (segment 930 + (point 275.910000 -14.400000 4.900000 0.460000) + (point 276.620000 -15.420000 3.250000 0.460000) + 3) + (segment 931 + (point 276.620000 -15.420000 3.250000 0.460000) + (point 276.620000 -15.420000 3.220000 0.460000) + 3) + (segment 932 + (point 276.620000 -15.420000 3.220000 0.460000) + (point 277.280000 -18.260000 1.530000 0.460000) + 3) + (segment 933 + (point 277.280000 -18.260000 1.530000 0.460000) + (point 279.920000 -19.430000 1.530000 0.460000) + 3) + (segment 934 + (point 279.920000 -19.430000 1.530000 0.460000) + (point 282.290000 -19.480000 1.530000 0.460000) + 3) + (segment 935 + (point 282.290000 -19.480000 1.530000 0.460000) + (point 283.180000 -19.270000 1.530000 0.460000) + 3) + (segment 936 + (point 283.180000 -19.270000 1.530000 0.460000) + (point 283.050000 -18.690000 1.530000 0.460000) + 3) + (segment 937 + (point 283.050000 -18.690000 1.530000 0.460000) + (point 283.930000 -18.490000 0.150000 0.460000) + 3) + (segment 938 + (point 283.930000 -18.490000 0.150000 0.460000) + (point 284.690000 -17.720000 -1.530000 0.460000) + 3) + (segment 939 + (point 284.690000 -17.720000 -1.530000 0.460000) + (point 286.660000 -16.060000 -2.880000 0.460000) + 3) + (segment 940 + (point 286.660000 -16.060000 -2.880000 0.460000) + (point 289.120000 -18.470000 -3.470000 0.460000) + 3) + (segment 941 + (point 289.120000 -18.470000 -3.470000 0.460000) + (point 291.300000 -19.750000 -3.650000 0.460000) + 3) + (segment 942 + (point 291.300000 -19.750000 -3.650000 0.460000) + (point 291.300000 -19.750000 -3.670000 0.460000) + 3) + (segment 943 + (point 291.300000 -19.750000 -3.670000 0.460000) + (point 293.430000 -22.840000 -4.470000 0.460000) + 3) + (segment 944 + (point 293.430000 -22.840000 -4.470000 0.460000) + (point 295.310000 -24.790000 -5.370000 0.460000) + 3) + (segment 945 + (point 295.310000 -24.790000 -5.370000 0.460000) + (point 296.470000 -25.710000 -5.270000 0.460000) + 3) + (segment 946 + (point 296.470000 -25.710000 -5.270000 0.460000) + (point 298.640000 -26.990000 -3.450000 0.460000) + 3)) + (branch 44 43 + (segment 947 + (point 298.640000 -26.990000 -3.450000 0.460000) + (point 300.560000 -27.130000 -5.130000 0.460000) + 3) + (segment 948 + (point 300.560000 -27.130000 -5.130000 0.460000) + (point 302.490000 -27.290000 -7.070000 0.460000) + 3) + (segment 949 + (point 302.490000 -27.290000 -7.070000 0.460000) + (point 302.490000 -27.290000 -7.100000 0.460000) + 3) + (segment 950 + (point 302.490000 -27.290000 -7.100000 0.460000) + (point 306.900000 -28.040000 -8.570000 0.460000) + 3) + (segment 951 + (point 306.900000 -28.040000 -8.570000 0.460000) + (point 309.400000 -28.650000 -8.900000 0.460000) + 3) + (segment 952 + (point 309.400000 -28.650000 -8.900000 0.460000) + (point 310.880000 -28.900000 -10.700000 0.460000) + 3) + (segment 953 + (point 310.880000 -28.900000 -10.700000 0.460000) + (point 312.040000 -29.820000 -13.550000 0.460000) + 3) + (segment 954 + (point 312.040000 -29.820000 -13.550000 0.460000) + (point 312.040000 -29.820000 -13.570000 0.460000) + 3) + (segment 955 + (point 312.040000 -29.820000 -13.570000 0.460000) + (point 314.660000 -30.990000 -16.670000 0.460000) + 3) + (segment 956 + (point 314.660000 -30.990000 -16.670000 0.460000) + (point 314.660000 -30.990000 -16.700000 0.460000) + 3) + (segment 957 + (point 314.660000 -30.990000 -16.700000 0.460000) + (point 316.900000 -30.480000 -19.230000 0.460000) + 3) + (segment 958 + (point 316.900000 -30.480000 -19.230000 0.460000) + (point 316.900000 -30.480000 -19.270000 0.460000) + 3) + (segment 959 + (point 316.900000 -30.480000 -19.270000 0.460000) + (point 320.680000 -32.570000 -20.650000 0.460000) + 3) + (segment 960 + (point 320.680000 -32.570000 -20.650000 0.460000) + (point 323.320000 -33.740000 -22.970000 0.460000) + 3) + (segment 961 + (point 323.320000 -33.740000 -22.970000 0.460000) + (point 323.320000 -33.740000 -23.020000 0.460000) + 3) + (segment 962 + (point 323.320000 -33.740000 -23.020000 0.460000) + (point 324.030000 -34.770000 -26.300000 0.460000) + 3) + (segment 963 + (point 324.030000 -34.770000 -26.300000 0.460000) + (point 324.030000 -34.770000 -26.320000 0.460000) + 3) + (segment 964 + (point 324.030000 -34.770000 -26.320000 0.460000) + (point 323.270000 -35.550000 -30.420000 0.230000) + 3) + (segment 965 + (point 323.270000 -35.550000 -30.420000 0.230000) + (point 323.400000 -36.120000 -30.450000 0.230000) + 3)) + (branch 45 43 + (segment 966 + (point 298.640000 -26.990000 -3.450000 0.460000) + (point 300.830000 -28.270000 -3.950000 0.230000) + 3) + (segment 967 + (point 300.830000 -28.270000 -3.950000 0.230000) + (point 304.360000 -29.230000 -2.730000 0.230000) + 3) + (segment 968 + (point 304.360000 -29.230000 -2.730000 0.230000) + (point 306.940000 -32.210000 -1.770000 0.230000) + 3) + (segment 969 + (point 306.940000 -32.210000 -1.770000 0.230000) + (point 308.990000 -32.920000 -1.170000 0.230000) + 3) + (segment 970 + (point 308.990000 -32.920000 -1.170000 0.230000) + (point 312.070000 -34.000000 2.780000 0.230000) + 3) + (segment 971 + (point 312.070000 -34.000000 2.780000 0.230000) + (point 313.800000 -35.380000 2.780000 0.230000) + 3) + (segment 972 + (point 313.800000 -35.380000 2.780000 0.230000) + (point 315.860000 -36.090000 2.780000 0.230000) + 3) + (segment 973 + (point 315.860000 -36.090000 2.780000 0.230000) + (point 318.090000 -35.570000 2.220000 0.230000) + 3) + (segment 974 + (point 318.090000 -35.570000 2.220000 0.230000) + (point 318.090000 -35.570000 2.200000 0.230000) + 3) + (segment 975 + (point 318.090000 -35.570000 2.200000 0.230000) + (point 322.110000 -34.620000 2.600000 0.230000) + 3) + (segment 976 + (point 322.110000 -34.620000 2.600000 0.230000) + (point 324.030000 -34.770000 2.900000 0.230000) + 3) + (segment 977 + (point 324.030000 -34.770000 2.900000 0.230000) + (point 324.730000 -35.800000 4.320000 0.230000) + 3) + (segment 978 + (point 324.730000 -35.800000 4.320000 0.230000) + (point 326.220000 -36.050000 6.220000 0.230000) + 3) + (segment 979 + (point 326.220000 -36.050000 6.220000 0.230000) + (point 329.030000 -35.990000 8.150000 0.230000) + 3) + (segment 980 + (point 329.030000 -35.990000 8.150000 0.230000) + (point 329.030000 -35.990000 8.130000 0.230000) + 3) + (segment 981 + (point 329.030000 -35.990000 8.130000 0.230000) + (point 331.130000 -34.910000 4.170000 0.230000) + 3) + (segment 982 + (point 331.130000 -34.910000 4.170000 0.230000) + (point 335.150000 -33.960000 2.670000 0.230000) + 3)) + (branch 46 42 + (segment 983 + (point 275.020000 -14.590000 6.600000 0.690000) + (point 274.790000 -17.630000 6.600000 0.460000) + 3) + (segment 984 + (point 274.790000 -17.630000 6.600000 0.460000) + (point 273.790000 -21.440000 7.300000 0.460000) + 3) + (segment 985 + (point 273.790000 -21.440000 7.300000 0.460000) + (point 274.140000 -24.950000 9.050000 0.460000) + 3) + (segment 986 + (point 274.140000 -24.950000 9.050000 0.460000) + (point 274.230000 -27.310000 10.520000 0.460000) + 3) + (segment 987 + (point 274.230000 -27.310000 10.520000 0.460000) + (point 274.230000 -27.310000 10.500000 0.460000) + 3) + (segment 988 + (point 274.230000 -27.310000 10.500000 0.460000) + (point 275.970000 -28.690000 11.680000 0.460000) + 3) + (segment 989 + (point 275.970000 -28.690000 11.680000 0.460000) + (point 277.840000 -30.650000 12.570000 0.460000) + 3) + (segment 990 + (point 277.840000 -30.650000 12.570000 0.460000) + (point 279.260000 -32.700000 13.750000 0.460000) + 3) + (segment 991 + (point 279.260000 -32.700000 13.750000 0.460000) + (point 280.110000 -34.300000 13.950000 0.460000) + 3) + (segment 992 + (point 280.110000 -34.300000 13.950000 0.460000) + (point 280.950000 -35.890000 14.970000 0.460000) + 3) + (segment 993 + (point 280.950000 -35.890000 14.970000 0.460000) + (point 283.270000 -37.740000 14.970000 0.460000) + 3) + (segment 994 + (point 283.270000 -37.740000 14.970000 0.460000) + (point 282.910000 -40.200000 14.670000 0.460000) + 3) + (segment 995 + (point 282.910000 -40.200000 14.670000 0.460000) + (point 283.880000 -42.370000 15.550000 0.460000) + 3) + (segment 996 + (point 283.880000 -42.370000 15.550000 0.460000) + (point 285.440000 -44.980000 16.100000 0.460000) + 3) + (segment 997 + (point 285.440000 -44.980000 16.100000 0.460000) + (point 289.220000 -47.080000 16.100000 0.460000) + 3) + (segment 998 + (point 289.220000 -47.080000 16.100000 0.460000) + (point 291.150000 -47.230000 16.730000 0.460000) + 3) + (segment 999 + (point 291.150000 -47.230000 16.730000 0.460000) + (point 293.990000 -51.340000 16.730000 0.460000) + 3)) + (branch 47 46 + (segment 1000 + (point 293.990000 -51.340000 16.730000 0.460000) + (point 293.050000 -53.370000 16.730000 0.460000) + 3) + (segment 1001 + (point 293.050000 -53.370000 16.730000 0.460000) + (point 292.690000 -55.860000 17.450000 0.460000) + 3) + (segment 1002 + (point 292.690000 -55.860000 17.450000 0.460000) + (point 293.050000 -59.360000 17.130000 0.460000) + 3) + (segment 1003 + (point 293.050000 -59.360000 17.130000 0.460000) + (point 292.500000 -63.060000 20.130000 0.460000) + 3) + (segment 1004 + (point 292.500000 -63.060000 20.130000 0.460000) + (point 293.350000 -64.660000 21.180000 0.460000) + 3) + (segment 1005 + (point 293.350000 -64.660000 21.180000 0.460000) + (point 289.950000 -64.250000 22.250000 0.460000) + 3) + (segment 1006 + (point 289.950000 -64.250000 22.250000 0.460000) + (point 287.760000 -62.980000 23.670000 0.460000) + 3) + (segment 1007 + (point 287.760000 -62.980000 23.670000 0.460000) + (point 286.170000 -62.160000 25.350000 0.460000) + 3) + (segment 1008 + (point 286.170000 -62.160000 25.350000 0.460000) + (point 286.030000 -61.600000 25.350000 0.460000) + 3) + (segment 1009 + (point 286.030000 -61.600000 25.350000 0.460000) + (point 283.980000 -60.880000 26.550000 0.230000) + 3) + (segment 1010 + (point 283.980000 -60.880000 26.550000 0.230000) + (point 282.940000 -60.520000 29.020000 0.230000) + 3) + (segment 1011 + (point 282.940000 -60.520000 29.020000 0.230000) + (point 281.920000 -60.170000 31.380000 0.230000) + 3) + (segment 1012 + (point 281.920000 -60.170000 31.380000 0.230000) + (point 281.340000 -59.710000 32.350000 0.230000) + 3)) + (branch 48 46 + (segment 1013 + (point 293.990000 -51.340000 16.730000 0.460000) + (point 296.620000 -52.530000 18.080000 0.460000) + 3) + (segment 1014 + (point 296.620000 -52.530000 18.080000 0.460000) + (point 297.680000 -57.060000 17.700000 0.460000) + 3) + (segment 1015 + (point 297.680000 -57.060000 17.700000 0.460000) + (point 298.930000 -60.350000 17.700000 0.460000) + 3) + (segment 1016 + (point 298.930000 -60.350000 17.700000 0.460000) + (point 303.030000 -61.770000 17.700000 0.460000) + 3) + (segment 1017 + (point 303.030000 -61.770000 17.700000 0.460000) + (point 304.010000 -63.940000 16.470000 0.460000) + 3) + (segment 1018 + (point 304.010000 -63.940000 16.470000 0.460000) + (point 304.490000 -68.000000 16.470000 0.460000) + 3) + (segment 1019 + (point 304.490000 -68.000000 16.470000 0.460000) + (point 305.920000 -70.050000 15.900000 0.460000) + 3) + (segment 1020 + (point 305.920000 -70.050000 15.900000 0.460000) + (point 309.210000 -74.070000 15.220000 0.460000) + 3) + (segment 1021 + (point 309.210000 -74.070000 15.220000 0.460000) + (point 309.210000 -74.070000 15.200000 0.460000) + 3) + (segment 1022 + (point 309.210000 -74.070000 15.200000 0.460000) + (point 308.980000 -77.100000 14.650000 0.460000) + 3) + (segment 1023 + (point 308.980000 -77.100000 14.650000 0.460000) + (point 312.090000 -82.350000 14.650000 0.460000) + 3) + (segment 1024 + (point 312.090000 -82.350000 14.650000 0.460000) + (point 314.400000 -84.190000 12.070000 0.460000) + 3) + (segment 1025 + (point 314.400000 -84.190000 12.070000 0.460000) + (point 317.310000 -86.490000 11.350000 0.460000) + 3) + (segment 1026 + (point 317.310000 -86.490000 11.350000 0.460000) + (point 320.020000 -90.040000 12.220000 0.460000) + 3) + (segment 1027 + (point 320.020000 -90.040000 12.220000 0.460000) + (point 321.980000 -94.350000 11.800000 0.460000) + 3) + (segment 1028 + (point 321.980000 -94.350000 11.800000 0.460000) + (point 322.770000 -97.750000 11.800000 0.460000) + 3) + (segment 1029 + (point 322.770000 -97.750000 11.800000 0.460000) + (point 324.780000 -100.270000 10.630000 0.460000) + 3) + (segment 1030 + (point 324.780000 -100.270000 10.630000 0.460000) + (point 324.780000 -100.270000 10.600000 0.460000) + 3) + (segment 1031 + (point 324.780000 -100.270000 10.600000 0.460000) + (point 325.570000 -103.670000 9.500000 0.460000) + 3) + (segment 1032 + (point 325.570000 -103.670000 9.500000 0.460000) + (point 323.870000 -106.450000 8.050000 0.460000) + 3) + (segment 1033 + (point 323.870000 -106.450000 8.050000 0.460000) + (point 323.870000 -106.450000 8.020000 0.460000) + 3) + (segment 1034 + (point 323.870000 -106.450000 8.020000 0.460000) + (point 324.980000 -109.190000 6.730000 0.460000) + 3) + (segment 1035 + (point 324.980000 -109.190000 6.730000 0.460000) + (point 326.940000 -113.500000 4.600000 0.460000) + 3) + (segment 1036 + (point 326.940000 -113.500000 4.600000 0.460000) + (point 326.790000 -118.910000 4.600000 0.460000) + 3) + (segment 1037 + (point 326.790000 -118.910000 4.600000 0.460000) + (point 327.720000 -122.870000 4.600000 0.460000) + 3) + (segment 1038 + (point 327.720000 -122.870000 4.600000 0.460000) + (point 328.780000 -127.400000 3.420000 0.460000) + 3) + (segment 1039 + (point 328.780000 -127.400000 3.420000 0.460000) + (point 330.340000 -130.020000 2.170000 0.460000) + 3) + (segment 1040 + (point 330.340000 -130.020000 2.170000 0.460000) + (point 331.310000 -132.180000 0.820000 0.460000) + 3) + (segment 1041 + (point 331.310000 -132.180000 0.820000 0.460000) + (point 333.140000 -135.930000 0.280000 0.460000) + 3) + (segment 1042 + (point 333.140000 -135.930000 0.280000 0.460000) + (point 333.300000 -140.670000 -0.750000 0.460000) + 3) + (segment 1043 + (point 333.300000 -140.670000 -0.750000 0.460000) + (point 334.630000 -146.330000 -0.800000 0.460000) + 3) + (segment 1044 + (point 334.630000 -146.330000 -0.800000 0.460000) + (point 335.300000 -149.180000 0.570000 0.460000) + 3) + (segment 1045 + (point 335.300000 -149.180000 0.570000 0.460000) + (point 333.810000 -154.890000 2.080000 0.460000) + 3) + (segment 1046 + (point 333.810000 -154.890000 2.080000 0.460000) + (point 333.440000 -157.380000 1.630000 0.230000) + 3) + (segment 1047 + (point 333.440000 -157.380000 1.630000 0.230000) + (point 333.440000 -157.380000 1.580000 0.230000) + 3) + (segment 1048 + (point 333.440000 -157.380000 1.580000 0.230000) + (point 331.790000 -158.360000 -0.370000 0.230000) + 3) + (segment 1049 + (point 331.790000 -158.360000 -0.370000 0.230000) + (point 331.790000 -158.360000 -0.430000 0.230000) + 3)) + (branch 49 -1 + (segment 1050 + (point 267.790000 12.250000 -16.130000 0.460000) + (point 267.790000 12.250000 -16.130000 0.460000) + 3) + (segment 1051 + (point 267.790000 12.250000 -16.130000 0.460000) + (point 269.840000 11.540000 -16.130000 0.460000) + 3) + (segment 1052 + (point 269.840000 11.540000 -16.130000 0.460000) + (point 270.380000 9.270000 -16.130000 0.460000) + 3) + (segment 1053 + (point 270.380000 9.270000 -16.130000 0.460000) + (point 269.430000 7.260000 -16.130000 0.460000) + 3) + (segment 1054 + (point 269.430000 7.260000 -16.130000 0.460000) + (point 269.300000 7.830000 -16.130000 0.460000) + 3) + (segment 1055 + (point 269.300000 7.830000 -16.130000 0.460000) + (point 268.100000 6.960000 -18.420000 0.460000) + 3) + (segment 1056 + (point 268.100000 6.960000 -18.420000 0.460000) + (point 268.500000 5.250000 -19.550000 0.460000) + 3) + (segment 1057 + (point 268.500000 5.250000 -19.550000 0.460000) + (point 272.340000 4.960000 -19.550000 0.460000) + 3) + (segment 1058 + (point 272.340000 4.960000 -19.550000 0.460000) + (point 274.120000 5.380000 -21.480000 0.460000) + 3) + (segment 1059 + (point 274.120000 5.380000 -21.480000 0.460000) + (point 276.040000 5.230000 -21.480000 0.460000) + 3) + (segment 1060 + (point 276.040000 5.230000 -21.480000 0.460000) + (point 276.310000 4.090000 -23.100000 0.460000) + 3) + (segment 1061 + (point 276.310000 4.090000 -23.100000 0.460000) + (point 276.170000 4.660000 -23.100000 0.460000) + 3) + (segment 1062 + (point 276.170000 4.660000 -23.100000 0.460000) + (point 274.650000 3.110000 -24.020000 0.460000) + 3) + (segment 1063 + (point 274.650000 3.110000 -24.020000 0.460000) + (point 274.650000 3.110000 -24.050000 0.460000) + 3) + (segment 1064 + (point 274.650000 3.110000 -24.050000 0.460000) + (point 274.700000 4.910000 -25.870000 0.460000) + 3) + (segment 1065 + (point 274.700000 4.910000 -25.870000 0.460000) + (point 275.510000 7.490000 -27.420000 0.460000) + 3) + (segment 1066 + (point 275.510000 7.490000 -27.420000 0.460000) + (point 276.750000 4.200000 -29.220000 0.460000) + 3) + (segment 1067 + (point 276.750000 4.200000 -29.220000 0.460000) + (point 278.350000 3.380000 -30.770000 0.460000) + 3) + (segment 1068 + (point 278.350000 3.380000 -30.770000 0.460000) + (point 278.930000 2.920000 -32.250000 0.460000) + 3) + (segment 1069 + (point 278.930000 2.920000 -32.250000 0.460000) + (point 280.010000 4.370000 -34.170000 0.460000) + 3) + (segment 1070 + (point 280.010000 4.370000 -34.170000 0.460000) + (point 279.490000 6.630000 -36.100000 0.460000) + 3) + (segment 1071 + (point 279.490000 6.630000 -36.100000 0.460000) + (point 281.850000 6.590000 -37.520000 0.460000) + 3) + (segment 1072 + (point 281.850000 6.590000 -37.520000 0.460000) + (point 284.020000 5.310000 -38.880000 0.460000) + 3) + (segment 1073 + (point 284.020000 5.310000 -38.880000 0.460000) + (point 286.530000 4.690000 -39.320000 0.460000) + 3) + (segment 1074 + (point 286.530000 4.690000 -39.320000 0.460000) + (point 287.690000 3.780000 -40.700000 0.460000) + 3) + (segment 1075 + (point 287.690000 3.780000 -40.700000 0.460000) + (point 288.890000 4.650000 -41.220000 0.460000) + 3) + (segment 1076 + (point 288.890000 4.650000 -41.220000 0.460000) + (point 288.890000 4.650000 -41.250000 0.460000) + 3) + (segment 1077 + (point 288.890000 4.650000 -41.250000 0.460000) + (point 291.660000 2.920000 -43.250000 0.460000) + 3) + (segment 1078 + (point 291.660000 2.920000 -43.250000 0.460000) + (point 292.950000 1.420000 -44.950000 0.460000) + 3) + (segment 1079 + (point 292.950000 1.420000 -44.950000 0.460000) + (point 294.100000 0.510000 -47.050000 0.460000) + 3) + (segment 1080 + (point 294.100000 0.510000 -47.050000 0.460000) + (point 297.490000 0.110000 -48.380000 0.460000) + 3) + (segment 1081 + (point 297.490000 0.110000 -48.380000 0.460000) + (point 298.790000 -1.390000 -50.920000 0.460000) + 3) + (segment 1082 + (point 298.790000 -1.390000 -50.920000 0.460000) + (point 301.150000 -1.430000 -51.470000 0.460000) + 3) + (segment 1083 + (point 301.150000 -1.430000 -51.470000 0.460000) + (point 302.260000 -4.150000 -53.420000 0.460000) + 3) + (segment 1084 + (point 302.260000 -4.150000 -53.420000 0.460000) + (point 304.320000 -4.870000 -56.030000 0.460000) + 3) + (segment 1085 + (point 304.320000 -4.870000 -56.030000 0.460000) + (point 306.230000 -5.020000 -58.550000 0.460000) + 3) + (segment 1086 + (point 306.230000 -5.020000 -58.550000 0.460000) + (point 306.230000 -5.020000 -58.580000 0.460000) + 3) + (segment 1087 + (point 306.230000 -5.020000 -58.580000 0.460000) + (point 308.430000 -6.290000 -60.750000 0.460000) + 3) + (segment 1088 + (point 308.430000 -6.290000 -60.750000 0.460000) + (point 308.430000 -6.290000 -60.770000 0.460000) + 3) + (segment 1089 + (point 308.430000 -6.290000 -60.770000 0.460000) + (point 310.340000 -6.450000 -63.450000 0.460000) + 3) + (segment 1090 + (point 310.340000 -6.450000 -63.450000 0.460000) + (point 312.260000 -6.590000 -64.780000 0.460000) + 3) + (segment 1091 + (point 312.260000 -6.590000 -64.780000 0.460000) + (point 314.620000 -6.640000 -66.770000 0.460000) + 3) + (segment 1092 + (point 314.620000 -6.640000 -66.770000 0.460000) + (point 317.840000 -8.270000 -68.380000 0.460000) + 3) + (segment 1093 + (point 317.840000 -8.270000 -68.380000 0.460000) + (point 320.820000 -6.960000 -70.250000 0.460000) + 3) + (segment 1094 + (point 320.820000 -6.960000 -70.250000 0.460000) + (point 324.270000 -5.560000 -71.170000 0.230000) + 3) + (segment 1095 + (point 324.270000 -5.560000 -71.170000 0.230000) + (point 328.420000 -5.180000 -72.930000 0.230000) + 3) + (segment 1096 + (point 328.420000 -5.180000 -72.930000 0.230000) + (point 330.470000 -5.910000 -75.430000 0.230000) + 3) + (segment 1097 + (point 330.470000 -5.910000 -75.430000 0.230000) + (point 330.470000 -5.910000 -75.550000 0.230000) + 3) + (segment 1098 + (point 330.470000 -5.910000 -75.550000 0.230000) + (point 331.090000 -4.560000 -78.400000 0.230000) + 3) + (segment 1099 + (point 331.090000 -4.560000 -78.400000 0.230000) + (point 334.220000 -3.830000 -80.150000 0.230000) + 3) + (segment 1100 + (point 334.220000 -3.830000 -80.150000 0.230000) + (point 335.430000 -2.940000 -82.020000 0.230000) + 3) + (segment 1101 + (point 335.430000 -2.940000 -82.020000 0.230000) + (point 335.430000 -2.940000 -82.050000 0.230000) + 3) + (segment 1102 + (point 335.430000 -2.940000 -82.050000 0.230000) + (point 338.370000 -3.450000 -84.220000 0.230000) + 3) + (segment 1103 + (point 338.370000 -3.450000 -84.220000 0.230000) + (point 338.370000 -3.450000 -84.250000 0.230000) + 3) + (segment 1104 + (point 338.370000 -3.450000 -84.250000 0.230000) + (point 340.490000 -2.360000 -86.620000 0.230000) + 3) + (segment 1105 + (point 340.490000 -2.360000 -86.620000 0.230000) + (point 342.710000 -1.840000 -88.770000 0.230000) + 3) + (segment 1106 + (point 342.710000 -1.840000 -88.770000 0.230000) + (point 342.710000 -1.840000 -88.800000 0.230000) + 3) + (segment 1107 + (point 342.710000 -1.840000 -88.800000 0.230000) + (point 344.630000 -1.980000 -90.200000 0.230000) + 3) + (segment 1108 + (point 344.630000 -1.980000 -90.200000 0.230000) + (point 345.570000 0.020000 -90.200000 0.230000) + 3) + (segment 1109 + (point 345.570000 0.020000 -90.200000 0.230000) + (point 347.360000 0.450000 -91.700000 0.230000) + 3) + (segment 1110 + (point 347.360000 0.450000 -91.700000 0.230000) + (point 350.180000 0.510000 -93.230000 0.230000) + 3) + (segment 1111 + (point 350.180000 0.510000 -93.230000 0.230000) + (point 351.950000 0.930000 -94.400000 0.230000) + 3) + (segment 1112 + (point 351.950000 0.930000 -94.400000 0.230000) + (point 352.400000 1.030000 -94.400000 0.230000) + 3) + (segment 1113 + (point 352.400000 1.030000 -94.400000 0.230000) + (point 357.140000 0.950000 -95.320000 0.230000) + 3) + (segment 1114 + (point 357.140000 0.950000 -95.320000 0.230000) + (point 362.000000 0.290000 -96.470000 0.230000) + 3) + (segment 1115 + (point 362.000000 0.290000 -96.470000 0.230000) + (point 364.370000 0.250000 -97.500000 0.230000) + 3) + (segment 1116 + (point 364.370000 0.250000 -97.500000 0.230000) + (point 368.120000 2.320000 -97.650000 0.230000) + 3) + (segment 1117 + (point 368.120000 2.320000 -97.650000 0.230000) + (point 370.220000 3.400000 -97.630000 0.230000) + 3) + (segment 1118 + (point 370.220000 3.400000 -97.630000 0.230000) + (point 373.170000 2.910000 -99.800000 0.230000) + 3) + (segment 1119 + (point 373.170000 2.910000 -99.800000 0.230000) + (point 373.170000 2.910000 -99.820000 0.230000) + 3) + (segment 1120 + (point 373.170000 2.910000 -99.820000 0.230000) + (point 374.910000 1.530000 -101.130000 0.230000) + 3)) + (branch 50 -1 + (segment 1121 + (point 260.470000 9.340000 -15.500000 0.460000) + (point 260.470000 9.340000 -15.500000 0.460000) + 3) + (segment 1122 + (point 260.470000 9.340000 -15.500000 0.460000) + (point 258.180000 7.020000 -15.500000 0.460000) + 3) + (segment 1123 + (point 258.180000 7.020000 -15.500000 0.460000) + (point 256.220000 5.360000 -15.500000 0.460000) + 3) + (segment 1124 + (point 256.220000 5.360000 -15.500000 0.460000) + (point 253.800000 3.600000 -15.500000 0.460000) + 3) + (segment 1125 + (point 253.800000 3.600000 -15.500000 0.460000) + (point 252.280000 2.050000 -16.250000 0.460000) + 3) + (segment 1126 + (point 252.280000 2.050000 -16.250000 0.460000) + (point 250.630000 1.070000 -17.130000 0.460000) + 3) + (segment 1127 + (point 250.630000 1.070000 -17.130000 0.460000) + (point 250.630000 1.070000 -17.150000 0.460000) + 3) + (segment 1128 + (point 250.630000 1.070000 -17.150000 0.460000) + (point 250.900000 -0.060000 -17.800000 0.460000) + 3) + (segment 1129 + (point 250.900000 -0.060000 -17.800000 0.460000) + (point 250.900000 -0.060000 -17.820000 0.460000) + 3) + (segment 1130 + (point 250.900000 -0.060000 -17.820000 0.460000) + (point 252.630000 -1.450000 -19.420000 0.460000) + 3) + (segment 1131 + (point 252.630000 -1.450000 -19.420000 0.460000) + (point 252.630000 -1.450000 -19.450000 0.460000) + 3) + (segment 1132 + (point 252.630000 -1.450000 -19.450000 0.460000) + (point 252.680000 0.360000 -21.320000 0.460000) + 3) + (segment 1133 + (point 252.680000 0.360000 -21.320000 0.460000) + (point 252.680000 0.360000 -21.380000 0.460000) + 3) + (segment 1134 + (point 252.680000 0.360000 -21.380000 0.460000) + (point 251.210000 0.610000 -23.230000 0.460000) + 3) + (segment 1135 + (point 251.210000 0.610000 -23.230000 0.460000) + (point 249.420000 0.190000 -25.270000 0.460000) + 3) + (segment 1136 + (point 249.420000 0.190000 -25.270000 0.460000) + (point 248.490000 -1.830000 -26.480000 0.460000) + 3) + (segment 1137 + (point 248.490000 -1.830000 -26.480000 0.460000) + (point 248.490000 -1.830000 -26.500000 0.460000) + 3) + (segment 1138 + (point 248.490000 -1.830000 -26.500000 0.460000) + (point 246.640000 -4.040000 -26.770000 0.460000) + 3) + (segment 1139 + (point 246.640000 -4.040000 -26.770000 0.460000) + (point 244.410000 -4.570000 -27.200000 0.460000) + 3) + (segment 1140 + (point 244.410000 -4.570000 -27.200000 0.460000) + (point 242.620000 -4.990000 -28.950000 0.460000) + 3) + (segment 1141 + (point 242.620000 -4.990000 -28.950000 0.460000) + (point 242.620000 -4.990000 -28.980000 0.460000) + 3) + (segment 1142 + (point 242.620000 -4.990000 -28.980000 0.460000) + (point 241.740000 -5.200000 -32.020000 0.460000) + 3) + (segment 1143 + (point 241.740000 -5.200000 -32.020000 0.460000) + (point 241.740000 -5.200000 -32.050000 0.460000) + 3) + (segment 1144 + (point 241.740000 -5.200000 -32.050000 0.460000) + (point 243.340000 -6.010000 -36.000000 0.460000) + 3) + (segment 1145 + (point 243.340000 -6.010000 -36.000000 0.460000) + (point 243.340000 -6.010000 -36.030000 0.460000) + 3) + (segment 1146 + (point 243.340000 -6.010000 -36.030000 0.460000) + (point 243.740000 -7.710000 -38.850000 0.460000) + 3) + (segment 1147 + (point 243.740000 -7.710000 -38.850000 0.460000) + (point 243.740000 -7.710000 -38.880000 0.460000) + 3) + (segment 1148 + (point 243.740000 -7.710000 -38.880000 0.460000) + (point 240.870000 -9.580000 -38.850000 0.460000) + 3) + (segment 1149 + (point 240.870000 -9.580000 -38.850000 0.460000) + (point 238.010000 -11.440000 -39.900000 0.460000) + 3)) + (branch 51 50 + (segment 1150 + (point 238.010000 -11.440000 -39.900000 0.460000) + (point 238.410000 -13.140000 -41.930000 0.230000) + 3) + (segment 1151 + (point 238.410000 -13.140000 -41.930000 0.230000) + (point 236.760000 -14.130000 -44.430000 0.230000) + 3) + (segment 1152 + (point 236.760000 -14.130000 -44.430000 0.230000) + (point 236.760000 -14.130000 -44.500000 0.230000) + 3) + (segment 1153 + (point 236.760000 -14.130000 -44.500000 0.230000) + (point 236.580000 -15.360000 -42.400000 0.230000) + 3) + (segment 1154 + (point 236.580000 -15.360000 -42.400000 0.230000) + (point 235.410000 -14.440000 -48.220000 0.230000) + 3) + (segment 1155 + (point 235.410000 -14.440000 -48.220000 0.230000) + (point 235.410000 -14.440000 -48.250000 0.230000) + 3) + (segment 1156 + (point 235.410000 -14.440000 -48.250000 0.230000) + (point 234.200000 -15.320000 -51.200000 0.230000) + 3) + (segment 1157 + (point 234.200000 -15.320000 -51.200000 0.230000) + (point 234.200000 -15.320000 -51.220000 0.230000) + 3) + (segment 1158 + (point 234.200000 -15.320000 -51.220000 0.230000) + (point 235.680000 -15.570000 -54.300000 0.230000) + 3) + (segment 1159 + (point 235.680000 -15.570000 -54.300000 0.230000) + (point 235.680000 -15.570000 -54.320000 0.230000) + 3) + (segment 1160 + (point 235.680000 -15.570000 -54.320000 0.230000) + (point 236.400000 -16.600000 -57.530000 0.230000) + 3) + (segment 1161 + (point 236.400000 -16.600000 -57.530000 0.230000) + (point 236.400000 -16.600000 -57.550000 0.230000) + 3) + (segment 1162 + (point 236.400000 -16.600000 -57.550000 0.230000) + (point 237.870000 -16.860000 -60.630000 0.230000) + 3) + (segment 1163 + (point 237.870000 -16.860000 -60.630000 0.230000) + (point 237.870000 -16.860000 -60.650000 0.230000) + 3) + (segment 1164 + (point 237.870000 -16.860000 -60.650000 0.230000) + (point 237.960000 -19.210000 -63.500000 0.230000) + 3) + (segment 1165 + (point 237.960000 -19.210000 -63.500000 0.230000) + (point 238.090000 -19.780000 -63.820000 0.230000) + 3) + (segment 1166 + (point 238.090000 -19.780000 -63.820000 0.230000) + (point 238.090000 -19.780000 -63.880000 0.230000) + 3) + (segment 1167 + (point 238.090000 -19.780000 -63.880000 0.230000) + (point 235.580000 -19.180000 -67.070000 0.230000) + 3) + (segment 1168 + (point 235.580000 -19.180000 -67.070000 0.230000) + (point 235.580000 -19.180000 -67.130000 0.230000) + 3) + (segment 1169 + (point 235.580000 -19.180000 -67.130000 0.230000) + (point 235.530000 -20.990000 -71.820000 0.230000) + 3) + (segment 1170 + (point 235.530000 -20.990000 -71.820000 0.230000) + (point 236.110000 -21.440000 -74.400000 0.230000) + 3) + (segment 1171 + (point 236.110000 -21.440000 -74.400000 0.230000) + (point 236.110000 -21.440000 -74.420000 0.230000) + 3) + (segment 1172 + (point 236.110000 -21.440000 -74.420000 0.230000) + (point 234.460000 -22.430000 -74.420000 0.230000) + 3) + (segment 1173 + (point 234.460000 -22.430000 -74.420000 0.230000) + (point 235.610000 -23.350000 -77.250000 0.230000) + 3) + (segment 1174 + (point 235.610000 -23.350000 -77.250000 0.230000) + (point 235.610000 -23.350000 -77.280000 0.230000) + 3) + (segment 1175 + (point 235.610000 -23.350000 -77.280000 0.230000) + (point 237.090000 -23.600000 -80.820000 0.230000) + 3) + (segment 1176 + (point 237.090000 -23.600000 -80.820000 0.230000) + (point 237.090000 -23.600000 -80.900000 0.230000) + 3) + (segment 1177 + (point 237.090000 -23.600000 -80.900000 0.230000) + (point 238.250000 -24.520000 -83.700000 0.230000) + 3) + (segment 1178 + (point 238.250000 -24.520000 -83.700000 0.230000) + (point 238.250000 -24.520000 -83.720000 0.230000) + 3) + (segment 1179 + (point 238.250000 -24.520000 -83.720000 0.230000) + (point 237.490000 -25.310000 -86.500000 0.230000) + 3) + (segment 1180 + (point 237.490000 -25.310000 -86.500000 0.230000) + (point 237.040000 -25.410000 -86.530000 0.230000) + 3) + (segment 1181 + (point 237.040000 -25.410000 -86.530000 0.230000) + (point 236.150000 -25.620000 -89.720000 0.230000) + 3) + (segment 1182 + (point 236.150000 -25.620000 -89.720000 0.230000) + (point 233.780000 -25.570000 -91.300000 0.230000) + 3) + (segment 1183 + (point 233.780000 -25.570000 -91.300000 0.230000) + (point 233.340000 -25.670000 -91.300000 0.230000) + 3) + (segment 1184 + (point 233.340000 -25.670000 -91.300000 0.230000) + (point 232.140000 -26.560000 -94.480000 0.230000) + 3) + (segment 1185 + (point 232.140000 -26.560000 -94.480000 0.230000) + (point 231.510000 -27.890000 -97.050000 0.230000) + 3) + (segment 1186 + (point 231.510000 -27.890000 -97.050000 0.230000) + (point 228.640000 -29.760000 -99.250000 0.230000) + 3) + (segment 1187 + (point 228.640000 -29.760000 -99.250000 0.230000) + (point 227.880000 -30.540000 -101.600000 0.230000) + 3) + (segment 1188 + (point 227.880000 -30.540000 -101.600000 0.230000) + (point 226.670000 -31.420000 -103.800000 0.230000) + 3) + (segment 1189 + (point 226.670000 -31.420000 -103.800000 0.230000) + (point 226.670000 -31.420000 -103.820000 0.230000) + 3) + (segment 1190 + (point 226.670000 -31.420000 -103.820000 0.230000) + (point 224.490000 -30.140000 -107.320000 0.230000) + 3) + (segment 1191 + (point 224.490000 -30.140000 -107.320000 0.230000) + (point 224.490000 -30.140000 -107.380000 0.230000) + 3) + (segment 1192 + (point 224.490000 -30.140000 -107.380000 0.230000) + (point 223.780000 -29.120000 -110.550000 0.230000) + 3) + (segment 1193 + (point 223.780000 -29.120000 -110.550000 0.230000) + (point 223.780000 -29.120000 -110.630000 0.230000) + 3) + (segment 1194 + (point 223.780000 -29.120000 -110.630000 0.230000) + (point 220.650000 -29.850000 -112.130000 0.230000) + 3) + (segment 1195 + (point 220.650000 -29.850000 -112.130000 0.230000) + (point 218.870000 -30.260000 -115.470000 0.230000) + 3) + (segment 1196 + (point 218.870000 -30.260000 -115.470000 0.230000) + (point 217.220000 -31.250000 -118.220000 0.230000) + 3) + (segment 1197 + (point 217.220000 -31.250000 -118.220000 0.230000) + (point 218.950000 -32.630000 -121.470000 0.230000) + 3) + (segment 1198 + (point 218.950000 -32.630000 -121.470000 0.230000) + (point 221.630000 -32.000000 -122.750000 0.230000) + 3) + (segment 1199 + (point 221.630000 -32.000000 -122.750000 0.230000) + (point 221.940000 -31.340000 -125.400000 0.230000) + 3) + (segment 1200 + (point 221.940000 -31.340000 -125.400000 0.230000) + (point 223.410000 -31.580000 -128.450000 0.230000) + 3) + (segment 1201 + (point 223.410000 -31.580000 -128.450000 0.230000) + (point 223.410000 -31.580000 -128.480000 0.230000) + 3) + (segment 1202 + (point 223.410000 -31.580000 -128.480000 0.230000) + (point 223.870000 -31.480000 -131.670000 0.230000) + 3) + (segment 1203 + (point 223.870000 -31.480000 -131.670000 0.230000) + (point 223.870000 -31.480000 -131.750000 0.230000) + 3) + (segment 1204 + (point 223.870000 -31.480000 -131.750000 0.230000) + (point 224.180000 -30.810000 -136.000000 0.230000) + 3) + (segment 1205 + (point 224.180000 -30.810000 -136.000000 0.230000) + (point 224.940000 -30.030000 -139.320000 0.230000) + 3)) + (branch 52 50 + (segment 1206 + (point 238.010000 -11.440000 -39.900000 0.460000) + (point 235.200000 -11.500000 -40.770000 0.460000) + 3) + (segment 1207 + (point 235.200000 -11.500000 -40.770000 0.460000) + (point 232.740000 -15.070000 -42.350000 0.460000) + 3) + (segment 1208 + (point 232.740000 -15.070000 -42.350000 0.460000) + (point 231.350000 -17.180000 -44.270000 0.460000) + 3) + (segment 1209 + (point 231.350000 -17.180000 -44.270000 0.460000) + (point 231.350000 -17.180000 -44.300000 0.460000) + 3) + (segment 1210 + (point 231.350000 -17.180000 -44.300000 0.460000) + (point 231.560000 -20.120000 -45.720000 0.460000) + 3) + (segment 1211 + (point 231.560000 -20.120000 -45.720000 0.460000) + (point 230.320000 -22.810000 -48.070000 0.460000) + 3) + (segment 1212 + (point 230.320000 -22.810000 -48.070000 0.460000) + (point 230.320000 -22.810000 -48.100000 0.460000) + 3) + (segment 1213 + (point 230.320000 -22.810000 -48.100000 0.460000) + (point 227.900000 -24.570000 -50.600000 0.460000) + 3) + (segment 1214 + (point 227.900000 -24.570000 -50.600000 0.460000) + (point 227.900000 -24.570000 -50.650000 0.460000) + 3) + (segment 1215 + (point 227.900000 -24.570000 -50.650000 0.460000) + (point 224.410000 -27.770000 -51.700000 0.460000) + 3) + (segment 1216 + (point 224.410000 -27.770000 -51.700000 0.460000) + (point 222.960000 -31.680000 -53.220000 0.460000) + 3) + (segment 1217 + (point 222.960000 -31.680000 -53.220000 0.460000) + (point 220.690000 -34.020000 -54.520000 0.460000) + 3) + (segment 1218 + (point 220.690000 -34.020000 -54.520000 0.460000) + (point 219.570000 -37.260000 -56.080000 0.460000) + 3) + (segment 1219 + (point 219.570000 -37.260000 -56.080000 0.460000) + (point 219.470000 -40.870000 -57.600000 0.460000) + 3) + (segment 1220 + (point 219.470000 -40.870000 -57.600000 0.460000) + (point 219.110000 -43.350000 -60.100000 0.460000) + 3) + (segment 1221 + (point 219.110000 -43.350000 -60.100000 0.460000) + (point 217.800000 -47.830000 -62.880000 0.460000) + 3) + (segment 1222 + (point 217.800000 -47.830000 -62.880000 0.460000) + (point 216.240000 -51.190000 -62.570000 0.230000) + 3) + (segment 1223 + (point 216.240000 -51.190000 -62.570000 0.230000) + (point 216.450000 -54.110000 -63.170000 0.230000) + 3) + (segment 1224 + (point 216.450000 -54.110000 -63.170000 0.230000) + (point 216.450000 -54.110000 -63.300000 0.230000) + 3) + (segment 1225 + (point 216.450000 -54.110000 -63.300000 0.230000) + (point 215.010000 -58.040000 -65.820000 0.230000) + 3) + (segment 1226 + (point 215.010000 -58.040000 -65.820000 0.230000) + (point 215.010000 -58.040000 -65.850000 0.230000) + 3) + (segment 1227 + (point 215.010000 -58.040000 -65.850000 0.230000) + (point 214.020000 -61.860000 -68.200000 0.230000) + 3) + (segment 1228 + (point 214.020000 -61.860000 -68.200000 0.230000) + (point 214.020000 -61.860000 -68.220000 0.230000) + 3) + (segment 1229 + (point 214.020000 -61.860000 -68.220000 0.230000) + (point 211.870000 -64.740000 -71.570000 0.230000) + 3) + (segment 1230 + (point 211.870000 -64.740000 -71.570000 0.230000) + (point 211.870000 -64.740000 -71.630000 0.230000) + 3) + (segment 1231 + (point 211.870000 -64.740000 -71.630000 0.230000) + (point 209.850000 -68.200000 -73.470000 0.230000) + 3) + (segment 1232 + (point 209.850000 -68.200000 -73.470000 0.230000) + (point 205.480000 -71.620000 -75.270000 0.230000) + 3) + (segment 1233 + (point 205.480000 -71.620000 -75.270000 0.230000) + (point 205.480000 -71.620000 -75.320000 0.230000) + 3) + (segment 1234 + (point 205.480000 -71.620000 -75.320000 0.230000) + (point 203.370000 -72.710000 -77.130000 0.230000) + 3) + (segment 1235 + (point 203.370000 -72.710000 -77.130000 0.230000) + (point 203.370000 -72.710000 -77.150000 0.230000) + 3) + (segment 1236 + (point 203.370000 -72.710000 -77.150000 0.230000) + (point 201.400000 -74.360000 -78.550000 0.230000) + 3) + (segment 1237 + (point 201.400000 -74.360000 -78.550000 0.230000) + (point 201.400000 -74.360000 -78.570000 0.230000) + 3) + (segment 1238 + (point 201.400000 -74.360000 -78.570000 0.230000) + (point 200.060000 -74.680000 -80.650000 0.230000) + 3) + (segment 1239 + (point 200.060000 -74.680000 -80.650000 0.230000) + (point 198.100000 -76.330000 -82.970000 0.230000) + 3) + (segment 1240 + (point 198.100000 -76.330000 -82.970000 0.230000) + (point 198.100000 -76.330000 -83.000000 0.230000) + 3) + (segment 1241 + (point 198.100000 -76.330000 -83.000000 0.230000) + (point 198.630000 -78.600000 -86.530000 0.230000) + 3) + (segment 1242 + (point 198.630000 -78.600000 -86.530000 0.230000) + (point 198.630000 -78.600000 -86.620000 0.230000) + 3)) + (branch 53 -1 + (segment 1243 + (point 264.440000 8.490000 -15.950000 0.460000) + (point 264.400000 6.680000 -15.950000 0.460000) + 3) + (segment 1244 + (point 264.400000 6.680000 -15.950000 0.460000) + (point 265.060000 3.850000 -15.950000 0.460000) + 3) + (segment 1245 + (point 265.060000 3.850000 -15.950000 0.460000) + (point 265.590000 1.590000 -16.700000 0.460000) + 3) + (segment 1246 + (point 265.590000 1.590000 -16.700000 0.460000) + (point 265.530000 -0.210000 -16.700000 0.460000) + 3) + (segment 1247 + (point 265.530000 -0.210000 -16.700000 0.460000) + (point 263.340000 1.060000 -16.700000 0.460000) + 3) + (segment 1248 + (point 263.340000 1.060000 -16.700000 0.460000) + (point 263.080000 2.190000 -19.000000 0.460000) + 3) + (segment 1249 + (point 263.080000 2.190000 -19.000000 0.460000) + (point 263.080000 2.190000 -19.020000 0.460000) + 3) + (segment 1250 + (point 263.080000 2.190000 -19.020000 0.460000) + (point 261.430000 1.210000 -21.300000 0.460000) + 3) + (segment 1251 + (point 261.430000 1.210000 -21.300000 0.460000) + (point 261.100000 0.660000 -21.300000 0.460000) + 3)) + (branch 54 53 + (segment 1252 + (point 261.100000 0.660000 -21.300000 0.460000) + (point 263.640000 1.860000 -26.420000 0.460000) + 3) + (segment 1253 + (point 263.640000 1.860000 -26.420000 0.460000) + (point 265.300000 2.840000 -34.000000 0.460000) + 3) + (segment 1254 + (point 265.300000 2.840000 -34.000000 0.460000) + (point 264.140000 3.760000 -37.750000 0.460000) + 3) + (segment 1255 + (point 264.140000 3.760000 -37.750000 0.460000) + (point 264.140000 3.760000 -37.770000 0.460000) + 3) + (segment 1256 + (point 264.140000 3.760000 -37.770000 0.460000) + (point 263.830000 3.100000 -39.900000 0.460000) + 3) + (segment 1257 + (point 263.830000 3.100000 -39.900000 0.460000) + (point 263.830000 3.100000 -39.920000 0.460000) + 3) + (segment 1258 + (point 263.830000 3.100000 -39.920000 0.460000) + (point 264.770000 5.120000 -42.950000 0.460000) + 3) + (segment 1259 + (point 264.770000 5.120000 -42.950000 0.460000) + (point 264.770000 5.120000 -43.000000 0.460000) + 3) + (segment 1260 + (point 264.770000 5.120000 -43.000000 0.460000) + (point 263.300000 5.360000 -45.900000 0.460000) + 3) + (segment 1261 + (point 263.300000 5.360000 -45.900000 0.460000) + (point 263.300000 5.360000 -46.000000 0.460000) + 3) + (segment 1262 + (point 263.300000 5.360000 -46.000000 0.460000) + (point 265.650000 5.310000 -50.630000 0.460000) + 3) + (segment 1263 + (point 265.650000 5.310000 -50.630000 0.460000) + (point 265.650000 5.310000 -50.650000 0.460000) + 3) + (segment 1264 + (point 265.650000 5.310000 -50.650000 0.460000) + (point 266.150000 7.220000 -54.650000 0.460000) + 3) + (segment 1265 + (point 266.150000 7.220000 -54.650000 0.460000) + (point 266.150000 7.220000 -54.720000 0.460000) + 3) + (segment 1266 + (point 266.150000 7.220000 -54.720000 0.460000) + (point 264.110000 7.940000 -59.220000 0.460000) + 3) + (segment 1267 + (point 264.110000 7.940000 -59.220000 0.460000) + (point 264.010000 10.300000 -63.800000 0.460000) + 3) + (segment 1268 + (point 264.010000 10.300000 -63.800000 0.460000) + (point 265.170000 9.390000 -67.420000 0.460000) + 3) + (segment 1269 + (point 265.170000 9.390000 -67.420000 0.460000) + (point 264.330000 10.980000 -69.720000 0.460000) + 3) + (segment 1270 + (point 264.330000 10.980000 -69.720000 0.460000) + (point 264.330000 10.980000 -69.800000 0.460000) + 3) + (segment 1271 + (point 264.330000 10.980000 -69.800000 0.460000) + (point 264.640000 11.650000 -71.720000 0.460000) + 3)) + (branch 55 54 + (segment 1272 + (point 264.640000 11.650000 -71.720000 0.460000) + (point 262.200000 14.060000 -73.800000 0.230000) + 3) + (segment 1273 + (point 262.200000 14.060000 -73.800000 0.230000) + (point 262.200000 14.060000 -73.820000 0.230000) + 3) + (segment 1274 + (point 262.200000 14.060000 -73.820000 0.230000) + (point 261.170000 14.420000 -77.150000 0.230000) + 3) + (segment 1275 + (point 261.170000 14.420000 -77.150000 0.230000) + (point 260.730000 14.310000 -77.170000 0.230000) + 3) + (segment 1276 + (point 260.730000 14.310000 -77.170000 0.230000) + (point 259.880000 15.900000 -80.250000 0.230000) + 3) + (segment 1277 + (point 259.880000 15.900000 -80.250000 0.230000) + (point 259.880000 15.900000 -80.280000 0.230000) + 3) + (segment 1278 + (point 259.880000 15.900000 -80.280000 0.230000) + (point 261.670000 16.320000 -82.920000 0.230000) + 3) + (segment 1279 + (point 261.670000 16.320000 -82.920000 0.230000) + (point 261.670000 16.320000 -82.950000 0.230000) + 3) + (segment 1280 + (point 261.670000 16.320000 -82.950000 0.230000) + (point 259.930000 17.710000 -85.630000 0.230000) + 3) + (segment 1281 + (point 259.930000 17.710000 -85.630000 0.230000) + (point 259.930000 17.710000 -85.650000 0.230000) + 3) + (segment 1282 + (point 259.930000 17.710000 -85.650000 0.230000) + (point 258.600000 17.390000 -89.100000 0.230000) + 3) + (segment 1283 + (point 258.600000 17.390000 -89.100000 0.230000) + (point 258.600000 17.390000 -89.120000 0.230000) + 3) + (segment 1284 + (point 258.600000 17.390000 -89.120000 0.230000) + (point 259.260000 14.560000 -92.870000 0.230000) + 3) + (segment 1285 + (point 259.260000 14.560000 -92.870000 0.230000) + (point 259.260000 14.560000 -92.900000 0.230000) + 3) + (segment 1286 + (point 259.260000 14.560000 -92.900000 0.230000) + (point 257.120000 17.650000 -96.720000 0.230000) + 3) + (segment 1287 + (point 257.120000 17.650000 -96.720000 0.230000) + (point 257.120000 17.650000 -96.770000 0.230000) + 3) + (segment 1288 + (point 257.120000 17.650000 -96.770000 0.230000) + (point 259.660000 18.830000 -99.000000 0.230000) + 3) + (segment 1289 + (point 259.660000 18.830000 -99.000000 0.230000) + (point 259.660000 18.830000 -99.030000 0.230000) + 3) + (segment 1290 + (point 259.660000 18.830000 -99.030000 0.230000) + (point 258.330000 18.530000 -101.500000 0.230000) + 3) + (segment 1291 + (point 258.330000 18.530000 -101.500000 0.230000) + (point 258.330000 18.530000 -101.530000 0.230000) + 3) + (segment 1292 + (point 258.330000 18.530000 -101.530000 0.230000) + (point 256.460000 20.480000 -104.650000 0.230000) + 3) + (segment 1293 + (point 256.460000 20.480000 -104.650000 0.230000) + (point 256.460000 20.480000 -104.670000 0.230000) + 3) + (segment 1294 + (point 256.460000 20.480000 -104.670000 0.230000) + (point 258.500000 19.760000 -108.230000 0.230000) + 3) + (segment 1295 + (point 258.500000 19.760000 -108.230000 0.230000) + (point 258.500000 19.760000 -108.270000 0.230000) + 3) + (segment 1296 + (point 258.500000 19.760000 -108.270000 0.230000) + (point 257.170000 19.450000 -112.700000 0.230000) + 3) + (segment 1297 + (point 257.170000 19.450000 -112.700000 0.230000) + (point 256.540000 18.110000 -116.320000 0.230000) + 3) + (segment 1298 + (point 256.540000 18.110000 -116.320000 0.230000) + (point 256.810000 16.970000 -120.420000 0.230000) + 3) + (segment 1299 + (point 256.810000 16.970000 -120.420000 0.230000) + (point 256.810000 16.970000 -120.450000 0.230000) + 3) + (segment 1300 + (point 256.810000 16.970000 -120.450000 0.230000) + (point 254.930000 18.920000 -124.250000 0.230000) + 3) + (segment 1301 + (point 254.930000 18.920000 -124.250000 0.230000) + (point 254.930000 18.920000 -124.320000 0.230000) + 3) + (segment 1302 + (point 254.930000 18.920000 -124.320000 0.230000) + (point 254.660000 20.060000 -128.100000 0.230000) + 3) + (segment 1303 + (point 254.660000 20.060000 -128.100000 0.230000) + (point 254.660000 20.060000 -128.150000 0.230000) + 3) + (segment 1304 + (point 254.660000 20.060000 -128.150000 0.230000) + (point 253.460000 19.180000 -132.950000 0.230000) + 3) + (segment 1305 + (point 253.460000 19.180000 -132.950000 0.230000) + (point 253.460000 19.180000 -133.000000 0.230000) + 3) + (segment 1306 + (point 253.460000 19.180000 -133.000000 0.230000) + (point 253.410000 17.370000 -137.800000 0.230000) + 3)) + (branch 56 54 + (segment 1307 + (point 264.640000 11.650000 -71.720000 0.460000) + (point 267.460000 11.710000 -73.070000 0.230000) + 3) + (segment 1308 + (point 267.460000 11.710000 -73.070000 0.230000) + (point 268.670000 12.590000 -73.970000 0.230000) + 3) + (segment 1309 + (point 268.670000 12.590000 -73.970000 0.230000) + (point 268.670000 12.590000 -74.000000 0.230000) + 3) + (segment 1310 + (point 268.670000 12.590000 -74.000000 0.230000) + (point 270.590000 12.440000 -75.570000 0.230000) + 3) + (segment 1311 + (point 270.590000 12.440000 -75.570000 0.230000) + (point 270.590000 12.440000 -75.600000 0.230000) + 3) + (segment 1312 + (point 270.590000 12.440000 -75.600000 0.230000) + (point 271.970000 14.550000 -77.050000 0.230000) + 3) + (segment 1313 + (point 271.970000 14.550000 -77.050000 0.230000) + (point 271.970000 14.550000 -77.100000 0.230000) + 3) + (segment 1314 + (point 271.970000 14.550000 -77.100000 0.230000) + (point 274.340000 14.510000 -79.320000 0.230000) + 3) + (segment 1315 + (point 274.340000 14.510000 -79.320000 0.230000) + (point 274.340000 14.510000 -79.350000 0.230000) + 3) + (segment 1316 + (point 274.340000 14.510000 -79.350000 0.230000) + (point 277.160000 14.580000 -82.350000 0.230000) + 3) + (segment 1317 + (point 277.160000 14.580000 -82.350000 0.230000) + (point 279.700000 15.770000 -84.450000 0.230000) + 3) + (segment 1318 + (point 279.700000 15.770000 -84.450000 0.230000) + (point 280.460000 16.540000 -86.450000 0.230000) + 3) + (segment 1319 + (point 280.460000 16.540000 -86.450000 0.230000) + (point 280.460000 16.540000 -86.470000 0.230000) + 3) + (segment 1320 + (point 280.460000 16.540000 -86.470000 0.230000) + (point 282.960000 15.940000 -87.220000 0.230000) + 3) + (segment 1321 + (point 282.960000 15.940000 -87.220000 0.230000) + (point 282.960000 15.940000 -87.250000 0.230000) + 3) + (segment 1322 + (point 282.960000 15.940000 -87.250000 0.230000) + (point 285.240000 18.270000 -88.800000 0.230000) + 3) + (segment 1323 + (point 285.240000 18.270000 -88.800000 0.230000) + (point 286.180000 20.280000 -91.150000 0.230000) + 3) + (segment 1324 + (point 286.180000 20.280000 -91.150000 0.230000) + (point 286.180000 20.280000 -91.200000 0.230000) + 3) + (segment 1325 + (point 286.180000 20.280000 -91.200000 0.230000) + (point 288.150000 21.930000 -93.600000 0.230000) + 3) + (segment 1326 + (point 288.150000 21.930000 -93.600000 0.230000) + (point 288.150000 21.930000 -93.650000 0.230000) + 3) + (segment 1327 + (point 288.150000 21.930000 -93.650000 0.230000) + (point 289.940000 22.350000 -95.920000 0.230000) + 3) + (segment 1328 + (point 289.940000 22.350000 -95.920000 0.230000) + (point 289.940000 22.350000 -95.950000 0.230000) + 3) + (segment 1329 + (point 289.940000 22.350000 -95.950000 0.230000) + (point 290.880000 24.370000 -97.750000 0.230000) + 3) + (segment 1330 + (point 290.880000 24.370000 -97.750000 0.230000) + (point 290.880000 24.370000 -97.780000 0.230000) + 3) + (segment 1331 + (point 290.880000 24.370000 -97.780000 0.230000) + (point 292.220000 24.680000 -101.400000 0.230000) + 3) + (segment 1332 + (point 292.220000 24.680000 -101.400000 0.230000) + (point 294.890000 25.310000 -104.970000 0.230000) + 3) + (segment 1333 + (point 294.890000 25.310000 -104.970000 0.230000) + (point 294.890000 25.310000 -105.000000 0.230000) + 3) + (segment 1334 + (point 294.890000 25.310000 -105.000000 0.230000) + (point 295.790000 25.520000 -108.150000 0.230000) + 3) + (segment 1335 + (point 295.790000 25.520000 -108.150000 0.230000) + (point 297.710000 25.370000 -110.680000 0.230000) + 3) + (segment 1336 + (point 297.710000 25.370000 -110.680000 0.230000) + (point 297.580000 25.940000 -110.700000 0.230000) + 3) + (segment 1337 + (point 297.580000 25.940000 -110.700000 0.230000) + (point 300.000000 27.700000 -113.250000 0.230000) + 3) + (segment 1338 + (point 300.000000 27.700000 -113.250000 0.230000) + (point 301.010000 27.340000 -116.530000 0.230000) + 3) + (segment 1339 + (point 301.010000 27.340000 -116.530000 0.230000) + (point 301.010000 27.340000 -116.700000 0.230000) + 3) + (segment 1340 + (point 301.010000 27.340000 -116.700000 0.230000) + (point 300.750000 28.460000 -120.520000 0.230000) + 3)) + (branch 57 53 + (segment 1341 + (point 261.100000 0.660000 -21.300000 0.460000) + (point 260.930000 -0.700000 -23.600000 0.460000) + 3) + (segment 1342 + (point 260.930000 -0.700000 -23.600000 0.460000) + (point 260.930000 -0.700000 -23.650000 0.460000) + 3) + (segment 1343 + (point 260.930000 -0.700000 -23.650000 0.460000) + (point 261.910000 -2.860000 -25.350000 0.460000) + 3) + (segment 1344 + (point 261.910000 -2.860000 -25.350000 0.460000) + (point 262.490000 -3.330000 -26.950000 0.460000) + 3) + (segment 1345 + (point 262.490000 -3.330000 -26.950000 0.460000) + (point 262.440000 -5.110000 -26.650000 0.460000) + 3) + (segment 1346 + (point 262.440000 -5.110000 -26.650000 0.460000) + (point 262.840000 -6.820000 -26.650000 0.460000) + 3)) + (branch 58 57 + (segment 1347 + (point 262.840000 -6.820000 -26.650000 0.460000) + (point 262.750000 -10.430000 -25.550000 0.460000) + 3) + (segment 1348 + (point 262.750000 -10.430000 -25.550000 0.460000) + (point 262.310000 -10.530000 -25.550000 0.460000) + 3) + (segment 1349 + (point 262.310000 -10.530000 -25.550000 0.460000) + (point 262.400000 -12.910000 -25.570000 0.460000) + 3) + (segment 1350 + (point 262.400000 -12.910000 -25.570000 0.460000) + (point 258.640000 -14.980000 -25.830000 0.460000) + 3) + (segment 1351 + (point 258.640000 -14.980000 -25.830000 0.460000) + (point 257.430000 -15.860000 -24.850000 0.460000) + 3) + (segment 1352 + (point 257.430000 -15.860000 -24.850000 0.460000) + (point 255.730000 -18.640000 -26.250000 0.460000) + 3) + (segment 1353 + (point 255.730000 -18.640000 -26.250000 0.460000) + (point 255.730000 -18.640000 -26.280000 0.460000) + 3) + (segment 1354 + (point 255.730000 -18.640000 -26.280000 0.460000) + (point 255.550000 -19.880000 -27.270000 0.460000) + 3) + (segment 1355 + (point 255.550000 -19.880000 -27.270000 0.460000) + (point 255.550000 -19.880000 -27.300000 0.460000) + 3) + (segment 1356 + (point 255.550000 -19.880000 -27.300000 0.460000) + (point 254.290000 -22.570000 -28.020000 0.460000) + 3) + (segment 1357 + (point 254.290000 -22.570000 -28.020000 0.460000) + (point 254.290000 -22.570000 -28.050000 0.460000) + 3) + (segment 1358 + (point 254.290000 -22.570000 -28.050000 0.460000) + (point 252.820000 -22.310000 -28.630000 0.460000) + 3) + (segment 1359 + (point 252.820000 -22.310000 -28.630000 0.460000) + (point 252.270000 -26.020000 -29.420000 0.460000) + 3) + (segment 1360 + (point 252.270000 -26.020000 -29.420000 0.460000) + (point 250.130000 -28.910000 -30.380000 0.460000) + 3)) + (branch 59 58 + (segment 1361 + (point 250.130000 -28.910000 -30.380000 0.460000) + (point 247.000000 -29.650000 -30.380000 0.460000) + 3) + (segment 1362 + (point 247.000000 -29.650000 -30.380000 0.460000) + (point 244.760000 -30.180000 -31.420000 0.460000) + 3) + (segment 1363 + (point 244.760000 -30.180000 -31.420000 0.460000) + (point 244.760000 -30.180000 -31.450000 0.460000) + 3) + (segment 1364 + (point 244.760000 -30.180000 -31.450000 0.460000) + (point 243.170000 -29.350000 -32.830000 0.460000) + 3) + (segment 1365 + (point 243.170000 -29.350000 -32.830000 0.460000) + (point 243.170000 -29.350000 -32.880000 0.460000) + 3) + (segment 1366 + (point 243.170000 -29.350000 -32.880000 0.460000) + (point 240.800000 -29.310000 -34.450000 0.460000) + 3) + (segment 1367 + (point 240.800000 -29.310000 -34.450000 0.460000) + (point 240.800000 -29.310000 -34.470000 0.460000) + 3) + (segment 1368 + (point 240.800000 -29.310000 -34.470000 0.460000) + (point 238.690000 -30.410000 -36.420000 0.460000) + 3) + (segment 1369 + (point 238.690000 -30.410000 -36.420000 0.460000) + (point 237.440000 -33.080000 -38.050000 0.460000) + 3) + (segment 1370 + (point 237.440000 -33.080000 -38.050000 0.460000) + (point 237.440000 -33.080000 -38.070000 0.460000) + 3) + (segment 1371 + (point 237.440000 -33.080000 -38.070000 0.460000) + (point 236.050000 -35.210000 -39.950000 0.460000) + 3) + (segment 1372 + (point 236.050000 -35.210000 -39.950000 0.460000) + (point 236.050000 -35.210000 -40.070000 0.460000) + 3) + (segment 1373 + (point 236.050000 -35.210000 -40.070000 0.460000) + (point 234.670000 -37.320000 -39.380000 0.460000) + 3) + (segment 1374 + (point 234.670000 -37.320000 -39.380000 0.460000) + (point 232.560000 -38.400000 -41.000000 0.460000) + 3) + (segment 1375 + (point 232.560000 -38.400000 -41.000000 0.460000) + (point 232.560000 -38.400000 -41.030000 0.460000) + 3) + (segment 1376 + (point 232.560000 -38.400000 -41.030000 0.460000) + (point 232.200000 -40.890000 -43.070000 0.460000) + 3) + (segment 1377 + (point 232.200000 -40.890000 -43.070000 0.460000) + (point 231.260000 -42.890000 -47.220000 0.460000) + 3) + (segment 1378 + (point 231.260000 -42.890000 -47.220000 0.460000) + (point 231.260000 -42.890000 -47.280000 0.460000) + 3)) + (branch 60 59 + (segment 1379 + (point 231.260000 -42.890000 -47.280000 0.460000) + (point 233.300000 -43.610000 -49.100000 0.460000) + 3) + (segment 1380 + (point 233.300000 -43.610000 -49.100000 0.460000) + (point 233.300000 -43.610000 -49.130000 0.460000) + 3) + (segment 1381 + (point 233.300000 -43.610000 -49.130000 0.460000) + (point 234.020000 -44.630000 -51.670000 0.460000) + 3) + (segment 1382 + (point 234.020000 -44.630000 -51.670000 0.460000) + (point 234.020000 -44.630000 -51.720000 0.460000) + 3) + (segment 1383 + (point 234.020000 -44.630000 -51.720000 0.460000) + (point 233.400000 -45.980000 -54.200000 0.460000) + 3) + (segment 1384 + (point 233.400000 -45.980000 -54.200000 0.460000) + (point 232.370000 -45.620000 -59.130000 0.460000) + 3) + (segment 1385 + (point 232.370000 -45.620000 -59.130000 0.460000) + (point 230.270000 -46.710000 -62.220000 0.460000) + 3) + (segment 1386 + (point 230.270000 -46.710000 -62.220000 0.460000) + (point 230.270000 -46.710000 -62.330000 0.460000) + 3) + (segment 1387 + (point 230.270000 -46.710000 -62.330000 0.460000) + (point 229.380000 -46.920000 -66.880000 0.460000) + 3) + (segment 1388 + (point 229.380000 -46.920000 -66.880000 0.460000) + (point 229.910000 -49.190000 -70.800000 0.460000) + 3) + (segment 1389 + (point 229.910000 -49.190000 -70.800000 0.460000) + (point 229.910000 -49.190000 -70.820000 0.460000) + 3) + (segment 1390 + (point 229.910000 -49.190000 -70.820000 0.460000) + (point 230.040000 -49.750000 -73.420000 0.460000) + 3) + (segment 1391 + (point 230.040000 -49.750000 -73.420000 0.460000) + (point 231.110000 -48.290000 -74.670000 0.460000) + 3) + (segment 1392 + (point 231.110000 -48.290000 -74.670000 0.460000) + (point 232.770000 -47.310000 -76.820000 0.460000) + 3)) + (branch 61 59 + (segment 1393 + (point 231.260000 -42.890000 -47.280000 0.460000) + (point 229.160000 -43.980000 -47.220000 0.460000) + 3) + (segment 1394 + (point 229.160000 -43.980000 -47.220000 0.460000) + (point 229.160000 -43.980000 -47.250000 0.460000) + 3) + (segment 1395 + (point 229.160000 -43.980000 -47.250000 0.460000) + (point 227.740000 -41.930000 -48.350000 0.460000) + 3) + (segment 1396 + (point 227.740000 -41.930000 -48.350000 0.460000) + (point 226.030000 -44.710000 -50.770000 0.460000) + 3) + (segment 1397 + (point 226.030000 -44.710000 -50.770000 0.460000) + (point 226.030000 -44.710000 -50.880000 0.460000) + 3) + (segment 1398 + (point 226.030000 -44.710000 -50.880000 0.460000) + (point 225.270000 -45.500000 -54.050000 0.460000) + 3) + (segment 1399 + (point 225.270000 -45.500000 -54.050000 0.460000) + (point 223.800000 -45.230000 -55.600000 0.460000) + 3) + (segment 1400 + (point 223.800000 -45.230000 -55.600000 0.460000) + (point 223.800000 -45.230000 -55.630000 0.460000) + 3) + (segment 1401 + (point 223.800000 -45.230000 -55.630000 0.460000) + (point 222.020000 -45.650000 -58.150000 0.460000) + 3) + (segment 1402 + (point 222.020000 -45.650000 -58.150000 0.460000) + (point 220.410000 -44.840000 -61.380000 0.460000) + 3) + (segment 1403 + (point 220.410000 -44.840000 -61.380000 0.460000) + (point 220.360000 -46.640000 -63.200000 0.460000) + 3) + (segment 1404 + (point 220.360000 -46.640000 -63.200000 0.460000) + (point 220.360000 -46.640000 -63.250000 0.460000) + 3) + (segment 1405 + (point 220.360000 -46.640000 -63.250000 0.460000) + (point 218.440000 -46.490000 -66.770000 0.460000) + 3) + (segment 1406 + (point 218.440000 -46.490000 -66.770000 0.460000) + (point 218.520000 -48.860000 -70.070000 0.460000) + 3) + (segment 1407 + (point 218.520000 -48.860000 -70.070000 0.460000) + (point 218.520000 -48.860000 -70.180000 0.460000) + 3) + (segment 1408 + (point 218.520000 -48.860000 -70.180000 0.460000) + (point 216.290000 -49.390000 -72.720000 0.460000) + 3) + (segment 1409 + (point 216.290000 -49.390000 -72.720000 0.460000) + (point 215.850000 -49.490000 -72.800000 0.460000) + 3) + (segment 1410 + (point 215.850000 -49.490000 -72.800000 0.460000) + (point 214.370000 -49.240000 -73.000000 0.460000) + 3) + (segment 1411 + (point 214.370000 -49.240000 -73.000000 0.460000) + (point 214.370000 -49.240000 -73.020000 0.460000) + 3) + (segment 1412 + (point 214.370000 -49.240000 -73.020000 0.460000) + (point 215.000000 -47.910000 -76.470000 0.460000) + 3) + (segment 1413 + (point 215.000000 -47.910000 -76.470000 0.460000) + (point 215.000000 -47.910000 -76.600000 0.460000) + 3) + (segment 1414 + (point 215.000000 -47.910000 -76.600000 0.460000) + (point 217.180000 -49.180000 -80.680000 0.460000) + 3) + (segment 1415 + (point 217.180000 -49.180000 -80.680000 0.460000) + (point 217.180000 -49.180000 -80.730000 0.460000) + 3) + (segment 1416 + (point 217.180000 -49.180000 -80.730000 0.460000) + (point 217.000000 -50.410000 -85.280000 0.460000) + 3) + (segment 1417 + (point 217.000000 -50.410000 -85.280000 0.460000) + (point 217.000000 -50.410000 -85.370000 0.460000) + 3) + (segment 1418 + (point 217.000000 -50.410000 -85.370000 0.460000) + (point 214.240000 -48.670000 -89.600000 0.460000) + 3) + (segment 1419 + (point 214.240000 -48.670000 -89.600000 0.460000) + (point 214.240000 -48.670000 -89.650000 0.460000) + 3) + (segment 1420 + (point 214.240000 -48.670000 -89.650000 0.460000) + (point 213.610000 -50.020000 -92.300000 0.460000) + 3) + (segment 1421 + (point 213.610000 -50.020000 -92.300000 0.460000) + (point 213.610000 -50.020000 -92.320000 0.460000) + 3) + (segment 1422 + (point 213.610000 -50.020000 -92.320000 0.460000) + (point 212.500000 -47.290000 -93.400000 0.460000) + 3) + (segment 1423 + (point 212.500000 -47.290000 -93.400000 0.460000) + (point 210.580000 -47.140000 -94.670000 0.460000) + 3) + (segment 1424 + (point 210.580000 -47.140000 -94.670000 0.460000) + (point 210.580000 -47.140000 -94.700000 0.460000) + 3) + (segment 1425 + (point 210.580000 -47.140000 -94.700000 0.460000) + (point 208.660000 -46.990000 -96.850000 0.460000) + 3) + (segment 1426 + (point 208.660000 -46.990000 -96.850000 0.460000) + (point 208.660000 -46.990000 -96.900000 0.460000) + 3) + (segment 1427 + (point 208.660000 -46.990000 -96.900000 0.460000) + (point 207.460000 -47.870000 -99.170000 0.460000) + 3) + (segment 1428 + (point 207.460000 -47.870000 -99.170000 0.460000) + (point 205.800000 -48.850000 -100.970000 0.460000) + 3) + (segment 1429 + (point 205.800000 -48.850000 -100.970000 0.460000) + (point 204.520000 -47.370000 -102.200000 0.460000) + 3) + (segment 1430 + (point 204.520000 -47.370000 -102.200000 0.460000) + (point 201.510000 -48.670000 -104.050000 0.460000) + 3) + (segment 1431 + (point 201.510000 -48.670000 -104.050000 0.460000) + (point 201.510000 -48.670000 -104.070000 0.460000) + 3) + (segment 1432 + (point 201.510000 -48.670000 -104.070000 0.460000) + (point 199.280000 -49.190000 -104.900000 0.460000) + 3) + (segment 1433 + (point 199.280000 -49.190000 -104.900000 0.460000) + (point 199.280000 -49.190000 -104.970000 0.460000) + 3) + (segment 1434 + (point 199.280000 -49.190000 -104.970000 0.460000) + (point 197.140000 -52.090000 -105.320000 0.460000) + 3) + (segment 1435 + (point 197.140000 -52.090000 -105.320000 0.460000) + (point 194.850000 -54.410000 -106.620000 0.460000) + 3) + (segment 1436 + (point 194.850000 -54.410000 -106.620000 0.460000) + (point 191.100000 -56.480000 -108.320000 0.460000) + 3) + (segment 1437 + (point 191.100000 -56.480000 -108.320000 0.460000) + (point 192.530000 -58.540000 -111.970000 0.460000) + 3) + (segment 1438 + (point 192.530000 -58.540000 -111.970000 0.460000) + (point 192.530000 -58.540000 -112.020000 0.460000) + 3) + (segment 1439 + (point 192.530000 -58.540000 -112.020000 0.460000) + (point 192.790000 -59.670000 -113.950000 0.460000) + 3) + (segment 1440 + (point 192.790000 -59.670000 -113.950000 0.460000) + (point 192.790000 -59.670000 -113.970000 0.460000) + 3)) + (branch 62 58 + (segment 1441 + (point 250.130000 -28.910000 -30.380000 0.460000) + (point 248.430000 -31.710000 -30.380000 0.460000) + 3) + (segment 1442 + (point 248.430000 -31.710000 -30.380000 0.460000) + (point 247.610000 -34.280000 -30.750000 0.460000) + 3) + (segment 1443 + (point 247.610000 -34.280000 -30.750000 0.460000) + (point 245.790000 -36.510000 -30.750000 0.460000) + 3) + (segment 1444 + (point 245.790000 -36.510000 -30.750000 0.460000) + (point 244.660000 -39.750000 -30.750000 0.460000) + 3) + (segment 1445 + (point 244.660000 -39.750000 -30.750000 0.460000) + (point 243.150000 -41.310000 -30.750000 0.460000) + 3) + (segment 1446 + (point 243.150000 -41.310000 -30.750000 0.460000) + (point 242.700000 -41.410000 -30.750000 0.460000) + 3) + (segment 1447 + (point 242.700000 -41.410000 -30.750000 0.460000) + (point 242.140000 -45.120000 -30.750000 0.460000) + 3) + (segment 1448 + (point 242.140000 -45.120000 -30.750000 0.460000) + (point 239.550000 -48.110000 -30.750000 0.460000) + 3) + (segment 1449 + (point 239.550000 -48.110000 -30.750000 0.460000) + (point 239.900000 -51.620000 -30.750000 0.460000) + 3) + (segment 1450 + (point 239.900000 -51.620000 -30.750000 0.460000) + (point 239.930000 -55.800000 -30.000000 0.460000) + 3) + (segment 1451 + (point 239.930000 -55.800000 -30.000000 0.460000) + (point 239.400000 -59.500000 -28.880000 0.460000) + 3) + (segment 1452 + (point 239.400000 -59.500000 -28.880000 0.460000) + (point 239.400000 -59.500000 -28.920000 0.460000) + 3) + (segment 1453 + (point 239.400000 -59.500000 -28.920000 0.460000) + (point 239.930000 -61.760000 -27.830000 0.460000) + 3) + (segment 1454 + (point 239.930000 -61.760000 -27.830000 0.460000) + (point 239.930000 -61.760000 -27.770000 0.460000) + 3) + (segment 1455 + (point 239.930000 -61.760000 -27.770000 0.460000) + (point 239.370000 -65.480000 -27.770000 0.460000) + 3) + (segment 1456 + (point 239.370000 -65.480000 -27.770000 0.460000) + (point 239.270000 -69.080000 -26.820000 0.460000) + 3) + (segment 1457 + (point 239.270000 -69.080000 -26.820000 0.460000) + (point 239.850000 -69.550000 -26.820000 0.460000) + 3) + (segment 1458 + (point 239.850000 -69.550000 -26.820000 0.460000) + (point 237.840000 -73.000000 -26.820000 0.460000) + 3) + (segment 1459 + (point 237.840000 -73.000000 -26.820000 0.460000) + (point 239.090000 -76.280000 -29.170000 0.460000) + 3) + (segment 1460 + (point 239.090000 -76.280000 -29.170000 0.460000) + (point 239.300000 -79.230000 -29.170000 0.460000) + 3) + (segment 1461 + (point 239.300000 -79.230000 -29.170000 0.460000) + (point 238.630000 -82.370000 -29.920000 0.460000) + 3) + (segment 1462 + (point 238.630000 -82.370000 -29.920000 0.460000) + (point 237.900000 -87.320000 -28.570000 0.460000) + 3) + (segment 1463 + (point 237.900000 -87.320000 -28.570000 0.460000) + (point 235.940000 -88.970000 -28.570000 0.460000) + 3) + (segment 1464 + (point 235.940000 -88.970000 -28.570000 0.460000) + (point 236.910000 -91.140000 -28.570000 0.460000) + 3) + (segment 1465 + (point 236.910000 -91.140000 -28.570000 0.460000) + (point 236.630000 -95.980000 -28.550000 0.460000) + 3) + (segment 1466 + (point 236.630000 -95.980000 -28.550000 0.460000) + (point 236.170000 -102.050000 -28.550000 0.460000) + 3) + (segment 1467 + (point 236.170000 -102.050000 -28.550000 0.460000) + (point 233.440000 -104.490000 -29.850000 0.460000) + 3) + (segment 1468 + (point 233.440000 -104.490000 -29.850000 0.460000) + (point 229.380000 -107.230000 -30.650000 0.460000) + 3) + (segment 1469 + (point 229.380000 -107.230000 -30.650000 0.460000) + (point 228.440000 -109.240000 -32.700000 0.460000) + 3) + (segment 1470 + (point 228.440000 -109.240000 -32.700000 0.460000) + (point 229.420000 -111.400000 -32.700000 0.460000) + 3) + (segment 1471 + (point 229.420000 -111.400000 -32.700000 0.460000) + (point 227.750000 -112.380000 -34.700000 0.460000) + 3) + (segment 1472 + (point 227.750000 -112.380000 -34.700000 0.460000) + (point 227.660000 -115.990000 -36.070000 0.460000) + 3) + (segment 1473 + (point 227.660000 -115.990000 -36.070000 0.460000) + (point 225.960000 -118.780000 -38.030000 0.460000) + 3) + (segment 1474 + (point 225.960000 -118.780000 -38.030000 0.460000) + (point 225.960000 -118.780000 -38.150000 0.460000) + 3) + (segment 1475 + (point 225.960000 -118.780000 -38.150000 0.460000) + (point 226.350000 -120.470000 -39.720000 0.460000) + 3) + (segment 1476 + (point 226.350000 -120.470000 -39.720000 0.460000) + (point 227.330000 -122.640000 -40.720000 0.460000) + 3) + (segment 1477 + (point 227.330000 -122.640000 -40.720000 0.460000) + (point 225.190000 -125.520000 -40.720000 0.460000) + 3) + (segment 1478 + (point 225.190000 -125.520000 -40.720000 0.460000) + (point 224.770000 -129.800000 -39.630000 0.460000) + 3) + (segment 1479 + (point 224.770000 -129.800000 -39.630000 0.460000) + (point 224.770000 -129.800000 -39.700000 0.460000) + 3) + (segment 1480 + (point 224.770000 -129.800000 -39.700000 0.460000) + (point 221.460000 -131.770000 -41.670000 0.460000) + 3) + (segment 1481 + (point 221.460000 -131.770000 -41.670000 0.460000) + (point 219.050000 -133.540000 -43.220000 0.460000) + 3) + (segment 1482 + (point 219.050000 -133.540000 -43.220000 0.460000) + (point 219.050000 -133.540000 -43.270000 0.460000) + 3) + (segment 1483 + (point 219.050000 -133.540000 -43.270000 0.460000) + (point 217.270000 -133.960000 -43.800000 0.460000) + 3) + (segment 1484 + (point 217.270000 -133.960000 -43.800000 0.460000) + (point 214.710000 -135.150000 -41.470000 0.460000) + 3) + (segment 1485 + (point 214.710000 -135.150000 -41.470000 0.460000) + (point 212.930000 -135.570000 -40.170000 0.460000) + 3) + (segment 1486 + (point 212.930000 -135.570000 -40.170000 0.460000) + (point 212.930000 -135.570000 -40.150000 0.460000) + 3) + (segment 1487 + (point 212.930000 -135.570000 -40.150000 0.460000) + (point 210.650000 -137.890000 -40.130000 0.460000) + 3) + (segment 1488 + (point 210.650000 -137.890000 -40.130000 0.460000) + (point 209.210000 -141.810000 -39.450000 0.460000) + 3) + (segment 1489 + (point 209.210000 -141.810000 -39.450000 0.460000) + (point 207.250000 -143.460000 -39.670000 0.460000) + 3) + (segment 1490 + (point 207.250000 -143.460000 -39.670000 0.460000) + (point 204.710000 -144.660000 -39.670000 0.460000) + 3) + (segment 1491 + (point 204.710000 -144.660000 -39.670000 0.460000) + (point 203.170000 -146.220000 -37.550000 0.460000) + 3)) + (branch 63 57 + (segment 1492 + (point 262.840000 -6.820000 -26.650000 0.460000) + (point 266.050000 -8.450000 -27.900000 0.460000) + 3) + (segment 1493 + (point 266.050000 -8.450000 -27.900000 0.460000) + (point 267.800000 -9.850000 -28.920000 0.460000) + 3) + (segment 1494 + (point 267.800000 -9.850000 -28.920000 0.460000) + (point 267.800000 -9.850000 -28.950000 0.460000) + 3) + (segment 1495 + (point 267.800000 -9.850000 -28.950000 0.460000) + (point 269.350000 -12.460000 -29.970000 0.460000) + 3) + (segment 1496 + (point 269.350000 -12.460000 -29.970000 0.460000) + (point 269.350000 -12.460000 -30.000000 0.460000) + 3) + (segment 1497 + (point 269.350000 -12.460000 -30.000000 0.460000) + (point 272.290000 -12.970000 -31.170000 0.460000) + 3) + (segment 1498 + (point 272.290000 -12.970000 -31.170000 0.460000) + (point 276.130000 -13.260000 -32.100000 0.460000) + 3) + (segment 1499 + (point 276.130000 -13.260000 -32.100000 0.460000) + (point 277.920000 -12.850000 -32.920000 0.460000) + 3) + (segment 1500 + (point 277.920000 -12.850000 -32.920000 0.460000) + (point 279.210000 -14.330000 -32.470000 0.460000) + 3) + (segment 1501 + (point 279.210000 -14.330000 -32.470000 0.460000) + (point 279.210000 -14.330000 -32.500000 0.460000) + 3) + (segment 1502 + (point 279.210000 -14.330000 -32.500000 0.460000) + (point 281.220000 -16.840000 -34.170000 0.460000) + 3) + (segment 1503 + (point 281.220000 -16.840000 -34.170000 0.460000) + (point 283.390000 -18.120000 -33.750000 0.460000) + 3) + (segment 1504 + (point 283.390000 -18.120000 -33.750000 0.460000) + (point 285.620000 -17.600000 -35.950000 0.460000) + 3) + (segment 1505 + (point 285.620000 -17.600000 -35.950000 0.460000) + (point 287.870000 -17.080000 -37.550000 0.460000) + 3) + (segment 1506 + (point 287.870000 -17.080000 -37.550000 0.460000) + (point 290.540000 -16.440000 -39.150000 0.460000) + 3) + (segment 1507 + (point 290.540000 -16.440000 -39.150000 0.460000) + (point 290.540000 -16.440000 -39.170000 0.460000) + 3) + (segment 1508 + (point 290.540000 -16.440000 -39.170000 0.460000) + (point 294.960000 -17.210000 -40.150000 0.460000) + 3) + (segment 1509 + (point 294.960000 -17.210000 -40.150000 0.460000) + (point 297.900000 -17.710000 -41.100000 0.460000) + 3) + (segment 1510 + (point 297.900000 -17.710000 -41.100000 0.460000) + (point 302.140000 -19.700000 -41.930000 0.460000) + 3) + (segment 1511 + (point 302.140000 -19.700000 -41.930000 0.460000) + (point 304.140000 -22.220000 -43.470000 0.460000) + 3) + (segment 1512 + (point 304.140000 -22.220000 -43.470000 0.460000) + (point 304.140000 -22.220000 -43.500000 0.460000) + 3) + (segment 1513 + (point 304.140000 -22.220000 -43.500000 0.460000) + (point 307.360000 -23.850000 -45.150000 0.460000) + 3) + (segment 1514 + (point 307.360000 -23.850000 -45.150000 0.460000) + (point 310.510000 -27.290000 -46.700000 0.460000) + 3) + (segment 1515 + (point 310.510000 -27.290000 -46.700000 0.460000) + (point 313.150000 -28.480000 -48.450000 0.460000) + 3) + (segment 1516 + (point 313.150000 -28.480000 -48.450000 0.460000) + (point 315.380000 -27.950000 -48.100000 0.460000) + 3) + (segment 1517 + (point 315.380000 -27.950000 -48.100000 0.460000) + (point 315.380000 -27.950000 -48.130000 0.460000) + 3) + (segment 1518 + (point 315.380000 -27.950000 -48.130000 0.460000) + (point 316.670000 -29.440000 -49.350000 0.460000) + 3) + (segment 1519 + (point 316.670000 -29.440000 -49.350000 0.460000) + (point 318.400000 -30.820000 -51.420000 0.460000) + 3) + (segment 1520 + (point 318.400000 -30.820000 -51.420000 0.460000) + (point 318.400000 -30.820000 -51.500000 0.460000) + 3) + (segment 1521 + (point 318.400000 -30.820000 -51.500000 0.460000) + (point 320.650000 -30.300000 -52.150000 0.460000) + 3) + (segment 1522 + (point 320.650000 -30.300000 -52.150000 0.460000) + (point 320.650000 -30.300000 -52.170000 0.460000) + 3) + (segment 1523 + (point 320.650000 -30.300000 -52.170000 0.460000) + (point 323.870000 -31.940000 -52.950000 0.460000) + 3) + (segment 1524 + (point 323.870000 -31.940000 -52.950000 0.460000) + (point 326.040000 -33.220000 -52.630000 0.460000) + 3) + (segment 1525 + (point 326.040000 -33.220000 -52.630000 0.460000) + (point 328.940000 -35.530000 -53.880000 0.460000) + 3) + (segment 1526 + (point 328.940000 -35.530000 -53.880000 0.460000) + (point 328.940000 -35.530000 -53.900000 0.460000) + 3) + (segment 1527 + (point 328.940000 -35.530000 -53.900000 0.460000) + (point 330.670000 -36.910000 -55.550000 0.460000) + 3) + (segment 1528 + (point 330.670000 -36.910000 -55.550000 0.460000) + (point 330.670000 -36.910000 -55.570000 0.460000) + 3) + (segment 1529 + (point 330.670000 -36.910000 -55.570000 0.460000) + (point 331.790000 -39.640000 -56.470000 0.460000) + 3) + (segment 1530 + (point 331.790000 -39.640000 -56.470000 0.460000) + (point 331.960000 -44.370000 -57.770000 0.460000) + 3) + (segment 1531 + (point 331.960000 -44.370000 -57.770000 0.460000) + (point 333.910000 -48.690000 -57.770000 0.460000) + 3) + (segment 1532 + (point 333.910000 -48.690000 -57.770000 0.460000) + (point 334.360000 -48.580000 -57.770000 0.460000) + 3) + (segment 1533 + (point 334.360000 -48.580000 -57.770000 0.460000) + (point 337.400000 -51.460000 -57.600000 0.460000) + 3) + (segment 1534 + (point 337.400000 -51.460000 -57.600000 0.460000) + (point 337.400000 -51.460000 -57.570000 0.460000) + 3) + (segment 1535 + (point 337.400000 -51.460000 -57.570000 0.460000) + (point 339.390000 -53.980000 -55.520000 0.460000) + 3) + (segment 1536 + (point 339.390000 -53.980000 -55.520000 0.460000) + (point 339.390000 -53.980000 -55.550000 0.460000) + 3) + (segment 1537 + (point 339.390000 -53.980000 -55.550000 0.460000) + (point 341.710000 -55.820000 -55.470000 0.460000) + 3) + (segment 1538 + (point 341.710000 -55.820000 -55.470000 0.460000) + (point 342.820000 -58.550000 -54.800000 0.460000) + 3) + (segment 1539 + (point 342.820000 -58.550000 -54.800000 0.460000) + (point 345.270000 -60.970000 -55.950000 0.460000) + 3) + (segment 1540 + (point 345.270000 -60.970000 -55.950000 0.460000) + (point 348.030000 -62.700000 -55.300000 0.460000) + 3) + (segment 1541 + (point 348.030000 -62.700000 -55.300000 0.460000) + (point 348.030000 -62.700000 -55.350000 0.460000) + 3) + (segment 1542 + (point 348.030000 -62.700000 -55.350000 0.460000) + (point 349.150000 -65.430000 -55.350000 0.460000) + 3) + (segment 1543 + (point 349.150000 -65.430000 -55.350000 0.460000) + (point 351.200000 -66.130000 -57.200000 0.230000) + 3) + (segment 1544 + (point 351.200000 -66.130000 -57.200000 0.230000) + (point 351.200000 -66.130000 -57.220000 0.230000) + 3) + (segment 1545 + (point 351.200000 -66.130000 -57.220000 0.230000) + (point 354.850000 -67.670000 -58.070000 0.230000) + 3) + (segment 1546 + (point 354.850000 -67.670000 -58.070000 0.230000) + (point 355.300000 -67.560000 -58.100000 0.230000) + 3) + (segment 1547 + (point 355.300000 -67.560000 -58.100000 0.230000) + (point 358.380000 -68.640000 -59.220000 0.230000) + 3) + (segment 1548 + (point 358.380000 -68.640000 -59.220000 0.230000) + (point 358.380000 -68.640000 -59.250000 0.230000) + 3) + (segment 1549 + (point 358.380000 -68.640000 -59.250000 0.230000) + (point 362.480000 -70.070000 -59.830000 0.230000) + 3) + (segment 1550 + (point 362.480000 -70.070000 -59.830000 0.230000) + (point 362.480000 -70.070000 -59.850000 0.230000) + 3) + (segment 1551 + (point 362.480000 -70.070000 -59.850000 0.230000) + (point 365.870000 -70.470000 -61.050000 0.230000) + 3) + (segment 1552 + (point 365.870000 -70.470000 -61.050000 0.230000) + (point 367.670000 -70.040000 -63.700000 0.230000) + 3) + (segment 1553 + (point 367.670000 -70.040000 -63.700000 0.230000) + (point 367.670000 -70.040000 -64.000000 0.230000) + 3)) + (branch 64 -1 + (segment 1554 + (point 265.520000 17.950000 -15.450000 0.460000) + (point 265.520000 17.950000 -15.450000 0.460000) + 3) + (segment 1555 + (point 265.520000 17.950000 -15.450000 0.460000) + (point 267.750000 18.480000 -15.480000 0.460000) + 3) + (segment 1556 + (point 267.750000 18.480000 -15.480000 0.460000) + (point 267.670000 20.840000 -18.150000 0.460000) + 3) + (segment 1557 + (point 267.670000 20.840000 -18.150000 0.460000) + (point 265.570000 19.750000 -19.200000 0.460000) + 3) + (segment 1558 + (point 265.570000 19.750000 -19.200000 0.460000) + (point 262.500000 20.830000 -20.950000 0.460000) + 3) + (segment 1559 + (point 262.500000 20.830000 -20.950000 0.460000) + (point 264.540000 20.110000 -22.850000 0.460000) + 3) + (segment 1560 + (point 264.540000 20.110000 -22.850000 0.460000) + (point 267.480000 19.600000 -24.720000 0.460000) + 3) + (segment 1561 + (point 267.480000 19.600000 -24.720000 0.460000) + (point 267.480000 19.600000 -24.750000 0.460000) + 3) + (segment 1562 + (point 267.480000 19.600000 -24.750000 0.460000) + (point 270.170000 20.240000 -26.550000 0.460000) + 3) + (segment 1563 + (point 270.170000 20.240000 -26.550000 0.460000) + (point 269.730000 20.130000 -26.550000 0.460000) + 3) + (segment 1564 + (point 269.730000 20.130000 -26.550000 0.460000) + (point 273.110000 19.730000 -28.000000 0.460000) + 3) + (segment 1565 + (point 273.110000 19.730000 -28.000000 0.460000) + (point 274.460000 20.050000 -27.950000 0.460000) + 3)) + (branch 65 64 + (segment 1566 + (point 274.460000 20.050000 -27.950000 0.460000) + (point 276.230000 24.520000 -27.350000 0.230000) + 3) + (segment 1567 + (point 276.230000 24.520000 -27.350000 0.230000) + (point 277.890000 25.510000 -30.130000 0.230000) + 3) + (segment 1568 + (point 277.890000 25.510000 -30.130000 0.230000) + (point 282.050000 25.890000 -31.350000 0.230000) + 3) + (segment 1569 + (point 282.050000 25.890000 -31.350000 0.230000) + (point 281.600000 25.780000 -31.350000 0.230000) + 3) + (segment 1570 + (point 281.600000 25.780000 -31.350000 0.230000) + (point 284.540000 25.270000 -32.130000 0.230000) + 3) + (segment 1571 + (point 284.540000 25.270000 -32.130000 0.230000) + (point 285.790000 27.950000 -33.470000 0.230000) + 3) + (segment 1572 + (point 285.790000 27.950000 -33.470000 0.230000) + (point 285.790000 27.950000 -33.530000 0.230000) + 3) + (segment 1573 + (point 285.790000 27.950000 -33.530000 0.230000) + (point 290.260000 29.000000 -35.720000 0.230000) + 3) + (segment 1574 + (point 290.260000 29.000000 -35.720000 0.230000) + (point 293.520000 29.170000 -36.720000 0.230000) + 3) + (segment 1575 + (point 293.520000 29.170000 -36.720000 0.230000) + (point 296.830000 31.140000 -37.880000 0.230000) + 3) + (segment 1576 + (point 296.830000 31.140000 -37.880000 0.230000) + (point 303.840000 33.380000 -38.550000 0.230000) + 3) + (segment 1577 + (point 303.840000 33.380000 -38.550000 0.230000) + (point 303.840000 33.380000 -38.570000 0.230000) + 3) + (segment 1578 + (point 303.840000 33.380000 -38.570000 0.230000) + (point 308.990000 37.570000 -39.700000 0.230000) + 3) + (segment 1579 + (point 308.990000 37.570000 -39.700000 0.230000) + (point 311.990000 38.860000 -41.450000 0.230000) + 3) + (segment 1580 + (point 311.990000 38.860000 -41.450000 0.230000) + (point 311.990000 38.860000 -41.470000 0.230000) + 3) + (segment 1581 + (point 311.990000 38.860000 -41.470000 0.230000) + (point 313.950000 40.510000 -42.150000 0.230000) + 3) + (segment 1582 + (point 313.950000 40.510000 -42.150000 0.230000) + (point 316.810000 42.370000 -42.150000 0.230000) + 3) + (segment 1583 + (point 316.810000 42.370000 -42.150000 0.230000) + (point 319.350000 43.580000 -42.170000 0.230000) + 3) + (segment 1584 + (point 319.350000 43.580000 -42.170000 0.230000) + (point 323.550000 45.760000 -42.220000 0.230000) + 3) + (segment 1585 + (point 323.550000 45.760000 -42.220000 0.230000) + (point 327.490000 49.070000 -42.220000 0.230000) + 3) + (segment 1586 + (point 327.490000 49.070000 -42.220000 0.230000) + (point 327.360000 49.640000 -42.220000 0.230000) + 3) + (segment 1587 + (point 327.360000 49.640000 -42.220000 0.230000) + (point 331.430000 52.380000 -42.220000 0.230000) + 3) + (segment 1588 + (point 331.430000 52.380000 -42.220000 0.230000) + (point 333.710000 54.700000 -43.800000 0.230000) + 3) + (segment 1589 + (point 333.710000 54.700000 -43.800000 0.230000) + (point 335.590000 58.730000 -45.220000 0.230000) + 3) + (segment 1590 + (point 335.590000 58.730000 -45.220000 0.230000) + (point 335.590000 58.730000 -45.250000 0.230000) + 3) + (segment 1591 + (point 335.590000 58.730000 -45.250000 0.230000) + (point 339.670000 61.480000 -46.570000 0.230000) + 3) + (segment 1592 + (point 339.670000 61.480000 -46.570000 0.230000) + (point 341.490000 63.690000 -48.070000 0.230000) + 3) + (segment 1593 + (point 341.490000 63.690000 -48.070000 0.230000) + (point 344.580000 62.630000 -49.580000 0.230000) + 3) + (segment 1594 + (point 344.580000 62.630000 -49.580000 0.230000) + (point 347.610000 65.720000 -51.280000 0.230000) + 3) + (segment 1595 + (point 347.610000 65.720000 -51.280000 0.230000) + (point 347.610000 65.720000 -51.300000 0.230000) + 3) + (segment 1596 + (point 347.610000 65.720000 -51.300000 0.230000) + (point 351.460000 65.430000 -52.750000 0.230000) + 3) + (segment 1597 + (point 351.460000 65.430000 -52.750000 0.230000) + (point 355.030000 66.270000 -54.200000 0.230000) + 3) + (segment 1598 + (point 355.030000 66.270000 -54.200000 0.230000) + (point 355.030000 66.270000 -54.780000 0.230000) + 3) + (segment 1599 + (point 355.030000 66.270000 -54.780000 0.230000) + (point 358.790000 68.340000 -53.380000 0.230000) + 3) + (segment 1600 + (point 358.790000 68.340000 -53.380000 0.230000) + (point 359.860000 69.790000 -55.630000 0.230000) + 3) + (segment 1601 + (point 359.860000 69.790000 -55.630000 0.230000) + (point 359.420000 69.680000 -55.630000 0.230000) + 3)) + (branch 66 64 + (segment 1602 + (point 274.460000 20.050000 -27.950000 0.460000) + (point 271.690000 21.780000 -29.820000 0.230000) + 3) + (segment 1603 + (point 271.690000 21.780000 -29.820000 0.230000) + (point 269.910000 21.360000 -33.030000 0.230000) + 3) + (segment 1604 + (point 269.910000 21.360000 -33.030000 0.230000) + (point 269.380000 23.640000 -32.970000 0.230000) + 3) + (segment 1605 + (point 269.380000 23.640000 -32.970000 0.230000) + (point 269.380000 23.640000 -33.050000 0.230000) + 3) + (segment 1606 + (point 269.380000 23.640000 -33.050000 0.230000) + (point 266.880000 24.230000 -35.670000 0.230000) + 3) + (segment 1607 + (point 266.880000 24.230000 -35.670000 0.230000) + (point 266.880000 24.230000 -35.700000 0.230000) + 3) + (segment 1608 + (point 266.880000 24.230000 -35.700000 0.230000) + (point 265.000000 26.190000 -38.050000 0.230000) + 3) + (segment 1609 + (point 265.000000 26.190000 -38.050000 0.230000) + (point 263.130000 28.140000 -41.080000 0.230000) + 3) + (segment 1610 + (point 263.130000 28.140000 -41.080000 0.230000) + (point 261.260000 30.090000 -43.330000 0.230000) + 3) + (segment 1611 + (point 261.260000 30.090000 -43.330000 0.230000) + (point 260.200000 34.620000 -44.900000 0.230000) + 3) + (segment 1612 + (point 260.200000 34.620000 -44.900000 0.230000) + (point 256.410000 36.720000 -45.950000 0.230000) + 3) + (segment 1613 + (point 256.410000 36.720000 -45.950000 0.230000) + (point 255.750000 39.550000 -47.170000 0.230000) + 3) + (segment 1614 + (point 255.750000 39.550000 -47.170000 0.230000) + (point 252.530000 41.180000 -47.170000 0.230000) + 3) + (segment 1615 + (point 252.530000 41.180000 -47.170000 0.230000) + (point 249.640000 43.490000 -49.150000 0.230000) + 3) + (segment 1616 + (point 249.640000 43.490000 -49.150000 0.230000) + (point 249.160000 47.560000 -50.830000 0.230000) + 3) + (segment 1617 + (point 249.160000 47.560000 -50.830000 0.230000) + (point 248.180000 49.720000 -51.750000 0.230000) + 3) + (segment 1618 + (point 248.180000 49.720000 -51.750000 0.230000) + (point 247.740000 49.610000 -51.750000 0.230000) + 3) + (segment 1619 + (point 247.740000 49.610000 -51.750000 0.230000) + (point 247.070000 52.440000 -52.700000 0.230000) + 3) + (segment 1620 + (point 247.070000 52.440000 -52.700000 0.230000) + (point 247.070000 52.440000 -52.720000 0.230000) + 3) + (segment 1621 + (point 247.070000 52.440000 -52.720000 0.230000) + (point 245.780000 53.930000 -51.720000 0.230000) + 3) + (segment 1622 + (point 245.780000 53.930000 -51.720000 0.230000) + (point 244.220000 56.550000 -54.150000 0.230000) + 3) + (segment 1623 + (point 244.220000 56.550000 -54.150000 0.230000) + (point 241.460000 58.290000 -55.650000 0.230000) + 3) + (segment 1624 + (point 241.460000 58.290000 -55.650000 0.230000) + (point 237.980000 61.070000 -57.530000 0.230000) + 3) + (segment 1625 + (point 237.980000 61.070000 -57.530000 0.230000) + (point 237.980000 61.070000 -57.550000 0.230000) + 3) + (segment 1626 + (point 237.980000 61.070000 -57.550000 0.230000) + (point 233.490000 64.180000 -58.200000 0.230000) + 3) + (segment 1627 + (point 233.490000 64.180000 -58.200000 0.230000) + (point 233.490000 64.180000 -58.220000 0.230000) + 3) + (segment 1628 + (point 233.490000 64.180000 -58.220000 0.230000) + (point 230.490000 66.940000 -57.670000 0.230000) + 3) + (segment 1629 + (point 230.490000 66.940000 -57.670000 0.230000) + (point 227.730000 68.670000 -60.220000 0.230000) + 3) + (segment 1630 + (point 227.730000 68.670000 -60.220000 0.230000) + (point 226.110000 69.500000 -62.700000 0.230000) + 3) + (segment 1631 + (point 226.110000 69.500000 -62.700000 0.230000) + (point 223.540000 72.480000 -64.750000 0.230000) + 3) + (segment 1632 + (point 223.540000 72.480000 -64.750000 0.230000) + (point 223.540000 72.480000 -64.780000 0.230000) + 3) + (segment 1633 + (point 223.540000 72.480000 -64.780000 0.230000) + (point 220.900000 73.650000 -66.950000 0.230000) + 3) + (segment 1634 + (point 220.900000 73.650000 -66.950000 0.230000) + (point 220.460000 73.550000 -66.970000 0.230000) + 3) + (segment 1635 + (point 220.460000 73.550000 -66.970000 0.230000) + (point 219.920000 75.820000 -68.850000 0.230000) + 3) + (segment 1636 + (point 219.920000 75.820000 -68.850000 0.230000) + (point 219.920000 75.820000 -68.900000 0.230000) + 3) + (segment 1637 + (point 219.920000 75.820000 -68.900000 0.230000) + (point 217.700000 75.290000 -71.170000 0.230000) + 3) + (segment 1638 + (point 217.700000 75.290000 -71.170000 0.230000) + (point 217.700000 75.290000 -71.200000 0.230000) + 3) + (segment 1639 + (point 217.700000 75.290000 -71.200000 0.230000) + (point 217.220000 79.360000 -72.400000 0.230000) + 3) + (segment 1640 + (point 217.220000 79.360000 -72.400000 0.230000) + (point 216.240000 81.510000 -75.050000 0.230000) + 3) + (segment 1641 + (point 216.240000 81.510000 -75.050000 0.230000) + (point 216.110000 82.080000 -75.050000 0.230000) + 3) + (segment 1642 + (point 216.110000 82.080000 -75.050000 0.230000) + (point 215.530000 82.540000 -78.300000 0.230000) + 3) + (segment 1643 + (point 215.530000 82.540000 -78.300000 0.230000) + (point 215.530000 82.540000 -78.350000 0.230000) + 3)) + (branch 67 -1 + (segment 1644 + (point 269.000000 15.190000 12.420000 0.460000) + (point 268.880000 15.750000 12.420000 0.460000) + 3) + (segment 1645 + (point 268.880000 15.750000 12.420000 0.460000) + (point 272.050000 18.280000 12.420000 0.460000) + 3) + (segment 1646 + (point 272.050000 18.280000 12.420000 0.460000) + (point 269.540000 18.890000 12.420000 0.460000) + 3) + (segment 1647 + (point 269.540000 18.890000 12.420000 0.460000) + (point 267.180000 18.930000 14.050000 0.460000) + 3) + (segment 1648 + (point 267.180000 18.930000 14.050000 0.460000) + (point 265.970000 18.060000 17.320000 0.460000) + 3) + (segment 1649 + (point 265.970000 18.060000 17.320000 0.460000) + (point 264.370000 18.870000 20.730000 0.460000) + 3) + (segment 1650 + (point 264.370000 18.870000 20.730000 0.460000) + (point 262.760000 19.690000 23.020000 0.460000) + 3) + (segment 1651 + (point 262.760000 19.690000 23.020000 0.460000) + (point 263.430000 16.860000 24.600000 0.460000) + 3) + (segment 1652 + (point 263.430000 16.860000 24.600000 0.460000) + (point 261.120000 18.700000 27.020000 0.460000) + 3) + (segment 1653 + (point 261.120000 18.700000 27.020000 0.460000) + (point 260.670000 18.610000 27.000000 0.460000) + 3) + (segment 1654 + (point 260.670000 18.610000 27.000000 0.460000) + (point 258.700000 16.950000 28.900000 0.460000) + 3) + (segment 1655 + (point 258.700000 16.950000 28.900000 0.460000) + (point 259.180000 12.880000 28.330000 0.460000) + 3) + (segment 1656 + (point 259.180000 12.880000 28.330000 0.460000) + (point 261.680000 12.260000 30.230000 0.460000) + 3) + (segment 1657 + (point 261.680000 12.260000 30.230000 0.460000) + (point 261.680000 12.260000 30.200000 0.460000) + 3) + (segment 1658 + (point 261.680000 12.260000 30.200000 0.460000) + (point 263.460000 12.680000 33.830000 0.460000) + 3) + (segment 1659 + (point 263.460000 12.680000 33.830000 0.460000) + (point 263.460000 12.680000 33.850000 0.460000) + 3)) + (branch 68 -1 + (segment 1660 + (point 259.440000 31.450000 -6.380000 3.440000) + (point 259.440000 31.450000 -6.380000 3.440000) + 4) + (segment 1661 + (point 259.440000 31.450000 -6.380000 3.440000) + (point 259.350000 33.820000 -6.380000 3.440000) + 4) + (segment 1662 + (point 259.350000 33.820000 -6.380000 3.440000) + (point 258.930000 35.900000 -6.380000 3.440000) + 4)) + (branch 69 68 + (segment 1663 + (point 258.930000 35.900000 -6.380000 3.440000) + (point 259.890000 37.530000 -6.380000 1.835000) + 4) + (segment 1664 + (point 259.890000 37.530000 -6.380000 1.835000) + (point 260.300000 41.810000 -6.380000 1.835000) + 4) + (segment 1665 + (point 260.300000 41.810000 -6.380000 1.835000) + (point 260.100000 44.740000 -6.380000 1.835000) + 4)) + (branch 70 69 + (segment 1666 + (point 260.100000 44.740000 -6.380000 1.835000) + (point 258.080000 47.250000 -5.920000 1.835000) + 4) + (segment 1667 + (point 258.080000 47.250000 -5.920000 1.835000) + (point 256.210000 49.210000 -4.700000 1.835000) + 4)) + (branch 71 70 + (segment 1668 + (point 256.210000 49.210000 -4.700000 1.835000) + (point 255.550000 52.030000 -3.000000 1.605000) + 4) + (segment 1669 + (point 255.550000 52.030000 -3.000000 1.605000) + (point 254.000000 54.660000 -1.900000 1.375000) + 4) + (segment 1670 + (point 254.000000 54.660000 -1.900000 1.375000) + (point 252.310000 57.850000 -1.900000 1.375000) + 4) + (segment 1671 + (point 252.310000 57.850000 -1.900000 1.375000) + (point 252.360000 59.650000 -1.900000 1.375000) + 4) + (segment 1672 + (point 252.360000 59.650000 -1.900000 1.375000) + (point 254.180000 61.880000 -1.900000 1.375000) + 4) + (segment 1673 + (point 254.180000 61.880000 -1.900000 1.375000) + (point 256.470000 64.190000 -0.850000 1.375000) + 4) + (segment 1674 + (point 256.470000 64.190000 -0.850000 1.375000) + (point 257.460000 68.010000 0.170000 1.375000) + 4) + (segment 1675 + (point 257.460000 68.010000 0.170000 1.375000) + (point 258.710000 70.700000 0.550000 1.375000) + 4) + (segment 1676 + (point 258.710000 70.700000 0.550000 1.375000) + (point 258.630000 73.060000 1.380000 1.375000) + 4)) + (branch 72 71 + (segment 1677 + (point 258.630000 73.060000 1.380000 1.375000) + (point 259.490000 75.440000 -0.630000 1.375000) + 4) + (segment 1678 + (point 259.490000 75.440000 -0.630000 1.375000) + (point 259.040000 77.350000 -0.630000 1.375000) + 4) + (segment 1679 + (point 259.040000 77.350000 -0.630000 1.375000) + (point 259.420000 79.820000 -1.220000 1.375000) + 4) + (segment 1680 + (point 259.420000 79.820000 -1.220000 1.375000) + (point 259.420000 79.820000 -1.250000 1.375000) + 4) + (segment 1681 + (point 259.420000 79.820000 -1.250000 1.375000) + (point 259.500000 83.430000 -1.250000 1.375000) + 4) + (segment 1682 + (point 259.500000 83.430000 -1.250000 1.375000) + (point 258.630000 89.180000 -1.250000 1.375000) + 4) + (segment 1683 + (point 258.630000 89.180000 -1.250000 1.375000) + (point 257.700000 93.150000 -2.080000 1.375000) + 4) + (segment 1684 + (point 257.700000 93.150000 -2.080000 1.375000) + (point 259.000000 97.630000 -2.850000 1.375000) + 4) + (segment 1685 + (point 259.000000 97.630000 -2.850000 1.375000) + (point 258.470000 99.890000 -3.600000 1.375000) + 4) + (segment 1686 + (point 258.470000 99.890000 -3.600000 1.375000) + (point 258.380000 102.270000 -5.950000 1.375000) + 4) + (segment 1687 + (point 258.380000 102.270000 -5.950000 1.375000) + (point 258.380000 102.270000 -5.970000 1.375000) + 4)) + (branch 73 72 + (segment 1688 + (point 258.380000 102.270000 -5.970000 1.375000) + (point 255.960000 104.560000 -4.380000 1.375000) + 4) + (segment 1689 + (point 255.960000 104.560000 -4.380000 1.375000) + (point 257.530000 107.920000 -3.130000 1.375000) + 4) + (segment 1690 + (point 257.530000 107.920000 -3.130000 1.375000) + (point 259.110000 111.270000 -1.800000 1.375000) + 4) + (segment 1691 + (point 259.110000 111.270000 -1.800000 1.375000) + (point 258.310000 114.660000 -0.900000 1.375000) + 4) + (segment 1692 + (point 258.310000 114.660000 -0.900000 1.375000) + (point 257.250000 119.200000 0.120000 1.375000) + 4) + (segment 1693 + (point 257.250000 119.200000 0.120000 1.375000) + (point 255.870000 123.050000 1.320000 1.375000) + 4)) + (branch 74 73 + (segment 1694 + (point 255.870000 123.050000 1.320000 1.375000) + (point 254.550000 128.720000 1.320000 1.375000) + 4)) + (branch 75 74 + (segment 1695 + (point 254.550000 128.720000 1.320000 1.375000) + (point 255.260000 133.670000 0.350000 1.375000) + 4) + (segment 1696 + (point 255.260000 133.670000 0.350000 1.375000) + (point 255.550000 138.510000 -0.630000 1.375000) + 4) + (segment 1697 + (point 255.550000 138.510000 -0.630000 1.375000) + (point 256.360000 141.090000 -1.820000 1.375000) + 4) + (segment 1698 + (point 256.360000 141.090000 -1.820000 1.375000) + (point 257.930000 144.440000 -3.200000 1.375000) + 4) + (segment 1699 + (point 257.930000 144.440000 -3.200000 1.375000) + (point 257.930000 144.440000 -3.220000 1.375000) + 4) + (segment 1700 + (point 257.930000 144.440000 -3.220000 1.375000) + (point 256.060000 146.390000 -3.550000 1.375000) + 4) + (segment 1701 + (point 256.060000 146.390000 -3.550000 1.375000) + (point 256.200000 151.790000 -3.550000 1.375000) + 4) + (segment 1702 + (point 256.200000 151.790000 -3.550000 1.375000) + (point 256.920000 156.740000 -3.550000 1.375000) + 4) + (segment 1703 + (point 256.920000 156.740000 -3.550000 1.375000) + (point 257.380000 162.830000 -3.550000 1.375000) + 4) + (segment 1704 + (point 257.380000 162.830000 -3.550000 1.375000) + (point 258.820000 166.730000 -2.550000 1.375000) + 4) + (segment 1705 + (point 258.820000 166.730000 -2.550000 1.375000) + (point 262.440000 169.390000 -2.550000 1.375000) + 4) + (segment 1706 + (point 262.440000 169.390000 -2.550000 1.375000) + (point 264.330000 173.410000 -3.200000 1.375000) + 4) + (segment 1707 + (point 264.330000 173.410000 -3.200000 1.375000) + (point 263.090000 176.700000 -3.850000 1.375000) + 4) + (segment 1708 + (point 263.090000 176.700000 -3.850000 1.375000) + (point 259.870000 178.330000 -4.820000 1.375000) + 4) + (segment 1709 + (point 259.870000 178.330000 -4.820000 1.375000) + (point 257.080000 184.250000 -4.820000 1.375000) + 4) + (segment 1710 + (point 257.080000 184.250000 -4.820000 1.375000) + (point 254.730000 190.260000 -4.820000 1.375000) + 4) + (segment 1711 + (point 254.730000 190.260000 -4.820000 1.375000) + (point 251.340000 196.640000 -4.820000 1.375000) + 4) + (segment 1712 + (point 251.340000 196.640000 -4.820000 1.375000) + (point 251.310000 200.810000 -5.720000 1.375000) + 4) + (segment 1713 + (point 251.310000 200.810000 -5.720000 1.375000) + (point 251.860000 204.530000 -7.350000 1.375000) + 4) + (segment 1714 + (point 251.860000 204.530000 -7.350000 1.375000) + (point 253.480000 209.680000 -8.820000 1.375000) + 4) + (segment 1715 + (point 253.480000 209.680000 -8.820000 1.375000) + (point 254.460000 213.490000 -10.000000 1.375000) + 4) + (segment 1716 + (point 254.460000 213.490000 -10.000000 1.375000) + (point 254.110000 216.990000 -11.250000 1.375000) + 4) + (segment 1717 + (point 254.110000 216.990000 -11.250000 1.375000) + (point 251.090000 219.870000 -12.100000 1.375000) + 4)) + (branch 76 75 + (segment 1718 + (point 251.090000 219.870000 -12.100000 1.375000) + (point 250.030000 224.390000 -12.650000 1.375000) + 4) + (segment 1719 + (point 250.030000 224.390000 -12.650000 1.375000) + (point 248.470000 227.010000 -11.800000 1.375000) + 4) + (segment 1720 + (point 248.470000 227.010000 -11.800000 1.375000) + (point 245.700000 228.760000 -11.800000 1.375000) + 4) + (segment 1721 + (point 245.700000 228.760000 -11.800000 1.375000) + (point 243.700000 231.270000 -12.650000 1.375000) + 4) + (segment 1722 + (point 243.700000 231.270000 -12.650000 1.375000) + (point 243.570000 231.830000 -12.650000 1.375000) + 4) + (segment 1723 + (point 243.570000 231.830000 -12.650000 1.375000) + (point 245.010000 235.760000 -13.320000 1.375000) + 4) + (segment 1724 + (point 245.010000 235.760000 -13.320000 1.375000) + (point 245.420000 240.040000 -14.380000 1.375000) + 4) + (segment 1725 + (point 245.420000 240.040000 -14.380000 1.375000) + (point 244.760000 242.870000 -16.320000 1.375000) + 4) + (segment 1726 + (point 244.760000 242.870000 -16.320000 1.375000) + (point 245.880000 246.120000 -18.700000 1.375000) + 4) + (segment 1727 + (point 245.880000 246.120000 -18.700000 1.375000) + (point 245.600000 249.490000 -19.670000 1.375000) + 4) + (segment 1728 + (point 245.600000 249.490000 -19.670000 1.375000) + (point 246.580000 253.310000 -19.880000 1.375000) + 4)) + (branch 77 76 + (segment 1729 + (point 246.580000 253.310000 -19.880000 1.375000) + (point 248.910000 257.440000 -19.880000 1.145000) + 4) + (segment 1730 + (point 248.910000 257.440000 -19.880000 1.145000) + (point 250.030000 260.680000 -19.050000 1.145000) + 4) + (segment 1731 + (point 250.030000 260.680000 -19.050000 1.145000) + (point 251.300000 263.370000 -19.600000 1.145000) + 4) + (segment 1732 + (point 251.300000 263.370000 -19.600000 1.145000) + (point 252.500000 264.250000 -17.770000 1.145000) + 4) + (segment 1733 + (point 252.500000 264.250000 -17.770000 1.145000) + (point 254.770000 266.580000 -16.130000 1.145000) + 4) + (segment 1734 + (point 254.770000 266.580000 -16.130000 1.145000) + (point 256.170000 268.690000 -15.020000 1.145000) + 4) + (segment 1735 + (point 256.170000 268.690000 -15.020000 1.145000) + (point 255.820000 272.200000 -15.020000 1.145000) + 4) + (segment 1736 + (point 255.820000 272.200000 -15.020000 1.145000) + (point 254.390000 274.250000 -16.470000 1.145000) + 4) + (segment 1737 + (point 254.390000 274.250000 -16.470000 1.145000) + (point 253.860000 276.510000 -18.350000 1.145000) + 4) + (segment 1738 + (point 253.860000 276.510000 -18.350000 1.145000) + (point 253.330000 278.770000 -19.420000 1.145000) + 4)) + (branch 78 77 + (segment 1739 + (point 253.330000 278.770000 -19.420000 1.145000) + (point 251.060000 282.420000 -19.420000 1.145000) + 4) + (segment 1740 + (point 251.060000 282.420000 -19.420000 1.145000) + (point 250.980000 284.790000 -20.520000 1.145000) + 4) + (segment 1741 + (point 250.980000 284.790000 -20.520000 1.145000) + (point 252.560000 288.150000 -21.500000 1.145000) + 4) + (segment 1742 + (point 252.560000 288.150000 -21.500000 1.145000) + (point 252.560000 288.150000 -21.520000 1.145000) + 4) + (segment 1743 + (point 252.560000 288.150000 -21.520000 1.145000) + (point 252.510000 292.320000 -21.250000 1.145000) + 4) + (segment 1744 + (point 252.510000 292.320000 -21.250000 1.145000) + (point 254.220000 295.100000 -20.700000 1.145000) + 4) + (segment 1745 + (point 254.220000 295.100000 -20.700000 1.145000) + (point 254.620000 299.380000 -20.700000 1.145000) + 4) + (segment 1746 + (point 254.620000 299.380000 -20.700000 1.145000) + (point 254.280000 302.890000 -19.630000 1.145000) + 4) + (segment 1747 + (point 254.280000 302.890000 -19.630000 1.145000) + (point 254.820000 306.600000 -18.770000 1.145000) + 4) + (segment 1748 + (point 254.820000 306.600000 -18.770000 1.145000) + (point 253.580000 309.890000 -18.770000 1.145000) + 4) + (segment 1749 + (point 253.580000 309.890000 -18.770000 1.145000) + (point 252.920000 312.710000 -20.830000 1.145000) + 4) + (segment 1750 + (point 252.920000 312.710000 -20.830000 1.145000) + (point 252.920000 312.710000 -20.850000 1.145000) + 4) + (segment 1751 + (point 252.920000 312.710000 -20.850000 1.145000) + (point 252.440000 316.780000 -21.670000 1.145000) + 4) + (segment 1752 + (point 252.440000 316.780000 -21.670000 1.145000) + (point 251.650000 320.170000 -22.500000 1.145000) + 4) + (segment 1753 + (point 251.650000 320.170000 -22.500000 1.145000) + (point 249.820000 323.930000 -23.330000 1.145000) + 4) + (segment 1754 + (point 249.820000 323.930000 -23.330000 1.145000) + (point 247.240000 326.910000 -23.900000 1.145000) + 4) + (segment 1755 + (point 247.240000 326.910000 -23.900000 1.145000) + (point 246.390000 328.510000 -24.920000 1.145000) + 4) + (segment 1756 + (point 246.390000 328.510000 -24.920000 1.145000) + (point 246.610000 331.550000 -25.830000 1.145000) + 4) + (segment 1757 + (point 246.610000 331.550000 -25.830000 1.145000) + (point 249.090000 335.110000 -26.500000 1.145000) + 4) + (segment 1758 + (point 249.090000 335.110000 -26.500000 1.145000) + (point 251.370000 337.440000 -25.850000 1.145000) + 4) + (segment 1759 + (point 251.370000 337.440000 -25.850000 1.145000) + (point 251.770000 341.720000 -25.230000 1.145000) + 4) + (segment 1760 + (point 251.770000 341.720000 -25.230000 1.145000) + (point 248.480000 345.720000 -25.230000 1.145000) + 4) + (segment 1761 + (point 248.480000 345.720000 -25.230000 1.145000) + (point 245.010000 348.490000 -26.380000 1.145000) + 4) + (segment 1762 + (point 245.010000 348.490000 -26.380000 1.145000) + (point 243.770000 351.770000 -26.850000 1.145000) + 4) + (segment 1763 + (point 243.770000 351.770000 -26.850000 1.145000) + (point 244.180000 356.050000 -27.350000 1.145000) + 4) + (segment 1764 + (point 244.180000 356.050000 -27.350000 1.145000) + (point 244.400000 359.090000 -26.950000 1.145000) + 4)) + (branch 79 78 + (segment 1765 + (point 244.400000 359.090000 -26.950000 1.145000) + (point 243.050000 361.090000 -26.020000 0.915000) + 4) + (segment 1766 + (point 243.050000 361.090000 -26.020000 0.915000) + (point 242.090000 363.250000 -24.320000 0.915000) + 4) + (segment 1767 + (point 242.090000 363.250000 -24.320000 0.915000) + (point 241.680000 364.950000 -22.800000 0.915000) + 4) + (segment 1768 + (point 241.680000 364.950000 -22.800000 0.915000) + (point 241.730000 366.750000 -21.320000 0.915000) + 4) + (segment 1769 + (point 241.730000 366.750000 -21.320000 0.915000) + (point 242.220000 368.670000 -19.650000 0.915000) + 4) + (segment 1770 + (point 242.220000 368.670000 -19.650000 0.915000) + (point 243.040000 371.250000 -18.720000 0.915000) + 4) + (segment 1771 + (point 243.040000 371.250000 -18.720000 0.915000) + (point 244.280000 373.930000 -18.800000 0.915000) + 4) + (segment 1772 + (point 244.280000 373.930000 -18.800000 0.915000) + (point 245.100000 376.500000 -17.600000 0.915000) + 4) + (segment 1773 + (point 245.100000 376.500000 -17.600000 0.915000) + (point 245.010000 378.870000 -16.670000 0.915000) + 4) + (segment 1774 + (point 245.010000 378.870000 -16.670000 0.915000) + (point 244.750000 380.000000 -15.900000 0.915000) + 4) + (segment 1775 + (point 244.750000 380.000000 -15.900000 0.915000) + (point 242.740000 382.520000 -15.400000 0.915000) + 4) + (segment 1776 + (point 242.740000 382.520000 -15.400000 0.915000) + (point 242.520000 385.460000 -15.100000 0.915000) + 4) + (segment 1777 + (point 242.520000 385.460000 -15.100000 0.915000) + (point 240.250000 389.110000 -15.100000 0.915000) + 4) + (segment 1778 + (point 240.250000 389.110000 -15.100000 0.915000) + (point 238.390000 391.060000 -15.100000 0.915000) + 4) + (segment 1779 + (point 238.390000 391.060000 -15.100000 0.915000) + (point 237.730000 393.890000 -14.130000 0.915000) + 4) + (segment 1780 + (point 237.730000 393.890000 -14.130000 0.915000) + (point 238.660000 395.900000 -13.420000 0.915000) + 4) + (segment 1781 + (point 238.660000 395.900000 -13.420000 0.915000) + (point 239.600000 397.920000 -12.620000 0.915000) + 4) + (segment 1782 + (point 239.600000 397.920000 -12.620000 0.915000) + (point 238.540000 402.440000 -12.400000 0.915000) + 4) + (segment 1783 + (point 238.540000 402.440000 -12.400000 0.915000) + (point 237.930000 407.070000 -12.400000 0.915000) + 4) + (segment 1784 + (point 237.930000 407.070000 -12.400000 0.915000) + (point 236.190000 408.450000 -12.400000 0.915000) + 4) + (segment 1785 + (point 236.190000 408.450000 -12.400000 0.915000) + (point 236.690000 410.360000 -13.320000 0.915000) + 4) + (segment 1786 + (point 236.690000 410.360000 -13.320000 0.915000) + (point 237.230000 414.080000 -14.520000 0.915000) + 4) + (segment 1787 + (point 237.230000 414.080000 -14.520000 0.915000) + (point 238.040000 416.650000 -15.480000 0.915000) + 4) + (segment 1788 + (point 238.040000 416.650000 -15.480000 0.915000) + (point 236.530000 421.070000 -16.380000 0.915000) + 4) + (segment 1789 + (point 236.530000 421.070000 -16.380000 0.915000) + (point 235.040000 425.500000 -14.650000 0.915000) + 4) + (segment 1790 + (point 235.040000 425.500000 -14.650000 0.915000) + (point 234.060000 427.660000 -15.400000 0.915000) + 4) + (segment 1791 + (point 234.060000 427.660000 -15.400000 0.915000) + (point 232.630000 429.710000 -16.350000 0.915000) + 4) + (segment 1792 + (point 232.630000 429.710000 -16.350000 0.915000) + (point 233.480000 434.090000 -16.770000 0.915000) + 4) + (segment 1793 + (point 233.480000 434.090000 -16.770000 0.915000) + (point 234.210000 439.050000 -17.250000 0.915000) + 4) + (segment 1794 + (point 234.210000 439.050000 -17.250000 0.915000) + (point 236.040000 441.270000 -17.300000 0.915000) + 4) + (segment 1795 + (point 236.040000 441.270000 -17.300000 0.915000) + (point 236.540000 443.170000 -18.100000 0.915000) + 4) + (segment 1796 + (point 236.540000 443.170000 -18.100000 0.915000) + (point 235.160000 447.020000 -18.920000 0.915000) + 4) + (segment 1797 + (point 235.160000 447.020000 -18.920000 0.915000) + (point 233.300000 448.980000 -18.920000 0.915000) + 4) + (segment 1798 + (point 233.300000 448.980000 -18.920000 0.915000) + (point 236.180000 450.720000 -19.730000 0.915000) + 4) + (segment 1799 + (point 236.180000 450.720000 -19.730000 0.915000) + (point 237.250000 452.160000 -18.720000 0.915000) + 4) + (segment 1800 + (point 237.250000 452.160000 -18.720000 0.915000) + (point 237.290000 453.970000 -17.270000 0.915000) + 4) + (segment 1801 + (point 237.290000 453.970000 -17.270000 0.915000) + (point 237.290000 453.970000 -17.300000 0.915000) + 4)) + (branch 80 79 + (segment 1802 + (point 237.290000 453.970000 -17.300000 0.915000) + (point 238.430000 457.220000 -16.170000 0.915000) + 4) + (segment 1803 + (point 238.430000 457.220000 -16.170000 0.915000) + (point 238.340000 459.590000 -16.170000 0.915000) + 4) + (segment 1804 + (point 238.340000 459.590000 -16.170000 0.915000) + (point 236.790000 462.210000 -16.770000 0.915000) + 4) + (segment 1805 + (point 236.790000 462.210000 -16.770000 0.915000) + (point 235.810000 464.370000 -16.650000 0.915000) + 4)) + (branch 81 80 + (segment 1806 + (point 235.810000 464.370000 -16.650000 0.915000) + (point 234.880000 468.330000 -16.650000 0.915000) + 4) + (segment 1807 + (point 234.880000 468.330000 -16.650000 0.915000) + (point 234.220000 471.170000 -17.570000 0.915000) + 4) + (segment 1808 + (point 234.220000 471.170000 -17.570000 0.915000) + (point 235.210000 474.980000 -18.880000 0.915000) + 4) + (segment 1809 + (point 235.210000 474.980000 -18.880000 0.915000) + (point 235.610000 479.260000 -18.880000 0.915000) + 4) + (segment 1810 + (point 235.610000 479.260000 -18.880000 0.915000) + (point 234.820000 482.650000 -18.720000 0.915000) + 4) + (segment 1811 + (point 234.820000 482.650000 -18.720000 0.915000) + (point 234.150000 485.470000 -19.300000 0.915000) + 4) + (segment 1812 + (point 234.150000 485.470000 -19.300000 0.915000) + (point 236.040000 489.510000 -19.330000 0.915000) + 4) + (segment 1813 + (point 236.040000 489.510000 -19.330000 0.915000) + (point 237.170000 492.760000 -19.330000 0.915000) + 4) + (segment 1814 + (point 237.170000 492.760000 -19.330000 0.915000) + (point 238.550000 494.870000 -19.900000 0.915000) + 4) + (segment 1815 + (point 238.550000 494.870000 -19.900000 0.915000) + (point 239.040000 496.780000 -19.800000 0.915000) + 4) + (segment 1816 + (point 239.040000 496.780000 -19.800000 0.915000) + (point 236.920000 499.870000 -19.800000 0.915000) + 4) + (segment 1817 + (point 236.920000 499.870000 -19.800000 0.915000) + (point 235.230000 503.050000 -20.100000 0.915000) + 4) + (segment 1818 + (point 235.230000 503.050000 -20.100000 0.915000) + (point 233.140000 507.940000 -20.470000 0.915000) + 4) + (segment 1819 + (point 233.140000 507.940000 -20.470000 0.915000) + (point 233.050000 510.300000 -19.580000 0.915000) + 4) + (segment 1820 + (point 233.050000 510.300000 -19.580000 0.915000) + (point 233.600000 514.010000 -20.380000 0.915000) + 4) + (segment 1821 + (point 233.600000 514.010000 -20.380000 0.915000) + (point 231.150000 516.430000 -20.900000 0.915000) + 4) + (segment 1822 + (point 231.150000 516.430000 -20.900000 0.915000) + (point 230.800000 519.930000 -20.900000 0.915000) + 4) + (segment 1823 + (point 230.800000 519.930000 -20.900000 0.915000) + (point 231.160000 522.400000 -20.630000 0.915000) + 4) + (segment 1824 + (point 231.160000 522.400000 -20.630000 0.915000) + (point 232.140000 526.210000 -21.070000 0.915000) + 4) + (segment 1825 + (point 232.140000 526.210000 -21.070000 0.915000) + (point 231.790000 529.720000 -21.720000 0.915000) + 4) + (segment 1826 + (point 231.790000 529.720000 -21.720000 0.915000) + (point 230.870000 533.680000 -21.720000 0.915000) + 4) + (segment 1827 + (point 230.870000 533.680000 -21.720000 0.915000) + (point 229.040000 537.430000 -22.550000 0.915000) + 4) + (segment 1828 + (point 229.040000 537.430000 -22.550000 0.915000) + (point 229.040000 537.430000 -22.570000 0.915000) + 4) + (segment 1829 + (point 229.040000 537.430000 -22.570000 0.915000) + (point 228.250000 540.830000 -23.920000 0.915000) + 4) + (segment 1830 + (point 228.250000 540.830000 -23.920000 0.915000) + (point 228.250000 540.830000 -23.980000 0.915000) + 4) + (segment 1831 + (point 228.250000 540.830000 -23.980000 0.915000) + (point 228.610000 543.300000 -24.850000 0.915000) + 4) + (segment 1832 + (point 228.610000 543.300000 -24.850000 0.915000) + (point 230.230000 548.460000 -25.420000 0.915000) + 4) + (segment 1833 + (point 230.230000 548.460000 -25.420000 0.915000) + (point 230.330000 552.060000 -26.070000 0.915000) + 4) + (segment 1834 + (point 230.330000 552.060000 -26.070000 0.915000) + (point 232.360000 555.420000 -24.850000 0.915000) + 4) + (segment 1835 + (point 232.360000 555.420000 -24.850000 0.915000) + (point 232.470000 559.020000 -24.850000 0.915000) + 4) + (segment 1836 + (point 232.470000 559.020000 -24.850000 0.915000) + (point 231.100000 562.870000 -25.520000 0.915000) + 4) + (segment 1837 + (point 231.100000 562.870000 -25.520000 0.915000) + (point 231.100000 562.870000 -25.550000 0.915000) + 4) + (segment 1838 + (point 231.100000 562.870000 -25.550000 0.915000) + (point 230.170000 566.840000 -26.320000 0.915000) + 4) + (segment 1839 + (point 230.170000 566.840000 -26.320000 0.915000) + (point 230.270000 570.440000 -27.500000 0.915000) + 4) + (segment 1840 + (point 230.270000 570.440000 -27.500000 0.915000) + (point 231.250000 574.260000 -27.500000 0.915000) + 4) + (segment 1841 + (point 231.250000 574.260000 -27.500000 0.915000) + (point 231.480000 577.300000 -28.470000 0.915000) + 4) + (segment 1842 + (point 231.480000 577.300000 -28.470000 0.915000) + (point 232.030000 581.020000 -29.020000 0.915000) + 4) + (segment 1843 + (point 232.030000 581.020000 -29.020000 0.915000) + (point 231.680000 584.500000 -29.270000 0.915000) + 4) + (segment 1844 + (point 231.680000 584.500000 -29.270000 0.915000) + (point 231.320000 588.000000 -29.600000 0.915000) + 4) + (segment 1845 + (point 231.320000 588.000000 -29.600000 0.915000) + (point 230.920000 589.710000 -30.550000 0.915000) + 4) + (segment 1846 + (point 230.920000 589.710000 -30.550000 0.915000) + (point 232.500000 593.050000 -31.380000 0.915000) + 4) + (segment 1847 + (point 232.500000 593.050000 -31.380000 0.915000) + (point 234.780000 595.390000 -32.630000 0.915000) + 4) + (segment 1848 + (point 234.780000 595.390000 -32.630000 0.915000) + (point 233.400000 599.250000 -32.650000 0.915000) + 4) + (segment 1849 + (point 233.400000 599.250000 -32.650000 0.915000) + (point 232.660000 604.450000 -31.450000 0.915000) + 4) + (segment 1850 + (point 232.660000 604.450000 -31.450000 0.915000) + (point 233.520000 608.830000 -32.250000 0.915000) + 4) + (segment 1851 + (point 233.520000 608.830000 -32.250000 0.915000) + (point 232.540000 610.990000 -32.880000 0.915000) + 4)) + (branch 82 81 + (segment 1852 + (point 232.540000 610.990000 -32.880000 0.915000) + (point 232.060000 615.060000 -32.880000 0.915000) + 4) + (segment 1853 + (point 232.060000 615.060000 -32.880000 0.915000) + (point 231.830000 617.990000 -32.750000 0.915000) + 4) + (segment 1854 + (point 231.830000 617.990000 -32.750000 0.915000) + (point 232.520000 621.140000 -33.150000 0.915000) + 4) + (segment 1855 + (point 232.520000 621.140000 -33.150000 0.915000) + (point 233.510000 624.950000 -33.150000 0.915000) + 4) + (segment 1856 + (point 233.510000 624.950000 -33.150000 0.915000) + (point 232.140000 628.810000 -32.580000 0.915000) + 4) + (segment 1857 + (point 232.140000 628.810000 -32.580000 0.915000) + (point 230.710000 630.860000 -32.650000 0.915000) + 4) + (segment 1858 + (point 230.710000 630.860000 -32.650000 0.915000) + (point 232.270000 634.210000 -33.220000 0.915000) + 4) + (segment 1859 + (point 232.270000 634.210000 -33.220000 0.915000) + (point 233.530000 636.900000 -34.200000 0.915000) + 4) + (segment 1860 + (point 233.530000 636.900000 -34.200000 0.915000) + (point 233.670000 642.310000 -34.780000 0.915000) + 4) + (segment 1861 + (point 233.670000 642.310000 -34.780000 0.915000) + (point 235.520000 644.540000 -34.780000 0.915000) + 4) + (segment 1862 + (point 235.520000 644.540000 -34.780000 0.915000) + (point 237.220000 647.310000 -34.780000 0.915000) + 4) + (segment 1863 + (point 237.220000 647.310000 -34.780000 0.915000) + (point 238.290000 648.760000 -35.830000 0.915000) + 4) + (segment 1864 + (point 238.290000 648.760000 -35.830000 0.915000) + (point 238.290000 648.760000 -35.850000 0.915000) + 4) + (segment 1865 + (point 238.290000 648.760000 -35.850000 0.915000) + (point 238.340000 650.570000 -37.130000 0.915000) + 4) + (segment 1866 + (point 238.340000 650.570000 -37.130000 0.915000) + (point 238.210000 651.130000 -37.150000 0.915000) + 4) + (segment 1867 + (point 238.210000 651.130000 -37.150000 0.915000) + (point 237.360000 652.720000 -36.420000 0.915000) + 4) + (segment 1868 + (point 237.360000 652.720000 -36.420000 0.915000) + (point 237.360000 652.720000 -36.450000 0.915000) + 4) + (segment 1869 + (point 237.360000 652.720000 -36.450000 0.915000) + (point 236.700000 655.550000 -36.420000 0.915000) + 4) + (segment 1870 + (point 236.700000 655.550000 -36.420000 0.915000) + (point 235.540000 656.480000 -34.850000 0.915000) + 4) + (segment 1871 + (point 235.540000 656.480000 -34.850000 0.915000) + (point 235.320000 659.410000 -34.150000 0.915000) + 4)) + (branch 83 82 + (segment 1872 + (point 235.320000 659.410000 -34.150000 0.915000) + (point 233.230000 664.300000 -35.470000 0.915000) + 4) + (segment 1873 + (point 233.230000 664.300000 -35.470000 0.915000) + (point 234.360000 667.550000 -35.130000 0.915000) + 4) + (segment 1874 + (point 234.360000 667.550000 -35.130000 0.915000) + (point 234.360000 667.550000 -35.150000 0.915000) + 4) + (segment 1875 + (point 234.360000 667.550000 -35.150000 0.915000) + (point 233.560000 670.950000 -35.650000 0.915000) + 4) + (segment 1876 + (point 233.560000 670.950000 -35.650000 0.915000) + (point 232.320000 674.240000 -35.650000 0.915000) + 4) + (segment 1877 + (point 232.320000 674.240000 -35.650000 0.915000) + (point 232.680000 676.710000 -34.420000 0.915000) + 4) + (segment 1878 + (point 232.680000 676.710000 -34.420000 0.915000) + (point 232.550000 677.270000 -34.420000 0.915000) + 4) + (segment 1879 + (point 232.550000 677.270000 -34.420000 0.915000) + (point 233.680000 680.520000 -33.130000 0.915000) + 4) + (segment 1880 + (point 233.680000 680.520000 -33.130000 0.915000) + (point 233.460000 683.470000 -33.880000 0.915000) + 4) + (segment 1881 + (point 233.460000 683.470000 -33.880000 0.915000) + (point 233.380000 685.820000 -33.270000 0.915000) + 4) + (segment 1882 + (point 233.380000 685.820000 -33.270000 0.915000) + (point 232.580000 689.220000 -33.050000 0.915000) + 4) + (segment 1883 + (point 232.580000 689.220000 -33.050000 0.915000) + (point 232.940000 691.700000 -33.970000 0.915000) + 4) + (segment 1884 + (point 232.940000 691.700000 -33.970000 0.915000) + (point 232.900000 695.870000 -35.020000 0.915000) + 4) + (segment 1885 + (point 232.900000 695.870000 -35.020000 0.915000) + (point 232.900000 695.870000 -35.050000 0.915000) + 4) + (segment 1886 + (point 232.900000 695.870000 -35.050000 0.915000) + (point 230.640000 699.520000 -36.100000 0.915000) + 4) + (segment 1887 + (point 230.640000 699.520000 -36.100000 0.915000) + (point 231.310000 702.660000 -37.450000 0.915000) + 4) + (segment 1888 + (point 231.310000 702.660000 -37.450000 0.915000) + (point 230.780000 704.930000 -37.770000 0.915000) + 4) + (segment 1889 + (point 230.780000 704.930000 -37.770000 0.915000) + (point 229.350000 706.990000 -36.630000 0.915000) + 4) + (segment 1890 + (point 229.350000 706.990000 -36.630000 0.915000) + (point 229.900000 710.690000 -35.750000 0.915000) + 4) + (segment 1891 + (point 229.900000 710.690000 -35.750000 0.915000) + (point 230.450000 714.400000 -34.950000 0.915000) + 4) + (segment 1892 + (point 230.450000 714.400000 -34.950000 0.915000) + (point 231.570000 717.650000 -34.670000 0.915000) + 4) + (segment 1893 + (point 231.570000 717.650000 -34.670000 0.915000) + (point 230.640000 721.620000 -35.830000 0.915000) + 4) + (segment 1894 + (point 230.640000 721.620000 -35.830000 0.915000) + (point 230.640000 721.620000 -35.850000 0.915000) + 4) + (segment 1895 + (point 230.640000 721.620000 -35.850000 0.915000) + (point 230.870000 724.660000 -36.220000 0.915000) + 4) + (segment 1896 + (point 230.870000 724.660000 -36.220000 0.915000) + (point 230.790000 727.030000 -37.200000 0.915000) + 4) + (segment 1897 + (point 230.790000 727.030000 -37.200000 0.915000) + (point 231.910000 730.280000 -38.150000 0.915000) + 4) + (segment 1898 + (point 231.910000 730.280000 -38.150000 0.915000) + (point 231.470000 736.140000 -39.670000 0.915000) + 4) + (segment 1899 + (point 231.470000 736.140000 -39.670000 0.915000) + (point 229.970000 740.570000 -39.020000 0.915000) + 4) + (segment 1900 + (point 229.970000 740.570000 -39.020000 0.915000) + (point 231.220000 743.250000 -38.880000 0.915000) + 4) + (segment 1901 + (point 231.220000 743.250000 -38.880000 0.915000) + (point 230.920000 748.550000 -38.270000 0.915000) + 4) + (segment 1902 + (point 230.920000 748.550000 -38.270000 0.915000) + (point 231.320000 750.940000 -35.530000 0.915000) + 4) + (segment 1903 + (point 231.320000 750.940000 -35.530000 0.915000) + (point 231.320000 750.940000 -35.550000 0.915000) + 4) + (segment 1904 + (point 231.320000 750.940000 -35.550000 0.915000) + (point 231.240000 753.300000 -34.920000 0.915000) + 4) + (segment 1905 + (point 231.240000 753.300000 -34.920000 0.915000) + (point 229.280000 757.620000 -34.920000 0.915000) + 4) + (segment 1906 + (point 229.280000 757.620000 -34.920000 0.915000) + (point 229.430000 760.490000 -34.630000 0.915000) + 4) + (segment 1907 + (point 229.430000 760.490000 -34.630000 0.915000) + (point 230.730000 764.970000 -33.770000 0.915000) + 4) + (segment 1908 + (point 230.730000 764.970000 -33.770000 0.915000) + (point 231.400000 768.120000 -34.720000 0.915000) + 4) + (segment 1909 + (point 231.400000 768.120000 -34.720000 0.915000) + (point 231.910000 770.020000 -33.970000 0.915000) + 4) + (segment 1910 + (point 231.910000 770.020000 -33.970000 0.915000) + (point 231.510000 771.730000 -33.670000 0.915000) + 4) + (segment 1911 + (point 231.510000 771.730000 -33.670000 0.915000) + (point 229.820000 774.900000 -33.030000 0.915000) + 4) + (segment 1912 + (point 229.820000 774.900000 -33.030000 0.915000) + (point 229.740000 777.280000 -33.000000 0.915000) + 4) + (segment 1913 + (point 229.740000 777.280000 -33.000000 0.915000) + (point 230.680000 779.280000 -33.000000 0.915000) + 4) + (segment 1914 + (point 230.680000 779.280000 -33.000000 0.915000) + (point 231.350000 782.440000 -32.630000 0.915000) + 4) + (segment 1915 + (point 231.350000 782.440000 -32.630000 0.915000) + (point 231.530000 783.670000 -33.130000 0.915000) + 4) + (segment 1916 + (point 231.530000 783.670000 -33.130000 0.915000) + (point 230.600000 787.620000 -32.350000 0.915000) + 4) + (segment 1917 + (point 230.600000 787.620000 -32.350000 0.915000) + (point 231.150000 791.340000 -31.750000 0.915000) + 4) + (segment 1918 + (point 231.150000 791.340000 -31.750000 0.915000) + (point 231.070000 793.720000 -31.350000 0.915000) + 4) + (segment 1919 + (point 231.070000 793.720000 -31.350000 0.915000) + (point 232.640000 797.060000 -31.350000 0.915000) + 4) + (segment 1920 + (point 232.640000 797.060000 -31.350000 0.915000) + (point 233.140000 798.980000 -31.170000 0.915000) + 4) + (segment 1921 + (point 233.140000 798.980000 -31.170000 0.915000) + (point 232.210000 802.930000 -30.800000 0.915000) + 4) + (segment 1922 + (point 232.210000 802.930000 -30.800000 0.915000) + (point 232.120000 805.300000 -31.020000 0.915000) + 4) + (segment 1923 + (point 232.120000 805.300000 -31.020000 0.915000) + (point 232.120000 805.300000 -31.000000 0.915000) + 4) + (segment 1924 + (point 232.120000 805.300000 -31.000000 0.915000) + (point 234.080000 806.960000 -30.570000 0.915000) + 4) + (segment 1925 + (point 234.080000 806.960000 -30.570000 0.915000) + (point 234.500000 811.250000 -29.700000 0.915000) + 4) + (segment 1926 + (point 234.500000 811.250000 -29.700000 0.915000) + (point 233.390000 813.960000 -29.380000 0.915000) + 4) + (segment 1927 + (point 233.390000 813.960000 -29.380000 0.915000) + (point 233.170000 816.900000 -29.380000 0.915000) + 4) + (segment 1928 + (point 233.170000 816.900000 -29.380000 0.915000) + (point 233.970000 819.480000 -30.500000 0.915000) + 4) + (segment 1929 + (point 233.970000 819.480000 -30.500000 0.915000) + (point 233.320000 822.300000 -31.400000 0.915000) + 4) + (segment 1930 + (point 233.320000 822.300000 -31.400000 0.915000) + (point 233.320000 822.300000 -31.420000 0.915000) + 4) + (segment 1931 + (point 233.320000 822.300000 -31.420000 0.915000) + (point 234.000000 825.450000 -32.220000 0.915000) + 4) + (segment 1932 + (point 234.000000 825.450000 -32.220000 0.915000) + (point 234.360000 827.930000 -31.520000 0.915000) + 4) + (segment 1933 + (point 234.360000 827.930000 -31.520000 0.915000) + (point 234.280000 830.290000 -30.380000 0.915000) + 4) + (segment 1934 + (point 234.280000 830.290000 -30.380000 0.915000) + (point 234.950000 833.440000 -30.070000 0.915000) + 4) + (segment 1935 + (point 234.950000 833.440000 -30.070000 0.915000) + (point 235.490000 837.150000 -30.070000 0.915000) + 4) + (segment 1936 + (point 235.490000 837.150000 -30.070000 0.915000) + (point 236.170000 840.280000 -30.070000 0.915000) + 4) + (segment 1937 + (point 236.170000 840.280000 -30.070000 0.915000) + (point 236.790000 841.640000 -30.070000 0.915000) + 4) + (segment 1938 + (point 236.790000 841.640000 -30.070000 0.915000) + (point 235.690000 844.360000 -29.970000 0.915000) + 4) + (segment 1939 + (point 235.690000 844.360000 -29.970000 0.915000) + (point 235.210000 848.420000 -30.750000 0.915000) + 4) + (segment 1940 + (point 235.210000 848.420000 -30.750000 0.915000) + (point 236.470000 851.110000 -30.750000 0.915000) + 4) + (segment 1941 + (point 236.470000 851.110000 -30.750000 0.915000) + (point 237.000000 854.820000 -29.600000 0.915000) + 4) + (segment 1942 + (point 237.000000 854.820000 -29.600000 0.915000) + (point 235.890000 857.540000 -28.630000 0.915000) + 4) + (segment 1943 + (point 235.890000 857.540000 -28.630000 0.915000) + (point 235.540000 861.040000 -29.770000 0.915000) + 4) + (segment 1944 + (point 235.540000 861.040000 -29.770000 0.915000) + (point 236.800000 863.730000 -30.200000 0.915000) + 4)) + (branch 84 83 + (segment 1945 + (point 236.800000 863.730000 -30.200000 0.915000) + (point 238.510000 866.500000 -30.200000 0.460000) + 4) + (segment 1946 + (point 238.510000 866.500000 -30.200000 0.460000) + (point 239.130000 867.840000 -31.580000 0.460000) + 4) + (segment 1947 + (point 239.130000 867.840000 -31.580000 0.460000) + (point 238.780000 871.340000 -30.100000 0.460000) + 4) + (segment 1948 + (point 238.780000 871.340000 -30.100000 0.460000) + (point 239.720000 873.350000 -30.770000 0.460000) + 4) + (segment 1949 + (point 239.720000 873.350000 -30.770000 0.460000) + (point 239.590000 873.910000 -30.770000 0.460000) + 4) + (segment 1950 + (point 239.590000 873.910000 -30.770000 0.460000) + (point 239.370000 876.860000 -31.520000 0.460000) + 4) + (segment 1951 + (point 239.370000 876.860000 -31.520000 0.460000) + (point 239.420000 878.660000 -33.330000 0.460000) + 4) + (segment 1952 + (point 239.420000 878.660000 -33.330000 0.460000) + (point 241.130000 881.450000 -34.450000 0.460000) + 4) + (segment 1953 + (point 241.130000 881.450000 -34.450000 0.460000) + (point 242.640000 882.990000 -35.170000 0.460000) + 4) + (segment 1954 + (point 242.640000 882.990000 -35.170000 0.460000) + (point 242.690000 884.790000 -36.820000 0.460000) + 4) + (segment 1955 + (point 242.690000 884.790000 -36.820000 0.460000) + (point 244.710000 888.250000 -37.550000 0.460000) + 4) + (segment 1956 + (point 244.710000 888.250000 -37.550000 0.460000) + (point 246.240000 889.800000 -37.630000 0.460000) + 4) + (segment 1957 + (point 246.240000 889.800000 -37.630000 0.460000) + (point 247.050000 892.390000 -38.070000 0.460000) + 4) + (segment 1958 + (point 247.050000 892.390000 -38.070000 0.460000) + (point 246.820000 895.320000 -38.900000 0.460000) + 4) + (segment 1959 + (point 246.820000 895.320000 -38.900000 0.460000) + (point 247.900000 896.770000 -40.150000 0.460000) + 4) + (segment 1960 + (point 247.900000 896.770000 -40.150000 0.460000) + (point 249.990000 897.850000 -40.970000 0.460000) + 4) + (segment 1961 + (point 249.990000 897.850000 -40.970000 0.460000) + (point 249.640000 901.350000 -40.380000 0.460000) + 4) + (segment 1962 + (point 249.640000 901.350000 -40.380000 0.460000) + (point 250.330000 904.500000 -41.520000 0.460000) + 4)) + (branch 85 84 + (segment 1963 + (point 250.330000 904.500000 -41.520000 0.460000) + (point 252.480000 907.390000 -42.550000 0.460000) + 4) + (segment 1964 + (point 252.480000 907.390000 -42.550000 0.460000) + (point 254.310000 909.610000 -44.170000 0.460000) + 4) + (segment 1965 + (point 254.310000 909.610000 -44.170000 0.460000) + (point 255.890000 912.960000 -44.870000 0.460000) + 4)) + (branch 86 85 + (segment 1966 + (point 255.890000 912.960000 -44.870000 0.460000) + (point 256.860000 914.370000 -44.100000 0.230000) + 4) + (segment 1967 + (point 256.860000 914.370000 -44.100000 0.230000) + (point 258.680000 916.600000 -42.300000 0.230000) + 4) + (segment 1968 + (point 258.680000 916.600000 -42.300000 0.230000) + (point 258.680000 916.600000 -42.280000 0.230000) + 4) + (segment 1969 + (point 258.680000 916.600000 -42.280000 0.230000) + (point 259.890000 917.480000 -41.450000 0.230000) + 4) + (segment 1970 + (point 259.890000 917.480000 -41.450000 0.230000) + (point 263.210000 919.450000 -40.570000 0.230000) + 4) + (segment 1971 + (point 263.210000 919.450000 -40.570000 0.230000) + (point 265.120000 919.300000 -41.520000 0.230000) + 4) + (segment 1972 + (point 265.120000 919.300000 -41.520000 0.230000) + (point 266.910000 919.720000 -40.220000 0.230000) + 4) + (segment 1973 + (point 266.910000 919.720000 -40.220000 0.230000) + (point 268.170000 922.410000 -39.520000 0.230000) + 4) + (segment 1974 + (point 268.170000 922.410000 -39.520000 0.230000) + (point 270.540000 922.360000 -39.520000 0.230000) + 4) + (segment 1975 + (point 270.540000 922.360000 -39.520000 0.230000) + (point 273.210000 922.990000 -38.550000 0.230000) + 4) + (segment 1976 + (point 273.210000 922.990000 -38.550000 0.230000) + (point 275.310000 924.080000 -37.770000 0.230000) + 4) + (segment 1977 + (point 275.310000 924.080000 -37.770000 0.230000) + (point 276.920000 923.260000 -36.780000 0.230000) + 4) + (segment 1978 + (point 276.920000 923.260000 -36.780000 0.230000) + (point 279.100000 921.980000 -35.600000 0.230000) + 4) + (segment 1979 + (point 279.100000 921.980000 -35.600000 0.230000) + (point 281.390000 924.300000 -34.580000 0.230000) + 4) + (segment 1980 + (point 281.390000 924.300000 -34.580000 0.230000) + (point 282.450000 925.750000 -33.330000 0.230000) + 4) + (segment 1981 + (point 282.450000 925.750000 -33.330000 0.230000) + (point 286.160000 926.020000 -32.750000 0.230000) + 4) + (segment 1982 + (point 286.160000 926.020000 -32.750000 0.230000) + (point 287.820000 927.020000 -32.200000 0.230000) + 4) + (segment 1983 + (point 287.820000 927.020000 -32.200000 0.230000) + (point 289.970000 929.900000 -31.600000 0.230000) + 4) + (segment 1984 + (point 289.970000 929.900000 -31.600000 0.230000) + (point 292.200000 930.430000 -31.000000 0.230000) + 4) + (segment 1985 + (point 292.200000 930.430000 -31.000000 0.230000) + (point 296.080000 931.930000 -30.300000 0.230000) + 4) + (segment 1986 + (point 296.080000 931.930000 -30.300000 0.230000) + (point 297.880000 932.350000 -29.380000 0.230000) + 4) + (segment 1987 + (point 297.880000 932.350000 -29.380000 0.230000) + (point 298.820000 934.360000 -29.380000 0.230000) + 4) + (segment 1988 + (point 298.820000 934.360000 -29.380000 0.230000) + (point 300.470000 935.350000 -28.270000 0.230000) + 4) + (segment 1989 + (point 300.470000 935.350000 -28.270000 0.230000) + (point 302.380000 935.200000 -27.270000 0.230000) + 4) + (segment 1990 + (point 302.380000 935.200000 -27.270000 0.230000) + (point 303.510000 938.440000 -26.720000 0.230000) + 4) + (segment 1991 + (point 303.510000 938.440000 -26.720000 0.230000) + (point 303.510000 938.440000 -26.750000 0.230000) + 4) + (segment 1992 + (point 303.510000 938.440000 -26.750000 0.230000) + (point 305.610000 939.530000 -26.750000 0.230000) + 4) + (segment 1993 + (point 305.610000 939.530000 -26.750000 0.230000) + (point 306.560000 941.550000 -25.730000 0.230000) + 4) + (segment 1994 + (point 306.560000 941.550000 -25.730000 0.230000) + (point 308.520000 943.200000 -24.400000 0.230000) + 4) + (segment 1995 + (point 308.520000 943.200000 -24.400000 0.230000) + (point 310.300000 943.620000 -23.600000 0.230000) + 4) + (segment 1996 + (point 310.300000 943.620000 -23.600000 0.230000) + (point 312.410000 944.700000 -22.970000 0.230000) + 4) + (segment 1997 + (point 312.410000 944.700000 -22.970000 0.230000) + (point 314.060000 945.690000 -22.770000 0.230000) + 4) + (segment 1998 + (point 314.060000 945.690000 -22.770000 0.230000) + (point 317.180000 946.420000 -22.670000 0.230000) + 4) + (segment 1999 + (point 317.180000 946.420000 -22.670000 0.230000) + (point 317.180000 946.420000 -22.700000 0.230000) + 4) + (segment 2000 + (point 317.180000 946.420000 -22.700000 0.230000) + (point 318.670000 946.180000 -20.920000 0.230000) + 4) + (segment 2001 + (point 318.670000 946.180000 -20.920000 0.230000) + (point 318.850000 947.420000 -20.000000 0.230000) + 4) + (segment 2002 + (point 318.850000 947.420000 -20.000000 0.230000) + (point 320.450000 946.600000 -18.400000 0.230000) + 4) + (segment 2003 + (point 320.450000 946.600000 -18.400000 0.230000) + (point 323.390000 946.090000 -17.420000 0.230000) + 4) + (segment 2004 + (point 323.390000 946.090000 -17.420000 0.230000) + (point 323.390000 946.090000 -17.450000 0.230000) + 4) + (segment 2005 + (point 323.390000 946.090000 -17.450000 0.230000) + (point 324.280000 946.300000 -16.200000 0.230000) + 4) + (segment 2006 + (point 324.280000 946.300000 -16.200000 0.230000) + (point 324.330000 948.100000 -14.480000 0.230000) + 4) + (segment 2007 + (point 324.330000 948.100000 -14.480000 0.230000) + (point 327.290000 947.600000 -14.380000 0.230000) + 4) + (segment 2008 + (point 327.290000 947.600000 -14.380000 0.230000) + (point 330.720000 949.000000 -13.050000 0.230000) + 4) + (segment 2009 + (point 330.720000 949.000000 -13.050000 0.230000) + (point 331.610000 949.210000 -13.050000 0.230000) + 4) + (segment 2010 + (point 331.610000 949.210000 -13.050000 0.230000) + (point 332.100000 951.120000 -13.050000 0.230000) + 4) + (segment 2011 + (point 332.100000 951.120000 -13.050000 0.230000) + (point 335.420000 953.090000 -13.050000 0.230000) + 4) + (segment 2012 + (point 335.420000 953.090000 -13.050000 0.230000) + (point 337.690000 955.420000 -14.020000 0.230000) + 4) + (segment 2013 + (point 337.690000 955.420000 -14.020000 0.230000) + (point 340.100000 957.180000 -14.880000 0.230000) + 4) + (segment 2014 + (point 340.100000 957.180000 -14.880000 0.230000) + (point 341.450000 957.490000 -13.720000 0.230000) + 4) + (segment 2015 + (point 341.450000 957.490000 -13.720000 0.230000) + (point 342.080000 958.840000 -12.950000 0.230000) + 4) + (segment 2016 + (point 342.080000 958.840000 -12.950000 0.230000) + (point 344.360000 961.150000 -12.320000 0.230000) + 4) + (segment 2017 + (point 344.360000 961.150000 -12.320000 0.230000) + (point 344.360000 961.150000 -12.350000 0.230000) + 4) + (segment 2018 + (point 344.360000 961.150000 -12.350000 0.230000) + (point 345.750000 963.280000 -12.100000 0.230000) + 4) + (segment 2019 + (point 345.750000 963.280000 -12.100000 0.230000) + (point 345.750000 963.280000 -12.130000 0.230000) + 4) + (segment 2020 + (point 345.750000 963.280000 -12.130000 0.230000) + (point 347.590000 965.500000 -11.170000 0.230000) + 4) + (segment 2021 + (point 347.590000 965.500000 -11.170000 0.230000) + (point 350.710000 966.220000 -10.480000 0.230000) + 4) + (segment 2022 + (point 350.710000 966.220000 -10.480000 0.230000) + (point 351.520000 968.810000 -9.650000 0.230000) + 4) + (segment 2023 + (point 351.520000 968.810000 -9.650000 0.230000) + (point 353.170000 969.790000 -8.420000 0.230000) + 4) + (segment 2024 + (point 353.170000 969.790000 -8.420000 0.230000) + (point 353.170000 969.790000 -8.450000 0.230000) + 4) + (segment 2025 + (point 353.170000 969.790000 -8.450000 0.230000) + (point 354.700000 971.340000 -6.650000 0.230000) + 4) + (segment 2026 + (point 354.700000 971.340000 -6.650000 0.230000) + (point 356.350000 972.330000 -4.170000 0.230000) + 4) + (segment 2027 + (point 356.350000 972.330000 -4.170000 0.230000) + (point 355.900000 972.220000 -4.170000 0.230000) + 4) + (segment 2028 + (point 355.900000 972.220000 -4.170000 0.230000) + (point 356.800000 972.430000 -1.600000 0.230000) + 4)) + (branch 87 85 + (segment 2029 + (point 255.890000 912.960000 -44.870000 0.460000) + (point 255.990000 916.570000 -45.750000 0.230000) + 4) + (segment 2030 + (point 255.990000 916.570000 -45.750000 0.230000) + (point 258.400000 918.330000 -46.670000 0.230000) + 4) + (segment 2031 + (point 258.400000 918.330000 -46.670000 0.230000) + (point 258.890000 920.240000 -47.600000 0.230000) + 4) + (segment 2032 + (point 258.890000 920.240000 -47.600000 0.230000) + (point 258.760000 920.810000 -48.600000 0.230000) + 4) + (segment 2033 + (point 258.760000 920.810000 -48.600000 0.230000) + (point 257.280000 921.060000 -49.050000 0.230000) + 4) + (segment 2034 + (point 257.280000 921.060000 -49.050000 0.230000) + (point 257.280000 921.060000 -49.070000 0.230000) + 4) + (segment 2035 + (point 257.280000 921.060000 -49.070000 0.230000) + (point 257.600000 921.720000 -49.850000 0.230000) + 4) + (segment 2036 + (point 257.600000 921.720000 -49.850000 0.230000) + (point 259.430000 923.950000 -49.850000 0.230000) + 4) + (segment 2037 + (point 259.430000 923.950000 -49.850000 0.230000) + (point 259.870000 924.060000 -50.520000 0.230000) + 4) + (segment 2038 + (point 259.870000 924.060000 -50.520000 0.230000) + (point 258.580000 925.540000 -52.220000 0.230000) + 4) + (segment 2039 + (point 258.580000 925.540000 -52.220000 0.230000) + (point 259.430000 923.950000 -53.600000 0.230000) + 4) + (segment 2040 + (point 259.430000 923.950000 -53.600000 0.230000) + (point 259.430000 923.950000 -53.620000 0.230000) + 4) + (segment 2041 + (point 259.430000 923.950000 -53.620000 0.230000) + (point 259.920000 925.860000 -55.220000 0.230000) + 4) + (segment 2042 + (point 259.920000 925.860000 -55.220000 0.230000) + (point 259.920000 925.860000 -55.300000 0.230000) + 4) + (segment 2043 + (point 259.920000 925.860000 -55.300000 0.230000) + (point 260.560000 927.190000 -57.130000 0.230000) + 4) + (segment 2044 + (point 260.560000 927.190000 -57.130000 0.230000) + (point 262.210000 928.180000 -58.250000 0.230000) + 4) + (segment 2045 + (point 262.210000 928.180000 -58.250000 0.230000) + (point 264.180000 929.850000 -59.380000 0.230000) + 4)) + (branch 88 87 + (segment 2046 + (point 264.180000 929.850000 -59.380000 0.230000) + (point 263.490000 930.270000 -60.570000 0.230000) + 4) + (segment 2047 + (point 263.490000 930.270000 -60.570000 0.230000) + (point 264.300000 932.840000 -61.250000 0.230000) + 4) + (segment 2048 + (point 264.300000 932.840000 -61.250000 0.230000) + (point 262.560000 934.230000 -62.670000 0.230000) + 4) + (segment 2049 + (point 262.560000 934.230000 -62.670000 0.230000) + (point 264.230000 935.210000 -63.750000 0.230000) + 4) + (segment 2050 + (point 264.230000 935.210000 -63.750000 0.230000) + (point 262.940000 936.700000 -64.650000 0.230000) + 4) + (segment 2051 + (point 262.940000 936.700000 -64.650000 0.230000) + (point 263.570000 938.040000 -65.520000 0.230000) + 4) + (segment 2052 + (point 263.570000 938.040000 -65.520000 0.230000) + (point 263.340000 940.980000 -66.200000 0.230000) + 4) + (segment 2053 + (point 263.340000 940.980000 -66.200000 0.230000) + (point 264.600000 943.660000 -67.000000 0.230000) + 4) + (segment 2054 + (point 264.600000 943.660000 -67.000000 0.230000) + (point 264.650000 945.460000 -67.550000 0.230000) + 4) + (segment 2055 + (point 264.650000 945.460000 -67.550000 0.230000) + (point 264.650000 945.460000 -67.570000 0.230000) + 4) + (segment 2056 + (point 264.650000 945.460000 -67.570000 0.230000) + (point 263.360000 946.950000 -69.600000 0.230000) + 4) + (segment 2057 + (point 263.360000 946.950000 -69.600000 0.230000) + (point 263.090000 948.090000 -70.700000 0.230000) + 4) + (segment 2058 + (point 263.090000 948.090000 -70.700000 0.230000) + (point 265.180000 949.170000 -71.850000 0.230000) + 4) + (segment 2059 + (point 265.180000 949.170000 -71.850000 0.230000) + (point 265.050000 949.740000 -72.720000 0.230000) + 4) + (segment 2060 + (point 265.050000 949.740000 -72.720000 0.230000) + (point 265.100000 951.530000 -73.380000 0.230000) + 4) + (segment 2061 + (point 265.100000 951.530000 -73.380000 0.230000) + (point 265.100000 951.530000 -73.400000 0.230000) + 4) + (segment 2062 + (point 265.100000 951.530000 -73.400000 0.230000) + (point 263.950000 952.470000 -74.250000 0.230000) + 4) + (segment 2063 + (point 263.950000 952.470000 -74.250000 0.230000) + (point 262.920000 952.820000 -75.520000 0.230000) + 4) + (segment 2064 + (point 262.920000 952.820000 -75.520000 0.230000) + (point 262.970000 954.620000 -76.800000 0.230000) + 4) + (segment 2065 + (point 262.970000 954.620000 -76.800000 0.230000) + (point 262.970000 954.620000 -76.820000 0.230000) + 4) + (segment 2066 + (point 262.970000 954.620000 -76.820000 0.230000) + (point 262.890000 956.990000 -78.380000 0.230000) + 4) + (segment 2067 + (point 262.890000 956.990000 -78.380000 0.230000) + (point 263.640000 957.770000 -79.750000 0.230000) + 4) + (segment 2068 + (point 263.640000 957.770000 -79.750000 0.230000) + (point 262.930000 958.790000 -81.320000 0.230000) + 4) + (segment 2069 + (point 262.930000 958.790000 -81.320000 0.230000) + (point 259.720000 960.430000 -82.970000 0.230000) + 4) + (segment 2070 + (point 259.720000 960.430000 -82.970000 0.230000) + (point 262.400000 961.060000 -85.850000 0.230000) + 4) + (segment 2071 + (point 262.400000 961.060000 -85.850000 0.230000) + (point 261.560000 962.650000 -88.020000 0.230000) + 4) + (segment 2072 + (point 261.560000 962.650000 -88.020000 0.230000) + (point 260.850000 963.680000 -89.320000 0.230000) + 4) + (segment 2073 + (point 260.850000 963.680000 -89.320000 0.230000) + (point 260.900000 965.480000 -91.070000 0.230000) + 4) + (segment 2074 + (point 260.900000 965.480000 -91.070000 0.230000) + (point 260.370000 967.750000 -92.900000 0.230000) + 4) + (segment 2075 + (point 260.370000 967.750000 -92.900000 0.230000) + (point 259.340000 968.110000 -95.020000 0.230000) + 4) + (segment 2076 + (point 259.340000 968.110000 -95.020000 0.230000) + (point 260.990000 969.090000 -95.820000 0.230000) + 4) + (segment 2077 + (point 260.990000 969.090000 -95.820000 0.230000) + (point 260.990000 969.090000 -95.850000 0.230000) + 4) + (segment 2078 + (point 260.990000 969.090000 -95.850000 0.230000) + (point 259.710000 970.580000 -96.650000 0.230000) + 4) + (segment 2079 + (point 259.710000 970.580000 -96.650000 0.230000) + (point 259.930000 973.620000 -97.800000 0.230000) + 4) + (segment 2080 + (point 259.930000 973.620000 -97.800000 0.230000) + (point 260.020000 977.220000 -98.470000 0.230000) + 4) + (segment 2081 + (point 260.020000 977.220000 -98.470000 0.230000) + (point 260.020000 977.220000 -98.530000 0.230000) + 4) + (segment 2082 + (point 260.020000 977.220000 -98.530000 0.230000) + (point 260.980000 979.230000 -99.450000 0.230000) + 4) + (segment 2083 + (point 260.980000 979.230000 -99.450000 0.230000) + (point 261.650000 982.380000 -100.500000 0.230000) + 4) + (segment 2084 + (point 261.650000 982.380000 -100.500000 0.230000) + (point 262.090000 982.480000 -100.500000 0.230000) + 4) + (segment 2085 + (point 262.090000 982.480000 -100.500000 0.230000) + (point 260.980000 985.210000 -101.270000 0.230000) + 4) + (segment 2086 + (point 260.980000 985.210000 -101.270000 0.230000) + (point 261.170000 986.450000 -102.520000 0.230000) + 4) + (segment 2087 + (point 261.170000 986.450000 -102.520000 0.230000) + (point 262.240000 987.890000 -103.900000 0.230000) + 4) + (segment 2088 + (point 262.240000 987.890000 -103.900000 0.230000) + (point 261.450000 991.290000 -104.820000 0.230000) + 4) + (segment 2089 + (point 261.450000 991.290000 -104.820000 0.230000) + (point 260.780000 994.120000 -105.770000 0.230000) + 4) + (segment 2090 + (point 260.780000 994.120000 -105.770000 0.230000) + (point 261.150000 996.590000 -107.350000 0.230000) + 4) + (segment 2091 + (point 261.150000 996.590000 -107.350000 0.230000) + (point 260.920000 999.530000 -108.720000 0.230000) + 4) + (segment 2092 + (point 260.920000 999.530000 -108.720000 0.230000) + (point 260.520000 1001.220000 -110.020000 0.230000) + 4) + (segment 2093 + (point 260.520000 1001.220000 -110.020000 0.230000) + (point 260.440000 1003.590000 -111.530000 0.230000) + 4) + (segment 2094 + (point 260.440000 1003.590000 -111.530000 0.230000) + (point 258.080000 1003.630000 -112.750000 0.230000) + 4) + (segment 2095 + (point 258.080000 1003.630000 -112.750000 0.230000) + (point 256.290000 1003.220000 -114.650000 0.230000) + 4) + (segment 2096 + (point 256.290000 1003.220000 -114.650000 0.230000) + (point 252.580000 1002.950000 -115.470000 0.230000) + 4) + (segment 2097 + (point 252.580000 1002.950000 -115.470000 0.230000) + (point 251.380000 1002.070000 -117.400000 0.230000) + 4) + (segment 2098 + (point 251.380000 1002.070000 -117.400000 0.230000) + (point 249.460000 1002.210000 -118.100000 0.230000) + 4) + (segment 2099 + (point 249.460000 1002.210000 -118.100000 0.230000) + (point 249.460000 1002.210000 -118.220000 0.230000) + 4)) + (branch 89 87 + (segment 2100 + (point 264.180000 929.850000 -59.380000 0.230000) + (point 265.880000 932.610000 -57.900000 0.230000) + 4) + (segment 2101 + (point 265.880000 932.610000 -57.900000 0.230000) + (point 266.110000 935.650000 -57.020000 0.230000) + 4) + (segment 2102 + (point 266.110000 935.650000 -57.020000 0.230000) + (point 266.210000 939.260000 -56.950000 0.230000) + 4) + (segment 2103 + (point 266.210000 939.260000 -56.950000 0.230000) + (point 267.280000 940.710000 -57.050000 0.230000) + 4) + (segment 2104 + (point 267.280000 940.710000 -57.050000 0.230000) + (point 267.510000 943.750000 -57.050000 0.230000) + 4) + (segment 2105 + (point 267.510000 943.750000 -57.050000 0.230000) + (point 267.470000 947.920000 -58.170000 0.230000) + 4) + (segment 2106 + (point 267.470000 947.920000 -58.170000 0.230000) + (point 268.460000 951.740000 -59.130000 0.230000) + 4) + (segment 2107 + (point 268.460000 951.740000 -59.130000 0.230000) + (point 271.380000 955.390000 -59.670000 0.230000) + 4) + (segment 2108 + (point 271.380000 955.390000 -59.670000 0.230000) + (point 272.840000 955.150000 -60.150000 0.230000) + 4) + (segment 2109 + (point 272.840000 955.150000 -60.150000 0.230000) + (point 274.230000 957.270000 -60.150000 0.230000) + 4) + (segment 2110 + (point 274.230000 957.270000 -60.150000 0.230000) + (point 278.130000 958.780000 -60.950000 0.230000) + 4) + (segment 2111 + (point 278.130000 958.780000 -60.950000 0.230000) + (point 280.090000 960.430000 -60.950000 0.230000) + 4) + (segment 2112 + (point 280.090000 960.430000 -60.950000 0.230000) + (point 282.630000 961.620000 -61.550000 0.230000) + 4) + (segment 2113 + (point 282.630000 961.620000 -61.550000 0.230000) + (point 284.480000 963.850000 -62.280000 0.230000) + 4) + (segment 2114 + (point 284.480000 963.850000 -62.280000 0.230000) + (point 287.020000 965.040000 -60.770000 0.230000) + 4) + (segment 2115 + (point 287.020000 965.040000 -60.770000 0.230000) + (point 289.690000 965.670000 -59.650000 0.230000) + 4) + (segment 2116 + (point 289.690000 965.670000 -59.650000 0.230000) + (point 291.350000 966.650000 -59.830000 0.230000) + 4) + (segment 2117 + (point 291.350000 966.650000 -59.830000 0.230000) + (point 295.190000 966.360000 -58.950000 0.230000) + 4) + (segment 2118 + (point 295.190000 966.360000 -58.950000 0.230000) + (point 296.840000 967.350000 -58.950000 0.230000) + 4) + (segment 2119 + (point 296.840000 967.350000 -58.950000 0.230000) + (point 299.790000 966.830000 -60.670000 0.230000) + 4) + (segment 2120 + (point 299.790000 966.830000 -60.670000 0.230000) + (point 299.660000 967.410000 -62.130000 0.230000) + 4) + (segment 2121 + (point 299.660000 967.410000 -62.130000 0.230000) + (point 303.540000 968.910000 -62.130000 0.230000) + 4) + (segment 2122 + (point 303.540000 968.910000 -62.130000 0.230000) + (point 304.660000 972.160000 -62.350000 0.230000) + 4) + (segment 2123 + (point 304.660000 972.160000 -62.350000 0.230000) + (point 306.770000 973.260000 -62.280000 0.230000) + 4) + (segment 2124 + (point 306.770000 973.260000 -62.280000 0.230000) + (point 308.630000 974.880000 -62.280000 0.230000) + 4) + (segment 2125 + (point 308.630000 974.880000 -62.280000 0.230000) + (point 311.500000 976.740000 -60.920000 0.230000) + 4) + (segment 2126 + (point 311.500000 976.740000 -60.920000 0.230000) + (point 313.460000 978.390000 -59.780000 0.230000) + 4) + (segment 2127 + (point 313.460000 978.390000 -59.780000 0.230000) + (point 316.190000 980.840000 -58.450000 0.230000) + 4) + (segment 2128 + (point 316.190000 980.840000 -58.450000 0.230000) + (point 317.840000 981.820000 -57.200000 0.230000) + 4) + (segment 2129 + (point 317.840000 981.820000 -57.200000 0.230000) + (point 320.130000 984.140000 -56.570000 0.230000) + 4) + (segment 2130 + (point 320.130000 984.140000 -56.570000 0.230000) + (point 322.800000 984.770000 -55.570000 0.230000) + 4) + (segment 2131 + (point 322.800000 984.770000 -55.570000 0.230000) + (point 324.730000 984.620000 -53.950000 0.230000) + 4) + (segment 2132 + (point 324.730000 984.620000 -53.950000 0.230000) + (point 325.310000 984.160000 -52.770000 0.230000) + 4)) + (branch 90 84 + (segment 2133 + (point 250.330000 904.500000 -41.520000 0.460000) + (point 248.940000 908.140000 -41.520000 0.460000) + 4) + (segment 2134 + (point 248.940000 908.140000 -41.520000 0.460000) + (point 248.410000 910.400000 -42.450000 0.460000) + 4) + (segment 2135 + (point 248.410000 910.400000 -42.450000 0.460000) + (point 247.750000 913.220000 -43.500000 0.460000) + 4) + (segment 2136 + (point 247.750000 913.220000 -43.500000 0.460000) + (point 247.980000 916.270000 -44.130000 0.460000) + 4) + (segment 2137 + (point 247.980000 916.270000 -44.130000 0.460000) + (point 246.100000 918.220000 -44.780000 0.460000) + 4) + (segment 2138 + (point 246.100000 918.220000 -44.780000 0.460000) + (point 245.890000 921.150000 -45.320000 0.460000) + 4) + (segment 2139 + (point 245.890000 921.150000 -45.320000 0.460000) + (point 245.220000 923.980000 -46.120000 0.460000) + 4) + (segment 2140 + (point 245.220000 923.980000 -46.120000 0.460000) + (point 245.220000 923.980000 -46.150000 0.460000) + 4) + (segment 2141 + (point 245.220000 923.980000 -46.150000 0.460000) + (point 244.300000 927.950000 -46.600000 0.460000) + 4) + (segment 2142 + (point 244.300000 927.950000 -46.600000 0.460000) + (point 243.050000 931.240000 -46.820000 0.460000) + 4) + (segment 2143 + (point 243.050000 931.240000 -46.820000 0.460000) + (point 241.050000 933.760000 -47.300000 0.460000) + 4) + (segment 2144 + (point 241.050000 933.760000 -47.300000 0.460000) + (point 241.010000 937.930000 -47.330000 0.460000) + 4) + (segment 2145 + (point 241.010000 937.930000 -47.330000 0.460000) + (point 239.150000 939.880000 -48.150000 0.460000) + 4) + (segment 2146 + (point 239.150000 939.880000 -48.150000 0.460000) + (point 237.460000 943.070000 -48.720000 0.460000) + 4) + (segment 2147 + (point 237.460000 943.070000 -48.720000 0.460000) + (point 235.770000 946.260000 -48.720000 0.460000) + 4) + (segment 2148 + (point 235.770000 946.260000 -48.720000 0.460000) + (point 234.790000 948.400000 -49.270000 0.460000) + 4) + (segment 2149 + (point 234.790000 948.400000 -49.270000 0.460000) + (point 233.990000 951.800000 -49.400000 0.460000) + 4) + (segment 2150 + (point 233.990000 951.800000 -49.400000 0.460000) + (point 233.460000 954.070000 -49.800000 0.460000) + 4)) + (branch 91 90 + (segment 2151 + (point 233.460000 954.070000 -49.800000 0.460000) + (point 233.650000 955.310000 -50.700000 0.230000) + 4) + (segment 2152 + (point 233.650000 955.310000 -50.700000 0.230000) + (point 231.200000 957.720000 -50.700000 0.230000) + 4) + (segment 2153 + (point 231.200000 957.720000 -50.700000 0.230000) + (point 230.220000 959.870000 -50.600000 0.230000) + 4) + (segment 2154 + (point 230.220000 959.870000 -50.600000 0.230000) + (point 228.850000 963.730000 -50.470000 0.230000) + 4) + (segment 2155 + (point 228.850000 963.730000 -50.470000 0.230000) + (point 227.920000 967.700000 -50.970000 0.230000) + 4) + (segment 2156 + (point 227.920000 967.700000 -50.970000 0.230000) + (point 226.040000 969.650000 -50.970000 0.230000) + 4) + (segment 2157 + (point 226.040000 969.650000 -50.970000 0.230000) + (point 225.770000 970.780000 -51.320000 0.230000) + 4) + (segment 2158 + (point 225.770000 970.780000 -51.320000 0.230000) + (point 223.780000 973.300000 -51.350000 0.230000) + 4) + (segment 2159 + (point 223.780000 973.300000 -51.350000 0.230000) + (point 223.060000 974.330000 -53.000000 0.230000) + 4) + (segment 2160 + (point 223.060000 974.330000 -53.000000 0.230000) + (point 221.950000 977.050000 -54.430000 0.230000) + 4) + (segment 2161 + (point 221.950000 977.050000 -54.430000 0.230000) + (point 220.210000 978.430000 -55.300000 0.230000) + 4) + (segment 2162 + (point 220.210000 978.430000 -55.300000 0.230000) + (point 218.930000 979.920000 -56.030000 0.230000) + 4) + (segment 2163 + (point 218.930000 979.920000 -56.030000 0.230000) + (point 218.930000 979.920000 -56.050000 0.230000) + 4) + (segment 2164 + (point 218.930000 979.920000 -56.050000 0.230000) + (point 218.530000 981.620000 -56.550000 0.230000) + 4) + (segment 2165 + (point 218.530000 981.620000 -56.550000 0.230000) + (point 216.610000 981.770000 -56.900000 0.230000) + 4) + (segment 2166 + (point 216.610000 981.770000 -56.900000 0.230000) + (point 215.180000 983.830000 -57.450000 0.230000) + 4) + (segment 2167 + (point 215.180000 983.830000 -57.450000 0.230000) + (point 215.810000 985.160000 -58.500000 0.230000) + 4) + (segment 2168 + (point 215.810000 985.160000 -58.500000 0.230000) + (point 215.420000 986.860000 -59.380000 0.230000) + 4) + (segment 2169 + (point 215.420000 986.860000 -59.380000 0.230000) + (point 216.230000 989.450000 -59.200000 0.230000) + 4) + (segment 2170 + (point 216.230000 989.450000 -59.200000 0.230000) + (point 215.260000 991.500000 -59.920000 0.230000) + 4) + (segment 2171 + (point 215.260000 991.500000 -59.920000 0.230000) + (point 214.730000 993.770000 -60.950000 0.230000) + 4) + (segment 2172 + (point 214.730000 993.770000 -60.950000 0.230000) + (point 215.220000 995.680000 -61.500000 0.230000) + 4) + (segment 2173 + (point 215.220000 995.680000 -61.500000 0.230000) + (point 214.560000 998.500000 -62.450000 0.230000) + 4) + (segment 2174 + (point 214.560000 998.500000 -62.450000 0.230000) + (point 214.780000 1001.540000 -63.400000 0.230000) + 4) + (segment 2175 + (point 214.780000 1001.540000 -63.400000 0.230000) + (point 214.780000 1001.540000 -63.420000 0.230000) + 4) + (segment 2176 + (point 214.780000 1001.540000 -63.420000 0.230000) + (point 214.080000 1002.570000 -63.880000 0.230000) + 4) + (segment 2177 + (point 214.080000 1002.570000 -63.880000 0.230000) + (point 214.080000 1002.570000 -62.880000 0.230000) + 4) + (segment 2178 + (point 214.080000 1002.570000 -62.880000 0.230000) + (point 214.570000 1004.480000 -61.880000 0.230000) + 4) + (segment 2179 + (point 214.570000 1004.480000 -61.880000 0.230000) + (point 214.090000 1008.550000 -60.720000 0.230000) + 4) + (segment 2180 + (point 214.090000 1008.550000 -60.720000 0.230000) + (point 215.040000 1010.560000 -62.570000 0.230000) + 4) + (segment 2181 + (point 215.040000 1010.560000 -62.570000 0.230000) + (point 214.060000 1012.730000 -63.420000 0.230000) + 4) + (segment 2182 + (point 214.060000 1012.730000 -63.420000 0.230000) + (point 214.560000 1014.630000 -64.020000 0.230000) + 4) + (segment 2183 + (point 214.560000 1014.630000 -64.020000 0.230000) + (point 213.710000 1016.230000 -64.950000 0.230000) + 4) + (segment 2184 + (point 213.710000 1016.230000 -64.950000 0.230000) + (point 212.600000 1018.940000 -66.170000 0.230000) + 4) + (segment 2185 + (point 212.600000 1018.940000 -66.170000 0.230000) + (point 211.490000 1021.670000 -67.070000 0.230000) + 4) + (segment 2186 + (point 211.490000 1021.670000 -67.070000 0.230000) + (point 210.200000 1023.150000 -68.000000 0.230000) + 4) + (segment 2187 + (point 210.200000 1023.150000 -68.000000 0.230000) + (point 209.040000 1024.090000 -68.750000 0.230000) + 4) + (segment 2188 + (point 209.040000 1024.090000 -68.750000 0.230000) + (point 209.080000 1025.890000 -69.920000 0.230000) + 4) + (segment 2189 + (point 209.080000 1025.890000 -69.920000 0.230000) + (point 208.680000 1027.590000 -71.380000 0.230000) + 4) + (segment 2190 + (point 208.680000 1027.590000 -71.380000 0.230000) + (point 211.240000 1028.780000 -72.600000 0.230000) + 4) + (segment 2191 + (point 211.240000 1028.780000 -72.600000 0.230000) + (point 211.240000 1028.780000 -72.630000 0.230000) + 4) + (segment 2192 + (point 211.240000 1028.780000 -72.630000 0.230000) + (point 209.950000 1030.270000 -74.400000 0.230000) + 4) + (segment 2193 + (point 209.950000 1030.270000 -74.400000 0.230000) + (point 209.860000 1032.640000 -75.300000 0.230000) + 4) + (segment 2194 + (point 209.860000 1032.640000 -75.300000 0.230000) + (point 209.780000 1035.000000 -76.850000 0.230000) + 4) + (segment 2195 + (point 209.780000 1035.000000 -76.850000 0.230000) + (point 208.940000 1036.600000 -78.380000 0.230000) + 4) + (segment 2196 + (point 208.940000 1036.600000 -78.380000 0.230000) + (point 208.940000 1036.600000 -78.350000 0.230000) + 4) + (segment 2197 + (point 208.940000 1036.600000 -78.350000 0.230000) + (point 208.670000 1037.740000 -81.070000 0.230000) + 4) + (segment 2198 + (point 208.670000 1037.740000 -81.070000 0.230000) + (point 208.670000 1037.740000 -81.100000 0.230000) + 4)) + (branch 92 90 + (segment 2199 + (point 233.460000 954.070000 -49.800000 0.460000) + (point 231.740000 955.350000 -48.000000 0.460000) + 4) + (segment 2200 + (point 231.740000 955.350000 -48.000000 0.460000) + (point 228.980000 957.100000 -46.120000 0.460000) + 4) + (segment 2201 + (point 228.980000 957.100000 -46.120000 0.460000) + (point 228.580000 958.790000 -45.320000 0.460000) + 4) + (segment 2202 + (point 228.580000 958.790000 -45.320000 0.460000) + (point 226.900000 961.980000 -45.030000 0.460000) + 4) + (segment 2203 + (point 226.900000 961.980000 -45.030000 0.460000) + (point 225.910000 964.150000 -44.000000 0.460000) + 4) + (segment 2204 + (point 225.910000 964.150000 -44.000000 0.460000) + (point 225.910000 964.150000 -44.020000 0.460000) + 4) + (segment 2205 + (point 225.910000 964.150000 -44.020000 0.460000) + (point 224.350000 966.760000 -42.900000 0.460000) + 4) + (segment 2206 + (point 224.350000 966.760000 -42.900000 0.460000) + (point 224.350000 966.760000 -42.920000 0.460000) + 4) + (segment 2207 + (point 224.350000 966.760000 -42.920000 0.460000) + (point 222.310000 967.480000 -42.450000 0.460000) + 4) + (segment 2208 + (point 222.310000 967.480000 -42.450000 0.460000) + (point 222.080000 970.410000 -42.450000 0.460000) + 4) + (segment 2209 + (point 222.080000 970.410000 -42.450000 0.460000) + (point 221.380000 971.440000 -41.150000 0.460000) + 4) + (segment 2210 + (point 221.380000 971.440000 -41.150000 0.460000) + (point 221.380000 971.440000 -41.170000 0.460000) + 4) + (segment 2211 + (point 221.380000 971.440000 -41.170000 0.460000) + (point 219.370000 973.950000 -40.380000 0.460000) + 4) + (segment 2212 + (point 219.370000 973.950000 -40.380000 0.460000) + (point 218.080000 975.450000 -40.400000 0.460000) + 4) + (segment 2213 + (point 218.080000 975.450000 -40.400000 0.460000) + (point 218.080000 975.450000 -40.420000 0.460000) + 4) + (segment 2214 + (point 218.080000 975.450000 -40.420000 0.460000) + (point 217.280000 978.850000 -39.720000 0.460000) + 4) + (segment 2215 + (point 217.280000 978.850000 -39.720000 0.460000) + (point 215.870000 980.900000 -38.800000 0.460000) + 4) + (segment 2216 + (point 215.870000 980.900000 -38.800000 0.460000) + (point 213.550000 982.740000 -38.200000 0.460000) + 4) + (segment 2217 + (point 213.550000 982.740000 -38.200000 0.460000) + (point 212.260000 984.220000 -37.250000 0.460000) + 4) + (segment 2218 + (point 212.260000 984.220000 -37.250000 0.460000) + (point 212.350000 987.830000 -36.270000 0.460000) + 4) + (segment 2219 + (point 212.350000 987.830000 -36.270000 0.460000) + (point 211.230000 990.570000 -37.880000 0.460000) + 4) + (segment 2220 + (point 211.230000 990.570000 -37.880000 0.460000) + (point 208.970000 994.220000 -37.880000 0.460000) + 4) + (segment 2221 + (point 208.970000 994.220000 -37.880000 0.460000) + (point 207.860000 996.930000 -37.880000 0.460000) + 4) + (segment 2222 + (point 207.860000 996.930000 -37.880000 0.460000) + (point 205.670000 998.220000 -36.330000 0.460000) + 4) + (segment 2223 + (point 205.670000 998.220000 -36.330000 0.460000) + (point 203.450000 1003.670000 -36.330000 0.460000) + 4) + (segment 2224 + (point 203.450000 1003.670000 -36.330000 0.460000) + (point 203.020000 1003.560000 -36.330000 0.460000) + 4) + (segment 2225 + (point 203.020000 1003.560000 -36.330000 0.460000) + (point 202.170000 1005.160000 -36.470000 0.460000) + 4) + (segment 2226 + (point 202.170000 1005.160000 -36.470000 0.460000) + (point 201.690000 1009.230000 -36.520000 0.460000) + 4) + (segment 2227 + (point 201.690000 1009.230000 -36.520000 0.460000) + (point 199.860000 1012.980000 -37.850000 0.460000) + 4) + (segment 2228 + (point 199.860000 1012.980000 -37.850000 0.460000) + (point 197.150000 1016.520000 -39.280000 0.460000) + 4) + (segment 2229 + (point 197.150000 1016.520000 -39.280000 0.460000) + (point 196.350000 1019.910000 -39.920000 0.460000) + 4) + (segment 2230 + (point 196.350000 1019.910000 -39.920000 0.460000) + (point 196.220000 1020.490000 -39.920000 0.460000) + 4) + (segment 2231 + (point 196.220000 1020.490000 -39.920000 0.460000) + (point 195.950000 1021.610000 -40.800000 0.460000) + 4) + (segment 2232 + (point 195.950000 1021.610000 -40.800000 0.460000) + (point 193.500000 1024.040000 -41.730000 0.460000) + 4) + (segment 2233 + (point 193.500000 1024.040000 -41.730000 0.460000) + (point 192.980000 1026.290000 -40.500000 0.460000) + 4) + (segment 2234 + (point 192.980000 1026.290000 -40.500000 0.460000) + (point 191.870000 1029.010000 -39.850000 0.460000) + 4) + (segment 2235 + (point 191.870000 1029.010000 -39.850000 0.460000) + (point 189.540000 1030.850000 -39.850000 0.460000) + 4) + (segment 2236 + (point 189.540000 1030.850000 -39.850000 0.460000) + (point 189.640000 1034.460000 -40.480000 0.460000) + 4) + (segment 2237 + (point 189.640000 1034.460000 -40.480000 0.460000) + (point 187.950000 1037.650000 -39.630000 0.460000) + 4) + (segment 2238 + (point 187.950000 1037.650000 -39.630000 0.460000) + (point 186.710000 1040.940000 -40.550000 0.460000) + 4) + (segment 2239 + (point 186.710000 1040.940000 -40.550000 0.460000) + (point 184.760000 1045.270000 -40.970000 0.460000) + 4) + (segment 2240 + (point 184.760000 1045.270000 -40.970000 0.460000) + (point 183.020000 1046.650000 -41.220000 0.460000) + 4) + (segment 2241 + (point 183.020000 1046.650000 -41.220000 0.460000) + (point 183.070000 1048.460000 -42.050000 0.460000) + 4) + (segment 2242 + (point 183.070000 1048.460000 -42.050000 0.460000) + (point 181.950000 1051.180000 -42.450000 0.460000) + 4) + (segment 2243 + (point 181.950000 1051.180000 -42.450000 0.460000) + (point 181.160000 1054.570000 -42.600000 0.460000) + 4) + (segment 2244 + (point 181.160000 1054.570000 -42.600000 0.460000) + (point 179.300000 1056.530000 -42.600000 0.460000) + 4) + (segment 2245 + (point 179.300000 1056.530000 -42.600000 0.460000) + (point 178.050000 1059.820000 -41.470000 0.460000) + 4) + (segment 2246 + (point 178.050000 1059.820000 -41.470000 0.460000) + (point 178.100000 1061.620000 -41.100000 0.460000) + 4) + (segment 2247 + (point 178.100000 1061.620000 -41.100000 0.460000) + (point 176.150000 1065.930000 -40.480000 0.460000) + 4) + (segment 2248 + (point 176.150000 1065.930000 -40.480000 0.460000) + (point 176.240000 1069.540000 -39.970000 0.460000) + 4) + (segment 2249 + (point 176.240000 1069.540000 -39.970000 0.460000) + (point 172.450000 1071.640000 -40.320000 0.460000) + 4) + (segment 2250 + (point 172.450000 1071.640000 -40.320000 0.460000) + (point 171.210000 1074.940000 -41.600000 0.460000) + 4) + (segment 2251 + (point 171.210000 1074.940000 -41.600000 0.460000) + (point 168.700000 1075.540000 -42.350000 0.460000) + 4) + (segment 2252 + (point 168.700000 1075.540000 -42.350000 0.460000) + (point 168.360000 1079.040000 -43.220000 0.460000) + 4) + (segment 2253 + (point 168.360000 1079.040000 -43.220000 0.460000) + (point 168.850000 1080.950000 -43.720000 0.460000) + 4) + (segment 2254 + (point 168.850000 1080.950000 -43.720000 0.460000) + (point 164.170000 1082.840000 -43.970000 0.460000) + 4) + (segment 2255 + (point 164.170000 1082.840000 -43.970000 0.460000) + (point 164.170000 1082.840000 -44.000000 0.460000) + 4) + (segment 2256 + (point 164.170000 1082.840000 -44.000000 0.460000) + (point 162.170000 1085.350000 -43.100000 0.460000) + 4) + (segment 2257 + (point 162.170000 1085.350000 -43.100000 0.460000) + (point 156.460000 1087.590000 -43.350000 0.460000) + 4) + (segment 2258 + (point 156.460000 1087.590000 -43.350000 0.460000) + (point 156.460000 1087.590000 -43.470000 0.460000) + 4) + (segment 2259 + (point 156.460000 1087.590000 -43.470000 0.460000) + (point 153.260000 1089.240000 -44.630000 0.230000) + 4) + (segment 2260 + (point 153.260000 1089.240000 -44.630000 0.230000) + (point 149.460000 1091.340000 -45.270000 0.230000) + 4) + (segment 2261 + (point 149.460000 1091.340000 -45.270000 0.230000) + (point 149.460000 1091.340000 -45.400000 0.230000) + 4) + (segment 2262 + (point 149.460000 1091.340000 -45.400000 0.230000) + (point 146.200000 1091.170000 -48.220000 0.230000) + 4) + (segment 2263 + (point 146.200000 1091.170000 -48.220000 0.230000) + (point 146.200000 1091.170000 -48.270000 0.230000) + 4)) + (branch 93 83 + (segment 2264 + (point 236.800000 863.730000 -30.200000 0.915000) + (point 235.720000 866.340000 -28.500000 0.690000) + 4) + (segment 2265 + (point 235.720000 866.340000 -28.500000 0.690000) + (point 234.790000 870.300000 -29.100000 0.690000) + 4) + (segment 2266 + (point 234.790000 870.300000 -29.100000 0.690000) + (point 233.090000 873.500000 -29.100000 0.690000) + 4) + (segment 2267 + (point 233.090000 873.500000 -29.100000 0.690000) + (point 231.590000 877.920000 -29.380000 0.690000) + 4) + (segment 2268 + (point 231.590000 877.920000 -29.380000 0.690000) + (point 230.340000 881.210000 -28.500000 0.690000) + 4) + (segment 2269 + (point 230.340000 881.210000 -28.500000 0.690000) + (point 230.580000 884.240000 -27.970000 0.690000) + 4) + (segment 2270 + (point 230.580000 884.240000 -27.970000 0.690000) + (point 230.760000 885.480000 -27.970000 0.690000) + 4) + (segment 2271 + (point 230.760000 885.480000 -27.970000 0.690000) + (point 228.760000 888.000000 -27.970000 0.690000) + 4) + (segment 2272 + (point 228.760000 888.000000 -27.970000 0.690000) + (point 227.020000 889.390000 -27.220000 0.690000) + 4) + (segment 2273 + (point 227.020000 889.390000 -27.220000 0.690000) + (point 225.910000 892.100000 -26.520000 0.690000) + 4) + (segment 2274 + (point 225.910000 892.100000 -26.520000 0.690000) + (point 224.800000 894.840000 -25.500000 0.690000) + 4) + (segment 2275 + (point 224.800000 894.840000 -25.500000 0.690000) + (point 222.340000 897.240000 -25.200000 0.690000) + 4) + (segment 2276 + (point 222.340000 897.240000 -25.200000 0.690000) + (point 219.950000 901.460000 -24.620000 0.690000) + 4) + (segment 2277 + (point 219.950000 901.460000 -24.620000 0.690000) + (point 218.840000 904.190000 -26.850000 0.690000) + 4) + (segment 2278 + (point 218.840000 904.190000 -26.850000 0.690000) + (point 216.880000 908.500000 -27.270000 0.690000) + 4) + (segment 2279 + (point 216.880000 908.500000 -27.270000 0.690000) + (point 212.690000 912.300000 -27.570000 0.690000) + 4) + (segment 2280 + (point 212.690000 912.300000 -27.570000 0.690000) + (point 213.510000 914.880000 -28.150000 0.690000) + 4) + (segment 2281 + (point 213.510000 914.880000 -28.150000 0.690000) + (point 213.430000 917.250000 -27.970000 0.690000) + 4) + (segment 2282 + (point 213.430000 917.250000 -27.970000 0.690000) + (point 213.780000 919.720000 -28.650000 0.690000) + 4) + (segment 2283 + (point 213.780000 919.720000 -28.650000 0.690000) + (point 213.780000 919.720000 -28.670000 0.690000) + 4) + (segment 2284 + (point 213.780000 919.720000 -28.670000 0.690000) + (point 212.230000 922.340000 -29.080000 0.690000) + 4) + (segment 2285 + (point 212.230000 922.340000 -29.080000 0.690000) + (point 210.730000 926.760000 -29.900000 0.690000) + 4) + (segment 2286 + (point 210.730000 926.760000 -29.900000 0.690000) + (point 211.660000 928.780000 -30.350000 0.690000) + 4) + (segment 2287 + (point 211.660000 928.780000 -30.350000 0.690000) + (point 211.660000 928.780000 -30.380000 0.690000) + 4) + (segment 2288 + (point 211.660000 928.780000 -30.380000 0.690000) + (point 211.310000 932.280000 -30.950000 0.690000) + 4) + (segment 2289 + (point 211.310000 932.280000 -30.950000 0.690000) + (point 210.780000 934.540000 -31.580000 0.690000) + 4) + (segment 2290 + (point 210.780000 934.540000 -31.580000 0.690000) + (point 210.780000 934.540000 -31.600000 0.690000) + 4) + (segment 2291 + (point 210.780000 934.540000 -31.600000 0.690000) + (point 209.360000 936.610000 -32.250000 0.690000) + 4) + (segment 2292 + (point 209.360000 936.610000 -32.250000 0.690000) + (point 207.040000 938.440000 -32.450000 0.690000) + 4) + (segment 2293 + (point 207.040000 938.440000 -32.450000 0.690000) + (point 207.040000 938.440000 -32.470000 0.690000) + 4) + (segment 2294 + (point 207.040000 938.440000 -32.470000 0.690000) + (point 207.280000 941.490000 -33.170000 0.690000) + 4) + (segment 2295 + (point 207.280000 941.490000 -33.170000 0.690000) + (point 206.750000 943.740000 -34.320000 0.690000) + 4) + (segment 2296 + (point 206.750000 943.740000 -34.320000 0.690000) + (point 206.750000 943.740000 -34.350000 0.690000) + 4) + (segment 2297 + (point 206.750000 943.740000 -34.350000 0.690000) + (point 206.790000 945.550000 -33.950000 0.690000) + 4) + (segment 2298 + (point 206.790000 945.550000 -33.950000 0.690000) + (point 207.780000 949.370000 -34.900000 0.690000) + 4) + (segment 2299 + (point 207.780000 949.370000 -34.900000 0.690000) + (point 208.090000 950.040000 -35.850000 0.690000) + 4) + (segment 2300 + (point 208.090000 950.040000 -35.850000 0.690000) + (point 206.220000 951.980000 -37.080000 0.690000) + 4) + (segment 2301 + (point 206.220000 951.980000 -37.080000 0.690000) + (point 204.040000 953.270000 -37.630000 0.690000) + 4) + (segment 2302 + (point 204.040000 953.270000 -37.630000 0.690000) + (point 202.800000 956.560000 -38.420000 0.690000) + 4) + (segment 2303 + (point 202.800000 956.560000 -38.420000 0.690000) + (point 202.270000 958.820000 -39.170000 0.690000) + 4) + (segment 2304 + (point 202.270000 958.820000 -39.170000 0.690000) + (point 199.500000 960.560000 -40.070000 0.690000) + 4) + (segment 2305 + (point 199.500000 960.560000 -40.070000 0.690000) + (point 199.290000 963.490000 -41.030000 0.690000) + 4) + (segment 2306 + (point 199.290000 963.490000 -41.030000 0.690000) + (point 200.100000 966.080000 -41.900000 0.690000) + 4) + (segment 2307 + (point 200.100000 966.080000 -41.900000 0.690000) + (point 199.560000 968.340000 -42.330000 0.690000) + 4) + (segment 2308 + (point 199.560000 968.340000 -42.330000 0.690000) + (point 196.580000 973.020000 -42.570000 0.690000) + 4)) + (branch 94 93 + (segment 2309 + (point 196.580000 973.020000 -42.570000 0.690000) + (point 196.200000 974.700000 -43.950000 0.460000) + 4) + (segment 2310 + (point 196.200000 974.700000 -43.950000 0.460000) + (point 194.320000 976.640000 -44.700000 0.460000) + 4) + (segment 2311 + (point 194.320000 976.640000 -44.700000 0.460000) + (point 192.850000 976.890000 -45.520000 0.460000) + 4) + (segment 2312 + (point 192.850000 976.890000 -45.520000 0.460000) + (point 191.420000 978.960000 -47.020000 0.460000) + 4) + (segment 2313 + (point 191.420000 978.960000 -47.020000 0.460000) + (point 190.310000 981.670000 -47.850000 0.460000) + 4) + (segment 2314 + (point 190.310000 981.670000 -47.850000 0.460000) + (point 189.200000 984.410000 -48.900000 0.460000) + 4) + (segment 2315 + (point 189.200000 984.410000 -48.900000 0.460000) + (point 187.020000 985.680000 -49.320000 0.460000) + 4) + (segment 2316 + (point 187.020000 985.680000 -49.320000 0.460000) + (point 184.260000 987.430000 -49.320000 0.460000) + 4) + (segment 2317 + (point 184.260000 987.430000 -49.320000 0.460000) + (point 184.260000 987.430000 -49.350000 0.460000) + 4) + (segment 2318 + (point 184.260000 987.430000 -49.350000 0.460000) + (point 183.410000 989.010000 -50.420000 0.460000) + 4) + (segment 2319 + (point 183.410000 989.010000 -50.420000 0.460000) + (point 183.010000 990.720000 -50.420000 0.460000) + 4) + (segment 2320 + (point 183.010000 990.720000 -50.420000 0.460000) + (point 182.750000 991.840000 -51.350000 0.460000) + 4) + (segment 2321 + (point 182.750000 991.840000 -51.350000 0.460000) + (point 181.320000 993.910000 -52.130000 0.460000) + 4) + (segment 2322 + (point 181.320000 993.910000 -52.130000 0.460000) + (point 181.420000 997.500000 -52.770000 0.460000) + 4) + (segment 2323 + (point 181.420000 997.500000 -52.770000 0.460000) + (point 181.420000 997.500000 -52.800000 0.460000) + 4) + (segment 2324 + (point 181.420000 997.500000 -52.800000 0.460000) + (point 180.720000 998.540000 -53.300000 0.460000) + 4) + (segment 2325 + (point 180.720000 998.540000 -53.300000 0.460000) + (point 179.610000 1001.260000 -53.580000 0.460000) + 4) + (segment 2326 + (point 179.610000 1001.260000 -53.580000 0.460000) + (point 179.790000 1002.500000 -54.000000 0.460000) + 4) + (segment 2327 + (point 179.790000 1002.500000 -54.000000 0.460000) + (point 179.260000 1004.770000 -54.400000 0.460000) + 4) + (segment 2328 + (point 179.260000 1004.770000 -54.400000 0.460000) + (point 181.720000 1008.320000 -54.900000 0.460000) + 4) + (segment 2329 + (point 181.720000 1008.320000 -54.900000 0.460000) + (point 180.920000 1011.720000 -54.350000 0.460000) + 4) + (segment 2330 + (point 180.920000 1011.720000 -54.350000 0.460000) + (point 181.140000 1014.770000 -54.350000 0.460000) + 4) + (segment 2331 + (point 181.140000 1014.770000 -54.350000 0.460000) + (point 177.850000 1018.770000 -54.900000 0.460000) + 4) + (segment 2332 + (point 177.850000 1018.770000 -54.900000 0.460000) + (point 177.460000 1020.460000 -55.880000 0.460000) + 4) + (segment 2333 + (point 177.460000 1020.460000 -55.880000 0.460000) + (point 177.460000 1020.460000 -55.900000 0.460000) + 4) + (segment 2334 + (point 177.460000 1020.460000 -55.900000 0.460000) + (point 176.340000 1023.190000 -57.000000 0.460000) + 4) + (segment 2335 + (point 176.340000 1023.190000 -57.000000 0.460000) + (point 176.340000 1023.190000 -57.020000 0.460000) + 4) + (segment 2336 + (point 176.340000 1023.190000 -57.020000 0.460000) + (point 175.230000 1025.910000 -57.950000 0.460000) + 4) + (segment 2337 + (point 175.230000 1025.910000 -57.950000 0.460000) + (point 173.950000 1027.410000 -59.000000 0.460000) + 4) + (segment 2338 + (point 173.950000 1027.410000 -59.000000 0.460000) + (point 172.530000 1029.460000 -60.000000 0.460000) + 4) + (segment 2339 + (point 172.530000 1029.460000 -60.000000 0.460000) + (point 172.530000 1029.460000 -60.030000 0.460000) + 4) + (segment 2340 + (point 172.530000 1029.460000 -60.030000 0.460000) + (point 171.600000 1033.420000 -60.700000 0.460000) + 4) + (segment 2341 + (point 171.600000 1033.420000 -60.700000 0.460000) + (point 169.130000 1035.830000 -61.600000 0.460000) + 4) + (segment 2342 + (point 169.130000 1035.830000 -61.600000 0.460000) + (point 166.820000 1037.690000 -62.630000 0.460000) + 4) + (segment 2343 + (point 166.820000 1037.690000 -62.630000 0.460000) + (point 164.950000 1039.620000 -63.350000 0.460000) + 4) + (segment 2344 + (point 164.950000 1039.620000 -63.350000 0.460000) + (point 163.400000 1042.250000 -64.180000 0.460000) + 4) + (segment 2345 + (point 163.400000 1042.250000 -64.180000 0.460000) + (point 160.820000 1045.230000 -64.550000 0.460000) + 4) + (segment 2346 + (point 160.820000 1045.230000 -64.550000 0.460000) + (point 159.440000 1049.090000 -65.430000 0.460000) + 4) + (segment 2347 + (point 159.440000 1049.090000 -65.430000 0.460000) + (point 158.910000 1051.340000 -65.130000 0.460000) + 4) + (segment 2348 + (point 158.910000 1051.340000 -65.130000 0.460000) + (point 158.380000 1053.610000 -65.950000 0.460000) + 4) + (segment 2349 + (point 158.380000 1053.610000 -65.950000 0.460000) + (point 157.090000 1055.100000 -67.070000 0.460000) + 4) + (segment 2350 + (point 157.090000 1055.100000 -67.070000 0.460000) + (point 156.560000 1057.370000 -68.280000 0.460000) + 4) + (segment 2351 + (point 156.560000 1057.370000 -68.280000 0.460000) + (point 153.520000 1060.240000 -68.720000 0.460000) + 4) + (segment 2352 + (point 153.520000 1060.240000 -68.720000 0.460000) + (point 153.570000 1062.040000 -69.470000 0.460000) + 4) + (segment 2353 + (point 153.570000 1062.040000 -69.470000 0.460000) + (point 153.940000 1064.530000 -70.030000 0.460000) + 4) + (segment 2354 + (point 153.940000 1064.530000 -70.030000 0.460000) + (point 153.420000 1066.780000 -71.050000 0.460000) + 4)) + (branch 95 94 + (segment 2355 + (point 153.420000 1066.780000 -71.050000 0.460000) + (point 151.530000 1068.730000 -71.820000 0.230000) + 4) + (segment 2356 + (point 151.530000 1068.730000 -71.820000 0.230000) + (point 150.510000 1069.090000 -72.570000 0.230000) + 4) + (segment 2357 + (point 150.510000 1069.090000 -72.570000 0.230000) + (point 149.530000 1071.240000 -73.280000 0.230000) + 4) + (segment 2358 + (point 149.530000 1071.240000 -73.280000 0.230000) + (point 148.690000 1072.850000 -74.320000 0.230000) + 4) + (segment 2359 + (point 148.690000 1072.850000 -74.320000 0.230000) + (point 146.770000 1072.980000 -75.570000 0.230000) + 4) + (segment 2360 + (point 146.770000 1072.980000 -75.570000 0.230000) + (point 145.340000 1075.050000 -76.920000 0.230000) + 4) + (segment 2361 + (point 145.340000 1075.050000 -76.920000 0.230000) + (point 144.330000 1075.410000 -78.630000 0.230000) + 4) + (segment 2362 + (point 144.330000 1075.410000 -78.630000 0.230000) + (point 142.010000 1077.250000 -79.100000 0.230000) + 4) + (segment 2363 + (point 142.010000 1077.250000 -79.100000 0.230000) + (point 140.400000 1078.070000 -81.250000 0.230000) + 4) + (segment 2364 + (point 140.400000 1078.070000 -81.250000 0.230000) + (point 140.400000 1078.070000 -81.300000 0.230000) + 4)) + (branch 96 94 + (segment 2365 + (point 153.420000 1066.780000 -71.050000 0.460000) + (point 153.640000 1069.820000 -71.050000 0.230000) + 4) + (segment 2366 + (point 153.640000 1069.820000 -71.050000 0.230000) + (point 152.840000 1073.220000 -71.050000 0.230000) + 4) + (segment 2367 + (point 152.840000 1073.220000 -71.050000 0.230000) + (point 152.760000 1075.580000 -71.850000 0.230000) + 4) + (segment 2368 + (point 152.760000 1075.580000 -71.850000 0.230000) + (point 154.860000 1076.670000 -73.250000 0.230000) + 4)) + (branch 97 93 + (segment 2369 + (point 196.580000 973.020000 -42.570000 0.690000) + (point 197.550000 975.030000 -41.300000 0.460000) + 4) + (segment 2370 + (point 197.550000 975.030000 -41.300000 0.460000) + (point 198.170000 976.380000 -40.550000 0.460000) + 4) + (segment 2371 + (point 198.170000 976.380000 -40.550000 0.460000) + (point 196.180000 978.880000 -39.600000 0.460000) + 4) + (segment 2372 + (point 196.180000 978.880000 -39.600000 0.460000) + (point 195.950000 981.830000 -39.050000 0.460000) + 4) + (segment 2373 + (point 195.950000 981.830000 -39.050000 0.460000) + (point 194.980000 983.990000 -38.420000 0.460000) + 4) + (segment 2374 + (point 194.980000 983.990000 -38.420000 0.460000) + (point 193.690000 985.470000 -38.420000 0.460000) + 4) + (segment 2375 + (point 193.690000 985.470000 -38.420000 0.460000) + (point 193.550000 986.040000 -37.850000 0.460000) + 4) + (segment 2376 + (point 193.550000 986.040000 -37.850000 0.460000) + (point 193.740000 987.270000 -37.150000 0.460000) + 4) + (segment 2377 + (point 193.740000 987.270000 -37.150000 0.460000) + (point 193.740000 987.270000 -37.170000 0.460000) + 4) + (segment 2378 + (point 193.740000 987.270000 -37.170000 0.460000) + (point 194.230000 989.180000 -36.400000 0.460000) + 4) + (segment 2379 + (point 194.230000 989.180000 -36.400000 0.460000) + (point 194.230000 989.180000 -36.420000 0.460000) + 4) + (segment 2380 + (point 194.230000 989.180000 -36.420000 0.460000) + (point 194.590000 991.660000 -35.450000 0.460000) + 4) + (segment 2381 + (point 194.590000 991.660000 -35.450000 0.460000) + (point 194.770000 992.900000 -35.570000 0.460000) + 4) + (segment 2382 + (point 194.770000 992.900000 -35.570000 0.460000) + (point 194.690000 995.270000 -34.020000 0.460000) + 4) + (segment 2383 + (point 194.690000 995.270000 -34.020000 0.460000) + (point 193.660000 995.610000 -32.400000 0.460000) + 4) + (segment 2384 + (point 193.660000 995.610000 -32.400000 0.460000) + (point 191.350000 997.460000 -31.050000 0.460000) + 4) + (segment 2385 + (point 191.350000 997.460000 -31.050000 0.460000) + (point 188.710000 998.640000 -31.220000 0.460000) + 4) + (segment 2386 + (point 188.710000 998.640000 -31.220000 0.460000) + (point 188.310000 1000.340000 -32.170000 0.460000) + 4) + (segment 2387 + (point 188.310000 1000.340000 -32.170000 0.460000) + (point 188.670000 1002.810000 -33.250000 0.460000) + 4) + (segment 2388 + (point 188.670000 1002.810000 -33.250000 0.460000) + (point 188.670000 1002.810000 -33.270000 0.460000) + 4) + (segment 2389 + (point 188.670000 1002.810000 -33.270000 0.460000) + (point 189.580000 1003.020000 -34.880000 0.460000) + 4) + (segment 2390 + (point 189.580000 1003.020000 -34.880000 0.460000) + (point 189.580000 1003.020000 -34.900000 0.460000) + 4) + (segment 2391 + (point 189.580000 1003.020000 -34.900000 0.460000) + (point 190.960000 1005.140000 -35.750000 0.460000) + 4) + (segment 2392 + (point 190.960000 1005.140000 -35.750000 0.460000) + (point 190.960000 1005.140000 -35.770000 0.460000) + 4) + (segment 2393 + (point 190.960000 1005.140000 -35.770000 0.460000) + (point 192.530000 1008.490000 -35.750000 0.460000) + 4) + (segment 2394 + (point 192.530000 1008.490000 -35.750000 0.460000) + (point 192.750000 1011.530000 -36.200000 0.460000) + 4) + (segment 2395 + (point 192.750000 1011.530000 -36.200000 0.460000) + (point 193.120000 1014.000000 -35.530000 0.460000) + 4) + (segment 2396 + (point 193.120000 1014.000000 -35.530000 0.460000) + (point 194.190000 1015.460000 -34.250000 0.460000) + 4) + (segment 2397 + (point 194.190000 1015.460000 -34.250000 0.460000) + (point 193.990000 1018.390000 -33.000000 0.460000) + 4) + (segment 2398 + (point 193.990000 1018.390000 -33.000000 0.460000) + (point 194.210000 1021.420000 -32.300000 0.460000) + 4) + (segment 2399 + (point 194.210000 1021.420000 -32.300000 0.460000) + (point 194.210000 1021.420000 -32.320000 0.460000) + 4) + (segment 2400 + (point 194.210000 1021.420000 -32.320000 0.460000) + (point 195.730000 1022.980000 -31.670000 0.460000) + 4) + (segment 2401 + (point 195.730000 1022.980000 -31.670000 0.460000) + (point 196.980000 1025.660000 -30.830000 0.460000) + 4) + (segment 2402 + (point 196.980000 1025.660000 -30.830000 0.460000) + (point 196.980000 1025.660000 -30.850000 0.460000) + 4) + (segment 2403 + (point 196.980000 1025.660000 -30.850000 0.460000) + (point 198.110000 1028.910000 -30.250000 0.460000) + 4) + (segment 2404 + (point 198.110000 1028.910000 -30.250000 0.460000) + (point 197.700000 1030.580000 -28.330000 0.460000) + 4) + (segment 2405 + (point 197.700000 1030.580000 -28.330000 0.460000) + (point 198.380000 1033.730000 -26.880000 0.460000) + 4) + (segment 2406 + (point 198.380000 1033.730000 -26.880000 0.460000) + (point 198.420000 1035.530000 -26.880000 0.460000) + 4) + (segment 2407 + (point 198.420000 1035.530000 -26.880000 0.460000) + (point 199.500000 1036.980000 -25.970000 0.460000) + 4) + (segment 2408 + (point 199.500000 1036.980000 -25.970000 0.460000) + (point 200.130000 1038.320000 -24.170000 0.460000) + 4) + (segment 2409 + (point 200.130000 1038.320000 -24.170000 0.460000) + (point 201.460000 1038.630000 -23.470000 0.460000) + 4) + (segment 2410 + (point 201.460000 1038.630000 -23.470000 0.460000) + (point 201.750000 1043.470000 -23.470000 0.460000) + 4) + (segment 2411 + (point 201.750000 1043.470000 -23.470000 0.460000) + (point 202.560000 1046.050000 -23.470000 0.460000) + 4) + (segment 2412 + (point 202.560000 1046.050000 -23.470000 0.460000) + (point 204.840000 1048.380000 -22.880000 0.460000) + 4) + (segment 2413 + (point 204.840000 1048.380000 -22.880000 0.460000) + (point 206.040000 1049.260000 -23.630000 0.460000) + 4) + (segment 2414 + (point 206.040000 1049.260000 -23.630000 0.460000) + (point 206.040000 1049.260000 -23.600000 0.460000) + 4) + (segment 2415 + (point 206.040000 1049.260000 -23.600000 0.460000) + (point 206.910000 1053.640000 -22.970000 0.460000) + 4) + (segment 2416 + (point 206.910000 1053.640000 -22.970000 0.460000) + (point 206.560000 1057.140000 -21.630000 0.460000) + 4) + (segment 2417 + (point 206.560000 1057.140000 -21.630000 0.460000) + (point 208.650000 1058.230000 -20.200000 0.460000) + 4) + (segment 2418 + (point 208.650000 1058.230000 -20.200000 0.460000) + (point 209.860000 1059.110000 -18.300000 0.460000) + 4) + (segment 2419 + (point 209.860000 1059.110000 -18.300000 0.460000) + (point 212.270000 1060.880000 -16.730000 0.460000) + 4) + (segment 2420 + (point 212.270000 1060.880000 -16.730000 0.460000) + (point 212.910000 1062.210000 -15.270000 0.460000) + 4) + (segment 2421 + (point 212.910000 1062.210000 -15.270000 0.460000) + (point 213.270000 1064.690000 -14.700000 0.460000) + 4) + (segment 2422 + (point 213.270000 1064.690000 -14.700000 0.460000) + (point 214.250000 1068.490000 -14.270000 0.460000) + 4) + (segment 2423 + (point 214.250000 1068.490000 -14.270000 0.460000) + (point 216.530000 1070.830000 -14.270000 0.460000) + 4) + (segment 2424 + (point 216.530000 1070.830000 -14.270000 0.460000) + (point 219.400000 1072.690000 -14.270000 0.460000) + 4) + (segment 2425 + (point 219.400000 1072.690000 -14.270000 0.460000) + (point 220.390000 1076.510000 -14.250000 0.460000) + 4) + (segment 2426 + (point 220.390000 1076.510000 -14.250000 0.460000) + (point 220.390000 1076.510000 -14.320000 0.460000) + 4) + (segment 2427 + (point 220.390000 1076.510000 -14.320000 0.460000) + (point 221.190000 1079.080000 -15.800000 0.460000) + 4) + (segment 2428 + (point 221.190000 1079.080000 -15.800000 0.460000) + (point 221.190000 1079.080000 -15.880000 0.460000) + 4) + (segment 2429 + (point 221.190000 1079.080000 -15.880000 0.460000) + (point 223.480000 1081.420000 -16.670000 0.460000) + 4) + (segment 2430 + (point 223.480000 1081.420000 -16.670000 0.460000) + (point 226.840000 1085.180000 -16.900000 0.460000) + 4)) + (branch 98 97 + (segment 2431 + (point 226.840000 1085.180000 -16.900000 0.460000) + (point 224.880000 1089.510000 -16.900000 0.460000) + 4) + (segment 2432 + (point 224.880000 1089.510000 -16.900000 0.460000) + (point 222.880000 1092.010000 -18.250000 0.460000) + 4) + (segment 2433 + (point 222.880000 1092.010000 -18.250000 0.460000) + (point 219.530000 1094.220000 -20.970000 0.460000) + 4) + (segment 2434 + (point 219.530000 1094.220000 -20.970000 0.460000) + (point 219.530000 1094.220000 -21.020000 0.460000) + 4)) + (branch 99 97 + (segment 2435 + (point 226.840000 1085.180000 -16.900000 0.460000) + (point 227.540000 1084.150000 -16.900000 0.460000) + 4) + (segment 2436 + (point 227.540000 1084.150000 -16.900000 0.460000) + (point 229.650000 1085.250000 -17.820000 0.460000) + 4) + (segment 2437 + (point 229.650000 1085.250000 -17.820000 0.460000) + (point 229.650000 1085.250000 -17.850000 0.460000) + 4) + (segment 2438 + (point 229.650000 1085.250000 -17.850000 0.460000) + (point 230.710000 1086.700000 -16.470000 0.460000) + 4) + (segment 2439 + (point 230.710000 1086.700000 -16.470000 0.460000) + (point 230.710000 1086.700000 -16.500000 0.460000) + 4) + (segment 2440 + (point 230.710000 1086.700000 -16.500000 0.460000) + (point 233.090000 1086.650000 -14.880000 0.460000) + 4) + (segment 2441 + (point 233.090000 1086.650000 -14.880000 0.460000) + (point 235.190000 1087.740000 -12.830000 0.460000) + 4) + (segment 2442 + (point 235.190000 1087.740000 -12.830000 0.460000) + (point 236.260000 1089.180000 -11.270000 0.460000) + 4)) + (branch 100 82 + (segment 2443 + (point 235.320000 659.410000 -34.150000 0.915000) + (point 235.390000 662.780000 -32.520000 0.690000) + 4) + (segment 2444 + (point 235.390000 662.780000 -32.520000 0.690000) + (point 236.450000 664.220000 -31.200000 0.690000) + 4) + (segment 2445 + (point 236.450000 664.220000 -31.200000 0.690000) + (point 237.140000 667.360000 -30.450000 0.690000) + 4) + (segment 2446 + (point 237.140000 667.360000 -30.450000 0.690000) + (point 237.820000 670.520000 -29.850000 0.690000) + 4) + (segment 2447 + (point 237.820000 670.520000 -29.850000 0.690000) + (point 238.040000 673.550000 -29.250000 0.690000) + 4) + (segment 2448 + (point 238.040000 673.550000 -29.250000 0.690000) + (point 238.670000 674.900000 -27.880000 0.690000) + 4) + (segment 2449 + (point 238.670000 674.900000 -27.880000 0.690000) + (point 237.830000 676.490000 -26.700000 0.690000) + 4) + (segment 2450 + (point 237.830000 676.490000 -26.700000 0.690000) + (point 237.030000 679.880000 -26.000000 0.690000) + 4) + (segment 2451 + (point 237.030000 679.880000 -26.000000 0.690000) + (point 237.580000 683.600000 -26.920000 0.690000) + 4) + (segment 2452 + (point 237.580000 683.600000 -26.920000 0.690000) + (point 238.510000 685.600000 -26.650000 0.690000) + 4) + (segment 2453 + (point 238.510000 685.600000 -26.650000 0.690000) + (point 238.490000 689.780000 -26.650000 0.690000) + 4) + (segment 2454 + (point 238.490000 689.780000 -26.650000 0.690000) + (point 239.480000 693.590000 -27.650000 0.690000) + 4) + (segment 2455 + (point 239.480000 693.590000 -27.650000 0.690000) + (point 239.570000 697.200000 -27.650000 0.690000) + 4) + (segment 2456 + (point 239.570000 697.200000 -27.650000 0.690000) + (point 239.090000 701.260000 -27.650000 0.690000) + 4) + (segment 2457 + (point 239.090000 701.260000 -27.650000 0.690000) + (point 239.270000 702.500000 -27.650000 0.690000) + 4) + (segment 2458 + (point 239.270000 702.500000 -27.650000 0.690000) + (point 239.050000 705.440000 -27.650000 0.690000) + 4) + (segment 2459 + (point 239.050000 705.440000 -27.650000 0.690000) + (point 236.740000 707.280000 -27.650000 0.690000) + 4) + (segment 2460 + (point 236.740000 707.280000 -27.650000 0.690000) + (point 236.080000 710.110000 -27.800000 0.690000) + 4) + (segment 2461 + (point 236.080000 710.110000 -27.800000 0.690000) + (point 235.980000 712.480000 -27.150000 0.690000) + 4) + (segment 2462 + (point 235.980000 712.480000 -27.150000 0.690000) + (point 237.380000 714.600000 -26.720000 0.690000) + 4) + (segment 2463 + (point 237.380000 714.600000 -26.720000 0.690000) + (point 238.180000 717.180000 -26.300000 0.690000) + 4) + (segment 2464 + (point 238.180000 717.180000 -26.300000 0.690000) + (point 237.250000 721.140000 -26.250000 0.690000) + 4) + (segment 2465 + (point 237.250000 721.140000 -26.250000 0.690000) + (point 236.050000 726.230000 -26.250000 0.690000) + 4) + (segment 2466 + (point 236.050000 726.230000 -26.250000 0.690000) + (point 236.290000 729.270000 -27.250000 0.690000) + 4) + (segment 2467 + (point 236.290000 729.270000 -27.250000 0.690000) + (point 236.970000 732.420000 -27.900000 0.690000) + 4) + (segment 2468 + (point 236.970000 732.420000 -27.900000 0.690000) + (point 237.340000 734.890000 -27.900000 0.690000) + 4) + (segment 2469 + (point 237.340000 734.890000 -27.900000 0.690000) + (point 237.560000 737.930000 -28.170000 0.690000) + 4) + (segment 2470 + (point 237.560000 737.930000 -28.170000 0.690000) + (point 238.820000 740.620000 -26.800000 0.690000) + 4) + (segment 2471 + (point 238.820000 740.620000 -26.800000 0.690000) + (point 238.820000 740.620000 -26.820000 0.690000) + 4) + (segment 2472 + (point 238.820000 740.620000 -26.820000 0.690000) + (point 238.470000 744.120000 -26.380000 0.690000) + 4) + (segment 2473 + (point 238.470000 744.120000 -26.380000 0.690000) + (point 238.390000 746.480000 -26.380000 0.690000) + 4) + (segment 2474 + (point 238.390000 746.480000 -26.380000 0.690000) + (point 238.390000 746.480000 -26.350000 0.690000) + 4) + (segment 2475 + (point 238.390000 746.480000 -26.350000 0.690000) + (point 239.730000 746.790000 -26.300000 0.690000) + 4) + (segment 2476 + (point 239.730000 746.790000 -26.300000 0.690000) + (point 239.580000 747.370000 -26.300000 0.690000) + 4) + (segment 2477 + (point 239.580000 747.370000 -26.300000 0.690000) + (point 237.320000 751.020000 -25.630000 0.690000) + 4) + (segment 2478 + (point 237.320000 751.020000 -25.630000 0.690000) + (point 236.790000 753.270000 -25.420000 0.690000) + 4) + (segment 2479 + (point 236.790000 753.270000 -25.420000 0.690000) + (point 237.340000 756.990000 -25.420000 0.690000) + 4) + (segment 2480 + (point 237.340000 756.990000 -25.420000 0.690000) + (point 238.330000 760.810000 -25.420000 0.690000) + 4) + (segment 2481 + (point 238.330000 760.810000 -25.420000 0.690000) + (point 239.000000 763.950000 -26.000000 0.690000) + 4) + (segment 2482 + (point 239.000000 763.950000 -26.000000 0.690000) + (point 238.070000 767.910000 -26.000000 0.690000) + 4) + (segment 2483 + (point 238.070000 767.910000 -26.000000 0.690000) + (point 238.070000 767.910000 -26.020000 0.690000) + 4) + (segment 2484 + (point 238.070000 767.910000 -26.020000 0.690000) + (point 236.830000 771.200000 -26.020000 0.690000) + 4) + (segment 2485 + (point 236.830000 771.200000 -26.020000 0.690000) + (point 236.930000 774.800000 -26.700000 0.690000) + 4) + (segment 2486 + (point 236.930000 774.800000 -26.700000 0.690000) + (point 236.930000 774.800000 -26.720000 0.690000) + 4) + (segment 2487 + (point 236.930000 774.800000 -26.720000 0.690000) + (point 236.130000 778.200000 -27.200000 0.690000) + 4) + (segment 2488 + (point 236.130000 778.200000 -27.200000 0.690000) + (point 236.680000 781.910000 -27.200000 0.690000) + 4) + (segment 2489 + (point 236.680000 781.910000 -27.200000 0.690000) + (point 236.230000 781.810000 -27.200000 0.690000) + 4) + (segment 2490 + (point 236.230000 781.810000 -27.200000 0.690000) + (point 238.560000 785.940000 -27.200000 0.690000) + 4) + (segment 2491 + (point 238.560000 785.940000 -27.200000 0.690000) + (point 237.920000 788.650000 -25.770000 0.690000) + 4) + (segment 2492 + (point 237.920000 788.650000 -25.770000 0.690000) + (point 238.290000 791.140000 -24.720000 0.690000) + 4) + (segment 2493 + (point 238.290000 791.140000 -24.720000 0.690000) + (point 237.800000 795.200000 -24.200000 0.690000) + 4) + (segment 2494 + (point 237.800000 795.200000 -24.200000 0.690000) + (point 237.800000 795.200000 -24.170000 0.690000) + 4) + (segment 2495 + (point 237.800000 795.200000 -24.170000 0.690000) + (point 237.140000 798.030000 -23.420000 0.690000) + 4) + (segment 2496 + (point 237.140000 798.030000 -23.420000 0.690000) + (point 237.630000 799.930000 -22.470000 0.690000) + 4) + (segment 2497 + (point 237.630000 799.930000 -22.470000 0.690000) + (point 238.000000 802.410000 -21.320000 0.690000) + 4) + (segment 2498 + (point 238.000000 802.410000 -21.320000 0.690000) + (point 237.840000 807.140000 -20.900000 0.690000) + 4) + (segment 2499 + (point 237.840000 807.140000 -20.900000 0.690000) + (point 238.070000 810.190000 -21.950000 0.690000) + 4) + (segment 2500 + (point 238.070000 810.190000 -21.950000 0.690000) + (point 239.630000 813.540000 -21.950000 0.690000) + 4) + (segment 2501 + (point 239.630000 813.540000 -21.950000 0.690000) + (point 239.150000 817.610000 -22.450000 0.690000) + 4) + (segment 2502 + (point 239.150000 817.610000 -22.450000 0.690000) + (point 239.250000 821.220000 -23.050000 0.690000) + 4) + (segment 2503 + (point 239.250000 821.220000 -23.050000 0.690000) + (point 239.470000 824.250000 -22.120000 0.690000) + 4) + (segment 2504 + (point 239.470000 824.250000 -22.120000 0.690000) + (point 239.260000 827.180000 -21.300000 0.690000) + 4) + (segment 2505 + (point 239.260000 827.180000 -21.300000 0.690000) + (point 240.070000 829.770000 -20.970000 0.690000) + 4) + (segment 2506 + (point 240.070000 829.770000 -20.970000 0.690000) + (point 242.170000 830.860000 -22.380000 0.690000) + 4) + (segment 2507 + (point 242.170000 830.860000 -22.380000 0.690000) + (point 241.950000 833.780000 -21.670000 0.690000) + 4) + (segment 2508 + (point 241.950000 833.780000 -21.670000 0.690000) + (point 242.760000 836.370000 -21.600000 0.690000) + 4) + (segment 2509 + (point 242.760000 836.370000 -21.600000 0.690000) + (point 242.810000 838.170000 -20.200000 0.690000) + 4) + (segment 2510 + (point 242.810000 838.170000 -20.200000 0.690000) + (point 244.380000 841.520000 -18.950000 0.690000) + 4) + (segment 2511 + (point 244.380000 841.520000 -18.950000 0.690000) + (point 244.380000 841.520000 -18.970000 0.690000) + 4) + (segment 2512 + (point 244.380000 841.520000 -18.970000 0.690000) + (point 245.010000 842.860000 -18.050000 0.690000) + 4) + (segment 2513 + (point 245.010000 842.860000 -18.050000 0.690000) + (point 244.350000 845.690000 -18.170000 0.690000) + 4) + (segment 2514 + (point 244.350000 845.690000 -18.170000 0.690000) + (point 244.350000 845.690000 -18.150000 0.690000) + 4) + (segment 2515 + (point 244.350000 845.690000 -18.150000 0.690000) + (point 244.120000 848.640000 -16.630000 0.690000) + 4) + (segment 2516 + (point 244.120000 848.640000 -16.630000 0.690000) + (point 243.200000 852.590000 -16.050000 0.690000) + 4)) + (branch 101 100 + (segment 2517 + (point 243.200000 852.590000 -16.050000 0.690000) + (point 243.430000 855.630000 -16.050000 0.690000) + 4) + (segment 2518 + (point 243.430000 855.630000 -16.050000 0.690000) + (point 244.370000 857.640000 -16.050000 0.690000) + 4) + (segment 2519 + (point 244.370000 857.640000 -16.050000 0.690000) + (point 244.870000 859.550000 -15.770000 0.690000) + 4) + (segment 2520 + (point 244.870000 859.550000 -15.770000 0.690000) + (point 244.960000 863.160000 -15.770000 0.690000) + 4) + (segment 2521 + (point 244.960000 863.160000 -15.770000 0.690000) + (point 246.410000 867.080000 -15.770000 0.690000) + 4) + (segment 2522 + (point 246.410000 867.080000 -15.770000 0.690000) + (point 244.260000 870.160000 -16.950000 0.690000) + 4) + (segment 2523 + (point 244.260000 870.160000 -16.950000 0.690000) + (point 242.570000 873.350000 -17.300000 0.690000) + 4) + (segment 2524 + (point 242.570000 873.350000 -17.300000 0.690000) + (point 242.090000 877.420000 -16.850000 0.690000) + 4) + (segment 2525 + (point 242.090000 877.420000 -16.850000 0.690000) + (point 242.090000 877.420000 -16.880000 0.690000) + 4) + (segment 2526 + (point 242.090000 877.420000 -16.880000 0.690000) + (point 241.600000 881.480000 -15.170000 0.690000) + 4) + (segment 2527 + (point 241.600000 881.480000 -15.170000 0.690000) + (point 239.470000 884.560000 -14.570000 0.690000) + 4) + (segment 2528 + (point 239.470000 884.560000 -14.570000 0.690000) + (point 238.630000 886.160000 -14.100000 0.690000) + 4) + (segment 2529 + (point 238.630000 886.160000 -14.100000 0.690000) + (point 237.830000 889.560000 -14.100000 0.690000) + 4) + (segment 2530 + (point 237.830000 889.560000 -14.100000 0.690000) + (point 237.620000 892.480000 -15.400000 0.690000) + 4) + (segment 2531 + (point 237.620000 892.480000 -15.400000 0.690000) + (point 237.660000 894.290000 -16.520000 0.690000) + 4) + (segment 2532 + (point 237.660000 894.290000 -16.520000 0.690000) + (point 237.660000 894.290000 -16.550000 0.690000) + 4) + (segment 2533 + (point 237.660000 894.290000 -16.550000 0.690000) + (point 237.770000 897.900000 -17.300000 0.690000) + 4) + (segment 2534 + (point 237.770000 897.900000 -17.300000 0.690000) + (point 237.770000 897.900000 -17.320000 0.690000) + 4) + (segment 2535 + (point 237.770000 897.900000 -17.320000 0.690000) + (point 238.630000 902.290000 -17.570000 0.690000) + 4) + (segment 2536 + (point 238.630000 902.290000 -17.570000 0.690000) + (point 240.510000 906.300000 -17.570000 0.690000) + 4) + (segment 2537 + (point 240.510000 906.300000 -17.570000 0.690000) + (point 239.260000 909.590000 -17.750000 0.690000) + 4) + (segment 2538 + (point 239.260000 909.590000 -17.750000 0.690000) + (point 239.440000 910.830000 -18.600000 0.690000) + 4) + (segment 2539 + (point 239.440000 910.830000 -18.600000 0.690000) + (point 239.440000 910.830000 -18.630000 0.690000) + 4) + (segment 2540 + (point 239.440000 910.830000 -18.630000 0.690000) + (point 241.460000 914.290000 -19.020000 0.690000) + 4) + (segment 2541 + (point 241.460000 914.290000 -19.020000 0.690000) + (point 243.290000 916.510000 -17.650000 0.690000) + 4) + (segment 2542 + (point 243.290000 916.510000 -17.650000 0.690000) + (point 243.970000 919.650000 -18.200000 0.690000) + 4) + (segment 2543 + (point 243.970000 919.650000 -18.200000 0.690000) + (point 245.090000 922.910000 -17.630000 0.690000) + 4) + (segment 2544 + (point 245.090000 922.910000 -17.630000 0.690000) + (point 245.850000 923.680000 -17.750000 0.690000) + 4) + (segment 2545 + (point 245.850000 923.680000 -17.750000 0.690000) + (point 245.900000 925.490000 -16.170000 0.690000) + 4) + (segment 2546 + (point 245.900000 925.490000 -16.170000 0.690000) + (point 245.900000 925.490000 -16.150000 0.690000) + 4) + (segment 2547 + (point 245.900000 925.490000 -16.150000 0.690000) + (point 245.080000 927.070000 -14.230000 0.690000) + 4) + (segment 2548 + (point 245.080000 927.070000 -14.230000 0.690000) + (point 243.330000 928.450000 -12.100000 0.690000) + 4) + (segment 2549 + (point 243.330000 928.450000 -12.100000 0.690000) + (point 240.000000 930.660000 -10.880000 0.690000) + 4) + (segment 2550 + (point 240.000000 930.660000 -10.880000 0.690000) + (point 238.000000 933.180000 -10.630000 0.690000) + 4) + (segment 2551 + (point 238.000000 933.180000 -10.630000 0.690000) + (point 237.200000 936.580000 -10.330000 0.690000) + 4) + (segment 2552 + (point 237.200000 936.580000 -10.330000 0.690000) + (point 236.410000 939.980000 -10.330000 0.690000) + 4) + (segment 2553 + (point 236.410000 939.980000 -10.330000 0.690000) + (point 236.140000 941.100000 -11.370000 0.690000) + 4) + (segment 2554 + (point 236.140000 941.100000 -11.370000 0.690000) + (point 234.900000 944.400000 -12.420000 0.690000) + 4) + (segment 2555 + (point 234.900000 944.400000 -12.420000 0.690000) + (point 233.470000 946.450000 -13.670000 0.690000) + 4) + (segment 2556 + (point 233.470000 946.450000 -13.670000 0.690000) + (point 233.470000 946.450000 -13.700000 0.690000) + 4) + (segment 2557 + (point 233.470000 946.450000 -13.700000 0.690000) + (point 231.650000 950.190000 -13.950000 0.690000) + 4) + (segment 2558 + (point 231.650000 950.190000 -13.950000 0.690000) + (point 229.920000 951.580000 -13.180000 0.690000) + 4) + (segment 2559 + (point 229.920000 951.580000 -13.180000 0.690000) + (point 228.530000 955.440000 -12.950000 0.690000) + 4) + (segment 2560 + (point 228.530000 955.440000 -12.950000 0.690000) + (point 228.950000 959.730000 -12.070000 0.690000) + 4) + (segment 2561 + (point 228.950000 959.730000 -12.070000 0.690000) + (point 228.280000 962.540000 -12.420000 0.690000) + 4) + (segment 2562 + (point 228.280000 962.540000 -12.420000 0.690000) + (point 226.340000 966.860000 -12.420000 0.690000) + 4) + (segment 2563 + (point 226.340000 966.860000 -12.420000 0.690000) + (point 224.650000 970.050000 -14.100000 0.690000) + 4) + (segment 2564 + (point 224.650000 970.050000 -14.100000 0.690000) + (point 224.560000 972.420000 -13.630000 0.690000) + 4) + (segment 2565 + (point 224.560000 972.420000 -13.630000 0.690000) + (point 224.920000 974.890000 -13.320000 0.690000) + 4) + (segment 2566 + (point 224.920000 974.890000 -13.320000 0.690000) + (point 224.390000 977.160000 -11.930000 0.690000) + 4) + (segment 2567 + (point 224.390000 977.160000 -11.930000 0.690000) + (point 223.990000 978.850000 -10.450000 0.690000) + 4) + (segment 2568 + (point 223.990000 978.850000 -10.450000 0.690000) + (point 223.190000 982.250000 -9.170000 0.690000) + 4) + (segment 2569 + (point 223.190000 982.250000 -9.170000 0.690000) + (point 221.780000 984.310000 -7.320000 0.690000) + 4) + (segment 2570 + (point 221.780000 984.310000 -7.320000 0.690000) + (point 222.710000 986.320000 -6.470000 0.690000) + 4) + (segment 2571 + (point 222.710000 986.320000 -6.470000 0.690000) + (point 226.640000 989.640000 -6.130000 0.690000) + 4) + (segment 2572 + (point 226.640000 989.640000 -6.130000 0.690000) + (point 227.010000 992.100000 -6.180000 0.690000) + 4) + (segment 2573 + (point 227.010000 992.100000 -6.180000 0.690000) + (point 224.860000 995.180000 -5.070000 0.690000) + 4) + (segment 2574 + (point 224.860000 995.180000 -5.070000 0.690000) + (point 222.860000 997.700000 -3.400000 0.690000) + 4) + (segment 2575 + (point 222.860000 997.700000 -3.400000 0.690000) + (point 223.090000 1000.740000 -2.500000 0.690000) + 4) + (segment 2576 + (point 223.090000 1000.740000 -2.500000 0.690000) + (point 222.600000 1004.810000 -2.250000 0.690000) + 4) + (segment 2577 + (point 222.600000 1004.810000 -2.250000 0.690000) + (point 220.910000 1008.000000 -1.820000 0.690000) + 4) + (segment 2578 + (point 220.910000 1008.000000 -1.820000 0.690000) + (point 219.800000 1010.720000 -1.600000 0.690000) + 4) + (segment 2579 + (point 219.800000 1010.720000 -1.600000 0.690000) + (point 219.950000 1016.130000 -1.020000 0.690000) + 4) + (segment 2580 + (point 219.950000 1016.130000 -1.020000 0.690000) + (point 218.710000 1019.420000 -0.630000 0.690000) + 4) + (segment 2581 + (point 218.710000 1019.420000 -0.630000 0.690000) + (point 217.150000 1022.030000 -0.630000 0.690000) + 4) + (segment 2582 + (point 217.150000 1022.030000 -0.630000 0.690000) + (point 216.710000 1021.930000 -0.630000 0.690000) + 4) + (segment 2583 + (point 216.710000 1021.930000 -0.630000 0.690000) + (point 215.600000 1024.660000 -0.630000 0.690000) + 4) + (segment 2584 + (point 215.600000 1024.660000 -0.630000 0.690000) + (point 215.560000 1028.830000 -0.070000 0.690000) + 4) + (segment 2585 + (point 215.560000 1028.830000 -0.070000 0.690000) + (point 214.760000 1032.230000 0.970000 0.690000) + 4)) + (branch 102 101 + (segment 2586 + (point 214.760000 1032.230000 0.970000 0.690000) + (point 213.350000 1034.280000 -0.470000 0.690000) + 4) + (segment 2587 + (point 213.350000 1034.280000 -0.470000 0.690000) + (point 212.900000 1034.170000 -0.470000 0.690000) + 4) + (segment 2588 + (point 212.900000 1034.170000 -0.470000 0.690000) + (point 212.370000 1036.450000 2.130000 0.460000) + 4) + (segment 2589 + (point 212.370000 1036.450000 2.130000 0.460000) + (point 212.150000 1039.380000 3.650000 0.460000) + 4) + (segment 2590 + (point 212.150000 1039.380000 3.650000 0.460000) + (point 212.150000 1039.380000 3.600000 0.460000) + 4) + (segment 2591 + (point 212.150000 1039.380000 3.600000 0.460000) + (point 209.960000 1040.650000 4.320000 0.230000) + 4) + (segment 2592 + (point 209.960000 1040.650000 4.320000 0.230000) + (point 209.570000 1042.350000 5.450000 0.230000) + 4) + (segment 2593 + (point 209.570000 1042.350000 5.450000 0.230000) + (point 209.880000 1043.030000 5.550000 0.230000) + 4) + (segment 2594 + (point 209.880000 1043.030000 5.550000 0.230000) + (point 208.010000 1044.970000 7.550000 0.230000) + 4) + (segment 2595 + (point 208.010000 1044.970000 7.550000 0.230000) + (point 208.010000 1044.970000 7.570000 0.230000) + 4)) + (branch 103 101 + (segment 2596 + (point 214.760000 1032.230000 0.970000 0.690000) + (point 216.660000 1036.260000 2.080000 0.460000) + 4) + (segment 2597 + (point 216.660000 1036.260000 2.080000 0.460000) + (point 215.550000 1038.970000 2.970000 0.460000) + 4) + (segment 2598 + (point 215.550000 1038.970000 2.970000 0.460000) + (point 217.770000 1039.500000 3.500000 0.460000) + 4) + (segment 2599 + (point 217.770000 1039.500000 3.500000 0.460000) + (point 219.250000 1039.250000 4.170000 0.460000) + 4) + (segment 2600 + (point 219.250000 1039.250000 4.170000 0.460000) + (point 221.080000 1041.480000 5.070000 0.460000) + 4) + (segment 2601 + (point 221.080000 1041.480000 5.070000 0.460000) + (point 221.580000 1043.380000 5.700000 0.460000) + 4) + (segment 2602 + (point 221.580000 1043.380000 5.700000 0.460000) + (point 222.520000 1045.380000 6.350000 0.460000) + 4) + (segment 2603 + (point 222.520000 1045.380000 6.350000 0.460000) + (point 222.170000 1048.880000 6.800000 0.460000) + 4) + (segment 2604 + (point 222.170000 1048.880000 6.800000 0.460000) + (point 222.170000 1048.880000 6.780000 0.460000) + 4) + (segment 2605 + (point 222.170000 1048.880000 6.780000 0.460000) + (point 224.060000 1052.910000 5.420000 0.460000) + 4) + (segment 2606 + (point 224.060000 1052.910000 5.420000 0.460000) + (point 223.830000 1055.850000 5.170000 0.460000) + 4) + (segment 2607 + (point 223.830000 1055.850000 5.170000 0.460000) + (point 223.750000 1058.220000 6.350000 0.460000) + 4) + (segment 2608 + (point 223.750000 1058.220000 6.350000 0.460000) + (point 223.750000 1058.220000 6.280000 0.460000) + 4) + (segment 2609 + (point 223.750000 1058.220000 6.280000 0.460000) + (point 222.330000 1060.280000 7.670000 0.460000) + 4) + (segment 2610 + (point 222.330000 1060.280000 7.670000 0.460000) + (point 222.690000 1062.740000 8.550000 0.460000) + 4) + (segment 2611 + (point 222.690000 1062.740000 8.550000 0.460000) + (point 223.950000 1065.430000 8.550000 0.460000) + 4) + (segment 2612 + (point 223.950000 1065.430000 8.550000 0.460000) + (point 222.840000 1068.160000 8.550000 0.230000) + 4) + (segment 2613 + (point 222.840000 1068.160000 8.550000 0.230000) + (point 223.960000 1071.400000 8.550000 0.230000) + 4) + (segment 2614 + (point 223.960000 1071.400000 8.550000 0.230000) + (point 224.640000 1074.550000 8.550000 0.230000) + 4) + (segment 2615 + (point 224.640000 1074.550000 8.550000 0.230000) + (point 224.190000 1074.440000 8.550000 0.230000) + 4) + (segment 2616 + (point 224.190000 1074.440000 8.550000 0.230000) + (point 228.080000 1075.950000 8.550000 0.230000) + 4) + (segment 2617 + (point 228.080000 1075.950000 8.550000 0.230000) + (point 228.980000 1076.160000 9.550000 0.230000) + 4)) + (branch 104 100 + (segment 2618 + (point 243.200000 852.590000 -16.050000 0.690000) + (point 241.310000 854.660000 -17.080000 0.690000) + 4) + (segment 2619 + (point 241.310000 854.660000 -17.080000 0.690000) + (point 241.490000 855.890000 -18.670000 0.690000) + 4) + (segment 2620 + (point 241.490000 855.890000 -18.670000 0.690000) + (point 240.910000 856.360000 -19.800000 0.690000) + 4) + (segment 2621 + (point 240.910000 856.360000 -19.800000 0.690000) + (point 241.090000 857.590000 -21.630000 0.690000) + 4) + (segment 2622 + (point 241.090000 857.590000 -21.630000 0.690000) + (point 241.990000 857.810000 -23.270000 0.690000) + 4) + (segment 2623 + (point 241.990000 857.810000 -23.270000 0.690000) + (point 241.590000 859.500000 -25.050000 0.690000) + 4) + (segment 2624 + (point 241.590000 859.500000 -25.050000 0.690000) + (point 239.980000 860.330000 -26.220000 0.690000) + 4) + (segment 2625 + (point 239.980000 860.330000 -26.220000 0.690000) + (point 238.070000 860.480000 -27.730000 0.690000) + 4) + (segment 2626 + (point 238.070000 860.480000 -27.730000 0.690000) + (point 240.480000 862.230000 -29.700000 0.460000) + 4) + (segment 2627 + (point 240.480000 862.230000 -29.700000 0.460000) + (point 239.630000 863.820000 -31.700000 0.460000) + 4) + (segment 2628 + (point 239.630000 863.820000 -31.700000 0.460000) + (point 238.210000 865.870000 -32.970000 0.460000) + 4) + (segment 2629 + (point 238.210000 865.870000 -32.970000 0.460000) + (point 239.020000 868.450000 -34.170000 0.460000) + 4) + (segment 2630 + (point 239.020000 868.450000 -34.170000 0.460000) + (point 239.380000 870.940000 -34.450000 0.460000) + 4) + (segment 2631 + (point 239.380000 870.940000 -34.450000 0.460000) + (point 237.510000 872.880000 -35.400000 0.460000) + 4) + (segment 2632 + (point 237.510000 872.880000 -35.400000 0.460000) + (point 235.600000 873.030000 -36.750000 0.460000) + 4) + (segment 2633 + (point 235.600000 873.030000 -36.750000 0.460000) + (point 233.680000 873.180000 -38.380000 0.460000) + 4) + (segment 2634 + (point 233.680000 873.180000 -38.380000 0.460000) + (point 233.590000 875.540000 -39.400000 0.460000) + 4) + (segment 2635 + (point 233.590000 875.540000 -39.400000 0.460000) + (point 234.090000 877.460000 -40.750000 0.460000) + 4) + (segment 2636 + (point 234.090000 877.460000 -40.750000 0.460000) + (point 234.140000 879.260000 -41.930000 0.460000) + 4) + (segment 2637 + (point 234.140000 879.260000 -41.930000 0.460000) + (point 231.640000 879.870000 -43.070000 0.460000) + 4) + (segment 2638 + (point 231.640000 879.870000 -43.070000 0.460000) + (point 230.840000 883.260000 -43.470000 0.460000) + 4) + (segment 2639 + (point 230.840000 883.260000 -43.470000 0.460000) + (point 229.110000 884.650000 -44.050000 0.460000) + 4) + (segment 2640 + (point 229.110000 884.650000 -44.050000 0.460000) + (point 229.110000 884.650000 -44.070000 0.460000) + 4) + (segment 2641 + (point 229.110000 884.650000 -44.070000 0.460000) + (point 228.450000 887.480000 -44.600000 0.460000) + 4) + (segment 2642 + (point 228.450000 887.480000 -44.600000 0.460000) + (point 227.160000 888.970000 -45.950000 0.460000) + 4) + (segment 2643 + (point 227.160000 888.970000 -45.950000 0.460000) + (point 227.020000 889.530000 -47.220000 0.460000) + 4) + (segment 2644 + (point 227.020000 889.530000 -47.220000 0.460000) + (point 227.250000 892.570000 -48.450000 0.460000) + 4) + (segment 2645 + (point 227.250000 892.570000 -48.450000 0.460000) + (point 226.410000 894.160000 -48.620000 0.460000) + 4) + (segment 2646 + (point 226.410000 894.160000 -48.620000 0.460000) + (point 226.940000 897.870000 -49.520000 0.460000) + 4) + (segment 2647 + (point 226.940000 897.870000 -49.520000 0.460000) + (point 226.940000 897.870000 -49.550000 0.460000) + 4) + (segment 2648 + (point 226.940000 897.870000 -49.550000 0.460000) + (point 226.410000 900.140000 -50.000000 0.460000) + 4) + (segment 2649 + (point 226.410000 900.140000 -50.000000 0.460000) + (point 226.410000 900.140000 -50.030000 0.460000) + 4) + (segment 2650 + (point 226.410000 900.140000 -50.030000 0.460000) + (point 225.130000 901.630000 -51.280000 0.460000) + 4) + (segment 2651 + (point 225.130000 901.630000 -51.280000 0.460000) + (point 224.870000 902.750000 -52.650000 0.460000) + 4) + (segment 2652 + (point 224.870000 902.750000 -52.650000 0.460000) + (point 224.950000 906.360000 -53.450000 0.460000) + 4) + (segment 2653 + (point 224.950000 906.360000 -53.450000 0.460000) + (point 224.870000 908.740000 -54.170000 0.460000) + 4) + (segment 2654 + (point 224.870000 908.740000 -54.170000 0.460000) + (point 223.760000 911.450000 -54.580000 0.460000) + 4) + (segment 2655 + (point 223.760000 911.450000 -54.580000 0.460000) + (point 222.700000 915.980000 -54.720000 0.460000) + 4) + (segment 2656 + (point 222.700000 915.980000 -54.720000 0.460000) + (point 220.970000 917.380000 -55.520000 0.460000) + 4) + (segment 2657 + (point 220.970000 917.380000 -55.520000 0.460000) + (point 222.800000 919.590000 -56.200000 0.460000) + 4) + (segment 2658 + (point 222.800000 919.590000 -56.200000 0.460000) + (point 222.760000 923.760000 -56.750000 0.460000) + 4) + (segment 2659 + (point 222.760000 923.760000 -56.750000 0.460000) + (point 222.050000 924.790000 -58.550000 0.230000) + 4) + (segment 2660 + (point 222.050000 924.790000 -58.550000 0.230000) + (point 221.340000 925.830000 -60.350000 0.230000) + 4) + (segment 2661 + (point 221.340000 925.830000 -60.350000 0.230000) + (point 221.340000 925.830000 -60.380000 0.230000) + 4) + (segment 2662 + (point 221.340000 925.830000 -60.380000 0.230000) + (point 221.390000 927.620000 -62.130000 0.230000) + 4) + (segment 2663 + (point 221.390000 927.620000 -62.130000 0.230000) + (point 220.720000 930.450000 -63.420000 0.230000) + 4) + (segment 2664 + (point 220.720000 930.450000 -63.420000 0.230000) + (point 218.110000 931.490000 -64.270000 0.230000) + 4) + (segment 2665 + (point 218.110000 931.490000 -64.270000 0.230000) + (point 220.080000 933.150000 -65.000000 0.230000) + 4) + (segment 2666 + (point 220.080000 933.150000 -65.000000 0.230000) + (point 219.820000 934.270000 -66.170000 0.230000) + 4) + (segment 2667 + (point 219.820000 934.270000 -66.170000 0.230000) + (point 218.080000 935.660000 -67.200000 0.230000) + 4) + (segment 2668 + (point 218.080000 935.660000 -67.200000 0.230000) + (point 216.020000 936.380000 -68.130000 0.230000) + 4) + (segment 2669 + (point 216.020000 936.380000 -68.130000 0.230000) + (point 215.640000 938.070000 -69.180000 0.230000) + 4) + (segment 2670 + (point 215.640000 938.070000 -69.180000 0.230000) + (point 215.640000 938.070000 -69.200000 0.230000) + 4) + (segment 2671 + (point 215.640000 938.070000 -69.200000 0.230000) + (point 214.150000 938.320000 -70.450000 0.230000) + 4) + (segment 2672 + (point 214.150000 938.320000 -70.450000 0.230000) + (point 214.070000 940.690000 -71.430000 0.230000) + 4) + (segment 2673 + (point 214.070000 940.690000 -71.430000 0.230000) + (point 214.070000 940.690000 -71.450000 0.230000) + 4) + (segment 2674 + (point 214.070000 940.690000 -71.450000 0.230000) + (point 212.460000 941.510000 -72.320000 0.230000) + 4) + (segment 2675 + (point 212.460000 941.510000 -72.320000 0.230000) + (point 212.460000 941.510000 -72.350000 0.230000) + 4) + (segment 2676 + (point 212.460000 941.510000 -72.350000 0.230000) + (point 210.860000 942.330000 -72.950000 0.230000) + 4) + (segment 2677 + (point 210.860000 942.330000 -72.950000 0.230000) + (point 209.890000 944.490000 -74.150000 0.230000) + 4) + (segment 2678 + (point 209.890000 944.490000 -74.150000 0.230000) + (point 209.570000 943.820000 -76.000000 0.230000) + 4) + (segment 2679 + (point 209.570000 943.820000 -76.000000 0.230000) + (point 209.570000 943.820000 -76.030000 0.230000) + 4) + (segment 2680 + (point 209.570000 943.820000 -76.030000 0.230000) + (point 208.280000 945.310000 -77.470000 0.230000) + 4) + (segment 2681 + (point 208.280000 945.310000 -77.470000 0.230000) + (point 207.000000 946.800000 -78.570000 0.230000) + 4) + (segment 2682 + (point 207.000000 946.800000 -78.570000 0.230000) + (point 206.770000 949.740000 -79.550000 0.230000) + 4) + (segment 2683 + (point 206.770000 949.740000 -79.550000 0.230000) + (point 204.530000 949.210000 -80.700000 0.230000) + 4) + (segment 2684 + (point 204.530000 949.210000 -80.700000 0.230000) + (point 201.780000 950.950000 -81.750000 0.230000) + 4) + (segment 2685 + (point 201.780000 950.950000 -81.750000 0.230000) + (point 200.930000 952.550000 -82.450000 0.230000) + 4) + (segment 2686 + (point 200.930000 952.550000 -82.450000 0.230000) + (point 199.500000 954.600000 -83.000000 0.230000) + 4) + (segment 2687 + (point 199.500000 954.600000 -83.000000 0.230000) + (point 197.330000 955.870000 -83.000000 0.230000) + 4) + (segment 2688 + (point 197.330000 955.870000 -83.000000 0.230000) + (point 196.930000 957.580000 -84.720000 0.230000) + 4) + (segment 2689 + (point 196.930000 957.580000 -84.720000 0.230000) + (point 197.100000 958.810000 -86.320000 0.230000) + 4) + (segment 2690 + (point 197.100000 958.810000 -86.320000 0.230000) + (point 197.020000 961.190000 -87.000000 0.230000) + 4) + (segment 2691 + (point 197.020000 961.190000 -87.000000 0.230000) + (point 194.970000 961.900000 -87.520000 0.230000) + 4) + (segment 2692 + (point 194.970000 961.900000 -87.520000 0.230000) + (point 193.500000 962.140000 -88.420000 0.230000) + 4) + (segment 2693 + (point 193.500000 962.140000 -88.420000 0.230000) + (point 192.340000 963.070000 -89.520000 0.230000) + 4) + (segment 2694 + (point 192.340000 963.070000 -89.520000 0.230000) + (point 191.810000 965.330000 -90.770000 0.230000) + 4) + (segment 2695 + (point 191.810000 965.330000 -90.770000 0.230000) + (point 191.810000 965.330000 -90.800000 0.230000) + 4) + (segment 2696 + (point 191.810000 965.330000 -90.800000 0.230000) + (point 190.520000 966.820000 -91.720000 0.230000) + 4) + (segment 2697 + (point 190.520000 966.820000 -91.720000 0.230000) + (point 189.400000 969.550000 -92.420000 0.230000) + 4) + (segment 2698 + (point 189.400000 969.550000 -92.420000 0.230000) + (point 187.350000 970.250000 -93.470000 0.230000) + 4) + (segment 2699 + (point 187.350000 970.250000 -93.470000 0.230000) + (point 184.990000 970.310000 -94.700000 0.230000) + 4) + (segment 2700 + (point 184.990000 970.310000 -94.700000 0.230000) + (point 183.510000 970.560000 -95.750000 0.230000) + 4) + (segment 2701 + (point 183.510000 970.560000 -95.750000 0.230000) + (point 182.230000 972.040000 -96.800000 0.230000) + 4) + (segment 2702 + (point 182.230000 972.040000 -96.800000 0.230000) + (point 180.930000 973.540000 -97.650000 0.230000) + 4) + (segment 2703 + (point 180.930000 973.540000 -97.650000 0.230000) + (point 180.930000 973.540000 -97.680000 0.230000) + 4) + (segment 2704 + (point 180.930000 973.540000 -97.680000 0.230000) + (point 179.640000 975.020000 -98.530000 0.230000) + 4) + (segment 2705 + (point 179.640000 975.020000 -98.530000 0.230000) + (point 177.010000 976.200000 -99.300000 0.230000) + 4) + (segment 2706 + (point 177.010000 976.200000 -99.300000 0.230000) + (point 173.810000 977.840000 -100.370000 0.230000) + 4) + (segment 2707 + (point 173.810000 977.840000 -100.370000 0.230000) + (point 172.070000 979.220000 -100.370000 0.230000) + 4) + (segment 2708 + (point 172.070000 979.220000 -100.370000 0.230000) + (point 169.700000 979.260000 -101.320000 0.230000) + 4) + (segment 2709 + (point 169.700000 979.260000 -101.320000 0.230000) + (point 168.540000 980.190000 -102.400000 0.230000) + 4) + (segment 2710 + (point 168.540000 980.190000 -102.400000 0.230000) + (point 166.400000 983.270000 -103.600000 0.230000) + 4) + (segment 2711 + (point 166.400000 983.270000 -103.600000 0.230000) + (point 163.830000 986.240000 -103.970000 0.230000) + 4) + (segment 2712 + (point 163.830000 986.240000 -103.970000 0.230000) + (point 162.760000 990.780000 -103.970000 0.230000) + 4) + (segment 2713 + (point 162.760000 990.780000 -103.970000 0.230000) + (point 161.390000 994.630000 -104.850000 0.230000) + 4) + (segment 2714 + (point 161.390000 994.630000 -104.850000 0.230000) + (point 161.300000 997.000000 -106.100000 0.230000) + 4) + (segment 2715 + (point 161.300000 997.000000 -106.100000 0.230000) + (point 159.880000 999.060000 -107.420000 0.230000) + 4) + (segment 2716 + (point 159.880000 999.060000 -107.420000 0.230000) + (point 158.680000 1004.150000 -108.350000 0.230000) + 4) + (segment 2717 + (point 158.680000 1004.150000 -108.350000 0.230000) + (point 156.150000 1008.930000 -107.780000 0.230000) + 4) + (segment 2718 + (point 156.150000 1008.930000 -107.780000 0.230000) + (point 155.310000 1010.530000 -106.600000 0.230000) + 4) + (segment 2719 + (point 155.310000 1010.530000 -106.600000 0.230000) + (point 155.350000 1012.330000 -105.900000 0.230000) + 4) + (segment 2720 + (point 155.350000 1012.330000 -105.900000 0.230000) + (point 155.270000 1014.700000 -104.100000 0.230000) + 4) + (segment 2721 + (point 155.270000 1014.700000 -104.100000 0.230000) + (point 154.740000 1016.960000 -102.700000 0.230000) + 4) + (segment 2722 + (point 154.740000 1016.960000 -102.700000 0.230000) + (point 154.290000 1016.850000 -102.700000 0.230000) + 4) + (segment 2723 + (point 154.290000 1016.850000 -102.700000 0.230000) + (point 154.920000 1018.200000 -101.880000 0.230000) + 4) + (segment 2724 + (point 154.920000 1018.200000 -101.880000 0.230000) + (point 155.280000 1020.670000 -100.370000 0.230000) + 4) + (segment 2725 + (point 155.280000 1020.670000 -100.370000 0.230000) + (point 154.750000 1022.930000 -99.780000 0.230000) + 4) + (segment 2726 + (point 154.750000 1022.930000 -99.780000 0.230000) + (point 153.770000 1025.090000 -99.030000 0.230000) + 4) + (segment 2727 + (point 153.770000 1025.090000 -99.030000 0.230000) + (point 154.400000 1026.440000 -98.000000 0.230000) + 4) + (segment 2728 + (point 154.400000 1026.440000 -98.000000 0.230000) + (point 153.560000 1028.030000 -97.250000 0.230000) + 4) + (segment 2729 + (point 153.560000 1028.030000 -97.250000 0.230000) + (point 153.470000 1030.400000 -96.070000 0.230000) + 4) + (segment 2730 + (point 153.470000 1030.400000 -96.070000 0.230000) + (point 151.520000 1034.720000 -95.250000 0.230000) + 4) + (segment 2731 + (point 151.520000 1034.720000 -95.250000 0.230000) + (point 149.830000 1037.910000 -93.530000 0.230000) + 4) + (segment 2732 + (point 149.830000 1037.910000 -93.530000 0.230000) + (point 148.580000 1041.190000 -93.150000 0.230000) + 4) + (segment 2733 + (point 148.580000 1041.190000 -93.150000 0.230000) + (point 147.480000 1043.920000 -92.720000 0.230000) + 4) + (segment 2734 + (point 147.480000 1043.920000 -92.720000 0.230000) + (point 146.950000 1046.200000 -92.200000 0.230000) + 4) + (segment 2735 + (point 146.950000 1046.200000 -92.200000 0.230000) + (point 144.800000 1049.280000 -90.420000 0.230000) + 4)) + (branch 105 81 + (segment 2736 + (point 232.540000 610.990000 -32.880000 0.915000) + (point 231.420000 611.320000 -31.420000 0.460000) + 4) + (segment 2737 + (point 231.420000 611.320000 -31.420000 0.460000) + (point 231.210000 611.360000 -31.420000 0.460000) + 4) + (segment 2738 + (point 231.210000 611.360000 -31.420000 0.460000) + (point 230.580000 612.920000 -30.000000 0.460000) + 4) + (segment 2739 + (point 230.580000 612.920000 -30.000000 0.460000) + (point 230.310000 614.050000 -28.570000 0.460000) + 4) + (segment 2740 + (point 230.310000 614.050000 -28.570000 0.460000) + (point 228.850000 614.300000 -27.150000 0.460000) + 4) + (segment 2741 + (point 228.850000 614.300000 -27.150000 0.460000) + (point 229.480000 615.640000 -26.320000 0.460000) + 4) + (segment 2742 + (point 229.480000 615.640000 -26.320000 0.460000) + (point 229.960000 617.550000 -25.070000 0.230000) + 4) + (segment 2743 + (point 229.960000 617.550000 -25.070000 0.230000) + (point 228.410000 620.170000 -23.600000 0.230000) + 4) + (segment 2744 + (point 228.410000 620.170000 -23.600000 0.230000) + (point 228.770000 622.640000 -22.570000 0.230000) + 4) + (segment 2745 + (point 228.770000 622.640000 -22.570000 0.230000) + (point 228.770000 622.640000 -22.600000 0.230000) + 4) + (segment 2746 + (point 228.770000 622.640000 -22.600000 0.230000) + (point 228.060000 623.660000 -21.750000 0.230000) + 4) + (segment 2747 + (point 228.060000 623.660000 -21.750000 0.230000) + (point 228.370000 624.350000 -21.750000 0.230000) + 4) + (segment 2748 + (point 228.370000 624.350000 -21.750000 0.230000) + (point 228.300000 626.700000 -20.900000 0.230000) + 4) + (segment 2749 + (point 228.300000 626.700000 -20.900000 0.230000) + (point 228.790000 628.620000 -19.850000 0.230000) + 4) + (segment 2750 + (point 228.790000 628.620000 -19.850000 0.230000) + (point 227.180000 629.440000 -18.970000 0.230000) + 4) + (segment 2751 + (point 227.180000 629.440000 -18.970000 0.230000) + (point 225.890000 630.920000 -18.080000 0.230000) + 4) + (segment 2752 + (point 225.890000 630.920000 -18.080000 0.230000) + (point 224.420000 631.170000 -15.970000 0.230000) + 4) + (segment 2753 + (point 224.420000 631.170000 -15.970000 0.230000) + (point 224.420000 631.170000 -15.950000 0.230000) + 4)) + (branch 106 80 + (segment 2754 + (point 235.810000 464.370000 -16.650000 0.915000) + (point 239.410000 464.610000 -16.320000 0.230000) + 4) + (segment 2755 + (point 239.410000 464.610000 -16.320000 0.230000) + (point 240.940000 466.160000 -15.480000 0.230000) + 4) + (segment 2756 + (point 240.940000 466.160000 -15.480000 0.230000) + (point 240.860000 468.540000 -14.900000 0.230000) + 4) + (segment 2757 + (point 240.860000 468.540000 -14.900000 0.230000) + (point 240.600000 469.660000 -14.150000 0.230000) + 4) + (segment 2758 + (point 240.600000 469.660000 -14.150000 0.230000) + (point 242.240000 470.640000 -12.620000 0.230000) + 4) + (segment 2759 + (point 242.240000 470.640000 -12.620000 0.230000) + (point 245.230000 471.940000 -11.630000 0.230000) + 4) + (segment 2760 + (point 245.230000 471.940000 -11.630000 0.230000) + (point 248.370000 472.670000 -10.700000 0.230000) + 4) + (segment 2761 + (point 248.370000 472.670000 -10.700000 0.230000) + (point 248.150000 475.610000 -9.770000 0.230000) + 4) + (segment 2762 + (point 248.150000 475.610000 -9.770000 0.230000) + (point 248.690000 479.320000 -9.130000 0.230000) + 4) + (segment 2763 + (point 248.690000 479.320000 -9.130000 0.230000) + (point 250.970000 481.650000 -10.070000 0.230000) + 4) + (segment 2764 + (point 250.970000 481.650000 -10.070000 0.230000) + (point 252.950000 483.300000 -9.220000 0.230000) + 4) + (segment 2765 + (point 252.950000 483.300000 -9.220000 0.230000) + (point 254.460000 484.850000 -7.870000 0.230000) + 4) + (segment 2766 + (point 254.460000 484.850000 -7.870000 0.230000) + (point 255.090000 486.190000 -6.670000 0.230000) + 4) + (segment 2767 + (point 255.090000 486.190000 -6.670000 0.230000) + (point 254.250000 487.780000 -5.130000 0.230000) + 4) + (segment 2768 + (point 254.250000 487.780000 -5.130000 0.230000) + (point 254.250000 487.780000 -5.150000 0.230000) + 4) + (segment 2769 + (point 254.250000 487.780000 -5.150000 0.230000) + (point 256.420000 486.510000 -3.570000 0.230000) + 4) + (segment 2770 + (point 256.420000 486.510000 -3.570000 0.230000) + (point 256.420000 486.510000 -3.600000 0.230000) + 4) + (segment 2771 + (point 256.420000 486.510000 -3.600000 0.230000) + (point 257.900000 486.250000 -2.450000 0.230000) + 4) + (segment 2772 + (point 257.900000 486.250000 -2.450000 0.230000) + (point 257.630000 487.390000 -0.630000 0.230000) + 4) + (segment 2773 + (point 257.630000 487.390000 -0.630000 0.230000) + (point 254.830000 487.330000 0.930000 0.230000) + 4) + (segment 2774 + (point 254.830000 487.330000 0.930000 0.230000) + (point 254.560000 488.460000 2.450000 0.230000) + 4) + (segment 2775 + (point 254.560000 488.460000 2.450000 0.230000) + (point 256.790000 488.990000 3.850000 0.230000) + 4) + (segment 2776 + (point 256.790000 488.990000 3.850000 0.230000) + (point 256.750000 493.160000 3.450000 0.230000) + 4) + (segment 2777 + (point 256.750000 493.160000 3.450000 0.230000) + (point 255.960000 496.550000 1.220000 0.230000) + 4) + (segment 2778 + (point 255.960000 496.550000 1.220000 0.230000) + (point 255.960000 496.550000 0.880000 0.230000) + 4)) + (branch 107 79 + (segment 2779 + (point 237.290000 453.970000 -17.300000 0.915000) + (point 235.280000 454.090000 -16.500000 0.460000) + 4) + (segment 2780 + (point 235.280000 454.090000 -16.500000 0.460000) + (point 233.820000 454.340000 -15.320000 0.460000) + 4) + (segment 2781 + (point 233.820000 454.340000 -15.320000 0.460000) + (point 232.080000 455.720000 -14.050000 0.460000) + 4) + (segment 2782 + (point 232.080000 455.720000 -14.050000 0.460000) + (point 231.940000 456.290000 -12.620000 0.460000) + 4) + (segment 2783 + (point 231.940000 456.290000 -12.620000 0.460000) + (point 231.580000 453.820000 -11.550000 0.460000) + 4) + (segment 2784 + (point 231.580000 453.820000 -11.550000 0.460000) + (point 230.510000 452.360000 -10.200000 0.460000) + 4) + (segment 2785 + (point 230.510000 452.360000 -10.200000 0.460000) + (point 229.440000 450.920000 -9.670000 0.460000) + 4) + (segment 2786 + (point 229.440000 450.920000 -9.670000 0.460000) + (point 228.680000 450.140000 -8.230000 0.460000) + 4) + (segment 2787 + (point 228.680000 450.140000 -8.230000 0.460000) + (point 227.470000 449.270000 -8.230000 0.460000) + 4) + (segment 2788 + (point 227.470000 449.270000 -8.230000 0.460000) + (point 226.520000 447.250000 -8.230000 0.460000) + 4) + (segment 2789 + (point 226.520000 447.250000 -8.230000 0.460000) + (point 223.580000 447.760000 -6.970000 0.460000) + 4) + (segment 2790 + (point 223.580000 447.760000 -6.970000 0.460000) + (point 220.900000 447.130000 -6.550000 0.460000) + 4) + (segment 2791 + (point 220.900000 447.130000 -6.550000 0.460000) + (point 217.640000 446.970000 -6.850000 0.460000) + 4) + (segment 2792 + (point 217.640000 446.970000 -6.850000 0.460000) + (point 214.830000 446.900000 -6.020000 0.460000) + 4) + (segment 2793 + (point 214.830000 446.900000 -6.020000 0.460000) + (point 211.830000 445.610000 -4.920000 0.460000) + 4) + (segment 2794 + (point 211.830000 445.610000 -4.920000 0.460000) + (point 209.970000 447.550000 -3.650000 0.460000) + 4) + (segment 2795 + (point 209.970000 447.550000 -3.650000 0.460000) + (point 210.450000 449.460000 -3.200000 0.460000) + 4) + (segment 2796 + (point 210.450000 449.460000 -3.200000 0.460000) + (point 210.190000 450.590000 -1.700000 0.460000) + 4) + (segment 2797 + (point 210.190000 450.590000 -1.700000 0.460000) + (point 207.510000 449.960000 -0.970000 0.460000) + 4) + (segment 2798 + (point 207.510000 449.960000 -0.970000 0.460000) + (point 205.200000 451.820000 0.350000 0.460000) + 4) + (segment 2799 + (point 205.200000 451.820000 0.350000 0.460000) + (point 205.200000 451.820000 0.320000 0.460000) + 4) + (segment 2800 + (point 205.200000 451.820000 0.320000 0.460000) + (point 203.330000 453.760000 0.670000 0.460000) + 4) + (segment 2801 + (point 203.330000 453.760000 0.670000 0.460000) + (point 200.380000 454.270000 0.670000 0.460000) + 4) + (segment 2802 + (point 200.380000 454.270000 0.670000 0.460000) + (point 196.730000 455.790000 -0.020000 0.460000) + 4) + (segment 2803 + (point 196.730000 455.790000 -0.020000 0.460000) + (point 193.960000 457.540000 -1.250000 0.460000) + 4) + (segment 2804 + (point 193.960000 457.540000 -1.250000 0.460000) + (point 191.640000 459.380000 -0.300000 0.460000) + 4) + (segment 2805 + (point 191.640000 459.380000 -0.300000 0.460000) + (point 190.570000 457.940000 0.320000 0.460000) + 4) + (segment 2806 + (point 190.570000 457.940000 0.320000 0.460000) + (point 187.050000 458.900000 1.220000 0.460000) + 4) + (segment 2807 + (point 187.050000 458.900000 1.220000 0.460000) + (point 184.540000 459.520000 0.750000 0.460000) + 4) + (segment 2808 + (point 184.540000 459.520000 0.750000 0.460000) + (point 181.020000 460.470000 -0.550000 0.460000) + 4) + (segment 2809 + (point 181.020000 460.470000 -0.550000 0.460000) + (point 178.840000 461.750000 -0.900000 0.460000) + 4) + (segment 2810 + (point 178.840000 461.750000 -0.900000 0.460000) + (point 175.850000 460.450000 -2.150000 0.460000) + 4) + (segment 2811 + (point 175.850000 460.450000 -2.150000 0.460000) + (point 174.590000 457.780000 -2.800000 0.460000) + 4) + (segment 2812 + (point 174.590000 457.780000 -2.800000 0.460000) + (point 171.460000 457.040000 -3.100000 0.460000) + 4) + (segment 2813 + (point 171.460000 457.040000 -3.100000 0.460000) + (point 167.180000 457.230000 -3.970000 0.460000) + 4) + (segment 2814 + (point 167.180000 457.230000 -3.970000 0.460000) + (point 167.180000 457.230000 -4.000000 0.460000) + 4) + (segment 2815 + (point 167.180000 457.230000 -4.000000 0.460000) + (point 164.810000 457.270000 -3.600000 0.460000) + 4) + (segment 2816 + (point 164.810000 457.270000 -3.600000 0.460000) + (point 164.810000 457.270000 -3.620000 0.460000) + 4) + (segment 2817 + (point 164.810000 457.270000 -3.620000 0.460000) + (point 163.160000 456.290000 -1.770000 0.460000) + 4) + (segment 2818 + (point 163.160000 456.290000 -1.770000 0.460000) + (point 160.480000 455.660000 -1.020000 0.460000) + 4) + (segment 2819 + (point 160.480000 455.660000 -1.020000 0.460000) + (point 158.020000 458.070000 0.850000 0.460000) + 4) + (segment 2820 + (point 158.020000 458.070000 0.850000 0.460000) + (point 155.850000 459.350000 2.850000 0.460000) + 4) + (segment 2821 + (point 155.850000 459.350000 2.850000 0.460000) + (point 155.850000 459.350000 2.830000 0.460000) + 4) + (segment 2822 + (point 155.850000 459.350000 2.830000 0.460000) + (point 152.500000 461.560000 4.500000 0.460000) + 4)) + (branch 108 78 + (segment 2823 + (point 244.400000 359.090000 -26.950000 1.145000) + (point 247.390000 360.390000 -28.370000 0.915000) + 4) + (segment 2824 + (point 247.390000 360.390000 -28.370000 0.915000) + (point 247.170000 363.330000 -29.500000 0.915000) + 4) + (segment 2825 + (point 247.170000 363.330000 -29.500000 0.915000) + (point 245.930000 366.620000 -30.900000 0.915000) + 4) + (segment 2826 + (point 245.930000 366.620000 -30.900000 0.915000) + (point 244.380000 369.240000 -32.150000 0.915000) + 4) + (segment 2827 + (point 244.380000 369.240000 -32.150000 0.915000) + (point 242.960000 371.300000 -33.800000 0.915000) + 4) + (segment 2828 + (point 242.960000 371.300000 -33.800000 0.915000) + (point 242.030000 375.250000 -34.850000 0.915000) + 4) + (segment 2829 + (point 242.030000 375.250000 -34.850000 0.915000) + (point 240.070000 379.580000 -34.750000 0.915000) + 4) + (segment 2830 + (point 240.070000 379.580000 -34.750000 0.915000) + (point 237.940000 382.660000 -35.020000 0.915000) + 4) + (segment 2831 + (point 237.940000 382.660000 -35.020000 0.915000) + (point 237.900000 386.830000 -35.330000 0.915000) + 4) + (segment 2832 + (point 237.900000 386.830000 -35.330000 0.915000) + (point 237.900000 386.830000 -35.350000 0.915000) + 4) + (segment 2833 + (point 237.900000 386.830000 -35.350000 0.915000) + (point 236.840000 391.360000 -35.350000 0.915000) + 4) + (segment 2834 + (point 236.840000 391.360000 -35.350000 0.915000) + (point 236.110000 394.400000 -36.380000 0.915000) + 4) + (segment 2835 + (point 236.110000 394.400000 -36.380000 0.915000) + (point 235.870000 396.360000 -36.400000 0.915000) + 4) + (segment 2836 + (point 235.870000 396.360000 -36.400000 0.915000) + (point 235.780000 398.720000 -36.380000 0.915000) + 4) + (segment 2837 + (point 235.780000 398.720000 -36.380000 0.915000) + (point 235.840000 403.660000 -36.720000 0.915000) + 4) + (segment 2838 + (point 235.840000 403.660000 -36.720000 0.915000) + (point 232.990000 407.770000 -37.020000 0.915000) + 4) + (segment 2839 + (point 232.990000 407.770000 -37.020000 0.915000) + (point 233.040000 409.570000 -38.150000 0.915000) + 4) + (segment 2840 + (point 233.040000 409.570000 -38.150000 0.915000) + (point 231.660000 413.430000 -39.200000 0.915000) + 4) + (segment 2841 + (point 231.660000 413.430000 -39.200000 0.915000) + (point 229.720000 417.760000 -40.170000 0.915000) + 4) + (segment 2842 + (point 229.720000 417.760000 -40.170000 0.915000) + (point 229.720000 423.720000 -41.170000 0.915000) + 4) + (segment 2843 + (point 229.720000 423.720000 -41.170000 0.915000) + (point 229.550000 426.580000 -41.770000 0.915000) + 4) + (segment 2844 + (point 229.550000 426.580000 -41.770000 0.915000) + (point 230.280000 431.520000 -41.850000 0.915000) + 4) + (segment 2845 + (point 230.280000 431.520000 -41.850000 0.915000) + (point 229.930000 435.020000 -40.600000 0.915000) + 4) + (segment 2846 + (point 229.930000 435.020000 -40.600000 0.915000) + (point 228.870000 439.550000 -41.030000 0.915000) + 4) + (segment 2847 + (point 228.870000 439.550000 -41.030000 0.915000) + (point 228.870000 439.550000 -41.050000 0.915000) + 4) + (segment 2848 + (point 228.870000 439.550000 -41.050000 0.915000) + (point 226.340000 444.330000 -41.730000 0.915000) + 4) + (segment 2849 + (point 226.340000 444.330000 -41.730000 0.915000) + (point 224.380000 448.650000 -42.100000 0.915000) + 4) + (segment 2850 + (point 224.380000 448.650000 -42.100000 0.915000) + (point 224.930000 452.360000 -43.100000 0.915000) + 4) + (segment 2851 + (point 224.930000 452.360000 -43.100000 0.915000) + (point 225.730000 454.930000 -43.920000 0.915000) + 4) + (segment 2852 + (point 225.730000 454.930000 -43.920000 0.915000) + (point 225.730000 454.930000 -43.950000 0.915000) + 4) + (segment 2853 + (point 225.730000 454.930000 -43.950000 0.915000) + (point 224.800000 458.900000 -44.970000 0.915000) + 4) + (segment 2854 + (point 224.800000 458.900000 -44.970000 0.915000) + (point 223.070000 460.290000 -45.750000 0.915000) + 4) + (segment 2855 + (point 223.070000 460.290000 -45.750000 0.915000) + (point 223.070000 460.290000 -45.770000 0.915000) + 4) + (segment 2856 + (point 223.070000 460.290000 -45.770000 0.915000) + (point 221.650000 462.340000 -47.020000 0.915000) + 4) + (segment 2857 + (point 221.650000 462.340000 -47.020000 0.915000) + (point 222.180000 466.040000 -47.880000 0.915000) + 4) + (segment 2858 + (point 222.180000 466.040000 -47.880000 0.915000) + (point 221.650000 468.310000 -47.880000 0.915000) + 4)) + (branch 109 108 + (segment 2859 + (point 221.650000 468.310000 -47.880000 0.915000) + (point 223.540000 470.570000 -46.930000 0.460000) + 4) + (segment 2860 + (point 223.540000 470.570000 -46.930000 0.460000) + (point 225.940000 472.340000 -46.450000 0.460000) + 4) + (segment 2861 + (point 225.940000 472.340000 -46.450000 0.460000) + (point 228.220000 474.660000 -46.250000 0.460000) + 4) + (segment 2862 + (point 228.220000 474.660000 -46.250000 0.460000) + (point 230.460000 475.190000 -46.250000 0.460000) + 4) + (segment 2863 + (point 230.460000 475.190000 -46.250000 0.460000) + (point 231.580000 478.440000 -46.880000 0.460000) + 4) + (segment 2864 + (point 231.580000 478.440000 -46.880000 0.460000) + (point 232.530000 480.450000 -47.600000 0.460000) + 4) + (segment 2865 + (point 232.530000 480.450000 -47.600000 0.460000) + (point 235.390000 482.300000 -47.920000 0.460000) + 4) + (segment 2866 + (point 235.390000 482.300000 -47.920000 0.460000) + (point 236.860000 482.060000 -47.330000 0.460000) + 4) + (segment 2867 + (point 236.860000 482.060000 -47.330000 0.460000) + (point 238.780000 481.910000 -48.880000 0.460000) + 4) + (segment 2868 + (point 238.780000 481.910000 -48.880000 0.460000) + (point 238.700000 484.280000 -50.130000 0.460000) + 4) + (segment 2869 + (point 238.700000 484.280000 -50.130000 0.460000) + (point 238.700000 484.280000 -50.150000 0.460000) + 4) + (segment 2870 + (point 238.700000 484.280000 -50.150000 0.460000) + (point 238.700000 484.280000 -51.500000 0.460000) + 4) + (segment 2871 + (point 238.700000 484.280000 -51.500000 0.460000) + (point 238.700000 484.280000 -51.520000 0.460000) + 4) + (segment 2872 + (point 238.700000 484.280000 -51.520000 0.460000) + (point 237.400000 485.760000 -52.200000 0.460000) + 4) + (segment 2873 + (point 237.400000 485.760000 -52.200000 0.460000) + (point 237.590000 487.010000 -53.380000 0.460000) + 4) + (segment 2874 + (point 237.590000 487.010000 -53.380000 0.460000) + (point 239.360000 487.410000 -54.350000 0.460000) + 4) + (segment 2875 + (point 239.360000 487.410000 -54.350000 0.460000) + (point 241.480000 488.510000 -55.350000 0.460000) + 4) + (segment 2876 + (point 241.480000 488.510000 -55.350000 0.460000) + (point 241.480000 488.510000 -55.380000 0.460000) + 4) + (segment 2877 + (point 241.480000 488.510000 -55.380000 0.460000) + (point 241.780000 489.190000 -55.720000 0.460000) + 4) + (segment 2878 + (point 241.780000 489.190000 -55.720000 0.460000) + (point 241.000000 492.570000 -55.720000 0.460000) + 4) + (segment 2879 + (point 241.000000 492.570000 -55.720000 0.460000) + (point 242.510000 494.140000 -56.420000 0.460000) + 4) + (segment 2880 + (point 242.510000 494.140000 -56.420000 0.460000) + (point 243.590000 495.580000 -57.500000 0.460000) + 4) + (segment 2881 + (point 243.590000 495.580000 -57.500000 0.460000) + (point 244.650000 497.020000 -58.300000 0.460000) + 4) + (segment 2882 + (point 244.650000 497.020000 -58.300000 0.460000) + (point 245.230000 496.560000 -58.900000 0.460000) + 4) + (segment 2883 + (point 245.230000 496.560000 -58.900000 0.460000) + (point 246.130000 496.770000 -58.880000 0.460000) + 4) + (segment 2884 + (point 246.130000 496.770000 -58.880000 0.460000) + (point 245.470000 499.600000 -59.020000 0.460000) + 4) + (segment 2885 + (point 245.470000 499.600000 -59.020000 0.460000) + (point 245.910000 499.700000 -59.020000 0.460000) + 4) + (segment 2886 + (point 245.910000 499.700000 -59.020000 0.460000) + (point 248.020000 500.800000 -59.630000 0.460000) + 4) + (segment 2887 + (point 248.020000 500.800000 -59.630000 0.460000) + (point 248.830000 503.380000 -59.630000 0.460000) + 4) + (segment 2888 + (point 248.830000 503.380000 -59.630000 0.460000) + (point 249.270000 503.480000 -60.670000 0.460000) + 4) + (segment 2889 + (point 249.270000 503.480000 -60.670000 0.460000) + (point 248.160000 506.210000 -61.520000 0.460000) + 4) + (segment 2890 + (point 248.160000 506.210000 -61.520000 0.460000) + (point 251.150000 507.500000 -62.600000 0.460000) + 4) + (segment 2891 + (point 251.150000 507.500000 -62.600000 0.460000) + (point 253.260000 508.590000 -63.170000 0.460000) + 4) + (segment 2892 + (point 253.260000 508.590000 -63.170000 0.460000) + (point 255.090000 510.820000 -63.950000 0.460000) + 4) + (segment 2893 + (point 255.090000 510.820000 -63.950000 0.460000) + (point 255.320000 513.860000 -65.000000 0.460000) + 4) + (segment 2894 + (point 255.320000 513.860000 -65.000000 0.460000) + (point 256.970000 514.840000 -65.750000 0.460000) + 4) + (segment 2895 + (point 256.970000 514.840000 -65.750000 0.460000) + (point 259.520000 516.030000 -66.600000 0.460000) + 4) + (segment 2896 + (point 259.520000 516.030000 -66.600000 0.460000) + (point 262.380000 517.900000 -64.570000 0.460000) + 4) + (segment 2897 + (point 262.380000 517.900000 -64.570000 0.460000) + (point 264.170000 518.320000 -65.300000 0.460000) + 4) + (segment 2898 + (point 264.170000 518.320000 -65.300000 0.460000) + (point 264.170000 518.320000 -65.320000 0.460000) + 4) + (segment 2899 + (point 264.170000 518.320000 -65.320000 0.460000) + (point 266.590000 520.080000 -65.970000 0.460000) + 4) + (segment 2900 + (point 266.590000 520.080000 -65.970000 0.460000) + (point 268.190000 519.250000 -66.650000 0.460000) + 4) + (segment 2901 + (point 268.190000 519.250000 -66.650000 0.460000) + (point 268.190000 519.250000 -66.680000 0.460000) + 4) + (segment 2902 + (point 268.190000 519.250000 -66.680000 0.460000) + (point 270.420000 519.780000 -67.900000 0.460000) + 4) + (segment 2903 + (point 270.420000 519.780000 -67.900000 0.460000) + (point 270.420000 519.780000 -67.930000 0.460000) + 4) + (segment 2904 + (point 270.420000 519.780000 -67.930000 0.460000) + (point 272.070000 520.760000 -69.420000 0.460000) + 4) + (segment 2905 + (point 272.070000 520.760000 -69.420000 0.460000) + (point 272.070000 520.760000 -69.450000 0.460000) + 4) + (segment 2906 + (point 272.070000 520.760000 -69.450000 0.460000) + (point 273.150000 522.210000 -70.270000 0.460000) + 4) + (segment 2907 + (point 273.150000 522.210000 -70.270000 0.460000) + (point 272.760000 523.910000 -71.720000 0.460000) + 4) + (segment 2908 + (point 272.760000 523.910000 -71.720000 0.460000) + (point 272.760000 523.910000 -71.750000 0.460000) + 4) + (segment 2909 + (point 272.760000 523.910000 -71.750000 0.460000) + (point 276.330000 524.750000 -72.200000 0.460000) + 4) + (segment 2910 + (point 276.330000 524.750000 -72.200000 0.460000) + (point 280.670000 526.360000 -73.570000 0.460000) + 4) + (segment 2911 + (point 280.670000 526.360000 -73.570000 0.460000) + (point 283.390000 528.800000 -74.300000 0.460000) + 4) + (segment 2912 + (point 283.390000 528.800000 -74.300000 0.460000) + (point 286.690000 530.770000 -74.780000 0.460000) + 4) + (segment 2913 + (point 286.690000 530.770000 -74.780000 0.460000) + (point 289.240000 531.950000 -75.250000 0.460000) + 4) + (segment 2914 + (point 289.240000 531.950000 -75.250000 0.460000) + (point 293.310000 534.690000 -75.880000 0.460000) + 4) + (segment 2915 + (point 293.310000 534.690000 -75.880000 0.460000) + (point 295.550000 535.220000 -76.030000 0.460000) + 4) + (segment 2916 + (point 295.550000 535.220000 -76.030000 0.460000) + (point 298.270000 537.660000 -75.720000 0.460000) + 4) + (segment 2917 + (point 298.270000 537.660000 -75.720000 0.460000) + (point 301.790000 536.680000 -76.030000 0.460000) + 4) + (segment 2918 + (point 301.790000 536.680000 -76.030000 0.460000) + (point 305.100000 538.660000 -76.130000 0.460000) + 4) + (segment 2919 + (point 305.100000 538.660000 -76.130000 0.460000) + (point 308.090000 539.960000 -77.350000 0.460000) + 4) + (segment 2920 + (point 308.090000 539.960000 -77.350000 0.460000) + (point 309.610000 541.510000 -78.200000 0.460000) + 4) + (segment 2921 + (point 309.610000 541.510000 -78.200000 0.460000) + (point 313.190000 542.340000 -79.070000 0.460000) + 4) + (segment 2922 + (point 313.190000 542.340000 -79.070000 0.460000) + (point 316.050000 544.200000 -80.370000 0.460000) + 4) + (segment 2923 + (point 316.050000 544.200000 -80.370000 0.460000) + (point 318.420000 544.160000 -82.220000 0.460000) + 4) + (segment 2924 + (point 318.420000 544.160000 -82.220000 0.460000) + (point 318.420000 544.160000 -82.520000 0.460000) + 4)) + (branch 110 108 + (segment 2925 + (point 221.650000 468.310000 -47.880000 0.915000) + (point 220.100000 470.930000 -47.880000 0.915000) + 4) + (segment 2926 + (point 220.100000 470.930000 -47.880000 0.915000) + (point 219.930000 475.680000 -47.880000 0.915000) + 4) + (segment 2927 + (point 219.930000 475.680000 -47.880000 0.915000) + (point 219.000000 479.630000 -47.130000 0.915000) + 4) + (segment 2928 + (point 219.000000 479.630000 -47.130000 0.915000) + (point 217.940000 484.160000 -47.670000 0.915000) + 4) + (segment 2929 + (point 217.940000 484.160000 -47.670000 0.915000) + (point 216.570000 488.020000 -47.550000 0.915000) + 4) + (segment 2930 + (point 216.570000 488.020000 -47.550000 0.915000) + (point 215.460000 490.750000 -48.750000 0.915000) + 4) + (segment 2931 + (point 215.460000 490.750000 -48.750000 0.915000) + (point 216.440000 494.550000 -50.050000 0.915000) + 4) + (segment 2932 + (point 216.440000 494.550000 -50.050000 0.915000) + (point 215.020000 496.620000 -50.050000 0.915000) + 4) + (segment 2933 + (point 215.020000 496.620000 -50.050000 0.915000) + (point 216.140000 499.860000 -48.620000 0.915000) + 4) + (segment 2934 + (point 216.140000 499.860000 -48.620000 0.915000) + (point 215.660000 503.930000 -48.620000 0.915000) + 4) + (segment 2935 + (point 215.660000 503.930000 -48.620000 0.915000) + (point 215.630000 508.100000 -48.620000 0.915000) + 4) + (segment 2936 + (point 215.630000 508.100000 -48.620000 0.915000) + (point 214.960000 510.920000 -48.620000 0.915000) + 4)) + (branch 111 110 + (segment 2937 + (point 214.960000 510.920000 -48.620000 0.915000) + (point 212.130000 513.270000 -48.620000 0.460000) + 4) + (segment 2938 + (point 212.130000 513.270000 -48.620000 0.460000) + (point 210.840000 514.760000 -50.420000 0.460000) + 4) + (segment 2939 + (point 210.840000 514.760000 -50.420000 0.460000) + (point 210.030000 512.170000 -51.880000 0.460000) + 4) + (segment 2940 + (point 210.030000 512.170000 -51.880000 0.460000) + (point 210.030000 512.170000 -51.900000 0.460000) + 4) + (segment 2941 + (point 210.030000 512.170000 -51.900000 0.460000) + (point 209.810000 515.120000 -53.350000 0.460000) + 4) + (segment 2942 + (point 209.810000 515.120000 -53.350000 0.460000) + (point 210.570000 515.890000 -54.320000 0.460000) + 4) + (segment 2943 + (point 210.570000 515.890000 -54.320000 0.460000) + (point 208.700000 517.830000 -55.050000 0.460000) + 4) + (segment 2944 + (point 208.700000 517.830000 -55.050000 0.460000) + (point 207.720000 520.000000 -55.970000 0.460000) + 4) + (segment 2945 + (point 207.720000 520.000000 -55.970000 0.460000) + (point 205.990000 521.380000 -56.950000 0.460000) + 4) + (segment 2946 + (point 205.990000 521.380000 -56.950000 0.460000) + (point 205.540000 521.280000 -58.130000 0.460000) + 4) + (segment 2947 + (point 205.540000 521.280000 -58.130000 0.460000) + (point 205.450000 523.650000 -57.630000 0.460000) + 4) + (segment 2948 + (point 205.450000 523.650000 -57.630000 0.460000) + (point 205.640000 524.880000 -58.880000 0.460000) + 4) + (segment 2949 + (point 205.640000 524.880000 -58.880000 0.460000) + (point 205.060000 525.340000 -60.270000 0.460000) + 4) + (segment 2950 + (point 205.060000 525.340000 -60.270000 0.460000) + (point 202.680000 525.390000 -61.920000 0.460000) + 4) + (segment 2951 + (point 202.680000 525.390000 -61.920000 0.460000) + (point 202.290000 527.080000 -63.400000 0.460000) + 4) + (segment 2952 + (point 202.290000 527.080000 -63.400000 0.460000) + (point 203.050000 527.860000 -64.900000 0.460000) + 4) + (segment 2953 + (point 203.050000 527.860000 -64.900000 0.460000) + (point 202.070000 530.030000 -65.470000 0.460000) + 4) + (segment 2954 + (point 202.070000 530.030000 -65.470000 0.460000) + (point 201.670000 531.720000 -64.750000 0.460000) + 4) + (segment 2955 + (point 201.670000 531.720000 -64.750000 0.460000) + (point 200.390000 533.210000 -65.630000 0.460000) + 4) + (segment 2956 + (point 200.390000 533.210000 -65.630000 0.460000) + (point 199.230000 534.130000 -66.220000 0.460000) + 4) + (segment 2957 + (point 199.230000 534.130000 -66.220000 0.460000) + (point 199.410000 535.360000 -67.100000 0.460000) + 4) + (segment 2958 + (point 199.410000 535.360000 -67.100000 0.460000) + (point 198.430000 537.530000 -67.570000 0.460000) + 4) + (segment 2959 + (point 198.430000 537.530000 -67.570000 0.460000) + (point 197.270000 538.450000 -68.350000 0.460000) + 4) + (segment 2960 + (point 197.270000 538.450000 -68.350000 0.460000) + (point 195.360000 538.590000 -69.320000 0.460000) + 4) + (segment 2961 + (point 195.360000 538.590000 -69.320000 0.460000) + (point 194.830000 540.870000 -69.880000 0.460000) + 4) + (segment 2962 + (point 194.830000 540.870000 -69.880000 0.460000) + (point 193.850000 543.020000 -70.720000 0.460000) + 4) + (segment 2963 + (point 193.850000 543.020000 -70.720000 0.460000) + (point 192.380000 543.270000 -72.130000 0.460000) + 4) + (segment 2964 + (point 192.380000 543.270000 -72.130000 0.460000) + (point 191.210000 544.200000 -73.470000 0.460000) + 4) + (segment 2965 + (point 191.210000 544.200000 -73.470000 0.460000) + (point 190.230000 546.360000 -74.650000 0.460000) + 4) + (segment 2966 + (point 190.230000 546.360000 -74.650000 0.460000) + (point 186.760000 549.120000 -75.070000 0.460000) + 4) + (segment 2967 + (point 186.760000 549.120000 -75.070000 0.460000) + (point 186.050000 550.140000 -76.000000 0.460000) + 4) + (segment 2968 + (point 186.050000 550.140000 -76.000000 0.460000) + (point 183.920000 553.240000 -77.130000 0.460000) + 4) + (segment 2969 + (point 183.920000 553.240000 -77.130000 0.460000) + (point 181.730000 554.510000 -78.600000 0.460000) + 4) + (segment 2970 + (point 181.730000 554.510000 -78.600000 0.460000) + (point 179.540000 555.790000 -80.020000 0.460000) + 4) + (segment 2971 + (point 179.540000 555.790000 -80.020000 0.460000) + (point 178.700000 557.380000 -80.920000 0.460000) + 4) + (segment 2972 + (point 178.700000 557.380000 -80.920000 0.460000) + (point 178.170000 559.660000 -82.570000 0.460000) + 4) + (segment 2973 + (point 178.170000 559.660000 -82.570000 0.460000) + (point 176.610000 562.270000 -83.530000 0.460000) + 4) + (segment 2974 + (point 176.610000 562.270000 -83.530000 0.460000) + (point 176.660000 564.070000 -84.880000 0.460000) + 4) + (segment 2975 + (point 176.660000 564.070000 -84.880000 0.460000) + (point 174.170000 564.690000 -85.630000 0.460000) + 4) + (segment 2976 + (point 174.170000 564.690000 -85.630000 0.460000) + (point 173.320000 566.280000 -86.720000 0.460000) + 4) + (segment 2977 + (point 173.320000 566.280000 -86.720000 0.460000) + (point 173.320000 566.280000 -86.750000 0.460000) + 4) + (segment 2978 + (point 173.320000 566.280000 -86.750000 0.460000) + (point 172.340000 568.430000 -88.000000 0.460000) + 4) + (segment 2979 + (point 172.340000 568.430000 -88.000000 0.460000) + (point 172.340000 568.430000 -88.020000 0.460000) + 4) + (segment 2980 + (point 172.340000 568.430000 -88.020000 0.460000) + (point 171.370000 570.600000 -87.650000 0.460000) + 4) + (segment 2981 + (point 171.370000 570.600000 -87.650000 0.460000) + (point 171.370000 570.600000 -87.680000 0.460000) + 4) + (segment 2982 + (point 171.370000 570.600000 -87.680000 0.460000) + (point 168.920000 573.010000 -88.530000 0.460000) + 4) + (segment 2983 + (point 168.920000 573.010000 -88.530000 0.460000) + (point 166.410000 573.620000 -88.800000 0.460000) + 4) + (segment 2984 + (point 166.410000 573.620000 -88.800000 0.460000) + (point 166.410000 573.620000 -88.820000 0.460000) + 4) + (segment 2985 + (point 166.410000 573.620000 -88.820000 0.460000) + (point 163.970000 576.030000 -89.450000 0.460000) + 4) + (segment 2986 + (point 163.970000 576.030000 -89.450000 0.460000) + (point 163.970000 576.030000 -89.480000 0.460000) + 4) + (segment 2987 + (point 163.970000 576.030000 -89.480000 0.460000) + (point 162.940000 576.380000 -89.550000 0.460000) + 4) + (segment 2988 + (point 162.940000 576.380000 -89.550000 0.460000) + (point 161.520000 578.440000 -91.220000 0.460000) + 4) + (segment 2989 + (point 161.520000 578.440000 -91.220000 0.460000) + (point 158.760000 580.180000 -92.380000 0.460000) + 4) + (segment 2990 + (point 158.760000 580.180000 -92.380000 0.460000) + (point 158.760000 580.180000 -92.400000 0.460000) + 4) + (segment 2991 + (point 158.760000 580.180000 -92.400000 0.460000) + (point 157.780000 582.340000 -93.650000 0.460000) + 4) + (segment 2992 + (point 157.780000 582.340000 -93.650000 0.460000) + (point 155.910000 584.290000 -95.200000 0.460000) + 4) + (segment 2993 + (point 155.910000 584.290000 -95.200000 0.460000) + (point 155.910000 584.290000 -95.220000 0.460000) + 4) + (segment 2994 + (point 155.910000 584.290000 -95.220000 0.460000) + (point 155.060000 585.880000 -95.880000 0.460000) + 4) + (segment 2995 + (point 155.060000 585.880000 -95.880000 0.460000) + (point 154.660000 587.590000 -96.930000 0.460000) + 4) + (segment 2996 + (point 154.660000 587.590000 -96.930000 0.460000) + (point 154.660000 587.590000 -96.950000 0.460000) + 4) + (segment 2997 + (point 154.660000 587.590000 -96.950000 0.460000) + (point 154.450000 590.510000 -97.750000 0.460000) + 4) + (segment 2998 + (point 154.450000 590.510000 -97.750000 0.460000) + (point 154.450000 590.510000 -97.780000 0.460000) + 4) + (segment 2999 + (point 154.450000 590.510000 -97.780000 0.460000) + (point 151.990000 592.920000 -98.380000 0.460000) + 4) + (segment 3000 + (point 151.990000 592.920000 -98.380000 0.460000) + (point 150.840000 593.850000 -99.630000 0.460000) + 4) + (segment 3001 + (point 150.840000 593.850000 -99.630000 0.460000) + (point 150.260000 594.300000 -101.250000 0.460000) + 4) + (segment 3002 + (point 150.260000 594.300000 -101.250000 0.460000) + (point 150.260000 594.300000 -101.270000 0.460000) + 4)) + (branch 112 110 + (segment 3003 + (point 214.960000 510.920000 -48.620000 0.915000) + (point 214.350000 515.570000 -49.250000 0.915000) + 4) + (segment 3004 + (point 214.350000 515.570000 -49.250000 0.915000) + (point 214.850000 517.480000 -49.470000 0.915000) + 4) + (segment 3005 + (point 214.850000 517.480000 -49.470000 0.915000) + (point 215.340000 519.380000 -49.470000 0.915000) + 4) + (segment 3006 + (point 215.340000 519.380000 -49.470000 0.915000) + (point 213.780000 522.000000 -49.470000 0.915000) + 4) + (segment 3007 + (point 213.780000 522.000000 -49.470000 0.915000) + (point 214.200000 526.280000 -49.470000 0.915000) + 4) + (segment 3008 + (point 214.200000 526.280000 -49.470000 0.915000) + (point 213.720000 530.350000 -49.470000 0.915000) + 4) + (segment 3009 + (point 213.720000 530.350000 -49.470000 0.915000) + (point 213.190000 532.610000 -49.470000 0.915000) + 4) + (segment 3010 + (point 213.190000 532.610000 -49.470000 0.915000) + (point 214.170000 536.420000 -50.200000 0.915000) + 4) + (segment 3011 + (point 214.170000 536.420000 -50.200000 0.915000) + (point 214.080000 538.800000 -49.320000 0.915000) + 4) + (segment 3012 + (point 214.080000 538.800000 -49.320000 0.915000) + (point 212.390000 541.980000 -49.320000 0.915000) + 4) + (segment 3013 + (point 212.390000 541.980000 -49.320000 0.915000) + (point 212.050000 545.480000 -49.320000 0.915000) + 4)) + (branch 113 112 + (segment 3014 + (point 212.050000 545.480000 -49.320000 0.915000) + (point 209.610000 546.120000 -47.820000 0.460000) + 4) + (segment 3015 + (point 209.610000 546.120000 -47.820000 0.460000) + (point 209.030000 546.590000 -46.820000 0.460000) + 4) + (segment 3016 + (point 209.030000 546.590000 -46.820000 0.460000) + (point 208.580000 546.480000 -46.820000 0.460000) + 4) + (segment 3017 + (point 208.580000 546.480000 -46.820000 0.460000) + (point 208.320000 547.610000 -46.820000 0.460000) + 4) + (segment 3018 + (point 208.320000 547.610000 -46.820000 0.460000) + (point 205.050000 547.440000 -45.770000 0.460000) + 4) + (segment 3019 + (point 205.050000 547.440000 -45.770000 0.460000) + (point 205.550000 549.350000 -45.070000 0.460000) + 4) + (segment 3020 + (point 205.550000 549.350000 -45.070000 0.460000) + (point 207.350000 549.770000 -43.670000 0.460000) + 4) + (segment 3021 + (point 207.350000 549.770000 -43.670000 0.460000) + (point 205.600000 551.150000 -42.170000 0.460000) + 4) + (segment 3022 + (point 205.600000 551.150000 -42.170000 0.460000) + (point 204.620000 553.310000 -41.170000 0.460000) + 4) + (segment 3023 + (point 204.620000 553.310000 -41.170000 0.460000) + (point 203.200000 555.370000 -40.570000 0.460000) + 4) + (segment 3024 + (point 203.200000 555.370000 -40.570000 0.460000) + (point 201.330000 557.310000 -41.350000 0.460000) + 4) + (segment 3025 + (point 201.330000 557.310000 -41.350000 0.460000) + (point 199.460000 559.270000 -41.500000 0.460000) + 4) + (segment 3026 + (point 199.460000 559.270000 -41.500000 0.460000) + (point 197.730000 560.650000 -40.630000 0.460000) + 4) + (segment 3027 + (point 197.730000 560.650000 -40.630000 0.460000) + (point 196.700000 561.010000 -39.550000 0.460000) + 4) + (segment 3028 + (point 196.700000 561.010000 -39.550000 0.460000) + (point 194.870000 564.770000 -39.050000 0.460000) + 4) + (segment 3029 + (point 194.870000 564.770000 -39.050000 0.460000) + (point 194.220000 567.590000 -38.770000 0.460000) + 4) + (segment 3030 + (point 194.220000 567.590000 -38.770000 0.460000) + (point 192.160000 568.310000 -38.770000 0.460000) + 4) + (segment 3031 + (point 192.160000 568.310000 -38.770000 0.460000) + (point 189.970000 569.590000 -37.900000 0.460000) + 4) + (segment 3032 + (point 189.970000 569.590000 -37.900000 0.460000) + (point 187.800000 570.860000 -37.300000 0.460000) + 4) + (segment 3033 + (point 187.800000 570.860000 -37.300000 0.460000) + (point 185.430000 570.900000 -35.830000 0.460000) + 4) + (segment 3034 + (point 185.430000 570.900000 -35.830000 0.460000) + (point 183.110000 572.760000 -35.830000 0.460000) + 4) + (segment 3035 + (point 183.110000 572.760000 -35.830000 0.460000) + (point 180.870000 572.230000 -35.830000 0.460000) + 4) + (segment 3036 + (point 180.870000 572.230000 -35.830000 0.460000) + (point 178.780000 571.140000 -37.470000 0.460000) + 4) + (segment 3037 + (point 178.780000 571.140000 -37.470000 0.460000) + (point 178.780000 571.140000 -37.500000 0.460000) + 4) + (segment 3038 + (point 178.780000 571.140000 -37.500000 0.460000) + (point 176.180000 568.150000 -38.250000 0.460000) + 4) + (segment 3039 + (point 176.180000 568.150000 -38.250000 0.460000) + (point 173.820000 568.180000 -36.500000 0.460000) + 4) + (segment 3040 + (point 173.820000 568.180000 -36.500000 0.460000) + (point 172.660000 569.110000 -36.500000 0.460000) + 4) + (segment 3041 + (point 172.660000 569.110000 -36.500000 0.460000) + (point 170.550000 568.020000 -36.780000 0.460000) + 4) + (segment 3042 + (point 170.550000 568.020000 -36.780000 0.460000) + (point 167.920000 569.200000 -37.700000 0.460000) + 4) + (segment 3043 + (point 167.920000 569.200000 -37.700000 0.460000) + (point 164.090000 569.480000 -38.350000 0.460000) + 4) + (segment 3044 + (point 164.090000 569.480000 -38.350000 0.460000) + (point 160.720000 565.720000 -38.630000 0.460000) + 4) + (segment 3045 + (point 160.720000 565.720000 -38.630000 0.460000) + (point 159.880000 567.310000 -39.600000 0.460000) + 4) + (segment 3046 + (point 159.880000 567.310000 -39.600000 0.460000) + (point 158.100000 566.890000 -40.100000 0.460000) + 4) + (segment 3047 + (point 158.100000 566.890000 -40.100000 0.460000) + (point 155.820000 564.570000 -39.750000 0.460000) + 4) + (segment 3048 + (point 155.820000 564.570000 -39.750000 0.460000) + (point 150.450000 563.310000 -39.750000 0.460000) + 4) + (segment 3049 + (point 150.450000 563.310000 -39.750000 0.460000) + (point 146.620000 563.610000 -41.200000 0.460000) + 4) + (segment 3050 + (point 146.620000 563.610000 -41.200000 0.460000) + (point 144.300000 565.450000 -40.850000 0.460000) + 4) + (segment 3051 + (point 144.300000 565.450000 -40.850000 0.460000) + (point 144.300000 565.450000 -40.880000 0.460000) + 4) + (segment 3052 + (point 144.300000 565.450000 -40.880000 0.460000) + (point 142.780000 563.890000 -40.000000 0.460000) + 4) + (segment 3053 + (point 142.780000 563.890000 -40.000000 0.460000) + (point 140.150000 565.080000 -39.800000 0.460000) + 4) + (segment 3054 + (point 140.150000 565.080000 -39.800000 0.460000) + (point 137.480000 564.450000 -39.800000 0.460000) + 4) + (segment 3055 + (point 137.480000 564.450000 -39.800000 0.460000) + (point 134.080000 564.850000 -38.880000 0.460000) + 4) + (segment 3056 + (point 134.080000 564.850000 -38.880000 0.460000) + (point 131.090000 563.550000 -37.580000 0.460000) + 4) + (segment 3057 + (point 131.090000 563.550000 -37.580000 0.460000) + (point 127.120000 564.410000 -36.970000 0.460000) + 4) + (segment 3058 + (point 127.120000 564.410000 -36.970000 0.460000) + (point 125.640000 564.660000 -35.700000 0.460000) + 4) + (segment 3059 + (point 125.640000 564.660000 -35.700000 0.460000) + (point 126.040000 562.970000 -34.900000 0.460000) + 4) + (segment 3060 + (point 126.040000 562.970000 -34.900000 0.460000) + (point 127.020000 560.800000 -34.700000 0.460000) + 4)) + (branch 114 112 + (segment 3061 + (point 212.050000 545.480000 -49.320000 0.915000) + (point 212.780000 550.420000 -49.920000 0.915000) + 4) + (segment 3062 + (point 212.780000 550.420000 -49.920000 0.915000) + (point 214.300000 551.980000 -49.830000 0.915000) + 4) + (segment 3063 + (point 214.300000 551.980000 -49.830000 0.915000) + (point 214.660000 554.450000 -49.830000 0.915000) + 4) + (segment 3064 + (point 214.660000 554.450000 -49.830000 0.915000) + (point 213.680000 556.610000 -51.220000 0.915000) + 4) + (segment 3065 + (point 213.680000 556.610000 -51.220000 0.915000) + (point 213.330000 560.110000 -52.020000 0.915000) + 4) + (segment 3066 + (point 213.330000 560.110000 -52.020000 0.915000) + (point 214.450000 563.350000 -52.770000 0.915000) + 4) + (segment 3067 + (point 214.450000 563.350000 -52.770000 0.915000) + (point 214.280000 568.110000 -53.620000 0.915000) + 4) + (segment 3068 + (point 214.280000 568.110000 -53.620000 0.915000) + (point 214.840000 571.800000 -55.270000 0.915000) + 4) + (segment 3069 + (point 214.840000 571.800000 -55.270000 0.915000) + (point 215.690000 576.190000 -55.270000 0.915000) + 4) + (segment 3070 + (point 215.690000 576.190000 -55.270000 0.915000) + (point 216.240000 579.910000 -56.200000 0.915000) + 4) + (segment 3071 + (point 216.240000 579.910000 -56.200000 0.915000) + (point 216.460000 582.950000 -57.400000 0.915000) + 4) + (segment 3072 + (point 216.460000 582.950000 -57.400000 0.915000) + (point 216.110000 586.450000 -58.650000 0.915000) + 4) + (segment 3073 + (point 216.110000 586.450000 -58.650000 0.915000) + (point 217.960000 588.660000 -59.400000 0.915000) + 4) + (segment 3074 + (point 217.960000 588.660000 -59.400000 0.915000) + (point 218.890000 590.680000 -58.800000 0.915000) + 4) + (segment 3075 + (point 218.890000 590.680000 -58.800000 0.915000) + (point 217.070000 594.440000 -57.470000 0.915000) + 4) + (segment 3076 + (point 217.070000 594.440000 -57.470000 0.915000) + (point 216.850000 597.360000 -57.920000 0.915000) + 4) + (segment 3077 + (point 216.850000 597.360000 -57.920000 0.915000) + (point 217.840000 601.180000 -57.920000 0.915000) + 4) + (segment 3078 + (point 217.840000 601.180000 -57.920000 0.915000) + (point 218.340000 603.080000 -59.100000 0.915000) + 4) + (segment 3079 + (point 218.340000 603.080000 -59.100000 0.915000) + (point 218.830000 605.000000 -59.100000 0.915000) + 4) + (segment 3080 + (point 218.830000 605.000000 -59.100000 0.915000) + (point 218.660000 609.730000 -59.800000 0.915000) + 4) + (segment 3081 + (point 218.660000 609.730000 -59.800000 0.915000) + (point 218.760000 613.340000 -60.600000 0.915000) + 4) + (segment 3082 + (point 218.760000 613.340000 -60.600000 0.915000) + (point 219.300000 617.060000 -61.550000 0.915000) + 4) + (segment 3083 + (point 219.300000 617.060000 -61.550000 0.915000) + (point 219.400000 620.650000 -62.400000 0.915000) + 4) + (segment 3084 + (point 219.400000 620.650000 -62.400000 0.915000) + (point 219.400000 620.650000 -62.420000 0.915000) + 4) + (segment 3085 + (point 219.400000 620.650000 -62.420000 0.915000) + (point 220.080000 623.800000 -63.400000 0.915000) + 4) + (segment 3086 + (point 220.080000 623.800000 -63.400000 0.915000) + (point 220.080000 623.800000 -63.420000 0.915000) + 4) + (segment 3087 + (point 220.080000 623.800000 -63.420000 0.915000) + (point 218.840000 627.090000 -63.420000 0.915000) + 4) + (segment 3088 + (point 218.840000 627.090000 -63.420000 0.915000) + (point 220.450000 632.240000 -63.880000 0.915000) + 4) + (segment 3089 + (point 220.450000 632.240000 -63.880000 0.915000) + (point 221.460000 635.940000 -64.050000 0.915000) + 4) + (segment 3090 + (point 221.460000 635.940000 -64.050000 0.915000) + (point 220.350000 638.660000 -63.050000 0.915000) + 4) + (segment 3091 + (point 220.350000 638.660000 -63.050000 0.915000) + (point 221.650000 643.160000 -62.450000 0.915000) + 4) + (segment 3092 + (point 221.650000 643.160000 -62.450000 0.915000) + (point 220.990000 645.980000 -62.080000 0.915000) + 4)) + (branch 115 114 + (segment 3093 + (point 220.990000 645.980000 -62.080000 0.915000) + (point 223.320000 646.540000 -62.080000 0.230000) + 4) + (segment 3094 + (point 223.320000 646.540000 -62.080000 0.230000) + (point 227.430000 645.100000 -61.150000 0.230000) + 4) + (segment 3095 + (point 227.430000 645.100000 -61.150000 0.230000) + (point 229.210000 645.530000 -62.350000 0.230000) + 4) + (segment 3096 + (point 229.210000 645.530000 -62.350000 0.230000) + (point 230.810000 644.700000 -63.530000 0.230000) + 4) + (segment 3097 + (point 230.810000 644.700000 -63.530000 0.230000) + (point 231.840000 644.350000 -64.850000 0.230000) + 4) + (segment 3098 + (point 231.840000 644.350000 -64.850000 0.230000) + (point 232.600000 645.130000 -66.820000 0.230000) + 4) + (segment 3099 + (point 232.600000 645.130000 -66.820000 0.230000) + (point 233.230000 645.890000 -65.950000 0.230000) + 4) + (segment 3100 + (point 233.230000 645.890000 -65.950000 0.230000) + (point 234.030000 644.980000 -66.570000 0.230000) + 4) + (segment 3101 + (point 234.030000 644.980000 -66.570000 0.230000) + (point 235.280000 645.760000 -68.200000 0.230000) + 4) + (segment 3102 + (point 235.280000 645.760000 -68.200000 0.230000) + (point 237.780000 645.150000 -68.850000 0.230000) + 4) + (segment 3103 + (point 237.780000 645.150000 -68.850000 0.230000) + (point 239.570000 645.570000 -69.600000 0.230000) + 4) + (segment 3104 + (point 239.570000 645.570000 -69.600000 0.230000) + (point 241.160000 644.740000 -70.000000 0.230000) + 4) + (segment 3105 + (point 241.160000 644.740000 -70.000000 0.230000) + (point 245.270000 643.320000 -70.780000 0.230000) + 4) + (segment 3106 + (point 245.270000 643.320000 -70.780000 0.230000) + (point 246.960000 640.130000 -71.630000 0.230000) + 4) + (segment 3107 + (point 246.960000 640.130000 -71.630000 0.230000) + (point 249.460000 639.530000 -70.720000 0.230000) + 4) + (segment 3108 + (point 249.460000 639.530000 -70.720000 0.230000) + (point 252.730000 639.690000 -71.750000 0.230000) + 4) + (segment 3109 + (point 252.730000 639.690000 -71.750000 0.230000) + (point 255.800000 638.610000 -72.530000 0.230000) + 4) + (segment 3110 + (point 255.800000 638.610000 -72.530000 0.230000) + (point 257.270000 638.360000 -73.470000 0.230000) + 4) + (segment 3111 + (point 257.270000 638.360000 -73.470000 0.230000) + (point 260.000000 640.790000 -72.850000 0.230000) + 4) + (segment 3112 + (point 260.000000 640.790000 -72.850000 0.230000) + (point 262.600000 643.790000 -72.950000 0.230000) + 4) + (segment 3113 + (point 262.600000 643.790000 -72.950000 0.230000) + (point 264.250000 644.780000 -74.050000 0.230000) + 4) + (segment 3114 + (point 264.250000 644.780000 -74.050000 0.230000) + (point 266.040000 645.200000 -75.700000 0.230000) + 4) + (segment 3115 + (point 266.040000 645.200000 -75.700000 0.230000) + (point 267.110000 646.640000 -78.420000 0.230000) + 4) + (segment 3116 + (point 267.110000 646.640000 -78.420000 0.230000) + (point 267.110000 646.640000 -78.530000 0.230000) + 4)) + (branch 116 114 + (segment 3117 + (point 220.990000 645.980000 -62.080000 0.915000) + (point 220.640000 649.480000 -61.570000 0.915000) + 4) + (segment 3118 + (point 220.640000 649.480000 -61.570000 0.915000) + (point 219.710000 653.450000 -61.570000 0.915000) + 4) + (segment 3119 + (point 219.710000 653.450000 -61.570000 0.915000) + (point 219.230000 657.510000 -61.570000 0.915000) + 4) + (segment 3120 + (point 219.230000 657.510000 -61.570000 0.915000) + (point 220.360000 660.760000 -61.570000 0.915000) + 4) + (segment 3121 + (point 220.360000 660.760000 -61.570000 0.915000) + (point 220.900000 664.470000 -61.570000 0.915000) + 4) + (segment 3122 + (point 220.900000 664.470000 -61.570000 0.915000) + (point 220.240000 667.300000 -61.570000 0.915000) + 4) + (segment 3123 + (point 220.240000 667.300000 -61.570000 0.915000) + (point 220.510000 672.140000 -62.650000 0.915000) + 4) + (segment 3124 + (point 220.510000 672.140000 -62.650000 0.915000) + (point 220.920000 676.420000 -63.530000 0.915000) + 4) + (segment 3125 + (point 220.920000 676.420000 -63.530000 0.915000) + (point 220.570000 679.920000 -62.350000 0.915000) + 4) + (segment 3126 + (point 220.570000 679.920000 -62.350000 0.915000) + (point 221.110000 683.630000 -62.350000 0.915000) + 4) + (segment 3127 + (point 221.110000 683.630000 -62.350000 0.915000) + (point 221.720000 689.150000 -62.970000 0.915000) + 4) + (segment 3128 + (point 221.720000 689.150000 -62.970000 0.915000) + (point 221.680000 693.310000 -63.720000 0.915000) + 4) + (segment 3129 + (point 221.680000 693.310000 -63.720000 0.915000) + (point 222.170000 695.230000 -64.130000 0.915000) + 4) + (segment 3130 + (point 222.170000 695.230000 -64.130000 0.915000) + (point 222.710000 698.940000 -64.400000 0.915000) + 4) + (segment 3131 + (point 222.710000 698.940000 -64.400000 0.915000) + (point 221.600000 701.660000 -64.400000 0.915000) + 4) + (segment 3132 + (point 221.600000 701.660000 -64.400000 0.915000) + (point 221.970000 704.140000 -64.850000 0.915000) + 4) + (segment 3133 + (point 221.970000 704.140000 -64.850000 0.915000) + (point 222.560000 709.640000 -64.850000 0.915000) + 4) + (segment 3134 + (point 222.560000 709.640000 -64.850000 0.915000) + (point 222.660000 713.250000 -64.270000 0.915000) + 4) + (segment 3135 + (point 222.660000 713.250000 -64.270000 0.915000) + (point 222.580000 715.620000 -64.270000 0.915000) + 4) + (segment 3136 + (point 222.580000 715.620000 -64.270000 0.915000) + (point 223.830000 718.300000 -64.600000 0.915000) + 4) + (segment 3137 + (point 223.830000 718.300000 -64.600000 0.915000) + (point 224.420000 723.820000 -64.320000 0.915000) + 4) + (segment 3138 + (point 224.420000 723.820000 -64.320000 0.915000) + (point 224.340000 726.190000 -63.050000 0.915000) + 4) + (segment 3139 + (point 224.340000 726.190000 -63.050000 0.915000) + (point 224.570000 729.230000 -61.880000 0.915000) + 4) + (segment 3140 + (point 224.570000 729.230000 -61.880000 0.915000) + (point 224.080000 733.290000 -61.100000 0.915000) + 4) + (segment 3141 + (point 224.080000 733.290000 -61.100000 0.915000) + (point 223.410000 736.130000 -60.250000 0.915000) + 4) + (segment 3142 + (point 223.410000 736.130000 -60.250000 0.915000) + (point 224.680000 738.810000 -59.270000 0.915000) + 4) + (segment 3143 + (point 224.680000 738.810000 -59.270000 0.915000) + (point 225.090000 743.090000 -58.820000 0.915000) + 4) + (segment 3144 + (point 225.090000 743.090000 -58.820000 0.915000) + (point 225.630000 746.790000 -58.820000 0.915000) + 4) + (segment 3145 + (point 225.630000 746.790000 -58.820000 0.915000) + (point 224.700000 750.760000 -59.950000 0.915000) + 4) + (segment 3146 + (point 224.700000 750.760000 -59.950000 0.915000) + (point 226.410000 753.550000 -59.850000 0.915000) + 4) + (segment 3147 + (point 226.410000 753.550000 -59.850000 0.915000) + (point 226.310000 755.920000 -59.850000 0.915000) + 4) + (segment 3148 + (point 226.310000 755.920000 -59.850000 0.915000) + (point 226.290000 760.080000 -59.850000 0.915000) + 4) + (segment 3149 + (point 226.290000 760.080000 -59.850000 0.915000) + (point 224.990000 761.580000 -60.450000 0.915000) + 4) + (segment 3150 + (point 224.990000 761.580000 -60.450000 0.915000) + (point 224.960000 765.740000 -60.450000 0.915000) + 4) + (segment 3151 + (point 224.960000 765.740000 -60.450000 0.915000) + (point 225.330000 768.230000 -61.000000 0.915000) + 4) + (segment 3152 + (point 225.330000 768.230000 -61.000000 0.915000) + (point 224.800000 770.490000 -59.970000 0.915000) + 4) + (segment 3153 + (point 224.800000 770.490000 -59.970000 0.915000) + (point 224.000000 773.880000 -59.320000 0.915000) + 4)) + (branch 117 116 + (segment 3154 + (point 224.000000 773.880000 -59.320000 0.915000) + (point 223.300000 779.280000 -59.320000 0.690000) + 4) + (segment 3155 + (point 223.300000 779.280000 -59.320000 0.690000) + (point 223.100000 782.210000 -59.320000 0.690000) + 4) + (segment 3156 + (point 223.100000 782.210000 -59.320000 0.690000) + (point 223.640000 785.920000 -59.220000 0.690000) + 4) + (segment 3157 + (point 223.640000 785.920000 -59.220000 0.690000) + (point 224.580000 787.940000 -60.570000 0.690000) + 4) + (segment 3158 + (point 224.580000 787.940000 -60.570000 0.690000) + (point 224.490000 790.310000 -60.850000 0.690000) + 4) + (segment 3159 + (point 224.490000 790.310000 -60.850000 0.690000) + (point 225.040000 794.010000 -60.850000 0.690000) + 4) + (segment 3160 + (point 225.040000 794.010000 -60.850000 0.690000) + (point 225.080000 795.810000 -61.300000 0.690000) + 4) + (segment 3161 + (point 225.080000 795.810000 -61.300000 0.690000) + (point 225.310000 798.850000 -60.320000 0.690000) + 4) + (segment 3162 + (point 225.310000 798.850000 -60.320000 0.690000) + (point 225.540000 801.900000 -59.200000 0.690000) + 4) + (segment 3163 + (point 225.540000 801.900000 -59.200000 0.690000) + (point 225.320000 804.840000 -58.700000 0.690000) + 4) + (segment 3164 + (point 225.320000 804.840000 -58.700000 0.690000) + (point 225.570000 807.870000 -59.150000 0.690000) + 4) + (segment 3165 + (point 225.570000 807.870000 -59.150000 0.690000) + (point 225.210000 811.370000 -59.650000 0.690000) + 4) + (segment 3166 + (point 225.210000 811.370000 -59.650000 0.690000) + (point 225.170000 815.550000 -60.070000 0.690000) + 4) + (segment 3167 + (point 225.170000 815.550000 -60.070000 0.690000) + (point 224.960000 818.490000 -60.720000 0.690000) + 4) + (segment 3168 + (point 224.960000 818.490000 -60.720000 0.690000) + (point 224.030000 822.440000 -61.600000 0.690000) + 4) + (segment 3169 + (point 224.030000 822.440000 -61.600000 0.690000) + (point 224.260000 825.480000 -62.250000 0.690000) + 4) + (segment 3170 + (point 224.260000 825.480000 -62.250000 0.690000) + (point 223.330000 829.440000 -62.250000 0.690000) + 4) + (segment 3171 + (point 223.330000 829.440000 -62.250000 0.690000) + (point 222.400000 833.410000 -62.950000 0.690000) + 4) + (segment 3172 + (point 222.400000 833.410000 -62.950000 0.690000) + (point 222.630000 836.450000 -64.020000 0.690000) + 4) + (segment 3173 + (point 222.630000 836.450000 -64.020000 0.690000) + (point 223.750000 839.700000 -64.650000 0.690000) + 4) + (segment 3174 + (point 223.750000 839.700000 -64.650000 0.690000) + (point 222.500000 842.990000 -64.650000 0.690000) + 4) + (segment 3175 + (point 222.500000 842.990000 -64.650000 0.690000) + (point 221.260000 846.270000 -65.130000 0.690000) + 4)) + (branch 118 117 + (segment 3176 + (point 221.260000 846.270000 -65.130000 0.690000) + (point 222.290000 850.000000 -65.800000 0.690000) + 4) + (segment 3177 + (point 222.290000 850.000000 -65.800000 0.690000) + (point 222.380000 853.600000 -64.880000 0.690000) + 4) + (segment 3178 + (point 222.380000 853.600000 -64.880000 0.690000) + (point 222.620000 856.640000 -64.880000 0.690000) + 4) + (segment 3179 + (point 222.620000 856.640000 -64.880000 0.690000) + (point 221.550000 861.170000 -66.200000 0.690000) + 4) + (segment 3180 + (point 221.550000 861.170000 -66.200000 0.690000) + (point 221.470000 863.540000 -66.500000 0.690000) + 4) + (segment 3181 + (point 221.470000 863.540000 -66.500000 0.690000) + (point 220.670000 866.940000 -66.750000 0.690000) + 4) + (segment 3182 + (point 220.670000 866.940000 -66.750000 0.690000) + (point 220.670000 866.940000 -66.770000 0.690000) + 4) + (segment 3183 + (point 220.670000 866.940000 -66.770000 0.690000) + (point 221.340000 870.080000 -67.280000 0.690000) + 4) + (segment 3184 + (point 221.340000 870.080000 -67.280000 0.690000) + (point 221.080000 871.210000 -67.400000 0.690000) + 4) + (segment 3185 + (point 221.080000 871.210000 -67.400000 0.690000) + (point 221.050000 875.380000 -67.400000 0.690000) + 4)) + (branch 119 118 + (segment 3186 + (point 221.050000 875.380000 -67.400000 0.690000) + (point 219.470000 878.560000 -67.400000 0.460000) + 4) + (segment 3187 + (point 219.470000 878.560000 -67.400000 0.460000) + (point 218.920000 880.840000 -67.400000 0.460000) + 4) + (segment 3188 + (point 218.920000 880.840000 -67.400000 0.460000) + (point 219.300000 883.300000 -67.400000 0.460000) + 4) + (segment 3189 + (point 219.300000 883.300000 -67.400000 0.460000) + (point 218.770000 885.570000 -68.170000 0.460000) + 4) + (segment 3190 + (point 218.770000 885.570000 -68.170000 0.460000) + (point 218.680000 887.940000 -69.070000 0.460000) + 4) + (segment 3191 + (point 218.680000 887.940000 -69.070000 0.460000) + (point 218.340000 891.440000 -69.700000 0.460000) + 4) + (segment 3192 + (point 218.340000 891.440000 -69.700000 0.460000) + (point 216.640000 894.630000 -70.200000 0.460000) + 4) + (segment 3193 + (point 216.640000 894.630000 -70.200000 0.460000) + (point 217.010000 897.100000 -70.200000 0.460000) + 4) + (segment 3194 + (point 217.010000 897.100000 -70.200000 0.460000) + (point 216.480000 899.370000 -70.200000 0.460000) + 4) + (segment 3195 + (point 216.480000 899.370000 -70.200000 0.460000) + (point 215.810000 902.200000 -70.700000 0.460000) + 4) + (segment 3196 + (point 215.810000 902.200000 -70.700000 0.460000) + (point 215.280000 904.470000 -71.150000 0.460000) + 4) + (segment 3197 + (point 215.280000 904.470000 -71.150000 0.460000) + (point 214.620000 907.290000 -71.220000 0.460000) + 4) + (segment 3198 + (point 214.620000 907.290000 -71.220000 0.460000) + (point 212.750000 909.240000 -70.780000 0.460000) + 4) + (segment 3199 + (point 212.750000 909.240000 -70.780000 0.460000) + (point 212.080000 912.060000 -70.780000 0.460000) + 4) + (segment 3200 + (point 212.080000 912.060000 -70.780000 0.460000) + (point 213.340000 914.760000 -71.520000 0.460000) + 4) + (segment 3201 + (point 213.340000 914.760000 -71.520000 0.460000) + (point 214.010000 917.900000 -72.170000 0.460000) + 4) + (segment 3202 + (point 214.010000 917.900000 -72.170000 0.460000) + (point 214.690000 921.040000 -73.000000 0.460000) + 4) + (segment 3203 + (point 214.690000 921.040000 -73.000000 0.460000) + (point 216.980000 923.370000 -73.280000 0.460000) + 4) + (segment 3204 + (point 216.980000 923.370000 -73.280000 0.460000) + (point 218.230000 926.050000 -74.130000 0.460000) + 4) + (segment 3205 + (point 218.230000 926.050000 -74.130000 0.460000) + (point 221.090000 927.920000 -74.130000 0.460000) + 4) + (segment 3206 + (point 221.090000 927.920000 -74.130000 0.460000) + (point 220.960000 928.490000 -74.130000 0.460000) + 4) + (segment 3207 + (point 220.960000 928.490000 -74.130000 0.460000) + (point 223.960000 929.780000 -74.970000 0.460000) + 4) + (segment 3208 + (point 223.960000 929.780000 -74.970000 0.460000) + (point 225.780000 932.000000 -75.900000 0.460000) + 4) + (segment 3209 + (point 225.780000 932.000000 -75.900000 0.460000) + (point 226.600000 934.580000 -76.750000 0.460000) + 4) + (segment 3210 + (point 226.600000 934.580000 -76.750000 0.460000) + (point 229.150000 935.770000 -77.500000 0.460000) + 4) + (segment 3211 + (point 229.150000 935.770000 -77.500000 0.460000) + (point 230.130000 939.590000 -77.500000 0.460000) + 4) + (segment 3212 + (point 230.130000 939.590000 -77.500000 0.460000) + (point 231.210000 941.030000 -78.880000 0.460000) + 4) + (segment 3213 + (point 231.210000 941.030000 -78.880000 0.460000) + (point 231.520000 941.700000 -78.650000 0.460000) + 4) + (segment 3214 + (point 231.520000 941.700000 -78.650000 0.460000) + (point 233.030000 943.260000 -80.500000 0.460000) + 4) + (segment 3215 + (point 233.030000 943.260000 -80.500000 0.460000) + (point 233.400000 945.720000 -81.070000 0.460000) + 4) + (segment 3216 + (point 233.400000 945.720000 -81.070000 0.460000) + (point 234.040000 947.070000 -81.530000 0.460000) + 4) + (segment 3217 + (point 234.040000 947.070000 -81.530000 0.460000) + (point 235.510000 946.820000 -82.450000 0.460000) + 4) + (segment 3218 + (point 235.510000 946.820000 -82.450000 0.460000) + (point 237.210000 949.610000 -83.880000 0.460000) + 4) + (segment 3219 + (point 237.210000 949.610000 -83.880000 0.460000) + (point 238.720000 951.150000 -83.800000 0.460000) + 4) + (segment 3220 + (point 238.720000 951.150000 -83.800000 0.460000) + (point 240.260000 952.700000 -83.820000 0.460000) + 4) + (segment 3221 + (point 240.260000 952.700000 -83.820000 0.460000) + (point 240.430000 953.950000 -85.130000 0.460000) + 4) + (segment 3222 + (point 240.430000 953.950000 -85.130000 0.460000) + (point 241.820000 956.060000 -86.850000 0.460000) + 4) + (segment 3223 + (point 241.820000 956.060000 -86.850000 0.460000) + (point 243.340000 957.610000 -87.750000 0.460000) + 4) + (segment 3224 + (point 243.340000 957.610000 -87.750000 0.460000) + (point 243.560000 960.650000 -88.650000 0.460000) + 4) + (segment 3225 + (point 243.560000 960.650000 -88.650000 0.460000) + (point 242.900000 963.480000 -88.650000 0.460000) + 4) + (segment 3226 + (point 242.900000 963.480000 -88.650000 0.460000) + (point 243.270000 965.960000 -88.650000 0.460000) + 4) + (segment 3227 + (point 243.270000 965.960000 -88.650000 0.460000) + (point 244.030000 966.730000 -89.550000 0.460000) + 4) + (segment 3228 + (point 244.030000 966.730000 -89.550000 0.460000) + (point 245.150000 969.980000 -90.650000 0.460000) + 4) + (segment 3229 + (point 245.150000 969.980000 -90.650000 0.460000) + (point 245.150000 969.980000 -90.680000 0.460000) + 4) + (segment 3230 + (point 245.150000 969.980000 -90.680000 0.460000) + (point 246.360000 970.860000 -90.850000 0.460000) + 4) + (segment 3231 + (point 246.360000 970.860000 -90.850000 0.460000) + (point 248.770000 972.630000 -90.880000 0.460000) + 4) + (segment 3232 + (point 248.770000 972.630000 -90.880000 0.460000) + (point 249.000000 975.660000 -91.620000 0.460000) + 4) + (segment 3233 + (point 249.000000 975.660000 -91.620000 0.460000) + (point 248.920000 978.040000 -92.380000 0.460000) + 4) + (segment 3234 + (point 248.920000 978.040000 -92.380000 0.460000) + (point 250.260000 978.340000 -92.970000 0.460000) + 4) + (segment 3235 + (point 250.260000 978.340000 -92.970000 0.460000) + (point 249.810000 978.250000 -92.970000 0.460000) + 4) + (segment 3236 + (point 249.810000 978.250000 -92.970000 0.460000) + (point 251.390000 981.600000 -93.530000 0.460000) + 4) + (segment 3237 + (point 251.390000 981.600000 -93.530000 0.460000) + (point 251.600000 984.620000 -94.900000 0.460000) + 4) + (segment 3238 + (point 251.600000 984.620000 -94.900000 0.460000) + (point 251.600000 984.620000 -94.920000 0.460000) + 4) + (segment 3239 + (point 251.600000 984.620000 -94.920000 0.460000) + (point 251.330000 985.760000 -95.770000 0.460000) + 4) + (segment 3240 + (point 251.330000 985.760000 -95.770000 0.460000) + (point 253.440000 986.840000 -96.430000 0.460000) + 4) + (segment 3241 + (point 253.440000 986.840000 -96.430000 0.460000) + (point 253.920000 988.750000 -97.380000 0.460000) + 4) + (segment 3242 + (point 253.920000 988.750000 -97.380000 0.460000) + (point 253.920000 988.750000 -97.420000 0.460000) + 4) + (segment 3243 + (point 253.920000 988.750000 -97.420000 0.460000) + (point 255.010000 990.200000 -98.150000 0.460000) + 4) + (segment 3244 + (point 255.010000 990.200000 -98.150000 0.460000) + (point 256.670000 991.190000 -98.470000 0.460000) + 4) + (segment 3245 + (point 256.670000 991.190000 -98.470000 0.460000) + (point 257.600000 993.200000 -98.470000 0.460000) + 4) + (segment 3246 + (point 257.600000 993.200000 -98.470000 0.460000) + (point 258.410000 995.770000 -99.630000 0.460000) + 4) + (segment 3247 + (point 258.410000 995.770000 -99.630000 0.460000) + (point 259.990000 999.120000 -99.630000 0.460000) + 4) + (segment 3248 + (point 259.990000 999.120000 -99.630000 0.460000) + (point 259.900000 1001.500000 -99.630000 0.460000) + 4) + (segment 3249 + (point 259.900000 1001.500000 -99.630000 0.460000) + (point 258.650000 1004.790000 -100.220000 0.460000) + 4) + (segment 3250 + (point 258.650000 1004.790000 -100.220000 0.460000) + (point 257.980000 1007.620000 -101.130000 0.460000) + 4) + (segment 3251 + (point 257.980000 1007.620000 -101.130000 0.460000) + (point 258.360000 1010.090000 -102.130000 0.460000) + 4) + (segment 3252 + (point 258.360000 1010.090000 -102.130000 0.460000) + (point 258.410000 1011.880000 -103.230000 0.460000) + 4) + (segment 3253 + (point 258.410000 1011.880000 -103.230000 0.460000) + (point 258.460000 1013.690000 -103.600000 0.460000) + 4) + (segment 3254 + (point 258.460000 1013.690000 -103.600000 0.460000) + (point 259.840000 1015.810000 -104.880000 0.460000) + 4) + (segment 3255 + (point 259.840000 1015.810000 -104.880000 0.460000) + (point 260.910000 1017.260000 -105.420000 0.460000) + 4) + (segment 3256 + (point 260.910000 1017.260000 -105.420000 0.460000) + (point 262.210000 1021.750000 -106.130000 0.460000) + 4) + (segment 3257 + (point 262.210000 1021.750000 -106.130000 0.460000) + (point 262.720000 1023.660000 -106.320000 0.460000) + 4) + (segment 3258 + (point 262.720000 1023.660000 -106.320000 0.460000) + (point 262.720000 1023.660000 -106.350000 0.460000) + 4) + (segment 3259 + (point 262.720000 1023.660000 -106.350000 0.460000) + (point 262.770000 1025.460000 -107.100000 0.460000) + 4) + (segment 3260 + (point 262.770000 1025.460000 -107.100000 0.460000) + (point 262.820000 1027.260000 -108.420000 0.460000) + 4) + (segment 3261 + (point 262.820000 1027.260000 -108.420000 0.460000) + (point 263.750000 1029.270000 -109.820000 0.460000) + 4) + (segment 3262 + (point 263.750000 1029.270000 -109.820000 0.460000) + (point 264.430000 1032.410000 -110.630000 0.460000) + 4) + (segment 3263 + (point 264.430000 1032.410000 -110.630000 0.460000) + (point 264.300000 1032.980000 -112.150000 0.460000) + 4) + (segment 3264 + (point 264.300000 1032.980000 -112.150000 0.460000) + (point 265.410000 1036.230000 -113.670000 0.460000) + 4) + (segment 3265 + (point 265.410000 1036.230000 -113.670000 0.460000) + (point 266.950000 1037.780000 -115.370000 0.460000) + 4) + (segment 3266 + (point 266.950000 1037.780000 -115.370000 0.460000) + (point 266.100000 1039.370000 -117.020000 0.460000) + 4) + (segment 3267 + (point 266.100000 1039.370000 -117.020000 0.460000) + (point 264.480000 1040.200000 -118.320000 0.460000) + 4) + (segment 3268 + (point 264.480000 1040.200000 -118.320000 0.460000) + (point 264.480000 1040.200000 -118.380000 0.460000) + 4) + (segment 3269 + (point 264.480000 1040.200000 -118.380000 0.460000) + (point 263.340000 1041.110000 -120.650000 0.460000) + 4) + (segment 3270 + (point 263.340000 1041.110000 -120.650000 0.460000) + (point 264.280000 1043.120000 -122.500000 0.460000) + 4) + (segment 3271 + (point 264.280000 1043.120000 -122.500000 0.460000) + (point 263.740000 1045.390000 -124.520000 0.460000) + 4) + (segment 3272 + (point 263.740000 1045.390000 -124.520000 0.460000) + (point 263.480000 1046.520000 -126.650000 0.460000) + 4) + (segment 3273 + (point 263.480000 1046.520000 -126.650000 0.460000) + (point 262.180000 1048.010000 -130.230000 0.460000) + 4) + (segment 3274 + (point 262.180000 1048.010000 -130.230000 0.460000) + (point 263.850000 1049.000000 -133.300000 0.460000) + 4) + (segment 3275 + (point 263.850000 1049.000000 -133.300000 0.460000) + (point 263.850000 1049.000000 -133.320000 0.460000) + 4) + (segment 3276 + (point 263.850000 1049.000000 -133.320000 0.460000) + (point 265.060000 1049.880000 -132.680000 0.460000) + 4) + (segment 3277 + (point 265.060000 1049.880000 -132.680000 0.460000) + (point 265.060000 1049.880000 -132.770000 0.460000) + 4) + (segment 3278 + (point 265.060000 1049.880000 -132.770000 0.460000) + (point 265.760000 1048.860000 -135.930000 0.460000) + 4) + (segment 3279 + (point 265.760000 1048.860000 -135.930000 0.460000) + (point 266.840000 1050.300000 -138.700000 0.460000) + 4) + (segment 3280 + (point 266.840000 1050.300000 -138.700000 0.460000) + (point 266.840000 1050.300000 -138.720000 0.460000) + 4) + (segment 3281 + (point 266.840000 1050.300000 -138.720000 0.460000) + (point 267.250000 1054.570000 -140.470000 0.460000) + 4) + (segment 3282 + (point 267.250000 1054.570000 -140.470000 0.460000) + (point 269.670000 1056.330000 -140.470000 0.460000) + 4) + (segment 3283 + (point 269.670000 1056.330000 -140.470000 0.460000) + (point 271.410000 1060.920000 -141.350000 0.460000) + 4) + (segment 3284 + (point 271.410000 1060.920000 -141.350000 0.460000) + (point 274.530000 1061.650000 -141.380000 0.460000) + 4) + (segment 3285 + (point 274.530000 1061.650000 -141.380000 0.460000) + (point 275.090000 1065.370000 -142.680000 0.460000) + 4) + (segment 3286 + (point 275.090000 1065.370000 -142.680000 0.460000) + (point 278.210000 1066.100000 -143.200000 0.460000) + 4) + (segment 3287 + (point 278.210000 1066.100000 -143.200000 0.460000) + (point 279.240000 1065.740000 -145.630000 0.460000) + 4) + (segment 3288 + (point 279.240000 1065.740000 -145.630000 0.460000) + (point 280.260000 1065.390000 -148.480000 0.460000) + 4) + (segment 3289 + (point 280.260000 1065.390000 -148.480000 0.460000) + (point 280.260000 1065.390000 -148.520000 0.460000) + 4) + (segment 3290 + (point 280.260000 1065.390000 -148.520000 0.460000) + (point 282.360000 1066.470000 -149.730000 0.460000) + 4) + (segment 3291 + (point 282.360000 1066.470000 -149.730000 0.460000) + (point 282.360000 1066.470000 -149.750000 0.460000) + 4) + (segment 3292 + (point 282.360000 1066.470000 -149.750000 0.460000) + (point 283.300000 1068.480000 -152.050000 0.460000) + 4) + (segment 3293 + (point 283.300000 1068.480000 -152.050000 0.460000) + (point 283.800000 1070.390000 -153.820000 0.230000) + 4) + (segment 3294 + (point 283.800000 1070.390000 -153.820000 0.230000) + (point 285.760000 1072.050000 -156.720000 0.230000) + 4) + (segment 3295 + (point 285.760000 1072.050000 -156.720000 0.230000) + (point 285.760000 1072.050000 -157.270000 0.230000) + 4)) + (branch 120 118 + (segment 3296 + (point 221.050000 875.380000 -67.400000 0.690000) + (point 222.750000 878.160000 -67.400000 0.460000) + 4) + (segment 3297 + (point 222.750000 878.160000 -67.400000 0.460000) + (point 224.140000 880.290000 -68.250000 0.460000) + 4) + (segment 3298 + (point 224.140000 880.290000 -68.250000 0.460000) + (point 225.080000 882.300000 -68.250000 0.460000) + 4) + (segment 3299 + (point 225.080000 882.300000 -68.250000 0.460000) + (point 226.200000 885.550000 -68.250000 0.460000) + 4) + (segment 3300 + (point 226.200000 885.550000 -68.250000 0.460000) + (point 227.910000 888.340000 -69.050000 0.460000) + 4) + (segment 3301 + (point 227.910000 888.340000 -69.050000 0.460000) + (point 228.400000 890.240000 -68.750000 0.460000) + 4) + (segment 3302 + (point 228.400000 890.240000 -68.750000 0.460000) + (point 230.060000 891.230000 -68.670000 0.460000) + 4) + (segment 3303 + (point 230.060000 891.230000 -68.670000 0.460000) + (point 231.620000 894.590000 -68.670000 0.460000) + 4) + (segment 3304 + (point 231.620000 894.590000 -68.670000 0.460000) + (point 234.490000 896.450000 -69.320000 0.460000) + 4) + (segment 3305 + (point 234.490000 896.450000 -69.320000 0.460000) + (point 236.900000 898.210000 -69.320000 0.460000) + 4) + (segment 3306 + (point 236.900000 898.210000 -69.320000 0.460000) + (point 238.690000 898.630000 -70.320000 0.460000) + 4) + (segment 3307 + (point 238.690000 898.630000 -70.320000 0.460000) + (point 240.480000 899.040000 -71.170000 0.460000) + 4) + (segment 3308 + (point 240.480000 899.040000 -71.170000 0.460000) + (point 241.550000 900.490000 -71.850000 0.460000) + 4) + (segment 3309 + (point 241.550000 900.490000 -71.850000 0.460000) + (point 242.930000 902.600000 -72.530000 0.460000) + 4) + (segment 3310 + (point 242.930000 902.600000 -72.530000 0.460000) + (point 245.040000 903.700000 -72.530000 0.460000) + 4) + (segment 3311 + (point 245.040000 903.700000 -72.530000 0.460000) + (point 247.010000 905.350000 -72.280000 0.460000) + 4) + (segment 3312 + (point 247.010000 905.350000 -72.280000 0.460000) + (point 247.640000 906.700000 -73.780000 0.460000) + 4) + (segment 3313 + (point 247.640000 906.700000 -73.780000 0.460000) + (point 251.260000 909.330000 -74.130000 0.460000) + 4) + (segment 3314 + (point 251.260000 909.330000 -74.130000 0.460000) + (point 254.570000 911.300000 -74.130000 0.460000) + 4) + (segment 3315 + (point 254.570000 911.300000 -74.130000 0.460000) + (point 257.420000 913.170000 -73.800000 0.460000) + 4) + (segment 3316 + (point 257.420000 913.170000 -73.800000 0.460000) + (point 259.520000 914.260000 -73.800000 0.460000) + 4) + (segment 3317 + (point 259.520000 914.260000 -73.800000 0.460000) + (point 260.340000 916.830000 -73.800000 0.460000) + 4) + (segment 3318 + (point 260.340000 916.830000 -73.800000 0.460000) + (point 262.750000 918.600000 -74.100000 0.460000) + 4) + (segment 3319 + (point 262.750000 918.600000 -74.100000 0.460000) + (point 264.710000 920.250000 -74.100000 0.460000) + 4) + (segment 3320 + (point 264.710000 920.250000 -74.100000 0.460000) + (point 266.560000 922.470000 -74.100000 0.460000) + 4) + (segment 3321 + (point 266.560000 922.470000 -74.100000 0.460000) + (point 268.200000 923.460000 -73.470000 0.460000) + 4) + (segment 3322 + (point 268.200000 923.460000 -73.470000 0.460000) + (point 270.930000 925.890000 -73.470000 0.460000) + 4) + (segment 3323 + (point 270.930000 925.890000 -73.470000 0.460000) + (point 274.240000 927.860000 -73.470000 0.460000) + 4) + (segment 3324 + (point 274.240000 927.860000 -73.470000 0.460000) + (point 276.520000 930.180000 -74.530000 0.460000) + 4) + (segment 3325 + (point 276.520000 930.180000 -74.530000 0.460000) + (point 278.940000 931.940000 -74.820000 0.460000) + 4) + (segment 3326 + (point 278.940000 931.940000 -74.820000 0.460000) + (point 279.880000 933.950000 -75.100000 0.460000) + 4) + (segment 3327 + (point 279.880000 933.950000 -75.100000 0.460000) + (point 283.180000 935.930000 -75.380000 0.460000) + 4) + (segment 3328 + (point 283.180000 935.930000 -75.380000 0.460000) + (point 285.600000 937.690000 -75.670000 0.460000) + 4) + (segment 3329 + (point 285.600000 937.690000 -75.670000 0.460000) + (point 286.810000 938.570000 -74.670000 0.460000) + 4) + (segment 3330 + (point 286.810000 938.570000 -74.670000 0.460000) + (point 286.810000 938.570000 -74.720000 0.460000) + 4) + (segment 3331 + (point 286.810000 938.570000 -74.720000 0.460000) + (point 289.540000 940.990000 -73.420000 0.460000) + 4) + (segment 3332 + (point 289.540000 940.990000 -73.420000 0.460000) + (point 290.030000 942.900000 -72.200000 0.460000) + 4) + (segment 3333 + (point 290.030000 942.900000 -72.200000 0.460000) + (point 291.860000 945.130000 -70.750000 0.460000) + 4) + (segment 3334 + (point 291.860000 945.130000 -70.750000 0.460000) + (point 292.800000 947.140000 -69.570000 0.460000) + 4) + (segment 3335 + (point 292.800000 947.140000 -69.570000 0.460000) + (point 294.640000 949.360000 -69.570000 0.460000) + 4) + (segment 3336 + (point 294.640000 949.360000 -69.570000 0.460000) + (point 294.190000 949.260000 -69.570000 0.460000) + 4) + (segment 3337 + (point 294.190000 949.260000 -69.570000 0.460000) + (point 296.220000 952.710000 -68.650000 0.460000) + 4) + (segment 3338 + (point 296.220000 952.710000 -68.650000 0.460000) + (point 298.040000 954.940000 -68.200000 0.460000) + 4) + (segment 3339 + (point 298.040000 954.940000 -68.200000 0.460000) + (point 298.040000 954.940000 -68.250000 0.460000) + 4) + (segment 3340 + (point 298.040000 954.940000 -68.250000 0.460000) + (point 298.860000 957.520000 -67.470000 0.460000) + 4) + (segment 3341 + (point 298.860000 957.520000 -67.470000 0.460000) + (point 298.860000 957.520000 -67.500000 0.460000) + 4) + (segment 3342 + (point 298.860000 957.520000 -67.500000 0.460000) + (point 301.410000 958.710000 -66.820000 0.460000) + 4) + (segment 3343 + (point 301.410000 958.710000 -66.820000 0.460000) + (point 303.810000 960.470000 -66.220000 0.230000) + 4) + (segment 3344 + (point 303.810000 960.470000 -66.220000 0.230000) + (point 304.710000 960.690000 -65.520000 0.230000) + 4) + (segment 3345 + (point 304.710000 960.690000 -65.520000 0.230000) + (point 305.970000 963.360000 -64.500000 0.230000) + 4) + (segment 3346 + (point 305.970000 963.360000 -64.500000 0.230000) + (point 308.650000 963.990000 -63.220000 0.230000) + 4) + (segment 3347 + (point 308.650000 963.990000 -63.220000 0.230000) + (point 310.300000 964.970000 -63.170000 0.230000) + 4) + (segment 3348 + (point 310.300000 964.970000 -63.170000 0.230000) + (point 311.990000 967.770000 -62.280000 0.230000) + 4) + (segment 3349 + (point 311.990000 967.770000 -62.280000 0.230000) + (point 314.020000 971.230000 -61.050000 0.230000) + 4) + (segment 3350 + (point 314.020000 971.230000 -61.050000 0.230000) + (point 316.880000 973.090000 -60.150000 0.230000) + 4) + (segment 3351 + (point 316.880000 973.090000 -60.150000 0.230000) + (point 316.880000 973.090000 -60.170000 0.230000) + 4) + (segment 3352 + (point 316.880000 973.090000 -60.170000 0.230000) + (point 319.480000 976.080000 -59.320000 0.230000) + 4) + (segment 3353 + (point 319.480000 976.080000 -59.320000 0.230000) + (point 319.480000 976.080000 -59.300000 0.230000) + 4) + (segment 3354 + (point 319.480000 976.080000 -59.300000 0.230000) + (point 321.890000 977.850000 -59.950000 0.230000) + 4) + (segment 3355 + (point 321.890000 977.850000 -59.950000 0.230000) + (point 322.970000 979.290000 -59.130000 0.230000) + 4) + (segment 3356 + (point 322.970000 979.290000 -59.130000 0.230000) + (point 325.120000 982.180000 -58.580000 0.230000) + 4) + (segment 3357 + (point 325.120000 982.180000 -58.580000 0.230000) + (point 328.290000 984.720000 -58.100000 0.230000) + 4) + (segment 3358 + (point 328.290000 984.720000 -58.100000 0.230000) + (point 328.470000 985.950000 -57.500000 0.230000) + 4) + (segment 3359 + (point 328.470000 985.950000 -57.500000 0.230000) + (point 331.060000 988.960000 -56.820000 0.230000) + 4) + (segment 3360 + (point 331.060000 988.960000 -56.820000 0.230000) + (point 333.030000 990.610000 -55.830000 0.230000) + 4) + (segment 3361 + (point 333.030000 990.610000 -55.830000 0.230000) + (point 335.580000 991.800000 -54.780000 0.230000) + 4) + (segment 3362 + (point 335.580000 991.800000 -54.780000 0.230000) + (point 336.780000 992.670000 -54.450000 0.230000) + 4) + (segment 3363 + (point 336.780000 992.670000 -54.450000 0.230000) + (point 337.600000 995.260000 -53.850000 0.230000) + 4) + (segment 3364 + (point 337.600000 995.260000 -53.850000 0.230000) + (point 338.540000 997.270000 -54.320000 0.230000) + 4) + (segment 3365 + (point 338.540000 997.270000 -54.320000 0.230000) + (point 341.260000 999.700000 -54.850000 0.230000) + 4) + (segment 3366 + (point 341.260000 999.700000 -54.850000 0.230000) + (point 343.850000 1002.700000 -55.600000 0.230000) + 4) + (segment 3367 + (point 343.850000 1002.700000 -55.600000 0.230000) + (point 343.850000 1002.700000 -55.630000 0.230000) + 4) + (segment 3368 + (point 343.850000 1002.700000 -55.630000 0.230000) + (point 344.180000 1003.360000 -54.400000 0.230000) + 4) + (segment 3369 + (point 344.180000 1003.360000 -54.400000 0.230000) + (point 345.300000 1006.610000 -52.820000 0.230000) + 4) + (segment 3370 + (point 345.300000 1006.610000 -52.820000 0.230000) + (point 347.400000 1007.710000 -51.820000 0.230000) + 4) + (segment 3371 + (point 347.400000 1007.710000 -51.820000 0.230000) + (point 349.990000 1010.710000 -51.520000 0.230000) + 4) + (segment 3372 + (point 349.990000 1010.710000 -51.520000 0.230000) + (point 349.990000 1010.710000 -51.550000 0.230000) + 4) + (segment 3373 + (point 349.990000 1010.710000 -51.550000 0.230000) + (point 350.620000 1012.030000 -49.720000 0.230000) + 4) + (segment 3374 + (point 350.620000 1012.030000 -49.720000 0.230000) + (point 350.670000 1013.830000 -48.650000 0.230000) + 4) + (segment 3375 + (point 350.670000 1013.830000 -48.650000 0.230000) + (point 353.520000 1015.700000 -48.000000 0.230000) + 4) + (segment 3376 + (point 353.520000 1015.700000 -48.000000 0.230000) + (point 352.990000 1017.970000 -48.050000 0.230000) + 4) + (segment 3377 + (point 352.990000 1017.970000 -48.050000 0.230000) + (point 355.400000 1019.730000 -47.330000 0.230000) + 4) + (segment 3378 + (point 355.400000 1019.730000 -47.330000 0.230000) + (point 358.710000 1021.690000 -47.330000 0.230000) + 4) + (segment 3379 + (point 358.710000 1021.690000 -47.330000 0.230000) + (point 358.550000 1026.440000 -47.920000 0.230000) + 4) + (segment 3380 + (point 358.550000 1026.440000 -47.920000 0.230000) + (point 359.620000 1027.880000 -49.130000 0.230000) + 4) + (segment 3381 + (point 359.620000 1027.880000 -49.130000 0.230000) + (point 360.880000 1030.560000 -49.130000 0.230000) + 4) + (segment 3382 + (point 360.880000 1030.560000 -49.130000 0.230000) + (point 360.670000 1033.500000 -48.420000 0.230000) + 4) + (segment 3383 + (point 360.670000 1033.500000 -48.420000 0.230000) + (point 360.210000 1033.400000 -48.420000 0.230000) + 4) + (segment 3384 + (point 360.210000 1033.400000 -48.420000 0.230000) + (point 361.160000 1035.400000 -47.370000 0.230000) + 4) + (segment 3385 + (point 361.160000 1035.400000 -47.370000 0.230000) + (point 360.950000 1038.350000 -47.720000 0.230000) + 4) + (segment 3386 + (point 360.950000 1038.350000 -47.720000 0.230000) + (point 360.950000 1038.350000 -47.750000 0.230000) + 4) + (segment 3387 + (point 360.950000 1038.350000 -47.750000 0.230000) + (point 360.550000 1040.040000 -47.750000 0.230000) + 4) + (segment 3388 + (point 360.550000 1040.040000 -47.750000 0.230000) + (point 362.640000 1041.130000 -48.950000 0.230000) + 4) + (segment 3389 + (point 362.640000 1041.130000 -48.950000 0.230000) + (point 365.190000 1042.310000 -48.580000 0.230000) + 4) + (segment 3390 + (point 365.190000 1042.310000 -48.580000 0.230000) + (point 365.190000 1042.310000 -48.600000 0.230000) + 4) + (segment 3391 + (point 365.190000 1042.310000 -48.600000 0.230000) + (point 364.800000 1044.020000 -49.650000 0.230000) + 4) + (segment 3392 + (point 364.800000 1044.020000 -49.650000 0.230000) + (point 364.800000 1044.020000 -49.670000 0.230000) + 4) + (segment 3393 + (point 364.800000 1044.020000 -49.670000 0.230000) + (point 365.290000 1045.920000 -49.800000 0.230000) + 4) + (segment 3394 + (point 365.290000 1045.920000 -49.800000 0.230000) + (point 367.390000 1047.020000 -50.270000 0.230000) + 4) + (segment 3395 + (point 367.390000 1047.020000 -50.270000 0.230000) + (point 369.090000 1049.810000 -49.950000 0.230000) + 4) + (segment 3396 + (point 369.090000 1049.810000 -49.950000 0.230000) + (point 371.060000 1051.460000 -51.570000 0.230000) + 4) + (segment 3397 + (point 371.060000 1051.460000 -51.570000 0.230000) + (point 372.720000 1052.450000 -52.150000 0.230000) + 4) + (segment 3398 + (point 372.720000 1052.450000 -52.150000 0.230000) + (point 373.970000 1055.130000 -53.650000 0.230000) + 4) + (segment 3399 + (point 373.970000 1055.130000 -53.650000 0.230000) + (point 373.970000 1055.130000 -53.670000 0.230000) + 4) + (segment 3400 + (point 373.970000 1055.130000 -53.670000 0.230000) + (point 374.910000 1057.140000 -54.920000 0.230000) + 4) + (segment 3401 + (point 374.910000 1057.140000 -54.920000 0.230000) + (point 374.960000 1058.950000 -56.770000 0.230000) + 4) + (segment 3402 + (point 374.960000 1058.950000 -56.770000 0.230000) + (point 373.980000 1061.100000 -59.550000 0.230000) + 4) + (segment 3403 + (point 373.980000 1061.100000 -59.550000 0.230000) + (point 373.980000 1061.100000 -59.670000 0.230000) + 4)) + (branch 121 117 + (segment 3404 + (point 221.260000 846.270000 -65.130000 0.690000) + (point 218.530000 847.920000 -63.300000 0.690000) + 4) + (segment 3405 + (point 218.530000 847.920000 -63.300000 0.690000) + (point 218.570000 849.720000 -62.450000 0.690000) + 4) + (segment 3406 + (point 218.570000 849.720000 -62.450000 0.690000) + (point 217.650000 853.690000 -61.280000 0.690000) + 4) + (segment 3407 + (point 217.650000 853.690000 -61.280000 0.690000) + (point 216.980000 856.520000 -61.320000 0.690000) + 4) + (segment 3408 + (point 216.980000 856.520000 -61.320000 0.690000) + (point 215.880000 859.240000 -60.850000 0.690000) + 4) + (segment 3409 + (point 215.880000 859.240000 -60.850000 0.690000) + (point 214.460000 861.300000 -60.070000 0.690000) + 4) + (segment 3410 + (point 214.460000 861.300000 -60.070000 0.690000) + (point 213.610000 862.880000 -59.130000 0.690000) + 4) + (segment 3411 + (point 213.610000 862.880000 -59.130000 0.690000) + (point 213.970000 865.370000 -58.450000 0.690000) + 4) + (segment 3412 + (point 213.970000 865.370000 -58.450000 0.690000) + (point 213.260000 866.390000 -57.350000 0.690000) + 4) + (segment 3413 + (point 213.260000 866.390000 -57.350000 0.690000) + (point 211.700000 869.020000 -56.570000 0.690000) + 4) + (segment 3414 + (point 211.700000 869.020000 -56.570000 0.690000) + (point 210.990000 870.040000 -55.250000 0.690000) + 4) + (segment 3415 + (point 210.990000 870.040000 -55.250000 0.690000) + (point 210.860000 870.610000 -54.380000 0.690000) + 4) + (segment 3416 + (point 210.860000 870.610000 -54.380000 0.690000) + (point 208.550000 872.460000 -53.130000 0.690000) + 4) + (segment 3417 + (point 208.550000 872.460000 -53.130000 0.690000) + (point 207.260000 873.940000 -52.600000 0.690000) + 4) + (segment 3418 + (point 207.260000 873.940000 -52.600000 0.690000) + (point 206.540000 874.970000 -51.380000 0.690000) + 4) + (segment 3419 + (point 206.540000 874.970000 -51.380000 0.690000) + (point 207.350000 877.550000 -50.630000 0.690000) + 4) + (segment 3420 + (point 207.350000 877.550000 -50.630000 0.690000) + (point 207.090000 878.680000 -49.600000 0.690000) + 4) + (segment 3421 + (point 207.090000 878.680000 -49.600000 0.690000) + (point 206.240000 880.280000 -48.700000 0.690000) + 4) + (segment 3422 + (point 206.240000 880.280000 -48.700000 0.690000) + (point 205.890000 883.780000 -47.770000 0.690000) + 4) + (segment 3423 + (point 205.890000 883.780000 -47.770000 0.690000) + (point 206.250000 886.240000 -47.950000 0.690000) + 4) + (segment 3424 + (point 206.250000 886.240000 -47.950000 0.690000) + (point 204.830000 888.300000 -47.570000 0.690000) + 4) + (segment 3425 + (point 204.830000 888.300000 -47.570000 0.690000) + (point 200.730000 889.720000 -47.100000 0.690000) + 4) + (segment 3426 + (point 200.730000 889.720000 -47.100000 0.690000) + (point 200.070000 892.550000 -45.500000 0.690000) + 4) + (segment 3427 + (point 200.070000 892.550000 -45.500000 0.690000) + (point 200.160000 896.160000 -44.300000 0.690000) + 4) + (segment 3428 + (point 200.160000 896.160000 -44.300000 0.690000) + (point 199.060000 898.900000 -43.130000 0.690000) + 4) + (segment 3429 + (point 199.060000 898.900000 -43.130000 0.690000) + (point 197.260000 898.480000 -41.750000 0.690000) + 4) + (segment 3430 + (point 197.260000 898.480000 -41.750000 0.690000) + (point 197.340000 896.100000 -40.800000 0.690000) + 4) + (segment 3431 + (point 197.340000 896.100000 -40.800000 0.690000) + (point 197.290000 894.300000 -39.550000 0.690000) + 4) + (segment 3432 + (point 197.290000 894.300000 -39.550000 0.690000) + (point 197.740000 894.410000 -37.630000 0.690000) + 4) + (segment 3433 + (point 197.740000 894.410000 -37.630000 0.690000) + (point 196.860000 894.200000 -35.380000 0.690000) + 4) + (segment 3434 + (point 196.860000 894.200000 -35.380000 0.690000) + (point 194.040000 894.130000 -33.330000 0.690000) + 4) + (segment 3435 + (point 194.040000 894.130000 -33.330000 0.690000) + (point 197.660000 896.770000 -32.130000 0.690000) + 4) + (segment 3436 + (point 197.660000 896.770000 -32.130000 0.690000) + (point 198.690000 896.420000 -30.020000 0.690000) + 4) + (segment 3437 + (point 198.690000 896.420000 -30.020000 0.690000) + (point 195.350000 898.630000 -29.400000 0.690000) + 4) + (segment 3438 + (point 195.350000 898.630000 -29.400000 0.690000) + (point 194.950000 900.320000 -28.550000 0.690000) + 4) + (segment 3439 + (point 194.950000 900.320000 -28.550000 0.690000) + (point 194.770000 905.050000 -27.350000 0.690000) + 4) + (segment 3440 + (point 194.770000 905.050000 -27.350000 0.690000) + (point 196.890000 906.140000 -26.050000 0.690000) + 4) + (segment 3441 + (point 196.890000 906.140000 -26.050000 0.690000) + (point 197.640000 906.930000 -24.350000 0.690000) + 4) + (segment 3442 + (point 197.640000 906.930000 -24.350000 0.690000) + (point 197.950000 907.590000 -25.050000 0.690000) + 4) + (segment 3443 + (point 197.950000 907.590000 -25.050000 0.690000) + (point 194.420000 908.560000 -23.050000 0.690000) + 4) + (segment 3444 + (point 194.420000 908.560000 -23.050000 0.690000) + (point 191.480000 909.050000 -21.850000 0.690000) + 4) + (segment 3445 + (point 191.480000 909.050000 -21.850000 0.690000) + (point 190.060000 911.110000 -22.080000 0.690000) + 4) + (segment 3446 + (point 190.060000 911.110000 -22.080000 0.690000) + (point 189.790000 912.240000 -20.800000 0.690000) + 4) + (segment 3447 + (point 189.790000 912.240000 -20.800000 0.690000) + (point 187.930000 914.200000 -19.750000 0.690000) + 4) + (segment 3448 + (point 187.930000 914.200000 -19.750000 0.690000) + (point 186.640000 915.680000 -18.850000 0.690000) + 4) + (segment 3449 + (point 186.640000 915.680000 -18.850000 0.690000) + (point 186.640000 915.680000 -18.880000 0.690000) + 4) + (segment 3450 + (point 186.640000 915.680000 -18.880000 0.690000) + (point 187.450000 918.270000 -17.050000 0.690000) + 4) + (segment 3451 + (point 187.450000 918.270000 -17.050000 0.690000) + (point 186.290000 919.180000 -15.950000 0.690000) + 4) + (segment 3452 + (point 186.290000 919.180000 -15.950000 0.690000) + (point 186.290000 919.180000 -15.920000 0.690000) + 4) + (segment 3453 + (point 186.290000 919.180000 -15.920000 0.690000) + (point 185.260000 919.540000 -14.600000 0.690000) + 4) + (segment 3454 + (point 185.260000 919.540000 -14.600000 0.690000) + (point 184.730000 921.810000 -13.420000 0.690000) + 4) + (segment 3455 + (point 184.730000 921.810000 -13.420000 0.690000) + (point 184.780000 923.610000 -12.300000 0.690000) + 4) + (segment 3456 + (point 184.780000 923.610000 -12.300000 0.690000) + (point 184.780000 923.610000 -12.320000 0.690000) + 4) + (segment 3457 + (point 184.780000 923.610000 -12.320000 0.690000) + (point 185.720000 925.630000 -12.000000 0.690000) + 4) + (segment 3458 + (point 185.720000 925.630000 -12.000000 0.690000) + (point 184.430000 927.120000 -12.000000 0.690000) + 4) + (segment 3459 + (point 184.430000 927.120000 -12.000000 0.690000) + (point 182.060000 927.150000 -10.120000 0.690000) + 4) + (segment 3460 + (point 182.060000 927.150000 -10.120000 0.690000) + (point 182.240000 928.390000 -8.950000 0.690000) + 4) + (segment 3461 + (point 182.240000 928.390000 -8.950000 0.690000) + (point 183.770000 929.950000 -8.250000 0.690000) + 4) + (segment 3462 + (point 183.770000 929.950000 -8.250000 0.690000) + (point 183.100000 932.770000 -8.350000 0.690000) + 4) + (segment 3463 + (point 183.100000 932.770000 -8.350000 0.690000) + (point 182.260000 934.370000 -7.670000 0.690000) + 4) + (segment 3464 + (point 182.260000 934.370000 -7.670000 0.690000) + (point 179.500000 936.100000 -6.780000 0.690000) + 4) + (segment 3465 + (point 179.500000 936.100000 -6.780000 0.690000) + (point 179.590000 939.710000 -6.280000 0.690000) + 4) + (segment 3466 + (point 179.590000 939.710000 -6.280000 0.690000) + (point 177.980000 940.530000 -5.820000 0.690000) + 4) + (segment 3467 + (point 177.980000 940.530000 -5.820000 0.690000) + (point 176.820000 941.460000 -4.030000 0.690000) + 4) + (segment 3468 + (point 176.820000 941.460000 -4.030000 0.690000) + (point 176.820000 941.460000 -4.050000 0.690000) + 4) + (segment 3469 + (point 176.820000 941.460000 -4.050000 0.690000) + (point 174.460000 941.500000 -2.450000 0.690000) + 4) + (segment 3470 + (point 174.460000 941.500000 -2.450000 0.690000) + (point 170.810000 943.030000 -1.670000 0.690000) + 4) + (segment 3471 + (point 170.810000 943.030000 -1.670000 0.690000) + (point 171.170000 945.500000 0.070000 0.690000) + 4) + (segment 3472 + (point 171.170000 945.500000 0.070000 0.690000) + (point 172.610000 949.420000 0.630000 0.690000) + 4) + (segment 3473 + (point 172.610000 949.420000 0.630000 0.690000) + (point 174.250000 950.410000 -0.500000 0.690000) + 4) + (segment 3474 + (point 174.250000 950.410000 -0.500000 0.690000) + (point 174.250000 950.410000 -0.550000 0.690000) + 4) + (segment 3475 + (point 174.250000 950.410000 -0.550000 0.690000) + (point 173.900000 953.900000 0.280000 0.690000) + 4) + (segment 3476 + (point 173.900000 953.900000 0.280000 0.690000) + (point 176.060000 956.800000 1.000000 0.690000) + 4) + (segment 3477 + (point 176.060000 956.800000 1.000000 0.690000) + (point 177.900000 959.030000 2.050000 0.690000) + 4) + (segment 3478 + (point 177.900000 959.030000 2.050000 0.690000) + (point 177.900000 959.030000 2.170000 0.690000) + 4) + (segment 3479 + (point 177.900000 959.030000 2.170000 0.690000) + (point 179.990000 960.110000 3.820000 0.690000) + 4) + (segment 3480 + (point 179.990000 960.110000 3.820000 0.690000) + (point 179.990000 960.110000 3.800000 0.690000) + 4) + (segment 3481 + (point 179.990000 960.110000 3.800000 0.690000) + (point 182.010000 963.570000 4.400000 0.690000) + 4) + (segment 3482 + (point 182.010000 963.570000 4.400000 0.690000) + (point 182.010000 963.570000 4.380000 0.690000) + 4) + (segment 3483 + (point 182.010000 963.570000 4.380000 0.690000) + (point 184.780000 967.790000 4.850000 0.690000) + 4) + (segment 3484 + (point 184.780000 967.790000 4.850000 0.690000) + (point 187.200000 969.560000 5.350000 0.690000) + 4) + (segment 3485 + (point 187.200000 969.560000 5.350000 0.690000) + (point 186.480000 970.590000 4.470000 0.690000) + 4) + (segment 3486 + (point 186.480000 970.590000 4.470000 0.690000) + (point 186.850000 973.060000 5.720000 0.460000) + 4) + (segment 3487 + (point 186.850000 973.060000 5.720000 0.460000) + (point 186.770000 975.430000 6.820000 0.460000) + 4) + (segment 3488 + (point 186.770000 975.430000 6.820000 0.460000) + (point 188.690000 975.290000 7.470000 0.460000) + 4) + (segment 3489 + (point 188.690000 975.290000 7.470000 0.460000) + (point 188.690000 975.290000 7.450000 0.460000) + 4) + (segment 3490 + (point 188.690000 975.290000 7.450000 0.460000) + (point 190.020000 975.600000 8.050000 0.460000) + 4) + (segment 3491 + (point 190.020000 975.600000 8.050000 0.460000) + (point 190.020000 975.600000 8.020000 0.460000) + 4) + (segment 3492 + (point 190.020000 975.600000 8.020000 0.460000) + (point 191.630000 974.780000 8.970000 0.460000) + 4) + (segment 3493 + (point 191.630000 974.780000 8.970000 0.460000) + (point 191.630000 974.780000 8.950000 0.460000) + 4) + (segment 3494 + (point 191.630000 974.780000 8.950000 0.460000) + (point 193.090000 974.540000 10.900000 0.460000) + 4)) + (branch 122 116 + (segment 3495 + (point 224.000000 773.880000 -59.320000 0.915000) + (point 225.260000 776.470000 -57.920000 0.690000) + 4) + (segment 3496 + (point 225.260000 776.470000 -57.920000 0.690000) + (point 225.890000 777.810000 -56.150000 0.690000) + 4) + (segment 3497 + (point 225.890000 777.810000 -56.150000 0.690000) + (point 225.230000 780.640000 -55.700000 0.690000) + 4) + (segment 3498 + (point 225.230000 780.640000 -55.700000 0.690000) + (point 225.580000 783.110000 -55.700000 0.690000) + 4) + (segment 3499 + (point 225.580000 783.110000 -55.700000 0.690000) + (point 227.160000 786.470000 -55.700000 0.690000) + 4) + (segment 3500 + (point 227.160000 786.470000 -55.700000 0.690000) + (point 227.380000 789.510000 -55.150000 0.690000) + 4) + (segment 3501 + (point 227.380000 789.510000 -55.150000 0.690000) + (point 226.720000 792.330000 -55.030000 0.690000) + 4) + (segment 3502 + (point 226.720000 792.330000 -55.030000 0.690000) + (point 227.660000 794.350000 -55.030000 0.690000) + 4) + (segment 3503 + (point 227.660000 794.350000 -55.030000 0.690000) + (point 229.060000 796.460000 -54.550000 0.690000) + 4) + (segment 3504 + (point 229.060000 796.460000 -54.550000 0.690000) + (point 229.860000 799.040000 -54.550000 0.690000) + 4)) + (branch 123 122 + (segment 3505 + (point 229.860000 799.040000 -54.550000 0.690000) + (point 229.270000 802.040000 -54.550000 0.690000) + 4) + (segment 3506 + (point 229.270000 802.040000 -54.550000 0.690000) + (point 229.500000 805.070000 -55.270000 0.690000) + 4) + (segment 3507 + (point 229.500000 805.070000 -55.270000 0.690000) + (point 229.730000 808.110000 -55.900000 0.690000) + 4) + (segment 3508 + (point 229.730000 808.110000 -55.900000 0.690000) + (point 229.070000 810.940000 -56.700000 0.690000) + 4) + (segment 3509 + (point 229.070000 810.940000 -56.700000 0.690000) + (point 228.090000 813.100000 -57.400000 0.690000) + 4) + (segment 3510 + (point 228.090000 813.100000 -57.400000 0.690000) + (point 227.740000 816.600000 -57.970000 0.690000) + 4) + (segment 3511 + (point 227.740000 816.600000 -57.970000 0.690000) + (point 226.360000 820.460000 -58.550000 0.690000) + 4) + (segment 3512 + (point 226.360000 820.460000 -58.550000 0.690000) + (point 225.880000 824.520000 -58.820000 0.690000) + 4) + (segment 3513 + (point 225.880000 824.520000 -58.820000 0.690000) + (point 224.690000 829.620000 -58.820000 0.690000) + 4) + (segment 3514 + (point 224.690000 829.620000 -58.820000 0.690000) + (point 224.470000 832.550000 -58.820000 0.690000) + 4) + (segment 3515 + (point 224.470000 832.550000 -58.820000 0.690000) + (point 222.200000 836.200000 -58.100000 0.690000) + 4) + (segment 3516 + (point 222.200000 836.200000 -58.100000 0.690000) + (point 221.940000 837.330000 -58.100000 0.690000) + 4) + (segment 3517 + (point 221.940000 837.330000 -58.100000 0.690000) + (point 222.930000 841.150000 -58.100000 0.690000) + 4) + (segment 3518 + (point 222.930000 841.150000 -58.100000 0.690000) + (point 223.030000 844.760000 -58.550000 0.690000) + 4) + (segment 3519 + (point 223.030000 844.760000 -58.550000 0.690000) + (point 221.520000 849.180000 -58.780000 0.690000) + 4) + (segment 3520 + (point 221.520000 849.180000 -58.780000 0.690000) + (point 220.990000 851.450000 -59.200000 0.690000) + 4) + (segment 3521 + (point 220.990000 851.450000 -59.200000 0.690000) + (point 220.770000 854.370000 -60.030000 0.690000) + 4) + (segment 3522 + (point 220.770000 854.370000 -60.030000 0.690000) + (point 220.770000 854.370000 -60.050000 0.690000) + 4) + (segment 3523 + (point 220.770000 854.370000 -60.050000 0.690000) + (point 220.860000 857.980000 -60.470000 0.690000) + 4) + (segment 3524 + (point 220.860000 857.980000 -60.470000 0.690000) + (point 219.930000 861.950000 -59.500000 0.690000) + 4) + (segment 3525 + (point 219.930000 861.950000 -59.500000 0.690000) + (point 220.040000 865.560000 -58.750000 0.690000) + 4) + (segment 3526 + (point 220.040000 865.560000 -58.750000 0.690000) + (point 220.850000 868.130000 -57.250000 0.690000) + 4) + (segment 3527 + (point 220.850000 868.130000 -57.250000 0.690000) + (point 220.670000 872.870000 -56.470000 0.690000) + 4) + (segment 3528 + (point 220.670000 872.870000 -56.470000 0.690000) + (point 221.350000 876.010000 -58.000000 0.690000) + 4) + (segment 3529 + (point 221.350000 876.010000 -58.000000 0.690000) + (point 221.770000 880.290000 -58.800000 0.690000) + 4) + (segment 3530 + (point 221.770000 880.290000 -58.800000 0.690000) + (point 221.940000 881.530000 -59.780000 0.690000) + 4) + (segment 3531 + (point 221.940000 881.530000 -59.780000 0.690000) + (point 221.590000 885.020000 -59.780000 0.690000) + 4) + (segment 3532 + (point 221.590000 885.020000 -59.780000 0.690000) + (point 223.300000 887.810000 -59.780000 0.690000) + 4) + (segment 3533 + (point 223.300000 887.810000 -59.780000 0.690000) + (point 223.350000 889.610000 -58.200000 0.690000) + 4) + (segment 3534 + (point 223.350000 889.610000 -58.200000 0.690000) + (point 222.380000 891.780000 -56.170000 0.690000) + 4) + (segment 3535 + (point 222.380000 891.780000 -56.170000 0.690000) + (point 223.580000 892.660000 -55.200000 0.690000) + 4) + (segment 3536 + (point 223.580000 892.660000 -55.200000 0.690000) + (point 223.810000 895.700000 -54.380000 0.690000) + 4) + (segment 3537 + (point 223.810000 895.700000 -54.380000 0.690000) + (point 225.460000 896.680000 -53.400000 0.690000) + 4) + (segment 3538 + (point 225.460000 896.680000 -53.400000 0.690000) + (point 226.530000 898.120000 -52.100000 0.690000) + 4) + (segment 3539 + (point 226.530000 898.120000 -52.100000 0.690000) + (point 227.170000 899.470000 -50.550000 0.690000) + 4) + (segment 3540 + (point 227.170000 899.470000 -50.550000 0.690000) + (point 225.150000 901.980000 -49.000000 0.690000) + 4) + (segment 3541 + (point 225.150000 901.980000 -49.000000 0.690000) + (point 225.070000 904.360000 -47.400000 0.690000) + 4) + (segment 3542 + (point 225.070000 904.360000 -47.400000 0.690000) + (point 227.800000 906.780000 -45.830000 0.690000) + 4) + (segment 3543 + (point 227.800000 906.780000 -45.830000 0.690000) + (point 228.880000 908.220000 -45.070000 0.690000) + 4) + (segment 3544 + (point 228.880000 908.220000 -45.070000 0.690000) + (point 228.660000 911.170000 -45.070000 0.690000) + 4) + (segment 3545 + (point 228.660000 911.170000 -45.070000 0.690000) + (point 229.860000 912.040000 -43.700000 0.690000) + 4) + (segment 3546 + (point 229.860000 912.040000 -43.700000 0.690000) + (point 231.580000 914.840000 -43.700000 0.690000) + 4) + (segment 3547 + (point 231.580000 914.840000 -43.700000 0.690000) + (point 232.510000 916.840000 -42.750000 0.690000) + 4) + (segment 3548 + (point 232.510000 916.840000 -42.750000 0.690000) + (point 233.900000 918.970000 -42.450000 0.690000) + 4) + (segment 3549 + (point 233.900000 918.970000 -42.450000 0.690000) + (point 233.690000 921.890000 -42.450000 0.690000) + 4) + (segment 3550 + (point 233.690000 921.890000 -42.450000 0.690000) + (point 234.270000 925.500000 -40.030000 0.690000) + 4) + (segment 3551 + (point 234.270000 925.500000 -40.030000 0.690000) + (point 237.170000 929.170000 -41.320000 0.690000) + 4) + (segment 3552 + (point 237.170000 929.170000 -41.320000 0.690000) + (point 238.600000 933.090000 -41.750000 0.690000) + 4) + (segment 3553 + (point 238.600000 933.090000 -41.750000 0.690000) + (point 238.830000 936.130000 -42.670000 0.690000) + 4) + (segment 3554 + (point 238.830000 936.130000 -42.670000 0.690000) + (point 241.880000 939.230000 -43.530000 0.690000) + 4) + (segment 3555 + (point 241.880000 939.230000 -43.530000 0.690000) + (point 240.640000 942.520000 -43.900000 0.690000) + 4) + (segment 3556 + (point 240.640000 942.520000 -43.900000 0.690000) + (point 240.420000 945.470000 -43.900000 0.690000) + 4) + (segment 3557 + (point 240.420000 945.470000 -43.900000 0.690000) + (point 241.800000 947.570000 -42.900000 0.690000) + 4) + (segment 3558 + (point 241.800000 947.570000 -42.900000 0.690000) + (point 242.350000 951.290000 -42.900000 0.690000) + 4) + (segment 3559 + (point 242.350000 951.290000 -42.900000 0.690000) + (point 244.500000 954.180000 -44.100000 0.690000) + 4) + (segment 3560 + (point 244.500000 954.180000 -44.100000 0.690000) + (point 243.700000 957.570000 -42.850000 0.690000) + 4) + (segment 3561 + (point 243.700000 957.570000 -42.850000 0.690000) + (point 243.700000 957.570000 -42.900000 0.690000) + 4) + (segment 3562 + (point 243.700000 957.570000 -42.900000 0.690000) + (point 242.730000 959.730000 -41.730000 0.690000) + 4) + (segment 3563 + (point 242.730000 959.730000 -41.730000 0.690000) + (point 242.690000 963.910000 -40.650000 0.690000) + 4) + (segment 3564 + (point 242.690000 963.910000 -40.650000 0.690000) + (point 243.590000 970.090000 -41.800000 0.690000) + 4) + (segment 3565 + (point 243.590000 970.090000 -41.800000 0.690000) + (point 244.270000 973.230000 -41.300000 0.690000) + 4) + (segment 3566 + (point 244.270000 973.230000 -41.300000 0.690000) + (point 244.500000 976.270000 -42.370000 0.690000) + 4) + (segment 3567 + (point 244.500000 976.270000 -42.370000 0.690000) + (point 243.080000 978.330000 -42.370000 0.690000) + 4) + (segment 3568 + (point 243.080000 978.330000 -42.370000 0.690000) + (point 244.200000 981.580000 -41.950000 0.690000) + 4) + (segment 3569 + (point 244.200000 981.580000 -41.950000 0.690000) + (point 244.620000 985.860000 -41.950000 0.690000) + 4) + (segment 3570 + (point 244.620000 985.860000 -41.950000 0.690000) + (point 243.240000 989.710000 -41.950000 0.690000) + 4) + (segment 3571 + (point 243.240000 989.710000 -41.950000 0.690000) + (point 243.470000 992.750000 -41.950000 0.690000) + 4) + (segment 3572 + (point 243.470000 992.750000 -41.950000 0.690000) + (point 243.870000 997.030000 -42.350000 0.690000) + 4) + (segment 3573 + (point 243.870000 997.030000 -42.350000 0.690000) + (point 244.240000 999.500000 -43.000000 0.690000) + 4) + (segment 3574 + (point 244.240000 999.500000 -43.000000 0.690000) + (point 244.390000 1004.900000 -43.000000 0.690000) + 4) + (segment 3575 + (point 244.390000 1004.900000 -43.000000 0.690000) + (point 245.780000 1007.030000 -43.900000 0.690000) + 4) + (segment 3576 + (point 245.780000 1007.030000 -43.900000 0.690000) + (point 246.190000 1011.310000 -44.700000 0.690000) + 4) + (segment 3577 + (point 246.190000 1011.310000 -44.700000 0.690000) + (point 246.420000 1014.350000 -45.170000 0.690000) + 4)) + (branch 124 123 + (segment 3578 + (point 246.420000 1014.350000 -45.170000 0.690000) + (point 245.440000 1016.500000 -43.550000 0.690000) + 4) + (segment 3579 + (point 245.440000 1016.500000 -43.550000 0.690000) + (point 245.440000 1016.500000 -43.530000 0.690000) + 4) + (segment 3580 + (point 245.440000 1016.500000 -43.530000 0.690000) + (point 243.120000 1018.350000 -42.050000 0.690000) + 4) + (segment 3581 + (point 243.120000 1018.350000 -42.050000 0.690000) + (point 243.120000 1018.350000 -42.100000 0.690000) + 4) + (segment 3582 + (point 243.120000 1018.350000 -42.100000 0.690000) + (point 243.670000 1022.060000 -40.850000 0.460000) + 4) + (segment 3583 + (point 243.670000 1022.060000 -40.850000 0.460000) + (point 243.590000 1024.430000 -39.700000 0.460000) + 4) + (segment 3584 + (point 243.590000 1024.430000 -39.700000 0.460000) + (point 242.660000 1028.390000 -39.150000 0.460000) + 4) + (segment 3585 + (point 242.660000 1028.390000 -39.150000 0.460000) + (point 244.040000 1030.500000 -39.150000 0.460000) + 4) + (segment 3586 + (point 244.040000 1030.500000 -39.150000 0.460000) + (point 242.930000 1033.230000 -38.500000 0.460000) + 4) + (segment 3587 + (point 242.930000 1033.230000 -38.500000 0.460000) + (point 242.890000 1037.400000 -37.150000 0.460000) + 4) + (segment 3588 + (point 242.890000 1037.400000 -37.150000 0.460000) + (point 243.260000 1039.880000 -37.150000 0.460000) + 4) + (segment 3589 + (point 243.260000 1039.880000 -37.150000 0.460000) + (point 244.910000 1040.860000 -37.150000 0.460000) + 4)) + (branch 125 124 + (segment 3590 + (point 244.910000 1040.860000 -37.150000 0.460000) + (point 243.220000 1044.050000 -35.800000 0.230000) + 4) + (segment 3591 + (point 243.220000 1044.050000 -35.800000 0.230000) + (point 243.150000 1046.420000 -35.150000 0.230000) + 4) + (segment 3592 + (point 243.150000 1046.420000 -35.150000 0.230000) + (point 243.950000 1049.000000 -33.950000 0.230000) + 4) + (segment 3593 + (point 243.950000 1049.000000 -33.950000 0.230000) + (point 243.870000 1051.370000 -33.950000 0.230000) + 4) + (segment 3594 + (point 243.870000 1051.370000 -33.950000 0.230000) + (point 242.490000 1055.220000 -33.950000 0.230000) + 4) + (segment 3595 + (point 242.490000 1055.220000 -33.950000 0.230000) + (point 241.830000 1058.060000 -32.750000 0.230000) + 4) + (segment 3596 + (point 241.830000 1058.060000 -32.750000 0.230000) + (point 241.610000 1060.990000 -31.920000 0.230000) + 4) + (segment 3597 + (point 241.610000 1060.990000 -31.920000 0.230000) + (point 240.320000 1062.480000 -34.100000 0.230000) + 4)) + (branch 126 125 + (segment 3598 + (point 240.320000 1062.480000 -34.100000 0.230000) + (point 236.470000 1062.770000 -34.100000 0.230000) + 4) + (segment 3599 + (point 236.470000 1062.770000 -34.100000 0.230000) + (point 233.350000 1062.030000 -32.250000 0.230000) + 4) + (segment 3600 + (point 233.350000 1062.030000 -32.250000 0.230000) + (point 231.130000 1061.510000 -31.480000 0.230000) + 4) + (segment 3601 + (point 231.130000 1061.510000 -31.480000 0.230000) + (point 229.830000 1063.000000 -31.950000 0.230000) + 4) + (segment 3602 + (point 229.830000 1063.000000 -31.950000 0.230000) + (point 227.200000 1064.180000 -30.730000 0.230000) + 4) + (segment 3603 + (point 227.200000 1064.180000 -30.730000 0.230000) + (point 222.970000 1066.170000 -29.250000 0.230000) + 4) + (segment 3604 + (point 222.970000 1066.170000 -29.250000 0.230000) + (point 221.490000 1066.420000 -27.900000 0.230000) + 4) + (segment 3605 + (point 221.490000 1066.420000 -27.900000 0.230000) + (point 217.980000 1067.270000 -31.520000 0.230000) + 4) + (segment 3606 + (point 217.980000 1067.270000 -31.520000 0.230000) + (point 217.960000 1067.400000 -31.550000 0.230000) + 4) + (segment 3607 + (point 217.960000 1067.400000 -31.550000 0.230000) + (point 214.840000 1066.660000 -32.670000 0.230000) + 4) + (segment 3608 + (point 214.840000 1066.660000 -32.670000 0.230000) + (point 211.770000 1067.730000 -33.970000 0.230000) + 4)) + (branch 127 125 + (segment 3609 + (point 240.320000 1062.480000 -34.100000 0.230000) + (point 242.340000 1065.940000 -32.400000 0.230000) + 4) + (segment 3610 + (point 242.340000 1065.940000 -32.400000 0.230000) + (point 243.220000 1066.150000 -32.170000 0.230000) + 4) + (segment 3611 + (point 243.220000 1066.150000 -32.170000 0.230000) + (point 243.540000 1066.810000 -28.720000 0.230000) + 4)) + (branch 128 127 + (segment 3612 + (point 243.540000 1066.810000 -28.720000 0.230000) + (point 246.850000 1068.780000 -28.720000 0.230000) + 4) + (segment 3613 + (point 246.850000 1068.780000 -28.720000 0.230000) + (point 248.910000 1068.080000 -27.600000 0.230000) + 4)) + (branch 129 128 + (segment 3614 + (point 248.910000 1068.080000 -27.600000 0.230000) + (point 248.410000 1066.170000 -26.250000 0.230000) + 4) + (segment 3615 + (point 248.410000 1066.170000 -26.250000 0.230000) + (point 247.470000 1064.150000 -24.080000 0.230000) + 4) + (segment 3616 + (point 247.470000 1064.150000 -24.080000 0.230000) + (point 247.470000 1064.150000 -24.100000 0.230000) + 4) + (segment 3617 + (point 247.470000 1064.150000 -24.100000 0.230000) + (point 248.630000 1063.240000 -21.670000 0.230000) + 4) + (segment 3618 + (point 248.630000 1063.240000 -21.670000 0.230000) + (point 248.630000 1063.240000 -21.700000 0.230000) + 4) + (segment 3619 + (point 248.630000 1063.240000 -21.700000 0.230000) + (point 247.370000 1060.540000 -19.880000 0.230000) + 4) + (segment 3620 + (point 247.370000 1060.540000 -19.880000 0.230000) + (point 247.050000 1059.880000 -18.700000 0.230000) + 4)) + (branch 130 128 + (segment 3621 + (point 248.910000 1068.080000 -27.600000 0.230000) + (point 251.890000 1069.370000 -26.200000 0.230000) + 4) + (segment 3622 + (point 251.890000 1069.370000 -26.200000 0.230000) + (point 255.470000 1070.210000 -25.520000 0.230000) + 4) + (segment 3623 + (point 255.470000 1070.210000 -25.520000 0.230000) + (point 257.430000 1071.860000 -23.600000 0.230000) + 4) + (segment 3624 + (point 257.430000 1071.860000 -23.600000 0.230000) + (point 257.430000 1071.860000 -23.570000 0.230000) + 4)) + (branch 131 127 + (segment 3625 + (point 243.540000 1066.810000 -28.720000 0.230000) + (point 241.980000 1069.440000 -28.720000 0.230000) + 4) + (segment 3626 + (point 241.980000 1069.440000 -28.720000 0.230000) + (point 240.300000 1072.630000 -28.720000 0.230000) + 4)) + (branch 132 124 + (segment 3627 + (point 244.910000 1040.860000 -37.150000 0.460000) + (point 245.990000 1042.310000 -37.150000 0.230000) + 4) + (segment 3628 + (point 245.990000 1042.310000 -37.150000 0.230000) + (point 245.330000 1045.140000 -37.150000 0.230000) + 4) + (segment 3629 + (point 245.330000 1045.140000 -37.150000 0.230000) + (point 248.630000 1047.110000 -37.150000 0.230000) + 4) + (segment 3630 + (point 248.630000 1047.110000 -37.150000 0.230000) + (point 249.760000 1050.360000 -36.150000 0.230000) + 4) + (segment 3631 + (point 249.760000 1050.360000 -36.150000 0.230000) + (point 251.730000 1052.010000 -35.570000 0.230000) + 4) + (segment 3632 + (point 251.730000 1052.010000 -35.570000 0.230000) + (point 253.870000 1054.910000 -34.850000 0.230000) + 4) + (segment 3633 + (point 253.870000 1054.910000 -34.850000 0.230000) + (point 255.000000 1058.150000 -34.250000 0.230000) + 4) + (segment 3634 + (point 255.000000 1058.150000 -34.250000 0.230000) + (point 256.650000 1059.130000 -36.200000 0.230000) + 4) + (segment 3635 + (point 256.650000 1059.130000 -36.200000 0.230000) + (point 258.480000 1061.360000 -36.200000 0.230000) + 4) + (segment 3636 + (point 258.480000 1061.360000 -36.200000 0.230000) + (point 259.690000 1062.240000 -38.150000 0.230000) + 4) + (segment 3637 + (point 259.690000 1062.240000 -38.150000 0.230000) + (point 259.920000 1065.290000 -39.520000 0.230000) + 4) + (segment 3638 + (point 259.920000 1065.290000 -39.520000 0.230000) + (point 261.120000 1066.160000 -39.820000 0.230000) + 4) + (segment 3639 + (point 261.120000 1066.160000 -39.820000 0.230000) + (point 263.680000 1067.360000 -41.380000 0.230000) + 4) + (segment 3640 + (point 263.680000 1067.360000 -41.380000 0.230000) + (point 264.880000 1068.230000 -42.400000 0.230000) + 4) + (segment 3641 + (point 264.880000 1068.230000 -42.400000 0.230000) + (point 264.880000 1068.230000 -42.420000 0.230000) + 4) + (segment 3642 + (point 264.880000 1068.230000 -42.420000 0.230000) + (point 266.670000 1068.650000 -43.000000 0.230000) + 4) + (segment 3643 + (point 266.670000 1068.650000 -43.000000 0.230000) + (point 268.320000 1069.630000 -43.000000 0.230000) + 4) + (segment 3644 + (point 268.320000 1069.630000 -43.000000 0.230000) + (point 269.930000 1068.820000 -44.430000 0.230000) + 4) + (segment 3645 + (point 269.930000 1068.820000 -44.430000 0.230000) + (point 271.580000 1069.800000 -45.050000 0.230000) + 4) + (segment 3646 + (point 271.580000 1069.800000 -45.050000 0.230000) + (point 273.190000 1068.990000 -46.050000 0.230000) + 4) + (segment 3647 + (point 273.190000 1068.990000 -46.050000 0.230000) + (point 273.190000 1068.990000 -46.080000 0.230000) + 4) + (segment 3648 + (point 273.190000 1068.990000 -46.080000 0.230000) + (point 274.530000 1069.310000 -47.130000 0.230000) + 4) + (segment 3649 + (point 274.530000 1069.310000 -47.130000 0.230000) + (point 274.530000 1069.310000 -47.150000 0.230000) + 4) + (segment 3650 + (point 274.530000 1069.310000 -47.150000 0.230000) + (point 276.940000 1071.060000 -47.170000 0.230000) + 4) + (segment 3651 + (point 276.940000 1071.060000 -47.170000 0.230000) + (point 278.280000 1071.370000 -48.950000 0.230000) + 4) + (segment 3652 + (point 278.280000 1071.370000 -48.950000 0.230000) + (point 279.130000 1069.780000 -50.150000 0.230000) + 4) + (segment 3653 + (point 279.130000 1069.780000 -50.150000 0.230000) + (point 281.050000 1069.640000 -51.670000 0.230000) + 4) + (segment 3654 + (point 281.050000 1069.640000 -51.670000 0.230000) + (point 282.430000 1071.750000 -53.620000 0.230000) + 4) + (segment 3655 + (point 282.430000 1071.750000 -53.620000 0.230000) + (point 282.430000 1071.750000 -53.670000 0.230000) + 4) + (segment 3656 + (point 282.430000 1071.750000 -53.670000 0.230000) + (point 283.720000 1070.260000 -55.720000 0.230000) + 4) + (segment 3657 + (point 283.720000 1070.260000 -55.720000 0.230000) + (point 284.750000 1069.900000 -58.470000 0.230000) + 4) + (segment 3658 + (point 284.750000 1069.900000 -58.470000 0.230000) + (point 284.750000 1069.900000 -58.650000 0.230000) + 4)) + (branch 133 123 + (segment 3659 + (point 246.420000 1014.350000 -45.170000 0.690000) + (point 248.120000 1017.130000 -43.800000 0.230000) + 4) + (segment 3660 + (point 248.120000 1017.130000 -43.800000 0.230000) + (point 249.240000 1020.380000 -43.800000 0.230000) + 4) + (segment 3661 + (point 249.240000 1020.380000 -43.800000 0.230000) + (point 251.210000 1022.030000 -43.880000 0.230000) + 4) + (segment 3662 + (point 251.210000 1022.030000 -43.880000 0.230000) + (point 254.780000 1022.870000 -44.300000 0.230000) + 4) + (segment 3663 + (point 254.780000 1022.870000 -44.300000 0.230000) + (point 254.780000 1022.870000 -44.320000 0.230000) + 4) + (segment 3664 + (point 254.780000 1022.870000 -44.320000 0.230000) + (point 257.090000 1021.030000 -44.700000 0.230000) + 4) + (segment 3665 + (point 257.090000 1021.030000 -44.700000 0.230000) + (point 257.090000 1021.030000 -44.800000 0.230000) + 4) + (segment 3666 + (point 257.090000 1021.030000 -44.800000 0.230000) + (point 259.470000 1020.980000 -44.900000 0.230000) + 4) + (segment 3667 + (point 259.470000 1020.980000 -44.900000 0.230000) + (point 259.470000 1020.980000 -45.150000 0.230000) + 4) + (segment 3668 + (point 259.470000 1020.980000 -45.150000 0.230000) + (point 261.570000 1022.080000 -47.130000 0.230000) + 4) + (segment 3669 + (point 261.570000 1022.080000 -47.130000 0.230000) + (point 261.570000 1022.080000 -47.200000 0.230000) + 4)) + (branch 134 122 + (segment 3670 + (point 229.860000 799.040000 -54.550000 0.690000) + (point 231.440000 802.400000 -54.550000 0.690000) + 4) + (segment 3671 + (point 231.440000 802.400000 -54.550000 0.690000) + (point 233.800000 802.340000 -53.300000 0.690000) + 4) + (segment 3672 + (point 233.800000 802.340000 -53.300000 0.690000) + (point 234.880000 803.810000 -52.500000 0.690000) + 4) + (segment 3673 + (point 234.880000 803.810000 -52.500000 0.690000) + (point 234.880000 803.810000 -52.550000 0.690000) + 4) + (segment 3674 + (point 234.880000 803.810000 -52.550000 0.690000) + (point 235.100000 806.840000 -52.550000 0.690000) + 4) + (segment 3675 + (point 235.100000 806.840000 -52.550000 0.690000) + (point 237.080000 808.500000 -51.550000 0.690000) + 4) + (segment 3676 + (point 237.080000 808.500000 -51.550000 0.690000) + (point 238.010000 810.510000 -50.400000 0.690000) + 4) + (segment 3677 + (point 238.010000 810.510000 -50.400000 0.690000) + (point 238.190000 811.740000 -49.600000 0.690000) + 4) + (segment 3678 + (point 238.190000 811.740000 -49.600000 0.690000) + (point 237.800000 813.440000 -48.750000 0.690000) + 4) + (segment 3679 + (point 237.800000 813.440000 -48.750000 0.690000) + (point 241.740000 816.750000 -48.750000 0.690000) + 4) + (segment 3680 + (point 241.740000 816.750000 -48.750000 0.690000) + (point 242.940000 817.620000 -47.670000 0.690000) + 4) + (segment 3681 + (point 242.940000 817.620000 -47.670000 0.690000) + (point 244.380000 821.550000 -47.670000 0.690000) + 4) + (segment 3682 + (point 244.380000 821.550000 -47.670000 0.690000) + (point 246.030000 822.530000 -47.670000 0.690000) + 4) + (segment 3683 + (point 246.030000 822.530000 -47.670000 0.690000) + (point 246.840000 825.110000 -47.670000 0.690000) + 4) + (segment 3684 + (point 246.840000 825.110000 -47.670000 0.690000) + (point 247.650000 827.700000 -47.670000 0.690000) + 4) + (segment 3685 + (point 247.650000 827.700000 -47.670000 0.690000) + (point 250.380000 830.120000 -47.670000 0.690000) + 4) + (segment 3686 + (point 250.380000 830.120000 -47.670000 0.690000) + (point 250.340000 834.300000 -47.670000 0.690000) + 4) + (segment 3687 + (point 250.340000 834.300000 -47.670000 0.690000) + (point 251.910000 837.650000 -47.570000 0.690000) + 4) + (segment 3688 + (point 251.910000 837.650000 -47.570000 0.690000) + (point 252.500000 843.160000 -47.550000 0.690000) + 4) + (segment 3689 + (point 252.500000 843.160000 -47.550000 0.690000) + (point 255.100000 846.160000 -47.150000 0.690000) + 4) + (segment 3690 + (point 255.100000 846.160000 -47.150000 0.690000) + (point 255.460000 848.630000 -46.650000 0.690000) + 4) + (segment 3691 + (point 255.460000 848.630000 -46.650000 0.690000) + (point 255.960000 850.530000 -46.380000 0.690000) + 4) + (segment 3692 + (point 255.960000 850.530000 -46.380000 0.690000) + (point 256.450000 852.450000 -45.650000 0.690000) + 4) + (segment 3693 + (point 256.450000 852.450000 -45.650000 0.690000) + (point 258.870000 854.210000 -45.650000 0.690000) + 4) + (segment 3694 + (point 258.870000 854.210000 -45.650000 0.690000) + (point 259.360000 856.120000 -44.430000 0.690000) + 4) + (segment 3695 + (point 259.360000 856.120000 -44.430000 0.690000) + (point 259.360000 856.120000 -44.450000 0.690000) + 4) + (segment 3696 + (point 259.360000 856.120000 -44.450000 0.690000) + (point 259.590000 859.150000 -43.580000 0.690000) + 4) + (segment 3697 + (point 259.590000 859.150000 -43.580000 0.690000) + (point 262.440000 861.020000 -43.150000 0.690000) + 4) + (segment 3698 + (point 262.440000 861.020000 -43.150000 0.690000) + (point 262.440000 861.020000 -43.180000 0.690000) + 4) + (segment 3699 + (point 262.440000 861.020000 -43.180000 0.690000) + (point 261.330000 863.740000 -43.100000 0.690000) + 4) + (segment 3700 + (point 261.330000 863.740000 -43.100000 0.690000) + (point 263.180000 865.970000 -42.570000 0.690000) + 4) + (segment 3701 + (point 263.180000 865.970000 -42.570000 0.690000) + (point 263.180000 865.970000 -42.600000 0.690000) + 4) + (segment 3702 + (point 263.180000 865.970000 -42.600000 0.690000) + (point 263.020000 870.700000 -43.500000 0.690000) + 4) + (segment 3703 + (point 263.020000 870.700000 -43.500000 0.690000) + (point 265.740000 873.130000 -42.920000 0.690000) + 4) + (segment 3704 + (point 265.740000 873.130000 -42.920000 0.690000) + (point 266.090000 875.610000 -42.050000 0.690000) + 4) + (segment 3705 + (point 266.090000 875.610000 -42.050000 0.690000) + (point 266.910000 878.180000 -41.200000 0.690000) + 4) + (segment 3706 + (point 266.910000 878.180000 -41.200000 0.690000) + (point 269.770000 880.060000 -40.480000 0.690000) + 4) + (segment 3707 + (point 269.770000 880.060000 -40.480000 0.690000) + (point 269.770000 880.060000 -40.500000 0.690000) + 4) + (segment 3708 + (point 269.770000 880.060000 -40.500000 0.690000) + (point 270.900000 883.300000 -39.650000 0.690000) + 4) + (segment 3709 + (point 270.900000 883.300000 -39.650000 0.690000) + (point 273.760000 885.170000 -39.200000 0.690000) + 4) + (segment 3710 + (point 273.760000 885.170000 -39.200000 0.690000) + (point 276.350000 888.160000 -39.020000 0.690000) + 4) + (segment 3711 + (point 276.350000 888.160000 -39.020000 0.690000) + (point 278.410000 893.420000 -39.020000 0.690000) + 4) + (segment 3712 + (point 278.410000 893.420000 -39.020000 0.690000) + (point 278.920000 895.330000 -37.700000 0.690000) + 4) + (segment 3713 + (point 278.920000 895.330000 -37.700000 0.690000) + (point 281.640000 897.760000 -38.030000 0.690000) + 4) + (segment 3714 + (point 281.640000 897.760000 -38.030000 0.690000) + (point 283.600000 899.430000 -38.030000 0.690000) + 4) + (segment 3715 + (point 283.600000 899.430000 -38.030000 0.690000) + (point 284.330000 904.370000 -38.030000 0.690000) + 4) + (segment 3716 + (point 284.330000 904.370000 -38.030000 0.690000) + (point 285.770000 908.290000 -38.030000 0.690000) + 4) + (segment 3717 + (point 285.770000 908.290000 -38.030000 0.690000) + (point 286.890000 911.530000 -36.100000 0.690000) + 4) + (segment 3718 + (point 286.890000 911.530000 -36.100000 0.690000) + (point 286.720000 916.270000 -36.100000 0.690000) + 4) + (segment 3719 + (point 286.720000 916.270000 -36.100000 0.690000) + (point 287.220000 918.180000 -37.200000 0.690000) + 4) + (segment 3720 + (point 287.220000 918.180000 -37.200000 0.690000) + (point 287.220000 918.180000 -37.170000 0.690000) + 4) + (segment 3721 + (point 287.220000 918.180000 -37.170000 0.690000) + (point 287.580000 920.650000 -38.350000 0.690000) + 4) + (segment 3722 + (point 287.580000 920.650000 -38.350000 0.690000) + (point 287.580000 920.650000 -38.380000 0.690000) + 4) + (segment 3723 + (point 287.580000 920.650000 -38.380000 0.690000) + (point 288.130000 924.360000 -38.700000 0.690000) + 4) + (segment 3724 + (point 288.130000 924.360000 -38.700000 0.690000) + (point 288.040000 926.730000 -38.900000 0.690000) + 4) + (segment 3725 + (point 288.040000 926.730000 -38.900000 0.690000) + (point 289.170000 929.990000 -38.900000 0.690000) + 4) + (segment 3726 + (point 289.170000 929.990000 -38.900000 0.690000) + (point 288.950000 932.920000 -39.600000 0.690000) + 4) + (segment 3727 + (point 288.950000 932.920000 -39.600000 0.690000) + (point 291.100000 935.810000 -40.450000 0.690000) + 4) + (segment 3728 + (point 291.100000 935.810000 -40.450000 0.690000) + (point 293.120000 939.270000 -41.000000 0.690000) + 4) + (segment 3729 + (point 293.120000 939.270000 -41.000000 0.690000) + (point 295.080000 940.920000 -40.480000 0.690000) + 4) + (segment 3730 + (point 295.080000 940.920000 -40.480000 0.690000) + (point 295.080000 940.920000 -40.500000 0.690000) + 4) + (segment 3731 + (point 295.080000 940.920000 -40.500000 0.690000) + (point 295.310000 943.960000 -40.500000 0.690000) + 4) + (segment 3732 + (point 295.310000 943.960000 -40.500000 0.690000) + (point 295.850000 947.670000 -40.500000 0.690000) + 4) + (segment 3733 + (point 295.850000 947.670000 -40.500000 0.690000) + (point 298.450000 950.670000 -40.500000 0.690000) + 4) + (segment 3734 + (point 298.450000 950.670000 -40.500000 0.690000) + (point 299.700000 953.350000 -39.720000 0.690000) + 4) + (segment 3735 + (point 299.700000 953.350000 -39.720000 0.690000) + (point 301.320000 958.520000 -38.850000 0.690000) + 4) + (segment 3736 + (point 301.320000 958.520000 -38.850000 0.690000) + (point 302.720000 960.620000 -38.570000 0.690000) + 4) + (segment 3737 + (point 302.720000 960.620000 -38.570000 0.690000) + (point 304.860000 963.520000 -38.570000 0.690000) + 4) + (segment 3738 + (point 304.860000 963.520000 -38.570000 0.690000) + (point 307.190000 967.640000 -37.580000 0.690000) + 4) + (segment 3739 + (point 307.190000 967.640000 -37.580000 0.690000) + (point 308.450000 970.330000 -36.400000 0.690000) + 4) + (segment 3740 + (point 308.450000 970.330000 -36.400000 0.690000) + (point 308.100000 973.840000 -35.150000 0.690000) + 4) + (segment 3741 + (point 308.100000 973.840000 -35.150000 0.690000) + (point 308.510000 978.110000 -36.880000 0.690000) + 4) + (segment 3742 + (point 308.510000 978.110000 -36.880000 0.690000) + (point 309.500000 981.930000 -35.900000 0.690000) + 4) + (segment 3743 + (point 309.500000 981.930000 -35.900000 0.690000) + (point 309.420000 984.300000 -34.700000 0.690000) + 4) + (segment 3744 + (point 309.420000 984.300000 -34.700000 0.690000) + (point 311.510000 985.380000 -33.550000 0.690000) + 4) + (segment 3745 + (point 311.510000 985.380000 -33.550000 0.690000) + (point 313.220000 988.170000 -32.500000 0.690000) + 4) + (segment 3746 + (point 313.220000 988.170000 -32.500000 0.690000) + (point 313.850000 989.510000 -31.800000 0.690000) + 4) + (segment 3747 + (point 313.850000 989.510000 -31.800000 0.690000) + (point 312.390000 995.740000 -31.250000 0.690000) + 4) + (segment 3748 + (point 312.390000 995.740000 -31.250000 0.690000) + (point 313.950000 999.090000 -31.800000 0.690000) + 4)) + (branch 135 134 + (segment 3749 + (point 313.950000 999.090000 -31.800000 0.690000) + (point 313.700000 1000.240000 -30.570000 0.460000) + 4) + (segment 3750 + (point 313.700000 1000.240000 -30.570000 0.460000) + (point 313.890000 1001.480000 -29.170000 0.460000) + 4) + (segment 3751 + (point 313.890000 1001.480000 -29.170000 0.460000) + (point 312.910000 1003.640000 -27.380000 0.460000) + 4) + (segment 3752 + (point 312.910000 1003.640000 -27.380000 0.460000) + (point 313.900000 1007.450000 -26.770000 0.460000) + 4) + (segment 3753 + (point 313.900000 1007.450000 -26.770000 0.460000) + (point 315.030000 1010.700000 -26.150000 0.460000) + 4) + (segment 3754 + (point 315.030000 1010.700000 -26.150000 0.460000) + (point 314.680000 1014.200000 -25.230000 0.460000) + 4) + (segment 3755 + (point 314.680000 1014.200000 -25.230000 0.460000) + (point 314.910000 1017.240000 -24.400000 0.460000) + 4) + (segment 3756 + (point 314.910000 1017.240000 -24.400000 0.460000) + (point 315.890000 1021.060000 -24.400000 0.460000) + 4)) + (branch 136 135 + (segment 3757 + (point 315.890000 1021.060000 -24.400000 0.460000) + (point 318.180000 1023.380000 -24.400000 0.460000) + 4) + (segment 3758 + (point 318.180000 1023.380000 -24.400000 0.460000) + (point 320.460000 1025.710000 -24.380000 0.460000) + 4) + (segment 3759 + (point 320.460000 1025.710000 -24.380000 0.460000) + (point 321.000000 1029.420000 -24.350000 0.460000) + 4) + (segment 3760 + (point 321.000000 1029.420000 -24.350000 0.460000) + (point 322.390000 1031.540000 -23.670000 0.460000) + 4) + (segment 3761 + (point 322.390000 1031.540000 -23.670000 0.460000) + (point 323.690000 1036.020000 -22.600000 0.460000) + 4) + (segment 3762 + (point 323.690000 1036.020000 -22.600000 0.460000) + (point 323.610000 1038.390000 -21.600000 0.460000) + 4) + (segment 3763 + (point 323.610000 1038.390000 -21.600000 0.460000) + (point 326.160000 1039.590000 -20.920000 0.460000) + 4) + (segment 3764 + (point 326.160000 1039.590000 -20.920000 0.460000) + (point 327.600000 1043.500000 -20.920000 0.460000) + 4) + (segment 3765 + (point 327.600000 1043.500000 -20.920000 0.460000) + (point 328.350000 1044.280000 -19.700000 0.460000) + 4) + (segment 3766 + (point 328.350000 1044.280000 -19.700000 0.460000) + (point 330.900000 1045.480000 -18.500000 0.460000) + 4) + (segment 3767 + (point 330.900000 1045.480000 -18.500000 0.460000) + (point 331.710000 1048.050000 -17.450000 0.460000) + 4) + (segment 3768 + (point 331.710000 1048.050000 -17.450000 0.460000) + (point 334.000000 1050.380000 -16.800000 0.460000) + 4) + (segment 3769 + (point 334.000000 1050.380000 -16.800000 0.460000) + (point 335.010000 1050.020000 -16.730000 0.460000) + 4) + (segment 3770 + (point 335.010000 1050.020000 -16.730000 0.460000) + (point 337.250000 1050.550000 -16.070000 0.460000) + 4) + (segment 3771 + (point 337.250000 1050.550000 -16.070000 0.460000) + (point 340.430000 1053.080000 -16.900000 0.460000) + 4) + (segment 3772 + (point 340.430000 1053.080000 -16.900000 0.460000) + (point 340.430000 1053.080000 -16.880000 0.460000) + 4) + (segment 3773 + (point 340.430000 1053.080000 -16.880000 0.460000) + (point 340.840000 1057.360000 -15.570000 0.460000) + 4) + (segment 3774 + (point 340.840000 1057.360000 -15.570000 0.460000) + (point 342.620000 1057.780000 -15.570000 0.460000) + 4) + (segment 3775 + (point 342.620000 1057.780000 -15.570000 0.460000) + (point 341.510000 1060.500000 -14.750000 0.460000) + 4) + (segment 3776 + (point 341.510000 1060.500000 -14.750000 0.460000) + (point 341.510000 1060.500000 -14.770000 0.460000) + 4) + (segment 3777 + (point 341.510000 1060.500000 -14.770000 0.460000) + (point 339.910000 1061.330000 -12.980000 0.460000) + 4) + (segment 3778 + (point 339.910000 1061.330000 -12.980000 0.460000) + (point 339.910000 1061.330000 -13.000000 0.460000) + 4) + (segment 3779 + (point 339.910000 1061.330000 -13.000000 0.460000) + (point 338.570000 1061.010000 -11.370000 0.460000) + 4) + (segment 3780 + (point 338.570000 1061.010000 -11.370000 0.460000) + (point 338.570000 1061.010000 -11.400000 0.460000) + 4) + (segment 3781 + (point 338.570000 1061.010000 -11.400000 0.460000) + (point 336.780000 1060.590000 -9.930000 0.460000) + 4) + (segment 3782 + (point 336.780000 1060.590000 -9.930000 0.460000) + (point 336.780000 1060.590000 -9.950000 0.460000) + 4) + (segment 3783 + (point 336.780000 1060.590000 -9.950000 0.460000) + (point 332.940000 1060.880000 -7.800000 0.460000) + 4) + (segment 3784 + (point 332.940000 1060.880000 -7.800000 0.460000) + (point 332.940000 1060.880000 -7.720000 0.460000) + 4)) + (branch 137 135 + (segment 3785 + (point 315.890000 1021.060000 -24.400000 0.460000) + (point 314.650000 1024.350000 -24.400000 0.460000) + 4) + (segment 3786 + (point 314.650000 1024.350000 -24.400000 0.460000) + (point 315.960000 1028.830000 -24.400000 0.460000) + 4) + (segment 3787 + (point 315.960000 1028.830000 -24.400000 0.460000) + (point 316.190000 1031.880000 -22.880000 0.460000) + 4) + (segment 3788 + (point 316.190000 1031.880000 -22.880000 0.460000) + (point 316.190000 1031.880000 -22.900000 0.460000) + 4) + (segment 3789 + (point 316.190000 1031.880000 -22.900000 0.460000) + (point 315.830000 1035.370000 -22.050000 0.460000) + 4) + (segment 3790 + (point 315.830000 1035.370000 -22.050000 0.460000) + (point 316.510000 1038.520000 -22.020000 0.460000) + 4) + (segment 3791 + (point 316.510000 1038.520000 -22.020000 0.460000) + (point 313.090000 1043.090000 -22.770000 0.460000) + 4) + (segment 3792 + (point 313.090000 1043.090000 -22.770000 0.460000) + (point 313.090000 1043.090000 -22.800000 0.460000) + 4) + (segment 3793 + (point 313.090000 1043.090000 -22.800000 0.460000) + (point 311.480000 1043.900000 -24.170000 0.460000) + 4) + (segment 3794 + (point 311.480000 1043.900000 -24.170000 0.460000) + (point 310.270000 1043.030000 -26.000000 0.460000) + 4) + (segment 3795 + (point 310.270000 1043.030000 -26.000000 0.460000) + (point 308.620000 1042.040000 -28.980000 0.460000) + 4) + (segment 3796 + (point 308.620000 1042.040000 -28.980000 0.460000) + (point 308.620000 1042.040000 -29.000000 0.460000) + 4)) + (branch 138 134 + (segment 3797 + (point 313.950000 999.090000 -31.800000 0.690000) + (point 316.830000 1000.970000 -30.900000 0.460000) + 4) + (segment 3798 + (point 316.830000 1000.970000 -30.900000 0.460000) + (point 316.830000 1000.970000 -30.920000 0.460000) + 4) + (segment 3799 + (point 316.830000 1000.970000 -30.920000 0.460000) + (point 316.610000 1003.910000 -31.350000 0.460000) + 4) + (segment 3800 + (point 316.610000 1003.910000 -31.350000 0.460000) + (point 316.610000 1003.910000 -31.380000 0.460000) + 4) + (segment 3801 + (point 316.610000 1003.910000 -31.380000 0.460000) + (point 318.190000 1007.270000 -30.600000 0.460000) + 4) + (segment 3802 + (point 318.190000 1007.270000 -30.600000 0.460000) + (point 318.190000 1007.270000 -30.630000 0.460000) + 4) + (segment 3803 + (point 318.190000 1007.270000 -30.630000 0.460000) + (point 319.180000 1011.070000 -29.670000 0.460000) + 4) + (segment 3804 + (point 319.180000 1011.070000 -29.670000 0.460000) + (point 318.960000 1014.010000 -29.670000 0.460000) + 4)) + (branch 139 138 + (segment 3805 + (point 318.960000 1014.010000 -29.670000 0.460000) + (point 320.920000 1015.660000 -31.320000 0.460000) + 4) + (segment 3806 + (point 320.920000 1015.660000 -31.320000 0.460000) + (point 320.920000 1015.660000 -31.350000 0.460000) + 4) + (segment 3807 + (point 320.920000 1015.660000 -31.350000 0.460000) + (point 320.840000 1018.040000 -32.150000 0.460000) + 4) + (segment 3808 + (point 320.840000 1018.040000 -32.150000 0.460000) + (point 321.790000 1020.050000 -33.130000 0.460000) + 4) + (segment 3809 + (point 321.790000 1020.050000 -33.130000 0.460000) + (point 322.860000 1021.500000 -34.420000 0.460000) + 4) + (segment 3810 + (point 322.860000 1021.500000 -34.420000 0.460000) + (point 323.220000 1023.960000 -34.880000 0.460000) + 4) + (segment 3811 + (point 323.220000 1023.960000 -34.880000 0.460000) + (point 323.090000 1024.530000 -36.400000 0.460000) + 4) + (segment 3812 + (point 323.090000 1024.530000 -36.400000 0.460000) + (point 325.500000 1026.300000 -37.320000 0.460000) + 4) + (segment 3813 + (point 325.500000 1026.300000 -37.320000 0.460000) + (point 325.500000 1026.300000 -37.380000 0.460000) + 4) + (segment 3814 + (point 325.500000 1026.300000 -37.380000 0.460000) + (point 325.810000 1026.970000 -39.020000 0.460000) + 4) + (segment 3815 + (point 325.810000 1026.970000 -39.020000 0.460000) + (point 326.570000 1027.740000 -40.770000 0.460000) + 4) + (segment 3816 + (point 326.570000 1027.740000 -40.770000 0.460000) + (point 326.570000 1027.740000 -40.800000 0.460000) + 4) + (segment 3817 + (point 326.570000 1027.740000 -40.800000 0.460000) + (point 326.360000 1030.680000 -42.200000 0.460000) + 4) + (segment 3818 + (point 326.360000 1030.680000 -42.200000 0.460000) + (point 328.200000 1032.900000 -42.980000 0.460000) + 4) + (segment 3819 + (point 328.200000 1032.900000 -42.980000 0.460000) + (point 329.190000 1036.720000 -43.750000 0.460000) + 4) + (segment 3820 + (point 329.190000 1036.720000 -43.750000 0.460000) + (point 331.020000 1038.940000 -43.750000 0.460000) + 4) + (segment 3821 + (point 331.020000 1038.940000 -43.750000 0.460000) + (point 334.020000 1040.230000 -44.350000 0.460000) + 4) + (segment 3822 + (point 334.020000 1040.230000 -44.350000 0.460000) + (point 335.990000 1041.890000 -44.750000 0.460000) + 4) + (segment 3823 + (point 335.990000 1041.890000 -44.750000 0.460000) + (point 335.990000 1041.890000 -44.780000 0.460000) + 4) + (segment 3824 + (point 335.990000 1041.890000 -44.780000 0.460000) + (point 337.100000 1045.130000 -46.100000 0.460000) + 4) + (segment 3825 + (point 337.100000 1045.130000 -46.100000 0.460000) + (point 337.100000 1045.130000 -46.120000 0.460000) + 4) + (segment 3826 + (point 337.100000 1045.130000 -46.120000 0.460000) + (point 340.860000 1047.220000 -46.630000 0.460000) + 4) + (segment 3827 + (point 340.860000 1047.220000 -46.630000 0.460000) + (point 343.090000 1047.740000 -46.630000 0.460000) + 4) + (segment 3828 + (point 343.090000 1047.740000 -46.630000 0.460000) + (point 345.150000 1047.020000 -47.650000 0.460000) + 4) + (segment 3829 + (point 345.150000 1047.020000 -47.650000 0.460000) + (point 345.990000 1045.430000 -48.070000 0.460000) + 4) + (segment 3830 + (point 345.990000 1045.430000 -48.070000 0.460000) + (point 345.990000 1045.430000 -48.100000 0.460000) + 4) + (segment 3831 + (point 345.990000 1045.430000 -48.100000 0.460000) + (point 348.990000 1046.720000 -47.720000 0.460000) + 4) + (segment 3832 + (point 348.990000 1046.720000 -47.720000 0.460000) + (point 352.430000 1048.130000 -48.420000 0.460000) + 4) + (segment 3833 + (point 352.430000 1048.130000 -48.420000 0.460000) + (point 352.430000 1048.130000 -48.450000 0.460000) + 4) + (segment 3834 + (point 352.430000 1048.130000 -48.450000 0.460000) + (point 356.810000 1051.550000 -49.070000 0.460000) + 4) + (segment 3835 + (point 356.810000 1051.550000 -49.070000 0.460000) + (point 360.510000 1051.830000 -50.070000 0.460000) + 4) + (segment 3836 + (point 360.510000 1051.830000 -50.070000 0.460000) + (point 360.740000 1054.860000 -50.920000 0.230000) + 4) + (segment 3837 + (point 360.740000 1054.860000 -50.920000 0.230000) + (point 360.740000 1054.860000 -50.970000 0.230000) + 4) + (segment 3838 + (point 360.740000 1054.860000 -50.970000 0.230000) + (point 358.110000 1056.030000 -51.770000 0.230000) + 4) + (segment 3839 + (point 358.110000 1056.030000 -51.770000 0.230000) + (point 358.110000 1056.030000 -51.800000 0.230000) + 4) + (segment 3840 + (point 358.110000 1056.030000 -51.800000 0.230000) + (point 356.060000 1056.750000 -50.500000 0.230000) + 4) + (segment 3841 + (point 356.060000 1056.750000 -50.500000 0.230000) + (point 356.060000 1056.750000 -50.520000 0.230000) + 4) + (segment 3842 + (point 356.060000 1056.750000 -50.520000 0.230000) + (point 352.140000 1059.410000 -53.180000 0.230000) + 4)) + (branch 140 138 + (segment 3843 + (point 318.960000 1014.010000 -29.670000 0.460000) + (point 318.740000 1016.950000 -29.670000 0.460000) + 4) + (segment 3844 + (point 318.740000 1016.950000 -29.670000 0.460000) + (point 319.730000 1020.760000 -29.670000 0.460000) + 4) + (segment 3845 + (point 319.730000 1020.760000 -29.670000 0.460000) + (point 319.110000 1025.390000 -29.170000 0.460000) + 4) + (segment 3846 + (point 319.110000 1025.390000 -29.170000 0.460000) + (point 320.830000 1028.180000 -28.020000 0.460000) + 4) + (segment 3847 + (point 320.830000 1028.180000 -28.020000 0.460000) + (point 320.340000 1032.240000 -26.320000 0.460000) + 4) + (segment 3848 + (point 320.340000 1032.240000 -26.320000 0.460000) + (point 320.700000 1034.730000 -26.320000 0.460000) + 4) + (segment 3849 + (point 320.700000 1034.730000 -26.320000 0.460000) + (point 321.110000 1039.000000 -26.170000 0.460000) + 4) + (segment 3850 + (point 321.110000 1039.000000 -26.170000 0.460000) + (point 322.810000 1041.790000 -26.900000 0.460000) + 4) + (segment 3851 + (point 322.810000 1041.790000 -26.900000 0.460000) + (point 321.120000 1044.970000 -26.500000 0.460000) + 4) + (segment 3852 + (point 321.120000 1044.970000 -26.500000 0.460000) + (point 323.150000 1048.440000 -25.870000 0.460000) + 4) + (segment 3853 + (point 323.150000 1048.440000 -25.870000 0.460000) + (point 323.500000 1050.900000 -24.200000 0.460000) + 4) + (segment 3854 + (point 323.500000 1050.900000 -24.200000 0.460000) + (point 322.920000 1051.370000 -21.500000 0.460000) + 4) + (segment 3855 + (point 322.920000 1051.370000 -21.500000 0.460000) + (point 321.770000 1052.300000 -18.670000 0.460000) + 4) + (segment 3856 + (point 321.770000 1052.300000 -18.670000 0.460000) + (point 321.770000 1052.300000 -18.630000 0.460000) + 4)) + (branch 141 77 + (segment 3857 + (point 253.330000 278.770000 -19.420000 1.145000) + (point 255.980000 279.410000 -19.420000 0.460000) + 4)) + (branch 142 141 + (segment 3858 + (point 255.980000 279.410000 -19.420000 0.460000) + (point 257.700000 278.010000 -18.000000 0.460000) + 4) + (segment 3859 + (point 257.700000 278.010000 -18.000000 0.460000) + (point 258.240000 275.740000 -16.800000 0.460000) + 4) + (segment 3860 + (point 258.240000 275.740000 -16.800000 0.460000) + (point 259.080000 274.150000 -15.900000 0.460000) + 4) + (segment 3861 + (point 259.080000 274.150000 -15.900000 0.460000) + (point 260.680000 273.340000 -14.970000 0.460000) + 4) + (segment 3862 + (point 260.680000 273.340000 -14.970000 0.460000) + (point 260.460000 270.300000 -13.870000 0.460000) + 4) + (segment 3863 + (point 260.460000 270.300000 -13.870000 0.460000) + (point 259.640000 267.720000 -12.300000 0.460000) + 4) + (segment 3864 + (point 259.640000 267.720000 -12.300000 0.460000) + (point 259.550000 264.110000 -10.880000 0.460000) + 4) + (segment 3865 + (point 259.550000 264.110000 -10.880000 0.460000) + (point 260.660000 261.380000 -9.200000 0.460000) + 4) + (segment 3866 + (point 260.660000 261.380000 -9.200000 0.460000) + (point 261.370000 260.360000 -8.000000 0.460000) + 4) + (segment 3867 + (point 261.370000 260.360000 -8.000000 0.460000) + (point 262.660000 258.870000 -7.220000 0.460000) + 4) + (segment 3868 + (point 262.660000 258.870000 -7.220000 0.460000) + (point 263.190000 256.610000 -5.530000 0.460000) + 4) + (segment 3869 + (point 263.190000 256.610000 -5.530000 0.460000) + (point 265.550000 256.570000 -4.850000 0.460000) + 4) + (segment 3870 + (point 265.550000 256.570000 -4.850000 0.460000) + (point 267.740000 255.280000 -4.150000 0.460000) + 4) + (segment 3871 + (point 267.740000 255.280000 -4.150000 0.460000) + (point 268.540000 251.880000 -3.700000 0.460000) + 4) + (segment 3872 + (point 268.540000 251.880000 -3.700000 0.460000) + (point 270.090000 249.260000 -3.000000 0.460000) + 4) + (segment 3873 + (point 270.090000 249.260000 -3.000000 0.460000) + (point 272.280000 247.980000 -1.070000 0.460000) + 4) + (segment 3874 + (point 272.280000 247.980000 -1.070000 0.460000) + (point 274.720000 245.580000 -0.250000 0.460000) + 4) + (segment 3875 + (point 274.720000 245.580000 -0.250000 0.460000) + (point 277.180000 243.160000 0.300000 0.460000) + 4) + (segment 3876 + (point 277.180000 243.160000 0.300000 0.460000) + (point 279.170000 240.650000 1.850000 0.460000) + 4) + (segment 3877 + (point 279.170000 240.650000 1.850000 0.460000) + (point 280.330000 239.720000 3.400000 0.460000) + 4) + (segment 3878 + (point 280.330000 239.720000 3.400000 0.460000) + (point 282.840000 239.120000 4.800000 0.460000) + 4) + (segment 3879 + (point 282.840000 239.120000 4.800000 0.460000) + (point 283.680000 237.520000 4.520000 0.460000) + 4) + (segment 3880 + (point 283.680000 237.520000 4.520000 0.460000) + (point 284.080000 235.830000 3.850000 0.460000) + 4) + (segment 3881 + (point 284.080000 235.830000 3.850000 0.460000) + (point 285.190000 233.090000 4.070000 0.460000) + 4) + (segment 3882 + (point 285.190000 233.090000 4.070000 0.460000) + (point 285.190000 233.090000 4.050000 0.460000) + 4) + (segment 3883 + (point 285.190000 233.090000 4.050000 0.460000) + (point 284.390000 230.530000 5.550000 0.460000) + 4) + (segment 3884 + (point 284.390000 230.530000 5.550000 0.460000) + (point 284.390000 230.530000 5.480000 0.460000) + 4) + (segment 3885 + (point 284.390000 230.530000 5.480000 0.460000) + (point 286.250000 228.570000 6.950000 0.460000) + 4) + (segment 3886 + (point 286.250000 228.570000 6.950000 0.460000) + (point 288.650000 224.360000 7.500000 0.460000) + 4) + (segment 3887 + (point 288.650000 224.360000 7.500000 0.460000) + (point 290.080000 222.300000 9.880000 0.460000) + 4) + (segment 3888 + (point 290.080000 222.300000 9.880000 0.460000) + (point 290.080000 222.300000 9.850000 0.460000) + 4) + (segment 3889 + (point 290.080000 222.300000 9.850000 0.460000) + (point 291.540000 222.050000 11.300000 0.460000) + 4) + (segment 3890 + (point 291.540000 222.050000 11.300000 0.460000) + (point 294.760000 220.410000 12.830000 0.460000) + 4) + (segment 3891 + (point 294.760000 220.410000 12.830000 0.460000) + (point 297.840000 219.340000 13.200000 0.460000) + 4) + (segment 3892 + (point 297.840000 219.340000 13.200000 0.460000) + (point 299.570000 217.950000 14.550000 0.460000) + 4) + (segment 3893 + (point 299.570000 217.950000 14.550000 0.460000) + (point 299.570000 217.950000 14.520000 0.460000) + 4) + (segment 3894 + (point 299.570000 217.950000 14.520000 0.460000) + (point 299.970000 216.250000 16.070000 0.460000) + 4) + (segment 3895 + (point 299.970000 216.250000 16.070000 0.460000) + (point 299.040000 214.250000 17.350000 0.460000) + 4) + (segment 3896 + (point 299.040000 214.250000 17.350000 0.460000) + (point 300.580000 211.620000 17.920000 0.460000) + 4) + (segment 3897 + (point 300.580000 211.620000 17.920000 0.460000) + (point 299.600000 207.810000 18.420000 0.460000) + 4) + (segment 3898 + (point 299.600000 207.810000 18.420000 0.460000) + (point 299.190000 203.530000 20.520000 0.460000) + 4) + (segment 3899 + (point 299.190000 203.530000 20.520000 0.460000) + (point 299.190000 203.530000 20.600000 0.460000) + 4)) + (branch 143 141 + (segment 3900 + (point 255.980000 279.410000 -19.420000 0.460000) + (point 258.330000 279.340000 -19.850000 0.460000) + 4) + (segment 3901 + (point 258.330000 279.340000 -19.850000 0.460000) + (point 260.960000 278.180000 -20.520000 0.460000) + 4) + (segment 3902 + (point 260.960000 278.180000 -20.520000 0.460000) + (point 263.290000 276.330000 -20.800000 0.460000) + 4) + (segment 3903 + (point 263.290000 276.330000 -20.800000 0.460000) + (point 264.700000 274.270000 -20.800000 0.460000) + 4) + (segment 3904 + (point 264.700000 274.270000 -20.800000 0.460000) + (point 265.730000 273.930000 -20.800000 0.460000) + 4) + (segment 3905 + (point 265.730000 273.930000 -20.800000 0.460000) + (point 267.870000 270.840000 -21.450000 0.460000) + 4) + (segment 3906 + (point 267.870000 270.840000 -21.450000 0.460000) + (point 270.050000 269.550000 -21.700000 0.460000) + 4) + (segment 3907 + (point 270.050000 269.550000 -21.700000 0.460000) + (point 271.920000 267.610000 -20.300000 0.460000) + 4) + (segment 3908 + (point 271.920000 267.610000 -20.300000 0.460000) + (point 273.330000 265.550000 -19.480000 0.460000) + 4) + (segment 3909 + (point 273.330000 265.550000 -19.480000 0.460000) + (point 274.000000 262.720000 -19.330000 0.460000) + 4) + (segment 3910 + (point 274.000000 262.720000 -19.330000 0.460000) + (point 274.980000 260.560000 -18.700000 0.460000) + 4) + (segment 3911 + (point 274.980000 260.560000 -18.700000 0.460000) + (point 277.750000 258.820000 -18.100000 0.460000) + 4) + (segment 3912 + (point 277.750000 258.820000 -18.100000 0.460000) + (point 281.270000 257.850000 -20.650000 0.460000) + 4) + (segment 3913 + (point 281.270000 257.850000 -20.650000 0.460000) + (point 284.490000 256.210000 -20.730000 0.460000) + 4) + (segment 3914 + (point 284.490000 256.210000 -20.730000 0.460000) + (point 284.490000 256.210000 -20.750000 0.460000) + 4) + (segment 3915 + (point 284.490000 256.210000 -20.750000 0.460000) + (point 286.630000 253.140000 -19.520000 0.460000) + 4) + (segment 3916 + (point 286.630000 253.140000 -19.520000 0.460000) + (point 288.170000 250.520000 -19.230000 0.460000) + 4) + (segment 3917 + (point 288.170000 250.520000 -19.230000 0.460000) + (point 289.420000 247.220000 -18.570000 0.460000) + 4) + (segment 3918 + (point 289.420000 247.220000 -18.570000 0.460000) + (point 289.420000 247.220000 -18.630000 0.460000) + 4) + (segment 3919 + (point 289.420000 247.220000 -18.630000 0.460000) + (point 291.110000 244.040000 -18.150000 0.460000) + 4) + (segment 3920 + (point 291.110000 244.040000 -18.150000 0.460000) + (point 293.550000 241.630000 -18.150000 0.460000) + 4) + (segment 3921 + (point 293.550000 241.630000 -18.150000 0.460000) + (point 296.000000 239.220000 -19.400000 0.460000) + 4) + (segment 3922 + (point 296.000000 239.220000 -19.400000 0.460000) + (point 298.460000 236.800000 -18.200000 0.460000) + 4) + (segment 3923 + (point 298.460000 236.800000 -18.200000 0.460000) + (point 299.570000 234.080000 -16.830000 0.460000) + 4) + (segment 3924 + (point 299.570000 234.080000 -16.830000 0.460000) + (point 299.570000 234.080000 -16.850000 0.460000) + 4) + (segment 3925 + (point 299.570000 234.080000 -16.850000 0.460000) + (point 300.500000 230.120000 -17.300000 0.460000) + 4) + (segment 3926 + (point 300.500000 230.120000 -17.300000 0.460000) + (point 302.050000 227.500000 -17.080000 0.460000) + 4) + (segment 3927 + (point 302.050000 227.500000 -17.080000 0.460000) + (point 302.050000 227.500000 -17.100000 0.460000) + 4) + (segment 3928 + (point 302.050000 227.500000 -17.100000 0.460000) + (point 305.260000 225.860000 -15.700000 0.460000) + 4) + (segment 3929 + (point 305.260000 225.860000 -15.700000 0.460000) + (point 307.310000 225.140000 -15.600000 0.460000) + 4) + (segment 3930 + (point 307.310000 225.140000 -15.600000 0.460000) + (point 309.570000 221.500000 -14.880000 0.460000) + 4) + (segment 3931 + (point 309.570000 221.500000 -14.880000 0.460000) + (point 311.140000 218.870000 -14.400000 0.460000) + 4) + (segment 3932 + (point 311.140000 218.870000 -14.400000 0.460000) + (point 313.330000 217.600000 -14.400000 0.460000) + 4) + (segment 3933 + (point 313.330000 217.600000 -14.400000 0.460000) + (point 314.130000 214.200000 -15.350000 0.460000) + 4) + (segment 3934 + (point 314.130000 214.200000 -15.350000 0.460000) + (point 315.730000 213.400000 -16.450000 0.460000) + 4) + (segment 3935 + (point 315.730000 213.400000 -16.450000 0.460000) + (point 317.860000 210.300000 -17.130000 0.460000) + 4) + (segment 3936 + (point 317.860000 210.300000 -17.130000 0.460000) + (point 319.730000 208.370000 -17.200000 0.460000) + 4) + (segment 3937 + (point 319.730000 208.370000 -17.200000 0.460000) + (point 321.470000 206.980000 -17.050000 0.460000) + 4) + (segment 3938 + (point 321.470000 206.980000 -17.050000 0.460000) + (point 324.370000 204.670000 -18.050000 0.460000) + 4) + (segment 3939 + (point 324.370000 204.670000 -18.050000 0.460000) + (point 327.890000 203.710000 -18.770000 0.460000) + 4) + (segment 3940 + (point 327.890000 203.710000 -18.770000 0.460000) + (point 329.630000 202.320000 -17.020000 0.460000) + 4) + (segment 3941 + (point 329.630000 202.320000 -17.020000 0.460000) + (point 331.230000 201.500000 -15.000000 0.460000) + 4) + (segment 3942 + (point 331.230000 201.500000 -15.000000 0.460000) + (point 333.610000 201.460000 -13.870000 0.460000) + 4) + (segment 3943 + (point 333.610000 201.460000 -13.870000 0.460000) + (point 334.590000 199.300000 -12.850000 0.460000) + 4) + (segment 3944 + (point 334.590000 199.300000 -12.850000 0.460000) + (point 337.340000 197.550000 -12.300000 0.460000) + 4) + (segment 3945 + (point 337.340000 197.550000 -12.300000 0.460000) + (point 339.480000 194.470000 -11.950000 0.460000) + 4) + (segment 3946 + (point 339.480000 194.470000 -11.950000 0.460000) + (point 340.450000 192.320000 -13.630000 0.460000) + 4) + (segment 3947 + (point 340.450000 192.320000 -13.630000 0.460000) + (point 342.900000 189.900000 -13.000000 0.460000) + 4) + (segment 3948 + (point 342.900000 189.900000 -13.000000 0.460000) + (point 342.460000 189.800000 -13.000000 0.460000) + 4) + (segment 3949 + (point 342.460000 189.800000 -13.000000 0.460000) + (point 345.080000 188.630000 -11.530000 0.460000) + 4) + (segment 3950 + (point 345.080000 188.630000 -11.530000 0.460000) + (point 346.960000 186.670000 -11.450000 0.230000) + 4) + (segment 3951 + (point 346.960000 186.670000 -11.450000 0.230000) + (point 349.450000 186.060000 -10.680000 0.230000) + 4) + (segment 3952 + (point 349.450000 186.060000 -10.680000 0.230000) + (point 350.750000 184.570000 -10.680000 0.230000) + 4) + (segment 3953 + (point 350.750000 184.570000 -10.680000 0.230000) + (point 352.040000 183.090000 -8.500000 0.230000) + 4) + (segment 3954 + (point 352.040000 183.090000 -8.500000 0.230000) + (point 352.040000 183.090000 -8.450000 0.230000) + 4)) + (branch 144 76 + (segment 3955 + (point 246.580000 253.310000 -19.880000 1.375000) + (point 244.930000 254.130000 -18.750000 0.460000) + 4) + (segment 3956 + (point 244.930000 254.130000 -18.750000 0.460000) + (point 244.680000 255.260000 -16.650000 0.460000) + 4) + (segment 3957 + (point 244.680000 255.260000 -16.650000 0.460000) + (point 246.140000 255.020000 -14.950000 0.460000) + 4) + (segment 3958 + (point 246.140000 255.020000 -14.950000 0.460000) + (point 247.030000 255.220000 -12.800000 0.460000) + 4) + (segment 3959 + (point 247.030000 255.220000 -12.800000 0.460000) + (point 242.740000 255.420000 -11.950000 0.460000) + 4) + (segment 3960 + (point 242.740000 255.420000 -11.950000 0.460000) + (point 240.170000 258.390000 -11.400000 0.460000) + 4) + (segment 3961 + (point 240.170000 258.390000 -11.400000 0.460000) + (point 236.250000 261.060000 -11.150000 0.460000) + 4) + (segment 3962 + (point 236.250000 261.060000 -11.150000 0.460000) + (point 236.250000 261.060000 -11.170000 0.460000) + 4) + (segment 3963 + (point 236.250000 261.060000 -11.170000 0.460000) + (point 234.450000 260.640000 -10.050000 0.460000) + 4) + (segment 3964 + (point 234.450000 260.640000 -10.050000 0.460000) + (point 231.640000 260.570000 -9.720000 0.460000) + 4) + (segment 3965 + (point 231.640000 260.570000 -9.720000 0.460000) + (point 230.300000 260.260000 -8.730000 0.460000) + 4)) + (branch 145 144 + (segment 3966 + (point 230.300000 260.260000 -8.730000 0.460000) + (point 228.080000 259.730000 -9.430000 0.460000) + 4) + (segment 3967 + (point 228.080000 259.730000 -9.430000 0.460000) + (point 224.230000 260.040000 -9.430000 0.460000) + 4) + (segment 3968 + (point 224.230000 260.040000 -9.430000 0.460000) + (point 223.200000 260.390000 -10.570000 0.460000) + 4) + (segment 3969 + (point 223.200000 260.390000 -10.570000 0.460000) + (point 223.200000 260.390000 -10.600000 0.460000) + 4) + (segment 3970 + (point 223.200000 260.390000 -10.600000 0.460000) + (point 220.000000 262.020000 -11.630000 0.460000) + 4) + (segment 3971 + (point 220.000000 262.020000 -11.630000 0.460000) + (point 217.990000 264.540000 -12.750000 0.460000) + 4) + (segment 3972 + (point 217.990000 264.540000 -12.750000 0.460000) + (point 215.760000 264.020000 -13.700000 0.460000) + 4) + (segment 3973 + (point 215.760000 264.020000 -13.700000 0.460000) + (point 213.270000 264.620000 -14.670000 0.460000) + 4) + (segment 3974 + (point 213.270000 264.620000 -14.670000 0.460000) + (point 210.050000 266.260000 -14.670000 0.460000) + 4) + (segment 3975 + (point 210.050000 266.260000 -14.670000 0.460000) + (point 210.050000 266.260000 -14.700000 0.460000) + 4) + (segment 3976 + (point 210.050000 266.260000 -14.700000 0.460000) + (point 209.210000 267.850000 -15.200000 0.460000) + 4) + (segment 3977 + (point 209.210000 267.850000 -15.200000 0.460000) + (point 207.020000 269.140000 -15.880000 0.460000) + 4) + (segment 3978 + (point 207.020000 269.140000 -15.880000 0.460000) + (point 207.020000 269.140000 -15.900000 0.460000) + 4) + (segment 3979 + (point 207.020000 269.140000 -15.900000 0.460000) + (point 204.080000 269.640000 -16.700000 0.460000) + 4) + (segment 3980 + (point 204.080000 269.640000 -16.700000 0.460000) + (point 202.650000 271.700000 -17.420000 0.460000) + 4) + (segment 3981 + (point 202.650000 271.700000 -17.420000 0.460000) + (point 198.940000 271.430000 -17.420000 0.460000) + 4) + (segment 3982 + (point 198.940000 271.430000 -17.420000 0.460000) + (point 194.980000 272.280000 -17.450000 0.460000) + 4) + (segment 3983 + (point 194.980000 272.280000 -17.450000 0.460000) + (point 193.420000 274.910000 -18.770000 0.460000) + 4) + (segment 3984 + (point 193.420000 274.910000 -18.770000 0.460000) + (point 193.420000 274.910000 -18.750000 0.460000) + 4) + (segment 3985 + (point 193.420000 274.910000 -18.750000 0.460000) + (point 191.900000 273.350000 -20.100000 0.460000) + 4) + (segment 3986 + (point 191.900000 273.350000 -20.100000 0.460000) + (point 189.970000 273.500000 -21.180000 0.460000) + 4) + (segment 3987 + (point 189.970000 273.500000 -21.180000 0.460000) + (point 187.930000 274.220000 -22.020000 0.460000) + 4) + (segment 3988 + (point 187.930000 274.220000 -22.020000 0.460000) + (point 185.740000 275.490000 -22.700000 0.460000) + 4) + (segment 3989 + (point 185.740000 275.490000 -22.700000 0.460000) + (point 183.110000 276.680000 -23.500000 0.460000) + 4) + (segment 3990 + (point 183.110000 276.680000 -23.500000 0.460000) + (point 181.560000 279.290000 -23.500000 0.460000) + 4) + (segment 3991 + (point 181.560000 279.290000 -23.500000 0.460000) + (point 179.050000 279.910000 -23.500000 0.460000) + 4) + (segment 3992 + (point 179.050000 279.910000 -23.500000 0.460000) + (point 175.980000 280.970000 -23.630000 0.460000) + 4) + (segment 3993 + (point 175.980000 280.970000 -23.630000 0.460000) + (point 172.770000 282.610000 -23.630000 0.460000) + 4) + (segment 3994 + (point 172.770000 282.610000 -23.630000 0.460000) + (point 169.600000 286.050000 -23.400000 0.230000) + 4) + (segment 3995 + (point 169.600000 286.050000 -23.400000 0.230000) + (point 166.220000 286.440000 -24.170000 0.230000) + 4) + (segment 3996 + (point 166.220000 286.440000 -24.170000 0.230000) + (point 162.700000 287.410000 -25.150000 0.230000) + 4) + (segment 3997 + (point 162.700000 287.410000 -25.150000 0.230000) + (point 160.950000 288.800000 -25.030000 0.230000) + 4) + (segment 3998 + (point 160.950000 288.800000 -25.030000 0.230000) + (point 160.550000 290.490000 -24.000000 0.230000) + 4) + (segment 3999 + (point 160.550000 290.490000 -24.000000 0.230000) + (point 157.970000 293.470000 -24.920000 0.230000) + 4) + (segment 4000 + (point 157.970000 293.470000 -24.920000 0.230000) + (point 157.970000 293.470000 -24.950000 0.230000) + 4) + (segment 4001 + (point 157.970000 293.470000 -24.950000 0.230000) + (point 156.810000 294.380000 -26.350000 0.230000) + 4) + (segment 4002 + (point 156.810000 294.380000 -26.350000 0.230000) + (point 156.810000 294.380000 -26.380000 0.230000) + 4) + (segment 4003 + (point 156.810000 294.380000 -26.380000 0.230000) + (point 154.500000 296.240000 -27.200000 0.230000) + 4) + (segment 4004 + (point 154.500000 296.240000 -27.200000 0.230000) + (point 151.740000 297.970000 -27.970000 0.230000) + 4) + (segment 4005 + (point 151.740000 297.970000 -27.970000 0.230000) + (point 150.760000 300.140000 -28.150000 0.230000) + 4) + (segment 4006 + (point 150.760000 300.140000 -28.150000 0.230000) + (point 148.650000 299.060000 -28.150000 0.230000) + 4) + (segment 4007 + (point 148.650000 299.060000 -28.150000 0.230000) + (point 144.290000 301.610000 -28.150000 0.230000) + 4) + (segment 4008 + (point 144.290000 301.610000 -28.150000 0.230000) + (point 140.310000 302.460000 -28.250000 0.230000) + 4) + (segment 4009 + (point 140.310000 302.460000 -28.250000 0.230000) + (point 140.310000 302.460000 -28.300000 0.230000) + 4) + (segment 4010 + (point 140.310000 302.460000 -28.300000 0.230000) + (point 137.550000 304.210000 -28.300000 0.230000) + 4) + (segment 4011 + (point 137.550000 304.210000 -28.300000 0.230000) + (point 134.070000 306.990000 -28.300000 0.230000) + 4) + (segment 4012 + (point 134.070000 306.990000 -28.300000 0.230000) + (point 130.600000 309.740000 -27.600000 0.230000) + 4) + (segment 4013 + (point 130.600000 309.740000 -27.600000 0.230000) + (point 127.970000 310.920000 -26.650000 0.230000) + 4) + (segment 4014 + (point 127.970000 310.920000 -26.650000 0.230000) + (point 125.080000 313.230000 -26.000000 0.230000) + 4) + (segment 4015 + (point 125.080000 313.230000 -26.000000 0.230000) + (point 123.790000 314.720000 -25.070000 0.230000) + 4) + (segment 4016 + (point 123.790000 314.720000 -25.070000 0.230000) + (point 121.330000 317.130000 -24.200000 0.230000) + 4) + (segment 4017 + (point 121.330000 317.130000 -24.200000 0.230000) + (point 118.570000 318.870000 -22.770000 0.230000) + 4) + (segment 4018 + (point 118.570000 318.870000 -22.770000 0.230000) + (point 117.140000 320.930000 -22.270000 0.230000) + 4) + (segment 4019 + (point 117.140000 320.930000 -22.270000 0.230000) + (point 114.430000 324.470000 -21.720000 0.230000) + 4) + (segment 4020 + (point 114.430000 324.470000 -21.720000 0.230000) + (point 114.430000 324.470000 -21.750000 0.230000) + 4) + (segment 4021 + (point 114.430000 324.470000 -21.750000 0.230000) + (point 114.350000 326.830000 -20.070000 0.230000) + 4) + (segment 4022 + (point 114.350000 326.830000 -20.070000 0.230000) + (point 114.350000 326.830000 -19.950000 0.230000) + 4)) + (branch 146 144 + (segment 4023 + (point 230.300000 260.260000 -8.730000 0.460000) + (point 227.150000 263.700000 -8.000000 0.230000) + 4)) + (branch 147 146 + (segment 4024 + (point 227.150000 263.700000 -8.000000 0.230000) + (point 227.200000 265.510000 -6.930000 0.230000) + 4) + (segment 4025 + (point 227.200000 265.510000 -6.930000 0.230000) + (point 225.710000 265.760000 -5.600000 0.230000) + 4) + (segment 4026 + (point 225.710000 265.760000 -5.600000 0.230000) + (point 223.840000 267.710000 -4.920000 0.230000) + 4) + (segment 4027 + (point 223.840000 267.710000 -4.920000 0.230000) + (point 222.640000 266.820000 -4.880000 0.230000) + 4) + (segment 4028 + (point 222.640000 266.820000 -4.880000 0.230000) + (point 223.140000 268.740000 -2.970000 0.230000) + 4) + (segment 4029 + (point 223.140000 268.740000 -2.970000 0.230000) + (point 223.140000 268.740000 -2.950000 0.230000) + 4) + (segment 4030 + (point 223.140000 268.740000 -2.950000 0.230000) + (point 222.420000 269.760000 -1.750000 0.230000) + 4) + (segment 4031 + (point 222.420000 269.760000 -1.750000 0.230000) + (point 221.580000 271.350000 -0.120000 0.230000) + 4) + (segment 4032 + (point 221.580000 271.350000 -0.120000 0.230000) + (point 222.340000 272.140000 1.750000 0.230000) + 4) + (segment 4033 + (point 222.340000 272.140000 1.750000 0.230000) + (point 219.970000 272.180000 3.820000 0.230000) + 4) + (segment 4034 + (point 219.970000 272.180000 3.820000 0.230000) + (point 217.030000 272.680000 4.720000 0.230000) + 4) + (segment 4035 + (point 217.030000 272.680000 4.720000 0.230000) + (point 217.210000 273.910000 6.180000 0.230000) + 4) + (segment 4036 + (point 217.210000 273.910000 6.180000 0.230000) + (point 217.980000 274.680000 8.100000 0.230000) + 4) + (segment 4037 + (point 217.980000 274.680000 8.100000 0.230000) + (point 217.440000 276.950000 9.450000 0.230000) + 4) + (segment 4038 + (point 217.440000 276.950000 9.450000 0.230000) + (point 218.460000 276.600000 9.850000 0.230000) + 4) + (segment 4039 + (point 218.460000 276.600000 9.850000 0.230000) + (point 218.060000 278.290000 11.980000 0.230000) + 4) + (segment 4040 + (point 218.060000 278.290000 11.980000 0.230000) + (point 216.150000 278.440000 14.230000 0.230000) + 4) + (segment 4041 + (point 216.150000 278.440000 14.230000 0.230000) + (point 217.670000 279.990000 16.150000 0.230000) + 4) + (segment 4042 + (point 217.670000 279.990000 16.150000 0.230000) + (point 217.320000 283.490000 17.350000 0.230000) + 4) + (segment 4043 + (point 217.320000 283.490000 17.350000 0.230000) + (point 217.320000 283.490000 17.400000 0.230000) + 4) + (segment 4044 + (point 217.320000 283.490000 17.400000 0.230000) + (point 218.710000 285.610000 18.750000 0.230000) + 4)) + (branch 148 147 + (segment 4045 + (point 218.710000 285.610000 18.750000 0.230000) + (point 219.380000 288.760000 18.800000 0.230000) + 4) + (segment 4046 + (point 219.380000 288.760000 18.800000 0.230000) + (point 219.750000 291.230000 20.270000 0.230000) + 4) + (segment 4047 + (point 219.750000 291.230000 20.270000 0.230000) + (point 221.540000 291.640000 21.920000 0.230000) + 4) + (segment 4048 + (point 221.540000 291.640000 21.920000 0.230000) + (point 222.560000 291.290000 23.330000 0.230000) + 4) + (segment 4049 + (point 222.560000 291.290000 23.330000 0.230000) + (point 222.560000 291.290000 23.300000 0.230000) + 4)) + (branch 149 147 + (segment 4050 + (point 218.710000 285.610000 18.750000 0.230000) + (point 220.170000 285.360000 17.500000 0.230000) + 4) + (segment 4051 + (point 220.170000 285.360000 17.500000 0.230000) + (point 221.260000 286.800000 19.130000 0.230000) + 4) + (segment 4052 + (point 221.260000 286.800000 19.130000 0.230000) + (point 221.260000 286.800000 19.200000 0.230000) + 4) + (segment 4053 + (point 221.260000 286.800000 19.200000 0.230000) + (point 221.760000 288.710000 21.050000 0.230000) + 4) + (segment 4054 + (point 221.760000 288.710000 21.050000 0.230000) + (point 220.910000 290.310000 21.800000 0.230000) + 4) + (segment 4055 + (point 220.910000 290.310000 21.800000 0.230000) + (point 221.540000 291.640000 23.100000 0.230000) + 4) + (segment 4056 + (point 221.540000 291.640000 23.100000 0.230000) + (point 223.320000 292.060000 23.780000 0.230000) + 4) + (segment 4057 + (point 223.320000 292.060000 23.780000 0.230000) + (point 223.320000 292.060000 23.950000 0.230000) + 4)) + (branch 150 146 + (segment 4058 + (point 227.150000 263.700000 -8.000000 0.230000) + (point 225.080000 264.420000 -9.150000 0.460000) + 4) + (segment 4059 + (point 225.080000 264.420000 -9.150000 0.460000) + (point 222.460000 265.590000 -9.400000 0.460000) + 4) + (segment 4060 + (point 222.460000 265.590000 -9.400000 0.460000) + (point 220.150000 267.440000 -8.320000 0.460000) + 4) + (segment 4061 + (point 220.150000 267.440000 -8.320000 0.460000) + (point 220.150000 267.440000 -8.350000 0.460000) + 4) + (segment 4062 + (point 220.150000 267.440000 -8.350000 0.460000) + (point 218.360000 267.020000 -8.200000 0.460000) + 4) + (segment 4063 + (point 218.360000 267.020000 -8.200000 0.460000) + (point 214.380000 267.870000 -8.320000 0.460000) + 4) + (segment 4064 + (point 214.380000 267.870000 -8.320000 0.460000) + (point 211.040000 270.080000 -9.430000 0.460000) + 4) + (segment 4065 + (point 211.040000 270.080000 -9.430000 0.460000) + (point 207.910000 269.350000 -9.430000 0.460000) + 4) + (segment 4066 + (point 207.910000 269.350000 -9.430000 0.460000) + (point 207.250000 272.180000 -10.170000 0.460000) + 4) + (segment 4067 + (point 207.250000 272.180000 -10.170000 0.460000) + (point 205.380000 274.120000 -10.170000 0.460000) + 4) + (segment 4068 + (point 205.380000 274.120000 -10.170000 0.460000) + (point 202.880000 274.730000 -9.250000 0.460000) + 4) + (segment 4069 + (point 202.880000 274.730000 -9.250000 0.460000) + (point 200.210000 274.100000 -8.150000 0.460000) + 4) + (segment 4070 + (point 200.210000 274.100000 -8.150000 0.460000) + (point 196.990000 275.740000 -7.950000 0.460000) + 4) + (segment 4071 + (point 196.990000 275.740000 -7.950000 0.460000) + (point 195.170000 279.500000 -7.470000 0.460000) + 4) + (segment 4072 + (point 195.170000 279.500000 -7.470000 0.460000) + (point 191.510000 281.020000 -7.470000 0.460000) + 4) + (segment 4073 + (point 191.510000 281.020000 -7.470000 0.460000) + (point 188.110000 281.430000 -6.550000 0.460000) + 4) + (segment 4074 + (point 188.110000 281.430000 -6.550000 0.460000) + (point 185.220000 283.730000 -6.550000 0.460000) + 4) + (segment 4075 + (point 185.220000 283.730000 -6.550000 0.460000) + (point 181.970000 283.560000 -7.900000 0.460000) + 4) + (segment 4076 + (point 181.970000 283.560000 -7.900000 0.460000) + (point 179.330000 284.750000 -9.150000 0.460000) + 4) + (segment 4077 + (point 179.330000 284.750000 -9.150000 0.460000) + (point 177.020000 286.590000 -9.600000 0.460000) + 4) + (segment 4078 + (point 177.020000 286.590000 -9.600000 0.460000) + (point 177.020000 286.590000 -9.630000 0.460000) + 4) + (segment 4079 + (point 177.020000 286.590000 -9.630000 0.460000) + (point 173.100000 289.250000 -7.150000 0.460000) + 4) + (segment 4080 + (point 173.100000 289.250000 -7.150000 0.460000) + (point 173.100000 289.250000 -7.170000 0.460000) + 4) + (segment 4081 + (point 173.100000 289.250000 -7.170000 0.460000) + (point 171.670000 291.310000 -7.170000 0.460000) + 4) + (segment 4082 + (point 171.670000 291.310000 -7.170000 0.460000) + (point 169.230000 293.710000 -6.520000 0.460000) + 4) + (segment 4083 + (point 169.230000 293.710000 -6.520000 0.460000) + (point 166.770000 296.130000 -6.520000 0.460000) + 4) + (segment 4084 + (point 166.770000 296.130000 -6.520000 0.460000) + (point 165.610000 297.050000 -5.800000 0.460000) + 4) + (segment 4085 + (point 165.610000 297.050000 -5.800000 0.460000) + (point 163.830000 296.630000 -5.800000 0.460000) + 4) + (segment 4086 + (point 163.830000 296.630000 -5.800000 0.460000) + (point 160.180000 298.160000 -5.030000 0.460000) + 4) + (segment 4087 + (point 160.180000 298.160000 -5.030000 0.460000) + (point 156.910000 297.990000 -4.150000 0.460000) + 4) + (segment 4088 + (point 156.910000 297.990000 -4.150000 0.460000) + (point 154.280000 299.180000 -4.100000 0.460000) + 4) + (segment 4089 + (point 154.280000 299.180000 -4.100000 0.460000) + (point 153.610000 302.000000 -3.570000 0.460000) + 4) + (segment 4090 + (point 153.610000 302.000000 -3.570000 0.460000) + (point 150.720000 304.310000 -3.570000 0.230000) + 4) + (segment 4091 + (point 150.720000 304.310000 -3.570000 0.230000) + (point 147.380000 306.520000 -3.570000 0.230000) + 4) + (segment 4092 + (point 147.380000 306.520000 -3.570000 0.230000) + (point 144.440000 307.020000 -3.570000 0.230000) + 4) + (segment 4093 + (point 144.440000 307.020000 -3.570000 0.230000) + (point 141.010000 311.590000 -3.950000 0.230000) + 4) + (segment 4094 + (point 141.010000 311.590000 -3.950000 0.230000) + (point 141.010000 311.590000 -3.970000 0.230000) + 4) + (segment 4095 + (point 141.010000 311.590000 -3.970000 0.230000) + (point 138.960000 312.300000 -3.270000 0.230000) + 4) + (segment 4096 + (point 138.960000 312.300000 -3.270000 0.230000) + (point 134.590000 314.860000 -4.350000 0.230000) + 4) + (segment 4097 + (point 134.590000 314.860000 -4.350000 0.230000) + (point 132.400000 316.140000 -5.130000 0.230000) + 4) + (segment 4098 + (point 132.400000 316.140000 -5.130000 0.230000) + (point 129.770000 317.310000 -5.130000 0.230000) + 4) + (segment 4099 + (point 129.770000 317.310000 -5.130000 0.230000) + (point 127.890000 319.270000 -6.220000 0.230000) + 4) + (segment 4100 + (point 127.890000 319.270000 -6.220000 0.230000) + (point 127.180000 320.290000 -8.300000 0.230000) + 4)) + (branch 151 75 + (segment 4101 + (point 251.090000 219.870000 -12.100000 1.375000) + (point 247.520000 217.100000 -12.100000 0.690000) + 4) + (segment 4102 + (point 247.520000 217.100000 -12.100000 0.690000) + (point 244.970000 215.900000 -13.250000 0.690000) + 4) + (segment 4103 + (point 244.970000 215.900000 -13.250000 0.690000) + (point 242.460000 216.520000 -14.400000 0.690000) + 4) + (segment 4104 + (point 242.460000 216.520000 -14.400000 0.690000) + (point 241.620000 218.110000 -15.600000 0.690000) + 4) + (segment 4105 + (point 241.620000 218.110000 -15.600000 0.690000) + (point 240.820000 221.510000 -19.420000 0.690000) + 4)) + (branch 152 151 + (segment 4106 + (point 240.820000 221.510000 -19.420000 0.690000) + (point 238.640000 222.780000 -20.750000 0.690000) + 4) + (segment 4107 + (point 238.640000 222.780000 -20.750000 0.690000) + (point 234.350000 222.980000 -22.300000 0.690000) + 4) + (segment 4108 + (point 234.350000 222.980000 -22.300000 0.690000) + (point 232.130000 222.460000 -23.250000 0.690000) + 4) + (segment 4109 + (point 232.130000 222.460000 -23.250000 0.690000) + (point 232.130000 222.460000 -23.270000 0.690000) + 4) + (segment 4110 + (point 232.130000 222.460000 -23.270000 0.690000) + (point 230.780000 222.140000 -25.000000 0.690000) + 4)) + (branch 153 152 + (segment 4111 + (point 230.780000 222.140000 -25.000000 0.690000) + (point 228.510000 219.810000 -25.700000 0.460000) + 4) + (segment 4112 + (point 228.510000 219.810000 -25.700000 0.460000) + (point 226.090000 218.050000 -27.150000 0.460000) + 4) + (segment 4113 + (point 226.090000 218.050000 -27.150000 0.460000) + (point 224.480000 218.870000 -28.850000 0.460000) + 4) + (segment 4114 + (point 224.480000 218.870000 -28.850000 0.460000) + (point 223.590000 218.660000 -30.230000 0.460000) + 4) + (segment 4115 + (point 223.590000 218.660000 -30.230000 0.460000) + (point 222.970000 217.320000 -31.670000 0.460000) + 4) + (segment 4116 + (point 222.970000 217.320000 -31.670000 0.460000) + (point 221.630000 217.010000 -33.100000 0.460000) + 4) + (segment 4117 + (point 221.630000 217.010000 -33.100000 0.460000) + (point 219.650000 215.350000 -34.170000 0.460000) + 4) + (segment 4118 + (point 219.650000 215.350000 -34.170000 0.460000) + (point 218.710000 213.330000 -35.920000 0.460000) + 4) + (segment 4119 + (point 218.710000 213.330000 -35.920000 0.460000) + (point 220.050000 213.650000 -38.530000 0.460000) + 4) + (segment 4120 + (point 220.050000 213.650000 -38.530000 0.460000) + (point 218.940000 216.380000 -40.950000 0.460000) + 4) + (segment 4121 + (point 218.940000 216.380000 -40.950000 0.460000) + (point 216.130000 216.310000 -43.050000 0.460000) + 4) + (segment 4122 + (point 216.130000 216.310000 -43.050000 0.460000) + (point 212.990000 215.580000 -44.350000 0.460000) + 4) + (segment 4123 + (point 212.990000 215.580000 -44.350000 0.460000) + (point 210.590000 213.830000 -44.250000 0.460000) + 4) + (segment 4124 + (point 210.590000 213.830000 -44.250000 0.460000) + (point 207.860000 211.390000 -44.750000 0.460000) + 4) + (segment 4125 + (point 207.860000 211.390000 -44.750000 0.460000) + (point 203.790000 208.650000 -45.150000 0.460000) + 4) + (segment 4126 + (point 203.790000 208.650000 -45.150000 0.460000) + (point 202.140000 207.660000 -45.150000 0.230000) + 4) + (segment 4127 + (point 202.140000 207.660000 -45.150000 0.230000) + (point 197.620000 204.810000 -45.970000 0.230000) + 4) + (segment 4128 + (point 197.620000 204.810000 -45.970000 0.230000) + (point 195.260000 204.860000 -46.930000 0.230000) + 4) + (segment 4129 + (point 195.260000 204.860000 -46.930000 0.230000) + (point 195.260000 204.860000 -46.950000 0.230000) + 4) + (segment 4130 + (point 195.260000 204.860000 -46.950000 0.230000) + (point 193.520000 206.240000 -47.800000 0.230000) + 4) + (segment 4131 + (point 193.520000 206.240000 -47.800000 0.230000) + (point 190.840000 205.610000 -48.700000 0.230000) + 4) + (segment 4132 + (point 190.840000 205.610000 -48.700000 0.230000) + (point 190.840000 205.610000 -48.720000 0.230000) + 4) + (segment 4133 + (point 190.840000 205.610000 -48.720000 0.230000) + (point 187.270000 204.780000 -49.580000 0.230000) + 4) + (segment 4134 + (point 187.270000 204.780000 -49.580000 0.230000) + (point 183.880000 205.170000 -49.380000 0.230000) + 4) + (segment 4135 + (point 183.880000 205.170000 -49.380000 0.230000) + (point 181.380000 205.790000 -49.380000 0.230000) + 4) + (segment 4136 + (point 181.380000 205.790000 -49.380000 0.230000) + (point 177.990000 206.190000 -49.380000 0.230000) + 4) + (segment 4137 + (point 177.990000 206.190000 -49.380000 0.230000) + (point 175.940000 206.890000 -50.320000 0.230000) + 4) + (segment 4138 + (point 175.940000 206.890000 -50.320000 0.230000) + (point 175.940000 206.890000 -50.350000 0.230000) + 4) + (segment 4139 + (point 175.940000 206.890000 -50.350000 0.230000) + (point 173.750000 208.180000 -51.250000 0.230000) + 4) + (segment 4140 + (point 173.750000 208.180000 -51.250000 0.230000) + (point 172.900000 209.770000 -52.080000 0.230000) + 4) + (segment 4141 + (point 172.900000 209.770000 -52.080000 0.230000) + (point 172.520000 211.460000 -53.380000 0.230000) + 4) + (segment 4142 + (point 172.520000 211.460000 -53.380000 0.230000) + (point 172.520000 211.460000 -53.400000 0.230000) + 4) + (segment 4143 + (point 172.520000 211.460000 -53.400000 0.230000) + (point 172.110000 213.160000 -54.670000 0.230000) + 4) + (segment 4144 + (point 172.110000 213.160000 -54.670000 0.230000) + (point 172.110000 213.160000 -54.830000 0.230000) + 4)) + (branch 154 152 + (segment 4145 + (point 230.780000 222.140000 -25.000000 0.690000) + (point 226.810000 222.990000 -25.000000 0.460000) + 4) + (segment 4146 + (point 226.810000 222.990000 -25.000000 0.460000) + (point 225.080000 224.380000 -27.630000 0.460000) + 4) + (segment 4147 + (point 225.080000 224.380000 -27.630000 0.460000) + (point 224.940000 224.950000 -27.630000 0.460000) + 4) + (segment 4148 + (point 224.940000 224.950000 -27.630000 0.460000) + (point 223.600000 224.630000 -29.770000 0.460000) + 4) + (segment 4149 + (point 223.600000 224.630000 -29.770000 0.460000) + (point 221.510000 223.540000 -30.600000 0.460000) + 4) + (segment 4150 + (point 221.510000 223.540000 -30.600000 0.460000) + (point 219.640000 225.500000 -32.380000 0.460000) + 4) + (segment 4151 + (point 219.640000 225.500000 -32.380000 0.460000) + (point 217.270000 225.540000 -33.450000 0.460000) + 4) + (segment 4152 + (point 217.270000 225.540000 -33.450000 0.460000) + (point 213.960000 223.570000 -34.320000 0.460000) + 4) + (segment 4153 + (point 213.960000 223.570000 -34.320000 0.460000) + (point 211.960000 226.090000 -35.250000 0.460000) + 4) + (segment 4154 + (point 211.960000 226.090000 -35.250000 0.460000) + (point 212.010000 227.890000 -35.250000 0.460000) + 4) + (segment 4155 + (point 212.010000 227.890000 -35.250000 0.460000) + (point 208.930000 228.960000 -35.250000 0.460000) + 4) + (segment 4156 + (point 208.930000 228.960000 -35.250000 0.460000) + (point 207.500000 231.010000 -34.280000 0.460000) + 4) + (segment 4157 + (point 207.500000 231.010000 -34.280000 0.460000) + (point 205.360000 234.090000 -34.350000 0.460000) + 4) + (segment 4158 + (point 205.360000 234.090000 -34.350000 0.460000) + (point 203.680000 237.290000 -33.350000 0.460000) + 4) + (segment 4159 + (point 203.680000 237.290000 -33.350000 0.460000) + (point 202.070000 238.100000 -32.130000 0.460000) + 4) + (segment 4160 + (point 202.070000 238.100000 -32.130000 0.460000) + (point 199.580000 238.710000 -31.670000 0.460000) + 4) + (segment 4161 + (point 199.580000 238.710000 -31.670000 0.460000) + (point 199.050000 240.970000 -30.730000 0.460000) + 4) + (segment 4162 + (point 199.050000 240.970000 -30.730000 0.460000) + (point 198.520000 243.240000 -29.770000 0.460000) + 4) + (segment 4163 + (point 198.520000 243.240000 -29.770000 0.460000) + (point 196.900000 244.060000 -30.550000 0.460000) + 4) + (segment 4164 + (point 196.900000 244.060000 -30.550000 0.460000) + (point 192.890000 243.120000 -30.550000 0.460000) + 4) + (segment 4165 + (point 192.890000 243.120000 -30.550000 0.460000) + (point 190.130000 244.860000 -29.400000 0.460000) + 4) + (segment 4166 + (point 190.130000 244.860000 -29.400000 0.460000) + (point 188.020000 243.760000 -28.330000 0.460000) + 4) + (segment 4167 + (point 188.020000 243.760000 -28.330000 0.460000) + (point 186.100000 243.910000 -26.170000 0.460000) + 4) + (segment 4168 + (point 186.100000 243.910000 -26.170000 0.460000) + (point 183.300000 243.850000 -24.700000 0.460000) + 4) + (segment 4169 + (point 183.300000 243.850000 -24.700000 0.460000) + (point 181.640000 242.870000 -24.320000 0.460000) + 4) + (segment 4170 + (point 181.640000 242.870000 -24.320000 0.460000) + (point 179.720000 243.010000 -24.320000 0.460000) + 4) + (segment 4171 + (point 179.720000 243.010000 -24.320000 0.460000) + (point 177.430000 240.690000 -24.420000 0.460000) + 4) + (segment 4172 + (point 177.430000 240.690000 -24.420000 0.460000) + (point 173.160000 240.880000 -24.130000 0.460000) + 4) + (segment 4173 + (point 173.160000 240.880000 -24.130000 0.460000) + (point 169.050000 242.310000 -23.230000 0.460000) + 4) + (segment 4174 + (point 169.050000 242.310000 -23.230000 0.460000) + (point 164.950000 243.730000 -22.530000 0.460000) + 4) + (segment 4175 + (point 164.950000 243.730000 -22.530000 0.460000) + (point 160.980000 244.590000 -22.000000 0.460000) + 4) + (segment 4176 + (point 160.980000 244.590000 -22.000000 0.460000) + (point 158.390000 247.580000 -21.180000 0.460000) + 4) + (segment 4177 + (point 158.390000 247.580000 -21.180000 0.460000) + (point 155.770000 248.750000 -19.850000 0.460000) + 4) + (segment 4178 + (point 155.770000 248.750000 -19.850000 0.460000) + (point 153.530000 248.220000 -19.850000 0.460000) + 4) + (segment 4179 + (point 153.530000 248.220000 -19.850000 0.460000) + (point 151.210000 250.070000 -18.550000 0.460000) + 4) + (segment 4180 + (point 151.210000 250.070000 -18.550000 0.460000) + (point 146.800000 250.820000 -18.950000 0.460000) + 4) + (segment 4181 + (point 146.800000 250.820000 -18.950000 0.460000) + (point 141.780000 252.030000 -18.150000 0.460000) + 4) + (segment 4182 + (point 141.780000 252.030000 -18.150000 0.460000) + (point 139.460000 253.860000 -17.550000 0.460000) + 4) + (segment 4183 + (point 139.460000 253.860000 -17.550000 0.460000) + (point 137.780000 257.050000 -16.670000 0.460000) + 4) + (segment 4184 + (point 137.780000 257.050000 -16.670000 0.460000) + (point 135.860000 257.190000 -16.070000 0.460000) + 4) + (segment 4185 + (point 135.860000 257.190000 -16.070000 0.460000) + (point 133.760000 256.110000 -15.650000 0.460000) + 4) + (segment 4186 + (point 133.760000 256.110000 -15.650000 0.460000) + (point 131.170000 259.090000 -14.650000 0.460000) + 4) + (segment 4187 + (point 131.170000 259.090000 -14.650000 0.460000) + (point 127.390000 261.180000 -14.130000 0.460000) + 4) + (segment 4188 + (point 127.390000 261.180000 -14.130000 0.460000) + (point 124.360000 264.050000 -14.130000 0.460000) + 4) + (segment 4189 + (point 124.360000 264.050000 -14.130000 0.460000) + (point 122.940000 266.120000 -13.150000 0.460000) + 4) + (segment 4190 + (point 122.940000 266.120000 -13.150000 0.460000) + (point 121.320000 266.930000 -12.300000 0.460000) + 4) + (segment 4191 + (point 121.320000 266.930000 -12.300000 0.460000) + (point 119.280000 267.640000 -11.300000 0.460000) + 4) + (segment 4192 + (point 119.280000 267.640000 -11.300000 0.460000) + (point 116.390000 269.950000 -10.300000 0.230000) + 4) + (segment 4193 + (point 116.390000 269.950000 -10.300000 0.230000) + (point 114.380000 272.470000 -9.880000 0.230000) + 4) + (segment 4194 + (point 114.380000 272.470000 -9.880000 0.230000) + (point 110.950000 277.040000 -9.220000 0.230000) + 4) + (segment 4195 + (point 110.950000 277.040000 -9.220000 0.230000) + (point 107.470000 279.800000 -8.250000 0.230000) + 4)) + (branch 155 151 + (segment 4196 + (point 240.820000 221.510000 -19.420000 0.690000) + (point 242.020000 222.350000 -22.630000 0.460000) + 4) + (segment 4197 + (point 242.020000 222.350000 -22.630000 0.460000) + (point 239.970000 223.080000 -24.720000 0.460000) + 4) + (segment 4198 + (point 239.970000 223.080000 -24.720000 0.460000) + (point 239.970000 223.080000 -24.750000 0.460000) + 4) + (segment 4199 + (point 239.970000 223.080000 -24.750000 0.460000) + (point 237.780000 224.350000 -26.850000 0.460000) + 4) + (segment 4200 + (point 237.780000 224.350000 -26.850000 0.460000) + (point 237.210000 224.800000 -28.050000 0.460000) + 4) + (segment 4201 + (point 237.210000 224.800000 -28.050000 0.460000) + (point 236.530000 221.670000 -28.350000 0.230000) + 4) + (segment 4202 + (point 236.530000 221.670000 -28.350000 0.230000) + (point 239.740000 220.030000 -29.500000 0.230000) + 4) + (segment 4203 + (point 239.740000 220.030000 -29.500000 0.230000) + (point 239.740000 220.030000 -29.520000 0.230000) + 4) + (segment 4204 + (point 239.740000 220.030000 -29.520000 0.230000) + (point 241.970000 220.550000 -31.250000 0.230000) + 4) + (segment 4205 + (point 241.970000 220.550000 -31.250000 0.230000) + (point 243.950000 222.210000 -32.450000 0.230000) + 4) + (segment 4206 + (point 243.950000 222.210000 -32.450000 0.230000) + (point 244.570000 223.550000 -33.380000 0.230000) + 4) + (segment 4207 + (point 244.570000 223.550000 -33.380000 0.230000) + (point 245.640000 224.990000 -34.630000 0.230000) + 4) + (segment 4208 + (point 245.640000 224.990000 -34.630000 0.230000) + (point 246.400000 225.770000 -36.050000 0.230000) + 4) + (segment 4209 + (point 246.400000 225.770000 -36.050000 0.230000) + (point 246.800000 224.080000 -37.720000 0.230000) + 4) + (segment 4210 + (point 246.800000 224.080000 -37.720000 0.230000) + (point 246.350000 223.970000 -39.320000 0.230000) + 4) + (segment 4211 + (point 246.350000 223.970000 -39.320000 0.230000) + (point 248.320000 225.620000 -40.880000 0.230000) + 4) + (segment 4212 + (point 248.320000 225.620000 -40.880000 0.230000) + (point 249.400000 227.070000 -42.800000 0.230000) + 4) + (segment 4213 + (point 249.400000 227.070000 -42.800000 0.230000) + (point 249.400000 227.070000 -42.820000 0.230000) + 4) + (segment 4214 + (point 249.400000 227.070000 -42.820000 0.230000) + (point 247.830000 229.700000 -44.630000 0.230000) + 4) + (segment 4215 + (point 247.830000 229.700000 -44.630000 0.230000) + (point 247.580000 230.820000 -46.400000 0.230000) + 4) + (segment 4216 + (point 247.580000 230.820000 -46.400000 0.230000) + (point 247.680000 234.430000 -47.670000 0.230000) + 4) + (segment 4217 + (point 247.680000 234.430000 -47.670000 0.230000) + (point 245.390000 232.100000 -49.070000 0.230000) + 4) + (segment 4218 + (point 245.390000 232.100000 -49.070000 0.230000) + (point 244.450000 230.090000 -50.830000 0.230000) + 4) + (segment 4219 + (point 244.450000 230.090000 -50.830000 0.230000) + (point 246.290000 232.310000 -53.400000 0.230000) + 4) + (segment 4220 + (point 246.290000 232.310000 -53.400000 0.230000) + (point 249.370000 231.240000 -56.050000 0.230000) + 4) + (segment 4221 + (point 249.370000 231.240000 -56.050000 0.230000) + (point 251.020000 232.220000 -58.380000 0.230000) + 4) + (segment 4222 + (point 251.020000 232.220000 -58.380000 0.230000) + (point 250.620000 233.930000 -60.850000 0.230000) + 4) + (segment 4223 + (point 250.620000 233.930000 -60.850000 0.230000) + (point 249.420000 233.040000 -63.700000 0.230000) + 4) + (segment 4224 + (point 249.420000 233.040000 -63.700000 0.230000) + (point 248.970000 232.940000 -63.720000 0.230000) + 4) + (segment 4225 + (point 248.970000 232.940000 -63.720000 0.230000) + (point 249.680000 231.910000 -67.000000 0.230000) + 4) + (segment 4226 + (point 249.680000 231.910000 -67.000000 0.230000) + (point 250.440000 232.690000 -70.250000 0.230000) + 4) + (segment 4227 + (point 250.440000 232.690000 -70.250000 0.230000) + (point 253.120000 233.320000 -72.470000 0.230000) + 4) + (segment 4228 + (point 253.120000 233.320000 -72.470000 0.230000) + (point 253.120000 233.320000 -72.500000 0.230000) + 4) + (segment 4229 + (point 253.120000 233.320000 -72.500000 0.230000) + (point 251.690000 235.370000 -75.150000 0.230000) + 4) + (segment 4230 + (point 251.690000 235.370000 -75.150000 0.230000) + (point 251.560000 235.940000 -75.150000 0.230000) + 4) + (segment 4231 + (point 251.560000 235.940000 -75.150000 0.230000) + (point 249.510000 236.650000 -77.630000 0.230000) + 4) + (segment 4232 + (point 249.510000 236.650000 -77.630000 0.230000) + (point 249.510000 236.650000 -77.650000 0.230000) + 4) + (segment 4233 + (point 249.510000 236.650000 -77.650000 0.230000) + (point 248.170000 236.340000 -80.180000 0.230000) + 4) + (segment 4234 + (point 248.170000 236.340000 -80.180000 0.230000) + (point 248.170000 236.340000 -80.200000 0.230000) + 4) + (segment 4235 + (point 248.170000 236.340000 -80.200000 0.230000) + (point 247.680000 234.430000 -82.830000 0.230000) + 4) + (segment 4236 + (point 247.680000 234.430000 -82.830000 0.230000) + (point 247.680000 234.430000 -82.850000 0.230000) + 4) + (segment 4237 + (point 247.680000 234.430000 -82.850000 0.230000) + (point 248.220000 238.150000 -84.400000 0.230000) + 4) + (segment 4238 + (point 248.220000 238.150000 -84.400000 0.230000) + (point 248.090000 238.700000 -84.430000 0.230000) + 4) + (segment 4239 + (point 248.090000 238.700000 -84.430000 0.230000) + (point 249.600000 240.250000 -84.430000 0.230000) + 4) + (segment 4240 + (point 249.600000 240.250000 -84.430000 0.230000) + (point 246.530000 241.330000 -86.900000 0.230000) + 4) + (segment 4241 + (point 246.530000 241.330000 -86.900000 0.230000) + (point 247.480000 243.340000 -91.430000 0.230000) + 4) + (segment 4242 + (point 247.480000 243.340000 -91.430000 0.230000) + (point 247.340000 243.900000 -91.450000 0.230000) + 4) + (segment 4243 + (point 247.340000 243.900000 -91.450000 0.230000) + (point 249.260000 243.750000 -94.100000 0.230000) + 4) + (segment 4244 + (point 249.260000 243.750000 -94.100000 0.230000) + (point 249.260000 243.750000 -94.150000 0.230000) + 4) + (segment 4245 + (point 249.260000 243.750000 -94.150000 0.230000) + (point 249.350000 247.360000 -96.620000 0.230000) + 4) + (segment 4246 + (point 249.350000 247.360000 -96.620000 0.230000) + (point 248.910000 247.260000 -96.650000 0.230000) + 4) + (segment 4247 + (point 248.910000 247.260000 -96.650000 0.230000) + (point 247.880000 247.610000 -100.600000 0.230000) + 4) + (segment 4248 + (point 247.880000 247.610000 -100.600000 0.230000) + (point 247.880000 247.610000 -100.630000 0.230000) + 4) + (segment 4249 + (point 247.880000 247.610000 -100.630000 0.230000) + (point 248.460000 247.150000 -104.050000 0.230000) + 4) + (segment 4250 + (point 248.460000 247.150000 -104.050000 0.230000) + (point 248.460000 247.150000 -104.120000 0.230000) + 4) + (segment 4251 + (point 248.460000 247.150000 -104.120000 0.230000) + (point 248.690000 250.200000 -106.800000 0.230000) + 4) + (segment 4252 + (point 248.690000 250.200000 -106.800000 0.230000) + (point 248.690000 250.200000 -106.820000 0.230000) + 4) + (segment 4253 + (point 248.690000 250.200000 -106.820000 0.230000) + (point 247.130000 252.810000 -108.630000 0.230000) + 4) + (segment 4254 + (point 247.130000 252.810000 -108.630000 0.230000) + (point 247.130000 252.810000 -108.650000 0.230000) + 4) + (segment 4255 + (point 247.130000 252.810000 -108.650000 0.230000) + (point 247.900000 253.590000 -110.850000 0.230000) + 4) + (segment 4256 + (point 247.900000 253.590000 -110.850000 0.230000) + (point 249.010000 256.840000 -111.970000 0.230000) + 4) + (segment 4257 + (point 249.010000 256.840000 -111.970000 0.230000) + (point 248.560000 256.740000 -112.000000 0.230000) + 4) + (segment 4258 + (point 248.560000 256.740000 -112.000000 0.230000) + (point 248.620000 258.540000 -114.550000 0.230000) + 4) + (segment 4259 + (point 248.620000 258.540000 -114.550000 0.230000) + (point 248.620000 258.540000 -114.570000 0.230000) + 4) + (segment 4260 + (point 248.620000 258.540000 -114.570000 0.230000) + (point 248.210000 260.240000 -117.900000 0.230000) + 4)) + (branch 156 74 + (segment 4261 + (point 254.550000 128.720000 1.320000 1.375000) + (point 251.920000 127.920000 1.320000 0.460000) + 4) + (segment 4262 + (point 251.920000 127.920000 1.320000 0.460000) + (point 250.640000 129.420000 2.380000 0.460000) + 4) + (segment 4263 + (point 250.640000 129.420000 2.380000 0.460000) + (point 250.240000 131.120000 2.380000 0.230000) + 4) + (segment 4264 + (point 250.240000 131.120000 2.380000 0.230000) + (point 251.570000 131.430000 3.500000 0.230000) + 4) + (segment 4265 + (point 251.570000 131.430000 3.500000 0.230000) + (point 252.330000 132.210000 4.780000 0.230000) + 4) + (segment 4266 + (point 252.330000 132.210000 4.780000 0.230000) + (point 252.330000 132.210000 6.420000 0.230000) + 4) + (segment 4267 + (point 252.330000 132.210000 6.420000 0.230000) + (point 251.940000 133.900000 7.750000 0.230000) + 4) + (segment 4268 + (point 251.940000 133.900000 7.750000 0.230000) + (point 249.310000 135.080000 7.150000 0.230000) + 4) + (segment 4269 + (point 249.310000 135.080000 7.150000 0.230000) + (point 247.160000 138.160000 8.070000 0.230000) + 4) + (segment 4270 + (point 247.160000 138.160000 8.070000 0.230000) + (point 244.140000 141.040000 8.450000 0.230000) + 4) + (segment 4271 + (point 244.140000 141.040000 8.450000 0.230000) + (point 241.950000 142.320000 9.220000 0.230000) + 4) + (segment 4272 + (point 241.950000 142.320000 9.220000 0.230000) + (point 241.060000 142.110000 10.050000 0.230000) + 4) + (segment 4273 + (point 241.060000 142.110000 10.050000 0.230000) + (point 238.570000 142.710000 10.700000 0.230000) + 4) + (segment 4274 + (point 238.570000 142.710000 10.700000 0.230000) + (point 235.620000 143.220000 11.750000 0.230000) + 4) + (segment 4275 + (point 235.620000 143.220000 11.750000 0.230000) + (point 235.040000 143.690000 12.850000 0.230000) + 4) + (segment 4276 + (point 235.040000 143.690000 12.850000 0.230000) + (point 233.830000 142.800000 14.230000 0.230000) + 4) + (segment 4277 + (point 233.830000 142.800000 14.230000 0.230000) + (point 233.690000 143.370000 14.200000 0.230000) + 4) + (segment 4278 + (point 233.690000 143.370000 14.200000 0.230000) + (point 235.750000 142.640000 15.900000 0.230000) + 4) + (segment 4279 + (point 235.750000 142.640000 15.900000 0.230000) + (point 235.750000 142.640000 17.550000 0.230000) + 4) + (segment 4280 + (point 235.750000 142.640000 17.550000 0.230000) + (point 236.590000 141.050000 19.270000 0.230000) + 4) + (segment 4281 + (point 236.590000 141.050000 19.270000 0.230000) + (point 236.590000 141.050000 19.250000 0.230000) + 4) + (segment 4282 + (point 236.590000 141.050000 19.250000 0.230000) + (point 234.090000 141.660000 20.730000 0.230000) + 4) + (segment 4283 + (point 234.090000 141.660000 20.730000 0.230000) + (point 231.020000 142.740000 21.380000 0.230000) + 4) + (segment 4284 + (point 231.020000 142.740000 21.380000 0.230000) + (point 228.650000 142.780000 22.080000 0.230000) + 4) + (segment 4285 + (point 228.650000 142.780000 22.080000 0.230000) + (point 227.720000 146.750000 22.850000 0.230000) + 4) + (segment 4286 + (point 227.720000 146.750000 22.850000 0.230000) + (point 229.560000 148.970000 23.400000 0.230000) + 4) + (segment 4287 + (point 229.560000 148.970000 23.400000 0.230000) + (point 229.740000 150.200000 24.600000 0.230000) + 4) + (segment 4288 + (point 229.740000 150.200000 24.600000 0.230000) + (point 229.740000 150.200000 24.580000 0.230000) + 4) + (segment 4289 + (point 229.740000 150.200000 24.580000 0.230000) + (point 230.060000 150.870000 26.580000 0.230000) + 4) + (segment 4290 + (point 230.060000 150.870000 26.580000 0.230000) + (point 231.390000 151.190000 28.700000 0.230000) + 4) + (segment 4291 + (point 231.390000 151.190000 28.700000 0.230000) + (point 232.280000 151.400000 29.920000 0.230000) + 4)) + (branch 157 74 + (segment 4292 + (point 254.550000 128.720000 1.320000 1.375000) + (point 258.120000 127.600000 1.300000 0.460000) + 4) + (segment 4293 + (point 258.120000 127.600000 1.300000 0.460000) + (point 261.870000 129.670000 1.730000 0.460000) + 4) + (segment 4294 + (point 261.870000 129.670000 1.730000 0.460000) + (point 266.150000 129.480000 1.850000 0.460000) + 4) + (segment 4295 + (point 266.150000 129.480000 1.850000 0.460000) + (point 269.110000 128.970000 2.550000 0.460000) + 4) + (segment 4296 + (point 269.110000 128.970000 2.550000 0.460000) + (point 271.740000 127.800000 2.080000 0.460000) + 4) + (segment 4297 + (point 271.740000 127.800000 2.080000 0.460000) + (point 274.100000 127.760000 0.280000 0.460000) + 4) + (segment 4298 + (point 274.100000 127.760000 0.280000 0.460000) + (point 276.480000 127.720000 -0.700000 0.460000) + 4) + (segment 4299 + (point 276.480000 127.720000 -0.700000 0.460000) + (point 278.390000 127.570000 -0.050000 0.460000) + 4)) + (branch 158 157 + (segment 4300 + (point 278.390000 127.570000 -0.050000 0.460000) + (point 282.400000 128.510000 0.900000 0.230000) + 4) + (segment 4301 + (point 282.400000 128.510000 0.900000 0.230000) + (point 283.580000 127.580000 2.500000 0.230000) + 4) + (segment 4302 + (point 283.580000 127.580000 2.500000 0.230000) + (point 283.580000 127.580000 2.470000 0.230000) + 4) + (segment 4303 + (point 283.580000 127.580000 2.470000 0.230000) + (point 283.700000 127.020000 4.220000 0.230000) + 4) + (segment 4304 + (point 283.700000 127.020000 4.220000 0.230000) + (point 282.890000 124.440000 5.500000 0.230000) + 4) + (segment 4305 + (point 282.890000 124.440000 5.500000 0.230000) + (point 282.890000 124.440000 5.480000 0.230000) + 4) + (segment 4306 + (point 282.890000 124.440000 5.480000 0.230000) + (point 284.490000 123.620000 5.950000 0.230000) + 4) + (segment 4307 + (point 284.490000 123.620000 5.950000 0.230000) + (point 288.070000 124.450000 6.470000 0.230000) + 4) + (segment 4308 + (point 288.070000 124.450000 6.470000 0.230000) + (point 290.750000 125.090000 7.000000 0.230000) + 4) + (segment 4309 + (point 290.750000 125.090000 7.000000 0.230000) + (point 291.970000 125.960000 7.750000 0.230000) + 4) + (segment 4310 + (point 291.970000 125.960000 7.750000 0.230000) + (point 293.750000 126.380000 6.900000 0.230000) + 4) + (segment 4311 + (point 293.750000 126.380000 6.900000 0.230000) + (point 294.770000 126.020000 6.900000 0.230000) + 4) + (segment 4312 + (point 294.770000 126.020000 6.900000 0.230000) + (point 297.180000 127.790000 8.350000 0.230000) + 4) + (segment 4313 + (point 297.180000 127.790000 8.350000 0.230000) + (point 301.160000 126.930000 9.800000 0.230000) + 4) + (segment 4314 + (point 301.160000 126.930000 9.800000 0.230000) + (point 301.110000 125.130000 11.750000 0.230000) + 4) + (segment 4315 + (point 301.110000 125.130000 11.750000 0.230000) + (point 301.110000 125.130000 11.700000 0.230000) + 4) + (segment 4316 + (point 301.110000 125.130000 11.700000 0.230000) + (point 300.170000 129.090000 14.100000 0.230000) + 4) + (segment 4317 + (point 300.170000 129.090000 14.100000 0.230000) + (point 300.170000 129.090000 15.680000 0.230000) + 4) + (segment 4318 + (point 300.170000 129.090000 15.680000 0.230000) + (point 300.170000 129.090000 15.650000 0.230000) + 4) + (segment 4319 + (point 300.170000 129.090000 15.650000 0.230000) + (point 302.370000 127.810000 17.300000 0.230000) + 4) + (segment 4320 + (point 302.370000 127.810000 17.300000 0.230000) + (point 302.370000 127.810000 17.270000 0.230000) + 4) + (segment 4321 + (point 302.370000 127.810000 17.270000 0.230000) + (point 303.780000 125.760000 19.230000 0.230000) + 4) + (segment 4322 + (point 303.780000 125.760000 19.230000 0.230000) + (point 303.780000 125.760000 19.200000 0.230000) + 4) + (segment 4323 + (point 303.780000 125.760000 19.200000 0.230000) + (point 305.210000 123.700000 20.330000 0.230000) + 4) + (segment 4324 + (point 305.210000 123.700000 20.330000 0.230000) + (point 309.220000 124.640000 20.330000 0.230000) + 4) + (segment 4325 + (point 309.220000 124.640000 20.330000 0.230000) + (point 312.800000 125.480000 21.600000 0.230000) + 4) + (segment 4326 + (point 312.800000 125.480000 21.600000 0.230000) + (point 312.850000 127.290000 21.600000 0.230000) + 4) + (segment 4327 + (point 312.850000 127.290000 21.600000 0.230000) + (point 314.680000 129.510000 22.670000 0.230000) + 4) + (segment 4328 + (point 314.680000 129.510000 22.670000 0.230000) + (point 315.710000 129.150000 24.050000 0.230000) + 4) + (segment 4329 + (point 315.710000 129.150000 24.050000 0.230000) + (point 315.710000 129.150000 24.000000 0.230000) + 4) + (segment 4330 + (point 315.710000 129.150000 24.000000 0.230000) + (point 315.180000 131.410000 25.130000 0.230000) + 4) + (segment 4331 + (point 315.180000 131.410000 25.130000 0.230000) + (point 314.200000 133.570000 26.700000 0.230000) + 4) + (segment 4332 + (point 314.200000 133.570000 26.700000 0.230000) + (point 313.170000 133.920000 27.770000 0.230000) + 4) + (segment 4333 + (point 313.170000 133.920000 27.770000 0.230000) + (point 312.720000 133.820000 28.050000 0.230000) + 4) + (segment 4334 + (point 312.720000 133.820000 28.050000 0.230000) + (point 312.460000 134.950000 29.150000 0.230000) + 4) + (segment 4335 + (point 312.460000 134.950000 29.150000 0.230000) + (point 312.010000 134.840000 29.300000 0.230000) + 4)) + (branch 159 157 + (segment 4336 + (point 278.390000 127.570000 -0.050000 0.460000) + (point 280.130000 126.180000 -1.300000 0.460000) + 4) + (segment 4337 + (point 280.130000 126.180000 -1.300000 0.460000) + (point 281.730000 125.370000 -2.700000 0.460000) + 4) + (segment 4338 + (point 281.730000 125.370000 -2.700000 0.460000) + (point 283.200000 125.120000 -4.200000 0.460000) + 4) + (segment 4339 + (point 283.200000 125.120000 -4.200000 0.460000) + (point 283.150000 123.310000 -5.600000 0.460000) + 4) + (segment 4340 + (point 283.150000 123.310000 -5.600000 0.460000) + (point 284.630000 123.060000 -7.200000 0.460000) + 4) + (segment 4341 + (point 284.630000 123.060000 -7.200000 0.460000) + (point 285.390000 123.820000 -9.570000 0.460000) + 4) + (segment 4342 + (point 285.390000 123.820000 -9.570000 0.460000) + (point 286.860000 123.580000 -11.150000 0.460000) + 4) + (segment 4343 + (point 286.860000 123.580000 -11.150000 0.460000) + (point 288.470000 122.760000 -11.650000 0.460000) + 4) + (segment 4344 + (point 288.470000 122.760000 -11.650000 0.460000) + (point 289.130000 119.930000 -10.350000 0.460000) + 4) + (segment 4345 + (point 289.130000 119.930000 -10.350000 0.460000) + (point 290.860000 118.550000 -9.550000 0.460000) + 4) + (segment 4346 + (point 290.860000 118.550000 -9.550000 0.460000) + (point 293.550000 119.180000 -10.050000 0.460000) + 4) + (segment 4347 + (point 293.550000 119.180000 -10.050000 0.460000) + (point 295.740000 117.890000 -10.250000 0.460000) + 4)) + (branch 160 159 + (segment 4348 + (point 295.740000 117.890000 -10.250000 0.460000) + (point 298.100000 117.850000 -10.250000 0.460000) + 4) + (segment 4349 + (point 298.100000 117.850000 -10.250000 0.460000) + (point 301.350000 118.020000 -11.730000 0.460000) + 4) + (segment 4350 + (point 301.350000 118.020000 -11.730000 0.460000) + (point 303.550000 116.740000 -12.850000 0.460000) + 4) + (segment 4351 + (point 303.550000 116.740000 -12.850000 0.460000) + (point 303.550000 116.740000 -12.880000 0.460000) + 4) + (segment 4352 + (point 303.550000 116.740000 -12.880000 0.460000) + (point 306.440000 114.430000 -12.130000 0.460000) + 4) + (segment 4353 + (point 306.440000 114.430000 -12.130000 0.460000) + (point 310.540000 113.000000 -14.070000 0.460000) + 4) + (segment 4354 + (point 310.540000 113.000000 -14.070000 0.460000) + (point 314.200000 111.470000 -17.770000 0.460000) + 4) + (segment 4355 + (point 314.200000 111.470000 -17.770000 0.460000) + (point 317.280000 110.400000 -18.150000 0.460000) + 4) + (segment 4356 + (point 317.280000 110.400000 -18.150000 0.460000) + (point 319.320000 109.690000 -18.150000 0.460000) + 4) + (segment 4357 + (point 319.320000 109.690000 -18.150000 0.460000) + (point 323.170000 109.400000 -17.100000 0.460000) + 4) + (segment 4358 + (point 323.170000 109.400000 -17.100000 0.460000) + (point 325.530000 109.360000 -15.700000 0.460000) + 4) + (segment 4359 + (point 325.530000 109.360000 -15.700000 0.460000) + (point 327.260000 107.970000 -16.300000 0.460000) + 4) + (segment 4360 + (point 327.260000 107.970000 -16.300000 0.460000) + (point 327.260000 107.970000 -16.320000 0.460000) + 4) + (segment 4361 + (point 327.260000 107.970000 -16.320000 0.460000) + (point 330.700000 109.370000 -16.750000 0.460000) + 4) + (segment 4362 + (point 330.700000 109.370000 -16.750000 0.460000) + (point 332.490000 109.790000 -17.770000 0.460000) + 4) + (segment 4363 + (point 332.490000 109.790000 -17.770000 0.460000) + (point 335.610000 110.510000 -18.650000 0.460000) + 4) + (segment 4364 + (point 335.610000 110.510000 -18.650000 0.460000) + (point 338.560000 110.020000 -17.200000 0.460000) + 4) + (segment 4365 + (point 338.560000 110.020000 -17.200000 0.460000) + (point 341.450000 107.710000 -18.130000 0.460000) + 4) + (segment 4366 + (point 341.450000 107.710000 -18.130000 0.460000) + (point 345.920000 108.760000 -18.570000 0.460000) + 4) + (segment 4367 + (point 345.920000 108.760000 -18.570000 0.460000) + (point 349.310000 108.360000 -17.250000 0.460000) + 4) + (segment 4368 + (point 349.310000 108.360000 -17.250000 0.460000) + (point 352.970000 106.830000 -17.250000 0.460000) + 4) + (segment 4369 + (point 352.970000 106.830000 -17.250000 0.460000) + (point 354.340000 102.970000 -18.380000 0.460000) + 4) + (segment 4370 + (point 354.340000 102.970000 -18.380000 0.460000) + (point 358.000000 101.430000 -18.820000 0.460000) + 4)) + (branch 161 160 + (segment 4371 + (point 358.000000 101.430000 -18.820000 0.460000) + (point 359.350000 101.750000 -20.570000 0.460000) + 4) + (segment 4372 + (point 359.350000 101.750000 -20.570000 0.460000) + (point 358.980000 99.270000 -22.250000 0.460000) + 4) + (segment 4373 + (point 358.980000 99.270000 -22.250000 0.460000) + (point 360.140000 98.350000 -24.000000 0.460000) + 4) + (segment 4374 + (point 360.140000 98.350000 -24.000000 0.460000) + (point 362.050000 98.200000 -24.880000 0.460000) + 4) + (segment 4375 + (point 362.050000 98.200000 -24.880000 0.460000) + (point 363.750000 95.020000 -25.870000 0.460000) + 4) + (segment 4376 + (point 363.750000 95.020000 -25.870000 0.460000) + (point 366.060000 93.180000 -25.200000 0.460000) + 4) + (segment 4377 + (point 366.060000 93.180000 -25.200000 0.460000) + (point 369.770000 93.450000 -25.970000 0.460000) + 4) + (segment 4378 + (point 369.770000 93.450000 -25.970000 0.460000) + (point 372.220000 91.040000 -26.580000 0.460000) + 4) + (segment 4379 + (point 372.220000 91.040000 -26.580000 0.460000) + (point 374.710000 90.430000 -27.970000 0.230000) + 4) + (segment 4380 + (point 374.710000 90.430000 -27.970000 0.230000) + (point 379.400000 88.540000 -29.200000 0.230000) + 4) + (segment 4381 + (point 379.400000 88.540000 -29.200000 0.230000) + (point 382.920000 87.570000 -30.000000 0.230000) + 4) + (segment 4382 + (point 382.920000 87.570000 -30.000000 0.230000) + (point 384.660000 86.190000 -30.350000 0.230000) + 4) + (segment 4383 + (point 384.660000 86.190000 -30.350000 0.230000) + (point 386.710000 85.470000 -30.400000 0.230000) + 4) + (segment 4384 + (point 386.710000 85.470000 -30.400000 0.230000) + (point 388.690000 87.130000 -31.320000 0.230000) + 4) + (segment 4385 + (point 388.690000 87.130000 -31.320000 0.230000) + (point 388.240000 87.020000 -31.350000 0.230000) + 4) + (segment 4386 + (point 388.240000 87.020000 -31.350000 0.230000) + (point 392.740000 83.900000 -32.400000 0.230000) + 4) + (segment 4387 + (point 392.740000 83.900000 -32.400000 0.230000) + (point 394.200000 83.640000 -33.850000 0.230000) + 4) + (segment 4388 + (point 394.200000 83.640000 -33.850000 0.230000) + (point 394.200000 83.640000 -33.880000 0.230000) + 4) + (segment 4389 + (point 394.200000 83.640000 -33.880000 0.230000) + (point 395.640000 81.590000 -35.420000 0.230000) + 4) + (segment 4390 + (point 395.640000 81.590000 -35.420000 0.230000) + (point 398.010000 81.550000 -36.950000 0.230000) + 4) + (segment 4391 + (point 398.010000 81.550000 -36.950000 0.230000) + (point 398.180000 82.790000 -39.080000 0.230000) + 4) + (segment 4392 + (point 398.180000 82.790000 -39.080000 0.230000) + (point 398.180000 82.790000 -39.100000 0.230000) + 4) + (segment 4393 + (point 398.180000 82.790000 -39.100000 0.230000) + (point 398.620000 82.900000 -41.350000 0.230000) + 4) + (segment 4394 + (point 398.620000 82.900000 -41.350000 0.230000) + (point 400.990000 82.850000 -43.470000 0.230000) + 4) + (segment 4395 + (point 400.990000 82.850000 -43.470000 0.230000) + (point 400.990000 82.850000 -43.500000 0.230000) + 4) + (segment 4396 + (point 400.990000 82.850000 -43.500000 0.230000) + (point 401.390000 81.150000 -45.850000 0.230000) + 4) + (segment 4397 + (point 401.390000 81.150000 -45.850000 0.230000) + (point 402.240000 79.560000 -49.070000 0.230000) + 4) + (segment 4398 + (point 402.240000 79.560000 -49.070000 0.230000) + (point 402.240000 79.560000 -49.130000 0.230000) + 4) + (segment 4399 + (point 402.240000 79.560000 -49.130000 0.230000) + (point 402.940000 78.530000 -52.400000 0.230000) + 4) + (segment 4400 + (point 402.940000 78.530000 -52.400000 0.230000) + (point 402.940000 78.530000 -52.450000 0.230000) + 4)) + (branch 162 160 + (segment 4401 + (point 358.000000 101.430000 -18.820000 0.460000) + (point 358.900000 101.650000 -17.200000 0.460000) + 4) + (segment 4402 + (point 358.900000 101.650000 -17.200000 0.460000) + (point 358.900000 101.650000 -17.230000 0.460000) + 4) + (segment 4403 + (point 358.900000 101.650000 -17.230000 0.460000) + (point 360.010000 98.920000 -17.170000 0.460000) + 4) + (segment 4404 + (point 360.010000 98.920000 -17.170000 0.460000) + (point 360.410000 97.230000 -16.100000 0.460000) + 4) + (segment 4405 + (point 360.410000 97.230000 -16.100000 0.460000) + (point 362.140000 95.840000 -19.130000 0.460000) + 4) + (segment 4406 + (point 362.140000 95.840000 -19.130000 0.460000) + (point 362.140000 95.840000 -19.150000 0.460000) + 4) + (segment 4407 + (point 362.140000 95.840000 -19.150000 0.460000) + (point 363.880000 94.450000 -19.730000 0.460000) + 4) + (segment 4408 + (point 363.880000 94.450000 -19.730000 0.460000) + (point 363.880000 94.450000 -19.750000 0.460000) + 4) + (segment 4409 + (point 363.880000 94.450000 -19.750000 0.460000) + (point 367.220000 92.250000 -20.470000 0.460000) + 4) + (segment 4410 + (point 367.220000 92.250000 -20.470000 0.460000) + (point 368.650000 90.200000 -20.470000 0.460000) + 4) + (segment 4411 + (point 368.650000 90.200000 -20.470000 0.460000) + (point 371.280000 89.020000 -20.470000 0.460000) + 4) + (segment 4412 + (point 371.280000 89.020000 -20.470000 0.460000) + (point 374.360000 87.950000 -20.600000 0.230000) + 4) + (segment 4413 + (point 374.360000 87.950000 -20.600000 0.230000) + (point 376.350000 85.430000 -21.000000 0.230000) + 4) + (segment 4414 + (point 376.350000 85.430000 -21.000000 0.230000) + (point 378.630000 81.780000 -21.000000 0.230000) + 4) + (segment 4415 + (point 378.630000 81.780000 -21.000000 0.230000) + (point 380.760000 78.710000 -22.430000 0.230000) + 4) + (segment 4416 + (point 380.760000 78.710000 -22.430000 0.230000) + (point 383.210000 76.300000 -22.570000 0.230000) + 4) + (segment 4417 + (point 383.210000 76.300000 -22.570000 0.230000) + (point 385.220000 73.780000 -22.630000 0.230000) + 4) + (segment 4418 + (point 385.220000 73.780000 -22.630000 0.230000) + (point 389.000000 71.670000 -23.350000 0.230000) + 4) + (segment 4419 + (point 389.000000 71.670000 -23.350000 0.230000) + (point 390.160000 70.760000 -24.880000 0.230000) + 4) + (segment 4420 + (point 390.160000 70.760000 -24.880000 0.230000) + (point 390.550000 69.060000 -26.880000 0.230000) + 4) + (segment 4421 + (point 390.550000 69.060000 -26.880000 0.230000) + (point 390.550000 69.060000 -26.900000 0.230000) + 4) + (segment 4422 + (point 390.550000 69.060000 -26.900000 0.230000) + (point 391.990000 67.000000 -28.330000 0.230000) + 4) + (segment 4423 + (point 391.990000 67.000000 -28.330000 0.230000) + (point 392.970000 64.850000 -30.000000 0.230000) + 4) + (segment 4424 + (point 392.970000 64.850000 -30.000000 0.230000) + (point 394.260000 63.350000 -31.500000 0.230000) + 4) + (segment 4425 + (point 394.260000 63.350000 -31.500000 0.230000) + (point 394.260000 63.350000 -31.520000 0.230000) + 4) + (segment 4426 + (point 394.260000 63.350000 -31.520000 0.230000) + (point 392.990000 60.680000 -33.570000 0.230000) + 4) + (segment 4427 + (point 392.990000 60.680000 -33.570000 0.230000) + (point 392.950000 58.890000 -37.380000 0.230000) + 4) + (segment 4428 + (point 392.950000 58.890000 -37.380000 0.230000) + (point 392.950000 58.890000 -37.420000 0.230000) + 4) + (segment 4429 + (point 392.950000 58.890000 -37.420000 0.230000) + (point 393.930000 56.720000 -39.170000 0.230000) + 4) + (segment 4430 + (point 393.930000 56.720000 -39.170000 0.230000) + (point 393.930000 56.720000 -39.200000 0.230000) + 4) + (segment 4431 + (point 393.930000 56.720000 -39.200000 0.230000) + (point 395.080000 55.800000 -41.800000 0.230000) + 4) + (segment 4432 + (point 395.080000 55.800000 -41.800000 0.230000) + (point 395.080000 55.800000 -41.930000 0.230000) + 4) + (segment 4433 + (point 395.080000 55.800000 -41.930000 0.230000) + (point 395.300000 52.870000 -43.420000 0.230000) + 4) + (segment 4434 + (point 395.300000 52.870000 -43.420000 0.230000) + (point 395.300000 52.870000 -43.450000 0.230000) + 4) + (segment 4435 + (point 395.300000 52.870000 -43.450000 0.230000) + (point 394.670000 51.530000 -45.720000 0.230000) + 4)) + (branch 163 159 + (segment 4436 + (point 295.740000 117.890000 -10.250000 0.460000) + (point 296.550000 116.330000 -11.650000 0.460000) + 4) + (segment 4437 + (point 296.550000 116.330000 -11.650000 0.460000) + (point 297.080000 114.060000 -13.570000 0.460000) + 4) + (segment 4438 + (point 297.080000 114.060000 -13.570000 0.460000) + (point 297.080000 114.060000 -13.600000 0.460000) + 4) + (segment 4439 + (point 297.080000 114.060000 -13.600000 0.460000) + (point 295.350000 115.450000 -16.020000 0.460000) + 4) + (segment 4440 + (point 295.350000 115.450000 -16.020000 0.460000) + (point 293.690000 114.460000 -18.050000 0.460000) + 4) + (segment 4441 + (point 293.690000 114.460000 -18.050000 0.460000) + (point 292.050000 113.480000 -18.720000 0.460000) + 4) + (segment 4442 + (point 292.050000 113.480000 -18.720000 0.460000) + (point 292.050000 113.480000 -18.750000 0.460000) + 4) + (segment 4443 + (point 292.050000 113.480000 -18.750000 0.460000) + (point 290.440000 114.300000 -20.100000 0.460000) + 4) + (segment 4444 + (point 290.440000 114.300000 -20.100000 0.460000) + (point 290.060000 111.820000 -21.450000 0.460000) + 4) + (segment 4445 + (point 290.060000 111.820000 -21.450000 0.460000) + (point 290.910000 110.240000 -22.970000 0.460000) + 4) + (segment 4446 + (point 290.910000 110.240000 -22.970000 0.460000) + (point 290.240000 107.080000 -24.520000 0.460000) + 4) + (segment 4447 + (point 290.240000 107.080000 -24.520000 0.460000) + (point 289.700000 103.380000 -25.100000 0.460000) + 4) + (segment 4448 + (point 289.700000 103.380000 -25.100000 0.460000) + (point 288.750000 101.370000 -27.750000 0.460000) + 4) + (segment 4449 + (point 288.750000 101.370000 -27.750000 0.460000) + (point 288.220000 97.650000 -29.950000 0.230000) + 4) + (segment 4450 + (point 288.220000 97.650000 -29.950000 0.230000) + (point 289.060000 96.060000 -29.950000 0.230000) + 4) + (segment 4451 + (point 289.060000 96.060000 -29.950000 0.230000) + (point 290.080000 95.700000 -31.170000 0.230000) + 4) + (segment 4452 + (point 290.080000 95.700000 -31.170000 0.230000) + (point 289.410000 92.560000 -32.600000 0.230000) + 4) + (segment 4453 + (point 289.410000 92.560000 -32.600000 0.230000) + (point 290.520000 89.830000 -33.530000 0.230000) + 4) + (segment 4454 + (point 290.520000 89.830000 -33.530000 0.230000) + (point 290.600000 87.460000 -34.750000 0.230000) + 4) + (segment 4455 + (point 290.600000 87.460000 -34.750000 0.230000) + (point 290.600000 87.460000 -34.780000 0.230000) + 4) + (segment 4456 + (point 290.600000 87.460000 -34.780000 0.230000) + (point 290.950000 83.960000 -34.470000 0.230000) + 4) + (segment 4457 + (point 290.950000 83.960000 -34.470000 0.230000) + (point 291.480000 81.700000 -36.520000 0.230000) + 4) + (segment 4458 + (point 291.480000 81.700000 -36.520000 0.230000) + (point 292.410000 77.730000 -37.580000 0.230000) + 4) + (segment 4459 + (point 292.410000 77.730000 -37.580000 0.230000) + (point 292.250000 72.330000 -38.050000 0.230000) + 4) + (segment 4460 + (point 292.250000 72.330000 -38.050000 0.230000) + (point 291.800000 66.250000 -36.630000 0.230000) + 4) + (segment 4461 + (point 291.800000 66.250000 -36.630000 0.230000) + (point 291.120000 63.110000 -38.250000 0.230000) + 4) + (segment 4462 + (point 291.120000 63.110000 -38.250000 0.230000) + (point 289.560000 59.750000 -39.550000 0.230000) + 4) + (segment 4463 + (point 289.560000 59.750000 -39.550000 0.230000) + (point 289.560000 59.750000 -39.600000 0.230000) + 4) + (segment 4464 + (point 289.560000 59.750000 -39.600000 0.230000) + (point 286.960000 56.750000 -41.050000 0.230000) + 4) + (segment 4465 + (point 286.960000 56.750000 -41.050000 0.230000) + (point 286.960000 56.750000 -41.080000 0.230000) + 4) + (segment 4466 + (point 286.960000 56.750000 -41.080000 0.230000) + (point 284.990000 55.090000 -43.000000 0.230000) + 4) + (segment 4467 + (point 284.990000 55.090000 -43.000000 0.230000) + (point 284.240000 54.320000 -45.680000 0.230000) + 4)) + (branch 164 73 + (segment 4468 + (point 255.870000 123.050000 1.320000 1.375000) + (point 255.220000 125.770000 2.250000 0.460000) + 4) + (segment 4469 + (point 255.220000 125.770000 2.250000 0.460000) + (point 255.600000 128.240000 3.500000 0.460000) + 4) + (segment 4470 + (point 255.600000 128.240000 3.500000 0.460000) + (point 257.690000 129.320000 3.570000 0.460000) + 4) + (segment 4471 + (point 257.690000 129.320000 3.570000 0.460000) + (point 259.930000 129.850000 4.600000 0.460000) + 4) + (segment 4472 + (point 259.930000 129.850000 4.600000 0.460000) + (point 260.280000 132.330000 5.130000 0.460000) + 4) + (segment 4473 + (point 260.280000 132.330000 5.130000 0.460000) + (point 261.100000 134.900000 5.370000 0.460000) + 4) + (segment 4474 + (point 261.100000 134.900000 5.370000 0.460000) + (point 261.330000 137.940000 5.970000 0.460000) + 4) + (segment 4475 + (point 261.330000 137.940000 5.970000 0.460000) + (point 262.400000 139.390000 6.000000 0.460000) + 4)) + (branch 165 164 + (segment 4476 + (point 262.400000 139.390000 6.000000 0.460000) + (point 264.820000 141.160000 6.650000 0.460000) + 4) + (segment 4477 + (point 264.820000 141.160000 6.650000 0.460000) + (point 265.130000 141.820000 8.200000 0.460000) + 4) + (segment 4478 + (point 265.130000 141.820000 8.200000 0.460000) + (point 265.130000 141.820000 8.180000 0.460000) + 4) + (segment 4479 + (point 265.130000 141.820000 8.180000 0.460000) + (point 267.820000 142.450000 9.070000 0.460000) + 4) + (segment 4480 + (point 267.820000 142.450000 9.070000 0.460000) + (point 269.200000 144.560000 10.520000 0.460000) + 4) + (segment 4481 + (point 269.200000 144.560000 10.520000 0.460000) + (point 269.830000 145.910000 10.600000 0.460000) + 4)) + (branch 166 165 + (segment 4482 + (point 269.830000 145.910000 10.600000 0.460000) + (point 270.770000 147.920000 12.070000 0.460000) + 4) + (segment 4483 + (point 270.770000 147.920000 12.070000 0.460000) + (point 270.810000 149.720000 13.520000 0.460000) + 4) + (segment 4484 + (point 270.810000 149.720000 13.520000 0.460000) + (point 269.840000 151.880000 14.500000 0.460000) + 4) + (segment 4485 + (point 269.840000 151.880000 14.500000 0.460000) + (point 270.010000 153.120000 15.850000 0.460000) + 4) + (segment 4486 + (point 270.010000 153.120000 15.850000 0.460000) + (point 270.380000 155.590000 16.770000 0.460000) + 4) + (segment 4487 + (point 270.380000 155.590000 16.770000 0.460000) + (point 268.950000 157.640000 18.000000 0.460000) + 4) + (segment 4488 + (point 268.950000 157.640000 18.000000 0.460000) + (point 268.420000 159.900000 19.420000 0.460000) + 4) + (segment 4489 + (point 268.420000 159.900000 19.420000 0.460000) + (point 268.340000 162.270000 20.420000 0.460000) + 4) + (segment 4490 + (point 268.340000 162.270000 20.420000 0.460000) + (point 270.190000 164.500000 21.130000 0.460000) + 4) + (segment 4491 + (point 270.190000 164.500000 21.130000 0.460000) + (point 273.440000 164.670000 21.700000 0.460000) + 4) + (segment 4492 + (point 273.440000 164.670000 21.700000 0.460000) + (point 275.440000 162.150000 21.070000 0.460000) + 4) + (segment 4493 + (point 275.440000 162.150000 21.070000 0.460000) + (point 278.480000 159.270000 22.250000 0.460000) + 4) + (segment 4494 + (point 278.480000 159.270000 22.250000 0.460000) + (point 280.130000 160.260000 23.470000 0.460000) + 4)) + (branch 167 166 + (segment 4495 + (point 280.130000 160.260000 23.470000 0.460000) + (point 282.400000 162.590000 23.470000 0.460000) + 4) + (segment 4496 + (point 282.400000 162.590000 23.470000 0.460000) + (point 284.110000 165.380000 23.570000 0.460000) + 4) + (segment 4497 + (point 284.110000 165.380000 23.570000 0.460000) + (point 284.110000 165.380000 23.550000 0.460000) + 4) + (segment 4498 + (point 284.110000 165.380000 23.550000 0.460000) + (point 284.880000 166.150000 24.700000 0.230000) + 4) + (segment 4499 + (point 284.880000 166.150000 24.700000 0.230000) + (point 284.880000 166.150000 24.800000 0.230000) + 4) + (segment 4500 + (point 284.880000 166.150000 24.800000 0.230000) + (point 285.770000 166.360000 27.420000 0.230000) + 4)) + (branch 168 166 + (segment 4501 + (point 280.130000 160.260000 23.470000 0.460000) + (point 282.000000 158.320000 23.470000 0.230000) + 4) + (segment 4502 + (point 282.000000 158.320000 23.470000 0.230000) + (point 282.480000 154.250000 23.470000 0.230000) + 4) + (segment 4503 + (point 282.480000 154.250000 23.470000 0.230000) + (point 281.500000 150.430000 24.700000 0.230000) + 4) + (segment 4504 + (point 281.500000 150.430000 24.700000 0.230000) + (point 280.860000 149.090000 26.800000 0.230000) + 4) + (segment 4505 + (point 280.860000 149.090000 26.800000 0.230000) + (point 280.860000 149.090000 26.750000 0.230000) + 4) + (segment 4506 + (point 280.860000 149.090000 26.750000 0.230000) + (point 280.680000 147.850000 28.420000 0.230000) + 4)) + (branch 169 165 + (segment 4507 + (point 269.830000 145.910000 10.600000 0.460000) + (point 268.670000 146.830000 11.770000 0.460000) + 4) + (segment 4508 + (point 268.670000 146.830000 11.770000 0.460000) + (point 267.070000 147.650000 13.600000 0.460000) + 4) + (segment 4509 + (point 267.070000 147.650000 13.600000 0.460000) + (point 264.820000 147.120000 15.480000 0.460000) + 4) + (segment 4510 + (point 264.820000 147.120000 15.480000 0.460000) + (point 262.070000 148.870000 16.300000 0.460000) + 4) + (segment 4511 + (point 262.070000 148.870000 16.300000 0.460000) + (point 260.190000 150.810000 17.150000 0.460000) + 4) + (segment 4512 + (point 260.190000 150.810000 17.150000 0.460000) + (point 257.300000 153.120000 17.850000 0.460000) + 4) + (segment 4513 + (point 257.300000 153.120000 17.850000 0.460000) + (point 254.490000 153.060000 19.270000 0.460000) + 4) + (segment 4514 + (point 254.490000 153.060000 19.270000 0.460000) + (point 251.630000 151.190000 20.570000 0.460000) + 4) + (segment 4515 + (point 251.630000 151.190000 20.570000 0.460000) + (point 249.660000 149.530000 22.080000 0.230000) + 4) + (segment 4516 + (point 249.660000 149.530000 22.080000 0.230000) + (point 248.460000 148.660000 23.670000 0.230000) + 4) + (segment 4517 + (point 248.460000 148.660000 23.670000 0.230000) + (point 248.530000 146.290000 25.630000 0.230000) + 4)) + (branch 170 164 + (segment 4518 + (point 262.400000 139.390000 6.000000 0.460000) + (point 262.760000 141.860000 4.850000 0.460000) + 4) + (segment 4519 + (point 262.760000 141.860000 4.850000 0.460000) + (point 263.970000 142.740000 3.600000 0.460000) + 4) + (segment 4520 + (point 263.970000 142.740000 3.600000 0.460000) + (point 266.120000 145.640000 2.880000 0.460000) + 4) + (segment 4521 + (point 266.120000 145.640000 2.880000 0.460000) + (point 267.640000 147.180000 2.270000 0.460000) + 4) + (segment 4522 + (point 267.640000 147.180000 2.270000 0.460000) + (point 268.580000 149.190000 1.270000 0.460000) + 4) + (segment 4523 + (point 268.580000 149.190000 1.270000 0.460000) + (point 270.590000 152.650000 0.120000 0.460000) + 4) + (segment 4524 + (point 270.590000 152.650000 0.120000 0.460000) + (point 270.640000 154.450000 -0.720000 0.460000) + 4) + (segment 4525 + (point 270.640000 154.450000 -0.720000 0.460000) + (point 272.050000 156.580000 -1.400000 0.460000) + 4) + (segment 4526 + (point 272.050000 156.580000 -1.400000 0.460000) + (point 274.270000 157.100000 -2.850000 0.460000) + 4) + (segment 4527 + (point 274.270000 157.100000 -2.850000 0.460000) + (point 274.320000 158.900000 -4.200000 0.230000) + 4) + (segment 4528 + (point 274.320000 158.900000 -4.200000 0.230000) + (point 273.870000 158.790000 -4.220000 0.230000) + 4) + (segment 4529 + (point 273.870000 158.790000 -4.220000 0.230000) + (point 275.260000 160.920000 -5.630000 0.230000) + 4) + (segment 4530 + (point 275.260000 160.920000 -5.630000 0.230000) + (point 275.260000 160.920000 -5.680000 0.230000) + 4) + (segment 4531 + (point 275.260000 160.920000 -5.680000 0.230000) + (point 275.880000 162.250000 -6.930000 0.230000) + 4) + (segment 4532 + (point 275.880000 162.250000 -6.930000 0.230000) + (point 276.560000 165.400000 -8.730000 0.460000) + 4) + (segment 4533 + (point 276.560000 165.400000 -8.730000 0.460000) + (point 277.070000 167.300000 -9.430000 0.460000) + 4) + (segment 4534 + (point 277.070000 167.300000 -9.430000 0.460000) + (point 279.390000 171.440000 -10.120000 0.460000) + 4) + (segment 4535 + (point 279.390000 171.440000 -10.120000 0.460000) + (point 279.480000 175.040000 -11.530000 0.460000) + 4) + (segment 4536 + (point 279.480000 175.040000 -11.530000 0.460000) + (point 279.400000 177.400000 -13.180000 0.460000) + 4) + (segment 4537 + (point 279.400000 177.400000 -13.180000 0.460000) + (point 279.180000 180.350000 -13.700000 0.460000) + 4) + (segment 4538 + (point 279.180000 180.350000 -13.700000 0.460000) + (point 281.340000 183.240000 -12.930000 0.460000) + 4) + (segment 4539 + (point 281.340000 183.240000 -12.930000 0.460000) + (point 284.640000 185.210000 -13.000000 0.460000) + 4) + (segment 4540 + (point 284.640000 185.210000 -13.000000 0.460000) + (point 285.320000 188.360000 -13.130000 0.460000) + 4) + (segment 4541 + (point 285.320000 188.360000 -13.130000 0.460000) + (point 285.860000 192.060000 -14.000000 0.460000) + 4) + (segment 4542 + (point 285.860000 192.060000 -14.000000 0.460000) + (point 285.860000 192.060000 -14.020000 0.460000) + 4) + (segment 4543 + (point 285.860000 192.060000 -14.020000 0.460000) + (point 287.700000 194.280000 -14.600000 0.460000) + 4) + (segment 4544 + (point 287.700000 194.280000 -14.600000 0.460000) + (point 292.350000 196.560000 -15.300000 0.460000) + 4) + (segment 4545 + (point 292.350000 196.560000 -15.300000 0.460000) + (point 294.450000 197.660000 -15.320000 0.460000) + 4) + (segment 4546 + (point 294.450000 197.660000 -15.320000 0.460000) + (point 297.110000 198.300000 -17.630000 0.460000) + 4) + (segment 4547 + (point 297.110000 198.300000 -17.630000 0.460000) + (point 300.050000 197.790000 -18.450000 0.460000) + 4) + (segment 4548 + (point 300.050000 197.790000 -18.450000 0.460000) + (point 303.500000 199.200000 -19.600000 0.460000) + 4) + (segment 4549 + (point 303.500000 199.200000 -19.600000 0.460000) + (point 306.990000 202.400000 -20.600000 0.460000) + 4) + (segment 4550 + (point 306.990000 202.400000 -20.600000 0.460000) + (point 308.680000 205.190000 -21.070000 0.460000) + 4) + (segment 4551 + (point 308.680000 205.190000 -21.070000 0.460000) + (point 311.600000 208.860000 -21.200000 0.460000) + 4) + (segment 4552 + (point 311.600000 208.860000 -21.200000 0.460000) + (point 313.880000 211.190000 -22.630000 0.460000) + 4) + (segment 4553 + (point 313.880000 211.190000 -22.630000 0.460000) + (point 313.880000 211.190000 -22.650000 0.460000) + 4) + (segment 4554 + (point 313.880000 211.190000 -22.650000 0.460000) + (point 316.170000 213.500000 -24.080000 0.460000) + 4) + (segment 4555 + (point 316.170000 213.500000 -24.080000 0.460000) + (point 317.680000 215.060000 -25.550000 0.460000) + 4) + (segment 4556 + (point 317.680000 215.060000 -25.550000 0.460000) + (point 317.680000 215.060000 -25.570000 0.460000) + 4) + (segment 4557 + (point 317.680000 215.060000 -25.570000 0.460000) + (point 317.600000 217.430000 -26.450000 0.460000) + 4) + (segment 4558 + (point 317.600000 217.430000 -26.450000 0.460000) + (point 318.630000 217.070000 -27.670000 0.230000) + 4) + (segment 4559 + (point 318.630000 217.070000 -27.670000 0.230000) + (point 318.630000 217.070000 -27.700000 0.230000) + 4) + (segment 4560 + (point 318.630000 217.070000 -27.700000 0.230000) + (point 318.990000 219.550000 -29.800000 0.230000) + 4) + (segment 4561 + (point 318.990000 219.550000 -29.800000 0.230000) + (point 318.510000 223.620000 -31.320000 0.230000) + 4) + (segment 4562 + (point 318.510000 223.620000 -31.320000 0.230000) + (point 318.510000 223.620000 -31.350000 0.230000) + 4) + (segment 4563 + (point 318.510000 223.620000 -31.350000 0.230000) + (point 317.530000 225.770000 -32.520000 0.230000) + 4) + (segment 4564 + (point 317.530000 225.770000 -32.520000 0.230000) + (point 319.230000 228.570000 -33.400000 0.230000) + 4) + (segment 4565 + (point 319.230000 228.570000 -33.400000 0.230000) + (point 321.690000 232.110000 -33.920000 0.230000) + 4) + (segment 4566 + (point 321.690000 232.110000 -33.920000 0.230000) + (point 322.770000 233.580000 -35.570000 0.230000) + 4) + (segment 4567 + (point 322.770000 233.580000 -35.570000 0.230000) + (point 322.770000 233.580000 -35.600000 0.230000) + 4) + (segment 4568 + (point 322.770000 233.580000 -35.600000 0.230000) + (point 323.890000 236.820000 -36.780000 0.230000) + 4) + (segment 4569 + (point 323.890000 236.820000 -36.780000 0.230000) + (point 323.890000 236.820000 -36.800000 0.230000) + 4) + (segment 4570 + (point 323.890000 236.820000 -36.800000 0.230000) + (point 325.280000 238.940000 -38.470000 0.230000) + 4) + (segment 4571 + (point 325.280000 238.940000 -38.470000 0.230000) + (point 325.280000 238.940000 -38.500000 0.230000) + 4) + (segment 4572 + (point 325.280000 238.940000 -38.500000 0.230000) + (point 325.240000 243.110000 -39.880000 0.230000) + 4) + (segment 4573 + (point 325.240000 243.110000 -39.880000 0.230000) + (point 325.240000 243.110000 -39.900000 0.230000) + 4) + (segment 4574 + (point 325.240000 243.110000 -39.900000 0.230000) + (point 324.710000 245.370000 -41.470000 0.230000) + 4) + (segment 4575 + (point 324.710000 245.370000 -41.470000 0.230000) + (point 324.450000 246.510000 -43.400000 0.230000) + 4) + (segment 4576 + (point 324.450000 246.510000 -43.400000 0.230000) + (point 324.450000 246.510000 -43.420000 0.230000) + 4) + (segment 4577 + (point 324.450000 246.510000 -43.420000 0.230000) + (point 324.230000 249.430000 -45.250000 0.230000) + 4)) + (branch 171 72 + (segment 4578 + (point 258.380000 102.270000 -5.970000 1.375000) + (point 259.910000 101.780000 -7.350000 0.460000) + 4) + (segment 4579 + (point 259.910000 101.780000 -7.350000 0.460000) + (point 261.790000 99.830000 -8.820000 0.460000) + 4) + (segment 4580 + (point 261.790000 99.830000 -8.820000 0.460000) + (point 263.040000 102.520000 -9.430000 0.460000) + 4) + (segment 4581 + (point 263.040000 102.520000 -9.430000 0.460000) + (point 263.010000 106.690000 -10.070000 0.460000) + 4) + (segment 4582 + (point 263.010000 106.690000 -10.070000 0.460000) + (point 264.530000 108.240000 -10.570000 0.460000) + 4) + (segment 4583 + (point 264.530000 108.240000 -10.570000 0.460000) + (point 266.760000 108.760000 -10.850000 0.460000) + 4) + (segment 4584 + (point 266.760000 108.760000 -10.850000 0.460000) + (point 267.830000 110.210000 -11.350000 0.460000) + 4) + (segment 4585 + (point 267.830000 110.210000 -11.350000 0.460000) + (point 269.810000 111.870000 -12.570000 0.460000) + 4) + (segment 4586 + (point 269.810000 111.870000 -12.570000 0.460000) + (point 270.570000 112.640000 -13.720000 0.460000) + 4) + (segment 4587 + (point 270.570000 112.640000 -13.720000 0.460000) + (point 273.370000 112.710000 -14.800000 0.460000) + 4) + (segment 4588 + (point 273.370000 112.710000 -14.800000 0.460000) + (point 271.500000 114.650000 -16.130000 0.460000) + 4) + (segment 4589 + (point 271.500000 114.650000 -16.130000 0.460000) + (point 273.290000 115.060000 -17.950000 0.460000) + 4) + (segment 4590 + (point 273.290000 115.060000 -17.950000 0.460000) + (point 275.150000 113.130000 -18.820000 0.460000) + 4) + (segment 4591 + (point 275.150000 113.130000 -18.820000 0.460000) + (point 276.820000 114.110000 -19.970000 0.460000) + 4) + (segment 4592 + (point 276.820000 114.110000 -19.970000 0.460000) + (point 275.840000 116.270000 -21.280000 0.460000) + 4) + (segment 4593 + (point 275.840000 116.270000 -21.280000 0.460000) + (point 275.840000 116.270000 -21.300000 0.460000) + 4) + (segment 4594 + (point 275.840000 116.270000 -21.300000 0.460000) + (point 276.790000 118.280000 -22.770000 0.460000) + 4) + (segment 4595 + (point 276.790000 118.280000 -22.770000 0.460000) + (point 276.790000 118.280000 -22.800000 0.460000) + 4) + (segment 4596 + (point 276.790000 118.280000 -22.800000 0.460000) + (point 277.540000 119.050000 -23.700000 0.460000) + 4) + (segment 4597 + (point 277.540000 119.050000 -23.700000 0.460000) + (point 278.750000 119.940000 -24.420000 0.460000) + 4) + (segment 4598 + (point 278.750000 119.940000 -24.420000 0.460000) + (point 280.490000 118.550000 -24.420000 0.460000) + 4) + (segment 4599 + (point 280.490000 118.550000 -24.420000 0.460000) + (point 282.990000 117.950000 -26.000000 0.460000) + 4) + (segment 4600 + (point 282.990000 117.950000 -26.000000 0.460000) + (point 283.930000 119.960000 -28.550000 0.460000) + 4) + (segment 4601 + (point 283.930000 119.960000 -28.550000 0.460000) + (point 284.110000 121.190000 -30.670000 0.460000) + 4) + (segment 4602 + (point 284.110000 121.190000 -30.670000 0.460000) + (point 285.900000 121.610000 -32.350000 0.460000) + 4) + (segment 4603 + (point 285.900000 121.610000 -32.350000 0.460000) + (point 285.900000 121.610000 -32.380000 0.460000) + 4) + (segment 4604 + (point 285.900000 121.610000 -32.380000 0.460000) + (point 288.700000 121.670000 -31.600000 0.460000) + 4) + (segment 4605 + (point 288.700000 121.670000 -31.600000 0.460000) + (point 288.700000 121.670000 -31.630000 0.460000) + 4) + (segment 4606 + (point 288.700000 121.670000 -31.630000 0.460000) + (point 290.540000 123.890000 -34.500000 0.460000) + 4) + (segment 4607 + (point 290.540000 123.890000 -34.500000 0.460000) + (point 291.220000 127.040000 -35.420000 0.460000) + 4) + (segment 4608 + (point 291.220000 127.040000 -35.420000 0.460000) + (point 291.220000 127.040000 -35.450000 0.460000) + 4) + (segment 4609 + (point 291.220000 127.040000 -35.450000 0.460000) + (point 291.980000 127.810000 -37.400000 0.460000) + 4) + (segment 4610 + (point 291.980000 127.810000 -37.400000 0.460000) + (point 294.030000 127.100000 -39.470000 0.460000) + 4) + (segment 4611 + (point 294.030000 127.100000 -39.470000 0.460000) + (point 294.030000 127.100000 -39.500000 0.460000) + 4) + (segment 4612 + (point 294.030000 127.100000 -39.500000 0.460000) + (point 296.850000 127.160000 -41.550000 0.460000) + 4) + (segment 4613 + (point 296.850000 127.160000 -41.550000 0.460000) + (point 296.850000 127.160000 -41.570000 0.460000) + 4) + (segment 4614 + (point 296.850000 127.160000 -41.570000 0.460000) + (point 298.550000 129.950000 -44.350000 0.460000) + 4) + (segment 4615 + (point 298.550000 129.950000 -44.350000 0.460000) + (point 299.490000 131.960000 -45.850000 0.460000) + 4) + (segment 4616 + (point 299.490000 131.960000 -45.850000 0.460000) + (point 299.490000 131.960000 -45.880000 0.460000) + 4) + (segment 4617 + (point 299.490000 131.960000 -45.880000 0.460000) + (point 301.190000 134.740000 -47.330000 0.460000) + 4) + (segment 4618 + (point 301.190000 134.740000 -47.330000 0.460000) + (point 300.790000 136.440000 -48.380000 0.460000) + 4) + (segment 4619 + (point 300.790000 136.440000 -48.380000 0.460000) + (point 300.790000 136.440000 -48.400000 0.460000) + 4) + (segment 4620 + (point 300.790000 136.440000 -48.400000 0.460000) + (point 303.340000 137.630000 -49.400000 0.460000) + 4) + (segment 4621 + (point 303.340000 137.630000 -49.400000 0.460000) + (point 301.730000 138.450000 -51.850000 0.460000) + 4) + (segment 4622 + (point 301.730000 138.450000 -51.850000 0.460000) + (point 303.700000 140.120000 -53.700000 0.460000) + 4) + (segment 4623 + (point 303.700000 140.120000 -53.700000 0.460000) + (point 306.250000 141.310000 -55.050000 0.460000) + 4) + (segment 4624 + (point 306.250000 141.310000 -55.050000 0.460000) + (point 306.250000 141.310000 -57.670000 0.460000) + 4) + (segment 4625 + (point 306.250000 141.310000 -57.670000 0.460000) + (point 306.250000 141.310000 -57.700000 0.460000) + 4) + (segment 4626 + (point 306.250000 141.310000 -57.700000 0.460000) + (point 306.430000 142.550000 -59.800000 0.460000) + 4) + (segment 4627 + (point 306.430000 142.550000 -59.800000 0.460000) + (point 308.270000 144.760000 -61.150000 0.460000) + 4) + (segment 4628 + (point 308.270000 144.760000 -61.150000 0.460000) + (point 310.240000 146.420000 -62.850000 0.460000) + 4) + (segment 4629 + (point 310.240000 146.420000 -62.850000 0.460000) + (point 311.490000 149.100000 -64.670000 0.460000) + 4) + (segment 4630 + (point 311.490000 149.100000 -64.670000 0.460000) + (point 310.510000 151.270000 -64.970000 0.460000) + 4) + (segment 4631 + (point 310.510000 151.270000 -64.970000 0.460000) + (point 310.510000 151.270000 -65.000000 0.460000) + 4) + (segment 4632 + (point 310.510000 151.270000 -65.000000 0.460000) + (point 309.670000 152.880000 -66.520000 0.230000) + 4) + (segment 4633 + (point 309.670000 152.880000 -66.520000 0.230000) + (point 308.060000 153.690000 -69.250000 0.230000) + 4) + (segment 4634 + (point 308.060000 153.690000 -69.250000 0.230000) + (point 307.080000 155.860000 -71.170000 0.230000) + 4) + (segment 4635 + (point 307.080000 155.860000 -71.170000 0.230000) + (point 307.450000 158.330000 -73.500000 0.230000) + 4) + (segment 4636 + (point 307.450000 158.330000 -73.500000 0.230000) + (point 307.760000 159.000000 -75.630000 0.230000) + 4) + (segment 4637 + (point 307.760000 159.000000 -75.630000 0.230000) + (point 307.760000 159.000000 -75.650000 0.230000) + 4) + (segment 4638 + (point 307.760000 159.000000 -75.650000 0.230000) + (point 308.250000 160.910000 -77.930000 0.230000) + 4) + (segment 4639 + (point 308.250000 160.910000 -77.930000 0.230000) + (point 308.250000 160.910000 -77.950000 0.230000) + 4) + (segment 4640 + (point 308.250000 160.910000 -77.950000 0.230000) + (point 308.030000 163.840000 -80.020000 0.230000) + 4) + (segment 4641 + (point 308.030000 163.840000 -80.020000 0.230000) + (point 308.400000 166.310000 -82.150000 0.230000) + 4) + (segment 4642 + (point 308.400000 166.310000 -82.150000 0.230000) + (point 309.210000 168.890000 -83.350000 0.230000) + 4) + (segment 4643 + (point 309.210000 168.890000 -83.350000 0.230000) + (point 307.340000 170.850000 -85.050000 0.230000) + 4) + (segment 4644 + (point 307.340000 170.850000 -85.050000 0.230000) + (point 308.150000 173.420000 -86.400000 0.230000) + 4) + (segment 4645 + (point 308.150000 173.420000 -86.400000 0.230000) + (point 307.440000 174.450000 -88.420000 0.230000) + 4) + (segment 4646 + (point 307.440000 174.450000 -88.420000 0.230000) + (point 306.590000 176.050000 -90.800000 0.230000) + 4) + (segment 4647 + (point 306.590000 176.050000 -90.800000 0.230000) + (point 306.370000 178.970000 -91.930000 0.230000) + 4) + (segment 4648 + (point 306.370000 178.970000 -91.930000 0.230000) + (point 306.910000 182.690000 -92.700000 0.230000) + 4) + (segment 4649 + (point 306.910000 182.690000 -92.700000 0.230000) + (point 306.510000 184.390000 -94.070000 0.230000) + 4) + (segment 4650 + (point 306.510000 184.390000 -94.070000 0.230000) + (point 306.510000 184.390000 -94.100000 0.230000) + 4) + (segment 4651 + (point 306.510000 184.390000 -94.100000 0.230000) + (point 306.610000 188.000000 -95.570000 0.230000) + 4) + (segment 4652 + (point 306.610000 188.000000 -95.570000 0.230000) + (point 306.610000 188.000000 -95.630000 0.230000) + 4) + (segment 4653 + (point 306.610000 188.000000 -95.630000 0.230000) + (point 306.800000 189.230000 -98.400000 0.230000) + 4) + (segment 4654 + (point 306.800000 189.230000 -98.400000 0.230000) + (point 307.030000 192.270000 -100.400000 0.230000) + 4) + (segment 4655 + (point 307.030000 192.270000 -100.400000 0.230000) + (point 306.100000 196.240000 -101.550000 0.230000) + 4) + (segment 4656 + (point 306.100000 196.240000 -101.550000 0.230000) + (point 305.130000 198.380000 -103.850000 0.230000) + 4) + (segment 4657 + (point 305.130000 198.380000 -103.850000 0.230000) + (point 305.490000 200.870000 -104.970000 0.230000) + 4) + (segment 4658 + (point 305.490000 200.870000 -104.970000 0.230000) + (point 305.490000 200.870000 -105.000000 0.230000) + 4) + (segment 4659 + (point 305.490000 200.870000 -105.000000 0.230000) + (point 305.800000 201.540000 -106.170000 0.230000) + 4) + (segment 4660 + (point 305.800000 201.540000 -106.170000 0.230000) + (point 305.800000 201.540000 -106.350000 0.230000) + 4)) + (branch 172 71 + (segment 4661 + (point 258.630000 73.060000 1.380000 1.375000) + (point 255.150000 73.830000 0.700000 0.460000) + 4) + (segment 4662 + (point 255.150000 73.830000 0.700000 0.460000) + (point 252.750000 72.060000 0.700000 0.460000) + 4) + (segment 4663 + (point 252.750000 72.060000 0.700000 0.460000) + (point 251.360000 69.940000 1.800000 0.460000) + 4) + (segment 4664 + (point 251.360000 69.940000 1.800000 0.460000) + (point 251.360000 69.940000 1.770000 0.460000) + 4) + (segment 4665 + (point 251.360000 69.940000 1.770000 0.460000) + (point 249.810000 72.560000 3.700000 0.460000) + 4) + (segment 4666 + (point 249.810000 72.560000 3.700000 0.460000) + (point 250.040000 75.600000 5.250000 0.460000) + 4)) + (branch 173 172 + (segment 4667 + (point 250.040000 75.600000 5.250000 0.460000) + (point 252.260000 76.120000 4.520000 0.690000) + 4) + (segment 4668 + (point 252.260000 76.120000 4.520000 0.690000) + (point 251.870000 77.830000 6.420000 0.690000) + 4) + (segment 4669 + (point 251.870000 77.830000 6.420000 0.690000) + (point 252.050000 79.060000 8.700000 0.690000) + 4) + (segment 4670 + (point 252.050000 79.060000 8.700000 0.690000) + (point 252.050000 79.060000 8.680000 0.690000) + 4) + (segment 4671 + (point 252.050000 79.060000 8.680000 0.690000) + (point 251.340000 80.090000 10.820000 0.690000) + 4) + (segment 4672 + (point 251.340000 80.090000 10.820000 0.690000) + (point 252.540000 80.970000 12.070000 0.690000) + 4) + (segment 4673 + (point 252.540000 80.970000 12.070000 0.690000) + (point 253.890000 81.290000 14.000000 0.690000) + 4) + (segment 4674 + (point 253.890000 81.290000 14.000000 0.690000) + (point 253.440000 81.180000 13.950000 0.690000) + 4) + (segment 4675 + (point 253.440000 81.180000 13.950000 0.690000) + (point 255.940000 80.570000 15.650000 0.690000) + 4) + (segment 4676 + (point 255.940000 80.570000 15.650000 0.690000) + (point 259.510000 81.400000 16.800000 0.690000) + 4) + (segment 4677 + (point 259.510000 81.400000 16.800000 0.690000) + (point 263.220000 81.680000 17.950000 0.690000) + 4) + (segment 4678 + (point 263.220000 81.680000 17.950000 0.690000) + (point 265.350000 78.590000 19.150000 0.690000) + 4)) + (branch 174 173 + (segment 4679 + (point 265.350000 78.590000 19.150000 0.690000) + (point 263.700000 77.610000 19.750000 0.690000) + 4) + (segment 4680 + (point 263.700000 77.610000 19.750000 0.690000) + (point 263.700000 77.610000 19.730000 0.690000) + 4) + (segment 4681 + (point 263.700000 77.610000 19.730000 0.690000) + (point 260.620000 78.690000 21.450000 0.460000) + 4) + (segment 4682 + (point 260.620000 78.690000 21.450000 0.460000) + (point 260.350000 79.810000 23.330000 0.460000) + 4) + (segment 4683 + (point 260.350000 79.810000 23.330000 0.460000) + (point 261.030000 82.960000 24.400000 0.460000) + 4) + (segment 4684 + (point 261.030000 82.960000 24.400000 0.460000) + (point 261.210000 84.190000 26.130000 0.460000) + 4) + (segment 4685 + (point 261.210000 84.190000 26.130000 0.460000) + (point 259.480000 85.580000 27.020000 0.460000) + 4) + (segment 4686 + (point 259.480000 85.580000 27.020000 0.460000) + (point 258.310000 86.510000 28.880000 0.460000) + 4) + (segment 4687 + (point 258.310000 86.510000 28.880000 0.460000) + (point 257.600000 87.530000 30.230000 0.460000) + 4)) + (branch 175 173 + (segment 4688 + (point 265.350000 78.590000 19.150000 0.690000) + (point 266.460000 75.880000 18.170000 0.460000) + 4) + (segment 4689 + (point 266.460000 75.880000 18.170000 0.460000) + (point 267.170000 74.840000 18.570000 0.460000) + 4) + (segment 4690 + (point 267.170000 74.840000 18.570000 0.460000) + (point 269.850000 75.470000 20.650000 0.460000) + 4) + (segment 4691 + (point 269.850000 75.470000 20.650000 0.460000) + (point 271.020000 74.540000 21.750000 0.460000) + 4) + (segment 4692 + (point 271.020000 74.540000 21.750000 0.460000) + (point 271.910000 74.750000 23.420000 0.460000) + 4) + (segment 4693 + (point 271.910000 74.750000 23.420000 0.460000) + (point 273.610000 77.550000 24.770000 0.460000) + 4) + (segment 4694 + (point 273.610000 77.550000 24.770000 0.460000) + (point 273.610000 77.550000 24.750000 0.460000) + 4) + (segment 4695 + (point 273.610000 77.550000 24.750000 0.460000) + (point 276.860000 77.710000 25.380000 0.460000) + 4) + (segment 4696 + (point 276.860000 77.710000 25.380000 0.460000) + (point 279.370000 77.100000 24.950000 0.460000) + 4) + (segment 4697 + (point 279.370000 77.100000 24.950000 0.460000) + (point 281.280000 76.950000 25.870000 0.460000) + 4) + (segment 4698 + (point 281.280000 76.950000 25.870000 0.460000) + (point 281.280000 76.950000 25.850000 0.460000) + 4) + (segment 4699 + (point 281.280000 76.950000 25.850000 0.460000) + (point 281.860000 76.490000 28.100000 0.460000) + 4)) + (branch 176 172 + (segment 4700 + (point 250.040000 75.600000 5.250000 0.460000) + (point 247.400000 76.780000 6.150000 0.460000) + 4) + (segment 4701 + (point 247.400000 76.780000 6.150000 0.460000) + (point 244.850000 75.580000 8.020000 0.460000) + 4) + (segment 4702 + (point 244.850000 75.580000 8.020000 0.460000) + (point 241.330000 76.550000 8.600000 0.460000) + 4) + (segment 4703 + (point 241.330000 76.550000 8.600000 0.460000) + (point 241.330000 76.550000 8.570000 0.460000) + 4) + (segment 4704 + (point 241.330000 76.550000 8.570000 0.460000) + (point 236.860000 75.500000 9.500000 0.460000) + 4) + (segment 4705 + (point 236.860000 75.500000 9.500000 0.460000) + (point 236.860000 75.500000 9.480000 0.460000) + 4) + (segment 4706 + (point 236.860000 75.500000 9.480000 0.460000) + (point 234.320000 74.310000 10.850000 0.460000) + 4) + (segment 4707 + (point 234.320000 74.310000 10.850000 0.460000) + (point 234.320000 74.310000 10.820000 0.460000) + 4) + (segment 4708 + (point 234.320000 74.310000 10.820000 0.460000) + (point 231.590000 71.880000 10.850000 0.460000) + 4) + (segment 4709 + (point 231.590000 71.880000 10.850000 0.460000) + (point 230.700000 71.670000 10.850000 0.460000) + 4) + (segment 4710 + (point 230.700000 71.670000 10.850000 0.460000) + (point 230.200000 69.760000 10.850000 0.460000) + 4) + (segment 4711 + (point 230.200000 69.760000 10.850000 0.460000) + (point 227.120000 70.840000 12.100000 0.460000) + 4) + (segment 4712 + (point 227.120000 70.840000 12.100000 0.460000) + (point 225.210000 70.990000 13.070000 0.460000) + 4) + (segment 4713 + (point 225.210000 70.990000 13.070000 0.460000) + (point 225.210000 70.990000 13.050000 0.460000) + 4) + (segment 4714 + (point 225.210000 70.990000 13.050000 0.460000) + (point 223.100000 69.890000 12.350000 0.460000) + 4) + (segment 4715 + (point 223.100000 69.890000 12.350000 0.460000) + (point 219.710000 70.290000 13.400000 0.460000) + 4) + (segment 4716 + (point 219.710000 70.290000 13.400000 0.460000) + (point 217.480000 69.760000 14.250000 0.460000) + 4) + (segment 4717 + (point 217.480000 69.760000 14.250000 0.460000) + (point 213.830000 71.290000 14.600000 0.460000) + 4) + (segment 4718 + (point 213.830000 71.290000 14.600000 0.460000) + (point 210.650000 68.760000 14.100000 0.460000) + 4) + (segment 4719 + (point 210.650000 68.760000 14.100000 0.460000) + (point 209.390000 66.070000 14.430000 0.460000) + 4) + (segment 4720 + (point 209.390000 66.070000 14.430000 0.460000) + (point 207.550000 63.860000 15.680000 0.460000) + 4) + (segment 4721 + (point 207.550000 63.860000 15.680000 0.460000) + (point 203.400000 63.480000 14.970000 0.460000) + 4) + (segment 4722 + (point 203.400000 63.480000 14.970000 0.460000) + (point 201.760000 62.490000 15.430000 0.460000) + 4) + (segment 4723 + (point 201.760000 62.490000 15.430000 0.460000) + (point 200.500000 59.810000 17.200000 0.460000) + 4) + (segment 4724 + (point 200.500000 59.810000 17.200000 0.460000) + (point 197.900000 56.820000 18.450000 0.460000) + 4) + (segment 4725 + (point 197.900000 56.820000 18.450000 0.460000) + (point 194.730000 54.280000 20.150000 0.460000) + 4) + (segment 4726 + (point 194.730000 54.280000 20.150000 0.460000) + (point 192.940000 53.860000 21.750000 0.460000) + 4) + (segment 4727 + (point 192.940000 53.860000 21.750000 0.460000) + (point 190.700000 53.340000 22.950000 0.460000) + 4) + (segment 4728 + (point 190.700000 53.340000 22.950000 0.460000) + (point 190.700000 53.340000 22.920000 0.460000) + 4) + (segment 4729 + (point 190.700000 53.340000 22.920000 0.460000) + (point 188.030000 52.710000 24.270000 0.460000) + 4) + (segment 4730 + (point 188.030000 52.710000 24.270000 0.460000) + (point 183.740000 52.910000 25.200000 0.460000) + 4) + (segment 4731 + (point 183.740000 52.910000 25.200000 0.460000) + (point 182.320000 54.950000 25.200000 0.460000) + 4) + (segment 4732 + (point 182.320000 54.950000 25.200000 0.460000) + (point 181.790000 57.220000 24.300000 0.460000) + 4) + (segment 4733 + (point 181.790000 57.220000 24.300000 0.460000) + (point 182.410000 58.560000 24.670000 0.460000) + 4) + (segment 4734 + (point 182.410000 58.560000 24.670000 0.460000) + (point 182.410000 58.560000 24.650000 0.460000) + 4) + (segment 4735 + (point 182.410000 58.560000 24.650000 0.460000) + (point 183.500000 60.000000 25.630000 0.460000) + 4) + (segment 4736 + (point 183.500000 60.000000 25.630000 0.460000) + (point 183.500000 60.000000 27.350000 0.460000) + 4) + (segment 4737 + (point 183.500000 60.000000 27.350000 0.460000) + (point 183.500000 60.000000 27.320000 0.460000) + 4) + (segment 4738 + (point 183.500000 60.000000 27.320000 0.460000) + (point 183.940000 60.100000 29.420000 0.460000) + 4) + (segment 4739 + (point 183.940000 60.100000 29.420000 0.460000) + (point 183.540000 61.810000 30.600000 0.460000) + 4) + (segment 4740 + (point 183.540000 61.810000 30.600000 0.460000) + (point 183.540000 61.810000 30.570000 0.460000) + 4)) + (branch 177 71 + (segment 4741 + (point 258.630000 73.060000 1.380000 1.375000) + (point 259.280000 74.900000 3.670000 0.460000) + 4) + (segment 4742 + (point 259.280000 74.900000 3.670000 0.460000) + (point 259.280000 74.900000 3.650000 0.460000) + 4) + (segment 4743 + (point 259.280000 74.900000 3.650000 0.460000) + (point 260.350000 76.340000 5.970000 0.460000) + 4) + (segment 4744 + (point 260.350000 76.340000 5.970000 0.460000) + (point 259.950000 78.040000 7.470000 0.460000) + 4) + (segment 4745 + (point 259.950000 78.040000 7.470000 0.460000) + (point 261.730000 78.460000 8.380000 0.230000) + 4) + (segment 4746 + (point 261.730000 78.460000 8.380000 0.230000) + (point 263.830000 79.560000 8.770000 0.230000) + 4) + (segment 4747 + (point 263.830000 79.560000 8.770000 0.230000) + (point 265.680000 81.770000 8.770000 0.230000) + 4) + (segment 4748 + (point 265.680000 81.770000 8.770000 0.230000) + (point 268.090000 83.530000 9.570000 0.230000) + 4) + (segment 4749 + (point 268.090000 83.530000 9.570000 0.230000) + (point 267.550000 85.800000 10.100000 0.230000) + 4) + (segment 4750 + (point 267.550000 85.800000 10.100000 0.230000) + (point 266.440000 88.520000 11.000000 0.230000) + 4) + (segment 4751 + (point 266.440000 88.520000 11.000000 0.230000) + (point 266.760000 89.190000 11.900000 0.230000) + 4) + (segment 4752 + (point 266.760000 89.190000 11.900000 0.230000) + (point 268.280000 90.740000 12.650000 0.230000) + 4) + (segment 4753 + (point 268.280000 90.740000 12.650000 0.230000) + (point 270.960000 91.370000 13.800000 0.230000) + 4) + (segment 4754 + (point 270.960000 91.370000 13.800000 0.230000) + (point 272.430000 91.120000 14.750000 0.230000) + 4) + (segment 4755 + (point 272.430000 91.120000 14.750000 0.230000) + (point 273.590000 90.190000 15.880000 0.230000) + 4) + (segment 4756 + (point 273.590000 90.190000 15.880000 0.230000) + (point 276.000000 91.950000 16.920000 0.230000) + 4) + (segment 4757 + (point 276.000000 91.950000 16.920000 0.230000) + (point 278.420000 93.720000 17.950000 0.230000) + 4) + (segment 4758 + (point 278.420000 93.720000 17.950000 0.230000) + (point 279.680000 96.400000 19.630000 0.230000) + 4) + (segment 4759 + (point 279.680000 96.400000 19.630000 0.230000) + (point 279.680000 96.400000 19.600000 0.230000) + 4) + (segment 4760 + (point 279.680000 96.400000 19.600000 0.230000) + (point 281.470000 96.820000 20.900000 0.230000) + 4) + (segment 4761 + (point 281.470000 96.820000 20.900000 0.230000) + (point 281.470000 96.820000 20.870000 0.230000) + 4) + (segment 4762 + (point 281.470000 96.820000 20.870000 0.230000) + (point 282.040000 96.360000 22.100000 0.230000) + 4) + (segment 4763 + (point 282.040000 96.360000 22.100000 0.230000) + (point 285.470000 97.760000 23.470000 0.230000) + 4) + (segment 4764 + (point 285.470000 97.760000 23.470000 0.230000) + (point 287.450000 99.410000 24.450000 0.230000) + 4) + (segment 4765 + (point 287.450000 99.410000 24.450000 0.230000) + (point 287.010000 99.310000 24.450000 0.230000) + 4) + (segment 4766 + (point 287.010000 99.310000 24.450000 0.230000) + (point 288.880000 103.340000 25.300000 0.230000) + 4) + (segment 4767 + (point 288.880000 103.340000 25.300000 0.230000) + (point 289.110000 106.380000 26.420000 0.230000) + 4) + (segment 4768 + (point 289.110000 106.380000 26.420000 0.230000) + (point 289.160000 108.180000 24.050000 0.230000) + 4) + (segment 4769 + (point 289.160000 108.180000 24.050000 0.230000) + (point 290.230000 109.630000 23.170000 0.230000) + 4) + (segment 4770 + (point 290.230000 109.630000 23.170000 0.230000) + (point 289.830000 111.320000 22.450000 0.230000) + 4) + (segment 4771 + (point 289.830000 111.320000 22.450000 0.230000) + (point 289.830000 111.320000 22.430000 0.230000) + 4) + (segment 4772 + (point 289.830000 111.320000 22.430000 0.230000) + (point 288.990000 112.910000 20.550000 0.230000) + 4) + (segment 4773 + (point 288.990000 112.910000 20.550000 0.230000) + (point 288.420000 113.380000 18.500000 0.230000) + 4) + (segment 4774 + (point 288.420000 113.380000 18.500000 0.230000) + (point 288.420000 113.380000 18.480000 0.230000) + 4)) + (branch 178 70 + (segment 4775 + (point 256.210000 49.210000 -4.700000 1.835000) + (point 251.510000 49.770000 -3.380000 0.460000) + 4) + (segment 4776 + (point 251.510000 49.770000 -3.380000 0.460000) + (point 249.560000 54.100000 -2.950000 0.460000) + 4) + (segment 4777 + (point 249.560000 54.100000 -2.950000 0.460000) + (point 246.470000 55.170000 -2.950000 0.460000) + 4) + (segment 4778 + (point 246.470000 55.170000 -2.950000 0.460000) + (point 244.110000 55.210000 -3.970000 0.460000) + 4) + (segment 4779 + (point 244.110000 55.210000 -3.970000 0.460000) + (point 242.820000 56.690000 -5.650000 0.460000) + 4) + (segment 4780 + (point 242.820000 56.690000 -5.650000 0.460000) + (point 241.970000 58.290000 -6.600000 0.460000) + 4) + (segment 4781 + (point 241.970000 58.290000 -6.600000 0.460000) + (point 241.270000 59.320000 -8.230000 0.460000) + 4) + (segment 4782 + (point 241.270000 59.320000 -8.230000 0.460000) + (point 239.670000 60.140000 -8.950000 0.460000) + 4) + (segment 4783 + (point 239.670000 60.140000 -8.950000 0.460000) + (point 236.850000 60.070000 -9.170000 0.460000) + 4) + (segment 4784 + (point 236.850000 60.070000 -9.170000 0.460000) + (point 232.750000 61.500000 -8.420000 0.460000) + 4) + (segment 4785 + (point 232.750000 61.500000 -8.420000 0.460000) + (point 232.750000 61.500000 -8.450000 0.460000) + 4) + (segment 4786 + (point 232.750000 61.500000 -8.450000 0.460000) + (point 231.090000 60.510000 -9.220000 0.460000) + 4) + (segment 4787 + (point 231.090000 60.510000 -9.220000 0.460000) + (point 230.160000 58.500000 -10.120000 0.460000) + 4) + (segment 4788 + (point 230.160000 58.500000 -10.120000 0.460000) + (point 228.810000 58.190000 -11.250000 0.460000) + 4) + (segment 4789 + (point 228.810000 58.190000 -11.250000 0.460000) + (point 225.730000 59.260000 -12.000000 0.460000) + 4) + (segment 4790 + (point 225.730000 59.260000 -12.000000 0.460000) + (point 222.300000 57.860000 -12.350000 0.460000) + 4) + (segment 4791 + (point 222.300000 57.860000 -12.350000 0.460000) + (point 219.170000 57.130000 -13.000000 0.460000) + 4) + (segment 4792 + (point 219.170000 57.130000 -13.000000 0.460000) + (point 215.910000 56.960000 -13.720000 0.460000) + 4) + (segment 4793 + (point 215.910000 56.960000 -13.720000 0.460000) + (point 213.410000 57.570000 -14.750000 0.460000) + 4) + (segment 4794 + (point 213.410000 57.570000 -14.750000 0.460000) + (point 210.810000 54.570000 -15.220000 0.460000) + 4) + (segment 4795 + (point 210.810000 54.570000 -15.220000 0.460000) + (point 207.110000 54.300000 -15.500000 0.460000) + 4) + (segment 4796 + (point 207.110000 54.300000 -15.500000 0.460000) + (point 204.160000 54.800000 -17.130000 0.460000) + 4) + (segment 4797 + (point 204.160000 54.800000 -17.130000 0.460000) + (point 201.610000 55.310000 -16.570000 0.460000) + 4)) + (branch 179 178 + (segment 4798 + (point 201.610000 55.310000 -16.570000 0.460000) + (point 200.640000 55.770000 -16.570000 0.460000) + 4) + (segment 4799 + (point 200.640000 55.770000 -16.570000 0.460000) + (point 198.320000 57.620000 -15.300000 0.460000) + 4) + (segment 4800 + (point 198.320000 57.620000 -15.300000 0.460000) + (point 195.320000 56.310000 -14.650000 0.460000) + 4) + (segment 4801 + (point 195.320000 56.310000 -14.650000 0.460000) + (point 190.340000 57.540000 -14.270000 0.460000) + 4) + (segment 4802 + (point 190.340000 57.540000 -14.270000 0.460000) + (point 187.160000 55.000000 -13.630000 0.460000) + 4) + (segment 4803 + (point 187.160000 55.000000 -13.630000 0.460000) + (point 183.230000 51.680000 -12.570000 0.460000) + 4) + (segment 4804 + (point 183.230000 51.680000 -12.570000 0.460000) + (point 183.310000 49.320000 -10.820000 0.460000) + 4) + (segment 4805 + (point 183.310000 49.320000 -10.820000 0.460000) + (point 180.760000 48.130000 -8.420000 0.460000) + 4) + (segment 4806 + (point 180.760000 48.130000 -8.420000 0.460000) + (point 179.230000 46.570000 -6.780000 0.460000) + 4) + (segment 4807 + (point 179.230000 46.570000 -6.780000 0.460000) + (point 178.480000 45.790000 -4.630000 0.460000) + 4) + (segment 4808 + (point 178.480000 45.790000 -4.630000 0.460000) + (point 174.320000 45.410000 -2.150000 0.230000) + 4) + (segment 4809 + (point 174.320000 45.410000 -2.150000 0.230000) + (point 174.320000 45.410000 -2.170000 0.230000) + 4) + (segment 4810 + (point 174.320000 45.410000 -2.170000 0.230000) + (point 171.870000 47.830000 -1.670000 0.230000) + 4) + (segment 4811 + (point 171.870000 47.830000 -1.670000 0.230000) + (point 171.870000 47.830000 -1.700000 0.230000) + 4) + (segment 4812 + (point 171.870000 47.830000 -1.700000 0.230000) + (point 170.940000 51.800000 -1.000000 0.230000) + 4) + (segment 4813 + (point 170.940000 51.800000 -1.000000 0.230000) + (point 168.630000 53.640000 0.150000 0.230000) + 4) + (segment 4814 + (point 168.630000 53.640000 0.150000 0.230000) + (point 168.630000 53.640000 0.120000 0.230000) + 4) + (segment 4815 + (point 168.630000 53.640000 0.120000 0.230000) + (point 167.650000 55.800000 1.070000 0.230000) + 4) + (segment 4816 + (point 167.650000 55.800000 1.070000 0.230000) + (point 167.650000 55.800000 1.050000 0.230000) + 4) + (segment 4817 + (point 167.650000 55.800000 1.050000 0.230000) + (point 166.940000 56.820000 2.450000 0.230000) + 4) + (segment 4818 + (point 166.940000 56.820000 2.450000 0.230000) + (point 166.940000 56.820000 2.420000 0.230000) + 4) + (segment 4819 + (point 166.940000 56.820000 2.420000 0.230000) + (point 166.360000 57.290000 4.320000 0.230000) + 4)) + (branch 180 178 + (segment 4820 + (point 201.610000 55.310000 -16.570000 0.460000) + (point 198.540000 56.390000 -16.980000 0.230000) + 4) + (segment 4821 + (point 198.540000 56.390000 -16.980000 0.230000) + (point 195.270000 56.220000 -15.970000 0.230000) + 4) + (segment 4822 + (point 195.270000 56.220000 -15.970000 0.230000) + (point 190.860000 56.970000 -16.450000 0.230000) + 4) + (segment 4823 + (point 190.860000 56.970000 -16.450000 0.230000) + (point 188.320000 55.780000 -15.800000 0.230000) + 4) + (segment 4824 + (point 188.320000 55.780000 -15.800000 0.230000) + (point 185.900000 54.020000 -15.070000 0.230000) + 4) + (segment 4825 + (point 185.900000 54.020000 -15.070000 0.230000) + (point 184.510000 51.900000 -14.630000 0.230000) + 4) + (segment 4826 + (point 184.510000 51.900000 -14.630000 0.230000) + (point 183.130000 49.780000 -13.300000 0.230000) + 4) + (segment 4827 + (point 183.130000 49.780000 -13.300000 0.230000) + (point 183.520000 48.080000 -11.470000 0.230000) + 4) + (segment 4828 + (point 183.520000 48.080000 -11.470000 0.230000) + (point 183.520000 48.080000 -11.500000 0.230000) + 4) + (segment 4829 + (point 183.520000 48.080000 -11.500000 0.230000) + (point 182.180000 47.770000 -9.900000 0.230000) + 4) + (segment 4830 + (point 182.180000 47.770000 -9.900000 0.230000) + (point 179.810000 47.810000 -8.570000 0.230000) + 4) + (segment 4831 + (point 179.810000 47.810000 -8.570000 0.230000) + (point 179.810000 47.810000 -8.550000 0.230000) + 4) + (segment 4832 + (point 179.810000 47.810000 -8.550000 0.230000) + (point 179.000000 45.230000 -7.150000 0.230000) + 4) + (segment 4833 + (point 179.000000 45.230000 -7.150000 0.230000) + (point 178.690000 44.560000 -6.300000 0.230000) + 4) + (segment 4834 + (point 178.690000 44.560000 -6.300000 0.230000) + (point 176.770000 44.710000 -4.700000 0.230000) + 4) + (segment 4835 + (point 176.770000 44.710000 -4.700000 0.230000) + (point 172.930000 45.010000 -3.470000 0.230000) + 4) + (segment 4836 + (point 172.930000 45.010000 -3.470000 0.230000) + (point 172.410000 47.260000 -3.470000 0.230000) + 4) + (segment 4837 + (point 172.410000 47.260000 -3.470000 0.230000) + (point 170.710000 50.460000 -2.950000 0.230000) + 4) + (segment 4838 + (point 170.710000 50.460000 -2.950000 0.230000) + (point 170.180000 52.720000 -1.880000 0.230000) + 4) + (segment 4839 + (point 170.180000 52.720000 -1.880000 0.230000) + (point 168.750000 54.770000 -1.200000 0.230000) + 4) + (segment 4840 + (point 168.750000 54.770000 -1.200000 0.230000) + (point 167.470000 56.270000 0.000000 0.230000) + 4) + (segment 4841 + (point 167.470000 56.270000 0.000000 0.230000) + (point 166.440000 56.630000 1.630000 0.230000) + 4) + (segment 4842 + (point 166.440000 56.630000 1.630000 0.230000) + (point 166.440000 56.630000 1.600000 0.230000) + 4) + (segment 4843 + (point 166.440000 56.630000 1.600000 0.230000) + (point 165.420000 56.980000 2.900000 0.230000) + 4)) + (branch 181 178 + (segment 4844 + (point 201.610000 55.310000 -16.570000 0.460000) + (point 199.070000 54.110000 -19.700000 0.460000) + 4) + (segment 4845 + (point 199.070000 54.110000 -19.700000 0.460000) + (point 196.970000 53.030000 -22.050000 0.460000) + 4) + (segment 4846 + (point 196.970000 53.030000 -22.050000 0.460000) + (point 191.920000 52.440000 -23.000000 0.460000) + 4) + (segment 4847 + (point 191.920000 52.440000 -23.000000 0.460000) + (point 189.380000 51.240000 -23.630000 0.460000) + 4) + (segment 4848 + (point 189.380000 51.240000 -23.630000 0.460000) + (point 188.290000 49.800000 -24.600000 0.460000) + 4) + (segment 4849 + (point 188.290000 49.800000 -24.600000 0.460000) + (point 184.460000 50.090000 -24.600000 0.460000) + 4) + (segment 4850 + (point 184.460000 50.090000 -24.600000 0.460000) + (point 181.390000 51.170000 -25.250000 0.460000) + 4) + (segment 4851 + (point 181.390000 51.170000 -25.250000 0.460000) + (point 178.390000 49.870000 -25.250000 0.460000) + 4) + (segment 4852 + (point 178.390000 49.870000 -25.250000 0.460000) + (point 177.890000 47.960000 -24.820000 0.460000) + 4) + (segment 4853 + (point 177.890000 47.960000 -24.820000 0.460000) + (point 177.890000 47.960000 -24.850000 0.460000) + 4) + (segment 4854 + (point 177.890000 47.960000 -24.850000 0.460000) + (point 174.370000 48.920000 -25.900000 0.460000) + 4) + (segment 4855 + (point 174.370000 48.920000 -25.900000 0.460000) + (point 172.270000 47.830000 -27.670000 0.460000) + 4) + (segment 4856 + (point 172.270000 47.830000 -27.670000 0.460000) + (point 171.510000 47.060000 -29.620000 0.460000) + 4) + (segment 4857 + (point 171.510000 47.060000 -29.620000 0.460000) + (point 171.060000 46.960000 -31.630000 0.460000) + 4) + (segment 4858 + (point 171.060000 46.960000 -31.630000 0.460000) + (point 168.200000 45.090000 -33.100000 0.460000) + 4) + (segment 4859 + (point 168.200000 45.090000 -33.100000 0.460000) + (point 165.340000 43.230000 -34.020000 0.460000) + 4) + (segment 4860 + (point 165.340000 43.230000 -34.020000 0.460000) + (point 162.260000 44.290000 -35.650000 0.460000) + 4) + (segment 4861 + (point 162.260000 44.290000 -35.650000 0.460000) + (point 161.550000 45.320000 -37.770000 0.460000) + 4) + (segment 4862 + (point 161.550000 45.320000 -37.770000 0.460000) + (point 160.210000 45.010000 -39.950000 0.460000) + 4) + (segment 4863 + (point 160.210000 45.010000 -39.950000 0.460000) + (point 157.790000 43.250000 -42.100000 0.460000) + 4) + (segment 4864 + (point 157.790000 43.250000 -42.100000 0.460000) + (point 157.790000 43.250000 -42.130000 0.460000) + 4) + (segment 4865 + (point 157.790000 43.250000 -42.130000 0.460000) + (point 154.090000 42.980000 -43.470000 0.460000) + 4) + (segment 4866 + (point 154.090000 42.980000 -43.470000 0.460000) + (point 149.220000 43.630000 -49.650000 0.230000) + 4) + (segment 4867 + (point 149.220000 43.630000 -49.650000 0.230000) + (point 145.380000 43.920000 -51.220000 0.230000) + 4) + (segment 4868 + (point 145.380000 43.920000 -51.220000 0.230000) + (point 145.380000 43.920000 -51.280000 0.230000) + 4) + (segment 4869 + (point 145.380000 43.920000 -51.280000 0.230000) + (point 142.580000 43.860000 -52.630000 0.230000) + 4) + (segment 4870 + (point 142.580000 43.860000 -52.630000 0.230000) + (point 142.580000 43.860000 -52.650000 0.230000) + 4) + (segment 4871 + (point 142.580000 43.860000 -52.650000 0.230000) + (point 141.280000 45.360000 -54.500000 0.230000) + 4) + (segment 4872 + (point 141.280000 45.360000 -54.500000 0.230000) + (point 140.080000 44.470000 -56.200000 0.230000) + 4) + (segment 4873 + (point 140.080000 44.470000 -56.200000 0.230000) + (point 140.080000 44.470000 -56.220000 0.230000) + 4) + (segment 4874 + (point 140.080000 44.470000 -56.220000 0.230000) + (point 137.270000 44.420000 -57.470000 0.230000) + 4) + (segment 4875 + (point 137.270000 44.420000 -57.470000 0.230000) + (point 137.270000 44.420000 -57.500000 0.230000) + 4) + (segment 4876 + (point 137.270000 44.420000 -57.500000 0.230000) + (point 135.610000 43.420000 -59.470000 0.230000) + 4) + (segment 4877 + (point 135.610000 43.420000 -59.470000 0.230000) + (point 135.610000 43.420000 -59.500000 0.230000) + 4) + (segment 4878 + (point 135.610000 43.420000 -59.500000 0.230000) + (point 133.570000 44.150000 -60.950000 0.230000) + 4) + (segment 4879 + (point 133.570000 44.150000 -60.950000 0.230000) + (point 132.540000 44.490000 -63.050000 0.230000) + 4) + (segment 4880 + (point 132.540000 44.490000 -63.050000 0.230000) + (point 132.540000 44.490000 -63.070000 0.230000) + 4) + (segment 4881 + (point 132.540000 44.490000 -63.070000 0.230000) + (point 130.040000 45.100000 -63.150000 0.230000) + 4) + (segment 4882 + (point 130.040000 45.100000 -63.150000 0.230000) + (point 130.080000 46.900000 -64.700000 0.230000) + 4) + (segment 4883 + (point 130.080000 46.900000 -64.700000 0.230000) + (point 127.720000 46.960000 -66.030000 0.230000) + 4) + (segment 4884 + (point 127.720000 46.960000 -66.030000 0.230000) + (point 126.560000 47.870000 -67.650000 0.230000) + 4) + (segment 4885 + (point 126.560000 47.870000 -67.650000 0.230000) + (point 124.460000 46.790000 -69.700000 0.230000) + 4) + (segment 4886 + (point 124.460000 46.790000 -69.700000 0.230000) + (point 121.830000 47.960000 -71.680000 0.230000) + 4) + (segment 4887 + (point 121.830000 47.960000 -71.680000 0.230000) + (point 121.830000 47.960000 -71.700000 0.230000) + 4) + (segment 4888 + (point 121.830000 47.960000 -71.700000 0.230000) + (point 120.490000 47.640000 -73.780000 0.230000) + 4) + (segment 4889 + (point 120.490000 47.640000 -73.780000 0.230000) + (point 120.490000 47.640000 -73.820000 0.230000) + 4) + (segment 4890 + (point 120.490000 47.640000 -73.820000 0.230000) + (point 119.010000 47.890000 -76.380000 0.230000) + 4) + (segment 4891 + (point 119.010000 47.890000 -76.380000 0.230000) + (point 116.970000 48.620000 -78.070000 0.230000) + 4) + (segment 4892 + (point 116.970000 48.620000 -78.070000 0.230000) + (point 116.970000 48.620000 -78.100000 0.230000) + 4) + (segment 4893 + (point 116.970000 48.620000 -78.100000 0.230000) + (point 115.490000 48.860000 -80.350000 0.230000) + 4) + (segment 4894 + (point 115.490000 48.860000 -80.350000 0.230000) + (point 115.490000 48.860000 -80.400000 0.230000) + 4) + (segment 4895 + (point 115.490000 48.860000 -80.400000 0.230000) + (point 114.020000 49.110000 -82.970000 0.230000) + 4) + (segment 4896 + (point 114.020000 49.110000 -82.970000 0.230000) + (point 110.180000 49.410000 -84.800000 0.230000) + 4) + (segment 4897 + (point 110.180000 49.410000 -84.800000 0.230000) + (point 108.890000 50.900000 -86.670000 0.230000) + 4) + (segment 4898 + (point 108.890000 50.900000 -86.670000 0.230000) + (point 108.890000 50.900000 -86.700000 0.230000) + 4) + (segment 4899 + (point 108.890000 50.900000 -86.700000 0.230000) + (point 107.420000 51.150000 -88.570000 0.230000) + 4) + (segment 4900 + (point 107.420000 51.150000 -88.570000 0.230000) + (point 107.420000 51.150000 -88.600000 0.230000) + 4) + (segment 4901 + (point 107.420000 51.150000 -88.600000 0.230000) + (point 104.340000 52.220000 -90.250000 0.230000) + 4) + (segment 4902 + (point 104.340000 52.220000 -90.250000 0.230000) + (point 104.340000 52.220000 -90.280000 0.230000) + 4) + (segment 4903 + (point 104.340000 52.220000 -90.280000 0.230000) + (point 102.460000 54.170000 -92.150000 0.230000) + 4) + (segment 4904 + (point 102.460000 54.170000 -92.150000 0.230000) + (point 101.890000 54.630000 -93.820000 0.230000) + 4) + (segment 4905 + (point 101.890000 54.630000 -93.820000 0.230000) + (point 101.890000 54.630000 -93.850000 0.230000) + 4) + (segment 4906 + (point 101.890000 54.630000 -93.850000 0.230000) + (point 99.130000 56.370000 -96.100000 0.230000) + 4) + (segment 4907 + (point 99.130000 56.370000 -96.100000 0.230000) + (point 97.210000 56.530000 -98.800000 0.230000) + 4) + (segment 4908 + (point 97.210000 56.530000 -98.800000 0.230000) + (point 96.370000 58.120000 -101.650000 0.230000) + 4) + (segment 4909 + (point 96.370000 58.120000 -101.650000 0.230000) + (point 93.550000 58.050000 -104.250000 0.230000) + 4) + (segment 4910 + (point 93.550000 58.050000 -104.250000 0.230000) + (point 91.100000 60.460000 -106.150000 0.230000) + 4) + (segment 4911 + (point 91.100000 60.460000 -106.150000 0.230000) + (point 88.740000 60.510000 -109.200000 0.230000) + 4)) + (branch 182 69 + (segment 4912 + (point 260.100000 44.740000 -6.380000 1.835000) + (point 262.090000 46.880000 -7.070000 0.690000) + 4) + (segment 4913 + (point 262.090000 46.880000 -7.070000 0.690000) + (point 266.250000 47.260000 -7.700000 0.690000) + 4) + (segment 4914 + (point 266.250000 47.260000 -7.700000 0.690000) + (point 268.340000 48.340000 -8.520000 0.690000) + 4) + (segment 4915 + (point 268.340000 48.340000 -8.520000 0.690000) + (point 270.170000 50.560000 -9.200000 0.690000) + 4) + (segment 4916 + (point 270.170000 50.560000 -9.200000 0.690000) + (point 271.960000 50.980000 -9.850000 0.690000) + 4) + (segment 4917 + (point 271.960000 50.980000 -9.850000 0.690000) + (point 274.330000 50.940000 -8.230000 0.690000) + 4) + (segment 4918 + (point 274.330000 50.940000 -8.230000 0.690000) + (point 276.250000 50.790000 -7.320000 0.690000) + 4) + (segment 4919 + (point 276.250000 50.790000 -7.320000 0.690000) + (point 278.210000 52.450000 -7.950000 0.690000) + 4) + (segment 4920 + (point 278.210000 52.450000 -7.950000 0.690000) + (point 278.970000 53.220000 -9.950000 0.460000) + 4)) + (branch 183 182 + (segment 4921 + (point 278.970000 53.220000 -9.950000 0.460000) + (point 279.160000 54.470000 -12.220000 0.460000) + 4) + (segment 4922 + (point 279.160000 54.470000 -12.220000 0.460000) + (point 280.680000 56.010000 -13.520000 0.460000) + 4) + (segment 4923 + (point 280.680000 56.010000 -13.520000 0.460000) + (point 282.770000 57.100000 -13.550000 0.460000) + 4) + (segment 4924 + (point 282.770000 57.100000 -13.550000 0.460000) + (point 284.120000 57.410000 -13.350000 0.460000) + 4) + (segment 4925 + (point 284.120000 57.410000 -13.350000 0.460000) + (point 288.210000 55.990000 -13.380000 0.460000) + 4) + (segment 4926 + (point 288.210000 55.990000 -13.380000 0.460000) + (point 288.080000 56.560000 -13.380000 0.460000) + 4) + (segment 4927 + (point 288.080000 56.560000 -13.380000 0.460000) + (point 291.130000 59.650000 -14.000000 0.460000) + 4) + (segment 4928 + (point 291.130000 59.650000 -14.000000 0.460000) + (point 290.330000 63.050000 -13.070000 0.460000) + 4) + (segment 4929 + (point 290.330000 63.050000 -13.070000 0.460000) + (point 290.330000 63.050000 -13.130000 0.460000) + 4) + (segment 4930 + (point 290.330000 63.050000 -13.130000 0.460000) + (point 289.670000 65.880000 -13.520000 0.460000) + 4) + (segment 4931 + (point 289.670000 65.880000 -13.520000 0.460000) + (point 287.620000 66.600000 -14.630000 0.460000) + 4) + (segment 4932 + (point 287.620000 66.600000 -14.630000 0.460000) + (point 287.800000 67.830000 -16.450000 0.460000) + 4) + (segment 4933 + (point 287.800000 67.830000 -16.450000 0.460000) + (point 287.800000 67.830000 -16.470000 0.460000) + 4) + (segment 4934 + (point 287.800000 67.830000 -16.470000 0.460000) + (point 288.690000 68.040000 -18.850000 0.460000) + 4) + (segment 4935 + (point 288.690000 68.040000 -18.850000 0.460000) + (point 290.030000 68.360000 -21.180000 0.460000) + 4) + (segment 4936 + (point 290.030000 68.360000 -21.180000 0.460000) + (point 291.420000 70.480000 -22.450000 0.460000) + 4) + (segment 4937 + (point 291.420000 70.480000 -22.450000 0.460000) + (point 291.420000 70.480000 -22.470000 0.460000) + 4) + (segment 4938 + (point 291.420000 70.480000 -22.470000 0.460000) + (point 291.910000 72.380000 -23.400000 0.460000) + 4) + (segment 4939 + (point 291.910000 72.380000 -23.400000 0.460000) + (point 290.930000 74.540000 -23.330000 0.230000) + 4) + (segment 4940 + (point 290.930000 74.540000 -23.330000 0.230000) + (point 291.120000 75.780000 -24.500000 0.230000) + 4) + (segment 4941 + (point 291.120000 75.780000 -24.500000 0.230000) + (point 291.120000 75.780000 -24.520000 0.230000) + 4) + (segment 4942 + (point 291.120000 75.780000 -24.520000 0.230000) + (point 292.470000 76.090000 -26.000000 0.230000) + 4) + (segment 4943 + (point 292.470000 76.090000 -26.000000 0.230000) + (point 295.640000 78.630000 -27.050000 0.230000) + 4) + (segment 4944 + (point 295.640000 78.630000 -27.050000 0.230000) + (point 297.730000 79.720000 -27.630000 0.230000) + 4) + (segment 4945 + (point 297.730000 79.720000 -27.630000 0.230000) + (point 297.120000 84.360000 -28.900000 0.230000) + 4) + (segment 4946 + (point 297.120000 84.360000 -28.900000 0.230000) + (point 297.750000 85.690000 -30.450000 0.230000) + 4) + (segment 4947 + (point 297.750000 85.690000 -30.450000 0.230000) + (point 299.540000 86.120000 -31.920000 0.230000) + 4) + (segment 4948 + (point 299.540000 86.120000 -31.920000 0.230000) + (point 300.750000 86.990000 -33.800000 0.230000) + 4)) + (branch 184 183 + (segment 4949 + (point 300.750000 86.990000 -33.800000 0.230000) + (point 307.130000 87.890000 -34.280000 0.230000) + 4) + (segment 4950 + (point 307.130000 87.890000 -34.280000 0.230000) + (point 306.420000 88.920000 -35.630000 0.230000) + 4) + (segment 4951 + (point 306.420000 88.920000 -35.630000 0.230000) + (point 310.390000 88.060000 -36.630000 0.230000) + 4) + (segment 4952 + (point 310.390000 88.060000 -36.630000 0.230000) + (point 312.350000 89.720000 -37.770000 0.230000) + 4) + (segment 4953 + (point 312.350000 89.720000 -37.770000 0.230000) + (point 314.630000 92.040000 -39.100000 0.230000) + 4) + (segment 4954 + (point 314.630000 92.040000 -39.100000 0.230000) + (point 314.630000 92.040000 -39.130000 0.230000) + 4) + (segment 4955 + (point 314.630000 92.040000 -39.130000 0.230000) + (point 316.740000 93.140000 -40.100000 0.230000) + 4) + (segment 4956 + (point 316.740000 93.140000 -40.100000 0.230000) + (point 319.730000 94.430000 -41.200000 0.230000) + 4) + (segment 4957 + (point 319.730000 94.430000 -41.200000 0.230000) + (point 323.800000 97.170000 -41.520000 0.230000) + 4) + (segment 4958 + (point 323.800000 97.170000 -41.520000 0.230000) + (point 326.930000 97.900000 -41.700000 0.230000) + 4) + (segment 4959 + (point 326.930000 97.900000 -41.700000 0.230000) + (point 327.600000 101.050000 -41.600000 0.230000) + 4) + (segment 4960 + (point 327.600000 101.050000 -41.600000 0.230000) + (point 327.600000 101.050000 -41.630000 0.230000) + 4) + (segment 4961 + (point 327.600000 101.050000 -41.630000 0.230000) + (point 328.680000 102.490000 -43.150000 0.230000) + 4) + (segment 4962 + (point 328.680000 102.490000 -43.150000 0.230000) + (point 328.680000 102.490000 -43.270000 0.230000) + 4)) + (branch 185 183 + (segment 4963 + (point 300.750000 86.990000 -33.800000 0.230000) + (point 302.710000 88.640000 -34.670000 0.230000) + 4) + (segment 4964 + (point 302.710000 88.640000 -34.670000 0.230000) + (point 303.200000 90.560000 -36.100000 0.230000) + 4) + (segment 4965 + (point 303.200000 90.560000 -36.100000 0.230000) + (point 304.280000 92.000000 -38.830000 0.230000) + 4) + (segment 4966 + (point 304.280000 92.000000 -38.830000 0.230000) + (point 303.570000 93.020000 -39.600000 0.230000) + 4) + (segment 4967 + (point 303.570000 93.020000 -39.600000 0.230000) + (point 303.170000 94.720000 -41.820000 0.230000) + 4) + (segment 4968 + (point 303.170000 94.720000 -41.820000 0.230000) + (point 301.430000 96.110000 -42.370000 0.230000) + 4) + (segment 4969 + (point 301.430000 96.110000 -42.370000 0.230000) + (point 301.430000 96.110000 -42.420000 0.230000) + 4) + (segment 4970 + (point 301.430000 96.110000 -42.420000 0.230000) + (point 301.480000 97.920000 -44.050000 0.230000) + 4) + (segment 4971 + (point 301.480000 97.920000 -44.050000 0.230000) + (point 303.270000 98.330000 -45.720000 0.230000) + 4) + (segment 4972 + (point 303.270000 98.330000 -45.720000 0.230000) + (point 300.960000 100.170000 -46.150000 0.230000) + 4) + (segment 4973 + (point 300.960000 100.170000 -46.150000 0.230000) + (point 301.760000 102.760000 -47.650000 0.230000) + 4) + (segment 4974 + (point 301.760000 102.760000 -47.650000 0.230000) + (point 301.680000 105.120000 -49.470000 0.230000) + 4) + (segment 4975 + (point 301.680000 105.120000 -49.470000 0.230000) + (point 301.680000 105.120000 -49.500000 0.230000) + 4) + (segment 4976 + (point 301.680000 105.120000 -49.500000 0.230000) + (point 301.280000 106.820000 -50.680000 0.230000) + 4) + (segment 4977 + (point 301.280000 106.820000 -50.680000 0.230000) + (point 301.820000 110.540000 -51.150000 0.230000) + 4) + (segment 4978 + (point 301.820000 110.540000 -51.150000 0.230000) + (point 302.810000 114.350000 -51.150000 0.230000) + 4) + (segment 4979 + (point 302.810000 114.350000 -51.150000 0.230000) + (point 302.460000 117.850000 -51.420000 0.230000) + 4) + (segment 4980 + (point 302.460000 117.850000 -51.420000 0.230000) + (point 303.270000 120.430000 -52.800000 0.230000) + 4) + (segment 4981 + (point 303.270000 120.430000 -52.800000 0.230000) + (point 303.270000 120.430000 -52.820000 0.230000) + 4) + (segment 4982 + (point 303.270000 120.430000 -52.820000 0.230000) + (point 303.330000 122.230000 -53.650000 0.230000) + 4) + (segment 4983 + (point 303.330000 122.230000 -53.650000 0.230000) + (point 303.330000 122.230000 -53.670000 0.230000) + 4) + (segment 4984 + (point 303.330000 122.230000 -53.670000 0.230000) + (point 302.530000 125.620000 -54.320000 0.230000) + 4) + (segment 4985 + (point 302.530000 125.620000 -54.320000 0.230000) + (point 301.940000 126.090000 -55.770000 0.230000) + 4) + (segment 4986 + (point 301.940000 126.090000 -55.770000 0.230000) + (point 301.940000 126.090000 -55.800000 0.230000) + 4) + (segment 4987 + (point 301.940000 126.090000 -55.800000 0.230000) + (point 302.750000 128.660000 -57.250000 0.230000) + 4) + (segment 4988 + (point 302.750000 128.660000 -57.250000 0.230000) + (point 303.750000 132.490000 -58.850000 0.230000) + 4) + (segment 4989 + (point 303.750000 132.490000 -58.850000 0.230000) + (point 304.380000 133.820000 -59.750000 0.230000) + 4) + (segment 4990 + (point 304.380000 133.820000 -59.750000 0.230000) + (point 304.380000 133.820000 -59.780000 0.230000) + 4) + (segment 4991 + (point 304.380000 133.820000 -59.780000 0.230000) + (point 306.520000 136.710000 -61.100000 0.230000) + 4) + (segment 4992 + (point 306.520000 136.710000 -61.100000 0.230000) + (point 307.330000 139.290000 -61.380000 0.230000) + 4) + (segment 4993 + (point 307.330000 139.290000 -61.380000 0.230000) + (point 307.330000 139.290000 -61.400000 0.230000) + 4) + (segment 4994 + (point 307.330000 139.290000 -61.400000 0.230000) + (point 308.990000 140.280000 -61.380000 0.230000) + 4) + (segment 4995 + (point 308.990000 140.280000 -61.380000 0.230000) + (point 310.150000 145.320000 -62.950000 0.230000) + 4) + (segment 4996 + (point 310.150000 145.320000 -62.950000 0.230000) + (point 311.010000 149.710000 -63.720000 0.230000) + 4) + (segment 4997 + (point 311.010000 149.710000 -63.720000 0.230000) + (point 311.010000 149.710000 -63.750000 0.230000) + 4) + (segment 4998 + (point 311.010000 149.710000 -63.750000 0.230000) + (point 311.820000 152.290000 -63.050000 0.230000) + 4) + (segment 4999 + (point 311.820000 152.290000 -63.050000 0.230000) + (point 313.080000 154.970000 -61.280000 0.230000) + 4) + (segment 5000 + (point 313.080000 154.970000 -61.280000 0.230000) + (point 314.020000 156.990000 -59.800000 0.230000) + 4) + (segment 5001 + (point 314.020000 156.990000 -59.800000 0.230000) + (point 314.020000 156.990000 -59.830000 0.230000) + 4) + (segment 5002 + (point 314.020000 156.990000 -59.830000 0.230000) + (point 317.960000 160.290000 -59.150000 0.230000) + 4) + (segment 5003 + (point 317.960000 160.290000 -59.150000 0.230000) + (point 319.130000 165.340000 -58.050000 0.230000) + 4) + (segment 5004 + (point 319.130000 165.340000 -58.050000 0.230000) + (point 319.040000 167.710000 -58.620000 0.230000) + 4) + (segment 5005 + (point 319.040000 167.710000 -58.620000 0.230000) + (point 317.710000 173.370000 -60.070000 0.230000) + 4) + (segment 5006 + (point 317.710000 173.370000 -60.070000 0.230000) + (point 317.050000 176.200000 -61.420000 0.230000) + 4) + (segment 5007 + (point 317.050000 176.200000 -61.420000 0.230000) + (point 315.630000 178.260000 -64.270000 0.230000) + 4)) + (branch 186 182 + (segment 5008 + (point 278.970000 53.220000 -9.950000 0.460000) + (point 278.180000 52.440000 -12.950000 0.460000) + 4) + (segment 5009 + (point 278.180000 52.440000 -12.950000 0.460000) + (point 278.630000 52.550000 -14.800000 0.460000) + 4) + (segment 5010 + (point 278.630000 52.550000 -14.800000 0.460000) + (point 278.630000 52.550000 -14.920000 0.460000) + 4) + (segment 5011 + (point 278.630000 52.550000 -14.920000 0.460000) + (point 278.760000 51.980000 -17.470000 0.460000) + 4) + (segment 5012 + (point 278.760000 51.980000 -17.470000 0.460000) + (point 281.140000 51.940000 -18.020000 0.460000) + 4) + (segment 5013 + (point 281.140000 51.940000 -18.020000 0.460000) + (point 283.280000 54.840000 -18.500000 0.460000) + 4) + (segment 5014 + (point 283.280000 54.840000 -18.500000 0.460000) + (point 284.930000 55.820000 -18.880000 0.460000) + 4) + (segment 5015 + (point 284.930000 55.820000 -18.880000 0.460000) + (point 286.990000 55.100000 -19.500000 0.460000) + 4) + (segment 5016 + (point 286.990000 55.100000 -19.500000 0.460000) + (point 289.570000 52.130000 -19.500000 0.460000) + 4) + (segment 5017 + (point 289.570000 52.130000 -19.500000 0.460000) + (point 291.630000 51.410000 -20.000000 0.460000) + 4) + (segment 5018 + (point 291.630000 51.410000 -20.000000 0.460000) + (point 292.920000 49.930000 -20.770000 0.460000) + 4) + (segment 5019 + (point 292.920000 49.930000 -20.770000 0.460000) + (point 295.280000 49.890000 -21.880000 0.460000) + 4)) + (branch 187 186 + (segment 5020 + (point 295.280000 49.890000 -21.880000 0.460000) + (point 296.620000 50.200000 -23.270000 0.230000) + 4) + (segment 5021 + (point 296.620000 50.200000 -23.270000 0.230000) + (point 294.750000 52.140000 -24.770000 0.230000) + 4) + (segment 5022 + (point 294.750000 52.140000 -24.770000 0.230000) + (point 294.300000 52.030000 -24.800000 0.230000) + 4) + (segment 5023 + (point 294.300000 52.030000 -24.800000 0.230000) + (point 293.850000 51.930000 -26.320000 0.230000) + 4) + (segment 5024 + (point 293.850000 51.930000 -26.320000 0.230000) + (point 295.380000 53.500000 -27.830000 0.230000) + 4) + (segment 5025 + (point 295.380000 53.500000 -27.830000 0.230000) + (point 294.800000 53.950000 -27.850000 0.230000) + 4) + (segment 5026 + (point 294.800000 53.950000 -27.850000 0.230000) + (point 295.560000 54.730000 -29.420000 0.230000) + 4) + (segment 5027 + (point 295.560000 54.730000 -29.420000 0.230000) + (point 295.430000 55.300000 -29.420000 0.230000) + 4) + (segment 5028 + (point 295.430000 55.300000 -29.420000 0.230000) + (point 294.850000 55.750000 -31.300000 0.230000) + 4) + (segment 5029 + (point 294.850000 55.750000 -31.300000 0.230000) + (point 293.320000 54.200000 -31.130000 0.230000) + 4) + (segment 5030 + (point 293.320000 54.200000 -31.130000 0.230000) + (point 292.290000 54.560000 -33.750000 0.230000) + 4) + (segment 5031 + (point 292.290000 54.560000 -33.750000 0.230000) + (point 294.000000 57.350000 -35.550000 0.230000) + 4) + (segment 5032 + (point 294.000000 57.350000 -35.550000 0.230000) + (point 293.340000 60.180000 -36.520000 0.230000) + 4) + (segment 5033 + (point 293.340000 60.180000 -36.520000 0.230000) + (point 292.180000 61.100000 -40.800000 0.230000) + 4) + (segment 5034 + (point 292.180000 61.100000 -40.800000 0.230000) + (point 293.520000 61.420000 -43.720000 0.230000) + 4) + (segment 5035 + (point 293.520000 61.420000 -43.720000 0.230000) + (point 293.700000 62.650000 -45.800000 0.230000) + 4) + (segment 5036 + (point 293.700000 62.650000 -45.800000 0.230000) + (point 293.700000 62.650000 -45.830000 0.230000) + 4) + (segment 5037 + (point 293.700000 62.650000 -45.830000 0.230000) + (point 292.090000 63.470000 -47.020000 0.230000) + 4) + (segment 5038 + (point 292.090000 63.470000 -47.020000 0.230000) + (point 291.960000 64.030000 -49.250000 0.230000) + 4) + (segment 5039 + (point 291.960000 64.030000 -49.250000 0.230000) + (point 293.750000 64.450000 -51.250000 0.230000) + 4) + (segment 5040 + (point 293.750000 64.450000 -51.250000 0.230000) + (point 294.510000 65.230000 -52.970000 0.230000) + 4) + (segment 5041 + (point 294.510000 65.230000 -52.970000 0.230000) + (point 294.510000 65.230000 -53.000000 0.230000) + 4) + (segment 5042 + (point 294.510000 65.230000 -53.000000 0.230000) + (point 295.900000 67.340000 -55.830000 0.230000) + 4) + (segment 5043 + (point 295.900000 67.340000 -55.830000 0.230000) + (point 294.930000 69.500000 -57.850000 0.230000) + 4) + (segment 5044 + (point 294.930000 69.500000 -57.850000 0.230000) + (point 295.680000 70.290000 -59.830000 0.230000) + 4) + (segment 5045 + (point 295.680000 70.290000 -59.830000 0.230000) + (point 296.120000 70.380000 -59.830000 0.230000) + 4) + (segment 5046 + (point 296.120000 70.380000 -59.830000 0.230000) + (point 297.280000 69.460000 -62.100000 0.230000) + 4) + (segment 5047 + (point 297.280000 69.460000 -62.100000 0.230000) + (point 297.650000 71.940000 -63.820000 0.230000) + 4) + (segment 5048 + (point 297.650000 71.940000 -63.820000 0.230000) + (point 300.010000 71.900000 -65.320000 0.230000) + 4) + (segment 5049 + (point 300.010000 71.900000 -65.320000 0.230000) + (point 300.780000 72.670000 -67.250000 0.230000) + 4) + (segment 5050 + (point 300.780000 72.670000 -67.250000 0.230000) + (point 300.780000 72.670000 -67.280000 0.230000) + 4) + (segment 5051 + (point 300.780000 72.670000 -67.280000 0.230000) + (point 299.350000 74.720000 -69.550000 0.230000) + 4) + (segment 5052 + (point 299.350000 74.720000 -69.550000 0.230000) + (point 298.760000 75.190000 -70.570000 0.230000) + 4) + (segment 5053 + (point 298.760000 75.190000 -70.570000 0.230000) + (point 299.210000 75.300000 -72.770000 0.230000) + 4) + (segment 5054 + (point 299.210000 75.300000 -72.770000 0.230000) + (point 301.460000 75.810000 -74.450000 0.230000) + 4) + (segment 5055 + (point 301.460000 75.810000 -74.450000 0.230000) + (point 301.280000 74.570000 -76.600000 0.230000) + 4) + (segment 5056 + (point 301.280000 74.570000 -76.600000 0.230000) + (point 301.280000 74.570000 -76.630000 0.230000) + 4) + (segment 5057 + (point 301.280000 74.570000 -76.630000 0.230000) + (point 302.610000 74.890000 -78.970000 0.230000) + 4) + (segment 5058 + (point 302.610000 74.890000 -78.970000 0.230000) + (point 303.720000 72.170000 -80.520000 0.230000) + 4) + (segment 5059 + (point 303.720000 72.170000 -80.520000 0.230000) + (point 303.720000 72.170000 -80.600000 0.230000) + 4) + (segment 5060 + (point 303.720000 72.170000 -80.600000 0.230000) + (point 305.110000 74.280000 -83.020000 0.230000) + 4) + (segment 5061 + (point 305.110000 74.280000 -83.020000 0.230000) + (point 305.460000 76.760000 -85.020000 0.230000) + 4) + (segment 5062 + (point 305.460000 76.760000 -85.020000 0.230000) + (point 304.500000 78.920000 -87.070000 0.230000) + 4) + (segment 5063 + (point 304.500000 78.920000 -87.070000 0.230000) + (point 304.500000 78.920000 -87.100000 0.230000) + 4) + (segment 5064 + (point 304.500000 78.920000 -87.100000 0.230000) + (point 303.650000 80.510000 -89.650000 0.230000) + 4) + (segment 5065 + (point 303.650000 80.510000 -89.650000 0.230000) + (point 303.650000 80.510000 -89.700000 0.230000) + 4) + (segment 5066 + (point 303.650000 80.510000 -89.700000 0.230000) + (point 303.870000 83.550000 -91.320000 0.230000) + 4) + (segment 5067 + (point 303.870000 83.550000 -91.320000 0.230000) + (point 303.790000 85.910000 -92.150000 0.230000) + 4) + (segment 5068 + (point 303.790000 85.910000 -92.150000 0.230000) + (point 303.660000 86.480000 -95.300000 0.230000) + 4)) + (branch 188 186 + (segment 5069 + (point 295.280000 49.890000 -21.880000 0.460000) + (point 296.120000 48.290000 -21.100000 0.230000) + 4) + (segment 5070 + (point 296.120000 48.290000 -21.100000 0.230000) + (point 295.580000 44.580000 -22.670000 0.230000) + 4) + (segment 5071 + (point 295.580000 44.580000 -22.670000 0.230000) + (point 295.580000 44.580000 -22.700000 0.230000) + 4) + (segment 5072 + (point 295.580000 44.580000 -22.700000 0.230000) + (point 296.600000 44.220000 -24.400000 0.230000) + 4) + (segment 5073 + (point 296.600000 44.220000 -24.400000 0.230000) + (point 298.210000 43.410000 -25.900000 0.230000) + 4) + (segment 5074 + (point 298.210000 43.410000 -25.900000 0.230000) + (point 299.050000 41.820000 -27.600000 0.230000) + 4) + (segment 5075 + (point 299.050000 41.820000 -27.600000 0.230000) + (point 299.010000 40.010000 -29.170000 0.230000) + 4) + (segment 5076 + (point 299.010000 40.010000 -29.170000 0.230000) + (point 302.090000 38.940000 -30.130000 0.230000) + 4) + (segment 5077 + (point 302.090000 38.940000 -30.130000 0.230000) + (point 303.110000 38.590000 -31.170000 0.230000) + 4) + (segment 5078 + (point 303.110000 38.590000 -31.170000 0.230000) + (point 305.250000 35.500000 -31.700000 0.230000) + 4) + (segment 5079 + (point 305.250000 35.500000 -31.700000 0.230000) + (point 307.700000 33.090000 -32.880000 0.230000) + 4) + (segment 5080 + (point 307.700000 33.090000 -32.880000 0.230000) + (point 308.980000 31.600000 -34.300000 0.230000) + 4) + (segment 5081 + (point 308.980000 31.600000 -34.300000 0.230000) + (point 310.670000 28.410000 -35.450000 0.230000) + 4) + (segment 5082 + (point 310.670000 28.410000 -35.450000 0.230000) + (point 311.600000 24.450000 -36.330000 0.230000) + 4) + (segment 5083 + (point 311.600000 24.450000 -36.330000 0.230000) + (point 314.500000 22.140000 -36.580000 0.230000) + 4) + (segment 5084 + (point 314.500000 22.140000 -36.580000 0.230000) + (point 316.900000 17.920000 -37.000000 0.230000) + 4) + (segment 5085 + (point 316.900000 17.920000 -37.000000 0.230000) + (point 318.410000 13.500000 -37.000000 0.230000) + 4) + (segment 5086 + (point 318.410000 13.500000 -37.000000 0.230000) + (point 320.680000 9.850000 -37.220000 0.230000) + 4) + (segment 5087 + (point 320.680000 9.850000 -37.220000 0.230000) + (point 320.680000 9.850000 -37.250000 0.230000) + 4) + (segment 5088 + (point 320.680000 9.850000 -37.250000 0.230000) + (point 320.770000 7.480000 -38.400000 0.230000) + 4) + (segment 5089 + (point 320.770000 7.480000 -38.400000 0.230000) + (point 320.620000 2.080000 -39.250000 0.230000) + 4) + (segment 5090 + (point 320.620000 2.080000 -39.250000 0.230000) + (point 321.370000 -3.120000 -40.150000 0.230000) + 4) + (segment 5091 + (point 321.370000 -3.120000 -40.150000 0.230000) + (point 323.640000 -6.770000 -40.030000 0.230000) + 4) + (segment 5092 + (point 323.640000 -6.770000 -40.030000 0.230000) + (point 324.170000 -9.040000 -42.050000 0.230000) + 4) + (segment 5093 + (point 324.170000 -9.040000 -42.050000 0.230000) + (point 325.990000 -12.790000 -43.800000 0.230000) + 4) + (segment 5094 + (point 325.990000 -12.790000 -43.800000 0.230000) + (point 324.290000 -15.580000 -45.450000 0.230000) + 4) + (segment 5095 + (point 324.290000 -15.580000 -45.450000 0.230000) + (point 326.190000 -21.700000 -46.080000 0.230000) + 4) + (segment 5096 + (point 326.190000 -21.700000 -46.080000 0.230000) + (point 328.200000 -24.210000 -46.730000 0.230000) + 4) + (segment 5097 + (point 328.200000 -24.210000 -46.730000 0.230000) + (point 330.990000 -30.130000 -47.770000 0.230000) + 4) + (segment 5098 + (point 330.990000 -30.130000 -47.770000 0.230000) + (point 332.250000 -31.600000 -47.850000 0.230000) + 4) + (segment 5099 + (point 332.250000 -31.600000 -47.850000 0.230000) + (point 331.620000 -32.950000 -49.830000 0.230000) + 4) + (segment 5100 + (point 331.620000 -32.950000 -49.830000 0.230000) + (point 331.620000 -32.950000 -49.870000 0.230000) + 4) + (segment 5101 + (point 331.620000 -32.950000 -49.870000 0.230000) + (point 331.570000 -34.760000 -51.320000 0.230000) + 4) + (segment 5102 + (point 331.570000 -34.760000 -51.320000 0.230000) + (point 331.570000 -34.760000 -51.350000 0.230000) + 4) + (segment 5103 + (point 331.570000 -34.760000 -51.350000 0.230000) + (point 333.130000 -37.370000 -52.700000 0.230000) + 4) + (segment 5104 + (point 333.130000 -37.370000 -52.700000 0.230000) + (point 333.130000 -37.370000 -52.720000 0.230000) + 4) + (segment 5105 + (point 333.130000 -37.370000 -52.720000 0.230000) + (point 335.970000 -41.480000 -53.100000 0.230000) + 4) + (segment 5106 + (point 335.970000 -41.480000 -53.100000 0.230000) + (point 335.970000 -41.480000 -53.130000 0.230000) + 4) + (segment 5107 + (point 335.970000 -41.480000 -53.130000 0.230000) + (point 337.530000 -44.100000 -52.850000 0.230000) + 4) + (segment 5108 + (point 337.530000 -44.100000 -52.850000 0.230000) + (point 339.800000 -47.750000 -52.850000 0.230000) + 4) + (segment 5109 + (point 339.800000 -47.750000 -52.850000 0.230000) + (point 339.800000 -47.750000 -52.880000 0.230000) + 4) + (segment 5110 + (point 339.800000 -47.750000 -52.880000 0.230000) + (point 340.280000 -51.820000 -52.700000 0.230000) + 4)) + (branch 189 68 + (segment 5111 + (point 258.930000 35.900000 -6.380000 3.440000) + (point 256.570000 35.950000 -7.820000 0.915000) + 4) + (segment 5112 + (point 256.570000 35.950000 -7.820000 0.915000) + (point 253.050000 36.900000 -9.300000 0.915000) + 4) + (segment 5113 + (point 253.050000 36.900000 -9.300000 0.915000) + (point 250.730000 38.750000 -9.320000 0.915000) + 4) + (segment 5114 + (point 250.730000 38.750000 -9.320000 0.915000) + (point 246.880000 39.050000 -9.320000 0.915000) + 4) + (segment 5115 + (point 246.880000 39.050000 -9.320000 0.915000) + (point 245.140000 40.440000 -10.500000 0.915000) + 4) + (segment 5116 + (point 245.140000 40.440000 -10.500000 0.915000) + (point 243.230000 40.580000 -11.900000 0.915000) + 4) + (segment 5117 + (point 243.230000 40.580000 -11.900000 0.915000) + (point 242.780000 40.480000 -13.270000 0.690000) + 4) + (segment 5118 + (point 242.780000 40.480000 -13.270000 0.690000) + (point 241.300000 40.730000 -14.920000 0.690000) + 4) + (segment 5119 + (point 241.300000 40.730000 -14.920000 0.690000) + (point 240.410000 40.520000 -15.920000 0.690000) + 4) + (segment 5120 + (point 240.410000 40.520000 -15.920000 0.690000) + (point 236.350000 37.780000 -16.200000 0.690000) + 4)) + (branch 190 189 + (segment 5121 + (point 236.350000 37.780000 -16.200000 0.690000) + (point 235.990000 35.300000 -17.170000 0.690000) + 4) + (segment 5122 + (point 235.990000 35.300000 -17.170000 0.690000) + (point 235.040000 33.290000 -18.330000 0.690000) + 4) + (segment 5123 + (point 235.040000 33.290000 -18.330000 0.690000) + (point 233.200000 31.060000 -19.330000 0.690000) + 4) + (segment 5124 + (point 233.200000 31.060000 -19.330000 0.690000) + (point 232.580000 29.730000 -21.720000 0.690000) + 4)) + (branch 191 190 + (segment 5125 + (point 232.580000 29.730000 -21.720000 0.690000) + (point 232.490000 26.120000 -22.530000 0.460000) + 4) + (segment 5126 + (point 232.490000 26.120000 -22.530000 0.460000) + (point 231.490000 22.300000 -23.500000 0.460000) + 4) + (segment 5127 + (point 231.490000 22.300000 -23.500000 0.460000) + (point 231.270000 19.260000 -24.100000 0.460000) + 4) + (segment 5128 + (point 231.270000 19.260000 -24.100000 0.460000) + (point 230.900000 16.800000 -24.850000 0.460000) + 4) + (segment 5129 + (point 230.900000 16.800000 -24.850000 0.460000) + (point 231.110000 13.850000 -25.380000 0.460000) + 4) + (segment 5130 + (point 231.110000 13.850000 -25.380000 0.460000) + (point 230.250000 9.470000 -25.770000 0.460000) + 4) + (segment 5131 + (point 230.250000 9.470000 -25.770000 0.460000) + (point 228.820000 5.550000 -25.800000 0.460000) + 4) + (segment 5132 + (point 228.820000 5.550000 -25.800000 0.460000) + (point 227.840000 1.750000 -26.130000 0.460000) + 4) + (segment 5133 + (point 227.840000 1.750000 -26.130000 0.460000) + (point 225.240000 -1.260000 -24.700000 0.460000) + 4) + (segment 5134 + (point 225.240000 -1.260000 -24.700000 0.460000) + (point 222.500000 -3.680000 -23.300000 0.460000) + 4) + (segment 5135 + (point 222.500000 -3.680000 -23.300000 0.460000) + (point 219.900000 -6.690000 -22.880000 0.460000) + 4) + (segment 5136 + (point 219.900000 -6.690000 -22.880000 0.460000) + (point 218.970000 -8.690000 -23.270000 0.460000) + 4) + (segment 5137 + (point 218.970000 -8.690000 -23.270000 0.460000) + (point 215.670000 -10.670000 -23.270000 0.460000) + 4) + (segment 5138 + (point 215.670000 -10.670000 -23.270000 0.460000) + (point 215.620000 -12.470000 -23.270000 0.230000) + 4) + (segment 5139 + (point 215.620000 -12.470000 -23.270000 0.230000) + (point 213.820000 -12.890000 -23.270000 0.230000) + 4) + (segment 5140 + (point 213.820000 -12.890000 -23.270000 0.230000) + (point 213.780000 -14.690000 -23.270000 0.230000) + 4) + (segment 5141 + (point 213.780000 -14.690000 -23.270000 0.230000) + (point 211.860000 -14.540000 -23.270000 0.230000) + 4) + (segment 5142 + (point 211.860000 -14.540000 -23.270000 0.230000) + (point 210.480000 -16.660000 -23.270000 0.230000) + 4) + (segment 5143 + (point 210.480000 -16.660000 -23.270000 0.230000) + (point 209.270000 -17.540000 -24.080000 0.230000) + 4) + (segment 5144 + (point 209.270000 -17.540000 -24.080000 0.230000) + (point 208.190000 -18.990000 -24.080000 0.230000) + 4) + (segment 5145 + (point 208.190000 -18.990000 -24.080000 0.230000) + (point 204.430000 -21.050000 -24.080000 0.230000) + 4) + (segment 5146 + (point 204.430000 -21.050000 -24.080000 0.230000) + (point 200.690000 -23.140000 -24.750000 0.230000) + 4) + (segment 5147 + (point 200.690000 -23.140000 -24.750000 0.230000) + (point 197.110000 -23.980000 -24.050000 0.230000) + 4) + (segment 5148 + (point 197.110000 -23.980000 -24.050000 0.230000) + (point 195.500000 -23.150000 -24.080000 0.230000) + 4) + (segment 5149 + (point 195.500000 -23.150000 -24.080000 0.230000) + (point 195.500000 -23.150000 -24.100000 0.230000) + 4) + (segment 5150 + (point 195.500000 -23.150000 -24.100000 0.230000) + (point 193.590000 -23.000000 -24.400000 0.230000) + 4) + (segment 5151 + (point 193.590000 -23.000000 -24.400000 0.230000) + (point 193.590000 -23.000000 -24.420000 0.230000) + 4) + (segment 5152 + (point 193.590000 -23.000000 -24.420000 0.230000) + (point 190.900000 -23.630000 -25.570000 0.230000) + 4) + (segment 5153 + (point 190.900000 -23.630000 -25.570000 0.230000) + (point 189.520000 -25.760000 -27.220000 0.230000) + 4) + (segment 5154 + (point 189.520000 -25.760000 -27.220000 0.230000) + (point 188.620000 -25.970000 -29.480000 0.230000) + 4) + (segment 5155 + (point 188.620000 -25.970000 -29.480000 0.230000) + (point 188.620000 -25.970000 -29.500000 0.230000) + 4) + (segment 5156 + (point 188.620000 -25.970000 -29.500000 0.230000) + (point 188.360000 -24.820000 -31.850000 0.230000) + 4) + (segment 5157 + (point 188.360000 -24.820000 -31.850000 0.230000) + (point 188.360000 -24.820000 -31.880000 0.230000) + 4) + (segment 5158 + (point 188.360000 -24.820000 -31.880000 0.230000) + (point 186.440000 -24.670000 -34.130000 0.230000) + 4) + (segment 5159 + (point 186.440000 -24.670000 -34.130000 0.230000) + (point 186.440000 -24.670000 -34.150000 0.230000) + 4)) + (branch 192 190 + (segment 5160 + (point 232.580000 29.730000 -21.720000 0.690000) + (point 229.630000 30.230000 -21.720000 0.460000) + 4) + (segment 5161 + (point 229.630000 30.230000 -21.720000 0.460000) + (point 227.270000 30.270000 -22.880000 0.460000) + 4) + (segment 5162 + (point 227.270000 30.270000 -22.880000 0.460000) + (point 226.640000 28.930000 -24.300000 0.460000) + 4) + (segment 5163 + (point 226.640000 28.930000 -24.300000 0.460000) + (point 227.350000 27.910000 -26.580000 0.460000) + 4) + (segment 5164 + (point 227.350000 27.910000 -26.580000 0.460000) + (point 226.590000 27.130000 -28.300000 0.460000) + 4) + (segment 5165 + (point 226.590000 27.130000 -28.300000 0.460000) + (point 226.850000 25.990000 -27.800000 0.460000) + 4) + (segment 5166 + (point 226.850000 25.990000 -27.800000 0.460000) + (point 225.790000 24.550000 -29.220000 0.460000) + 4) + (segment 5167 + (point 225.790000 24.550000 -29.220000 0.460000) + (point 224.390000 22.430000 -30.450000 0.460000) + 4) + (segment 5168 + (point 224.390000 22.430000 -30.450000 0.460000) + (point 222.660000 23.810000 -31.600000 0.460000) + 4) + (segment 5169 + (point 222.660000 23.810000 -31.600000 0.460000) + (point 222.660000 23.810000 -31.630000 0.460000) + 4) + (segment 5170 + (point 222.660000 23.810000 -31.630000 0.460000) + (point 221.950000 24.840000 -33.000000 0.460000) + 4) + (segment 5171 + (point 221.950000 24.840000 -33.000000 0.460000) + (point 220.790000 25.770000 -34.880000 0.460000) + 4) + (segment 5172 + (point 220.790000 25.770000 -34.880000 0.460000) + (point 219.620000 26.690000 -36.600000 0.460000) + 4)) + (branch 193 192 + (segment 5173 + (point 219.620000 26.690000 -36.600000 0.460000) + (point 217.660000 25.040000 -38.130000 0.460000) + 4) + (segment 5174 + (point 217.660000 25.040000 -38.130000 0.460000) + (point 216.450000 24.150000 -41.220000 0.230000) + 4) + (segment 5175 + (point 216.450000 24.150000 -41.220000 0.230000) + (point 216.450000 24.150000 -41.200000 0.230000) + 4) + (segment 5176 + (point 216.450000 24.150000 -41.200000 0.230000) + (point 214.140000 26.000000 -42.370000 0.230000) + 4) + (segment 5177 + (point 214.140000 26.000000 -42.370000 0.230000) + (point 211.190000 26.510000 -43.600000 0.230000) + 4) + (segment 5178 + (point 211.190000 26.510000 -43.600000 0.230000) + (point 208.380000 26.430000 -43.720000 0.230000) + 4) + (segment 5179 + (point 208.380000 26.430000 -43.720000 0.230000) + (point 206.060000 28.280000 -44.580000 0.230000) + 4) + (segment 5180 + (point 206.060000 28.280000 -44.580000 0.230000) + (point 206.510000 28.390000 -46.450000 0.230000) + 4) + (segment 5181 + (point 206.510000 28.390000 -46.450000 0.230000) + (point 205.930000 28.850000 -49.100000 0.230000) + 4) + (segment 5182 + (point 205.930000 28.850000 -49.100000 0.230000) + (point 203.440000 29.460000 -50.770000 0.230000) + 4) + (segment 5183 + (point 203.440000 29.460000 -50.770000 0.230000) + (point 202.040000 27.350000 -52.800000 0.230000) + 4) + (segment 5184 + (point 202.040000 27.350000 -52.800000 0.230000) + (point 200.390000 26.360000 -54.380000 0.230000) + 4) + (segment 5185 + (point 200.390000 26.360000 -54.380000 0.230000) + (point 200.390000 26.360000 -54.400000 0.230000) + 4) + (segment 5186 + (point 200.390000 26.360000 -54.400000 0.230000) + (point 196.430000 27.220000 -55.320000 0.230000) + 4) + (segment 5187 + (point 196.430000 27.220000 -55.320000 0.230000) + (point 192.850000 26.380000 -56.800000 0.230000) + 4) + (segment 5188 + (point 192.850000 26.380000 -56.800000 0.230000) + (point 191.640000 25.510000 -58.150000 0.230000) + 4) + (segment 5189 + (point 191.640000 25.510000 -58.150000 0.230000) + (point 191.640000 25.510000 -58.170000 0.230000) + 4) + (segment 5190 + (point 191.640000 25.510000 -58.170000 0.230000) + (point 189.730000 25.650000 -58.900000 0.230000) + 4) + (segment 5191 + (point 189.730000 25.650000 -58.900000 0.230000) + (point 187.210000 26.260000 -59.800000 0.230000) + 4) + (segment 5192 + (point 187.210000 26.260000 -59.800000 0.230000) + (point 184.540000 25.640000 -60.700000 0.230000) + 4) + (segment 5193 + (point 184.540000 25.640000 -60.700000 0.230000) + (point 181.820000 23.200000 -61.380000 0.230000) + 4) + (segment 5194 + (point 181.820000 23.200000 -61.380000 0.230000) + (point 178.920000 25.500000 -62.880000 0.230000) + 4) + (segment 5195 + (point 178.920000 25.500000 -62.880000 0.230000) + (point 176.280000 26.680000 -63.950000 0.230000) + 4) + (segment 5196 + (point 176.280000 26.680000 -63.950000 0.230000) + (point 174.540000 28.070000 -65.300000 0.230000) + 4) + (segment 5197 + (point 174.540000 28.070000 -65.300000 0.230000) + (point 172.050000 28.680000 -66.880000 0.230000) + 4) + (segment 5198 + (point 172.050000 28.680000 -66.880000 0.230000) + (point 172.180000 28.110000 -66.880000 0.230000) + 4) + (segment 5199 + (point 172.180000 28.110000 -66.880000 0.230000) + (point 168.650000 29.070000 -68.200000 0.230000) + 4) + (segment 5200 + (point 168.650000 29.070000 -68.200000 0.230000) + (point 166.030000 30.250000 -69.400000 0.230000) + 4) + (segment 5201 + (point 166.030000 30.250000 -69.400000 0.230000) + (point 164.420000 31.070000 -71.000000 0.230000) + 4) + (segment 5202 + (point 164.420000 31.070000 -71.000000 0.230000) + (point 162.770000 30.090000 -72.930000 0.230000) + 4) + (segment 5203 + (point 162.770000 30.090000 -72.930000 0.230000) + (point 160.400000 30.120000 -74.550000 0.230000) + 4) + (segment 5204 + (point 160.400000 30.120000 -74.550000 0.230000) + (point 160.400000 30.120000 -74.570000 0.230000) + 4) + (segment 5205 + (point 160.400000 30.120000 -74.570000 0.230000) + (point 157.320000 31.200000 -75.630000 0.230000) + 4) + (segment 5206 + (point 157.320000 31.200000 -75.630000 0.230000) + (point 156.480000 32.790000 -77.280000 0.230000) + 4) + (segment 5207 + (point 156.480000 32.790000 -77.280000 0.230000) + (point 154.430000 33.500000 -79.500000 0.230000) + 4) + (segment 5208 + (point 154.430000 33.500000 -79.500000 0.230000) + (point 151.930000 34.110000 -81.220000 0.230000) + 4) + (segment 5209 + (point 151.930000 34.110000 -81.220000 0.230000) + (point 150.320000 34.930000 -83.020000 0.230000) + 4) + (segment 5210 + (point 150.320000 34.930000 -83.020000 0.230000) + (point 149.380000 32.920000 -85.300000 0.230000) + 4) + (segment 5211 + (point 149.380000 32.920000 -85.300000 0.230000) + (point 147.020000 32.960000 -87.700000 0.230000) + 4) + (segment 5212 + (point 147.020000 32.960000 -87.700000 0.230000) + (point 147.370000 29.460000 -89.920000 0.230000) + 4) + (segment 5213 + (point 147.370000 29.460000 -89.920000 0.230000) + (point 147.370000 29.460000 -89.950000 0.230000) + 4) + (segment 5214 + (point 147.370000 29.460000 -89.950000 0.230000) + (point 144.950000 27.700000 -91.130000 0.230000) + 4) + (segment 5215 + (point 144.950000 27.700000 -91.130000 0.230000) + (point 142.710000 27.170000 -92.900000 0.230000) + 4) + (segment 5216 + (point 142.710000 27.170000 -92.900000 0.230000) + (point 142.710000 27.170000 -92.920000 0.230000) + 4) + (segment 5217 + (point 142.710000 27.170000 -92.920000 0.230000) + (point 140.310000 25.420000 -94.100000 0.230000) + 4) + (segment 5218 + (point 140.310000 25.420000 -94.100000 0.230000) + (point 140.310000 25.420000 -94.150000 0.230000) + 4) + (segment 5219 + (point 140.310000 25.420000 -94.150000 0.230000) + (point 138.790000 23.870000 -93.630000 0.230000) + 4) + (segment 5220 + (point 138.790000 23.870000 -93.630000 0.230000) + (point 138.790000 23.870000 -93.880000 0.230000) + 4) + (segment 5221 + (point 138.790000 23.870000 -93.880000 0.230000) + (point 136.360000 22.100000 -94.170000 0.230000) + 4) + (segment 5222 + (point 136.360000 22.100000 -94.170000 0.230000) + (point 135.560000 19.530000 -95.180000 0.230000) + 4) + (segment 5223 + (point 135.560000 19.530000 -95.180000 0.230000) + (point 134.040000 17.980000 -97.280000 0.230000) + 4)) + (branch 194 192 + (segment 5224 + (point 219.620000 26.690000 -36.600000 0.460000) + (point 223.200000 27.530000 -39.550000 0.230000) + 4) + (segment 5225 + (point 223.200000 27.530000 -39.550000 0.230000) + (point 223.650000 27.630000 -42.470000 0.230000) + 4) + (segment 5226 + (point 223.650000 27.630000 -42.470000 0.230000) + (point 223.650000 27.630000 -42.530000 0.230000) + 4) + (segment 5227 + (point 223.650000 27.630000 -42.530000 0.230000) + (point 223.380000 28.760000 -45.970000 0.230000) + 4) + (segment 5228 + (point 223.380000 28.760000 -45.970000 0.230000) + (point 223.380000 28.760000 -46.100000 0.230000) + 4) + (segment 5229 + (point 223.380000 28.760000 -46.100000 0.230000) + (point 225.120000 27.380000 -48.700000 0.230000) + 4) + (segment 5230 + (point 225.120000 27.380000 -48.700000 0.230000) + (point 225.120000 27.380000 -48.720000 0.230000) + 4) + (segment 5231 + (point 225.120000 27.380000 -48.720000 0.230000) + (point 225.170000 29.180000 -50.950000 0.230000) + 4) + (segment 5232 + (point 225.170000 29.180000 -50.950000 0.230000) + (point 224.720000 29.070000 -50.970000 0.230000) + 4) + (segment 5233 + (point 224.720000 29.070000 -50.970000 0.230000) + (point 223.830000 28.860000 -53.400000 0.230000) + 4) + (segment 5234 + (point 223.830000 28.860000 -53.400000 0.230000) + (point 223.700000 29.430000 -53.420000 0.230000) + 4) + (segment 5235 + (point 223.700000 29.430000 -53.420000 0.230000) + (point 223.430000 30.570000 -55.670000 0.230000) + 4) + (segment 5236 + (point 223.430000 30.570000 -55.670000 0.230000) + (point 223.430000 30.570000 -55.700000 0.230000) + 4) + (segment 5237 + (point 223.430000 30.570000 -55.700000 0.230000) + (point 225.340000 30.410000 -58.420000 0.230000) + 4) + (segment 5238 + (point 225.340000 30.410000 -58.420000 0.230000) + (point 225.340000 30.410000 -58.470000 0.230000) + 4) + (segment 5239 + (point 225.340000 30.410000 -58.470000 0.230000) + (point 224.950000 32.110000 -61.400000 0.230000) + 4) + (segment 5240 + (point 224.950000 32.110000 -61.400000 0.230000) + (point 224.950000 32.110000 -61.470000 0.230000) + 4) + (segment 5241 + (point 224.950000 32.110000 -61.470000 0.230000) + (point 224.060000 31.910000 -63.880000 0.230000) + 4) + (segment 5242 + (point 224.060000 31.910000 -63.880000 0.230000) + (point 224.060000 31.910000 -63.900000 0.230000) + 4) + (segment 5243 + (point 224.060000 31.910000 -63.900000 0.230000) + (point 224.860000 34.480000 -66.650000 0.230000) + 4) + (segment 5244 + (point 224.860000 34.480000 -66.650000 0.230000) + (point 225.840000 32.320000 -69.350000 0.230000) + 4) + (segment 5245 + (point 225.840000 32.320000 -69.350000 0.230000) + (point 226.100000 31.200000 -72.070000 0.230000) + 4) + (segment 5246 + (point 226.100000 31.200000 -72.070000 0.230000) + (point 226.100000 31.200000 -72.170000 0.230000) + 4) + (segment 5247 + (point 226.100000 31.200000 -72.170000 0.230000) + (point 228.040000 31.040000 -76.220000 0.230000) + 4) + (segment 5248 + (point 228.040000 31.040000 -76.220000 0.230000) + (point 228.040000 31.040000 -76.300000 0.230000) + 4) + (segment 5249 + (point 228.040000 31.040000 -76.300000 0.230000) + (point 228.040000 31.040000 -81.530000 0.230000) + 4) + (segment 5250 + (point 228.040000 31.040000 -81.530000 0.230000) + (point 228.040000 31.040000 -81.580000 0.230000) + 4) + (segment 5251 + (point 228.040000 31.040000 -81.580000 0.230000) + (point 227.720000 30.380000 -85.920000 0.230000) + 4) + (segment 5252 + (point 227.720000 30.380000 -85.920000 0.230000) + (point 226.500000 29.490000 -89.050000 0.230000) + 4) + (segment 5253 + (point 226.500000 29.490000 -89.050000 0.230000) + (point 226.500000 29.490000 -89.080000 0.230000) + 4) + (segment 5254 + (point 226.500000 29.490000 -89.080000 0.230000) + (point 224.810000 26.720000 -92.400000 0.230000) + 4) + (segment 5255 + (point 224.810000 26.720000 -92.400000 0.230000) + (point 224.760000 24.910000 -94.750000 0.230000) + 4) + (segment 5256 + (point 224.760000 24.910000 -94.750000 0.230000) + (point 225.160000 23.210000 -97.130000 0.230000) + 4) + (segment 5257 + (point 225.160000 23.210000 -97.130000 0.230000) + (point 225.870000 22.170000 -99.500000 0.230000) + 4) + (segment 5258 + (point 225.870000 22.170000 -99.500000 0.230000) + (point 225.870000 22.170000 -99.520000 0.230000) + 4) + (segment 5259 + (point 225.870000 22.170000 -99.520000 0.230000) + (point 224.790000 20.730000 -102.680000 0.230000) + 4) + (segment 5260 + (point 224.790000 20.730000 -102.680000 0.230000) + (point 224.790000 20.730000 -102.720000 0.230000) + 4) + (segment 5261 + (point 224.790000 20.730000 -102.720000 0.230000) + (point 225.240000 20.840000 -106.250000 0.230000) + 4) + (segment 5262 + (point 225.240000 20.840000 -106.250000 0.230000) + (point 225.370000 20.270000 -110.320000 0.230000) + 4) + (segment 5263 + (point 225.370000 20.270000 -110.320000 0.230000) + (point 225.370000 20.270000 -110.370000 0.230000) + 4)) + (branch 195 192 + (segment 5264 + (point 219.620000 26.690000 -36.600000 0.460000) + (point 219.810000 27.930000 -40.520000 0.230000) + 4) + (segment 5265 + (point 219.810000 27.930000 -40.520000 0.230000) + (point 218.340000 28.180000 -43.450000 0.230000) + 4) + (segment 5266 + (point 218.340000 28.180000 -43.450000 0.230000) + (point 218.340000 28.180000 -43.470000 0.230000) + 4) + (segment 5267 + (point 218.340000 28.180000 -43.470000 0.230000) + (point 216.780000 30.800000 -45.700000 0.230000) + 4) + (segment 5268 + (point 216.780000 30.800000 -45.700000 0.230000) + (point 217.680000 31.010000 -48.200000 0.230000) + 4) + (segment 5269 + (point 217.680000 31.010000 -48.200000 0.230000) + (point 218.620000 33.020000 -51.080000 0.230000) + 4) + (segment 5270 + (point 218.620000 33.020000 -51.080000 0.230000) + (point 219.250000 34.370000 -54.200000 0.230000) + 4) + (segment 5271 + (point 219.250000 34.370000 -54.200000 0.230000) + (point 219.250000 34.370000 -54.220000 0.230000) + 4) + (segment 5272 + (point 219.250000 34.370000 -54.220000 0.230000) + (point 218.170000 32.910000 -57.150000 0.230000) + 4) + (segment 5273 + (point 218.170000 32.910000 -57.150000 0.230000) + (point 218.170000 32.910000 -57.200000 0.230000) + 4) + (segment 5274 + (point 218.170000 32.910000 -57.200000 0.230000) + (point 216.610000 35.530000 -59.350000 0.230000) + 4) + (segment 5275 + (point 216.610000 35.530000 -59.350000 0.230000) + (point 217.870000 38.230000 -60.270000 0.230000) + 4) + (segment 5276 + (point 217.870000 38.230000 -60.270000 0.230000) + (point 217.390000 42.290000 -61.380000 0.230000) + 4) + (segment 5277 + (point 217.390000 42.290000 -61.380000 0.230000) + (point 217.260000 42.860000 -63.100000 0.230000) + 4) + (segment 5278 + (point 217.260000 42.860000 -63.100000 0.230000) + (point 215.770000 43.110000 -65.450000 0.230000) + 4) + (segment 5279 + (point 215.770000 43.110000 -65.450000 0.230000) + (point 215.250000 45.360000 -67.500000 0.230000) + 4) + (segment 5280 + (point 215.250000 45.360000 -67.500000 0.230000) + (point 216.600000 45.680000 -69.150000 0.230000) + 4) + (segment 5281 + (point 216.600000 45.680000 -69.150000 0.230000) + (point 218.240000 46.670000 -70.450000 0.230000) + 4) + (segment 5282 + (point 218.240000 46.670000 -70.450000 0.230000) + (point 216.060000 47.950000 -70.270000 0.230000) + 4) + (segment 5283 + (point 216.060000 47.950000 -70.270000 0.230000) + (point 214.590000 48.200000 -72.170000 0.230000) + 4) + (segment 5284 + (point 214.590000 48.200000 -72.170000 0.230000) + (point 216.110000 49.750000 -73.950000 0.230000) + 4) + (segment 5285 + (point 216.110000 49.750000 -73.950000 0.230000) + (point 216.290000 50.990000 -74.450000 0.230000) + 4) + (segment 5286 + (point 216.290000 50.990000 -74.450000 0.230000) + (point 214.920000 54.850000 -74.570000 0.230000) + 4) + (segment 5287 + (point 214.920000 54.850000 -74.570000 0.230000) + (point 214.920000 54.850000 -74.600000 0.230000) + 4) + (segment 5288 + (point 214.920000 54.850000 -74.600000 0.230000) + (point 214.210000 55.870000 -76.380000 0.230000) + 4) + (segment 5289 + (point 214.210000 55.870000 -76.380000 0.230000) + (point 213.680000 58.140000 -78.130000 0.230000) + 4) + (segment 5290 + (point 213.680000 58.140000 -78.130000 0.230000) + (point 214.170000 60.050000 -79.550000 0.230000) + 4) + (segment 5291 + (point 214.170000 60.050000 -79.550000 0.230000) + (point 213.690000 64.110000 -80.570000 0.230000) + 4) + (segment 5292 + (point 213.690000 64.110000 -80.570000 0.230000) + (point 214.090000 68.390000 -81.250000 0.230000) + 4) + (segment 5293 + (point 214.090000 68.390000 -81.250000 0.230000) + (point 213.560000 70.640000 -82.750000 0.230000) + 4) + (segment 5294 + (point 213.560000 70.640000 -82.750000 0.230000) + (point 213.560000 70.640000 -82.780000 0.230000) + 4) + (segment 5295 + (point 213.560000 70.640000 -82.780000 0.230000) + (point 212.320000 73.940000 -84.570000 0.230000) + 4) + (segment 5296 + (point 212.320000 73.940000 -84.570000 0.230000) + (point 213.580000 76.630000 -86.100000 0.230000) + 4) + (segment 5297 + (point 213.580000 76.630000 -86.100000 0.230000) + (point 214.650000 78.070000 -87.700000 0.230000) + 4) + (segment 5298 + (point 214.650000 78.070000 -87.700000 0.230000) + (point 214.650000 78.070000 -87.720000 0.230000) + 4) + (segment 5299 + (point 214.650000 78.070000 -87.720000 0.230000) + (point 213.400000 81.360000 -89.250000 0.230000) + 4) + (segment 5300 + (point 213.400000 81.360000 -89.250000 0.230000) + (point 212.170000 84.660000 -90.400000 0.230000) + 4) + (segment 5301 + (point 212.170000 84.660000 -90.400000 0.230000) + (point 213.110000 86.670000 -92.830000 0.230000) + 4) + (segment 5302 + (point 213.110000 86.670000 -92.830000 0.230000) + (point 213.110000 86.670000 -92.900000 0.230000) + 4)) + (branch 196 189 + (segment 5303 + (point 236.350000 37.780000 -16.200000 0.690000) + (point 234.110000 37.260000 -15.380000 0.460000) + 4) + (segment 5304 + (point 234.110000 37.260000 -15.380000 0.460000) + (point 232.720000 35.130000 -15.650000 0.460000) + 4) + (segment 5305 + (point 232.720000 35.130000 -15.650000 0.460000) + (point 229.470000 34.970000 -16.520000 0.460000) + 4) + (segment 5306 + (point 229.470000 34.970000 -16.520000 0.460000) + (point 227.020000 37.380000 -17.250000 0.460000) + 4) + (segment 5307 + (point 227.020000 37.380000 -17.250000 0.460000) + (point 224.380000 38.550000 -18.170000 0.460000) + 4) + (segment 5308 + (point 224.380000 38.550000 -18.170000 0.460000) + (point 222.420000 36.900000 -19.380000 0.460000) + 4) + (segment 5309 + (point 222.420000 36.900000 -19.380000 0.460000) + (point 220.810000 37.710000 -20.380000 0.460000) + 4) + (segment 5310 + (point 220.810000 37.710000 -20.380000 0.460000) + (point 218.850000 36.060000 -21.550000 0.460000) + 4) + (segment 5311 + (point 218.850000 36.060000 -21.550000 0.460000) + (point 218.850000 36.060000 -21.580000 0.460000) + 4) + (segment 5312 + (point 218.850000 36.060000 -21.580000 0.460000) + (point 216.650000 37.340000 -22.300000 0.460000) + 4) + (segment 5313 + (point 216.650000 37.340000 -22.300000 0.460000) + (point 215.820000 38.930000 -23.950000 0.460000) + 4) + (segment 5314 + (point 215.820000 38.930000 -23.950000 0.460000) + (point 213.000000 38.870000 -25.330000 0.460000) + 4) + (segment 5315 + (point 213.000000 38.870000 -25.330000 0.460000) + (point 212.870000 39.440000 -27.150000 0.460000) + 4) + (segment 5316 + (point 212.870000 39.440000 -27.150000 0.460000) + (point 210.770000 38.340000 -28.650000 0.460000) + 4) + (segment 5317 + (point 210.770000 38.340000 -28.650000 0.460000) + (point 210.770000 38.340000 -28.670000 0.460000) + 4) + (segment 5318 + (point 210.770000 38.340000 -28.670000 0.460000) + (point 208.220000 37.150000 -29.700000 0.230000) + 4) + (segment 5319 + (point 208.220000 37.150000 -29.700000 0.230000) + (point 208.010000 40.090000 -30.400000 0.230000) + 4) + (segment 5320 + (point 208.010000 40.090000 -30.400000 0.230000) + (point 203.910000 41.520000 -31.100000 0.230000) + 4) + (segment 5321 + (point 203.910000 41.520000 -31.100000 0.230000) + (point 200.560000 43.720000 -32.080000 0.230000) + 4) + (segment 5322 + (point 200.560000 43.720000 -32.080000 0.230000) + (point 198.700000 45.670000 -33.130000 0.230000) + 4) + (segment 5323 + (point 198.700000 45.670000 -33.130000 0.230000) + (point 193.830000 46.320000 -33.670000 0.460000) + 4) + (segment 5324 + (point 193.830000 46.320000 -33.670000 0.460000) + (point 191.070000 48.050000 -35.600000 0.460000) + 4) + (segment 5325 + (point 191.070000 48.050000 -35.600000 0.460000) + (point 188.560000 48.670000 -37.720000 0.460000) + 4) + (segment 5326 + (point 188.560000 48.670000 -37.720000 0.460000) + (point 186.510000 49.380000 -39.150000 0.460000) + 4) + (segment 5327 + (point 186.510000 49.380000 -39.150000 0.460000) + (point 183.840000 48.760000 -41.050000 0.460000) + 4) + (segment 5328 + (point 183.840000 48.760000 -41.050000 0.460000) + (point 183.840000 48.760000 -41.080000 0.460000) + 4) + (segment 5329 + (point 183.840000 48.760000 -41.080000 0.460000) + (point 182.680000 49.670000 -44.170000 0.460000) + 4) + (segment 5330 + (point 182.680000 49.670000 -44.170000 0.460000) + (point 182.680000 49.670000 -44.200000 0.460000) + 4) + (segment 5331 + (point 182.680000 49.670000 -44.200000 0.460000) + (point 180.320000 49.720000 -45.570000 0.460000) + 4) + (segment 5332 + (point 180.320000 49.720000 -45.570000 0.460000) + (point 177.540000 51.460000 -46.820000 0.460000) + 4) + (segment 5333 + (point 177.540000 51.460000 -46.820000 0.460000) + (point 173.840000 51.190000 -48.350000 0.460000) + 4) + (segment 5334 + (point 173.840000 51.190000 -48.350000 0.460000) + (point 171.020000 51.120000 -49.050000 0.460000) + 4) + (segment 5335 + (point 171.020000 51.120000 -49.050000 0.460000) + (point 169.280000 52.510000 -51.220000 0.230000) + 4) + (segment 5336 + (point 169.280000 52.510000 -51.220000 0.230000) + (point 165.900000 52.910000 -53.350000 0.230000) + 4) + (segment 5337 + (point 165.900000 52.910000 -53.350000 0.230000) + (point 165.900000 52.910000 -53.380000 0.230000) + 4) + (segment 5338 + (point 165.900000 52.910000 -53.380000 0.230000) + (point 163.720000 54.190000 -55.400000 0.230000) + 4) + (segment 5339 + (point 163.720000 54.190000 -55.400000 0.230000) + (point 163.720000 54.190000 -55.420000 0.230000) + 4) + (segment 5340 + (point 163.720000 54.190000 -55.420000 0.230000) + (point 161.520000 55.470000 -57.280000 0.230000) + 4) + (segment 5341 + (point 161.520000 55.470000 -57.280000 0.230000) + (point 161.520000 55.470000 -57.300000 0.230000) + 4) + (segment 5342 + (point 161.520000 55.470000 -57.300000 0.230000) + (point 159.030000 56.080000 -58.220000 0.230000) + 4) + (segment 5343 + (point 159.030000 56.080000 -58.220000 0.230000) + (point 155.640000 56.480000 -59.900000 0.230000) + 4) + (segment 5344 + (point 155.640000 56.480000 -59.900000 0.230000) + (point 155.110000 58.740000 -60.970000 0.230000) + 4) + (segment 5345 + (point 155.110000 58.740000 -60.970000 0.230000) + (point 151.900000 60.370000 -62.450000 0.230000) + 4) + (segment 5346 + (point 151.900000 60.370000 -62.450000 0.230000) + (point 149.840000 61.100000 -64.200000 0.230000) + 4) + (segment 5347 + (point 149.840000 61.100000 -64.200000 0.230000) + (point 147.400000 63.500000 -66.000000 0.230000) + 4) + (segment 5348 + (point 147.400000 63.500000 -66.000000 0.230000) + (point 145.530000 65.450000 -67.950000 0.230000) + 4) + (segment 5349 + (point 145.530000 65.450000 -67.950000 0.230000) + (point 145.530000 65.450000 -67.970000 0.230000) + 4) + (segment 5350 + (point 145.530000 65.450000 -67.970000 0.230000) + (point 143.700000 69.210000 -69.720000 0.230000) + 4) + (segment 5351 + (point 143.700000 69.210000 -69.720000 0.230000) + (point 140.760000 69.710000 -71.500000 0.230000) + 4) + (segment 5352 + (point 140.760000 69.710000 -71.500000 0.230000) + (point 140.760000 69.710000 -71.520000 0.230000) + 4) + (segment 5353 + (point 140.760000 69.710000 -71.520000 0.230000) + (point 138.620000 72.800000 -73.400000 0.230000) + 4) + (segment 5354 + (point 138.620000 72.800000 -73.400000 0.230000) + (point 136.440000 74.070000 -74.970000 0.230000) + 4) + (segment 5355 + (point 136.440000 74.070000 -74.970000 0.230000) + (point 134.570000 76.030000 -76.700000 0.230000) + 4) + (segment 5356 + (point 134.570000 76.030000 -76.700000 0.230000) + (point 133.280000 77.510000 -78.650000 0.230000) + 4) + (segment 5357 + (point 133.280000 77.510000 -78.650000 0.230000) + (point 130.510000 79.260000 -79.800000 0.230000) + 4) + (segment 5358 + (point 130.510000 79.260000 -79.800000 0.230000) + (point 126.720000 81.350000 -82.000000 0.230000) + 4) + (segment 5359 + (point 126.720000 81.350000 -82.000000 0.230000) + (point 124.100000 82.530000 -84.080000 0.230000) + 4) + (segment 5360 + (point 124.100000 82.530000 -84.080000 0.230000) + (point 124.100000 82.530000 -84.100000 0.230000) + 4) + (segment 5361 + (point 124.100000 82.530000 -84.100000 0.230000) + (point 121.780000 84.370000 -86.700000 0.230000) + 4) + (segment 5362 + (point 121.780000 84.370000 -86.700000 0.230000) + (point 120.670000 87.090000 -88.970000 0.230000) + 4) + (segment 5363 + (point 120.670000 87.090000 -88.970000 0.230000) + (point 120.670000 87.090000 -89.000000 0.230000) + 4) + (segment 5364 + (point 120.670000 87.090000 -89.000000 0.230000) + (point 118.790000 89.050000 -90.880000 0.230000) + 4) + (segment 5365 + (point 118.790000 89.050000 -90.880000 0.230000) + (point 118.790000 89.050000 -90.900000 0.230000) + 4) + (segment 5366 + (point 118.790000 89.050000 -90.900000 0.230000) + (point 117.100000 92.240000 -93.500000 0.230000) + 4) + (segment 5367 + (point 117.100000 92.240000 -93.500000 0.230000) + (point 117.100000 92.240000 -93.530000 0.230000) + 4) + (segment 5368 + (point 117.100000 92.240000 -93.530000 0.230000) + (point 117.280000 93.470000 -96.200000 0.230000) + 4) + (segment 5369 + (point 117.280000 93.470000 -96.200000 0.230000) + (point 116.570000 94.490000 -99.920000 0.230000) + 4) + (segment 5370 + (point 116.570000 94.490000 -99.920000 0.230000) + (point 116.570000 94.490000 -100.000000 0.230000) + 4)) + (branch 197 -1 + (segment 5371 + (point 263.248016 5.356219 -3.380000 0.690000) + (point 262.996735 -9.641676 -3.380000 0.690000) + 2) + (segment 5372 + (point 262.996735 -9.641676 -3.380000 0.690000) + (point 262.745453 -24.639570 -3.380000 0.690000) + 2) + (segment 5373 + (point 262.745453 -24.639570 -3.380000 0.460000) + (point 262.494171 -39.637466 -3.380000 0.460000) + 2) + (segment 5374 + (point 262.494171 -39.637466 -3.380000 0.460000) + (point 262.242889 -54.635361 -3.380000 0.460000) + 2)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc.json b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc.json new file mode 100644 index 00000000..600731c7 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc.json @@ -0,0 +1,11 @@ +{ + "cell_model_name": "l5pc", + "produced_by": "Created by BluePyOpt(1.12.113) at 2022-11-06 18:21:20.822883", + "morphology": { + "original": "C060114A7.asc", + "replace_axon": "C060114A7_axon_replacement.acc", + "modified": "C060114A7_modified.acc" + }, + "label_dict": "l5pc_label_dict.acc", + "decor": "l5pc_decor.acc" +} diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_decor.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_decor.acc new file mode 100644 index 00000000..9b499549 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_decor.acc @@ -0,0 +1,37 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (decor + (default (membrane-potential -65)) + (default (temperature-kelvin 307.14999999999998)) + (default (membrane-capacitance 0.01)) + (default (axial-resistivity 100)) + (paint (region "all") (density (mechanism "default::pas/e=-75" ("g" 3.0000000000000001e-05)))) + (paint (region "soma") (ion-reversal-potential "na" 50)) + (paint (region "soma") (ion-reversal-potential "k" -85)) + (paint (region "soma") (density (mechanism "BBP::NaTs2_t" ("gNaTs2_tbar" 0.98395500000000002)))) + (paint (region "soma") (density (mechanism "BBP::SKv3_1" ("gSKv3_1bar" 0.30347200000000002)))) + (paint (region "soma") (density (mechanism "BBP::SK_E2" ("gSK_E2bar" 0.0084069999999999995)))) + (paint (region "soma") (density (mechanism "BBP::Ca_HVA" ("gCa_HVAbar" 0.00099400000000000009)))) + (paint (region "soma") (density (mechanism "BBP::Ca_LVAst" ("gCa_LVAstbar" 0.00033300000000000002)))) + (paint (region "soma") (density (mechanism "BBP::CaDynamics_E2" ("gamma" 0.00060899999999999995) ("decay" 210.48528400000001)))) + (paint (region "soma") (density (mechanism "BBP::Ih" ("gIhbar" 8.0000000000000007e-05)))) + (paint (region "axon") (ion-reversal-potential "na" 50)) + (paint (region "axon") (ion-reversal-potential "k" -85)) + (paint (region "axon") (density (mechanism "BBP::NaTa_t" ("gNaTa_tbar" 3.1379679999999999)))) + (paint (region "axon") (density (mechanism "BBP::Nap_Et2" ("gNap_Et2bar" 0.0068269999999999997)))) + (paint (region "axon") (density (mechanism "BBP::K_Pst" ("gK_Pstbar" 0.97353800000000001)))) + (paint (region "axon") (density (mechanism "BBP::K_Tst" ("gK_Tstbar" 0.089259000000000005)))) + (paint (region "axon") (density (mechanism "BBP::SK_E2" ("gSK_E2bar" 0.0071040000000000001)))) + (paint (region "axon") (density (mechanism "BBP::SKv3_1" ("gSKv3_1bar" 1.0219450000000001)))) + (paint (region "axon") (density (mechanism "BBP::Ca_HVA" ("gCa_HVAbar" 0.00098999999999999999)))) + (paint (region "axon") (density (mechanism "BBP::Ca_LVAst" ("gCa_LVAstbar" 0.0087519999999999994)))) + (paint (region "axon") (density (mechanism "BBP::CaDynamics_E2" ("gamma" 0.0029099999999999998) ("decay" 287.19873100000001)))) + (paint (region "dend") (membrane-capacitance 0.02)) + (paint (region "dend") (density (mechanism "BBP::Ih" ("gIhbar" 8.0000000000000007e-05)))) + (paint (region "apic") (ion-reversal-potential "na" 50)) + (paint (region "apic") (ion-reversal-potential "k" -85)) + (paint (region "apic") (membrane-capacitance 0.02)) + (paint (region "apic") (density (mechanism "BBP::NaTs2_t" ("gNaTs2_tbar" 0.026145000000000002)))) + (paint (region "apic") (density (mechanism "BBP::SKv3_1" ("gSKv3_1bar" 0.0042259999999999997)))) + (paint (region "apic") (density (mechanism "BBP::Im" ("gImbar" 0.00014300000000000001)))) + (paint (region "apic") (scaled-mechanism (density (mechanism "BBP::Ih" ("gIhbar" 8.0000000000000007e-05))) ("gIhbar" (add (scalar -0.86960000000000004) (mul (scalar 2.0870000000000002) (exp (mul (distance (region "soma")) (scalar 0.0030999999999999999) ) ) ) )))))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_label_dict.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_label_dict.acc new file mode 100644 index 00000000..ea26ab1a --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/l5pc_label_dict.acc @@ -0,0 +1,9 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (label-dict + (region-def "all" (all)) + (region-def "soma" (tag 1)) + (region-def "axon" (tag 2)) + (region-def "dend" (tag 3)) + (region-def "apic" (tag 4)) + (region-def "myelin" (tag 5)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple.swc b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple.swc new file mode 100644 index 00000000..cf106230 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple.swc @@ -0,0 +1,4 @@ +# Dummy granule cell morphology +1 1 -5.0 0.0 0.0 5.0 -1 +2 1 0.0 0.0 0.0 5.0 1 +3 1 5.0 0.0 0.0 5.0 2 diff --git a/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_axon_replacement.acc b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_axon_replacement.acc new file mode 100644 index 00000000..8b8d954e --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_axon_replacement.acc @@ -0,0 +1,21 @@ +(arbor-component + (meta-data + (version "0.1-dev")) + (morphology + (branch 0 -1 + (segment 0 + (point 5.000000 0.000000 0.000000 0.500000) + (point 20.000000 0.000000 0.000000 0.500000) + 2) + (segment 1 + (point 20.000000 0.000000 0.000000 0.500000) + (point 35.000000 0.000000 0.000000 0.500000) + 2) + (segment 2 + (point 35.000000 0.000000 0.000000 0.500000) + (point 50.000000 0.000000 0.000000 0.500000) + 2) + (segment 3 + (point 50.000000 0.000000 0.000000 0.500000) + (point 65.000000 0.000000 0.000000 0.500000) + 2)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell.json b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell.json new file mode 100644 index 00000000..8da718f5 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell.json @@ -0,0 +1,11 @@ +{ + "cell_model_name": "simple_cell", + "produced_by": "Created by BluePyOpt(1.12.113) at 2022-11-06 18:29:03.845296", + "morphology": { + "original": "simple.swc", + "replace_axon": "simple_axon_replacement.acc", + "modified": "simple_modified.acc" + }, + "label_dict": "simple_cell_label_dict.acc", + "decor": "simple_cell_decor.acc" +} diff --git a/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_decor.acc b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_decor.acc new file mode 100644 index 00000000..e5af159c --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_decor.acc @@ -0,0 +1,5 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (decor + (paint (region "soma") (membrane-capacitance 0.01)) + (paint (region "soma") (density (mechanism "default::hh" ("gnabar" 0.10299326453483033) ("gkbar" 0.027124836082684685)))))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_label_dict.acc b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_label_dict.acc new file mode 100644 index 00000000..ea26ab1a --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_cell_label_dict.acc @@ -0,0 +1,9 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (label-dict + (region-def "all" (all)) + (region-def "soma" (tag 1)) + (region-def "axon" (tag 2)) + (region-def "dend" (tag 3)) + (region-def "apic" (tag 4)) + (region-def "myelin" (tag 5)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_modified.acc b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_modified.acc new file mode 100644 index 00000000..89a99ad3 --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/simplecell/simple_modified.acc @@ -0,0 +1,30 @@ +(arbor-component + (meta-data + (version "0.1-dev")) + (morphology + (branch 0 -1 + (segment 0 + (point -5.000000 0.000000 0.000000 5.000000) + (point 0.000000 0.000000 0.000000 5.000000) + 1) + (segment 1 + (point 0.000000 0.000000 0.000000 5.000000) + (point 5.000000 0.000000 0.000000 5.000000) + 1)) + (branch 1 -1 + (segment 2 + (point 5.000000 0.000000 0.000000 0.500000) + (point 20.000000 0.000000 0.000000 0.500000) + 2) + (segment 3 + (point 20.000000 0.000000 0.000000 0.500000) + (point 35.000000 0.000000 0.000000 0.500000) + 2) + (segment 4 + (point 35.000000 0.000000 0.000000 0.500000) + (point 50.000000 0.000000 0.000000 0.500000) + 2) + (segment 5 + (point 50.000000 0.000000 0.000000 0.500000) + (point 65.000000 0.000000 0.000000 0.500000) + 2)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_l5pc.py b/bluepyopt/tests/test_l5pc.py index 67f30847..b6e3fc8a 100644 --- a/bluepyopt/tests/test_l5pc.py +++ b/bluepyopt/tests/test_l5pc.py @@ -178,7 +178,7 @@ def test_exec(): @pytest.mark.slow def test_l5pc_validate_neuron_arbor(): - """L5PC Soma Arbor Notebook: test execution""" + """L5PC Neuron/Arbor validation Notebook: test execution""" import numpy numpy.seterr(all='raise') old_cwd = os.getcwd() diff --git a/examples/expsyn/expsyn.py b/examples/expsyn/expsyn.py index 32ac0e7f..c8951b03 100644 --- a/examples/expsyn/expsyn.py +++ b/examples/expsyn/expsyn.py @@ -10,22 +10,24 @@ import bluepyopt.ephys as ephys -def main(args): - """Main""" - if args.sim == 'nrn': - sim = ephys.simulators.NrnSimulator() - else: - sim = ephys.simulators.ArbSimulator() +def create_model(sim, do_replace_axon, return_locations=False): + """Create model and optionally return locations dict""" + if sim not in ['nrn', 'arb']: + raise ValueError("Invalid simulator %s." % sim) + + locations = dict() morph = ephys.morphologies.NrnFileMorphology( os.path.join( os.path.dirname(os.path.abspath(__file__)), - 'simple.swc')) + 'simple.swc'), + do_replace_axon=do_replace_axon) somatic_loc = ephys.locations.NrnSeclistLocation( 'somatic', seclist_name='somatic') + locations['somatic_loc'] = somatic_loc - if args.sim == 'nrn': + if sim == 'nrn': somacenter_loc = ephys.locations.NrnSeclistCompLocation( name='somacenter', seclist_name='somatic', @@ -35,6 +37,7 @@ def main(args): somacenter_loc = ephys.locations.ArbLocsetLocation( name='somacenter', locset='(location 0 0.5)') + locations['somacenter_loc'] = somacenter_loc pas_mech = ephys.mechanisms.NrnMODMechanism( name='pas', @@ -49,6 +52,7 @@ def main(args): expsyn_loc = ephys.locations.NrnPointProcessLocation( 'expsyn_loc', pprocess_mech=expsyn_mech) + locations['expsyn_loc'] = expsyn_loc expsyn_tau_param = ephys.parameters.NrnPointProcessParameter( name='expsyn_tau', @@ -57,20 +61,6 @@ def main(args): bounds=[0, 50], locations=[expsyn_loc]) - stim_start = 20 - number = 5 - interval = 5 - - netstim = ephys.stimuli.NrnNetStimStimulus( - total_duration=200, - number=5, - interval=5, - start=stim_start, - weight=5e-4, - locations=[expsyn_loc]) - - stim_end = stim_start + interval * number - cm_param = ephys.parameters.NrnSectionParameter( name='cm', param_name='cm', @@ -84,9 +74,40 @@ def main(args): mechs=[pas_mech, expsyn_mech], params=[cm_param, expsyn_tau_param]) + if return_locations is True: + return cell, locations + else: + return cell + + +def main(args): + """Main""" + if args.sim == 'nrn': + sim = ephys.simulators.NrnSimulator() + else: + sim = ephys.simulators.ArbSimulator() + + cell, locations = create_model(sim=args.sim, + do_replace_axon=False, + return_locations=True) + + stim_start = 20 + number = 5 + interval = 5 + + netstim = ephys.stimuli.NrnNetStimStimulus( + total_duration=200, + number=5, + interval=5, + start=stim_start, + weight=5e-4, + locations=[locations['expsyn_loc']]) + + stim_end = stim_start + interval * number + rec = ephys.recordings.CompRecording( name='soma.v', - location=somacenter_loc, + location=locations['somacenter_loc'], variable='v') if args.sim == 'nrn': diff --git a/examples/expsyn/generate_acc.py b/examples/expsyn/generate_acc.py new file mode 100755 index 00000000..45ce135a --- /dev/null +++ b/examples/expsyn/generate_acc.py @@ -0,0 +1,62 @@ +#!/usr/bin/env python + +'''Example for generating a mixed JSON/ACC Arbor cable cell description (with optional axon-replacement) + + $ python generate_acc.py --output-dir test_acc/ --replace-axon + + Will save 'l5pc.json', 'l5pc_label_dict.acc' and 'l5pc_decor.acc' + into the folder 'test_acc' that can be loaded in Arbor with: + 'cell_json, morpho, decor, labels = \ + ephys.create_acc.read_acc("test_acc/l5pc_cell.json")' + An Arbor cable cell can then be created with + 'cell = arbor.cable_cell(morphology=morpho, decor=decor, labels=labels)' + The resulting cable cell can be output to ACC for visual inspection + and e.g. validating/deriving custom Arbor locset/region/iexpr + expressions in the Arbor GUI (File > Cable cell > Load) using + 'arbor.write_component(cell, "l5pc_cable_cell.acc")' +''' +import argparse + +from bluepyopt import ephys + +import expsyn + + +def main(): + '''main''' + parser = argparse.ArgumentParser( + formatter_class=argparse.RawDescriptionHelpFormatter, + description=__doc__) + parser.add_argument('-o', '--output-dir', dest='output_dir', + help='Output directory for JSON/ACC files') + parser.add_argument('-ra', '--replace-axon', action='store_true', + help='Replace axon with Neuron-dependent policy') + args = parser.parse_args() + + cell = expsyn.create_model(sim='arb', do_replace_axon=args.replace_axon) + if args.replace_axon: + nrn_sim = ephys.simulators.NrnSimulator() + cell.instantiate_morphology_3d(nrn_sim) + + param_values = {'expsyn_tau': 10.0} + + # Add modcc-compiled external mechanisms catalogues here + # ext_catalogues = {'cat-name': 'path/to/nmodl-dir', ...} + + if args.output_dir is not None: + cell.write_acc(args.output_dir, + param_values, + # ext_catalogues=ext_catalogues, + create_mod_morph=True) + else: + output = cell.create_acc( + param_values, + template='acc/*_template.jinja2', + # ext_catalogues=ext_catalogues, + create_mod_morph=True) + for el, val in output.items(): + print("%s:\n%s\n" % (el, val)) + + +if __name__ == '__main__': + main() diff --git a/examples/l5pc/L5PC_arbor.ipynb b/examples/l5pc/L5PC_arbor.ipynb index 0fc7fad4..f736a8e1 100644 --- a/examples/l5pc/L5PC_arbor.ipynb +++ b/examples/l5pc/L5PC_arbor.ipynb @@ -54,9 +54,83 @@ "/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc\n", "Mod files: \"mechanisms/CaDynamics_E2.mod\" \"mechanisms/Ca_HVA.mod\" \"mechanisms/Ca_LVAst.mod\" \"mechanisms/Ih.mod\" \"mechanisms/Im.mod\" \"mechanisms/K_Pst.mod\" \"mechanisms/K_Tst.mod\" \"mechanisms/Nap_Et2.mod\" \"mechanisms/NaTa_t.mod\" \"mechanisms/NaTs2_t.mod\" \"mechanisms/SK_E2.mod\" \"mechanisms/SKv3_1.mod\"\n", "\n", + "Creating x86_64 directory for .o files.\n", + "\n", "COBJS=''\n", " -> \u001b[32mCompiling\u001b[0m mod_func.c\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/CaDynamics_E2.mod\n", "x86_64-linux-gnu-gcc -O2 -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c mod_func.c -o mod_func.o\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl CaDynamics_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_HVA.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_HVA.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ca_LVAst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ca_LVAst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating CaDynamics_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/CaDynamics_E2.c\n", + "Translating Ca_HVA.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_HVA.c\n", + "Translating Ca_LVAst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ca_LVAst.c\n", + "Thread Safe\n", + "Thread Safe\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Ih.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Ih.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Ih.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Ih.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Im.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Im.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating Im.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Im.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Pst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Pst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/K_Tst.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl K_Tst.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/Nap_Et2.mod\n", + "Translating K_Pst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Pst.c\n", + "Thread Safe\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl Nap_Et2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating K_Tst.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/K_Tst.c\n", + "Thread Safe\n", + "Translating Nap_Et2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/Nap_Et2.c\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTa_t.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTa_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/NaTs2_t.mod\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SK_E2.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl NaTs2_t.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SK_E2.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating NaTa_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTa_t.c\n", + "Translating NaTs2_t.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/NaTs2_t.c\n", + "Thread Safe\n", + "Thread Safe\n", + " -> \u001b[32mNMODL\u001b[0m ../mechanisms/SKv3_1.mod\n", + "(cd \"../mechanisms\"; MODLUNIT=/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/share/nrn/lib/nrnunits.lib /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/bin/nocmodl SKv3_1.mod -o \"/home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64\")\n", + "Translating SK_E2.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SK_E2.c\n", + "Thread Safe\n", + "Translating SKv3_1.mod into /home/lukasd/src/arbor/dev/BluePyOpt/examples/l5pc/x86_64/SKv3_1.c\n", + " -> \u001b[32mCompiling\u001b[0m CaDynamics_E2.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c CaDynamics_E2.c -o CaDynamics_E2.o\n", + " -> \u001b[32mCompiling\u001b[0m Ca_HVA.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_HVA.c -o Ca_HVA.o\n", + "Thread Safe\n", + " -> \u001b[32mCompiling\u001b[0m Ca_LVAst.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ca_LVAst.c -o Ca_LVAst.o\n", + " -> \u001b[32mCompiling\u001b[0m Ih.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Ih.c -o Ih.o\n", + " -> \u001b[32mCompiling\u001b[0m Im.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Im.c -o Im.o\n", + " -> \u001b[32mCompiling\u001b[0m K_Pst.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c K_Pst.c -o K_Pst.o\n", + " -> \u001b[32mCompiling\u001b[0m K_Tst.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c K_Tst.c -o K_Tst.o\n", + " -> \u001b[32mCompiling\u001b[0m Nap_Et2.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c Nap_Et2.c -o Nap_Et2.o\n", + " -> \u001b[32mCompiling\u001b[0m NaTa_t.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c NaTa_t.c -o NaTa_t.o\n", + " -> \u001b[32mCompiling\u001b[0m NaTs2_t.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c NaTs2_t.c -o NaTs2_t.o\n", + " -> \u001b[32mCompiling\u001b[0m SK_E2.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c SK_E2.c -o SK_E2.o\n", + " -> \u001b[32mCompiling\u001b[0m SKv3_1.c\n", + "x86_64-linux-gnu-gcc -O2 -I\"../mechanisms\" -I. -I/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -I/nrnwheel/openmpi/include -fPIC -c SKv3_1.c -o SKv3_1.o\n", " => \u001b[32mLINKING\u001b[0m shared library ./libnrnmech.so\n", "x86_64-linux-gnu-g++ -O2 -DVERSION_INFO='8.0.2' -std=c++11 -shared -fPIC -I /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/include -o ./libnrnmech.so -Wl,-soname,libnrnmech.so \\\n", " ./mod_func.o ./CaDynamics_E2.o ./Ca_HVA.o ./Ca_LVAst.o ./Ih.o ./Im.o ./K_Pst.o ./K_Tst.o ./Nap_Et2.o ./NaTa_t.o ./NaTs2_t.o ./SK_E2.o ./SKv3_1.o -L/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib -lnrniv -Wl,-rpath,/home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages/neuron/.data/lib \n", @@ -119,7 +193,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We're using a complex reconstructed morphology of an L5PC cell. Let's visualise this with the BlueBrain NeuroM software:" + "We're using a complex reconstructed morphology of an L5PC cell. Let's visualise this with the BlueBrain NeuroM software. Alternatively, the cell model can be exported to JSON/ACC by running\n", + "\n", + "```shell\n", + "./generate_acc.py --replace-axon --output \n", + "```\n", + "\n", + "The output can be visualized with the Arbor GUI (graphical user interface) as shown in the [documentation](https://docs.arbor-sim.org/en/latest/tutorial/single_cell_bluepyopt.html)." ] }, { @@ -137,30 +217,33 @@ "output_type": "stream", "text": [ "Requirement already satisfied: neurom in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (3.2.2)\n", + "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", "Requirement already satisfied: numpy>=1.8.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.22.3)\n", + "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", "Requirement already satisfied: matplotlib>=3.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.5.1)\n", "Requirement already satisfied: pandas>=1.0.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.4.1)\n", - "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", "Requirement already satisfied: tqdm>=4.8.4 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (4.63.1)\n", "Requirement already satisfied: click>=7.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (8.1.3)\n", - "Requirement already satisfied: morphio>=3.1.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (3.3.3)\n", - "Requirement already satisfied: scipy>=1.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (1.8.0)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", - "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", + "Requirement already satisfied: pyyaml>=3.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from neurom) (6.0)\n", "Requirement already satisfied: pillow>=6.2.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (9.0.1)\n", "Requirement already satisfied: packaging>=20.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (21.3)\n", "Requirement already satisfied: pyparsing>=2.2.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (3.0.7)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (2.8.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (4.31.2)\n", + "Requirement already satisfied: cycler>=0.10 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (0.11.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from matplotlib>=3.2.1->neurom) (1.4.2)\n", "Requirement already satisfied: pytz>=2020.1 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from pandas>=1.0.5->neurom) (2022.1)\n", - "Requirement already satisfied: six>=1.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib>=3.2.1->neurom) (1.16.0)\n" + "Requirement already satisfied: six>=1.5 in /home/lukasd/src/arbor/dev/venv/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib>=3.2.1->neurom) (1.16.0)\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.2.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m22.3\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_76273/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", + "/tmp/ipykernel_466037/1031438697.py:3: NeuroMDeprecationWarning: `neurom.io.utils.load_neuron` is deprecated in favor of `neurom.io.utils.load_morphology`\n", " neurom.viewer.draw(neurom.load_neuron('morphology/C060114A7.asc'));\n" ] }, @@ -395,7 +478,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "With the morphology, mechanisms and parameters we can build the cell model" + "With the morphology, mechanisms and parameters we can build the cell model. If we use axon-replacement, we must 3d-instantiate the morphology first in the Neuron simulator to obtain a faithful representation in Arbor.\n", + "\n", + "Note that before `l5pc_cell` can subsequently be used in a Neuron protocol, `l5pc_cell.destroy(sim=nrn_sim)` must be invoked. " ] }, { @@ -482,6 +567,12 @@ ], "source": [ "l5pc_cell = ephys.models.CellModel('l5pc', morph=morphology, mechs=mechanisms, params=parameters)\n", + "\n", + "if morphology.do_replace_axon:\n", + " nrn_sim = ephys.simulators.NrnSimulator()\n", + " # invoke this before exporting an axon-replaced morphology to JSON/ACC-format\n", + " l5pc_cell.instantiate_morphology_3d(nrn_sim)\n", + "\n", "print(l5pc_cell)" ] }, @@ -843,12 +934,6 @@ }, "outputs": [], "source": [ - "nrn_sim = ephys.simulators.NrnSimulator()\n", - "\n", - "if morphology.do_replace_axon:\n", - " l5pc_cell.instantiate_morphology_3d(nrn_sim)\n", - " # l5pc_cell.destroy(sim=nrn_sim) # not run as Neuron not used\n", - "\n", "release_responses = evaluator.run_protocols(protocols=fitness_protocols.values(), param_values=release_params)" ] }, diff --git a/examples/l5pc/generate_acc.py b/examples/l5pc/generate_acc.py index b64a55cd..66107904 100755 --- a/examples/l5pc/generate_acc.py +++ b/examples/l5pc/generate_acc.py @@ -43,11 +43,10 @@ def main(): # ext_catalogues = {'cat-name': 'path/to/nmodl-dir', ...} if args.output_dir is not None: - ephys.create_acc.output_acc(args.output_dir, - cell, - param_values, - # ext_catalogues=ext_catalogues, - create_mod_morph=True) + cell.write_acc(args.output_dir, + param_values, + # ext_catalogues=ext_catalogues, + create_mod_morph=True) else: output = cell.create_acc( param_values, diff --git a/examples/simplecell/generate_acc.py b/examples/simplecell/generate_acc.py index 43654dd2..39a8ca18 100755 --- a/examples/simplecell/generate_acc.py +++ b/examples/simplecell/generate_acc.py @@ -43,11 +43,10 @@ def main(): # ext_catalogues = {'cat-name': 'path/to/nmodl-dir', ...} if args.output_dir is not None: - ephys.create_acc.output_acc(args.output_dir, - cell, - param_values, - # ext_catalogues=ext_catalogues, - create_mod_morph=True) + cell.write_acc(args.output_dir, + param_values, + # ext_catalogues=ext_catalogues, + create_mod_morph=True) else: output = cell.create_acc( param_values, From e85d6956241bb24b1ebfa7e2db45e093247e39cb Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Tue, 8 Nov 2022 00:18:17 +0100 Subject: [PATCH 39/42] Fixing expsyn generate_acc docs --- examples/expsyn/generate_acc.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/expsyn/generate_acc.py b/examples/expsyn/generate_acc.py index 45ce135a..66a60e97 100755 --- a/examples/expsyn/generate_acc.py +++ b/examples/expsyn/generate_acc.py @@ -4,16 +4,16 @@ $ python generate_acc.py --output-dir test_acc/ --replace-axon - Will save 'l5pc.json', 'l5pc_label_dict.acc' and 'l5pc_decor.acc' + Will save 'simple_cell.json', 'simple_cell_label_dict.acc' and 'simple_cell_decor.acc' into the folder 'test_acc' that can be loaded in Arbor with: 'cell_json, morpho, decor, labels = \ - ephys.create_acc.read_acc("test_acc/l5pc_cell.json")' + ephys.create_acc.read_acc("test_acc/simple_cell_cell.json")' An Arbor cable cell can then be created with 'cell = arbor.cable_cell(morphology=morpho, decor=decor, labels=labels)' The resulting cable cell can be output to ACC for visual inspection and e.g. validating/deriving custom Arbor locset/region/iexpr expressions in the Arbor GUI (File > Cable cell > Load) using - 'arbor.write_component(cell, "l5pc_cable_cell.acc")' + 'arbor.write_component(cell, "simple_cell_cable_cell.acc")' ''' import argparse From 93c0685f8eebf4f60dbade1f0651fad13516af9c Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Wed, 9 Nov 2022 20:57:18 +0100 Subject: [PATCH 40/42] Fixing create_acc tests --- bluepyopt/tests/test_ephys/test_create_acc.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index 8fe0dc4c..5eff0ebd 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -532,13 +532,16 @@ def test_cell_model_write_and_read_acc_replace_axon(): with tempfile.TemporaryDirectory() as acc_dir: try: + nrn_sim = ephys.simulators.NrnSimulator() cell.write_acc(acc_dir, param_values, - sim=ephys.simulators.NrnSimulator()) + sim=nrn_sim) except Exception as e: # fail with an older Arbor version assert isinstance(e, NotImplementedError) assert len(e.args) == 1 and e.args[0] == \ "Need a newer version of Arbor for axon replacement." return + finally: + cell.destroy(nrn_sim) # Axon replacement implemented in installed Arbor version cell_json, arb_morph, arb_decor, arb_labels = \ @@ -630,6 +633,7 @@ def test_write_acc_simple(): assert len(e.args) == 1 and e.args[0] == \ "Need a newer version of Arbor for axon replacement." finally: + cell.destroy(nrn_sim) os.chdir(old_cwd) sys.path.pop(0) @@ -682,6 +686,7 @@ def test_write_acc_l5pc(): assert len(e.args) == 1 and e.args[0] == \ "Need a newer version of Arbor for axon replacement." finally: + cell.destroy(nrn_sim) os.chdir(old_cwd) sys.path.pop(0) From 02a00fbbc40b6004c611538b46d64cbebe930f7d Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Wed, 21 Dec 2022 22:58:41 +0100 Subject: [PATCH 41/42] Anil's review for ACC exporter, fixing create_acc tests --- bluepyopt/ephys/create_acc.py | 9 +-- bluepyopt/ephys/create_hoc.py | 12 ++-- bluepyopt/ephys/locations.py | 63 +++---------------- bluepyopt/tests/test_ephys/test_create_acc.py | 30 +++++---- 4 files changed, 33 insertions(+), 81 deletions(-) diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index 045735c9..e6cf0cd2 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -31,7 +31,7 @@ def __init__(self, name, conv=None): self.conv = conv -class Nrn2ArbParamFormatter: +class Nrn2ArbParamAdapter: """Converts a Neuron parameter to Arbor format (name and value)""" _mapping = dict( @@ -202,7 +202,7 @@ def _format_params_and_group_by_mech(params, channels): Mapping of Arbor mechanism name to list of parameters in Arbor format """ - mech_params = [Nrn2ArbParamFormatter.format( + mech_params = [Nrn2ArbParamAdapter.format( param, channels) for param in params] mechs = {mech: [] for mech, _ in mech_params} for mech in channels: @@ -214,7 +214,8 @@ def _format_params_and_group_by_mech(params, channels): @classmethod def process_global(cls, params): - """Group global params by mechanism, convert them to Arbor format + """Group global BluePyOpt params by mech, convert them to Arbor format + Args: params (): List of global parameters in Neuron format @@ -231,7 +232,7 @@ def process_global(cls, params): @classmethod def process_local(cls, params, channels): - """Group local params by mechanism, convert them to Arbor format + """Group local BluePyOpt params by mech, convert them to Arbor format Args: params (): List of Arbor label/local parameters pairs in Neuron diff --git a/bluepyopt/ephys/create_hoc.py b/bluepyopt/ephys/create_hoc.py index 2e883e71..3fc90bd6 100644 --- a/bluepyopt/ephys/create_hoc.py +++ b/bluepyopt/ephys/create_hoc.py @@ -112,12 +112,12 @@ def _loc_desc(location, param_or_mech): elif isinstance(param_or_mech, NrnMODPointProcessMechanism): raise CreateHocException("%s is currently not supported." % type(param_or_mech).__name__) - elif not (isinstance(location, NrnSeclistCompLocation) or - isinstance(location, NrnSectionCompLocation) or - isinstance(location, NrnSomaDistanceCompLocation) or - isinstance(location, NrnSecSomaDistanceCompLocation) or - isinstance(location, NrnTrunkSomaDistanceCompLocation)) and \ - not isinstance(location, ArbLocation) and \ + elif not isinstance(location, (NrnSeclistCompLocation, + NrnSectionCompLocation, + NrnSomaDistanceCompLocation, + NrnSecSomaDistanceCompLocation, + NrnTrunkSomaDistanceCompLocation, + ArbLocation)) and \ not isinstance(param_or_mech, NrnPointProcessParameter): return location.seclist_name else: diff --git a/bluepyopt/ephys/locations.py b/bluepyopt/ephys/locations.py index 8c2bef4e..d7efbb06 100644 --- a/bluepyopt/ephys/locations.py +++ b/bluepyopt/ephys/locations.py @@ -541,7 +541,14 @@ def acc_label(self): class ArbLocation(Location): """Arbor Location""" - pass + def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 + """Find the instantiate compartment (default implementation)""" + raise EPhysLocInstantiateException( + '%s not supported in NEURON.' % type(self).__name__) + + def __str__(self): + """String representation""" + return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) class ArbSegmentLocation(ArbLocation): @@ -552,19 +559,10 @@ def __init__(self, name, segment, comment=''): super().__init__(name, comment) self.segment = segment - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - def acc_label(self): """Arbor label""" return ArbLabel('region', self.name, '(segment %s)' % (self.segment)) - def __str__(self): - """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) - class ArbBranchLocation(ArbLocation): """Branch in an Arbor morphology. @@ -576,19 +574,10 @@ def __init__(self, name, branch, comment=''): super().__init__(name, comment) self.branch = branch - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - def acc_label(self): """Arbor label""" return ArbLabel('region', self.name, '(branch %s)' % (self.branch)) - def __str__(self): - """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) - class ArbSegmentRelLocation(ArbLocation): """Relative position on a segment in an Arbor morphology. @@ -599,21 +588,12 @@ def __init__(self, name, segment, pos, comment=''): self.segment = segment self.pos = pos - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - def acc_label(self): """Arbor label""" return ArbLabel('locset', self.name, '(on-components %s (segment %s))' % (format_float(self.pos), self.segment)) - def __str__(self): - """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) - class ArbBranchRelLocation(ArbLocation): """Relative position on a branch in an Arbor morphology. @@ -626,21 +606,12 @@ def __init__(self, name, branch, pos, comment=''): self.branch = branch self.pos = pos - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - def acc_label(self): """Arbor label""" return ArbLabel('locset', self.name, '(location %s %s)' % (self.branch, format_float(self.pos))) - def __str__(self): - """String representation""" - return '%s \'%s\'' % (type(self).__name__, self.acc_label().defn) - class ArbLocsetLocation(ArbLocation): """Arbor location set defined by a user-supplied string (S-expression). @@ -650,19 +621,10 @@ def __init__(self, name, locset, comment=''): super().__init__(name, comment) self.locset = locset - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - def acc_label(self): """Arbor label""" return ArbLabel('locset', self.name, self.locset) - def __str__(self): - """String representation""" - return '%s %s' % (type(self).__name__, self.acc_label().defn) - class ArbRegionLocation(ArbLocation): """Arbor region defined by a user-supplied string (S-expression). @@ -672,19 +634,10 @@ def __init__(self, name, region, comment=''): super().__init__(name, comment) self.region = region - def instantiate(self, sim=None, icell=None): # pylint: disable=W0613 - """Find the instantiate compartment""" - raise EPhysLocInstantiateException( - '%s not supported in NEURON.' % type(self).__name__) - def acc_label(self): """Arbor label""" return ArbLabel('region', self.name, self.region) - def __str__(self): - """String representation""" - return '%s %s' % (type(self).__name__, self.acc_label().defn) - class EPhysLocInstantiateException(Exception): diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index 5eff0ebd..f1d19bcc 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -17,7 +17,7 @@ from bluepyopt import ephys from bluepyopt.ephys import create_acc -from bluepyopt.ephys.create_acc import (Nrn2ArbParamFormatter, +from bluepyopt.ephys.create_acc import (Nrn2ArbParamAdapter, Nrn2ArbMechGrouper, ArbNmodlMechFormatter) @@ -48,52 +48,52 @@ def test_read_templates(): @pytest.mark.unit -def test_Nrn2ArbParamFormatter_param_name(): +def test_Nrn2ArbParamAdapter_param_name(): """Test Neuron to Arbor parameter mapping.""" # Identity mech_param_name = "gSKv3_1bar_SKv3_1" - assert Nrn2ArbParamFormatter._param_name(mech_param_name) \ + assert Nrn2ArbParamAdapter._param_name(mech_param_name) \ == mech_param_name # Non-trivial transformation global_property_name = "v_init" - assert Nrn2ArbParamFormatter._param_name(global_property_name) \ + assert Nrn2ArbParamAdapter._param_name(global_property_name) \ == "membrane-potential" @pytest.mark.unit -def test_Nrn2ArbParamFormatter_param_value(): +def test_Nrn2ArbParamAdapter_param_value(): """Test Neuron to Arbor parameter units conversion.""" # Identity for region parameter mech_param = create_acc.Location(name="gSKv3_1bar_SKv3_1", value="1.025") - assert Nrn2ArbParamFormatter._param_value(mech_param) == "1.025" + assert Nrn2ArbParamAdapter._param_value(mech_param) == "1.025" # Non-trivial name transformation, but identical value/units global_property = create_acc.Location(name="v_init", value=-65) - assert Nrn2ArbParamFormatter._param_value(global_property) == "-65" + assert Nrn2ArbParamAdapter._param_value(global_property) == "-65" # Non-trivial name and value/units transformation global_property = create_acc.Location(name="celsius", value=34) - assert Nrn2ArbParamFormatter._param_value(global_property) == ( + assert Nrn2ArbParamAdapter._param_value(global_property) == ( "307.14999999999998") @pytest.mark.unit -def test_Nrn2ArbParamFormatter_format(): +def test_Nrn2ArbParamAdapter_format(): """Test Neuron to Arbor parameter reformatting.""" # Constant mechanism parameter mech_param = create_acc.Location(name="gSKv3_1bar_SKv3_1", value="1.025") mech = "SKv3_1" arb_mech_param = create_acc.Location(name="gSKv3_1bar", value="1.025") assert ( - Nrn2ArbParamFormatter.format( + Nrn2ArbParamAdapter.format( mech_param, mechs=[mech]) == (mech, arb_mech_param) ) # Non-unique mapping to mechanisms with pytest.raises(create_acc.CreateAccException): - Nrn2ArbParamFormatter.format( + Nrn2ArbParamAdapter.format( mech_param, mechs=["SKv3_1", "1"]) # Global property with non-trivial transformation @@ -102,7 +102,7 @@ def test_Nrn2ArbParamFormatter_format(): arb_global_property = create_acc.Location( name="temperature-kelvin", value="273.14999999999998") # Non-trivial name and value/units transformation - assert Nrn2ArbParamFormatter.format(global_property, []) == \ + assert Nrn2ArbParamAdapter.format(global_property, []) == \ (mech, arb_global_property) # Inhomogeneuos mechanism parameter @@ -126,7 +126,7 @@ def test_Nrn2ArbParamFormatter_format(): value_scaler=param_scaler, ) assert ( - Nrn2ArbParamFormatter.format( + Nrn2ArbParamAdapter.format( iexpr_param, mechs=[mech]) == (mech, arb_iexpr_param) ) @@ -151,7 +151,7 @@ def test_Nrn2ArbParamFormatter_format(): arb_point_expr_param = create_acc.PointExpr( name="tau", value="10", point_loc=[mech_loc]) assert ( - Nrn2ArbParamFormatter.format( + Nrn2ArbParamAdapter.format( point_expr_param, mechs=[mech]) == (mech, arb_point_expr_param) ) @@ -540,8 +540,6 @@ def test_cell_model_write_and_read_acc_replace_axon(): assert len(e.args) == 1 and e.args[0] == \ "Need a newer version of Arbor for axon replacement." return - finally: - cell.destroy(nrn_sim) # Axon replacement implemented in installed Arbor version cell_json, arb_morph, arb_decor, arb_labels = \ From 04ce61439f8942250b71f7b9f684d6040be14773 Mon Sep 17 00:00:00 2001 From: Lukas Drescher Date: Wed, 4 Jan 2023 21:44:39 +0100 Subject: [PATCH 42/42] Integrating more feedback from Anil, fixed L5PC ACC test --- bluepyopt/ephys/create_acc.py | 72 +++++++++++-------- bluepyopt/tests/test_ephys/test_create_acc.py | 13 +++- .../acc/l5pc/C060114A7_axon_replacement.acc | 6 +- .../testdata/acc/l5pc/C060114A7_modified.acc | 6 +- .../testdata/acc/l5pc_py37/l5pc_decor.acc | 37 ++++++++++ 5 files changed, 97 insertions(+), 37 deletions(-) create mode 100644 bluepyopt/tests/test_ephys/testdata/acc/l5pc_py37/l5pc_decor.acc diff --git a/bluepyopt/ephys/create_acc.py b/bluepyopt/ephys/create_acc.py index e6cf0cd2..4d176014 100644 --- a/bluepyopt/ephys/create_acc.py +++ b/bluepyopt/ephys/create_acc.py @@ -5,7 +5,7 @@ import io import logging import pathlib -from collections import namedtuple, OrderedDict +from collections import ChainMap, namedtuple, OrderedDict import re import jinja2 @@ -24,12 +24,23 @@ RangeIExpr = namedtuple('RangeIExpr', 'name, value, scale') -# Define Neuron to Arbor parameter conversions (conv defaults to identity) class ArbVar: + """Definition of a Neuron to Arbor parameter conversion""" + def __init__(self, name, conv=None): + """Constructor + + Args: + name (str): Arbor parameter name + conv (): Conversion of parameter value from Neuron units + to Arbor (defaults to identity) + """ self.name = name self.conv = conv + def __repr__(self): + return 'ArbVar(%s, %s)' % (self.name, self.conv) + class Nrn2ArbParamAdapter: """Converts a Neuron parameter to Arbor format (name and value)""" @@ -220,9 +231,9 @@ def process_global(cls, params): params (): List of global parameters in Neuron format Returns: - A mapping of mechanism to parameters. The mechanism parameters are - in Arbor format (mechanism name is None for non-mechanism - parameters). + A mapping of mechanism to parameters representing Arbor global + properties. The mechanism parameters are in Arbor format + (mechanism name is None for non-mechanism parameters). """ return cls._format_params_and_group_by_mech( [Location(name=name, value=value) @@ -240,10 +251,11 @@ def process_local(cls, params, channels): channels (): Mapping of Arbor label to co-located NMODL mechanisms Returns: - In the first component, a two-level mapping of Arbor label to - mechanism to parameters. The mechanism parameters are in Arbor - format (mechanism name is None for non-mechanism parameters). - In the second component, the global properties found are returned. + The return value is a tuple. In the first component, a two-level + mapping of Arbor label to mechanism to parameters. The mechanism + parameters are in Arbor format (mechanism name is None for + non-mechanism parameters). In the second component, the + Arbor global properties found are returned. """ local_mechs = dict() global_properties = dict() @@ -253,9 +265,12 @@ def process_local(cls, params, channels): # move Arbor global properties to global_params mechs, global_props = cls._separate_global_properties(loc, mechs) - for mech, props in global_props.items(): - global_properties[mech] = \ - global_properties.get(mech, []) + props + if global_props.keys() != {None}: + raise CreateAccException( + 'Support for Arbor default mechanisms not implemented.') + # iterate over global_props items if above exception triggers + global_properties[None] = \ + global_properties.get(None, []) + global_props[None] local_mechs[loc] = mechs return local_mechs, global_properties @@ -509,19 +524,18 @@ def _arb_populate_label_dict(local_mechs, local_scaled_mechs, pprocess_mechs): label_dict = dict() - for acc_labels in [local_mechs.keys(), - local_scaled_mechs.keys(), - pprocess_mechs.keys()]: - for acc_label in acc_labels: - if acc_label.name in label_dict and \ - acc_label != label_dict[acc_label.name]: - raise CreateAccException( - 'Label %s already exists in' % acc_label.name + - ' label_dict with different s-expression: ' - ' %s != %s.' % (label_dict[acc_label.name].loc, - acc_label.loc)) - elif acc_label.name not in label_dict: - label_dict[acc_label.name] = acc_label + acc_labels = ChainMap(local_mechs, local_scaled_mechs, pprocess_mechs) + + for acc_label in acc_labels: + if acc_label.name in label_dict and \ + acc_label != label_dict[acc_label.name]: + raise CreateAccException( + 'Label %s already exists in' % acc_label.name + + ' label_dict with different s-expression: ' + ' %s != %s.' % (label_dict[acc_label.name].loc, + acc_label.loc)) + elif acc_label.name not in label_dict: + label_dict[acc_label.name] = acc_label return label_dict @@ -592,6 +606,9 @@ def create_acc(mechs, of a custom template ''' + if custom_jinja_params is None: + custom_jinja_params = {} + if pathlib.Path(morphology).suffix.lower() not in ['.swc', '.asc']: raise CreateAccException("Morphology file %s not supported in Arbor " " (only supported types are .swc and .asc)." @@ -642,9 +659,6 @@ def create_acc(mechs, default_location_order, _arb_loc_desc) - if custom_jinja_params is None: - custom_jinja_params = {} - filenames = { name: template_name + (name if name.startswith('.') else "_" + name) for name in templates.keys()} @@ -825,7 +839,7 @@ def read_acc(cell_json_filename): class CreateAccException(Exception): - """All exceptions generated by create_acc module""" + """Exceptions generated by create_acc module""" def __init__(self, message): """Constructor""" diff --git a/bluepyopt/tests/test_ephys/test_create_acc.py b/bluepyopt/tests/test_ephys/test_create_acc.py index f1d19bcc..649b0af5 100644 --- a/bluepyopt/tests/test_ephys/test_create_acc.py +++ b/bluepyopt/tests/test_ephys/test_create_acc.py @@ -583,11 +583,20 @@ def test_cell_model_create_acc_replace_axon_without_instantiate(): def check_acc_dir(test_dir, ref_dir): assert os.listdir(ref_dir) == os.listdir(test_dir) + ref_dir_ver_suffix = '_py' + ''.join(sys.version.split('.')[:2]) + ref_dir_ver = ref_dir.parent / (ref_dir.name + ref_dir_ver_suffix) + for file in os.listdir(ref_dir): + + if (ref_dir_ver / file).exists(): + ref_dir_file = ref_dir_ver + else: + ref_dir_file = ref_dir + if file.endswith('.json'): with open(os.path.join(test_dir, file)) as f: cell_json_dict = json.load(f) - with open(ref_dir / file) as f: + with open(ref_dir_file / file) as f: ref_cell_json = json.load(f) for k in ref_cell_json: if k != 'produced_by': @@ -595,7 +604,7 @@ def check_acc_dir(test_dir, ref_dir): else: with open(os.path.join(test_dir, file)) as f: test_file = f.read() - with open(ref_dir / file) as f: + with open(ref_dir_file / file) as f: ref_file = f.read() assert ref_file == test_file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc index 9318d731..1723e930 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_axon_replacement.acc @@ -9,13 +9,13 @@ 2) (segment 1 (point 262.996735 -9.641676 -3.380000 0.690000) - (point 262.745453 -24.639570 -3.380000 0.690000) + (point 262.745453 -24.639572 -3.380000 0.690000) 2) (segment 2 - (point 262.745453 -24.639570 -3.380000 0.460000) + (point 262.745453 -24.639572 -3.380000 0.460000) (point 262.494171 -39.637466 -3.380000 0.460000) 2) (segment 3 (point 262.494171 -39.637466 -3.380000 0.460000) - (point 262.242889 -54.635361 -3.380000 0.460000) + (point 262.242889 -54.635365 -3.380000 0.460000) 2)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc index 0f0910d5..d47f3c7d 100644 --- a/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc/C060114A7_modified.acc @@ -21690,13 +21690,13 @@ 2) (segment 5372 (point 262.996735 -9.641676 -3.380000 0.690000) - (point 262.745453 -24.639570 -3.380000 0.690000) + (point 262.745453 -24.639572 -3.380000 0.690000) 2) (segment 5373 - (point 262.745453 -24.639570 -3.380000 0.460000) + (point 262.745453 -24.639572 -3.380000 0.460000) (point 262.494171 -39.637466 -3.380000 0.460000) 2) (segment 5374 (point 262.494171 -39.637466 -3.380000 0.460000) - (point 262.242889 -54.635361 -3.380000 0.460000) + (point 262.242889 -54.635365 -3.380000 0.460000) 2)))) \ No newline at end of file diff --git a/bluepyopt/tests/test_ephys/testdata/acc/l5pc_py37/l5pc_decor.acc b/bluepyopt/tests/test_ephys/testdata/acc/l5pc_py37/l5pc_decor.acc new file mode 100644 index 00000000..017c701f --- /dev/null +++ b/bluepyopt/tests/test_ephys/testdata/acc/l5pc_py37/l5pc_decor.acc @@ -0,0 +1,37 @@ +(arbor-component + (meta-data (version "0.1-dev")) + (decor + (default (membrane-potential -65)) + (default (temperature-kelvin 307.14999999999998)) + (default (membrane-capacitance 0.01)) + (default (axial-resistivity 100)) + (paint (region "all") (density (mechanism "default::pas/e=-75" ("g" 3.0000000000000001e-05)))) + (paint (region "soma") (ion-reversal-potential "na" 50)) + (paint (region "soma") (ion-reversal-potential "k" -85)) + (paint (region "soma") (density (mechanism "BBP::NaTs2_t" ("gNaTs2_tbar" 0.98395500000000002)))) + (paint (region "soma") (density (mechanism "BBP::SKv3_1" ("gSKv3_1bar" 0.30347200000000002)))) + (paint (region "soma") (density (mechanism "BBP::SK_E2" ("gSK_E2bar" 0.0084069999999999995)))) + (paint (region "soma") (density (mechanism "BBP::Ca_HVA" ("gCa_HVAbar" 0.00099400000000000009)))) + (paint (region "soma") (density (mechanism "BBP::Ca_LVAst" ("gCa_LVAstbar" 0.00033300000000000002)))) + (paint (region "soma") (density (mechanism "BBP::CaDynamics_E2" ("gamma" 0.00060899999999999995) ("decay" 210.48528400000001)))) + (paint (region "soma") (density (mechanism "BBP::Ih" ("gIhbar" 8.0000000000000007e-05)))) + (paint (region "axon") (ion-reversal-potential "na" 50)) + (paint (region "axon") (ion-reversal-potential "k" -85)) + (paint (region "axon") (density (mechanism "BBP::NaTa_t" ("gNaTa_tbar" 3.1379679999999999)))) + (paint (region "axon") (density (mechanism "BBP::Nap_Et2" ("gNap_Et2bar" 0.0068269999999999997)))) + (paint (region "axon") (density (mechanism "BBP::K_Pst" ("gK_Pstbar" 0.97353800000000001)))) + (paint (region "axon") (density (mechanism "BBP::K_Tst" ("gK_Tstbar" 0.089259000000000005)))) + (paint (region "axon") (density (mechanism "BBP::SK_E2" ("gSK_E2bar" 0.0071040000000000001)))) + (paint (region "axon") (density (mechanism "BBP::SKv3_1" ("gSKv3_1bar" 1.0219450000000001)))) + (paint (region "axon") (density (mechanism "BBP::Ca_HVA" ("gCa_HVAbar" 0.00098999999999999999)))) + (paint (region "axon") (density (mechanism "BBP::Ca_LVAst" ("gCa_LVAstbar" 0.0087519999999999994)))) + (paint (region "axon") (density (mechanism "BBP::CaDynamics_E2" ("gamma" 0.0029099999999999998) ("decay" 287.19873100000001)))) + (paint (region "dend") (membrane-capacitance 0.02)) + (paint (region "dend") (density (mechanism "BBP::Ih" ("gIhbar" 8.0000000000000007e-05)))) + (paint (region "apic") (ion-reversal-potential "na" 50)) + (paint (region "apic") (ion-reversal-potential "k" -85)) + (paint (region "apic") (membrane-capacitance 0.02)) + (paint (region "apic") (density (mechanism "BBP::NaTs2_t" ("gNaTs2_tbar" 0.026145000000000002)))) + (paint (region "apic") (density (mechanism "BBP::SKv3_1" ("gSKv3_1bar" 0.0042259999999999997)))) + (paint (region "apic") (density (mechanism "BBP::Im" ("gImbar" 0.00014300000000000001)))) + (paint (region "apic") (scaled-mechanism (density (mechanism "BBP::Ih" ("gIhbar" 8.0000000000000007e-05))) ("gIhbar" (add (mul (scalar -1) (scalar 0.86960000000000004) ) (mul (scalar 2.0870000000000002) (exp (mul (distance (region "soma")) (scalar 0.0030999999999999999) ) ) ) )))))) \ No newline at end of file